Теория вероятностей. Лекция тринадцатая Интеграл

Дмитрий Валерьевич Хлопин glukanat@mail.ru

Институт математики и механики им. Н.Н.Красовского

04.12.2018

Переход от дискретного случая к общему

- борелевские множества и мера Лебега
- случайные величины и измеримые отображения
- функции распределения
- абсолютно случайные величины и не только
- математическое ожидание как интеграл
- условное математическое ожидание как интеграл
- совместные функции распределения

Мы сформулировали свойства, которые бы хотели видеть у интеграла, обошли проблемы с бесконечностью и возможной неизмеримостью. Осталось его построить.

Техзадание

Дано измеримое пространство (Ω,\mathcal{F}) с мерой μ . Требуется задать $\int_{\Omega} f(\omega)\,\mu(d\omega)$ для неотрицательных измеримых функций f так, чтобы для всех неотрицательных измеримых функций $f,g:\Omega\to\mathbb{R}$

X1
$$\int_{\Omega} f(\omega) \mu(d\omega) + \int_{\Omega} g(\omega) \mu(d\omega) = \int_{\Omega} (f(\omega) + g(\omega)) \mu(d\omega);$$

X3
$$c \int_{\Omega} f(\omega) \mu(d\omega) = \int_{\Omega} c f(\omega) \mu(d\omega)$$
 для всех $c > 0$;

X4"
$$\int_{\Omega} f(\omega) \mu(d\omega) \ge 0$$
;

X6'
$$\int_{\Omega} 1_A(\omega) \, \mu(d\omega) \stackrel{\triangle}{=} \mu(A)$$
 для всех $A \in \mathcal{F}$.

После этого по определению принять для измеримых функций $f,g:\Omega
ightarrow \mathbb{R}$

$$\int_A f(\omega) \, \mu(d\omega) \stackrel{\triangle}{=} \int_\Omega 1_A(\omega) f(\omega) \, \mu(d\omega);$$

$$\int_A f(\omega) \, \mu(d\omega) \stackrel{\triangle}{=} 0 \text{ в случае } \mu(A) = 0;$$

$$\int_\Omega f(\omega) \, \mu(d\omega) \stackrel{\triangle}{=} \int_\Omega f^+(\omega) \, \mu(d\omega) - \int_\Omega (-f^-)(\omega) \, \mu(d\omega) \text{ для всех измеримых } f, \text{ для которых } f^- \not\equiv 0, \text{ и интегралы справа не равны одновременно } +\infty.$$

Интеграл как абстракция. Теорема Даниэля [без д-ва]

Пусть имеется векторное пространство $\mathcal S$ функций $\xi:\Omega\to\mathbb R$, содержащее константы (в частности содержащее 1) и замкнутое относительно операции \sup . Пусть имеется неотрицательный линейный функционал I над $\mathcal S$, для которого I 1 = 1. Тогда для существования на $(\Omega,\sigma(\mathcal S))$ вероятности μ со свойством: каждая $\xi\in\mathcal S$ μ -интегрируема, и

$$I\xi = \int_{\Omega} \xi(\omega) \, \mu(d\omega) \qquad \forall \xi \in \mathcal{S},$$

необходимо и достаточно, чтобы для всякой убывающей к нулю последовательности $\xi_n \in \mathcal{S}$ было выполнено

$$\lim_{n\to\infty}I\,\xi_n=0.$$

Более того, обладающая таким свойством мера — единственна.

Интеграл для неотрицательных дискретных функций

Функция f дискретна, если, с точностью до множества меры ноль, принимает не более чем счетное число значений.

Для всякой неотрицательной дискретной измеримой функции $f:\Omega
ightarrow \mathbb{R},$

$$f = \sum_{k \in \mathbb{N}} a_k \mathbf{1}_{\{\omega \in \Omega \mid f(\omega) = a_k\}},$$

определим ее интеграл по мере μ формулой:

$$\int_{\Omega} f(\omega) \, \mu(d\omega) \stackrel{\triangle}{=} \sum_{k=1}^{\infty} a_k \mu \big(\{ \omega \in \Omega \, | \, f(\omega) = a_k \} \big).$$

Если эта сумма принимает конечное значение, то будем говорить, что f μ -суммируема.

Замечание. Линейность и монотонность выполнены автоматически.

Первая лемма

Лемма 1. Пусть f — суммируемая неотрицательная дискретная функция. Тогда

$$\lim_{N\to\infty}\int_{\{\omega|f(\omega)>N\}}f(\omega)\,\mu(d\omega)=0.$$

Доказательство. Для любого $\varepsilon>0$ найдется такое M, что

$$\sum_{k=M+1}^{\infty} a_k \mu \Big(\{ \omega \in \Omega \, | \, f(\omega) = a_k \} \Big) < \varepsilon.$$

Тогда для любого $N > \max(a_1, \ldots, a_M)$ имеем

$$\int_{\{\omega|f(\omega)>N\}} f(\omega) \,\mu(d\omega) \leq \sum_{k=M+1}^{\infty} a_k \mu(\{\omega \in \Omega \,|\, f(\omega) = a_k\}) \leq \varepsilon.$$

В силу произвольности $\varepsilon > 0$, все доказано.

Вторая лемма

Лемма 2. Пусть $\mu(\Omega) < \infty$, f_k — монотонно невозрастающая последовательность суммируемых неотрицательных дискретных функций, сходящаяся к 0. Тогда $\lim_{n \to \infty} \int_{\Omega} f_n(\omega) \, \mu(d\omega) = 0$. Доказательство. Выберем произвольное число $\varepsilon > 0$. Зададим $A_n = \{\omega|f_n(\omega) > \varepsilon\}$ для всех натуральных n,N. Поскольку $\mu\Big(\cap_{n\in\mathbb{N}} A_n\Big) = 0$, то $\mu(A_n) \to 0$ из σ -аддитивности μ . Поскольку f_1 — суммируема, по лемме 1 можно выбрать N настолько большое, что $\int_{\{\omega|f_1(\omega)>N\}} f_1(\omega) \, \mu(d\omega) < \varepsilon$. Пусть $B \stackrel{\triangle}{=} \{\omega|f_1(\omega)>N\}$. Примем $g_n \stackrel{\triangle}{=} \varepsilon 1_{\Omega \smallsetminus A_n} + N 1_{A_n} + f_n 1_B$. В силу $0 \le f_n \le g_n$ имеем

$$0 \leq \lim_{n \to \infty} \int_{\Omega} f_n(\omega) \, \mu(d\omega) \leq \lim_{n \to \infty} \int_{\Omega} g_n(\omega) \, \mu(d\omega)$$

$$\leq \lim_{n \to \infty} \varepsilon \mu(\Omega \setminus A_n) + N\mu(A_n) + \varepsilon = \varepsilon \mu(\Omega) + \varepsilon.$$

Переходя к пределу при $\varepsilon \to 0$, получаем требуемое.

Третья лемма

Лемма 3. Пусть $\mu(\Omega) < \infty$, g — дискретная суммируемая функция, а f — предел монотонно неубывающей последовательности дискретных измеримых неотрицательных функций f_n . Тогда из $0 \le g \le f$ следует

$$\int_{\Omega} g(\omega) \, \mu(d\omega) \le \lim_{n \to \infty} \int_{\Omega} f_n(\omega) \, \mu(d\omega).$$

Доказательство. Фиксируем $\alpha \in (0,1)$. Для каждого n введем $A_n = \{\omega \,|\, \alpha g(\omega) \leq f_n(\omega)\}$. Теперь $\cup_{n \in \mathbb{N}} A_n = \Omega$ и $1_{\Omega \smallsetminus A_n} \downarrow 0$. Но тогда, по лемме 2, $\int_{\Omega \smallsetminus A_n} g(\omega) \,\mu(d\omega) = \int_{\Omega} 1_{\Omega \smallsetminus A_n}(\omega) g(\omega) \,\mu(d\omega) \to 0$. При этом,

$$\alpha \int_{A_n} g(\omega) \mu(d\omega) \le \int_{A_n} f_n(\omega) \mu(d\omega) \le \int_{\Omega} f_n(\omega) \mu(d\omega).$$

Переходя к пределу, имеем

$$\alpha \int_{\Omega} g(\omega) \mu(d\omega) \le \lim_{n \to \infty} \int_{\Omega} f_n(\omega) \mu(d\omega)$$

для всех $\alpha \in (0,1)$, то есть и для $\alpha = 1$.

Интеграл для неотрицательных функций. Определение

Пусть $\mu(\Omega) < \infty$.

Для всякой неотрицательной измеримой функции $f:\Omega \to \mathbb{R}$, для некоторой монотонно неубывающей последовательности неотрицательных суммируемых дискретных функций f_n , сходящихся к f, назовем интегралом от функции f по мере μ значение выражения

$$\int_{\Omega} f(\omega) \, \mu(d\omega) \stackrel{\triangle}{=} \lim_{n \to \infty} \int_{\Omega} f_n(\omega) \, \mu(d\omega).$$

Подумать: в силу монотонности предел существует заведомо.

Подумать: автоматически выполнена неотрицательность интеграла.

Подумать: для дискретных измеримых функций все работает.

Подумать: определение имеет две дыры: кто сказал, что интеграл есть, кто сказал, что он единственнен.

Интеграл для неотрицательных функций. Корректность

Теорема единственности. Интеграл от неотрицательной измеримой функции не зависит от выбора последовательности.

Доказательство. Рассмотрим некоторую неотрицательную измеримую функцию f, пусть к ней сходятся две монотонно неубывающие последовательности неотрицательных суммируемых дискретных функций f_n , g_n . Применяя Лемму 3 с $g=g_k$, имеем $\int_\Omega g_k(\omega)\,\mu(d\omega) \leq \lim_{n\to\infty}\int_\Omega f_n(\omega)\,\mu(d\omega)$, то есть

$$\lim_{k\to\infty} \int_{\Omega} g_k(\omega) \,\mu(d\omega) \leq \lim_{n\to\infty} \int_{\Omega} f_n(\omega) \,\mu(d\omega).$$

В силу симметрии теорема доказана.

<u>Подумать:</u> для дискретных измеримых функций теперь уж точно все работает.

Подумать: убедитесь, что проверены все необходимые хотелки...

Интеграл для неотрицательных функций. Существование

Теорема существования. Интеграл от неотрицательной измеримой функции существует всегда.

<u>Д</u>оказательство. Введем $\lfloor x \rfloor$ для всех $x \in \mathbb{R}$ как наибольшее целое, не превосходящее x. Поскольку $2^{-n}\lfloor 2^n x \rfloor$ монотонно не убывает и сходится к x, то достаточно для всякой измеримой неотрицательной функции f задать последовательность суммируемых функций

$$f_n = 2^{-n} \lfloor 2^n f \rfloor 1_{\{\omega \mid f(\omega) < 2^n\}}.$$

Замечание. Отметим, что для построения интеграла от измеримой функции f можно построить последовательность из $\sigma(f)$ -измеримых функций. Такая последовательность останется измеримой при любом выборе σ -алгебры, для которой измерима сама f.

Замечание. Интеграл от функции не зависит от выбора алгебры, в которой эта функция измерима.

Техзадание. Итог

Дано измеримое пространство (Ω,\mathcal{F}) с мерой μ , $\mu(\Omega)<\infty$. Задали интеграл для неотрицательных измеримых функций (как предел суммируемых дискретных) так, чтобы для всех неотрицательных измеримых $f,g:\Omega\to\mathbb{R}$

X6'
$$\int_{\Omega} 1_A(\omega) \mu(d\omega) \stackrel{\triangle}{=} \mu(A)$$
 для всех $A \in \mathcal{F}$;

X4"
$$\int_{\Omega} f(\omega) \mu(d\omega) \ge 0$$
;

X3
$$c \int_{\Omega} f(\omega) \mu(d\omega) = \int_{\Omega} c f(\omega) \mu(d\omega)$$
 для всех $c > 0$;

X1
$$\int_{\Omega} f(\omega) \mu(d\omega) + \int_{\Omega} g(\omega) \mu(d\omega) = \int_{\Omega} (f(\omega) + g(\omega)) \mu(d\omega)$$
.

После этого задали по определению

$$\int_A f(\omega) \, \mu(d\omega) \stackrel{\triangle}{=} \int_\Omega 1_A(\omega) f(\omega) \, \mu(d\omega);$$

$$\int_A f(\omega) \, \mu(d\omega) \stackrel{\triangle}{=} 0 \text{ в случае } \mu(A) = 0;$$

$$\int_\Omega f(\omega) \, \mu(d\omega) \stackrel{\triangle}{=} \int_\Omega f^+(\omega) \, \mu(d\omega) - \int_\Omega (-f^-)(\omega) \, \mu(d\omega) \text{ для всех измеримых } f, \text{ для которых } f^- \not\equiv 0, \text{ и интегралы справа не равны одновременно } +\infty.$$

Вспоминаем определение матожидания

Математическим ожиданием $\mathbb{E}\xi$ случайной величины $\xi:\Omega\to\mathbb{R}$ назовем значение выражения

$$\int_{\Omega} \xi(\omega) \, \mathbb{P}(d\omega),$$

если оно существует и конечно.

Замечание. Законно было написать и

$$\int_{\mathbb{R}} x (\xi \# \mathbb{P}) (dx),$$

эту эквивалентность докажем много позже.

...и очевидные [с-но] свойства $(\mathbb{E}\xi = \int_{\Omega} \xi(\omega) \mathbb{P}(d\omega))$

- $0^0 \mathbb{E}1_A = \mathbb{P}(A);$
- 1^0 $\mathbb{E}\xi \ge 0$, если $\xi \ge 0$ для почти всех $\omega \in \Omega$;
- $2^0 \ \mathbb{E}\xi_1 \ge \mathbb{E}\xi_2$, если $\xi_1(\omega) \ge \xi_2(\omega)$ для почти всех $\omega \in \Omega$, и все матожидания существуют;
- $3^0 \ \mathbb{E} c = c$ для случайной величины, почти всюду равной константе $c \in \mathbb{R}$;
- $4^0 \ \mathbb{E}(c\xi) = c\mathbb{E}\xi$ для любого $c \in \mathbb{R}$; в случае $c \neq 0$, если существует одно, то имеется и другое;
- 5^0 $\mathbb{E}\xi_1 + \mathbb{E}\xi_2 = \mathbb{E}(\xi_1 + \xi_2)$; при этом, если существуют два из них, то существует и третье;
- 6^0 $a\mathbb{E}\xi_1+b\mathbb{E}\xi_2=\mathbb{E}(a\xi_1+b\xi_2)$ при любых $a,b\in\mathbb{R}$; в случае $ab\neq 0$, если существуют два из них, то существует и третье;

Свойства матожидания, произведение.

 $7^0 \ \mathbb{E}(\xi\eta) = \mathbb{E}\xi\mathbb{E}\eta$ для независимых случайных величин ξ,η ; при этом, если матожидания существуют справа, то и слева оно тоже существует.

<u>Д</u>оказательство. Рассмотрим $A \in \sigma(\xi), B \in \sigma(\eta)$. Для $f=1_A$ и $g=1_B$ по определению выполнено

$$\mathbb{E}(fg) = \mathbb{E}f\mathbb{E}g. \qquad (*)$$

Для произвольной суммируемой $f = \sum_{i=1}^{\infty} x_i 1_{A_i}$ (где $A_i \in \sigma(\xi)$) и $g = 1_B$ также выполнено (*). Переходя к пределу в определении интеграла, для всякой суммируемой $\sigma(\xi)$ -измеримой f при $g = 1_B$ получаем (*). Для произвольной суммируемой $g = \sum_{i=1}^{\infty} y_i 1_{B_i}$ (где $B_i \in \sigma(\eta)$) и всякой суммируемой $\sigma(\xi)$ -измеримой f также выполнено (*). Переходя к пределу в определении интеграла, для всякой суммируемой $\sigma(\eta)$ -измеримой g и всякой суммируемой $\sigma(\xi)$ -измеримой f получаем (*).

Осталось подставить $f = \xi, g = \eta$.

Матожидание предела равно пределу матожиданий, если

Теорема Лебега. Если последовательность случайных величин ξ_n сходится к ξ п.в., и для случайной величины φ имеют место $\mathbb{E} \varphi < +\infty$ и $|\xi_n| \leq \varphi$ при всех натуральных n, то ξ также суммируема, при этом

$$\mathbb{E}\xi = \lim_{n\to\infty} \mathbb{E}\xi_n < \infty.$$

Теорема Леви. Если последовательность случайных величин ξ_n монотонна, их матожидания $\mathbb{E}\xi_n$ ограничены, то случайная величина $\xi \stackrel{\triangle}{=} \lim_{n \to \infty} \xi_n$ также суммируема, при этом

$$\mathbb{E}\xi = \lim_{n \to \infty} \mathbb{E}\xi_n < \infty.$$

Лемма Фату. Для всякой последовательности неотрицательных случайных величин ξ_n

$$\mathbb{E}(\liminf_{k\to\infty}\xi_k)\leq \liminf_{k\to\infty}\mathbb{E}\xi_k.$$

Теорема Лебега. Две формулировки

Теорема Лебега о мажорируемой сходимости. Если последовательность случайных величин ξ_n сходится к ξ почти всюду, и для случайной величины φ имеют место $\mathbb{E} \varphi < +\infty$ и $|\xi_n| \leq \varphi$ при всех натуральных n, то ξ также суммируема, при этом

$$\mathbb{E}\xi=\lim_{n\to\infty}\mathbb{E}\xi_n<\infty.$$

Мы будем ее доказывать в интегральной формулировке: **Теорема Лебега о мажорируемой сходимости.** Если последовательность измеримых функций f_n сходится к некоторой функции f почти всюду, и для некоторой суммируемой функции φ выполнено $|f_n| \leq \varphi$ при всех натуральных n, то интегралы от f_n ограничены, f μ -суммируема, при этом

$$\int_{\Omega} f(\omega) \, \mu(d\omega) = \lim_{n \to \infty} \int_{\Omega} f_n(\omega) \, \mu(d\omega) \leq \int_{\Omega} \varphi(\omega) \, \mu(d\omega).$$

Теорема Лебега. Доказательство

Перейдя при необходимости к $\lfloor \varphi \rfloor + 1$, можно считать φ дискретной. Выберем произвольное число $\varepsilon > 0$. По лемме 1 найдется такое M, что для $A = \{\omega \,|\, \varphi(\omega) \geq M\}$ имеем $\int_A \varphi(\omega) \mu(d\omega) < \varepsilon$. Теперь, по теореме Егорова, найдется такое событие $B \in \mathcal{F}$, $\mu(B) < \varepsilon/M$, что f_n сходится к f равномерно на $\Omega \smallsetminus (A \cup B)$. Тогда

$$\int_{\Omega \setminus (A \cup B)} |f_n(\omega) - f(\omega)| \mu(d\omega) < \varepsilon$$

при достаточно больших n. Отсюда, наконец, получим

$$\left| \int_{\Omega} (f_n(\omega) - f(\omega)) \mu(d\omega) \right| \leq \varepsilon + \left| \int_{B} (f_n(\omega) - f(\omega)) \mu(d\omega) \right|$$

$$+ \int_{A} |f_n(\omega)| \mu(d\omega) + \int_{A} |f(\omega)| \mu(d\omega)$$

$$\leq \varepsilon + 2M\varepsilon/M + 2 \int_{A} \varphi(\omega) \mu(d\omega) \leq 5\varepsilon.$$

Переходя к пределу при $\varepsilon \to 0$, получаем требуемое.

Простые следствия [с-но]

Получите из теоремы Лебега в качестве следствий следующие усиления первых двух лемм.

Лемма 1'. Пусть $\mu(\Omega) < \infty$, f — суммируемая функция. Тогда

$$\lim_{N\to\infty}\int_{\{\omega\,|\,|f(\omega)|>N\}}f(\omega)\,\mu(d\omega)=0.$$

Лемма 2'. Пусть $\mu(\Omega) < \infty$, f_k — монотонная последовательность суммируемых функций, сходящаяся к 0. Тогда

$$\lim_{n\to\infty}\int_{\Omega}f_n(\omega)\,\mu(d\omega)=0.$$

Подумать: без условия монотонности лемма 2' неверна.

Подумать: без условия суммируемости лемма 2' неверна даже для монотонной последовательности.

Подумать: в теореме Лебега нельзя ослабить $|f_n| \le \varphi$ до $|f| \le \varphi$.

Третья лемма. Общий случай

Лемма 3'. Пусть $\mu(\Omega)<\infty$, g — суммируемая функция, а f — предел монотонно неубывающей последовательности измеримых функций $f_n\geq 0$. Тогда из $0\leq g\leq f$ следует $\int_\Omega g(\omega)\,\mu(d\omega)\leq \lim_{n\to\infty}\int_\Omega f_n(\omega)\,\mu(d\omega)$. Доказательство. Фиксируем $\alpha\in(0,1)$. Выберем такую дискретную $\bar g$, что $0\leq \bar g\leq g$ и $\int_\Omega \bar g(\omega)\,\mu(d\omega)\geq \alpha\int_\Omega g(\omega)\,\mu(d\omega)$. Для каждого n введем $A_n=\{\omega\,|\,\alpha\bar g(\omega)\leq f_n(\omega)\}$. Теперь $\cup_{n\in\mathbb N}A_n=\Omega$ и $1_{\Omega\smallsetminus A_n}\downarrow 0$. Но тогда, по лемме 2, $\int_{\Omega\smallsetminus A_n}\bar g(\omega)\,\mu(d\omega)=\int_\Omega 1_{\Omega\smallsetminus A_n}(\omega)\bar g(\omega)\,\mu(d\omega)\to 0$. При этом,

$$\alpha \int_{A_n} \bar{g}(\omega) \, \mu(d\omega) \leq \int_{A_n} f_n(\omega) \, \mu(d\omega) \leq \int_{\Omega} f_n(\omega) \, \mu(d\omega).$$

Переходя к пределу, имеем

$$\alpha^{2} \int_{\Omega} g(\omega) \, \mu(d\omega) \leq \alpha \int_{\Omega} \bar{g}(\omega) \, \mu(d\omega) \leq \lim_{n \to \infty} \int_{\Omega} f_{n}(\omega) \, \mu(d\omega)$$

для всех $\alpha \in (0,1)$, то есть и для $\alpha = 1$.

Теорема Леви

Теорема Леви. Если последовательность измеримых функций f_n не убывает, а их интегралы $\int_{\Omega} f_n(\omega) \mu(d\omega)$ ограничены, то предел $f \stackrel{\triangle}{=} \lim_{n \to \infty} f_n$ μ -суммируем, и $\int_{\Omega} f(\omega) \mu(d\omega) = \lim_{n \to \infty} \int_{\Omega} f_n(\omega) \mu(d\omega)$. Доказательство. Можно считать, что все функции неотрицательны. Пусть g_n — такая последовательность дискретных суммируемых функций, что $0 \le g_n \le f$ и $\lim_{k \to \infty} \int_{\Omega} g_k(\omega) \mu(d\omega) = \int_{\Omega} f(\omega) \mu(d\omega)$. По лемме 3' для $g = g_k$ имеем

$$\int_{\Omega} g_k(\omega) \, \mu(d\omega) \leq \lim_{n \to \infty} \int_{\Omega} f_n(\omega) \, \mu(d\omega).$$

Переходя к пределу, получаем

$$\int_{\Omega} f(\omega) \, \mu(d\omega) \le \lim_{n \to \infty} \int_{\Omega} f_n(\omega) \, \mu(d\omega).$$

Поскольку слева предел конечен, то f суммируема. Осталось применить теорему Лебега для φ = f.

Лемма Фату

Лемма Фату. Для всякой последовательности неотрицательных измеримых функций f_k их нижний предел измерим и

$$\int_{\Omega} \liminf_{k \to \infty} f_k(\omega) \mu(d\omega) \le \liminf_{k \to \infty} \int_{\Omega} f_k(\omega) \mu(d\omega).$$

Доказательство. Измеримость была показана ранее. Если нижний предел справа равен $+\infty$, то все показано, поэтому можно считать, что он конечен и равен S.

Выделим у f_k такую подпоследовательность суммируемых функций g_k , что $S=\inf_{k\to\infty}\int_\Omega g_k(\omega)\mu(d\omega)$. При этом автоматически последовательность $\inf_{i\geq n}g_i=\inf\{g_n,g_{n+1},\ldots\}$ не убывает, и $\inf_{i\geq n}f_i\leq\inf_{i\geq n}g_i$ для всех n. Тогда

$$\liminf_{k\to\infty} f_k = \lim_{n\to\infty} \inf_{i\geq n} f_i \leq \lim_{n\to\infty} \inf_{i\geq n} g_i.$$

Здесь правая часть суммируема по теореме Леви. Осталось применить теорему Лебега.

Матожидание предела равно пределу матожиданий, если

Теорема Лебега. Если последовательность случайных величин ξ_n сходится к ξ п.в., и для случайной величины φ имеют место $\mathbb{E} \varphi < +\infty$ и $|\xi_n| \leq \varphi$ при всех натуральных n, то ξ также суммируема, при этом

$$\mathbb{E}\xi = \lim_{n\to\infty} \mathbb{E}\xi_n < \infty.$$

Теорема Леви. Если последовательность случайных величин ξ_n монотонна, их матожидания $\mathbb{E}\xi_n$ ограничены, то случайная величина $\xi \stackrel{\triangle}{=} \lim_{n \to \infty} \xi_n$ также суммируема, при этом

$$\mathbb{E}\xi = \lim_{n\to\infty} \mathbb{E}\xi_n < \infty.$$

Лемма Фату. Для всякой последовательности неотрицательных случайных величин ξ_n

$$\mathbb{E}(\liminf_{k\to\infty}\xi_k)\leq \liminf_{k\to\infty}\mathbb{E}\xi_k.$$