Übungen zur Algebra II

Sommersemester 2021

Universität Heidelberg Mathematisches Institut PROF. DR. A. SCHMIDT DR. C. DAHLHAUSEN

Blatt 6

Abgabe: Freitag, 28.05.2021, 09:15 Uhr

Aufgabe 1 (Projektive Moduln).

(6 Punkte)

Sei *n* eine natürliche Zahl.

(a) Sei $d \in \mathbb{N}$ ein Teiler von n. Zeigen Sie, dass der $\mathbb{Z}/n\mathbb{Z}$ -Modul $\mathbb{Z}/d\mathbb{Z}$ genau dann projektiv ist, wenn $\operatorname{ggT}(d,\frac{n}{d})=1$ gilt. Insbesondere ist, falls n keine Primpotenz ist, nicht jeder endlich erzeugte, projektive $\mathbb{Z}/n\mathbb{Z}$ -Modul frei. Folgern Sie: Ist $n=p_1^{e_1}\cdots p_r^{e_r}$ die Primfaktorzerlegung von n, so ist jeder endlich erzeugte, projektive $\mathbb{Z}/n\mathbb{Z}$ -Modul von der Form

$$(\mathbb{Z}/p_1^{e_1}\mathbb{Z})^{f_1}\oplus\ldots\oplus(\mathbb{Z}/p_r^{e_r}\mathbb{Z})^{f_r}$$

für geeignete $f_1, \ldots, f_r \in \mathbb{N}_0$. Hinweis: Benutzen Sie den Hauptsatz über endliche erzeugte \mathbb{Z} -Moduln.

(b) Zeigen Sie, dass $\mathbb{Z}/n\mathbb{Z}$ ein kofreier $\mathbb{Z}/n\mathbb{Z}$ -Modul ist. Folgern Sie daraus, dass jeder endlich erzeugte projektive $\mathbb{Z}/n\mathbb{Z}$ -Modul auch injektiv ist.

Aufgabe 2 (Mono- und Epimorphismen von Ringen).

(6 Punkte)

Es sei CRing die Kategorie der kommutativen, unitären Ringe mit unitären Ringhomomorphismen als Morphismen. In dieser Aufgabe untersuchen wir die Mono- und Epimorphismen in CRing. Welche der folgenden Aussagen sind wahr? Geben Sie jeweils einen Beweis oder ein Gegenbeispiel an.

- (a) Jeder injektive Ringhomomorphimsmus ist ein Monomorphismus.
- (b) Jeder Monomorphismus ist injektiv.
- (c) Jeder surjektive Ringhomomorphimsmus ist ein Epimorphismus.
- (d) Jeder Epimorphismus ist surjektiv.

Aufgabe 3 (Halbgeordnete Mengen als Kategorien).

(6 Punkte)

Sei (I, \leq) eine halbgeordnete Menge. Zeigen Sie:

- (a) Die Elemente von I bilden eine Kategorie Kat(I), d.h. ob $(\mathrm{Kat}(I))=I$, wobei für zwei Elemente $i,j\in I$ die Morphismen wie folgt gegeben sind: ist $i\leq j$, so hat die Menge $\mathrm{Mor}_{\mathrm{Kat}(I)}(i,j)$ genau ein Element, und andernfalls gilt $\mathrm{Mor}_{\mathrm{Kat}(I)}(i,j)=\emptyset$.
- (b) Sei I gerichtet und R ein Ring. Dann ist ein direktes System von R-Moduln genau das gleiche wie ein (kovarianter) Funktor M: Kat $(I) \to R$ -Mod und ein projektives System ist genau das gleiche wie ein (kovarianter) Funktor N: Kat $(I)^{op} \to R$ -Mod (d.h. ein kontravarianter Funktor N: Kat $(I) \to R$ -Mod).

Aufgabe 4 (Ringhomomorphismen und Spektren).

(6 Punkte)

Sei $\phi: A \to B$ ein Ringhomomorphismus. Für ein Primideal $\mathfrak{q} \subset B$ ist sein Urbild $\phi^{-1}(\mathfrak{q}) \subset A$ wieder ein Primideal. Daher erhalten wir eine Mengenabbildung ϕ^* : Spec $(B) \to \operatorname{Spec}(A), \mathfrak{q} \mapsto \phi^*(\mathfrak{q}) := \phi^{-1}(\mathfrak{q})$. Zeigen Sie:

- (a) Für jedes $f \in A$ ist $(\phi^*)^{-1}(D(f)) = D(\phi(f))$. Folgern Sie, dass ϕ^* stetig ist. *Hinweis:* Blatt 4, Aufgabe 4.
- (b) Für ein Ideal $\mathfrak{a} \subseteq A$ ist $(\phi^*)^{-1}(V(\mathfrak{a})) = V(\mathfrak{a}^e)$.
- (c) Für ein Ideal $\mathfrak{b} \subseteq B$ ist $\overline{\phi^*(V(\mathfrak{b}))} = V(\mathfrak{b}^c)$.

¹Für eine Teilmenge A eines topologischen Raumes X bezeichnet \overline{A} den Abschluss von A in X, d.h. die kleinste abgeschlossene Menge von X, die A enthält.

Zusatzaufgabe 5 (K-Theorie).

(6 Punkte)

Sei A ein Ring (kommutativ, mit Eins) und $\operatorname{Proj}(A)^\cong$ die Menge der Isomorphieklassen endlich erzeugter, projektiver A-Moduln. Für einen endlich erzeugten, projektiven A-Modul P bezeichne [P] seine Isomorphieklasse. Wir definieren die K-Gruppe von A als die Faktorgruppe

$$K(A) := \Bigl(igoplus_{[P] \in \mathtt{Proj}(A)^\cong} \mathbb{Z} \cdot [P]\Bigr) / \mathtt{Exakt}$$

wobei Exakt die Untergruppe ist, die von den Elementen [P]-[P']-[P''] für jede kurze exakte Folge $0\to P'\to P\to P''\to 0$ endlich erzeugter projektiver A-Moduln erzeugt wird. Zeigen Sie: Ist A ein Hauptidealring, so induziert die Rangabbildung $\operatorname{rg}\colon\operatorname{Proj}(A)^\cong\to\mathbb{Z}$ einen Isomorphismus abelscher Gruppen $K(A)\to\mathbb{Z}$. Hinweis: Benutzen Sie den Hauptsatz über endlich erzeugte Moduln über einem Hauptidealring.