Projeto 2 – MMF 1, IMPA

Pedro Farias

1. Input do Modelo

t=0	1	2	3
1	1.09	1.08	1.34
1	1.16	1.26	1.54
1	1.22	1.07	1.03
1	0.93	0.97	0.92
1	1.11	1.56	1.52
1	0.76	0.77	0.9
1	0.92	0.84	1.01
1	0.88	1.22	1.34

2. Payoffs

Aplicamos a função payoff da put (max(K-X, 0)) nos caminhos imputados, assim temos o valor de exercício da opção em cada momento.

caminho	t=0	1	2	3
1	0.10	0.01	0.02	0.00
2	0.10	0.00	0.00	0.00
3	0.10	0.00	0.03	0.07
4	0.10	0.17	0.13	0.18
5	0.10	0.00	0.00	0.00
6	0.10	0.34	0.33	0.20
7	0.10	0.18	0.26	0.09
8	0.10	0.22	0.00	0.00

3. Selecionando as Colunas

Selecionamos as colunas do dataframe de preços de trás para frente, começando do penúltimo. Adicionamos os payoff em (-2) e em (-1) (este descontado) à tabela.

	stock prices (-2)
1	1.08
2	1.26
3	1.07
4	0.97
5	1.56
6	0.77
7	0.84
8	1.22

	stock prices (-2)	payoffs (-1)	payoffs (-2)
1	1.08	0.00	0.02
2	1.26	0.00	0.00
3	1.07	0.07	0.03
4	0.97	0.17	0.13
5	1.56	0.00	0.00
6	0.77	0.19	0.33
7	0.84	0.08	0.26
8	1.22	0.00	0.00

4. Preparação para a Regressão

Selecionamos apenas os caminhos em que vale a pena exercer a opção em (-2), ou seja, S > K.

	stock prices (-2)	payoffs (-1)	payoffs (-2)
1	1.08	0.00	0.02
2	1.26	0.00	0.00
3	1.07	0.07	0.03
4	0.97	0.17	0.13
5	1.56	0.00	0.00
6	0.77	0.19	0.33
7	0.84	0.08	0.26
8	1.22	0.00	0.00

	stock prices (-2)	payoffs (-1)	payoffs (-2)
1	1.08	0.00	0.02
3	1.07	0.07	0.03
4	0.97	0.17	0.13
6	0.77	0.19	0.33
7	0.84	0.08	0.26

5. Regressão

Realizamos a regressão quadrática relacionando *stock prices* (-2) (x) e *payoffs* (-1) (y). Aplicamos a função encontrada em *stock prices* (-2), criando a coluna *continuation*.

Então selecionamos apenas as linhas em que *payoffs* (-2), o valor de exercício, supera *continuation*, o valor intrínseco.

	stock prices (-2)	payoffs (-1)	payoffs (-2)
1	1.08	0.00	0.02
3	1.07	0.07	0.03
4	0.97	0.17	0.13
6	0.77	0.19	0.33
7	0.84	0.08	0.26

$$y = -1.814x^2 + 2.983x - 1.07$$

	stock prices (-2)	payoffs (-1)	payoffs (-2)	continuation
1	1.08	0.00	0.02	0.04
3	1.07	0.07	0.03	0.05
4	0.97	0.17	0.13	0.12
6	0.77	0.19	0.33	0.15
7	0.84	0.08	0.26	0.16

6. Matriz de Payoffs

Por fim, atualizamos a coluna (-2) da matriz de payoffs. Feito isso t vezes, selecionamos

a primeira coluna e calculamos a média.

	0	1	2	3
1	0.00	0.00	0.00	0.00
2	0.00	0.00	0.00	0.00
3	0.07	0.07	0.07	0.07
4	0.17	0.17	0.17	0.13
5	0.00	0.00	0.00	0.00
6	0.34	0.34	0.34	0.33
7	0.18	0.18	0.18	0.26
8	0.22	0.22	0.22	0.00

	0
1	0.00
2	0.00
3	0.07
4	0.16
5	0.00
6	0.32
7	0.17
8	0.21

$$V_0 = 0.115366 \dots$$

A. Referências

Longstaff, Schwartz - Valuing American Options by Simulation: A Simple Least-Squares Approach