

پروژه باریم

درس آشنایی با شبکه های تلفن همراه

غزل عربعلى - ۹۷۵۲۱۳۹۶، بهاره کاوسی نژاد - ۹۹۴۳۱۲۱۷

آخرین ویرایش: ۱۵ تیر ۱۴۰۳ در ساعت ۱۸ و ۴۰ دقیقه

۱ شرح پروژه

گسترش روزافزون شبکه های تلفن همراه به ویژه شبکه های نسل چهار و پنج، موجب شده است که این شبکه ها به عنوان بزرگترین شبکه دسترسی 1 ، برای دستیابی به خدمات اینترنت بشمار آید. پرواضح است که در این بین، مساله امنیت 2 برنامه های کاربردی 3 و ساخت یک برنامه کاربردی با یک ارتباط امن، یکی از مهم ترین مسایل این حوزه خواهد بود. گرچه باید به این نکته توجه داشت که امنیت در یک ارتباط از طریق شبکه های تلفن همراه را، نباید تنها به مساله امنیت در دو سوی مشتری 3 و خدمت گزار 6 تقلیل داد؛ بلکه در جای جای این ارتباط، ما می توانیم با حملات متعددی مواجه شویم، که می تواند محرمانگی 3 ، یکپارچگی 3 و حریم خصوصی 5 ما را هدف قرار دهد. شکل 1 ۱ نمایی از ارتباط یک مشتری با خدمت گزار را در بستر های مختلف از طریق شبکه های تلفن همراه به زیبایی نشان می دهد.

شکل ۱.۱: ارتباط بین مشتری با خدمت گزار از طریق شبکه های تلفن همراه بر روی بسترهای مختلف

در مساله پیش رو، فرض می کنیم که یک برنامه کاربردی داریم، که توسط برنامه UE می شود. UE از دیدگاه ما هر ابزاری است که توسط آن بتوان به شبکه های تلفن همراه متصل شد. UE می تواند گوشی تلفن همراه، تبلت و یا حتی هر شی در IoT باشد. گرچه در این پروژه، ما تنها بر روی گوشی های تلفن همراه و تبلت ها تمرکز خواهیم کرد.

برنامه کاربردی UE قرار است تا از طریق بسترهای موجود در شبکه های تلفن همراه به یک خدمت گزار مشخص متصل شوند و با آن تبادل اطلاعات داشته باشند. در این جا ما دو راه کار برای اتصال به خدمت گزار داریم. در راه کار نخست و بدیهی ترین شیوه، ما از طریق بستر اینترنت با خدمت گزار به تبادل داده مبادرت می ورزیم. ما اصطلاحا به این شیوه اتصال از طریق ۲۶ می گوییم.

Confidentiality⁹

Integrity^V

Privacy^A

Internet of Things⁹
Packet-switched¹

Access Network\

Security⁷

Application^r

Client*

Server^a

بالاخره باید پذیرفت که دنیای اینترنت، مخاطرات پیدا و پنهان فراوانی دارد. اتصال از طریق خدمات ۱۲ CS ۱۱ نظیر تماس ۱۳ و SMS و بالاخره باید پذیرفت که دنیای اینترنت، مخاطرات دنیای اینترنت باشد. در این پروژه، ما فرض می کنیم که اتصال مشتری به خدمت گزار را از طریق SMS ، برقرار خواهد شد.

شكل ٢.١: معماري سطح بالاي سامانه

در این جا برای سادگی فرض کنید که دو گوشی داریم. گوشی سمت مشتری و گوشی که ما به عنوان خدمت گزار از آن استفاده می کنیم. در سمت خدمت گزار (که در حقیقت یک گوشی معمولی است)، یک برنامه Android ای با کارکرد Backend نصب می شود. مشتری از طریق SMS فرمان ها را به سمت مقابل (خدمت گزار) ارسال می کند. مشتری می بایست به صورت مداوم اطلاعات معین مربوط به توان دریافتی و تکنولوژی سلول خدمتگزار ۱۵ و مکان دریافت این اطلاعات را در صورتی که توان از یک سطح آستانه معین پایین بیاید در قالب یک پیام برای خدمت گزار ارسال کند. در این سامانه می بایست به نکات زیر دقت کنید:

- برنامه سمت خدمت گزار می بایست به صورت یک سرویس در Android باشد، البته برای مدیریت و پیکربندی آن می توان
 یک برنامه UI دار نیز داشته باشیم.
- فرض کنید که همگان پروتکل ارتباطی شما را که مبتنی بر SMS است می دانند. اگر اجازه دهیم SMS از هر شماره ای به سمت خدمت گزار ارسال شود، رویه ای در نظر بگیرید که جلوی دسترسی های غیرمجاز را بگیرد. شاید یک رویه ساده، ارسال یک رمز عبور ۱۶ در ابتدای SMS است. تلاش کنید تا رویه های بهتری برای حل این چالش در نظر بگیرید.
- در هنگامی که مشتری درخواست خود را برای خدمت گزار ارسال می کند، خدمت گزار درخواست را می بایست اجرا کند و پاسخ را در یک SMS جداگانه برای مشتری ارسال کند. دقت کنید اگر بتوانید باید تشخیص بدهید که Delivery بر می گردد یا خیر. اگر برنگشت باید پیام را دوباره ارسال کنیم.
- در پیام ارسالی از سوی مشتری، می بایست مکان اندازه گیری، مقداری اندازه گیری و اطلاعات سلولی که به آن متصل است را ارسال کند.
 - پروتکل ارتباطی را باید به صورت کامل مستند بکنید، و باید مبتنی بر پروتکل SMPP ۱۷ باشد.

Serving Cell\a

Password 18

Short Message Peer-to-Peer \\

Service\1

Circuit-switched\\

Call 18

Short Message Service 15

۲ توضیحات کدها

۱.۲ فایل SMPP.kt

کلاس SMPP که از DefaultSmppSessionHandler به ارث برده شده، برای مدیریت جلسات SMPP در یک برنامه DefaultSmppSessionHandler طراحی شده است. این کلاس شامل متغیرهایی برای نگهداری تنظیمات SMPP (مانند میزبان، پورت، کاربر، و رمز عبور) و همچنین روشی برای پیکربندی این تنظیمات میباشد. متد configure برای تنظیم جزئیات اتصال SMPP استفاده می شود.

sendSMS متد ۱.۱.۲

متد sendSMS تلاش می کند تا یک پیام SMS به شماره داده شده ارسال کند. این متد ابتدا یک SMPP client و session ایجاد می کندو پیام را به قسمتهایی تقسیم می کند. با دو آستانه مقدار قدرت سیگنال را تست می کند. اگر سیگنال قدرت سلول سرویس دهنده کمتر از 50- و یا 110- باشد، قسمتهای پیام را ارسال می کند. سپس به مدت ۱۰ ثانیه منتظر می ماند و در نهایت session را می بندد و از بین می برد. اگر خطایی رخ دهد، آن را در log ثبت می کند و مقدار false را بازمی گرداند.

getSessionConfig متد ۲.۱.۲

متد getSessionConfig پیکربندی جلسه SMPP را با استفاده از تنظیمات ذخیره شده در shared preferences بازمی گرداند. این متد یک شیء SmppSessionConfiguration را ایجاد می کند و نوع جلسه، میزبان، پورت، شناسه سیستم، و رمز عبور را تنظیم می کند.

createSubmitSm متد ۳.۱.۲

متد createSubmitSm یک شیء SubmitSm ایجاد می کند که برای ارسال پیام SMS استفاده می شود. این متد آدرسهای مبدا و مقصد، کدینگ داده، و پیام کوتاه را تنظیم می کند و متن پیام را با استفاده از کاراکترست داده شده کدگذاری می کند.

۴.۱.۲ متد splitMessage

متد splitMessage پیام را به قسمتهایی با حداکثر طول بایت مشخص تقسیم می کند. این متد از یک کدکننده کاراکتر برای تبدیل پیام به یک buffer بایت استفاده می کند و پیام را به قسمتهایی تقسیم می کند که هر کدام طولی کمتر از maxByteLength دارند.

۵.۱.۲ متد extractServingCellSignalStrength

متد extractServingCellSignalStrength قدرت سیگنال سلول سرویسدهنده را از یک پیام استخراج می کند. این متد پیام را به بخشهایی بر اساس ، تقسیم می کند و قدرت سیگنال بخشهایی بر اساس ، تقسیم می کند و قدرت سیگنال را به عنوان یک عدد صحیح بازمی گرداند.

۶.۱.۲ متد ۶.۱.۲

در نهایت، متد firePduRequestReceived که از DefaultSmppSessionHandler به ارث برده شده، درخواستهای PDU دریافت شده را پردازش می کند و یک پاسخ ایجاد می کند و یک پاسخ ایجاد می کند و بازمی گرداند.

۲.۲ فایل SMSActivation

در کلاس SMSActivation که از AppCompatActivity به ارث برده شده، متغیرهای لازم برای مدیریت مجوزهای دسترسی به پیامکها، آداپتور چت و آیتمهای چت تعریف می شود. در متد onCreate ، ابتدا چک می شود که آیا مجوز خواندن پیامکها به برنامه داده شده است یا خیر. اگر مجوز داده نشده باشد، در خواست مجوز ارسال می شود و سپس پیامکها خوانده می شوند. اگر مجوز قبلاً داده شده باشد، پیامکها مستقیماً خوانده می شوند. سپس RecyclerView با استفاده از Presser با استفاده از می شود و آداپتور چت به آن متصل می شود. همچنین یک دکمه برگشت تنظیم می شود که با کلیک بر روی آن، فعالیت فعلی خاتمه می یابد.

updateChatItems متد ۱.۲.۲

در متد updateChatItems ، آیتمهای چت جدید جایگزین آیتمهای فعلی می شوند و به آداپتور اطلاع داده می شود که دادهها تغییر کرده اند. این متد برای بهروزرسانی آیتمهای چت استفاده می شود. متد loadChatItems نمونه ای ان نحوه استفاده از این متد را نخوه استفاده ای تیمهای جدید بهروزرسانی نشان می دهد. در این متد، پیامکهای جدید خوانده می شوند و سپس با استفاده از updateChatItems آیتمهای جدید بهروزرسانی می شوند.

readSms متد ۲.۲.۲

متد readSms پیامکهای دستگاه را خوانده و آنها را به لیستی از آیتمهای چت تبدیل می کند. این متد ابتدا ستونهای مورد نیاز درصد در متد ابتدا ستونهای مورد نیاز برای خواندن پیامکها (آدرس، متن و نوع پیامک) را مشخص می کند و سپس یک کوئری برای دریافت این داده ها از درست شامل عبارت ارسال می کند. در حالی که cursor به پیامکها اشاره می کند، پیامکها یکی یکی خوانده می شوند و اگر متن پیامک شامل عبارت " SMPP " باشد، متن پیامک پاکسازی می شود و سپس به لیست آیتمهای چت اضافه می شود. در نهایت cursor بسته می شود و لیست آیتمهای چت بازگردانده می شود.

۳.۲.۲ متد SMSActivation

در کلاس SMSActivation متغیرهای permission و permission برای مدیریت مجوزهای دسترسی به پیامکها استفاده می شوند. همچنین SMSActivation برای نمایش لیست پیامکها، chat Adapter برای مدیریت آیتمهای چت و chat Items برای نمایش لیست پیامکها و مدیریت آیتمهای خت و chat Items برای نمایش پیامکها و مدیریت پیامکها تعریف شده اند. این متغیرها در متد on Create مقداردهی اولیه می شوند و تنظیمات اولیه برای نمایش پیامکها و مدیریت تعاملات کاربر با دکمه برگشت انجام می شود.

۳.۲ فایل SMSReceiver

کلاس SMSReceiver که از BroadcastReceiver به ارث برده شده است، برای مدیریت پیامهای ورودی SMS طراحی شده است. در این کلاس، متد onReceive بازنویسی شده تا پیامهای SMS ورودی را پردازش کند. وقتی یک پیام SMS دریافت می شود، این می فراخوانی می شود و پیامها را از طریق intent دریافت می کند.

ابتدا، اگر bundle که حاوی دادههای پیام است، غیر null باشد، مجموعهای از (PDUs (Protocol Data Units) از PDUs و bundle از PDUs و می فردد. سپس این استخراج می شوند. هر PDU به یک پیام SMS تبدیل می شود و از آن شماره فرستنده و متن پیام استخراج می گردد. سپس این اطلاعات در log برای اهداف اشکال زدایی ثبت می شود.

در مرحله بعد، چک می شود که آیا متن پیام حاوی عبارت "پیام شما دریافت شد" است یا خیر. اگر این عبارت در پیام یافت شود، یک MainActivity داد می شود. این intent شامل flag هایی است که نحوه اجرای MainActivity را تعیین می کنند و اطلاعات مربوط به پیام را به صورت extras به آن اضافه می کنند.

در نهایت، MainActivity با استفاده از intent ایجاد شده و شامل اطلاعات پیام، آغاز می شود. این اقدام به MainActivity در نهایت، MainActivity با استفاده از نامین فرآیند به طور کامل، امکان پردازش و مدیریت اجازه می دهد که پیام را دریافت کرده و به آن پاسخ دهد یا آن را نمایش دهد. این فرآیند به طور کامل، امکان پردازش و مدیریت پیامهای SMS را در برنامه فراهم می آورد.

٣ مراجع

١ •