

2022년 연구데이터 과정계획

ㅇ 교육과정 확대 편성

- '21년도는 연중 기수를 순차 오픈하여 대기자가 매 과정 발생한 바 '22년도의 경우 연초에 6기(3~9월) 일괄 오픈 예정
- 연중 全 과정의 선착순 입과를 실시하여 대기자가 몰리는 상황 미연에 방지
 - ※ 대기자 다수 발생 시 연말(10~12월) 추가편성 검토 예정

○ 프로그램별·수준별 과정 완비

- 학습자간 사전지식 편차를 고려, Python(기초, 심화) 및 R(기초, 심화) 총 4개 과정 기획·운영
- '데이터 분석', '데이터 시각화', '머신러닝' 중심 교육내용 재편성
 - · 기초과정은 사전지식이 없는 입문자 대상으로 내용 구성
 - · 심화과정은 기초코딩 역량이 있는 수준을 전제하에 내용 구성

○ 실습중심 교육운영

- Python, R 프로그램을 활용한 개인별 실습 지원 및 피드백 강화
- 사전·사후 학습여정 설계를 통한 실무역량 및 교육효과성 제고
 - · 원활한 실습운영을 위해 사전 수준별 교육콘텐츠 이수 안내
 - · 구글 클래스, replit 등 플랫폼 활용을 통해 사후 과제/퀴즈 첨삭

< 2022년 연구데이터 과정 개요(안) >

7	분	사전학습	본학습		사후학습
파이	기초	(플립) 기초코딩/데이터 시각화	・파이썬 기초 코딩▶ ・데이터 전처리 및 라이브러리・데이터 시각화 실습		(퀴즈/과제) ①파이썬 기본문법
썬	심화	(플립) 머신러닝/딥러닝	・머신러닝 기초 이해 및 실습・지도/비지도 학습・딥러닝 이해 및 실습	,	②조건문 활용
R	기초	(플립) R언어/데이터 구조화	・기초 통계와 가설검정 ・ 상관 및 회귀분석 ・실험계획법		(퀴즈/과제) ①벡터형 변수생성
K	심 화	(플립)데이터 시각화/ 빅데이터	・데이터 전처리 및 검정 리뷰・로지스틱 회귀분석 및 고급통계분석・R/자모비 기반 데이터 시각화	•	②SPSS 자료읽기

붙임2

헤드마스터 커리큘럼 제시(안)

□ Python 기초과정 - <mark>기초코딩~데이터시각화</mark>

ㅇ 커리큘럼

	일정	교과목		시간
	09:30~10:00	출석 및 오리엔테이션	KIRD	
	10:00~11:00	파이썬이란 무엇인가? (개념, 설치, 실행)	이론	
	11:00~12:00	colab 활용하기, print문으로 자기소개하기	실습	
1주차	12:00~13:00	점심	-	
		변수 : 변수의 개념과 input() 함수 이해	이론/실습	6H
	14:30~15:00	휴식 및 개별 질의응답	-	
	15:00~16:00	연산자 : 산술/대입/비교/논리 연산자, 연산자의 우선순위	이론/실습	
	16:00~17:00	데이터형 : 데이터형의 개념과 종류, 문자열	이론/실습	
	17:00~17:30	출석 및 마무리	KIRD	
	1차시 과제	과제1. 파이썬 기본 문법 이해 및 실습		
	10:00~10:10	1차시 과제 리뷰		
	10:10~12:00	조건문: if문, if~else문, if~elif문, 중첩 if문, elif문	이론/실습	
2주차	12:00~13:00	점심	-	6H
2 T ^I	13:00~14:30	반복문 : for문, 중첩 for문, while문, 무한 반복	이론/실습	OH
	14:30~15:00	휴식 및 개별 질의응답	-	
	15:00~17:00	리스트, 튜플, 딕셔너리: 리스트, 튜플, 딕셔너리의 개념과 활용	이론/실습	
	17:00~17:30	출석 및 마무리	KIRD	
	2차시 과제	과제2. 가위바위보 게임만들기		
	10:00~10:10	2차시 과제 리뷰		
	10:10~12:00	함수 : 함수의 개념, 함수의 매개변수, 지역변수와 전역변수	이론/실습	
	12:00~13:00	점심	-	
3주차	13:00~14:30	파일 입출력 : 파일을 사용하는 이유, 파일 읽기, 쓰기	이론/실습	6H
>⊤^I	14:30~15:00	휴식 및 개별 질의응답	-	OH
	15:00~17:00	객체 지향 프로그래밍 : 클래스와 객체, 클래스의 상속	이론/실습	
	17:00~17:30	출석 및 마무리	KIRD	
	3차시 과제	과제3.		
	10:00~10:10	3차시 과제 리뷰		
	10:10~11:00	외부 라이브러리 : 라이브러리의 개념	이론	
	11:00~12:00	구글 TTS를 이용한 아파트 관리사무소 음성 만들기	실습	
4주차	12:00~13:00	점심	-	6H
	13:00~14:30	OpenCV를 이용한 adobe scanner앱 만들기	실습	OFF
	14:30~15:00	휴식 및 개별 질의응답		
	15:00~17:00	Matplotlib 활용을 통한 데이터 시각화	실습	
	17:00~17:30	출석 및 마무리	KIRD	

ㅇ 학습구성

일정	교과목	대구분	소구분	예시/실습
	파이썬 기본 : 변수, 연산자, 데이터형	1-1. 파이썬 시작 - colab 활용	1-1-1. colab이란 무엇인가? 1-1-2. colab을 사용하는 이유 1-1-3. print문 활용, f-string	[예시] 파이썬 셸과 colab의 차이 [실습] print문으로 자기소개 하기
1주차		1-2. 변수	1-2-1. 변수의 개념 1-2-2. 파이썬에서 변수 선언(다른 언어와 비교) 1-2-3. 파이썬 내장함수란?	[예시] 좋은 변수 이름은? [실습] input(), int() 함수를 사용하여 간단한 계산기 만들기
		1-3. 연산자와 데이터형	1-3-1. 산술/대입/비교/논리 연산자 1-3-2. 데이터형의 개념, 종류 1-3-3. 문자열, 탈출문자 1-3-4. 문자열 관련 내장함수 - len(), upper(), lower(),	[예시] 탈출문자 활용하기 [실습] 영문 문자열을 대문자, 소문자로 변환하기
	파이썬 기본 : 조건문, 반복문, 자료구조	2-1. 조건문	count(), find() 2-1-1. if문 활용 2-1-2. if-else문, if-elif문 활용 2-1-3. 중첩 if문	[예시] if문 활용하여 조건에 해당하는 문자열 출력하기 [실습] 평균점수와 if문 활용하여 학점 출력하기
2주차		2-2. 반복문	2-2-1. for문 활용 2-2-2. while문 활용, break 2-2-3. 중첩 반복문	[예시] for문을 활용하여 특정 문자 여러번 출력하기 [실습] for문을 활용하여 *로 직각삼각형 만들기
		2-3. 파이썬 자료구조	2-3-1. 리스트 2-3-2. 튜플 2-3-3. 딕셔너리	[예시] 리스트 인덱싱 [실습] if문과 리스트 관련 내장함수를 활용하여 1~100 범위의 홀수를 리스트에 저장하기
275	파이썬 고급 : 함수, 파일 입출력, 클래스	3-1. 함수	3-1-1. 함수의 개념 3-1-2. 함수의 매개변수 3-1-3. 지역변수와 전역변수	[예시] 함수 내부에서 선언한 변수를 함수 밖에서 사용하면? [실습] 두 개의 매개변수를 갖는 함수를 활용하여 계산기 만들기
3주차		3-2. 파일 입출력	3-2-1. 파일 읽어오기 3-2-2. 파일 쓰기	[예시] txt파일을 읽어오기 [실습] txt파일을 파이썬으로 작성한다.
		3-3 클래스	3-3-1. 객체지향프로그래밍이란?	[예시] 객체지향 프로그램의 정의 및

			3-3-2. 클래스와 객체	사용 이유는?
			3-3-3. 클래스의 상속	[실습] 클래스 를 활용하여
				스타크래프트 유닛 생성 (공격력,
				방어력, 체력)
	파이썬 응용 :	4-1. 외부 라이브러리	4-1-1. 외부 라이브러리 개념	[예시] 외부 라이브러리의 개념과
	파이썬을 활용한 시각화		4-1-2. pip	사용하는 이유
			4-1-3. 외부 라이브러리 종류	[실습] !pip install을 활용하여 외부
				라이브러리 다운받기
		4-2. OpenCV	4-2-1. 컴퓨터 비전 및 OpenCV 소개	[예시] OpenCV를 활용하여 사각형을
4スラL			4-2-2. OpenCV를 활용하여 이미지 출력	그린다.
4주차			4-2-3. 도형 그리기	[실습] OpenCV로 이미지를 불러온 뒤,
				객체의 크기에 맞춰 사각형을 그린다.
		4-3. Matplotlib	4-3-1. Matplotlib 소개 (numpy, pandas)	[예시] Matplotlib를 활용하여
			4-3-2. sin(x) 그래프 그리기	좌표평면에 그래프를 그린다.
			4-3-3. csv파일을 불러온 후 그래프로 시각화	[실습] csv 파일을 읽어온 후 데이터를
				그래프로 시각화 한다.

ㅇ 과제

일정	과제명	문제		활용툴
	과제1. 학생의 성적표 만들기	 Q. 학생 3명의 이름을(영어, 소문자) 변수로 사용하여 각각의 평균 작성하세요. 1. 학생 각각의 국어, 수학, 영어, 과학 네 과목 점수를 input() 함 2. 입력된 점수로 학생 각각의 평균점수를 계산하여 저장하세요. 3. 파이썬 내장함수를 사용하여 학생의 이름 첫 글자를 대문자로 4. f-string과 개행을 하는 탈출 문자를 사용하여 다음 예시와 같 	함수를 사용하여 저장하세요. . 변환하세요.	Google 클래스룸 colab link 제출
1차시		hint 변수 명명 탑 : 학생이름_과목 ex) minjun_kor = int(input("국어 점수 입력 : ")) 평균 구하기 ex) minjun_avg = (minjun_kor + minjun_math + minjun_eng + minjun_sci)/4	학생1명 예시 국어 점수 입력 : 80 수학 점수 입력 : 90 영어 점수 입력 : 40 과학 점수 입력 : 50	
		colab link 제출 방법 1. 우상단 〈공유〉버튼 클릭 2. 〈링크보기〉 클릭 3. 제한됨 -> 링크가 있는 모든 사용자로 변경 4. 링크 복사 후 제출	minjun 국어 점수 : 80 minjun 수학 점수 : 90 minjun 영어 점수 : 40 minjun 과학 점수 : 50 minjun 평균 점수 : 65.0	
2차시	과제 2. 반복문을 활용하여 크리스마스 트리 만들기 가위바위보 게임 만들기	Q1. for문을 활용하여 다음과 같은 크리스마스 트리를 만들어보세요. Q2. while문과 break를 활용하여 동일한 작업을 진행해보세요. Q3. 가위바위보 게임에서 나올 수 있는 모든 경우의 수를 조사한 후 if문을 활용하여 승/패/무승부를 출력하는 프로그램을 만들어보세요. hint python에서 문자열을 곱하면? print("Hello" * 2)> HelloHello	* *** **** ***** ******* ********	

	과제 3. 함수와 클래스를 활용하여 학생의 점수 저장하기	Q 과제 1에서의 학생 3명을 객체로 생성하여 각각의 점수를 저장하세요	
3차시		 1. 네 과목의 성적과 평균 점수를 멤버변수로 갖는 클래스를 선언한다. 2. 입력으로 네 과목의 점수를 받고, 출력으로 모든 과목의 평균점수를 반환하는 print_avg 함수를 정의한다. 3. 세 명의 학생의 성적 정보를 출력한다. 	
	과제 4. 삼각함수 그리기	Q 한 화면에 여러개 그래프 그리기 sin(x), cos(x) 그래프를 0 <x<2pi 그리기<br="" 사이에서="">sin(x)는 빨간색, cos(x)는 파란색으로 그린다. hint: plt.subplot(2, 1, 1), plt.subplot(2, 1, 2)</x<2pi>	1 0 1 2 3 4 5 6
4차시		Time presupporte, 1, 1), presupporte, 1, 2)	5 0 1 2 3 4 5 6

- ㅇ 수강대상 조건
- 1) 프로그래밍 언어가 처음이다. (강력 추천)
- 2) 파이썬 수강 도중 포기한 이력이 있다. (강력 추천)
- 3) 파이썬은 처음이지만 타 프로그래밍 언어 (C, Java 등)의 경험이 있다 하지만 오래되어 재교육이 필요하다. (수강 고려)
- 4) 인터넷 약간 참조하면 파이썬으로 기본적인 파일 입출력, 이중 for문 while문 등을 활용할 수 있다 (수 강 고려)
- 5) Python 기본 문법을 알고있으며 외부라이브러리 (numpy, pandas 등)를 약간 활용해본 적이 있다. (수강 비추천)

□ Python 심화과정 - <mark>머신러닝/딥러닝</mark>

ㅇ 커리큘럼

	일정	교과목		시간
	09:30~10:00	출석 및 오리엔테이션	KIRD	
	10:00~11:00	머신러닝, 딥러닝, 인공지능 소개	이론	
	11:00~12:00	머신러닝 프로젝트 과정, 사이킷런 소개	이론/실습	
	12:00~13:00	점심	-	
1주차		머신러닝 실습 - 붓꽃 데이터	이론/실습	6H
	14:30~15:00	휴식 및 개별 질의응답	-	
	15:00~16:00	 	이론/실습	
	16:00~17:00			
	17:00~17:30	출석 및 마무리	KIRD	
	1차시 과제	과제1.		
	10:00~10:10	1차시 과제 리뷰		
	10:10~11:00	머신러닝 회귀모델	이론/실습	
	11:00~12:00	74.11		
2주차	12:00~13:00 13:00~14:30	점심	- 이라시스	6H
	14:30~15:00	다항회귀, 다중회귀 휴식 및 개별 질의응답	이론/실습	
	15:00~17:00	유역 및 개월 열의중립 규제, 로지스틱 회귀	이론/실습	
	17:00~17:30	출석 및 마무리	KIRD	
	2차시 과제	과제2. 공공데이터 활용하여 선형회귀 구현	MIND	
	10:00~10:10	2차시 과제 리뷰		
	10:10~11:00	비지도학습 개요	이론	
	11:00~12:00	비지도학습 - k 평균 알고리즘	이론	
	12:00~13:00	점심	-	
3주차	13:00~14:30	비지도학습 - k 평균 알고리즘	실습	6H
> ⊤ ^I	14:30~15:00	휴식 및 개별 질의응답	-	OH
	15:00~16:00	비지도학습 - 주성분 분석	이론	
	16:00~17:00	비지도학습 - 주성분 분석	실습	
	17:00~17:30	출석 및 마무리	KIRD	
	3차시 과제	과제3. 신경망을 학습하여 XOR문제 해결		
	10:00~10:10	3차시 과제 리뷰		
	10:30~12:00	Review - 딥러닝을 위한 경사하강법 심화	이론	
	12:00~13:00	신경망 소개 : 딥러닝에서 지도학습	이론	
4주차	12:00~13:00	점심	-	6H
47~1	13:00~14:30	합성곱 신경망 (CNN)	이론/실습	011
	14:30~15:00	휴식 및 개별 질의응답	_	
	15:00~17:00	신경망 학습 방법 - MNIST 실습	실습	
	17:00~17:30	출석 및 마무리	KIRD	

일정	교과목	대구분	소구분	예시/실습
	1. 머신러닝 개요	1-1. 머신러닝, 딥러닝, 인공지능 소개	1-1-1. 머신러닝, 딥러닝, 인공지능 차이점 1-1-2. 실생활에서 머신러닝 사용 예제 소개 1-1-3. 지도학습과 비지도학습	[예시] 머신러닝과 딥러닝의 차이점
		1-2. 사이킷런 소개 - 붓꽃 데이터 예제	1-2-1. 붓꽃 데이터 살펴보기 1-2-2. train-test-split 활용하여 데이터 분할 1-2-3. validation data가 필요한 이유	[예시] 머신러닝 프로젝트에서 데이터를 분할해야 하는 이유 [실습] 붓꽃 데이터를 불러온 후, train-test-split을 활용하여 데이터 분할하기
1주차		1-3. 머신러닝 프로젝트 전체 과정 - 붓꽃 데이터 예제	1-3-1. 문제 정의 1-3-2. 데이터 전처리 1-3-3. 모델 설계	[예시] 붓꽃 데이터 분류 방법 소개 [실습] 데이터 전처리 - 표준화하기
	2. 머신러닝 분류 모델	2-1. 분류 모델 설명	2-1-1. 분류와 회귀의 차이 2-1-2. 분류모델은 언제 사용할까? 2-1-3. 여러 가지 분류 알고리즘	[예시] 분류의 방법 및 분류 알고리즘 소개
		2-2. K-최근접 이웃 - 도미/빙어 데이터	2-2-1. K-최근접 이웃 알고리즘 소개 2-2-2. 도미/빙어 데이터 시각화하기 2-2-3. K-최근접 이웃 알고리즘을 도미/빙어 데이터에 적용	[예시] 도미/빙어 데이터를 시각화 한후 분류 알고리즘 선택 [실습] K-최근접 이웃 모델을 활용하여 도미/빙어 분류 (사이킷런)
	1. 머신러닝 회귀 모델	1-1. 회귀 모델 설명	1-1-1. 회귀모델의 특징 1-1-2. 회귀모델은 언제 사용할까? 1-1-3. K-최근접 이웃 회귀 - 도미/빙어 데이터에 적용	[예시] 회귀의 정의 및 사용하는 이유에 대한 설명 [실습] K-최근접 이웃 회귀를 활용하여 도미/빙어 무게 예측 (사이킷럿)
2주차		1-2. 손실함수와 경사하강법	1-2-1. 손실함수의 정의 1-2-2. 경사하강법 소개 1-2-3. 회귀모델의 학습 과정	[예시] 데이터에 따른 여러 가지 손실함수 소개
	2. 선형 회귀, 다항 회귀, 다중 회귀	2-1. 선형 회귀 - 보스턴 집값 데이터에 적용	2-1-1. 보스턴 집값 데이터 소개 2-1-2. 상관계수 분석 2-1-3. 선형 회귀를 활용하여 보스턴 집값 예측	[예시] 보스턴 집값 데이터 상관계수 분석 [실습] 선형 회귀를 사용하여 보스턴 집값 예측

		2-2. 다항 회귀	2-2-1. 다항 회귀 소개	[예시] 다항 회귀 개념
			2-2-2. 도미/빙어 데이터를 활용하여 다항 회귀 실습	[실습] 다항 회귀를 사용하여
				빙어/도미 데이터 예측
		2-3. 다중 회귀	2-3-1. 다중 회귀 소개	[예시] 특성 공학을 활용하는 이유
			2-3-2. 특성 공학	[실습] 다중 회귀를 사용하여
			2-3-3. 도미/빙어 데이터를 활용하여 다중 회귀 실습	빙어/도미 데이터 예측
	3. 규제, 로지스틱 회귀	3-1. 과대적합과 과소적합	3-1-1. 과대적합과 과소적합 소개	[예시] 과대적합 예시, 과소적합 예시
		3-2. L1, L2 규제	3-2-1. L1규제와 L2규제	[예시] L2규제 이론 설명
				[실습] L2규제 사이킷런 코드로 구현
		3-1. 로지스틱 회귀 이론	3-1-1. 로지스틱 함수	[예시] 시그모이드 함수 설명
			3-1-2. 로지스틱 회귀 실습	[실습] 사이킷런을 활용하여 로지스틱
				회귀 구현
	1. 비지도학습 개요	1-1. 비지도학습 개요	1-1-1. 지도 학습과 비지도학습의 차이점	[예시] 지도 학습은 정답이 필요한
			1-1-2. 비지도 학습 활용 분야	반면 비지도 학습은 필요하지 않다.
			1-1-3. 비지도 학습 장점	
		2-1. k 평균 알고리즘 이론	2-1-1. 클러스터링	[예시] 클러스터링 개념
	군집 알고리즘		2-1-2. k 평균 알고리즘	
		2-2. k 평균 알고리즘 실습	2-2-1. 사이킷런을 활용한 k 평균 알고리즘	[예시] 이너셔의 개념과 활용
3주차			2-2-2. 이너셔	[실습] 과일 데이터를 활용해 이미지
			2-2-3. 이미지 자동으로 분류하기 - 과일 데이터	분류
	3. 비지도학습 - 주성분 분석	3-1. 차원 축소	3-1-1. 차원 축소 필요성	[예시] 차원 축소와 분산의 관계
			3-1-2. 차원 축소 방법	
		3-2. 주성분 분석	3-2-1. 주성분 분석 소개	[예시] 주성분 분석 소개
			3-2-2. 주성분 분석 실습 - K 평균 알고리즘에 적용	[실습] 주성분 분석을 적용한 과일
				데이터에 K 평균 알고리즘적용
	1. 경사하강법 심화	1-1. 경사하강법 심화	1-1-1. Gradient 의미	[예시] Gradient는 기울기가 가장
			1-1-2. learning-rate	가파른 방향
4주차				[실습] python으로 Gradient descent
				구현
		1-2. 손실함수와 옵티마이저	1-2-1. MSE	[예시] MSE 수식 소개

		1-2-2. 옵티마이저 소개	
	1-3. 학습 과정	1-3-1. 손실함수를 최소화 하는 방법	[예시] Gradient descent를 활용하여 loss function의 최솟값 탐색
			[실습] Gradient descent를 활용하여
			이차함수 그래프의 최솟값 구하기
2. 신경망, CNN	2-1. 신경망 소개	2-1-1. 신경망 구조	[예시] 활성화 함수의 종류와 비선형인
		2-1-2. 가중치와 편향	이유
		2-1-3. 활성화 함수	
	2-2. 딥러닝에서 지도학습	2-2-1. 딥러닝에서 지도학습 과정	[예시] 딥러닝에서 지도학습 시
			가중치가 업데이트 되는 과정
	2-3. 합성곱 신경망	2-3-1. CNN 개념	[예시] CNN의 특징 및 사용 이유
		2-3-2. CNN 활용	
3. MNIST 손글씨 분류	3-1. MNIST 손글 씨 분류	3-1-1. MNIST 손글씨 분류	[실습] MNIST 손글씨 데이터를 활용한
			class 분류

ㅇ 학습구성

ㅇ 과제

일정	과제명	문제	활용툴
	과제1. 데이터 특성 분석하기	KAGGLE에서 타이타닉 데이터를 직접 받아 Numpy, Pandas, Matplotlib를 활용해 분석하고 기계학습을 위한 데이터 가공하기.	Google 클래스룸 L colab link 제출
1차시		import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os for dirname,_,filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname,filename)) import warnings warnings.filterwarnings('ignore') import matplotlib.pyplot as plt import seaborn as sns train =pd.read_csv('/kaggle/input/titanic/train.csv')	ibarked
2~3차 시	과제2. 타이타닉 생존자 예측 분류	train =pd.read_csv('/kaggle/input/titanic/train.csv') test =pd.read_csv('/kaggle/input/titanic/test.csv') train.info() RandomForest를 이용해서 타이타닉 탑승객의 나이를 예측하는 모델 만들기. RandomForest를 이용해서 타이타닉 탑승객의 생존 예측 모델 만들기. from sklearn.ensemble import RandomForestRegressor age =train[['Age','Pclass','SibSp','Parch']]	https://www.kaggle.c om/masatoshikato/fir st-titanic-20220216

	과제3. 이미지 분류	<pre>know_age =age[age['Age'].notnull()].values unknow_age =age[age['Age'].isnull()].values X =know_age[:,1:] y =know_age[:,0] rf =RandomForestRegressor(random_state=0,n_estimators=1000,n_jobs=-1) rf.fit(X,y) predictAge =rf.predict(unknow_age[:,1::]) train.loc[(train.Age.isnull()),'Age']=predictAge</pre>	https://codetorial.net
4차시		# 2. 데이터 전처리	/tensorflow/fashion_ mnist_classification.h tml

ㅇ 수강대상 조건

- 1) RNN, CNN, Backpropagation을 이해하고 있다 (이런 분들께는 지루할 수 있습니다)
- 2) 머신러닝 또는 딥러닝 모델 학습을 직접 해본 경험이 있다 (이런 분들께는 다소 쉬울 수 있습니다)
- 2) python과 머신러닝이론을 대략적으로 알지만 구현해본적은 없다 (수강 고려)
- 3) 다음 파이썬 코드를 (인터넷 검색 약간해서) 해결할 수 있지만 머신러닝은 처음이다. (수강 추천) 2-3. 아래 seq_list 변수의 내용을 반복문을 활용해 다음과같이 출력하는 코드를 작성하시오.

8. 입력된 문자열을 역순으로 반환하는 reverse_str 함수를 정의하라.

```
def reverse_str(&&채워보세요&&) :
    &&채워보세요&&

out = reverse_str("마 내가 느그 스장하고 사우나도 가고 밥도 묵고 다했어마")
print(out)
```

□→ 마어했다 고묵 도밥 고가 도나우사 고하장스 그느 가내 마

10. 다음은 임교수가 물린 주식 목록이다. 'stocks.txt' 파일을 생성하고 주식명과 종목코드를 파일에 적는 코드를 작성하시오. (각 라인별 줄바꿈을 고려하세요!!)

주식명 - 구매가격 - 보유량

- 선데이토즈 26200 300
- 넷마블 116500 400
- 엔씨소프트 686000 250
- GS 38450 1000

```
[ ] file_location = "./stocks.txt"

f = &&채워보세요&&
f.close()
```