

Final Project

Technical Guide

 $Computer\ Graphics\ and\ Human-Computer\ Interaction\ Lab$

School of Engineering
National Autonomous University of Mexico

Néstor Iván Martínez Ostoa

Proff.: Ing. Carlos Aldair Roman Balbuena

May, 12th, 2022

Group: 12

Class Code: 6590

Contents

1	Objective	2
2	Project's scope 2.1 Limitations	2 2 2
3	Gantt Diagram	3
4	Environment to recreate 4.1 Facade	3 4 4
5	OpenGL models	5
6	Code architecture	6

1 Objective

The student must apply and demonstrate the knowledge acquired throughout the course for the Computer Graphics and Human-Computer Interaction class at UNAM's School of Engineering

2 Project's scope

- OpenGL for modeling and animation of graphic elements
- 3D modeling using modeling software (Maya)
- Basic transformations in OpenGL
- Modeling of a three-dimensional space in OpenGL (facade and room)
- Recreation, through 3D modeling, of at least 7 objects
- 5 animations (3 simple and 2 complex)

2.1 Limitations

To carry out the project I used a computer with 16GB of RAM and an Intel i7 processor. However, the main limitation that I noticed was with Maya when I tried to modify the houses model according to the needs of the project. The house model in Maya weighs 83MB but it took a lot of computer power to continue modeling and making transformations on it which delayed the time frame of the project

2.2 Project deliveries

- 1. Technical guide
- 2. User guide
- 3. Project executble file
- 4. Models
- 5. Reference images

3 Gantt Diagram

4 Environment to recreate

The scenario to recreate consists of the following elements:

- \bullet Facade
- \bullet Room
- At least 7 objects (excluding windows and doors)

4.1 Facade

Figure 1: Facade to recreate (top left) vs. Facade recreated in OpenGL

4.2 Room

Figure 2: Room to recreate (top left) vs. Recreated Room in OpenGL

5 OpenGL models

Figure 3: OpenGL models

6 Code architecture

Figure 4: Project architecture

As exemplified on figure 4, the code architecture is composed of the following elements:

- Libraries loading
- Shader's configuration
- Model loading
- Mouse y Key Callback: once the models are loaded in OpenGL, both the mouse and key callback respond to user interactions (via (GLFW_KEY_)
- Animations: once the callbacks capture the user interactions, they call the following functions:
 - toggle_door: animates both interior and exterior door (figures 3j and 3k)
 - is_drawer_open y drawer_x_pos: these two variables control the bedside furniture's drawer animation (figure 3i)
 - PlantAnim.Use(): PlantAnim is a shader that controls the leaves' sinusoidal movement (figure 3c)
 - wd_drawers_are_open: this variable, based on its state, calls either close_wardrobe_drawers
 or open_wardrobe_drawers functions that conotrol both opening and closing of wardrobe's
 drawers (figure 3f)
 - interpolation: this function controls the wardrobe's lamp animation (figure 31)