计算机系统

处理器体系结构

处理器体系结构

- ■处理器必须执行一系列指令
- ■每条指令只执行简单的操作
- ■指令被编码为一个或者多个字节序列
- ■一个处理器的指令集体系结构 (ISA)
- ■使用者: 仅看到指令
- **■**处理器:执行这些指令

Physical Design

- 28nm process
- 0.9v core/1.8v IO
- 10 metal layers
- ~180M instances
- ▶ 2.0GHz
- ▶ 120W
- 640mm² die size
- FCBGA
- ~3000 pins

Architecture Features

- 64 Xiaomi cores, ARMv8 compatible
- Hardware-maintained global cache coherency
- Panel-based data affinity architecture
- Mesh topology on chip network
- 32MB L2 cache
- 8 Cache & Memory Chips (CMC)
 - 128MB L3 cache
 - 16 DDR3-1600 channels
- Two 16-lane PCIE3.0 i/f
- ECC and parity protection on all caches, tags and TLBs

Physical

- ~180M instances
- 2.0GHz@28nm
- 120W

Performance

- Peak: 512GFLOPS
- Mem BW: 204GB/s
- I/O BW: 32GB/s

4.1 Y86-64指令集体系结构

■指令集体系结构包括:

- > 处理器状态定义
- >指令集和编码
- ▶编程规范
- ▶异常事件处理

4.1.1 程序员可见状态

■每条指令都会读取或修改处理器状态的一部分,称为程序员可见 状态

RF: Program registers

%rax	%rsp	%r8	%r12
%rcx	%rbp	%r9	%r13
%rdx	%rsi	%r10	%r14
%rbx	%rdi	%r11	

CC: Condition codes Stat: Program Status

ZF SF OF

DMEM: Memory

图4-1 Y86-64程序员可见状态

4.1.2 Y86-64指令

- ■是x86-64的子集
 - >只包括8字节整数操作
 - >较少的寻址方式

. .

计算机系统-处理器体系结构 0 1 2 3 4 5 6 7 8 9 字节 0 0 halt nop rrmovq rA, rB | 2 | 0 | rA rB 3 0 8 **rB** V irmovq V, rB 4 0 rArB rmmovq rA, D(rB) D mrmovq D(rB), rA 5 0 rA rB D 6 fnrArB OPq rA, rB jxx Dest | 7 |fn| **Dest** 2 fnrArB cmovXX rA, rB call Dest 8 | 0 | **Dest** 9 0 ret 图4-2 Y86-64指令集 pushq rA A 0 rA F $\mathbf{B} \mid \mathbf{0} \mid \mathbf{r} \mathbf{A} \mid \mathbf{F}$

popq rA

4.1.3 指令编码

- ■指令=操作码+操作数
- ■一般第1个字节是操作码
 - ▶高4位为代码部分
 - ▶低4位为功能部分

运算指令	分支指令	传	输指令
addq 6 0	jmp 7 0 jne 7 4	rrmovq20	cmovne 2 4
subq 6 1	jle 7 1 jge 7 5	cmovle 2 1	cmovge 2 5
andq 6 2	jl 72 jg 76	cmovl 22	cmovg 26
xorq 6 3	je 73	cmove 23	

图4-3 Y86-64指令集的功能码

4.1.3 指令编码

指令编码示例:

rmmovq %rsp, 0x123456789abcd (%rdx)

40 42 cd ab 89 67 45 23 01 00

数字	寄存器名字	数字	寄存器名字
0	%rax	8	%r8
1	%rcx	9	%r9
2	%rdx	Α	%r 10
3	%rbx	В	%r 11
4	%rsp	С	%r12
5	%rbp	D	%r13
6	%rsi	E	%r14
7	%rdi	F	无寄存器

rmmovq rA, D(rB) 4 0 rA rB D

rrmovq rA, rB

2 0 **rA rB**

练习 4.1

irmovq V, rB

3 0 F rB V

rmmovq rA, D(rB) 4 0 rA rB D

■写出指令字节编码

■方法提示:

- >首先确定每条指令的长度,写出地址
- > 然后翻译字节码

.pos 0x100 # Start code at address 0x100
 irmovq \$15,%rbx
 rrmovq %rbx,%rcx
loop:

rmmovq	%rcx,-3(%rbx)
addq	%rbx,%rcx
jmp loc	p

寄存器名字	数字	寄存器名字
%rax	8	%r8
%rcx	9	%r9
%rdx	Α	%r 10
%rbx	В	%r 11
%rsp	С	%r12
%rbp	D	%r13
%rsi	E	%r 14
%rdi	F	无寄存器
	%rax %rcx %rdx %rbx %rsp %rbp %rsi	<pre>%rax %rcx 9 %rdx A %rbx B %rsp C %rbp D %rsi</pre> <pre>E</pre>

练习 4.2

■从字节码,反汇编成汇编指令

A. 0x100: 30f3fcfffffffffffffff4063000800000000000

B. 0x200: a06f800c0200000000000000030f30a0000000000000000

C. 0x300: 50540700000000000000010f0b01f

D. 0x400: 611373000400000000000000

E. 0x500: 6362a0f0

4.1.4 Y86-64异常

■程序员可见状态包括状态码Stat

值	名字	含义
1	AOK	正常操作
2	HLT	处理器执行halt指令
3	ADR	遇到非法地址
4	INS	遇到非法指令

图4-5 Y86-64状态码

■异常处理: 简单停机或者进入异常处理程序

4.1.5 Y86-64程序

图4-6 Y86-64汇编与x86-64汇编比较

x86	6-64 code			Y86	6-64 code	
	ALL CONTRACTOR	long *start, lon %rdi, count in %	- I lest restrict to the second		<pre>long sum(long *start, start in %rdi, count</pre>	The state of the s
1	sum:			1	sum:	
2	movl	\$0, %eax	sum = 0	2	irmovq \$8,%r8	Constant 8
3	jmp	.L2	Goto test	3	irmovq \$1,%r9	Constant 1
4	.L3:		loop:	4	xorq %rax,%rax	sum = 0
5	addq	(%rdi), %rax	Add *start to sum	5	andq %rsi,%rsi	Set CC
6	addq	\$8, %rdi	start++	6	jmp test	Goto test
7	subq	\$1, %rsi	count	7	loop:	
8	.L2:		test:	8	mrmovq (%rdi),%r10	Get *start
9	testq	%rsi, %rsi	Test sum	9	addq %r10,%rax	Add to sum
10	jne	.L3	If !=0, goto loop	10	addq %r8,%rdi	start++
11	rep; re	et	Return	11	subq %r9,%rsi	count Set CC
				12	test:	
				13	jne loop	Stop when 0
				14	ret	Return

4.3 Y86-64的顺序实现

- ■每一条指令的执行,需要多个周期
 - >可以理解为状态机的执行
- ■一条指令执行完,下一条指令才能开始执行
- ■顺序实现(SEQ)很慢

4.3.1 将处理组织成阶段

■通用的执行过程

- ▶取指(Fetch): 从存储器读取指令字节
- ▶译码 (Decode): 从寄存器文件读入操作数
- ▶执行 (Execute): ALU执行
- ▶访存(Memory): 读写存储器
- ▶写回 (WriteBack): 结果写入寄存器
- ▶更新PC (Update PC): 设置为下一条指令地址

4.3.1 将处理组织成阶段

- ■所有指令需要"映射"到这个通用执行框架
- ■可以共享硬件

阶段	OPq rA, rB	rrmovq rA, rB	irmovqV, rB
取指	icode: ifun $\leftarrow M_1[PC]$ rA:rB $\leftarrow M_1[PC+1]$	icode:ifun $\leftarrow M_1[PC]$ rA:rB $\leftarrow M_1[PC+1]$	icode: ifun $\leftarrow M_1[PC]$ $rA:rB \leftarrow M_1[PC+1]$ $valC \leftarrow M_8[PC+2]$
	valP ← PC+2	valP ← PC+2	valP ← PC+10
译码	valA ← R[rA] valB ← R[rB]	valA ← R[rA]	
执行	valE ← valB OP valA Set CC	valE ← 0+valA	valE ← 0+valC
访存			
写回	R[rB]← valE	R[rB]← valE	R[rB]← valE
更新 PC	PC ← valP	PC ← valP	PC ← valP

图4-18 Y86-64指令的顺序实现

. .

4.3.1 将处理组织成阶段

阶段	OPq rA, rB	subq %rdx, %rbx
取指	icode: ifun $\leftarrow M_1[PC]$ rA:rB $\leftarrow M_1[PC+1]$	icode: ifun $\leftarrow M_1[0x014] = 6:1$ rA:rB $\leftarrow M_1[0x015] = 2:3$
	valP ← PC+2	valP ← 0x014+2=0x016
译码	valA ← R[rA] valB ← R[rB]	valA ← R[%rdx]=9 valB ← R[%rbx]=21
执行	valE ← valB OP valA Set CC	$valE \leftarrow 21 - 9 = 12$ $ZF \leftarrow 0, SF \leftarrow 0, OF \leftarrow 0$
访存	7/	
写回	R[rB]← valE	R[%rbx]← valE=12
更新 PC	PO ← valP	PO - valP=0x016

4.4 流水线的通用原理

- ■把一个大的任务,切分为多个串行的小任务
- ■每一部分硬件,仅负责一个小任务
- ■大家可以一起执行
- ■就像"接力棒"游戏一样

■流水线技术

- >提高了吞吐率(单位时间内执行指令的数目)
- >稍微增加了延迟(指令从入到出的时间)

图4-32 非流水的计算硬件

4.4 流水线的通用原理

■吞吐率的计算 (每秒x条指令)

Throughput =
$$\frac{1 \text{ instruction}}{(20 + 300) \text{ picosecond}} \cdot \frac{1000 \text{ picosecond}}{1 \text{ nanosecond}} \approx 3.12 \text{ GIPS}$$

(b) 流水图

图4-33 三级流水的计算硬件

4.4.2 流水线操作的详细说明

图4-34 三级流水线的时序

4.4.3 流水线的局限性

(a) 硬件: 三级流水线, 不统一的流水站延迟

4.4.3 流水线的局限性

■流水线过深, 收益反而下降

图4-37 过深的流水线

4.4.4 带反馈的流水线系统

■数据相关

```
1 irmovl $50, %eax
2 addl %eax, %ebx
3 mrmovl 100(%ebx), %edx
1 irmovl $50,%eax
2 addl %eax,%ebx
3 mrmovl 100(%ebx),%edx
```

■控制相关

```
1 loop:
2 subl %edx,%ebx
3 jne targ
4 irmovl $10,%edx
5 jmp loop
6 targ:
7 halt
```

4.5 Y86-64处理器的流水线实现

■自学

4.6 小结

- ■指令集体系结构ISA,定义了一个抽象的接口层
- ■Y86-64是简化的x86-64,执行划分为5段,SEQ是最基本的实现
- ■为提高性能,引入流水线,提高系统吞吐率

实验

- ■使用Python/C/C++语言实现一个Y86-64模拟器
 - ▶能够从文件中读取Y86-64机器码
 - ▶能够解释执行Y86-64指令
 - ▶能够将存储器/寄存器值输出
 - ▶提示:可采用多周期、流水线实现

■测试:

▶使用Y86-64指令实现从1加到100,并将结果保存到存储器中

分支预测

- ■现代处理器, 多是超标量流水线处理器
- ■有多条流水线同时运行
- ■如果出现分支,则可能带来较大的性能损失
- ■需要在取指阶段,就能准确"预测"到分支指令是否taken
- ■如果猜测正确,则流水线不停顿
- ■如果猜测错误,则流水线需要恢复
- ■具有非常高的猜测准确度,是非常重要的

分支预测

- ■处理器结构--分支预测(Branch Prediction)
 - https://www.jianshu.com/p/be389eeba589
- ■分支预测器
 - https://zh.wikipedia.org/wiki/%E5%88%86%E6%94%AF%E9%A0%90%E6%B8 %AC%E5%99%A8
- ■深入理解 CPU 的分支预测(Branch Prediction)模型
 - https://blog.csdn.net/hanzefeng/article/details/82893317

分支预测实验

- ■使用提供的分支预测框架、执行轨迹(Trace),设计并实现分 支预测算法
- **■**需要评测对给定Trace,其分支预测准确率是多少
- ■记住:
 - ▶你只有很短的时间(1个时钟周期)
 - ▶你只有很少的资源(数K存储)

基本描述

- ■现代CPU都是流水线处理器
- ■在取指段,CPU知道:
 - ▶取回来的指令是否是分支指令、分支的目标地址是多少

char GetPrediction(UINT64 PC); // 返回T或者N

- ■在执行段,CPU知道:
 - ▶该分支指令是否跳转(taken)
 - ▶//更新内部状态,以便下次更好的预测

void UpdatePredictor(UINT64 PC, OpType opType, char resolveDir, char predDir, UINT64 branchTarget)

思路

■本次预测结果,应当参考该指令以前是否跳转(历史信息)

局部历史信息

分支预测器实验

- ■实验目标1:实现1位的分支预测器,并测试
- ■实验目标2: 扩展全局分支历史长度, 并测试
- ■实验目标3:为每个分支指令,分配完全独立的状态机,并测试
- ■实验目标4:扩展为3位状态机,并测试
- ■实验目标5:实现局部历史信息,并测试
- ■实验目标6:实现局部+全局历史信息,并测试
- ■实验目标7:考虑不用异或,使用其他hash函数(比如移位、加法) 来实现,并测试
- ■*有人用神经网络把trace学习了一遍,达到了极其惊人的准确率!
- ■*请想办法优化框架的性能:每次读取trace、格式分析,太慢了~