(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 15 septembre 2005 (15.09.2005)

PCT

(10) Numéro de publication internationale WO 2005/085263 A1

- (51) Classification internationale des brevets⁷ : C07H 3/02, G01N 33/543
- (21) Numéro de la demande internationale :

PCT/FR2005/050117

(22) Date de dépôt international :

22 février 2005 (22.02.2005)

(25) Langue de dépôt :

français

(26) Langue de publication :

français

- (30) Données relatives à la priorité : 0450346 25 février 2004 (25.02.2004) FR
- (71) Déposant (pour tous les États désignés sauf US): COM-MISSARIAT A L'ENERGIE ATOMIQUE [FR/FR]; 31-33 rue de la Fédération, F-75752 PARIS 15ème (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): PERETTI, Véronique [FR/FR]; 3 impasse du Pré, F-31190 GREPIAC (FR). VINET, Françoise [FR/FR]; 22, boulevard Edouard Rey, F-38000 GRENOBLE (FR). BONNAFFE, David [FR/FR]; 122, avenue de la République, F-75011 PARIS (FR).

- (74) Mandataire: POULIN, Gérard; Brevatome, 3, rue du Docteur Lancereaux, F-75008 PARIS (FR).
- (81) États désignés (sauf indication contraire, pour tout titre de protection nationale disponible): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) États désignés (sauf indication contraire, pour tout titre de protection régionale disponible): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée:

avec rapport de recherche internationale

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

(54) Title: MOLECULAR SPACER, PRODUCTION METHOD THEREOF AND USES OF SAME ON AN ANALYSIS CHIP WITH MOLECULES OR BIOMOLECULES

(54) Titre: BRAS ESPACEUR MOLECULAIRE, PROCEDE DE FABRICATION, ET UTILISATIONS SUR UNE PUCE D'ANA-LYSE A MOLECULES OU BIOMOLECULES

(57) **Abstract:** The invention relates to a molecular spacer, to a method of fixing a molecular unit to a solid support and to the use of said spacer on analysis chips with molecules or biomolecules. According to the invention, the spacer has formula (I) wherein: X^0 , $X^4 = C$, O, S, Se, N, P, As; $X^{1-3} = C$, O, N, S, Se, P, As, or aryl, heteroaryl at C_{1-6} ; $Z^{1-2} = C-R$, Si-R, N, P and As, where R = alkyl at C_{1-6} ; $R^{1-3} = H$, or alkyl, aryl,

heteroaryl at $C_{1.6}$; [Gp] = protective group of >N; n, m and n = integers = 1; [Sup] = H or a silanised solid support; and [mo] = H or a molecular unit which is intended to be fixed covalently by means of the spacer to the silanised solid support.

(57) Abrégé: La présente invention se rapporte à un bras espaceur moléculaire, à un procédé de fixation d'une unité moléculaire à un support solide, ainsi qu'à l'utilisation de ce bras espaceur sur des puces d'analyse à molécules ou biomolécules. Le bras espaceur est de formule (I): dans laquelle X^0 , $X^4 = C$, O, S, Se, N, P, As; $X^{1-3} = C$, O, N, S, Se, P, As, ou aryle, hétéroaryle en C_{1-6} ; $Z^{1-2} = C-R$, Si-R, N, P et As, où R = alkyle en C_{1-6} ; $R^{1-3} = R$, ou alkyle, aryle, hétéroaryle en C_{1-6} ; $R^{1-2} = R$, ou alkyle, aryle, hétéroaryle en R^{1-6} ; $R^{1-2} = R^{1-2}$; $R^{1-2} = R^{1-$

BRAS ESPACEUR MOLECULAIRE, PROCEDE DE FABRICATION, ET UTILISATIONS SUR UNE PUCE D'ANALYSE A MOLECULES OU BIOMOLECULES

DESCRIPTION

Domaine technique

25

5 La présente invention se rapporte à un bras espaceur moléculaire, à un procédé de préparation du bras espaceur reliant une unité moléculaire à un support solide, ainsi qu'à l'utilisation de ce bras espaceur sur des puces d'analyse à molécules ou biomolécules.

Dans l'exposé qui suit, les références entre crochets [] renvoient à la liste de références à la fin de la description.

Les puces d'analyse visées par la présente invention sont plus particulièrement, mais non exclusivement, les biopuces et microsystèmes dédiés à l'analyse biologique. Elles se répartissent en trois catégories : les puces à ADN, les laboratoires sur puce (« Lab-On-Chip ») et les puces à cellules (« Cell-On-Chip »).

Actuellement, un nouveau type de biopuce émerge : la puce à sucre (« Glycochip »). Cette biopuce est soit le résultat d'un dépôt d'une substance naturelle ou synthétique, soit le résultat d'une synthèse multiparallèle supportée (chimie combinatoire) de différentes séquences oligosaccharidiques,

2

représentatives de la diversité moléculaires de certaines grandes familles de glycoconjugués endogènes, par exemple les héparanes sulfates. La présente invention est particulièrement bien adaptée à ce nouveau type de biopuce en permettant notamment la fixation de ces molécules sur des supports de biopuces par un procédé de chimie efficace et simplifié par rapport à l'art antérieur.

Les molécules ou biomolécules, appelées dans la présente « unités moléculaires », qui peuvent être fixées sur un support solide par l'intermédiaire du bras espaceur de la présente invention peuvent être par exemple des acides nucléiques (ADN ou ARN), des sucres, des glycoprotéines, des glycolipides, etc. D'autres exemples encore sont donnés ci-dessous.

Art antérieur

20

25

Dans la majorité des biopuces, un espaceur fait le lien entre le support solide [2] et, par exemple, les sondes d'oligopeptides, d'oligonucléotides [3] ou d'oligosaccharides [4]. Cet espaceur peut jouer plusieurs rôles à la fois : molécule liante, bras d'éloignement spatial, lieu de clivage de la sonde, etc.

La proximité du support avec les sites de reconnaissance des cibles par les sondes peut en effet gêner, voire empêcher la reconnaissance sonde/cible, et donc nuire à la finesse et à la qualité d'analyse des biopuces. Ceci est particulièrement vrai lorsque les

3

sondes sont petites, par exemple dans le cas des puces à sucres.

L'équation de principe ci-dessous indique le schéma général de la formation puis du clivage de l'espaceur, dans laquelle X' représente un support solide, et X'' une unité moléculaire.

5

20

Fixation de la molécule à fixer sur le support solide par l'intermédiaire du bras espaceur formé

ce jour, mais ceux-ci présentent un certain nombre d'inconvénients non résolus. En effet, leur structure implique une limitation sévère des procédés chimiques utilisables pour leur fixation sur le support solide et/ou ils ne permettent de fixer facilement tout type de molécule biologique et/ou ils sont si stables chimiquement qu'une fois fixés sur le support solide leur clivage pour récupérer la molécule biologique ne peut pas se faire facilement, et peut entraîner la détérioration de cette dernière ou du support.

Le document [4] (US-A-6,579,725) décrit un bras espaceur fixant des oligosaccharides. Ce bras espaceur,

4

bien que plus efficace que ceux de l'art encore plus antérieur, ne permet pas de résoudre en même temps tous les problèmes précités. On peut noter également, que sa longueur, sa fonctionnalité, sa réactivité et son encombrement ne peuvent pas toujours être générés à volonté.

Exposé de l'invention

5

La présente invention permet précisément de 10 résoudre en une seule fois les problèmes précités de l'art antérieur en fournissant un bras espaceur moléculaire de formule (I) suivante :

$$[mo] - X^{4}$$

$$\begin{bmatrix} X^{3} \\ X^{3} \end{bmatrix}_{p}$$

$$\begin{bmatrix} X^{2} \\ X^{2} \\ M \end{bmatrix}_{m}$$

$$\begin{bmatrix} X^{2} \\ M \end{bmatrix}_{m}$$

$$\begin{bmatrix} X^{2} \\ Y^{3} \end{bmatrix}_{m}$$

$$\begin{bmatrix} X^{3} \\ Y^{3} \end{bmatrix}_{p}$$

$$\begin{bmatrix} X^{3} \\ Y^{3} \end{bmatrix}_{m}$$

$$\begin{bmatrix} X^{3} \\ Y^{3} \end{bmatrix}_{m}$$

$$\begin{bmatrix} X^{3} \\ Y^{3} \end{bmatrix}_{m}$$

(I)

- 15 dans laquelle les substituants X^0 ; X^1 ; X^2 ; X^3 ; X^4 ; Z^1 ; Z^2 ; R^1 ; R^2 ; et R^3 sont tels que :
 - X^0 et X^4 sont chacun choisis indépendamment des autres substituants parmi C, O, N, S, Se, P, As, Si;
- X¹; X²; et X³ sont chacun choisis indépendamment des autres substituants parmi C, O, N, S, Se, P, As, Si et parmi un aryle et un hétéroaryle comprenant par exemple chacun de 2 à 20 atomes de carbone;

5

- Z^1 et Z^2 sont chacun choisis indépendamment des autres substituants parmi C-R, Si-R, C, N, P et As, où R est un alkyle comportant par exemple de 1 à 40 atomes de carbone;
- 5 R^1 ; R^2 ; et R^3 sont chacun choisis indépendamment des autres substituants parmi H, un alkyle, un aryle et un hétéroaryle comprenant chacun de 2 à 20 atomes de carbone;
- [Gp] représente un groupement protecteur de 10 l'amine secondaire -N- ou une molécule participant à la fonctionnalité du bras espaceur;
 - dans laquelle n, m et p sont des nombres entiers, chacun supérieur ou égal à 1 et choisi indépendamment l'un de l'autre, de préférence de façon à ce que $1 \le n$, m et p ≤ 40 ;
 - dans laquelle [Sup] représente H ou un support solide silanisé sur lequel ledit bras espaceur peut être fixé de manière covalente; et

15

25

30

 dans laquelle [mo] représente H ou une unité
 moléculaire destinée à être fixée de manière covalente par l'intermédiaire dudit bras espaceur sur ledit support solide silanisé.

Bien entendu, X^0 à X^4 sont des atomes formant le squelette du bras espaceur de la présente invention, des radicaux choisis par exemple parmi H, O, alkyle, aryle, et un hétéroaryle comprenant chacun de 2 à 20 atomes de carbone pouvant être fixés sur ces atomes.

Ce bras espaceur (I) est utilisable, de manière générale, pour fixer sur un support solide [Sup] une unité moléculaire [mo], par exemple pour fabriquer une

6

biopuce, ou plus avantageusement une puce à sucre, où [mo] est généralement une molécule fonctionnalisant ladite biopuce.

Selon l'invention, de préférence, dans le bras 5 espaceur [1] tel que défini ci-dessus :

- X^0 et X^4 peuvent être chacun choisis indépendamment des autres substituants parmi C, O, N, S, Si; et/ou
- X¹; X²; et X³ peuvent être chacun choisis indépendamment des autres substituants parmi C, O, N, S, Si et parmi un aryle et un hétéroaryle comprenant par exemple chacun de 2 à 10 atomes de carbone; et/ou
- Z¹ et Z² peuvent être chacun choisis indépendamment des autres substituants parmi C, N, C-R, Si-R, où R est un alkyle comportant de 1 à 30 atomes de carbone, de préférence de 1 à 20 atomes de carbone, de préférence de 1 à 10 atomes de carbone; et/ou
- R¹; R²; et R³ peuvent être chacun choisis indépendamment des autres substituants parmi H, un alkyle, un aryle et un hétéroaryle comprenant chacun de 2 à 10 atomes de carbone.
- Selon l'invention, n, m et p peuvent aussi être choisis indépendamment l'un de l'autre de façon à ce que $1 \le n$, m et $p \le 30$, de préférence de façon à ce que $1 \le n$, m et $p \le 20$, et de préférence encore façon à ce que $1 \le n$, m et $p \le 10$.

A titre d'exemple, selon l'invention, dans le 30 bras espaceur [1] tel que défini ci-dessus, X^0 et X^4

7

sont C; X^1 ; X^2 ; et X^3 sont C; Z^1 et Z^2 sont C; R^1 ; R^2 ; et R^3 sont H.

Selon l'invention, le groupement protecteur peut être l'un quelconque des groupements [Gp] protecteurs d'amines secondaires connus de l'homme du 5 métier. Il est choisi de préférence de manière à ce qu'il résiste à la chimie de synthèse du bras espaceur, de sa fixation sur le support et de sa fixation avec l'unité moléculaire [mo]. Il peut être choisi par exemple parmi Ac, Bn (benzyle), un groupement aryle (R) 10 en $C_{1\ a\ 40}$, Troc, z, TCA, BOC, Fmoc, etc., pour former avec l'amine secondaire du bras espaceur (I) un des groupes chimiques suivants (>N- indique l'amine secondaire protégée) :

15 >N-Ac : acétamide (>N-CO-Me);

>N-Bn : benzylamide;

>N-R : arylamide en C_{1 à 40};

>N-Troc: 2,2,2-trichloroéthyl carbamate (>N-

 $C(0) OCH_2CCl_3);$

20 > N-z: benzyl carbamate ($>N-C(0)OCH_2Ph$);

>N-TCA : trichloroacétamidate (>N-CO-CCl3);

>N-BOC: t-butyl carbamate ($>N-C(0)OCMe_3$);

>N-Fmoc : 9-fluorènylméthyl carbamate :

25 (Ph = phényle et Me = méthyle).

8

De préférence, selon l'invention, le groupement protecteur est choisi parmi Ac, BOC ou un groupement aryle en $C_{1\ \grave{a}\ 40}$.

Selon l'invention, la molécule [Gp] participant à la fonctionnalité du bras espaceur peut être par 5 exemple un alkyle ou un aryle en $C_{1\ a\ 40}$, par exemple en $C_{1\ a\ 30}$, par exemple en $C_{1\ a\ 20}$ ou en $C_{1\ a\ 10}$. Il peut s'agir de tout substituant, pas forcément protecteur, qui peut la fonctionnalité du bras participer à lorsqu'il est utilisé. Il peut s'agir par exemple d'un 10 groupement hydrophobe, permettant de rendre le bras espaceur plus spécifique et/ou plus sélectif vis-à-vis de la molécule [mo] à fixer, et/ou de son rôle lors de l'utilisation du bras espaceur, par exemple sur une puce à sucre ou à protéine. 15

Selon l'invention, le support solide peut être par exemple tout support pouvant être silanisé. Il peut s'agir par exemple de plaques, de billes ou de capillaires. Il peut être par exemple à base de silice, de verre, ou d'autres matériaux connus de l'homme du métier, par exemple pour fabriquer les supports ou surfaces de biopuces. La silanisation du support peut être réalisée par tout procédé connu de l'homme du métier.

20

25 Selon l'invention, l'unité moléculaire [mo] peut être une molécule naturelle ou synthétique. Il peut s'agir de toute molécule qui doit être fixée sur un support, par exemple pour des raisons analytiques. Il peut s'agir d'une petite molécule, par exemple ayant un poids moléculaire allant d'environ 180 à 400000

9

g.mol⁻¹. Lorsqu'il s'agit d'un sucre, [mo] peut avoir par exemple un poids moléculaire allant de 180 à 10000 g.mol⁻¹. Lorsqu'il s'agit d'une protéine ou d'un peptide, [mo] peut avoir par exemple un poids moléculaire allant de 5500 à 400000 g.mol⁻¹, généralement allant de 5500 à 220000 g.mol⁻¹ (poids moléculaire de la plupart des protéines).

5

10

25

Cette unité moléculaire [mo] peut être par exemple choisie parmi les monosaccharides, les oligosaccharides, les poly-oligosaccharides, les glyco-conjugués, les peptides, les protéines, les enzymes, les glycoprotéines, les lipides, les acides gras, les glycolipides, les glycolipoprotéines, etc.

Parmi les monosaccharides, on peut citer le glucose, la glucosamine, azidoglucosamine, D-ribose, D-xylose, L-arabinose, D-glucose, D-galactose, D-mannose, 2-désoxy-D-ribose, L-fucose, N-acétyl-D-glucosamine, N-acétyl-D-galactosamine, acide N-acétylneuraminique, acide D-glucuronique, acide L-iduronique, D-sorbitol, D-mannitol, etc.

Parmi les oligosaccharides, on peut citer saccharose, lactose, fragments d'héparanes sulfates, fragments saccharidiques d'héparine, de chondroïtine, de dermatanes sulfates, antigènes Lewis, etc.

Parmi les poly-oligosaccharides, on peut citer parties saccharidiques des héparanes sulfates, de l'héparine, de la chondroïtine, les dermatanes sulfates, etc.

10

Parmi les glyco-conjugués, on peut citer héparanes sulfates, héparine, chrondroïtine, dermatanes sulfates, etc.

Parmi les peptides et les protéines, on peut citer chimiokines, cytokines, insuline, fibrinogène, myosine, hémoglobine, etc.

5

25

30

Parmi les enzymes, on peut citer oxydoréductases, transférases, hydrolases, lyases, isomérases, ligases.

10 Parmi les glycoprotéines, on peut citer glycoprotéines, on peut citer immunoglobuline G, acide hyaluronique, etc.

Parmi les lipides, on peut citer lipides hydrolysables: les graisses (glycérol + 3 acides gras), les cires (acide gras + alcools gras), les 15 esters de stérol (stérol + acides gras), phospholipides (acides phosphatidiques (glycérol, 2 acides gras + phosphate)), les phosphalides (glycérol + 2 acides gras + phosphate), les sphingolipides (sphingosine + acide phosphate + aminoalcool); lipides non 20 gras hydrolysables: alcanes, caroténoïdes, stérols (cholestérol), stéroïdes (estradiol, testostérone), acides (acides gras), eicosanoïdes, etc.

Parmi les acides gras, on peut citer acide arachidonique, acide linoléique, acide linolénique, acide laurique, acide nervonique, acide palmitique, acide oléique, etc.

Parmi les glycolipides, on peut citer galactosyl-céramique, glucosyl-céramide, gangliosides, les cérébrosides (acide gras + sphingosine + 1 sucre),

11

les gangliosides (acide gras + sphingosine + nombreux sucres, de l'acide neuraminique), etc.

Parmi les glycolipoprotéines, on peut citer MPB83 (marque de commerce), GLP19 (marque de commerce) et IRBP (marque de commerce).

La présente invention se rapporte également à un procédé de fixation covalente d'une unité moléculaire [mo] sur un support solide par l'intermédiaire d'un bras espaceur, avantageusement celui de la présente invention.

Le procédé peut comprendre les étapes suivantes :

(i) réduction de la fonction nitrile d'un composé de formule :

$$R^2$$
 X^2
 m
 Z^2

15

5

10

(ii) formation d'une fonction aldéhyde à partir d'une fonction allyle d'une molécule biologique de formule :

$$[mo] - X^4$$

$$\begin{bmatrix} X^3 \\ P \end{bmatrix}_p$$

(iii) amination réductrice entre ladite fonction
20 nitrile réduite suivie d'une protection de l'amine
secondaire formée et ladite fonction aldéhyde pour
obtenir une molécule biologique activée pour sa
fixation sur le support, ladite molécule biologique
activée étant de formule :

$$[mo] \longrightarrow X^4$$

$$\begin{bmatrix} X^3 \\ p \end{bmatrix}$$

$$\begin{bmatrix} X^2 \\ m \end{bmatrix}$$

$$\begin{bmatrix} Q^2 \\ M \end{bmatrix}$$

$$\begin{bmatrix} Q^2 \\ M \end{bmatrix}$$

(iv) silanisation d'un support solide, et fonctionnalisation du support solide silanisé avec une molécule de formule :

$$Z^1$$
 X^1 X^0

5

(v) réaction de métathèse entre la molécule fonctionnalisant le support et la molécule biologique activée pour former un bras espaceur selon l'invention reliant la molécule biologique et le support.

10

Dans ce procédé, les substituants X^0 ; X^1 ; X^2 ; X^3 ; X^4 ; Z^1 ; Z^2 ; R^1 ; R^2 ; R^3 ; et [mo] sont tels que définis ci-dessus.

Selon l'invention, le composé de formule

peut être par exemple un sucre allylé, [mo] étant ledit sucre. Ce sucre allylé peut être obtenu par tout procédé connu de l'homme du métier qui n'altère pas le sucre. Il peut s'agir par exemple du procédé décrit

dans le document [5].

13

Selon l'invention, l'amine secondaire peut en outre être protégée par un groupement protecteur. Ainsi, le procédé de l'invention peut comprendre en outre une étape de fixation d'un groupement protecteur [Gp] sur la fonction amine secondaire. Le groupement protecteur peut être tel que défini ci-dessus. Sa fixation sur l'amine secondaire peut se faire par tout procédé chimique connu de l'homme du métier, par exemple suivant un des procédés décrits dans le document [7].

5

10

15

20

25

Pour mettre en œuvre les différentes étapes de ce procédé de l'invention, les procédés classiques de chimie organique connus de l'homme du métier peuvent être utilisés. Ainsi, à titre d'exemple, pour l'étape de réduction du nitrile, le procédé décrit dans le document [6] peut être utilisé. Pour l'étape formation d'une fonction aldéhyde à partir d'une fonction allyle d'une molécule biologique, le procédé d'ozonolyse décrit dans le document [5] peut être utilisé. Pour l'étape d'amination réductrice suivie d'une protection de l'azote entre le nitrile réduit et ladite fonction aldéhyde pour obtenir une molécule biologique activée, le procédé décrit dans le document [7] peut être utilisé. Pour l'étape de silanisation du support solide et de sa fonctionnalisation, le procédé décrit dans le document [8] peut être utilisé. Pour la réaction de métathèse, le procédé décrit dans le document [10] peut être utilisé.

Le bras espaceur de la présente invention peut 30 donc être créé à partir de trois parties qui sont liées

14

d'une part par amination réductrice suivie d'une protection de l'azote du côté de l'unité moléculaire, et d'autre part lors d'une réaction de métathèse de Grubbs. La méthatèse de Grubbs est par exemple décrite dans le document [11].

5

10

15

20

25

30

L'atome d'azote qui est inséré dans la chaîne carbonée présente plusieurs avantages : obtenu lors de l'accrochage de deux chaînons, il se trouve sous la forme d'une amine secondaire que l'on peut protéger de différentes manières pour conférer une réactivité Cette fonction l'espaceur. particulière à avantageusement modulable au cas par cas par différents groupements protecteurs ou par une molécule participant à la fonctionnalité du bras espaceur, permet de faire varier et de maîtriser l'hydrophilie ou l'hydrophobie du bras espaceur et de contrôler son encombrement Il est aussi avantageusement possible stérique. caractère électrophile/nucléophile moduler le acide/basique de cette partie du bras espaceur : la nature des groupements protecteurs de l'atome d'azote est donc de préférence choisie dans le but d'optimiser réactions, d'interactions, de conditions des d'opérations de caractérisations ou d'analyses, et ce, que ce soit avant ou après clivage de l'espaceur pour libérer l'unité moléculaire. Par exemple avec un groupement acétyle on obtient du fait de sa petite taille un faible encombrement stérique, ce qui permet une optimisation de la reconnaissance moléculaire lors de l'utilisation du bras espaceur, par exemple sur une puce à molécules. Par exemple aussi, avec un groupement

15

butyle, on obtient un substituant carboné hydrophobe qui rend cette partie du bras espaceur hydrophobe, ce qui permet par exemple une reconnaissance de protéines hydrophiles plus spécifique, plus sélective, vis-à-vis des parties hydrophiles du bras espaceur ([mo]).

5

10

15

20

La présente invention fournit donc un bras espaceur (ou « espaceur ») modulable, dont les différentes structures influencent la réactivité du bras, c'est-à-dire son comportement chimique et/ou électrochimique et/ou stérique.

La présente invention est réalisable de manière simple et efficace et l'espaceur présente avantageusement les trois propriétés suivantes, notamment lorsqu'il est mis en œuvre pour la fabrication de puces à sucres :

- tout d'abord, l'espaceur occupe bien la fonction de bras permettant d'éloigner la chaîne sucrée de la surface solide qui supporte cette chaîne.
- ensuite l'espaceur est un bras clivable : il est possible d'ouvrir facilement et de manière ciblée l'espaceur pour isoler le sucre de la phase supportée.
- 25 enfin, l'espaceur, de par son faible taux de fonctionnalité chimique, reste inerte dans de nombreuses conditions de réactions réalisées lors de synthèses organiques sur des unités sucrées par exemple et lors de l'utilisation des puces à sucres.

16

Outre les avantages précités, les inventeurs ont noté les suivants lors des différentes expérimentations de mise en œuvre de la présente invention :

- 5 Le bras espaceur permet de pallier les problèmes stériques dus à la présence du support solide. Il permet d'étudier dans de bonnes conditions stériques les interactions protéines/sucres sur les puces à sucre obtenues. Il résout les problèmes d'encombrement stérique qui se présentaient dans l'art antérieur lors de l'approche de la protéine vers les ligands sucrés et nuisaient aux futures interactions potentielles.
 - La longueur du bras est modulable : un choix judicieux d'homologues fonctionnels de tailles différentes, en particulier par le choix des réactifs de départ, permet de préparer des espaceurs de tailles différentes.

15

20

- Il est non seulement possible de choisir la distance entre la chaîne sucrée et le support solide mais aussi de contrôler le caractère hydrophile ou hydrophobe de cette partie de l'espace au moyen du groupement protecteur.
- La simplicité de la structure chimique de l'espaceur lui confère des propriétés de non réactivité chimique lors des nombreuses réactions organiques lors de sa fabrication et lors de l'utilisation de la puce à sucre.
- L'espaceur, de par son absence de fonctions
 chimiques interactives n'a pas d'influence sur des

17

interactions potentielles avec d'autres molécules, lorsque le système est utilisé dans le cadre d'une puce à sucre ou plus généralement d'une puce à petites molécules.

5 — L'espaceur est clivable de manière précise et sélective au niveau de sa double liaison C=C, dans des conditions de réactions qui n'altèrent pas la molécule biologique, par exemple oligosaccharidique. En effet, on peut utiliser commodément pour le clivage par exemple une ozonolyse (O3), une métathèse de Grubbs (catalyseur de Grubbs), ou une dihydroxylation suivie d'une coupure oxydative de diolosmylation (OsO4, NaIO4), et d'autres réactions chimiques douces connues de l'homme du métier.

15

20

25

- Le fait que l'espaceur soit aisément clivable, et que cette coupure ne modifie pas la structure du sucre, permet de réaliser des contrôles analytiques structuraux et conformationnels de la chaîne oligosaccharidique isolée. Il est en outre aisé de calculer la quantité de sondes sucrées accrochées (« loading ») sur le support solide pendant la synthèse sucrée.

Un des intérêts de cet espaceur, en comparaison avec celui décrit dans le document [1] (l'octènediol par exemple) réside dans l'adaptabilité de sa longueur, de sa fonctionnalité, de sa réactivité et de l'encombrement stérique qui peuvent être générés à volonté.

Les inventeurs notent également que l'espaceur 30 de la présente invention permet la liaison avec une

18

très grande gamme de saccharides, d'oligosaccharides ou polysaccharides qui sont très souvent présynthétisés et protégés en position anomérique de leur partie réductrice par un groupement allyle. En une étape, ces unités sucrées peuvent en effet être transformées pour se lier directement sur l'espaceur. Ainsi, cet espaceur est avantageusement compatible avec de nombreuses molécules sucrées déjà synthétisées et décrites dans la littérature, par exemple dans les documents [7], [12] et [13].

10

15

20

La présente invention peut par exemple être utilisée pour la fabrication d'une puce à sucres, par exemple d'une puce susceptible d'identifier oligosaccharidiques séquences criblage des reconnaissant une protéine particulière, par exemple suivant la technique décrite dans le document [1]. Dans invention la présente application, d'optimiser les procédés de criblage et donc plus rapidement disposer plus efficacement et molécules à visée thérapeutique ou biotechnologique. On que cette capacité existe à ce peut s'attendre également dans les autres applications de la présente invention.

La présente invention peut également être

25 utilisée sur les biopuces où un bras espaceur doit
faire le lien entre le support solide et des sondes
d'oligopeptides, d'oligonucléotides et/ou
d'oligosaccharides. En particulier, le bras espaceur de
la présente invention peut être utilisé sur une puce à
oligopeptides telle que celle décrite dans le document

19

[3], sur une puce à oligosaccharides telle que celle décrite dans le document [4].

D'autres caractéristiques et avantages apparaîtront encore à l'homme du métier à la lecture des exemples qui suivent donnés à titre illustratif.

5

10

25

30

Exemples

1) A titre d'exemple, la synthèse d'un espaceur de longueur correspondant à une chaîne de quatorze carbones est exposée ci-dessous, en utilisant des protocoles opératoires choisis parmi ceux accessibles à l'homme du métier. Les références en caractères gras renvoient au schéma réactionnel ci-dessous.

Les composés choisis sont : un monosaccharide

(1) du type glucose (1) (N-acéthylglucosamine (GlcNac) : sucre allylé en position 1) constituant l'unité moléculaire [mo]; le 4-pentènenitrile (3) portant la fonction nitrile à réduire; et le 7-octényltriméthoxysilane (8) pour la fonctionnalisation du support. Le support solide est constitué par des billes (6) Controlled Pore Glass (CPG) (marque de commerce) à base de silice.

Le schéma réactionnel ci-dessous résume l'ensemble des réactions chimiques entreprises dans ces exemples pour la fixation d'un oligosaccharide (1) sur un support (6) au moyen d'un bras espaceur conforme à la présente invention. Ces réactions chimiques sont indiquées par les lettres A à F. Un exemple d'une réaction de clivage du bras espaceur est présenté dans l'exemple G ci-dessous.

20

Sur ce schéma réactionnel, les groupements « R » indiqués sur le sucre n'ont pas été différenciés volontairement pour simplifier la représentation. Ces « R » représentent des substituants, identiques ou différents entre eux aux différentes positions sur le cycle formant le sucre, et pouvant les substituants rencontrés généralement sur les sucres. Dans l'exemple particulier présenté ici, le sucre utilisé étant le N-acéthylglucosamine, l'homme du métier n'a aucune difficulté pour identifier les substituants « R » aux différentes positions des composés (1), (2), (5) et (10).

Exemple A: Activation de l'oligosaccharide (réaction A)

15 (réaction A)

5

10

Une réaction d'ozonolyse est utilisée dans cet exemple. Le procédé utilisé est décrit dans le document [5]

Le sucre allylé en position anomérique (1)

20 (0,93 mmol) est dissous dans 5 ml d'un mélange de dichlorométhane et de méthanol (1/1): le milieu est plongé dans un bain froid à une température de -78°C (acétone + carboglace). L'ozone O3 doit alors barboter dans la solution : dès l'apparition de la couleur bleue (caractéristique d'un excès d'ozone), l'ozone est remplacée par l'argon (ou l'azote). La réaction étant terminée, le milieu est rendu réducteur par ajout de diméthylsulfure Me2S (4,65 mmol, 5 éq) : il se forme alors du diméhtylsulfoxyde DMSO. Le milieu remonte lentement à température ambiante pendant une nuit, puis

21

est évaporé sous vide : le résidu organique est repris au diéthyléter Et_2O , et lavé à l'eau. Les phases organiques sont évaporées sous vide, puis co-évaporées au toluène. Le produit brut est purifié par chromatographie sur colonne de gel de silice (éluant : éther de pétrole/acétate d'éthyle : 8/2).

Ainsi, l'aldéhyde (2) est obtenu avec un rendement de 75%.

10 Exemple B : Réduction d'un nitrile (réaction B)

5

15

20

25

30

Le procédé chimique utilisé est décrit dans le document [6].

L'hydrure de lithium aluminium LiAl H_4 (381 mg, 10,03 mmol, 1 éq) est introduit dans le diéthyléther fraîchement distillé (20 ml).

Le 4-pentènenitrile (3) (814 mg, 1 ml, 10,03 mmol) est ajouté lentement au milieu réactionnel agité sous atmosphère d'azote, à une température de 0°C (bain de glace). L'agitation doit continuer environ 20 minutes à température ambiante.

Ensuite de l'eau (0,4 ml), puis une solution de soude à 20% dans l'eau (0,3 ml), et enfin une autre quantité d'eau (1,4 ml) sont additionnées : ces ajouts doivent être réalisés avec beaucoup de précaution car la neutralisation peut être violente. Lorsque la solution de diéthyléther est décantée du résidu blanc inorganique, le surnageant est extrait.

Le solide (résidu) blanc est lavé à deux reprises au diéthyléther, et les phases organiques sont réunies. Une solution d'acide chlorhydrique HCl 3 M est

22

ajoutée à cette phase organique pour obtenir un pH acide (pH<7): le 4-pentènenitrile n'ayant pas réagi reste dans la phase éthérée, alors que l'amine passe en phase aqueuse.

Après extraction, la phase aqueuse est donc conservée et se voit ajouter une solution de soude NaOH 3 M pour passer à un pH basique (pH>7) : le produit aminé va alors passer dans la phase éthérée pendant cette nouvelle extraction. La phase éthérée ainsi extraite est séchée sur sulfate de magnésium (MgSO₄), puis évaporée sous vide (évaporateur rotatif).

L'amine brute (4) est alors purifiée par distillation fractionnée (four à boules, $T \approx 96 \, ^{\circ}\text{C} \pm 9 \, ^{\circ}\text{C}$).

15 Analyse ¹H RMN (Brücker AM 250): 5,82 (ddt, ${}^3J_{trans}=18$ Hz, ${}^3J_{cis}=13$ Hz, ${}^3J(H^I)=6,5$ Hz, 1H, CH=), 5,00 (m, 2H, CH₂=), 2,70 (t, ${}^3J_{II})=6,5$ Hz, 2H, CH_{III}), 2,10 (ttd, ${}^3J(H_{II})=6,5$ Hz, ${}^3J(H_C)=6,5$ Hz, ${}^3J(H_2C-)=1,5$ Hz, 2H, CH_I), 1,70 (s, 2H, NH₂), 1,56 (quint., ${}^3J(H_{II})=3J(H_{III})=6,5$ Hz, 2H, CH_{II}).

Analyse 13 C RMN (Brücker AM 250) : $138,6 \quad \text{(CH=),} \quad 114,6 \quad \text{(CH}_2\text{=),} \quad 42,0 \quad \text{(CH}_2\text{-N),}$ $33,1 \quad \text{(CH}_2, \quad 31,4 \quad \text{(CH}_2).}$

Exemple C : Amination réductrice (réaction C)

25

Le procédé chimique utilisé est décrit dans le document [7].

L'aldéhyde (2) (20,87 mmol) est mis en solution dans le diméthylformamide (1,2 ml) fraîchement distillé

23

sur hydrure de calcium (CaH_2) : le milieu est mis sous agitation et l'amine (4) (31,30 mmol, 2 éq) est additionnée. Après une vingtaine de minutes, le cyanoborohydrure de sodium $NaBH_3CN$ (83,47 mmol, 4 éq) est ajouté au mélange, qui est laissé sous agitation à température ambiante pendant une nuit.

5

10

15

20

30

Si la réaction n'est pas terminée, il est possible de rajouter du $NaBH_3CN$ (1 éq). Ensuite, lorsque la réaction est terminée, la pyridine (2,4 ml) et l'anhydride acétique Ac_2O (83,47 mmol, 2 éq/amine) sont ajoutés au mélange.

Lorsque la réaction est terminée (environ 1 heure après l'addition), le composé brut est extrait au diéthyléther et à l'eau. Les phases organiques réunies sont séchées sur sulfate de magnésium (MgSO₄), puis filtrées, évaporées sous vide puis co-évaporées au toluène.

Le composé (5) est alors purifié par chromatographie sur gel de silice (gradient d'éluant cyclohexane/acétate d'éthyle de 7/3 à 5/5).

Exemple D : Fonctionnalisation du support solide (réactions D et E)

Le procédé chimique utilisé est décrit dans le 25 document [7].

Les billes Controlled Pore Glass (6) (CPG, 500 \mathring{A} , 2 g) sont agitées de manière très douce pendant 2 heures à température ambiante dans une solution de soude NaOH (700 mg) dans l'eau désionisée EDI (6 ml) et l'éthanol EtOH à 99% (8 ml). Puis les billes sont

24

centrifugées, le surnageant est extrait, les billes sont lavées abondamment à l'EDI pour atteindre un pH neutre.

Les billes sont ensuite séchées sous vide (évaporateur rotatif), et restent 1 heure à température ambiante dans une solution d'acide chlorhydrique (HCl 0,2 N) avant d'être lavées à l'eau, centrifugées, séchées puis mises à l'étuve pendant 15 minutes à 80°C. Elles sont alors lavées à l'éthanol, puis au toluène (centrifugeuse).

5

10

15

20

25

30

Elles sont ensuite séchées avant de participer à l'étape suivante de silanisation dont le mélange réactionnel aura été préparé juste avant l'emploi.

Les billes CPG (7) sont introduites dans un mélange de toluène (45 ml), triéthylamine Et_3N (1,35 ml) et de 7-octényltriméthoxysilane (8) $(\text{C}_{11}\text{H}_{24}\text{O}_3\text{Si}$, M 232,39, 100 μl): le milieu réactionnel est mis à 80°C pendant 16 heures (étuve).

Les billes sont extraites du mélange par centrifugation, et sont rincées à l'éthanol à plusieurs reprises puis séchées (évaporateur rotatif). Elles sont alors soumises à une température de 110°C pendant 3 heures pour réaliser l'étape de réticulation (étuve).

Les étapes de silanisation et de réticulation étant ainsi réalisées, il est nécessaire de neutraliser l'acidité et l'hydrophilie résiduelles des silanols de surface n'ayant pas réagi au cours de l'étape de silanisation (« end-capping »). Une solution de chlorure de triméthylsilyle TMSCl (109 mg, 130 μl) et de triéthylamine Et₃N (506 mg, 700 μl) dans le

25

dichlorométhane DCM (10 ml) est ajoutée aux billes CPG silanisées, et le mélange est laissé sous agitation douce pendant 2 heures à 25°C.

Les billes sont alors rincées abondamment au dichlorométhane (centrifugeuse), puis à l'acétonitrile (centrifugeuse). Elles sont ensuite séchées sous vide (évaporateur rotatif), et mises à l'étuve (80°C) pour parfaire le séchage.

Les billes silanisées (9) sont ainsi obtenues.

10

5

Exemple F : Réaction de métathèse (réaction F)

Le procédé chimique utilisé est décrit dans le document [9].

Les billes CPG silanisées (9) (2 g, 30 µmol/g)

15 sont mises sous agitation dans le dichlorométhane
(20 ml), sous atmosphère d'azote. Le système sucreespaceur (5) (300 µmol, >5 éq) est alors additionné, au
milieu, avec un catalyseur de Grubbs (6 µmol, 5 mg,
0,1 éq). Le milieu réactionnel est alors porté à

20 reflux, soit une température de 44°C.

Après 6 heures, une autre portion de catalyseur de Grubbs (6 μ mol, 5 mg, 0,1 éq) est ajoutée. Le mélange est maintenu à 44°C pendant encore 6 heures, puis est ramené à température ambiante.

Les billes sont filtrées, et lavées abondamment au dichlorométhane et à l'éthanol (centrifugeuse). Les billes sont ensuite évaporées sous vide pour être séchées.

Les billes sucrées (10) sont ainsi obtenues.

25

Schéma réactionnel des exemples A à F

27

Exemple G : Clivage de la sonde (réaction G)

5

10

Le procédé chimique utilisé est décrit dans le document [10].

Lorsque le système (10) (support solideespaceur de la présente invention-chaîne oligosaccharidique) a été obtenu, il est possible de cliver l'espaceur, sans dénaturer la chaîne sucrée.

Le protocole expérimental est décrit dans le document [5]. L'équation chimique est la suivante :

Les billes CPG sucrées (10) sont mises sous agitation lente dans un mélange dichlorométhane/méthanol 1/1. Le milieu est amené à une température de -78°C (acétone+azote liquide).

28

Ensuite, on fait buller l'ozone 03 dans le milieu réactionnel jusqu'à ce qu'une couleur bleue apparaisse.

Ensuite, de l'argon bulle quelques minutes dans le mélange, avant de neutraliser le milieu avec du diméthylsulfure puis le milieu réactionnel est laissé pour remonter vers la température ambiante pendant une nuit.

Les billes sont reprises au diéthyléther,

10 filtrées, rincées à plusieurs reprises au diéthyléther
et à l'eau.

Les billes (12) sont alors mises de côté, et le surnageant est extrait (diéthyléther/eau), la phase organique est séchée sur sulfate de magnésium MgSO₄, évaporée sous vide et co-évaporée au toluène.

Le produit (11) est alors obtenu.

2) D'autres molécules selon l'invention ont été
20 fabriquées en utilisant les protocoles opératoires
exposés ci-dessus (exemples A à F). Ces molécules sont
détaillées dans les exemples suivants.

Exemple H :

5

15

Dans cet exemple, [mo] est un peptide RGD (Arg-Gly-Asp) accroché au bras espaceur de l'invention par son extrémité C-terminale. Le support est le même que dans le protocole opératoire exposé ci-dessus. Ainsi, dans cet exemple, la molécule (1) du schéma réactionnel des exemples A à F est remplacée par RGD.

Des billes sur lesquelles le peptide RGD est accroché sont ainsi obtenues. Elles sont de formule :

[mo] : peptide RGD accroché par C-terminal (Arg-Gly-Asp)

5 Exemple I:

Cet exemple utilise la même [mo] que dans l'exemple H, mais accroché au bras espaceur de l'invention par son extrémité N-terminale. De plus,

dans X^1 du bras espaceur de l'invention, X^1 est C et n = 20. Par C, on entend bien entendu un carbone hydrogéné.

Les billes obtenues sont de formule :

[mo] est un peptide RDG accroché par l'extrémité N-terminale

Exemple J :

Dans cet exemple, [mo] est un « sialyllewis a ». Le support est le même que dans le protocole
opératoire exposé ci-dessus. Le groupement protecteur
est Boc. Sa chimie de fixation est connue de l'homme du
métier.

Des billes sur lesquelles le sialyl-lewis a est accroché sont ainsi obtenues. Elles sont de formule :

[mo] est un sialyl-lewis a , avec "1" = H ou CH_3

10 Exemple K:

Dans cet exemple, [mo] est un composé sulfaté. Le support est le même que dans le protocole opératoire exposé ci-dessus.

Des billes sur lesquelles le composé sulfaté 15 est accroché sont ainsi obtenues. Elles sont de formule:

31

[mo] est un composé sulfaté, Z étant un groupe protecteur (par exemple Gp défini dans la partie "exposé de l'invention)

Dans un autre protocole, le carbone X^4 a été remplacé par un atome de soufre. Les billes correspondantes ont été obtenues.

Exemple L :

5

10

Dans cet exemple, [mo] est un sucre protégé. Le support est le même que dans le protocole opératoire exposé ci-dessus.

Des billes sur lesquelles le sucre protégé est accroché sont ainsi obtenues. Elles sont de formule :

Exemple M :

Dans cet exemple, [mo] est un acide sialique.

Le support est le même que dans le protocole opératoire exposé ci-dessus.

32

Des billes sur lesquelles l'acide sialique est accroché sont ainsi obtenues. Elles sont de formule :

; :

5

33

Références bibliographiques

- [1] WO-A-03/008927: Dukler, N. Dotan, A. Shtavi, A. Gargir.
- 5 [2] H.M.I. Osborn, T.H. Khan, Tetrahedron, 1999, 55, 1807-1850.
 - [3] D.A. Stetsenko, M.J. Gai, *Bioconjugate Chemistry*, **2001**, *12*, 576-586.
 - [4] US-A-6,579,725 : P.H. Seeberger, R.B. Andrade.
- 10 [5] R. Roy, C.A. Laferrière, Canadian Journal of Chemistry, 1990, 68, 2045-2054.
 - [6] L.H. Amundsen, L.S. Nelson, Journal of the American Chemical Society, 1951, 73, 242-244.
- [7] J.F. Tolborg, K.J. Jensen, Chemical Communication, 2000, 147-148.
 - [8] F. Vinet, A. Hoang, EN 00 16940.
 - [9] K. Biswas, D.M. Coltart, S.J. Danishefsky, Tetrahedron Letters, 2002, 43, 6107-6110.
- [10] C. Sylvain, A. Wagner, C. Miokowski, Tetrahedron
 20 Letters, 1997, 38, 1043-1044.
 - [11] Q.J. Plante, E.R. Palmacci, P.H. Seeberger, Science, 2001, 291, 1523-1527.
 - [12] P.H. Seeberger, Chem. Com., 2003, 1115-1121.
- [13] D.M. Ratner, E.R. Swanson, P.H. Seeberger, Org. Lett. 2003, 4717-4720.

34

REVENDICATIONS

1. Bras espaceur moléculaire de formule (I) suivante :

$$[mo] - X^{4}$$

$$\begin{bmatrix} X^{3} \\ p \end{bmatrix}$$

$$\begin{bmatrix} X^{2} \\ m \end{bmatrix}$$

$$\begin{bmatrix} X^{2} \\ m$$

- dans laquelle X⁰ et X⁴ sont des substituants modulables de façon à permettre une liaison de [mo] et [Sup] via ledit bras espaceur, X⁰ et X⁴ étant différents de H et chacun choisis indépendamment des autres substituants du bras espaceur parmi C, O, N, S, Se, P, As, Si; et

5

- dans laquelle les substituants X^1 ; X^2 ; X^3 ; Z^1 ; Z^2 ; R^1 ; R^2 ; et R^3 sont tels que :

- X¹ ; X² ; et X³ sont chacun choisis indépendamment des autres substituants parmi C, O, N, S, Se, P, As, Si et parmi un aryle et un hétéroaryle comprenant chacun de 2 à 20 atomes de carbone ;
- . Z^1 et Z^2 sont chacun choisis indépendamment des autres substituants parmi C-R, Si-R, C, N, P et As, où R est un alkyle comprenant de 1 à 40 atomes de carbone;
 - R^1 ; R^2 ; et R^3 sont chacun choisis indépendamment des autres substituants parmi H, un alkyle, un

35

aryle et un hétéroaryle comprenant chacun de 2 à 20 atomes de carbone;

• [Gp] représente un groupement protecteur de l'amine secondaire -N- ou une molécule participant à la fonctionnalité du bras espaceur ;

5

15

25

- dans laquelle n, m et p sont des nombres entiers, chacun supérieur ou égal à 1 et choisi indépendamment l'un de l'autre, de préférence de façon à ce que $1 \le n$, m et $p \le 40$;
- 10 dans laquelle [Sup] représente H ou un support solide silanisé sur lequel ledit bras espaceur peut être fixé de manière covalente; et
 - dans laquelle [mo] représente H ou une unité moléculaire destinée à être fixée de manière covalente par l'intermédiaire dudit bras espaceur sur ledit support solide silanisé.
 - 2. Bras espaceur selon la revendication 1, dans lequel
- 20 X^0 et X^4 sont choisis indépendamment des autres substituants parmi C, O, N, S, Si ; et/ou
 - X^1 ; X^2 ; et X^3 sont choisis indépendamment des autres substituants parmi C, O, N, S, Si et parmi un aryle et un hétéroaryle comprenant chacun de 2 à 10 atomes de carbone; et/ou
 - . Z^1 et Z^2 sont choisis indépendamment des autres substituants parmi C, N, C-R, Si-R, où R est un alkyle comprenant de 1 à 30 atomes de carbone; et/ou

36

• R^1 ; R^2 ; et R^3 sont choisis indépendamment des autres substituants parmi H, un alkyle, un aryle et un hétéroaryle comprenant chacun de 2 à 10 atomes de carbone.

5

3 Bras espaceur selon la revendication 1, dans lequel le groupement protecteur [Gp] est choisi parmi Ac, Benzyle, un groupement aryle en C_1 à C_{40} , Troc, z, TCA, BOC, Fmoc.

10

4. Bras espaceur selon la revendication 1, dans lequel le support solide [Sup], lorsqu'il est présent, est choisi parmi une plaque, une bille ou un capillaire.

- 5. Bras espaceur selon la revendication 1 ou 4, dans lequel [Sup] est à base de silice ou de verre.
- 6. Bras espaceur selon la revendication 1,
 20 dans lequel [mo], lorsqu'il est présent, est une
 molécule ayant un poids moléculaire allant de 180 à
 400000 g.mol⁻¹.
- 7. Bras espaceur selon la revendication 1,
 25 dans lequel [mo], lorsqu'il est présent, est choisi
 parmi les monosaccharides, les oligosaccharides, les
 poly-oligosaccharides, les glyco-conjugués, les
 peptides, les protéines, les enzymes, les
 glycoprotéines, les lipides, les acides gras, les
 glycolipides, les glycolipoprotéines.

- 8. Bras espaceur selon la revendication 1, dans lequel [mo], lorsqu'il est présent, est un sucre.
- 9. Utilisation d'un bras espaceur selon l'une quelconque des revendications 1 à 8 pour fixer sur un support solide silanisé [Sup] une unité moléculaire [mo].
- 10. Utilisation selon la revendication 9, dans laquelle [mo] est une molécule ayant un poids moléculaire allant de 180 à $400000~\rm g.mol^{-1}$.
- 11. Utilisation selon la revendication 9, dans
 15 laquelle [mo] est choisi parmi les monosaccharides, les
 oligosaccharides, les poly-oligosaccharides, les glycoconjugués, les petites molécules naturelles ou
 synthétiques; et [Sup] représente un support solide
 silanisé auquel le bras espaceur est susceptible d'être
 20 fixé.
 - 12. Utilisation selon la revendication 9, dans laquelle [Sup] est choisi parmi une plaque, des billes ou un capillaire.

13. Utilisation selon la revendication 12, dans laquelle [Sup] est à base de silice ou de verre.

38

14. Utilisation selon l'une quelconque des revendications 9 à 13 pour la fabrication d'une biopuce.

5 15. Utilisation selon l'une quelconque des revendications 9 à 13 pour la fabrication d'une puce à sucre.

16. Procédé de fixation covalente d'une unité
10 moléculaire [mo] sur un support par l'intermédiaire
d'un bras espaceur, ledit procédé comprenant les étapes
suivantes:

(i) réduction de la fonction nitrile d'un composé de formule :

15

(ii) formation d'une fonction aldéhyde à partir d'une fonction allyle d'une molécule biologique de formule :

(iii) amination réductrice entre ladite fonction
20 nitrile réduite suivie d'une protection de l'amine
secondaire formée et ladite fonction aldéhyde pour
obtenir une molécule biologique activée pour sa
fixation sur le support, ladite molécule biologique
activée étant de formule :

$$[mo] - X^4$$

$$\begin{bmatrix} X^3 \\ p \end{bmatrix}$$

$$\begin{bmatrix} R^2 \\ X^2 \\ m \end{bmatrix}$$

$$\begin{bmatrix} Qp \end{bmatrix}$$

solide, support d'un (iv) silanisation fonctionnalisation du support solide silanisé avec une molécule de formule :

$$z^1$$
 x^1 x^0

5

métathèse la molécule entre réaction de (v) fonctionnalisant le support et la molécule biologique activée pour former un bras espaceur selon l'invention reliant la molécule biologique et le support ;

10

procédé dans lequel les substituants X^0 ; X^1 ; X^2 ; X^3 ; X^4 ; Z^1 ; Z^2 ; R^1 ; R^2 ; R^3 ; et [mo] sont tels que définis dans la revendication 1.

15

17. Procédé selon la revendication 16, dans lequel le composé de formule

est un sucre allylé, [mo] étant ledit sucre.

- 18. Procédé selon la revendication 16, dans lequel [Sup] est choisi parmi une plaque, une bille ou un capillaire.
- 5 19. Procédé selon la revendication 16 ou 18, dans lequel [Sup] est à base de silice ou de verre.
- 20. Procédé selon la revendication 16, dans lequel [mo] est une molécule ayant un poids moléculaire allant de 180 à 400000 g.mol⁻¹.
- 21. Procédé selon la revendication 16, dans lequel [mo] est choisi parmi les monosaccharides, les oligosaccharides, les poly-oligosaccharides, les glyco-conjugués, les peptides, les protéines, les enzymes, les glycoprotéines, les lipides, les acides gras, les glycolipides, les glycolipoprotéines.
- 22. Procédé selon la revendication 16, dans 20 lequel [mo] est un sucre.
- 23. Procédé selon la revendication 16, comprenant en outre une étape de fixation d'un groupement protecteur [Gp] sur la fonction amine 25 secondaire.
 - 24. Procédé selon la revendication 23, dans lequel [Gp] est choisi parmi Ac, benzyle, un groupement aryle en $C_{1\ a}$ 40, Troc, z, TCA, BOC, Fmoc.

41

25. Utilisation d'un procédé selon l'une quelconque des revendications 16 à 24 pour la fabrication d'une biopuce.

5 26. Utilisation d'un procédé selon l'une quelconque des revendications 16 à 24 pour la fabrication d'une puce à sucre.

Interional Application No
PCT/FR2005/050117

A. CLASSIF IPC 7	CO7H3/02 G01N33/543						
According to	According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS S	SEARCHED	~					
	cumentation searched (classification system followed by classification CO7H GO1N	on symbols)	-51				
	ion searched other than minimum documentation to the extent that su						
	ata base consulted during the international search (name of data bas ternal, CHEM ABS Data, WPI Data, PAJ		,				
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT		<u> </u>				
Category °	Citation of document, with indication, where appropriate, of the rela	evant passages	Relevant to claim No.				
X	MORNET, R. ET AL: "Addition of s gliphatic organomagnesiums to nonconjugated disubstituted tripl JOURNAL OF ORGANOMETALLIC CHEMIST vol. 86, no. 1, 1975, pages 57-67 XP002302568 ISSN: 0022-328X the whole document	le bonds" [RY, 7,	1,2				
X Furth	her documents are listed in the continuation of box C.	χ Patent family members are listed	in annex.				
"A" docume consid "E" earlier of filing d "L" docume which citation "O" docume other i	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another on or other special reason (as specified) sent referring to an oral disclosure, use, exhibition or means sent published prior to the international filing date but than the priority date claimed	"T" later document published after the interest or priority date and not in conflict with cited to understand the principle or the invention of the cannot be considered novel or cannot be considered novel or cannot be considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the cannot be considered to involve an indocument is combined with one or ments, such combination being obvious in the art. "&" document member of the same patent	n the application but the property underlying the claimed invention of the considered to be considered to comment is taken alone claimed invention the the core other such docupous to a person skilled the core other such docupous to a person skilled				
	actual completion of the international search	Date of mailing of the international sea	alon roport				
	Malling address of the ISA	22/06/2005 Authorized officer					
e and	Mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo ni,	Klein, D					

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT					
Category ° Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.			
X	BOUET, G. ET AL: "The addition of saturated aliphatic organomagnesium compounds to disubstituted, non-conjugated triple bonds. IV. The effect of a functional thioether group .alpha. to the triple bond. Catalytic action of copper" JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 135, no. 2, 1977, pages 151-159, XP002302569 ISSN: 0022-328X the whole document	1,2			
X	GERMON C ET AL: "ALKENYL-COPPER DERIVATIVES. 28 (1): STEREOSPECIFIC SYNTHESIS OF TERTIARY ALLYLIC AMINES OF E OR Z CONFIGURATION" BULLETIN DE LA SOCIETY CHIMIQUE DE FRANCE, MASSON, PARIS, FR, vol. 9/10, no. 2, 1984, pages 377-389, XP008011272 ISSN: 0037-8968 compounds 2,7E,7Z,8	1,2			
X	BRYCE, MARTIN R. ET AL: "Metal-assisted fragmentation of N-aryl- and -alkyl-N-trimethylsilylaminosulfur chlorides and N-aryl- and -alkyl-aminosulfur chlorides in the presence of conjugated dienes: synthesis and reactivity of 2-substituted-3,6-dihydro-1,2-thiazines" JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS 1: ORGANIC AND BIO-ORGANIC CHEMISTRY, vol. 15, 1996, pages 1825-1831, XP009038623 ISSN: 0300-922X compounds 21 G,21 I	1,2			
X	LAROCK, RICHARD C. ET AL: "Synthesis of Aryl-Substituted Allylic Amines via Palladium-Catalyzed Coupling of Aryl Iodides, Nonconjugated Dienes, and Amines" JOURNAL OF ORGANIC CHEMISTRY, vol. 59, no. 26, 1994, pages 8107-8114, XP002302570 ISSN: 0022-3263 compounds 16,18,32,53,54,60,	1,2			

Intermonal Application No PCT/FR2005/050117

		PCT/FR2005/050117	
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
X	BARTA, NANCY S. ET AL: "Studies of the regiospecific 3-aza-Cope rearrangement promoted by electrophilic reagents" JOURNAL OF ORGANIC CHEMISTRY, vol. 57, no. 26, 1992, pages 7188-7194, XP002302571 ISSN: 0022-3263 compound 23	1,2	
A	US 6 579 725 B1 (ANDRADE RODRIGO B ET AL) 17 June 2003 (2003-06-17) cited in the application	1–26	
А	EP 0 906 324 A (BASF AG) 7 April 1999 (1999-04-07)	1–26	
A	ANDRADE R B ET AL: "SOLID-PHASE OLIGOSACCHARIDE SYNTHESIS: PREPARATION OF COMPLEX STRUCTURES USING A NOVEL LINKER AND DIFFERENT GLYCOSYLATING AGENTS" ORGANIC LETTERS, AMERICAN CHEMICAL SOCIETY, US, vol. 1, no. 11, 1999, pages 1811-1814, XP000914375 ISSN: 1523-7060	1-26	

Information on patent family members

Inter Onal Application No PCT/FR2005/050117

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 6579725	B1 17-06-2003	US 2003232452 A1 CA 2363499 A1 EP 1175427 A2 JP 2002538163 A WO 0052018 A2	18-12-2003 08-09-2000 30-01-2002 12-11-2002 08-09-2000
EP 0906324	A 07-04-1999	DE 19621177 A1 AT 203753 T AU 2895797 A BR 9709037 A CA 2255559 A1 CN 1219937 A, CZ 9803691 A3 DE 59704199 D1 WO 9745436 A1 EP 0906324 A1 ES 2161464 T3 HU 9901291 A2 JP 2000510851 T KR 2000015933 A NO 985462 A US 6242583 B1	27-11-1997 15-08-2001 05-01-1998 03-08-1999 04-12-1997 C 16-06-1999 14-04-1999 06-09-2001 04-12-1997 07-04-1999 01-12-2001 28-07-1999 22-08-2000 15-03-2000 23-11-1998 05-06-2001

	RAPPORT DE RECHERCHE INTERNATIONALE	
•	MIT ON BET ENTERONE INTERNATIONALE	Den de Internationale No
		PCT/FR2005/050117
A. CLASSI CIB 7	EMENT DE L'OBJET DE LA DEMANDE C07H3/02 G01N33/543	
Selon la cla	ssification internationale des brevets (CIB) ou à la fois selon la classification nationale et l	a CIB
	NES SUR LESQUELS LA RECHERCHE A PORTE	
Documenta CIB 7	tion minimale consultée (système de classification suivi des symboles de classement) CO7H GO1N	
Documenta	tion consultée autre que la documentation minimale dans la mesure où ces documents re	èvent des domaines sur lesquels a porté la recherche
Base de do	nnées électronique consultée au cours de la recherche internationale (nom de la base de	données, et si réalisable, termes de recherche utilisés)
EPO-In	ternal, CHEM ABS Data, WPI Data, PAJ	
C. DOCUM	ENTS CONSIDERES COMME PERTINENTS	
Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication des passages perti	nents no. des revendications visées
X	MORNET, R. ET AL: "Addition of saturated gliphatic organomagnesiums to nonconjugated disubstituted triple bonds" JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 86, no. 1, 1975, pages 57-67, XP002302568 ISSN: 0022-328X le document en entier	1,2

Voir la suite du cadre C pour la fin de la liste des documents	Les documents de familles de brevets sont indiqués en annexe	
"L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée	T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention X" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément Y" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier &" document qui fait partie de la même famille de brevets	
Date à laquelle la recherche internationale a été effectivement achevée 8 juin 2005	Date d'expédition du présent rapport de recherche internationale 22/06/2005	
Nom et adresse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Fonctionnaire autorisé Klein, D	

RAPPORT DE RECHERCHE INTERNATIONALE

Den De Internationale No PCT/FR2005/050117

		CT/FR2005/050117
	OCUMENTS CONSIDERES COMME PERTINENTS	
Catégorie '	Identification des documents cités, avec, le cas échéant, l'indication des passages perti	nents no. des revendications visées
X	BOUET, G. ET AL: "The addition of saturated aliphatic organomagnesium compounds to disubstituted, non-conjugated triple bonds. IV. The effect of a functional thioether group .alpha. to the triple bond. Catalytic action of copper" JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 135, no. 2, 1977, pages 151-159, XP002302569 ISSN: 0022-328X le document en entier	1,2
X	GERMON C ET AL: "ALKENYL-COPPER DERIVATIVES. 28 (1): STEREOSPECIFIC SYNTHESIS OF TERTIARY ALLYLIC AMINES OF E OR Z CONFIGURATION" BULLETIN DE LA SOCIETY CHIMIQUE DE FRANCE, MASSON, PARIS, FR, vol. 9/10, no. 2, 1984, pages 377-389, XP008011272 ISSN: 0037-8968 composés 2,7E,7Z,8	1,2
X	BRYCE, MARTIN R. ET AL: "Metal-assisted fragmentation of N-aryl- and -alkyl-N-trimethylsilylaminosulfur chlorides and N-aryl- and -alkyl-aminosulfur chlorides in the presence of conjugated dienes: synthesis and reactivity of 2-substituted-3,6-dihydro-1,2-thiazines" JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS 1: ORGANIC AND BIO-ORGANIC CHEMISTRY, vol. 15, 1996, pages 1825-1831, XP009038623 ISSN: 0300-922X composés 21 G,21 I	1,2
	LAROCK, RICHARD C. ET AL: "Synthesis of Aryl-Substituted Allylic Amines via Palladium-Catalyzed Coupling of Aryl Iodides, Nonconjugated Dienes, and Amines" JOURNAL OF ORGANIC CHEMISTRY, vol. 59, no. 26, 1994, pages 8107-8114, XP002302570 ISSN: 0022-3263 composés 16,18,32,53,54,60,	1,2

RAPPORT DE RECHERCHE INTERNATIONALE

	PCT/FR2005/050117			
	OCUMENTS CONSIDERES COMME PERTINENTS			
Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication des passages pert	inents	no. des revendications visées	
Х	BARTA, NANCY S. ET AL: "Studies of the regiospecific 3-aza-Cope rearrangement promoted by electrophilic reagents" JOURNAL OF ORGANIC CHEMISTRY, vol. 57, no. 26, 1992, pages 7188-7194, XP002302571 ISSN: 0022-3263 composé 23		1,2	
Α 🔀	US 6 579 725 B1 (ANDRADE RODRIGO B ET AL) 17 juin 2003 (2003–06–17) cité dans la demande		1–26	
Α	EP 0 906 324 A (BASF AG) 7 avril 1999 (1999-04-07)		1-26	
A	ANDRADE R B ET AL: "SOLID-PHASE OLIGOSACCHARIDE SYNTHESIS: PREPARATION OF COMPLEX STRUCTURES USING A NOVEL LINKER AND DIFFERENT GLYCOSYLATING AGENTS" ORGANIC LETTERS, AMERICAN CHEMICAL SOCIETY, US, vol. 1, no. 11, 1999, pages 1811-1814, XP000914375 ISSN: 1523-7060		1-26	

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Dentale Internationale No
PCT/FR2005/050117

Document brevet cité au rapport de recherche	Date de publication		Membre(s) de la famille de brevet(s)	Date de publication
US 6579725 BI	17-06-2003	US CA EP JP WO	2003232452 A1 2363499 A1 1175427 A2 2002538163 A 0052018 A2	18-12-2003 08-09-2000 30-01-2002 12-11-2002 08-09-2000
EP 0906324 A	07-04-1999	DE AT AU BR CN CZ DE WO EP HU JP KNO US	19621177 A1 203753 T 2895797 A 9709037 A 22555559 A1 1219937 A ,C 9803691 A3 59704199 D1 9745436 A1 0906324 A1 2161464 T3 9901291 A2 2000510851 T 2000015933 A 985462 A 6242583 B1	27-11-1997 15-08-2001 05-01-1998 03-08-1999 04-12-1997 16-06-1999 14-04-1999 06-09-2001 04-12-1997 07-04-1999 01-12-2001 28-07-1999 22-08-2000 15-03-2000 23-11-1998 05-06-2001