# Sick dataset analysis part 2

### Wojciech Bogucki

## 28/04/2020

### Contents

| Prepared dataset                  | 2 |
|-----------------------------------|---|
| Used models                       | 2 |
| Different versions of dataset     | 2 |
| Tuning model's hyperparameters    | 3 |
| Comparison of prediction measures | 3 |
| Conclusion                        | 5 |

#### Prepared dataset

For my analysis I once again used dataset sick with previous transormations: I removed three columns which gave no information and added constraint for age to avoid human mistakes.

```
sick_train <- sick_train %>% select(c(-TBG, -TBG_measured, -hypopituitary))
sick_test <- sick_test %>% select(c(-TBG, -TBG_measured, -hypopituitary))
sick_train <- sick_train %>% mutate(age=replace(age, age>130 | age<0, NA))
sick_test <- sick_test %>% mutate(age=replace(age, age>130 | age<0, NA))</pre>
```

As a reminder, I also created dataset with imputed missing values because some models required it. For imputation I used package mice.

| variable | imputation method        |  |
|----------|--------------------------|--|
| sex      | Logistic regression      |  |
| TSH      | Predictive mean matching |  |
| Т3       | Predictive mean matching |  |
| TT4      | Predictive mean matching |  |
| T4U      | Predictive mean matching |  |
| FTI      | Predictive mean matching |  |

Table 1: Impuation method for each variable

#### Used models

In my previous analysis I used only interpretable models. Decision tree model from package part had best AUPRC score. With this model I compared three new so called 'black box' models:

- Random Forest (package ranger)
- Gradient Boosting Machine (package gbm)
- XGBoost (package xgboost)

#### Different versions of dataset

Different models have different requirements and limitations for input data. Decision tree and Gradient Boostting Machine models accept missing values in dataset so I used normal data after transformations. For Random Forest I used dataset with imputed missing values. Lastly, XGBoost accepts only numeric data, so I changed factors to numeric values.

#### Tuning model's hyperparameters

On every model I performed hyperparameter tuning with package mlr.

Table 2: Hyperparameters after tuning for

| minsplit | minbucket | ср       |
|----------|-----------|----------|
| 21       | 7         | 0.000367 |

Table 3: Hyperparameters after tuning for Gradient Boosting Machine

| n.trees | interaction.depth | n.minobsinnode | distribution | shrinkage |
|---------|-------------------|----------------|--------------|-----------|
| 169     | 3                 | 4              | gaussian     | 0.0932    |

Table 4: Hyperparameters after tuning for Random Forest

| mtry | min.node.size | splitrule | replace |
|------|---------------|-----------|---------|
| 7    | 3             | gini      | FALSE   |

Table 5: Hyperparameters after tuning for XGBoost

| min_child_weight | $\max_{\text{depth}}$ | gamma | eta   |
|------------------|-----------------------|-------|-------|
| 4.97             | 4                     | 3.86  | 0.374 |

### Comparison of prediction measures

As in previous analysis, I calculated measures of goodness of predicton: agggregated AUC from 5-fold crossvalidation on training set, AUC on test set and AUPRC on test set. Results are presented in Table 6.

Table 6: Measures of goodness of prediction for each model

| model                               | AUC on 5-fold crossvalidation | AUC on test data | AUPRC on test data |
|-------------------------------------|-------------------------------|------------------|--------------------|
| Decision trees                      | 0.940                         | 0.897            | 0.770              |
| Decision trees with tune            | 0.961                         | 0.973            | 0.893              |
| Ranger                              | 0.995                         | 0.993            | 0.894              |
| Ranger with tune                    | 0.995                         | 0.994            | 0.909              |
| Gradient Boosting Machine           | 0.952                         | 0.964            | 0.746              |
| Gradient Boosting Machine with tune | 0.988                         | 0.996            | 0.922              |
| XGBoost                             | 0.966                         | 0.995            | 0.911              |
| XGBoost with tune                   | 0.954                         | 0.992            | 0.868              |



Figure 1: Models comparison

#### Conclusion

On Figure 1 we can notice that:

- On training dataset ranger models achieve the best results(over 0.99)
- On test dataset Gradint Boosting Machine model with tuned hyperparameters has the best AUC and AUPRC measures
- Surprisingly, GBM model with default hyperparametres has the worst AUPRC result(even worse than decision tree model)
- Generally, black box models performed better than interpretable model in this case but decision tree model with tuned hyperparameters has AUPRC score comparable with black box models
- Only for XGBoost model hyperparameters tuning yields worse results