FACULDADE ENGENHEIRO SALVADOR ARENA ENGENHARIA DA COMPUTAÇÃO SISTEMAS OPERACIONAIS – Aula 05 – 2º SEMESTRE/2023 LISTA DE EXERCÍCIOS

FIRST-COME, FIRST SERVED (FCFS)

Calcule o tempo médio de execução para cada um dos processos abaixo e o tempo de espera, considerando o algoritmo FCFS:

PROCESSO	TEMPO DE CHEGADA	TEMPO DE SERVIÇO	PRIORIDADE
t ₁	0	5	2
t ₂	0	2	3
t ₃	1	4	1
t ₄	3	1	4
t ₅	5	2	5

1. tempo médio de execução (Tt, a média de tt(ti)).

$$T_t = \frac{t_t(t_1) + \dots + t_t(t_5)}{5} = \frac{(5-0) + (7-0) + (11-1) + (12-3) + (14-5)}{5}$$
$$= \frac{5+7+10+9+9}{5} = \frac{40}{5} = 8,0s$$

2. tempo médio de espera (Tw, a média de tw(ti))

$$T_w = \frac{t_w(t_1) + \dots + t_w(t_5)}{5} = \frac{(0-0) + (5-0) + (7-1) + (11-3) + (12-5)}{5}$$
$$= \frac{0+5+6+8+7}{5} = \frac{26}{5} = 5, 2s$$

1

EXERCÍCIO 1: FCFS

Calcule o tempo médio de execução para cada um dos processos abaixo e o tempo de espera, considerando o algoritmo **FCFS** (*First-Come*, *First Served*):

PROCESSO	TEMPO DE CHEGADA	TEMPO DE SERVIÇO	PRIORIDADE
P ₁	0	5	3
P ₂	2	4	2
P ₃	2	3	1
P ₄	4	4	4
P ₅	4	1	5

PROCESSO	TEMPO DE TÉRMINO	ATIVO	ESPERA
P ₁	5	5	0
P ₂	9	7	3
P ₃	12	10	7
P ₄	16	12	8
P ₅	17	13	12

$$T_t = 47 / 5 = 9.4$$

$$T_W = 30 / 5 = 6$$

EXERCÍCIO 2: FCFS

Calcule o tempo médio de execução para cada um dos processos abaixo e o tempo de espera, considerando o algoritmo **FCFS** (*First-Come*, *First Served*):

PROCESSO	TEMPO DE CHEGADA	TEMPO DE SERVIÇO	PRIORIDADE
P ₁	0	5	3
P ₂	1	2	2
P ₃	2	4	1
P ₄	3	3	4
P ₅	5	2	5

PROCESSO	TEMPO DE TÉRMINO	ATIVO	ESPERA
P ₁	5	5	0
P ₂	7	6	4
P ₃	11	9	5
P ₄	14	11	8
P ₅	16	11	9

$$T_t = 42 / 5 = 8.4$$

$$T_W = 26 / 5 = 5.2$$

SHORTEST JOB FIRST (SJF)

Calcule o tempo médio de execução para cada um dos processos abaixo e o tempo de espera, considerando o algoritmo SJF:

PROCESSO	TEMPO DE CHEGADA	TEMPO DE SERVIÇO	PRIORIDADE
t ₁	0	5	2
t ₂	0	2	3
t ₃	1	4	1
t ₄	3	1	4
t ₅	5	2	5

1. tempo médio de execução (Tt, a média de tt(ti)).

$$T_t = \frac{t_t(t_1) + \dots + t_t(t_5)}{5} = \frac{14 + 2 + 5 + 4 + 4}{5} = \frac{29}{5} = 5,8s$$

2. tempo médio de espera (Tw, a média de tw(ti))

$$T_w = \frac{t_w(t_1) + \dots + t_w(t_5)}{5} = \frac{9 + 0 + 1 + 3 + 2}{5} = \frac{15}{5} = 3,0s$$

4

EXERCÍCIO 1: SJF

Calcule o tempo médio de execução para cada um dos processos abaixo e o tempo de espera, considerando o algoritmo **SHORTEST JOB FIRST (SJF)**:

PROCESSO	TEMPO DE CHEGADA	TEMPO DE SERVIÇO	PRIORIDADE
P ₁	0	5	3
P ₂	2	4	2
P ₃	2	3	1
P ₄	4	4	4
P ₅	4	1	5

PROCESSO	TEMPO DE TÉRMINO	ATIVO	ESPERA
P ₁	5	5	0
P ₂	13	11	7
P ₃	9	7	4
P ₄	17	13	9
P ₅	6	2	1

$$T_t = 38 / 5 = 7.6$$

$$T_W = 21 / 5 = 4.2$$

EXERCÍCIO 2: SJF

Calcule o tempo médio de execução para cada um dos processos abaixo e o tempo de espera, considerando o algoritmo **SHORTEST JOB FIRST (SJF)**:

PROCESSO	TEMPO DE CHEGADA	TEMPO DE SERVIÇO	PRIORIDADE
P ₁	0	5	3
P ₂	1	2	2
P ₃	2	4	1
P ₄	3	3	4
P ₅	5	2	5

PROCESSO	TEMPO DE TÉRMINO	ATIVO	ESPERA
P_1	5	5	0
P ₂	7	6	4
P ₃	16	14	10
P ₄	12	9	6
P ₅	9	4	2

$$T_t = 38 / 5 = 7.6$$

$$T_W = 22 / 5 = 4.4$$

RR (ROUND ROBIN)

Calcule o tempo médio de execução para cada um dos processos abaixo e o tempo de espera, considerando o algoritmo RR.

PROCESSO	TEMPO DE CHEGADA	TEMPO DE SERVIÇO	PRIORIDADE
t ₁	0	5	2
t ₂	0	2	3
t ₃	1	4	1
t ₄	3	1	4
t ₅	5	2	5

1. tempo médio de execução (T_t , a média de $t_t(t_i)$).

$$T_t = \frac{t_t(t_1) + \dots + t_t(t_5)}{5} = \frac{14 + 4 + 12 + 6 + 6}{5} = \frac{42}{5} = 8,4s$$

$$T_w = \frac{t_w(t_1) + \dots + t_w(t_5)}{5} = \frac{9 + 2 + 8 + 5 + 4}{5} = \frac{28}{5} = 5,6s$$

EXERCÍCIO 1: RR

Calcule o tempo médio de execução para cada um dos processos abaixo e o tempo de espera, considerando o algoritmo **ROUND ROBIN (RR)** com o quantum 2:

PROCESSO	TEMPO DE CHEGADA	TEMPO DE SERVIÇO	PRIORIDADE
P ₁	0	5	3
P ₂	2	4	2
P ₃	2	3	1
P ₄	4	4	4
P ₅	4	1	5

PROCESSO	TEMPO DE TÉRMINO	ATIVO	ESPERA
P ₁	15	15	10
P ₂	13	11	7
P ₃	14	12	9
P ₄	17	13	9
P ₅	11	7	6

$$T_t = 58 / 5 = 11.6$$

$$T_W = 41 / 5 = 8.2$$

EXERCÍCIO 2: RR

Calcule o tempo médio de execução para cada um dos processos abaixo e o tempo de espera, considerando o algoritmo **ROUND ROBIN (RR)** com o quantum 2:

PROCESSO	TEMPO DE CHEGADA	TEMPO DE SERVIÇO	PRIORIDADE
P ₁	0	5	3
P ₂	1	2	2
P ₃	2	4	1
P ₄	3	3	4
P ₅	5	2	5

PROCESSO	TEMPO DE TÉRMINO	ATIVO	ESPERA
P ₁	15	15	10
P ₂	4	3	1
P ₃	14	12	8
P ₄	16	13	10
P ₅	12	7	5

$$T_t = 50 / 5 = 10$$

$$T_W = 34 / 5 = 6.8$$

SHORTEST REMAINING TIME FIRST (SRTF)

Calcule o tempo médio de execução para cada um dos processos abaixo e o tempo de espera, considerando o algoritmo SRTF.

PROCESSO	TEMPO DE CHEGADA	TEMPO DE SERVIÇO	PRIORIDADE
t ₁	0	5	2
t ₂	0	2	3
t ₃	1	4	1
t ₄	3	1	4
t ₅	5	2	5

1. tempo médio de execução (Tt, a média de tt(ti)).

$$T_t = \frac{t_t(t_1) + \dots + t_t(t_5)}{5} = \frac{14 + 2 + 6 + 1 + 4}{5} = \frac{27}{5} = 5, 4s$$

$$T_w = \frac{t_w(t_1) + \dots + t_w(t_5)}{5} = \frac{9 + 0 + 2 + 0 + 2}{5} = \frac{13}{5} = 2,6s$$

EXERCÍCIO 1: SRTF

Calcule o tempo médio de execução para cada um dos processos abaixo e o tempo de espera, considerando o algoritmo **SHORTEST REMAINING TIME FIRST (SRTF)**:

PROCESSO	TEMPO DE CHEGADA	TEMPO DE SERVIÇO	PRIORIDADE
P ₁	0	5	3
P ₂	2	4	2
P ₃	2	3	1
P ₄	4	4	4
P ₅	4	1	5

PROCESSO	TEMPO DE TÉRMINO	ATIVO	ESPERA
P ₁	5	5	0
P ₂	13	11	7
P ₃	9	7	4
P ₄	17	13	9
P ₅	6	2	1

$$T_t = 38 / 5 = 7.6$$

$$T_W = 21 / 5 = 4.2$$

EXERCÍCIO 2: SRTF

Calcule o tempo médio de execução para cada um dos processos abaixo e o tempo de espera, considerando o algoritmo **SHORTEST REMAINING TIME FIRST (SRTF)**:

PROCESSO	TEMPO DE CHEGADA	TEMPO DE SERVIÇO	PRIORIDADE
P ₁	0	5	3
P ₂	1	2	2
P ₃	2	4	1
P ₄	3	3	4
P ₅	5	2	5

PROCESSO	TEMPO DE TÉRMINO	ATIVO	ESPERA
P ₁	12	12	7
P ₂	3	2	0
P ₃	16	14	10
P ₄	6	3	0
P ₅	8	3	1

$$T_t = 34 / 5 = 6.8$$

$$T_W = 18 / 5 = 3.6$$

PRIORIDADE COOPERATIVO

Calcule o tempo médio de execução para cada um dos processos abaixo e o tempo de espera, considerando o algoritmo por **Prioridade Cooperativo** (PRIOc).

PROCESSO	TEMPO DE CHEGADA	TEMPO DE SERVIÇO	PRIORIDADE
t ₁	0	5	2
t ₂	0	2	3
t ₃	1	4	1
t ₄	3	1	4
t ₅	5	2	5

RESPOSTA:

1. tempo médio de execução (Tt, a média de tt(ti)).

$$T_t = \frac{t_t(t_1) + \dots + t_t(t_5)}{5} = \frac{7 + 2 + 13 + 7 + 4}{5} = \frac{33}{5} = 6,6s$$

$$T_w = \frac{t_w(t_1) + \dots + t_w(t_5)}{5} = \frac{2 + 0 + 9 + 6 + 2}{5} = \frac{19}{5} = 3.8s$$

EXERCÍCIO 1: PRIOC

Calcule o tempo médio de execução para cada um dos processos abaixo e o tempo de espera, considerando o algoritmo **PRIORIDADE COOPERATIVO (PRIOC)**:

PROCESSO	TEMPO DE CHEGADA	TEMPO DE SERVIÇO	PRIORIDADE
P ₁	0	5	3
P ₂	2	4	2
P ₃	2	3	1
P ₄	4	4	4
P ₅	4	1	5

PROCESSO	TEMPO DE TÉRMINO	ATIVO	ESPERA
P ₁	5	5	0
P ₂	14	12	8
P ₃	17	15	12
P ₄	10	6	2
P ₅	6	2	1

$$T_t = 40 / 5 = 8.0$$

$$T_W = 23 / 5 = 4.6$$

EXERCÍCIO 2: PRIOC

Calcule o tempo médio de execução para cada um dos processos abaixo e o tempo de espera, considerando o algoritmo **PRIORIDADE COOPERATIVO (PRIOC)**:

PROCESSO	TEMPO DE CHEGADA	TEMPO DE SERVIÇO	PRIORIDADE
P ₁	0	5	1
P ₂	1	2	1
P ₃	2	4	3
P ₄	3	3	5
P ₅	5	2	4

PROCESSO	TEMPO DE TÉRMINO	ATIVO	ESPERA
P ₁	5	5	0
P ₂	16	15	13
P ₃	14	12	8
P ₄	8	5	2
P ₅	10	5	3

$$T_t = 42 / 5 = 8.4$$

$$T_W = 26 / 5 = 5.2$$

PRIORIDADE COOPERATIVO

Calcule o tempo médio de execução para cada um dos processos abaixo e o tempo de espera, considerando o algoritmo por **Prioridade Cooperativo (PRIOp)**.

PROCESSO	TEMPO DE CHEGADA	TEMPO DE SERVIÇO	PRIORIDADE
t ₁	0	5	2
t ₂	0	2	3
t ₃	1	4	1
t ₄	3	1	4
t ₅	5	2	5

RESPOSTA:

1. tempo médio de execução (Tt, a média de tt(ti)).

$$T_t = \frac{t_t(t_1) + \dots + t_t(t_5)}{5} = \frac{10 + 2 + 13 + 1 + 2}{5} = \frac{28}{5} = 5,6s$$

$$T_w = \frac{t_w(t_1) + \dots + t_w(t_5)}{5} = \frac{5 + 0 + 9 + 0 + 0}{5} = \frac{14}{5} = 2,8s$$

EXERCÍCIO 1: PRIOp

Calcule o tempo médio de execução para cada um dos processos abaixo e o tempo de espera, considerando o algoritmo **PRIORIDADE COOPERATIVO (PRIOP)**:

PROCESSO	TEMPO DE CHEGADA	TEMPO DE SERVIÇO	PRIORIDADE
P ₁	0	5	3
P ₂	2	4	2
P ₃	2	3	1
P ₄	4	4	4
P ₅	4	1	5

PROCESSO	TEMPO DE TÉRMINO	ATIVO	ESPERA
P ₁	10	10	5
P ₂	14	12	8
P ₃	17	15	12
P ₄	9	5	1
P ₅	5	1	0

$$T_t = 43 / 5 = 8.6$$

$$T_W = 26 / 5 = 5.2$$

EXERCÍCIO 2: PRIOp

Calcule o tempo médio de execução para cada um dos processos abaixo e o tempo de espera, considerando o algoritmo **PRIORIDADE COOPERATIVO (PRIOP)**:

PROCESSO	TEMPO DE CHEGADA	TEMPO DE SERVIÇO	PRIORIDADE
P ₁	0	5	1
P ₂	1	2	1
P ₃	2	4	3
P ₄	3	3	5
P ₅	5	2	4

PROCESSO	TEMPO DE TÉRMINO	ATIVO	ESPERA
P ₁	16	16	11
P ₂	13	12	10
P ₃	11	9	5
P ₄	6	3	0
P ₅	8	3	1

$$T_t = 43 / 5 = 8.6$$

$$T_W = 27 / 5 = 5.4$$