

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 723 017 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 24.07.1996 Patentblatt 1996/30

(21) Anmeldenummer: 96100458.7

(22) Anmeldetag: 13.01.1996

(51) Int. Cl.⁶: **C12N 15/54**, C12N 9/10, C12Q 1/48, A01N 3/00, C12N 1/21, C12N 5/10

(84) Benannte Vertragsstaaten:
AT BE CH DE DK ES FR GB IT LI NL

(30) Priorität: 23.01.1995 DE 19501906

(71) Anmelder: BASF AKTIENGESELLSCHAFT 67056 Ludwigshafen (DE)

(72) Erfinder:

 Schmidt, Ralf-Michael, Dr. D-67434 Neustadt (DE)

Stitt, Marc, Prof. Dr.
 D-69221 Dossenheim (DE)

Sonnewald, Uwe, Dr.
 D-06467 Hoym (DE)

(54) Transketolase

(57) Protein mit Transketolase Aktivität, enthaltend eine Aminosäuresequenz, die eine Teilsequenz von mindestens 100 Aminosäuren aus SEQ ID NO 2 darstellt, sowie für dieses Protein kodierende Nukleinsäuren und seine Verwendung.

Beschreibung

5

15

20

*3*5

55

Die vorliegende Erfindung betrifft Proteine mit Transketolase Aktivität, ihre Verwendung in Testsystemen, sowie Nukleinsäuren, die für diese Proteine codieren.

Pflanzen sind in der Lage, unter Verwendung von Lichtenergie aus atmosphärischem Kohlendioxid organische Verbindungen unter Sauerstoffbildung aufzubauen. Dieser Vorgang wird als Photosynthese bezeichnet.

Es ist anzunehmen, daß die effiziente Bildung, Nutzung und Verteilung der Photosyntheseprodukte das Wachstum einer Pflanze stark beeinflussen.

Da Pflanzen auf eine funktionierende Photosynthese angewiesen sind und vergleichbare Reaktionen in tierischen Organismen nicht vorkommen, bietet sich der Photosyntheseapparat als ideales Ziel für den Einsatz von Herbiziden an.

Die komplexen Reaktionen, die zur Kohlendioxidfixierung führen unterteilt man in Licht- und Dunkelreaktion. Die Lichtreaktion dient der Bereitstellung von Energie in Form von ATP und von Reduktionsäquivalenten in Form von NADPH. In der Dunkelreaktion (reduktiver Pentosephosphatzyklus oder Calvin Zyklus) werden diese Verbindungen zur Synthese organischer Kohlenstoffverbindungen genutzt.

Einige der bekannten Herbizide (z.B. Dichlorphenylmethylharnstoff oder Paraquat) wirken durch eine Inhibierung der Lichtreaktion. Die Dunkelreaktion wird als Angriffspunkt für Herbizide nicht genutzt.

Die Enzymreaktionen des reduktiven Pentosephosphatzyklus werden in drei Abschnitte unterteilt:

- a) Carboxylierung
- b) Reduktion
- c) Regenerierung.

Bei der Carboxylierung reagiert Kohlendioxid mit dem Akzeptormolekül Ribulose-Bisphosphat (RuBP), wodurch zwei Moleküle 3-Phosphoglycerat

(3-PGA) gebildet werden. Anschließend wird 3-PGA nach Phosphorylierung zu Glycerinaldehyd-3-Phosphat (GAP) reduziert. In der Regenerationsphase wird das Akzeptormolekül RuBP aus dem entstandenen GAP resynthetisiert. Von sechs gebildeten Molekülen GAP kann ein Molekül für andere Stoffwechselwege eingesetzt werden.

Eine Vielzahl der am reduktiven Pentosephosphatzyklus beteiligten Enzyme stellen potentielle Angriffspunkte für Herbizide dar. Eine besondere Stellung nimmt allerdings die plastidäre Transketolase ein. Wie die Transaldolase katalysiert die Transketolase (E.C. 2.2.1.1.) zwei Reaktionen:

(1)

Fruktose-6-Phosphat + Glycerinaldehyd-3-Phosphat --> Erythrose-4-Phosphat + Xylulose-5-Phosphat

(2)

Sedoheptulose-7-Phosphat + Glycerinaldehyd-3-Phosphat --> Ribose-5-Phosphat + Xylulose-5-Phosphat

Die an den Reaktionen beteiligten Substrate und Produkte stellen Verknüpfungspunkte des reduktiven Pentosephosphatzykluses mit anderen Stoffwechselwegen dar. Exportierte Triosephosphate dienen im Zytoplasma als Substrate für Glykolyse und Gluconeogenese. Fruktose-6-Phosphat wird als Vorläufermolekül zur Herstellung von Stärke in den Plastiden genutzt. Erythrose-4-Phosphat ist ein Mittler zwischen Primär- und Sekundärstoffwechsel. Verknüpft mit Phosphoenolpyruvat mündet Erythrose-4-Phosphat in den Shikimat-Weg, der zur Synthese aromatischer Aminosäuren und
phenolischer Substanzen führt.

Ribose-5-Phosphat wird in unterschiedlichen Stoffwechselwegen als Substrat verwendet.

In pflanzlichen Geweben wurden zwei Transketolase-Isoformen beschrieben, die sich in ihrer subzellulären Kompartimentierung unterscheiden (Murphy and Walker, 1982, Planta 155, 316-320).

Die plastidäre Transketolase ist in grünen Geweben für mehr als 75% der Gesamtaktivität verantwortlich. Das aktive Enzym liegt als Homotetramer (Holoenzym) mit einer relativen Molekularmasse von 150 kDa vor. Als Cofaktoren benötigt die Transketolase Vitamin B1 (Thiaminpyrophosphat) und Magnesium. In Abwesenheit von Thiaminpyrophosphat oder in Anwesenheit von Mercaptoethanol zerfällt das Tetramer in zwei Dimere (Apoenzyme) mit einer relativen Molekularmasse von je 74 kDa. Holo- und Apoenzym sind katalytisch aktiv, wobei das Holoenzym eine wesentlich höhere Aktivität als das Apoenzym aufweist.

Gene, die für Transketolase kodieren, wurden bisher aus Saccharomyces cerevisiae (Flechter et al., Biochemistry 31, 1892-1896, 1993; Sundström et al., J. Biol. Chem. 268,24346-24352, 1993; Schaff-Gerstenschläger et al., Eur. J. Biochem. 217, 487-492, 1993), aus Hansenula polymorpha (Janowicz et al., Nucl. Acids Res. 13, 3043-3062, 1985), menschlichen Erythrozyten (Abedinia et al., Biochem. Biophys. Res. Commun. 183, 1159-1166, 1992; McCool et al., J. Biol. Chem. 268, 1397-1404, 1993), Rhodobacter sphaeroides (Chen et al., J. Biol. Chem. 266, 20447-20452, 1992)

und Escherichia coli (Sprenger, Biochem. Biophys. Acta 1216, 307-310, 1992; Tida et al., J. Bacteriol. 175, 5375-5383, 1993) isoliert und beschrieben. Gene pflanzlicher Transketolasen sind bisher nicht bekannt.

Aufgabe der vorliegenden Erfindung war es, eine pflanzliche Transketolase in reiner Form durch Klonierung des entsprechenden Gens zur Verfügung zu stellen.

Demgemäß wurde ein Protein mit Transketolase Aktivität, enthaltend die in SEQ ID NO 2 dargestellte Aminosäuresequenz, gefunden.

Die in SEQ ID NO 2 dargestellte Aminosäuresequenz beruht auf der Translation der in SEQ ID NO 1 dargestellten cDNA Sequenz.

Das in SEQ ID NO 2 dargestellte Protein ist ein sogenanntes Vorläuferprotein bestehend aus 743 Aminosäuren. Das reife Protein ist aus der Vorläuferform durch Abspalten des chloroplastidären Transitpeptides, das gemäß einer Computerananlyse aus den N-terminalen 77 Aminosäuren besteht, erhältlich.

Sowohl das Vorläuferprotein, als auch durch Substitution, Deletion oder Insertion von Aminosäuren davon abgeleitete Proteine, die noch über eine Transketolase-Aktivität verfügen, gehören zu den erfindungsgemäßen Proteinen.

Unter Substitution ist der Austausch einer oder mehrerer Aminosäuren durch eine oder mehrere andere Aminosäurer ren zu verstehen. Bevorzugt werden sog. konservative Austausche durchgeführt, bei denen die ersetzte Aminosäure eine ähnliche Eigenschaft hat wie die ursprüngliche Aminosäure, beispielsweise Austausch von Glu durch Asp, Val durch Ile, Ser durch Thr.

Deletion ist das Ersetzen einer Aminosäure durch eine direkte Bindung; bevorzugte Positionen für Deletionen sind die Termini des Polypeptides und die Verknüpfungen zwischen den einzelnen Proteindomänen.

Insertionen sind Einfügungen von Aminosäuren in die Polypeptidkette, wobei formal eine direkte Bindung durch eine oder mehrere Aminosäuren ersetzt wird.

Besonders bevorzugt sind Proteine, die durch N-terminale Verkürzungen um 20 bis 100 Aminosäuren aus SEQ ID NO 2 entstehen.

Ein weiterer Gegenstand der Erfindung sind Nukleinsäuren, die für die oben genannten Proteine kodieren. Geeignete Nukleinsäuresequenzen sind durch Rückübersetzung der Polypeptidsequenz gemäß dem genetischen Code
erhältlich. Bevorzugt werden dafür solche Codons verwendet, die entsprechend der Organismus spezifischen codon
usage häufig verwendet werden. Die codon usage läßt sich anhand von Computerauswertungen anderer, bekannter
Gene des betreffenden Organismus leicht ermitteln.

Soll die pflanzliche Transketolase beispielsweise in einem Bakterium exprimiert werden, so ist es häufig vorteilhaft, die codon usage des Bakteriums bei der Rückübersetzung zu verwenden.

Ein weiterer Gegenstand der Erfindung sind Vektoren, die die für die erfindungsgemäße Transketolase kodierenden Nukleinsäuren zusammen mit funktionellen Regulationssignalen enthalten.

Darunter sind beispielsweise Signale für Transkription und Translation wie Promotoren und Ribosomenbindungsstellen oder für Replikation oder Integration notwendige Sequenzen zu verstehen.

Die erfindungsgemäßen Proteine eignen sich besonders zur Identifizierung von herbiziden Wirkstoffen, insbesondere zur Auffindung von Transketolase spezifischen Hemmstoffen.

Dazu können die Proteine beispielsweise in einem Enzymtest eingesetzt werden, bei dem die Aktivität der Transketolase in An- und Abwesenheit des zu testenden Wirkstoffs ermittelt wird. Aus dem Vergleich der beiden Aktivitätsbestimmungen läßt sich eine qualitative und quantitative Aussage über das Hemmverhalten des zu testenden Wirkstoffes machen.

Mit Hilfe des erfindungsgemäßen Testsystems kann eine Vielzahl von chemischen Verbindungen schnell und einfach auf herbizide Eigenschaften überprüft werden.

Ein weiterer Gegenstand der Erfindung sind Herbizide, die mit einem oben beschriebenen Testsystem identifizierbar sind.

Die Erfindung besteht außerdem in einem Verfahren zur Herstellung von Herbiziden, die eine pflanzliche Transketolase inhibieren, das dadurch gekennzeichnet ist, daß man bekannte chemische Verbindungen in einem oben beschriebenen Testverfahren überprüft und solche mit inhibierender Wirkung mit üblichen Träger- und Hilfsstoffen als Herbizid formuliert.

Daß die Transketolase inhibierende Eigenschaft einer Substanz allein nicht ausreicht für die Eignung als Herbizid, sondern noch weitere Prüfungen durchzuführen sind, ist jedem Fachmann geläufig.

Das Verfahren gestattet es jedoch reproduzierbar aus einer großen Anzahl von Substanzen gezielt solche mit großer Wirkstärke auszuwählen, um mit diesen Substanzen anschließend weitere, dem Fachmann geläufige vertiefte Prüfungen durchzuführen.

Die Erfindung wird durch die folgenden Beispiele weiter veranschaulicht.

*5*5

Beispiele

5

10

20

25

30

35

50

55

A. Gentechnische Verfahren, die den Ausführungsbeispielen B zugrundeliegen:

1. Allgemeine Klonierungsverfahren

Klonierungsverfahren wie z.B. Restriktionsspaltungen, Agarose-Gelelektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrozellulose und Nylon Membranen, Verknüpfen von DNA-Fragmenten, Transformation von E. coli Zellen, Anzucht von Bakterien, Vermehrung von Phagen und Sequenzanalyse rekombinanter DNA wurden wie bei Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) beschrieben durchgeführt. Transformation und Anzucht von Pichia pastoris wurde entsprechend den Angaben der Vertreiberfirma (Invitrogen Corporation) durchgeführt. Die Transformation von Agrobacterium tumefaciens wurde entsprechend der Methode von Höfgen und Willmitzer (Nucl. Acid Res. (1988) 16, 9877) ausgeführt. Die Anzucht der Agrobakterien erfogte in YEB Medium (Vervliet et al. J. Gen. Virol. (1975) 26, 33).

2. Erzeugung von cDNA-Bibliotheken

Zur Herstellung von Blatt-spezifischen cDNA Bibliotheken wurde Gesamt-RNA aus Tabakblättern nach einer von Logemann et al. (Anal. Biochem. (1987) 163,21) beschriebenen Methode isoliert. Anschließend wurde die poly(A)-RNA über Oligo(dT)-Cellulose Type 7 (Pharmacia, Freiburg) nach Angaben des Herstellers gereinigt. Nach photometrischer Konzentrationsbestimmung wurden 5 µg der so erhaltenen RNA für die cDNA Synthese eingesetzt. Alle für die Herstellung der cDNA notwendigen Chemikalien und Enzyme wurden durch die Firma Stratagene (La Jolla CA 92037, USA) bezogen. Die angewandten Methoden wurden nach Angaben des Herstellers durchgeführt. Die Synthese des ersten und zweiten Stranges der cDNA wurde mit dem ZAP-cDNA Synthese Kit durchgeführt. Die erhaltenen doppelsträngigen cDNAs wurden anschließend mit EcoRI-Notl Adaptoren versehen und in einen EcoRI gespaltenen Lambda ZAPII Vektor kloniert. Nach in vitro Verpackung (Gigapack II Verpackungsextrakt) der rekombinanten Lambda DNA wurden XL-1 E. coli Zellen (Stratagene) transformiert. Durch Auszählen der gebildeten Plaques wurde der Titer der cDNA-Bibliotheken bestimmt.

3. Durchmusterung einer cDNA-Bibliothek mittels heterologer DNA-Sonden

2 x 10⁵ rekombinante Lambda Phagen (Lambda Zapll) einer blattspezifische cDNA-Bibliothek aus Tabak (Varietät Samsun NN) wurden auf Agarplatten ausplattiert. Die Phagen-DNA wurde mittels Standardverfahren (Sambrook et al. (1989); Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) auf Nylon-Membranen (Hybond N, Amersham Buchler) transferiert und durch Inkubation für 2 Stunden bei 80°C auf den Filtern fixiert. Als Hybridisierungssonden dienten DNA-Fragmente, die mit Hilfe eines "Multiprime DNA labelling systems" (Amersham Buchler) in Anwesenheit von α-³²P-dCTP (spezifische Aktivität 3000 Ci/mmol) nach Herstellerangaben radioaktiv markiert wurden. Hybridisierung der Membran erfolgte nach Prähybridisierung bei 42°C in PEG-Puffer (Amasino (1986) Anal. Biochem. 152, 304-307) für 12-16 Stunden. Anschließend wurden die Filter 3 x 20 Minuten in 2 x SSC, 0,1 % SDS bei 42°C gewaschen. Positiv hybridisierende Phagen wurden durch Autoradiographie sichtbar gemacht und durch Standardtechniken gereinigt.

40 4. Sequenzanalyse rekombinanter DNA

Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem automatischen Laserfluoreszenz-DNA-Sequenzierer (A.L.F.) der Firma Pharmacia unter Verwendung Fluoreszenz-markierter Oligonukleotide nach der Methode von Sanger (Sanger et al. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467).

5. Bakterienstämme und Hefestämme

E. coli (XL-1 Blue) Bakterien wurden von der Firma Stratagene bezogen. Der zur Pflanzentransformation eingesetzte Agrobacterium tumefaciens Stamm (C58Cl mit dem Plasmid pGV 3850kan) wurde von Debleare et al. (1985, Nucl. Acid Res. 13, 4777) beschrieben. Pichia pastoris Stamm GS115 wurde von der Firma Invitrogen Corporation (San Diego, CA 92121, USA) bezogen.

6. Tabaktransformation

Zur Transformation von Tabakpflanzen (Nicotiana tabacum L. cv. Samsun NN) wurden 10 ml einer unter Selektion gewachsenen Übernachtkultur von Agrobacterium tumefaciens abzentrifugiert, der Überstand verworfen, und die Bakterien im gleichen Volumen Antibiotika-freien Mediums resuspendiert. In einer sterilen Petrischale wurden Blattscheiben steriler Pflanzen (Durchmesser ca. 1 cm) in dieser Bakterienlösung gebadet. Anschließend wurden die Blattscheiben in Petrischalen auf MS-Medium (Murashige und Skoog, Physiol. Plant. (1962) 15,473) mit 2 % Saccharose und 0,8 % Bacto-Agar ausgelegt. Nach 2-tägiger Inkubation im Dunkeln bei 25°C wurden sie auf MS-Medium mit 100 mg/l Kanamycin, 500 mg/l Claforan, 1 mg/ml Benzylaminopurin (BAP), 0,2 mg/l Naphthylessigsäure (NAA), 1,6 % Glukose und 0,8 % Bacto-Agar übertragen und die Kultivierung (16 Stunden Licht/8 Stunden

Dunkelheit) fortgesetzt. Wachsende Sprosse wurden auf hormonfreies MS-Medium mit 2 % Saccharose, 250 mg/l Claforan und 0,8 % Bacto-Agar überführt.

7. Analyse von Gesamt-RNA aus pflanzlichen Geweben

Gesamt RNA aus pflanzlichen Geweben wurde wie bei Logemann et al. (Anal. Biochem. (1987) 163,21) beschrieben isoliert. Für die Analyse wurden jeweils 20-40 μg RNA in einem Formaldehyd-haltigen 1,5 %igen Agarosegel aufgetrennt. Nach elektrophoretischer Auftrennung der RNA Moleküle wurde die RNA mittels Kapillartransfer auf eine Nylon Membran übertragen. Der Nachweis spezifischer Transkripte wurde wie bei Amasino (Anal. Biochem. (1986) 152, 304) beschrieben durchgeführt. Die als Sonde eingesetzten cDNA-Fragmente wurden mit einem Random Primed DNA Labeling Kit (Boehringer, Mannheim) radioaktiv markiert.

8. PCR-Amplifikation von Nukleinsäuren

Die PCR-Amplifikation der Transketolase zur Expression des Enzyms in E. coli und Pichia wurde in einem DNA-Thermal Cycler der Firma Perkin Elmer durchgeführt. Die verwendeten Oligonukleotide sind in Abbildung 9 dargestellt. Die Reaktionsgemische enthielten 1 ng Template, 0,5 μM der entsprechenden Oligonukleotide, 0,25 mM Nukleotide (Pharmacia), Amplifikationspuffer (16 mM (NH₄)₂SO₄, 67 mM Tris-HCl (pH 8,8 bei 25°C), 0,01 % Tween 20, 7,5 mM MgCl₂) und 2,5 Einheiten der Tth DNA Polymerase (Biomaster, Crottorfer Str. 25, 51109 Köln). Die Amplifikationsbedingungen wurden wie folgt eingestellt:

20 Anlagerungstemperatur: 60°C Denaturierungstemperatur: 94°C Elongationstemperatur: 72°C

15

30

35

40

45

50

55

Anzahl der Zyklen: 30

9. Überexpression von Proteinen in E. coli

Zur Überexpression der Transketolase in E. coli wurden 2 ml einer bei 28°C angezogenen Übernachtkultur in 20 ml Wachstumsmedium (LB-Medium komplettiert mit 10 μg/ml Tetracyclin, 200 μg/ml Ampicillin, 1 mM Vitamin B1, 1 mM MgSO₄) überführt. Das Wachstum erfolgte bei 28°C unter Schütteln. Nach 3 Stunden wurde die Expression der Transketolase durch Zugabe von 2 mM IPTG induziert. Der Nachweis des produzierten Proteins wurde durch Auftrennung der Proteine in einem SDS-PAAG (Laemmli (1970) Nature 227, 680-685) mit anschließender Coomassie-Färbung der Proteine durchgeführt.

B. Ausführungsbeispiele

Klonierung der plastidären Transketolase

Aus einer blattspezifischen cDNA-Bibliothek aus Tabak (Varietät Samsun NN) wurde ein Klon, der für Transketolase kodiert, ausgewählt. Die DNA Sequenz ist in SEQ ID NO 1 dargestellt.

Der 2629 Basenpaar lange cDNA-Klon 21 enthält einen offenen Leseraster von 2229 Basen und kodiert für ein Protein mit 743 Aminosäuren. Analyse des Polypeptides unter Verwendung des Sequenzprogramms PC/Gene (Untermenü TRANSPEP) ergab, daß am N-Terminus des Proteins ein chloroplastidäres Transitpeptid von vermutlich 77 Aminosäuren vorhanden ist.

2. Vergleich der plastidären Transketolase aus Tabak mit bekannten Transketolase Proteinsequenzen

Homologievergleiche der abgeleiteten Aminosäuresequenz des Klons TK-23 (MacMolly Sequenzanalyse Programm von Macintosh) mit publizierten Transketolase-Sequenzen ergaben, daß im Bereich des vermutlich reifen Polypeptides (Aminosäure 78 bis 743) die höchsten Homologien zu Transketolasen aus Saccharomyces cervesiae bestehen (Abbildung 4). Die Sequenz des reifen Proteins (bestimmt durch Computervorhersage) ist zu 47,7 % bzw. 44,1 % identisch mit der Transketolase 1 bzw. 2 Sequenz aus Saccharomyces cervesiae. Geringere Sequenzhomologien wurden zu den übrigen Transketolasen gefunden. Keine Sequenzhomologie wurde für den Bereich des Transitpeptides ermittelt.

3. Expressionsanalyse der plastidären Transketolase

Expressionsanalysen einiger am Calvin Cyclus beteiltigter Enzyme (RUBISCO, FBPase) haben ergeben, daß die Akkumulation der entsprechenden Transkripte an grünes Gewebe und Licht gebunden ist. Zur Überprüfung der gewebespezifischen Expression der Transketolase in Tabakpflanzen wurde Gesamt-RNA aus Sinkblättern, Sourceblättern, Blütenknospen, Stengeln (Internodien, Nodien und Mark), Wurzeln und geöffneten Blüten wachsender Tabakpflanzen isoliert. Nach Auftrennung in Agarosegelen und Bindung der RNA auf Nylonmembranen wurde die Anwesenheit Transketolase spezifischer Transkripte durch Hybridisierung mit der radioaktiven TK-23 cDNA nachgewiesen. Wie in Abbildung 5 dargestellt, sind Transketolase-spezifische Transkripte in allen getesteten

Organen nachweisbar. Dieser Befund verdeutlicht, daß im Gegensatz zu anderen Enzymen des Calvin Cyclus, die Transketolase neben ihrer Funktion im Calvin Cyclus weitere Aufgaben im pflanzlichen Stoffwechsel erfüllt.

4. Antisenseinhibierung der Transketolase in transgenen Tabakpflanzen

5

20

*2*5

30

35

40

45

50

55

- Um transgene Tabakpflanzen mit verminderter Transketolaseaktivität zu erzeugen, wurden die cDNA Klone TK-26 und TK-28 in Gegensinnrichtung mit einem eine konstitutive Expression bewirkenden Promotor sowie einem pflanzlichen Terminationssignal versehen. Die Plasmide BinAR-anti-TK-26 und BinAR-anti-TK-28 bestehend aus den drei Fragmenten A, der jeweiligen cDNA (s. Abb. 6, TK-26 und TK-28) und C wurden durch Insertion der entsprechenden cDNA Sequenzen in den Expressionsvektor pBinAR (Abb. 7A) erzeugt.
- Das Fragment A beinhaltet den 35S CaMV Promoter. Es enthâlt ein Fragment, welches die Nukleotide 6909 bis 7437 des Cauliflower-Mosaik Virus (CaMV) umfaßt (Franck et al. (1980) Cell 21, 285). Es wurde als EcoRI-Kpnl Fragment aus dem Plasmid pDH51 (Pietrzak et al. (1986) Nucleic. Acid Res. 14, 5857) isoliert. Die TK-26 cDNA wurde aus dem pBluescript SK- (Abb. 6) als Xbal-Sall Fragment und die TK-28 cDNA als BamHI Fragment in Gegensinnrichtung in den pBinAR Vektor kloniert (Abb. 7B und C). Das Fragment C enthâlt das Polyadenylierungssignal des Gens 3 der T-DNA des Ti-Plasmids pTiACH5 (Gielen et al. (1984); EMBO J. 3, 835), Nukleotide 11749-11939, welches als Pvull-HindIII Fragment aus dem Plasmid pAGV 40 (Herrera-Estrella et al. (1983); Nature 303,209) isoliert worden ist und nach Addition von Sphl-Linkern an die Pvull-Schnittstelle zwischen die SpHI-HindIII Schnittstelle des Vektors kloniert worden war.
 - Die erhaltenen Plasmide wurden mit Hilfe des Agrobacteriumsystem in Tabak transformiert. Transformierte Tabakpflanzen wurden auf Antibiotika haltigem Medium angezogen und die erfolgreiche Inhibierung der Transketolase
 wurde durch Bestimmung der Transkriptmenge mittels Northern Experimenten ermittelt. Für jede Transformation
 (TK-26 und TK-28) wurden 100 unabhängige Transformanden untersucht. In Abbildung 8 ist das Ergebnis eines
 Northern-Experimentes dargestellt. In den meisten regenerierten Pflanzen konnte keine Reduktion der Transketolase mRNA nachgewiesen werde. Einige der Pflanzen zeigten allerdings eine starke Verminderung der Transketolase-spezifischen Transkripte (z.B. anti-TK-26 No. 26; Abb. 8). Die Reduktion der Transkriptmenge führte zu einer
 Unterdrückung des Pflanzenwachstums. Transfer der Pflanzen ins Gewächshaus führte zu einem Absterben der
 inhibierten Pflanzen.

5. Herstellung des Plasmides TK23-AC-pQE-9

Zur Etablierung eines molekularen Testsystems wurde die pflanzliche Transketolase in mikrobiellen Systemen überexprimiert.

Zur Expression der Transketolase in E. coli wurde die TK-23 Sequenz, die für das reife Polypeptid kodiert, unter Verwendung der Primer A und C (s. Abb. 9) amplifiziert und in den Vektor pGEM-T kloniert (Gentechnische Verfahren, Absatz 8). Das TK23-AC PCR-Amplifikationsprodukt wurde anschließend als Sall Fragment in die Sall-Schnittstelle des Vektors PQE-9 (DIAGEN GmbH, QLAGEN Inc.) kloniert (Abb. 10).

6. Herstellung des Plasmides TK23-AC-pPIC-9 und TK23-BC-pHIL-D2

Da eukaryontische Enzyme häufig nur unzureichend in bakteriellen Systemen exprimiert werden können, wurden zwei weitere Plasmidkonstruktionen durchgeführt, die eine Expression in Pichia pastoris (Stamm GS115; Firma Invitrogen Corporation San Diego, CA 92121, USA) ermöglichen.

Zur Sekretion des Transketolase Proteins wurde das Plasmid TK23-AC-pPIC-9 konstruiert. Zur Fusion des Transketolase Proteins mit einem Hefe Signalpeptid wurde ein Teil der TK-23 Sequenz, der für das reife Polypeptid kodiert, unter Verwendung der Primer A und C (s. Abb. 9) amplifiziert und in den Vektor pGEM-T kloniert (Gentechnische Verfahren, Absatz 8). Das TK23-AC PCR-Amplifikationsprodukt wurde anschließend als EcoRI-Fragment in die EcoRI-Schnittstelle des Vektors pPIC-9 des Pichia Expressions Kit (Invitrogen) kloniert (Abb. 11). Um eine intrazelluläre Akkumulation des Transketolase Enzyms zu gewährleisten wurde das Plasmid TK23-BC-pHIL-D2 hergestellt. Zur besseren Aufreinigung des Enzyms wurde ein 5'-PCR Primer (s. Abb. 9) zur Amplifikation der Transketolase verwendet, der ein Startkodon für die Translation enthält und für sechs Histidinreste kodiert. Nach PCR-Amplifikation der in Abbildung 9 angegebenen TK-23 Sequenz wurde das TK-23-BC-Produkt in den Vektor pGEM-T kloniert. Das TK23-BC PCR-Amplifikationsprodukt wurde anschließend als EcoRI-Fragment in die EcoRI-Schnittstelle des Vektors pHIL-D2 des Pichia Expressions Kit (Invitrogen) kloniert (Abb. 12).

7. Expression der pflanzlichen Transketolase in E. coli

Zur Überexpression der Transketolase in E. coli wurden 2 ml LB-Medium mit XL-1 E-coli Zellen beimpft, die das Plasmid TK23-AC-pQU-9 enthielten. Die Kulturen wurden über Nacht bei 28°C in Anwesenheit von Antibiotika und unter Schütteln angezogenen. Anschließend wurden die Übernachtkulturen in 20 ml Wachstumsmedium (LB-Medium komplettiert mit: 10 μg/ml Tetracyclin, 200 μg/ml Ampicillin, 1 mM Vitamin B1, 1mM MgSO₄) überführt. Das Wachstum erfolgte bei 28°C unter Schütteln. Nach 3 Stunden wurde die Expression der Transketolase durch Zugabe von 2 mM IPTG induziert. Der Nachweis des produzierten Proteins wurde durch Auftrennung der Proteine

in einem SDS-PAAG (Laemmli (1970) Nature 227, 680-685) mit anschließender Coomassie-Färbung der Proteine durchgeführt. Als Kontrollen dienten Kulturen, die entweder nicht mit IPTG induziert wurden, oder Kulturen, die die Transketolase in Gegensinnorientierung enthielten. Das Ergebnis eines Induktions-Experimentes ist in Abbildung 13 dargestellt. Ein Protein der entsprechenden Größe akkumulierte in Bakterienkulturen, die mit IPTG induziert wurden und das Plasmid TK23-AC-pQE-9 enthielten. Die Akkumulation beginnt eine Stunde nach Induktion. In den Kontrollen (ohne IPTG bzw. Transketolase in Gegensinnorientierung) ist kein vergleichbares Protein identifizierbar.

Abbildungen

5

20

25

30

35

40

45

50

*5*5

- 1. Reduktiver Pentosephosphatzyklus
 - 2. Verknüpfung des Pentosephosphatzyklus mit anderen Stoffwechselwegen
 - 3. Nukleotidsequenz der plastidären Transketolase aus Tabak
 - 4. Aminosäurevergleich der plastidären Transketolase mit Transketolase 1 und 2 aus Hefe
 - 5. Nachweis der Transketolase mRNA in unterschiedlichen Tabakgeweben
- 6. Schematische Darstellung der Transketolase cDNA-Klone
 - 7. Schematische Darstellung der Plasmide BinAR-TK-26-anti und BinAR-TK-28-anu
 - 8. Northernanalyse transgener Tabakpflanzen
 - 9. Strategie und Oligonukleotide zur PCR-Amplifikation der plastidären Transketolase
 - 10. Schematische Darstellung des Plasmides TK23-AC-pQE-9
 - 11. Schematische Darstellung des Plasmides TK23-AC-pPIC-9
 - 12. Schematische Darstellung des Plasmides TK23-BC-pHIL-D2
 - 13. Überexpression der pflanzlichen Transketolase in E. coli

SEQUENZPROTOKOLL

5	(1) ALLG	EMEINE INFORMATION:
	(i)	ANMELDER:
10	(A)	NAME: BASF Aktiengesellschaft
	(B)	STRASSE: Carl-Bosch-Strasse 38
15	(C)	ORT: Ludwigshafen
	(E)	LAND: Bundesrepublik Deutschland
20	(F)	POSTLEITZAHL: D-67056
	(G)	TELEPHON: 0621/6048526
25	(H)	TELEFAX: 0621/6043123
	(1)	TELEX: 1762175170
	(ii) (iii)	ANMELDETITEL: Transketolase aus Pflanzen ANZAHL DER SEQUENZEN: 2
30	(iv)	COMPUTER-LESBARE FORM: (A) DATENTRÄGER: Floppy disk
		(B) COMPUTER: IBM PC compatible (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
35		(D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPA)
	(2) INFOR (i)	MATION ZU SEQ ID NO: 1: SEQUENZ CHARAKTERISTIKA:
40		(A) LÄNGE: 2629 Basenpaare (B) ART: Nukleinsäure
		(C) STRANGFORM: Einzel (D) TOPOLOGIE: linear
45	(ii) (iii)	ART DES MOLEKÜLS: cDNS HYPOTHETISCH: NEIN
	(vi)	URSPRÜNGLICHE HERKUNFT: (A) ORGANISMUS: Nicotiana
50	(ix)	MERKMALE: (A) NAME/SCHLÜSSEL: CDS
	lvil	(B) LAGE: 602289
	(xi)	SEQUENZBESCHREIBUNG: SEQ ID NO: 1:

	CTC	CTCT	TCA	CTCT	CTTT	TC T	CTTT	GAGA	C AA	AACA'	TCAA	ACA	CCTT	ACT	GGTA	AAGCC	59
	ATG	GCG	TCT	TCT	TCT	TCT	CTC	ACT	CTC	TCT	CAA	GCT	ATC	CTC	TCT	CGT	107
5	Met	Ala	Ser	Ser	Ser	Ser	Leu	Thr	Leu	Ser	Gln	Ala	Ile	Leu	Ser	Arg	
	1				5					10					15	_	
	TCT	GTC	CCT	CGC	CAT	GGC	TCT	GCC	TCT	TCT	TCT	CAA	CTT	TCC	CCT	TCT	155
	Ser	Val	Pro	Arg	His	Gly	Ser	Ala	Ser	Ser	Ser	Gln	Leu	Ser	Pro	Ser	
*0				20					25					30			
10	TCT	CTC	ACT	TTT	TCC	GGC	CTT	AAA	TCC	AAT	CCC	AAT	ATC	ACC	ACC	TCC	203
	Ser	Leu	Thr	Phe	Ser	Gly	Leu	Lys	Ser	Asn	Pro	Asn	Ile	Thr	Thr	Ser	
			35					40					45				
	CGC	CGC	CGT	ACT	CCT	TCC	TCC	GCC	GCC	GCC	GCC	GCC	GTC	GTA	AGG	TCA	251
15	Arg	Arg	Arg	Thr	Pro	Ser	Ser	Ala	Ala	Ala	Ala	Ala	Val	Val	Arg	Ser	
		50					55					60					
	CCG	GCG	ATT	CGT	GCC	TCA	GCT	GCA	ACC	GAA	ACC	ATA	GAG	AAA	ACT	GAG	299
	Pro	Ala	Ile	Arg	Ala	Ser	Ala	Ala	Thr	Glu	Thr	Ile	Glu	Lys	Thr	Glu	
••	65					70					75					80	
20	ACT	GCG	CTT	GTT	GAC	AAA	TCT	GTA	AAC	ACG	ATT	CGA	TTT	TTG	GCT	ATT	347
	Thr	Ala	Leu	Val	Asp	Lys	Ser	Val	Asn	Thr	Ile	Arg	Phe	Leu	Ala	Ile	
					85					90					95		
	GAT	GCT	GTT	GAA	AGG	CAA	ATT	CGG	GTC	ACC	CGG	TTT	GCC	ATG	GGT	TGT	395
25	Asp	Ala	Val	Glu	Arg	Gln	Ile	Arg	Val	Thr	Arg	Phe	Ala	Met	Gly	Cys	
				100					105			_		110			
	GCT	CCG	ATG	GGT	CAT	ATA	TTG	TAC	GAT	GAG	GTT	ATG	AGG	TAT	AAC	CCG	443
	Ala	Pro	Met	Gly	His	Ile	Leu	Tyr	Asp	Glu	Val	Met	Arg	Tyr	Asn	Pro	
			115					120					125				
30	AAA	AAC	CCG	TAT	TGG	TTT	AAT	CGG	GAT	CGG	TTT	GTT	CTA	TCA	GCT	GGA	491
	Lys	Asn	Pro	Tyr	Trp	Phe	Asn	Arg	Asp	Arg	Phe	Val	Leu	Ser	Ala	Gly	
		130					135					140					
	CAT	GGT	TGT	ATG	CTT	CAG	TAT	GCT	TTG	CTT	CAT	CTA	GCT	GGC	TAT	GAT	539
35	His	Gly	Cys	Met	Leu	Gln	Tyr	Ala	Leu	Leu	His	Leu	Ala	Gly	Tyr	Asp	
	145					150					155					160	
	GCT	GTC	AGG	GAA	GAG	GAC	TTG	AAG	AGC	TTC	CGT	CAG	TGG	GGA	ACC	AAA	587
	Ala	Val	Arg	Glu	Glu	Asp	Leu	Lys	Ser	Phe	Arg	Gln	Trp	Gly	Thr	Lys	
					165					170					175		
40	ACC	CCT	GGA	CAC	CCT	GAA	AAC	TTT	GAG	ACA	CCT	GGT	GTT	GAA	GTC	ACC	635
	Thr	Pro	Gly	His	Pro	Glu	Asn	Phe	Glu	Thr	Pro	Gly	Val	Glu	Val	Thr	
				180					185				•	190			
	ACC	GGG	CCT	CTG	GGA	CAA	GGT	ATT	GCC	AAC	GCC	GTT	GGC	TTG	GCT	CTT	683
45	Thr	Gly	Pro	Leu	Gly	Gln	Gly	Ile	Ala	Asn	Ala	Val	Gly	Leu	Ala	Leu	
			195					200					205				
	GTG	GAG	AAA	CAC	TTG	GCT	GCT	CGT	TTC	AAT	AAG	CCT	GAC	GCT	GAG	ATT	731
	Val	Glu	Lys	His	Leu	Ala	Ala	Arg	Phe	Asn	Lys	Pro	Asp	Ala	Glu	Ile	
		210					215					220					
50	GTA	GAC	CAC	TAC	ACA	TAT	GT T	ATT	CTC	GGT	GAT	GGT	TGC	CAG	ATG	GAG	779
	Val	Asp	His	Tyr	Thr	Tyr	Val	Ile	Leu	Gly	Asp	Gly	Cys	Gln	Met	Glu	
	225					230					235					240	

	GGT	ATT	TCA	CAA	GAA	GCT	TGT	TCC	CTT	GCT	GGA	CAC	TGG	GGA	СТТ	GGA	827
	Gly	Ile	Ser	Gln	Glu	Ala	Cys	Ser	Leu	Ala	Gly	His	Trp	Gly	Leu	Gly	
5					245					250					255		
									AAC								875
	Lys	Leu	Ile	Ala	Phe	Tyr	Asp	Asp	Asn	His	Ile	Ser	Ile	Asp	Gly	Asp	
				260					265					270			
	ACA	GAA	ATC	GCT	TTC	ACT	GAG	GAT	GTT	GGT	GCC	CGT	TTT	GAG	GCT	CTT	923
10	Thr	Glu	Ile	Ala	Phe	Thr	Glu	Asp	Val	Gly	Ala	Arg	Phe	Glu	Ala	Leu	
			275					280					285				
	GGG	TGG	CAC	GTA	ATC	TGG	GTG	AAG	AAC	GGT	AAC	ACT	GGT	TAT	GAT	GAG	971
	Gly	Trp	His	Val	Ile	Trp	Val	Lys	Asn	Gly	Asn	Thr	Gly	Tyr	Asp	Glu	
15		290					295					300					
									AAA								1019
		Arg	Ala	Ala	Ile		Glu	Ala	Lys	Thr	Val	Thr	Asp	Lys	Pro	Thr	
	305		_			310					315					320	
									GGT								1067
20	Met	Ile	Lys	Val		Thr	Thr	Ile	Gly		Gly	Ser	Pro	Asn	Lys	Ala	
					325			_		330					335		
									GCA								1115
	Așn	Ser	Tyr		Val	His	Gly	Ser	Ala	Leu	Gly	Ala	Lys	Glu	Val	Glu	
25				340					345					350			
									CCT								1163
	Ala	Thr		Ser	Asn	Leu	Gly	_	Pro	Tyr	Glu	Pro		His	Val	Pro	
	~~~		355					360					365	_			
30									CGT								1211
30	GIU		val	гуѕ	Ser	HIS	_	Ser	Arg	His	Val		Glu	Gly	Ala	Ala	
	C/M/m	370	com	000	maa		375					380					
									TTT								1259
	385	GIU	AIG	GTÅ	пр		Thr	гÅг	Phe	Ата		Tyr	GIU	гÀз	гля	_	
35		ርእር	(2) 3	CCT	CCA	390	CTC	3 3 B	mcc.	3 mm	395	» Cm	c c m	~~~	Om 3	400	
									TCC								1307
	FIO	GIU	GIU	NIG	405	GIU	nea	ъγς	Ser		Thr	Inr	стА	GIU		PIO	
	ርርጥ	ccc	ሞርር	GNC		ССТ	Cmm	CCT	ACC	410	202	CCM	C 7 7	3 CM	415	ccc	2255
40									Thr								1355
	nia	GLY	11p	420	пуз	VIQ	Ten	PIO	425	ığı	THE	PLO	GTU		PIO	Ата	
	САТ	CCC	ACC		244	ርሞር	ጥርር	CAA	CAA	אמר	CTC	ጉ አ ጥ	CCT	430	ccc	7 7 C	1402
									Gln								1403
	Пор		435	y	71511	bcu	Jer	440	9111	นวแ	neu	ASII	445	пеп	ита	гда	
45	GTT	СТТ		CCT	ጥጥር	Стт	GGT		AGT	ርር <b>ጥ</b>	ርልሞ	Стт		<b>ም</b> ሶ አ	ጥር እ	AAC	1451
									Ser								1431
		450		- J	~ A1C	⊒ÇU	455	OL Y	Jer	UT Œ	uah	460	чта	⊃€T	OGT	นจแ	
	ልጥር		ርጥር	ልጥር	מממ	ልጥር		CCT	GAC	ጥጥረ	ר א כ		מממ	200	CCX	CAC	1400
50																	1499
	465	~ + + I.L.	₽₽U	47 <del>6</del> C	ny s	470	£ 116	атА	Asp	EHE		n y s	nsn	THE	ETO		
	407					7/0					475					480	

	GAC	CGT	א א	מידים י	AGG	ተጥጥ	CCT	י ביתיו	י ככת	'	Can				000	ATA	
	Gli	ı Aro	Agn	Len	Ara	Dha	Glu	. 17a l	y = ~	Clu	UA1	. GG1	ATG	Cla	GCC	Ile	1547
	02.	9		. <u> </u>	485		GLY	Val	ALY			сту	met	. Сту			
5	ጥርባ	ייממ י	ርርጥ	יים מ			CAC	7.00	CCM	490					495		
																GCT	1595
	Oy.	, ,,,,,,,	GLY	500		neu	ura	ser			ьеп	тте	Pro			Ala	
	ልሮባ	י ישיתיי	diana.			200	C3.C		505		00-			510			
10																TCA	1643
10	1111	PHE			Pne	Inr	Asp			Arg	GIY	Ala			Ile	Ser	
	ccc	י וחיותי	515				~~~	520					525				
																ATT	1691
	WTG			GIU	ATA	GTÅ			Tyr	Val	Met			Asp	Ser	Ile	
15	C C T	530					535					540					
																CCA	1739
		Leu	GLY	GIu	Asp		Pro	Thr	His	Gln			Glu	His	Leu	Pro	
	545					550					555					560	
		TTC															1787
20	Ser	Phe	Arg	Ala		Pro	Asn	Ile	Leu		Phe	Arg	Pro	Ala	Asp	Gly	
		~~~			565					570					575		
		GAG															1835
	ьys	Glu	Thr		GIA	Ala	Tyr	Lys		Ala	Val	Leu	Lys		Lys	Thr	
25	007	max		580					585					590			
		TCA															1883
	Pro	Ser		ren	Ala	Leu	Ser		Gln	Lys	Leu	Pro		Leu	Ala	Gly	
	3 CM	m c m	595	633	001			600					605				
		TCT															1931
30	Ser	Ser	rre	GIU	GTÀ	Ата		Lys	Arg	Gly	Tyr		Leu	Ser	Asp	Asn	
	mem	610	000			~~~	615					620					
		TCT															1979
		Ser	GTĀ	ASII	тÀг		Asp	vaı	TIE	Leu		GTÅ	Thr	Gly	Ser		
35	625		N IDIO	CCM	CMC	630	C C M				635					640	
		GAA															2027
	теп	Glu	TIE	ATA		гÀ2	Ата	Ala	Asp		Leu	Arg	Lys	Glu		Lys	
	CCA	CMC	202	c m a	645	m cc				650					655		
40		GTG														· ·	2075
40	Ala	Val	Arg		vai	Ser	Pne	vaı		Trp	Glu	Leu	Phe		Glu	Gln	
	ጥሮእ	ccc	CAC	660	220	C.	> Cm	c m o	665					670			
		GCC															2123
	Ser	Ala		Tyr	гуз	GLU	Ser		ren	Pro	Ser	Ser		Thr	Ala	Arg	
45	omm.	3.00	675	~~~	000	000		680					685				
		AGC															2171
	val	Ser	TTE	GIU	ATG	GIÀ		Thr	Phe	GTA	Trp		rys	Tyr	Val	Gly	
	mos.	690	000		000		695					700					
50		AAG															2219
50		Lys	стЛ	гÀЗ	wTg		СТĀ	тте	Asp			GŢĀ	Ala	Ser	Ala		
	705					710					715					720	

				ATA Ile												GTA Val	2267
5		027	_,		725	-1 -		-,-		730					735		
3	GCT	GCA	GCT	AAA		GTT	TCT	T A	GCT	TAT	r AC	rtac(CCTT	GGT'	rgc T	GGT	2319
-				Lys													
				740													
10																CAATAC	
10																FCATCT	
																AGGATA	
																TTTGTA	
	ATT:	TTAT'	TTG (GTCG	AGTG	AT A	CCAA	GATC:	r CAT	TTTT(CAAT	TGG	AAAA	AAA A	LAAA	AAAAA	
15	AAA	LAAAA	AAA														2629
	(2)	INF	ORMA	TION	ZU	SEQ	ID N	0: 2	:								
		(i)	SEC	UENZ	CHA	RAKT	ERIS	TIKA	\:								
			(A)	LÄN	IGE:	743	Amin	osäu	ren								
	•		(B)	ART	: An	inos	äure	:									
20			(D)	TOP	OLOG	IE:	line	ar							•		
		(ii) ART	DES	MOL	EKÜL	S: P	rote	in								
		(xi) SEC	UEN 2	BESC	HREI	BUNG	: SE	Q ID	NO:	2:						
	Mot	בות	Sar	Ser	Sar	Sar	T.eu	Th r	T.e.u	Ser	Gln	Ala	Tle	T.e.u	Ser	Ara	
25	Met	HIG	ser	261	_	Ser	neu	1111	Deu	10	GIII	AIG	116	Den	15	nrg	
		11-1	D	3	5	C1	C	21-	C 0 =		Sar	Cla	Ton	Sar		202	
	Ser	vaı	PIO	Arg	HIS	GTÅ	Ser	HIG		261	ser	GIII	ren		FLU	Ser	
	C	T a	mh	20	Co-	C1	T 011	T	25	Non.	Dro	Acn	Tlo	30 The	Th-	So	
20	Ser	Leu		Phe	ser	сту	теп		ser	ASII	PIO	ASII	_	THE	1111	Ser	
30	3	3	35	m ъ	D	C	Co-	40	31 -	71-	21-	810	45	17-1	N-~	Sor	
	Arg	_	Arg	Thr	Pro	Ser		MIG	MIG	MIG	NIG		Val	Val	ALG	ser	
	D., .	50	- 1 -	3	31-	C	55	8 1 ~	<i>m</i> b	C1	mh =	60	C1	T	mb~	C1	
			тте	Arg	MIG	_	NIG	ATG	THE	GIU		116	Giu	пåз	1111		
35	65		T	**- 7	>	70	C	17a 1	200	mb -	75	n	Dho	Ton	n l a	80 Tlo	
	Thr	ATA	Leu	Val	_	гÀг	Ser	vaı	ASII		116	ALG	Pne	Leu	_	116	
	_			0.1	85	61 -	71.	3	11-1	90	3	D.b	33-	M -4	95	Corp	
	Asp	Ala	Val	Glu	Arg	GIN	TTE	Arg		Thr	Arg	Pne	Ala		GTA	Cys	
		_		100	e 1		-		105	61		M = 4-	3	110	3	D	
40	Ala	Pro		Gly	His	He	Leu		Asp	GIU	vaı	met		Tyr	Asn	Pro	
	_		115	_	_	•	_	120		_	_,		125	_		~ 3	
	Lys		Pro	Tyr	Trp	Phe			Asp	Arg	Phe		Leu	Ser	Ala	GIA	
	_	130			_		135		_	_		140			_	_	
45	His	Gly	Cys	Met	Leu		_	Ala	Leu	Leu		Leu	Ala	Gly	Tyr		
	145		-			150					155					160	
	Ala	Val	Arg	Glu		_	Leu	Lys	Ser		Arg	Gln	Trp	Gly		Lys	
					165					170					175		
	Thr	Pro	Gly	His	Pro	Glu	Asn	Phe	Glu	Thr	Pro	Gly	Val			Thr	
50				180					185					190			
	Thr	Gly	Pro	Leu	Gly	Gln	Gly	Ile	Ala	Asn	Ala	Val	Gly	Leu	Ala	Leu	
			195					200					205				

	Val	Glu 210		His	Leu	Ala	Ala 215		Phe	Asn	Lys	220		Ala	Glu	Ile
5	Val 225		His	Tyr	Thr	Tyr 230		Ile	Leu	Gly	Asp 235		Cys	Gln	Met	Glu
			Ser	Gln	Glu			Sor	Lou	λla			T	C1	.	240 Gly
	017	110	001	0111	245		Cys	Jei	Deu	250		11.72	ırp	, ста	255	-
	Lys	Leu	Ile	Ala	Phe	Tyr	Asp	Asp	Asn			Ser	Ile	Asp		Asp
10	•			260		•	- 4		265					270	_	nsp
	Thr	Glu	Ile	Ala	Phe	Thr	Glu	Asp	Val	Gly	Ala	Arq	Phe	_		Leu
			275					280		_			285			
	Gly	Trp	His	Val	Ile	Trp	Val	Lys	Asn	Gly	Asn	Thr	Gly	Tyr	Asp	Glu
15		290					295					300		_	_	
10	Ile	Arg	Ala	Ala	Ile	Lys	Glu	Ala	Lys	Thr	Val	Thr	Asp	Lys	Pro	Thr
	305					310					315					320
	Met	Ile	ГÀЗ	Val	Thr	Thr	Thr	Ile	Gly	Phe	Gly	Ser	Pro	Asn	Lys	Ala
					325					330					335	
20	Asn	Ser	Tyr		Val	His	Gly	Ser	Ala	Leu	Gly	Ala	Lys	Glu	Val	Glu
			_	340					345					350		
	Ala	Thr		Ser	Asn	Leu	Gly		Pro	Tyr	Glu	Pro	Phe	His	Val	Pro
	01		355	_	_	•		360					365			
25	GIU		vaı	гÀ2	Ser	His		Ser	Arg	His	Val		Glu	Gly	Ala	Ala
	T 0.11	370	B 1 -	C1			375	_				380		_		
	385	GIU	мта	Gly	Trp		Thr	Lys	Phe	Ala		Tyr	Glu	Lys	Lys	_
		C1.11	Cl.	አነኋ	. ה ו א	390	T	T	C	71 -	395	m\.	0.1	63	_	400
30	110	GIU	GIU	Ala	405	GIU	rea	гЛг	ser		Thr	Thr	GIY	GIU		Pro
50	Ala	Glv	Trn	Glu	_	Δla	T.Au	Dro	ም ስ ፦	410	mb =	Dwo	C1	C	415	
		Q-1	110	420	пуз	nia	neu	FIO	425	TÄT	Int	PIO	GIU	3er	PIO	ATA
	Asp	Ala	Thr	Arg	Asn	Len	Ser	Gln		Aen	Lou	λορ	λla		71 2	Tuo
			435	9		202	001	440	U 111	ASII	Deu	H\$II	445	Den	ALG	тйя
35	Val	Leu		Gly	Phe.	Leu	Glv		Ser	Ala	Asp	Leu		Ser	Ser	Aen
		450		•			455	U			···op	460		J (1	061	ASII
	Met	Thr	Leu	Met	Lys	Met	Phe	Glv	Asp	Phe	Gln		Asn	Thr	Pro	Glu
	465				-	470		•	•		475	-,-				480
40	Glu	Arg	Asn	Leu	Arg	Phe	Gly	Val	Arg	Glu	His	Gly	Met	Glv	Ala	_
					485		_			490		-		•	495	
	Cys	Asn	Gly	Asn	Ala	Leu	His	Ser	Pro	Gly	Leu	Ile	Pro	Tyr	Cys	Ala
				500					505	_				510	-	
45	Thr	Phe	Phe	Val	Phe '	Thr	Asp	Tyr	Met	Arg	Gly	Ala	Met	Arg	Ile	Ser
			515					520					525			
	Ala	Leu	Ser	Glu	Ala	Gly	Val	Ile	Tyr	Val	Met	Thr	His	Asp	Ser	Ile
		530					535					540				
	Gly	Leu	Gly	Glu	Asp	Gly	Pro	Thr	His	Gln	Pro	Ile	Glu	His	Leu	Pro
50	545					550					555					560
	Ser	Phe	Arg			Pro	Asn	Ile	Leu	Met	Phe	Arg	Pro	Ala	Asp	Gly
					565					570					575	

	Lys	Glu	Thr	Ala 580	Gly	Ala	Tyr	Lys	Val 585	Ala	Val	Leu	Lys	Arg 590	Lys	Thr
5	Pro	Ser	Ile 595	Leu	Ala	Leu	Ser	Arg 600	Gln	Lys	Leu	Pro	Gln 605	Leu	Ala	Gly
	Ser	Ser 610	Ile	Glu	Gly	Ala	Ala 615	Lys	Arg	Gly	Tyr	Ile 620	Leu	Ser	Asp	Asn
10	Ser 625	Ser	Gly	Asn	Lys	Pro 630	Asp	Val	Ile	Leu	Ile 635	Gly	Thr	Gly	Ser	Glu 640
	Leu	Glu	Ile	Ala	Val 645	Lys	Ala	Ala	Asp	Glu 650	Leu	Arg	Lys	Glu	Gly 655	Lys
15	Ala	Val	Arg	Val 660	Val	Ser	Phe	Val	Cys 665	Trp	Glu	Leu	Phe	Glu 670	Glu	Gln
	Ser	Ala	Asp 675	Tyr	Lys	Glu	Ser	Val 680	Leu	Pro	Ser	Ser	Val 685	Thr	Ala	Arg
20	Val	Ser 690	Ile	Glu	Ala	Gly	Ser 695	Thr	Phe	Gly	Trp	Glu 700	Lys	Tyr	Val	Gly
	Ser 705	Lys	Gly	Lys	Ala	Ile 710	Gly	Ile	Asp	Arg	Trp 715	Gly	Ala	Ser	Ala	Pro 720
25	Ala	Gly	Lys	Ile	Tyr 725	Lys	Glu	Tyr	Gly	Ile 730	Thr	Ala	Glu	Ala	Val 735	Val
	Ala	Ala	Ala	Lys 740	Gln	Val	Ser									

30

Patentansprüche

- 1. Protein mit Transketolase Aktivität, enthaltend eine Aminosäuresequenz, die eine Teilsequenz von mindestens 100 Aminosäuren aus SEQ ID NO 2 darstellt.
- Protein nach Anspruch 1, dadurch gekennzeichnet, daß es als Aminosäuresequenz die Teilsequenz 78-743 aus
 SEQ ID NO 2 enthält.
 - 3. Protein nach Anspruch 2, dadurch gekennzeichnet, daß es als Aminosäuresequenz die in SEQ ID NO 2 dargestellte Sequenz enthält.
- 45 4. Nukleinsäure, codierend für ein Protein gemäß einem der Ansprüche 1-3.
 - 5. Nukleinsäure nach Anspruch 4, dadurch gekennzeichnet, daß sie aus der in SEQ ID NO 1 dargestellten Sequenz besteht.
- 50 6. Vektoren, enthaltend eine Nukleinsäure gemäß Anspruch 4 oder 5 zusammen mit funktionellen Regulationssignalen.
 - 7. Verwendung eines Proteins gemäß Anspruch 1-3 zur Identifizierung von herbiziden Wirkstoffen.
- Verwendung nach Anspruch 7, dadurch gekennzeichnet,daß die Identifizierung mittels eines in vitro Testsystems erfolgt.
 - 9. Verwendung nach Anspruch 8, dadurch gekennzeichnet, daß als Testsystem ein Enzymhemmtest eingesetzt wird.

- 10. Testsystem zur Identifizierung von Transketolase-Inhibitoren, dadurch gekennzeichnet, daß man die potentiellen Inhibitoren mit einem Protein gemäß Anspruch 1-3 inkubiert und anschließend die Transketolase Aktivität bestimmt.
- 5 11. Herbizide Wirkstoffe, identifizierbar mittels eines Testsystems gemäß Anspruch 10.

12. Verfahren zur Herstellung von Herbiziden, die eine pflanzliche Transketolase inhibieren, dadurch gekennzeichnet, daß man bekanntechemische Verbindungen in einem Testverfahren gemäß Anspruch 10 überprüft und solche mit inhibierender Wirkung mit üblichen Träger- und Hilfsstoffen als Herbizid formuliert.

Abbildung 1

Abbildung 2

```
1 CTCCTCTTCA CTCTCTTTTC TCTTTGAGAC AAAACATCAA ACACCTTACT
                                                              50
  51 GGTAAAGCCA TGGCGTCTTC TTCTTCTCTC ACTCTCTCTC AAGCTATCCT
                                                             100
 101 CTCTCGTTCT GTCCCTCGCC ATGGCTCTGC CTCTTCTTCT CAACTTTCCC
                                                             150
 151 CTTCTTCTCT CACTTTTTCC GGCCTTAAAT CCAATCCCAA TATCACCACC
                                                             200
 201 TCCCGCCGCC GTACTCCTTC CTCCGCCGCC GCCGCCGCCG TCGTAAGGTC
                                                             250
 251 ACCGCCGATT CGTGCCTCAG CTGCAACCGA AACCATAGAG AAAACTGAGA
                                                             300
 301 CTGCGCTTGT TGACAAATCT GTAAACACGA TTCGATTTTT GGCTATTGAT
                                                             350
 351 GCTGTTGAAA GGCAAATTCG GGTCACCCGG TTTGCCATGG GTTGTGCTCC
                                                             400
 401 GATGGGTCAT ATATTGTACG ATGAGGTTAT GAGGTATAAC CCGAAAAACC
                                                             450
 451 CGTATTGGTT TAATCGGGAT CGGTTTGTTC TATCAGCTGG ACATGGTTGT
                                                             500
 501 ATGCTTCAGT ATGCTTTGCT TCATCTAGCT GGCTATGATG CTGTCAGGGA
                                                             550
 551 AGAGGACTIG AAGAGCTICC GTCAGTGGGG AAGCAAAACC CCTGGACACC
                                                             600
 601 CTGAAAACTT TGAGACACCT GGTGTTGAAG TCACCACCGG GCCTCTGGGA
                                                             650
 651 CAAGGTATTG CCAACGCCGT TGGCTTGGCT CTTGTGGAGA AACACTTGGC
                                                             700
 701 TGCTCGTTTC AATAAGCCTG ACGCTGAGAT TGTAGACCAC TACACATATG
                                                             750
 751 TTATTCTCGG TGATGGTTGC CAGATGGAGG GTATTTCACA AGAAGCTTGT
                                                             800
 801 TCCCTTGCTG GACACTGGGG ACTTGGAAAG CTGATTGCTT TCTATGATGA
                                                             850
 851 CAACCACATC TCAATTGATG GTGACACAGA AATCGCTTTC ACTGAGGATG
                                                             900
 901 TTGGTGCCCG TTTTGAGGCT CTTGGGTGGC ACGTAATCTG GGTGAAGAAC
                                                             950
951 GGTAACACTG GTTATGATGA GATTCGTGCT GCTATTAAGG AAGCAAAAAC 1000
1001 TGTCACAGAC AAACCCACTA TGATCAAGGT GACTACAACC ATTGGTTTTG 1050
1051 GCTCGCCCAA CAAGGCAAAC AGTTACAGTG TACATGGAAG TGCACTTGGA 1100
1101 GCTAAGGAAG TAGAGGCCAC CAGGAGTAAC TTGGGATGGC CTTATGAGCC 1150
1151 TTTCCATGTG CCTGAAGATG TCAAGAGCCA TTGGAGTCGT CATGTTCCCG 1200
1201 AGGGTGCTGC TCTTGAAGCT GGGTGGAATA CCAAGTTTGC TGAATATGAG 1250
1251 AAGAAGTACC CAGAGGAAGC TGCAGAACTC AAATCCATTA CTACTGGTGA 1300
1301 ACTACCTGCT GGCTGGGAGA AAGCTCTTCC TACCTACACA CCTGAAAGTC 1350
1351 CAGCGGATGC CACCAGAAAC CTGTCCCAAC AAAACCTGAA TGCTCTTGCC 1400
1401 AAGGTTCTTC CTGGTTTCCT TGGTGGTAGT GCTGATCTTG CCTCATCAAA 1450
1451 CATGACCCTC ATGAAAATGT TTGGTGACTT CCAAAAGAAC ACCCCAGAGG 1500
1501 AGCGTAATCT AAGGTTTGGT GTTCGTGAAC ATGGTATGGG AGCCATATGT 1550
1551 AATGGTAATG CTCTACACAG CCCTGGCTTG ATTCCCTACT GTGCTACTTT 1600
1601 CTTTGTGTTC ACCGACTACA TGAGAGGAGC TATGAGAATT TCAGCCTTGT 1650
1651 CTGAGGCTGG AGTTATTTAT GTTATGACCC ACGATTCAAT TGGTCTAGGA 1700
1701 GAAGATGGGC CTACCCATCA ACCCATTGAG CACTTGGCAA GTTTCCGTGC 1750
1751 AATGCCCAAC ATTCTGATGT TCCGTCCAGC AGATGGCAAG GAGACAGCGG 1800
1801 GAGCTTACAA GGTGGCTGTC CTCAAGAGGA AGACACCATC AATCCTTGCC 1850
1851 CTCTCTCGGC AAAAGTTGCC ACAACTTGCT GGAAGTTCTA TTGAAGGAGC 1900
1901 AGCAAAGGGT GGCTACATTT TATCAGACAA TTCTTCTGGC AACAAACCTG 1950
1951 ATGTCATTTT GATTGGTACT GGCTCAGAGT TAGAAATTGC TGTCAAGGCT 2000
2001 GCTGATGAAC TCAGGAAAGA AGGAAAAGCA GTGAGAGTTG TTTCCTTTGT 2050
2051 TTGTTGGGAG CTTTTTGAAG AACAATCAGC CGACTACAAG GAAAGTGTCC 2100
2101 TTCCATCATC TGTTACAGCT AGAGTTAGCA TTGAGGCCGG ATCCACATTT 2150
2151 GGGTGGGAGA AATATGTCGG ATCAAAGGGG AAGGCCATCG GAATTGACAG 2200
2201 ATGGGGTGCC AGTGCCCCTG CTGGAAAAAT ATACAAGGAG TACGGAATTA 2250
2251 CAGCAGAGGC TGTTGTAGCT GCAGCTAAAC AAGTTTCTTA GGCTTTATTA 2300
2301 CTTACCCTTG GTTGCTGGTG TCTACCAAAT TTGTTTTCAT TTTGAAACTG 2350
2351 AGGTTGGAGA TAACGGTGGA AACCAATACC AAACGGACTC GGCAGTTCAC 2400
2401 TGTTGCCTGG TATTTTCAAT AAAAACTATT TCTTCATCTG TCCTTTGTTT 2450
2451 TCTTCAGTTT TAGTAGCGGA GCGGCCAAAA TGAATCCAAG ATGAGGATAG 2500
2501 AAATAGGATT ATGGATGCTC CTGACCATGT ACACTTAAAA CATATCTGTG 2550
2551 AGTTTTGTAA TITTATTTGG TCGAGTGATA CCAAGATCTC ATTTTCAATT 2600
2601 GGAAAAAAA AAAAAAAAA AAAAAAAA
                                                            2629
```

Aminosäurevergleich der plastidären Transketolase aus Tabak mit Transketolase Isoenzymen aus Saccharomyces cervesiae

TK-23	1					MASSSSL	TLSQAILSRS	17
TK-23	18	VPRHGSASSS	QLSPSSLTFS	GLKSNPNITT	SRRRTPSSAA	AAAVVRSPAI	RASAATETIE	77
TK-23	78	KTETALVDKS	-VNTIRFLAI	DAVERQIRVT	RFAMGCAPMG	HILYDEVMRY	NPKNPYWFNR	136
TKL1	1	M.QFTDIL	A.SIV	.T.SKANSGH	PG.PLGMAPA	AHVLWSQ M	TD.I	60
TKL2	1	MAQFSDIL	A.S.L.L.SV	.QSAQSGH	PG.PLGLAPV	AHVIFKQL.C	N.EH.I	60
TK-23	137	DRFVLSAGHG	CMLQYALLHL	AGYDAVREED	LKSFRQWGSK	TPGHPENFET	PGVEVTTGPL	196
TKL1	61	NA	VA.L.SM	TL-SI	QLR	L		118
TKL2	61	NS	.A.L.SM	LY-SI	.RQVN.R	HS	AI.S	118
TK-23	197	_				COMEGISQEA		256
TKL1	119	SM	.MAQANT	YGFTLS.	NF	.LQs	SLK	178
TKL2	119	SM	. IAQANFT	Y.EDGFP.S.	SFA.V	.LQV.S.T	sLQ	178
TK-23	257					NGNTGYDEIR		316
TKL1	179					EDLAG.A		238
TKL2	179	NTS.S	K.SYS	.DLK.Y.	.YE.ME.D	K.DDDMES.S	S.LEKLSK	238
TK-23	317	DKPTMIKVTT	TIGFGSPNKA	NSYSVHGSAL	GAKEVEATRS	NLGW-PYEPF	HVPEDVKSHW	375
TKL1		LM					_	297
TKL2	239	I	LQQG	TA-G	K.DD.KQLKK	RW.FD.NKS.	VQE.YDYY	297
TK-23	376					LPAGWEKALP		434
TKL1	298					NSK		357
TKL2	298	KKT.V.PGQK	LNEE.DRE	KT.FKG	KQRRLN.E	EKH	KFDDD.L.	356
TK-23	435	TRNLSQQNLN	ALAKVLPGFL	GGSADLASSN	MITLMEMFGDF	QKNTPEERN-	LRFGVREHGM	493
TKL1	358					.PPSSGSG.Y		417
TKL2	357	KTV.T	NMVQVELI	TP	L.RWEGAV	.PPITQLG.Y	AGRYI.YGVR	416
TK-23	494					LSEAGVIYVM		549
TKL1	418					GHPW.A		477
TKL2	417	EHGM	ISAFGANYK.	.GGLN.VS	.AAV.LA.	GNPW.A	•••••	475
TK-23	550					RKTPSILALS		609
TKL1	478					KHI		537
TKL2	476	T .	.HLIHV	-WN.T	SAYS.IKS	GRVV	NEH.	534
TK-23	610					ELR-KEGKAV		668
TKL1	538					T.AA.NI		593
TKL2	535	.F.K.L	VIH.VEN	IVS	.VS.SIDK	K.YDTKKIKA	LPDFYT	591
TK-23	669					AIGIDRWGAS		727
TKL1		.DK.PLE.RL						652
TKL2	592	.DREE.RF	DG.PIM	F.VLA.SS	.GAHQSFG	LDEFGRS.KG	PEIY.LFDFT	650
TK-23	728	GITAEAVVAA	AKQVS					743
TKL1	653	PEGVAERAQK						680
TKL2	651	ADGVASRAEK	TINYYKGKQL	LSPMGRAF				678

Gewebespezifische Expression der plastidären Transketolase in Tabakpflanzen

Legende: Spur 1, Sink-Blatt; Spur 2, Source-Blatt; Spur 3, Blütenknospe; Spur 4, Internodien; Spur 5, Nodien; Spur 6, Cortex; Spur 7, Wurzel; Spur 8, geöffnete Blüte

Aufbau der Transketolase cDNA-enthaltenden Plasmide

1-MCS: Linke Polylinkersequenz

SacI-----SacII-----NotI------SpeI-----BamHI---SmaI-----PriI-----EcoRI------NotI
5'-GAGCTCCACCGCGGTGGCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGCGGCCGC-3'

r-MCS: Rechte Polylinkersequenz

Sall
NotI-----EcoRI----EcoRV-HindIII-------HincII----XhoI------KpnI

5'- GCGGCCGCGAATTCGATATCAAGCTTATCGATACCGTCGACCTCGAGGGGGGGCCCGGTACC -3'

Konstruktion pflanzlicher Expressionskassetten zur Antisense-Inhibierung der plastidären Transketolase

Abbildung 7

Antisense Inhibierung der plastidären Transketolase in transgenen Tabakpflanzen: RNA-Analyse der Transformanden in Gewebekultur

Legende: Nummern, Bezeichnung der einzelnen unabhängigen Transformanden; con, untransformierte Kontrolle; A und B, Antisense-Konstrukt TK-28; C und D, Antisense-Konstrukt TK-26

PCR-Amplifikation der plastidären Transketolase

PCR-Primer:

38mer A: 5'- AA GTC GAC GAA TTC AAA ATC GAG ACT GCG CTT GTT GAC -3'
Sall EcoRI TK reifes Protein

53mer

B: 5'- AA GAA TTC ATG CAT CAT CAT CAT CAT AAA ATC GAG ACT GCG CTT GTT GAC -3'
EcoRJ Met 6 x His TK reifes Protein

C: 5'- TT GTC GAC GAA TTC CTA AGA AAC TTG TTT AGC TGC AGC -3'
Sall EcoRl Stop

38mer

Abbildung 10

Abbildung 11

Abbildung 12

Expression der plastidären Transketolase in E. coli Zellen

Bakterienkultur Kontrolle TK-Antisense TK-Sense IPTG

Abbildung 13