Лабораторная работа №4

Модель гармонических колебаний

Гаглоев Олег Мелорович.

4 марта 2023

Российский университет дружбы народов, Москва, Россия

Информация

Докладчик

- Гаглоев Олег Мелорович
- студент уч. группы НПИбд-01-20
- Российский университет дружбы народов
- · 1032201347@pfur.ru
- https://github.com/SimpleOG?tab=repositories

Вводная часть

Актуальность

• Математика всегда полезна для ума

Объект и предмет исследования

- Модель гармонических колебаний
- Языки для моделирования:
 - · Julia
 - OpenModelica

Цели и задачи

- Построить фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для трех случаев:
 - Колебания гармонического осциллятора без затуханий и без действий внешней силы
 - Колебания гармонического осциллятора с затуханием и без действий внешней силы
 - Колебания гармонического осциллятора с затуханием и под действием внешней силы
- Выполнить задачу на заданном интервале

Материалы и методы

- Языки для моделирования:
 - · Julia
 - · OpenModelica

Выполнение работы

$$\ddot{x}(t) + a\dot{x}(t) + bx = F(t)$$

$$y = \frac{dx}{dt} = \dot{x}(t)$$

$$\frac{d^2x}{dt^2} = \frac{dy}{dt}$$

$$\frac{dy}{dt} + ay(t) + bx(t) = 0$$

$$\begin{cases} \frac{dx}{dt} = y \\ \frac{dy}{dt} = -ay - bx \end{cases}$$

Условие модели №1

• Колебания гармонического осциллятора без затуханий и без действий внешней силы

$$\ddot{x} + 21x = 0$$

Теория модели №1

Общий вид первого случая: $\ddot{x}+wx=0$, где $w=\omega_0^2=21$.

Тогда система ОДУ первого порядка для решения задачи:

$$\begin{cases} \dot{x} = y \\ \dot{y} = -21x \end{cases}$$

Условие модели №2

• Колебания гармонического осциллятора с затуханием и без действий внешней силы

$$\ddot{x} + \dot{2}.2x + 2.3x = 0$$

Теория модели №2

Общий вид второго случая: $\ddot{x}+gy+wx=0$, где $g=2.2\gamma=1$ и $w=\omega_0^2=2.3$.

Тогда система ОДУ первого порядка для решения задачи:

$$\begin{cases} \dot{x} = y \\ \dot{y} = -2.2y - 2.3x \end{cases}$$

Условие модели №3

· Колебания гармонического осциллятора с затуханием и под действием внешней силы $\ddot{x}+\dot{2}.4x+2.5x=0.2\sin(2.6t)$

Теория модели №3

Общий вид третьего случая: $\ddot{x}+gy+wx=F(t)$, где $g=2\gamma=2.4$, $w=\omega_0^2=2.5$ и $F(t)=0.2\sin(2.6t)$.

Тогда система ОДУ первого порядка для решения задачи:

$$\begin{cases} \dot{x} = y \\ \dot{y} = 0.2\sin(2.6t) - 2.4y - 2.5x \end{cases}$$

Код на Julia

```
| coting Offerent (12) systems
```

```
| white Stiffworthing of the content of the content
```

Код на OpenModelica

```
i model Labod_case2
constant heal std=1,7
co
```

Графики Julia - случай 1

Графики OpenModelica - случай 1

Графики Julia - случай 2

Графики OpenModelica - случай 2

Графики Julia - случай 3

Графики OpenModelica - случай 3

Результаты работы

Результаты работы

- Мы построили фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для трех случаев:
 - Колебания гармонического осциллятора без затуханий и без действий внешней силы
 - Колебания гармонического осциллятора с затуханием и без действий внешней силы
 - Колебания гармонического осциллятора с затуханием и под действием внешней силы
- Выполнили задачу на заданном интервале

Вывод

Я создал модель гармонический колебаний по средствам языков Julia и OpenModelica.