

Dostępna pamięć: 256MB

Dijkstra Dijkstra

W pewnym składającym się ze skrzyżowań połączonych jednokierunkowymi drogami mieście Edsgar i Antoni Dijkstra uciekało z więzienia do portu. Rzecz jasna więzienie znajdowało się przy skrzyżowaniu o indeksie 1, natomiast port przy skrzyżowaniu o indeksie n. Dla ostrożności Antoni Dijkstra ucieka dopiero, gdy Edsgar Dijkstra dotrze do portu.

Ponieważ mieszkańcy miasta alarmują policję widząc należącą do Edsgara Dijkstry pasiastą koszulę z logo więzienia, Antoni Dijkstra musi usiekać używając innych ulic niż Edsgar (skrzyżowania mogą się powtarzać, ulice nie).

Po jakim najkrótszym czasie Antoni Dijkstra dotrze do portu?

Wejście

W pierwszej linii wejścia znajdują się dwie liczby n i m oznaczające odpowiednio liczbę skrzyżowań i ulic w mieście. W kolejnych m liniach znajdują się po 3 liczby całkowite a_i,b_i i c_i $(1\leqslant a_i,b_i\leqslant n,\ 1\leqslant c_i\leqslant 10^9)$ oznaczające, że i-ta ulica prowadzi ze skrzyżowania a do skrzyżowania b, a przebiegnięcie nią zabiera każdemu Dijkstrze c_i jednostek czasu. Między każdą parą skrzyżowań znajduje się co najwyżej jedna droga w każdą stronę.

Wyjście

Na wyjście wypisz jedną liczbę oznaczającą czas, po jakim Antoni Dijkstra dotrze do portu lub -1 jeżeli ucieczka Edsgara i Antoniego Dijkstry nie jest możliwa.

Przykłady

Wejście	Wyjście
5 7	33
1 2 5	
2 3 5	
3 5 5	
1 4 10	
4 5 10	
2 4 1	
1 3 12	

Wejście	Wyjście	
5 5	-1	
1 2 10		
1 3 10		
2 4 10		
3 4 10		
4 5 10		

Ocenianie

Podzadanie	Ograniczenia	Punkty
1	$1 \leqslant n \leqslant 10, 1 \leqslant m \leqslant 100$	10
2	$1 \leqslant n \leqslant 500, \ 1 \leqslant m \leqslant 2000$	40
3	$1 \leqslant n \leqslant 100000, \ 1 \leqslant m \leqslant 200000$	50