Vighnesh Iyer

March 8, 2019

1 Amplifier Noise

For the circuit below calculate the transconductance g_m that minimizes the minimum detectable signal (when I_{in} equals to input-referred current noise) as a function of γ , ω_T , and C_s . In the plot of MDS vs g_m , comment briefly on why there is a minimum and how the slope relates to g_m . Consider C_{qs} and ignore C_{qd} .

I think the answer is just that, to first order, the MDS is independent of g_m ; this is because $\omega_T = \frac{g_m}{C_s}$ and ω_T is a process and bias constant. Therefore any increase in C_s would also necessitate a proportional increase in g_m . Notice that the output noise caused by a current noise at the input is $\overline{i_s^2} \left(\frac{\omega_T}{\omega}\right)^2$ which is a constant!

The solution doesn't make sense. Firstly the 2 expressions given for $\overline{i_{out}^2}$ aren't equal; they are off by a factor of 4.

But that shouldn't change the optimal g_m anyways. Indeed if you differentiate and set to 0 the expression in the solution, the solution $g_{m,opt} = C_s \omega_T$ is what comes out, but that just equals g_m again! How is it legitimate to differentiate the expression in the solution wrt g_m if ω_T itself can be written in terms of g_m ?

2 Amplifier Design

(a) What is the total noise at the output of the common-source-common-drain cascade shown below? Ignore flicker noise, r_o , and capacitor except those drawn in the diagram. You should provide your answer in terms of kT, C_1 , C_2 , γ , A_{v1} , A_{v2} , ω_{p1} , ω_{p2} . $A_{v1,v2}$ and $\omega_{p1,p2}$ are the low-frequency voltage gains and dominant poles of the two stages.

Converted to voltage by
$$R_{out}$$

$$\overline{v_{n,o}^2} = 4kT \left(g_{m2}\gamma + \frac{1}{R_2}\right) \cdot \left(R_2 || \frac{1}{g_{m2}}\right)^2 \cdot \int_0^\infty \left| \frac{1}{1 + s/\omega_{p2}} \right|^2 df + Current noise from M_2 and R_2
Shaped by output pole
$$4kT \left(g_{m1}\gamma + \frac{1}{R_1}\right) \cdot R_1^2 \int_0^\infty \left| \frac{1}{1 + s/\omega_{p1}} \right|^2 df \cdot A_{v2}^2 \cdot \int_0^\infty \left| \frac{1}{1 + s/\omega_{p2}} \right|^2 df$$
Current noise from M_1 and R_1

$$= 4kT \left(g_{m2}\gamma + \frac{1}{R_2}\right) \left(\frac{R_2}{1 + R_2 g_{m2}}\right)^2 \frac{\omega_{p2}}{4} + 4kT \left(g_{m1}\gamma + \frac{1}{R_1}\right) R_1^2 A_{v2}^2 \frac{\omega_{p1}\omega_{p2}}{16}$$$$

Sub $R_1 = \frac{1}{\omega_{p1}C_1}$ and R_2 from solving $\omega_{p2} = \frac{1}{(R_2||1/g_{m2})C_2}$. Just some painful algebra.

(b) We have a fixed power budget for the two stages of amplifier and we would like to minimize the total noise at the output. To simplify the analysis, we can assume the V^* 's and GBW of the two stages are identical, $R_1C_1 = R_2C_2$, and $g_{m1}R_1, g_{m2}R_2 \gg 1$. What portion of power would you allocate to the M_1 in order to minimize the total noise at the output? (Hint: In order to maintain fixed GBW, the power consumption of each stage is linearly proportional to its load capacitance)

With the simplifying assumptions:

$$A_{v1} = -g_{m1}R_1$$

$$A_{v2} = 1$$

$$\omega_{p1} = \frac{1}{R_1C_1}$$

$$\omega_{p2} = \frac{g_{m2}}{C_2} = \frac{2I_{d2}}{V^*C_2}$$

Setting GBW equal:

$$A_{v1}\omega_{p1} = A_{v2}\omega_{p2}$$
$$-\frac{g_{m1}}{C_1} = \frac{g_{m2}}{C_2}$$

This proves the hint which is that power is proportional to input capacitance for equal GBW.

I substituted the values above to the noise equation, and then performed the substitution $g_{m1} = I_{d1}$ and $g_{m2} = KI_{d1}$. After differentiating wrt I_{d1} , setting to zero, and solving for K, I get something on the order of:

$$K = \frac{\sqrt{1/I_{d1}}}{I_{d1}}$$

3 Filter Noise

You are given an active RC low pass filter with noisy resistors and noisy op-amp shown below.

(a) Assume the op-amp has infinite DC gain and infinite GBW (ω_u). Calculate v_o/v_i and total output noise. What issue did you find?

$$\begin{split} \frac{v_o}{v_i} &= \frac{R||C}{R_s} = \frac{\frac{R}{1+sRC}}{R_s} = \frac{R}{R_s} \frac{1}{1+sRC} \\ \overline{v_{n,out,R_s}^2} &= \int_0^\infty \overline{v_{n,R_s}^2} \left(\frac{v_o}{v_i}\right)^2 df \\ &= 4kTR_s \left(\frac{R}{R_s}\right)^2 \int_0^\infty \left|\frac{1}{1+sRC}\right|^2 df \\ &= 4kTR_s \left(\frac{R}{R_s}\right)^2 \frac{1}{4RC} \\ \overline{v_{n,out,R}^2} &= \int_0^\infty \overline{i_{n,R}^2} (R||C)^2 \\ &= 4kT \frac{1}{R} \int_0^\infty \left|\frac{R}{1+sRC}\right|^2 df = 4kT \frac{1}{R} R \frac{1}{4RC} = \frac{kT}{RC} \\ \overline{v_{n,out,amp}^2} &= \overline{v_{n,amp}^2} \int_0^\infty \left|1 + \frac{R}{R_s} \frac{1}{1+sRC}\right|^2 df = \infty \end{split}$$

The amplifier noise is infinite at the output assuming $GBW = \infty$.

(b) Assume the op-amp has infinite DC gain and finite GBW (i.e. You can model the op-amp gain $A(s) = -\omega_u/s$ where $\omega_u \gg 1/RC$). Calculate v_o/v_i and total output noise. How does the noise relate to ω_u ?

Let V_x be the node at the negative terminal of the op-amp. Then these equations can be written and we can solve for $\frac{v_o}{v_i}$.

$$\begin{split} V_x &= V_o - iZ \\ V_o &= \frac{V_x \omega_u}{s} \\ V_x - V_i &= R_s i_1 \\ Z &= \frac{1}{1 + sRC} \\ \frac{v_o}{v_i} &= \frac{R\omega_u}{-CRR_s \omega_u s + CRR_s s^2 + Rs - R_s \omega_u + R_s s} \end{split}$$

To perform noise analysis with feedback, cut the loop and find the noise at the amplifier input:

$$\begin{split} \left(\frac{v_o}{v_i}\right)_{cut} &= \frac{R||C}{R_s + (R||C)} A(s) \\ v_{in,n,R_s} &= v_{n,Rs} \\ v_{out,n,R} &= \frac{R_s||C}{R + (R_s||C)} v_{n,R} A(s) \\ v_{in,n,R} &= \frac{v_{out,n,R}}{(v_o/v_i)_{cut}} \\ v_{in,n,amp} &= \frac{v_{n,amp} A(s)}{(v_o/v_i)_{cut}} \end{split}$$