

$$\frac{d\psi}{dt} = \frac{d\psi}{d\theta} \frac{d\theta}{dt} = \frac{d\psi}{d\theta} \omega = \frac{d\psi}{d\theta} \frac{1}{\mu r} \quad 0 < \theta < \pi$$

■ Carina Maria Viespescu ■ Lucian Tuțescu ■ Florentin Smarandache ■

$$\frac{d\psi}{dt} = \left(\frac{1}{r} \right) \dot{\theta} \quad \Rightarrow \quad \frac{d\psi}{dt} = \left(\frac{1}{r} \right) \dot{\theta} + \frac{d\psi}{d\theta} \cdot \sum \frac{d}{dt} \left(\frac{1}{r} \right)$$

150+1 PROBLEME (și soluțiile lor)

150+1 PROBLEMS (and their solutions)

Ediție bilingvă română – engleză

Bilingual Romanian – English Edition

$$-\omega^2 GM_1 r_2 + \omega^2 \frac{M_1}{r} \frac{d\psi}{dr} - \omega^2$$

$$f \cdot \frac{\omega_0}{\omega} = \left(\frac{1}{r} \right)^2 \quad \text{Nu. (2xT)_0} \quad \text{dR}_0 = 0$$

$$T_0 = (2\pi T)_0 = \sqrt{GM_1/r_0^3} \quad M_1 \theta_0 = \theta_0 \pi^{1/2} = 0$$

$$\frac{d}{dt} \sin \theta = 0 \quad F_{\theta} = -G \quad M_1 \cdot C_0 \quad z = \frac{C_0}{\pi} \quad x = 0$$

$$\omega_0 (\text{const.}) \quad \dot{\theta} = \omega_0 R_0 \cos(\omega_0 t + \phi) \quad \ddot{\theta} = -\omega_0^2 R_0 \cos(\omega_0 t + \phi) \quad E = \frac{M_1 e^2}{(x - R_0/c^2)^{1/2}} \quad E = M_1 e^2 \cdot \frac{1}{2}$$

$$\ddot{x} + \omega_0^2 x = 0 \rightarrow x_0 = \left(\frac{C_0}{\pi} \right)^2 \quad \omega_0 R_0 \cos \phi$$

$$E(\rho, t) \quad x = R_0 \cos(\omega_0 t + \phi) = R_0 \cos(\omega_0 t) \quad E = p^2 c^2 + M^2 c^4 \quad E = (p^2 c^2 + M^2 c^4)^{1/2}$$

$$K = \frac{1}{2} M^2 c^2 + \frac{1}{2} M \left[\omega_0 R_0 \cos(\omega_0 t + \phi) \right]^2 \quad = M c^2 \left[1 + \left(\frac{R_0}{M^2 c^2} \right)^2 \right]^{1/2} \quad \sum E =$$

$$D = \frac{\int k dt}{t} = \frac{1}{t} M \omega_0 R_0^2 \int \frac{\cos^2(\omega_0 t + \phi)}{\omega_0} dt$$

$$\Delta t = \Delta \tau = \left(1 - \frac{v^2}{c^2} \right)^{1/2} \Delta t \quad \epsilon = \frac{1}{1 - v^2/c^2}$$

$$E_0 = E + \frac{1}{2} \epsilon = \frac{1}{2} \epsilon$$

$$\frac{\Delta p_x}{\Delta t} = \left(1 - \frac{v^2}{c^2} \right)^{1/2} \frac{\Delta p_x}{\Delta t} = \left(1 - \frac{v^2}{c^2} \right)^{1/2} \frac{\Delta p_x}{\Delta \tau} \quad \frac{\partial p_x}{\partial t} = \frac{\partial p_x}{\partial \tau}$$

$$\frac{dp_x}{dt} = \left(1 - \frac{v^2}{c^2} \right)^{1/2} \frac{dp_x}{dr}, \quad \frac{dp_x}{dr} = \left(\frac{1}{c^2} - \frac{1}{r^2} \right)^{1/2} \frac{dp_x}{dr}$$

$$V = \frac{p_x}{r} + v E/c^2 \quad \Delta p_x = \frac{\Delta p_x + \Delta E/c^2}{\left(1 - \frac{v^2}{c^2} \right)^{1/2}}$$

Global Knowledge

■ Carina Maria Viespescu ■ Lucian Tuțescu ■ Florentin Smarandache ■

150+1 PROBLEME (și soluțiile lor)
150+1 PROBLEMS (and their solutions)

Global Knowledge
Publishing House
848 Brickell Ave. Ste. 950
Miami, Florida 33131, United States
<https://egk.ccgcon.us>

Lectori:

Prof. dr. ing. Luige Vlăduțeanu
Institutul de Mecanică al Solidelor
Academia Română
București, România

Ovidiu Ilie Șandru
Universitatea "Politehnica"
București, România

Ion Pătrașcu
Profesor
Colegiul Național "Frații Buzești"
Craiova, România

ISBN 978-1-59973-768-3

9 781599 737683 >

- Carina Maria Viespescu ■
- Lucian Tuțescu ■
- Florentin Smarandache ■

150+1 PROBLEME (și soluțiile lor)

150+1 PROBLEMS (and their solutions)

(ediție bilingvă română – engleză)

150+1 PROBLEME (și soluțiile lor)

CUVÂNT ÎNAINTE

Cartea se adresează elevilor de gimnaziu și liceu, profesorilor și celor pasionați de matematică, conținând 150+1 probleme, urmate de soluții, pentru a fi mai ușor savurate de cititor.

Ultima problemă (150+1) foarte interesantă lasă loc de comentarii și generalizări.

Lucrarea este o colaborare dintre o elevă multiplu medaliată la Olimpiada Națională de Matematică a României (Carina Maria Viespescu, elevă în clasa a X-a la Liceul Internațional de Informatică din București), un profesor de la Colegiul Național Frații Buzești din Cravioa și prof Dr. Emerit Florentin Smarandache de la University of New Mexico.

Câteva probleme sunt propuse de colegi, iar numele și afilierea lor este precizată în notele de subsol.

Autorii

Problema 1¹

Se consideră numărul

$$A = \frac{(1895 \cdot 1896 \cdot \dots \cdot 2020)^4}{125}.$$

- a) Determinați ultimele 125 de cifre ale numărului A.
- b) Determinați ultima cifră a numărului

$$B = \left[\frac{A}{10^{125}} \right],$$

unde notația $[\cdot]$ reprezintă partea întreagă.

Soluție

a) Notând cu $v_p(n)$ exponentul factorului prim p în descompunerea numărului natural nenul n în produs de puteri de numere prime, avem:

$$v_p(n!) = \left[\frac{n}{p} \right] + \left[\frac{n}{p^2} \right] + \left[\frac{n}{p^3} \right] + \dots, \quad (1)$$

suma din membrul drept având un număr finit de termeni nenuli, întrucât pentru orice $n \in \mathbb{N}^*$ există $k \in \mathbb{N}$ astfel încât $p^k \leq n < p^{k+1}$.

Fie $C = 1895 \cdot 1896 \cdot \dots \cdot 2020 = \frac{2020!}{1894!}$. Folosind formula

$$(1), obținem v_5(C) = v_5(2020!) - v_5(1894!) = 32 \text{ și} \\ v_2(C) = v_2(2020!) - v_2(1894!) = 126.$$

Deducem că $v_5(A) = 4v_5(C) - 3 = 125$, respectiv

$$v_2(A) = 4v_2(C) = 504.$$

Ca urmare, A se divide cu 10^{125} , deci ultimele 125 de cifre ale lui A sunt egale cu 0.

b) Din calculele precedente, $C = 2^{126} \cdot 5^{32} \cdot k$, iar $B = 2^{379} \cdot k^4$, unde k este un număr natural impar care nu se divide cu 5. Întrucât ultima cifră a lui k este 1, 3, 7 sau 9, rezultă că ultima cifră a lui k^4 este 1. Așadar, ultima cifră a lui B este ultima cifră a lui $2^{379} = (2^4)^{94} \cdot 2^3$, adică 8.

¹ Problemă dedicată a 100 de ani de existență a „Gazetei Matematice”.

Problema 2

a) Arătați că există 140 numere naturale distințe L_1, L_2, \dots, L_{140} astfel încât

$$\frac{L_1}{L_2} + \frac{L_2}{L_3} + \dots + \frac{L_{139}}{L_{140}} + \frac{L_{140}}{L_1}$$

să fie număr natural.

b) Arătați că există 1882 numere naturale distințe $F_1, F_2, \dots, F_{1882}$ astfel încât

$$\frac{F_1}{F_2} + \frac{F_2}{F_3} + \dots + \frac{F_{1881}}{F_{1882}} + \frac{F_{1882}}{F_1}$$

să fie număr natural.

c) Arătați că există 2022 numere naturale distințe astfel încât

$$\frac{B_1}{B_2} + \frac{B_2}{B_3} + \dots + \frac{B_{2021}}{B_{2022}} + \frac{B_{2022}}{B_1}$$

să fie număr natural.

Soluție

a) $L_1 = 1, L_2 = 139, L_3 = 139^2, \dots, L_{140} = 139^{139}$.

b) $F_1 = 1, F_2 = 1881, F_3 = 1881^2, \dots, F_{1882} = 1881^{1881}$.

c) $B_1 = 1, B_2 = 2021, B_3 = 2021^2, \dots, B_{2022} = 2021^{2021}$.

Problema 3

Arătați că:

$$A = 1882 + \sqrt{1882^2 - 140} + \sqrt{2022^2 - 140} + 2022 < \frac{1882 \cdot 2022}{140}$$

Soluție

Avem:

$$\begin{aligned} A &< 1882 + 1882 + 2022 + 2022 < 4 \cdot 2022 < \\ &< \frac{1882 \cdot 2022}{140} \text{ deoarece } 4 \cdot 140 < 1882 \end{aligned}$$

Problema 4

Demonstrați că:

$$a) \frac{1}{140} + \frac{1}{141} + \frac{1}{142} + \cdots + \frac{1}{140^2} > 1$$

$$b) \frac{1}{1882} + \frac{1}{1883} + \frac{1}{1884} + \cdots + \frac{1}{1882^2} > 1$$

$$c) \frac{1}{2022} + \frac{1}{2023} + \frac{1}{2024} + \cdots + \frac{1}{2022^2} > 1$$

Soluție

Vom arăta că pentru $n \in \mathbb{N}, n \geq 2$ avem:

$$\frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n^2} > 1$$

Într-adevăr, pentru $n+1 \leq m \leq n^2 - 1, m \in \mathbb{N} \Rightarrow$

$$\Rightarrow \frac{1}{m} > \frac{1}{n^2} \text{ și atunci:}$$

$$\begin{aligned} \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n^2} &> \frac{1}{n} + \frac{1}{n^2} + \frac{1}{n^2} + \cdots + \frac{1}{n^2} = \\ &= \frac{1}{n} + \frac{n^2 - n}{n^2} = 1 \end{aligned}$$

Problema 5

Demonstrați că:

$$\begin{aligned} A &= \frac{1}{1882^{\frac{1}{2}} \cdot 1883^{\frac{3}{2}}} + \frac{1}{1883^{\frac{1}{2}} \cdot 1884^{\frac{3}{2}}} + \cdots + \frac{1}{2021^{\frac{1}{2}} \cdot 2022^{\frac{3}{2}}} < \\ &< \frac{140}{1882 \cdot 2022} \end{aligned}$$

Soluție

Deoarece:

$$\frac{1}{n^{\frac{1}{2}} \cdot (n+1)^{\frac{3}{2}}} < \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \quad (\forall) n \in \mathbb{N}^* \text{ obținem:}$$

$$\begin{aligned} A &< \frac{1}{1882} - \frac{1}{1883} + \frac{1}{1883} - \frac{1}{1884} + \cdots + \frac{1}{2021} - \frac{1}{2022} = \\ &= \frac{1}{1882} - \frac{1}{2022} = \frac{140}{1882 \cdot 2022} \end{aligned}$$

Problema 6

a) Fie $x, y \in \mathbb{R}$ astfel încât:

$$(x + \sqrt{x^2 + 1})(y + \sqrt{y^2 + 1}) = 140.$$

Arătați că $141(x + y) = 139(\sqrt{x^2 + 1} + \sqrt{y^2 + 1})$.

b) Fie $x, y \in \mathbb{R}$ astfel încât:

$$(x + \sqrt{x^2 + 1})(y + \sqrt{y^2 + 1}) = 1882.$$

Arătați că $1883(x + y) = 1881(\sqrt{x^2 + 1} + \sqrt{y^2 + 1})$.

c) Fie $x, y \in \mathbb{R}$ astfel încât:

$$(x + \sqrt{x^2 + 1})(y + \sqrt{y^2 + 1}) = 2022.$$

Arătați că $2023(x + y) = 2021(\sqrt{x^2 + 1} + \sqrt{y^2 + 1})$.

Soluție

Vom arăta că dacă

$$(x + \sqrt{x^2 + 1})(y + \sqrt{y^2 + 1}) = a > 0 \text{ atunci}$$

$$(a + 1)(x + y) = (a - 1)(\sqrt{x^2 + 1} + \sqrt{y^2 + 1}).$$

$$\text{Într-adevăr } x + \sqrt{x^2 + 1} = \frac{a}{\sqrt{y^2 + 1} + y} = a(\sqrt{y^2 + 1} - y)$$

și analog $y + \sqrt{y^2 + 1} = a(\sqrt{x^2 + 1} - x)$. Adunate, cele două relații ne duc la relația cerută. Pentru $a = 140, 1882, 2022$ se obțin a), b) respectiv c).

Problema 7

Arătați că $140!, 1882!, 2022!$ nu sunt pătrate perfecte.

Soluție

Pentru $140!$ avem că cel mai mare număr prim < 140 este $139 \Rightarrow$ exponentul lui 139 în $140!$ este $1 \Rightarrow 140!$ nu poate fi pătrat perfect.

Pentru $1882!$ avem că cel mai mare număr prim < 1882 este 1879 , el se găsește doar o dată în $1882! \Rightarrow 1882!$ nu poate fi pătrat perfect.

Pentru $2022!$ avem că cel mai mare număr prim < 2022 este 2017 , el se găsește doar o dată în $2022! \Rightarrow 2022!$ nu poate fi pătrat perfect.

Problema 8

Demonstrați că 140!!, 1882!!, 2022!! nu sunt pătrate perfecte, unde $(2n)!! = 2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n), n \in \mathbb{N}^$.*

Soluție

Folosind formula lui Legendre pentru aflarea exponentului unui număr prim p în $n!$:

$$\exp = E = \left[\frac{n}{p} \right] + \left[\frac{n}{p^2} \right] + \left[\frac{n}{p^3} \right] + \dots,$$

obținem \exp lui 2 în $140!! = \exp$ lui 2 în $140! =$

$$= \left[\frac{140}{2} \right] + \left[\frac{140}{2^2} \right] + \left[\frac{140}{2^3} \right] + \dots + \left[\frac{140}{2^7} \right] + \left[\frac{140}{2^8} \right],$$

care este un număr impar.

Analog procedăm și cu 1882!!

Pentru $2022!! = 2^{1011} \cdot 1011!$ avem 1099 cel mai mare număr prim $< 1011 \Rightarrow 1009$ se găsește doar o dată în $1011! \cdot$

$\cdot 2^{1011} \Rightarrow 2022!!$ nu este pătrat perfect.

Problema 9

Găsiți cel mai mic număr natural $n \geq 2$, astfel încât fiecare dintre ecuațiile

- a) $x_1! + x_2! + \dots + x_n! = 140!$
- b) $x_1! + x_2! + \dots + x_n! = 1882!$
- c) $x_1! + x_2! + \dots + x_n! = 2022!$

să aibă soluții.

Soluție

Avem:

$$\begin{array}{l}
 x_1! < 140! \\
 x_2! < 140! \\
 \vdots \\
 x_n! < 140!
 \end{array} \Rightarrow
 \begin{array}{l}
 x_1! \leq 139! \\
 x_2! \leq 139! \\
 \vdots \\
 x_n! \leq 139!
 \end{array} \text{ de unde:}$$

$$\Rightarrow x_n! \leq 139!$$

$$140! = x_1! + x_2! + \cdots + x_n! \leq n \cdot 139! \Rightarrow n \geq 140$$

Pentru $n = 140$ avem $x_1 = \cdots = x_{140} = 139$

b) $n = 1882$

c) $n = 2022$

Problema 10

Arătați că nu există $n \in \mathbb{N}^*$ astfel încât suma cifrelor lui $n!$ e 2022.

Soluție

Dacă $n \geq 6 \Rightarrow n!$ se divide cu 9. Cum suma cifrelor lui $n!$ nu se divide cu 9 $\Rightarrow n \leq 5$.

Analizând $n = 1, n = 2, n = 3, n = 4$ obținem concluzia.

Problema 11

Arătați că numărul $2021! \cdot 2022!$ se poate scrie ca suma a 2021 numere naturale consecutive, dar nu se poate scrie ca suma a 2022 numere naturale consecutive.

Soluție

$$\begin{aligned} 2021! \cdot 2022! &= x + (x + 1) + \cdots + (x + 2020) \Rightarrow \\ &\Rightarrow 2021! \cdot 2022! = 2021x + \frac{2020 \cdot 2021}{2} = \\ &= 2021x + 1010 \cdot 2021 \Rightarrow x = 2020! \cdot 2022! - 1010. \end{aligned}$$

La fel dacă presupunem că numărul $2021! \cdot 2022!$ se scrie ca suma a 2022 numere naturale consecutive ar trebui ca pentru $x \in \mathbb{N}$ să avem:

$$\begin{aligned} 2021! \cdot 2022! &= x + (x + 1) + \cdots + (x + 2021) = \\ &= 2022x + 1 + 2 + \cdots + 2021 = \\ &= 2022x + \frac{2021 \cdot 2022}{2} = \\ &= 2022x + 2021 \cdot 1011 \text{ de unde} \end{aligned}$$

$2022x = 2021! \cdot 2022! - 2021 \cdot 1011$ fals, deoarece $2022x$ este număr par iar $2021! \cdot 2022! - 2021 \cdot 1011$ este număr impar!

Problema 12

Determinați numerele naturale nenule m și n pentru care:

$$1! \cdot 2! \cdot \dots \cdot n! = m!.$$

(S-a notat cu $p! = 1 \cdot 2 \cdot \dots \cdot p$, unde $p \geq 1$ este un număr natural nenul).

Soluție

Observăm că $(n, m) \in \{(1,1), (2,2)\}$ verifică și $n = 3$ nu aduce soluții. Căutăm $n \geq 4$.

Fie p cel mai mare număr prim cel mult egal cu m . Atunci $m \leq 2p - 1$ (*), astfel, dacă $m \geq 2p$, postulatul lui Bertrand ne spune că există un număr prim q pentru carea $p < q \leq m$, lucru care contrazice maximalitatea lui p .

Dacă $n < p$, atunci partea stângă a egalității nu este multiplu de p în timp de partea dreaptă este, absurd. Atunci $n \geq p$. Dacă $n \geq p + 1$ atunci partea stângă este multiplu de p^2 , deci și partea dreaptă. Atunci $m \geq 2p$, fals. Atunci $n = p$ și $m \leq 2n - 1$.

Mai departe, se arată prin inducție după n că pentru $n \geq 7$ avem $1! \cdot 2! \cdot \dots \cdot n! > (2n - 1)!$, deci $n \leq 6$. Dacă $n = 6$, partea dreaptă este divizibilă cu 7 (pentru că $m > n$) în timp ce cea stângă nu. Cazurile $n = 4, 5$ se verifică direct și se observă că nu generează soluții.

Problema 13

Calculați $\sqrt{2022 + a^2} - \sqrt{1882 + a^2}$ dacă $\sqrt{2022 + a^2} + \sqrt{1882 + a^2} = 140$.

Soluție

$$\begin{aligned} \sqrt{2022 + a^2} + \sqrt{1882 + a^2} &= \frac{2022 + a^2 - 1882 - a^2}{\sqrt{2022 + a^2} - \sqrt{1882 + a^2}} = \\ &= \frac{140}{140} = 1 \end{aligned}$$

Problema 14

Sirul (a_n) , $n \in \mathbb{N}^*$ este definit astfel:

$$a_1 = 5, a_{n+1} = \begin{cases} \frac{a_n}{2} & \text{dacă } n \text{ e par} \\ \frac{a_n + 51}{2} & \text{dacă } n \text{ e impar} \end{cases}$$

Calculați a_{140} , a_{1882} și a_{2022} .

Soluție

Cum $a_1 = 5, a_2 = 28, a_3 = 14, a_4 = 7, a_5 = 29, a_6 = 40, a_7 = 20, a_8 = 10, a_9 = 5$ și se observă (inducție) $a_{8m+p} = a_p$ (periodic de perioada principală 8).

$$\text{Cum } 140 = 17 \cdot 8 + 4$$

$$1882 = 235 \cdot 8 + 2$$

$$2022 = 252 \cdot 8 + 6$$

așadar $\begin{cases} a_{140} = 7 \\ a_{1882} = 28 \\ a_{2022} = 40 \end{cases}$

Problema 15

Arătați că nu există $a, b \in \mathbb{Z}$ astfel încât

$$(a + b + 2)^{1882} = 2022(ab + 1)^{140}.$$

Soluție

Cum $3|2022 \Rightarrow a + b + 2 : 3$ și $ab + 1 : 3$ relații ce nu pot exista simultan pentru $a, b \in \mathbb{Z}$.

Problema 16

Fie $a, b, c \in \mathbb{N}^*$ astfel încât

$$(a + b)^{b+c} = (b + c)^{c+a} = (c + a)^{a+b}.$$

Arătați că $a = b = c$.

Soluție

Fie $a + b = x, b + c = y, c + a = z$.

Deoarece $x^y = y^z = z^x$ vom arăta că $x = y = z$.

Presupunem $x < y$ și din $x^y = y^z \Rightarrow y > z$ cum
 $y^z = z^x \Rightarrow z < x$ și din $z^x = x^y \Rightarrow x > y$ fals.

Analog, dacă presupunem $x > y$ obținem $x < y$ (fals!)

Așadar $x = y$ și de aici $x^x = x^z = z^x$ de unde $x = z$. Așadar $x = y = z$.

Revenind la enunțul problemei, găsim $a + b = b + c = c + a$ și de aici $a = b = c$, c.c.t.d.

Problema 17

Arătați că ecuația :

$$x^n + y^{n+1} = z^{n+2}$$

are o infinitate de soluții în numere naturale.

Soluție

$$x = a^{n+2}$$

$$y = a^{n+1}$$

$$z = a^n \cdot b, \text{ unde } a = b^{n+2} - 1, \forall b \in \mathbb{N}.$$

Înlocuind în ecuație, obținem răspunsul.

Problema 18

Arătați că numărul

$$A = 512^3 + 645^3 + 720^3$$
 este compus.

Soluție

$$3 \cdot 720 \cdot 512 \cdot 645 = 2 \cdot 720^3$$

$$\Rightarrow A = 512^3 + 645^3 + 720^3 = 512^3 + 645^3 + (-720)^3 =$$

$$= 3 \cdot 720 \cdot 512 \cdot 645$$

Din formula: $a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$ obținem cerința.

Problema 19

Fie A mulțime de numere reale cu proprietatea $(\forall)a, b \in A \Rightarrow a^2 b^2 \in A$. Arătați că $(\forall)a \in A$ rezultă: a) $a^{4000} \in A$; b) $a^{10000} \in A$

Soluție

$$\begin{aligned} a \in A &\Rightarrow a^4 \in A \Rightarrow a^{40} \in A \Rightarrow \\ &\Rightarrow a^{100} = (a^{40})^2 (a^{10})^2 \in A \Rightarrow a^{400} \in A \Rightarrow \\ &\Rightarrow a^{1600} \in A \Rightarrow (a^{1600})^2 (a^{400})^2 = a^{4000} \in A \\ \text{Din } a^{1000} &= (a^{400})^2 (a^{100})^2 \in A \text{ obținem} \\ a^{10000} &= (a^{4000})^2 (a^{1000})^2 \in A. \end{aligned}$$

Problema 20

Fie $a_1, a_2, \dots, a_{2022}$ numere reale strict pozitive. Arătați că:

a) $\frac{a_1^2}{a_2^2} + \frac{a_2^2}{a_3^2} + \dots + \frac{a_{140}^2}{a_1^2} \geq \frac{a_1}{a_2} + \frac{a_2}{a_3} + \dots + \frac{a_{140}}{a_1}$.

În ce caz avem egalitate?

b) $\frac{a_1^4}{a_2^4} + \frac{a_2^4}{a_3^4} + \dots + \frac{a_{1882}^4}{a_1^4} \geq \frac{a_1}{a_2} + \frac{a_2}{a_3} + \dots + \frac{a_{1882}}{a_1}$.

În ce caz avem egalitate?

c) $\frac{a_1^8}{a_2^8} + \frac{a_2^8}{a_3^8} + \dots + \frac{a_{2022}^8}{a_1^8} \geq \frac{a_1}{a_2} + \frac{a_2}{a_3} + \dots + \frac{a_{2022}}{a_1}$.

În ce caz avem egalitate?

Soluție

Din inegalitatea Cauchy-Buniakovski-Schwarz:

$$n \left(\frac{a_1^2}{a_2^2} + \frac{a_2^2}{a_3^2} + \dots + \frac{a_{140}^2}{a_1^2} \right) \geq \left(\frac{a_1}{a_2} + \frac{a_2}{a_3} + \dots + \frac{a_{140}}{a_1} \right)^2$$

Apoi folosim inegalitatea mediilor:

$$\frac{a_1}{a_2} + \frac{a_2}{a_3} + \dots + \frac{a_n}{a_1} \geq n \sqrt[n]{\frac{a_1}{a_2} \cdot \frac{a_2}{a_3} \cdot \dots \cdot \frac{a_n}{a_1}} = n \text{ cu egalitate}$$

pentru $\frac{a_1}{a_2} = \frac{a_2}{a_3} = \dots = \frac{a_n}{a_1}$ de unde $a_1 = a_2 = \dots = a_n$.

Pentru $n = 140$ obținem a). Pentru b) și c) se procedează ca la a).

Problema 21

Rezolvați în multimea numerelor reale nenule sistemul:

$$\begin{cases} x_1^{1882} + \frac{1}{x_1^{1882}} = x_2^{2022} + 1 \\ x_2^{1882} + \frac{1}{x_2^{1882}} = x_3^{2022} + 1 \\ \vdots \\ x_{140}^{1882} + \frac{1}{x_{140}^{1882}} = x_1^{2022} + 1 \end{cases}$$

Soluție

Din

$$x_k^{1882} + \frac{1}{x_k^{1882}} \geq 2 \sqrt{x_k^{1882} + \frac{1}{x_k^{1882}}} = 2, k = \overline{1, 140} \Rightarrow$$

$$\Rightarrow x_k^{2022} \geq 1 \text{ de unde } x_k^2 \geq 1 \text{ și de aici } \frac{1}{x_k^2} \leq 1.$$

Adunând membru cu membru ecuațiile sistemului, obținem:

$$\begin{aligned} & x_1^{1882} + x_2^{1882} + \cdots + x_{140}^{1882} + \frac{1}{x_1^{1882}} + \frac{1}{x_2^{1882}} + \cdots + \frac{1}{x_{140}^{1882}} = \\ & = x_1^{2022} + x_2^{2022} + \cdots + x_{140}^{2022} + 140. \text{ Cum } x_k^{1882} \leq x_k^{2022} \text{ și} \\ & \frac{1}{x_k^{1882}} \leq 1, k = \overline{1, 140} \text{ găsim } x_k^{1882} = x_k^{2022} \text{ și } \frac{1}{x_k^{1882}} = 1 \end{aligned}$$

de unde $x_k^2 = 1, k = \overline{1, 140}$ de unde $x_1, x_2, \dots, x_{140} \in \{-1, 1\}$ (în total 2^{140} soluții).

Problema 22

Numerele strict pozitive $a_1, a_2, b_1, b_2, c_1, c_2$ verifică $b_1^2 \leq 4a_1c_1, b_2^2 \leq 4a_2c_2$.

Arătați că:

- a) $4(a_1 + a_2 + 1882)(c_1 + c_2 + 2022) > (b_1 + b_2 + 140)^2$
- b) $4(a_1 + a_2 + 2022)(c_1 + c_2 + 2022) > (b_1 + b_2 + 140)^2$

Soluție

Din semnul trinomului avem:

$$a_1x^2 + b_1x + c_1 \geq 0, \forall x \in \mathbb{R}$$

$$a_2x^2 + b_2x + c_2 \geq 0, \forall x \in \mathbb{R}$$

$$1882x^2 + 140x + 2022 > 0, \forall x \in \mathbb{R}$$

$$\Rightarrow (a_1 + a_2 + 1882)x^2 + (b_1 + b_2 + 140)^2 + c_1 + c_2 +$$

+2022 > 0, $\forall x \in \mathbb{R}$ de unde

$$(b_1 + b_2 + 140)^2 - 4(a_1 + a_2 + 1882)(c_1 + c_2 + 2022) < 0$$

adică a).

b) Se obțin analog, considerând

$$2022x^2 + 140x + 1882 > 0, \forall x \in \mathbb{R}.$$

Problema 23

Arătați fără a calcula părțile întregi:

a) $2^{[\log_2 140]} < 140 < 2^{[\log_2 140]+1}$

b) $3^{[\log_3 1882]} < 1882 < 3^{[\log_3 1882]+1}$

c) $5^{[\log_5 2022]} < 2022 < 5^{[\log_5 2022]+1}$

unde $[a]$ reprezintă partea întreagă a numărului real a .

Soluție

a) $(\exists)k \in \mathbb{N}$ a.î.: $2^k < 140 < 2^{k+1}$ (1)

$\Rightarrow k < \log_2 140 < k + 1 \Rightarrow [\log_2 140] = k$ și înlocuind în (1) rezultă a).

b) $(\exists)k \in \mathbb{N}$ a.î.: $3^k < 1882 < 3^{k+1}$ (2)

și logaritmând în baza 3 rezultă

$k < \log_3 1882 < k + 1 \Rightarrow [\log_3 1882] = k$ și înlocuind în (2) se obține b).

c) Se procedează ca la a) sau b).

Problema 24

Fie z astfel încât $z^2 + z + 1 = 0$. Calculați:

a) $z^{140} + \frac{1}{z^{140}}$, b) $z^{1882} + \frac{1}{z^{1882}}$, c) $z^{2022} + \frac{1}{z^{2022}}$.

Soluție

Înmulțind relația $z^2 + z + 1 = 0$ cu $z - 1 \Rightarrow z^3 = 1$.

Atunci:

$$\begin{aligned} \text{a)} z^{140} + \frac{1}{z^{140}} &= z^{138} \cdot z^2 + \frac{1}{z^{138} \cdot z^2} = (z^3)^{46} \cdot z^2 + \\ &+ \frac{1}{(z^3)^{46} \cdot z^2} = z^2 + \frac{1}{z^2} = \frac{z^4 + 1}{z^2} = \frac{z^3 \cdot z + 1}{z^2} = \frac{z + 1}{z^2} = \\ &= \frac{-z^2}{z^2} = -1 \end{aligned}$$

$$\begin{aligned} \text{b)} z^{1882} + \frac{1}{z^{1882}} &= z^{1881} \cdot z + \frac{1}{z^{1881} \cdot z} = z + \frac{1}{z} = \frac{z^2 + 1}{z} = \\ &= \frac{-z}{z} = -1 \end{aligned}$$

$$\text{d)} z^{2022} + \frac{1}{z^{2022}} = (z^3)^{674} + \frac{1}{(z^3)^{674}} = 1 + 1 = 2$$

Problema 25

Fie z și w două numere complexe nenule astfel încât $z^2 + wz + w^2 = 0$. Calculați:

a) $A = \left(\frac{z}{z+w}\right)^{140} + \left(\frac{w}{z+w}\right)^{140}$

b) $B = \left(\frac{z}{z+w}\right)^{1882} + \left(\frac{w}{z+w}\right)^{1882}$

c) $C = \left(\frac{z}{z+w}\right)^{2022} + \left(\frac{w}{z+w}\right)^{2022}$

Soluție

Dacă $z = w$ atunci $3z^2 = 0$ adică $z = 0$ fals. Așadar $z \neq w$ și de aici $z^3 - w^3 = 0$. Obținem $z = \varepsilon w$, unde ε este o rădăcină complexă nereală de ordin trei a unității

($\varepsilon \neq 1$ și $\varepsilon^2 + \varepsilon + 1 = 0$). Atunci:

$$\begin{aligned} \text{a) } A &= \left(\frac{\varepsilon w}{\varepsilon w + w} \right)^{140} + \left(\frac{w}{\varepsilon w + w} \right)^{140} = \\ &= \left(\frac{\varepsilon}{\varepsilon + 1} \right)^{140} + \left(\frac{1}{\varepsilon + 1} \right)^{140} = \frac{\varepsilon^{140} + 1}{(\varepsilon + 1)^{140}} = \frac{\varepsilon^2 (\varepsilon^3)^{46} + 1}{(-\varepsilon^2)^{140}} = \\ &= \frac{\varepsilon^2 + 1}{\varepsilon^{280}} = \frac{-\varepsilon}{\varepsilon^{279} \cdot \varepsilon} = \frac{-\varepsilon}{(\varepsilon^3)^{93} \cdot \varepsilon} = \frac{-\varepsilon}{\varepsilon} = -1 \end{aligned}$$

În mod asemănător $B = 1, C = 2$.

Problema 26

Fie $a, b, c > 0$ astfel încât:

$$\frac{1}{a+2} + \frac{1}{b+2} + \frac{1}{c+2} \geq 1.$$

Arătați că: $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq 3$.

Soluție

Din ipoteză rezultă $ab + bc + ca + abc \leq 4$

$$\sqrt[4]{(abc)^3} \leq \frac{ab + bc + ca + abc}{4} = 1 \Rightarrow abc \leq 1.$$

$$\text{Din } \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq 3 \sqrt[3]{\frac{1}{abc}} \Rightarrow$$

și $abc \leq 1$

$$\Rightarrow \text{obținem } \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq 3$$

cu egalitate pentru $a = b = c = 1$.

Problema 27

Fie $x, y, z > 0$ astfel încât

$$\frac{1}{2x+1} + \frac{1}{2y+1} + \frac{1}{2z+1} \geq 2.$$

Arătați că $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geq 12$. În ce caz avem egalitate?

Soluție:

Efectuând calculele obținem $\frac{1}{4} \geq xy + yz + zx + 4xyz$

cum $\frac{1}{4} \geq xy + yz + zx + 4xyz \geq 4\sqrt[4]{4(xyz)^3} \Rightarrow$

$$\Rightarrow xyz \leq \frac{1}{2^6} \Rightarrow \frac{1}{xyz} \geq 2^6$$

Apoi $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geq 3\sqrt[3]{\frac{1}{xyz}} \geq 3\sqrt[3]{2^6} = 12$.

Eg când $xy = yz = zx = 4xyz \Rightarrow x = y = z = \frac{1}{4}$.

Problema 28

Fie $x, y, z > 0$ astfel încât $x + y + z = 3$.

Arătați că:

$$\frac{1}{x+y} + \frac{1}{x+z} + \frac{1}{y+z} \leq \frac{6}{xy + yz + zx}.$$

Soluție

$$\frac{xy + yz + zx}{x+y} + \frac{xy + yz + zx}{x+z} + \frac{xy + yz + zx}{y+z} \leq 6$$

$$\text{sau } \frac{xy}{x+y} + \frac{xz}{x+z} + \frac{yz}{y+z} + x + y + z \leq 6$$

$$\Rightarrow \frac{xy}{x+y} + \frac{xz}{x+z} + \frac{yz}{y+z} \leq 3 \quad (1)$$

Cum $\frac{xy}{x+y} \leq \frac{x+y}{2}$ cu eg pentru $x = y$

$$\frac{xz}{x+z} \leq \frac{x+z}{2} \text{ cu } eg \text{ pentru } x = z$$

$$\frac{yz}{y+z} \leq \frac{y+z}{2} \text{ cu } eg \text{ pentru } y = z$$

Obținem (1), cu eg pentru $x = y = z = 1$.

Problema 29

Fie $x_1, x_2, x_3, y_1, y_2, y_3$ numere reale pozitive. Arătați că:

$$(x_1 + y_1)(x_2 + y_2)(x_3 + y_3) + 4\left(\frac{1}{x_1 y_1} + \frac{1}{x_2 y_2} + \frac{1}{x_3 y_3}\right) \geq 20$$

Soluție

$$\begin{aligned} & \text{Avem } E = (x_1 x_2 + x_1 y_2 + y_1 x_2 + y_1 y_2)(x_3 + y_3) + \\ & + 4\left(\frac{1}{x_1 y_1} + \frac{1}{x_2 y_2} + \frac{1}{x_3 y_3}\right) = x_1 x_2 x_3 + x_1 x_3 y_2 + y_1 x_2 x_3 + \\ & + x_3 y_1 y_2 + x_1 x_2 y_3 + x_1 y_2 y_3 + y_1 y_3 x_2 + y_1 y_2 y_3 + \frac{1}{x_1 y_1} + \\ & + \frac{1}{x_1 y_1} + \frac{1}{x_1 y_1} + \frac{1}{x_1 y_1} + \frac{1}{x_2 y_2} + \frac{1}{x_2 y_2} + \frac{1}{x_2 y_2} + \frac{1}{x_2 y_2} + \\ & + \frac{1}{x_3 y_3} + \frac{1}{x_3 y_3} + \frac{1}{x_3 y_3} + \frac{1}{x_3 y_3} \geq \\ & \geq 20 \sqrt[20]{x_1^4 \cdot \frac{1}{x_1^4} \cdot x_2^4 \cdot \frac{1}{x_2^4} \cdots y_3^4 \cdot \frac{1}{y_3^4}} = 20 \end{aligned}$$

Problema 30

Arătați că numărul $N = \overline{1882 \ 1883 \ \dots \ 2022}$ poate fi diferență de două pătrate perfecte.

Soluție

N trebuie să fie de formă $a^2 - b^2 = (a - b)(a + b)$.

Dacă a și b au aceeași polaritate, atunci $(a - b)(a + b) : 4$, dar $N = M_4 + 2$.

Dacă a și b au polarități diferite, atunci $a^2 - b^2$ impar, dar N par.

\Rightarrow nu există numărul n care să satisfacă condițiile.

Problema 31

Demonstrați că produsul $P = x_1 x_2 \cdots x_{140}$ al primelor 140 de numere prime nu poate fi cu 1 mai mare sau mai mic decât un pătrat perfect.

Soluție

$P : 2$, dar nu cu 4, însă $x^2 - 1 = (x - 1)(x + 1)$ dă resturile 0 sau 3 la împărțirea cu 4.

$$\begin{aligned} P &: 3, \text{ însă } x^2 \text{ poate fi } \mathcal{M}_3 \text{ sau } \mathcal{M}_2 + 1 \\ &\Rightarrow x^2 - 1 \neq \mathcal{M}_3 \end{aligned}$$

Problema 32

Determinați numărul prim p astfel încât $p + 10, p + 50$ să fie de asemenea numere prime.

Soluție

$p = 3$, convine.

Dacă $p = 3k + 1 \Rightarrow p + 50 = 3k + 51 : 3$.

Dacă $p = 3k + 2 \Rightarrow p + 10 = 3k + 12 : 3$.

Singurul număr convenabil este, aşadar, $p = 3$.

Problema 33

Arătați că $3^{4n+1} + 1$ se poate scrie ca sumă de 3 pătrate perfecte pentru orice $n \in \mathbb{N}$.

Soluție

Rezultă din identitatea:

$$3^{4n+1} + 1 = (3^{2n} - 1)^2 + (3^{2n} - 3^n)^2 + (3^n + 3^{2n})^2.$$

Problema 34

Găsiți valorile lui $n \in \mathbb{N}$ pentru care $2^n - 1$ se divide cu 7 și arătați că nu există $n \in \mathbb{N}$ astfel încât $2^n + 1$ să fie divizibil cu 7.

Soluție

Resturile lui 2^n la împărțirea cu 7 sunt 1, 2, 4 de unde $n = 3k, k \in \mathbb{N}$ sunt numerele care au proprietatea că $2^n - 1$ se divide cu 7 și cum $2^n + 1$ dă restul 2, 3, 5 la împărțirea cu 7 rezultă cerința problemei.

Problema 35

Pentru ce valori ale lui $n \in \mathbb{N}$ numărul $3^n - 1$ se divide cu 13. Arătați că nu există $n \in \mathbb{N}$ astfel încât $3^n + 1$ să se dividă cu 13.

Soluție

Resturile lui 3^n la împărțirea cu 13 sunt 1, 3, 9 de unde rezultă $n = 3k, k \in \mathbb{N}$. Cum $3^n + 1$ dă restul 2, 4, 10 la împărțirea cu 13 rezultă cerința problemei.

Problema 36

Comparați fracțiile:

- a) $\frac{10^{138} + 1}{10^{139} + 1}$ și $\frac{10^{139} + 1}{10^{140} + 1}$;
b) $\frac{10^{1880} + 1}{10^{1881} + 1}$ și $\frac{10^{1881} + 1}{10^{1882} + 1}$;
c) $\frac{10^{2020} + 1}{10^{2021} + 1}$ și $\frac{10^{2021} + 1}{10^{2022} + 1}$.

Soluție

Fie $n \geq 2$. Să comparăm

$$\begin{aligned} & \frac{10^n + 1}{10^{n+1} + 1} - \frac{10^{n+1} + 1}{10^{n+2} + 1} = \\ & = \frac{(10^n + 1)(10^{n+2} + 1) - (10^{n+1} + 1)^2}{(10^{n+1} + 1)(10^{n+2} + 1)} = \end{aligned}$$

$$= \frac{10^{2n+2} + 10^n + 10^{n+2} + 1 - 10^{2n+2} - 2 \cdot 10^{n+1} - 1}{N} =$$

$$= \frac{10^n(10^2 + 1 - 2 \cdot 10)}{N} = \frac{10^n \cdot 81}{N} > 0$$

primele fractii sunt cele mai mari.

Problema 37

Aflați rădăcinile reale ale ecuației:

a) $(x-1)^{140} \sqrt{\frac{x-1}{3-x}} + (3-x)^{140} \sqrt{\frac{3-x}{x-1}} = 2;$

b) $(x-1)^{1882} \sqrt{\frac{x-1}{3-x}} + (3-x)^{1882} \sqrt{\frac{3-x}{x-1}} = 2;$

c) $(x-1)^{2022} \sqrt{\frac{x-1}{3-x}} + (3-x)^{2022} \sqrt{\frac{3-x}{x-1}} = 2.$

Soluție

Evident $x \neq 1, x \neq 3$ și $x \in (1,3).$

Fie $\sqrt[2n]{\frac{x-1}{3-x}} = t \geq 0, n \in \mathbb{N}^*.$

Ecuația se scrie $(3-x)t^2 - 2t + x - 1 = 0$ cu rădăcinile

$$t_1 = 1 \text{ și } t_2 = \frac{x-1}{3-x}.$$

Din $\sqrt[2n]{\frac{x-1}{3-x}} = 1 \Rightarrow x = 2$ și din

$$\sqrt[2n]{\frac{x-1}{3-x}} = \frac{x-1}{3-x} \Rightarrow \left(\frac{x-1}{3-x}\right)^{2n-1} = 1$$

de unde $\frac{x-1}{3-x} = 1 \Rightarrow x = 2.$

Așadar ecuațiile a), b) respectiv c) au o singură rădăcină reală $x = 2.$

Problema 38

Numerele reale nenegative x și y verifică $x + y = 2$. Arătați că:

- a) $(xy)^{140}(x^2 + y^2) \leq 2$;
- b) $(xy)^{1882}(x^2 + y^2) \leq 2$;
- c) $(xy)^{2022}(x^2 + y^2) \leq 2$.

Soluție

Vom arăta că $(xy)^{2n}(x^2 + y^2) \leq 2$, unde $n \in \mathbb{N}^*$.

Fie $x = 1 - z$, $y = 1 + z$ cu $z \in [0,1]$. Atunci inegalitatea devine $(1 - z^2)^{2n}(2 + 2z^2) \leq 2$ sau $(1 - z^2)^{2n}(1 + z^2) \leq 1$ sau $(1 - z^2)^{2n-1}(1 - z^4) \leq 1$, care este adevărată. Egalitate avem când $z = 0$ adică $x = y = 1$.

Problema 39

Aflați $x \in \mathbb{R}$ astfel încât $7^x - 3^x = 40$.

Soluție

Observăm $x = 2$ soluție. Ecuația se scrie:

$$\left(\frac{7}{3}\right)^x - 1 = \frac{40}{3^x}.$$

Dacă $x > 2 \Rightarrow \left(\frac{7}{3}\right)^x - 1 > \frac{49}{9} - 1 = \frac{40}{9}$ și $\frac{40}{3^x} < \frac{40}{9}$ iar dacă $0 < x < 2$, $\left(\frac{7}{3}\right)^x - 1 < \frac{49}{9} - 1 = \frac{40}{9}$ iar $\frac{40}{3^x} > \frac{40}{9}$.

Așadar, $x = 2$ este unica soluție a ecuației deoarece $x \leq 0$ nu se poate.

Problema 40

Rezolvați în \mathbb{R} ecuația:

$$2022^x - 1882^x = 140.$$

Soluție

Din $2022^x - 1882^x > 0 \Rightarrow x > 0$.

Observăm $x = 1$ soluție.

Scriem ecuația $\left(\frac{2022}{1882}\right)^x = 1 + \frac{140}{1882^x}, x < 1$ și observăm că pentru $x > 1$ membrul stâng e mai mare decât $\frac{2022}{1882}$ iar cel drept mai mic și pentru $0 < x < 1$ membrul stâng e mai mic ca $\frac{2022}{1882}$ iar cel drept e mai mare.

Problema 41

Determinați numărul de cifre ale numărului $\left[\left(\sqrt{2} + \sqrt{3}\right)^{200}\right]$, unde $[a]$ reprezintă partea întreagă a numărului real a .

Soluție

Avem

$$\left(\sqrt{2} + \sqrt{3}\right)^{200} = (5 + 2\sqrt{6})^{100} < (5 + 2 \cdot 2,5)^{100} = 10^{100}$$

$$\left(\sqrt{2} + \sqrt{3}\right)^{200} = (5 + 2\sqrt{6})^{100} > (5 + 2 \cdot 2,4)^{100} = (9,8)^{100}.$$

Vom arăta că $(9,8)^{100} > 10^{99}$.

$$\left(\frac{10}{9,8}\right)^{99} = \left(1 + \frac{1}{49}\right)^{49}$$

$$\left(1 + \frac{1}{49}\right)^{49} \cdot \frac{10}{9,8} < 3 \cdot 3 \cdot \frac{10}{9,8} = \frac{90}{9,8} = \frac{900}{98} < 9,8.$$

Atunci avem $10^{100} > \left(\sqrt{2} + \sqrt{3}\right)^{200} > 10^{99} \Rightarrow \left(\sqrt{2} + \sqrt{3}\right)^{200}$ are 100 de cifre.

Problema 42

Arătați că există o infinitate de perechi $a, b, c \in \mathbb{R}$ astfel încât $\sqrt{a+b} + \sqrt{b+c} + \sqrt{c+a} \in \mathbb{N}$.

Soluție

$$a + b = k_1^2$$

$$b + c = k_2^2$$

$$c + a = k_3^2$$

(+)

$$a + b + c = \frac{k_1^2 + k_2^2 + k_3^2}{2}$$

$$\Rightarrow a = \frac{k_1^2 - k_2^2 + k_3^2}{2}$$

$$b = \frac{k_1^2 + k_2^2 - k_3^2}{2}$$

$$c = \frac{-k_1^2 + k_2^2 + k_3^2}{2}$$

Problema 43

Arătați că pentru $n \in \mathbb{N}$ numărul $n^{2022} - n + 1$ nu se poate divide cu 2022.

Soluție

$n^{2022} - n + 1$ este număr impar!

Problema 44

Fie $x, y \in \mathbb{N}^*$ astfel încât $x + y + 1$ divide $x^2 - y^2 + 1$. Arătați că $x + y + 1$ nu poate fi număr prim.

Soluție

Avem $x^2 - y^2 + 1 = (x + 1)^2 - y^2 - 2x = (x + y + 1)(x - y + 1) - 2x$.

Cum $x^2 - y^2 + 1$ se divide cu $x + y + 1 \Rightarrow x + y + 1 | 2x$. Presupunând $x + y + 1 = p$ (p număr prim) obținem $p | 2$ sau $p | x$ ceea ce este fals, deoarece

$p = x + y + 1 > 2$ și $p = x + y + 1 > x$.

Observație

Pentru $x = 2, y = 1$,
 $x^2 - y^2 + 1 = 4 : x + y + 1 = 2 + 1 + 1 = 4$ și 4 este compus sau
 $x = 3, y = 2, x^2 - y^2 + 1 = 9 - 4 + 1 = 6$ care se divide cu
 $x + y + 1 = 3 + 2 + 1 = 6$ și de asemenea 6 este număr compus.

Problema 45

Arătați că dacă $a^3 + b^3 + c^3 : a + b + c$, atunci $a + b + c$ compus, $a, b, c \in \mathbb{N}^*$,

Soluție

$$\begin{aligned} a^3 + b^3 + c^3 - 3abc(a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca) : \\ : (a + b + c) \Rightarrow 3abc : a + b + c \end{aligned}$$

Dacă $a + b + c$ ar fi prim atunci $a + b + c$ ar divide 3, a , b sau c .

Dar:

$$\left| \begin{array}{l} a + b + c > 3 \\ a + b + c > a \\ a + b + c > b \\ a + b + c > c \end{array} \right| \Rightarrow \text{Imposibil} \Rightarrow a + b + c \text{ compus}$$

Problema 46

Arătați că dacă $x^2 + y^2 - 1$ se divide cu $x + y + 1$, atunci $x + y + 1$ compus.

Soluție

$$\begin{aligned} x^2 + y^2 - 1 + 2xy - 2xy = (x + y)^2 - 1 - 2xy = \\ = (x + y - 1)(x + y + 1) - 2xy \Rightarrow 2xy : x + y + 1 \end{aligned}$$

Dacă $x + y + 1$ ar fi prim atunci $x + y + 1$ ar divide 2, x sau y . Dar $x + y + 1$ este mai mare decât acești factori \Rightarrow
 $\Rightarrow x + y + 1 \neq \text{prim} \Rightarrow x + y + 1$ compus.

Problema 47

Fie $x, y \in \mathbb{N}$, $x \geq 3$, $y \geq 3$ astfel încât $x^3 + y^3 + 3x^2x - 8$ se divide cu $x + y - 2$. Arătați că $x + y - 2$ nu poate fi număr prim.

Soluție

Avem

$$\begin{aligned} x^3 + y^3 + 3x^2x - 8 &= (x + y)^3 - 2^3 - 3xy^2 = \\ &= (x + y - 2)[(x + y)^2 + 2(x + y) + 4] - 3xy^2 \text{ și de aici} \\ x + y - 2 &\mid 3xy^2. \end{aligned}$$

Dacă presupunem $x + y - 2 = p$, p număr prim $p \mid 3$ sau $p \mid x$ sau $p \mid y$.

Cum $x + y - 2 \geq 3 + 3 - 2 = 4$ și $x + y - 2 > x$, $x + y - 2 > y$ se obține $x + y - 2$ nu este număr prim.

$$\begin{aligned} \text{Obs. Pentru } x = y = 4 \text{ avem } x^3 + y^3 + 3x^2x - 8 &= \\ &= 4^3 + 4^3 + 3 \cdot 4^3 - 8 = 4 \cdot (16 + 16 + 48 - 2) = \\ &= 4 \cdot 78 : x + y - 2 = 4 + 4 - 2 = 6 \text{ și evident } 6 \text{ nu e număr prim.} \end{aligned}$$

Problema 48

Fie $a > 0$. Rezolvați în mulțimea numerelor reale nenule sistemul de ecuații:

$$\begin{cases} \frac{x^4}{y^2} + xy = a^6 + a^3 \\ \frac{y^4}{x^2} + xy = a^3 + 1 \end{cases}$$

Soluție

Din cele două ecuații avem:

$$\frac{x^4}{y^2} = a^6 + a^3 - xy \text{ și } \frac{y^4}{x^2} = a^3 + 1 - xy.$$

Înmulțind relațiile obținem:

$$x^2y^2 = a^3(a^3 + 1)^2 - a^3(a^3 + 1) - (a^3 + 1)xy + xy^2 \Rightarrow$$

$$\Rightarrow x^2y^2 = a^3(a^3 + 1)^2 - (a^3 + 1)^2xy + (xy)^2$$

$$xy = \frac{a^3(a^3 + 1)^2}{(a^3 + 1)^2} = a^3$$

$$\Rightarrow \frac{x^4}{y^2} = a^6$$

$$\frac{y^4}{x^2} = 1$$

$$x^4 = a^6y^2$$

$$y^4 = x^2 \Leftrightarrow x^4 = y^8$$

$$a^6y^2 = y^8 \Rightarrow y^6 = a^6 \Rightarrow y = \pm a$$

$$\text{Dacă } y = a \Rightarrow x = a^2$$

$$y = -a \Rightarrow x = -a^2$$

Problema 49

Aflați soluția reală a ecuației

$$x^3 + x^2 + x + \frac{1}{3} = 0.$$

Soluție

$$3x^3 + 3x^2 + 3x + 1 = 0 \text{ sau}$$

$$2x^3 + (x + 1)^3 = 0 \Rightarrow x + 1 = -\sqrt[3]{x} \text{ și de aici}$$

$$x = -\frac{1}{\sqrt[3]{2} + 1}$$

Problema 50

Rezolvați ecuațiile:

a) $x^3 - (1 + \sqrt{140})x^2 + 140 = 0$

b) $x^3 - (1 + \sqrt{1882})x^2 + 1882 = 0$

c) $x^3 - (1 + \sqrt{2022})x^2 + 2022 = 0$

Soluție

a) Fie $\sqrt{140} = t$ și scriem ecuația $t^2 - x^2t + x^3 - x^2 = 0$ cu $\Delta = x^4 - 4(x^3 - x^2) = (x^2 - 2x)^2$ de unde

$$t = \sqrt{140} = \frac{x^2 \pm (x^2 - 2x)}{2}$$

De aici $x_1 = \sqrt{140}$ și $\sqrt{140} = x^2 - x \Rightarrow$
 $\Rightarrow x_{2,3} = \frac{1 \pm \sqrt{1 + 4\sqrt{140}}}{2}$

b), c) Se procedează ca la a).

Problema 51

Rezolvați în \mathbb{R} ecuația

$$x^8 - x^6 + x^4 - x^2 + 1 = 0.$$

Soluție

Înmulțim ecuația cu $x^2 + 1$ și obținem $x^{10} + 1 = 0$.

Cum această ecuație nu are rădăcini reale și $x^2 + 1 > 0$ obținem că ecuația dată nu are rădăcini reale.

Problema 52

Fie $a, b \in \mathbb{R}, a \neq b$. Aflați rădăcinile reale ale ecuației

$$(a - x)^5 + (x - b)^5 = (a - b)^5.$$

Soluție

Fie $a - x = \mu, x - b = \vartheta$. Avem $\mu + \vartheta = a - b$ și $\mu^5 + \vartheta^5 = (a - b)^5$. Deoarece

$$\begin{aligned} \mu^5 + \vartheta^5 &= (\mu + \vartheta)(\mu^4 - \mu^3\vartheta + \mu^2\vartheta^2 - \mu\vartheta^3 + \vartheta^4) = \\ &= (\mu + \vartheta)[((\mu + \vartheta)^2 - 2\mu\vartheta)^2 - \mu\vartheta(a - b)^2 + \mu^2\vartheta^2] = \\ &= (a - b)[((a - b)^2 - 2\mu\vartheta)^2 - \mu\vartheta(a - b)^2 + \mu^2\vartheta^2] = \\ &= (a - b)^5 \Rightarrow (a - b)^4 = (a - b)^4 - 4(a - b)^2\mu\vartheta + \\ &+ 4(\mu\vartheta)^2 - (a - b)^2 + \mu^2\vartheta^2 \text{ și de aici } 5\mu^2\vartheta^2 - 5(a - b)^2\mu\vartheta = 0 \text{ de} \\ &\text{unde obținem } x_1 = a \text{ și } x_2 = b \text{ rădăcinile reale.} \end{aligned}$$

Problema 53

Găsiți toate tripletele de numere reale nenele

a, b, c pentru care numerele $\frac{a}{b} + \frac{b}{c}, \frac{b}{c} + \frac{c}{a}$ și $\frac{c}{a} + \frac{a}{b}$ sunt întregi.

Soluție

Fie $\frac{a}{b} + \frac{b}{c} = x, \frac{b}{c} + \frac{c}{a} = y$ și $\frac{c}{a} + \frac{a}{b} = z$ cu $x, y, z \in \mathbb{Z}$.

Fie $x + y + z = s$. Atunci:

$$\frac{a}{b} = \frac{s - 2y}{2}, \quad \frac{b}{c} = \frac{s - 2z}{2}, \quad \frac{c}{a} = \frac{s - 2x}{2}.$$

$$\text{Atunci: } (s - 2x)(s - 2y)(s - 2z) = 8 \frac{c}{a} \cdot \frac{a}{b} \cdot \frac{b}{c} = 8.$$

De aici $s - 2x, s - 2y$ și $s - 2z$ pot fi $(2, 2, 2); (2, -2, -2); (-2, 2, -2); (-2, -2, 2)$.

Deoarece $s - 2x + s - 2y + s - 2z = s$ se găsește $s = 6$ sau $s = -2$. Atunci:

$$(x, y, z) \in \{(2, 2, 2), (-2, 0, 0), (0, -2, 0), (0, 0, -2)\}.$$

Obținem de aici: $(a, b, c) \in \{(\pm r, \pm r, \pm r) | r \in \mathbb{R}^*\}$.

Problema 54

Rezolvați în mulțimea \mathbb{R} ecuația

$$\sqrt{x-1} + \sqrt[3]{2-x} = 1.$$

Soluție

Evident $x \geq 1$. Fie $a = \sqrt{x-1}$ și $b = \sqrt[3]{2-x}$. Atunci $a + b = 1$ și $a^2 + b^3 = 1$ de unde $(1-b)^2 + b^3 = 1$, adică: $b(b-1)(b+2) = 0$.

Dacă $b = 0 \Rightarrow a = 1 \Rightarrow x = 2$.

Dacă $b = 1 \Rightarrow a = 0 \Rightarrow x = 1$.

Dacă $b = -2 \Rightarrow a = 3 \Rightarrow x = 10$.

Așadar, ecuația are trei soluții reale: $x_1 = 2, x_2 = 1, x_3 = 10$.

Problema 55

Arătați că nu există $n \in \mathbb{N}^*$ astfel încât $n^5 - n + 1$ să se dividă cu $n^2 + n + 1$.

Soluție

Din $n^5 + n + 1 = n^5 - n^2 + n^2 + n + 1 = n^2(n^3 - 1) + n^2 + n + 1 = n^2(n-1)(n^2 + n + 1) + n^2 + n + 1 = (n^2 + n + 1)(n^3 - n^2 + 1)$ se obține $n^5 - n + 1 = (n^2 + n + 1)(n^3 - n^2 + 1) - 2n$ și de aici $n^2 + n + 1 | 2n$ care este fals deoarece $n^2 + n + 1 > 2n$ pentru $n \in \mathbb{N}^*(n^2 - n + 1 = n(n-1) + 1 \geq 1 > 0)$.

Problema 56

Fie $a, b, c \in \mathbb{N}^*$.

- a) Arătați că ecuația $x^a + y^b = 2z^{ab}$ are o infinitate de soluții numere naturale nenule.
- b) Arătați că ecuația $x^a + y^b + z^c = 3t^{abc}$ are o infinitate de soluții numere naturale nenule.
- Generalizare.

Soluție

a) Fie $z = k \in \mathbb{N}^* \Rightarrow x = k^b, y = k^a$ soluții.

b) Fie $t = k \in \mathbb{N}^* \Rightarrow x = k^{bc}, y = k^{ac}, z = k^{ab}$ soluții.

Generalizare. Dacă $a_1, a_2, \dots, a_n \in \mathbb{N}^*$ date ($n \geq 2$) rezultă că ecuația $x_1^{a_1} + x_2^{a_2} + \dots + x_n^{a_n} = ny^{a_1 \dots a_n}$ are o infinitate de soluții în \mathbb{N}^* .

Dacă $y = k \in \mathbb{N}^*$ și $p = a_1 \dots a_n$ rezultă că soluțiile vor fi:

$$x_1 = k^{\frac{p}{a_1}}, x_2 = k^{\frac{p}{a_2}}, \dots, x_n = k^{\frac{p}{a_n}}.$$

Problema 57

Fie p un număr prim, care nu este divizor al lui 140. Determinați numerele întregi x și y astfel încât

$$(2022x + y)^2 = px(1882x + y).$$

Soluție

Cum $p \mid (2022x + y)^2 \Rightarrow 2022x + y = pa, a \in \mathbb{Z}$ și de aici $p \mid x(1882x + y)$. Dacă $p \mid x$, din $p \mid 2022x + y \Rightarrow p \mid y$ iar dacă $p \mid 1882x + y$ obținem $p \mid 140x$ de unde $p \mid x$. Așadar, $x = px_1, y = py_1, b, c \in \mathbb{Z}$ și înlocuind în inegalitatea din enunț rezultă că $(2022x_1 + y_1)^2 = px_1(1882x_1 + y_1)$.

Se repetă raționamentul și se ajunge la concluzia că x și y se divid cu orice putere a lui p , de unde $x = y = 0$.

Problema 58

Arătați că numărul $A = 2^{30} + 1$ se divide cu 25.

Soluție

$$\begin{aligned} 2^{30} + 1 &= (2^{10})^3 + 1 = 1204^3 + 1 = \\ &= (M_{25} - 1)^3 + 1 = M_{25} - 1 + 1 = M_{25}. \end{aligned}$$

Problema 59

Există $x, y \in \mathbb{N}$ astfel încât

$$2^x + 2^y = 2022!?$$
 ($n! = 1 \cdot 2 \cdot 3 \cdots n$)

Soluție

Din $2^n \equiv r \pmod{7} \Rightarrow r \in \{1, 2, 4\} \Rightarrow$
 $\Rightarrow 2^x + 2^y \equiv r_1 \pmod{7}$ cu $r_1 \in \{2, 3, 4, 5, 6\}$. Cum $2022! \div 7 \Rightarrow$ că nu există $x, y \in \mathbb{N}$ cu proprietatea din enunț.

Problema 60

Găsiți numerele naturale x și y astfel încât

$$\frac{x+y}{2} - \sqrt{xy} = 1.$$

Soluție

Cum relația se scrie $(\sqrt{x} - \sqrt{y})^2 = 2 \Rightarrow$
 $\Rightarrow |\sqrt{x} - \sqrt{y}| = \sqrt{2}$. Dacă $x \geq y$ atunci $\sqrt{x} = \sqrt{2} + \sqrt{y} \Rightarrow$
 $\Rightarrow x = 2 + y + 2\sqrt{2y} \Rightarrow 2y = k^2, k \in \mathbb{N}$ de unde $y = 2l^2, l \in \mathbb{N}$
și $x = 2 + 2l^2 + 4l = 2(l+1)^2$.

Dacă $y > x$ găsim $x = 2l^2$ și $y = 2(l+1)^2$.

Problema 61

Arătați că există o infinitate de numere naturale astfel încât:

a) $\frac{x+y}{2} - \sqrt{xy} = 140$;

b) $\frac{x+y}{2} - \sqrt{xy} = 1882$;

c) $\frac{x+y}{2} - \sqrt{xy} = 2022$.

Soluție

a) $x = 2 \cdot 140k^2, y = 2 \cdot 140(k+1)^2, k \in \mathbb{N}$

b) $x = 2 \cdot 1882k^2, y = 2 \cdot 1882(k+1)^2, k \in \mathbb{N}$

c) $x = 2 \cdot 2022k^2, y = 2 \cdot 2022(k+1)^2, k \in \mathbb{N}$

Problema 62

Fie $f: \mathbb{R} \rightarrow \mathbb{R}, f(x) = ax^2 + bx + c$,

$a, b, c \in \mathbb{R}$ a.î. $f(0), f(1), f(2) \in \mathbb{Z}$. Arătați că:

a) $f(140) \in \mathbb{Z}$; b) $f(1882) \in \mathbb{Z}$; c) $f(2022) \in \mathbb{Z}$.

Soluție

$$\begin{aligned}
 & f(2) - 2f(1) + f(0) = \\
 & = 4a + 2b + c - 2a - 2b - 2c + c = 2a \Rightarrow 2a \in \mathbb{Z} \\
 & f(1) - f(0) = a + b + c - c = a + b \in \mathbb{Z} \\
 & f(0) = c \in \mathbb{Z} \\
 & f(140) = 140^2 a + 140b + c = (140^2 - 140)a + \\
 & + 140(a + b) + c \in \mathbb{Z} \text{ deoarece } 140^2 - 140 \text{ e număr par.} \\
 & f(1882) = 1882^2 a + 1882b + c = (1882^2 - 1882)a + \\
 & + 1882(a + b) + c \in \mathbb{Z} \text{ deoarece } 1882^2 - 1882 \text{ e număr par.} \\
 & f(2022) = 2022^2 a + 2022b + c = (2022^2 - 2022)a + \\
 & + 2022(a + b) + c \in \mathbb{Z} \text{ deoarece } 2022^2 - 2022 \text{ e număr par.}
 \end{aligned}$$

Problema 63

Fie $f: \mathbb{R} \rightarrow \mathbb{R}$ astfel încât $f(x+1) - f(x) = 3x^2 + 3x + 1$, $(\forall)x \in \mathbb{R}$.

Dacă $|f(x)| \leq 3$, $(\forall)x \in [0,1]$ arătați că:

$$|f(x)| \leq 4 + |x|^3 \quad (\forall)x \in \mathbb{R}.$$

Soluție

Fie $g: \mathbb{R} \rightarrow \mathbb{R}$, $g(x) = f(x) - x^3 \Rightarrow$
 $\Rightarrow g(x+1) - g(x) = f(x+1) - (x+1)^3 - f(x) + x^3 = 0$
 $\Rightarrow g$ e periodică de perioadă 1 $\Rightarrow |g(x)| \leq |f(x)| + |x|^3 \leq 4$,
 $(\forall)x \in [0,1] \Rightarrow |g(x)| \leq 4$, $(\forall)x \in \mathbb{R}$ și de aici
 $|f(x)| = |g(x) + x^3| \leq |g(x)| + |x|^3 \leq 4 + |x|^3$ c.c.t.d.

Problema 64

Aflați restul împărțirii polinomului
 $p = x^{2022} + x^{1882} + x^{140}$
la polinomul
 $q = x^2 + x + 1$.

Soluție

Fie $x^2 + x + 1 = (x - x_1)(x - x_2)$, $x_1 \neq x_2$.

Așadar $x_1^2 + x_1 + 1 = 0 \mid (x_1 - 1)$, $x_1 \neq 1 \Rightarrow x_1^3 = 1$. Atunci:

$$p(x_1) = x_1^{2022} + x_1^{1882} + x_1^{140} =$$

$$= (x_1^3)^{674} + x_1(x_1^3)^{627} + x_1^2(x_1^3)^{46} = 1 + x_1 + x_1^2 = 0 \Rightarrow$$

$$\Rightarrow x - x_1 \mid p \text{ și, analog, } x - x_2 \mid p.$$

Așadar $p : q \Rightarrow r = 0$.

Problema 65

Rezolvați în \mathbb{R} ecuația:

$$\sqrt{x^2 - 4x + 5} + \sqrt{3x^2 - 12x + 16} = -2x^2 + 8x - 5.$$

Soluție

Fie $y = x^2 - 4x + 5 \geq 1 > 0$

deoarece $(x - 2)^2 \geq 0 \Rightarrow \sqrt{y} + \sqrt{3y + 1} = -2y + 5 \Leftrightarrow$

$$\Leftrightarrow \sqrt{y} + \sqrt{3y + 1} + 2y - 5 = 0$$

Cum $f: [1, \infty) \rightarrow \mathbb{R}$, $f(y) = \sqrt{y} + \sqrt{3y + 1} + 2y - 5$ este strict crescătoare

$\Rightarrow f(y) = 0$ are cel mult o soluție.

Cum $f(1) = 0 \Rightarrow y = 1$ soluție unică \Rightarrow

$$\Rightarrow x^2 - 4x + 5 = 1 \Leftrightarrow (x - 2)^2 = 0 \Rightarrow x = 2 \text{ unica soluție.}$$

Problema 66

Rezolvați în \mathbb{R} ecuația:

$$\sqrt{x - 1} + \sqrt{3 - x} = x^2 - 4x + 6.$$

Soluție

Evident, $x \in [1, 3]$. Cum $x^2 - 4x + 6 =$

$$= (x - 2)^2 + 2 \geq 2 \Rightarrow \sqrt{x - 1} + \sqrt{3 - x} \geq 2 \mid ^2 \Rightarrow$$

$$\Rightarrow x - 1 + 3 - x + 2\sqrt{(x - 1)(3 - x)} \geq 4 \Rightarrow$$

$$\Rightarrow \sqrt{(x - 1)(3 - x)} \geq 1 \text{ sau } (x - 1)(3 - x) \geq 1 \Rightarrow$$

$$\Rightarrow -x^2 + 3x - 3 + x \geq 1 \Rightarrow$$

$$\Rightarrow 0 \geq x^2 - 4x + 4 = (x - 2)^2 \Rightarrow (x - 2)^2 = 0 \Rightarrow$$

$$\Rightarrow x = 2 \text{ singura soluție.}$$

Problema 67

Arătați că dacă $a, b, c > 0$ atunci

$$\frac{a^3}{b} + \frac{b^3}{c} + \frac{c^3}{a} \geq ab + bc + ca.$$

Soluție

Folosind inegalitatea lui Hölder, avem:

$$\begin{aligned} \frac{a^3}{b} + \frac{b^3}{c} + \frac{c^3}{a} &\geq \frac{(a+b+c)^3}{3(a+b+c)} = \frac{(a+b+c)^2}{3} \geq \\ &\geq \frac{3(ab+bc+ca)}{3} = ab + bc + ca. \end{aligned}$$

Problema 68

Fie a, b, c numere pozitive astfel încât $abc = 1$.

Arătați că: $a^2 + b^2 + c^2 + ab + bc + ca - a - b - c \geq 3$. În ce caz avem o egalitate?

Soluție

Deoarece $\frac{a^2 + b^2 + c^2}{3} \geq \left(\frac{a+b+c}{3}\right)^2$, avem:

$$\begin{aligned} a^2 + b^2 + c^2 + ab + bc + ca - a - b - c &= a^2 + b^2 + c^2 + \\ &+ \frac{(a+b+c)^2 - (a^2 + b^2 + c^2)}{2} - (a+b+c) = \\ &= \frac{a^2 + b^2 + c^2}{2} + \frac{(a+b+c)^2}{2} - (a+b+c) \geq \\ &\geq \frac{1}{2} \frac{(a+b+c)^2}{3} + \frac{(a+b+c)^2}{2} - (a+b+c) = \\ &= \frac{a+b+c}{3} [2(a+b+c) - 3] \geq \sqrt[3]{abc} (2 \cdot 3\sqrt[3]{abc} - 1) = 3. \end{aligned}$$

Egalitate avem pentru $a = b = c = 1$.

Problema 69

Fie $a, b, c \in \mathbb{R}$ a.î. $a + b + c = 1$. Arătați că:

$$a^2 + b^2 + c^2 + 1 \geq 4(ab + bc + ca).$$

Soluție

$$\begin{aligned} a^2 + b^2 + c^2 + (a + b + c)^2 &\geq 4(ab + bc + ca) \Leftrightarrow \\ \Leftrightarrow a^2 + b^2 + c^2 &\geq ab + bc + ca \end{aligned}$$

$$\text{Egalitate pentru } a = b = c = \frac{1}{3}.$$

Problema 70

Găsiți

$$x \in \mathbb{Z} \text{ a.î. } F = \frac{x^4 - 10x^2 + 9}{x^2 - 2x - 9} \text{ este număr prim.}$$

Soluție

$$\begin{aligned} F &= \frac{x^4 - x^2 - 9x^2 + 9}{(x-1)^2 - 4} = \frac{x^2(x^2-1) - 9(x^2-1)}{(x-3)(x-1)} = \\ &= \frac{(x^2-1)(x^2-9)}{(x-3)(x+1)} = (x-1)(x+3) \end{aligned}$$

$$x-1 = -1 \Rightarrow x = 0 \quad F = -3 < 0 \quad \text{F}$$

$$x-1 = 1 \Rightarrow x = 2 \quad F = 5 \quad \text{A}$$

$$x+3 = 1 \Rightarrow x = -2 \quad F = -3 < 0 \quad \text{F}$$

$$x+3 = -1 \Rightarrow x = -4 \quad F = 5 \quad \text{A}$$

$$\Rightarrow x \in \{-4, 2\}$$

Problema 71

Aflați

$$E = \frac{1}{x} + \frac{1}{y} \text{ știind că } x^3 + y^3 + 3x^2y^2 = x^3y^3.$$

Soluție

$$\begin{aligned}
 0 &= (xy)^3 + (-x)^3 + (-y)^3 - 3xy(-x)(-y) = \\
 &= (xy - x - y) \cdot (x^2y^2 + x^2 + y^2 + x^2y + xy^2 - xy) \\
 \text{I} \quad xy - x - y &= 0 |+1 \\
 (x - 1)(y - 1) &= 1 \\
 1 &\quad 1 \quad x = y = 2 \Rightarrow E = \frac{1}{x} + \frac{1}{y} = 1 \\
 -1 &\quad -1 \quad x = y = 0 \quad (\text{F}) \\
 \text{II} \quad x^2y^2 + x^2 + y^2 + x^2y + xy^2 - xy &= 0 \\
 \Rightarrow x = y = -xy, x = y &= -1 \\
 \Rightarrow E = \frac{1}{x} + \frac{1}{y} &= \frac{1}{-1} + \frac{1}{-1} = -2 \Rightarrow E \in \{-2, 1\}
 \end{aligned}$$

Problema 72

Arătați că dacă $a, b, c \geq 1$, atunci:

$$(abc + 2)(a + b + c) \geq 3(ab + bc + ca).$$

Soluție 1

$$\begin{aligned}
 (a - 1)(b - 1) &> 0 \Rightarrow ab \geq a + b - 1 \quad (1) \\
 3(ab + bc + ca) &\leq (a + b + c)^2 \\
 (abc + 2)(a + b + c) &\geq (a + b + c)^2 |:(a + b + c) > 0 \\
 abc + 2 &\geq a + b + c \\
 abc + 2 - a - b - c &\geq 0 \\
 abc - (a + b - 1) - c + 1 &\geq 0 \\
 \text{din (1)} \Rightarrow abc - (a + b - 1) - c + 1 &\geq abc - ab - c + 1 = \\
 = ab(c - 1) - (c - 1) &= (ab - 1)(c - 1) \geq 0 \\
 &\geq 0 \quad \geq 0 \quad \textcircled{A}
 \end{aligned}$$

Soluție 2

$$\begin{aligned}
 ab^2 + 2 &\geq a + 2b | \cdot c \Leftrightarrow (b - 1)[a(b + 1) - 2] \geq 0 \\
 ab^2c + 2c &\geq ac + 2bc \\
 \text{Analog } abc^2 + 2a &\geq ab + 2ac \\
 a^2bc + 2b &\geq bc + 2ab \\
 a^2bc + ab^2c + abc^2 + 2a + 2b + 2c &\stackrel{(+)}{\geq} 3ab + 3ac + 3bc \\
 (abc + 2)(a + b + c) &\geq 3(ab + bc + ca) \quad \text{c.c.t.d.}
 \end{aligned}$$

Problema 73

Fie $x, y > 0$. Arătați că:

$$\frac{x^2}{y} + \frac{y^2}{x} \geq \sqrt{2(x^2 + y^2)}.$$

Soluție

Avem de arătat că $(x^3 + y^3)^2 \geq 2x^2y^2(x^2 + y^2)$
 $x^3 + y^3 \geq 2\sqrt{x^3y^3}$, egalitate pentru $x = y$
 \Rightarrow Rămâne să arătăm că $x^3 + y^3 \geq \sqrt{xy}(x^2 + y^2) \Leftrightarrow$
 $\Leftrightarrow x^3 - x^2\sqrt{xy} + y^3 - y^2\sqrt{xy} \geq 0$, care se scrie:
 $x^2\sqrt{x}(\sqrt{x} - \sqrt{y}) - y^2\sqrt{y}(\sqrt{x} - \sqrt{y}) \geq 0$, adică:
 $(\sqrt{x} - \sqrt{y})[(\sqrt{x})^5 - (\sqrt{y})^5] \geq 0$
Avem: $(\sqrt{x} - \sqrt{y})^2[(\sqrt{x})^4 + (\sqrt{x})^3\sqrt{y} + (\sqrt{x})^2(\sqrt{y})^2 +$
 $+ \sqrt{x}(\sqrt{y})^3 + (\sqrt{y})^4] \geq 0 \quad \textcircled{A}$ cu egalitate pentru $x = y$

Problema 74

Demonstrați că pentru $a, b, c > 0$:

$$(a^2 + b^2 + c^2)\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right) \geq (a + b + c)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right).$$

Soluție 1

Desfăcând parantezele, obținem:

$$\frac{a^2}{b^2} + \frac{b^2}{a^2} + \frac{a^2}{c^2} + \frac{c^2}{a^2} + \frac{b^2}{c^2} + \frac{c^2}{b^2} \stackrel{?}{\geq} \frac{a}{b} + \frac{b}{a} + \frac{a}{c} + \frac{c}{a} + \frac{b}{c} + \frac{c}{b} \quad (1)$$

Arătăm că $\frac{x^2}{y^2} + \frac{y^2}{x^2} \geq \frac{x}{y} + \frac{y}{x}$ (2) |· 2 pentru $x, y > 0$

$$(1^2 + 1^2)\left[\left(\frac{x}{y}\right)^2 + \left(\frac{y}{x}\right)^2\right] \geq \left(\frac{x}{y} + \frac{y}{x}\right)^2 \geq 2\left(\frac{x}{y} + \frac{y}{x}\right) \Leftrightarrow$$

$$\Leftrightarrow \frac{x}{y} + \frac{y}{x} \geq 2$$

Folosind (2) obținem (1).

Soluție 2

$$\begin{aligned} 3(a^2 + b^2 + c^2) &\geq (a + b + c)^2 \\ 3\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right) &\geq \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)^2 \\ 9(a^2 + b^2 + c^2)\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right) &\geq (a + b + c)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \cdot (a + b + c)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \end{aligned}$$

Generalizare:

$$\begin{aligned} (x_1^2 + x_2^2 + \cdots + x_n^2)\left(\frac{1}{x_1^2} + \frac{1}{x_2^2} + \cdots + \frac{1}{x_n^2}\right) &\geq \\ \geq (x_1 + x_2 + \cdots + x_n)\left(\frac{1}{x_1} + \frac{1}{x_2} + \cdots + \frac{1}{x_n}\right) & \end{aligned}$$

Problema 75

Fie $a, b, c \in \mathbb{R}$ a.î. $a^2 + b^2 + c^2 = 3$.

Demonstrați că: $|a| + |b| + |c| - abc \leq 4$.

Soluție

$$\begin{aligned} \frac{a^2 + b^2 + c^2}{3} &\geq \sqrt[3]{a^2 b^2 c^2} \Rightarrow |abc| \leq 1 \\ -abc &\leq 1 \quad (1) \\ (|a| + |b| + |c|)^2 &\leq 3(a^2 + b^2 + c^2) = 9 \Rightarrow \\ \Rightarrow |a| + |b| + |c| &\leq 3 \quad (2) \end{aligned}$$

Din (1) și (2) rezultă c.c.t.d.

cu egalitate pentru $|a| + |b| + |c| = 1, abc = -1$

Problema 76

Găsiți cea mai mică valoare a expresiei $xy + yz + zx$ dacă $x^2 + y^2 + z^2 = 3(x + y + z)$.

Soluție

Notând $x + y + z = t$ avem:

$$\begin{aligned} xy + yz + zx &= \frac{t^2 - (x^2 + y^2 + z^2)}{2} = \frac{t^2 - 3t}{2} = \\ &= \frac{\left(t - \frac{3}{2}\right)^2 - \frac{9}{4}}{2} \geq -\frac{9}{8} \end{aligned}$$

Cea mai mică valoare este $-\frac{9}{8}$ și este atinsă pentru

$$x + y + z = \frac{3}{2}.$$

Problema 77

Fie $x_1, x_2, \dots, x_{2n+1}$ numere reale ($n \in \mathbb{N}^*$) astfel încât $x_1 + x_2 +$

$\dots + x_{2n+1} \geq x_1 x_2 \dots x_{2n+1}$. Arătați că:

$$x_1^{2n} + x_2^{2n} + \dots + x_{2n+1}^{2n} \geq x_1 x_2 \dots x_{2n+1}.$$

Soluție

Presupunem că $|x_1| > 1, |x_2| > 1, \dots, |x_{2n+1}| > 1$ atunci, deoarece $x_1^{2n} = |x_1|^{2n} > |x_1| > x_1$ și, analog,

$x_2^{2n} > x_2, \dots, x_{2n+1}^{2n} > x_{2n+1}$, obținem:

$$x_1^{2n} + x_2^{2n} + \dots + x_{2n+1}^{2n} > x_1 + x_2 + \dots + x_{2n+1} \geq$$

$\geq x_1 x_2 \dots x_{2n+1}$ de unde

$$x_1^{2n} + x_2^{2n} + \dots + x_{2n+1}^{2n} \geq x_1 x_2 \dots x_{2n+1}.$$

Presupunem acum că cel puțin unul dintre numerele $|x_1|$,

$|x_2|, \dots, |x_{2n+1}|$ să zicem $|x_{2n+1}|$ are proprietatea $|x_{2n+1}| \leq 1$.

Atunci $x_1^{2n} + x_2^{2n} + \dots + x_{2n}^{2n} + x_{2n+1}^{2n} \geq$

$$\geq x_1^{2n} + x_2^{2n} + \dots + x_{2n}^{2n} \geq 2n^{2n} \sqrt{(x_1 x_2 \dots x_{2n})^{2n}} =$$

$$= 2n|x_1 x_2 \dots x_{2n}| \geq |x_1 x_2 \dots x_{2n}| \geq |x_1 x_2 \dots x_{2n} x_{2n+1}| \geq$$

$\geq x_1 x_2 \dots x_{2n+1}$ adică

$$x_1^{2n} + x_2^{2n} + \dots + x_{2n+1}^{2n} \geq x_1 x_2 \dots x_{2n+1}.$$

Problema 78

Fie $x, y, z \in \mathbb{R}$ astfel încât $x + y + z = 0$.

Arătați că: $x^2y^2 + y^2z^2 + z^2x^2 + 3 \geq 6xyz$.

Soluție

Avem de arătat că

$$\begin{aligned} & x^2y^2 + y^2z^2 + z^2x^2 + 3 - 6xyz + (x + y + z)^2 - \\ & -(x + y + z) \geq 0 \text{ care se scrie:} \\ & (x^2y^2 + z^2 + 1 + 2xy - 2z - 2xyz) + \\ & +(y^2z^2 + x^2 + 1 + 2yz - 2x - 2xyz) + \\ & +(x^2z^2 + y^2 + 1 + 2xz - 2y - 2xyz) \geq 0 \text{ adică} \\ & (xy - z + 1)^2 + (yz - x + 1)^2 + (zx - y + 1)^2 \geq 0 \end{aligned}$$

Problema 79

Demonstrați că dacă $x + y + z \geq 3$, atunci:

$$\frac{x}{2x + yz} + \frac{y}{2y + zx} + \frac{z}{2z + xy} \leq 1.$$

Soluție

Scăzând $\frac{3}{2}$ din fiecare membru, ecuația se transformă în:

$$S = \frac{yz}{2x + yz} + \frac{xz}{2y + zx} + \frac{xy}{2z + xy} \geq 1.$$

Acest lucru se arată folosind Inegalitatea Titu Andreescu:

$$S \geq \frac{(xy + yz + zx)^2}{6xyz + x^2y^2 + y^2z^2 + z^2x^2}$$

Trebuie să arătăm că $m_d \geq 1$, echivalent cu

$$6xyz \leq 2xyz(x + y + z).$$

Ajungem la $x + y + z \geq 3$, ceea ce e adevărat.

Problema 80

Fie $x, y \in \mathbb{R}$ astfel încât $x - y = 1$. Aflați cea mai mică valoare a expresiei $E(x, y) = x^3 - y^3 - xy$ precum și valorile lui x și y pentru care este atins acest minim.

Soluție

$$\begin{aligned} E(x, y) &= (x - y)(x^2 + xy + y^2) - xy = \\ &= x^2 + xy + y^2 - xy = x^2 + y^2 = (y + 1)^2 + y^2 = \\ &= 2y^2 + 2y + 1 = 2\left(y + \frac{1}{2}\right)^2 + \frac{1}{2} \geq \frac{1}{2}. \text{ Cea mai mică valoare} \\ &\text{este } \frac{1}{2} \text{ atinsă pentru } y = -\frac{1}{2} \text{ și } x = \frac{1}{2}. \end{aligned}$$

Problema 81

Fie $a, b, c \in \mathbb{R}$ astfel încât

$$|(a - b)(b - c)(c - a)| = 3.$$

Găsiți cea mai mică valoare a expresiei: $|a| + |b| + |c|$.

Soluție

Presupunem, fără a restrânge din generalitate,

$a \geq b \geq c$ și avem:

$$3 = (a - b)(b - c)(c - a) \leq \left(\frac{a - b + b - c}{2}\right)^2 (a - c) =$$

$$= \frac{(a - c)^3}{4} \text{ de unde } a - c \geq \sqrt[3]{12}. \text{ Deoarece}$$

$$|a| + |b| + |c| \geq |a - c| + |b| \geq \sqrt[3]{12} + 0 = \sqrt[3]{12}.$$

Pentru ca minimul expresiei $|a| + |b| + |c|$ să fie $\sqrt[3]{12}$ va trebui să fie atins $a - c = \sqrt[3]{12}$. Evident $b = 0$ și $|a - c| = \sqrt[3]{12} \Rightarrow$

$$\Rightarrow |a| + |-c| + |a - c| = 3 \Rightarrow \text{și } ac = \frac{3}{\sqrt[3]{12}} \text{ de unde}$$

$$a = \frac{\sqrt[3]{12}}{2}, c = -\frac{\sqrt[3]{12}}{2}. \text{ Așadar minimul cerut este } \sqrt[3]{12} \text{ atins}$$

$$\text{pentru } a = \frac{\sqrt[3]{12}}{2}, b = 0, c = -\frac{\sqrt[3]{12}}{2}.$$

Problema 82

Fie:

$$x = \sum_{k=p}^n k^{2(k+1)^2} \sqrt{2(k+1)}, \text{ unde } p \in \mathbb{N}^*.$$

Să se calculeze $[x]$ (partea întreagă a numărului real x) și să se arate că $\{x\} < \frac{1}{p^2}$, unde $\{x\}$ reprezintă partea fracționară a numărului real x .

Soluție

Din inegalitatea lui Bernoulli:

$$\begin{aligned} \left(1 + \frac{2k+1}{k^2(k+1)^2}\right)^{k^2(k+1)^2} &> 1 + \frac{2k+1}{k^2(k+1)^2} \cdot k^2(k+1)^2 = \\ &= 2k+2 = 2(k+1) \Rightarrow \\ \Rightarrow 1 + \frac{2k+1}{k^2(k+1)^2} &> \sqrt[k^2(k+1)^2]{2(k+1)} > 1 \\ (\text{deoarece } 2(k+1) > 1) \Rightarrow \\ \Rightarrow \sum_{k=p}^n \left(1 + \frac{2k+1}{k^2(k+1)^2}\right) &> x > \sum_{k=p}^n 1 = n-p+1, \text{ adică} \\ n-p+1 + \sum_{k=p}^n \left(\frac{1}{k^2} - \frac{1}{(k+1)^2}\right) &> x > n-p+1 \text{ sau} \\ n-p+1 + \frac{1}{p^2} - \frac{1}{(n+1)^2} &> n-p+1 \text{ de unde} \\ n-p+1 + \frac{1}{p^2} &> x > n-p+1 \text{ și de aici} \\ [x] = n-p+1 \text{ și } \{x\} < \frac{1}{p^2} & \end{aligned}$$

Problema 83

Fie $x, y, z > 0$ astfel încât:

$$x^2y^2 + y^2z^2 + z^2x^2 + (xyz)^3 = 4.$$

Arătați că $x^2 + y^2 + z^2 \geq 3$. În ce caz avem egalitate?

Soluție

Aveam $4 = x^2y^2 + y^2z^2 + z^2x^2 + (xyz)^3 \geq 4\sqrt[4]{(x^2y^2)(y^2z^2)(z^2x^2)(xyz)^3} = 4\sqrt[4]{(xyz)^7} \Rightarrow$
 $\Rightarrow 4\sqrt[4]{(xyz)^7} \leq 1 \Rightarrow (xyz)^7 \leq 1$ de unde $xyz < 1$ (1)
 cu egalitate pentru $x^2y^2 = y^2z^2 = z^2x^2 = (xyz)^3$
 Din $x^2y^2 = y^2z^2 = z^2x^2 \Rightarrow x^2 = y^2 = z^2 \Rightarrow x = y = z$ și atunci
 din $x^2y^2 = (xyz)^3 \Rightarrow x^4 = x^9 \Rightarrow x^5 = 1$, de unde
 $x = y = z = 1$. Aveam acum
 $x^2y^2 + y^2z^2 + z^2x^2 = 4 - (xyz)^3$ (din (1)) și apoi
 $(x^2 + y^2 + z^2)^2 \geq 3(x^2y^2 + y^2z^2 + z^2x^2) \geq 3 \cdot 3$ adică
 $x^2 + y^2 + z^2 \geq 3$ cu egalitate pentru $x = y = z = 1$

Problema 84

Fie $a, b, c > 0$. Arătați că:

$$a + b + c + \frac{3}{ab + bc + ca} \geq \frac{9}{2}\sqrt[3]{\frac{2}{3}}.$$

În ce caz avem egalitate?

Soluție

Cum $(a + b + c)^2 \geq 3(ab + bc + ca)$ cu egalitate când $a = b = c$ (1)
 și notând $ab + bc + ca = x$ avem

$a + b + c \geq \sqrt{3x}$. Notând cu M membrul stâng, avem:

$$M \geq \sqrt{3x} + \frac{3}{x} = \frac{\sqrt{3x}}{2} + \frac{\sqrt{3x}}{2} + \frac{3}{x} \stackrel{\text{medii}}{\geq}$$

$$\geq 3\sqrt[3]{\frac{(\sqrt{3x})^2}{4} \cdot \frac{3}{x}} = 3\sqrt[3]{\frac{9}{4}} = 3\sqrt[3]{\frac{27}{8} \cdot \frac{2}{3}} = \frac{9}{2}\sqrt[3]{\frac{2}{3}}$$

Minimul este atins pentru $\frac{\sqrt{3x}}{2} = \frac{3}{x} \Rightarrow 3x^3 = 36 \Rightarrow x^3 = 12 \Rightarrow x = \sqrt[3]{12}$ și din (1) $\Rightarrow 3a^2 = \sqrt[3]{a^2} \Rightarrow$

$$\Rightarrow a = b = c = \sqrt[6]{\frac{4}{9}} = \sqrt[3]{\frac{2}{3}} \Rightarrow a^2 = b^2 = c^2 = \sqrt[3]{\frac{4}{9}}.$$

Așadar, avem egalitate pentru $a = b = c = \sqrt[3]{\frac{2}{3}}$.

Problema 85

Aflați cea mai mică valoare a expresiei a expresiei $(x+y)(y+3)$ dacă x și y sunt numere strict pozitive și $xy(x+y+3) = 27$. Determinați valorile lui x și y pentru care este atins acel minim.

Soluție

$$\begin{aligned} E(x,y) &= xy + 3x + y^2 + 3y = y(x+y+3) + 3x = \\ &= \frac{27}{x} + 3x \geq 2\sqrt{\frac{27}{x} \cdot 3x} = 18. \text{ Cea mai mică valoare este } 18, \\ \text{atinsă pentru } \frac{27}{x} &= 3x \Rightarrow x = 9 \text{ și } 9y(9+y+3) = 27 \Rightarrow \\ \Rightarrow y^2 + 12y - 3 &= 0 \Rightarrow y_{1,2} = \frac{-12 \pm \sqrt{144 + 4 \cdot 3}}{2} = \\ &= \frac{-12 \pm 2\sqrt{39}}{2} = -6 \pm \sqrt{39}. \text{ Convine } y = \sqrt{39} - 6. \end{aligned}$$

Problema 86

Fie $x \in \mathbb{R}$. Arătați că:

$$\left(\frac{x^2 + x + 1}{3}\right)^3 \geq x^2 \left(\frac{x+1}{2}\right)^2. \text{ În ce caz avem egalitate?}$$

Soluție

Fie $x^2 + x = y$. Inegalitatea se scrie:

$$\left(\frac{y+1}{3}\right)^3 \geq \frac{y^2}{4} \text{ sau } 4y^3 + 12y^2 + 12y + 4 - 27y^2 \geq 0 \\ 4y^3 - 15y^2 + 12y + 4 \geq 0 \text{ sau } (y-2)^2(4y+1) \geq 0.$$

$$\begin{aligned} \text{Cum } 4y + 1 &= 4x^2 + 4x + 1 = (2x + 1)^2 \Rightarrow \\ \Rightarrow (x^2 + x - 2)^2(2x + 1)^2 &\geq 0. \end{aligned}$$

$$\text{Egalitate avem pentru } x = -2, x = \frac{-1}{2} \text{ sau } x = 1.$$

Problema 87

Arătați că:

$$x^{12} - x^9 + x^4 - x + 1 > 0, \forall x \in \mathbb{R}.$$

Soluție

Avem

$$\begin{aligned} x^{12} - x^9 + x^4 - x + 1 &= \left(x^6 - \frac{1}{2}x^3 - \frac{1}{2}\right)^2 + \frac{3}{4}\left(x^3 - \frac{1}{3}\right)^2 + \\ &+ \left(x^2 - \frac{1}{2}\right)^2 + \left(x - \frac{1}{2}\right)^2 \geq \frac{1}{6} > 0. \end{aligned}$$

Problema 88

Fie $a, b, c > 0$. Arătați că:

$$a^3 + b^3 + c^3 - 3abc \geq 2\left(\frac{b+c}{2} - a\right)^3.$$

Soluție

$$\begin{aligned} a^3 + b^3 + c^3 - 3abc - 2\left(\frac{b+c}{2} - a\right)^3 &= \frac{3}{4}(b+c)(b-c)^2 + \\ + \frac{3}{2}a(a-b)^2 + \frac{3}{2}a(a-c)^2 &\geq 0 \Rightarrow \\ \Rightarrow a^3 + b^3 + c^3 - 3abc &\geq 2\left(\frac{b+c}{2} - a\right)^3. \end{aligned}$$

Problema 89

Fie $n \in \mathbb{N}$. Arătați că:

$$\left| \{\sqrt{n}\} - \frac{1}{2} \right| > \frac{1}{8\sqrt{n} + 3},$$

unde $\{a\}$ reprezintă partea fracționară a numărului real a .

Soluție

Fie $\lfloor \sqrt{n} \rfloor = k$. Atunci:

$$\begin{aligned} \left| \{\sqrt{n}\} - \frac{1}{2} \right| &= \frac{1}{2} \cdot |2k + 1 - 2\sqrt{n}| = \frac{1}{2} \cdot \frac{|4k^2 + 4k + 1 - 4n|}{2k + 1 + 2\sqrt{n}} \geq \\ &\geq \frac{1}{2} \cdot \frac{1}{2k + 1 + 2\sqrt{n}} \geq \frac{1}{2} \cdot \frac{1}{4\sqrt{n} + 1} > \frac{1}{8\sqrt{n} + 3} \text{ deoarece} \\ |4k^2 + 4k + 1 - 4n| &\geq 1 \text{ (} 4k^2 + 4k + 1 \text{ este impar iar } 4n \text{ par) } \\ \text{și } k &\leq \sqrt{n}. \end{aligned}$$

Problema 90

Aflați cea mai mică și cea mai mare valoare a

$$\text{expresiei } E(x, y) = \frac{-4x^2 + 3xy}{x^2 + y^2} \text{ unde } x \text{ și } y \text{ nu pot fi zero simultan.}$$

Soluție

Presupunem $x \neq 0$ și

$$\begin{aligned} E(x, y) &= \frac{-4 + 3\frac{y}{x}}{1 + \frac{y^2}{x^2}} \text{ și notând } \frac{y}{x} = t \text{ avem } \frac{-4 + 3t}{1 + t^2} = z \in \mathbb{R} \Rightarrow \\ \Rightarrow zt^2 - 3t + z + 4 &= 0 \text{ cu } \Delta = -4z^2 - 16z + 9 \leq 0 \Rightarrow \\ \Rightarrow z = \left[-\frac{9}{2}, \frac{1}{2} \right]. \end{aligned}$$

Cea mai mică valoare este $-\frac{9}{2}$ iar cea mai mare $\frac{1}{2}$.

Problema 91

Fie $x, y \in \mathbb{R}$ astfel încât $1 \leq x^2 + y^2 \leq 2$. Aflați cea mai mică și cea mai mare valoare a expresiei

$$x^2 + y^2 + xy.$$

Soluție

Fie $x = r \cos t$ și $y = r \sin t$, cu $t \in [0, 2\pi)$. Atunci

$$1 \leq r^2 \leq 2 \text{ și } x^2 + y^2 + xy = r^2 \left(1 + \frac{1}{2} \sin 2t\right).$$

Cum $\frac{1}{2} \leq 1 + \frac{1}{2} \sin 2t \leq \frac{3}{2}$ rezultă $\frac{1}{2} \leq x^2 + y^2 + xy \leq 3$.

Valoarea $\frac{1}{2}$ este atinsă pentru $x = \frac{\sqrt{2}}{2}, y = -\frac{\sqrt{2}}{2}$ iar valoarea 3 este atinsă pentru $x = y = 1$.

Problema 92

Fie a, b, c, d numere reale din intervalul $\left[\frac{1}{\sqrt{2}}, +\infty\right)$.

Arătați că $a^2 b^2 c^2 d^2 + a^2 + b^2 + c^2 + d^2 \geq 4abcd + 1$.

În ce caz avem egalitate?

Soluție

$$\begin{aligned} \text{Deoarece } a^2 + b^2 + c^2 + d^2 &\geq 4\sqrt[4]{a^2 b^2 c^2 d^2} = \\ &= 4\sqrt{abcd} \text{ vom arăta că } a^2 b^2 c^2 d^2 + 4\sqrt{abcd} \geq 4abcd + 1. \end{aligned}$$

Fie $x = \sqrt{abcd} \Rightarrow x \geq \sqrt{\left(\frac{1}{\sqrt{2}}\right)^4} = \frac{1}{2}$ și avem de arătat că:

$$(1) x^4 + 4x - 4x^2 - 1 \geq 0 \text{ sau:}$$

$$x^4 - 1 - 4x(x - 1) \geq 0; (x - 1)(x^3 + x^2 + x + 1 - 4x) \geq 0$$

$$\text{sau } (x - 1)(x^3 + x^2 - 3x + 1) \geq 0 \text{ de unde}$$

$$(x - 1)[x^3 - x + (x - 1)^2] \geq 0, \text{ adică}$$

$$(x - 1)^2(x^2 + 2x - 1) \geq 0 \text{ adevarată, deoarece}$$

$$x^2 + 2x - 1 \geq \frac{1}{4} + 2 \cdot \frac{1}{2} - 1 = \frac{1}{4} > 0.$$

Egalitate în (1) avem pentru $x = 1$, adică $abcd = 1$.

Egalitate în inegalitatea din enunț vom avea (deoarece am aplicat inegalitatea dintre media aritmetică și cea geometrică) pentru $a^2 = b^2 = c^2 = d^2$ și $abcd = 1$, adică $a = b = c = d = 1$.

Problema 93

Punctul L se află în interiorul triunghiului isoscel ABC astfel încât $AB = BC = CL$ și $\widehat{LAC} = 30^\circ$.

Găsiți măsura unghiului \widehat{ALB} .

Soluție

Fie BD înălțimea triunghiului, $D \in AC$ și

$BD \cap AL = \{N\}$. Avem:

$$\widehat{LNC} = \widehat{LNB} = \widehat{BNC} = 120^\circ$$

Atunci:

$$\triangle LNC \equiv \triangle BNL \Rightarrow NL = BN.$$

Așadar $\triangle BNL$ este isoscel și

$$\widehat{NLB} = 30^\circ. \text{ De aici:}$$

$$\widehat{ALB} = 150^\circ$$

Problema 94

Se consideră $\triangle ABC$ cu $BC = a$, $AC = b$ și $AB = c$. Fie P și Q proiecțiile vârfului C pe bisectoarele interioare ale unghiurilor A , respectiv B . Determinați, în funcție de a , b , c , lungimea segmentului PQ .

Soluție

Fie $CP \cap AB = \{P_1\}$ și $CQ \cap AB = \{Q_1\}$.

Cum AP e înălțime și bisectoare în $\triangle AP_1C \Rightarrow AP_1 = AC = b$ și P este mijlocul lui CP_1 .

Analog, Q este mijlocul lui CQ_1 .

Atunci QP este linie mijlocie în

$$\triangle P_1Q_1C \text{ și } PQ = \frac{1}{2}P_1Q_1.$$

$$\begin{aligned} \text{Avem } PQ_1 &= AP_1 + BQ_1 - AB = \\ &= a + b + c, \text{ de unde} \\ PQ &= 1/2(a + b + c) \end{aligned}$$

Problema 95

Linia mijlocie MN a trapezului $ABCD$ ($AB \parallel CD$) intersectează diagonala AC în K și diagonala BD în L . Știind că patrulaterul $KLCD$ este pătrat de latură 4 cm, aflați aria trapezului.

Soluție

Evident, $CD = 4\text{cm}$ și cum

$$KL = \frac{AB - CD}{2} = 4\text{cm} \Rightarrow AB = 12\text{cm}.$$

Înălțimea trapezului este $2DK = 8\text{cm}$ și, de aici, aria trapezului este:

$$\frac{(4 + 12)8}{2} = 64\text{cm}^2$$

Problema 96

Aflați aria unui triunghi ABC dacă $AB = 3$, $BC = 7$ și mediana $BD = 4$.

Soluție

Din teorema medianei

$$BD^2 = \frac{2(AB^2 + BC^2) - AC^2}{4} \Rightarrow AC^2 = 52$$

Din formula lui Heron

$$S^2 = p(p - a)(p - b)(p - c) = \frac{1}{16}(a + b + c)(-a + b + c) \cdot$$

$$\cdot (a - b + c)(a + b - c) = \frac{1}{16}(2a^2b^2 + 2b^2c^2 + 2c^2a^2 - a^4 - b^4 - c^4). \text{ Deoarece } a^2 = BC^2 = 7^2, b^2 = AC^2 = 5^2, AB^2 = c^2 = 9, \text{ înlocuind, găsim:}$$

$$S^2 = \frac{1}{16}(2 \cdot 49 \cdot 52 + 2 \cdot 52 \cdot 9 + 2 \cdot 9 \cdot 49 - 2401 - 2704 - 81) \Rightarrow \\ \Rightarrow S^2 = \frac{1}{16} \cdot 1728 = 108 \text{ de unde } S = 6\sqrt{3}.$$

Problema 97

Bisectoarele AM și BN , cu $M \in BC, N \in AC$, se intersectează în punctul I . Știind că $MINC$ inscriptibil, aflați:

a) \widehat{ABC} ;

b) Unghiiurile $\triangle MIN$.

Soluție

a) Deoarece $MINC$ inscriptibil $\Rightarrow \widehat{MIN} + \widehat{ACB} = 180^\circ$

$$\text{dar } \widehat{MIN} = 180^\circ - \frac{\widehat{A} + \widehat{B}}{2} \Rightarrow \widehat{C} + 180^\circ - \frac{\widehat{A} + \widehat{B}}{2} = 180^\circ$$

$$2\widehat{C} = \widehat{A} + \widehat{B} \Rightarrow \text{cum } \widehat{A} + \widehat{B} + \widehat{C} = 180^\circ \Rightarrow \widehat{C} = 60^\circ$$

$$\text{b) } \widehat{MIN} = 180^\circ - \widehat{C} = 120^\circ$$

$$\text{și } \widehat{IMN} = \widehat{ICN} = \frac{\widehat{C}}{2} = 30^\circ \text{ și } \widehat{INM} = 180^\circ - 120^\circ - 30^\circ = 30^\circ.$$

Problema 98

Se dă un triunghi ABC . Înălțimile AA_1 , ($A_1 \in BC$), BB_1 , ($B_1 \in AC$) se întâlnesc în H și $\widehat{AHB} = 150^\circ$.

a) Găsiți \widehat{ACB} .

b) Dacă M este mijlocul lui CH determinați măsura $\widehat{A_1MB_1}$.

c) Demonstrați că $CH = 2A_1B_1$.

Soluție

- a) Patrulaterul CB_1HA_1 este inscriptibil și atunci $\widehat{ACB} = 30^\circ$.
- b) $\triangle MA_1C$ și $\triangle MB_1C$ sunt isoscele (B_1M și A_1M sunt mediane în triunghiuri dreptunghice). Unghiul $\widehat{A_1MB_1}$ va avea 60° .
- c) $\triangle A_1MB_1$ fiind isoscel cu un unghi de 60° este echilateral și de aici imediat concluzia.

Problema 99

Arătați că în orice triunghi:

$$\frac{1}{m_a^2} + \frac{1}{m_b^2} + \frac{1}{m_c^2} \leq \frac{1}{r_a r_b} + \frac{1}{r_b r_c} + \frac{1}{r_c r_a},$$

unde m_a, m_b, m_c sunt lungimile medianelor, iar r_a, r_b, r_c razele cercurilor exinscrise triunghiului.

Soluție

Avem

$$m_a^2 = \frac{2(b^2 + c^2) - a^2}{4} \geq \frac{(b+c)^2 - a^2}{4} = p(p-a)$$

și analoge. Atunci:

$$\begin{aligned} \sum \frac{1}{m_a^2} &\leq \sum \frac{1}{p(p-a)} = \frac{\Sigma(p-b)(p-c)}{p(p-a)(p-b)(p-c)} = \\ &= \frac{\Sigma(p-b)(p-c)}{S^2} = \sum \frac{(p-b)}{S} \cdot \frac{(p-c)}{S} = \sum \frac{1}{r_b} \cdot \frac{1}{r_c} \end{aligned}$$

deoarece se cunoaște $r_a = \frac{s}{p-a}$, $r_b = \frac{s}{p-b}$, $r_c = \frac{s}{p-c}$.

Problema 100

Fie H ortocentrul triunghiului ABC . Dacă $CH = AB$ și $BH = AC$, aflați unghiurile $\triangle ABC$.

Soluție

Fie $AH \cap BC = \{D\}$ și
 $BH \cap AC = \{E\}$ și
 $CH \cap AB = \{F\}$.
 $\Rightarrow \overline{BAD} = \overline{FCD} \Rightarrow \angle CHD = \angle ABD$
 $\Rightarrow CD = AD \Rightarrow \angle ACD = 45^\circ$
 $(\triangle ADC$ dreptunghic isoscel)
 Analog: $\angle ABC = 45^\circ$
 $\Rightarrow m(\widehat{BAC}) = 90^\circ$

Problema 101

Se consideră pătratul $ABCD$ și triunghiul echilateral BFE cu $AB = a$, $BE = b$ astfel încât punctele A, B, E coliniare în această ordine și punctul F să fie situat în același semiplan determinat de dreapta AB și punctul C . Determinați în funcție de a și b aria $\triangle HGB$, unde $DE \cap BC = \{H\}$, $DE \cap BF = \{G\}$.

Soluție

$ABCD$ pătrat $\Rightarrow DC \parallel AB \Rightarrow DC \parallel BE$ (A, B, E coliniare)

Din T. F A $\triangle DCH \sim \triangle EHB$

$$\Rightarrow \frac{CH}{HB} = \frac{DC}{BE} = \frac{a}{b}$$

$$\frac{CH + HB}{HB} = \frac{a + b}{b} \Rightarrow \frac{a}{HB} = \frac{a + b}{b} \text{ I} \Rightarrow HB = \frac{ab}{a + b}$$

Fie $GI \perp HB$ cu $I \in (BH)$. Atunci în $\triangle GIB$ dreptunghic

$$m(\widehat{IBG}) = 180^\circ - m(\widehat{ABC}) - m(\widehat{FBE}) =$$

$$= 180^\circ - 90^\circ - 60^\circ = 30^\circ \Rightarrow GI = \frac{BG}{2}$$

Dacă $GI = x \Rightarrow BG = 2x \Rightarrow BI^2 = 4x^2 - x^2 = 3x^2$, $BI = x\sqrt{3}$

$\widehat{HBE} = 180^\circ - \widehat{ABC} = 90^\circ \Rightarrow EB \perp CB$, $GI \perp BC \Rightarrow IG \parallel BE$.

$$\text{Din TFA} \Rightarrow \triangle HIG \sim \triangle HBE \Rightarrow \frac{IG}{BE} = \frac{HI}{HB} \Rightarrow$$

$$\Rightarrow \frac{x}{b} = \frac{\frac{ab}{a+b} - x\sqrt{3}}{\frac{ab}{a+b}}$$

$$\text{Din calcule obținem } abx = ab^2 - \sqrt{3}b(a-b)x \Rightarrow$$

$$\Rightarrow x = \frac{ab}{a + (a+b)\sqrt{3}} \Rightarrow$$

$$\Rightarrow A_{\triangle HGB} = \frac{HB \cdot GI}{2} = \frac{(ab)^2}{2(a+b)[a + (a+b)\sqrt{3}]}$$

Problema 102

În triunghiul dreptunghic ABC proiecția lui A pe ipotenuza BC este punctul D. E este mijlocul lui AD și AC ∩ BE = {F}. Dacă BD = a și CD = b, calculați lungimea segmentului BF.

Soluție

Din teorema înălțimii

$$AD^2 = a \cdot b \text{ de unde}$$

$$AD = \sqrt{ab}$$

$$\Rightarrow ED = \frac{\sqrt{ab}}{2} \text{ și atunci}$$

$$\begin{aligned} BE &= \sqrt{a^2 + \frac{ab}{4}} = \\ &= \frac{1}{2}\sqrt{a(4a+b)} \end{aligned}$$

Prin D ducem o paralelă DG la BF ($G \in AC$). Dacă $EF = x$, cum EF e linie mijlocie în $\triangle ADG \Rightarrow DG = 2x$.

Acum, din asemănarea triunghiurilor $\triangle DGC$ și $\triangle BFC$

$$\Rightarrow \frac{BF}{DG} = \frac{BC}{DC} \text{ sau } \frac{\frac{1}{2}\sqrt{a(4a+b)} + x}{2x} = \frac{a+b}{b} \text{ și de aici}$$

$$x = \frac{b\sqrt{a(4a+b)}}{2(2a+b)} \text{ de unde}$$

$$BF = BE + EF = \frac{(a+b)\sqrt{a(4a+b)}}{2a+b}$$

Problema 103

Fie M mijlocul lui BC , P și Q pe AB astfel încât $AP = PQ = QB$ în $\triangle ABC$. Dacă $\widehat{PMQ} = 90^\circ$, demonstrați că:

$$AC = \frac{AB}{3}.$$

Soluție

Fie N mijlocul lui PQ . Atunci MN linie mijlocie în $\triangle BAC \Rightarrow MN = \frac{AC}{2}$. Dar MN e și mediană în triunghiul

$$\text{dreptunghic} \Rightarrow MN = \frac{PQ}{2} = \frac{AB}{6} \Rightarrow \frac{AC}{2} = \frac{AB}{6}, \text{ adică } AC = \frac{AB}{3}.$$

Problema 104

În $\triangle ABC$ ascuțitunghic înălțimea AA' este cea mai mare dintre cele 3 ale triunghiului și este egală cu mediana BM . Arătați că $m(\widehat{ABC}) < 60^\circ$.

Soluție

Ducem $ML \perp AB, L \in (AB)$ și

$MK \perp (BC), K \in (BC)$

$$\Rightarrow MK = \frac{1}{2}AA' \text{ și cum } BM =$$

$AA' \Rightarrow$

$$\Rightarrow MK = \frac{1}{2}BM \Rightarrow m(MBK) = 30^\circ$$

$$LM = \frac{1}{2}CC'$$

Cum înălțimea AA' e cea mai mare \Rightarrow

$$\Rightarrow ML < \frac{1}{2}BM \Rightarrow m(\widehat{ABM}) < 30^\circ \text{ și } m(\widehat{ABC}) < 60^\circ$$

Problema 105

Fie $ABCD$ un trapez cu bazele $AB = 2b$, $CD = 2a$ ($b > a$) și M mijlocul segmentului AB iar N mijlocul segmentului CD . Dacă $MN = b - a$, arătați că \widehat{ADB} nu poate fi un unghi drept.

Soluție

Se cunoaște că în trapez M, N și P , intersecția laturilor neparalele AD și BC , sunt coliniare.

Cum $\triangle PDN \sim \triangle PAM$, notând

$$PN = x \text{ avem } \frac{DN}{AM} = \frac{PN}{PM} \text{ sau}$$

$$\frac{a}{b} = \frac{x}{x + b - a} \text{ adică}$$

$$ax + ab - a^2 = bx \Rightarrow \\ \Rightarrow x(b - a) = a(b - a)$$

atunci $x = a$. Cum $PN = a$ în

triunghiul DPC mediana PN este jumătatea lui DC atunci $\triangle DPC$ este dreptunghic în P . Dacă și unghiul \widehat{ADB} ar fi dreptunghic atunci din B am coborî două perpendiculare pe AD cea ce este absurd.

Problema 106

Fie $\triangle ABC$ ascuțitunghic și AD, BE și CF înălțimile sale, iar H ortocentrul.

Arătați că:

$$AD \cdot AH + BE \cdot BH + CF \cdot CH \geq \frac{(a + b + c)^2}{6},$$

unde $a = BC$, $b = AC$ și $c = AB$.

În ce caz avem egalitate?

Soluție

$$AD = \frac{2S}{a}, S = \frac{abc}{4R}$$

Deoarece $AH = 2R \cos A$, $BE = 2R \cos B$ și $CF = 2R \cos C$,

$$\text{avem: } AD \cdot AH = \frac{2S}{a} \cdot 2R \cos A = \frac{2abc}{4aR} \cdot 2R \cos A = \\ = bc \cos A = \frac{b^2 + c^2 - a^2}{2} \Rightarrow$$

$$\Rightarrow \sum AD \cdot AH = \frac{1}{2} \sum (b^2 + c^2 - a^2) = \frac{1}{2} (a^2 + b^2 + c^2)$$

Cum din inegalitatea Cauchy-Buniakovski

$\sum a^2 \geq \frac{(\sum a)^2}{3}$, obținem imediat inegalitatea din enunț cu egalitate pentru $a = b = c$, adică $\triangle ABC$ este echilateral.

Problema 107

Rezolvați în \mathbb{R} ecuația:

$$\sin^{2021} x + \cos^{2021} x + \sin^{2022} x = 2.$$

Soluție

Avem:

$$\sin^{2021} x + \cos^{2021} x \leq \sin^2 x + \cos^2 x = 1$$

$$\text{Cum } \sin^{2021} x + \cos^{2021} x = 2 - \sin^{2022} x \Rightarrow$$

$$\Rightarrow 2 - \sin^{2022} x \leq 1 \Rightarrow$$

$$\Rightarrow \sin^{2022} x \geq 1 \Rightarrow \sin^{2022} x = 1 \text{ și, de aici,}$$

$$\sin^{2021} x + \cos^{2021} x = 1$$

$$\text{Din } \sin^{2022} x = 1 \Rightarrow$$

$$\text{a) } \sin x = -1 \Rightarrow -1 + \cos^{2021} x = 1 \Rightarrow \cos^{2021} x = 2 \text{ Fals, sau}$$

$$\text{b) } \sin x = 1 \Rightarrow 1 + \cos^{2021} x = 1 \Rightarrow \cos^{2021} x = 0 \Rightarrow$$

$$\Rightarrow \cos x = 0$$

Din $\sin x = 1$ și $\cos x = 0$ găsim soluțiile ecuației:

$$x \in \left\{ \frac{\pi}{2} + 2k\pi \mid k \in \mathbb{Z} \right\}$$

Problema 108

Arătați că dacă $3 \sin \beta = 2 \sin(2\alpha + \beta)$ și $\cos \alpha \neq 0$, $\cos(\alpha + \beta) \neq 0$ atunci $5 \operatorname{tg} \alpha = \operatorname{tg}(\alpha + \beta)$.

Soluție

Avem:

$$\sin \beta = 2[\sin(2\alpha + \beta) - \sin \beta] = 4 \sin \alpha \cos(\alpha + \beta) \text{ și}$$

$$3 \sin \beta = 2 \sin(\alpha + \beta + \alpha) = 2 \sin(\alpha + \beta) \cos \alpha +$$

$$+ 2 \cos(\alpha + \beta) \sin \alpha. \text{ Din cele două relații rezultă:}$$

$$3 \sin \beta = 12 \sin \alpha \cos(\alpha + \beta) =$$

$$= 2 \sin(\alpha + \beta) \cos \alpha + 2 \cos(\alpha + \beta) \sin \alpha \text{ și, de aici,}$$

$$10 \sin \alpha \cos(\alpha + \beta) = 2 \sin(\alpha + \beta) \cos \alpha.$$

Împărțind această ultimă relație cu $2 \cos(\alpha + \beta) \cos \alpha$, găsim

$$5 \operatorname{tg} \alpha = \operatorname{tg}(\alpha + \beta).$$

Problema 109

Fie $a, b, c \in \left(0, \frac{\pi}{2}\right)$ astfel încât $\cos a = \operatorname{tg} b$, $\cos b = \operatorname{tg} c$ și

$\cos c = \operatorname{tg} a$. Arătați că:

$$\sin a = \sin b = \sin c = \frac{\sqrt{5} - 1}{2}.$$

Soluție

Avem:

$$\begin{aligned} \cos^2 a &= \operatorname{tg}^2 b = \frac{\sin^2 b}{\cos^2 b} = \frac{1}{\cos^2 b} - 1 = \frac{\cos^2 c}{\sin^2 c} - 1 = \\ &= \frac{1}{\frac{1}{\cos^2 c} - 1} - 1 = \frac{1}{\frac{\cos^2 a}{\sin^2 a} - 1} - 1 = \frac{1 - \cos^2 a}{2 \cos^2 a - 1} - 1 \text{ și} \end{aligned}$$

de aici $\cos^4 a + \cos^2 a - 1 = 0$, adică

$$\cos^2 a = \frac{-1 \pm \sqrt{5}}{2}. \text{ Convine } \cos^2 a = \frac{\sqrt{5} - 1}{2} \text{ și atunci}$$

$$\sin^2 a = 1 - \cos^2 a = \frac{3 - \sqrt{5}}{2} = \left(\frac{\sqrt{5} - 1}{2}\right)^2 \text{ de unde}$$

$$\sin^2 a = \frac{\sqrt{5} - 1}{2}. \text{ Analog pentru } \sin b, \sin c.$$

Problema 110²

În dreptunghiul $ABCD$ construim $GH \parallel BC$ punctul $G \in (AB)$ iar punctul $H \in (AD)$ și $EF \parallel DC$ punctul $E \in (AD)$ iar punctul $F \in (BC)$.

Fie $GH \cap EF = \{M\}$ și $AH \cap CE = \{K\}$.

Demonstrați că punctul K este pe cercul ce conține picioarele înălțimilor $\triangle DGF$.

Soluție

Fie X, Y, Z - mijloacele laturilor $\triangle GDF$.

Vrem să demonstrăm că punctul K aparține cercului celor 9 puncte al $\triangle GDF$.

Demonstrăm că B, X, M coliniare

Cum $\begin{vmatrix} GM & \parallel & BF \\ GB & \parallel & MF \end{vmatrix} \Rightarrow GMFB$ - dreptunghi $\Rightarrow BM \cap GF = \{X\}$

deci X - mijloc.

Analog pentru dreptunghiurile $FEDC, ADHG$ deci $B, X, M; C, Z, E; A, Y, H$ coliniare.

Dem. că $AH \cap CE \cap BM = \{K\}$.

Cum $AH \cap CE = \{K\}$.

Considerăm transversala $A - K - H$ pt $\triangle CDE$.

² Propunere pentru clasa a VII-a de prof. Dan Lucian Grigorie - Craiova.

Aplicăm teorema lui Menelaus $\Rightarrow \frac{AE}{AD} \cdot \frac{HD}{HC} \cdot \frac{KC}{KE} = 1$;

dar $\frac{AE}{AD} = \frac{AE}{BC}$; $\frac{AD}{HC} = \frac{ME}{MF} \Rightarrow \frac{BF}{BC} \cdot \frac{KC}{KE} \cdot \frac{ME}{MF} = 1 \Rightarrow$ conform reciprocei lui Menelaus în $\triangle FCE \Rightarrow B, K, M$ coliniare, deci BM trece prin K .

Demonstrăm că patrulaterul $KXYZ$ - inscriptibil.

În $\triangle BKC$: $\angle BKC = 180^\circ - (\angle KBC + \angle KCB)$.

În dreptunghiurile $GBFM$ și $EFCD \Rightarrow \angle MBF = \angle KBC = \angle GFB$ și $\angle ECF = \angle DCF \Rightarrow \angle KBC + \angle KCB = \angle GFB + \angle DCF = 180^\circ - \angle GED = 180^\circ - \angle XYZ \Rightarrow \angle XKZ = \angle XYZ$ deci $KXYZ$ - inscriptibil și punctele aparțin cercului lui Euler pt $\triangle GDF$.

Deci K este pe cercul ce conține picioarele înălțimilor $\triangle GDF$.

Problema 111³

Fie $x_1, x_2, \dots, x_n \in \{-1; 1\}; n \geq 2$ astfel încât $n \in \mathbb{N}$

$$\frac{x_1^{2023}}{x_2} + \frac{x_2^{2023}}{x_3} + \dots + \frac{x_{n-1}^{2023}}{x_n} + \frac{x_n^{2023}}{x_1} = 0$$

a) Pentru $n = 2024$ dați exemple de astfel de numere

b) Arătați că n este număr natural divizibil cu 4.

Soluție

a) Obs că pt $x_1 = 1; x_2 = x_3 = x_4 = -1; x_5 = 1; x_6 = x_7 = x_8 = -1 \dots x_{2021} = 1; x_{2022} = x_{2023} = x_{2024} = -1$

se formează 502 grupe de câte 4 numere a căror sumă este 0. De aici concluzia.

b) Deoarece fiecare fracție are valoarea -1 sau 1 se obține imediat că n este par, adică $n = 2k, k \in \mathbb{N}$.

$$\text{Cum } \frac{x_1^{2023}}{x_2} \cdot \frac{x_2^{2023}}{x_3} \cdot \dots \cdot \frac{x_{n-1}^{2023}}{x_n} \cdot \frac{x_n^{2023}}{x_1} = (x_1 \dots x_n)^{2022} = 1$$

și pe de altă parte având k fracții egale cu -1 și k fracții egale cu 1 din produsul anterior $\Rightarrow (-1)^k \cdot 1^k = 1$

de unde $n = 4l, l$ - număr natural.

³ Propunere pentru clasa a VIII-a de prof. Dan Lucian Grigorie, Craiova.

Problema 112⁴

Fie $ABCD$ un dreptunghic cu $AB = l$, $BC = 2l$ și M un punct în interiorul său astfel încât $\widehat{MAB} = \widehat{MBA} = 15^\circ$. Determinați măsurile unghiurilor triunghiului MCD .

Soluție

Fie E și F mijloacele laturilor BC și AD ale dreptunghiului. Cum $ABEF$ este pătrat demonstrăm că $\triangle MEF$ este echilateral (proprietate cunoscută).

Se consideră un punct N în interiorul $\triangle BME$ astfel încât $\triangle BNE \equiv \triangle MNE$. Atunci $\triangle BMN$ este echilateral (având $\widehat{NBM} = 60^\circ$ și $BM = BN$).

Se arată în continuare că $\triangle BNE \equiv \triangle MNE$ (L.U.L.), unghiul $\widehat{ENM} = 360^\circ - 60^\circ - 150^\circ = 150^\circ \Rightarrow ME = BE$ și asemănător $MF = AF$ considerând $\triangle EMC$ care este isoscel. Cum $\widehat{BEM} = 90^\circ - 60^\circ = 30^\circ \Rightarrow \widehat{MEC} = 150^\circ \Rightarrow \widehat{ECM} = \widehat{EMC} = 15^\circ$. Analog $\widehat{FMD} = 15^\circ \Rightarrow \widehat{CMD} = 60^\circ - 15^\circ - 15^\circ = 30^\circ$. Cum $\triangle MCD$ este isoscel $\Rightarrow \widehat{MCD} = \widehat{MDC} = \frac{180^\circ - 30^\circ}{2} = 75^\circ$.

⁴ Propunere pentru clasa a VI-a de prof. Dan Lucian Grigorie și prof. Lucian Tuțescu.

Problema 113⁵

Determinați numerele reale x astfel încât expresia $\frac{x}{x^2 - 3x + 5}$ să fie număr întreg.

Soluție

Fie $\frac{x}{x^2 - 3x + 5} = k \in \mathbb{Z} \Rightarrow kx^2 - (3k + 1)x + 5k = 0$

Pentru $k = 0 \Rightarrow x = 0$. Dacă $k \neq 0$, $\Delta = (3k + 1)^2 - 20k^2 = -11k^2 + 6k + 1 \geq 0 \Rightarrow 11k^2 - 6k - 1 \leq 0$

Cum $11k^2 - 6k - 1 = 0$ are rădăcinile

$$k_{1,2} = \frac{6 \pm \sqrt{36 + 44}}{22} = \frac{3 \pm \sqrt{20}}{11} \Rightarrow k \in \left[\frac{3 - \sqrt{20}}{11}, \frac{3 + \sqrt{20}}{11} \right] \cap \mathbb{Z}$$

De aici $k = 0$, care nu convine (suntem în cazul $k \neq 0$).

Așadar singurul număr real care convine este $x = 0$.

Problema 114

a) Fie $a, b \in \mathbb{R}^*$ astfel încât

$$(ab)^{140} + 4(ab)^{70} = 2(a^{210} + b^{210})$$

Arătați că cel puțin unul din numere este irațional.

b) Fie $a, b \in \mathbb{R}^*$ astfel încât

$$(ab)^{1882} + 4(ab)^{941} = 2(a^{2823} + b^{2883})$$

Arătați că cel puțin unul din numere este irațional.

Soluție

a) Relația se scrie $(a^{140} - 2b^{70})(b^{140} - 2a^{70}) = 0$ de unde $\left(\frac{a^2}{b}\right)^{70} = 2$ sau $\left(\frac{b^2}{a}\right)^{70} = 0$ adică $\frac{a^2}{b} \notin \mathbb{Q}$ sau $\frac{b^2}{a} \notin \mathbb{Q}$ de unde concluzia

b) Relația se scrie: $(a^{1882} - 2b^{941})(b^{1882} - 2a^{941}) = 0$ și se procedează ca la a).

⁵ Propunere clasa a VIII a de Viespescu Carina și Militaru-Cismaru Gabriela, eleve, Craiova.

Problema 115⁶

Fie $x, y, z > 0$ astfel încât $(x+y)(y+z)(z+x)=1$. Arătați că $\sum \frac{(x+y)\sqrt{x^2+xy+y^2}}{x+y+2xy} \geq \sqrt{3}$. În ce caz avem egalitate?

Soluție

$$\begin{aligned} \text{Din } x^2+xy+y^2 \geq \frac{3}{4}(x+y)^2 \Rightarrow \sqrt{x^2+xy+y^2} \geq \frac{(x+y)\sqrt{3}}{2} \quad (1) \\ \Rightarrow \frac{(x+y)\sqrt{x^2+xy+y^2}}{x+y+2xy} = \frac{\sqrt{x^2+xy+y^2}}{1+\frac{2xy}{x+y}} \geq \frac{\sqrt{x^2+xy+y^2}}{1+\frac{x+y}{2}} = \\ \frac{2\sqrt{x^2+xy+y^2}}{x+y+2} \geq \frac{(x+y)\sqrt{3}}{2(x+y+2)} , \text{ conform (1).} \end{aligned}$$

Rămâne să arătăm că $\sum \frac{(x+y)\sqrt{3}}{2(x+y+2)} \geq \sqrt{3}$ sau $\sum \frac{(x+y)}{2(x+y+2)} \geq 1$.

Fie $x+y=a$, $y+z=b$, $z+x=c$. Evident $abc=1$ și rămâne să arătăm că:

$$\frac{a}{a+2} + \frac{b}{b+2} + \frac{c}{c+2} \geq 1$$

sau

$$\sum \frac{a+2-2}{a+2} \geq 1 , \text{ adică } \frac{1}{a+2} + \frac{1}{b+2} + \frac{1}{c+2} \leq 1 .$$

Efectuând calculele:

$$12 + 4 \sum a + \sum ab \leq 9 +$$

$+ 4 \sum a + 2 \sum a$, adică $\sum ab \geq 3$, care rezultă din

$$\sum ab \geq \sqrt[3]{abbcca} = 3$$

Egalitatea este pentru $a=b=c \Rightarrow x=y=z \Rightarrow 8x^3=1 \Rightarrow x=\frac{1}{2}$.

Problema 116

Fie $n \in \mathbb{N}^*$ și $x > 1$, $x \in \mathbb{R}$.

Arătați că $\frac{x^{n+1}-x^{-(n+1)}}{n+1} > \frac{x^n-x^{-n}}{n}$.

⁶ Propunere de prof. Marian Cucuoaneș, Mărășești, prof. Lucian Tuțescu, Craiova.

Soluție

Aveam $\frac{x^{2n+2}-1}{(n+1)x^{n+1}} > \frac{x^{2n}-1}{nx^n} \Leftrightarrow n(x^{2n+2} - 1) > (n+1)x(x^{2n} - 1) \mid :x-1 > 0$

$$\Rightarrow n(x^{2n+1} + x^{2n} + \dots + x^2 + x + 1) > (n+1)(x^{2n} + x^{2n-1} + \dots + x^2 + x) \Leftrightarrow n \\ x^{2n+1} + nx^{2n} + \dots + nx^2 + nx + n > nx^{2n} + nx^{2n-1} + \dots + nx^2 + nx + x^{2n} + x^{2n-1} \\ + \dots + x^2 + x \Leftrightarrow$$

$$n x^{2n+1} + n > x^{2n} + x^{2n-1} + \dots + x^2 + x$$

arătăm că $x^{2n+1} + 1 > x^{2n+1-k} + x^k$, $k=1,..,n$

$$x^{2n+1} + 1 > x^{2n} + x$$

$$x^{2n+1} + 1 > x^{2n-1} + x^2$$

.....

$$x^{2n+1} + 1 > x^{2n+1} + x^n \quad \text{și prin adunare}$$

$$x^{2n+1} + 1 > x^{2n-k} + x^{k+1}, \quad k = \overline{0, n}$$

$$x^{2n+1} - x^{2n-k} + 1 + x^{k+1} > 0$$

$$x^{2n-k}(x^{k+1} - 1) - (x^{k+1} - 1) > 0 \Leftrightarrow (x^{2n-k} - 1)(x^{k+1} - 1) > 0, \text{ pentru } x > 1.$$

Problema 117⁷

Fie $n \geq 3$ și $z_1, z_2, \dots, z_n \in \mathbb{C}$ astfel încât $|S| = |S-z_1| + |S-z_2| + \dots + |S-z_n|$, unde $S = z_1 + z_2 + \dots + z_n$.

Arătați că $z_1 = z_2 = \dots = z_n = 0$.

Soluție

Aveam $(n-1)(|S-z_1| + |S-z_2| + |S-z_3| + \dots + |S-z_n|) = |(n-1)S| = |S-z_1 + S-z_2 + S-z_3 + \dots + S-z_n| \leq |S-z_1| + |S-z_2| + |S-z_3| + \dots + |S-z_n|$

$\Rightarrow (n-2)(|S-z_1| + |S-z_2| + |S-z_3| + \dots + |S-z_n|) \leq 0$ și de aici $|S-z_1| + |S-z_2| + |S-z_3| + \dots + |S-z_n| = 0$, adică $|S-z_1| = |S-z_2| = |S-z_3| = \dots = |S-z_n| = 0$, de unde $S - z_1 = S - z_2 = S - z_3 = \dots = S - z_n = 0$, iar de aici $z_1 = z_2 = \dots = z_n = 0$.

⁷ Problemă pentru clasa a X-a de prof. Butaru Zizi-Iuliana și prof. Bețiu Anicuța - Craiova.

Problema 118

Determinați cel mai mic număr $n \in \mathbb{N}^*$ pentru care există numerele reale x_1, x_2, \dots, x_n astfel încât $|x_1| + |x_2| + \dots + |x_n| = 2017 + |x_1+x_2+\dots+x_n|$.

Soluție

Deoarece $|x_1| + |x_2| + \dots + |x_n| = 2017 + |x_1+x_2+\dots+x_n| \geq 2017 \Rightarrow n \geq 2018$.

Arătăm că $n=2018$ este numărul căutat.

Într-adevăr pentru $x_1=x_2=\dots=x_{1009}=\frac{2017}{2018}$ și $x_{1010}=x_{1011}=\dots=x_{2018}=-\frac{2017}{2018}$ obținem cerințele problemei.

Problema 119

Fie $x, y, z > 0$ astfel încât $xy+yz+zx=7$. Arătați că $6(x^2+y^2)+z^2 \geq 21$.

Soluție

Cum $9x^2+z^2 \geq 6xz$ (1)

$9y^2+z^2 \geq 6yz$ (2)

$3(x^2+y^2) \geq 6xy$ (3), prin adunare $\Rightarrow 12(x^2+y^2)+2z^2 \geq 6(xy+yz+zx)=6 \cdot 7$, adică

$$6(x^2+y^2)+z^2 \geq 21.$$

Egalitate avem când avem egalitate în (1), (2) și (3), adică $3x=z$, $3y=z$ și $x=y \Rightarrow x=y=1$ și $z=3$.

Problema 120⁸

Fie $A=47^{2018}$, arătați că:

- a) A nu se poate scrie ca sumă a două cuburi de numere întregi
- b) A nu se poate scrie ca suma a trei cuburi de numere întregi.

⁸ Problemă pentru clasa a VI-a de prof. Cremeneanu Luiza Lorena și prof. Prunaru Constantina, Craiova.

Soluție

$$A = (5 \cdot 9 + 2)^{2018} = M_9 + 2^{2018} = M_9 + 2^{2016} \cdot 4 = M_9 + 8^{672} \cdot 4 = M_9 + (9 - 1)^{672} \cdot 4 = M_9 + (M_9 + +1) \cdot 4 = M_9$$

Cum resturile unui număr întreg la împărțirea cu 9 pot fi 0, 1 sau 8 obținem imediat a) și b).

Problema 121⁹

Fie a, b, c lunigimile laturilor unui triunghi ABC care verifică:

$$a^3 + b^3 + c^3 - ab(a + b) + bc(b + c) - ac(a + c) = 0$$

Arătați că triunghiul ABC este dreptunghic în A .

Soluție

Relația din enunț se scrie:

$$(a^2 - b^2 - c^2)(a - b - c) = 0.$$

Cum $a > b + c \Rightarrow a^2 = b^2 + c^2$, de unde concluzia.

Problema 122¹⁰

Fie $a, b, c \in N^*$ astfel încât $(a + b)^{b+c} = (b + c)^{c+a} = (c + a)^{a+b}$.

Arătați că $a = b = c$.

Soluție

Fie $a + b = x, b + c = y, c + a = z$, deoarece $x^y = y^z = z^x$ vom arăta că $x = y = z$. Presupunem $x < y$ și din $x^y = y^z \Rightarrow y > z$. Cum $y^z = z^x \Rightarrow z < x$ și din $x^y = z^x \Rightarrow x > y$ fals!

Analog dacă presupunem $x > y$ obținem $x < y$ (fals!).

Așadar $x = y$ și de aici $x^y = y^z = z^x$ de unde $x = z$ așadar $x = y = z$.

Revenind la enunțul problemei găsim $a + b = b + c = c + a$ și de aici $a = b = c$.

⁹ Propunere pentru clasa a VII-a de prof. Zaharia Gigi - Craiova.

¹⁰ Propunere pentru clasa a V-a de prof. Meda Iacob Elena și prof. Gilena Dobrică - Bechet.

Problema 123¹¹

Rezolvați în \mathbb{R} ecuația:

$$\sqrt{\sqrt{x+5} + \sqrt{x-5}} = \sqrt{10} \left(\sqrt{\sqrt{x+5} - \sqrt{x-5}} \right) + \sqrt{5}.$$

Soluție

Din $(\sqrt{x+5} + \sqrt{x-5})(\sqrt{x+5} - \sqrt{x-5}) = 10$ notând $t = \sqrt{\sqrt{x+5} + \sqrt{x-5}} > 0$ avem $t = \sqrt{10} \cdot \frac{\sqrt{10}}{t} + \sqrt{5}$ de unde $t^2 - \sqrt{5}t - 10 = 0$

$$t_{1,2} = \frac{\sqrt{5} \pm \sqrt{45}}{2} \text{ cu } t_1 = -\sqrt{5} < 0 \text{ și } t_2 = 2\sqrt{5} > 0$$

Atunci $\begin{cases} \sqrt{x+5} + \sqrt{x-5} = 20 \\ \sqrt{x+5} - \sqrt{x-5} = \frac{1}{2} \end{cases}$ și $\Rightarrow 2\sqrt{x+5} = 20 + \frac{1}{2} \Rightarrow \sqrt{x+5} = \frac{41}{4}$

$$\text{și de aici } x = \frac{41^2}{16} - 5 = \frac{1681-80}{16} = \frac{1601}{16}.$$

Problema 124¹²

Pentru ce numere reale x , numerele $x + \sqrt{2021}$ și $\frac{1}{x} - \sqrt{2021}$ sunt numere întregi?

Soluție

Fie $x + \sqrt{2021} = m$ și $\frac{1}{x} - \sqrt{2021} = n$, unde $m, n \in \mathbb{Z} \Rightarrow x = m - \sqrt{2021}$ și $\frac{1}{m - \sqrt{2021}} - \sqrt{2021} = n$

$$\begin{aligned} \Rightarrow 1 - m\sqrt{2021} + 2021 &= nm - n\sqrt{2021} \Leftrightarrow 2022 - nm \\ &= (m - n)\sqrt{2021} \end{aligned}$$

¹¹ Propunere pentru clasa a X-a de prof. Cremenenanu Luiza și prof. Nedelcu Irina - Craiova.

¹² Propunere pentru clasa a VIII-a de prof. Vasile Roxana și prof. Tacu Dana - Craiova.

Cum $\sqrt{2021}$ nu este număr rațional $\Rightarrow m = n$ și $nm = 2022 \Rightarrow$

$$\begin{cases} (1) m = n = \sqrt{2022} \\ (2) m = n = -\sqrt{2022} \end{cases}$$

Dacă avem: $m = n = \sqrt{2022} \Rightarrow x = \sqrt{2022} - \sqrt{2021}$

Dacă avem: $m = n = -\sqrt{2022} \Rightarrow x + \sqrt{2021} = -\sqrt{2022} \Rightarrow x = -\sqrt{2022} - \sqrt{2021}$

Așadar: $x \in \{\sqrt{2022} - \sqrt{2021}, -\sqrt{2022} - \sqrt{2021}\}$, în concluzie:

$$x = \pm\sqrt{2022} - \sqrt{2021}$$

Problema 125¹³

Fie $a \in (0,1)$ și $(x_n)_{n \geq 0}$ un sir cu $x_0 = b > 0$ și $x_n = a^2 + a + \sqrt{x_{n-1}} - 2a\sqrt{a + \sqrt{x_{n-1}}}, n \geq 1$.

Atătați că $(x_n)_{n \geq 0}$ este convergent și calculați $\lim_{n \rightarrow \infty} x_n$.

Soluție

Avem $x_n = \left(\sqrt{a + \sqrt{x_{n-1}}} - a \right)^2 \geq 0$ de unde: $x_n \geq 0$, $(\forall)n \in N^*$.

Cum $\sqrt{a + \sqrt{x_{n-1}}} \geq a$ deoarece

$a + \sqrt{x_{n-1}} \geq a^2$ cae este adevărată deoarece $a > a^2$, $(a \in (0,1))$

obținem $\sqrt{x_n} = \sqrt{a + \sqrt{x_{n-1}}} - a$, adică $a + \sqrt{x_n} = \sqrt{a + \sqrt{x_{n-1}}}$.

Fie $y_n = \sqrt{a + \sqrt{x_n}}$ cu $y_0 = \sqrt{a + b}$. Atunci $y_n^2 = y_{n-1}$, de unde $y_n = y_0^{2^{-n}}$ (inducție). De aici $\lim_{n \rightarrow \infty} y_n = 1$ și din $x_n = y_n^2 - a$, rezultă $(x_n)_{n \geq 0}$ este convergent și $\lim_{n \rightarrow \infty} x_n = 1 - a$.

¹³ Propunere pentru clasa a XI-a de prof. Cremeneanu Lorena-Luiza și prof. Prunaru Constantina - Craiova.

Problema 126¹⁴

Fie $ABCD$ un pătrat, în exteriorul pătratului să construim triunghiul echilateral ABE și triunghiul echilateral EDF astfel încât punctul B este în interiorul său. Determinați $m(\widehat{BFE})$.

Soluție

Notăm latura pătratului cu a .

$$\text{Astfel avem } \begin{array}{c} \Delta ABE \\ \Delta CDF \end{array} \left| \begin{array}{l} DA \equiv DC \\ ED \equiv FD \\ EDF \equiv FDC \end{array} \right| \xrightarrow{\text{L.U.L}} \Delta ADE \equiv \Delta CDF \Rightarrow FC = a$$

$$\Rightarrow m(\widehat{FCB}) = 60^\circ \Rightarrow \Delta FCB - \text{echilateral} \Rightarrow FB = BE = a$$

$\Rightarrow \Delta FBE$ – isoscel,

$$\text{Avem } m(\widehat{FBE}) = 150^\circ, \text{ astfel } m(\widehat{BFE}) = 15^\circ.$$

¹⁴ Propunere pentru clasa a VII-a de prof. Lucian Tuțescu și prof. Grigorie Dan - Craiova.

Problema 127¹⁵

a) Dați exemple de două numere raționale strict pozitive distincte x și y astfel încât $x + \frac{1}{y}$ și $y + \frac{1}{x}$ să fie naturale.

b) Dați exemple de 3 numere raționale strict pozitive distincte x, y, z astfel încât numerele

$$x + \frac{1}{yz}, y + \frac{1}{xz} \text{ și } z + \frac{1}{xy} \text{ să fie naturale.}$$

c) Dați exemple de 3 numere raționale distincte x, y, z astfel încât numerele $xy + \frac{1}{z}, yz + \frac{1}{x}$ și $xz + \frac{1}{y}$.

Soluții

a) $x = 2, y = \frac{1}{2}$

b) $x = 1, y = 2, z = \frac{1}{2}$

c) $x = 1, y = 2, z = \frac{1}{2}$

Problema 128¹⁶

Fie un triunghi ABC având $AB = AC = a, BC = b$ și $m(\widehat{ABC}) = 40^0$. Dacă (BD) este bisectoarea unghiiului B , iar $D \in (AC)$, demonstrați că: $BD = \frac{a^2 b}{b^2 - a^2}$.

Soluție

Construim ΔBCE echilateral (în exteriorul ΔABC). Cum $m(\hat{A}) = 100^0, m(\hat{B}) = 20^0$.

Din $\widehat{ADB} = \widehat{BEC} \Rightarrow$ patrulaterul $BDCE$ inscriptibil $\Rightarrow m(\widehat{DEC}) = 20^0$.

¹⁵ Propunere pentru clasa a V-a de prof. Chiriță Simona - Craiova.

¹⁶ Propunere pentru clasa a V-a de prof. Pătrașcu Ion și prof. Grigorie Dan - Craiova.

$$\Delta ABD \sim \Delta CED \Rightarrow \frac{BD}{DE} = \frac{AD}{DC} = \frac{AB}{CE}; CE = BC = b$$

$$\text{Deci } \frac{BD}{DE} = \frac{a}{b}, \text{ dar } DE = BD + DC \text{ (Relația Von Schooten)} \Rightarrow \frac{BD}{AD+DC} = \frac{a}{b} \Rightarrow \frac{BD}{DC} = \frac{a}{b-a} \quad (1)$$

$$\text{Aplicând teorema bisectoarei în } \Delta ABC \Rightarrow \frac{DC}{AD} = \frac{BC}{AB} = \frac{b}{a} \Rightarrow \frac{DC}{AD+DC} = \frac{b}{a+b} \Rightarrow \frac{DC}{a} = \frac{b}{a+b} \Rightarrow DC = \frac{ab}{a+b} \quad (2)$$

$$\text{Din (1) și (2)} \Rightarrow BD = \frac{a^2 b}{b^2 - a^2}.$$

Problema 129¹⁷

Fie a, b numere pozitive astfel încât $a \cdot b \geq 1$.

Arătați că: $ab(a + b) - 10ab + 8(a + b) \geq 8$.

În ce caz avem egalitate?

¹⁷ Propunere pentru clasa a VIII-a de prof. Ciulcu Claudiu și prof. Dană Camelia - Craiova.

Soluție

Inegalitatea se scrie: $ab(a + b)(ab + 8) \geq 10ab + 8$.

Deoarece $a + b \geq 2\sqrt{ab}$ vom arăta că:

$2\sqrt{ab}(ab + 8) \geq 10ab + 8$ sau notând $\sqrt{ab} = t \geq 1$ rezultă:

$$t(t^2 + 8) \geq 5t^2 + 4 \Leftrightarrow t^3 - 5t^2 + 8t - 4 \geq 0 \Leftrightarrow (t - 1)(t^2 -$$

$4t + 4) \geq 0$ sau:

$$(t - 1)(t - 2)^2 \geq 0.$$

Egalitate avem pentru $t = 1$ sau $t = 2$ adică $\sqrt{ab} = 1$ sau $\sqrt{ab} = 2$ dar și $a + b \geq 2\sqrt{ab}$ adică:

$$a = b = 1 \text{ sau } a = b = 2.$$

Problema 130¹⁸

Determinați numerele întregi n pentru care există $a, b, c \in \mathbb{Z}$ astfel încât $n^2 = a + b + c$ și $n^3 = a^2 + b^2 + c^2$.

Soluție

$$\begin{aligned} n^3 &= a^2 + b^2 + c^2 \geq ab + bc + ca = \frac{(a + b + c)^2 - (a^2 + b^2 + c^2)^2}{2} = \\ &= \frac{(n^2)^2 - n^3}{2} \Rightarrow 2n^3 \geq n^4 - n^3 \text{ sau } 3n^3 \geq n^4 \Rightarrow n^3(3 - n) \geq 0, \text{ de unde } n \in \{0, 1, 2, 3\} \end{aligned}$$

Pentru $n = 0$, găsim $a = b = c = 0$,

$$\text{Pentru } n = 1, \text{ găsim } \begin{cases} a = b = 0, c = 1 \\ a = c = 0, b = 1, \\ b = c = 0, a = 1 \end{cases}$$

$$\text{Pentru } n = 2, \text{ ar trebui } \begin{cases} a^2 + b^2 + c^2 = 8 \\ a + b + c = 4 \end{cases}, \text{ se găsesc } \begin{cases} a = b = 2, c = 0 \\ a = c = 2, b = 0, \\ b = c = 2, a = 0 \end{cases}$$

$$\text{Pentru } n = 3, \text{ ar trebui } \begin{cases} a^2 + b^2 + c^2 = 27 \\ a + b + c = 9 \end{cases} \text{ cu soluția: } a = b = c = 3.$$

¹⁸ Propunere pentru clasa a IX-a de prof. Lucian Tuțescu - Craiova.

Problema 131¹⁹

Precupeața Ioana vinde în piață ouă. Ea reușește să vândă întreaga cantitate în 4 zile după cum urmează:

- În prima zi vinde $\frac{2}{3}$ din cantitatea totală de ouă și $\frac{1}{3}$ dintr-un ou,
- În a doua zi vinde $\frac{2}{3}$ din cantitatea rămasă după prima zi și $\frac{1}{3}$ dintr-un ou,
- În a treia zi vinde $\frac{2}{3}$ din cantitatea rămasă după a doua zi și $\frac{1}{3}$ dintr-un ou,
- În cea de-a patra zi vinde $\frac{2}{3}$ din cantitate după a treia zi și $\frac{1}{3}$ dintr-un ou ramânând astfel fără niciun ou după cele patru zile.

Câte ouă a avut precupeața inițial?

Soluție

Notăm cu x - numărul total de ouă.

În prima zi vinde: $\frac{2}{3} \cdot x + \frac{1}{3}$ rămânând: $x - \left(\frac{2}{3} \cdot x + \frac{1}{3}\right) = \frac{x}{3} - \frac{1}{3}$ ouă (noul rest),

În a doua zi vinde: $\frac{2}{3} \left(\frac{x}{3} - \frac{1}{3}\right) + \frac{1}{3}$ rămânând: $\frac{x}{3} - \frac{1}{3} - \left[\frac{2}{3} \left(\frac{x}{3} - \frac{1}{3}\right) + \frac{1}{3}\right] = \frac{x}{9} - \frac{4}{9}$ - ouă (noul rest),

În a treia zi vinde: $\frac{2}{3} \left(\frac{x}{9} - \frac{4}{9}\right) + \frac{1}{3}$ rămânând: $\frac{x}{9} - \frac{4}{9} - \left[\frac{2}{3} \left(\frac{x}{9} - \frac{4}{9}\right) + \frac{1}{3}\right] = \frac{x}{27} - \frac{13}{27}$ - ouă (noul rest),

În cea de-a patra zi vinde: $\frac{2}{3} \left(\frac{x}{27} - \frac{13}{27}\right) + \frac{1}{3}$ rămânând: $\frac{x}{27} - \frac{13}{27} - \left[\frac{2}{3} \left(\frac{x}{27} - \frac{13}{27}\right) + \frac{1}{3}\right] = \frac{x}{81} - \frac{40}{81}$ - ouă (noul rest), însă după cea de-a patra zi precupeața rămânând fără niciun ou înseamnă că noul rest este 0.

Deci: $\frac{x}{81} - \frac{40}{81} = 0 \Leftrightarrow \frac{x}{81} = \frac{40}{81} \Rightarrow x = 40$ ouă.

Precupeața a avut inițial 40 de ouă.

¹⁹ Propunere pentru clasa a V-a de prof. Grigorie Ramona Carmen și prof. Boborel Maria - Craiova.

Problema 132²⁰

Arătați că pentru orice $n \geq 3$, există numerele naturale nenule distințte x_1, x_2, \dots, x_n astfel încât produsul:

$$P = x_1 x_2 \dots x_n \left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} \right)$$

să fie pătrat perfect.

Soluție

Vom căuta să facem paranteza egală cu 1 adunând la suma termenilor unei progresii geometrice alți termeni.

Fie

$$\begin{aligned} x_1 &= \left(\frac{1}{2}\right)^{-1}, x_2 = \left(\frac{1}{2^2}\right)^{-1}, \dots, x_{n-2} = \left(\frac{1}{2^{n-2}}\right)^{-1}, x_{n-1} \\ &= \left(\frac{1}{3 \cdot 2^{n-3}}\right)^{-1}, x_n = \left(\frac{1}{3 \cdot 2^{n-2}}\right)^{-1} \end{aligned}$$

Atunci

$$\begin{aligned} \frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} &= \left(\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-2}}\right) + \frac{2}{3 \cdot 2^{n-2}} + \frac{1}{3 \cdot 2^{n-2}} \\ &= 1 - \frac{1}{2^{n-2}} - \frac{1}{2^{n-2}} = 1 \end{aligned}$$

iar produsul căutat este

$$\begin{aligned} 2 \cdot 2^2 \cdot \dots \cdot 2^{n-2} \cdot 3 \cdot 2^{n-3} \cdot 3 \cdot 2^{n-2} &= 2^{\frac{(n-2)(n-1)}{2}} + 2n - 5 \cdot 3^2 \\ &= 2^{\frac{n^2+n-8}{2}} \cdot 3^2 = 2^{\frac{n(n+1)}{2}-4} \cdot 3^2 \end{aligned}$$

care este pătrat perfect pentru $\frac{n(n+1)}{2} = \text{par}$, deci $n = 4k$ sau $n = 4k + 3$

Dacă $n = 4k + 1$ sau $n = 4k + 2$ putem alege numerele

$$\begin{aligned} x_1 &= \left(\frac{1}{2}\right)^{-1}, x_2 = \left(\frac{1}{2^2}\right)^{-1}, \dots, x_{n-2} = \left(\frac{1}{2^{n-2}}\right)^{-1}, x_{n-1} = \left(\frac{1}{5 \cdot 2^{n-2}}\right)^{-1}, x_n \\ &= \left(\frac{1}{5 \cdot 2^{n-4}}\right)^{-1} \end{aligned}$$

(unde $n \geq 5$)

²⁰ Propunere pentru clasa a X-a de Viespescu Carina Maria, elevă - Craiova.

și atunci

$$\begin{aligned}\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} &= \left(\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-2}}\right) + \frac{1}{5 \cdot 2^{n-2}} + \frac{4}{5 \cdot 2^{n-2}} \\ &= 1 - \frac{1}{2^{n-2}} + \frac{1}{2^{n-2}} = 1\end{aligned}$$

iar produsul de calculat devine

$$\begin{aligned}2 \cdot 2^2 \cdot \dots \cdot 2^{n-2} \cdot 5 \cdot 2^{n-2} \cdot 5 \cdot 2^{n-4} &= 2^{\frac{(n-2)(n-1)}{2} + 2n-6} \cdot 5^2 \\ &= 2^{\frac{n^2+n-10}{2}} \cdot 5^2 = 2^{\frac{n(n+1)}{2}-5} \cdot 5^2\end{aligned}$$

Pentru $n = 4k + 1$ avem $\frac{n(n+1)}{2} - 5 = (4k+1)(2k+1) - 5 =$ par

iar pentru $n = 4k + 2$ avem $\frac{n(n+1)}{2} - 5 = (2k+1)(4k+3) - 5 =$

par deci x_1, x_2, \dots, x_n este pătrat perfect.

Problema 133²¹

Calculați determinantul:

$$d = \begin{vmatrix} 1 & 1 & 1 & 1 & \dots & 1 & 1 & 1 \\ 1 & 2^2+1 & 3 & 3 & \dots & 3 & 3 & 3 \\ 1 & 3 & 3^2+2 & 5 & \dots & 5 & 5 & 5 \\ 1 & 3 & 5 & 4^2+3 & \dots & 7 & 7 & 7 \\ \hline & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ 1 & 3 & 5 & 7 & \dots & 2n-5 & (n-1)^2+(n-2) & 2n-3 \\ 1 & 3 & 5 & 7 & \dots & 2n-5 & 2n-3 & n^2+(n-1) \end{vmatrix}$$

unde $n \geq 2$, $n \in \mathbb{N}$.

²¹ Propunere pentru clasa a XI-a de prof. Tuțescu Lucian și prof. Vasile Roxana - Craiova.

Soluție

Înmulțim prima coloană cu -1 și o adunăm la celelalte coloane și obținem

$$d = \begin{vmatrix} 1 & 0 & 0 & 0 & \dots & 0 & 0 \\ 1 & 2^2 & 2 & 2 & \dots & 2 & 2 \\ 1 & 2 & 3^2+1 & 4 & \dots & 4 & 4 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & 2 & 4 & 6 & \dots & (n-1)^2+(n-3) & 2n-4 \\ 1 & 2 & 4 & 6 & \dots & 2n-4 & n^2+(n-2) \end{vmatrix}$$

Rezolvăm după prima linie și apoi dăm factor comun pe 2 de pe prima linie și încă un 2 după prima coloană în determinantul obținut. Avem:

$$d = \begin{vmatrix} 1 & 1 & 1 & \dots & 1 & 1 \\ 1 & 3^2+1 & 4 & \dots & 4 & 4 \\ 2^2 \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & 4 & 6 & \dots & (n-1)^2+(n-3) & 2n-4 \\ 1 & 4 & 6 & \dots & 2n-4 & n^2+(n-2) \end{vmatrix}$$

Înmulțim iar prima coloană a determinantului anterior cu -1 și adunând-o la celelalte coloane, scoatem factor comun pe 3^2 . Continuăm procedeul și obținem:

$$d = 2^2 \cdot 3^2 \cdot \dots \cdot (n-2)^2 \cdot \begin{vmatrix} (n-1)^2 & n-1 \\ n-1 & n^2+1 \end{vmatrix} = 2^2 \cdot 3^2 \cdot \dots \cdot (n-2)^2 \cdot (n-1)^2 \cdot \begin{vmatrix} 1 & 1 \\ 1 & n^2+1 \end{vmatrix} = 2^2 \cdot 3^2 \cdot \dots \cdot (n-2)^2 \cdot (n-1)^2 \cdot n^2 = (n!)^2$$

Așadar $d = (n!)^2$

$$A = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ & 1 & 2 & 0 & \dots & 0 \\ 1 & 1 & 3 & \dots & 0 & \det(A \cdot A^t) = n! = \det A \cdot \det A^t = (n!)^2 \\ & \vdots & & & & \\ 1 & 1 & 1 & \dots & n & \end{bmatrix}$$

Problema 134²²

Găsiți cifrele a și b astfel încât numărul $a123456789987654321b$ este divizibil cu 144.

Soluție

Cum $144 = 16 \cdot 9$, ultimele patru cifre $\overline{321b}$ trebuie să formeze un număr divizibil cu 16 , astfel rezultă că $b = 6$.

Cum $1 + 2 + \dots + 9 = 45$ și numărul se divide cu 9 rezultă $a + b : 9$

adică $a + 6 : 9 \Rightarrow a = 3$.

Așadar $a = 3, b = 6$.

Problema 135²³

Fie $x, y, z > 0$. Arătați că:

$$xy + yz + zx \geq \sqrt{xyz} \left(\sqrt{\frac{x+y}{2}} + \sqrt{\frac{y+z}{2}} + \sqrt{\frac{z+x}{2}} \right)$$

În ce caz avem egalitate?

²² Propunere pentru clasa a V-a de prof. Preda Oana și prof. Sanda Iulia - Craiova.

²³ Propunere pentru clasa a VII-a și a VIII-a de prof. Grigorie Dan Lucian și prof. Lupu Răzvan Ilie - Craiova.

Soluție

Ridicând la pătrat inegalitatea inițială vom obține:

$$\begin{aligned}
 & (xy)^2 + (yz)^2 + (zx)^2 + 2xyz(x+y+z) \geq \\
 & \geq xyz \left(\frac{x+y}{2} + \frac{y+z}{2} + \frac{z+x}{2} + \right. \\
 & \left. + 2\sqrt{\frac{x+y}{2}} \cdot \sqrt{\frac{y+z}{2}} + 2\sqrt{\frac{y+z}{2}} \cdot \sqrt{\frac{z+x}{2}} + 2\sqrt{\frac{x+y}{2}} \cdot \sqrt{\frac{z+x}{2}} \right) \Leftrightarrow \\
 & \Leftrightarrow (xy)^2 + (yz)^2 + (zx)^2 + 2xyz(x+y+z) \geq xyz(x+y+z + \\
 & 2\sqrt{\frac{x+y}{2}} \cdot \sqrt{\frac{y+z}{2}} + 2\sqrt{\frac{y+z}{2}} \cdot \sqrt{\frac{z+x}{2}} + 2\sqrt{\frac{x+y}{2}} \cdot \sqrt{\frac{z+x}{2}})
 \end{aligned}$$

Deoarece avem următoarea inegalitate:

$$(xy)^2 + (yz)^2 + (zx)^2 \geq xyz(x+y+z)$$

ce se deduce din: $a^2 + b^2 + c^2 \geq ab + bc + ac$ pentru $a = xy$, $b = yz$, $c = zx$, rămâne să demonstrești că:

$$\begin{aligned}
 x+y+z & \geq \sqrt{\frac{x+y}{2}} \cdot \sqrt{\frac{y+z}{2}} + \sqrt{\frac{y+z}{2}} \cdot \sqrt{\frac{z+x}{2}} + \sqrt{\frac{x+y}{2}} \\
 & \quad \cdot \sqrt{\frac{z+x}{2}}
 \end{aligned}$$

sau:

$$\begin{aligned}
 2(x+y+z) & \geq \sqrt{x+y} \cdot \sqrt{y+z} + \sqrt{y+z} \cdot \sqrt{z+x} + \sqrt{x+y} \\
 & \quad \cdot \sqrt{z+x}
 \end{aligned}$$

sau:

$$\begin{aligned}
 2(x+y+z) & = x+y+x+z+y+z = \\
 & = (\sqrt{x+y})^2 + (\sqrt{x+z})^2 + (\sqrt{z+y})^2 \geq \\
 & \geq \sqrt{x+y} \cdot \sqrt{y+z} + \sqrt{y+z} \cdot \sqrt{z+x} + \sqrt{x+y} \cdot \sqrt{z+x} \text{ (am folosit inegalitatea } a^2 + b^2 + c^2 \geq ab + bc + ac)
 \end{aligned}$$

Egalitatea vom avea în cazul $x = y = z$.

Problema 136

Fie $n \in N^*$.

Arătați că nu există numerele întregi x_1, x_2, \dots, x_{14} , astfel încât:

$$x_1^4 + x_2^4 + \dots + x_{14}^4 = 2 \underbrace{00 \dots 01}_{de\ n-ori} 5.$$

Soluție

Vom folosi următorul rezultat: "Restul puterii a patra a unui număr întreg este 0 sau 1 la împărțirea cu 16" adică: $x^4 \equiv 0 \pmod{16}$ sau $x^4 \equiv 1 \pmod{16}$.

Într-adevăr:

dacă $x = 2k, k \in Z \Rightarrow x^4 = 16 \cdot k^4 \equiv 0 \pmod{16}$, iar

dacă $x = 2l + 1, l \in Z \Rightarrow x^2 = 4l(l + 1) = M_8 + 1$, (deoarece $l(l + 1) : 2$) și atunci:

$$x^4 = M_8^2 + 2 \cdot M_8 + 1 \equiv 1 \pmod{16}$$

Atunci conform rezultatului anterior: $x_1^4 + x_2^4 + \dots + x_{14}^4 \equiv r \pmod{16}$ unde $r \in \{0, 1, 2, \dots, 14\}$.

Cum $2 \underbrace{00 \dots 01}_{de\ n-ori} 5 \equiv 15 \pmod{16}$ obținem cerința enunțului.

Problema 137²⁴

Determinați numerele prime p și q astfel încât $p^4 - q$ și $p^4 + q$ să fie de asemenea numere prime.

Soluție

Evident p și q nu pot fi simultan impare.

Așadar avem două cazuri:

- Dacă $p = 2 \Rightarrow 16 - q$ și $16 + q$ numere prime, convine $q = 3$ și $q = 13$.

²⁴ Propunere pentru clasa a V-a de prof. Tuțescu Lucian și prof. Grigorie Dan Lucian - Craiova.

- Dacă $q = 2$ atunci $p^4 - 2$ și $p^4 + 2$ trebuie să fie numere prime. Pentru

$p = 3k \pm 1 \Rightarrow p^4 + 2 = (3k \pm 1)^4 + 2 = M_3 + 1 + 2 = M_3$ și $p^4 + 2 > 3$, așadar $p = 3k$ de unde $p = 3$ și atunci $p^4 - 2 = 3^4 - 2 = 79$ respectiv $p^4 + 2 = 3^4 + 2 = 83$.

În concluzie $p = 2$ și $q = 3$; $p = 2$ și $q = 13$ și $p = 3$ și $q = 2$ sunt numerele căutate.

Problema 138²⁵

Fie $x, y > 0$ și $x^3 + y^3 = x - y$. Să se arate că:

- a) $x \cdot y < 1$,
- b) $x^2 + y^2 < 1$

Soluție

$$x^2 + x \cdot y + y^2 = \frac{x^3 - y^3}{x - y} < \frac{x^3 + y^3}{x - y} = 1 \Rightarrow x \cdot y < 1 \text{ și } x^2 + y^2 < 1$$

Problema 139²⁶

Fie $f: [1918; 2018] \rightarrow \mathbb{R}$, f continuă pe $[1918; 2018]$ și derivabilă pe $(1918; 2018)$ astfel încât $f(1918) = 1918$, $f(2018) = 2018$.

- a) Arătați că există $x_1, x_2, \dots, x_{100} \in (1918; 2018)$ toate distințte astfel încât $f(x_1) + f(x_2) + \dots + f(x_{100}) = 100$
- b) Dacă, în plus, f este strict crescătoare, arătați că există $y_1, y_2, \dots, y_n \in (1918; 2018)$ toate distințte astfel încât $\frac{1}{f'(y_1)} + \frac{1}{f'(y_2)} + \dots + \frac{1}{f'(y_{100})} = 100$

²⁵ Propunere de prof. Tigae Alina și prof. Miu Simona - Craiova.

²⁶ Propunere de prof. Tuțescu Lucian - Craiova.

Soluție

- a) Aplicăm teorema lui Lagrange pe intervalele [1918; 1919], [1919; 1920], ..., [2017; 2018] (o sută de intervale) și avem:

$$f(1919) - f(1918) = (1919 - 1918) f'(x_1), \quad x_1 \in (1918; 1919)$$

$$f(1920) - f(1919) = (1920 - 1919) f'(x_2), \quad x_2 \in (1919; 1920)$$

$$\dots$$

$$f(2018) - f(2017) = (2018 - 2017) f'(x_{100}), \quad x_{100} \in (2017; 2018)$$

de unde, prin adunare obținem :

$$f(2018) - f(1918) = f'(x_1) + f'(x_2) + \dots + f'(x_{100}), \text{ adică}$$

$$f'(x_1) + f'(x_2) + \dots + f'(x_{100}) = 2018 - 1918 = 100, \text{ cu } x_1 < x_2 < \dots < x_{100} \text{ (distincte).}$$

- b) Fie $a_0 = 1918 < a_1 < a_2 < \dots < a_{100} = 2018$ astfel încât $f(a_i) = 1919$, $f(a_2) = 1920, \dots, f(a_{100}) = 2018$ (există $a_1, a_2, \dots, a_{2018}$ din continuitate și monotonie).

Aplicând teorema lui Lagrange pe intervalele

$$[a_0; a_1], [a_1; a_2], \dots, [a_{99}; a_{100}], \text{ obținem } \frac{f(a_1) - f(a_0)}{a_1 - a_0} = f'(y_1) \text{ cu } y_1 \in$$

$$(a_0, a_1), \text{ de unde } \frac{1}{a_1 - a_0} = f'(y_1) \text{ sau } \frac{1}{f'(y_1)} = a_1 - a_0, \text{ cu } y_1 \in (a_0, a_1), \frac{1}{f'(y_2)}$$

$$= a_2 - a_1, y_2 \in (a_0, a_1), \dots, \frac{1}{f'(y_{100})} = a_{100} - a_{99}, y_{100} \in (a_{99}, a_{100})$$

$$\text{Prin adunare } \Rightarrow \frac{1}{f'(y_1)} + \frac{1}{f'(y_2)} + \dots + \frac{1}{f'(y_{100})} = 100, \text{ unde } y_1 < y_2$$

$$< \dots < y_n.$$

Problema 140²⁷

Fie $a > 0, a \neq 1$ fixat. Rezolvați în \mathbb{R} ecuațiile:

a) $\log_x(x + 2021) = \log_a(a + 2021)$

b) $\log_x(x^{2021} + 2021) = \log_a(a^{2021} + 2021)$

²⁷ Propunere pentru clasa a X-a de prof. Mirea Mihaela și prof. Grigorie Dan - Craiova.

Soluție

a) Avem $\frac{\ln(x+2021)}{\ln x} = \frac{\ln(a+2021)}{\ln a}$ sau $\frac{\ln(x+2021)}{\ln(a+2021)} = \frac{\ln x}{\ln a}$, adică
 $\log_{a+2021} x + 2021 = \log_a x = y$ și de aici $x = a^y$, $x + 2021 = (a + 2021)^y$

$$a^y + 2021 = (a + 2021)^y \Leftrightarrow \left(\frac{a}{a + 2021}\right)^y + 2021 \left(\frac{1}{a + 2021}\right)^y = 1$$

Cum $\frac{a}{a+2021} < 1$ și $\frac{1}{a+2021} < 1 \Rightarrow y = 1$ soluție unică.

Atunci $x = a$

b) Asemănător cu a) $\Rightarrow \log_{a^{2021}+2021}(x^{2021} + 2021) =$

$$\log_a x = y \Rightarrow x = a^y$$

$(a^{2021} + 2021)^y = x^{2021} + 2021$ și de aici $(a^{2021} + 2021)^y = a^{2021y} + 2021$

$$\Rightarrow \left(\frac{a^{2021}}{a^{2021}+2021}\right)^y + 2021 \left(\frac{1}{a^{2021}+2021}\right)^y = 1$$
 cu soluția unică (monotonie) $y = 1$ și de aici $x = a$.

Problema 141²⁸

Aflați aria unui triunghi ABC, dacă $AB = 3$, $BC = 7$ și mediana $BD = 4$.

Soluție:

Din teorema medianei $BD^2 = \frac{2(BA^2 + BC^2) - AC^2}{4} \Rightarrow 4 \cdot 4^2 =$

$$2(3^2 + 7^2) - AC^2 \Rightarrow AC^2 = 2 \cdot 58 - 64 = 52$$

Din formula lui Heron:

²⁸ Propunere pentru clasa a X-a de prof. Prunaru Constantina și prof. Cremeneanu Luiza - Craiova.

$$\begin{aligned}
 S^2 &= p(p-a)(p-b)(p-c) \\
 &= \frac{1}{16} (a+b+c)(-a+b+c)(a-b+c)(a+b-c) \\
 &= \frac{1}{16} (2a^2b^2 + 2b^2c^2 + 2c^2a^2 - a^4 - b^4 - c^4) \\
 \text{Cum } BC = a = 7, ac = b = \sqrt{52} \text{ și } AB = c = 3, \text{ înlocuind gasim:} \\
 S^2 &= \frac{1}{16} (2 \cdot 49 \cdot 52 + 2 \cdot 52 \cdot 9 + 2 \cdot 9 \cdot 49 - 2401 - 2704 - 81) \\
 &\Rightarrow S^2 = \frac{1}{16} \cdot 1728 = 108 \Rightarrow S = 6\sqrt{3}
 \end{aligned}$$

Problema 142

Rezolvați în \mathbb{R} ecuația : $x^2y + y^2z + z^2x = 2x^2\sqrt{y-1} + 2y^2\sqrt{z-1} + 2z^2\sqrt{x-1}$.

Soluție

Ecuația se scrie (evident $x \geq 1, y \geq 1, z \geq 1$)

$$x^2(\sqrt{y-1}-1)^2 + y^2(\sqrt{z-1}-1)^2 + z^2(\sqrt{x-1}-1)^2 = 0, \text{ de unde } \sqrt{y-1} = \sqrt{z-1} = \sqrt{x-1} = 1, \text{ adică } x=y=z=2.$$

Problema 143

Aflați numerele întregi x, y astfel încât $x(x+1) = y(y+3)$.

Soluție

$$\begin{aligned}
 \text{Avem } 4x^2 + 4x = 4y^2 + 12y \Rightarrow 4x^2 + 4x + 1 + 8 = 4y^2 + 12y + 9 \text{ sau } (2x+1)^2 + 8 = (2y+3)^2 \text{ sau} \\
 (2y+3)^2 - (2x+1)^2 = 8 \Rightarrow (2y+3-2x-1)(2y+3+2x+1) = 8 \\
 \Rightarrow (2y-2x+2)(2y+2x+4) = 8 \Rightarrow (y-x+1)(y+x+2) = 2 \Rightarrow \\
 \begin{cases} y-x+1 = -1 \\ y+x+2 = -2 \end{cases} \Rightarrow 2y = -6 \Rightarrow y = -3 \Rightarrow -3-x = -2 \Rightarrow x = 1 \Rightarrow \\
 \begin{cases} y = -3 \\ x = -2 \end{cases}
 \end{aligned}$$

$$\begin{aligned}
 & 2. \begin{cases} y - x + 1 = -2 \\ y + x + 2 = -1 \end{cases} \Rightarrow 2y = -6 \Rightarrow y = -3 \Rightarrow -3 - x + 1 = -2 \Rightarrow x = 0 \Rightarrow \\
 & \begin{cases} y = -3 \\ x = 0 \end{cases} \\
 & 3. \begin{cases} y - x + 1 = 1 \\ y + x + 2 = 2 \end{cases} \Rightarrow 2y = 0 \Rightarrow y = 0 \Rightarrow x = 0 \Rightarrow \begin{cases} y = 0 \\ x = 0 \end{cases} \\
 & 4. \begin{cases} y - x + 1 = 2 \\ y + x + 2 = 1 \end{cases} \Rightarrow y = 0 \Rightarrow x = -1 \Rightarrow \begin{cases} y = 0 \\ x = -1 \end{cases} \\
 & \text{Soluțiile sunt } \begin{cases} x = 1 \\ y = -3 \end{cases}; \begin{cases} x = 0 \\ y = -3 \end{cases}; \begin{cases} x = 0 \\ y = 0 \end{cases}; \begin{cases} x = -1 \\ y = 0 \end{cases}
 \end{aligned}$$

Problema 144

Arătați că: $5^{13} \cdot 13^{31} \cdot 31^5 > 2^{10} \cdot 13^5 \cdot 31^{13} \cdot 5^{31}$

Soluție

$$\frac{5^{13} \cdot 13^{31} \cdot 31^5}{13^5 \cdot 31^{13} \cdot 5^{31}} = \frac{13^{26}}{31^8 \cdot 5^{18}} = \frac{13^{16} \cdot 13^{10}}{31^8 \cdot 5^8 \cdot 5^{10}} = \left(\frac{169}{155}\right)^8 \cdot \left(\frac{13}{5}\right)^{10} > 1 \cdot 2^{10} = 2^{10}.$$

Problema 145

Determinați $f: \mathbb{R} \rightarrow \mathbb{R}$ astfel încât $f(f(xy)) = |x| f(y) + 2019f(xy)$, $\forall x, y \in \mathbb{R}$.

Soluție

$$\begin{aligned}
 & \text{Schimbând } x \text{ cu } y \Rightarrow f(f(yx)) = |y| f(x) + 2019f(yx) \Rightarrow |x| f(y) \\
 & = |y| f(x)
 \end{aligned}$$

$$\text{Pentru } y=1 \Rightarrow f(x) = |x| f(1)$$

$$\text{Pentru } x=y=1 \Rightarrow f(f(1)) = f(1) + 2019f(1) \Rightarrow f(f(1)) = 2020f(1) \quad (1)$$

$$\text{Din } f(x) = |x| f(1) \text{ luând } x=f(1) \Rightarrow f(f(1)) = |f(1)| f(1) \quad (2)$$

$$\begin{aligned}
 & \text{Din (1) și (2) } \Rightarrow |f(1)| f(1) = 2020f(1) \text{ sau } f(1) (|f(1)| - 2020) = 0 \text{ și} \\
 & \text{atunci } f(1) \in \{0, -2020, 2020\}
 \end{aligned}$$

$$\begin{aligned}
 & \text{găsim soluțiile } f(x)=0, \forall x \in \mathbb{R}; f(x) = -2020|x|, \forall x \in \mathbb{R}; f(x) \\
 & = 2020|x|, \forall x \in \mathbb{R}.
 \end{aligned}$$

Problema 146

Fie $ABCD$ și $AEFG$ patrate astfel încât $G \in (AB)$ și $A \in (ED)$. Pe semidreapta $(EB$ se consider punctual M astfel încât $MD \cap (BC) = \{H\}$. Arătați că dacă E, G și H sunt coliniare, atunci $ME = MD$.

Soluție

$$E, F, G \text{ coliniare} \Rightarrow m(\widehat{HED}) = m(\widehat{GEA}) = 45^\circ$$

Proiecțând H pe ED în H' și $\{F'\} = EF \cap BH \Rightarrow EFHH'$ patrat cu EH bisectoarea $\angle F'EH'$.

Se obține $F'B = HC$ și $\Delta BEA \equiv \Delta HDH' \Rightarrow \angle BEA \equiv \angle HDH'$, adică ΔMED isoscel cu $ME = MD$.

Problema 147

Măsurile unghiurilor unui polygon convex formează o progresie aritmetică cu rația 3° . Știind că cel mai mare dintre unghiurile poligonului are 177° , aflați numărul de laturi pe care poate să-l aibă poligonul.

Soluție

$$\begin{aligned} \text{Unghiurile poligonului sunt } & 177^\circ, 174^\circ, 171^\circ, 171^\circ, \dots, 177^\circ - 3^\circ(n-1) \\ \text{și atunci } & (177^\circ - (n-1)3^\circ) + (177^\circ - (n-2)3^\circ) + \dots + 177^\circ = (n-2)180^\circ \\ & > n \cdot 177^\circ - \frac{n(n-1)3^\circ}{2} = (n-2)180^\circ \end{aligned}$$

$$\begin{aligned} 354^\circ n - 3^\circ n^2 + 3^\circ n = 360^\circ n - 720^\circ & \Leftrightarrow 3n^2 + 3n - 720^\circ = 0 \mid : 3 \Rightarrow \\ n^2 + n - 240 = 0 & \end{aligned}$$

$$\Delta = 1 + 4 \cdot 240 = 961$$

$$n_{1,2} = \frac{-1 \pm 31}{2} \Rightarrow n = 15$$

poligonul are 15 laturi și unghiurile $135^\circ, 138^\circ, \dots, 174^\circ, 177^\circ$.

Problema 148

Fie $n \in \mathbb{N}^*$ și $x > 1$, $x \in \mathbb{R}$. Arătați că $\frac{x^{n+1} - x^{-(n+1)}}{n+1} > \frac{x^n - x^{-n}}{n}$.

Soluție

Aveam $\frac{x^{2n+2}-1}{(n+1)x^{n+1}} > \frac{x^{2n}-1}{nx^n} \Leftrightarrow n(x^{2n+2} - 1) > (n+1)x(x^{2n} - 1)$ |: $x-1 > 0$

\Rightarrow

$$n(x^{2n+1} + x^{2n} + \dots + x^2 + x + 1) > (n+1)(x^{2n} + x^{2n-1} + \dots + x^2 + x) \Leftrightarrow n \\ x^{2n+1} + nx^{2n} + \dots + nx^2 + nx + n > nx^{2n} + nx^{2n-1} + \dots + nx^2 + nx + x^{2n} + x^{2n-1} \\ + \dots + x^2 + x \Leftrightarrow$$

$$n x^{2n+1} + n > x^{2n} + x^{2n-1} + \dots + x^2 + x$$

arătăm că $x^{2n+1} + 1 > x^{2n+k} + x^k$, $k=1,..,n$

$$x^{2n+1} + 1 > x^{2n} + x$$

$$x^{2n+1} + 1 > x^{2n-1} + x^2$$

.....

$x^{2n+1} + 1 > x^{2n+1} + x^n$ și prin adunare

$$\overline{x^{2n+1} + 1 > x^{2n-k} + x^{k+1}}, k = \overline{0, n}$$

$$x^{2n+1} - x^{2n-k} + 1 + x^{k+1} > 0$$

$$x^{2n-k}(x^{k+1} - 1) - (x^{k+1} - 1) > 0 \Leftrightarrow (x^{2n-k} - 1)(x^{k+1} - 1) > 0$$
, pentru $x > 1$.

Problema 149

Calculați

$$(\overline{\overline{xyzt} + mn\overline{uv}} : 5 = \\ \text{dacă } xn\overline{+my} = \overline{81} \text{ și } zv + ut = \overline{125} \quad —$$

Soluție

$$xn + my = 81 \text{ și } zv + ut = 125.$$

Scriem numerele în baza zece: $10x + n + 10m + y = 81$.

Înmulțim relația cu 100:

$$10z + v + 10u + t = 125$$

$$\Rightarrow 1000x + 100n + 1000m + 100y = 8100$$

$$10z + v + 10u + t = 125$$

Adunăm relațiile:

$$1000x + 100n + 1000m + 100y + 10z + v + 10u + t = 8225$$

Grupăm termenii:

$$(1000x + 100y + 10z + t) + (1000m + 100n + 10u + v) = 8225$$

$$xyzt + mnuv = 8225$$

$$(xyzt + mnuv) : 5 = 8225 : 5 = 1645$$

Problema 150

Restul împărțirii unui număr la 8 este egal cu 7, iar al împărțirii la 9 este egal cu 3. Aflați restul împărțirii numărului la 72.

Soluție

Fie n numărul dat

Atunci

$$n : 8 = c_1 \text{ rest } 7$$

$$n : 9 = c_2 \text{ rest } 3$$

Din teorema împărțirii cu rest, avem

$$n = 8c_1 + 7$$

$$n = 9c_2 + 3$$

Înmulțim prima relație cu 9 și a doua relație cu 8 și obținem:

$$9n = 72c_1 + 63$$

$$8n = 72c_2 + 24$$

Scădem relațiile:

$$9n - 8n = 72c_1 + 63 - 72c_2 - 24$$

$$n = 72(c_1 - c_2) + 39$$

Din teorema împărțirii cu rest, rezultă că restul împărțirii lui n la 72 este 39.

Problema 150+1

Observăm că $12^2 = 144, 21^2 = 441, 13^2 = 169, 31^2 = 961, 2021^2 = 4084441, 1202^2 = 1444804, 2022^2 = 4088484, 2202^2 = 4848804.$

Aceste numere au proprietatea că pătratul răsturnatului este răsturnatul pătratului.

Să se arate că există o infinitate de astfel de numere.

Soluție

Prin calcul direct, se arată că numerele de forma 1100 ... 01 verifică cerința problemei.

Cuprins

Problema 1.....	5
Soluție	5
Problema 2	6
Soluție	6
Problema 3	6
Soluție	6
Problema 4	7
Soluție	7
Problema 5	7
Soluție	7
Problema 6	8
Soluție	8
Problema 7	8
Soluție	8
Problema 8	9
Soluție	9
Problema 9	9
Soluție	9
Problema 10	10
Soluție	10
Problema 11	10
Soluție	10
Problema 12.....	11
Soluție	11
Problema 13.....	11
Soluție	11
Problema 14.....	12
Soluție	12

Problema 15.....	12
Soluție	12
Problema 16.....	12
Soluție	13
Problema 17.....	13
Soluție	13
Problema 18	13
Soluție	13
Problema 19.....	14
Soluție	14
Problema 20.....	14
Soluție	14
Problema 21.....	15
Soluție	15
Problema 22.....	15
Soluție	16
Problema 23	16
Soluție	16
Problema 24.....	17
Soluție	17
Problema 25	17
Soluție	18
Problema 26.....	18
Soluție	18
Problema 27.....	19
Soluție:	19
Problema 28	19
Soluție	19
Problema 29	20
Soluție	20
Problema 30	20
Soluție	20

Problema 31.....	21
Soluție	21
Problema 32	21
Soluție	21
Problema 33	21
Soluție	21
Problema 34	22
Soluție	22
Problema 35	22
Soluție	22
Problema 36	22
Soluție	22
Problema 37	23
Soluție	23
Problema 38	24
Soluție	24
Problema 39	24
Soluție	24
Problema 40.....	24
Soluție	25
Problema 41.....	25
Soluție	25
Problema 42	25
Soluție	26
Problema 43	26
Soluție	26
Problema 44	26
Soluție	26
Observație	27
Problema 45	27
Soluție	27

Problema 46	27
Soluție	27
Problema 47	28
Soluție	28
Problema 48	28
Soluție	28
Problema 49	29
Soluție	29
Problema 50	29
Soluție	30
Problema 51	30
Soluție	30
Problema 52	30
Soluție	30
Problema 53	31
Soluție	31
Problema 54	31
Soluție	31
Problema 55	32
Soluție	32
Problema 56	32
Soluție	32
Problema 57	33
Soluție	33
Problema 58	33
Soluție	33
Problema 59	33
Soluție	33
Problema 60	34
Soluție	34
Problema 61	34
Soluție	34

Problema 62	34
Soluție	35
Problema 63	35
Soluție	35
Problema 64	35
Soluție	36
Problema 65	36
Soluție	36
Problema 66	36
Soluție	36
Problema 67	37
Soluție	37
Problema 68	37
Soluție	37
Problema 69	38
Soluție	38
Problema 70	38
Soluție	38
Problema 71	38
Soluție	39
Problema 72	39
Soluție 1	39
Soluție 2	39
Problema 73	40
Soluție	40
Problema 74	40
Soluție 1	40
Soluție 2	41
Problema 75	41
Soluție	41
Problema 76	41
Soluție	42

Problema 77	42
Soluție	42
Problema 78	43
Soluție	43
Problema 79	43
Soluție	43
Problema 80.....	44
Soluție	44
Problema 81	44
Soluție	44
Problema 82.....	45
Soluție	45
Problema 83.....	46
Soluție	46
Problema 84.....	46
Soluție	46
Problema 85.....	47
Soluție	47
Problema 86.....	47
Soluție	48
Problema 87.....	48
Soluție	48
Problema 88.....	48
Soluție	48
Problema 89.....	49
Soluție	49
Problema 90.....	49
Soluție	49
Problema 91.....	50
Soluție	50
Problema 92.....	50
Soluție	50

Problema 93	51
Soluție	51
Problema 94	51
Soluție	51
Problema 95	52
Soluție	52
Problema 96	52
Soluție	52
Problema 97	53
Soluție	53
Problema 98	53
Soluție	54
Problema 99	54
Soluție	54
Problema 100	54
Soluție	55
Problema 101	55
Soluție	55
Problema 102	56
Soluție	56
Problema 103	57
Soluție	57
Problema 104	57
Soluție	57
Problema 105	58
Soluție	58
Problema 106	58
Soluție	59
Problema 107	59
Soluție	59
Problema 108	60
Soluție	60

Problema 109	60
Soluție	60
Problema 110	61
Soluție	61
Problema 111.....	62
Soluție	62
Problema 112.....	63
Soluție	63
Problema 113.....	64
Soluție	64
Problema 114	64
Soluție	64
Problema 115	65
Soluție	65
Problema 116	65
Soluție	66
Problema 117	66
Soluție	66
Problema 118.....	67
Soluție	67
Problema 119.....	67
Soluție	67
Problema 120	67
Soluție	68
Problema 121.....	68
Soluție	68
Problema 122.....	68
Soluție	68
Problema 123.....	69
Soluție	69
Problema 124	69
Soluție	69

Problema 125.....	70
Soluție	70
Problema 126.....	71
Soluție	71
Problema 127.....	72
Soluții	72
Problema 128	72
Soluție	72
Problema 129.....	73
Soluție	74
Problema 130	74
Soluție	74
Problema 131.....	75
Soluție	75
Problema 132.....	76
Soluție	76
Problema 133.....	77
Soluție	78
Problema 134.....	79
Soluție	79
Problema 135.....	79
Soluție	80
Problema 136.....	81
Soluție	81
Problema 137.....	81
Soluție	81
Problema 138	82
Soluție	82
Problema 139.....	82
Soluție	83
Problema 140	83
Soluție	84

$$\frac{d\theta}{dt} = \frac{dr}{dt} \frac{d\varphi}{dr} \frac{\partial L}{\partial r} = \frac{dr}{dt} \omega = \frac{dr}{dt} \frac{1}{r^2} \quad \text{ocella}$$

$$\frac{d\theta}{dt} = \frac{dr}{dt} \cdot \left(\frac{1}{r^2} \right)^2 + \frac{dr}{dt} \cdot \frac{1}{r^2} \frac{d}{dt} \left(\frac{1}{r^2} \right)$$

$$\frac{d\theta}{(r_0 - r)^2} = \left(\frac{2}{c} \right)^2 dt = \frac{dr}{d\varphi r} \left(\frac{1}{r^2} \right) - \frac{e}{r^2} \cdot \frac{1}{r^2} \cdot \left(\frac{dr}{d\varphi} \right)^2 \cdot \frac{1}{r^2}$$

$$\int_0^t \frac{d\theta}{(r_0 - r)^2} = \left(\frac{2}{c} \right)^2 dt \quad w(\varphi) = \frac{1}{r(\varphi)} \quad \frac{dw}{d\varphi} = \frac{1}{r^2} \frac{dr}{d\varphi} \cdot \frac{dw}{dr} = -\frac{1}{r^2}$$

$$\int_0^t \frac{d\theta}{(r_0 - r)^2} \left[P_{0,0} \sin \left(\frac{\varphi}{c} \right) + P_{1,0} \cos \left(\frac{\varphi}{c} \right) + P_{1,1} \sin \left(\frac{\varphi}{c} \right) \right] = -\frac{1}{r^2} \left(\frac{2}{c} \right)^2 \frac{dr}{d\varphi} = -w^2 G M_1 M_2 + w^2 \frac{1}{r^2} \frac{d^2 w}{d\varphi^2}$$

$$f = \frac{\omega_0}{2\pi} = \frac{(1/c)^2}{2\pi} \quad H_0 = (2\pi)^2 \cdot \frac{1}{c^2} \cdot dt = 0$$

$$\rightarrow \Im = (2\pi)^2 \cdot -M^2 \dot{\theta} \quad M^2 \dot{\theta} = (M^2)^2 \cdot 0 \quad x^2 + y^2 + z^2 = c^2 t^2 \quad \theta = \frac{v}{c} t \quad \dot{\theta} = \frac{v}{c^2} \cdot \frac{dt}{dt} = \frac{v}{c^2}$$

$$\Im = \omega_0 \sin(\omega_0 t + \varphi) \quad \dot{\theta} = \omega_0 \sin(\omega_0 t + \varphi) \quad E = \frac{M^2 c^2}{(1 - v^2/c^2)^{1/2}} \quad E = M^2 c^2 +$$

$$\Im = \omega_0 \sin(\omega_0 t + \varphi) = \omega_0 \cos(\omega_0 t) \quad E = p^2 c^2 + M^2 c^2 \quad E = (p^2 c^2 + M^2 c^2)^{1/2}$$

$$E = \frac{1}{2} M^2 \dot{x}^2 + \frac{1}{2} M \left[\omega_0^2 \cos^2(\omega_0 t) \right] \quad = M c^2 \left[1 + \left(\frac{p^2}{M^2 c^2} \right)^{1/2} \right]$$

$$E = \frac{1}{2} M \omega_0^2 R^2 \int_{-R}^{+R} \frac{\cos^2(\omega_0 t + \varphi) dt}{2\pi R \omega_0} \quad \Delta t = \Delta \tau = \left(1 - \frac{v^2}{c^2} \right)^{1/2} \Delta t$$

$$E = E + \frac{1}{2} \varepsilon \cdot \frac{1}{c^2}$$

$$\Delta p_x = \left(1 - \frac{v^2}{c^2} \right)^{1/2} \frac{\Delta p_y}{\Delta t} = \left(1 - \frac{v^2}{c^2} \right)^{1/2} \frac{\Delta p_y}{\Delta t} \quad \text{ISBN 978-1-59973-768-3}$$

$$\frac{dp_x}{dt} = \left(1 - \frac{v^2}{c^2} \right)^{1/2} \frac{dp_y}{dt}, \quad \frac{dp_y}{dt} = \left(1 - \frac{v^2}{c^2} \right)^{1/2}$$

$$p_x = \frac{p_0}{c} \tau \sqrt{E/c^2} \quad \Delta p_x = \frac{\Delta p_0}{\left(1 - \frac{v^2}{c^2} \right)^{1/2}}$$

$$\frac{dV}{dt} = \frac{dV}{d\varphi} \frac{d\varphi}{dt} = \frac{\partial V}{\partial \varphi} \omega = \frac{\partial V}{\partial \varphi} \frac{\omega}{\mu c^2}$$

$$\frac{dV}{dr} = \frac{d^2 V}{d\varphi^2} \cdot \left(\frac{1}{\mu c^2}\right)^2 + \frac{dr}{d\varphi} \cdot \sum \frac{d}{dt} \left(\frac{1}{r^2}\right)$$

■ Carina Maria Viespescu ■ Lucian Tuțescu ■ Florentin Smarandache ■

150+1 PROBLEMS (and their solutions)

150+1 PROBLEME (și soluțiile lor)

bilingual Romanian - English edition

ediție bilingvă română - engleză

$$\begin{aligned} & \text{Left side: } \frac{(3/2)t}{c} \quad \text{Right side: } -w^2 G M_1 \Omega_2 + w^2 \sum \frac{\partial V}{\partial \varphi} - w \\ & f = \frac{\omega_0}{c} = \frac{(3/2)t}{c} \quad \text{Note: } (\omega, \vec{r}), \omega = \frac{dr}{dt} \quad x^2 + y^2 + z^2 = c^2 t^2 \quad \vec{p} = \frac{\vec{v}}{c} \\ & \vec{r} = (r \vec{r}, \vec{\varphi}) = -M_1 \vec{r}_0 \quad M_1 \vec{r}_0 = (M_1 t)^{1/2} \quad \vec{r} = \frac{x - vt}{(1 - v^2/c^2)^{1/2}} \quad t' = \frac{t - (1-v)t}{(1-v^2/c^2)^{1/2}} \\ & \vec{r} \cdot \frac{\partial}{\partial \varphi} \sin \theta = 0 \quad \vec{r}_{\perp} \cdot \vec{e}_\varphi = 0 \quad \vec{r}_{\perp} \cdot \vec{e}_\theta = 0 \quad \vec{r} = \frac{c}{\pi} \vec{r}_0 \quad \vec{r}' = \frac{x - vt}{(1 - v^2/c^2)^{1/2}} \\ & \omega = \omega_0 \sin(\omega t + \varphi) \quad \vec{r} = \omega_0 \vec{r}_0 \sin(\omega t + \varphi) \quad \vec{e} = \frac{M_1 c^2}{(1 - v^2/c^2)^{1/2}} \quad E = M_1 c^2 \cdot \frac{1}{2} \\ & \dot{\varphi} + \omega_0 \sin \theta = 0 \Rightarrow \omega_0 = \left(\frac{c}{R}\right)^2 \quad \omega_0 = \omega_0 \cos(\omega t) \quad E = p^2 c^2 + M^2 c^4 \quad E = (p^2 c^2 + M^2 c^4)^{1/2} \\ & \Psi(r, t) \quad \vec{r} = \vec{r}_0 \sin(\omega t + \varphi) = \vec{r}_0 \cos(\omega t) \quad E = p^2 c^2 + M^2 c^4 \quad E = (p^2 c^2 + M^2 c^4)^{1/2} \\ & K = \frac{1}{2} M_1 \omega^2 + \frac{1}{2} M \left[\omega_0 \vec{r}_0 \sin(\omega t + \varphi) \right]^2 \quad = M c^2 \left[1 + \left(\frac{p^2}{M^2 c^2} \right)^{1/2} \right]^{1/2} \quad \sum_{n=1}^{\infty} E_n = \infty \\ & \frac{d^2 r}{dt^2} = \frac{1}{c} H_0 \vec{r}_0 \vec{r}^2 \quad \int_{r(t)}^{r(t+\Delta t)} \frac{dr}{c r(t)} = \frac{1}{c} H_0 \vec{r}_0 \vec{r}^2 \quad \Delta t = \Delta \tau = \left(1 - \frac{v^2}{c^2}\right)^{-1/2} \Delta t \\ & r = \frac{\int_{r_0}^r dt}{c} = \frac{1}{c} H_0 \vec{r}_0 \vec{r}^2 \quad \text{From: } M \quad \Rightarrow \quad E = E_0 + \frac{1}{2} E + \frac{1}{2} E \\ & \vec{r} = \vec{r}_0 \vec{r} \quad \vec{r} = \vec{r}_0 \vec{r} \quad \vec{r} = \vec{r}_0 \vec{r} \end{aligned}$$

$$\frac{\Delta P_x}{\Delta t} = \left(1 - \frac{v^2}{c^2}\right)^{1/2} \frac{\Delta p_x}{\Delta t} = \left(1 - \frac{v^2}{c^2}\right)^{1/2} \frac{\Delta p_x}{\Delta \tau} \quad \frac{dp_x}{dt} = \frac{dp_x}{d\tau} \quad \Delta$$

$$\frac{dp_x}{dt} = \left(1 - \frac{v^2}{c^2}\right)^{1/2} \frac{dp_x}{d\tau}, \quad \frac{dp_x}{d\tau} = \left(1 - \frac{v^2}{c^2}\right)^{1/2} \frac{\Delta p_x}{\Delta \tau} \quad c = E \gamma^{-1}$$

$$p_x = \frac{p_0 \tau \sqrt{E/c^2}}{(1 - v^2/c^2)^{1/2}} \quad \Delta p_x = \frac{\Delta p_0 \tau \sqrt{\Delta E/c^2}}{(1 - v^2/c^2)^{1/2}}$$

Global Knowledge

Global Knowledge

Publishing House

848 Brickell Ave. Ste. 950

Miami, Florida 33131, United States

<https://egk.cgecon.us>

Reviewers:

Professor Luige Vlăduțăreanu, Ph. D. Eng.

Institute of Solid Mechanics

Romanian Academy

Bucharest, Romania

Ovidiu Ilie Şandru

Department of Mathematical Models

and Methods

“Politehnica” University

Bucharest, Romania

Ion Pătrașcu

Profesor

“Frații Buzești” National College

Craiova, Romania

■ Carina Maria Viespescu ■
■ Lucian Tuțescu ■
■ Florentin Smarandache ■

150+1 PROBLEME
(și soluțiile lor)

150+1 PROBLEMS
(and their solutions)

(Romanian - English bilingual edition)

150+1 PROBLEMS (and their solutions)

Foreword

This book is written for middle and high school students, for teachers and for those with a passion for math, containing 150+1 problems (which are followed by solutions) to make it more accessible to the reader.

The last problem (150+1), a very interesting one, leaves some space for comments and generalizations.

The book is a collaboration between a multi-awarded student at Romania's National Mathematics Olympiad (Carina Maria Viespescu, student in year 10 at Liceul International of Informatics Bucuresti), a teacher from Colegiul National "Fratii Buzesti" din Cravoia and prof. Dr. Emeritus Florentin Smarandache from the University of New Mexico.

A couple of problems are proposed by colleagues, and their names indicated in footnotes.

Problem 1¹

Consider the number

$$A = \frac{(1895 \cdot 1896 \cdots \cdot 2020)^4}{125}.$$

- c) Determine the last 125 digits of the number A .
d) Determine the last digit of the number

$$B = \left[\frac{A}{10^{125}} \right],$$

where the notation $[\cdot]$ represents the integer part.

Solution

a) Noting with $v_p(n)$ the exponent of the prime factor p in the decomposition of the non-zero natural number n into the product of powers of primes, we obtain:

$$v_p(n!) = \left[\frac{n}{p} \right] + \left[\frac{n}{p^2} \right] + \left[\frac{n}{p^3} \right] + \cdots, \quad (1)$$

the sum in the right member having a finite number of nonzero terms, since for any $n \in \mathbb{N}^*$ there exists $k \in \mathbb{N}$ so that $p^k \leq n < p^{k+1}$.

Let $C = 1895 \cdot 1896 \cdots \cdot 2020 = \frac{2020!}{1894!}$. Using formula

(1), we obtain $v_5(C) = v_5(2020!) - v_5(1894!) = 32$ and

$$v_2(C) = v_2(2020!) - v_2(1894!) = 126.$$

We infer that $v_5(A) = 4v_5(C) - 3 = 125$, and

$$v_2(A) = 4v_2(C) = 504, \text{ respectively.}$$

In conseq., A is divided by 10^{125} , so the last 125 digits of A equal 0.

b) The above calculation show that $C = 2^{126} \cdot 5^{32} \cdot k$, and $B = 2^{379} \cdot k^4$, where k is an odd natural number that does not divide by 5. Since the last digit of k is 1, 3, 7 or 9, it follows that the last digit of k^4 is 1. Therefore, the last digit of B is the last digit of $2^{379} = (2^4)^{94} \cdot 2^3$, i.e. 8.

¹ Problem dedicated to 100 years of existence of the "Gazeta Matematică" (Mathematical Gazette).

Problem 2

a) Prove that there exist 140 distinct natural numbers

L_1, L_2, \dots, L_{140} such that

$$\frac{L_1}{L_2} + \frac{L_2}{L_3} + \dots + \frac{L_{139}}{L_{140}} + \frac{L_{140}}{L_1}$$

is a natural number.

b) Prove that there exist 1882 distinct natural numbers

$F_1, F_2, \dots, F_{1882}$ so that

$$\frac{F_1}{F_2} + \frac{F_2}{F_3} + \dots + \frac{F_{1881}}{F_{1882}} + \frac{F_{1882}}{F_1}$$

is a natural number.

c) Prove that there exist 2022 distinct natural numbers so that

$$\frac{B_1}{B_2} + \frac{B_2}{B_3} + \dots + \frac{B_{2021}}{B_{2022}} + \frac{B_{2022}}{B_1}$$

is a natural number.

Solution

a. $L_1 = 1, L_2 = 139, L_3 = 139^2, \dots, L_{140} = 139^{139}$.

b. $F_1 = 1, F_2 = 1881, F_3 = 1881^2, \dots, F_{1882} = 1881^{1881}$.

c. $B_1 = 1, B_2 = 2021, B_3 = 2021^2, \dots, B_{2022} = 2021^{2021}$.

d.

Problem 3

Prove that:

$$A = 1882 + \sqrt{1882^2 - 140} + \sqrt{2022^2 - 140} + 2022 < \\ < \frac{1882 \cdot 2022}{140}$$

Solution

We obtain:

$$\begin{aligned} A &< 1882 + 1882 + 2022 + 20022 < 4 \cdot 2022 < \\ &< \frac{1882 \cdot 2022}{140} \text{ because } 4 \cdot 140 < 1882 \end{aligned}$$

Problem 4

Prove that:

$$a) \frac{1}{140} + \frac{1}{141} + \frac{1}{142} + \dots + \frac{1}{140^2} > 1$$

$$b) \frac{1}{1882} + \frac{1}{1883} + \frac{1}{1884} + \dots + \frac{1}{1882^2} > 1$$

$$c) \frac{1}{2022} + \frac{1}{2023} + \frac{1}{2024} + \dots + \frac{1}{2022^2} > 1$$

Solution

We show that for $n \in \mathbb{N}, n \geq 2$ it results:

$$\frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n^2} > 1$$

Thus, for $n+1 \leq m \leq n^2 - 1, m \in \mathbb{N} \Rightarrow \frac{1}{m} > \frac{1}{n^2}$ and then:

$$\begin{aligned} \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n^2} &> \frac{1}{n} + \frac{1}{n^2} + \frac{1}{n^2} + \dots + \frac{1}{n^2} = \\ &= \frac{1}{n} + \frac{n^2 - n}{n^2} = 1 \end{aligned}$$

Problem 5

Prove that:

$$\begin{aligned} A &= \frac{1}{1882^{\frac{1}{2}} \cdot 1883^{\frac{3}{2}}} + \frac{1}{1883^{\frac{1}{2}} \cdot 1884^{\frac{3}{2}}} + \dots + \frac{1}{2021^{\frac{1}{2}} \cdot 2022^{\frac{3}{2}}} < \\ &< \frac{140}{1882 \cdot 2022} \end{aligned}$$

Solution

Since

$$\frac{1}{n^{\frac{1}{2}} \cdot (n+1)^{\frac{3}{2}}} < \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \quad (\forall) n \in \mathbb{N}^* \text{ we obtain:}$$

$$A < \frac{1}{1882} - \frac{1}{1883} + \frac{1}{1883} - \frac{1}{1884} + \dots + \frac{1}{2021} - \frac{1}{2022} = \\ = \frac{1}{1882} - \frac{1}{2022} = \frac{140}{1882 \cdot 2022}$$

Problem 6

a) Let $x, y \in \mathbb{R}$, so that:

$$(x + \sqrt{x^2 + 1})(y + \sqrt{y^2 + 1}) = 140.$$

$$\text{Prove that } 141(x+y) = 139(\sqrt{x^2 + 1} + \sqrt{y^2 + 1}).$$

b) Let $x, y \in \mathbb{R}$, so that:

$$(x + \sqrt{x^2 + 1})(y + \sqrt{y^2 + 1}) = 1882.$$

$$\text{Prove that } 1883(x+y) = 1881(\sqrt{x^2 + 1} + \sqrt{y^2 + 1}).$$

c) Let $x, y \in \mathbb{R}$, so that:

$$(x + \sqrt{x^2 + 1})(y + \sqrt{y^2 + 1}) = 2022.$$

$$\text{Prove that } 2023(x+y) = 2021(\sqrt{x^2 + 1} + \sqrt{y^2 + 1}).$$

Solution

We show that if

$$(x + \sqrt{x^2 + 1})(y + \sqrt{y^2 + 1}) = a > 0, \text{ then}$$

$$(a+1)(x+y) = (a-1)(\sqrt{x^2 + 1} + \sqrt{y^2 + 1}).$$

$$\text{In fact, } x + \sqrt{x^2 + 1} = \frac{a}{\sqrt{y^2 + 1} + y} = a(\sqrt{y^2 + 1} - y)$$

and analogously, $y + \sqrt{y^2 + 1} = a(\sqrt{x^2 + 1} - x)$. Added together, the two relations lead us to the required relation. For $a = 140, 1882, 2022$ a), b), and c), respectively, are obtained.

Problem 7

Prove that $140!, 1882!, 2022!$ are not perfect squares.

Solution

For $140!$ we observe that the largest prime number < 140 is $139 \Rightarrow$ the exponent of 139 in $140!$ is $1 \Rightarrow 140!$ It cannot be a perfect square.

For $1882!$ we observe that the largest prime number < 1882 is 1879 , found only once in $1882! \Rightarrow 1882!$ It cannot be a perfect square.

For $2022!$ we observe that the largest prime number < 2022 is 2017 , found only once in $2022! \Rightarrow 2022!$ It cannot be a perfect square.

Problem 8

Prove that $140!!$, $1882!!$, $2022!!$ are not perfect squares, where $(2n)!! = 2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n), n \in \mathbb{N}^$.*

Solution

Applying Legendre's formula to find the exponent of a prime p in $n!!$:

$$\exp = E = \left[\frac{n}{p} \right] + \left[\frac{n}{p^2} \right] + \left[\frac{n}{p^3} \right] + \dots,$$

$$\begin{aligned} \text{exp of } 2 \text{ in } 140!! &= \text{exp of } 2 \text{ in } 140! = \\ &= \left[\frac{140}{2} \right] + \left[\frac{140}{2^2} \right] + \left[\frac{140}{2^3} \right] + \dots + \left[\frac{140}{2^7} \right] + \left[\frac{140}{2^8} \right] \end{aligned}$$

is obtained, which is an odd number.

Analogous to $1882!!$

For $2022!! = 2^{1011} \cdot 1011!$, 1099 is the largest prime number $< 1011 \Rightarrow 1009$ is found only once in $1011! \cdot 2^{1011} \Rightarrow 2022!!$ is not a perfect square.

Problem 9

Find the smallest natural number $n \geq 2$, such that each of the following equations

- a) $x_1! + x_2! + \cdots + x_n! = 140!$
b) $x_1! + x_2! + \cdots + x_n! = 1882!$
c) $x_1! + x_2! + \cdots + x_n! = 2022!$

has solutions.

Solution

We obtain:

$$\begin{array}{l} x_1! < 140! \\ x_2! < 140! \\ \vdots \\ x_n! < 140! \end{array} \Rightarrow \begin{array}{l} x_1! \leq 139! \\ x_2! \leq 139! \\ \vdots \\ x_n! \leq 139! \end{array} \Rightarrow x_n! \leq 139!$$

where:

$$140! = x_1! + x_2! + \cdots + x_n! \leq n \cdot 139! \\ \Rightarrow n \geq 140$$

For $n = 140$ avem $x_1 = \cdots = x_{140} = 139$

- b) $n = 1882$
c) $n = 2022$

Problem 10

Show that there is no $n \in \mathbb{N}^*$, so that the sum of the digits of lui $n!$ is 2022.

Solution

If $n \geq 6 \Rightarrow n!$ is divided by 9, since the sum of the digits of $n!$ does not divide by 9 $\Rightarrow n \leq 5$.

Analyzing $n = 1, n = 2, n = 3, n = 4$ we obtain the conclusion.

Problem 11

Show that the number $2021! \cdot 2022!$ can be written as the sum of 2021 consecutive natural numbers, but it cannot be written as the sum of 2022 consecutive natural numbers.

Solution

$$\begin{aligned} 2021! \cdot 2022! &= x + (x + 1) + \cdots + (x + 2020) \Rightarrow \\ \Rightarrow 2021! \cdot 2022! &= 2021x + \frac{2020 \cdot 2021}{2} = \\ &= 2021x + 1010 \cdot 2021 \Rightarrow x = 2020! \cdot 2022! - 1010. \end{aligned}$$

The same if we assume that the number $2021! \cdot 2022!$ is written as the sum of 2022 consecutive natural numbers, for $x \in \mathbb{N}$ we should have:

$$\begin{aligned} 2021! \cdot 2022! &= x + (x + 1) + \cdots + (x + 2021) = \\ &= 2022x + 1 + 2 + \cdots + 2021 = \\ &= 2022x + \frac{2021 \cdot 2022}{2} = \\ &= 2022x + 2021 \cdot 1011 \text{ whence} \end{aligned}$$

$2022x = 2021! \cdot 2022! - 2021 \cdot 1011$ false, because $2022x$ is an even number and $2021! \cdot 2022! - 2021 \cdot 1011$ is an odd number!

Problem 12

Determine the non-zero natural numbers m and n to which:

$$1! \cdot 2! \cdot \cdots \cdot n! = m!.$$

(Let $p! = 1 \cdot 2 \cdot \cdots \cdot p$, where $p \geq 1$ is a non-zero natural number).

Solution

We note that $(n, m) \in \{(1,1), (2,2)\}$ is valid and that $n = 3$ does not provide any result. We look for $n \geq 4$.

Let p be the largest prime number at most equal to m . Then $m \leq 2p - 1$ (*), so, if $m \geq 2p$, Bertrand's postulate confirms that there exists a prime number q for which $p < q \leq m$, which contradicts the maximality of p .

If $n < p$, the left side of the equality is not a multiple of p , while, absurdly, the right side is. Then $n \geq p$. If $n \geq p + 1$, then the left side is a multiple of p^2 , and so is the right side. Thus, $m \geq 2p$, is false. Therefore, $n = p$ and $m \leq 2n - 1$.

Further, it is shown by induction after n that for $n \geq 7$ we have $1! \cdot 2! \cdot \dots \cdot n! > (2n - 1)!$, so $n \leq 6$. If $n = 6$, the right side is divisible by 7 (because $m > n$) while the left side is not. The cases $n = 4, 5$ are directly verified and it is noted that they do not generate any solutions.

Problem 13

Calculate $\sqrt{2022 + a^2} - \sqrt{1882 + a^2}$, if: $\sqrt{2022 + a^2} + \sqrt{1882 + a^2} = 140$.

Solution

$$\begin{aligned}\sqrt{2022 + a^2} + \sqrt{1882 + a^2} &= \frac{2022 + a^2 - 1882 - a^2}{\sqrt{2022 + a^2} - \sqrt{1882 + a^2}} = \\ &= \frac{140}{140} = 1\end{aligned}$$

Problem 14

The string $(a_n), n \in \mathbb{N}^*$ is defined as follows:

$$a_1 = 5, a_{n+1} = \begin{cases} \frac{a_n}{2}, & \text{if } n \text{ is even} \\ \frac{a_n + 51}{2}, & \text{if } n \text{ is odd.} \end{cases}$$

Calculate a_{140}, a_{1882} and a_{2022} .

Solution

Since $a_1 = 5, a_2 = 28, a_3 = 14, a_4 = 7, a_5 = 29, a_6 = 40, a_7 = 20, a_8 = 10, a_9 = 5$ and it is noted (by induction) that $a_{8m+p} = a_p$ (periodical of the main periodic 8).

On account of $140 = 17 \cdot 8 + 4$

$$1882 = 235 \cdot 8 + 2$$

$$2022 = 252 \cdot 8 + 6$$

therefore $\begin{cases} a_{140} = 7 \\ a_{1882} = 28 \\ a_{2022} = 40 \end{cases}$

Problem 15

Show that there is no $a, b \in \mathbb{Z}$ such that

$$(a + b + 2)^{1882} = 2022(ab + 1)^{140}.$$

Solution

Since $3|2022 \Rightarrow a + b + 2 : 3$ and $ab + 1 : 3$, relations that cannot exist simultaneously for $a, b \in \mathbb{Z}$.

Problem 16

Let $a, b, c \in \mathbb{N}^*$, so that

$$(a + b)^{b+c} = (b + c)^{c+a} = (c + a)^{a+b}.$$

Show that $a = b = c$.

Solution

Let $a + b = x, b + c = y, c + a = z$.

Since $x^y = y^z = z^x$ we prove that $x = y = z$.

Assumint that $x < y$ and from $x^y = y^z \Rightarrow y > z$, as

$y^z = z^x \Rightarrow z < x$ and from $z^x = x^y \Rightarrow x > y$ false.

Analogously, if we assume that $x > y$, we get $x < y$ (false!)

Therefore $x = y$ and hence $x^x = x^z = z^x$, whence $x = z$. Thus, $x = y = z$.

Returning to the problem statement, we find $a + b = b + c = c + a$ and hence $a = b = c$, q.e.d.

Problem 17

Prove that the equation:

$$x^n + y^{n+1} = z^{n+2}$$

has infinitely many solutions in natural numbers.

Solution

$$x = a^{n+2}$$

$$y = a^{n+1}$$

$z = a^n \cdot b$, where $a = b^{n+2} - 1, \forall b \in \mathbb{N}$.

Substituting into the equation, we obtain the answer.

Problem 18

Prove that the number

$A = 512^3 + 645^3 + 720^3$ is a composite number.

Solution

$$3 \cdot 720 \cdot 512 \cdot 645 = 2 \cdot 720^3$$

$$\Rightarrow A = 512^3 + 645^3 + 720^3 = 512^3 + 645^3 + (-720)^3 = \\ = 3 \cdot 720 \cdot 512 \cdot 645$$

From the formula: $a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$ the requirement is derived.

Problem 19

Let A be a set of real numbers with property $(\forall) a, b \in A \Rightarrow a^2 b^2 \in A$.

Show that $(\forall) a \in A$ ensues:

$$a) a^{4000} \in A; \quad b) a^{10000} \in A$$

Solution

$$a \in A \Rightarrow a^4 \in A \Rightarrow a^{40} \in A \Rightarrow \\ \Rightarrow a^{100} = (a^{40})^2 (a^{10})^2 \in A \Rightarrow a^{400} \in A \Rightarrow \\ \Rightarrow a^{1600} \in A \Rightarrow (a^{1600})^2 (a^{400})^2 = a^{4000} \in A$$

From $a^{1000} = (a^{400})^2 (a^{100})^2 \in A$ we obtain
 $a^{10000} = (a^{4000})^2 (a^{1000})^2 \in A$.

Problem 20

Let $a_1, a_2, \dots, a_{2022}$ be strictly positive real numbers. Show that:

$$\text{a) } \frac{a_1^2}{a_2^2} + \frac{a_2^2}{a_3^2} + \dots + \frac{a_{140}^2}{a_1^2} \geq \frac{a_1}{a_2} + \frac{a_2}{a_3} + \dots + \frac{a_{140}}{a_1}.$$

In which situation is there equality?

$$\text{b) } \frac{a_1^4}{a_2^4} + \frac{a_2^4}{a_3^4} + \dots + \frac{a_{1882}^4}{a_1^4} \geq \frac{a_1}{a_2} + \frac{a_2}{a_3} + \dots + \frac{a_{1882}}{a_1}.$$

In which situation is there equality?

$$\text{c) } \frac{a_1^8}{a_2^8} + \frac{a_2^8}{a_3^8} + \dots + \frac{a_{2022}^8}{a_1^8} \geq \frac{a_1}{a_2} + \frac{a_2}{a_3} + \dots + \frac{a_{2022}}{a_1}.$$

In which situation is there equality?

Solution

From the Cauchy-Buniakovski-Schwarz inequality:

$$n \left(\frac{a_1^2}{a_2^2} + \frac{a_2^2}{a_3^2} + \dots + \frac{a_n^2}{a_1^2} \right) \geq \left(\frac{a_1}{a_2} + \frac{a_2}{a_3} + \dots + \frac{a_n}{a_1} \right)^2$$

Then we use the inequality of means:

$$\frac{a_1}{a_2} + \frac{a_2}{a_3} + \dots + \frac{a_n}{a_1} \geq n \sqrt[n]{\frac{a_1}{a_2} \cdot \frac{a_2}{a_3} \cdot \dots \cdot \frac{a_n}{a_1}} = n \text{ with equality}$$

for $\frac{a_1}{a_2} = \frac{a_2}{a_3} = \dots = \frac{a_n}{a_1}$, hence $a_1 = a_2 = \dots = a_n$.

For $n = 140$ a) is obtained. For b) and c) proceed as in a).

Problem 21

Solve in the set of non-zero real numbers the system:

$$\begin{cases} x_1^{1882} + \frac{1}{x_1^{1882}} = x_2^{2022} + 1 \\ x_2^{1882} + \frac{1}{x_2^{1882}} = x_3^{2022} + 1 \\ \vdots \\ x_{140}^{1882} + \frac{1}{x_{140}^{1882}} = x_1^{2022} + 1 \end{cases}$$

Solution

From

$$x_k^{1882} + \frac{1}{x_k^{1882}} \geq 2 \sqrt{x_k^{1882} + \frac{1}{x_k^{1882}}} = 2, k = \overline{1,140} \Rightarrow \\ \Rightarrow x_k^{2022} \geq 1 \text{ whence } x_k^2 \geq 1, \text{ and wherefrom } \frac{1}{x_k^2} \leq 1.$$

Summing the equations of the system member by member, we obtain:

$$x_1^{1882} + x_2^{1882} + \dots + x_{140}^{1882} + \frac{1}{x_1^{1882}} + \frac{1}{x_2^{1882}} + \dots + \frac{1}{x_{140}^{1882}} = \\ = x_1^{2022} + x_2^{2022} + \dots + x_{140}^{2022} + 140. \text{ Since } x_k^{1882} \leq x_k^{2022} \text{ și} \\ \frac{1}{x_k^{1882}} \leq 1, k = \overline{1,140} \text{ we find } x_k^{1882} = x_k^{2022} \text{ and } \frac{1}{x_k^{1882}} = 1 \\ \text{where } x_k^2 = 1, k = \overline{1,140} \text{ wherefrom } x_1, x_2, \dots, x_{140} \in \{-1, 1\} \\ (\text{a total of } 2^{140} \text{ solutions}).$$

Problem 22

The strictly positive numbers $a_1, a_2, b_1, b_2, c_1, c_2$ verify

$$b_1^2 \leq 4a_1c_1, b_2^2 \leq 4a_2c_2.$$

Show that:

- a) $4(a_1 + a_2 + 1882)(c_1 + c_2 + 2022) > (b_1 + b_2 + 140)^2$
 b) $4(a_1 + a_2 + 2022)(c_1 + c_2 + 2022) > (b_1 + b_2 + 140)^2$

Solution

From the trinomial sign we have:

$$a_1x^2 + b_1x + c_1 \geq 0, \forall x \in \mathbb{R}$$

$$a_2x^2 + b_2x + c_2 \geq 0, \forall x \in \mathbb{R}$$

$$1882x^2 + 140x + 2022 > 0, \forall x \in \mathbb{R}$$

$$\Rightarrow (a_1 + a_2 + 1882)x^2 + (b_1 + b_2 + 140)^2 + c_1 + c_2 + 2022 > 0, \forall$$

$x \in \mathbb{R}$ from where

$$(b_1 + b_2 + 140)^2 - 4(a_1 + a_2 + 1882)(c_1 + c_2 + 2022) < 0 \text{ i.e. a).}$$

b) Obtained analogously, considering

$$2022x^2 + 140x + 1882 > 0, \forall x \in \mathbb{R}.$$

Problem 23

Show without calculating whole parts:

- a) $2^{[\log_2 140]} < 140 < 2^{[\log_2 140]+1}$
- b) $3^{[\log_3 1882]} < 1882 < 3^{[\log_3 1882]+1}$
- c) $5^{[\log_5 2022]} < 2022 < 5^{[\log_5 2022]+1}$

where $[a]$ is the integer part of the real number a .

Solution

$$\text{a) } (\exists) k \in \mathbb{N} \text{ a.i.: } 2^k < 140 < 2^{k+1} \quad (1)$$

$\Rightarrow k < \log_2 140 < k + 1 \Rightarrow [\log_2 140] = k$ and substituting in (1) results a).

$$\text{b) } (\exists) k \in \mathbb{N} \text{ a.i.: } 3^k < 1882 < 3^{k+1} \quad (2)$$

and by logarithmizing to base 3,

$k < \log_3 1882 < k + 1 \Rightarrow [\log_3 1882] = k$ and substituting in (2) results b).

c) It proceeds as in a) or b).

Problem 24

Let z be such that $z^2 + z + 1 = 0$. Calculate:

$$\text{a) } z^{140} + \frac{1}{z^{140}}, \text{ b) } z^{1882} + \frac{1}{z^{1882}}, \text{ c) } z^{2022} + \frac{1}{z^{2022}}.$$

Solution

By multiplying the relation $z^2 + z + 1 = 0$ cu $z - 1 \Rightarrow z^3 = 1$.

Then:

$$\begin{aligned} \text{a) } z^{140} + \frac{1}{z^{140}} &= z^{138} \cdot z^2 + \frac{1}{z^{138} \cdot z^2} = (z^3)^{46} \cdot z^2 + \\ &+ \frac{1}{(z^3)^{46} \cdot z^2} = z^2 + \frac{1}{z^2} = \frac{z^4 + 1}{z^2} = \frac{z^3 \cdot z + 1}{z^2} = \frac{z + 1}{z^2} = \frac{-z^2}{z^2} = -1 \\ \text{b) } z^{1882} + \frac{1}{z^{1882}} &= z^{1881} \cdot z + \frac{1}{z^{1881} \cdot z} = z + \frac{1}{z} = \frac{z^2 + 1}{z} = \frac{-z}{z} = -1 \\ \text{c) } z^{2022} + \frac{1}{z^{2022}} &= (z^3)^{674} + \frac{1}{(z^3)^{674}} = 1 + 1 = 2 \end{aligned}$$

Problem 25

Let z and w two complex non-zero numbers, so that $z^2 + wz + w^2 = 0$. Calculate:

- a) $A = \left(\frac{z}{z+w}\right)^{140} + \left(\frac{w}{z+w}\right)^{140}$
- b) $B = \left(\frac{z}{z+w}\right)^{1882} + \left(\frac{w}{z+w}\right)^{1882}$
- c) $C = \left(\frac{z}{z+w}\right)^{2022} + \left(\frac{w}{z+w}\right)^{2022}$

Solution

If $z = w$, then $3z^2 = 0$, i.e $z = 0$ false. Therefore, $z \neq w$ and wherefrom $z^3 - w^3 = 0$. We obtain $z = \varepsilon w$, where ε is a non-real complex root of order three of the unit ($\varepsilon \neq 1$ și $\varepsilon^2 + \varepsilon + 1 = 0$). Then:

$$\begin{aligned} \text{a) } A &= \left(\frac{\varepsilon w}{\varepsilon w + w}\right)^{140} + \left(\frac{w}{\varepsilon w + w}\right)^{140} = \\ &= \left(\frac{\varepsilon}{\varepsilon + 1}\right)^{140} + \left(\frac{1}{\varepsilon + 1}\right)^{140} = \frac{\varepsilon^{140} + 1}{(\varepsilon + 1)^{140}} = \frac{\varepsilon^2(\varepsilon^3)^{46} + 1}{(-\varepsilon^2)^{140}} = \\ &= \frac{\varepsilon^2 + 1}{\varepsilon^{280}} = \frac{-\varepsilon}{\varepsilon^{279} \cdot \varepsilon} = \frac{-\varepsilon}{(\varepsilon^3)^{93} \cdot \varepsilon} = \frac{-\varepsilon}{\varepsilon} = -1 \end{aligned}$$

Similarly, $B = 1, C = 2$.

Problem 26

Let $a, b, c > 0$, so that:

$$\frac{1}{a+2} + \frac{1}{b+2} + \frac{1}{c+2} \geq 1.$$

Demonstrate that: $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq 3$.

Solution

From the hypothesis it results that $ab + bc + ca + abc \leq 4$

$$\sqrt[4]{(abc)^3} \leq \frac{ab + bc + ca + abc}{4} = 1 \Rightarrow abc \leq 1.$$

From $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq 3 \sqrt[3]{\frac{1}{abc}}$ si $abc \leq 1$
 \Rightarrow we obtain $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq 3$
 with equality for $a = b = c = 1$.

Problem 27

Let $x, y, z > 0$, such that

$$\frac{1}{2x+1} + \frac{1}{2y+1} + \frac{1}{2z+1} \geq 2.$$

Show that: $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geq 12$. In which situation is there equality?

Solution

By solving the calculation $\frac{1}{4} \geq xy + yz + zx + 4xyz$
 as $\frac{1}{4} \geq xy + yz + zx + 4xyz \geq 4 \sqrt[4]{4(xy \cdot yz \cdot zx)^3} \Rightarrow$

$$\Rightarrow xyz \leq \frac{1}{2^6} \Rightarrow \frac{1}{xyz} \geq 2^6$$

$$\text{Then, } \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geq 3 \sqrt[3]{\frac{1}{xyz}} \geq 3 \sqrt[3]{2^6} = 12.$$

Eg when $xy = yz = zx = 4xyz \Rightarrow x = y = z = \frac{1}{4}$.

Problem 28

Let $x, y, z > 0$, so that $x + y + z = 3$.

Show that:

$$\frac{1}{x+y} + \frac{1}{x+z} + \frac{1}{y+z} \leq \frac{6}{xy + yz + zx}.$$

Solution

$$\frac{xy + yz + zx}{x+y} + \frac{xy + yz + zx}{x+z} + \frac{xy + yz + zx}{y+z} \leq 6$$

$$\text{or } \frac{xy}{x+y} + \frac{xz}{x+z} + \frac{yz}{y+z} + x + y + z \leq 6$$

$$\Rightarrow \frac{xy}{x+y} + \frac{xz}{x+z} + \frac{yz}{y+z} \leq 3 \quad (1)$$

Since $\frac{xy}{x+y} \leq \frac{x+y}{2}$ with eg for $x = y$

$$\frac{xz}{x+z} \leq \frac{x+z}{2} \text{ with eg for } x = z$$

$$\frac{yz}{y+z} \leq \frac{y+z}{2} \text{ with eg for } y = z$$

(1) is obtained, with eg for $x = y = z = 1$.

Problem 29

Let $x_1, x_2, x_3, y_1, y_2, y_3$ be positive real numbers. Show that:

$$(x_1 + y_1)(x_2 + y_2)(x_3 + y_3) + 4\left(\frac{1}{x_1 y_1} + \frac{1}{x_2 y_2} + \frac{1}{x_3 y_3}\right) \geq 20$$

Solution

$$\begin{aligned} \text{We have } E &= (x_1 x_2 + x_1 y_2 + y_1 x_2 + y_1 y_2)(x_3 + y_3) + \\ &+ 4\left(\frac{1}{x_1 y_1} + \frac{1}{x_2 y_2} + \frac{1}{x_3 y_3}\right) = x_1 x_2 x_3 + x_1 x_3 y_2 + y_1 x_2 x_3 + \\ &+ x_3 y_1 y_2 + x_1 x_2 y_3 + x_1 y_2 y_3 + y_1 y_3 x_2 + y_1 y_2 y_3 + \frac{1}{x_1 y_1} + \\ &+ \frac{1}{x_1 y_1} + \frac{1}{x_1 y_1} + \frac{1}{x_1 y_1} + \frac{1}{x_2 y_2} + \frac{1}{x_2 y_2} + \frac{1}{x_2 y_2} + \frac{1}{x_2 y_2} + \\ &+ \frac{1}{x_3 y_3} + \frac{1}{x_3 y_3} + \frac{1}{x_3 y_3} + \frac{1}{x_3 y_3} \geq \\ &\geq 20^{\sqrt[20]{x_1^4 \cdot \frac{1}{x_1^4} \cdot x_2^4 \cdot \frac{1}{x_2^4} \cdots y_3^4 \cdot \frac{1}{y_3^4}}} = 20 \end{aligned}$$

Problem 30

Show that the number $N = \overline{1882\ 1883\ \dots\ 2022}$ can be the difference of two perfect squares..

Solution

N must be of the form $a^2 - b^2 = (a - b)(a + b)$.

If a and b have the same polarity, then $(a - b)(a + b) \vdots 4$, but $N = M_4 + 2$.

If a and b have different polarities, then $a^2 - b^2$ is odd, but N is even.

\Rightarrow there is no number n matching the conditions.

Problem 31

Prove that the product $P = x_1x_2 \cdots x_{140}$ of the first 140 prime numbers cannot be 1 greater or less than a perfect square.

Solution

$P \vdots 2$, but not by 4, but $x^2 - 1 = (x - 1)(x + 1)$ gives the remainders 0 or 3 when dividing by 4.

$P \vdots 3$, but x^2 can be M_3 or $M_2 + 1$
 $\Rightarrow x^2 - 1 \neq M_3$

Problem 32

Determine the prime number p so that $p + 10, p + 50$ to be also prime numbers.

Solution

$p = 3$, convenient.

If $p = 3k + 1 \Rightarrow p + 50 = 3k + 51 \vdots 3$.

If $p = 3k + 2 \Rightarrow p + 10 = 3k + 12 \vdots 3$.

Therefore, the only convenient number is $p = 3$.

Problem 33

Show that $3^{4n+1} + 1$ can be written as the sum of 3 perfect squares for any $n \in \mathbb{N}$.

Solution

It results from identity:

$$3^{4n+1} + 1 = (3^{2n} - 1)^2 + (3^{2n} - 3^n)^2 + (3^n + 3^{2n})^2.$$

Problem 34

Find the values of $n \in \mathbb{N}$ for which $2^n - 1$ divides by 7 and show that there is no $n \in \mathbb{N}$ so that $2^n + 1$ is divisible by 7.

Solution

The remainders of 2^n when dividing by 7 are 1, 2, 4 where $n = 3k, k \in \mathbb{N}$ are the numbers that have the property that $2^n - 1$ divides by 7 and since $2^n + 1$ results in the remainder 2, 3, 5 when dividing by 7, the requirement of the problem is obtained.

Problem 35

For which values of $n \in \mathbb{N}$ does the number $3^n - 1$ divide by 13? Show that there is no $n \in \mathbb{N}$ so that $3^n + 1$ divides by 13.

Solution

The remainders of 3^n when dividing by 13 are 1, 3, 9 from which $n = 3k, k \in \mathbb{N}$. Since $3^n + 1$ gives the remainder 2, 4, 10 when dividing by 13, the problem requirement is obtained.

Problem 36

Compare the fractions:

a) $\frac{10^{138} + 1}{10^{139} + 1}$ și $\frac{10^{139} + 1}{10^{140} + 1}$;

- b) $\frac{10^{1880} + 1}{10^{1881} + 1}$ și $\frac{10^{1881} + 1}{10^{1882} + 1}$;
 c) $\frac{10^{2020} + 1}{10^{2021} + 1}$ și $\frac{10^{2021} + 1}{10^{2022} + 1}$.

Solution

Let $n \geq 2$. Let's compare

$$\begin{aligned} & \frac{10^n + 1}{10^{n+1} + 1} - \frac{10^{n+1} + 1}{10^{n+2} + 1} = \\ &= \frac{(10^n + 1)(10^{n+2} + 1) - (10^{n+1} + 1)^2}{(10^{n+1} + 1)(10^{n+2} + 1)} = N = \\ &= \frac{10^{2n+2} + 10^n + 10^{n+2} + 1 - 10^{2n+2} - 2 \cdot 10^{n+1} - 1}{N} = \\ &= \frac{10^n(10^2 + 1 - 2 \cdot 10)}{N} = \frac{10^n \cdot 81}{N} > 0 \end{aligned}$$

the first fractions are the largest.

Problem 37

Find the real roots of the equation:

a) $(x - 1)^{140} \sqrt{\frac{x - 1}{3 - x}} + (3 - x)^{140} \sqrt{\frac{3 - x}{x - 1}} = 2$;

b) $(x - 1)^{1882} \sqrt{\frac{x - 1}{3 - x}} + (3 - x)^{1882} \sqrt{\frac{3 - x}{x - 1}} = 2$;

c) $(x - 1)^{2022} \sqrt{\frac{x - 1}{3 - x}} + (3 - x)^{2022} \sqrt{\frac{3 - x}{x - 1}} = 2$.

Solution

Evidently, $x \neq 1, x \neq 3$ și $x \in (1, 3)$.

Let $\sqrt[2n]{\frac{x - 1}{3 - x}} = t \geq 0, n \in \mathbb{N}^*$.

The equation is written as follows: $(3 - x)t^2 - 2t + x - 1 = 0$
with the roots

$$t_1 = 1 \text{ and } t_2 = \frac{x-1}{3-x}.$$

From $\sqrt[2n]{\frac{x-1}{3-x}} = 1 \Rightarrow x = 2$ and from

$$\sqrt[2n]{\frac{x-1}{3-x}} = \frac{x-1}{3-x} \Rightarrow \left(\frac{x-1}{3-x}\right)^{2n-1} = 1$$

$$\text{where } \frac{x-1}{3-x} = 1 \Rightarrow x = 2.$$

Therefore, the equations a), b) and c), respectively, have a single real root, $x = 2$.

Problem 38

The non-negative real numbers x and y satisfy $x + y = 2$. Show that:

- a) $(xy)^{140}(x^2 + y^2) \leq 2$;
- b) $(xy)^{1882}(x^2 + y^2) \leq 2$;
- c) $(xy)^{2022}(x^2 + y^2) \leq 2$.

Solution

It will be proved that $(xy)^{2n}(x^2 + y^2) \leq 2$, where $n \in \mathbb{N}^*$.

Let $x = 1 - z, y = 1 + z$ cu $z \in [0,1]$. Then the inequality becomes $(1 - z^2)^{2n}(2 + 2z^2) \leq 2$ or $(1 - z^2)^{2n}(1 + z^2) \leq 1$ or $(1 - z^2)^{2n-1}(1 - z^4) \leq 1$, which is true. Equality is identified when $z = 0$, i.e. $x = y = 1$.

Problem 39

Find $x \in \mathbb{R}$ such that $7^x - 3^x = 40$.

Solution

We observe $x = 2$ as solution. The equation is written as follows:

$$\left(\frac{7}{3}\right)^x - 1 = \frac{40}{3^x}.$$

If $x > 2 \Rightarrow \left(\frac{7}{3}\right)^x - 1 > \frac{49}{9} - 1 = \frac{40}{9}$ și $\frac{40}{3^x} < \frac{40}{9}$, and
 if $0 < x < 2$, $\left(\frac{7}{3}\right)^x - 1 < \frac{49}{9} - 1 = \frac{40}{9}$, and $\frac{40}{3^x} > \frac{40}{9}$.

Therefore, $x = 2$ is the only solution of the equation because $x \leq 0$ is not possible.

Problem 40

Solve the equation in \mathbb{R} :

$$2022^x - 1882^x = 140.$$

Solution

From $2022^x - 1882^x > 0 \Rightarrow x > 0$.

Notice that $x = 1$ is the result.

We write the equation $\left(\frac{2022}{1882}\right)^x = 1 + \frac{140}{1882^x}, x < 1$ and observe

that for $x > 1$, the left member is larger than $\frac{2022}{1882}$,

and the right member is smaller

and for $0 < x < 1$ the left member is smaller than $\frac{2022}{1882}$, and the right one is larger than it.

Problem 41

Determine the number of digits of the number $\left[\left(\sqrt{2} + \sqrt{3}\right)^{200}\right]$, where

$[a]$ is the integer part of the real number a .

Solution

We have

$$\left(\sqrt{2} + \sqrt{3}\right)^{200} = \left(5 + 2\sqrt{6}\right)^{100} < (5 + 2 \cdot 2,5)^{100} = 10^{100}$$

$$\left(\sqrt{2} + \sqrt{3}\right)^{200} = \left(5 + 2\sqrt{6}\right)^{100} > (5 + 2 \cdot 2,4)^{100} = (9,8)^{100}.$$

We will then show that $(9,8)^{100} > 10^{99}$.

$$\left(\frac{10}{9,8}\right)^{99} = \left(1 + \frac{1}{49}\right)^{49}$$

$$\left(1 + \frac{1}{49}\right)^{49} \cdot \frac{10}{9,8} < 3 \cdot 3 \cdot \frac{10}{9,8} = \frac{90}{9,8} = \frac{900}{98} < 9,8.$$

Therefore, $10^{100} > (\sqrt{2} + \sqrt{3})^{200} > 10^{99} \Rightarrow (\sqrt{2} + \sqrt{3})^{200}$ ha 100 digits.

Problem 42

Show that there are infinitely many pairs $a, b, c \in \mathbb{R}$ such that $\sqrt{a+b} + \sqrt{b+c} + \sqrt{c+a} \in \mathbb{N}$.

Solution

$$a + b = k_1^2$$

$$b + c = k_2^2$$

$$c + a = k_3^2$$

(+) _____

$$a + b + c = \frac{k_1^2 + k_2^2 + k_3^2}{2}$$

$$\Rightarrow a = \frac{k_1^2 - k_2^2 + k_3^2}{2}$$

$$b = \frac{k_1^2 + k_2^2 - k_3^2}{2}$$

$$c = \frac{-k_1^2 + k_2^2 + k_3^2}{2}$$

Problem 43

Show that for $n \in \mathbb{N}$ the number $n^{2022} - n + 1$ cannot be divided by 2022.

Solution

$n^{2022} - n + 1$ is an odd number!

Problem 44

Let $x, y \in \mathbb{N}^*$ such that $x + y + 1$ divide $x^2 - y^2 + 1$. Show that $x + y + 1$ cannot be prime number.

Solution

$$\begin{aligned} \text{We have } x^2 - y^2 + 1 &= (x + 1)^2 - y^2 - 2x = \\ &= (x + y + 1)(x - y + 1) - 2x. \end{aligned}$$

Since $x^2 - y^2 + 1$ is divided by $x + y + 1 \Rightarrow x + y + 1 | 2x$. Assuming that $x + y + 1 = p$ (p , prime number) we obtain $p | 2$ or $p | x$ which is false, because

$$p = x + y + 1 > 2 \text{ si } p = x + y + 1 > x.$$

Observation

For $x = 2, y = 1$,
 $x^2 - y^2 + 1 = 4 : x + y + 1 = 2 + 1 + 1 = 4$ and 4 is composite or
 $x = 3, y = 2, x^2 - y^2 + 1 = 9 - 4 + 1 = 6$ which is divided by
 $x + y + 1 = 3 + 2 + 1 = 6$ and also 6 is a composite number.

Problem 45

Show that if $a^3 + b^3 + c^3 : a + b + c$, then $a + b + c$ is composite, $a, b, c \in \mathbb{N}^*$,

Solution

$$\begin{aligned} a^3 + b^3 + c^3 - 3abc(a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca) : \\ : (a + b + c) \Rightarrow 3abc : a + b + c \end{aligned}$$

If $a + b + c$ was prime, then $a + b + c$ would divide 3, a, b or c .

But:

$$\left| \begin{array}{l} a + b + c > 3 \\ a + b + c > a \\ a + b + c > b \\ a + b + c > c \end{array} \right| \Rightarrow \text{Impossible} \Rightarrow a + b + c \text{ composite}$$

Problem 46

Show that if $x^2 + y^2 - 1$ divides by $x + y + 1$, then $x + y + 1$ is composite.

Solution

$$x^2 + y^2 - 1 + 2xy - 2xy = (x + y)^2 - 1 - 2xy = \\ = (x + y - 1)(x + y + 1) - 2xy \Rightarrow 2xy : x + y + 1$$

If $x + y + 1$ was prime, then $x + y + 1$ would divide $2, x$ or y . But $x + y + 1$ is larger than these factors \Rightarrow
 $\Rightarrow x + y + 1 \neq \text{prime} \Rightarrow x + y + 1 \text{ composite.}$

Problem 47

Let $x, y \in \mathbb{N}, x \geq 3, y \geq 3$ such that $x^3 + y^3 + 3x^2x - 8$ is divided by $x + y - 2$. Show that $x + y - 2$ cannot be a prime number.

Solution

We have

$$x^3 + y^3 + 3x^2x - 8 = (x + y)^3 - 2^3 - 3xy^2 = \\ = (x + y - 2)[(x + y)^2 + 2(x + y) + 4] - 3xy^2 \text{ and from here } x + y - 2 | 3xy^2.$$

If we assume $x + y - 2 = p$, p prime number, $p | 3$ or $p | x$ or $p | y$.

Since $x + y - 2 \geq 3 + 3 - 2 = 4$ and $x + y - 2 > x$,
 $x + y - 2 > y$ gives that $x + y - 2$ is not prime.

Observation

For $x = y = 4$ we have $x^3 + y^3 + 3x^2x - 8 =$
 $= 4^3 + 4^3 + 3 \cdot 4^3 - 8 = 4 \cdot (16 + 16 + 48 - 2) =$
 $= 4 \cdot 78 : x + y - 2 = 4 + 4 - 2 = 6$ and obviously 6 is not a prime number.

Problem 48

Let $a > 0$. Solve the system of equations in the set of nonzero real numbers:

$$\begin{cases} \frac{x^4}{y^2} + xy = a^6 + a^3 \\ \frac{y^4}{x^2} + xy = a^3 + 1 \end{cases}$$

Solution

From these two equations we notice:

$$\frac{x^4}{y^2} = a^6 + a^3 - xy \text{ and } \frac{y^4}{x^2} = a^3 + 1 - xy.$$

By multiplying the relations we obtain:

$$x^2y^2 = a^3(a^3 + 1)^2 - a^3(a^3 + 1) - (a^3 + 1)xy + xy^2 \Rightarrow$$

$$\Rightarrow x^2y^2 = a^3(a^3 + 1)^2 - (a^3 + 1)^2xy + (xy)^2$$

$$xy = \frac{a^3(a^3 + 1)^2}{(a^3 + 1)^2} = a^3$$

$$\Rightarrow \frac{x^4}{y^2} = a^6$$

$$\frac{y^4}{x^2} = 1$$

$$x^4 = a^6y^2$$

$$y^4 = x^2 \Leftrightarrow x^4 = y^8$$

$$a^6y^2 = y^8 \Rightarrow y^6 = a^6 \Rightarrow y = \pm a$$

$$\text{If } y = a \Rightarrow x = a^2$$

$$y = -a \Rightarrow x = -a^2$$

Problem 49

Find the real solution to the equation

$$x^3 + x^2 + x + \frac{1}{3} = 0.$$

Solution

$$3x^3 + 3x^2 + 3x + 1 = 0 \text{ or}$$
$$2x^3 + (x+1)^3 = 0 \Rightarrow x+1 = -\sqrt[3]{x} \text{ and from here}$$
$$x = -\frac{1}{\sqrt[3]{2} + 1}$$

Problem 50

Solve the equations:

- a) $x^3 - (1 + \sqrt{140})x^2 + 140 = 0$
- b) $x^3 - (1 + \sqrt{1882})x^2 + 1882 = 0$
- c) $x^3 - (1 + \sqrt{2022})x^2 + 2022 = 0$

Solution

a) Let $\sqrt{140} = t$ and we note the equation as $t^2 - x^2t + x^3 - x^2 = 0$ with $\Delta = x^4 - 4(x^3 - x^2) = (x^2 - 2x)^2$ from where

$$t = \sqrt{140} = \frac{x^2 \pm (x^2 - 2x)}{2}.$$

From here, $x_1 = \sqrt{140}$ și $\sqrt{140} = x^2 - x \Rightarrow$

$$\Rightarrow x_{2,3} = \frac{1 \pm \sqrt{1 + 4\sqrt{140}}}{2}$$

b), c) Proceed as in a).

Problem 51

Solve in \mathbb{R} the equation

$$x^8 - x^6 + x^4 - x^2 + 1 = 0.$$

Solution

We multiply the equation by $x^2 + 1$ and get $x^{10} + 1 = 0$.

Since this equation has no real roots and și $x^2 + 1 > 0$ we conclude that the given equation has no real roots.

Problem 52

Let $a, b \in \mathbb{R}, a \neq b$. Find the real roots of the equation $(a - x)^5 + (x - b)^5 = (a - b)^5$.

Solution

Let $a - x = \mu, x - b = \vartheta$. We have $\mu + \vartheta = a - b$ and $\mu^5 + \vartheta^5 = (a - b)^5$. Since

$$\begin{aligned} \mu^5 + \vartheta^5 &= (\mu + \vartheta)(\mu^4 - \mu^3\vartheta + \mu^2\vartheta^2 - \mu\vartheta^3 + \vartheta^4) = \\ &= (\mu + \vartheta)[((\mu + \vartheta)^2 - 2\mu\vartheta)^2 - \mu\vartheta(a - b)^2 + \mu^2\vartheta^2] = \\ &= (a - b)[((a - b)^2 - 2\mu\vartheta)^2 - \mu\vartheta(a - b)^2 + \mu^2\vartheta^2] = \\ &= (a - b)^5 \Rightarrow (a - b)^4 = (a - b)^4 - 4(a - b)^2\mu\vartheta + \\ &+ 4(\mu\vartheta)^2 - (a - b)^2 + \mu^2\vartheta^2 \text{ and from here} \\ 5\mu^2\vartheta^2 - 5(a - b)^2\mu\vartheta &= 0 \text{ from where we obtain } x_1 = a \text{ and } x_2 = b \\ \text{as the real roots.} \end{aligned}$$

Problem 53

Find all the triples of real non-zero numbers a, b, c for which the numbers $\frac{a}{b} + \frac{b}{c}, \frac{b}{c} + \frac{c}{a}, \frac{c}{a} + \frac{a}{b}$ are integers.

Solution

Let $\frac{a}{b} + \frac{b}{c} = x, \frac{b}{c} + \frac{c}{a} = y$ și $\frac{c}{a} + \frac{a}{b} = z$ with $x, y, z \in \mathbb{Z}$.

Let $x + y + z = s$. Then:

$$\frac{a}{b} = \frac{s - 2y}{2}, \quad \frac{b}{c} = \frac{s - 2z}{2}, \quad \frac{c}{a} = \frac{s - 2x}{2}.$$

Further: $(s - 2x)(s - 2y)(s - 2z) = 8 \frac{c}{a} \cdot \frac{a}{b} \cdot \frac{b}{c} = 8$.

From here: $s - 2x, s - 2y$ and $s - 2z$ can be $(2, 2, 2); (2, -2, -2); (-2, 2, -2); (-2, -2, 2)$.

Since $s - 2x + s - 2y + s - 2z = s$, $s = 6$ or $s = -2$ are found.

Then:

$$(x, y, z) \in \{(2, 2, 2), (-2, 0, 0), (0, -2, 0), (0, 0, -2)\}.$$

We obtain: $(a, b, c) \in \{(\pm r, \pm r, \pm r) | r \in \mathbb{R}^*\}$.

Problem 54

Solve the equation in the \mathbb{R} set:

$$\sqrt{x-1} + \sqrt[3]{2-x} = 1.$$

Solution

Evidently, $x \geq 1$. Let $a = \sqrt{x-1}$ și $b = \sqrt[3]{2-x}$. Then $a+b=1$ and $a^2+b^3=1$ from where $(1-b)^2+b^3=1$, i.e.: $b(b-1)(b+2)=0$.

If $b=0 \Rightarrow a=1 \Rightarrow x=2$.

If $b=1 \Rightarrow a=0 \Rightarrow x=1$.

If $b=-2 \Rightarrow a=3 \Rightarrow x=10$.

Thus, the equation has 3 real solutions: $x_1 = 2, x_2 = 1, x_3 = 10$.

Problem 55

Show that there is no $n \in \mathbb{N}^*$ such that $n^5 - n + 1$ divides by $n^2 + n + 1$.

Solution

From $n^5 + n + 1 = n^5 - n^2 + n^2 + n + 1 = n^2(n^3 - 1) + n^2 + n + 1 = n^2(n-1)(n^2 + n + 1) + n^2 + n + 1 = (n^2 + n + 1)(n^3 - n^2 + 1)$ we obtain $n^5 - n + 1 = (n^2 + n + 1)(n^3 - n^2 + 1) - 2n$ and from here $n^2 + n + 1 | 2n$ which is false, since $n^2 + n + 1 > 2n$ for $n \in \mathbb{N}^*$ ($n^2 - n + 1 = n(n-1) + 1 \geq 1 > 0$).

Problem 56

Let $a, b, c \in \mathbb{N}^*$.

- a) Show that the equation $x^a + y^b = 2z^{ab}$ has an infinity of non-zero natural number solutions.
- b) Show that the equation $x^a + y^b + z^c = 3t^{abc}$ has an infinity of non-zero natural number solutions.

Generalization.

Solution

a) Let $z = k \in \mathbb{N}^* \Rightarrow x = k^b, y = k^a$ as results.

b) Let $t = k \in \mathbb{N}^* \Rightarrow x = k^{bc}, y = k^{ac}, z = k^{ab}$ as results.

Generalization. If $a_1, a_2, \dots, a_n \in \mathbb{N}^*$ given ($n \geq 2$) it follows that the equation $x_1^{a_1} + x_2^{a_2} + \dots + x_n^{a_n} = ny^{a_1 \dots a_n}$ has infinitely many solutions in \mathbb{N}^* .

If $y = k \in \mathbb{N}^*$ și $p = a_1 \dots a_n$ it implies that the solutions will be::

$$x_1 = k^{\frac{p}{a_1}}, x_2 = k^{\frac{p}{a_2}}, \dots, x_n = k^{\frac{p}{a_n}}.$$

Problem 57

Let p be a prime number, which is not a divisor of 140. Determine the integers x and y such that

$$(2022x + y)^2 = px(1882x + y).$$

Solution

Since $p \mid (2022x + y)^2 \Rightarrow 2022x + y = pa, a \in \mathbb{Z}$ and from here $p \mid x(1882x + y)$. If $p \mid x$, from $p \mid 2022x + y \Rightarrow p \mid y$, and if $p \mid 1882x + y$ we get $p \mid 140x$ where from $p \mid x$. Therefore,

$x = px_1, y = py_1, b, c \in \mathbb{Z}$ substituting into the inequality in the statement, it leads that $(2022x_1 + y_1)^2 = px_1(1882x_1 + y_1)$.

We repeat the reasoning and conclude that x and y are divided by any power of p , hence $x = y = 0$.

Problem 58

Show that the number $A = 2^{30} + 1$ is divided by 25.

Solution

$$\begin{aligned} 2^{30} + 1 &= (2^{10})^3 + 1 = 1204^3 + 1 = \\ &= (M_{25} - 1)^3 + 1 = M_{25} - 1 + 1 = M_{25}. \end{aligned}$$

Problem 59

Is there $x, y \in \mathbb{N}$, such that

$$2^x + 2^y = 2022! ? (n! = 1 \cdot 2 \cdot 3 \cdots n)?$$

Solution

From $2^n \equiv r \pmod{7} \Rightarrow r \in \{1, 2, 4\} \Rightarrow$
 $\Rightarrow 2^x + 2^y \equiv r_1 \pmod{7}$ with $r_1 \in \{2, 3, 4, 5, 6\}$. Since $2022! \not\equiv 0 \pmod{7} \Rightarrow$
 there is no $x, y \in \mathbb{N}$ with the property in the statement.

Problem 60

Find the natural numbers x and y , such that

$$\frac{x+y}{2} - \sqrt{xy} = 1.$$

Solution

Since the relation is written as: $(\sqrt{x} - \sqrt{y})^2 = 2 \Rightarrow$
 $\Rightarrow |\sqrt{x} - \sqrt{y}| = \sqrt{2}$. If $x \geq y$, then $\sqrt{x} = \sqrt{2} + \sqrt{y} \Rightarrow$
 $\Rightarrow x = 2 + y + 2\sqrt{2y} \Rightarrow 2y = k^2, k \in \mathbb{N}$, hence $y = 2l^2, l \in \mathbb{N}$
 and $x = 2 + 2l^2 + 4l = 2(l+1)^2$.

If $y > x$, we find $x = 2l^2$ and $y = 2(l+1)^2$.

Problem 61

Show that there are infinitely many natural numbers such that:

- a) $\frac{x+y}{2} - \sqrt{xy} = 140;$
- b) $\frac{x+y}{2} - \sqrt{xy} = 1882;$
- c) $\frac{x+y}{2} - \sqrt{xy} = 2022.$

Solution

- a) $x = 2 \cdot 140k^2, y = 2 \cdot 140(k+1)^2, k \in \mathbb{N}$
- b) $x = 2 \cdot 1882k^2, y = 2 \cdot 1882(k+1)^2, k \in \mathbb{N}$
- c) $x = 2 \cdot 2022k^2, y = 2 \cdot 2022(k+1)^2, k \in \mathbb{N}$

Problem 62

Let $f: \mathbb{R} \rightarrow \mathbb{R}$, $f(x) = ax^2 + bx + c$,

$a, b, c \in \mathbb{R}$ a.i. $f(0), f(1), f(2) \in \mathbb{Z}$. Show that:

$$a) f(140) \in \mathbb{Z}; \quad b) f(1882) \in \mathbb{Z}; \quad c) f(2022) \in \mathbb{Z}.$$

Solution

$$\begin{aligned} &f(2) - 2f(1) + f(0) = \\ &= 4a + 2b + c - 2a - 2b - 2c + c = 2a \Rightarrow 2a \in \mathbb{Z} \\ &f(1) - f(0) = a + b + c - c = a + b \in \mathbb{Z} \\ &f(0) = c \in \mathbb{Z} \\ &f(140) = 140^2 a + 140b + c = (140^2 - 140)a + \\ &+ 140(a + b) + c \in \mathbb{Z} \text{ because } 140^2 - 140 \text{ is an even number.} \\ &f(1882) = 1882^2 a + 1882b + c = (1882^2 - 1882)a + \\ &+ 1882(a + b) + c \in \mathbb{Z} \text{ because } 1882^2 - 1882 \text{ is an even number.} \\ &f(2022) = 2022^2 a + 2022b + c = (2022^2 - 2022)a + \\ &+ 2022(a + b) + c \in \mathbb{Z} \text{ because } 2022^2 - 2022 \text{ is an even number.} \end{aligned}$$

Problem 63

Let $f: \mathbb{R} \rightarrow \mathbb{R}$, such that $f(x + 1) - f(x) =$

$$= 3x^2 + 3x + 1, (\forall)x \in \mathbb{R}.$$

If $|f(x)| \leq 3, (\forall)x \in [0,1]$ show that:

$$|f(x)| \leq 4 + |x|^3 (\forall)x \in \mathbb{R}.$$

Solution

$$\begin{aligned} &\text{Let } g: \mathbb{R} \rightarrow \mathbb{R}, \quad g(x) = f(x) - x^3 \Rightarrow \\ &\Rightarrow g(x + 1) - g(x) = f(x + 1) - (x + 1)^3 - f(x) + x^3 = 0 \\ &\Rightarrow g \text{ is periodic with period 1} \Rightarrow |g(x)| \leq |f(x)| + |x|^3 \leq 4, \\ &(\forall)x \in [0,1] \Rightarrow |g(x)| \leq 4, (\forall)x \in \mathbb{R} \text{ and therefore} \\ &|f(x)| = |g(x) + x^3| \leq |g(x)| + |x|^3 \leq 4 + |x|^3 \text{ q.e.d.} \end{aligned}$$

Problem 64

Find the remainder of the division of the polynomial

$$p = x^{2022} + x^{1882} + x^{140}$$

to the polynomial $q = x^2 + x + 1$.

Solution

Let $x^2 + x + 1 = (x - x_1)(x - x_2)$, $x_1 \neq x_2$.

Therefore, $x_1^2 + x_1 + 1 = 0 \mid (x_1 - 1)$, $x_1 \neq 1 \Rightarrow x_1^3 = 1$. Then:

$$p(x_1) = x_1^{2022} + x_1^{1882} + x_1^{140} =$$

$$= (x_1^3)^{674} + x_1(x_1^3)^{627} + x_1^2(x_1^3)^{46} = 1 + x_1 + x_1^2 = 0 \Rightarrow$$

$\Rightarrow x - x_1 \mid p$ and, analogically, $x - x_2 \mid p$.

Thus, $p : q \Rightarrow r = 0$.

Problem 65

Solve the equation in \mathbb{R} :

$$\sqrt{x^2 - 4x + 5} + \sqrt{3x^2 - 12x + 16} = -2x^2 + 8x - 5.$$

Solution

Let $y = x^2 - 4x + 5 \geq 1 > 0$, because $(x - 2)^2 \geq 0 \Rightarrow \sqrt{y} + \sqrt{3y + 1} = -2y + 5 \Leftrightarrow$
 $\Leftrightarrow \sqrt{y} + \sqrt{3y + 1} + 2y - 5 = 0$

Since $f: [1, \infty) \rightarrow \mathbb{R}$, $f(y) = \sqrt{y} + \sqrt{3y + 1} + 2y - 5$ is strictly increasing $\Rightarrow f(y) = 0$ has at most one solution.

As $f(1) = 0 \Rightarrow y = 1$, unique solution \Rightarrow

$$\Rightarrow x^2 - 4x + 5 = 1 \Leftrightarrow (x - 2)^2 = 0 \Rightarrow x = 2,$$

unique solution.

Problem 66

Solve the equation in \mathbb{R} :

$$\sqrt{x - 1} + \sqrt{3 - x} = x^2 - 4x + 6.$$

Solution

Evidently, $x \in [1,3]$. Since $x^2 - 4x + 6 = (x-2)^2 + 2 \geq 2 \Rightarrow \sqrt{x-1} + \sqrt{3-x} \geq 2 \Rightarrow x-1+3-x+2\sqrt{(x-1)(3-x)} \geq 4 \Rightarrow \sqrt{(x-1)(3-x)} \geq 1$ or $(x-1)(3-x) \geq 1 \Rightarrow -x^2+3x-3+x \geq 1 \Rightarrow 0 \geq x^2-4x+4 = (x-2)^2 \Rightarrow (x-2)^2 = 0 \Rightarrow x = 2$ as the only result.

Problem 67

Show that if $a, b, c > 0$, then

$$\frac{a^3}{b} + \frac{b^3}{c} + \frac{c^3}{a} \geq ab + bc + ca.$$

Solution

By using Hölder's inequality, we have:

$$\begin{aligned} \frac{a^3}{b} + \frac{b^3}{c} + \frac{c^3}{a} &\geq \frac{(a+b+c)^3}{3(a+b+c)} = \frac{(a+b+c)^2}{3} \geq \\ &\geq \frac{3(ab+bc+ca)}{3} = ab + bc + ca. \end{aligned}$$

Problem 68

Let a, b, c be positive numbers, such that $abc = 1$.

Show that: $a^2 + b^2 + c^2 + ab + bc + ca - a - b - c \geq 3$. In which situation is there equality?

Solution

Since $\frac{a^2 + b^2 + c^2}{3} \geq \left(\frac{a+b+c}{3}\right)^2$, we obtain:

$$\begin{aligned} a^2 + b^2 + c^2 + ab + bc + ca - a - b - c &= a^2 + b^2 + c^2 + \\ &+ \frac{(a+b+c)^2 - (a^2 + b^2 + c^2)}{2} - (a+b+c) = \end{aligned}$$

$$\begin{aligned}
 &= \frac{a^2 + b^2 + c^2}{2} + \frac{(a+b+c)^2}{2} - (a+b+c) \geq \\
 &\geq \frac{1}{2} \frac{(a+b+c)^2}{3} + \frac{(a+b+c)^2}{2} - (a+b+c) = \\
 &= \frac{a+b+c}{3} [2(a+b+c) - 3] \geq \sqrt[3]{abc} (2 \cdot 3 \sqrt[3]{abc} - 1) = 3.
 \end{aligned}$$

We identify equality in $a = b = c = 1$.

Problem 69

Let $a, b, c \in \mathbb{R}$ a.i. $a + b + c = 1$. Show that:

$$a^2 + b^2 + c^2 + 1 \geq 4(ab + bc + ca).$$

Solution

$$\begin{aligned}
 a^2 + b^2 + c^2 + (a+b+c)^2 &\geq 4(ab + bc + ca) \Leftrightarrow \\
 \Leftrightarrow a^2 + b^2 + c^2 &\geq ab + bc + ca
 \end{aligned}$$

Equality for $a = b = c = \frac{1}{3}$.

Problem 70

Prove that

$$x \in \mathbb{Z} \text{ a.i. } F = \frac{x^4 - 10x^2 + 9}{x^2 - 2x - 9} \text{ is a prime number.}$$

Solution

$$\begin{aligned}
 F &= \frac{x^4 - x^2 - 9x^2 + 9}{(x-1)^2 - 4} = \frac{x^2(x^2-1) - 9(x^2-1)}{(x-3)(x-1)} = \\
 &= \frac{(x^2-1)(x^2-9)}{(x-3)(x+1)} = (x-1)(x+3)
 \end{aligned}$$

$$x-1 = -1 \Rightarrow x = 0 \quad F = -3 < 0$$

(F)

$$x-1 = 1 \Rightarrow x = 2 \quad F = 5$$

(A)

$$x+3 = 1 \Rightarrow x = -2 \quad F = -3 < 0$$

(F)

$$x+3 = -1 \Rightarrow x = -4 \quad F = 5$$

(A)

$$\Rightarrow x \in \{-4, 2\}$$

Problem 71*Find*

$$E = \frac{1}{x} + \frac{1}{y}, \quad \text{knowing that } x^3 + y^3 + 3x^2y^2 = x^3y^3.$$

Solution

$$\begin{aligned} O &= (xy)^3 + (-x)^3 + (-y)^3 - 3xy(-x)(-y) = \\ &= (xy - x - y) \cdot (x^2y^2 + x^2 + y^2 + x^2y + xy^2 - xy) \\ \text{I} \quad xy - x - y &= 0 |+1 \\ (x-1)(y-1) &= 1 \\ 1 &\quad 1 \quad x = y = 2 \Rightarrow E = \frac{1}{x} + \frac{1}{y} = 1 \\ -1 &\quad -1 \quad x = y = 0 \quad (\text{F}) \\ \text{II} \quad x^2y^2 + x^2 + y^2 + x^2y + xy^2 - xy &= 0 \\ \Rightarrow x = y &= -xy \\ x = y &= -1 \\ \Rightarrow E = \frac{1}{x} + \frac{1}{y} &= \frac{1}{-1} + \frac{1}{-1} = -2 \Rightarrow E \in \{-2, 1\} \end{aligned}$$

Problem 72*Show that if $a, b, c \geq 1$, then:*

$$(abc + 2)(a + b + c) \geq 3(ab + bc + ca).$$

Solution 1

$$\begin{aligned} (a-1)(b-1) &> 0 \Rightarrow ab \geq a+b-1 & (1) \\ 3(ab+bc+ca) &\leq (a+b+c)^2 \\ (abc+2)(a+b+c) &\geq (a+b+c)^2 |:(a+b+c) > 0 \\ abc+2 &\geq a+b+c \\ abc+2-a-b-c &\geq 0 \\ abc-(a+b-1)-c+1 &\geq 0 \\ \text{from (1)} \Rightarrow abc-(a+b-1)-c+1 &\geq abc-ab-c+1 = \\ = ab(c-1)-(c-1) &= (ab-1)(c-1) \geq 0 \\ &\geq 0 \quad \geq 0 \quad \textcircled{A} \end{aligned}$$

Solution 2

$$ab^2 + 2 \geq a + 2b \Leftrightarrow (b-1)[a(b+1) - 2] \geq 0$$

$$ab^2c + 2c \geq ac + 2bc$$

Analogically, $abc^2 + 2a \geq ab + 2ac$, $a^2bc + 2b \geq bc + 2ab$

(+) _____

$$a^2bc + ab^2c + abc^2 + 2a + 2b + 2c \geq 3ab + 3ac + 3bc$$

$$(abc + 2)(a + b + c) \geq 3(ab + bc + ca) \quad \text{q.e.d.}$$

Problem 73

Let $x, y > 0$. Show that:

$$\frac{x^2}{y} + \frac{y^2}{x} \geq \sqrt{2(x^2 + y^2)}.$$

Solution

We must prove that $(x^3 + y^3)^2 \geq 2x^2y^2(x^2 + y^2)$
 $x^3 + y^3 \geq 2\sqrt{x^3y^3}$, equality for $x = y$
 \Rightarrow It remains to show that $x^3 + y^3 \geq \sqrt{xy}(x^2 + y^2) \Leftrightarrow$
 $\Leftrightarrow x^3 - x^2\sqrt{xy} + y^3 - y^2\sqrt{xy} \geq 0$, which can be noted as:
 $x^2\sqrt{x}(\sqrt{x} - \sqrt{y}) - y^2\sqrt{y}(\sqrt{x} - \sqrt{y}) \geq 0$, i.e.:
 $(\sqrt{x} - \sqrt{y})[(\sqrt{x})^5 - (\sqrt{y})^5] \geq 0$
 We obtain: $(\sqrt{x} - \sqrt{y})^2 [(\sqrt{x})^4 + (\sqrt{x})^3\sqrt{y} + (\sqrt{x})^2(\sqrt{y})^2 +$
 $+ \sqrt{x}(\sqrt{y})^3 + (\sqrt{y})^4] \geq 0 \quad (\textcircled{A})$ with equality for $x = y$

Problem 74

Prove that for $a, b, c > 0$:

$$(a^2 + b^2 + c^2) \left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \right) \geq (a + b + c) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right).$$

Solution 1

By unfolding the brackets, we get:

$$\frac{a^2}{b^2} + \frac{b^2}{a^2} + \frac{a^2}{c^2} + \frac{c^2}{a^2} + \frac{b^2}{c^2} + \frac{c^2}{b^2} \stackrel{?}{\geq} \frac{a}{b} + \frac{b}{a} + \frac{a}{c} + \frac{c}{a} + \frac{b}{c} + \frac{c}{b} \quad (1)$$

We indicate that $\frac{x^2}{y^2} + \frac{y^2}{x^2} \geq \frac{x}{y} + \frac{y}{x}$ (2) $\mid \cdot 2$ for $x, y > 0$

$$(1^2 + 1^2) \left[\left(\frac{x}{y} \right)^2 + \left(\frac{y}{x} \right)^2 \right] \geq \left(\frac{x}{y} + \frac{y}{x} \right)^2 \geq 2 \left(\frac{x}{y} + \frac{y}{x} \right) \Leftrightarrow$$

$$\Leftrightarrow \frac{x}{y} + \frac{y}{x} \geq 2$$

Using (2) we get (1).

Solution 2

$$\begin{aligned} 3(a^2 + b^2 + c^2) &\geq (a + b + c)^2 \\ 3 \left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \right) &\geq \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right)^2 \\ 9(a^2 + b^2 + c^2) \left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \right) &\geq (a + b + c) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) \cdot \\ &\cdot (a + b + c) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) \end{aligned}$$

Generalization:

$$\begin{aligned} (x_1^2 + x_2^2 + \cdots + x_n^2) \left(\frac{1}{x_1^2} + \frac{1}{x_2^2} + \cdots + \frac{1}{x_n^2} \right) &\geq \\ \geq (x_1 + x_2 + \cdots + x_n) \left(\frac{1}{x_1} + \frac{1}{x_2} + \cdots + \frac{1}{x_n} \right) & \end{aligned}$$

Problem 75

Let $a, b, c \in \mathbb{R}$ a.i. $a^2 + b^2 + c^2 = 3$.

Prove that: $|a| + |b| + |c| - abc \leq 4$.

Solution

$$\begin{aligned} \frac{a^2 + b^2 + c^2}{3} &\geq \sqrt[3]{a^2 b^2 c^2} \Rightarrow |abc| \leq 1 \\ -abc &\leq 1 \quad (1) \\ (|a| + |b| + |c|)^2 &\leq 3(a^2 + b^2 + c^2) = 9 \Rightarrow \end{aligned}$$

$$\Rightarrow |a| + |b| + |c| \leq 3 \quad (2)$$

Resulting from (1) and (2) q.e.d.

With equality for $|a| + |b| + |c| = 1, abc = -1$

Problem 76

Find the smallest value of the expression

$$xy + yz + zx \text{ if } x^2 + y^2 + z^2 = 3(x + y + z).$$

Solution

By noting $x+y+z = t$ we obtain:

$$\begin{aligned} xy + yz + zx &= \frac{t^2 - (x^2 + y^2 + z^2)}{2} = \frac{t^2 - 3t}{2} = \\ &= \frac{\left(t - \frac{3}{2}\right)^2 - \frac{9}{4}}{2} \geq -\frac{9}{8} \end{aligned}$$

The smallest value is $-\frac{9}{8}$ and is reached for $x + y + z = \frac{3}{2}$.

Problem 77

Let $x_1, x_2, \dots, x_{2n+1}$ be real numbers ($n \in \mathbb{N}^$) such that $x_1 + x_2 +$*

$\dots + x_{2n+1} \geq x_1 x_2 \dots x_{2n+1}$. Show that:

$$x_1^{2n} + x_2^{2n} + \dots + x_{2n+1}^{2n} \geq x_1 x_2 \dots x_{2n+1}.$$

Solution

Assuming that $|x_1| > 1, |x_2| > 1, \dots, |x_{2n+1}| > 1$ then, hence $x_1^{2n} = |x_1|^{2n} > |x_1| > x_1$ and, by analogy,

$x_2^{2n} > x_2, \dots, x_{2n+1}^{2n} > x_{2n+1}$, we obtain:

$$x_1^{2n} + x_2^{2n} + \dots + x_{2n+1}^{2n} > x_1 + x_2 + \dots + x_{2n+1} \geq$$

$\geq x_1 x_2 \dots x_{2n+1}$ where

$$x_1^{2n} + x_2^{2n} + \dots + x_{2n+1}^{2n} \geq x_1 x_2 \dots x_{2n+1}.$$

Now supposing that at least one of the numbers $|x_1|$,

$|x_2|, \dots, |x_{2n+1}|$ let's say $|x_{2n+1}|$ has the property $|x_{2n+1}| \leq 1$,

$$\text{then } x_1^{2n} + x_2^{2n} + \dots + x_{2n}^{2n} + x_{2n+1}^{2n} \geq$$

$$\begin{aligned} &\geq x_1^{2n} + x_2^{2n} + \cdots + x_{2n}^{2n} \geq 2n^{2n} \sqrt{(x_1 x_2 \cdots x_{2n})^{2n}} = \\ &= 2n|x_1 x_2 \cdots x_{2n}| \geq |x_1 x_2 \cdots x_{2n}| \geq |x_1 x_2 \cdots x_{2n} x_{2n+1}| \geq \\ &\geq x_1 x_2 \cdots x_{2n+1}, \text{ i.e.} \\ &x_1^{2n} + x_2^{2n} + \cdots + x_{2n+1}^{2n} \geq x_1 x_2 \cdots x_{2n+1}. \end{aligned}$$

Problem 78

Let $x, y, z \in \mathbb{R}$ such that $x + y + z = 0$.

Show that: $x^2y^2 + y^2z^2 + z^2x^2 + 3 \geq 6xyz$.

Solution

We must prove that

$$\begin{aligned} &x^2y^2 + y^2z^2 + z^2x^2 + 3 - 6xyz + (x + y + z)^2 - \\ &-(x + y + z) \geq 0, \text{ which is noted as follows:} \\ &(x^2y^2 + z^2 + 1 + 2xy - 2z - 2xyz) + \\ &+(y^2z^2 + x^2 + 1 + 2yz - 2x - 2xyz) + \\ &+(x^2z^2 + y^2 + 1 + 2xz - 2y - 2xyz) \geq 0, \text{ i.e.} \\ &(xy - z + 1)^2 + (yz - x + 1)^2 + (zx - y + 1)^2 \geq 0 \end{aligned}$$

Problem 79

Prove that if $x + y + z \geq 3$, then:

$$\frac{x}{2x + yz} + \frac{y}{2y + zx} + \frac{z}{2z + xy} \leq 1.$$

Solution

Substracting $\frac{3}{2}$ from each member, the equation converts into:

$$S = \frac{yz}{2x + yz} + \frac{xz}{2y + zx} + \frac{xy}{2z + xy} \geq 1.$$

This is shown using the Titu Andreeescu Inequality:

$$S \geq \frac{(xy + yz + zx)^2}{6xyz + x^2y^2 + y^2z^2 + z^2x^2}$$

We must note that $m_d \geq 1$, equivalent to

$$6xyz \leq 2xyz(x + y + z).$$

We obtain $x + y + z \geq 3$, which is true.

Problem 80

Let $x, y \in \mathbb{R}$ such that $x - y = 1$. Find the smallest value of the expression $E(x, y) = x^3 - y^3 - xy$, and the values of x and y for which this minimum is reached.

Solution

$$\begin{aligned} E(x, y) &= (x - y)(x^2 + xy + y^2) - xy = \\ &= x^2 + xy + y^2 - xy = x^2 + y^2 = (y + 1)^2 + y^2 = \\ &= 2y^2 + 2y + 1 = 2\left(y + \frac{1}{2}\right)^2 + \frac{1}{2} \geq \frac{1}{2}. \end{aligned}$$

The smallest reached value $\frac{1}{2}$ is $y = -\frac{1}{2}$ and $x = \frac{1}{2}$.

Problem 81

Let $a, b, c \in \mathbb{R}$ such that

$$|(a - b)(b - c)(c - a)| = 3.$$

Find the smallest value of the expression: $|a| + |b| + |c|$.

Solution

Assuming without restricting from generality,

$a \geq b \geq c$, we have:

$$3 = (a - b)(b - c)(c - a) \leq \left(\frac{a - b + b - c}{2}\right)^2 (a - c) = \frac{(a - c)^3}{4}$$

from where $a - c \geq \sqrt[3]{12}$. Since $|a| + |b| + |c| \geq |a - c| + |b| \geq \sqrt[3]{12} + 0 = \sqrt[3]{12}$.

For the minimum of the expression $|a| + |b| + |c|$ to be $\sqrt[3]{12}$ must be reached $a - c = \sqrt[3]{12}$.

Obviously, $b = 0$ și $|a - c| = \sqrt[3]{12} \Rightarrow$

$$\Rightarrow |a| + |-c| + |a - c| = 3 \Rightarrow \text{and } ac = \frac{3}{\sqrt[3]{12}} \text{ hence}$$

$$a = \frac{\sqrt[3]{12}}{2}, c = -\frac{\sqrt[3]{12}}{2}.$$

Therefore, the required minimum, $\sqrt[3]{12}$, is reached for

$$a = \frac{\sqrt[3]{12}}{2}, b = 0, c = -\frac{\sqrt[3]{12}}{2}.$$

Problem 82

Be:

$$x = \sum_{k=p}^n \sqrt[k^2(k+1)^2]{2(k+1)}, \text{ where } p \in \mathbb{N}^*.$$

Calculate $[x]$ (the integer part of the real number x) and show that $\{x\} < \frac{1}{p^2}$, where $\{x\}$ is the fractional part of the real number x .

Solution

From the Inequality of Bernoulli:

$$\left(1 + \frac{2k+1}{k^2(k+1)^2}\right)^{k^2(k+1)^2} > 1 + \frac{2k+1}{k^2(k+1)^2} \cdot k^2(k+1)^2 = \\ = 2k+2 = 2(k+1) \Rightarrow \\ \Rightarrow 1 + \frac{2k+1}{k^2(k+1)^2} > \sqrt[k^2(k+1)^2]{2(k+1)} > 1$$

(since $2(k+1) > 1$) \Rightarrow

$$\Rightarrow \sum_{k=p}^n \left(1 + \frac{2k+1}{k^2(k+1)^2}\right) > x > \sum_{k=p}^n 1 = n-p+1, \text{ i.e.}$$

$$n-p+1 + \sum_{k=p}^n \left(\frac{1}{k^2} - \frac{1}{(k+1)^2}\right) > x > n-p+1 \text{ or}$$

$$n-p+1 + \frac{1}{p^2} - \frac{1}{(n+1)^2} > n-p+1 \text{ hence}$$

$$n-p+1 + \frac{1}{p^2} > x > n-p+1 \text{ and from here}$$

$$[x] = n-p+1 \text{ and } \{x\} < \frac{1}{p^2}.$$

Problem 83

Let $x, y, z > 0$ such that:

$$x^2y^2 + y^2z^2 + z^2x^2 + (xyz)^3 = 4.$$

Show that $x^2 + y^2 + z^2 \geq 3$. In which situation is there equality?

Solution

We have $4 = x^2y^2 + y^2z^2 + z^2x^2 + (xyz)^3 \geq 4\sqrt[4]{(x^2y^2)(y^2z^2)(z^2x^2)(xyz)^3} = 4\sqrt[4]{(xyz)^7} \Rightarrow 4\sqrt[4]{(xyz)^7} \leq 1 \Rightarrow (xyz)^7 \leq 1$ where $xyz < 1$ (1)
with equality for $x^2y^2 = y^2z^2 = z^2x^2 = (xyz)^3$
From $x^2y^2 = y^2z^2 = z^2x^2 \Rightarrow x^2 = y^2 = z^2 \Rightarrow x = y = z$ and then
from $x^2y^2 = (xyz)^3 \Rightarrow x^4 = x^9 \Rightarrow x^5 = 1$, whence
 $x = y = z = 1$.

We obtained

$x^2y^2 + y^2z^2 + z^2x^2 = 4 - (xyz)^3$ (from (1)) and then
 $(x^2 + y^2 + z^2)^2 \geq 3(x^2y^2 + y^2z^2 + z^2x^2) \geq 3 \cdot 3$ i.e.
 $x^2 + y^2 + z^2 \geq 3$ with equality for $x = y = z = 1$

Problem 84

Let $a, b, c > 0$. Show that:

$$a + b + c + \frac{3}{ab + bc + ca} \geq \frac{9}{2} \sqrt[3]{\frac{2}{3}}.$$

In which situation is there equality?

Solution

Since $(a + b + c)^2 \geq 3(ab + bc + ca)$ with equality when $a = b = c$ (1) and noting $ab + bc + ca = x$, we obtain $a + b + c \geq \sqrt{3x}$. Denote the left member by M and we have:

$$M \geq \sqrt{3x} + \frac{3}{x} = \frac{\sqrt{3x}}{2} + \frac{\sqrt{3x}}{2} + \frac{3}{x} \stackrel{\text{mean}}{\geq}$$

$$\geq 3 \sqrt[3]{\frac{(\sqrt{3x})^2}{4} \cdot \frac{3}{x}} = 3 \sqrt[3]{\frac{9}{4}} = 3 \sqrt[3]{\frac{27}{8} \cdot \frac{2}{3}} = \frac{9}{2} \sqrt[3]{\frac{2}{3}}$$

The minimum is reached for $\frac{\sqrt{3x}}{2} = \frac{3}{x} \Rightarrow 3x^3 = 36 \Rightarrow x^3 = 12 \Rightarrow x = \sqrt[3]{12}$ and from (1) $\Rightarrow 3a^2 = \sqrt[3]{a^2} \Rightarrow$

$$\Rightarrow a = b = c = \sqrt[6]{\frac{4}{9}} = \sqrt[3]{\frac{2}{3}} \Rightarrow a^2 = b^2 = c^2 = \sqrt[3]{\frac{4}{9}}.$$

Therefore, we identify equality for $a = b = c = \sqrt[3]{\frac{2}{3}}$.

Problem 85

Find the smallest value of the expression $(x + y)(y + 3)$ if x and y are strictly positive numbers and $xy(x + y + 3) = 27$. Determine the values of x and y for which that minimum is reached.

Solution

$$\begin{aligned} E(x, y) &= xy + 3x + y^2 + 3y = y(x + y + 3) + 3x = \\ &= \frac{27}{x} + 3x \geq 2 \sqrt{\frac{27}{x} \cdot 3x} = 18. \text{ The smallest value is } 18, \\ &\text{reached for } \frac{27}{x} = 3x \Rightarrow x = 9 \text{ and } 9y(9 + y + 3) = 27 \Rightarrow \\ &\Rightarrow y^2 + 12y - 3 = 0 \Rightarrow y_{1,2} = \frac{-12 \pm \sqrt{144 + 4 \cdot 3}}{2} = \\ &= \frac{-12 \pm 2\sqrt{39}}{2} = -6 \pm \sqrt{39}. \text{ Convenient to } y = \sqrt{39} - 6. \end{aligned}$$

Problem 86

Let $x \in \mathbb{R}$. Show that:

$$\left(\frac{x^2 + x + 1}{3} \right)^3 \geq x^2 \left(\frac{x+1}{2} \right)^2.$$

In which situation is there equality?

Solution

Let $x^2 + x = y$. The inequality is written as follows:

$$\left(\frac{y+1}{3} \right)^3 \geq \frac{y^2}{4} \text{ or } 4y^3 + 12y^2 + 12y + 4 - 27y^2 \geq 0 \\ 4y^3 - 15y^2 + 12y + 4 \geq 0 \text{ or } (y-2)^2(4y+1) \geq 0.$$

$$\text{Since } 4y+1 = 4x^2 + 4x + 1 = (2x+1)^2 \Rightarrow \\ \Rightarrow (x^2 + x - 2)^2(2x+1)^2 \geq 0.$$

Equality is obtained for $x = -2$, $x = \frac{-1}{2}$ or $x = 1$.

Problem 87

Show that:

$$x^{12} - x^9 + x^4 - x + 1 > 0, \forall x \in \mathbb{R}.$$

Solution

We have

$$x^{12} - x^9 + x^4 - x + 1 = \left(x^6 - \frac{1}{2}x^3 - \frac{1}{2} \right)^2 + \frac{3}{4} \left(x^3 - \frac{1}{3} \right)^2 + \\ + \left(x^2 - \frac{1}{2} \right)^2 + \left(x - \frac{1}{2} \right)^2 \geq \frac{1}{6} > 0.$$

Problem 88

Let $a, b, c > 0$. Show that:

$$a^3 + b^3 + c^3 - 3abc \geq 2 \left(\frac{b+c}{2} - a \right)^3.$$

Solution

$$\begin{aligned} a^3 + b^3 + c^3 - 3abc - 2\left(\frac{b+c}{2} - a\right)^3 &= \frac{3}{4}(b+c)(b-c)^2 + \\ + \frac{3}{2}a(a-b)^2 + \frac{3}{2}a(a-c)^2 &\geq 0 \Rightarrow \\ \Rightarrow a^3 + b^3 + c^3 - 3abc &\geq 2\left(\frac{b+c}{2} - a\right)^3. \end{aligned}$$

Problem 89

Let $n \in \mathbb{N}$. Show that:

$$\left| \{ \sqrt{n} \} - \frac{1}{2} \right| > \frac{1}{8\sqrt{n} + 3},$$

where $\{a\}$ is the fractional part of the real number a .

Solution

Let $[\sqrt{n}] = k$. Then:

$$\begin{aligned} \left| \{ \sqrt{n} \} - \frac{1}{2} \right| &= \frac{1}{2} \cdot |2k + 1 - 2\sqrt{n}| = \frac{1}{2} \cdot \frac{|4k^2 + 4k + 1 - 4n|}{2k + 1 + 2\sqrt{n}} \geq \\ &\geq \frac{1}{2} \cdot \frac{1}{2k + 1 + 2\sqrt{n}} \geq \frac{1}{2} \cdot \frac{1}{4\sqrt{n} + 1} > \frac{1}{8\sqrt{n} + 3}, \end{aligned}$$

because

$$|4k^2 + 4k + 1 - 4n| \geq 1$$

($4k^2 + 4k + 1$ is odd and $4n$ is even)

and $k \leq \sqrt{n}$.

Problem 90

Find the smallest and the largest value of the expression

$$E(x, y) = \frac{-4x^2 + 3xy}{x^2 + y^2},$$

where x and y cannot be zero simultaneously.

Solution

Assuming that $x \neq 0$ and

$$E(x, y) = \frac{-4 + 3\frac{y}{x}}{1 + \frac{y^2}{x^2}} \text{ and by noting } \frac{y}{x} = t \text{ we get } \frac{-4 + 3t}{1 + t^2} = z \in \mathbb{R} \Rightarrow$$

$$\Rightarrow zt^2 - 3t + z + 4 = 0 \text{ with } \Delta = -4z^2 - 16z + 9 \leq 0 \Rightarrow$$

$$\Rightarrow z = \left[-\frac{9}{2}, \frac{1}{2} \right].$$

The smallest value is $-\frac{9}{2}$, while the largest one is $\frac{1}{2}$.

Problem 91

Let $x, y \in \mathbb{R}$ such that $1 \leq x^2 + y^2 \leq 2$. Find the smallest and the largest value of the expression $x^2 + y^2 + xy$.

Solution

Let $x = r \cos t$ și $y = r \sin t$, with $t \in [0, 2\pi)$. Then

$$1 \leq r^2 \leq 2 \text{ și } x^2 + y^2 + xy = r^2 \left(1 + \frac{1}{2} \sin 2t \right).$$

Since $\frac{1}{2} \leq 1 + \frac{1}{2} \sin 2t \leq \frac{3}{2}$ results $\frac{1}{2} \leq x^2 + y^2 + xy \leq 3$.

$\frac{1}{2}$ is the reached value for $x = \frac{\sqrt{2}}{2}$, $y = -\frac{\sqrt{2}}{2}$ and 3 is the reached value for $x = y = 1$.

Problem 92

Let a, b, c, d be real numbers from the interval

$$\left[\frac{1}{\sqrt{2}}, +\infty \right).$$

Show that $a^2 b^2 c^2 d^2 + a^2 + b^2 + c^2 + d^2 \geq 4abcd + 1$.

In which case is there equality?

Solution

Since $a^2 + b^2 + c^2 + d^2 \geq 4\sqrt[4]{a^2 b^2 c^2 d^2} =$

$= 4\sqrt{abcd}$ we will find that $a^2b^2c^2d^2 + 4\sqrt{abcd} \geq 4abcd + 1$.

Let $x = \sqrt{abcd} \Rightarrow x \geq \sqrt{\left(\frac{1}{\sqrt{2}}\right)^4} = \frac{1}{2}$ and we must show that:

$$(1) x^4 + 4x - 4x^2 - 1 \geq 0 \text{ or:}$$

$$x^4 - 1 - 4x(x-1) \geq 0; (x-1)(x^3 + x^2 + x + 1 - 4x) \geq 0$$

sau $(x-1)(x^3 + x^2 - 3x + 1) \geq 0$ from where

$$(x-1)[x^3 - x + (x-1)^2] \geq 0, \text{ i.e.}$$

$(x-1)^2(x^2 + 2x - 1) \geq 0$ true, because

$$x^2 + 2x - 1 \geq \frac{1}{4} + 2 \cdot \frac{1}{2} - 1 = \frac{1}{4} > 0.$$

We identify equality in (1) for $x = 1$, i.e. $abcd = 1$.

We will notice equality in the inequality in the statement (because we applied the inequality between arithmetic and geometric mean) for $a^2 = b^2 = c^2 = d^2$ and $abcd = 1$, i.e. $a = b = c = d = 1$.

Problem 93

The point L lies inside the isosceles triangle ABC so that $AB = BC = CL$ and $\widehat{LAC} = 30^\circ$.

Find the measure of the angle \widehat{ALB} .

Solution

Let BD be the height of the triangle, $D \in AC$ and

$BD \cap AL = \{N\}$. We have:

$$\widehat{LNC} = \widehat{LN B} = \widehat{BN C} = 120^\circ$$

Then:

$$\triangle LNC \cong \triangle BNL \Rightarrow NL = BN.$$

Thus, $\triangle BNL$ is isosceles and

$$\widehat{NLB} = 30^\circ. \text{ Hence:}$$

$$\widehat{ALB} = 150^\circ$$

Problem 94

Consider $\triangle ABC$ with $BC = a$, $AC = b$ and $AB = c$. Let P and Q be the projections of vertex C onto the interior bisectors of angles A and B , respectively. Determine, as a function of a, b, c , the length of the segment PQ .

Solution

Let $CP \cap AB = \{P_1\}$ and $CQ \cap AB = \{Q_1\}$.

Since AP is both height and bisector in

$\triangle AP_1C \Rightarrow AP_1 = AC = b$ and P is the middle of CP_1 .

Analogously, Q is the middle of CQ_1 .

Then QP is midline in $\triangle P_1Q_1C$ and $PQ = \frac{1}{2}P_1Q_1$.

We have

$$PQ_1 = AP_1 + BQ_1 - AB = a + b + c,$$

hence $PQ = \frac{1}{2}(a + b + c)$.

Problem 95

The midline MN of the trapezoid $ABCD$ ($AB \parallel CD$) intersects the diagonal AC at K and the diagonal BD at L . Knowing that the quadrilateral $KLCD$ is a square of side 4 cm, find the area of the trapezoid.

Solution

Evidently, $CD = 4\text{cm}$ and since

$$KL = \frac{AB - CD}{2} = 4\text{cm} \Rightarrow AB = 12\text{cm}.$$

The height of the trapezoid is $2DK = 8\text{cm}$ and hence, the area of the trapezoid is:

$$\frac{(4 + 12)8}{2} = 64\text{cm}^2$$

Problem 96

Find the area of a triangle ABC if $AB = 3$, $BC = 7$ and the median $BD = 4$.

Solution

From the median theorem

$$BD^2 = \frac{2(AB^2 + BC^2) - AC^2}{4} \Rightarrow AC^2 = 52$$

From Heron's formula

$$\begin{aligned} S^2 &= p(p-a)(p-b)(p-c) = \frac{1}{16}(a+b+c)(-a+b+c) \cdot \\ &\cdot (a-b+c)(a+b-c) = \frac{1}{16}(2a^2b^2 + 2b^2c^2 + 2c^2a^2 - \\ &- a^4 - b^4 - c^4). \text{ Since } a^2 = BC^2 = 7^2, b^2 = AC^2 = 5^2, \\ &AB^2 = c^2 = 9, \text{ by replacing, we find that:} \end{aligned}$$

$$\begin{aligned} S^2 &= \frac{1}{16}(2 \cdot 49 \cdot 52 + 2 \cdot 52 \cdot 9 + 2 \cdot 9 \cdot 49 - 2401 - 2704 - 81) \Rightarrow \\ \Rightarrow S^2 &= \frac{1}{16} \cdot 1728 = 108 \text{ hence } S = 6\sqrt{3}. \end{aligned}$$

Problem 97

The bisectors AM and BN , with $M \in BC, N \in AC$, intersect at point I .

Knowing that $MINC$ inscribable, find:

a) \widehat{ABC} ;

b) the angles $\angle MIN$.

Solution

Because $MINC$ is inscribable $\Rightarrow \widehat{MIN} + \widehat{ACB} = 180^\circ$

but $\widehat{MIN} = 180^\circ - \frac{\widehat{A} + \widehat{B}}{2} \Rightarrow \widehat{C} + 180^\circ - \frac{\widehat{A} + \widehat{B}}{2} = 180^\circ$

$2\widehat{C} = \widehat{A} + \widehat{B} \Rightarrow$ since $\widehat{A} + \widehat{B} + \widehat{C} = 180^\circ \Rightarrow \widehat{C} = 60^\circ$

b) $\widehat{MIN} = 180^\circ - \widehat{C} = 120^\circ$

and $\widehat{IMN} = \widehat{ICN} = \frac{\widehat{C}}{2} = 30^\circ$ and $\widehat{INM} = 180^\circ - 120^\circ - 30^\circ = 30^\circ$

Problem 98

Let ABC be a triangle. The heights AA_1 , ($A_1 \in BC$), BB_1 , ($B_1 \in AC$) intersect at H and $\widehat{AHB} = 150^\circ$.

a) Find \widehat{ACB} .

b) If M is the middle of CH , determine the measure $\widehat{A_1MB_1}$.

c) Prove that $CH = 2A_1B_1$.

Solution

a) The quadrilateral CB_1HA_1 is inscribed and then $\widehat{ACB} = 30^\circ$.

b) $\triangle MA_1C$ and $\triangle MB_1C$ are isosceles (B_1M and A_1M are medians in right triangles). The angle $\widehat{A_1MB_1}$ will be 60° .

c) Being isosceles with an angle of 60° , $\triangle A_1MB_1$ is equilateral, and hence, the conclusion.

Problem 99

Show that in any triangle:

$$\frac{1}{m_a^2} + \frac{1}{m_b^2} + \frac{1}{m_c^2} \leq \frac{1}{r_a r_b} + \frac{1}{r_b r_c} + \frac{1}{r_c r_a},$$

where m_a, m_b, m_c are the lengths of the medians, and r_a, r_b, r_c the radii of the circles inscribed of the triangle.

Solution

We have

$$m_a^2 = \frac{2(b^2 + c^2) - a^2}{4} \geq \frac{(b+c)^2 - a^2}{4} = p(p-a)$$

and the analogues. Then:

$$\begin{aligned} \sum \frac{1}{m_a^2} &\leq \sum \frac{1}{p(p-a)} = \frac{\Sigma(p-b)(p-c)}{p(p-a)(p-b)(p-c)} = \\ &= \frac{\Sigma(p-b)(p-c)}{S^2} = \sum \frac{(p-b)}{S} \cdot \frac{(p-c)}{S} = \sum \frac{1}{r_b} \cdot \frac{1}{r_c} \end{aligned}$$

since it is known $r_a = \frac{S}{p-a}$, $r_b = \frac{S}{p-b}$, $r_c = \frac{S}{p-c}$

Problem 100

Let H be the orthocenter of the triangle ABC . If $CH = AB$ și $BH = AC$, find the angles $\triangle ABC$.

Solution

$\Rightarrow \triangle ABC$ rectangular in A and isosceles.

Let $AH \cap BC = \{D\}$ and
 $BH \cap AC = \{E\}$ and
 $CH \cap AB = \{F\}$.
 $\Rightarrow \widehat{BAD} = \widehat{FC\bar{D}} \Rightarrow \triangle CHD = \triangle ABD$
 $\Rightarrow CD = AD \Rightarrow \angle ACD = 45^\circ$
 $(\triangle ADC$ rectangular isosceles)

Analog: $\angle ABC = 45^\circ$
 $\Rightarrow m(\widehat{BAC}) = 90^\circ$

Problem 101

Consider the square $ABCD$ and the equilateral triangle BFE with $AB = a$, $BE = b$ such that points A, B, E are collinear in this order and point F lies in the same half-plane which is determined by line AB and point C . Determine in terms of a and b the area $\triangle HGB$, where $DE \cap BC = \{H\}$, $DE \cap BF = \{G\}$.

Solution

$ABCD$ square $\Rightarrow DC \parallel AB \Rightarrow DC \parallel BE$ (A, B, E collinear)

$$\text{From T.F.A } \triangle DCH \sim \triangle EHB \Rightarrow \frac{CH}{HB} = \frac{DC}{BE} = \frac{a}{b}$$

$$\frac{CH + HB}{HB} = \frac{a+b}{b} \Rightarrow \frac{a}{HB} = \frac{a+b}{b} \Rightarrow HB = \frac{ab}{a+b}$$

Let $GI \perp HB$ with $I \in (BH)$. Then in the right $\triangle GIB$

$$m(\widehat{IBG}) = 180^\circ - m(\widehat{ABC}) - m(\widehat{FBE}) =$$

$$= 180^\circ - 90^\circ - 60^\circ = 30^\circ \Rightarrow GI = \frac{BG}{2}$$

If $GI = x \Rightarrow BG = 2x \Rightarrow BI^2 = 4x^2 - x^2 = 3x^2, BI = x\sqrt{3}$

$\widehat{HBE} = 180^\circ - \widehat{ABC} = 90^\circ \Rightarrow EB \perp CB, GI \perp BC \Rightarrow IG \parallel BE$.

$$\text{From T.F.A } \Rightarrow \triangle HIG \sim \triangle HBE \Rightarrow \frac{IG}{BE} = \frac{HI}{HB} \Rightarrow$$

$$\Rightarrow \frac{x}{b} = \frac{\frac{ab}{a+b} - x\sqrt{3}}{\frac{ab}{a+b}}$$

From the calculations we obtain $abx = ab^2 - \sqrt{3}b(a-b)x \Rightarrow$

$$\Rightarrow x = \frac{ab}{a + (a+b)\sqrt{3}} \Rightarrow$$

$$\Rightarrow A_{\triangle HGB} = \frac{HB \cdot GI}{2} = \frac{(ab)^2}{2(a+b)[a + (a+b)\sqrt{3}]}$$

Problem 102

In the right triangle ABC the projection of A onto the hypotenuse BC is point D . E is the middle of AD and $AC \cap BE = \{F\}$. If $BD = a$ and $CD = b$, calculate the length of the segment BF .

Solution

From the height theorem

$$AD^2 = a \cdot b, \text{ where}$$

$$AD = \sqrt{ab}$$

$$\Rightarrow ED = \frac{\sqrt{ab}}{2} \text{ and then}$$

$$\begin{aligned} BE &= \sqrt{a^2 + \frac{ab}{4}} = \\ &= \frac{1}{2}\sqrt{a(4a+b)} \end{aligned}$$

Problem 103

Let M be the middle of BC , P and Q on AB such as $AP = PQ = QB$ in $\triangle ABC$. If $\widehat{PMQ} = 90^\circ$, prove that:

$$\frac{AC}{3} = \frac{AB}{3}$$

Solution

Let N be the middle of PQ . Consequently, MN is middle line in $\triangle BAC \Rightarrow MN = \frac{AC}{2}$.

But MN is also a median in the right triangle

$$\Rightarrow MN = \frac{PQ}{2} = \frac{AB}{6} \Rightarrow \frac{AC}{2} = \frac{AB}{6}, \text{ therefore } AC = \frac{AB}{3}.$$

Problem 104

In the acute triangle ABC , the height AA' is the largest of the 3 of the triangle and is equal to the median BM .

Show that $m(\widehat{ABC}) < 60^\circ$.

Solution

Through D we take a parallel DG to BF ($G \in AC$). If $EF = x$, since EF is the middle line in $\triangle ADG \Rightarrow DG = 2x$.

Now, from the similarity of triangles $\triangle DGC$ and $\triangle BFC$

$$\Rightarrow \frac{BF}{DG} = \frac{BC}{DC} \text{ or } \frac{\frac{1}{2}\sqrt{a(4a+b)} + x}{2x} = \frac{a+b}{b} \text{ and hence}$$

$$x = \frac{b\sqrt{a(4a+b)}}{2(2a+b)}, \text{ where } BF = BE + EF = \frac{(a+b)\sqrt{a(4a+b)}}{2a+b}$$

We take $ML \perp AB, L \in (AB)$ and $MK \perp (BC), K \in (BC)$

$$\Rightarrow MK = \frac{1}{2}AA' \text{ and since } BM = AA' \Rightarrow$$

$$\Rightarrow MK = \frac{1}{2}BM \Rightarrow m(MBK) = 30^\circ$$

$$LM = \frac{1}{2}CC'$$

Since height AA' is the largest \Rightarrow

$$\Rightarrow ML < \frac{1}{2}BM \Rightarrow m(\widehat{ABM}) <$$

$$30^\circ \text{ and } m(\widehat{ABC}) < 60^\circ.$$

Problem 105

Let $ABCD$ be a trapezoid with bases $AB = 2b, CD = 2a$ ($b > a$) and M the middle of segment AB , and N , the middle of segment CD . If $MN = b - a$, show that \widehat{ADB} cannot be a right angle.

Solution

It is known that in the trapezoid M, N and P , the intersection of the non-paired sides AD and BC , are collinear. Given that $\triangle PDN \sim \triangle PAM$, noting

$$PN = x \text{ we have } \frac{DN}{AM} = \frac{PN}{PM} \text{ or}$$

$$\frac{a}{b} = \frac{x}{x+b-a} \text{ i.e.}$$

$$ax + ab - a^2 = bx \Rightarrow$$

$$\Rightarrow x(b-a) = a(b-a)$$

then $x = a$.

Since $PN = a$, in triangle DPC the median PN is half of DC , then $\triangle DPC$ is rectangular in P .

If angle \widehat{ADB} were also rectangular, then from B we would descend two perpendiculars on AD , which is absurd.

Problem 106

Let $\triangle ABC$ be angular and AD, BE and CF its heights, and H , the orthocenter. Show that:

$$AD \cdot AH + BE \cdot BH + CF \cdot CH \geq \frac{(a+b+c)^2}{6},$$

where $a = BC, b = AC$ si $c = AB$. In which case is there equality?

Solution

$$AD = \frac{2S}{a}, S = \frac{abc}{4R}$$

Since $AH = 2R \cos A, BE = 2R \cos B$ and $CF = 2R \cos C$,

$$\begin{aligned} \text{we obtain: } & AD \cdot AH = \frac{2S}{a} \cdot 2R \cos A = \frac{2abc}{4aR} \cdot 2R \cos A = \\ & = bc \cos A = \frac{b^2 + c^2 - a^2}{2} \Rightarrow \end{aligned}$$

$$\Rightarrow \sum AD \cdot AH = \frac{1}{2} \sum (b^2 + c^2 - a^2) = \frac{1}{2}(a^2 + b^2 + c^2)$$

Given the inequality of Cauchy-Buniakovski

$$\sum a^2$$

$\geq \frac{(\sum a)^2}{3}$, we immediately find out the inequality in the statement with equality for $a = b = c$, i.e. $\triangle ABC$ is equilateral.

Problem 107

Solve in \mathbb{R} the equation:

$$\sin^{2021} x + \cos^{2021} x + \sin^{2022} x = 2.$$

Solution

We have:

$$\sin^{2021} x + \cos^{2021} x \leq \sin^2 x + \cos^2 x = 1$$

$$\text{Cum } \sin^{2021} x + \cos^{2021} x = 2 - \sin^{2022} x \Rightarrow$$

$$\Rightarrow 2 - \sin^{2022} x \leq 1 \Rightarrow$$

$$\Rightarrow \sin^{2022} x \geq 1 \Rightarrow \sin^{2022} x = 1 \text{ and, from here:}$$

$$\sin^{2021} x + \cos^{2021} x = 1$$

$$\text{From } \sin^{2022} x = 1 \Rightarrow$$

$$\text{a) } \sin x = -1 \Rightarrow -1 + \cos^{2021} x = 1 \Rightarrow \cos^{2021} x = 2 \text{ false or}$$

$$\text{b) } \sin x = 1 \Rightarrow 1 + \cos^{2021} x = 1 \Rightarrow \cos^{2021} x = 0 \Rightarrow$$

$$\Rightarrow \cos x = 0$$

From $\sin x = 1$ and $\cos x = 0$ we find the results of the equation:

$$x \in \left\{ \frac{\pi}{2} + 2k\pi \mid k \in \mathbb{Z} \right\}.$$

Problem 108

Show that if $3 \sin \beta = 2 \sin(2\alpha + \beta)$ and $\cos \alpha \neq 0$, $\cos(\alpha + \beta) \neq 0$, then $5 \operatorname{tg} \alpha = \operatorname{tg}(\alpha + \beta)$.

Solution

We have:

$$\begin{aligned}\sin \beta &= 2[\sin(2\alpha + \beta) - \sin \beta] = 4 \sin \alpha \cos(\alpha + \beta) \text{ și} \\ 3 \sin \beta &= 2 \sin(\alpha + \beta + \alpha) = 2 \sin(\alpha + \beta) \cos \alpha + \\ &+ 2 \cos(\alpha + \beta) \sin \alpha. \text{ From the two relations it follows:} \\ 3 \sin \beta &= 12 \sin \alpha \cos(\alpha + \beta) = \\ &= 2 \sin(\alpha + \beta) \cos \alpha + 2 \cos(\alpha + \beta) \sin \alpha \text{ and, hence,} \\ 10 \sin \alpha \cos(\alpha + \beta) &= 2 \sin(\alpha + \beta) \cos \alpha.\end{aligned}$$

Dividing this last relation by $2 \cos(\alpha + \beta) \cos \alpha$, we find
 $5 \operatorname{tg} \alpha = \operatorname{tg}(\alpha + \beta)$.

Problem 109

Let $a, b, c \in \left(0, \frac{\pi}{2}\right)$ such that $\cos a = \operatorname{tg} b$, $\cos b = \operatorname{tg} c$ and $\cos c = \operatorname{tg} a$. Prove that:

$$\sin a = \sin b = \sin c = \frac{\sqrt{5} - 1}{2}.$$

Solution

We have:

$$\begin{aligned}\cos^2 a &= \operatorname{tg}^2 b = \frac{\sin^2 b}{\cos^2 b} = \frac{1}{\cos^2 b} - 1 = \frac{\cos^2 c}{\sin^2 c} - 1 = \\ &= \frac{1}{\frac{1}{\cos^2 c} - 1} - 1 = \frac{1}{\frac{\cos^2 a}{\sin^2 a} - 1} - 1 = \frac{1 - \cos^2 a}{2 \cos^2 a - 1} - 1 \text{ și} \\ &\text{de aici } \cos^4 a + \cos^2 a - 1 = 0, \text{ i.e.}\end{aligned}$$

$$\begin{aligned}\cos^2 a &= \frac{-1 \pm \sqrt{5}}{2}. \text{ Convenient to } \cos^2 a = \frac{\sqrt{5} - 1}{2} \text{ and} \\ \sin^2 a &= 1 - \cos^2 a = \frac{3 - \sqrt{5}}{2} = \left(\frac{\sqrt{5} - 1}{2}\right)^2 \text{ hence} \\ \sin^2 a &= \frac{\sqrt{5} - 1}{2}. \text{ Analogously for } \sin b, \sin c.\end{aligned}$$

Problem 110²

In the rectangle $ABCD$ we find $GH \parallel BC$, point $G \in (AB)$, the point $H \in (AD)$ and $EF \parallel DC$, point $E \in (AD)$ and point $F \in (BC)$.

Let $GH \cap EF = \{M\}$ and $H \cap CE = \{K\}$. Prove that point K is on the circle containing the feet of heights $\triangle DGF$.

Solution

Let X, Y, Z - be the means of the $\triangle GDF$ sides.

We want to show that point K belongs to the 9-point circle of $\triangle GDF$.

We prove that B, X, M are collinear

Since $\frac{GM \parallel BF}{GB \parallel MF} \Rightarrow GMFB$ - rectangle $\Rightarrow BM \cap GF = \{X\}$ so

X - middle.

Analogous for rectangles $FEDC, ADHG$ so
 $B, X, M; C, Z, E; A, Y, H$ are collinear.

We prove that $AH \cap CE \cap BM = \{K\}$.

Since $AH \cap CE = \{K\}$.

We consider the transversal $A - K - H$ for $\triangle CDE$.

² Suggestion for the 7th grade by Prof. Grigorie Dan Lucian - Craiova.

We apply the Menelaus theorem $\Rightarrow \frac{AE}{AD} \cdot \frac{HD}{HC} \cdot \frac{KC}{KE} = 1$; but $\frac{AE}{AD} = \frac{AE}{BC}$; $\frac{AD}{BC} = \frac{ME}{MF} \Rightarrow \frac{BF}{BC} \cdot \frac{KC}{KE} \cdot \frac{ME}{MF} = 1 \Rightarrow$ according to Manelaus' reciprocal in $\triangle FCE \Rightarrow B, K, M$ collinear, so BM passes through K .

We prove that the $KXYZ$ - inscribed quadric.

In $\triangle BKC: \angle BKC = 180^\circ - (\angle KBC + \angle KCB)$.

In rectangles $GBFM$ and $EFCD \Rightarrow \angle MBF = \angle KBC = \angle GFB$ and $\angle ECF = \angle DCF \Rightarrow \angle KBC + \angle KCB = \angle GFB + \angle DCF = 180^\circ - \angle GED = 180^\circ - \angle XYZ$

$\Rightarrow \angle XKZ = \angle XYZ$ so $KXYZ$ - inscriptible and the points belong to Euler's circle for $\triangle GDF$.

Therefore, K is on the circle containing the legs of the heights of $\triangle GDF$.

Problem 111³

Let $x_1, x_2, \dots, x_n \in \{-1; 1\}; n \geq 2$; such that $n \in \mathbb{N}$

$$\frac{x_1^{2023}}{x_2} + \frac{x_2^{2023}}{x_3} + \dots + \frac{x_{n-1}^{2023}}{x_n} + \frac{x_n^{2023}}{x_1} = 0$$

a) For $n = 2024$ give examples of such numbers.

b) Show that n is a natural number divisible by 4.

Solution

a) Note that for $x_1 = 1; x_2 = x_3 = x_4 = -1; x_5 = 1; x_6 = x_7 = x_8 = -1 \dots x_{2021} = 1; x_{2022} = x_{2023} = x_{2024} = -1$.

502 groups of 4 numbers whose sum is 0 are formed. Hence the conclusion.

b) Since each fraction has the value -1 or 1 it immediately follows that n is even,

i.e. $n = 2k, k \in \mathbb{N}$

³ Suggestion for the 8th grade by Prof. Grigorie Dan Lucian, Craiova.

$$\text{Since } \frac{x_1^{2023}}{x_2} \cdot \frac{x_2^{2023}}{x_3} \cdot \dots \cdot \frac{x_{n-1}^{2023}}{x_n} \cdot \frac{x_n^{2023}}{x_1} = (x_1 \dots x_n)^{2022} = 1$$

and on the other hand having k fractions equal to -1 and k fractions equal to 1 from the previous product $\Rightarrow (-1)^k \cdot 1^k = 1$, where $n = 4l, l - \text{natural number}$.

Problem 112⁴

Let $ABCD$ be a rectangle with $AB = l$, $BC = 2l$ and M point inside it such that $\widehat{MAB} = \widehat{MBA} = 15^\circ$. Determine the measures of the angles of the triangle MCD .

Solution

Let E and F be the means of the sides BC and AD of the rectangle. Since $ABEF$ is square, we prove that $\triangle MEF$ is equilateral (known property).

Consider a point N inside $\triangle BME$ such that $\triangle BME \equiv \triangle MNE$. Then $\triangle BMN$ is equilateral (having $\widehat{NBM} = 60^\circ$ and $BM = BN$).

⁴ Suggestion for the 6th grade by Prof. Grigorie Dan Lucian and Prof. Lucian Tătescu.

It is further shown that $\triangle BNE \equiv \triangle MNE$ (L.U.L.), angle $\widehat{ENM} = 360^\circ - 60^\circ - 150^\circ = 150^\circ \Rightarrow ME = BE$ and similarly, $MF = AF$, considering $\triangle EMC$ which is isosceles. As $\widehat{BEM} = 90^\circ - 60^\circ = 30^\circ \Rightarrow \widehat{MEC} = 150^\circ \Rightarrow \widehat{ECM} = \widehat{EMC} = 15^\circ$. Analogously, $\widehat{FMD} = 15^\circ \Rightarrow \widehat{CMD} = 60^\circ - 15^\circ - 15^\circ = 30^\circ$.

Since $\triangle MCD$ is isosceles $\Rightarrow \widehat{MCD} = \widehat{MDC} = \frac{180^\circ - 30^\circ}{2} = 75^\circ$.

Problem 113⁵

Determine the real numbers x , such that $\frac{x}{x^2 - 3x + 5}$ is an integer.

Solution

Let $\frac{x}{x^2 - 3x + 5} = k \in \mathbb{Z} \Rightarrow kx^2 - (3k + 1)x + 5k = 0$

For $k = 0 \Rightarrow x = 0$. If $\neq 0$, $\Delta = (3k + 1)^2 - 20k^2 = -11k^2 + 6k + 1 \geq 0 \Rightarrow 11k^2 - 6k - 1 \leq 0$

Since $11k^2 - 6k - 1 = 0$ has the roots

$$k_{1,2} = \frac{6 \pm \sqrt{36 + 44}}{22} = \frac{3 \pm \sqrt{20}}{11} \Rightarrow k \in \left[\frac{3 - \sqrt{20}}{11}, \frac{3 + \sqrt{20}}{11} \right] \cap \mathbb{Z}$$

Hence $k = 0$, which does not fit (considering $k \neq 0$).

So, the only real number that corresponds is $x = 0$.

Problem 114

a) Let $a, b \in \mathbb{R}^*$ such that

$$(ab)^{140} + 4(ab)^{70} = 2(a^{210} + b^{210})$$

Show that at least one of the numbers is irrational.

b) Let $a, b \in \mathbb{R}^*$ such that

$$(ab)^{1882} + 4(ab)^{941} = 2(a^{2823} + b^{2883})$$

Show that at least one of the numbers is irrational.

⁵ Suggestion for the 8th grade by Viespescu Carina and Militaru-Cismaru Gabriela, students – Craiova.

Solution

- a) The relation is noted as follows: $(a^{140} - 2b^{70})(b^{140} - 2a^{70}) = 0$, hence $\left(\frac{a^2}{b}\right)^{70} = 2$ or $\left(\frac{b^2}{a}\right)^{70} = 0$, i.e. $\frac{a^2}{b} \notin \mathbb{Q}$ or $\frac{b^2}{a} \notin \mathbb{Q}$, whence the conclusion.
- b) The relation is noted as follows: $(a^{1882} - 2b^{941})(b^{1882} - 2a^{941}) = 0$ and proceed as in a).

Problem 115⁶

Let $x, y, z > 0$, such that $(x + y)(y + z)(z + x) = 1$. Show that : $\sum \frac{(x+y)\sqrt{x^2+xy+y^2}}{x+y+2xy} \geq \sqrt{3}$. In which case do we have equality?

Solution

$$\text{From } x^2+xy+y^2 \geq \frac{3}{4}(x+y)^2 \Rightarrow \sqrt{x^2+xy+y^2} \geq \frac{(x+y)\sqrt{3}}{2}$$

$$(1) \Rightarrow$$

$$\frac{(x+y)\sqrt{x^2+xy+y^2}}{x+y+2xy} = \frac{\sqrt{x^2+xy+y^2}}{1+\frac{2xy}{x+y}} \geq \frac{\sqrt{x^2+xy+y^2}}{1+\frac{x+y}{2}} = \frac{2\sqrt{x^2+xy+y^2}}{x+y+2} \geq \frac{(x+y)\sqrt{3}}{2(x+y+2)}, \text{ according to (1)}$$

It remains to show that $\sum \frac{(x+y)\sqrt{3}}{2(x+y+2)} \geq \sqrt{3}$ or $\sum \frac{(x+y)}{2(x+y+2)} \geq 1$.

Let $x + y = a$, $y + z = b$, $z + x = c$. Evidently, $abc = 1$ and we still have to prove that: $\frac{a}{a+2} + \frac{b}{b+2} + \frac{c}{c+2} \geq 1$ or $\sum \frac{a+2-2}{a+2} \geq 1$, i.e. $\frac{1}{a+2} + \frac{1}{b+2} + \frac{1}{c+2} \leq 1$. By doing the calculations:

$12 + 4\sum a + \sum ab \leq 9 + 4\sum a + 2\sum a$, i.e. $\sum ab \geq 3$, which results from $\sum ab \geq 3\sqrt[3]{abbcca} = 3$

The equality is valid for $a=b=c \Rightarrow x=y=z \Rightarrow 8x^3 = 1 \Rightarrow x = \frac{1}{2}$.

⁶ Proposed by Prof. Marian Cucuoanăș, Mărășești, and Prof. Lucian Tuțescu, Craiova.

Problem 116

Let $n \in \mathbb{N}^*$ and $x > 1$, $x \in \mathbb{R}$. Show that $\frac{x^{n+1} - x^{-(n+1)}}{n+1} > \frac{x^n - x^{-n}}{n}$.

Solution

We have:

$$\frac{x^{2n+2}-1}{(n+1)x^{n+1}} > \frac{x^{2n}-1}{nx^n} \Leftrightarrow n(x^{2n+2}-1) > (n+1)x(x^{2n}-1) \mid :x-1 > 0 \Rightarrow n(x^{2n+1} + x^{2n} + \dots + x^2 + x + 1) > (n+1)(x^{2n} + x^{2n-1} + \dots + x^2 + x) \Leftrightarrow n^{x^{2n+1} + nx^{2n} + \dots + nx^2 + nx + n} > nx^{2n} + nx^{2n-1} + \dots + nx^2 + nx + x^{2n} + x^{2n-1} + \dots + x^2 + x \Leftrightarrow n^{x^{2n+1} + 1} > x^{2n} + x^{2n-1} + \dots + x^2 + x$$

We show that $x^{2n+1} + 1 > x^{2n+k} + x^k$, $k=1,\dots,n$

$$x^{2n+1} + 1 > x^{2n} + x$$

$$x^{2n+1} + 1 > x^{2n-1} + x^2$$

$$x^{2n+1} + 1 > x^{2n+1} + x^n \quad \text{and by addition,}$$

$$x^{2n+1} + 1 > x^{2n-k} + x^{k+1}, \quad k = \overline{0, n}$$

$$x^{2n+1} - x^{2n-k} + 1 + x^{k+1} > 0$$

$$x^{2n-k}(x^{k+1}-1) - (x^{k+1}-1) > 0 \Leftrightarrow (x^{2n-k}-1)(x^{k+1}-1) > 0, \text{ for } x > 1.$$

Problem 117⁷

Let $n \geq 3$ și $z_1, z_2, \dots, z_n \in \mathbb{C}$ such that $|S| = |S-z_1| + |S-z_2| + \dots + |S-z_n|$, where $S = z_1 + z_2 + \dots + z_n$.

Show that $z_1 = z_2 = \dots = z_n = 0$.

Solution

We have $(n-1)(|S-z_1| + |S-z_2| + |S-z_3| + \dots + |S-z_n|) = |(n-1)S| = |S-z_1 + S-z_2 + S-z_3 + \dots + S-z_n| \leq |S-z_1| + |S-z_2| + |S-z_3| + \dots + |S-z_n|$

⁷ Problem for the 10th grade proposed by Prof. Butaru Zizi-Iuliana and Prof. Betiu Anicuța, Craiova.

$\Rightarrow (n-2) (|S-z_1| + |S-z_2| + |S-z_3| + \dots + |S-z_n|) \leq 0$ and
hence, $|S-z_1| + |S-z_2| + |S-z_3| + \dots + |S-z_n| = 0$, adică
 $|S-z_1| = |S-z_2| = |S-z_3| = \dots = |S-z_n| = 0$, where $S-z_1 = S-z_2 = S-z_3 = \dots = S-z_n = 0$, whence $z_1 = z_2 = \dots = z_n = 0$

Problem 118

Determine the smallest number $n \in \mathbb{N}^*$ for which the real numbers x_1, x_2, \dots, x_n exist, such that $|x_1| + |x_2| + \dots + |x_n| = 2017 + |x_1+x_2+\dots+x_n|$.

Solution

Since $n > |x_1| + |x_2| + \dots + |x_n| = 2017 + |x_1+x_2+\dots+x_n| \geq 2017 \Rightarrow n \geq 2018$.

Let $n = 2018$ be the number we are looking for.

In fact, for $x_1 = x_2 = \dots = x_{1009} = \frac{2017}{2018}$ and $x_{1010} = x_{1011} = \dots = x_{2018} = -\frac{2017}{2018}$, we obtain the requirements of the problem.

Problem 119

Let $x, y, z > 0$, so that $xy + yz + zx = 7$.

Show that $6(x^2 + y^2) + z^2 \geq 21$.

Solution

Since $9x^2 + z^2 \geq 6xz \quad (1)$

$9y^2 + z^2 \geq 6yz \quad (2)$

$3(x^2 + y^2) \geq 6xy \quad (3)$,

by addition $\Rightarrow 12(x^2 + y^2) + 2z^2 \geq 6(xy + yz + zx) = 6 \cdot 7$,

i.e. $6(x^2 + y^2) + z^2 \geq 21$.

Equality is identified when we have equality in (1), (2) și (3), i.e. $3x = z$, $3y = z$ and $x = y \Rightarrow x = y = 1$ and $z = 3$.

Problem 120⁸

Let $A = 47^{2018}$, show that:

- a) A cannot be written as the sum of two whole number cubes
- b) A cannot be written as the sum of three whole number cubes.

Solution

$$A = (5 \cdot 9 + 2)^{2018} = M_9 + 2^{2018} = M_9 + 2^{2016} \cdot 4 = M_9 + 8^{672} \cdot 4 = M_9 + (9 - 1)^{672} \cdot 4 = M_9 + (M_9 + +1) \cdot 4 = M_9$$

Since the remainders of an integer when dividing by 9 can be 0, 1 or 8 we immediately obtain a) and b).

Problem 121⁹

Let a, b, c be the lengths of the sides of a triangle ABC which checks:

$$a^3 + b^3 + c^3 - ab(a + b) + bc(b + c) - ac(a + c) = 0$$

Show that the triangle ABC is right-angled in A .

Solution

The relation from the statement is written as follows:

$$(a^2 - b^2 - c^2)(a - b - c) = 0$$

Since $a > b + c \Rightarrow a^2 = b^2 + c^2$, hence the conclusion.

Problem 122¹⁰

Let $a, b, c \in N^*$ such as

$$(a + b)^{b+c} = (b + c)^{c+a} = (c + a)^{a+b}.$$

Show that $a = b = c$.

⁸ Problem for the 6th grade proposed by Prof. Cremeneanu Luiza Lorena and Prof. Prunaru Constantina – Craiova.

⁹ Problem for 7th grade proposed by Prof. Zaharia Gigi – Craiova.

¹⁰ Problem suggestion for the 5th grade proposed by Prof. Meda Iacob Elena and Prof. Gilena Dobrică – Bechet.

Solution

Let $a + b = x, b + c = y, c + a = z$, since $x^y = y^z = z^x$ we prove that $ex = y = z$.

Assuming that $x < y$ and from $x^y = y^z \Rightarrow y > z$. Since $y^z = z^x \Rightarrow z < x$ and whence $x^y = z^x \Rightarrow x > y$ is false!

Analogously, presumming $x > y$, we obtain $x < y$ (false!).

Therefore $x = y$ and whence

$x^y = y^z = z^x$, in which $x = z$, so $x = y = z$.

Returning to the problem statement, we find $a + b = b + c = c + a$ and hence, $a = b = c$.

Problem 123¹¹

Solve in \mathbb{R} the equation:

$$\sqrt{\sqrt{x+5} + \sqrt{x-5}} = \sqrt{10} \left(\sqrt{\sqrt{x+5} - \sqrt{x-5}} \right) + \sqrt{5}.$$

Solution

From $(\sqrt{x+5} + \sqrt{x-5})(\sqrt{x+5} - \sqrt{x-5}) = 10$, noting $t = \sqrt{\sqrt{x+5} + \sqrt{x-5}} > 0$, we obtain $t = \sqrt{10} \cdot \frac{\sqrt{10}}{t} + \sqrt{5}$, wherefrom $t^2 - \sqrt{5}t - 10 = 0$

$$t_{1,2} = \frac{\sqrt{5} \pm \sqrt{45}}{2} \text{ cu } t_1 = -\sqrt{5} < 0 \text{ and } t_2 = 2\sqrt{5} > 0$$

Then, $\begin{cases} \sqrt{x+5} + \sqrt{x-5} = 20 \\ \sqrt{x+5} - \sqrt{x-5} = \frac{1}{2} \end{cases}$ și $\Rightarrow 2\sqrt{x+5} = 20 + \frac{1}{2} \Rightarrow \sqrt{x+5} = \frac{41}{4}$

$$\text{and whence } x = \frac{41^2}{16} - 5 = \frac{1681-80}{16} = \frac{1601}{16}.$$

¹¹ Problem proposed by Prof. Cremeneanu Luiza and Prof. Nedelcu Irina – Craiova.

Problem 124¹²

For which real numbers x , are the numbers $x + \sqrt{2021}$ and $\frac{1}{x} - \sqrt{2021}$ integers?

Solution

Let $x + \sqrt{2021} = m$ and $\frac{1}{x} - \sqrt{2021} = n$, where $m, n \in \mathbb{Z} \Rightarrow x = m - \sqrt{2021}$ and $\frac{1}{m-\sqrt{2021}} - \sqrt{2021} = n$

$$\Leftrightarrow 1 - m\sqrt{2021} + 2021 = nm - n\sqrt{2021} \Leftrightarrow 2022 - nm = (m - n)\sqrt{2021}$$

Since $\sqrt{2021}$ is not a rational number $\Rightarrow m = n$ and $nm = 2022$

$$\Rightarrow \begin{cases} (1) m = n = \sqrt{2022} \\ (2) m = n = -\sqrt{2022} \end{cases}$$

If we have: $m = n = \sqrt{2022} \Rightarrow x = \sqrt{2022} - \sqrt{2021}$

If we have: $m = n = -\sqrt{2022} \Rightarrow x + \sqrt{2021} = -\sqrt{2022} \Rightarrow x = -\sqrt{2022} - \sqrt{2021}$

Therefore, $x \in \{\sqrt{2022} - \sqrt{2021}, -\sqrt{2022} - \sqrt{2021}\}$, in conclusion:

$$x = \pm\sqrt{2022} - \sqrt{2021}$$

Problem 125¹³

Let $a \in (0,1)$ and $(x_n)_{n \geq 0}$ be a set with $x_0 = b > 0$ and $x_n = a^2 + a + \sqrt{x_{n-1}} - 2a\sqrt{a + \sqrt{x_{n-1}}}$, $n \geq 1$.

Show that $(x_n)_{n \geq 0}$ is convergent and calculate $\lim_{n \rightarrow \infty} x_n$.

¹² Problem for the 8th grade by Prof. Vasile Roxana and Prof. Tacu Dana – Craiova.

¹³ Problem for the 11th grade by Prof. Cremeneanu Lorena-Luiza and Prof. Prunaru Constantina – Craiova.

Solution

We have $x_n = \left(\sqrt{a + \sqrt{x_{n-1}}} - a \right)^2 \geq 0$ where: $x_n \geq 0$, $(\forall)n \in N^*$.

Since $\sqrt{a + \sqrt{x_{n-1}}} \geq a$, then

$a + \sqrt{x_{n-1}} \geq a^2$ which is true because $a > a^2$, $(a \in (0,1))$ we

obtain $\sqrt{x_n} = \sqrt{a + \sqrt{x_{n-1}}} - a$

i.e. $a + \sqrt{x_n} = \sqrt{a + \sqrt{x_{n-1}}}$.

Let $y_n = \sqrt{a + \sqrt{x_n}}$ with $y_0 = \sqrt{a + b}$. Then $y_n^2 = y_{n-1}$, with $y_n = y_0^{2^{-n}}$ (induction). Hence $\lim_{n \rightarrow \infty} y_n = 1$ and from $x_n = y_n^2 - a$, it follows $(x_n)_{n \geq 0}$ is convergent and $\lim_{n \rightarrow \infty} x_n = 1 - a$.

Problem 126¹⁴

Let $ABCD$ be a square, on the outside of the square construct the equilateral triangle ABE and the equilateral triangle EDF such that point B is inside it. Determine $m(\overline{BFE})$.

Solution

We denote the side of the square by a .

Thus we have $\begin{array}{c|c} \Delta ABE & DA \equiv DC \\ \Delta CDF & ED \equiv FD \\ \hline EDF & \equiv FDC \end{array} \left| \begin{array}{l} L.U.L \\ \hline \end{array} \right. \Rightarrow \Delta ADE \equiv \Delta CDF \Rightarrow FC = a$

$\Rightarrow m(\widehat{FCB}) = 60^\circ \Rightarrow \Delta FCB$ – equilateral $\Rightarrow FB = BE = a$

$\Rightarrow \Delta FBE$ – isosceles,

We have $m(\widehat{FBE}) = 150^\circ$, therefore $m(\overline{BFE}) = 15^\circ$.

¹⁴ Problem for the 7th grade by Prof. Tuțescu Lucian and Prof. Grigorie Dan – Craiova.

Problem 127¹⁵

a) Give examples of two strictly positive rational numbers x and y so that $x + \frac{1}{y}$ and $y + \frac{1}{x}$ to be natural.

b) Give examples of 3 strictly positive rational numbers x, y, z so that the numbers

$$x + \frac{1}{yz}, y + \frac{1}{xz} \text{ and } z + \frac{1}{xy} \text{ to be natural.}$$

c) Give examples of 3 distinct rational numbers x, y, z , so that the numbers $xy + \frac{1}{z}, yz + \frac{1}{x}$

$$\text{and } xz + \frac{1}{y} \text{ to be natural.}$$

Solutions

a) $x = 2, y = \frac{1}{2}$

b) $x = 1, y = 2, z = \frac{1}{2}$

c) $x = 1, y = 2, z = \frac{1}{2}$

¹⁵ Problem proposed by Prof. Chirita Simona – Craiova.

Problem 128¹⁶

Let ABC be a triangle with $AB = AC = a$, $BC = b$ and $m(\widehat{ABC}) = 40^\circ$. If (BD is the bisector of angle B , and $D \in (AC)$

$$BD = \frac{a^2 b}{b^2 - a^2}.$$

Solution

We build ΔBCE equilateral (outside ΔABC). Since $m(\widehat{A}) = 100^\circ$, $m(\widehat{B}) = 20^\circ$.

From $\widehat{ADB} = \widehat{BEC} \Rightarrow BDCE$ inscribed quadrilateral

$$\Rightarrow m(\widehat{DEC}) = 20^\circ.$$

$$\Delta ABD \sim \Delta CED \Rightarrow \frac{BD}{DE} = \frac{AD}{DC} = \frac{AB}{CE}; CE = BC = b$$

¹⁶ Problem for the 7th grade.

Therefore, $\frac{BD}{DE} = \frac{a}{b}$, but $DE = BD + DC$ (Von Schoten Relation)

$$\Rightarrow \frac{BD}{AD+DC} = \frac{a}{b} \Rightarrow \frac{BD}{DC} = \frac{a}{b-a} \quad (1)$$

By applying the bisector theorem in $\Delta ABC \Rightarrow \frac{DC}{AD} = \frac{BC}{AB} = \frac{b}{a}$

$$\Rightarrow \frac{DC}{AD+DC} = \frac{b}{a+b} \Rightarrow \frac{DC}{a} = \frac{b}{a+b} \Rightarrow DC = \frac{ab}{a+b} \quad (2)$$

$$\text{From (1) and (2)} \Rightarrow BD = \frac{a^2 b}{b^2 - a^2}$$

Problem 129¹⁷

Let a, b be positive numbers such that $a \cdot b \geq 1$. Show that:

$$ab(a+b) - 10ab + 8(a+b) \geq 8.$$

In which case do we have equality?

Solution

The inequality is written as follows: $ab(a+b)(ab+8) \geq 10ab + 8$. Since $a+b \geq 2\sqrt{ab}$ we demonstrate that:

$$2\sqrt{ab}(ab+8) \geq 10ab + 8 \text{ or by noting } \sqrt{ab} = t \geq 1 \text{ results:}$$

$$t(t^2 + 8) \geq 5t^2 + 4 \Leftrightarrow t^3 - 5t^2 + 8t - 4 \geq 0 \Leftrightarrow (t-1)(t^2 - 4t + 4) \geq 0 \text{ or:}$$

$$(t-1)(t-2)^2 \geq 0.$$

Equality is identified in $t = 1$ or $t = 2$ i.e. $\sqrt{ab} = 1$ or $\sqrt{ab} = 2$ dar
și $a+b \geq 2\sqrt{ab}$ i.e.:

$$a = b = 1 \text{ or } a = b = 2.$$

Problem 130¹⁸

Determine the integers n for which there is $a, b, c \in \mathbb{Z}$, so that $n^2 = a + b + c$ and $n^3 = a^2 + b^2 + c^2$.

¹⁷ Problem for the 8th grade by Prof. Ciulcu Claudiu and Prof. Dană Camelia – Craiova.

¹⁸ Problem proposed by Prof. Tuțescu Lucian – Craiova.

Solution

$$n^3 = a^2 + b^2 + c^2 \geq ab + bc + ca = \frac{(a+b+c)^2 - (a^2 + b^2 + c^2)^2}{2} = \\ = \frac{(n^2)^2 - n^3}{2} \Rightarrow 2n^3 \geq n^4 - n^3 \text{ or } 3n^3 \geq n^4 \Rightarrow n^3(3-n) \geq 0, \text{ whence } n \in \{0,1,2,3\}$$

For $n = 0$, $a = b = c = 0$ is obtained

For $n = 1$, $\begin{cases} a = b = 0, c = 1 \\ a = c = 0, b = 1 \\ b = c = 0, a = 1 \end{cases}$ are obtained

For $n = 2$, $\begin{cases} a^2 + b^2 + c^2 = 8 \\ a + b + c = 4 \end{cases}$, $\begin{cases} a = b = 2, c = 0 \\ a = c = 2, b = 0 \\ b = c = 2, a = 0 \end{cases}$ are obtained

For $n = 3$, $\begin{cases} a^2 + b^2 + c^2 = 27 \\ a + b + c = 9 \end{cases}$, with the result: $a = b = c = 3$.

Problem 131¹⁹

Ioana the petty trader sells eggs on the market. She manages to sell the entire quantity in 4 days, as follows:

- On the first day, she sells $\frac{2}{3}$ of the total amount of eggs and $\frac{1}{3}$ of an egg,
- On the second day, she sells $\frac{2}{3}$ of the remaining quantity after the first day and $\frac{1}{3}$ of an egg,
- On the third day, she sells $\frac{2}{3}$ of the remaining quantity after the second day and $\frac{1}{3}$ of an egg,
- On the fourth day, she sells $\frac{2}{3}$ of the remaining quantity after the third day and $\frac{1}{3}$ of an egg, thus remaining without any eggs after the four days.

How many eggs did the petty seller have in the beginning?

¹⁹ Problem for the 5th grade by Prof. Grigorie Ramona-Carmen and Prof. Boborel Maria – Craiova.

Solution

We note with x – the total number of eggs.

On the first day, she sells: $\frac{2}{3} \cdot x + \frac{1}{3}$ remaining: $x - \left(\frac{2}{3} \cdot x + \frac{1}{3}\right) = \frac{x}{3} - \frac{1}{3}$ eggs (new remainder),

On the second day, she sells: $\frac{2}{3} \left(\frac{x}{3} - \frac{1}{3}\right) + \frac{1}{3}$ remaining: $\frac{x}{3} - \frac{1}{3} - \left[\frac{2}{3} \left(\frac{x}{3} - \frac{1}{3}\right) + \frac{1}{3}\right] = \frac{x}{9} - \frac{4}{9}$ eggs (new remainder),

On the third day, she sells: $\frac{2}{3} \left(\frac{x}{9} - \frac{4}{9}\right) + \frac{1}{3}$ remaining: $\frac{x}{9} - \frac{4}{9} - \left[\frac{2}{3} \left(\frac{x}{9} - \frac{4}{9}\right) + \frac{1}{3}\right] = \frac{x}{27} - \frac{13}{27}$ eggs (new remainder),

On the fourth day, she sells: $\frac{2}{3} \left(\frac{x}{27} - \frac{13}{27}\right) + \frac{1}{3}$ remaining: $\frac{x}{27} - \frac{13}{27} - \left[\frac{2}{3} \left(\frac{x}{27} - \frac{13}{27}\right) + \frac{1}{3}\right] = \frac{x}{81} - \frac{40}{81}$ eggs (new remainder), but since after the fourth day she had no egg left, the remainder is 0.

Thus: $\frac{x}{81} - \frac{40}{81} = 0 \Leftrightarrow \frac{x}{81} = \frac{40}{81} \Rightarrow x = 40$ eggs.

The petty trader initially had 40 eggs.

Problem 132²⁰

Show that for any $n \geq 3$, there are distinct natural non-zero numbers x_1, x_2, \dots, x_n such that the product:

$$P = x_1 x_2 \dots x_n \left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} \right)$$

to be a perfect square.

Solution

We try to make the relation from the parenthesis equal to 1, by adding to the sum of the terms of a geometric progression other terms.

²⁰ Problem for the 10th grade by Viespescu Carina Maria, student – Craiova.

Either

$$x_1 = \left(\frac{1}{2}\right)^{-1}, x_2 = \left(\frac{1}{2^2}\right)^{-1}, \dots, x_{n-2} = \left(\frac{1}{2^{n-2}}\right)^{-1}, x_{n-1} = \left(\frac{1}{3 \cdot 2^{n-3}}\right)^{-1}, x_n = \left(\frac{1}{3 \cdot 2^{n-2}}\right)^{-1}$$

then

$$\begin{aligned} \frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} &= \left(\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-2}}\right) + \frac{2}{3 \cdot 2^{n-2}} + \frac{1}{3 \cdot 2^{n-2}} \\ &= 1 - \frac{1}{2^{n-2}} - \frac{1}{2^{n-2}} = 1 \end{aligned}$$

and the product we are looking for is

$$\begin{aligned} 2 \cdot 2^2 \cdot \dots \cdot 2^{n-2} \cdot 3 \cdot 2^{n-3} \cdot 3 \cdot 2^{n-2} &= 2^{\frac{(n-2)(n-1)}{2}} + 2n - 5 \cdot 3^2 \\ &= 2^{\frac{n^2+n-8}{2}} \cdot 3^2 = 2^{\frac{n(n+1)}{2}-4} \cdot 3^2 \end{aligned}$$

which is a perfect square for $\frac{n(n+1)}{2} = \text{par}$, so $n = 4k$ or $n = 4k + 3$

If $n = 4k + 1$ or $n = 4k + 2$, we can choose the numbers

$$x_1 = \left(\frac{1}{2}\right)^{-1}, x_2 = \left(\frac{1}{2^2}\right)^{-1}, \dots, x_{n-2} = \left(\frac{1}{2^{n-2}}\right)^{-1}, x_{n-1} = \left(\frac{1}{5 \cdot 2^{n-2}}\right)^{-1}, x_n = \left(\frac{1}{5 \cdot 2^{n-4}}\right)^{-1}$$

(where $n \geq 5$)

and then

$$\begin{aligned} \frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} &= \left(\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-2}}\right) + \frac{1}{5 \cdot 2^{n-2}} + \frac{4}{5 \cdot 2^{n-2}} \\ &= 1 - \frac{1}{2^{n-2}} + \frac{1}{2^{n-2}} = 1 \end{aligned}$$

and the product to be calculated becomes

$$\begin{aligned} 2 \cdot 2^2 \cdot \dots \cdot 2^{n-2} \cdot 5 \cdot 2^{n-2} \cdot 5 \cdot 2^{n-4} &= 2^{\frac{(n-2)(n-1)}{2}+2n-6} \cdot 5^2 \\ &= 2^{\frac{n^2+n-10}{2}} \cdot 5^2 = 2^{\frac{n(n+1)}{2}-5} \cdot 5^2 \end{aligned}$$

For $n = 4k + 1$, we obtain $\frac{n(n+1)}{2} - 5 = (4k + 1)(2k + 1) - 5 = \text{even}$,

and for $n = 4k + 2$, we obtain $\frac{n(n+1)}{2} - 5 = (2k + 1)(4k + 3) - 5 = \text{even}$, thus x_1, x_2, \dots, x_n is perfect square.

Problem 133²¹

Calculate the determinant:

$$d = \begin{vmatrix} 1 & 1 & 1 & 1 & \dots & 1 & 1 & 1 \\ 1 & 2^2+1 & 3 & 3 & \dots & 3 & 3 & 3 \\ 1 & 3 & 3^2+2 & 5 & \dots & 5 & 5 & 5 \\ 1 & 3 & 5 & 4^2+3 & \dots & 7 & 7 & 7 \\ \dots & \dots \\ 1 & 3 & 5 & 7 & \dots & 2n-5 & (n-1)^2+(n-2) & 2n-3 \\ 1 & 3 & 5 & 7 & \dots & 2n-5 & 2n-3 & n^2+(n-1) \end{vmatrix}$$

where $n \geq 2$, $n \in \mathbb{N}$.

Solution

We multiply the first column by -1 and add it to the other columns and get

$$d = \begin{vmatrix} 1 & 0 & 0 & 0 & \dots & 0 & 0 \\ 1 & 2^2 & 2 & 2 & \dots & 2 & 2 \\ 1 & 2 & 3^2+1 & 4 & \dots & 4 & 4 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & 2 & 4 & 6 & \dots & (n-1)^2+(n-3) & 2n-4 \\ 1 & 2 & 4 & 6 & \dots & 2n-4 & n^2+(n-2) \end{vmatrix}$$

²¹ Problem for the 11th grade by Prof. Tuțescu Lucian and Prof. Vasile Roxana – Craiova.

Then we solve the first line and then take out 2 as common factor on the first line and another 2 after the first column in the determinant obtained.

We note:

$$d = \begin{vmatrix} 1 & 1 & 1 & \dots & 1 & 1 \\ & 1 & 3^2+1 & 4 & \dots & 4 & 4 \\ 2^2 & \dots & \dots & \dots & \dots & \dots & \dots \\ & 1 & 4 & 6 & \dots & (n-1)^2+(n-3) & 2n-4 \\ & 1 & 4 & 6 & \dots & 2n-4 & n^2+(n-2) \end{vmatrix}$$

We multiply the first column of the previous determinant by -1 and by adding it to the other columns, we take out the common factor on 3^2 .

We continue the process and obtain:

$$d = 2^2 \cdot 3^2 \cdot \dots \cdot (n-2)^2 \cdot \begin{vmatrix} (n-1)^2 & n-1 \\ n-1 & n^2+1 \end{vmatrix} = 2^2 \cdot 3^2 \cdot \dots \cdot (n-2)^2 \cdot (n-1)^2 \cdot \begin{vmatrix} 1 & 1 \\ 1 & n^2+1 \end{vmatrix} = 2^2 \cdot 3^2 \cdot \dots \cdot (n-2)^2 \cdot (n-1)^2 \cdot n^2 = (n!)^2$$

Therefore, $d = (n!)^2$

Final solution:

$$A = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 2 & 0 & \dots & 0 \\ 1 & 1 & 3 & \dots & 0 & \det(A \cdot A^t) = n! = \det A \cdot \det A^t = (n!)^2 \\ \vdots & & & & & \\ 1 & 1 & 1 & \dots & n \end{bmatrix}$$

Problem 134²²

Find the digits a and b so that the number $a123456789987654321b$ is divisible by 144.

Solution

Since $144 = 16 \cdot 9$, the last four digits $\overline{321b}$ must form a number divisible by 16, thus it results that $b = 6$.

Because $1 + 2 + \dots + 9 = 45$ and the number is divided by 9, it results $a + b : 9$ i.e. $a + 6 : 9 \Rightarrow a = 3$.

Therefore, $a = 3, b = 6$.

Problem 135²³

Let $x, y, z > 0$. Show that:

$$xy + yz + zx \geq \sqrt{xyz} \left(\sqrt{\frac{x+y}{2}} + \sqrt{\frac{y+z}{2}} + \sqrt{\frac{z+x}{2}} \right)$$

In which case is there equality?

Solution

By squaring the initial inequality, we obtain:

$$\begin{aligned} (xy)^2 + (yz)^2 + (zx)^2 + 2xyz(x+y+z) &\geq \\ &\geq xyz \left(\frac{x+y}{2} + \frac{y+z}{2} + \frac{z+x}{2} + \right. \\ &\quad \left. + 2\sqrt{\frac{x+y}{2}} \cdot \sqrt{\frac{y+z}{2}} + 2\sqrt{\frac{y+z}{2}} \cdot \sqrt{\frac{z+x}{2}} + 2\sqrt{\frac{z+x}{2}} \cdot \sqrt{\frac{x+y}{2}} \right) \Leftrightarrow \end{aligned}$$

²² Problem for the 5th grade by Prof. Preda Oana and Prof. Sanda Iulia - Craiova.

²³ Problem 7th/8th grade by Prof. Grigorie Dan Lucian and Prof. Lupu Răzvan Ilie - Craiova.

$$\Leftrightarrow (xy)^2 + (yz)^2 + (zx)^2 + 2xyz(x+y+z) \geq xyz(x+y+z +$$

$$2\sqrt{\frac{x+y}{2}} \cdot \sqrt{\frac{y+z}{2}} + 2\sqrt{\frac{y+z}{2}} \cdot \sqrt{\frac{z+x}{2}} + 2\sqrt{\frac{x+y}{2}} \cdot \sqrt{\frac{z+x}{2}})$$

Since we identify the consequence of inequality:

$$(xy)^2 + (yz)^2 + (zx)^2 \geq xyz(x+y+z)$$

which is deducted from: $a^2 + b^2 + c^2 \geq ab + bc + ac$ for $a = xy$, $b = yz$, $c = zx$, it remains to be proven that:

$$x+y+z \geq \sqrt{\frac{x+y}{2}} \cdot \sqrt{\frac{y+z}{2}} + \sqrt{\frac{y+z}{2}} \cdot \sqrt{\frac{z+x}{2}} + \sqrt{\frac{x+y}{2}} \cdot \sqrt{\frac{z+x}{2}}$$

$$\cdot \sqrt{\frac{z+x}{2}}$$

or:

$$2(x+y+z) \geq \sqrt{x+y} \cdot \sqrt{y+z} + \sqrt{y+z} \cdot \sqrt{z+x} + \sqrt{z+x} \cdot \sqrt{x+y}$$

$$\cdot \sqrt{z+x}$$

or:

$$\begin{aligned} 2(x+y+z) &= x+y+x+z+y+z = \\ &= (\sqrt{x+y})^2 + (\sqrt{x+z})^2 + (\sqrt{z+y})^2 \geq \\ &\geq \sqrt{x+y} \cdot \sqrt{y+z} + \sqrt{y+z} \cdot \sqrt{z+x} + \sqrt{z+x} \cdot \sqrt{x+y} \quad (\text{the} \\ &\quad \text{inequality } a^2 + b^2 + c^2 \geq ab + bc + ac \text{ being used}) \end{aligned}$$

We identify equality in $x = y = z$.

Problem 136

Let $n \in N^*$. Show that there are no integers x_1, x_2, \dots, x_{14} , such that:

$$x_1^4 + x_2^4 + \dots + x_{14}^4 = 2 \underbrace{00 \dots 01}_{\text{by } n-\text{times}} 5$$

Solution

The following result will be used: "The rest of the fourth power of an integer is 0 or 1 at the division with 16", i.e.: $x^4 \equiv 0 \pmod{16}$ sau $x^4 \equiv 1 \pmod{16}$.

Certainly:

if $x = 2k, k \in \mathbb{Z} \Rightarrow x^4 = 16 \cdot k^4 \equiv 0 \pmod{16}$, and

if $x = 2l + 1, l \in \mathbb{Z} \Rightarrow x^2 = 4l(l + 1) = M_8 + 1$, (since $l(l + 1) \equiv 2 \pmod{16}$) and then $x^4 = M_8^2 + 2 \cdot M_8 + 1 \equiv 1 \pmod{16}$

Thus, according to the previous result : $x_1^4 + x_2^4 + \dots + x_{14}^4 \equiv r \pmod{16}$ where $r \in \{0, 1, 2, \dots, 14\}$.

Since $2 \underbrace{00 \dots 01}_{\text{by } n\text{-times}} 5 \equiv 15 \pmod{16}$ we obtain the requirement of the problem.

Problem 137²⁴

Determine the prime numbers p and q so that $p^4 - q$ and $p^4 + q$ be prime numbers as well.

Solution

Evidently, p and q cannot be odd simultaneously.

Therefore, we identify two situations:

- If $p = 2 \Rightarrow 16 - q$ și $16 + q$ prime numbers, $q = 3$ and $q = 13$.
- If $q = 2$ then $p^4 - 2$ și $p^4 + 2$ must be prime numbers. For $p = 3k \pm 1 \Rightarrow p^4 + 2 = (3k \pm 1)^4 + 2 = M_3 + 1 + 2 = M_3$ și $p^4 + 2 > 3$, thus $p = 3k$, where $p = 3$ and then $p^4 - 2 = 3^4 - 2 = 79$, $p^4 + 2 = 3^4 + 2 = 83$, respectively.

To conclude, $p = 2, q = 3; p = 2$ and $q = 13, p = 3$ and $q = 2$ are the requested numbers.

²⁴ Problem for the 5th grade by Prof. Tuțescu Lucian and Prof. Grigorie Dan-Lucian – Craiova.

Problem 138²⁵

Let $x, y > 0$ și $x^3 + y^3 = x - y$. Show that:

$$\begin{aligned}x \cdot y &< 1, \\x^2 + y^2 &< 1.\end{aligned}$$

Solution

$$x^2 + x \cdot y + y^2 = \frac{x^3 - y^3}{x - y} < \frac{x^3 + y^3}{x - y} = 1 \Rightarrow x \cdot y < 1 \text{ and } x^2 + y^2 < 1.$$

Problem 139²⁶

Let $f: [1918; 2018] \rightarrow R$, f continues on $[1918; 2018]$ and derivable on $(1918; 2018)$ such that $f(1918) = 1918$, $f(2018) = 2018$.

Show that there are $x_1, x_2, \dots, x_{100} \in (1918; 2018)$ all distinct so that $f'(x_1) + f'(x_2) + \dots + f'(x_{100}) = 100$

If, in addition, f is strictly ascending, show that there are $y_1, y_2, \dots, y_n \in (1918; 2018)$ all distinct so that $\frac{1}{f'(y_1)} + \frac{1}{f'(y_2)} + \dots + \frac{1}{f'(y_{100})} = 100$

Solution

We apply Lagrange's theorem on the following intervals $[1918; 1919], [1919; 1920], \dots, [2017; 2018]$ (one hundred intervals) and we identify:

$$f(1919) - f(1918) = (1919 - 1918) f'(x_1), \quad x_1 \in (1918; 1919)$$

$$f(1920) - f(1919) = (1920 - 1919) f'(x_2), \quad x_2 \in (1919; 1920)$$

.....

$$f(2018) - f(2017) = (2018 - 2017) f'(x_{100}), \quad x_{100} \in (2017; 2018)$$

²⁵ Problem proposed by Prof. Tigae Alina and Prof. Miu Simona – Craiova.

²⁶ Problem proposed by Prof. Tătescu Lucian.

from where, by addition we obtain :

$$f(2018) - f(1918) = f(x_1) + f(x_2) + \dots + f(x_{100}), \text{ i.e.}$$

$$f(x_1) + f(x_2) + \dots + f(x_{100}) = 2018 - 1918 = 100, \text{ cu } x_1 < x_2 < \dots < x_{100} \text{ (distincts).}$$

- c) Let $a_0 = 1918 < a_1 < a_2 < \dots < a_{100} = 2018$ such that $f(a_1) = 1019$,
 $f(a_2) = 1920, \dots, f(a_{100}) = 2018$ (there are $a_1, a_2, \dots, a_{2018}$ from continuity and monotony).

By applying Lagrange's theorem on the intervals

$$[a_0; a_1], [a_1; a_2], \dots, [a_{99}; a_{100}], \text{ we obtain } \frac{f(a_1) - f(a_0)}{a_1 - a_0} = f'(y_1) \text{ cu } y_1 \in (a_0, a_1), \text{ whence } \frac{1}{a_1 - a_0} = f'(y_1) \text{ or } \frac{1}{f'(y_1)} = a_1 - a_0,$$

$$\text{with } y_1 \in (a_0, a_1), \frac{1}{f'(y_2)} = a_2 - a_1, y_2 \in (a_0, a_1), \dots, \frac{1}{f'(y_{100})} = a_{100} - a_{99}, y_{100} \in (a_{99}, a_{100})$$

$$\text{By addition } \Rightarrow \frac{1}{f'(y_1)} + \frac{1}{f'(y_2)} + \dots + \frac{1}{f'(y_{100})} = 100, \text{ hence } y_1 < y_2 < \dots < y_n$$

Problem 140²⁷

Let $a > 0, a \neq 1$ fixed. Solve in R the equations:

- a) $\log_x(x + 2021) = \log_a(a + 2021)$
 b) $\log_x(x^{2021} + 2021) = \log_a(a^{2021} + 2021)$

Solution

- a) We have $\frac{\ln(x+2021)}{\ln x} = \frac{\ln(a+2021)}{\ln a}$ sau $\frac{\ln(x+2021)}{\ln(a+2021)} = \frac{\ln x}{\ln a}$, i.e.

$$\log_{a+2021} x + 2021 = \log_a x = y \text{ and from where } x = a^y, \\ x + 2021 = (a + 2021)^y$$

$$a^y + 2021 = (a + 2021)^y \Leftrightarrow \left(\frac{a}{a + 2021}\right)^y + 2021 \left(\frac{1}{a + 2021}\right)^y = 1$$

²⁷ Problem for 10th grade by Prof. Mirea Mihaela and Prof. Grigorie Dan - Craiova.

Since $\frac{a}{a+2021} < 1$ and $\frac{1}{a+2021} < 1 \Rightarrow y = 1$. Then $x = a$

- b) a) $\Rightarrow \log_{a^{2021}+2021}(x^{2021} + 2021) = \log_a x = y \Rightarrow x = a^y$
 $(a^{2021} + 2021)^y = x^{2021} + 2021$ and then $(a^{2021} + 2021)^y = a^{2021y} + 2021$
 $\Rightarrow \left(\frac{a^{2021}}{a^{2021}+2021}\right)^y + 2021\left(\frac{1}{a^{2021}+2021}\right)^y = 1$, one solution
only (monotony) $y = 1$ and whence $x = a$.

Problem 141²⁸

Find the area of an ABC triangle, if $AB = 3$, $BC = 7$ and the median $BD = 4$.

Solution

From the median theorem $BD^2 = \frac{2(BA^2 + BC^2) - AC^2}{4} \Rightarrow 4 \cdot 4^2 =$

$$2(3^2 + 7^2) - AC^2 \Rightarrow AC^2 = 2 \cdot 58 - 64 = 52$$

From Heron's formula:

$$\begin{aligned} S^2 &= p(p-a)(p-b)(p-c) \\ &= \frac{1}{16}(a+b+c)(-a+b+c)(a-b+c)(a+b-c) \\ &= \frac{1}{16}(2a^2b^2 + 2b^2c^2 + 2c^2a^2 - a^4 - b^4 - c^4) \end{aligned}$$

Since $BC = a = 7$, $ac = b = \sqrt{52}$ and $AB = c = 3$, by replacing we find:

$$\begin{aligned} S^2 &= \frac{1}{16}(2 \cdot 49 \cdot 52 + 2 \cdot 52 \cdot 9 + 2 \cdot 9 \cdot 49 - 2401 - 2704 - 81) \\ &\Rightarrow \\ S^2 &= \frac{1}{16} \cdot 1728 = 108 \Rightarrow S = 6\sqrt{3} \end{aligned}$$

²⁸ Problem for the 10th grade by Prof. Prunaru Constantina and Prof. Cremeneanu Luiza - Craiova.

Problem 142

Solve in \mathbb{R} the equation :

$$x^2y + y^2z + z^2x = 2x^2\sqrt{y-1} + 2y^2\sqrt{z-1} + 2z^2\sqrt{x-1}.$$

Solution

The equation is written (evidently $x \geq 1, y \geq 1, z \geq 1$)

$$x^2(\sqrt{y-1}-1)^2 + y^2(\sqrt{z-1}-1)^2 + z^2(\sqrt{x-1}-1)^2 = 0, \text{ from where } \sqrt{y-1} = \sqrt{z-1} = \sqrt{x-1} = 1, \text{ i.e. } x=y=z=2.$$

Problem 143

Find the integers x, y , so that $x(x+1) = y(y+3)$.

Solution

We have $4x^2 + 4x = 4y^2 + 12y \Rightarrow 4x^2 + 4x + 1 + 8 = 4y^2 + 12y + 9$ or

$$(2x+1)^2 + 8 = (2y+3)^2 \text{ or}$$

$$(2y+3)^2 - (2x+1)^2 = 8 \Rightarrow (2y+3-2x-1)(2y+3+2x+1) = 8 \Rightarrow (2y-2x+2)(2y+2x+4) = 8 \Rightarrow$$

$$(y-x+1)(y+x+2) = 2 \Rightarrow$$

$$\begin{cases} y - x + 1 = -1 \\ y + x + 2 = -2 \end{cases} \Rightarrow 2y = -6 \Rightarrow y = -3 \Rightarrow -3 - x = -2 \Rightarrow x = 1 \Rightarrow$$

$$\begin{cases} y = -3 \\ x = -2 \end{cases}$$

$$\begin{cases} y - x + 1 = -2 \\ y + x + 2 = -1 \end{cases} \Rightarrow 2y = -6 \Rightarrow y = -3 \Rightarrow -3 - x + 1 = -2 \Rightarrow x = 0 \Rightarrow$$

$$\begin{cases} y = -3 \\ x = 0 \end{cases}$$

$$\begin{cases} y - x + 1 = 1 \\ y + x + 2 = 2 \end{cases} \Rightarrow 2y = 0 \Rightarrow y = 0 \Rightarrow x = 0 \Rightarrow \begin{cases} y = 0 \\ x = 0 \end{cases}$$

$$\begin{cases} y - x + 1 = 2 \\ y + x + 2 = 1 \end{cases} \Rightarrow y = 0 \Rightarrow x = -1 \Rightarrow \begin{cases} y = 0 \\ x = -1 \end{cases}$$

The results are $\begin{cases} x = 1 \\ y = -3 \end{cases}; \begin{cases} x = 0 \\ y = -3 \end{cases}; \begin{cases} x = 0 \\ y = 0 \end{cases}; \begin{cases} x = -1 \\ y = 0 \end{cases}$

Problem 144

Show that: $5^{13} \cdot 13^{31} \cdot 31^5 > 2^{10} \cdot 13^5 \cdot 31^{13} \cdot 5^{31}$

Solution

$$\frac{5^{13} \cdot 13^{31} \cdot 31^5}{13^5 \cdot 31^{13} \cdot 5^{31}} = \frac{13^{26}}{31^8 \cdot 5^{18}} = \frac{13^{16} \cdot 13^{10}}{31^8 \cdot 5^8 \cdot 5^{10}} = \left(\frac{169}{155}\right)^8 \cdot \left(\frac{13}{5}\right)^{10} > 1 \cdot 2^{10} = 2^{10}$$

Problem 145

Determine $f: \mathbb{R} \rightarrow \mathbb{R}$,

such that $f(f(xy)) = |x| f(y) + 2019f(xy)$, $\forall x, y \in \mathbb{R}$.

Solution

By substituting x with $y \Rightarrow f(f(yx)) = |y| f(x) + 2019f(yx) \Rightarrow |x|$

$$f(y) = |y| f(x)$$

$$\text{For } y=1 \Rightarrow f(x) = |x| f(1)$$

$$\text{For } x=y=1 \Rightarrow f(f(1)) = f(1) + 2019f(1) \Rightarrow f(f(1)) = 2020f(1) \quad (1)$$

$$\text{From } f(x) = |x| f(1) \text{ taking } x=f(1) \Rightarrow f(f(1)) = |f(1)| f(1) \quad (2)$$

$$\text{From (1) și (2)} \Rightarrow |f(1)| f(1) = 2020f(1) \text{ or } f(1) (|f(1)| - 2020) = 0$$

and then

$$f(1) \in \{0, -2020, 2020\}$$

we obtain the following results: $f(x)=0$, $\forall x \in \mathbb{R}$; $f(x) = -2020|x|$, $\forall x \in \mathbb{R}$; $f(x) = 2020|x|$, $\forall x \in \mathbb{R}$.

Problem 146

Let $ABCD$ and $AEGF$ be two squares, such that $G \in (AB)$ and $A \in (ED)$. On the line (EB) consider point M , so that $MD \cap (BC) = \{H\}$. Show that if E , G and H are collinear, then $ME = MD$.

Solution

$$E, F, G \text{ collinear} \Rightarrow m(\widehat{HED}) = m(\widehat{GEA}) = 45^\circ$$

Projecting H on ED in H' and $\{F'\} = EF \cap BH \Rightarrow EF'HH'$ square with EH bisector, $\angle F'EH'$.

$F'B=HC$ and $\Delta BEA \equiv \Delta HDH' \Rightarrow \triangle BEA \equiv \triangle HDH'$ are obtained, i.e. ΔMED isosceles with $ME = MD$.

Problem 147

The measures of the angles of a convex polygon form an arithmetic progression with the 3° ratio. Knowing that the largest of the angles of the polygon has 177° , find out the number of sides that the polygon can have.

Solution

The angles of the polygon are $177^\circ, 174^\circ, 171^\circ, 171^\circ, \dots, 177^\circ - 3^\circ (n-1)$ and then $(177^\circ - (n-1)3^\circ) + (177^\circ - (n-2)3^\circ) + \dots + 177^\circ = (n-2)180^\circ < \Rightarrow n \cdot 177^\circ - \frac{n(n-1)3^\circ}{2} = (n-2)180^\circ$

$$354^\circ n - 3^\circ n^2 + 3^\circ n = 360^\circ n - 720^\circ \Leftrightarrow 3n^2 + 3n - 720^\circ = 0 \mid : 3 = \\ > n^2 + n - 240 = 0$$

$$\Delta = 1 + 4 \cdot 240 = 961$$

$$n_{1,2} = \frac{-1 \pm 31}{2} \Rightarrow n = 15$$

the polygon has 15 sides and the angles $135^\circ, 138^\circ, \dots, 174^\circ, 177^\circ$.

Problem 148

Let $n \in \mathbb{N}^*$ and $x > 1, x \in \mathbb{R}$. Show that $\frac{x^{n+1} - x^{-(n+1)}}{n+1} > \frac{x^n - x^{-n}}{n}$.

Solution

We have $\frac{x^{2n+2} - 1}{(n+1)x^{n+1}} > \frac{x^{2n} - 1}{nx^n} \Leftrightarrow n(x^{2n+2} - 1) > (n+1)x(x^{2n} - 1) \mid : x - 1 > 0 \Rightarrow$

$$n(x^{2n+1} + x^{2n} + \dots + x^2 + x + 1) > (n+1)(x^{2n} + x^{2n-1} + \dots + x^2 + x) \Leftrightarrow n \\ x^{2n+1} + nx^{2n} + \dots + nx^2 + nx + n > nx^{2n} + nx^{2n-1} + \dots + nx^2 + nx + x^{2n} + x^{2n-1} \\ + \dots + x^2 + x \Leftrightarrow$$

$$n x^{2n+1} + n > x^{2n} + x^{2n-1} + \dots + x^2 + x$$

Proving that $x^{2n+1} + 1 > x^{2n+1-k} + x^k, k=1,..,n$

$$x^{2n+1} + 1 > x^{2n} + x$$

$$x^{2n+1} + 1 > x^{2n-1} + x^2$$

.....

$$x^{2n+1} + 1 > x^{2n+1} + x^n \quad \text{and by addition,}$$

$$\overline{x^{2n+1} + 1} > \overline{x^{2n-k} + x^{k+1}}, \quad k = \overline{0, n}$$

$$x^{2n+1} - x^{2n-k} + 1 + x^{k+1} > 0$$

$$x^{2n-k} (x^{k+1} - 1) - (x^{k+1} - 1) > 0 \Leftrightarrow (x^{2n-k} - 1)(x^{k+1} - 1) > 0, \text{ for } x > 1.$$

Problem 149

Calculate:

$$(xyzt + mnuv) : 5 =$$

$$\text{if } xn + my = 81 \text{ and } zv + ut = 125$$

Solution

$$xn + my = 81 \text{ and } zv + ut = 125$$

We write the numbers in base 10

$$10x + n + 10m + y = 81, \text{ multiply the relation by 100}$$

$$10z + v + 10u + t = 125$$

$$\Rightarrow 1000x + 100n + 1000m + 100y = 8100$$

$$10z + v + 10u + t = 125$$

By addition:

$$1000x + 100n + 1000m + 100y + 10z + v + 10u + t = 8225$$

By grouping the terms:

$$(1000x + 100y + 10z + t) + (1000m + 100n + 10u + v) = 8225$$

$$\overline{xyzt} + \overline{mnuv} = \overline{8225}$$

$$(\overline{xyzt} + \overline{mnuv}) : 5 = 8225 : 5 = 1645$$

Problem 150

The rest of dividing a number by 8 is equal to 7, and dividing by 9 is equal to 3. Find out the rest of the number distribution at 72.

Solution

Let n be the given number.

Then,

$$n:8 = c_1 \text{ remainder } 7$$

$$n:9 = c_2 \text{ remainder } 3$$

From the division with remainder theorem, we obtain

$$n = 8c_1 + 7$$

$$n = 9c_2 + 3$$

From the multiplication of the first relation by 9 and the second one by 8 the following results are obtained:

$$9n = 72c_1 + 63$$

$$8n = 72c_2 + 24$$

We reduce the relations:

$$9n - 8n = 72c_1 + 63 - 72c_2 - 24$$

$$n = 72(c_1 - c_2) + 39$$

From the division with remainder theorem it results that the remainder of the division of n to 72 is 39.

Problem 150+1

It can be noted that

$$12^2 = 144, 21^2 = 441, 13^2 = 169, 31^2 = 961,$$

$$2021^2 = 4084441, 1202^2 = 1444804,$$

$$2022^2 = 4088484, 2202^2 = 4848804.$$

These numbers have the property that the square of the upheaval is the overthrow of the square. Show that there are infinitely many such numbers.

Solution

By direct calculation show that the numbers of the form 1100...01 verify the requirement of the problem.

TABLE OF CONTENTS

Problem 1.....	105
Solution	105
Problem 2.....	106
Solution	106
Problem 3	106
Solution	107
Problem 4	107
Solution	107
Problem 5	107
Solution	108
Problem 6	108
Solution	108
Problem 7	109
Solution	109
Problem 8	109
Solution	109
Problem 9	109
Solution	110
Problem 10	110
Solution	110
Problem 11	110
Solution	111
Problem 12	111
Solution	111
Problem 13	112
Solution	112
Problem 14	112
Solution	112

Problem 15.....	113
Solution	113
Problem 16	113
Solution	113
Problem 17.....	113
Solution	114
Problem 18	114
Solution	114
Problem 19	114
Solution	114
Problem 20.....	115
Solution	115
Problem 21	115
Solution	116
Problem 22.....	116
Solution	116
Problem 23.....	117
Solution	117
Problem 24.....	117
Solution	117
Problem 25.....	118
Solution	118
Problem 26.....	118
Solution	118
Problem 27.....	119
Solution	119
Problem 28.....	119
Solution	120
Problem 29.....	120
Solution	120
Problem 30.....	121
Solution	121

Problem 31	121
Solution	121
Problem 32	121
Solution	121
Problem 33	122
Solution	122
Problem 34	122
Solution	122
Problem 35	122
Solution	122
Problem 36	122
Solution	123
Problem 37	123
Solution	123
Problem 38	124
Solution	124
Problem 39	124
Solution	124
Problem 40	125
Solution	125
Problem 41	125
Solution	125
Problem 42	126
Solution	126
Problem 43	126
Solution	126
Problem 44	127
Solution	127
Observation	127
Problem 45	127
Solution	127

Problem 46.....	128
Solution	128
Problem 47.....	128
Solution	128
Observation.....	128
Problem 48.....	129
Solution.....	129
Problem 49.....	129
Solution	130
Problem 50.....	130
Solution	130
Problem 51.....	130
Solution	130
Problem 52.....	131
Solution	131
Problem 53.....	131
Solution	131
Problem 54.....	132
Solution	132
Problem 55	132
Solution	132
Problem 56.....	132
Solution	133
Problem 57	133
Solution	133
Problem 58	133
Solution	133
Problem 59	134
Solution	134
Problem 60	134
Solution	134

Problem 61	134
Solution	134
Problem 62.....	135
Solution	135
Problem 63.....	135
Solution	135
Problem 64.....	136
Solution	136
Problem 65.....	136
Solution	136
Problem 66.....	136
Solution	137
Problem 67.....	137
Solution	137
Problem 68.....	137
Solution	137
Problem 69.....	138
Solution	138
Problem 70.....	138
Solution	138
Problem 71.....	139
Solution	139
Problem 72.....	139
Solution 1.....	139
Solution 2.....	140
Problem 73	140
Solution	140
Problem 74	140
Solution 1.....	140
Solution 2.....	141
Problem 75	141
Solution	141

Problem 76	142
Solution	142
Problem 77	142
Solution	142
Problem 78	143
Solution	143
Problem 79	143
Solution	143
Problem 80	144
Solution	144
Problem 81	144
Solution	144
Problem 82	145
Solution	145
Problem 83	146
Solution	146
Problem 84	146
Solution	146
Problem 85	147
Solution	147
Problem 86	148
Solution	148
Problem 87	148
Solution	148
Problem 88	148
Solution	149
Problem 89	149
Solution	149
Problem 90	149
Solution	150
Problem 91	150
Solution	150

Problem 92.....	150
Solution	150
Problem 93.....	151
Solution	151
Problem 94.....	152
Solution	152
Problem 95.....	152
Solution	152
Problem 96.....	153
Solution	153
Problem 97	153
Solution	153
Problem 98.....	154
Solution	154
Problem 99.....	154
Solution	154
Problem 100	155
Solution	155
Problem 101.....	155
Solution	156
Problem 102	157
Solution	157
Problem 103	157
Solution	157
Problem 104	158
Solution	158
Problem 105	158
Solution	159
Problem 106	159
Solution	159
Problem 107	160
Solution	160

Problem 108	160
Solution	161
Problem 109	161
Solution	161
Problem 110.....	162
Solution	162
Problem 111	163
Solution	163
Problem 112.....	164
Solution	164
Problem 113.....	165
Solution	165
Problem 114.....	165
Solution	166
Problem 115.....	166
Solution	166
Problem 116.....	167
Solution	167
Problem 117.....	167
Solution	167
Problem 118.....	168
Solution	168
Problem 119.....	168
Solution	168
Problem 120	169
Solution	169
Problem 121.....	169
Solution	169
Problem 122	169
Solution	170
Problem 123	170
Solution	170

Problem 124	171
Solution	171
Problem 125.....	171
Solution	172
Problem 126	172
Solution	172
Problem 127.....	173
Solutions	173
Problem 128	174
Solution	174
Problem 129	175
Solution	175
Problem 130	175
Solution	176
Problem 131.....	176
Solution	177
Problem 132	177
Solution	177
Problem 133	179
Solution	179
Problem 134	181
Solution	181
Problem 135.....	181
Solution	181
Problem 136	182
Solution	182
Problem 137.....	183
Solution	183
Problem 138	184
Solution	184
Problem 139	184
Solution	184

Problem 140	185
Solution	185
Problem 141.....	186
Solution	186
Problem 142	187
Solution	187
Problem 143	187
Solution	187
Problem 144	188
Solution	188
Problem 145	188
Solution	188
Problem 146	188
Solution	188
Problem 147.....	189
Solution	189
Problem 148	189
Solution	189
Problem 149	190
Solution	190
Problem 150	190
Solution	191
Problem 150+1	191
Solution	192

$$\frac{d\omega}{dt} = \frac{d\varphi}{dt} \frac{\partial \omega}{\partial \varphi} = \frac{d\varphi}{dt} \frac{1}{\mu^2} \quad \text{Oscilla}$$

$$\frac{d^2r}{dt^2} = \frac{d^2r}{d\varphi^2} \cdot \left(\frac{\Sigma}{\mu^2}\right)^2 + \frac{dr}{d\varphi} \cdot \frac{\Sigma}{\mu} \cdot \frac{d}{dt} \left(\frac{1}{\mu^2}\right)$$

$$\frac{d\theta}{(c_0 - \theta')^2} = \left(\frac{2}{c}\right) dt = \frac{d^2r}{d\varphi^2} \left(\frac{\Sigma}{\mu^2}\right) - \frac{c}{r^2} \cdot \frac{\Sigma}{\mu} \cdot \left(\frac{dr}{d\varphi}\right)^2 \cdot \frac{\Sigma}{\mu^2}$$

$$\int_{c_0}^r \frac{d\theta}{(c_0 - \theta')^2} = \left(\frac{2}{c}\right) \int dt \quad \omega(\varphi) = \frac{1}{r(\varphi)} \quad \frac{d\omega}{d\varphi} = -\frac{1}{r^2} \frac{dr}{d\varphi} \cdot \frac{d\omega}{d\varphi^2} = -\frac{1}{r^3}$$

$$\int_{c_0}^r \frac{d\theta}{(c_0 - \theta')^2} = \left[\Re_{0.5} \left(\frac{2}{c}\right)\right]_{c_0}^r \cdot \Re_{0.5} \left(\frac{\Sigma}{\mu^2}\right) - \Im_{0.5} \left(\frac{\Sigma}{\mu^2}\right)$$

$$\frac{d^2r}{dt^2} = -\frac{1}{r^2} \left(\frac{\Sigma}{\mu^2}\right)^2 \frac{d^2\omega}{d\varphi^2} = -\omega^2 (G M_1 M_2 + \omega^2 \frac{\Sigma^2}{\mu^2}) \frac{d^2\omega}{d\varphi^2} = -\omega^2$$

$$f_0 \cdot \frac{d\omega}{dt} = \frac{(j/c)^2}{c^2} \quad N_{0.5} (\varphi, \dot{\varphi}) \cdot d\theta = 0$$

$$f_0 \cdot (j/c)^2 = -M c' \dot{\varphi} \quad M c' \dot{\varphi} = -l \dot{\theta} \neq 0$$

$$x^2 + y^2 + z^2 = c'^2 t^2 \quad \beta = \frac{v}{c}$$

$$x = \frac{x - v t}{(1 - v^2/c^2)^{1/2}} \quad t = \frac{t - l}{(1 - v^2/c^2)^{1/2}}$$

$$f_0 \cdot \frac{d\omega}{dt} = 0 \quad F_{0.5} = C_0 \quad \omega = \frac{C_0}{R} = 0$$

$$\omega = \omega_0 \sin(\varphi) \quad \dot{\varphi} = \omega_0 \Re_{0.5}(\omega, \varphi) \quad \omega = \omega_0 \Re_{0.5}(\omega, \varphi) \quad \omega = \frac{\theta c^2}{(1 - v^2/c^2)^{1/2}} \quad E = M c^2 \cdot \frac{1}{2}$$

$$\dot{\varphi} + \omega_0 \sin(\varphi) = 0 \quad \omega_0 = \left(\frac{c}{R}\right)^{1/2} \quad \omega_0 \Re_{0.5}(\varphi)$$

$$\psi(\varphi, t) \quad x = R \cos(\omega t + \frac{1}{2}\varphi) = R \cos(\omega t)$$

$$E = p^2 c^2 + M^2 c^2 \quad E = (p^2 c^2 + M^2 c^2)^{1/2}$$

$$K = \frac{1}{2} M \omega^2 \cdot \frac{1}{2} M \left[-\Re_{0.5}(\omega t + \varphi) \right]^2 = M c^2 \left[1 + \left(\frac{f^2}{M^2 c^2} \right)^2 \right]^{1/2} \quad \sum E =$$

$$d\varphi = \frac{dt}{c} \cdot \frac{1}{c} M \omega_0 \sin(\varphi) \cdot \int_{\varphi_0}^{\varphi} \frac{\sin(\omega t + \varphi) d\varphi}{c^2 M \omega_0}$$

$$\Delta t = \Delta \tau = \left(1 - \frac{v^2}{c^2}\right)^{1/2} \Delta t \quad \delta t$$

$$\epsilon_0 = E + \frac{1}{2} \delta t + \frac{1}{2} \delta \tau$$

$$\frac{\Delta p_x}{\Delta t} = \left(1 - \frac{v^2}{c^2}\right)^{1/2} \frac{\Delta p_x}{\Delta t} = \left(1 - \frac{v^2}{c^2}\right)^{1/2} \frac{\Delta p_x}{\Delta t} \quad dP_x \quad dP_x$$

$$\frac{dp_x}{dt} = \left(1 - \frac{v^2}{c^2}\right)^{1/2} \frac{dp_x}{dt}, \quad \frac{dp_x}{dt} = \left(1 - \frac{v^2}{c^2}\right)^{1/2}$$

$$p_x = \frac{p_0}{\sqrt{1 - v^2/c^2}} \quad \Delta p_x = \frac{\Delta p_x}{\left(1 - \frac{v^2}{c^2}\right)^{1/2}}$$

