Exercise 1. Determine the LU decomposition with row swaps, i.e. L, U and the corresponding permutation vector p for the following matrices. Then solve the system $Ax = e_1$. Here, $e_1 = (1, 0, ..., 0)^T$.

a)
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 0 & 1 \\ 2 & 2 & 4 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 2 & 0 & 2 & 1 \\ 2 & 2 & 2 & 4 \\ 1 & 1 & 2 & 4 \end{pmatrix}$.

Exercise 2. Let $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ be arbitrary. The Frobenius norm is defined by

$$||A||_F = \left(\sum_{i=1}^n \sum_{j=1}^n a_{ij}^2\right)^{\frac{1}{2}}.$$

Proof the following:

(a) For $n \ge 2$ the Frobenius norm is not induced by any norm.

Hint: Exercise sheet 1, Exercise 2(d).

- **(b)** $||A||_F^2 = \text{trace}(A^T A)$
- (c) The Frobenius norm is compatible with the Euclidean norm $\|\cdot\|_2$, i.e. for all $x \in \mathbb{R}^n$ it is

$$||Ax||_2 \le ||A||_F ||x||_2.$$

Hint: Consider the squared inequality and use the (squared) Cauchy-Schwarz inequality to estimate $||Ax||_2^2$.

(d) $||A||_2 \leq ||A||_F$.

Hint: Use subtask (c)

Exercise 3. Let $A \in \mathbb{R}^{n \times n}$ be *nilpotent*, i.e. for some $N \in \mathbb{N}$ it is

$$A^{N} = 0.$$

Are the following statements true or false (give a reason for each!):

- (a) $\det(A) = 0$
- **(b)** $\sigma(A) = \{0\}$
- (c) trace(A) = 0
- (d) A = 0 or A is not diagonalizable
- (e) E A is invertible

Exercise 4. Write a program that will implement the LU decomposition (without permutations) preferably with Octave/Matlab. The program should receive an arbitrary $(n \times n)$ -matrix A as input and the matrices L (unipotent lower triangular matrix) and U (upper triangular matrix) as output, such that

$$A = LU$$
.

Test your program with the matrices from Sheet 3, Exercise 3.