

Introduction to Deep Reinforcement Learning Model-free Methods

Zhiao Huang

Markov Decision Process

Reinforcement Learning is modeled as a Markov Decision Process S, A, P_a, R_a

- *S* is the state space and *A* is the action space
- p(s'|s,a) is the probability of transition (at time t) from state s to state s' under action a
- R(s, a, s') is the immediate reward received after transitioning from state s to s', under action a

RL Problem

Give an MDP, find **policy** π to maximize the expected future reward if we sample trajectory τ based on the policy in the environment:

$$\max_{\pi} E_{\tau \sim p_{\pi}(\tau)} [R_{\gamma}(\tau)]$$

Value Function

Value function

$$V^{\pi}(s) = E_{\tau \sim p_{\pi}(\tau|s)}[R(\tau)]$$

• The expected reward if the agent follows the policy π and is currently at the state s

Q function

Q function

$$Q^{\pi}(s, a) = E_{s' \sim p(s'|s, a)} R(s, a, s') + \gamma V^{\pi}(s')$$

$$\Rightarrow V^{\pi}(s) = \mathop{E}_{a \sim \pi(s)} Q^{\pi}(s, a)$$

Expected reward from state s if we select the action a

Bellman Equations

• Policy π is the optimal policy if and only V^{π} satisfy the bellman equations for all s

$$V^{\pi}(s) = \max_{a} E_{s' \sim p(s,a)} [R(s,a,s') + \gamma V^{\pi}(s')] = \max_{a} Q(s,a)$$

• We use Q^* and V^* to represent the Q and V function of the optimal policy π^*

Value Iteration Algorithm

- Initialize V
- Repeat
 - For each state $s \in S$ do $V'^{(s)} \leftarrow \max_{a} E_{s' \sim p(s'|s,a)}[R(s,a,s') + \gamma V(s')]$
 - Stop if $||V V'||_{\infty} \le \epsilon$
 - $V \leftarrow V'$

What's the trouble?

- The state space is high-dimensional
- The model p(s'|s,a) and the reward R(s,a,s') are unknown

High-dimensional State Space

- The state space S is high-dimensional
- We can't use an array to store V(s) for all states

The state can be represented by an image

What's the trouble?

- The state space is high-dimensional
- The model p(s'|s,a) and the reward R(s,a,s') are unknown
 - We can only sample trajectories from the environment

What's the trouble?

• The model p(s'|s,a) and the reward R(s,a,s') are unknown

For real robot, we don't know p(s'|s,a) precisely

Deep Q Learning

- Deep neural networks for high-dimensional state space
- Temporal difference learning with the replay buffer

Deep Q Network

• Model $Q^*(s, a)$ with a deep neural network $Q_{\theta}(s, a)$

Deep Q Network

• Assuming a finite action space, V^* and π^* can be computed from $Q^* = Q_\theta$

$$V^*(s) = \max_{a} Q^*(s, a)$$

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q^*(s, a)$$

Bellman Equations for Q Networks

 The Q network is optimal if and only if it satisfies the Bellman Equations for all (s, a) pairs:

$$Q_{\theta}(s, a) = E_{s' \sim p(s'|s, a)}[R(s, a, s') + \gamma \max_{a'} Q_{\theta}(s', a')]$$

Training Deep Q Network

• Finding θ such that

$$Q_{\theta}(s, a) = E_{s' \sim p(s'|s, a)}[R(s, a, s') + \gamma \max_{a'} Q_{\theta}(s', a')]$$

is equivalent to finding θ to minimize

$$\sum_{s \in S} \int_{a \in A} \left\| Q_{\theta}(s, a) - E_{s' \sim p(s'|s, a)} [R(s, a, s') + \gamma \max_{a'} Q_{\theta}(s', a')] \right\|^{2}$$

Training Deep Q Network

However, the objective is still intractable

$$\sum_{s \in S, a \in A} \|Q_{\theta}(s, a) - E_{s' \sim p(s'|s, a)}[R(s, a, s') + \gamma \max_{a'} Q_{\theta}(s', a')]\|^{2}$$

- S is a high-dimensional space
- p(s'|s,a) is unknown

Temporal Difference Learning

However, the objective is still intractable

$$\sum_{s \in S, a \in A} \left\| Q_{\theta}(s, a) - E_{s' \sim p(s'|s, a)} [R(s, a, s') + \gamma \max_{a'} Q_{\theta}(s', a')] \right\|^{2}$$

 TD-learning approximate the above objective with sampled transitions from the environment

$$L(\theta) = E_{(s,a,s') \sim \text{Env}}[TD_{\theta}(s,a,s')]$$

where

$$TD_{\theta}(s, a, s') = \left\| Q_{\theta}(s, a) - \left[R(s, a, s') + \gamma \max_{a'} Q_{\theta}(s', a') \right] \right\|^{2}$$

Replay Buffer

• Our goal is to train Q_{θ} with the loss

$$L(\theta) = E_{(s,a,s') \sim \text{Env}}[TD_{\theta}(s,a,s')]$$

- We want to sample most transitions (s, a, s') from the environment
 - At least we want to sample the transitions to cover the optimal solution!

Replay Buffer

- Exploration Replay buffer stores all transitions sampled from the environment with the current network
- Exploitation Sample transitions from the replay buffer to update the network

Exploration

- In Q learning, we use ε-greedy to explore the environment. For the current state s
 - With probability ϵ , sample a random action
 - With probability 1ϵ , choose the best action according to $\max_{a} Q_{\theta}(s, a)$

Exploration (cont.)

- ϵ -greedy is a trade-off:
 - Random actions to cover most states
 - Sample more on the optimal trajectories for more accurate solution

Exploitation

 To update the network, we simply sample a batch of transitions from the replay buffer to train the network by gradient descent

$$\nabla_{\theta} L(\theta) = E_{(s,a,s') \sim \text{Replay Buffer}} [\nabla_{\theta} T D_{\theta}(s,a,s')]$$

Deep Q Learning

- Initialize replay buffer D and Q network Q_{θ}
- Sample the initial state $s_0 \sim p(s_0)$
- Repeat
 - Let s be the current state
 - With probability ϵ select a random action a
 - Otherwise select $a = \operatorname{argmax}_a Q_{\theta}(s, a)$
 - Execute a in the environment and observe the reward r and the next state s'
 - Store transitions (s, a, s') in D
 - Sample random minibatch of transitions (s_j, a_j, s'_j) from D
 - Set $y_j = r_j + \gamma \max_{a'} Q_{\theta}(s'_j, a')$
 - Perform a gradient descent step on the TD loss

$$\sum_{j} \left(y_j - Q_{\theta}(s_j, a_j) \right)^2$$

Continuous Action Space?

Robot Control

Navigation

Continuous Action Space?

Finding policy from the Q function becomes non-trivial

$$\pi(s) = \operatorname{argmax}_a Q_{\theta}(s, a)$$

Deep Deterministic Policy Gradient

• Use a network $a = \pi_{\phi}(s)$ to model the policy, and we maximize (end to end trainable)

$$\max_{\phi} E_s \left[Q_{\theta} \left(s, \pi_{\phi}(s) \right) \right]$$

• Q Differentiable

Deep Q Learning

- Initialize replay buffer D and Q network Q_{θ}
- Sample the initial state $s_0 \sim p(s_0)$
- Repeat
 - Let s be the current state
 - With probability ϵ select a random action a
 - Otherwise select $a = \operatorname{argmax}_a Q_{\theta}(s, a)$
 - Execute a in the environment and observe the reward r and the next state s'
 - Store transitions (s, a, s') in D
 - Sample random minibatch of transitions (s_j, a_j, s'_i) from D
 - Set $y_j = r_j + \gamma \max_{a'} Q_{\theta}(s'_j, a')$
 - Perform a gradient descent step on the TD loss

$$\sum_{j} \left(y_j - Q_{\theta}(s_j, a_j) \right)^2$$

Deep Deterministic Policy Gradient (simplified)

- Initialize replay buffer D, Q network Q_{θ} , and policy network π_{ϕ}
- Sample the initial state $s_0 \sim p(s_0)$
- Repeat
 - Let s be the current state
 - With probability ϵ select a random action a
 - Otherwise select $a = \pi_{\phi}(s)$
 - Execute a in the environment and observe the reward r and the next state s'
 - Store transitions (s, a, s') in D
 - Sample random minibatch of transitions (s_i, a_i, s_i') from D
 - Set $y_j = r_j + \gamma Q_\theta(s'_i, \pi_\phi(s'_i))$
 - Perform a gradient descent step on the TD loss

$$\sum_{j} \left(y_j - Q_{\theta}(s_j, a_j) \right)^2$$

• Perform a gradient ascent with respect to θ to maximize

$$\sum_{i} Q_{\theta}(s_j, \pi_{\phi}(s_j))$$

Performance

Performance of TD3 (twin delayed DDPG) and DDPG

Off-policy Methods

- In DQN and DDPG, we maintain a replay buffer and optimize $Q_{\theta} \approx Q^*$ with Bellman equations
- DQN/DDPG are off-policy methods
 - We can use any policy that can explore all states to sample transitions from the replay buffer

On-policy Methods

- On-policy methods (e.g. Policy Gradient):
 - Model the policy π_{θ}
 - Update π_{θ} by sampling π_{θ} in the environment

Policy Gradient optimizes policy with the sampled trajectories directly

• Recall the objective of the policy π_{θ} is to minimize

$$J(\theta) = E_{\tau \sim p(\pi_{\theta})}[R(\tau)] = \int_{\tau} R(\tau) p(\tau|\theta) d\tau$$

· Its gradient is

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \int_{\tau} R(\tau) p(\tau | \theta) d\tau = \int_{\tau} R(\tau) \nabla_{\theta} p(\tau | \theta) d\tau$$

$$\nabla \log f(x) = \frac{\nabla f(x)}{f(x)} \Rightarrow \nabla f(x) = f(x) \nabla \log f(x)$$

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \int_{\tau} R(\tau) \, p(\tau | \theta) d\tau = \int_{\tau} R(\tau) \, \nabla_{\theta} p(\tau | \theta) d\tau$$
$$= \int_{\tau} R(\tau) \, p(\tau | \theta) \nabla_{\theta} \log p(\tau | \theta) d\tau$$
$$= E_{\tau} [R(\tau) \nabla \log p(\tau | \theta)]$$

The gradient of this objective is

$$\nabla J(\theta) = E_{\tau}[R(\tau)\nabla \log p(\tau|\theta)]$$

Where

$$\log p(\tau|\theta) = \log p(s_0) + \sum_{i=0...\infty} \log \pi_{\theta}(a_i|s_i) + \log p(s_{i+1}|s_i, a_i)$$

Policy Gradient

• The gradient of this objective is $\nabla_{\theta} J(\theta) = E_{\tau}[R(\tau)\nabla \log p(\tau|\theta)]$

$$\nabla \log p(\tau|\theta) = \nabla \log p(s_0) + \sum_{i=0,\dots\infty} \nabla \log \pi_{\theta}(a_i|s_i) + \nabla \log p(s_{i+1}|s_i,a_i)$$

$$\nabla_{\theta} J(\theta) = E_{\tau}[R(\tau) \sum_{i=0...\infty} \nabla \log \pi_{\theta}(a_i|s_i)]$$

Intuitive explanation

High probability for high reward actions.

$$\nabla_{\theta} J(\theta) = E_{\tau}[R(\tau) \sum_{i=0...\infty} \nabla \log \pi_{\theta}(a_i | s_i)]$$

Policy Gradient in Python

• $\pi_{\theta}(a|s) = N(\mu_{\theta}(s), \sigma_{\theta}(s))$ is the gaussian distribution

```
from torch.distributions import Normal

def PolicyGradient(policy, s, a, R):
    normal_distribution: Normal = policy(s)
    return normal_distribution.log_prob(a) * R.detach()
```

$$\nabla_{\theta} J(\theta) = E_{\tau}[R(\tau) \sum_{i=0...\infty} \nabla \log \pi_{\theta}(a_i | s_i)]$$

We can compute it directly

Policy Gradient

- Initialize a policy network π_{θ}
- Repeat
 - Sample trajectories $\{\tau_{1:T}^i\}_{i\leq N}$
 - Compute the gradient ∇*J* by policy gradient

$$\nabla_{\theta} J(\theta) = \frac{1}{N} \sum_{i} [R(\tau^{i}) \sum_{j=1\dots T} \nabla \log \pi_{\theta}(a_{j}^{i} | s_{j}^{i})]$$

Update

$$\theta \leftarrow \theta + \alpha \nabla J(\theta)$$

How to choose the learning rate?

Trust-Region Policy Optimization

- Policy gradient only points at a local direction
- TRPO aims to identify a neighborhood that guarantees improvement (at least in theory)

Gradient Descent Recap

• Gradient update $x = x - \alpha \nabla f(x)$ minimizes the following quadratic approximation regularized by the l_2 norm

$$x - \alpha \nabla f(x) = \underset{x'}{\operatorname{argmax}} f(x) + \nabla f(x)^{T} (x' - x) + \frac{1}{2\alpha} ||x' - x||_{2}^{2}$$

Trust-Region Policy Optimization

In TRPO, we optimize for a better approximation

$$\pi' = \underset{\pi'}{arg \max} E_{\tau \sim p_{\pi}(\tau)} \left[\sum_{i=0}^{\infty} \gamma^{i} A^{\pi} \left(s_{i}, a_{i} \right) \right]$$

regularized by KL-divergence

$$s.t.E_{s\sim\pi}[D_{KL}(\pi(a|s),\pi'(a|s))] \leq \delta$$

- Here $\pi' = \pi(\theta')$
- $J^{\pi} = J^{\pi_{\theta}} = J(\theta)$ is the expected reward of policy π_{θ}
- $A^{\pi}(s, a) = Q^{\pi}(s, a) V^{\pi}(s)$ is the advantage function

Advantage Function

The advantage function

$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$$

 is the advantage of choosing action a compared with the current policy

Policy Evaluation

• We can prove that the following formula estimates the expected reward of policy π' with the advantage function A^{π} :

$$J^{\pi'} = J^{\pi} + E_{\tau' \sim p_{\pi'}(\tau)} \left[\sum_{i=0}^{\infty} \gamma^i A^{\pi} \left(s_i, a_i \right) \right]$$

However we don't want to sample π' every time to find π'

Approximation

• We can estimate how policy values change for $\pi \to \pi'$

$$J^{\pi'} = J^{\pi} + E_{\tau' \sim p_{\pi'}(\tau)} \left[\sum_{i=0}^{\infty} \gamma^i A^{\pi} (s_i, a_i) \right]$$

Instead, TRPO works with the local approximation

$$J^{\pi'} \approx L_{\pi}(\pi') = J^{\pi} + E_{\tau' \sim p_{\pi}(\tau)} [\sum_{i=0}^{\infty} \gamma^{i} A^{\pi} (s_{i}, a_{i})]$$

• When π' and π are close, L_{π} approximates $J^{\pi'}$ with clear bounds.

Trust Region

- When π' and π are close, $L_{\pi}(\pi')$ approximates $J^{\pi'}$
- TRPO constrains the expectation of KL distance between π' and π to be small

$$E_{S \sim \pi}[(\pi(a|s), \pi'(a|s))] \leq \delta$$

Trust Region Policy Optimization

After several derivation, we formulates the policy optimization as a constrained optimization problem

$$\max_{\pi'} E_{s,a\sim\pi} \left[\frac{\pi'(a|s)}{\pi(a|s)} A^{\pi}(s,a) \right]$$

$$s.t.E_{s\sim\pi}[D_{KL}(\pi(a|s),\pi'(a|s))] \leq \delta$$

Sampling-based Estimation

• For a "rollout" $s_0, a_0, s_1, a_1, \dots, a_{T-1}, s_T$, we can estimate the Q function

$$Q^{\pi}(s_t, a_t) \approx \hat{Q}^{\pi}(s_t, a_t)$$

$$= \sum_{i=t}^{T-1} \gamma^{i-t} R(s_i, a_i, s_{i+1}) + \gamma^{T-t} V^{\pi}(s_T)$$

The advantage function

$$\hat{A}^{\pi}(s_t, a_t) = \hat{Q}^{\pi}(s_t, a_t) - V^{\pi}(s_t)$$

Value Network

• $V^{\pi}(s)$ is not necessary

$$E_{a \sim \pi} \left[\frac{\pi'(a|s)}{\pi(a|s)} A_{\pi}(s,a) \right] = \sum_{a} \pi'(a|s) (Q^{\pi}(s,a) - V^{\pi}(s))$$

$$= \sum_{a} \pi'(a|s) Q^{\pi}(s,a) - V^{\pi}(s) \sum_{a} \pi'(a|s)$$

$$= E_{a \sim \pi} \left[\frac{\pi'(a|s)}{\pi(a|s)} Q^{\pi}(s,a) \right]$$

Value Network

- $V^{\pi}(s)$ is not necessary
- But $A^{\pi}(s,a) = Q^{\pi}(s,a) V^{\pi}(s)$ is more stable than $Q^{\pi}(s,a)$ along in practice
- Fit a value network (like Q Network before)

$$\min_{\phi} \sum_{s,a \sim \pi} \left\| V_{\phi} - \hat{Q}^{\pi}(s,a) \right\|^2$$

Value Network

We can add the omitted remainder back

$$\widehat{Q}^{\pi}(s,a) = \sum_{i=t}^{T-1} \gamma^{i-t} R(s_i, a_i, s_{i+1}) + \gamma^{T-t} V_{\phi}(S_T)$$

The advantage function

$$\hat{A}^{\pi}(s_t, a_t) = \hat{Q}^{\pi}(s_t, a_t) - V_{\phi}(s_t)$$

Constrained Optimization

TRPO solves the following constrained optimization problem

$$\max_{\pi'} E_{s,a\sim\pi} \left[\frac{\pi'(a|s)}{\pi(a|s)} \hat{A}^{\pi}(s,a) \right]$$

$$s.t.E_{s\sim\pi}[D_{KL}(\pi(a|s),\pi'(a|s))] \leq \delta$$

Constrained Optimization is easier to tune than the corresponding soft one

Proximal Policy Optimization

PPO solves the following unconstrained optimization problems

$$\max_{\pi'} E_{(s,a)} \left[\min(r \hat{A}^{\pi}, \operatorname{clip}(r, 1 - \epsilon, 1 + \epsilon) \hat{A}^{\pi}) \right]$$
where $r(s,a) = \frac{\pi'(a|s)}{\pi(a|s)}$

Proximal Policy Optimization

• Ignoring the objective that push $\pi'(s, a)$ beyond $[(1 - \epsilon)\pi(s, a), (1 + \epsilon)\pi(s, a)]$

$$\max_{\pi'} E_{(s,a)} \left[\min(r \hat{A}^{\pi}, \operatorname{clip}(r, 1 - \epsilon, 1 + \epsilon) \hat{A}^{\pi}) \right]$$

