

8x8 SRAM Array Design

Muhammad Aldacher

Overview

- System Block Diagram
- SRAM Cell
- Decoder Circuits
- Layout
- Final Results
- Future Work

1. System Block Diagram

2.1. Circuit

2.2. Read Noise Margin a) Testbench

2.2. Read Noise Margin a) Testbench

2.2. Read Noise Marginb) Finding largest diagonal (For SNM square)

2.2. Read Noise Marginc) DC Analysis

2.3. Write Noise Margin a) Testbench

2.3. Write Noise Margin a) Testbench

2.3. Write Noise Marginb) Finding largest diagonal (For SNM square)

2.3. Write Noise Marginc) DC Analysis

2.4. Transient Simulation a) Testbench

2.4. Transient Simulation a) Testbench

2.4. Transient Simulationb) Read Operation

2.4. Transient Simulationb) Read Operation (Delay)

2.4. Transient Simulationc) Write Operation

2.4. Transient Simulationc) Write Operation (Delay)

3. Decoder

3.1. Circuit

3. Decoder

3.1. Circuit

3. Decoder

3.2. Transient Simulation

4.1. SRAM Cell

4.2. Decoder a) 4-input NAND

4.2. Decoder b) Inverter

4.2. Decoder

4.3. Whole System

5. Final Results

Parameter		Value
Technology		65nm CMOS
Supply Voltage (V _{DD})		1 V
Frequency (f)		100 MHz
Power Consumption (P)		109.72 uW
Static Noise	Read	0.2461 V
Margin	Write	0.3606 V
Delay	Read	53.2 ps
	Write	43.1 ps
Total Area (A)		40 um x 47.077 um = $1883.08 \mu m^2$

6. Future Work

Sense Amplifier (Comparator)

References

- R. Baker, "CMOS Circuit Design, Layout, and Simulation", 2nd Ed., Wiley & Sons Inc., 2007.
- R. Ruchi, and Sudeb Dasgupta, "Compact Analytical Model to extract Write Static Noise Margin (WSNM) for SRAM Cell at 45nm & 65nm nodes", IEEE Transactions on Semiconductor Manufacturing, Vol. PP, Issue 99, November 2017.
- V. Enumula, S. Gupta, R. Manchukonda, and N. Upadhyay, "Design and implementation of 16X8 SRAM in 0.25u SCMOS technology", https://pdfs.semanticscholar.org/24c8/5982c98c177e6393aef35b8891f44564e8ec.pdf
- V. Saxena, "SRAM Static Characterization", Boise State University, https://www.researchgate.net/file.PostFileLoader.html?id=54be4ae2 d2fd64fb0d8b45cf&assetKey=AS%3A273675910090788%401442260829 994
 - J. Rabaey, A. Chandrakasan, and B. Nikolic, "Digital Integrated Circuits A Design Perspective", 2nd Ed., Prentice Hall, 2009.

Q&A