Mittag-Leffler Functions, Fourier Transforms, and Stochastic Processes

By Stephen Andrew Crowley November 22, 2024

Table of contents

1	Mittag-Leffler Functions	1
	1.1 One-Parameter Mittag-Leffler Function	1
2	Fourier Transforms	2
	2.1 One-Parameter Mittag-Leffler Function 2.2 Two-Parameter Mittag-Leffler Function	
3	Special Cases and Connections	2
	3.1 Cauchy Distribution	
4	Orthogonal Polynomials	•
5	Implications for Stochastic Processes	•
1	Mittag-Leffler Functions	

1.1 One-Parameter Mittag-Leffler Function

The one-parameter Mittag-Leffler function $E_{\alpha}(z)$ is defined as:

$$E_{\alpha}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + 1)}$$
 (1)

where $\alpha > 0$ and z is a complex number.

1.2 Two-Parameter Mittag-Leffler Function

The two-parameter Mittag-Leffler function $E_{\alpha,\beta}(z)$ is defined as:

$$E_{\alpha,\beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + \beta)}$$
 (2)

where $\alpha > 0$, β is a complex number, and z is a complex number.

2 Fourier Transforms

2.1 One-Parameter Mittag-Leffler Function

For $0 < \alpha \le 2$, the Fourier transform of $E_{\alpha}(-t^{\alpha})$ is:

$$\mathcal{F}\left\{E_{\alpha}\left(-t^{\alpha}\right)\right\}(\omega) = \frac{1}{1 + |\omega|^{\alpha} e^{i\pi\alpha/2\operatorname{sgn}(\omega)}}$$
(3)

2.2 Two-Parameter Mittag-Leffler Function

For $0 < \alpha \le 2$ and β real, the Fourier transform of $t^{\beta-1} E_{\alpha,\beta}(-t^{\alpha})$ is:

$$\mathcal{F}\left\{t^{\beta-1}E_{\alpha,\beta}(-t^{\alpha})\right\}(\omega) = \frac{1}{|\omega|^{\alpha}}H_{1,2}^{2,1}\left[\frac{1}{|\omega|^{\alpha}}\left|\begin{array}{c} (1-\beta,\alpha)\\ (0,1),(1-\beta,1) \end{array}\right.\right]$$
(4)

where $H_{1,2}^{2,1}$ is the H-function.

3 Special Cases and Connections

3.1 Cauchy Distribution

When $\alpha = 1$ in the one-parameter case, we get the Cauchy distribution:

$$\mathcal{F}\left\{E_1\left(-t\right)\right\}(\omega) = \frac{1}{1+|\omega|}\tag{5}$$

This is related to the Ornstein-Uhlenbeck process.

3.2 Gaussian Distribution

When $\alpha = 2$ in the one-parameter case, we get a Gaussian distribution:

$$\mathcal{F}\left\{E_{2}\left(-t^{2}\right)\right\}(\omega) = \frac{1}{1+\omega^{2}} \tag{6}$$

This is related to standard Brownian motion.

4 Orthogonal Polynomials

For the one-parameter case, we can define a weight function:

$$w(\omega) = \frac{1}{1 + |\omega|^{\alpha}} \tag{7}$$

And an inner product:

$$(f,g) = \int_{-\infty}^{\infty} f(\omega) g(\omega) w(\omega) d\omega$$
 (8)

Orthogonal polynomials can be constructed using the Gram-Schmidt process on the monomials $1, \omega, \omega^2, \omega^3, \dots$

5 Implications for Stochastic Processes

The Mittag-Leffler function and its Fourier transform provide a framework for modeling a spectrum of processes:

- $\alpha = 1$: Ornstein-Uhlenbeck-like processes
- $1 < \alpha < 2$: Anomalous diffusion
- $\alpha = 2$: Brownian motion
- $0 < \alpha < 1$: Processes with long-range dependence

This framework is particularly useful in fractional calculus and for modeling phenomena that exhibit behavior intermediate between classical diffusion and pure randomness.