The Last of Us

Input file: standard input
Output file: standard output
Time limit: 0.25 seconds
Memory limit: 4 megabytes

Given an integer array a of length n and a positive number k, you can perform the following operation any number of times:

- Choose an index $1 \le i \le n$ and remove elements $a_{max(1,i-k)}, \ldots, a_i, \ldots, a_{min(n,i+k)}$ from the array. The cost of such operation is the value a_i .
- If the array becomes partitioned after the operation, the two segments can be concatenated at no cost (i.e., a becomes $a_1, \ldots, a_{i-k-1}, \ldots, a_{i+k+1}, \ldots, a_n$).

Determine the minimum cost to make the array empty.

Input

The first line of the input contains a single integer, t $(1 \le t \le 10^4)$ — the number of test cases.

The first line of each test case contains two integers, n and k $(1 \le n \le 200, 0 \le k < n)$ — the length of the array and the number k.

The second line of each test case contains n integers, a_1, a_2, \ldots, a_n $(1 \le a_i \le 10^9)$ — the elements of the array.

It is guaranteed that the sum of n^2 over all test cases does not exceed $4 \cdot 10^4$.

Output

For each test case, output a single integer — the minimum cost to make the array empty.

Example

standard input	standard output
7	2
3 1	1
1 2 3	4
3 2	5
1 2 3	3
6 1	2
2 3 2 1 2 3	2
9 1	
1 2 3 2 1 2 3 2 1	
9 2	
1 2 3 2 1 2 3 2 1	
8 2	
2 3 2 1 2 3 2 1	
5 1	
1 1 1 10 100	

Note

In the first test case, all elements can be removed in a single operation with cost a_2 .

In the second test case, all elements can be removed in a single operation with cost a_1 .

In the fourth test case, three operations can be performed, with a minimum total cost of $a_2 + a_5 + a_8$.