MIXTURE OF EXPERTS

Trelis Research

A TRADITIONAL GPT
USES ALL NEURONS IN
ALL MATRICES FOR
FORWARD PASSES

A TRADITIONAL GPT
USES ALL NEURONS IN
ALL MATRICES FOR
FORWARD PASSES

WHAT IF WE COULD SPLIT
THE NETWORK + CHOOSE
THE BEST COLUMN OF
WEIGHTS TO USE?

WHAT IF WE COULD SPLIT
THE NETWORK + CHOOSE
THE BEST COLUMN OF
WEIGHTS TO USE?

HOW IS MOE TRAINED? ROUTERS

[0,0,0,0,0,0,1,0]EXPERT CHOICE ROUTER MATRIX WEIGHTS [0.34, 0.35, 0.73, 0.94]

INPUT VECTOR

TRAINING

OUTPUT TOKENS

TRANSFORMER WEIGHTS

LOSS = ACTUAL - PREDICTED

BACK PROPAGATION
THROUGH GPT +
ROUTER

ROUTER WEIGHTS

A PROBLEM TRAINING MIXTURE OF EXPERTS

ONE EXPERT CAN DOMINATE!!!

ROUTER

TRICK #1

[0,0,0,0,0,1,0]

EXPERT CHOICE

+ RANDOMNESS

ROUTER MATRIX WEIGHTS

INPUT VECTOR

[0.34, 0.35, 0.73, 0.94]

TRICK #2

TRANSFORMER WEIGHTS

ROUTER WEIGHTS

LOSS = ACTUAL - PREDICTED
TOKENS

PENALTY FOR UNEVEN ROUTER CHOICE

BACK PROPAGATION
THROUGH GPT +
ROUTER

IS MOE USEFUL FOR LAPTOP INFERENCE?

STANDARD GPT

MOE

DOES MOE REDUCE COSTS AT SCALE?

EACH EXPERT GETS ITS OWN GPU AND QUERIES ARE ROUTED AND BATCHED

WHAT ARE THE PROBLEMS WITH MOE

SLOW TO TRAIN EXPERTS EVENLY DUE TO NOISE

ROUTER

FAST FEED FORWARD - BETTER THAN MOE?

[1] OR [0] WITH PROBABILITY P

EXPERT CHOICE

ROUTER MATRIX WEIGHTS

[0.34, 0.35, 0.73, 0.94]

INPUT VECTOR

FAST FEED FORWARD - BETTER THAN MOE?

BINARY TREE NETWORKS ALLOW:

- SAME TRAINING TIME AS GPT
- FASTER INFERENCE

FAST FEED FORWARD - BETTER THAN MOE?

Width	Model											
0	feedforward			mixture-of-experts (e =16, k =2)				fast feedforward (ℓ=32)				
	M_A	ETT	G_A	ETT	M_A	ETT	G_A	ETT	M_A	ETT	G_A	ETT
w = 64	87.2	307	49.3	55	57.8	5354	29.4	4880	85.8	302	45.9	22
w = 128	95.5	200	51.5	46	62.0	6074	33.6	938	90.1	305	45.5	22
w = 256	99.9	105	52.0	48	62.4	2001	33.9	372	91.2	244	44.4	17
w = 512	99.9	85	52.4	31	65.4	3834	34.5	315	96.2	175	43.7	10
w = 1024	99.9	82	53.0	21	65.3	1575	35.2	327	96.0	180	41.3	9

Table 2: The results of the comparison of feedforward, mixture-of-experts, and fast feedforward networks, for various training widths. The inference width is fixed to 32 for mixture-of-experts and fast feedforward networks. The ETT columns to the right of metric columns list the "epochs to train", i.e. the number of training epochs that have elapsed until the score to the left was observed.

ETT = EPOCHES TO TRAIN. M _A = MEMORISATION, G _A = GENERALISATION

FAST FEED FORWARD - INFERENCE

Model		Property								
		depth	training width	training size	inference width	inference size	speedup $\mid G_A$			
FF	w = 128		128	128 (100%)	128 (100%)	128 (100%)	1.00x 84.7			
fast FF	$\ell=32$	2	128	131 (102%)	32 (25%)	34 (27%)	2.44x 83.6			
	$\ell = 16$	3	128	135 (105%)	16 (13%)	19 (15%)	2.80x 83.2			
	$\ell = 8$	4	128	143 (112%)	8 (6%)	12 (9%)	3.29x 82.8			
	$\ell=4$	5	128	159 (124%)	4 (3%)	9 (7%)	3.39x 81.6			
	$\ell=2$	6	128	191 (149%)	2 (1%)	8 (6%)	3.47x 80.1			
	$\ell = 1$	7	128	255 (199%)	1 (1%)	8 (6%)	3.93x 79.8			

Table 3: The results of the testing of vision transformers leveraging feedforward and fast feedforward layers. All sizes are given in neurons. Bracketed percentages describe quantities relative to their counterparts in the vanilla feedforward layers. G_A is the generalization accuracy of the fully trained vision transformer and "speedup" gives the performance improvement over vanilla feedforward layers in our testing setup.

CAVEAT - THE ABOVE IS A VERY SMALL NEURAL NET FOR VISION.

WHY DOES MOE (OR FFF) WORK?

STANDARD GPT

WHY DOES MOE (OR FFF) MAKE SENSE?

SAME MODEL SIZE FEWER CONNECTIONS

SMALL ACCURACY LOSS

~1/N SPEED GAIN

MOE/FFF

PAPERS AND LINKS

BINARY-TREE/FFF PAPER: https://arxiv.org/pdf/2308.14711.pdf

MOE PAPERS: https://arxiv.org/pdf/2208.02813.pdf;

HTTPS://ARXIV.ORG/PDF/1701.06538.PDF

REDDIT THREAD: https://tinyurl.com/ythsu2nd

YOUTUBE VIDEO: https://youtu.be/00_65floTq0

TRELIS. COM

