COMPUTER SCIENCE & IT

Lecture No: 05

Sequential Circuit

Recap of Previous Lecture

Asynchronous Counter

Synchronous Counter

D-FF and T-FF

What is D-FF?

Excitation table :

Q(n)	Q(n+1)	D
0	0	0
0		ſ
	D	0
		1

What is T-FF?

$$= \Xi(1,2) = \overline{TQ(n)} + \overline{TQ(n)} = \overline{TQ(n)}$$

Excitation table :

Q(n)	Q(n+1)	T
O	0	0
O	1	١
1	0	1
	1 .	0.

Toggle mode of operation

$$Q(n+1)$$

$$= \overline{Q}(n) + \overline{Q}(n)$$

$$= \overline{Q}(n) \overline{Q}(n)$$

$$Q(n+1) = \overline{Q}(n) \cdot Q(n)$$

$$Q(n+1) = \overline{Q}(n)$$

$$Q(n+1) = \overline{J}\overline{Q}(n) + \overline{K}Q(n) = \overline{Q}(n) + o = \overline{Q}(n)$$

$$Q(n+1) = \overline{J}\overline{Q}(n) + \overline{K}Q(n)$$

$$= \overline{Q}(n)\overline{Q}(n) + \overline{T}Q(n)$$

$$Q(n+1) = \overline{Q}(n)$$

$$Q(n+1)=\bar{Q}(n)$$

$$Q(n+1) = T \oplus Q(n) = 1 \oplus Q(n)$$

$$= \overline{Q}(n)$$

$$Q(n+1) = \overline{JQ(n)} + \overline{KQ(n)}$$

$$= \overline{JQ(n)} + \overline{Q(n)} Q(n)$$

$$Q(n+1) = \overline{Q(n)}$$

fack/2

O

MOD-2 Counter

and

and

o

3rd

1

XXX

Topple mode of operation is the smalled counter bumble 1.e. MUD-2 counter.

Lets analyze asynchronous counter:

Synchronous Counter

What is synchronous counter?

How to design a Synchronous Counter

• $0-3-2-1 \rightarrow MODNO = 4 \rightarrow 2FF \rightarrow$

Design above counter using JK-FF

Q1(n)	Q0(n)	Q1(n+1)	Q6(n+1)	7,	K,	Jo	⊀ ₀
0	O			١	X	(X
0	1	0	0	0	X	X	l
١	0	0		X	١	1	X
1	1	1	0	X	0	X	1

$$J_{1}\left[Q_{1}(n),Q_{0}(n)\right] = \Xi(0) + d\Xi(2,3) , \quad K_{1} = \Xi_{2} + d\Xi(0,1)$$

$$J_{0} = \Xi(0,2) + d\Xi(1,3) , \quad K_{0} = \Xi(1,3) + d\Xi(0,2)$$

$$J_{1} = \overline{Q_{0}}(n) \quad Q_{0}(n) \quad Q_{0}(n) \quad Q_{0}(n)$$

$$Q_{1}(n) \mid I \mid X \mid Q_{1}(n) \mid I \mid X \mid Q_{1}(n) \mid I \mid X \mid Q_{1}(n) \mid X \mid Q_$$

• Design counter 0 - 1 - 2 - 4 - 6 using T-FF \rightarrow Mod no. 5 \rightarrow 3 FF

Q2(n)	Q1(n)	Q0(n)	Q2(n+1)	Q1(nt1)	Qo(nti)	T ₂	Ti	To
0	O	D	O	O	1	0	0	1
0	0	1	D		0	Ò	1	1
D	1	D	1	G	۵	1	(6
0	1	1	X	×	×	×	×	X
	D	0		١	0	0	1	0
	0		X	X	X	X	X	X
1	1	O	0	0	0	1	1	Ö
1	1	1	X	×	×	X	X	X

$$T_2 = \mathbb{Z}(2,6) + d\mathbb{Z}(3,5,7)$$

$$T_1 = \mathbb{Z}(1,2,4,6) + d\mathbb{Z}(3,5,7)$$

$$T_6 = \mathbb{Z}(0,1) + d\mathbb{Z}(3,5,7)$$

$$Q_{2}(n+1) = \overline{1}_{2} \oplus Q_{2}(n) \qquad Q_{1}(n+1) = \overline{1}_{1} \oplus Q_{1}(n)$$

$$= Q_{1}(n) \oplus Q_{2}(n) \qquad = [Q_{2}(n) + Q_{1}(n) + Q_{0}(n)] \oplus Q_{1}(n)$$

$$= \overline{Q}_{2}(n) \cdot \overline{Q}_{1}(n) \cdot \overline{Q}_{0}(n) + [Q_{2}(n) + Q_{1}(n)]$$

$$= \overline{Q}_{1}(n) \overline{Q}_{2}(n) \oplus Q_{0}(n)$$

$$= \overline{Q}_{1}(n) \overline{Q}_{2}(n) \oplus Q_{0}(n) \qquad \overline{Q}_{1}(n)$$

$$= \overline{Q}_{1}(n) \overline{Q}_{2}(n) \oplus Q_{0}(n) \qquad \overline{Q}_{1}(n)$$

$$= \overline{Q}_{1}(n) \overline{Q}_{2}(n) \oplus Q_{0}(n) \qquad \overline{Q}_{1}(n)$$

A sequential circuit is as given below:

Initial state of the synchronous counter is given as $Q_0Q_1 = (00)_2$ what will be states of counter after applying clock pulses.

(a)
$$00 - 10 - 01 - 11 - 00$$
 (b) $\times 00 - 10 - 11 - 01 - 00$

(c)
$$00 - 11 - 10 - 01 - 00$$
 (d) $> 00 - 01 - 10 - 11 - 00$

The initial state of the given counter is $Q_1Q_0 = (00)_2$. What will be states of counter after applying clock pulses:

(a)
$$00 - 10 - 11 - 01 - 00$$
 (b) $00 - 01 - 11 - 00$ (c) $00 - 11 - 01 - 10 - 00$ (d) $00 - 01 - 10 - 00$

A sequential circuit is as given below:

Initial state of the counter is $Q_0Q_1 = (00)_2$. What will the state of counter after application of 222 clock pulses $(3)_{10}$.

A sequential circuit is as given below:

H-W.

If initial state of counter is $Q_2Q_1Q_0 = (001)_2$, then after 8^{th} clock pulse, counter will be in state $\begin{pmatrix} 1 \\ 1 \end{pmatrix}_{10}$.

Pw

The output of the two FFs, Q_1 and Q_2 are initially at '0'. The sequence generated at Q_1 after application of clock pulses:

(a) 01110.....

(b) 01010.....

(c) 00110.....

(d)

d) 01100.....

Topic: 2 Min Summary

> synchronoris Counter

Thank you

Soldiers!

