SAS4305 Analytical Chemistry for Chemical Industry (AS114105/1)

Chapter 4

Ultraviolet-Visible (UV-Vis)
Molecular Absorption Spectrometry

References:

- Skoog, D.A., Crouch, S.R., Holler, F.J., West, D.M. (2014).
 Fundamentals of Analytical Chemistry, 9th edition,
 Brooks/Cole, Chapters 24, 25 & 26.
- Skoog, D.A., Holler, F.J., Crouch, S.R. (2018). Principles of Instrumental Analysis, 7th edition, Thomson, Chapters 13 & 14.

-1

Table of Content

- 4.1 Introduction to molecular spectroscopy
- 4.2 Principle of molecular absorption
- 4.3 Instrumentation of UV/VIS Spectrophotometer
- 4.4 Different design of UV/VIS Spectrophotometer
- 4.5 Analysis using Ultraviolet-Visible Spectrophotometer

2

4.1 Introduction to molecular spectroscopy

In Molecular spectroscopy,

- the sample solution <u>absorbs electromagnetic</u> <u>radiation</u> from an appropriate source,
 - and the amount <u>absorbed is related to the</u> concentration of the analyte in the solution

Example of Molecular spectroscopy,

- Ultraviolet and Visible Spectrophotometries (UV/VIS)
- Infrared Spectrophotometries (IR)
- Fluorescence/Phosphorescence Spectrophotometries (Flu/Phs)

3

Electromagnetic radiation (em)

The Electromagnetic Spectrum

	Gramma rays	X-rays	Ultraviolet	Visible light	Infrared	Micro waves	Radio waves
Wavelength λ	< 0.001	1-10	190-400	400-750	750-0.1	0.1- 100	100- 1000
(nm)	Short wavelength →			Long wavelength			

In Ultraviolet-visible spectrometry, the analysis based on the use of electromagnetic radiation in the wavelength region of 190 to 800 nm

4.2.3 The Beer-Lambert Law

Example

A solution with concentration 7.25 $\times 10^{-5}$ M has a transmittance of 44.1% when measured in a 2.10 cm cell at wavelength of 525 nm. Calculate:

- (a) the absorbance of this solution
- (b) the molar absorptivity of this solution.

Solutions

- (a) $A = -\log T = -\log 0.441 = -(-0.3554) = 0.355$
- (b) Molar absorptivity
 - = A/bc
 - = $0.3554 / (2.1 \text{ cm} \times 7.25 \times 10^{-5} \text{ mol L}^{-1})$
 - $= 2.33 \times 10^{3} \, \text{Lmol}^{-1} \, \text{cm}^{-1}$

4.2.3 The Beer-Lambert Law

4.2.3 The Beer-Lambert Law

Classwork

A solution placed in a 1.0 cm sample cell and 70% of light is transmitted.

If the molar absorptivity of the solution is 2.0 cm⁻¹g⁻¹L. What is the concentration of the solution?

Vhat is the concentration of the solution?

22

4.2.3 The Beer-Lambert Law

Classwork (Answer)

$$A = -log T = \varepsilon bc$$

Absorbance, A = εbc At high conc. Not obey the Beer-Lambert Law Concentration

https://www.youtube.com/watc

h?v=f61eMq4Wg4w

4.3.5 Detector Principle of photomultiplier (PMT) Dynodes 1 is maintained at a positive potential higher than cathode Upon striking the dynodes, each photoelectron causes emission of several additional electrons then, electrons are accelerated toward dynode 2, which is also at higher positive potential than dynode 1 Diagram of the photomultiplier

tube (PMT)

https://goo.gl/images/Nqo3nD

4.5.3 Application of UV/VIS

Visible region

- Mainly for analytes with colored
- Or derivatisation with coloring agent

81

4.5.4 More about quantitative analysis

- Analysis of mixtures of absorbing substances
- Total absorbance of a solution at any given wavelength is equal to the sum of the absorbance of the individual components in the solution

82

4.5.4 More about quantitative analysis

Analysis of mixtures of absorbing substances

At
$$\lambda_1$$
:

$$A_{total} = A_M + A_N$$

$$A_{M} = \epsilon_{M_{\lambda_{1}}} bc_{M}$$

$$A_N = \epsilon_{N_{\lambda_4}} bc_N$$

4.5.4 More about quantitative analysis

Example:

The absorbance of solution X and solution Y is determined using UV/Vis spectrophotometer.

The results is shown in below:

Solution	Concentration	Sample Cell	Cell Absorbance	bance
	(M)	length (cm)	400 nm	500 nm
X	$2 \times 10^{-4} \text{M}$	1.0 cm	0.800	0.760
Y	$4.25 \times 10^{-5} \text{ M}$	1.0 cm	0.34	0.085

a) Calculate the molar absorptivity (ϵ) of solution X and solution Y at 400 nm and 500 nm respectively.

4.5.4 More about quantitative analysis

★ Example (Answer):

Using $A = \varepsilon b c \rightarrow Molar absorptivity, \varepsilon = A / (b \times c)$

For solution X (at 400nm), molar absorptivity (ϵ)

= $0.8 / (1.0 \text{ cm} \times 2 \times 10^{-4} \text{ M}) = 4000 \text{ M}^{-1} \text{cm}^{-1}$

For solution X (at 500nm), molar absorptivity (ϵ)

= $0.760 / (1.0 \text{ cm} \times 2 \times 10^{-4} \text{ M}) = 3800 \text{ M}^{-1} \text{cm}^{-1}$

For solution Y (at 400nm), molar absorptivity (ε)

= $0.34 / (1.0 \text{ cm} \times 4.25 \times 10^{-5} \text{ M}) = 8000 \text{ M}^{-1} \text{cm}^{-1}$

For solution Y (at 500nm), molar absorptivity (ϵ)

= $0.085 / (1.0 \text{ cm} \times 4.25 \times 10^{-5} \text{ M}) = 2000 \text{ M}^{-1} \text{cm}^{-1}$

4.5.4 More about quantitative analysis

***** Example:

Solution X & Y then mixture together and analyze using UV/VIS spectrophotometer.

The results is shown in below:

Mixture of	Sample Cell	Absorbance		
solution X &	length (cm)	400 nm	500 nm	
solution Y	2.5 cm	0.680	0.520	

b) Calculate the concentration (in M) of solution X and solution Y in the mixture.

4.5.4 More about quant	itative analysis			
Solving the two equation:				
$4000 C_x + 8000 C_y = 0.272 equation (1)$				
$3800 \mathbf{C}_{\mathbf{x}} + 2000 \mathbf{C}_{\mathbf{y}} = 0.208 $	equation (2)			
Equation (2) \times 4 15200 $\mathbf{C_x}$ + 8000 $\mathbf{C_y}$ = 0.832 - equation (3) - equation (1) 11200 $\mathbf{C_x}$ = 0.56	∴ concentration of solution X in the			
$C_x = 5 \times 10^{-5} \text{ M}$	mixture = 5 × 10 ⁻⁵ M and concentration of solution Y in the mixture = 9 × 10 ⁻⁶ M			
put $C_x = 5 \times 10^{-5}$ into the equ	ation			
$C_y = 9 \times 10^{-6} \text{ M}$				

Notes	
	21
	91

Notes		щ	
			92