進捗報告資料

安達智哉 to-adachi@ist.osaka-u.ac.jp

2019年5月22日

1 メモリ負荷の算出

文献 [1] に示されているコネクション確立に伴うシグナリング図を図 1 に示す。UE が Idle 状態から Connected 状態へ遷移する際に各ノードのメモリが保持する情報について OAI のソースコード (OpenairinterfaceCN-develop) を元に調査を行っている。具体的には、各シグナリングを処理する際に各ノードがメモリに格納する情報をリストアップし、それらの情報量を足し合わせることによりメモリ負荷を推定する。今回は、以下の 2 つのシグナリングを処理する際に MME が保持する情報を調査した。

- S1-AP Initial UE msg
- S1-AP UE Ctxt Release Req

図 1: Legacy connection setup

1.1 S1-AP Initial UE msg

S1-AP Initial UE msg および S1-AP UE Ctxt Release Req を受信した MME は、以下の表 1 に示す情報を保持することが OAI のソースコードより分かった。

S1-AP UE Ctxt Release Req を受信した際は、MME が保持している UE のステートを Connected から Idle へ変更する処理や次のシグナリングである Release Access Bearers Req の準備等を行っているが、メモリに保持する情報の追加や削除は行われていないことが分かった。

表 1: S シグナリングメッセージを処理する際に MME が保持する情報

シグナリング	MME が保存する情報	情報量 (bit)
S1-AP Initial UE msg	ue_description_s	408
	ue_context_s	17350
S1-AP UE Ctxt Release Req	なし	0

S1-AP Initial UE msg を処理する際に MME は、ue_description_s という名前の構造体を保持することが表 1 より分かる。この構造体の中身を以下の表 2 に示す。

表 2: ue_description_s のメンバ

メンバ	情報量 (bit)
enb_description_s	32
s1_ue_state_s	160
enb_ue_s1ap_id_t	24
mme_ue_s1ap_id_t	32
<pre>sctp_stream_id_t (s ctp_stream_recv)</pre>	16
<pre>sctp_stream_id_t (s ctp_stream_send)</pre>	16
s11_sgw_teid	32
outcome_response_timer_id	32
s1ap_ue_context_rel_timer	64
合計	408

表 3: ue_context_s のメンバ

メンバ	情報量 (bit)
imsi	64
imsi_auth	1
enb_s1ap_id_key_t	64
enb_ue_s1ap_id_t	24
mme_ue_s1ap_id_t	32
sctp_assoc_id_t	32
ue_context_rel_cause	224
subscription_known	1
msisdn[MSISDN_LENGTH+1]	128
msisdn_length	8
mm_state	64
ecm_state	64
is_guti_set	8
guti	80
me_identity	240
e_utran_cgi	56
cell_age	64
access_mode	128
apn_profile	356
access_restriction_data	32
sub_status	96
subscribed_ambr	128
used_ambr	128
rau_tau_timer	32
*ue_radio_capabilities	8
ue_radio_cap_length	32
mme_s11_teid	32
sgw_s11_teid	32
paa	328
pending_pdn_connectivity_req_imsi[16]	8
pending_pdn_connectivity_req_imsi_length	8
pending_pdn_connectivity_req_apn	72
pending_pdn_connectivity_req_pdn_addr	72
pending_pdn_connectivity_req_pti	32
pending_pdn_connectivity_req_ue_id	32
pending_pdn_connectivity_req_qos	160
pending_pdn_connectivity_req_pco	784
pending_pdn_connectivity_req_request_type	32
default_bearer_id	8
eps_bearers[BEARERS_PER_UE]	13464
mobile_reachability_timer	64
implicit dotach timor	64
initial_context_setup_rsp_timer	64
THI OTAL COMOON O DO OUP T DP OTHOR	01

2 考察・今後の課題

今回は OAI のソースコードに基づいて MME がシグナリンを処理する際にメモリに格納する情報を調査した。まだ、一部のシグナリングしか調査できていないため、今後全てのシグナリングに関して調査を行う予定である。また、OAI のソースコードでは、情報をメモリに格納する前に、特定の形式に情報をエンコードしていると考えられる。今後は、その処理も調査を行い、メモリに保存される情報量を求める予定である。

- OAI のソースコードをさらに解析する。
- 今回調査仕切れなかったシグナリングを処理した際に MME がメモリに格納する情報を調査。
- NB-IoT 関連の論文を調査する。
- 上野さんの実験で発生したパケットを解析する。
- Connected Inactive 状態において"状態遷移を伴わないデータ送信"が可能なデータ量を調査する。

参考文献

[1] 3GPP, "Study on architecture enhancements for Cellular Internet of Things (CIoT)," 3rd Generation Partnership Project (3GPP), Technical Report (TR) 23.720, Mar. 2016, version 13.0.0. [Online]. Available: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2894