Fast prototyping of Bayesian models using Stan

Claas Heuer

September, 2018

STgenetics

Outline

- Concept
- Examples
- Potential Applications

Concept

Concept

- A modelling language allows definition of (non) linear hierarchical models using descriptive API
- Examples inlcude WinBUGS, Jags and Stan
- Main usecases: Education, Prototyping, very flexible Bayesian inference
- Modelling languages empower researchers to run the models they want instead of those implemented in statistical software

Stan

- At its core, Stan models define log density functions of the (constrained) parameters
- This includes priors and hyperpriors
- Full Bayesian inference through Euclidean Hamiltonian Monte Carlo (HMC / NUTS)
- Supposedly relatively low autocorrelation and fast convergence to equilibrium distribution
- Altneratively: Penalized Maximum Likelihood point estimates of parameters through optimization

Concept

A stan program is parameterized into different segments:

```
functions {
        // ... function declarations and definitions ...
data {
       // ... declarations ...
transformed data {
parameters {
       // ... declarations ...
transformed parameters {
model {
        // ... declarations ... statements ...
generated quantities {
```

Data

```
data {
  int < lower = 0 > Px;
  int < lower = 0 > N;
  matrix [N, Px] X;
  real y[N];
}
```

Parameters

```
parameters {
  vector[Px] beta; // flat prior from -Inf to Inf
  real < lower = 0 > sigma; // truncate support
  real < lower = 0 > tau; // priors come later
}
```

Model

```
model {
  y ~ normal(X * beta, sigma); // the likelihood
  sigma ~ cauchy(0,5); // cauchy prior on sigma
}
```

Examples

Mixture of K normals

$$p(\mathbf{x}) = \sum_{i=1}^{K} \lambda_i f_i((\mathbf{x}), \quad with \sum \lambda = 1.$$
 (1)

Univariate normal distribution: $f(x) \sim N(\mu, \sigma^2)$

- ullet μ is a single location parameter the mean
- ullet σ^2 is a common variance component

Model

```
data {
  int<lower=1> N:
  int<lower=1> k;
parameters {
  simplex[k] theta;
  real mu[k];
  real < lower = 0 > tau[k];
model {
  real ps[k];
    for(j in 1:k){
  increment_log_prob(log_sum_exp(ps));
  tau ~ cauchy(0,5);
```

Mixture of 4 normals

Multivariate Ridge Regression

$$egin{aligned} oldsymbol{\mathsf{Y}} &= oldsymbol{\mathsf{XB}} + oldsymbol{\mathsf{ZU}} + oldsymbol{\mathsf{E}}, \ oldsymbol{\mathsf{Y}} &\sim oldsymbol{\mathsf{MVN}}(oldsymbol{\mathsf{XB}} + oldsymbol{\mathsf{ZU}}, oldsymbol{\Sigma}_E) \ oldsymbol{\mathsf{B}} &\sim oldsymbol{\mathsf{U}}(-\mathit{Inf}, \mathit{Inf}) \ oldsymbol{\mathsf{U}} &\sim oldsymbol{\mathsf{MVN}}(oldsymbol{\mathsf{0}}, oldsymbol{\Sigma}_U) \ oldsymbol{\Sigma}_U &= oldsymbol{\mathsf{diag}}(oldsymbol{\mathsf{S}})_U oldsymbol{\mathsf{QU}} oldsymbol{\mathsf{diag}}(oldsymbol{\mathsf{S}})_U \ oldsymbol{\mathsf{S}}_U &\sim oldsymbol{\mathsf{Cauchy}}(0, 5) \ oldsymbol{\Omega}_U &\sim oldsymbol{\mathsf{LKJ}}(1) \end{aligned}$$

 Σ_E analog to Σ_U

Model

```
model {
// MVN likelihood
  for (i in 1:N) Y[i] multi_normal_cholesky (X[i] * B + Z[i] * U
        diag_pre_multiply(sigmaE, OmegaCholE));
// sample random effects from mvn
  for(i in 1:PzU) U[i,] ~ multi_normal_cholesky(musU, diag_pre_multiply(sigmaA, OmegaCholU));
// cauchy prior on the standard deviations
 sigmaE ~ cauchy(0, 5);
 sigmaU ~ cauchy(0, 5);
// LKJ prior on the correlation matrices (1 is uniform in the interval -1 to 1)
 OmegaCholE ~ lkj_corr_cholesky(1);
 OmegaCholU ~ lkj_corr_cholesky(1);
```

MCMC diagnostics

Figure 2: MCMC diagnostics and posterior estimation with shinystan

Bayes $\mathbf{C}\pi$ threshold model - Jags

$$\mathbf{y} \sim \mathbf{B}(1,\mathbf{p})$$
 $\mathbf{p} = probit(\mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\mathbf{u})$
 $\boldsymbol{\beta} \sim \mathbf{U}(-Inf,Inf)$
 $\mathbf{u} \sim \pi N(0,\sigma_u^2) + (1-\pi)\delta_0$
 $\pi \sim U(0,1)$
 $\sigma_u^2 \sim Gamma(1,0.01)$

Bayes $\mathbf{C}\pi$ threshold model - Jags

```
model {
  for (i in 1:n) {
    y[i] ~ dbern(prob[i])
    probit(prob[i]) <- alpha + inprod(X[i,], beta)</pre>
  for (j in 1:p) {
    ind[i] ~ dbern(pind)
    betaT[i] ~ dnorm(0,tau)
    beta[i] <- ind[i] * betaT[i]</pre>
  tau ~ dgamma(1,0.01)
  alpha \sim dnorm(0.0.0001)
  pind \sim dunif(0,1)
```

BayesC π threshold model - Jags

Figure 3: Inclusion probabilities of eigenvectors from a BayesC π threshold model (Heuer et al., 2016)

Potential Applications

Bayesian Alphabet

Table 1. Summary of some effect size distributions that have been proposed for polygenic modeling.

Effect Size Distribution		Keywords	Selected References
Name	Formula		
t	$\beta_i \sim t(0, v, \sigma_a^2)$	BayesA	[27,32,33,40]
point-t	$\beta_i \sim \pi t(0, v, \sigma_a^2) + (1 - \pi)\delta_0$	BayesB, BayesD, BayesDπ	[27,32–34,40]
t mixture	$\beta_i \sim \pi t(0, v, \sigma_a^2) + (1 - \pi)t(0, v, 0.01\sigma_a^2)$	BayesC	[32,33]
point-normal	$\beta_i \sim \pi N(0, \sigma_a^2) + (1 - \pi)\delta_0$	BayesC, BayesCπ, BVSR	[18,19,34]
double exponential	$\beta_i \sim DE(0,\theta)$	Bayesian Lasso	[28,39,68]
point-normal mixture	$\beta_i \sim \pi_1 \mathbf{N}(0, \sigma_a^2) + \pi_2 \mathbf{N}(0, 0.1 \sigma_a^2) + \pi_3$ $\mathbf{N}(0, 0.01 \sigma_a^2) + (1 - \pi_1 - \pi_2 - \pi_3) \delta_0$	BayesR	[35]
normal	$\beta_i \sim N(0, \sigma_a^2)$	LMM, BLUP, Ridge Regression	[22,26,28,48]
normal-exponential-gamma	$\beta_i \sim \text{NEG}(0, \kappa, \theta)$	NEG	[16]
normal mixture	$\beta_i \sim \pi N(0, \sigma_a^2 + \sigma_b^2) + (1 - \pi)N(0, \sigma_b^2)$	BSLMM	Present Work

The reference list contains only a selection of relevant publications. Abbreviations: DE denotes double exponential distribution, NEG denotes normal exponential gamma distribution, and other abbreviations can be found in the main text. In the scaled redistribution, v and σ_0^2 are the degree of freedom parameter and scale parameter, prespectively. In the DE distribution, θ is the scale parameter, the NEG distribution, σ and σ are the stage and scale parameters, respectively. Notes: 1. Some applications of these methods combine a particular effect size distribution with a random effects term, with covariance matrix K, to capture sample structure or relatedness. If $K \sim X X^T$ then this is equivalent to adding a normal distribution to the effect size distribution. The listed effect size distributions in this table do not include this additional normal component. 2. BayesC has been used to refer to models with different effect size distributions in different papers. 3. In some papers, leaves of the scale parameters, and the scale parameters of the scale parameter of the scale parameters of the scale paramet

Figure 4: Priors on marker effects from the Bayesian Alphabet (Zhou et al., 2013)

Bayesian Alphabet

Potential Applications

- Fast prototyping of Bayesian models
- Replication of research results
- Experimenting with novel models, e.g. skewed likelihoods, multivariate extensions, alternative priors, etc
- Education and labs
- Packages available for R, julia, Python, etc
- R: brms most powerful (non) linear model package to date
- Stan is under active development with large user base
- StanCon in Helsinki just concluded

Questions?