CS3319 Foundations of Data Science

5. Graph Data

Jiaxin Ding John Hopcroft Center

Graph

- Graph: structure of a set of objects some of which are related.
 - Vertices/Nodes (objects)
 - Edge/Links (relations, directed or undirected)

Graph Data

Seven Bridges of Königsberg

[Euler, 1735]

Return to the starting point by traveling each link of the graph once and only once.

Graph Data: Social Networks

Facebook social graph

4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]

Graph Data: Media Networks

Connections between social media

Polarization of the network

Graph Data: Academic Networks

Graph Data: Web Pages

Graph Algorithm

- To derive information from a graph, we ask
 - Vertex:
 - How important is a vertex? Pagerank
 - Any features? Node classification
 - Edge:
 - How important is a link? Betweenness centrality, etc.
 - Any potential links? Link prediction, recommendation
 - Structure:
 - How is the graph connected? Community detection
 - Can we represent nodes/links in vector space? Representation Learning

PageRank

Challenges

- How to organize the Web?
 - Information Retrieval: Find best answer, (relevant docs in a small and trusted set), in huge number of websites, full of untrusted documents, random things, web spam, etc.

Meaurements:

- Who to "trust"?
 - Trustworthy pages may point to each other.
- What is the "best" answer to a query?
 - Analyze the structure of the graph to get popular or high-valued answer.

Ranking Nodes on the Graph

- All web pages are not equally "important"
 - Mathew Effect

 There is large diversity in the web-graph node connectivity.

rank the pages by the link structure

Page Rank

Ranking the importance of a node

Links as Votes

- Idea: Links as votes
 - Page is more important if it has more links
 - In-coming links? Out-going links?
- Are all in-links are equal?
 - Links from important pages count more
 - Recursive question

Simple Recursive Formulation

- Each link's vote is proportional to the importance of its source page
- If page j with importance r_j has n out-links, each link gets r_j / n votes
- Page /s own importance is the sum of the votes on its in-links

PageRank: The "Flow" Model

- A "vote" from an important page is worth more
- A page is important if it is pointed to by other important pages
- Define a "rank"/"importance" r_j for page j

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 d_i ... out-degree of node i

"Flow" equations:

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

Solving the Flow Equations

3 equations

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

Additional constraint forces uniqueness:

$$\bullet r_y + r_a + r_m = 1$$

• Solution:
$$r_y = \frac{2}{5}$$
, $r_a = \frac{2}{5}$, $r_m = \frac{1}{5}$

PageRank: Matrix Formulation

- Stochastic adjacency matrix M
 - Let page i has d_i out-links
 - If $i \to j$, then $M_{ji} = \frac{1}{d_i}$ else $M_{ji} = 0$
 - M is a column stochastic matrix
 - Columns sum to 1
 - The flow equations can be written

	y	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

PageRank: Matrix Formulation

- Stochastic adjacency matrix M
 - Let page i has d_i out-links
 - If $i \to j$, then $M_{ji} = \frac{1}{d}$ else $M_{ji} = 0$
 - *M* is a column stochastic matrix
 - Columns sum to 1
 - The flow equations can be written

$$r = M \cdot r$$

- Rank vector r: vector with an entry per page
 - r_i is the importance score of page i
 - $\sum_i r_i = 1$

Eigenvector Formulation

• The flow equations can be written $m{r} = m{M} \cdot m{r}$

NOTE: x is an eigenvector with the corresponding eigenvalue λ if: $Ax = \lambda x$

- So the vector r is an eigenvector of the stochastic web matrix M
 - Largest eigenvalue of *M* is 1 since *M* is column stochastic (with non-negative entries)
- We can now efficiently solve for *r*. The method is **Power iteration**.

Power Iteration Method

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
 - Suppose there are N web pages
 - Initialize: $\mathbf{r}^{(0)} = [1/N, \dots, 1/N]^T$
 - Iterate: $\mathbf{r}^{(t+1)} = \mathbf{M} \cdot \mathbf{r}^{(t)}$
 - Stop when $|\mathbf{r}^{(t+1)} \mathbf{r}^{(t)}|_1 < \varepsilon$

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

d_i out-degree of node i

 $|\mathbf{x}|_1 = \sum_{1 \le i \le N} |x_i|$ is the **L**₁ norm Can use any other vector norm, e.g., Euclidean

Example: Flow Equations & M

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

	y	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r = M \cdot r$$

$$\begin{bmatrix} y \\ a \\ m \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} y \\ a \\ m \end{bmatrix}$$

PageRank: How to solve?

Power Iteration:

- Set $r_i = 1/N$
- 1: $r'_j = \sum_{i \to j} \frac{r_i}{d_i}$
- 2: r = r'
- Goto **1**

• Example:

r_y	1/3	1/3	5/12	9/24	6/15
$ \begin{pmatrix} r_{y} \\ r_{a} \\ r_{m} \end{pmatrix} = $	1/3	3/6	1/3	11/24	6/15
$\binom{r_m}{r_m}$	1/3	1/6	3/12	1/6	3/15
		Itera	ation 0. 1.	2	

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2 + r_m$$

$$r_m = r_a/2$$

Random Walk Interpretation

Imagine a random web surfer:

- At any time t, surfer is on some page i
- At time t + 1, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely

• Let:

- p(t) ··· vector whose ith coordinate is the prob. that the surfer is at page i at time t
- So, p(t) is a probability distribution over pages

The Stationary Distribution

• Where is the surfer at time *t*+1?

Follows a link uniformly at random

$$p(t+1) = M \cdot p(t)$$

Suppose the random walk reaches a state

$$p(t+1) = M \cdot p(t) = p(t)$$

then p(t) is stationary distribution of a random walk

- lacktriangle Our original vector $m{r}$ satisfies $m{r} = m{M} \cdot m{r}$
 - ullet So, r is a **stationary distribution** for the random walk

Existence and Uniqueness

 A central result from the theory of random walks:

For graphs that satisfy irreducible and aperiodic, the stationary distribution is unique and eventually will be reached no matter what the initial probability distribution at time **t** = **0**

Observation: Does this converge?

Periodic:

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

• Example:

Iteration 0, 1, 2, ...

Observation: Does it converge to what we want?

Reducible:

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{\mathbf{d}_i}$$

• Example:

Iteration 0, 1, 2, ...

PageRank: Problems

- Spider traps (all out-links are within the group)
 - Random walked gets "stuck" in a trap
 - Eventually spider traps absorb all importance
 - Periodic

- Dead ends (have no out-links)
 - Random walk has "nowhere" to go to
 - Such pages cause importance to "leak out"
 - Reducible

Problem: Spider Traps

Power Iteration:

- Set $r_i = 1$
- $r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

m is a spider trap

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2$$

$$r_m = r_a/2 + r_m$$

 \mathbf{m}

Example:

Periodic. All the PageRank score gets "trapped" in node m.

Problem: Dead Ends

Power Iteration:

- Set $r_i = 1$
- $r_j = \sum_{i \to j} \frac{r_i}{d_i}$
 - And iterate

	У	a	m
y	1/2	1/2	0
a	1/2	0	0
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

$$r_a = r_y/2$$

$$r_m = r_a/2$$

Example:

Solution: Teleports!

- The Google solution for spider traps: At each time step, the random surfer has two options
 - With prob. β , follow a neighbor link at random
 - With prob. $1-\beta$, jump to some random page
 - Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Solution: Teleport!

- Teleports also solves dead-ends
 - Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

Why Teleports Solve the Problem?

Spider-traps

• Solution: Never get stuck in a spider trap by teleporting out of it in a finite number of steps

Dead-ends

- The matrix is not column stochastic so our initial assumptions are not met
- Solution: Make matrix column stochastic by always teleporting when there is nowhere else to go

Solution: Random Teleports

- Google's solution that does it all:
 At each step, random surfer has two options:
 - With probability β , follow a link at random
 - With probability $1-\beta$, jump to some random page
- PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i o j} eta \; rac{\ddot{r_i}}{d_i} + (1-eta) rac{1}{N} \; rac{d_i ext{--out-degree}}{ ext{of node i}}$$

This formulation assumes that *M* has no dead ends. We can either preprocess matrix *M* to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

The Google Matrix

• The Matrix A:

$$A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$$
 [1/N]_{NxN}...N by N matrix where all entries are 1/N

• We have a recursive problem: $r = A \cdot r$ And the **Power Iteration method** still works!

Random Teleports ($\beta = 0.8$)

PageRank for Proximity in Graphs

Proximity on Graphs (Recommendation)

- Given: a bipartite graph representing user and item interactions
 - Users purchase items
- Goal: What items should we recommend to a user who interacts with a item Q?
- Intuition: find the similar items.

Example: which pair is more similar?

Node Proximity Measurements

- How to measure in complicated graphs?
- Random walk with restarters.
 - Modified PageRank which teleports back to the starting node(Q). (for each node the teleport vector S=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Random Walk with Restarters

- Simulate a random walk, from items to users back to items.
- With probability α , restart the random walk from Q.
- Resulting scores measures similarity to node Q.

Random Walk with Restarters

- Simulate a random walk, from items to users back to items.
- With probability α , restart the random walk from Q.
- Resulting scores measures similarity to node Q.

Summary

- Random with restarters: PageRank teleporting back to the same node
- The similarity considers:
 - Multiple connections
 - Multiple paths
 - Degree of the nodes
 - Direct and indirect connections
- But we need run the algorithm for every node

Summary of PageRank

- A graph is naturally represented as a matrix, we defined a random walk process over the graph
 - Stochastic adjacency matrix M
 - Random surfer moving across the links and with random teleportation
- PageRank: limiting distribution of the surfer location represented node importance
 - Corresponds to the leading eigenvector of transformed adjacency matrix M
 - Power iteration

Graph Features

Graph Tasks

- Node-level prediction
- Link-level prediction

Machine Learning Pipeline

Machine Learning on Graphs

- Design features for nodes/links
 - Features: **D**-dimensional vectors
- Apply machine learning on the feature vectors to make prediction

Node-Level Features: Overview

- Goal: Characterize the structure and position of a node in the network:
 - Node degree
 - Node centrality
 - Clustering coefficient
 - Graphlets

Node Features: Node Degree

- The degree k_v of node v is the number of **edges** (neighboring nodes) the node has.
- Treats all neighboring nodes equally.

Node Features: Node Centrality

- Node degree counts the neighboring nodes without capturing their importance.
- Node centrality c_v takes the node importance in a graph into account
- Different ways to model importance:
 - PageRank
 - Betweenness centrality
 - Closeness centrality

Node Centrality

Betweenness centrality:

 A node is important if it lies on many shortest paths between other nodes.

$$c_v = \sum_{s \neq v \neq t} \frac{\text{#(shortest paths betwen } s \text{ and } t \text{ that contain } v)}{\text{#(shortest paths between } s \text{ and } t)}$$

• Example:

$$c_A = c_B = c_E = 0$$

 $c_C = 3$
 $(A-\underline{C}-B, A-\underline{C}-D, A-\underline{C}-D-E)$
 $c_D = 3$
 $(A-C-\underline{D}-E, B-\underline{D}-E, C-\underline{D}-E)$

Node Centrality

Closeness centrality:

• A node is important if it has small shortest lengths to all other nodes.

$$c_v = \frac{1}{\sum_{u \neq v} \text{length of the shortest path between } u \text{ and } v}$$

Example:

$$c_A = 1/(2 + 1 + 2 + 3) = 1/8$$

(A-C-B, A-C, A-C-D, A-C-D-E)

$$c_D = 1/(2 + 1 + 1 + 1) = 1/5$$

(D-C-A, D-B, D-C, D-E)

Node Features: Clustering Coefficient

• Measures how connected v's neighboring nodes are: $\frac{\#(\text{edges among neighboring nodes})}{e} = \frac{\pi(e^{-1})}{e} = \frac{\pi(e^{-1})}{e}$

$$e_v = \frac{\#(\text{edges among neighboring nodes})}{\binom{k_v}{2}} \in [0,1]$$

#(node pairs among k_v neighboring nodes)

Examples:

 Observation: Clustering coefficient counts the #(triangles) in the ego-network

3 triangles (out of 6 node triplets)

 We can generalize the above by counting #(pre-specified subgraphs, i.e., graphlets).

- **Graphlets:** Rooted connected non-isomorphic subgraphs:
 - The indices of nodes represent all possible node types regarding topology

- Graphlet Degree Vector (GDV): Graphlet-base features for nodes
 - **Degree** counts #(edges) that a node touches
 - Clustering coefficient counts #(triangles) that a node touches.

GDV counts #(graphlets) that a node touches

• Graphlet Degree Vector (GDV): A count vector of graphlets rooted at a given node.

• Example:

GDV of node v: a, b, c, d[2,1,0,2]

- Considering graphlets on 2 to 5 nodes we get:
 - Vector of 73 coordinates is a signature of a node that describes the topology of node's neighborhood
 - Captures its interconnectivities out to a distance of 4 hops
- Graphlet degree vector provides a measure of a node's local network topology:
 - Comparing vectors of two nodes provides a more detailed measure of local topological similarity than node degrees or clustering coefficient.

Link Prediction via Proximity

Methodology:

- For each pair of nodes (x, y) compute score c(x, y)
 - For example, c(x, y) could be the # of common neighbors of x and y
- Sort pairs (x, y) by the decreasing score c(x, y)
- Predict top n pairs as new links

Link-Level Features: Overview

- Distance-based feature
- Local neighborhood overlap
- Global neighborhood overlap

Distance-Based Features

Shortest-path distance between two nodes

- However, this does not capture the degree of neighborhood overlap:
 - Node pair (B, H) has 2 shared neighboring nodes, while pairs (B, E) and (A, B) only have 1 such node.

Local Neighborhood Overlap

- Captures # neighboring nodes shared between two nodes v_1 and v_2 :
- Common neighbors: $|N(v_1) \cap N(v_2)|$
 - Example: $|N(A) \cap N(B)| = |\{C\}| = 1$
- Jaccard's coefficient: $\frac{|N(v_1) \cap N(v_2)|}{|N(v_1) \cup N(v_2)|}$ Example: $\frac{|N(A) \cap N(B)|}{|N(A) \cup N(B)|} = \frac{|\{C\}|}{|\{C,D\}|} = \frac{1}{2}$
- Adamic-Adar index: $\sum_{u \in N(v_1) \cap N(v_2)} \frac{1}{\log(k_u)}$
 - k_u is degree of u
 - Example: $\frac{1}{log(k_c)} = \frac{1}{log 4}$

Global Neighborhood Overlap

- Limitation of local neighborhood features:
 - Metric is always zero if the two nodes do not have any neighbors in common.

- However, the two nodes may still potentially be connected in the future.
- Global neighborhood overlap metrics resolve the limitation by considering the entire graph.

Global Neighborhood Overlap

• Katz index: count the number of paths of all lengths between a given pair of nodes.

- Q: How to compute #paths between two nodes?
- Use powers of the graph adjacency matrix!

Intuition: Power of Adj Matrices

Computing #paths between two nodes

- Recall: $A_{uv} = 1$ if $u \in N(v)$
- Let $oldsymbol{P_{uv}^{(K)}}=$ #paths of length $oldsymbol{K}$ between $oldsymbol{u}$ and $oldsymbol{v}$
- We will show $P^{(K)} = A^k$
- $P_{uv}^{(1)} = \text{\#paths of length 1 (direct neighborhood) between } u$ and $v = A_{uv}$

$$P_{12}^{(1)} = A_{12}$$

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Intuition: Power of Adj Matrices

- How to compute $P_{uv}^{(2)}$?
 - Step 1: Compute #paths of length 1 between each of u's neighbor and v
 - Step 2: Sum up these #paths across u's neighbors

•
$$P_{uv}^{(2)} = \sum_{i} A_{ui} * P_{iv}^{(1)} = \sum_{i} A_{ui} * A_{iv} = A_{uv}^{2}$$

Global Neighborhood Overlap

- How to compute #paths between two nodes?
- Use adjacency matrix powers!
 - A_{uv} specifies #paths of length 1 (direct neighborhood) between u and v.
 - A_{uv}^2 specifies #paths of length 2 (neighbor of neighbor) between u and v.
 - And, A_{uv}^{l} specifies #paths of length l.

Katz index:

Count the number of paths of all lengths between a pair of nodes.

• Katz index between v_1 and v_2 is calculated as

Sum over all path lengths

$$S_{v_1v_2} = \sum_{l=1}^{l} \beta^l A_{v_1v_2}^l$$
 #paths of length l between v_1 and v_2

 $0 < \beta < 1$: discount factor

Katz index matrix is computed in closed-form:

$$S = \sum_{i=1}^{n} \beta^i A^i = (I - \beta A)^{-1} - I$$

$$= \sum_{i=0}^{\infty} \beta^i A^i$$
by geometric series of matrices

Graph Feature Summary

- Traditional ML Pipeline
 - Hand-crafted feature + ML model
- Hand-crafted features for graph data
 - Node-level:
 - Node degree, centrality, clustering coefficient, graphlets
 - Link-level:
 - Distance-based feature
 - local/global neighborhood overlap