3장. Hello 파이토치

2022-09-18

3.1 딥러닝을 시작하기 전에 3.1.1 장비 구성

- CPU (central processing unit)
 - 일부 피할 수 없는 순차적인 연산만 담당
 - 1~2개 코어에 집중되어 100% 내외 사용
 - 코어의 숫자 뿐만 아니라 개별 코어의 클럭이 높아야 함
 - 전처리 과정 또는 단어 임베딩 단계에서 중요
 - GPU (graphics processing unit)
 - 잘 설계된 파이토치 코드 대부분 사용
 - 보통의 병렬 연산을 담당
- RAM
 - 최소 16GB ~ 32GB
 - 많은 양의 데이터셋을 한번에 메모리에 로드
 - 전처리 등

3.1.1 장비 구성

GPU

- 엔비디아 GTX (또는 RTX) 계열
- CUDA와 함께 동작하므로 라데온 (Radeon) 은 소용없음
- CUDA 코어가 많고 클럭이 높을수록 속도가 빠름
- 메모리 대역폭 (bandwidth) 중요
- 메모리의 크기도 중요
- 파워 서플라이 (power supply)
 - 메인보드, 그래픽카드 모두를 감당할 수 있어야 함
 - 700W 이상 필요
- 쿨링 시스템
 - GPU에서 다량의 열이 발생
 - 수냉 시스템도 좋은 선택

부품	요약	최소	권장
CPU	코어 개수보다는 단일 클럭이 높아야 함	i5	i7
RAM	메모리는 많을수록 좋음	16GB	64GB
GPU	메모리가 클수록 좋지만, 비용이 비쌈	GTX 1060Ti	RTX 2080Ti
파워 서플라이 (supply)	비싸고 검증된 브랜드 선택	GPU 개당 500W	
쿨링 시스템 (cooling)	쿨링은 매우 중요, 난방비 절약 가능		

3.2 설치 방법

- 아나콘다 설치
 - https://www.anaconda.com/products/individual#linux
- 파이토치 설치
 - https://pytorch.org/
 - 옵션 선택
 - 해당 명령어 실행

3.2.3 왜 파이토치일까?

- 텐서플로 (Tensorflow)
 - 구글이 개발, 자체 딥러닝 전용 하드웨어 TPU에 최적화
- 파이토치 (PyTorch)
 - 페이스북의 주도 아래 개발이 진행
 - 엔비디아도 참여
 - 엔비디아의 CUDA GPU에 더 최적화
 - 적극 파이토치를 권장
 - 자연어 처리 분야에서 더욱 적극적으로 권장
 - 파이토치에 비해 뒤늦게 딥러닝 프레임워크 개발에 참여하여 적은 유저풀을 유지
 - 비슷한 레벨의 구현 난도를 가정하면 파이토치가 훨씬 뛰어난 생산성을 보임
 - 학계에서는 파이토치의 사용이 증가

3.2.3 왜 파이토치일까?

% PyTorch Papers of Total TensorFlow/PyTorch Papers

3.2.3 왜 파이토치일까?

- Tensorflow: Google Co. / pytorch: Facebook Co.
- ① 깔끔한 코드
 - Tensorflow와 달리 Python을 우선(Python First)으로 하여 대부분의 모듈이 파이썬으로 짜여 있어 코드가 깔끔
 - Tensorflow에 비해 버전업에 따른 파편화가 상대적으로 적음
- ② 넘파이와 뛰어난 호환성
- 3 Autograd
 - 값을 Feed-forward하여 계산하고 backward() 호출로 역전파 알고리즘 수행가능
- ④ 동적 그래프
 - 연산과 동시에 Dynamic Graph가 생성되어 tensorflow에 비해 자유로움

CPU tensor

torch.FloatTensor

torch.DoubleTensor

torch.HalfTensor

torch.ByteTensor

torch.CharTensor

torch.ShortTensor

torch.IntTensor

torch.LongTensor

GPU tensor

torch.cuda.Float1

torch.cuda.Double

torch.cuda.HalfTe

torch.cuda.ByteTe

torch.cuda.CharTe

torch.cuda.ShortT

torch.cuda.IntTen

torch.cuda.LongTe

• 텐서 (Tensor): ndarray와 같은 개념

```
import torch
import numpy as np

x1 = torch Tensor [[1,2],[3,4]])
x2 = torch.from_numpy(np.array([[1,2],[3,4]]))
x3 = np.array([[1,2],[3,4]])
```

tensor([[1.0000e+00, 2.1271e+23],

• Autograd : 자동 gradient 계산

```
x = torch.FloatTensor(2,2)
y = torch.FloatTensor(2,2)
y.requires_grad_(True)
with torch.no_grad():
    z = (x+y) + torch.FloatTensor(2,2)
```

[7.9875e+20, 4.0000e+00]], grad fn=<AddBackward0>)

Data type

32-bit floating point

64-bit floating point

16-bit floating point

8-bit integer (unsigned)

8-bit integer (signed)

16-bit integer (signed)

32-bit integer (signed)

• 자동으로 미분, 역전파 수행, 동적 그래프 생성

dtype

torch.uint8

torch.int8

torch.float32 or torch.float

torch.float64 or torch.double

torch.float16 or torch.half

torch.int16 or torch.short

torch.int32 or torch.int

• 비 학습과정에서는 with torch.no_grad()로 수행

• 피드 포워드 (Feed-Forward) : 원하는 연산을 통해 값을 앞으로 전달

```
def linear(x, W, b):
    y = torch.mm(x,W) + b
    return y

x = torch.FloatTensor(16,10)
W = torch.FloatTensor(10,5)
b = torch.FloatTensor(5)

y = linear(x,W,b)
```

- Ex) linear layer 구현
 - X: 16x10 행렬 / W (weight): 10x5 행렬
 - b (bias): 1x5 행렬
- Torch.mm : 행렬 곱=np.matmul

nn.Module

```
class MyLinear nn.Module):
    def __init__(self, input_size, output_size):
        super(MyLinear, self).__init__()
        self.linear = nn.Linear input_size, output_size)

def forward(self, x):
    y = self.linear(x)
    return y
```

```
x = torch.FloatTensor(16,10)
linear = MyLinear(10,5)
y = linear(x)
```


• 역전파 수행

```
objective = 100

x = torch.Tensor(16,10)
linear = MyLinear(10,5)
y = linear(x)
loss = (objective - y.sum())

loss.backward()
```

• Loss 값은 scalar로 표현됨

```
print(loss)
tensor(91.1572, grad_fn=<RsubBackward1>)
```

• Train()과 eval()

```
# training..
linear eval()
# do something..
linear train()
# restart training..

MyLinear(
   (linear): Linear(in_features=10, out_features=5, bias=True)
)
```

• 훈련, 평가시에 모드 전환이 쉬움

• GPU 사용하기

```
x = torch cuda FloatTensor(16,10)
linear = MyLinear(10,5)
linear cuda )
y = linear(x)
```

• 파이토치는 GPU CUDA에 의존하는 편

- 선형회귀분석 예제
 - 1. 임의로 Tensor 생성
 - 2. 정답 함수에 넣어 정답(y) 구함
 - 3. 그 정답과 신경망을 통과한 정답(y^)과의 차이를 평균 제곱오차(MSE)를 통해 구함
 - 4. 확률적 경사 하강법(SGD)로 최적화

```
def ground_truth(x): #일의의 함수(실제 측정 정말)
return 3*x[:,0] + x[:,1] - 2*x[:,2]
```


• 훈련 함수 생성, hyperparameter 설정

```
def train(model, x, y, optim):
    optim.zero_grad.)

y_hat = model(x)

loss = ((y - y_hat)**2).sum() / x.size(0) # MSE loss 계산
    loss.backward() # backward() 호章 -> gradient 체워질

optim.step!) # step()을 호章하여 검사하감법(gradient descent) 수행

return loss.data
```

```
batch_size = 1
n_epochs = 1000
n_iter = 10000

model = MvModel(3.1)
optim = torch.optim.SGD model.parameters(), lr=0.0001, momentum=0.1) # SGD optimizer 생성, 모델의 파라미터를 최적화
print(model)

MyModel(
    (linear): Linear(in_features=3, out_features=1, bias=True)
)
```


- 최종 훈련, 평가
 - x : 임의의 랜덤 tensor
 - Y : 실제 답
 - x_valid : 평가 Tensor
 - y_valid : 평가 실제 답
 - y_hat : 모델 예측 답
 - Print(조건충족 loss, 실제 답, 예측 답)

```
for epoch in range(n_epochs):
    avg loss = 0
    for i in range(n iter):
       x = torch.rand(batch size, 3)
        y = ground_truth(x.data)
        loss = train(model, x, y, optim) # loss function을 통해 손실과(loss) 계산
        avg loss += loss
        avg loss = avg loss / n iter
   x valid = torch.FloatTensor([[.3, .2, .1]])
   y_valid = ground_truth(x_valid.data)
   model.eval()
    y hat = model(x valid)
    model.train()
    print(avg loss, y valid.data[0], y hat.data[0,0])
    if avg loss < .001:
        break
```

tensor(4.7900e-07) tensor(0.9000) tensor(0.7654)

- 파이토치 딥러닝 수행 과정
 - I. nn.Module 을 상속받아 forward 함수를 통해 모델 클래스 생성
 - II. SGD나 Adam과 같은 optimizer 생성, 파라미터 최적화
 - III. 데이터로 미니배치를 구성하여 feed-forward 연산
 - Ⅳ. Loss함수를 통해 최종 결과값(scalar), 손실 값(loss) 계산
 - V. 손실에 대해 backward() 호출 -> 기울기(gradient) 채워짐
 - VI. Optimizer의 step()을 호출하여 경사 하강법(gradient descent) 수행
 - VII. 수렴조건이 만족할 때까지 loop 반복 수행

