Total No. of Questions: 8]		estions: 8] SEAT No.:	
P3976		[Total No. of Pa	ages:3
		[5353]-519	
		T.E. (Mechanical) (S/W)	
		MECHATRONICS	
		(2015 Pattern)	
Time: 2½ Hours] [M			ks : 70
Instruction	ons to t	the candidates:	
1)	Answ	ver Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.	
2)	Neat	diagrams must be drawn wherever necessary.	
3)	Figu	res to the right side indicate full marks.	
4)	Assui	me Suitable data if necessary.	
Q1) a)	has 8	otentiometer which is used to measure the rotational position of 850 turns of wire. The input range is from -160° to $+160^{\circ}$ but range is from 0V to 12 V.	
	Dete	ermine	
	i)	Sapn	
	ii)	Sensitivity in volts per degree	

The average resolution in volts

b)

c)

b)

c)

i)

Q2) a)

Compare Open loop & closed Loop system.

Explain the control system used for following

Controlling the water height in tank

Actuation of street lights at 6 p.m.

What is Nyquist Theorem? Explain Sample & Hold Circuit

OR

Using suitable sketch explain construction & working of stepper motor.[6]

A 3 bit D/A converter is set for 0 to 10 V output range. Map all the

possible digital input values to their corresponding analog output values.[7]

[7]

[7]

- Q3) a) Explain with block diagramme architecture of Programmable Logic Controller.[8]
 - b) A conveyor is run by switching on or off a motor. We are positioning parts on the conveyor with an optical detector. When the optical sensor goes on, we want to wait 1.5 seconds, and then stop the conveyor. After a delay of 2 seconds the conveyor will start again. We need to use a start and stop button—a light should be on when the system is active. [10]

OR

- Q4) a) Discuss the selection criteria for PLC. Explain Timers & Counters. [8]
 - b) Give four normally open switches (P1, P2, S1 & S2). with DC motor(M), write PLC program to satisfy the following objectives: [10]
 - i) When P1(Push Button) is pushed the cycle shall start. The cycle remain countinue untill P2 (stop Button) is pushed
 - ii) When S1 is pushed & S2 is not pushed then motor is ON clockwise direction
 - iii) When S2 is pushed & S1 is not pushed then, motor is on in counter clockwise direction
 - iv) When 2 pushed program stops
- Q5) a) Using Suitable diagram explain transient response specification for second order system.[8]
 - b) For the mechanical system shown in fig. Assume M(mass) = 1kg, K(stiffness)=2N/m & b (damping) = 0.5Ns/m. The displacement x of the mass m is measured from equilibrium position. In this system the external force f(t) is input & x is the output. Determine [8]
 - i) Transfer function
 - ii) Identify location of poles & zeros.

Q6) a) Explain two steps of Routh Hurwetz criterion in detail.

[8]

Determine the value of Delay time (Td), Rise Time (Tr), Peak time (Tp), b) settling time (Ts) & Peak overshoot (Mp) when control system shown in fig. is subjected to unit step input.

Compare P controller with D controller. **Q7**) a)

[6]

Fig. shows as error time graph .Sketch the PD controller o/p w.r.t. time. b) Assume Kp = 5, Kd = 0.5 & Po = 30% (i.e. controller o/p when error is zero.) [10]

- Using a suitable block diagramme explain the working of PID control in **Q8)** a) parallel form. [8]
 - An Integral controller is used for speed control with a set point of 12rpm b) within a range of 10 to 15 rpm. The controller output is 22% initially. The constant Ki = -0.15% controller output per second per percentage error. outpu and a series of the seri If the speed jumps to 13.5 rpm, calculate the controller output after 2 sec. for constant ep.

