IBQ_R 2022

Masha Gartstein, Erich Seamon

10/25/2022

Exploratory Data Analysis

Model Development and Output: Control Group One VS. Experimental - ALL VARIABLES

Model Accuracy Estimates: Control Group One VS. Experimental Group – All Variables

ROC Curve: Control Group One VS. Experimental – All Variables

Model Development and Output: Control Group Two VS. Experimental - ALL VARIABLES

Model Accuracy Estimates: Control Group Two VS. Experimental Group – All Variables

ROC Curve: Control Group Two VS. Experimental – All Variables

Model Development and Output: Control Group One VS. Experimental - TRANSFORMED VARIABLES

Model Accuracy Estimates: Control Group One VS. Experimental Group – Transformed Variables

ROC Curve: Control Group One VS. Experimental – Transformed Variables

Model Development and Output: Control Group Two VS. Experimental - TRANSFORMED VARIABLES

Model Accuracy Estimates: Control Group Two VS. Experimental Group - Transformed Variables

ROC Curve: Control Group Two VS. Experimental – Transformed Variables

Random Forest Control One vs. Experimental

Transformed Variables

Random Forest Control Two vs. Experimental

Random Forest Control One vs. Experimental

Random Forest Control Two vs. Experimental All Variables

models	Exp. VS.	CG1 cla	ssification: All Variabes	Exp. VS. CG2 classification: All Variables		
	accuracy	kappa	AUC	accuracy	kappa	AUC
lda	0.816	0.468	0.725	0.845	0.333	0.819
glm	0.790	0.471	0.918	0.811	0.460	0.943
svm	0.825	0.663	0.939	0.799	0.696	0.919
knn	0.795	0.649	0.943	0.814	0.638	0.940
nb	0.819	0.659	0.738	0.825	0.709	0.780
cart	0.819	0.578	0.929	0.830	0.521	0.928
c5.0	0.837	0.681	0.919	0.815	0.762	0.927
bagging	0.812	0.652	0.941	0.812	0.688	0.952
rf	0.828	0.712	0.936	0.822	0.777	0.921
gbm	0.807	0.734	0.895	0.815	0.771	0.898
adabag	0.816	0.656	0.725	0.845	0.660	0.819

models	Exp. VS.	CG1 cla	ssification: Transformed Variables	Exp. VS.	CG2 classification:	Transformed Variables
	accuracy	kappa	AUC	accuracy	kappa	AUC
lda	0.777	0.567	0.868	0.763	0.567	0.892
glm	0.780	0.568	0.820	0.790	0.560	0.871
svm	0.764	0.567	0.804	0.767	0.575	0.848
knn	0.769	0.517	0.868	0.760	0.536	0.876
nb	0.784	0.532	0.821	0.815	0.539	0.854
cart	0.757	0.482	0.842	0.722	0.457	0.874
c5.0	0.778	0.546	0.815	0.771	0.589	0.866
bagging	0.751	0.518	0.815	0.759	0.471	0.867
rf	0.769	0.536	0.856	0.783	0.497	0.870
gbm	0.774	0.564	0.849	0.764	0.592	0.875
adabag	0.777	0.549	0.868	0.763	0.543	0.892