Optimization Method homework 13

Qingfu Wen

2015213495

December 13, 2015

CONTENTS

i. Problem 1	2
ii. Problem 2	2
iii. Problem 3	3
iv. Problem 4	3
v Problem 5	4

I. PROBLEM 1

Algorithm mapping is defined as follows:

$$f(x) = (6 + x_1 + x_2)^2 + (2 - 3x_1 - 3x_2 - x_1x_2)^2$$

Solve the Newton direction and the steepest descent direction at point $\hat{x} = \begin{bmatrix} -4 \\ 6 \end{bmatrix}$.

Solution:

$$\frac{\partial f}{\partial x_1} = 2(10x_1 + 8x_2 + 6x_1x_2 + 3x_2^2 + x_1x_2^2), \quad \frac{\partial f}{\partial x_2} = 2(8x_1 + 10x_2 + 3x_1^2 + 6x_1x_2 + x_1^2x_2)$$

$$\frac{\partial^2 f}{\partial x_1^2} = 2(10 + 6x_2 + x_2^2), \quad \frac{\partial^2 f}{\partial x_2^2} = 2(10 + 6x_1 + x_1^2), \quad \frac{\partial^2 f}{\partial x_1 \partial x_2} = 2(8 + 6x_1 + 6x_2 + 2x_1 x_2)$$

for $\hat{x} = \begin{bmatrix} -4 \\ 6 \end{bmatrix}$, the steepest descent direction

$$d = -\nabla f(\hat{x}) = \begin{bmatrix} 344 \\ -56 \end{bmatrix}$$

the Newton direction

$$d = -\nabla^2 f(\hat{x})^{-1} \nabla f(\hat{x}) = \begin{bmatrix} 164 & -56 \\ -56 & 4 \end{bmatrix}^{-1} \begin{bmatrix} 344 \\ -56 \end{bmatrix} = \begin{bmatrix} \frac{22}{31} \\ \frac{-126}{31} \end{bmatrix}$$

II. PROBLEM 2

Suppose we have function

$$f(x) = \frac{1}{2}x^T A x + b^T x + c$$

A is positive definite matrix, suppose $x^{(1)} \neq \bar{x}$ can denote as

$$x^{(1)} = \bar{x} + \mu n$$

 \bar{x} is f(x)'s minimal point, p is A's eigenvalue λ eigenvector, prove that:

- 1. $\nabla f(x^{(1)}) = \mu \lambda p$
- 2. Doing one-dimension search from $x^{(1)}$ along the steepest descent direction, we can get the minimal point \bar{x} in one step.

Proof:

1. Since *A* is positive definite matrix, $\bar{x} = -A^{-1}b$.

$$\nabla f(x^{(1)}) = Ax^{(1)} + b$$

$$= A(\bar{x} + \mu p) + b$$

$$= A(-A^{-1}b) + \mu Ap + b$$

$$= -b + \mu \lambda p + b$$

$$= \mu \lambda p$$

2. From point $x^{(1)}$, conduct the steepest descent method.

$$x^{(2)} = x^{(1)} - \alpha \nabla f(x^{(1)})$$
$$= \bar{x} + \mu p - \alpha \mu \lambda p$$
$$= \bar{x} + \mu p(1 - \alpha \lambda)$$

Thus, we choose $\alpha = \frac{1}{\lambda}$, we can get the minimal \bar{x} in one step.

III. PROBLEM 3

Suppose *A* is *n* order real symmetric positive definite matrix, Prove that *A* has *n* orthogonal eigenvector $p^{(1)}, p^{(2)}, \dots, p^{(n)}$ is conjugate with *A*.

Proof:

we have $Ap^{(i)} = \lambda_i p^{(i)}$, $i = 1, \dots, n$. And when $i \neq j$, $p^{(i)^T} p^{(j)} = 0$. Then

$$p^{(i)^T} A p^{(j)} = \lambda_i p^{(i)^T} p^{(j)} = 0, i \neq j$$

So $p^{(1)}$, $p^{(2)}$, ..., $p^{(n)}$ is conjugate with A.

IV. PROBLEM 4

Suppose *A* is *n* order symmetric positive definite matrix, non-zero vector $p^{(1)}$, $p^{(2)}$, \cdots , $p^{(n)} \in \mathbf{E}^n$ is conjugate with *A*. Prove that:

1.
$$x = \sum_{i=1}^{n} \frac{p^{(i)^{T}} A x}{p^{(i)^{T}} A p^{(i)}} p^{(i)}, \quad \forall x \in \mathbf{E}^{n}$$

2.
$$A^{-1} = \sum \frac{p^{(i)}p^{(i)^T}}{p^{(i)^T}Ap^{(i)}}$$

Proof:

1. we can know that $p^{(1)}, p^{(2)}, \dots, p^{(n)}$ are linearly independent. Thus, they can be a base. $\forall x \in \mathbf{E}^n$, we have

$$x = \sum_{i=1}^{n} \lambda_i p^{(i)}$$
 (iv.1)

multiply $p^{(i)^T}A$ for above equation, we have

$$p^{(i)^{T}} A x = \lambda_{i} p^{(i)^{T}} A p^{(i)}$$
$$\lambda_{i} = \frac{p^{(i)^{T}} A x}{p^{(i)^{T}} A p^{(i)}}$$

Replace λ_i of iv.1, we get

$$x = \sum_{i=1}^{n} \frac{p^{(i)^{T}} A x}{p^{(i)^{T}} A p^{(i)}} p^{(i)}$$

2. Suppose $A^{-1} = (\beta_1, \dots, \beta_n)$, from (1) we know

$$\beta_i = \sum_{i=1}^n \frac{p^{(i)^T} A \beta_i}{p^{(i)^T} A p^{(i)}} p^{(i)}$$

So

$$(\beta_{1}, \dots, \beta_{n}) = \sum_{i=1}^{n} \frac{p^{(i)^{T}} A(\beta_{1}, \dots, \beta_{n})}{p^{(i)^{T}} A p^{(i)}} p^{(i)}$$

$$= \sum_{i=1}^{n} \frac{p^{(i)^{T}} A A^{-1}}{p^{(i)^{T}} A p^{(i)}} p^{(i)}$$

$$= \sum_{i=1}^{n} \frac{p^{(i)^{T}} p^{(i)}}{p^{(i)^{T}} A p^{(i)}}$$

So

$$A^{-1} = \sum \frac{p^{(i)}p^{(i)^{T}}}{p^{(i)^{T}}Ap^{(i)}}$$

v. Problem 5

Suppose we have a linear programming problem

$$\min \quad \frac{1}{2}x^T A x$$
s.t. $x \ge b$

A is a n order symmetric positive definite matrix. Suppose \bar{x} is optimal solution, prove that \bar{x} and $\bar{x}-b$ is conjugate with A.

Solution:

This problem is convex programming problem and \bar{x} is K-T-T point. We have

$$\begin{cases} A\bar{x} - w^T = 0 \\ w(\bar{x} - b) = 0 \\ w \ge 0 \end{cases}$$

So we get
$$w = \bar{x}^T A$$
.

$$\bar{x}^T A(\bar{x} - b) = w(\bar{x} - b) = 0$$

Thus, \bar{x} and $\bar{x} - b$ is conjugate with A.