Heilong jiang Science and Technology of Water Conservancy

文章编号: 1007-7596(2008)01-0062-02

几种常用插值方法比较分析

王彧坤,彭湘晖

(黑龙江省水文局, 哈尔滨 150080)

摘 要: 水文分析工作中经常采用插值, 而数学中插值的计算方法有多种, 文章讨论了其中比较简单的线性插值、抛物线插值、拉格 朗日插值和逐次线性插值等,并以水文应用实例对这几种方法进行了比较,提出了水文中适用插值方法及应用条件。

关键词:插值:计算方法:关系线:节点

中图分类号: P333

文献标识码: A

水文工作是经验与理论的结合,生产实际中经常会遇到 曲线插值的问题,如水位~流量关系曲线、库水位~蓄水量 曲线、单位线中的 S曲线等等, 初期的插值是通过量图完成 的,随着资料的完善,曲线的节点被摘录出来,为采用数学方 法计算插值奠定了基础,特别是计算机技术的普及,利用程 序自动插值能够大大提高计算的速度、降低了出错率。

常用的插值方法有以下几种:线性插值、抛物线插值、拉 格朗日插值、逐次线性插值。下面对这几种插值方法进行逐 一对比分析。

1 几种插值方法的原理

1.1 线性插值

函数 y = f(x) 在两个节点 x_0, x_1 处的函数值分别为 y_0 γ, 关系见表 1。

表 1 线性插值法 x 与 y 对应关系表

x	<i>x</i> ₀	<i>x</i> ₁
y=f(x)	y_0	<i>y</i> ₁

直线插值就是做通过两点 (x_0, y_0) 、 (x_1, y_1) 的直线 y = L(x), 那么可知任意点 x 所对应得函数值 y 为:

$$y = y_0 + \frac{y_1 - y_0}{x_1 - x_0} (x - x_0)$$

可见,上式为满足插值条件的一次方程,故称之为线性 插值。见图 1:

图 1 线性插值示意图

1. 2 抛物线插值[1-2]

[收稿日期]2007-06-13

 y_0, y_1, y_2 ,其关系见表。 表 2 抛线线插值法 x 与 y 关系对应表

函数 y = f(x)在 3个节点 x_0, x_1, x_2 处的函数值分别为

x	<i>x</i> ₀	x 1	<i>x</i> ₂
y=f(x)	y_0	у 1	y_2

抛物线插值就是假设有一个不超过二次的函数 $\gamma = L$ (x), 该函数满足以下条件: $y_0 = L(x_0)$, $y_1 = L(x_1)$, $y_2 = L$ (x2),通过基函数构造求解,可得到函数的公式:

$$L(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} y_0 + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} y_1 + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} y_2$$

显然这是一个二次多项式,因此称之为抛物线插值公 式,该插值方法成为抛物线插值。见图 2

图 2 抛物线插值示意图

1.3 拉格朗日插值[1-2]

如果函数 y = f(x)在 n + 1个节点处的函数关系见表 3。

表 3					
x	x_0	x_1		x_n	
y = f(x)	y_0	у ₁		y_n	

通过 2 1和 2 2的方法, 我们可以推广到构造一个 n次 函数,该函数满足上面插值条件:

$$L(x_i) = y_i$$
 (i= 0, 1, 2, ..., n)

同样可以求出该函数为:

$$L(x) = \sum_{k=0}^{n} \frac{(x-x_0)\cdots(x-x_{k-1})(x-x_k)\cdots(x-x_n)}{(x_k-x_0)\cdots(x_k-x_{k-1})(x_k-x_{k+1})\cdots(x_k-x_n)} Y_k$$
该式称之为拉格朗日多顶式。

© 6994-2011 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

[作者简介]王彧坤(1979-), 女, 黑龙江哈尔滨人, 助理工程师; 彭湘晖(1974-), 女, 湖南宁乡人, 工程师。

1. 4 逐次线性插值[1-2]

同样以 2.2的例子, 关系见表 2

作 x_0 与 x_1 的线性插值函数 $f_{1,1}(x)$, x_1 与 x_2 的线性插值函数 $f_{1,2}(x)$:

$$f_{1,1}(x) = \frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1)$$

$$f_{1,2}(x) = \frac{x - x_2}{x_0 - x_2} f(x_0) + \frac{x - x_0}{x_2 - x_0} f(x_2)$$

然后将 $f_{1,1}(x)$ 和 $f_{1,2}(x)$ 分别看作对应于 x_1 与 x_2 的函数值,作 x_1 与 x_2 为节点的线性插值函数 F(x), 得:

$$F(x) = \frac{x - x_2}{x_1 - x_2} f_{1,1} x + \frac{x - x_1}{x_2 - x_1} f_{1,2}(x)$$

以此类推, 将这种方法推广到一般情况:

$$F(x) = \frac{x - x_i}{x_{k-1} - x_i} f_{k-1 k-1}(x) + \frac{x - x_{k-1}}{x_i - x_{k-1}} f_{k-1 i}(x)$$

由于这种方法是前面线性插值再进行插值得到的, 因此成为逐次线性插值。

2 几种插值方法应用对比

以我省某水库库水位~蓄水量关系曲线为例作以分析, 该曲线节点见表 4。

表 4 某水库库水位与蓄水量关系表

表 4 呆水库库水位与备水重天系表				
库水位	/m 蓄水量 /m 3•	s- 1		
211	150			
212	300			
213	480			
214	710			
215	1 040			
216	1 570			
217	2 320			
218	3 200			
219	4 335			
220	5 700			
221	7 300			
222	9 170			
223	11 400			
224	13 800			
225	16 400			
226	19 350			
227	22 530			
228	25 780			
228	5 26 730			

线性插值原理简单,在节点选择均匀、合理情况下,计算结果误差不会太大,这里不再进一步阐述,下面主要对比后 3种插值方法的不同。分别采用抛物线插值、拉格朗日插值和逐次线性插值作以上曲线的插值,结果见表 5和图 3^[3]。

3 结语

1)拉格朗日插值与逐次线性插值结果一致,从二者的原

理上分析, 前者结构简单且插值节点不受顺序影响, 但临时增加插值节点需要全部重新进算, 而后者将一个高阶插值归结为线性插值的多次重复. 增加节点不需全部重算。

图 3 插值成果对比图

2)对于水文上常用的水位流量关系线(单一线)、库水位与蓄水量关系线以及洪峰水位(流量)相关线等单调曲线,抛物线插值的效果较为理想。

3)插值结果受插值节点选择影响较大,特别是对抛物线插值和线性插值,一般情况下,节点分配均匀插值结果更趋近于合理。

4)如对精度要求不十分严格,采用线性插值不易出现错误。

表 5 不同插值方法成果对比表

插值节点-	抛物线插值		拉格朗日插值		逐次线性插值	
	插值 结果	是否合理	插值结果	是否合理	插值结果	是否合理
211.5	221	合理	- 11 900	不合理	- 11 900	不合理
212.5	386	合理	1 600	不合理	1 600	不合理
213.5	589	合理	367	不合理	367	不合理
214.5	863	合理	919	合理	919	合理
215.5	1 280	合理	1 250	合理	1 250	合理
216.5	1 920	合理	1 940	合理	1 940	合理
217. 5	2 740	合理	2 730	合理	2 730	合理
218.5	3 740	合理	3 740	合理	3 740	合理
219.5	4 990	合理	4 990	合理	4 990	合理
220.5	6 470	合理	6 470	合理	6 470	合理
221.5	8 200	合理	8 190	合理	8 190	合理
222.5	10 200	合理	10 200	合理	10 200	合理
223.5	12 600	合理	12 600	合理	12 600	合理
224.5	15 100	合理	25 000	合理	25 000	合理
225.5	17 800	合理	17 900	合理	17 900	合理
226.5	20 900	合理	20 700	合理	20 700	合理
227. 5	24 400	合理	25 100	合理	25 100	合理
228.5	26 600	合理	26 600	合理	26 600	合理
229. 5	26 700	合理	74 900	不合理	74 900	不合理

参考文献:

- [1] 邓建中、葛仁杰,程正兴.计算方法[M].西安:西安交通大学出版社,1985.
- [2] 沈建华. 计算数学基础 [M]. 上海: 同济大学出版社, 1989
- [3] 王浩, 等 · 中文 V isual Bas ic5. 0程序开发实用技术 [M]. 南京: 南京大学出版社, 1999.