一 时间与空间

小车以较低的速度 \overline{v} 沿水平轨道先后通过点 A 和点 B. 地面上人测得车通过 A 、 B 两点间的距离和时间与车上的人测量结果相同.

在两个相对作直线运动的参考系中,时间的测量是绝对的,空间的测量也是绝对的,与参考系无关,时间和长度的的绝对性是经典力学或牛顿力学的基础.

第一章 质点运动学

二 相对运动

物体运动的轨迹依赖于观察者所处的参考系运动是相对的 静止参考系、运动参考系也是相对的

第一章 质点运动学

二、绝对运动、牵连运动、相对运动

质点在相对作匀速直线运动的两个坐标系中的位移

1、位矢变换关系

绝对位矢

$$ar{r} = ar{r}' + ar{r}_0$$

绝对 相对
位矢 位矢 牵连位矢

$$\vec{r}_0 = \vec{u} t$$

两边对时间求导, 可得

$$\vec{v} = \vec{v} + \vec{v}_0$$

第一章 质点运动学

$$\vec{v} = \vec{v}' + \vec{u}$$

绝对速度 相对 牵连 速度 速度

加速度的变换关系

$$\vec{a} = \vec{a}' + \vec{a}_0$$

绝对
加速度 相对 牵连
加速度 加速度

$$\therefore \vec{a}_0 = 0$$

$$\vec{a} = \vec{a}$$

> 伽利略速度变换

$$\vec{v} = \vec{v}' + \vec{u}$$

绝对速度

$$\vec{v} = \frac{\mathrm{d}\vec{r}}{\mathrm{d}t}$$

相对速度

$$\vec{v}' = \frac{\mathrm{d}\vec{r}'}{\mathrm{d}t'}$$

牵连速度

注意

 \leq 当 \bar{u} 接近光速时,

加速度关系
$$\frac{d\vec{v}}{dt} = \frac{d\vec{v}'}{dt} + \frac{d\vec{v}}{dt}$$

$$\vec{u}$$

伽利略速度变换不成立!

若
$$\frac{\mathrm{d}\vec{u}}{\mathrm{d}t} = 0 \, \, \text{则} \, \vec{a} = \vec{a}'$$

第一章 质点运动学

例 如图示,一实验者 A 在以 10 m/s 的速率沿水平轨道前进的平板车上控制一台射弹器,此射弹器以与车前进的反方向呈 60°度角斜向上射出一弹丸.此时站在地面上的另一实验者 B 看到弹丸铅直向上运动,求弹丸上升的高度.

解 地面参考系为 S 系 平板车参考系为 S 系

$$an lpha = rac{v'_y}{v'_x}$$

速度变换 $v_x = u + v'_x$ $v_v = v'_v$

第一章 质点运动学

解 地面参考系为 S 系, 平板车参考系为 S 系

$$\tan \alpha = \frac{v'y}{v'x} \qquad v_x = u + v'x \qquad v_y = v'y$$

$$v_x = 0 \quad \therefore v_x' = -u = -10 \,\mathrm{m \cdot s}^{-1}$$

$$\begin{vmatrix} \overline{v} \\ \alpha \end{vmatrix} = \begin{vmatrix} v'_y \end{vmatrix} = \begin{vmatrix} v'_y \end{vmatrix} = \begin{vmatrix} v'_x \tan \alpha \end{vmatrix}$$
$$\begin{vmatrix} v_y \end{vmatrix} = 17.3 \text{m} \cdot \text{s}^{-1}$$

弹丸上升高度

$$y = \frac{v_y^2}{2g} = 15.3$$
m

例:火车停止时,车窗上雨痕向前倾斜 θ_0 角。火车以某一速度匀速前进时,窗上雨痕向后倾斜 θ_1 角。火车加快以另一速度匀速前进时,窗上雨痕向后倾斜 θ_2 角。问车加速前后的速

