Índice general

L.	Pru	eba de	e Hipóte	sis	3
	1.1.	Lectur	a o Alista	amiento de Datos	3
		1.1.1.	Encabez	zado de los Datos	3
		1.1.2.	Resume	n de los Datos	3
		1.1.3.	Datos p	or grupos	4
	1.2.	Prueb	as de Nor	malidad Multivariadas	5
		1.2.1.	Pruebas	de NM Usando la función ${\tt mvn}$ del paquete: ${\bf MVN}.$	5
		1.2.2.	Pruebas	de Shapito Wilk Multivariada	6
	1.3.	Prueb	a M-Box	para Igualdad de Matrices de Var-Cov $(\Sigma_1 = \Sigma_2, n \ge 20)$	6
		1.3.1.	Prueba	de Razón de Verosimilitud	6
		1.3.2.	Una Mo	dificación de la Prueba M-Box	6
			1.3.2.1.	Resultados de esta PH usando la función de usuario	
				prueba_M_Box2()	7
			1.3.2.2.	Resultados de esta PH utilizando la función boxM del	
				paquete biotools del R	7
	1.4.	Prueb	a T2-Hote	elling para: $\underline{\mu}_1 - \underline{\mu}_2 = \underline{\delta}_0$	7
		1.4.1.	$\Sigma_1=\Sigma_2$	$ \Sigma_2 = \Sigma$ -Desconocida, Pob. Normal	7
				Resultados usando la función de usuario	
				<pre>HT2_sigmas_iguales()</pre>	8
			1.4.1.2.	Resultados de esta prueba Utilizando la función	
				HotellingsT2 del paquete ICNP del R	8
			1.4.1.3.	Resultados de esta prueba Utilizando la función	
				T2.test del paquete rrcov del R	8
			1.4.1.4.	Resultados de esta prueba Utilizando la función	
				hotelling.test del paquete Hotelling del R	8
			1.4.1.5.	Estadísticas de la función hotelling.test del paquete	
				Hotelling del R	8
		1.4.2.	$\Sigma_1 eq \Sigma_2$	₂ -Desconocidas, Pob. Normal	9
			1.4.2.1.	Resultados usando la función de usuario	
				HT2_sigmas_diferentes() (Aproximación de: Nel and	
				Van Der Merwe-1986)	9
			1.4.2.2.	Resultados usando la función de usuario	
				HT2_sigmas_diferentes_texto_guia() (Aproximación	
				de: Krishnamoorty and Yu-2004)	10
	1.5.	$\mathbf{\Sigma}_1 = \mathbf{\Sigma}_1$	$\Sigma_2 = \Sigma$ - Γ	Desconocida para n -grande	10
				dos usando la función de usuario	
			HT2 sig	mas iguales ngrande()	10

	1.5.2.	Resultados de esta PH Utilizando la función HotellingsT2 del	
		paquete ICNP del R:	10
1.6.	Prueba	a de Hipótesis para $\mu = \mu_0$. Pob. Normal	11
	1.6.1.	Resultado usando la función de usuario: HT2_mu0	11
	1.6.2.	Resultados de esta PH utilizando la función HottellingsT2 del	
		paquete ICSNP del R	12
	1.6.3.	Resultados de esta PH Utilizando la función T2.test del paquete	
		rrcov del R	12
1.7.	Prueba	a de Hipótesis para $\mu = \mu_0$. n -grande	12
	1.7.1.	Resultados de esta PH usando la función de usuario	
		HT2_mu0_ngrande()	12
	1.7.2.	Resultados utilizando la Función HotellingsT2 del R	12
1.8.	Prueba	a T2-Hotelling para contrastes de medias: $C\mu = \delta_0$. Pob. Normal	13
	1.8.1.	resultados usabdo la función de usuario HT2_CU	13
1.9.	Prueba	a T2-Hotelling para contrastes de medias: $C\mu = \delta_0$. n -Grande	13
	1.9.1.	Resultados usando la función de usuario: HT2_CU_ngrande	13
1.10	. Prueba	a de Razón de Ver. de una Matriz de Var-Cov : $\boldsymbol{\Sigma} = \boldsymbol{\Sigma}_0$. Pob. Normal.	14
	1.10.1.	Prueba de Razón de Verosimilitud	14
		1.10.1.1. resultados usando la función de usuario:	
		sigma_sigma0_ngrande	14
	1.10.2.	Prueba de Razón de Verosimilitud Modificada	14
Bibliog	grafía		14

2 ÍNDICE GENERAL

Capítulo 1

Prueba de Hipótesis

1.1. Lectura o Alistamiento de Datos

1.1.1. Encabezado de los Datos

A continuación se da una vista previa del conjunto de datos:

Tabla 1.1: Emcabezado de Datos

	X1	X2	Х3	Grupos
1	9.6838	8.7045	4.0509	1
2	5.9703	4.5724	8.3056	1
3	1.5094	6.3666	7.5676	1
4				NA
5				NA
6				NA
98	7.8864	6.0692	6.445	3
99	4.1332	4.5396	6.7288	3
100	4.4509	7.6449	8.2376	3

1.1.2. Resumen de los Datos

Tabla 1.2: Resumen de Datos

X1	X2	X3	Grupos
Min. :-1.969	Min. :-0.3808	Min. :-0.1823	1:27
1st Qu.: 3.776	1st Qu.: 3.7231	1st Qu.: 3.2236	2:28
Median: 5.186	Median: 5.1071	Median: 4.7204	3:45
Mean: 5.157	Mean: 5.1503	Mean: 4.9258	NA
3rd Qu.: 6.756	3rd Qu.: 6.6321	3rd Qu.: 6.5206	NA
Max. :11.137	Max.: 9.2089	Max. :11.4573	NA

1.1.3. Datos por grupos

Tabla 1.3: Medias por Grupos

Grupos	X1	X2	Х3
1	4.504767	4.987718	5.178689
2	4.928179	5.102939	4.947521
3	5.690567	5.277362	4.760589

Tabla 1.4: Desviaciones Estándar por Grupos

Grupos	X1	X2	Х3
1	2.740672	1.809656	2.518015
2	2.634428	2.322268	2.916262
3	1.804084	1.706208	2.403054

Tabla 1.5: Varianzas por Grupos

Grupos	X1	X2	Х3
1	7.511285	3.274856	6.340397
2	6.940210	5.392928	8.504582
3	3.254719	2.911147	5.774668

Tabla 1.6: Medianas por Grupos

Grupos	X1	X2	Х3
1	4.3004	4.57240	4.83410
2	4.6078	5.03415	4.94875
3	5.5045	5.22570	4.36050

1.2. Pruebas de Normalidad Multivariadas

1.2.1. Pruebas de NM Usando la función mvn del paquete: MVN.

Tabla 1.7: Resultados de NM Todos los Datos

		-	Test	<u>.</u>		Statistic		p value		Result	-	
		Ī		dia Skew dia Kurt N	osis	8.695416809 -0.48500981 NA		0.56123290 0.62766938 NA		YES YES YES		
		-		Test		Variable	Statistic	p value	Normal	ity	_	
				Shapir		X1 X2	0.9938 0.9882	0.9308 0.5217	YES YES			
				Shapir		X3	0.9878	0.4962	YES			
	n	Mean	S	td.Dev	Media	ın Min	Max	c 25th	n 7	$5 ext{th}$	Skew	Kurtosis
X1 X2 X3	100 100 100	5.156932 5.150320 4.925817	1.	360555 907849 565363	5.1856 5.1070 4.7204	05 -0.3808	9.2089	3.723100	6.632	100 -0	.1529182 .2036691 .2568454	0.0052095 -0.3835989 -0.2877569

Tabla 1.8: Resultados de NM Grupo-1

		_	Test	i		Stati	stic	р	value		Result		
			Mardia Kurtosis			24.3325702815579 1.76902217293395 NA			0.00676492265803443 1 0.0768901744081527 NA				
				Test		Va	riable	Statistic	p value	Normality			
				Shapiro- Shapiro- Shapiro-	Wilk	X1 X2 X3		0.9840 0.9521 0.9786	0.9391 0.2413 0.8304	YES YES YES			
	n	Mea	n	Std.Dev	Med		Min	Ma				Skew	Kurtosis
X1	27	4.50476	7 2	2.740672	4.30	004	-1.9689	9.683	8 2.76530	6.1330	-0.125	2070	-0.4751280
X2 X3	27 27	4.98771 5.17868		1.809656 2.518015	4.57 4.83		-0.3808 0.0305	8.704 10.684			-0.488 0.094		1.0733485 -0.3876734

Tabla 1.9: Prueba de Normalidad Multivariada Grupo-1

	Prueba	Valor Estadística	Valor-p	Resultado
1	Mardia Skewness	24.3325702815579	0.00676492265803443	NO
2	Mardia Kurtosis	1.76902217293395	0.0768901744081527	YES
3	MVN	NA	NA	NO

Tabla 1.10: Prueba de Normalidad Univariada

	Prueba	Variables	Valor Estadística	Valor-p	Resultado
1	Shapiro-Wilk	X1	0.9840	0.9391	YES
2	Shapiro-Wilk	X2	0.9521	0.2413	YES
3	Shapiro-Wilk	X3	0.9786	0.8304	YES

Método	Paquete	Función	Estadística	$p ext{-Valor}$
Shapiro-Wilk normality test	mvnormtest	mshapiro.test	0.9802882	0.1399768
Multivariate Shapiro-Wilk normality test	RVAideMemoire	mshapiro.test	0.9802882	0.1399768

Tabla 1.11: Prueba Shapiro Wilk Multivariada Datos-Completos

Método	Paquete	Función	Estadística	$p ext{-Valor}$
Multivariate Shapiro-Wilk normality test	mvnormtest	mshapiro.test	0.984109	0.7327284
Multivariate Shapiro-Wilk normality test	RVAideMemoire	mshapiro.test	0.984109	0.7327284

Tabla 1.12: Prueba Shapiro Wilk Multivariada Datos-Generados

1.2.2. Pruebas de Shapito Wilk Multivariada

1.3. Prueba M-Box para Igualdad de Matrices de Var-Cov ($\Sigma_1 = \Sigma_2, n \ge 20$)

Se desea contarstar las hipótesis:

$$\begin{cases} H_0 : \ \Sigma_1 = \Sigma_2 \\ \\ H_a : \ \Sigma_1 \neq \Sigma_2 \end{cases}$$

1.3.1. Prueba de Razón de Verosimilitud.

Haciendo $M = -2 \text{ Log } \Lambda$, se tiene que:

$$M = \left[\sum_{i=1}^{g} (n_i - 1)\right] \operatorname{Log}|\mathbf{S}_p| - \sum_{i=1}^{g} (n_i - 1) \operatorname{Log}|\mathbf{S}_i|$$
$$= v \operatorname{Log}|\mathbf{S}_p| - \sum_{i=1}^{g} v_i \operatorname{Log}|\mathbf{S}_i|$$
$$M = \sum_{i=1}^{g} v_i \operatorname{Log}|\mathbf{S}_i^{-1}\mathbf{S}_p| \sim \chi_k^2$$

y rechazamos H_0 si $M > \chi^2_{\alpha; k}$ con $k = \frac{p(p+1)(g-1)}{2}$, n: grande

Bajo H_0 -cierto, se espera que las matrices de Var-Cov muestrales no sean muy diferentes, en cuyo caso, el valor de λ estaría cerca a uno y por lo tanto M-sería pequeño.

1.3.2. Una Modificación de la Prueba M-Box

Test M de Box (n-pequeño) Ahora, sea

$$C = (1 - u)M = (1 - u)\sum_{i=1}^{g} v_i \operatorname{Log}|\mathbf{S}_i^{-1}\mathbf{S}_p|$$

donde:
$$u = \left[\sum_{i=1}^{g} \left(\frac{1}{n_i - 1} \right) - \frac{1}{n - g} \right] \left(\frac{2p^2 + 3p - 1}{6(p+1)(g-1)} \right)$$

y por un resultado estadístico se tiene que:

$$C = (1 - u)M \quad \underline{d} \quad \chi_k^2$$

Con: $k = \left[gp + g\frac{1}{2}p(p+1)\right] - \left[gp + \frac{1}{2}p(p+1)\right] = \frac{p(p+1)}{2}(g-1)$ -grados de libertad.

Se rechaza H_0 , si $C > \chi^2_{\alpha; k}$ (Se comporta bien $n_i > 20$ y con p y g-no mayores a 5)

ie. C-converge en distribución a una chi-cuadrado con $k=\frac{p(p+1)(g-1)}{2}$ grados de libertad.

1.3.2.1. Resultados de esta PH usando la función de usuario prueba_M_Box2()

$$\frac{M}{4.16033}$$
 $\frac{U}{0.06135}$ $\frac{C}{3.9051}$ $\frac{gl}{6}$ $\frac{\chi\text{-Tabla}}{12.5916}$ $\frac{Valor-p}{0.68952}$

1.3.2.2. Resultados de esta PH utilizando la función boxM del paquete biotools del R.

Box's M-test for Homogeneity of Covariance Matrices

data: datos[1:55, 1:3] Chi-Sq (approx.) = 3.9051, df = 6, p-value = 0.6895

Estadístico=
$$C \sim \chi^2$$
 gl p -Valor 3.9051 6 0.68952

1.4. Prueba T2-Hotelling para: $\underline{\mu}_1 - \underline{\mu}_2 = \underline{\delta}_0$.

1.4.1. $\Sigma_1 = \Sigma_2 = \Sigma$ -Desconocida, Pob. Normal

Se desea contrastar las hipótesis:

$$\begin{cases} H_0 \ : \ \underline{\mu}_1 - \underline{\mu}_2 = \underline{\delta}_0 \\ \\ H_a \ : \ \underline{\mu}_1 - \underline{\mu}_2 \neq \underline{\delta}_0 \end{cases}$$

En este caso, se usa como estimador de Σ a la varianza ponderada dada por:

$$S_p = \hat{\Sigma} = \frac{(n-1)S_1 + (m-1)S_2}{n+m-2},$$

Bajo H_0 -cierto, el estadístico de prueba es:

$$T^{2} = \frac{nm}{n+m} \left(\overline{\underline{\mathbf{x}}} - \overline{\underline{\mathbf{y}}} - \underline{\delta}_{0} \right)^{t} \mathbf{S}_{p}^{-1} \left(\overline{\underline{\mathbf{x}}} - \overline{\underline{\mathbf{y}}} - \underline{\delta}_{0} \right) \sim \frac{(n+m-2)p}{n+m-p-1} F_{p;\ n+m-p-1} = kF$$

con:

$$k = \frac{(n+m-2)p}{n+m-p-1}$$

Rechazamos H_0 si:

$$T_0^2 > kF = \frac{(n+m-2)p}{n+m-p-1} F_{\alpha : p, n+m-p-1}$$

O equivalentemente, rechazamos H_0 si:

$$F_0 = \frac{1}{k}T_0^2 = \frac{n+m-p-1}{(n+m-2)p}T_0^2 > F_{tabla} = F_{\alpha : p, n+m-p-1}$$

1.4.1.1. Resultados usando la función de usuario HT2_sigmas_iguales()

Se crea una función de usuario llamada: HT2_sigmas_iguales la cual se utiliza a continuación.

Existen varias funciones en distintos paquetes del R que se utilizan para esta prueba de hipótesis cuando $\Sigma_1 = \Sigma_2 = \Sigma$ -Desconocida, Pob. Normal, las cuales se ilustran a continuación.

1.4.1.2. Resultados de esta prueba Utilizando la función HotellingsT2 del paquete ICNP del R.

Hotelling's two sample T2-test

data: x and y T.2 = 0.12435, df1 = 3, df2 = 51, p-value = 0.9453 alternative hypothesis: true location difference is not equal to c(0,0,0)

Estadístico=
$$F_0 \sim F$$
 gl_{num} gl_{den} p -Valor 0.12435 3 51 0.9453

1.4.1.3. Resultados de esta prueba Utilizando la función T2.test del paquete rrcov del R.

Two-sample Hotelling test

data: x and y T2 = 0.38767, F = 0.12435, df1 = 3, df2 = 51, p-value = 0.9453 alternative hypothesis: true difference in mean vectors is not equal to (0,0,0) sample estimates: X1 X2 X3 mean x-vector 4.504767 4.987719 5.178689 mean y-vector 4.928179 5.102939 4.947521

Tabla 1.13: Medias de Resultados con T2.test

	X1	X2	Х3
mean x-vector	4.504767	4.987718	5.178689
mean y-vector	4.928179	5.102939	4.947521

1.4.1.4. Resultados de esta prueba Utilizando la función hotelling.test del paquete Hotelling del R.

Test stat: 0.38767 Numerator df: 3 Denominator df: 51 P-value: 0.9453

1.4.1.5. Estadísticas de la función hotelling.test del paquete Hotelling del R.

1.4.2. $\Sigma_1 \neq \Sigma_2$ -Desconocidas, Pob. Normal

Se desea contrastar las hipótesis:

$$\begin{cases} H_0 \ : \ \underline{\mu}_1 - \underline{\mu}_2 = \underline{\delta}_0 \\ \\ H_a \ : \ \underline{\mu}_1 - \underline{\mu}_2 \neq \underline{\delta}_0 \end{cases}$$

Bajo H_0 -cierto, el estadístico de prueba es:

$$T^{2} = \left(\overline{\mathbf{x}} - \overline{\mathbf{y}} - \underline{\delta}_{0}\right)^{t} \left[\frac{S_{1}}{n} + \frac{S_{2}}{m}\right]^{-1} \left(\overline{\mathbf{x}} - \overline{\mathbf{y}} - \underline{\delta}_{0}\right) \sim \frac{vp}{v - p + 1} F_{p; v - p + 1} = kF$$

$$con: \quad k = \frac{vp}{v - p + 1} \quad \text{y} \quad v = \frac{tr(S_{e}) + \left[tr(S_{e})\right]^{2}}{\sum_{i=1}^{2} \frac{1}{n_{i} - 1} \left\{tr(V_{i}) + \left[tr(V_{i})\right]^{2}\right\}}$$

es decir:

$$v = \frac{tr(S_e^2) + \left[tr(S_e)\right]^2}{\frac{1}{n_1 - 1} \left\{tr(V_1^2) + \left[tr(V_1)\right]^2\right\} + \frac{1}{n_2 - 1} \left\{tr(V_2^2) + \left[tr(V_2)\right]^2\right\}}$$
$$V_i = \frac{S_i}{n_i} \quad \text{y} \quad S_e = V_1 + V_2 = \frac{S_1}{n} + \frac{S_2}{m}.$$

Rechazamos H_0 si: $T_0^2 > kF$ ó $F_0 = \frac{1}{k}T_0^2 > F_{table}$

1.4.2.1. Resultados usando la función de usuario HT2_sigmas_diferentes() (Aproximación de: Nel and Van Der Merwe-1986)

Se crea una función de usuario llamada: $HT2_sigmas_diferentes$ la cual se utiliza a continuación.

$$T2$$
 v $K = vp/(v-p+1)$ F_0 df_1 df_2 F_{Tabla} Valor- p 0.386428 53 3.11765 0.123949 3 51 2.78623 0.94554

Para este caso de $\Sigma_1 \neq \Sigma_2$ -Desconocida, Pob. Normal, **No conozco si existen** funciones en **R** para realizar dicha prueba, si conocen alguna me la hacen saber por favor.

1.4.2.2. Resultados usando la función de usuario HT2_sigmas_diferentes_texto_guia() (Aproximación de: Krishnamoorty and Yu-2004)

Se crea una función de usuario llamada: HT2_sigmas_diferentes_texto_guia la cual se utiliza a continuación.

Para este caso el v se calcula como sigue:

$$v = \frac{p + p^{2}}{\frac{1}{n_{1}} \left\{ tr \left[(V_{1}S_{e}^{-1})^{2} \right] + \left[tr (V_{1}S_{e}^{-1}) \right]^{2} \right\} + \frac{1}{n_{2}} \left\{ tr \left[(V_{2}S_{e}^{-1})^{2} \right] + \left[tr (V_{2}S_{e}^{-1}) \right]^{2} \right\}}$$

$$\frac{T2}{0.386428} \frac{v}{211} \frac{K = vp/(v - p + 1)}{3.02871} \frac{F_{0}}{0.127589} \frac{df_{1}}{3} \frac{df_{2}}{209} \frac{F_{Tabla}}{2.6478} \frac{Valor-p}{0.943665}$$

1.5. $\Sigma_1 = \Sigma_2 = \Sigma$ -Desconocida para *n*-grande

Ahora, Para Muestras Grandes, (igualmente para la PH con: $\Sigma_1 = \Sigma_2 = \Sigma$ -Desconocida)

Se desea contrastar las hipótesis:

$$\begin{cases} H_0 : \underline{\mu}_1 - \underline{\mu}_2 = \underline{\delta}_0 \\ H_a : \underline{\mu}_1 - \underline{\mu}_2 \neq \underline{\delta}_0 \end{cases}$$

Donde el tamaño de muestra utilizado n-es grande.

Bajo H_0 -cierto, el estadístico de prueba es:

$$\chi^2 = \frac{nm}{n+m} \left(\overline{\underline{\mathbf{x}}} - \overline{\underline{\mathbf{y}}} - \underline{\delta}_0 \right)^t \mathbf{S}_p^{-1} \left(\overline{\underline{\mathbf{x}}} - \overline{\underline{\mathbf{y}}} - \underline{\delta}_0 \right) \sim \chi_p^2$$

Rechazamos H_0 si:

$$\chi_0^2 > \chi_{\alpha;p}$$

1.5.1. Resultados usando la función de usuario HT2_sigmas_iguales_ngrande()

Se crea una función de usuario llamada: HT2_sigmas_iguales_ngrande la cual se utiliza a continuación.

$$\frac{\chi_0^2}{0.387667}$$
 $\frac{df}{3}$ $\frac{\chi_{Tabla}}{7.81473}$ $\frac{\text{Valor-}p}{0.942778}$

1.5.2. Resultados de esta PH Utilizando la función HotellingsT2 del paquete ICNP del R:

Hotelling's two sample T2-test

data: x and y T.2 = 0.38767, df = 3, p-value = 0.9428 alternative hypothesis: true location difference is not equal to c(0,0,0)

Estadístico=
$$\chi_0 \sim \chi^2$$
 gl p-Valor 0.38767 3 0.94278

1.6. Prueba de Hipótesis para $\mu = \mu_0$. Pob. Normal

Se desean contrastar las hipótesis:

$$\begin{cases} H_0 : \underline{\mu} = \underline{\mu_0} \\ H_a : \underline{\mu} \neq \underline{\mu_0} \end{cases}$$

El estadístico de prueba es:

$$T^{2} = \left(\overline{\underline{\mathbf{x}}} - \underline{\mu}_{0}\right)^{t} \left(\frac{1}{n}\mathbf{S}\right)^{-1} \left(\overline{\underline{\mathbf{x}}} - \underline{\mu}_{0}\right) = n(\overline{\underline{\mathbf{x}}} - \underline{\mu}_{0})^{t}\mathbf{S}^{-1}(\overline{\underline{\mathbf{x}}} - \underline{\mu}_{0}),$$

Se utiliza el siguiente resultado:

$$T^2 \sim \frac{(n-1)p}{(n-p)} F_{p,n-p} = k F$$
, con: $k = \frac{(n-1)p}{(n-p)}$

o equivalentemente:

$$F = \frac{1}{k}T^2 = \frac{(n-p)}{(n-1)p} T^2 \sim F_{p, n-p},$$

donde, F_p , n-p-denota una v.a con distribución F con p y n-p grados de libertad respectivamente.

Al nivel de significancia del α %, rechazamos H_0 : $\underline{\mu} = \underline{\mu}_0$, en favor de: H_a : $\underline{\mu} \neq \underline{\mu}_0$, si el valor de:

$$T_0^2 = n(\overline{\underline{\mathbf{x}}} - \underline{\mu}_0)^t \mathbf{S}^{-1}(\overline{\underline{\mathbf{x}}} - \underline{\mu}_0) > kF = \frac{(n-1)p}{(n-p)} F_{\alpha;p,n-p},$$

o equivalentemente, rechazamos H_0 si:

$$F_0 = \frac{(n-p)}{(n-1)p}T^2 = \frac{1}{k}T_0^2 > F_{\alpha;p,n-p},$$

1.6.1. Resultado usando la función de usuario: HT2_mu0

Se crea una función de usuario llamada: $HT2_mu\theta$ con la cual se obtinen los siguinetes resultados:

$$T2$$
 K F_0 df_1 df_2 F_{Tabla} Valor- p 307.064 3.25 94.4812 3 24 3.00879 1.9873e-13

En R existen varias funciones en distintos paquetes o librerias, las cuales se utilizan para realizar este tipo de pruebas de hipóteis. A continuación se ilustran varias de ellas

Se recomienda leer muy bien las ayudas que existen sobre estas funciones para utilizarlas de manera adecuada y definir de de forma apropiada sus respectivos argumentos.

1.6.2. Resultados de esta PH utilizando la función HottellingsT2 del paquete ICSNP del R.

Hotelling's one sample T2-test

data: x T.2 = 94.481, df1 = 3, df2 = 24, p-value = 1.987e-13 alternative hypothesis: true location is not equal to c(0,0,0)

1.6.3. Resultados de esta PH Utilizando la función T2.test del paquete rrcov del R.

T2.test(x)

One-sample Hotelling test

data: x T2 = 307.064, F = 94.481, df1 = 3, df2 = 24, p-value = 1.987e-13 alternative hypothesis: true mean vector is not equal to (0, 0, 0)'

sample estimates: X1 X2 X3 mean x-vector 4.504767 4.987719 5.178689

1.7. Prueba de Hipótesis para $\mu = \mu_0$. n-grande

En esta caso, el estadístico de prueba utilizado es:

$$\chi_0^2 = n(\overline{\underline{\mathbf{x}}} - \underline{\mu}_0)^t \mathbf{S}^{-1}(\overline{\underline{\mathbf{x}}} - \underline{\mu}_0) \underset{\text{Bajo } H_0}{\sim} \chi_{(p)}^2$$

La regla de decisión es: Rechazar H_0 si $\chi_0^2 > \chi_{\alpha;p}^2$.

1.7.1. Resultados de esta PH usando la función de usuario HT2_mu0_ngrande()

Para este se creo una función de usuario llamada: $HT2_mu0_ngrande$ la cual se utiliza a continuación.

$$\frac{\chi_0^2}{307.064} \frac{df}{3} \frac{\chi_{Tabla}}{7.81473} \frac{\text{Valor-}p}{0}$$

1.7.2. Resultados utilizando la Función HotellingsT2 del R

Igualmente, también se puede suar la función ${\tt HotellingsT2}$ del R de la siguiente forma. ${\tt Hotelling's}$ one sample T2-test

data: grupo1[, 1:3] T.2 = 307.06, df = 3, p-value < 2.2e-16 alternative hypothesis: true location is not equal to c(0,0,0)

1.8. Prueba T2-Hotelling para contrastes de medias: $C\mu = \delta_0$. Pob. Normal.

Se desea contrastar las hipótesis:

$$\begin{cases} H_0 : C\underline{\mu} = \underline{\gamma} \\ H_0 : C\underline{\mu} \neq \underline{\gamma} \end{cases}, \quad \text{con} \quad \underline{\gamma} = \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_k \end{pmatrix} - \text{Vector de Constantes.}$$

Un estimador insesgado para $C\mu$ es: $C\overline{\mathbf{x}}$, el cual tiene la siguiente distribución:

$$C\overline{\underline{\mathbf{x}}} \sim N_k \left(C\underline{\mu}, C\Sigma_{\overline{\underline{\mathbf{x}}}}C^T\right)$$
, es decir:

$$C_{\overline{\underline{\mathbf{X}}}} \sim N_k \left(C\underline{\mu} , \frac{1}{n} C \Sigma C^t \right), \text{ pues : } \Sigma_{\overline{\underline{\mathbf{X}}}} = \frac{\Sigma}{n}.$$

Como Σ -es desconocida se usa la estadística de prueba:

$$T_0^2 = n \left(C \overline{\underline{\mathbf{x}}} - \underline{\gamma} \right)^t \left[C \mathbf{S} C^t \right]^{-1} \left(C \overline{\underline{\mathbf{x}}} - \underline{\gamma} \right) \sim \frac{(n-1)k}{n-k} F_{k,n-k} = cF$$

Se rechaza H_0 si: $T_0^2 > cF$ ó $F_0 = \frac{1}{c}T_0^2 > F_{tabla}$, $c = \frac{(n-1)k}{n-k}$.

1.8.1. resultados usabdo la función de usuario HT2_CU

Se crea una función de usuario llamada: HT2_CU con la cual se obtinen los siguinetes resultados:

1.9. Prueba T2-Hotelling para contrastes de medias: $C\mu = \delta_0$. n-Grande.

En este caso el estadístico de prueba es:

$$\chi_0^2 = n \left(C \overline{\mathbf{x}} - \underline{\gamma} \right)^t \left[C \mathbf{S} C^t \right]^{-1} \left(C \overline{\mathbf{x}} - \underline{\gamma} \right) \sim \chi_k^2$$

Se rechaza H_0 si: $\chi_0^2 > \chi_{Tabla} = \chi_{\alpha;k}$

1.9.1. Resultados usando la función de usuario: HT2_CU_ngrande

Se crea una función de usuario llamada: HT2_CU_ngrande con la cual se obtinen los siguinetes resultados:

$$\frac{\chi_0^2}{212.868}$$
 $\frac{df}{2}$ $\frac{\chi_{Tabla}}{5.99146}$ Valor- p

1.10. Prueba de Razón de Ver. de una Matriz de Var-Cov: $\Sigma = \Sigma_0$. Pob. Normal.

Se tiene interés en la siguiente PH:

$$\begin{cases} H_0 : \mathbf{\Sigma} = \mathbf{\Sigma}_0 \\ \\ H_a : \mathbf{\Sigma} \neq \mathbf{\Sigma}_0 \end{cases}$$

1.10.1. Prueba de Razón de Verosimilitud.

La Estadística de Razon de Verosimilitud para esta PH es:

$$\lambda = \frac{|\mathbf{S}|^{\frac{v}{2}}}{|\mathbf{\Sigma}_0|^{\frac{v}{2}}} \operatorname{Exp} \left\{ -\frac{1}{2} \left[v \operatorname{tr}(\mathbf{S} \mathbf{\Sigma}_0^{-1}) - v p \right] \right\}$$

y haciendo $\lambda^* = -2\log \lambda$, se tiene que:

$$\lambda^* = v \left[\text{Log} |\mathbf{\Sigma}_0| - \text{Log} |\mathbf{S}| + \text{tr}(\mathbf{S}\mathbf{\Sigma}_0^{-1}) - p \right]$$

Bajo H_0 -cierta, se tiene que:

$$\lambda^{\star} \sim \chi_k^2$$
, $para \quad n-1$ grande

$$con, k = \frac{p(p+1)}{2}.$$

Rechazamos H_0 si.

$$\lambda^{\star} > \chi^2_{\alpha \cdot k}$$

1.10.1.1. resultados usando la función de usuario: sigma_sigma0_ngrande

Para este se creo una función de usuario llamada: sigma_sigma0_ngrande la cual se utiliza a continuación.

$$\frac{\lambda_0^{\star}}{21.7799}$$
 df χ_{Tabla} Valor-p $\frac{\lambda_0^{\star}}{21.7799}$ 0.00132724

1.10.2. Prueba de Razón de Verosimilitud Modificada.

Una Modificación para λ^* -fue propuesta por Bartlet, (para el caso de muestras pequeñas) la cual es:

$$\lambda_1^{\star} = \left\{1 - \frac{1}{6(n-1)} \left[2p + 1 - \frac{2}{p+1}\right]\right\} \lambda^{\star} \sim \chi_k^2$$

es decir.

$$\lambda_1^{\star} = c\lambda^{\star} \sim \chi_k^2$$

con

$$c = 1 - \frac{1}{6(n-1)} \left[2p + 1 - \frac{2}{p+1} \right]$$

que usarse para tamaños de muestras moderadamente pequeños.