ADC Interfacing on eYFi-Mega Board

e-Yantra Team

Embedded Real-Time Systems (ERTS) Lab Indian Institute of Technology, Bombay

> IIT Bombay July 5, 2022

Analog-to-Digital Converter (ADC) is a circuitry that takes an analog signal as input and provides the digital form of it as output.

Analog-to-Digital Converter (ADC) is a circuitry that takes an analog signal as input and provides the digital form of it as output.

Need for ADC:

Most of the physical quantities around us are continuous: the quantity can take any value within the certain range, for example: atmospheric temperature.

Analog-to-Digital Converter (ADC) is a circuitry that takes an analog signal as input and provides the digital form of it as output.

- Most of the physical quantities around us are continuous: the quantity can take any value within the certain range, for example: atmospheric temperature.
- ② Since micro-controller is a digital device for further processing, the Analog Signal needs to converted into digital signal.

Analog-to-Digital Converter (ADC) is a circuitry that takes an analog signal as input and provides the digital form of it as output.

- Most of the physical quantities around us are continuous: the quantity can take any value within the certain range, for example: atmospheric temperature.
- Since micro-controller is a digital device for further processing, the Analog Signal needs to converted into digital signal.
- Hence, we need to convert the analog signal into digital format using ADC.

Analog-to-Digital Converter (ADC) is a circuitry that takes an analog signal as input and provides the digital form of it as output.

- Most of the physical quantities around us are continuous: the quantity can take any value within the certain range, for example: atmospheric temperature.
- Since micro-controller is a digital device for further processing, the Analog Signal needs to converted into digital signal.
- Hence, we need to convert the analog signal into digital format using ADC.

- Sampling
- Quantization
- Encoding

- Sampling
- Quantization
- Encoding
- Sampling: Converts continuous time analog signal into discrete version of input

- Sampling
- Quantization
- Encoding
- Sampling: Converts continuous time analog signal into discrete version of input

- Sampling
- Quantization
- Encoding
- Sampling: Converts continuous time analog signal into discrete version of input

- Sampling
- Quantization
- Encoding
- Quantization: Maps range of input analog values to nearest integer value

- Sampling
- Quantization
- Encoding
- Quantization: Maps range of input analog values to nearest integer value

- Sampling
- Quantization
- Encoding
- Encoding: Encodes quantized signal into sequence of binary bits

- Sampling
- Quantization
- Encoding
- Encoding: Encodes quantized signal into sequence of binary bits

Features of in-built ADC

Features of in-built ADC

- 10-bit Resolution
- 13 260 μ s Conversion Time
- 16 Multiplexed Single Ended Input Channels
- 14 Differential Input Channels
- 0 VCC ADC Input Voltage Range
- Selectable 2.56V or 1.1V ADC Reference Voltage
- Free Running or Single Conversion Mode
- Interrupt on ADC Conversion Complete

ADC Channels

ADC Channels

Pin Name	ADC Channel
PF0	ADC0
PF1	ADC1
PF2	ADC2
PF3	ADC3
PF4	ADC4
PF5	ADC5
PF6	ADC6
PF7	ADC7

Pin Name	ADC Channel
PK0	ADC8
PK1	ADC9
PK2	ADC10
PK3	ADC11
PK4	ADC12
PK5	ADC13
PK6	ADC14
PK7	ADC15

ADC Header on eYFi-Mega Board

ADC Header on eYFi-Mega Board

NO DO DO DO DO DO DO DO										
ADC0 ADC2 ADC4 ADC6 ADC8 ADC10 ADC12 ADC14 PF0 PF2 PF4 PF6 PK0 PK2 PK4 PK6		PF1	PF3	PF5	PF7	PK1	РК3	PK5	PK7	
PF0 PF2 PF4 PF6 PK0 PK2 PK4 PK6 9		ADC1	ADC3	ADC5	ADC7	ADC9	ADC11	ADC13	ADC15	
GPIO2 ROC PD4 ROC PD5 ROC PD5 ROC PD5 ROC PD6 ROC PD7 ROC		ADC0	ADC2	ADC4	ADC6	ADC8	ADC10	ADC12	ADC14	l
GPIO1 GPIO2 GPIO2 PRI GPIO3 AVR. RESET PRI PRI GPIO3 PRI GPIO3 REST PRI GROUP	٦	PF0	PF2	PF4	PF6	PK0	PK2	PK4	PK6	r
GPIO1 GPIO2 GPIO2 PRO				6V 1	2 5 7	0 44 43	15			
GPIO2 AND DE COMPANION DE COMP		ক্	1	ĕÕÒ	٩	٥		√k⁄2 (1)	Ž4.	
000 00 00 00 00 00 00 00 00 00 00 00 00	1	ON TO	S	₹ ○ ○	2 4 6	8 10 12	2 14 GND		XZ,	1
	0.		Ž. (
PC			も ND	Í					p = GPIC v(O O)	
PAI									'''\—	PΑ
PRO										
POC										
P2				■						
P. P. P. P. P. P. P. P.							AVR RE			
P.C. P.C. P.C. P.C. P.C. P.C. P.C. P.C.					_	_				
PC P2 P2 P3 P4 P4 P4 P4 P4 P4 P4	PLO	P	H7							
UART ORD COSP (100 100 100 100 100 100 100 100 100 10		e O O P				0.00				
SND		(5 5					(00487944)			5∖
RX3 TX3 ICSP MISO PF RX2 TX2 MQSI PF RX1 TX1 SCK PF		UART				E E °	(0040,1945)	RICCIAFHS	SPI	
RX3	SNC	(o	ND		1 00	2			10 💿 💿	GI
RX1 TX1 Z SCK DP					- IC:	5P		MIŞ	ю(<mark>о о</mark>)	P
30.70						3		MQ	sı(💿 💿)	P
		(=	_			

• It is an electronic device which is responsive to light

- It is an electronic device which is responsive to light
- The resistance values of LDR:

- It is an electronic device which is responsive to light
- The resistance values of LDR:
 - O Darkness: several mega-ohms

- It is an electronic device which is responsive to light
- The resistance values of LDR:
 - O Darkness: several mega-ohms
 - ② Brightness: hundred ohms

- It is an electronic device which is responsive to light
- The resistance values of LDR:
 - O Darkness: several mega-ohms
 - ② Brightness: hundred ohms

Interfacing Diagram

Interfacing Diagram

Assignment 1
ADC Conversion
ADC Conversion
Assignment 2

Assignment 1

Problem Statement: Printing the values of LDR in Serial Monitor

1 Problem Statement:

Printing the values of LDR in Serial Monitor

• LDR Pin » A0

- Problem Statement: Printing the values of LDR in Serial Monitor
 - LDR Pin » A0
- Code:

- Problem Statement:
 - Printing the values of LDR in Serial Monitor
 - LDR Pin » A0
- Code:

```
//Select the input pin for LDR
SensorPin = A0

//Getting LDR values using the function analogRead()
SensorVal = analogRead(SensorPin)

//Printing the values in Serial Monitor
Serial.println(SensorVal)
```


- Problem Statement:
 - Printing the values of LDR in Serial Monitor
 - LDR Pin » A0
- Code:

```
//Select the input pin for LDR
SensorPin = A0

//Getting LDR values using the function analogRead()
SensorVal = analogRead(SensorPin)

//Printing the values in Serial Monitor
Serial.println(SensorVal)
```


$$Vo = \frac{R2}{R1 + R2} * Vin$$

 Voltage received by A0 pin can be found by using following formula:

$$Vo = \frac{R2}{R1 + R2} * Vin$$

• Given: R2 = 100K ohms and Vin = 5V

$$Vo = \frac{R2}{R1 + R2} * Vin$$

- Given: R2 = 100K ohms and Vin = 5V
 - ① Darkness: 1 mega-ohms

$$Vo = \frac{R2}{R1 + R2} * Vin$$

- Given: R2 = 100K ohms and Vin = 5V
 - ① Darkness: 1 mega-ohms :: Vo =

$$Vo = \frac{R2}{R1 + R2} * Vin$$

- Given: R2 = 100K ohms and Vin = 5V
 - ① Darkness: 1 mega-ohms :: Vo = 0.45V

$$Vo = \frac{R2}{R1 + R2} * Vin$$

- Given: R2 = 100K ohms and Vin = 5V
 - ① Darkness: 1 mega-ohms :: Vo = 0.45V
 - ② Brightness: hundred ohms

$$Vo = \frac{R2}{R1 + R2} * Vin$$

- Given: R2 = 100K ohms and Vin = 5V
 - Darkness: 1 mega-ohms :: Vo = 0.45V
 - @ Brightness: hundred ohms :: Vo =

$$Vo = \frac{R2}{R1 + R2} * Vin$$

- Given: R2 = 100K ohms and Vin = 5V
 - ① Darkness: 1 mega-ohms :: Vo = 0.45V
 - Brightness: hundred ohms :: Vo = 4.99V

$$\mbox{Digital Value} = \frac{\mbox{Resolution of ADC} * \mbox{Analog Voltage Measured}}{\mbox{Reference Voltage}}$$

• Following is the conversion formula for ADC:

$$\mbox{Digital Value} = \frac{\mbox{Resolution of ADC} * \mbox{Analog Voltage Measured}}{\mbox{Reference Voltage}}$$

ADC on eYFi-Mega: 10-bit ADC

$$\mbox{Digital Value} = \ \frac{\mbox{Resolution of ADC} * \mbox{Analog Voltage Measured}}{\mbox{Reference Voltage}}$$

- ADC on eYFi-Mega: 10-bit ADC
- For example: Resolution of ADC = 1023, Reference Voltage = 5V

$$\mbox{Digital Value} = \ \frac{\mbox{Resolution of ADC} * \mbox{Analog Voltage Measured}}{\mbox{Reference Voltage}}$$

- ADC on eYFi-Mega: 10-bit ADC
- \bullet For example: Resolution of ADC = 1023, Reference Voltage = 5V
 - Analog voltage = 2.12 V => Digital value =

$$\mbox{Digital Value} = \ \frac{\mbox{Resolution of ADC} * \mbox{Analog Voltage Measured}}{\mbox{Reference Voltage}}$$

- ADC on eYFi-Mega: 10-bit ADC
- \bullet For example: Resolution of ADC = 1023, Reference Voltage = 5V
 - Analog voltage = 2.12 V => Digital value = 433

$$\mbox{Digital Value} = \ \frac{\mbox{Resolution of ADC} * \mbox{Analog Voltage Measured}}{\mbox{Reference Voltage}}$$

- ADC on eYFi-Mega: 10-bit ADC
- \bullet For example: Resolution of ADC = 1023, Reference Voltage = 5V
 - ♠ Analog voltage = 2.12 V => Digital value = 433
 - ② Digital value = 863 => Analog voltage =

$$\mbox{Digital Value} = \ \frac{\mbox{Resolution of ADC} * \mbox{Analog Voltage Measured}}{\mbox{Reference Voltage}}$$

- ADC on eYFi-Mega: 10-bit ADC
- \bullet For example: Resolution of ADC = 1023, Reference Voltage = 5V
 - ♠ Analog voltage = 2.12 V => Digital value = 433
 - ② Digital value = 863 => Analog voltage = 4.22 V

$$\mbox{Digital Value} = \ \frac{\mbox{Resolution of ADC} * \mbox{Analog Voltage Measured}}{\mbox{Reference Voltage}}$$

- ADC on eYFi-Mega: 10-bit ADC
- \bullet For example: Resolution of ADC = 1023, Reference Voltage = 5V
 - ♠ Analog voltage = 2.12 V => Digital value = 433
 - ② Digital value = 863 => Analog voltage = 4.22 V

Assignment 1
ADC Conversion
ADC Conversion
Assignment 2

Assignment 2

Problem Statement: Setting threshold for turning the LED On or Off

Problem Statement:

- LDR Pin » A0
- LED Pin » 6

Problem Statement:

- LDR Pin » A0
- LED Pin » 6
- Code:

Problem Statement:

- LDR Pin » A0
- LED Pin » 6
- Code:

```
//setting led as output
pinMode(13, OUTPUT)

//logic for turning the led on or off
if(SensorVal < threshold)
=>> turn on led
else
=>> turn off led
```


Problem Statement:

- LDR Pin » A0
- LED Pin » 6
- Code:

```
//setting led as output
pinMode(13, OUTPUT)

//logic for turning the led on or off
if(SensorVal < threshold)
==> turn on led
else
==> turn off led
```


Assignment 1
ADC Conversion
ADC Conversion
Assignment 2

Thank You!

Post your queries on: helpdesk@e-yantra.org

