

PWM論學認工作展理

哈尔滨工业大学空间控制与惯性技术研究中心解伟男

目 录

- 1 T形单边电路
- 2 H形桥式电路
 - 2.1 双极性输出
 - 2.2 单极性输出
 - 2.3 有限单极性输出
- 3 H形桥式电路和升、降压斩波电路的关系

1 T形单边电路

- o T形单边电路工作原理
 - n T1和T2的控制电压相位相反
 - n 改变控制信号的占空比可以实现对电 机的控制
- T形单边电路特点
 - n 为了电机正反旋转需要双电源
 - n 晶体管承受两倍电源电压
 - n 应用少

单极性or双极性?

2 H形桥式电路

- o H形桥式电路
 - n 输入、输出信号的频率 称为<mark>开关频率</mark>
 - n 输入、输出信号的周期 称为<mark>开关周期</mark>
 - n 该电路三种控制方法: 双极性输出、单极性输 出和有限单极性输出

2 H形桥式电路

- o 假设条件
 - n 开关器件是无惯性的元件,即忽略开关器件的开关过程
 - n 电机用电阻 R_a 、电感 L_a 和电势E来等效
 - n 开关周期远小于电机的机电时间常数 τ_m ,认为一个开关周期内电机转速及反电动势E为常值
 - ${f n}$ 忽略电源内阻,电机回路的电磁时间常数 au_e = L_a/R_a
 - n 当电磁转矩平均值 $T_{em}=K_tI_a$ 和负载转矩 T_L 相平衡时,"开关放大器-电动机"工作在准稳定状态,这时电枢电流是周期变化

- 控制方式
 - \mathbf{n} $\mathbf{T_1}$ 和 $\mathbf{T_4}$ 的栅极控制电压相同
 - n T_2 和 T_3 的栅极控制电压相同
 - n 两组控制电压的相位相反

$$u_{G1} = u_{G4} = -u_{G2} = -u_{G3}$$

o 输出电压

$$U_{av} = \frac{1}{T} \int_{0}^{t_{1}} U_{D} dt - \frac{1}{T} \int_{t_{1}}^{T} U_{D} dt$$
$$= U_{D} (2 \frac{t_{1}}{T} - 1)$$

o 电动机状态

$$\overline{U_{av}} > \overline{E}$$

$$i_a:A->B$$

- o 当0<t<t₁时
 - n T₁和T₄导通
 - \mathbf{n} $\mathbf{u}_{\mathsf{A}} = \mathbf{U}_{\mathsf{D}}$, \mathbf{u}_{B} 为地, $\mathbf{u}_{\mathsf{AB}} = \mathbf{U}_{\mathsf{D}}$
 - n 电枢电流

n 能量

电感:储能;电源:输出能量;

电机: 电能转换为机械能

- 当t₁<t<T时</p>
 - n D₂和D₃导通
 - n u_A为地,u_B=U_D,u_{AB}=-U_D
 - n 电枢电流

 i_a : D_2 ->电机-> D_3

n 能量

电感:释放能量;电源:吸收能量;

电机: 电能转换为机械能

二极管的作用?

o 发电机状态

$$U_{av} < E$$

$$i_a: B->A$$

- 当t₁<t<T时</p>
 - n T₃和T₂导通
 - \mathbf{n} \mathbf{u}_{A} 为地, $\mathbf{u}_{\mathsf{B}} = \mathbf{U}_{\mathsf{D}}$, $\mathbf{u}_{\mathsf{AB}} = -\mathbf{U}_{\mathsf{D}}$
 - n 电枢电流

n 能量

电感:储能;电源:输出能量;

电机: 机械能转换为电能

- o 当0<t<t₁时
 - n D₁和D₄导通
 - \mathbf{n} $\mathbf{u}_{\mathsf{A}} = \mathbf{U}_{\mathsf{D}}$, \mathbf{u}_{B} 为地, $\mathbf{u}_{\mathsf{AB}} = \mathbf{U}_{\mathsf{D}}$
 - n 电枢电流

n 能量

电感:释放能量;电源:吸收能量;

电机: 机械能转换为电能

o 轻载状态

 $T_{em} \approx 0$

 $i_a \approx 0$

- $\mathbf{D}_{\mathbf{A}}$ 回路**4**, $\mathbf{D}_{\mathbf{A}}$ 一>电机-> $\mathbf{D}_{\mathbf{1}}$,发电机,电感释放能量,电源充电
- Γ 回路1, Γ_1 ->电机-> Γ_4 ,电动机,电感吸收能量,电源放电
- \mathbf{n} 回路**2**, $\mathbf{D_2}$ ->电机-> $\mathbf{D_3}$,电动机,电感释放能量,电源充电
- n 回路3, T_3 ->电机-> T_2 ,发电机,电感吸收能量,电源放电

- 输出正方波电压时
 - \mathbf{n} \mathbf{T}_1 和 \mathbf{T}_2 的控制电压相位相反
 - n T_3 一直加关断电压
 - n T_4 一直加开通电压
 - n 输出电压

$$U_{av} = \frac{1}{T} \int_0^{t_1} U_D dt = \frac{t_1}{T} U_D$$

- 输出负方波电压时
 - n T_3 和 T_4 的控制电压相位相反
 - n T_1 一直加关断电压
 - n T_2 一直加开通电压
- 特点: 电流波动小,控制复杂

o 电动机状态

 $U_{av} > E$

 $i_a:A->B$

- o 当0<t<t₁时
 - n T₁和T₄导通
 - \mathbf{n} $\mathbf{u}_{\mathsf{A}} = \mathbf{U}_{\mathsf{D}}$, $\mathbf{u}_{\mathsf{B}} \Rightarrow \mathbf{u}_{\mathsf{A}} = \mathbf{U}_{\mathsf{D}}$
 - n 电枢电流

n 能量

电感:储能;电源:输出能量;

电机: 电能转换为机械能

o 电动机状态

$$U_{av} > E$$

$$i_a:A->B$$

- 当t₁<t<T时</p>
 - n D₂和T₄导通
 - n u_A为地,u_B为地,u_{AB}=0
 - n 电枢电流

n 能量

电感:释放能量;电源:无能量交换;

电机: 电能转换为机械能

o 发电机状态

$$U_{av} < E$$

$$i_a: B - > A$$

- 当t₁<t<T时</p>
 - n D₄和T₂导通
 - n u_A为地,u_B为地,u_{AB}=0
 - n 电枢电流

n 能量

电感:储能;电源:无能量交换;

电机: 机械能转换为电能

o 发电机状态

$$\overline{U_{av} < E}$$

$$i_a: B->A$$

- o 当0<t<t₁时
 - n D₄和D₁导通
 - \mathbf{n} $\mathbf{u}_{\mathsf{A}} = \mathbf{U}_{\mathsf{D}}$, \mathbf{u}_{B} 为地, $\mathbf{u}_{\mathsf{AB}} = \mathbf{U}_{\mathsf{D}}$
 - n 电枢电流

n 能量

电感:释放能量;电源:吸收能量;

电机: 机械能转换为电能

o 轻载状态

 $T_{em} \approx 0$

 $i_a \approx 0$

- \mathbf{n} 回路**4**, $\mathbf{D_4}$ ->电机-> $\mathbf{D_1}$,发电机,电感释放能量,电源充电
- n 回路1, T_1 ->电机-> T_4 ,电动机,电感吸收能量,电源放电
- n 回路2, D_2 ->电机-> T_4 ,电动机,电感释放能量,电源无能量交换
- \mathbf{n} 回路 $\mathbf{3}$, $\mathbf{D_4}$ ->电机-> $\mathbf{T_2}$,发电机,电感吸收能量,电源无能量

2 特性总结

- 开关管导通情况
 - n 电流方向+管子通电情况
 - n 电流特性: 高电压流向低电压
 - n 哪个桥臂施加导通信号,哪个桥臂导通,具体导通器件根据电流方向判断
- 电枢电压确定
 - n 与电流判断相同,理想情况下,某桥臂导通,该桥臂两端电压为零
 - n 哪个桥臂施加导通信号,哪个桥臂导通,其两端电压为零
- o 电流变化趋势确定
 - n 根据电压方向和电流方向判断电流会变大还是变小
 - n 电压包括外部电压和反电动势

2 特性总结

- 电感充放电情况
 - 电流绝对值变大, 电感充电
 - 电流绝对值变小, 电感放电
- 外部电源充放电情况
 - 电源吸收能量 n

- 电机能量转化情况
 - n

电源释放能量

机械能转换为电能

19

3 H型桥式电路和升、降压斩波电路的关系

3 H型桥式电路和升、降压斩波电路的关系

ullet 单极性输出+发电机工作状态 u_{G1} 和 u_{G2} 交替变化, u_{G3} < 0, u_{G4} > 0

