César Antônio de Magalhães

Curso de integrais duplas e triplas

César	Antônio	dе	Maga	lhães
Cesai		uc	iviaga	macs

Curso de integrais duplas e triplas

Exercícios de integrais duplas e triplas em conformidade com as normas ABNT.

Universidade Norte do Paraná – Unopar

Brasil

Lista de ilustrações

Figura 1 – Integrais duplas - Aula 1 - Exercício I e II
Figura 2 – Integrais duplas - Aula 2 - Exercício I
Figura 3 — Integrais duplas - Aula 2 - Exercício II
Figura 4 — Integrais duplas - Aula 2 - Exercício III
Figura 5 — Integrais duplas - Aula 2 - Exercício IV
Figura 6 – Integrais duplas - Aula 2 - Exercício V
Figura 7 — Integrais duplas - Aula 3 - Exercício I
Figura 8 – Integrais duplas - Aula 3 - Exercício II
Figura 9 — Integrais duplas - Aula 4 - Exercício II
Figura 10 – Integrais duplas - Aula 4 - Exercício III
Figura 11 – Integrais duplas - Aula 5 - Exercício I
Figura 12 — Integrais duplas - Aula 5 - Exercício II
Figura 13 — Integrais duplas - Aula 8 - Exercício I
Figura 14 — Integrais duplas - Aula 9 - Exercício I
Figura 15 – Integrais duplas - Aula 10 - Exercício I
Figura 16 — Coordenadas polares - Aula 01 - Exercício I $\dots \dots $
Figura 17 — Coordenadas polares - Aula 01 - Exercício II
Figura 18 — Coordenadas polares - Aula 02 - Exercício I $\dots \dots $
Figura 19 — Coordenada cartesina e polar
Figura 20 – Determinação do seno, cosseno e tangente
Figura 21 – Círculo trigonométrico

Lista de tabelas

Tabela 1 –	Derivadas simples
Tabela 2 –	Derivadas trigonométricas
Tabela 3 –	Integrais simples
Tabela 4 -	Integrais trigonométricas
Tabela 5 -	Relação entre coordenada cartesina e polar
Tabela 6 –	Identidades trigonométricas
Tabela 7 $-$	Relação entre trigonométricas e inversas
Tabela 8 –	Substituição trigonométrica
Tabela 9 -	Ângulos notáveis

Lista de abreviaturas e siglas

ABNT Associação Brasileira de Normas Técnicas

v Volume

a Área

R Região

P Ponto

r Raio

co Cateto oposto

ca Cateto adjacente

h Hipotenusa

sen Seno

cos Cosseno

tg Tangente

sec Secante

cossec Cossecante

cotg Cotangente

arcsen Arco seno

arccos Arco cosseno

arctg Arco tangente

arcsec Arco secante

arccossec Arco cossecante

arccotg Arco cotangente

log Logaritmo

ln Logaritmo natural

e Número de Euler

lim Limite

Lista de símbolos

Integral

Integral dupla

Integral tripla

 α — Ângulo alfa

 θ Ângulo theta

 \in Pertence

Sumário

	Introdução
1	INTEGRAIS DUPLAS
	Cálculo de integrais duplas.
1.1	Invertendo os limites de integração - Aula 1
1.2	Determinação da região de integração - Aula 2 16
1.3	Cálculo de volume - Aula 3
1.4	Invertendo a ordem de integração - Aula 4
1.5	Cálculo de integrais duplas ou iteradas
1.5.1	Aula 5
1.5.2	Aula 6
1.5.3	Aula 7
1.6	Cálculo de área - Aula 8
1.7	Cálculo de volume
1.7.1	Aula 9
1.7.2	Aula 10
1.8	Coordenadas polares
1.8.1	Aula 1
1.8.2	Aula 2
1.8.3	Aula 3
2	INTEGRAIS TRIPLAS
	Cálculo de integrais triplas.
2.1	Introdução - Aula 1
2.2	Cálculo de integrais triplas - Aula 2
	REFERÊNCIAS
	ANEXOS 39
	ANEXO A – DERIVADAS
A.1	Derivadas simples
A.2	Derivadas trigonométricas
	ANEXO B – INTEGRAIS
B.1	Integrais simples

B.2	Integrais trigonométricas
B.3	Relação entre coordenada cartesina e polar 43
	ANEXO C – FUNÇÕES TRIGONOMÉTRICAS 45
C.1	Determinação do seno, cosseno e tangente
C.2	Círculo trigonométrico
C.3	Identidades trigonométricas
C.4	Relação entre trigonométricas e inversas
C.5	Substituição trigonométrica
C.6	Ângulos notáveis

Introdução

Esse documento contém exercícios retirados do Youtube através do canal OMatematico.com, acesse-o em https://www.youtube.com/c/omatematicogrings>.

Uma lista de exercícios prontos sobre $derivadas\ duplas\ e\ triplas$ é apresentado em Grings (2016).

1 Integrais duplas

Cálculo de integrais duplas.

1.1 Invertendo os limites de integração - Aula 1

1. Exercício

Figura 1 – Integrais duplas - Aula 1 - Exercício I e II

$$f(x) = x^2; \ g(x) = x^3$$
$$x = 0 \Rightarrow f(0) = g(0) \Rightarrow 0^2 = 0^3$$
$$x = 1 \Rightarrow f(1) = g(1) \Rightarrow 1^2 = 1^3$$

$$a = \int_0^1 dx \int_{g(x)}^{f(x)} dy = \int_0^1 dx \int_{x^3}^{x^2} dy = \int_0^1 dx \left[y \right]_{x^3}^{x^2} = \int_0^1 dx \left[x^2 - x^3 \right] = \int_0^1 x^2 dx - \int_0^1 x^3 dx = \left[\frac{x^3}{3} - \frac{x^4}{4} \right]_0^1 = \left[\frac{4x^3 - 3x^2}{12} \right]_0^1 = \frac{1}{12} \left[4x^3 - 3x^2 \right]_0^1 = \frac{1}{12} \left[x^2 (4x - 3) \right]_0^1 = \frac{1}{12} \left[1^2 (4 \cdot 1 - 3) - \frac{0^2 (4 \cdot 0 - 3)}{12} \right] = \frac{1}{12} = 0,08\overline{3}$$

$$f(x) = x^{2} \Rightarrow f(y) = \sqrt{y}; \ g(x) = x^{3} \Rightarrow g(y) = \sqrt[3]{y}$$
$$y = 0 \Rightarrow f(0) = g(0) \Rightarrow \sqrt{0} = \sqrt[3]{0}$$
$$y = 1 \Rightarrow f(1) = g(1) \Rightarrow \sqrt{1} = \sqrt[3]{1}$$

$$a = \int_0^1 dy \int_{f(y)}^{g(y)} dx = \int_0^1 dy \int_{\sqrt{y}}^{\sqrt[3]{y}} dx = \int_0^1 dy \left[x \right]_{\sqrt{y}}^{\sqrt[3]{y}} = \int_0^1 dy \left[\sqrt[3]{y} - \sqrt{y} \right] = \int_0^1 \sqrt[3]{y} \, dy - \int_0^1 \sqrt[3]{y} \, dy = \int_0^1 y^{\frac{1}{3}} \, dy - \int_0^1 y^{\frac{1}{2}} \, dy = \left[\frac{y^{\frac{4}{3}}}{\left(\frac{4}{3}\right)} - \frac{y^{\frac{3}{2}}}{\left(\frac{3}{2}\right)} \right]_0^1 = \left[\frac{3\sqrt[3]{y^4}}{4} - \frac{2\sqrt{y^3}}{3} \right]_0^1 = \left[\frac{9\sqrt[3]{y^4} - 8\sqrt{y^3}}{12} \right]_0^1 = \frac{1}{12} \left[9\sqrt[3]{y^4} - 8\sqrt{y^3} \right]_0^1 = \frac{1}{12} \left[\left(9\sqrt[3]{1^4} - 8\sqrt{1^3} \right) - \left(9\sqrt[3]{0^4} - 8\sqrt{0^3} \right) \right] = \frac{1}{12} (9 - 8) = \frac{1}{12} = 0,08\overline{3}$$

1.2 Determinação da região de integração - Aula 2

1. Exercício

$$R = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 2, \ 0 \le y \le 6 \}$$

Figura 2 – Integrais duplas - Aula 2 - Exercício I

$$a = \int_0^2 dx \int_0^6 dy = \int_0^2 dx \, [y]_0^6 = \int_0^2 dx \, [6 - 0] = 6 \int_0^2 dx = 6[x]_0^2 = 6[2 - 0] = 6 \cdot 2 = 12$$

$$R = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1, x \le y \le 2x\}$$

$$a = \int_0^1 dx \int_x^{2x} dy = \int_0^1 dx \, [y]_x^{2x} = \int_0^1 dx \, [2x - x] = 2 \int_0^1 x \, dx - \int_0^1 x \, dx = \left[2\frac{x^2}{2} - \frac{x^2}{2} \right]_0^1 = \left[\frac{2x^2 - x^2}{2} \right]_0^1 = \frac{1}{2} \left[x^2 \right]_0^1 = \frac{1}{2} \left[1^2 - \theta^2 \right] = \frac{1}{2} = 0, 5$$

Figura 3 – Integrais duplas - Aula 2 - Exercício II

$$R = \left\{ (x,y) \in \mathbb{R}^2 \,|\, 0 \le y \le 1 \,,\, 0 \le x \le \sqrt{1-y^2} \right\}$$

$$y = 0,\, y = 1$$

$$x = 0,\, x = \sqrt{1-y^2} \Rightarrow x^2 = 1-y^2 \Rightarrow x^2-1 = -y^2 \Rightarrow y^2 = -x^2+1 \Rightarrow y = \sqrt{1-x^2}$$

Figura 4 – Integrais duplas - Aula 2 - Exercício III

$$a = \int_0^1 dy \int_0^{f(y)} dx = \int_0^1 dy \int_0^{\sqrt{1-y^2}} dx = \int_0^1 dy \left[x \right]_0^{\sqrt{1-y^2}} = \int_0^1 dy \left[\sqrt{1-y^2} - 0 \right] = \int_0^1 \sqrt{1-y^2} \, dy = \int_0^1 \sqrt{1-\sec^2(t)} \, \cos(t) \, dt = \int_0^1 \sqrt{\cos^2(t)} \, \cos(t) \, dt = \int_0^1 \cos(t) \cos(t) \, dt = \int_0^1 \cos^2(t) \, dt = \int_0^1 \frac{1+\cos(2t)}{2} \, dt = \frac{1}{2} \int_0^1 \left[1+\cos(2t) \right] \, dt = \frac{1}{2} \int_0^1 dt + \frac{1}{2} \int_0^1 \cos(2t) \, dt = \frac{1}{2} \int_0^1 dt + \frac{1}{2} \int_0^1 \cos(2t) \, dt = \frac{1}{2} \int_0^1 dt + \frac{1}{2} \int_0^1 \cos(2t) \, dt = \frac{1}{2} \int_0^1 dt + \frac{1}{2} \int_0^1 \cos(2t) \, dt = \frac{1}{2} \left[\frac{1}{2} t + \frac{1}{4} \sin(u) \right]_0^1 = \left[\frac{t}{2} + \frac{\sin(2t)}{4} \right]_0^1 = \left[\frac{t}{2} + \frac{2 \sin(t) \cos(t)}{4} \right]_0^1 = \left[\frac{t + \sin(t) \cos(t)}{2} \right]_0^1 = \frac{1}{2} \left[\left(\arcsin(1) + 1 \cdot \sqrt{1-1^2} \right) - \left(\arcsin(0) + 0 \cdot \sqrt{1-0^2} \right) \right] = \frac{1}{2} \left[\frac{\pi}{2} - 0 \right] = \frac{\pi}{4} = 0,785$$

$$y = \operatorname{sen}(t) \Rightarrow dy = \cos(t)dt$$

$$u = 2t \Rightarrow \frac{du}{2} = dt$$

$$\operatorname{sen}(t) = \frac{co}{h} = \frac{y}{1} = y$$

$$h^2 = co^2 + ca^2 \Rightarrow 1 = y^2 + ca^2 \Rightarrow ca = \sqrt{1 - y^2}$$

$$\cos(t) = \frac{ca}{h} = \frac{\sqrt{1 - y^2}}{1} = \sqrt{1 - y^2}$$

$$y = \operatorname{sen}(t) \Rightarrow t = \operatorname{arcsen}(y)$$

$$y = x^2 + 1, y = -x^2 - 1; x = 1, x = -1$$

$$R = \left\{ (x, y) \in \mathbb{R}^2 \mid -1 \le x \le 1, -x^2 - 1 \le y \le x^2 + 1 \right\}$$

Figura 5 – Integrais duplas - Aula 2 - Exercício IV

$$a = \int_{-1}^{1} dx \int_{f(x)}^{g(x)} dy = \int_{-1}^{1} dx \int_{-x^{2}-1}^{x^{2}+1} dy = \int_{-1}^{1} dx \left[y \right]_{-x^{2}-1}^{x^{2}+1} = \int_{-1}^{1} dx \left[x^{2} + 1 - \left(-x^{2} - 1 \right) \right] = \int_{-1}^{1} dx \left[x^{2} + 1 + x^{2} + 1 \right] = \int_{-1}^{1} dx \left[2x^{2} + 2 \right] = 2 \int_{-1}^{1} x^{2} dx + 2 \int_{-1}^{1} dx = \left[2\frac{x^{3}}{3} + 2x \right]_{-1}^{1} = \left[2\left(\frac{x^{3} + 3x}{3} \right) \right]_{-1}^{1} = \frac{2}{3} \left[x\left(x^{2} + 3 \right) \right]_{-1}^{1} = \frac{2}{3} \left[1 \cdot \left(1^{2} + 3 \right) - \left(-1 \right) \left(\left(-1 \right)^{2} + 3 \right) \right] = \frac{2}{3} (4 + 4) = \frac{2}{3} 8 = \frac{16}{3} = 5, \overline{3}$$

$$R = \{(x, y) \in \mathbb{R}^2 \mid 0 \le y \le 2, -y \le x \le y\}$$

Figura 6 – Integrais duplas - Aula 2 - Exercício V

$$a = \int_0^2 dy \int_{f(y)}^{g(y)} dx = \int_0^2 dy \int_{-y}^y dx = \int_0^2 dy [x]_{-y}^y = \int_0^2 dy [y - (-y)] = \int_0^2 dy [2y] = 2 \int_0^2 y \, dy = \left[2\frac{y^2}{2}\right]_0^2 = 2^2 - 0^2 = 4$$

1.3 Cálculo de volume - Aula 3

1. Exercício

Figura 7 – Integrais duplas - Aula 3 - Exercício I

$$z = 4; dz = dxdy$$

$$v = \int_0^3 \int_0^2 z \, dz = \int_0^3 \int_0^2 4 \, dy \, dx = 4 \int_0^3 dx \int_0^2 dy = 4 \int_0^3 dx \, [y]_0^2 = 4 \int_0^3 dx \, [2 - 0] = 8 \int_0^3 dx = 8[x]_0^3 = 8[3 - 0] = 8 \cdot 3 = 24$$

$$R = [0,3] \times [0,4]$$
$$\iint_{R} (8-2y)da$$

Figura 8 – Integrais duplas - Aula 3 - Exercício II

$$z = 8 - 2y$$
; $da = dz = dxdy$

$$v = \int_0^3 \int_0^4 z \, dz = \int_0^3 \int_0^4 (8 - 2y) dx dy = \int_0^3 dx \int_0^4 (8 - 2y) dy = \int_0^3 dx \left(8 \int_0^4 dy - 2 \int_0^4 y \, dy \right) = \int_0^3 dx \, 2 \left(4 \int_0^4 dy - \int_0^4 y \, dy \right) = 2 \int_0^3 dx \left[4y - \frac{y^2}{2} \right]_0^4 = 2 \int_0^3 dx \left[\frac{8y - y^2}{2} \right]_0^4 = 2 \int_0^3 dx \frac{1}{2} [y(8 - y)]_0^4 = \int_0^3 dx [4(8 - 4) - 0(8 - 0)] = 16 \int_0^3 dx = 16[x]_0^3 = 16[3 - 0] = 48$$

1.4 Invertendo a ordem de integração - Aula 4

1. Exercício

$$z = f(x, y) = y e^x$$
; $dz = dxdy$

$$v = \int_{2}^{4} \int_{1}^{9} z \, dz = \int_{2}^{4} \int_{1}^{9} y \, e^{x} \, dy dx = \int_{2}^{4} e^{x} \, dx \int_{1}^{9} y \, dy = \int_{2}^{4} e^{x} \, dx \left[\frac{y^{2}}{2} \right]_{1}^{9} = \int_{2}^{4} e^{x} \, dx \frac{1}{2} \left[y^{2} \right]_{1}^{9} = \frac{1}{2} \int_{2}^{4} e^{x} \, dx \left[9^{2} - 1^{2} \right] = 40 \int_{2}^{4} e^{x} \, dx = 40 \left[e^{x} \right]_{2}^{4} = 40 \left[e^{4} - e^{2} \right] = 40 e^{2} \left(e^{2} - 1 \right)$$

$$z = f(x, y) = x^2 y^3; \ dz = dxdy$$

Figura 9 – Integrais duplas - Aula 4 - Exercício II

$$v = \int_0^1 \int_2^4 z \, dz = \int_0^1 \int_2^4 x^2 y^3 \, dx dy = \int_0^1 x^2 \, dx \int_2^4 y^3 \, dy = \int_0^1 x^2 \, dx \left[\frac{y^4}{4} \right]_2^4 = \frac{1}{4} \int_0^1 x^2 \, dx \left[y^4 \right]_2^4 = \frac{1}{4} \int_0^1 x^2 \, dx \left[4^4 - 2^4 \right] = \frac{1}{4} \int_0^1 x^2 \, dx \left[2^8 - 2^4 \right] = \frac{1}{4} \int_0^1 x^2 \, dx \left[2^4 \left(2^4 - 1 \right) \right] = \frac{1}{4} \int_0^1 x^2 \, dx \left[16 \cdot 15 \right] = 60 \int_0^1 x^2 \, dx = 60 \left[\frac{x^3}{3} \right]_0^1 = 20 \left[x^3 \right]_0^1 = 20 \left[1^3 - 0^3 \right] = 20 \cdot 1 = 20$$

$$\iint_{R} (x+2y)da$$

R=Região limitada pela parábola $y=x^2+1$ e as retas x=-1e x=2.

$$z = f(x, y) = x + 2y; da = dz = dxdy$$

Figura 10 – Integrais duplas - Aula 4 - Exercício III

$$v = \int_{-1}^{2} \int_{0}^{x^{2}+1} z \, dz = \int_{-1}^{2} \int_{0}^{x^{2}+1} (x+2y) dx dy = \int_{-1}^{2} dx \int_{0}^{x^{2}+1} (x+2y) dy = \int_{-1}^{2} dx \left(x \int_{0}^{x^{2}+1} dy + 2 \int_{0}^{x^{2}+1} y \, dy \right) = \int_{-1}^{2} dx \left[xy + 2\frac{y^{2}}{2} \right]_{0}^{x^{2}+1} = \int_{-1}^{2} dx \left[y(x+y) \right]_{0}^{x^{2}+1} = \int_{-1}^{2} dx \left[(x^{2}+1) \left(x^{2}+x+1 \right) \right] = \int_{-1}^{2} dx \left[(x^{2}+1) \left(x^{2}+x+1 \right) \right] = \int_{-1}^{2} dx \left(x^{4}+x^{3}+2x^{2}+x+1 \right) = \int_{-1}^{2} dx \left(x^{4}+x^{3}+2x^{2}+x+1 \right) = \int_{-1}^{2} x^{4} dx + \int_{-1}^{2} x^{3} dx + 2 \int_{-1}^{2} x^{2} dx + \int_{-1}^{2} x dx + \int_{-1}^{2} dx = \left[\frac{x^{5}}{5} + \frac{x^{4}}{4} + 2\frac{x^{3}}{3} + \frac{x^{2}}{2} + x \right]_{-1}^{2} = \left[\frac{12x^{5}+15x^{4}+40x^{3}+30x^{2}+60x}{60} \right]_{-1}^{2} = \frac{1}{60} \left[x \left(12x^{4}+15x^{3}+40x^{2}+30x+60 \right) \right]_{-1}^{2} = \frac{1}{60} \left[2 \left(12 \cdot 2^{4}+15 \cdot 2^{3}+40 \cdot 2^{2}+30 \cdot 2+60 \right) - (-1) \left(12(-1)^{4}+15(-1)^{3}+40(-1)^{2}+30(-1)+60 \right) \right] = \frac{1}{60} \left[2(192+120+160+60+60) + (12-15+40-30+60) \right] = \frac{1}{60} \left[1184+67 \right) = \frac{1251}{60} = \frac{417}{20} = 20,85$$

1.5 Cálculo de integrais duplas ou iteradas

1.5.1 Aula 5

1. Exercício

$$f(x,y) = x^3; \ 0 \le x \le 2; \ x^2 \le y \le 4$$

$$\iint_{\mathbb{R}} f(x,y) dy dx$$

$$v = \int_0^2 \int_{x^2}^4 x^3 \, dx \, dy = \int_0^2 x^3 \, dx \int_{x^2}^4 dy = \int_0^2 x^3 \, dx \, [y]_{x^2}^4 = \int_0^2 x^3 \, dx \, \left[4 - x^2\right] = 4 \int_0^2 x^3 \, dx - \int_0^2 x^5 \, dx = \left[4 \frac{x^4}{4} - \frac{x^6}{6}\right]_0^2 = \left[\frac{6x^4 - x^6}{6}\right]_0^2 = \frac{1}{6} \left[x^4 \left(6 - x^2\right)\right]_0^2 = \frac{1}{6} \left[2^4 \left(6 - 2^2\right) - \frac{0^4 \left(6 - 0^2\right)}{6}\right] = \frac{1}{6} (16 \cdot 2) = \frac{32}{6} = \frac{16}{3} = 5, 2$$

Figura 11 – Integrais duplas - Aula 5 - Exercício I

$$f(x,y) = x^2 y; \ 1 \le x \le 3; \ x \le y \le 2x + 1$$
$$\iint_{R} f(x,y) dy dx$$

Figura 12 – Integrais duplas - Aula 5 - Exercício II

$$v = \int_{1}^{3} \int_{x}^{2x+1} x^{2}y \, dx dy = \int_{1}^{3} x^{2} \, dx \int_{x}^{2x+1} y \, dy = \int_{1}^{3} x^{2} \, dx \left[\frac{y^{2}}{2} \right]_{x}^{2x+1} =$$

$$\int_{1}^{3} x^{2} \, dx \frac{1}{2} \left[(2x+1)^{2} - (x)^{2} \right] = \frac{1}{2} \int_{1}^{3} x^{2} \, dx \left(3x^{2} + 4x + 1 \right) =$$

$$\frac{3}{2} \int_{1}^{3} x^{4} \, dx + 2 \int_{1}^{3} x^{3} \, dx + \frac{1}{2} \int_{1}^{3} x^{2} \, dx = \left[\frac{3}{2} \frac{x^{5}}{5} + 2 \frac{x^{4}}{4} + \frac{1}{2} \frac{x^{3}}{3} \right]_{1}^{3} = \left[\frac{3x^{5}}{10} + \frac{x^{4}}{2} + \frac{x^{3}}{6} \right]_{1}^{3} =$$

$$\left[\frac{18x^{5} + 30x^{4} + 10x^{3}}{60} \right]_{1}^{3} = \left[\frac{2x^{3} \left(9x^{2} + 15x + 5 \right)}{60} \right]_{1}^{3} =$$

$$\frac{1}{30} \left[x^{3} \left(9x^{2} + 15x + 5 \right) \right]_{1}^{3} = \frac{1}{30} \left[3^{3} \left(9 \cdot 3^{2} + 15 \cdot 3 + 5 \right) - 1^{3} \left(9 \cdot 1^{2} + 15 \cdot 1 + 5 \right) \right] =$$

$$\frac{1}{30} \left[27(81 + 45 + 5) - (9 + 15 + 5) \right] = \frac{1}{30} \left[27 \cdot 131 - 29 \right] = \frac{3508}{30} = 116, 9\overline{3}$$

1.5.2 Aula 6

$$f(x,y) = 1; \ 0 \le x \le 1; \ 1 \le y \le e^x$$

$$\iint_R f(x,y) dy dx$$

$$v = \int_0^1 \int_1^{e^x} dy dx = \int_0^1 dx \ [y]_1^{e^x} = \int_0^1 dx \ (e^x - 1) = [e^x - x]_0^1 = e^1 - 1 - (e^0 - 0) = e - 1 - 1 = e - 2$$

$$f(x,y) = x; \ 0 \le x \le 1; \ 1 \le y \le e^{x^2}$$

$$\iint_R f(x,y) dy dx$$

$$v = \int_0^1 \int_1^{e^{x^2}} x \, dx dy = \int_0^1 x \, dx \int_1^{e^{x^2}} dy = \int_0^1 x \, dx \, [y]_1^{e^{x^2}} = \int_0^1 x \, dx \, \left(e^{x^2} - 1\right) = \int_0^1 x \, e^{x^2} \, dx - \int_0^1 x \, dx = \int_0^1 e^u \, \frac{du}{2} - \int_0^1 x \, dx = \frac{1}{2} \int_0^1 e^u \, du - \int_0^1 x \, dx = \left[\frac{1}{2} e^u - \frac{x^2}{2}\right]_0^1 = \left[\frac{e^{x^2} - x^2}{2}\right]_0^1 = \frac{1}{2} \left[e^{x^2} - x^2\right]_0^1 = \frac{1}{2} \left[e^{1^2} - 1^2 - \left(e^{0^2} - 0^2\right)\right] = \frac{1}{2} (e - 1 - 1) = \frac{e - 2}{2}$$

$$u = x^2; \ \frac{du}{2} = x \, dx$$

$$f(x,y) = 2xy; \ 0 \le y \le 1; \ y^2 \le x \le y$$

$$\iint_R f(x,y) dx dy$$

1.5.3 Aula 7

1. Exercício

$$f(x,y) = \frac{1}{x+y}$$
; $1 \le y \le e$; $0 \le x \le y$

$$\iint_{R} f(x,y) dx dy$$

$$v = \int_{1}^{e} \int_{0}^{y} \frac{1}{x+y} dx dy = \int_{1}^{e} dy \int_{0}^{y} (x+y)^{-1} dx = \int_{1}^{e} dy \int_{0}^{y} u^{-1} du = \int_{1}^{e} dy \int_{0}^{y} \left[\ln|u| \right]_{0}^{y} = \int_{1}^{e} dy \int_{0}^{y} \left[\ln|x+y| \right]_{0}^{y} = \int_{1}^{e} dy \int_{0}^{y} \left(\ln|y+y| - \ln|0+y| \right) = \int_{1}^{e} dy \int_{0}^{y} \left(\ln|2y| - \ln|y| \right) = \int_{1}^{e} dy \int_{0}^{y} \left(\ln|2| + \ln|y| - \ln|y| \right) = \ln|2| \int_{1}^{e} dy = \ln|2|(e-1)$$

$$u = x + y$$
; $du = (1 + 0)dx = dx$

1.6 Cálculo de área - Aula 8

Figura 13 – Integrais duplas - Aula 8 - Exercício I

$$a = \int_{-1}^{0} dx \int_{0}^{x^{2}+1} dy + \int_{-1}^{0} dx \int_{-1}^{1} dy + \int_{0}^{y^{2}} dx \int_{-1}^{0} dy + \int_{0}^{1} dx \int_{\sqrt{x}}^{x^{2}+1} = \int_{-1}^{0} dx \left(\int_{0}^{x^{2}+1} dy + \int_{-1}^{0} dy \right) + \int_{0}^{y^{2}} dx \int_{-1}^{0} dy + \int_{0}^{1} dx \int_{\sqrt{x}}^{x^{2}+1} = \int_{-1}^{0} dx \left([y]_{0}^{x^{2}+1} + [y]_{-1}^{0}] \right) + \int_{-1}^{0} dy \left[[x]_{0}^{y^{2}} + \int_{0}^{1} dx \left[[y]_{\sqrt{x}}^{x^{2}+1} \right] = \int_{-1}^{0} dx \left([x^{2}+1+1] \right) + \int_{-1}^{0} dy y^{2} + \int_{0}^{1} dx \left([x^{2}+1-\sqrt{x}] \right) = \int_{-1}^{0} (x^{2}+2) dx + \int_{-1}^{0} y^{2} dy + \int_{0}^{1} (x^{2}-x^{\frac{1}{2}}+1) dx = \left[\frac{x^{3}}{3} + 2x \right]_{-1}^{0} + \left[\frac{y^{3}}{3} \right]_{-1}^{0} + \left[\frac{x^{3}}{3} - \frac{x^{\frac{3}{2}}}{2} \right] + x \right]_{0}^{1} = \frac{1}{3} \left[x \left(x^{2}+6 \right) \right]_{-1}^{0} + \frac{1}{3} \left[\theta^{3} - (-1)^{3} \right] + \left[\frac{x^{3}}{3} - 2\sqrt{x^{3}} + 3x \right]_{0}^{1} = \frac{1}{3} \left[\theta(\theta^{2}+6) - (-1) \left((-1)^{2}+6 \right) \right] + \frac{1}{3} + \frac{1}{3} \left[x^{3} - 2\sqrt{x^{3}} + 3x \right]_{0}^{1} = \frac{7}{3} + \frac{1}{3} + \frac{1}{3} \left[1^{3} - 2\sqrt{1^{3}} + 3 \cdot 1 - \frac{(0^{3} - 2\sqrt{0^{3}} + 3 \cdot 0)}{3} \right] = \frac{7}{3} + \frac{1}{3} + \frac{1}{3} \left[1^{3} - 2\sqrt{1^{3}} + 3 \cdot 1 - \frac{(0^{3} - 2\sqrt{0^{3}} + 3 \cdot 0)}{3} \right] = \frac{7}{3} + \frac{1}{3} + \frac{1}{3} \left[1^{3} - 2\sqrt{1^{3}} + 3 \cdot 1 - \frac{(0^{3} - 2\sqrt{0^{3}} + 3 \cdot 0)}{3} \right] = \frac{7}{3} + \frac{1}{3} + \frac{1}{3} \left[1^{3} - 2\sqrt{1^{3}} + 3 \cdot 1 - \frac{(0^{3} - 2\sqrt{0^{3}} + 3 \cdot 0)}{3} \right] = \frac{7}{3} + \frac{1}{3} + \frac{1}{3} \left[1^{3} - 2\sqrt{1^{3}} + 3 \cdot 1 - \frac{(0^{3} - 2\sqrt{0^{3}} + 3 \cdot 0)}{3} \right] = \frac{7}{3} + \frac{1}{3} + \frac{1}{3} \left[1^{3} - 2\sqrt{1^{3}} + 3 \cdot 1 - \frac{(0^{3} - 2\sqrt{0^{3}} + 3 \cdot 0)}{3} \right] = \frac{7}{3} + \frac{1}{3} + \frac{1}{3} \left[1^{3} - 2\sqrt{1^{3}} + 3 \cdot 1 - \frac{(0^{3} - 2\sqrt{0^{3}} + 3 \cdot 0)}{3} \right] = \frac{7}{3} + \frac{1}{3} + \frac{1}{3} \left[1^{3} - 2\sqrt{1^{3}} + 1 - \frac{1}{3} \right] = \frac{1}{3} \left[1^{3} - \frac{1}{3} + \frac{1}{3} \left[1^{3} - \frac{1}{3} + \frac{1}{3} \right] = \frac{1}{3} + \frac{1}{3} \left[1^{3} - \frac{1}{3} + \frac{1}{3} \right] = \frac{1}{3} + \frac{1}{3} \left[1^{3} - \frac{1}{3} + \frac{1}{3} \right] = \frac{1}{3} + \frac{1}{3} \left[1^{3} - \frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right] = \frac{1}{3} + \frac{1}{3} \left[1^{3} - \frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right] = \frac{1}{3} + \frac{1}{3$$

1.7.1 Aula 9

1. Exercício

Esboçe a região de integração e o sólido cujo volume é dado pela integral abaixo:

 $\frac{1}{3} \left(\left[1^3 - (-1)^3 \right] + \left[1 \left(1^2 + 3 \right) - (-1) \left((-1)^2 + 3 \right) \right] \right) \frac{1}{3} (2 + 4 + 4) = \frac{10}{3} = 3, \overline{3}$

$$\int_{0}^{1} \int_{0}^{1} (4 - x - 2y) \ dxdy$$

1.7. Cálculo de volume 27

Figura 14 – Integrais duplas - Aula 9 - Exercício I

$$volume = \int_{0}^{1} \int_{0}^{1} (4 - x - 2y) \, dx dy$$

$$v = \int_0^1 \int_0^1 (4 - x - 2y) \, dx dy = \int_0^1 dx \left(4 \int_0^1 dy - x \int_0^1 dy - 2 \int_0^1 y \, dy \right) = 4 \int_0^1 dx \int_0^1 dy - \int_0^1 x \, dx \int_0^1 dy - 2 \int_0^1 dx \int_0^1 y \, dy = 4 \left[x \right]_0^1 \left[y \right]_0^1 - \left[\frac{x^2}{2} \right]_0^1 \left[y \right]_0^1 - 2 \left[x \right]_0^1 \left[\frac{y^2}{2} \right]_0^1 = 4 - \frac{1}{2} - \frac{1}{2} = \frac{8 - 1 - 2}{2} = \frac{5}{2} = 2, 5$$

1.7.2 Aula 10

1. Exercício

Calcule o volume do sólido limitado pelos planos:

$$x = 0$$
, $y = 0$, $z = 0$ e $6x + 2y + 3z = 6$

Figura 15 – Integrais duplas - Aula 10 - Exercício I

$$volume = \int_{0}^{1} \int_{0}^{-3x+3} \left(-2x - \frac{2y}{3} + 2\right) dxdy$$

$$(0, 0, 0)$$

$$(0, 0, 0)$$

$$(1, 0, 0)^{2}$$

$$P_1 = (0,0,0)$$

$$6x = -2y - 3z + 6 \Rightarrow x = \frac{-2y - 3z + 6}{6} = \frac{-2 \cdot 0 - 3 \cdot 0 + 6}{6} = \frac{6}{6} = 1 \Rightarrow P_2 = (1,0,0)$$

$$2y = -6x - 3z + 6 \Rightarrow y = \frac{-6x - 3z + 6}{2} = \frac{-6 \cdot 0 - 3 \cdot 0 + 6}{2} = \frac{6}{2} = 3 \Rightarrow P_3 = (0,3,0)$$

$$3z = -6x - 2y + 6 \Rightarrow z = \frac{-6x - 2y + 6}{3} = \frac{-6 \cdot 0 - 2 \cdot 0 + 6}{3} = \frac{6}{3} = 2 \Rightarrow P_4 = (0,0,2)$$

$$x = 0, x = 1$$

$$y = 0, y = \frac{-6x - 3z + 6}{2} = \frac{-6x - 3 \cdot 0 + 6}{2} = -3x + 3$$

$$z = \frac{-6x - 2y + 6}{3} = -2x - \frac{2y}{3} + 2$$

$$v = \int_{0}^{1} \int_{0}^{-3x+3} \left(-2x - \frac{2y}{3} + 2\right) dx dy = \int_{0}^{1} dx \int_{0}^{-3x+3} \left(-2x - \frac{2y}{3} + 2\right) dy = \int_{0}^{1} dx \left[-2xy - \frac{2}{3}\frac{y^{2}}{2} + 2y\right]_{0}^{-3x+3} = \int_{0}^{1} dx \frac{1}{3} \left[-6xy - y^{2} + 6y\right]_{0}^{-3x+3} = \frac{1}{3} \int_{0}^{1} dx \left[-y(6x + y - 6)\right]_{0}^{-3x+3} = \frac{1}{3} \int_{0}^{1} dx \left[-(-3x + 3)(6x + (-3x + 3) - 6) + 0(6x + 0 - 6)\right] = \frac{1}{3} \int_{0}^{1} dx \left[(3x - 3)(3x - 3)\right] = \frac{1}{3} \int_{0}^{1} \left(9x^{2} - 18x + 9\right) dx = \frac{1}{3} \left[9\frac{x^{3}}{3} - 18\frac{x^{2}}{2} + 9x\right]_{0}^{1} = \frac{1}{3} \left[3x^{3} - 9x^{2} + 9x\right]_{0}^{1} = \frac{1}{3} \left[3x\left(x^{2} - 3x + 3\right)\right]_{0}^{1} = \left[1\left(1^{2} - 3 \cdot 1 + 3\right) - 0\left(0^{2} - 3 \cdot 0 + 3\right)\right] = 1$$

1.8 Coordenadas polares

1.8.1 Aula 1

1. Exercício

Calcule a área do circulo de raio igual a dois

Figura 16 – Coordenadas polares - Aula 01 - Exercício I

$$r = 2 \Rightarrow a = \pi r^2 = 2^2 \pi = 4\pi$$

$$x^2 + y^2 = r^2 \Rightarrow x^2 + y^2 = 2^2 \Rightarrow x^2 + y^2 = 4 \Rightarrow y = \pm \sqrt{4 - x^2}$$

$$R = \left\{ (x, y) \in \mathbb{R}^2 \mid -2 \le x \le 2, -\sqrt{4 - x^2} \le y \le \sqrt{4 - x^2} \right\}$$

$$a = \int_{-2}^{2} dx \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} dy = \int_{-2}^{2} dx \left(\sqrt{4-x^{2}} + \sqrt{4-x^{2}}\right) = 2 \int_{-2}^{2} \sqrt{4-x^{2}} dx = 2 \int_{-2}^{2} \sqrt{4-(2 \operatorname{sen}(\alpha))^{2}} 2 \cos(\alpha) d\alpha = 4 \int_{-2}^{2} \sqrt{4-4 \operatorname{sen}^{2}(\alpha)} \cos(\alpha) d\alpha = 4 \int_{-2}^{2} \sqrt{4-4 \operatorname{sen}^{2}(\alpha)} \cos(\alpha) d\alpha = 4 \int_{-2}^{2} \sqrt{4-4 \cdot (1-\cos^{2}(\alpha))} \cos(\alpha) d\alpha = 4 \int_{-2}^{2} \cos^{2}(\alpha) d\alpha = 8 \int_{-2}^{2} \left(\frac{1+\cos(2\alpha)}{2}\right) d\alpha = 8 \int_{-2}^{2} \left(\frac{1}{2} + \frac{\cos(2\alpha)}{2}\right) d\alpha = 4 \int_{-2}^{2} d\alpha + 4 \int_{-2}^{2} \cos(u) du = \left[4\alpha + 2 \sin(u)\right]_{-2}^{2} = \left[4\alpha + 2 \sin(2\alpha)\right]_{-2}^{2} = 4\alpha + 2 \sin(2\alpha)\right]_{-2}^{2} = \left[4\alpha + 4 \sin(\alpha) \cos(\alpha)\right]_{-2}^{2} = \left[4\left(\arcsin\left(\frac{x}{2}\right) + \frac{x\sqrt{4-x^{2}}}{2}\right)\right]_{-2}^{2} = \left[4\left(\arcsin\left(\frac{x}{2}\right) + \frac{x\sqrt{4-x^{2}}}{4}\right)\right]_{-2}^{2} = 4 \left(\arcsin\left(\frac{x}{2}\right) + \frac{x\sqrt{4-x^{2}}}{4}\right) - 4 \left(\arcsin\left(\frac{(-2)}{2}\right) + \frac{(-2)\sqrt{4-(-2)^{2}}}{4}\right) = 4 \arcsin(1) - 4 \arcsin(-1) = 4 (\arcsin(1) - \arcsin(-1)) = 4 \left(\frac{\pi}{2} + \frac{\pi}{2}\right) = 4 \left(\frac{2\pi}{2}\right) = 4\pi$$

$$x = 2 \sin(\alpha); \ dx = 2 \cos(\alpha) d\alpha$$

$$u = 2\alpha; \frac{du}{2} = d\alpha$$

$$\sin(\alpha) = \frac{c\sigma}{h} = \frac{x}{2} \Rightarrow \alpha = \arcsin\left(\frac{x}{2}\right)$$

$$h^{2} = c\sigma^{2} + ca^{2} \Rightarrow 2^{2} = x^{2} + ca^{2} \Rightarrow ca = \sqrt{4-x^{2}}$$

$$\cos(\alpha) = \frac{ca}{h} = \frac{\sqrt{4-x^{2}}}{2}$$

$$R = \left\{(r,\theta) \in \mathbb{R}^{2} \mid 0 \le r \le 2, 0 \le \theta \le 2\pi\right\}$$

$$a = \int_{-2}^{2} dx \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} dy = \int_{0}^{2} \int_{0}^{2\pi} r \, dr d\theta = \int_{0}^{2} r \, dr \int_{0}^{2\pi} d\theta = \left[\frac{r^{2}}{2}\right]_{0}^{2} [\theta]_{0}^{2\pi} = \frac{1}{2} \left[2^{2} - 0^{2}\right] \left[2\pi - 0\right] = \frac{4}{2}2\pi = 4\pi$$

$$\iint_{R} \frac{da}{1+x^2+y^2}$$

$$R = \left\{ (r,\theta) \in \mathbb{R}^2 \mid 0 \le r \le 2, \, \frac{\pi}{4} \le \theta \le \frac{3\pi}{2} \right\}$$

Figura 17 – Coordenadas polares - Aula 01 - Exercício II

$$volume = \int_0^2 \int_{\frac{\pi}{4}}^{\frac{3\pi}{2}} \frac{r \, dr d\theta}{1 + r^2}$$

$$v = \iint_{R} \frac{da}{1+x^{2}+y^{2}} = \int_{0}^{2} \int_{\frac{\pi}{4}}^{\frac{3\pi}{2}} \frac{r \, dr \, d\theta}{1+r^{2}} = \int_{0}^{2} \frac{r \, dr}{1+r^{2}} \int_{\frac{\pi}{4}}^{\frac{3\pi}{2}} \, d\theta =$$

$$\int_{0}^{2} \left(1+r^{2}\right)^{-1} r \, dr \left[\theta\right]_{\frac{\pi}{4}}^{\frac{3\pi}{2}} = \int_{0}^{2} \left(1+r^{2}\right)^{-1} r \, dr \left(\frac{3\pi}{2} - \frac{\pi}{4}\right) =$$

$$\int_{0}^{2} \left(1+r^{2}\right)^{-1} r \, dr \left(\frac{6\pi-\pi}{4}\right) = \frac{5\pi}{4} \int_{0}^{2} \left(1+r^{2}\right)^{-1} r \, dr = \frac{5\pi}{4} \int_{0}^{2} u^{-1} \frac{du}{2} =$$

$$\frac{5\pi}{8} \int_{0}^{2} u^{-1} du = \frac{5\pi}{8} \left[\ln|u|\right]_{0}^{2} = \frac{5\pi}{8} \left[\ln|1+r^{2}|\right]_{0}^{2} = \frac{5\pi}{8} \left[\ln|1+2^{2}| - \ln|1+0^{2}|\right] =$$

$$\frac{5\pi}{8} \left[\ln|5| - \ln|1|\right] = \frac{5\pi \ln|5|}{8}$$

$$u = 1 + r^{2} \Rightarrow \frac{du}{2} = r \, dr$$

$$e^{x} = 1 = e^{0} \Rightarrow x = 0$$

1.8.2 Aula 2

1. Exercício

$$\iint_R e^{x^2 + y^2} \, dx \, dy$$

R, região entre as curvas abaixo:

$$x^2 + y^2 = 4$$
$$x^2 + y^2 = 9$$

$$x^{2} + y^{2} = r^{2} \Rightarrow e^{x^{2} + y^{2}} = e^{r^{2}}$$
$$da = dxdy = r drd\theta$$
$$R = \{(r, \theta) \in \mathbb{R}^{2} \mid 2 \le r \le 3, \ 0 \le \theta \le 2\pi\}$$

Figura 18 – Coordenadas polares - Aula 02 - Exercício I

$$v = \iint_{R} e^{x^{2}+y^{2}} dx dy = \int_{2}^{3} \int_{0}^{2\pi} e^{r^{2}} r dr d\theta = \int_{2}^{3} e^{r^{2}} r dr \int_{0}^{2\pi} d\theta = \int_{2}^{3} e^{u} \frac{du}{2} \int_{0}^{2\pi} d\theta = \frac{1}{2} \int_{2}^{3} e^{u} du \int_{0}^{2\pi} d\theta = \frac{1}{2} \left[e^{u} \right]_{2}^{3} \left[\theta \right]_{0}^{2\pi} = \frac{1}{2} \left[e^{r^{2}} \right]_{2}^{3} 2\pi = \left(e^{3^{2}} - e^{2^{2}} \right) \pi = \pi \left(e^{9} - e^{4} \right)$$

$$u = r^{2} \Rightarrow \frac{du}{2} = r dr$$

$$\iint_{R} \sqrt{x^2 + y^2} \, dx dy$$

R, região cujo o contorno é:

$$x^2 + y^2 = 4$$

$$x^{2} + y^{2} = r^{2} \Rightarrow \sqrt{x^{2} + y^{2}} = \sqrt{r^{2}} = r$$

$$da = dxdy = r drd\theta$$

$$R = \left\{ (r, \theta) \in \mathbb{R}^{2} \mid 0 \le r \le 2, \ 0 \le \theta \le 2\pi \right\}$$

$$v = \iint_{R} \sqrt{x^{2} + y^{2}} dxdy = \int_{0}^{2} \int_{0}^{2\pi} r^{2} drd\theta = \int_{0}^{2} r^{2} dr \int_{0}^{2\pi} d\theta = \left[\frac{r^{3}}{3} \right]_{0}^{2} [\theta]_{0}^{2\pi} = \frac{2^{3}}{3} 2\pi = \frac{16\pi}{3}$$

1.8.3 Aula 3

1. Exercício

Calcular o volume do sólido acima do plano xoy delimitado pela função abaixo.

$$xoy$$
$$z = 4 - 2x^2 - 2y^2$$

$$4 - 2x^{2} - 2y^{2} = 0 \Rightarrow -2x^{2} - 2y^{2} = -4 \Rightarrow -2\left(x^{2} + y^{2}\right) = -4 \Rightarrow$$

$$x^{2} + y^{2} = \frac{-4}{-2} = 2 \Rightarrow r = \sqrt{2}$$

$$R = \left\{ (r, \theta) \in \mathbb{R}^{2} \mid 0 \le r \le \sqrt{2}, \ 0 \le \theta \le 2\pi \right\}$$

$$z = 4 - 2x^{2} - 2y^{2} = 4 - 2\left(x^{2} + y^{2}\right) = 4 - 2r^{2}$$

$$da = dxdy = r drd\theta$$

$$\iint_{R} z \, da = \iint_{R} \left(4 - 2x^{2} - 2y^{2} \right) \, dx dy = \int_{0}^{\sqrt{2}} \int_{0}^{2\pi} \left(4 - 2r^{2} \right) r \, dr d\theta = \int_{0}^{\sqrt{2}} \left(4r - 2r^{3} \right) \, dr \int_{0}^{2\pi} \, d\theta = \int_{0}^{\sqrt{2}} \left(4r - 2r^{3} \right) \, dr [\theta]_{0}^{2\pi} = 2\pi \int_{0}^{\sqrt{2}} \left(4r - 2r^{3} \right) \, dr = \int_{0}^{\sqrt{2}} r \, dr - 4\pi \int_{0}^{\sqrt{2}} r^{3} \, dr = \left[\frac{8\pi r^{2}}{2} - \frac{4\pi r^{4}}{4} \right]_{0}^{\sqrt{2}} = \left[4\pi r^{2} - \pi r^{4} \right]_{0}^{\sqrt{2}} = \left[\pi r^{2} \left(4 - r^{2} \right) \right]_{0}^{\sqrt{2}} = \pi \left(\sqrt{2} \right)^{2} \left(4 - \left(\sqrt{2} \right)^{2} \right) = 2\pi (4 - 2) = 4\pi$$

2 Integrais triplas

Cálculo de integrais triplas.

2.1 Introdução - Aula 1

1. Exercício

Calcule a integral tripla abaixo.

$$\iiint_{R} 12xy^{2}z^{3} dv$$

$$R = \{(x, y, z) \in \mathbb{R}^{3} \mid -1 \le x \le 2, \ 0 \le y \le 3, \ 0 \le z \le 2\}$$

$$dv = dxdydz$$

$$\iiint_{R} 12xy^{2}z^{3} dv = \int_{-1}^{2} \int_{0}^{3} \int_{0}^{2} 12xy^{2}z^{3} dx dy dz = 12 \int_{-1}^{2} x dx \int_{0}^{3} y^{2} dy \int_{0}^{2} z^{3} dz = 12 \left[\frac{x^{2}}{2}\right]_{-1}^{2} \left[\frac{y^{3}}{3}\right]_{0}^{3} \left[\frac{z^{4}}{4}\right]_{0}^{2} = \frac{1}{2} \left[x^{2}\right]_{-1}^{2} \left[y^{3}\right]_{0}^{3} \left[z^{4}\right]_{0}^{2} = \frac{1}{2} \left(2^{2} - (-1)^{2}\right) 3^{3}2^{4} = \frac{1}{2} 3 \cdot 27 \cdot 16 = 648$$

2. Exercício

Observe a integral e preencha os retângulos abaixo.

$$\int_{1}^{5} \int_{2}^{4} \int_{3}^{6} f(x, y, z) dx dz dy$$

$$[3] \le x \le [6]$$

$$[1] \le y \le [5]$$

$$[2] \le z \le [4]$$

$$\begin{split} \int_{-1}^{1} \int_{0}^{2} \int_{0}^{1} \left(x^{2} + y^{2} + z^{2}\right) \, dx dy dz &= \int_{-1}^{1} dz \int_{0}^{2} dy \int_{0}^{1} \left(x^{2} + y^{2} + z^{2}\right) \, dx = \\ \int_{-1}^{1} dz \int_{0}^{2} dy \left(\int_{0}^{1} x^{2} \, dx + y^{2} \int_{0}^{1} dx + z^{2} \int_{0}^{1} dx\right) &= \\ \int_{-1}^{1} dz \int_{0}^{2} dy \int_{0}^{1} x^{2} \, dx + \int_{-1}^{1} dz \int_{0}^{2} y^{2} \, dy \int_{0}^{1} dx + \int_{-1}^{1} z^{2} \, dz \int_{0}^{2} dy \int_{0}^{1} dx = \\ \left[z\right]_{-1}^{1} \left[y\right]_{0}^{2} \left[\frac{x^{3}}{3}\right]_{0}^{1} + \left[z\right]_{-1}^{1} \left[\frac{y^{3}}{3}\right]_{0}^{2} \left[x\right]_{0}^{1} + \left[\frac{z^{3}}{3}\right]_{-1}^{1} \left[y\right]_{0}^{2} \left[x\right]_{0}^{1} = \\ \left[z\right]_{-1}^{1} \left[y\right]_{0}^{2} \frac{1}{3} \left[x^{3}\right]_{0}^{1} + \left[z\right]_{-1}^{1} \frac{1}{3} \left[y^{3}\right]_{0}^{2} \left[x\right]_{0}^{1} + \frac{1}{3} \left[z^{3}\right]_{-1}^{1} \left[y\right]_{0}^{2} \left[x\right]_{0}^{1} = \\ \frac{1}{3} \left(\left[1+1\right]2 \cdot 1^{3} + \left[1+1\right]2^{3} \cdot 1 + \left[1^{3} - \left(-1\right)^{3}\right]2 \cdot 1\right) = \frac{1}{3} \left(4 + 16 + 4\right) = \frac{24}{3} = 8 \end{split}$$

$$\int_{0}^{2} \int_{-1}^{y^{2}} \int_{-1}^{z} yz \, dx dz dy = \int_{0}^{2} \int_{-1}^{y^{2}} \left(yz \int_{-1}^{z} dx \right) \, dz dy = \int_{0}^{2} \int_{-1}^{y^{2}} [yzx]_{-1}^{z} \, dz dy = \int_{0}^{2} \int_{-1}^{y^{2}} [yz^{2} + yz] \, dz dy = \int_{0}^{2} \left(y \int_{-1}^{y^{2}} z^{2} \, dz + y \int_{-1}^{y^{2}} z \, dz \right) \, dy = \int_{0}^{2} \left[y \frac{z^{3}}{3} + y \frac{z^{2}}{2} \right]_{-1}^{y^{2}} \, dy = \int_{0}^{2} \left[y \left(y^{2} \right)^{2} \left(2z + 3 \right) \right]_{-1}^{y^{2}} \, dy = \int_{0}^{2} \left[y \left(y^{2} \right)^{2} \left(2y^{2} + 3 \right) - y (-1)^{2} \left(2(-1) + 3 \right) \right] \, dy = \frac{1}{6} \int_{0}^{2} \left[y^{5} \left(2y^{2} + 3 \right) - y \right] \, dy = \int_{0}^{2} \left[y^{5} \left(2y^{7} + 3y^{5} - y \right) \, dy = \int_{0}^{2} \left[y^{5} \left(2y^{7} + 3y^{5} - y \right) \, dy = \int_{0}^{2} \left[y^{5} \left(2y^{7} + 3y^{5} - y \right) \, dy = \int_{0}^{2} \left[y^{5} \left(2y^{7} + 2y^{4} - 2 \right) \right]_{0}^{2} = \int_{0}^{2} \left[y^{5} \left(2y^{7} + 2y^{4} - 2 \right) \right] = \int_{0}^{2} \left[y^{5} \left(2y^{7} + 2y^{4} - 2 \right) \right] = \int_{0}^{2} \left[y^{5} \left(2y^{7} + 2y^{4} - 2 \right) \right] = \int_{0}^{2} \left[y^{5} \left(2y^{7} + 2y^{4} - 2 \right) \right] = \int_{0}^{2} \left[y^{5} \left(2y^{7} + 2y^{4} - 2 \right) \right] = \int_{0}^{2} \left[y^{5} \left(2y^{7} + 2y^{4} - 2 \right) \right] = \int_{0}^{2} \left[y^{5} \left(2y^{7} + 2y^{4} - 2 \right) \right] = \int_{0}^{2} \left[y^{5} \left(2y^{7} + 2y^{4} - 2 \right) \right] = \int_{0}^{2} \left[y^{5} \left(2y^{7} + 2y^{4} - 2 \right) \right] = \int_{0}^{2} \left[y^{5} \left(2y^{7} + 2y^{4} - 2 \right) \right] = \int_{0}^{2} \left[y^{5} \left(2y^{7} + 2y^{4} - 2 \right) \right] = \int_{0}^{2} \left[y^{5} \left(2y^{7} + 2y^{4} - 2 \right) \right] = \int_{0}^{2} \left[y^{5} \left(2y^{7} + 2y^{4} - 2 \right) \right] = \int_{0}^{2} \left[y^{5} \left(2y^{7} + 2y^{4} - 2 \right) \right] = \int_{0}^{2} \left[y^{5} \left(2y^{7} + 2y^{4} - 2 \right) \right] = \int_{0}^{2} \left[y^{5} \left(2y^{7} + 2y^{4} - 2 \right) \right] = \int_{0}^{2} \left[y^{5} \left(2y^{7} + 2y^{4} - 2 \right) \right] = \int_{0}^{2} \left[y^{5} \left(2y^{7} + 2y^{5} - 2y^{5} \right) \right] = \int_{0}^{2} \left[y^{5} \left(2y^{7} + 2y^{5} - 2y^{5} \right) \right] = \int_{0}^{2} \left[y^{5} \left(2y^{7} + 2y^{5} - 2y^{5} \right) \right] = \int_{0}^{2} \left[y^{5} \left(2y^{7} + 2y^{5} - 2y^{5} \right) \right] = \int_{0}^{2} \left[y^{5} \left(2y^{5} + 2y^{5} - 2y^{5} \right] \right] = \int_{0}^{2} \left[y^{5} \left(2y^{5} + 2y^{5} - 2y^{5} \right] = \int_{0}^{2} \left[y^{5} \left(2y^{5} + 2y^{5} - 2y^{5} \right] \right] = \int_{0}^{2} \left[y^{5} \left(2y^{5} + 2y^$$

2.2 Cálculo de integrais triplas - Aula 2

$$\iiint_R xy \operatorname{sen}(yz) \, dv$$

$$R = \left\{ (x, y, z) \in \mathbb{R}^3 \, | \, 0 \le x \le \pi, \, 0 \le y \le 1, \, 0 \le z \le \frac{\pi}{6} \right\}$$

$$\iiint_{R} xy \sin(yz) \, dv = \int_{0}^{\pi} \int_{0}^{1} \int_{0}^{\frac{\pi}{6}} xy \sin(yz) \, dz dy dx = \int_{0}^{\pi} \int_{0}^{1} \left(x \int_{0}^{\frac{\pi}{6}} \sin(yz) y \, dz \right) \, dy dx = \int_{0}^{\pi} \int_{0}^{1} \left(x \int_{0}^{\frac{\pi}{6}} \sin(u) \, du \right) \, dy dx = \int_{0}^{\pi} \int_{0}^{1} \left[-x \cos(u) \int_{0}^{\frac{\pi}{6}} dy dx = \int_{0}^{\pi} \int_{0}^{1} \left[-x \cos(yz) \right]_{0}^{\frac{\pi}{6}} dy dx = \int_{0}^{\pi} \int_{0}^{1} \left(-x \cos\left(\frac{y\pi}{6}\right) + x \cos(0) \right) \, dy dx = \int_{0}^{\pi} \left(-x \int_{0}^{1} \cos\left(\frac{y\pi}{6}\right) + x \right) \, dy dx = \int_{0}^{\pi} \left(-x \int_{0}^{1} \cos\left(\frac{y\pi}{6}\right) + x \right) \, dy dx = \int_{0}^{\pi} \left(-\frac{6x}{\pi} \int_{0}^{1} \cos(v) \, dv + x \int_{0}^{1} dy \right) \, dx = \int_{0}^{\pi} \left[-\frac{6x \sin(v)}{\pi} + xy \right]_{0}^{1} \, dx = \int_{0}^{\pi} \left[-\frac{6x \sin(v)}{\pi} + xy \right]_{0}^{1} \, dx = \int_{0}^{\pi} \left[-x \left(6 \sin\left(\frac{y\pi}{6}\right) - y\pi \right) \right]_{0}^{1} \, dx = \int_{0}^{\pi} \left[-x \left(6 \sin\left(\frac{\pi}{6}\right) - \pi \right) + x(6 \sin(0) - 0) \right] \, dx = \frac{1}{\pi} \int_{0}^{\pi} \left(-6x \sin\left(\frac{\pi}{6}\right) + x\pi \right) \, dx = \int_{0}^{\pi} \left[-\frac{6\sin\left(\frac{\pi}{6}\right)}{\pi} \right]_{0}^{\pi} \, dx + \pi \int_{0}^{\pi} x \, dx = \left[-\frac{6\sin\left(\frac{\pi}{6}\right)}{\pi} \right]_{0}^{\pi} + \frac{\pi x^{2}}{2} \right]_{0}^{\pi} = \left[-\frac{6x^{2}\sin\left(\frac{\pi}{6}\right) + \pi^{2}x^{2}}{2\pi} \right]_{0}^{\pi} = \frac{1}{2\pi} \left[-x^{2} \left(6 \sin\left(\frac{\pi}{6}\right) - \pi^{2} \right) \right]_{0}^{\pi} = \frac{1}{2\pi} \left[-\pi^{2} \left(6 \sin\left(\frac{\pi}{6}\right) - \pi^{2} \right) \right]_{0}^{\pi} = \frac{1}{2\pi} \left[-\pi^{2} \left(6 \sin\left(\frac{\pi}{6}\right) - \pi^{2} \right) \right]_{0}^{\pi} = \frac{\pi^{3} - 3\pi}{2}$$

$$u = yz \Rightarrow du = y dz$$

$$v = \frac{y\pi}{6} \Rightarrow \frac{6\,dv}{\pi} = dy$$

$$\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \int_{0}^{y} z \, dx dz dy = \int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \left(z \int_{0}^{y} \, dx \right) \, dz dy = \int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \left[zx \right]_{0}^{y} \, dz dy = \int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} (zy) \, dz dy = \int_{0}^{1} \left(y \int_{0}^{\sqrt{1-y^{2}}} z \, dz \right) \, dy = \int_{0}^{1} \left[\frac{yz^{2}}{2} \right]_{0}^{\sqrt{1-y^{2}}} \, dy = \int_{0}^{1} \left(\frac{y \left(\sqrt{1-y^{2}} \right)^{2}}{2} \right) \, dy = \int_{0}^{1} \frac{y-y^{3}}{2} \, dy = \frac{1}{2} \int_{0}^{1} \left(y - y^{3} \right) \, dy = \frac{1}{2} \left[\frac{y^{2}}{2} - \frac{y^{4}}{4} \right]_{0}^{1} = \frac{1}{8} \left[1^{2} \left(2 - 1^{2} \right) \right] = \frac{1}{8}$$

3. Exercício

$$\int_{0}^{3} \int_{0}^{\sqrt{9-z^{2}}} \int_{0}^{x} xy \, dy dx dz = \int_{0}^{3} \int_{0}^{\sqrt{9-z^{2}}} \left(x \int_{0}^{x} y \, dy \right) \, dx dz = \int_{0}^{3} \int_{0}^{\sqrt{9-z^{2}}} \left[\frac{xy^{2}}{2} \right]_{0}^{x} = \frac{1}{2} \int_{0}^{3} \int_{0}^{\sqrt{9-z^{2}}} x^{3} \, dx dz = \frac{1}{2} \int_{0}^{3} \left[\frac{x^{4}}{4} \right]_{0}^{\sqrt{9-z^{2}}} \, dz = \frac{1}{2} \int_{0}^{3} \left[\frac{\left(\sqrt{9-z^{2}} \right)^{4}}{4} \right] \, dz = \frac{1}{8} \int_{0}^{3} \left[\left(9 - z^{2} \right)^{2} \right] \, dz = \frac{1}{8} \int_{0}^{3} \left(81 - 18z^{2} + z^{4} \right) \, dz = \frac{1}{8} \left[81z - \frac{18z^{3}}{3} + \frac{z^{5}}{5} \right]_{0}^{3} = \frac{1}{8} \left[\frac{1215z - 90z^{3} + 3z^{5}}{15} \right]_{0}^{3} = \frac{1}{120} \left[3z \left(405 - 30z^{2} + z^{4} \right) \right]_{0}^{3} = \frac{1}{40} \left[3 \left(405 - 30 \cdot 3^{2} + 3^{4} \right) \right] = \frac{1}{40} \left[3 \left(405 - 270 + 81 \right) \right] = \frac{648}{40} = \frac{81}{5}$$

Referências

GRINGS, F. Curso de Integrais Duplas e Triplas. [S.l.], 2016. Disponível em: https://www.youtube.com/playlist?list=PL82B9E5FF3F2B3BD3. Citado na página 13.

ANEXO A - Derivadas

A.1 Derivadas simples

Tabela 1 – Derivadas simples

$$\begin{vmatrix} y & = & c & \Rightarrow & y' & = & 0 \\ y & = & x & \Rightarrow & y' & = & 1 \\ y & = & x^c & \Rightarrow & y' & = & cx^{c-1} \\ y & = & e^x & \Rightarrow & y' & = & e^x \\ y & = & \ln|x| & \Rightarrow & y' & = & \frac{1}{x} \\ y & = & uv & \Rightarrow & y' & = & u'v + uv' \\ y & = & \frac{u}{v} & \Rightarrow & y' & = & u'v - uv' \\ y & = & \frac{u}{v} & \Rightarrow & y' & = & u'v - uv' \\ y & = & e^u & \Rightarrow & y' & = & cu^{c-1}u' \\ y & = & e^u & \Rightarrow & y' & = & e^u u' \\ y & = & e^u & \Rightarrow & y' & = & e^u u' \\ y & = & c^u & \Rightarrow & y' & = & \frac{u'}{u} \\ y & = & \ln|u| & \Rightarrow & y' & = & \frac{u'}{u} \\ y & = & \log_c|u| & \Rightarrow & y' & = & \frac{u'}{u} \log_c|e| \end{vmatrix}$$

A.2 Derivadas trigonométricas

Tabela 2 – Derivadas trigonométricas

$$y = \operatorname{sen}(x) \qquad \Rightarrow y' = \operatorname{cos}(x)$$

$$y = \operatorname{cos}(x) \qquad \Rightarrow y' = -\operatorname{sen}(x)$$

$$y = \operatorname{tg}(x) \qquad \Rightarrow y' = \operatorname{sec}^{2}(x)$$

$$y = \operatorname{cotg}(x) \qquad \Rightarrow y' = -\operatorname{cossec}^{2}(x)$$

$$y = \operatorname{sec}(x) \qquad \Rightarrow y' = -\operatorname{cossec}(x)$$

$$y = \operatorname{sec}(x) \qquad \Rightarrow y' = -\operatorname{cossec}(x) \operatorname{cotg}(x)$$

$$y = \operatorname{arcsen}(x) \qquad \Rightarrow y' = \frac{1}{\sqrt{1 - x^{2}}}$$

$$y = \operatorname{arccos}(x) \qquad \Rightarrow y' = \frac{1}{\sqrt{1 - x^{2}}}$$

$$y = \operatorname{arctg}(x) \qquad \Rightarrow y' = \frac{1}{1 + x^{2}}$$

$$y = \operatorname{arccotg}(x) \qquad \Rightarrow y' = \frac{1}{1 + x^{2}}$$

$$y = \operatorname{arccotg}(x) \qquad \Rightarrow y' = \frac{1}{|x|\sqrt{x^{2} - 1}}$$

$$y = \operatorname{arccossec}(x) \Rightarrow y' = \frac{1}{|x|\sqrt{x^{2} - 1}}$$

ANEXO B - Integrais

B.1 Integrais simples

Tabela 3 – Integrais simples

$$\int dx = x + c$$

$$\int x^p dx = \frac{x^{p+1}}{p+1} + c \rightarrow p \neq -1$$

$$\int e^x dx = e^x + c$$

$$\int \frac{dx}{x} = \ln|x| + c$$

$$\int u^p du = \frac{u^{p+1}}{p+1} + c \rightarrow p \neq -1$$

$$\int e^u du = e^u + c$$

$$\int \frac{du}{u} = \ln|u| + c$$

$$\int p^u du = \frac{p^u}{\ln|p|} + c$$

B.2 Integrais trigonométricas

B.3 Relação entre coordenada cartesina e polar

Figura 19 – Coordenada cartesina e polar

(a) Coordenada cartesiana ou retangular (b) Coordenada polar

$$P(x,y) \to P(r,\theta)$$

ANEXO B. Integrais 44

Tabela 4 – Integrais trigonométricas

Tabela 4 – Integrais trigonométricas
$$\int sen(u)du = -\cos(u) + c$$

$$\int cos(u)du = \ln|\sec(u)| + c$$

$$\int cotg(u)du = \ln|\sec(u)| + c$$

$$\int sec(u)du = \ln|\sec(u) + tg(u)| + c$$

$$\int cossec(u)du = \ln|\csc(u) - \cot(u)| + c$$

$$\int cossec(u)du = tg(u) + c$$

$$\int cossec^{2}(u)du = -\cot(u) + c$$

$$\int sec(u)tg(u)du = sec(u) + c$$

$$\int cossec(u)\cot(u)du = -\csc(u) + c$$

$$\int \frac{du}{\sqrt{1-x^{2}}} = arccs(x) + c$$

$$\int \frac{du}{1+x^{2}} = arctg(x) + c$$

$$\int \frac{du}{1+x^{2}} = arccotg(x) + c$$

Tabela 5 – Relação entre coordenada cartesina e polar

ANEXO C – Funções trigonométricas

C.1 Determinação do seno, cosseno e tangente

Figura 20 – Determinação do seno, cosseno e tangente

C.2 Círculo trigonométrico

Figura 21 – Círculo trigonométrico

- C.3 Identidades trigonométricas
- C.4 Relação entre trigonométricas e inversas
- C.5 Substituição trigonométrica
- C.6 Ângulos notáveis

Tabela 6 – Identidades trigonométricas

$$tg(x) = \frac{\operatorname{sen}(x)}{\cos(x)}$$

$$\cot g(x) = \frac{\cos(x)}{\operatorname{sen}(x)}$$

$$\sec(x) = \frac{1}{\cos(x)}$$

$$\csc(x) = \frac{1}{\sin(x)}$$

$$\operatorname{sen}^{2}(x) + \cos^{2}(x) = 1$$

$$\operatorname{sec}^{2}(x) - \operatorname{tg}^{2}(x) = 1$$

$$\operatorname{cossec}^{2}(x) - \cot g^{2}(x) = 1$$

$$\operatorname{sen}^{2}(x) = \frac{1 - \cos(2x)}{2}$$

$$\operatorname{cos}^{2}(x) = \frac{1 + \cos(2x)}{2}$$

$$\operatorname{sen}(2x) = \frac{2 \operatorname{sen}(x) \cos(x)}{2}$$

$$\operatorname{cos}(2x) = \cos^{2}(x) - \operatorname{sen}^{2}(x)$$

Tabela 7 – Relação entre trigonométricas e inversas

$$| sen(\theta) | = x \Rightarrow \theta = arcsen(x)$$

$$| cos(\theta) | = x \Rightarrow \theta = arccos(x)$$

$$| tg(\theta) | = x \Rightarrow \theta = arctg(x)$$

$$| cossec(\theta) | = x \Rightarrow \theta = arccossec(x)$$

$$| sec(\theta) | = x \Rightarrow \theta = arcsec(x)$$

$$| cotg(\theta) | = x \Rightarrow \theta = arccotg(x)$$

Tabela 8 – Substituição trigonométrica

$$\sqrt{a^2 - x^2} \Rightarrow x = a \operatorname{sen}(\theta)
\sqrt{a^2 + x^2} \Rightarrow x = a \operatorname{tg}(\theta)
\sqrt{x^2 - a^2} \Rightarrow x = a \operatorname{sec}(\theta)$$

Tabela 9 – Ângulos notáveis

ângulo	0°(0)	$30^{\circ} \left(\frac{\pi}{6}\right)$	$45^{\circ} \left(\frac{\pi}{4}\right)$	$60^{\circ} \left(\frac{\pi}{3}\right)$	$90^{\circ} \left(\frac{\pi}{2}\right)$
sen	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tg	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∄