Listing of Claims:

1

2

2	1-31. (Canceled)
3	32. (Previously Presented) A compound having the formula
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
4	Χ΄ Ó· Ó· Ý
5	wherein,
6	NA is a nucleic acid chain comprising nucleic acid monomers selected
7	from the group consisting of natural nucleic acids, modified
8	nucleic acids and combinations thereof;
9	R ¹ , R ² , R ³ and R ⁴ are linker moieties independently selected from the
10	group consisting of substituted or unsubstituted alkyl and
11	substituted or unsubstituted heteroalky1;
12	Nu ¹ and Nu ² are members independently selected from the group
13	consisting of nucleotide residues and nucleoside residues;
14	R is a molecular energy transfer donor;
15	Q is a molecular energy acceptor; and
16	X and Y are the same or different and are non-nucleic acid stabilizing
17	moieties that interact to bring R and Q into operative proximity,
18	thereby enabling transfer of energy from R to Q.
1	33. (Previously Presented) The compound according to claim 32,
2	wherein said molecular energy transfer donor is a fluorophore.
1	34. (Previously Presented) The compound according to claim 32,

wherein said molecular energy acceptor is a fluorescence quencher.

(Previously Presented) The compound according to claim 32, 1 35. wherein X and Y are both hydrophobic moieties. 2 (Previously Presented) The compound according to claim 35, 36. 1 wherein X and Y are members independently selected from the group consisting of 2 saturated hydrocarbons, unsaturated hydrocarbons, steroids, fatty acids, fatty alcohols and 3 hydrophobic peptides. 4 (Previously Presented) The compound according to claim 32, 1 37. wherein natural nucleic acids are members selected from the group consisting of 2 deoxyribonucleotides, ribonucleotides and combinations thereof. 3 (Previously Presented) The compound according to claim 37, 38. 1 wherein said modified nucleic acids are peptide nucleic acids. 2 (Previously Presented) The compound according to claim 32, 39. 1 wherein said nucleic acid monomers are joined by linkages that are members 2 independently selected from the group consisting of phosphodiesters and modified 3 4 phosphodiesters. (Previously Presented) The compound according to claim 39, 40. 1 wherein said modified phosphodiesters are members selected from the group consisting 2 of phosphorothioates and phosphoramidates. 3 (Previously Presented) The compound according to claim 32, 41. 1 wherein said nucleic acid chain further comprises a hybridization enhancing moiety. 2 (Previously Presented) The compound according to claim 41, 42. 1 wherein said hybridization enhancing moiety is a member selected from the group 2 consisting of intercalating agents, minor groove binders and modified exocyclic bases. 3

Appl. No. 09/591,185 Amdt. dated 3/5/2004 Reply to Notice of Non-Compliant Amd. of Feb. 27, 2004

1	43. (Previously Presented) The compound according to claim 32,
2	wherein X and Y are independently attached to members selected from the group
3	consisting of a natural base of said nucleic acid chain, a modified base of said nucleic
4	acid chain, a 3'-hydroxyl group of said nucleic acid chain, a 5'-hydroxyl group of said
5	nucleic acid chain, a 2'-hydroxyl group of said nucleic acid chain, and a linkage joining
6	nucleic acid groups in said nucleic acid chain.
1	44. (Previously Presented) The compound according to claim 32,
2	wherein said compound is immobilized on a solid surface.
1	45. (Previously Presented) A method for amplifying a polynucleotide
2	wherein a compound according to claim 32 is a primer in said method, said method
3	comprising:
4	(a) hybridizing said primer to said polynucleotide; and
5	(b) amplifying said polynucleotide.
1	46. (Previously Presented) The method according to claim 45,
2	wherein said amplifying is a member selected from the group consisting of polymerase
3	chain reaction (PCR), nucleic acid sequence based amplification (NASBA), strand
4	displacement amplification (SDA) and combinations thereof.
1	47. (Previously Presented) A method for detecting or quantitating a
2	nucleic acid, wherein the compound according to claim 32 is used as a probe, said
3	method comprising:
4	(a) hybridizing said compound to said nucleic acid; and
5	(b) detecting a change in fluorescence of said compound, thereby
6	detecting or quantitating said nucleic acid.

3

4

formula:

Reply to Notice of Non-Compliant Amd. of Feb. 27, 2004

(Previously Presented) The method according to claim 47, 48. 1 wherein said method comprises a member selected from the group consisting of 5'-2 3 nuclease assay, rolling circle amplification and combinations thereof. (Previously Presented) A kit for quantitating nucleic acid, said kit 49. 1 comprising a compound according to claim 32. 2 (Previously Presented) A compound having the formula: 50. 1 2 $D-R^{1}-Nu^{1}-R^{2}-O-P-O-NA-O-P-O-R^{3}-Nu^{2}-R^{4}-Q$ CHOI CHOI CHOI CHOI3 4 wherein, CHOL is a cholesterol derivative; 5 R¹, R², R³ and R⁴ are linker moieties independently selected from the 6 group consisting of substituted or unsubstituted alkyl and 7 substituted or unsubstituted heteroalky1; 8 Nu¹ and Nu² are members independently selected from the group 9 consisting of nucleotide residues and nucleoside residues; 10 NA is a nucleic acid sequence; 11 D is a donor of light energy; and 12 O is a quencher of light energy, 13 wherein the CHOL moieties interact to bring D and Q into operative 14 proximity, thereby enabling transfer of energy from D to Q. 15 (Previously Presented) The compound according to claim 50, 51. 1 wherein R¹ and R² are independently selected and have structures according to the 2

Appl. No. 09/591,185 Amdt. dated 3/5/2004

Reply to Notice of Non-Compliant Amd. of Feb. 27, 2004

5

6 wherein,

R¹¹ is a member selected from the group consisting of substituted or unsubstituted alkyl and substituted or unsubstituted heteroalkyl;

9 PEG is polyethylene glycol;

10 Y³ is an organic functional group adjoining said PEG to said CHOL.

1 52. (Previously Presented) The compound according to claim 51,

wherein said PEG has from about 2 to about 20 ethylene glycol subunits.

1 53. (Previously Presented) The compound according to claim 51 in which R¹¹ is substituted or unsubstituted alkyl.

1 54. (Previously Presented) The compound according to claim 53,

wherein R^{11} is C_1 - C_6 substituted or unsubstituted alkyl.

1 55. (Previously Presented) The compound according to claim 51,

2 wherein Y³-CHOL has the structure:

3

1

1 56. (Previously Presented) The compound according to claim 50,

2 wherein Nu¹ and Nu² are nucleotides having an exocyclic amine group to which -R¹-D

3 and -R⁴Q are attached, respectively.

57. (Previously Presented) A compound having the formula:

Reply to Notice of Non-Compliant Amd. of Feb. 27, 2004

- 1 59. (Previously Presented) The compound according to claim 58,
- 2 wherein Y^1 and Y^2 are polyethylene glycol.
- 1 60. (Previously Presented) The compound according to claim 59,
- wherein said polyethylene glycol has from about 2 to about 20 ethylene glycol subunits.

Appl. No. 09/591,185 Amdt. dated 3/5/2004 Reply to Notice of Non-Compliant Amd. of Feb. 27, 2004

61. (Previously Presented) The compound according to claim 57, wherein Y^1 -CHOL and Y^2 -CHOL have the structure:

62. (Previously Presented) The compound according to claim 57, wherein Nu^1 and Nu^2 are nucleotides having an exocyclic amine group to which $-R^5$ -D and $-R^6Q$ are attached, respectively.