nifferentialle Manifold.
11-Sept-2023
(has countable base)
Deb M Hamdorkh Co. 1Me sey
1) M is differentiable main fold if Ualder. 242. Pa: Us - 1R" 8.t.
(a) Pa is homomorphism of embedding Us (b) if 11,011 a to page —
$\varphi_{\omega} \int_{-\infty}^{\infty} \psi_{\beta}$
\mathcal{U}_{0} , \mathcal{U}_{0}
are differentiable le gares 12
· N and
Dr. C. C. Pruk. (Us. Ya) is a beal wordinate system.
Eg (k° io d.m. (idkr: k°~)
Ey $S^{2}(cln^{3})$ is $d.m.$ $U_{i}^{\dagger} = \{(x_{i}^{2}, x_{i}^{2}, x_{i}^{3}) \mid \pm (x_{i}^{2}) > 0\}$
$\varphi^{\pm}: \mathcal{U}^{\pm} \to l\mathbb{R}^2, (\chi^1, \chi^2, \chi^3) \longmapsto (\chi^2, \chi^3)$
Thus $(\gamma_1^{t} \cdot \gamma_1^{t}) \mapsto (\gamma_1^{t} \cdot \gamma_2^{t} \cdot \gamma_3^{t}) \mapsto (\gamma_1^{t} \cdot \gamma_3^{t} \cdot \gamma_4^{t} \cdot \gamma_5^{t})$
Eg. S' is rimilar
$=$ 0^{h} (m) 0^{h} (m)
$Sy.P^{n}(IR) = S^{n}/\sim (\pi \sim -\pi)$
$\rho \in \mathcal{P}$
Def. Differenciable structure: \((Ua, Ya)\)_ =: J
Del 11: n-ditt man told f: 11 - 10 is continuous I is dill if
Def. M: n-diff manifold. f: M → IR is continuous. f is diff if ∀ρ∈ M. (3) (U, φ) bout chart at ρ, s.t. fo φ : φ(u) → (k is diff.
σρογο. (σ. γ) saux σιων ω ρ , ε.χ. σ (α) — (χ υς ασχ).
Runk. For another coordinate is at u. for \(\vec{\phi} = (f \cdot \varphi') \rightarrow (\vec{\phi} \cdot \varphi')
Punk. For another coordinate φ' at u . for $\varphi' = (f \circ \varphi') \circ (\varphi' \circ \varphi')$ on some $p \in Up \subset U \cdot (\varphi' \circ \varphi)$ is embedding.
Def. $F: N^n \to N^n$ is diff at $g \in N$, if $N \xrightarrow{F} N$
$(V_{s}, \psi) \xrightarrow{F} (U_{F(s)}, \varphi)$ (p) (p) (p)

pmk. Still well-defined w.r.l. coordinate,

Rowh. 7: (a,b) -> M is differentiable curve if ---.

Def. $F: N \to M$ differmorphism of F is home, diff. so if F^{-1} .