Step	Algorithm: $y := \alpha x + y$
1a	
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$
	where x_T has 0 rows, y_T has 0 rows
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \right\}$
3	while $m(x_T) < m(x)$ do
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \hat{y}_T}{\hat{y}_B} \right) \land m(x_T) < m(x) \right\}$
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right) $ where χ_1 has 1 row, ψ_1 has 1 row
6	$ \left\{ \begin{pmatrix} y_0 \\ \psi_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \alpha x_0 + \widehat{y}_0 \\ \widehat{\psi}_1 \\ \widehat{y}_2 \end{pmatrix} \right\} $
8	$\psi_1 := \alpha \chi_1 + \psi + 1$
7	$ \left\{ \begin{array}{c} \left(\begin{array}{c} y_0 \\ \psi_1 \\ y_2 \end{array} \right) = \left(\begin{array}{c} \alpha x_0 + \widehat{y}_0 \\ \alpha \chi_1 + \widehat{\psi}_1 \\ \widehat{y}_2 \end{array} \right) \\ \right\} $
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$
2	$\left\{ \qquad \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \land \neg (m(x_T) < m(x)) \right\}$
1b	$\{y = \alpha x + \widehat{y} $

Step	Algorithm: $y := \alpha x + y$
1a	{
4	where
2	
3	while do
2,3	
5a	where
6	
8	
7	
5b	
2	
	endwhile
2,3	$\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right.$
1b	{

Step	Algorithm: $y := \alpha x + y$
1a	$\{y = \widehat{y} $
4	where
2	
3	while do
2,3	
5a	where
6	
8	
7	
5b	
2	
	endwhile
2,3	$\left\{ \begin{array}{ccc} & & & & \\ & & & & \\ & & & & \\ & & & & $
1b	$\{y = \alpha x + \widehat{y} $

Step	Algorithm: $y := \alpha x + y$
1a	
4	where
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \right\}$
3	while do
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \wedge \right\}$
5a	where
6	
8	
7	
5b	
2	$\left\{ \qquad \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \land \neg () \right\}$
1b	$\{y = \alpha x + \widehat{y} $

Step	Algorithm: $y := \alpha x + y$
1a	$\{y = \hat{y} $
4	where
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \right\}$
3	while $m(x_T) < m(x)$ do
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \wedge m(x_T) < m(x) \right\}$
5a	where
6	
8	
7	
5b	
2	$\left\{ \qquad \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \right\}$
	endwhile
2,3	$\left\{ \left(rac{y_T}{y_B} ight) = \left(rac{lpha x_T + \widehat{y}_T}{\widehat{y}_B} ight) \wedge eg (m(x_T) < m(x)) ight.$
1b	$\{y = \alpha x + \widehat{y} $

Step	Algorithm: $y := \alpha x + y$
1a	$\{y = \widehat{y} $
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_T has 0 rows, y_T has 0 rows
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \right\}$
3	while $m(x_T) < m(x)$ do
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \land m(x_T) < m(x) \right\}$
5a	where
6	
8	
7	
5b	
2	$\left\{ \qquad \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \land \neg (m(x_T) < m(x)) \right\}$
1b	$\{y = \alpha x + \hat{y}\}$

Step	Algorithm: $y := \alpha x + y$
1a	$\{y = \widehat{y} $
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_T has 0 rows, y_T has 0 rows
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \right\}$
3	while $m(x_T) < m(x)$ do
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \land m(x_T) < m(x) \right\}$
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right) $ where χ_1 has 1 row, ψ_1 has 1 row
6	
8	
7	
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$
2	$\left\{ \qquad \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \land \neg (m(x_T) < m(x)) \right\}$
1b	$\{y = \alpha x + \widehat{y} $

Step	Algorithm: $y := \alpha x + y$
1a	$\{y = \widehat{y} $
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_T has 0 rows, y_T has 0 rows
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \right\}$
3	while $m(x_T) < m(x)$ do
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \land m(x_T) < m(x) \right\}$
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right) $ where χ_1 has 1 row, ψ_1 has 1 row
6	$ \left\{ \begin{array}{c} \begin{pmatrix} y_0 \\ \psi_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \alpha x_0 + \widehat{y}_0 \\ \widehat{\psi}_1 \\ \widehat{y}_2 \end{pmatrix} \right. $
8	
7	
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$
2	$\left\{ \qquad \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \right\}$
	endwhile
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \land \neg (m(x_T) < m(x)) \right\}$
1b	$\{y = \alpha x + \hat{y} $

Step	Algorithm: $y := \alpha x + y$
1a	$\{y = \widehat{y} $
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_T has 0 rows, y_T has 0 rows
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \right\}$
3	while $m(x_T) < m(x)$ do
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \land m(x_T) < m(x) \right\}$
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right) $ where χ_1 has 1 row, ψ_1 has 1 row
6	$ \left\{ \begin{array}{c} \begin{pmatrix} y_0 \\ \psi_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \alpha x_0 + \widehat{y}_0 \\ \widehat{\psi}_1 \\ \widehat{y}_2 \end{pmatrix} \\ \begin{pmatrix} \widehat{\psi}_1 \\ \widehat{y}_2 \end{pmatrix} \right\} $
8	
7	$ \left\{ \begin{pmatrix} y_0 \\ \psi_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \alpha x_0 + \widehat{y}_0 \\ \alpha \chi_1 + \widehat{\psi}_1 \\ \widehat{y}_2 \end{pmatrix} \right\} $
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$
2	$\left\{ \qquad \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \right.$
	endwhile
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \land \neg (m(x_T) < m(x)) \right\}$
1b	$\{y = \alpha x + \widehat{y} \}$

Step	Algorithm: $y := \alpha x + y$
1a	$\{y = \widehat{y} $
4	$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_T has 0 rows, y_T has 0 rows
2	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \right\}$
3	while $m(x_T) < m(x)$ do
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \wedge m(x_T) < m(x) \right\}$
5a	$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right) $ where χ_1 has 1 row, ψ_1 has 1 row
6	$ \left\{ \begin{array}{c} \begin{pmatrix} y_0 \\ \psi_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \alpha x_0 + \widehat{y}_0 \\ \widehat{\psi}_1 \\ \widehat{y}_2 \end{pmatrix} \right. $
8	$\psi_1 := \alpha \chi_1 + \psi + 1$
7	$ \left\{ \begin{pmatrix} y_0 \\ \psi_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \alpha x_0 + \widehat{y}_0 \\ \alpha \chi_1 + \widehat{\psi}_1 \\ \widehat{y}_2 \end{pmatrix} \right\} $
5b	$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$
2	$\left\{ \qquad \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \right.$
	endwhile
2,3	$\left\{ \left(\frac{y_T}{y_B} \right) = \left(\frac{\alpha x_T + \widehat{y}_T}{\widehat{y}_B} \right) \land \neg (m(x_T) < m(x)) \right\}$
1b	$\{y = \alpha x + \hat{y} \}$

Algorithm: $y := \alpha x + y$
$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$ where x_T has 0 rows, y_T has 0 rows
while $m(x_T) < m(x)$ do
$ \left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right) $ where χ_1 has 1 row, ψ_1 has 1 row
$\psi_1 := \alpha \chi_1 + \psi + 1$
$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$
endwhile

Algorithm: $y := \alpha x + y$

$$x \to \left(\frac{x_T}{x_B}\right), y \to \left(\frac{y_T}{y_B}\right)$$

where x_T has 0 rows, y_T has 0 rows while $m(x_T) < m(x)$ do

$$\left(\frac{x_T}{x_B}\right) \to \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \to \left(\frac{y_0}{\psi_1}\right)$$

where χ_1 has 1 row, ψ_1 has 1 row

$$\psi_1 := \alpha \chi_1 + \psi + 1$$

$$\left(\frac{x_T}{x_B}\right) \leftarrow \left(\frac{x_0}{\chi_1}\right), \left(\frac{y_T}{y_B}\right) \leftarrow \left(\frac{y_0}{\psi_1}\right)$$

endwhile