1.a: Lemma. 若数列 $a_1 \leq b_1, ..., a_n \leq b_n$, 则两数列 a, b 升序排序后仍有 $a_{(1)} \leq b_{(1)}, ..., a_{(n)} \leq b_{(n)}$.

证明: 考虑倒序取出排序后 b 中的元素,即从 n 到 1 依次考虑 $b_{(i)}$ 。反设 $a_{(i)} > b_{(i)}$,则可知 a 中至少有 n-i+1 个数 $> b_{(i)}$,但由于 $a_i < b_i$,故 b 中也至少有 n-i+1 个数 $> b_{(i)}$,与 $b_{(i)}$ 的定义矛盾(至多有 n-i 个元素 $> b_{(i)}$)。故 $a_{(i)} \le b_{(i)}$ 恒成立。Q.E.D.

调用完 InsertionSort(h_2) 后,有 $A[k] \leq A[k+h_2]$ 成立。

下证在调用 InsertionSort(h_1) 后,在新的序列 A' 中, $A'[k] \leq A'[k+h_2]$ 仍成立。

对于当前的 k, 取出 k 所在的 h_1 序列记为 $B[t] = \{i | 1 \le i \le n, i = k + t \cdot h_1, t \in \mathbb{Z}\}$, 将 $k + h_2$ 所在的 h_1 序列记为 $C[t] = \{i | 1 \le i \le n, i = k + h_2 + t \cdot h_1, t \in \mathbb{Z}\}$ 。

记 $I_1[t] = \{i | 1 \le i \le n - h_2, i = k + t \cdot h_1, t \in Z\}, I_2[t] = \{i + h_2 | i \in I_1\}$ 。可知 I_1 是 B[t] 从开头开始向后的连续一段,而 I_2 是 C[t] 从末尾开始向前的连续一段。

将 A 中以 I_1 为下标的子序列排序后记为 I_1' , I_2 对应下标的子序列排序后记为 I_2' , 由 $A[i=k+th_1] \le A[i+h_2=k+h_2+th_1]$, 由 Lemma 可知 I_1' 和 I_2' 满足 $I_1'[t] \le I_2'[t]$ 。

将 A 中以 B 为下标的子序列执行宪 InnortionSort(h_1) 记为 B', 若 $B' - I'_1$ 在 A 中对应的元素均大于等于 $I'_1[0]$, 则 B[0] = B'[0],若其中有元素小于 B'[0],则 $B[k] \leq B'[0]$,故恒有 $A'[k] = B'[0] \leq I'_1[0]$ 成立。同理有 $I'_2[0] \leq C'[0] = A'[k + h_2]$ 。

从而执行 InsertionSort(h_1) 之后 $A'[k] = B'[0] \le I_1'[0] \le I_2'[0] \le C'[0] = A'[k+h_2]$ 。

1.b: 假设 {h₁} 递减且或两两互质,否则容易构造反例。

Lemma. 当 a 和 b 互质, $c \ge ab$ 时, ax + by = o 恒有非负整数解。

证明:不妨设 a < b,由裴蜀定理可知 c = ax + by 存在整数解 (x_0, y_0) 满足 $0 \le x \le b - 1$,又 $c \ge ab$ 可知 $y_0 \ge 0$ 。Q.E.D.

由 (a) 可知,当执行完 InsertionSort (h_{i+1}) 和 InsertionSort (h_i) 后,有 $A[i] \leq A[i+h_1]$ 和 $A[i] \leq A[i+h_2]$ 恒成立。

由于 h_{i+1}, h_i 互质,则对任意 $c \ge h_i h_{i+1}$ 由引理可得存在非负整数解 (x, y) 使得 $h_{i+1}x + h_i y = c$,进而由归纳可得 $A[i] \le A[i+c]$ 恒成立。故在执行 InsertionSort (h_{i-1}) 时,任意位置 i 在插入排序的过程中,其对应的元素最多被往前移动到 $i - h_{i+1}h_i$ 的位置,进而移动次数至多为 $O(\frac{h_i h_{i+1}}{h_{i-1}})$ 。进而总移动次数为 $O(\frac{nh_i h_{i+1}}{h_{i-1}})$ 。

2.a:

$$T(n) = \frac{1}{n} \sum_{i=1}^{n} (T(i-1) + T(n-i) + O(n))$$

2.b:

设快速排序过程中存在常数 c 使得处理过程的时间复杂度 $O(n) \le cn$,以下归纳证明存在常数 $a > 2c \ln 2$ 使得 $T(n) \le an \log n$ 。

当 n=1 时, $T(1)=0\leq 0$;

当 n > 1 时,

$$T(n) \le cn + \frac{2}{n}a \sum_{i=1}^{n-1} i \log i$$

$$\le cn + \frac{2}{n}a \int_{2}^{n} x \log x dx$$

$$= cn + \frac{2}{n}a \int_{2}^{n} d(\frac{1}{2}x^{2} \log x - \frac{x^{2}}{4 \ln 2})$$

$$= cn + an \log n - \frac{an}{2 \ln 2} - O(\frac{1}{n})$$

$$\le an \log n$$

$$= O(n \log n)$$

2.c: 在快速排序的过程中,每次往 k 对应的那边找 (k < pivot 就往左,否则往右,k = pivot 则已找到)。

不妨假设 $k < \frac{\alpha}{2}$, 由于元素 i, j 可能被比较的情况为:

- i < k < j 且 i 或 j 在 [i,j] 中被先选到;
- *i* < *j* < *k* 且 *i* 或 *j* 要在 [*i*, *k*] 之间先被选到
- k < i < j 且 i 或 j 要在 [k,j] 之间先被选到

故

$$\begin{split} E[\# \text{ of compares}] &= \sum_{i < k < j} \frac{2}{j - i + 1} + \sum_{i < j < k} \frac{2}{k - i + 1} + \sum_{k < i < j} \frac{2}{j - k + 1} \\ &= \sum_{len=3}^{n} \frac{2 \min(len - 2, k - 1, n - len)}{len} + \sum_{i < k} \frac{2(k - i - 1)}{k - i + 1} + \sum_{k < j} \frac{2(j - k - 1)}{j - k + 1} \\ &\leq 2n + 2n + 2n \\ &= O(n) \end{split}$$

3.a: 确定性的排序算法可以用决策树表示,对于深度为 n 的决策树,叶子数量为 2^n ,而高度小于 $0.5n\log n$ 的叶子数量至多为 $2^{0.5n\log n}=n^{0.5n}$,故当 n 足够大时,满足运行时间小于 $0.5n\log n$ 的排列数量 至多为

$$\frac{n^{0.5n}}{n!} \le \frac{n^{0.5n} \cdot e^n}{n^n} \le \frac{e^n}{\sqrt{n}^n} < 0.01$$

3.b: 假设命题不成立,即超过 50% 的排列 σ 满足:

$$E_r[\operatorname{Time}(A(\sigma,r))] < 0.4n \log n.$$

定义集合 $S = \{\sigma \mid E_r[\text{Time}(A(\sigma,r))] < 0.4n \log n\}, \quad M \mid S \mid > 0.5n!$ 。

对每个 $\sigma \in S$, 至少 50% 的随机串 r 满足 (由 markov 不等式推出):

$$\mathrm{Time}(A(\sigma,r)) < 0.8n \log n.$$

因此,定义"快排对"为满足 $Time(A(\sigma,r)) < 0.8n \log n$. 的 (σ,r) 组合,则"快排对" (σ,r) 的总数至少为:

$$|S| \cdot 0.5 \cdot 2^{l(n)} > 0.5n! \cdot 0.5 \cdot 2^{l(n)} = \frac{n! \cdot 2^{l(n)}}{4}.$$

对每个固定 r, 算法 $A(\cdot,r)$ 的决策树中深度小于 $0.8n \log n$ 的叶节点数至多为:

$$2^{0.8n\log n} = n^{0.8n}.$$

因此,所有 $2^{l(n)}$ 个可能的 r 对应的快排对总数至多为:

$$2^{l(n)} \cdot n^{0.8n}$$

由假设,应有

$$2^{l(n)} \cdot n^{0.8n} \ge \frac{n! \cdot 2^{l(n)}}{4} \implies n^{0.8n} \ge \frac{n!}{4}.$$

根据斯特林公式 $n! \approx \left(\frac{n}{e}\right)^n$, 当 n 充分大时:

$$n^{0.8n} = e^{0.8n \ln n}, \quad \frac{n!}{4} \approx \frac{1}{4} \left(\frac{n}{e}\right)^n = e^{n \ln n - n - \ln 4}.$$

显然 $e^{0.8n \ln n} \ll e^{n \ln n}$, 矛盾。

4: 当 원 \neq 원 时,有 $\left|\frac{\partial l}{\partial t} - \frac{\partial l}{\partial j}\right| = \left|\frac{a_ib_j - a_jb_i}{b_ib_j}\right| > \frac{1}{n^4}$,故我们可将所有 원 映射到 val_i ,其中 $val_i = argmax\{k|\frac{k}{n^4} \leq \frac{\partial l}{b_i}\}$,且 원 $< \frac{\partial l}{\partial j}$ 当且仅当 $val_i < val_j$ 。

而 $val_i \in [0, n^6]$ 且是整数,可将其视为 6 位 n 进制数并使用基数排序,时间复杂度为 O(6n) = O(n)。