ANALYSIS OF ELECTROSTATIC AND MAGNETOSTATIC BEHAVIOR OF ELECTRIC VEHICLE EXTERNAL PARTS WITH DIFFERENT CASES OF LIGHTNING EFFECTS

Prepared By

M. PRESHNAVE

Division of High Voltage Engineering

Department of Electrical and Electronics Engineering

College of Engineering, Guindy | Anna University

Title	A study on transient magnetic field in an Electric Vehicle due to Lightning	
Field of Work	High Voltage Engineering	
Simulation Package	COMSOL Multiphysics	
Analysis	Finite Element Method (FEM)	
Solver	Electrostatic Magnetostatic	
Project Contents	 Vehicle design Field distribution inside the vehicle Filed distribution on external parts of vehicle Motor design Battery Design Field distribution on Motor Filed distribution on battery Current distribution on battery Calculation of "C" rate and Potential 	

Electrostatic Analysis in Parallel Plate Capacitor with Single Dielectric

Configuration:

1.	Problem	Electrostatic field analysis in Parallel Plate Capacitor with Single Dielectric
2.	Solver	Electrostatic
3.	Study	Stationary
4.	Governing Equation	$\varepsilon \nabla^2 V = 0$
5.	Dimension	3D Conductor's height = 20 mm Width = 180 mm Depth = 180 mm
6.	Material Properties	Silver and Polycrystalline Relative Permittivity of silver Relative Permittivity of Polycrystalline
7.	Source	Higher Potential = 10 V Lower Electric Potential = 0 V
8.	Analytical Solution	Electric Filed Intensity, $E = \left(\frac{V}{d}\right) \mid Capacitance, C = \left(\frac{\varepsilon_0 \varepsilon_r A}{d}\right)$ $Energy, W = 0.5CV^2$
9.	Software	COMSOL Multiphysics 5.2 – AC/DC Module

[Parallel Plate Capacitor Surface Plot and Electric potential graph]

Inference:

The voltage distribution linearly decreases with respect to distance. Due to fringing effect non-uniform field is produced near the edges of parallel plate capacitor. When the dielectric medium changed, then voltage and electric field distribution decreases or increases with respect to material used as a dielectric medium.

1.	Problem	Electrostatic field analysis in Electric Vehicle dimensionless
		Solid Structure with Air medium.
2.	Solver	Electrostatic
3.	Study	Stationary
4.	Governing Equation	$\varepsilon \nabla^2 V = 0$
5.	Dimension 3D Car dimensionless solid structure	
		Air Copper Sand Steel Epoxy Resin
6.	Material Properties	Relative Permittivity of Air Relative Permittivity of Copper
0.		Relative Permittivity of Sand Relative Permittivity of Steel
		Relative Permittivity of Steel .
7.	Source	Terminal Potential = 100 kV Ground Potential = 0 V
8.	Software	COMSOL Multiphysics 5.2 – AC/DC Module

Surface: Electric Potential

[Fig – Electric Vehicle Surface Plot and Electric potential graph]

Range of Electrostatic Field distribution		
Source Point	Discharging Points	Maximum Values (Volts)
	Antenna and Top roof	1 X 10 ⁵
	Vehicle Front Body	0.6 X 10 ⁵
Vehicle Antenna and Air	Vehicle back Body near mirror	$0.6 X 10^5$
ionisation mediym	Vehicle shaft area	$0.4 X 10^5$
	Vehicle Rim area	$0.2 X 10^5$
	Vehicle wheel area	$-5.15 X 10^{-15}$

Inference:

Surface of the solid electric vehicle body carries more electric field than inside the vehicle body conductor. The voltage distribution is decreases linearly and it carries different values in different parts of electric vehicle. Maximum amount of electric potential placed current injecting point (Vehicle Antenna) and minimum amount of electric potential in discharging point (Vehicle wheel). Air medium get energized due to lightning and it produce maximum amount of temperature (Five times more than Sun temperature). This air medium also acts as a current source and it affect the vehicle body. The effects of Air due to lightning also a major parts of high voltage lightning analysis in Electric vehicle.

Configuration:

1.	Problem Electrostatic field analysis in Electric Vehicle Solid Structure with Air medium.	
2.	Solver	Electrostatic
3.	Study	Stationary
4.	Governing Equation	$\varepsilon \nabla^2 V = 0$
5.	Vehicle Dimension	3D Length – 3994mm Width – 1811mm Height – 1607mm
	Material Properties	Air Copper Sand Steel Epoxy Resin
6.		Relative Permittivity of Air Relative Permittivity of Copper
0.		Relative Permittivity of Sand Relative Permittivity of Steel
		Relative Permittivity of Steel .
7.	Source	Terminal Potential = 100 V Ground Potential = 0 V
8.	Software	COMSOL Multiphysics 5.2 – AC/DC Module

[Fig – Electric Vehicle Potential and Electric Field graph]

[Fig – Electric Potential graph]

[Fig -Electric Field graph]

Range of Electrostatic Field distribution		
Source Point	Discharging Points	Maximum Values (Volts)
	Top roof	100
	Vehicle Front Body	100
Vehicle Antenna and Air	Vehicle back Body near mirror	100
ionisation mediym	Vehicle shaft area	60
	Vehicle Rim area	50
	Vehicle wheel area	40

1.	Problem	Electrostatic field analysis in Electric Vehicle dimensionless
		Solid Structure without Air medium.
2.	Solver	Electrostatic
3.	Study	Stationary
4.	Governing Equation	$\varepsilon \nabla^2 V = 0$
5.	Dimension 3D Car dimensionless solid structure	
		Air Copper Sand Steel Epoxy Resin
6.	Material Properties	Relative Permittivity of Air Relative Permittivity of Copper
0.		Relative Permittivity of Sand Relative Permittivity of Steel
		Relative Permittivity of Steel .
7.	Source	Terminal Potential = 100 kV Ground Potential = 0 V
8.	Software	COMSOL Multiphysics 5.2 – AC/DC Module

Surface: Electric Potential

[Fig – Electric Vehicle Surface Plot and Electric potential graph]

Range of Electrostatic Field distribution		
Source Point	Discharging Points	Maximum Values (Volts)
	Antenna and Top roof	1 X 10 ⁵
	Vehicle Front Body	$0.7 X 10^5$
Vehicle Antenna	Vehicle back Body near mirror	$0.2 X 10^5$
venicie / memia	Vehicle shaft area	0
	Vehicle Rim area	0
	Vehicle wheel area	0

Inference:

Surface of the solid electric vehicle body carries more electric field than inside the vehicle body conductor. The voltage distribution is decreases linearly and it carries different values in different parts of electric vehicle. Maximum amount of electric potential placed current injecting point (Vehicle Antenna) and very minimum amount of electric potential is in discharging point (Vehicle wheel). Without air medium, the potential distribution is entirely decreasing compared to with Air medium analysis. But practically without Air medium is not possible. So Maximum potential appearing in vehicle body. So, we need to protect the vehicle body as well as internal parts of electric vehicle.

1.	1. Problem	Electrostatic field analysis in Electric Vehicle dimensionless
		Hollow Structure with Air medium.
2.	Solver	Electrostatic
3.	Study	Stationary
4.	Governing Equation	$\varepsilon \nabla^2 V = 0$
5.	Dimension 3D Car dimensionless hollow structure	
		Air Copper Sand Steel Epoxy Resin
6.	Material Properties	Relative Permittivity of Air Relative Permittivity of Copper
0.		Relative Permittivity of Sand Relative Permittivity of Steel
		Relative Permittivity of Steel .
7.	Source	Terminal Potential = 100000 V Ground Potential = 0 V
8.	Software	COMSOL Multiphysics 5.2 – AC/DC Module

Surface: Electric Potential

[Fig – Electric Vehicle Surface Plot and Electric potential graph]

Range of Electrostatic Field distribution		
Current Injecting Point	Discharging Points	Maximum Values (Volts)
	Antenna and Top roof	1 X 10 ⁵
	Vehicle Front Body	$0.9 X 10^5$
Vehicle Antenna and Air	Vehicle back Body near mirror	$0.6 X 10^5$
ionisation mediym	Vehicle shaft area	$0.4 X 10^5$
	Vehicle Rim area	$0.3 X 10^5$
	Vehicle wheel area	$0.1X10^5$

Inference:

Surface of the solid electric vehicle body carries more electric field than inside the vehicle body conductor. The voltage distribution is decreases linearly and it carries different values in different parts of electric vehicle. Maximum amount of electric potential placed current injecting point (Vehicle Antenna) and very minimum amount of electric potential is in discharging point (Vehicle wheel). Air medium get energized due to lightning and it produce maximum amount of temperature (Five times more than Sun temperature). This air medium also acts as a current source and it affect the vehicle body. The effects of Air due to lightning also a major parts of high voltage lightning analysis in Electric vehicle.

1.	1. Problem	Electrostatic field analysis in Electric Vehicle Hollow Structure
		without Air medium.
2.	Solver	Electrostatic
3.	Study	Stationary
4.	Governing Equation $\varepsilon \nabla^2 V = 0$	
5.	3D Car dimensionless hollow structure	
	Material Properties	Air Copper Sand Steel Epoxy Resin
6.		Relative Permittivity of Air Relative Permittivity of Copper
0.		Relative Permittivity of Sand Relative Permittivity of Steel
		Relative Permittivity of Steel .
7.	Source	Terminal Potential = 100000 V Ground Potential = 0 V
8.	Software	COMSOL Multiphysics 5.2 – AC/DC Module

Surface: Electric Potential

[Fig – Electric Vehicle Surface Plot and Electric potential graph]

Range of Electrostatic Field distribution		
Current Injecting Point	Discharging Points	Maximum Values (Volts)
	Antenna and Top roof	1 X 10 ⁵
Vehicle Antenna	Vehicle Front Body	$0.5 X 10^5$
	Vehicle back Body near mirror	$0.3 X 10^5$
	Vehicle shaft area	$0.2X10^5$
	Vehicle Rim area	$0.1X10^5$
	Vehicle wheel area	0

Inference:

Surface of the solid electric vehicle body carries more electric field than inside the vehicle body conductor. The voltage distribution is decreases linearly and it carries different values in different parts of electric vehicle. Maximum amount of electric potential placed current injecting point (Vehicle Antenna) and very minimum amount of electric potential is in discharging point (Vehicle wheel). Without air medium, the potential distribution is entirely decreasing compared to with Air medium analysis. But practically without Air medium is not possible. So Maximum potential appearing in vehicle body. So, we need to protect the vehicle body as well as internal parts of electric vehicle.

Electrostatic Field Analysis in Electric Vehicle with Nearest Object

Configuration:

1.	Problem	Electrostatic field analysis in Electric Vehicle solid Structure with nearest object	
2.	Solver	Electrostatic	
3.	Study	Stationary	
4.	Governing Equation $\varepsilon \nabla^2 V = 0$		
5.	Dimension 3D Car dimensionless solid structure		
	Material Properties	Air Copper Sand Steel Epoxy Resin	
6.		Relative Permittivity of Air Relative Permittivity of Copper	
0.		Relative Permittivity of Sand Relative Permittivity of Steel	
		Relative Permittivity of Steel .	
7.	Source	Terminal Potential = 100 kV Ground Potential = 0 V	
8.	Software	COMSOL Multiphysics 5.2 – AC/DC Module	

Case – I (Source Point is top of the tower)

[Fig – Surface Plot without Air medium: Electric Potential]

Range of Electrostatic Field distribution			
Source Point	Discharging Points	Maximum Values (Volts)	
	Antenna and Top roof	0	
	Tower Top Edge	$1 X 10^5$	
	Tower Bottom edge	$0.1 X 10^5$	
T T E1	Vehicle Front Body	0	
Tower Top Edge	Vehicle back Body near mirror	0	
	Vehicle shaft area	0	
	Vehicle Rim area	0	
	Vehicle wheel area	0	

Case – II (Source Point is top of the tower and Air medium)

[Fig – Surface Plot with Air medium: Electric Potential]

Range of El	Range of Electrostatic Field distribution (Including Air Medium)		
Source Point	Discharging Points	Maximum Values (Volts)	
	Antenna and Top roof	1 X10 ⁵	
	Tower Top Edge	1 X 10 ⁵	
	Vehicle Front Body	$0.5 X 10^5$	
Tower and Air	Vehicle back Body near mirror	$0.1X10^5$	
	Vehicle shaft area	$0.1X10^5$	
	Vehicle Rim area	$0.1X10^5$	
	Vehicle wheel area	$0.1X10^5$	

Case – III (Source Point is side portion of tower near to vehicle)

[Fig – Surface Plot without Air medium: Electric Potential]

Range of Electrostatic Field distribution			
Source Point	Discharging Points	Maximum Values	
	Antenna and Top roof	$0.1 X 10^5$	
	Tower Top Edge	$1X10^5$	
	Vehicle Front Body	0	
Tower side part	Vehicle back Body near mirror	$0.1X10^5$	
	Vehicle shaft area	0	
	Vehicle Rim area	0	
	Vehicle wheel area	0	

Inference:

In case I, the electric potential applied top edge of tower, so that the total electric potential discharged through the ground. There is no field distribution near to the object. But this process done without air medium.

In case II, the electric potential applied top edge of tower and consider the air medium ionizing due to lightning. Here the electric potential distributing through the air medium as well as tower potential sent through ground. Therefore, maximum amount of field is distributing through vehicle body as well as tower body.

In case III, the electric potential applied side portion of tower without air medium. Therefore, minimum amount of field is distributing through vehicle body and maximum amount of field distributing through tower body. Therefore, electric vehicle is affected due to lightning strikes nearest object also.

1.	Problem	Magnetostatic field analysis in Helmholtz Coil
2.	Solver	Magnetostatic
3.	Study	Stationary
4.	Governing Equation	$\varepsilon \nabla^2 V = 0 \mid \nabla \cdot D = \rho_v \mid E = -\nabla V$
5.	Dimension	3D Car solid structure
6. Material Properties Relative Permittivity of Air Relative Permittivity		Air Coil
		Relative Permittivity of Air Relative Permittivity of Iron
		Electrical Conductivity of Coil
7.	Source	Coil Current = 0.25 mA
8.	Software	COMSOL Multiphysics 5.6 – AC/DC Module

[Fig – The slice plot shows the magnetic flux density norm. The arrows indicate the magnetic field (H) strength and direction]

[Fig – Arrow Volume Magnetic Flux Density]

1.	Problem	Magnetostatic field analysis in Electric Vehicle Solid Structure without Air medium.	
2.	Solver	Magnetostatic	
3.	Study	Stationary	
4.	Governing Equation	$\mathbf{n} \varepsilon \nabla^2 V = 0 \mid \nabla \cdot D = \rho_v \mid E = -\nabla V$	
5.	Dimension 3D Car solid structure		
	Material Properties	Air Copper Sand Steel Epoxy Resin	
6.		Relative Permittivity of Air Relative Permittivity of Copper	
0.		Relative Permittivity of Sand Relative Permittivity of Steel	
		Relative Permittivity of Steel .	
7.	Source	Surface current Density = 750kA/m External Current density =	
/•	Source	$1A/m^2$	
8.	Software	COMSOL Multiphysics 5.6 – AC/DC Module	

[Fig – Maximum Flux Density]

[Fig - Current Density]

1.	Problem	Magnetostatic field analysis in Electric Vehicle hollow Structure	
2.	Solver	Magnetostatic	
3.	Study	Stationary	
4.	Governing Equation	$\mathbf{n} \varepsilon \nabla^2 V = 0 \mid \nabla \cdot D = \rho_{v} \mid E = -\nabla V$	
5.	Dimension 3D Car Hollow structure		
	Material Properties	Air Copper Sand Steel Epoxy Resin	
6.		Relative Permittivity of Air Relative Permittivity of Copper	
0.		Relative Permittivity of Sand Relative Permittivity of Steel	
		Relative Permittivity of Steel .	
7.	Source	Surface current Density = 750kA/m External Current density	
'`		$=1A/m^2$	
8.	Software	COMSOL Multiphysics 5.6 – AC/DC Module	

[Fig – Magnetic flux density]

[Fig – Current Density]

1.	Problem	Magnetostatic field analysis in Electric Vehicle hollow Structure with direct and indirect lightning effects	
2.	Solver	Magnetostatic	
3.	Study	Time Dependent	
4.	Governing Equation	$\epsilon \nabla^2 V = 0 \mid \nabla \cdot D = \rho_v \mid E = -\nabla V$	
5.	Dimension 3D Car Hollow structure		
	Material Properties	Air Copper Sand Steel Epoxy Resin	
6.		Relative Permittivity of Air Relative Permittivity of Copper	
0.		Relative Permittivity of Sand Relative Permittivity of Steel	
		Relative Permittivity of Steel .	
7.	Source	Surface current Density = 1 A/m External Current density =	
/•		$1A/m^2$	
8.	Software	COMSOL Multiphysics 5.6 – AC/DC Module	

Case (1): Simulation Setup in the case of direct lightning stroke:

Range of Magnetic Field distribution			
Source Point	Discharging Points	Maximum Values (Tesla)	
	Antenna Terminals	$3.079X10^{-6}$	
	Back Area	$2X 10^{-10}$	
Antenna	Front area	$1X10^{-10}$	
(1 A and 1 ns)	Front Wheel Shaft	0	
	Front Wheel	5.036 X10 ⁻¹⁵	
	Back Wheel	5.036 X10 ⁻¹⁵	

Case (2): Simulation Setup in the case of direct lightning stroke from long distance:

Range of Magnetic Field distribution			
Source Point	Discharging Points	Maximum Values (Tesla)	
	Antenna Terminals	$2.705X \ 10^{-6}$	
	Top surface of the vehicle	$0.8X10^{-9}$	
Current Lead Wire	Front area	$0.4X10^{-9}$	
(1A and 1 ns)	Front Wheel Shaft	0	
	Front Wheel	4.877 X10 ⁻¹⁴	
	Back Wheel	4.877 X10 ⁻¹⁴	

CONCLUSIONS

Based on the study of transient magnetic field, current distribution and electric field distribution in an electric vehicle, electric field distribution mainly occurs in the back wheel area as a heavily damaging part.

More amount of electric field intensity, magnetic flux density and current density occurs in back wheel part. From that when, the lightning effects affects the internal parts of electric vehicle through the transmission medium and shaft present in EV. So, care should be taken for internal parts of electric vehicle and human beings from lightning strokes.

The field distribution and current distribution on electric vehicle and internal parts is based on structure of vehicle, Material properties, Electrical design and Thermal design.

.

Configuration:

1.	Problem	Electrostatic field analysis in Permanent Magnet Motor	
2.	Solver	Electrostatics	
3.	Study	Stationary	
4.	Governing Equation	$\varepsilon \nabla^2 V = 0 \mid \nabla \cdot D = \rho_{v} \mid E = -\nabla V$	
	Vehicle Dimension	Length – 3994mm Width – 1811mm Height – 1607mm Front	
		track - 1540mm Rear track - 1530mm Rear interior width -	
5.		1350mm Ground clearance – 205mm Length between wheel	
3.		midpoint – 2498mm Front sheet to top height – 920mm Back sheet	
		to top height – 880mm Front to sheet distance – 810 max to 630	
		min Front sheet to back sheet distance – 880 max to 680 min	
6.	Motor Details	Tata Nexon – Permanent magnet Synchronous Motor Type -	
υ.	Wiotor Details	Surface magnets and pole shows	
7.	Material Properties	Rotor Magnet – Ferrite	

8.	Battery Rating	30.2kWh Nominal Voltage – 220 V
9.	Temperature Range	−5 to 45 ⁰ Celsius
10.	Source	Higher Potential = 10000 V Lower Potential = 0 V
11.	Software	COMSOL Multiphysics 5.2 – AC/DC Module

Design Calculation:

Consider the TATA Nexon Electric Vehicle specification as a reference for motor design. Permanent Magnet Synchronous motor with Surface magnets and pole shoe motor used.

Motor Specifications given data:

- Power, P = 96,000(129HP)
- Torque, T = 245Nm
- Frequency, f = 50Hz
- Number of pole pairs, p' = 1
- $Phase\ voltage, V_{ph} = 220V$

Calculation:

The diameter and length of electrical machine obtained from the following equation,

Where,

A - RMS value of linear current density

P-Machine power

 K_{ω} – Winding factor

Dl - Main dimension of machine

 $T = tangential force X r_r$

For PMSM;

- Current Density, A = 30 80kA/m
- *Yoke flux density*, B = 1 1.6T

We choose: A = 40kA/m and B = 1.3T

•
$$\delta_{\tan(ave)} = \left(\frac{AB \cos \theta}{\sqrt{2}}\right) = \left(\frac{40000 \ X \ 1.3 \ X \ 1}{\sqrt{2}}\right) = \frac{36,769.55A}{m} \dots \dots (6)$$

We know that,

• $Torque, T = \left(\frac{P}{\omega}\right) = 245Nm$ 245 - 2 X 36 769 55V

$$245 = 2 X 36,769.55V_r$$

•
$$D_r^2 l' = \left(\frac{4 \times 0.00333156}{\pi}\right) = 0.0042440268m^3$$

Let assume,
$$x = (l'/D_r) \dots (9)$$

Where;

l'-Machine stalk length

 D_r — Rotor external diameter

x – Constant

Let assume, $D_r = 0.2$ and $l' = x X D_r = 0.8 X 0.2 = 0.16$

$$D_r^2 l' = 0.0042440268 m^3$$

$$D_r = \left(\frac{0.0042440268m^3}{l'}\right)$$

$$= \left(\frac{0.0042440268m^3}{0.16}\right)$$

• $D_r = 0.162865489$

From the above calculation we found diameter and length of the machine.

- $D_r = 0.163m = 163mm$
- l' = 0.16m = 160mm

Summary of Design Calculation:

Description	Values
Power (P_{Max})	96,000W, 129HP (96kW)
Frequency (f)	50Hz
Number of poles (P)	2
Number of pole pair (p)	1
Number of phases (m)	3
Phase voltage V_{Ph}	220V
Line voltage V_L	400V
Number of slots (Q)	4
Speed (ω)	$3740 \ rpm = 62 \ rps = 391 \ rad$
Power factor $(cos\varphi)$	1
Linear current density (A)	40kA/m
Stator yoke flux density (B)	1.3 <i>T</i>
Average tangential stress (δ_{Tan})	36769.55 <i>A</i> / <i>m</i>
Torque (T)	245Nm
Rotor Volume (V_r)	$0.003331561m^3$
Rotor Diameter (D_r)	0.163m or 163mm
Machine stalk length (l')	0.160m or 160mm
Stator external diameter $(D_{s,Ext})$	0.204m or 204mm
Pole pitch (τ_{pp})	256mm
Pole pitch angel	180°
Number of slots per pole	2
Circumference of the machine	512 <i>mm</i>
Rotor shaft diameter	55mm

Shaft extension dimension	100mm
Height of PM	22mm Approx.

[Magnetic Flux Density in Permanent Magnet Motor]

Range of Magnetostatic Field distribution		
Source Point	Discharging Points	Maximum Values
Motor Terminals	Terminals	4X10 ⁻⁸ Tesla

Design of Battery Cell for EV application

Configuration:

1.	Problem	Battery Cell design		
2.	Solver	Lithium Ion Battery		
3.	Study	Current Distribution Time Dependent		
4.	Governing Equation	$\varepsilon \nabla^2 V = 0 \mid \nabla \cdot D = \rho_v \mid E = -\nabla V$		
	Vehicle Dimension	Length – 3994mm Width – 1811mm Height – 1607mm Front		
		track - 1540mm Rear track - 1530mm Rear interior width -		
5.		1350mm Ground clearance – 205mm Length between wheel		
٥.	venicle Dimension	midpoint – 2498mm Front sheet to top height – 920mm Back sheet to top height – 880mm Front to sheet distance – 810 max to		
		630 min Front sheet to back sheet distance – 880 max to 680 min		
	Battery Cell Details	Cell Width – 0.082m Cell height – 0.2m Tab height – 0.001m		
6.		Tab width -0.01 m Initial cell state of charge -0.2 C rate -1		
		and 4 Positive electrode thickness - 60µm Negative electrode		

		thickness - 60µm Positive current collector thickness - 10µm	
		Negative current collector thickness - 10μm.	
		Aluminium Copper Graphite Electrode LMO Electrode Liquid	
		Electrolyte Positive Current Collector – Aluminium Negative	
7.	Material Properties	Current Collector - Copper Negative Electrode - Graphite	
		Electrode Positive Electrode – LMO Electrode Separator – LIPF	
		6 ECEMC Liquid Electrolyte	
8.	Battery Rating	30.2kWh Nominal Voltage – 320 V	
9.	Temperature Range	-5 to 45° Celsius	
10.	Source	Higher Potential = 10000 V Lower Potential = 0 V	
11.	Software	COMSOL Multiphysics 5.2 – AC/DC Module	

Summary of Design Calculation:

Description	Values
Power (P_{Max})	96,000W, 129HP (96kW)
Nominal Voltage (V)	320 V
Battery Rating	30.2kWh
Type of battery	Pouch and cylinder
Cell voltage	3.6 V
Capacity of single cell	3.2Ah
Height of cell	0.2m
Width of cell	0.08m
Thickness of cell	0.007m
Weight of cell	0.032kg
Specific energy density	9.13Wh
Volume of pouch cell	$0.00017m^3$
Energy of single cell	11.52Wh
Torque (T)	245Nm
Energy density of single cell	360Wh/kg
No of battery cell connected in series	88
Energy content of string	1024Wh

Average energy consumption	188.045Wh/kg
Battery pack total energy	47Kwh
No of string of battery pack	45
Battery pack capacity	144Ah
No of cells in the battery pack	3960
Peak Current for 1C	3.2A
Battery pack peak current for 1C	45A
Battery material for TATA Nexon	Steel

[Current distribution in the middle of the separator]

[Potential distribution in the positive metal foil]

[Potential Distribution in Negative Metal foil]

[Electric Potential on Boundary at 1 and 4 C rate]

[Cell Voltage]

C Rate	Discharge Rate	C Rate Ratio	Battery Current (A)	
0.2 <i>C</i>	5 Hours	144 <i>AH</i> / _{5<i>H</i>}	28 A	
0.5 <i>C</i>	2 Hours	144 <i>AH</i> / _{2H}	72 A	
1 C	1 Hours	$144AH/_{1H}$	144 A	
2 <i>C</i>	0.5 Hours	$^{144AH}/_{0.5H}$	288 A	
4 <i>C</i>	0.25 Hours	$^{144AH}/_{0.25H}$	576 A	
	Inferences			

 $High\ C\ Rate\ |\ High\ Potential\ Stress\ |\ Fast\ charging\ and\ discharging\ |\ High\ Temperature\ |\ Low\ battery\ life\ |\ High\ Power.$

Configuration:

1.	Problem	Battery Pack design	
2.	Solver	Lithium Ion Battery	
3.	Study Current Distribution Time Dependent		
4.	Governing Equation		
		Length – 3994mm Width – 1811mm Height – 1607mm Front	
		track - 1540mm Rear track - 1530mm Rear interior width -	
5.	Vehicle Dimension	1350mm Ground clearance – 205mm Length between wheel	
٥.	venicle Dimension	midpoint – 2498mm Front sheet to top height – 920mm Back	
		sheet to top height – 880mm Front to sheet distance – 810 max to	
		630 min Front sheet to back sheet distance – 880 max to 680 min	

		Cell Width – 0.082m Cell height – 0.2m Tab height – 0.001m	
		Tab width -0.01 m Initial cell state of charge -0.2 C rate -1	
6.	Battery Cell Details	and 4 Positive electrode thickness - 60µm Negative electrode	
		thickness - 60µm Positive current collector thickness - 10µm	
		Negative current collector thickness - 10μm.	
		Aluminium Copper Graphite Electrode LMO Electrode Liquid	
		Electrolyte Positive Current Collector - Aluminium Negative	
7.	Material Properties	Current Collector - Copper Negative Electrode - Graphite	
		Electrode Positive Electrode – LMO Electrode Separator – LIPF	
		6 ECEMC Liquid Electrolyte	
8.	Battery Rating 30.2kWh Nominal Voltage – 320 V		
9.	9. Temperature Range -5 to 45° Celsius		
10.	10. Source Higher Potential = 10000 V Lower Potential = 0 V		
11.	Software	COMSOL Multiphysics 5.2 – AC/DC Module	

Design Calculation:

Consider the TATA Nexon Electric Vehicle specification as a reference for Lithium-ion battery design. Here we used pouch and cylinder type of battery and battery pack.

Battery Specifications given data:

- Kerb Weight = 1400kg
- Nominal voltage = 320V
- $Battery\ rating = 30.2kWh$
- *Type of battery cell = Pouch and cylinder*
- $Cell\ voltage = 3.6V$
- Capacity of single cell = 3.2Ah
- Height of the cell = 0.272m
- Width of the cell = 0.082m
- Thickness of the cell = 0.0072m
- Weight of the cell = 0.032m

• Specific energy density = 9.13Wh

Calculation:

• *Volume of the pouch cell:*

$$V_{pc} = H_{pc} X W_{pc} X T_{pc} = 0.00017 m^3 \dots (1)$$

• Energy of the cell:

Cell voltage X capacity of single cell = $3.6 \times 3.2 = 11.52Wh \dots (2)$

• Energy density of the cell:

- Number of cell connected series = $(^{320}/_{3.6})$ = 88 (4)
- Battery pack total energy = E_{Ave} X Vehicle range = 188.45 X 250 = 47kWh (5)
- No of strings of battery pack =

$$\binom{Battery\ pack\ total\ energy}{Energy\ content\ of\ string}$$

- No of cells of the battery pack =

No of string of battery pack X no of battery connected in series

$$= 45 X 88 = 3960 \dots (8)$$

• Peak current = C rate X capacity of single cell (9)

For
$$1 C: 1 X 3.2 = 3.2A$$

For
$$2 C: 2 X 3.2 = 6.4 A$$

For
$$4C:4X3.2 = 12.8A$$

Summary of Design Calculation:

Description	Values
Power (P_{Max})	96,000W, 129HP (96kW)
Nominal Voltage (V)	320 V
Battery Rating	30.2kWh
Type of battery	Pouch and cylinder
Cell voltage	3.6 V
Capacity of single cell	3.2Ah
Height of cell	0.2m
Width of cell	0.08m
Thickness of cell	0.007m
Weight of cell	0.032kg
Specific energy density	9.13Wh
Volume of pouch cell	$0.00017m^3$
Energy of single cell	11.52Wh
Torque (T)	245 <i>Nm</i>
Energy density of single cell	360Wh/kg
No of battery cell connected in series	88
Energy content of string	1024Wh
Average energy consumption	188.045Wh/kg
Battery pack total energy	47Kwh
No of string of battery pack	45
Battery pack capacity	144Ah
No of cells in the battery pack	3960
Peak Current for 1C	3.2A
Battery pack peak current for 1C	45A
Battery material for TATA Nexon	Steel

Internal Field Distribution in Electric Vehicle Chassis

Configuration:

1.	Problem	Internal Field Distribution – Motor Mode	
2.	Solver	Magnetostatic	
3.	Study	Stationary	
4.	Governing Equation	$\epsilon \nabla^2 V = 0 \mid \nabla \cdot D = \rho_v \mid E = -\nabla V$	
	Vehicle Dimension	Length – 3994mm Width – 1811mm Height – 1607mm Front	
		track – 1540mm Rear track – 1530mm Rear interior width –	
5.		1350mm Ground clearance – 205mm Length between wheel	
J.		midpoint – 2498mm Front sheet to top height – 920mm Back sheet	
		to top height – 880mm Front to sheet distance – 810 max to 630	
		min Front sheet to back sheet distance – 880 max to 680 min	
6.	Motor Details	Tata Nexon – Permanent magnet Synchronous Motor Type -	
0.	Motor Details	Surface magnets and pole shows	

7.	Material Properties	Rotor Magnet – Ferrite
8.	Battery Rating	30.2kWh Nominal Voltage – 220 V
9.	Temperature Range	-5 to 45 ⁰ Celsius
10.	Source	Higher Potential = 10000 V Lower Potential = 0 V
11.	Software	COMSOL Multiphysics 5.2 – AC/DC Module

 $[Internal\ Field\ Distribution-Motor\ Mode]$

Range of Magnetic Field distribution		
Source Point	Discharging Points	Maximum Values (Tesla)
	Motor Terminals	5.84×10^{-9}
	Surface	$7.575 X 10^{-9}$
Motor Terminals	Motor Frame	$7.575 X 10^{-9}$
Motor Terminals	Front Wheel Shaft	0
	Front Wheel	0
	Back Wheel	0

Configuration:

1.	Problem	Internal Field Distribution – Battery Pack Mode	
2.	Solver	Magnetostatic	
3.	Study	Stationary	
4.	Governing Equation	$\mathbf{n} \varepsilon \nabla^2 V = 0 \mid \nabla \cdot D = \rho_v \mid E = -\nabla V$	
	Vehicle Dimension	Length – 3994mm Width – 1811mm Height – 1607mm Front	
		track - 1540mm Rear track - 1530mm Rear interior width -	
5.		1350mm Ground clearance - 205mm Length between wheel	
J.		midpoint – 2498mm Front sheet to top height – 920mm Back sheet	
		to top height -880mm Front to sheet distance -810 max to 630	
		min Front sheet to back sheet distance - 880 max to 680 min	
6.	Motor Details	Tata Nexon – Permanent magnet Synchronous Motor Type -	
0.	Motor Details	Surface magnets and pole shows	

7.	Material Properties	Rotor Magnet – Ferrite
8.	Battery Rating	30.2kWh Nominal Voltage – 220 V
9.	Temperature Range	-5 to 45 ⁰ Celsius
10.	Source	Higher Potential = 10000 V Lower Potential = 0 V
11.	Software	COMSOL Multiphysics 5.2 – AC/DC Module

[Internal Field Distribution – Battery Pack Mode]

▼ 0

Range of Magnetic Field distribution		
Source Point	Discharging Points	Maximum Values (Tesla)
Battery Pack Terminals	Battery Terminals	$6.57 X 10^{-10}$
	Surface	$8.51 X 10^{-10}$
	Battery Frame	$8.51 X 10^{-10}$
	Front Wheel Shaft	0
	Front Wheel	0
	Back Wheel	0

CONCLUSIONS:

The field distribution and current distribution on electric vehicle and internal parts is based on structure of vehicle, Material properties, Electrical design and Thermal design. Also, Electric Vehicle battery pack life is based on C rate, Potential stress, Fast charging and discharging rate, Temperature and power.