Example: Li (2013) HSROC

Yi

2022-01-16

Table 1: CD64 example: the estimation under four selective publication mechanisms

(c_1, c_2)	p	SAUC (95%CI)	Se $(95\%CI)$	$\mathrm{Sp}\ (95\%\mathrm{CI})$	β (95%CI)	α_p	μ_1	μ_2	$ au_1$	$ au_2$	ρ
(\hat{c}_1, \hat{c}_2)	1.0	0.91 (0.87, 0.94)	0.80 (0.74, 0.85)	0.88 (0.83, 0.92)			1.41	1.99	0.79	0.85	0.13
	0.8	$0.89 \ (0.85, \ 0.92)$	$0.78 \ (0.72, \ 0.83)$	$0.86 \ (0.81, \ 0.89)$	5.00 (-16.84, 26.84)	-8.77	1.28	1.77	0.85	0.94	0.30
	0.6	$0.88 \ (0.82, \ 0.92)$	$0.76 \ (0.69, \ 0.82)$	0.85 (0.79, 0.89)	$1.00 \ (0.11, \ 1.89)$	-2.71	1.17	1.72	0.86	0.89	0.29
	0.4	$0.84\ (0.76,\ 0.90)$	$0.72\ (0.62,\ 0.80)$	$0.82\ (0.74,\ 0.88)$	$0.92 \ (0.33, \ 1.50)$	-3.04	0.95	1.53	0.89	0.90	0.35
(0.7, 0.7)	1.0	$0.91\ (0.87,\ 0.94)$	$0.80\ (0.74,\ 0.85)$	$0.88 \ (0.83, \ 0.92)$			1.41	1.99	0.79	0.85	0.13
	0.8	$0.90 \ (0.86, \ 0.93)$	0.79 (0.73, 0.84)	0.87 (0.82, 0.90)	1.27 (-0.18, 2.73)	-2.43	1.33	1.87	0.83	0.88	0.22
	0.6	$0.88 \ (0.82, \ 0.92)$	$0.76 \ (0.69, \ 0.82)$	0.85 (0.79, 0.89)	1.06 (0.13, 1.99)	-2.84	1.18	1.70	0.85	0.90	0.30
	0.4	$0.84\ (0.76,\ 0.90)$	$0.73 \ (0.63, \ 0.81)$	$0.81\ (0.73,\ 0.88)$	$0.95 \ (0.29, \ 1.62)$	-3.14	0.99	1.48	0.88	0.92	0.36
(1,0)	1.0	$0.91\ (0.87,\ 0.94)$	$0.80\ (0.74,\ 0.85)$	$0.88 \ (0.83, \ 0.92)$			1.41	1.99	0.79	0.85	0.13
	0.8	$0.90 \ (0.86, \ 0.93)$	$0.78 \ (0.71, \ 0.83)$	$0.88 \ (0.83, \ 0.92)$	0.39 (-0.01, 0.79)	0.04	1.24	1.97	0.87	0.86	0.12
	0.6	0.89 (0.84, 0.92)	$0.74 \ (0.65, \ 0.81)$	$0.88 \ (0.82, \ 0.92)$	$0.45 \ (0.12, \ 0.78)$	-0.63	1.03	1.96	0.93	0.86	0.11
	0.4	$0.87 \ (0.80, \ 0.92)$	$0.67 \ (0.54, \ 0.78)$	$0.88 \ (0.80, \ 0.92)$	$0.48 \ (0.19, \ 0.77)$	-1.14	0.73	1.95	0.99	0.86	0.08
(0, 1)	1.0	$0.91\ (0.87,\ 0.94)$	$0.80\ (0.74,\ 0.85)$	$0.88 \ (0.83, \ 0.92)$			1.41	1.99	0.79	0.85	0.13
	0.8	$0.90 \ (0.85, \ 0.93)$	$0.80\ (0.74,\ 0.85)$	$0.86 \ (0.81, \ 0.90)$	$0.63 \ (-0.00, \ 1.27)$	-0.57	1.40	1.82	0.79	0.93	0.13
	0.6	$0.88 \ (0.82, \ 0.92)$	$0.80\ (0.73,\ 0.85)$	$0.83 \ (0.76, \ 0.88)$	0.67 (0.21, 1.14)	-1.30	1.38	1.58	0.80	0.99	0.13
	0.4	$0.85\ (0.77,\ 0.91)$	$0.79\ (0.71,\ 0.86)$	$0.78 \ (0.66, \ 0.86)$	$0.69 \ (0.26, \ 1.12)$	-1.80	1.35	1.26	0.80	1.07	0.14

TABLE: ESTIMATES

PLOT: SROC curve

PLOT: Probit of α and β

PLOT: SAUC matplot

PLOT: Funnel plot

