Application No.: 10/574,844

Art Unit: 1795

AMENDMENTS TO THE CLAIMS

This listing of claims replaces all prior versions of claims in the application.

1-3. (Cancelled).

- 4. (Currently Amended): An electrically conductive paste for connecting a p-type thermoelectric material comprising:
 - (i) at least one powdery oxide selected from the group consisting of:

a complex oxide represented by the formula $Ca_aA^1{}_bCo_cA^2{}_dO_e$ wherein A^1 is one or more elements selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, and Bi; A^2 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Mo, W, Nb, and Ta; $2.2 \le a \le 3.6$; $0 \le b \le 0.8$; $0.3 \le b \le 0.8$; 0.

a complex oxide represented by the formula $Bi_fPb_gM^1_hCo_iM^2_jO_k$ wherein M^1 is one or more elements selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Ca, Sr, Ba, Al, Y, and lanthanoids; M^2 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Mo, W, Nb, and Ta; $1.8 \le f \le 2.2$; $0 \le g \le 0.4$; $1.8 \le h \le 2.2$; $1.6 \le i \le 2.2$; $0 \le j \le 0.5$; and $8 \le k \le 10$; and

(ii) at least one powdery electrically conductive metal selected from the group consisting of gold, silver, platinum, and alloys containing at least one of these metals.

Application No.: 10/574,844 Submission under 37 C.F.R. §1.114 Art Unit: 1795 Attorney Docket No.: 062327

5. (Currently Amended): The electrically conductive paste for connecting a p-type thermoelectric material according to Claim 4, wherein the powdery oxide is at least one member selected from the group consisting of:

a complex oxide represented by the formula $Ca_aA^1_bCo_4O_e$ wherein A^1 is one or more elements selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, and Bi; $2.2 \le a \le 3.6$; $0 \le b \le 0.8$; and $0 \le a \le 10$; and

a complex oxide represented by the formula $Bi_fPb_gM^1_hCo_2O_k$ wherein M^1 is one or more elements selected from the group consisting of Sr, Ca, and Ba; $1.8 \le f \le 2.2$; $0 \le g \le 0.4$; $1.8 \le h \le 2.2$; and $8 \le k \le 10$.

6. (Original): The electrically conductive paste for connecting a p-type thermoelectric material according to Claim 4, wherein the powdery oxide mentioned in (i) above is contained in an amount of 0.5 to 20 parts by weight per 100 parts by weight of the powdery electrically conductive metal mentioned in (ii) above.

7. (Original): The electrically conductive paste for connecting a p-type thermoelectric material according to Claim 4, further comprising a glass ingredient and a resin ingredient.

8-12. (Cancelled).

Application No.: 10/574,844

Art Unit: 1795

13. (Currently Amended): A thermoelectric element wherein one end of a p-type thermoelectric material and one end of an n-type thermoelectric material are each connected to an electrically conductive substrate with an electrically conductive paste,

the p-type thermoelectric material comprising:

a complex oxide represented by the formula $Ca_aA^1{}_bCo_cA^2{}_dO_e$ wherein A^1 is one or more elements selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, Bi, Y, and lanthanoids; A^2 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Mo, W, Nb, and Ta; $2.2 \le a \le 3.6$; $0 \le b \le 0.8$; $2 \le c \le 4.5$; $0 \le d \le 2$; and $8 \le e \le 10$; or

a complex oxide represented by the formula $Bi_fPb_gM^1_hCo_iM^2_jO_k$ wherein M^1 is one or more elements selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Ca, Sr, Ba, Al, Y, and lanthanoids; M^2 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Mo, W, Nb, and Ta; $1.8 \le f \le 2.2$; $0 \le g \le 0.4$; $1.8 \le h \le 2.2$; $1.6 \le i \le 2.2$; $0 \le j \le 0.5$; and $8 \le k \le 10$;

the n-type thermoelectric material comprising:

a complex oxide represented by the formula $Ln_mR^1{}_nNi_pR^2{}_qO_r$ wherein Ln is one or more elements selected from the group consisting of lanthanoids; R^1 is one or more elements selected from the group consisting of Na, K, Sr, Ca, and Bi; R^2 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Mo, W, Nb, and Ta; $0.5 \le m \le 1.2$; $0 \le n \le 0.5$; $0.5 \le p \le 1.2$; $0 \le q \le 0.5$; and $2.7 \le r \le 3.3$; or

Application No.: 10/574,844 Art Unit: **1795**

a complex oxide represented by the formula $(Ln_sR^3{}_t)_2Ni_uR^4{}_vO_w$ wherein Ln is one or more elements selected from the group consisting of lanthanoids; R^3 is one or more elements selected from the group consisting of Na, K, Sr, Ca, and Bi; R^4 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Mo, W, Nb, and Ta; $0.5 \le s \le 1.2$; $0 \le t \le 0.5$; $0.5 \le u \le 1.2$; $0 \le v \le 0.5$; and $3.6 \le r \le 4.4$;

the electrically conductive paste for connecting the p-type thermoelectric material comprising:

(i) at least one powdery oxide selected from the group consisting of

a complex oxide represented by the formula $Ca_aA^1{}_bCo_cA^2{}_dO_e$ wherein A^1 is one or more elements selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, and Bi; A^2 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Mo, W, Nb, and Ta; $2.2 \le a \le 3.6$; $0 \le b \le 0.8$; $0.3 \le b \le 0.8$; 0.

a complex oxide represented by the formula $Bi_fPb_gM^1_hCo_iM^2_jO_k$ wherein M^1 is one or more elements selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Ca, Sr, Ba, Al, Y, and lanthanoids; M^2 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Mo, W, Nb, and Ta; $1.8 \le f \le 2.2$; $0 \le g \le 0.4$; $1.8 \le h \le 2.2$; $1.6 \le i \le 2.2$; $0 \le j \le 0.5$; and $8 \le k \le 10$; and

(ii) at least one powdery electrically conductive metal selected from the group consisting of gold, silver, platinum, and alloys containing at least one of these metals; and

Application No.: 10/574,844 Submission under 37 C.F.R. §1.114 Attorney Docket No.: 062327

the electrically conductive paste for connecting the n-type thermoelectric material comprising:

(i) at least one powdery oxide selected from the group consisting of

Art Unit: 1795

a complex oxide represented by the formula $Ln_mR_n^1Ni_pR_q^2O_r$ wherein Ln is one or more elements selected from the group consisting of lanthanoids; R¹ is one or more elements selected from the group consisting of Na, K, Sr, Ca, and Bi; R² is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Mo, W, Nb, and Ta; $0.5 \le m \le 1.2$; $0 \le n \le 0.5$; 0.5 $\leq p \leq 1.2$; $0 \leq q \leq 0.5$; and $2.7 \leq r \leq 3.3$; and

- (ii) at least one powdery electrically conductive metal selected from the group consisting of gold, silver, platinum, and alloys containing at least one of these metals.
- 14. (Currently Amended): A thermoelectric element wherein one end of a p-type thermoelectric material and one end of an n-type thermoelectric material are each connected to an electrically conductive substrate with an electrically conductive paste;

the p-type thermoelectric material comprising a complex oxide represented by the formula Ca₂A¹_bCo₄O_e wherein A¹ is one or more elements selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, Bi, Y, and lanthanoids; $2.2 \le a \le 3.6$; $0 \le$ $b \le 0.8$; and $8 \le e \le 10$; or a complex oxide represented by the formula $Bi_fPb_sM^1_hCo_2O_k$ wherein M^1 is one or more elements selected from the group consisting of Sr, Ca, and Ba; $1.8 \le f \le 2.2$; 0 \leq g \leq 0.4; 1.8 \leq h \leq 2.2; and 8 \leq k \leq 10;

Application No.: 10/574,844 Art Unit: **1795**

the n-type thermoelectric material comprising a complex oxide represented by the formula $La_mR^1{}_nNiO_r$ wherein R^1 is one or more elements selected from the group consisting of Na, K, Sr, Ca, and Bi; $0.5 \le m \le 1.2$; $0 \le n \le 0.5$; and $2.7 \le r \le 3.3$; or a complex oxide represented by the formula $(La_sR^3{}_t)_2NiO_w$ wherein R^3 is one or more elements selected from the group consisting of Na, K, Sr, Ca, and Bi: $0.5 \le s \le 1.2$; $0 \le t \le 0.5$; and $3.6 \le w \le 4.4$;

the electrically conductive paste for connecting the p-type thermoelectric material to the electrically conductive substrate comprising (i) at least one powdery oxide selected from the group consisting of a complex oxide represented by the formula $Ca_aA^1{}_bCo_4O_e$ wherein A^1 is one or more elements selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, and Bi; $2.2 \le a \le 3.6$; $0 \le b \le 0.8$ $0.3 \le b \le 0.8$; and $0.3 \le$

the electrically conductive paste for connecting the n-type thermoelectric material to the electrically conductive substrate comprising (i) at least one powdery oxide selected from the group consisting of a complex oxide represented by the formula $La_mR^1{}_nNiO_r$ wherein R^1 is one or more elements selected from the group consisting of Na, K, Sr, Ca, and Bi; $0.5 \le m \le 1.2$; $0 \le n \le 0.5$; and $2.7 \le r \le 3.3$; and (ii) at least one powdery electrically conductive metal selected from the group consisting of gold, silver, platinum, and alloys containing at least one of these metals.

Application No.: 10/574,844 Submission under 37 C.F.R. §1.114 Art Unit: 1795 Attorney Docket No.: 062327

15-16. (Cancelled).

17. (Original): A thermoelectric module comprising a plurality of the thermoelectric elements of Claim 13, wherein the thermoelectric elements are connected in series such that an unbonded end portion of a p-type thermoelectric material of one thermoelectric element is connected to an unbonded end portion of an n-type thermoelectric material of another thermoelectric element on a substrate.

18. (Currently Amended): A thermoelectric conversion method comprising positioning one side of the thermoelectric module of Claim 17 at a high-temperature environment and positioning the other side of the module at a low-temperature environment.