6 - families of continuous distributions

uniform distribution

generating random number from a given interval > has constant density is only determined by the length of the interval: [a,b] interval, not by its location. (independent of t)

interval: [9,6] density: 1-a expectatio: atb variance: (6-g)²

standard uniform distribution = when a=0, [0,1] b=1

density=
$$\bot$$
 expectatio= \bot
 $\lor or = \bot$
 12

Vniform (x) > standard uniform (y)
$$X = [a,b] \qquad Y = \frac{X-a}{b-a}$$

exponential distribution

the waiting time for the next event to model time -> like continuous version of the geometric distribution which counts the number of trials before success

in a sequence of rore events: number of events \rightarrow poisson $F(x) = 1 - \frac{1}{e^{4x}} (cdf)$ time between events \rightarrow exponential

density= $f(x) = \frac{\lambda}{e^{\lambda x}} (p) f$ = average number of events expectation= $\frac{1}{\lambda}$ in a time unit

variance= $\frac{1}{h}$ ex: if it occurs every half a minute $E(x) = 0.5 = \frac{1}{h}$ h = 2

memoryless property = having waited for t minutes does not affect the future waiting time in continous distribution -> only in exponential discrete distribution -> only in geometric

gamma distribution

the total time of observing a rare and independent events each with exponential waiting times

> consists of a independent steps -> each step takes exponential (1) time - widely used to model non-integer variables - amount of time, money

 $(cdf) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \cdot \int_{-\infty}^{\alpha} x^{-1} e^{-\lambda x} dx$ density = $f(x) = \frac{x}{r(\alpha)} \cdot x^{\alpha-1} e^{-\lambda}$, $x \ge 0$ expectation = $\frac{\alpha}{\lambda}$ $\left(T(\alpha) = (\alpha - 1)! \right)$ $variance = \frac{\alpha}{n}$

≠ or does not need to be an integer when $\alpha = 1$ it is exponential distribution. gamma (1, 1) = exponential (1) $g^{amma}(\alpha, \frac{1}{2}) = chi-square(2\alpha)$

gamma-poisson formula for easy calculation

$$0 = 3$$
 everts
in 5 minutes $\Rightarrow 1 = 0.2$
per
probability of ± 12

$$\alpha=3$$
 events

$$\begin{array}{c}
\alpha=3 \text{ events} \\
\text{in } 5 \text{ minutes} \Rightarrow l=0.2 \\
\text{per}
\end{array}$$

$$\begin{array}{c}
\rho(t \leq 12) = \rho(\alpha \geq 3) = l - F(2) = 0.420 \\
\rho(\alpha \geq 3) = l - F(2) = 0.420
\end{array}$$

$$\begin{array}{c}
\rho(t \leq 12) = \rho(\alpha \geq 3) = l - F(2) = 0.420
\end{array}$$

$$\begin{array}{c}
\rho(t \leq 12) = \rho(\alpha \geq 3) = l - F(2) = 0.420
\end{array}$$

$$\begin{array}{c}
\rho(t \leq 12) = \rho(\alpha \geq 3) = l - F(2) = 0.420
\end{array}$$

$$\begin{array}{c}
\rho(t \leq 12) = \rho(\alpha \geq 3) = l - F(2) = 0.420
\end{array}$$

$$\begin{array}{c}
\rho(t \leq 12) = \rho(\alpha \geq 3) = l - F(2) = 0.420
\end{array}$$

$$\begin{array}{c}
\rho(t \leq 12) = \rho(\alpha \geq 3) = l - F(2) = 0.420
\end{array}$$

$$\begin{array}{c}
\rho(t \leq 12) = \rho(\alpha \geq 3) = l - F(2) = 0.420
\end{array}$$

$$\begin{array}{c}
\rho(t \leq 12) = \rho(\alpha \geq 3) = l - F(2) = 0.420
\end{array}$$

$$\begin{array}{c}
\rho(t \leq 12) = \rho(\alpha \geq 3) = l - F(2) = 0.420
\end{array}$$

$$\begin{array}{c}
\rho(t \leq 12) = \rho(\alpha \geq 3) = l - F(2) = 0.420
\end{array}$$

$$\begin{array}{c}
\rho(t \leq 12) = \rho(\alpha \geq 3) = l - F(2) = 0.420
\end{array}$$

$$\begin{array}{c}
\rho(t \leq 12) = \rho(\alpha \geq 3) = l - F(2) = 0.420
\end{array}$$

$$\begin{array}{c}
\rho(t \leq 12) = \rho(\alpha \geq 3) = l - F(2) = 0.420
\end{array}$$

$$\begin{array}{c}
\rho(t \leq 12) = \rho(\alpha \geq 3) = l - F(2) = 0.420
\end{array}$$

$$M = 12 \quad P(8 < T < 10)$$

$$\frac{\alpha}{4} = 12 \quad A = \frac{3}{4} \quad P(4 \le 10) = P(x \ge 9) = 1 - P(8)$$

$$\frac{\alpha}{4} = \frac{3}{4} \cdot 10 = 7.5$$

$$0.338 - 0.153 = 0.185 \quad A = \frac{3}{4} \cdot 8 = 6$$

normal (garssian) distribution

to model sums, averages, and errors. also physical variables like weight, height, temp.

standard normal distribution(2) (table is given for this) normal distribution with standard parameters M=0

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \Rightarrow \rho df$$

$$z = \frac{x - \mu}{\sigma}$$
 $\Rightarrow x = \mu + \sigma Z$

 $\sigma = \perp$

$$\mathcal{Q}(x) = \int_{12\pi}^{1} e^{-t} dt \rightarrow cdt$$

$$P(z(-k) = P(z)k)$$
 because of symmetry $P(z(-1.25) = P(z(-1.25))$

how to use table:

inverse example P(X < number) = 0.03

$$\sqrt[3]{\left(\frac{\text{nymber} - 900}{200}\right)} = 0.03$$
 from table $\sqrt[3]{(-1.88)} = 0.33$

number-900=-1.88 > number= 900 - 376 = 524

$$\left(\Phi^{-1}(\alpha) = 2_{1-\alpha} \right)$$

central limit theorem

sums of rondon independent variables with same expectation (4) and standard deviation (5) from any distribution.

$$S_0 = \sum_{i=1}^{n} X_i = X_{1} + X_{2} + \dots + X_{n}$$

 $\begin{pmatrix} S_n \to \infty \\ \frac{S_n}{n} \to \frac{\sigma^2}{n} \to 0 \end{pmatrix}$

as n > 00, the standardized sum converges in distribution to a standard normal random variable.

$$Z_{n} = \frac{S_{n} - E(S_{n})}{Std(S_{n})} = \frac{S_{n} - nM}{\sigma I_{n}} \longrightarrow F_{Z_{n}}(z) = P \left\{ \frac{S_{n} - nM}{\sigma I_{n}} \angle z \right\} \rightarrow \underline{\Phi}(z)$$

#it can be applied to any distribution to compute probabilities about Sn, as long as n is large (n>30)

```
Normal approximation to binomial distribution

Notation

Notation
```

Table A4. Standard Normal distribution

$$\Phi(z) = \mathbf{P}\left\{Z \leq z\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} \, e^{-x^2/2} dx$$

z	-0.09	-0.08	-0.07	-0.06	-0.05	-0.04	-0.03	-0.02	-0.01	-0.00
-(3.9+)	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000
-3.8	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001
-3.7	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001
-3.6	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0002	.0002
-3.5	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002
-3.4	.0002	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003
-3.3	.0003	.0004	.0004	.0004	.0004	.0004	.0004	.0005	.0005	.0005
-3.2	.0005	.0005	.0005	.0006	.0006	.0006	.0006	.0006	.0007	.0007
-3.1	.0007	.0007	.0008	.0008	.0008	.0008	.0009	.0009	.0009	.0010
-3.0	.0010	.0010	.0011	.0011	.0011	.0012	.0012	.0013	.0013	.0013
-2.9	.0014	.0014	.0015	.0015	.0016	.0016	.0017	.0018	.0018	.0019
-2.8	.0019	.0020	.0021	.0021	.0022	.0023	.0023	.0024	.0025	.0026
-2.7	.0026	.0027	.0028	.0029	.0030	.0031	.0032	.0033	.0034	.0035
-2.6	.0036	.0037	.0038	.0039	.0040	.0041	.0043	.0044	.0045	.0047
-2.5	.0048	.0049	.0051	.0052	.0054	.0055	.0057	.0059	.0060	.0062
-2.4	.0064	.0066	.0068	.0069	.0071	.0073	.0075	.0078	.0080	.0082
-2.3	.0084	.0087	.0089	.0091	.0094	.0096	.0099	.0102	.0104	.0107
-2.2	.0110	.0113	.0116	.0119	.0122	.0125	.0129	.0132	.0136	.0139
-2.1	.0143	.0146	.0150	.0154	.0158	.0162	.0166	.0170	.0174	.0179
-2.0	.0183	.0188	.0192	.0197	.0202	.0207	.0212	.0217	.0222	.0228
-1.9	.0233	.0239	.0244	.0250	.0256	.0262	.0268	.0274	.0281	.0287
-1.8	.0294	.0301	.0307	.0314	.0322	.0329	.0336	.0344	.0351	.0359
-1.7	.0367	.0375	.0384	.0392	.0401	.0409	.0418	.0427	.0436	.0446
-1.6	.0455	.0465	.0475	.0485	.0495	.0505	.0516	.0526	.0537	.0548
-1.5	.0559	.0571	.0582	.0594	.0606	.0618	.0630	.0643	.0655	.0668

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767

2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998
3.5	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998
3.6	.9998	.9998	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999
3.7	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999
3.8	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999	.9999
3.9+	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

-1.4	.0681	.0694	.0708	.0721	.0735	.0749	.0764	.0778	.0793	.0808	
-1.3	.0823	.0838	.0853	.0869	.0885	.0901	.0918	.0934	.0951	.0968	
-1.2	.0985	.1003	.1020	.1038	.1056	.1075	.1093	.1112	.1131	.1151	
-1.1	.1170	.1190	.1210	.1230	.1251	.1271	.1292	.1314	.1335	.1357	
-1.0	.1379	.1401	.1423	.1446	.1469	.1492	.1515	.1539	.1562	.1587	
-0.9	.1611	.1635	.1660	.1685	.1711	.1736	.1762	.1788	.1814	.1841	
-0.8	.1867	.1894	.1922	.1949	.1977	.2005	.2033	.2061	.2090	.2119	
-0.7	.2148	.2177	.2206	.2236	.2266	.2296	.2327	.2358	.2389	.2420	
-0.6	.2451	.2483	.2514	.2546	.2578	.2611	.2643	.2676	.2709	.2743	
-0.5	.2776	.2810	.2843	.2877	.2912	.2946	.2981	.3015	.3050	.3085	
-0.4	.3121	.3156	.3192	.3228	.3264	.3300	.3336	.3372	.3409	.3446	
-0.3	.3483	.3520	.3557	.3594	.3632	.3669	.3707	.3745	.3783	.3821	
-0.2	.3859	.3897	.3936	.3974	.4013	.4052	.4090	.4129	.4168	.4207	
-0.1	.4247	.4286	.4325	.4364	.4404	.4443	.4483	.4522	.4562	.4602	
-0.0	.4641	.4681	.4721	.4761	.4801	.4840	.4880	.4920	.4960	.5000	