南京林业大学试卷(A卷)

课程 线性代数 A

2022~2023 学年第 1 学期

题号	_	11	1=1	四	五	六	总分
得分							

、选择题(共10题,每题4分,共40分)

1. 若 $A = \begin{pmatrix} 1 & 3 & 3 \\ 4 & 5 & 6 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 \\ 4 & 3 \\ 5 & 6 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 0 & 2 \end{pmatrix}$, 则下列运算结果为 3 行 2 列的矩阵的是 ().

椞

中

出

中

俳

- A. ABC B. AC^TB^T C. CBA D. $C^TB^TA^T$
- 2. 设A,B为同阶可逆方阵,则下列式子成立的是().

A.
$$(AB)^{-1} = A^{-1}B^{-1}$$

B.
$$AB = BA$$

C.
$$(AB)^{-1} = B^{-1}A^{-1}$$

C.
$$(AB)^{-1} = B^{-1}A^{-1}$$
 D. $(A+B)^{-1} = A^{-1} + B^{-1}$

3. 设 A 是 n 阶可逆矩阵 $(n \ge 2)$, A^* 是 A 的伴随矩阵,则 ().

A.
$$(A^*)^* = |A|^{n-1}A$$

A.
$$(A^*)^* = |A|^{n-1}A$$
 B. $(A^*)^* = |A|^{n+1}A$

C.
$$(A^*)^* = |A|^{n-2}A$$
 D. $(A^*)^* = |A|^{n+2}A$

D.
$$(A^*)^* = |A|^{n+2} A$$

4. 非齐次线性方程组 $A_{6\times 5}X = \beta$ 在()时有无穷多个解.

A.
$$R(A) = 5, R(A, \beta) = 6$$
 B. $R(A) = 4, R(A, \beta) = 5$

B.
$$R(A) = 4, R(A, \beta) = 5$$

C.
$$R(A) = 5, R(A, \beta) = 5$$

C.
$$R(A) = 5, R(A, \beta) = 5$$
 D. $R(A) = 4, R(A, \beta) = 4$

5. 设 $A \neq m \times n$ 矩阵,AX = 0 是非齐次线性方程组 AX = b 所对应的齐次线性方程组,则下列 结论正确的是(

A. 若
$$AX = 0$$
仅有零解,则 $AX = b$ 有唯一解

B. 若
$$AX = 0$$
有非零解,则 $AX = b$ 有无穷多个解

C. 若
$$AX = b$$
 有无穷多个解,则 $AX = 0$ 仅有零解

D. 若
$$AX = b$$
有无穷多个解,则 $AX = 0$ 有非零解

6. 设向量 β 可由向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性表示,但不能由向量组(I): $\alpha_1,\alpha_2,\cdots,\alpha_{m-1}$ 线性表

示,记向量组(II):
$$\alpha_1, \alpha_2, \dots, \alpha_{m-1}, \beta$$
,则()

- A. α_m 不能由(I)线性表示,也不能由(II)线性表示
- B. α_m 不能由(I)线性表示,但可由(II)线性表示
- C. α_m 可由(I)线性表示,也可由(II)线性表示
- D. α_m 可由(I)线性表示,但不能由(II)线性表示
- 7. 设 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ 是四维向量组,则(
 - A. $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ 一定线性无关 B. $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ 一定线性相关

 - C. α_5 一定可以由 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性表示 D. α_1 一定可以由 $\alpha_5,\alpha_2,\alpha_3,\alpha_4$ 线性表示
- 8. 已知 $\lambda = 2$ 为矩阵 A 的一个特征值,则 $\left(\frac{3}{2}A^2\right)^{-1}$ 的一个特征值为().
- A. $\frac{1}{3}$ B. $\frac{1}{6}$ C. $\frac{1}{8}$ D. $\frac{1}{4}$
- 9. 己知 $A = B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ 相似,则|A| = ().

 A. -3 B. 3 C. -6

- 10. 三元二次型 f 经过可逆线性变换化为二次型 $y_2^2-2y_3^2$,则 f 的秩等于().
 - A. 2
- B. 1
- C. 3
- 二、计算题(共2题,每题10分,共20分)

三、应用题 (共2题,每题12分,共24分)

1.
$$a$$
, b 为何值时,线性方程组
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1 \\ x_2 - x_3 + 2x_4 = 1 \\ 2x_1 + 3x_2 + (a+2)x_3 + 4x_4 = b + 3 \end{cases}$$
有解或无解,并在有解时求出其
$$3x_1 + 5x_2 + x_3 + (a+8)x_4 = 5$$

解.

2. 已知向量组 $\alpha_1 = (1,2,3)^T$, $\alpha_2 = (-1,-1,-2)^T$, $\alpha_3 = (2,1,3)^T$, $\alpha_4 = (2,6,8)^T$, $\alpha_5 = (4,2,6)^T$,求该向量组的一个最大线性无关组,并用此最大线性无关组表示其余向量.

四、综合题 (16分)

已知三元二次型 $f(x_1,x_2,x_3)=5x_1^2+3x_2^2+3x_3^2-4x_2x_3$,用正交变换法化此二次型为标准形,并求所经过的正交变换 X=PY.