Problem I. k-th divisor

Time limit 2000 ms **Mem limit** 262144 kB

You are given two integers n and k. Find k-th smallest divisor of n, or report that it doesn't exist.

Divisor of n is any such natural number, that n can be divided by it without remainder.

Input

The first line contains two integers n and k ($1 \le n \le 10^{15}$, $1 \le k \le 10^9$).

Output

If n has less than k divisors, output -1.

Otherwise, output the k-th smallest divisor of n.

Sample 1

Input	Output
4 2	2

Sample 2

Input	Output
5 3	-1

Sample 3

Input	Output
12 5	6

Note

In the first example, number 4 has three divisors: 1, 2 and 4. The second one is 2.

In the second example, number 5 has only two divisors: 1 and 5. The third divisor doesn't exist, so the answer is -1.