Problems for the prac of Week 4

Q1 Let
$$A_{n} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}_{n \times n}$$

D Show that for any $n \ge 3$,
$$det(A_{n}) = 2 det(A_{n-1}) - det(A_{n-2})$$

The problems for the prove $det(A_{n}) = n + 1$.

Based on the results above, use mathematical induction to prove $det(A_{n}) = n + 1$.

Based on the det (An)=n+1.

induction to prove det (An)=n+1.

Deproof. We expand the determinant according to the first Column to give the first Column to give
$$det (An) = 2 det (An-1) + (-1)^{2+1} \begin{vmatrix} -1 & 0 & 0 \\ -1 & 2 & -1 \\ & -1 & 2 \end{vmatrix} \times (-1)$$

② Sol.
$$A_1 = (2)$$
, $A_2 = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$,
So $\det(A_1) = 2$ and $\det(A_2) = 4 - 1 = 3$

3) proof. (Note: usually for mathematical induction, We only verify the claim n=1 in the first Step. However, in this problem, the inductive relation $\det(A_n) = 2\det(A_{n-1}) - \det(A_{n-2})$ holds only for $n \ge 3$. So, we need to verify the claim for both n=1 and n=2 in the first step of the mathe motical induction) Step 1: we have shown det (An)=n+1 in "2" above

Step 2: For any fixed $n \ge 3$, assume $\det(An)=k+1$ for any $k=1,2,\cdots,n-1$. We use the inductive relation proved above to give

page 2 of 5

$\det(A_n) = 2n - (n-1) = n+1$ $2n - (n-1) = n+1$ $2n - (n-1) = n+1$ $2n - (n-1) = n+1$
$\det(A_n) = 2n - (n-1) = n+1$
This completes the
Q2 Prove or approve Assume that d and n are positive
integers.
1) if d/n, then d/n²
(2) if dtn, then dtn2
Sol D d n $\Rightarrow \frac{n}{d}$ is an integer, so
$\frac{n^2}{d} = n \times \frac{n}{d}$ is an integer, so $d \mid n^2$
(2) The statement clossn't hold true for
example, 976 our 1100.
3 Translate the following statement into

Q3 Translate the following statement into English and avoid the notations "Y, J, Q".

"Ya, b \in Q with a < b, J C \in Q st. a < c < b."

page 3 of 5

Sol. For any rational numbers a and b with acb, there exists a rational Number C Such that a < CCb.

Q4. Prove by contradiction:

 $\mathbb{O} \ \forall \ n \in \mathbb{Z}$, if n^3+5 is odd, then n is n=zktl noe even

- 2) There exist no integers a and b for which 6a-21b=7
 - 3) Let a EQ and b E IR-Q. Then a+6 E 1R-Q.

proofs O. Suppose n is not even, then N=2k+1 for some k ∈ 2. We have $N^3+5=8k^3+12k^2+6k+6$ $=2(4k^3+6k^2+3k+3)$

which is even. The contradiction completes the proof.

page 4 of 5

(2) Assume
$$\exists a, b \in \mathbb{Z}$$
 set $6a-21b=7$.

Then $7=3(2a-7b)$, so $3(2a-7b)=\frac{7}{3}=2a-7b\in\mathbb{Z}$

The contradiction completes the proof.

(3) Assume $a+b\in\mathbb{Q}$. Then since $a\in\mathbb{Q}\Rightarrow \neg a\in\mathbb{Q}$,

Ohe has $b=(a+b)-a\in\mathbb{Q}$.

The Contradiction completes the proof.

(25) Construct a truth table for $P\Rightarrow (q \land (\sim P))$

Sol. Recall that $P\Rightarrow (q \land (\sim P))=(\sim P)\lor(q \land (\sim P))$
 $P \mid q \mid \sim P \mid q \land (\sim P) \mid (\sim P)\lor(q \land (\sim P))$
 $P \mid q \mid \sim P \mid q \land (\sim P) \mid (\sim P)\lor(q \land (\sim P))$
 $P \mid q \mid \sim P \mid q \land (\sim P) \mid (\sim P)\lor(q \land (\sim P))$
 $P \mid q \mid \sim P \mid q \land (\sim P) \mid (\sim P)\lor(q \land (\sim P))$
 $P \mid q \mid \sim P \mid q \land (\sim P) \mid (\sim P)\lor(q \land (\sim P))$
 $P \mid q \mid \sim P \mid q \land (\sim P) \mid (\sim P)\lor(q \land (\sim P))$
 $P \mid q \mid \sim P \mid q \land (\sim P) \mid (\sim P)\lor(q \land (\sim P))$
 $P \mid q \mid \sim P \mid q \land (\sim P) \mid (\sim P)\lor(q \land (\sim P))$
 $P \mid q \mid \sim P \mid q \land (\sim P) \mid (\sim P)\lor(q \land (\sim P))$
 $P \mid q \mid \sim P \mid q \land (\sim P) \mid (\sim P)\lor(q \land (\sim P))$
 $P \mid q \mid \sim P \mid q \land (\sim P) \mid (\sim P)\lor(q \land (\sim P))$
 $P \mid q \mid \sim P \mid q \land (\sim P) \mid (\sim P)\lor(q \land (\sim P))$
 $P \mid q \mid \sim P \mid q \land (\sim P) \mid (\sim P)\lor(q \land (\sim P))$
 $P \mid q \mid \sim P \mid q \land (\sim P) \mid (\sim P)\lor(q \land (\sim P))$
 $P \mid q \mid \sim P \mid q \land (\sim P) \mid (\sim P)\lor(q \land (\sim P))$
 $P \mid q \mid \sim P \mid q \land (\sim P) \mid (\sim P)\lor(q \land (\sim P))$
 $P \mid q \mid \sim P \mid q \land (\sim P) \mid (\sim P)\lor(q \land (\sim P))$
 $P \mid q \mid \sim P \mid q \land (\sim P) \mid (\sim P)\lor(q \land (\sim P))$
 $P \mid q \mid \sim P \mid q \land (\sim P) \mid (\sim P)\lor(q \land (\sim P))$
 $P \mid q \mid \sim P \mid q \land (\sim P) \mid (\sim P)\lor(q \land (\sim P))$
 $P \mid q \mid \sim P \mid q \land (\sim P) \mid (\sim P)\lor(q \land (\sim P))$
 $P \mid q \mid \sim P \mid q \land (\sim P) \mid (\sim P)\lor(q \land (\sim P))$
 $P \mid q \mid \sim P \mid q \land (\sim P) \mid (\sim P)\lor(q \land (\sim P))$
 $P \mid q \mid \sim P \mid q \land (\sim P) \mid (\sim P)\lor(q \land (\sim P))$

page 5 of 5