تمرین سری هشتم اصول سیستمهای مخابراتی

 $S_x=1Watt$: سیگنال ارسالی دارای پارامترهایی به این صورت هست: AM میگنال ارسالی دارای پارامترهایی به این صورت هست: W=4kHz اگر بخواهیم با $N_0=2\times 10^{-5}$, $N_T=200Watts$, $\mu=0.25$ ثابت نگه داشتن توان $S_T=1Watt$, $S_T=200Watts$ و همچنین نسبت سیگنال به نویز، یک شابت نگه داشتن توان W=5kHz ارسال نماییم، مقدار M در حالت دوم چه خواهد بود؟(اَشکار ساز همزمان)

۲ - در یک سیستم انتقال با مدولاسیون AM پارامترها به صورت زیر هستند.

$$\mu = 0.5$$
 , $N_0 = 10^{-5}$, $W = 5 \, kHz$, $S_x = 0.5$, $S_T = 120 \, Watts$

نسبت سیگنال به نویز را بدست آورید. با فرض ثابت ماندن نسبت سیگنال به نویز، اگر همه پارامترها ثابت بماند و فقط پهنای باند سیگنال W و W تغییر کند، بیشترین پهنای باند ممکن چقدر خواهد بود؟(آشکار ساز همزمان)

 7 - برای ارسال سیگنال پیام با پهنای باند 10 10 10 از یک مدولاتور 10 غیر مستقیم استفاده می کنیم. برای این کار، ابتدا یک سیگنال 10 10 10 باند باریک با پارامترهای 10 1

۴ – برای ارسال بدون اعوجاج سیگنال پیام با پهنای باند W=10kHz و توان $S_x=\frac{1}{2}$ وات از طریق $S_x=\frac{1}{2}$ وات از طریق W=10kHz کانالی با مشخصه تضعیف W=10kHz الله بین فرستنده و گیرنده است)، از یک مدولاتور W=10kHz استفاده می کنیم که با توان W=100kHz ارسال می کند. اگر بخواهیم نسبت سیگنال به نویز در مقصد برابر W=10kHz باشد، حداکثر طول کانال را بیاید. W=10kHz باشد، حداکثر طول کانال را بیاید. W=10kHz باشد، حداکثر طول کانال را بیاید.

 $f_{\Delta}=2.4MHz$ $S_{x}=0.2$ W=400kHz $S_{T}=1W$ با فرض پارامترهای FM با فرض پارامترهای FM با فرض پارامترهای G برای G برای با تضعیف G بیابید. اگر از فیلتر واتاکید با G بیابید.

7- یک گیرنده سوپرهتروداین سیگنالهای با فرکانس 1۰ تا 1۷ مگاهرتز را دریافت می کند. اگر در بخش 18 فیلترینگ انجام نشود، برای 19 $f_{\rm IF}=1$ 9 و 19 $f_{\rm IF}=1$ 9 چه فرکانسهایی دریافت خواهد شد؟