

UNIVERSIDADE FEDERAL DO CEARÁ - CAMPUS DE CRATEÚS

CURSOS: CIÊNCIA DA COMPUTAÇÃO E ENGENHARIAS

DISCIPLINA: ÁLGEBRA LINEAR

PROFESSORA: LÍLIAN DE OLIVEIRA CARNEIRO

DESCRIÇÃO DO TRABALHO FINAL

1. Objetivo

O objetivo do trabalho é implementar os conteúdos vistos em Álgebra Matricial, como as operações matriciais e os métodos de resolução de sistemas lineares. Além disso, implementar o Processo de Ortogonalização de Gram Schmidt.

2. Conteúdos

Algebra Matricial

O usuário deve passar como entrada a ordem e os elementos da(s) matriz(es) desejada(s). Se a operação desejada for a multiplicação por um escalar, o usuário deve passar também a constante desejada. Lembre-se de considerar as restrições de cada operação. Assim, caso o usuário solicite uma operação que não pode ser realizada com a matriz passada como entrada, deve-se exibir uma mensagem de que tal operação não é possível e por qual motivo. Exemplo, se o usuário solicita o cálculo do determinante de uma matriz retangular, o programa deve exibir uma mensagem "A matriz não é quadrada". Além disso, o programa deve:

• Exibir a(s) matriz(es) passada(s) como entrada e a matriz resultante da operação solicitada.

Por exemplo, dada a matriz
$$A = \begin{bmatrix} 0 & 0 & 1 \\ -2 & 3 & 1 \\ 1 & -1 & -1 \end{bmatrix}$$
 e o escalar $k = 2$, deve-se exibir como

resultado:

$$2 \cdot \begin{bmatrix} 0 & 0 & 1 \\ -2 & 3 & 1 \\ 1 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 2 \\ -4 & 6 & 2 \\ 2 & -2 & -2 \end{bmatrix}.$$

As operações que devem ser implementadas são:

- (a) Soma e Subtração;
- (b) Multiplicação por Escalar;
- (c) Multiplicação de Matrizes;
- (d) Transposição;

- (e) Potências;
- (f) Inversa.
- (g) Matriz cofatora;
- (h) Matriz Adjunta;
- (i) Determinantes.

Sistemas

O usuário deve passar como entrada o número de equações (m), o número de incógnitas (n), os coeficientes das incógnitas de cada equação e o termo constante de cada equação. Lembre-se que o número de equações pode ser diferente do número de incógnitas, assim, teremos um sistema $m \times n$. Se m = n, o sistema é dito quadrado. Desse modo, o programa elaborado deve suportar um sistema de qualquer ordem. Além disso, o programa deve:

- Exibir a análise da existência de soluções. Lembre-se que isto pode ser feito através da análise do posto;
- Com base na análise da existência de soluções, exibir a classificação do sistema;
- Apresentar as etapas do processo de escalonamento da matriz tanto para o Método de Gauss, quanto para o Método de Gauss-Jordan;
- Apresentar a(s) solução(ões) do sistema, quando houver. Exibir mensagem "Não existe solução" quando o sistema for Impossível.

Na Fatoração LU, deve-se exibir a matriz L e a matriz U.

Os métodos que devem ser implementados são:

- (a) O Método de Gauss;
- (b) O Método de Gauss-Jordan;
- (c) A Fatoração LU;
- (d) O Posto da matriz ampliada e da matriz dos coeficientes.

Processo de Ortogonalização de Gram Schmidt

O usuário deve passar como entrada uma base $B = \{v_1, v_2, \dots, v_n\}$ de um espaço vetorial munido com produto interno. Usando essa base, deve-se construir uma base ortogonal $C = \{w_1, w_2, \dots, w_n\}$ desse espaço usando o processo de ortogonalização de Gram-Schmidt. Desenvolva também um algoritmo para ortonormalizar a base B. O seu programa deve ser capaz de exibir a base B, a base ortogonalizada C e a ortonormalização da base B.

3. Orientações

O trabalho deverá ser feito em dupla. A linguagem de programação fica a critério da dupla. É importante que se apresente uma interface que facilite a interação do usuário com o programa. O trabalho vale 10 pontos e deverá ser entregue dia 01/12/2018. As apresentações ocorrerão no dia 03/12/2018.

(a) Relatório

A dupla deve elaborar um relatório sobre a implementação. Este relatório deve conter os detalhes, as dificuldades, as decisões tomadas e outros fatos ocorridos ao longo do trabalho. O relatório deve ser enviado em formato pdf e deve apresentar a seguinte estrutura:

- Introdução: deve-se contextualizar os assuntos abordados com uma breve revisão de literatura, apresentando o contexto hitório, a importância de tais tópicos para a Matemática e para as outras áreas, bem como os principais usos;
- Algoritmos: a dupla deve apresentar em pseudo-código o esqueleto do código fonte
 com as operações mais importantes da implementação em alto nível. Este
 pseudo-código não é a implementação propriamente dita, e sim uma descrição das
 principais operações realizadas em um nível de entendimento suficiente para um
 não-pogramador entender sua solução;
- Conclusões: a dupla deve apresentar seu parecer sobre os objetivos do trabalho, as
 dificuldades encontradas, o aprendizado, as limitações encontradas pela tecnologia
 usada, as decisões tomadas, entre outros que se julgue importante.

4. Aos estudantes das Engenharias:

Do trabalho descrito acima, vocês devem implementar o tópico "Álgebra Matricial". Na elaboração do relatório, não precisam considerar o item "Algoritmos". Além disso, vocês devem:

- (a) Pesquisar as principais aplicações da Álgebra Linear na Engenharia e escrever um documento contendo duas aplicações que vocês considerem mais interessantes. É importante estabelecer uma conexão entre os tópicos de pesquisa e o que você viu em sala de aula. Busquem se posicionar de forma crítica e ressaltar a importância da disciplina na sua formação.
- (b) Escolher uma das aplicações e apresentá-la em forma de seminário.

Observação: É interessante que no seminário não haja mais de uma dupla falando da mesma aplicação, então é bom vocês conversarem entre si e escolher a aplicação que será apresentada. Busquem aplicações na sua área de atuação.

5. Pontuação

Para os alunos de Ciência da Computação

Tópico	Pontos
Álgebra Matricial	3,0
Sistemas Lineares	3,0
Processo de Ortogonalização	2,0
Relatório	2,0

Para os alunos das Engenharias

Tópico	Pontos
Álgebra Matricial	3,0
Relatório da Implementação	0,5
Pesquisa	3,0
Seminário	3,5

6. Observações:

- Trabalhos plagiados ou feitos por terceiros serão zerados;
- Todos os membros da equipe deverão participar efetivamente do trabalho;
- Trabalhos sem relatório não serão aceitos;
- O trabalho deverá ser entregue via SIGAA dentro do prazo estipulado.