POMDPs

POMDPs

• We've been living a lie:

Alleatory

Alleatory

Alleatory

Epistemic (Static)

Alleatory

Epistemic (Static)

Alleatory

Epistemic (Static)

Epistemic (Dynamic)

Alleatory

Epistemic (Static)

Epistemic (Dynamic)

Alleatory

Epistemic (Static)

Epistemic (Dynamic)

Interaction

Epistemic (Static)

Epistemic (Dynamic)

POMPPS

Interaction

- *S* State space
- $ullet T: \mathcal{S} imes \mathcal{A} imes \mathcal{S} o \mathbb{R}$ Transition probability distribution

- *S* State space
- $ullet T: \mathcal{S} imes \mathcal{A} imes \mathcal{S} o \mathbb{R}$ Transition probability distribution
- A Action space

- *S* State space
- $ullet T: \mathcal{S} imes \mathcal{A} imes \mathcal{S} o \mathbb{R}$ Transition probability distribution
- A Action space
- ullet $R:\mathcal{S} imes\mathcal{A} o\mathbb{R}$ Reward

- *S* State space
- $ullet T: \mathcal{S} imes \mathcal{A} imes \mathcal{S} o \mathbb{R}$ Transition probability distribution
- A Action space
- ullet $R: \mathcal{S} imes \mathcal{A}
 ightarrow \mathbb{R}$ Reward

Alleatory

- *S* State space
- $ullet T: \mathcal{S} imes \mathcal{A} imes \mathcal{S} o \mathbb{R}$ Transition probability distribution
- A Action space
- ullet $R:\mathcal{S} imes\mathcal{A} o\mathbb{R}$ Reward

• *S* - State space

 $ullet T: \mathcal{S} imes \mathcal{A} imes \mathcal{S} o \mathbb{R}$ - Transition probability distribution

• A - Action space

ullet $R: \mathcal{S} imes \mathcal{A}
ightarrow \mathbb{R}$ - Reward

• *O* - Observation space

- *S* State space
- $ullet T: \mathcal{S} imes \mathcal{A} imes \mathcal{S} o \mathbb{R}$ Transition probability distribution
- A Action space
- ullet $R:\mathcal{S} imes\mathcal{A} o\mathbb{R}$ Reward
- *O* Observation space
- $Z: \underbrace{\mathcal{S} \times \mathcal{A} \times \mathcal{S} \times \mathcal{O}}_{}
 ightarrow \mathbb{R}$ Observation probability distribution

- *S* State space
- $ullet T: \mathcal{S} imes \mathcal{A} imes \mathcal{S} o \mathbb{R}$ Transition probability distribution
- *A* Action space
- ullet $R:\mathcal{S} imes\mathcal{A} o\mathbb{R}$ Reward
- *O* Observation space
- $Z: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times \mathcal{O} \rightarrow \mathbb{R}$ Observation probability distribution

Alleatory

- *S* State space
- $T: \mathcal{S} imes \mathcal{A} imes \mathcal{S} o \mathbb{R}$ Transition probability distribution
- A Action space
- ullet $R:\mathcal{S} imes\mathcal{A} o\mathbb{R}$ Reward
- *O* Observation space
- $Z: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times \mathcal{O} \rightarrow \mathbb{R}$ Observation probability distribution

Alleatory

Epistemic (Static)

Epistemic (Dynamic)

POMDP Definition

open,

tiger

behind

$$R(s,a) = \begin{cases} -100 & \text{if } a=s \\ -1 & \text{if } a=L \text{isten} \end{cases}$$
 $R(s,a) = \begin{cases} 100 & \text{o.w.} \end{cases}$

$$S = \{L, R\}$$

$$A = \{L, R, Listen\}$$

$$T^{listen} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$T^{listen} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $T^{L} = T^{R} = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$

$$Z(o|a,s') = \begin{cases} 0.85 & \text{if } a = L \text{ isten and } s' = 0 \\ 0.15 & \text{if } a = L \text{ isten and } s' \neq 0 \\ 0.5 & \text{if } a \neq L \text{ isten} \end{cases}$$

Hidden Markov Models and Beliefs

$$b_{o}(s) \equiv P(s_{o}=s)$$
 $h_{+} \equiv (b_{o}, a_{o}, o_{1}, a_{1} \dots a_{t-1}, o_{t})$
 $b_{+}(s) \equiv P(s_{+}=s \mid h_{+})$

$$S = \{L, R\}$$
 $B = \Delta(S) = [0,1]^{(S)-1}$
 $b = [0,2,0.8]$

For an MDP

$$P(s_{t+1}|s_0, a_0, ..., s_t, a_t) = T(s_{t+1}|s_t, a_t)$$

$$P\left(o_{++1} \mid o_{-1} q_{-1} \cdots o_{+_{1}} a_{+}\right) = P\left(o_{++1} \mid a_{+_{1}} o_{+_{-1}}\right)$$

$$P(b_{++1}|b_{0},a_{0},...,b_{+},a_{+}) = P(b_{++1}|b_{+},a_{+})$$

Bayesian Belief Updates

$$b_{t} = P(s_{t} | h_{t}) = P(s_{t} | h_{t-1}, a_{t-1}, o_{t})$$

$$= \frac{P(o_{t} | s_{t}, h_{t-1}, a_{t-1})}{P(s_{t} | h_{t-1}, a_{t-1})}$$

$$\propto P(o_{t} | s_{t}, h_{t-1}, a_{t+1}) P(s_{t} | h_{t-1}, a_{t-1})$$

$$= P(o_{t} | s_{t}, a_{t+1}) \sum_{s_{t-1}} P(s_{t} | s_{t+1}, a_{t-1}) P(s_{t-1} | h_{t+1}, a_{t-1})$$

$$= Z(o_{t} | a_{t+1}, s_{t}) \sum_{s_{t-1}} T(s_{t} | s_{t+1}, a_{t-1}) P(s_{t+1} | h_{t+1}, a_{t-1})$$

$$= Z(o_{t} | a_{t+1}, s_{t}) \sum_{s_{t-1}} T(s_{t} | s_{t+1}, a_{t-1}) P(s_{t+1} | h_{t+1}, a_{t-1})$$

$$= P(o_{t} | s_{t}, a_{t+1}) \sum_{s_{t-1}} P(s_{t} | s_{t+1}, a_{t-1}) P(s_{t+1} | h_{t+1}, a_{t-1})$$

$$= Z(o_{t} | a_{t+1}, s_{t}) \sum_{s_{t-1}} T(s_{t} | s_{t+1}, a_{t-1}) P(s_{t+1} | h_{t+1}, a_{t-1})$$

$$= Z(o_{t} | a_{t+1}, s_{t}) \sum_{s_{t-1}} T(s_{t} | s_{t+1}, a_{t-1}) P(s_{t+1} | h_{t+1}, a_{t-1})$$

$$= Z(o_{t} | a_{t+1}, s_{t}) \sum_{s_{t-1}} T(s_{t} | s_{t+1}, a_{t-1}) P(s_{t+1} | h_{t+1}, a_{t-1})$$

$$= Z(o_{t} | a_{t+1}, s_{t}) \sum_{s_{t-1}} T(s_{t} | s_{t+1}, a_{t-1}) P(s_{t+1} | h_{t+1}, a_{t-1})$$

$$= Z(o_{t} | a_{t+1}, s_{t}) \sum_{s_{t-1}} T(s_{t} | s_{t}, a_{t}) P(s_{t+1} | h_{t+1}, a_{t-1})$$

$$= Z(o_{t} | a_{t+1}, s_{t}) \sum_{s_{t-1}} T(s_{t} | s_{t}, a_{t}) P(s_{t+1} | h_{t+1}, a_{t-1})$$

$$= Z(o_{t} | a_{t+1}, s_{t}) \sum_{s_{t-1}} T(s_{t} | s_{t}, a_{t}) P(s_{t+1} | h_{t+1}, a_{t-1})$$

$$= Z(o_{t} | a_{t+1}, s_{t}) \sum_{s_{t-1}} T(s_{t} | s_{t}, a_{t}) P(s_{t+1} | h_{t+1}, a_{t-1})$$

$$= Z(o_{t} | a_{t+1}, s_{t}) \sum_{s_{t-1}} T(s_{t} | s_{t}, a_{t}) P(s_{t+1} | a_{t+1}, a_{t-1})$$

$$= Z(o_{t} | a_{t+1}, s_{t}) \sum_{s_{t-1}} T(s_{t} | s_{t}, a_{t}) P(s_{t+1} | a_{t+1}, a_{t-1})$$

$$= Z(o_{t} | a_{t+1}, s_{t}) \sum_{s_{t-1}} T(s_{t} | s_{t}) P(s_{t+1}, a_{t+1}, a_{t-1})$$

$$= Z(o_{t} | a_{t+1}, s_{t}) P(s_{t+1}, a_{t+1}, a_{t+1}, a_{t+1}) P(s_{t+1}, a_{t+1}, a_{t+1}, a_{t+1})$$

$$= Z(o_{t} | a_{t+1}, s_{t+1}, a_{t+1}, a_{t+1}, a_{t+1}, a_{t+1}, a_{t+1}, a_{t+1})$$

$$= Z(o_{t} | a_{t+1}, s_{t+1}, a_{t+1}, a_{$$

$$P(s_{+} | h_{+-1}, a_{+-1})$$

$$= \sum_{s_{+-1}} P(s_{+}, s_{+-1} | h_{+-1}, a_{+-1})$$

$$= \sum_{s_{+-1}} P(s_{+} | s_{+-1}, h_{+-1}, a_{+-1}) P(s_{+-1}, h_{+-1}, a_{+-1})$$

$$= \sum_{s_{+-1}} P(s_{+} | s_{+-1}, a_{+-1}) P(s_{+-1}, h_{+-1}, a_{+-1})$$

$$= \sum_{s_{+-1}} P(s_{+} | s_{+-1}, a_{+-1}) P(s_{+-1}, h_{+-1}, a_{+-1})$$

$$= \sum_{s_{+-1}} P(s_{+} | s_{+-1}, a_{+-1}) P(s_{+-1}, h_{+-1}, a_{+-1})$$

Filtering Loop

Tiger Example

Recap

$$S, A, O, R, Z, T, \gamma$$
 $b = \tau(b, a, o)$