Notițe Seminar 1

Intro: Mai întâi, ce înseamnă Machine Learning/Învățare automată? Sau , mai bine zis, ce vom face mai exact în acest semestru?

Tipuri de învățare automată

1. supervizată

clasificare

Exemplu: date despre apartamente. Vrem să prezicem dacă o casă este locuibilă.

număr m²	număr camere	este locuibilă?		
10	1	da		
100	2	nu		
•••				

Pentru un nou apartament, care este prețul?

număr m²	numär camere	este locuibilă?
500	10	???

o regresie

Exemplu: date despre apartamente. Vrem să prezicem prețul unei case.

număr m²	numär camere	preţ
10	1	100.522
100	2	200
•••		

Pentru un nou apartament, care este prețul?

număr m²	număr camere	preţ
500	10	???

Ce diferă între clasificare și regresie?

2. nesupervizată

o clusterizare

Exemplu: date despre apartamente. Vrem să împărțim casele în grupuri: de exemplu, case locuibile vs case nelocuibile.

număr m²	număr camere
10	1
100	2

De ce se cheamă supervizată/nesupervizată?

3. cu întărire/reinforcement: doar la cursul de Rețele neuronale

Vom începe cu o recapitulare a noțiunilor de PS (Probabilități și statistică) – primele 2-3 seminarii. De ce? Pentru că unii (nu toți) algoritmi de ML folosesc PS. Experiment aleator = acțiune/procedură în urma căreia obținem un rezultat din mai multe rezultate posibile Exemple: aruncarea unui ban, aruncarea 2 monede etc. Cum formalizăm un experiment aleator cu ajutorul probabilităților? ___, ___, ___) – spațiu de probabilitate discret (nu _____) ____ - spațiu de eșantionare (sample space) = o mulțime ce conține ca elemente rezultatele posibile ale experimentului aleator Intuție: discret vs continuu? Exemplul 1: {1,3,9} sau [1,9] Exemplul 2: mulțimea numerelor naturale sau mulțimea numerelor reale - spațiu de evenimente: _____ A - eveniment aleator De obicei, notat cu litere mari de la începutul alfabetului Se produce/se realizează dacă, în urma experimentului aleator, rezultatul aparține lui A Exemplu: - măsură/funcție de probabilitate o Proprietatea de aditivitate numărabilă: Vizual: Exemplu:

Observații: Operații cu mulțimi

Exercițiul 1:

Ω	=	{a,k),c}		

$$F = 2^{\Omega} =$$

Fie următoarele funcții: $f_1, f_2, f_3, f_4: \mathcal{F} \to \mathbb{R}$ definite parțial. Există deja inconsistențe/greșeli în (parțial) definirea funcțiilor ca funcții de probabilitate? Dacă da, care sunt inconsistențele? Dacă nu, completați celelalte căsuțe asociate funcției folosind cele 2 axiome din definiția funcției de probabilitate?

х	f ₁ (x)	f ₂ (x)	f ₃ (x)	f ₄ (x)
Ø		1/2		
{a}	1/3			1.5
{b}	1/3			
{c}	1/3		2/3	
{a,b}			1/3	
{a,c}			1/3	
{b,c}				
{a,b,c}	1			

Observație: $P(V) = 0$. De ce?		

Exercițiul 2:

$$\begin{split} &\Omega = \{a_1, \dots, a_n\} \\ &P(\{a_1\}) = \dots = P(\{a_n\}) \text{ - rezultate echiprobabile} \\ &A = \{a_{i_1}, \dots, a_{i_k}\} \\ &\text{Calculați } P(A). \end{split}$$

Observație importantă: o puteți considera prima presupunere pe care o puteți face când rezolvați o problemă unde trebuie să calculați o probabilitate, dar nu există informații suplimentare.

Exercițiul 3:

,		1 1 1111				U			U	_
a '	Care este	probabilitatea	ca la	aruncarea	unui zar	์ รล	าลรล	un	numar	nar
~ /	Ca. C Cotc	probabilitatea	- · · ·	ar arrear ca	arrar Ear	94	·usu	٠	aa.	P G

b) Care este probabilitatea ca la aruncarea unui zar să iasă un număr par, știind că

P(iese un număr impar) = 1/6?

Exercițiul 4: Într-o grupă de copii de la o creșă, 30% dintre ei au ochi căprui, 50% au ochi albaștri, iar restul de 20% au ochi de alte culori. Care este probabilitatea ca un copil ales în mod aleatoriu din această grupă să aibă ochi albaștri?

Observație: "rezultatele experimentului sunt echiprobabile" = "în mod aleatoriu uniform"

Remember (nu trebuie să știți să le demonstrați):

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

Proprietăți (trebuie să știți să le **demonstrați** folosind proprietatea de aditivitate numărabilă; în exerciții, dacă nu se menționează că trebuie demonstrate, le puteți folosi fără a le demonstra)

Exercițiu:

61.

(Calcul de probabilități elementare)

CMU, 2004 fall, T. Mitchell, Z. Bar-Joseph, HW1, pr. 1.3

Doi soldați A și B trag la țintă. Probabilitatea ca soldatul A să greșească ținta este de 1/5. Probabilitatea ca soldatul B să greșească ținta este de 1/2. Probabilitatea ca ambii soldați să greșească simultan ținta este de 1/10.

- a. Care este probabilitatea ca cel puțin unul din soldați să greșească ținta?
- b. Care este probabilitatea ca exact unul din cei doi soldați să greșească ținta?

Probabilități condiționate

Notație, Intuiție:

P(A|B) = probabilitatea să se realizeze A, știind că s-a realizat B

- = probabilitatea să se realizeze A, dacă că s-a realizat B
- = probabilitatea să se realizeze A, când spațiul de eșantionare devine B

Este adevărat că $P(A) = P(A \mid \Omega)$?

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Definiție:

De ce?

Observații:

- $P(B) \neq 0$
- $P(A|B) \neq P(A \cap B)$ în general

Alte 3 formule utile:

Regula de multiplicare: $P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A)$

 $P(A_1\cap A_2\cap\ldots\cap A_n)=$ Generalizare: **regula lanțului**: $P(A_1)P(A_2\mid A_1)P(A_3\mid A_1,A_2)\ldots P(A_n\mid A_1,A_2,\ldots,A_{n-1})$

 $P(A|B) = \frac{P(B|A)P(A)}{P(B)} \label{eq:posterior}$ Formula lui Bayes:

P(A|B) – probabilitate a posteriori

P(A) – probabilitate a priori

Formula probabilitătii totale: $P(A) = P(A \mid B)P(B) + P(A \mid \neg B)$	$P(\neg B)$
--	-------------

 $\label{eq:problem} \text{if } A\subseteq \cup B_i \text{ and } \forall i\neq j \ B_i\cap B_j=\emptyset, \text{ then}$ Generalizare: $P(A)=\sum_i P(A\mid B_i)P(B_i)$

ı	نماما	40	den		· -+ -	+i	_
	ıaeı	ae	aen	nor	ıstr	au	е

Exercițiu: Avem două urne. Prima urnă conține 11 bile albe și 4 bile roșii. Cea de-a doua urnă conține 8 bile albe și 5 bile roșii. Se alege în mod aleatoriu cu probabilitate uniformă una din cele două urne. Apoi se extrage o bilă din urna aleasă.

a) Care este probabilitatea ca bila extrasă să fie albă?

b) Dacă bila extrasă este albă, are este probabilitatea ca ea să provină din prima urnă?

Evenimente independente

Intuiție: când producerea unui eveniment nu modifică probabilitatea de realizare a celuilalt.

Definiția 1 (slabă, dar intuitivă): A, B – independente, P(B) \neq 0: P(A|B) = P(A)

Definiția 2 (tare; la aceasta ne vom referi de acum încolo; include și cazul în care P(B) = 0):

$$P(A \cap B) = P(A)P(B)$$

Observație importantă: Puteți considera independența evenimentelor a doua presupunere pe care o puteți face când rezolvați o problemă unde trebuie să calculați o probabilitate, dar nu există informații suplimentare. (un algoritm de ML face acest lucru...)

Exercițiul 1: Probabilitatea ca studentul X să obțină 6 puncte la un test este de 0.5. Probabilitatea ca studentul Y să obțină 6 puncte la un test este de 0.2. Care este probabilitatea ca și X, și Y să obțină 6 puncte?

Exercițiul 2: Probabilitatea ca studentul X să obțină 6 puncte la un test este de 0.5. Probabilitatea ca studentul Y să obțină 6 puncte la un test este de 0.2. Probabilitatea ca și X, și Y să obțină 6 puncte este de 0.11. Evenimentele "studentul X obține 6 puncte", "studentul Y obține 6 puncte" sunt independente?

Observație: În general, dacă avem o definiție/formulă, există și varianta ei condițională ($P(C) \neq 0$):

1. A, B – evenimente independente condițional față de C:

$$P(A \cap B|C) = P(A|C)P(B|C)$$

2.
$$P(\emptyset) = 0 \rightarrow P(\emptyset|C) = 0$$

3.
$$P(\overline{A}) = 1 - P(A) \to \dots$$

4.
$$A \subseteq B \Rightarrow P(A) \leq P(B) \rightarrow \dots$$

5.
$$P(A \cap B) = P(A|B)P(B) \to \dots$$

Observații:

1. $P(\overline{A}|B) = 1 - P(A|B)$.

În general, $P(A|\overline{B})$ nu se poate scrie în funcție de P(A|B).

$$2. P(A) = 0 \implies A = \emptyset$$

3.
$$P(A) = 1 \implies A = \Omega$$

Schemă de final

- Experiment aleator
- Spațiu de probabilitate
 - o Ω : spațiu de eșantionare
 - o F: spațiu de evenimente
 - o P: funcție de probabilitate
 - P(Ω) = 1
 - Aditivitatea numărabilă
- Probabilități condiționate
 - o Definiție
 - o Formula de multiplicare + generalizare
 - o Formula lui Bayes
 - Formula probabilității totale + generalizare
- Evenimente independente
- Alte formule cu probabilități
- Formule cu probabilități în varianta condițională
- Cele 2 presupuneri
 - o Rezultate echiprobabile
 - o Evenimente independente