Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления» Кафедра «Автоматизированные системы обработки информации и управления»

Отчет Лабораторная работа № 3

По курсу «Технологии машинного обучения»

ИС	полнитель:
Γ	Горбатенко И.А.
	Группа ИУ5-64
111	2020 г.
ПРЕП	ОДАВАТЕЛЬ:
	Гапанюк Ю.Е.
"	2020 г.

Москва 2020

Лабораторная работа №3 по курсу "Технологии машинного обучения"

Горбатнко И.А. ИУ5-64

Цель лабораторной работы: изучение способов предварительной обработки данных для дальнейшего формирования моделей.

Задание:

Выбрать набор данных (датасет), содержащий категориальные признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.) Для выбранного датасета (датасетов) на основе материалов лекции решить следующие задачи: обработку пропусков в данных; кодирование категориальных признаков; масштабирование данных.

Выполнение:

```
In [38]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
```

В качестве датасета будем использовать базу данных автомобилей с некоторыми пропущенными значениями.

```
In [39]: data = pd.read_csv('cars.csv', sep=",")
In [40]: data.shape
Out[40]: (205, 26)
```

```
In [41]: data.dtypes
Out[41]: symboling
                                  int64
         normalized-losses
                                float64
         make
                                 object
         fuel-type
                                 object
         aspiration
                                 object
         num-of-doors
                                 object
         body-style
                                object
         drive-wheels
                                object
         engine-location
                                 object
         wheel-base
                                float64
         length
                                float64
         width
                                float64
         height
                                float64
         curb-weight
                                  int64
         engine-type
                                 object
         num-of-cylinders
                                 object
         engine-size
                                  int64
         fuel-system
                                object
         bore
                                float64
         stroke
                                float64
```

dtype: object

compression-ratio

horsepower peak-rpm

city-mpg
highway-mpg

price

Просмотрим датасет на наличие пропущенных значений:

float64 float64

float64 int64

float64

int64

```
In [42]: data.isnull().sum()
```

Out[42]: symboling 0 normalized-losses 41 make 0 fuel-type 0 aspiration 0 num-of-doors 2 body-style 0 drive-wheels 0 engine-location 0 wheel-base 0 length 0 width 0 height 0 curb-weight engine-type num-of-cylinders 0 engine-size 0 fuel-system 0 bore stroke compression-ratio 0 2 horsepower 2 peak-rpm 0 city-mpg highway-mpg 0 price 4 dtype: int64

Проверим правильность загрузки данных:

```
In [43]: data.head()
```

Out[43]:

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body-style	drive- wheels	engine- location	wheel- base	
0	3	NaN	alfa- romero	gas	std	two	convertible	rwd	front	88.6	
1	3	NaN	alfa- romero	gas	std	two	convertible	rwd	front	88.6	
2	1	NaN	alfa- romero	gas	std	two	hatchback	rwd	front	94.5	
3	2	164.0	audi	gas	std	four	sedan	fwd	front	99.8	
4	2	164.0	audi	gas	std	four	sedan	4wd	front	99.4	

5 rows × 26 columns

Обработка пропусков

1) Удаление колонок, содержащих пустые значения

2) Удаление строк, содержащих пустые значения

3) Заполнение всех пустых значений нулями

```
In [46]: data_new_3 = data.fillna(0)
data_new_3.head()
```

Out[46]:

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body-style	drive- wheels	engine- location	wheel- base	
0	3	0.0	alfa- romero	gas	std	two	convertible	rwd	front	88.6	
1	3	0.0	alfa- romero	gas	std	two	convertible	rwd	front	88.6	
2	1	0.0	alfa- romero	gas	std	two	hatchback	rwd	front	94.5	
3	2	164.0	audi	gas	std	four	sedan	fwd	front	99.8	
4	2	164.0	audi	gas	std	four	sedan	4wd	front	99.4	

5 rows × 26 columns

"Внедрение значений" - импьютация (imputation)

Обработка пропусков в числовых данных

Выведем информацию по числовым колонкам, содержащим пустые значения

```
In [47]: num_cols = []
total_count = 205
for col in data.columns:
    # Количество пустых значений
    temp_null_count = data[data[col].isnull()].shape[0]
    dt = str(data[col].dtype)
    if temp_null_count>0 and (dt=='float64' or dt=='int64'):
        num_cols.append(col)
        temp_perc = round((temp_null_count / total_count) * 100.0, 2)
        print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.fo
```

Kолонка normalized-losses. Тип данных float64. Количество пустых значений 41, 2 0.0%.

Колонка bore. Тип данных float64. Количество пустых значений 4, 1.95%.

Колонка stroke. Тип данных float64. Количество пустых значений 4, 1.95%.

Колонка horsepower. Тип данных float64. Количество пустых значений 2, 0.98%.

Колонка peak-rpm. Тип данных float64. Количество пустых значений 2, 0.98%.

Колонка price. Тип данных float64. Количество пустых значений 4, 1.95%.

```
In [48]: data_num = data[num_cols]
   data_num
```

Out[48]:

	normalized-losses	bore	stroke	horsepower	peak-rpm	price
0	NaN	3.47	2.68	111.0	5000.0	13495.0
1	NaN	3.47	2.68	111.0	5000.0	16500.0
2	NaN	2.68	3.47	154.0	5000.0	16500.0
3	164.0	3.19	3.40	102.0	5500.0	13950.0
4	164.0	3.19	3.40	115.0	5500.0	17450.0
200	95.0	3.78	3.15	114.0	5400.0	16845.0
201	95.0	3.78	3.15	160.0	5300.0	19045.0
202	95.0	3.58	2.87	134.0	5500.0	21485.0
203	95.0	3.01	3.40	106.0	4800.0	22470.0
204	95.0	3.78	3.15	114.0	5400.0	22625.0

205 rows × 6 columns

Запоминаем индексы строк с пустыми значениями:

```
In [49]: flt_index = data[data['price'].isnull()].index
flt_index
```

```
Out[49]: Int64Index([9, 44, 45, 129], dtype='int64')
```

Проверяем:

```
In [50]: data[data.index.isin(flt_index)]
```

Out[50]:

	symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base
9	0	NaN	audi	gas	turbo	two	hatchback	4wd	front	99.5
44	1	NaN	isuzu	gas	std	two	sedan	fwd	front	94.5
45	0	NaN	isuzu	gas	std	four	sedan	fwd	front	94.5
129	1	NaN	porsche	gas	std	two	hatchback	rwd	front	98.4

4 rows × 26 columns

используем встроенные средства импьютации библиотеки scikit-learn:

```
In [51]: data_num_price = data_num[['price']]
    data_num_price.head()
```

Out[51]:

price

- **o** 13495.0
- **1** 16500.0
- **2** 16500.0
- **3** 13950.0
- **4** 17450.0

```
In [52]: from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator
```

Проверяем:

```
indicator = MissingIndicator()
In [53]:
          mask_missing values_only = indicator.fit transform(data_num_price)
          mask_missing_values_only
Out[53]: array([[False],
                 [False],
                 [False],
                  [False],
                  [False],
                  [False],
                 [False],
                 [False],
                  [False],
                  [True],
                  [False],
                 [False],
                  [False],
                  [False],
                  [False],
                  [False],
                 [False],
                  [False],
                  [False],
                  [False],
                 [False],
                 [False],
                  [False],
                 [False],
                  [False],
                 [False],
                 [False],
                  [False],
                 [False],
                  [False],
                 [False],
                  [False],
                  [False],
                 [False],
                 [False],
                 [False],
                  [False],
                 [False],
                 [False],
                 [False],
                 [False],
                  [False],
                 [False],
                 [False],
                  [True],
                  [True],
                  [False],
                  [False],
                  [False],
                 [False],
                  [False],
```

[False], [False],

[False], [False],

[False],

[False], [False], [False], [False], [False], [False], [False], [False], [False], [False], [False], [False], [False], [False], [False], [False], [False], [False], [False], [True], [False], [False],

```
[False],
```

Используем различные методы:

[False]])

```
In [54]: strategies=['mean', 'median', 'most_frequent']
In [55]: def test_num_impute(strategy_param):
    imp_num = SimpleImputer(strategy=strategy_param)
    data_num_imp = imp_num.fit_transform(data_num_price)
    return data_num_imp[mask_missing_values_only]

In [56]: strategies[0], test_num_impute(strategies[0])
Out[56]: ('mean',
    array([13207.12935323, 13207.12935323, 13207.12935323, 13207.12935323]))
```

```
In [57]: | strategies[1], test_num_impute(strategies[1])
Out[57]: ('median', array([10295., 10295., 10295., 10295.]))
In [58]: strategies[2], test_num_impute(strategies[2])
Out[58]: ('most frequent', array([5572., 5572., 5572., 5572.]))
In [59]: def test num impute col(dataset, column, strategy param):
              temp_data = dataset[[column]]
              indicator = MissingIndicator()
             mask missing values only = indicator.fit transform(temp data)
              imp_num = SimpleImputer(strategy=strategy_param)
             data num imp = imp num.fit transform(temp data)
              filled data = data num imp[mask missing values only]
             return column, strategy param, filled data.size, filled data[0], filled
In [60]: data[['price']].describe()
Out[60]:
                      price
                 201.000000
          count
          mean 13207.129353
                7947.066342
            std
                5118.000000
           min
                7775.000000
           25%
           50%
               10295.000000
               16500.000000
           75%
           max 45400.000000
In [61]: test num impute col(data, 'price', strategies[0])
Out[61]: ('price', 'mean', 4, 13207.129353233831, 13207.129353233831)
In [62]: test num impute col(data, 'price', strategies[1])
Out[62]: ('price', 'median', 4, 10295.0, 10295.0)
In [63]: test num impute col(data, 'price', strategies[2])
Out[63]: ('price', 'most frequent', 4, 5572.0, 5572.0)
```

Обработка пропусков в категориальных данных

```
In [64]: cat_cols = []
         for col in data.columns:
              # Количество пустых значений
             temp_null_count = data[data[col].isnull()].shape[0]
              dt = str(data[col].dtype)
              if temp null count>0 and (dt=='object'):
                  cat_cols.append(col)
                  temp_perc = round((temp_null_count / total_count) * 100.0, 2)
                  ртіпт ('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.fo
         Колонка num-of-doors. Тип данных object. Количество пустых значений 2, 0.98%.
In [65]: cat_temp_data = data[['num-of-doors']]
         cat temp data.head()
Out[65]:
             num-of-doors
          0
                    two
          1
                    two
          2
                    two
          3
                    four
                    four
In [66]: cat temp data['num-of-doors'].unique()
Out[66]: array(['two', 'four', nan], dtype=object)
In [67]: cat temp data[cat temp data['num-of-doors'].isnull()].shape
Out[67]: (2, 1)
```

Импьютация наиболее частыми значениями:

```
In [68]: imp2 = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
         data imp2 = imp2.fit transform(cat temp data)
         data_imp2
Out[68]: array([['two'],
                 ['two'],
                 ['two'],
                 ['four'],
                 ['four'],
                 ['two'],
                 ['four'],
                 ['four'],
                 ['four'],
                 ['two'],
                 ['two'],
                 ['four'],
                 ['two'],
                 ['four'],
                 ['four'],
                 ['four'],
                 ['two'],
                 ['four'],
                 ['two'],
In [69]: np.unique(data_imp2)
Out[69]: array(['four', 'two'], dtype=object)
         Импьютация константой:
In [70]: imp3 = SimpleImputer(missing values=np.nan, strategy='constant', fill value
         data imp3 = imp3.fit transform(cat temp data)
         data imp3
                 ['four'],
                 ['four'],
                 ['four'],
                 ['four'],
                 ['two'],
                 ['two'],
                 ['two'],
                 ['four'],
                 ['two'],
                 ['two'],
```

```
In [71]: np.unique(data_imp3)
Out[71]: array(['const', 'four', 'two'], dtype=object)
```

Преобразование категориальных признаков в числовые

```
In [72]: | cat_enc = pd.DataFrame({'c1':data_imp2.T[0]})
          cat enc
Out[72]:
                 с1
                two
             1
                two
             2 two
             3 four
                four
           200 four
           201 four
           202 four
           203 four
           204 four
           205 rows × 1 columns
```

Кодирование категорий целочисленными значениями

```
In [73]: from sklearn.preprocessing import LabelEncoder, OneHotEncoder
In [74]: le = LabelEncoder()
    cat_enc_le = le.fit_transform(cat_enc['c1'])
In [75]: cat_enc['c1'].unique()
Out[75]: array(['two', 'four'], dtype=object)
In [76]: np.unique(cat_enc_le)
Out[76]: array([0, 1])
```

```
In [77]:
    le.inverse_transform([0, 1])
Out[77]: array(['four', 'two'], dtype=object)
```

Кодирование категорий наборами бинарных значений

```
In [78]: ohe = OneHotEncoder()
         cat_enc_ohe = ohe.fit_transform(cat_enc[['c1']])
In [79]: cat_enc.shape
Out[79]: (205, 1)
In [80]: cat_enc_ohe.shape
Out[80]: (205, 2)
In [81]: cat_enc_ohe
Out[81]: <205x2 sparse matrix of type '<class 'numpy.float64'>'
                 with 205 stored elements in Compressed Sparse Row format>
In [82]: cat enc ohe.todense()[0:10]
Out[82]: matrix([[0., 1.],
                  [0., 1.],
                  [0., 1.],
                  [1., 0.],
                  [1., 0.],
                  [0., 1.],
                  [1., 0.],
                 [1., 0.],
                  [1., 0.],
                  [0., 1.]])
```

Масштабирование данных

```
In [84]: from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalizer
```

MinMax масштабирование

```
In [85]: sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(data[['price']])
```

```
In [86]: plt.hist(data['price'], 50)
plt.show()
```

/Users/Daria/opt/anaconda3/lib/python3.7/site-packages/numpy/lib/histogra
ms.py:839: RuntimeWarning: invalid value encountered in greater_equal
 keep = (tmp_a >= first_edge)
/Users/Daria/opt/anaconda3/lib/python3.7/site-packages/numpy/lib/histogra
ms.py:840: RuntimeWarning: invalid value encountered in less_equal
 keep &= (tmp_a <= last_edge)</pre>


```
In [88]: sc2 = StandardScaler()
sc2_data = sc2.fit_transform(data[['price']])
```

```
In [89]: plt.hist(sc2_data, 50)
plt.show()
```

/Users/Daria/opt/anaconda3/lib/python3.7/site-packages/numpy/lib/histogra ms.py:839: RuntimeWarning: invalid value encountered in greater_equal keep = (tmp a >= first edge)

/Users/Daria/opt/anaconda3/lib/python3.7/site-packages/numpy/lib/histogra ms.py:840: RuntimeWarning: invalid value encountered in less_equal keep &= (tmp_a <= last_edge)

In []: