Air Quality Monitoring: Risk-Based Choices

John T. James, Ph.D.

Habitability and Environmental Factors
Division

January 15, 2009

Roadmap

- Controlling risk of toxic events
- Learning from adverse events
- Archival air sampling
- On-board, real-time analyzers
- Commercial vs. one-of-a-kind monitors
- Constraints on spaceflight hardware
- A dusty future-living on a distant celestial body
- Recap

Controlling Risk of Toxic Exposure

- Use non-toxic systems chemicals
- Use materials that do not offgas much
- Contain toxicants in payloads
- Use non-toxic utility compounds
- Operationally limit access to toxic compounds
- Provide robust air scrubbing capability
- Personal protective equipment available
- Ability to escape spacecraft

Learning from Adverse Events

- Toxic propellants
- Fires
- Pyrolysis events
- Leaky thermal control systems
- Excess carbon dioxide
- Formaldehyde accumulation
- Unpredictable events
- Dust

Apollo-Soyuz: Nitrogen Tetroxide Exposures-1975

Selected Pollutants in Mir Air after the SFOG Fire (mg/m³)

Carbon Monoxide and Carboxyhemaglobin Profiles after the SMALL BMP Filter Burn (CPA data)

Ethylene Glycol in Mir Air after Leak from the Thermal Control System: Kvant and Core Module

CO2 Survey During Exercise

Oct-00 Apr-01 Nov-01 May-02 Dec-02 Jun-03 Jan-04 Aug-04 Feb-05 Sep-05 Mar-06

Date of Sample

Unpredictable Event

METOX SYSTEM SCHEMATIC DIAGRAM

Impact of Metox Regeneration on T Values [index of toxicity]

Archival Samplers

- 3 surrogate standards
- Sample is aspirated by vacuum in <5 seconds
- Analysis in Lab by GC and GC/MS
- Reactive compounds are lost
- Problem-valve not sealed well after sampling

- -Formaldehyde trapped in badge matrix by diffusion
- -Typical sample time is 24 h (in pairs)
- -Formaldehyde eluted from badge and analyzed by spectrophotometry
- -Limitations: must have sufficient face velocity of air

Hand-held air monitors

CSA-CP

- Commercial unit using electrochemical sensors
- First alert and source finding capability
- Zero capability
- Combustion tested and certified at 10.2 psia
- Carbon Monoxide-slight drift with closed storage
- Hydrogen Chloride sensor not specific
- Hydrogen Cyanide-depleted in use
- Oxygen-back up to the MCA
- Masking criteria after fire

Carbon Dioxide Monitor

- -Commercial unit
- -6 % upper limit
- -18 h battery life (sample is pumped)
- -Water & particle filter
- -Infrared absorption used to measure CO₂ in air
- -Robust/stable device

Dräger Chip Measurement System

- Flown by Russian partners
- Two-year shelf life
- One analyte at time
- Up to 10 sequential measurements
- Less than 2 minute response time
- Few interferences
- Wide collection of analytes
- Lacks sensitivity to meet nominal monitoring requirement
- Effective in contingency

Major On-Board Instruments

- Major Constituents Analyzer
- Mass spectrometer
- O₂, N₂, H₂0, CH₄,
 CO₂, H₂

- Volatile Organics Analyzer
- GC-Ion mobility spectrometer

Many trace organics

Other Air Quality Instruments

- ANITA-Trained system to deconvolute FTIR spectrum
- Electronic Nose-trained sensor array for target compounds
- VCAM-GC/MS system
- Air Quality Analyzer-GC/differential mobility spectrometer

Data Presentation to the Crew

Commercial vs. One-of a-kind Instruments

- Commercial
- Inexpensive
- Small
- Experience history
- Established support
- Adapt to requirements
- Easy sustainability

- One of a kind
- Expensive
- Large
- Performance uncertain
- Support may vanish
- Build to requirements
- Pain to sustain

Constraints on Spaceflight Hardware

- Small and low mass
- Use minimal resources
- Little or no crew time
- Infrequent calibration
- Reliable performance for 2 years
- Follow cleanup in a contingency
- Perform after a combustion event
- Proper information conveyed to the crew

DUST

Lunar Dust Properties

Larry Taylor, U of Tennessee

NASA, J. Bell (Cornell), M. Wolff (SSI), and the Hubble Heritage Team (STScl/AURA) • STScl-PRC01-31

A Dusty Future

Recap

- Air monitoring is secondary to rigid control of risks to air quality
- Air quality monitoring requires us to target the credible residual risks
- Constraints on monitoring devices are severe
- Must transition from archival to real-time, onboard monitoring
- Must provide data to crew in a way that they can interpret findings
- Dust management and monitoring may be a major concern for exploration class missions