# **Approximation Algorithms**

Andrea Clementi

### **Review: Decision Problems vs Optimization Problems in NP**

Given any **Opt** Problem Min-P = (X, Y(x), m(x, Y(x)), MIN/MAX) we can always define the corresponding **Decision Problem** k-P = (X, Y(x), m(x, Y(x)), <= k (>= k))

FACT (Definition).

the corresponding **Opt** problem **Min-P** is **NP-hard IFF**the decision problem **k-P** is **NP-Hard** 

COR. IF P # NP and Min-P is NP-hard, THEN there is no poly-time deterministic algorithm for it.

### Approximation Ratio (Error)

### **Optimization Problem**

Given an optimization problem P = (X, Y(x), m(x, Y(x)), MIN/MAX), we say A is an r-approximation algorithm for P if, for any instance  $x \in X$ , the computation A(x) returns a <u>feasible</u> solution  $y^A$  such that:

$$\frac{m(x, y^A)}{\operatorname{opt}(x)} \ge r$$
 (in the case of **MAX**)

#### **Min-Vertex Cover**

**k-VC:** Given a graph G = (V, E) and an integer k, is there a **k-size VC**, i.e., a subset of vertices  $S \subseteq V$  such that  $|S| \le k$ , and for each edge, at least one of its endpoints is in S?

Min-VC: Given a graph G = (V, E), find a VC  $S^*$  for G of minimum size

Ex. there min-VC for the graph below has size 4.



vertex cover

A lower bound for optimal VC

### Matching and Covering

FACT 1: Given any graph G(V, E), consider any **Maximal Matching**  $M \subseteq E$ . Then, any VC for G must contain at least 1 vertex for every edge in M.

#### Proof.

immediate consequence of def.s of Matching and VC.

- Remind: Matching = any subset of **disjoint** edges

### Lower Bound for the Optimum

FACT 2:

opt(G) | M



An apx algorithm for Min VC

### Matching Algorithm M - ALG

- ▶ Input: G(V, E);
- ► Find (any) Maximal Matching M;
- ▶ Return C = { all nodes touched by M};

DEFINITIONS

An apx algorithm for Min VC

### Matching Algorithm M - ALG

- ▶ Input: G(V, E);
- ► Find (any) Maximal Matching *M*;
- ▶ Return C = { all nodes touched by M};

#### **THM 3.**

M-ALG is a 2-apx algorithm for Min-VC.

Proof of THM 3

M-ALG

FACT 4. The returned solution C(i) is always a Vertex Cover for GAND (ii) |C| = 2|M|.

Proof of THM 3

#### M-ALG

FACT 4. The returned solution C(i) is always a Vertex Cover for GAND (ii) |C| = 2|M|.

#### Proof.

(i) Immediate consequence of the fact that M is MAXIMAL. (ii) is trivial.

Proof of THM 3

#### M-ALG

FACT 4. The returned solution C(i) is always a Vertex Cover for GAND (ii) |C| = 2|M|.

#### Proof.

(i) Immediate consequence of the fact that M is MAXIMAL. (ii) is trivial.

Remind FACT 2: **opt**(G) ) |M|

Proof of THM 3

#### M-ALG

FACT 4. The returned solution C(i) is always a Vertex Cover for GAND (ii) |C| = 2|M|.

#### Proof.

(i) Immediate consequence of the fact that M is MAXIMAL. (ii) is trivial.

Remind FACT 2: **opt**(G) ) |M|

$$\frac{|C|}{\mathsf{opt}(G)} \qquad \frac{2|M|}{|M|}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ りQ@