Álgebra Universal e Categorias

Exercícios - Folha 1 -

1. Diga, justificando, quais dos c.p.o.s a seguir representados são reticulados:

- 2. Mostre que cada um dos c.p.o.s a seguir indicados é um reticulado.
 - (a) $(\mathbb{N}, |)$, onde | é a relação divide definida em \mathbb{N} .
 - (b) $(\mathcal{P}(\mathcal{A}),\subseteq)$, onde $\mathcal{P}(\mathcal{A})$ é o conjunto das partes de um conjunto A e \subseteq é a relação de inclusão usual.
 - (c) $(\operatorname{Subg}(G), \subseteq)$, onde $\operatorname{Subg}(G)$ representa o conjunto dos subgrupos de um grupo G e \subseteq é a relação de inclusão usual.
- 3. Prove que toda a cadeia é um reticulado.
- 4. Seja (P, \leq) um c.p.o. tal que, para todo $H \subseteq P$, existe $\inf H$. Mostre que (P, \leq) é um reticulado.
- 5. Uma estrutura algébrica $(A; \wedge, \vee)$, onde \wedge e \vee são operações binárias em A, satisfaz as leis *comutativas*, associativas, de absorção e de idempotência se, para quaisquer $x, y, z \in A$,

$$\begin{array}{lll} \text{L1: } x \vee y = y \vee x, & x \wedge y = y \wedge x & \text{(leis comutativas);} \\ \text{L2: } x \vee (y \vee z) = (x \vee y) \vee z, & x \wedge (y \wedge z) = (x \wedge y) \wedge z & \text{(leis associativas);} \\ \text{L3: } x \vee (x \wedge y) = x, & x \wedge (x \vee y) = x & \text{(leis de absorção);} \\ \text{L4: } x \vee x = x, & x \wedge x = x & \text{(leis de idempotência).} \end{array}$$

- (a) Sejam (A_1, \wedge_1, \vee_1) , (A_2, \wedge_2, \vee_2) e (A_3, \wedge_3, \vee_3) as seguintes estruturas algébricas:
 - $A_1 = \{a,b\}$ e $x \vee_1 y = x, \forall x,y \in A_1$, $a \wedge_1 x = a,b \wedge_1 x = x, \forall x \in A_1$;

• $A_3 = \{a, b\}$ e $b \lor a = b$, $a \lor_3 x = x, x \lor_3 b = b, x \land y = a, \forall x, y \in A_3$.

Para cada $i \in \{1,2,3\}$, mostre que A_i satisfaz as leis indicadas em Lj para $j \in \{1,2,3\} \setminus \{i\}$ e não satisfaz alguma das leis indicadas em Li. Conclua que as leis L1, L2 e L3 são independentes.

- (b) Mostre que as leis de idempotência são consequência das leis de absorção.
- 6. Seja $(R; \land, \lor)$ o reticulado cujas operações \land e \lor são as descritas através das tabelas seguintes

\wedge	0	а	b	С	d	1	V	0	a	b	С	d	1
0	0	0	0	0	0	0	0	0	а	b	С	d	1
а	0	а	0 b	а	0	a	a	а	a	С	С	1	1
b	0	0	b	b	b	b	b	b	С	b	С	d	1
С	0	а	b	С	b	С	С	С	С	С	С	1	1
d	0	0	b	b	d	d	d	d	1	d	1	d	1
1	0	а	b b b	С	d	1	1	1	a c c	1	1	1	1

Considere o reticulado interpretado como um conjunto parcialmente ordenado e represente-o através de um diagrama de Hasse.