Master Sciences et Technologie - Mention Sciences pour l'Ingénieur

Transformées linéaires

CC3 - Mardi 14 Novembre 2017 - durée : 1h30 $sans\ document$ - $sans\ calculatrice$ - $sans\ téléphone$ portable

Modéle 2D d'une voiture

On s'intéresse dans ce problème à la dynamique d'une voiture modélisée comme un système à 2 degrés de liberté (cf figure 1). On assimile la voiture à une poutre homogène de longueur 2L et de masse M dont les extrémités A et B sont reliées aux roues (supposées parfaitement rigides) par deux ressorts identiques (raideur k). On suppose que la voiture se déplace à vitesse constante V (vers les x croissants). On s'intéresse à l'évolution des hauteurs des points A et B au cours du temps notées respectivement $z_A(t)$ et $z_B(t)$ lorsque la voiture roule sur une route dont le profil est irrégulier.

Figure 1 – Schématisation du système

La modélisation de ce système (non demandée ici) permet d'écrire les équations du mouvement :

$$\begin{cases} \frac{M}{6} (2\ddot{z}_A + \ddot{z}_B) + kz_A = e_1(t) \\ \frac{M}{6} (\ddot{z}_A + 2\ddot{z}_B) + kz_B = e_2(t) \end{cases}$$
 (1)

Les fonctions $e_1(t)$ et $e_2(t)$ représentent respectivement les excitations sur les extrémités A et B dues aux irrégularités du profil de la route.

Analyse à l'aide de la transformée de Fourier

- 1. Justifier que les équations du système 1 sont linéaires.
- 2. Calculer la transformée de Fourier de chaque équation du système. On notera $\hat{z}_A(\omega)$, $\hat{z}_B(\omega)$, $\hat{e}_1(\omega)$ et $\hat{e}_2(\omega)$ les transformées de Fourier de $z_A(t)$, $z_B(t)$, $e_1(t)$ et $e_2(t)$.
- 3. Montrer que les équations trouvées à la question précédente peuvent se mettre sous la forme d'un système matriciel de la forme $\underline{MZ} = \underline{E}$ avec les vecteurs $\underline{Z} = (\hat{z}_A, \hat{z}_B)$ et $\underline{E} = (\hat{e}_1, \hat{e}_2)$. Donner la matrice \underline{M} .
- 4. On rappelle $\underline{\underline{M}}^{-1} = \frac{1}{\det M} (com\underline{\underline{M}})^t$ où $\det M$ désigne le déterminant de la matrice $\underline{\underline{M}}$ et $(com\underline{\underline{M}})^{\overline{t}}$ désigne la transposée de la co-matrice. Montrer qu'il peut exister des fréquences pour lesquelles l'amplitude de \hat{z}_A et \hat{z}_B tend vers l'infini.
- 5. En notant $\omega_0^2 = \frac{k}{M}$, calculer ces fréquences explicitement et montrer que : $\omega_1 = \sqrt{2}\omega_0$ et $\omega_2 = \sqrt{6}\omega_0$

Analyse à l'aide de la transformée de Laplace

On suppose qu'à l'instant initial la voiture est dans sa configuration à l'équilibre : $z_A(t=0) = \dot{z}_A(t=0) = z_B(t=0) = \dot{z}_B(t=0) = 0$. On cherche à modéliser l'influence d'un défaut ponctuel de la route sur la dynamique de la voiture : à l'instant t=0 la roue A touche le défaut. On modélise le contact avec le défaut par l'intermédiaire de la fonction $e_1(t): e_1(t) = \gamma \delta(t)$ où $\delta(t)$ désigne la fonction généralisée de Dirac.

- 1. La voiture se déplace à vitesse constante V. Donner l'expression de t_1 , l'instant auquel la roue B touche le défaut. Justifier alors que : $e_2(t) = \gamma \delta(t t1)$
- 2. Calculer les transformées de Laplace de chaque équation du système 1.On notera $Z_A(p)$, $Z_B(p)$, $E_1(p)$ et $E_2(p)$ les transformées de Laplace de $z_A(t)$, $z_B(t)$, $e_1(t)$ et $e_2(t)$.
- 3. On introduit deux nouvelles grandeurs:

$$\begin{cases} W_1 = (Z_A + Z_B), \\ W_2 = (Z_A - Z_B) \end{cases}$$

Montrer que

$$\begin{cases} W_1(p) = \frac{E_1 + E_2}{\frac{M}{2}p^2 + k}, \\ W_2(p) = \frac{E_1 - E_2}{\frac{M}{6}p^2 + k} \end{cases}$$

- 4. Calculer les transformées de Laplace $E_1(p)$ et $E_2(p)$ de $e_1(t)$ et de $e_2(t)$.
- 5. En déduire les expressions de $W_1(p)$ et $W_2(p)$:

$$\begin{cases} W_1(p) = \frac{\gamma(1+e^{-pt_1})}{m_1(p^2+\omega_1^2)}, \\ W_2(p) = \frac{\gamma(1-e^{-pt_1})}{m_2(p^2+\omega_2^2)}. \end{cases}$$

avec les pulsations ω_1 et ω_2 définies à la question 3 de la partie précédente et m_1 et m_2 des constantes à déterminer.

- 6. On donne $\mathcal{L}(e^{-at}h(t)) = \frac{1}{p+a}$, calculer $\mathcal{L}(h(t)\sin(\omega_0 t))$.
- 7. Calculer $w_1(t)$ et $w_2(t)$ les transformées de Laplace inverses de $W_1(p)$ et $W_2(p)$.
- 8. En déduire les expressions de $z_A(t)$ et $z_B(t)$