DI/PPGI/UFES

$4^{\underline{o}}$ Exercício Computacional de Algoritmos Numéricos II/Computação Científica - 2021-1 EARTE

Precondicionadores e Reordenamento usando o Octave

Objetivos

• Observar o comportamento dos métodos iterativos não estacionários para um conjunto de matrizes esparsas da SuiteSparse Matrix Collection¹, considerarando precondicionamento e reordenamento.

Conceitos/comandos importantes:

A coleção de matrizes esparsas SuiteSparse Matrix Collection disponibiliza matrizes das mais variadas áreas do conhecimento. Um dos formatos disponíveis para as matrizes é <nome>.mat. Arquivo binário que armazena as informações para gerar uma matriz esparsa no formato Compressed Column Sparse(CCR) para o Octave. A seguir listamos alguns comandos do Octave para gerar e resolver um sistema cuja matriz esparsa foi obtida da SuiteSparse Matrix Collection, considerando precondicionamento e reordenamento.

- load <nome>.mat carrega dados da matriz em uma estrutura auxiliar A.
- A = Problem.A; Armazena os dados da estrutura A na matriz esparsa A no formato CCR.
- n = rows(A);
- b = A*ones(n,1);
- [i,j] = find(A); Retorna um vetor de índices de elementos não-nulos de uma matriz, como uma linha se A é um vetor de linha ou como uma coluna caso contrário.
- max(i-j) Retorna a "largura de banda" de uma matriz.
- speye(n,n); Retorna a matriz identidade esparsa de tamanho n.
- perm = symrcm(A) Retorna o vetor de permutação de linhas e colunas obtido pelo algoritmo de reordenamento Reverse-Cuthill-Mckee. Para obter a matriz com linhas e colunas permutadas:

```
I = speye(n,n);
P = I(perm,:);
R = P*A*P';
```

• [L,U] = ilu(A,opts); - Calcula a fatoração LU incompleta da matriz quadrada esparsa A. Exemplos de comandos:

```
opts.type = "nofill"; - Calcula a fatoração ILU(0).;
opts.type = "crout"; opts.droptol = 10<sup>-4</sup>; - Calcula a fatoração ILU, onde U é a matriz triangular superior com diagonal unitária, considerando que valores de preenchimento com módulo menor
```

• L = ichol(A,opts); - Calcula a fatoração incompleta de cholesky ICC da matriz esparsa simétrica A opts.type = "nofill"; - Calcula a fatoração ICC(0).;

que 10^{-4} serão descartados.

¹https://sparse.tamu.edu/

- opts.type = "ict"; opts.droptol = 10^{-4} ; Calcula a fatoração ICC, onde L é a matriz triangular inferior tal que $LL^t \approx A$, considerando que valores de preenchimento com módulo menor que 10^{-4} serão descartados.
- [x,flag,relres,iter,resvec] = pcg(A,b,tol,maxit, M1,M2) ou [x,flag,relres,iter,resvec] = pcg(A,b,tol,maxit, P) encontra a solução de um sistema Ax = b pelo método dos Gradientes Conjugados, onde:
 - A: Matriz dos coeficientes simétrica definida positiva²;
 - b: Vetor dos termos independentes;
 - tol: Tolerância relativa;
 - maxit: número máximo de iterações;
 - M1, M2: matrizes que definem o precondicionamento $M1^{-1}AM2^{-1}M2x = M1^{-1}b$ ou
 - P: matriz que define o precondicionamento $(M1 * M2)^{-1}Ax = (M1 * M2)^{-1}b$ se P = M1 * M2
 - x: vetor solução aproximada;
 - flag: 0 convergência atingida; 1 número máximo de iterações atingido; 3 estagnação do resíduo;
 - relres: valor final do resíduo relativo;
 - iter: número de iterações executadas;
 - resvec: vetor contendo o resíduo relativo em cada iteração;
- [x,flag,relres,iter,resvec] = gmres(A,b,k,rtol,maxit,M1,M2) ou [x,flag,relres,iter,resvec] = gmres(A,b,k,rtol,maxit,P) encontra a solução de um sistema Ax = b pelo método GMRES, onde:
 - A: Matriz dos coeficientes;
 - b: Vetor dos tewrmos independentes;
 - k: Número de vetores para o restart;
 - rtol: Tolerância relativa;
 - maxit: número máximo de ciclos;
 - M1, M2: matrizes que definem o precondicionamento $M1^{-1}AM2^{-1}M2x = M1^{-1}b$ ou
 - P: matriz que define o precondicionamento $(M1 * M2)^{-1}Ax = (M1 * M2)^{-1}b$ se P = M1 * M2
 - x: vetor solução aproximada;
 - flag: 0 convergência atingida; 1 número máximo de iterações atingido; 3 estagnação do resíduo;
 - relres: valor final do resíduo relativo;
 - iter: vetor contendo o número de ciclos (iter(1,1)) e o número de iterações do último ciclo (iter(1,2))³;
 - resvec: vetor contendo o resíduo relativo em cada iteração;
- Considere as seguintes matrizes simétricas definidas positivas do Exercício Computacional 2 (mesh3em5, 662_bus, pdb1HYS e Dubcova3). Para cada uma das matrizes:
 - (a) Resolva o sistema trivial Ax = b, sendo b = A * ones(n, 1) pelo método dos gradientes conjugados, considerando precondicionamento ICC(0); ICC com type = "ict"; droptol = 10^{-4} , considerando os precondicionadores com e sem reordenamento.

² default: armazenamento na estrutura CCR (Compressed Column Sparse)

³número de iterações gmres é igual a iter(1,1)*k+iter(1,2)

- (b) Plote o gráfico do resíduo das variações do item (a) em um mesmo sistema de eixos;
- (c) Discuta as características do processo iterativo;
- (d) Construa uma tabela contendo métricas importantes como: número de iterações, valor do resíduo ao final do processo, norma da solução, características da matriz, etc ...

Considere as seguintes matrizes (cavity05, cz2548 e epb3). Para cada uma das matrizes:

- (a) Resolva o sistema trivial Ax = b, sendo b = A * ones(n, 1) pelo método GMRES para o número de vetores de Krylov k que obteve o melhor desempenho observado no Exercício 3 (ou faça um estudo preliminar), considerando:
 - método sem precondicionamento;
 - precondicionamento ILU(0);
 - precondicionamento ILU com type = "crout"; droptol = 10^{-4} ;
 - Considerar cada precondicionador com e sem reordenamento RCM;
- (b) Na sua análise, organize os dados em tabelas utilizando diversas métricas para avaliar os experimentos: convergência ou não, número de iterações, tempo de processamento, norma da solução trivial, norma do resíduo relativo, número de não-nulos de cada estrutura, largura de banda da matriz, gráficos da esparsidade das matrizes e das matrizes auxiliares para o precondicionamento.
- (c) Plote o gráfico do resíduo relativo (no mesmo sistema de eixos) para as diferentes formas de resolver cada sistema linear.

Relatório

Escreva um relatório com suas conclusões sobre os objetivos listados acima. Postar no Classroom os fontes .m e uma cópia em pdf até 24/08/2021.