WHAT IS CLAIMED IS:

1	1. A method of forming a magnetic tunnel junction device, comprising:			
2	forming a first magnetic layer and a second magnetic layer, at least one of the first			
3	and the second magnetic layers including diffusion components selected to adjust one or			
4	more properties of the magnetic tunnel junction device; and			
5	forming a barrier layer between the first and the second magnetic layers, the			
6	barrier layer comprising migrated diffusion components from the at least one magnetic			
7	layer, wherein the diffusion components adjust the one or more properties.			
1	2. The method of claim 1, wherein the diffusion components are selected to			
2	adjust a series resistance of the magnetic tunnel junction device.			
1	3. The method of claim 1, wherein the diffusion components are selected to			
2	decrease a bandgap of the barrier layer.			
1	4. The method of claim 1, wherein:			
2	forming the first magnetic layer comprises forming a pinned magnetic layer; and			
3	forming the second magnetic layer comprises forming a free magnetic layer.			
1	5. The method of claim 1, wherein one or more of the first and the second			
2	magnetic layers comprises a multi-layer structure.			

magnetic layers comprises an alloy of CoFe. 2 The method of claim 6, wherein the alloy of CoFe comprises CoFeHf. 1 7. 1 8. The method of claim 7, wherein the CoFeHf comprises about 5 to about 10 atomic percent Hf. 2 9. The method of claim 6, wherein the allow of CoFe comprises CoFeZr. 1 The method of claim 9, wherein the CoFeZr comprises about 5 to about 10 1 10. 2 atomic percent Zr. 1 11. The method of claim 1, wherein the diffusion components comprises Hf. 1 12. The method of claim 1, wherein the diffusion components comprises Zr. 1 13. The method of claim 1, wherein forming the first and the second magnetic 2 layers comprises forming at least one amorphous layer. 1 14. The method of claim 1, wherein forming the barrier layer comprises forming a layer comprising a compound of AlO_x having a thickness of about 3 Δ to about 2 3 6Δ.

The method of claim 1, wherein one or more of the first and the second

1

6.

1	15. The method of claim 1, wherein the forming the barrier layer comprises		
2	forming a barrier layer comprising AlHfO _x .		
1	16. The method of claim 1, wherein forming the barrier layer comprises		
2	forming a barrier layer comprising AlZrO _x .		
1	17. A method of forming a magnetic tunnel junction device, comprising:		
2	forming an magnetic tunnel junction active region, comprising:		
3	a first magnetic layer and a second magnetic layer, at least one of the first		
4	and the second magnetic layers including diffusion components selected to adjust		
5	one or more properties of the magnetic tunnel junction device; and		
6	a barrier layer between the first and the second magnetic layers; and		
7	annealing the active region to enhance migration of the diffusion components		
8	from the first magnetic layer to the barrier layer, wherein the migrated diffusion		
9	components adjust the one or more properties.		
1	18. The method of claim 17, wherein the at least one layer comprises an alloy		
2	of CoFe.		
1	19. The method of claim 17, wherein the at least one layer comprises CoFeHf		
1	20. The method of claim 19, wherein the CoFeHf comprises about 5 to about		
2	10 atomic percent Hf.		

1	21.	The method of claim 17, wherein the at least one layer comprises CoFeZr.	
1	22.	The method of claim 21, wherein the CoFeZr comprises about 5 to about	
2	10 atomic per	cent Zr.	
1	23.	The method of claim 17, wherein the diffusion components comprise Hf.	
1	24.	The method of claim 17, wherein the diffusion components comprise Zr.	
1	25.	The method of claim 17, wherein the barrier layer has a thickness of about	
2	3 Δ to about 6 Δ .		
1	26.	The method of claim 17, wherein annealing the active region comprises	
2	annealing the	active region at a temperature of less than about 300 C.	
1	27.	The method of claim 17, wherein the diffusion components are selected to	
2	decrease a series resistance of the active region.		
1	28.	The method of claim 17, wherein annealing the diffusion components are	
2	selected to dec	crease a band gap of the barrier layer.	
1	29.	The method of claim 17, wherein annealing the active region to enhance	
2	migration of the diffusion components from the first magnetic layer to the barrier layer		
3	comprises form	ning AlHfO _x in the barrier layer.	

1	30.	The method of claim 17, wherein annealing the active region to enhance	
2	migration of the diffusion components from the first magnetic layer to the barrier layer		
3	comprises forming AlZrO _x in the barrier layer.		
1	31.	A method for sensing a magnetic field, comprising:	
2	formi	ng a magnetic tunnel junction device having an active region, comprising:	
3		a first magnetic layer and a second magnetic layer, at least one of the first	
4	and the second magnetic layers including diffusion components selected to adjust		
5	one or more properties of the magnetic tunnel junction device; and		
6		a barrier layer between the first and the second magnetic layers; and	
7	annealing the active region to enhance migration of the diffusion components		
8	from the first magnetic layer to the barrier layer, the migrated diffusion components		
9	adjusting the one or more properties;		
10	driving the magnetic tunnel junction device using an electrical signal; and		
11	detecting an electrical resistance based on magnetic orientations of the first and		
12	the second magnetic layers.		
1	32.	The method of claim 31, wherein the at least one layer comprises CoFeHf	
1	33.	The method of claim 31, wherein the at least one layer comprises CoFeZr.	
1	34.	The method of claim 31, wherein the diffusion components comprise Hf.	
1	35.	The method of claim 31, wherein the diffusion components comprise Zr.	

- 1 36. The method of claim 31, wherein annealing the active region comprises 2 annealing the active region at a temperature of about 300 C.
- 1 37. The method of claim 31, wherein the diffusion components are selected to reduce a series resistance of the active region.
- 1 38. The method of claim 31, wherein the diffusion components are selected to decrease a bandgap of the barrier layer.
- 1 39. The method of claim 31, wherein annealing the active region to enhance 2 migration of the diffusion components from the first magnetic layer to the barrier layer 3 comprises forming AlHfO_x in the barrier layer.
- 40. The method of claim 31, wherein annealing the active region to enhance
 5 migration of the diffusion components from the first magnetic layer to the barrier layer comprises forming AlZrO_x in the barrier layer.