A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION

SYSTEM

A NALAIYATHIRAN PROJECT REPORT

SUBMITTED BY

PNT2022TMID46193

VIJI.P	815119106046
GAYATHRI.D	815119106012
SOWNDHARYA.S	815119106040
KEERTHANA.R	815119106018

In partial fulfillment for the award of the degree

of

BACHELOR OF ENGINEERING

in

ELECTRONICS AND COMMUNICATION ENGINEERING

HX8001 - "PROFESSIONAL READINESS FOR INNOVATION, EMPLOYBILITY AND ENTREPRENEURSHIP

DHANALAKSHMI SRINIVASAN INSTITUTE OF TECHNOLOGY SAMAYAPURAM, TIRUCHIRAPPALLI

ANNA UNIVERSITY;; CHENNAI 600025 2022-2023

TABLE OF CONTENTS

1. INTRODUCTION

- a. PROJECT OVERVIEW
- b. PURPOSE

2. LITERATURE SURVEY

- c. EXISTING PROBLEM
- d. REFERENCES
- e. PROBLEM STATEMENT DEFINITION

3. IDEATION & PROPOSED SOLUTION

- f. EMPATHY MAP CANVAS
- g. IDEATION & BRAINSTORMING
- h. PROPOSED SOLUTION
- i. PROBLEM SOLUTION FIT

4. REQUIREMENT ANALYSIS

- j. FUNCTIONAL REQUIREMENTS
- k. NON FUNCTIONAL REQUIREMENTS

5. PROJECT DESIGN

- 1. DATA FLOW DIAGRAM
- m. SOLUTION & TECHNICAL ARCHITECTURE
- n. USER STORIES

6. PROJECT PLANNING AND SCHEDULING

- o. SPRINT PLANNING AND ESTIMATION
- p. SPRINT DELIVERY SCHEDULE

7. CODING & SOLUTIONING

- a. FEATURE 1
- b. FEATURE 2
- c. DATABASE SCHEME

- 8. TESTING
 - q. TEST CASES
 - r. USER ACCEPTANCE TESTING
- 9. RESULTS
 - a. PERFORMANCE MATRICS
- 10. ADVANTAGES & DISADVANTAGES
- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX

SOURCE CODE

GITHUB & PROJECT DEMO LINK

CHAPTER 1

INTRODUCTION

a. **PROJECT OVERVIEW**

Machine learning and deep learning play an important role in computer technology and artificial intelligence. With the use of deep learning and machine learning, human effort can be reduced in recognizing, learning, predictions and in many more areas.

Handwritten Digit Recognition is the ability of computer systems to recognise handwritten digits from various sources, such as images, documents, and so on. This project aims to let

users take advantage of machine learning to reduce manual tasks in recognizing digits.

b. **PURPOSE**

Digit recognition systems are capable of recognizing the digits from different sources like emails, bank cheque, papers, images, etc. and in different real-world scenarios for online handwriting recognition on computer tablets or system, recognize number plates of vehicles, processing bank cheque amounts, numeric entries in forms filled up by hand (tax forms) and so on.

CHAPTER 2 LITERATURE SURVEY

YEAR	TECHNOLOGY	SOFTWARE	ADVANTABLE	DISADVANTACLE
2016	OCR, HCR	Madiana	The System two outy Reduces a classiff eathors by the digit but also a with decodution of the Buch as the worlding Style	Diglt String Performance is medium.
2017	Aritifical nuwal Network		over handiwitting the	Someone Sitting next town and talking to the morning and talking to
2018	Touch Streen.	рся тоя, сс	Reading Portal annount, bank ched amount.	Haudtwritten So difficult to a AI
2019	Automatic digit deep tearning.	SVM ; ANN , CNN	Performance of digit recognition is high	himitted number e machine promuing
8030	Deep Learning.	CNN	The generative made can perform reconstion andven segmentation	historical facts can be stored, reviewed and shared easily to many people.

a. EXISTING PROBLEM

The fundamental problem with handwritten digit recognition is that handwritten digits do not always have the same size, width, orientation, and margins since they vary from person to person. Additionally, there would be issues with identifying the numbers because of similarities between numerals like 1 and 7, 5 and 6, 3 and 8, 2 and 5, 2 and 7, etc. Finally, the individuality and variation of each individual's handwriting infl uence the structure and appearance of the digits.

b. REFERENCES

Improved Handwritten Digit Recognition Using Convolutional Neural Networks (CNN) (2020)

Ahlawat, Savita and Choudhary, Amit and Nayyar, Anand and Singh, Saurabh and Yoon, Byungun

This paper's primary goal was to enhance handwritten digit recognition ability. To avoid difficult pre-processing, expensive feature extraction, and a complex ensemble (classifier combination) method of a standard recognition system, they examined different convolutional neural network variations. Their current work makes suggestions on the function of several hyper-parameters through thorough evaluation utilizing an MNIST dataset. They also confirmed that optimizing

hyper-parameters is crucial for enhancing CNN architecture performance. With the Adam optimizer for the MNIST database, they were able to surpass many previously published results with a recognition rate of 99.89%. Through the trials, it is made

abundantly evident how the performance of handwritten digit recognition is affected by the number of convolutional layers in CNN architecture. According to the paper, evolutionary algorithms can be explored for optimizing convolutional filter kernel sizes, CNN learning parameters, and the quantity of layers and learning rates.

An Efficient And Improved Scheme For Handwritten Digit Recognition Based On Convolutional Neural Network (2019)

Ali, Saqib and Shaukat, Zeeshan and Azeem, Muhammad and Sakhawat, Zareen and Mahmood, Tariq and others

This study uses rectified linear units (ReLU) activation and a convolutional neural network (CNN) that incorporates the Deeplearning4j (DL4J) architecture to recognize handwritten digits. The proposed CNN framework has all the necessary parameters for a high level of MNIST digit classification accuracy. The system's training takes into account the time

factor as well. The system is also tested by altering the number of CNN layers for additional accuracy verification. It is important to note that the CNN architecture consists of two convolutional layers, the first with 32 filters and a 5x5 window size and the second with 64 filters and a 7x7 window size. In comparison to earlier proposed systems, the experimental findings show that the proposed CNN architecture for the MNIST dataset demonstrates great performance in terms of time and accuracy. As a result, handwritten numbers are detected with a recognition rate of 99.89% and high precision (99.21%) in a short amount of time.

Improved Handwritten Digit Recognition Using Quantum K-Nearest Neighbor Algorithm (2019)

Wang, Yuxiang and Wang, Ruijin and Li, Dongfen and Adu-Gyamfi, Daniel and Tian, Kaibin and Zhu, Yixin

The KNN classical machine learning technique is used in this research to enable quantum parallel computing and superposition. They used the KNN algorithm with quantum acceleration to enhance handwritten digit recognition. When dealing with more complicated and sizable handwritten digital data sets, their suggested method considerably lowered the computational time complexity of the traditional KNN algorithm. The paper offered a theoretical investigation of how quantum concepts can be applied to machine learning. Finally, they established a fundamental operational concept and procedure for machine learning with quantum acceleration.

Handwritten Digit Recognition Using Machine And Deep Learning Algorithms (2021)

Pashine, Samay and Dixit, Ritik and Kushwah, Rishika

In this study, they developed three deep and machine learning-based models for handwritten digit recognition using MNIST datasets. To determine which model was the most accurate, they compared them based on their individual properties.

Support vector machines are among the simplest classifiers, making them faster than other algorithms and providing the highest training accuracy rate in this situation. However, due to their simplicity, SVMs cannot categorize complicated and ambiguous images as accurately as MLP and CNN algorithms can. In their research, they discovered that CNN produced the most precise outcomes for handwritten digit recognition. This led them to the conclusion that CNN is the most effective

solution for all types of prediction issues, including those using picture data. Next, by comparing the execution times of the algorithms, they determined that increasing the number of epochs without changing the confi guration of the algorithm is pointless due to the limitation of a certain model, and they discovered that beyond a certain number of epochs, the model begins over-fitting the dataset and provides biased predictions.

a. PROBLEM STATEMENT DEFINITION

For years, the traffic department has been combating traffic law violators.

These offenders endanger not only their own lives, but also the lives of other individuals. Punishing these offenders is critical to ensuring that others do not become like them. Identification of these offenders is next to impossible because it is impossible for the average individual to write down the license plate of a reckless driver. Therefore, the goal of this project is to help the traffic department identify these offenders and reduce traffic violations as a result

CHAPTER 3

IDEATION AND PROPOSED SOLUTION

a. EMPATHY MAP CANVAS

A Novel Method For Handwritten Digit Recognition System

objective&Goals.

To ensure effective and reliable approaches for recognition of handwritten digits and make banking operations earier and error free.

GAINS

PAINS:

system not only produces a classification of the digit but also a rich description of type instantiation parameter which can yield information such as writing style

It is not done in real time as a person writes and therefore not appropriate for immediate text input Handwritten number recogintion we face numerous challenges

a. IDEATION & BRAINSTORMING

Project Design Phase-I Proposed Solution Template

Date	27 September 2022	
Team ID	PNT2022TMID46193	
Project Name	A NOVEL METHOD FOR HANDWRITTEN DIG RECOGNITION SYSTEM	
Maximum Marks	2 Marks	

Proposed Solution:

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	It is easy for the human to perform task accurately by practicing it repeatedly and memorizing it for the next time. Human brain can process and analyse images easily. Also, recognize the different element present in the images. The handwritten digit recognition is the capability of computer applications to recognize the human handwritten digits. It is a hard task for the machine because handwritten digits are not perfect and can be made with many different shapes and sizes.
		 The handwritten digit recognition system is a way to tackle this problem which uses the image of a digit and recognizes the digit present in the image.
		 In this competition, the goal is to correctly identify digits from a dataset of tens of thousands of handwritten images and experiment with different algorithms to learn what works well and how techniques compare.

2.	Idea / Solution description	The algorithm used is Convolution Neural Network(CNN). This will prepare the trained model which will be used to classify the digits present in the test data. Thus, we can classify the digits present in the images as: Class 0,1,2,3,4,5,6,7,8,9. MNIST is a dataset which is widely used
		for handwritten digit recognition. The dataset consist of 60,000 training images and 10,000 test images.
		The artificial neural neworks can all most mimic the human brain and are a key ingredient in image processing field. The artificial neural neworks can all most mimic to the human brain and are a key ingredient in image processing field.
3.	Navelty / Uniqueness	 This project introduces an operative strategy for dealing with novelty in the handwritten visual recognition domain. A perfect transcription agent would be able to distinguish known and unknown characters in a picture, as well as determine any aesthetic variations that may occur inside or between texts. The existence of novelty has shown to be a major stumbling block for even the most robust machine learning-based algorithms for these activities. Novelty in handwritten papers might include, among other things, a change in the writer, character properties, writing attributes, or overall document appearance. Instead of examining each element separately, we believe that an integrated agent capable of processing known characters and novelties concurrently is a superior technique. The handwritten digit recognition problem can be seen as a subtask of the optical character recognition (OCR) problem.

4.	Social Impact / Customer Satisfaction	There are many benefits associated with the handwriting recognition system. In addition to reading postal addresses and bank check amounts, it is also useful for reading forms. Furthermore, it's used in fraud detection because it makes it easy to compare two texts and determine which one is a copy. As a result, this system fulfills customers' expectations, as it is a novel method for recognizing handwritten digits, ensuring high accuracy for the model and meeting all customer expectations. Users will save a lot of time and effort if the system provides various synonyms for the words recognized. Due to the fact that the users in rural areas will be using their own regional language, this proposed system should be able to detect those digits as well. As the system is being used in socially crowded places such as banks to check amounts, it should be fast and reliable.
		As it is designed to solve real-world problems, it should be highly reliable and trustworthy in every way, and users throughout the world should be able to use it effectively.
5.	Business Model (Revenue Model)	The applications where these handwritten digit recognition can be used are Banking sector where it can be used to maintain the security pin numbers, it can be also used for blind peoples by using sound output.
		Some of the research areas include signature verification, bank check processing, postal address interpretation from envelopes etc.

Scalability of the Solution One of the approaches to make the handwritten digit recognition system scalable is to make use of cloud-native methods. For example, one of the cloud solutions for making AI scalable is IBM Cloud, IBM Cloud Build helps run and manage Al models, optimize decisions at scale across any cloud. The advantage of using cloud to make solutions scalable is that we can deploy our Al application on the specific cloud environment that best supports our business needs. We can take advantage of built-in security capabilities and Al model monitoring. We can Automate Al lifecycles with ModelOps pipelines, deploy and run models through oneclick integration and also prepare and build models visually and programmatically. Looking at these advantages, we can drive better business outcomes by optimizing our decisions and also make our solution scalable using cloud

CHAPTER 4

FUNCTIONAL REQUIREMENTS

Project Design Phase-II Solution Requirements (Functional & Non-functional)

Team ID	PNT2022TMID46193
Project Name	A Novel Method for Handwritten Digit Recognition System

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Sub Requirement (Story / Sub-Task)					
FR-1	Image Data: Handwritten digit recognition refers to a computer's capacity to identify human handwritten digits from a variety of sources, such as photographs, documents, touch screens, etc., and categorise them into ten established classifications (0-9). In the realm of deep learning, this has been the subject of countless studies.					
FR-2	Website: Web hosting makes the code, graphics, and other items that make up a website accessible online. A server hosts every website you've ever visited. The type of hosting determines how much space is allotted to a website on a server. Shared, dedicated, VPS, and reseller hosting are the four basic varieties.					
FR-3	Digit Classifier Model: To train a convolutional network to predict the digit from an image, use the MNIST database of handwritten digits, get the training and validation data first.					
FR-4	Cloud: The cloud offers a range of IT services, including virtual storage, networking, servers, databases, and applications. In plain English, cloud computing is described as a virtual platform that enables unlimited storage and access to your data over the internet.					
FR-5	Modified National Institute of Standards and Technology dataset: The abbreviation MNIST stands for the MNIST dataset. It is a collection of 60,000 tiny square grayscale photographs, each measuring 28 by 28, comprising handwritten single digits between 0 and 9.					

a. NON FUNCTIONAL REQUIREMENT

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	One of the very significant problems in pattern recognition applications is the recognition of handwritten characters. Applications for digit recognition include filling out forms, processing bank checks, and sorting mail.
NFR-2	Security	The system generates a thorough description of the instantiation parameters, which might

		reveal information like the writing style, in addition to a categorization of the digit. 2) The generative models are capable of segmentation driven by recognition. 3) The procedure uses a relatively.
NFR-3 Reliability	Reliability	The samples are used by the neural network to automatically deduce rules for reading handwritten digits. Furthermore, the network may learn more about handwriting and hence enhance its accuracy by increasing the quantity of training instances. Numerous techniques and algorithms, such as Deep Learning/CNN, SVM, Gaussian Naive Bayes, KNN, Decision Trees, Random Forests, etc., can be used to recognise handwritten numbers.
NFR-4	Accuracy	With typed text in high-quality photos, optical character recognition (OCR) technology offers accuracy rates of greater than 99%. However, variances in spacing, abnormalities in handwriting, and the variety of human writing styles result in less precise character identification.
NFR-5	Availability	

CHAPTER 5 PROJECT DESIGN DATA FLOW DIAGRAM

User Stories

Use the below template to list all the user stories for the product,

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Home	USN-1	As a user, I can view the guide and awareness to use this application.	I can view the awareness to use this application and its limitations.	Luw	Spirit 1
		USN-2	As a user, I'm allowed to view the guided video to use the interface of this application.	I can gain knowledge to use this application by a areatical method.	Low	Spent-1
		USN-0	As a user, I can read the instructions to use this application.	I can read instructions also to use it in a user- friendly method.	Low	Spirit-2
	Renngrize	USN-4	As a user. In this prediction page (get to choose the image.	I can choose the mage from our local system and predict the output.	High	Sprot 2
	Predict	USN-6	As a user, I'm Allowed to upload and choose the image to be uploaded	I can upload and choose the mage from the system storage and a so in any virtual storage.	Medun	Spirit-3
		USN-7	As a user. I will train and test the input to get the maximum accuracy of output.	I can able to train and test the application until it gets maximum accuracy of the result.	High	Spirit-4
		USN-8	As a user, I can eccess the MNIST data set	Loan access the MNIST data set to produce the accurate result.	Medum	Sprint-3
Customer (Web user)	Home	USN-9	As a user, I can view the guide to use the web exp.	I can view the awareness of this application and its imitations.	LOW	Sprint-1

User Type	Functional Requirement (Epic)	User Story Number	User Story /Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Home	USN-1	As a user, I can view the guide and ewereness to use this application.	I can view the awareness to use this application and its limitations.	SW	Sprot 1
		USN-2	As a user, I'm allowed to view the guided video to use the interface of this application.	I can gain knowledge to use this application by a practical method.	LDW	Spirit 1
		USN-3	As a user, I can reed the instructions to use this application.	I can read instructions also to use it in a user- friendly method.	i.hw	Sprm-2
	Renngrize	USN 10	As a user, I can use the web application virtually anywhere.	I can use the application portably anywhere.	High	Spret 1
		USN 11	As it is an open source, can use it cost freely	I can use it without any payment to be paid for it to access.	Medum	Sport 2
		U5N-12	As it is a web application, it is installation free	I can use it without the installation of the application or any software.	Medum	Sprint-4
	Product	USN 13	As a user, I'm Allowed to uploed end choose the Image to be uploaded	I can upload and choose the image from the system storage and also in any virtual storage.	Medum	Spret 3

a. SOLUTION & TECHNICAL ARCHITECTURE

Project Design Phase-II Technology Stack (Architecture & Stack)

Date	14 October 2022
Team ID	PNT2022TMID46193
Project Name	Project - A Novel Handwritten Digit Recognition System
Maximum Marks	4 Merks

Technical Architecture:

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	How user interacts with application e.g. Web Ut, Mobile App, Chatbot etc.	HTML, CSS, JavaScript
2.	Application Logic 1	Logic for a process in the application	Python
Э.	Application Logic-2	Logic for a process in the application	IOM Watson STT service
4.	Application Logic-3	Logic for a process in the application	IBM Watson Assistant
5.	Database	Data Type, Configurations etc.	MySQL, NoSQL, etc.
ő.	Cloud Database	Database Service on Cloud	IBM DB2, IBM Cloudant
7.	I ile Storage	I lie storage requirements	IBM Block Storage
a.	External API-1	Purpose of External API used in the application	IBM Weather API
9.	External API-2	Purpose of External API used in the application	Andhar API
10.	Machine Learning Model	Purpose of Machine Learning Model	Object Recognition Model
11.	Infrastructure (Server / Cloud)	Application Deployment on Local System / Cloud Local Server Configuration Cloud Server Configuration	Local, Cloud Foundry

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
- 1	Open Source Frameworks	List the open source frameworks used	Technology of Opensource framework
2.	Security Implementations	List all the security / access controls implemented, use of firewalls etc.	SHA-256, Encryptions, IAM Controls, OWASP

S.No	Characteristics	Description	Technology
3.	Scalable Architecture	Justify the scalability of architecture	3 - tier, Micro-services
4	Availability	Abstract and Figures. The features for handwritten digit recognition have been introduced. These features are based on shape analysis of the digit image and extract stant or slope information. They are effective in obtaining good recognition accuracies.	Distributed servers, IBM cloud
5.	Performance	The standard implementations of neural networks achieve an accuracy of – (98–99) percent in correctly classifying the handwritten digits.	number of requests per sec, use of Cache, use of CDN's

CHAPTER 6 PROJECT PLANNING AND SCHEDULING

a. SPRINT PLANNING AND ESTIMATION

Project Planning Phase Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	22 October 2022
Team ID	PNT2022TMID46193
Project Name	Project - A Novel Method For Handwritten Digit Recognition System
Maximum Marks	8 Martes

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Points	Priority	Team Members
Sprint-1	Understanding the clate	USN-1	Importing the required library	1;	Medium	D.GAYATHRI R.KEERTHANA P.VIJI
Sprint 1		USN 2	Loading the data	2	High	S.SOWNDHARAYA P. VIJI
Sprint-1		usn-a	Analyzing the data	2	High	D.GAYATHRI R.KEERTHANA
Sprint-1		USN-4	Reshaping the data	1	Medium	S.SOWNDHARYA P.VIJI
Sprint 1		USN 5	Applying one hot encoding	1	Low	P.VIJI
Sprint 2	Model building-1	USN-6	Add CNN layers	5	High	R.KEERTHANA

Sprint-2		USN- 7	Compiling the model	2	Low	•	D.GAYATHRI
Sprint-2		USN-B	Train the model	7	High	•	S.SOWNDHARYA
Sprint-2		USN-9	Observing the matrix	3	Medium	•	D.GAYATHRI
Sprint-2		USN-10	Test the model	3	Medium	•	P.VI.II
Sprint-3	Model building -2	USN-11	Observing the metrics	4	High		S.SOWNDHARYA
Sprint 3		USN 12	rest the model	2	Low	•	R.KEERTHANA
Sprint-3		USN-13	Save the model	6	High	٠	D.GAYATHRI
Sprint-3		USN-14	Test with saved model	2	Law	٠	P.VIJI
Sprint 3		USN 15	Create on HTML file	8	High		R.KEERTHANA
Sprint-4	Application building	USN-16	Build python code part1	5	High		S.SOWNDHARYA

Sprint-4		USN-17	Build python code part2	2	Medium	•	S.SOWNDHARYA
Sprint-4		USN-18	Run the application	a	High	•	II. KEERTHANA
Sprint-4	Train the model on IBM	USN-19	Register for IBM cloud	11	High	•	D.GAYATHRI
Sprint-4		USN-20	Trein the model on IBM	4	High		P.VI.II

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint 1	20	6 Days	24 Oct 2022	29 Dat 2022	23	29 Oct 2022
Sprint-2	20	€ Days	31 Oct 2022	05 Nov 2022	23	05 Nov 2022
Sprint-3	20	é Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	23	19 Nov 2022

Velocity:

$$\Delta V = \frac{sprint\ duration}{velocity}$$

AV = 6/3 = 2

a. SPRINT DELIVERY SCHEDULE

Project Track	er, Velocity & Burndo	own Chart (4	Marke)			
		Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (es on	Sprint Release Date (Actual)
Sprint	Total Story Points			() seriment	Planned End Date)	
Speed 1		6 Days	24 Oct 2022	29 Dat 2022		29 Oct 2022
	Points		24 Oct 2022 31 Oct 2022		Planned End Date)	29 Oct 2022 05 Nov 2022
Spees 1	Points 23	6 Days		29 Dat 2022	Planned End Date)	

CHAPTER 7 CODING & SOLUTIONING

```
import necessary packages
import os
import random
import string
from pathlib import Path
import numpy as np
from tensorflow.keras.models import load_model
from PIL import Image, ImageOps
```

CHAPTER 8 TESTING

TEST CASES

Test case ID	Feature Type	Component	Test Scenario	Expected Result	Actual Result	Status
HP_TC_00 1	UI	Home Page	Verify UI elements in the Home Page	The Home page must be displayed properly	Working as expected	PASS
HP_TC_002	UI	Home Page	Check if the UI elements are displayed properly in different screen sizes	The Home page must be displayed properly in all sizes	The UI is not displayed properly in screen size 2560 x 1801 and 768 x 630	FAIL
HP_TC_003	Functional	Home Page	Check if user can upload their fi le	The input image should be uploaded to the application successfull y	Working as expected	PASS
HP_TC_004	Functional	Home Page	Check if user cannot upload unsupported fi les	The application should not allow user to select a non image file	User is able to upload any fi le	FAIL
HP_TC_005	Functional	Home Page	Check if the page redirects to the result page once the input is given	The page should redirect to the results page	Working as expected	PASS

BE_TC_001	Functional	Backend	Check if all the routes are working properly	All the routes should properly work	Working as expected	PASS
M_TC_001	Functional	Model	Check if the model can handle various image sizes	The model should rescale the image and predict the results	Working as expected	PASS
M_TC_002	Functional	Model	Check if the model predicts the digit	The model should predict the number	Working as expected	PASS
M_TC_003	Functional	Model	Check if the model can handle complex input image	The model should predict the number in the complex image	The model fails to identify the digit since the model is not built to handle such data	FAIL
RP_TC_001	UI	Result Page	Verify UI elements in the Result Page	The Result page must be displayed properly	Working as expected	PASS
RP_TC_00 2	UI	Result Page	Check if the input image is displayed properly	The input image should be displayed properly	The size of the input image exceeds the display container	FAIL
RP_TC_00 3	UI	Result Page	Check if the result is displayed properly	The result should be displayed properly	Working as expected	PASS

a. USER ACCEPTANCE TESTING

i. **DEFECT ANALYSIS**

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Total
By Design	1	0	1	0	2
Duplicate	0	0	0	0	0
External	0	0	2	0	2
Fixed	4	1	0	1	6
Not Reproduced	0	0	0	1	1
Skipped	0	0	0	1	1
Won't Fix	1	0	1	0	2
Total	6	1	4	3	14

i. TEST CASE ANALYSIS

Section	Tota I	Not Teste d	Fai I	Pas s
---------	-----------	-------------------	----------	----------

	Case s			
Client Application	10	0	3	7
Security	2	0	1	1
Performanc e	3	0	1	2
Exception Reporting	2	0	0	2

CHAPTER 9

RESULTS

a. PERFORMANCE METRICS

CHAPTER 10 ADVANTAGES & DISADVANTAGES

ADVANTAGES

i. Reduces manual work

- ii. More accurate than average human
- iii. Capable of handling a lot of data
- iv. Can be used anywhere from any device

DISADVANTAGES

- i. Cannot handle complex data
- ii. All the data must be in digital format
- iii. Requires a high performance server for faster predictions
- iv. Prone to occasional errors

CHAPTER 11 CONCLUSION

This project demonstrated a web application that uses machine learning to recognise handwritten numbers. Flask, HTML, CSS, JavaScript, and a few other technologies were used to create this project. The model predicts the handwritten digit using a CNN network. During testing, the model achieved a 99.61% recognition rate. The proposed project is scalable and can easily handle a huge number of users. Since it is a web application, it is compatible with any device that can run a browser. This project is extremely useful in real-world scenarios such as recognizing number plates of vehicles, processing bank cheque amounts, numeric entries in forms filled up by hand (tax forms) and so on. There is so much room for improvement, which can be implemented in subsequent versions

CHAPTER 12 FUTURE SCOPE

This project is far from complete and there is a lot of room for improvement.

Some of the improvements that can be made to this project are as follows:

- i. Add support to detect from digits multiple images and save the results
- ii. Add support to detect multiple digits
- iii. Improve model to detect digits from complex images
- iv. Add support to different languages to help users from all over the world

This project has endless potential and can always be enhanced to become better. Implementing this concept in the real world will benefit several industries and reduce the workload on many workers, enhancing overall work efficiency.

APPENDIX

SOURCE CODE

MODEL CREATION

```
import numpy as np
import pandas as pd
import pandas as pd
import matplotlib.pyplot as plt
from keras.utils import np_utils
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.models import Conv2D, Dense, Flatten
from tensorflow.keras.models import Adam
from tensorflow.keras.models import load_model
from Pil (mport image, imageOps

# Load The duin
(X_train, y_train), (X_test, y_test) = mnist.load_data()

# Duta pre_processine
X_train = X_train_reshape(60000, 28, 28, 1).astype('float32')
X_test = X_test.reshape(20000, 28, 28, 1).astype('float32')
number_of_classes = 10
Y_train = np_utils.to_categorical(y_train, number_of_classes)
Y_test = np_utils.to_categorical(y_test, number_of_classes)
```

```
# Creute the model
model = Sequential()
model.add(Conv2D(64, (3, 3), input_shape=(28, 28, 1), activation="retu"))
model.add(Conv2D(32, (3, 3), activation="retu"))
model.add(Fiatten())
model.add(Fiatten())
model.add(Conse(number_of_classes, activation="softmax"))

# Truin the model
model.fit(X_train, Y_train, batch_size=32, epochs=5, validation_data=(X_test,Y_test))

# Evaluate the model
metrics = model.evaluate(X_test, Y_test, verbose=8)
print("Metrics (Test_Loss & Test_Accuracy): ")
print(metrics)

# Same the model.
model.save("model.A5")
```

```
model=load_model("model.hs")

img = Image.open("sample.png").convert("L")
img = img.resize((28, 28))
img2arr = np.array(img)
img2arr = img2arr.reshape(1, 28, 28, 1)
results = model.predict(img2arr)
results = np.argmax(results.dxis = 1)
results = pd.Series(results.nome="Label")
print(results)
```

```
from flask import Flask,render_template,request
from recognizer import recognize

app=Flask(__ndme__)

@app.route('/')
def main():
    return render_template("home.html")

#app.route('/predict',methods=['POST'])
def predict():
    if request.method="POST':
        image = request.files.get('photo', '')
        best, others, img_name = recognize(image)
        return render_template("predict.html", best=best, others=others, img_name=img_name)

if __name__=="__main__":
    app.run()
```

RECOGNIZER

```
ing = Image.open(image).convert("1")
if not os.path.exists(f"./static/data/"):
    os.mkdir(os.path.join('./static/', 'dota'))
img = ImageOps.grayscale(img)
ing = ImageOps.invent(img)
ing2arr = img2arr.reshape(1, 28, 28, 1)
pred = tist(map(lambda x: round(x*100, 2), results[0]))
```

HOME PAGE (HTML)

```
.form-wropper .upload (
    justify-content: center; align-items: center;
   background-color: rgb(114, 96, 182);
bax-shadow: 0 5px 10px rgb(146, 135, 247);
.form-wrapper .uplaad Mup_btn (
.form-wrapper .upload label (
   color: white;
height: 100%;
.form-wrapper .upload svg (
   height: 15px;
   padding-right: Npx;
margin-bottom: -2px;
@media screen and (max-width: 700px) (
    .upload-container (
        height: Zürem;
        margin-bottom: -Brem;
        margin-top: -Gree;
         foot-size: Zrew;
         padding-bottom; irem;
```

```
Justify-content: center:
Theading (
   morgin-top: -2rem;
podding-bottom: 2rem;
.heading .heading_main (
   font-size: brem;
font-weight: 550;
.heading .heading_sub (
.uplood-container (
   box-shadow: 0 0 20px rgb(172, 170, 170);
   width: 40rem;
   podding: 1.5rem;
   justify-content: center;
olign-items: center;
.form-wrapper #toading (
```

```
feather.replace(); // Lond feather (cons

form = document.querySelector('.upload')
loading = document.querySelector("#loading")
select = document.querySelector("#upload-image");

select.addEventListener("change", (e) => {
    e.preventDefault();

   form.submit()
   form.style.visibility = "hidden";
   loading.style.display = 'flex';
});
```

PREDICT PAGE (HTML)

```
@laport url("https://fonts.googleapis.com/css2?family=Overpass:wght@200;300;400;500;600;700;900&display=swap");
    font-family: "Overpass", sans-serif;
    padding-top: 2rem;
   justify-content: center;
atign-items: center;
flex-direction: column;
.result-wrapper (
    height: -webWit-fit-content;
height: -moz-fit-content;
   pudding: 1:5rem;
    -moz-column-gap: 1rem;
.result-wrapper .input-image-container,
result-wrapper result-container (
```

```
.result-wropper .input-image-container isg {
.result-wrapper .result-container .value (
.other_predictions (
   row-gap: 1rem;
font-weight: 700;
.other_predictions .value [
   width: Srew;
   height: Srem;
   box-shadow: 8 0 7px rgb(158, 157, 157);
.other_predictions .value div (
   margin-top: -1.2rem;
@media screen and (max-width: 700px) (
    .result-wrapper .input-image-container.
    .result-wrapper .result-container {
       height: 7rem;
       font-size: drew;
```


1:38 PM 4.6KB/s /

This is to certify that

KEERTHANA R

successfully completed and received a passing grade in

Data Science Tools

(DS0105EN, provided by IBM)

A course on

ictacademy.skillsnetwork.site

Powered by IBM Developer Skills Network.

Issued by
ICT Academy

Romeo Kienzler

Chief Data Scientist

GITHUB

https://github.com/IBM-EPBL/IBM-Project-31149-166019845

PROJECT DEMO LINK

https://youtu.be/0q3FxM9EpZo

Δ	NOVEL	METHOD FOR	HANDWRITTEN	DIGIT R	FCOGNITION	CYCTEM
$\overline{}$				יונאכו		O I O I LIVI