Analysis I, Final Exam

23 November, 2022

Total Points: 40, Duration: 3 hours

Start the solution of each problem on a new sheet and put them in the correct order at the end

- ullet Q and $\mathbb R$ denote the sets of rational numbers and real numbers, respectively.
- 1. (1+2+2+3 points) Determine true or false. You have to justify your answers for nonzero marks.
 - (a) Let $f:[a,b] \to \mathbb{R}$ be a differentiable function whose derivative is positive everywhere. Then f is injective (one-one).
 - (b) Let $f:[a,b]\to\mathbb{R}$ be a bounded function such that the function f^2 is Riemann integrable. Then f is also Riemann integrable.
 - (c) Let $f:[a,b]\to\mathbb{R}$ be a bounded function such that the function |f| is Riemann integrable. Then f is also Riemann integrable.
 - (d) Composition of Riemann integrable functions is Riemann integrable. Hint: Use the function in Problem 5
- 2. (7 points) Let a_n, b_n be real numbers such that the series $\sum a_n^2$ and $\sum b_n^2$ both converge. Show that the series $\sum a_n b_n$ converges absolutely.
- 3./(7 points) For any positive integer n, show that a real polynomia of degree n has at most n roots. Hint: Use the Mean Value Theorem.
- 4. (1+7 points)
 - (a) Let $f, g : \mathbb{R} \to \mathbb{R}$ be continuous functions. Let Y be a dense subset of \mathbb{R} such that f(y) = g(y) for all $y \in Y$. Show that f(x) = g(x) for all $x \in \mathbb{R}$.
 - (b) Let $f: \mathbb{R} \to \mathbb{R}$ be a function satisfying the following conditions for all $x, y \in \mathbb{R}$:

$$f(0) = 0, f(1) = 1, f(xy) = f(x)f(y), f(x + y) = f(x) + f(y).$$

Show that f is the identity function.

5. (8 points) Consider the function $f: [-1,1] \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 0, & \text{if } x \notin \mathbb{Q}, \\ 1, & \text{if } x = 0, \\ \frac{1}{n}, & \text{if } 0 \neq x = \frac{m}{n} \ (m, n \text{ are coprime integers}) \end{cases}$$

Show that f is Riemann integrable and compute $\int_{-1}^{1} f(x) dx$.

6. (2 points) Write the statement of your favourite theorem in this course (full statement with all the hypotheses, and no proof).

²A subset Y of a metric space X is dense if the closure of Y is X.

¹A real polynomial of degree n is an expression $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$, where a_n, \ldots, a_0 are real numbers with $a_n \neq 0$ and x is an indeterminate. A root of f(x) is a real number λ such that $f(\lambda) = 0$.