Data Mining: Association Analysis

Tom Heskes

Association Rule Mining

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items
- Support count (σ)
 - Frequency of occurrence of an itemset
 - E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$
- Support
 - Fraction of transactions that contain an itemset
 - E.g. s({Milk, Bread, Diaper}) = 2/5
- Frequent itemset
 - An itemset whose support is greater than or equal to a minsup threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

Association rule

- An implication expression of the form
 X → Y, where X and Y are itemsets
- Example:{Milk, Diaper} → {Beer}

Rule evaluation metrics

- Support (s):
 Fraction of transactions that contain both X and Y
- Confidence (c):
 Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example:

$$\{\text{Milk, Diaper}\} \Rightarrow \text{Beer}$$

$$s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ *minsup* threshold
 - confidence ≥ minconf threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the *minsup* and *minconf* thresholds
 - ⇒ Computationally prohibitive!

Association Rule Mining Task

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

```
 \begin{aligned} &\{\text{Milk,Diaper}\} \to \{\text{Beer}\} \; (\text{s=0.4, c=0.67}) \\ &\{\text{Milk,Beer}\} \to \{\text{Diaper}\} \; (\text{s=0.4, c=1.0}) \\ &\{\text{Diaper,Beer}\} \to \{\text{Milk}\} \; (\text{s=0.4, c=0.67}) \\ &\{\text{Beer}\} \to \{\text{Milk,Diaper}\} \; (\text{s=0.4, c=0.67}) \\ &\{\text{Diaper}\} \to \{\text{Milk,Beer}\} \; (\text{s=0.4, c=0.5}) \\ &\{\text{Milk}\} \to \{\text{Diaper,Beer}\} \; (\text{s=0.4, c=0.5}) \end{aligned}
```

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - 1. Frequent itemset generation

Generate all itemsets whose support ≥ minsup

2. Rule generation

Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity $\sim O(N M w) => Expensive since M = 2^d !!!$

Computational Complexity

- Given d unique items:
 - Total number of itemsets = 2^d
 - Total number of possible association rules:

$$R = \sum_{k=1}^{d} \left[\binom{d}{k} \times \sum_{j=1}^{k-1} \binom{k}{j} \right]$$
$$= 3^{d} - 2^{d+1} + 1$$

If d=6, R = 602 rules

Note: $\{...\} \rightarrow \emptyset$ and $\emptyset \rightarrow \{...\}$ not allowed

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of *N* as the size of itemset increases
 - Used by Direct Hash & Pruning and vertical-based mining algorithms
- Reduce the number of comparisons (N M)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the monotone property of support

Illustrating Apriori Principle

Item	Count	
Bread	4	
Coke	2	
Milk	4	
Beer	3	
Diaper	4	
Eggs	1	

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

$$\binom{6}{1} + \binom{6}{2} + \binom{6}{3} = 41$$

With support-based pruning,

$$6 + 6 + 1 = 13$$

Apriori Algorithm

- Let *k*=1
- Generate frequent itemsets of length 1
- Repeat until no new frequent itemsets are identified
 - Generate length (*k*+1) candidate itemsets from length *k* frequent itemsets
 - Prune candidate itemsets containing subsets of length *k* that are infrequent
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent

Reducing Number of Comparisons

Transactions

- Candidate counting:
 - Scan the database of transactions to determine the support of each candidate itemset
 - To reduce the number of comparisons, store the candidates in a hash structure
 - Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

TID Items 1 Bread, Milk 2 Bread, Diaper, Beer, Eggs 3 Milk, Diaper, Beer, Coke 4 Bread, Milk, Diaper, Beer 5 Bread, Milk, Diaper, Coke

Hash Structure

Buckets

Computing the support

$$\{1,2,4\}, \{1,2,5\}, \{1,3,6\}, \{1,4,5\}, \{1,5,9\}, \{2,3,4\}, \{3,4,5\}, \{3,5,6\}, \{3,5,7\}, \{3,6,7\}, \{3,6,8\}, \{4,5,7\}, \{4,5,8\}, \{5,6,7\}, \{6,8,9\}$$

- New transaction t: {1,2,3,5,6}
- Plan:
 - Consider all ordered 3-item subsets in the transaction
 - Compare them against all candidate itemset
 - If there's a match, the support of the corresponding candidate itemset gets +1
 - Do this for all transactions
- Additional trick: store the candidate itemsets in a (hash) structure

Generate Hash Tree

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

Radboud University Nijmegen

Subset Operation Using Hash Tree

Factors Affecting Complexity

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - more space is needed to store support count of each item
 - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 transaction width increases with denser data sets
 - this may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

Compact Representation of Frequent Itemsets

- Some itemsets are redundant because they have identical support as their supersets
- Number of frequent itemsets $= 3 \times \sum_{k=1}^{10} {10 \choose k}$
- Need a compact representation

Factors Affecting Complexity

- An itemset is closed if none of its immediate supersets has the same support as the itemset
- Compact representation of itemsets without loss of support info

TID	14			
TID	Items			
1	{A,B}			
2	{B,C,D}			
3	$\{A,B,C,D\}$			
4	{A,B,D}			
5	{A,B,C,D}			

Itemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

Itemset	Support		
{A,B,C}	2		
{A,B,D}	3		
$\{A,C,D\}$	2		
{B,C,D}	3		
{A,B,C,D}	2		

Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets is frequent

Maximal vs Closed Itemsets

ABCD

ABCE

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

								!	
	1	24	123	1234	24	5	34	15	
		(A)	B	(c		$\left(D \right)$	E		
								1	
12	124	24	4	23	2	\			
AB	AC	AD	AE	BC	BD	3 BE	24 CD	34 CE 4	15 DE
	\/								
12	2		24	4	4	2	3		4
ABC	ABD	ABE	ACD	ACE	ADE	BCD	BCE	BDE	CDE
	1				\times \rightarrow				

(null)

Not supported by any transactions

ABCDE

ABDE

Transaction Ids

BCDE

ACDE

Maximal vs Closed Itemsets

Alternative Methods for Frequent Itemset Generation

General-to-specific (as Apriori) vs Specific-to-general

Alternative Methods for Frequent Itemset Generation

Breadth-first vs depth-first

(a) Breadth first

(b) Depth first

Rule Generation

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L – f satisfies the minimum confidence requirement
- If {A,B,C,D} is a frequent itemset, candidate rules:

$$ABC \rightarrow D$$
, $ABD \rightarrow C$, $ACD \rightarrow B$, $BCD \rightarrow A$,

$$A \rightarrow BCD$$
, $B \rightarrow ACD$, $C \rightarrow ABD$, $D \rightarrow ABC$,

$$AB \rightarrow CD$$
, $AC \rightarrow BD$, $AD \rightarrow BC$, $BC \rightarrow AD$,

$$BD \rightarrow AC$$
, $CD \rightarrow AB$

If |L| = k, then there are 2^k – 2 candidate association rules (ignoring L → Ø and Ø → L)

Rule Generation

- How to efficiently generate rules from frequent itemsets?
- In general, confidence does not have a monotone property:

$$c(ABC \rightarrow D)$$
 can be larger or smaller than $c(AB \rightarrow D)$

- But confidence of rules generated from the same itemset does have a monotone property
- For example, L = {A,B,C,D}:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

 Confidence is a decreasing function of the number of items on the RHS of the rule

Rule Generation for Apriori Algorithm

Rule Generation for Apriori Algorithm

- Candidate rule is generated by merging two rules that share the same prefix in the rule consequent
- join(CD=>AB,BD=>AC)
 would produce the candidate
 rule D => ABC
- Prune rule D=>ABC if its subset AD=>BC does not have high confidence

Pattern Evaluation

- Association rule algorithms tend to produce too many rules
 - many of them are uninteresting or redundant
 - redundant if {A,B,C} → {D} and {A,B} → {D} have the same support and confidence
- Interestingness measures can be used to prune/rank the derived patterns
- In the original formulation of association rules, support and confidence are the only measures used

Application of Interestingness Measure

Computing Interestingness Measure

 Given a rule X → Y, information needed to compute rule interestingness can be obtained from a contingency table

	Y	Y	
X	f ₁₁	f ₁₀	f ₁₊
X	f ₀₁	f_{00}	f _{o+}
	f ₊₁	f ₊₀	T

 f_{11} : support of X and Y f_{10} : support of X and Y f_{01} : support of \overline{X} and Y f_{00} : support of \overline{X} and \overline{Y}

Used to define various measures:

support, confidence, lift, Gini, J-measure, etc.

Drawback of Confidence

- Association rule: Tea → Coffee
- Confidence = P(Coffee|Tea) = 0.75
- But P(Coffee) = 0.9

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

- Although confidence is high, rule is uninteresting
- $P(Coffee|\overline{Tea}) = 0.9375$

Statistical Independence

- Population of 1000 students
 - 600 students know how to swim (S)
 - 700 students know how to bike (B)
 - 420 students know how to swim and bike (S,B)

-
$$P(S \land B) = 420/1000 = 0.42$$

-
$$P(S) \times P(B) = 0.6 \times 0.7 = 0.42$$

-
$$P(S \land B) = P(S) \times P(B) => Statistical independence$$

-
$$P(S \land B) > P(S) \times P(B) => Positively correlated$$

Statistical-based Measures

Measures that take into account statistical dependence

$$Lift = \frac{P(Y \mid X)}{P(Y)} \text{ also called } Interest$$

$$PS = P(X,Y) - P(X)P(Y)$$

$$\varphi - coefficient = \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$$

Example: Lift/Interest

Association rule: Tea → Coffee

Confidence = P(Coffee Tea) = 0
--

•	But	P (Coff	ee)	= (0.9
---	-----	------------	------	-----	-----	-----

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

• Lift = 0.75/0.9 = 0.8333 (< 1, therefore is negatively associated)

Drawback of Lift and Interest

	Y	Y	
X	10	0	10
X	0	90	90
	10	90	100

	Y	Y	
X	90	0	90
X	0	10	10
	90	10	100

$$Lift = \frac{0.1}{(0.1)(0.1)} = 10$$

$$Lift = \frac{0.9}{(0.9)(0.9)} = 1.11$$

Not invariant under inversion operation (0 →1 and 1→0)

Interestingness Measures (1)

		•
#	Measure	Formula
1	ϕ -coefficient	$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$
2	Goodman-Kruskal's (λ)	$\frac{\sum_{j} \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
3	Odds ratio (α)	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(\overline{A},B)}$
4	Yule's Q	$\frac{P(A,B)P(\overline{AB})-P(A,\overline{B})P(\overline{A},B)}{P(A,B)} = \frac{\alpha-1}{\alpha-1}$
5	Yule's Y	$\frac{P(A,B)P(\overline{AB})+P(A,\overline{B})P(\overline{A},B)}{\sqrt{P(A,B)P(\overline{AB})}+\sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1}$
6	Kappa (κ)	$\dot{P}(A,B)+P(\overline{A},\overline{B})-\dot{P}(A)P(B)-P(\overline{A})P(\overline{B})$
7	Mutual Information (M)	$\frac{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}{\sum_{i} \sum_{j} P(A_{i}, B_{j}) \log \frac{P(A_{i}, B_{j})}{P(A_{i})P(B_{j})}}$ $\frac{\min(-\sum_{i} P(A_{i}) \log P(A_{i}), -\sum_{j} P(B_{j}) \log P(B_{j}))}{\min(-\sum_{i} P(A_{i}) \log P(A_{i}), -\sum_{j} P(B_{j}) \log P(B_{j}))}$
8	J-Measure (J)	$\max \left(P(A,B) \log(\frac{P(B A)}{P(B)}) + P(A\overline{B}) \log(\frac{P(\overline{B} A)}{P(\overline{B})}), \right.$
		$P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(\overline{A})})$
9	Gini index (G)	$\max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] \right)$
		$-P(B)^2-P(\overline{B})^2$,
		$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
		$-P(A)^2-P(\overline{A})^2$

Interestingness Measures (2)

		,	
10	Support (s)	P(A,B)	
11	Confidence (c)	$\max(P(B A), P(A B))$	
12	Laplace (L)	$\max\left(rac{NP(A,B)+1}{NP(A)+2},rac{NP(A,B)+1}{NP(B)+2} ight)$	
13	Conviction (V)	$\max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)$	
14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$	
15	cosine (IS)	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$	
16	Piatetsky-Shapiro's (PS)	P(A,B) - P(A)P(B)	
17	Certainty factor (F)	$\max\left(rac{P(B A)-P(B)}{1-P(B)},rac{P(A B)-P(A)}{1-P(A)} ight)$	
18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$	l
19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$	
20	Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$	
21	Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A)-P(B),P(A B)-P(A))$	

Interestingness Measures

- There are lots of measures of interestingness proposed in the literature
- Some measures are good for certain applications, but not for others
- What criteria should we use to determine whether a measure is good or bad?
- What about Apriori-style support based pruning? How does this affect these measures?

Properties of A Good Measure

- Piatetsky-Shapiro: 3 properties a good measure M must satisfy:
 - M(A,B) = 0 if A and B are statistically independent
 - M(A,B) increase monotonically with P(A,B) when P(A) and P(B) remain unchanged
 - M(A,B) decreases monotonically with P(A) [or P(B)] when P(A,B) and P(B) [or P(A)] remain unchanged

Comparing Different Measures

Example f₀₁ **f**₁₁ **f**₁₀ f_{00} E1 E2 **E**3 E4 E5 E6 **E7** E8 E9 E10

Rankings of contingency tables using various measures:

																						_
#	ϕ	λ	α	Q	Y	κ	M	J	G	8	c	L	V	I	IS	PS	\boldsymbol{F}	AV	S	ζ	K	
E1	1	1	3	3	3	1	2	2	1	3	5	5	4	6	2	2	4	6	1	2	5	Ī
E2	2	2	1	1	1	2	1	3	2	2	1	1	1	8	3	5	1	8	2	3	6	l
E3	3	3	4	4	4	3	3	8	7	1	4	4	6	10	1	8	6	10	3	1	10	l
E4	4	7	2	2	2	5	4	1	3	6	2	2	2	4	4	1	2	3	4	5	1	l
E5	5	4	8	8	8	4	7	5	4	7	9	9	9	3	6	3	9	4	5	6	3	l
E6	6	6	7	7	7	7	6	4	6	9	8	8	7	2	8	6	7	2	7	8	2	L
E7	7	5	9	9	9	6	8	6	5	4	7	7	8	5	5	4	8	5	6	4	4	,
E8	8	9	10	10	10	8	10	10	8	4	10	10	10	9	7	7	10	9	8	7	9	b
E9	9	9	5	5	5	9	9	7	9	8	3	3	3	7	9	9	3	7	9	9	8	
E10	10	8	6	6	6	10	5	9	10	10	6	6	5	1	10	10	5	1	10	10	7	-

Property under Variable Permutation

	A	$\overline{\mathbf{A}}$
В	p	r
$\overline{\mathbf{B}}$	q	S

- Does M(A,B) = M(B,A)?
- Symmetric measures: support, lift, collective strength, cosine, Jaccard, etc
- Asymmetric measures: confidence, conviction, Laplace, J-measure, etc

Property under Row/Column Scaling

• Grade-Gender Example (Mosteller, 1968):

	Male	Female	
High	1	4	5
Low	2	3	5
	3	7	10

	Male	Female	
High	2	40	34
Low	4	30	42
	6	70	76

 Mosteller: Underlying association should be independent of the relative number of male and female students in the samples

Property under Inversion Operation

Example: ϕ -Coefficient

- φ-coefficient is analogous to correlation coefficient for continuous variables
- invariant under inversion operation

	Y	Y	
X	60	10	70
X	10	20	30
	70	30	100

$$\phi = \frac{0.6 - 0.7 \times 0.7}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}}$$
$$= 0.5238$$

	Y	Y	
X	20	10	30
X	10	60	70
	30	70	100

$$\phi = \frac{0.2 - 0.3 \times 0.3}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}}$$
$$= 0.5238$$

Property under Null Addition

	В	$\overline{\mathbf{B}}$
A	p	q
$\overline{\mathbf{A}}$	r	s + k

- Invariant measures: support, cosine, Jaccard, ...
- Non-invariant measures: correlation, Gini, mutual information, odds ratio...

Different Measures have Different Properties

Symbol	Measure	Range	P1	P2	Р3	01	O2	О3	O3'	04
Φ	Correlation	-1 0 1	Yes	Yes	Yes	Yes	No	Yes	Yes	No
λ	Lambda	0 1	Yes	No	No	Yes	No	No*	Yes	No
α	Odds ratio	0 1 ∞	Yes*	Yes	Yes	Yes	Yes	Yes*	Yes	No
Q	Yule's Q	-1 0 1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Υ	Yule's Y	-1 0 1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
κ	Cohen's	-1 0 1	Yes	Yes	Yes	Yes	No	No	Yes	No
M	Mutual Information	0 1	Yes	Yes	Yes	Yes	No	No*	Yes	No
J	J-Measure	0 1	Yes	No	No	No	No	No	No	No
G	Gini Index	0 1	Yes	No	No	No	No	No*	Yes	No
S	Support	0 1	No	Yes	No	Yes	No	No	No	No
С	Confidence	0 1	No	Yes	No	Yes	No	No	No	Yes
L	Laplace	0 1	No	Yes	No	Yes	No	No	No	No
V	Conviction	0.5 1 ∞	No	Yes	No	Yes**	No	No	Yes	No
I	Interest	0 1 ∞	Yes*	Yes	Yes	Yes	No	No	No	No
IS	IS (cosine)	0 1	No	Yes	Yes	Yes	No	No	No	Yes
PS	Piatetsky-Shapiro's	-0.25 0 0.25	Yes	Yes	Yes	Yes	No	Yes	Yes	No
F	Certainty factor	-1 0 1	Yes	Yes	Yes	No	No	No	Yes	No
AV	Added value	0.5 1 1	Yes	Yes	Yes	No	No	No	No	No
S	Collective strength	0 1 ∞	No	Yes	Yes	Yes	No	Yes*	Yes	No
ζ	Jaccard	0 1	No	Yes	Yes	Yes	No	No	No	Yes
K	Klosgen's	$\sqrt{\frac{2}{\sqrt{3}}-1}\left(2-\sqrt{3}-\frac{1}{\sqrt{3}}\right)\dots 0\dots \frac{2}{3\sqrt{3}}$	Yes	Yes	Yes	No	No	No	No	No

Support-based Pruning

- Most of the association rule mining algorithms use support measure to prune rules and itemsets
- Study effect of support pruning on correlation of itemsets
 - Generate 10000 random contingency tables
 - Compute support and pairwise correlation for each table
 - Apply support-based pruning and examine the tables that are removed

All Itempairs

Correlation

Support-based pruning eliminates mostly negatively correlated itemsets

Support < 0.03

- Investigate how support-based pruning affects other measures
- Steps:
 - Generate 10000 contingency tables
 - Rank each table according to the different measures
 - Compute the pair-wise correlation between the measures

Without support pruning (all pairs)

- Red cells indicate correlation between the pair of measures > 0.85
- 40.14% pairs have correlation > 0.85

Scatter Plot between Correlation & Jaccard Measure

• $0.5\% \le \text{support} \le 50\%$

61.45% pairs have correlation > 0.85

Scatter Plot between Correlation & Jaccard Measure

• $0.5\% \le \text{support} \le 30\%$

76.42% pairs have correlation > 0.85

Scatter Plot between Correlation & Jaccard Measure

Subjective Interestingness Measure

- Objective measure:
 - Rank patterns based on statistics computed from data
 - e.g., 21 measures of association (support, confidence, Laplace, Gini, mutual information, Jaccard, etc).
- Subjective measure (Silberschatz & Tuzhilin):
 - Rank patterns according to user's interpretation
 - A pattern is subjectively interesting if it contradicts the expectation of a user
 - A pattern is subjectively interesting if it is actionable

Interestingness via Unexpectedness

- + Pattern expected to be frequent
- Pattern expected to be infrequent
- Pattern found to be frequent
- Pattern found to be infrequent
- + Expected Patterns
- Unexpected Patterns
- Need to combine expectation of users with evidence from data (i.e., extracted patterns)

Association rule mining

- Find potentially interesting association rules
- Main technical challenge is the computational complexity
- Various tricks to make this work in practice:
 - First search for frequent itemsets, only then for interesting rules
 - Monotonicity properties of support and confidence
 - Clever ways to compare transactions against candidate itemsets
- Many different measures of "interestingness", typically highly correlated in practice
- Real challenge is to find associations that are surprising and actionable

