1.Identify your problem statement:

Client requirement is he want to predict the insurance charge, **insurance charge** is the output, so have clear requirement it's belongs to **supervised machine learning**

Three Stages

• Machine Learning- numbers

• Supervised Machine Learning – requirement is very clear

• Regression – output is continuous values

2.Basic info about the data set:

Total 6 columns and 1338 rows.

Input: age, sex, bmi, children, smoker

Output: charge

3. Pre-processing method:

Pre-processing method is Nominal data (one hot encoding) because input contains text, we are using get_dummies method and the parameters we are passing dataset, dtype=int, drop_first=true

4. Develop a good model with r2_score. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model.

Random Forest

Sno	N_ESTIMATORS	CRITERION	MAXFEATURES	R2 VALUE
1	50	squared_error	Sqrt	0.8701028385180851
2	<mark>100</mark>	squared_error	<u>Sqrt</u>	0.8718001587457894
3	50	squared_error	log2	0.8681996057614894
4	100	squared_error	log2	0.8695327331318028
5	50	squared_error	None	0.852554550341361
6	100	squared_error	None	0.8554279128535067
7	50	absolute_error	Sqrt	0.8658715988246394
8	100	absolute_error	Sqrt	0.8716449460920973
9	50	absolute_error	log2	0.8697756502668389
10	100	absolute_error	log2	0.8719872939568064
11	50	absolute_error	None	0.849152753559274
12	100	absolute_error	None	0.8545582387239524
13	50	friedman_mse	Sqrt	0.8688820744852159
14	100	friedman_mse	Sqrt	0.8713481734076576
15	50	friedman_mse	log2	0.8622413870992105
16	100	friedman_mse	log2	0.8700619856800212
17	50	friedman_mse	None	0.8465958994853551
18	100	friedman_mse	None	0.8592750560471338
19	50	Poisson	Sqrt	0.8705070945780351
20	100	Poisson	Sqrt	0.8711288410480799
21	50	Poisson	log2	0.8638015283716634
22	100	Poisson	log2	0.869178851414411
23	50	Poisson	None	0.8522570024085658
24	100	Poisson	None	0.848362395429203

5. All the research values (r2_score of the models) should be documented. (You can make tabulation or screenshot of the results.)

Multiple Linear Regression:

R2 value: 0.7894790349867009

Support Vector Machine:

Hy per Par am ete r	Linear (r value)	RBF (NON LINEAR) (r value)	POLY (r value)	SIGMOID (r value)
C1 0	0.4624684142339 68	- 0.0322732939067 1052	0.0387162227602 31456	0.039307143782743 47
C1 00	0.6288792857320 346	0.3200317832050 832	0.6179569624059 795	0.527610354651040 7
C5 00	0.7631057975975 393	0.6642984645143 137	0.8263683541268 934	0.444606103386947 95
C1 00 0	0.7649311738649 672	0.8102064851758 545	0.8566487675946 524	0.287470694869785 16
C1 50 0	0.7440487080982 905	0.8427494701978 235	0.8580889211562 686	- 0.067441125007163 82
C2 00 0	0.7440418308107 866	0.8547766425392 98	0.8605579288659 69	- 0.593950973128350 8

С3	0.7414236599248	0.8663393953081	0.8598930084494	-
00	631	<mark>686</mark>	358	2.124419478668986
0				3

Decision Tree

No	CRITERION	SPLITTER	MAX FEATURES	R VALUE
1	squared_error	Best	Sqrt	0.7304275213183836
2	squared_error	Random	Sqrt	0.7045493394573541
3	squared_error	Best	Log2	0.6960452317124439
4	squared_error	Random	Log2	0.7287209056740023
5	squared_error	Best	None	0.7300613818699182
6	squared_error	random	None	0.7209408801405768
7	friedman_mse	Best	Sqrt	0.7002606314979025
8	friedman_mse	Random	Sqrt	0.6651239025650819
9	friedman_mse	Best	Log2	0.704450536546119
10	friedman_mse	Random	Log2	0.7216578813305338
11	friedman_mse	Best	None	0.7306632458144676
12	friedman_mse	Random	None	0.7226076851495364
13	absolute_error	Best	Sqrt	0.6996688282460393
14	absolute_error	Random	Sqrt	0.6726554796535373
15	absolute_error	Best	Log2	0.7205577192254702
16	absolute_error	Random	Log2	0.6920500725802841
17	absolute_error	Best	None	0.7139233210656045
18	absolute_error	Random	None	0.7374643598233536
19	poisson	Best	Sqrt	0.4958275379209969
20	poisson	Random	Sqrt	0.6737218629045889
21	poisson	Best	Log2	0.6794969091733786
22	poisson	Random	Log2	0.7144451697711103
23	poisson	Best	None	<mark>0.747166745095021</mark>
24	poisson	Random	None	0.7066731783283752

Random Forest

Sno	N_ESTIMATORS	CRITERION	MAXFEATURES	R2 VALUE
1	50	squared_error	Sqrt	0.8701028385180851
2	100	squared_error	Sqrt	<mark>0.8718001587457894</mark>
3	50	squared_error	log2	0.8681996057614894
4	100	squared_error	log2	0.8695327331318028
5	50	squared_error	None	0.852554550341361
6	100	squared_error	None	0.8554279128535067
7	50	absolute_error	Sqrt	0.8658715988246394
8	100	absolute_error	Sqrt	0.8716449460920973
9	50	absolute_error	log2	0.8697756502668389
10	100	absolute_error	log2	0.8719872939568064
11	50	absolute_error	None	0.849152753559274
12	100	absolute_error	None	0.8545582387239524
13	50	friedman_mse	Sqrt	0.8688820744852159
14	100	friedman_mse	Sqrt	0.8713481734076576
15	50	friedman_mse	log2	0.8622413870992105
16	100	friedman_mse	log2	0.8700619856800212
17	50	friedman_mse	None	0.8465958994853551
18	100	friedman_mse	None	0.8592750560471338
19	50	Poisson	Sqrt	0.8705070945780351
20	100	Poisson	Sqrt	0.8711288410480799
21	50	Poisson	log2	0.8638015283716634
22	100	Poisson	log2	0.869178851414411
23	50	Poisson	None	0.8522570024085658
24	100	Poisson	None	0.848362395429203

6. Mention your final model, justify why u have chosen the same.

Best model is Random Forest because compare to other algorithm r2_value's, Random Forest Algorithm r2_value is highest (0.8718001587457894) and parameters are given below.

100	squared_error	Sqrt	0.8718001587457894
-----	---------------	------	--------------------

7. Kindly create Repository in the name Regression Assignment.

https://github.com/SENTHILKUMARTH/Week-3-Machine-Learning-Regression/tree/main/Assignment