MSBD5015 2021 Fall Semester Assignment #3 Suggested Solution

Problem 1

One translation is the set of the formulas:

1. $Mythical \supset \neg Mortal$ 2. $\neg Mythical \supset (Mortal \land Mammal)$ 3. $(\neg Mortal \lor Mammal) \supset Horned$ 4. $Horned \supset Magical$

Mythical:

Can not be inferred from the clauses. The assignment that makes Mythical false and all others true will satisfy the above sentences.

Magical:

5.	eg Magical	Negation of the goal
6.	$\neg Horned \lor Magical$	from 4
7.	$\neg Horned$	from 5 and 6
8.	$(Mortal \lor Horned) \land (\neg Mammal \lor Horned)$	from 3
9.	$Mortal \wedge eg Mammal$	from 7 and 8
10.	$(Mythical \lor Mortal) \land (Mythical \lor Mammal)$	from 2
11.	$Mortal \wedge Mythical$	from 9 and 10
12.	$Mortal \land \neg Mortal \implies []$	from 1 and 11

Hence, the unicorn is Magical.

Horned:

Given the negation of the goal $\neg Horned$, repeat the step from 7 in the above question and then an empty set will be derived. Hence, the unicorn is Horned as well.

Problem 2

Vocabulary:

Take(x, y): Student x take course y Fail(x, y): Student x fails in course y Like(x, y): Person x likes person y Vegetarian(x): Person x is a vegetarian

Smart(x): Person x shave for person y in the town

Student(x): Person x is a student

DHF(x,y): Person x does homework for person y

- a. Not all students take both History and Biology.
- $\neg \forall x (Take(x, History) \land Take(x, Biology))$
- b. Only one student failed History.
- $\exists x(Fail(x, History) \land \forall y(Fail(y, History) \supset y = x))$
- c. Every person who dislikes all vegetarians is smart.
- $\forall x (\forall y (Vegetarian(y) \supset \neg Like(x,y)) \supset Smart(x))$
- d. No person likes a smart vegetarian.

 $\neg \exists x [\exists y (Like(x,y) \land Vegetarian(y) \land Smart(y))]$

e. There is a student who does homework for those and only those who do not do homework for themselves.

 $\exists x \{Student(x) \land \forall y [DHF(x,y) \equiv \neg DHF(y,y)] \}$

Problem 3

Initially, $\Sigma_{cur} = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}, \}, \pi = \{ \}$

• Iteration 1:

 $\Gamma = true$

 $\tau = \Gamma \supset HIRE$ (Note: for $\gamma_{\alpha} = n_{\alpha}^{+}/n_{\alpha}$, if both $n_{\alpha} = 0$ and $n_{\alpha}^{+} = 0$, we will have $\gamma_{\alpha} = 0$)

α	GPA	UST	HKU	CU	REC	EXP	γ
γ_{α}	4/7	1/3	2/4	1/4	4/8	3/4	EXP
γ_{α}	3/3	0/1	2/2	1/1	3/3	_	$\text{EXP} \land \text{GPA}$

$$\tau = EXP \land GPA \supset HIRE$$

 $\pi = \{EXP \land GPA \supset HIRE\}$

 $\Sigma_{cur} = \{e_2, e_4, e_6, e_7, e_8, e_9, e_{10}, e_{11}, \}$

• Iteration 2:

 $\Gamma = true$

 $\tau = \Gamma \supset HIRE$

α			HKU				γ
γ_{α}	1/4	1/3	0/2	0/3	1/5	0/1	UST
γ_{α}	1/2	_	0/0	0/0	1/1	0/1	$UST \wedge REC$

$$\tau = UST \land REC \supset HIRE$$

 $\pi = \{EXP \land GPA \supset HIRE, UST \land REC \supset HIRE\}$

$$\Sigma_{cur} = \{e_2, e_6, e_7, e_8, e_9, e_{10}, e_{11}, \}$$

Since all the positive instances are covered by the rules in, so the set of rules about when to hire an applicant learnt using GSCA is:

 $EXP \land GPA \supset HIRE \text{ and } UST \land REC \supset HIRE$

Problem 4

In the following, let A denotes Alarm, J for JohnCalls, etc. You'll get fullmark as long as the formulas are correct, regardless if you have done the calculation.

$$\begin{split} P(A) &= \sum_{B,E} P(A,B,E) = \sum_{B,E} P(A|B,E)P(B)P(E) = 0.0025 \\ P(\neg A) &= 1 - P(A) = 0.9975 \\ P(M) &= P(M|A)P(A) + P(M|\neg A)P(\neg A) = 0.012 \\ P(J,M) &= P(J,M,A) + P(J,M,\neg A) = P(J,M|A)P(A) + P(J,M|\neg A)P(\neg A) \\ &= P(J|A)P(M|A)P(A) + P(J|\neg A)P(M|\neg A)P(\neg A) = 0.002 \\ P(J|M) &= P(J,M)/P(M) = 0.17 \end{split}$$

Problem 5

1. Yes. All undirected paths between Test1 and Test2:

```
(Test1, Disease2, Test2),\\ (Test1, Disease2, Symptom3, Disease3, Test3, Disease2, Test2),\\ (Test1, Disease1, Symptom2, Disease2, Test2),\\ (Test1, Disease1, Symptom2, Disease2, Symptom3, Disease3, Test3, Disease2, Test2).
```

All of them going through Disease2 which has arrows coming in (type (3) in the definition of d-separation).

- 2. No. The path (Disease1,Test1,Disease2). The arrows going out of Test1 (type (2) in the definition of d-separation).
- 3. Yes. Same reason as above: in paths go through Disease2 according to type (3) in the definition of d-separation.
- 4. Consider all paths between D1 and D2:

$$P_1: (D1, T1, D2)$$

 $P_2: (D1, S2, D2)$

So the condition for E is $T1 \in E$ and $S2 \notin E$.

5. Consider all paths between D1 and D3:

 $P_1:$ (D1, T1, D2, T3, D3) $P_2:$ (D1, T1, D2, S3, D3) $P_3:$ (D1, S2, D2, T3, D3) $P_4:$ (D1, S2, D2, S3, D3)

For P_1 , the condition on E is

$$T1 \in E \vee T3 \in E \vee (D2 \notin E \wedge S2 \notin E \wedge S3 \notin E).$$

For P_2 :

 $T1 \in E \lor D2 \in E \lor S3 \not\in E.$

For P_3 :

 $S2\not\in E\vee D2\in E\vee T3\in E.$

For P_4 :

 $S2 \not\in E \lor D2 \in E \lor S3 \not\in E.$

So the condition on E is:

$$\begin{split} [T1 \in E \vee T3 \in E \vee (D2 \not\in E \wedge S2 \not\in E \wedge S3 \not\in E)] \wedge \\ [T1 \in E \vee D2 \in E \vee S3 \not\in E] \wedge \\ [S2 \not\in E \vee D2 \in E \vee T3 \in E] \wedge \\ [S2 \not\in E \vee D2 \in E \vee S3 \not\in E] \end{split}$$

For example $E = \emptyset$ will satisfy the above condition. So is $E = \{T1, D2, S2, S3\}$. Not sure if the condition can be much simplified.

Problem 6

The unique Nash equilibrium of this game would be (**Pol:expand**, **Fed:contract**), i.e.(3,3) in the payoff matrix.

Problem 7

Formulate this auction as a game in normal form:

- A set of agents $N = \{1, 2\};$
- The same set of actions for each agent $A_1 = A_2 = \{1, 2, 3, 4, 5, 6\};$
- Utility functions

$$u_i(x_1, x_2) = \begin{cases} 6 - x_i & \text{if agent } i \text{ wins the auction} \\ 0 & \text{otherwise} \end{cases}$$

Generate the payoff matrix as follows to find the Nash equilibria:

	1	2	3	4	5	6
1	2.5, 2.5	0, 4	0,3	0, 2	0,1	0,0
2	4,0	2, 2	0,3	0, 2	0, 1	0,0
3	3, 0	3,0	1.5, 1.5	0, 2	0, 1	0,0
4	2,0	2, 0	2, 0	1, 1	0, 1	0,0
5	1,0	1, 0	1, 0	1,0	0.5, 0.5	0,0
6	0, 0	0,0	0,0	0,0	0,0	0,0

From the matrix, we can see that the Nash equilibria are (4,4),(5,5) and (6,6).