

Discrete Mathematics MH1812

Topic 10.3 - Graph Theory III Dr. Wang Huaxiong

SINGAPORE

What's in store...

By the end of this lesson, you should be able to...

- Explain the concepts of the Hamiltonian circuit.
- Explain what is graph isomorphism.

Hamiltonian Circuit: Definition

A Hamiltonian path of a graph *G* is a walk such that every vertex is visited exactly once.

A Hamiltonian circuit of a graph *G* is a closed walk such that every vertex is visited exactly once (except the same start/end vertex).

William Rowan Hamilton 1805 - 1865

Hamiltonian Circuit: The Icosian Game (1857)

- Along the edges of a dodecahedron, find a path such that every vertex is visited a single time, and the ending point is the same as the starting point.
- Hamilton sold it to a London game dealer in 1859 for 25 pounds.

Hamiltonian Circuit: Hamiltonian vs. Eulerian

- Path (or trail) vs. circuit (or cycle):
 - For circuits, the walk starts and finishes at the same vertex.
 - But for a path, the starting vertex is different from the ending one.
- Eulerian: walk through every edge exactly once.
- Hamiltonian: walk through every vertex exactly once.

William Rowan Hamilton 1805 - 1865

Leonhard Euler 1707 - 1783

Portrait of Leonhard Euler by Jakob Emanuel Handmann under WikiCommons (PD-US)

William Rowan Hamilton under WikiCommons (PD-US)

Hamiltonian Circuit: Examples

- Euler circuit
- Hamiltonian path
- No Hamiltonian circuit

$$a \rightarrow b \rightarrow e \rightarrow d \rightarrow c \rightarrow b \rightarrow d \rightarrow f \rightarrow a$$

$$f \rightarrow a \rightarrow b \rightarrow e \rightarrow d \rightarrow c$$

Hamiltonian Circuit: Examples

- No Euler circuit, but Euler path
- Hamiltonian path
- No Hamiltonian circuit

$$c \rightarrow e \rightarrow f \rightarrow c \rightarrow b \rightarrow d \rightarrow f \rightarrow a \rightarrow b$$

$$e \rightarrow c \rightarrow f \rightarrow d \rightarrow b \rightarrow a$$

Graph Isomorphism: Pictorial Representations

A graph can have many pictorial representations.

	v_1	V_2	V_3	V_4	<i>V</i> ₅
v_1	۲0	1	0	0	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$
V_2	1	0	1	0	0
v_3	0	1	0	1	0
V_4	0	0	1	0	1
V_5	L_1	0	0	1	0]

Graph Isomorphism: Definition

A graph $G = (V_G, E_G)$ is isomorphic to a graph $H = (V_H, E_H)$ if and only if there exists two bijections mapping the vertex sets and edge sets, respectively:

$$g: V_G \rightarrow V_H, h: E_G \rightarrow E_H$$

such that an edge $e \in E_G$ is incident on $v, w \in V_G \Leftrightarrow$ the edge $h(e) \in E_H$ is incident on $g(v), g(w) \in V_H$.

MH1812: Discrete Mathematics

Graph Isomorphism: Example

Vertex and edge bijections:

$$g = \{(v_1, w_2), (v_2, w_3), (v_3, w_1), (v_4, w_5), (v_5, w_4)\}$$

$$h = \{(e_1, f_3), (e_2, f_2), (e_3, f_1), (e_4, f_7), (e_5, f_6), (e_6, f_5), (e_7, f_4)\}$$

MH1812: Discrete Mathematics

Let's recap...

- Basic definitions: graph, vertex (node), edge, loop
- Node degree, graph degree, handshaking theorem
- Types of graphs: simple, multigraph, (un)directed, complete, bipartite
- Euler path and circuit
- Hamiltonian path and circuit
- Adjacency matrix and graph isomorphism

MH1812: Discrete Mathematics

Your Learning Roadmap

