Testi degli Esami di Analisi Matematica

Fabio Ferrario

2022

Indice

1	Ger	Gennaio 2020														2								
	1.1	Domande Chiuse																						2
	1.2	Domande Aperte						•										•						4
2	Ger	nnaio 2021																						5
	2.1	Domande Chiuse																						5
	2.2	Domande Aperte						•														•		6
3													7											
	3.1	Domande Chiuse							•								•	•				•		7
4	Feb	braio 2023																						7
	4.1	Domande Chiuse																						7
5	Luglio 2021 8													8										
	5.1	Domande Chiuse																						8
		Domande Aperte																						
6	Lug	glio 2022																						10
	6.1	Domande Chiuse																						10
	6.2	Domande Aperte																•						12
7	Set	tembre 2019																						12
	7.1	Domande Chiuse							•								•					•		12
8	Set	tembre 2019																						12
	8.1	Domande Chiuse																						12
	8.2	Domande Aperte																						

Settembre 2020 **14** 9.1 10 Settembre 2021 16 10.1 Domande Chiuse 16 1 Gennaio 2020 1.1 Domande Chiuse 1 La funzione $f(x) = \begin{cases} \frac{\ln(1-x)}{2x} & x < 0 \\ x^2 + \frac{1}{2} & x \ge 0 \end{cases}$ ha in x = 0: (a) Una discontinuità di prima spe- | (c) un punto di continuità cie (b) una discontinuità eliminabile (d) una discontinuità di seconda specie 1bla funzione $f(x) = \begin{cases} \frac{\ln(1+x)}{2x} & x < 0 \\ x^2 + \frac{1}{2} & x \ge 0 \end{cases}$ ha in x = 0: (a) Una discontinuità di prima spe- (c) un punto di continuità (b) una discontinuità eliminabile (d) una discontinuità di seconda specie Sia $f: \mathbb{R} \to \mathbb{R}$ derivabile e tale che f(2) = 3 e f'(2) = 4. Se $g(x) = \sqrt{f^2(x) + 7}$ allora g'(2) vale: (a) 1 **(c)** 3 (d) 4

(b) 2

2b

 $Sia f : \mathbb{R} \to \mathbb{R}$ derivabile e tale che f(2) = 2 e f'(2) = 3. Se g(x) = 3 $\sqrt{f^2(x)+5}$ allora g'(2) vale:

(a) 1

(b) 2

(c) 3 (d) 4

La funzione $f(x) = x^2 + 2x + k \ln x$ è strettamente convessa in $(0, +\infty)$ se

(a) k = -3

(b) k = -1

(c) k = 1(d) k = -2

<u>3b</u>

La funzione $f(x) = -x^2 + 2x + k \ln x$ è strettamente convessa in $(0, +\infty)$ se

(a) k = 3

(b) k = 1

(c) k = -1 (d) k = 2

Sia $f(x) = x + e^x + \cos x$. Il polinomio di Mc Laurin del secondo ordine di f

(a) $2 + 2x + \frac{x^2}{2}$ (b) $2 + 2x + x^2$

(c) 2 + 2x(d) $2 + 2x - \frac{x^2}{2}$

 $\overline{\text{Sia}} f(x) = -\frac{x^2}{2} + e^x + \sin x$. Il polinomio di Mc Laurin del secondo ordine

L'integrale definito $\int_1^2 \frac{2e^x}{e^x+2} dx$ vale:

 $\overline{\frac{1}{\text{l'integrale definito}}} \int_{\frac{1}{2}}^{1} \frac{4e^{2x}}{e^{2x}+2} dx$ vale

L'insieme $A = \{\frac{2+2^{-n}}{3-3^{-n}}, n = 1, 2, ...\}$

- (a) Ha massimo 15/16
- (c) Non è superiormente limitato

Ξ

Ξ

(b) Ha minimo 2/3

(d) non è inferiormente limitato

 $\overline{\text{L'insieme}} \ A = \{\frac{2-2^{-n}}{3+3^{-n}}, n = 1, 2, ...\}$

- (a) Ha minimo 9/20
- (c) Non è superiormente limitato
- (b) Ha massimo 2/3

(d) non è inferiormente limitato

Ξ

 $\lim_{n \to +\infty} \frac{n \ln^3 n - \sqrt{n} + n^{3/2}}{2n + 3\sqrt[3]{n} - n \ln^4 n}$ vale

(a) $-\frac{1}{3}$

(b) 0

 $(c) + \infty$ $(d) - \infty$

 $\lim_{n \to +\infty} \frac{n \ln^3 n - \sqrt{n} - n^{1/3}}{2n^2 + 3\sqrt[3]{n} - n \ln^4 n} \text{ vale}$

(a) $-\frac{1}{3}$ (b) 0

 $(c) + \infty$ $(d) - \infty$

La somma della serie $\sum_{n=0}^{+\infty} \frac{3}{4^{n+2}}$ è:

 $\overline{\text{La}}$ somma della serie $\sum_{n=0}^{+\infty} \frac{4}{3^{n+2}}$ è:

1.2Domande Aperte

1 Data la funzione:

$$f(x) = \frac{e^x}{x^2 - 1}$$

Se ne tracci un grafico qualitativo (in particolaresi determinino: dominio, limiti agli estremi, eventuali asintoti, monotonia, estremanti relativi e assoluti. Non è richiesto lo studio della derivata seconda). Qual è il più grande intervallo del tipo $(-\infty, a)$ su cui f è monotona crescente

2 Si dia la definizione di primitiva di una funzione $f: I \to \mathbb{R}$, con I intervallo. Si determini, se esiste, una primitiva $\phi: \mathbb{R} \to \mathbb{R}$ della funzione $f: (-1, +\infty) \to \mathbb{R}, f(x) = 2x + \ln(x+1) \text{ tale che } \phi(1) = 2\phi(0)$

Data la successione definita per ricorrenza:

$$\begin{cases} a_1 = 3\\ a_{n+1} = \sqrt{a_n + 2} \end{cases}$$

- 1. Si provi per induzione che $a_n \geq 2$ per ogni $n \in \mathbb{N}$;
- 2. si provi senza usare l'induzione che $\{a_n\}$ è monotona decrescente;
- 3. si calcoli $\lim_{n\to+\infty} a_n$

2 Gennaio 2021

2.1 Domande Chiuse

La somma della serie $\sum_{n=1}^{+\infty} 2^{1-3n}$ vale:

(c)
$$2/7$$

 $\lim_{n \to +\infty} \frac{n^2 \ln^6 n - n^3 \ln^2 n + \sin n}{n^3 \ln^2 n - n^2 \ln^4 n - 3^{-n^2}} \text{ vale}$

(a)
$$-\infty$$

(b)
$$+\infty$$

$$(d) -1$$

La funzione $f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & x \neq 1\\ 2 & x = 1 \end{cases}$

- (a) Ha una discontinuità eliminabile
- (c) ha una discontinuità di prima specie

(b) è continua su \mathbb{R}

(d) ha una discontinuità di seconda specie

Sia $f(x) = x - 2e^x + \sin(x^2)$. Il polinomio di Mclaurin del secondo ordine di

(a)
$$-2 - x - x^2$$

(b) $-x - x^2$

(c)
$$-2 - x$$

(b)
$$-x - x^2$$

(c)
$$-2 - x$$

(d) $-2 - x^2$

Tra le primitive di $e^x \sin x$ c'è:

(a) $\frac{1}{2}e^x(\sin x + \cos x)$

(c) $\frac{1}{2}e^x(\sin x - \cos x)$ (d) $e^{2x}(\sin x - \cos x)$

(b) $e^x(\sin x - \cos x)$

Ξ

Ξ

Ξ

La funzione $f(x) = \sqrt{x-4} - \frac{x}{2}$ è crescente sse

(a) $x \in [5, +\infty)$ (b) $x \in [4, 8]$

(c) $c \in (-\infty, 5]$ (d) $x \in [4, 5]$

la derivata di $f(x) = \frac{x \ln x - 1}{x^2}$ in x = 1 è:

(a) -1

(b) 3

 $\underline{8}$ $\lim_{x \to \pm 0} \frac{\sin(2^x - 1)}{(2^x - 1)^2}$

(a) 0

(c) non esiste

(b) 1

(d) $\pm \infty$

Domande Aperte

1 Studia la funzione

$$f(x) = \ln x - \arctan(x-1)$$

In particolare: Dominio, limiti, asintoti, punti di massimo/minimo (stazionari).

Qual'è l'equazione della retta tangente al grafico nel punto di ascissa x = 1?

- **2** Data la funzione $f(x) = 2x \ln x : (0, +\infty) \to \mathbb{R}$, Si scrivano tutte le primitive. Si determini la primitiva ϕ tale che $\phi(e) = 2\phi(1)$. Si calcoli $\int_1^2 f(x)dx$.
- 3 Sia $\sum_{n=1}^{+\infty} a_n$ una serie numerica. Si enunci una condizione necessaria per la convergenza. La condizione enunciata è sufficiente? si motivi la risposta

Febbraio 2021 3

3.1Domande Chiuse

Sia data la serie $\sum_{n=1}^{+\infty} a_n$, con $a_n \ge 0$. Per la convergenza della serie la condizione $a_n \sim \frac{1}{n^2}$ è

- (a) sufficiente ma non necessaria
- (b) necessaria e sufficiente
- (c) necessaria ma non sufficiente
 - (d) nè necessaria nè sufficiente

 $\overline{\text{Sia}}$ data la serie $\sum_{n=1}^{+\infty} a_n$, con $a_n \geq 0$. Per la convergenza della serie la condizione $a_n \sim \frac{1}{n}$ è

- (a) sufficiente ma non necessaria
- (b) necessaria e sufficiente
- (c) necessaria ma non sufficiente
- (d) nè necessaria nè sufficiente

La funzione $f_{a,b}(x) = \begin{cases} ax + x^2 & x \le 0 \\ be^x + \sin(x) - 1 & x > 0 \end{cases}$ è continua in x = 0 sse:

- (a) b = 1 e per ogni a(b) a = 0.b = 1

(b) a = 0, b = 1

(c) per ogni $a, b \in \mathbb{R}$ (d) per nessun valore di a, b

La funzione $f_{a,b}(x) = \begin{cases} x + ax^2 & x \le 0 \\ e^x + \sin(x) - b & x > 0 \end{cases}$ è continua in x = 0 sse:

- (a) b = 1 e per ogni a

(b) a = 0, b = 1

(c) per ogni $a, b \in \mathbb{R}$ (d) per nessun valore di a, b

Febbraio 2023

4.1 Domande Chiuse

nota, le risposte chiuse sono state mischiate, altrimenti quelle giuste erano sempre la A

La funzione $f: A \to B, f(x) = 2 - x^6$ è biunivoca se

(a) $A = (-\infty, 0], B = (-\infty, 2]$ (b) $A = [0, +\infty), B = [2, +\infty)$ (c) $A = \mathbb{R}, B = (-\infty, 2]$ (d) $A = [0, +\infty), B = \mathbb{R}$

La funzione $f:A\to B, f(x)=x^4+4$ è biunivoca se

(a) $A = (-\infty, 0], B = [4, +\infty)$ (b) $A = [0, +\infty), B = [0, +\infty)$ (c) $A = \mathbb{R}, B = [4, +\infty)$ (d) $A = [0, +\infty), B = \mathbb{R}$

2A

Date le funzioni $f(x) = \sin x, g(x) = x^2, h(x)$? 2 + x, la funzione composta $(h \circ q \circ f)(x)$ è

(a) $2 + (\sin x)^2$

(c) $2 + x^2 + \sin x$ (d) $2 + \sin(x^2)$

(b) $(2 + \sin x)^2$

2B

Date le funzioni $f(x) = \cos(x), g(x) = x^2, h(x) = 3 - x$ la funzione composta $(h \circ g \circ f)(x)$ è

<u>3A</u>

Si consideri la successione $a_n = \frac{n^2 10^n + (-n)^n}{n^7 - 7^n}$. Quale delle seguenti è corretta?

(a) a_n non ha limite

(b) $a_n \to +\infty$

 $\begin{array}{c|c} (\mathbf{c}) \ a_n \to -\infty \\ (\mathbf{d}) \ a_n \to 0 \end{array}$

3B

Si consideri la successione $a_n = \frac{n^2(-10)^n + n^n}{n^7 - 7^n}$. Quale delle seguenti è corretta?

(a) $a_n \to -\infty$

 $\begin{array}{c|c} (\mathbf{c}) \ a_n \to +\infty \\ (\mathbf{d}) \ a_n \to 0 \end{array}$

Ξ

(b) a_n non ha limite

Luglio 2021 5

Domande Chiuse 5.1

O1

La funzione $f(x) = \begin{cases} \sin x^2 + a & x \le 0 \\ \frac{\ln(1+x)}{2x} + \frac{3}{2} & x > 0 \end{cases}$ è continua se:

(a) a = 3/2

(c) a = 5/2 (d) a = 0

(b) a = 2

Sia $f(x) = x^2 + 2x + 2$. allora $\frac{d}{dx} \ln(f(x))$ per x = 1 è

(a) 1

(b) 4

 $\underline{\mathbf{O3}}$

La funzione $f(x) = x^5 + x^3 - 1$ ha quanti flessi?

(a) Ha 5 flessi

(c) non ha flessi

(b) Ha 1 flesso

(d) ha 3 flessi

 $\frac{\mathbf{O4}}{\int_0^1 x e^x dx} =$

(a) 0

(b) -1

(c) 1 (d) e

 O_5

La funzione $f(x) = \begin{cases} -|x+3| & -6 < x < -1 \\ -2x^2 & -1 \le x < 1 \end{cases}$

(a) non è limitata

(b) ha minimo

(c) ha un unico punto di massimo(d) ha come immagine un intervallo

Ξ

Ξ

Ξ

Ξ

 $\overline{\text{Sia}} f(x) = x \ln(x+1) - x^2$, il rapporto incrementale di f relativo all'intervallo [0, e - 1] vale)

(a) (e-2)(e-1)(b) (2-e)(e-1)

(c) e-2 (d) 2-e

La serie $\sum_{n=1}^{+\infty} \frac{n^2}{n \ln n + 2n^{\alpha+1}}$

(a) converge per ogni $\alpha > 0$

(c) converge se e solo se $\alpha > 2$

(b) diverge per ogni $\alpha > 0$

(d) converge se $0 < \alpha < 1$

5.2 Domande Aperte

- 1 Data la funzione $f(x) = \ln x \ln^2 x$, si studi:
 - 1. Dominio
 - 2. Limiti ai punti di frontiera del dominio
 - 3. Eventuali asintoti
 - 4. Estremanti (specificando se relativi o assoluti)
 - 5. Monotonia
 - 6. Punti di flesso
 - 7. Tangente di flesso
- **2** data la funzione $f(x) = x \sin x$
 - 1. Si scrivano tutte le primitive
 - 2. Si determini, se esiste, la primitiva ϕ tale che $\phi(\pi) = 2\phi(0)$
 - 3. si calcoli $\int_0^{\pi} f(x) dx$
- 3 Sia $\sum_{n=1}^{+\infty} \cos(\pi n) \sin \frac{1}{n}$.
 - 1. Per studiare la serie uso il critedio:
 - 2. La successione $\sin \frac{1}{n}$ è strettamente:
 - 3. La serie data:
 - 4. E la serie $\sum_{n=1}^{+\infty} \sin \frac{1}{n}$:

6 Luglio 2022

6.1 Domande Chiuse

La serie $\sum_{n=1}^{+\infty} \frac{1}{n^{(\alpha+1)/2} \ln^2 n}$

(a) Converge sse $\alpha \geq 1$

(c) converge $\forall \alpha \in \mathbb{R}$

CONVERGENZA DI UNA SERIE

- **(b)** Converge sse $\alpha > 1$
- (d) diverge sse $\alpha \leq 1$

DERIVABILITÀ

La funzione $f(x) = \begin{cases} a \sin x - b^2 & -2 \le x \le 0 \\ 1 - e^x 0 < x \le 3 \end{cases}$ è derivabile in x = 0 sse

(a)
$$a = -1, b = 1$$

$$\begin{array}{c|c} (\mathbf{c}) \ a = -1, \forall b \in \mathbb{R} \\ (\mathbf{d}) \ \forall a \in \mathbb{R}, b = 0 \end{array}$$

(b)
$$a = -1, b = 0$$

(d)
$$\forall a \in \mathbb{R}, b = 0$$

COMPOSIZIONE DI FUNZIONI

Date le funzioni $f(x) = \ln(x), g(x) = x^3, h(x) = 2 - x$, la funzione composta $(h \circ q \circ f)(x)$ è:

(a)
$$2 - \ln(x^3)$$

(c)
$$(2 - \ln x)^3$$

(a)
$$2 - \ln(x^3)$$

(b) $2 - x^3 - \ln x$

(c)
$$(2 - \ln x)^3$$

(d) $2 - (\ln x)^3$

INTERVALLI

Quali dei seguenti insiemi è un intervallo?

(a)
$$\{x \in \mathbb{R} : 3|x| \ge 1\}$$

(c)
$$\{x \in \mathbb{R} : 2|x| > x^2\}$$

(b)
$$\{x \in \mathbb{R} : |x^2 - 1| < 1\}$$

(a)
$$\{x \in \mathbb{R} : 3|x| \ge 1\}$$

(b) $\{x \in \mathbb{R} : |x^2 - 1| < 1\}$
(c) $\{x \in \mathbb{R} : 2|x| \ge x^2\}$
(d) $\{x \in \mathbb{R} : |x^2 - 1| \ge 1\}$

LIMITI DI SERIE

 $\lim_{n\to+\infty} n^2 \sin(\frac{1}{n+n^2})$ vale

(c)
$$+\infty$$
 (d) 0

(b) non esiste

6

INTEGRALI

Una primitiva della funzione $f(x) = \frac{e^{2x}}{e^{2x}+1}$ è:

(a)
$$2\ln(e^x+1)+3$$

(c)
$$\ln(e^{2x}+1)-4$$

(a)
$$2\ln(e^x + 1) + 3$$

(b) $2\ln(e^x + 1) + 1$

(c)
$$\ln(e^{2x} + 1) - 4$$

(d) $\frac{\ln(e^{2x} + 1)}{2} + 7$

MASSIMO/MINIMO

La funzione e^{-x^2} ha in x=0:

- (a) Un punto di massimo
- (c) Un punto di flesso
- (b) Un punto di minimo
- (d) Un punto di discontinuità

La funzione $f(x) = e^{3x-x^3}$ è monotona decrescente sse:

(a)
$$x \in [-1, 1]$$

$$\begin{array}{c} (\mathbf{c}) \ x \in (-\infty, -1] \lor [1, +\infty) \\ (\mathbf{d}) \ x \in [-1, +\infty) \end{array}$$

(b)
$$x \in (-\infty, 1]$$

(d)
$$x \in [-1, +\infty]$$

6.2 Domande Aperte

- 1 Sia $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = (x^2 2x)e^{-x}$. Allora:
 - Dominio
 - Limiti
 - Asintoti
 - Massimi/Minimi
 - Più grosso intervallo di convessità del tipo $(k, +\infty)$
 - Polinomio di Mclaurin del secondo ordine:
 - La funzione $g(x) = f(x) + \sqrt{x^2 x}$ per $x \to +\infty$ ha asintoto obliquo di equazione:
- **2** Data la funzione $f(x) = \frac{1}{x \ln^x} : (1, +\infty) \to \mathbb{R}$,
 - Si scrivano tutte le primitive e il loro dominio di definizione
 - Si determini la primitiva che assume in x=e lo stesso valore della funzione $g(x)=\frac{e}{x}$
 - $\bullet\,$ La media integrale di f(x) sull'intervallo $[e,e^3]$ vale

7 Settembre 2019

- 7.1 Domande Chiuse
- 8 Settembre 2019
- 8.1 Domande Chiuse

 $\frac{1}{\text{La serie}} \sum_{n=1}^{+\infty} (-1)^n \frac{1}{n^3}$

- (a) converge asolutamente
- (b) converge, ma non assolutamen-
- (c) diverge
- (d) è irregolare

Ξ

 $\lim_{n \to +\infty} \frac{n^3 + 5ln^2 n - n^2 \sqrt{n^3 + 1}}{-n^3 + e^{1/n} - n^2 \sqrt{n}} \ e^{-n^3 + e^{1/n} - n^2 \sqrt{n}}$

(a) $-\infty$

(c) 1

(b) $+\infty$

(d) 0

La funzione $f(x) = x^2 + 2 \ln x$ è convessa se e solo se

(a) $x \in (-1,1)$

Ξ

Ξ

Ξ

(b) $x \in (0,1)$

 $\begin{array}{|c|c|} (\mathbf{c}) & x \in (1, +\infty) \\ (\mathbf{d}) & x \in (0, +\infty) \end{array}$

La funzione $f(x) = \begin{cases} \frac{\ln(1+x^2)}{x} & x > 0\\ 1 + k\cos x & x \le 0 \end{cases}$ è continua in x = 0 se e solo se

(a) k=0

(b) k=1

(c) k=-1(d) per nessun valore di k

L'insieme delle soluzioni della disequazione $\sqrt{4-x^2} \leq \sqrt{3}$ è

(a) $[-2, -1] \cup [1, 2]$ (b) $(-\infty, -1] \cup [1, +\infty]$

(c) [-1,1](d) $(-2,-1] \cup [1,2)$

la funzione $f(x) = xe^x - 3e^x$ ha

(a) un punto di massimo globale

(b) un punto di minimo globale

(c) un punto di minimo locale ma non globale

(d) un punto di massimo locale ma non globale

 $\frac{7}{\text{Sia }}a_n = \frac{1}{n^2 + n} \text{ e } b_n = \frac{1}{n}.$ Allora

(c) $b_n = o(a_n)$

(a) $a_n \sim b_n$ (b) $a_n = o(b_n)$

(d) nessuna delle alternative propo-

 $\frac{8}{\text{L'integrale}} \int_{-2}^{5} \sqrt[3]{x+3} dx \text{ vale}$

(a) 3

(c) 45/4 (d) 7/8

(b) 315/4

8.2 Domande Aperte

1 Data la funzione

$$f(x) = \frac{\ln x}{4x^2}$$

1. Si studi f e se ne tracci un grafico qualitativo (dominio, limiti ai punti di frontiera del dominio, eventuali asintoti, monotonia, punti di estremo relativo e/o assoluto, convessità/concavità);

2. si scriva l'equazione della retta tangente al grafico di f nel upnto di ascissa x = e;

3. si calcoli $\int_1^4 f(x)dx$

Data la serie

$$\sum_{n=2}^{+\infty} \left(\frac{1}{x-1}\right)^n$$

1. Si determinino i valori di $x \in \mathbb{R}\{1\}$ per cui la serie converge;

2. per i valori determinati al punto 1, si calcoli la somma della serie.

9 Settembre 2020

9.1 Domande Chiuse

Dato l'insieme $A = \{\frac{(-1)^n 2n}{n+1}, n \ge 1\}$, allora

(a) inf A = -2

(b) $\sup A = 4/3$

Ξ

 $\lim_{n \to +\infty} \cos \frac{1}{n} \cdot \frac{\ln(1+\frac{1}{n})}{\frac{2}{n}+\frac{1}{n^3}} =$

(a) 1/2

 $\begin{array}{c} (\mathbf{c}) + \infty \\ (\mathbf{d}) \ 0 \end{array}$

(b) 1

La somma della serie $\sum_{n=2}^{+\infty} \frac{4}{3^n}$ vale

(a) 2/3

(b) 6

 $\frac{4}{\text{sia}}(x) = \frac{1}{x} + \sqrt{x}$. Allora $\frac{d}{dx} \ln(f(x))$ per x = 4 è

(a) 1/12

(b) 7/36

(c) 5/36 (d) 1/36

sia f(x) $\begin{cases} x^2 - x & x \le 1 \\ \frac{e^x - e}{3(x - 1)^2} & x > 1 \end{cases}$ Allora in x = 1 la funzione f:

(a) Ha discontinuità di seconda spe- | (c) Ha discontinuità eliminabile

Ξ

Ξ

Ξ

(b) Ha discontinuità di prima specie (d) Ha punto di continuità

Siano $f(x) = e^x - 2$ e $g(x) = e^{|x|}$. Allora $g \circ f(x) = e^{|x|}$

(a) $e^{|e^x-2|}$ (b) $e^{|x|-2}$

(c) $e^{e^{|x|}} - 2$ (d) $(e^x - 2) \cdot e^{|x|}$

 $\dot{\overline{S}}$ ia $f(x) = x^2 \ln x$. Allora f è crescente in:

(c) nessun intervallo(d) (0, +infty)

(a) $(0, e^{-1/2})$ (b) $(e^{-1/2}, +\infty)$

 $\frac{8}{\int_0^1 \frac{3x}{x^2+1}} dx =$

(a) $\frac{3}{2} \ln 2$ (b) $3 \ln 2$

 $\begin{array}{|c|c|} (\mathbf{c}) & \frac{\pi}{12} \\ (\mathbf{d}) & \frac{\pi}{4} \end{array}$

Domande Aperte 9.2

- 1 data la funzione $f(x) = (1-x)e^{\frac{1}{x}}$,
 - 1. il suo dominio è:
 - 2. i limiti ai punti di frontiera del dominio sono (4):
 - 3. GLi eventuali asintoti verticali sono
 - 4. Gli eventuali asintoti obliqui sono
 - 5. il più ampio intervallo di monotonia del tipo $(-\infty, k)$ si ha per $k = \dots$ (la monotonia è del tipo?)
- **2** Data la funzione $f(x) = \frac{\ln x}{x} : (0, +\infty) \to \mathbb{R}$
 - 1. Si scivano le primitive Φ :
 - 2. si determini la primitiva Φ tale che $\Phi(e^2) = 2\Phi(e)$
 - 3. si calcoli $\int_{e}^{e^2} \frac{\ln x}{x} dx =$
- 3 Sia $\sum_{n=1}^{+\infty}$ una serie numerica
 - 1. La serie si dice convergente se:
 - 2. se $a_n = \ln n \ln(n+1)$, si calcoli la somma parziale s_n :
 - 3. Usando la definizione di serie convergente, si verifichi se la serie $\sum_{n=1}^{+\infty} (\ln n$ ln(n+1)) converge oppure no:

Settembre 2021 10

10.1 Domande Chiuse

 $\frac{\mathbf{1}}{\text{La serie }} \sum_{n=1}^{+\infty} (-1)^n \frac{1}{2n^4}$

- (a) converge assolutamente
- (b) converge, ma non assolutamen- (d) è irregolare
- (c) diverge

 $\lim_{n+\to+\infty} \frac{n^3 + 5ne^{-n^2} - n^2\sqrt{n^3 + 2}}{-n^3 + \cos n - n^2\sqrt{n}} \ \text{è:}$

(a) $-\infty$

(b) $+\infty$

(c) 1 (d) 0

La funzione $f(x) = \ln x + \frac{x^4}{12}$ è convessa se e solo se

(a) $x \in (-1,1)$

(b) $x \in (0,1)$

 $\begin{array}{|c|c|} (\mathbf{c}) & x \in (1, +\infty) \\ (\mathbf{d}) & x \in (0, +\infty) \end{array}$

la funzione $f(x) = \begin{cases} \frac{\ln(1-x^2)}{x^2} & x > 0\\ 1 + k\cos x & x \le 0 \end{cases}$ è continua in x = 0 se e solo se:

(a) k = 0

(b) k = -1

L'insieme delle soluzioni della disequazione $x(e^{2x}-3)<0$ è:

 $\begin{array}{c|c} (\mathbf{c}) & (-\infty, 0) \cup (\frac{\ln 3}{2}, +\infty) \\ (\mathbf{d}) & (\frac{\ln 3}{2}, +\infty) \end{array}$

(a) $(0, \frac{\ln 3}{2})$ (b) $(-\infty, \frac{\ln 3}{2})$

La funzione $f(x) = e^x - xe^x$ ha:

- (a) un punto di minimo globale
- (c) un punto di massimo locale ma non globale
- (b) un punto di massimo globale
- (d) un punto di minimo locale ma non globale

 $\frac{7}{\text{Sia }}a_n = \frac{1}{3n^2 - n} \text{ e } b_n = \frac{1}{n}. \text{ Allora}$

(a) $a_n \sim b_n$ (b) $a_n = o(b_n)$

(c) $b_n = 0(a_n)$ (d) nessuna delle alternative propo-

 $\frac{8}{\text{L'integrale}} \int_{-2}^{5} \sqrt[3]{x+3} dx \text{ vale:}$

(a) 3

(c)
$$45/4$$

(b) 315/4

(c) 45/4 (d) 7/8

Domande Aperte 10.2

1 Data la funzione

$$f(x) = \ln x + \frac{2}{x}$$

1. Il dominio è:

2. I limiti agli estremi del dominio sono:

3. Ha asintoti? Se sì quali?

4. Quali sono gli intervalli di monotonia?

5. Ci sono estremanti? se si quali? Assoluti o relativi?

6. Si determinino gli intervalli di concavità/convessità

7. La retta tangente al graico di f nel punto di ascissa x=1 ha equazione:

8. $\int_1^e f(x)dx$ vale

2 Data la serie $\sum_{n=2}^{+\infty} \left(\frac{1}{x-4}\right)^n$,

1. Si determinino i valori di $x \in \mathbb{R} \setminus \{4\}$ per cui la serie converge:

2. Per i valori determinati al punto precedente si calcoli la somma della serie: