Problems I & 2

Problem I: Big-O Characterization

a) 2 log n + 100,000 Answer: O(log n)

Explanation: Constants are ignored in Big-O notation. The dominating term is log n.

b) $n^2 + 2n$ Answer: $O(n^2)$

Explanation: n² grows faster than 2n, so n² dominates for large n.

c) (2n+1) + (2n-1) + ... + 3 + 1

Answer: O(n²)

Explanation: This is the sum of the first n odd numbers, which equals n^2 .

d) $2^{20} + 3^{10}$ Answer: O(1)

Explanation: Both terms are constants, so the runtime is constant.

e) $1 + n^2 + 2n + n!$

Answer: O(n!)

Explanation: n! grows faster than all other terms, so it dominates.

Problem 2: Function Classifications

Functions:

- 3n
- 2n + 3
- $n^2 + n$
- log(n²)
- ³√n
- log(2n)

O(n):

- 3n
- 2n + 3
- log(n²)
- ³√n (n)
- log(2n)

Θ(n):

- 3n
- 2n + 3

$\Omega(n)$:

- 3n
- 2n + 3
- $n^2 + n$

Explanations:

- 3n and 2n + 3 are linear functions \Rightarrow O(n), Θ (n), Ω (n)
- $log(n^2) = 2 log(n) \Rightarrow O(log n)$
- $\sqrt[3]{n}$ grows slower than $n \Rightarrow O(n)$
- $log(2n) = log(2) + log(n) \Rightarrow O(log n)$
- $n^2 + n$ grows faster than $n \Rightarrow \Omega(n)$, but not O(n)