	Page No.		
	Date		1
	Devanshu Surana		
	1032210755, PC-12		
	FDS Lab Assignment - 9		
	Problem Statement:		
	Queues are frequently used in computer programm	ning, a	nd a
	typical example is the creation of a job queue b	y an o	perating
	system. If the operating system does not use priorit	J lesither	the
	jobs are processed in the order they enter the	system	write a
	c program for simulating job queue. Write functi	ions to	add
	job and delete job from queue.		
	Objective:		
	1. To study Queue and its operations		
	2. To study the importance of queue as a data	3 trus	ture in
	computer science.		
	Theory:		
_	- Write in brief about linear and circular qu	jeue, l	orite
	different applications of queue Cjob scheduling	bu CP	O schedule
)	ca) Unear queue.	0	
	A linear queue is linear data structure tha	t ser	ves reques
	first, which has been arrived first i.e it follow	ws Flf	-o policy,
	It consists of data elements which are conne	ectedi	n linear
	manner. It has two pointer i.e. front and re		
	insertion takes place from rear and end while		
	takes place from front end.		
	(b) Circular queue:		
	A circular queue is also linear data struc	tures	like
	normal queue which follows the FIFO policy but		

end queue, it connects last position of the queue to first position of queue. It is also called as 'Ring Buffer'. If we want to insert from from front end circular queue is used. i) Engueue - used to insert new element ii) Dequeue - used to delete existing element - 64-bit open source linux or its derivatives - Open source C programming tool like gcc/EclipseEclitor PSEUDO Code: void addg (9 [], elem) {

Linitally front = rear = -1]

if (front = = Size-1) print ('Ouene full') rear = rear +1; q [rear] = elem; b) Delete 9: int dela (q []) ?

if (front = = rear) return -1 else front = front +1 elem = q [front] return elem;

```
Page No.
                                                   Date
 c) is full (2;
          int is full CZ
             if (rear == 8/2e-1)
                return . 1;
             else
                return o;
d) is Empty ():
           int is Empty () {

if (rear = = Front)
                    return 12
                 else
                  return o;
e) Add eg (9:
         void add cg (element)?

// initially front = rear = 0

if (rear +1) 1. n = = front
                print C'Queue Full')
               rear = (rear +1) 1/. n;
               & [rear] = element;
f) Detete CO;
      int del cg (element)?
// initially front = rear = 0
              if / front = = rear)
               print ('Compty Queue')
               else
```

Mont: Chont (1) % n Clement - Q C Front) Teturn element

Time Complexity.

i) add q = 0(1)

ii) det q = 0(1)

iii) is full = 0(1)

ii) Is empty = 0(1)

v) add cq = 0(1)

vi) detete cq = 0(1)

Conclusion

Thus, implemented queue operations assignment using array concept.

FAQ's.

Ans il Advantages:

- In tinear queue, we can easily fetch out peak value.

Insertion and deletion points are always fixed.

Organizes data in simple linear order.

Diadvantages,

Requires more memory spoice inefficient way of whilization of memory. can't insert data at any particular point.

	Page No Date
Ans a)	Advantages
	Can insert data at any particular point Requires less memory space
_	Requires less memory space Efficient way of utilization of memory.
	Disadvantages.
_	can't fetch peak value as it is circular
_	No of elements you store one limited to queue
	length.
	The most common occurrence of queue in computer application is scheduling of jobs. Queues can be used as buffer on mpg players and portable CD players. Used in networking devices like rowers, switches, etc.