PEU 218 Assignment 1

Mohamed Hussien El-Deeb (201900052)

March 9, 2024

${\bf Contents}$

1	Que	Question 1 1.1 Problem																2							
	1.1	Problem																							2
	1.2	Solution																							2
2	Question 2 3 2.1 Problem															3									
	2.1	Problem																							3
		Solution																							
3	Question 3															5									
	3.1	Problem																							5
		Solution																							6
4	Question 4 4.1 Problem															7									
	4.1	Problem																							7
		Solution																							
5	Question 5 5.1 Problem															9									
	5.1	Problem																							9
	5.2																								

1.1 Problem

Given point P(1,2,3) and vector $\vec{A} = \hat{i} + \hat{j}$, find point Q on the x-axis such that $\overrightarrow{PQ} \ \& \ \vec{A}$ are orthogonal.

1.2 Solution

$$\overrightarrow{Q-P}\cdot \overrightarrow{A}=0$$

$$(q_1 - p_1)a_1 + (q_2 - p_2)a_2 + (q_3 - p_3)a_3 = 0$$

Since Q is on the x-axis, $q_2 = 0$.

$$(q_1 - 1)1 + (0 - 2)1 + (q_3 - 3)0 = 0$$

$$\therefore q_1 = 3$$

$$Q = (3, 0, 0)$$

Figure 1: The point Q is on the x-axis.[2]

2.1 Problem

Find the shortest distance between point P(3,1,2) and the plane given by x-2y+z=5.

2.2 Solution

$$d = |(\vec{P} - \vec{A}) \cdot \hat{n}|$$

$$\vec{P} = \langle 3, 1, 2 \rangle$$

We could substitute in the plane equation to get \vec{A} .

$$\vec{A} = \langle 0, 0, 5 \rangle$$

$$\widehat{\boldsymbol{n}} = \frac{\overrightarrow{n}}{|\overrightarrow{n}|} = \frac{\langle 1, -2, 1 \rangle}{\sqrt{6}}$$

$$d = \frac{1}{\sqrt{6}} \left| \sum_{i} (P_i - A_i) n_i \right| = \frac{|1(3-0) - 2(1-0) + 1(2-5)|}{\sqrt{6}} = \frac{2}{\sqrt{6}}$$

Figure 2: The shortest distance between the point P and the plane.[2]

3.1 Problem

Find a unit vector that is orthogonal to the line

$$x = 2t - 1, y = -t - 1, z = t + 2$$

and the vector $\hat{i} - \hat{j}$.

3.2 Solution

From the parametric equations of the line, we can get the direction vector of the line.

$$\mu = \langle 2, -1, 1 \rangle$$

$$\mu \times \langle 1, -1, 0 \rangle = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 1 & -1 & 0 \end{vmatrix}$$

$$= \hat{i} + \hat{j} + -\hat{k}$$

$$\vec{x} = \pm \langle 1, 1, -1 \rangle$$

Figure 3: The unit vector that is orthogonal to the line and the vector $\hat{i} - \hat{j}$.[2]

4.1 Problem

A line is given by $\vec{r} = \vec{a} + \lambda \vec{b}$ where $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{b} = 4\hat{i} + 5\hat{j} + 6\hat{k}$. Find the coordinates of the point at which the line intersects the plane 2x + y + 3z = 6.

4.2 Solution

Plane normal is

$$\vec{n} = \langle 2, 1, 3 \rangle$$

We can use point on the line that satisfies the plane equation and solve for λ .

$$\vec{r} \cdot \vec{n} = \vec{a} \cdot \vec{n} + \lambda \vec{b} \cdot \vec{n}$$

$$= (1 * 2 + 2 * 1 + 3 * 3) + \lambda(4 * 2 + 5 * 1 + 6 * 3) = 13 + 31\lambda = 6$$

$$\lambda = -\frac{7}{31}$$

$$\vec{r} = \vec{a} + \lambda \vec{b} = \langle 1, 2, 3 \rangle - \frac{7}{31} \langle 4, 5, 6 \rangle = \left\langle \frac{3}{31}, \frac{22}{31}, \frac{48}{31} \right\rangle$$

Figure 4: The point at which the line intersects the plane.[2]

5.1 Problem

Starting with the vector quadruple product

$$(\vec{A}\times\vec{B})\times(\vec{C}\times\vec{D})$$

Show that \vec{D} can be expressed as a linear combination of $\vec{A}, \vec{B}, \vec{C}$.

5.2 Solution

let
$$\vec{V} = (\vec{A} \times \vec{B})$$

$$\vec{X} = \vec{V} \times (\vec{C} \times \vec{D})$$

Using [BAC - CAB] identity

$$\vec{V}\times(\vec{C}\times\vec{D})=\vec{C}(\vec{V}\cdot\vec{D})-\vec{D}(\vec{V}\cdot\vec{C})$$

$$\vec{X} = \vec{C}(\vec{A} \times \vec{B} \cdot \vec{D}) - \vec{D}(\vec{A} \times \vec{B} \cdot \vec{C})$$

Similarly we could express \vec{X} as a linear combination of \vec{A} and \vec{B} as

$$\vec{X} = \vec{B}(\vec{C} \times \vec{D} \cdot \vec{A}) - \vec{A}(\vec{C} \times \vec{D} \cdot \vec{B})$$

Equating the two expressions for \vec{X} we get

$$\vec{D} = \frac{\vec{C}(\vec{A} \times \vec{B} \cdot \vec{D}) - \vec{B}(\vec{C} \times \vec{D} \cdot \vec{A}) + \vec{A}(\vec{C} \times \vec{D} \cdot \vec{B})}{\vec{A} \times \vec{B} \cdot \vec{C}}$$

References

- $[1]\,$ M.H. El-Deeb. PEU-218 Assignments.
- [2] M.H. El-Deeb. PEU-218 Assignments (Python).