

Adriano Batista Prieto

Autovalores com Algoritmos Genéticos

Limeira

2015

UNIVERSIDADE ESTADUAL DE CAMPINAS Faculdade de Tecnologia

Adriano Batista Prieto

Autovalores com Algoritmos Genéticos

Dissertação apresentada à Faculdade de Tecnologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Mestre em Tecnologia, na área de Tecnologia e Inovação.

Orientador: Prof. Dr. Vitor Rafael Coluci

Este exemplar corresponde à versão final da tese defendida pelo aluno Adriano Batista Prieto, e orientada pelo Prof. Dr. Vitor Rafael Coluci

Limeira

Agradecimentos

Agradecimentos aqui.

Resumo

Colocar o resumos aqui.

 ${\bf Palavra\text{-}chave} \ 1; \ palavra\text{-}chave} \ 2; \ palavra\text{-}chave} \ 3.$

Abstract

Put abstract here.

Keywords: keyword 1; keyword 2; keyword 3.

Lista de ilustrações

Figura 1 –	Fluxograma do algoritmo genético típico	16
Figura 2 -	Exemplo de instabilidade do <i>fitness</i> . Enquanto em (a) o <i>fitness</i> cresce	
	de maneira contínua e depois se estabiliza, em (b) há alguns pontos	
	onde onde o comportamento da nota sofre uma mudança razoavelmente	
	brusca. Gráficos retirados de (NANDY et al., 2004)	18
Figura 3 -	Gráfico da função $y(x) = \sin(x)/x$ para $x = [-20, 20]$. Se desejamos	
	encontrar os máximos (global ou locais), uma boa função de avaliação	
	seria a própria $y(x)$	19
Figura 4 -	Gráfico da função $y(x) = -x^2 + 36$ para $x = [-1, 1]$	21
Figura 5 -	Roleta criada a partir dos dados da tabela 6. Note que o indivíduo $x =$	
	7 foi descartado porque sua avaliação foi um número menor do que zero.	23
Figura 6 -	Exemplo de código em Linguagem C para o método da Roleta	23
Figura 7 –	Exemplo de função em Linguagem C que implementa a Seleção por	
	Torneio.	26
Figura 8 -	Definição de Ponto de Corte e o Crossover de ponto único. Com esse	
	operador conseguimos gerar até dois filhos para cada par de pais	26
Figura 9 –	Exemplo do <i>crossover</i> entre os indivíduos 011 e 101 para o primeiro	
	ponto de corte.	28
Figura 10 –	Código para a Reprodução. Nesse exemplo o algoritmo gera apenas um	
	descendente. Detalhes da função CrossOver() estão na figura 11	29
Figura 11 –	Detalhes da função CrossOver()	30
Figura 12 –	Representação gráfica de uma mutação. Nesse exemplo a mutação no	
	último bit levou à solução ótima para o máximo da função $y(x)-x^2+36$.	31
Figura 13 –	Exemplo de código para o operador Mutação	32
Figura 14 –	Comportamento do fitness $f_i = e^{-\lambda \ \nabla \rho_i\ ^2}$ para N = 10. Na primeira	
	geração o melhor <i>fitness</i> é pequeno, aproximadamente 0,1, cresce rapi-	
	damente e a partir da décima geração está próximo de 1	37
Figura 15 –	Comportamento de ρ (Quociente de Rayleigh) para uma matriz de	
	Coope—Sabo de ordem 10	37
Figura 16 –	Comportamento de ρ (Quociente de Rayleigh) para uma matriz de	
	Coope—Sabo de ordem 10	38
Figura 17 –	Comportamento do <i>fitness</i> para as execuções zero do Hamiltoniano de	
	ordem 10, semente 1445738835. A primeira usa o fitness $f_i = e^{-\lambda(\rho_i - E_L)^2}$,	
	que chega ao autovalor mínimo, enquanto a segunda utiliza o $f_i =$	
	$e^{-\lambda\ \nabla\rho_i\ ^2}$	45

Figura 18 –	Comportamento do ρ para as execuções zero do Hamiltoniano de ordem	
	10, semente 1445738835. A primeira usa o fitness $f_i = e^{-\lambda(\rho_i - E_L)^2}$, que	
	chega ao autovalor mínimo, enquanto a segunda utiliza o $f_i = e^{-\lambda \ \nabla \rho_i\ ^2}$.	46
Figura 19 –	Execução para a semente 1445738835. E_L um pouco acima de E_0 no	
	fitness $f_i = e^{-\lambda(\rho_i - E_L)^2}$	46
Figura 20 –	Execução para a semente 1445738835. E_L muito acima de E_0 no fitness	
	$f_i = e^{-\lambda(\rho_i - E_L)^2}$	47
Figura 21 –	Execução para a semente 1445738835. E_L muito abaixo de E_0 no fitness	
	$f_i = e^{-\lambda(\rho_i - E_L)^2}$. Até geração 500.	47
Figura 22 –	Execução para a semente 1445738835. E_L muito abaixo de E_0 no fitness	
	$f_i = e^{-\lambda(\rho_i - E_L)^2}$. Geração entre 30.000 e 40.000.	48
Figura 23 –	Execuções $N = 10$	58
Figura 24 –	Execuções $N = 20$	59
Figura 25 –	Execuções $N = 30$	60
	Execuções $N = 40$	61
Figura 27 –	Execuções para N = 10 com o fitness $f_i = e^{-\lambda(\rho_i - E_L)^2}$	63
_	Execuções para N = 20 com o fitness $f_i = e^{-\lambda(\rho_i - E_L)^2}$	64
Figura 29 –	Execuções para N = 30 com o fitness $f_i = e^{-\lambda(\rho_i - E_L)^2}$	65
Figura 30 –	Execuções para N = 40 com o fitness $f_i = e^{-\lambda(\rho_i - E_L)^2}$	66
Figura 31 –	Execuções com o E_L um pouco acima de E_0 no fitness $f_i = e^{-\lambda(\rho_i - E_L)^2}$.	
	Semente 1445738835, $N = 10$	68
Figura 32 –	Execuções com o E_L um pouco abaixo de E_0 no fitness $f_i = e^{-\lambda(\rho_i - E_L)^2}$.	
	Semente 1445738835, $N = 10$	69
Figura 33 –	Execuções com o E_L muito acima de E_0 no fitness $f_i = e^{-\lambda(\rho_i - E_L)^2}$.	
	Semente 1445738835, $N = 10$	70
Figura 34 –	Execuções com o E_L muito abaixo de E_0 no fitness $f_i = e^{-\lambda(\rho_i - E_L)^2}$.	
	Semente 1445738835, $N = 10$	71

Lista de tabelas

Tabela 1 –	Sistemas Naturais x Sistemas Artificiais	15
Tabela 2 –	Exemplo de representação cromossomial	17
Tabela 3 –	Valores de x gerados aleatoriamente para a função $y(x) = \sin(x)/x$. A	
	própria $y(x)$ pode ser usada como função de avaliação	20
Tabela 4 –	Representação cromossomial para os pontos $x=0$ até $x=7$ dentro do	
	problema de máximo da função $y(x) = -x^2 + 36$	21
Tabela 5 –	População inicial para o problema de máximo da função $y(x) = -x^2 +$	
	36. O valor de máximo ocorre em $\mathbf{x}=0,$ ou $\mathbf{x}=000$ na representação	
	binária	21
Tabela 6 –	Todas as notas dos indivíduos para o exemplo da seção 3.6.1. Lembre-	
	se que para obter máximo da função $y(x) = -x^2 + 36$ podemos utilizar,	
	com algumas restrições, a própria $y(x)$ como função de avaliação $f_c(x)$	
	(seção 3.5.1)	22
Tabela 7 –	Valores obtidos aleatoriamente para $\textit{vlrRoleta}$ e os respectivos indi-	
	víduos selecionados. Note que o cromosso com $\mathit{fitness}$ zero foi eliminado	
	e o <i>fitness</i> médio aumentou	25
Tabela 8 –	Geração antes e depois do <i>Crossover</i> . O melhor indivíduo dos descen-	
	dentes possui o melhor <i>fitness</i> entre todas as gerações anteriores. Além	
	disso, o fitness médio (< f >) também aumentou	29
Tabela 9 –	Representação cromossomial para os indivíduos que passaram pela Se-	
	leção e pelo <i>Crossover</i>	30
	Execuções para matrizes de Coope—Sabo	42
Tabela 11 –	Execuções novo Fitness	44
Tabela 12 –	Variando E_L para a execução da semente 1445738835. Os tipos de teste	
	são: tipo 1: E_L um pouco acima de E_0 ; tipo 2: E_L um pouco abaixo	
	de E_0 ; tipo 3 : E_L muito acima de E_0 ; tipo 4 : E_L muito abaixo de E_0 .	48
Tabela 13 –	Cinco execuções para cada tipo de teste de variação de E_L em torno	
	de E_0 no fitness $f_i = e^{-\lambda(\rho_i - E_L)^2}$	49
Tabela 14 –	Lista de autovalores para matrizes de Coope—Sabo de ordem 10, 20,	
	30 e 40	56

Sumário

1	Intr	<mark>odução</mark>
	1.1	Autovalores e o Quociente de Rayleigh
	1.2	Algoritmos Genéticos
		1.2.1 ONEMAX
		1.2.2 Robocode com GA
	1.3	NVidia CUDA
	1.4	Objetivos
2	Aut	ovalores e o Quociente de Rayleigh
3	Alg	oritmos Genéticos
	3.1	Aspectos históricos
	3.2	Terminologia
	3.3	Fluxograma de um algoritmo genético simples
	3.4	Representação Cromossomial
	3.5	Função de Avaliação
		3.5.1 Exemplo: Máximos de $y(x) = \sin(x)/x$
	3.6	Seleção
		3.6.1 Exemplo: Variabilidade Genética
		3.6.2 O método da Roleta (Roulette Wheel)
		3.6.3 Exemplo: máximo da função $y(x) = -x^2 + 36$
		3.6.4 Seleção por torneio
	3.7	Reprodução (<i>Crossover</i>)
		3.7.0.1 Exemplo: crossover para $y(x) = -x^2 + 36$
	3.8	Mutação
4	Mat	teriais e Métodos
	4.1	CUDA
	4.2	Método
	4.3	Framework/Programa Serial
5	Res	ultados e discussão
	5.1	Problemas com o mínimo global
	5.2	Outro fitness para encontrar o mínimo global
	5.3	Por que o λ deve ser escolhido cuidadosamente?
	5.4	Equação empírica para o λ
	5.5	A mistura de $(\rho - \rho_0)^2$ com $\nabla \rho$ não leva a melhores resultados 51
	5.6	$f_i = e^{[-\lambda \nabla \rho]}$ é mais rápido do que $f_i = e^{[-\lambda (\nabla \rho)^2]}$
	5.7	Resultados preliminares na GPU
		5.7.1 ONEMAX na GPU

5.7.2	Método paralelizado (versão atual, com ganho de 1,4	52
Referências .		53
Apêndices		54
APÊNDICE	A Lista de autovalores	55
APÊNDICE	B Execuções para o <i>fitness</i> $f_i = e^{-\lambda \nabla \rho ^2}$	57
APÊNDICE	C Execuções para o <i>fitness</i> $f_i = e^{-\lambda(\rho_i - E_L)^2}$	62
APÊNDICE	D Execuções para a variação de E_L em torno de E_0	67
Anexos		72
ANEXO A	Título do Anexo X	73
ANEXO B	Título do Anexo Y	74

1 Introdução

1.1 Autovalores e o Quociente de Rayleigh

1.2 Algoritmos Genéticos

1.2.1 ONEMAX

Problema 1: ONEMAX, considerado o "Hello World" dos algoritmos genéticos.

Definir objetivo do problema.

Representação cromossomial: zeros e uns.

Fitness: soma dos genes.

Seleção: por roleta

Crossover: ponto único

Mutação: simples

Gráfico do comportamento do fitness.

Listar última geração, mostrando que o algoritmo chegou na solução.

1.2.2 Robocode com GA

Resumir o relatório final da disciplina de Inteligência Artificial.

1.3 NVidia CUDA

1.4 Objetivos

2 Autovalores e o Quociente de Rayleigh

 $\label{eq:linear necessária para o entendimento do método e da discussão.$

3 Algoritmos Genéticos

O objetivo desse capítulo é dar uma breve introdução aos Algoritmos Genéticos (GAs). Apesar dos GAs terem como base uma teoria matemática formal, o foco está nos aspectos práticos. Espero que o leitor que nunca teve contato com GA possa ter uma boa ideia de seu funcionamento utilizando pouco tempo. Os mais experientes em GA ou outras técnicas de Computação Evolutiva podem pular o capítulo sem prejuízo.

3.1 Aspectos históricos

Da-se o nome Algoritmos Genéticos (GAs) a uma técnica de busca baseada numa metáfora da Evolução. Na Natureza muitos animais competem entre si por recursos limitados, e os vencedores de uma dada população têm mais change de procriação. Seu êxito vem das catacterísticas que os tornam melhor adaptados para os desafios apresentados pelo ambiente onde vivem. Seus filhos levarão essas características adiante.

Esse mecanismo de seleção dos melhores foi descoberto por Darwin, que o chamou de Seleção Natural. A partir dele foi possível explicar como a natureza gera organismos complexos e capazes de solucionar problemas difíceis. Darwin não sabia como as características eram transmitidas e como novas surgiam.

Fazendo experimentos com plantas, Mendel determinou como se dá a transmissão. Há uma unidade básica de informação associada às características dos organismos, que ele chamou de Gene. Definiu como *Fenótipo* as características externas de um organismo, e *Genótipo* o conjunto de genes associados a um dado fenótipo. Na reprodução sexuada os filhos possuem uma mistura entre os genes do pai e da mãe. Por isso, não são idênticos a nenhum dos seus progenitores, mas são semelhantes a eles.

Sabe-se hoje que toda a informação de um organismo está codificada no DNA, que contém os genes. A combinação entre os genes dos pais acontece durante a reprodução, num evento chamado de Cruzamento Cromossômico, ou *Crossing-Over*, onde há troca de informação entre os cromossomos. Durante a cópia do DNA ocorrem, com baixíssima probabilidade, erros eventuais, fazendo com que o filho tenha um novo atributo.

Se a nova característica for muito boa, após várias gerações ela estará espalhada por toda população. O indivíduo será beneficiado na competição e provavelmente se reproduzirá mais, assim como seus filhos. A cada nova geração, mais indivíduos possuirão o novo fenótipo, perpetuando a transmissão dos genes assossiados.

Apesar de não ter sido o primeiro a utilizar ideias da Evolução em Ciência da Computação, John Holland é considerado o pai dos Algoritmos Genéticos. Ele estudou

formalmente, do ponto de vista matemático, a adaptação na natureza e propôs uma heurística baseada nesse estudo. Seu objetivo era simular a Evolução em computadores. Em 1975 publicou o livro *Adaptation in Natural and Artificial Systems*. A partir de então muitos passaram a usar GAs na solução de problemas de diversas áreas.

3.2 Terminologia

Os GAs usam terminologia baseada na Seleção Natural e Genética, conforme tabela abaixo:

Sistema Natural	Sistema Artificial
gene	caractere
alelo	valor do caractere
cromossomo	cadeia de caracteres (indivíduo)
locus	posição do gene na cadeia de caracteres
ambiente	problema a ser solucionado

Tabela 1 – Sistemas Naturais x Sistemas Artificiais

3.3 Fluxograma de um algoritmo genético simples

O algoritmo genético mais básico é composto por cinco processos (figura 1)

- Gerar população inicial: População inicial gerada aleatoriamente.
- Avaliação: Cada indivíduo recebe uma nota. Maiores notas indicam indivíduos mais aptos (soluções mais próximas do objetivo). Esta medida é conhecida como Fitness.
- Teste do critério de parada: Com todos os indivíduos avaliados, é possível verificar se algum deles representa uma boa solução e se o algoritmo pode ser finalizado. Um número máximo de gerações também pode ser utilizado.
- Seleção: A Seleção escolhe os sobreviventes da população atual que comporão a próxima população. Um bom processo de seleção atribui maior chance aos indivíduos com melhores *fitness*.
- Reprodução (*crossover*): Com probabilidade alta (> 70%), indivíduos são selecionados aleatoriamente e geram filhos através da combinação de seus genes.
- Mutação: Com baixíssima probabilidade (≈ 1%), genes são escolhidos para sofrer alterações em seus valores.

Figura 1 – Fluxograma do algoritmo genético típico.

3.4 Representação Cromossomial

O cromossomo é uma cadeia de caracteres (genes) de comprimento L, que representa um indivíduo candidato a solução do problema proposto.

Esta representação compreende parte de grande importância num GA, pois é a partir desta estrutura que os indivíduos serão avaliados e também sofrerão a atuação dos operadores de seleção e variação (*crossover* e mutação). Uma boa codificação do cromossomo influi diretamente no sucesso da aplicação de um GA.

Uma boa definição segue os princípios abaixo (LINDEN, 2008):

- Deve ser a mais simples possível.
- Soluções proibidas não devem ser representadas.
- Condições de qualquer tipo devem estar implícitas na representação.

A representação binária introduzida por Holland é a mais comum entre os GAs. Um dos motivos é facilitar a utilização dos operadores genéticos e ter fácil manipulação.

Caso se faça necessário, um cromossomo pode conter mais de uma variável em sua cadeia, sendo que estas serão concatenadas para representar o indivíduo. Na tabela 2 é exibido um exemplo com três possíveis indivíduos com cromossomo multivariável (variáveis x_1 e x_2) de comprimento L=5 e alelos que variam entre 1 e 0. Porém, é

possível implementar soluções com k diferentes alelos para cada locus do cromossomo, contudo a dificuldade em manipular esta estrutura será maximizada.

Tabela 2 – Exemplo de representação cromossomial

Indivíduo	x_1	x_2
1	10010	01101
2	00110	11100
3	11101	01001

Os exemplos dessa seção utilizam representação binária. Mas pode-se utilizar outros tipos, como decimal, inteira, símbolos etc.

3.5 Função de Avaliação

A função de avaliação tem um papel fundamental em um algoritmo genético. Junto com a representação cromossomial, ela é o elo entre o algoritmo e o problema que tentamos resolver no mundo real. Aliás, geralmente a principal diferença entre dois GAs reside na função de avaliação. Ela deve conter todo o conhecimento do problema, incluindo suas condições e restrições.

Mas, afinal, o que \acute{e} a função de avaliação? Uma vez definido o problema e, em seguida, o objetivo do algoritmo, ela representa nesse contexto a qualidade de um indivíduo. Em outras palavras, através da função de avaliação devemos ser capazes de identificar se um cromossomo leva ou não à uma boa solução. Assim, ela deve refletir a meta que desejamos atingir.

Ao aplicarmos a função de avaliação¹ em um indivíduo obtemos uma nota associada aquele cromossomo. Essa nota é um número, um escalar, que pode ser discreto (inteiro) ou contínuo (real):

$$f_i = f_c(\text{cromossomo}_i) \tag{3.1}$$

Então, já podemos apresentar a primeira característica de uma função de avaliação: quanto maior a nota, melhor o indivíduo. Pensando em termos da Seleção Natural de Darwin, maiores notas exprimem indivíduos mais adaptados ao ambiente (metas). Além disso, na equação 3.1, n é uma métrica que deve identificar o quão próximo um cromossomo está de uma boa solução.

Por exemplo, suponha que o cromossomo c_1 tem nota $n_1=10$, enquanto $n_2=9,7$ é atribuída ao cromossomo c_2 . Imaginando hipoteticamente que uma boa solução

Essa função também pode ser chamada de Função Custo, por isso o f_c na equação 3.1.

está próxima de $n_{boa} = 11$, podemos concluir que ambos são bons, mas c_1 é melhor. Sintetizando, uma boa função de avaliação deve quantificar, dentre boas soluções, quais são as melhores.

Outro número importante é o *fitness* médio (< f >), ou seja, a razão entre a soma das notas de todos os indivíduos e o número de indivídios na geração (N):

$$\langle f \rangle = \frac{\sum_{i=1}^{N} f_i}{N} \tag{3.2}$$

Quando não sabemos qual será a maior nota possível para o nosso problema, temos a opção de usar a estabilidade de < f> como critério de parada. Se a média das notas não muda muito com o passar do tempo, podemos concluir que o material genético disponível indivíduo a indivíduo é muito semelhante, e essa ausência de variabilidade faz com que uma geração futura se pareça com a passada. Em linguagem mais técnica, estamos confinados a uma região específica no espaço de soluções.

Com relação ao comportamento da função de avaliação, é desejável que seja suave e regular. Se um indivíduo é levemente superior a outro, sua nota deve ser apenas um pouco maior. Infelizmente, na maioria das vezes isso não acontece, e o impacto pode surgir em forma de instabilidade do *fitness* médio. Na figura 2 encontramos dois exemplos.

Figura 2 – Exemplo de instabilidade do *fitness*. Enquanto em (a) o *fitness* cresce de maneira contínua e depois se estabiliza, em (b) há alguns pontos onde onde o comportamento da nota sofre uma mudança razoavelmente brusca. Gráficos retirados de (NANDY *et al.*, 2004).

Na próxima seção discutiremos um exemplo de definição de uma função de avaliação.

3.5.1 Exemplo: Máximos de $y(x) = \sin(x)/x$

A função

$$y(x) = \frac{\sin(x)}{x} \tag{3.3}$$

aparece em várias áreas da matemática. Observando seu gráfico na figura 3, vemos que ela tem um máximo global em x=0 e vários máximos locais. Imaginando que quiséssemos obter os valores de x onde esses máximos aparecem, como definir uma boa função de avaliação?

Figura 3 – Gráfico da função $y(x) = \sin(x)/x$ para x = [-20, 20]. Se desejamos encontrar os máximos (global ou locais), uma boa função de avaliação seria a própria y(x).

Nesse caso podemos utilizar a própria y(x) (equação 3.3), pois ela possui boas características. Pelo gráfico 3 concluímos que ela é suave e, se compararmos dois valores bem próximos de x, o resultado de y(x) também é. Por exemplo, f(0,5) = 0,9589 e f(0,51) = 0,9572, evidenciando que o ponto x = 0,5 é um indivíduo levemente melhor.

Se escolhermos vários valores para x aleatoriamente, basta aplicar a y(x) e selecionar os maiores². Na tabela 3 listamos cinco pontos como exemplo, assim como a soma dos resultados de y(x). Como veremos na próxima seção, os pontos 01 e 04 têm, respectivamente, 0,455/0,680=66,9% e 0,124/0,680=18,2% de chance de serem selecionados no processo de Seleção.

Em geral deve-se impor algumas restrições na função de avaliação. Veremos na seção 3.6 que valores negativos são proibidos.

Tabela 3 – Valores de x gerados aleatoriamente para a função $y(x) = \sin(x)/x$. A própria y(x) pode ser usada como função de avaliação.

Indivíduo	x	y(x)
01	2	$0,\!455$
02	3	0,047
03	-9	0,046
04	-8	0,124
05	19	0,008
Soi	0,680	

3.6 Seleção

A parte do algoritmo genético que chamamos de *Seleção*³ tem como objetivo simular o processo de Seleção Natural da Evolução. Basicamente, os mais aptos, leia-se "com maior *fitness*", devem gerar mais descendentes.

Porém, exatamente como na natureza, os indivíduos avaliados com notas menores não devem ser totalmente descartados, e há bons motivos para isso. Em primeiro lugar, esses cromossomos, apesar de mal avaliados, podem conter informação genética importante, senão fundamental, para uma boa solução. Em segundo, a seleção apenas dos melhores, chamada de Elitismo, pode levar à uma convergência precose e com soluções não tão boas.

3.6.1 Exemplo: Variabilidade Genética

Como exemplo da importância da variabilidade genética, imagine o problema de encontrar o valor máximo da função $y(x) = -x^2 + 36$ no intervalo (discreto) x = [0, 7]. Assim, uma representação cromossomial binária com 3 *bits* é suficiente, pois 0 = 000 e 7 = 111 (tabela 4).

Vemos na figura 4 que a resposta correta é x=0, cujo valor é f(0)=36. Suponha agora que os dados da tabela 5 representem a população inicial do algoritmo. Se escolhêssemos apenas os indivíduos com as melhores notas, ou seja, x=2 e x=3, descartaríamos o indivíduo x=5 e perderíamos uma importante característica genética: o zero no bit central.

O que aconteceria depois? O mais próximo do valor máximo que o algoritmo conseguiria chegar seria y(2) = 32, independentemente do *crossover* entre os indivíduos restantes. Portanto, esse resultado final seria considerado uma **Convergência Genética** prematura. Em outras palavras, se apenas os melhores indivíduos se reproduzirem, as

Alguns autores chamam esse módulo de Seleção de Pais, enquanto outros o definem exatamente como na biologia, Seleção Natural. Para evitar mal entendidos, optamos por chamá-lo apenas de Seleção.

Tabela 4 -	- Representação cromossomial para os pontos $x=0$ até $x=7$ dentro do pro-
	blema de máximo da função $y(x) = -x^2 + 36$.

x (decimal)	x (representação binária)
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Figura 4 – Gráfico da função $y(x) = -x^2 + 36$ para x = [-1, 1].

Tabela 5 – População inicial para o problema de máximo da função $y(x)=-x^2+36$. O valor de máximo ocorre em x=0, ou x=000 na representação binária.

\mathbf{x} (decimal)	x (binário)
2	010
7	111
5	101
3	011

novas gerações chegarão rapidamente a um estado em que os cromossomos são muito semelhantes entre si, minando a diversidade genética e impedindo que a evolução prossiga satisfatoriamente.

Vários métodos foram criados para executar a Seleção de maneira coerente, ou seja, privilegiando os indivíduos com alta função de avaliação, mas não desprezando totalmente os de menor nota. Dois deles serão apresentados: o método da Roleta e a Seleção por Torneio.

3.6.2 O método da Roleta (Roulette Wheel)

A ideia do método é simular uma roleta parecida com as utilizadas em cassinos. Entretando, há duas diferenças. Enquanto na roleta tradicional temos o mesmo tamanho de fatia para cada número, na roleta para os algoritmos genéticos a fatia que cada indivíduo ganha é proporcional à sua avaliação.

Uma vez calculados os ângulos associados a cada cromossomo, "giramos a roleta" e selecionamos o indivíduo. Nesse ponto reside a segunda diferença. Nos cassinos, o número é selecionado por uma esfera que também está em movimento. Já nos algoritmos genéticos, o cromossomo é selecionado por um marcador fixo em uma roleta.

Na tabela 6 temos os valores dessas fatias (em porcentagem e graus) para o exemplo da seção 3.6.1. Note que o indivíduo 2 foi descartado, e esse é um ponto muito importante no método da roleta. Indivíduos com avaliações negativas não podem ocupar a roleta, e o motivo é simples: notas negativas levam a pedaços negativos na roleta, como, por exemplo, - 15% ou -125° .

Tabela 6 – Todas as notas dos indivíduos para o exemplo da seção 3.6.1. Lembre-se que para obter máximo da função $y(x) = -x^2 + 36$ podemos utilizar, com algumas restrições, a própria y(x) como função de avaliação $f_c(x)$ (seção 3.5.1).

Indivíduo	x	y(x)	$\mathbf{f}_c(\mathbf{Indivíduo})$	Ocupação (%)	Ângulo (°)
01	2	32	32	46	165
02	7	-13	0	0	0
03	5	11	11	16	57
04	3	27	27	39	139
Tota	is:		70	100	360

Um exemplo em Linguagem C de como implementar tal roleta encontra-se na figura 6. Na linha 226 um for é definido de modo que as suas instruções sejam executadas numIndividuos vezes. Dessa maneira, a população de indivíduos mantêm-se fixa, e podemos trabalhar com vetores constantes. A próxima linha de código armazena em vlrRoleta um número aleatório entre 0 e a soma das notas de todos os indivíduos (sumFitness).

Figura 5 – Roleta criada a partir dos dados da tabela 6. Note que o indivíduo x=7 foi descartado porque sua avaliação foi um número menor do que zero.

Essa soma também é exibida na tabela 6. A variável *iSelecionado* armazenará o índice do indivíduo selecionado.

No laço do ... while a roleta começa de fato a girar. A partir do primeiro indivíduo, somamos o fitness de cada um em sumFitness. Quando essa variável atingir um valor maior do que vlrRoleta, o indivíduo com índice iSelecionado na geração atual será transferido para a posição iIndividuo da próxima geração (linha 238 da figura 6).

Apesar do caráter randômico do método, ele prevê, estatisticamente, que a quantidade de vezes que um cromossomo aparecerá na próxima geração é proporcional à sua nota. Portanto, não despreza completamente os indivíduos com menor *fitness*, ao mesmo tempo que privilegia os mais aptos (LINDEN, 2008).

```
225
      // Seleção via método da Roleta
226
      for (iIndividuo = 0; iIndividuo < numIndividuos; iIndividuo++) {</pre>
227
228
          vlrRoleta = Randomico(0,sumFitness);
229
          iSelecionado = -1;
230
          sumRoleta = 0;
231
232
          do {
              iSelecionado++;
233
234
              sumRoleta = sumRoleta + geracao[0].individuo[iSelecionado].fitness;
235
          } while (sumRoleta <= vlrRoleta);</pre>
236
237
238
          geracao[1].individuo[iIndividuo] = geracao[0].individuo[iSelecionado];
239
     };
```

Figura 6 – Exemplo de código em Linguagem C para o método da Roleta.

3.6.3 Exemplo: máximo da função $y(x) = -x^2 + 36$

Usaremos os dados da tabela 6 para montar a roleta da figura 5 e mostrar, passo a passo, o funcionamento do método.

Como temos quatro indivíduos na população,

$$numIndividuos = 4.$$

Devemos obter um número aleatrório entre 0 e 70 (soma dos fitness). Imagine que esse primeiro número tenha sido 65:

$$vlrRoleta = 65.$$

Entramos no for e iSelecionado é inicializada com -1:

$$iSelecionado = -1.$$

Já dentro do laço **do ... while** o primeiro indivíduo na geração é o x=2, com *fitness* igual a 32. Então sumRoleta passa a ser também 32, mas continua menor do que vlrRoleta:

$$sumRoleta = 32 < vlrRoleta = 65.$$

Ainda não é possível sair do laço $do \dots while$, e os passos são repetidos para o segundo indivíduo, x = 7. Entretanto, esse cromossomo obteve nota nula na função de avaliação, fazendo com que o valor de sumRoleta não seja alterado pela soma da linha 234 (figura 6).

O terceiro cromossomo possui nota 11, fazendo com que ainda permaneçamos dentro do laço:

$$sumRoleta = 43 < vlrRoleta = 65.$$

Chegamos ao último indivíduo da população. Seu *fitness* é 27, permitindo a seleção:

$$sumRoleta = 70 > vlrRoleta = 65.$$

Na tabela 7 encontra-se uma comparação entre a geração inicial e final após a seleção via método da roleta. Os valores de vlrRoleta foram obtidos utilizando a função ALEATÓRIOENTRE do Microsoft Excel.

Tabela 7 – Valores obtidos aleatoriamente para *vlrRoleta* e os respectivos indivíduos selecionados. Note que o cromosso com *fitness* zero foi eliminado e o *fitness* médio aumentou.

Geração inicial		Roleta	Geração final	
X	fitness (n)	vlrRoleta	X	fitness (n)
2	32	65	3	27
7	0	27	2	32
5	11	70	3	27
3	27	41	5	11
< f > = 17.5		-	<	f > = 24,25

Dois fatos interessantes aconteceram. O indivíduo com fitness zero foi eliminado conforme o esperado. Ele não ocupou espaço na roleta e, obviamente, não poderia participar do processo de seleção. Além disso, o fitness médio (< f >) da nova população é superior ao da anterior, indicando que a Seleção cumpriu o seu papel em manter os mais aptos.

3.6.4 Seleção por torneio

Nesse tipo de seleção k indivíduos são selecionados aleatoriamente. O que possui maior fitness vence e é levado para a próxima geração. O parâmetro k é chamado de **Tamanho do Torneio**.

Assim como na Roleta, nada impede que um indivíduo seja escolhido mais de uma vez. Porém, uma desvantagem do Torneio é que o pior indivíduo será escolhido apenas se competir com cópias dele mesmo. Quanto maior o tamanho da população e do torneio, menor é a probabilidade disso acontecer.

O Torneio e a Roleta levam a resultados completamente diferentes, mas há pontos positivos em usar o primeiro. Há indícios empíricos que o Torneio leva a resultados melhores. Ao contrário da Roleta, não há no Torneio favorecimento dos melhores. A única vantagem deles é que, se escolhidos, têm mais chance vencer e prosseguir. Um superindivíduo, aquele com *fitness* muito maior que a média da população, não é privilegiado (LINDEN, 2008). O torneio pode ser facilmente paralelizado.

3.7 Reprodução (*Crossover*)

A Reprodução consiste em combinarmos a informação genética de dois cromossomos da população e gerar um ou mais descendentes, até que o número de indivíduos da nova população seja atingido. Uma maneira simples é através do *Crossover* de ponto único (figura 8).

```
void Selecao_Por_Torneio_serial( struct generation *PopulacaoAntes,
                                 struct generation *PopulacaoDepois,
                                 struct parametros *parametrosGA) {
   unsigned short int iIndividuo;
  char iTamanhoDoTorneio;
  unsigned short int iIndividuo para Torneio;
  struct individual *Individuo;
  double melhorFitness;
  for (iIndividuo = 0; iIndividuo < parametrosGA->numIndividuos; iIndividuo++) {
     melhorFitness = -1.0F;
      for (iTamanhoDoTorneio = 0; iTamanhoDoTorneio < parametrosGA->tamanho_torneio; iTamanhoDoTorneio++)
         iIndividuo para Torneio = Randomico int(0,parametrosGA->numIndividuos);
         Individuo = &PopulacaoAntes->individuo[iIndividuo para Torneio];
         if (Individuo->fitness > melhorFitness) {
            melhorFitness = Individuo->fitness:
            PopulacaoDepois->individuo[iIndividuo] = *Individuo;
         };
     };
} :
```

Figura 7 – Exemplo de função em Linguagem C que implementa a Seleção por Torneio.

Figura 8 – Definição de Ponto de *Corte* e o *Crossover* de ponto único. Com esse operador conseguimos gerar até dois filhos para cada par de pais.

O primeiro passo é escolher dois cromossomos que farão o papel dos pais. Qualquer critério pode ser usado para compor esse par, como indivíduos que são diferentes geneticamente, ou agrupando os melhores e os piores separadamente. Porém, a escolha aleatória é a utilizada na maioria dos livros e aplicações, e, dada a sua simplicidade, será ela a abordada aqui. Tendo os pais em mãos, obtemos também aleatoriamente o ponto de corte, e estamos prontos para a reprodução (figura 8).

Entretanto, voltando à Natureza, sabemos que a reprodução não acontece necessariamente sempre, e o nosso algoritmo deve contemplar esse efeito. Fazemos isso através de uma probabilidade p_c associada à ocorrência do *Crossover*. Digamos que $p_c = 70\%$. Após escolhidos os pais e o ponto de corte, sorteamos um número p_{aux} entre 0 e 1 e, se $p_{aux} <= p_c$, o *Crossover* acontece.

Esse processo deve ser repetido até que o número de indivíduos desejado seja atingido. Nas figuras 10 e 11 há um exemplo de código.

3.7.0.1 Exemplo: crossover para $y(x) = -x^2 + 36$

Para que o funcionamento do operador *crossover* fique claro, faremos uma execução manual do código contido na figura 10. Os indivíduos que utilizaremos serão aqueles selecionados pela Roleta, presentes na tabela 7. Ao final teremos quatro indivíduos provenientes de oito pares de cromossomos.

Entrentando, antes de continuarmos, explicaremos o algoritmo. A segunda linha, 248, inicializa a variável flagCrossOver com zero, ou falso na linguagem C. A função dela é garantir que em todas as iterações do laço for sairemos com um descendente.

Entramos no while e chamamos a função GeraPontoDeCorte(), cujo trabalho é definir o ponto de corte e armazená-lo em uma variável global. Conforme pode ser visto na figura 11, essa variável (PontoDeCorte) é utilizada na função CrossOver().

Cada elemento do vetor *geracao* (linhas 251 e 252) armazena uma população com um número fixo de indivíduos, definida em *numIndividuos*. Então, para obter um cromossomo aleatoriamente, geramos, através da função *Randomico()*, um valor entre zero e (*numIndividuos* - 1). Esse número será a posição do indivíduo escolhido dentro da geração. As variáveis *indPai* e *indMae* receberão os dois indivíduos.

Em **probAux** guardamos um valor entre 0 e 1, obtido novamente de maneira aleatória. Se ele for menor ou igual a **probCrossOver** (probabilidade de ocorrer a Reprodução), os indivíduos **indPai** e **indMae** gerarão um filho, que será armazenado na posição **iIndividuo** da **geracao_auxiliar**. A **flagCrossOver** recebe **verdadeiro**, indicando que temos um descendente e podemos sair do **while**.

Voltemos à execução manual do nosso exemplo. Começamos definindo que a probabilidade de ocorrência da Reprodução será de $70\%^4$:

$$probCrossOver = 0, 7.$$

Através da tabela 7 lembramos que

numIndividuos = 4.

Ao entrar no for a flagCrossOver recebe falso:

$$flagCrossOver = 0.$$

Não há um valor ótimo e absoluto para p_c . Para cada caso deve-se ajustar esse parâmetro e verificar a qualidade das soluções. Podemos afirmar apenas que p_c deve ser alta, entre 70% e 100%.

Assim que chegamos ao *while* a função *GeraPontoDeCorte()* é executada. Como a nossa representação cromossomial possui três genes, há apenas dois pontos de corte possíveis (figura 8). Digamos que a função escolha

$$PontoDeCorte = 1,$$

e que

$$probAux = 0,86.$$

Para esse caso, a condição $probAux \le probCrossOver$ é falsa, obviamente não entramos no if e voltamos ao início do while.

Entretanto, suponha que agora os seguintes valores tenham sido obtidos:

$$PontoDeCorte = 1 e probAux = 0,65.$$

Na linha 251 Randomico (O, numIndividuos) retorna 0, e isso significa que indPai recebeu x=3=011:

$$indPai = 011$$
.

Em seguida, Randomico (O, numIndividuos) retorna 3⁵, e isso implica

$$indMae = 101.$$

Figura 9 – Exemplo do *crossover* entre os indivíduos 011 e 101 para o primeiro ponto de corte.

O resultado da reprodução, veja a figura 9, é armazenado na primeira posição da $geracao_auxiliar$:

$$geracao_auxiliar[0] = 001.$$

Lembre-se que na linguagem C o primeiro elemento de um vetor possui índice i=0. Por isso o número 3 retornou o quarto elemento.

Na geração atual ($Geração\ Final\$ na tabela 7) o indivíduo com melhor fitness é o x=2, enquanto x=5 possui a pior nota e x=3 obteve uma avaliação intermediária. Por causa do caráter completamente aleatório do algoritmo, o melhor indivíduo não foi selecionado para gerar descendentes nessa reprodução. Poderíamos supor, num primeiro momento, que esse não tenha sido o melhor caminho. Entretando, o resultado do crossover entre x=5 e x=3 gerou um indivíduo com o maior fitness desde a geração inicial! Usando x=1 na y(x) chegamos a $f_c(1)=35$, maior do que o f(2)=32.

Tabela 8 – Geração antes e depois do *Crossover*. O melhor indivíduo dos descendentes possui o melhor *fitness* entre todas as gerações anteriores. Além disso, o *fitness* médio (< f >) também aumentou.

Geração Selecionada			Descendentes	
X	fitness (f)	X	fitness (f)	
3	27	1	35	
2	32	5	11	
3	27	3	27	
5	11	3	27	
	< f > = 24,25	<	f > = 25,00	

A tabela 8 apresenta os dados do nosso processo de Reprodução feito manualmente. É interessante notar que, apesar dessa nova geração ter perdido o indivíduo x=2, a maior avaliação da população anterior, o *fitness* médio aumentou. Não só isso, mas também o melhor cromossomo tem uma nota maior do que todos os indivíduos anteriores.

Apesar de simples, o exemplo acima exibiu o papel fundamental do *Crossover* na busca pelas melhores soluções. Na próxima seção mostraremos como funciona a Mutação, essencial para a variabilidade genética.

```
for (iIndividuo = 0; iIndividuo < numIndividuos; iIndividuo++) {</pre>
248
         flagCrossOver = 0;
         while (flagCrossOver = 0) {
249
             GeraPontoDeCorte();
             indPai = geracao[1].individuo[Randomico(0, numIndividuos)];
251
             indMae = geracao[1].individuo[Randomico(0,numIndividuos)];
             probAux = rand();
              if (probAux <= probCrossOver) {</pre>
                  geracao auxiliar.individuo[iIndividuo] = CrossOver(indPai, indMae);
255
256
                  flagCrossOver = 1;
257
             };
         1:
259
     };
```

Figura 10 – Código para a Reprodução. Nesse exemplo o algoritmo gera apenas um descendente. Detalhes da função CrossOver() estão na figura 11.

```
76 struct individual CrossOver(struct individual Pai, struct individual Mae)
        unsigned int iAux;
78
        struct individual indAux;
79
        for (iAux = 0; iAux < PontoDeCorte[0]; iAux++) {</pre>
80
            indAux.gene[iAux] = Pai.gene[iAux];
82
83
        for (iAux = PontoDeCorte[0]; iAux < numGenes; iAux++) {</pre>
85
            indAux.gene[iAux] = Mae.gene[iAux];
86
87
88
        return indAux;
89
    };
90
```

Figura 11 – Detalhes da função CrossOver().

3.8 Mutação

Chegamos à última operação de um algoritmo genético típico, a Mutação. Assim como no Crossover, existe uma probabilidade p_m associada ao acontecimento da Mutação. Porém, nesse momento, não operaremos sobre um par de cromossomos, mas na estrutura interna de cada cromosso: os genes.

Se nossos indivíduos possuem dez genes, para cada um dos dez locus testamos a condição $p_{aux} <= p_m$, onde p_{aux} é um valor entre zero e um, escolhido aleatoriamente. Caso a desigualdade seja verdadeira, invertemos o bit daquela posição e partimos para o próximo locus.

Seguindo com o exemplo da seção anterior, a população atual, depois da Seleção e do *Crossover*, possui o melhor indivíduo comparado com os anteriores, além do *fitness* médio também ter crescido (tabela 8 na página 29). Na tabela 9 listamos esses indivíduos e a sua representação cromossomial.

Tabela 9 – Representação cromossomial para os indivíduos que passaram pela Seleção e pelo *Crossover*.

x (decimal)	x (representação binária)		
1	001		
5	101		
3	011		
3	011		

Do ponto de vista da informação genética, o indivíduo que mais se aproxima de x=0=000, a solução ideal, é o x=1=001. Portanto, bastaria evoluir essa população e, em algum momento, obteríamos a melhor solução, certo? Errado.

Nenhum indivíduo possui um zero na última posição. Então, mesmo fazendo

todas as combinações possíveis entre os cromossomos, nunca chegaríamos ao indivíduo x=0. O único que possuía tal característica era o x=2, presente na população inicial mas "extinto" ao longo da evolução.

É aí que entra a Mutação: ainda que baixa, geralmente em torno de 1%, há uma chance do último bit de algum indivíduo sofrer mutação e ser alterado para zero. E esse é um dos pontos que torna a Mutação tão importante: ela insere uma nova informação genética que, ou foi perdida, ou não estava presente na população inicial (Heurística Exploratória).

Figura 12 – Representação gráfica de uma mutação. Nesse exemplo a mutação no último bit levou à solução ótima para o máximo da função $y(x) - x^2 + 36$.

Obviamente, existe a possibilidade de bons esquemas serem destruídos com a mudança em algum "bit errado". Mesmo assim, essa chance é equivalente à probabilidade de transformarmos um péssimo esquema em um excelente espaço de soluções. Nessa linha, a Mutação é a responsável por manter a diversidade e evitar a Convergência Genética (seção 3.6.1).

Qual deve ser o valor de p_m para uma Mutação eficiente? Não há uma resposta absoluta. Muitos pesquisadores e usuários dos GAs utilizam valores entre 0.5% e 1%, simplesmente porque nos primeiros trabalhos bons resultados foram obtidos com eles. Sabe-se que há um valor ideal, mas ele é diferente para cada problema e para cada representação cromossomial.

Apesar disso, há um consenso de que o valor de p_m deve ser pequeno, bem menor do que p_c . Em parte porque na genética natural essa probabilidade é de fato pequena, mas principalmente, no contexto da computação, porque valores grandes fariam com que a busca por soluções se comportasse de maneira semelhante ao $Random\ Walk$.

Partindo para o lado prático, o código para implementar a mutação é mais simples, e um exemplo encontra-se na figura 13. Na linha 281 um determinado indivíduo recebe ele próprio após o operador Mutação. Não há if ou outra condição, ou seja, aplicamos o operador em todos os indivíduos da população.

Mas, afinal, onde está a probabilidade p_m ? Lembre-se que a mutação, caso aconteça, deve ocorrer isoladamente em cada gene. Por isso usamos p_m dentro da função Mutacao(). Ela recebe como parâmetro um indivíduo que possui um número de genes igual a numGenes, uma constante definida de maneira global.

```
geracao_auxiliar.individuo[iIndividuo] =
282
                   Mutacao(geracao auxiliar.individuo[iIndividuo]);
  91 struct individual Mutacao(struct individual Individuo) {
          unsigned int iGene, probAux;
  92
  93
          const float probMutacao = (float)0.01;
  94
          for (iGene = 0; iGene < numGenes; iGene++) {</pre>
  95
              probAux = rand();
  97
              //printf("\n<<TESTE>> probAux = %d", probAux);
              if (probAux <= probMutacao) {</pre>
  98
                  //printf("\n<<TESTE>> Mutacao no gene %d", iGene);
  99
 100
                  if (Individuo.gene[iGene] == 1) {
 101
                      Individuo.gene[iGene] = 0;
 102
 103
                       else {
 104
                      Individuo.gene[iGene] = 1;
 105
                  };
 106
              };
 107
          };
```

Figura 13 – Exemplo de código para o operador Mutação.

Entramos em um for que irá varrer todos os genes do Individuo e, para cada um, faz o teste $p_{aux} \le p_m$. Se a condição retornar verdadeiro, a Mutação é finalmente expressa como a inversão do bit no locus atual.

Depois que todos os indivíduos da população passarem pelo operador Mutação, o ciclo estará fechado. A nova geração está pronta para passar por todo o processo: Avaliação, Seleção, Reprodução e Mutação.

4 Materiais e Métodos

Antes de atacar o método em si foi necessário estudo de Algoritmos Genéticos e Linguagem C, escolhida pensando em CUDA.

4.1 CUDA

Metodologia: revisão bibliográfica e aplicação no ONEMAX.

Material do ERAD.

4.2 Método

Artigo de 2004. Aproveitar conteúdo do segundo relatório de estudos dirigidos.

Apresentar o fitness fitness com $\rho - \rho_0$ utilizado no Artigo de 2006.

Apresentar e definir a matriz de Coope-Sabo (citar artigo original de 77), utilizada no pelos indianos no artigo de 2006.

4.3 Framework/Programa Serial

Optou-se por desenvolver do zero todo o programa. Motivo: controle sobre todas as características do método.

Linguagem C: linguagem nativa para CUDA.

Totalmente parametrizado.

Com foi será possível:

- 1. Estudo do método
- 2. Estudo de algoritmos genéticos
- 3. Novas aplicações como máximo de função
 - a) Mudança no fitness
 - b) Mudança nos critérios de parada

Descrição dos parâmetros.

Descrição de cada função, incluindo *print screen* das partes de código mais fundamentais:

- 1. Estruturas de dados
- 2. Geração de números pseudoaleatórios
- 3. Geração das Matrizes de Coope
- 4. Geração da População Inicial
- 5. Fitness: as várias equações
- 6. Fitness: cálculo de ρ_i
- 7. Fitness: cálculo de $\nabla \rho_i$
- 8. Seleção
- 9. Crossover
- 10. Mutação
- 11. Álgebra Linear: multiplicação de matrizes
- 12. Álgebra Linear: multiplicação de matriz por escalar
- 13. Álgebra Linear: subtração de matrizes

Qualidade dos números pseudo-aleatórios (base do GA)

- 1. Mostrar que a distribuição dos números segue o esperado para números aleatórios
- 2. Quanto maior a quantidade de pontos, melhor a distribuição
- 3. Gráfico: histograma de frequência.

Exemplo de execução no Windows.

Reprodutibilidade.

Exemplo de reprodutibilidade.

Código disponível em

https://github.com/prietoab/msc_code

5 Resultados e discussão

- 1. Parágrafo de introdução do capítulo. Citar que, basicmente, o leitor encontrará no capítulo:
 - a) Resultados do ONEMAX, legitimando o uso do código para o programa mais complexo que foi utilizado no método dos indianos.
 - b) o estudo dos tipos de *fitness*, operador responsável pelo elo entre o algoritmo e o problema (LINDEN, 2008), que, para o nosso caso, é encontrar autovalores.
 Ponte para o próximo: para cada tipo de *fitness*, um resultado diferente.
- 2. Os dois tipos de fitness dos indianos. Ideia central: dois tipos, resultados diferentes. Com $\nabla \rho$ chegamos a um autovalor qualquer, com $(\rho \rho_0)^2$ podemos chegar ao mínimo, mas dá mais trabalho. Ponte para o próximo: proposta de dois novos fitness.
- 3. Combinação de $\nabla \rho$ com $(\rho \rho_0)^2$. Se cada forma leva a comportamentos diferentes, tentamos combinar os dois termos em um único fitness. Uma hipótese seria a melhoria da qualidade dos resultados. A hipótese não foi confirmada. Ponte para o próximo: a busca pela qualidade levou à verificação da importância do parâmetro λ .
- 4. Além do que os indianos disseram, que λ é escolhido para não estourar a função exponencial, ele tem influência na convergência do algoritmo e na precisão (ou resolução) do fitness. Se na primeira população, geração inicial, o fitness médio é alto, isso provoca convergência precoce, fazendo com que o resultado final seja ruim. Por outro lado, se no início o fitness médio é muito baixo, não há muita discriminação entre os indivíduos, o fitness não cresce e não chegamos a uma solução. A medida que o fitness se aproxima de 1, a discriminação entre os indivíduos fica difícil, levando ao problema da resolução. Ponte para o próximo: vários testes levaram ao desenvolvimento de uma equação empírica para λ, restrita às matrizes de Coope—Sabo (COOPE; SABO, 1977).
- 5. Fórmula empírica. Por já conhecermos de antemão os autovalores das matrizes de Coope—Sabo, foi possível criar uma fórmula empírica para λ . Ela garante que na primeira população o *fitness* médio é baixo, previnindo o *underflow* do *fitness* e a convergência prematura.

5.1 Problemas com o mínimo global

Na seção 4.2 vimos que o *fitness* utilizado no artigo (NANDY *et al.*, 2004) foi

$$f_i = e^{-\lambda \|\nabla \rho_i\|^2},\tag{5.1}$$

onde f_i é o fitness do i-ésimo indivíduo da população, λ é um parâmetro para evitar o estouro do fitness e $\|\nabla \rho_i\|^2$ é o módulo ao quadrado do vetor gradiente de ρ , dado por

$$\nabla \rho_i = \frac{2[H - \rho_i]C_i}{C_i^t C_i},\tag{5.2}$$

em que C_i é um vetor candidato à solução do problema do autovalor

$$HC = EC. (5.3)$$

Além disso, se C_i é de fato um dos autovetores, ρ é o autovalor associado E_i :

$$\rho_i = \frac{C_i^t H C_i}{C_i^t C_i} = E_i. \tag{5.4}$$

A fim de reproduzir os resultados, testamos o método com matrizes de Coope-Sabo de ordem 10, 20, 30 e 40, utilizando os mesmos parâmetros encontrados em (NANDY et al., 2004): probabilidade de crossover $p_c = 75\%$, probabilidade de mutação $p_m = 50\%$ e intensidade de mutação $\Delta = 0,01$. Com um bom ajuste de λ , que será discutido em detalhes posteriormente, o fitness comportou-se conforme o esperado em todos os casos. Um exemplo está na figura 14, que apresenta o melhor fitness de cada geração para uma matriz de ordem N = 10. Na primeira geração o melhor fitness é pequeno, aproximadamente 0,1, cresce rapidamente e a partir da décima geração está próximo de 1.

O próximo passo foi verificar o comportamento de ρ , o Quociente de Rayleigh, e, especificamente, sua convergência para o menor autovalor E_0 . Ainda conforme (NANDY et al., 2004), obteríamos uma curva semelhante à da figura 14, mas invertida, ou seja, os primeiros valores de ρ seriam grandes e, rapidamente, diminuiriam até haver convergência para o autovalor mínimo. Na figura 15 há um exemplo. Os gráficos exibem os valores de ρ para a mesma execução apresentada na figura 14. Note no primeiro gráfico que até a geração 20 o quociente ρ teve caráter oscilatório e, então, aparentemente estabilizou-se entre 6 e 8, valores muito superiores ao autovalor mínimo para essa matriz, $E_0 = 0,38675$. Entretanto, ainda no primeiro gráfico, observa-se que há uma tendência de queda do ρ entre as gerações 40 e 50 e, portanto, existiria a possibilidade do algoritmo convergir para E_0 . Porém, para esse exemplo especificamente, isso não aconteceu, como pode ser visto no segundo gráfico da figura 15. Para garantir a estabilidade, o programa foi executado até a

Figura 14 – Comportamento do fitness $f_i = e^{-\lambda \|\nabla \rho_i\|^2}$ para N = 10. Na primeira geração o melhor fitness é pequeno, aproximadamente 0,1, cresce rapidamente e a partir da décima geração está próximo de 1.

geração 400.000, e o valor médio obtido foi $<\rho>=6,572898$. Para nossa surpresa, além do valor obtido de $<\rho>$ não ser o mínimo, ele não é um valor qualquer, mas corresponde, com erro menor que 0,00002%, ao quarto autovalor da matriz, $E_3=6,572897$. Um gráfico expandido dessa execução está na figura 16 da página 38. Pensamos, então, que poderia haver algo de errado com o nosso programa.

Figura 15 – Comportamento de ρ (Quociente de Rayleigh) para uma matriz de Coope—Sabo de ordem 10.

Figura 16 – Comportamento de ρ (Quociente de Rayleigh) para uma matriz de Coope—Sabo de ordem 10.

Após esses resultados preliminares executamos uma validação cuidadosa do programa, testando cada uma de suas quase 2500 linhas e comparando os resultados das operações e cálculos com os softwares Excel (Microsoft Corporation, 2007) e SciLab (Scilab Enterprises, 2012). A hipótese era a de que erros numéricos, principalmente nas funções de álgebra linear e nos operadores genéticos, pudessem ter levado ao comportamento incorreto da não convergência para o menor autovalor. De fato alguns erros foram encontrados.

Discutiremos a seguir os testes com a versão corrigida do programa e exibidos nas figuras 23, 24, 25 e 26. Visando brevidade, apresentaremos dados para matrizes de CoopeSabo de ordem 10, 20, 30 e 40 apenas, sem perda de generalidade. Foram cinco execuções para cada matriz, até a geração 400.000, gerando sempre dois gráficos, um do fitness médio (<fitness>) e outro do Quociente de Rayleigh médio (< $\rho>$), ambos em função do número de gerações, e dando ênfase às primeiras 100 gerações. Essas escolhas, número máximo da geração e uso de médias sobre cada população, visaram garantir, respectivamente, a convergência genética e boa precisão. A exibição de apenas as primeiras 100 gerações tem como objetivo olhar em detalhe (com zoom) o período em que o crossover tem mais peso, ou seja, onde há geralmente os saltos no espaço de soluções de um Algoritmo Genético. Em todos os gráficos de < ρ > há indicado nas legendas o autovalor mínimo E_0 e o autovalor obtido após as 400.000 gerações (E_{obtido}). Na tabela 14 há a lista de todos os autovalores. Por exemplo, para uma matriz de ordem N=10, o menor autovalor é $E_0=0,386075$, e o quinto autovalor para N=30 é $E_4=8,450274$.

Comecemos a discussão com o que foi encontrado em todas as execuções. Em qualquer gráfico do fitness observa-se estabilidade do comportamento conforme esperado pelo método: no início seu valor é baixo, próximo de zero, cresce rapidamente nas primeiras gerações e fica estável próximo de < fitness >= 1. Com relação ao ρ , há sempre oscilações, sejam pequenas variações em torno de uma clara linha de tendência, como na execução 02 para N = 10, ou grandes saltos, como nas execuções 05 de N = 20 e 05 de N = 30. Novamente, o menor autovalor não foi obtido em nenhuma execução, contradizendo os resultados de (NANDY et al., 2004), mas, por outro lado, o algoritmo sempre encontrou algum autovalor.

De fato, verificando os dados da tabela 10, concluímos que tais valores não devem ser coincidência. Para todas as execuções o fitness médio chegou ao valor máximo (< f >= 1,000000). As médias de ρ sobre todos os indivíduos da última população possuem baixo desvio padrão ($\sigma < 0,0001$), indicando que eles são muito parecidos entre si e que o algoritmo atingiu a convergência genética. Ou seja, não há variabilidade genética suficiente na população para alterar o rumo da busca de modo a atingir o menor autovalor, ou o mínimo global. Portanto, o algoritmo chegou em um mínimo local, corroborado pelos baixos erros relativos de $< \rho >$ quando comparado com o autovalor mais próximo. Por

exemplo, para N = 30, execução 4, $< \rho > = 40,772447$, correspondendo, com erro relativo absoluno menor que 0,001%, ao vigésimo primeiro autovalor, $E_{20} = 40,772850$. Apesar das evidências descritas acima, até esse ponto ainda há dúvidas sobre a validade do nosso programa e, obviamente, dos resultados produzidos. Então, buscamos embasamento mais rigoroso.

De acordo com (NANDY et al., 2004), se algum C_i , em algum momento, é o autovetor fundamental (associado ao menor autovalor), o $\nabla \rho$ é nulo. Com o fitness da equação (5.1) os autores afirmam que "Claramente, $f_i \to 1$ quando $\nabla \rho_i \to 0$, sinalizando que a evolução atingiu o verdadeiro autovetor fundamental de H em C_i ". Há duas relações distintas de causalidade nessa frase, e acreditamos que nelas residam a explicação dos resultados obtidos por nós até agora.

A primeira relação de causalidade refere-se à afirmação " $f_i \to 1$ quando $\nabla \rho_i \to 0$ ", que está absolutamente correta. Retomando a seção 4, o fitness definido pela equação 5.1 é limitado no intervalo (0,1] e, como $\lambda > 0$, só chega ao seu valor máximo quando $\nabla \rho_i = 0$. Em outras palavras, $\nabla \rho_i \to 0$ implica $f_i \to 1$.

Na afirmação "(...) sinalizando que a evolução atingiu o verdadeiro autovetor fundamental de H em C_i " reside a segunda relação de causalidade que, apesar de sutil, é muito poderosa:

Se
$$f_i \to 1, C_i = C_0.$$
 (5.5)

Ou seja, sempre que algum indivíduo C_i , de qualquer população, possuir fitness muito próximo de 1, isso implica que, além de ter uma excelente "nota", ele, ainda por cima, é um vetor especial, o autovetor fundamental C_0 . Portanto, possui autovalor associado E_0 , o autovalor mínimo (conforme equação 5.4). Grosso modo, $f_i(C_i) = 1$ implica que $C_i = C_0$ e que podemos obter $E_0(C_0)$:

$$f_i(C_i) = 1 \to C_i = C_0 \to E_0(C_0).$$
 (5.6)

As relações de causa e efeito da equação acima estão erradas. Em sua obra clássica sobre o problema de autovalores em matrizes simétricas, (PARLETT, 1998) abre o capítulo introdutório frisando que "em muitos lugares no livro, é feita referência a fatos mais ou menos bem conhecidos sobre a teoria de matrizes". Conforme já dito no capítulo 2, um desses fatos diz que $\rho(u)$ é estacionário, ou seja, $\nabla \rho(u) = 0$, apenas se o vetor u é

Tradução livre de "Clearly, $f_i \to 1$, as $\nabla \rho_i \to 0$, signalling that the evolution has hit the true ground state eigenvector of H in the vector C_i ".

² Tradução livre de "At many places in the book, reference is made to more or less well known facts from matrix theory".

um autovetor w de HC=EC. Consequentemente, o encadeamento correto se apresenta como:

$$C_i$$
 é um autovetor $\rightarrow \nabla \rho(C_i) = 0 \rightarrow f_i = 1.$ (5.7)

Então, se $f_i = 1$, o máximo que podemos concluir é que C_i é algum autovetor, e não necessariamente o autovetor fundamental. Ao fim de todos os nossos testes o fitness médio foi $\langle f \rangle = 1$, a população final era composta por autovetores e foi possível, com boa precisão, obter os autovalores relacionados (não necessariamente o autovalor mínimo). Nossos dados confirmam a matemática e, assim, acreditamos que nosso programa não contém erros.

Apesar de não chegar ao mínimo, o método pode ser utilizado de maneira exploratória com relativa facilidade, bastando extrair ρ sempre que $f_i \to 1$ e $\nabla \rho \to 0$.

Resta a dúvida: afinal, como o autovalor mínimo foi obtido com o *fitness* definido pela equação 5.1? Não sabemos. Esse *fitness* foi utilizado não só em (NANDY *et al.*, 2004), mas também em (SHARMA *et al.*, 2006), (SHARMA *et al.*, 2008) e (NANDY *et al.*, 2009), seguindo exatamente o argumento resumido pela equação 5.6. Não identificamos nada nesses quatro artigos que pudesse levar à resposta. Seguimos o estudo com uma nova definição do *fitness* encontrada em (NANDY *et al.*, 2011).

Tabela 10 – Execuções para matrizes de Coope—Sabo.

Erro relativo	0,003%	0,00001%	-0,0002%	0,0002%	-0,0003%	0,0005%	0,007%	0,0004%	0,0008%	0,0005%	0,002%	0,0005%	-0,0003%	-0,001%	-0,001%	0,00004%	0,0003%	0,00008%	%2000'0-	0,0008%	%6000,0-
Autovalor	2,461056	6,572897	6,572897	6,572897	12,765740	4,518931	8,497626	12,551780	12,551780	14,578450	18,633850	26,616670	26,616670	22,580300	40,772850	30,655270	26,554690	54,773690	58,819810	40,651140	40,651140
# autovalor	1	3	3	3	9	2	4	9	9	7	6	13	13	11	20	15	13	27	29	20	20
σ	0,000023	0,000013	0,000015	0,000016	0,000016	0,000012	0,000052	0,000018	0,000020	0,000035	0,000062	0,000065	0,000029	0,000051	0,000071	0,000022	0,000040	0,000078	0,000087	0,000077	0,000061
< <i>d>></i>	2,461122	6,572898	6,572883	6,572910	12,765701	4,518952	8,498192	12,551830	12,551878	14,578527	18,634220	26,616790	26,616595	22,580060	40,772447	30,655283	26,554758	54,773734	58,819413	40,651473	40,650764
$\langle Fitness \rangle$	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000	1,000000
γ	0,128788	0,128788	0,128788	0,128788	0,128788	0,128788	0,026665	0,026665	0,026665	0,026665	0,026665	0,011171	0,011171	0,011171	0,011171	0,011171	0,006105	0,006105	0,006105	0,006105	0,006105
Semente	1445738835	1445780626	1445780762	1445780907	1445781049	1445781195	1445795292	1445795501	1445795718	1445795953	1445796166	1445796378	1445796746	1445797109	1445797473	1445797882	1445798248	1445798838	1445799429	1445800091	1445800683
Execução	0	П	2	3	4	ಒ	П	2	3	4	ಬ	П	2	3	4	ಒ	П	2	က	4	ಬ
\mathbf{z}	10	10	10	10	10	10	20	20	20	20	20	30	30	30	30	30	40	40	40	40	40

5.2 Outro fitness para encontrar o mínimo global

O novo fitness, apresentado em (NANDY et al., 2011), é dado por

$$f_i = e^{-\lambda(\rho_i - E_L)^2},\tag{5.8}$$

e apresenta semelhanças com o definido pela equação 5.1. Há uso de uma exponencial, o parâmetro λ foi mantido e possui exatamente o mesmo papel, f_i depende apenas de ρ e, como $(\rho_i - E_L)^2$ é claramente positivo, o fitness continua limitado ao conjunto (0,1]. As diferenças estão na ausência do $\nabla \rho$ e na inclusão do parâmetro E_L , que representa um limite inferior para o menor autovalor que estamos procurando³. Por exemplo, se soubermos de antemão que o autovalor mínimo é maior que zero, poderíamos definir $E_L = 0$.

A justificativa para o funcionamento do método em (NANDY et al., 2011) segue a mesma estrutura de (NANDY et al., 2004): "Se $\rho_i \to E_L$ durante a busca, $f_i \to 1$ e C_i está próximo do autovetor fundamental de H". Parece que, outra vez, não há garantia de que, se $f_i \to 1$, ρ tende, necessariamente, ao autovalor fundamental. E aqui há um agravante: nada na equação 5.8 está diretamente associado aos autovalores de H. Lembrese que o fitness anterior (equação 5.1) contém $\nabla \rho$, que possui relação direta com os autovalores de H quando $\nabla \rho = 0$.

Repeti as execuções da tabela 10 alterando apenas o fitness e configurando o parâmetro E_L para $E_L=0$, um pouco abaixo dos autovalores mínimos. Os resultados estão na página 44, e os gráficos da evolução do fitness e do quociente de Rayleigh estão nas páginas 63, 64, 65 e 66. Surpreendentemente, apesar do que foi dito no parágrafo anterior, o programa encontrou o menor autovalor em todos os casos. Assim como nas primeiras execuções, o desvio padrão (σ) da média de ρ na última geração (400.000) foi pequeno, indicando convergência genética. Entretanto, essa foi a única semelhança. Os próprios valores de σ são uma ordem de grandeza menores, sugerindo que os indivíduos são mais semelhantes entre si. O fitness médio só atingiu seu valor máximo para a matriz de ordem N=40. Aliás, especificamente para E_L fixado em $E_L=0$, o <fitness> final diminui com N, pois E_L está mais distante de E_0 na matriz de ordem 10 do que na de ordem 40. Os erros relativos não ultrapassaram 1%, mas foram substancialmente maiores comparados aos obtidos com o primeiro fitness. Enquanto nos testes anteriores seus valores permaneceram estáveis, agora os erros relativos apresentaram tendência de crescimento com N.

³ L de lower

Tradução minha para "If $\rho_i \to E_L$ during the search, $f_i \to 1$ and C_i approaches the ground eigenvector of H".

Tabela 11 – Execuções novo Fitness.

п .	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	
Erro relativo (%)	0.03%	0,02%	0,01%	0,03%	0,04%	0.03%	0,07%	0,1%	0,07%	0,1%	0,09%	0,3%	0,3%	0,3%	0,3%	0,2%	0,3%	0,3%	0,4%	0,6%	0.5%
Autovalor	0,3860745	0,3860745	0,3860745	0,3860745	0,3860745	0,3860745	0,3412367	0,3412367	0,3412367	0,3412367	0,3412367	0,319737	0,319737	0,319737	0,319737	0,319737	0,306086	0,306086	0,306086	0,306086	0,306086
# autovalor	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ο	0,00005	0,00003	0,00002	0,00005	0,00003	0,00005	0,00005	0,0001	0,00006	0,0001	0,00007	0,0001	0,0002	0,0001	0,0001	0,00007	0,0001	0,0001	0,0002	0,0002	0,0002
<θ>	0,386176	0,386169	0,386132	0,386175	0,386211	0,386183	0,341484	0,341693	0,34147	0,341689	0,34153	0,320582	0,320772	0,320699	0,320755	0,320274	0,306968	0,307128	0,307297	0,307816	0,30765
<fitness></fitness>	0,999044	0,999044	0,999045	0,999044	0,999043	0,999044	0,999954	0,999954	0,999954	0,999954	0,999954	0,999995	0,999995	0,999995	0,999995	0,999995	П	1	П	П	1
~	0,128788	0,128788	0,128788	0,128788	0,128788	0,128788	0,026665	0,026665	0,026665	0,026665	0,026665	0,011171	0,011171	0,011171	0,011171	0,011171	0,006105	0,006105	0,006105	0,006105	0,006105
Semente	1445738835	1445780626	1445780762	1445780907	1445781049	1445781195	1445795292	1445795501	1445795718	1445795953	1445796166	1445796378	1445796746	1445797109	1445797473	1445797882	1445798248	1445798838	1445799429	1445800091	1445800683
Execução	0	П	2	3	4	ಒ	П	2	က	4	ಒ	П	2	3	4	ಒ	1	2	3	4	5
$ \mathbf{z} $	10	10	10	10	10	10	20	20	20	20	20	30	30	30	30	30	40	40	40	40	40

As diferenças dos valores finais são indiscutíveis, sugerindo que o comportamento do fitness e do ρ ao longo da busca também deve ter sido alterado. Na figura 17 estão os gráficos referentes à execução zero para o Hamiltoniano de ordem 10, semente 1445738835. A primeira usa o fitness $f_i = e^{-\lambda(\rho_i - E_L)^2}$, que chega ao autovalor mínimo, enquanto a segunda utiliza o $f_i = e^{-\lambda\|\nabla\rho_i\|^2}$. Ambos saem de valores muito baixos e convergem para 1, entretanto, o da esquerda é muito ruidoso e, aparentemente, essa é a causa da convergência mais lenta. Quando a curva da direita já está estável em $< f> \approx 1$ em torno da geração de número 15, a da esquerda ainda não ultrapassou o < f> = 0, 1. A princípio, não podemos comparar os dois comportamentos diretamente, visto que cada um chegou em um autovalor diferente. A execução da direita, lembre-se, obteve apenas um mínimo local $(E_1 = 2, 461056, tabela 10)$.

Figura 17 – Comportamento do *fitness* para as execuções zero do Hamiltoniano de ordem 10, semente 1445738835. A primeira usa o *fitness* $f_i = e^{-\lambda(\rho_i - E_L)^2}$, que chega ao autovalor mínimo, enquanto a segunda utiliza o $f_i = e^{-\lambda\|\nabla\rho_i\|^2}$.

De todo modo, as duas execuções estão conectadas pois, como partiram da mesma semente de números pseudoaleatórios, a população inicial foi exatamente a mesma. Inclusive, na primeira geração, em ambas as execuções, os valores para $< \rho >$ e para o melhor ρ foram, respectivamente, 9,876075 e 9,557892, igualmente distantes do autovalor mínimo $E_0 = 0,386075$. Os gráficos da figura 18 permitem comparar a evolução do $< \rho >$ nos dois casos. Assim como na figura anterior, a imagem da esquerda refere-se ao uso do fitness $f_i = e^{-\lambda(\rho_i - E_L)^2}$.

É tentador afirmar que a causa de uma execução ter sido mais lenta do que a outra foi porque percorreu um caminho mais longo ao sair de $<\rho>=9,876075$, passar por $E_1=2,461056$ e continuar até encontrar $E_0=0,386075$, enquanto a mais rápida saiu do mesmo $<\rho>$ e parou logo que encontrou E_1 . Infelizmente essa conclusão estaria incorreta. A maneira como os Algoritmos Genéticos viajam no espaço de soluções tem forte base estocástica e, portanto, qualquer comparação linear é extremamente arriscada, quiçá impossível. Objetivamente, posso apenas concluir que os valores finais encontrados por cada fitness estão condizentes com a construção de cada função objetivo: $\nabla \rho_i$ leva a qualquer autovalor; $\rho_i - E_L$ encontra o autovalor mínimo.

Figura 18 – Comportamento do ρ para as execuções zero do Hamiltoniano de ordem 10, semente 1445738835. A primeira usa o fitness $f_i = e^{-\lambda(\rho_i - E_L)^2}$, que chega ao autovalor mínimo, enquanto a segunda utiliza o $f_i = e^{-\lambda \|\nabla \rho_i\|^2}$.

Ok. Os dados mostraram que chega no menor autovalor. Mas, se não há relação direta no fitness, como isso acontece? Outra sutileza: E_L é um limite inferior para o menor autovalor. Roubada? Não parece muito útil, pois o fitness só foi próximo de 1 porque escolhi um E_L bem próximo de E_0 . Mas, o que aconteceria se eu não soubesse por onde anda ou autovalor mínimo? Quatro cenários para E_L . Cenário 1: com sorte, o E_L escolhido está um pouco abaixo do E_0 . Encontra o valor mínimo, conforme exemplos. Cenário 2: um pouco acima de E_0 . Cenário 3: muito abaixo de E_0 ; Cenário 4: muito acima de E_0 .

Semente 1445738835. Tipo 1. EL um pouco acima. Sempre converge para E_L . "Passa" por todos os autovalores, mas não para em nenhum. Aconteceu em todas as execuções.

Figura 19 – Execução para a semente 1445738835. E_L um pouco acima de E_0 no fitness $f_i = e^{-\lambda(\rho_i - E_L)^2}$.

 E_L um pouco abaixo. Já citado no início da seção. Chegou ao menor autovalor em todas as execuções. Fitness médio é próximo de 1 pois E_L está próximo de E_0 . Melhor cenário.

Semente 1445738835. Tipo 3. E_L muito acima. Novamente, chegou ao E_L em todas as execuções. Tendo cuidado com o λ , parece não haver diferenças entre um pouco acima e muito acima. Mas, aqui $\nabla \rho >> 0$, estamos longe de algum autovalor. O valor de

 $\nabla \rho$ é próximo de zero pro "um pouco acima", indicando que estamos próximo do autovalor mínimo. (verificar com a tabela de execuções). $\nabla \rho$ tem importância a cada iteração mesmo não estando no *fitness*. Mas, mesmo que, acidentalmente, E_L é escolhido como próximo de um autovalor, $\nabla \rho \approx 0$, e não podemos dizer que convergiemos para um autovalor. Diferente do caso do fitness com $\nabla \rho$.

Figura 20 – Execução para a semente 1445738835. E_L muito acima de E_0 no fitness $f_i = e^{-\lambda(\rho_i - E_L)^2}$.

Semente 1445738835. Tipo 4. E_L muito abaixo. Hipótese: não encontrará, muito distante. O *fitness* ficou praticamente zero. Havia variabilidade no início, mas, como o *fitness* foi zero pra todos, não havia como distinguir os melhores indivíduos. Entre as gerações 0 e 500 houve convergência genética precoce, estabilizando a média dos ρ em aproximadamente 5.9 (verificar), que não é nenhum autovalor pra N = 10.

Figura 21 – Execução para a semente 1445738835. E_L muito abaixo de E_0 no fitness $f_i = e^{-\lambda(\rho_i - E_L)^2}$. Até geração 500.

Entretanto, houve convergência para o autovalor mínimo. Um pouco antes da geração 32.000 aconteceu um salto no *fitness*, causado possivelmente por mutações (argentar). Apesar do *fitness* médio ainda ser pequeno ($< f_i > < 0.025$), o *crossover* com a nova informação genética criou variabilidade suficiente para chegar ao autovalor mínimo.

Na tabela ?? há os valores desses testes. Como nas tabelas anteriores, os valores médios de ρ e do fitness ($<\rho>$ e <fitness>) foram calculados na geração final, ou seja, na população que atingiu algum dos critérios de parada. O < $\rho>$ foi comparado com $E_0=0,386075$ para calcular o erro relativo (coluna Erro do < $\rho>$ (%)).

Figura 22 – Execução para a semente 1445738835. E_L muito abaixo de E_0 no fitness $f_i=e^{-\lambda(\rho_i-E_L)^2}$. Geração entre 30.000 e 40.000.

Tabela 12 – Variando E_L para a execução da semente 1445738835. Os tipos de teste são: $tipo\ 1$: E_L um pouco acima de E_0 ; $tipo\ 2$: E_L um pouco abaixo de E_0 ; $tipo\ 3$: E_L muito acima de E_0 ; $tipo\ 4$: E_L muito abaixo de E_0 .

Teste	E_L	Geração final	<ρ>>	σ	Erro do $<\rho>$ (%)	$ \nabla \rho $	<Fitness $>$
1	0,387000	42.577	0,3870	0,0004	$0,\!2\%$	0,00009	1,000000
2	0,385000	400.000	0,38615	0,00003	$0,\!02\%$	0,000006	1,000000
3	5,000000	9.622	5,00	0,02	1195%	0,003	0,999966
4	-5,000000	400.000	0,38617	0,00003	0,03%	0,0003	0,023843

Tabela 13 – Cinco execuções para cada tipo de teste de variação de E_L em torno de E_0 no fitness $f_i = e^{-\lambda(\rho_i - E_L)^2}$.

Teste	Execução	Semente	Geração final	<0>	Ω	Erro do $\langle \rho \rangle$ (%)	$ \phi\Delta $	$\langle Fitness \rangle$
	П	1448150274	47.945	0,3870	0,0005	0,00005%	0,00008	1,000000
П	2	1448150289	24.128	0,3870	0,0004	-0,00004%	0,00008	1,000000
П	3	1448150298	40.795	0,3870	0,0003	0,000007%	0,00008	1,000000
_	4	1448150315	17.047	0,3870	0,0005	-0,0001%	0,0001	1,000000
1	2	1448150321	16.284	0,3870	0,0003	0,00002%	0,00008	1,000000
2	П	1448150327	400.000	0,38616	0,00003	0.02%	0,000000	1,000000
2	2	1448150472	400.000	0,38613	0,00002	0,01%	0,000005	1,000000
2	33	1448150600	400.000	0,38613	0,00002	0,02%	0,000005	1,000000
2	4	1448150704	400.000	0,38624	0,00008	0,04%	0,00002	1,000000
2	2	1448150809	400.000	0,38624	0,00007	0,04%	0,00001	1,000000
3	Н	1448150912	8.074	5,00	0,05	0,00002%	0,007	0,999750
က	2	1448150914	14.604	5,00	0,03	-0,000005%	0,009	0,999889
က	3	1448150918	41.659	5,00	0,02	-0,00002%	0,003	0,999954
က	4	1448150929	9.775	5,00	0,03	0,000009%	900,0	0,999886
3	2	1448150932	12.637	5,00	0,03	~90000000-	0,005	0,999904
4	П	1448150935	400.000	0,3864	0,0001	0,07%	0,001	0,023837
4	2	1448151040	400.000	7,98166818	0,00000001	1967%	6,0	0,000000
4	က	1448151146	400.000	10,564998429558	0,00000000000000000	2637%	8,6	0,000000
4	4	1448151251	400.000	0,38613	0,00002	0,02%	0,0003	0,023844
4	ಬ	1448151357	400.000	0,38614	0,00003	0,02%	0,0003	0,023844

5.3 Por que o λ deve ser escolhido cuidadosamente?

Execuções para N=10 com diferentes λ 's. Com os gráficos, explicar o que o artigo de 2004 quis dizer com fitness overflow/underflow.

Gráficos com rho entre 0 e 250 (exemplo pra N=10), mas com cortes em diferentes rhos.

Explicar que uma boa escolha do λ deve cobrir todos os autovalores. Citar as execuções anteriores (boas e ruins em função de cada λ).

Gráfico com λ fazendo o fitness cortar em um ρ muito baixo. Discutir puxando as execuções anteriores.

Outro gráfico, mas com λ fazendo o fitness cortar em um ρ muito alto. Discutir puxando as execuções anteriores.

Gráfico com uma boa escolha de λ . Discutir puxando as execuções anteriores.

Após estimativa, refinar a obtenção do λ . Alterar o lambda (valores em torno da estimativa), executar o programa para verificar se o fitness médio da primeira população é baixo. (se a população inicial tem fitness muito grande, há convergência prematura).

Tabela com alguns lambdas encontrados dessa maneira (estimativa e refinamento).

Infelizmente, para cada matriz, um λ diferente.

Ponte pra equação empírica do λ .

5.4 Equação empírica para o λ

Delineamento da equação como feito na reunião de 29/09.

Isolar λ a partir da $f = e^{-\lambda * (\rho - \rho_0)^2}$

Fazer $f = 0.00001 \approx 0$.

Substituir $(\rho - \rho_0)^2$ por $E_{central} - E_{minimo}$. Justificar.

Regressão linear para $E_{central} - E_{minimo}$ com função apenas da ordem da matriz (N).

Inserir a Equação obtida na regressão na equação de λ .

Fator 0.65: obtido empiricamente de modo que o λ seja semelhante aos encontrados pelo processo de estimativa e refinamento.

Exemplo de execução com λ automático.

Explicitar que essa equação é válida apenas para matrizes de Coope-Sabo.

Apesar disso, foi importante para o estudo pois permitiu automação completa.

5.5 A mistura de $(\rho - \rho_0)^2$ com $\nabla \rho$ não leva a melhores resultados

Como em seção anterior verificamos que $f_i = e^{[-\lambda \nabla \rho]}$ é mais rápido do que $f_i = e^{[-\lambda(\nabla \rho)]}$, e que o $\nabla \rho$ está diretamente associado aos autovalores, pensei na seguinte hipótese: inserir $\nabla \rho$ ao fitness com $(\rho - \rho_0)^2$ traria resultados mais rápidos.

Justificativas para a hipótese:

- 1. Inserir $\nabla \rho$ no fitness puniria os ρ 's que, apesar de próximos de ρ_0 , não fossem autovalor. Em outras palavras, o termo $\rho \rho_0 \approx 0$, mas $\nabla \rho >> 0$ e, portanto, o fitness ficaria pequeno.
- 2. Como o fitness, a princípio, estaria diferenciamento melhor os bons indivíduos, o algoritmo teria uma taxa de convergência maior.

Executar 10 para o primeiro fitness, e, utilizando as mesmas dez sementes, executar outros 10 testes com ou outro fitness.

Comparação dos resultados: gráficos do comportamento do fitness e tabela comparando a velocidade de convergência (em que geração o critério de parada foi atingido), tempo de execução e erro relativo ao menor autovalor "exato" (obtido no SciLab).

5.6 $f_i = e^{[-\lambda abla ho]}$ é mais rápido do que $f_i = e^{[-\lambda (abla ho)^2]}$

Como um dos critérios de parada utiliza $\nabla \rho$ (sem quadrado), testamos essa forma no fitness.

Várias execuções.

Gráfico comparando o comportamento (um termina mais rápido)

Tabela com os detalhes explícitos do do ganho.

Ponte pra falar sobre o outro fitness que encontra o mínimo.

5.7 Resultados preliminares na GPU

5.7.1 ONEMAX na GPU

ERAD: artigo + poster

5.7.2 Método paralelizado (versão atual, com ganho de $1,4\,$

Falar um pouco.

Referências

- COOPE, J. A. R.; SABO, D. W. A new approach to the determination of several eigenvectors of a large hermitian matrix. *Journal of Computational Physics*, v. 23, p. 404–424, 1977.
- LINDEN, R. Algoritmos Genéticos. Uma importante ferramenta da Inteligência Computacional. [S.l.]: BRASPORT, 2008.
- Microsoft Corporation. *Microsoft Excel 2007*. Redmond, Washington, 2007. Disponível em: https://products.office.com/pt-br/excel>.
- NANDY, S.; CHAUDHRY, P.; BHATTACHARYYA, S. P. Diagonalization of a real-symmetric hamiltonian by genetic algorithm: A recipe based on minimization of rayleigh quotient. *J. Chem. Sci*, Indian Academy of Sciences, v. 116, p. 285–291, September 2004.
- NANDY, S.; CHAUDHURY, P.; BHATTACHARYYA, S. P. Workability of a genetic algorithm driven sequential search for eigenvalues and eigenvectors of a hamiltonian with or without basis optimization. In: YU, W.; SANCHEZ, E. (Ed.). *Advances in Computational Intelligence*. Berlin: Springer-Verlag, 2009. p. 259–268.
- NANDY, S.; SHARMA, R.; BHATTACHARYYA, S. P. Solving symmetric eigenvalue problem via genetic algorithms: Serial versus parallel implementation. *Applied Soft Computing*, Elsevier, v. 11, p. 3946–3961, 2011.
- PARLETT, D. N. *The Symmetric Eigenvalue Problem.* 2. ed. Philadelphia, USA: SIAM Society for Industrial and Applied Mathematics, 1998. (Classics in Applied Mathematics).
- Scilab Enterprises. Scilab: Free and Open Source software for numerical computation. Orsay, France, 2012. Disponível em: http://www.scilab.org.
- SHARMA, R.; NANDY, S.; BHATTACHARYYA, S. P. On solving energy-dependent partitioned eigenvalue problem by genetic algorithm: The case of real symmetric hamiltonian matrices. *PRAMANA Journal of Physics*, Indian Academy of Sciences, v. 66, p. 1125–1130, June 2006.
- SHARMA, R.; NANDY, S.; BHATTACHARYYA, S. P. On solving energy-dependent partitioned real symmetric matrix eigenvalue problem by a parallel genetic algorithm. *Journal of Theoretical and Computational Chemistry*, World Scientific Publishing Company, v. 7, n. 6, p. 1103–1120, 2008.

APÊNDICE A – Lista de autovalores

Tabela 14 – Lista de autovalores para matrizes de Coope-Sabo de ordem 10, 20, 30 e 40.

#	10	20	30	40
0	0,386075	0,341237	0,319737	0,306086
1	2,461056	2,397247	2,36844	2,350583
2	4,518931	4,436173	4,401134	4,379909
3	6,572897	6,468521	6,427419	6,4031
4	8,628524	8,497626	8,450274	8,42294
5	10,69057	10,52507	10,47105	10,44068
6	12,76574	12,55178	12,4905	12,457
7	14,86753	14,57845	14,50908	14,47232
8	17,03654	16,60562	16,52713	16,48692
9	22,07215	18,63385	18,54488	18,501
10		20,6637	20,56255	20,5147
11		22,69588	22,5803	22,52816
12		24,73127	24,59828	24,54146
13		26,77114	26,61667	26,55469
14		28,81733	28,6356	28,56792
15		30,87288	30,65527	30,58122
16		32,94325	32,67586	32,59466
17		35,04014	34,6976	34,60831
18		37,19805	36,72077	36,62223
19		45,2308	38,74571	38,63648
20			40,77285	40,65114
21			42,80277	42,6663
22			44,83625	44,68204
_23			46,87444	46,69846
_24			48,91902	48,71568
25			50,97274	50,73385
_26			53,04052	52,75311
_27			55,13271	54,77369
_28			57,27946	56,79581
_29			68,37101	58,81981
30				60,84608
31				62,87517
32				64,90781
_33				66,94504
34				68,98845
35				71,04053
36				73,10578
37				75,19353
38				77,33102
39				91,50634

APÊNDICE B – Execuções para o fitness $f_i = e^{-\lambda ||\nabla \rho||^2}$

Figura 23 – Execuções N = 10.

Figura 24 – Execuções N = 20.

Figura 25 – Execuções N = 30.

Figura 26 – Execuções N = 40.

APÊNDICE C — Execuções para o fitness $f_i = e^{-\lambda(\rho_i - E_L)^2}$

Figura 27 – Execuções para N = 10 com o fitness $f_i = e^{-\lambda(\rho_i - E_L)^2}$.

Figura 28 – Execuções para N = 20 com o fitness $f_i = e^{-\lambda(\rho_i - E_L)^2}$.

Figura 29 – Execuções para N = 30 com o fitness $f_i = e^{-\lambda(\rho_i - E_L)^2}$.

Figura 30 – Execuções para N = 40 com o fitness $f_i = e^{-\lambda(\rho_i - E_L)^2}$.

APÊNDICE D — Execuções para a variação de ${\cal E}_L$ em torno de ${\cal E}_0$

Figura 31 – Execuções com o E_L um pouco acima de E_0 no fitness $f_i=e^{-\lambda(\rho_i-E_L)^2}$. Semente 1445738835, N = 10.

Figura 32 – Execuções com o E_L um pouco abaixo de E_0 no fitness $f_i=e^{-\lambda(\rho_i-E_L)^2}$. Semente 1445738835, N = 10.

Figura 33 – Execuções com o E_L muito acima de E_0 no fitness $f_i=e^{-\lambda(\rho_i-E_L)^2}$. Semente 1445738835, N = 10.

Figura 34 – Execuções com o E_L muito abaixo de E_0 no fitness $f_i=e^{-\lambda(\rho_i-E_L)^2}$. Semente 1445738835, N = 10.

ANEXO A – Título do Anexo X

Texto aqui.

ANEXO B - Título do Anexo Y

Texto aqui.