TD 3 : SINGULARITÉS ET CALCUL D'INTÉGRALES

Dans toute la planche, on note C_r le cercle de centre 0 et de rayon r orienté dans le sens trigonométrique.

Exercice 1.

Soit $f(z) = \frac{1}{1-z^2} + \frac{1}{3-z}$. Déterminer les développements de Laurent de f dans les domaines $D = D(0,1), C_1 = \{z \in \mathbb{C}/\ 1 < |z| < 3\}$ et $C_2 = \{z \in \mathbb{C}/\ 3 < |z|\}$.

Exercice 2.

Soit $f(z) = \frac{z}{1+z+z^2}$.

- 1. Développer f en série entière au voisinage de 0.
- 2. Donner le développement en série de Laurent de f au voisinage de chacun des pôles.

Exercice 3.

Soit $f(z) = \frac{z^2}{z - \sin z}$. Trouver la partie principale du développement de Laurent de f autour de 0. En déduire la valeur de $\lim_{\varepsilon \to 0} \int_{\mathcal{C}_{\varepsilon}} f(z) dz$.

Exercice 4.

Soit U un ouvert de \mathbb{C} , $a \in U$ et f holomorphe sur $U \setminus \{a\}$.

- 1. On suppose f=g/h, où g et h sont holomorphes dans $U, g(a) \neq 0$ et a est un zéro simple de h. Montrer que $\mathrm{Res}(f,a) = \frac{g(a)}{h'(a)}$.
- 2. On suppose $f(z) = g(z)/(z-a)^n$, où g est holomorphe dans $U, g(a) \neq 0$ et $n \in \mathbb{N}^*$. Montrer que $\operatorname{Res}(f, a) = \frac{g^{(n-1)}(a)}{(n-1)!}$.
- 3. Calculer les résidus aux pôles de $f(z) = \frac{z^2 + z + 1}{z(z^2 + 1)^2}$.

Exercice 5.

Calculer les résidus en 0 des fonctions suivantes :

$$z^2 \sin \frac{1}{z}$$
 , $\frac{z}{\sin^2 z}$, $\frac{z}{(e^z - 1)^2}$, $\frac{e^z}{z^3 - z^2}$.

Exercice 6.

Montrer que pour tout r > 0, $C_n^k = \frac{1}{2\pi i} \int_{\mathcal{C}_r} \frac{(1+z)^n}{z^{k+1}} dz$. En déduire la valeur de $\sum_{n=0}^{+\infty} \frac{1}{7^n} C_{2n}^n$.

Exercice 7.

Soit U un ouvert de \mathbb{C} contenant $\overline{D(0,1)}$ et f holomorphe sur U. Calculer

$$I_1 = \int_{\mathcal{C}_1} \left(2 + z + \frac{1}{z}\right) \frac{f(z)}{z} dz$$
 et $I_2 = \int_{\mathcal{C}_1} \left(2 - z - \frac{1}{z}\right) \frac{f(z)}{z} dz$.

En déduire la valeur de $\int_0^{2\pi} f(e^{i\theta}) \cos^2(\theta/2) d\theta$ et $\int_0^{2\pi} f(e^{i\theta}) \sin^2(\theta/2) d\theta$.

Exercice 8.

Soit $\lambda \in \mathbb{C}^*$ tel que $|\lambda| \neq 1$ et $I = \int_0^{2\pi} \frac{\cos(n\theta)}{\lambda^2 - 2\lambda \cos \theta + 1} d\theta$.

- 1. Vérifier que I est bien définie.
- 2. On pose $f(z) = \frac{z^n}{(z-\lambda)(z-1/\lambda)}$. Exprimer I à l'aide de $\int_{\mathcal{C}_1} f(z) dz$.
- 3. En déduire la valeur de I.

Exercice 9.

A l'aide du théorème des résidus, calculer

$$\int_{-\infty}^{+\infty} \frac{x^2}{1+x^4} dx \quad , \quad \int_0^{2\pi} \frac{\cos t}{2+\cos t} dt \quad , \quad \int_0^{2\pi} \frac{dt}{5+3\sin t} \quad , \quad \int_0^{+\infty} \frac{\ln x}{\sqrt{x}(1+x^4)} dx.$$

Exercice 10.

Soit $n \in \mathbb{N}$, $n \geq 2$. En utilisant le chemin γ_R dont l'image est formée par le segment [0; R], l'arc de cercle de centre 0 et de rayon R donné par $0 \leq \theta \leq 2\pi/n$ et le segment $[0; Re^{2i\pi/n}]$, calculer $I_n = \int_0^{+\infty} \frac{\mathrm{d}x}{1+x^n}$.

Exercice 11.

Montrer que $I = \int_0^{+\infty} \cos(x^2) dx$ et $J = \int_0^{+\infty} \sin(x^2) dx$ sont bien définies. Calculer I et J à l'aide de la fonction $f: z \mapsto e^{-z^2}$.

Exercice 12.

Soit $n \in \mathbb{N}$ et $\alpha \in \mathbb{R}$ tels que $n > \alpha + 1 > 0$. Calculer $\int_0^{+\infty} \frac{x^{\alpha}}{1 + x^n} dx$.