

Effects of Noise on a Speaker-Adaptive Statistical Speech Synthesis System

GTH

- Madrid, Spain
- Speech Technology Group, ETSI.
 Telecomunicación, UPM

- Obtaining data is not so easy...
- ...but many sources could be available
- GlottHMM
- R. Karhila, U. Remes, and M. Kurimo, Noise in HMM-based speech synthesis adaptation: Analysis, evaluation methods and experiments, Signal Processing,
 IEEE Journal of, Selected Topics in vol. PP, no. 99, pp. 11, 2013

What?

- GlottHMM-based
 - Statistical
- Speaker-Adaptive
- Text-to-Speech (TTS)
- Noisy data
- Comparison to STRAIGHT

General Structure

Speech signal

MULTI-SPEAKER

Chapter 2

TTS System

Jose Moreno 02.04.2014

Labeling

- Full-context labels
- TTU/Nokia Finnish front-end
- Based on a set of pronuntiation (stress) rules from a "Finnish from foreigners"

book

Nice black box

Feature extraction

- 30 LSF components
- 10 LSF source
- 5 HNR componentes
- F0
- 14 Aurora components
 - ETSI advanced front-end
- Antti Suni's scripts
 - Dynamic features
 - Global Variance (GV)

Average voice model

- Finnish PERSO corpus
 - 26 phonemes
- 20 male voices
- Context-dependent MSD-HSMM
 - EMIME 2010 Blizzard entry (modified)
 - SAT
 - 3 reclustering iterations

- EMIME corpus
- NOISEX-92 corpus
 - Babble (20, 10 and 5 dB)
 - Factory (10 and 5 dB)
 - Machine gun (0 dB)

Speech enhancement

Adaptation (II)

- Constrained Structural
 Maximum A Posterior Lineal
 Regression (CSMAPLR)
 - CMMLR, SMAP, MAP
- Combined algorithm:
 - 2 rounds of CSMAPLR
 - MAP

- Realign labels
- 64 leaf nodes regression trees
- Global Variance (GV)

Effects on features: LSF spectra

Chapter 3

Effects of noise

GlottHMM LSF spectra for speech and babble noise

GlottHMM LSF spectra for speech and Gaussian noise

Effects on features: STRAIGHT spectra

STRAIGHT MCEP spectra for speech and babble noise

FFT MCEP spectra for speech and babble noise


```
# Noise reduction

NOISE_REDUCTION_ANALYSIS = false;
NOISE_REDUCTION_SYNTHESIS = false;
NOISE_REDUCTION_LIMIT_DB = 4.5;
NOISE_REDUCTION_DB = 35.0;
```

Gain reduction

Minimum energy frame

Jose Moreno 02.04.2014

GlottHMM noise reduction (II)

SNR NOISE RED. LIMIT = 4.5NOISE RED. = 5 - 50

GlottHMM noise reduction (III)

MCD NOISE RED. LIMIT = 4.5NOISE RED. = 5 - 50

GlottHMM noise reduction (IV)

GlottHMM noise reduction (V)

Jose Moreno 02.04.2014

GlottHMM noise reduction (VI)

GlottHMM noise reduction (VII)

GlottHMM noise reduction (VIII)

Objective

Evaluation

Chapter 4
$$fwS = \frac{10}{M} \sum_{m=1}^{M} \frac{\sum_{j=1}^{K} W(j,m) \log_{10} \frac{X(j,m)^2}{((X(j,m) - \hat{X}(j,m))^2}}{\sum_{j=1}^{K} W(j,m)}$$

$$MCD = \frac{1}{M} \sum_{m=1}^{M} \sqrt{2 \sum_{d=0}^{D-1} (c(d, m) - \hat{c}(d, m))^2}$$

Subjective

- Listening test
 - AB test
 - Binomial test
 - -Acumulative probability $(p \le 0.05)$
 - GlottHMM vs STRAIGHT
 - Compare different GlottHMM configurations
- Mean Opinion Scores (MOS)
 - Naturalness
 - Similarity
 - Background quality

Objective measures

Chapter 5
Results

Noise	SNR	MCD
Clean	9.0	1.8
Babble 20	10.6	3.0
Babble 10	7.5	2.7
Babble 5	6.3	2.6
Factory 10	6.8	3.0
Factory 5	5.3	3.2
Machine gun	9.3	2.7
Enhanced babble 20	10.8	3.0
Enhanced babble 10	8.4	2.8
Enhanced babble 5	6.9	2.8
Ehanced factory 10	8.7	3.2
Enhanced factory 5	7	3.3

Jose Moreno 02.04.2014

Objective measures (II)

Using external F0

Noise	SNR	MCD
Babble 20	10.7	3.0
Babble 10	7.6	2.7
Babble 5	6.4	2.7
Factory 10	6.9	2.9
Factory 5	5.5	3.2
Machine gun	9.4	2.7
Enhanced babble 20	10.6	3.0
Enhanced babble 10	8.4	2.8
Enhanced babble 5	6.8	2.7
Ehanced factory 10	8.7	3.2
Enhanced factory 5	7.1	3.3

Jose Moreno 02.04.2014

Objective measures: GlottHMM vs STRAIGHT (I)

		Original training data		GlotHMM resynth. data		STRAIGHT resynt. data	
Noise	SNR	fwS	MCD	fwS	MCD	fwS	MCD
Clean	-	35.0	0.0	14.6 15.9	1.0 2.1	15.5	1.5
Babble	20 10 5	20.7 12.9 9.5	1.1 2.0 2.5	15.6 10.3 8.3	2.3 2.1 2.5	14.0 10.7 8.4	2.0 3.0 3.4
Enhanced Babble	20 10 5	20.7 13.3 10.1	1.1 1.8 2.2	15.7 11.3 8.8	2.3 2.1 2.2	14.1 11.0 9.1	2.0 2.6 3.1

Objective measures: GlottHMM vs STRAIGHT (II)

Noise	SNR	Adapted GlotHMM synthesized test data fwS MCD		Adapted STRAIGHT synthesized test data fwS MCD	
Clean	-	9.0	1.8 2.9	7.5	2.1
Babble	20 10 5	10.7 7.6 6.4	3 2.7 2.7	8.0 7.5 7.3	2.0 2.1 2.2
Enhanced Babble	20 10 5	10.6 8.4 6.8	3.0 2.8 2.7	8.0 7.5 7.3	2.0 2.1 2.2

Subjective test (II)

Jose Moreno 02.04.2014 P values:

1st: P = 0.0043 (Sample A)

2nd: P << 0.05 (Sample A)

3rd: P = 0.1056 (Sample A)

Subjective test (III)

Jose Moreno 02.04.2014

Discussion

- STRAIGHT slightly better MOS scores but no preference displayed
- Some factors can bias the test:
 - Stream dimension → different clustering thresholds / model realignment
 - Contradictory objective measures

Conclusions

- Objective measures need further investigation
- STRAIGHT slighty higher rated in naturalness
- Very small differences in similarity
- GlottHMM more susceptible to degradation in more sever noise conditions
- Preference test show no significant differences

References

Chapter 7
References

- R. Karhila, U. Remes, and M. Kurimo, "Noise in HMM-based speech synthesis adaptation: Analysis, evaluation methods and experiments", Signal Processing, IEEE Journal of, Selected Topics in vol. PP, no. 99, pp. 11, 2013
- J. Yamagishi, T. Kobayashi, Y. Nakano, K. Ogata, and J. Isogai, "Analysis of speaker adaptation algorithms for HMM-based speech synthesis and a constrained smaplr adaptation algorithm", Audio, Speech, and Language Processing, IEEE Transactions on vol. 17, no. 1, pp. 6683, 2009.
- Reima Karhila

Thanks! It may be the moment for questions and samples

