Power Series Techniques

General Form of the Power Series

A series of the form $\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \cdots$ is a power series centered at x = 0.

A series of the form $\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \cdots$ is a power series centered at x=a.

Convergence of Power Series

Consider the power series $\sum_{n=0}^{\infty} c_n (x-a)^n$.

- If the power series converges at x=a, the radius of convergence is defined to be R=0.
- If the power series converges for all x, then the radius of convergence is $R = \infty$.
- If the power series converges for values of x which |x-a| < R or a-R < x < a+R, the radius of convergence is R.
- The interval of convergence is the interval (a R, a + R) including the end points where the power series converges.

Use the ratio test to determine the radius and interval of convergence.

- Step 1: Let $a_n = c_n(x-a)^n$ and $a_{n+1} = c_{n+1}(x-a)^{n+1}$. Step 2: Simplify ratio $\frac{|a_{n+1}|}{|a_n|} = \frac{|c_{n+1}(x-a)^{n+1}|}{|c_n(x-a)^n|} = \frac{c_{n+1}}{c_n}(x-a)$ Step 3: Compute $\rho = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$.
- Step 4: Interpret the results
 - If $\rho = 0$, the $R = \infty$. The power series converges for all x.
 - If $\rho = N \cdot |x a|$, where N is a finite positive number, then $R = \frac{1}{N}$. The interval of convergence includes $(a-\frac{1}{N},a+\frac{1}{N})$, and possibly the end points.
 - If $\rho \to \infty$, the R = 0. The power series converges at x = a and nowhere else.
- Step 5: If interval of convergence is $(a-\frac{1}{N},a+\frac{1}{N})$, the end points $x=a-\frac{1}{N}$ and $x=a+\frac{1}{N}$ may or may not converge. To determine whether the end points converge, enter them into the power series one at a time and use a series convergence test.

Taylor and Maclaurin Series

If f(x) has derivatives of all orders at x = a, then the Taylor series for function f(x) at a is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \cdots$$

The Taylor series for f(x) at 0 is known as the Maclaurin series for f(x).

Taylor Polynomials

If f(x) has n derivatives at x = a, then the nth Taylor polynomial for f(x) at a is

$$p_n(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n.$$

1

The nth Taylor polynomial for f(x) at 0 is known as the nth Maclaurin polynomial for f(x).