INFORMATION RETRIEVAL

LO1. INTRODUCTION

COURSE INFORMATION

- Brightspace page:
 https://brightspace.universiteitleiden.nl/d2l/home/91761
- Lectures:
 - Tuesday, 9.15-11.00
 - Sitterzaal, Huygens/Oort & online on Mediasite: https://weblectures.leidenuniv.nl/Mediasite/Channel/informationretrieval

COURSE INFORMATION

- Prof. dr. ir. Wessel Kraaij
 - https://www.universiteitleiden.nl/en/staffmembers/wessel-kraaij#tab-1
- Dr. Suzan Verberne
 - http://liacs.leidenuniv.nl/~verbernes/
- Teaching assistants:
 - Arian Askari (PhD student)
 - Juan Bascur Cifuentes (LIACS TA)
 - Yi Lin (LIACS TA)
- Contact: ircourse@liacs.leidenuniv.nl

WHO ARE YOU?

Quick round (raise hands): what is your master programme?

- Computer Science
- Artificial Intelligence
- Data Science
- Bioinformatics
- Media Technology
- ICT in Business and the Public Sector
- Other

WHO ARE YOU?

Quick round (raise hands)

- Who has taken Introduction to Deep Learning?
- Who has taken Text Mining?
- Who can program in Python?
- Who is familiar with the Big-O notation?
- Who knows what the vector space model is?
- Who is familiar with probabilistic models?

TODAY'S LECTURE

- Course goals
- Introduction to information retrieval
 - Including a small exercise
- Structure of this course
- Boolean retrieval

COURSE GOALS

COURSE GOALS

- https://studiegids.universiteitleiden.nl/courses/105168/information-retrieval
- You will learn about:
 - fundamentals of models
 - data, experimentation, evaluation
 - challenges and limitations
 - practical applications

COURSE LITERATURE

- We use the following reading materials:
 - Chapters from the textbook: Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to Information Retrieval, 2008 https://nlp.stanford.edu/IR-book/
 - Bhaskar Mitra and Nick Craswell, An Introduction to Neural Information Retrieval, 2018 https://www.microsoft.com/en-us/research/uploads/prod/2017/06/fntir2018-neuralir-mitra.pdf
 - Additional readings

> All literature will be distributed on Brightspace, as are the slides

INTRODUCTION TO IR

WHAT IS INFORMATION RETRIEVAL?

- The book (Manning et al.):
 - Information retrieval (IR) is finding material (usually documents) of an unstructured nature (usually text) that satisfies an information need from within large collections (usually stored on computers).

- > There is a collection of unstructured documents
- A user is seeking information
 - searching for relevant documents
 - creating queries

WHAT IS INFORMATION RETRIEVAL?

- > IR systems support the search process by
 - Analyzing queries and documents
 - Retrieving documents by computing a relevance score for each document given a query
 - Ranking the documents by that relevance score

- Evaluation based on:
 - Effectiveness: quality of the result
 - Efficiency: speed of finding the result

CHALLENGES

- The real user need is hidden
- User queries are short and ambiguous
- Natural language text is
 - Unstructured
 - Noisy
 - Redundant
 - Infinite
 - Sparse
 - Multilingual

QUERIES ARE SHORT AND AMBIGUOUS

leiden

Q

- What does the query refer to?
 - The city?
 - The university?
 - The Dutch verb 'leiden'?

- What should be the mode of the answer?
 - Photos?
 - A map?
 - A home page (<u>www.leiden.nl</u>)?
 - A Wikipedia article?
- What type of information is the user interested in?
 - Touristic information?
 - Historic information?
 - News events?

With only the keyword query, the IR system cannot know

EXERCISE

albert einstein leiden

- How can a search engine determine the relevance of a document given a query?
- List a few factors of relevance that you would use if you were implementing a web search engine
- Discuss for a few minutes with your neighbour

RELEVANCE FACTORS

- > Term overlap: return documents that contain the query terms
 - Or related terms? Should 'bicycle' retrieve documents containing the term 'bike'?
- Document importance: incoming hyperlinks
- Result popularity: clicks by previous users on the document

The user history? (previous queries, previous activity)

FOUNDATIONS OF IR

- Database theory (scalability/storage)
- Natural Language Processing (term weighting, text representations)
- Machine Learning and Statistics (Learning to rank)
- Network analysis (Pagerank)
- Mathematics (Probability calculus, Logic)
- Library science (user information needs)
- Behavioural science (social media, user modeling)

IR IN CONTEXT

From Jaana Kekalainen

Quality of end result

IR SETTINGS AND APPLICATIONS

- Web search
- Multimedia search
- Expert search
- Recommender systems
- Contextual search
- Exploratory search
- Conversational search
- Domain-specific search
- Personal collection search (think about email search)

COURSE STRUCTURE

COURSE OUTLINE

	Date	Teacher	Topic
1	8 Feb	WK + SV	Introduction and Boolean retrieval
2	15 Feb	SV	Evaluation and test collections
3	22 Feb	WK	Indexing and compression
	1 Mar		(No lecture)
4	8 Mar	WK	Vector Space Model
5	15 Mar	SV	Neural IR
6	22 Mar	WK	Probabilistic IR
7	29 Mar	WK	Language Modeling for IR
8	5 Apr	WK + SV	(Student presentations)
	12 Apr		(No lecture)
9	19 Apr	SV	Learning to rank
10	26 Apr	SV	Web search
11	3 May	SV	Query and session analysis
12	10 May	Cor Veenman	Guest lecture on Responsible IR
13	17 May	SV	Conversational search and domain specific IR
/3			

GENERAL STRUCTURE

- > 13 lectures
- > Homework:
 - Literature after the lecture
 - Homework exercise to be completed (individual)
- Two group projects:
 - A critical review about a recent IR paper (written and presentation)
 - Practical assignment (experimentation and report)
- Written individual exam

GRADING

- > The course grade consists of the following components:
 - Weekly exercises (homework) **10% (H)**At the end of the semester the homework grade is computed as: $\frac{n_{completed}}{n_{total}} * 10$
 - Critical review 10% (R)Written review and presentation (in teams)
 - Practical assignment 20% (A)
 Experimentation and report (in teams)
 - Final written exam (closed book, individual) **60% (E)**The grade for the exam needs to be at least 5.5 to pass the course.

GRADING

Weekly homework:

- Submit through Brightspace (Assignments)
- Since the purpose is exercising, you are allowed to make mistakes (you get your point for completing it)
- The answers will be added to Brightspace after the deadline

Passing the course:

- The grade for the written exam should be 5.5 or higher in order to complete the course.
- If the review or critical assignment is not submitted the grade for that task is 0.

BOOLEAN SEARCH

(BY WESSEL)

SUZAN VERBERNE 2022

