

AD A 074351

LEVEL

19 AD-E430293

14

B-5

18 SBIE

9

MEMORANDUM REPORT ARBRL-MR-02929

6

STATISTICS OF OPTICAL RADIATION
SCATTERED FROM ROUGH SURFACES

10

Paul H. Deitz
Tommy E. Buder

11

July 1979

12

15 P-

DDC
REPORT
REF ID:
SEP 27 1979
DISTRIBUTION
E

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

16

1L161102AH43

Approved for public release; distribution unlimited.

DDC FILE COPY

393 471

79 09 12 028

Destroy this report when it is no longer needed.
Do not return it to the originator.

Secondary distribution of this report by originating
or sponsoring activity is prohibited.

Additional copies of this report may be obtained
from the National Technical Information Service,
U.S. Department of Commerce, Springfield, Virginia
22161.

The findings in this report are not to be construed as
an official Department of the Army position, unless
so designated by other authorized documents.

*The use of trade names or manufacturers' names in this report
does not constitute endorsement of any commercial product.*

UNCLASSIFIED

~~SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)~~

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER MEMORANDUM REPORT ARBRL-MR-02929		2. GOVT ACCESSION NO.	
4. TITLE (and Subtitle) Statistics of Optical Radiation Scattered From Rough Surfaces		5. TYPE OF REPORT & PERIOD COVERED	
		6. PERFORMING ORG. REPORT NUMBER	
7. AUTHOR(s) Paul H. Deitz and Tommy E. Buder		8. CONTRACT OR GRANT NUMBER(s)	
9. PERFORMING ORGANIZATION NAME AND ADDRESS US Army Ballistic Research Laboratory ATTN: DRDAR-BLB Aberdeen Proving Ground, MD 21005		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS RDT&E 1L161102AH43	
11. CONTROLLING OFFICE NAME AND ADDRESS US Army Armament Research & Development Command US Army Ballistic Research Laboratory ATTN: DRDAR-BL, APG, MD 21005		12. REPORT DATE JULY 1979	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 16	
		15. SECURITY CLASS (of this report) Unclassified	
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.			
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)			
18. SUPPLEMENTARY NOTES			
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Gun erosion Speckle pattern Surface roughness Optical scattering Laser illumination			
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) (lmn) When coherent illumination is scattered from a rough surface, the resulting pattern of light (speckle pattern) has stochastic variations in irradiance which relate to the scattering surface itself. A computer simulation for a particular scattering geometry has been made in which four statistical parameters of speckle patterns have been related to various pairwise combinations of surface height and correlation interval for a gaussian scattering surface. The corresponding optical analogue of this simulation has potential application to studies of gun erosion.			

TABLE OF CONTENTS

	Page
LIST OF FIGURES	5
I. INTRODUCTION	7
II. PROBLEM FORMULATION	7
III. RESULTS OF CALCULATIONS	9
IV. CONCLUSIONS	11
DISTRIBUTION LIST	12

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DDC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	<input type="checkbox"/>
By _____	
Distribution/	
Availability Codes	
Dist	Available or special
A	

LIST OF FIGURES

Figure		Page
1	Setup for generation of optical scattering pattern.	7
2	Computer-generated gaussian phase surface	8
3	Expected irradiance vs. surface roughness and correlation interval	9
4	Expected standard deviation vs. surface roughness and correlation interval	10
5	Expected RMS/AVE ratio vs. surface roughness and correlation interval	10
6	Expected correlation interval vs. surface roughness and correlation interval	11

PRECEDING PAGE BLANK

I. INTRODUCTION

When a laser beam is used to illuminate a rough surface, the resulting scatter pattern takes on a random, mottled character. This pattern is usually referred to as a speckle pattern, and its statistics relate not only to the particular radiance pattern on the surface of the scatterer but to the surface roughness as well. For another investigation¹, a computer program was written to evaluate numerically the far-field scatter pattern due to coherent illumination from a one-dimensional surface characterized by gaussian statistics. For that particular study, the statistics of the speckle pattern were examined with respect to the form of the radiance distribution over the scattering surface.

This present investigation was prompted by a problem related to gun erosion. Central to the estimation of gun tube wear is the assessment of surface roughness from one firing to the next. With a view toward developing an experimental technique useful in the analysis of surface structure, we utilized our one-dimensional analytical model to examine the relationship between roughness at a scattering surface and certain statistics of the scattered radiation.

II. PROBLEM FORMULATION

An attempt was made to model a scattering geometry which might be used in an actual measurement. With this in mind, an object 1 mm in length was chosen with radiation at 0.6-micron wavelength. The geometry is shown in Figure 1. The line source formed the input to a 15-cm focal length lens. At the output focal line, the speckle field was evaluated using the Huygens-Fresnel equation. The integral form of this equation describes the output field as an integral over the input aperture, where

Figure 1. Setup for generation of optical scattering pattern. Laser light impinges on surface at ξ plane. Radiation is transformed by lens to plane X. The problem is to relate the statistics of the optical radiation at plane X to the surface characteristics in plane ξ .

1. R. Barakat, P.H. Deitz and T.E. Buder, "A New Class of Communications Systems: II. Theory", BRL Memorandum Report to be published.

$$V(x) \approx \int_{-a}^a V(\xi) \exp\left[-i \frac{2\pi}{\lambda f} x \cdot \xi\right] d\xi, \quad (1)$$

Here, $V(x)$ is the output field, the limits of integration are from $-a$ to a where a is $\frac{1}{2}$ mm, $V(\xi)$ is the complex scattered field at the rough surface, λ is the wavelength of the radiation, and f is the focal length of the lens.

In our evaluation, a special subroutine was used which generates stochastic functions which are gaussian in nature and conform to chosen parameters of standard deviation (vertical surface structure) and correlation interval (average scale size along the surface). Since the illuminated spot is small, a constant amplitude was assumed within the scattering aperture so that the statistics of the scattered radiation were a function of phase only. Figure 2 shows one computer realization of the phase of the optical beam immediately after scatter at the rough surface for one set of parameters. The standard deviation is one-tenth of a wavelength and the correlation interval is 5 microns.

Figure 2. Computer-generated gaussian phase surface having standard deviation (σ) of 0.1λ (where λ is 0.6 microns) and a correlation interval (α) of five microns.

Equation (1) was utilized in discrete form for 400 equally spaced points across the 1-mm object and evaluated at 400 locations in the detection plane over a distance of 40 cm. After the 400 complex field calculations were made in the detection plane, the results were squared to give the measurable quantity, the intensity pattern.

For the gun erosion application, a range of height-roughness variations from 0 to 0.9λ (in standard deviation), where λ is the wavelength, were examined together with correlation interval variations from 5 to 105 microns. Six particular values of standard deviation were used with five values for the correlation interval in every possible pairwise combination. For each of these 30 pairs of parameters, 15 realizations of the radiation pattern in the detection plane were generated. Various statistical parameters were extracted from these speckle patterns and are discussed in the next section.

III. RESULTS OF CALCULATIONS

Using the 15 realizations of speckle pattern for each of 30 pairs of surface height (sigma) correlation interval (alpha), four specific statistical variables were examined: mean irradiance, standard deviation, ratio of RMS/average, and the correlation interval.

For each of the four statistical parameters examined, the procedure was similar. The parameter under evaluation was computed for each speckle pattern and then averaged over the 15 realizations computed for each of the 30 pairs of sigma/alpha variables. Standard deviations about these means were also computed to give an indication of the statistical uncertainty. Figure 3 gives the expected value of the speckle

Figure 3. Three-dimensional perspective plot showing expected value of average irradiance of scattering pattern vs. pairwise combinations of surface height (sigma) and correlation interval (alpha) of illuminated surface. L is the wavelength of the optical illumination (0.6 microns). Each point represents the expected value of 15 realizations of a speckle pattern for which the average value has been computed. Error bars indicate the one-sigma variations about the expected value. Absence of error bars indicates a nonstochastic calculation.

Figure 4. Perspective plot showing expected value of standard deviation vs. pairwise combinations of surface height (sigma) and correlation interval (alpha) of scattering surface.

Figure 5. Perspective plot showing expected value of RMS/AVE ratio vs. pairwise combinations of surface height (sigma) and correlation interval (alpha) of scattering surface.

Figure 6. Perspective plot showing expected value of correlation interval (in mm) vs. pairwise combinations of surface height (sigma) and correlation interval (alpha) of scattering surface.

irradiance (in relative units) versus various sigma/alpha. As might be expected, the mean is essentially independent of surface structure. Bars above and below the mean values indicate the one-sigma values based on 15 realizations. An increase in the correlation interval gives a greater uncertainty in the value of the expected irradiance. Absence of error bars indicates a nonstochastic calculation.

Figure 4 gives the results for the standard deviation of speckle statistics versus the pair-wise independent parameters. Standard deviations are generally higher for low surface standard deviation and/or large correlation interval. Figure 5 shows the ratio of RMS surface roughness to average. This ratio follows the same trend as the standard deviation given in Figure 4. This result is to be expected since the standard deviation and RMS are essentially identical computations for a large sample size, and the mean here is relatively constant.

Finally, Figure 6 gives the expected correlation interval (in mm) as a function of the sigma-alphas. This function goes through a noticeable peak for a small correlation interval of surface roughness and the midrange of surface standard deviation.

IV. CONCLUSIONS

The surface shapes suggested by Figures 4-6 indicate that it may be possible to associate specific scatter statistics with particular surface parameters. The central problem is to associate a unique set of surface conditions with a particular statistic in the measured speckle pattern. From these results, it can be seen that specification of, for example, a particular ratio of RMS/AVE value does not relate to just one, but a restricted set of alpha-sigma pairs. However, the combined use of both the RMS/AVE results (Figure 5) together with the correlation interval calculations (Figure 6) would help reduce the number of sigma/alpha pairs which can result in the same scattering statistics. Further, if it can be argued on physical grounds that the correlation interval and the surface height of the scattering surface must be correlated in some way, then the ambiguity in the interpretation of the scattering data might further be reduced.

From such optical scattering experiments as those described here, it might then be possible to relate a series of speckle measurements to a specific set of surface roughness characteristics.

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
12	Commander Defense Documentation Center ATTN: DDC-DDA Cameron Station Alexandria, VA 22314	1	Commander US Army Electronics Research and Development Command Technical Support Activity ATTN: DELSD-L Fort Monmouth, NJ 07703
1	Director Defense Advanced Research Project Agency Tactical Technical Office ATTN: Dr. James Tegnelia 1400 Wilson Boulevard Arlington, VA 22209	1	Commander US Army Communications Rsch and Development Command ATTN: DRDCO-PPA-SA Fort Monmouth, NJ 07703
1	Director Institute for Defense Analysis ATTN: Dr. Bruce J. Whittemore 400 Army Navy Drive Arlington, VA 22202	3	Commander US Army Harry Diamond Labs ATTN: DRXDO-TI DRXDO-SA, Mr. W. Pepper Mr. J. Salerno 2800 Powder Mill Road Adelphi, MD 20783
1	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMD-ST 5001 Eisenhower Avenue Alexandria, VA 22333	1	Director Office of Missile Electronic Warfare ATTN: DRSEL-WLH-SF, Mr. R. J. Clawson White Sands Missile Range, NM 88002
1	Commander US Army Aviation Research and Development Command ATTN: DRSAV-E P.O. Box 209 St. Louis, MO 63166	1	Commander US Army Night Vision and Electro-Optics Laboratory ATTN: DRSEL-NV-VI, Mr. J. Dehne Fort Belvoir, VA 22060
1	Director US Army Air Mobility Research and Development Laboratory Ames Research Center Moffett Field, CA 94035	2	Commander US Army Missile Research and Development Command ATTN: DRDMI-R DRDMI-YDL Redstone Arsenal, AL 35809
1	Director Applied Technology Laboratory US Army Research & Technology Laboratories (AVRADCOM) ATTN: DAVDL Fort Eustis, VA 23604		

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
3	Commander US Army Missile Research and Development Command ATTN: DRDMI-CA, Dr. Donald McDaniels DRDMI-EA, Mr. B. Harwell DRDMI-TKL, Mr. B. Cobb Redstone Arsenal, AL 35809	1	Commander US Army Armament Research and Development Command ATTN: DRDAR-LCB, Mr. M. Dale Watervliet, NY 12189
1	Commander US Army Missile Research and Development Command ATTN: COL Williamson, TOW PM Redstone Arsenal, AL 35809	1	Commander US Army Armament Materiel Readiness Command ATTN: DRDAR-LEP-L, Tech Lib Rock Island, IL 61299
1	Commander US Army Tank Automotive Research & Development Command ATTN: DRDRA-UL Warren, MI 48090	1	Commander US Army Training and Doctrine Command ATTN: ATCG, Dr. Marvin Pastel Fort Monroe, VA 23651
2	Commander US Army Armament Research and Development Command ATTN: DRDAR-TSS Dover, NJ 07801	1	Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL, Tech Lib White Sands Missile Range, NM 88002
5	Commander US Army Armament Research and Development Command ATTN: DRDAR-LC, Dr. J. Frasier DRDAR-LCW, Mr. H. Garver DRDAR-LCF, Mr. F. Saxe DRDAR-LCU, Mr. A. Moss Mr. T. Malgeri Dover, NJ 07801	4	Commander US Army Infantry Center ATTN: ATSII-DCG, BG F. Mahaffey Mr. P. Ferguson Mr. G. Hardgrove ATSII-CD-MSD-F, Mr. Ramsey Fort Benning, GA 31905
1	Commander US Army Armament Research and Development Command ATTN: DRCPM-SA, Mr. J. Brooks Dover, NJ 07801	2	Director US Army Infantry Center Antiarmor Weapons Special Task Force ATTN: DAMO-RQD-I Fort Benning, GA 31905
		1	Commandant US Army Armor School ATTN: Combat Developments Fort Knox, KY 40121

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Deputy Under Secretary of the Army for Operations Research ATTN: Mr. David Hardison Washington, DC 20310	2	General Dynamics Pomona Division ATTN: Mr. L. P. Green P.O. Box 2507 Pomona, CA 91766
2	ADTG/DLMIT (J. Constantine; J. Burda) Eglin AFB, FL 32542	2	Honeywell, Inc. ATTN: Mr. A.C. Hastings Mr. David Erdmann 600 Second Street, North Hopkins, MN 55343
1	AFATL (Dr. J. R. Mayorsak, Chief Scientist) Eglin AFB, FL 32542	2	Hughes Aircraft Company Ground Systems Group ATTN: Dr. Wesley K. Masenton Mr. J. Willner P.O. Box 3510 Fullerton, CA 92634
2	Aerojet Electro Systems ATTN: Mr. Keith Paradis 1100 W. Hollyvale Street Azusa, CA 91702	2	Hughes Aircraft Company ATTN: Mr. Ron Sabowski 3100 West Lomita Blvd Torrance, CA 90509
2	Applied Electronics Division AIH - Division of Cutler-Hammer ATTN: Mr. Theodore Flattau Melville, L.I., NY 11746	1	Martin Marietta Corporation Orlando Division ATTN: Mr. Joseph Stever P.O. Box 5837 Orlando, FL 32855
2	AVCO Systems Division ATTN: Mr. Thomas Midura 201 Lowell Street Wilmington, MA 01887	1	Raytheon Company Missile Systems Division ATTN: Mr. Thomas Crocker Bedford, MA 01730
1	Bolt Beranek & Newman Inc. ATTN: Mr. Richard Barakat Cambridge, MA 02138	1	Sanders Associates Inc. Federal Systems Group ATTN: Mr. Tommy E. Budor, NCAI-6228 95 Canal Street Nashua, NH 03063
2	Cincinnati Electronics ATTN: Mr. Robert Seitz Mr. Raymond Schmidt 2630 Glendale-Milford Road Cincinnati, OH 45241	1	SINGER - Kearfott Division ATTN: Mr. Myron Rosenthal 150 Totowa Road Wayne, NJ 07470
2	Environmental Research Institute of Michigan ATTN: Mr. Jerry Beard P.O. Box 8618 Ann Arbor, MI 48107		

DISTRIBUTION LIST

<u>No. of Copies</u>	<u>Organization</u>	<u>Aberdeen Proving Ground</u>
1	System Planning Corporation Suite 1500 ATTN: Dr. James Meni 1500 Wilson Boulevard Arlington, VA 22209	Dir, USAMSAA ATTN: Dr. J. Sperrazza DRDXSY-MP, Mr. H. Cohen DRXSY-GI, Mr. W. Clifford DRXSY-DS, Mr. J. Kramar DRXSY-T, Mr. A. Reid DRXSY-G, Mr. R. Conroy Mr. C. Odom
1	University of California Lawrence Livermore Laboratory ATTN: Mr. R. Singleton P.O. Box 808 Livermore, CA 94550	Dir, HEL ATTN: Mr. J. Torre Mr. G. L. Horley CDR, USATECOM ATTN: DRSTE- TO-F Dir, Wpns Sys Concepts Team Bldg E3516, EA ATTN: DRDAR-ACW

USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out this sheet and return it to Director, US Army Ballistic Research Laboratory, ARRADCOM, ATTN: DRDAR-TSB, Aberdeen Proving Ground, Maryland 21005. Your comments will provide us with information for improving future reports.

1. BRL Report Number _____

2. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.)

3. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.)

4. Has the information in this report led to any quantitative savings as far as man-hours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.

5. General Comments (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.)

6. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information.

Name: _____

Telephone Number: _____

Organization Address:

