Lineární programování a kombinatorická optimalizace – příklady na 4. cvičení*

10. března 2020

1 Základní pojmy z geometrie

1.1 Afinita

Afinní prostor $A \subseteq \mathbb{R}^d$ má tvar $L + \mathbf{v}$ pro nějaký lineární prostor L a vektor $\mathbf{v} \in \mathbb{R}^d$. Afinní prostor jde určit pomocí soustavy rovnic $Mx = \mathbf{b}$. Dimenze afinního prostoru A je rovna dimenzi jeho přidruženého lineárního prostoru L. Afinní kombinací vektorů $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n \in \mathbb{R}^d$ je vektor $\sum_{i=1}^n \alpha_i \mathbf{a}_i$, kde $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ $\sum_{i=1}^n \alpha_i = 1$. Množina $V \subseteq \mathbb{R}^d$ je afinně nezávislá, pokud platí, že žádný vektor $\mathbf{v} \in V$ není afinní kombinací ostatních vektorů z V. Afinní obal af(V) množiny vektorů $V \subseteq \mathbb{R}^d$ je množina všech afinních kombinací jakékoli konečné podmnožiny vektorů z V.

Příklad 1. Nechť $A \subseteq \mathbb{R}^d$ je afinní prostor. Z definice je pak A tvaru $A = L + \mathbf{v}$ pro nějaký lineární prostor L a nějaký vektor \mathbf{v} . Dokažte, že pro dané $\mathbf{v} \in \mathbb{R}^d$ existuje nanejvýš jeden lineární prostor $L \subseteq \mathbb{R}^d$ takový, že $A = L + \mathbf{v}$.

(*) Charakterizujte všechny vektory **v**, které posunou lineární prostor L na afinní prostor A.

 $\check{R}e\check{s}en\acute{i}$. Kdyby existovaly dva různé prostory L_1 a L_2 takové, že $L_1+\mathbf{v}=L_2+\mathbf{v}$, tak máme $L_1=L_2+\mathbf{v}-\mathbf{v}=L_2$. Pro pevné L může být více vektorů \mathbf{v} takových, že $A=L+\mathbf{v}$, například pro $A=\{(x,y)\colon x+y=1\}$ a $L=\{(x,y)\colon x+y=0\}$ vyhovují vektory (0,1) a (1,0). Jak uvidíme v druhé části příkladu, vyhovují právě všechny vektory z A.

Ukážeme, že takovými vektory jsou právě vektory z A. Nechť $A=L+\mathbf{v}$. Potom $\mathbf{v}\in A$, protože $\mathbf{0}\in L$.

Nechť $A=L+\mathbf{v}$, přičemž z předešlé části víme, že $\mathbf{v}\in A$, a nechť $\mathbf{u}\in A$. Chceme ukázat $A=L+\mathbf{u}$, což uděláme ukázáním dvou inkluzí.

Pro $A\subseteq L+\mathbf{u}$ uvažme libovolné $\mathbf{x}\in A$. Chceme $\mathbf{x}\in L+\mathbf{u}$. Protože $\mathbf{x}\in A=L+\mathbf{v}$, tak $\mathbf{x}-\mathbf{v}\in L$ a $\mathbf{x}-\mathbf{v}+\mathbf{u}\in L+\mathbf{u}$. Z $\mathbf{u}\in A=L+\mathbf{v}$ máme $\mathbf{u}-\mathbf{v}\in L$ a protože L je jako lineární prostor uzavřený na násobení skalárem, tak $\mathbf{v}-\mathbf{u}\in L$, což dává $\mathbf{v}\in L+\mathbf{u}$. Triviálně $\mathbf{u}\in L+\mathbf{u}$, protože $\mathbf{0}\in L$. Potom \mathbf{x} lze vyjádřit jako afinní kombinace tří vektorů z $L+\mathbf{u}$, konkrétně $\mathbf{x}=(\mathbf{x}-\mathbf{v}+\mathbf{u})+\mathbf{v}-\mathbf{u}$. Protože $L+\mathbf{u}$ je afinním prostorem (posunutí lineárního prostoru), tak je $L+\mathbf{u}$ uzavřené na afinní kombinace a $\mathbf{x}\in L+\mathbf{u}$.

Pro $L + \mathbf{u} \subseteq A$ uvažme libovolné $\mathbf{x} \in L + \mathbf{u}$. Chceme $\mathbf{x} \in A$. Víme, že $\mathbf{u} \in A$ a $\mathbf{v} \in A$. Protože $\mathbf{x} \in L + \mathbf{u}$ a $L = A - \mathbf{v}$, tak $\mathbf{x} \in A + \mathbf{u} - \mathbf{v}$, což znamená $\mathbf{x} - \mathbf{u} + \mathbf{v} \in A$. Potom \mathbf{x} lze vyjádřit jako afinní kombinace tří vektorů z A, konkrétně $\mathbf{x} = (\mathbf{x} - \mathbf{v} + \mathbf{u}) + \mathbf{v} - \mathbf{u}$. Protože A je afinním prostorem, tak je A uzavřené na afinní kombinace a $\mathbf{x} \in A$.

1.2 Nadroviny

Nadrovina je libovolný afinní prostor v \mathbb{R}^d dimenze d-1. V rovině nadroviny odpovídají přímkám a v \mathbb{R}^3 zase rovinám. Nadrovinu lze zapsat jako $\{\mathbf{x} \in \mathbb{R}^d \colon \mathbf{c}^\top \mathbf{x} = h\}$ pro $\mathbf{c} \in \mathbb{R}^d$ a $h \in \mathbb{R}$. Nadrovina rozděluje prostor \mathbb{R}^d na dva poloprostory. Nadrovinu samotnou počítáme jako součást obou poloprostorů.

Příklad 2. (a) Mohou se $v \mathbb{R}^4$ dvě roviny protínat v jednom bodě? Jak mohou vypadat průniky dvou rovin $v \mathbb{R}^4$?

(b) Mohou se v \mathbb{R}^5 dva afinní prostory dimenze 3 protínat v jednom bodě?

 $\check{R}e\check{s}en\acute{i}$. (a) Obecně v \mathbb{R}^d je průnikem dvou afinních prostorů $A=L+\mathbf{v}$ a $A'=L'+\mathbf{v}'$ buď prázdná množina (například jsou-li rovnoběžné, čili jsou různými posunutími téhož lineárního prostoru L=L') nebo neprázdná množina. Je-li průnik neprázdný, pak je to opět afinní prostor, protože pak existuje $\mathbf{x}\in (L+\mathbf{v})\cap (L'+\mathbf{v}')$ a tedy $A=L+\mathbf{x}$ a $A'=L'+\mathbf{x}$ podle

^{*}Informace o cvičení naleznete na http://kam.mff.cuni.cz/~balko/

prvního příkladu. Tedy $A \cap A' = (L \cap L') + \mathbf{x}$ a $L \cap L'$ je zřejmě uzavřený na součty a násobky skalárem a je to tedy lineární prostor. Průnikem dvou afinních prostorů dimenze k může tedy být afinní prostor dimenze $0, \ldots, k$ nebo prázdná množina. V \mathbb{R}^4 dostáváme pro dvě roviny tyto možnosti: prázdná množina, bod, přímka, rovina.

Je užitečné si uvědomit, že roviny v \mathbb{R}^4 jsou zadány dvěma rovnicemi a bod je zadán čtyřmi rovnicemi. Příklad dvou rovin, které se protínají v bodě: $R = \{(x, y, z, p) \in \mathbb{R}^4 : x = 0, y = 0\}$ a $Q = \{(x, y, z, p) \in \mathbb{R}^4 : z = 0, p = 0\}$.

Obecně jako příklad dvou k-dimenzionálních afinních (dokonce lineárních) prostorů v \mathbb{R}^d , které se protínají v prostoru dimenze m jde zvolit $R = \{(x_1, \dots, x_d) \in \mathbb{R}^d \colon x_i = 0, \text{ pro } i \in I\}$ a $Q = \{(x_1, \dots, x_d) \in \mathbb{R}^d \colon x_i = 0, \text{ pro } j \in J\}$, kde $I, J \in \binom{[d]}{d-k}$ a $|I \cap J| = m + d - 2k$, protože pak je v průniku $2d - 2k - |I \cap J|$ souřadnic nulových a tedy $2k - d + |I \cap J| = m$ volných.

(b) Pokud se dva afinní prostory $A = L + \mathbf{v}$ a $A' = L' + \mathbf{v}'$ v \mathbb{R}^d protínají v jednom bodě \mathbf{x} , tak jsou báze L a L' vůči sobě lineárně nezávislé (nelze vyjádřit vektor z báze prostoru L pomocí báze prostoru L' a naopak). Podle prvního příkladu pak $A = L + \mathbf{x}$ a $A' = L' + \mathbf{x}$. Pokud například existuje vektor $\mathbf{b} \neq 0$ z báze prostoru L vyjádřený pomocí báze prostoru L', tak $\mathbf{b} \in L \cap L'$ a potom $\mathbf{b} + \mathbf{x} \in A \cap A'$, což znamená, že v $A \cap A'$ je přímka určená body \mathbf{x} a $\mathbf{b} + \mathbf{x}$ a neplatí $\{\mathbf{x}\} = A \cap A'$. Tedy obecně musí být $\dim(A) + \dim(A') \leq d$. Takže popsaná situace v \mathbb{R}^5 nastat nemůže, protože 3 + 3 = 6 > 5.

1.3 Konvexita

Množina $K \subseteq \mathbb{R}^d$ je konvexní, pokud pro každé $\mathbf{x}, \mathbf{y} \in K$ a $t \in [0,1]$ platí $t\mathbf{x} + (1-t)\mathbf{y} \in K$. Jinak řečeno, každá úsečka se dvěma konci v K je celá v K. Vektor \mathbf{x} je konvexní kombinací vektorů $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$, pokud $\mathbf{x} = \sum_{i=1}^n \alpha_i \mathbf{a}_i$, kde $\alpha_1, \ldots, \alpha_n \in [0,1]$ splňují $\sum_{i=1}^n \alpha_i = 1$. Množina $V \subseteq \mathbb{R}^d$ je v konvexní poloze (neboli konvexně nezávislá), pokud platí, že žádný vektor $v \in V$ není konvexní kombinací ostatních vektorů z V. Konvexní obal conv(V) množiny vektorů $V \subseteq \mathbb{R}^d$ je množina konvexních kombinací jakékoli konečné podmnožiny vektorů z V.

Příklad 3. Víme, že v \mathbb{R}^d je maximálně d lineárně nezávislých vektorů a maximálně d+1 afinně nezávislých vektorů. Kolik nejvýše je v \mathbb{R}^d konvexně nezávislých vektorů?

Řešení. Velikost může být neomezená, vezmeme-li například body na kružnici $K = \{(x_1, \dots, x_d) \in \mathbb{R}^d \colon x_1^2 + \dots + x_d^2 = 1\}$, která je hranicí konvexní množiny (disku) D, pak žádný bod z K není konvexní kombinací bodů z D.

To se dá ukázat formálně. Sporem, nechť existuje $\mathbf{x} \in K$ a body $\mathbf{a}_1, \ldots, \mathbf{a}_n \in D$ různé od \mathbf{x} takové, že $\mathbf{x} \in \text{conv}(\{\mathbf{a}_1, \ldots, \mathbf{a}_n\})$. Po aplikaci rotace, která zachovává incidence (je to bijektivní lineární tranformace a tedy přenásobení maticí s jedničkovým determinantem nemění znaménka u umístění bodů vzhledem k nadrovinám), lze bez újmy na obecnosti předpokládat, že $\mathbf{x} = (1,0,\ldots,0)$. Potom z tvaru K je první souřadnice každého z bodů $\mathbf{a}_1,\ldots,\mathbf{a}_n$ menší než jedna a protože jich je konečně mnoho, tak existuje $\varepsilon > 0$ takové, že každá taková první souřadnice $a_{i,1}$ je nanejvýš $1 - \varepsilon$. Protože $\mathbf{x} \in \text{conv}(\{\mathbf{a}_1,\ldots,\mathbf{a}_n\})$, tak existují $\alpha_1,\ldots,\alpha_n \in [0,1]$ splňující $\mathbf{x} = \sum_{i=1}^n \alpha_i \mathbf{a}_i$ a $\sum_{i=1}^n \alpha_i = 1$. Pak ale

$$1 = x_1 = \sum_{i=1}^{n} \alpha_i a_{i,1} \le (1 - \varepsilon) \sum_{i=1}^{n} \alpha_i = 1 - \varepsilon < 1,$$

což je spor.

Konvexní množiny tedy nemají vždy konečný "generátor" (neboli obecně nejde z každé konvexní množiny vybrat konečně mnoho bodů, jejichž konvexní obal obsahuje všechny ostatní body z dané množiny).

Příklad 4. (*) Z definice je množina $K \subseteq \mathbb{R}^d$ je konvexní, pokud do K patří všechny úsečky s oběma konci v K. Dokažte podobný popis pro afinitu: množina A je afinním podprostorem v \mathbb{R}^d právě tehdy, když pro každé dva body $\mathbf{a}, \mathbf{b} \in A$ platí, že přímka určená body \mathbf{a}, \mathbf{b} je celá obsažena v A.

Řešení. Nejprve ukážeme, že každý afinní prostor obsahuje přímky určené body v něm. Přímka určená body \mathbf{a} , \mathbf{b} je právě množina všech jejich afinních kombinací. Přímku mezi body \mathbf{a} , \mathbf{b} vyjádříme parametricky jako $\mathbf{a} + t(\mathbf{b} - \mathbf{a})$ pro $t \in \mathbb{R}$. To je ale rovno $(1 - t)\mathbf{a} + t\mathbf{b}$ pro $t \in \mathbb{R}$. Protože (1-t)+t=1, jedná se o afinní kombinace bodů \mathbf{a} , \mathbf{b} . Z toho plyne, že každý afinní prostor obsahuje přímky určené body v něm.

Pro opačnou implikaci potřebujeme dokázat, že množina $A \subseteq \mathbb{R}^d$ taková, že pro každé $\mathbf{a}, \mathbf{b} \in A$ leží v A i přímka jimi určená, je afinním prostorem. To znamená, že je tvaru $L + \mathbf{v}$ pro $\mathbf{v} \in A$ a L lineární prostor. Poznamenejme, že z prvního příkladu může být \mathbf{v} libovolný bod z A.

Zvolme tedy libovolné $\mathbf{v} \in A$. Stačí dokázat, že $L = A - \mathbf{v}$ je uzavřený na součet a násobení skalárem.

• Součet: Nechť $\mathbf{x}_1, \mathbf{x}_2 \in L$. Tedy $\mathbf{x}_1 = \mathbf{a}_1 - \mathbf{v}$ a $\mathbf{x}_2 = \mathbf{a}_2 - \mathbf{v}$ pro nějaké $\mathbf{a}_1, \mathbf{a}_2 \in A$. Chceme, aby součet $\mathbf{x}_1 + \mathbf{x}_2 = \mathbf{a}_1 - \mathbf{v} + \mathbf{a}_2 - \mathbf{v} = (\mathbf{a}_1 + \mathbf{a}_2 - \mathbf{v}) - \mathbf{v}$ byl prvkem L. To nastává právě tehdy, když $(\mathbf{a}_1 + \mathbf{a}_2 - \mathbf{v}) \in A$, protože $A = L + \mathbf{v}$.

Vezmeme si přímku určenou body \mathbf{a}_1 a \mathbf{a}_2 . Na ní leží bod $\mathbf{y} = \frac{(\mathbf{a}_1 + \mathbf{a}_2)}{2} \in A$. Poté si vezmeme přímku určenou body \mathbf{y} a \mathbf{v} . Na ní leží bod $(2\mathbf{y} - \mathbf{v}) \in A$. Ten je ale roven bodu $(\mathbf{a}_1 + \mathbf{a}_2 - \mathbf{v})$, který tak skutečně leží v A.

• Násobení skalárem: Nechť $\alpha \in \mathbb{R}$ a $\mathbf{x} \in L$ a tedy $\mathbf{x} = a - \mathbf{v}$ pro nějaké $\mathbf{a} \in A$. Chceme, aby $\alpha \mathbf{x} = \alpha(\mathbf{a} - \mathbf{v}) = (\alpha a - (\alpha - 1)\mathbf{v}) - \mathbf{v} \in L$ pro každé $\alpha \in \mathbb{R}$. To je ekvivalentní s tím, že $(\alpha a - (\alpha - 1)\mathbf{v}) \in A$. To ale leží na přímce určené body \mathbf{a} a \mathbf{v} , protože $\alpha - (\alpha - 1) = 1$. \square

1.4 Mnohostěny

Konvexní mnohostěn je průnikem konečně mnoha poloprostorů. Alternativně je konvexním mnohostěnem libovolná množina bodů tvaru $\{\mathbf{x} \in \mathbb{R}^d \colon A\mathbf{x} \leq \mathbf{b}\}$ pro nějakou matici $A \in \mathbb{R}^{m \times d}$ a vektor $\mathbf{b} \in \mathbb{R}^m$. Nechť P je konvexní mnohostěn a $\mathbf{c} \in \mathbb{R}^d, t \in \mathbb{R}$. Jestliže pro každé $\mathbf{x} \in P$ platí $\mathbf{c}^{\top}\mathbf{x} \leq t$ a zároveň existuje $\mathbf{x} \in P : \mathbf{c}^{\top}\mathbf{x} = t$, pak množina $\{\mathbf{x} \in \mathbb{R}^d \colon \mathbf{c}^{\top}\mathbf{x} = t\}$ tvoří tečnou nadrovinu H mnohostěnu P. Průniky tečných nadrovin s mnohostěnem P pak nazýváme stěnami mnohostěnu P. K nim také započítáváme dvě nevlastní stěny \emptyset a P. Stěny dimenzí 0, 1 a d-1 nazýváme vrcholy, vrany a vrcholy, vrany a vrcholy, vrcholy, vrany a vrcholy, vr

Příklad 5. Jaký je počet stěn krychle a osmistěnu v \mathbb{R}^3 ?

 \check{R} ešení. I prázdná stěna a celá krychle jsou stěny. Krychle má pak ještě 8 vrcholů, 12 hran a 6 faset, vyjde tedy 28. Osmistěn má 6 vrcholů, 12 hran a 8 faset, čili opět 28. Krychle K a osmistěn O jsou k sobě duální, neboli $K = \{ \mathbf{x} \in \mathbb{R}^d \colon \mathbf{x}^\top \mathbf{y} \leq 1 \text{ pro každé } \mathbf{y} \in O \}$, proto mají stejný počet stěn a počet stěn dimenze i v krychli je rovný počtu stěn dimenze d-i-1 v osmistěnu.

Příklad 6. Mějme mnohostěn $P = \{x \in \mathbb{R} : x \geq 1 \& x \leq 2\}$. Převed'te zápis jeho dvou nerovnicových podmínek do rovnicového tvaru a nakreslete mnohostěn z rovnicového tvaru (jeho prostoru vzroste dimenze).

Řešení. Z nerovnic uděláme rovnice, čili získáme systém

$$x - q_1 = 1,$$

 $x + q_2 = 2,$
 $q_1 \ge 0, q_2 \ge 0, x \ge 0.$

Nakreslení pak vidíme na obrázku níže. Výsledný mnohostěn je tučná úsečka mezi body $(x, q_1, q_2) = (1, 0, 1)$ a $(x, q_1, q_2) = (2, 1, 0)$.

Příklad 7. Nechť P je konvexní mnohostěn v \mathbb{R}^d a nechť F a G jsou jeho stěny. Dokažte, že $F \cap G$ je stěnou P.

Přesněji $F = P \cap \{\mathbf{x} \in \mathbb{R}^d : \mathbf{a}^\top \mathbf{x} = \alpha\}$ a $G = P \cap \{\mathbf{x} \in \mathbb{R}^d : \mathbf{b}^\top \mathbf{x} = \beta\}$, kde platí $\mathbf{a}^\top \mathbf{x} \le \alpha$ a $\mathbf{b}^\top \mathbf{x} \le \beta$ pro každé $\mathbf{x} \in P$. Uveď te formuli, která stěnu $F \cap G$ určuje.

Řečení. Uvažme množinu $M = P \cap \{\mathbf{x} \in \mathbb{R}^d : \mathbf{x}^\top \mathbf{a} + \mathbf{x}^\top \mathbf{b} = \alpha + \beta\}$. Z předpokladů platí $\mathbf{x}^\top \mathbf{a} + \mathbf{x}^\top \mathbf{b} \le \alpha + \beta$ pro každé $\mathbf{x} \in P$ a rovnost nastává pro každý prvek z $F \cap G$. Tedy množina M na pravé straně je stěnou polytopu P.

Tvrdíme, že $F \cap G = M$. Jistě je každý prvek z $F \cap G$ obsažen v M a tedy $F \cap G \subseteq M$. Na druhou stranu každý prvek $\mathbf{x} \in M$ je v P a tedy $\mathbf{x}^{\top} \mathbf{a} \leq \alpha$ a $\mathbf{x}^{\top} \mathbf{b} \leq \beta$, čímž z $\mathbf{x}^{\top} \mathbf{a} + \mathbf{x}^{\top} \mathbf{b} = \alpha + \beta$ dostáváme $\mathbf{x}^{\top} \mathbf{a} = \alpha$ a $\mathbf{x}^{\top} \mathbf{b} = \beta$. Tedy $M \subseteq F \cap G$ a máme rovnost $F \cap G = M$.