

Causal Counterfactual Theory for the Attribution of Weather and Climate-Related Events

von A. Hannart, J. Pearl, F. E. L. Otto, P. Naveau and M. Ghil (1. Januar 2016)

DOI: https://journals.ametsoc.org/view/journals/bams/97/1/bams-d-14-00034.1.xml

Wieso benötigen wir Kausalität im Kontext von Wetterextremen?

Rechtliche Fragen

Maßnahmen gegen Klimawandel

Wissenschaft

Ziel: Erweiterung des Event Attribution Frameworks um Definitionen und Methoden zur Untersuchung von Klima- und Wetterereignissen.

Sind die menschbedingten Emissionen Grund für die Hitzewelle in 2003? Oder wär es auch ohne unser Handeln dazu gekommen?

Wie wird Kausalität definiert?

Definition Kausalität nach David Hume (Mai 1711 – August 1776):

Seien X und Y Events. Dann wird Y bedingt durch X, genau dann, wenn X nicht passiert wäre, wäre Y nicht passiert.

Definition Korrelation:

Eine Korrelation misst die Stärke einer statistischen Beziehung von zwei Variablen zueinander

Was ist Kausalität?

Wenn ich die Barometernadel drehe, fängt es dann zu regnen an?

Wie kann ich das Modellieren?

R = Regen B = Barometer

Icons von www.flaticon.com & ChatGPT

Wie kann ich das Modellieren?

Wie stelle ich Kausalität fest?

Wir "drehen" jetzt an B und schauen was passiert

Bedingte Wahrscheinlichkeit

P(R|B=1)

Wahrscheinlichkeit von R wenn wir wissen B dreht nach links.

Interventionelle Wahrscheinlichkeit

 $P(R \mid do(B=1))$

Wahrscheinlichkeit von R wenn wir B manipulieren, so dass B abnimmt.

Kausalität: notwendige Ursache

Wie wahrscheinlich ist es, dass ein Event ein anderes bedingt?

→ Necessary Causality (PN)

- Wahrscheinlichkeit dass Y nicht passiert wäre, wenn X nicht passiert wäre, gegeben X & Y sind passiert.
- Wie wahrscheinlich hat X, Y bedingt?
- X muss nicht die einzige Ursache gewesen sein
- Y wäre ohne X nicht passiert
- $PN = P(Y_0 = 0 | Y = 1, X = 1)$

Kausalität: hinreichende Ursache

Wie wahrscheinlich ist es, dass ein Event allein ein anderes auslöst?

→ Sufficient Causality (PS)

- Wahrscheinlichkeit, dass Y passiert wäre, wenn X passiert wäre, jedoch sind beide nicht eingetreten.
- X reicht als Ursache für Y.
- Y kann eintreten ohne, dass X passieren muss.
- $PS = P(Y_1 = 1 | Y = 0, X = 0)$

Kausalität: notwendige & hinreichende Ursache

$$PN = P(Y_0 = 0 | Y = 1, X = 1)$$

 $PS = P(Y_1 = 1 | Y = 0, X = 0)$ PNS = Y tritt nur dann ein, wenn X gegeben ist – ohne X wäre Y nicht eingetreten.
 $PNS = P(Y_0 = 0, Y_1 = 1)$

Aber wann und für was brauchen wir PN, PS und PNS?

- → Rechtlicher Kontext: Bob schießt mit Waffe und trifft zufälligerweise Alice in 5km Entfernung.
 - Hätte Bob nicht geschossen, wäre Alice nicht tot.
 - Vor Gericht gilt, wenn PN > 50% dann schuldig. → Bob ist schuldig.
- → <u>Maßnahmen Bestimmung:</u> Politiker will Maßnahme gegen Amokläufe ergreifen. Bessere Aufklärung oder Schusswaffenverbote?
 - Schusswaffenverkauf ist ein hinreichender Grund für einen Amoklauf. Aufklärung hingegen nur sehr geringer hinreichender Grund.
 - Maßnahme mit größtem PS am wirkungsvollsten → Verbot am sinnvollsten.

Kausalität im Klima- & Wetterkontext

PN

Notwendige Ursache:

"Wie wahrscheinlich ist es, dass Y ohne X nicht passiert wäre."

Wer hat Schuld an dem Wetterereignis? Verantwortlichen bestimmen.

Sind unsere Emissionen Grund für die Hitzwelle 2003?

PS

Hinreichende Ursache:

"Wie wahrscheinlich ist es, dass Y passiert wäre, wenn X passiert wäre, obwohl beides nicht passiert ist."

Ist eine Maßnahme sinnvoll?

Wird es die nächsten 20 Jahre eine Hitzewelle geben, wenn wir unsere Emissionen um 50% reduzieren?

- 1. Definiere
 - Y (Antwortvariable)
 - Z (Klimaindex)
 - v (Schwellwert)
- 2. Leite die kausalen Effekte p_0 , p_1 mittels in silicio Experimenten ab.
- 3. Berechne *PN*, *PS* für jeden Einfluss und formuliere Behauptung (IPCC2013)

- 1. Definiere
 - Y (Antwortvariable)
 - Z (Klimaindex)
 - v (Schwellwert)
- 2. Leite die kausalen Effekte p_0 , p_1 mittels in silicio Experimenten ab.
- 3. Berechne *PN*, *PS* für jeden Einfluss und formuliere Behauptung (IPCC2013)

 X_1 = anthropogene Einflüsse X_2 = natürliche Einflüsse Y = Klima-Reaktionsvariable über Klimaindex Zv = interne Variabilität im System

- 1. Definiere
 - Y (Antwortvariable)
 - Z (Klimaindex)
 - v (Schwellwert)
- 2. Leite die kausalen Effekte p_0 , p_1 mittels in silicio Experimenten ab.

$$p_0 = P(Y = 1 | X = 0)$$
 \leftarrow kontrafaktische Welt $p_1 = P(Y = 1 | X = 1)$ \leftarrow faktische Welt

3. Berechne *PN*, *PS* für jeden Einfluss und formuliere Behauptung (IPCC2013)

1. Definiere

- Y (Antwortvariable)
- Z (Klimaindex)
- v (Schwellwert)
- 2. Leite die kausalen Effekte p_0 , p_1 mittels in silicio Experimenten ab.
- 3. Berechne *PN*, *PS* für jeden Einfluss und formuliere Behauptung (IPCC2013)

$$PN = max \left\{ 1 - \frac{p_0}{p_1}, 0 \right\}$$

$$PS = max \left\{ 1 - \frac{1 - p_1}{1 - p_0}, 0 \right\}$$

$$PNS = max\{p_1 - p_0, 0\}$$

Hitzewelle 2003:

<u>Temperaturrekorde</u>

- Höchste gemessene Temperatur: 47,5 °C in Portugal
- <u>Deutschland</u>: Temperaturen bis zu 40,2 °C in Karlsruhe und Freiburg
- Schweiz: Rekord von 41,5 °C in Grono am 11. August

<u>Todesopfer</u>

- <u>Europaweit</u>: Schätzungsweise 70.000 vorzeitige Todesfälle
- <u>Frankreich & Italien</u>: Jeweils etwa 20.000 zusätzliche Todesfälle
- Deutschland: Rund 7.000 Todesfälle

Grafik erstellt mit ChatGPT Informationen zur Hitzewelle aus https://doi.org/10.1080/10643380802238137

Sind die menschbedingten Emissionen Grund für die Hitzewelle in 2003? Oder wär es auch ohne unser Handeln dazu gekommen?

Event Attribution Framework angewandt auf die europäische Hitzewelle in 2003:

Definiere Variablen:

- Y (Antwortvariable) = Es ereignete sich eine Hitzewelle
- Z (Klimaindex) = mittlere Sommertemperaturanomalie in Europa
- v (Schwellwert) = 1.6 °C
- 2. Wir leiten p_0 , p_1 ab, in dem wir eine generalisierte Pareto Verteilung fitten.
 - T_0 aus GPD sampeln mit $T_0 \in [350, 2500] \rightarrow T_0 = 1250 yr \rightarrow p_0 = \frac{1}{1250}$
 - T_1 aus GPD sampeln mit $T_1 \in [100, 1000] \rightarrow T_1 = 125yr \rightarrow p_1 = \frac{1}{125}$
- 3. Wir berechnen PN, PS bezüglich dem CO_2 Einfluss.

 - $PN = 1 \frac{p_0}{p_1} = 1 0.1 = 0.9$ $PS = 1 \frac{1 p_1}{1 p_0} = 1 \frac{0.992}{0.9992} \approx 0.0072$

Kausale Folgerungen für die europäische Hitzewelle 2003:

Folgerungen

Es ist sehr wahrscheinlich, dass die menschbedingten CO_2 Emissionen eine <u>notwendige Ursache</u> für die Hitzewelle waren, jedoch keine hinreichende Bedingung.

Sind die menschbedingten Emissionen Grund für mindestens eine Hitzewelle im industriellen Zeitalter?

Event Attribution Framework angewandt auf Hitzewelle in Europa während der industriellen Periode:

Definiere Variablen:

- Z^* (Klimaindex) = Anzahl an Hitzewellen im Zeitraum der Länge τ mit Ende im Jahr 2003. In einem Jahr ist eine Hitzewelle passiert, wenn $Z \ge v$
- v^* (Schwellwert) = 1
- Y^* (Antwortvariable) = aktiv, wenn sich mindestens eine Hitzewelle im Zeitraum $2004 \tau \le t \le 2003$ vorgekommen ist.
- 2. Wir bestimmen p_0 , p_1 für die einzelnen Jahre und berechnen dann p_0^* , p_1^* .

•
$$p_x^* = P(Z_x^* \ge 1) = 1 - (1 - p_x)^{\tau}$$

3. Berechne PN, PS für jeden Einfluss in Abhängigkeit von τ .

	$\tau = 1$	$\tau = 200$	$\lim_{ au o\infty}$
PN	1	0,825	0
PS	0	0,767	1

Industrielle Epoche dauert seit 200 Jahren an

$$\Rightarrow \tau = 200$$

 $\Rightarrow p_0^* = 0.14; p_1^* = 0.80$

Menschbedingten CO_2 Emissionen sind notwendige und hinreichende Ursache, dass mindestens eine Hitzewelle über die industrielle Periode in Europa aufgetreten ist.

Übersicht für Fragen

Wie stelle ich Kausalität fest?

Event Attribution Framework angewandt auf die europäische Hitzewelle in 2003:

- 1. Definiere Variablen:
 - Y (Antwortvariable) = Es ereignete sich eine Hitzewelle
 - Z (Klimaindex) = mittlere Sommertemperaturanomalie in Europa
 - v (Schwellwert) = 1,6 °C
- 2. Wir leiten p_0 , p_1 ab, in dem wir eine generalisierte Pareto Verteilung fitten.
 - T_0 aus GPD sampeln mit $T_0 \in [350, 2500] \rightarrow T_0 = 1250yr \rightarrow p_0 = \frac{1}{1250}$
 - T_1 aus GPD sampeln mit $T_1 \in [100, 1000] \rightarrow T_1 = 125yr \rightarrow p_1 = \frac{1}{125}$
- 3. Wir berechnen PN, PS bezüglich dem CO2- Einfluss.
 - $PN = 1 \frac{p_0}{1} = 1 0.1 = 0.9$
 - $PS = 1 \frac{p_1}{1 p_1} = 1 \frac{0.992}{0.9992} \approx 0.0072$

HTWG Hochschule Konstanz | Jonas Elsper | Advanced Topics in Data Analysis and Deep Learning

Generischer Ansatz für Kausalitäts-Untersuchungen

- Definiere
 - Y (Antwortvariable)

Behauptung (IPCC2013)

- Z (Klimaindex)
- v (Schwellwert)

- X_1 = anthropogene Einflüsse
- X_2 = natürliche Einflüsse
- Y = Klima-Reaktionsvariable über Klimaindex Z mit Schwellwert v
- v = interne Variabilität im System
- 2. Leite die kausalen Effekte p_0 , p_1 mittels in silicio Experimenten ab.
- ← kontrafaktische Welt $p_0 = P(Y = 1 | X = 0)$ $p_1 = P(Y = 1|X = 1)$ ← faktische Welt
- $PN = max \left\{ 1 \frac{p_0}{n_1}, 0 \right\}$ 3. Berechne PN, PS für jeden Einfluss und formuliere
 - $PS = max \left\{ 1 \frac{1 p_1}{1 p_0}, 0 \right\}$
 - $PNS = max\{p_1 p_0, 0\}$

Fußnote / Quelle

HTWG Hochschule Konstanz | Vorname Name | Titel Lehrveranstaltung, ggfs, konkretes Thema | © Urheberrechtlich geschütztes Materia

08.05.25

Event Attribution Framework angewandt auf Hitzewelle in Europa während der industriellen Periode:

- Definiere Variablen:
 - Z* (Klimaindex) = Anzahl an Hitzewellen im Zeitraum der Länge τ mit Ende im Jahr 2003. In einem Jahr ist eine Hitzewelle passiert, wenn $Z \ge v$
 - v^* (Schwellwert) = 1
 - Y^* (Antwortvariable) = aktiv, wenn sich mindestens eine Hitzewelle im Zeitraum $2004 \tau \le$ $t \le 2003$ vorgekommen ist.
- 2. Wir bestimmen p_0, p_1 für die einzelnen Jahre und berechnen dann p_0^*, p_1^* .
 - $p_x^* = P(Z_x^* \ge 1) = 1 (1 p_x)^T$
- 3. Berechne PN, PS für jeden Einfluss in Abhängigkeit von τ .

	$\tau = 1$	 $\lim_{ au o\infty}$
PN	1	 0
PS	0	 1

Industrielle Epoche dauert seit 200 Jahren an

$$\Rightarrow \tau = 200$$

\Rightarrow $p_0 = 0.14$; $p_1 = 0.80$

CO2 notwendige und hinreichende Ursache, dass mindestens eine Hitzewelle über die industrielle Periode in Europa aufgetreten ist.

HTWG Hochschule Konstanz | Jonas Elsper | Advanced Topics in Data Analysis and Deep Learning

08.05.25

Generalized Pareto Distribution

Wahrscheinlichkeitsverteilung für To

Wahrscheinlichkeitsverteilung für T₁