Emotion Classification of Animated Characters

Transfer Learning Performance Comparison

Executive Summary

Emotion Classification of Cartoon Characters of different style (anime vs. 3D cartoon)

Solution

- Transfer learning and fine-tuning
- Compare the accuracy of different pretrained models & baseline CNNs

- Few studies explored this subject before => improve image search result quality
- Understand how neural networks differentiate emotions of fictional figures, whose characteristics vary dramatically between artists

Technical Challenges

- Animated faces have different characteristics from real human faces
- Limited availability of existing labeled data

• • •

Our Approach

- 1. Data augmentation
- 2. Benchmark: Vanilla CNN
- 3. Fine-tuning pretrained models
 - a. Early stopping
 - b. Batch Normalization
 - c. Dropout layers

Implementation Details: Models and Data sets

Models

GoogleNet

ResNet50, pretrained on ImageNet

Vanilla CNNs

Data Sets

Facial Expression Research Group 2D Database (FERG-DB)

- Pleased (38)
- Angry (54)
- Crying (56)
- Sad (57)
- Embarrassed (67)
- Happy (87)
- Shock/Surprised (103)

Shortage of the Dataset

Manga Facial Expressions Data Set (462 images)

Vague labeling

The labeling of the dataset is subjective

Facial Expression Research Group 2D Database (FERG-DB)

```
Limited Categories → {'anger': 0, 'disgust': 1, 'fear': 2, 'joy': 3, 'neutral': 4, 'sadness': 5, 'surprise': 6}
```

Limited Characters → could be "overfitting"

Similar in training and validation

- · Pleased (38)
- Angry (54)
- Crying (56)
- Sad (57)
- Embarrassed (67)
- Happy (87)
- Shock/Surprised (103)

Experimental Evaluation - Analysis

Subjective labeling in training/validation data

Experimental Evaluation - Result

model	dataset	model details	avg val accuracy	max val accuracy	pred accuracy
CNN from scratch	manga	baseline	0.3214	0.3835	
CNN from scratch	manga	baseline + leakyRELU	0.3155	0.411	
CNN from scratch	manga	baseline + leakyRELU + Batch Norm	0.2269	0.2877	
CNN from scratch	ferg	baseline	0.6815	0.7184	
ResNet50	manga	1 Dense layer + sigmoid	0.343	0.4167	0.31
ResNet50	manga	2 Dense 64 layer + leakyRELU + softmax	0.364	0.3796	0.47
ResNet50	ferg	baseline	0.6241	0.5406	
GoogleNet	manga	baseline	0.33	0.47	
GoogleNet	manga	baseline + Batch Norm + 2 Dense 64 Layer	0.35	0.47	
GoogleNet	manga	baseline+early stop	0.27	0.37	
GoogleNet	manga	L2 Regularization	0.3	0.56	
GoogleNet	manga	one more Inception on block 3 and 5	0.27	0.4	
GoogleNet	ferg	baseline	0.59	0.9	
GoogleNet	ferg	baseline+ Batch Norm + 2 Dense 64 Layer		0.459	

GoogleNet

2 *

5 *

2 *

Model: "sequential_1"

Layer (type) ====================================	Output Shape	Param #
conv2d_57 (Conv2D)	(None, 112, 112, 64)	9472
max_pooling2d_13 (MaxPooling2D)	(None, 56, 56, 64)	0
conv2d_58 (Conv2D)	(None, 56, 56, 64)	36928
conv2d_59 (Conv2D)	(None, 56, 56, 192)	110784
max_pooling2d_14 (MaxPooling2D)	(None, 28, 28, 192)	0
inception_9 (Inception)	(None, 28, 28, 256)	163696
inception_10 (Inception)	(None, 28, 28, 480)	388736
max_pooling2d_17 (MaxPooling2D)	(None, 14, 14, 480)	0
inception_11 (Inception)	(None, 14, 14, 512)	376176
inception_12 (Inception)	(None, 14, 14, 512)	449160
inception_13 (Inception)	(None, 14, 14, 512)	510104
inception_14 (Inception)	(None, 14, 14, 528)	605376
inception_15 (Inception)	(None, 14, 14, 832)	868352
max_pooling2d_23 (MaxPooling2D)	(None, 7, 7, 832)	0
inception_16 (Inception)	(None, 7, 7, 832)	1043456
inception_17 (Inception)	(None, 7, 7, 1024)	1444080
global_average_pooling2d_1 (GlobalAveragePooling2D)	(None, 1024)	0
dropout_1 (Dropout)	(None, 1024)	0
flatten_1 (Flatten)	(None, 1024)	0
dense_3 (Dense)	(None, 64)	65600
dense 4 (Dense)	(None, 7)	455

Comparison(Manga)

baseline + Batch Norm + 2 Dense 64 Layer

baseline+early stop

L2 Regularization

one more Inception on block 3 and 5

max pooling2d 104 (MaxPooli (None, 56, 56, 64) 0 ng2D) conv2d 449 (Conv2D) (None, 56, 56, 64) 36928 conv2d 450 (Conv2D) (None, 56, 56, 192) 110784 max_pooling2d_105 (MaxPooli 0 (None, 28, 28, 192) ng2D) inception_67 (Inception) (None, 28, 28, 256) 163696 177008 inception 68 (Inception) (None, 28, 28, 256) 388736 inception 69 (Inception) (None, 28, 28, 480) max pooling2d 109 (MaxPooli 0 (None, 14, 14, 480) inception_70 (Inception) (None, 14, 14, 512) 376176 inception_71 (Inception) (None, 14, 14, 512) 449160 510104 inception 72 (Inception) (None, 14, 14, 512) inception 73 (Inception) 605376 (None, 14, 14, 528) inception_74 (Inception) (None, 14, 14, 832) 868352 max pooling2d 115 (MaxPooli (None, 7, 7, 832) 0 ng2D) inception 75 (Inception) 1043456 (None, 7, 7, 832) inception 76 (Inception) (None, 7, 7, 832) 1043456 inception_77 (Inception) (None, 7, 7, 1024) 1444080 global_average_pooling2d_7 0 (None, 1024) (GlobalAveragePooling2D) 0 dropout_5 (Dropout) (None, 1024) flatten 7 (Flatten) (None, 1024) dense 21 (Dense) 65600 (None, 64) dense 22 (Dense) 4160 (None, 64) 455 dense 23 (Dense) (None, 7) ______ Total params: 7,296,999 Trainable params: 7,296,999

(None, 112, 112, 64)

9472

Non-trainable params: 0

conv2d_448 (Conv2D)

FERG

[it took me 5 hours to train GoogleNet with]

Model: "sequential_1"

Layer (type) ====================================	Output Shape	Param #
conv2d_57 (Conv2D)	(None, 112, 112, 64)	9472
max_pooling2d_13 (MaxPooling2D)	(None, 56, 56, 64)	0
conv2d_58 (Conv2D)	(None, 56, 56, 64)	36928
conv2d_59 (Conv2D)	(None, 56, 56, 192)	110784
max_pooling2d_14 (MaxPooling2D)	(None, 28, 28, 192)	0
inception_9 (Inception)	(None, 28, 28, 256)	163696
inception_10 (Inception)	(None, 28, 28, 480)	388736
max_pooling2d_17 (MaxPooling2D)	(None, 14, 14, 480)	0
inception_11 (Inception)	(None, 14, 14, 512)	376176
inception_12 (Inception)	(None, 14, 14, 512)	449160
inception_13 (Inception)	(None, 14, 14, 512)	510104
inception_14 (Inception)	(None, 14, 14, 528)	605376
inception_15 (Inception)	(None, 14, 14, 832)	868352
max_pooling2d_23 (MaxPooling2D)	(None, 7, 7, 832)	0
inception_16 (Inception)	(None, 7, 7, 832)	1043456
inception_17 (Inception)	(None, 7, 7, 1024)	1444080
global_average_pooling2d_1 (GlobalAveragePooling2D)	(None, 1024)	0
dropout_1 (Dropout)	(None, 1024)	0
flatten_1 (Flatten)	(None, 1024)	0
dense_3 (Dense)	(None, 64)	65600
dense_4 (Dense)	(None, 7)	455

Total params: 6,072,375 Trainable params: 6,072,375 Non-trainable params: 0

Conclusion

- When the dataset is small
 - Changing the structure of the model is able to increase the accuracy and control overfitting, with mild effect on runtime
- When the dataset is large:
 - GoogleNet is faster the baseline

- Use 'val_categorical_accuracy' to evaluate accuracy
- Overall top 3 performance:
 - L2 Regularization
 - baseline + Batch Norm + 2 Dense 64
 Layer
 - baseline

```
1/1 [======= ] - 1s 511ms/step
                              [6, 6, 2, 1, 5, 5, 0, 2, 6, 6, 5, 5, 0, 3, 2, 2, 4, 6, 1, 4, 2, 0, 6, 6, 3, 5, 6, 2, 5, 6, 5, 3]
                                            precision
                                                        recall f1-score support
                                                          1.00
                                                1.00
                                                                   1.00
                                                0.40
                                                          1.00
                                                                   0.57
                                                          0.83
                                                                   0.91
                                                1.00
{ 'angry': 0,
                                                0.67
                                                          0.67
                                                                   0.67
 'crying': 1,
                                                0.67
                                                          1.00
                                                                   0.80
                                                                   0.73
 'embarrassed': 2,
                                                1.00
                                                          0.57
                                                0.89
                                                          0.89
                                                                   0.89
 'happy': 3,
 'pleased': 4,
                                                                   0.81
                                                                               32
                                  accuracy
 'sad': 5,
                                                                               32
                                                0.80
                                                          0.85
                                                                   0.79
                                 macro avg
 'shock': 6}
                              weighted avg
                                                          0.81
                                                                               32
                                                0.88
                                                                   0.82
```


ResNet - RELU + sigmoid, single dense layer

Vanilla CNN

	precision	recall	f1-score	support
1 2 'happy' 3 4 'sad' 5	0.00 0.20 0.50 0.20 0.33	0.00 0.20 0.44 0.50 0.50	0.00 0.20 0.47 0.29 0.40	2 5 9 2 4
'shock' 6	0.50	0.40	0.44	10
accuracy macro avg weighted avg	0.29 0.38	0.34 0.38	0.38 0.30 0.37	32 32 32

ResNet

Vanilla CNN

Fun Fact

Few shades below eyes → sad/crying

Wide open eyes → angry

Reference

http://grail.cs.washington.edu/projects/deepexpr/ferg-2d-db.html

https://ai.plainenglish.io/googlenet-inceptionv1-with-tensorflow-9e7f3a161e87

https://openaccess.thecvf.com/content_cvpr_2017/papers/Wu_A_Compact_DNN_CVPR_2017_paper.pdf

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... Rabinovich, A. (2015). Going deeper with convolutions. *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 1–9).

Link to github

