Geschwindigkeitsmessung von Fahrzeugen durch Audio-Analyse

Jugend forscht / Physik, Levin Fober

IDEE

LÖSUNG

Aufnahme-System

kostengünstig unauffällig leichte Bedienung

DOPPLEREFFEKT

Konzept

Annäherung \Rightarrow Höherer Ton (f_1) Entfernung \Rightarrow Tieferer Ton (f_2) (vgl. Martinshorn)

$$v = \frac{k-1}{k+1} \cdot c \qquad mit \quad k = \frac{f_1}{f_2}$$

v: Geschwindigkeit des Fahrzeugs c: Schallgeschwindigkeit (343 m/s)

Theoretischer Verlauf

Spektrogramm einer Aufnahme

LAUTSTÄRKE-ÄNDERUNG

Konzept

"Je näher, desto lauter" ⇒ Pro Abstandsverdopplung: Pegel nimmt um 6 dB ab

$$d_2 = d_1 * 10^{\left(\frac{|L_1 - L_2|}{20}\right)} \quad und \quad v = \frac{\Delta a}{\Delta t}$$

ERGEBNISSE

→ Akkurate Berechnung

→ Keine Konstanten notwendig

→ Klares Geräusch notwendig; Rauschen nicht ausreichend (z. B. lauter Auspuff anstatt Reifengeräuschen)

→ Geringer Messfehler ⇒ große Ungenauigkeit

→ Bei Elektroautos nutzbar (keine Motorgeräusche notwendig)

→ Konstanteneingabe notwendig (Abstand Mikrofon – Straße)

→ Sehr anfällig für Messfehler (z. B. starker Wind)

