

IoT and Embedded Systems Basics

Kazuaki Tanaka Kyushu Institute of Technology

About Me

- Kazuaki TANAKA(たなかかずあき)
- Kyushu Institute of Technology, JAPAN Associate Professor
- Ph. D in Information Science

 Research topics: embedded systems, IoT, mruby, wireless communication

What is "Embedded Systems"

- Computer system "Embedded" in equipment (machines)
- Provides "specific" function
- Example:
 - Home appliance
 - Medical equipment
 - Industrial machinery
 - Mobile phone

Need for embedded systems

- Historically, embedded systems are related control systems
 - start from the age of the steam engine
- Systems involving multiple devices and functions
- Technology to control the final output (=goal)
- In the case of steam engines
 - Steam is used to rotate a turbine for power
 - Keep at the constant rotating speed of machine

(Example) Simple control system

- Steam engine (or internal fuel combustion engine) control
 - steam engine governor (keep rotational speed)

Kyushu Institute of Technology

Revolution

This mechanism is REVOLUTION

Revolution: Technology to change the society

 After governor invention, factories was built.

Society changes

Thread

Cloth

Control system

- Rotation speed increased, valve is closed
- Rotation speed decreased, valve is opened

Next revolution

• Electric circuit

Automatic control (Negative feedback loop)

Year 1870~1915

Next revolution

Computer

Computer control

Control system basics: Feedback Control

Transfer function of feedback control

$$Y(s) = G(s)(U(s) - H(s)Y(s))$$

$$Y(s) = \frac{G(s)}{1 + G(s)H(s)}U(s)$$
 Just solve this equation!

That's all?

Everything done by using feedback loop?

Industrial Revolution

No control ... before industry

Governor

Electronic control

Computer control

Industrial Revolution

German Research Centre for Artificial Intelligence

You are standing in 4th industrial revolution

KEY technology: Smart system, IoT, AI

Requirements in embedded systems

- Sensor Input
 - Timing of sensor acquisition
- Execute control algorithm
- Control output
 - User interface
 - Communication
 - Logging, Analyzing, Diagnostic

What is important in embedded systems?

- Real-time performance
- Execution speed
- Cost
- Quality
- Delivery time

What's the difference?

Real-time process

NOT "the execution speed is fast".

- Execution time must be accurate.
- Execution time must be estimated.

Real-time system

Control the motor speed

(Processor example) ATmega328

- Used in Arduino
- It has all the features you need in a computer.
 - CPU (8Bit Bus, 16MHz)
 - 32KB ROM(Flash)
 - 2KB SRAM
 - **I/O**
 - ADC, DAC
 - Hardware interruption

Computer / Micro-controller

Processing Power

64bit CPU 3.2 GHz 8GB Memory 8bit CPU 16 MHz 2KB Memory

Realtime processing (Processing Cycle)

100Hz

10 KHz

DEMO

```
led1 = GPIO.new(0)

while true do
  led1.write 1
  sleep 0.5
  led1.write 0
  sleep 0.5
end
```


DEMO

```
led1 = GPIO.new(0)

while true do
  led1.write 1
  sleep 0.5
  led1.write 0
  sleep 0.5
end
```

```
led1 = GPIO.new(5)

while true do
  led1.write 1
  sleep 0.6
  led1.write 0
  sleep 0.6
end
```


Embedded system development

- Requires development of both hardware and software
 - Both Knowledge
- Hardware development
 - A small computer called a microcontroller
 - Processor, memory, etc.
- Software development
 - Requires "cross development"

Software development (for general-purpose systems)

 Write programs using a PC keyboard and display.

Run the developed program on the PC.

Easy to develop.

Software development (for embedded systems)

Write a program on PC.

 Transfer the developed program to the hardware (microcontroller).

Run the developed program on the microcontroller.

embedded system development

- Technology for both hardware and software is necessary
 - Both hardware and software knowledge

- Hardware: has some limitation, physical law
- Software: no limitation, anything allowed

To solve the issues,

- Reduce the lines of code
- Reuse previously developed software, libraries
- Increase software readability

- Reduce development time
- Increase reliability
- Rapid software development

Embedded system development

- KEY is the development of software part
 - Development time (productivity, cost)
 - Product safety and reliability

- Consider the software product development
 - It is rare to create whole new code
 - Combine existing functions

Embedded development methodology and approach

- Traditional waterfall cannot handle increasing complexity and diversity of software
- Model Based Development (MBD)
 - Use modeling methods improve quality
- Formal Method
 - Define rigorous specifications improve quality
- Functional Safety
 - Operate safely in principle Quality Improvement

Model Based Development (MBD)

- Design software using models (mainly diagrams and tables)
 - Development workload is reduced because it is possible to concentrate on the scope of the model
- Popular modeling methods
 - UML diagrams
 - Data flow diagrams (DFD)
 - State transition diagrams

How to eliminate program bugs?

- The easiest and most reliable way
 - Do not write programs (code)

- Diagrams and tables
 - Easy to find errors
 - Everyone will have the same understanding (Prevent misunderstanding)

Dataflow diagrams (DFD)

 Represent the flow of data (sequence of processing) as a combination of diagrams

- Create blocks of functions (frequently used functions)
- Connect functions each other by wire (directed graphs)

Example of data flow diagram

LED lights up when button is pressed

Example of data flow diagram 2

- Get values from sensor and convert value
- Turns on LEDs according to the values

functional safety

Intrinsic Safety and Functional Safety

- Intrinsic Safety
 - Removing Hazards (remove whole risk)
- Functional safety
 - Use functions that ensure safety

Examples of Intrinsic and Functional Safety_____

Intrinsic Safety

Risk of train accidents (e.g., train-vehicle collisions)

Functional safety

Elevated railroad

Railroad crossing

Conclusion

- Embedded Systems Development
 - Hardware and software development
 - Large proportion of software
 - Software development with less hardware dependence is required
- Real-time performance
- Using models (MBD)
- Using Graphs (DFD)

Society in the future

- Industrial Revolution
 - The 4th Industrial Revolution
 - Major changes in social structure due to technological innovation
 - IoT and AI creates a better society, changing society

- Engineering (hardware and software) becomes more important
 - Programming skill is must

About Kyutech

The Spirit of Kyushu Institute of Technology

技術に堪能なる士君子の育成

Gentlemen well versed in technological skills

 Education that emphasizes the acquisition of technology as well as human development

