CCGL No: CCGL-3619

Contact: 2340 Sutter Street, Room S151 San Francisco, CA 94115 Tel: (415) 502-3252

Fax: (415) 502-2773 Email: ccgl@ucsf.edu Executive Director:
Boris C. Bastian, MD
Medical Director:
James P. Grenert, MD, PhD
Associate Directors:
Courtney Onodera, PhD
Jessica Van Ziffle, PhD
Iwei Yeh, MD, PhD

UCSF500 Gene Panel Final Report

CCGL No: CCGL-3619

Tumor

Source.Brain, left frontal, Diagnosis: Diffuse astrocytoma, IDH-mutant, WHO grade II

Normal

Source: Peripheral Blood

Pathogenic or Likely Pathogenic SOMATIC ALTERATIONS							
VARIANT	TRANSCRIPT ID CLASSIFICATION		READS	MUTANT ALLELE FREQUENCY			
ATRX c.6110+3_6110+6delAAGT	NM_000489.3	Pathogenic	326	31%			
ATRX p.E886fs	NM_000489.3	Pathogenic	532	34%			
ATRX p.l360fs	NM_000489.3	Pathogenic	495	11%			
IDH1 p.R132H	NM_005896.2	Pathogenic	1105	42%			
NF1 p.T1273fs	NM_001042492.2	Pathogenic	1209	3%			
NOTCH1 p.S990fs	NM_017617.3	Pathogenic	197	11%			
SPRED1 p.V309fs	NM_152594.2	Pathogenic	1162	14%			
TP53 p.Y163C	NM_000546.5	Pathogenic	397	83%			

Reads' indicate the number of unique DNA molecules sequenced. 'Mutant Allele Frequency' indicates the percentage of the reads with the respective 'Variant' and is affected by the degree of normal cell contamination of the sample and whether the variant is fully clonal or subclonal.

Pathogenic or Likely Pathogenic ALTERATIONS IN THE NORMAL SAMPLE*						
VARIANT	TRANSCRIPT ID	CLASSIFICATION	READS (Normal/Tumor)	MUTANT ALLELE FREQUENCY (Normal/Tumor)		
IDH1 p. R132H	NM_005896.2	Pathogenic	786 peripheral blood, 754 buccal swab, 1105 tumor	6% peripheral blood, 3% buccal swab, 42% tumor		

*Alterations in the normal sample are reported for cancer-related genes if classified as pathogenic or likely pathogenic in ClinVar and confirmed by a CCGL molecular pathologist. For variants not classified in ClinVar, truncating or splice-site variants in well-established tumor suppressor genes are reported if present in <1% of 1000g or esp6500 datasets. Alterations in the normal sample are limited to single nucleotide variants and small indels in gene coding regions. Carrier status is not reported for variants not strongly related to cancer.

INTERPRETATION

In this individual with a clinical diagnosis of Ollier disease and a personal history of multiple benign bone tumor resections (likely enchondromas but pathology has not been reviewed at UCSF Medical Center for any of these lesions), there are IDH1 p.R132H mutant alleles detected at 6% frequency in the peripheral blood sample, as well as at 3% frequency in a buccal swab sample that was also sequenced on the UCSF500 NGS Panel (collection date 7/18/2019, library prep ID CGP-10513, no separate report issued). This genetic result supports that this patient does indeed have Ollier disease due to constitutional or post-zygotic mosaicism for the p.R132H activating mutation in the IDH1 oncogene. Ollier disease (also known as multiple enchondromatosis syndrome or Maffucci syndrome when accompanied by hemangiomata, Online Mendelian Inheritance in Man %166000) is a tumor predisposition syndrome caused by constitutional mosaicism for an activating mutation at codon p.R132 of the IDH1 gene or codon p.R172 of the IDH2 gene and is characterized by multiple enchondromas, soft tissue hemangiomas, and diffuse astrocytomas [refs. 1-3]. The post-zygotic IDH1 p.R132H mutation in this patient is at a clonal allele frequency of 42% in the diffuse astrocytoma, indicating that this tumor arose from a precursor cell affected by the mosaicism. Genetic counseling is recommended.

This diffuse astrocytoma centered in the cerebral hemispheres demonstrates the p.R132H hotspot mutation in the IDH1 oncogene, a damaging missense mutation in the TP53 tumor suppressor gene with loss of the remaining wildtype allele, and multiple truncating mutations in the ATRX tumor suppressor

gene. Additionally seen at subclonal allele frequencies are a truncating frameshift mutation in the NF1 tumor suppressor gene, a truncating frameshift mutation in the NOTCH1 tumor suppressor gene, and a truncating frameshift mutation in the NOTCH1 tumor suppressor gene.

The somatic mutation burden is low overall, with less than 3 somatic mutations per Mb based on this assay. Only 4 of the 1,129 assessed microsatellites (<1%) demonstrate instability, consistent with a microsatellite stable tumor.

Chromosomal copy number analysis reveals losses of distal 10q and distal 11p. There is also copy-neutral loss of heterozygosity involving chromosome 17p (containing TP53). No focal amplifications or deep deletions are seen.

Together, the genetic profile is that of a diffuse astrocytic neoplasm, IDH-mutant, arising in the setting of Ollier disease. Diffuse astrocytomas, anaplastic astrocytomas, and secondary glioblastomas arising from lower-grade infiltrating astrocytomas within the cerebral hemispheres of younger adults are genetically defined by the combination of IDH, TP53, and ATRX mutations, as seen in this tumor [refs. 4-6]. The additional genetic changes that drive anaplastic/malignant transformation in IDH-mutant diffuse astrocytic neoplasms are just beginning to be elucidated, but studies to date have indicated that alterations causing activation of the Ras-Raf-MAP kinase signaling are one potential pathway [refs. 7-8]. The additional subclonal NF1 and SPRED1 inactivating mutations are expected to be causing MAP kinase pathway activation in a subset of the tumor cells and may likely correspond with the focally increased mitotic activity in this diffuse astrocytoma. This tumor lacks the CDKN2A homozygous deletion that has been associated with worse prognosis when present in IDH-mutant diffuse astrocytic neoplasms [ref. 9].

References:

- 1. Pansuriya TC, et al. Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nature Genetics 43: 1256-1261, 2011.
- 2. Amary MF, et al. Ollier disease and Maffucci syndrome are caused by somatic mosaic mutations of IDH1 and IDH2. Nature Genetics 43: 1262-1265, 2011.
- 3. Bonnet C, et al. Characteristics of gliomas in patients with somatic IDH mosaicism. Acta Neuropathologica Communications 4: 31, 2016.
- 4. The Cancer Genome Atlas Research Network. Comprehensive integrative genomic analysis of diffuse lower-grade gliomas. New England Journal of Medicine 372: 2481-2498, 2015.
- 5. Eckel-Passow JE, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. New England Journal of Medicine 372: 2499-2508, 2015.
- 6. Suzuki H, et al. Mutational landscape and clonal architecture in grade II and III gliomas. Nature Genetics 47: 458-468, 2015.
- 7. Bai H, et al. Integrated genomic characterization of IDH1-mutant glioma malignant progression. Nature Genetics 48: 59-66, 2016.
- 8. Johnson BE, et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343: 189-193, 2014.
- 9. Shirahata M, et al. Novel, improved grading system(s) for IDH-mutant astrocytic gliomas. Acta Neuropathologica 136: 153-166, 2018.

SOMATIC ALTERATIONS OF UNKNOWN SIGNIFICANCE*						
VARIANT	TRANSCRIPT ID	CLASSIFICATION	READS	MUTANT ALLELE FREQUENCY		
IGF2R p.Q1135*	NM_000876.2	vus	1142	21%		

^{*}The above variants have not yet been adequately characterized and are therefore classified as variants of unknown significance.

TEST METHODOLOGY:

The UCSF500 Cancer Gene Test uses capture-based next-generation sequencing to target and analyze the coding regions of 479 cancer genes, as well as select introns of 47 genes (gene list on last page of this report). Genomic DNA was extracted from both tumor and normal tissue for library preparation. Target enrichment was performed by hybrid capture using custom oligonucleotides. Sequencing of captured libraries was performed on an Illumina HiSeq 2500 by the UCSF Genomic Sequencing Services Lab at Institute for Human Genetics CLIA laboratory (San Francisco, CA). Sequence reads are de-duplicated to allow for accurate allele frequency determination and copy number calling. The analysis uses open source or licensed software for alignment to the human reference sequence UCSC build hg19 (NCBI build 37) and variant calling. Microsatellite instability analysis is performed with MSIsensor (Niu B et al, 2014). MSI-High cases have greater than 30% of sites unstable and Microsatellite stable (MSS) cases have less than 20% of sites unstable, corresponding to the MSI-High or MSS categories of the revised Bethesda guidelines (Umar A et al, 2004). Cases that have 20-30% of sites unstable are equivocal between MSS and MSI-High.

REFERENCES

- . 1. Niu B, et al. MSIsensor: microsatellite instability detection using paired tumor-normal sequence data. Bioinformatics. 2014 Apr 1;30(7):1015-6. PubMed PMID: 24371154.
- . 2. Umar A, et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004 Feb 18;96(4):261-8. PubMed PMID: 14970275.

CCGL No: CCGL-3619

3

TEST LIMITATIONS:

This assay is designed to detect single nucleotide variants, small to medium insertion/deletions (indels), and copy number changes. Large insertions/deletions and gene rearrangements may also be detected by the assay; however, the sensitivity of detection of structural rearrangements is dependent on the specific rearrangement. If the pre-test probability of a structural rearrangement is high and the test is negative, an orthogonal testing method should be considered.

Sensitivity and positive predictive value of this test to detect single nucleotide variants (SNVs) and small indels (≤ 5 bp) was determined by sequencing well characterized HapMap DNA samples from the Coriell Cell Repositories and comparing the genotypes produced by our assay with those from Illumina Platinum Genomes as the gold standard and sequencing tumor samples also sequenced at reference laboratories. For samples with at least 25% tumor, ≥ 200x coverage for the tumor sample, and ≥ 100x coverage for the normal sample, the sensitivity of the test for fully clonal SNVs and small indels is >98% and the positive predictive value for fully clonal SNVs and small indels is >99%. Sensitivity for detection of copy number changes is >98% for samples with high tumor content. Sensitivity for detection of NPM1, FLT3, and EGFR exons 19 and 20 insertions and deletions is 95%. Sequencing of target intervals is performed to high depth, with greater than 250x mean target coverage. Less than 0.5% of the exonic footprint of targeted genes performs with a mean of <100x coverage with reduced sensitivity. These regions are not recurrently mutated in cancer and are available on request.

Microsatellite instability is assessed using MSIsensor analysis of hundreds of mononucleotide and dinucleotide repeats. In a cohort of 42 validation cases, there was 100% concordance between results of MSIsensor and MSI-High and MSS classification of microsatellite instability by multiplex PCR (Promega).

CLIA NOTE:

This test was developed and its performance characteristics determined by the UCSF Clinical Cancer Genomics Laboratory. It has not been cleared or approved by the U.S. Food and Drug Administration. The Clinical Cancer Genomics Laboratory is certified by the Clinical Laboratory Improvement Act of 1988 (CLIA certified) and as such is allowed to perform high complexity clinical testing.

CCGL No: CCGL-3619

UCSF 500 Gene List										
ABL1	ABL2	ACVR1	ACVR1B	AJUBA	AKT1	AKT2	AKT3	ALK	AMER1	APC
APOBEC3G		ARAF					ARID2	ARID5B		ASXL1
	AR		ARFRP1	ARHGAP35	ARID1A	ARID1B			ASH2L	
ASXL2	ATF1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2	AXL	BAP1
BARD1	BCL2	BCL2A1	BCL2L1	BCL2L12	BCL2L2	BCL6	BCOR	BCORL1	BLM	BRAF
BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTK	C11orf30	CALR	CARD11	CBFB	CBL
CBLB	CCND1	CCND2	CCND3	CCNE1	CD274	CD79A	CD79B	CDC42	CDC73	CDH1
CDK12	CDK4	CDK6	CDK8	CDKN1A	CDKN1B	CDKN2A	CDKN2B	CDKN2C	CEBPA	CHD1
CHD2	CHD4	CHD5	CHEK1	CHEK2	CIC	CLDN18	CNOT3	COL1A1	COL2A1	CRCT1
CREB1	CREBBP	CRKL	CSF1R	CSF3R	CTCF	CTNNA1	CTNNB1	CUL3	CUX1	CXCR4
CYLD	DCC	DDIT3	DDR2	DDX3X	DDX41	DGKH	DICER1	DIS3	DNAJB1	DNMT3A
DOT1L	DUSP2	DUSP4	DUSP6	DYNC1I1	EBF1	EDNRB	EGFR	EGR1	EIF1AX	ELF3
EP300	EPCAM	EPHA2	EPHA3	EPHA5	EPHA7	EPHB1	EPOR	ERBB2	ERBB3	ERBB4
ERCC1	ERCC2	ERG	ERRFI1	ESPL1	ESR1	ESR2	ETS1	ETV6	EWSR1	EZH1
EZH2	FAM46C	FANCA	FANCC	FANCE	FANCF	FANCG	FANCL	FAT1	FAT3	FBXW7
FGF10	FGF14	FGF19	FGF23	FGF3	FGF4	FGF6	FGFR1	FGFR2	FGFR3	FGFR4
FH	FLCN	FLT1	FLT3	FLT4	FOXA1	FOXL2	FOXO1	FOXP1	FRS2	FUBP1
FUS	FYN	GAB2	GATA1	GATA2	GATA3	GLI1	GLI2	GNA11	GNA13	GNAQ
GNAS	GPC3	GPR124	GRIN2A	GRM3	GSK3B	H3F3A	H3F3B	HDAC4	HDAC9	HEY1
HGF	HIF1A	HIST1H3B	HMGA2	HNF1A	HOXB13	HRAS	HSP90AB1	HSPA2	HSPA5	ID3
IDH1	IDH2	IGF1R	IGF2	IGF2R	IKBKE	IKZF1	IKZF2	IKZF3	IL2RB	IL7R
INHBA	INPP4B	IPMK	IRF4	IRS2	JAK1	JAK2	JAK3	JAZF1	KAT6A	KDM5A
KDM5C	KDM6A	KDR	KEAP1	KIT	KLF4	KLHL6	KMT2A	KMT2B	KMT2D	KNSTRN
KRAS	LEF1	LIFR	LRP1B	LZTR1	MALAT1	MAML2	MAP2K1	MAP2K2	MAP2K4	MAP3K1
MAP3K2	MAP3K5	MAP3K7	MAP3K9	MAPK1	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1
MET	MGA	MGMT	MITF	MLH1	MLH3	MPL	MRE11A	MSH2	MSH3	MSH6
MTOR	MUTYH	МҮВ	MYBL1	MYC	MYCL	MYCN	MYD88	MYH9	NAV3	NBN
NCKAP5	NCOA2	NCOA3	NCOR1	NF1	NF2	NFE2L2	NFKBIA	NFKBIE	NIPBL	NKX2-1
NOTCH1	NОТСН3	NPM1	NRAS	NSD1	NT5C2	NTRK1	NTRK2	NTRK3	NUP93	NUTM1
OR5L1	PAK1	PAK3	PALB2	PARK2	PAX3	PAX5	PAX7	PAX8	PBRM1	PDCD1LG2
PDGFB	PDGFRA	PDGFRB	PDK1	PHF6	PHOX2B	PIK3CA	PIK3CG	PIK3R1	PIK3R2	PLAG1
PLCB4	PMS1	POLD1	POLE	POLQ	POT1	POU3F2	PPM1D	PPP2R1A	PPP6C	PRDM1
PREX2	PRKACA	PRKAG2	PRKAR1A	PRKCA	PRKCH	PRKDC	PTCH1	PTCH2	PTEN	PTK2B
PTPN1	PTPN11	PTPRB	PTPRD	PTPRK	PTPRT	RAC1	RAD21	RAD50	RAD51	RAD51C
RAD51D	RAF1	RARA	RASA1	RASA2	RB1	RBM10	REL	RELA	RET	RHEB
RHOA	RICTOR	RIT1	RNF43	ROBO1	ROS1	RPL10	RPTOR	RRAGC	RRAS	RRAS2
RSPO2	RSPO3	RUNX1	RUNX1T1	SDHB	SDHD	SETBP1	SETD2	SF3B1	SH2B3	SHH
SIN3A	SLIT2	SLITRK6	SMAD2	SMAD3	SMAD4	SMARCA2	SMARCA4	SMARCB1	SMC1A	SMC3
SMO	SNCAIP	SOCS1	SOS1	SOS2	SOX10	SOX2	SOX9	SPEN	SPOP	SPRED1
SPRY1	SPRY2	SPRY4	SPTA1	SRC	SRSF2	SS18	STAG2	STAT3	STAT4	STAT6
STK11	SUFU	SYK	SYNE1	TADA1	TBX3	TCEB1	TCF7L2	TERT	TET2	TFE3
TFEB	TGFBR2	TLR4	TMPRSS2	TNFAIP3	TNFRSF14	TOP1	TOP2A	TP53	TRAF3	TRAF7
TRIM28	TSC1	TSC2	TSHR	TSHZ2	TSHZ3	TSLP	TTYH1	TYK2	U2AF1	USP7
VEGFA	VHL	WHSC1	WISP3	WRN	WT1	XBP1	XPO1	YAP1	YWHAE	ZBTB20
ZFHX3	ZFHX4	ZMYM3	ZNF217	ZNF703	ZRSR2	ADI I	71 01	11011	1 VVI IAL	201020
<u> </u>		ZIVI Y IVIS	ZINFZ I /	ZINF/U3	ZKOKZ				<u> </u>	<u> </u>

This report was produced using software licensed by GenomOncology. GenomOncology software is designed to be used in clinical applications solely as a tool to enhance medical utility and improve operational efficiency. The use of GenomOncology software is not a substitute for medical judgment and GenomOncology in no way holds itself out as having or providing independent medical judgment or diagnostic services. GenomOncology is not liable with respect to any treatment or diagnosis made in connection with this report.