COMPSCI/SFWRENG 2FA3 Discrete Mathematics with Applications II Winter 2020

3 Predicate Logic

William M. Farmer

Department of Computing and Software McMaster University

February 9, 2020

Outline

- 1. Orders revisited
- 2. Logic
- 3. MSFOL, a many-sorted first-order logic
 - a. Syntax
 - b. Semantics
 - c. Theories
 - d. Proof systems
- 4. Summary

1. Orders Revisited

Pre-Orders

- A pre-order is a mathematical structure (S, \leq) where \leq is a binary relation on S that is:
 - ▶ Reflexive: $\forall x \in S . x \leq x$.
 - ► Transitive: $\forall x, y, z \in S$. $x \le y \land y \le z$) $\Rightarrow x \le z$.
- Example: (F,⇒) is a pre-order where F is a set of formulas and ⇒ is implication.
- A pre-order can have cycles.
- Every binary relation R on a set S can be extended to a pre-order on S by taking the reflexive and transitive closure of R.
- A equivalence relation is a pre-order (S, E) that is:
 - ▶ Symmetric: $\forall x, y \in S . x E y \Rightarrow y E x$.

Partial Orders

- A weak partial order is a mathematical structure (S, \leq) where \leq is a binary relation on S that is:
 - ▶ Reflexive: $\forall x \in S . x < x$.
 - Antisymmetric: $\forall x, y \in S$. $(x \le y \land y \le x) \Rightarrow x = y$.
 - ► Transitive: $\forall x, y, z \in S$. $(x \le y \land y \le z) \Rightarrow x \le z$.
- A strict partial order is a mathematical structure (S, <) where < is a binary relation on S that is:
 - ▶ Irreflexive: $\forall x \in S$. $\neg(x < x)$.
 - Asymmetric: $\forall x, y \in S : x < y \Rightarrow \neg (y < x)$.
 - ▶ Transitive: $\forall x, y, z \in S$. $(x < y \land y < z) \Rightarrow x < z$.
- Examples: $(\mathcal{P}(S), \subseteq)$ and $(\mathcal{P}(S), \subset)$ are weak and strict partial orders.
- A partial order does not have cycles.
- Every pre-order can be interpreted as a partial order.

Weak vs. Strict Orders (iClicker)

If (S, \leq) is a weak partial order, then (S, <) will be the same order expressed as strict partial order if < is defined as

- A. a < b iff $a < b \land a = b$.
- B. a < b iff $a \le b \lor a = b$.
- C. $a < b \text{ iff } a \leq b \land a \neq b$.
- D. a < b iff $a \le b \lor a \ne b$.

Some Basic Order Definitions

- Let (P, \leq) be a weak partial order and $S \subseteq P$.
- A maximal element [minimal element] of S is a $M \in S$ $[m \in S]$ such that $\neg (M < x) [\neg (x < m)]$ for all $x \in S$.
- The maximum element or greatest element [minimum element or least element] of S, if it exists, is the $M \in S$ $[m \in S]$ such that $x \leq M$ $[m \leq x]$ for all $x \in S$.
- An upper bound [lower bound] of S is a $u \in P$ $[I \in P]$ such that $x \le u$ $[I \le x]$ for all $x \in S$.
- The least upper bound or supremum [greatest lower bound or infimum of S, if it exists, is a $U \in P$ [$L \in P$] such that U is an upper bound of S and, if u is an upper bound of S, then $U \le u$ [L is a lower bound of S and, if I is a lower bound of S, then $I \le L$].

Review

- Four kinds of recursion and induction:
 - 1. Natural number
 - 2. Structural
 - 3. Ordinal
 - 4. Well-founded
- Orders

Total Orders

- A weak total order is a mathematical structure (S, \leq) where \leq is a binary relation on S that is:
 - ightharpoonup (Reflexive): $\forall x . x \leq x$.
 - ▶ Antisymmetric: $\forall x, y \in S$. $(x \le y \land y \le x) \Rightarrow x = y$.
 - ▶ Transitive: $\forall x, y, z \in S$. $(x \le y \land y \le z) \Rightarrow x \le z$.
 - ► Total: $\forall x, y \in S$. $x \leq y \lor y \leq x$.
- A strict total order is a mathematical structure (S, <) where < is a binary relation on S that is:
 - ▶ Irreflexive: $\forall x \in S$. $\neg(x < x)$.
 - ► (Asymmetric): $\forall x, y \in S . x < y \Rightarrow \neg (y < x)$.
 - ▶ Transitive: $\forall x, y, z \in S$. $(x < y \land y < z) \Rightarrow x < z$.
 - ► Trichotomous: $\forall x, y \in S$. $x < y \lor y < x \lor x = y$.

Examples: (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) , (\mathbb{Q}, \leq) , and (\mathbb{R}, \leq) are weak total orders.

Well-Orders

- A well-order is a strict total order (S, <) such that every nonempty subset of S has a minimum element with respect to <.
- Proposition. Every well-order (S, <) is Noetherian, i.e., S contains no infinite descending sequences of the form $\cdots < x_2 < x_1 < x_0$.
- Examples.
 - 1. $(\mathbb{N}, <)$ is a well-order where < is the usual order on \mathbb{N} .
 - 2. $(\mathbb{Z}, <)$ is **not** a well-order where < is the usual order on \mathbb{Z} .
 - 3. (S, <) is a well-order where S is $\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, 1, 1\frac{1}{2}, 1\frac{2}{3}, 1\frac{3}{4}, \dots\}$
 - and < is the usual order on \mathbb{Q} .
 - 4. $(\mathbb{N} \times \mathbb{N}, <_{lex})$ is a well-order where $<_{lex}$ is lexicographic order on $\mathbb{N} \times \mathbb{N}$.

2. Logic

What is Logic?

- 1. The study of the principles underlying sound reasoning.
 - Central idea: logical consequence.
- 2. The branch of mathematics underlying mathematical reasoning and computation.

Fundamental Distinctions

Logic makes several fundamental distinctions:

- Syntax vs. semantics.
- Language vs. metalanguage.
- Theory vs. model.
- Truth vs. proof.

Metalanguages (iClicker)

Which of the following is a suitable metalanguage for English?

- A. English.
- B. First-order logic.
- C. French.
- D. Latin.
- E. Old English.

What is a Logic?

- Informally, a logic is a system of reasoning.
- Formally, a logic is a family of formal languages with:
 - 1. A common syntax.
 - 2. A common semantics.
 - 3. A notion of logical consequence.
- A logic may include one or more proof systems for mechanically deriving that a given formula is a logical consequence of a given set of formulas.
- Two most common examples:
 - Propositional logic.
 - First-order logic.
- First-order logic is called first-order predicate logic and first-order quantificational logic.

What is Predicate Logic?

- Predicate logic is the study of statements about individuals constructed using functions, predicates, propositional connectives, and quantifiers.
- Examples of predicate logics:
 - First-order logic.
 - Many-sorted first-order logic.
 - Second-order logic.
 - Simple type theory (classical higher-order logic).
 - Dependent type theory (constructive higher-order logic).
- First-order logic is the leading form of predicate logic.
 - ▶ It is "first-order" because quantification is over individuals but not over higher-order objects such as functions and predicates.
 - It is suited more for theory than practice.

Many-Sorted First-Order Logic

- Many-sorted first-order logic is a version of first-order logic that admits multiple domains of individuals.
 - ► These domains are called sorts.
 - Standard first-order logic has just a single sort.
- This single change makes many-sorted first-order logic much more practical than standard first-order logic.
- We will develop a version of many-sorted first-order logic called MSFOL.

3a. MSFOL: Syntax

Types

- ullet Let ${\cal B}$ be a nonempty set of symbols called base types.
 - Each base type denotes a sort.
- A \mathcal{B} -type is a string of symbols defined inductively by:
 - ightharpoonup (Type of booleans) ightharpoonup is a m B-type.
 - ▶ (Base type) Each $\alpha \in \mathcal{B}$ is a \mathcal{B} -type.
 - ► (Function type) If α and β are β -types, then $(\alpha \to \beta)$ is a β -type.
 - ▶ (Product type) If α and β are β -types, then $(\alpha \times \beta)$ is a β -type.
- Thus a \mathcal{B} -type is built from \mathbb{B} and the members of \mathcal{B} by applying the function and product type constructors.
- We may omit matching pairs of parentheses in types when there is no loss of meaning.

Syntax vs. Semantics (iClicker)

Which sentence in English is syntactically incorrect?

- A. They goes to Mac.
- B. His statements infer that he is angry.
- C. She knows the induction principal that is needed.
- D. Long live the king!
- E. All of the above.

Base Cases (iClicker)

How many base cases does the definition of a \mathcal{B} -type have?

- A. 0.
- B. 1.
- C. 2.
- D. 4.

\mathcal{B} -Types as an Inductive Set

- The set of \mathcal{B} -types can be formally defined as an inductive type.
- Let Type be the inductive set defined by the following constructors:
 - 1. **B** : Type.
 - 2. Base : $\mathcal{B} \to \mathsf{Type}$.
 - 3. Function : Type \times Type \rightarrow Type.
 - 4. Product : Type \times Type \rightarrow Type.
- ullet Thus the members of Type represent the ${\cal B}$ -types.

Admin — January 28

- A notetaker for this course is needed for SAS students.
 - ► For more information and to register, see https://sas.mcmaster.ca/volunteer-notetaking/
 - Send questions to sasnotes@mcmaster.ca.
- Midterm Test 1 will be on Wed, Feb 5, at 7:00–9:00 PM.
 - Format: Two-stage test, 30 multiple-choice questions
 - Covers the material from Weeks 01, 02, 03, and 04.
 - Sample test will be posted on Mon, Feb 3.
 - Review session on Wed, Feb 5, instead of the lecture.
 - ▶ Room assignments will be posted on Avenue.
- Solutions to Week 03 Exercises
 - ► The ideas behind the solutions are more important than the solutions themselves.
 - ▶ Some of the solutions are a bit rough in various ways.
- Office hours: To see me please send me a note with times.
- Are there any questions?

Assignment 2: Question 1

Let Poly be the inductive type defined by the following constructors:

X: Poly.

Coeff : $\mathbb{Q} \to \mathsf{Poly}$.

 $\mathsf{Sum} : \mathsf{Poly} \times \mathsf{Poly} \to \mathsf{Poly}.$

 $\mathsf{Prod} : \mathsf{Poly} \times \mathsf{Poly} \to \mathsf{Poly}.$

Define

val : Poly $\times \mathbb{Q} \to \mathbb{Q}$

by structural recursion using pattern matching so that, for all $p \in \text{Poly}$ and $q \in \mathbb{Q}$, val(p,q) is the value of p at q.

Assignment 2: Question 2

Let BinNum be the inductive set defined by:

Nil: BinNum.

Join : $BinNum \times Bit \rightarrow BinNum$.

The function val : $BinNum \rightarrow \mathbb{N}$ is defined by:

$$val(Nil) = 0.$$

$$val(Join(u, Zero)) = 2 * val(u).$$

$$\mathsf{val}(\mathsf{Join}(u,\mathsf{One})) = (2 * \mathsf{val}(u)) + 1.$$

The function add : $BinNum \times BinNum \rightarrow BinNum$ is defined using recursion and pattern matching (see Assignment 1).

Prove, for all
$$u, v \in BinNum$$
,
 $val(add(u, v)) = val(u) + val(v)$.

Review

- Orders.
- Logic.
- Types in the MSFOL syntax.

Signatures

- A formal language of a logic is a set of expressions built from a set of symbols that include:
 - 1. Variables that may have different meanings in an interpretation of the language.
 - 2. Logical constants like ∧ and ∀ that have the same meaning in every interpretation of every language.
 - 3. Nonlogical constants like 0 and < that have the same meaning within an interpretation of the language but possibly different meanings within different interpretations of the language.
 - 4. Punctuation symbols like parentheses.
- The signature S of a formal language L defines the set of nonlogical symbols of L.
 - We will see that S also specifies the expressions of L.

Signatures in MSFOL

- ullet Let ${\mathcal V}$ be a countably infinite set of symbols called variable symbols.
- A signature of MSFOL is a tuple $\Sigma = (\mathcal{B}, \mathcal{C}, \mathcal{F}, \mathcal{P}, \tau)$ where:
 - 1. \mathcal{B} is a nonempty set of base types.
 - 2. \mathcal{C} is a set of symbols called constant symbols.
 - 3. \mathcal{F} is a set of symbols called function symbols.
 - 4. \mathcal{P} is a set of symbols called predicate symbols.
 - 5. V, B, C, F, and P are pairwise disjoint.
 - 6. au is a function that maps the members of $\mathcal{C} \cup \mathcal{F} \cup \mathcal{P}$ to \mathcal{B} -types such that:
 - a. $\tau(c) \in \mathcal{B}$ for each $c \in \mathcal{C}$.
 - b. $\tau(f)$ has the form $(\alpha_1 \times \cdots \times \alpha_n) \to \alpha$ for each $f \in \mathcal{F}$ where $\alpha_1, \ldots, \alpha_n, \alpha \in \mathcal{B}$.
 - c. $\tau(p)$ has the form $(\alpha_1 \times \cdots \times \alpha_n) \to \mathbb{B}$ for each $p \in \mathcal{P}$ where $\alpha_1, \ldots, \alpha_n \in \mathcal{B}$.
- Σ is finite if \mathcal{B} , \mathcal{C} , \mathcal{F} , and \mathcal{P} are finite.

Examples of Signatures [1/3]

- ullet $\Sigma_{\mathrm{eq}} = (\mathcal{B}, \mathcal{C}, \mathcal{F}, \mathcal{P}, au)$ where
 - ▶ $\mathcal{B} = \{U\}.$
 - $\mathcal{C} = \emptyset$.
 - \triangleright $\mathcal{F} = \emptyset$.
 - $\triangleright \mathcal{P} = \emptyset.$

is the signature of a language for equality.

- ullet $\Sigma_{\mathrm{ord}} = (\mathcal{B}, \mathcal{C}, \mathcal{F}, \mathcal{P}, au)$ where
 - ▶ $\mathcal{B} = \{U\}.$
 - $\mathcal{C} = \emptyset$.
 - $\mathcal{F} = \emptyset$.
 - \triangleright $\mathcal{P} = \{<\}$ with $\tau(<) = U \times U \rightarrow \mathbb{B}$.

is the signature of a language for a strict order.

Examples of Signatures [2/3]

- $\Sigma_{\mathrm{nat}}^1 = (\mathcal{B}, \mathcal{C}, \mathcal{F}, \mathcal{P}, \tau)$ where
 - $\triangleright \mathcal{B} = \{\mathbb{N}\}.$
 - $ightharpoonup \mathcal{C} = \{0\} \text{ with } \tau(0) = \mathbb{N}.$
 - $\mathcal{F} = \{S, +, *\} \text{ with } \tau(S) = \mathbb{N} \to \mathbb{N} \text{ and } \tau(+) = \tau(*) = \mathbb{N} \times \mathbb{N} \to \mathbb{N}.$
 - $\triangleright \mathcal{P} = \{<\} \text{ with } \tau(<) = \mathbb{N} \times \mathbb{N} \to \mathbb{B}.$

is the signature of a language for natural number arithmetic.

- $\Sigma_{\rm nat}^2 = (\mathcal{B}, \mathcal{C}, \mathcal{F}, \mathcal{P}, \tau)$ where
 - $\triangleright \mathcal{B} = \{\mathbb{N}\}.$
 - $\mathcal{C} = \{0, 1, 2, \ldots\} \text{ with } \tau(0) = \tau(1) = \tau(2) = \cdots = \mathbb{N}.$
 - \triangleright $\mathcal{F} = \{+, *\}$ with $\tau(+) = \tau(*) = \mathbb{N} \times \mathbb{N} \to \mathbb{N}$.
 - $\triangleright \mathcal{P} = \{<\} \text{ with } \tau(<) = \mathbb{N} \times \mathbb{N} \to \mathbb{B}.$

is the signature of an alternate language for natural number arithmetic.

Examples of Signatures [3/3]

- ullet $\Sigma_{
 m stack} = (\mathcal{B}, \mathcal{C}, \mathcal{F}, \mathcal{P}, au)$ where:
 - $\triangleright \mathcal{B} = \{\mathsf{Element}, \mathsf{Stack}\}.$
 - $\mathcal{C} = \{\text{error}, \text{bottom}\}\ \text{with}\ \tau(\text{error}) = \text{Element and}\ \tau(\text{bottom}) = \text{Stack}.$
 - $\mathcal{F} = \{\mathsf{push}, \mathsf{pop}, \mathsf{top}\} \text{ with } \\ \tau(\mathsf{push}) = \mathsf{Element} \times \mathsf{Stack} \to \mathsf{Stack}, \\ \tau(\mathsf{pop}) = \mathsf{Stack} \to \mathsf{Stack}, \text{ and } \\ \tau(\mathsf{top}) = \mathsf{Stack} \to \mathsf{Element}.$
 - $\triangleright \mathcal{P} = \emptyset.$

is the signature of a language for stacks of abstract elements.

Terms

- In MSFOL, a term is an expression that denotes a member of a sort.
- Let $\Sigma = (\mathcal{B}, \mathcal{C}, \mathcal{F}, \mathcal{P}, \tau)$ be a signature of MSFOL and $\alpha \in \mathcal{B}$.
- A Σ -term of type α of MSFOL is a string of symbols defined inductively by:
 - 1. (Variable) If $x \in \mathcal{V}$, then $x : \alpha$ is a Σ -term of type α .
 - 2. (Constant) If $c \in C$ with $\tau(c) = \alpha$, then c is a Σ-term of type α .
 - 3. (Function Application) If $f \in \mathcal{F}$ with $\tau(f) = (\alpha_1 \times \cdots \times \alpha_n) \to \alpha$ and t_1, \ldots, t_n are Σ -terms of type $\alpha_1, \ldots, \alpha_n$, respectively, then $f(t_1, \ldots, t_n)$ is a Σ -term of type α .
- Let T_{Σ} be the set of Σ -terms.

Terms (iClicker)

Which of the following is a $\Sigma^1_{\rm nat}$ -term? Note that +, *, and < are written as infix operators.

- A. x where $x \in \mathcal{V}$.
- B. S.
- C. S(0).
- D. 0 + 1.
- E. 0 < 0.

Terms as a Family of Inductive Sets

- Let $\Sigma = (\mathcal{B}, \mathcal{C}, \mathcal{F}, \mathcal{P}, \tau)$ be a finite signature of MSFOL.
- The set of Σ -terms can be formally defined as a family of inductive sets, one for each $\alpha \in \mathcal{B}$.
- Let $\{\mathsf{Term}_{\alpha} \mid \alpha \in \mathcal{B}\}$ be the set of inductive sets simultaneously defined by the following constructors:
 - 1. For all $\alpha \in \mathcal{B}$, $Var_{\alpha} : \mathcal{V} \to Term_{\alpha}$.
 - 2. For all $c \in \mathcal{C}$, $\mathsf{Con}_c : \mathsf{Term}_{\tau(c)}$.
 - 3. For all $f \in \mathcal{F}$,

$$\mathsf{FunApp}_f : \mathsf{Term}_{\alpha_1} \times \dots \times \mathsf{Term}_{\alpha_n} \to \mathsf{Term}_{\alpha}$$
 where $\tau(f) = (\alpha_1 \times \dots \times \alpha_n) \to \alpha$.

• Thus, for each $\alpha \in \mathcal{B}$, Term_{α} is an inductive set representing the Σ -terms of type α of MSFOL.

Formulas

- A formula is an expression that denotes a boolean value (i.e., true or false).
- Let $\Sigma = (\mathcal{B}, \mathcal{C}, \mathcal{F}, \mathcal{P}, \tau)$ be a signature of MSFOL.
- A Σ-formula of MSFOL is string of symbols defined inductively by:
 - 1. (Equality) If t_1 and t_2 are Σ -terms of $\alpha \in \mathcal{B}$, then $(t_1 = t_2)$ is a Σ -formula.
 - 2. (Predicate Application) If $p \in \mathcal{P}$ with $\tau(p) = (\alpha_1 \times \cdots \times \alpha_n) \to \mathbb{B}$
 - and t_1, \ldots, t_n are Σ -terms of type $\alpha_1, \ldots, \alpha_n$, respectively, then $p(t_1, \ldots, t_n)$ is a Σ -formula.
 - 3. (Negation and Implication) If A and B are Σ -formulas, then $\neg A$ and $(A \Rightarrow B)$ are Σ -formulas.
 - 4. (Universal Quantification) If $x \in \mathcal{V}$, $\alpha \in \mathcal{B}$, and A is a Σ-formula, then $(\forall x : \alpha . A)$ is a Σ-formula.
- Let F_{Σ} be the set of Σ -formulas.

Formulas (iClicker)

Which of the following is a $\Sigma^1_{\rm nat}$ -formula (without using any notational definitions or conventions)? Note that +, *, and < are written as an infix operators.

- A. 0 < 0.
- B. 0 = 0.
- C. $\forall x : \mathbb{N} \cdot 0 = x$
- D. 0 + S(0)
- E. $0 < S(0) \land S(0) < 0$.

Formulas as an Inductive Set

- Let $\Sigma = (\mathcal{B}, \mathcal{C}, \mathcal{F}, \mathcal{P}, \tau)$ be a finite signature of MSFOL.
- The set of Σ-formulas can be formally defined as an inductive set.
- Let Form be the inductive set defined by the following constructors:
 - 1. For all $\alpha \in \mathcal{B}$, Eq $_{\alpha}$: Term $_{\alpha} \times \text{Term}_{\alpha} \to \text{Form}$.
 - 2. For all $p \in \mathcal{P}$,

$$\mathsf{PredApp}_p : \mathsf{Term}_{\alpha_1} \times \cdots \times \mathsf{Term}_{\alpha_n} \to \mathsf{Form}$$
 where $\tau(p) = (\alpha_1 \times \cdots \times \alpha_n) \to \mathbb{B}$.

- 3. Neg : Form \rightarrow Form.
- 4. Implies : Form \times Form \rightarrow Form.
- 5. Forall : $\mathcal{V} \times \mathcal{B} \times \mathsf{Form} \to \mathsf{Form}$.
- Thus Form is an inductive set representing the Σ-formulas of MSFOL.

Admin — January 29

- You can nominate instructors and TAs for an McMaster Student Union (MSU) teaching award until Feb 2 at https://www.msumcmaster.ca/services-directory/29teaching-awards/surveys
- A notetaker for this course is needed for SAS students.
 - ► For more information and to register, see https://sas.mcmaster.ca/volunteer-notetaking/
 - Send questions to sasnotes@mcmaster.ca.
- Midterm Test 1 will be on Wed, Feb 5, at 7:00–9:00 PM.
 - Format: Two-stage test, 30 multiple-choice questions
 - Covers the material from Weeks 01, 02, 03, and 04.
 - Sample test will be posted on Mon, Feb 3.
 - ▶ Review session on Wed, Feb 5, instead of the lecture.
 - Room assignments will be posted on Avenue.
- Office hours: To see me please send me a note with times.
- Are there any questions?

Review

MSFOL syntax.

- \mathcal{B} -types.
- Signatures.
- \bullet Σ -terms.
- \bullet Σ -formulas.

Notational Definitions

```
 \begin{array}{lll} (s\neq t) & \text{stands for} & \neg(s=t). \\ \mathsf{T} & \text{stands for} & (\forall\,x:\mathbb{B}\,\,.\,(x:\mathbb{B}=x:\mathbb{B})). \\ \mathsf{F} & \text{stands for} & \neg\mathsf{T}. \\ (A\vee B) & \text{stands for} & (\neg A\Rightarrow B). \\ (A\wedge B) & \text{stands for} & \neg(\neg A\vee \neg B). \\ (A\Leftrightarrow B) & \text{stands for} & ((A\Rightarrow B)\wedge(B\Rightarrow A)). \\ (\exists\,x:\alpha\,\,.\,A) & \text{stands for} & \neg(\forall\,x:\alpha\,\,.\,\neg A). \end{array}
```

Syntactic Conventions

- A pair of matching parentheses in a term or a formula may be dropped if there is no resulting ambiguity.
- A variable $x : \alpha$ occurring in the body A of $(\Box x : \alpha . A)$, where $\Box \in \{ \forall, \exists \}$, may be written as x if there is no resulting ambiguity.
 - ▶ So $\forall x : \mathbb{N} \cdot 0 = x : \mathbb{N}$ can be written as $\forall x : \mathbb{N} \cdot 0 = x$.
- Let \Box be \forall or \exists . $(\Box x_1 : \alpha_1 . \cdots (\Box x_n : \alpha_n . A) \cdots)$ may be written as

$$(\square x_1 : \alpha_1, \ldots, x_n : \alpha_n . A).$$

Similarly, $(\Box x_1 : \alpha \cdot \cdots (\Box x_n : \alpha \cdot A) \cdots)$ may be written as

$$(\Box x_1,\ldots,x_n:\alpha \cdot A).$$

Variable Binders

- A variable binder is an operator applied to a variable x
 and an expression B that binds the occurrences of x in B
 to a collection of values.
- Examples of variable binders in logic:
 - 1. Universal quantification: $\forall x . B$.
 - 2. Existential quantification: $\exists x . B$.
 - 3. Function abstraction: $\lambda x \cdot B$.
 - 4. Definite description: $\iota \times B$.
 - 5. Indefinite description: $\epsilon x \cdot B$.
- The only primitive variable binder in MSFOL is ∀.
 - $ightharpoonup \exists$ is a notational definition derived from \forall .
- Examples of variable binders in mathematics:

$$\sum_{x=m}^{n} B$$
, $\prod_{x=m}^{n} B$, $B[x \mapsto a]$, $\int_{a}^{b} B dx$, $\lim_{x \to a} B$, $\{x \mid B\}$

Bound and Free Variables [1/3]

- Let $\Sigma = (\mathcal{B}, \mathcal{C}, \mathcal{F}, \mathcal{P}, \tau)$ be a signature, t be a Σ -term, and A be a Σ -formula.
- An occurrence of a variable $x : \alpha$ in A is bound [free] if it is [not] in a subformula of A of the form $\forall x : \alpha . B$.
- A variable $x : \alpha$ is bound [free] in A if there is a bound [free] occurrence of $x : \alpha$ in B.
- A variable $x : \alpha$ is free in t if it occurs in t
- A Σ -term or Σ -formula is open [closed] if are [no] variables free in it.
- A Σ -sentence is a closed Σ -formula.
- t is free for x : α in A if no free occurrence of x : α in A is within a subformula of A of the form ∀ y : β . B such that y : β is free in t (i.e., if no variable captures occurs).

Bound and Free Variables (iClicker)

In which of the following Σ_{nat}^2 -formulas is $x : \mathbb{N}$ is free?

- A. $2 < 4 \land 4 < 6$.
- B. $y : \mathbb{N} = z : \mathbb{N}$.
- C. $x : \mathbb{N} = z : \mathbb{N}$.
- D. $\exists x : \mathbb{N} . 0 < x : \mathbb{N}$.
- E. $(\forall x : \mathbb{N} \cdot 0 < x : \mathbb{N}) \wedge (0 < x : \mathbb{N})$.

Closed Formulas (iClicker)

Which of the following Σ_{nat}^2 -formulas is closed?

- A. $x : \mathbb{N} = y : \mathbb{N}$.
- B. 2+3=6.
- C. $\forall y : \mathbb{N} \cdot (x : \mathbb{N} + y : \mathbb{N}).$
- D. $(3 = 7) \lor (\forall x : \mathbb{N} \cdot 0 < 7)$.
- E. $\forall x : \mathbb{N} \cdot ((x : \mathbb{N} = y : \mathbb{N}) \wedge (\forall y : \mathbb{N} \cdot x : \mathbb{N} < y : \mathbb{N}))$

Bound and Variables [2/3]

- The set of free variables of t, written fvar(t), is defined by pattern matching as follows:
 - 1. $fvar(x : \alpha) = \{x : \alpha\}.$
 - 2. $fvar(c) = \emptyset$.
 - 3. $\operatorname{fvar}(f(t_1,\ldots,t_n)) = \operatorname{fvar}(t_1) \cup \cdots \cup \operatorname{fvar}(t_n)$.
- The set of free variables of A, written fvar(A), is defined by pattern matching as follows:
 - 1. $fvar(s = t) = fvar(s) \cup fvar(t)$.
 - 2. $\operatorname{fvar}(p(t_1,\ldots,t_n)) = \operatorname{fvar}(t_1) \cup \cdots \cup \operatorname{fvar}(t_n)$.
 - 3. $fvar(\neg B) = fvar(B)$.
 - 4. $fvar(A \Rightarrow B) = fvar(A) \cup fvar(B)$.
 - 5. $fvar(\forall x : \alpha . A) = fvar(A) \setminus \{x : \alpha\}.$

Bound and Free Variables [3/3]

- The set of bound variables of A, written bvar(A), is defined by pattern matching as follows:
 - 1. bvar(s = t) = \emptyset .
 - 2. $\operatorname{bvar}(p(t_1,\ldots,t_n))=\emptyset$.
 - 3. $bvar(\neg B) = bvar(B)$.
 - 4. $bvar(A \Rightarrow B) = bvar(A) \cup bvar(B)$.
 - 5. $bvar(\forall x : \alpha . A) = bvar(A) \cup \{x : \alpha\}.$

Substitutions [1/2]

- The result of substituting a Σ -term t of type α for the variable $x:\alpha$ in a Σ -term s, written $s[x\mapsto t]$, is defined by pattern matching on s as follows:
 - 1. $(x:\alpha)[x\mapsto t]=t$.
 - 2. $(y:\beta)[x \mapsto t] = y:\beta$ when x is not y or α is not β .
 - 3. $c[x \mapsto t] = c$.
 - 4. $f(t_1,\ldots,t_n)[x\mapsto t]=f(t_1[x\mapsto t],\ldots t_n[x\mapsto t]).$

Substitutions [2/2]

- The result of substituting a Σ -term t of type α for the free occurrences of the variable $x : \alpha$ in a Σ -formula A, written $A[x \mapsto t]$, is defined by pattern matching on A as follows:
 - 1. $(s_1 = s_2)[x \mapsto t] = (s_1[x \mapsto t] = s_2[x \mapsto t]).$
 - 2. $p(t_1,\ldots,t_n)[x\mapsto t]=p(t_1[x\mapsto t],\ldots t_n[x\mapsto t]).$
 - 3. $(\neg A)[x \mapsto t] = \neg A[x \mapsto t]$.
 - 4. $(A \Rightarrow B)[x \mapsto t] = (A[x \mapsto t] \Rightarrow B[x \mapsto t]).$
 - 5. $(\forall x : \alpha . A)[x \mapsto t] = (\forall x : \alpha . A).$
 - 6. $(\forall y : \beta . A)[x \mapsto t] = (\forall y : \beta . A[x \mapsto t])$ when x is not y or α is not β .

Substitution (iClicker)

Which of the following substitutions is not correct?

- A. $(0 < x : \alpha)[x \mapsto y : \alpha] = (0 < y : \alpha).$
- B. $[\forall x : \alpha . 1 = x : \alpha)[x \mapsto y : \alpha] = (\forall x : \alpha . 1 = y : \alpha).$
- C. $(\forall x : \alpha . 1 = x : \alpha)[x \mapsto y : \alpha] = (\forall x : \alpha . 1 = x : \alpha).$
- D. $(\forall y : \alpha . 1 = x : \alpha)[x \mapsto y : \alpha] = (\forall y : \alpha . 1 = y : \alpha).$

Note that a variable capture occurs in D.

3b. MSFOL: Semantics

Mathematical Structures

- Loosely speaking, a mathematical structure is a set of mathematical values that are structured in some manner.
- A typical mathematical structure consists of:
 - 1. A finite set of nonempty domains (sets) of values: D_1, \ldots, D_m .
 - 2. A finite set of distinguished values in the domains: a_1, \ldots, a_n
 - 3. A finite set of functions whose inputs and outputs are in the domains: f_1, \ldots, f_q
 - 4. A finite set of relations over the domains: R_1, \ldots, R_r .
- Such a mathematical structure may be written as a tuple:
 - $(D_1, \ldots, D_m, a_1, \ldots, a_n, f_1, \ldots, f_q, R_1, \ldots, R_r).$
- Example: The integers with addition and multiplication: $(\mathbb{Z}, 0, 1, +, -, *, =, <)$.

Examples of Mathematical Structures

- Number systems.
- Orders.
- Equivalence relations.
- Algebraic structures.
- Lattices.
- Graphs.
- Trees.
- Geometries.
- Topologies.
- Measures.
- Abstract data types (ADTs) used in computing (e.g., ADTs for strings, lists, streams, arrays, records, stacks, and queues).

Admin — February 4

- Midterm Test 1 will be on Wed, Feb 5, at 7:00–9:00 PM.
 - Format: Two-stage test, 30 multiple-choice questions
 - ► Covers the material from Weeks 01, 02, 03, and 04.
- Room assignments for Midterm Test 1:
 - CNH 104: Last names beginning with A–P.
 - ► KTH B135: Last names beginning with Q–Z.
- Sample test is posted on Avenue.
- Review session on Wed, Feb 5, instead of the lecture.
 - ► There will be a regular lecture on Friday.
- TA help session on Tue, Feb 4, 3:30-5:00 in ABB 271.
- Office hours: To see me please send me a note with times.
- Are there any questions?

Assignment 3

Question 1. Let subformulas : $F_{\Sigma} \to \mathcal{P}(F_{\Sigma})$ be the function that maps a formula $A \in F_{\Sigma}$ to the set of subformulas of A. Define subformulas by structural recursion using pattern matching.

Question 2. Suppose F is the set of partial and total functions $f : \mathbb{N} \to \mathbb{N}$.

- 1. Show that (F, \sqsubseteq) is a weak partial order but not a weak total order.
- 2. Describe the set of minimal elements of (F, \sqsubseteq) .
- 3. Describe the set of maximal elements of (F, \sqsubseteq) .
- 4. Does (F, \sqsubseteq) have a minimum element? If so, what is it?
- 5. Does (F, \sqsubseteq) have a maximum element? If so, what is it?

Review

- Notational definitions.
- Syntactic conventions.
- Variable binders.
- Bound and free variables.
- Substitutions.
- Mathematical structures.

Finite Signatures as Tuples of Symbols

- Let $\Sigma = (\mathcal{B}, \mathcal{C}, \mathcal{F}, \mathcal{P}, \tau)$ be a finite signature of MSFOL where:
 - 1. $\mathcal{B} = \{\alpha_1, \dots, \alpha_m\}.$
 - 2. $C = \{c_1, \ldots, c_n\}.$
 - 3. $\mathcal{F} = \{f_1, \dots, f_a\}.$
 - 4. $\mathcal{P} = \{p_1, \ldots, p_r\}.$
- \bullet Σ can then be written as

$$(\alpha_1, \ldots, \alpha_m, (c_1 : \tau(c_1)), \ldots, (c_n : \tau(c_n)), (f_1 : \tau(f_1)), \ldots, (f_q : \tau(f_q)), (p_1 : \tau(p_1)), \ldots, (p_r : \tau(p_r)))$$

or, when au is known, as

$$(\alpha_1,\ldots,\alpha_m,c_1,\ldots,c_n,f_1,\ldots,f_q,p_1,\ldots,p_r).$$

Signatures (iClicker)

A signature

$$(\alpha_1,\ldots,\alpha_m,c_1,\ldots,c_n,f_1,\ldots,f_q,p_1,\ldots,p_r)$$

is

- A. A language.
- B. A mathematical structure.
- C. An interpretation of a mathematical structure.
- D. Interpreted by a mathematical structure.

Semantics [1/5]

- Let $\Sigma = (\mathcal{B}, \mathcal{C}, \mathcal{F}, \mathcal{P}, \tau)$ be a signature of MSFOL.
- A Σ -structure is a pair $\mathcal{M} = (\mathcal{D}, I)$ where \mathcal{D} is a collection $\{D_{\alpha} \mid \alpha \in \mathcal{B}\}$ of nonempty domains and I is a function on $\mathcal{C} \cup \mathcal{F} \cup \mathcal{P}$ (called the interpretation function of \mathcal{M}) such that:
 - 1. $I(c) \in D_{\tau(c)}$ for each $c \in C$.
 - 2. $I(f): D_{\alpha_1} \times \cdots \times D_{\alpha_n} \to D_{\alpha}$ is an *n*-ary function for each $f \in \mathcal{F}$ with $\tau(f) = \alpha_1 \times \cdots \times \alpha_n \to \alpha$.
 - 3. $I(p): D_{\alpha_1} \times \cdots \times D_{\alpha_n} \to \{T, F\}$ is an *n*-ary predicate for each $p \in \mathcal{P}$ with $\tau(p) = \alpha_1 \times \cdots \times \alpha_n \to \mathbb{B}$.

Semantics [2/5]

- A Σ -structure interprets the symbols of Σ as mathematical values.
- If Σ is

$$(\alpha_1,\ldots,\alpha_m,c_1,\ldots,c_n,f_1,\ldots,f_q,p_1,\ldots,p_r),$$

then a Σ -structure $\mathcal{M} = (\mathcal{D}, I)$ can be viewed as the mathematical structure

$$(D_{\alpha_1},\ldots,D_{\alpha_m},I(c_1),\ldots,I(c_n),I(f_1),\ldots,I(f_q),I(p_1),\ldots,I(p_r))$$

(in which the predicates $I(p_i)$ are considered as relations).

• We need to define the value of a Σ -term and a Σ -formula in a Σ -structure.

Σ-Structures (iClicker)

Let \mathcal{M} be a Σ -structure. Which statement is true?

- A. Each Σ -formula has a unique value in \mathcal{M} .
- B. Each open Σ -formula has a unique value in \mathcal{M} .
- C. Each closed Σ -formula (i.e., Σ -sentence) has a unique value in \mathcal{M} .

Semantics [3/5]

- Let $\mathcal{M} = (\mathcal{D}, I)$ be a Σ -structure.
- A variable assignment into \mathcal{M} is a function that maps each $x : \alpha$ to an element of D_{α} (where $x \in \mathcal{V}$ and $\alpha \in \mathcal{B}$).
- Let $assign(\mathcal{M})$ be the set of variable assignments into \mathcal{M} .
- Given $\varphi \in \operatorname{assign}(\mathcal{M})$, $x \in \mathcal{V}$, $\alpha \in \mathcal{B}$, and $d \in D_{\alpha}$, let $\varphi[x : \alpha \mapsto d]$ be the $\varphi' \in \operatorname{assign}(\mathcal{M})$ such that $\varphi'(x : \alpha) = d$ and $\varphi'(v) = \varphi(v)$ for all $v \neq x : \alpha$.

Semantics [4/5]

- The valuation function for \mathcal{M} is a binary function $V^{\mathcal{M}}$ that satisfies the following conditions for all $\varphi \in \operatorname{assign}(\mathcal{M})$ and all Σ -terms t and Σ -formulas A:
 - 1. $V_{\varphi}^{\mathcal{M}}(x:\alpha) = \varphi(x:\alpha)$.
 - 2. $V_{\varphi}^{\mathcal{M}}(c) = I(c)$.
 - 3. $V_{\varphi}^{\mathcal{M}}(f(t_1,\ldots,t_n))=I(f)(V_{\varphi}^{\mathcal{M}}(t_1),\ldots,V_{\varphi}^{\mathcal{M}}(t_n)).$
 - 4. $V_{\varphi}^{\mathcal{M}}(s=t) = \mathrm{T}$ if $V_{\varphi}^{\mathcal{M}}(s) = V_{\varphi}^{\mathcal{M}}(t)$ and $V_{\varphi}^{\mathcal{M}}(s=t) = \mathrm{F}$ otherwise.
 - 5. $V_{\varphi}^{\mathcal{M}}(p(t_1,\ldots,t_n))=I(p)(V_{\varphi}^{\mathcal{M}}(t_1),\ldots,V_{\varphi}^{\mathcal{M}}(t_n)).$
 - 6. $V_{\varphi}^{\mathcal{M}}(\neg A) = F[T] \text{ if } V_{\varphi}^{\mathcal{M}}(A) = T[F].$
 - 7. $V_{\varphi}^{\mathcal{M}}(A \Rightarrow B) = F$ if $V_{\varphi}^{\mathcal{M}}(A) = T$ and $V_{\varphi}^{\mathcal{M}}(B) = F$ and $V_{\varphi}^{\mathcal{M}}(A \Rightarrow B) = T$ otherwise.
 - 8. $V_{\varphi}^{\mathcal{T}}(\forall x : \alpha . A) = T \text{ if } V_{\varphi[x:\alpha \mapsto d]}^{\mathcal{M}}(A) = T \text{ for all } d \in D_{\alpha}$ and $V_{\varphi}^{\mathcal{M}}(\forall x : \alpha . A) = F \text{ otherwise.}$

Semantics [5/5]

- Let $A \in F_{\Sigma}$ and $\Gamma \subseteq F_{\Sigma}$.
- A is satisfiable if $V_{\varphi}^{\mathcal{M}}(A) = T$ for some Σ -structure \mathcal{M} and $\varphi \in \operatorname{assign}(\mathcal{M})$.
- A is valid in \mathcal{M} or \mathcal{M} is a model for A, written $\mathcal{M} \models A$, if $V_{\varphi}^{\mathcal{M}}(A) = T$ for all $\varphi \in \operatorname{assign}(\mathcal{M})$.
- A is (universally) valid, written $\models A$, if A is valid in every Σ -structure.
- \mathcal{M} is a model for Γ , written $\mathcal{M} \models \Gamma$, if $\mathcal{M} \models B$ for all $B \in \Gamma$.
- A sentence A is a semantic consequence of a set Γ of sentences, written $\Gamma \vDash A$, if $\mathcal{M} \vDash \Gamma$ implies $\mathcal{M} \vDash A$ for all Σ -structures \mathcal{M} .
 - A somewhat more complicated definition is needed when $\Gamma \cup \{A\}$ contains open formulas.
 - ► Semantic consequence is a form of logical consequence.

Valid Formulas (iClicker)

Which of the following Σ -formulas is not valid in MSFOL?

- A. $x : \alpha = x : \alpha$.
- B. $p(a) \Rightarrow p(a)$.
- C. $\exists x : \alpha . x = x$.
- D. $\exists x, y : \alpha . x \neq y$.

Notes on Quantifiers

 The universal and existential quantifiers are duals of each other:

$$\neg(\forall x : \alpha . A) \Leftrightarrow \exists x : \alpha . \neg A, \\ \neg(\exists x : \alpha . A) \Leftrightarrow \forall x : \alpha . \neg A.$$

- Changing the order of quantifiers in a formula usually changes the meaning of the formula!
 - ► As a rule, $\forall x : \alpha . \exists y : \beta . A \not\equiv \exists y : \beta . \forall x : \alpha . A$.
- In a formula of the form ∀x : α . ∃y : β . A, the value of the existentially quantified variable y depends on the value of the universally quantified variable x : α.
- A universal statement like "All mice are rodents" is formalized as $\forall x : Animal . mouse(x) \Rightarrow rodent(x)$.
- An existential statement like "Some rodents are mice" is formalized as $\exists x : Animal . rodent(x) \land mouse(x)$.

3c. MSFOL: Theories

Theories

- A theory of MSFOL is a pair $T = (\Sigma, \Gamma)$ where:
 - 1. Σ is a signature of MSFOL.
 - 2. Γ is a set of sentences in F_{Σ} called the axioms of T.
- \mathcal{M} is a model for T, written $\mathcal{M} \models T$, if $\mathcal{M} \models \Gamma$.
- A is valid in T, written $T \models A$, if $\Gamma \models A$.
- T is satisfiable if there is a model for Γ .
- Examples:
 - ▶ Theories of orders, lattices, and boolean algebras.
 - ► Theories of monoids, groups, rings, and fields.
 - First-order Peano arithmetic (natural number arithmetic).
 - ▶ Theory of real closed fields (real number arithmetic).

Example: Theory of Strict Partial Orders

- Let $\Sigma = (\{U\}, \emptyset, \emptyset, \{<\}, \tau)$ where $\tau(<) = U \times U \to \mathbb{B}$.
- Let Γ be the following set of Σ -sentences:
 - 1. $\forall x : U . \neg (x < x)$.
 - 2. $\forall x, y : U \cdot x < y \Rightarrow \neg (y < x)$.
 - 3. $\forall x, y, z : U \cdot (x < y \land y < z) \Rightarrow x < z$.
- Then $T_{\rm spo} = (\Sigma, \Gamma)$ is a theory of MSFOL called the theory of strict partial orders.
- ullet The models of $T_{
 m spo}$ are all possible strict partial orders.
- If we can show $T_{\text{spo}} \models A$, then we know that A is valid in every strict partial order!

Admin — February 7

- Midterm Test 1.
 - Marks will be posted next week.
 - Solutions will be posted next week.
- Office hours: To see me please send me a note with times.
- Are there any questions?

Review

- MSFOL syntax
 - Signatures
 - **Σ**-terms
 - Σ-formulas
 - Bound and free variables.
 - Substitution.
- MSFOL semantics.
 - **Σ**-structures.
 - Variable assignments.
 - ▶ Valuation function $V_{\alpha}^{\mathcal{M}}$.
 - \triangleright A formula is satisfiable, valid in \mathcal{M} , and valid.
 - A formula is a semantic consequence of a set of formulas.
- MSFOL theories.
 - Signature and a set of axioms.
 - Model for T, formula valid in T, T is satisfiable.

Theories (iClicker)

Suppose \mathcal{M} is a model of $T_{\rm spo}$. Which of the following statements is true?

- A. \mathcal{M} is a weak partial order.
- B. \mathcal{M} is a strict partial order.
- C. \mathcal{M} is not a strict total order.
- D. \mathcal{M} is a strict total order iff

$$T_{\mathrm{spo}} \vDash \forall x, y : U \cdot x < y \lor y < x \lor x = y.$$

Theories (iClicker)

Every theory has a model. Is this statement true or false?

A. True.

B. False.

Example: Theory of Monoids

- Let $\Sigma = (\{M\}, \{e\}, \{*\}, \emptyset, \tau)$ where $\tau(e) = M$ and $\tau(*) = M \times M \rightarrow M$.
- Let Γ be the following set of Σ -sentences:
 - 1. $\forall x, y, z : M \cdot (x * y) * z = x * (y * z)$.
 - 2. $\forall x : M . e * x = x$.
 - 3. $\forall x : M . x * e = x$.
- Then $T_{\text{mon}} = (\Sigma, \Gamma)$ is a theory of MSFOL called the theory of monoids.
- Examples of models of $T_{\rm mon}$:
 - 1. $(\mathbb{N}, 0, +)$, $(\mathbb{N}, 1, *)$, $(\mathbb{Z}, 0, +)$, etc.
 - 2. (String, "", concatenation).
 - 3. (IntegerList, [], append).
 - 4. $(U \rightarrow U, identity-function, function-composition).$

Theory Extensions (iClicker)

Let $T = (\Sigma, \Gamma)$ and $T' = (\Sigma, \Gamma')$ be theories of MSFOL. Which of the following statements is true if $\Gamma \subseteq \Gamma'$ (i.e., if T' is an extension of T).

- A. Every model of T is a model of T'.
- B. Every model of T' is a model of T.
- C. If T is satisfiable, then T' is satisfiable.
- D. If T' is satisfiable, then T is satisfiable.

First-Order Peano Arithmetic

- Let $\Sigma = (\{\mathbb{N}\}, \{0\}, \{S, +, *\}, \emptyset, \tau)$ where $\tau(0) = \mathbb{N}$, $\tau(S) = \mathbb{N} \to \mathbb{N}$, and $\tau(+) = \tau(*) = \mathbb{N} \times \mathbb{N} \to \mathbb{N}$.
- Let Γ be the following set of Σ -formulas:
 - 1. $\forall x : \mathbb{N} \cdot 0 \neq S(x)$.
 - 2. $\forall x, y : \mathbb{N} \cdot (S(x) = S(y) \Rightarrow x = y)$.
 - 3. $\forall x : \mathbb{N} . x + 0 = x$.
 - 4. $\forall x, y : \mathbb{N} \cdot x + S(y) = S(x + y)$.
 - 5. $\forall x : \mathbb{N} \cdot x * 0 = 0$.
 - 6. $\forall x, y : \mathbb{N} . x * S(y) = (x * y) + x$.
 - 7. Each universal closure A of a formula of the form

$$(B[x \mapsto 0] \land (\forall x : \mathbb{N} . B \Rightarrow B[x \mapsto S(x)])) \Rightarrow \forall x : \mathbb{N} . B$$

where B is a Σ -formula.

• Then $T_{\rm pa} = (\Sigma, \Gamma)$ is a theory of MSFOL called first-order Peano arithmetic.

Theory vs. Model

- A mathematical structure is a concrete mathematical model.
- A theory is an abstract mathematical model.
- A theory can be viewed as a specification of its models.
 - A theory is to a model as a specification is to an implementation.
- Theories fall into two categories:
 - Those intended to describe a single model (e.g., first-order Peano arithmetic).
 - Those intended to describe a collection of models (theory of monoids).

3d. MSFOL: Proof Systems

Proof Systems

- A proof system for MSFOL is a set of axioms and rules of inference for constructing proofs that say a particular formula A follows from a particular set Γ of premises.
- Let P be a proof system for MSFOL.
- A is syntactic consequence of Γ in P, written $\Gamma \vdash_P A$, if there is a proof of A from Γ in P.
- A is a theorem in P, written ⊢_P A, if there is a proof of A from Ø in P.
- Γ is consistent in P if not every formula is a syntactic consequence of Γ in P.
- P is sound if $\Gamma \vdash_P A$ implies $\Gamma \vDash A$.
- *P* is complete if $\Gamma \vDash A$ implies $\Gamma \vdash_P A$.
- If $T = (\Sigma, \Gamma)$ is a theory of MSFOL, then A is a theorem of T in P, written $T \vdash_P A$, if $\Gamma \vdash_P A$.

4. Summary

Truth vs. Proof

Semantics	Syntax
truth	proof
semantic consequence	syntactic consequence
A is valid	A is a theorem in P
$\models A$	$\vdash_P A$
A is valid in T	A is a theorem of T in P
$T \vDash A$	$T \vdash_P A$
T is satisfiable	T is consistent in P

- Semantic consequence and syntactic consequence are different forms of logical consequence.
- The semantic and syntactic notions are equivalent in the most common logics:
 - Propositional logic (Bernays, 1918).
 - First-order logic (Gödel, 1930).
 - ➤ Simple type theory (Henkin, 1950)

Mathematical Problems: Fundamental Form

 Most mathematical problems can be expressed as statements of the form

$$T \models A$$

where T is a theory and A is a sentence.

- There are three basic ways of deciding whether or not T ⊨ A:
 - 1. Model checking: Show that $\mathcal{M} \models A$ for each model \mathcal{M} of T.
 - 2. Proof: Show $T \vdash_P A$ for some sound proof system P.
 - 3. Counterexample: Show $\mathcal{M} \models \neg A$ for some model \mathcal{M} of T.