

4. DVOUSTUPŇOVÝ ZESILOVAČ

Cvičení na počítači

Vilém Kledrowetz

LS 2025

Obsah prezentace

- Více stupňů v zesilovačích
- Stabilita
- Diferenční pár
- Návrh dvoustupňového zesilovače

Vícestupňové zesilovače

- Zesílení lze zvyšovat přidáním dalších stupňů.
- Počet dalších stupňů zesilovače však neide přidávat bez omezení. U více stupňů nastává problém se zajištění dostatečné fázové tím zajištění rezervv a tímto stability obvodu S zesilovačem.
- Z tohoto důvodu je prakticky omezen počet stupňů na 3. Standardní jsou zesilovače se dvěma stupni a přidáním výstupního bufferu, který se není zesilovacím stupněm.

Fázový posun výstupního signálu

- Při "průchodu" signálu zesilovačem dochází k jeho fázovému zpoždění (posunu).
- V případě zapojení zesilovače se zpětnou vazbou (např. sledovač) je velikost fázového posunu kritický parametr pro dosažení stabilního obvodu, který nebude kmitat!
- V krajním případě, pokud je fázový posun 180°, se záporná zpětná vazba mění na kladnou!
- Fázová rezerva kolik stupňů [°] zbývá do posunu o 180 °.
- Amplitudová rezerva kolik je zisk zesilovače, pokud je fázový posun 180 °

Bodeho diagram - fázový a amplitudová rezerva

Fázová bezpečnost – odezva na skokový signál

Příklad odezvy zapojení sledovače na skokový vstupní signál u nestabilního zesilovače

Fázová bezpečnost – odezva na skokový signál

Fázová bezpečnost – odezva na skokový signál

Fázová bezpečnost – kompenzace

Jak zajistit fázovou bezpečnost?

Rozštěpení pólů – dominantní posunout na nižší kmitočet a nedominantní na vyšší

Fázová bezpečnost – Millerův efekt (jev)

- Pro zajištění stability invertujícího zesilovače lze využít Millerova jevu.
- Millerův jev: kapacita připojená mezi vstup a výstup invertujícího zesilovače zatěžuje zdroj vstupního signálu stejně jako kapacita připojená mezi vstupní uzel zesilovače a zem vynásobená zesílením zesilovače plus jedna.

Stejný efekt obou kapacit, pokud:

$$C_{IN} = C_{Miller} \cdot (|A_{U0}| + 1)$$

Diferenční pár

- Tranzistorový zesilovač probraný v předchozí úloze zesiluje signál, který je dán napětím mezi hradlem a source tranzistoru.
- Diferenční pár zesiluje rozdíl napětí na vstupních uzlech nezávisle na jejich absolutní velikosti (viz. tabulka).
- Spojením těchto dvou zesilovačů dostaneme dvoustupňový zesilovač s diferenčním vstupem a tzv. "single-ended" výstupem.

UINP	UINN	UIN
4,1 V	4 V	0,1 V
2,2 V	2,1 V	0,1 V
1,3 V	1,2 V	0,1 V
0,6 V	0,5 V	0,1 V
0,1 V	0 V	0,1 V

Diferenční pár - princip

Diferenční pár

- omezený vstupní rozsah zespodu
- bulk efekt v nwell technologiích
- vysoké KP (g_m)
- menší rozměry tranzistorů

- omezený vstupní rozsah seshora
- v nwell technologiích možno spojit bulk a source (bez bulk efektu)
- nízké *KP* (g_m) pro stejné rozměry MOS
- větší rozměry tranzistorů

Diferenční pár

$$A_{U0} = -g_{m1} \cdot R_{OUT}$$

- Pro plné zesílení na jednom výstupu je proud z jedné větve (zde levé) zrcadlen do druhé větve. Díky tomu je dosaženo plné zesílení s jedním výstupem.
- Pokud je výstupní uzel tažen nahoru (PMOS se otevírá), NMOS jde opačným směrem, tj. se přivírá a "netáhne" výstupní bod dolů.
- Pro nízkou vstupní napěťovou nesymetrii (offset) je důležité mít co nejbližší hodnoty U_{DS} tranzistorů M₄ a M₅.
- Napětí výstupního uzlu je určeno druhým stupněm zesilovače.

Diferenční pár – vstupní napěťová nesymetrie (offset)

Pokud připojíme na oba vstupy stejné napětí, jsou proudy $I_{\rm D1}$ a $I_{\rm D2}$ stejné, tzn. $I_{\rm D1}$ = $I_{\rm D2}$ a výstupní napětí je rovno analogové zemi (v tomto případě $U_{\rm DD}/2$ = 0,9 V). Napětí $U_{\rm OFFSFT}$ = 0 V.

Pokud však vlivem nesymetrie větví $M_{1,4}$ a $M_{2,5}$ nejsou proudy stejné (a $U_{\text{OUT}} \neq U_{\text{DD}}/2$), musíme proudy dorovnat vnějším napětím U_{OFFSET} . Velikost tohoto napětí je rovno velikosti vstupní napěťové nesymetrie. Ta může být:

- systematická: je způsobena nepřesností návrhu, nebo chybami v návrhu. U dobrého návrhu (záleží však na struktuře obvodu) dosahuje jednotek až nižších desítek µV.
- náhodná: způsobená rozptylem výrobního procesu. Lze ji potlačit vhodným návrhem (obvodovým a především topologií – layoutem). Typicky dosahuje jednotek mV.

Diferenční pár – vstupní napěťová nesymetrie (offset)

Nejčastější příčinou systematické vstupní nesymetrie jsou rozdílné napětí $U_{\rm DS4}$ a $U_{\rm DS5}$. To má za následek rozdílné proudy tranzistory.

$$I_{D1} = \frac{1}{2} \cdot KP \cdot \left(\frac{W}{L}\right)_{A} \cdot (U_{GS4} - U_{TH})^{2} \cdot (1 + \lambda \cdot U_{DS4})$$

$$I_{D2} = \frac{1}{2} \cdot KP \cdot \left(\frac{W}{L}\right)_{A} \cdot (U_{GS5} - U_{TH})^{2} \cdot (1 + \lambda \cdot U_{DS5})$$

Ve výše uvedených rovnicích jsou všechny černě zapsané parametry stejné. Jak z těchto rovnic vyplývá, pokud jsou jiné $U_{\rm DS}$, jsou i jiné proudy, což způsobuje vstupní napěťovou nesymetrii (offset)

Pro zajištění stejných hodnot $U_{\rm DS}$ je důležité navrhnout správně 2. stupeň, který vnutí napětí do uzlu $U_{\rm OUT}$.

Diferenční pár – CMRR

CMRR (Common-Mode Rejection Ratio) – potlačení stejnosměrné složky

- Pokud je na oba vstupy diferenčního zesilovače přiveden stejný signál (včetně napětí offsetu), je rozdíl mezi vstupními signály nulový a tedy výstup setrvává v hodnotě analogové země (zde $U_{\rm DD}/2$).
- Nemělo by záviset na DC posunu, tedy zesilovat např. 100 mV bude zesilovač, pokud budou vstupy: 0,6 V a 0,5 V; 1,1 V a 1 V nebo 1,5 V a 1,4 V.
- Reálně však dochází se zvyšujícím se posunem DC složky ke změnám obvodu, např. růstu proudu I_{BIAS} vlivem konečného odporu M₃.
- Tuto závislost, resp. jak moc je tento vliv utlumen, popisuje parametr CMRR.

Dvoustupňový zesilovač

Dvoustupňový zesilovač

Tipy pro návrh:

Pro zajištění stability je odvozeno, že musí platit

$$C_C \ge 0.22 \cdot C_L \Longrightarrow 0.3 \cdot C_L \qquad g_{m6} \ge 10 \cdot g_{m1}$$

Pro nízký offset

$$U_{OV6} = U_{OV4} = U_{OV5}$$

 Rychlost přeběhu je interní a externí. Při dodržení doporučení – viz. výše, obvod limituje SR_{int}.

$$SR_{int} = \frac{I_{1ST}}{C_C} = \frac{I_{1ST}}{0.3 \cdot C_L} = \frac{3.3 \cdot I_{1ST}}{C_L}$$

$$SR_{ext} = \frac{I_{2ST} - I_{1ST}}{C_L} = \frac{4 \cdot I_{1ST}}{C_L}$$

 $U_{OV6} = U_{OV1} \Longrightarrow I_{2ST} = 5 \cdot I_{1ST}$

Navrhněte dvoustupňový operační zesilovač se vstupními tranzistory typu NMOS, který bude navržen s ohledem na parametry uvedené v tabulce 1. Zátěž $C_L = 5$ pF.

parametr	hodnota	Vypočítané	Simulace
zesílení (A _{U0})	≥ 60 dB		
šířka pásma (<i>GBW</i>)	≥ 5 MHz		
fázová rezerva (<i>PM</i>)	≥ 60°	60°	
amplitudová rezerva (AM)	- dB	Nepočítá se	
rychlost přeběhu (<i>SR</i>)*	≥ 5 V/ <u>µs</u>		
systematický ofset (U _{OFF})	≤ 500 µV	0	
spotřeba (<u>P_{diss})</u>	- <u>mW</u>		
vstupní napěťový rozsah (<i>ICMR</i>)	- V		
výstupní napěťový rozsah (<i>OVS</i>)	- V		

Kompenzační kapacita

$$C_C \ge 0.22 \cdot C_L \Longrightarrow 0.3 \cdot 5p = 1.5 \ pF$$

Nalezení proudu I_{1ST} .

$$SR_{int} = \frac{I_{1ST}}{C_C} \Longrightarrow I_{1ST} = SR_{int} \cdot C_C = 5M \cdot 1,5p = 7,5 \,\mu A$$

$$GBW = \frac{g_{m1}}{2 \cdot \pi \cdot C_C} = \frac{I_{D1}}{U_{OV1} \cdot \pi \cdot C_C} \Longrightarrow I_{D1} = GBW \cdot U_{OV1} \cdot \pi \cdot C_C = 5Meg \cdot 0.2 \cdot \pi \cdot 1.5p = 4.72 \ \mu A \longrightarrow I_{1ST} = 2 \cdot I_{D1} = 2 \cdot 4.7\mu \cong 9.5\mu A$$

Zvolený proud je I_{1ST} = 9,5 μ A. S tímto proudem je přepočítáno SR a vypočítáno g_{m1} .

$$g_{m1} = \frac{2 \cdot I_{D1}}{U_{OV1}} = \frac{2 \cdot 4,75\mu}{0,2} = 47,5 \,\mu S$$

$$SR_{int} = \frac{I_{1ST}}{C_C} = \frac{9.5\mu}{1.5p} = 6.3 \text{ V/}\mu\text{s}$$

Rozměry tranzistorů v 1. stupni – u $M_{1,2}$ bylo v předchozím kroku zvoleno $U_{\rm OV}=0.2$ V. U zbývajících tranzistorů je tato hodnota zvolena také z důvodu maximálního vstupního rozsahu (nízké napětí přechodu MOS do saturace)

$$\left(\frac{W}{L}\right)_{1,2} = \frac{2 \cdot I_{D1}}{KP \cdot U_{OV1}^2} = \frac{2 \cdot 4,75\mu}{50\mu \cdot 0,04} = 4,75 \rightarrow L = 2 \ \mu m \rightarrow W = 9,5 \ \mu m$$

$$\left(\frac{W}{L}\right)_{3.4} = \frac{2 \cdot I_{D3}}{KP \cdot U_{OV2}^2} = \frac{2 \cdot 4,75\mu}{200\mu \cdot 0,04} = 1,2 \rightarrow L = 2 \ \mu m \rightarrow W = 2,4 \ \mu m$$

$$\left(\frac{W}{L}\right)_5 = \frac{2 \cdot I_{D5}}{KP \cdot U_{OV5}^2} = \frac{2 \cdot 9.5\mu}{50\mu \cdot 0.04} = 9.5 \rightarrow L = 2 \ \mu m \rightarrow W = 19 \ \mu m$$

Vstup proudového zrcadla – nízký proud, volba poloviny $I_{1ST} = I_5$.

$$\left(\frac{W}{L}\right)_{8} = \frac{I_{8}}{I_{5}} \cdot \left(\frac{W}{L}\right)_{5} = \frac{4,75}{9,5} \cdot 19\mu = 9,5 \ \mu m$$

$$R_1 = \frac{U_{CC} - U_{GS8}}{I_{R1}} = \frac{1,8 - (0,4 + 0,2)}{4,75\mu} = 252,6 \text{ } k\Omega$$

Pro dosažení fázové rezervy 60° musí platit ($U_{\rm OV6}$ musí být stejný jako $U_{\rm OV3,4}$, tj. 0,2 V – viz. podmínka pro minimální offset)

$$g_{m6} = 10 \cdot g_{m1} = 10 \cdot 47,5\mu = 475 \,\mu s$$

$$g_{m6} = \frac{2 \cdot I_{D6}}{U_{OV6}} \Longrightarrow I_{D6} = \frac{g_{m6} \cdot U_{OV6}}{2} = \frac{475\mu \cdot 0,2}{2} = 47,5 \,\mu A$$

$$W_6 = \frac{I_6}{I_{3,4}} \cdot W_{3,4} = 10 \cdot 2,4\mu = 24 \,\mu m$$

Nyní lze jednoduše dopočítat M_7 , který bude $(W/L)_7 = 95/2$.

Spotřeba obvodu

$$P = U_{CC} \cdot I_{CC} = 1.8 \cdot (I_8 + I_5 + I_7) = (4.75\mu + 9.5\mu + 47.5\mu) = 111.15 \,\mu W$$

Pro zesílení je nejdříve nutné dopočítat $r_{\rm DS}$. Dále tento výpočet nebude rozepisován. Je obdobný, jako u předchozích úloh. Pro $L=2~\mu{\rm m}$ jsou $\lambda_{\rm N}=0.044~{\rm V}^{-1}$ a $\lambda_{\rm P}=0.08~{\rm V}^{-1}$.

$$r_{DS1,2} = 2.6 M\Omega$$

$$r_{DS3,4} = 4.8 M\Omega$$

$$r_{DS6} = 480 \ k\Omega$$

$$r_{DS7} = 260 M\Omega$$

$$A_{U0} = A_1 \cdot A_2 = g_{m1} \cdot R_{o1} \cdot g_{m6} \cdot R_{o2} = 47.5 \mu \cdot \frac{2.6M \cdot 4.8M}{2.6M + 4.8M} \cdot 475 \mu \cdot \frac{260k \cdot 480k}{260k + 480k} = 80.1 \cdot 80.1 = 6417.3$$

$$A_{U0} = 20 \cdot \log(6417,3) = 76,15 \, dB$$

Vstupní a výstupní rozsah vycházejí z oblastí saturace tranzistorů. Pro daný rozsah, musejí být všechny tranzistory v saturaci.

$$U_{O(min)} = U_{OV6} = 0.2 V$$

$$U_{O(max)} = U_{CC} - U_{OV7} = 1.8 - 0.2 = 1.6 V$$

Výstupní rozsah je tedy (0,2 – 1,6) V.

$$U_{I(min)} = U_{GS6} + U_{OV1} - U_{GS1} = 0.6 + 0.2 - 0.6 = 0.2 V$$

$$U_{I(max)} = U_{CC} - U_{GS1} - U_{OV5} = 1.8 - (0.4 + 0.2) - 0.2 V = 1 V$$

Vstupní rozsah je tedy (0,2 - 1) V.

Dvoustupňový zesilovač – Analýza AC

Ověření parametrů z analýzy AC

Dvoustupňový zesilovač – Analýza AC

Ověření parametrů z analýzy AC – proudy a napětí v pracovním bodě

Name:	x1:M3	x1:M4	x1:M6	x1:M1	x1:M
Model:	nch	nch	nch	pch	pch
Id:	4.83e-06	4.83e-06	5.11e-05	4.83e-06	4.83e
Vqs:	5.81e-01	5.81e-01	5.85e-01	3.19e-01	3.15e
Vds:	5.81e-01	5.85e-01	9.00e-01	9.08e-01	9.04e
Vbs:	0.00e+00	0.00e+00	0.00e+00	9.08e-01	9.04e
Vth:	3.82e-01	3.82e-01	3.82e-01	-4.03e-01	-4.03e
Vdsat:	1.54e-01	1.54e-01	1.58e-01	-1.57e-01	-1.57e
Gm:	5.04e-05	5.04e-05	5.20e-04	4.84e-05	4.84e
Gds:	2.46e-07	2.45e-07	2.32e-06	3.90e-07	3.90e
Gmb	3.97e-05	3.99e-05	5.57e-04	1.52e-05	1.52e
Cbd:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e
Cbs:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e
Cgsov:	1.68e-15	1.68e-15	1.69e-14	6.51e-15	6.51e
Cgdov:	1.67e-15	1.67e-15	1.67e-14	6.54e-15	6.54e
Cgbov:	1.98e-18	1.98e-18	1.98e-18	1.96e-18	1.96e
dQqdVqb:	3.60e-14	3.60e-14	3.61e-13	1.40e-13	1.40e
dQqdVdb:	-1.62e-15	-1.62e-15	-1.61e-14	-6.28e-15	-6.28e
dQgdVsb:	-1.62e-15 -4.42e-14	-1.62e-15 -4.43e-14	-1.61e-14 -5.11e-13	-1.28e-13	-0.28e
dQddVqb:	-1.49e-14	-1.49e-14	-1.50e-13	-5.85e-14	-5.85e
dQddVdb:	1.64e-15	1.64e-15	1.64e-14	6.39e-15	6.39e
dQddVsb: dQbdVqb:	2.43e-14 -6.18e-15	2.44e-14	2.83e-13	6.88e-14	6.88e
		-6.18e-15	-6.23e-14	-2.31e-14	-2.31e
			C 47 47	0 07 17	0.06
dQbdVdb:	-4.47e-18	-4.15e-18	6.47e-17	2.87e-17	
			6.47e-17 -7.21e-14	2.87e-17 -1.65e-14	
dQbdVdb: dQbdVsb: Name:	-4.47e-18 -6.17e-15 x1:M7	-4.15e-18 -6.19e-15 x1:M5	-7.21e-14 x1:M8		
dQbdVdb: dQbdVsb: Name: Model:	-4.47e-18 -6.17e-15 x1:M7 pch	-4.15e-18 -6.19e-15 x1:M5 pch	-7.21e-14 x1:M8 pch		
dQbdVdb: dQbdVsb: Name: Model: Id:	-4.47e-18 -6.17e-15 x1:M7 pch 5.11e-05	-4.15e-18 -6.19e-15 x1:M5 pch 9.66e-06	-7.21e-14 x1:M8 pch 4.91e-06		
dQbdVdb: dQbdVsb: Name: Model: Id: Vgs:	-4.47e-18 -6.17e-15 x1:M7 pch 5.11e-05 3.41e-01	-4.15e-18 -6.19e-15 x1:M5 pch 9.66e-06 -2.48e-01	-7.21e-14 x1:M8 pch 4.91e-06 0.00e+00		
dQbdVdb: dQbdVsb: Name: Model: Id: Vgs:	-4.47e-18 -6.17e-15 x1:M7 pch 5.11e-05 3.41e-01 9.00e-01	-4.15e-18 -6.19e-15 x1:M5 pch 9.66e-06 -2.48e-01 3.11e-01	-7.21e-14 x1:M8 pch 4.91e-06 0.00e+00 5.59e-01		
dQbdVdb: dQbdVsb: Name: Model: Id: Vgs:	-4.47e-18 -6.17e-15 x1:M7 pch 5.11e-05 3.41e-01	-4.15e-18 -6.19e-15 x1:M5 pch 9.66e-06 -2.48e-01	-7.21e-14 x1:M8 pch 4.91e-06 0.00e+00		
dQbdVdb: dQbdVsb: Name: Model: Id: Vgs: Vds:	-4.47e-18 -6.17e-15 x1:M7 pch 5.11e-05 3.41e-01 9.00e-01	-4.15e-18 -6.19e-15 x1:M5 pch 9.66e-06 -2.48e-01 3.11e-01 1.93e-01	-7.21e-14 x1:M8 pch 4.91e-06 0.00e+00 5.59e-01 4.42e-01 -3.69e-01		
dQbdVdb: dQbdVsb: Name: Model: Id: Vgs: Vds: Vbs: Vth: Vdsat:	-4.47e-18 -6.17e-15 x1:M7 pch 5.11e-05 3.41e-01 9.00e-01 7.83e-01	-4.15e-18 -6.19e-15 x1:M5 pch 9.66e-06 -2.48e-01 3.11e-01 1.93e-01 -3.69e-01 -1.57e-01	-7.21e-14 x1:M8 pch 4.91e-06 0.00e+00 5.59e-01 4.42e-01		
dQbdVdb: dQbdVsb: Name: Model: Id: Vgs: Vds: Vbs: Vth: Vdsat:	-4.47e-18 -6.17e-15 x1:M7 pch 5.11e-05 3.41e-01 9.00e-01 7.83e-01 -3.67e-01	-4.15e-18 -6.19e-15 x1:M5 pch 9.66e-06 -2.48e-01 3.11e-01 1.93e-01	-7.21e-14 x1:M8 pch 4.91e-06 0.00e+00 5.59e-01 4.42e-01 -3.69e-01		
dQbdVdb: dQbdVsb: Name: Model: Id: Vgs: Vds: Vbs: Vth: Vdsat: Gm:	-4.47e-18 -6.17e-15 x1:M7 poh 5.11e-05 3.41e-01 9.00e-01 7.83e-01 -3.67e-01 -1.59e-01	-4.15e-18 -6.19e-15 x1:M5 pch 9.66e-06 -2.48e-01 3.11e-01 1.93e-01 -3.69e-01 -1.57e-01	-7.21e-14 x1:M8 pch 4.91e-06 0.00e+00 5.59e-01 4.42e-01 -3.69e-01 -1.56e-01		
dQbdVdb: dQbdVsb: Name: Model: Id: Vgs: Vds: Vbs: Vth: Vdsat: Gm: Gds:	-4.47e-18 -6.17e-15 x1:M7 pch 5.11e-05 3.41e-01 9.00e-01 7.83e-01 -1.59e-01 5.03e-04	-4.15e-18 -6.19e-15 x1:M5 pch 9.66e-06 -2.48e-01 3.11e-01 1.93e-01 -3.69e-01 -1.57e-01 9.62e-05	-7.21e-14 x1:M8 pch 4.91e-06 0.00e+00 5.59e-01 4.42e-01 -3.69e-01 -1.56e-01 4.88e-05		
dQbdVdb: dQbdVsb: Name: Model: Id: Vgs: Vbs: Vth: Vdsat: Gm: Gds: Gds: Gds:	-4.47e-18 -6.17e-15 x1:M7 pch 5.11e-05 3.41e-01 9.00e-01 7.83e-01 -3.67e-01 -1.59e-01 5.03e-04 4.04e-06	-4.15e-18 -6.19e-15 x1:M5 pch 9.66e-06 -2.48e-01 3.11e-01 1.93e-01 -1.57e-01 9.62e-05 1.13e-06	-7.21e-14 x1:M8 pch 4.91e-06 0.00e+00 5.59e-01 4.42e-01 -3.69e-01 -1.56e-01 4.88e-05 4.07e-07		
dQbdVdb: dQbdVsb: Name: Model: Id: Vgs: Vds: Vtbs: Vth: Vdsat: Gm: Gds: Gds: Gdb:	-4.47e-18 -6.17e-15 x1:M7 pch 5.11e-05 3.41e-01 9.00e-01 7.83e-01 -3.67e-01 -1.59e-01 5.03e-04 4.04e-06 1.41e-04	-4.15e-18 -6.19e-15 x1:M5 pch 9.66e-06 -2.48e-01 3.11e-01 1.93e-01 -3.69e-01 -1.57e-01 9.62e-05 1.13e-06 2.69e-05	-7.21e-14 x1:M8 pch 4.91e-06 0.00e+00 5.59e-01 4.42e-01 -3.69e-01 -1.56e-01 4.88e-05 4.07e-07 1.36e-05		
dQbdVdb: dQbdVsb: Name: Model: Id: Vgs: Vds: Vtbs: Vth: Vdsat: Gm: Gds: Gmb Cbd: Cbs:	-4.47e-18 -6.17e-15 x1:M7 pch 5.11e-05 3.41e-01 9.00e-01 7.83e-01 -3.67e-01 -1.59e-01 5.03e-04 4.04e-06 1.41e-04 0.00e+00	-4.15e-18 -6.19e-15 x1:M5 pch 9.66e-06 -2.48e-01 3.11e-01 1.93e-01 -3.69e-01 -1.57e-01 9.62e-05 1.13e-06 2.69e-05 0.00e+00	-7.21e-14 x1:M8 pch 4.91e-06 0.00e+00 5.59e-01 4.42e-01 -3.69e-01 -1.56e-01 4.88e-05 4.07e-07 1.36e-05 0.00e+00		
dobdvdb: dobdvsb: Name: Model: Id: Vds: Vbs: Vth: Vdsat: Gm: Gdb: Cbd: Cbs: Cgsov:	-4.47e-18 -6.17e-15 x1:M7 pch 5.11e-05 3.41e-01 9.00e-01 7.83e-01 -3.67e-01 -1.59e-01 5.03e-04 4.04e-06 1.41e-04 0.00e+00 0.00e+00	-4.15e-18 -6.19e-15 x1:M5 pch 9.66e-06 -2.48e-01 3.11e-01 -3.69e-01 -1.57e-01 9.62e-05 1.13e-06 2.69e-05 0.00e+00 0.00e+00	-7.21e-14 x1:M8 pch 4.91e-06 0.00e+00 5.59e-01 4.42e-01 -3.69e-01 4.88e-05 4.07e-07 1.36e-05 0.00e+00 0.00e+00		
dObdVdb: dQbdVsb: Name: Model: Id: Vgs: Vds: Vbs: Vth: Vdsat: Gm: Gds: Gmb Cbd: Cbs: Ccgsov: Ccgdov:	-4.47e-18 -6.17e-15 x1:M7 pch 5.11e-05 3.41e-01 9.00e-01 7.83e-01 -1.59e-01 5.03e-04 4.04e-06 1.41e-04 0.00e+00 0.00e+00 6.51e-14	-4.15e-18 -6.19e-15 x1:M5 pch 9.66e-06 -2.48e-01 3.11e-01 1.93e-01 -1.57e-01 9.62e-05 1.13e-06 2.69e-05 0.00e+00 0.00e+00 1.30e-14	-7.21e-14 x1:M8 pch 4.91e-06 0.00e+00 5.59e-01 4.42e-01 -3.69e-01 4.88e-05 4.07e-07 1.36e-05 0.00e+00 6.51e-15		
dQbdVdb: dQbdVsb: Name: Model: Id: Vgs: Vds: Vbs: Vth: Vdsat: Gm: Gds: Cbs: Cgsov: Cgsdov:	-4.47e-18 -6.17e-15 x1:M7 pch 5.11e-05 3.41e-01 9.00e-01 7.83e-01 -3.67e-01 -1.59e-01 5.03e-04 4.04e-06 1.41e-04 0.00e+00 0.00e+00 6.51e-14 6.54e-14	-4.15e-18 -6.19e-15 x1:M5 pch 9.66e-06 -2.48e-01 3.11e-01 -3.69e-01 -1.57e-01 9.62e-05 1.13e-06 2.69e-05 0.00e+00 0.00e+00 1.30e-14 1.31e-14	-7.21e-14 x1:M8 pch 4.91e-06 0.00e+00 5.59e-01 4.42e-01 -3.69e-01 -1.56e-01 4.88e-05 4.07e-07 1.36e-05 0.00e+00 0.00e+00 6.51e-15 6.54e-15		
dQbdVdb: dQbdVsb: Name: Model: Id: Vgs: Vds: Vth: Vdsat: Gm: Gdb: Cbd: Ccgsov: Ccgdov: Ccgbov: dQgdVgb:	-4.47e-18 -6.17e-15 x1:M7 pch 5.11e-05 3.41e-01 9.00e-01 7.83e-01 -3.67e-01 -1.59e-01 5.03e-04 4.04e-06 1.41e-04 0.00e+00 0.00e+00 6.51e-14 6.54e-14 1.96e-18	-4.15e-18 -6.19e-15 x1:M5 pch 9.66e-06 -2.48e-01 3.11e-01 1.93e-01 -3.69e-01 -1.57e-01 9.62e-05 1.13e-06 2.69e-05 0.00e+00 0.00e+00 1.30e-14 1.31e-14 1.96e-18	-7.21e-14 x1:M8 pch 4.91e-06 0.00e+00 5.59e-01 4.42e-01 -3.69e-01 -1.56e-01 4.88e-05 4.07e-07 1.36e-05 0.00e+00 0.00e+00 6.51e-15 6.54e-15 1.96e-18		
dQbdVdb: dQbdVsb: Name: Model: Id: Vds: Vds: Vds: Vth: Vdsat: Gm: Gds: Gmb Cbd: Cgsov: Cgsov: Cgdov: Cgbov: dQgdVgb: dQgdVdb:	-4.47e-18 -6.17e-15 x1:M7 pch 5.11e-05 3.41e-01 9.00e-01 7.83e-01 -3.67e-01 -1.59e-01 5.03e-04 4.04e-06 1.41e-04 0.00e+00 0.00e+00 6.51e-14 6.54e-14 1.96e-18 1.40e-12	-4.15e-18 -6.19e-15 x1:M5 pch 9.66e-06 -2.48e-01 3.11e-01 1.93e-01 -1.57e-01 9.62e-05 1.13e-06 2.69e-05 0.00e+00 0.00e+00 1.31e-14 1.31e-14 1.96e-18 2.82e-13	-7.21e-14 x1:M8 pch 4.91e-06 0.00e+00 5.59e-01 4.42e-01 -3.69e-01 -1.56e-01 4.88e-05 4.07e-07 1.36e-05 0.00e+00 0.00e+00 6.51e-15 6.54e-15 1.96e-18 1.41e-13		
dQbdVdb: dQbdVsb: Name: Model: Id: Vds: Vds: Vds: Vth: Vdsat: Gm: Gds: Gmb Cbd: Cbd: Ccgcov: Ccgdov: Ccgbov: dQgdVgb: dQgdVgb: dQgdVsb:	-4.47e-18 -6.17e-15 x1:M7 pch 5.11e-05 3.41e-01 9.00e-01 7.83e-01 -1.59e-01 5.03e-04 4.04e-06 1.41e-04 0.00e+00 0.00e+00 6.51e-14 6.54e-14 1.96e-18 1.40e-12 -6.30e-14 -1.31e-12	-4.15e-18 -6.19e-15 x1:M5 pch 9.66e-06 -2.48e-01 3.11e-01 1.93e-01 -1.57e-01 9.62e-05 1.13e-06 2.69e-05 0.00e+00 0.00e+00 1.30e-14 1.96e-18 2.82e-13 -1.38e-14	-7.21e-14 x1:M8 pch 4.91e-06 0.00e+00 5.59e-01 4.42e-01 -3.69e-01 4.88e-05 4.07e-07 1.36e-05 0.00e+00 0.00e+00 6.51e-15 6.54e-15 1.96e-18 1.41e-13 -6.35e-15		
dQbdVdb: dQbdVsb: Name: Model: Id: Vgs: Vds: Vbs: Vth: Vdsat: Gm: Gds: Cbs: Cgsov: Cgsov: Cgdov: dQgdVgb: dQgdVgb: dQddVgb:	-4.47e-18 -6.17e-15 x1:M7 pch 5.11e-05 3.41e-01 9.00e-01 7.83e-01 -3.67e-01 -1.59e-01 5.03e-04 4.04e-06 1.41e-04 0.00e+00 0.00e+00 0.51e-14 6.54e-14 1.96e-18 1.40e-12 -6.30e-14 -1.31e-12 -5.85e-13	-4.15e-18 -6.19e-15 x1:M5 pch 9.66e-06 -2.48e-01 3.11e-01 1.93e-01 -1.57e-01 9.62e-05 1.13e-06 2.69e-05 0.00e+00 0.00e+00 1.30e-14 1.31e-14 1.96e-18 2.82e-13 -1.38e-14 -2.63e-13	-7.21e-14 x1:M8 pch 4.91e-06 0.00e+00 5.59e-01 4.42e-01 -3.69e-01 1.56e-01 4.88e-05 4.07e-07 1.36e-05 0.00e+00 6.51e-15 6.54e-15 1.96e-18 1.41e-13 -6.35e-15 -1.31e-13		
dQbdVdb: dQbdVsb: Name: Model: Id: Vgs: Vds: Vbs: Vth: Vdsat: Gm: Gds: Gmb Cbd: Ccgsov: Ccgbov: dQgdVdb: dQgdVdb: dQgdVdb: dQddVdb:	-4.47e-18 -6.17e-15 x1:M7 pch 5.11e-05 3.41e-01 9.00e-01 7.83e-01 -3.67e-01 -1.59e-01 5.03e-04 4.04e-06 1.41e-04 0.00e+00 0.00e+00 6.51e-14 1.96e-18 1.40e-12 -6.30e-14 -1.31e-12 -5.85e-13 6.40e-14	-4.15e-18 -6.19e-15 x1:M5 pch 9.66e-06 -2.48e-01 3.11e-01 1.93e-01 -1.57e-01 9.62e-05 1.13e-06 2.69e-05 0.00e+00 0.00e+00 1.30e-14 1.31e-14 1.96e-18 2.82e-13 -1.38e-14 -2.63e-13 -1.18e-13 1.38e-14	-7.21e-14 x1:M8 pch 4.91e-06 0.00e+00 5.59e-01 4.42e-01 -3.69e-01 -1.56e-01 4.88e-05 4.07e-07 1.36e-05 0.00e+00 0.00e+00 6.51e-15 6.54e-15 1.96e-18 1.41e-13 -6.35e-15 -1.31e-13 -5.86e-14 6.45e-15		
dQbdVdb: dQbdVsb: Name: Model: Id: Vgs: Vds: Vth: Vdsat: Gm: Gdb: Cbs: Ccgsov: Ccgdov: dQgdVgb: dQgdVgb: dQgdVgb: dQgdVgb: dQddVgb: dQddVgb:	-4.47e-18 -6.17e-15 x1:M7 pch 5.11e-05 3.41e-01 9.00e-01 7.83e-01 -3.67e-01 -1.59e-01 5.03e-04 4.04e-06 1.41e-04 0.00e+00 0.00e+00 6.51e-14 6.54e-14 1.96e-18 1.40e-12 -6.30e-14 -1.31e-12 -5.85e-13 6.40e-14 6.72e-13	-4.15e-18 -6.19e-15 x1:M5 pch 9.66e-06 -2.48e-01 3.11e-01 1.93e-01 -1.57e-01 9.62e-05 1.13e-06 2.69e-05 0.00e+00 0.00e+00 1.30e-14 1.31e-14 1.96e-18 2.82e-13 -1.38e-14 -2.63e-13 -1.18e-13 1.38e-14 1.35e-13	-7.21e-14 x1:M8 pch 4.91e-06 0.00e+00 5.59e-01 4.42e-01 -3.69e-01 -1.56e-01 4.88e-05 4.07e-07 1.36e-05 0.00e+00 0.00e+00 6.51e-15 6.54e-15 1.96e-18 1.41e-13 -6.35e-15 -1.31e-13 -5.86e-14 6.45e-15 6.70e-14		
dQbdVdb:	-4.47e-18 -6.17e-15 x1:M7 pch 5.11e-05 3.41e-01 9.00e-01 7.83e-01 -3.67e-01 -1.59e-01 5.03e-04 4.04e-06 1.41e-04 0.00e+00 0.00e+00 6.51e-14 1.96e-18 1.40e-12 -6.30e-14 -1.31e-12 -5.85e-13 6.40e-14	-4.15e-18 -6.19e-15 x1:M5 pch 9.66e-06 -2.48e-01 3.11e-01 1.93e-01 -1.57e-01 9.62e-05 1.13e-06 2.69e-05 0.00e+00 0.00e+00 1.30e-14 1.31e-14 1.96e-18 2.82e-13 -1.38e-14 -2.63e-13 -1.18e-13 1.38e-14	-7.21e-14 x1:M8 pch 4.91e-06 0.00e+00 5.59e-01 4.42e-01 -3.69e-01 -1.56e-01 4.88e-05 4.07e-07 1.36e-05 0.00e+00 0.00e+00 6.51e-15 6.54e-15 1.96e-18 1.41e-13 -6.35e-15 -1.31e-13 -5.86e-14 6.45e-15		2.86e-1.65e

Dvoustupňový zesilovač – Rychlost přeběhu

$$SR_{n\acute{a}st} = 5.2 V/\mu s$$

$$SR_{sest} = 7 V/\mu s$$

Dvoustupňový zesilovač – Vstupní napěťový rozsah

Dvoustupňový zesilovač – Výstupní napěťový rozsah

Dvoustupňový zesilovač – Dosažené parametry

parametr	hodnota	Vypočítané	Simulace
zesílení (A _{U0})	≥ 60 dB	76,15 dB	75,8 dB
šířka pásma (<i>GBW</i>)	≥ 5 MHz	5 MHz	4,5 MHz
fázová rezerva (<i>PM</i>)	≥ 60°	60°	60,5°
amplitudová rezerva (AM)	- dB	Nepočítá se	-16,3 dB
rychlost přeběhu (<i>SR</i>)*	≥ 5 V/ <u>µs</u>	6,3 V/ <u>µs</u>	5,2/7 V/ <u>µs</u>
systematický ofset (<i>U</i> _{OFF})	≤ 500 µV	0	-52 μV
spotřeba (<u>P_{diss})</u>	- <u>mW</u>	111,15 μW	118 μW
vstupní napěťový rozsah (<i>ICMR</i>)	- V	0,2 – 1	(0,22 – 1) V
výstupní napěťový rozsah (<i>OVS</i>)	- V	0,2 – 1,6	(0,199-1,8) V