Digital Signal Processing for Music

Part 20: Reverb

alexander lerch

artificial reverberation introduction

■ idea:

intro

- artificially generate the impression of envelopment and reverberation
- possibly allow to modify specific characteristics of the "modeled" room

approaches

- (digital) parametric reverberation (predecessors: spring, plate, room, ...)
- fast convolution

artificial reverberation introduction

■ idea:

intro

- artificially generate the impression of envelopment and reverberation
- possibly allow to modify specific characteristics of the "modeled" room

approaches

- (digital) parametric reverberation (predecessors: spring, plate, room, ...)
- fast convolution

artificial reverberation room impulse response

 $^{{}^{1}\}text{U. Z\"{o}lzer}, \textit{Digital Audio Signal Processing}, 2 \text{nd Edition. Stuttgart: John Wiley \& Sons Ltd, 2008, } 1889: 978-0-470-99785-7.$

artificial reverberation

room impulse response: properties

room impulse response is sum of (filtered and delayed) reflections

- properties
 - level decrease is app. linear
 - density of reflections increases

description

- reverberation time: time in seconds for a level decrease of 60 dB
- depends mainly on
 - room volume
 - surface area
 - surface absorption
- Sabine:

$$T_{\rm RT} = 0.163 \,\mathrm{m}^{-1} \frac{V}{\sum \alpha_n \cdot S}$$

artificial reverberation

room impulse response: properties

room impulse response is sum of (filtered and delayed) reflections

properties

- level decrease is app. linear
- density of reflections increases

description

- reverberation time: time in seconds for a level decrease of 60 dB
- depends mainly or
 - room volume
 - surface area
 - surface absorption
- Sabine:

$$T_{\rm RT} = 0.163 \,\mathrm{m}^{-1} \frac{V}{\sum \alpha_n \cdot S}$$

artificial reverberation

room impulse response: properties

room impulse response is sum of (filtered and delayed) reflections

properties

- level decrease is app. linear
- density of reflections increases

description

- reverberation time: time in seconds for a level decrease of 60 dB
- · depends mainly on
 - room volume
 - ► surface area
 - ► surface absorption
- Sabine:

$$T_{\mathrm{RT}} = 0.163 \mathrm{m}^{-1} \frac{V}{\sum \alpha_n \cdot S_n}$$

artificial reverberation room reverberation time

Georgia Center for Music

what are typical ranges for the room reverberation times

vibroacoustique.fr/cours/M03_C01/co/grain05.html Part 20: Reverb

artificial reverberation room reverberation time

what are typical ranges for the room reverberation times

0.2-10s

vibroacoustique.fr/cours/M03_C01/co/grain05.html

artificial reverberation room simulation: ray tracing

a) Ray Tracing

artificial reverberation room simulation: mirror model

Georgia Center for Music Tech La Technology

²L. Cremer and H. A. Mueller, *Die wissenschaftlichen Grundlagen der Raumakustik*, 2nd ed. Stuttgart: S Hirzel, 1978, vol. 1, ISBN: 3-7776-0315-5.

artificial reverberation convolution vs. parametric reverb

convolution reverb

- + IR measured or generated by model
- + realistic
- restriction to pre-generated IR libraries
- high workload and memory requirements

parametric reverb

- + can be very efficient
- + can be parametrized
- less realistic/no real-world IRs

$$y(n) = b_0 \cdot x(n) - a_N \cdot y(n - N)$$

$$H(z) = \frac{b_0}{1 - a_N \cdot z^{-N}}$$

$$y(n) = g \cdot x(n) + x(n-M) - g \cdot y(n-M)$$

$$H(z) = \frac{z^{-M} + g}{1 + g \cdot z^{-M}}$$

artificial reverberation reverberation: Schroeder 1/2

questions

- how to change the reverberation time?
- how to change the density?

³M. Schroeder and B. Logan, ""Colorless" artificial reverberation," en, *IRE Transactions on Audio*, vol. AU-9, no. 6, pp. 209–214, Nov. 1961, ISSN: 0096-1981, 2168-2984, DOI: 10.1109/TAU.1961.1166351. (visited on 03/29/2023).

artificial reverberation reverberation: Schroeder 1/2

questions:

- how to change the reverberation time?
- how to change the density?

³M. Schroeder and B. Logan, ""Colorless" artificial reverberation," en, *IRE Transactions on Audio*, vol. AU-9, no. 6, pp. 209–214, Nov. 1961, ISSN: 0096-1981, 2168-2984, DOI: 10.1109/TAU.1961.1166351. (visited on 03/29/2023).

artificial reverberation reverberation: Schroeder 2/2

problems

- sound coloring (→ prime numbers)
- periodicity

audio

- original ◀》

artificial reverberation reverberation: Schroeder 2/2

problems

- sound coloring (→ prime numbers)
- periodicity

audio

- original ◀))wet ◀))

artificial reverberation reverberation: Moorer

Georgia Center for Music Tech Market Technology

- similar to Schroeder's model
- more comb filters
- low pass in feedback paths
- simple FIR model for early reflections

⁴ J. A. Moorer, "About This Reverberation Business," *Computer Music Journal*, vol. 3, no. 2, p. 13, Jun. 1979, ISSN: 01489267. DOI: 10.2307/3680280.

artificial reverberation other reverberation approaches: Gardner

artificial reverberation other reverberation approaches: Jot (feedback delay network)

artificial reverberation reverberation: Dattorro 1/2

artificial reverberation reverberation: Dattorro 1/2

artificial reverberation reverberation: Dattorro 2/2

intention: plate reverb model (dense, bright, fast build-up time)

- original ◀》
- wet (Plate) ••••
- wet (Medium Hall) ◀》
- wet (Cathedral) ◀》

artificial reverberation reverberation: Dattorro 2/2

intention: plate reverb model (dense, bright, fast build-up time)

- original ◀》
- wet (Plate) 🖤
- wet (Medium Hall) 💜
- wet (Cathedral) ◀》

artificial reverberation early reflections: models 1/2

artificial reverberation early reflections: models 2/2

artificial reverberation quality enhancements

■ multi-channel processing

- mono in \rightarrow mono out
- ullet mono in o stereo out
- stereo in \rightarrow stereo out

delay modulation

increase "diffusity" and "liveliness"

artificial reverberation quality enhancements

■ multi-channel processing

- mono in \rightarrow mono out
- ullet mono in o stereo out
- ullet stereo in o stereo out

delay modulation

• increase "diffusity" and "liveliness"

wetness

- reverberation time
- pre-delay
- low pass cutoff
- low pass slope
- bass boost
- ratio of early reflection/late reverberation
- diffusion, liveliness, etc.

- wetness
- reverberation time
- pre-delay
- low pass cutoff
- low pass slope
- bass boost
- ratio of early reflection/late reverberation
- diffusion, liveliness, etc.

- wetness
- reverberation time
- pre-delay
- low pass cutoff
- low pass slope
- bass boost
- ratio of early reflection/late reverberation
- diffusion, liveliness, etc.

- wetness
- reverberation time
- pre-delay
- low pass cutoff
- low pass slope
- bass boost
- ratio of early reflection/late reverberation
- diffusion, liveliness, etc.

- wetness
- reverberation time
- pre-delay
- low pass cutoff
- low pass slope
- bass boost
- ratio of early reflection/late reverberation
- diffusion, liveliness, etc.

- wetness
- reverberation time
- pre-delay
- low pass cutoff
- low pass slope
- bass boost
- ratio of early reflection/late reverberation
- diffusion, liveliness, etc.

- wetness
- reverberation time
- pre-delay
- low pass cutoff
- low pass slope
- bass boost
- ratio of early reflection/late reverberation
- diffusion, liveliness, etc.

- wetness
- reverberation time
- pre-delay
- low pass cutoff
- low pass slope
- bass boost
- ratio of early reflection/late reverberation
- diffusion, liveliness, etc.

summary parametric reverb

- advantages over convolution reverbs
 - fully parametrizable not restricted to predefined IR library
 - works well with already somewhat reverberated recordings
 - lower workload (IIR vs. FIR)
- disadvantages over convolution reverbs
 - less realistic, no real-world IRs

summary parametric reverb

- advantages over convolution reverbs
 - fully parametrizable not restricted to predefined IR library
 - works well with already somewhat reverberated recordings
 - lower workload (IIR vs. FIR)
- disadvantages over convolution reverbs
 - less realistic, no real-world IRs