EEL205 Signals and Systems - MAJOR Semester II, 2007-2008

(35 marks, 120 minutes)

Name:	Entry no.	Group no.
	neatly and legibly in the space provided companied by correct reasoning will no	d in the question paper itself. Answers that ot receive any credit.
2. WRITE YOUR NA	ME AND ENTRY NUMBER ON ALI	L PAGES OF THE QUESTION PAPER.
It is best to write the to label all sketches	-	n pairs separated by $<>$. Take care
	down the inverse Fourier Transform where $U(j\omega)=1$ for $\omega>0$ and 0 for	of $U(j\omega)$ using the Fourier Transform of $r \omega < 0$).

A signal x(t) is such that $X(j\omega) = 0$ for $\omega > 0$. Using $X(j\omega) = X(j\omega)U(j\omega)$, express the real part $x_R(t)$ of the signal x(t) in terms of its imaginary part $x_I(t)$.

2. (2 marks) A signal x(t) = cos(50t) + 2cos(70t) is sampled at a rate 1/T with $T = \pi/60$ to obtain a discrete sequence x[n]. Sketch in the space provided below the Fourier Transform of x[n].

3. (4 marks) Let $H(z) = \frac{(1-\frac{5}{4}z^{-1})}{(1-\frac{1}{4}z^{-1})(1-\frac{3}{4}z^{-1})}$ represent the Z-transform of a causal impulse response h[n]. The ROC of H(z) is given by:______.

The impulse response h[n] =______.

The ROC of log(H(z)) for it to be the Z-transform of a stable sequence is given by:

4. (3 marks) Evaluate the integral $\int_{-\infty}^{\infty} \frac{\sin(\omega+\phi)}{\omega} d\omega$ (express your answer in terms of ϕ).

5. (3 marks) Consider a discrete-time periodic sequence x[n] with fundamental period N and Fourier Series coefficients a_k . The Fourier Series coefficients of the sequence $x[n] - e^{j2\pi ln/N}x[n]$ are given by:______

6. (2 marks) Denote the input and output of an LTI system with impulse response h(t) by x(t) and y(t). Denote the input, output and impulse response of a second system by $x_1(t)$, $y_1(t)$ and $h_1(t)$. If $x_1(t) = x(at)$, and $z(t) = y_1(t/a) = y(t)$, how is $h_1(t)$ related to h(t)?

7. (2 marks) Given that $\frac{d^2x(t)}{dt^2} + 3\frac{dx(t)}{dt} + 2x(t)$ has a Laplace transform that is the *entire* finite s-plane, the poles of X(s) are located at ______. The ROC of X(s) for a causal x(t) is:

8. (4 marks) Evaluate $\int_{-\infty}^{\infty} \frac{\sin(\pi(\frac{t}{2}-20))}{\pi(\frac{t}{2}-20)} cos(10\pi t) dt$

9. (3 marks) Sketch in the space provided below, the block diagram implementation of the differential equation $\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = \frac{dx(t)}{dt} + 3x(t)$ in the parallel form.

- 10. (8 marks) Let x(t) is a periodic signal with Fourier Series coefficients a_k and transfrom $X(j\omega)$. Define $Z(j\omega) = X(j\omega)Y(j\omega)$ where $Y(j\omega)$ is the transform of a aperiodic signal y(t).
 - a) (1 mark) Express $X(j\omega)$ in terms of a_k .

b) (2 marks) Express z(t) in terms of a_k and samples of the transform $Y(j\omega)$.

c) (3 marks) Express z(t) as the periodic convolution of x(t) and another signal derived from y(t).

d) (2 marks) If $x(t) = \frac{1}{T} \sum_{k} e^{j2\pi kt/T}$, what is the relationship between z(t) and y(t)? When can you uniquely recover y(t) from z(t)?