NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Lau Tze Siong

MA2108 Mathematical Analysis I

AY 2007/2008 Sem 1

Question 1

(a) (i)

$$\lim_{n \to \infty} \left(\frac{n+3-5n^2}{n^2-3n+6} \right) = \lim_{n \to \infty} \left(\frac{\frac{1}{n} + \frac{3}{n^2} - 5}{1 - \frac{3}{n} + \frac{6}{n^2}} \right)$$

$$= -5$$

(ii)

Since
$$\lim_{n \to \infty} 1 + \frac{1}{n+4} = 1$$

$$\lim_{n \to \infty} \left(1 + \frac{1}{n+4} \right)^{n-4} = \lim_{n \to \infty} \left(1 + \frac{1}{n+4} \right)^{n+4} \cdot \left(1 + \frac{1}{n+4} \right)^{-8}$$

$$= \lim_{n \to \infty} \left(1 + \frac{1}{n+4} \right)^{n+4} \cdot 1^{-8}$$

$$= e$$

(iii) Since $1 \le (n!) \le n^n$, we have $(1)^{\frac{1}{n^2}} \le (n!)^{\frac{1}{n^2}} \le n^{\frac{1}{n}}$.

By Squeeze Theorem we have $\lim_{n\to\infty} (1)^{\frac{1}{n^2}} \le \lim_{n\to\infty} (n!)^{\frac{1}{n^2}} \le \lim_{n\to\infty} n^{\frac{1}{n}}$.

Therefore, $1 \le \lim_{n \to \infty} (n!)^{\frac{1}{n^2}} \le 1$.

Hence $\lim_{n\to\infty} (n!)^{\frac{1}{n^2}} = 1$

(b) Let $a = \inf(S + T)$, $b = \inf(S)$ and $c = \inf(T)$.

Hence we have $b \leq s$ for all $s \in S$ and $c \leq t$ for all $t \in T$.

Therefore we have $b+c \leq s+t$ for all $s \in S$ and $t \in T$.

Since $a = \inf(S + T)$, we have $a \ge b + c$.

Also since $a \leq s+t$ for all $s \in S$ and $t \in T$, we have $a-s \leq t$ for all $t \in T$.

Since $c = \inf(T)$, we have $c \ge a - s$ for all $s \in S$, which leads to $a - c \le s$ for all $s \in S$.

Since $b = \inf(S)$, we have $b \ge a - c$. Hence we have $a \le c + b$.

Together we have a = c + b

Question 2

(a) (i) By Limit Comparison Test, since

$$\lim_{n \to \infty} \frac{\frac{n^2 + 2n}{n^3 + n + 1}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n^3 + 2n^2}{n^3 + n + 1}$$

$$= \lim_{n \to \infty} \frac{1 + \frac{2}{n}}{1 + \frac{1}{n^2} + \frac{1}{n^3}}$$

$$= 1$$

Therefore, $\sum_{n=1}^{\infty} \frac{n^2 + 2n}{n^3 + n + 1}$ diverges.

(ii) By Root Test, since

$$\lim_{n \to \infty} \sqrt[n]{2^n \left(\frac{n}{n+1}\right)^n} = \lim_{n \to \infty} 2\left(\frac{n}{n+1}\right)^n$$

$$= \lim_{n \to \infty} 2\left(1 - \frac{1}{n+1}\right)^n$$

$$= \lim_{n \to \infty} 2\left(1 - \frac{1}{n+1}\right)^{n+1} \cdot \left(1 - \frac{1}{n+1}\right)^{-1}$$

$$= 2e^{-1}$$

$$< 1$$

Therefore, $\sum_{n=1}^{\infty} 2^n \left(\frac{n}{n+1}\right)^{n^2}$ converges.

(iii) By Ratio Test, since

$$\lim_{n \to \infty} \frac{((n+1)!)^2}{(2n+2)!} \frac{(2n)!}{(n!)^2} = \lim_{n \to \infty} \frac{(n+1)(n+1)}{(2n+1)(2n+2)}$$
$$= \frac{1}{4}$$
$$< 1$$

Therefore, $\sum_{n=1}^{\infty} \frac{(n!)^2}{2n!}$ converges.

(iv) By AM-GM inequality we have

$$\frac{\left(\sum_{i=1}^{n-1} \frac{n}{n-1}\right) + 1}{n} \geq \left(\left(\frac{n}{n-1}\right)^{n-1} \cdot 1\right)^{\frac{1}{n}}$$

$$\frac{n+1}{n} \geq \left(\frac{n}{n-1}\right)^{\frac{n-1}{n}}$$

$$\left(\frac{n+1}{n}\right)^{n} \geq \left(\frac{n}{n-1}\right)^{n-1}$$

$$\left(\frac{n}{n+1}\right)^{n} \leq \left(\frac{n-1}{n}\right)^{n-1}$$

$$\frac{n^{n}}{(n+1)^{n+1}} \leq \frac{n^{n}}{n(n+1)^{n}} \leq \frac{(n-1)^{n-1}}{n^{n}}$$

Hence $\frac{n^n}{(n+1)^{n+1}}$ is decreasing and $\lim_{n\to\infty} \frac{n^n}{(n+1)^{n+1}} = 0$.

Hence by Alternating Series Test, $\sum_{n=1}^{\infty} (-1)^n \frac{n^n}{(n+1)^{n+1}}$ converges.

(b) Let S_k denote the kth-partial sum of $1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \dots$ Note that

$$S_{3k} = \sum_{n=1}^{k} \left(\frac{1}{2n-1} - \frac{1}{4n-2} - \frac{1}{4n} \right)$$

$$= \sum_{n=1}^{k} \frac{1}{4n-2} - \frac{1}{4n}$$

$$= \frac{1}{2} \left(\sum_{n=1}^{k} \frac{1}{2n-1} - \frac{1}{2n} \right)$$

$$= \frac{1}{2} t_{2k}$$

where t_k is the kth-partial sum of $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$.

Since $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ is convergent, the sequence (t_k) is Cauchy.

Let $\epsilon > 0$. Then there exists $N \in \mathbb{N}$ such that for all $m, n \geq N$,

$$|t_m - t_n| < \epsilon$$

. In particular, for all $m, n \geq N$,

$$|S_{3m} - S_{3n}| = \left| \frac{1}{2} t_{2m} - \frac{1}{2} t_{2n} \right|$$
$$= \frac{1}{2} |t_{2m} - t_{2n}| < \frac{\epsilon}{2}$$

Consider the following sum

$$S_{3m} - S_{3n+1} = S_{3m} - \left(S_{3n} + \frac{1}{2n+1}\right)$$

$$S_{3m} - S_{3n+2} = S_{3m} - \left(S_{3n} + \frac{1}{2n+1} - \frac{1}{4n+2}\right)$$

$$= S_{3m} - \left(S_{3n} + \frac{1}{4n+2}\right)$$

$$S_{3m+1} - S_{3n} = \left(S_{3m} + \frac{1}{2m+1}\right) - S_{3n}$$

$$S_{3m+1} - S_{3n+1} = \left(S_{3m} + \frac{1}{2m+1}\right) - \left(S_{3n} + \frac{1}{2n+1}\right)$$

$$S_{3m+1} - S_{3n+2} = \left(S_{3m} + \frac{1}{2m+1}\right) - \left(S_{3n} + \frac{1}{4n+2}\right)$$

$$S_{3m+2} - S_{3n} = \left(S_{3m} + \frac{1}{4m+2}\right) - S_{3n}$$

$$S_{3m+2} - S_{3n+1} = \left(S_{3m} + \frac{1}{4m+2}\right) - \left(S_{3n} + \frac{1}{2n+1}\right)$$

$$S_{3m+2} - S_{3n+2} = \left(S_{3m} + \frac{1}{4m+2}\right) - \left(S_{3n} + \frac{1}{4n+2}\right)$$

Let $i \in \{3m, 3m + 1, 3m + 2\}, j \in \{3n, 3n + 1, 3n + 2\}$. It is easy to verify that

$$|S_i - S_j| < |S_{3m} - S_{3n}| + \frac{1}{n}$$

By Archimedean Property of Real Numbers, there exist $N' \in \mathbb{N}$ such that $\frac{1}{N'} < \frac{\epsilon}{2}$. Set $M = \max\{N', 3N\}$

Then for all $m, n \geq M$, we have

$$|S_m - S_n| < |S_m - S_n| + \frac{1}{N'}$$

 $< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$

Therefore the sequence of partial sums of the series is Cauchy, so the series is convergent.

Question 3

(a) (i) Since $-1 \le \sin\left(\frac{1}{(x-1)^2}\right) \le 1$ for all $x \in \mathbb{R}$.

Hence we have $-\left|\frac{x-1}{x+1}\right| \le \frac{x-1}{x+1}\sin\left(\frac{1}{(x-1)^2}\right) \le \left|\frac{x-1}{x+1}\right|$ for all \mathbb{R} .

Therefore by Squeeze Theorem we have $0 \le \lim_{x \to 1} \frac{x-1}{x+1}\sin\left(\frac{1}{(x-1)^2}\right) \le 0$.

So, $\lim_{x \to 1} \frac{x-1}{x+1}\sin\left(\frac{1}{(x-1)^2}\right) = 0$.

(ii)

$$\lim_{x \to 8^{-}} \frac{x-8}{|x-8|} = \lim_{x \to 8^{-}} \frac{x-8}{-(x-8)}$$

$$= \lim_{x \to 8^{-}} -1$$

$$= -1$$

(iii) Since

$$\lim_{x \to 9^{-}} \left([5x] - \left[\frac{4x}{9} \right] \right) = 44 - 3$$
$$= 41$$

and

$$\lim_{x \to 9^+} \left([5x] - \left[\frac{4x}{9} \right] \right) = 45 - 4$$

$$= 41$$

we have
$$\lim_{x\to 9} \left([5x] - \left\lceil \frac{4x}{9} \right\rceil \right) = 41$$

(b) Claim: $g: \mathbb{R} \to \mathbb{R}$ is continuous for all $x \in (n, n+1)$ for all $n \in \mathbb{Z}$.

Proof

Since $[x]:(n,n+1)\to\mathbb{R}$ is a constant function with value for [x]=n for all $x\in(n,n+1)$, it is continuous in the interval (n,n+1) for all $n\in\mathbb{Z}$.

Similarly, $\left[\frac{x}{2}\right]: \mathbb{R} \to \mathbb{R}$ is continuous on the interval (n, n+1) for all $n \in \mathbb{Z}$. Since $x: \mathbb{R} \to \mathbb{R}$ and $\left[\frac{x}{2}\right]: \mathbb{R} \to \mathbb{R}$ and $\left[x\right]: (n, n+1) \to \mathbb{R}$ are continuous functions on the interval (n, n+1) for all $n \in \mathbb{Z}$ and the product and sum of continuous functions is a continuous function. We have $g: \mathbb{R} \to \mathbb{R}$ being continuous for all $x \in (n, n+1)$ for all $n \in \mathbb{Z}$.

Claim: For all $n \in \mathbb{Z}$, g is not continuous at x = 2n + 1.

Proof:

Since

$$\lim_{x \to 2n+1^{-}} g(x) = \lim_{x \to 2n+1^{-}} 2[x] - x \left[\frac{x}{2} \right]$$

$$= \lim_{x \to 2n+1^{-}} 2(2n) - (2n+1)(n)$$

$$= \lim_{x \to 2n+1^{-}} 4n - 2n^{2} - n$$

$$= 3n - 2n^{2}$$

and

$$\lim_{x \to 2n+1^{+}} g(x) = \lim_{x \to 2n+1^{+}} 2[x] - x \left[\frac{x}{2}\right]$$

$$= \lim_{x \to 2n+1^{+}} 2(2n+1) - (2n+1)(n)$$

$$= \lim_{x \to 2n+1^{+}} 4n + 2 - 2n^{2} - n$$

$$= 3n - 2n^{2} + 2$$

Since $3n-2n^2 \neq 3n-2n^2+2$ for all $n \in \mathbb{Z}$, $\lim_{x \to 2n+1^-} g(x) \neq \lim_{x \to 2n+1^+} g(x)$ for all $n \in \mathbb{Z}$, $\lim_{x \to 2n+1} g(x)$ does not exist for all $n \in \mathbb{Z}$.

Hence g is not continuous at x = 2n + 1 for all $n \in \mathbb{Z}$.

Claim: For all $n \in \mathbb{Z} \setminus \{1\}$, g is not continuous at x = 2n and g is continuous at x = 2. Proof:

$$\lim_{x \to 2n^{-}} g(x) = \lim_{x \to 2n+1^{-}} 2[x] - x \left[\frac{x}{2}\right]$$

$$= \lim_{x \to 2n^{-}} 2(2n-1) - (2n)(n-1)$$

$$= \lim_{x \to 2n^{-}} 4n - 2 - 2n^{2} + 2n$$

$$= 6n - 2 - 2n^{2}$$

$$\lim_{x \to 2n^{+}} g(x) = \lim_{x \to 2n+1^{+}} 2[x] - x \left[\frac{x}{2} \right]$$

$$= \lim_{x \to 2n^{+}} 2(2n) - (2n)(n)$$

$$= \lim_{x \to 2n^{+}} 4n - 2n^{2}$$

$$= 4n - 2n^{2}$$

Since $6n-2-2n^2 \neq 4n-2n^2$ for all $n \in \mathbb{Z} \setminus \{1\}$, $\lim_{x \to 2n^-} g(x) \neq \lim_{x \to 2n^+} g(x)$ for all $n \in \mathbb{Z} \setminus \{1\}$.

Hence g is not continuous at x = 2n for all $n \in \mathbb{Z} \setminus \{1\}$.

Since at x = 2, n = 1, $\lim_{x \to 2n^{-}} g(x) = \lim_{x \to 2n^{+}} g(x) = 2$, we have $\lim_{x \to 2} g(x) = 2$. Also since g(2) = 2(2) - 2(1) = 2. g is continuous at x = 2.

Therefore, $g: \mathbb{R} \to \mathbb{R}$ is continuous for all $x \in \left(\bigcup_{n \in \mathbb{Z}} I_n\right) \cup \{2\}$, where $I_n = (n, n+1)$.

Question 4

(a) By AM-GM inequality we have $x_{n+1} \geq y_{n+1}$ for all $n \in \mathbb{N}$. Hence for $n \in \mathbb{N}$ such that $n \geq 2$, we have $x_{n+1} = \frac{x_n + y_n}{2} \leq x_n$ and $y_{n+1} = \sqrt{x_n y_n} \geq y_n$. Therefore we have

$$y_2 \le y_3 \le y_4 \le \dots \le y_n \le x_n \le \dots \le x_4 \le x_3 \le x_2$$

Hence $\{y_n\}$ is bounded above by $\max(y_1, x_2)$ and $\{x_n\}$ is bounded below by $\min(x_1, y_2)$. By the Completeness of the \mathbb{R} , $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$ exist. Since $x_{n+1} = \frac{x_n + y_n}{2}$, we have $x = \frac{x + y}{2}$.

Therefore we have x = y, $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$.

- (b) Since f(1) = -1 < 0 and $f(2) = 2\ln(2) + \sqrt{2} 2 > 0$ and f is continuous on the interval [1, 2]. By Intermediate Value Theorem, there exist $c \in [1, 2]$ such that f(c) = 0.
- (c) Let $S = \{f(x) | x \in [0, p]\}$ and $M = \sup(S)$ and $m = \inf(S)$. Then by Extreme Value Theorem there exist $a, b \in [0, p]$ such that f(a) = M and f(b) = m. Hence $m \leq f(x) \leq M$ for all [0, p].

Since for all $x \in \mathbb{R}$, f(x) = f(x - np) such that $x - np \in [0, p]$ for some $n \in \mathbb{Z}$.

Hence for all $x \in \mathbb{R}$, we have $m \leq f(x) \leq M$. Therefore f is bounded.

Since any continuous function on a closed bounded interval [a,b] is uniformly convergent.

Hence we have $f:[0,p]\to\mathbb{R}$ is uniformly continuous.

However since f is periodic, $f:[np,(n+1)p]\to\mathbb{R}$ is uniformly continuous for all $n\in\mathbb{Z}$.

Hence $f: \mathbb{R} \to \mathbb{R}$ is uniformly continuous.

Question 5

(a) Since $\lim_{n\to\infty} = n^2 x_n$ exists, $(n^2 x_n)$ is bounded, say

$$|n^2x_n| \leq M$$

for some $M \in \mathbb{R}$.

Hence $|x_n| < \frac{M}{n^2}$.

Since $\sum_{n=1}^{\infty} \frac{M}{n^2}$ is convergent, by Comparison Test, $\sum_{n=1}^{\infty} |x_n|$ is convergent.

So $\sum_{n=1}^{\infty} x_n$ is absolutely convergent.

(b) Given any $\epsilon \in \mathbb{R}_{>0}$, there exist a continuous $g_{\frac{\epsilon}{3}}$ such that $|f(x) - g_{\frac{\epsilon}{3}}(x)| < \frac{\epsilon}{3}$ for all $x \in \mathbb{R}$. For any $x_1 \in \mathbb{R}$,

Since $g_{\frac{\epsilon}{3}}$ is continuous, there exist a $\delta \in \mathbb{R}_{>0}$ such that $|g_{\frac{\epsilon}{3}}(x) - g_{\frac{\epsilon}{3}}(x_1)| < \frac{\epsilon}{3}$ whenever $|x - x_1| < \delta$. Hence we have

$$|f(x) - f(x_1)| = |f(x) - g_{\frac{\epsilon}{3}}(x) + g_{\frac{\epsilon}{3}}(x) - f(x_1)|$$

$$< |f(x) - g_{\frac{\epsilon}{3}}(x)| + |g_{\frac{\epsilon}{3}}(x) - g_{\frac{\epsilon}{3}}(x_1)| + |g_{\frac{\epsilon}{3}}(x_1) - f(x_1)|$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

whenever $|x - x_1| < \delta$.

Hence f is continuous on \mathbb{R} .

(c) Assume that g is continuous on [0,1].

Let $c_1 < c_2$ be the two points on [0,1] where g attains its absolute maximum.

If $0 < c_1$, choose a_1, a_2 such that $0 < a_1 < c_1 < a_2 < c_2$. Let k satisfy

$$\max\{g(a_1), g(a_2)\} < k < g(c_1)$$

Then there exist b_1, b_2, b_3 where

 $a_1 < b_1 < c_1 < b_2 < a_2 < b_3 < c_2$ such that $g(b_1) = g(b_2) = g(b_3)$ which is a contradiction. So we have $c_1 = 0$.

By a similar argument, we have $c_2 = 1$.

Now consider the points where g attains its absolute minimum. Using a similar argument we deduce that the absolute minimum points are 0 and 1. This implies that g is a constant function on [0,1] which is a contradiction.

Page: 7 of 7