THE LNM INSTITUTE OF INFORMATION TECHNOLOGY DEPARTMENT OF MATHEMATICS MATHEMATICS-III & MTH213 ENDTERM

Time: 3 hours Date: 27/11/2017 Maximum Marks: 100

Note: Usual notations are used. Attempt all questions. Your writing should be legible and neat. Marks awarded are shown next to the question. **Start a new question on a new page and answer all its parts in the same place**. Please make an index showing the question number and page number on the front page of your answer sheet in the following format.

Question No.		
Page No.		

1. (a) If H(z) and K(z) are continuous at $z=z_0$, then prove that the following functions are also continuous at $z=z_0$ using the definition of continuity $(\delta-\varepsilon)$ definition

$$G(z) = 5H(z)K(z)$$

Answer: (a) By definition of continuity, for $\epsilon > 0$, there exist $\delta > 0$ such that $|H(z) - H(z_0)| < \epsilon$ whenever $|z - z_0| < \delta$, Now take $\delta_1 > 0$ and $\epsilon < 1$, we get

 $|H(z) - H(z_0)| < 1$ for $|z - z_0| < \delta_1$, then $|H(z)| - |H(z_0)| < |H(z) - H(z_0)| < 1$, i.e., $|H(z)| < |H(z_0)| + 1 = A$, where A is a positive constant.

For $\epsilon > 0$, there exist δ_2 , δ_3 for which $|H(z) - H(z_0)| < \frac{\epsilon}{10(1+|K(z_0)|)}$ for $|z - z_0| < \delta_2$, and $|K(z) - K(z_0)| < \frac{\epsilon}{10A}$ for $|z - z_0| < \delta_3$.

Let $\delta = \text{Minimum } (\delta_1, \delta_2, \delta_3).$

For all z satisfying $|z - z_0| < \delta$,

 $|5H(z)K(z) - 5H(z_0)K(z_0)| = 5|H(z)K(z) - H(z)K(z_0) + H(z)K(z_0) - H(z_0)K(z_0)|$ $\leq 5|H(z) - K(z_0)||H(z)| + 5|K(z_0)||H(z) - H(z_0)| \quad \text{(by triangle inequity)}$ $\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} - \epsilon$

 $<\frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$ [6m]

- (b) **Prove or Disprove**: The following complex valued functions are analytic at z = 0 [4+4]
 - i. $f(z) = e^{-y}\sin x ie^{-y}\cos x$
 - ii. $f(z) = |z|^2 + 3i$
- Answer (b) One can use the necessary conditions of differentiability (i.e. the Cauchy-Riemann equations) to show that f(z) is not differentiable other than z=0. However, to show that f(z) is analytic at z=0, needs to show that f(z) is differentiable in some nbd of z=0. To prove the differentiability, Cauchy-Riemann equations must satisfies and continuity of partial derivatives.

1

(i) Write f(z) = u(x, y) + iv(x, y), gives $u(x, y) = e^{-y} \sin x$ and $v(x, y) = -e^{-y} \cos x$. $u_x = e^{-y} \cos x$ equals $v_y = e^{-y} \cos x$, and $u_y = -e^{-y} \sin x$ equals $v_x = e^{-y} \sin x$ everywhere. This shows that u and v satisfies C-R equations in the neighborhood (nbd) of z = 0. [2m]

Now the partial derivatives are $u_x = e^{-y} \cos x$, $v_y = e^{-y} \cos x$, $u_y = -e^{-y} \sin x$ and $v_x = e^{-y} \sin x$.

 e^{-y} , $\sin x$, $\cos x$ all are continuous functions and the product of continuous functions are also continuous. Thus, the first-order partial derivatives of u(x,y) and v(x,y) are continuous everywhere.

As u(x,y) and v(x,y) satisfies C-R equations and have continuous partial derivatives everywhere, f(z) is differentiable at z=0 and also in the nbd of z=0. Hence, It is analytic at z=0.

(ii) Write f(z) = u(x, y) + iv(x, y), gives $u(x, y) = x^2 + y^2$ and v(x, y) = 3.

Clearly, $u_x = 2x$ equals $v_y = 0$, and $u_y = 2y$ equals $v_x = 0$ if and only if x = y = 0. [2m] 2x, 2y, 0 are all are continuous functions. Thus, the first-order partial derivatives of u(x, y) and v(x, y) are continuous everywhere.

As u(x,y) and v(x,y) satisfies C-R equations only at z=0 and have continuous partial derivatives everywhere, f(z) is differentiable only at z=0 and not in some nbd of z=0. [2m]

Note: If you use only C-R equations, but not the continuous partial derivatives to describe function differentiability (analyticity) only 2 marks are awarded.

2. (a) Prove the identity
$$z = \tan \left[\frac{1}{i} \log \left(\frac{iz+1}{iz-1} \right)^{\frac{1}{2}} \right]$$
. [3]

Solution:
$$\tan \left[\frac{1}{i} \log \left(\frac{iz+1}{iz-1} \right)^{\frac{1}{2}} \right] = \tan \left[\frac{1}{2i} \log \left(\frac{iz+1}{iz-1} \right) \right] = \tan \left[\frac{1}{2i} \log \left(\frac{z-i}{z+i} \right) \right]$$
 [1]

$$= \tan\left(\int \frac{dz}{z^2 - i^2}\right) \tag{1}$$

$$= \tan\left(\int \frac{dz}{z^2 + 1}\right) = \tan(\tan^{-1}z) = z$$
 [1]

(b) Justify whether the function $\sin z$ is a bounded function or not in \mathbb{C} .

Solution: If possible, let, $\sin z$ is a bounded function in \mathbb{C} . We know that $\sin z$ is entire functiom. [1]

Then by Liouville's theorem, $\sin z$ must be constant. [1]

But it is certainly not a constant function. Hence, $\sin z$ is not a bounded function in \mathbb{C} . [1]

(c) Determine the number of zeros, counting multiplicities, of the polynomial
$$2z^5 - 6z^2 + z + 1$$
 in the annulus $1 \le |z| < 2$. [4]

Solution: Let $f(z) = 6z^2$ and $g(z) = 2z^5 + z + 1$. Then observe that $|f(z)| = 6|z|^2 = 6$ and $|g(z)| \le 2|z|^5 + |z| + 1 = 4 < |f(z)|$ when |z| = 1. The conditions in Rouches theorem are thus satisfied. Consequently, since f(z) has two zeros, counting multiplicities, inside the circle |z| = 1, so does f(z) + g(z). That is, $2z^5 - 6z^2 + z + 1$ has two roots inside |z| = 1. [1.5]

Again, let $f_1(z) = 2z^5$ and $g_1(z) = 6z^2 + z + 1$. Then observe that $|f_1(z)| = 2|z|^5 = 64$ and $|g(z)| \le 6|z|^2 + |z| + 1 = 27 < |f_1(z)|$ when |z| = 2. The conditions in Rouches theorem

are thus satisfied. Consequently, since $f_1(z)$ has five zeros, counting multiplicities, inside the circle |z| = 2, so does $f_1(z) + g_1(z)$. That is, $2z^5 - 6z^2 + z + 1$ has five roots inside |z| = 2. [1.5]

Thus $2z^5 - 6z^2 + z + 1$ has 3 roots in the annulus $1 \le |z| < 2$.

(d) Find the value of the complex integration $I = \oint_C \frac{Log(z+3) + \cos z}{(z+1)^2} dz$, where C is the closed curve |z| = 2 traversed in the counter-clockwise direction. [4]

Solution: $\frac{Log(z+3) + \cos z}{(z+1)^2}$ has singular points only at z = -1 which is a pole of order 2 and $x \le -3$ which are branch point and branch line of $\log(z+3)$ i.e. points of discontinuity of discontinuity Log(z+3).

However, the closed curve C: |z| = 2 contains only one singular point z = -1. Hence by the Derivative of Analytic Function Theorem,

$$I = \oint_C \frac{Log(z+3) + \cos z}{(z+1)^2} dz = 2\pi i f'(-1), \ f(z) = Log(z+3) + \cos z$$
[1.5]

i.e., $I = 2\pi i(\frac{1}{2} + \sin 1) = \pi i(1 + 2\sin 1)$ [1.5]

3. (a) Find the radius of convergence of the power series $\sum a_n(z+1)^n$ where a_n is $\frac{1}{n2^n}$. [6] Radius of convergence

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| \tag{2}$$

$$=\lim_{n\to\infty} \left| \frac{(n+1)2^{n+1}}{n2^n} \right|$$
 [2]

=2.

(b) For the function $f(z) = \frac{\pi \cot \pi z}{(z + \frac{1}{2})^2}$, determine its isolated singular points and weather these points are poles, removable singular points or essential singular points. Further evaluate $\int_C f(z)dz$, where C is the positively oriented circle centred at 0 with radius $\pi/2$. [8]

Sol. Given function

$$f(z) = \frac{\pi \cot \pi z}{(z + \frac{1}{2})^2} = \frac{\pi \cos \pi z}{\sin \pi z (z + \frac{1}{2})^2},$$

f(z) is nonanalytic at those points where $\sin \pi z (z + \frac{1}{2})^2 = 0$, i.e., $z = -\frac{1}{2}$ and z = n, $n \in \mathbb{Z}$ are singular points and these are isolated. [2]

$$\lim_{z \to -\frac{1}{2}} \left(z + \frac{1}{2} \right) f(z) = -\pi^2, \text{ which is finite and non-zero } \Rightarrow z = -1/2 \text{ is simple pole.}$$
 [1]

 $\lim_{z \to n} (z - n) f(z) = \frac{1}{\left(n + \frac{1}{2}\right)^2}, \text{ which is finite and non-zero for any integer } n \in \mathbb{Z} \Rightarrow z = n \text{ is also simple pole.}$

Out of these singular points, z = -1/2, -1, 0, 1 lie inside the circle $C = \{z : |z| = \pi/2\}.[1]$ Therefore, By Cauchy residue theorem

$$\int_C f(z)dz = 2\pi i \left[\text{Res}_{z=-1/2} f(z) + \text{Res}_{z=-1} f(z) + \text{Res}_{z=0} f(z) + \text{Res}_{z=1} f(z) \right]$$

$$= 2\pi i \left[-\pi^2 + \frac{1}{\left(-1 + \frac{1}{2}\right)^2} + \frac{1}{\left(0 + \frac{1}{2}\right)^2} + \frac{1}{\left(1 + \frac{1}{2}\right)^2} \right]$$

[2]

- 4. (a) If isolated singular point z_0 of a function f(z) is a pole of order m, then determine the residue of f(z) at $z=z_0$. [7]
 - **Sol.** Suppose that $z = z_0$ is a pole of order m of f, then f(z) has a Laurent series expansion for some positive R:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \frac{b_1}{z - z_0} + \frac{b_2}{(z - z_0)^2} + \dots + \frac{b_m}{(z - z_0)^m}, \quad b_m \neq 0, \ 0 < |z - z_0| < R. \ [2]$$

$$\Rightarrow (z - z_0)^m f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^{n+m} + b_1 (z - z_0)^{m-1} + \dots + b_{m-1} (z - z_0) + b_m, \quad [1]$$

which is power series expansion of the function $(z - z_0)^m f(z)$ throughout the entire disk $|z - z_0| < R$, thus analytic there. [1]

$$\Rightarrow \frac{d^{m-1}}{dz^{m-1}} \{ (z - z_0)^m f(z) \} = (n+m)(n+m-1) \cdots (n+2) \sum_{n=0}^{\infty} a_n (z - z_0)^{n+1} + b_1 (m-1)! \quad [2]$$

$$\Rightarrow b_1 = \frac{1}{(m-1)!} \left[\frac{d^{m-1}}{dz^{m-1}} \{ (z - z_0)^m f(z) \} \right]_{z=z_0}.$$
[1]

- (b) Use calculus of residue to evaluate the integral $\int_{-\infty}^{\infty} \frac{\cos x}{(x^2+a^2)(x^2+b^2)} dx$, (a>b>0). [8]
- Sol. We find the real part of the integral $\int_{-\infty}^{\infty} \frac{e^{ix}}{(x^2+a^2)(x^2+b^2)} dx$. For this we take the corresponding complex function as $e^{iz}f(z)$, where, $f(z)=\frac{1}{(z^2+a^2)(z^2+b^2)}$. [1] Now, We consider a simple closed contour consisting of line segment z=x ($-R \le x \le R$) on real axis and the upper half C_R of the circle |z|=R from z=-R to z=R, where R>a.

Thus, we have

$$\int_C e^{iz} f(z) dz = \int_{-R}^R e^{ix} f(x) dx + \int_{C_R} e^{iz} f(z) dz,$$
 [1]

The function $e^{iz} f(z)$ has isolated singular points $z = \pm ai, \pm bi$, which are simple poles, but only two poles ai, bi lie inside C and [1]

$$\int_{C} e^{iz} f(z) dz = 2\pi i \left[\operatorname{Res}_{z=i} \{ e^{iz} f(z) \} + \operatorname{Res}_{z=2i} \{ e^{iz} f(z) \} \right]$$

$$= 2\pi i \left[\lim_{z \to ai} \frac{e^{iz}}{(z+ai)(z^{2}+b^{2})} + \lim_{z \to bi} \frac{e^{iz}}{(z^{2}+a^{2})(z+bi)} \right]$$

$$= 2\pi i \left[-\frac{e^{-a}}{2ai(-a^{2}+b^{2})} + \frac{e^{-b}}{2bi(-b^{2}+a^{2})} \right]$$

$$= \frac{\pi}{(a^{2}-b^{2})} \left(\frac{e^{-b}}{b} - \frac{e^{-a}}{a} \right).$$

[2]Further, we have $\lim_{R\to\infty}\int_{C_R}e^{iz}f(z)=0.$ [1]

Thus letting
$$R \to \infty$$
, we have
$$\int_{-\infty}^{\infty} \frac{e^{ix}}{(x^2 + a^2)(x^2 + b^2)} dx = \frac{\pi}{(a^2 - b^2)} \left(\frac{e^{-b}}{b} - \frac{e^{-a}}{a}\right).$$

$$\int_{-\infty}^{\infty} \frac{\cos x}{(x^2 + a^2)(x^2 + b^2)} dx = \frac{\pi}{(a^2 - b^2)} \left(\frac{e^{-b}}{b} - \frac{e^{-a}}{a} \right).$$
 [1]

5. (a) Show that $(x-a)^2 + (y-b)^2 + z^2 = 1$ is a complete integral of $z^2(1+p^2+q^2) = 1$. Further, find the singular integrals of the given PDE. [6]

Sol. Differentiating $(x-a)^2 + (y-b)^2 + z^2 = 1$ with respect to x and y, then solving for p and q, we get

$$p = \frac{a - x}{z}, \ q = \frac{b - y}{z}$$

by substituting the value of z, p, q in the given PDE, it satisfies the identity. Hence, $(x-a)^2 + (y-b)^2 + z^2 = 1$ is a complete integral of the given PDE. [2]

Now writing
$$z = F(x, y, a, b)$$
, we get $F(x, y, a, b) = \pm \sqrt{1 - (x - a)^2} - (y - b)^2$.
 $F_a = 0$ implies $a = \pm x$ and $F_b = 0$ implies $b = \pm y$. [2]

By substituting the value of a and b in the given complete integral we get following singular integrals:

- (i) $a = x \& b = y \text{ implies } z^2 = 1$
- (ii) a = x & b = -y implies $4y^2 + z^2 = 1$
- (iii) a = -x & b = y implies $4x^2 + z^2 = 1$

(iv)
$$a = -x \& b = -y$$
 implies $4x^2 + 4y^2 + z^2 = 1$ [2]

(b) Classify the following second order PDE and reduce the equation to canonical form and hence solve it: |10|

$$(n-1)^2 u_{xx} - y^{2n} u_{yy} = ny^{2n-1} u_y,$$

when n is an positive integer.

Sol. For n = 1 the given PDE reduces to

$$-y^2 u_{yy} = y u_y,$$

$$u_{yy} = -\frac{1}{y} u_y,$$

which is of parabolic type and already in cannocical form.

Since $u_{yy} = -\frac{1}{y}u_y$ can be written as $\frac{\partial}{\partial y}(yu_y) = 0$. By integrating w.r.t. y we get $u_y = \frac{1}{y}f(x)$. Integrating once again w.r.t. y, we get the solution as

$$u(x,y) = f(x)\log y + g(x).$$

For n > 1, the given PDE is of Hyperbolic type.

Two real characteristic curves are $\xi = x + y^{1-n} = c_1$ and $\eta = x - y^{1-n}$.

The given PDE reduces to the canonical form $u_{\xi\eta} = 0$.

By integrating we get the solution as $u(x,y) = f(\xi) + g(\eta) = f(x+y^{1-n}) + g(x-y^{1-n})$, where f and g are C^2 functions.

6. (a) Find the solution of the following problem:

$$u_{tt} - u_{xx} - x + t = 0, \quad -\infty < x < \infty, t > 0,$$

 $u(x, 0) = x^3, \quad u_t(x, 0) = \cos x \quad -\infty \le x \le \infty$

[5]

Sol. Rewriting the PDE we have $u_{tt} - c^2 u_{xx} = x - t = F(x, t)$ Consider the following decomposition of the given problem: (P1):

$$u_{tt} - c^2 u_{xx} = 0, \quad -\infty < x < \infty, t > 0,$$

 $u(x,0) = x^3, \quad u_t(x,0) = \cos x \quad -\infty \le x \le \infty$

and (P2):

$$u_{tt} - c^2 u_{xx} = x - t, \quad -\infty < x < \infty, t > 0,$$

 $u(x,0) = 0, \quad u_t(x,0) = 0 \quad -\infty \le x \le \infty$

Using de-Alembert's formula the solution $u_1(x,t)$ of (P1) is

$$u_1(x,t) = \frac{1}{2}[(x-t)^3 + (x+t)^3] - \frac{1}{2} \int_{x-t}^{x+t} \cos s ds$$
$$= \frac{1}{2}[(x-t)^3 + (x+t)^3] - \frac{1}{2}[\sin(x+t) - \sin(x-t)] \qquad [2]$$

Using Duhamel principle we get the solution $u_2(x,t)$ of (P2) is

$$u_2(x,t) = \frac{1}{2} \int_0^t \int_{x-t+s}^{x+t-s} (r-s) dr ds$$
$$= -\frac{t^3}{6} + \frac{t^2 x}{2}. \quad [2]$$

Using method of superposition principle, we get the solution u(x,t) of given PDE as

$$u(x,t) = u_1(x,t) + u_2(x,t).$$
 [1]

[8]

[1]

(b) Classify the following PDE and then solve the problem:

$$u_{tt} = 9u_{xx} - u, \quad 0 < x < \pi, \ t > 0$$

$$u(x,0) = x + \sin 2x, u_t(x,0) = 0, \quad 0 \le \pi \le \pi,$$

$$u(0,t) = u(\pi,t) = 0, \quad t \ge 0.$$

Sol. Use separation of variable technique. Let u(x,t) = F(x)G(t). Then substituting into the governing equations, we get

$$\frac{\ddot{G}}{9G} = \frac{F''}{F} - \frac{1}{9} = \lambda.$$

Therefore the given PDE reduced to two second order ODEs

$$F'' - (\lambda + 1/9) = 0$$

 $\ddot{G} - 9\lambda G = 0.$ [1]

Now

$$F(0) = F(\pi) = 0 \Rightarrow \lambda + \frac{1}{9} = -\left(\frac{n\pi}{\pi}\right)^2, \quad n = 1, 2, 3, \dots$$
 [2]

Thus $F_n(x) = \sin(nx)$.

$$\ddot{G} = -\left(1 + \left(\frac{3n\pi}{\pi}\right)^2\right)G = -(1 + 9n^2)G = -\gamma_n^2 G,$$

where, $\gamma_n = \sqrt{1+n^2}$. Solving for G yields

$$G_n(t) = A_n \cos(\gamma_n t) + B_n \sin(\gamma_n t)$$
 [2]

Thus using superposition principle we get

$$u(x,t) = \sum_{n=1}^{\infty} [A_n \cos(\gamma_n t) + B_n \sin(\gamma_n t)] \sin nx.$$

Using the condition $u_t(x,0) = 0 \Rightarrow B_n = 0$. Also $u(x,0) = x + \sin 2x$ gives

$$A_n = \frac{2}{\pi} \int_0^{\pi} (x + \sin 2x) \sin nx dx = \begin{cases} 0 & n = 2\\ (-1)^n & n \neq 2. \end{cases}$$

So the solution of the given PDE is given by

$$u(x,t) = \sum_{n=1}^{\infty} A_n \cos(\gamma_n t) \sin nx.$$
 [2]

7. (a) Prove that the solution of the following problem, if it exists, is unique: [6]

$$u_t - ku_{xx} = F(x,t), 0 < x < l, t > 0,$$

 $u(x,0) = f(x), 0 \le x \le l$
 $u(0,t) = 0, u(l,t) = 0 t \ge 0.$

Sol. Assume u_1 and u_2 are two solutions of the given Heat equation. Then $v = u_1 - u_2$ satisfies the following heat equation

$$v_t - kv_{xx} = 0$$
 $0 < x < L, t > 0,$
 $v(x, 0) = 0,$ $0 \le x \le L,$
 $v(0, t) = v(L, t) = 0,$ $t \ge 0$ [1]

Now consider a function E(t) of t defined as

$$E(t) = \frac{1}{2k} \int_0^L v^2 dx.$$
 [1]

So, $E(t) \ge 0 \forall t \ge 0$. Since v is differentiable we can differentiate E(t) with respect to t to get

$$\frac{dE}{dt} = \frac{1}{2k} \int_0^L 2vv_t dx. = \frac{1}{k} \int_0^L vv_t dx$$
$$= \int_0^L vv_{xx} dx = vv_x \Big|_0^L - \int_0^L v_x^2 dx$$

Since v(0,t) = v(L,t) = 0, $t \ge 0$, we get

$$\frac{dE}{dt} = -\int_0^L v_x^2 dx \le 0 \qquad [2]$$

Therefore, E(t) is a positive and decresing function. Since v(x,0)=0 implies E(0)=0. Hence $E(t) \ge 0 \ \forall \ t \ge 0$ implies $E(t) \equiv 0$ for all $t \ge 0$.

Therefore,
$$v(x,t) \equiv 0$$
 for all $0 \le x \le L$ and $t \ge 0$ and $u_1 = u_2$.

[8]

(b) Classify the following PDE and then find the solution:

$$u_t = 4u_{xx}, \quad 0 < x < \pi, t > 0,$$

 $u(x,0) = \sin x, \quad 0 \le x \le \pi$
 $u(0,t) = 0, \quad u(l,t) = 1 \quad t \ge 0.$

Sol. Let the $u_p(x,t) = cx + d$ be the particular solution satisfying the nonhomogeneous BCs.

BCs implies
$$c = \frac{1}{\pi}$$
 and $d = 0$. So $u_p(x, t) = \frac{x}{\pi}$.

Now the correspoding PDE with homogeneous BCs is:

$$v_t = 4v_{xx}, 0 < x < \pi, t > 0,$$

$$v(x,0) = \sin x - u_p(x,0) = \sin x - \frac{x}{\pi} = F(x,t), 0 \le x \le \pi$$

$$v(0,t) = 0, v(\pi,t) = 0 t \ge 0. [1]$$

The solution

$$v(x,t) = \sum_{n=1}^{\infty} a_n \exp(-4n^2 t) \sin nx,$$

where

$$a_n = \frac{2}{\pi} \int_0^{\pi} \left(\sin x - \frac{x}{\pi} \sin nx \right) dx.$$

[1]

[1]

By solving the integral

$$a_n = \begin{cases} -1, & n = 1\\ \frac{(-1)^n 2}{n\pi} & n \neq 1. \end{cases}$$
 [2

The solution of the given PDE is $u(x,t) = v(x,t) + u_p(x,t)$. [1]