Name:	Nicht bestanden: □
Vorname:	
Matrikelnummer:	Endnote:

Fakultät Agrarwissenschaften und Landschaftsarchitektur (AuL)

Klausurfragen Bio Data Science

für Pflichtmodule

im 1. & 2. Semester B.Sc./M.Sc.

(Prüfungsleistung der Wahlpflichtmodule ist eine Portfolioprüfung)

Prüfer: Prof. Dr. Jochen Kruppa-Scheetz Fakultät für Agrarwissenschaften und Landschaftsarchitektur j.kruppa@hs-osnabrueck.de

Wintersemester 2024/25

"The test of a student is not how much he knows, but how much he wants to know." — Alice W. Rollins

1

Erlaubte Hilfsmittel

- Normaler Taschenrechner ohne Möglichkeit der Kommunikation mit anderen Geräten! Ausdrücklich kein Handy!
- Eine DIN A4-Seite als beidseitig, selbstgeschriebene, handschriftliche Formelsammlung. Keine digitalen Ausdrucke!
- Die Verwendung eines roten Farbstiftes ist nicht gestattet! Korrekturfarbe!
- You can answer the questions in English without any consequences.

Endnote

_____ von 20 Punkten sind aus den Multiple Choice Aufgaben erreicht.

_____ von 73 Punkten sind aus den Rechen- und Textaufgaben erreicht.

_____ von 93 Punkten in Summe.

Es wird folgender Notenschlüssel angewendet.

Punkte	Note
89.0 - 93.0	1,0
84.5 - 88.5	1,3
79.5 - 84.0	1,7
75.0 - 79.0	2,0
70.5 - 74.5	2,3
66.0 - 70.0	2,7
61.5 - 65.5	3,0
56.5 - 61.0	3,3
52.0 - 56.0	3,7
46.5 - 51.5	4,0

Es ergibt sich eine Endnote von _____.

Multiple Choice Aufgaben

- Pro Multipe Choice Frage ist *genau* eine Antwort richtig.
- Übertragen Sie Ihre Kreuze in die Tabelle auf dieser Seite.

	A	В	С	D	E	✓
Aufgabe 1						
Aufgabe 2						
Aufgabe 3						
Aufgabe 4						
Aufgabe 5						
Aufgabe 6						
Aufgabe 7						
Aufgabe 8						
Aufgabe 9						
Aufgabe 10						

• Es sind ____ von 20 Punkten erreicht worden.

Rechen- und Textaufgaben

Aufgabe	11	12	13	14	15	16	17
Punkte	10	11	11	10	12	9	10

• Es sind ____ von 73 Punkten erreicht worden.

Multiple Choice Aufgaben

Die Multiple Choice Aufgaben unterliegen dem Zufall. Die Reihenfolge der Antworten ist zufällig. Die Fragen und Antworten sind semantisch zufällig und haben somit verschiedene Textvarianten. Insbesondere die reinen Textaufgaben haben verschiedene Textvarianten. Die Semeantik mag sich unterscheiden, die Inhalte sind aber gleich.

ANOVA

1. Aufgabe (2 Punkte)

Sie führen einen Versuch mit einer Behandlung und drei Faktorleveln durch. Danach rechnen Sie eine einfaktorielle ANOVA und es ergibt sich ein $\eta^2 = 0.12$. Welche Aussage ist richtig?

- **A** \square Das η^2 ist ein Wert für die Güte der ANOVA. Je kleiner desto besser. Ein η^2 von 0 bedeutet ein perfektes Modell mit keiner Abweichung. Die Varianz ist null.
- **B** \square Das η^2 ist die Korrelation der ANOVA. Mit der Ausnahme, dass 0 der beste Wert ist.
- **C** \square Das η^2 ist damit mit dem R^2 aus der linearen Regression zu vergleichen und beschreibt den Anteil der Varianz, der von den Behandlungsbedingungen erklärt wird.
- **D** \square Die Berechnung von η^2 ist ein Wert für die Interaktion.
- **E** \square Das η^2 beschreibt den Anteil der Varianz, der von den Behandlungsbedingungen nicht erklärt wird. Somit der Rest an nicht erklärbarer Varianz.

2. Aufgabe (2 Punkte)

Sie führen ein Feldexperiment durch um das Gewicht von Lauch zu steigern. Die Pflanzen wachsen unter einer Kontrolle und zwei verschiedenen Behandlungsbedingungen. Nach der Berechnung einer einfaktoriellen ANOVA ergibt sich ein $\eta^2 = 0.19$. Welche Aussage ist richtig?

- **A** \square Das η^2 beschreibt den Anteil der Varianz, der durch den Forschenden entsteht. Es gilt die Regel, dass ca. 70% der Varianz eines Versuches durch die Versuchsdurchführung entstehen sollen.
- **B** \square Mit dem η^2 lässt sich auf die Qualität der Randomisierung und damit der Strukturgleichheit zwischen der Grundgesamtheit und der Stichprobe schließen. Es gilt dabei die Regel, dass ein η^2 -Wert von 1 zu bevorzugen ist.
- **C** \square Es werden 81% der Varianz durch die Behandlung erklärt. Das η^2 beschreibt den Anteil der Varianz, der von den unterschiedlichen Behandlungsbedingungen nicht erklärt wird.
- **D** \square Das η^2 beschreibt den Anteil der Varianz, der von den Umweltbedingungen erklärt wird. Daher werden 19% der Varianz durch die Umweltbedingungen erklärt. Der Anteil der Varianz durch die Behandlungsgruppen ist dann 81%.
- **E** \square Das η^2 beschreibt den Anteil der Varianz, der von den Behandlungsbedingungen erklärt wird. Daher werden 19% der Varianz durch die Behandlungsgruppen erklärt.

3. Aufgabe (2 Punkte)

Sie rechnen eine einfaktorielle ANOVA und erhalten eine Teststatistik. Nun müssen Sie diese Teststatistik interpretieren. Welche Aussage ist richtig?

- **A** □ Die ANOVA berechnet die T-Statistik aus der Multiplikation der MS Behandlung mit der MS der Fehler. Wenn die F-Statistik genau 0 ist, kann die Nullhypothese nicht abgelehnt werden.
- **B** □ Die ANOVA berechnet die F-Statistik indem die MS des Fehlers durch die MS der Behandlung geteilt werden. Wenn die F-Statistik sich der 0 annähert kann die Nullhypothese abgelehnt werden.

- C □ Die F-Statistik wird berechnet indem die MS der Behandlung durch die MS des Fehlers geteilt werden. Wenn die F-Statistik sich kaum von der Null unterscheidet kann die Nullhypothese nicht abgelehnt werden.
- D □ Die ANOVA berechnet die T-Statistik indem den Mittelwertsunterschied der Gruppen simultan durch die Standardabweichung der Gruppen teilt. Wenn die T-Statistik höher als 1.96 ist, kann die Nullhypothese abgelehnt werden.
- **E** □ Die ANOVA berechnt die F-Statistik aus den SS Behandlung geteilt durch die SS Fehler.

Viele statistische Verfahren nutzen eine Teststatistik um eine Aussage über den Zusammenhang zwischen der Grundgesamthat und der Stichprobe abzubilden. Ein statistisches Testwerkzeug ist hierbei die ANOVA. Die ANOVA rechnet dabei...

- **A** □ ... den Unterschied zwischen der Varianz in den verschiedenen Behandlungsguppen und der Varianz in einer der Behandlungsgruppen. Wenn die ANOVA signifikant ist, muss über einen Posthoc-Test nachgedacht werden um den signifikanten Unterschied in einer der Gruppen exakt zu bestimmen.
- **B** □ ... den Unterschied zwischen zwei paarweisen Mittelwerten aus verschiedenen Behandlungsguppen. Wenn die signifikant ist, ist daher bekannt welcher Vergleich konkret unterschiedlich ist.
- C □ ... den Unterschied zwischen der globalen Varianz und der Varianz aus verschiedenen Behandlungsguppen. Wenn die ANOVA signifikant ist, ist nicht bekannt welcher Vergleich konkret unterschiedlich ist.
- **D** □ ... den Unterschied zwischen der Mittelwerte und der Varianz aus verschiedenen Behandlungsguppen. Wenn die ANOVA signifikant ist, ist bekannt welcher Vergleich konkret unterschiedlich ist.
- **E** □ ... den Unterschied zwischen mehreren Varianzen aus verschiedenen Behandlungsguppen. Wenn die ANOVA signifikant ist, ist nicht bekannt welcher Vergleich konkret unterschiedlich ist.

5. Aufgabe (2 Punkte)

In einer Studie zur Bewertung der Wirkung von Vitamin E auf das Zahnwachstum bei Igeln entstand folgende Abbildung. Der Versuch wurde an 54 Tieren durchgeführt, wobei jedes Tier eine von drei Vitamin-C-Dosen (0.5, 1 und 1.5 mg/Tag) über eine von zwei Verabreichungsmethoden erhielt. Welche Aussage ist im Bezug auf eine zweifaktorielle ANOVA richtig?

- **A** \square Keine Interaktion liegt vor $(p \le 0.05)$.
- **B** \square Eine mittlere bis starke Interaktion liegt vor ($p \le 0.05$)
- **C** \square Keine Korrelation liegt vor $(p \ge 0.05)$.
- **D** \square Die Koeffizienten sind positiv ($\beta_0 > 0$; $\beta_1 > 0$).
- **E** \square Eine negative Interaktion liegt vor ($\rho \ge 0.5$).

Deskriptive Statistik & Explorative Datenanalyse

6. Aufgabe (2 Punkte)
6. Aufgabe (2 Fullkte)
Gegeben ist y mit 14, 8, 10, 10 und 16. Berechnen Sie den Mittelwert und Standardabweichung.
A □ Es ergibt sich 12.6 +/- 1.645
B □ Sie erhalten 11.6 +/- 1.81
C □ Sie erhalten 11.6 +/- 1.645
D ☐ Es berechnet sich 12.6 +/- 10.8
E □ Es berechnet sich 11.6 +/- 3.29
7. Aufgabe (2 Punkte)
Gegeben ist y mit 9, 29, 19, 22, 21, 15, 29, 24, 5, 17 und 51. Berechnen Sie den Median, das 1^{st} Quartile sowie das 3^{rd} Quartile.
A □ Sie erhalten 21 [15; 29]
B □ Es berechnet sich 22 [16; 30]
C □ Es berechnet sich 22 [16; 28]
D ☐ Sie erhalten 21 [13; 27]
E □ Es ergibt sich 22 +/- 15
8. Aufgabe (2 Punkte)
Mit einem Boxplot können Sie sehr gut die Verteilung von Daten visualisieren. Die empfohlene Mindestanzahl an Beobachtungen ist dabei?
A □ Die untere Grenze liegt bei zwei bis fünf Beobachtungen.
B □ 10 Beobachtungen.
C □ 1 Beobachtung.
D □ Die Mindestanzahl liegt bei fünf Beobachtungen.
E □ Wir sollten eine Beobachtung mindestens pro Gruppe vorliegen haben.
9. Aufgabe (2 Punkte)
Um die Varianz zu berechnen müssen wir folgende Rechenoperationen durchführen.
A □ Den Mittelwert berechen, dann die absoluten Abstände zum Mittelwert aufsummieren
B □ Den Median berechen, dann die quadratischen Abstände zum Median aufsummieren, dann die Wurzel ziehen.
C □ Den Mittelwert berechnen und die Abstände quadrieren. Die Summe mit der Fallzahl multiplizieren.
D □ Wir berechnen erst den Mittelwert und dann die quadratischen Abstände zu dem Mittelwert. Diese quadratischen Abstände summieren wir auf und teilen am Ende durch die Fallzahl. Als letzten Schritt ziehen wir die quadratische Wurzel.

E □ Den Mittelwert berechen, dann die quadratischen Abstände zum Mittelwert aufsummieren und durch

die Fallzahl teilen.

Der Barplot stellt folgende statistische Maßzahlen in einer Abbildung dar. Damit gehört der Barplot zu einem der am meisten genutzten statistischen Verfahren zur Visualisierung von Daten.

A □ Den Mittelwert sowie den Median und die Streuung.

B □ Den Mittelwert und die Standardabweichung.

C □ Den Mittelwert und die Varianz.

D □ Der Barplot stellt den Median und die Quartile dar.

E □ Durch die Abbildung des Barplot erhalten wir die Informationen über die Mittelwerte und die Varianz.

11. Aufgabe (2 Punkte)

Nachdem Sie in einem Feldexperiment zu Leistungssteigerung von Erdbeeren durchgeführt haben, berechnen Sie den Mittelwert und den Median. Der Mittelwert \bar{y} und der Median \tilde{y} unterscheiden sich nicht. Welche Aussage ist richtig?

- **A** □ Da sich der Mittelwert und der Median unterscheiden, ist der Datensatz nicht zu verwenden. Mittelwert und Median müssen gleich sein.
- **B** □ Da sich der Mittelwert und der Median nicht unterscheiden, liegen vermutlich Outlier in den Daten vor. Wir untersuchen den Datensatz nach auffälligen Beobachtungen.
- **C** □ Der Mittelwert und der Median sollten gleich sein, wenn Outlier in den Daten vorliegen.
- **D** □ Wenn sich der Mittelwert und der Median unterscheiden, liegen vermutlich Outlier in den Daten vor.
- **E** □ Der Mittelwert und der Median sollten sich unterscheiden sein, wenn Outlier in den Daten vorliegen.

12. Aufgabe (2 Punkte)

Ihre Betreuung der Abschlussarbeit fragt überraschend in der letzten Besprechung, ob Ihre Messwerte einer Normalverteilung genügen. Sonst könnten Sie ja gar nicht einen t-Test rechnen. Da Ihnen die Zeit wegrennt, entscheiden Sie sich für eine schnelle Visualisierung im Anhang. Welche Visualisierung nutzen Sie und welche Regel kommt zur Abschätzung einer Normalverteilung zur Anwendung?

- **A** □ Nach der Erstellung eines Boxplots schauen wir, ob der Median in der Mitte der Box liegt. Dabei ist der Median als dicke Linie dargestellt und die Box ist das IQR.
- **B** □ Einen Dotplot. Die Punkte müssen sich wie an einer Perlenschnurr audreihen. Eine Abweichung führt zur Ablehnung der Annahme einer Normalverteilung.
- **C** □ Wir erstellen uns für jede Behandlung einen Dotplot und schauen, ob die Dots und damit die Varianz für jede Behandlung gleich groß sind.
- **D** □ In einer explorativen Datanalyse nutzen wir den Violinplot. Dabei sollte der Bauch am Rand liegen. Dann können wir von einer Normalverteilung ausgehen.
- **E** □ Nach dem Einlesen der Daten nutzen wir einen Boxplot um zu schauen, ob alle Boxen über alle Behandlungen in etwa gleich groß sind. Damit ist dann auch das IQR in allen Behandlungen in etwa gleich.

13. Aufgabe (2 Punkte)

Sie wollen in Ihrer Abschlussarbeit über eine explorative Datenanalyse überprüfen, ob Ihr gemessener Endpunkt einer Normalverteilung folgt. Welche drei Abbildungen eignen sich insbesondere für die Überprüfung?

- **A** □ Scatterplot, Mosaicplot, Boxplot
- **B** □ Boxplot, Violinplot, Mosaicplot
- C ☐ Histogramm, Scatterplot, Boxplot
- **D** □ Densityplot, Boxplot, Violinplot
- **E** □ Violinplot, Scatterplot, Barplot

Sie haben n = 191 Pflanzen geerntet und wollen sich nun die Verteilung der Pflanzen einmal in einem Histogramm anschauen. Welche Verteilung ist dargestellt?

- **A** □ Es handelt sich um eine Poisson-Verteilung.
- **B** □ In dem Histogramm ist eine Ordinalverteilung dargestellt.
- **C** □ Wir haben eine Normalverteilung vorliegen.
- $\mathbf{D} \square$ Es handelt sich um eine Binomial-Verteilung.
- **E** □ Eine multivariate Normalverteilung.

Lineare Regression & Korrelation

15. Aufgabe (2 Punkte)

In Ihrer Abschlussarbeit wollen Sie ein prädiktives Modell rechnen. Jetzt stellt sich die Frage, was diese Entscheidung für Ihre Auswertung bedeutet. Welche Aussage ist richtig?

- **A** \square Wenn ein prädiktives Modell gerechnet werden soll dann kann dies auf dem gesamten Datensatz geschehen. Das Ziel ist es einen Zusammenhang von X auf Y zu modellieren. Wie wirken sich die Einflussvariablen Y auf die gemessenen Endpunkte $X = x_1, ..., x_p$ aus?
- **B** \square Ein prädiktives Modell wird auf einem Trainingsdatensatz trainiert und anschliessend über eine explorative Datenanalyse validiert. Signifikanzen über β_i können hier nicht festgestellt werden.
- **C** □ Ein prädiktives Modell basiert auf einem Traingsdatensatz und einem Testdatensatz. Auf dem Trainingsdatensatz wird das Modell trainiert und auf dem Testdatensatz validiert.
- **D** □ Wir modellieren den Zusammenhang zwischen X und Y wenn ein prädiktives Modell rerechnet wird. Dabei kann nicht der gesamte Datensatz genutzt werden. Es wird ein Trainingsdatensatz zum Trainieren des Modells benötigt.
- $\mathbf{E} \square$ Wir modellieren den Zusammenhang zwischen X und Y wenn ein prädiktives Modell rerechnet wird. Dabei kann der gesamte Datensatz genutzt werden. Eine Aufteilung wie in einem prädiktiven Modell ist nicht notwendig.

16. Aufgabe (2 Punkte)

Nach der Modellierung einer Regression stellt sich die Frage, ob die Residuen approximativ einer Normalverteilung folgen. Sie können einen QQ-Plot für die visuelle Überprüfung der Annahme an die Residuen nutzen. Welche Aussage ist richtig?

- **A** □ Wir betrachten die Gerade, die durch die einzelnen Punkte laufen sollte. Wenn die 95% der Punkte von der Geraden getroffen werden, dann gehen wir von normalverteilten Residuen aus.
- **B** □ Wir betrachten insbesondere die beiden Enden der Gerade. Der Rest ist mehr oder minder egal, dann ist die Annahme an die Normalverteilung der Residuen erfüllt.
- **C** □ Die Annahme der normalverteilten Residuen ist nicht erfüllt. Die Punkte liegen zum überwiegenden Teil nicht auf der Geraden.
- **D** □ Wir betrachten die Punkte auf der Geraden. Wenn die Punkte einigermaßen auf der Geraden liegen, dann gehen wir von normalverteilten Residuen aus. Wir können hier von normalverteilten Residuen ausgehen.
- **E** □ Wir betrachten die Gerade. Wenn die Punkte einigermaßen gleichmäßig um die Gerade verteilt liegen, dann gehen wir von normalverteilten Residuen aus. Dies ist hier nicht der Fall. Wir haben keine normalverteilten Residuen vorliegen.

Sie rechnen eine linearen Regression und erhalten folgende Abbildung der Residuen (.resid). Welche Aussage ist richtig?

- **A** □ Die Annahme der normalverteilten Residuen ist nicht erfüllt. Vereinzelte Punkte liegen oberhalb bzw. unterhalb der Geraden um die 0 Linie weiter entfernt. Ein klares Muster ist zu erkennen.
- **B** □ Die Annahme der normalverteilten Residuen ist nicht erfüllt. Ein klares Muster ist zu erkennen und/oder einige Outlier sind zu beobachten.
- C □ Die Punkte müssen gleichmäßig in dem positiven Bereich liegen. Dies ist hier klar nicht der Fall. Einzelne Ausreißer können beobachtet werden. Die Analyse ist gescheitert.

- **D** \square Die Annahme der normalverteilten Residuen ist erfüllt. Es ist ein Muster zu erkennen und wir können damit auf die Signifkanz von $x_1, ..., x_p$ schließen.
- **E** □ Wir betrachten die Nulllinie und alle Punkte sollten ohne Muster gleichmäßig um die Nulllinie liegen. Da dies der Fal ist, gehen wir von keinen Ausreißern aus.

Sie berechnen in Ihgrer Abschlussarbeit den Korrelationskoeffizienten ρ . Welche Aussage über den Korrelationskoeffizienten ρ ist richtig?

- **A** \square Der Korrelationskoeffizienten ρ ist eine standardisierte, statistische Maßzahl, die zwischen -1 und 1 liegt. Dabei ist Korrelationskoeffizienten ρ einheitslos.
- **B** \square Der Korrelationskoeffizienten ρ ist eine standardisierte, statistische Maßzahl, die zwischen 0 und 1 liegt. Dabei ist Korrelationskoeffizienten ρ einheitslos. Eine Signifikanz kann nicht nachgewiesen werden.
- **C** \square Der Korrelationskoeffizienten ρ ist eine veraltete Darstellungsform von Effekten in der linearen Regression und wird wie das η^2 aus der ANOVA interpretiert. Der Korrelationskoeffizienten ρ beschreibt den Anteil an erklärter Varianz durch die Regression.
- **D** \square Der Korrelationskoeffizienten ρ liegt zwischen -1 und 1. Darüber hinaus ist der Korrelationskoeffizienten ρ als standardisierte Steigung zu verstehen, wenn eine Standardisierung durchgeführt wurde. Diese Adjustierung nach Fischer muss am Anschluß der Berechnung der Korrelation durchgeführt werden.
- **E** \square Der Korrelationskoeffizienten ρ zeigt keinen Zusammenhang zwischen zwei Variablen x und y bei einem Wert von 0. Einen negativen Zusammenhang Richtung -1 und somit auch einen positiven Zusammenhang Richtung 1. Je größer die Zahl allgemein, desto stärker der Effekt.

19. Aufgabe (2 Punkte)

Nach einer simplen linearen Regression zur Untersuchung vom Einfluss der CO_2 -Konzentration in $[\mu g]$ im Wasser auf das Wachstum von Erbsen in [kg] erhalten Sie einen β_{CO_2} Koeffizienten von 1.1×10^{-5} und einen hoch signifikanten p-Wert mit 2e-04. Warum sehen Sie so einen kleinen Effekt bei einer so deutlichen Signifikanz?

- **A** □ Die Fallzahl ist zu klein angesetzt. Je kleiner die Fallzahl ist, desto höher ist die Teststatsitik und damit auch der *p*-Wert kleiner. Wir brauchen also mehr Fallzahl um den geringen Effekt noch signifikant zu krigen.
- **B** \square Die Einheit der CO_2 -Konzentration ist zu klein gewählt. Die Erhöhung der CO_2 -Konzentration um 1 Einheit führt nur zu einem sehr winzigen Anstieg von β_{CO_2} im Gewicht der Wasserlinsen. Die Einheit $[\mu g]$ muss besser gewählt werden.
- $\mathbf{C} \square$ Die Einheit der CO_2 -Konzentration ist zu klein gewählt. Dadurch sehen wir den sehr kleinen p-Wert. Der p-Wert und die Einheit von der CO_2 -Konzentration hängen antiproportional zusammen.
- **D** \square Manchmal ist die Einheit der Einflussvariable X zu groß gewählt, so dass der Ansteig von 1 Einheit in X zu einer zu großen Änderung in Y führt. Daher kann der Effekt β_{CO_2} sehr klein wirken, da der p-Wert wird auf einer einheitslosen Teststatistik bestimmt wird.
- **E** \square Wenn der Effekt β_{CO_2} winzig ist, dann kann es an einer falsch gewählten Einheit liegen. Der Anstieg von einer Einheit in X führt ja zu einer Änderung von β_{CO_2} in x. Wir müssen daher die Einheit von y entsprechend anpassen.

20. Aufgabe (2 Punkte)

Nachdem Sie Ihr Experiment abgeschlossen haben, stehen Sie vor der Frage wie Sie Ihre Daten modellieren sollen. In der Beispielauswertung von Ihrem Betreuenden finden Sie die Funktion lm() in R. Welche Aussage ist richtig?

A □ Neben der klassichen Verwendung der Funktion lm() in der linearen Regression kann auch ein Gruppenvergleich gerechnet werden. Dafür müssen aber alle Faktoren aus den Daten entfernt und numerishc umgewandelt werden. Dann kann das R Paket {emmeans} genutzt werden um die Korrelation zu berechnen. Eine Adjustierung ist dann nicht mehr notwendig.

- $\mathbf{B} \square$ Ist die Einflussvariable X ein Faktor so werden die Gruppenmittelwerte geschätzt und eine anschließende ANOVA sowie multipler Gruppenvergleich mit {emmeans} ist möglich. Die Funktion lm() kann dabei eigentlich weggelassen werden, wird aber traditionell gerechnet.
- C □ Die Funktion lm() in ist der erste Schritt für einen Gruppenvergleich. Danach kann eine ANOVA oder aber ein multipler Vergleich in {emmeans} gerechnet werden. In der Funktion lm() werden die Gruppenmittelwerte bestimmt.
- D □ Die Funktion lm() in ist der letzte Schritt für einen Gruppenvergleich. Vorher kann eine ANOVA oder aber ein multipler Vergleich in {emmeans} gerechnet werden. In der Funktion lm() werden die Gruppenvarianzen bestimmt.
- **E** □ Die Funktion lm() berechnet die Varianzstruktur für eine ANOVA. Dannach kann dann über eine explorative Datenalayse nochmal eine Signifikanz berechnet werden. Sollte vor der Verwendung der Funktion lm() schon eine EDA gerechnet worden sein, so ist die Analyse wertlos.

Wenn Ihr gemessener Endpunkt nicht einer Normalverteilung folgt, so können Sie dennoch Ihre Daten modellieren. Hierzu nutzen Sie dann das *generalisierte lineare Modell (GLM)*. Welche Aussage ist richtig?

- A □ In ist mit dem *generalisierten linearen Modell (GLM)* eine Modellierung implementiert, die die Poissonverteilung für Zähldaten oder die Binomialverteilung für 0/1-Daten modellieren kann. Weitere Modellierungen sind in auch mit zusätzlich geladenen Paketen nicht möglich.
- **B** □ Das *generalisierte lineare Modell (GLM)* erlaubt auch weitere Verteilungsfamilien für das Y bzw. das Outcome in einer linearen Regression zu wählen.
- **C** □ Das GLM ist eine allgemeine Erweiterung der linearen Regression auf die Normalverteilung.
- D □ Das GLM ist ein faktisch maschineller Lernalgorithmus, der selstständig die Verteilungsfamilie für Y wählt.
- **E** □ Dank dem *generalisierten linearen Modell (GLM)* können auch andere Verteilungsfamilien außer die Normalverteilung mit einer linearen Regression modelliert werden. Dafür werden alle Verteilungen in eine Normalverteilung überführt und anschließend standardisiert.

Vermischte Themen

22. Aufgabe (2 Punkte)

Die Randomisierung von Beobachtungen zu den Versuchseinheiten ist bedeutend in der Versuchsplanung. Welche der folgenden Aussagen ist richtig?

- ▲ □ Strukturgleichheit ist durch Randomisierung gegeben. Leider hilft die Randomisierung noch nicht um von der Stichprobe auf die Grundgesamtheit zu schließen. Deshalb wurde das Falsifikationsprinzip entwickelt.
- **B** □ Randomisierung erlaubt erst die Varianzen zu schätzen. Ohne eine Randomisierung ist die Berechnung von Mittelwerten und Varianzen nicht möglich. Dadurch lässt sich erst ein Experiment auswerten.
- **C** □ Randomisierung bringt starke Unstrukturiertheit in das Experiment und erlaubt erst von der Stichprobe auf die Grundgesamtheit zurückzuschliessen.
- **D** □ Durch eine Randomisierung können wir von Strukturgleichheit zwischen der Stichprobe und der Grundgesamtheit ausgehen.
- **E** □ Durch eine Randomisierung können wir nicht von Strukturgleichheit zwischen der Stichprobe und der Grundgesamtheit ausgehen.

Sie wollen Ihren Datensatz in Reinlesen und stehen nun vor einem Problem. Sie stellen fest, dass die Hilfeseiten alle in englischer Sprache verfasst sind. Warum mag die Nutzung von Deutsch problematisch sein?

- **A** □ **R** Pakete sind nur in englischer Sprache verfasst. Es macht keinen Sinn **R** daher in Deutsch zu bedienen.
- **B** □ Programmiersprachen können nur englische Begriffe verarbeiten. Zusätzliche Pakete können zwar geladen werden, aber meist funktionieren diese Pakete nicht richtig. Deutsch ist International nicht bedeutend genug.
- **C** □ Die Spracherkennung von **Q** ist nicht in der Lage Deutsch zu verstehen.
- **D** □ Programmiersprachen haben Probleme mit Umlauten und Sonderzeichen der deutschen Sprache. Die Nutzung von englischer Sprache umgeht dieses Problem in eleganter Art.
- **E** □ Programmiersprachen haben Probleme mit Umlauten und Sonderzeichen der deutschen Sprache. Daher ist die Nutzung in Deutsch in den AGBs von untersagt.

24. Aufgabe (2 Punkte)

In Ihrer Abschlussarbeit wollen Sie zu Beginn eine explorativen Datenanalyse (EDA) in Rechnen. Dafür gibt es eine generelle Abfolge von Prozessschritten. Welche ist hierbei die richtige Reihenfolge?

- **A** □ Wir transformieren die Spalten über mutate() in ein tibble und können dann über ggplot() uns die Abbildungen erstellen lassen. Dabei beachten wir das wir keine Faktoren in den Daten haben.
- **B** □ Wir lesen die Daten ein und mutieren die Daten. Dabei ist wichtig, dass wir nicht das Paket tidyverse nutzen, da dieses Paket veraltet ist. über die Funktion library(tidyverse) entfernen wir das Paket von der Analyse.
- C □ Die Funktionsreihenfolge ist wie folgt: read_excel() -> mutate() -> ggplot(). Dabei ist bei der Transformation der Daten darauf zu achten, dass keine Faktoren erstellt werden.
- **D** □ Wir lesen als erstes die Daten über read_excel() ein, transformieren die Spalten über mutate() in die richtige Form und können dann über ggplot() uns die Abbildungen erstellen lassen. Wichtig ist, dass wir keine Faktoren sondern nur numerische Variablen vorliegen haben.
- **E** □ Die Funktionsreihenfolge ist wie folgt: read_excel() -> mutate() -> ggplot(). Dabei ist bei der Transformation der Daten darauf zu achten, dass die Faktoren richtig erstellt werden.

25. Aufgabe (2 Punkte)

Gegeben ist das Modell $Y \sim X$. Welche Aussage über $s_1^2 \neq s_2^2$ ist richtig?

- $\mathbf{A} \square$ Es handelt sich um ein balanciertes Design.
- **B** □ Es handelt sich um unabhängige Beobachtungen.
- **C** □ Es liegt Varianzhetrogenität vor.
- **D** □ Es handelt sich um ein unbalanciertes Design.
- **E** □ Es liegt Varianzhomogenität vor.

Im Rahmen Ihrer Abschlussarbeit werten Sie ein Experiment mit Ferkel aus. Es geht um die Leistungssteigerung der Ferkelproduktion. Sie messen jeweils die Gewichtszunahme der Ferkel. Die Ferkel einer Muttersau sind dabei...

- **A** □ Untereinander unabhängig. Sollten die Mütter verwandt sein, so ist die Varianzstruktur ähnlich und muss modelliert werden.
- **B** □ Untereinander abhängig, wenn die Mütter ebenfalls miteinander verwandt sind. Erst die Abhängigkeit 2. Grades wird in der Statistik modelliert.
- **C** □ Die Ferkel stammen von der gleichen Sau und sind somit untereinander unabhängig.
- **D** □ Untereinander abhängig. Die Ferkel stammen von einem Muttertier und haben vermutliche eine ähnliche Varianzstruktur.
- **E** □ Untereinander stark korreliert. Die Ferkel sind von einer Mutter und sommit miteinander korreliert. Dies wird in der Statistik jedoch meist nicht modelliert.

27. Aufgabe (2 Punkte)

In einer Studie wollen Sie den Effektschätzer Odds ratio berechnen. Sie finden in Ihrem Experiment zur Behandlung von Klaueninfektionen bei Ziegen in 5 Tieren Erkrankung der Klauen vor. 12 Tiere sind gesund. Welche Aussage ist richtig?

- **A** □ Es ergibt sich ein Odds ratio von 0.29, da es sich um ein Anteil handelt. Wir berechnen den Anteil der Kranken.
- **B** □ Das Verhältnis von Chancen Odds ratio ergibt ein Chancenverhältnis von 0.42.
- C □ Das Verhältnis der Chancen Odds ratio ergibt ein Chancenverhältnis von 0.29. Wir sind an der Chance krank zu sein interessiert.
- **D** ☐ Es ergibt sich ein Odds ratio von 0.29, da es sich um eine Chancenverhältnis handelt.
- **E** \square Es ergibt sich ein Odds ratio von 0.42, da es sich um ein Anteil handelt.

28. Aufgabe (2 Punkte)

Sie werten in Ihrer Abschlussarbeit einen sehr großen Datensatz aus einer öffentlichen Datenbank aus. Nun stellen Sie fest, dass Sie ein Problem mit der Bewertung Ihrer Ergbnisse anhand der Signifikanz bekommen. Wie Sie herausfinden, scheint dies ein häufiges Problem in der Bio Data Science zu sein. Welche Aussage ist richtig?

- **A** □ Mehr Fallzahl in Datensätzen bedeutet mehr signifikante Ergebnisse, da in mehr Daten auch mehr Informationen beinhaltet sind. Deshalb lohnen sich riesige Datensätze, die durch die vielen signifikanten Ergebnisse auch eine Menge an relevanten Erkenntnissen liefern.
- **B** \square Riesige Datensätz haben mehr Fallzahl was zur α -Inflation führt. Durch eine Adjustoerung kann dem Problem entgegengewirkt werden.
- **C** □ Aktuell werden immer größere Datensätze erhoben. Dadurch wird auch die Varianz immer höher was automatisch zu mehr signifikanten Ergebnissen führt.
- **D** □ Aktuell werden immer größere Datensätze erhoben. Eine erhöhte Fallzahl führt automatisch auch zu mehr signifikanten Ergebnissen, selbst wenn die eigentlichen Effekte nicht relevant sind.
- **E** \square Relevanz und Signifikanz haben nichts miteinander zu tun. Daher gibt es auch keinen Zusammenhang zwischen hoher Fahlzahl (n > 10000) und einem signifikanten Test. Ein Effekt ist immer relevant und somit signifikant.

Multiple Gruppenvergleiche

29. Aufgabe (2 Punkte)

Sie haben folgende unadjustierten p-Werte gegeben: 0.21, 0.89, 0.03, 0.001 und 0.34. Sie adjustieren die p-Werte nach Bonferroni. Welche Aussage ist richtig?

- **A** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.042, 0.178, 0.006, 2e-04 und 0.068. Die adjustierten p-Werte werden zu einem α -Niveau von 5% verglichen.
- **B** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 1, 1, 0.15, 0.005 und 1. Die adjustierten p-Werte werden zu einem α -Niveau von 1% verglichen.
- **C** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 1.05, 4.45, 0.15, 0.005 und 1.7. Die adjustierten p-Werte werden zu einem α -Niveau von 5% verglichen.
- **D** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 1, 1, 0.15, 0.005 und 1. Die adjustierten p-Werte werden zu einem α -Niveau von 5% verglichen.
- **E** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.042, 0.178, 0.006, 2e-04 und 0.068. Die adjustierten p-Werte werden zu einem α -Niveau von 1% verglichen.

30. Aufgabe (2 Punkte)

Sie rechnen einen PostHoc-Test. Nun sollen Sie ein *CLD* erstellen. Was bedeutet dieser Fachbegriff und welche folgende Beschreibung der Interpretation ist korrekt?

- **A** □ Contrast letter display. Unterschiede in den Behandlungen werden durch den gleichen Buchstaben oder Symbol dargestellt. Die Interpretation des CLD führt häufig in die Irre.
- **B**

 Compact letter display. Gleiche Buchstaben zeigen Gleichheit in den Behandlungen. Die Interpretation ist deshalb sehr intuitiv und einfach. Darüber hinaus ist damit das CLD auch auf einer Linie mit der Testtheorie, da wir ja auch dort die Gültigkeit der Nullhypothese nachweisen. Wir suchen ja Gleichheit.
- **C** □ Compact letter display. Gleiche Buchstaben bedeuten, dass sich die Behandlungen unterscheiden. Daher ist das CLD sehr unintuitiv. Es wäre besser, wenn gleiche Buchstaben Gleichheit anzeigen würden. Dies ist aber leider in der statistischen Testtheorie nicht möglich.
- D ☐ Compact line display. Gleichheit in den Behandlungen wird durch den gleichen Buchstaben oder Symbol dargestellt. Früher wurden keine Buchstaben sondern eine durchgezogene Linie verwendet. Bei mehr als drei Gruppen funktioniert die Linie aber graphisch nicht mehr.
- **E** □ Compact letter display. Teilweise ist die Interpretation des CLD schwierig, da wir ja nach Unterschieden suchen aber nur Gleichheit in den Buchstaben sehen. Die Gleichheit der Behandlungen wird durch gleiche Buchstaben dargestellt.

31. Aufgabe (2 Punkte)

In Ihrer Bachelorarbeit müssen Sie einen Feldversuch auswerten. Nachdem Sie die zweifaktorielle ANOVA gerechnet haben und keine signifikante Interaktion vorliegt, wollen Sie jetzt einen Posthoc-Test rechnen. Welches R Paket nutzen Sie dafür am besten?

- **A** □ Das R Paket {Im}. Das Paket {Im} erstellt selbstständig Konfidenzintervalle und entsprechende p-Werte. Da wir in dem Paket nicht adjustieren müssen, ist es bei Anwendern sehr beliebt.
- **B** □ Das R Paket {emmeans} erlaubt die Durchführung eines multiplen Gruppenvergleichs. Aus einem {emmeans} Objekt lässt sich recht einfach das CLD erstellen und so über Barplots eine schnelle Interpration der statistischen Auswertung durchführen.
- C □ Das R Paket {hmisc} erlaubt die Durchführung eines multiplen Gruppenvergleichs aus verschiedenen Modellen heraus. Aus einem hmisc Objekt lässt sich recht einfach das CLD erstellen und so über Barplots eine schnelle Interpration der statistischen Auswertung durchführen.
- D □ Das R Paket {emmeans} erlaubt die Durchführung eines multiplen Gruppenvergleichs. Aus einem emmeans Objekt lässt sich leider kein CLD erstellen. Dennoch ist das Paket einfach zu bedienen und wird deshalb genutzt. Die Interpretation der statistischen Auswertung wird über einen Barplot abgebildet.
- **E** □ Das R Paket {ggplot}. Wir erhalten hier sofort eine Visualisierung der Daten. Anhand der Visualisierung lässt sich eine explorative Datenanalyse durchführen, die gleichwertig zu einem Posthoc-Test ist.

Bei einem Posthoc-Test kann es zu einer überraschenden Besonderheit beim statistischen Testen kommen. Wie lautet der Fachbegriff und wie kann mit der überraschenden Besonderheit umgegangen werden?

- **A** \square Die Adjustierung der p-Werte nach Bonferroni erlaubt es gegen die β -Inflation vorzugehen, die häufig beim multiplen Testen auftritt. Das globale Powerniveau liegt nicht mehr bei 80% sondern sehr viel niedriger.
- **B** \square Beim multiplen Testen kann es zu einer α -Inflation kommen. Das globale Signifikanzniveau liegt nicht mehr bei 5% sondern weit darunter. Daher müssen die p-Werte entsprechend adjustiert werden. Hierfür gibt es verschiedene Verfahren, wobei das Verfahren zur Adjustierung der p-Werte nach Welch das bekanneste Verfahren ist.
- ${f C}$ \square Beim multiplen Testen kann es zu einer eta-Inflation kommen. Das globale Signifikanzniveau liegt nicht mehr bei 20%. Daher müssen die p-Werte entsprechend adjustiert werden. Hierfür gibt es verschiedene Verfahren, wobei das Verfahren zur Adjustierung der p-Werte nach Bonferroni das bekanneste Verfahren ist.
- **D** \square Das globale Signifikanzniveau liegt nicht mehr bei 5% sondern sehr viel niedriger, bei ca. 1%. Es kommt zu einer α -Hyperinflation. Dagegen kann mit der Adjustierung der p-Werte nach Bonferroni vorgegangen werden.
- **E** \square Beim multiplen Testen kann es zu einer α-Inflation kommen. Das globale Signifikanzniveau liegt nicht mehr bei 5% sondern sehr viel höher. Daher müssen die p-Werte entsprechend adjustiert werden. Hierfür gibt es verschiedene Verfahren, wobei das Verfahren zur Adjustierung der p-Werte nach Bonferroni das bekanneste Verfahren ist.

33. Aufgabe (2 Punkte)

In einem Feldversuch haben Sie einen Behandlungsfaktor mit mehreren Leveln vorliegen. Sie rechnen einen multiplen Vergleich. Vorher hatten Sie eine einfaktorielle ANOVA mit einem signifikanten Ergebnis vorliegen. Welche Aussage ist richtig?

- $\mathbf{A} \square$ Beim multiplen Testen kann es zu einer Effektüberschätzung (Δ -Inflation) kommen. Daher müssen die Effekte angepasst werden. Dies geschieht nicht händisch sondern intern in den angewendeten Algorithmen.
- **B** \square Beim multiplen Testen kann es zu einer Δ-Deflation kommen. Das globale Relevanzniveau liegt nicht mehr bei 5% sondern weit darunter. Daher müssen die Δ-Werte entsprechend adjustiert werden. Hierfür gibt es verschiedene Verfahren, wobei das Verfahren zur Adjustierung der Δ-Werte nach Bonferroni das bekanneste Verfahren ist. Die Δ-Werte werden durch die Anzahl an Vergleichen geteilt.
- C ☐ Beim multiplen Testen werden die Effekte der paarweisen Vergleiche ignoriert. Der Nachteil des multiplen Testens ist ja auch, dass wir am Ende keine Effekte mehr vorliegen haben. Eine ANOVA liefert hier bessere Informationen.
- $\mathbf{D} \square$ Beim multiplen Testen muss der Effekt, hier der Mittelwertsunterschied Δ aus den paarweisen t-Tests, nicht adjusiert werden.
- $\mathbf{E} \square$ Wenn ein multipler Test gerechnet wird, dann muss der Effekt Δ adjustiert werden im Gegensatz zu den p-Werten.

Statistische Testtheorie

34. Aufgabe (2 Punkte)

Geben ist $Pr(D|H_0)$ als mathematischer Ausdruck, welche Aussage ist richtig?

- $\mathbf{A} \square Pr(D|H_0)$ ist die Wahrscheinlichkeit nicht die Daten D zu beobachten sondern die Nullhypothese, wenn diese wahr ist.
- **B** □ Die Wahrscheinlichkeit für die Nullhypothese, wenn die Daten wahr sind.
- **C** □ Die Wahrscheinlichkeit der Daten unter der Nullhypothese in der Grundgesamtheit.

- $\mathbf{D} \square Pr(D|H_0)$ beschreibt die Wahrscheinlichkeit die Teststatistik T_D aus den Daten D zu beobachten, wenn die Nullhypothese wahr ist.
- $\mathbf{E} \square Pr(D|H_0)$ stellt die Wahrscheinlichkeit die Teststatistik T zu beobachten dar, wenn die Nullhypothese falsch ist.

Das statistische Testen basiert auf dem Falsifikationsprinzip. Es besagt,

- **A** □ ... dass in der Wissenschaft immer etwas falsch sein muss. Sonst gebe es keinen Fortschritt.
- **B** □ ... dass Annahmen an statistische Modelle meist falsch sind.
- **C** □ ... dass ein minderwertes Modell durch ein minderwertiges Modell ersetzt wird. Es gilt das Verifikationsprinzip nach Karl Popper.
- **D** □ ... dass ein schlechtes Modell durch ein schlechteres Modell ersetzt wird. Die Wissenschaft lehnt ab und verifiziert nicht.
- **E** □ ... dass ein minderwertes Modell durch ein weniger minderwertiges Modell ersetzt wird. Es gilt das Falsifikationsprinzip nach Karl Popper.

36. Aufgabe (2 Punkte)

Das Signifikanzniveau α wird auch Fehler 1. Art genannt und liegt bei 5%. Warum wurde der Grenzwert von 5% als Signifikanzschwelle gewählt?

- **A** □ Der Wert ergab sich aus einer Auswertung von 1042 wissenschaftlichen Veröffentlichungen zwischen 1914 und 1948. Der Wert 5% wurde in 28% der Veröffentlichungen genutzt. Daher legte man sich auf diese Zahl fest.
- **B** \square Im Rahmen eines langen Disputs zwischen Neyman und Fischer wurde $\alpha = 5\%$ festgelegt. Leider werden die Randbedingungen und Voraussetzungen an statistsiche Modelle heute immer wieder ignoriert.
- **C** \square In der Wissenschaft gibt es neben der Naturkonstante, die sich aus der Beobachtung der Welt ergibt, noch die Kulturkonstante, die von einer Gruppe Menschen selbstgewählt wird. Dabei ist $\alpha = 5\%$ eine Kulturkonstante und wurde somit eher zufällig gewählt.
- **D** \square Da Wissenschaftler eine Schwelle für die statistische Testentscheidung benötigen wurde α in einer großen Konferenz 1945 gewählt. Damit ist $\alpha=5\%$ eine Kulturkonstante mit einem Rank einer Naturkonstante.
- **E** \square Als Kulturkonstante hat $\alpha = 5\%$ den Rang einer Naturkonstante und wurde nach langer Diskussion in der UN im Jahre 1983 festgesetzt. Damals auch schon mit der Zustimmung der UdSSR.

37. Aufgabe (2 Punkte)

Betrachten wir die Teststatistik aus einem abstrakteren Blickwinkel. Beim statistischen Testen wird das "signal" mit dem "noise" aus den Daten D zu einer Teststatistik T_D verrechnet. Welche der Formel berechnet korrekt die Teststatistik T_D ?

A □ Es gilt
$$T_D = \frac{signal}{noise^2}$$

B
$$\square$$
 Es gilt $T_D = (signal \cdot noise)^2$

C
$$\square$$
 Es gilt $T_D = \frac{signal}{noise}$

D
$$\square$$
 Es gilt $T_D = signal \cdot noise$

E □ Es gilt
$$T_D = \frac{noise}{sianal}$$

Eine Analogie kann helfen einen Sachverhalt besser zu verstehen. Wie kann folgende Aussage richtig in die Analogie der statistischen Testtheorie gesetzt werden?

H₀ ablehnen obwohl die H₀ gilt

- **A** \square In die Analogie eines Rauchmelders: *Alarm without fire*, dem α -Fehler.
- **B** \square *Fire without alarm,* dem β -Fehler als Analogie von Rauch im Haus.
- **C** \square In die Analogie eines Rauchmelders: *Fire without alarm*, dem β -Fehler.
- **D** \square *Alarm with fire*, dem α -Fehler in der Analogie von Feuer.
- **E** □ In die Analogie eines Rauchmelders: *Alarm with fire*.

39. Aufgabe (2 Punkte)

Sie sollen in Ihrer Abschlussarbeit die Relevanz und die Signifikanz in einer statistischen Maßzahl vereinen. Welche Aussage ist richtig?

- **A** □ Das OR. Als Chancenverhältnis gibt es das Verhältnis von Relevanz und Signifikanz wieder.
- **B** □ Über das Konfidenzintervall. Das Konfidenzinterval beitet eine Entscheidung über die Signifikanz und zusätzlich kann über die Visualizierung des Konfidenzintervals eine Relevanzschwelle definiert werden.
- C □ Über das Konfidenzintervall. Das Konfidenzinterval inkludiert eine Entscheidung über die Relevanz und zusätzlich kann über die Visualizierung des Konfidenzintervals eine Signifikanzschwelle vom Forschenden definiert werden.
- **D** \square Der p-Wert. Durch den Vergleich mit α lässt sich über die Signifikanz entscheiden und der β -Fehler erlaubt über die Power eine Einschätzung der Relevanz.
- **E** \square Einem Konfidenzintervall. Das Konfidenzinterval bringt durch eine Visualisierung und drei Intervallgrenzen die Möglichkeit mit, eine Relevanzschwelle neben der Signifikanzschwelle und der α -Schwelle zu definieren.

40. Aufgabe (2 Punkte)

Sie haben ein Signifikanzniveau α gleich 5% vorliegen. Welche Aussage zusammen mit dem p-Wert ist richtig?

- **A** \square Wir schauen, ob der *p*-Wert größer ist als das Signifikanzniveau α und vergleichen somit Wahrscheinlichkeiten. Die Wahrscheinlichkeiten werden als Flächen unter der Kurve der Teststaistik dargestellt, wenn die H_A gilt.
- **B** \square Wir vergleichen mit dem *p*-Wert und dem Signifikanzniveau α Wahrscheinlichkeiten und damit die absoluten Werte auf einem Zahlenstrahl, wenn die H_0 gilt.
- **C** □ Wir vergleichen die Effekte des *p*-Wertes mit den Effekten der Signifikanzschwelle unter der Annahme der Nullhypothese. Dabei gilt, dass wir die Nullhypothese nur ablehnen können anhand des Falsifikationsprinzips.
- **D** \square Wir machen ein Aussage über die Flächen und der Kurve der Teststatistik, wenn die H_0 gilt. Dabei werden Wahrscheinlichkeiten vergleichen, die durch die Flächen unter der Kurve repräsentiert werden.
- **E** \square Wir vergleichen mit dem *p*-Wert und dem Signifikanzniveau α absolute Werte auf einem Zahlenstrahl und damit den Unterschied der Teststatistiken, wenn die H_0 gilt.

Um die Testtheorie besser zu verstehen, mag es manchmal sinnvoll sein ein Beispiel aus dem Alltag zu wählen. Die Ergebnisse der Analyse durch einen statistischen Test können auch in grobe Analogie zur Wettervorhersage gebracht werden. Welche Aussage trifft am ehesten zu?

- **A** □ In der Analogie der Regenwahrscheinlichkeit in einem bestimmten Gebiet: ein statistischer Test gibt die Wahrscheinlichkeit für ein Ereignis in einem Experiment mit den Daten *D* wieder und lässt sich kaum verallgemeinern.
- **B** In der Analogie der Sonnenscheindauer: Wie lange kann mit einem entsprechenden Effekt gerechnet werden? Die Wahrscheinlichkeit für den Effekt gibt der statistische Test wieder.
- C □ In der Analogie der Wahrscheinlichkeit für Regen: ein statistischer Test erlaubt die Wahrscheinlichkeit für ein Ereignis abzuschätzen. Die Stärke des Effektes können wir nicht bestimmen.
- **D** □ In der Analogie des Niederschlags oder Regenmenge: ein statistischer Test gibt die Stärke eines Effektes wieder. Zum Beispiel, wie hoch ist der Mittelwertsunterschied.
- **E** □ In der Analogie der Maximaltemperatur: Was ist der maximale Unterschied zwischen zwei Gruppen. Wir erhalten hier eine Aussage über die Spannweite und den maximalen Effekt.

42. Aufgabe (2 Punkte)

In Ihrer Forschungsarbeit wollen Sie eine Aussage über ein untersuchtes Individuum treffen. Dazu nutzen Sie eine ANOVA als statistischen Test. Erhalten Sie eine valide Aussage aus einem statistischen Test?

- **A** □ Nein, wir können ein untersuchtes Individuum nicht mit einem t-Test auswerten. Wir erhalten keine Aussage zum Individuum. Wir können aber den Effekt als Quelle der Relevanz nutzen.
- **B** □ Nein, wir können ein untersuchtes Individuum nicht mit einer ANOVA auswerten. Wir erhalten keine Aussage zum Individuum. Wir können aber den Test adjustieren und so die Auswertung ermöglichen.
- **C** □ Nein, ein untersuchtes Individuum können wir mit einem statistischen Test nicht auswerten. Wir erhalten keine Aussage zum Individuum.
- **D** □ Ja, wir können ein untersuchtes Individuum mit einer ANOVA auswerten. Wir erhalten eine Aussage zum Individuum.
- **E** □ Weder eine Ausssage über die Population noch über das Individuum ist mit einem statistischen Test möglich. Wir erhalten eine Aussage über ein Experiment.

43. Aufgabe (2 Punkte)

In der statistischen Testtheorie gibt es den Begriff Power. Was sagt der statistische Begriff Power aus?

- **A** \square Die Power wird berechnet und ist keine Eigenschaft des Tests. Die Power wird auf 80% gesetzt und beschreibt mit welcher Wahrscheinlichkeit H_0 bewiesen wird
- **B** \square Die Power $1-\beta$ wird auf 80% gesetzt. Alle statistischen Tests sind so konstruiert, dass die H_A mit 80% bewiesen wird.
- **C** \square Die Power $1-\beta$ wird auf 80% gesetzt. Damit liegt die Wahrscheinlichkeit für die H_0 bei 20%.
- **D** \square Alle statistischen Tests sind so konstruiert, dass die H_A mit 20% bewiesen wird. Die Power ist $1-\beta$ mit β gleich 80% gesetzt.
- **E** \square Die Power beschreibt die Wahrscheinlichkeit die H_A abzulehnen. Wir testen die Power jedoch nicht.

Welche Aussage über den Effekt eines statistischen Tests ist richtig?

- **A** □ Der Effekt eines statistischen Tests beschreibt die biologisch interpretierbare Ausgabe eines Tests. Damit ist der Effekt direkt mit dem Begriff der Signifikanz verbunden. Die Entscheidung über die Signifikanz trifft der Forschende unabhängig von der Relevanz eines statistsichen Tests.
- **B** □ Der Effekt eines statistischen Tests beschreibt die biologisch interpretierbare Ausgabe eines Tests. Moderen Algorithmen liefern keine Effekte mehr sondern nur noch bedingte Wahrscheinlichkeiten. Der Effekt spielt in der modernen Statistik keine Rollen mehr.
- ${f C}$ ${f \square}$ Durch den Effekt erfahren wir die biologisch interpretierbare Ausgabe eines statistischen Tests. Zum Beispiel das η^2 aus einer ANOVA. Damit können wir die Relevanz direkt mit dem Effekt verbinden. Am Ende muss der Forschende aber entscheiden, ob der Effekt entsprechend seinen Erwartungen als bedeutet zu bewerten ist.
- D □ Der Effekt eines statistischen Tests beschreibt die mathematisch interpretierbare Ausgabe eines Tests. Damit ist der Effekt direkt mit dem Begriff der Signifikanz verbunden. Die Entscheidung über die Signifikanz trifft der Forschende unabhängig von der Relevanz eines statistsichen Tests.
- **E** □ Der Forschende muss am Anfang wissen, ob das Eregbnis eines Experiments relevant für seine Forschung ist. Dafür kann der Effekt eines statistischen Tests genutzt werden oder auch der Prähoc-Test. Damit beschreibt der Effekt den biologischen interpretierbaren Teil eines Experimnts vor der Durchführung. Zum Beispiel der Unterschied zwischen zwei Mittelwerten.

45. Aufgabe (2 Punkte)

Welche Aussage über die Entscheidung anhand des 95%-Konfidenzintervalls gegen die Nullhypothese ist richtig?

- **A** \square Ist T_D höher als der kritische Wert $T_{\alpha=5\%}$ dann wird die Nullhypothese H_0 abgelehnt.
- **B** \square Ist in dem 95%-Konfidenzintervall nicht die Null enthalten dann wird die Nullhypothese H_0 abgelehnt.
- **C** \square Anhand des 95%-Konfidenzintervalls lässt sich wie folgt eine Entscheidung treffen. Liegt der Wert in dem Signifikanzniveauintervall α dann kann die Nullhypothese abgelehnt werden.
- **D** \square Ist $Pr(D|H_0)$ kleiner als das Signifikanzniveau α gleich 5% dann wird die Nullhypothese H_0 abgelehnt.
- **E** \square Anhand des 95%-Konfidenzintervalls lässt sich wie folgt eine Entscheidung treffen. Liegt der Wert über oder gleich dem Signifikanzniveau α dann kann die Nullhypothese abgelehnt werden.

46. Aufgabe (2 Punkte)

Ein statistischer Test benötigt für die richtige Durchführung Hypothesen H, sonst ist der Test nicht zu interpretieren. Welche Aussage ist richtig?

- **A** \square Die Hypothesen H_0 und H_A sind rein prosarischer Natur und bilden keinen mathematischen Hintergrund ab. In der Statistik wird die wissenschaftliche Fragestellung getestet. Daher stehen auch die verständlichen Hypothesen im Mittelpunkt der biologischen Interpretation.
- **B** \square Es gibt ein statistisches Hypothesenpaar mit der Hypothese für und gegen die wissenschaftliche Fragestellung. Die Hypothesen werden H_{pro} und H_{contra} bezeichnet.
- $\mathbf{C} \square$ Mit der Nullhypothese H_A und der Alternativehypothese H_0 gibt es zwei Hypothesen, die aber selten genutzt werden.
- **D** \square Es gibt ein statistisches Hypothesenpaar mit der Nullhypothese H_0 und der Alternativehypothese H_A oder H_1 .
- **E** \square Es gibt ein Hypothesenset bestehend aus k Hypothesen. Meistens wird die Nullhypothese H_0 und die Alternativhypothese H_A verwendet. Wegen des Falsifikationsprinzips ist es wichtig, die bekannte falsche und unbekannte richtige Hypothese mit in das Set zu nehmen.

Statistische Tests für Gruppenvergleiche

47. Aufgabe (2 Punkte)

Nach einem Feldexperiment wollen Sie zwei Gruppen mit einem Welch t-Test vergleichen. Welche Aussage ist auch für den Student t-Test richtig?

- **A** □ Der t-Test vergleicht zwei oder mehr Gruppen indem die Mittelwerte miteinander verglichen werden.
- **B** \square Der t-Test testet generell zu einem erhöhten α -Niveau von 20%.
- **C** □ Der t-Test ist ein Vortest der ANOVA und basiert daher auf dem Vergleich von Streuungsparametern
- **D** □ Der t-Test berechnet die Differenz von zwei Mittelwerten als Effekt und gibt eine Entscheidung, ob sich die beiden Mittelwerte in den Gruppen signifikant unterscheiden.
- **E** □ Der t-Test vergleicht die Mittelwerte von zwei Gruppen unter der strikten Annahme von Varianzhomogenität. Sollte keine Varianzhomogenität vorliegen, so gibt es keine Möglichkeit den t-Test in einer Variante anzuwenden.

48. Aufgabe (2 Punkte)

In einer Studie zur Bewertung der Wirkung des Mikronährstoff Sulfit auf den Ertrag in t/ha von Mais im Vergleich zu einer Kontrolle entstand folgende Abbildung. Der Versuch wurde in 16 Parzellen pro Gruppe durchgeführt. Welche Aussage ist im Bezug auf einen t-Test ist richtig?

- **A** □ Die Barplots deuten auf einen signifikanten Unterschied. Der Effekt liegt vermutlich bei -5. Wir müssen aber einen Posthoc-Test rechnen um den Effekt wirklich bestimmen zu können.
- **B** □ Der Test deutet auf ein signifikanten Unterschied hin. Der Effekt liegt vermutlich bei -5.
- C □ Der Effekt und die Signifikanz lassen sich nicht aus Barplots abschätzen. Höchtens der Effekt als relativer Unterschied zwischen der Höhe der Barplots. Standard ist der mediane Unterschied aus Boxplots.
- D ☐ Nach Betrachtung des Barplots liegt kein signifikanter Unterschied vor. Der Effekt liegt bei -5.
- **E** □ Nach Betrachtung des Barplots liegt kein signifikanter Unterschied vor. Der Effekt kann nicht bei einem t-Test aus Barplots bestimmt werden.

49. Aufgabe (2 Punkte)

Sie rechnen einen gepaarten t-Test, da Ihre Beobachtungen verbunden sind. Welche der folgenden Aussagen ist richtig?

- **A** □ Der gepaarte t-Test wird gerechnet, wenn die Beobachtungen nicht unabhängig voneinander sind. Wir messen wiederholt an dem gleichen Probanden oder Tier oder Pflanze. Wir bilden die Differenzen um den gepaarten t-Test rechnen zu können.
- **B** □ Wenn die Beobachtungen unabhängig voneinander sind, rechnen wir einen gepaarten t-Test. Messen wir wiederholt an dem gleichen Tier oder Pflanze dann bilden wir das Produkt zwischen den zwei Messpunkten.

C □ Abhängige Beobachtungen müssen gesondert in einem gepaarten t-Test modelliert werden. Wenn wiederholt an dem gleichen Tier oder Pflanze gemessen wird, dann bilden wir den Quotienten zwischen den beiden Zeitpunkten. Auf den Quotienten rechnen wir den gepaarten t-Test.
 D □ Der gepaarte t-Test nutzt die Varianz der Beobachtungen jeweils paarweise und bildet dafür eine verbundene Stichprobe. Dieser Datensatz d dient dann zur Differenzbildung.

E □ Der gepaarte t-Test wird genutzt, wenn die Differenzen der Beobachtungen verbunden sind und wir

dadurch die Unabhäängigkeit nicht mehr vorliegen haben.

50. Aufgabe (2 Punkte)

Nach einem Experiment mit drei Weizensorten ergibt eine ANOVA (p=0.048) einen signifikanten Unterschied für den Ertrag. Sie führen anschließend die paarweisen t-Tests für alle Vergleiche der verschiedenen Weizensorten durch. Nach der Adjustierung für multiples Testen ist kein p-Wert unter der α -Schwelle. Sie schauen sich auch die rohen, unadjustierten p-Werte an und finden hier als niedrigsten p-Wert $p_{3-2}=0.051$. Welche Aussage ist richtig?

- **A** □ Die ANOVA testet auf der gesamten Fallzahl. Es wäre besser die ANOVA auf der gleichen Fallzahl wie die einzelnen t-Tests zu rechnen.
- **B** Hier kommt der Effekt der stiegenden Fallzahl auf die Anzahl an signifikante Ergebnisse zu tragen. Da die ANOVA auf weniger Fallzahl testet als die paarweisen t-Tests, kann die ANOVA schwerer einen signifikanten Unterscheid nachweisen.
- **C** □ Es gibt einen Fehler in der Varianzstruktur. Daher kann die ANOVA nicht richtig sein und paarweise t-Tests liefern das richtige Ergebnis.
- D □ Das ist kein Wunder. Die ANOVA testet nicht auf der gesamten Fallzahl und die paarweisen t-Tests gewinnen immer eine oder mehr Gruppen als Fallzahl dazu. Mit steigender Fallzahl sind mehr signifikante Unterschiede zu erwarten. Die p-Werte unterscheiden sich numerisch auch kaum.
- **E** □ Das ist kein Wunder. Die ANOVA testet auf der gesamten Fallzahl und die paarweisen t-Tests verlieren immer eine oder mehr Gruppen als Fallzahl. Mit steigender Fallzahl sind mehr signifikante Unterschiede zu erwarten. Die p-Werte unterscheiden sich numerisch auch kaum.

Teil I.

Deskriptive Statistik & Explorative Datenanalyse

51. Aufgabe (8 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Eine echte Herausforderung für sie war schon immer der Perfektionismus gewesen. Ein leidiges Lied. Deshalb gilt anschauen, was andere vor einem gemacht haben. Für Paula ist es eine Möglichkeit schneller ans Ziel zu gelangen. Paula soll in ihrer Abschlussarbeit Brokoli untersuchen. Die Behandlung in ihrer Abschlussarbeit werden verschiedene Düngestufen (ctrl, low und high) sein. Erheben wird Paula als Endpunkt (Y) Trockengewicht benannt als drymatter in ihrer Exceldatei. Von ihrer Betreuer erhält sie nun folgende Abbildung von Barplots, die sie erstmal zur Übung nachbauen soll, bevor sie mit dem eigentlichen Versuch beginnt.

Leider kennt sich Paula mit der Erstellung von Barplots in \mathbb{R} nicht aus. Deshalb braucht sie bei der Visualisierung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Erstellen Sie eine Tabelle mit den statistischen Maßzahlen der drei Barplots! Beachten Sie die korrekte Darstellungsform der statistischen Maßzahlen! (3 Punkte)
- 3. Erstellen Sie einen beispielhaften Datensatz im Rüblichen Format, aus dem die drei Barplots *möglicherweise* erstellt wurden! (2 Punkte)
- 4. Kann Paula einen Unterschied zwischen den Behandlungen erwarten? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Wenn die Erwartung nicht wäre, ja dann wäre wohl vieles möglich für Nilufar! Aber so.. Deshalb gilt anschauen, was andere vor einem gemacht haben. Für Nilufar ist es eine Möglichkeit schneller ans Ziel zu gelangen. Deshalb hat sich Nilufar viele Poster in der Fakultät angeschaut und ist zum Schluß gekommen, dass Barplots eine häufig genutzte Abbildung sind. Nilufar soll nun in ihrem Projektbericht Lauch untersuchen. Die Behandlung in ihrem Projektbericht sind verschiedene Substrattypen (torf, 40p60n und 70p30n). Erhoben wurden von Nilufar als Messwert (Y) Frischegewicht benannt als freshmatter in ihrer Exceldatei. Erwartungsgemäß erhält sie von ihrem Betreuer den Auftrag die erhobenen Daten als Barplots darzustellen. Dann kann Nilufar auch schonmal abschätzen, was bei einem statistischen Test rauskommen könnte. Na dann mal los. Nilufar schafft sich die nötige Stimmung. Nilufar nickt im Takt von Deichkind und bemerkt dabei gar nicht was das Huhn schon wieder anstellt.

treatment	freshmatter
70p30n	27.5
torf	35.0
70p30n	35.3
40p60n	35.9
70p30n	32.1
70p30n	33.6
40p60n	27.3
torf	35.7
torf	44.0
70p30n	35.0
40p60n	36.3

Leider kennt sich Nilufar mit der Erstellung von Barplots nicht aus. Deshalb braucht sie bei der Visualisierung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Zeichnen Sie in *einer* Abbildung die Barplots für die Behandlung von Lauch! Beschriften Sie die Achsen entsprechend!**(4 Punkte)**
- 3. Beschriften Sie einen Barplot mit den gängigen statistischen Maßzahlen! (2 Punkte)
- 4. Wenn Nilufar *keinen Effekt* zwischen den Behandlungen von Lauch erwarten würde, wie sehen dann die Barplots aus? *Antworten Sie mit einer Skizze der Barplots!* (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Boxplots sind bedeutend in der Darstellung von wissenschaftlichen Ergebnissen. Leider hat sich Jonas nicht gemerkt, welche statistischen Maßzahlen für einen Barplot erhoben werden müssen. Besser wäre was anderes gewesen. Jonas liebt Stricken. Darin kann er sich wirklich verlieren und immer wieder neu begeistern. Das ist in soweit doof, da nach seiner Betreuerin erstmal ein Barplot nachgebaut werden soll, bevor es mit seinem Projektbericht losgeht. Dann hat er schonmal den Code vorliegen und nachher geht dann alles schneller. Na dann mal los. Jonas schafft sich die nötige Stimmung. Wenn Iron Maiden ertönt, dann sucht das Meerschweinchen schleunigst Schutz unter dem Sofa. Jonas schüttelt den Kopf. In der Behandlung für Lauch werden verschiedene Bewässerungstypen (low, mid und high) sein. Erfasst wird als Messwert (Y) Frischegewicht. Jonas soll dann freshmatter in seiner Exceldatei eintragen. Aber nur in passender Atmospäre! Auf seinem Second Screen läuft Mission Impossible und Jonas schaufelt Snickers. Nicht effizient, aber gut.

Leider kennt sich Jonas mit der Erstellung von Boxplots in \mathbf{R} nicht aus. Deshalb braucht er bei der Visualisierung Ihre Hilfe!

- 1. Erstellen Sie eine Tabelle mit den statistischen Maßzahlen aus der obigen Abbildung der drei Boxplots! Beachten Sie die korrekte Darstellungsform der statistischen Maßzahlen! (3 Punkte)
- 2. Beschriften Sie einen der Boxplots mit den gängigen statistischen Maßzahlen! (2 Punkte)
- 3. Erstellen Sie einen beispielhaften Datensatz, aus dem die drei Boxplots *möglicherweise* erstellt wurden, im Rüblichen Format! (2 Punkte)
- 4. Kann Jonas einen Unterschied zwischen den Behandlungen erwarten? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Boxplots sind bedeutend in der Darstellung von wissenschaftlichen Ergebnissen. Leider hat sich Jessica nicht gemerkt, welche statistischen Maßzahlen für einen Boxplot erhoben werden müssen. Besser wäre was anderes gewesen. Warhammer. Ein wunderbares Hobby um sich drin zu verlieren und Abstand zu bekommen. Jessica denkt gerne über Warhammer nach. Das ist in soweit doof, da nach ihrem Betreuer nun Boxplots aus ihren Daten gebaut werden sollen, bevor es mit dem statistischen Testen weitergeht. Anhand von Boxplots lässt sich eine Aussage über die Varianzhomogenität über die Behandlungsgruppen treffen. Die Behandlung für Lauch waren verschiedene Lüftungssystemen und Folientunneln (*ctrl* und *tornado*). Erfasst wurde von Jessica als Messwert (Y) *Trockengewicht*. Jessica hat dann *drymatter* in ihrer Exceldatei eintragen. Aber nur in passender Atmospäre! Schon dutzende Male gesehen: Herr der Ringe. Aber immer noch großartig zusammen mit Schokobons.

treatment	drymatter	
ctrl	20.0	
tornado	35.4	
tornado	39.1	
tornado	37.9	
tornado	37.3	
tornado	42.4	
tornado	37.7	
ctrl	24.6	
ctrl	34.6	
tornado	33.9	
ctrl	18.6	
ctrl	18.5	
ctrl	38.0	
ctrl	28.1	
ctrl	40.3	
tornado	36.6	
tornado	39.4	
ctrl	42.4	
tornado	47.0	
ctrl	26.1	

Leider kennt sich Jessica mit der Erstellung von Boxplots nicht aus. Deshalb braucht sie bei der Visualisierung Ihre Hilfe!

- 1. Zeichnen Sie in *einer* Abbildung die beiden Boxplots für die zwei Behandlungen von Lauch! Beschriften Sie die Achsen entsprechend! **(5 Punkte)**
- 2. Wie ist Ihr Vorgehen, wenn Sie eine gerade Anzahl an Beobachtungen pro Gruppe haben? (1 Punkt)
- 3. Beschriften Sie einen der beiden Boxplots mit den gängigen statistischen Maßzahlen! (2 Punkte)
- 4. Wenn Sie *keinen Effekt* zwischen den Behandlungen von Lauch erwarten würden, wie sehen dann die beiden Boxplots aus? *Antworten Sie mit einer Skizze der Boxplots!* (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In einem Gespräch mit ihrem Betreuer wird Tina gebeten seine Daten aus einem Stallexperiment mit Hühnern in einem Histogramm darzustellen. Aus den Boxen wummert Tocotronic und ihr Mund ist verklebt von Katjes. 'Herrlich', denkt Tina. In ihrem Experiment hat er die Anzahl an gedrehten Haaren/Federn pro cm^2 erst fotographiert und dann ausgezählt. Laut ihrem Betreuer soll das Histogramm helfen, die Verteilung der die Anzahl an gedrehten Haaren/Federn pro cm^2 zu bestimmen. Es wäre einfacher, wenn da nicht noch was wäre. Wenn die Wut nicht wäre, ja dann wäre wohl vieles möglich für Tina! Aber so.. Tina streichelt liebevoll die Spinne. Der Kopf ist in ihrem Schloß vergraben um den Klang von Tocotronic zu dämpfen.

Die Anzahl an gedrehten Haaren/Federn pro cm^2 : 3, 2, 3, 1, 4, 2, 6, 5, 4, 5, 7, 3, 2, 6, 1, 5, 10, 4, 4, 9, 4, 2, 4, 3, 6, 8, 3, 2, 8, 8, 6, 4, 3

Leider kennt sich Tina mit der Erstellung von Histogrammen überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Zeichen Sie ein Histogramm um die Verteilung der Daten zu visualisieren! (3 Punkte)
- 2. Beschriften Sie die Achsen der Abbildung! (2 Punkte)
- 3. Ergänzen Sie die absoluten und relativen Häufigkeiten in der Abbildung! (1 Punkt)
- 4. Berechnen Sie aus den Daten die Wahrscheinlichkeit mehr als die Anzahl 6 zu beobachten! (1 Punkt)
- 5. Berechnen Sie aus den Daten die Chance mehr als die Anzahl 6 zu beobachten! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Aus den Boxen wummert David Bowie und ihr Mund ist verklebt von Schokobons. 'Herrlich', denkt Jessica. Jessica betrachtet die folgenden Daten nach einem Kreuzungsexperiment mit Hühnern. In dem Experiment wurden die mittlere Anzahl an gedrehten Haaren pro cm^2 gezählt. Nach der Meinung ihrer Betreuerin muss als erstes geschaut werden, wie diese verteilt sind. Also welcher statistischen Verteilung die mittlere Anzahl an gedrehten Haaren pro cm^2 folgen. Dazu soll Jessica ein Histogramm verwenden. Dann hätte man auch einen guten Überblick über den Endpunkt (Y). Es wäre einfacher, wenn da nicht noch was wäre. Eine echte Herausforderung für sie war schon immer der Mangel gewesen. Ein leidiges Lied. Jessica streichelt liebevoll die Hündin. Der Kopf ist in ihrem Schloß vergraben um den Klang von David Bowie zu dämpfen.

Die mittlere Anzahl an gedrehten Haaren pro cm^2 : 8.5, 8.2, 9.8, 11, 13.6, 10, 9.1, 11.8, 9.8, 9.8, 9.2, 8.6, 8.5, 11.2, 9.4, 10.6, 10, 8.8, 8.8, 11.1, 13.4, 9.8, 10.4, 6.1, 10.9, 6.6, 7.4, 12

Leider kennt sich Jessica mit der Erstellung von Histogrammen überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Zeichen Sie ein Histogramm um die Verteilung der Daten zu visualisieren! (3 Punkte)
- 2. Erläutern Sie Ihr Vorgehen um ein Histogramm für kontinuierliche Daten zu zeichnen! (2 Punkte)
- 3. Beschriften Sie die Achsen der Abbildung! (2 Punkte)
- 4. Ergänzen Sie die relativen Häufigkeiten in der Abbildung! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Tina schmeißt noch eine Handvoll Katjes in ihren Rachen. Im Hintergrund klirrt leise der Spiegel zum Sound von Tocotronic. Jetzt heißt es aber erstmal auf was anderes konzentrieren. Tina möchte gerne den Zusammenhang zwischen durschnittlichen Niederschlag [ml/w] und Trockengewicht [kg/ha] im Kontext von Brokkoli herausfinden. Hierfür hat Tina ein Feldexperiment im Teuteburgerwald durchgeführt. Nach einigen unvorgesehenen Ereignissen hat sie es geschafft folgende Datentabelle zu erstellen. Tina und die Wut, eine unendliche Geschichte mit kniffeligen Wendungen. Aber das steht auch nicht im Zentrum. Nun stellt sich die Frage für sie, ob es überhaupt einen Zusammenhang zwischen den gemessenen Variablen gibt. Deshalb möchte Tina als erstes eine explorative Datenanalyse durchführen. Dann was anderes. Irgendwie komisch, wenn sie Indiana Jones anmacht, dann ist die Spinne eigentlich sofort vor dem Bildschirm und starrt hinein.

Trockengewicht [kg/ha]	Durschnittlichen Niederschlag [ml/w]
23.0	31.1
22.9	29.0
26.0	31.8
22.4	28.5
24.8	36.2
26.7	34.2
24.0	33.0
27.9	33.7
24.1	30.3
27.4	32.9

Leider kennt sich Tina mit der Erstellung einer explorativen Datenanalyse für kontinuierliche Daten überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- Erstellen Sie eine Visualisierung für die Datentabelle. Beschriften Sie die Achsen entsprechend! (4 Punkte)
- 2. Schätzen Sie eine Gerade durch die Punkte! (1 Punkt)
- 3. Beschriften Sie die Gerade mit den gängigen statistischen Maßzahlen! Geben Sie die numerischen Zahlenwerte mit an! (3 Punkte)
- 4. Wenn *ein* Effekt von *x* auf *y* vorhanden wäre, wie würde die Gerade verlaufen und welche Werte würden die statistischen Maßzahlen annehmen? **(2 Punkt)**

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In ein Freilandversuch im Emsland hatte Alex sich zum einen die Behandlung KI-gesteuert [ja/nein] und zum anderen die Messung Trockengewicht über Zielwert [ja/nein] im Kontext von Erbsen angeschaut. Nun steht Alex vor dem Problem, dass er zwei kategoriale Variablen in seinem Projektbericht gemessen hat. Dazu kommt dann noch was anderes. Alex und die Gefälligkeit, eine unendliche Geschichte mit kniffeligen Wendungen. Da sein Betreuer erstmal die langen Tabellen mit ja/nein in einer explorativen Datenanalyse zusammengefasst und präsentiert bekommen möchte bevor es überhaupt weitergeht, muss er jetzt eine Lösung finden. Was alles auch nicht einfacher macht. Am liebsten würde er ja was anderes machen. Am Ende dann doch besser Starcraft. Wunderbar. Eine echte Ablenkung für Alex.

KI-gesteuert	Trockengewicht über Zielwert	KI-gesteue	ert Trockengewicht über Zielwert
nein	nein	ja	nein
nein	ja	ja	nein
nein	nein	ja	nein
nein	nein	nein	ja
nein	nein	ja	ja
ja	nein	nein	ja
nein	nein	ja	ja
ja	nein	nein	nein
ja	nein	ja	ja
nein	ja	nein	nein
ja	nein	nein	ja
ja	nein	ja	nein
ja	nein	nein	nein
ja	nein	ja	nein
ja	ja	nein	nein
ja	nein	ja	nein

Leider kennt sich Alex mit der Erstellung einer explorativen Datenanalyse für kategoriale Daten überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Stellen Sie den Zusammenhang zwischen den beiden kategorialen Variablen in einer zusammenfassenden Tabelle dar! (3 Punkte)
- 2. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (3 Punkte)
- 3. Berechnen Sie die Verhältnisse in der Visualisierung! Welche Annahme haben Sie getroffen? (2 Punkte)
- 4. Wenn ein Effekt von der Behandlung vorliegen würde, wie würde die Tabelle und die Visualisierung aussehen? (2 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Was soll das denn jetzt schon wieder sein? Drei Boxplot, die auf der Seite liegen?', entfährt es Alex und schaut dabei Tina an. 'Keine Ahnung. Es ist bestimmt wieder so ein Lernziel mit der Verteilung und so.', meint Tina sichtlich genervt und mampft noch ein paar Katjes. 'Du weißt doch wie es heißt, *Frei ist, wer missfallen kann.*1', merkt Alex nickend an. Die beiden schauen angestrengt auf die drei Boxplots. Das Ziel ist es zu verstehen, wie eine Verteilung anhand eines Boxplots bewertet werden kann. Tina und die Gefälligkeit machen die Sache nicht einfacher.

Jetzt brauchen Alex und Tina Ihre Hilfe bei der Abschätzung einer Verteilung anhand von Boxplots um ihre Arbeit dann in diesem Semester noch abschließen zu können.

- 1. Zeichnen Sie über die Boxplots die entsprechende zugehörige Verteilung! (3 Punkte)
- 2. Zeichnen Sie unter die Boxplots die entsprechende zugehörige Beobachtungen als Stiche! (3 Punkte)
- 3. Wie viel Prozent der Beobachtungen fallen in das IQR? Ergänzen Sie die Abbildung entsprechend um den Bereich! (2 Punkte)
- 4. Wie viel Prozent der Beobachtungen fallen in $\bar{y} \pm 1s$ und $\bar{y} \pm 2s$ unter der Annahme einer Normalverteilung? (2 Punkte)

¹Oschmann, A. (2024) Mädchen stärken: Stärken fördern, Selbstwert erhöhen und liebevoll durch Krisen begleiten. Goldegg Verlag

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Mark und die Unsicherheit machen die Sache mit dem Studium nicht einfacher. Immerhin ist noch Steffen zur Hilfe mit dabei. Steffen hat Marzipankugeln mitgebracht und Andrea Berg aufgedreht. Das ist immerhin eine Ablenkung. Nicht so gut wie Geocaching, aber immerhin etwas. Jetzt sollen die beiden diese komische Aufgabe lösen. Es geht um verschiedene Normalverteilungen. Anscheinend hängen Normalverteilungen vom Mittelwert \bar{y} und der Standardabweichung s ab. 'Wozu brauchen wir nochmal Normalverteilungen?', entfährt es Mark. Durch das Mampfen von Steffen versteht er kein Wort der Antwort. Steffen lächelt.

Jetzt brauchen Mark und Steffen Ihre Hilfe bei der Abschätzung einer Verteilung um ihre Arbeit dann in diesem Semester noch abschließen zu können.

- 1. Skizzieren Sie zwei Normalverteilungen mit $\bar{y}_1 \neq \bar{y}_2$ und $s_1 = s_2$! (3 Punkte)
- 2. Beschriften Sie die Normalverteilungen mit den statistischen Maßzahlen! (2 Punkte)
- 3. Liegt Varianzhomogenität oder Varianzheterogenität vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. In welchen Bereich fallen 68% bzw. 95% der Beobachtungen in einer Normalverteilung? Ergänzen Sie die Bereiche in einer Normalverteilung! (2 Punkte)
- 5. Ergänzen Sie unter einer der Normalverteilungen den entsprechenden Boxplot! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Was sollen wir hier dann noch zeichnen?!', entfährt es Tina und schaut dabei Jonas an. 'Wir sollen eine Normalverteilung mit einem Mittelwert von $\bar{y}_1=2$ und einer Standardabweichung von $s_1=9$ zeichnen. Sowie eine weitere Normalverteilung mit einem Mittelwert von $\bar{y}_2=1$ und einer Standardabweichung von $s_2=9$. Keine Ahnung wie das geht. Darunter sollen dann noch eine Poissonverteilung mit einem Mittelwert von $\lambda_1=2$ sowie einer weiteren Poissonverteilung mit einem Mittelwert von $\lambda_2=25$ gezeichnet werden.', meint Jonas sichtlich genervt und mampft noch ein paar Snickers. Im Hintergrund spielt leise Iron Maiden. 'Wirre Geschichte...', merkt Tina nickend an. Die beiden schauen angestrengt auf die leeren Flächen für die Abbildungen. Jonas und die Wut machen die Suche nach der Lösung nicht einfacher.

Jetzt brauchen Tina und Jonas Ihre Hilfe bei der Abschätzung einer Verteilung um ihre Arbeit dann in diesem Semester noch abschließen zu können.

- 1. Skizzieren Sie die zwei Normalverteilungen und zwei Poissonverteilungen! (4 Punkte)
- 2. Achten Sie auf die entsprechende Skalierung in den jeweiligen Abbildungen! (2 Punkte)
- 3. Ergänzen Sie unter einer Normalverteilung den entsprechenden Boxplot! (1 Punkt)
- 4. Ergänzen Sie unter einer Poissonverteilung den entsprechenden Boxplot! (1 Punkt)
- 5. Geben Sie ein Beispiel für ein Outcome y, welches einer Normalverteilung folgt! (1 Punkt)
- 6. Geben Sie ein Beispiel für ein Outcome y, welches einer Poissonverteilung folgt! (1 Punkt)

Teil II.

Statistisches Testen & statistische Testtheorie

62. Aufgabe (9 Punkte)

Grundlage des statistischen Testen ist das Verständnis von der Grundgesamtheit (eng. *population* oder *ground truth*) und der experimentellen Stichprobe (eng. *sample*).

- 1. Nennen Sie das statistische Verfahren und zwei konkrete Beispiele zur Durchführung um von einer Grundgesamtheit auf eine Stichprobe zu gelangen! (3 Punkte)
- 2. Erklären Sie den Zusammenhang zwischen Stichprobe und Grundgesamtheit an einem Schaubild! Beschriften Sie das Schaubild entsprechend! Nutzen Sie hierfür als Veranschaulichung die Körpergröße von Männern oder Frauen aus den Gummibärchendaten! (3 Punkte)
- 3. Erweitern Sie das Schaubild um die Entstehung von $Pr(D|H_0)$! Nutzen Sie hierfür als Veranschaulichung zusätzlich die Gruppierungsvariable "Modul" aus den Gummibärchendaten! (3 Punkte)

Für ein besseres Verständnis der statistischen Testtheorie, auch Null-Ritual genannt, kann eine Visualisierung als Kreuztabelle genutzt werden.

 Tragen Sie folgende statistische Fachbegriffe zur statistischen Testtheorie korrekt eine selbst erstellte Kreuztabelle ein! (3 Punkte)

 H_0 abgelehnt Richtige Entscheidung Testentscheidung H_0 falsch

2. Ergänzen Sie Ihre erstellte Kreuztabelle um vier weitere, passende Fachbegriffe zur statistischen Testtheorie! (2 Punkte)

Die Entscheidungsfindung durch einen statistischen Test kann auch durch die Analogie zu einem Feuermelder abgebildet werden. Dabei symbolisiert der Feuermelder den statistischen Test und es soll getestet werden, ob ein Feuer ausgebrochen ist.

- 3. In der Analogie des Feuermelders, wie lautet der α -Fehler? (1 Punkt)
- 4. In der Analogie des Feuermelders, wie lautet der β -Fehler? (1 Punkt)
- 5. Wenn der Feuermelder einmal pro Tag messen würde, wie oft würde der Feuermelder mit einem α von 5% in einem halben Jahr Alarm schlagen? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Abgebildet ist die t-Verteilung unter der Anahme der Gültigkeit der Nullhypothese. Beachten Sie, dass im Folgenden keine numerisch korrekte Darstellung verlangt wird! Es gilt Erkennbarkeit vor Genauigkeit!

- 1. Ergänzen Sie eine beschriftete x-Achse! (1 Punkt)
- 2. Ergänzen Sie " $\bar{y}_1 = \bar{y}_2$ "! (1 Punkt)
- 3. Ergänzen Sie "A = 0.95"! (1 Punkt)
- 4. Zeichnen Sie $T_{\alpha=5\%}$ in die Abbildung! (1 Punkt)
- 5. Zeichnen Sie das Signifikanzniveau α in die Abbildung! Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Zeichnen Sie $-T_D$ in die Abbildung! (1 Punkt)
- 7. Zeichnen Sie einen nicht signifikant p-Wert in die Abbildung! Begründen Sie Ihre Antwort! (2 Punkte)

Sie rechnen einen t-Test für Gruppenvergleiche der Mittelwerte. Sie schätzen den Unterschied zwischen dem mittleren Trockengewicht nach Düngergabe zu einer unbehandelten Kontrolle.

- 1. Beschriften Sie die untenstehende Abbildung mit der Signifikanzschwelle! Begründen Sie Ihre Antwort! (2 Punkte)
- 2. Ergänzen Sie eine in den Kontext passende Relevanzschwelle! Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Skizieren Sie in die untenstehende Abbildung sechs einzelne Konfidenzintervalle (a-f) mit den jeweiligen Eigenschaften! (6 Punkte)
 - (a) Ein signifikantes, relevantes 90% Konfidenzintervall.
 - (b) Ein signifikantes, nicht relevantes 95% Konfidenzintervall
 - (c) Ein nicht signifikantes, nicht relevantes 95% Konfidenzintervall
 - (d) Ein 95% Konfidenzintervall mit niedriger Fallzahl n in der Stichprobe als der Rest 95% der Konfidenzintervalle
 - (e) Ein 95% Konfidenzintervall mit höherer Fallzahl n in der Stichprobe als der Rest der 95% Konfidenzintervalle
 - (f) Ein signifikantes, relevantes 95% Konfidenzintervall

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Beim statistischen Testen gibt es einen Zusammenhang zwischen dem Effekt, der Streuung sowie der Fallzahl. Gegeben sei die Formel für den Student t-Test auf den die folgenden Überlegungen basieren sollen. Welche Auswirkung hat die Änderungen der jeweiligen statistischen Maßzahl des Effekts Δ , der Streuung s und der Fallzahl n auf die Teststistik T_D , den p-Wert $Pr(D|H_0)$ sowie dem Konfidenzintervall $KI_{1-\alpha}$?

- 1. Visualisieren Sie den Zusammenhang zwischen der Teststatiatik T_D und dem p-Wert $Pr(D|H_0)$ für sich verändernde T_D -Werte! Geben Sie dafür ein numerisches Beispiel in dem Sie drei T_D -Werte und deren Einfluss auf den p-Wert vergleichen! (3 Punkte)
- Füllen Sie die untenstehende Tabelle aus in dem Sie die Änderung der statistischen Maßzahlen auf die Teststatistik, den p-Wert sowie das Konfidenzintervall in einem Wort oder Symbol beschreiben! (4 Punkte)

	T_D	$Pr(D H_0)$	$KI_{1-\alpha}$		T_D	$Pr(D H_0)$	$KI_{1-\alpha}$
Δ↑				Δ↓			
<i>s</i> ↑				s ↓			
				n ↓			

3. Visualisieren Sie ein 95%-iges Konfidenzintervall im Vergleich zu einem 90%-igen Konfidenzintervall! Begründen Sie Ihre Visualisierung anhand der Formel des Konfidenzintervalls des t-Tests mathematisch! (3 Punkte)

Teil III.

Der Student t-Test, Welch t-Test & gepaarter t-Test

67. Aufgabe (9 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Der t-Test. Tina erschaudert. Eine echte Herausforderung für sie war schon immer die Wut gewesen. Ein leidiges Lied. Ein mächtiges Werkzeug ist der t-Test in den Händen desjenigen, der einen normalverteilten Endpunkt (Y) hat. Aber erstmal überhaupt den t-Test rechnen können. Wie sah das Experiment von Tina überhaupt aus? Aus den Boxen wummert Tocotronic und ihr Mund ist verklebt von Katjes. 'Herrlich', denkt Tina. Tina hat ein Gewächshausexperiment mit Spargel durchgeführt um eine neue technische Versuchsanlage zu testen. Bei dem Pilotexperiment mit sehr geringer Fallzahl ($n_1 = n_2 = 3$) wurde die Behandlung Bewässerungstypen (low und high) an den Spargel getestet und dabei wurde geschaut, ob der Versuch überhaupt technisch klappen könnte. Gemessen hat Tina dann als Messwert Trockengewicht [kg/ha]. Warum der Versuch im Teuteburgerwald für ihrer Hausarbeit stattfinden musste, ist ihr bis heute ein Rätsel. Egal. Gibt es jetzt einen Zusammenhang zwischen der Behandlung und Trockengewicht [kg/ha]?

treatment	weight
ctrl	15.2
ctrl	16.5
ctrl	12.1
dose	22.1
dose	14.3
dose	11.8

Leider kennt sich Tina mit der Berechnung eines t-Tests überhaupt nicht aus. Deshalb braucht sie bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 2. Bestimmen Sie die Teststatistik T_D eines Student t-Tests! (3 Punkte)
- 3. Treffen Sie mit $T_{\alpha=5\%} = 1.96$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Berechnen Sie den Effekt des Student t-Tests! (1 Punkt)
- 5. Formulieren Sie eine Antwort an Tina über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Der t-Test. Nilufar erschaudert. Nilufar und die Erwartung, eine unendliche Geschichte mit kniffeligen Wendungen. Ein mächtiges Werkzeug ist der t-Test in den Händen desjenigen, der einen normalverteilten Endpunkt (Y) hat. Aber erstmal überhaupt den t-Test rechnen können. Wie sah das Experiment von Nilufar überhaupt aus? 'Hm...', Takis Blue Heat und Deichkind. Das ist und bleibt die beste Kombination zum Nachdenken für Nilufar. Nilufar hat ein Gewächshausexperiment mit Spargel durchgeführt. Dabei wurde die Behandlung Substrattypen (*torf* und 70*p*30*n*) an den Spargel getestet. Gemessen hat Nilufar dann als Messwert Proteingehalt [g/kg]. Warum der Versuch im Emsland für ihren Projektbericht stattfinden musste, ist ihr bis heute ein Rätsel. Egal. Gibt es jetzt einen Zusammenhang zwischen der Behandlung und Proteingehalt [g/kg]?

Substrattypen	Proteingehalt
torf	27.4
torf	36.1
torf	23.3
70p30n	32.7
70p30n	40.0
torf	33.8
torf	36.2
torf	31.5
torf	26.4
70p30n	26.1
70p30n	41.3
70p30n	36.9
torf	24.5
torf	36.7
70p30n	38.9
70p30n	36.8
70p30n	30.2
torf	31.9
70p30n	34.1
torf	20.4
70p30n	50.2

Leider kennt sich Nilufar mit der Berechnung eines t-Tests überhaupt nicht aus. Deshalb braucht sie bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Bestimmen Sie die Teststatistik T_D eines Student t-Tests! (3 Punkte)
- 4. Treffen Sie mit $T_{\alpha=5\%}=1.96$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Berechnen Sie den Effekt des Student t-Tests! (1 Punkt)
- 6. Wenn Sie *keinen* Unterschied zwischen den Behandlungsgruppen erwarten würden, wie groß wäre dann die Teststatistik T_D ? Begründen Sie Ihre Antwort! **(2 Punkte)**
- 7. Formulieren Sie eine Antwort an Nilufar über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Der Teuteburgerwald, unendliche Weiten. Wir schreiben das Jahr 2024. Dies sind die Abenteuer von Mark, der mit seiner 1 Mann starken Besatzung 12 Wochen lang unterwegs ist, um neue Welten zu erforschen, neues Leben und neue Zivilisationen. 'Oder nennen wir es Ödnis und Verzweiflung', denkt Mark. Für seiner Hausarbeit ist Mark ins Nichts gezogen. Eine echte Herausforderung für ihn war schon immer die Unsicherheit gewesen. Ein leidiges Lied. Was macht er nun? Mark hat ein Feldexperiment mit Erbsen durchgeführt. Die Behandlung Lüftungssystemen und Folientunneln (*ctrl* und *tornado*) wurde an Erbsen getestet. Gemessen hat er dann als ein normalverteiltes Outcome (Y) Proteingehalt [g/kg]. Jetzt soll er seinem Betreuer nach testen, ob die Behandlung Lüftungssystemen und Folientunneln (*ctrl* und *tornado*) ein signifikantes Ergebnis liefert. Hm..., was entspannendes wäre gut. Mark schmeißt noch eine Handvoll Marzipankugeln in seinen Rachen. Im Hintergrund klirrt leise der Spiegel zum Sound von Andrea Berg.

Lüftungssystemen	Proteingehalt
ctrl	34.8
tornado	48.3
tornado	29.5
tornado	27.0
ctrl	49.5
tornado	35.1
ctrl	26.7
tornado	43.0
tornado	33.7
ctrl	44.7
ctrl	34.2
tornado	27.7
ctrl	50.2
tornado	21.2
ctrl	40.0
tornado	53.1

Leider kennt sich Mark mit der Berechnung eines t-Tests überhaupt nicht aus. Deshalb braucht er bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Bestimmen Sie die Teststatistik T_D eines Welch t-Tests! (3 Punkte)
- 4. Treffen Sie mit $T_{\alpha=5\%}=1.96$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Berechnen Sie das 99% Konfidenzintervall. Welche Annahmen haben Sie getroffen? (2 Punkte)
- 6. Nennen Sie den statistischen Grund, warum Sie sich zwischen einem Student t-Test und einem Welch t-Test entscheiden müssen! (1 Punkt)
- 7. Formulieren Sie eine Antwort an Mark über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Alles voll mit Puten. Das haben Paula und Nilufar gemeinsam in einer Abschlussarbeit gemacht! Worum ging es aber konkret? Beide haben als ein normalverteiltes Outcome (Y) Gewichtszuwachs in der 1LW von Puten bestimmt. Die Daten haben beide zusammen in einem Kreuzungsexperiment erhoben. In dem Experiment ging es um eine vorher/nachher Untersuchung an den gleichen Puten. Als Behandlung wurde Bestandsdichte (hoch und niedrig) eingesetzt. Nach der Meinung des Betreuers muss hier ein gepaarter t-Test gerechnet werden. Paula schaut nachdenklich zu Nilufar. Eine echte Herausforderung für sie war schon immer der Perfektionismus gewesen. Ein leidiges Lied.. Steffen denkt derweil angestrengt an Takis Blue Heat. Im Hintergrund wummert White Lies.

ID	treatment	freshmatter
4	hoch	32.4
8	hoch	29.1
6	niedrig	38.1
3	hoch	37.1
1	hoch	31.2
7	hoch	25.2
5	hoch	28.4
2	niedrig	28.9
3	niedrig	20.6
4	niedrig	35.3
5	niedrig	57.3
2	hoch	30.5
1	niedrig	15.3
7	niedrig	35.4
6	hoch	28.5

Leider kennen sich Paula und Nilufar mit der Berechnung eines gepaarten t-Tests überhaupt nicht aus. Deshalb brauchen sie beide bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Bestimmen Sie die Teststatistik T_D eines gepaarten t-Tests! (3 Punkte)
- 4. Treffen Sie mit $T_{\alpha=5\%} = 2.68$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- Schätzen Sie den p-Wert des gepaarten t-Tests ab! Begründen Sie Ihre Antwort mit einer Skizze! (2 Punkte)
- 6. Formulieren Sie eine Antwort an Paula über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Mit dem R Paket {emmeans} können wir gleich die Gruppenvergleiche rechnen und uns das compact letter displac' ausgeben lassen!', verkündet Yuki sichtlich stolz. Ein paar Mal hat sie schon die Faulheit gehindert weiterzumachen. 'Nach Meinung der Betreuerin soll es aber nur erstmal ein t-Test sein. Und die Ausgabe ist schon wirr genug.', merkt Steffen an. Steffen und Mark sind bei Yuki um sich in helfen zu lassen. Im Hintergrund wummert London Grammar. Mark streichelt zur Beruhigung das Minischwein von Yuki. Die beiden waren 1 Monate im Emsland um einen Versuch mit Erbsen in einem Feldexperiment durchzuführen. Ziel war es das Outcome (Y) Trockengewicht [kg/ha] zu bestimmen. Yuki überlegt, ob er die beiden nicht noch auf den Film Matrix einlädt oder dann doch lieber raus geht um zu Boldern? Vielleicht will ja Mark mit. Besser als der Film.

```
##
## Two Sample t-test
##
## data: Trockengewicht by Lichtstufen
## t = 0.52969, df = 13, p-value = 0.6053
## alternative hypothesis: true is not equal to [condensed]
## 95 percent confidence interval:
## -3.974615 6.556758
## sample estimates:
## mean in group none mean in group 600lm
## 29.86250 28.57143
```

Helfen Sie Yuki bei der Interpretation des t-Tests! Sonst geht es auch für Steffen und Mark nicht weiter.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizzieren Sie eine Abbildung in der Sie T_D , $Pr(D|H_0)$, A=0.95, sowie $T_{\alpha=5\%}=|2.16|$ einzeichnen! **(4 Punkte)**
- 5. Beschriften Sie die Abbildung! (1 Punkt)
- 6. Berechnen Sie den Effekt des t-Tests! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Rist schon ein tolles Programm, wenn man mit dem Ding umgehen kann. Super umgehen kann damit Nilufar. Eine echte Herausforderung für Nilufar ist die Erwartung, aber das ist noch eine andere Sache. Deshalb sind aber Jessica und Mark nicht bei ihr. Sondern um sich bei einem gemeinsamen Projekt helfen zu lassen. Im Hintergrund wummert Deichkind. Beide arbeiten gemeinsam an einer Hausarbeit. In dem zu beschreibenden Versuch geht es im Teuteburgerwald um einem Kreuzungsexperiment mit Hühnern. Dabei ging darum herauszufinden, ob es einen Zusammenhang zwischen der Behandlung Lüftungssystem (keins und vorhanden) und dem Messwert Schlachtgewicht [kg] gibt. Da der Messwert Schlachtgewicht [kg] normalverteilt ist kann ein t-Test gerechnet werden. Jessica möchte dann später noch mehr über Nilufars Hobby Hip Hop erfahren.

```
##
## Two Sample t-test
##
## data: Schlachtgewicht by Lüftungssystem
## t = 5.3249, df = 17, p-value = 5.585e-05
## alternative hypothesis: true is not equal to [condensed]
## 95 percent confidence interval:
## 5.703754 13.189580
## sample estimates:
## mean in group keins mean in group vorhanden
## 38.56667 29.12000
```

Helfen Sie Nilufar bei der Interpretation des t-Tests! Sonst geht es auch für Jessica und Mark nicht weiter.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizieren Sie das sich ergebende 95% Konifidenzintervall! (2 Punkte)
- 5. Beschriften Sie die Abbildung und das 95% Konfidenzintervall entsprechend! (2 Punkte)
- 6. Interpretieren Sie den Effekt des 95% Konifidenzintervalls! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Mit dem R Paket {emmeans} können wir gleich die Gruppenvergleiche rechnen und uns das compact letter displac' ausgeben lassen!', verkündet Paula sichtlich stolz. Ein paar Mal hat sie schon der Perfektionismus gehindert weiterzumachen. 'Nach Meinung des Betreuers soll es aber nur erstmal ein t-Test sein. Und die Ausgabe ist schon wirr genug.', merkt Jonas an. Jonas und Mark sind bei Paula um sich in helfen zu lassen. Im Hintergrund wummert White Lies. Mark streichelt zur Beruhigung die Ratte von Paula. Die beiden waren 2 Monate im Emsland um einen Versuch mit Puten in einem Kreuzungsexperiment durchzuführen. Ziel war es das Outcome (Y) Protein/Fettrate [%/kg] zu bestimmen. Paula überlegt, ob sie die beiden nicht noch auf den Film Jagd auf roter Oktober einlädt oder dann doch lieber raus geht um zu Fechten? Vielleicht will ja Mark mit. Besser als der Film.

```
##
## Two Sample t-test
##
## data: Protein/Fettrate by Genotypen
## t = -3.3644, df = 19, p-value = 0.003256
## alternative hypothesis: true is not equal to [condensed]
## 95 percent confidence interval:
## -21.588796 -5.029386
## sample estimates:
## mean in group AA mean in group BB
## 29.90000 43.20909
```

Helfen Sie Paula bei der Interpretation des t-Tests! Sonst geht es auch für Jonas und Mark nicht weiter.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizieren Sie die sich ergebenden Boxplot! Welche Annahmen an die Daten haben Sie getroffen? Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Skizieren Sie die sich ergebenden Barplots! (2 Punkte)
- 6. Berechnen Sie den Effekt des t-Tests! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Es gibt ja immer die Möglichkeit sich Hilfe zu holen. Das geht natürlich auch immer in einer Abschlussarbeit. Deshalb arbeiten Mark und Yuki gemeinsam an einer Abschlussarbeit. Das macht dann auch die Analyse ihres Hauptversuches einfacher. Zwar hat jeder von ihnen noch ein Subthema, aber auch da kann man sich ja helfen. Das hilft dann teilweise nur bedingt. Mark und die Unsicherheit, eine unendliche Geschichte mit kniffeligen Wendungen. In dem Hauptversuch wurde Folgendes von den beiden gemacht. Mark und Yuki haben sich Schweinen angeschaut. Dabei geht um Zusammenhang zwischen Genotypisierung (0*d* und 14*d*) und Schlachtgewicht [kg]. Jetzt sollen beide einen gepaarten t-Test rechnen. Leider kennen sich beide nicht sehr gut in Raus. Aber wenigtens haben beide eine Menge an Marzipankugeln und in der Wohnung wummert Andrea Berg.

```
##
## Paired t-test
##
## data: Schlachtgewicht by Genotypisierung
## t = -1.6689, df = 8, p-value = 0.1337
## alternative hypothesis: true is not equal to [condensed]
## 95 percent confidence interval:
## -10.373926   1.662815
## sample estimates:
## mean difference
## -4.355556
```

Jetzt brauchen Mark und Yuki Ihre Hilfe bei der Berechnung eines gepaarten t-Tests in \mathbb{R} um ihre Arbeit dann in diesem Semester noch abschließen zu können.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizzieren Sie das sich ergebende 95% Konfidenzintervall! (2 Punkte)
- 5. Interpretieren Sie den Effekt des gepaarten t-Tests! (2 Punkte)
- 6. Skizzieren Sie den sich ergebenden Boxplot der Differenzen! Welche Annahmen an die Daten haben Sie getroffen? Begründen Sie Ihre Antwort! (2 Punkte)

Teil IV.

Die einfaktorielle & zweifaktorielle ANOVA

75. Aufgabe (11 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Uff... die einfaktorielle ANOVA. Und wir können jetzt anhand der Visualisuierung sehen, ob da schon was signifikant ist?', Tina hebt die Augenbraue. 'Ja, können wir. Dafür müssen wir aber erstmal in {ggplot} uns die Daten anschauen. Oder wir zeichnen es flott mit der Hand. Geht auch.', meint Paula dazu. Tina hatte sich in einen Versuch in einer Klimakammer verschiedene Erbsen angeschaut. Dabei ging es herauszufinden, ob es einen Zusammenhang zwischen der Behandlung Lichtstufen (none, 200lm und 600lm) und dem Messwert Chlorophyllgehalt (SPAD-502Plus) [SPAD] gibt.

Lichtstufen	Chlorophyllgehalt
200lm	23
200lm	24
none	44
none	43
none	42
none	44
200lm	23
600lm	41
200lm	26
600lm	40
600lm	41
600lm	40
none	45
600lm	37
600lm	39
200lm	25
600lm	40
200lm	27
none	46
none	46

Leider kennen sich Tina und Paula mit Darstellung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Erstellen Sie eine Visualisierung der Datentabelle! Beschriften Sie die Abbildung! (2 Punkte)
- 2. Benennen Sie die Visualisierung mit dem korrekten, statistischen Fachbegriff! (1 Punkt)
- 3. Zeichnen Sie folgende statistischen Maßzahlen passend ein!
 - Globale Mittelwert: β₀ (1 Punkt)
 - Mittelwerte der einzelnen Behandlungsstufen: $\bar{y}_{0.5}$, $\bar{y}_{1.5}$ und $\bar{y}_{2.5}$ (1 Punkt)
 - Mittelwertsdifferenz der einzelnen Behandlungsstufen: $\beta_{0.5}$, $\beta_{1.5}$ und $\beta_{2.5}$ (1 Punkt)
 - Residuen oder Fehler: ε (1 Punkt)
- 4. Liegt ein vermutlicher signifikanter Unterschied vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Schätzen Sie die Effekte der Behandlungsstufen! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Als erstes bauen wir uns aus unsere Daten die ANOVA Tabelle dann sehen wir schon, ob unser Gruppenvergleich in der ANOVA signifikant ist.', Jonas schaut Alex fragend an und hofft auf eine positive Regung im Gesicht. Wird aber enttäuscht. Alex tut sich auch sehr schwer mit der einfaktoriellen ANOVA. Beide waren im Wendland um ein Kreuzungsexperiment mit Schweinen durchzuführen. Dabei ging es herauszufinden, ob es einen Zusammenhang zwischen der Behandlung Flüssignahrung (*ctrl*, *superIn* und *flOw*) und dem Messwert Schlachtgewicht [kg] gibt.

Leider kennen sich Jonas und Alex mit Berechnung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Füllen Sie die unterstehende einfaktorielle ANOVA Ergebnistabelle aus! (3 Punkte)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Flüssignahrung	2				
error	19	346.3			
Total	21	359.82			

- 4. Schätzen Sie den p-Wert der Tabelle mit $F_{\alpha=5\%}=3.52$ ab. Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Berechen Sie den Effektschätzer η^2 . Was sagt Ihnen der Wert von η^2 aus? (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Yuki und Alex schauen sich etwas entnervt an. Gemeinsam schreiben die beiden ihre Abschlussarbeit und sollen nun als erstes einmal die Daten mit eine einfaktoriellen ANOVA auswerten damit abgeschätzt werden kann, ob überhaupt signifikante Ergebnisse in den multipen Gruppenvergleichen zu erwarten sind. Nun möchte erstmal ihre Betreuung der Arbeit eine ANOVA Tabelle sehen. Was immer da auch drin zu erkennen sein mag. Yuki schaut Alex sehen erstmla gar nichts. Die beiden waren im Wendland um einen Leistungssteigerungsversuch mit Hühnern durchzuführen. Dabei haben Yuki und Alex den Messwert Fettgehalt [%/kg] unter der Behandung Elterlinie (ctrl, Standard, Yray und Xray) ermittelt.

Leider kennen sich Yuki und Alex mit Berechnung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Füllen Sie die unterstehende einfaktorielle ANOVA Ergebnistabelle aus! (3 Punkte)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Elterlinie	3	489.92			
Error	19	314.08			

- 4. Schätzen Sie den p-Wert der Tabelle mit $F_{\alpha=5\%}=3.13$ ab. Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Was bedeutet ein signifikantes Ergebnis in einer einfaktoriellen ANOVA? (1 Punkt)
- 6. Berechnen Sie einen Student t-Test für den vermutlich signifikantesten Gruppenvergleich anhand der untenstehenden Tabelle mit $T_{\alpha=5\%}=2.03$. Begründen Sie Ihre Auswahl! (3 Punkte)

Elterlinie	Fallzahl (n)	Mittelwert	Standardabweichung
ctrl	5	4.60	2.97
Standard	8	12.12	5.22
Yray	5	11.60	3.13
Xray	5	1.20	3.49

7. Gegebenen der ANOVA Tabelle war das Ergebnis des Student t-Tests zu erwarten? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Uff... die einfaktorielle ANOVA und R. Nicht so einfach... Was sagt mir jetzt die Ausgabe der ANOVA und wo sehe ich, ob da was signifikant ist?', denkt Mark und hebt die Augenbraue. Mark hatte sich einen Leistungssteigerungsversuch mit Milchvieh angeschaut. Als wäre das nicht alles schon schwer genug. Mark und die Unsicherheit, eine unendliche Geschichte mit kniffeligen Wendungen. Dabei ging es beim Experiment herauszufinden, ob es einen Zusammenhang zwischen der Behandlung Flüssignahrung (ctrl, superIn und flOw) und dem Messwert Protein/Fettrate [%/kg] gibt. Nun möchte sein Betreuer seinem Projektbericht erstmal eine ANOVA sehen und die Ergebnisse präsentiert bekommen. Und eigentlich will er ja was anderes... Auf seinem Second Screen läuft Columbo und Mark schaufelt Marzipankugeln. Nicht effizient, aber gut.

```
## Analysis of Variance Table
##
## Response: Protein/Fettrate
## Df Sum Sq Mean Sq F value Pr(>F)
## Flüssignahrung 2 38.14 19.071 0.9368 0.4102
## Residuals 18 366.43 20.357
```

Leider kennen sich Mark mit Berechnung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Interpretieren Sie das Ergebnis der einfaktoriellen ANOVA! (2 Punkte)
- 4. Berechnen Sie den Effektschätzer η^2 . Was sagt Ihnen der Wert von η^2 aus? (2 Punkte)
- 5. Skizzieren Sie eine Abbildung, der dem obigen Ergebnis der einfaktoriellen ANOVA näherungsweise entspricht! (3 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Wie absolut ärgerlich. Jetzt stellt sich tatsächlich heraus, dass seiner Betreuerin keine Ahnung von der zweifaktoriellen ANOVA hat. Woher soll Jonas jetzt das Wissen nehmen? Jonas mampft aus Frust noch eine Handvoll Snickers. Immerhin muss er ja noch mit seiner Abschlussarbeit dieses Jahr fertig werden. In ein Kreuzungsexperiment hatte er Lamas mit der Behandlung Flüssignahrung (ctrl, superIn und flOw) sowie der Behandlung Genotypen (AA und BB) im Wendland untersucht. Es wurde als Messwert Gewichtszuwachs in der 1LW bestimmt. Jetzt muss er erstmal die zweifaktorielle ANOVA verstehen. Und eigentlich wollte Jonas doch noch zum Sport! Um zu Schwimmen geht Jonas dann später nochmal raus. Echte Entspannung.

Leider kennen sich Jonas mit Berechnung einer zweifaktoriellen ANOVA überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Füllen Sie die unterstehende einfaktorielle ANOVA Ergebnistabelle aus! (3 Punkte)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Flüssignahrung	3	190.47			
Genotypen	1	52.36			
Flüssignahrung:Genotypen	3	239.55			
Error	18	225.98			

4. Schätzen Sie den p-Wert der Tabelle ab. Begründen Sie Ihre Antwort! (3 Punkte)

	$F_{lpha=5\%}$
Flüssignahrung	4.26
Genotypen	3.40
Flüssignahrung:Genotypen	5.23

- 5. Was bedeutet ein signifikantes Ergebnis in einer zweifaktoriellen ANOVA? (2 Punkte)
- 6. Was sagt der Term Flüssignahrung:Genotypen aus? Interpretieren Sie das Ergebnis! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Mit der zweifaktoriellen ANOVA lässt sich die Interaktion zwischen den beiden Behandlungen nachweisen!', ihre Betreuerin scheint die zweifaktoriellen ANOVA zu verstehen. Warum jetzt sie jetzt nochmal alles wiederkäuen muss, wird Tina echt nicht so klar. Wenn es doch so klar ist? Tina war im Wendland und hatte dort ein Feldexperiment mit Kartoffeln durchgeführt. Die Komune wo sie untergekommen war, war cool gewesen. Nur jetzt muss eben das Experiment fertig ausgewertet werden. Tina hatte zwei Behandlungen auf Kartoffeln angewendet. Einmal Lichtstufen (none, 200lm, 400lm und 600lm) sowie als zweite Behandlung Düngestufen (ctrl, und high). Gemessen wurde der Messwert (Y) Frischegewicht [kg/ha]. Jetzt muss das hier zu einem Ende kommen! Eigentlich wollte Tina nachher noch einen Film schauen. Irgendwie komisch, wenn sie Indiana Jones anmacht, dann ist die Spinne eigentlich sofort vor dem Bildschirm und starrt hinein.

Leider kennt sich Tina mit Berechnung einer zweifaktoriellen ANOVA überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Interpretieren Sie das Ergebnis der einfaktoriellen ANOVA! (3 Punkte)
- 4. Zeichnen Sie eine Abbildung, der dem obigen Ergebnis der zweifaktoriellen ANOVA näherungsweise entspricht! (5 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Die Katze dreht durch und verwüstet Alexs Palme zu kleinen Schnetzeln. Aber dafür hat er jetzt keine Zeit. Alex muss verstehen wie die Formeln der ANOVA und des t-Tests miteinander zusammen hängen und was das verbindene Konzept ist. Alex dreht Abba lauter, damit die Katze sie nicht mehr stört. Die Palme leidet still. Was hat Alex eigentlich gemacht? In ein Stallexperiment wurden Fleischrindern mit der Behandlung Lüftungssystem (keins, storm, tornado und thunder) sowie der Behandlung Flüssignahrung (ctrl und flOw) untersucht. Das hilft der Palme auch nicht mehr. Aber das ist nicht das einzige Problem von Alex. Eine echte Herausforderung für ihn war schon immer die Gefälligkeit gewesen. Ein leidiges Lied.

Gegebene Formeln

$$F_D = \frac{MS_{treatment}}{MS_{error}} \quad T_D = \frac{\bar{y}_1 - \bar{y}_2}{s_p \cdot \sqrt{2/n_g}}$$

Leider kennen sich Alex mit dem Zusammenhang zwischen der ANOVA und dem t-Test nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- Welche statistische Maßzahl testet der t-Test, welche die ANOVA? Begründen Sie Ihre Antwort! (2 Punkte)
- 2. Erklären Sie den Zusammenhang zwischen der F_D Statistik und T_D Statistik! (2 Punkte)
- 3. Visualisieren Sie in einer 2x2 Tafel den Zusammenhang von $MS_{treatment}$ und MS_{error} ! (2 Punkte)
- 4. Beschriften Sie die erstellte 2x2 Tafel mit signifikant und nicht signifikant! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Nennen Sie das numerische Minimum der F-Statistik F_D! Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Wenn die F-Statistik F_D minimal ist, welche Aussage erhalten Sie über die Nullhypothese? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Mit der zweifaktoriellen ANOVA lässt sich die Interaktion zwischen den beiden Behandlungen nachweisen!', seine Betreuerin scheint die zweifaktoriellen ANOVA zu verstehen. Warum jetzt er jetzt nochmal alles wiederkäuen muss, wird Mark echt nicht so klar. Wenn es doch so klar ist? Mark war im Wendland und hatte dort ein Freilandversuch mit Erdbeeren durchgeführt. Die Komune wo er untergekommen war, war cool gewesen. Nur jetzt muss eben das Experiment fertig ausgewertet werden. Es liegt anscheinend eine signifikante Interaktion vor? Mark hatte zwei Behandlungen auf Erdbeeren angewendet. Einmal Lichtstufen (none, 200lm, 400lm und 600lm) sowie als zweite Behandlung Bewässerungstypen (ctrl, und high). Gemessen wurde der Messwert (Y) Proteingehalt [g/kg]. Jetzt muss das hier zu einem Ende kommen! Eigentlich wollte Mark nachher noch einen Film schauen. Irgendwie komisch, wenn er Columbo anmacht, dann ist der Hamster eigentlich sofort vor dem Bildschirm und starrt hinein.

Leider kennen sich Mark und seine Betreuerin mit der zweifaktoriellen ANOVA überhaupt nicht aus. Geschweige denn mit der Interpretation einer Interaktion. Deshalb braucht er bei der Erstellung Ihre Hilfe, sonst wird es heute Abend mit seinem Hobby Geocaching nichts mehr!

- 1. Visualisieren Sie folgende mögliche Interaktionen zwischen den Behandlungen! Beschriften Sie die Abbildung! (4 Punkte)
 - a) Keine Interaktion liegt vor.
 - b) Eine schwache Interaktion liegt vor.
 - c) Eine starke Interaktion liegt vor.
- 2. Erklären Sie den Unterschied zwischen den verschiedenen Interaktionen! (2 Punkte)
- 3. Welche statistische Maßzahl betrachten Sie für die Bewertung der Interaktion? (1 Punkt)
- 4. Skizzieren Sie die notwendigen Funktionen in Rfür eine Post-hoc Analyse! (2 Punkte)
- 5. Wenn eine signifikante Interaktion in den Daten vorliegt, wie ist dann das weitere Vorgehen? Berücksichtigen Sie auch die Funktion emmeans ()! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Es ist schon kurz nach fünf und Steffen wird langsam nervös. Steffen wollte heute Abend noch seine E-Sport Qualifikation schauen. Hoffentlich kommt er noch rechtzeitig zum Streamen. Angestrengend krault er die Schlange. Stattdessen versucht sein Betreuer die Ausgabe der einfaktoriellen ANOVA zu visualieren und zu überprüfen, ob es mit der Visualisierung der Daten als Boxplots zusammenpasst. Anscheinend gibt es ein Problem mit der Annahme der Normalverteilung und der Varianzhomogenität der ANOVA in den Daten. 'Wir haben jetzt bei der ANOVA einen p-Wert mit 0.058 raus sowie eine F-Statistik F_D mit 1.78 berechnet. Nach den Boxplots müsste sich eigentlich ein Unterschied zwischen thunder und storm ergeben. Der Unterschied ist in {emmeans} auch signifikant mit einem p-Wert von 0.021. Wie kann das sein?', grummelt sein Betreuer. Steffen hatte im Wendland ein Feldexperiment mit Lauch durchgeführt. Dabei wurden die Daten D erhoben. Es gab dabei eine Behandlungen Lüftungssysteme (ctrl, storm, thunder und tornado). Gemessen wurde der Messwert (Y) Frischegewicht [kg/ha]. So kompliziert kann das jetzt doch nicht sein! Steffen hat schon genug Probleme. Wenn die Romantik nicht wäre, dann wäre es einfacher.

Gegebene Formeln

$$MS_{treatment} = rac{SS_{treatment}}{df_{treatment}}$$
 $MS_{error} = rac{SS_{error}}{df_{error}}$ $F_D = rac{MS_{treatment}}{MS_{error}}$

Leider kennen sich Steffen und sein Betreuer mit der Interpretation einer ANOVA überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe und die Zeit wird knapp.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Was bedeutet eine signifkante ANOVA für die beobachteten Daten D? (1 Punkt)
- 4. Visualisieren Sie den Unterschied zwischen Varianzhomogenität und Varianzheterogenität anhand der Daten *D*! Beschriften Sie die Abbildung! (2 Punkte)
- 5. Visualisieren Sie für die Daten *D* die Verletzung der Annahme der Varianzhomogenität der ANOVA unter zu Hilfenahme von Boxplots! Beschriften Sie die Abbildung! **(2 Punkte)**
- 6. Welche Auswirkung hat die Verletzung der Annahme der Varianzhomogenität für die Teststatistik F_D der ANOVA? Begründen Sie Ihre Antwort! (2 Punkte)
- 7. Erklären Sie abschließend die Diskrepanz zwischen den Ergebnis der ANOVA und dem paarweisen Gruppenvergleich in {emmeans}! (2 Punkte)

Teil V.

Multiple Gruppenvergleiche

84. Aufgabe (12 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In einen Leistungssteigerungsversuch mit Hühnern wurde die Behandlung Ernährungszusatz (ctrl, fedX, proteinX und getIt) gegen die Ergebnisse einer früheren Studie von Meyer et al. (2021) verglichen. Im Rahmen des Experiments haben Jonas und Jessica verschiedene Student t-Tests für den Mittelwertsvergleich für den Messwert Protein/Fettrate [%/kg] gerechnet. Es ergab sich dann die folgende Tabelle der rohen p-Werte für die Vergleiche zu Meyer et al. (2021). Jetzt sollen die beiden einmal schauen, was in den Daten so drin ist.

Rohen p-Werte	Adjustierte p-Werte	Nullhypothese ablehnen?
0.08		
0.23		
0.06		
0.02		

Leider kennen sich Jonas und Jessica mit der Adjustierung von p-Werten und dem Signifikanzniveau α überhaupt nicht aus. Deshalb brauchen die beiden bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Füllen Sie die Spalte Adjustierte p-Werte nach der Bonferoni-Methode aus! (2 Punkte)
- 4. Entscheiden Sie, ob nach der Adjustierung die Nullhypothese abgelehnt werden kann! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Wie ist Ihr Vorgehen, wenn Sie anstatt der p-Werte das Signifikanzniveau α adjustieren? (2 Punkte)
- 6. Erklären Sie warum die p-Werte oder das Signifikanzniveau α bei multiplen Vergleichen adjustiert werden müssen! (2 **Punkte**)
- 7. Würden Sie die Adjustierung der p-Werte oder die Adjustierung des Signifikanzniveaus α vorziehen? Begründen Sie Ihre Antwort! (2 **Punkte**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Yuki sitzt schon etwas länger bei seinem Betreuer. So langsam macht Yuki sich Gedanken, ob er nicht doch mal anmerken sollte, dass er von CLD noch nie was gehört hat. Aber noch kann gelauscht werden, ein Ende ist erstmal nicht in Sicht! Yuki hatte in seiner Abschlussarbeit ein Stallexperiment durchgeführt. Deshalb sitzt er hier. Also eigentlich nein, deshalb nicht. Yuki will fertig werden. Hat er sich doch mit Genotypen (00, AA, AB und BB) und Schlachtgewicht [kg] schon eine Menge angeschaut. Yuki beugt sich leicht nach vorne. Nein, doch keine Pause. Weiter warten auf eine Lücke im Fluss...

Behandlung	Compact letter display	
00	а	
AA	a	
AB	a	
BB	a	

Leider kennen sich Yuki mit dem *Compact letter display (CLD)* überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Zeichnen Sie die sich anhand des Compact letter display (CLD) ergebenden Barplots! (2 Punkte)
- 4. Ergänzen Sie das Compact letter display (CLD) zu den Barplots! (1 Punkt)
- 5. Erklären Sie einen Vorteil und einen Nachteil des Compact letter display (CLD)! (2 Punkte)
- 6. Erstellen Sie eine Matrix mit den paarweisen *p*-Werten eines Student t-Tests, die sich näherungsweise aus dem *Compact letter display (CLD)* ergeben würde! Begründen Sie Ihre Antwort! (3 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Yuki betrachtet in sich gekehrt die Poster vor dem Büro von ihr Betreuer. Viele der explorativen Abbildungen sagen ihr etwas. Die Barplots und die Boxplots könnte sie dann schon nachbauen. Das macht sie dann zuversichtlich die Abschlussarbeit auch hinzukriegen. Etwas komischer sind die seltsamen Buchstaben über den Barplots. Yuki betrachtet ein Poster das sich mit Maiss beschäftigt. Substrattypen (kompost, torf, 40p60n und 70p30n) und Proteingehalt [g/kg] wurden dort bestimmt. So richtig schlau, wird sie daraus nicht. Als erstes müsse müsse man die Gruppen nach absteigender Effektstärke sortieren, liest Yuki im Methodenteil und ist dann noch verwirrter als vorher schon.

Substrattypen	Fallzahl (n)	Mittelwert	Standardabweichung
kompost	7	14.63	3.06
torf	9	5.97	2.53
40p60n	9	5.62	2.94
70p30n	8	10.76	1.79

Leider kennen sich Yuki mit dem *Compact letter display (CLD)* überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Zeichnen Sie die sich ergebenden Barplots! (1 Punkt)
- 4. Berechnen Sie die Matrix der p-Werte anhand von Student t-Tests! (4 Punkte)
- 5. Ergänzen Sie das *Compact letter display (CLD)* zu den gezeichneten Barplots! Begründen Sie Ihre Antwort! **(4 Punkte)**
- 6. Interpretieren Sie das Compact letter display (CLD) für Yuki und Jessica! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Okay, dann nochmal für mich. Ich habe jetzt alles in SPSS gemacht, aber das Wichtigste, was gemacht werden soll, nämlich das CLD, das kann ich nicht in SPSS machen?', Steffen muss sich echt beherrschen. Immerhin betreut seine Betreuerin ja erst nicht seit gestern Abschlussarbeiten und wusste ja was gemacht werden soll! Steffen hatte sich zwei Variablen mit Lüftungssystem (*keins, storm, tornado* und *thunder*) und Schlachtgewicht [kg] in einen Leistungssteigerungsversuch mit Puten angeschaut. Jetzt möchte er eigentlich fertig werden und nicht nochmal alles neu in Rund {emmeans} machen. Deshalb soll jetzt das CLD per Hand aus der Matrix der *p*-Wert abgeleitet werden. 'Ich glaube ich wechsel nochmal das Thema...', denkt Steffen, verwirft dann aber den Gedanken.

	keins	storm	tornado	thunder
keins 1.000000		0.0249588	0.6510403	0.2412882
storm	0.0249588	1.0000000	0.0166510	0.3342426
tornado	0.6510403	0.0166510	1.0000000	0.1451388
thunder	0.2412882	0.3342426	0.1451388	1.0000000

Leider kennen sich Steffen mit dem *Compact letter display (CLD)* überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Zeichnen Sie die sich anhand der Matrix der p-Werte ergebenden Barplots! (2 Punkte)
- 4. Ergänzen Sie das Compact letter display (CLD)! Begründen Sie Ihre Antwort! (4 Punkte)
- 5. Interpretieren Sie das Compact letter display (CLD) für Steffen und Jessica! (2 Punkte)

Teil VI.

Der Chi-Quadrat-Test & Der diagnostische Test

88. Aufgabe (12 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Der \mathcal{X}^2 -Test auf einer 2x2-Kreuztabelle berechnet.', liest Steffen in seiner Mitschrift. So richtig helfen tut ihm das jetzt eherlichweise dann doch nicht. Steffen hatte sich in ein Kreuzungsexperiment n=146 Beobachtungen von Hühnern angeschaut. Dabei hat er als Behandlung Außenklimakontakt [ja/nein] bestimmt und zum anderen die Variable Schlachtgewicht im Zielbereich [ja/nein] ermittelt. Am Ende möchte dann seine Betreuerin gerne einen \mathcal{X}^2 -Test auf einer 2x2-Kreuztabelle berechnet bekommen.

56	11	
27	52	

Leider kennt sich Steffen mit der Berechnung eines \mathcal{X}^2 -Test für kategoriale Daten überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Ergänzen Sie die Tabelle um die fehlenden Informationen! (1 Punkt)
- 3. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (2 Punkte)
- 4. Berechnen Sie die Teststatistik eines Chi-Quadrat-Test! (2 Punkte)
- 5. Treffen Sie eine Entscheidung im Bezug zu der Nullhypothese gegeben einem $\mathcal{X}_{\alpha=5\%}^2=3.841!$ Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Skizzieren Sie die \mathcal{X}^2 -Verteilung, wenn die H_0 wahr ist! Ergänzen Sie $\mathcal{X}^2_{\alpha=5\%}$ und \mathcal{X}^2_D in der Abbildung! **(2 Punkte)**
- 7. Berechnen Sie den Effektschätzer Cramers V! Interpretieren Sie den Effektschätzer! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Am Ende hätte Steffen dann doch einen normalverteilten Endpunkt in seinem Projektbericht nehmen sollen. Vor ihm liegen jetzt die Daten von zwei Variablen als Kategorien oder wie es in \P so schön heißt, als Faktoren. Aber immerhin, hofft er das was bei den Daten rausgekommen ist. Gezählt hat Steffen einiges mit n=132 Beobachtungen von Kartoffeln. Zum einen hat er als Behandlung Mechanische Bearbeitung [ja/nein] bestimmt und zum anderen die Variable Trockengewicht über Zielwert [ja/nein] ermittelt. Nun möchte sein Betreuer gerne einen χ^2 -Test auf einer 2x2-Kreuztabelle berechnet bekommen.

		84
		48
64	68	132

Leider kennt sich Steffen mit der Berechnung eines \mathcal{X}^2 -Test für kategoriale Daten überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Ergänzen Sie die Tabelle um die fehlenden Informationen! (1 Punkt)
- 3. Ergänzen Sie die Felder innerhalb der 2x2 Kreuztabelle, so dass *ein* signifikanter Effekt zu erwarten wäre! **(2 Punkte)**
- 4. Begründen Sie Ihr Vorgehen an der Formel des Chi-Quadrat-Tests. Erklären Sie Ihr Vorgehen an einem Beispiel! (2 Punkte)
- 5. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (2 Punkte)
- 6. Was ist die Mindestanzahl an Beobachtungen je Zelle? Wenn in einer der Zellen weniger Beobachtungen auftreten, welchen Test können Sie anstatt des Standard Chi-Quadrat-Tests anwenden? (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Yuki hat sich ein Herz gefasst und war für ihrer Hausarbeit in die Niederlande gegangen. Das war eine super Zeit in der sie viel gelernt hat. Klar gab es auch die ein oder andere Besonderheit, aber das gehört hier eher nicht hin. Yuki ist schon eine ganze Zeit im Büro, da ihre Betreuerin möchte, dass sie jetzt auf ihren Daten mit n=132 Beobachtungen von Maiss einen \mathcal{X}^2 -Test rechnet. Das ginge, da sie als Behandlung *Pestizideinsatz* [ja/nein] bestimmt und zum anderen die Variable *Frischegewicht über Zielwert* [ja/nein] ermittelt hat. Wie genau, das ist jetzt eine andere Frage. Nach ihrem Experiment erhielt sie folgende 2x2 Kreuztabelle aus ihren erhobenen Daten.

Dann rechnete Yuki den Fisher-Exakt-Test auf der 2x2-Kreuztabelle in \P und erhielt folgende \P Ausgabe der Funktion fisher.test().

```
##
## Fisher's Exact Test for Count Data
##
## data: Frischegewicht über Zielwert
## p-value = 0.005898
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 1.462677 32.500828
## sample estimates:
## odds ratio
## 6.352594
```

Leider kennt sich Yuki mit der Berechnung eines \mathcal{X}^2 -Test für kategoriale Daten überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (2 Punkte)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizzieren Sie das sich ergebende 95% Konfidenzintervall! (2 Punkte)
- 5. Beschriften Sie die Abbildung des 95% Konfidenzintervalls! (1 Punkt)
- 6. Interpretieren Sie das *Odds ratio* im Kontext der wissenschaftlichen Fragestellung! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Steffen liest laut vor. 'Die Prävalenz von Klauenseuche bei Lauch wird mit 2% angenommen. In 75% der Fälle ist ein Test positiv, wenn das Pflanze erkrankt ist. In 8.5% der Fälle ist ein Test positiv, wenn das Pflanze nicht erkrankt ist und somit gesund ist. Wir führen einen Test auf Kräuselkrankheit an 1000 Lauch mit einem diagnostischen Test durch.' Alex klappt die Kinnlade runter. In der Stille duddelt Taylor Swift. Steffen schaut kompetent und schmeißt sich mit offenen Mund Gummibärchen an den Kopf vorbei.

Leider kennen sich Steffen und Alex mit dem diagnostischen Testen überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Beschriften Sie die Äste des Doppelbaumes, mit denen Ihnen bekannten Informationen! (2 Punkte)
- 2. Beschriften Sie den Doppelbaum! (2 Punkte)
- 3. Füllen Sie freien Felder des Doppelbaums aus! (4 Punkte)
- 4. Berechnen Sie die Wahrscheinlichkeit $Pr(K^+|T^+)$! (2 Punkte)
- 5. Was sagt Ihnen die Wahrscheinlichkeit $Pr(K^+|T^+)$ aus? (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Was ist denn das?', entfährt es Alex. 'Hm... ich glaube es handelt sich um einen Doppelbaum, den wir beim diagnostischen Testen brauchen.', meint Steffen und dreht Alien auf dem Second Screen etwas leiser. Was jetzt beide von einem diagnostischen Test haben, ist ihnen auch nicht klar. Es ist ja schon alles komplex genug und die Gefälligkeit von Alex macht es heute auch nicht mehr einfacher. 'Es geht um Escherichia coli (E. coli) an Zandern.', stellt Steffen fest. Eigentlich wollte Steffen eher los um zu Ringen. Das wird aber wohl nichts mehr.

Leider kennen sich Alex und Steffen mit dem diagnostischen Testen überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Beschriften Sie den Doppelbaum! (2 Punkte)
- 2. Füllen Sie freien Felder des Doppelbaums aus! (4 Punkte)
- 3. Berechnen Sie die Wahrscheinlichkeit $Pr(K^+|T^+)$! (2 Punkte)
- 4. Berechnen Sie die Prävalenz für Klauenseuche! (1 Punkt)
- 5. Berechnen Sie die Sensifität und Spezifität des diagnostischen Tests! Erstellen Sie dafür zunächst eine 2x2 Kreuztabelle! (2 Punkte)

Teil VII.

Lineare Regression & Korrelation

93. Aufgabe (10 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Hä? Hatten wir das als Aufgabe nicht schon mal, das wir aus kontinuierlichen Daten eine Abbildung bauen sollten?', fragt Tina. Jonas schaut fragend zurück. 'Kann mich wie immer an nichts erinnern. Können wir trotzdem jetzt erstmal die Daten auswerten? Columbo?', antwortet Jonas leicht angespannt. Die beiden hatten ein Kreuzungsexperiment im Emsland mit Fleischrindern durchgeführt. Dabei wurden die beiden folgenden Variablen gemessen: durchschnittlichen Bewegungsscore [Movement/h] und Schlachtgewicht [kg]. Jetzt haben die beiden eigentlich alles zusammen. Eigentlich...

Durchschnittlichen Bewegungsscore [Movement/h]	Schlachtgewicht [kg]
22.0	36.9
21.5	35.6
25.0	40.9
27.1	41.6
22.9	36.8
16.5	29.3
35.5	52.2
28.5	45.5
29.2	45.4
19.7	33.9
30.4	43.2

Leider kennen sich Tina und Jonas mit der linearen Regression für kontinuierliche Daten überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Erstellen Sie eine Visualisierung für die Datentabelle. Beschriften Sie die Achsen! (2 Punkte)
- 3. Schätzen Sie die Regressionsgleichung aus der obigen Abbildung ab! (2 Punkte)
- 4. Beschriften Sie die Grade mit den statistischen Maßzahlen der linearen Regressionsgleichung! (2 Punkte)
- 5. Liegt ein Zusammenhang zwischen x und y vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Wenn kein Zusammenhang zu beobachten wäre, wie würde die Grade aussehen? Antworten Sie mit einer Skizze der Geraden! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Hä? Was ist denn das? Hatten wir das als Aufgabe eine lineare Regression zu rechnen? Wir bauen aus kontinuierlichen Daten eine Abbildung und interpretieren diese dann?', fragt Mark. Nilufar schaut fragend zurück. 'Keine Ahnung... das ist jetzt jedenfalls keine Abbildung von irgendwas sondern Zahlen in einer Tabelle...', antwortet Nilufar leicht angespannt. Die beiden hatten ein Kreuzungsexperiment im Emsland mit Fleischrindern durchgeführt. Dabei wurden die beiden folgenden Variablen gemessen: mittlere Anzahl an weißen Blutkörperchen [LEU/ml] und Fettgehalt [%/kg]. Jetzt haben die beiden eigentlich alles zusammen. Eigentlich..., denn mit der Ausgabe haben beide jetzt ein Problem.

term	estimate	std.error	t statistic	p-value
(Intercept)	3.23	1.74		
Mittlere Anzahl	1.91	0.17		

Leider kennen sich Mark und Nilufar mit der linearen Regression für kontinuierliche Daten in \P überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Erstellen Sie eine Visualisierung der lm()-Ausgabe. Beschriften Sie die Achsen! (2 Punkte)
- 3. Beschriften Sie die Visualisierung mit den statistischen Maßzahlen der der lm()-Ausgabe! (2 Punkte)
- 4. Formulieren Sie die Regressionsgleichung! (1 Punkt)
- 5. Ergänzen Sie die t Statistik in der lm()-Ausgabe! (2 Punkte)
- 6. Ergänzen Sie den p-Wert in der lm()-Ausgabe mit $T_{\alpha=5\%}=1.96!$ (2 Punkte)
- 7. Interpretieren Sie den p-Wert im Kontext der wissenschaftlichen Fragestellung! (1 Punkt)
- 8. Wie groß ist der Effekt im Kontext der wissenschaftlichen Fragestellung? (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Hä? Was ist denn das? Das wird ja immer wilder! Hatten wir das als Aufgabe eine lineare Regression zu rechnen? Wir bauen aus kontinuierlichen Daten eine Abbildung und interpretieren diese dann?', fragt Jonas. Paula schaut fragend zurück. 'Keine Ahnung... das ist jetzt jedenfalls keine Abbildung von irgendwas sondern eine Ausgabe mit ganz wilden Bezeichnungen...', antwortet Paula leicht angespannt. Die beiden hatten ein Feldexperiment im Oldenburger Land mit Lauch durchgeführt. Dabei wurden die beiden folgenden Variablen gemessen: durchschnittlicher Anteil an Ton [%/I] und Proteingehalt [g/kg]. Jetzt haben die beiden eigentlich alles zusammen. Eigentlich..., denn mit der Rusgabe haben beide jetzt ein Problem.

```
##
## Call:
## Proteingehalt ~ Durchschnittlicher_Anteil
##
## Residuals:
                10 Median
                                30
##
       Min
                                       Max
## -3.3677 -0.7910 -0.0465 1.1031 2.7717
##
## Coefficients:
##
                             Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                           1.5471
                                                    1.004
                                                             0.322
## Durchschnittlicher_Anteil
                               0.1479
                                           0.1577
                                                    0.938
                                                             0.354
## Residual standard error: 1.506 on 37 degrees of freedom
## Multiple R-squared: 0.02322, Adjusted R-squared: -0.003182
## F-statistic: 0.8795 on 1 and 37 DF, p-value: 0.3544
```

Leider kennen sich Jonas und Paula mit der linearen Regression für kontinuierliche Daten in Rüberhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Wie groß ist der Effekt im Kontext der wissenschaftlichen Fragestellung? (2 Punkte)
- 3. Interpretieren Sie die p-Werte im Kontext der wissenschaftlichen Fragestellung! (2 Punkte)
- 4. Visualisieren Sie die Verteilung der Residuen! (2 Punkte)
- 5. Ist die Annahme der Normalverteilung erfüllt? Begründen Sie die Antwort! (2 Punkte)
- 6. Erklären Sie kurz den Begriff R-squared! Was sagt Ihnen der Wert aus? (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Hä? Was ist denn das? Das wird ja immer wilder! Hatten wir als Aufgabe eine Korrelation zu berechnen? Wir bauen aus kontinuierlichen Daten eine Abbildung und interpretieren diese dann?', fragt sich Jessica laut. 'Keine Ahnung... das ist jetzt jedenfalls keine Abbildung von irgendwas sondern eine Ausgabe mit ganz wilden Bezeichnungen...', denkt sie. Aber das hilft jetzt auch nicht. Irgendwie komisch, wenn sie Herr der Ringe anmacht, dann ist die Hündin eigentlich sofort vor dem Bildschirm und starrt hinein. Jessica hatte ein Kreuzungsexperiment in der Uckermark mit Hühnern durchgeführt. Dabei wurden die beiden folgenden Variablen gemessen: durchschnittliche Tagestemperatur [C/d] und Gewichtszuwachs in der 1LW. Jetzt hat sie eigentlich alles zusammen. Eigentlich..., denn mit der Ausgabe hat Jessica jetzt ein Problem. Eine echte Herausforderung für sie war schon immer der Mangel gewesen. Ein leidiges Lied.

```
##
## Pearson's correlation
##
## data: Durchschnittliche Tagestemperatur and Gewichtszuwachs
## t = 3.8997, df = 8, p-value = 0.004547
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.3668440 0.9532634
## sample estimates:
## cor
## 0.809497
```

Leider kennt sich Jessica mit der Korrelationsanalyse in \mathbb{R} überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Erstellen Sie eine Visualisierung für den Korrelationskoeffizienten! Beschriften Sie die Abbildung! (2 Punkte)
- 4. Nennen Sie die zwei Eigenschaften des Korrelationskoeffizienten! (2 Punkte)
- 5. Interpretieren Sie den Korrelationskoefizienten hinsichtlich des Effekts und der Signifikanz! Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Visualisieren Sie das 95% Konfidenzintervall! Beschriften Sie die Abbildung! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Hm..., drei leere Abbildungen. Was soll ich da hetzt machen?', fragt sich Jonas. Jonas kennt sich nur begrenzt bis gar nicht mit der linearen Regresion und Korrelation aus. Dafür mit etwas anderem. Jonas liebt Stricken. Darin kann er sich wirklich verlieren und immer wieder neu begeistern. Aber das hilft hier auch nur so halb, die Aufgabe zu lösen und mehr über den Korrelationskoeffizienten zu erfahren.

Leider kennt sich Jonas mit der Korrelationsanalyse und der linearen Regression überhaupt nicht aus. Deshalb braucht er bei der Auswertung Ihre Hilfe!

- 1. Zeichnen Sie für die ρ -Werte eine Gerade in die entsprechende Abbildung! (3 Punkte)
- 2. Zeichnen Sie für die R^2 -Werte die entsprechende Punktewolke um die Gerade! (3 Punkte)
- 3. Nennen Sie die zwei Eigenschaften des Korrelationskoeffizienten! (2 Punkte)
- 4. Interpretieren Sie die R^2 -Werte für die jeweilige Gerade! (2 Punkte)
- 5. Warum müssen Sie ein R^2 -Wert berechnen, wenn Sie die einfachere Möglichkeit der visuellen Überprüfung haben? Begründen Sie Ihre Antwort! **(2 Punkte)**

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Der Bildschirm strahlt blau in das Gesicht von Yuki. Es ist schon spät. Und das hat einen Grund. Auf seinem Second Screen läuft Matrix und Yuki schaufelt Reese's Peanut Butter Cups. Nicht effizient, aber gut. Yuki überlegt, aber seine Gedaken sind etwas zäh. 'Was soll das hier alles bedeuten?', fragt sich Yuki. Irgendwie ist ihm nicht klar wie er ρ -Werte oder R^2 -Werte abschätzen soll. Alles nicht so einfach. Eine echte Herausforderung für ihn war schon immer die Faulheit gewesen. Ein leidiges Lied.

Leider kennt sich Yuki mit der Korrelationsanalyse und der linearen Regression überhaupt nicht aus. Deshalb braucht er bei der Auswertung Ihre Hilfe!

- 1. Schätzen Sie die ρ -Werte in den Abbildungen! (2 Punkte)
- 2. Schätzen Sie die R²-Werte in den Abbildungen! (2 Punkte)
- 3. Interpretieren Sie die R²-Werte für die jeweilige Gerade! (2 Punkte)
- 4. Was ist der optimale R^2 -Wert im Kontext einer wissenschaftlichen Fragestellung? Begründen Sie Ihre Antwort an einem Beispiel! (2 Punkte)
- 5. Was ist der optimale ρ -Wert im Kontext einer wissenschaftlichen Fragestellung? Begründen Sie Ihre Antwort an einem Beispiel! (2 Punkte)
- 6. Erklären Sie die Aussage "Correlation does not imply causation!" an einem Beispiel! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

'Oh! Residuen. Die waren wichtig um zu wissen, ob eine Modellierung funktioniert hat! Da schauen wir uns dann mit der Funktion augment () die Werte der einzelnen Residuen an. Oder gleich den Residuenplot...da sehen wir dann... ja was eigentlich?', verkündet Steffen stolz. Leider hat Steffen vergessen wie der Code für den Residuenplot geht. Steffen hatte anderes im Kopf. Schon dutzende Male gesehen: Harry Potter. Aber immer noch großartig zusammen mit Oreos. Aber sowas hilft ihm natürlich hier nicht. Da schmeißt sich Steffen noch ein paar Oreos in den Mund und kaut los.

Chlorophyllgehalt	Ilgehalt Durchschnittliche Regenwurmdichte		ϵ
23.6	9.9	24.7	
31.6	13.9	32.1	
27.3	9.9	24.8	
20.7	6.4	18.3	
19.5	8.8	22.7	
21.2	9.3	23.6	
18.6	6.5	18.5	
18.6	6.4	18.3	
32.7	13.2	30.7	

Leider kennt sich Steffen mit der linearen Regression überhaupt nicht aus. Deshalb braucht er bei der Auswertung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Ergänzen Sie die Werte der Residuen ϵ in der obigen Tabelle! (2 Punkte)
- 3. Zeichnen Sie den Boxplot der Residuen ϵ . Beschriften Sie die Abbildung! (2 Punkte)
- 4. Zeichnen Sie den Residualplot. Beschriften Sie die Abbildung! (2 Punkte)
- 5. Gibt es auffällige Werte anhand des Residualplots? Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Erklären Sie die Eigenschaft eines statistischen Modells, welche mit dem Residualplot überprüft wird! Begründen Sie Ihre Antwort anhand einer Visualisierung! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Yuki hat einen Versuch in einer Klimakammer mit Brokkoli duchgeführt. Soweit so gut. Dann war sie bei ihrer Betreuerin. Leider war der Schritt nicht so hilfreich. Yuki und die Faulheit, eine unendliche Geschichte mit kniffeligen Wendungen. Aber es muss ja weitergehen. Yuki hatte dann in ihrer Abschlusarbeit einfach zu viele Endpunkte gemessen und ist jetzt vollkommen durcheinander, welche Analyse sie nun wie rechnen soll. Naja, dann heißt es jetzt eben London Grammar aufdrehen und darüber nachdenken, was hier eigentlich gemacht wurde. Yuki fängt einfach an und nimmt den ersten Endpunkt Anzahl Läsionen auf den Blättern. Dann kann sie sich voran arbeiten. Später dann noch raus um zu Boldern um mal zu entspannen und vielleicht ist Jessica auch da. Wäre toll.

Leider kennt sich Yuki mit dem Kontext der linearen Regression überhaupt nicht aus. Deshalb braucht sie bei der Auswertung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Zeichen Sie die Zeile des Regressionskreuzes für den Endpunkt mit <u>drei</u> Feldern! Beschriften Sie die Abbildung! **(4 Punkte)**
- 3. Ergänzen Sie die entsprechenden statistische Methoden zur Analyse in jedem Feld! (2 Punkte)
- 4. Formulieren Sie die Nullhypothese für die statistische Methode in jedem Feld! (2 Punkte)
- 5. Ergänzen Sie die entsprechenden Funktionen in R zur Analyse in jedem Feld! (2 Punkte)
- 6. Welchen Effekt erhalten Sie in jedem Feld? Geben Sie ein Beispiel! (2 Punkte)

Teil VIII.

Experimentelles Design

101. Aufgabe (16 Punkte)

Das Minischwein macht mal wieder Randale in Yukis Zimmer und rennt davon! Alex und Steffen sind bei Yuki in im Oldenburger Land wo der neue, bessere Versuch stattfinden soll. Dabei soll in einem Stallversuch im Oldenburger Land mit Schweinen durchgeführt werden. Auf dem Tisch stapeln sich Reese's Peanut Butter Cups aus Vollkorndinkelmehl. Eine Spezialtät der Komune hier. Alex hasst Vollkorn wie Oreos geliebt werden. In dem neuen Versuch geht es um den Zusammenhang zwischen der Behandlung Lüftungssystem (keins, storm, tornado und thunder) und dem Messwert Protein/Fettrate [%/kg]. Immerhin ist der Messwert normalverteilt, was einges einfacher macht. Was es nicht so einfacher macht ist, dass Steffen als zusätzliche Herausforderung noch die Romantik mitgebracht hat. Daher entscheiden sich alle drei für ein Randomized complete block design (RCBD) mit drei Blöcken. 'Naja, so viel einfacher ist es dann doch nicht...', merkt Steffen an und sucht das Minischwein.

Leider kennen sich Yuki, Alex und Steffen mit dem *Randomized complete block design (RCBD) mit drei Blöcken* überhaupt nicht aus. Deshalb brauchen die Drei bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Skizzieren Sie das faktorielle Versuchsdesign! (3 Punkte)
- 4. Skizzieren Sie eine Datentabelle für das faktorielle Versuchsdesign in 🔃 (2 Punkte)
- 5. Erstellen Sie das statistische Modell in der in Rüblichen Schreibweise für eine ANOVA! Skizzieren Sie die notwendige Funktionen in R! (3 Punkte)
- 6. Skizzieren Sie die weitere Datenanalyse hinsichtlich eines multiplen Gruppenvergleiches! (2 Punkte)
- 7. Skizzieren Sie eine mögliche Abbildung im Kontext der wissenschaftlichen Fragestellung! Beschriften Sie die Abbildung! (2 Punkte)
- 8. Ergänzen Sie zu der Abbildung ein mögliches Ergebnis des multiplen Gruppenvergleichs! Begründen Sie Ihre Antwort! (2 Punkte)

Neuer Versuch neues Glück! Yuki und Mark sind bei Alex um sich Hilfe für eine Versuchsplanung in zu holen. Im Hintergrund läuft viel zu laut Matrix. Daher hat das Minischwein schon lange reißaus genommen. In dem neuen Versuch geht es um den Zusammenhang zwischen der Behandlung Genotypen (AA, AB und BB) sowie Substrattypen (torf, 70p30n) sowie drei Blöcken und dem Messwert Frischegewicht [kg/ha] in Spargel. Der Versuch soll in einem Freilandversuch in der Uckermark durchgeführt werden. Immerhin ist der Messswert normalverteilt, was einges einfacher macht. Was es nicht so einfacher macht ist, dass Yuki noch als zusätzliche Herausforderung etwas anderes umtreibt: die Gefälligkeit. Im ersten Schritt überlegt Alex ein komplexeres experimentelles Design zu probieren. Daher entscheiden sich alle drei für ein Split plot design oder auch Spaltanlage. Ob es das jetzt einfacher macht?

Leider kennen sich Alex, Yuki und Mark mit dem *Split plot design oder auch Spaltanlage* überhaupt nicht aus. Deshalb brauchen die Drei bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistische Hypothesenpaare! (2 Punkte)
- 3. Skizzieren Sie das faktorielle Versuchsdesign! (3 Punkte)
- 4. Skizzieren Sie eine Datentabelle für das faktorielle Versuchsdesign in 😱! (2 Punkte)
- 5. Erstellen Sie das statistische Modell in der in Rüblichen Schreibweise für eine ANOVA! Skizzieren Sie die notwendige Funktionen in R! (4 Punkte)
- 6. Skizzieren Sie die weitere Datenanalyse hinsichtlich eines multiplen Gruppenvergleiches! (2 Punkte)
- 7. Skizzieren Sie eine mögliche Abbildung im Kontext der wissenschaftlichen Fragestellung! Beschriften Sie die Abbildung! (3 Punkte)
- 8. Ergänzen Sie zu der Abbildung ein mögliches Ergebnis des multiplen Gruppenvergleichs! Welche Annahme hinsichtlich der Modellierung haben Sie getroffen? Begründen Sie Ihre Antwort! (3 Punkte)

Teil IX.

Programmieren in R

103. Aufgabe (9 Punkte)

Alex muss seinem Projektbericht mit Rarbeiten. Deshalb sitzt er jetzt mit Ihnen zusammen und hat einige Fragen zu den Grundlagen in Ran Sie! Na dann wollen Sie mal helfen. Immerhin will sein Betreuer, dass Renutzt wird.

Alex: Der Pipe-Operator wird sehr häufig genutzt. Wie sieht der aus und wie funktioniert der an einem Beispiel? (1 Punkt)

Sie antworten:

Alex: Wir brauchen recht häufig die Tilde (~) in R. Wo wird die nochmal angewandt und genutzt? (1 Punkt) Sie antworten:

Alex: Hä? Warum ändert sich nichts an meinen Daten? In R sehe ich doch die Änderungen aber irgendwie speicher R meine Änderungen meines Datensatzes ab. Was ist da los? (1 Punkt)

Sie antworten:

Alex: Was ist der Unterschied zwischen library() und Packages und warum brauche ich sowas in \mathbb{R} ? (1 **Punkt**)

Sie antworten:

Alex: Ich habe die Namen der beiden \mathbf{R} Pakete vergessen, die wir eigentlich immer laden. Wie heißen die noch gleich? (1 Punkt)

Sie antworten:

Alex: Was war eigentlich nochmal ein Vorteil von der Nutzng von 😱 ? (1 Punkt)

Sie antworten:

Alex: Was ist eigentlich ein Faktor in 😱 ? (1 Punkt)

Sie antworten:

Alex: Was ist der Unterschied zwischen dem RStudio und R? (1 Punkt)

Sie antworten:

Alex: Ich verstehe den Zuweisungs-Operator nicht. Wie sieht der aus und was macht der? Gebe mal ein

Beispiel! (1 Punkt)

Sie antworten:

'Unter den Blinden ist der Einäuge König!', ruft Ihnen Paula entgegen. Das können Sie schon nicht mehr hören. Nur weil Sie einmal gesagt haben, dass Sie sich schonmal mit R beschäftigt haben, stehen hier alle Schlange. Aber gut, das hat Sie dann doch vorangebracht. Leider kennt sich Paula auch wieder überhaupt nicht mit R aus aber ihr Betreuer möchte gerne, dass die Auswertung in R gemacht wird. Da müssen Sie dann wohl mal nochmal ran und helfen.

Paula fragt: Was muss ich bei der Eingabe eines Datums in Excel beachten, wenn ich später die Exceldatei in R einlesen will? Wie lautet das Format? (1 Punkt)

Sie antworten:

Paula fragt: Wozu war nochmal die Funktion mutate() gut? (1 Punkt)

Sie antworten:

Paula fragt: Ich will eine ANOVA in R rechnen. Dazu brauche ich zwei Funktionen. Welche waren das noch gleich und wie war die Reihenfolge? (1 Punkt)

Sie antworten:

Paula fragt: Ich hatte mir eine Analogie für das R Paket {ggplot} gemerkt. Wie war noch gleich die Analogie und das damit verbundene Prinzip von {ggplot}? (2 Punkte)

Sie antworten:

Sie antworten:

Paula fragt: Was muss ich bei der Benennung von Spalten in Excel beachten? (1 Punkt)

Paula fragt: Ich möchte ein CLD erstellen. Welche Funktionen muss ich in welcher Reihenfolge nutzen? (2 Punkte)

Sie antworten:

Paula fragt: Die Funktion emmeans () erlaubt es den Faktor f_1 getrennt in jedem Level des Faktors f_2 auszuwerten. Wie mache ich das? (1 Punkt)

Sie antworten:

Teil X.

Forschendes Lernen

Das forschende Lernen basiert zum einen auf den folgenden wissenschaftlichen Veröffentlichungen. Für die Prüfung wird die vertiefende Kenntnis der folgenden Veröffentlichungen vorausgesetzt.

In der Prüfung erhalten Sie einen Auszug der wissenschaftlichen Veröffentlichung. Für die Einarbeitung in die Veröffentlichung ist in der Prüfung ausdrücklich keine Zeit vorgesehen.

- Sánchez, M., Velásquez, Y., González, M., & Cuevas, J. (2022). Hoverfly pollination enhances yield and fruit quality in mango under protected cultivation. Scientia Horticulturae, 304, 111320. [Link]
- Petersen, F., Demann, J., Restemeyer, D., Olfs, H. W., Westendarp, H., Appenroth, K. J., & Ulbrich, A. (2022). Influence of light intensity and spectrum on duckweed growth and proteins in a small-scale, re-circulating indoor vertical farm. Plants, 11(8), 1010. [Link]
- Selle, P. H., Cadogan, D. J., Li, X., & Bryden, W. L. (2010). Implications of sorghum in broiler chicken nutrition. Animal Feed Science and Technology, 156(3-4), 57-74. [Link]
- Wu, G., Knabe, D. A., & Kim, S. W. (2004). Arginine nutrition in neonatal pigs. The Journal of Nutrition, 134(10), 2783S-2790S. [Link]

Das forschende Lernen basiert zum anderen auf den folgenden wissenschaftlichen Datensätzen und deren vertiefende Analyse werden als bekannt vorausgesetzt. Die Teilaufgaben der Aufgaben stellen nur eine zufällige Auswahl an möglichen Fragen dar. Die Datensätze werden über ILIAS bereitgestellt.

In der Prüfung erhalten Sie <u>keinen Auszug</u> aus den wissenschaftlichen Daten. Die Datensätze werden als bekannt in der Prüfung vorgesetzt. Sie haben sich vorab Notizen und Anmerkungen gemacht.

• bar

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Vor dem Start der eigenen Arbeit möchte sein Betreuer, dass Alex einmal die wissenschaftliche Veröffentlichung Petersen, F., et al. (2022). Influence of light intensity and spectrum on duckweed growth and proteins in a small-scale, re-circulating indoor vertical farm sinnvoll zusammenfasst. Dann würde die eigene Arbeit auch leichter von der Hand gehen und Alex hätte dann schon eine Vorlage. 'Das ist jetzt aber umfangreicher als gedacht!', schnauft er und runzelt die Stirn. Im Hintergrund spielt viel zu leise Abba. Das wird dann vermutlich heute Abend nichts mehr mit seinem Hobby Starcraft Die Katze schaut mitleidig.

Leider kennt sich Alex mit dem Lesen einer wissenschaftlichen Veröffentlichung mit Fokus auf die Statistik überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe! Glücklicherweise kennen Sie die wissenschaftliche Veröffentlichung schon im Detail und können sofort helfen.

- 1. Erläutern Sie die wissenschaftliche Fragestellung der wissenschaftlichen Veröffentlichung anhand des OCAR Prinzips nach Schimel (2012)² (4 Punkte)
- 2. Nennen Sie die untersuchten Endpunkte in der wissenschaftlichen Veröffentlichung! Wie lautet der primäre Endpunkt? (2 Punkte)
- 3. Erstellen Sie das statistische Modell in der in Rüblichen Schreibweise! (2 Punkte)
- 4. Nennen Sie eine Auswahl an bedeutenden statistischen Maßzahlen in der wissenschaftlichen Veröffentlichung! (1 Punkt)
- 5. Interpretieren Sie die Hauptaussage der wissenschaftlichen Veröffentlichung hinsichtlich der Signifkanz für den primären Endpunkt! (2 Punkte)
- 6. Interpretieren Sie die Hauptaussage der wissenschaftlichen Veröffentlichung hinsichtlich der Effektstärke für den primären Endpunkt! (2 Punkte)
- 7. Diskutieren Sie die ökonomische Relevanz der Hauptaussage der wissenschaftlichen Veröffentlichung im Bezug auf Signifikanz und Effektstärke für den primären Endpunkt! (1 Punkt)
- 8. Skizzieren Sie für den primären Endpunkt den sich ergebenden Datensatz in **R** für eine ausgewählte Abbildung! **(2 Punkte)**
- 9. Skizzieren Sie einen möglichen Versuchsplan für den primären Endpunkt! (2 Punkte)
- 10. Schätzen Sie die benötigte Fallzahl für ein zukünftiges Experiment anhand der Ergebnisse in der wisenschaftlichen Veröffentlichung für den primären Endpunkt! (2 Punkte)

²Schimel, J. (2012). Writing science: how to write papers that get cited and proposals that get funded. OUP USA.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Unter einem langen Schnaufen starrt Jessica auf den wissenschaftlichen Datensatz data3 in ihrem Laptop. 'Worum geht es denn eigentlich in diesem Datensatz?', fragt sie sich kopfschüttelnd und mampft noch ein paar Schokobons. Jessica soll die Datentabelle nutzen um das eigene Experiment zu planen und eine Blaupause zu haben. Als eine Vorlage sozusagen, die sie nur noch ausfüllen muss. Daher möchte ihr Betreuer, dass sie einmal die Daten sinnvoll zusammenfasst. Das sollte dann doch etwas aufwendiger werden. Das wird dann vermutlich heute Abend nichts mehr mit Herr der Ringe

Leider kennt sich Jessica mit der Analyse eines wissenschaftlichen Datensatzes überhaupt nicht aus. Deshalb braucht sie bei der Auswertung Ihre Hilfe! Glücklicherweise kennen Sie den wissenschaftlichen Datensatz aus Ihren eigenen Analysen schon im Detail und können sofort helfen.

- 1. Formulieren Sie die wissenschaftliche Fragestellung des Datensatzes in Form einer PowerPoint Folie! (2 Punkte)
- 2. Nennen Sie zwei Besonderheiten des Datensatzes! Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Nennen Sie die untersuchten Endpunkte in dem Datensatz! Wie lautet der primäre Endpunkt für die Auswertung? (2 Punkte)
- 4. Skizzieren Sie die großen Analysebereiche der Statistik! Beschriften Sie die Abbildungen! (2 Punkte)
- 5. In welchen der großen Analysebereiche der Statistik fällt die Auswertung des primären Endpunktes? Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Skizzieren Sie eine ikonische Abbildung für den primären Endpunkt im Kontext der wissenschaftlichen Fragestellung! (2 Punkte)
- 7. Erstellen Sie das statistische Modell in der in Rüblichen Schreibweise! (2 Punkte)
- 8. Skizzieren Sie die Datenanalyse hinsichtlich der Signifkanz für den primären Endpunkt! (2 Punkte)
- 9. Skizzieren Sie die Berechnung der Effektstärke für den primären Endpunkt! (2 Punkte)
- 10. Skizzieren Sie einen möglichen Versuchsplan für den primären Endpunkt! (2 Punkte)

Teil XI.

Mathematik

107. Aufgabe (10 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Herodot – der Schimmel aus Ivenack Während der Besetzung Mecklenburgs durch die Franzosen kamen Napoleon die Geschichten des berühmten Apfelschimmels Herodot aus Ivenack zu Gehör. Herodot lief zwar niemals Rennen, war aber eines der berühmtesten Pferde dieser Zeit. Napoleon selbst gab den Auftrag, diesen Schimmel durch die Armee nach Frankreich zu bringen. Der Legende nach sollen Arbeiter den Schimmel im hohlen Stamm einer 1000-jährigen Eiche aus Ivenack vor den Franzosen versteckt haben. Doch Herodot verriet sein Versteck durch lautes Wiehern, woraufhin die französische Armee den Schimmel beschlagnahmte und nach Frankreich führte³.

Forschungsfrage: "Konnten die Ivenacker den Apfelschimmel Herodot vor dem Zugriff von Napoleon in der 1000-jährigen Eiche verstecken?"

Gehen Sie von einem radialen Wachstum der 1000-jährigen Eiche von 0.8mm pro Jahr aus. Es ist bekannt, dass die Eiche im Jahr 2022 einen Umfang von 14m in Brusthöhe hatte.

- 1. Wie groß war der Durchmesser in *m* der Eiche im Jahr 1815 als Herodot in der Eiche versteckt werden sollte? **(2 Punkte)**
- 2. Skizzieren Sie in einer Abbildung einen linearen Zusammenhang und einen exponentiellen Zusammenhang für das Wachstum der 1000-jährigen Eiche. Erklären Sie die Auswirkungen der Entscheidung für linear oder exponentiell auf Ihre Berechnungen! (2 Punkte)

Herodot hatte eine Schulterhöhe von 180cm, eine Breite von 95cm sowie eine Länge von 240cm.

3. Berechnen Sie das effektive Volumen von Herodot in m^3 , welches Herodot in der 1000-jährigen Eiche einnehmen würde! (2 Punkte)

Es wurde berichtet, dass sich Herodot in der 1000-jährigen Eiche *mühsam* um die eigene Achse drehen konnte.

- 4. Berechnen Sie die Dicke der Eichenwand in *cm*! Verdeutlichen Sie Ihre Berechnungen an einer aussagekräftigen Skizze für Pferd und Eiche! **(2 Punkte)**
- 5. Unter einer Dicke der Eichenwand von 20*cm* bricht die Eiche zusammen. Beantworten Sie die Forschungsfrage! Begründen Sie Ihre Antwort! **(2 Punkte)**

³Die Quelle der Inspiration für die Aufgabe war eine Fahrt an die Ostsee und folgender Artikel: Entdecke das erste Nationale Naturmonument Deutschlands - Ivenacker Eichen und Hutewald

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Von Töpfen auf Tischen In einem Experiment wollen Sie die Wuchshöhe von 200 Sonnenblumen bestimmen. Bevor Sie überhaupt mit dem Experiment beginnen können, gibt es aber ein paar Abschätzungen über die Kosten und den Aufwand zu treffen. Zum einen müssen Sie die Sonnenblumen einpflanzen und müssen dafür Substrat bestellen. Zum anderen müssen Sie die Sonnenblumen auch bewegen und in ein Gewächshaus platzieren. Die Töpfe für die Keimung haben einen Durchmesser von 10cm und eine Höhe von 9cm. Der Kubikmeterpreis für Torf liegt bei 290 EUR.

- 1. Skizzieren Sie den Versuchsplan auf vier Tischen im Gewächshaus! (2 Punkte)
- 2. Berechnen Sie die benötigte Anzahl an Pflanztöpfen, wenn Sie Randpflanzen mit berücksichtigen wollen! (1 Punkt)
- 3. Welche Tischfläche in m^2 gegeben der Anzahl an Pflanztöpfen inklusive Randpflanzen benötigen Sie im Gewächshaus am Anfang der Keimungsphase? (3 Punkte)
- 4. Berechnen Sie die benötigte Menge an Torf in Liter *l*, die Sie für das Befüllen der Pflanztöpfe benötigen! Gehen Sie von *einem Zylinder* für die Pflanztöpfe aus! **(3 Punkte)**
- 5. Berechnen Sie die Kosten in EUR für Ihre Torfbestellung! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Solar- & Biogasanlagen Um die Energiekosten Ihres Betriebes zu senken, wollen Sie eine Solaranlage auf den Rinderstall montieren lassen. Sie messen Ihren Stall und finden folgende Maße wieder. Die vordere Seite des Rinderstall hat eine Höhe h_{V} von 6.5m. Die hintere Seite des Rinderstall hat eine Höhe h_{b} von 8m. Der Rinderstall hat eine Tiefe t von 15m und eine Breite b von 50m.

- 1. Skizzieren Sie den Rinderstall auf dem die Solaranlage montiert werden soll! Ergänzen Sie die Angaben für die Höhen h_V , h_b , die Tiefe t und die Breite b des Stalls! **(2 Punkte)**
- 2. Berechnen Sie die Fläche der schrägen, neuen Solaranlage auf dem Rinderstall! (3 Punkte)

Ebenfalls planen Sie eine neue Biogasanlage für Ihren Betrieb. Der neue Methantank hat einen Radius r von 1.2m. Leider gibt es ein paar bauliche Beschränkungen auf dem Grundstück. Ihr Fundament des zylindrischen Methantanks kann nur ein Gewicht von maximal 15t aushalten bevor der Tank wegbricht. Sie rechnen eine Sicherheitstoleranz von 10% ein beinhaltend das Gewicht des Methantanks. In flüssiger Form hat Methan bei -80° C eine Dichte von $240kg/m^3$. Bei -100° C hat Methan eine Dichte von $280kg/m^3$. Sie betrieben Ihre Anlage bei -90° C.

- 3. Extrapolieren Sie die effektive Dichte des Methans in Ihrem Methantank! Welche Annahme haben Sie getroffen? (1 Punkt)
- 4. Berechnen Sie wie viel Kubikmeter m^3 Sie in den Methantank füllen können, bevor das Fundament nachgibt! (2 Punkte)
- 5. Berechnen Sie die maximale Höhe h_{max} in m für den gefüllten Methantank mit dem Radius r, bevor das Fundament wegbricht! (2 **Punkte**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Stichworte: Riesenfaultier • Evolution der Avocado • Bluetooth • Blauzahn • Colonia Dignidad • ODESSA • Rattenlinie • Adolf Eichmann

Aligatorenbirnen und Blaubeeren "Sind Sie ein Riesenfautier oder warum kaufen Sie so viele Aligatorenbirnen?", spricht es hinter Ihnen. Irritiert drehen Sie sich um und blicken in das puderrote Gesicht von einem Studienrat mit Stock. "Wieso?", entfährt es Ihnen und Sie bereuen sogleich die Frage. Sofort werden Sie zu einem Whiteboard voller roter Schnüre geschliffen und müssen folgenden mathematischen untermauerten Argumenten im Lidl über sich ergehen lassen. Da kommen Sie nicht mehr raus, also können Sie auch gleich mitmachen. Das Problem liegt in Chile⁴. Tja, die Deutschen und Südamerika.

Zuerst werden Ihre Fähigkeiten getestet, der Mathematik folgen zu können. Oder berechnen Sie gerade den Einkauf von einem Studienrat mit Stock?

- 1. Wenn 4 Blaubeerschalen 7.56 Euro kosten, wie viel kosten 8 Schalen? (2 Punkte)
- 2. Wenn Sie die 8 Blaubeerschalen gekauft haben, wie viele Aligatorbirnen zu je 0.99 EUR können Sie sich dann noch für 50 EUR leisten? (1 Punkt)

Das Whiteboard beinhaltet folgende Liste mit Informationen zum Wasserverbrauch bei der Produktion von Gemüse aus Chile. Seltsam, was man so alles in einem Lidl über Gemüse erfährt.

- Ein Kilo Strauchtomaten benötigt 170l Wasser. Eine Strauchtomate wiegt 90 125g.
- Ein Kilo Salat benötigt 120l Wasser. Ein Salatkopf wiegt 310 520g.
- Ein Kilo Avocado benötigt 1100l Wasser. Eine Avocado wiegt 130 400g.
- Ein Kilo Blaubeeren benötigt 880l Wasser. Eine Blaubeere wiegt 3.2 3.8g.
- 3. Berechnen Sie den Wasserverbrauch für die Produktion für jeweils eine Strauchtomate, einem Salat, einer Avocado und einer Blaubeeren. Stellen Sie das Ergebnis als Tabelle dar! (3 Punkte)

Chile exportiert im großem Ausmaß Blaubeeren und Avocados. In dem Exportjahr 2021 blieben die Erträge von Blaubeeren mit 8×10^4 t in dem prognostizierten Rahmen. Die Menge steigerte sich um 6.1%. Die Exporte für Avocados stiegen in dem gleichen Zeitraum um 22.1% auf 2×10^5 t.

4. Wie viele Liter Wasser hat Chile in dem Exportjahr 2020 exportiert? (2 Punkte)

Chile ist eines der wenigen Länder der Welt, die ihr Wasser komplett privatisiert haben. Derzeit sind nur zwei Prozent des Wassers des Landes für den häuslichen Verbrauch vorgesehen. In den Dörfern der Anbauregionen versorgen Tankwagen die Bevölkerung jede Woche mit Wasser, es gibt etwa 61 Liter Wasser pro Kopf für den täglichen Bedarf. In *Deutschland* liegt der Verbrauch bei 10 - 15 Liter pro Minute Duschen und 8 - 17 Liter pro Spülmaschinenlauf.

5. Mit der rationierten Wassermenge aus Chiles Anbaugebieten können Sie in *Deutschland* wie oft Ihren Bedarf stillen? (1 Punkt)

Das alles hätten Sie nicht von einem Studienrat mit Stock erwartet. Ganz schön viele Informationen wurden da zusammengetragen.

6. Nennen Sie eine *Daten*quelle im Internet, wo Sie mehr Informationen zu landwirtschaftlichen Daten oder klimatischen, wirtschaftlichen und gesellschaftlichen Daten erhalten! **(1 Punkt)**

⁴Die Quelle der Inspiration für die Aufgabe waren folgende Reportagen: "'Bis zum letzten Tropfen"' in AMNESTY – Magazin der Menschenrechte vom August 2021 und "'Wasserknappheit in Chile: Eine Folge der Privatisierung?"' in Die Welternährung dem Fachjournal der Welthungerhilfe vom April 2022.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Stichworte: Kardaschow-Skala • Dyson-Sphäre • Hohlerde • Entropie • Proton $r_P = 1.7 \times 10e - 15$ • Wasserstoff $r_H = 5.3 \times 10e - 11$

Die Dampfnudelerde "Was für einen Unsinn!", rufen Sie. Jetzt haben Sie kostbaren Schlaf prokrastiniert um einem Ernährungswissenschaftler auf YouTube über die Erde als Dampfnudel zu lauschen. Irgendwie passt es dann doch mit der Analogie. Übermüdet müssen Sie darüber nachdenken, warum vor 66 Millionen Jahren die Dinosaurier - so groß sie auch waren - nicht von der Schwerkraft zu Boden gerissen wurden. Hat der Dampfplauderer etwa recht und war die Schwerkraft vor Millionen von Jahren eine andere? Sind deshalb alle Lebewesen auf der Erde *heutzutage* so viel kleiner, weil die Schwerkraft größer ist als damals? War die Erde kleiner und hatte weniger Masse? Oder ist es nur ein Rechenfehler wie bei der Theorie der Hohlerde von Edmond Halley aus dem 17.–18. Jahrhundert? Müde reiben Sie sich die Augen. So wird es nichts mehr mit dem Schlafen, dann können Sie auch mal etwas rechnen⁵.

Betrachten wir die Schwerkraft oder Gewichtskraft, die auf Lebewesen damals und heute gewirkt haben soll. Nehmen Sie für die Fallbeschleunigung g der Erde heutzutage einen Wert von 9.78m/s^2 an. Im Weiteren hat die Erde einen ungefähren Durchmesser von $1.235 \times 10^4 \text{km}$ und eine mittlere Dichte ρ von 5.86g/cm^3 . Das Gewicht von einem heute lebenden asiatischen Elefanten liegt bei 3t bis 5t und das Gewicht von einem Tyrannosaurus rex (T. rex) bei 4.5t bis 8t.

- 1. Welchen Durchmesser müsste die Erde vor 66 Millionen Jahren gehabt haben, wenn Dinosaurier und Elefanten die gleiche Gewichtskraft $\overrightarrow{F_G}$ damals und heute erfahren hätten? Beantworten Sie die Frage anhand der folgenden Teilaufgaben!
 - a) Berechnen Sie die Fallbeschleunigung von vor 66 Millionen Jahren unter der obigen Annahme gleich wirkender Gewichtskraft $\overrightarrow{F_G}$ auf Elefant und Dinosaurier! (1 Punkt)
 - b) Berechnen Sie Masse der heutigen Erde! (2 Punkte)
 - c) Schließen Sie über die Masse auf den Durchmesser der Erde vor 66 Millionen Jahren! (2 Punkte)
- 2. Beantworten Sie die Eingangsfrage mit 1-2 Antwortsätzen! (1 Punkt)

Die Distanz zwischen Sonne und Erde entspricht 1.01 astronomische Einheiten (AE). Die Einheit 1 AE wird mit 1.52×10^8 km angegeben. Der *massebehaftete* Sonnenwind besteht aus 85% Wasserstoffkernen mit einer molaren Masse von 1.08g/mol, 10% Heliumkernen mit 3.92g/mol sowie 5% weiteren Atomkernen mit 152.01g/mol. Die Teilchendichte bei Eintritt in die Erdatmosphäre liegt zwischen 0.4 bis 100 Teilchen cm $^{-3}$ pro Sekunde mit einer mittleren Teilchendichte von 7cm $^{-3}$ pro Sekunde.

Lösen Sie den folgenden Aufgabenteil mit einer aussagekräftigen Skizze!

- 4. Berechnen Sie die Anzahl an massebehafteten Teilchen des Sonnenwindes, die die gesamte Erde pro Sekunde treffen! (2 Punkte)
- 5. Berechnen Sie die Anzahl an massebehafteten Teilchen des Sonnenwindes, die die Sonne pro Sekunde in alle Richtungen aussendet! (2 Punkte)
- 6. Berechnen Sie die Masse, die die Erde pro Jahr durch die *massebehafteten* Teilchen des Sonnenwind zunimmt! (2 Punkte)

⁵Die Quelle der Inspiration für die Aufgabe war folgender Artikel: "Skeptische Anmerkungen — Die Erde als Dampfnudel" in Der Humanistische Pressedienst

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Entschuldigung, ist das Ihre Feder in meinem Auge? So hört man häufiger höfliche Enten in Mastställen sagen. Das ist natürlich etwas ungünstig, den dann kommt es zu Picken und Kannibalismus. Denn wenn der Nachbar nervt, dann muss zu Maßnahmen gegriffen werden. Kennt jeder aus einer mittelmäßigen Wohngemeinschaft. Das wollen wir aber als vorsorgliche Enten-Halter:innen nicht⁶. Betrachten wir also einmal das Platzangebot (eng. *space allowance*, abk. *SA*) der Enten für vier Tätigkeiten und versuchen die notwendige Fläche zu optimieren. Wie immer gibt es dafür eine mathematische Formel:

$$SA = \sum_{i=1}^{n} (A_i \times PB_i)$$
 $A_i = \pi \times (r_i + R_i)^2$

mit

- SA dem benötigten Platzangebot aller aufsummierten Verhalten i.
- Ai dem benötigten Platz für ein Verhalten i.
- PBi dem Anteil des Auftretens eines Verhaltens i.
- r_i dem Radius Ente plus dem benötigten Radius für das Verhalten i.
- Ri dem notwendigen Abstand zu den Nachbarn für das Verhalten i.
- i dem Verhalten: (1) preening, (2) wing/leg stretching, (3) wingflapping und (4) dustbathing.

In der folgenden Tabelle 1 sind die Werte für r_i , R_i und PB_i für ein spezifisches Verhalten i aus drei wissenschaftlichen Veröffentlichungen dargestellt.

	Aldridge et al. (2021)	Baxter et al. (2022)	Jabcobs et al. (2019)
preening	31cm; 20cm; 8.1%	33cm; 17cm; 8.1%	34cm; 24cm; 1.2%
wing/leg stretching	34cm; 16cm; 6.3%	39cm; 25cm; 3.6%	34cm; 35cm; 6.3%
wingflapping	36cm; 26cm; 6.2%	34cm; 32cm; 1.2%	37cm; 25cm; 1.2%
dustbathing	37cm; 28cm; 1.2%	27cm; 30cm; 1.2%	28cm; 25cm; 1%

- 1. Erstellen Sie eine zusammenfassende Tabelle mit den mittleren Werten für r, R und PB aus der obigen Tabelle 1 für die jeweiligen Verhalten! (3 Punkte)
- 2. Ergänzen Sie eine Spalte mit dem benötigten Platz A für das jeweilige Verhalten, welches sich aus den mittleren Werten ergibt! (1 Punkt)
- 3. Berechnen Sie das benötigte Platzangebot SA für alle betrachteten Verhalten! (1 Punkt)
- 4. Skizzieren Sie die Werte r_i , R_i und A_i für zwei nebeneinander agierende Enten für ein Verhalten i. Nutzen Sie hierfür vereinfachte geometrische Formen! (2 **Punkte**)
- 5. Sie entnehmen der Literatur folgende Aussage zur Verteilung der Enten in der Fläche A: "Assuming, that the animals will optimally and equally distribute in an area A, we observe a small part, which is not covered. This area is called ω and is calculated with $\omega = \frac{A}{0.9069}$." Veranschaulichen Sie die Fläche ω in einer aussagekräftigen Abbildung! (1 Punkt)
- 6. Ein Tier braucht Platz für sich selbst. Berechnen Sie nun die Körperfläche α , die ein Tier einnimmt. Welche Annahmen haben Sie für die Berechnung der Körperfläche getroffen? (2 Punkte)

⁶Die Quelle der Inspiration für die Aufgabe war der folgende wissenschaftliche Artikel: EFSA Panel on Animal Health and Welfare, et al. (2023) Welfare of broilers on farm. EFSA Journal 21.2.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Nelken von den Molukken In der Ausstellung "Europa und das Meer" im Deutschen Historischen Museum in Berlin gab es folgendes Zitat über die Probleme der frühen Hochseeschifffahrt.

»Ohne ausreichende Zufuhr von Vitamin C stellen sich nach 45 Tagen die ersten Symptome ein; die ersten Toten sind nach 72 Tagen zu beklagen; nach 105 Tagen rafft die Skorbut eine ganze Schiffsbesatzung dahin«

Ferdinand Magellan stach im Jahre 1519 in See um eine Passage durch den südamerikanischen Kontinent zu finden. Zu seiner Flotte gehörten fünf Schiffe - das Flaggschiff Trinidad, die San Antonio, die Victoria, die Concepción und die Santiago - mit einer Besatzung von insgesamt 245 Mann.

- 1. Stellen Sie den Verlauf der Anzahl an Matrosen auf einem Schiff der Flotte in der Form einer Überlebenszeitkurve dar! Beschriften Sie die Achsen entsprechend! (2 Punkte)
- 2. Was ist die Besonderheit der Überlebenszeitkurve? Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Schätzen Sie die Überlebenswahrscheinlichkeit nach 100 Tagen aus Ihrer Abbildung ab! (1 Punkt)

Der Chronist an Bord der Trinidad, Antonio Pigafetta, schrieb in seinem Bericht "[...] Um nicht Hungers zu sterben, aßen wir das Leder, mit dem die große Rahe zum Schutz der Taue umwunden war." Insbesondere die Mannschaft der Concepción erlitt große Verluste durch die Skrobut bei der Überquerung des Pazifiks, da durch Erkundungsfahrten weniger Zeit blieb, um wilden Sellerie aufzunehmen. Wilder Sellerie enthält $8000\mu g/150mg$ Vitamin C. Der Bedarf liegt bei 110mg pro Tag für Männer.

- 3. Berechnen Sie die notwendige Menge in t an aufzunehmenden wilden Sellerie auf die Concepción für die ununterbrochene Fahrt von drei Monate und 20 Tage über den Pazifik! (3 Punkte)
- 4. Skizzieren Sie die Überlebenszeitkurve für die Concepción im Vergleich zu der Überlebenszeitkurve der Trinidad! Beschriften Sie die Achsen! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Event Horizon – Am Rande des Universums Die Sonne hat eine aktuelle, angenommene Masse von 2×10^{29} kg. Wenn die Sonne nun am Ende ihrer Lebenszeit zu einem schwarzen Loch mit dem Radius von 3000m kollabiert, wird die Sonne 30% der aktuellen Masse verloren haben. Ein Lichtteilchen mit der Masse m_f und der Fluchtgeschwindigkeit v_f will dem schwarzen Loch entkommen. Sie haben folgende Formeln für die kinetische Energie des Lichtteilchens E_{kin} und der Graviationsenergie des schwarzen Lochs E_{grav} gegeben⁷.

$$E_{kin} = \frac{1}{2} m_f v_f^2 \qquad E_{grav} = \frac{G m_s m_f}{r_s}$$

mit

- m_f, gleich der Masse [kg] des fliehenden Objektes
- m_s, gleich der Masse [kg] des stationären Objekts
- r_s, gleich dem Radius [m] des stationären Objekts
- G, gleich der Gravitationskonstante mit $5.974 \cdot 10^{-11} m^3 (kg \cdot s^2)^{-1}$

Im Folgenden wollen wir uns mit der Frage beschäftigen, ob das Lichtteilchen der Gravitation des schwarzen Lochs entkommen kann.

- 1. Geben Sie die Formel für die Fluchtgeschwindigkeit v_f an! (1 Punkt)
- 2. Überprüfen Sie Ihre umgestellte Formel nach v_f anhand der Einheiten! (1 Punkt)
- 3. Berechnen Sie die notwendige Fluchtgeschwindigkeit v_f des Lichtteilchens mit den angegebenen Informationen! (2 Punkte)
- 4. Gehen Sie von einer Lichtgeschwindigkeit von $2.8 \times 10^8 m/s$ aus. Kann das Lichtteilchen der Gravitation des schwarzen Lochs entkommen? Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Stellen Sie den Zusammenhang zwischen dem sich verringernden Radius r des schwarzen Lochs bei gleichbleibender Masse m_s und der notwendigen Fluchtgeschwindigkeit v_f in einer Abbildung dar! (2 **Punkte**)
- 6. Ein Flugzeug und ein Handtuch stürzen aus großer und gleicher Höhe in ein schwarzes Loch. Welches der beiden Objekte überschreitet zuerst den Ereignishorizont des schwarzes Loches? Begründen Sie Ihre Antwort mathematisch! (2 Punkte)

⁷Die Quelle der Inspiration für die Aufgabe war ein Montagnachtfilm: Event Horizon – Am Rande des Universums

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Das Fermi Paradoxon Der Kernphysiker Enrico Fermi diskutierte 1950 auf dem Weg zum Mittagessen im Los Alamos National Laboratory mit seinen Kollegen angebliche UFO-Sichtungen und fragte schließlich: "Where is everybody?". Warum seien weder Raumschiffe anderer Weltraumbewohner noch andere Spuren extraterrestrischer Technik zu beobachten? Wie lange würde eine außerirdische Zivilisation benötigen um die gesamte Milchstraße zu besuchen, wenn das maximale Reisetempo die Geschwindigkeit der Voyager 1 Sonde wäre?⁸

Wir treffen folgende Annahmen. Eine außerirdische Zivilisation schickt drei Voyager 1 ähnliche Sonden mit der Geschwindigkeit von $5.9256 \times 10^4 km/h$ los um sich auf den erreichten Planeten selbst zu replizieren. Nach 1000 Jahren ist die Replikation abgeschlossen und wiederum drei Sonden werden ausgesendet. Gehen Sie von 6.23 Lichtjahren als mittlerer Abstand der Sterne in der Milchstraße aus. Es gibt 10^{11} Sterne in der Milchstraße. Nehmen Sie eine Lichtgeschwindigkeit von $2.8 \times 10^8 m/s$ an.

- Skizzieren Sie in einer Abbildung die ersten drei Schritte der Vervielfältigung der Sonden in der Galaxie! Beschriften Sie die Abbildung mit der Dauer und der Anzahl an Sonden für jeden Schritt der Vervielfältigung! (4 Punkte)
- Berechnen Sie die theoretische Anzahl an Vervielfältigungsschritten die benötigt werden um mit einem einzigen Vervielfältigungsschritt die gesamten Sterne der Milchstraße mit Sonden zu besuchen! (2 Punkte)
- 3. Berechnen Sie die Dauer, die eine außerirdische Zivilisation annährungsweise benötigt um die gesamten Sterne der Milchstraße mit Sonden zu besuchen! (2 Punkte)
- 4. Bei einem vermutetet Alter der Erde von 4.1×10^9 Jahren, wie oft war dann eine Sonde einer außerirdischen Zivilisation schon zu Besuch? Korrigieren Sie Ihre Antwort mit dem Wissen, dass sich die Kontinentalplatten einmal alle 10^8 Jahre vollständig im Erdinneren umgewandelt haben! (2 Punkte)

⁸Die Quelle der Inspiration für die Aufgabe war folgender Wikipediaeintrag: Fermi-Paradoxon

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Pyramiden bauen Es stehen die bayrischen Pyramidentage an und Sie sind auf abenteuerlichen Wegen für den Bau der Pyramiden zuständig. Zu allem Überfluss handelt es sich auch noch eine *Reenactment* Veranstaltung. Thema der diesjährigen Pyramidentage sind die Pyramiden von Meroe, die den Königen und Königinnen des historischen Reiches von Kusch in Nubien, dem heutigen Sudan, als Grabstätten dienten. Die Pyramiden in Meroe fallen durch ihren steilen Winkel von 73 Grad im Vergleich zu den ägyptischen Pyramiden mit 54 Grad auf. Die durchschnittliche Seitenlänge der Grundfläche einer Pyramide beträgt 32 Königsellen. Eine Königselle misst 52.4cm.

Lösen Sie diese Aufgabe mit Hilfe einer Skizze der Pyramide. Bezeichnen Sie Seiten und die Winkel der Pyramide entsprechend!

- 1. Bei der Königspyramide von Meroe soll eine Seitenlänge der Grundfläche 32 Königsellen lang sein. Welche Höhe der Königspyramide in *m* ergibt sich? **(1 Punkt)**
- 2. Die Außenflächen der Pyramide soll begrünt werden. Für die Bepflanzung muss eine 4cm dicke Torfschicht auf die Pyramide aufgebracht werden. Berechnen Sie die ungefähre Menge an benötigten Torf in m^3 ! (2 Punkte)

Wie in jedem guten *Reenactment* gibt es viel Oberschicht, aber nur 5 Sklaven, die Ihnen bei dem Befüllen der Pyramide mit Schutt zu Seite stehen. Leider haben Ihre Sklaven zu allem Überfluss auch noch chronische Schulterschmerzen entwickelt, als sie von der anstehenden Aufgabe erfahren haben. Gehen Sie daher von einer Effizienz der Sklaven von 80% aus. In eine Schubkarre passen 90 Liter.

- 3. Wie oft müssen Ihre maladen Sklaven die Rampe mit der Schubkarre zur Spitze der Pyramide hochfahren um die Pyramide mit Schutt zu füllen? (1 Punkt)
- 4. Berechnen Sie die Länge der Rampe zur Spitze der Pyramide mit einem Anstellwinkel von 9°! (2 Punkte)
- 5. Wie weit reicht Ihre Rampe vom Fuß der Pyramide in die bayrische Landschaft? (2 Punkte)

Bei der Besichtigung der Pyramide teilt Ihnen der leicht übergewichtige Pharao (Nebenberuf *Versicherungsverteter*) mit, das die Pyramide zu flach sei und somit nicht in die bayrische Landschaft passen würde. Sie müssen nochmal ran.

6. Die Grundfläche der Pyramide ändert sich nicht. Berechnen Sie die Änderung der Höhe in Königsellen, wenn sich der Anstellwinkel der Pyramide um 6° ändert! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Geocaching – Von Satelliten und Plastikdosen Es ist Wochenende und das Wetter ist *sweet*. Sie schwingen sich auf Ihr Cachermobil um mit 19km/h, geleitet von modernster Satellietentechnologie und einem Supercompter aus dem Jahr 2000 in Ihren Händen, Plastikdosen in der Natur und an sehenswerten Orten zu finden. Sie wollen diesmal endlich die abwärts Schwierigkeitschallenge durchführen. Die Reihenfolge der Caches nach Schwierigkeitswertung gibt daher die von Ihnen abzufahrenden Orte vor. Die Terrainund Schwierigkeitswertungen laufen von 1 (leichteste Wertung) bis 5 (schwierigste Wertung) in 0.5 Schritten. Folgende Informationen zu den Orten und den entsprechenden Caches stehen Ihnen für Ihre Planung der Route zu Verfügung⁹.

Ort	Cache	Wertung (S T G)
Α	GCIRRXX	4.0 1.5 Normal
В	GCL1SG0	2.0 4.5 Klein
С	GC9PGOU	4.5 2.5 Klein
D	GCXUW9P	1.5 3.5 Klein
Е	GCV61AO	3.5 3.0 Mikro

Im Weiteren sind Ihnen folgende Informationen zu den Entfernungen der Orte zugänglich. Der Entfernungsvektor \overrightarrow{AB} ist 4km. Im Weiteren ist Ihnen der Entfernungsvektor \overrightarrow{CB} mit 5.5km bekannt. Der Entfernungsvektor \overrightarrow{BE} ist das 1.2-fache des Entfernungsvektor \overrightarrow{CB} . Wenn Sie von dem Ort A den Ort C anpeilen, so liegt der Ort B ungefähr 25° nördlich. Wenn Sie von dem Ort C den Ort B anpeilen, so liegt der Ort D ungefähr 50° östlich. Vom Ort B betrachtet, bilden die Orte C und D einen rechten Winkel am Ort B. Der Ort B liegt auf gerader Linie zwischen den Orten C und E. Somit liegt der Ort E nördlich von B. Die Strecke zwischen A und E ist nicht passierbar. Sie starten an dem Ort D Ihre Cachertour.

- 1. Lösen Sie diese Aufgabe mit Hilfe einer aussagekräftigen Skizze der Orte und Caches. Bezeichnen Sie die Strecken und die Winkel Ihrer Skizze entsprechend! (2 Punkte)
- 2. Welche Strecke in *km* legen Sie bei der Bewältigung der abwärts Schwierigkeitschallenge zurück? **(5 Punkte)**
- 3. Gehen Sie von einer zusätzlichen Suchzeit in Stunden für die Caches an den jeweiligen Orten zur reinen Reisezeit mit Ihrem Cachermobil aus. Die Suchzeit in Stunden für jeden einzelnen Cache wird durch die Funktion

$$Suchzeit = 0.2 + 0.15 \cdot Schwierigkeit$$

beschreiben. Wie lange in Stunden benötigen Sie um die abwärts Schwierigkeitschallenge zu erfüllen? (3 Punkte)

4. An der höchsten Schwierigkeit müssen Sie angeln. Ihre Angel ist ausgefahren 5m lang. Erreichen Sie einen Cache in der Höhe von 6.8m? Berechnen Sie dazu Ihre maximale mögliche Angelhöhe! Welche Annahmen mussten Sie treffen um die Aufgabe zu lösen? (2 Punkte)

⁹Die Quelle der Inspiration für die Aufgabe war folgende Tätigkeit: Geocaching – Mach mit bei der weltweit größten Schatzsuche.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Stichworte: Brot aus Luft • Walöl • Haber-Bosch-Verfahren • 1. Weltkrieg • 40% N im menschlichen Körper • Positivist

Die atmende Wand und Brot aus Luft Als Kellerkind vom Dorf wollen das Ausmaß der Radonbelastung in ihrem Kellerzimmer bestimmen und lüften daher nicht. Spart dann auch Energie und lüften wird sowieso überschätzt. Während einer Messperiode von 7:00 Uhr bis 19:00 bestimmen Sie dreimal automatisch die Radonbelastung in Ihrem Kellerraum in Bq/m^3 . Es ergibt sich folgende Abbildung¹⁰.

1. Wie lange dauert es in Stunden bis Sie eine kritische Belastung von $400Bq/m^3$ in Ihrem ungelüfteten Kellerraum erreicht haben? (2 Punkte)

Radon zerfällt mit einer Halbwertszeit von 2.8d zu Polonium. Polonium wiederum zerfällt mit einer Halbwertszeit von 160d zu Blei. Nur Radon und Polonium tragen zur radioaktiven Strahlenbelastung bei.

2. Wie lange dauert es in Stunden bis Ihre kritische Radonbelastung von $400Bq/m^3$ auf unter $80Bq/m^3$ gefallen ist? (4 Punkte)

Folgende Tabelle enthält die Informationen zur Zusammensetzung der normalen Umgebungsluft.

	Vol-%	M [g/mol]	ppm
Stickstoff	79.7	28.1	
Sauerstoff	20.45	16.5	
Kohlenstoffdioxid	0.029	12.5	

3. Rechnen Sie die Volumenprozente (Vol-%) der Umgebungsluft in die entsprechenden ppm-Werte um und ergänzen Sie die berechneten ppm-Werte in die Tabelle! (1 Punkt)

Während Sie Ihr etwas pappiges Toastbrot mampfen kommt Ihnen die Dokumentation über Brot aus Luft in den Sinn. Sie denken darüber ein wenig nach. Für die Umwandlung von Stickstoff N_2 mit Wasserstoff H_2 zu Ammoniak NH_3 gilt folgende Reaktionsgleichung 11:

$$N_2 + 3H_2 \rightarrow 2NH_3$$

Ein Mol eines beliebigen Gases hat bei normalen Umweltbedingungen ein Volumen von 22.4 Liter.

- 4. Welche Masse an Ammoniak in Kilogramm kg können Sie aus einem Kubikmeter m^3 Luft unter normalen Umweltbedingungen gewinnen? (2 Punkte)
- 5. Wieviel Ammoniak in mol erhalten Sie aus einem Kubikmeter Luft? (1 Punkt)

 $^{^{10}\}mathrm{Die}$ Quelle der Inspiration für die Aufgabe war folgender Artikel: Atmende Wand

¹¹Die Quelle der Inspiration für die Aufgabe war folgender Artikel: Haber-Bosch-Verfahren – Brot aus Luft

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Armee der Finsternis Ihr Studentenjob war nach Ladenschluss bei Penny die Regale einzuräumen. Dabei ist Ihnen in der Auslage der Sonderangebote das Necronomicon¹² in die Hände gefallen. Nun sind Sie ein Magier der Zeichen geworden! Also eigentlich können Sie nur Mathe und das dämliche Necronomicon hat Sie in die Vergangenheit geschleudert... aber gut, was tut man nicht alles im Jahr 884 n. Chr. für den neuen Lehnsherren Fürsten Arthur. Sie bauen natürlich einen Schrottkugelturm um sich den Horden der Finsternis mit genug Schrott erwehren zu können! Ihnen stehen zwei mächtige magische Formeln zur Unterstützung zu Verfügung.

$$E_{kin} = \frac{1}{2} \cdot m \cdot v^2$$
 $E_{pot} = m \cdot g \cdot h$

mit

- m, gleich der Masse [kg] des Objekts
- h, gleich der Höhe [m] des ruhenden Objekts
- ν, gleich der Geschwindigkeit [m/s] des Objekts
- g, gleich der Erdbeschleunigung mit $9.81\frac{m}{s^2}$

Als erstes müssen Sie die Höhe des zu bauenden Schrottkugelturmes bestimmen. Hierfür ist wichtig zu wissen, dass sich die Bleitropfen mit einem Gewicht von 20mg zu gleichförmigen Bleitropfen bei einer Geschwindigkeit von 10m/s bilden.

1. Wie hoch müssen Sie den Schrottkugelturm bauen lassen, damit sich runde Bleikugeln durch die Fallgeschwindigkeit von 10m/s bilden? (3 Punkte)

Ihre erstellten Schrottkugeln sind leider zu groß und somit sind zu wenige Schrottkugeln in einer Ladung. Damit können Sie die Armee der Finsternis nicht aufhalten. Die Sachlage müssen Sie einmal mathematisch untersuchen.

- 2. Nennen Sie die beiden geometrischen Formen aus denen sich näherungsweise ein Tropfen zusammensetzt! Erstellen Sie eine beschriftete Skizze des Tropfens! (2 Punkte)
- 3. Sie messen eine Länge des Tropfens von 3.2mm. Die Löcher im Sieb erlauben ein Tropfendurchmesser von 1.5mm. Welchen Durchmesser in mm haben Ihre produzierten Bleikugeln? (3 Punkte)

Sie haben jetzt die 2.3×10^5 Bleikugeln zusammen. Blei hat eine Dichte von $11.34q/cm^3$.

4. Wie schwer in Kilogramm kg sind die 2.3×10^5 produzierten Bleikugeln, die Sie jetzt auf die Burgmauer transportieren müssen? (1 Punkt)

Am Ende müssen Sie noch die Produktion von dem Bleischrott im Turm optimieren.

5. Wie groß in cm^2 ist Ihr quadratisches Sieb am oberen Ende des Turms, wenn Sie pro Fall ca. 700 Bleikugeln produzieren wollen und die Bleikugel im Fall 1.2cm Abstand haben müssen? (1 Punkt)

 $^{^{12}}$ Ein wirklich gefährliches Buch ist: *Du bist genug: Vom Mut, glücklich zu sein* von Fumitake Koga und Ichiro Kishimi

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Armee der Kaninchen Leider hat es mit Ihrer Koalakuschelschule in Down Under nicht geklappt. War vielleicht auch nicht *so* die beste Idee... aber dafür haben Sie eine Neue! Oder wie es Mike Tyson zugeschrieben wird: "Ich wurde nie niedergeschlagen, ich war immer am Aufstehen!". Daher machen Sie jetzt einen Großhandel mit Kaninchenfleisch und damit dem teuersten Fleisch in Australien auf. Moment, hopsen hier nicht, seit Thomas Austin im Jahr 1860 ungefähr 28 Kaninchen entlassen hat, Millionen von Kaninchen rum? Wieso ist das Kaninchenfleisch dann so exklusiv? Dem wollen wir mal mathematisch nachgehen!¹³

Forscherinnen fand folgende Sättigungsfunktion für das jährliche Wachstum der gesamten Kaninchenpopulation im westlichen Australien.

$$f(t) = 9 \times 10^9 - 1.2 \times 10^9 \cdot 2.2^{-0.15 \cdot t + 4.1}$$

- 1. Skizzieren Sie die Sättigungsfunktion annäherungsweise in einer Abbildung! (1 Punkt)
- 2. Wie viele Kaninchen können nach der Sättigungsfunktion maximal im westlichen Australien leben? Ergänzen Sie den Wert in Ihrer Abbildung! (2 Punkte)
- 3. Wie viele Millionen Kaninchen leben nach der Sättigungsfunktion nach 18 Jahren auf dem australischen Kontinent? (1 Punkt)

Um den Kaninchen Einhalt zu gebieten wurde das Myxoma Virus und das Rabbit Haemorrhagic Disease Virus (RHDV) in 20 Kaninchen ausgebracht. Da die Kaninchen keine Maßnahmen gegen die Ausbreitung vornehmen können, verläuft die Ausbreitung mit einem wöchentlichen Wachstumsfakor von 1.4 nach folgender Formel.

$$N(t) = N(0) \cdot a^t$$

3. Wie viele Wochen benötigen die Viren um theoretisch die gesamte Kaninchenpopulation nach 16 Jahren Wachstum zu durchseuchen? (1 Punkt)

Das Myxoma Virus und das RHDV töten 98.5% der Kaninchenpopulation innerhalb weniger Wochen.

4. Wie lange in Jahren dauert es bis eine Kaninchenpopulation nach einer Viruspandemie wieder auf 50% der gesättigten Kaninchenpopulation angewachsen ist? (2 Punkte)

Thomas Austin entließ die Kaninchen im äußersten Westen von Australien. Australien hat eine West-Ost-Ausdehnung von 4400km und eine Nord-Süd-Ausdehnung von knapp 3400km. Die Kaninchen breiten sich radial mit einer Geschwindigkeit von 9.8km pro Jahr aus.

5. Wie lange dauert es in Jahren bis die Kaninchen jeden Ort in Australien erreicht haben? Lösen Sie die Aufgabe unter der Verwendung einer schematischen Skizze! (2 Punkte)

Eine jährliche Impfung gegen das Myxoma Virus und das Rabbit Haemorrhagic Disease Virus (RHDV) kosten 12\$ pro Tier und der durchführende Arzt verlangt ca. 35\$ pro Tier.

6. In Ihrem Stall leben 1000 Mastkaninchen. Mit welchen jährlichen Zusatzkosten für die Impfungen der Kaninchen müssen Sie daher kalkulieren? (1 Punkt)

¹³Die Quelle der Inspiration für die Aufgabe war der folgendes YouTube Video: Incredible Stories – Why don't they eat wild rabbits in Australia? They have millions of them! The reason is surprising...

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Uckermark. Unendliche Weiten. Wir schreiben das Jahr 2024. Dies sind die Abenteuer der Kuh Fridolin und Ihnen. Grünes Gras unter Ihren Füßen und ein strammer Wind im Gesicht, egal wohin Sie schauen. Ein schmatzendes Geräusch ertönt unter Ihnen. Sie sinnieren, sollten Sie Ihre weiten Graslandschaften jetzt schon düngen? Dafür benötigen Sie die *Grünlandtemperatur*! Die Grünlandtemperatur (GLT) ist die Summe aller positiven Tagesmitteltemperaturen seit Jahresbeginn. Ab einer GLT von 200° kann mit der Stickstoffdüngung begonnen werden. Sie sehen nicht ein, Geld für einen Agrarmetrologen zu bezahlen. Also rechnen Sie mit folgenden Informationen zu Monatsmultiplikatoren des GLT-Wertes: Januar mit 0.5×, Februar mit 0.75× und März mit 1.1×. Sie haben noch im letzten Jahr folgende Temperaturen gemessen.

Datum	C°
01. Jan 2023	0.1
01. Feb 2023	1.2
01. Mrz 2023	3.5
01. Apr 2023	5.8

- 1. Erstellen Sie eine Skizze aus den Informationen aus der Temperaturtabelle! (1 Punkt)
- 2. Stellen Sie die linearen Funktionen $f_1(t)$, $f_2(t)$ und $f_3(t)$ aus der obigen Temperaturtabelle auf! (1 **Punkt**)
- 3. Bestimmen Sie die Stammfunktionen $F_1(t)$, $F_2(t)$ und $F_3(t)$ für Ihre linearen Funktionen aus der obigen Temperaturtabelle! **(1 Punkt)**
- 4. Osterglocken beginnen ab einer GLT von 210°C zu blühen. An welchem Tag im 1. Quartal des Jahres 2023 war dies der Fall? *Ignorieren Sie ein eventuelles Schaltjahr in Ihrer Berechnung.* **(4 Punkte)**

Auf dem Weg zu Ihrer Jonagoldplantage wurden Sie mit Ihrem Trecker von einer Gruppe elektrifizierter Renter abgedrängt. Der Trecker muss wieder aus dem Graben! Fridolin und die elektrifizierten Rentner ziehen an zwei, separaten Seilen. Dabei zieht Fridolin mit 180N. Die elektrifizierter Renter bringen eine Kraft von 190N auf.

Lösen Sie diese Aufgabe mit Hilfe einer aussagekräftigen Skizze der Kraftvektoren. Bezeichnen Sie die Kraftvektoren und die Winkel Ihrer Skizze entsprechend!

- 5. Im ersten Versuch legen Sie das Seil für Fridolin lotrecht über einen Ast oberhalb des Treckers. Die Rentner ziehen in einer geraden Linie über die Böschung hinweg am anderen Seil. Welche Kraft wird aufgebracht? (2 Punkte)
- 6. Im zweiten Versuch ziehen Fridolin und die Rentner mit einem 40° Winkel mit ihrem Seil an dem Trecker. Welche Kraft wird aufgebracht? (2 Punkte)
- 7. Mit welcher Beschleunigung ziehen Sie den 1.3t schweren Trecker *jeweils* aus dem Graben, wenn $F = m \cdot a$ gilt? (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

In der Kartonagenfabrik Wenn man sich zu spät anmeldet, dann ist die Exkursion nicht so toll. Also geht es mit Rektor Skinner und Mrs. Krabappel in die Kartonagenfabrik. Wie schon im vorherigen Semester... In der Kartonagenfabrik angekommen erfahren Sie, dass die Kartons zum Versand von Nägeln nicht hier zusammengebaut werden sondern das sich die Endfertigung in Flint, Michigan befindet. Unter anderem wird dort der berühmte *Doppelt gewellte, 5-mal-gefaltete, 0.7mm, 50-cm-Karton* durch Falzung hergestellt. Beim letzten Mal war Rektor Skinner die Stimmung zu schlecht und deshalb geht es erst nach Hause, wenn ein paar Aufgaben gelöst sind. Martin gefällt das. An dem Vorrat an Zigaretten von Mrs. Krabappel meinen Sie wenig Zuversicht zu erkennen.

Jetzt heißt es Kartons optimieren. Der nun zu optimierende, flache Karton hat eine Länge von 50cm und eine Breite von 21cm. Die Kartonagenmaschine in Flint soll dann einen quadratischen Eckenausschnitt der Länge \boldsymbol{x} falzen.

- 1. Erstellen Sie eine Skizze des Karton*blatt*rohlings! Beschriften Sie die Skizze mit den entsprechenden Längenangaben (1 Punkt)
- 2. Berechnen Sie die Falztiefe x für ein maximales Volumen des flachen Kartons! (3 Punkte)
- 3. Welches Volumen in Liter ergibt sich mit der von Ihnen berechneten Falztiefe x? (1 Punkt)
- 4. Sie wollen noch einen bündig mit dem Boden abschließenden Deckel für den Karton stanzen lassen. Wie groß ist die Fläche des Kartondeckel*blattr*ohlings in *cm*²? **(2 Punkte)**

Rektor Skinner möchte sich gerne wieder in seinem Vorgarten aufhalten und nicht die ganze Zeit von Bart mit Erdnüssen beworfen werden. Deshalb möchte er einen geräumigen Teil seines Vorgartens einzäunen. Ein Teil der Umzäunung bildet seine Vorderhauswand. Wegen Lieferschwierigkeiten stehen Rektor Skinner nur 100m Zaun zu Verfügung. Sie wollen nun die maximale Fläche des abgeschirmten Vorgartens in Abhängigkeit der Seitenlängen bei der Verwendung von 100m Zaun bestimmen!

- 5. Welche Seitenlängen für den Zaun ergeben sich für die maximale Fläche des abgeschirmten Vorgartens? (2 Punkte)
- 6. Berechnen Sie die Fläche des abgeschirmten Vorgartens! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Ein Pfund Insekten, bitte! Das wird wohl häufiger gehört werden, wenn wir die Menschheit mit Proteinen ausreichend ernähren wollen 14 . Schauen wir uns dazu einmal den Vergleich Deutschland zu Nigeria an. Nigeria hat eine der am schnellsten wachsenden Bevölkerungen der Welt und wird vermutlich im Jahr 2100 zu den Top 5 der bevölkerungsreichsten Länder zählen. Im Jahr 2020 leben ca. 8×10^7 Menschen in Deutschland und ca. 1.79×10^8 Menschen in Nigeria. Mit den Informationen wollen wir anfangen und dann eine Prognose für den Fleischkonsum im Jahr 2050 zu treffen.

Im folgenden ist Abbildung des Fleischkonsums im Jahr 2020 in Deutschland und Nigeria in [kg] einmal dargestellt.

- 1. Stellen Sie den Fleischkonsum in Deutschland und Nigeria im Jahr 2020 *pro Kopf* in einer aussagekräftigen Tabelle dar! **(2 Punkte)**
- 2. Ergänzen Sie in der Tabelle eine Spalte in der Sie für den Fleischkonsum in Nigeria auf Deutschland normieren, daher ins Verhältnis Nigeria/Deutschland, setzen! (1 Punkt)

In der nächsten Abbildung finden Sie die CO₂-Emission in [kg] nach Lebensmittel, die durch die Produktion entsteht, abgebildet.

3. Stellen Sie in einer Tabelle die Treibhausgasemissionen an CO_2 pro Kopf, die durch den Fleischkonsum in Deutschland und Nigeria im Jahr 2020 entstehen, dar! Ergänzen Sie auch hier das Verhältnis Nigeria zu Deutschland! (2 Punkte)

¹⁴Die Quelle der Inspiration für die Aufgabe war der folgende Artikel aus dem Spiegel: Acht Milliarden - sind wir bald zu viele Menschen auf der Erde?

In der folgenden Abbildung sehen Sie die Bevölkerungsentwicklung [Millionen] in Nigeria von 1950 bis ins Jahr 2030 fortgeführt.

- 4. Schätzen Sie graphisch die zu erwartende Bevölkerung [Millionen] in Nigeria im Jahr 2050, die sich anhand der Informationen aus der Abbildung ergibt!
 - a) Ohne Berücksichtigung der Covid-19-Pandemie! (1 Punkt)
 - b) Unter Berücksichtigung der Covid-19-Pandemie! (1 Punkt)
- 5. Berechnen Sie den geschätzten Fleischkonsum von Nigeria im Jahr 2050 unter der Annahme 80%-iger Angleichung der Lebensbedingungen zu Deutschland im Jahr 2020! (1 Punkt)
- 6. Berechnen Sie die prozentuale Steigerung der Treibhausgasemissionen an CO_2 in Nigeria im Jahr 2050 im Vergleich zum Jahr 2020, der sich durch den angeglichenen Fleischkonsum ergibt! (1 Punkt)
- 7. Berechnen Sie die prozentuale Steigerung der Treibhausgasemissionen an CO_2 in Nigeria, wenn die gesamte Proteinaufnahme durch Insekten ersetzt würde! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Tödliche Seuche AIDS – Die rätselhafte Krankheit Irritiert legen Sie die historische Ausgabe des Spiegels aus den 80zigern beiseite. Sie sind bei Ihrem Orthopäden und wollen einen AIDS-Test machen lassen. Woanders leider keinen Termin gekriegt... Immerhin denken Sie und Ihr Partner über Nachwuchs nach und da geht es eben nur durch ungeschützten Sex. Was wissen Sie nun aber über AIDS und dem diagnostischen AIDS-Test, den Sie nun machen werden?

Die Prävalenz von AIDS bei einem Menschen in Europa wird mit 0.5% angenommen. In 90% der Fälle ist ein HIV-Test positiv, wenn der Patient erkrankt ist. In 2.5% der Fälle ist ein HIV-Test positiv, wenn der Patient nicht erkrankt ist und somit gesund ist. Sie stutzen. Wie wahrscheinlich ist es denn eigentlich an AIDS erkrankt zu sein (K^+), wenn Sie einen positiven AIDS-Test vorliegen haben (T^+)? Gehen Sie für die folgenden Berechnungen von $n=3\times 10^4$ Patienten mit einem diagnostischen Test für AIDS aus. Sie nehmen sich also einen Kuli und fangen an auf der historischen Ausgabe des Spiegels zu rechnen¹⁵.

- 1. Welche Wahrscheinlichkeit Pr wollen Sie berechnen? (1 Punkt)
- 2. Zeichnen Sie einen Häufigkeitsdoppelbaum zur Bestimmung der gesuchten Wahrscheinlichkeit *Pr*! (2 **Punkte**)
- 3. Beschriften Sie den Häufigkeitsdoppelbaum, mit denen Ihnen bekannten Informationen zu der AIDS Erkrankung und dem AIDS-Test! (1 Punkt)
- 4. Füllen Sie den Häufigkeitsdoppelbaum mit den sich ergebenden, absoluten Patientenzahlen n aus! (2 **Punkte**)
- 5. Berechnen Sie die gesuchte Wahrscheinlichkeit Pr! (1 Punkt)

Bei dem folgenden Arztgespräch erfahren Sie, dass beim diagnostischen Testen *True Positives (TP)*, *True Negatives (TN)*, *False Positives (FP)* und *False Negatives (FN)* auftreten. Das verstehen Sie so noch nicht und deshalb stellen Sie für sich den Zusammenhang in einer 2x2 Kreuztabelle dar.

- Tragen Sie TP, TN, FP und FN in eine 2x2 Kreuztablle ein. Beschriften Sie die Tabelle entsprechend! (1 Punkt)
- 7. Berechnen Sie die Sensitivität und Spezifität des diagnostischen Tests für AIDS! Füllen Sie dafür die 2x2 Kreuztabelle mit den Informationen aus dem Häufigkeitsdoppelbaum aus! (2 Punkte)
- 8. Was beschreibt die Sensitivität und die Spezifität im Bezug auf die Gesunden und Kranken? Stellen Sie beide diagnostische Maßzahlen als Wahrscheinlichkeiten *Pr* dar! **(2 Punkte)**

¹⁵Die Quelle der Inspiration für die Aufgabe war der folgende wissenschaftlicher Artikel: Binder et al. (2022) Von Baumdiagrammen über Doppelbäume zu Häufigkeitsnetzen – kognitive Überlastung oder didaktische Unterstützung? Journal für Mathematik-Didaktik, 1-33

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Network-Marketing oder Schneeballschlacht! Eine Möglichkeit, leicht Geld zu verdienen, ist es anderen Menschen für Geld zu versprechen, wie man leicht reich werden kann. Am besten natürlich ohne viel Aufwand und ortsunabhängig. Dann wollen wir mal loslegen. Schnell ein YouTube-Werbevideo gedreht und auf geht es mit unserem Network-Marketing. Aber Moment, wie funktioniert Network-Marketing eigentlich und was hat das alles mit einer Schneeballschlacht zu tun? Wir wollen hier einmal in die Untiefen des "passiven Einkommens" abtauchen¹⁶.

Das Jahr 2022 war das erfolgreichste Jahr in der Geschichte von Direct Finanzanlagen Left/Right (D-FL/R). Das Unternehmen steigerte den Umsatz um rund 18 Prozent von 280 Millionen Euro im Jahr 2021. Doch wie viel kommt bei den Partnern an? Laut D-FL/R habe das Unternehmen 2.8×10^5 aktive Partner.

- 1. Berechnen Sie zuerst den Umsatz der Firma D-FL/R im Jahr 2022! (1 Punkt)
- 2. Wie viel von dem Umsatz im Jahr 2022 wird im Durchschnitt von jedem aktiven Partner erwirtschaftet? (1 Punkt)
- 3. Welche *monatlicher* Umsatz ergibt sich dadurch im Durchschnitt für jeden aktiven Partner bei einer direkten Provision von 30%? (1 Punkt)

Ihr zu vermarkendes Produkt, hinter dem Sie voll stehen, kostet 200EUR pro Einheit im Direktverkauf. Die direkte Provision für die erste Stufe beträgt 25%. Für die zweite, dritte und vierte Stufe betragen die indirekten Provisionen jeweils 3%, 2% und 1.5%. Jeder Ihrer angeworbenen "Partner" wirbt wiederum fünf Partner für sich selbst an. Pro Monat werden im Schnitt vier Einheiten vom Produkt verkauft. Sie wollen nun 2500EUR im Monat passiv – also durch indirekte Provisionen – erwirtschaften.

4. Ergänzen Sie die folgende Tabelle mit den obigen Informationen! (2 Punkte)

Stufe	Anzahl Partner	Umsatz/Stufe	Provision
1	Sie selber		
2			
3			
4			

5. Wie viele Partner müssen Sie auf der 2 Stufe anwerben um Ihr passives Einkommen durch indirekte Provision zu erreichen? Wie viele Menschen arbeiten am Ende indirekt für Sie? Stellen Sie den Zusammenhang graphisch dar! (3 Punkte)

Sie mussten zum Einstieg bei D-FL/R Einheiten des Produkts für 7000EUR kaufen. Diese Einheiten können Sie nur direkt verkaufen. Leider mussten Sie den Kauf über einen Kredit über 4.7% p.a. über 72 Monate finanzieren.

- 6. Berechnen Sie die Gesamtsumme, die Sie als Kredit abbezahlen müssen! (2 Punkte)
- 7. Wie viele Einheiten müssen Sie pro Monat verkaufen um die anfallenden Zinsen durch die direkte Provision zu erwirtschaften? (1 Punkt)
- Wie lange in Monaten benötigen Sie um den Kredit durch die direkte Provision abzubezahlen? (1
 Punkt)

¹⁶Die Quellen der Inspiration für die Aufgabe waren folgendes YouTube Video: Simplicissimus – Die meistgesuchte Betrügerin der Welt und der Artikel: Deutschlandfunk Kultur – Die Illusion, schnell reich zu werden

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Höhlen & Drachen Nachdem Sie sich begeistert in der Serie *Stranger Thinks* verloren haben, wollen Sie bei einem Ihrer Freunde einmal *Höhlen & Drachen* ausprobieren. Um Geld zu sparen, das Zeug kostet echt, wurde etwas an den Regeln gebastelt. Schnell stellen Sie fest, dass hier ganz schön viele unterschiedliche Würfel durch die Gegend fliegen. Daher müssen Sie sich jetzt einiges an Fragen stellen.

In dem Spiel haben Sie nun auf einmal 6 zwölfseitige Würfel (6d12) zum würfeln in der Hand. Wenn Sie eine 12 würfeln, haben Sie einen Erfolg.

- 1. Berechnen Sie die Wahrscheinlichkeit genau 4 Erfolge zu erzielen! (2 Punkte)
- 2. Berechnen Sie die Wahrscheinlichkeit keinen Erfolg zu erzielen! (1 Punkt)

Sie betrachten nun aufmerksam die ausufernden Ausrüstungstabellen. Ihnen wird aber geholfen und Sie müssen sich jetzt nur zwischen der Axt oder dem Schwert entscheiden.

3. Würden Sie die Axt mit zwei achtseitigen Würfeln (2d8) als Schaden oder das Schwert mit einem vierseitigen Würfel plus 3 (1d4+3) als Schaden bevorzugen? Begründen Sie Ihre Antwort mathematisch! (1 Punkt)

Jetzt wird es immer wilder, da Sie sich jetzt überlegen müssen, wie wahrscheinlich es ist, dass Ihr Rettungswurf gegen den zaubernden Hexer funktioniert. Sie haben folgende Wahrscheinlichkeiten gegeben. Die Wahrscheinlichkeit für das Ereignis A, der Rettungswurf ist erfolgreich, ist Pr(A) = 0.7, die Wahrscheinlichkeit für das Ereignis B, der Zauberwurf des Hexers ist erfolgreich, ist Pr(B) = 0.75. Sie haben mitgezählt und festgestellt, dass in 50 von 100 Fällen Ihr Rettungswurf bei einem erfolgeichen Zauber funktioniert hat.

- 4. Erstellen Sie eine 2x2 Kreuztabelle mit den Ereignissen A und B sowie den Gegenereignissen \bar{A} und \bar{B} mit einen $\Omega = 100$. Beachten Sie hierbei die entsprechenden Wahrscheinlichkeiten für die Ereignisse A und B! (2 **Punkte**)
- 5. Bestimmen Sie $Pr(A \cap B)$! (1 Punkt)
- 6. Erstellen Sie ein Baumdiagramm mit den passenden Informationen aus der 2x2 Kreuztabelle! (2 Punkte)
- 7. Bestimmen Sie Wahrscheinlichkeit Pr(A|B), dass Ihr Rettungswurf gelingt, wenn der Hexer erfolgreich gezaubert hat! (1 **Punkt**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Retrocheck im TV "Und hier ist sie wieder, die Show der fantastischen Preise. Seien Sie mit dabei, wenn es wieder heißt: Der Preis ist heiß!", ertönt es und Sie fragen sich, ob Sie nicht doch lieber bezahlter Gast bei Barbara Salesch hätten sein sollten. Aber Sie brauchen das Geld und jetzt heißt es Spielschows farmen! Erstmal eine Kaffemaschine von Mitropa gewinnen. Ein Kandidat gewinnt die Kaffeemaschine von Mitropa, wenn nicht alle Kandidaten überbieten (eng. *outbid*). Mit Ihnen bilden Günther und Elke das Team der drei Kandidaten.

Name	P(win)	P(outbid)
Günther	0.2	0.05
Elke	0.3	0.11

- 1. Mit welcher Wahrscheinlichkeit gewinnen Sie die Kaffeemaschine von Mitropa, wenn keiner der Kandidaten überbietet? (1 Punkt)
- 2. Wenn Ihre Überbietungswahrscheinlichkeit *P(outbid)* bei 0.076 liegt, mit welcher Wahrscheinlichkeit gewinnt *keiner* die Kaffeemaschine von Mitropa? **(1 Punkt)**

Glücksrad für Arme auf der Kirmes! Leider hat es für Maren Gilzer nicht gereicht. Deshalb sind Sie jetzt auf der Kirmes und spielen mit Catwoman um das große Geld. Das Glücksrad hat 22 Felder. Sie drehen das Glücksrad zweimal. Auf 6 Feldern gewinnen Sie 3000EUR sonst 1500EUR. Ganz schön viel Geld und ganz schön zwielichtig hier...

- 3. Skizzieren Sie das Glücksrad und ergänzen Sie die Wahrscheinlichkeiten! (1 Punkt)
- 4. Zeichnen Sie das zugehörige Baumdiagramm für das zweimalige Drehen! Ergänzen Sie die Wahrscheinlichkeiten und die entsprechenden Ereignisse (2 Punkte)
- 5. Mir welcher Wahrscheinlichkeit gewinnen Sie 4500EUR? (1 Punkt)

Nach Ihrem Fiebertraum reisen Sie im Zug nach Köln um bei "Geh aufs Ganze!" mitzuspielen. Sie schaffen es tatsächlich ins Finale und können als Hauptgewinn ein Auto hinter einer der drei Türen gewinnen.

- 6. Bevor die Show beginnt, wird das Auto hinter eine zufällig bestimmte Tür gestellt. Mit welcher Wahrscheinlichkeit wird jeweils eine der drei Türen ausgewählt? Zeichnen Sie ein Baumdiagramm! (1 Punkt)
- 7. Mit welcher Wahrscheinlichkeit wählen Sie sofort die Tür mit dem Auto? Erweitere Sie das Baumdiagramm entsprechend! (1 Punkt)
- 8. Der Moderator öffnet nun eine der nicht gewählten Türen, aber natürlich nicht die mit dem Auto. Mit welcher Wahrscheinlichkeit steht das Auto hinter der anderen Tür? Erweitern Sie das Baumdiagramm entsprechend! (2 Punkte)
- 9. Lösen Sie nun das "Ziegenproblem"! Berechne Sie dazu die Wahrscheinlichkeiten der einzelnen Pfade. Lohnt sich ein Wechsel der anfangs gewählte Tür? Begründen Sie Ihre Antwort mathematisch! (2 Punkte)

Teil XII.

Angewandte Nutztier- und Pflanzenwissenschaften (M.Sc.)

128. Aufgabe (6 Punkte)

Vergleichen Sie die Standardabweichung mit dem Standardfehler und grenzen Sie die beiden Kennzahlen voneinander ab.

129. Aufgabe (8 Punkte)

Ihnen liegt folgendes Varianzanalysemodell mit der üblichen Beschreibung zur Auswertung des Merkmals fett- und eiweißkorrigierte Milchleistung pro Kuh und Jahr in kg vor:

$$Y_{ijkl} = \mu + Var_i + EKA_i + VarEKA_{ij} + V_k + b(L_{ij} - L) + e_{ijkl}$$

mit

- Yijkl: I-te Beobachtung
- μ: Populationsmittel
- Var_i: fixer Effekt der i-ten Variante (i: Kontrolle, Versuchsgruppe 1, Versuchsgruppe 2)
- EKA_i: fixer Effekt der j-ten Erstkalbealtergruppe (j: EKA ≤ 25 Monate, EKA > 25 Monate)
- VarEKAii: fixer Effekt der Interaktion Variante x Erstkalbealtergruppe
- V_k: zufälliger Effekt des Vaters
- $b(L_{ii} L)$: lineare Kovariable Laktationsnummer
- e_{ijkl} : zufälliger Restfehler

Erläutern Sie anhand dieses Beispiels die Begriffe fixer Effekt, Interaktion, zufälliger Effekt und Kovariable und grenzen Sie diese Begriffe voneinander ab.

130. Aufgabe (6 Punkte)

Wie bestimmen Sie die richtige Stichprobengröße? Welche Kennzahlen / statistische Maßzahlen benötigen Sie dabei und nennen Sie die Voraussetzungen.