Computer Architecture

Computer Science & Engineering

Chương 3

Phép số học

Các phép số học

- Các phép tính trên số nguyên
 - Cộng và Trừ
 - Nhân và Chia
 - Xử lý tràn
- Số thực với dấu chấm di động (Floating-Point)
 - Cách biểu diễn và các phép tính

Nhắc lại mạch số

Môn học:

- Nhập môn điện toán (Năm I)
- Thiết kế hệ thống số

Mach Half Adder **XOR** Half X adde y **XOR AND** S X y 0 0 0 0 **AND** 1 0 0 0 1 0 0

Mach Full Adder

$$S = x + y + C0$$

 $S = (x + y) + C0$
 $Tinh: S1 = x + y$

Tính: S2 = S1 + C0

Full adder (2)

C_0	X	y	S	C	C_0	S_1	C_1	C_2	C
0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	1	0	0	0
0	1	0	1	0	0	1	0	0	0
0	1	1	0	1	0	0	1	0	1
1	0	0	1	0	1	0	0	0	0
1	0	1	0	1	1	1	0	1	1
1	1	0	0	1	1	1	0	1	1
1	1	1	1	1	1	0	1	0	1

C = 1 when C1 = 1 or C2 = 1

4

Full adder (3)

Cộng nhiều Bits

Phép cộng số nguyên

Ví du: 7 + 6

- Tràn nếu kết quả tràn ngưỡng
 - Cộng 2 toán hạng trái dấu: không tràn
 - Cộng 2 toán hạng đều dương
 - Tràn nếu bit dấu của kết quả là 1
 - Cộng 2 toán hạng đều âm
 - Tràn nếu bit dấu của kết quả là 0

Phép trừ số nguyên

- Cộng số âm của toán hạng thứ 2
- Ví dụ: 7 6 = 7 + (-6)

+7: 0000 0000 ... 0000 0111

-6: 1111 1111 ... 1111 1010

+1: 0000 0000 ... 0000 0001

- Tràn nếu kết quả vượt ngưỡng
 - Phép trừ 2 toán hạng cùng dấu, không bao giờ tràn
 - Trừ 1 toán hạng âm với 1 toán hạng dương
 - Tràn nếu bit dấu của kết quả là 0
 - Trừ 1 toán hạng dương với 1 toán hạng âm
 - Tràn nếu bit dấu của kết quả là 1

Xử lý tràn

- Một số ngôn ngữ (như C) không xử lý tràn
 - Sử dụng lệnh MIPS: addu, addui, subu
- Các ngôn ngữ khác (như Ada, Fortran) yêu cầu xử lý tràn bằng ngoại lệ
 - Sử dụng lệnh MIPS: add, addi, sub
 - Khi có tràn, bẫy bằng ngoại lệ & xử lý:
 - Cất PC vào thanh ghi exception PC (EPC)
 - Nhảy đến chương trìn xử lý tràn
 - Dùng mfc0 khôi phục giá trị EPC value, trở về sau khi xử lý tràn

Phép nhân

Bắt đầu bằng phép nhân thuần túy

Length of product is the sum of operand lengths

Phần cứng thực hiện nhân

Bộ nhân cải thiện

Các bước song song: add/shift

- Một chu kỳ cho mỗi phép cộng (tích thành phần)
 - Có thể chấp nhận khi tần xuất thấp

Bộ nhân nhanh

- Sử dụng nhiều bộ cộng cùng lúc
 - Cost/performance tradeoff

- Có thể thực hiện theo cơ chế ống
 - Nhiều tác vụ nhân thực hiện cùng lúc

Lệnh nhân trong MIPS

- Kết quả sẽ là 64-bit, chứa trong 2 thanh ghi 32-bit
 - HI: chứa 32-bit cao
 - LO: chứa 32-bit thấp
- Lệnh nhân
 - mult rs, rt / multu rs, rt
 - 64-bit kết quả chứa trong HI/LO
 - mfhi rd / mflo rd
 - Chuyển từ HI/LO vào rd
 - Có thể kiểm tra giá trị HI xem kết quả phép nhân có tràn?
 - mul rd, rs, rt
 - 32 bits thấp của kết quả phép nhân -> rd

Phép chia

Toán hạng *n*-bit cho kết quả *n*-bit thương số và số dư

- Kiểm tra chia 0→ báo lỗi
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

BK TP.HCM

Phần cứng thực hiện chia

Bộ chia cải thiện

- Một chu kỳ cho mỗi phép trừ thành phần
- Tương tự rất nhiều với bộ nhân
 - Có thể dùng cùng một phần cứng cho cả 2

Bộ chia nhanh

- Không thể thực hiện song song như trong bộ nhân
 - Dấu trong mỗi phép trừ thành phần là điều kiện
- Có thể tạo bộ chia nhanh (e.g. SRT devision)

Lệnh chia trong MIPS

- Thanh ghi HI/LO chứa kết quả phép chia
 - HI: 32-bit số dư (remainder)
 - LO: 32-bit (kết quả) quotient
- Lệnh trong MIP
 - div rs, rt / divu rs, rt
 - Không kiểm tra tràn hoặc lỗi /0
 - Nếu có yêu cầu, phần mềm phải tự thực hiện
 - Sử dụng lệnh mfhi, mflo để lấy kết quả

Dấu chấm di động (Floating Point)

- Biểu diễn các số khác số nguyên (số thực)
 - Bao gồm cả số rất nhỏ lẫn số rất lớn
- Giống như biểu diễn số trong khoa học
- Kiểu nhị phân
 - \bullet $\pm 1.xxxxxxxx_2 \times 2^{yyyy}$

Kiểu float và double trong ngôn ngữ C

BK TP.HCM

Chuẩn của hệ thống số chấm di động

- Định chuẩn bởi Tổ chức IEEE(754-1985)
- Được phát triển nhằm đáp ứng tiêu chuẩn trình bày thống nhất
 - Dễ sử dụng và chuyển đổi giữa các bộ mã trong khoa học
- Hiện nay trở thành thông dụng
- Tồn tại 2 cách biểu diễn
 - Chính xác đơn(32-bit)
 - Chính xác kép (64-bit)

Dạng định chuẩn theo IEEE

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent - Bias)}$$

- S: bit dấu $(0 \Rightarrow (+), 1 \Rightarrow (-))$
- Normalized significand: 1.0 ≤ |significand| < 2.0</p>
 - Luôn có 1 bit trước dấu chấm, nên bit này thường ẩn
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

Tầm giá trị với độ chính xác đơn

- Giá trị (Exponents) 00000000 và 11111111 : dự trữ
- Giá trị nhỏ nhất
 - Số mũ: 00000001
 ⇒ số mũ thực chất sẽ là = 1 127 = -126
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Giá trị lớn nhất:
 - Số mũ: 11111110
 ⇒ số mũ thực tế sẽ là = 254 127 = +127
 - Fraction: $111...11 \Rightarrow \text{significand} \approx 2.0$
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Mức độ chính xác

- Mang tính tương đối
 - Xác định bởi các bit fraction
 - Đơn: khoảng 2⁻²³
 - Tương đương với 23 × log₁₀2 ≈ 23 × 0.3 ≈ 6: chính xác đến 6 số (hệ thập phân)
 - Kép: khoảng 2⁻⁵²
 - Tương đương với $52 \times \log_{10} 2 \approx 52 \times 0.3 \approx 16$: chính xác đến 16 số (hệ thập phân)

Ví dụ: Dấu chấm di động

- Biểu diễn số thực thập phân: −0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Đơn: $-1 + 127 = 126 = 011111110_2$
 - Kép: $-1 + 1023 = 1022 = 0111111111110_2$
- Single: 1011111101000...00
- Double: 10111111111101000...00

Ví dụ: (tt.)

Cho biết số thực thập phân của một số biểu diễn bằng dấu chấm di động (đơn) sau:

11000000101000...00

- S = 1
- Fraction = $01000...00_2$
- Fxponent = $10000001_2 = 129$

$$x = (-1)^{1} \times (1 + 01_{2}) \times 2^{(129 - 127)}$$

$$= (-1) \times 1.25 \times 2^{2}$$

$$= -5.0$$

4

Số vô hạn (Infinities) và Số không hợp lệ (NaNs)

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity
 - Dùng để kiểm tra kết quả của phép tính
- Exponent = 111...1, Fraction $\neq 000...0$
 - Not-a-Number (NaN)
 - Số không hợp lệ
 - Ví dụ: chia cho zero: 0.0 / 0.0
 - Dùng để kiểm tra kết quả của phép tính

Phép cộng

- Giả sử có phép cộng 2 số thập phân (4 ký số)
 - $-9.999 \times 10^{1} + 1.610 \times 10^{-1}$
- 1. Điều chỉnh dấu chấm
 - Dời số mũ của số nhỏ hơn cho đồng số mũ
 - \bullet 9.999 × 10¹ + 0.016 × 10¹
- 2. Cộng hệ số
 - \bullet 9.999 × 10¹ + 0.016 × 10¹ = 10.015 × 10¹
- 3. Chuẩn hóa kết quả & kiểm tra ngưỡng
 - -1.0015×10^2
- 4. Làm tròn và điều chỉnh nếu cần thiết
 - -1.002×10^2

4

Cộng nhị phân

- Giả sử cộng 2 số nhị phân (4 ký số):
 - $-1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Điều chỉnh dấu chấm
 - Dời số mũ của số nhỏ hơn cho đồng số mũ
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Cộng hệ số
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Chuẩn hóa kết quả & kiểm tra ngưỡng
 - $1.000_2 \times 2^{-4}$, (nằm trong ngưỡng cho phép)
- 4. Làm tròn và điều chỉnh nếu cần thiết
 - $1.000_2 \times 2^{-4}$ (không cần điều chỉnh) = 0.0625

Phần cứng bộ cộng (FP)

- Phức tạp hơn rất nhiều so với bộ cộng số nguyên
- Nếu thực hiện trong 1 chu kỳ đồng hồ -→ Chu kỳ quá dài
 - Dài hơn nhiều so với các phép cộng số nguyên
 - Kéo dài thời gian xung đồng hồ → ảnh hưởng đến các lệnh khác
- Bộ cộng (FP) thường kéo dài nhiều chu kỳ
 - Có thể cải thiện bằng cơ chế ống

Phần cứng bộ cộng (FP)

Phép nhân thập phân

- Giả sử nhân 2 số thập phân (4 ký số)
 - \bullet 1.110 × 10¹⁰ × 9.200 × 10⁻⁵
- 1. Cộng số mũ
 - Nếu dùng số mũ biased, trừ biased vào tổng
 - Số mũ mới là = 10 + -5 = 5
- 2. Nhân hệ số
 - $1.110 \times 9.200 = 10.212 \Rightarrow 10.212 \times 10^{5}$
- 3. Chuẩn hóa kết quả & kiểm tra ngưỡng
 - 1.0212×10^6
- 4. Làm tròn và điều chỉnh nếu cần thiết
- 5. Xác định dấu của kết quả
 - $+1.021 \times 10^{6}$

Phép nhân nhị phân (FP)

- Giả sử nhân 2 số thập phân (4 ký số)
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Cộng số mũ
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Nhân hệ số
 - $1.000_2 \times 1.110_2 = 1.1102 \implies 1.110_2 \times 2^{-3}$
- 3. Chuẩn hóa kết quả & kiểm tra ngưỡng
 - $1.110_2 \times 2^{-3}$ (không đổi: nằm trong ngưỡng cho phép)
- 4. Làm tròn và điều chỉnh nếu cần thiết
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Xác định dấu: $(+) \times (-) \Rightarrow (-)$
 - $-1.110_2 \times 2^{-3} = -0.21875$

Phần cứng Bộ số học (FP)

- Bộ nhân (FP) và Bộ cộng (FP) có độ phức tạp như nhau
 - Chỉ khác nhau cho phép tính hệ số
- Phần cứng Bộ số học thường thực hiện các tác vụ sau:
 - Cộng, Trừ, Nhân, Chia, Căn, Nghịch đảo
 - Chuyển đổi FP ↔ integer
- Các tác vụ này thường kéo dài trong nhiều chu kỳ xung đồng hồ
 - Cải thiện bằng cơ chế đường ống

•

Lệnh FP trong MIPS

- Phần cứng bộ FP là một coprocessor
 - Mở rộng kiến trúc tập lệnh
- Có các thanh ghi FP riêng
 - 32 thanh ghi (đơn): \$f0, \$f1, ... \$f31
 - Chính xác kép bằng cách ghép: \$f0/\$f1, \$f2/\$f3, ...
 - Phiên bản 2 của MIPs ISA hỗ trợ 32 × 64-bit FP reg's
- Các lệnh FP chỉ thực hiện trên các thanh ghi FP
 - Chương trình thường không thực hiện các phép số nguyên trên dữ liệu FP hoặc ngược lại
 - Thanh ghi riêng không làm phức tạp thêm code
- Các lệnh FP load và store
 - lwc1, ldc1, swc1, sdc1
 - Ví dụ: ldc1 \$f8, 32(\$sp)

Lệnh FP trong MIPS

- Phép tính số học (đơn)
 - add.s, sub.s, mul.s, div.s
 - Ví dụ: add.s \$f0, \$f1, \$f6
- Phép tính số học (kép)
 - add.d, sub.d, mul.d, div.d
 - Ví dụ: mul.d \$f4, \$f4, \$f6
- Lệnh so sánh (đơn/kép)
 - c.xx.s, c.xx.d (xx is eq, 1t, 1e, ...)
 - Gán hoặc xóa bit điều kiện code
 - e.g. c.lt.s \$f3, \$f4
- Rẽ nhánh theo điều kiện
 - bc1t, bc1f
 - Ví dụ: bc1t TargetLabel

Ví dụ: Chuyển °F sang °C

C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr chứa trong \$f12, kết quả trong \$f0, hằng số trong bộ nhớ toàn cục
- Biên dịch thành MIPS code:

```
f2c: lwc1    $f16, const5($gp)
    lwc2    $f18, const9($gp)
    div.s    $f16, $f16, $f18
    lwc1    $f18, const32($gp)
    sub.s    $f18, $f12, $f18
    mul.s    $f0, $f16, $f18
    jr    $ra
```


Ví dụ: Nhân Ma trận

- $X = X + Y \times Z$
 - Tất cả đều là ma trận 32 × 32, các phần tử của ma trận 64-bit (chính xác kép)
- C code:

Địa chỉ của x, y, z chứa trong \$a0, \$a1, \$a2, và
 i, j, k trong \$s0, \$s1, \$s2

Ví dụ: Nhân Ma trận (tt.)

MIPS code:

```
$t1, 32  # $t1 = 32 (row size/loop end)
   lί
   lί
      $s0, 0
                     # i = 0; initialize 1st for loop
L1: li $s1, 0
                     # j = 0; restart 2nd for loop
L2: 1i $s2, 0 # k = 0; restart 3rd for loop
   11 \ t2, \ s0, \ 5 \ \# t2 = i * 32  (size of row of x)
   addu t2, t2, s1 # t2 = i * size(row) + j
        $t2, $t2, 3  # $t2 = byte offset of [i][j]
   sll
   addu t2, a0, t2 \# t2 = byte address of <math>x[i][j]
   1.d f4, 0(t2) # f4 = 8 bytes of x[i][j]
L3: s11 $t0, $s2, 5 # $t0 = k * 32 (size of row of z)
   addu t0, t0, s1 # t0 = k * size(row) + j
   sll $t0, $t0, 3 # $t0 = byte offset of [k][j]
   addu t0, a2, t0 # t0 = byte address of <math>z[k][j]
   l.d f16, 0(t0) # f16 = 8 bytes of z[k][j]
```


4

Ví dụ: Nhân Ma trận (tt.)

```
\$11 \$t0, \$s0, 5  # \$t0 = i*32 (size of row of y)
addu t0, t0, s2 # t0 = i*size(row) + k
sll $t0, $t0, 3
                    # $t0 = byte offset of [i][k]
addu $t0, $a1, $t0
                    # $t0 = byte address of y[i][k]
1.d $f18, 0($t0)
                    # $f18 = 8  bytes of y[i][k]
mul.d f16, f18, f16 # f16 = y[i][k] * z[k][j]
add.d f4, f4, f4 # f4=x[i][j] + y[i][k]*z[k][j]
addiu $s2, $s2, 1
                    # $k k + 1
bne $s2, $t1, L3 # if (k != 32) go to L3
s.d f4, 0(t2) # x[i][j] = f4
addiu \$\$1, \$\$1, 1 # \$j = j + 1
bne $s1, $t1, L2 # if (j != 32) go to L2
addiu \$ s 0, \$ s 0, 1 # \$ i = i + 1
bne $s0, $t1, L1
                    # if (i != 32) go to L1
```


Kết luận

- ISAs hỗ trợ phép số học
 - Số nguyên có dấu và không dấu
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent

