

PII S0364-5916(96) 00036-3

THE THERMODYNAMIC PROPERTIES OF RHENIUM ON ITS-90

J.W.Arblaster

Rotech Laboratories, Wednesbury, West Midlands, UK

Rhenium exists in a close-packed hexagonal structure with lattice parameters at 293 K of a = 0.27610 nm c = 0.44583 nm and a density of 21.01 g cm⁻³ (Donohue [1] corrected for conversion factors recommended in the 1986 revision of the fundamental constants [2]). Wherever possible values have been corrected to the currently accepted atomic weight of 186.207 [3] and to the revision of the ITS-90 temperature scale [4,5]. The melting point determined by Sims, Craighead and Jaffee [6] corrects to 3458 \pm 20 K on this scale. A superconducting transition temperature (T_c) of 1.700 K takes in to account the recommended values of both Roberts [7] and Hultgren et al [8]. The previous review of the thermodynamic properties was by the latter authors.

SOLID

Below 4 K the specific heat in the normal state can be represented as

$$D/T^2 + \gamma T + 1943.73 (T/\Theta_D)^3 J \text{ mol}^{-1} K^{-1}$$

where D is the nuclear quadrupole coefficient, γ is the electronic coefficient and Θ_D is the limiting Debye temperature.

	D (mJ K mol ⁻¹)	γ (mJ mol ⁻¹ K ⁻²)	Θ_{D} (K)
Keesom and Bryant [9] 0.37-4.2 K	0.052 ± 0.002	2.31 ± 0.02	417 ± 10
Blanpain [10] 1.2-24 K		2.26 ± 0.03	407 ± 10
Smith and Keesom [11] 0.16-3.6 K	0.049 ± 0.002	2.29 ± 0.02	416 ± 10
Batt et al [12] 0.3-3 K		2.22	
Rockwood, Gregory and Goodstein [13] 0.1-0.5 K	0.061		
Gregers-Hansen, Krusius and Pickett [14] 0.02-0.3 K	0.0406 ± 0.0006 a		
Buttet and Baily [15]	0.0459 b	****	
RECOMMENDED	0.049	2.29	416

a. Gregers-Hansen et al obtained a second nuclear term 3.4E-5/T⁶ mJ K² mol⁻¹

The selected values are based mainly on the specific heat measurements of Smith and Keesom. In addition Shepard and Smith [16] determined Θ_D to be 416 K from elastic constant measurements whilst similar measurements of Fisher and Dever [17] lead to 406 K. The measurements of Keesom and Bryant are 2% higher initially but converge to the selected values. Similarly the measurements of Blanpain are initially

Determined using nuclear acoustic resonance (all other values were based on specific heat measurements).

Original version received on 20 November 1995, Revised version on 8 July 1996

1% low but converge to the selected values above 4 K.

In the superconducting state selected values are based on the measurements of Smith and Keesom with those of Blanpain being 3 to 7% lower.

In agreement with Hultgren et al [8] selected values in the range 10 to 270 K are based on the specific heat measurements of Piesbergen [18] 11-272 K which are preferred to those of Smith, Oliver and Cobble [19] 20-300 K. The latter measurements scatter about the selected values below 100 K but then average 3% higher above this temperature. Measurements of Horowitz and Daunt [20] 68-77 K scatter 8% high to 5% low about the selected curve.

Above 270 K selected values are based on the enthalpy measurements of Conway and Hein [21] 1264-2644 K, as reported by Hoch [22], and those of Lin and Frohberg [23] 2913-3734 K which are joined smoothly with the low temperature data using the following equation which has an overall accuracy of 0.6% (± 340 J mol⁻¹):

$$H_{T}^{o} - H_{286,15}^{o} = 23.7544 \text{ T} + 3.47270\text{E} - 3 \text{ T}^{2} - 1.06132\text{E} - 6 \text{ T}^{3} + 1.80731\text{E} - 10 \text{ T}^{4} + 48512.6/\text{T} - 7527.09 \text{ J mol}^{-1}$$

However the measurements of Conway and Hein were not used above 2000 K since above this temperature they deviate up to 4% high. Enthalpy measurements of Jaeger and Rosenbohm [24] 667-1474 K are 1 to 3% higher than the selected values. Specific heat measurements of Arutyunov and Filippov [25] 1100-2400 K as revised by Filippov [26] 1100-2500 are 6 to 11% high, those of Taylor and Finch [27] 300-3120 K are on average 2% high up to 2000 K and then increase sharply to 54% high. The two measurements of Lehman [28] 860-1400 K are 5% low and 6% high respectively whilst the measurements of Rudkin, Parker and Jenkins [29] 1410-2720 K are 15% low to 12% high and the measurements of Sims et al [30] 1400-2600 K are extraordinarily 89 to 112% high.

There have been a number of determinations of enthalpy using the rapid pulse heating technique. At the melting point the enthalpy value of Dolomanov et al [31] (determination at the melting point only) is 4% higher than the selected value. The measurements of Hixson and Winkler [32] 2427-5725 K are from 6 to 17% higher than the selected enthalpy curve whilst those of Thévenin et al [33] 1817-6951 K are from 7 to 14% higher.

LIQUID

After correction to the accepted melting point the liquid enthalpy measurements of Lin and Frohberg [23] 2913-3734 K can be represented by the following equation which has an overall accuracy of 1.1% (± 1720 J mol⁻¹):

$$H_{T}^{\circ} - H_{298.15}^{\circ} = 49.519 \text{ T} - 39050 \text{ J mol}^{-1}$$

leading to a constant liquid specific heat of $49.5 \pm 5.8 \text{ J mol}^{-1} \text{ K}^{-1}$, an heat of fusion of $34.1 \pm 1.8 \text{ kJ mol}^{-1}$ and an entropy of fusion of $9.85 \pm 0.51 \text{ J mol}^{-1} \text{ K}^{-1}$. The following values have been obtained by the rapid pulse heating technique:-

	Enthalpy of Liquid at mpt	Heat of Fusion	Liquid Cp
		kJ mol ⁻¹	J mol ⁻¹ K ⁻¹
Pottlacher, Neger and Jäger [34,35] mpt to 7500 K	- 6%		46.6
Dolomanov et al [31] melting point only	+ 2%	33.5	
Hixson and Winkler [32] 2427-5725 K	+ 8%	28.5	49.7
Thévenin et al [33] 1817-6951 K	+ 4%	29.4	43.4

GAS

Thermodynamic properties of the monatomic gas were calculated from 289 energy levels, mainly those listed by Klinkenberg et al [36] but including the revision and extension by Wyart [37], using the method outlined by Kolsky, Gilmer and Gilles [38] together with the 1986 fundamental constants [2] except for the Gas Constant and the Boltzmann Constant which are based on the later measurements of Moldover et al [39]. Values were corrected to the standard state pressure of one bar [40].

VAPOUR PRESSURE

Third law heats of sublimation were calculated from the following Langmuir free-evaporation determinations:

Authors	Range (K)	$\Delta H^{o}_{296.15}$ (kJ mol ⁻¹)
Blackburn [41]	2697-2909	778.0 ± 2.5 a
Strassmair and Stark [42]	2664-3195	774.7 ± 0.7
Sherwood et al [43]	2497-3003	783.6 ± 2.9
Plante and Szwarc [44]	2445-2732	$783.3 \pm 0.6 \text{ b}$
RECOMMENDED		780 ± 6

NOTES: a Trend with temperature

b Series IV only, series I to III 2351-3062 K were rejected by the authors

In agreement with Hultgren et al [8] the recommended value is based on an average of the last three determinations. In addition second law heats of sublimation of 761 ± 39 kJ mol⁻¹ and 785 ± 19 kJ mol⁻¹ are obtained from the mass spectrometric measurements of Zandberg, Ionov and Tontegode [45] 2400-2750 K and Sasaki, Kubo and Asano [46] 2590-2780 K respectively.

PHYSICAL CONSTANTS

Velocity of light = 299 792 458 m s⁻¹ [2] Avogadro's Number = 6.0221367 (36) E+23 mol⁻¹ [2] Planck's Constant = 6.6260755 (40) E-34 J s [2] Boltzmann Constant = 8.314471 (14) J mol⁻¹ K⁻¹ [39] Boltzmann Constant = 1.3806513 (25) E-23 J K⁻¹ [39]

J. W. ARBLASTER

LOW TEMPERATURE SPECIFIC HEAT DATA

тк	C°p	J mol ⁻¹ K ⁻¹	тК	$C^{\circ}p$ J mol ⁻¹ K ⁻¹	тк	$C^{\circ}p$ J mol ⁻¹ K ⁻¹
0.2 0.4 0.6 0.8 1.0	0.00123 0.000384 0.000698 0.00162 0.00288 0.00457	* 0.00152 ** * 0.00192 ** * 0.00237 ** * 0.00283 **	9 10 12 14 16	0.0328 0.0413 0.0531 0.0907 0.149 0.233	70 80 90 100 120 140	13.031 14.956 16.541 17.862 19.826 21.212
1.4 1.6 1.700 2 3 4 5 6	0.00642 0.00841 0.00946 0.00481 0.00760 0.0109 0.0149 0.0198	* 0.00331 ** * 0.00379 ** * 0.00404 **	20	0.353 0.518 1.180 2.210 3.513 4.967 6.468 7.946 10.685	160 180 200 220 240 260 280 298.15	22.218 22.924 23.502 23.971 24.345 24.633 24.847 25.016

* Superconductor; ** Non-superconductor (in magnetic field)

	SOLID	GAS
H° _{298.15} -H° ₀ J mol ⁻¹	5333	6197.4
S°298.15 J mol-1 K-1	36.48 *	188.941

^{*} Does not include nuclear contribution

Corrected to one bar standard state pressure

GIBBS FREE ENERGY EQUATIONS

SOLID 298.15-3458 K

 $G^{\circ}_{T} - H^{\circ}_{298.15} = -23.7544 \ T \ ln(T) + 124.8239 \ T - 3.47270 E - 3 \ T^{2} + 5.30660 E - 7 \ T^{3} - 6.02437 E - 11 \ T^{4} + 24256.3 / T - 7527.09 \ J \ mol^{-1}$

LIQUID 3458-6000 K

 $G_{T}^{\circ}-H_{296.15}^{\circ} = -49.519 \text{ T ln}(T) + 335.72915 \text{ T - } 39050 \text{ J mol}^{-1}$

THERMODYNAMIC PROPERTIES OF RHENIUM

HIGH TEMPERATURE DATA

CONDENSED PHASES Re(s,1)

тк	$C^{\circ}p$ J mol ⁻¹ K^{-1}	$H^{\circ}_{\tau}-H^{\circ}_{298.15}$ J mol ⁻¹	S° J mol ⁻¹ K ⁻¹	$-(G_{T}^{\circ}-H_{298.15}^{\circ})/T$ $J \text{ mol}^{-1} K^{-1}$
298.15 300 400 500 600 700 800 900 1000	25.016 25.032 25.766 26.327 26.797 27.205 27.567 27.893 28.190	0 46 2588 5194 7851 10551 13290 16064 18868	36.482 36.637 43.945 49.757 54.599 58.761 62.418 65.684 68.639	36.482 36.482 37.474 39.369 41.515 43.688 45.805 47.836 49.771
1100 1200 1300 1400 1500 1600 1700 1800 1900 2000	28.464 28.720 28.962 29.196 29.427 29.658 29.895 30.141 30.402 30.681	21701 24560 27444 30352 33283 36238 39215 42217 45244 48298	71.339 73.826 76.135 78.290 80.312 82.218 84.023 85.739 87.376 88.942	51.611 53.360 55.024 56.609 58.123 59.570 60.956 62.285 63.563 64.793
2100 2200 2300 2400 2500 2600 2700 2800 2900 3000	30.982 31.312 31.672 32.069 32.506 32.5988 33.519 34.103 34.745 35.449	51381 54495 57644 60831 64059 67334 70659 74039 77481 80990	90.446 91.895 93.295 94.651 95.969 97.253 98.508 99.737 100.945 102.134	65.979 67.124 68.232 69.305 70.345 71.355 72.338 73.294 74.227 75.138
3100 3200 3300 3400 3458(s) 3458(1) 3500 3600 3700 3800 3900 4000	36.219 37.060 37.976 38.972 39.587 49.519 49.519 49.519 49.519 49.519	84573 88236 91987 95834 98112 132187 134267 139218 144170 149122 154074 159026	103.309 104.472 105.626 106.775 107.439 117.293 117.891 119.286 120.642 121.963 123.249 124.503	76.027 76.898 77.751 78.588 79.066 79.066 79.529 80.614 81.677 82.720 83.743 84.746
4100 4200 4300 4400 4500 4600 4700 4800 4900 5000	49.519 49.519 49.519 49.519 49.519 49.519 49.519 49.519 49.519	163978 168930 173882 178834 183786 188737 193689 198641 203593 208545	125.726 126.919 128.084 129.223 130.335 131.424 132.489 133.531 134.552 135.553	85.731 86.698 87.647 88.579 89.494 90.394 91.278 92.148 93.003 93.844
5100 5200 5300 5400 5500 5600 5700 5800 5900 6000	49.519 49.519 49.519 49.519 49.519 49.519 49.519 49.519 49.519	213497 218449 223401 228353 233305 238256 243208 248160 253112 258064	136.533 137.495 138.438 139.364 140.272 141.165 142.041 142.902 143.749 144.581	94.671 95.486 96.287 97.076 97.853 98.619 99.373 100.116 100.848 101.570

J. W. ARBLASTER

HIGH TEMPERATURE DATA

GAS PHASE Re(g,bar)

T K	J mol ⁻¹ K ⁻¹	H° ₇ -H° _{298.15} J mol ⁻¹	S° J mol ⁻¹ K ⁻¹	$-(G^{\circ}_{T}-H^{\circ}_{1}^{298,15})/T$ J mol- K^{-1}
298.15	20.786	0	188.941	188.941
300	20.786	38	189.069	188.941
400	20.786	2117	195.049	189.757
500	20.786	4196	199.688	191.296
600	20.786	6274	203.477	193.020
700	20.786	8353	206.681	194.749
800	20.786	10432	209.457	196.418
900	20.786	12510	211.905	198.005
1000	20.787	14589	214.095	199.507
1100	20.787	16667	216.077	200.924
1200	20.790	18746	217.885	202.264
1300	20.796	20826	219.550	203.530
1400	20.809	22906	221.091	204.730
1500	20.833	24988	222.528	205.869
1600	20.873	27073	223.874	206.953
1700	20.934	29163	225.141	207.986
1800	21.025	31261	226.340	208.972
1900	21.152	33369	227.480	209.917
2000	21.324	35493	228.569	210.822
2100 2200 2300 2400 2500 2600 2700 2800 2900 3000	21.547 21.828 22.175 22.591 23.648 24.294 25.020 25.824 26.704	37636 39804 42004 44241 46524 48860 51257 53722 56263 58889	229.614 230.623 231.601 232.553 233.485 234.401 235.305 236.202 237.093 237.983	211.692 212.530 213.338 214.119 214.875 215.608 216.321 217.015 217.692 218.354
3100	27.657	61606	238.874	219.001
3200	28.678	64423	239.768	219.636
3300	29.761	67344	240.667	220.260
3400	30.900	70377	241.573	220.874
3458	31.583	72189	242.101	221.225
3500	32.087	73526	242.485	221.478
3600	33.313	76795	243.406	222.074
3700	34.570	80189	244.336	222.663
3800	35.849	83710	245.275	223.246
3900	37.139	87360	246.223	223.823
4000	38.433	91138	247.180	224.395
4100	39.719	95046	248.144	224.962
4200	40.990	99081	249.117	225.526
4300	42.236	103243	250.096	226.086
4400	43.450	107528	251.081	226.643
4500	44.624	111932	252.071	227.197
4600	45.752	116451	253.064	227.748
4700	46.828	121080	254.059	228.298
4800	47.847	125815	255.056	228.845
4900	48.805	130648	256.053	229.390
5000	49.698	135573	257.048	229.933
5100	50.525	140585	258.040	230.474
5200	51.285	145676	259.029	231.014
5300	51.976	150840	260.012	231.552
5400	52.599	156069	260.990	232.088
5500	53.154	161357	261.960	232.622
5600	53.643	166698	262.922	233.155
5700	54.068	172084	263.876	233.685
5800	54.431	177509	264.819	234.214
5900	54.735	182968	265.752	234.741
6000	54.982	188455	266.674	235.265

VAPOUR PRESSURE DATA

тĸ	P bar	ΔG° J mol ⁻¹	ΔH° J mol ⁻¹	TK P bar ΔG° ΔH° J mol ⁻¹ J mol ⁻¹
T K 298.15 300 400 500 600 700 800 900 1100 1200 1300 1400 1500 1600 1700 1800 2100 2200 2300 2400 2500 2600 2700 2800	2.06E-129 1.43E-128 1.26E-94 2.83E-74 1.02E-60 4.87E-51 8.70E-44 3.76E-38 1.20E-33 5.77E-33 6.70E-27 2.61E-24 4.32E-22 3.60E-20 1.72E-18 1.07E-15 1.59E-14 1.81E-13 1.62E-12 1.19E-11 7.34E-11 3.87E-10 1.79E-9 2.70E-8	J mol ⁻¹ 734544 734262 719087 704037 689097 674257 6545510 644848 630264 615756 601315 586942 572631 558381 544187 530049 515963 501927 487942 474003 446256 432446 418675 4391246		
2800	9.04E-8	377581	759683	1E-4 3575
2900	2.78E-7	363952	758782	1E-3 3954
3000	7.94E-7	350352	757899	1E-2 4425
3100	2.12E-6	336781	757033	1E-1 5027
3200	5.29E-6	323238	756187	NBP : normal boiling point at one atmosphere (1.01325 bar)
3300	1.25E-5	309720	755357	
3400	2.81E-5	296228	754543	
3458(s)	4.40E-5	288414	754077	
3458(1)	4.40E-5	288414	720002	
3500	5.94E-5	283178	719259	ΔH° ₀ 779.136 ± 6.000 kJ mol ⁻¹
3600	1.18E-5	270744	717577	
3700	2.25E-4	258352	716579	
3800	4.15E-4	246001	714588	
3900	7.42E-4	233688	713286	
4000	1.28E-3	221404	712112	
4100	2.16E-3	209153	711068	
4200	3.56E-3	196922	710151	
4300	5.70E-3	184712	709361	
4400	8.95E-3	172518	708694	
4500	1.38E-2	160337	708146	
4600	2.08E-2	148172	707714	

REFERENCES

- 1. J.Donohue: "The Structures of the Elements" John Wiley and Sons, New York, 1974
- 2. E.R.Cohen and B.N.Taylor: CODATA Bulletin 63, November 1986
- 3. Commission on Atomic Weights and Isotopic Abundances: Pure & Appl. Chem. 1994, 66, 2423
- 4. R.N.Goldberg and R.D.Weir: Pure and Appl. Chem. 1992, 64, 1545
- 5. R.L.Rusby, R.P.Hudson and M.Durieux : Metrologia 1994, 31, 149
- 6. C.T.Sims, C.M.Craighead and R.I.Jaffe: Trans. Met. Soc. AIME 1955, 203, 168
- 7. B.W.Roberts: J. Phys. Chem. Ref. Data 1976, 5, 581
- 8. R.Hultgren, P.D.Desai, D.T.Hawkins, M.Gleiser, K.K.Kelley and D.D.Wagman: "Selected Values of the Thermodynamic Properties of the Elements" American Society of Metals, Metals Park, Ohio, 1973
- 9. P.H.Keesom and C.A.Bryant: Phys. Rev. Letters 1959, 2, 260
- 10. R.Blanpain: Bull. Classe Sci. Acad. Roy. Belg. 1961, 47, 750
- 11. D.R.Smith and P.H.Keesom: Phys. Rev. 1970, B1, 188

- 12. R.H.Batt, J.C.F.Brock, G.P.Schwart and N.E.Phillips: Unpublished work quoted by N.E.Phillips: CRC Critical Rev. Solid State Sci. 1972, 2, 467
- 13. S.D.Rockwood, E.H.Gregory and D.L.Goodstein: Phys. Letters 1969, 30A, 225
- 14. P.E.Gregers-Hansen, M.Krusius and G.R.Pickett: Phys. Rev. Letters 1971, 27, 38
- 15. J.Buttet and P.K.Kelley: Phys. Rev. Letters 1970, 24, 1220
- 16. M.L.Shepard and J.F.Smith: J. Appl. Phys. 1965, 36, 1447
- 17. E.S.Fisher and D.Dever: Trans. Met. Soc. AIME 1967, 239, 48
- 18. U.Piesbergen: Z. Naturforschg. 1964, 19a, 1075
- 19. W.T.Smith Jr., G.D.Oliver and J.W.Cobble : J. Amer. Chem. Soc. 1953, 75, 5785
- 20. M.Horowitz and J.G.Daunt: Phys. Rev. 1953, 91, 1099
- J.B.Conway and R.A.Hein: "Advances in Thermophysical Properties at Extreme Temperatures and Pressures" Third Symposium, Purdue University, Lafayette, Indiana, March 1965, S.Gratch (ed.), ASME, New York, 1965, 131
- 22. M.Hoch: High Temp.- High Pressures 1969, 1, 531
- 23. R.Lin and M.G.Frohberg: High Temp.- High Pressures 1992, 24, 537
- 24. F.M.Jaeger and E.Rosenbohm: Proc. Acad. Sci. Amsterdam 1933, 36, 786
- 25. A.V.Arutyunov and L.P.Filippov: Teplofiz. Vys. Temp. 1969, 8, 1095 [High Temp. 1969, 8, 1025]
- 26. L.P.Filippov: Int. J. Heat Mass Transfer 1973, 16, 865
- R.E.Taylor and R.A.Finch: USAEC Rept. NAA-SR-6034, 1961 and J. Less Common Metals 1964, 6, 281
- 28. G.W.Lehman: USAEC Rept. WADD-TR-60-581, 1961
- 29. R.L.Rudkin, W.J.Parker and R.J.Jenkins: "Temperature Its Measurement and Control in Science and Industry" Vol.3, Part 2, C.M.Herzfeld (ed.), Reinhold Publishing Co, New York, 1962, 523
- C.T.Sims, C.M.Craighead, R.I.Jaffee, D.N.Gideon, W.W.Kleinschmidt, W.E.Nexsen Jr., G.B.Gaines, F.C.Todd, C.S.Peet, D.M.Rosenbaum, R.J.Runck and I.E.Campbell: USAEC Rept. WADC-TR-54-371, 1956
- L.A.Dolomanov, K.S.Kovalev, S.V.Lebedev and A.I.Davvatimskii: Teplofiz. Vys. Temp. 1988, 26, 492 [High Temp. 1988, 26, 359]
- 32. R.S.Hixson and M.A.Winkler: Int. J. Thermophys. 1992, 13, 477
- 33. Th.Thévenin, L.Arles, M.Bolvineau and J.M.Vermeulin: Int. J. Thermophys. 1993, 14, 441
- 34. G.Pottlacher, T.Neger and H.Jäger: Int. J. Thermophys. 1986, 7, 149
- 35. G.Pottlacher, E.Kashnitz and H.Jäger: J. Non-Cryst. Solids 1993, 156-158, 374
- P.F.A.Klinkenberg, W.F.Meggers, R.Velasco and M.A.Catalan: J. Res. Nat. Bur. Stand. 1957, 59, 319
- 37. J.F.Wyart: Phys. Scripta 1978, 18, 87
- 38. H.G.Kolsky, R.M.Gilmer and P.W.Gilles: USAEC Rept. LA-2110, March 1957
- M.E.Moldover, J.P.M.Trusler, T.J.Edwards, J.B.Mehl and R.S.Davis: J. Res. Nat. Bur. Stand. 1988, 93, 85
- 40. IUPAC Commission on Thermodynamics: Pure & Appl. Chem. 1982, 54, 1239
- 41. P.E.Blackburn: J. Phys. Chem. 1966, 70, 311
- 42. H.Strassmair and D.Stark: Z. Angew. Phys. 1967, 23, 40
- 43. E.M.Sherwood, D.M.Rosenbohm, J.M.Blocher Jr. and I.E.Campbell: J. Electrochem. Soc. 1955, 102, 650
- 44. E.R.Plante and R.Szwarc : J. Res. Nat. Bur. Stand. 1966, 70A, 175
- 45. E.Ya.Zandberg, N.I.Ionov and A.T.Tontegode : Zh. Tekh. Fiz. 1965, 35, 1504 [Sov. Phys.- Solid State 1966, 10, 1164]
- 46. N.Sasaki, K.Kubo and M.Asano: Mass Spectro. (Japan) 1970, 18, 1189

Figure 1: Low Temperature Specific Heat measurements of Rhenium. Percentage deviation from selected values.

Figure 2: High Temperature Specific Heat measurements of Rhenium. Percentage deviation from selected values.

Figure 3: High Temperature Enthalpy measurements of Rhenium. Percentage deviation from selected values.