Uniwersytet Warszawski

Wydział Filozofii

Kamil Tomaszek

Nr albumu: 432044

Minimalizacja długości zależności w strukturach współrzędnie złożonych: badanie korpusowe na podstawie Polish Dependency Bank

Praca licencjacka na kierunku KOGNITYWISTYKA

> Praca wykonana pod kierunkiem **prof. dr hab. Adama Przepiórkowskiego** Uniwersytet Warszawski

Streszczenie

Praca licencjacka na temat "Minimalizacja długości zależności w strukturach współrzędnie złożonych: badanie korpusowe na podstawie Polish Dependency Bank" jest poświęcona zjawisku minimalizacji długości zależności w koordynacji w języku polskim. Ma ona charakter empiryczny i opiera się na danych pochodzących z korpusu Polish Dependency Bank. W pracy tej przedstawiam teorię zależności składniowej oraz teorię minimalizacji długości zależności między wyrazami. Szczególną uwagę poświęcam koordynacji, czyli jednej ze struktur występujących w języku polskim i przedstawiam różne jej reprezentacje proponowane przez lingwistów. Opisuję też sam korpus, wyciągnięte z niego dane oraz ich preprocessing, a także przedstawiam analizy statystyczne badające wpływ pozycji nadrzędnika koordynacji na rozkład długości jej członów oraz interpretuję je, porównując z istniejącą wcześniej literaturą.

Słowa kluczowe

koordynacja, minimalizacja długości zależności, Polish Dependency Bank, drzewa zależnościowe, korpusy językowe

Tytuł pracy w języku angielskim

Dependency Length Minimization in coordinate structures: A corpus study based on Polish Dependency Bank

Spis treści

1.	Wst	5ęp	4
	1.1.	Motywacja i cel pracy	4
	1.2.	Zakres i struktura pracy	5
2.	Pod	lstawy teoretyczne	6
	2.1.	Koordynacja w języku polskim	6
	2.2.	Zarys teorii zależności składniowej	8
	2.3.	Minimalizacja długości zależności	9
	2.4.	Różne reprezentacje koordynacji	11
	2.5.	Hipotezy	12
3.	Dar	ne	13
	3.1.	Polish Dependency Bank	13
	3.2.	Preprocessing danych	14
	3.3.	Dane po preprocessingu	14
4.	Ana	aliza statystyczna	17
	4.1.	Hipoteza, metody	17
	4.2.	Wyniki analizy statystycznej	17
5 .	Dys	skusja wyników	18
	5.1.	Podsumowanie wyników badań	18
	5.2.	Interpretacja wyników	18
	5.3.	Przegląd literatury	18
6.	Zak	ończenie	19
	6.1.	Podsumowanie pracy i wnioski	19
	6.2.	Perspektywy dalszych badań	19
Bi	bliog	grafia	20
7 a	łacz	niki	23

Wstęp

W tym rozdziale przedstawiam motywację i cel niniejszej pracy licencjackiej, a także omawiam jej zakres oraz strukturę.

1.1. Motywacja i cel pracy

W pracy tej analizuję zjawisko minimalizacji długości zależności – DLM (ang. Dependency Length Minimization), czyli tendencji do umieszczania elementów wypowiedzi w sposób taki, by zmniejszyć sumę długości wszystkich zależności między wyrazami. Zależność międzywyrazowa oznacza, że jeden wyraz jest nadrzędny wobec innego. W przykładzie (1) wyraz brata jest wyrazem nadrzędnym wobec wyrazów śmiesznego, młodszego oraz jej, a długości ich zależności to odpowiednio 2, 1 oraz 3 – mierzone licząc odległości (w słowach) między słowem podrzędnym, a nadrzędnym. Interesuje mnie, jak DLM wpływa na koordynację w języku polskim. Koordynacja to zjawisko, w którym dwa lub więcej równorzędnych elementów łączy się spójnikiem w większą strukturę o tej samej funkcji co poszczególne jej człony. Zjawisko to jest istotne dla teorii składniowej i reprezentacji językowych, ponieważ dotyczy zarówno formy, jak i znaczenia zdań. Przykładem koordynacji jest (1), gdzie jej nadrzędnikiem jest słowo widziałem, a członami Asię oraz jej śmiesznego, młodszego brata. Oba człony złączone są spójnikiem i oraz razem tworzą większą strukturę, zależną od jej nadrzędnika.

(1) Widziałem [Asię i jej śmiesznego, młodszego brata].

W pracy badam dwie hipotezy dotyczące długości członów w koordynacjach w języku polskim: 1. że dłuższy człon koordynacji jest częściej ze strony prawej i 2. że pozycja nadrzędnika wpływa na rozkład długości członów koordynacji.

Długości członów mierzę na cztery różne sposoby, licząc znaki, sylaby, słowa oraz tokeny¹. W przykładzie (1) odpowiednie wartości wynosiłyby (4 vs. 31, 2 vs. 9, 1 vs. 4,

¹tokeny – zalicza się do nich całe słowa (np. 'być', 'kolor'), części słów (m. in. wyrazy po oderwaniu końcówek fleksyjnych oraz same końcówki, (np. 'zrobił', 'em')), a także interpunkcję (np. ', ', '-', '? ')

1 vs. 5). Szybko pokazuję, że pierwsza z hipotez zachodzi w większości przypadków, więc następnie przechodzę do omówienia wpływu obecności i pozycji nadrzędnika oraz długości różnicy między analizowanymi członami na proporcje danych, w których hipoteza ta jest prawdziwa. Praca ta ma charakter empiryczny, opiera się na danych pochodzących z Polish Dependency Bank (PDB), czyli korpusu języka polskiego zawierającego ponad 22 tysiące drzew zależnościowych oraz na wcześniejszej pracy badającej te same zależności, ale dla języka angielskiego (Przepiórkowski & Woźniak, 2023).

1.2. Zakres i struktura pracy

Praca składa się z sześciu rozdziałów. W rozdziale drugim omawiam teoretyczne podstawy pracy, tj. przedstawiam czym są koordynacje – na przykładzie języka polskiego, prezentuję zarys teorii zależności składniowej, opisuję teorię minimalizacji zależności oraz wskazuję różne reprezentacje zależnościowe wraz z ich przewidywaniami. W rozdziale trzecim opisuję źródło danych, czyli Polish Dependency Bank, jak i ich preprocessing – działanie algorytmu, napisanego w języku Python, wybierającego koordynacje oraz informacje o nich z PDB, a także pokazuję format danych po preprocessingu. W rozdziale czwartym prezentuję hipotezy badawcze, ich testowanie wraz z analizami statystycznymi w języku R. W rozdziale piątym omawiam wyniki badań i ich interpretację w kontekście istniejącej wcześniej literatury naukowej. W rozdziale szóstym podsumowuję pracę, wyciągam z niej wnioski oraz proponuję perspektywy dalszych badań.

Podstawy teoretyczne

W tym rozdziale omawiam teoretyczne podstawy pracy, tj. opisuję czym są koordynacje, przedstawiam zarys teorii zależności składniowej, prezentuję minimalizację teorii zależności oraz wskazuję różne reprezentacje zależnościowe wraz z ich przewidywaniami.

2.1. Koordynacja w języku polskim

Słowo koordynacja wywodzi się z łacińskiego wyrazu coordinatio, które składa się z przedrostka co- (wspólny, zgodny) i sufiksu -ordinatio (rządzenie, uporządkowanie). W lingwistyce pojęcie koordynacja jest używane do opisu zjawiska związanego z łączeniem elementów językowych w większe całości. Jest ono również znane pod nazwa struktura współrzędnie złożona. Według definicji Oxford Bibliographies 2 koordynacja to zjawisko, w którym dwa lub więcej elementów, nazywanych w tej pracy członami, są ze sobą połączone przy użyciu spójnika, np. i w jeden, większy element. W przeciwieństwie do relacji podrzędnej, w której jeden element jest asymetryczny względem drugiego, koordynacja pod wieloma względami jest symetryczna – dlatego nazywamy ją strukturą współrzędną. Wszystkie jej człony należą zwykle do tej samej kategorii gramatycznej, posiadają zazwyczaj te same funkcje składniowe, a każdy z nich może pojawić się samodzielnie na tym miejscu w zdaniu. Dodatkowo, wydobycie (ang. extraction), czyli przemieszczenie jakiejś frazy na lewy kraniec zdania, może występować we wszystkich członach jednocześnie, ale nie może występować tylko w jednym z nich. Koordynacja jednak zachowuje się czasem niesymetrycznie³ Istnieją także rodzaje zdań, które sa mocno związane z koordynacją – np. pomijanie (ang. qapping), gdzie zdanie składa się z dwóch połączonych zdań, jednak drugie nie ma czasownika (zob. (2a)) oraz podnoszenie prawego węzła (ang. right node raising), gdzie zdanie tworzą dwa zdania z tym samym elementem końcowym, więc jest on pomijany w tym pierwszym (zob. (2b)).

 $^{^2 \}rm https://www.oxfordbibliographies.com/display/document/obo-9780199772810/obo-9780199772810-0128.xml, dostęp z dn. 7.04.2023$

 $^{^3}$ np. wyjątkiem od reguły posiadania tej samej funkcji składniowej jest Kto~i~kogo~kopnął?, gdzie wyrazy kto~oraz~kogo~mają je różne.

- (2) a. Łucja gra na pianinie, a Łukasz na gitarze.
 - b. Laura idzie, a Kuba biegnie do parku.

Według Oxford Bibliographies, jednymi z głównych strategii przyjmowanych w lingwistyce co do koordynacji były: założenie, że koordynacja jest wariantem relacji podrzędnej, gdzie pierwszy człon jest głową, a drugi jest względem niego podrzędny; stwierdzenie, że struktura koordynacyjna wywodzi swoje właściwości nie od spójnika, lecz od wspólnych cech jej członów; przyjęcie analizy trójwymiarowej lub wielodominacyjnej (ang. *multidominance*), która nie może być reprezentowana poprzez tradycyjną strukturę fraz. Koordynacja jest jednym z podstawowych sposobów łączenia słów (zob. (3a)), fraz (zob. (3b)), czy zdań (zob. (3c)). Jak określa Wikipedia, każda kategoria leksykalna lub frazowa może być skoordynowana³.

- (3) a. [Ania i Julia] idq na spacer.
 - b. [Wesoła Marysia **oraz** smutny Janek] *wybrali się* do parku.
 - c. [Kuba zjadł obiad a Marysia poszła spać.]

W przykładach prezentowanych w niniejszej pracy koordynacje otoczone są nawiasami kwadratowymi. Człony koordynacji nazywamy koniunktami, to co je łączy – spójnikiem współrzędnym (w przykładach ilustrowany pogrubionym tekstem), a wyraz nadrzędny względem obu członów – nadrzędnikiem koordynacji (w przykładach ilustrowany kursywą). Jak widać w (3c) nie zawsze istnieje nadrzędnik koordynacji. W powyższym przykładzie koniunktami są: (3a) – Ania, Julia; (3b) – Wesoła Marysia, smutny Janek; (3c) – zjadł obiad, poszła spać.

Ze względów semantycznych zwykle wyróżnia się cztery rodzaje koordynacji: koordynacje koniunkcyjne (4a), koordynacje dysjunkcyjne (4b), koordynacje adwersatywne (4c) oraz koordynacje kauzalne (4d) (Haspelmath, 2007). Każde z nich, do łączenia koniunktów, używają różnych zestawów spójników. W koordynacjach koniunkcyjnych człony łączy się m. in. spójnikami *i, oraz, ani, tudzież, również*, a w koordynacjach dysjunkcyjnych – albo, bądź, lub, czy, lecz w obu tych kategoriach wykorzystywana jest także interpunkcja. W koordynacjach adwersatywnych używane są m. in. spójniki ale, lecz, zaś, natomiast, jednak, a w koordynacjach kauzalnych – bo, bowiem. W tej pracy skupię się na pierwszych trzech rodzajach koordynacji, jako że to one są oznaczone w PDB.

- (4) a. Marta *zjadła* [jabłko **i** gruszkę].
 - b. Ona miała [szesnaście **lub** siedemnaście] *lat*.
 - c. Byli [ładni, **ale** głupi].
 - d. [Nie zrobiłem pracy domowej, **bo** nie chciałem].

³https://en.wikipedia.org/wiki/Coordination_(linguistics), dostep z dn. 07.04.2023

2.2. Zarys teorii zależności składniowej

De Marneffe i Nivre (2019) oraz Pedersen et al. (2004) zwracają uwagę na to, że teoria zależności składniowej ma długą i bogatą historię, która sięga aż starożytności. Pierwsze ślady tego podejścia można znaleźć w gramatyce sanskrytu Pāṇiniego, czy w pracach wczesnych arabskich gramatyków (Kruijff, 2002), a także w niektórych teoriach gramatycznych średniowiecza (Covington, 1984).

Tesnière (1959) podjął pierwszą próbę stworzenia kompleksowej teorii gramatyki, w której wszystko byłoby oparte na zależnościach. Przedstawiał on jej potencjał do uchwycenia podobieństw, jak i różnic między językami. Wróblewska (2014) opisuje, że podstawowymi założeniami teorii Tesniere'a było występowanie połączeń (fr. connexions) oraz walencji (fr. valence). Połączenia obecnie określa się zależnościami i są one jednymi z podstawowych relacji zachodzących w składni. Łączą one dwa wyrazy współwystępujące w zdaniu i prezentują ich zależność w drzewie składniowym, któremu u Tesnière'a odpowiada stemma. Jeden z połączonych wyrazów określa się mianem nadrzędnika, wyrazu nadrzędnego (u Tesnière'a terme supérieur), a drugie – podrzędnika, wyrazu zależnego (u Tesnière'a terme inférieur). Relacja ta jest zawsze jednostronna, nie jest symetryczna. Teoria walencji zakłada, że w centrum zdania jest czasownik, który wymaga pewnych argumentów (u Tesnière'a actants), ale także mogą się przy nim znaleźć dodatkowe, niewymagane modyfikatory (u Tesnière'a circonstants). Przy czym czasownik z modyfikatorami połaczony jest jedynie relacja zależności, natomiast tylko z argumentami jest połączony zarówno zależnością, jak i walencją. W praktyce oznacza to, że czasowniki mogą wymagać wystąpienia jakichś argumentów obok nich, np. w frazie kupić $\langle cos\rangle$ wyraz kupić nie może wystąpić sam, co znaczy, że jest on przynajmniej uniwalentny. Tak samo czasowniki mogą być biwalentne, triwalentne itd. (Przepiórkowski, 2017) argumentuje, że rozróżnienie podrzędników na argumenty i modyfikatory jest niepotrzebne.

Jak pisze Wróblewska (2014), istnienie połączeń oraz walencji zostało ogólnie przyjęte przez teoretyków teorii zależności. W XX wieku teoria ta mocno rozwinęła się zwłaszcza w lingwistyce klasycznej i słowiańskiej (Mel'čuk, 1988). Obecnie mówi się o kilku rodzajach reprezentacji zależności – semantycznych, morfologicznych, prozodycznych, syntaktycznych³, jednak w tej pracy skupiam się tylko na reprezentacji uwzględniającej czynniki morfoskładniowe oraz wymagania członu głównego określonej formy członu zależnego.

Drzewo zależnościowe składa się z węzłów i krawędzi (graficznych reprezentacji zależności). Węzły reprezentują wyrazy w zdaniu, a krawędzie – zależności między nimi. Korzeń jest węzłem, który nie ma nadrzędnika, a jego krawędź jest zawsze zależnością root. W zdaniu nie może być więcej niż jeden korzeń, a z korzenia da się przejść

 $^{^3 \}rm https://en.wikipedia.org/wiki/Dependency_grammar, dostęp z dn. 07.04.2023$

po strzałkach do każdej innej częsci zdania. Strzałki krawędzi są skierowane zawsze od wyrazu nadrzednego do wyrazu podrzędnego.

Aby odróżnić od siebie różne zależności, krawędzie mogą być etykietowane, często funkcjami gramatycznymi, jak w przykładach (5a–b). Oto objaśnienia użytych etykiet:

- root korzeń zdania
- comp dopełnienie zdaniowe
- adjunct_locat modyfikator miejsca (modyfikator jest pojęciem trochę różniącym się od tradycyjnego okolicznika)
- punct znak interpunkcyjny
- subj podmiot

Przykładowe drzewa zależnościowe z korpusu PDB

Teoria zależności składniowej jest popularnym podejściem w dziedzinie przetwarzania języka naturalnego, ponieważ umożliwia łatwe i precyzyjne analizowanie struktury zdania. Ma ona wiele zastosowań, np. w dziedzinach takich jak tłumaczenie maszynowe (ang. *Machine Translation*) czy analiza sentymentu (ang. *Sentiment Analysis*), ponieważ ułatwia przetwarzanie i rozumienie znaczenia zdań. W ostatnich latach powstały projekty takie jak Universal Dependencies (https://universaldependencies.org/), które mają na celu zunifikowanie reprezentacji lingwistycznych (w tym wypadku: morfosyntaktycznej i składniowej) dla różnych języków. Dla języka polskiego stworzono już kilka korpusów zgodnych z tym standardem (Przepiórkowski & Patejuk, 2020; Wróblewska, 2020) oraz cały czas powstają nowe, także w innych językach.

2.3. Minimalizacja długości zależności

Minimalizacja długości zależności (DLM – ang. Dependency Length Minimization) to zasada, według której języki naturalne dążą do zmniejszania odległości między sło-

wami, które są od siebie zależne syntaktycznie. Zasada ta jest odnotowywana w lingwistyce już od długiego czasu i pozwala nam na bardziej efektywne analizowanie i generowanie języka naturalnego. W ciągu ostatnich 20 lat hipoteza DLM została wykorzystana do wyjaśnienia wielu z najbardziej uniwersalnych właściwości języków (Futrell et al., 2015). W przykładach (6a–b) możemy zauważyć, że zgodnie z DLM zdanie (6a) jest bardziej naturalne, ponieważ suma długości wszystkich zależności wynosi 6, podczas gdy w (6b) wynosi ona 9 (dla uproszczenia pominąłem zależność między korzeniem zdania, a kropką na jego końcu; wliczając ją obie wartości byłyby większe o 6).

Jednym ze sposobów na badanie DLM jest tworzenie sztucznych języków losowych (w których kolejność słów, czy relacje zależności są losowo dobierane) oraz porównywanie długości zależności w tych językach z długościami zależności w językach naturalnych. Badania wykazały, że języki naturalne mają istotnie krótsze długości zależności niż sztucznie wygenerowane wartości dla przykładowych losowych języków (Futrell et al., 2015), co sugeruje, że istnieje uniwersalna tendencja u ludzi do wykorzystywania DLM.

DLM jest również powiązana z innymi właściwościami języków naturalnych, między innymi z pozycyjnością głowy. Oznacza ona kierunek występowania głowy frazy względem jej dopełnienia. Badania wykazały, że istnieje związek między pozycyjnością głowy a długością zależności, przy czym języki o pozycyjności głowy na końcu frazy mają krótszą długość zależności niż języki o pozycyjności głowy na początku frazy (Futrell et al., 2015).

DLM nie jest jednak jedynym czynnikiem kształtującym strukturę syntaktyczną języków naturalnych. Istnieją również inne ograniczenia i preferencje, takie jak harmonia języka (Jing et al., 2022), czy preferencje semantyczne, które mogą wpływać na kolejność słów i długość zależności. Niektóre z tych czynników mogą być sprzeczne lub komplementarne względem DLM. Dlatego DLM należy rozumieć jako jeden z wielu czynników wpływających na organizację języka naturalnego.

2.4. Różne reprezentacje koordynacji

Jeśli chodzi o reprezentacje koordynacji w postaci drzew zależnościowych, to możemy wyróżnić 4 podstawowe podejścia (Przepiórkowski & Woźniak, 2023; Popel et al., 2013):

Podejście Londyńskie – jak wskazuje Przepiórkowski & Woźniak (2023) podejście to nazwać możemy londyńskim, w duchu nazywania podejść od nazw miast, w których zostały one opublikowane. W angielskiej nomenklaturze możemy również znaleźć je pod nazwą *multi-headed*. Zakłada ono, że bezpośrednimi nadrzędnikami każdego z członów koordynacji jest głowa koordynacji, a ostatni z nich jest również nadrzędnikiem spójnika koordynacji.

Podejście Stanfordzkie – w angielskiej nomenklaturze określane także mianem *bo- uquet.* Zakłada ono, że bezpośrednim nadrzędnikiem pierwszego z członów koordynacji
jest jej głowa, pierwszy człon równocześnie jest nadrzędnikiem pozostałych członów
koordynacji, a ostatni z członów jest nadrzędnikiem spójnika koordynacji.

Podejście Moskiewskie – w angielskiej nomenklaturze spotkać się możemy również z określeniem *chain*. Zakłada ono, że każda struktura (tj. człony, głowa oraz spójnik) wewnątrz koordynacji jest bezpośrednim nadrzędnikiem następnej struktury wewnątrz koordynacji.

Podejście Praskie – w angielskiej nomenklaturze znane również jako *conjunctionheaded*. Zakłada, że głowa koordynacji jest nadrzędnikiem spójnika koordynacji, który to jest nadrzędnikiem każdego z jej członów. To właśnie to podejście wykorzystywane jest w PDB.

Różnice między tymi podejściami możemy badać wraz z DLM, ponieważ każde z nich może mieć inne długości zależności dla tego samego zdania. Podejścia zilustrowane przykładami (9, 10) sugerują, że niezależnie od tego, czy głowa koordynacji jest z lewej, czy z prawej strony, zgodnie z zasadą DLM pierwszy człon powinien być krótszy – skróciłoby to sumę długości wszystkich zależności w zdaniu. Przy podejściu (11) pozycja głowy koordynacji nie wpływa na długość zależności, zatem nie ma żadnych powodów, aby prawy człon stawał się krótszy niż lewy. Zakładając podejście (12) możemy zauważyć, że pozycja głowy koordynacji z prawej strony, zgodnie z DLM może skrócić długości zależności, ustawiając krótszy człon po spójniku koordynacji, co byłoby nielogiczne dla pozostałych podejść.

2.5. Hipotezy

.

Dane

W tym rozdziale przedstawiam korpus będący źródłem danych użytych w mojej pracy, kryteria ich wyodrębniania oraz sposób ich przygotowania do analizy statystycznej.

3.1. Polish Dependency Bank

Polish Dependency Bank (PDB, (Wróblewska, 2014)) to jeden z największych korpusów języka polskiego zawierających drzewa zależnościowe. Wróblewska (2020) opisuje, że zdania w PDB pochodzą z wielu różnych źródeł, którymi są: (1) NKJP1M⁵ (14 tysięcy drzew, 217 tysięcy tokenów), (2) równoległe korpusy polsko-angielskie: Europarl (Koehn, 2005), Pelcra Parallel Corpus (Pęzik et al., 2011), DGT-Translation Memory (Steinberger et al., 2012), OPUS (Tiedemann, 2012), (3) CDSCorpus (Wróblewska & Krasnowska-Kieraś, 2017) i (4) nowoczesna literatura i korpus NKJP z wyłączeniem NKJP1M. Wróblewska (2020) przedstawia także zawartość PDB – składa się on z ponad 22 tysięcy drzew zależnościowych (350 tysięcy tokenów). Średnio, zdanie z tego korpusu posiada 15.8 tokenów. 34% wszystkich zdań ma długość od 1 do 10 tokenów, 42% – między 11, a 20 tokenów, a 24% – powyżej 20 tokenów. Wszystkie drzewa zależnościowe w PDB były ręcznie anotowane.

Dane z PDB zostały umieszczone w 9 plikach. Sam korpus został podzielony na 3 części – train, dev oraz test⁶. Każda z tych części znajduje się w 3 oddzielnych plikach – jeden z nich to zbiór wszystkich zdań w danej części korpusu w pliku z rozszerzeniem '.txt', drugi to zbiór tych samych zdań, ale już podzielonych na tokeny oraz z zaznaczeniem zależności, jest on o formacie '.conll' i na jego podstawie można wyświetlić zdania te jako drzewa zależnościowe, a trzeci plik to zbiór metadanych o tych zdaniach, zawierający m. in. informacje skąd one pochodzą i jest on o formacie '.json'.

 $^{^5{\}rm NKJP}$ – Narodowy Korpus Języka Polskiego (zob. (Przepiórkowski et al., 2012)). Część tego korpusu, którą znakowano ręcznie, nazywa się NKJP1M

⁶ train, dev, test – zwyczajowe nazwy na trzy zbiory danych w przetwarzaniu języka naturalmego, w których część train służy do uczenia modelu, część dev do jego ewaluacji i test do ostatecznej oceny.

3.2. Preprocessing danych

Preprocessing danych robię w języku Python i podzieliłem go na cztery osobne pliki, które znajdują się w Załączniku A. Najpierw wczytuję opisane wyżej dane zapisując je w postaci list, a następnie wyszukuję w nich koordynacji (szukając wyrazów, które są nadrzędne zależnością o etykiecie conjunct dla przynajmniej 2 innych wyrazów – są to spójniki współrzędne) i tworzę osobną listę składającą się tylko z tych koordynacji, zapisując w niej informację o obu członach, o spójniku i o nadrzędniku. Następnie dla każdej koordynacji tworze wiersz w tabeli, w którym umieszczam kolejno: dla koordynacji, które mają nadrzędnik – pozycję nadrzędnikaⁱ, słowo będace nadrzędnikiemⁱⁱ, pełny tagⁱⁱⁱ⁷ nadrzędnika, skrócony tag nadrzędnika^{iv}, informacje morfosyntaktyczne o nadrzędniku^v, a dla koordynacji bez nadrzędnika wstawiam tam puste wartości (poza pozycją nadrzędnika - w tym przypadku wstawiam tam wartość 0. Następnie, niezależnie od obecności nadrzędnika umieszczam w tabeli etykietę koordynacji^{vi}, spójnik współrzędny^{vii}, tag spójnika^{viii}, liczbę koniunktów^{ix}, oraz następujące informację o pierwszym i ostatnim członie koordynacji; pełny człon^{x; xxi}, człon podzielony na sylaby^{xi; xxii8}, głowa tego członu^{xii; xxiii}, pełny^{xiii; xxiv} oraz skrócony^{xiv; xxv} tag głowy członu, informacje morfosyntaktyczne o głowie członu^{xv; xxvi}, liczbe słow danego członu^{xvi; xxvii}, liczbę jego tokenów^{xvii; xxviii}, liczbę jego sylab^{xviii; xxix}, liczbę jego znaków (wliczając spacje) xix; xxx oraz informację o tym, czy jest on ciągły, tj. czy wszystkie jego tokeny występuja kolejno po sobie, czy miedzy nimi znajduje sie jakiś token niebędący częścią tego członu^{xx; xxxi}. Na sam koniec dodaję do tabeli całe zdanie, w którym występuje koordynacja^{xxxii}, jego identyfikator^{xxxiii} oraz informację o tym, czy jest ono w zbiorze treningowym, walidacyjnym czy testowym^{xxxiv}.

3.3. Dane po preprocessingu

Dane po preprocessingu zawarte są w Załączniku B i mają następujący format:

(11) Przykład danych dla dwóch koordynacji wyciągniętych z korpusu PDB

\mathbf{g}	overnor.position ⁱ	${f governor.word^{ii}}$	${f governor.tag^{iii}}$	${f governor.pos^{iv}}$
R		ptak	subst:sg:nom:m2	subst
0				

⁷tag – oznaczenie danej części mowy, tutaj wraz z jej odmianą

⁸Aby policzyć sylaby w członach, użyłem pakietów num2words – do zamieniania liczb na tekst oraz pyphen – do dzielenia fraz na sylaby. Oba pakiety mogły popełniać małe błędy, jednak statystycznie powinny to robić w takim samym stopniu w członie lewym co prawym, więc nie powinno to zaburzać.

governor.ms ^v	${f coordination.label^{ m vi}}$	${\bf conjunction.word^{vii}}$	${f conjunction.tag^{ m vii}}$
sg nom m2	adjunct	,	interp
	root	i	conj

${f no.conjuncts^{ix}}$	L.conjunct ^x	${f L.conj.syllabified^{xi}}$	${f L.head.word^{xii}}$
2	Mały	Ma~ły	Mały
2	mieszka	miesz~ka	mieszka

${f L.head.tag^{xiii}}$	$L.head.pos^{xiv}$	$L.head.ms^{xv}$	$\mathbf{L}.\mathbf{words}^{ ext{xvi}}$	${f L.tokens^{xvii}}$
adj:sg:nom:m2:pos	adj	sg nom m2 pos	1	1
fin:sg:ter:imperf	fin	sg ter imperf	1	1

L.syllables ^{xviii}	L.chars ^{xix}	L.is.continuous ^{xx}	R.conjunct ^{xxi}	R.conj.syllabified ^{xxii}
2	4	1	jasny	jas∼ny
2	7	1	pracuje	pra~cu~je

R.head.wordxxiii	$R.head.tag^{xxiv}$	R.head.pos ^{xxv}	R.head.ms ^{xxvi}	R.words ^{xxvii}
jasny	adj:sg:nom:m2:pos	adj	sg nom m2 pos	1
pracuje	fin:sg:ter:imperf	fin	sg ter imperf	1

R.tokens ^{xxviii}	R.syllables ^{xxix}	R.chars ^{xxx}	R.is.continuous ^{xxxi}
1	2	5	1
1	3	7	1

sentencexxxii

Mały, jasny ptak pochyla głowę w stronę leżącego obok okruszka.

Boguś mieszka tu i pracuje.

sent.id ^{xxxiii}	sent.file ^{xxxiv}
CDScorpus_6721_B#1673	test
$200-2-000000212_morph_9.61-s\#6421$	test

Zdania te, zapisane zgodnie z poprzednimi przykładami, wyglądałyby następująco:

- (12) a. [Mały, jasny] ptak pochyla głowę w stronę leżącego obok okruszka.
 - b. Boguś [mieszka] tu [i pracuje]⁹.

 $^{^9}$ Jak widać w tym przykładzie, między członami, poza spójnikiem, występuje także wyraz spoza koordynacji – tu. Według PDB jest on podrzędny względem spójnika i, ale relacją $adjunct_locat$, a nie conj, zatem nie jest on częścią koordynacji, dlatego rozbiłem nawias kwadratowy na dwie części.

W tabeli po preprocessingu znajduje się łącznie 13247 koordynacji, w tym w 3828 nie występuje nadrzędnik, w 7730 występuje on po lewej stronie, w 44 pomiędzy członami, a w 2045 po prawej stronie. Koordynacje zagnieżdżone również są uwzględniane, więc mamy pewność, że wszystkie koordynacje występujące w tym korpusie zostały wyciągnięte. Koordynacji dwuczłonowych jest 11635, trzyczłonowych – 1171, jest także 265 czteroczłonowych, 90 pięcioczłonowych, 47 sześcioczłonowych, 16 siedmioczłonowych, 10 ośmioczłonowych, 3 dziewięcioczłonowe, 3 dziesięcioczłonowe, 2 jedenastoczłonowe, 2 dwunastoczłonowe, 2 trzynastoczłonowe i jedna czternastoczłonowa.

Z oczyszczonych danych, możemy odczytać jakie spójniki występują w koordynacjach w PDB i są to: a, albo, ale, ani, bqdz, co, czy, czyli, ewentualnie, i, ile, inaczej, jak, jednak, jednakże, lecz, lub, miast, natomiast, ni, niemniej, oraz, przy, to, tyle, tylko, tymczasem, względnie, zaś oraz znaki interpunkcyjne: -, -, -, , , ; , : , ! , ..., \mathscr{E} , a także znaki matematyczne (i ich słowne określenia): /, +, x, minus, plus, razy. Poza nimi, pojawiły się także dwa wystąpienia angielskiego and oraz jedno wystąpienie francuskiego et.

Analiza statystyczna

Tekst rozdziału

4.1. Hipoteza, metody

Tekst sekcji

4.2. Wyniki analizy statystycznej

Tekst sekcji

Dyskusja wyników

Tekst rozdziału

5.1. Podsumowanie wyników badań

Tekst sekcji

5.2. Interpretacja wyników

Tekst sekcji

5.3. Przegląd literatury

Tekst sekcji

Zakończenie

Tekst rozdziału

6.1. Podsumowanie pracy i wnioski

Tekst sekcji

6.2. Perspektywy dalszych badań

Tekst sekcji

Bibliografia

- Covington, M.A. (1984). Syntactic theory in the high Middle Ages: Modistic models of sentence structure (Cambridge Studies in Linguistics). Cambridge: Cambridge University Press.
- Futrell, R., Mahowald, K., & Gibson, E. (2015). Large-scale evidence of dependency length minimization in 37 languages. *Proceedings of the National Academy of Sciences* 112(33), 10336–10341. https://doi.org/10.1073/pnas.1502134112
- Futrell, R., Levy R. P., & Gibson, E. (2020). Dependency locality as an explanatory principle for word order. *Language* 96(2), 371–412.
- Haspelmath, M. (2007). Coordination. Language typology and syntactic description, Volume II: Complex constructions, 1–51. Cambridge University Press.
- Hawkins, J. A. (1994). A performance theory of order and constituency. *Cambridge University Press*.
- Jing, Y., Blasi, D., & Bickel, B. (2022). Dependency Length Minimization and its limits: A possible fole for a probabilistic version of the Final-Over-Final condition. Language 98(3). https://doi.org/10.1353/lan.2022.0013.
- Koehn, P. (2005). Europarl: A parralel corpus for statistical machine translation. Proceedings of the 10th Machine Translation Summit Conference, 79-86. https://aclanthology.org/2005.mtsummit-papers.11.pdf
- Kruijff, G.-J. M. (2002). Formal and computational aspects of dependency grammar: History and development of dg. *Technical report*, ESSLI2002.
- de Marneffe, M.-C. & Nivre, J. (2019). Dependency Grammar. Annual Review of Linguistics 5, 197-218. https://doi.org/10.1146/annurev-linguistics-011718-011842
- Mel'čuk, I.A. (1988). Dependency syntax: theory and practice. SUNY Press.
- Pedersen, M., Eades, D. Amin, S. K. & Prakash, L. (2004). Relative Clauses in Hindi and Arabic: A Paninian Dependency Grammar Analysis. *Proceedings of the Workshop on Recent Advances in Dependency Grammar*, 9–16. Geneva, COLING

- Pęzik, P., Ogrodniczuk, M. & Przepiórkowski, A. (2011). Parralel and spoken corpora in an open repository of Polish language resources. Proceedings of the 5th Language & Technology Conference: Human Language Technologies as a Challenge for Computer Science and Linguistics, 511–515. http://nlp.ipipan.waw.pl/Bib/pez:ogr:prz: 11.pdf
- Przepiórkowski, A., Bańko, M., Górski, R. & Lewandowska-Tomaszczyk, B. (2012). *Narodowy Korpus Języka Polskiego*. Wydawnictwo Naukowe PWN, Warszawa. https://bcpw.bg.pw.edu.pl/dlibra/publication/4691/edition/4582/content
- Przepiórkowski, A. (2017). Argumenty i modyfikatory w gramatyce i w słowniku. Wydawnictwa Uniwersytetu Warszawskiego, Warszawa. https://www.pl/data/include/cms/Argumenty_modyfikatory_Przepiorkowski_Adam_2017.pdf
- Przepiórkowski, A. & Patejuk, A. (2020). From Lexical Functional Grammar to enhanced Universal Dependencies. Lang Resources & Evaluation 54, 185–221. https://doi.org/10.1007/s10579-018-9433-z
- Przepiórkowski, A. & Woźniak, M. (2023). Conjunct lengths in English, Dependency Length Minimization, and dependency structure of coordination, [Manuskrypt zgłoszony do publikacji]
- Popel, M., Mareček, D., Štěpánek, J., Zeman, D. & Žabokrtský, Z. (2013). Coordination structures in dependency treebanks. *Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, Volume 1: Long Papers*, 517–527. Sofia, Bułgaria. https://aclanthology.org/P13-1051.pdf
- Steinberger, R., Eisele, A., Klocek, S., Pilos, S., & Schlüter, P. (2012). DGT-TM: A freely available translation memory in 22 Languages. *Proceedings of the 8th International Conference on Language Resources and Evaluation*, 454-459. http://www.lrec-conf.org/proceedings/lrec2012/pdf/814_Paper.pdf
- Tesnière, L. (1959). Éléments de syntaxe structurale. C. Klincksieck.
- Tiedemann, J. (2012). Parallel data, tools and interfaces in OPUS. *Proceedings of the 8th International Conference on Language Resources and Evaluation*, 2214–2218. http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
- Wróblewska, A. (2014). Polish Dependency Parser Trained on an Automatically Induced Dependency Bank [Rozprawa Doktorska, Instytut Podstaw Informatyki Polskiej Akademii Nauk]. Warszawa. http://nlp.ipipan.waw.pl/Bib/wro:14.pdf
- Wróblewska, A. & Krasnowska-Kieraś, K. (2017). Polish evaluation dataset for compositional distributional semantic models. *Proceedings of the 55th Annual Meeting of*

the Association for Computational Linguistics 1, 784-792. Association for Computational Linguistics. https://aclanthology.org/P17-1073.pdf

Wróblewska, A. (2020). Towards the conversion of National Corpus of Polish to Universal Dependencies. *Proceedings of the 12th Language Resources and Evaluation Conference*, 5308–5315, Marsylia, Francja. European Language Resources Assosiation. http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.653.pdf

Załączniki

- $A-link\ do\ plik\'ow\ z\ preprocessingiem\ danych:\ https://github.com/kvmilos/PracaLicencjacka/tree/master/preprocessing$
- B link do tabeli danych po preprocessingu w formacie ".csv": https://github.com/kvmilos/PracaLicencjacka/blob/master/tabela.csv
- C link do pliku z analizą danych: https://github.com/kvmilos/PracaLicencjacka/blob/master/analizy/r.R