UM10028_I

ISP1301 USB OTG Transceiver

Eval Kit User's Guide

Semiconductors

February 2003

User's Guide Rev. 1.0

Revision History:

Version	Date	Date Descriptions	
1.0	Feb 2003	First release	David Wang

We welcome your feedback. Send it to wired.support@philips.com.

This is a legal agreement between you (either an individual or an entity) and Philips Semiconductors. By accepting this product, you indicate your agreement to the disclaimer specified as follows:

DISCLAIMER

PRODUCT IS DEEMED ACCEPTED BY RECIPIENT. THE PRODUCT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, PHILIPS SEMICONDUCTORS FURTHER DISCLAIMS ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANT ABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT. THE ENTIRE RISK ARISING OUT OF THE USE OR PERFORMANCE OF THE PRODUCT AND DOCUMENTATION REMAINS WITH THE RECIPIENT. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL PHILIPS SEMICONDUCTORS OR ITS SUPPLIERS BE LIABLE FOR ANY CONSEQUENTIAL, INCIDENTAL, DIRECT, INDIRECT, SPECIAL, PUNITIVE, OR OTHER DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) ARISING OUT OF THIS AGREEMENT OR THE USE OF OR INABILITY TO USE THE PRODUCT, EVEN IF PHILIPS SEMICONDUCTORS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

CONTENTS

I.	INTRODUCTION	5
2.	SYSTEM REQUIREMENTS	5
3.	CONFIGURATIONS AND SETTINGS	6
3.1.	. Power requirements	6
3.2.		
3.3.	. USB INTERFACE	7
3.4.	. Audio interface	7
3.5.	. Reset	7
4.	LOCATION OF MAJOR COMPONENTS	7
5.	TEST PROGRAM 1301.EXE	8
5.1.	. Introduction	8
5.2.	. Running the test program	9
5.3.		
5	5.3.1. Choose I2C slave address for ISPI 301	9
5	5.3.2. Reset all registers	9
5	5.3.3. List all registers	10
5	5.3.4. Read/Write register	10
5	5.3.5. Select Mode of Operation	1 1
5	5.3.6. Enable/Disable charge-pump	11
6.	HARDWARE DESCRIPTION	12
6.1.	BLOCK DIAGRAM	12
6.2.	. Functional description	12
6	5.2.1. PCF8584 I ² C-bus controller	12
6	5.2.2. PC parallel to 1 ² C converter	
6	5.2.3. HC, DC and OTG core logic interface connector	
6	5.2.4. Power manager	
6	5.2.5. Audio interface	13
7.	CONNECTOR PIN INFORMATION	13
7.1.	. DB-25 PC parallel port connector (J10) pin assignment	13
7.2.	. 8-BIT MICROPROCESSOR INTERFACE 20 X 2 HEADER (J13) PIN ASSIGNMENT	13
7.3.		
8.	SCHEMATICS OF THE EVALUATION BOARD	14
9.	BILL OF MATERIALS	17
10	DEEEDENCES	10

TABLES

Table 3-1: +5.0 V power selection	6
Table 3-2: V _{BAT} and V _{IO} selection	
Table 3-3: 12 master selection	é
Table 7-1: DB-25 PC parallel port connector (110) pin assignment	
Table 7-2: 8-bit microprocessor-interface 20 x 2 header (J13) pin assignment ^[1]	
Table 7-3: OTG Controller interface J8 pin assignment	
Table 7-4: OTG Controller interface J3 pin assignment	
Table 9-1: BOM of the ISP1301 evaluation board	

FIGURES

Figure 1-1: ISP1301 evaluation board PCB layout	!
Figure 4-1: Location of major components	
Figure 5-1: Test program main menu	
Figure 5-2: List all registers screen display	10
Figure 5-3: Read/Write register screen display	
Figure 5-4: Select Mode of Operation screen display	
Figure 6-1: Block diagram of the ISP1301 evaluation board	
rigure 6-1. block diagram of the 1371301 evaluation board	I a

Microsoft and Windows are registered trademarks of Microsoft Corp. Intel is a registered trademark of Intel, Inc. The names of actual companies and products mentioned herein may be the trademarks of their respective owners. All other names, products, and trademarks are the property of their respective owners.

I. Introduction

The ISP1301 is a Universal Serial Bus (USB) On-The-Go (OTG) transceiver device that is fully compliant with Universal Serial Bus Specification Rev. 2.0 and On-The-Go Supplement to the USB 2.0 Specification Rev. 1.0. It integrates a USB full-speed and low-speed transceiver, and other analog components to fully support OTG functionality.

The ISP1301 is ideal for use in portable electronics devices, such as mobile phones, personal digital assistants (PDAs), digital still cameras, and digital audio players. The ISP1301 acts as a physical layer to interface with any USB OTG Controller.

The ISP1301 evaluation board is designed to evaluate the functions of the ISP1301 chip. The main components on the board are: the ISP1301 (in HVQFN24 package), I²C master, USB mini-AB connector, analog audio interface, and USB OTG controller interface. The operation mode of the ISP1301 can be configured through the I²C interface. The OTG status and control registers in the ISP1301 can also be accessed through the I²C interface.

To verify the functions of the ISP1301 by using the DOS test program that is provided with the evaluation kit, connect the ISP1301 evaluation board to the parallel port of a PC. To fully verify the functions of the ISP1301, a USB OTG controller is used to connect to the ISP1301 board through the defined interface connector.

Figure 1-1: ISP1301 evaluation board PCB layout

2. System requirements

An x86 PC with DB-25 parallel port is required. The test program runs on DOS (or the command line in Microsoft $^{\circ}$ Windows $^{\circ}$ 98). In the BIOS setting, select port address 378H for the onboard parallel port. The test program is compiled using Turbo $^{\circ}$ C++ 3.0.

3. Configurations and settings

3.1. Power requirements

By default, the ISP1301 board is powered by a +5.0 V power supply through the DC jack (J12, inner +). The +5.0 V power can also be supplied from the USB Type-B connector (J4). However, when J4 is connected to a USB port on the PC, leave the USB mini-AB connector (J9) unconnected. If an external microprocessor is used to control the I²C controller chip PCF8584 (U4), the +5.0 V power can also be supplied from pin 16 and pin 18 of the microprocessor connector (J13).

When the +5.0 V power is correctly applied to the board, LED2 (green) will turn ON.

Table 3-1: +5.0 V power selection

Jumper	Descriptions
JP6	Short I(UP5V) and 2 (+5V): +5.0 V from the microprocessor interface (pin 16 or 18 of J13)
	Short 3 (H_VBUS) and 4 (+5V): +5.0 V from the V _{RUS} line of the USB connector (pin 1 of J4)
	Short 5 (EXT5V) and 6 (+5V): +5.0 V from the DC jack (J12, inner +) [default]

The power supply $(V_{BAT} pin)$ for the ISP1301 can be provided either from the onboard +3.3 V source or from the OTG Controller interface (pin 2 of |3).

Similarly, the power supply for the V_{IO} (called V_{DD_LGC} in the ISP1301 datasheet) pin of the ISP1301 can be provided either from the onboard +3.3 V source or from the OTG Controller interface (pin 2 of [8).

Table 3-2: V_{BAT} and V_{IO} selection

Jumper	Descriptions		
JP2	Short : V _{BAT} from the onboard +3.3 V source [default]		
	Open: V _{BAT} from the pin 2 of J3		
JP5	Short: V ₁₀ from the onboard +3.3 V source [default]		
	Open: V _{IO} from the pin 2 of J8		

3.2. I²C master selection

The I²C master controller can be supplied from any one of three sources:

- PC parallel port (software I²C master)
- Philips I²C controller chip PCF8584 (hardware I²C master)
- External I²C master that is connected to the I²C header [1].

Table 3-3: I²C master selection

Jumper	Descriptions		
JP3	Short I (SDA_8584) and 2 (SDA5V): SDA from PCF8584		
	Short 2 (SDA5V) and 3 (SDA_PC):	SDA from PC parallel port [default]	
	Open:	SDA from I ² C connector (pin 4 of J11)	
JP4	Short I (SCL_8584) and 2 (SCL5V): SCL from PCF8584		
	Short 2 (SCL5V) and 3 (SCL_PC):	SCL from PC parallel port [default]	
	Open:	SCA from I ² C connector (pin 3 of J11)	

Note: SCL and SDA come from the same I²C master.

3.3. USB interface

There are three USB connectors on the ISP1301 evaluation board.

- If an OTG Controller is connected to the ISP1301, the USB port functions as an OTG dual-role device and only the mini-AB connector (J5) will be used.
- If a Host Controller is connected to the ISP1301, the USB port functions as a host and only the Type-A connector (11) will be used.
- If a Device Controller is connected to the ISP1301, the USB port functions as a device and only the Type-B connector (I4) will be used.

You can use all the three ports at the same time. If you have a system that consists of a USB host port and a separate device port, then the host port can be connected to J4 and the device port can be connected to J1 using the standard USB cable. In such a case, the ISP1301 provides only OTG functions to the system; the transceiver function of the ISP1301 is not used.

3.4. Audio interface

The ISPI301 evaluation board has an interface to support an analog audio carkit application. Connect:

- The audio carkit to the mini-AB connector (19) on the board;
- The audio input line signal to the SPK LINE IN socket (J6) on the board;
- The audio output line signalto the MIC LINE OUT socket (17) on the board.

3.5. **Reset**

For a hardware reset to the ISP1301, press the manual reset switch (SW1). The reset pulse (active LOW) can also come from the OTG Controller interface (pin 8 of J3).

4. Location of major components

Figure 4-1 shows the location of major components on the evaluation board.

Figure 4-1: Location of major components

5. Test program 1301.EXE

5.1. Introduction

A DOS test program "1301.exe" is provided to help you verify the functions of the ISP1301 chip. The program uses the PC parallel port to access the ISP1301 registers through the I^2C interface. The program simulates software I^2C master at the hardware abstraction layer (HAL).

The test program can do the following:

- Set the I²C slave address for the ISP1301 based on the hardware setting of the ADR pin
- Reset all registers to their default values
- Display the current value of all registers on your PC screen
- Write any value to a writable register
- Set the mode of operation of the ISP1301 (such as, USB function and suspend mode, transparent I²C mode, transparent general-purpose buffer mode, and global power-down mode)
- Enable or disable the charge pump of the ISP1301.

5.2. Running the test program

If your PC boots to pure DOS, run the test program on the command line. If your PC boots to Microsoft Windows 98, open an MS-DOS window and run the test program. It is recommended that you boot the PC to pure DOS.

To run the test program, type 1301' and press the Enter key at the command prompt.

Note: In the BIOS setting of the PC, the I/O address for the onboard parallel port is 378H.

5.3. Using menus

After the program has been launched, the main menu will appear on the screen. See Figure 5-1.

Figure 5-1: Test program main menu

In the main menu screen, selecting any item 1–6 will perform the desired action. If you wish to exit the program, press the **Esc** key.

The following sections describe the menu items.

5.3.1. Choose I2C slave address for ISP1301

The program will prompt you to enter your choice based on the hardware setting of the ADR pin.

- If ADR is HIGH, select 1. The slave address for the ISP1301 will become 0x5A.
- If ADR is LOW, select 0. The slave address for the ISP1301 will become 0x58.

Make sure that choices are done correctly; otherwise, other operations may fail.

If you set the ISP1301 to the transparent I²C mode and choose a slave address value other than the value set here, you must set it back to the original slave address when you revert to the direct I²C mode.

5.3.2. Reset all registers

On selecting this option, the program will set all the registers—excluding the read-only registers—to their default values and display these values on your PC screen.

In this document, items that you type or click are indicated in **bold**.

5.3.3. List all registers

On selecting this option, the program will display all the 22 registers on the screen. See Figure 5-2.

Figure 5-2: List all registers screen display

5.3.4. Read/Write register

The program will display the current value of all registers and prompt you to write to a specific register.

On selecting item 4 from the main menu, the program will display the screen given in Figure 5-3. The program will prompt you to type the address of the register whose value you want to change. On entering the address of the register and pressing Enter, the program will prompt you to enter the new value that you want to assign. If you want to return to the main menu, type **FF** at the command prompt.

Figure 5-3: Read/Write register screen display

5.3.5. Select Mode of Operation

You can select the mode of operation of the ISP1301 by selecting item 5 from the main menu. A submenu will appear on the screen. See Figure 5-4. The possible choices include the USB functional mode (four data encoding and decoding methods), transparent I²C mode, transparent buffer mode, USB suspend mode, and global power-down mode.

Note: If the ISP1301 Engineering Sample 1 (ES1) (that is, the chip whose version register reads 0x0100, or the chip package is marked ####AX) is mounted on the evaluation board, software cannot wake up the chip, if set to the global power-down mode. Only a hardware reset can wake up the chip.

Figure 5-4: Select Mode of Operation screen display

5.3.6. Enable/Disable charge-pump

If the charge pump in the ISPI301 is disabled, selecting menu item 6 will enable the charge pump. If the charge pump is enabled, selecting menu item 6 will disable it.

UM10028_I

6. Hardware description

6.1. Block diagram

Figure 6-1 shows the block diagram of the ISP1301 evaluation board.

Figure 6-1: Block diagram of the ISP1301 evaluation board

6.2. Functional description

A brief description of each function module is given in the following sections.

6.2.1. PCF8584 I²C-bus controller

This block provides functions of the I²C-bus to the 8-bit parallel-bus converter. It can connect to the Philips ISP1362 or ISP1161x ISA interface board, or any other generic 8-bit microprocessor interface through a 40-wire IDE cable. The PC or other microprocessor can service the interrupt from the ISP1301 and access the registers of the ISP1301 through this interface.

6.2.2. PC parallel to I²C converter

This interface provides an alternative method to access the ISP1301 I^2C interface through the PC. The PC needs to emulate software I^2C master to access the ISP1301 I^2C slave.

6.2.3. HC, DC and OTG core logic interface connector

This interface provides connection to a Host Controller (HC), Device Controller (DC) or On-The-Go (OTG) core logic. This interface is used during OTG system-level evaluation or during compliance testing.

9

1-8,12,14,16,

6.2.4. Power manager

This block includes the 5.0 V-to-3.3 V regulator and power source selection.

6.2.5. Audio interface

This block provides stereo audio line IN interface and microphone (with pre-amp) OUT interface. Its main purpose is to demonstrate the carkit application (play audio or voice with carkit).

7. Connector pin information

7.1. DB-25 PC parallel port connector (110) pin assignment

[10] is used to connect to the PC parallel port through the DB-25 printer cable. Table 7-1 shows its pin assignment.

Pin no Printer port signal ISP1301 evaluation board signal D7 SDAOUT# П **S7**# SDAIN# 15 **S3 SCLIN** 17 **SCLOUT#** C3# 10,13,18-25 GND

Table 7-1: DB-25 PC parallel port connector (J10) pin assignment

8-bit microprocessor interface 20 x 2 header (J13) pin assignment 7.2.

[13] is used to connect to a generic 8-bit parallel bus microprocessor controller. The bus uses the Intel® mode. Required signals include D0-D7, A0, WR N, RD N, CS N, INT1 and INT2. Table 7-2 shows the pin assignment for [13.

No connection

Note: We use a 20 x 2 header to make it compatible with the Philips ISP1362 and ISP1161x ISA interface boards.

Pin no	Pin name						
1	GND	П	n. c.	21	D7	31	D2
2	n. c.	12	+3.3 V	22	INT2	32	n. c.
3	n. c.	13	n. c.	23	D6	33	DI
4	CHRG_EN	14	n. c.	24	INTI	34	WR_N
5	n. c.	15	n. c.	25	D5	35	D0
6	n. c.	16	+5.0 V	26	n. c.	36	RD_N
7	n. c.	17	n. c.	27	D4	37	n. c.
8	n. c.	18	+5.0 V	28	n. c.	38	CS_N
9	n. c.	19	GND	29	D3	39	A0
10	+3.3 V	20	n. c.	30	n. c.	40	n. c.

Table 7-2: 8-bit microprocessor-interface 20 x 2 header (JI3) pin assignment[1]

Note: An external OTG Controller system can use the CHRG_EN signal to enable or disable +5.0 V from the V_{BLS} line of the mini-AB connector to pin 2 of [2. This is useful when an analog audio carkit is attached and the carkit can charge the external battery.

7.3. USB OTG Controller interface 8 x 2 header (J8 and J3) pin assignment

Header connectors [8 and]3 are used to connect the ISPI301 to the OTG Controller core. [8 includes the USB Serial Interface Engine (SIE) signals—DAT VP, SEO VM, RCV and OE TP INT N—and I'C signals—SDA, SCL and INT N. [3 also includes other signals that may be used by selected OTG Controller.

UM10028_I

^[1] n. c.—Denotes no connection.

Table 7-3: OTG Controller interface J8 pin assignment

Pin no	Pin name	Pin no	Pin name
1	GND	9	GND
2	V _{IO}	10	OE_TP_INT_N
3	GND	11	GND
4	INT_N	12	DAT_VP
5	GND	13	GND
6	SDA	14	SE0_VM
7	GND	15	GND
8	SCL	16	RCV

Table 7-4: OTG Controller interface J3 pin assignment

Pin no	Pin name	Pin no	Pin name
1	GND	9	GND
2	V_{BAT}	10	SPEED
3	GND	П	GND
4	n. c.	12	SUSPEND
5	GND	13	GND
6	ADR	14	VM
7	GND	15	GND
8	RESET_N	16	VP

8. Schematics of the evaluation board

9. Bill of Materials

Table 9-1: BOM of the ISP1301 evaluation board

Part Type	Quantity	Designator	Footprint
18pF +80%/-20%	3	C29, C30, C31	0805
22pF ±10%	2	C14, C15	0805
28nF ±10%	1	CI2	0805
120nF ±10%	1	CI3	0805
220nF ±10%	3	C7, C8, C9	0805
0.1uF+80%/-20%	11	CI, C5, CI0, CI1, CI9, C21, C22,	0805
		C23, C24, C26, C28	
IuF+80%/-20%	1	CI7	1206
4.7uF16V	4	C3, C4, C6, C16	RB.1/.2
I0uFI6V	5	C2, C18, C20, C25, C27	RB.1/.2
0R	3	RI, R2, R4	0805
33R ±%I	2	R13, R14	0805
IOOR	3	R11, R12, R16	0805
3.3K	4	R20, R21, R22, R23	0805
4.7K	2	R5, R24	0805
10K	10	R3, R6, R7, R8, R9, R10, R15, R17, R18, R19	0805
I2MHz OSC_HALF	1	YI	XTAL-CTX
ISP1301	I	UI	HVQFN24
74HCT05	1	U2	SOP14
74HCT04	I	U3	SOP14
PCF8584 I2C CONTROLLER	1	U4	DIP20
PHP125 P-MOSFET POWER MOS	1	QI	SO8
ZVN4206 N-MOSFET	2	Q2, Q3	TO92
LM1117DT33 3.3V	1	Q4	TO252
REGULATOR			
STZ5.6N ESD DIODE	1	DI	SOT346
LED	2	LED1, LED2	Thru'hole
DB25 (MALE)	1	JIO	Thru'hole
HEADER 3	2	JP3, JP4	Thru'hole
HEADER 4	I	JII	Thru'hole
HEADER 3X2	1	JP6	Thru'hole
HEADER 6	2	J2, J5	Thru'hole
HEADER 8X2	2	J3, J8	Thru'hole
HEADER20X2	1	J13	Thru'hole
JUMPER	3	JP1, JP2, JP5	Thru'hole
PHONEJACK (MIC LINE OUT)	I	J7	PHONEJACK
PHONEJACK STEREO (SPK LINE IN)	I	J6	PHONEJACK STEREO
POWER JACK	I	12	DC JACK
SW-PB	I	SWI	SW-TACT
USB A-RECEPTACLE	I	[I	USB A
USB B-RECEPTACLE	I	[4	USB B
		j	USB mini-AB

10. References

- ISP1301 USB On-The-Go Transceiver datasheet
- Universal Serial Bus Specification Rev. 2.0
- On-The-Go Supplement to the USB 2.0 Specification Rev. 1.0
- ISP1301 Errata