

DEPARTEMEN TEKNIK INFORMATIKA

PENGANTAR DEEP LEARNING

Kecerdasan Komputasional

• •

Klasifikasi Secara Konvensional

- Pendekatan klasifikasi secara konvensional umumnya melakukan ektraksi fitur secara terpisah kemudian dilanjutkan proses pembelajaran menggunakan metode klasifikasi konvensional seperti DT, SVM, atau ANN.
- Salah satu contoh permasalahan klasifikasi adalah pengenalan obyek

Klasifikasi Secara Konvensional

No	Warna	Bentuk	Tekstur	Ukuran	Kelas
1	Merah	Bulat	Halus	Besar	Apel
2	Hijau	Bulat	Halus	Sedang	Apel
3	Kuning	Lonjong	Kasar	Besar	Jeruk
N-1	Hjiau	Lonjong	Kasar	Sedang	Jeruk
N	Hijau	Bulat	Halus	Kecil	Jeruk

Kelemahan

- Memerlukan waktu dan pengetahuan lebih untuk ekstraksi fitur
- Sangat tergantung pada satu domain permasalahan saja sehingga tidak berlaku general

Berbasis Deep Learning

 Pengenalan obyek berbasis Deep learning mempelajari representasi hirarki (pola fitur) secara otomatis melalui beberapa tahapan proses feature learning

Representasi Hirarki Fitur

- Hirarki pada representasi fitur menunjukkan kenaikan level dari abstraksi.
- Setiap tahapan merupakan proses feature learning pada transformasi fitur

Deep Neural Network

•

Deep vs Shallow

Layer × Size	Word Error Rate (%)	Layer × Size	Word Error Rate (%)	
1 × 2k	24.2		M	lanakah yang lebih
2 × 2k	20.4			baik?
3 × 2k	18.4			
4 × 2k	17.8			
5 × 2k	17.2	1 × 3772	22.5	
7 × 2k	17.1	1 × 4634	22.6	
		1 × 16k	22.1	

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." Interspeech. 2011.

Mengapa Deep Learning?

Arsitektur Deep Learning

- Convolutional Neural Network (CNN)
- Sequence Modelling
 - Recurrent Neural Networks (RNN)
- Generative Modelling
 - Generative Adversarial Network (GAN)
- Deep Reinforcement Learning

Aplikasi Convolutional Neural Network

Aplikasi Sequence Modelling

Aplikasi Generative Modelling

Original

Masking

Inpainting Result

Zebras C Horses

zebra \rightarrow horse

horse \rightarrow zebra

Aplikasi Deep Reinforcement Learning

Convolutional Neural Network (CNN)

- CNN merupakan salah satu varian Neural Network dengan beberapa layer konvolusi dan layer lainnya.
- Layer konvolusi mempunyai sejumlah filter yang mengaplikasikan operasi konvolusi.

Arsitektur CNN

Layer Konvolusi

$(I*K)(i,j) == \sum_{i=1}^{n} I(i,j) = I(i,j)$	$\sum I(m,n)K(i+m,j+n)$
m	n

1	0	0	0	0	1
0	~	0	0	~	0
0	0	1	1	0	0
1	0	0	0	~	0
0	~	0	0	~	0
0	0	1	0	1	0

1 -1 -1 -1 1 -1 -1 -1 1

K

Citra

Proses Konvolusi

30	30	30	0	0	0
30	30	30	0	0	0
30	30	30	0	0	0
30	30	30	0	0	0
30	30	30	0	0	0
30	30	30	0	0	0

Filter

Convoluted Feature

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Ukuran Convoluted Feature (Feature Map)

Ukuran output gambar hasil proses konvolusi dapat dihitung dengan rumus sebagai berikut:

Contoh:

$$((N - F)/s) + 1$$

N: input size

F: filter size

s: stride

stride =
$$1 \rightarrow ((5-3)/1) + 1 = 3$$

stride=
$$2 \rightarrow ((5-3)/2) + 1 = 2$$

Stride adalah besarnya step yang digunakan ketika melakukan sliding filter

Layer Konvolusi

1	0	0	0	0	1
0	~	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

Citra 6 x 6

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

Filter 2

: :

Tiap filter menangkap sebuah pola (3 x 3)

1	-1	-1
-1	1	-1
-1	7	1

Filter 1

Layer Konvolusi

st	ride	=1
1	Ω	Λ

Citra 6 x 6

3	-1	-3	-1
-3	1	0	-3
-3	-3	0	1
2	_2	_2	_1

-1	1	-1
1	1	-1
-1	1	-1

Filter 2

stride=1

Layer	
Konvol	lusi

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

Citra 6 x 6

Dua citra 4 x 4 Membentuk 2 *feature map*

Padding

 Layer tambahan untuk menangani tepi dari citra untuk menghindari hilangnya informasi pada corner sebuah citra

Zero Padding

Aktivasi ReLU

- Rectified Linear Unit (ReLU)
 - Komputasi cepat
 - Infinite sigmoid
 - Menangani vanishing gradient

POOLING

- Pooling layer digunakan untuk mengurangi ukuran gambar menjadi lebih kecil (downsample) dan mengekstrak salient features.
- Ada dua tipe pooling yaitu Maximum pooling dan Average pooling

Max Pooling

Feature Map

Layer Max Pooling

Full Connected Network Layer

Strategi Proses Pembelajaran

•

Strategi Proses Pelatihan (*Training*)

Modifikasi *Network*

- Merubah arsitektur
- Merubah fungsi aktivasi

Memilih Metode Optimasi

Adaptive learning rate

Mencegah Overfitting

- Dropout
- Augmentasi data

Modifikasi Network

- Merubah arsitektur, misalnya menambah jumlah hidden layer, jumlah neuron, atau jenis arsitektur lain
- Merubah fungsi aktivasi, misalnya menggunakan ReLU

Rectified Linear Unit function (ReLU)

Optimasi parameter

Nilai *learning rate* berpengaruh pada perhitungan bobot baru, umumnya penggunaan *learning rate* yang menyesuaikan nilai gradien (*adaptive learning rate*) menunjukkan kinerja model yang lebih baik. Contoh *algoritma adaptive learning rate*:

- Adagrad [John Duchi, JMLR 2011]
- Adadelta [Matthew D. Zeiler, arXiv 2012]
- Adam [Diederik P. Kingma, ICLR 2015]
- AdaSecant [Caglar Gulcehre, arXiv 2014]
- RMSprop https://www.youtube.com/watch?v=O3sxAc4hxZU

Mencegah Overfitting

Regularization

Regularisasi dilakukan untuk mengurangi *generalization error* dengan mencegah model lebih kompleks. Penerapan regularisasi dengan cara menambahkan *regularization term* pada semua parameter (bobot) ke fungsi obyektif.

Regularization L1 norm

- Menambahkan sum of the absolute weights sebagai penalty term ke fungsi obyektif

Regularization L2 norm (weight decay)

- Menambahkan sum of the squared weights sebagai penalty term ke fungsi obyektif

Mencegah Overfitting

Cara meregulasi parameter untuk menghindari overfitting sehingga model lebih general

Dropout

- Umumnya dilakukan pada fully connected layer
- Selama proses training, setiap iterasi sebelum menghitung gradient
 - Setiap neuron diset tidak aktif dengan prosentase dropout p%

Early stopping

Iterasi pada saat training dihentikan jika generalization error mulai naik

Struktur network berubah lebih ringan

Mencegah Overfitting

Menambah Data Latih (Augmentasi Data)

- Proses memperbanyak variasi data latih, sehingga model yang dihasilkan lebih baik dalam memprediksi data uji
- Metode augmentasi data yang digunakan tergantung dari jenis data input
- Metode oversampling data numerik: smote, adasyn, dan sebagainya
- Contoh augmentasi data citra: rotasi, translasi, flip, dan zoom

Aplikasi CNN pada Pengenalan Angka

label = 1

label = 3

MNIST Handwritten Digits

- MNIST dataset dibagi menjadi 3 bagian:
 - o 55,000 training data
 - 10,000 test data
 - o 5,000 validation data
- Setiap gambar berukuran 28 × 28 pixels
- Label kelas berupa one hot encoded

0	[10000000000]
1	[010000000]
2	[0010000000]
3	[000100000]
4	$[0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0]$
5	[0000010000]
6	[0000001000]
7	$[0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 0]$
8	$[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0]$
9	$[0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0]$

MNIST Handwritten Digits

Aplikasi CNN pada Pengenalan Angka

CNN dengan Keras

model.add(Dense(10,activation='softmax'))

```
model = Sequential()
model.add(Conv2D(16,(3,3),activation='relu',input_shape=(28,28,1),padding='same'))
model.add(MaxPooling2D(2,2))
model.add(Conv2D(32,(3,3),activation='relu',padding='same'))
model.add(MaxPooling2D(2,2))
model.add(Flatten())
model.add(Dense(64,activation='relu'))
```

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	28, 28, 16)	160
max_pooling2d_1 (MaxPooling2	(None,	14, 14, 16)	0
conv2d_2 (Conv2D)	(None,	14, 14, 32)	4640
max_pooling2d_2 (MaxPooling2	(None,	7, 7, 32)	0
flatten_1 (Flatten)	(None,	1568)	0
dense_1 (Dense)	(None,	64)	100416
dense_2 (Dense)	(None,	10)	650

Total params: 105,866
Trainable params: 105,866
Non-trainable params: 0

Aplikasi CNN pada Pengenalan Angka

CNN dengan Keras

```
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['acc'])
history = model.fit(X_train,y_train,epochs=10,batch_size=100,validation_data=(X_test,y_test))
model.evaluate(X_test,y_test)
```


Varian dari Arsitektur CNN dan Tipe Apikasinya

Aplikasi	Arsitektur CNN	Classification	Classification + Localization
Image Classification	 LeNet-5 (1998) AlexNet (2012) GoogLeNet/Inception (2014) VGGNet (2014) ResNet (2015) 	CAT	CAT
Object Detection	 R-CNN (2013) Fast R-CNN (2014) Faster R-CNN (2015) Single Shot Detector (SSD) (2016) YOLO (2016), YOLOv3 (2018), YOLOv4 (2020), YOLOv5 (2020) 	Object Detection	Instance Segmentation
Semantic (Instance) Segmentation	 Fully Convolutional Network (FCN) (2015) U-Net (2015) Feature Pyramid Network (FPN) (2016) Mask R-CNN (2017 DeepLab (2016), DeepLabv3 (2017), DeepLabv3+ (2018) 	Input	Output
Generative model	 Autoencoders, Variational Autoencoders (VAE) Generative Adversarial Network (GAN) 	Horse	→ Zebra

Recurrent Neural Network

Recurrent Neural Netword (RNN) adalah salah satu arsitektur ANN yang mampu merepresentasikan data sequential misalnya teks, DNA, suara, time series, dan sebagainya

 X_{t-1}

Input

 X_{t+1}

Tipe Arsitektur RNN dan Aplikasinya

Many to One

Applications:

- Sentiment classification
- Opinion mining
- Speech recognition
- Automated answer scoring

One to Many

Applications:

- Image captioning
- Text generation

Many to Many

Applications:

- Translation
- Forecasting
- Chatbot
- Music generation

Contoh Aplikasi: Sentiment classification & Image captioning

http://dprogrammer.org/rnn-lstm-gru

Varian Arsitektur RNN

- Long Short-Term Memory (LSTM): merupakan salah satu jenis arsitektur RNN yang terdiri dari beberapa unit yaitu input gate, output gate, dan forget gate
- Gate Recurrent Unit (GRU): merupakan simplifikasi dari arsitektur LSTM dengan menggabungkan input gate dan forget gate sehingga jumlah parameter lebih sedikit
- Independently RNN (IndRNN): arsitektur RNN dimana setiap neuron dalam satu layer independen dari yang lain
- **Bi-directional RNN**: merupakan arsitektur RNN menghubungkan dua hidden layer dari arah yang berlawanan ke output yang sama.
- Echo State Network (ESN): ide dasar ESN adalah untuk membuat jaringan berulang yang terhubung secara acak, yang disebut reservoir

Summary

FCN

Data numerik

Jumlah hidden layer sesuai kompleksitas permasalahan

Klasifikasi dan regresi

CNN

Data citra, video

Convolution & Pooling layer

Klasifikasi, deteksi obyek, instance segmentation, generate citra sintetis

RNN

Data text, signal, suara, time-series

Konsep recurrent dan memperhatikan urutan input

Klasifikasi, regresi, generate text, translation

