2012 G1

Ezra Guerrero Alvarez

January 18, 2022

2012 G1

2012 G1

Given triangle ABC the point J is the center of the excircle opposite the vertex A. This excircle is tangent to the side BC at M, and to the lines AB and AC at K and L, respectively. The lines LM and BJ meet at F, and the lines KM and CJ meet at G. Let G be the point of intersection of the lines G and G and G and G and G and G are the midpoint of G and G and G are the midpoint of G are the midpoint of G and G are the

Note that AKJL is cyclic with diameter \overline{AJ} . Therefore, $\angle KJL = 180^{\circ} - \angle KAL$. Now, since \overline{BJ} is the perpendicular bisector of \overline{KM} , F is equidistant to K and M. Hence,

$$\angle KFL = \angle KFM = \angle 180^{\circ} - 2\angle FMK = 2\angle KML - 180^{\circ} = 180^{\circ} - \angle KJL$$

so F lies on this circle. Analogously, G lies on the circle as well, so AFKJLG is cyclic. Now, let $X = \overline{JM} \cap (AKL)$ and $Y = \overline{AM} \cap (AKL)$. Since \overline{AJ} is a diameter, $\overline{AX} \perp \overline{XJ} \perp \overline{BC}$. Let ∞ be the point at infinity of line \overline{BC} . Because A and J are the midpoints of the minor and major arcs \widehat{KL} we find

$$-1 = (AJ; LK) \stackrel{M}{=} (YX; FG) \stackrel{A}{=} (M\infty, ST),$$

implying M is the midpoint of \overline{ST} , as desired.