Санкт-Петербургский Политехнический университет Петра Великого

Институт прикладной математики и механики Высшая школа прикладной математики и вычислительной физики

ЛАБОРАТОРНАЯ РАБОТА №2

на тему
"Исследование разностных схем для параболических уравнений"
по дисциплине
"Конечно-разностные и сеточные методы"

Выполнил студент гр. 3630102/60101 Лансков.Н.В.

 ${
m Cahkt-} \Pi$ етербург 2019

Содержание

1	Список иллюстраций	2
2	Список таблиц	3
3	Постановка задачи	4
4	Разностные схемы 4.1 Явная схема 4.2 Неявная схема 4.3 Симметричная схема	
5	Результаты 5.1 Явная схема 5.2 Неявная схема 5.3 Симметричная схема 5.4 Сравнение схем	8 8 13 13 14
6	Выводы	14
7	Приложения	14

1 Список иллюстраций

1	Шаблон для явной схемы	5
2	Шаблон для неявной схемы	6
3	Шаблон для симметричной схемы	7
4	Явная схема, $h_0 = \frac{1.5}{M_0}$, $\tau_0 = \frac{h^2}{2 \cdot q(2)}$, $t = 0$	9
5	Явная схема, $h_0 = \frac{1.5}{M_0}$, $\tau_0 = \frac{h^2}{2 \cdot q(2)}$, $t = 655$	9
6	Явная схема, $h_0 = \frac{1.5}{M_0}$, $\tau_0 = \frac{h^2}{2 \cdot q(2)}$, $t = 1309 \dots$	10
7	Явная схема, $h_0 = \frac{1.5}{M_0}$, $\tau_0 = \frac{h^2}{2 \cdot a(2)}$, $t = 2617 \cdot \dots \cdot $	10
8	Явная схема, неустойчивость, $h_0 = \frac{1.5}{M_0}$, τ , $x_{ind} = 1995$	11
9	Явная схема, неустойчивость, $h_0 = \frac{1.5}{M_0}$, τ , $x_{ind} = 1997$	11
10	Явная схема, неустойчивость, $h_0 = \frac{1.5}{M_0}$, τ , $x_{ind} = 1998$	12
11	Явная схема, неустойчивость, $h_0 = \frac{1.5}{M_0}$, τ , $x_{ind} = 2001$	12
12	Неявная схема, $\varepsilon(\tau)$	
13	Симметричная схема, $\varepsilon(\tau)$	13

2 Список таблиц

1	Зависимость погрешности от числа разбиений по x	8
2	Таблица для проверки порядков аппроксимации разностных схем	14
3	Оценка трудоёмкости разностных схем по времени работы	14

3 Постановка задачи

Рассмотрим задачу:

$$\begin{cases} \frac{\partial u}{\partial t} - \rho(x) \frac{\partial^2 u}{\partial x^2} = f(x, t), & x \in [0.5; 2], t \in [0, T] \\ 0 < \rho_{min} < \rho(x) < \rho_{max}, & \rho(x) = (x + 1) \cdot 10^{-8} \\ -\frac{\partial u}{\partial x}(0.5) + u(0.5) = \mu_1(t) \\ \frac{\partial u}{\partial x}(2) + u(2) = \mu_2(t) \\ u(x, 0) = \phi(x) \end{cases}$$

$$\begin{cases} f(x,t) = -3sin(e^x)xe^{-3t} - x(2e^{-3t+x}cos(e^x) + e^x(cos(e^x) - e^xsin(e^x))) \\ \mu_1(t) = -(e^{-3t}sin(e^{0.5}) + e^{0.5}cos(e^{0.5})(0.5e^{-3t} + 1)) + sin(e^{0.5}(0.5e^{-3t} + 1))) \\ \mu_2(t) = (e^{-3t}sin(e^2) + e^2cos(e^2)(2e^{-3t} + 1)) + sin(e^2(2e^{-3t} + 1))) \\ \phi(x) = (x+1) \cdot sin(e^x) \end{cases}$$
 вение ищем в виде :

Решение ищем в виде:

$$\begin{cases} u^*(x) = v(x,t)w(x) \\ w(x) = sin(e^x) \\ v(x,t) = x \cdot e^{-3t} + 1 \end{cases}$$

Разностные схемы 4

При построении сетки по t будем выбирать $\mathbf T$ из условия:

$$\frac{\|u(x,T) - u_{st}(x)\|}{\|u_{st}(x)\|} \le \delta, \delta = 0.1\varepsilon_0$$

4.1Явная схема

Для начала введём сетки по x и по t соответственно.

$$\omega_h = \{x_i = 0.5 + ih, i \in \overline{0, N}, h = \frac{1.5}{N}\}$$

$$\omega_{\tau} = \{ t_i = i\tau, i \in \overline{0, K}, \tau K = T \}$$

Рис. 1: Шаблон для явной схемы

Рассмотрим процесс нахождения значений сеточной функции. Сначала заполняем значения на нулевом слое, подставляя значения функции из начального условия $u(x,0) = \phi(x)$. Далее для слоя с номером $n \in [1;K]$ вычисляем значения внутренних точек по схеме:

$$\begin{cases} y_i^n = y_i^{n-1} + \tau \cdot (f_i^{n-1} + \rho(x_i) \cdot y_{x\overline{x},i}^{n-1}) \\ y_{x\overline{x},i}^{n-1} = \frac{y_{i+1}^{n-1} - 2y_i^{n-1} + y_{i-1}^{n-1}}{h^2} \end{cases}$$

После этого вычисляем значения в граничных точках, пользуясь граничными условиями:

$$y_0^n = \frac{\mu_1(t^n) + \frac{4y_2^n - y_3^n}{2h}}{1 + \frac{3}{2h}}; y_N^n = \frac{\mu_2(t^n) + \frac{4y_{N-1}^n - y_{N-2}^n}{2h}}{1 + \frac{3}{2h}}$$

Заметим, что производные в граничных условиях аппроксимируются по трёхточечному шаблону с порядком точности $O(h^2)$:

$$\left(\frac{\partial u}{\partial x}\right)_0 = \frac{-3y_0^n + 4y_1^n - y_3^n}{2h}; \left(\frac{\partial u}{\partial x}\right)_N = \frac{3y_N^n - 4y_{N-1}^n + y_{N-2}^n}{2h};$$

4.2 Неявная схема

Рис. 2: Шаблон для неявной схемы

Неявная схема, в отличие от явной, для нахождения значений функции на одном слое требует решения трёхдиагональной системы методом прогонки. В данной работе был реализован общий вид данной схемы.

Шаблоны по x и по t задаются аналогично, также аналогично первый слой заполняется при помощи начального условия.

Для неявной схемы имеем:

$$\frac{y_i^n - y_i^{n-1}}{\tau} = \rho(x_i) \cdot \left(\frac{y_{i+1}^n - 2y_i^n + y_{i-1}^n}{h^2}\right) + f(x_i, t_n)$$

Откуда видно, что для каждого слоя будем получать систему уравнений, решение которой ищем методом прогонки.

$$\begin{cases} \gamma_{i} y_{i+1}^{n} - (1+2\gamma_{i}) y_{i}^{n} + \gamma_{i} y_{i-1}^{n} = -F_{i}^{n}, & i \in 1, N-1 \\ \\ \gamma_{i} = \frac{\tau \cdot \rho(x_{i})}{h^{2}} \\ \\ F_{i}^{n} = -y_{i}^{n-1} + f(x_{i}, t_{n}) \end{cases}$$

Граничные условия записываются аналогично явной схеме.

$$\begin{cases} (\frac{3}{2h} + 1)y_0^n - \frac{4}{2h}y_1^n + \frac{1}{2h}y_2^n = \mu_1(t_n) \\ (\frac{3}{2h} + 1)y_N^n - \frac{4}{2h}y_{N-1}^n + \frac{1}{2h}y_{N-2}^n = \mu_1(t_n) \end{cases}$$

4.3 Симметричная схема

Рассмотрим разностные выражения, использующиеся в симметричной схеме.

$$\frac{y_i^n - y_i^{n-1}}{\tau} = \frac{\rho(x_i)}{2} \cdot \left(\frac{y_{i+1}^n - 2y_i^n + y_{i-1}^n}{h^2}\right) + \frac{\rho(x_i)}{2} \cdot \left(\frac{y_{i+1}^{n-1} - 2y_i^{n-1} + y_{i-1}^{n-1}}{h^2}\right) + f(x_i, t_{n-1} + 0.5\tau)$$

В данном случае, система уравнений приобретает вид:

$$\begin{cases} \gamma_i y_{i+1}^n - (1+2\gamma_i) y_i^n + \gamma_i y_{i-1}^n = -F_i^n, & i \in 1, N-1 \\ \gamma_i = \frac{\tau \cdot \rho(x_i)}{2h^2} \\ F_i^n = y_i^{n-1} + f(x_i, t_{n-1} + 0.5\tau) + \frac{\rho(x_i)}{2} \cdot \left(\frac{y_{i+1}^{n-1} - 2y_i^{n-1} + y_{i-1}^{n-1}}{h^2} \right) \end{cases}$$

Граничные условия по сравнению с чисто неявной схемой не изменяются.

Рис. 3: Шаблон для симметричной схемы

Можно рассматривать неявные схемы в общем виде, если ввести в разностную схему параметр σ .

$$\frac{y_i^n - y_i}{\tau} = \rho(x) \cdot (\sigma y_{\overline{x}x}^n + (1 - \sigma) y_{\overline{x}x}^{n-1}) + f(x_i, t_{n-1} + \tau \cdot \sigma)$$

Тогда запишем общий вид матрицы для слоя с номером n:

$$\begin{pmatrix} 3+2h & -4 & 1 & 0 & \dots & 2h\mu_1(t_n) \\ \gamma_1 & -1-2\gamma_1 & \gamma_1 & 0 & \dots & -F_2^n \\ 0 & \gamma_2 & -1-2\gamma_2 & \gamma_2 & \dots & -F_3^n \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \dots & 0 & \gamma_{N-1} & -1-2\gamma N-1 & \gamma_{N-1} & -F_{N-1}^n \\ \dots & 0 & 1 & -4 & 3+2h & 2h\mu_2(t_n) \end{pmatrix}$$

Где:

$$\gamma_i = \frac{\tau \rho(x_i)\sigma}{h^2}, i \in \overline{1, N-1}$$

Эта система строится для каждого слоя, затем приводится к трёхдиагональному виду и решается методом прогонки. Также в выражениях для коэффициентов фигурирует σ . Для чисто неявной схемы считаем $\sigma=1$. Полагая $\sigma=\frac{1}{2}$, получаем симметричную схему. Если взять $\sigma=0$, получим явную схему.

5 Результаты

5.1 Явная схема

1. Определение числа разбиений для достижения заданной точности Требуемая точность $\varepsilon_0 = 10^{-3}$

Достаточно просто определить, что для M_1 = 120000 и M_2 = 150000 выполняется неравенство: $\varepsilon(M_2) < \varepsilon_0 < \varepsilon(M_1)$

Для того, чтобы найти $M_0: \varepsilon(M_0) < \varepsilon_0 < \varepsilon(M_0 - 1)$, воспользуемся методом половинного деления интервала $[M_1; M_2]$. Ниже приведена таблица значений, близких к искомому M_0

Таблица 1: Зависимость погрешности от числа разбиений по x

N	$arepsilon_N$
136962	1.000309e-03
136977	1.000090-03
136980	1.000046e-03
136982	1.000017e-03
136983	1.000002e-03
$M_0 = 136984$	9.999876e-04

Где ε вычисляется по формуле

$$\varepsilon = \frac{||u - v||_{h\tau}}{||u||_{h\tau}}, ||u||_{h\tau} = \max_{t \in [0,T]} ||u(t)||_{h}$$

В качестве нормы по h используется бесконечная норма $||u(t)||_h = \max_{i \in [0,N]} (u(x_i,t)),$ для которой будет выполнено условие согласованности норм для нашей задачи.

2. Графики зависимостей значений сеточной функции от x и t при различных последовательных значениях t.

Рис. 4: Явная схема, $h_0 = \frac{1.5}{M_0}, \tau_0 = \frac{h^2}{2 \cdot q(2)}, t = 0$

Рис. 5: Явная схема, $h_0 = \frac{1.5}{M_0}, \tau_0 = \frac{h^2}{2 \cdot q(2)}, t = 655$

Рис. 6: Явная схема, $h_0 = \frac{1.5}{M_0}, \tau_0 = \frac{h^2}{2 \cdot q(2)}, t = 1309$

Рис. 7: Явная схема, $h_0 = \frac{1.5}{M_0}, \tau_0 = \frac{h^2}{2 \cdot q(2)}, t = 2617$

3. Иллюстрация неустойчивости

Возьмём $\tau = \tau_0 + \delta$, $\delta = 1.85e - 5$ и число разбиений по x N = 10000. Построим аналогичные графики сечений, только теперь сечения по оси x. Неустойчивость явно проявляется ближе к правой границе по x, соответственно будем рассматривать сечения в окрестности этой границы.

Рис. 8: Явная схема, неустойчивость, $h_0 = \frac{1.5}{M_0}, \tau, x_{ind} = 1995$

Рис. 9: Явная схема, неустойчивость, $h_0 = \frac{1.5}{M_0}, \tau, x_{ind} = 1997$

Рис. 10: Явная схема, неустойчивость, $h_0 = \frac{1.5}{M_0}, \tau, x_{ind} = 1998$

Рис. 11: Явная схема, неустойчивость, $h_0 = \frac{1.5}{M_0}$, τ , $x_{ind} = 2001$

По графикам легко заметить, что функции перестали совпадать совершенно. Даже при малейшем увеличении максимально доступного из условия устойчивости τ , ошибка возрастает колоссально. Для данного конкретного $\tau: \varepsilon_{\tau} = 1.452027e + 220$

5.2 Неявная схема

Исследуем, на сколько можно увеличить шаг по времени начиная от τ_0 , сохранив при этом требуемую точность.

Рис. 12: Неявная схема, $\varepsilon(\tau)$

5.3 Симметричная схема

Проведём исследование, аналогичное тому, что было в неявной схеме.

Рис. 13: Симметричная схема, $\varepsilon(\tau)$

5.4 Сравнение схем

Произведём сравнение трёх схем. Будем сравнивать схемы по времени работы при одном и том же числе разбиений по h и по t, а также проверим порядок аппроксимации для каждой схемы.

Ниже приведена сводная таблица с исследованиями. (рассматриваем фиксированный шаг h, считаем $\tau = \frac{h^2}{2q(2)}$ при всех замерах).

	h	tau	ε , Явная схема	ε , Неявная схема	ε , Симметричная схема
6	ie-4	3	$1.426942e{+1}$	1.779575	1.604145
3	Be-4	7.5	2.321806	1.126013	2.811328e-1
1.	5e-4	0.1875	2.867224e-1	2.377931e-1	1.217982e-2
7.	5e-5	4.6875e-2	5.244476e-2	5.004149e-2	5.994168e-4
3.7	75e-5	1.171875e-2	1.203692e-2	1.189528e-2	3.436387e-5
1.8	75e-5	2.929687e-3	2.944778e-3	2.934803e-3	1.653247e-6
9.3	75e-6	7.324219e-4	7.326762e-4	7.307866e-4	5.428163e-7

Таблица 2: Таблица для проверки порядков аппроксимации разностных схем

Таблица 3: Оценка трудоёмкости разностных схем по времени работы

ε	<i>t</i> , Явная схема	<i>t</i> , Неявная схема	t, Симметричная схема
0.1	0.08	0.16	0.02
0.01	0.6	0.87	0.13
0.001	185	55	0.67

Время в таблице указано в секундах.

6 Выводы

В результате сравнения трёх схем можно сделать определённые выводы. С ростом числа разбиений симметричная схема в десятки раз эффективнее по скорости работы, нежели явная или даже чисто неявная схема, всвязи с чем ей стоит отдавать предпочтение при реальных расчётах.

7 Приложения

Исходные файлы лабораторной работы можно найти тут:

 $\label{local-analysis/tree/master} $$ https://github.com/LanskovNV/numerical-analysis/tree/master/%D0%A1%D0%B5%D1%82%D0%BE%D1%87%D0%BD%D1%8B%D0%B5%20%D0%BC%D0%B5%D1%82%D0%BE%D0%B4%D1%8B/lab_2 $$ 120 km s^{-1} 1$