

ANALISIS SENTIMEN PADA PERINGKASAN TEKS BERITA OTOMATIS BERBAHASA INDONESIA MENGGUNAKAN DEEP LEARNING:

Evaluasi Analisa Sentimen pada Sistem Peringkasan Teks Otomatis menggunakan Model IndoBERT *Fine-Tuning* dalam Berita Berbahasa Indonesia

Mohammad Azis Khoirul Fata 6022212026

DOSEN PEMBIMBING

Dr. Surya Sumpeno, S.T., M.Sc.

Dr. Ir. Adhi Dharma Wibawa, S.T., M.T.

Program Studi Teknik Elektro Bidang Keahlian Telematika Institut Teknologi Sepuluh Nopember

5. Kesimpulan

Poin-poin utama dari hasil penelitian akan dijelaskan dan saran-saran mengenai bagaimana penelitian ini dapat diperluas atau ditingkatkan juga akan diberikan

4. Hasil dan Diskusi

Hasil dari beberapa skenario pengujian akan dijelaskan. Data yang dihasilkan akan diinterpretasikan dan dijelaskan.

3. Metodologi

Desain sistem akan diperkenalkan dalam bab ini dan akan dijelaskan secara rinci.

1. Pendahuluan

Dalam bab ini akan dijelaskan mengenai latar belakang masalah penelitian, penelitian terdahulu secara singkat, metode pemecahan masalah yang diusulkan, dan kebaruan atau kontribusi dari penelitian ini.

2. Penelitian Terkait

Pada bab ini, penelitian terdahulu akan dijelaskan secara lebih rinci yang akan menekankan kebaruan dari penelitian ini.

PENDAHULUAN

Kemunculan teknologi internet, situs web, dan perangkat portabel telah mengubah cara orang membaca berita. Berita online telah menggantikan majalah konvensional dan koran fisik. Intuitif dan ketepatan waktu adalah dua alasan mengapa pembaca lebih tertarik untuk berpindah ke berita online

Perkembangan Media Massa

E-Government

Pemerintah di seluruh dunia berdedikasi untuk menyediakan layanan masyarakat yang terjangkau, efisien, dan berkualitas tinggi untuk memenuhi kebutuhan warganya, salah satunya melalui layanan egovernment. Seperti halnya di Indonesia, pemerintahan berbasis teknologi (egovernment) terus dikembangkan untuk mewujudkan tata kelola pemerintahan yang baik serta meningkatkan efisiensi dan integrasi berbasis sistem elektronik.

Untuk menjaga pelayanan terbaik bagi masyarakat Indonesia, pemerintah melalui teknologi terus memantau isu-isu sosial kemasyarakatan melalui berbagai media, salah satunya dengan melakukan analisis sentimen terhadap berita-berita online. Pendekatan ini memungkinkan pemerintah untuk mengambil tindakan yang tepat dan cepat terhadap isu-isu yang sedang berkembang.

> Sentiment Analysis

Penelitian Sebelumnya

Beberapa penelitian [1]-[4] hanya melakukan analisis sentimen pada Sebagian elemen berita, yang terkadang tidak mencerminkan isi berita. Di sisi lain, beberapa penelitian tentang pendekatan deep learning telah menghasilkan peningkatan dalam analisis sentimen. Deep learning dapat memberikan hasil yang akurat jika diterapkan pada beberapa area NLP (Natural Language Processing), termasuk teks, suara, dan ucapan.

Transformer [5] adalah arsitektur pembelajaran mendalam yang didasarkan pada mekanisme perhatian multikepala.
Transformer telah terbukti sangat efektif dalam memahami semantik kalimat dan sintaksis dari teks.

Transformer

Tujuan Penelitian

Penelitian ini mengevaluasi keakuratan ringkasan yang dihasilkan secara otomatis dalam menentukan sentimen dari setiap berita dengan membandingkan klasifikasi analisis sentimen dari teks ringkasan yang dibuat oleh manusia dengan menggunakan model finetuning IndoBERT [6], [7] dengan label sentimen yang dihasilkan dari teks ringkasan yang dihasilkan secara otomatis

NEWS HEADLINE AND NEWS SUMMARY SENTIMENT COMPARISON

	News Headline	Human-Made News Summary
Content		"Pelatih Barcelona, Luis Enrique puas dengan keberhasilan timnya menghancurkan Villarreal dengan skor 4 - 1. Enrique pun tak lupa memuji Neymar yang disebutnya mirip penari balet di lapangan hijau. Neymar jadi pencetak gol pembuka bagi Barcelona di laga itu. Tak hanya itu, Neymar pun terus memberikan ancaman pada Villarreal sepanjang laga. Aksi Neymar mengolah bola mengundang decak kagum banyak orang, termasuk Enrique."
Sentimen	Sentimen Negatif atau Positif?	Positif

News source: CNN Indonesia web portal [8]

RELATED WORK

No	Judul	Tahun	Teknik/Algoritma	Dataset	Hasil
1	A Robustly Optimized BERT using Random Oversampling for Analyzing Imbalanced Stock News Sentiment Data	2023	Robustly optimized Bidirectional Transformer Encoder Representation (RoBERTa)	Stock News Dataset: 5.764 data(2.106 negative, 3.685 positive)	84% F1-score, and 86% for accuracy
2	BERT Implementation on News Sentiment Analysis and Analysis Benefits on Branding	2022	BERTBASE-multilingual-cased	1600 News Titles	93% accuracy
3	Sentiment Analysis of Economic News in Bahasa Indonesia Using Majority Vote Classifier	2016	Majority Vote Classifier	540 News	Majority Vote scoring better precision and accuracy than decision tree, random forests, and support vector machine alone.
4	BERT Fine-Tuning for Sentiment Analysis on Indonesian Mobile Apps Reviews	2021	IndoBERT-Base	10.615 Google Play Indonesian User Review	akurasi terbaik: 84
5	IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding	2020	IndoBERT versi IndoNLU	12.760 data (online comment and review)	F1 Score: 92.72
6	IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indonesian NLP	2020	IndoBERT versi IndoLEM	5.048 sentiment data from Twitter and Hotel Review	F1 Score: 84.1

Gambar 1. Desain Sistem

Tabel 1. Contoh dataset

Teks Berita	Ringkasan Berita	Sentimen
Teks Delita	Manual	Manual
Jakarta , CNN Indonesia Dokter Ryan	Dokter Lula Kamal	
Thamrin , yang terkenal lewat acara Dokter	yang merupakan	
Oz Indonesia , meninggal dunia pada Jumat	selebriti sekaligus	
(4/8) dini hari . Dokter Lula Kamal yang	rekan kerja Ryan	
merupakan selebriti sekaligus rekan kerja	Thamrin menyebut	
Ryan menyebut kawannya itu sudah sakit	kawannya itu sudah	
sejak setahun yang lalu . Lula menuturkan ,	sakit sejak setahun	
sakit itu membuat Ryan mesti vakum dari	yang lalu . Lula	
semua kegiatannya , termasuk menjadi	menuturkan, sakit itu	neutral
pembawa acara Dokter Oz Indonesia .	membuat Ryan mesti	
Kondisi itu membuat Ryan harus kembali	vakum dari semua	
ke kampung halamannya di Pekanbaru ,	kegiatannya ,	
Riau untuk menjalani istirahat . " Setahu	termasuk menjadi	
saya dia orangnya sehat , tapi tahun lalu	pembawa acara	
saya dengar dia sakit .	Dokter Oz Indonesia.	

Tabel 2. Komposisi Dataset

Kategori Berita	negative	neutral	positive	Grand Total
hiburan	7	48	30	85
inspirasi		1	7	8
olahraga	50	82	116	248
showbiz	30	43	56	129
tajuk utama	124	162	110	396
teknologi	9	52	73	134
Grand Total	220	388	392	1000

METHODOLOGY - Model Peringkasan Otomatis

Gambar 2. Skema Fine-Tuning BERT untuk peringkasan Abstraktif

cahya/bert-base-indonesian-1.5G telah dilatih dengan 522MB Wikipedia bahasa Indonesia dan 1GB surat kabar berbahasa Indonesia yang berisi sekitar 500 ribu artikel (136 juta kata) dari 7 surat kabar Indonesia: Detik, Kompas, Tempo, CNN Indonesia, Sindo, Republika, dan Poskota

Tabel 3. BERT Pre-training Model Details

Pre-Trained Model	L	Н	A	Total Parameter	Language
BERT-base	12	768	12	110	104
Multilingual	12	708	12	million	Language
IndoBERT-base	12	768	12	124.5	Indonesian
IndoNLU	12	708	12	million	Language
IndoBERT-base	12	768	12	110	Indonesian
IndoLEM	12	/08	12	million	Language

Dataset dibagi menjadi tiga bagian untuk tahap *fine-tuning*: pelatihan, pengujian, dan validasi. Set pelatihan memiliki 900 data, sedangkan set pengujian dan validasi masing-masing memiliki 50 data.

Gambar 3. The BERT Fine-Tuning for classification task

Hasil Pengujian Fine-tuning IndoBERT menggunakan Ringkasan Berita Manual

Tabel 2. ML Baseline F1-Score

ML Baseline	Training	Cross Validation	Testing
Model	F1-Score	F1-Score	F1-Score
SVM	0.9967	0.4969	0.5921
kNN	0.6091	0.4086	0.4641
Naïve Bayes	0.9822	0.4863	0.5067
Decision Tree	1	0.4707	0.4227
Random Forest	1	0.4634	0.4244

Tabel 3. Pre-trained Models Performance with Learning Rate 1e-5, Trained and Tested with Human Summaries

Pre-trained Model	Batch Size / Epoch s	Avg Training F1-Score	Avg Validation F1-Score	Testing F1- Score
bert-base- multilingual-cased	16 / 10	0.7933	0.6080	0.6124
bert-base- multilingual-uncased	16 / 10	0.7468	0.5428	0.5931
indobenchmark/indo bert-base-p1	16 / 10	0.8589	0.6733	0.7357
indolem/indobert- base-uncased	16 / 10	0.7827	0.6527	0.7214

Model yang sudah dilatih jauh mengungguli model pembelajaran mesin Baseline. Model pre-trained dengan performa tertinggi adalah indobenchmark/indobert-base-pl dengan nilai F1-score sebesar 0.7357, kemudian di posisi kedua adalah indolem/indobert-base-uncased dengan nilai F1-score sebesar 0.7214.

IndoBERT juga mendapatkan skor yang lebih baik daripada versi multibahasa. Hasil ini terjadi karena kedua model IndoBERT ini telah dilatih sebelumnya, dan pelatihannya berfokus pada bahasa monolingual, sama dengan bahasa pada tugas target dalam bahasa Indonesia.

Hasil Pengujian Fine-tuning IndoBERT menggunakan Ringkasan Berita Manual

Tabel 4. Indonesian Pre-trained Models Performance With Learning Rate 1e-5, Trained And Tested With Human Summaries

Pre-trained Model	Batch Size / Epochs	Avg Training F1-Score	Avg Validation F1-Score	Testing F1-Score
indobenchmark/in dobert-base-p1	16 / 5	0.7268	0.6607	0.6138
indolem/indobert- base-uncased	16 / 5	0.626	0.6513	0.7152
indobenchmark/in dobert-base-p1	16 / 10	0.8589	0.6733	0.7357
indolem/indobert- base-uncased	16 / 10	0.7827	0.6527	0.7214
indobenchmark/in dobert-base-p1	16 / 20	0.9294	0.6977	0.7111
indolem/indobert- base-uncased	16 / 20	0.8868	0.6507	0.7514

Seperti yang dapat kita lihat pada Tabel, skor tes yang dihasilkan oleh model IndoLEM meningkat seiring dengan bertambahnya epoch, yang mengindikasikan pembelajaran yang lebih baik dibandingkan dengan model IndoNLU. Hal ini terjadi karena, pada fase pra-pelatihan, model IndoLEM dilatih pada kumpulan teks yang berisi teks yang lebih formal, seperti Wikipedia dan teks berita, sesuai dengan teks berita dalam dataset penelitian. Kita akan menggunakan kedua versi Indobert ini untuk menguji dataset ringkasan berita yang dihasilkan secara otomatis.

Hasil Pengujian Fine-tuning IndoBERT menggunakan Ringkasan Berita Otomatis

Tabel 5. Pre-trained Models Performance With Learning RATE 1E-5, USE Auto-generated Summaries (AGS) Testing Set

Pre-trained Model	Batch Size / Epochs	Avg Training F1-Score	Avg Validation F1-Score	AGS Testing F1-Score
indobenchmark/in dobert-base-p1	16 / 10	0.8589	0.6733	0.5187
indolem/indobert- base-uncased	16 / 20	0.8868	0.6507	0.6541

Analisis sentimen menggunakan dataset pengujian ringkasan manusia memiliki nilai yang lebih baik dibandingkan dengan dataset pengujian ringkasan yang dihasilkan secara otomatis. Hasil ini terjadi karena ringkasan yang dibuat secara otomatis terkadang menghasilkan ringkasan yang hanya mengambil sebagian dari konten berita, sehingga tidak dapat menangkap semua informasi dan terkadang membuat kalimat yang tidak berhubungan.

Human- Made Summary	"Angel Investment Network Indonesia (ANGIN) menginisiasi kegiatan Wonder Tech. Acara yang bertujuan untuk memahami permasalahan dan mencoba mencari solusi terbaik agar lebih banyak lagi perempuan terjun ke dunia teknologi, didukung oleh para pelaku startup. Dalam kegiatan tersebut akan dihadirkan beberapa tokoh perempuan yang sukses dengan bisnisnya di Indonesia untuk membahas potensi serta solusi terbaik untuk perempuan di dunia teknologi."
AUTO- GENERATED SUMMARY	"permasalahan masih minimnya jumlah perempuan yang berkecimpung dalam dunia teknologi hingga saat ini ternyata mendapat sorotan dari para pelaku ukm hingga jajaran eksekutif di perusahaan teknologi di indonesia. namun menjamurnya jumlah responden dan meningkatnya lowongan posisi untuk engineer, ternyata tidak disertai dengan meningkatnya jumlah pelatihan yang berasal dari kalangan perempuan untuk berkarier sebagai manage untuk industri teknologi, tidaklah demikian dengan banyaknya wanita yang bekerja sebagai engineer."

"Menyebabkan Kesalahan Sentimen"

KESIMPULAN

Analisis sentimen pada ringkasan berita dapat dilakukan dengan menggunakan model BERT yang telah dilatih dalam bahasa Indonesia (IndoBERT). Kinerja prediksi analisis sentimen menggunakan model *fine-tuned* IndoBERT pada dataset ringkasan berita buatan manusia menggungguli model *machine learning* dan model *fine-tuned* BERT yang dilatih pada multibahasa. *Fine-tuning* menggunakan model *pre-trained indolem/indobert-base-uncased* menghasilkan nilai terbaik pada dataset pengujian ringkasan manusia, dengan skor F1 75%, dan menghasilkan nilai terbaik pada dataset pengujian ringkasan yang dibuat secara otomatis, dengan skor F1 65%. Hal ini menunjukkan bahwa kinerja prediksi analisis sentimen menggunakan peringkasan berita otomatis belum dapat melampaui kinerja prediksi analisis sentimen menggunakan ringkasan berita yang dibuat oleh manusia karena ringkasan yang dibuat secara otomatis terkadang menghasilkan ringkasan yang hanya mengambil sebagian dari isi berita dan terkadang membuat kalimat-kalimat yang tidak berkaitan yang tentunya berakibat pada penentuan sentimen berita yang salah.

SARAN

Untuk penelitian selanjutnya, memperbanyak dataset dan menggunakan model peringkasan teks otomatis yang menghasilkan ringkasan dengan alur informasi yang baik, dengan kalimat-kalimat yang berhubungan satu sama lain dan membentuk sebuah narasi yang dapat dimengerti oleh pembaca, layaknya ringkasan yang dibuat oleh manusia, sangat disarankan.

REFERENCES

- [1] S. M. Permataning Tyas, R. Sarno, A. T. Haryono, and K. Rossa Sungkono, "A Robustly Optimized BERT using Random Oversampling for Analyzing Imbalanced Stock News Sentiment Data," ICCoSITE 2023 International Conference on Computer Science, Information Technology and Engineering: Digital Transformation Strategy in Facing the VUCA and TUNA Era, pp. 897–902, 2023, doi: 10.1109/ICCOSITE57641.2023.10127725.
- [2] A. Hossain, M. Karimuzzaman, M. M. Hossain, and A. Rahman, "Text mining and sentiment analysis of newspaper headlines," Information (Switzerland), vol. 12, no. 10, Oct. 2021, doi: 10.3390/info12100414.
- [3] M. F. Abdussalam, D. Richasdy, and M. Arif Bijaksana, "BERT Implementation on News Sentiment Analysis and Analysis Benefits on Branding," JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, pp. 2064–2073, Oct. 2022, doi: 10.30865/mib.v6i4.4579.
- [4] Zamahsyari and A. Nurwidyantoro, "Sentiment analysis of economic news in Bahasa Indonesia using majority vote classifier," in 2016 International Conference on Data and Software Engineering (ICoDSE), 2016, pp. 1–6. doi: 10.1109/ICODSE.2016.7936123.
- [5] A. Vaswani et al., "Attention is All you Need," in Advances in Neural Information Processing Systems, I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., Curran Associates, Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
- [6] F. Koto, A. Rahimi, J. H. Lau, and T. Baldwin, "IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indonesian NLP," Proceedings of the 28th International Conference on Computational Linguistics, pp. 757–770, Nov. 2020, [Online]. Available: http://arxiv.org/abs/2011.00677
- [7] B. Wilie et al., "IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding," Sep. 2020, Accessed: Sep. 21, 2022. [Online]. Available: http://arxiv.org/abs/2009.05387

- [8] "Enrique: Neymar Seperti Penari Balet." Accessed: Dec. 15, 2023. [Online]. Available: https://www.cnnindonesia.com/olahraga/20170507044007-142-212861/enrique-neymar-seperti-penari-balet/
- [9] B. Liu, "Sentiment Analysis and Opinion Mining," Synthesis Lectures on Human Language Technologies, vol. 5, no. 1, pp. 1–167, May 2012, doi: 10.2200/S00416ED1V01Y201204HLT016.
- [10] E. Cambria, S. Poria, A. Gelbukh, and M. Thelwall, "Sentiment Analysis Is a Big Suitcase," IEEE Intell Syst, vol. 32, no. 6, pp. 74–80, 2017, doi: 10.1109/MIS.2017.4531228.
- [11] L. Zhang, S. Wang, and B. Liu, "Deep Learning for Sentiment Analysis: A Survey," WIREs Data Mining and Knowledge Discovery, vol. 8, no. 4, p. e1253, Jan. 2018, Accessed: Dec. 03, 2022. [Online]. Available: http://arxiv.org/abs/1801.07883
- [12] Jason Brownlee, "A Gentle Introduction to Text Summarization." Accessed: Dec. 02, 2022. [Online]. Available: https://machinelearningmastery.com/gentle-introduction-text-summarization
- [13] I. R. Musyaffanto, G. Budi Herwanto, and M. Riasetiawan, "Automatic extractive text summarization for indonesian news articles using maximal marginal relevance and non-negative matrix factorization," Proceedings 2019 5th International Conference on Science and Technology, ICST 2019, no. July, 2019, doi: 10.1109/ICST47872.2019.9166376.
- [14] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding," NAACL HLT 2019 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies Proceedings of the Conference, vol. 1, pp. 4171–4186, Oct. 2018, doi: 10.48550/arxiv.1810.04805.

