fiche 1: notions de base sur les fonctions

Étude de la continuité

Exercice 1. Donner le domaine de définition de la fonction $x \mapsto \frac{\sqrt{1+x}}{\ln(1-x^2)}$

Exercice 2. On considère la fonction f définie sur $]0, +2\pi[$ par $x \mapsto \sqrt{1+\sin(x)}$

- 1. définir f en language python.
- 2. écrire un script faisant afficher la représentation graphique de f. Graphiquement, peut-on dir que f est continue sur $]0, +2\pi[?]$ Dérivable sur $]0, +2\pi[?]$
- 3. Justifier que f est continue sur $]0, +2\pi[$.

Exercice 3. La fonction g est définie par $\forall x < 1, g(x) = \exp\left(\sqrt{1-x}\right)$ et $\forall x \le 1, g(x) = 0$.

On propose l'argument suivant pour montrer que g est continue.

- sur l'intervalle] ∞ ,1[, f est donnée par $x \mapsto \sqrt{1-x}$. L'application définie sur] ∞ ,1[par $x \mapsto 1-x$ est continue et à valeurs dans \mathbb{R}_+ . De plus $x \mapsto \sqrt{x}$ est continue sur \mathbb{R}_+ donc $x \mapsto (\sqrt{1-x})$ est continue sur] ∞ ,1[. donc f est continue sur] ∞ ,1[.
- f est constante sur l'intervalle $[1, +\infty[$ donc f est continue sur $[1, +\infty[$.
- f est continue $sur] \infty,1[$ et $sur [1,+\infty[$ donc f est continue $sur \mathbb{R}$.

Qu'en pensez vous?

Rappels pour le paragraphe

Définition 1. Soit f une fonction définie sur un intervalle I et $x_0 \in I$. On dit que f est continue en x_0 lorsque $\lim_{x \to x_0} f(x) = \ell \in \mathbb{R}$ (et dans ce cas on a forcément $\ell = f(x_0)$).

Theorem 1. Soit f une fonction définie sur un ensemble D et I un intervalle ouvert tel que $f_{|I|}$ est continue sur I alors f est continue sur I.

Theorem 2. Soit I un intervalle.

- 1. La somme, le produit de deux fonctions continues sur I sont continue sur I.
- 2. Soit f et g deux fonctions définies et continues sur I et telles que g ne s'annule pas sur I alors $\frac{f}{g}$ est continue sur I.
- 3. Soit f et g définie respectivement sur I et J telles que g est continue sur J, f est continue sur I et $g(J) \subset I$ alors $f \circ g$ est continue sur J.

Python 1.

- avec import matplotlib.pyplot as plt plt.plot(X,Y) avec $X = [x_0, \dots, x_{n-1}]$ et $Y = [y_0, \dots, y_{n-1}]$ crée un graphique formés des n points $M_0(x_0, y_0), \dots, M_{n-1}(x_{n-1}, y_{n-1})$ reliés successivement (dans cet ordre) par des segments . On fait apparaître le graphique avec plt.show()
- avec import numpy as np, np.linspace(a,b,N) donne un tableau de N nombres délimitant une subdivision régulière de [a,b]. Par exemple np.linspace(0,1,5) donne array([0,0.25,0.5,0.75,1].

Dérivabilité - fonctions de classe C^1

Exercice 4. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie, pour tout $x \in \mathbb{R}$, par : $f(x) = \begin{cases} \frac{x}{e^x - 1} & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{cases}$

- 1. Justifier que f est continue sur \mathbb{R}^*
- 2. Montrer que f est continue en 0.
- 3. Justifier que f est de classe C^1 sur $]-\infty,0[$ et sur $]0,+\infty[1$ et calculer f'(x) pour tout $x\in]-\infty,0[\cup]0,+\infty[.$
- 4. Montrer f dérivable en 0 et donner f'(0)

5. Établir que f est de classe C^1 sur \mathbb{R} .

Exercice 5. on reprend la fonction f définie sur $]0, +2\pi[$ par $x \mapsto \sqrt{1+\sin(x)}$ dont on a montré la continuité.

- 1. Justifier que f est de classe C^1 sauf en un point x_0 que l'on précisera.
- 2. Montrer que f n'est pas dérivable en x_0 mais dérivable à gauche et à droite. On précisera la dérivée à gauche et à droite.

Définition 2. Soit f une fonction définie sur un intervalle I et $x_0 \in I$.

On dit que f est dérivable en x_0 si la limite suivante existe et appartient à \mathbb{R}

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

On appelle nombre dérivé de f en x_0 le nombre $f'(x_0)$.

Remarque 1. En posant $x = x_0 + h$ on peut écrire également $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$.

Définition 3. Une fonction f définie sur I est dérivable si elle est dérivable en tout point de I. L'application définie sur I par $x \mapsto f'(x)$ est appelée (fonction) dérivée de f.

Définition 4. Si f est dérivable sur I et que f' est continue sur I, on dit que f est de classe C^1 sur I. On note $C^1(I)$ l'ensemble des fonctions de classes C^1 sur I.

Theorem 3. Les théorèmes 1 et 2 restent valables si on remplace continue par dérivable ou "de classe C^{1} ".

Propriété 1.

1.
$$\sin(x) = x - \frac{x^3}{6} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1}) = \sum_{k=0}^{2n} (-1)^k \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+1})$$

2.
$$\cos(x) = 1 - \frac{x^2}{2!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n}) = \sum_{k=0}^{2n} (-1)^k \frac{x^{2k}}{(2k)!} + o(x^{2n})$$

3.
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + o(x^n) = \sum_{k=0}^n \frac{x^k}{k!} + o(x^n)$$

4.
$$\ln(1+x) \equiv x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n) \equiv \sum_{k=1}^n (-1)^{k-1} \frac{x^k}{k} + o(x^n)$$

Pour s'entrainer

Exercice 6. On considère la fonction f définie par la relation $f(x) = \frac{\ln(1+x)}{x}$

- 1. Déterminer l'ensemble de définition D de f.
- 2. Montrer que f admet en 0 un prolongement par continuité. On précisera par quelle valeur f est alors prolongée et on continuera à appeler f le prolongement ainsi obtenu. On appellera D' le nouvel ensemble de définition de f.
- 3. f est-elle dérivable en 0? Si oui, préciser f'(0). Calculer f'(x) sur D puis prouver que f est de classe C^1 sur D'.
- 4. Etudier les variations de f. On dressera son tableau de variations. On pourra utiliser la fonction auxiliaire k définie par : $k(x) = x - (1+x) \ln (1+x)$.

Questions de cours à l'oral

- 1. Allure de la représentation graphique des fonctions $x \mapsto |x|$ et $x \mapsto |x+1|$
- 2. Rappeler les deux expressions de la dérivée de la fonction tan.
- 3. Si f est une fonction définie sur un intervalle I, $a \in I$, définition de la continuité de f en a.
- 4. Dérivée d'une composée $g \circ f$ de fonctions dérivables.
- 5. Développement limité à l'ordre 5 au voisinage de 0 de la fonction sinus.
- 6. Développement limité à l'ordre 5 au voisinage de 0 de la fonction cosinus.
- 7. Si f est la fonction définie sur]0,1[par $f(x)=\sqrt{1+x}$ déterminer l'expression de sa dérivée f'.
- 8. Allure des représentations graphiques des fonctions $x \mapsto \ln(x)$ et $x \mapsto \ln(x+1)$.
- 9. Allure des représentations graphiques des fonctions $x \mapsto \ln(x)$ et $x \mapsto |\ln(x)|$.
- 10. Allure des représentations graphiques des fonctions exponentielle et logarithme népérien.
- 11. Énoncer le théorème de Rolle.
- 12. Définition de la dérivée d'une fonction f en un point a.
- 13. Donner la définition de la partie entière d'un réel.

Corrigé

On considère la fonction f définie par la relation $f(x) = \frac{\ln(1+x)}{x}$

- 1. Par opérations, f est définie en x tel que $x \neq 0$ et 1+x>0, donc sur $]-1,0[\cup]1,+\infty[$
- 2. On a $\ln(1+x) = 0$ $x \frac{x^2}{2} + o(x^2)$ et comme, pour $x \neq 0$:

$$f(x) = \frac{\ln(1+x)}{x} = 1 - \frac{x}{2} + o(x) \to 1$$

alors f est prolongeable par continuité en 0 par f(0) = 1. $D' =]-1, +\infty[$ est le nouvel ensemble de définition de f.

3. Pour
$$x \neq 0$$
: $\frac{f(x) - f(0)}{x - 0} = \frac{1 - \frac{x}{2} + o(x) - 1}{x} = \frac{-1}{0} + o(1) \rightarrow \frac{-1}{2}$

import matplotlib.pyplot as plt import numpy as np

def f(x): if x==0: return 1 return np.log(1+x)/x

 $\begin{array}{l} T = & \text{np.linspace}(0,10,1001) \\ Y = & [f(t) \text{ for t in } T] \end{array}$

plt.plot(T,Y) plt.show() Donc
$$f$$
 est dérivable en 0 et $f'(0) = \frac{-1}{2}$

Sur $]-1,0[\,\cup\,]1,+\infty[\,$, f est C^1 comme quotient de fonctions de classe C^1 dont le dénominateur ne s'annule pas (on pourrait montrer soigneusement que $x\mapsto \ln(1+x)$ est effectivement de classe C^1 sur cet intervalle par composition).

Pour
$$x \in]-1,0[\cup]1,+\infty[$$
,
$$f'(x) = \frac{\frac{x}{1+x} - \ln(1+x)}{x^2} = \frac{\frac{x}{1+x} - \ln(1+x)}{x^2}$$

Reste à montrer que f est C^1 en 0:

$$f'(x) = \frac{x - (1+x)\left(x - \frac{x^2}{2} + o(x^2)\right)}{x^2(1+x)} = \frac{x^2\left(-1 + \frac{1}{2}\right) + o(x^2)}{x^2(1+x)} = \frac{-\frac{1}{2} + o(1)}{1+x} \to \frac{-1}{2}$$

 $Conclusion: \boxed{f \text{ est de classe } C^1 \text{ sur }]-1,0[\,\cup\,]1,+\infty[\text{ et en 0 donc sur } D' \text{ et } f'(0)=\frac{-1}{2}}$ $5. \text{ Pour } x>0 \text{ soit } k(x)=x-(1+x)\ln(1+x) \text{ alors } k \text{ est dérivable sur }]0,+\infty[\text{ et } k'(x)=1-\ln(1+x)-\frac{1+x}{1+x}=-\ln(1+x) \text{ avec } \ln(1+x)>0 \Longleftrightarrow 1+x>1 \Longleftrightarrow x>0$

x	-1		0		$+\infty$
$\ln\left(1+x\right)$		_	0	+	
k'(x)		+	0	_	
k(x)		<i>></i> –	0	\(-	
f'(x)		_	$-\frac{1}{2}$	_	
f(x)	$+\infty$	\searrow	1	\searrow	0

En
$$-1^+: f(x) = \frac{\ln(1+x) \to -\infty}{x \to -1} \to +\infty$$

En
$$-1^+: f(x) = \frac{\ln(1+x) \to -\infty}{x \to -1} \to +\infty$$

En $+\infty: f(x) = \frac{\ln(1+x)}{x} = \frac{\ln(x(1+1/x))}{x} = \frac{\ln(x)}{x} + \frac{\ln(1+1/x)}{x} \to 0$ par C.C.