МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2 по дисциплине «Организация ЭВМ и систем» ТЕМА: Изучение режимов адресации и формирования исполнительного адреса

Студентка гр. 0383	 Арсентьева. Д.А
Преподаватель	 Ефремов М.А.

Санкт-Петербург

2021

Цель работы.

Изучение режимов адресации и формирования исполнительного адреса

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2 comp.asm на Ассемблере, режиме выполняться автоматическом не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме. В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды прохождения трансляции. Необходимо закомментировать для протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя. На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения.

Порядок выполнения работы: 1. Получить у преподавателя вариант набора значений исходных данных (массивов) vec1, vec2 и matr из файла lr2.dat, приведенного в каталоге Задания и занести свои данные вместо значений, указанных в приведенной ниже программе. 2. Протранслировать программу с созданием файла диагностических сообщений; объяснить обнаруженные ошибки и закомментировать соответствующие операторы в тексте программы. 3. Снова протранслировать программу и скомпоновать загрузочный модуль. 4. Выполнить программу в пошаговом режиме под управлением отладчика с фиксацией содержимого используемых регистров и ячеек памяти до и после выполнения команды. 5. Результаты прогона программы под управлением отладчика должны быть подписаны преподавателем и представлены в отчете.

Вариант 2:

vec1 DB 5,6,7,8,12,11,10,9 vec2 DB -20,-30,20,30,-40,-50,40,50 matr DB -5,-6,-7,-8,4,3,2,1,-1,-2,-3,-4,8,7,6,5

Выполнение работы.

- 1. Получен вариант вариант набора значений исходных данных (массивов) vec1, vec2 и matr из файла lr2.dat (Вариант 2) и занести свои данные вместо значений примера программы в методических материалах (файл lr2_comp.asm).
- 2. Программу протранслирована с созданием файла диагностических сообщений. Закомментированы соответствующие операторы в тексте программы (файл lr2 comp fix.asm). Ниже объяснены обнаруженные ошибки:
- ❖ Mov mem3,[BX] lr2_comp.asm(46): error A2052: Improper operand type
 Неподходящий тип операндов. Нельзя напрямую перекладывать данные из одной ячейки памяти, в другую.
- Mov CX,vec2[DI] lr2_comp.asm(53): warning A4031: Operand typESmust
- Типы операндов должны совпадать. Размер регистра 'cx' равен 2 байтам, а размер элементов массива 'vec2' 1 байт.
- Mov CX,matr[BX][DI] lr2_comp.asm(57): warning A4031: Operand
 typES must match
- Типы операндов должны совпадать. Размер регистра 'cx' равен 2 байтам, а размер элементов матрицы 'matr' 1 байт.
- ♦ Mov AX,matr[BX*4][DI] lr2_comp.asm(58): error A2055: IllegAL register vALue
- Недопустимое значение регистра.
- ♦ Mov AX,matr[BP+BX] lr2_comp.asm(78): error A2046: Multiple base registers

- Несколько базовых регистров. Нельзя использовать несколько базовых регистров для адресации.
- ♦ Mov AX,matr[BP+DI+si] lr2_comp.asm(79): error A2047: Multiple index
- Несколько индексных регистров. Нельзя использовать несколько индексных регистров для адресации.
 - 3. Программа снова протранслирована, и скомпонован загрузочный модуль
- 4. Программу выполнена в пошаговом режиме под управлением отладчика с фиксацией содержимого используемых регистров и ячеек памяти до и после выполнения команды. Ниже приведена таблица 1.

Начальное содержимое сегментных регистров: (CS) = 1A0A, (DS) = 19F5, (ES) = 19F5 и (SS) = 1A05 .

Таблица 1 – Результат выполнения пункта 4.

			Содержимое регистров и	
Адрес	Символический	16-ричный код	ячеек памяти	
Команды	код команды	команды	До	После
			выполнения	выполнения
			(SP) = 0018	(SP) = 0016
0000	Push DS	1E	(IP) = 0000	(IP) = 0001
0000	r usii D3	IE.	Stack +0 0000	Stack +0 19F5
			Stack +2 0000	Stack +2 0000
0001	Sub AX, AX	2BC0	(IP) = 0001	(IP) = 0003
			(SP) = 0016	(SP) = 0014
		50	(IP) = 0003	(IP) = 0004
0003	Push AX		Stack +0 19F5	Stack +0 0000
			Stack +2 0000	Stack +2 19F5
			Stack +4 0000	Stack +4 0000
0004	4 Mov AX, 1A07 B8071A		(AX) = 0000	(AX) = 1A07
0004	Mov AX, 1A07	D0U/1A	(IP) = 0004	(IP) = 0007

			(DS) = 19F5	(DS) = 1A07
0007	Mov DS, AX	8ED8	(IP) = 0007	(IP) = 0009
			(AX) = 1A07	(AX) = 01F4
0009	Mov AX, 01F4	B8F401	(IP) = 0009	(IP) = 000C
0000	M CV AV	0DC0	(CX) = 00B0	(CX) = 01F4
000C	Mov CX, AX	8BC8	(IP) = 000C	(IP) = 000E
000E	May DI 24	D224	(BX) = 0000	(BX) = 0024
OUOE	Mov BL, 24	B324	(IP) = 000E	(IP) = 0010
0010	Mov BH, CE	B7CE	(IP) = 0010	(IP) = 0012
0012	Mov [0002], FFCE	C7060200CEFF	(IP) = 0012	(IP) = 0018
0010	7.5	770.100	(BX) = CE24	(BX) = 0006
0018	Mov BX, 0006	BB0600	(IP) = 0018	(IP) = 001B
001B	Mov [0000], AX	A30000	(IP) = 001B	(IP) = 000E
0015) () () () () () () () () () (2 4 2 7	(AX) = 01F4	(AX) = 0105
001E	Mov AL, [BX]	8A07	(IP) = 000E	(IP) = 0020
0020	Mov AL,	9 4 4702	(AX) = 0105	(AX) = 0108
0020	[BX+03]	8A4703	(IP) = 0020	(IP) = 0023
0023	Mov CX,	8B4F03	(CX) = 01F4	(CX) = 0C08
0023	[BX+03]	0D4103	(IP) = 0023	(IP) = 0026
0026	Mov DI, 0002	DF0200	(DI) = 0000	(DI) = 0002
0020	WIOV D1, 0002	D10200	(IP) = 0026	(IP) = 0029
			(AX) = 0122	(AX) = 0114
			(IP) = 0029	(IP) = 002D
0020	Mov AL,	0.4.0.7.0.0.0	Stack +0 001A	Stack +0 0000
0029	[000E+DI]	8A850E00	Stack +2 0000	Stack +2 19F5
			Stack +4 19F5	Stack +4 0000
			Stack +6 0000	Stack +6 0000
002D	Mov BX, 0003	BB0300	(BX) = 0006	(BX) = 0003
	1	1	1	

			(IP) = 002D	(IP) = 0030
0030	Mov AL,	8A811600	(AX) = 0114	(AX) = 0103
0030	[0016+BX+DI]	0A011000	(IP) = 0030	(IP) = 0034
0034	Mov AX, 1A07	B8071A	(AX) = 0103	(AX) = 1A07
0034	MOV AA, 1A07	D00/1A	(IP) = 0034	(IP) = 0037
0037	Mov ES, AX	8ECO	(ES) = 19F5	(ES) = 1A07
0037	MOV LS, AX	oleo	(IP) = 0037	(IP) = 0039
0039	Mov AX,	268B07	(AX) = 1A07	(AX) = 00FF
0037	ES:[BX]	200007	(IP) = 0039	(IP) = 003C
003C	Mov AX, 0000	B80000	(AX) = 00FF	(AX) = 0000
003C	1410 V AZX, 0000	D 00000	(IP) = 003C	(IP) = 003F
003F	Mov ES, AX	8ECO	(ES) = 1A07	(ES) = 0000
0031	MOV LS, AX	6ECO	(IP) = 003F	(IP) = 0041
			(SP) = 0014	(SP) = 0012
	Push DS	1E	(IP) = 0041	(IP) = 0042
0041			Stack +0 0000	Stack +1A07
0041			Stack +2 19F5	Stack +2 0000
			Stack +4 0000	Stack +4 19F5
			Stack +6 0000	Stack +6 0000
			(SP) = 0012	(SP) = 0014
			(ES) = 0000	(ES) = 1A07
			(IP) = 0042	(IP) = 0043
0042	Pop ES	07	Stack +1A07	Stack +0 0000
			Stack +2 0000	Stack +2 19F5
			Stack +4 19F5	Stack +4 0000
			Stack +6 0000	Stack +6 0000
	Mov CX,		(CX) = 0C08	(CX) = FFCE
0043	ES:[BX-01]	268B4FFF	(CA) = 0003 (IP) = 0043	(IP) = 0047
	- 3		, ,	

			(AX) = 0000	(AX) = FFCE
0047	Xchg AX, CX	91	(CX) = FFCE	(CX) = 0000
			(IP) = 0047	(IP) = 0048
0040	M DI 0002	DE0200	(DI) = 0002	(DI) = 0002
0048	Mov DI, 0002	BF0200	(IP) = 0048	(IP) = 004B
004B	Mov	268001	(ES) = 1A07	(ES) = 1A07
004B	ES:[BX+DI], AX	268901	(IP) = 004B	(IP) = 004E
			(SP) = 0012	(SP) = 0014
004E	Mov BP, SP	8BEC	(BP) = 0000	(BP) = 0014
			(IP) = 004E	(IP) = 0050
			(SP) = 0014	(SP) = 0012
			(IP) = 0050	(IP) = 0054
0050	Push [0000]	FF360000	Stack +0 0000	Stack +0 01F4
0050			Stack +2 19F5	Stack +2 0000
			Stack +4 0000	Stack +4 19F5
			Stack +6 0000	Stack +6 0000
			(SP) = 0012	(SP) = 0010
		FF360200	(IP) = 0054	(IP) = 0058
0054	Push [0002]		Stack +0 01F4	Stack +0 FFCE
0054			Stack +2 0000	Stack +2 01F4
			Stack +4 19F5	Stack +4 0000
			Stack +6 0000	Stack +6 19F5
0050	M DD CD	ODEC	(BP) = 0014	(BP) = 0010
0058	Mov BP, SP	8BEC	(IP) = 0058	(IP) = 005A
005 4	Mov DX,	9D5602	(DX) = 0000	(DX) = 01F4
005A	[BP+02]	8B5602	(IP) = 005A	(IP) = 005D
			(CS) = 1A0A	(CS) = 01F4
005D	Ret Far 0002	CA0200	(SP) = 0010	(SP) = 0016
			(IP) = 005D	(IP) = FFCE

Stack+0 FF0	CE Stack +0 19F5
Stack +2 01	F4 Stack +2 0000
Stack +4 00	00 Stack +4 0000
Stack +6 19	F5 Stack +6 0000

Тексты исходных файлов программ см. в приложении А.

Тексты файлов диагностических сообщений см. в приложении В.

Выводы.

Были изучены режимы адресации и формирования исполнительного адреса.

ПРИЛОЖЕНИЕ А

ТЕКСТЫ ИСХОДНЫХ ФАЙЛОВ ПРОГРАММ

Название файла: lr2_comp.asm

; Программа изучения режимов адресации процессора IntelX86

EOL EQU '\$'

ind EQU 2

n1 EQU 500

n2 EQU -50

; Стек программы

AStack SEGMENT STACK

DW 12 DUP(?)

AStack ENDS

; Данные программы

DATA SEGMENT

; Директивы описания данных

mem1 DW 0

mem2 DW 0

mem3 DW 0

vec1 DB 5,6,7,8,12,11,10,9

vec2 DB -20,-30,20,30,-40,-50,40,50

matr DB -5,-6,-7,-8,4,3,2,1,-1,-2,-3,-4,8,7,6,5

DATA ENDS

; Код программы

CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

; Головная процедура

Main PROC FAR

Push DS

Sub AX,AX

Push AX

Mov AX, DATA

Mov DS,AX

; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ

; Регистровая адресация

Mov AX,n1

Mov CX,AX

Mov BL, EOL

Mov BH,n2

; Прямая адресация

Mov mem2,n2

Mov BX,OFFSET vec1

Mov mem1,AX

; Косвенная адресация

Mov AL,[BX]

Mov mem3,[BX]

; Базированная адресация

Mov AL, [BX]+3

Mov CX,3[BX]

; Индексная адресация

Mov DI, ind

Mov AL, vec2[DI]

Mov CX, vec2[DI]

; Адресация с базированием и индексированием

Mov BX,3

Mov AL, matr[BX][DI]

Mov CX,matr[BX][DI]

Mov AX,matr[BX*4][DI]

; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ

; Переопределение сегмента

; ----- вариант 1

Mov AX, SEG vec2

Mov ES, AX

Mov AX, ES:[BX]

Mov AX, 0

; ----- вариант 2

Mov ES, AX

Push DS

pop ES

Mov CX, ES:[BX-1]

xchg CX,AX

; ----- вариант 3

Mov DI, ind

Mov ES:[BX+DI],AX

; ----- вариант 4

Mov BP,SP

Mov AX,matr[BP+BX]

Mov AX,matr[BP+DI+si]

; Использование сегмента стека

Push mem1

Push mem2

Mov BP,SP

Mov dx,[BP]+2

ret 2

Main ENDP

CODE ENDS END Main

Название файла: lr2_comp_fix.asm

```
; Программа изучения режимов адресации процессора IntelX86
```

EOL EQU '\$'

ind EQU 2

n1 EQU 500

n2 EQU -50

; Стек программы

AStack SEGMENT STACK

DW 12 DUP(?)

AStack ENDS

; Данные программы

DATA SEGMENT

; Директивы описания данных

mem1 DW 0

mem2 DW 0

mem3 DW 0

vec1 DB 5,6,7,8,12,11,10,9

vec2 DB -20,-30,20,30,-40,-50,40,50

matr DB -5,-6,-7,-8,4,3,2,1,-1,-2,-3,-4,8,7,6,5

DATA ENDS

; Код программы

CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

; Головная процедура

Main PROC FAR

Push DS

Sub AX,AX

Push AX

Mov AX, DATA

Mov DS,AX

; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ

; Регистровая адресация

Mov AX,n1

Mov CX,AX

Mov BL, EOL

Mov BH,n2

; Прямая адресация

Mov mem2,n2

Mov BX,OFFSET vec1

Mov mem1,AX

; Косвенная адресация

Mov AL,[BX]

; Mov mem3,[BX]

; Базированная адресация

Mov AL, [BX]+3

Mov CX,3[BX]

; Индексная адресация

Mov DI, ind

Mov AL, vec2[DI]

; Mov CX, vec2[DI]

; Адресация с базированием и индексированием

Mov BX,3

Mov AL, matr[BX][DI]

; Mov CX,matr[BX][DI]

; Mov AX,matr[BX*4][DI]

; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ

; Переопределение сегмента

; ----- вариант 1

Mov AX, SEG vec2

Mov ES, AX

Mov AX, ES:[BX]

Mov AX, 0

; ----- вариант 2

Mov ES, AX

Push DS

pop ES

Mov CX, ES:[BX-1]

xchg CX,AX

; ----- вариант 3

Mov DI, ind

Mov ES:[BX+DI],AX

; ----- вариант 4

Mov BP,SP

; Mov AX,matr[BP+BX]

; Mov AX,matr[BP+DI+si]

; Использование сегмента стека

Push mem1

Push mem2

Mov BP,SP Mov dx,[BP]+2 ret 2 Main ENDP CODE ENDS END Main

ПРИЛОЖЕНИЕ В

ТЕКСТЫ ФАЙЛОВ ДИАГНОСТИЧЕСКИХ СООБЩЕНИЙ

Название файла: lr2_comp.lst

0026

Microsoft (R) Macro Assembler Version 5.10 6/10/21 20:43:17 Page 1-1 ; Программа изучения режи **ф**ов адресации процессора I ntelX86 = 0024EOL EQU '\$' = 0002ind EQU 2 n1 EQU 500 = 01F4n2 EQU -50 =-0032; Стек программы 0000 **AStack SEGMENT STACK** 0000 000C[DW 12 DUP(?) ????] 0018 AStack ENDS ;Данные программы 0000 DATA **SEGMENT** ;Директивы описания данны X 0000 0000 DW 0 mem1 0002 0000 DW mem2 0 0004 0000 DW 0 mem3 0006 05 06 07 08 0C 0B DB 5,6,7,8,12,11,10,9 vec1 0A 09 000E EC E2 14 1E D8 CE -20, -30, 20, 30, -40, -50, 40, 50 vec2 DB 28 32 0016 FB FA F9 F8 04 03 matr DB -5,-6,-7,-8,4,3,2,1,-1,-2,-3,-4 ,8,7,6,5 02 01 FF FE FD FC 08 07 06 05

DATA

ENDS

```
; Код программы
0000
                     CODE
                              SEGMENT
                        ASSUME CS:CODE, DS:DATA, SS:AStack
                     ; Головная процедура
0000
                     Main
                             PROC FAR
0000 1E
                        push DS
0001 2B C0
                              sub AX,AX
0003 50
                        push AX
0004 B8 ---- R
                        mov AX,DATA
0007 8E D8
                              mov DS,AX
                     ; ПРОВЕРКА РЕЖИМОВ АДРЕСА
                     ЦИИ НА УРОВНЕ СМЕЩЕНИЙ
                     ; Регистровая адресация
0009 B8 01F4
                               mov ax,n1
000C 8B C8
                               mov cx,ax
000E B3 24
                               mov bl,EOL
0010 B7 CE
                               mov bh,n2
                     ; Прямая адресация
0012 C7 06 0002 R FFCE
                               mov mem2,n2
0018 BB 0006 R
                         mov bx,OFFSET vec1
Microsoft (R) Macro Assembler Version 5.10
                                                6/10/21 20:43:17
                                Page
                                      1-2
001B A3 0000 R
                         mov mem1,ax
                     ; Косвенная адресация
001E 8A 07
                               mov al,[bx]
                         mov mem3,[bx]
lb2.asm(46): error A2052: Improper operand type
                     ; Базированная адресация
0020 8A 47 03
                               mov al, [bx]+3
0023 8B 4F 03
                               mov cx, 3[bx]
                     ; Индексная адресация
0026 BF 0002
                               mov di,ind
0029 8A 85 000E R
                               mov al, vec2[di]
002D 8B 8D 000E R
                               mov cx,vec2[di]
lb2.asm(53): warning A4031: Operand types must match
                     ; Адресация с базирование
                     м и индексированием
0031 BB 0003
                               mov bx,3
0034 8A 81 0016 R
                               mov al,matr[bx][di]
```

```
0038 8B 89 0016 R
                                mov cx,matr[bx][di]
lb2.asm(57): warning A4031: Operand types must match
003C 8B 85 0022 R
                                mov ax,matr[bx*4][di]
lb2.asm(58): error A2055: Illegal register value
                      ; ПРОВЕРКА РЕЖИМОВ АДРЕСА
                      ЦИИ С УЧЕТОМ СЕГМЕНТОВ
                      ; Переопределение сегмен �
                      a
                      ; ----- вариант 1
0040 B8 ---- R
                          mov ax, SEG vec2
0043 8E C0
                                mov es, ax
0045 26: 8B 07
                          mov ax, es:[bx]
0048 B8 0000
                                mov ax, 0
                      ; ----- вариант 2
004B 8E C0
                                mov es, ax
004D 1E
                           push ds
004E 07
                          pop es
004F 26: 8B 4F FF
                                mov cx, es:[bx-1]
0053 91
                          xchg cx,ax
                      ; ----- вариант 3
0054 BF 0002
                                mov di,ind
0057 26: 89 01
                          mov es:[bx+di],ax
                      ; ----- вариант 4
005A 8B EC
                                mov bp,sp
005C 3E: 8B 86 0016 R
                                      mov ax,matr[bp+bx]
lb2.asm(78): error A2046: Multiple base registers
0061 3E: 8B 83 0016 R
                                mov ax,matr[bp+di+si]
lb2.asm(79): error A2047: Multiple index registers
                      ; Использование сегмента
                      стека
0066 FF 36 0000 R
                                push mem1
006A FF 36 0002 R
                                push mem2
006E 8B EC
                                mov bp,sp
0070 8B 56 02
                                mov dx,[bp]+2
0073 CA 0002
                                ret 2
                              ENDP
0076
                      Main
lb2.asm(86): error A2006: Phase error between passes
0076
                      CODE
                               ENDS
                      END Main
                                                  6/10/21 20:43:17
Microsoft (R) Macro Assembler Version 5.10
                                  Symbols-1
```

Segments and Groups:

	N a m e	Lengt	th	Aligr	Comb	oine Class	
CODE			0076	PARA	A	NONE	
Symbols:							
	N a m e	Type	Value	Attr			
EOL		NUM	BER	0024			
IND		NUM	BER	0002			
MATR MEM1 MEM2			L BY' L WO L WO	TE RD RD	0016 0000 0002	DATA	Length = 0076
					,		
					DATA DATA		
@FILEN	AME ON		TEXT	7 lb2	lh		

- 88 Source Lines
- 88 Total Lines
- 19 Symbols

47826 + 459431 Bytes symbol space free

- 2 Warning Errors5 Severe Errors

Название файла: lr2_comp_fix.lst

Microsoft (R) Macro Assembler Version 5.10

6/10/21 21:15:49

Page 1-1

; Программа изучения режи �

фов адресации процессора І

ntelX86

= 0024 EOL EQU '\$' = 0002 ind EQU 2 = 01F4 n1 EQU 500

=-0032 n2 EQU -50

; Стек программы

0000 AStack SEGMENT STACK

0000 000C[DW 12 DUP(?)

????

]

0018 AStack ENDS

;Данные программы

0000 DATA SEGMENT

;Директивы описания данны

 \mathbf{X}

0000 0000 mem1 DW 0

0002 0000 mem2 DW 0

0004 0000 mem3 DW 0

0006 05 06 07 08 0C 0B vec1 DB 5,6,7,8,12,11,10,9

0A 09

000E EC E2 14 1E D8 CE vec2 DB -20,-30,20,30,-40,-50,40,50

28 32

0016 FB FA F9 F8 04 03 matr DB -5,-6,-7,-8,4,3,2,1,-1,-2,-3,-4

,8,7,6,5

02 01 FF FE FD FC

08 07 06 05

0026 DATA ENDS

; Код программы

0000 CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

; Головная процедура

0000 Main PROC FAR

0000 1E push DS

0001 2B C0 sub AX,AX

0003 50 push AX

0004 B8 ---- R mov AX,DATA

0007 8E D8 mov DS,AX

; ПРОВЕРКА РЕЖИМОВ АДРЕСА ЦИИ НА УРОВНЕ СМЕЩЕНИЙ ; Регистровая адресация

0009 B8 01F4 mov ax,n1

000C 8B C8 mov cx,ax

000E B3 24 mov bl,EOL

0010 B7 CE mov bh,n2

; Прямая адресация

0012 C7 06 0002 R FFCE mov mem2,n2

0018 BB 0006 R mov bx,OFFSET vec1

Microsoft (R) Macro Assembler Version 5.10

6/10/21 21:15:49

Page 1-2

001B A3 0000 R mov mem1,ax

; Косвенная адресация

001E 8A 07 mov al,[bx]

;mov mem3,[bx]

; Базированная адресация

0020 8A 47 03 mov al,[bx]+3

0023 8B 4F 03 mov cx,3[bx]

; Индексная адресация

0026 BF 0002 mov di,ind

0029 8A 85 000E R mov al, vec2[di]

;mov cx,vec2[di]

; Адресация с базирование

м и индексированием

002D BB 0003 mov bx,3

0030 8A 81 0016 R mov al,matr[bx][di]

;mov cx,matr[bx][di]

;mov ax,matr[bx*4][di]

; ПРОВЕРКА РЕЖИМОВ АДРЕСА ЦИИ С УЧЕТОМ СЕГМЕНТОВ

; Переопределение сегмен �

a

; ----- вариант 1

0034 B8 ---- R mov ax, SEG vec2

0037 8E C0 mov es, ax

0039 26: 8B 07 mov ax, es:[bx]

003C B8 0000 mov ax, 0

; ----- вариант 2

003F 8E C0 mov es, ax

0041 1E push ds

0042 07 pop es

0043 26: 8B 4F FF mov cx, es:[bx-1]

0047 91 xchg cx,ax

; ----- вариант 3

0048 BF 0002 mov di,ind

004B 26: 89 01 mov es:[bx+di],ax

; ----- вариант 4

004E 8B EC mov bp,sp

;mov ax,matr[bp+bx]

;mov ax,matr[bp+di+si]

; Использование сегмента

стека

0050 FF 36 0000 R push mem1

0054 FF 36 0002 R push mem2

0058 8B EC mov bp,sp

005A 8B 56 02 mov dx,[bp]+2

005D CA 0002		ret 2
0060	Main	ENDP
0060	CODE	ENDS

END Main

Microsoft (R) Macro Assembler Version 5.10 6/10/21 21:15:49

Symbols-1

Segments and Groups:

	N a m e	Lengt	:h	Align	Comb	ine Class
A CETA CI	7		0010	D. D.		
ASTACE	.	•	0018	PARA	Λ	STACK
CODE .			0060	PARA	Λ	NONE
DATA		0026	PARA	1	NON	Е

Symbols:			
N a m e	Type Value Attr		
EOL	NUMBER 0024		
IND	NUMBER 0002		
MAIN	F PROC	0000 CODE	Length = 0060
MATR	L BYTE	0016 DATA	
MEM1	. L WORD	0000 DATA	
MEM2	. L WORD	0002 DATA	
MEM3	. L WORD	0004 DATA	

N1..... NUMBER 01F4

N2..... NUMBER -0032

VEC1..... L BYTE 0006 DATA

VEC2 L BYTE 000E DATA

@CPU TEXT 0101h

@FILENAME TEXT lb2

@VERSION TEXT 510

88 Source Lines

88 Total Lines

19 Symbols

47814 + 459443 Bytes symbol space free

0 Warning Errors

0 Severe Errors