

Lab	Туре	Practical
Unit:	I – Intro	oduction
1	A	Write a program to calculate area of a Circle.
	A	2. Write a program to find whether a number is odd or even
	A	3. Write a program to determine whether the entered character is vowel or not.
	A	4. Write a program to find factorial of a number. (Using Loop)
	A	5. Write a program to find factorial of a number. (Using Recursion)
	В	6. Write a program to find power of a number using loop.
	В	7. Write a program to find factors of a given number.
	В	8. Write a program to check whether a number is prime or not.
Unit:	II – Line	ear Data Structures: Array, Stack, Queue and Linked List
2	A	9. Write a program to read and display n numbers using an array.
	A	10. Write a program to calculate sum of numbers from m to n.
	A	11. Write a program to calculate average of first n numbers.
	A	12. Write a program to find position of the smallest number from given n numbers.
	В	13. Write a program to find whether the array contains a duplicate number or not.
	В	14. Read n numbers in an array then read two different numbers, replace 1st number with 2 nd number in an array and print its index and final array.
3	A	15. Write a program to insert a number at a given location in an array.
	A	16. Write a program to delete a number from a given location in an array.
	В	17. Write a program to insert a number in an array that is already sorted in an ascending order.

Department of Computer Science & Engineering Lab Manual | 2101CS301 - Data Structure

B. Tech. Semester – III | Academic Year 2023-24

	В	18. Write a program to delete a number from an array that is already sorted in an ascending order.
	В	19. Write a program to merge two unsorted arrays.
	A	20. Read two 2x2 matrices and perform addition of matrices into third matrix and print it
	В	21. Read two matrices, first 3x2 and second 2x3, perform multiplication operation and store result in third matrix and print it.
4	A	22. Write a program to swap two numbers using user-defines method.
	A	23. Create class Employee_Detail with attributes Employee_ID, Name, Designation, and Salary. Write a program to read the detail from user and print it.
	В	24. Create array of object of class Student_Detail with attributes Enrollment_No, Name, Semester, CPI for 5 students, scan their information and print it.
4	A	 25. Write algorithms to perform following operations on a stack: Push Pop Peep Change
		 26. Take a stack of size 3 and performing following operations. Show the position of stack at each step: Push 1, Push 2, Push 3, Push 4 Pop, Pop Push 5 Change 3rd element to 8 Push 6 & 7 Traverse the stack
	В	 27. Write a menu driven program to implement following operations on the Stack created using an Array PUSH POP DISPLAY PEEP CHANGE
5	A	28. How stack can be used to recognize strings aca, bcb, abcba, abbcbba?
	В	29. Implement a program described in 5(A)

Department of Computer Science & Engineering Lab Manual | 2101CS301 - Data Structure

B. Tech. Semester – III | Academic Year 2023-24

	В	30. Write a program to determine if an input character string is of the form a ⁱ b ⁱ where i >= 1 i.e., Number of 'a' should be equal to number of 'b'.
6	A	 31. Convert the following infix expressions into postfix expressions: (A + B * C / D - E + F / G / (H + I)) (A + B) * C + D / (B + A * C) + D 32. Convert the following infix expressions into prefix expressions: A-B/(C*D^E) (a + b ^ c ^ d) * (e + f / d)
	В	33. Implement a program to convert in-fix notation to post-fix notation using stack.
7	A	 34. Evaluate the following expressions showing every status of stack in tabular form: 5, 4, 6, +, *, 4, 9, 3, /, +, * 7, 5, 2, +, *, 4, 1, 1, +, /, - 35. Evaluate the following expressions showing every status of stack in tabular form: *, +, 6, 9, -, 3, 1 +, -, *, 2, 2, 1, 16, 8, 5
	В	36. Write a program for evaluation of post-fix Expression using Stack.
	В	37. Write a program for evaluation of pre-fix Expression using Stack.
8	A	 38. Write algorithms to perform following operations on a simple queue: Insert Delete
		 39. Perform following operations on queue with size 4 & draw queue after each operation: Insert 'A', Insert 'B', Insert 'C' Delete, Delete Insert 'D', Insert 'E'
	A	 40. Write algorithms to perform following operations on a circular queue: Insert Delete

	В	 41. Consider the following circular queue having 6 memory cells. Front=2, Rear=4 Queue: _, A, C, D, _, Describe queue as following operation take place: F is added to the queue Two letters are deleted R is added to the queue S is added to the queue One letter is deleted 42. Write a menu driven program to implement following operations on the Queue created using an Array ENQUEUE DEQUEUE
	В	 DISPLAY 43. Write a menu driven program to implement following operations on the Queue created using an Array ENQUEUE DEQUEUE DISPLAY
9	A	 44. Draw a Node Structure of Single linked list for following example (include insertion and deletion) Insert 10 Insert 20 at the end of the list Insert 5 at the beginning of the list Delete the last node Delete the first node
	A	45. Write a sample java code to implement a node structure
	A	46. Implement a program to create a node for singly linked list. Read the data in a node, print the node.
	В	 47. Write a menu driven program to implement following operations on the singly linked list. Insert a node at the front of the linked list. Display all nodes. Delete a first node of the linked list. Insert a node at the end of the linked list. Delete a last node of the linked list. Delete a node from specified position.
10	A	48. Draw a structure of Stack implemented using LinkedList (Example)
	A	49. Draw a structure of Queue implemented using Linked List (Example)

	В	50. Write a program to implement stack using singly linked list.
	В	51. Write a program to implement queue using singly linked list.
	В	31. Write a program to implement queue using singly linked list.
11	A	 52. Explain the concept of circular linked list with example Insert 10 Insert 20 at the end of the list Insert 5 at the beginning of the list Delete the last node Delete the first node
	В	 53. Write a menu driven program to implement following operations on the circular linked list. Insert a node at the front of the linked list. Delete a node from specified position. Insert a node at the end of the linked list. Display all nodes.
12	A	 54. Explain the concept of doubly linked list with example Insert 10 Insert 20 at the end of the list Insert 5 at the beginning of the list Delete the last node Delete the first node
	В	 55. Write a menu driven program to implement following operations on the doubly linked list. Insert a node at the front of the linked list. Delete a node from specified position. Insert a node at the end of the linked list. (Home Work) Display all nodes. (Home Work)
Unit:	III – Nor	nlinear Data Structures: Tree and Graph
13	A	56. Construct a Binary Tree for Following Elements 10 20 30 40 50 45 60 15 70
	A	 57. Provide a Pre-order, Post-order and in-order traversal for following binary search tree. 10 15 20 5 4 3 18 19 20 30 10 15 40 9 8 7 50, 70, 60, 20, 90, 10, 40, 100

	A	58. Construct a Binary tree from pre-order and post order traversal
		• 1, 2, 4, 8, 9, 5, 3, 6, 7 (Pre)
		• 8, 9, 4, 5, 2, 6, 7, 3, 1 (Post)
	В	59. Implement a menu based Binary search tree for following operation
		Insert a node
		Delete a node
		Preorder Traversal
		Post order Traversal
		In order Traversal
Unit:	IV – Has	shing and File Structures
14	A	60. Implement an AVL tree for following node value.
		13 10 15 12 18 2 1 4
		After that delete a node 15 and redraw a AVL tree
	A	61. Explain BFS and DFS search techniques in Graph
	В	62. Implement a Dictionary (key, value) pair using Hash-table.
Unit:	V – Sort	ing and Searching
15	A	63. Discuss a Hash table advantages and disadvantage.
	A	64. Insert a Following value into Hash table where table size is 10, use a linear probing method
		13 10 15 12 18 2 1 4
	В	65. Implement a Hash table using Array
16	A	66. Implement a linear search algorithm
	A	67. Implement a binary search algorithm
17	A	 68. Implement a given sorting technique for Array A= {10,20,5,8,9,11,30}; sort in ascending order Bubble Sort. Insertion Sort
	В	 69. Implement a given sorting technique for Array A= {10,20,5,8,9,11,30}; sort in ascending order Bubble Sort. Insertion Sort

	ı	
18	A	 70. Implement a given sorting technique for Array A= {10,20,5,8,9,11,30}; sort in ascending order Selection Sort Bucket Sort
	В	 71. Implement a given sorting technique for Array A= {10,20,5,8,9,11,30}; sort in ascending order Selection Sort Bucket Sort
19	A	 72. Implement a given sorting technique for Array A= {10,20,5,8,9,11,30}; sort in ascending order Redix Sort Shell Sort
	В	 73. Implement a given sorting technique for Array A= {10,20,5,8,9,11,30}; sort in ascending order Redix Sort Shell Sort
20	A	 74. Implement a given sorting technique for Array A= {10,20,5,8,9,11,30}; sort in ascending order Counting Sort Tree Sort
	В	 75. Implement a given sorting technique for Array A= {10,20,5,8,9,11,30}; sort in ascending order Counting Sort Tree Sort
21	A	 76. Implement a given sorting technique for Array A= {10,20,5,8,9,11,30}; sort in ascending order Merge Sort Quick Sort Heap Sort
	В	 77. Implement a given sorting technique for Array A= {10,20,5,8,9,11,30}; sort in ascending order Merge Sort Quick Sort Heap Sort