K-MEANS

Horacio Alberto Miranda Lopez

2022-06-07

#	K-MEANS

Cargar la matriz de datos.

```
X<-as.data.frame(state.x77)</pre>
```

Transformacion de datos

```
\#1.\text{-} Transformacion de las variables x1,x3 y x8 con la funcion de logaritmo.
```

```
X[,1]<-log(X[,1])
colnames(X)[1]<-"Log-Population"

X[,3]<-log(X[,3])
colnames(X)[3]<-"Log-Illiteracy"

X[,8]<-log(X[,8])
colnames(X)[8]<-"Log-Area"</pre>
```

Metodo k-means

```
#1.- Separacion de filas y columnas.
```

dim(X)

```
## [1] 50 8
n<-dim(X)[1]
p<-dim(X[2])</pre>
```

2.- Estandarizacion univariante.

```
X.s<-scale(X)</pre>
```

3.- Algoritmo k-medias (3 grupos) cantidad de subconjuntos aleatorios que se escogen para realizar los calculos de algoritmo.

```
Kmeans.3<-kmeans(X.s, 3, nstart=25)</pre>
```

centroides

```
Kmeans.3$centers
  Log-Population
                 Income Log-Illiteracy
                                  Life Exp
                                                    HS Grad
                                             Murder
## 1
     -0.7900149 0.2080926
                        ## 2
       0.5693805 0.5486843
                         1.31921387 -1.0778757 1.10983501 -1.3566922
## 3
       0.2360549 -1.2266128
##
       Frost
            Log-Area
## 1 0.8803670 0.4093602
## 2 -0.3291597 -0.4878988
```

cluster de pertenencia

3 -0.7719510 0.1991243

Kmeans.3\$cluster						
шш	A 7 - 1	A71	A	A1	0-1:6	
##	Alabama	Alaska	Arizona	Arkansas	California	
##	3	1	2	3	2	
##	Colorado	Connecticut	Delaware	Florida	Georgia	
##	1	2	2	2	3	
##	Hawaii	Idaho	Illinois	Indiana	Iowa	
##	2	1	2	2	1	
##	Kansas	Kentucky	Louisiana	Maine	Maryland	
##	1	3	3	1	2	
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri	
##	2	2	1	3	2	
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey	
##	1	1	1	1	2	
##	New Mexico	New York	North Carolina	North Dakota	Ohio	
##	3	2	3	1	2	
##	Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina	
##	2	1	2	2	3	
##	South Dakota	Tennessee	Texas	Utah	Vermont	
##	1	3	3	1	1	
##	Virginia	Washington	West Virginia	Wisconsin	Wyoming	
##	2	2	3	1	1	

4.- SCDG

```
SCDG<-sum(Kmeans.3$withinss)
SCDG</pre>
```

[1] 203.2068

5.- Clusters

##

```
cl.kmeans<-Kmeans.3$cluster
cl.kmeans
## Alabama Alaska Arizona Arkansas California</pre>
```

##	Colorado	Connecticut	Delaware	Florida	Georgia
##	1	2	2	2	3
##	Hawaii	Idaho	Illinois	Indiana	Iowa
##	2	1	2	2	1
##	Kansas	Kentucky	Louisiana	Maine	Maryland
##	1	3	3	1	2
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri
##	2	2	1	3	2
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey
##	1	1	1	1	2
##	New Mexico	New York	North Carolina	North Dakota	Ohio
##	3	2	3	1	2
##	Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina
##	2	1	2	2	3
##	South Dakota	Tennessee	Texas	Utah	Vermont
##	1	3	3	1	1
##	Virginia	Washington	West Virginia	Wisconsin	Wyoming
##	2	2	3	1	1

6.- Scatter plot con la division de grupos obtenidos (se utiliza la matriz de datos centrados).

```
col.cluster<-c("blue", "red", "green")[cl.kmeans]
pairs(X.s, col=col.cluster, main="k-means", pch=19)</pre>
```

k-means

Visualizacion con las dos componentes principales

Dos primeras componentes principales

These two components explain 62.5 % of the point variability.

Silhouette

— # Representacion grafica de la eficacia de clasificacion de una observacion dentro de un grupo.

1.- Generacion de los calculos

```
dist.Euc<-dist(X.s, method = "euclidean")
Sil.kmeans<-silhouette(cl.kmeans, dist.Euc)

#2.- Generacion del grafico
plot(Sil.kmeans, main="Silhouette for k-means",
col="seagreen1")</pre>
```

Silhouette for k-means

Average silhouette width: 0.28