CS5226 Lecture 9

Statistics Tuning

Statistics Tuning Issues

- Which statistics to collect?
- At what level of detail of the statistics to collect?
- When to collect/refresh?
- Challenges
 - outdated statistics
 - improperly configured statistics

Cost Estimation of Query Plan

- Cost estimation involves the following:
 - 1. What is the evaluation cost of each operation?
 - ★ Depends on: size of input operands, available buffer pages, available indexes, etc.
 - 2. What is the output size of each operation?

Examples of Statistics

- cardinality (i.e. number of tuples)
- number of distinct values in each column
- the highest & lowest values in each column
- column group statistics
- histograms
- frequent values of some columns

Size Estimation

- ▶ Consider a query $q = \sigma_p(e)$
 - $P = t_1 \wedge t_2 \wedge \cdots \wedge t_n$
 - $e = R_1 \times R_2 \times \cdots \times R_m$
- ▶ How to estimate ||q||?
- ▶ We have $||e|| = \prod_{i=1}^{m} ||R_i|| = ||R_1|| \times ||R_2|| \times \cdots \times ||R_m||$
- Each term t_i potentially eliminates some tuples in e
- ► Reduction factor of a term t_i (denoted by r_i) is the fraction of tuples in e that satisfy t_i ; i.e., $r_i = \frac{||\sigma_{t_i}(e)||}{||e||}$
- Assuming the terms in p are statistically independent,

$$||q|| = ||e|| \times \prod_{i=1}^{n} rf_i = ||e|| \times rf_1 \times rf_2 \times \cdots \times rf_n|$$

5

Estimation assumptions

- Uniformity assumption
 - uniform distribution of attribute values
- Independence assumption
 - Independent distribution of values in different attributes
- Inclusion assumption
 - ► For a join predicate R.A = S.B, we have $(\pi_A(R) \subseteq \pi_B(S))$ or $(\pi_A(R) \supseteq \pi_B(S))$

How to estimate reduction factor?

Form of t_i	Estimation of rf _i			
$A_j = v$	$\frac{1}{N_{key}(l)}$ if I_{A_j} exists, $\frac{1}{10}$ otherwise.			
$A_j > v$	$ \frac{{}^{lHigh(I_{A_j})-v}}{{}^{lHigh(I_{A_j})-lLow(I_{A_j})}} \text{if } I_{A_j} \text{ exists}, $ $ \frac{1}{10} \text{otherwise}. $			
$A_j = A_k$	$\frac{1}{\max\{N_{key}(I_{A_j}), N_{key}(I_{A_k})\}}$ if both I_{A_j} and I_{A_k} exist, $\frac{1}{N_{key}(I_{A_j})}$ if only one index (say I_{A_j}) exists, $\frac{1}{10}$ otherwise.			

- $N_{\text{key}}(I_{A_i})$ = number of keys in index I_{A_i}
- ► $ILow(I_{A_i})$ = minimum key value in index I_{A_i}
- ► $IHigh(I_{A_i})$ = maximum key value in index I_{A_i}

CS5226: Sem 2, 2012/13 Review: Cost Estimation 7

Improved Estimation using Histograms

- histogram = statistical information maintained by DBMS to estimate data distribution
- Main idea:
 - partition attribute's domain into sub-ranges called buckets
 - assume distribution within each bucket is uniform
- Types of histograms:
 - Equiwidth histogram: each bucket has equal number of values
 - Equidepth histogram: each bucket has equal number of tuples

Uniform vs Non-uniform Distributions

- Total number of distinct values = 15
- Total number of tuples = 45
- ▶ Uniform distribution assumption: each value has $\frac{45}{15} = 3$ tuples

Equiwidth vs Equidepth Histograms

Bucket	Equiwidth		Equiwidth Equidepth		epth
No	Value Range	No. Tuples	Value Range	No. Tuples	
1	[0, 2]	2+3+3=8	[0, 3]	2+3+3+1=9	
2	[3, 5]	1+2+1=4	[4, 6]	2+1+8=11	
3	[6, 8]	8+3+4=15	[7, 9]	3+4+2=9	
4	[9, 11]	2+0+1=3	[10, 13]	0+1+2+4=7	
5	[12, 14]	2+4+9=15	[14, 14]	9	

Bucket

Equiwidth Histogram

Equidepth Histogram

Statistics Tuning Approaches

Reactive approaches

- Monitor a query during execution
- Observe errors between estimates and actual values from query feedback
- Possible strategies:
 - Use errors as adjustment factors to correct statistics for future queries,
 - Trigger statistics collection when error exceeds some threshold, or
 - Re-optimize current query

Statistics Tuning Approaches (cont.)

Proactive approaches

- Try to predict, identify and possibly solve potential problems before query execution
- Possible strategies:
 - Monitors update/delete/insert (UDI) activity on data & automatically refreshes statistics when UDI activity exceeds some threshold
 - Analyze queries to determine which statistics to collect
 - Maintains multiple plans for each query & adaptively change plan based on query runtime feedback

Statistical Views (Statviews)

► A statview is a view definition augmented with statistics collected on the result of executing this view, without the actual data

▶ DB2 Example:

```
create view sv_cust_order as (
    select *
    from Customer C, Order O
    where C.cust# = O.cust#)
```

alter view sv_cust_order enable query optimization

runstats on table DB2DBA.sv_cust_order with distribution

Statistical Views (Statviews) (cont.)

```
Query: select *
from Customer C, Order O
where C.cust# = O.cust#
and C.country = 'Singapore'
```

- Without statview sv_cust_order,
 - estimate selectivity of selection predicate on C
 - estimate selectivity of join predicate on C × O
 - apply independence assumption to estimate cardinality of result
- With statview sv_cust_order,
 - estimate selectivity of selection predicate on statview

Statview Tuning

► Input:

- a workload $W = \{Q_1, \dots, Q_n\}$, each Q_i is a query,
- c_{max}, the maximum number of statviews that can be maintained

Output:

A set of at most c_{max} statviews that minimizes the execution time of W

Statview Tuning (cont.)

- Let P denote a query plan
- C = estimated cost of P based on some simplifying assumptions (e.g. uniformity, independence, or inclusion)
- C_{acc}^P = accurate cost estimate of P where the cardinality at each operator in P is estimated without any simplifying assumptions
- ▶ Cost of P is overestimated if C > C^P_{acc}
- ► Cost of P is underestimated if C < C^P_{acc}

Relevant statviews

- E = subexpression in a plan P for query Q
- V = statview corresponding to E
- V is a relevant statview for optimizing Q if
 - 1. cost of *E* is underestimated & *P* is chosen by optimizer, or
 - cost of E is overestimated & P will be chosen by optimizer when cost of E is corrected
- First type identified by "optimize & find-statviews" loop
- Second type identified by query structure analysis
 - predicates involving attributes with skewed distributions, arithmetic expressions, or UDFs
 - join predicates that violate inclusion assumption, etc

Statview Tuning

- Optimization goal:
 - Collect enough statviews to find optimal plan
- Revised optimization goal:
 - Collect enough statviews to find predictable plan
 - Plan cost is not underestimated

StatAdvisor Architecture

StatAdvisor

Input: Query workload $W \& c_{max}$ constraint **Output**: Set of recommended statviews for W

- 01. $(V, G) \leftarrow \text{PlanAnalysis}(W)$
- 02. while $(V \neq \emptyset)$ do
- 03. CollectStatviews(V)
- 04. $(V, G) \leftarrow PlanAnalysis(W)$
- 05. EstimateBenefit(G)
- 06. $R \leftarrow \text{StatviewGroupSelection}(G, c_{max})$
- 07. return R

How to collect statistics for a statview?

- Statview V is on a single table R
 - Create a random sample S of R
 - Scan S to compute statistics for V
- ▶ Statview *V* is on multiple joined tables $R_1 \bowtie \cdots \bowtie R_n$
 - ▶ Let R₁ be the root table
 - ★ R_1 has a foreign key to each of the tables R_2, \dots, R_n
 - ★ Each of the tables R_2, \dots, R_n has no foreign key to R_1
 - ► Compute the join synopsis *J* for the root table *R*₁
 - 1. Create a uniform random sample S of R₁
 - 2. For each table R_i that R_1 has a foreign key to, join S with R_i
 - 3. Repeat step 2 recursively
 - Scan J to compute statistics for V

Enumeration of candidate statviews

Case 1: $P_1 = P_0$

V₀ is not beneficial for optimizing Q

Case 2: $P_1 \neq P_0$

- ► Either cost of P_1 is underestimated & P_0 could be a better plan than P_1
- ▶ Or P₁ is indeed a better plan than P₀

Enumeration of candidate statviews

Case 1: $P_2 = P_0$

 V₁ corrected the underestimation of cost of P₁

Case 2: $P_2 = P_1$

V₁ is not beneficial for optimizing Q

Case 3: $(P_2 \neq P_0)$ and $(P_2 \neq P_1)$

- Either cost of P₂ is underestimated & P₀/P₁ could be a better plan than P₂
- Or P₂ is indeed a better plan than P₀ & P₁

23

Enumeration algorithm for query

```
Input: Query Q
Output: Candidate statviews for Q
01. V \leftarrow \emptyset; stop \leftarrow false; k \leftarrow 0;
02. repeat
03.
         generate the optimal plan P_k for Q using statviews V
        find the important statviews VT for plan P_k
04.
05. VT \leftarrow VT - V
06. if (VT = \emptyset) or (P_k = P_i \text{ for some } j < k) then
07.
            stop \leftarrow true
08.
      else
09.
            compute statviews VT
10.
             V \leftarrow V \cup VT
11. k \leftarrow k + 1
12. until (stop)
13. return V // V is a statview-group for Q
```

Enumeration algorithm for query (cont.)

- Let P be optimal plan for Q using V
 - V = the set of returned statviews
- ▶ *P* is guaranteed to be a predictable plan
- ▶ The approach could miss a better plan P' if
 - 1. the cost of some subexpression E of P' is overestimated, and
 - 2. *E* is not a subexpression of any enumerated plan

Enumeration algorithm for workload

```
Input: Workload W = \{Q_1, \dots, Q_n\}
Output: Candidate statviews for W
01. for each query Q_i \in W do V_i \leftarrow \emptyset
02. k \leftarrow 0
03. repeat
04.
          for each query Q_i \in W do
05.
               generate the optimal plan P_{i,k} for each Q_i using V_i
06.
               find the important statviews VT_i for P_{i,k}
07.
               VT_i \leftarrow VT_i - V_i
08.
               if (VT_i = \emptyset) or (P_{i,k} = P_{i,j}) for some j < k then
                    remove Q<sub>i</sub> from W
09.
10.
               else
11.
                    V_i \leftarrow V_i \cup VT_i
12.
          partition \{VT_i \mid Q_i \in W\} into batches \{B_1, \dots, B_m\}
          compute statviews for each batch Bi
13.
14.
          k \leftarrow k + 1
15. until (W is empty)
16. return (V_1 \cup \cdots \cup V_n)
```

Benefit estimation

- ► *P* = optimal plan without statviews
- P_V = optimal plan with statviews V
- ▶ B(V, Q) = benefit of statviews V for query Q
 - $ightharpoonup B(V, Q) = ActCost(Q, P) ActCost(Q, P_V)$
 - ActCost(Q, P) = actual execution cost of query Q using plan P
- ▶ B'(V, Q) = estimated benefit of statviews V for query Q
 - $B'(V, Q) = EstCost(P, V) EstCost(P_V, V)$
 - EstCost(P, V) = estimated execution cost of plan P with statviews V
 - ▶ Why not $EstCost(P, \emptyset) EstCost(P_V, V)$?

CS5226: Sem 2, 2012/13 Statistics Tuning 27

Benefit estimation (cont.)

 $\mathbf{B}(\mathbf{V}, \mathbf{W})$ = benefit of V for a workload W

- $W_V = \{Q \in W \mid Q \text{ generated } V\}$
- $B(V, W) = \sum_{Q \in W_V} B'(V, Q)$

Statview-group selection

```
Input: Set of statview-groups G & constraint c_{max}
Output: Set of recommended statview-groups R
01. c \leftarrow 0: R \leftarrow \emptyset
02. while (|G| > 0) and (c < c_{max}) do
03.
          V_{hest} \leftarrow null
04. B_{hest} \leftarrow 0
05. for each V \in G do
               if (B(V) > B_{best}) and (C(V, R) \le c_{max} - c) then
06.
07.
                     V_{host} \leftarrow V
                    B_{best} \leftarrow B(V)
08.
09.
          if (V_{best} \neq null) then
10.
               c \leftarrow c + C(V_{best}, R)
11.
               G \leftarrow G - V_{host}
12.
               R \leftarrow R \cup V_{host}
13.
         else
14
               break
15. return R
```

References

Required Readings

► A. El-Helw, I.F. Ihab, and C. Zuzarte, *StatAdvisor:* recommending statistical views, VLDB 2009

Additional Readings

- ► C. A. Galindo-Legaria, M. Joshi, F. Waas, and M.-C. Wu, Statistics on Views, VLDB 2003.
- A. Aboulnaga, P. Haas, M. Kandil, S. Lightstone, G. Lohman, V. Markl, I. Popivanov, V. Raman, Automated statistics collection in DB2 UDB, VLDB 2004.