Ej. 1	Ej. 2	Ej. 3	Ej. 4	Nota

Primer Parcial - 27/9/2023

Métodos Computacionales 2023

Nombre:	
Apellido:	
Cantidad	de haise.

Nota: Es indispensable contar con dos ejercicios marcados como B o B- para aprobar el parcial.

Ejercicio 1. Sea A una matriz de 3×3 .

Sabiendo que las soluciones a:

$$A\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad A\mathbf{y} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad A\mathbf{z} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

son:

$$\mathbf{x} = \begin{bmatrix} -1,375 \\ 0,25 \\ 0,625 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} -0,125 \\ 0,25 \\ -0,125 \end{bmatrix}, \quad \mathbf{z} = \begin{bmatrix} 0,75 \\ 0 \\ -0,25 \end{bmatrix}$$

Resolver la ecuación (i.e encontrar \mathbf{w}):

$$A\mathbf{w} = \left[\begin{array}{c} 1 \\ 2 \\ 3 \end{array} \right]$$

Hint: No hace falta encontrar la martiz A

Ejercicio 2. Sea la matriz A:

$$A = \begin{bmatrix} 1 & k & 4k+1 \\ 2 & k+1 & 7k+2 \\ 3 & k+2 & 9k+3 \end{bmatrix}$$
 (1)

- 1. Encontrar los valor/es de k que hacen que la dimensión de Nul A sea mayor a cero.
- 2. Para dicho/s valor/es encontrar una base para $\operatorname{Nul} A$
- 3. Para dicho/s valor/es encontrar una base para $\operatorname{Col} A$

Ejercicio 3. Sean $A = [a_1 \mid a_2]$ y $B = [b_1 \mid b_2]$ bases para \mathbb{R}^2 . Encontrar la matriz de cambio de coordenadas de A a B y de B a A, con

$$a_1 = \begin{bmatrix} 5 \\ 7 \end{bmatrix}, a_2 = \begin{bmatrix} -1 \\ -3 \end{bmatrix}, b_1 = \begin{bmatrix} -1 \\ 5 \end{bmatrix}, b_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

Ejercicio 4. Sea λ un valor propio de A, y sea A una matriz invertible. Mostrar que $\frac{1}{\lambda}$ entonces es un valor propio de A^{-1} .