第三章 《概率论与数理统计》试卷汇总

3.1 秋

		0.1	L 1/V			
3.1.1 2018-2019 B14						
→,	选择题 (每题 3 分,	共 21 分)				
1.	从 0,1,2,…,9 中任	意选出 3 个不同的数字, 三	个数字中不含 0 与 5 的概	[率是 ()		
(A)	$\frac{1}{15}$	(B) $\frac{2}{15}$	(C) $\frac{14}{15}$	(D) $\frac{7}{15}$		
	某人射击中靶的概率 $\left(\frac{3}{4}\right)^3$	为 $\frac{3}{4}$. 若射击直到中靶为1 (B) $\left(\frac{1}{4}\right)^2 \times \frac{3}{4}$	$oxed{L}$,则射击次数为 3 的概率 $oxed{(C)} \left(rac{1}{4} ight)^3$	为 () (D) $\left(\frac{3}{4}\right)^2 \times \frac{1}{4}$		
(A)	设随机变量 X 的概率 $F(-a) = 1 - F(a)$ $F(-a) = F(a)$	國密度 $f(x)$ 满足 $f(-x) = f(x)$	$f(x)$, $F(x)$ 是分布函数, 则(B) $F(-a) = \frac{1}{2}F(a)$ (D) $F(-a) = \frac{1}{2} - F(a)$			
4. (A)		Y) 的分布律为 $P\{X = i, Y \}$ (B) $\frac{1}{3}$	$= j$ } = $c \cdot i \cdot j$, $i = 1, 2, 3, j = $ (C) $\frac{1}{36}$	= 1, 2, 3, \mathbb{M} $c = ($) (D) $\frac{1}{2}$		
5.	5. 设随机变量 X 服从均匀分布, 其概率密度为 $f(x) = \begin{cases} \frac{1}{2}, & 1 < x < 3 \\ 0, & 其他 \end{cases}$, 则 $D(X) = ()$					
(A)	3	(B) $\frac{1}{3}$	(C) $\frac{1}{2}$	(D) 2		
6. 设总体 $X \sim N(0, \sigma^2)$, X_1, X_2, \cdots, X_n 是总体 X 的一个样本, \overline{X} , S^2 分别为样本均值和样本方差, 则下列样本函数中, 服从 $\chi^2(n)$ 分布的是 ()						
(A)	$\sum_{i=1}^{n} X_i^2$	(B) $\frac{\overline{X}}{S/\sqrt{n-1}}$	(C) $\frac{(n-1)S^2}{\sigma^2}$	(D) $\frac{1}{\sigma^2} \sum_{i=1}^n X_i^2$		
7. 设 X_1, X_2, \cdots, X_n 是来自正态总体 $N\left(\mu, \sigma^2\right)$ 的一个样本, σ^2 未知, \overline{X} 是样本均值, $S^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X}\right)^2$, 如果 $\overline{X} - k \frac{S}{\sqrt{n}}$ 是 μ 的置信度为 $1 - \alpha$ 的单侧置信下限, 则 k 应取 ()						
(A)	$t_{1-\alpha}(n)$	(B) $t_{\alpha}(n)$	(C) $t_{\alpha}(n-1)$	(D) $t_{\alpha/2}(n-1)$		
二、填空题 (每题 3 分, 共 21 分)						
1.	1. 设 A, B 为随机事件, $P(A) = 0.8$, $P(A - B) = 0.3$, 则 $P(\overline{AB}) = $					
2.	设随机变量 X 的分布	$i律为 P\{x = k\} = c(0.5)^k,$	$k = 1, 2, 3, \dots,$ 则常数 $c = 1$			
3.	设随机变量 X 的概率	区密度为 $f(x) = \begin{cases} 3x^2, & 0 < 0, \\ 0, & 其代 \end{cases}$	$x < 1$,则 $P\{ X < 0.2\} =$			

- **4.** 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{c}, & 0 < x < c \\ 0, & 其他 \end{cases}$, 则 $\mathbb{E}(X) = \underline{\qquad}$
- 5. 设二维随机变量 (X,Y) 的概率密度为

$$f(x,y) = \begin{cases} \sin x \cdot \cos y, & 0 < x < \pi/2, \ 0 < y < \pi/2 \\ 0, & \text{其他} \end{cases},$$

则 $P\{0 < X < \pi/4, \pi/4 < Y < \pi/2\} =$ ______

- **6.** 设随机变量 X 的数学期望 $\mathbb{E}(X)=\mu,$ 方差 $D(X)=\sigma^2,$ 则由切比雪夫不等式有 $P\{|X-\mu|\geqslant 3\sigma\}\leqslant$ ___
- 7. 设 X_1, X_2 是取自正态总体 $X \sim N(\mu, \sigma^2)$ 的一个容量为 2 的样本, 则 μ 的无偏估计量 $\hat{\mu}_1 = \frac{1}{2}X_1 + \frac{1}{2}X_2$, $\hat{\mu}_2 = \frac{2}{3}X_1 + \frac{1}{3}X_2$, $\hat{\mu}_3 = \frac{1}{4}X_1 + \frac{3}{4}X_2$ 中最有效的是 _____

三、解答题 (共 58 分)

1. (10 分) 车间里有甲、乙、丙 3 台机床生产同一种产品,已知它们的次品率依次是 0.05、0.1、0.2,产品 所占份额依次是 20%、30%、50%. 现从产品中任取 1 件,发现它是次品,求次品来自机床乙的概率

- **2.** (10 分) 设随机变量 X 的分布函数为 $F(x) = \begin{cases} k k e^{-x^3}, & x > 0 \\ 0, & x \leq 0 \end{cases}$, 试求:
 - (1) 常数 k;
 - (2) X 的概率密度 f(x)
- **3.** (10 分) 设二维随机变量 (X,Y) 的概率密度为:

$$f(x,y) = \begin{cases} \frac{1}{4}, & 2 \le x \le 4, 1 \le y \le 3\\ 0, & \text{其他} \end{cases},$$

试求 (X,Y) 关于 X 与 Y 的边缘概率密度 $f_X(x)$ 与 $f_Y(y)$, 并判断 X 与 Y 是否相互独立

- **4.** (10 分) 已知红黄两种番茄杂交的第二代结红果的植株与结黄果的植株的比率为 3:1, 现种植杂交种 400 株, 试用中心极限定理近似计算, 结红果的植株介于 285 与 315 之间的概率. $\left(\boldsymbol{\sigma} \left(\sqrt{3} \right) = 0.9582, \boldsymbol{\sigma} \left(\sqrt{2} \right) = 0.9207 \right)$
- 5. (8 分) 设二维随机变量 (X,Y) 的分布律为

	Y		
X	-1	0	1
-1	<u>1</u> 8	1/8	$\frac{1}{8}$
0	$\frac{1}{8}$	0	$\frac{1}{8}$
1	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$

求 Cov(X,Y)

6. (10 分) 设 X_1, X_2, \dots, X_n 为总体 X 的一个样本, 总体 X 的概率密度为:

$$f(x) = \begin{cases} (\alpha+1)x^{\alpha}, & 0 < x < 1 \\ 0, & \text{其他} \end{cases},$$

求未知参数 α 的矩估计

3.1.2 2018-2019 B14 答案

一、选择题 (每题 3 分, 共 21 分)

1. 从 $0,1,2,\dots,9$ 中任意选出 3 个不同的数字, 三个数字中不含 0 与 5 的概率是 (D)

(B) $\frac{2}{15}$

(C) $\frac{14}{15}$

2. 某人射击中靶的概率为 $\frac{3}{4}$. 若射击直到中靶为止, 则射击次数为 3 的概率为 (B)

(A) $(\frac{3}{4})^3$

(B) $(\frac{1}{4})^2 \times \frac{3}{4}$ (C) $(\frac{1}{4})^3$

(D) $(\frac{3}{4})^2 \times \frac{1}{4}$

3. 设随机变量 X 的概率密度 f(x) 满足 f(-x) = f(x), F(x) 是分布函数, 则 (A)

(A) F(-a) = 1 - F(a)

(B) $F(-a) = \frac{1}{2}F(a)$

(C) F(-a) = F(a)

(D) $F(-a) = \frac{1}{2} - F(a)$

4. 设二维随机变量 (X,Y) 的分布律为 $P\{X=i,Y=j\}=c\cdot i\cdot j, i=1,2,3,j=1,2,3, 则 <math>c=(C)$

(A) $\frac{1}{12}$

(B) $\frac{1}{3}$

5. 设随机变量 X 服从均匀分布, 其概率密度为 $f(x) = \begin{cases} \frac{1}{2}, & 1 < x < 3 \\ 0, & 其他 \end{cases}$, 则 D(X) = (B)

(A) 3

(B) $\frac{1}{2}$

(C) $\frac{1}{2}$

6. 设总体 $X \sim N(0, \sigma^2), X_1, X_2, \cdots, X_n$ 是总体 X 的一个样本, \overline{X}, S^2 分别为样本均值和样本方差, 则下列 样本函数中, 服从 $\chi^2(n)$ 分布的是 (D)

(A) $\sum_{i=1}^n X_i^2$

(C) $\frac{(n-1)S^2}{\sigma^2}$

(D) $\frac{1}{\sigma^2} \sum_{i=1}^n X_i^2$

7. 设 X_1,X_2,\cdots,X_n 是来自正态总体 $N\left(\mu,\sigma^2\right)$ 的一个样本, σ^2 未知, \overline{X} 是样本均值, $S^2=\frac{1}{n-1}\sum_{i=1}^n\left(X_i-X_i\right)$ $\left(\overline{X}\right)^{2}$, 如果 $\left(\overline{X}-k\right)^{2}$ 是 μ 的置信度为 $1-\alpha$ 的单侧置信下限, 则 k 应取 (C)

(A) $t_{1-\alpha}(n)$

(B) $t_{\alpha}(n)$

(C) $t_{\alpha}(n-1)$ (D) $t_{\alpha/2}(n-1)$

二、填空题 (每题 3 分, 共 21 分)

1. 设 A, B 为随机事件, P(A) = 0.8 , P(A - B) = 0.3 , 则 $P(\overline{AB}) = 0.5$

2. 设随机变量 X 的分布律为 $P\{x=k\} = c(0.5)^k, k=1,2,3,\cdots$,则常数 $c=\underline{1}$

3. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} 3x^2, & 0 < x < 1 \\ 0, & \text{其他} \end{cases}$,则 $P\{|X| < 0.2\} = \frac{1}{125}$ 4. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{c}, & 0 < x < c \\ 0, & \text{其他} \end{cases}$,则 $\mathbb{E}(X) = \frac{\frac{c}{2}}{2}$

5. 设二维随机变量 (X,Y) 的概率密度为

$$f(x,y) = \begin{cases} \sin x \cdot \cos y, & 0 < x < \pi/2, \ 0 < y < \pi/2 \\ 0, & \text{ 其他} \end{cases},$$

则 $P\left\{0 < X < \pi/4, \pi/4 < Y < \pi/2\right\} = \left(\frac{2-\sqrt{2}}{2}\right)^2$

6. 设随机变量 X 的数学期望 $\mathbb{E}(X) = \mu$, 方差 $D(X) = \sigma^2$, 则由切比雪夫不等式有 $P\{|X - \mu| \ge 3\sigma\} \le$

7. 设 X_1, X_2 是取自正态总体 $X \sim N(\mu, \sigma^2)$ 的一个容量为 2 的样本, 则 μ 的无偏估计量 $\hat{\mu}_1 = \frac{1}{2}X_1 + \frac{1}{2}X_2$, $\hat{\mu}_2 = \frac{2}{3}X_1 + \frac{1}{3}X_2, \ \hat{\mu}_3 = \frac{1}{4}X_1 + \frac{3}{4}X_2 \ \text{中最有效的是} \qquad \hat{\mu}_1$

三、解答题 (共 58 分)

1. (10 分) 车间里有甲、乙、丙 3 台机床生产同一种产品,已知它们的次品率依次是 0.05、0.1、0.2,产品 所占份额依次是 20%、30%、50%. 现从产品中任取 1 件,发现它是次品,求次品来自机床乙的概率

解 设抽取的产品为次品的事件为 A, 抽取的次品来自机床甲的事件为 B_1 , 抽取的次品来自机床乙的事件 为 B_2 , 抽取的次品来自机床丙的事件为 B_3

根据全概率公式

$$P(A) = P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + P(A|B_3)P(B_3)$$

= 0.05 \times 0.2 + 0.1 \times 0.3 + 0.2 \times 0.5 = 0.14

根据贝叶斯公式

$$P(B_2|A) = \frac{P(AB_2)}{P(A)} = \frac{P(A|B_2)P(B_2)}{P(A)} = \frac{0.1 \times 0.3}{0.14} = \frac{3}{14}$$

- **2.** (10 分) 设随机变量 X 的分布函数为 $F(x) = \begin{cases} k k e^{-x^3}, & x > 0 \\ 0, & x \leq 0 \end{cases}$, 试求:
 - (1) 常数 k;
 - (2) X 的概率密度 f(x)
- 解 (1) 根据分布函数的性质

$$\lim_{x \to +\infty} F(x) = k = 1$$

(2)

$$F(x) = \begin{cases} 1 - e^{-x^3}, & x > 0 \\ 0, & x \le 0 \end{cases},$$

则

$$f(x) = F'(x) = \begin{cases} 3x^2 e^{-x^3}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

3. (10 分) 设二维随机变量 (*X*, *Y*) 的概率密度为:

$$f(x,y) = \begin{cases} \frac{1}{4}, & 2 \le x \le 4, 1 \le y \le 3\\ 0, & \text{其他} \end{cases},$$

试求 (X,Y) 关于 X 与 Y 的边缘概率密度 $f_X(x)$ 与 $f_Y(y)$, 并判断 X 与 Y 是否相互独立

解

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_1^3 \frac{1}{4} dy, & 2 \le x \le 4 \\ 0, & \cancel{\cancel{\bot}} = \end{cases} = \begin{cases} \frac{1}{2}, & 2 \le x \le 4 \\ 0, & \cancel{\cancel{\bot}} = \end{cases}$$

同理

$$f_Y(y) = \begin{cases} \frac{1}{2}, & 1 \le y \le 3 \\ 0, & \cancel{!} \not \text{E} \end{cases}, f_X(x) f_Y(y) = \begin{cases} \frac{1}{4}, & 2 \le x \le 4, 1 \le y \le 3 \\ 0, & \cancel{!} \not \text{E} \end{cases} = f(x, y)$$

因此 X 与 Y 相互独立

4. (10 分) 已知红黄两种番茄杂交的第二代结红果的植株与结黄果的植株的比率为 3:1, 现种植杂交种 400 株, 试用中心极限定理近似计算, 结红果的植株介于 285 与 315 之间的概率. $\left(\mathbf{\Phi} \left(\sqrt{3} \right) = 0.9582, \mathbf{\Phi} \left(\sqrt{2} \right) = 0.9207 \right)$

解 设结红果的植株的株数为 X, $X \sim B(400, 3/4)$, 则 $\mathbb{E}(X) = 300$, D(X) = 75, 根据中心极限定理

$$\begin{split} P(285 \leqslant X \leqslant 315) &= P\left(\frac{-15}{\sqrt{75}} \leqslant \frac{X-300}{\sqrt{75}} \leqslant \frac{15}{\sqrt{75}}\right) = \varPhi\left(\sqrt{3}\right) - \varPhi\left(-\sqrt{3}\right) \\ &= 2\varPhi\left(\sqrt{3}\right) - 1 = 0.9164 \end{split}$$

5. (8 分) 设二维随机变量 (X,Y) 的分布律为

		Y	
X	-1	0	1
-1	$\frac{1}{8}$	1/8	$\frac{1}{8}$
0	$\frac{1}{8}$	0	$\frac{1}{8}$
1	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$

求 Cov(X,Y)

解 $\mathbb{E}(X)=-1 imes rac{3}{8}+1 imes rac{3}{8}=0$,同理通过计算得 $\mathbb{E}(Y)=0$, $\mathbb{E}(XY)=0$,因此

$$\operatorname{Cov}(X,Y) = \mathbb{E}\left(XY\right) - \mathbb{E}\left(X\right)\mathbb{E}\left(Y\right) = 0$$

6. (10 分) 设 X_1, X_2, \dots, X_n 为总体 X 的一个样本, 总体 X 的概率密度为:

$$f(x) = \begin{cases} (\alpha+1)x^{\alpha}, & 0 < x < 1 \\ 0, & \text{其他} \end{cases},$$

求未知参数 α 的矩估计

解

$$\mathbb{E}\left(X\right) = \int_0^1 (\alpha+1) x^{\alpha+1} \mathrm{d}x = \frac{\alpha+1}{\alpha+2}, \mu_1 = \overline{X} = \sum_{i=1}^n \frac{X_i}{n},$$

因此

$$\alpha = \frac{2\overline{X} - 1}{1 - \overline{X}}$$

3.1.3 2019-2020 A20

一、选择题

1. 已知
$$P(A) = \frac{1}{2}$$
, $P(B|A) = \frac{1}{4}$, 则 $P(AB) = ($) (A) $\frac{1}{2}$ (B) $\frac{1}{4}$ (C) $\frac{1}{6}$

(B)
$$\frac{1}{4}$$

$$(C)^{\frac{1}{a}}$$

(D)
$$\frac{1}{9}$$

2. 某类灯泡使用时数在 500 小时以上的概率为 0.5, 从中取 3 个灯泡使用,则在使用 500 小时后无一损 坏的概率为()

 $(A) \frac{1}{9}$

(B) $\frac{3}{8}$

(C) $\frac{5}{8}$

(D) $\frac{7}{8}$

3. 如果抛一枚硬币 4 次,设 X 表示正面朝上的次数,则 $P\{X = 3\} = ($)

(A) $\frac{1}{2}$

(D) $\frac{1}{3}$

4. 设随机变量 (X,Y) 概率密度为 $f(x,y) = \begin{cases} x^2 + \frac{1}{3}xy, & 0 \le x \le 1, 0 \le y \le 2 \\ 0, & \text{其他.} \end{cases}$ 则 $P\{0 \le X \le 1, 0 \le Y \le 1\} = \begin{cases} x^2 + \frac{1}{3}xy, & 0 \le x \le 1, 0 \le y \le 2 \\ 0, & \text{其他.} \end{cases}$

()

(A) $\frac{1}{12}$

(B) $\frac{3}{12}$

(C) $\frac{5}{12}$

(D) $\frac{7}{12}$

- **5.** 设随机变量 $X \sim N(2,4)$, 且 $aX 1 \sim N(0,1)$, 则 ()
- (A) a = -2
- (B) a = -0.5
- (C) a = 0.5
- (D) a = 2
- **6.** 设随机变量 X 的数学期望 $\mathbb{E}(X) = \mu$,方差 $D(X) = \sigma^2$,则由切比雪夫不等式有 $P\{|X \mu| < 2\sigma\} \ge ($)
- (A) $\frac{1}{2}$

(B) $\frac{1}{3}$

(C) $\frac{2}{3}$

- (D) $\frac{3}{4}$
- 7. 设 $\hat{\theta}$ 为未知参数 θ 的估计量, 若 $E(\hat{\theta})$ 存在, 且有 $E(\hat{\theta}) = \theta$, 则称 $\hat{\theta}$ 为参数 θ 的 ()
- (A) 有偏估计量
- (B) 无偏估计量
- (C) 一致估计量
- (D) 有效估计量

二、填空题

- 1. 袋中装有标号 1,2,3,4,5 的 5 个球,从中任取一个,则取到标号大于 3 的球的概率为
- 2. 设 A, B 为两个事件, P(A) = 1, P(B) = 0.7, $P(\overline{B}|A) = 0.3$, 则 P(AB) =
- 3. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} x^{\alpha}, & 0 < x < 1 \\ 0 &$ 其他 \end{cases} , 则 $\alpha =$ ______
- 4. 设二维随机变量 (X,Y) 的概率密度为 $f(x,y) = \begin{cases} Cx^2 \sin y, & 0 < x < 1, 0 < y < \frac{\pi}{2}, \\ 0, &$ 其他.
- 5. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b, \\ 0, & 其他. \end{cases}$ 则 D(X) =______
- **6.** 设总体 X 服从 0-1 分布 B(1,p),即 $P\{X=1\}=p$ (其中 p 为未知参数)。 X_1,X_2,\cdots,X_n 是来自 X 的一个样本,则样本函数 $X_1+X_2,\max_{1\leq i\leq n}X_i,\,X_n+2p,\,(X_n-X_1)^2$ 中不是统计量的是

三、解答题

- **1.** 有两批种子,第一批发芽率为 0.9,第二批发芽率为 0.96,现将数量相同两批种子混合在一起,从中任取一粒,求该粒种子发芽的概率
- 2. 设随机变量 X 服从 [0,2] 的均匀分布, 求随机变量 $Y = X^2$ 的概率密度
- **3.** 设二维随机变量 (X,Y) 分布律如表 3.1, 求 (X,Y) 关于 X 与 Y 的边缘分布律,并判断 X 与 Y 是否相互独立

表 3.1:				
		Y		
X	0	1	2	
0	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{16}$	
1	$\frac{1}{4}$	$\frac{1}{8}$	0	
2	$\frac{1}{16}$	0	0	

4. 设 X 与 Y 两个随机变量 $\mathbb{E}(X) = 2$, $\mathbb{E}(X^2) = 20$, $\mathbb{E}(Y) = 3$, $\mathbb{E}(Y^2) = 34$, Cov(X,Y) = 10, 求 $\mathbb{E}(X - Y)$, D(X + Y)

5. 某工厂有 200 台同类型机器,由于工艺等原因,每台机器工作时间只有 80%,各台机器相互独立,求任一时刻有 156 至 164 台机器正在工作的概率 (Φ (0.71) = 0.7611, Φ (1.98) = 0.9762)

	3.	2 春			
3.2.1 2018-2019 B					
一、选择题 (每题 3 分, 共 21 分)					
1. 设随机变量 <i>X</i> 分布律	单为 $P\{X=k\}=pq^{k-1}(p>$	$0, q > 0, k = 1, 2, \cdots$),则	()		
(A) $p+q=1$	$(\mathrm{B})\ p = \tfrac{1}{q} - 1$	(C) $p + q = 2$	(D) $pq = 1$		
2. 从 0,1,2,···,9 这 10 个数字中随机抽取 1 个数字,则取到奇数的概率为()					
(A) $\frac{1}{2}$	(B) $\frac{3}{5}$	(C) $\frac{4}{9}$	(D) $\frac{5}{9}$		
3. 一批产品, 优质品占(A) 10×0.2³	20%, 进行重复抽样检查, (B) 0.2 ³	共取 5 件, 则恰好 3 件是((C) 10×0.2 ³ ×0.8 ²			
4. 同时掷骰子,以 X 和(A) ¹/₁₂	Y 分别代表第 1 和第 2 (B) $\frac{1}{9}$	个骰子的点数,则 $P\{X + Y = (C) \frac{1}{36}$	$=5$ } = () (D) $\frac{1}{18}$		
5. 设 X 为一个随机变量, 且 $\mathbb{E}(X) = 2$, $\mathbb{E}(X^2) = 5$, 则 $D(2X) = ($)					
(A) 6	(B) 12	(C) 2	(D) 4		
6. 设总体 $X \sim N(\mu, \sigma^2)$ 分布的是 ()	(X_1, \cdots, X_n) 为样本, \overline{X}, S^2	2分别为样本均值和样本方	差, 则下列选项服从 $\chi^2(n-1)$		
(A) $\frac{(n-1)S^2}{\sigma^2}$	(B) $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2$	(C) $\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	(D) $\frac{\overline{X} - \mu}{S/\sqrt{n}}$		
7. 设 $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 都是由样本确定的两个统计量, 满足 (), 则随机区间 $\left(\hat{\theta}_1, \hat{\theta}_2\right)$ 称为 θ 的置信水平的置信区间					
(A) $P\left\{\hat{\theta}_1 < \theta < \hat{\theta}_2\right\} = 0.0$	05	(B) $P\left\{\hat{\theta}_1 < \theta < \hat{\theta}_2\right\} = 0.9$	95		
(C) $P\{\hat{\theta}_1 < \theta\} = 0.95$		(D) $P\{\theta < \hat{\theta}_2\} = 0.95$			

二、填空题 (每题 3 分, 共 21 分)

- 1. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{x^2}, & a < x < 3a, \\ 0, & \text{其他.} \end{cases}$,则 a =______
- 2. 设随机变量 X 的数学期望 $\mathbb{E}(X) = \mu$, 方差 $D(X) = \sigma^2$, 则由切比雪夫不等式有 $P\{|X \mu| < 2\sigma\} \geqslant$

- **4.** 设 $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$ 是 θ 的一个估计量, 若 $\mathbb{E}\left(\hat{\theta}\right)$ 存在, 且有______, 则 $\hat{\theta}$ 是 θ 的无偏估计量
- 5. 事件 A 在一次实验中发生的概率为 $\frac{1}{3}$, X 表示在 3 次重复独立试验中发生的次数, 则 $P\{X \leq 2\} =$
- **6.** 设二维随机变量 (X,Y) 的概率密度为: $f(x,y) = \begin{cases} 4xy, & 0 < x < 1, 0 < y < 1, \\ 0, & 其他. \end{cases}$,则 $P\{0 < X < \frac{1}{2}, \frac{1}{4} < Y < 1\} = \begin{cases} 4xy, & 0 < x < 1, 0 < y < 1, \\ 0, & \text{其他.} \end{cases}$
- 7. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{\beta \alpha}, & \alpha < x < \beta, \\ 0, & 其他. \end{cases}$,则 $\mathbb{E}(X) =$ ______
- 三、解答题 (共 58 分)
- 1. (8 分) 设随机变量 X 的分布律为

求:

- (1) $P\{|X-2| \le 1\}$
- (2) $Y = X^2$ 的分布律
- **2.** (10 分) 设某区域内肥胖者占 10%, 不胖不瘦者占 82%, 瘦者占 8%, 肥胖者患高血压的概率为 30%, 不胖不瘦者患高血压的概率为 10%, 瘦者患高血压的概率为 5%, 求:
- (1) 该地区的居民患高血压的概率
- (2) 若在该地区任选一人, 发现有高血压, 属于肥胖者的概率
- 3. (10 分) 设二维随机变量 (X,Y) 的概率密度为 $f(x,y) = \begin{cases} e^{-x}, & x>y,y>0, \\ 0, & \text{其他.} \end{cases}$,试求: (X,Y) 关于 X 与 Y 的边缘概率密度 $f_X(x)$ 与 $f_Y(y)$
- **4.** (10 分) 设 $X \sim N(0,2)$, $Y \sim N(0,1)$, 且相互独立, U = X + Y + 1, V = X Y + 1, 求 Cov(U,V)
- **5.** (10 分) 某通信系统有 60 台相互独立起作用的交换机,每台交换机能清晰接受信号的概率为 0.90. 系统工作时,要求能清晰接受信号的交换机至少 54 台,求该通信系统能正常工作的概率 (结果取最接近的值,其中 $\Phi(2.58) = 0.9951$, $\Phi(1.36) = 0.9131$)
- **6. (10 分)** 设 X_1, X_2, \dots, X_n 为总体 X 的一个样本, 总体 X 服从参数为 $p(0 的两点分布, 其分布律为 <math>P\{X = x\} = p^x(1-p)^{1-x}(x = 0, 1)$, 求未知参数 p 的矩估计

3.3 拼凑卷

此复习题非一份完整的考试卷, 而是多个不同的试卷拼凑 (老师给的).

一、选择题 (每题 3 分)					
1. 已知事件 A, B 满足 $P(AB) = P(\overline{A} \cap \overline{B})$, 且 $P(A) = 0.4$, 则 $P(B) = ($					
(A) 0.4		(B) 0.5	(C) 0.6	(D) 0.7	
 有γ介 (A) ^{γ!}/_{nγ} 	、球, 随机地放	在 n 个盒子中 $(\gamma \le n)$, 则 (B) $C_{n n^{\gamma}}^{r \frac{\gamma!}{n^{\gamma}}}$	某指定的 γ 个盒子中各有- (C) <u>n!</u>	一球的概率为() (D) $\mathrm{C}^{n}_{\gamma} rac{n!}{\gamma^{n}}$	
3. 设随机	变量 X 的概率	医密度为 $f(x) = ce^{- x }$, 则 α	c = ()		
(A) $-\frac{1}{2}$		(B) 0	(C) $\frac{1}{2}$	(D) 1	
4. 掷一颗(A) 50	骰子 600 次, 🤄	求"一点"出现次数的均值 (B) 100	恒为 () (C) 120	(D) 150	
5. 设每次为()	5. 设每次试验成功的概率为 $p(0 , 重复进行试验直到第 n 次才取得 r(1 \le r \le n) 次成功的概率$				
(A) $C_{n-1}^{r-1}p^r$	$(1-p)^{n-r}$	(B) $C_n^r p^r (1-p)^{n-r}$	(C) $C_{n-1}^{r-1}p^{r-1}(1-p)^{n-r+1}$	(D) $p^r (1-p)^{n-r}$	
		可分布函数为 $F(x)$, 则 $P(X)$ (B) $F(x_{k+1}) - F(x_{k-1})$	$(X = x_k) = ($ $)$ $(C) P(x_{k-1} < X < x_{k+1})$	(D) $F(x_k) - F(x_{k-1})$	
$\max(X, Y)$ (A) $F_Z(z)$.变量 X,Y 是的分布函数为 = $\max \{F_X(x), F_Y(y)\}$	()	点,其分布函数分别为 F_X (B) $F_Z(z) = \max\{ F_X(x) $ (D) $F_Z(z) = F_X(z)F_Y(z)$	$(x), F_Y(y)$,则随机变量 $Z =$ $, F_Y(y) $	
8. 设随机 (A) 40	变量 (X,Y) 的	対方差 $D(X) = 4, D(Y) = 1$, (B) 34	相关系数 $\rho_{XY} = 0.6$, 则方 (C) 25.6	差 $D(3X - 2Y) = ($) (D) 17.6	
9. $\[\stackrel{\sim}{\not\sim} (X_1, \\ (A) \] \frac{\overline{X}-1}{2/\sqrt{n}} \sim (C) \] \frac{\overline{X}-1}{\sqrt{2}/\sqrt{n}} \sim (C)$	t(n)	可总体 $N\left(1,2^2 ight)$ 的一个样才	(x, \overline{X}) 为样本均值,则下列组 $(B) \frac{1}{4} \sum_{i=1}^{n} (X_i - 1)^2 \sim F(1)$ $(D) \frac{1}{4} \sum_{i=1}^{n} (X_i - 1)^2 \sim \chi^2$	n, 1)	
10. 设总体(A) $\frac{1}{X}$	本 X 在 (μ – ρ	$(\mu + \rho)$ 上服从均匀分布, $(B) \frac{1}{n-1} \sum_{i=1}^{n} X_{i}$) (D) \overline{X}	
11. 设二维随机变量 (<i>X</i> , <i>Y</i>) 的分布律为:					
-	\overline{Y}				
-	λ		1	2	
-	1		<i>a b</i>	2 9 4	
-			-	9	

若 X 与 Y 相互独立,则()

(A)
$$a = \frac{4}{9}, b = \frac{1}{9}$$
 (B) $a = \frac{1}{9}, b = \frac{4}{9}$ (C) $a = \frac{2}{9}, b = \frac{1}{9}$ (D) $a = \frac{1}{9}, b = \frac{2}{9}$

12. 设随机变量 *X* 的概率密度为
$$f(x) = \begin{cases} ax, & 0 \le x \le 2 \\ 0, & 其他 \end{cases}$$
, 则 $a = ($)

(A) 1 (B)
$$\frac{1}{4}$$
 (C) $\frac{1}{2}$

14. 设 X,Y 为两个随机变量, 已知 $\mathbb{E}(X) = 1$, $\mathbb{E}(Y) = 2$, $\mathbb{E}(XY) = 5$, 则 $\mathrm{Cov}(X,Y-4) =$ ______

- **15.** 若 P(A) = 0.5, $P(B\overline{A}) = 0.2$, 则 P(A + B) = _____
- **16.** 已知随机变量 $X \sim \begin{bmatrix} -1 & 0 & 2 & 5 \\ 0.25 & 0.25 & 0.25 & 0.25 \end{bmatrix}$, 那么 $\mathbb{E}(X) = \underline{\hspace{1cm}}$
- 17. 设 $\hat{\theta}$ 是未知参数 θ 的一个无偏估计量, 则 $\mathbb{E}(\hat{\theta})$ =
- **18.** 随机变量 X 服从均匀分布 U(1,3), 则 P(X > 2) =
- **19.** 设随机变量 $X \sim B(100, 0.15)$, 则 $\mathbb{E}(X) =$ ______
- **20.** 设随机变量 $X \sim N(3,4)$, 已知 $\Phi(1) = 0.8413$, 则 P(X < 1) =
- **21.** 设随机变量 *X* 的概率密度函数为 $f(x) = \begin{cases} 3x^2, & 0 \le x \le 1 \\ 0, & 其它 \end{cases}$, 则 $P(X < \frac{1}{2}) =$ ______
- **22.** 设随机变量 $X \sim \begin{bmatrix} 0 & 1 & 3 \\ 0.5 & 0.35 & 0.15 \end{bmatrix}$, 则 P(X < 2) =______
- **23.** 设随机变量 X 的期望存在,则 $\mathbb{E}(X \mathbb{E}(X)) =$ ______
- **24.** 设 X 为随机变量,已知 D(X) = 2,那么 D(3X 5) = ______

三、计算题

- 1. (10 分) 设随机变量 X 与 Y 具有概率密度: $f(x,y) = \begin{cases} \frac{1}{8}(x+y) & 0 \le x \le 2, 0 \le y \le 2 \\ 0 &$ 其它 D(Y) 与 D(2X-3Y)
- **2.** (10 分) 某电子计算机主机有 100 个终端,每个终端有 80 % 的时间被使用. 若各个终端是否被使用是相互独立的,试求至少有 15 个终端空闲的概率. (Φ (1.25) = 0.8944, Φ (0.31) = 0.6217
- 3. (10 分) 试求正态总体 $N(\mu, 0.5^2)$ 的容量分别为 10, 15 的两独立样本均值差的绝对值大于 0.4 的概率. ($\Phi(1.96) = 0.975$)
- 4. (10 分) 设总体 X 的密度函数为 $f(x) = \begin{cases} \frac{2}{\theta^2}(\theta x), & 0 < x < \theta \\ 0, &$ 其它 的样本,试求当样本观察值分别为 0.5, 1.3, 0.6, 1.7, 2.2, 1.2, 0.8, 1.5, 2.0, 1.6 时未知参数 θ 的矩估计值
- 5. (10 分) 某商店拥有某产品共计 12 件, 其中 4 件次品, 已经售出 2 件, 现从剩下的 10 件产品中任取一件, 求这件是正品的概率
- **6. (10 分)** 设某种电子元件的寿命服从正态分布 N(40,100), 随机地取 5 个元件, 求恰有两个元件寿命小于 50 的概率. ($\Phi(1) = 0.8413, \Phi(2) = 0.9772$)
- 7. **(12 分)** 设总体 X 的分布律为 $P\{X=k\}=(1-p)^{k-1}p, k=1,2,\cdots$. (p 为未知参数), X_1,X_2,\cdots,X_n 是总体 X 的一个样本, 求 p 的极大似然估计量
- **8.** (10 分) 两台车床加工同样的零件, 第一台出现不合格品的概率是 0.03, 第二台出现不合格品的概率是 0.06, 加工出来的零件放在一起, 并且已知第一台加工的零件数比第二台加工的零件数多一倍.

- (1) 求任取一个零件是合格品的概率.
- (2) 如果取出的零件是不合格品, 求它是由第二台车床加工的概率
- 9. **(10 分)** 某仪器装了 3 个独立工作的同型号电子元件, 其寿命 (单位: 小时) 都服从同一指数分布, 密度 函数为 $f(x) = \begin{cases} \frac{1}{600} \mathrm{e}^{-\frac{1}{600}}, & x>0 \\ 0, & \mathrm{其它} \end{cases}$, 试求此仪器在最初使用的 200 小时内, 至少有一个此种电子元件损坏的 概率