

Departamento de Física UNIVERSIDADE DE AVEIRO

Modelação em Física Estatística

2019.03.27

1º teste

- 1. Considera um canal de informação em que um bit tem uma probabilidade p de ser transmitido com erro e 1-p de ser transmitido sem erro (canal binário simétrico, BSC).
- a) Se X for uma variável binária de entrada que toma valor 0 com probabilidade q e 1 com probabilidade 1-q e Y a variável correspondente ao bit recebido, determina os valores da probabilidade conjunta $p_{X,Y}(x,y)$. Os valores da função podem ser dados como uma tabela.
- b) Mostra a partir de $p_{X,Y}(x,y)$ que:

$$p_{\scriptscriptstyle X}(x) = q \, \delta_{\scriptscriptstyle X,0} + (1-q) \delta_{\scriptscriptstyle X,1} \quad \text{e} \qquad p_{\scriptscriptstyle Y}(y) = [q \, (1-p) + (1-q) \, p] \delta_{\scriptscriptstyle Y,0} + [q \, p + (1-q) (1-p)] \delta_{\scriptscriptstyle Y,1} \quad \text{onde} \quad \delta_{\scriptscriptstyle X,y} \quad \text{representa o delta de Kronecker.}$$

c) Mostra que a informação mútua $I_{X,Y}$ se pode escrever na forma:

$$I_{X,Y} = (1-p)\log_2(1-p) + p\log_2p - A\log_2A - (1-A)\log_2(1-A) \quad \text{com} \quad A = q + p - 2qp \quad .$$

d) Determina a capacidade do canal de informação definida como $C = max_q I_{X,Y}$. Comenta a dependência de C na probabilidade p.

- 2. Pretende-se fazer uma simulação de um gás de fotões bidimensional, confinado a um quadrado de lado L, usando o algoritmo Demon. Os estados de um gás de fotões são especificados pelo número de fotões, $n_{\vec{k}}$ que têm um dado vetor de onda, $k_{x,y} = \frac{\pi}{L} n_{x,y}$ e $n_{x,y} = 1,2,...,\infty$. A energia de um fotão com vetor de onda \vec{k} é $E = \hbar c k$ onde c é a velocidade da luz e $\hbar = \frac{h}{2\pi}$ é a constante de Planck dividida por 2π .
- a) Mostra que se a energia total fôr E_0 podemos fazer simulações considerando $n_{x,y} < n_{max} = ceil\left(\sqrt{\left(\frac{2\,L\,E_0}{h\,c}\right)^2 1}\right) \ .$
- b) Escreve um programa para fazer uma simulação de Monte Carlo usando o algoritmo do Demon de um gás de fotões a duas dimensões. Um estado do gás é especificado pelo número de fotões de cada tipo (n_x, n_y) , registado numa matriz **nk** de dimensão $n_{max} \times n_{max}$.

Usa um valor de $n_{max} = min \left[\left[ceil \left(\sqrt{\left(\frac{2LE_0}{hc} \right)^2 - 1} \right), 50 \right] \right]$. A variável $nk(n_x, n_y)$ regista o número de

fotões com energia $E=\frac{h\,c}{2\,L}\,n$, com $n=\sqrt{n_x^2+n_y^2}$. Considera a unidade de energia, $u_E=\frac{h\,c}{2\,L}$, e uma unidade de temperatura, $u_T=u_E/k_B$. Para atualizar o estado do sistema escolhe aleatóriamente um tipo de fotão, $1\!\leq\! n_{x,y}\!\leq\! n_{max}$ e propõe, com igual probabilidade, aumentar ou diminuir o número de fotões desse tipo em uma unidade. O número de fotões, $nk(n_x,n_y)$, é sempre uma quantidade positiva ou nula. Em cada passo de Monte Carlo consideram-se n_{max}^2 atualizações do estado do sistema. O programa deverá permitir escolher a energia total do sistema E_0 . Considera como estado inicial aquele em que não existem fotões no sistema e $E_D\!=\!E_0$. Despreza os nequi=2000 passos iniciais e calcula médias considerando as nmedidas=10000 efetuadas nos passos seguintes. É conveniente programar uma função:

[Emedio,Edmedio]=fprob2b(E0,nequi,nmedidas) que faz os cálculos para cada valor de $\ E_0$.

- c) Calcula numericamente a energia interna, em regime estacionário, do gás de fotões em função da temperatura medida pelo Demon, $T = \frac{\langle E_D \rangle}{k_B}$, e compara com a expressão teórica esperada:
- 1 A expressão seguinte continha um erro que foi corrigido.

 $\langle E \rangle = \frac{4\pi (k_B T)^3 L^2}{(hc)^2} 1.20206$. Faz uma representação gráfica das duas quantidades usando as unidades

definidas na alínea anterior. Como a energia do Demon não varia continuamente, a expressão $T=\langle E_D\rangle$, em unidades de u_E e u_T é aproximada. Obtêm-se melhores resultados usando $T=\langle E_D\rangle-0.2$. Considera 8 valores de E_0 entre $\sqrt{2}$ e $80\sqrt{2}$. As temperaturas calculadas numéricamente, em unidades de u_T estão no intervalo [0,3].

d) Para uma configuração gerada num dado passo, calcula o número de fotões com energia entre ϵ e $\epsilon + d\epsilon$, $N(\epsilon, d\epsilon)$. Para isso convém definir previamente os vetores:

```
E=sqrt(2):sqrt(2):sqrt(nmax^2+1); % define o vetor de energias
ne=zeros(length(E),1); % regista o número de fotões com uma dada energia
iE=zeros(nmax,nmax); % faz a correspondencia entre (nx,ny) e a energia
for nx=1:nmax
    for ny=1:nmax
        iE(nx,ny)=floor((sqrt(nx^2+ny^2)-E(1))/(E(2)-E(1)))+1;
    end
end
```

No final de cada passo, em regime estacionário, calcula-se:

ou seja, acumulam-se o número de fotões com energia dentro de cada intervalo de energia. No final da simulação calcula-se a média: ne=ne/nmedidas;

Compara a média, em regime estacionário, desta quantidade com o resultado esperado $N(\varepsilon, d\varepsilon) = \frac{2\pi L^2}{(hc)^2} \frac{\varepsilon}{e^{\beta\varepsilon} - 1} d\varepsilon$ para 3 temperaturas correspondentes a $E_0 = 20\sqrt{2}$, $50\sqrt{2}$ e

 $80\sqrt{2}$. A quantidade $N(\varepsilon, d\varepsilon)$ é a distribuição de Planck para um gás de fotões bidimensional.