GATE

DS & AI

Database Management System

Super 1500+

Lecture No. 02

Topics to be Covered

if MCQ question then most appropriate Ans is 'C' if MSQ then both (C) & (D) are correct
Suppose, a relational schema R (P,Q, R, S) and set of functional

dependencies F and G are as follow:

$$F: \{P \rightarrow Q, Q \rightarrow R, R \rightarrow S\}$$

$$f_2=G:\{P \rightarrow QR, R \rightarrow S\}$$
, $f_1\subseteq f_2$ if f
 $g^{\dagger}\omega \approx f G=\{Q\}$

#Q.7

F2 Govern F1.

i.e. all
$$f$$
 Deaf f_1 can be informed by f_2

F1 $f_1 f_2 f_1$

F1

F2 $f_1 f_2 f_1$

F1

if FSG4GSF then F=G

if feashbast for \$F#6

THEN GCF OWN FFG

#Q.8 Suppose, a relational schema R (v w x y z) and set of functional dependencies F and G are as follow:

$$F_1: \{ w \rightarrow x, wx \rightarrow y, z \rightarrow wy, z \rightarrow v \}$$

$$\sum_{z=1}^{\infty} \{ w \to xy, z \to wx \}$$

$$F_1 \subseteq F_2$$
 or not $X(N_0)$
 $F_2 \subseteq F_1$ or not

#Q.9 Find the canonical cover of $F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E, AC \rightarrow H, D \rightarrow B\}$

Fm is minimal cover of F iff OFm = F

> and 2) Fm does not contain any redundant FD and does not contain any extraneous attribute

- $\{A \rightarrow BH, B \rightarrow E, D \rightarrow B\}$
- $\{A \rightarrow BH, B \rightarrow C, D \rightarrow B\}$
- $\{A \rightarrow BH, B \rightarrow CE, D \rightarrow B\}$

Find the canonical cover of #Q.9 No in NO A - C (B)= + B, E } No B-c NU B-E NO A-F $\{A \rightarrow BH, B \rightarrow E, D \rightarrow B\}$ When A is present. Cia Extra $\{A \rightarrow BH, B \rightarrow C, D \rightarrow B\}$ Find Roult $\{A \rightarrow BH, B \rightarrow CE, D \rightarrow B\} = -$ A-BH Minimal $\{A \rightarrow B, B \rightarrow CE, D \rightarrow B\} \subset \frown$

#Q.10 Consider the following FD sets

$$F1 = \{A \rightarrow C, AB \rightarrow C, C \rightarrow D, C \rightarrow I, CD \rightarrow I, EC \rightarrow A, EC \rightarrow B, EI \rightarrow C\}$$

$$F2 = \{A \rightarrow C, C \rightarrow D, C \rightarrow I, EC \rightarrow A, EC \rightarrow B, EI \rightarrow C\}$$

$$f_1 \subseteq f_2$$

$$f_2 \subseteq f_1$$

$$f_1 = f_2$$

- F1=F2 but F2 is not a minimal cover of F1
- F1=F2 and F2 is a minimal cover of F
- C F1 ⊂ F2
- **D** F1 ⊃ F2

for f_2 to be minimal Cover of f_1 , f_2 must be irreducible set of f_2 f_1 f_2 f_3 f_4 f_4 f_5 f_6 f_7 f_8 f_8 f_8 f_8 f_8 f_9 f_9

Consider the relation R(ABCDE) with set of functional dependencies #Q.11

$$F = \{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A\}$$

(E) = {E, A, B, C, D}

How many candidate keys does the sub relation R1(ABCE) will have_

In order to obtain the (ks of a relation we must find L the Punctional dependencies of that relation RI(ABCE) (AB)+={AB,C,D,E, (A) Two. F = {A,BC,DE} (AC)+={ A,B, X, D,E} $(B)^{\dagger} = \{B, \emptyset\}$ (AE) = { KBCBK

(BE)T= YA,BC

Cike of
$$R_1 = (A), (E), (BC),$$

$$Am = 3$$

Je Consider the Pollowing relation R (WXYZ) with set af Punctional dependencies F = { PS:C:K PS:C:K (3NF) C:K = (WZ) (XZ) P:S:C:K SCK NPA - (1NF) PA- & W, X, ZY N.P.A = {Y} (PSCK+NPA) (PSCK)/PA. XY— (3NF) Not in 2NF B Ris in 2NF but not in 3NF OR is in 3NF but not in BCNF @ R is in BCNF

2 mins Summary

Topic Relationship between FD sets

Topic Minimal cover

Topic FD set of a sub-relation of given relation

Topic Normal forms

THANK - YOU