Bone Anisotropy Mapping

Jarunan Panyasantisuk Joao Rivera Rajan Gill Ryan Cherifa

Project Presentation, How to Write Fast Numerical Code, 27 May 2019

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Coordinate mapping

Low resolution image

High resolution image

Region extraction

Region extraction

Mean intercept length (MIL) method

Mean intercept length (MIL) method

Ellipsoid fitting

Ellipsoid fitting

Ellipsoid fitting

Fabric Tensor:

$$\left(egin{array}{cccc} q_1 & q_2 & q_3 \ q_4 & q_5 & q_6 \ q_7 & q_8 & q_9 \end{array}
ight)$$

Eigendecomposition

Fabric Tensor:

$$\left(egin{array}{ccc} q_1 & q_2 & q_3 \ q_4 & q_5 & q_6 \ q_7 & q_8 & q_9 \end{array}
ight)$$

Eigenvalues:

$$l_1,l_2,l_3$$

Eigenvectors:

$$egin{pmatrix} m_1 & m_2 & m_3 \ m_4 & m_5 & m_6 \ m_7 & m_8 & m_9 \ \end{pmatrix}$$

Algorithms summary

Region extraction

Region extraction

Performance [flops/cycle]

MIL calculation

MIL calculation

Performance [flops/cycle]

MIL calculation

Performance [flops/cycle]

Ellipsoid fitting

Ellipsoid fitting

Performance [flops/cycle]

Overall performance and results

Overall performance

• Performance and roofline plots

Results

