AN INFORMATION-THEORETIC OPTIMALITY PRINCIPLE FOR THE FORMATION OF ABSTRACTIONS

Tim Genewein^{1,2,3}, Daniel A. Braun^{1,2}

¹Max Planck Institute for Intelligent Systems ²Max Planck Institute for Biological Cybernetics ³Graduate Training Center for Neuroscience Tübingen, Germany

Abstractions and hierarchies

- Why are abstractions important?
 - Separation of structure from noise (instance variation)
 - Fast information processing (only relevant information)
 - Extraction of transferrable knowledge
- What role do hierarchies play?
 - Invariants on multiple different scales (temporal, spatial, ...)
 - Different levels of abstraction leads to hierarchical organization
 - Often hierarchical models are "handcrafted" or formed through heuristics
 - "Self-organization" of hierarchies derived from first principles?

Inference and decision-making

- Inference and decision-making with information processing limits
- Belief/policy is modeled as a probability distribution
- For now: decision-making scenario
- Agent emits an action α conditioned on an observation ω
- Tasks are formalized via a utility function $U(\alpha, \omega)$
- Agent has a default policy $p_0(\alpha)$ that is observation-independent
- Goal:
- Find a posterior $p(\alpha|\omega)$ that maximizes the gain in expected utility while minimizing the transformation cost from $p_0(\alpha)$ to $p(\alpha|\omega)$

Thermodynamic Model for DM

• Find a posterior $p(\alpha|\omega)$ that maximizes the gain in expected utility while minimizing the transformation cost from $p_0(\alpha)$ to $p(\alpha|\omega)$

$$\arg \max_{p(\alpha|\omega)} \mathbf{E}_{p(\alpha|\omega)}[U(\alpha,\omega)] - \frac{1}{\beta} D_{\mathrm{KL}}(p(\alpha|\omega)||p_0(\alpha))$$

$$p(\alpha|\omega)$$

- Variational problem has very similar mathematical form as a *free-energy difference* minimization
- Closed-form solution:

$$p(\alpha|\omega) = \frac{1}{Z}p_0(\alpha)e^{\beta U(\alpha,\omega)}$$

Temperature as rationality-parameter

$$\arg\max_{p(\alpha|\omega)} \mathbf{E}_{p(\alpha|\omega)}[U(\alpha,\omega)] - \frac{1}{\beta} D_{\mathrm{KL}}(p(\alpha|\omega)||p_0(\alpha))$$

$$p(\alpha|\omega)$$

$$p(\alpha|\omega) = \frac{1}{Z}p_0(\alpha)e^{\beta U(\alpha,\omega)}$$

- Limits:
 - Fully rational actor: $\beta \rightarrow \infty$
 - Fully bounded actor: $\beta \rightarrow 0$
- Normative framework for changing from prior belief/behavior to posterior belief/behavior with information processing cost
 - Bayes rule can be recovered as a special case

Rate Distortion for Decision Making

• Extend free energy model by taking the average over observations and optimizing over the prior as well:

$$\underset{p_0(\alpha)}{\operatorname{arg max}} \sum_{\omega} p(\omega) \left[\underset{p(\alpha|\omega)}{\operatorname{arg max}} \mathbf{E}_{p(\alpha|\omega)} [U(\alpha,\omega)] - \frac{1}{\beta} D_{\mathrm{KL}}(p(\alpha|\omega)||p_0(\alpha)) \right]$$

• ... which can be rewritten:

arg max
$$\mathbf{E}_{p(\alpha,\omega)}[U(\alpha,\omega)] - \frac{1}{\beta}I(\alpha;\omega)$$

- Trade-off: high expected utility and low mutual information
- Rate distortion a framework for lossy compression
 - Duality between abstraction and lossy compression
 - Channel from observations to actions with limited capacity

Temperature as rationality-parameter

Well known (self-consistent) solution:

$$p(\alpha|\omega) = \frac{1}{Z}p(\alpha)e^{\beta U(\alpha,\omega)}$$
$$p(\alpha) = \sum_{\omega} p(\omega)p(\alpha|\omega)$$

- $\beta > 0$: favor actions that yield "good" utility for many observations
- Temperature governs the granularity of the abstraction
 - --> Example

Toy Example

- Simple taxonomy with three layers of abstraction
- Sensory state $\omega \in \{concrete\ items\}$
- Action $\alpha \in \{concrete\ items, \\ categories, supercategories\}$
- Rewards/Utilities:
 - 3€ if concrete item correct
 - 2.2€ if category correct
 - 1.6€ if supercategory correct

β	10	[bits/ _€]
I	3.7	[bits]
$\mathbf{E}[U]$	3	[€]

β	1.33	[bits/ _€]
I	1.7	[bits]
$\mathbf{E}[U]$	2.2	[€]

β	0.67	[bits/ _€]
I	0.2	[bits]
$\mathbf{E}[U]$	1.2	[€]

β	0.09	[bits/ _€]
I	≈ 0	[bits]
$\mathbf{E}[U]$	0.86	[€]

Continuously varying the temperature

Extending towards hierarchies

- Temperature changes the granularity of abstraction
- Modelling hierarchies of abstractions?
 - Add variables to the model and apply the principle
 - Multiple ways to do this, here: processing pipeline

$$\underset{p(\psi|\omega), p(\alpha|\psi)}{\operatorname{arg max}} \ \mathbf{E}_{p(\alpha,\psi,\omega)}[U(\alpha,\omega)] - \frac{1}{\beta_1}I(\psi;\omega) - \frac{1}{\beta_2}I(\alpha;\psi)$$

Set of self consistent solutions

$$p(\psi|\omega) = \frac{1}{Z_{\psi}} p(\psi) \exp(\beta_1 \Delta F(\alpha|\psi))$$

Rather than representing the input as good as possible, optimize the utility / computation-cost trade-off downstream $\Delta F = \mathbf{E}_{p(\alpha|\psi)}[U(\alpha,\omega)] - \frac{1}{\beta_2} D_{KL}(\alpha|\psi||\alpha)$

$$p(\alpha|\psi) = \frac{1}{Z_{\alpha}}p(\alpha)\exp\left(\beta_2 \sum_{\omega} p(\omega|\psi)U(\alpha,\omega)\right)$$

Take the average utility, using the Bayesian posterior over ω : $p(\omega|\psi)$

$$p(\psi) = \sum_{\omega} p(\omega)p(\psi|\omega)$$
$$p(\alpha) = \sum_{\omega,\psi} p(\omega)p(\psi|\omega)p(\alpha|\psi)$$

Discussion

- Convexity? Convergence?
- Relation to feed forward neural nets, deep architectures?
- Similar work
 - VAN DIJK, S. G. & POLANI, D. (2013). Informational Constraints-Driven Organization in Goal-Directed Behavior. *Advances in Complex Systems*.
 - STILL, S & CRUTCHFIELD, J. P. (2008). Structure or Noise? arXiv:0708.0654v2 [physics.data-an]
 - VER STEEG G. & GALSTYAN A. (2014). Maximally informative Hierarchical Representations of High-Dimensional data
 - Information Bottleneck Method, Relevant Information
 - Rational Inattention

Set of self consistent solutions

$$p(\psi|\omega) = \frac{1}{Z_{\psi}} p(\psi) \exp\left(\beta_1 \sum_{\alpha} p(\alpha|\psi) \left(U(\alpha,\omega) - \frac{1}{\beta_2} \log \frac{p(\alpha|\psi)}{p(\alpha)}\right)\right)$$
$$p(\psi) = \sum_{\omega} p(\omega) p(\psi|\omega)$$

$$p(\alpha|\psi) = \frac{1}{Z_{\alpha}}p(\alpha) \exp\left(\frac{\beta_2}{p(\psi)} \sum_{\omega} p(\omega)p(\psi|\omega)U(\alpha,\omega)\right)$$
$$p(\alpha) = \sum_{\omega,\psi} p(\omega)p(\psi|\omega)p(\alpha|\psi)$$

