EE3005: Communication Systems

Problem Set 6: Angle Modulation

- 1. The signal a(t) shown in Figure 6.1 is fed to a VCO with quiescent frequency of 5 MHz and frequency deviation of 25 KHz/mV. Denote the output of the VCO by y(t).
 - (a) Provide an estimate of the bandwidth of y. Clearly state the assumptions that you make.
 - (b) The signal y(t) is passed through an ideal bandpass filter of bandwidth 5 KHz, centered at 5.005 MHz. Provide the simplest possible expression for the power at the filter output (if you can give a numerical answer, do so).

Figure 6.1: Input to the VCO in Problem 1.

- 2. Consider a message signal m(t) with spectrum $M(f) = I_{[-2,2]}(f)$.
 - (a) Sketch the spectrum of the DSB-SC signal $u_{DSB-SC} = 10m(t)\cos 300\pi t$. What is the power and bandwidth of u?
 - (b) The signal in (a) is passed through an envelope detector. Sketch the output, and comment on how it is related to the message.
 - (c) What is the smallest value of A such that the message can be recovered without distortion from the AM signal $u_{AM} = (A + m(t)) \cos 300\pi t$ by envelope detection?
 - (d) Give a time-domain expression of the form

$$u_p(t) = u_c(t)\cos 300\pi t - u_s(t)\sin 300\pi t$$

obtained by high-pass filtering the DSB signal in (a) so as to let through only frequencies above $150~\mathrm{Hz}$.

(e) Consider a VSB signal constructed by passing the signal in (a) through a passband filter with transfer function for positive frequencies specified by:

$$H_p(f) = \begin{cases} f - 149 & 149 \le f \le 151\\ 2 & f \ge 151. \end{cases}$$

(you should be able to sketch $H_p(f)$ for both positive and negative frequencies.) Find a time domain expression for the VSB signal of the form

$$u_p(t) = u_c(t)\cos 300\pi t - u_s(t)\sin 300\pi t.$$

- 3. Figure 6.2 shows, as a function of time, the phase deviation of a bandpass FM signal modulated by a sinusoidal message.
 - (a) Find the modulation index (assume that it is an integer multiple of π for your estimate).
 - (b) Find the message bandwidth.
 - (c) Estimate the bandwidth of the FM signal using Carson's formula.

Figure 6.2: Phase deviation of FM signal for Problem 3.

4. The input m(t) to an FM modulator with $k_f = 1$ has Fourier transform

$$M(f) = \begin{cases} j2\pi f & |f| < 1\\ 0 & \text{else.} \end{cases}$$

The output of the FM modulator is given by

$$u(t) = A\cos(2\pi f_c t + \phi(t))$$

where f_c is the carrier frequency.

- (a) Find an explicit time domain expression for $\phi(t)$ and carefully sketch $\phi(t)$ as a function of time.
- (b) Find the magnitude of the instantaneous frequency deviation from the carrier at time $t = \frac{1}{4}$.
- (c) Using the result from (b) as an approximation for the maximum frequency deviation, estimate the bandwidth of u(t).