Introduction to Measure Theory and Integration

PAULO FAGANDINI

 σ -Algebras

Definition

Let X be a set. An algebra is a collection A of subsets of X such that:

- 1. $\emptyset \in \mathcal{A}$
- 2. If $A \in \mathcal{A}$, then $A^c \in \mathcal{A}$
- 3. If $A_1, A_2, ..., A_n \in \mathcal{A}$ then $\bigcup_{i=1}^n A_i \in \mathcal{A}$ and $\bigcap_{i=1}^n A_i \in \mathcal{A}$

If 3 holds for countable infinite sets A_i (i.e. you replace the n by ∞), then $\mathcal A$ is a σ – algebra.

Example

These are examples for ${\cal A}$ being a $\sigma-$ algebra

- 1. Let $X = \mathbb{R}$, and \mathcal{A} the set of all the subsets of \mathbb{R} .
- 2. Let X = [0,1] and let $\mathcal{A} = \{\emptyset, X, [0,\frac{1}{2}], (\frac{1}{2},1]\}$

Definition

The pair (X, A) is called a *measurable space*. A set A is *measurable* if $A \in A$

Lemma

If A_{α} is a σ – algebra for each $\alpha \in I$, with I an index set, then $\cap_{\alpha \in I} A_{\alpha}$ is a σ – algebra

Proof.

- 1. If A_{α} is a σ algebra, therefore $\emptyset \in A_{\alpha} \ \forall \alpha \in I$, and then $\emptyset \in \cap_{\alpha \in I} A_{\alpha}$
- 2. Let $S_i \in \cap_{\alpha \in I} \mathcal{A}_{\alpha}$. It follows that $S_i \in \mathcal{A}_{\alpha} \ \forall \alpha \in I$, and also $S_i^c \in \mathcal{A}_{\alpha} \ \forall \alpha \in I$, but then $S_i^c \in \cap_{\alpha \in I} \mathcal{A}_{\alpha}$.
- 3. Choose a collection $\{S_i\}_i^{\infty} \in \cap_{\alpha \in I} \mathcal{A}_{\alpha}$. Now given that S_i must also be in every \mathcal{A}_{α} , their intersection is also in \mathcal{A}_{α} , and therefore it must be in $\cap_{\alpha \in I} \mathcal{A}_{\alpha}$.

Let \mathcal{C} be a collection of subsets of X, define:

$$\sigma(\mathcal{C}) = \bigcap \{ \mathcal{A}_{\alpha} | \mathcal{A}_{\alpha} \text{ is a } \sigma - \textit{algebra}, \ \mathcal{C} \subset \mathcal{A}_{\alpha} \}$$

this is, the intersection of all $\sigma-$ algebras containing $\mathcal C$. Note that $\sigma(\mathcal C)$ is non empty, as at least the $\sigma-$ algebra $\mathcal P(X)$ contains $\mathcal C$. Using the previous lemma, we have that $\sigma(\mathcal C)$ is itself a $\sigma-$ algebra. We call this the $\sigma-$ algebra generated by $\mathcal C$, or that $\mathcal C$ generates the $\sigma-$ algebra $\sigma(\mathcal C)$.

Fact

Continuing with the previous definition we can state that:

- 1. If $C_1 \subset C_2$, then $\sigma(C_1) \subset \sigma(C_2)$.
- 2. Since $\sigma(\mathcal{C})$ is a σ algebra, then $\sigma(\sigma(\mathcal{C})) = \sigma(\mathcal{C})$.

Definition

If X has some structure, for example if it is a metric space, then we can consider open sets in X. If $\mathcal G$ is the collection of open subsets of X, then $\sigma(\mathcal G)$ is the **Borel** $\sigma-$ algebra on X, and it is denoted as $\mathcal B$. The elements of $\mathcal B$ are called *Borel sets*, and are said to be *Borel measurable*.

Proposition

If $X = \mathbb{R}$, then the Borel σ – algebra \mathcal{B} is generated by each of the following collection of sets:

- 1. $C_1 = \{(a, b) | a, b \in \mathbb{R}\}$
- 2. $C_2 = \{ [a, b] | a, b \in \mathbb{R} \}$
- 3. $C_3 = \{(a, b | | a, b \in \mathbb{R}\}\)$
- 4. $C_4 = \{(a, \infty) | a, b \in \mathbb{R}\}$

Proof.

1. Let $\mathcal G$ be the collection of open sets. By definition $\sigma(\mathcal G)$ is the Borel σ – algebra. Since every element of $\mathcal C_1$ is open, then $\mathcal C_1 \subset \mathcal G$, and consequently $\sigma(\mathcal C_1) \subset \sigma(\mathcal G) = \mathcal B$.

Measures

Lebesgue Integral

