Homework 5

Sahana Sarangi

February 5th, 2024

Midterm Practice Problem 6: Consider the function

$$q(x) = 9 \cdot 4^{1-2x}$$

Which of the following graphs is most likely to be the graph of g? Briefly (in one or two sentences) explain your reasoning.

Solution: To solve this problem, we can first convert g(x) into standard exponential form:

$$g(x) = 9 \cdot 4 \cdot 4^{-2x} = 36 \cdot (4^{-2})^x = 36 \left(\frac{1}{16}\right)^x$$

This is an exponential decay function that is positive because a > 0 and 0 < b < 1. The only option that contains a graph that is both positive and an exponential decay function is option (b).

Midterm Practice Problem 3: Let $f(x) = \frac{1}{2x+3}$. Find $f^{-1}(x)$:

Solution: To start, we can swap f(x) and x in this function. For simplicity, we can let y = f(x) and rewrite this equation using y:

$$x = \frac{1}{2y+3}$$

Solving for y will give us the inverse function:

$$2xy = 1 - 3x$$

$$y = \frac{1 - 3x}{2x}$$

Replacing y with $f^{-1}(x)$, we can say $f^{-1}(x) = \frac{1-3x}{2x}$.

2020 Practice Midterm Problem 2: Let $f(x) = \frac{2}{x-3}$ and $g(x) = \sqrt{4-x}$. Find the domain of f(g(x)).

Solution: To solve this, we can first find f(g(x)). We can do this by substituting g(x) for x in the function f:

$$f(g(x)) = \frac{2}{\sqrt{4-x}-3}$$

We know that we cannot divide any number by 0, so $\sqrt{4-x}-3\neq 0$. To find the restriction on x, we can solve the equation $\sqrt{4-x}-3=0$. The value of x that satisfies this equation is -5. Therefore, our first restriction on x is that $x\neq -5$.

x is also under the square root, so we must consider that as well. We know that the value under a square root must be greater than or equal to 0 (so that we aren't square rooting a negative number), so $4-x \ge 0$. The solution to this inequality is $x \le 4$. Therefore, the domain of $f^{-1}(x)$ is $x \le 4$ and $x \ne -5$.

2020 Midterm Practice Problem 3: Let $f(x) = \frac{5}{x^3-2}$. Find $f^{-1}(x)$.

Solution: To find the inverse, we can first swap f(x) and x. For simplicity, we can let y = f(x) and rewrite the equation using y:

$$x = \frac{5}{y^3 - 2}$$

Solving for y will give us the inverse function:

$$xy^3 - 2x = 5$$

$$y^3 = \frac{5 + 2x}{x}$$

$$y = \sqrt[3]{\frac{5+2x}{r}}$$

Replacing y with $f^{-1}(x)$, we can say that $f^{-1}(x) = \sqrt[3]{\frac{5+2x}{x}}$.