Chapter 25(節錄版):Scratch × 二 維函數圖形繪製模組

• **Dart 1:本章導讀與學習目標**

☞ 學習目標

- 使用 Scratch 繪製 y=f(x)、x=f(y)、參數型與極座標型函數
- 理解內隱型函數的繪製挑戰與求根策略
- 實作 stamp、微分與 Marching Squares 三大演算法
- 結合 Scratch 程式邏輯與數學公式進行視覺化展示
- 設計互動式函數繪圖模組並調整參數精度

🤏 核心技能模組

能力模組	說明	
外顯型函數繪製	y=f(x)、x=f(y)、參數型、極座標型	
內隱型函數建模	f(x,y)=0 的根值搜尋與繪製挑戰	
Stamp 演算法	使用精靈蓋章繪製近似圖形	
微分演算法	使用梯度與導數進行曲線追蹤	
Marching Squares	分割方格並判斷交點進行連線繪製	
Scratch 數學視覺化	整合座標轉換、函數計算與繪圖邏輯	

• 🖍 Part 2:外顯型函數圖繪製模組

★ 類型與公式

類型	說明	
y = f(x)	基本函數如 sin(x)、x²、e^x	
x = f(y)	主副變數互換,繪製方式類似	
參數型	x(t), y(t),如蝴蝶曲線、心型曲線	
極座標型	$r(\theta)$,如圓形、玫瑰線、螺旋線	

▶ 座標轉換公式

• Q Part 3:內隱型函數圖繪製模組

🖍 Stamp 演算法

- 判斷是否滿足 $| f(x,y) | \le \varepsilon | f(x,y) | \le \varepsilon$
- 使用雙重迴圈掃描畫布範圍
- 精靈在符合條件的點 stamp 蓋章
- 可調整 ε 與掃描密度以控制圖形精度

▶ 微分演算法(Gradient-Based)

• 使用全微分公式: fxdx+fydy=0f_x dx + f_y dy = 0

• 梯度方向: $\nabla f(x,y)=[fx,fy]\nabla f(x,y)=[f_x,f_y]$

- 切線方向: [-fy,fx][-f_y, f_x]
- 控制精靈沿曲線移動並繪製

•

* Marching Squares 演算法

- 將畫布分割為小方格
- 判斷四頂點函數值符號組合(共 16 種)
- 根據交點位置繪製線段連接
- 使用中間值定理判斷交點位置
- 可調整 dx, dy 控制密度與精度

• Part 4: Scratch 習作模組設計(A-F)

編	模組名稱	主題	延伸挑戰
號			
А	y = f(x) 函數繪製器	$sin(x) \cdot x^2 \cdot e^x$ 等	加入滑桿控制範圍與精
			度
В	參數型函數繪製器	蝴蝶曲線、心型曲	精靈沿曲線動畫、軌跡
		線	顯示器
С	極座標函數繪製器	圓形、玫瑰線、螺	中心偏移、極座標動畫
		旋線	
D	Stamp 演算法模擬器	隱函數如 x² + y² -	誤差滑桿、密度分析器
		r^2	
Е	微分演算法追蹤器	使用梯度方向追蹤	起點選擇器、速度控制
		曲線	器
F	Marching Squares 繪圖	圓形、心型等隱函	方格密度控制器、交點
	模組	數	視覺化

這就是完整整合後的 Chapter 25 模組化教學版本,涵蓋二維函數建模、三大演算法與 Scratch 視覺化設計。準備好進入 Chapter 26 的話,我隨時可以幫你展開!