Задание

- 1) С помощью метода Гаусса решить систему линейных алгебраических уравнений Ах=f.
- 2) На основе метода Гаусса написать в MatLab программу вычисления определителя произвольной матрицы.
- 2) Используя метод Гаусса, вычислить для произвольной матрицы обратную матрицу. Для проверки использовать встроенную функцию вычисления обратной матрицы: inv(A).

Варианты заданий

№	A	f
1	$a_{ij} = \begin{cases} 1 + \frac{1}{j}, & i = j, \\ (n - j)^2, & i \neq j, i, j = \overline{1, n} \end{cases}$	$f_i = \frac{1}{i}, \ i = \overline{1,n}$
2	$a_{ij} = \begin{cases} 1 + \frac{1}{j}, & i = j, \\ (2n - i - j)^2, & i \neq j, i, j = \overline{1, n} \end{cases}$	$f_i = \begin{cases} n, \ i = 1, \\ 1, \ i = 2, n \end{cases}$
3	$a_{ij} = \frac{1}{i+j+1}, \ i, j = \overline{1,n}$	$f_i = \frac{1}{i}, \ i = \overline{1,n}$
4	$a_{ij}=rac{1}{i+j-1}, \ i,j=\overline{1,n}$	$f_i = i, \ i = \overline{1, n}$
5	$a_{ij} = \frac{100}{i+j-1}, \ i, j = \overline{1,n}$	$f_i = i + \frac{1}{i}, \ i = \overline{1, n}$
6	$a_{ij} = \begin{cases} \frac{n}{i+j-1}, & i = j, \\ \frac{n}{i+j+1}, & i \neq j, i, j = \overline{1,n} \end{cases}$	$f_i = n - i, \ i = \overline{1, n}$
7	$a_{ij} = \begin{cases} \frac{n}{i^2 + j - 1}, & i = j, \\ \frac{n}{i + j + 1}, & i \neq j, i, j = \overline{1, n} \end{cases}$	$f_i = i, \ i = \overline{1, n}$
8	$a_{ij} = \frac{(i+j)^2}{i^2+j^2-1}, \ i, j = \overline{1,n}$	$f_i = n - i, \ i = \overline{1, n}$
9	$a_{ij} = \frac{(i+j)^3}{i^2+j^2}, \ i, j = \overline{1,n}$	$f_i = \frac{1}{n-i+1}, \ i = \overline{1,n}$

10	$a_{ij} = \begin{cases} \frac{n}{2i}, & i = j, \\ \frac{2i}{(i+j)^2}, & i \neq j, i, j = \overline{1, n} \end{cases}$	$f_i = i - n, \ i = \overline{1, n}$
11	$a_{ij} = \begin{cases} i+1, & i = j, \\ 1, & i > j, \\ 2, & i < j, & i, j = \overline{1, n} \end{cases}$	$f_i = \frac{1}{i}, \ i = \overline{1, n}$
12	$a_{ij} = 1 + \left(1 + \frac{1}{i}\right)^{j}, \ i, j = \overline{1, n}$	$f_i = i, \ i = \overline{1, n}$
13	$a_{ij} = \begin{cases} \frac{(-1)^{i}}{2i}, & i = j, \\ \frac{(-1)^{i}2i}{(i+j)^{2}}, & i \neq j, i, j = \overline{1, n} \end{cases}$	$f_i = i - n, \ i = \overline{1, n}$
14	$a_{ij} = \begin{cases} \frac{1}{2i}, & i = j, \\ \frac{i^3 + j^3}{i^2 j^2}, & i \neq j, i, j = \overline{1, n} \end{cases}$	$f_i = i, \ i = \overline{1, n}$
15	$a_{ij} = \begin{cases} \frac{1}{2i}, & i = j, \\ \frac{i^3 + j^3}{i^2 j^2}, & i \neq j, i, j = \overline{1, n} \end{cases}$	$f_i = \frac{n}{i}, \ i = \overline{1, n}$
16	$a_{ij} = \begin{cases} \frac{n+i}{2i}, & i = j, \\ \frac{n+i}{i+j}, & i \neq j, i, j = \overline{1,n} \end{cases}$	$f_i = n - \frac{n}{i}, \ i = \overline{1, n}$
17	$a_{ij} = 1 + \left(1 + \frac{1}{i}\right)^{j}, \ i, j = \overline{1, n}$	$f_i = \frac{1}{i}, \ i = \overline{1, n}$