Számítási modellek

4. előadás

A logika két modellje

Nulladrendű logika:

A logika **nulladrendű modelljében** a formulák ítéletváltozókból X, Y, \ldots épülnek fel logikai műveletek \neg, \land, \lor segítségével. Példa: $\neg(X \lor \neg(Y \land \neg Z))$.

A változókat **kiértékelhetjük** igazra/hamisra. Adott változókiértékelés mellett a formula szerkezete alapján rekurzíve kiszámítható a **formula Boole-értéke** (¬: negáció, ∧: logikai és, ∨: megengedő vagy).

Egy formula **kielégíthető**, ha a 2^n lehetséges változókiértékelés közül legalább egy esetben a formula Boole-értéke igaz, **kielégíthetetlen** különben (n a változók száma). φ **tautologikusan igaz**, ha minden változókiértékelés esetén igaz ($\models \varphi$). Egy Φ formulahalmaz **tautologikus következménye** φ , ha minden olyan változókiértékelésben, amiben Φ összes formulája igaz, igaz φ is ($\Phi \models \varphi$).

A logika két modellje

Ha X egy ítéletváltozó, X-et és $\neg X$ -et **literálnak**. Literálok diszjunkcióját **elemi diszjunkciónak** vagy más néven **klóznak**. Ilyenek konjunkcióját **konjunktív normálformának** (KNF) nevezzük. Példa: $(\neg X \lor Y) \land (X \lor \neg Y \lor Z) \land \neg Z$.

Állítás: Minden formulához van vele ekvivalens KNF.

Elsőrendű logika:

Adott **függvényszimbólumok**, **predikátumszimbólumok** és **konstansok** egy-egy véges halmaza. Az előbbiek az **aritásukkal** együtt (hány változósak). Továbbá legyenek x, y, \ldots ún. **individuumváltozók**.

A **termek** konstansokból, változókból és függvényjelekból épülnek fel figyelembe véve az aritást. Például g(f(x, a), y), itt a konstans, f, g 2 aritású függvényjelek.

Az **atomi formula** egyetlen predikátumszimbólum aritásnyi term argumentummal. A **formulák** atomi formulákból épülnek fel \neg , \wedge , \vee , $\exists x$, $\forall x$ segítségével.

A logika két modellje

Példa: $P(x, f(x)) \vee \exists y Q(y)$, itt P 2 aritású, Q 1 aritású predikátumszimbólum, f 1 aritású függvényjel.

A formulák Boole-értékének meghatározásához először keresünk egy matematikai struktúrát: egy *U* alaphalmazt, majd ezen a függvényszimbólumoknak illetve predikátumszimbólumoknak aritásuk szerint függvényeket illetve relációkat feleltetünk meg *U*-n. A konstansoknak szintén megfeleltetünk 1-1 *U*-beli elemet (interpretáció). Majd a változóknak *U*-beli értéket adunk (változókiértékelés).

Így a termeknek lesz U-beli értékük. Egy n argumentumú atomi formula akkor legyen igaz, ha a termeiből álló érték n-es a predikátumszimólumnak megfeleltetett relációban áll. Innen \neg , \land , \lor : szokásos, $\exists x$: létezik U-beli elem..., $\forall x$: minden U-beli elemre ...

Egy formula **kielégíthető**, ha van olyan interpretáció és változókiértékelés melyre a formula Boole-értéke igaz. φ **logikailag igaz**, ha minden interpretáció és változókiértékelés esetén igaz. **Logikai következmény**: mint nulladrendben.

A Turing gépek egy elkódolása

Feltehető, hogy $\Sigma = \{0, 1\}$.

Egy M Turing-gép **kódja** (jelölése $\langle M \rangle$) a következő: Legyen $M = (Q, \{0,1\}, \Gamma, \delta, q_0, q_i, q_n)$, ahol

- $Q = \{p_1, \dots, p_k\}, \Gamma = \{X_1, \dots, X_m\}, D_1 = R, D_2 = S, D_3 = L$
- $k \geqslant 3, p_1 = q_0, p_{k-1} = q_i, p_k = q_n,$
- ▶ $m \ge 3$, $X_1 = 0$, $X_2 = 1$, $X_3 = \Box$.
- Egy $\delta(p_i, X_i) = (p_r, X_s, D_t)$ átmenet kódja $0^i 10^j 10^r 10^s 10^t$.
- $ightharpoonup \langle M
 angle$ az átmenetek kódjainak felsorolása 11-el elválasztva.

Észrevétel: $\langle M \rangle$ 0-val kezdődik és végződik, nem tartalmaz 3 darab 1-t egymás után.

$$\langle M, w \rangle := \langle M \rangle 111w$$

Létezik nem Turing-felismerhető nyelv

Jelölés: Minden $i \ge 1$ -re,

- jelölje w_i a $\{0,1\}^*$ halmaz i-ik elemét a hossz-lexikografikus rendezés szerint.
- jelölje M_i a w_i által kódolt TG-t (ha w_i nem kódol TG-t, akkor M_i egy tetszőleges olyan TG, ami nem fogad el semmit)

Tétel

Létezik nem Turing-felismerhető nyelv.

Bizonyítás: Két különböző nyelvet nem ismerhet fel ugyanaz a TG. A TG-ek számossága megszámlálható (a fenti kódolás injekció $\{0,1\}^*$ -ba, ami megszámlálható). Másrészt viszont a $\{0,1\}$ feletti nyelvek számossága continuum.

Az átlós nyelv: $L_d = \{w_i \mid w_i \notin L(M_i)\}$

Tétel

 $L_d \notin RE$.

Definíció

A lineárisan korlátolt automata (LKA) olyan nemdeterminisztikus TG, melynek Σ bemeneti ábécéje két speciális szimbólumot tartalmaz ⊳-et (baloldali végejel/endmarker) és ⊲-et (jobboldali végejel/endmarkert). Ezen felül

- ▶ a bemenetek $\triangleright (\Sigma \setminus \{ \triangleright, \triangleleft \})^* \triangleleft$ -beliek,
- ▶ s < nem írhatók felül</p>
- ► b-tól balra illetve <-től jobbra nem állhat a fej.</p>
- ▶ a fej kezdőpozíciója a ⊳ tartalmú cella jobb-szomszédja

Magyarán olyan NTG, amely korlátos munkaterülettel rendelkezik.

Nevét egy vele ekvivalens modellről kapta, amelyben a rendelkezésre álló tár az input hosszának konstansszorosa (lineáris függvénye).

Tétel

- (1) Minden G 1-es típusú grammatikához megadható egy A LKA, melyre L(A) = L(G).
- (2) Minden A LKA-hoz megadható egy G 1-es típusú grammatika, melyre L(G) = L(A).

Bizonyítás (vázlat):

(1) Az előző előadáson láttuk, hogy minden 0. típusú grammatikához lehet konstruálni L(G)-t felismerő NTG-t.

A konstrukció a 3. szalagján nemdeterminisztikusan szimulált egy G-beli levezetést, az iterációk végén ellenőrizte, hogy az 1. és 3. szalag tartalma megegyezik-e.

Amennyiben G 1-es típusú, azaz hossz-nemcsökkentőek a szabályai, akkor a 3. szalagon lévő mondatforma hossza sose haladhatja meg |u|-t, így ez az NTG egy LKA.

(2) Az előző előadás konstrukciójának (eléggé technikai jellegű) kis módosításával elérhető, hogy az LKA-hoz (ott NTG-hez) készített grammatika hossz-nemcsökkentő legyen, ehhez viszont ismert, hogy ∃ vele ekvivalens 1-típusú grammatika. □

Tétel

Ha A LKA, akkor L(A) eldönthető.

Bizonyítás: A lineáris korlátoltság miatt A lehetséges konfigurációinak száma egy u bemenetre legfeljebb $m(u) = |Q| \cdot |u| \cdot |\Gamma|^{|u|}$, ahol Q az A állapothalmaza és Γ a szalagábécéje. Ha A-nak van elfogadó számítása, akkor van legfeljebb m(u) hosszú elfogadó számítása is (a számítások két azonos konfiguráció közötti része kihagyható).

Működjön az M Turing gép pontosan úgy, mint A, de minden u bemenetre számolja a lépéseit m(u)-ig. Ekkor állítsuk le M-et q_n -ben. Nyilván L(M) = L(A) és M minden bemenetre megáll.

Tétel

 $\mathcal{L}_1 \subset \mathsf{R}$.

Bizonyítás: Az előző tételek miatt $\mathcal{L}_1 \subseteq R$.

Legyen $L_{d,LKA} = \{\langle M \rangle \mid M \text{ LKA \'es } \langle M \rangle \notin L(M) \}.$

► *L*_{d,LKA} eldönthető.

Egy S TG ugyanis egy M LKA bemenetére menjen q_i -be, ha $\langle M \rangle \notin L(M)$ illetve menjen q_n -be, ha $\langle M \rangle \in L(M)$. Mivel L(M) eldönthető ezért S mindig terminál.

L_{d,LKA} felismerhetetlen LKA-val ($\Rightarrow \notin \mathcal{L}_1$) (Cantor féle átlós módszerrel)

Tegyük fel, indirekt, hogy $L_{d,LKA}$ -t egy S LKA felismeri.

- * ha $\langle S \rangle \in L_{d,LKA} = L(S)$, akkor S felismeri $\langle S \rangle$ -et, így $\langle S \rangle \notin L_{d,LKA}$, ellentmondás,
- * ha $\langle S \rangle \notin L_{d,LKA} = L(S)$, akkor S nem ismeri fel $\langle S \rangle$ -et, így $\langle S \rangle \in L_{d,LKA}$, ellentmondás.

Számítási feladatok megoldása TG-pel

Az eldöntési problémák általánosításai a (ki)számítási problémák. Ilyenkor a kiszámítandó f függvény igen/nem helyett más értékeket is adhat eredményül. Ezúttal is algoritmikus megoldást keresünk.

Legyen $\mathsf{Dom}(f) = \Sigma^*$, $\mathsf{Ran}\ (f) \subseteq \Delta^*$ valamely Σ, Δ ábécékre.

Definíció

Azt mondjuk, hogy az $M = \langle Q, \Sigma, \Delta, \delta, q_0, q_i, (q_n) \rangle$ TG kiszámítja az $f : \Sigma^* \to \Delta^*$ szófüggvényt, ha minden $u \in \Sigma^*$ -beli szóra megáll, és ekkor $f(u) \in \Delta^*$ olvasható az utolsó szalagján.

Megjegyzés: A definíció értelmében nincs szükség q_i és q_n megkülönböztetésére, elég lenne egyetlen megállási állapot. [Ezért van q_n ()-ben.] Az ilyen TG-eket számító Turing gépnek nevezzük.

b/b,R

 $\Box/b, R$

Példa:

$$f(u) = ub$$
$$(u \in \{a, b\}^*).$$

Visszavezetés

Definíció

Az $f: \Sigma^* \to \Delta^*$ szófüggvény **kiszámítható**, ha van olyan Turing-gép, ami polinom időben kiszámítja.

Definíció

 $L_1 \subseteq \Sigma^*$ visszavezethető $L_2 \subseteq \Delta^*$ -ra, ha van olyan $f: \Sigma^* \to \Delta^*$ kiszámítható szófüggvény, hogy $w \in L_1 \Leftrightarrow f(w) \in L_2$. Jelölés: $L_1 \leqslant L_2$.

Megjegyzés: A fogalom Emil Posttól származik, angol szakirodalomban: many-one reducibility.

Visszavezetés

 $L_1 \leqslant L_2$ L_1 L_1 L_1 L_2 L_1 L_2

(1) f az egész Σ^* -on értelmezett, (2) f kiszámítható, (3) $f(L_1) \subseteq L_2$ valamint (4) $f(\overline{L}_1) \subseteq \overline{L}_2$.

f nem kell hogy injektív legyen és az se, hogy szürjektív.

Visszavezetés

Tétel

- ▶ Ha $L_1 \leq L_2$ és $L_2 \in RE$, akkor $L_1 \in RE$.
- ▶ Ha $L_1 \leq L_2$ és $L_2 \in R$, akkor $L_1 \in R$.

Következmény

- ▶ Ha $L_1 \leq L_2$ és $L_1 \notin RE$, akkor $L_2 \notin RE$.
- ▶ Ha $L_1 \leq L_2$ és $L_1 \notin R$, akkor $L_2 \notin R$.

R és RE

Univerzális nyelv: $L_u = \{\langle M, w \rangle | w \in L(M)\}.$

Tétel

$$L_u \in \mathsf{RE} \backslash \mathsf{R}$$

Jelölés: Ha $L \subseteq \Sigma^*$, akkor jelölje $\bar{L} = \{u \in \Sigma^* \mid u \notin L\}$.

Tétel

Ha L és $\overline{L} \in RE$, akkor $L \in R$.

Következmény: RE nem zárt a komplementer-képzésre.

Tétel

Ha $L \in \mathbb{R}$, akkor $\overline{L} \in \mathbb{R}$.

Megállási probléma: $L_{halt} = \{\langle M, w \rangle | M \text{ megáll } w\text{-n} \}.$

Tétel

 $L_{\mathsf{halt}} \in \mathsf{RE} \backslash \mathsf{R}$.

Eldönthetetlen problémák

Grammatikák:

Tétel

Eldönthetetlenek az alábbi CF nyelvtanokkal kapcsolatos kérdések. Legyen G_1 és G_2 két CF nyelvtan.

- $L(G_1) \cap L(G_2) \neq \emptyset$
- $L(G_1) = \Gamma^*$ valamely Γ -ra
- $L(G_1) = L(G_2)$
- $L(G_1) \subseteq L(G_2)$

Megjegyzés: Reguláris nyelvekre ezek a kérdések eldönthetők.

Megjegyzés: $\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3$ esetén is eldönthető a szóprobléma.

Input: G és $u \in T^*$. Output: $u \stackrel{?}{\in} L(G)$.

Eldönthetetlen problémák

Logikai kérdések:

Tétel

Eldönthetetlen, hogy φ elsőrendű logikai formulára és Φ formulahalmazra

- (1) $\models \varphi$ teljesül-e (φ logikailag igaz-e).
- (2) φ kielégíthetetlen-e
- (3) φ kielégíthető-e
- (4) $\Phi \models \varphi$ teljesül-e

Eldönthető, hogy φ nulladrendű logikai formulára és Φ formulahalmazra

- (1) $\models \varphi$ teljesül-e (φ tautologikusan igaz-e).
- (2) φ kielégíthetetlen-e
- (3) φ kielégíthető-e
- (4) $\Phi \models \varphi$ teljesül-e

Bonyolultságelmélet – időbonyolultsági osztályok

A továbbiakban eldönthető problémákkal foglalkozunk, ilyenkor a kérdés az, hogy milyen hatékonyan dönthető el az adott probléma.

- ► TIME $(f(n)) = \{L \mid L \text{ eldönthető } O(f(n)) \text{ időigényű determinisztikus TG-pel}\}$
- NTIME $(f(n)) = \{L \mid L \text{ eldönthető } O(f(n)) \text{ időigényű nemdeterminisztikus TG-pel} \}$
- ightharpoonup P= $\bigcup_{k\geqslant 1}$ TIME (n^k) .
- ▶ NP= $\bigcup_{k\geq 1}$ NTIME (n^k) .
- Észrevétel: $P \subseteq NP$.
- ▶ Sejtés: $P \neq NP$ (sejtjük, hogy igaz, de bizonyítani nem tudjuk).
- A P ≠ NP sejtés a Clay Matematikai Intézet által 2000-ben nyilvánosságra hozott 7 Milleneumi Probléma egyike. Igazolásáért vagy cáfolatáért az Intézet 1M\$-t fizet.

Milyenek az NP-beli problémák?

P-re úgy gondolunk, hogy ez az osztály tartalmazza a hatékonyan megoldható problémákat. (Ami nem teljesen igaz.)

Milyen problémákat tartalmaz NP?

Egy L NP-beli problémához definíció szerint létezik őt polinom időben eldöntő NTG ami gyakorlatilag a következőképpen működik:

a probléma minden bemenetére próbál polinom időben "megsejteni" (értsd: nemdeterminisztikusan előllítani) egy kis méretű "tanút", ami azt bizonyítja, hogy a bemenet egy igen-példány.

Precíz tétellé is tehető, miszerint akkor és csak akkor NP-beli egy eldöntési probléma, ha minden igen-inputhoz megadható **polinom méretű és polinom időben ellenőrizhető tanú** (azaz, ami igazolja, hogy ő valóban igen-input).

Polinom idejű visszavezetés

Definíció

Az $f: \Sigma^* \to \Delta^*$ szófüggvény **polinom időben kiszámítható**, ha van olyan Turing-gép, ami polinom időben kiszámítja.

Definíció

 $L_1 \subseteq \Sigma^*$ polinom időben visszavezethető $L_2 \subseteq \Delta^*$ -ra, ha van olyan $f: \Sigma^* \to \Delta^*$ polinom időben kiszámítható szófüggvény, hogy $w \in L_1 \Leftrightarrow f(w) \in L_2$. Jelölés: $L_1 \leqslant_p L_2$.

Megjegyzés: A polinom idejű visszavezetést Richard Karpról elnevezve *Karp-visszavezetésnek* vagy *Karp-redukciónak* is nevezik. Angolul: polynomial-time many-one reduction vagy Karp reduction.

C-teljesség

Intuitíve, ha egy problémára visszavezetünk egy másikat, az azt jelenti, hogy az a probléma legalább olyan nehéz, mint amit visszavezettünk rá. Azaz ebben az értelemben a legnehezebb problémák azok, melyekre minden probléma visszavezethető.

Definíció

Legyen \mathcal{C} egy bonyolultsági osztály. Egy L nyelv \mathcal{C} -nehéz (a polinom idejű visszavezetésre nézve), ha minden $L' \in \mathcal{C}$ esetén $L' \leq_p L$.

Definíció

Legyen C egy bonyolultsági osztály. Egy L nyelv C-teljes, ha $L \in C$ és L C-nehéz.

NP-teljesség

Ha speciálisan C=NP:

Definíció

Egy L nyelv NP-teljes (a polinom idejű visszavezetésre nézve), ha

- $L \in NP$
- ▶ L NP-nehéz, azaz minden $L' \in NP$ esetén $L' \leq_p L$.

Megjegyzés: Néha úgy fogalmazunk, hogy az *L* (eldöntési) *probléma* NP-teljes...

Tétel

Legyen L egy NP-teljes probléma. Ha $L \in P$, akkor P = NP.

NP-teljesség és a $P \stackrel{?}{=} NP$ probléma

Intuitive az NP-teljes problémák az NP-beli problémák legnehezebbjei.

Az előző tétel szerint tehát, ha valaki talál egy NP-teljes problémára polinom idejű determinisztikus algoritmust, azzal bizonyítja, hogy P=NP.

Mivel nem tudjuk, hogy P=NP (azt sejtjük, hogy nem igaz!), ezért nyilván egyetlen NP-teljes problémára sem ismeretes polinomiális idejű determinisztikus algoritmus és amennyiben a sejtésünk igaz, ilyet nem is fogunk találni.

Így az NP-teljes problémákra úgy tekinthetünk, mint eldönthető, de hatékonyan nem eldönthető problémákra.

Cook-Levin tétel

SAT= $\{\langle \varphi \rangle | \varphi \text{ kielégíthető nulladrendű KNF} \}$

Tétel (Cook-Levin)

SAT NP-teljes.

Tétel

Ha L NP-teljes, $L \leq_p L'$ és $L' \in$ NP, akkor L' NP-teljes.

Tehát a polinom idejű visszavezetés fogalmának segítségével további NP-beli nyelvek NP-teljessége bizonyítható.

A következő problémák NP-teljesség ezen tétel alapján bizonyítható.

kSAT

Egy minden tagjában pontosan k különböző literált tartalmazó konjunktív normál formát (KNF-et) kKNF-nek nevezünk ($k \ge 1$).

Példák: 4KNF:

$$(\neg X_1 \lor X_3 \lor X_5 \lor \neg X_6) \land (\neg X_1 \lor \neg X_3 \lor X_4 \lor \neg X_6) \land (X_1 \lor X_2 \lor \neg X_4 \lor \neg X_6).$$

2KNF:
$$(\neg X_1 \lor X_3) \land (\neg X_1 \lor \neg X_3) \land (X_1 \lor X_2) \land (\neg X_2 \lor X_3).$$

 $kSAT:=\{\langle \varphi \rangle | \varphi \text{ kielégíthető } kKNF\}.$

Tétel

3SAT NP-teljes.

Megjegyzés: 2SAT ∈ P.

3 színezhetőség

Definíció

Legyen $k \ge 1$ egész szám. Egy gráf k-színezhető, ha csúcsai k színnel színezhetők úgy, hogy a szomszédos csúcsok színei különbözőek.

Példa: Egy 5 csúcsból álló kör 3-színezhető, de nem 2-színezhető.

kSzínezés= $\{\langle G \rangle \mid G \text{ } k\text{-sz}$ ínezhető $\}$.

Tétel

3Színezés NP-teljes.

 $Megjegyzés: 2Színezés \in P.$

Klikk, független ponthalmaz

Definíció

A G egyszerű, irányítatlan gráf egy teljes részgráfját klikknek, egy üres részgráfját független ponthalmaznak mondjuk.

Legyen $S \subseteq V(G)$ és $E \in E(G)$. Ha $S \cap E \neq \emptyset$, akkor a csúcshalmaz lefogja E-t. Ha S minden $E \in E(G)$ élt lefog, akkor S egy lefogó ponthalmaz.

Klikk= $\{\langle G,k\rangle \mid G\text{-nek van }k \text{ méretű klikkje}\}$ Független ponthalmaz= $\{\langle G,k\rangle \mid G\text{-nek van }k \text{ méretű független ponthalmaza}\}$ Lefogó ponthalmaz= $\{\langle G,k\rangle \mid G\text{-nek van }k \text{ méretű lefogó ponthalmaza}\}$

Tétel

FÜGGETLEN PONTHALMAZ, KLIKK, LEFOGÓ PONTHALMAZ NP-teljes.

Irányítatlan/irányított Hamilton út/kör

Definíció

Adott egy G gráf. Egy a G összes csúcsát pontosan egyszer tartalmazó utat Hamilton útnak, egy a G összes csúcsát pontosan egyszer tartalmazó kört Hamilton körnek nevezünk. Ha a gráf irányított, a Hamilton útnak/körnek irányítottnak kell lennie.

Jelölés: H-út/ H-kör Hamilton út/ Hamilton kör helyett.

 $H\dot{U} = \{\langle G, s, t \rangle \mid \text{van a } G \text{ irányított gráfban } s\text{-ből } t\text{-be H-út}\}.$

 $IHÚ=\{\langle G,s,t\rangle \mid van \ a \ G \ irányítatlan gráfban s-ből t-be H-út\}.$

 $IHK = \{\langle G \rangle \mid \text{van a } G \text{ irányítatlan gráfban H-kör} \}.$

Hamilton út problémák NP teljessége

Tétel

HÚ, IHÚ, IHK NP-teljes

Az utazóügynök probléma:

Számítási (optimalizálási) verzió: Adott egy G élsúlyozott irányítatlan gráf nemnegatív élsúlyokkal. Határozzuk meg a legkisebb összsúlyú H-kört (ha van).

Eldöntési verzió:

 $\mathsf{TSP} = \{ \langle G, K \rangle \mid G\text{-ben van} \leq K \text{ súlyú H-k\"or} \}.$

Tétel

TSP NP-teljes

További NP-teljes problémák

Lineáris diophantoszi egyenlőtlenségrendszer= $\{\langle \mathbf{A}, \mathbf{b} \rangle \, | \, \mathbf{A}\mathbf{x} \leqslant \mathbf{b} \text{ egészegyütthatós egyenlőtlenségrendszernek} \\ \text{van egész megoldása} \}.$

RÉSZLETÖSSZEG:= $\{\langle S, K \rangle | S \text{ egész számok egy halmaza,} K \in \mathbb{Z}, \text{ van } S\text{-nek egy olyan } S' \text{ részhalmaza, hogy az } S'\text{-beli számok összege } K\}$

$$\text{H\'{A}TIZS\'{A}K:} = \{ \langle a_1, \dots, a_n, b, p_1, \dots p_n, k \rangle \in (\mathbb{R}^+)^{2n+2} \mid \\ \exists \ I \subseteq \{1, \dots, n\}, \text{ amelyre } \sum_{i \in I} a_i \leqslant b \text{ \'{e}s } \sum_{i \in I} p_i \geqslant k \}.$$

 $Partició:=\{\langle B \rangle \mid B \text{ olyan pozitív számok multihalmaza, amely két egyenlő összegű részre particionálható}.$

NP lehetséges szerkezete

NP-köztes nyelv

L NP-köztes, ha $L \in$ NP, $L \notin$ P és L nem NP-teljes.

Ladner tétele

Ha P ≠ NP, akkor létezik NP-köztes nyelv.

Az alábbi problémáknak se a P-belisége, se NP-nehézsége nem ismeretes (így NP-köztes jelöltek):

- Gráfizomorfizmus= $\{\langle G_1, G_2 \rangle | G_1 \text{ és } G_2 \text{ irányítatlan izomorf gráfok}\}.$
- Prímfaktorizáció: adjuk meg egy egész szám prímtényezős felbontását [számítási feladat],
- ► KAPUMINIMALIZÁLÁS: adott digitális áramkört minél kevesebb logikai kapuval megvalósítani [számítási feladat].

Tárbonyolultság – Az offline Turing gép

A tárbonyolultság mérésének problémája:

Első megközelítésben a tárigény a működés során felhasznált (vagyis a fejek által meglátogatott) cellák száma.

Probléma: Hiába "takarékoskodik" a felhasznált cellákkal a gép, az input hossza így mindig alsó korlát lesz a tárigényre.

Definíció

Az offline Turing gép (OTG) egy olyan TG, melynek az első szalagja csak olvasható, a többi írható is. Első szalagját bemeneti szalagnak, további szalagjait munkaszalagoknak nevezzük.

A nemdeterminisztikus offline Turing gép (NOTG) ugyanilyen, csak a gép nemdeterminisztikus.

Állítás

Minden TG-hez megadható vele ekvivalens offline TG.

Az offline Turing gépek tárigénye

Definíció

A számító offline Turing gép olyan legalább 2 szalagos számító TG, melynek az első szalagja csak olvasható, az utolsó szalagja csak írható. Első szalagját bemeneti, utolsó szalagját kimeneti, többi szalagját munkaszalagnak nevezzük.

Definíció

Egy OTG többlet tárigénye egy adott inputra azon celláknak a száma, melyeken a működés során valamelyik munkaszalag feje járt.

Definíció

Egy offline TG f(n) többlet tárkorlátos, ha bármely u inputra legfeljebb f(|u|) az többlet tárigénye.

Számító OTG-re hasonlóan. Nemdeterminisztikus OTG-re (NOTG) értelmszerűen módosítva.

Determinisztikus és nemdeterminisztikus tárbonyolultsági osztályok

Így az offline TG-pel **szublineáris** (lineáris alatti) tárbonyolultságot is mérhetünk.

- ▶ SPACE $(f(n)) := \{L \mid L \text{ eldönthető } O(f(n)) \text{ többlet tárkorlátos determinisztikus offline TG-pel} \}$
- ► NSPACE $(f(n)) := \{L \mid L \text{ eldönthető } O(f(n)) \text{ többlet tárkorlátos}$ nemdeterminisztikus offline TG-pel}
- ▶ PSPACE:= $\bigcup_{k \ge 1}$ SPACE (n^k) .
- ▶ NPSPACE:= $\bigcup_{k \ge 1}$ NSPACE (n^k) .
- ightharpoonup L:=SPACE (log n).
- ▶ NL:=NSPACE(log n).

Savitch tétele és a hierarchia tétel

Tétel (Savitch)

Ha $f(n) \ge \log n$, akkor $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$.

Következmény

PSPACE = NPSPACE

EXPTIME:= $\bigcup_{k\in\mathbb{N}}$ TIME (k^n) .

Hierarchia tétel

 $NL \subset PSPACE$ és $P \subset EXPTIME$.

 $L \subseteq NL \subseteq P \subseteq NP \subseteq NPSPACE = PSPACE \subseteq EXPTIME$

Sejtés: A fenti tartalmazási lánc minden tartalmazása valódi.

Jelölje egy kiszámítási (optimalizálási) problémában OPT az optimális értéket (minimumot/maximumot).

Definíció

Egy algoritmust α -közelítőnek hívunk, ha minden inputra az algoritmus kimenete megengedett és a visszaadott érték OPT-nak

- minimumkeresési feladat esetén legfeljebb α -szorosa,
- maximumkeresési feladat esetén legalább $1/\alpha$ -szorosa,

Megjegyzés: α nem feltétlenül konstans, lehet az input n hosszának egy függvénye is.

Példa: Irányított gráfban maximális aciklikus részgráf keresése.

Rendezzük sorba a csúcsokat. A sorrend szerint haladva, minden csúcsra vizsgáljuk meg, hogy előre-élből vagy hátra-élből van-e több, a kisebbséghez tartozó éleket dobjuk el. A kapott gráf aciklikus és az élek legalább felét tartalmazza, így az algoritmus 2-közelítő. (Itt a megengedett kimenetek az aciklikus részgráfok.)

Különösen érdekesek az NP-nehéz kiszámítási problémák (eldöntési verziójuk NP-nehéz), ilyenkor ugyanis nem ismeretes hatékony egzakt megoldás. A közelítő algoritmustól ilyenkor elvárhatjuk, hogy az viszont hatékony (polinomiális) legyen.

Példa: Minimális méretű lefogó ponthalmaz keresése egy G irányítatlan gráfban. A probléma NP-nehéz. Jelölje $\tau(G) = \min\{|S| \mid S \text{ lefogó ponthalmaz } G\text{-ben}\}.$

Megengedett válasz: egy lefogó ponthalmaz.

Mohón vegyük sorban minden, az adott pillanatig fedetlen él mindkét végpontját S-hez, amíg van fedetlen él. Az algoritmus során talált fedetlen élek diszjunktak, tehát |S|/2 csúcsra szükség van már csak az ő lefogásukhoz is. Így $\tau(G) \geqslant |S|/2$, tehát találtunk egy legfeljebb $2\tau(G)$ méretű lefogó ponthalmazt.

Az algoritmus tehát 2-közelítő és hatékonysága O(|V(G)| + |E(G)|).

Állítás

Ha P \neq NP, akkor TSP-re semmilyen g(n) függvény esetén se létezik polinom idejű g(n)-approximáció. (Megengedett válaszok: az ügynök egy körútja.)

Hívjuk meg most a polinom idejű approximációs algoritmust.

Ha a válasz $\leq ng(n)$, akkor a minimáls összsúlyú körút csupa 1 súlyú élekből áll, így G-ben van Hamilton kör. Ha ennél nagyobb érteket kapunk, akkor a g(n)-approximáció miatt n-nél hosszabb az optimális körút, így G-ben nincs Hamilton kör. Így ez az algoritmus polinom időben eldönti IHK-t, amiből IHK NP-teljessége miatt P=NP következik, ami ellentmond a feltételeknek.

TSP tehát egy rosszul közelíthető probléma. Az alábbi változat viszont jól közelíthető.

Metrikus utazó ügynök probléma: Ugyanaz, mint a TSP, de az élsúlyokra teljesül a háromszög egyenlőtlenség, azaz

 $\forall \{a,b\}, \{b,c\}, \{a,c\} \in E(G)\text{-re} \ \ w(a,c) \leqslant w(a,b) + w(b,c),$ ahol w a G=(V,E) irányítatlan gráf élsúlyozása.

Állítás

A metrikus utazóügynök probléma polinom időben 2-approximálható.

Bizonyítás: Legyen G egy bemenet. Készítsünk el G egy T minimális összsúlyú feszítőfáját. Járjuk be T-t mélységi bejárással. Az így kapott körséta a fa minden élét kétszer látogatja meg és egy minden csúcsot legalább egyszer meglátogat.

T összsúlyánál nyilván nem \exists kisebb összsúlyú minden csúcsot lefedő összefüggő részgráf, így az ügynök minden körútja is legalább ilyen hosszú. Tehát a kapott körséta hossza legfeljebb 20PT.

A háromszög egyenlőtlenség miatt nem nő a körséta hossza, ha a körséta egy csúcsát kihagyjuk, azaz a két szomszédja között éllel helyettesítjük a csúcs meglátogatásához szükséges 2 élt.

Alkalmazzuk ezt a rövidítést a körséta minden ismétlődő csúcsára, így végül egy Hamilton kört kapunk, melynek összsúlya legfeljebb 20PT.

Az algoritmus műveletigénye O(|E(G)|).

Megjegyzés: Ismeretes (3/2)-közelítő algoritmus is (Christofides).