Graphs & Algo cheat-sheet

Check bipartite: Look for odd cycles. G is bipartite if f has no odd cycles. (2-colour, f) **Independent Set:** $I \subseteq V$ is independent if $f \neg \exists$ edge between vertices in I. NP

• Max degree **d**, then **max** independent set $|I| \ge \frac{n}{d+1}$.

Vertex Cover: Set $S \subseteq V$ such that every edge has one vertex in S. NP

• S is a vertex cover if f $V \setminus S$ is independent.

Matching: Set $M \subseteq E$ such that no vertex V has more than one edge in E. P(Also called independent edge set .)

Perfect Matching: Every vertex is exactly incident to one edge in M.

X-saturating matching: Match all vertices of X in a bipartite graph (X,Y).

- max Matching < min Vertex Cover. (Equality holds for bipartite graphs.)
- Maximal matching of M? Then min vertex cover |C| is: |M| < |C| < |2M|
- **Hall's Theorem**: *G* has an *X*-saturating matching if $f \forall S \subseteq X$: $|N(S)| \ge |S|$
- Tutte-Berge theor em: $\max M = \min_U \frac{1}{2}(n + U o(G \setminus U))$
- **Tutte's matching theor em:** *G* has a perfect matching if $f \forall U \subseteq V : o(G \setminus U) \leq |U|$

Dominating set: Set $S \subseteq V$ such that each vertex is either in S or has a neighbour in S.

Probability theory

Useful inequalities:

- $\binom{n}{k} \le \frac{n^k}{k!}$ and $\binom{n}{k} \le (\frac{en}{k})^k$ and $\binom{n}{k} \le 2^n$ and finally for $p \in [0,1]: (1-p)^n \le e^{-pn}$. $n! \approx \binom{n}{e}$ for $O^*(n)$ algorithms.

Markov's inequality: $\Pr[X \geq a] \leq \frac{\mathbb{E}[X]}{a}$ (X non-negative and a > 0.)

Lovasz Local Lemma (LLL): Consider n bad events A_1, \ldots, A_n .

- It also holds that $\forall_{1 \leq i \leq n} : \Pr[A_i] \leq p$ and each A_i depends on at most d other events A_j .
- Then $ep(d+1) \leq 1 \implies \Pr[\bigcap_i \bar{A}_i] > 0$.

Probabilistic idea is to randomly assign (or assign with probability *p*) stuff:

- 1. $\exists i : n_i \geq \mathbb{E}[X]$ and $\exists_j : n_j \leq \mathbb{E}[X]$. This can be useful for expected sizes of certain sets.
- 2. Consider event A(X). If Pr[A(X)] > 0, then there must exist a value of X where A occurs. Similar vice-versa.

Algorithms