## CSDS 440: Machine Learning

Soumya Ray (he/him, sray@case.edu)
Olin 516

Office hours T, Th 11:15-11:45 or by appointment

#### **Announcements**

- Test 1 next Thursday 9/26, in class, 30-45 minutes, closed book/notes
  - Topics: everything up to and including decision trees
  - Remember to review probability and statistics

## Today

- Metrics
- Comparing Learning Algorithms

## Beyond point estimates

Everything above is a "point estimate"

 Because they will be computed on the basis of a sample, we can also compute variance estimates for each quantity

 Important to show "stability" of solutions, and when comparing across algorithms (later)

## **Learning Curves**

- Often useful to plot each metric as a function of training sample size
- Provides insight into how many examples the algorithm needs to become effective



#### Metrics with Confidence Measures

 Many learning algorithms can produce models that can provide estimates of how confident they are about a prediction

Example: Pruned Decision Trees

#### Metrics with Confidence Measures

|           | True Class | Confidence<br>On + |
|-----------|------------|--------------------|
| Example 1 | +          | 0.9                |
| Example 2 | -          | 0.8                |
| Example 3 | +          | 0.4                |
| Example 4 | -          | 0.3                |

 We can create multiple classifiers by thresholding the confidence

 In this case, we can plot Precision-Recall (PR) and Receiver Operating Characteristic (ROC) graphs tracking all of the classifiers

# Precision-Recall graphs

|           | True Class | Confidence<br>On + | Recall<br>(x axis) | Precision<br>(y axis) |
|-----------|------------|--------------------|--------------------|-----------------------|
| Example 1 | +          | 0.9                |                    |                       |
| Example 2 | -          | 0.8                |                    |                       |
| Example 3 | +          | 0.4                |                    |                       |
| Example 4 | -          | 0.3                |                    |                       |

# Precision-Recall graphs

|           | True Class | Confidence<br>On + | Recall<br>(x axis) | Precision<br>(y axis) |
|-----------|------------|--------------------|--------------------|-----------------------|
| Example 1 | +          | 0.9                | 0.5                | 1                     |
| Example 2 | -          | 0.8                | 0.5                | 0.5                   |
| Example 3 | +          | 0.4                | 1                  | 0.67                  |
| Example 4 | -          | 0.3                | 1                  | 0.5                   |



# ROC graphs

|           | True Class | Confidence<br>On + | FP Rate<br>(1-Spec.)<br>(x axis) | Sens./Recall<br>(y axis) |
|-----------|------------|--------------------|----------------------------------|--------------------------|
| Example 1 | +          | 0.9                |                                  |                          |
| Example 2 | -          | 0.8                |                                  |                          |
| Example 3 | +          | 0.4                |                                  |                          |
| Example 4 | -          | 0.3                |                                  |                          |

# ROC graphs

|           | True Class | Confidence<br>On + | FP Rate<br>(x axis) | Sens./Recall<br>(y axis) |
|-----------|------------|--------------------|---------------------|--------------------------|
| Example 1 | +          | 0.9                | 0                   | 0.5                      |
| Example 2 | -          | 0.8                | 0.5                 | 0.5                      |
| Example 3 | +          | 0.4                | 0.5                 | 1                        |
| Example 4 | -          | 0.3                | 1                   | 1                        |



## Properties of ROC graphs

- Random guessing is a diagonal line
  - Also majority class classifier
  - If your classifier is any good its ROC must lie above the diagonal
- Monotonically increasing
- Often use "AUC"/ "AROC" as comparison statistic (later)
- Can be misleading if class distribution is too skewed (use PR graphs instead)

## **Comparing Learning Algorithms**

## Key Issue #1

 Suppose we collect some test data from a binary classification problem and evaluate a classifier. The accuracy is x.

- Then we (or someone else) repeats the experiment with another set of test data from the same problem, collected independently of the first set.
  - What can we say about the accuracy in this case?

## Key Issue #2.1

Suppose we have two classifiers A and B. We measure their accuracies on a test set, they are x and y and x > y. Does this mean A is better than B for this problem?

 What if we (or someone else) re-did the experiment with another test set? Would we still find x > y?

## Key Issue #2.2

• Suppose we have two *learning algorithms* A and B. We measure their accuracies on a problem, they are x and y and x > y. Does this mean A is better than B for this problem?

#### Main Idea

 Earlier we saw how to calculate various metrics for a classifier

 We will always calculate these metrics on the basis of a small, finite sample

 What can we say about the true value of the metric from our estimates?

#### **Data Distribution**

• Assume there is an unknown, underlying probability distribution, D, from which unlabeled examples (x) are being sampled with replacement

Examples are I.I.D.

D is unknown, but fixed

## Sample Error Rate

 The fraction of examples in our test sample on which the learned classifier disagrees with the target concept

$$e_{S} = \frac{1}{n} \sum_{x \in S} \delta(y_{x}, \hat{y}_{x})$$

$$\delta(y_{x}, \hat{y}_{x}) = 1 \text{ if } y_{x} \neq \hat{y}_{x}, 0 \text{ else}$$

$$n = \text{sample size}$$

#### **True Error Rate**

 The probability that the learned classifier will make a mistake on a random example drawn from D

$$e_D = \Pr_{x \sim D}(y_x \neq \hat{y}_x)$$

This is what we really want to know

## Issue #1 Problem Setup

- A test set of size n is drawn from an underlying unknown data distribution D. A learned classifier is evaluated on this sample.
- Sample error rate:  $e_S = \frac{1}{n} \sum_{x} \delta(y_x, \hat{y}_x)$
- True error rate:  $e_D = \Pr_{x \sim D}(y_x \neq \hat{y}_x)$

• Question: How are  $e_S$  and  $e_D$  related?

## Sampling Distribution

- Suppose we perform a random experiment lots of times and record the outcome
- Call the random variable associated with the outcome O
- Suppose we then plot a frequency histogram of O
  - For each value of O, record the number of times we saw it during our experiments
- This is the sampling distribution of O

# Sampling Distribution of Number of Errors

 Let R be a r.v. denoting the number of errors in an evaluation experiment

$$r = \sum_{x \in S} \delta(y_x, \hat{y}_x)$$

What is the sampling distribution of R?

## Sampling Distribution of *R*

 Suppose we run k experiments with test samples of size n

• In the  $i^{th}$  experiment our learned classifier makes  $R = r_i$  errors

- We plot a frequency histogram of R
- What does this look like as k gets large?

## Sampling Distribution of *R*

#### It is a Binomial distribution



$$B(R = r; n, p) =$$

$$\binom{n}{r} p^{r} (1-p)^{n-r}$$

## Why?

• Let us imagine we have a coin that shows heads with probability  $\boldsymbol{e}_D$ 

 We flip it n times and count the number of heads. Repeat and plot a frequency histogram.

• You get a binomial distribution with parameters  $\boldsymbol{e}_D$  and  $\boldsymbol{n}$ 

## Why?

- For binary classification with i.i.d examples, each example is like a trial where our classifier has probability of failure  $e_{\cal D}$
- This is analogous to the situation where you have a coin that shows "heads" with probability  $\boldsymbol{e}_D$
- So if you plot the distribution of the number of errors ("heads"), it will also be a Binomial distribution with parameters n and  $e_D$

#### **Useful Binomial Facts**

• Expectation of a Binomial random variable R with distribution  $B(n,e_D)$ 

$$E(R) = ne_D$$

• Variance of a Binomial random variable with distribution  $B(n,e_D)$ 

$$V(R) = ne_D(1-e_D)$$

#### Parameter Estimation

- Notice that in this case, we are working with a distribution whose parameters are unknown
  - We are trying to estimate  $e_D$ , given r and n

- Suppose we only did a single experiment with n examples and observed r errors
  - What is a good estimate of  $e_D$ ?

#### Parameter Estimation

- It is  $e_S = r/n$ . Why?
- This is the estimate that, under the Binomial distribution, maximizes the likelihood of the observed number of errors:

$$\hat{e}_D = \arg\max_p B(R = r; n, p) = e_S = \frac{r}{n}$$

Called the Maximum Likelihood Estimate, or MLE

#### **Estimation Bias**

• The estimation bias of an estimator Y for a parameter p is E(Y)-p

 If an estimator has zero bias then the average estimate will converge to the true value

The MLE has asymptotically zero estimation bias