Exercice MUSA

Le tableau suivant (TAB 1) contient les défaillances enregistrées (en sec.) pour un système réel :

311	3085	5447	8625	11486
366	3089	5644	8982	12708
608	3089	5837	9175	13251
676	3565	5843	9411	13261
1098	3623	5922	9442	13277
1278	4080	6738	9811	13806
1288	4380	8089	10559	14185
2434	4477	8237	10559	14229
3034	4740	8258	10791	14358
3049	5192	8491	11121	16168

Pour k=5 déterminez :

Q1.2) les couples (m, r) et les valeurs de λ_0 , ν_0 pour les données du TAB 1;

Indication (slides 93, 95, 96)

Il faut regrouper les défaillances par groupes de k = 5. On retrouve 10 intervalles :

Intervalle 1:0-1098, ..., Intervalle 10:13277-16168

m_i est le nombre cumulatif de défaillances jusqu'à l'intervalle i

 r_i est l'intensité de la défaillance sur l'intervalle $i : r_i = k / durée de l'intervalle$

début	Fin	delta	m	r = k / delta
0	1098	1098	0	0.004579
13277	16168	2891	45	0.001729

Pour le modèle Musa de base, la relation entre les défaillances trouvées et l'intensité de la défaillance est :

(slide 95)
$$\lambda = \lambda_0 \left(1 - \frac{\mu}{v_0} \right) = \lambda_0 - \frac{\lambda_0}{v_0} \mu$$

μ étant le nombre cumulatif moyen de défaillances

λ étant l'intensité de défaillance

 λ_0 étant le taux constant aléatoire de défaillances

(slide 96) considérer $(m_i, r_i) = (x_i, y_i)$

(De slide 95)
$$r = \lambda_0 - \frac{\lambda_0}{v_0} m = a + bm$$

(De slide 96), on calcule
$$\hat{b} = \frac{n\sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

et on retrouve $\hat{a} = \overline{r} - \overline{m}\hat{b}$, \overline{r} la valeur moyenne des r_i \overline{m} la valeur moyenne des m_i On sait que $\hat{a} = \lambda_0$ et $\hat{b} = -\frac{\lambda_0}{\nu_1}$, on retrouve ainsi ν_0

$$\hat{b} = \frac{\lambda_0}{v_0} = \frac{10 * 0.766 - 225 * 0.040}{10 * 7125 - 50625} = -6.6034e^{-5} \qquad a = \overline{r} + \overline{m}b = 0.004 + 6.6034e^{-5} * 22.5 = 0.0055$$

$$\lambda_0 = 0.00549 \cong 0.0055, v_0 = 83.21 \cong 83$$

Q1.3) combien de défauts sont encore dans le logiciel ? Indication

 v_0 nous donne une estimation du nombre de défauts dans le logiciel. On en a déjà trouvé 50

Il reste v_0 - 50 = 33 défauts

Q1.4) Si le logiciel est de 25000 LOC quelles sont les pourcentages de défauts initial et final ? Indication

Initialement, on estime à v_0 le nombre de défauts dans le logiciel. On en a déjà trouvé 50. Il en reste un certain nombre au final. Donner les ratios initiaux et finaux de défauts par KLOC (1 KLOC = 1000LOC).

Initialement 83 défauts pour 25 KLOC \rightarrow ratio initial = 83/25 = 3.3

Après la découverte (et correction) des 50 défauts, il reste 33 défauts pour 25 KLOC \rightarrow ratio final 33/25 = 1.3

Q1.5) Si la valeur de λ n'est pas acceptable et qu'il n'est pas permis plus d'une défaillance par demijournée, déterminez les défaillances à corriger et le temps CPU des activités du test requis. Si pour une heure de temps CPU, 20 heures de travail sont requises du personnel, combien d'heures sont requises pour obtenir la valeur désirée?

Indication (slide 92)

LOG2430 Devoir 3 Page 2 de 3

L'intensité de défaillance courante λ_p est observée à la dernière ligne du tableau des couples (m_i, r_i)

L'intensité de défaillance recherchée est $\lambda_f = 1/12h = 1/12*60*60$

Les défaillances à corriger sont à calculer comme suit:

$$\Delta\mu = \frac{V_0}{\lambda_0}(\lambda_p - \lambda_f)$$

Le temps requis est

$$\Delta t = \frac{v_0}{\lambda_0} \lg(\lambda_p / \lambda_f)$$
s. Convertir en heures et trouver le nombre d'heures de travail requises.

On a $\lambda_0 = 0.0055$, $v_0 \approx 83$ et une intensité de défaillance courante de 0.00173 CPU/sec.

En considérant 1 demi-journée = 12 heure, on veut une intensité de défaillance de 1/12*3600=1/43200=0.000231 défaillances pour sec. Les défaillances à corriger pour atteindre cette valeur sont :

$$\Delta \mu = \frac{v_0}{\lambda_0} (\lambda_p - \lambda_f) = 15143(0.00173 - 0.000231) = 25.8 \cong 26$$

le temps requis est

$$\Delta t = \frac{v_0}{\lambda_0} \lg(\lambda_p / \lambda_f) = 15143 \log(0.00173 / 0.000231) = 28370 \text{sec}$$

28370 sec temps CPU.

1 heure temps $CPU \rightarrow 20$ heures de travail $28370/3600 \rightarrow ?$

157.61 heures de travail

LOG2430 Devoir 3 Page 3 de 3