Fields and Waves Spring 2022

Exam 1 Crib Sheet

Lossless Transmission Line Properties

Telegrapher's Equations	Voltage Wave Phasor
$rac{\partial}{\partial x} \ V(x,t) = - L \ rac{\partial}{\partial t} \ I(x,t)$	$v(z) = V^{+}e^{-j\beta z} + V^{-}e^{+j\beta z}$
$rac{\partial}{\partial x} \ I(x,t) = - C \ rac{\partial}{\partial t} V(x,t)$	$v(z) = V^{+}e^{-j\beta z} + \Gamma_{L}V^{+}e^{+j\beta z}$
Characteristic Impedance	Reflection Coefficient
$Z_0 = \frac{V_0^+}{I_0^+} = -\frac{V_0^-}{I_0^-} = \sqrt{\frac{l}{c}}$	$\Gamma_L = \frac{V_0^-}{V_0^+} = -\frac{I_0^-}{I_0^+} = \frac{Z_L - Z_0}{Z_L + Z_0}$
Standing Wave Ratio	Wave Velocity
$SWR = \frac{ V_{max} }{ V_{min} } = \frac{ I_{max} }{ I_{min} } = \frac{1 + \Gamma }{1 - \Gamma }$	$u = \frac{1}{\sqrt{lc}}$
Input Impedance	Average Power
$Z_{in} = Z_0 \frac{Z_L + jZ_0 tan(\beta L)}{Z_0 + jZ_L tan(\beta L)}$	$P_{av} = P_{av}^{i} + P_{av}^{r} = \frac{ V_{0}^{+} ^{2}}{2Z_{0}} [1 - \Gamma ^{2}]$

Basic Wave Properties

$\beta = \frac{\omega}{\omega}$	$\lambda = \frac{2\pi}{Q} = \frac{u}{f}$
и	$oldsymbol{ ho}$

Fields and Waves Spring 2022

Lossy Transmission Line Properties

Voltage Wave Phasor	Gamma
$v(z) = V^{+}e^{-\gamma z} + V^{-}e^{+\gamma z}$	$\gamma = \alpha + j\beta$
$v(z) = V^{+} \left(e^{-\gamma z} + \Gamma_{L} e^{+\gamma z} \right)$	$e^{-\gamma z} = e^{-\alpha z} \cdot e^{-j\beta z}$
Characteristic Impedance	Heaviside Condition
$Z_0 = \sqrt{\frac{r + j\omega l}{g + j\omega c}}$	$\frac{r}{l} = \frac{g}{c}$
Low-Loss Condition	Low-Loss Attenuation
$r << j\omega l, g << j\omega c$	$\alpha = \frac{r}{2Z_0}$

Bounce Diagram

