

"Ventus Solaris"

INTEGRANTES:

- Florian Párraga, losué Abel
- Iara Bocanegra, Edwin Iunior
- Pérez Amado, Romina Alisson
- · Pérez Damián, Cindy Mayomi
- · Vásquez Nuñez America Mailyn

GRUPO N°6

Luaar de estudio:

Problematica:

I.E. San Jose Obrero - Morropón

Folta de acceso a la electricidad en el colegio San José Obrera 15357 especificamente en el km

Usuarios (stakeholders):

Autoridades locales interesadas en meiorar el acceso a la energia en la zona rural, con el obietivo de garantizar que las actividades educativas del colegio San José Obrero no se vean interrumpidas por cortes prolongados de alactricidad

Solución:

velocidad del viento, con el obietivo de transmitir datos desde los sensores y dispositivos loT a una plataforma en la nube de gestión centralizada"

REQUERIMIENTOS PARA EL USUARIO:

Educativa

Desens:

Necesidades:

- Acceso Continuo a la Electricidad
- Costo Accesible
- Fiabilidad para la Educación Facilidad de Mantenimiento.

Capacitación del personal.

- Meiora de la Infraestructura
- Impacto en la Comunidad Durabilidad a Largo Plazo

Requerimientos del Sistema:

Necesidades:

- Fácil Configuración y Operación Medición Precisa de Variables
- Climáticas Autonomia Energética
- Portabilidad
- Resiliencia Climática Baio Costo de Producción Conectividad para Transmisión de

· Optimización del Consumo de

Canacidad de Almacenamiento

Cista de Características Principales							
	Medidas de erro són y salida	© aneminatro y preminatro enviar datos de entrada que son procesado y turgo tenen salidas específicas para visualización y alinacementento					
	SIGN OF HILLSCHOOL	Participa (E)					
seld.	Spripe de monitores	Manuface en hange-real a través de la interfac sets del protema y con la hace de delse para seguintente y antificia					
	Sefer (Amerigan, Digital)	Tanto amerigacio de amornes como digitario de modulos de procesamiento y comunicación)					
	interfaces de software	un apricación velto la base de detos esperidiseñadas para reclor y procesar información de los sensores, facilitando el monitores y anális de debiso					
accion de treatment	Antionte	Apto para para funcionar correctamente en diferentes condiciones ambientarios (no activimos), insegurando la francisción de dellos efectivos y la aperación correcta del dispositivo en campo					

		Diseño / Estructura
Conscionistica	Caracteristica	

Hardware

Medidas del maletin: 28 cm x 25 cm x 6 cm, el cual dentro Dimensiones

Dentro del maletin Belevente: Al menos 5 afros de disposibilidad

> garantizando un rendimiento eficiente y flexible para diversas. aplicaciones del medidor

irregulares para observar el comportamiento del sistema continua en la nube y el modo manual, obteniendo la

Diseño ergonómico en forma de maletin que se adapta al uso manual, proporcionando comodidad y facilidad de manejo y Claridad e

Resilización y Producción					
cteristics Principal	Característica subordinada	Extudio del caso industrial			
Falericación	Dispositivo de sordryl, monitoreo	El material seleccionado proporcionario el soporte adecuado para elejar los mobulos de comunicación y sitivo componentas esenciales para el funcionamiento del necidor			
Control	Capacidad de medición y pruebe	Pruebas rigurosas de medición realizadas en diferentes elapas para verticar al rendimiento y la precisión del medidor.			

	Caracteristica Principal	Caracteristica subordinada	Estudio del caso industrial
	Planticación	Norman, directrices	Engin to Opprisestive Mesonstigue Mindal (CMM) establica que las amministras disclara debre relas indicidara de un una tranda o midió a 19 metro de charles como proprios del minor por condo 2 / Arkicolada relama de unesta según el CPG ¹ entidas para la desenhación y aluma de según el CPG ¹ entidas para la desenhación y aluma de según el CPG ¹ entidas para la desenhación y aluma de según el CPG ¹ entidas para el TIGO (TIGO) 2 facilitar la sustabación minima en 1900 (TIGO) 4 facilitar las substablicas de según 20 TIGO (TIGO) 4 facilitar las substabl
		Conscimientos tácnicos del proyecto (En pericular, ideas no patentadas)	Ajuste preciso para mejorar la lectura de semones. Emamblaje en midulos intercambiativo para facilidad de reparación.
	Somethilded	Equitora eculógica	Way bueno, diseño del medidor con materiales y procesos que minimizar el impacto ambiental y promueren la conservación de recursos
		Eliciencia energitica	Le major posible, implementación de tecnologias de bajo consumo emegático para reducir el uso de emegás

TITLE: PCB V	REV: 1.0	
⇔ EosyEDA	Company: VENTUS SOLARIS Date: 2024-10-09 Drawn By: losueflo	Sheet: 1/1
	Oate: 2024-10-09 Drawn By: Josueffo	rian12317
		_

PCB DEL CIRCUITO ELECTRÓNICO

PCB DEL CIRCUITO ELECTRÓNICO.

Objetivo del Proyecto:

- Desarrollar un sistema portátil de baja potencia que monitoriza:
- Radiación solar (Sensor SUF268JOOI).
- Velocidad del viento (Anemómetro casero con motor RE-500TB-14415)

Arduino Nano

(Microcontrolador)

Controla los sensores y la pantalla IZC.

Alimenta los componentes a través de sus pines de 5V.

Muestra datos en tiempo real (radiación solar y velocidad del viento). Comunicación vía pines A4 (SDA) y A5 (SCL).

Sensor de Radiación Solar (SUF268JOO1)

Mide la intensidad de la radiación solar. Envia datos al pin ADC (AO) del Arduino Nano.

- Modularidad: Uso de conectores Molex para rápida desconexión y ajuste de componentes.
- Eficiencia Energética: Optimizado para bajo consumo con alimentación de batería portátil.
- Portabilidad: Diseño compacto para fácil instalación en campo.

Conectores Molex

Facilitan conexiones modulares de sensores y pantalla, asegurando fácil mantenimiento

Anemómetro Casero Calcula la velocidad del viento

en función de las revoluciones del motor. Envía la setal al pin ADC (Al) del Ardulno.

Conclusión:

El sistema portátil para medir la velocidad del viento y la radiación solar está diseñado para proporcionar datos precisas y en tiempo real, facilitando la evaluación de proyectos de energia renorabia. El uso de conscieras Moles y un diseño optimizado garantiza la modularidad, eficiencia y facilidad de uso del sistema en campo.

PRUEBAS REALIZADAS CON LOS COMPONENTES

REFERENCIAS BIBLIOGRAFICAS:

- Ålvarez, C. (2006, September). Energia eólica (IDAE, Ed.) [Review of Energia eólica]. Instituto Para La Diversificación Y Ahorro de La Energia: Instituto para la Diversificación y Ahorro de la Energia. Instituto para la Diversificación y Ahorro de la Energia. Instituto //www.esenrauco.com/uolodos/descoraso/archivo/Monus/Ry20de%20Energ%C3%AD0%20E%20%E8.03% DE. add
- Fap Wiler, M., Molina, C., Fap, C., Cruzado, R., Senamhi, D., & Quijandio Salmón, J. (nd.). SERVICIO NACIONAL DE METEOROLOGIA E HIDROLOGIA DIRECCIÓN CENERAL DE INVESTRACIÓN Y ASUNTOS AMBENTALES MINISTRALES DE ENERGÍA Y MINAS DIRECCIÓN EJECUTIVA DE PROVECTOS REPÚBLICA DEL PERÚ ATLAS DE ENERGÍA SOLAR DEL PERÚ. https://www.senamia.aps/epid/lidins/s2/o.de. Redicióno. Solor jat.
- Ruiz de Alegria, A. (2020). Estudio complementario de Impacto de la rodiación UV en paneles solares (datos UV de un año) y otros
 componentes expuestos en condiciones del diriginan boliviano (Dirección Ceneral de Energias Alternativas). Ed.) (Preview of Estudio
 complementario de Impacto de la rodiación UV en paneles solares (datos UV de un año) y otros componentes expuestos en
 condiciones del altiplano boliviano). Electricidad Y Energias Alternativas; Programa de Energias Renovables (PEERR).
 https://energypedia.indi/miogea/3/JAI/RPRADO_JNFORME_estudo_UV.pdf
- Uribe, I. M. (2018). Valoración del viento como fuente de energía eólica en el estado de Guerrero. Ingenieria, 22(3), 3O-46. https://www.redalyc.org/journal/467/467594910O3/46759491OO3.pdf

