

奉加脱机烧录 使用说明

Version 3.2

Phyplus Microelectronics Limited 2021/07/23

版本控制信息

版本/状态	作者	参与者	起止日期	备注
V1.0	HQ		06/13/2018	文档初稿
V2.0	HQ		06/24/2018	1. 配置信息更新
				2. 烧录失败原因更新
V2.1	HQ		07/01/2019	添加 FCT 相关内容
V3.0	HQ		11/09/2020	烧录器 V1.3 相关内容更新
V3.1	HQ		15/04/2021	增加单双线烧录介绍
V3.2	HQ		23/07/2021	调整 busy 状态脚 IO 配置

目录

1.	硬件概述	1
2.	面板显示(可自行配置)	3
	2.1 配置信息	4
	2.2 烧录信息	5
	2.3 统计结果	8
	2.4 时间和进度条	8
3.	拨码开关配置	9
	3.1 波特率配置	9
	3.2 时钟配置	9
	3.3 RF Channel 配置	10
4.	按键	11
	4.1 烧录按键	11
	4.2 拨码配置确认	11
5.	烧录状态信号介绍	11
5.	烧录状态信号引脚分布	11
6.	脱机烧录器更新固件	14
7	脱机烧录器+交流自动烧录机台烧录 PHY6252 芯片注意事项	23

1. 硬件概述

本硬件由五部分组成,外接 DUT,测试天线,烧录状态灯阵,拨码和按键,如图 1 所示:

图示 1: 硬件概述

- 外接 DUT 用于连接需要待测的设备
- 外接天线用于测试 RF, 需要配合 RF 拨码使用
- LED 烧录状态灯显示通道 1~4 烧录 OK,NG,红灯代表 NG,绿灯代表 OK
- 拨码包括:波特率拨码,时钟 (DUT clock) 拨码, RF channel 拨码 (详见第三章节)
- 按键包括: 烧录确认按键和拨码配置确认键(详见第四章节)

(1) 烧录器正面图

(2) 烧录器背面图

2. 面板显示 (可自行配置)

购买渠道:

https://item.taobao.com/item.htm?spm=a1z10.5-c-s.w4002-16248799892.21.3e037d05kN8sAb&id=525262345777

面板信息包括:配置信息、烧录信息、结果信息、进度条和时间,如图 2 所示:

图示 2: 面板信息

2.1 配置信息

- 芯片名称: 烧录 DUT 的名称, 由奉加 PhyWriter 软件配置
- HEXF 文件校验码:应用程序文件校验码,由奉加 PhyWriter 软件配置
- CSV 文件校验码:配置文件校验码,由奉加 PhyWriter 软件配置
- Mac: mac 地址范围,由奉加 PhyWriter 软件配置
- Step:mac 地址步进值,由奉加 PhyWriter 软件配置
- IncSeg: mac 地址增加的最低 byte, 由奉加 PhyWriter 软件配置
- Action: 烧录项目, 由奉加 PhyWriter 软件配置
- 时钟: DUT 的系统时钟, 由拨码开关配置

● 波特率: 烧录速度, uart 的波特率, 由拨码开关配置

● 频段 1: 测试的 RF 频段 1, 由拨码开关配置

● 频段 2:测试的 RF 频段 2,由拨码开关配置

● 校准: 烧录器是否进行过校准, 出厂设置

● 蜂鸣器:蜂鸣器开关,由奉加 PhyWriter 软件配置

● FCT: FCT mode 开关,由奉加 PhyWriter 软件配置

● 版本号:目前固件版本号,出厂设置

2.2 烧录信息

分为四个 channel,包括编号,烧录信息和烧录结果 正在烧录时,会有相应项目的信息打印出来,如**图 3**,

图示 3: 烧录信息

烧录成功,结果栏为绿色,如图4所示,如果蜂鸣器打开,烧录结束会发出一声哗

图示 4: 烧录成功

烧录失败,结果栏为红色,如图 5 所示,如果蜂鸣器打开,烧录结束后会发出三声急促的哔哔哔

图示 5: 烧录失败

烧录失败原因如表 1:

错误代码	错误原因
0x01	EEPROM 硬件错误
0x02	SPIFLASH 硬件错误
0x03	烧录次数超出限制
0x04	设备未校准
0x05	设置信息错误
0x06	HEX 文件无效
0x07	HEX 文件 CRC32 错误
0x08	CSV 文件 CRC32 错误
0x09	IC 型号错误
0x0A	MAC 地址限制
0x0B	CSV 配置文件限制
0x0C	未检测到设备
0x0D	擦除失败
0x0E	4K 擦除失败
0x0F	cpnum 命令失败
0x10	cpbin 命令失败
0x11	HEX 文件下载失败
0x12	HEX 文件校验失败
0x13	写 FLASH 失败
0x14	读操作失败
0x15	串口波特率更改失败
0x16	DUT 主频更改失败
0x17	DUT FIFO 更改失败
0x18	写寄存器失败
0x19	读寄存器失败
0x1A	PWM 输出失败
0x1B	频偏错误
0x1C	晶振校准失败
0x1D	golden 未检测到设备
0x1E	RF 测试未收到数据
0x1F	RF 测试未通过
0x20	FCT 配置写错误
0x21	FCT 配置读错误

表格 1: 失败代码

2.3 统计结果

总成功次数:下载配置后总烧录成功次数(包括断电)

当前成功次数: 此次上电烧录成功次数

总剩余次数: 剩余次数

当前失败次数: 此次上电烧录失败次数

2.4 时间和进度条

如图 6 所示

图示 6: 时间和进度条

- (1) ——烧录的时间
- (2) ——上电运行的时间
- (3) ——烧录进度

3. 拨码开关配置

拨码开关包括三部分:波特率,时钟和 RF channel,分布如图 7 所示,ON 代表 1,否则代表 0

波特率 时钟

RF Channel

图示 7: 拨码开关

3.1 波特率配置

拨码值(从右往左,ON 代表 1)	波特率 (bit/s)
00	115200
10	500000
01	1000000
11	1500000

表格 2: 波特率配置

3.2 时钟配置

拨码值	时钟 (MHz)
0	16
1	48

表格 3: 时钟配置

3.3 RF Channel 配置

拨码值 (从右往左)	频段 1 (MHz)	频段 2 (频段 2)
0000	2403	2406
0001	2409	2412
0010	2419	2422
0011	2425	2428
0100	2435	2438
0101	2441	2444
0110	2451	2454
0111	2457	2460
1000	2467	2470
1001	2473	2476
1010	2483	2486
1011	2489	2492
1100	2499	2502
1101	2505	2508
1110	2515	2518
1111	2521	2524

表格 4: RF channel 配置

4. 按键

按键包括烧录按键和拨码配置确认按键,如图8所示

图示 8: 按键

4.1 烧录按键

烧录器准备就绪,按下此键即可进行烧录

4.2 拨码配置确认

拨码开关配置完成后,按下此键配置即可生效,在面板会显示刚刚刷新的配置信息

5. 烧录状态信号介绍

5.1 烧录状态信号引脚分布

(1) 1.3 版烧录器原理图

11 / 23

(2) 实物图和状态指示灯介绍

- 1) 引脚 12(float1)输出高,表示通道 1(P1)烧录 OK,对应的 led3 绿灯亮;引脚 13(float2)输出高,表示通道 1(P1)烧录 FAIL,对应的 led1 红灯亮;引脚 20(float9)输出高,表示通道 1 正在烧录;
- 2) 引脚 14 (float3) 输出高,表示通道 2 (P2) 烧录 OK,对应的 led4 绿灯亮;引脚 15 (float4) 输出高,表示通道 2 (P2) 烧录 FAIL,对应的 led2 红灯亮;引脚 21 (float10) 输出高,表示通道 2 正在烧录;
- 3) 引脚 16 (float5) 输出高,表示通道 3 (P3) 烧录 OK,对应的 led5 绿灯亮;引脚 17 (float6) 输出高,表示通道 3 (P3) 烧录 FAIL,对应的 led7 红灯亮;引脚 22 (float11) 输出高,表示通道 3 正在烧录;
- 4) 引脚 18 (float7) 输出高,表示通道 4 (P4) 烧录 OK,对应的 led6 绿灯亮;引脚 19 (float8) 输出高,表示通道 4 (P4) 烧录 FAIL,对应的 led8 红灯亮。引脚 23 (float12) 输出高,表示通道 4 正在烧录;

- 5) 11 脚 main key pro 拉高,进行烧录,类似烧录确认按键按下
- (3) 脱机烧录器和自动烧录机台连接, 2.6.6 之前的烧录器固件版本烧录信号介绍

dut1 manu ok pin: Float1,对应 pin12

dut1 manu fail pin: Float2,对应 pin13

dut1 manu busy pin: Float9,对应 pin20

dut2 manu ok pin: Float3,对应 pin14

dut2 manu fail pin: Float4,对应 pin15

dut2 manu busy pin: Float10,对应 pin21

dut3 manu ok pin: Float5,对应 pin16

dut3 manu fail pin: Float6,对应 pin17

dut3 manu busy pin: Float11, 对应 pin22

dut4 manu ok pin: Float7,对应 pin18

dut4 manu fail pin: Float8,对应 pin19

dut4 manu busy pin: Float12,对应 pin23

注意: 从 2.6.6 版本起的烧录器固件中 dut4 busy pin 从 float12 调整到 float24 (pc6)。

注释:

烧录成功: OK pin 输出高

烧录失败: fail pin 输出高

正在烧录: busy 信号输出高

备注: PIN11 (main key PRO 也是烧录控制键,默认拉低,拉高一下表示烧录确认,类似于烧录确认按键的操作)

6. 脱机烧录器更新固件

1、使用 JLINK 将 BootLoaderApplication.hex 与 MainApplication.hex 文件烧录至烧

录器,烧录工具: JLink_Windows_V632g。具体步骤如下:

a> 打开 J-Flash V6.32g,新建工程

b> 设置好 JLINK

c> JLINK 和烧录板的连接如下图所示:

d> Target Connect,依次烧录 BootLoaderApplication.hex 与 MainApplication.hex。每次烧录完成后都断开 Mini usb 一次。

M I C R O E L E C T R O N I C S

2、 使用 PhyFactoryTool 将字库文件 ZiKu.bin 下载至烧录器中。

- 3、 打开 PhyWriter.exe 软件(注意: phywriter 版本要和烧录器固件对应),下载烧录配置文件
- 1)、点击"open file",选择烧录 hexf 文件
- 2)、WAddr 和 ShaAddr 分别是 checksum 和 SHA256 校验码写入地址,可填写可不填写,默认是 4050,可填范围 4050~5000(包含 4050,不包括 5000),特别注意的是 WAddr 不能在 ShaAddr+0x20 范围内,以免引起冲突。

- 2)、配置 MAC 地址烧录
- 3)、phywriter 配置单双线烧录模式切换
- (1) Dwc Loop Set 设置成"NO dwc",为 PHY6202/PHY6212/PHY6222 双线烧录模式(备注: 烧录 PHY6222 也需要勾选 bin Split)

(2)Dwc Loop Set 设置成"UXTDWU",并勾选 bin Split,为 PHY6252 双线烧录模式

20 / 23

(3)Dwc Loop Set 设置成"UXTL16",并勾选 bin Split,为 PHY6252 单线烧录模式

- 4) 勾选 Erase and program
- 5)、点击"Download setting",下载配置文件

4、接线方式

1)带 TM 脚和 RESET 脚的型号,如 PHY6201/PHY6212/PHY6222 **双线烧录(NO dwc 模式)**:将测试板的 VDD、GND、P9、P10、TM 分别接至烧录器中烧录接口的 VDD、GND、P9、P10 、TM 引脚上。

2) 不带 TM 脚和 RESET 脚的型号,如 PHY6252

双线烧录(UXTDWU模式): 将测试板的 VDD、GND、P9、P10 分别接至烧录器中烧录接口的 VDD、GND、P9、P10 引脚上

单线烧录(UXTL16): 烧录器接口上 P9 和 P10 需要短接一个 $4.7K\Omega$ 电阻,然后将测试板的 VDD、GND、P10 分别接至烧录器中烧录接口的 VDD、GND、P9(白线)引脚上

- 5、 点击烧录器板子上的大圆轻触按键,即可烧录
- 6、脱机烧录接线图定义图

7. 脱机烧录器+交流自动烧录机台烧录 PHY6252 芯片注意事项

- 1) 电源线尽可能短, 因此建议把烧录器出来的 VCC/GND 直接接到芯片电源脚对应的那一侧的转接板。
- 2) 转接板上靠近芯片电源脚处加一些大小电容进行滤波,降低电源 纹波,保持电源稳定,比如 0.1uf+10uf 的组合搭配
- 3) 注意共地, 把转接板和烧录器的地通过导线直接和烧录机台的外壳连接起来, 导线尽可能粗和短。