Tabla 3.18 Generadores de variables aleatorias.

Distribución	Generador	Parámetros
Uniforme <i>U_i</i>	$U_i = a + (b - a)r_i$	 a = Límite inferior de la distribución uniforme. b = Límite superior de la distribución uniforme. r_i = Número aleatorio con distribución uniforme entre 0 y 1.
Triangular T _i	$T_{i} = \begin{cases} a + \sqrt{(b-a)(c-a)r_{i}} \\ si r_{i} \leq \frac{(c-a)}{(b-a)} \\ b - \sqrt{(b-a)(b-c)(1-r_{i})} \\ si r_{i} > \frac{(c-a)}{(b-a)} \end{cases}$	 a = Límite inferior de la distribución triangular. c = Moda de la distribución triangular. b = Límite superior de la distribución triangular.
Triangular T _i	$T_{i} = \begin{cases} a + (c - a)\sqrt{r_{i}} \\ si r_{j} \leq \frac{(c - a)}{(b - a)} \\ b - \left[(b - c)\sqrt{1 - r_{i}} \right] \\ si r_{j} > \frac{(c - a)}{(b - a)} \end{cases}$	 a = Límite inferior de la distribución triangular. c = Moda de la distribución triangular. b = Límite superior de la distribución triangular.
χ2	$\chi_i^2 = \sum_{j=1}^n Z_j^2$	 Z_j = Números aleatorios con distribución normal estándar. n = Grados de libertad.
Erlang ER _i	$ER_i = -\frac{1}{k\lambda} \ln \prod_{i=1}^k (1-r_i)$	1/λ = Valor esperado. k = Parámetro de forma.
Normal N _i	$N_i = \left[\left(\sqrt{-2\ln(1-r_i)} \right) \cos(2\pi r_j) \right] \sigma + \mu$ $N_i = \left[\left(\sqrt{-2\ln(1-r_i)} \right) \operatorname{sen}(2\pi r_j) \right] \sigma + \mu$	μ = Media de la distribución normal σ = Desviación estándar de la distribución normal.
Normal N _i	$N_i = \left(\sum_{i=1}^{12} r_i - 6\right) \sigma + \mu$	μ = Media de la distribución normal. σ = Desviación estándar de la distribución normal.

Exponencial E _i	$E_i = -\frac{1}{\lambda} \ln(1 - r_i)$	1/λ = Media de la distribución exponencial.
Weibull W _i	$W_i = \gamma + \beta \sqrt[\alpha]{-\ln(1-r_i)}$	β = Parámetro de escala. α = Parámetro de forma. γ = Parámetro de localización.
Gamma G _i	$G_i = -\frac{1}{k\lambda} \ln \prod_{i=1}^k (1 - r_i)$	$1/\lambda$ = Valor esperado. k = Parámetro de forma.
Lognormal LN _i	$LN_i = e^{N_i}$ donde: $N_i = \left(\sum_{i=1}^{12} r_i - 6\right) * \left(\ln\left(1 + \frac{\sigma^2}{\mu^2}\right)\right)^{1/2} + \left(\ln\frac{\mu^2}{\sqrt{\mu^2 + \sigma^2}}\right)$	μ = Valor esperado. σ^2 = Varianza.
Bernoulli BE _i	$BE_i = \begin{cases} 0 & si & r_i \in (0, 1-p) \\ 1 & si & r_i \in (1-p, 1) \end{cases}$	 p = Probabilidad de ocurrencia del evento x = 1. 1 - p = Probabilidad de ocurrencia del evento x - 0.
Binomial B _i	$B_i = \sum_{j=1}^{N} BE_j$	BE _j = Números aleatorios con distribución de Bernoulli. N = Número del evento máximo de la distribución binomial. p = Probabilidad de éxito de la distribución binomial que se involucra al generar los Bernoulli.
Poisson P _i	Inicialización. Hacer $N = 0$, $T = 1$ y generar un aleatorio r_i Paso 1. Calcular $T' = (T)(r_i)$ Paso 2. Si la $T' \ge e^{-\lambda}$, entonces hacer $N = N + 1$, $T = T'$, calcular otro r_i y regresar al paso 1. Si $T' < e^{-\lambda}$, entonces la variable generada esta dada por: $P_i = N$. Para generar la siguiente variable de Poisson, regresar a la fase de	λ = Media de la distribución de Poisson. N = Contador. T = Contador.