

Biogeography of ecological interactionsChallenge of getting network data at large spatial scales

- Hard to document;
- Usually not replicated;
- Applies only to co-occurring species;
- Network structure is deterministic and stationary.

Gravel et al. (2011). Ecol. Lett.

Biogeography of ecological interactionsNetworks over environmental gradients

Gravel et al. (2011). Ecol. Lett.

Spatial variation of interaction networks Drivers of network variation

Poisot et al. (2012). Ecol. Lett.

Networks do vary in space because of:

- Species turnover;
- Link turnover;

Objective

Propose a quantitative framework to understand and predict the spatial variation in network structure at the biogeographical scale

Formulating network sampling as a stochastic process

Define the stochastic variable X_{iz} representing the occurrence of species i at location z.

And the variable L_{ijz} representing the occurrence of an interaction between species i and j at location z.

We are looking for the probability that an interaction occurs given the environment E_z :

$$P(L_{ijZ} = 1, X_{iZ} = 1, X_{jZ} = 1 | E_Z)$$

Conditional probabilities

Obtained from the product rule we get:

$$P(L_{ijz},X_{iz},X_{jz}\big|E_Z) = P(L_{ijx}\big|X_{ix},X_{jx},E_Z)P(X_{ix},X_{jx}\big|E_Z)$$

Where:

 $P(L_{ijz}|X_{iz},X_{jz}|E_z)$ is the metaweb $P(X_{iz},X_{jz}|E_z)$ is the co-occurrence matrix

Interpretation

 $P(L_{ijx}|X_{iz},X_{jz},E_z)$ is the Eltonian niche $P(X_{ix},X_{jz}|E_z)$ is the Grinnellian niche

Building	the	metav	vek
----------	-----	-------	-----

The problem: inferring interactions for species that never co-occurred and with incomplete data

Inferring the metaweb from traits

Gravel et al. (2013). Meth. Ecol. Evol.

Bayesian formulation of the interaction probability

The likelihood function: $P(M_{prey}|L, E_Z) = \frac{P(L_{ijz}|M_{prey}, M_{pred}, E_Z)P(M_{prey})}{P(L|M_{pred})}$

Probalistic model

- Data from Barnes et al. (2008), Predator and prey body sizes in marine food webs, Ecology 86: 881;
- 34 931 recorded interactions;
- 25 sites.

Gibert and Delong (in press) Bio. Lett.

Effect of temperature on the metaweb

Distribution

How to add the effect of species distribution on the network properties?

Distribution of Mediterranean fish networks

Neutral species distribution: $P(X_{iz}, X_{jz} | E_z) =$ $P(X_{iz} | E_z) P(X_{jz} | E_z)$

Albouy et al. (2014). Glob. Change Biol.

DistributionMetaweb accounting for distribution

Mapping connectance

Summary

Theory for network variation in space

The multiple roles of the environment on network structure:

- Predator-prey body size relationship
- Regional species pool
- Species distribution

OutlookDynamic modeling

Additional sources of information:

- Phylogeny
- Feedback between interactions and co-occurrence
- · Habitat area and isolation

Acknowledgements

Co-authors: SFI Working group on gradient-based network research; CIEE Working group on spatial variation in network structure

Funding: NSERC, FRQNT, Canada Research Chair program, Quebec Center for Biodiversity Sciences, Santa Fe Institute, UQAR, CIEE.