# Detection Framework for Financial Risk with R-VAE

Ricatti Luca SM3800083 Tavano Matteo SM3800057

# The Tulip Mania: The First Recorded Financial Bubble



- Tulip bulbs in the Netherlands reached exorbitant prices in the 1630s: One bulb of the Semper Augustus variety could cost as much as a luxury house in Amsterdam.
- Prices soared based on speculative futures contracts, unregulated promises to buy bulbs at a later date.
- The bubble burst in 1637, causing prices to collapse by over 90%, leaving many investors bankrupt and triggering a financial panic across the Dutch economy.
- Early example of a speculative bubble driven by irrational exuberance and new and unregulated financial instruments.

#### No More Crises Thanks to Our Models

"I would like to say to Milton [Friedman] and Anna [Schwartz]: Regarding the Great Depression [1929]. You're right, we did it. We're very sorry. But thanks to you, **we won't do it again**." (Ben Bernanke, 2002)

- Friedman explained the causes of 1929 Great Depression, influencing economic thought for decades.
- By the 2000s, central banks relied on advanced mathematical models (like DSGE) that seemed powerful enough to predict and prevent financial crises by adjusting interest rates and using monetary policy tools.



#### What DSGE Models Missed

#### **Dynamic Stochastic General Equilibrium Models:**

- **Strong priors and simplified structure**: Assumed rational expectations and representative agents → limited model capacity and poor generalization.
- Linearization: Approximated dynamics near equilibrium → unable to model nonlinear transitions like crashes or regime shifts.
- Low-dimensional latent space: Ignored complex interactions in the financial sector (e.g. leverage, credit contagion).
- Bayesian estimation with restrictive priors limits posterior flexibility → underfit real-world uncertainty and rare events.
- **No learning from** <u>high-frequency data</u>: Operated on aggregated, low-frequency macro data: <u>financial market data (e.g. stock prices, credit spreads) were largely ignored</u>, making it impossible to capture early warning signals of systemic risk.

#### **Data: Yahoo Finance**

- Comprehensive set of financial time-series data, sourced from Yahoo Finance via yfinance Python library.
- The Dataset consists of <u>daily closing</u> prices for wide array of financial instruments, spanning a long historical period (from **1990-01-01**), to cover multiple economic cycles.
- Selection is designed to provide a **holistic view** of global markets dynamics and includes:
- Major Market Indices: S&P 500, NASDAQ, Dow Jones.
- Volatility Measures: VIX.
- **Sector specific ETFs**: covers all major sectors such as *Technology*, *Financials* and *Energy*.
- **Fixed Income**: *US Treasury bond ETFs*.
- **Commodities and Currencies**: Key assets as Gold, Oil and US Dollar.

#### Data Processing and Feature Engineering

- Crisis Labelling: Major crisis has been labeled. In particular, we covered 6 periods of global crisis:
   Gulf War Recession, Asian Financial Crisis, Dot-Com Crash, Global Financial Crisis, COVID-19
   Crisis and Inflation Bear Market.
- Preprocessing of the sequences to train and evaluate or **R-VAE model**.
- Calculating the daily return and engineering additional features such as rolling volatility, sector divergence, and yield curve differentials.
- **Data Cleaning**: clapping extreme values and keeping the **20 most informative features**, selected based on **historical volatility**.
- Feature scaling using Robust Scaler normalization (reduce sensitivity to outliers).
- Building a fixed-length sliding windows and aligns each sequence with a binary crisis label by checking temporal overlap.

#### **Sequences and Crisis Distributions**

- Sequences labeled as "Crisis" vs "Normal" sequences distribution.
- This indicates that longer temporal windows tend to capture slightly more crisis periods, with crisis events that represents less than 25% of total sequences.
- Crucial consideration when designing and training predictive models.



#### **R-VAE Architecture**



- Recurrent Variational Autoencoder for financial time series.
- Encoder: bi-directional LSTM with an additional self-attention layer to capture both temporal and contextual dependencies.
- Mean-pooling operation and mapping to the latent space via  $\mu$  and  $\log \sigma^2$ .
- Reparameterization trick: latent vector z is sampled using this trick. A
  parallel MLP head takes this latent vector and predicts probability of a
  crisis.
- Decoder: Latent vector is projected to a hidden representation and expanded, then passed through a unidirectional LSTM to reconstruct the input sequence.
- Multi-objective Loss function:

$$\mathcal{L}_{total} = MSE + \beta * KL + \alpha * BCE$$

 Architecture suited for crisis prediction, financial anomaly detection and sequence reconstruction.

#### **Training & Evaluation**

- **Data Processing**: 80% training and 20% validation.
- Training Loop with batch processing, forward and backward passes with gradient clipping and multi-component loss calculation.
- Hyper-parameters: 100 epochs, 15 and 22 window sizes,  $\alpha$  and  $\beta$ .
- Validation: model performance without gradient updates.
- Optimizations: AdamW, LR scheduling based on validation loss plateau detection and early stopping.
- Evaluation metrics: ROC AUC (discrimination ability), Average Precision (AP), classification report (precision, recall, f1-score) for classification task.
- **Results** stored in python dictionaries (anomaly scores, crisis probabilities, detection threshold, performance metrics).



#### Results

Final **result summary** for the classification task of our models. Both models achieved high discriminative power, with the best performing **22-days model**.

|               | ROC AUC | Average Precision |
|---------------|---------|-------------------|
| 15-days model | 0.804   | 0.600             |
| 22-days model | 0.821   | 0.634             |

## **Anomaly Scores (Unsupervised Detection)**

- Raw reconstruction error from the autoencoder.
- How much a given market sequence deviates from the "normal" patterns the model has learned.
- Significative spikes during major crises, red dots indicates where anomaly score exceeded the **95th percentile threshold**.



# Crisis Classification Probabilities (Supervised Detection)

- Output from the model's **supervised classification head**.
- Direct prediction of probability that a given period is part of historical crisis.
- Much cleaner than anomaly score. Crisis probability are close to 1.0 during major crisis and remain low during calm periods.



#### **Combined Risk Score (Hybrid View)**

- **Weighted average** of both worlds: less noisy than anomaly score but still sensitive enough to capture emerging stress signals. Peaks align **almost perfectly** with all labeled historical crisis.
- **Normalized\_anomaly** obtained using **min-max normalization** and applying:
- Combined Risk = 0.6 \* Normalized\_anomaly + 0.4 \* crisis\_probability



## **Conclusions - Qualitative analysis**

#### PROs:

- High Reliability.
- Effective Hybrid Approach.
- Early warning capability.

#### **CONs:**

- Sensitivity to volatility (anomaly score).
- Potential for Minor False Positives.
- Variable Signal Intensity.

## Thanks for listening!!! :)



