Exchanges between Statistics and Machine Learning

Ben Klemens

28/29 November 2017

[The U.S. Treasury takes no position on the issues raised in this presentation.]

Intro and Outline

- A broad discussion of what models have in common
- Examples of comparative statics, validation, and prediction across several types of model

Klemens 2/

Intro and Outline

- A broad discussion of what models have in common
- Examples of comparative statics, validation, and prediction across several types of model
- What not to expect
 - ▶ Q: What is the right model to use?
 - ► A: That's not a well-formed question

Klemens 2/

Intro and Outline

- A broad discussion of what models have in common
- Examples of comparative statics, validation, and prediction across several types of model
- What not to expect
 - ▶ Q: What is the right model to use?
 - ► A: That's not a well-formed question
 - ▶ Q: What is the best way to evaluate a model?
 - ► A: That's not a well-formed question

Klemens 2/

Part I: What is a model?

Klemens 3/

Problem statement

 "The word 'model' in statistical literature usually refers to an equation to which one tries to fit data via regression analysis." [Complex Systems Modelling Group, Modelling in Healthcare, p 49]

Klemens 4/

Problem statement

One afternoon, I tallied the models in the last 50 papers from the WB working paper series and the U.S. Census Center for Economic Studies w.p. series.

	WB	CES
Papers with regressions only	25	33
Papers including any other model	7	4
Papers w/no model fitting	18	13

WB: excluding no-model papers, 78% regression

CES: excluding no-model papers, 89% regression

Klemens 5/

Probability vs Statistics

- Probability: Theorems. If the data has some property, as $N \to \infty$, something holds. (Law)
- Statistics: A summary of how the model designer sees the world. (Custom)

Klemens 6,

A statistical model links parameters and data via likelihoods

- estimation: data \rightarrow parameters
- RNG: parameters + arbitrary sequence \rightarrow data
- predict/conditional expected value: parameters + some data
 → other data
- log likelihood, probability, entropy: parameters + data \rightarrow a measure

Klemens 7/

Remittances

Most sent out

▶ United States: 263,225 million

► Saudi Arabia: 87,412

▶ United Arab Emirates: 62,242

► Canada: 43.962

▶ United Kingdom: 41,681

 $\Sigma = 1,263,791 = 174$ countries

Most received in

► China: -116,573 million

► India: -114,090

► Philippines: -61,261

► Mexico: -52,026

► Pakistan: -38,761

 $\Sigma = -1,263,791 = 197$ countries

[Run correlations() in the demo script about here.]

Klemens 8

Belize

- Belize net out
- Ecuador

- Belize net out
- Ecuador net in
- Luxembourg

- Belize net out
- Ecuador net in
- Luxembourg net out
- Malta

- Belize net out
- Ecuador net in
- Luxembourg net out
- Malta net in
- Iceland

- Belize net out
- Ecuador net in
- Luxembourg net out
- Malta net in
- Iceland net in
- Congo, both Republic and Dem. Republic

- Belize net out
- Ecuador net in
- Luxembourg net out
- Malta net in
- Iceland net in
- Congo, both Republic and Dem. Republic net out

Klemens 9,

A list of models (1/2)

- generalized linear regression
 - ► may include nonlinear terms
 - ► logit, probit, et cetera
 - ► also includes systems of equations
 - ► an incomplete model—see below
- The Normal Distribution (params are μ, σ)
 - ▶ Also, χ^2 , t, Zipf, Lognormal, Poisson

Klemens 10/

A list of models (1/2)

- generalized linear regression
 - ► may include nonlinear terms
 - ► logit, probit, et cetera
 - ► also includes systems of equations
 - ► an incomplete model—see below
- The Normal Distribution (params are μ, σ)
 - ▶ Also, χ^2 , t, Zipf, Lognormal, Poisson
- 'non parameteric models': a lot of parameters
 - ► A histogram is a model
 - ▶ Number of parameters may be a parameter

Klemens 10/

A list of models (2/2)

- Decision trees (parameters=cutpoints)
- Bayesian networks (parameters=cross of free submodel params)
 - ▶ Build a narrative piece by piece
- Support vector machines [categorization] (params=dividing line parms)
- neural networks (params=network activation params)

Klemens 11/

Understanding the parameters (comparative statics)

- ceteris paribus:
 - ▶ linear regression: β .
 - ▶ trees: find the relevant cutpoint; follow it
 - ► neural network: just try it

Klemens 12/1

Understanding the parameters (comparative statics)

- ceteris paribus:
 - ▶ linear regression: β .
 - ▶ trees: find the relevant cutpoint; follow it
 - ► neural network: just try it
- mutis mutandis
 - ▶ needs an underlying model for the data
 - ► linear regression: ¿¿¿????

[loop_over_models()]

Klemens 12/1

Part II: validation

Klemens 13/1

Parameter-based

- The parameters have some proven distribution \rightarrow use that.
- Assumptions don't quite fit?
 - ► Find a theorem deriving the correct distribution.

Klemens 14/1

Parameter-based

- The parameters have some proven distribution \rightarrow use that.
- Assumptions don't quite fit?
 - ▶ Find a theorem deriving the correct distribution.
 - ▶ Or, just use the Normal distribution anyway.
- Uses the model's likelihood function to evaluate the same model.
- Potentially difficult for non-parametric models past histograms.

Klemens 14/1

Data-based

- How far does the model's implications about data diverge from the data?
- How accurate are its predictions?
- These are always available.

Klemens 15/1

Replication

- The Bootstrap principle: draws from your sample \approx draws from the population.
 - ► Given this, you can use it to estimate errors on the mean of nearly all parameters.

```
[loop_over_models(want_boot=1)]
```

Klemens 16/1

An aside: entropy

- Has more real-world validity than most (law, not custom).
- Information loss in actual data \rightarrow fake data from model
 - ► Kullback-Leibler divergence
 - ► Can be difficult: models truly falsified by the data have infinite divergence
- Adustment for unknown parameters → AIC.
 - ▶ Analogy: with unknown μ , sample estimate of $\sigma \neq$ estimate with known μ .

Klemens 17/

Train & Test

- AKA Cross-validation
- The norm in ML, but usable for any model

Klemens 18/1

Train & Test

- AKA Cross-validation
- The norm in ML, but usable for any model
- We'll summarize via ROC (receiver operating characteristic)

[loop_over_models(want_tt=1)]

Klemens 18/1

PS: What about Belize and Iceland?

	Data	Logit	SVM	Centroid
United States	1	1.00(1)	1.00(1)	0.67 (1)
China	0	0.50 (0)	0.40 (0)	0.33 (0)
Ecuador	0	0.29 (0)	0.25 (0)	0.33 (0)
Malta	0	0.30 (0)	0.27 (0)	0.33 (0)
Iceland	0	0.38 (0)	0.36 (0)	0.40 (0)
Belize	1	0.38 (1)	0.41 (1)	0.44 (1)
Luxembourg	1	0.47(1)	0.45 (1)	0.48 (1)
Congo, Rep.	1	0.50(1)	0.52 (1)	0.54 (1)

Mark (1) for > .405 and (0) for < .405 [Output from make_guesses()]

Klemens 19

Conclusion slide

- Almost everything you can do with a regression, you can do with any model
 - ► The one exception is parameter-based testing, for a large subset of models
 - ► Use the wealth of data-space tools
- Almost every tool commonly used with other models, you can use with a regression

Klemens 20/

Discuss further, ask hard questions, get the code

- ben.klemens@treasury.gov
- ben@klemens.org
- github.com/b-k/ml_for_econometricians

Klemens 21/1