Qualify Exam. (Topics in Multivariate Analysis), December 2013

1. Suppose we have a collection of binary responses y_i , $i = 1, \dots, n$, and associated k-dimensional predictor variables \mathbf{x}_i . Define the latent variable y_i^* as

$$y_i^* = \mathbf{x}_i^T \boldsymbol{\beta} + \epsilon_i, \quad i = 1, \dots, n,$$

where the ϵ_i are independent mean-zero errors having cumulative distribution function F, and β is a k-dimensional regression parameter. Consider the model

$$y_i = \left\{ \begin{array}{l} 0, & \text{if } y_i^* \ge 0 \\ 1, & \text{if } y_i^* \not \le 0 \end{array} \right.$$

- (a) Specify a conjugate prior distribution for B.
- (b) Under (a), find the full conditional distributions for β and y_i^* , $i=1,\dots,n$.

 (a) $\beta \sim N(y_0, \xi_0)$ $P(\beta|y_0, y_0, y_0)$ $P(\beta|y_0, y_0, y_0, y_0)$

2. In Bayesian model comparison:

- (a) Use a concrete example to illustrate how to implement the path sampling procedure for computing Bayes factor in the context of mixture structural equation models (SEMs).
- (b) Discuss other Bayesian model comparison statistics in the comparison of mixture SEMs.