	Linear outlier	Polynomial Outlier	Linear without outlier	Polynomial without outlier
ScreenSize	Goodness of Fit of Model Train Dataset Explained Variance (R^2): 0.31933165189620694 Mean Squared Error (MSE): 0.03834475833749644	Goodness of Fit of Model Train Dataset Explained Variance (R^2): 0.3203876561071426 Mean Squared Error (MSE): 0.03828526941549131	Goodness of Fit of Model Train Dataset Explained Variance (R^2): 0.26094451094874993 Mean Squared Error (MSE): 0.0368336400994604	Goodness of Fit of Model Train Dataset Explained Variance (R^2): 0.2610244304052446 Mean Squared Error (MSE): 0.036829657009501554
	Goodness of Fit of Model Test Dataset Explained Variance (R^2): 0.10179997642308691 Mean Squared Error (MSE): 0.048913316476672734	Goodness of Fit of Model Test Dataset Explained Variance (R^2): 0.09930844678620487 Mean Squared Error (MSE): 0.04904899781094225 tively same after using poly	Goodness of Fit of Model Test Dataset Explained Variance (R^2) : 0.4140030805077928 Mean Squared Error (MSE) : 0.03147045940312778	Goodness of Fit of Model Test Dataset Explained Variance (R^2): 0.4131736150000693 Mean Squared Error (MSE): 0.03151500513317995
Rom	after removing outliers. Goodness of Fit of	Goodness of Fit of	Goodness of Fit of	Goodness of Fit of
	Model Train Dataset Explained Variance (R^2): 0.2610244304052446 Mean Squared Error (MSE): 0.036829657009501554	Model Train Dataset Explained Variance (R^2) : 0.25901081763666134 Mean Squared Error (MSE) : 0.04281069966960534	Model Train Dataset Explained Variance (R^2) : 0.18393089062698265 Mean Squared Error (MSE) : 0.04182425305417913	Model Train Dataset Explained Variance (R^2) : 0.2662798288174759 Mean Squared Error (MSE) : 0.03760379820536333
	Goodness of Fit of Model Test Dataset Explained Variance (R^2) : 0.4131736150000693 Mean Squared Error (MSE) :	Goodness of Fit of Model Test Dataset Explained Variance (R^2): 0.2736626346070964 Mean Squared Error (MSE):	Goodness of Fit of Model Test Dataset Explained Variance (R^2) : 0.2364044652802635 Mean Squared Error (MSE) :	Goodness of Fit of Model Test Dataset Explained Variance (R^2) : 0.32589458634093516 Mean Squared Error (MSE) :
	0.03151500513317995	0.0355346337732239	0.03654925602971778	0.0322658400089871
Ram	Goodness of Fit of Model Train Dataset Explained Variance (R^2): 0.18521298645868323 Mean Squared Error (MSE): 0.045403154876042864	using polynomial. No impro Goodness of Fit of Model Train Dataset Explained Variance (R^2): 0.2779274105636822 Mean Squared Error (MSE): 0.04023674047949218	Goodness of Fit of Model Train Dataset Explained Variance (R^2): 0.21040470677943157 Mean Squared Error (MSE): 0.0391259254719013	Goodness of Fit of Model Train Dataset Explained Variance (R^2): 0.33316721091445045 Mean Squared Error (MSE): 0.033042813491915145
	Goodness of Fit of Model Test Dataset Explained Variance (R^2) : 0.23498304181337692 Mean Squared Error (MSE) : 0.04367285018541827	Goodness of Fit of Model Test Dataset Explained Variance (R^2) : 0.3533109179776871 Mean Squared Error (MSE) : 0.036917816126131445	Goodness of Fit of Model Test Dataset Explained Variance (R^2) : 0.150172853655415 Mean Squared Error (MSE) : 0.04603390366178158	Goodness of Fit of Model Test Dataset Explained Variance (R^2) : 0.2340539475211404 Mean Squared Error (MSE) : 0.04149018649450959
Battery	R^2 is and MSE improved Goodness of Fit of Model Train Dataset Explained Variance (R^2): 0.23687455690815495	after using polynomial. No Goodness of Fit of Model Train Dataset Explained Variance (R^2): 0.24340716700603815	Goodness of Fit of Model Train Dataset Explained Variance (R^2): 0.20534475525199025	Goodness of Fit of Model Train Dataset Explained Variance (R^2): 0.3185099934911013

	Mean Squared Error	Mean Squared Error	Mean Squared Error	Mean Squared Error		
	(MSE) :	(MSE) :	(MSE) :	(MSE) :		
	0.04475041661658099	0.04436733802036811	0.039504482126895384	0.033878729121489294		
	Goodness of Fit of	Goodness of Fit of	Goodness of Fit of	Goodness of Fit of		
	Model Test Dataset	Model Test Dataset	Model Test Dataset	Model Test Dataset		
	Explained Variance	Explained Variance	Explained Variance	Explained Variance		
	(R^2) :	(R^2) :	(R^2) :	(R^2) :		
	0.16199229923355962	0.16583519851199235	0.1723423444557033	0.2843203553364382		
	Mean Squared Error	Mean Squared Error	Mean Squared Error	Mean Squared Error		
	(MSE) :	(MSE) :	(MSE) :	(MSE) :		
	0.037820959515904515	0.03764752180417421	0.04430189729459535	0.03830806844028604		
	Not much change when u	sing poynomial. R^2 increas	sed significantly when using	cleaned polynomial		
	_	however best MSE is still from linear uncleaned.				
Price	Goodness of Fit of	Goodness of Fit of	Goodness of Fit of	Goodness of Fit of		
	Model Train Dataset	Model Train Dataset	Model Train Dataset	Model Train Dataset		
	Explained Variance	Explained Variance	Explained Variance	Explained Variance		
	(R^2) :	(R^2) :	(R^2) :	(R^2) :		
	0.1859703602265501	0.25843717920913944	0.30233033574082324	0.3297948023038453		
	Mean Squared Error	Mean Squared Error	Mean Squared Error	Mean Squared Error		
	(MSE) :	(MSE) :	(MSE) :	(MSE) :		
	0.04371243346180819	0.03982105058311236	0.03172138346295044	0.03047263936516012		
	Goodness of Fit of	Goodness of Fit of	Goodness of Fit of	Goodness of Fit of		
	Model Test Dataset	Model Test Dataset	Model Test Dataset	Model Test Dataset		
	Explained Variance	Explained Variance	Explained Variance	Explained Variance		
	(R^2) :	(R^2) :	(R^2) :	(R^2) :		
	0.22424965181327294	0.29977686622230726	0.34738129210957946	0.3744187353074736		
	Mean Squared Error	Mean Squared Error	Mean Squared Error	Mean Squared Error		
	(MSE) :	(MSE) :	(MSE) :	(MSE) :		
	0.050746377582231446	0.045805699760953236	0.03112778089816519	0.029838183162557604		
	R^2 and MSE improved at	R^2 and MSE improved after using polynomial. R^2 and MSE improved significantly after removing				
	outliers.					

Polynomial regression, 2	Goodness of Fit of Model	Train Dataset
predictor : Price,Ram)	Explained Variance (R^2)	: 0.3635922059663619
	Mean Squared Error (MSE)	: 0.029080058056459208
	Goodness of Fit of Model	Test Dataset
	Explained Variance (R^2)	: 0.28517474218624594
	Mean Squared Error (MSE)	: 0.03326075945196376
	, , , ,	
(Linear regression, 2	Goodness of Fit of Model	Train Dataset
predictor : Price,Ram)	Explained Variance (R^2)	: 0.33934698811698616
productor: 1 1100;1 tall1)	Mean Squared Error (MSE)	: 0.030187920576782275
	, , ,	
	Goodness of Fit of Model	Test Dataset
	Explained Variance (R^2)	: 0.2685715817535982
	Mean Squared Error (MSE)	: 0.03403330311806424
	MSE did not improve.	
(Polynomial regression, 3	Goodness of Fit of Model	Train Dataset
predictor :	Explained Variance (R^2)	: 0.33607611135716264
Price,Ram,Battery)	Mean Squared Error (MSE)	: 0.03012410055825894
i noo,ram,baaory)		
	Goodness of Fit of Model	Test Dataset
	Explained Variance (R^2)	: 0.38413601835643596
	Mean Squared Error (MSE)	: 0.029486920372112126
	MSE improved.	
	1	

(Linear regression, 3 predictor : Price,Ram,Battery)	Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE) Goodness of Fit of Model Explained Variance (R^2)	Train Dataset : 0.3242127102704859 : 0.03066237654653304 Test Dataset : 0.33032901776552326
	Mean Squared Error (MSE)	: 0.03206314302707604
(Polynomial regression, 4	Goodness of Fit of Model	Train Dataset
predictor:	Explained Variance (R^2)	: 0.4291521675331773
Price,Ram,Battery,Scrensize)	Mean Squared Error (MSE)	: 0.02635377155704498
	Goodness of Fit of Model	Test Dataset
	Explained Variance (R^2)	: 0.16377432648079282
	Mean Squared Error (MSE)	: 0.036859156039343616
	ivicali squarea Error (MSE)	. 0.030033130033343010
	MSE did not improve.	
(Linear regression, 4	Goodness of Fit of Model	Train Dataset
predictor:	Explained Variance (R^2)	: 0.36385184866691345
Price,Ram,Battery,Scrensize)	Mean Squared Error (MSE)	: 0.029368427281613634
	Goodness of Fit of Model	Test Dataset
	Explained Variance (R^2)	: 0.23498889062371742
	Mean Squared Error (MSE)	: 0.033720160412755

There are several reasons why the R-squared (R^2) value might decrease after removing outliers from the data:

Reduction in sample size: Outliers are data points that are significantly different from the rest of the data. When outliers are removed from the data, the sample size is reduced, which can lead to a decrease in the R^2 value. This is because with a smaller sample size, the model has less data to work with, and therefore might not be able to capture the variability in the dependent variable as well as before.

Non-linear relationships: Outliers can sometimes represent non-linear relationships in the data. When these outliers are removed, the model might lose some of its ability to capture the non-linear relationships, leading to a decrease in the R^2 value.

Influence on regression line: Outliers can have a strong influence on the regression line. When outliers are removed, the regression line might change significantly, which can lead to a decrease in the R^2 value.

Other outliers: Outliers can sometimes be indicative of other outliers in the data. When one outlier is removed, it might reveal other outliers that were previously hidden, leading to a decrease in the R^2 value.

In summary, the R^2 value might decrease after removing outliers due to a reduction in sample size, loss of ability to capture non-linear relationships, influence on the regression line, or revealing other outliers in the data. However, it's important to carefully evaluate the reasons for the decrease and consider the impact of outliers on the model's performance.