高级机器学习

课程简介

赵静 jzhao@cs.ecnu.edu.cn

Outline

- Advanced Models
 - GP Related Models
 - Sequential Models
 - Deep Neural Networks
- Approximate Inference and Optimization
 - Variational Inference
 - Sampling Methods
 - Stochastic Optimization

课程形式

- 授课(前15周)+学生分享(后3周)
- 考核: 平时成绩40%+最终报告60%
- 平时成绩
 - 两次平时作业20%
 - •课堂报告20%:学生自选内容,PPT介绍(约20分钟,根据选课人数调整),同学之间相互打分
- 最终报告: 以论文形式提交
 - 机器学习相关
 - · 综述论文(参考文献30篇+)/近5年顶会刊算法复现(需增加数据集)/研究报告(有创新性)

Advanced Models (I)

- GP Related Models
 - Gaussian processes (regression or classification)
 - Gaussian process latent variable models (dimensionality reduction)
 - Deep Gaussian processes (deep model)
 - Multi-view Gaussian processes (multi-view)
 - Mixtures of Gaussian process (multi-modal)

Gaussian Process Regression

Gaussian observation noise: $y_n = f_n + \epsilon_n$, where $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$

marginal likelihood

$$p(\mathbf{y}|\mathbf{X}) = \mathcal{N}(\mathbf{0}, \mathbf{K}_N + \sigma^2 \mathbf{I})$$

redictive

predictive distribution

$$p(y_*|\mathbf{x}_*, \mathbf{X}, \mathbf{y}) = \mathcal{N}(\mu_*, \sigma_*^2)$$

$$\mu_* = \mathbf{K}_{*N} (\mathbf{K}_N + \sigma^2 \mathbf{I})^{-1} \mathbf{y}$$

$$\sigma_*^2 = K_{**} - \mathbf{K}_{*N} (\mathbf{K}_N + \sigma^2 \mathbf{I})^{-1} \mathbf{K}_{N*} + \sigma^2$$

Gaussian Process Latent Variable Models

- Low dimensional visualization
- Predict missing values

Bayesian GP-LVM, q = 10 (2D projection)

Recon

Gaussian Process Latent Variable Models

- Gaussian process dynamical systems
- Sequential data modeling
- Prediction
- classification

Figure: 四阶动态系统的示意图

(b)

(c)

Deep Gaussian Processes

- Deep representation learning
- Robust
- Easy sampling

Multi-view Gaussian Processes

- Multi-view data regression/classification
- View generation

Mixtures of Gaussian Process

- Recall GMM: GMM vs. MGP
- Better fitting multi-modal data

Advanced Models (II)

- Sequential Models
 - Hidden Markov Model (HMM)
 - Conditional Random Field (CRF)

Hidden Markov Model (HMM)

 App: Automatic speech recognition (i.e., conversion from speech into text)

Sequence annotation/classification/generation

Conditional Random Field (CRF)

- App: Part-Of-Speech tagging; Named entity recognition; Image annotation
- Structural prediction: sequence, tree, grid

CRF model definition
$$p(\underline{y}|\underline{x};\theta) = \frac{1}{Z(\underline{x},\theta)} \exp \sum_{j=1}^{D} \theta_{j} F_{j}(\underline{x},\underline{y})$$
$$= \frac{1}{Z(\underline{x},\theta)} \Psi(\underline{x},\underline{y};\theta); \quad \theta = \{\theta_{1},\cdots,\theta_{D}\}.$$

Defining label constraints using feature functions

$$F_j(\underline{\mathbf{x}},\underline{\mathbf{y}}) = \sum_{i=1}^n f_j(y_{i-1},y_i,\underline{\mathbf{x}},i)$$

Sequential Models

Structured Prediction Classifier (Sequential Modeling) **Logistic Regression Conditional Random Fields Probabilistic Discriminative** Model Predict class v; Predict sequence y; modeling P(y|x)modeling P(y|x)Naïve Bayes **Hidden Markov Models Probabilistic** Generative Model Predict class y; Predict sequence y; modeling P(y,x) modeling P(y,x)

Advanced Models (III)

- Deep neural networks
 - Neural network
 - Challenge of deep neural networks
 - gradient vanish
 - Local minima
 - overfitting
 - Convolutional Neural Network (CNN)
 - Recurrent Neural Network (RNN)
 - Variational auto-encoder (VAE)
 - Generative Adversarial Networks (GAN)

Neural Network

neuron

Fully Connect Feedforward

Deep means many hidden layers

Challenge of deep neural networks

gradient vanish

In 2006, people used RBM pre-training. In 2015, people use ReLU.

 $\sigma(z)$

a=0

- Local minima
 - Optimization technique

based on random!

- Overfitting
 - Early stopping, regularization, dropout, design network

Convolutional Neural Network (CNN)

- Some patterns are much smaller than the whole image & The same patterns appear in different regions => convolution
- Subsampling the pixels will not change the object
 => pooling

Recurrent Neural Network (RNN)

- Sequences not iid data
- Neural network needs memory

Variational auto-encoder (VAE)

• The **VAE approach**: introduce an inference model $q_{\phi}(z \mid x)$ that learns to approximates the intractable posterior $p_{\theta}(z \mid x)$ by optimizing the variational lower bound:

$$\mathcal{L}(\theta, \phi, x) = -D_{\mathrm{KL}} \left(q_{\phi}(z \mid x) \| p_{\theta}(z) \right) + \mathbb{E}_{q_{\phi}(z \mid x)} \left[\log p_{\theta}(x \mid z) \right]$$

• We parameterize $q_{\phi}(z \mid x)$ with another neural network:

Generative Adversarial Network (GAN)

Optimize the discriminator D(x) and generator

$$\begin{aligned} \textbf{G(z):} \quad J^{(D)} &= -\frac{1}{2}\mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \log D(\boldsymbol{x}) - \frac{1}{2}\mathbb{E}_{\boldsymbol{z}} \log \left(1 - D\left(G(\boldsymbol{z})\right)\right) \\ J^{(G)} &= -J^{(D)} \end{aligned}$$

Adversarial Nets Framework DCGANs for LSUN Bedrooms

(Radford et al 2015)

(Goodfellow 2016)

Approximate Inference (I)

- Stochastic Variational Inference (SVI)
 - Variational inference
 - Exponential family
 - Natural gradient
 - SVI and its app. on LDA

Stochastic Variational Inference

- VI vs EM
 - VI optimizes q to make blue near red
 - EM
 - calculates q to make blue cover current red
 - optimizes θ to make red higher

$$\ln p(\mathbf{X}) = \mathcal{L}(q) + \mathrm{KL}(q||p)$$

fined

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$KL(q||p) = -\int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z}|\mathbf{X})}{q(\mathbf{Z})} \right\} d\mathbf{Z}.$$

KL(q||p)

Often Variational EM or Variational Bayes

KL(q||p) = 0

 $\mathcal{L}(q, \boldsymbol{\theta}^{\mathrm{old}})$

Stochastic Variational Inference

 Decompose Linto a global term and a sum of local terms

$$\begin{split} \mathcal{L}(\lambda) &= \mathbb{E}_q[\log p(\beta)] - \mathbb{E}_q[\log q(\beta)] + \sum_{n=1}^N \max_{\phi_n} (\mathbb{E}_q[\log p(x_n, z_n \mid \beta)] - \mathbb{E}_q[\log q(z_n)]). \\ \hat{\nabla} \mathcal{L}_i &= \mathbb{E}_q \left[\eta_g \left(x_i^{(N)}, z_i^{(N)}, \alpha \right) \right] - \lambda \end{split}$$

"Stochastic variational inference" [Hoffman et al., 2013, JMLR]

Approximate Inference (II)

Sampling Methods

- Motivation: Integration
 - Expectation, Normalization, Marginalization
- Sampling methods:
 - Importance
 - Rejection
 - Metropolis-Hastings
 - Gibbs
 - Slice
 - Hybrid Monte Carlo

$$\int f(\theta) \pi(\theta) d\theta = \text{"average over } \pi \text{ of } f$$
"

$$\approx \frac{1}{S} \sum_{s=1}^{S} f(\theta^{(s)}), \quad \theta^{(s)} \sim \pi$$

Sampling Methods Applications

Prediction

$$p(y_* \mid x_*, \mathcal{D}) = \int p(y_* \mid x_*, \theta) \, p(\theta \mid \mathcal{D}) \, d\theta$$
$$\approx \frac{1}{S} \sum_{s} p(y_* \mid x_*, \theta^{(s)}), \quad \theta^{(s)} \sim p(\theta \mid \mathcal{D})$$

Inference

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta) p(\theta)}{p(\mathcal{D})}$$

Marginalization

Interested in particular parameter θ_i

$$p(\theta_i \mid \mathcal{D}) = \int p(\theta \mid \mathcal{D}) \, d\theta_{\setminus i}$$

Sampling Methods

- What if probabilistic density
 - Not normalized
 - not well known
 - cumulative distribution not reversible
 - w.r.t. multivariable

Optimization Methods

- Stochastic optimization
 - Stochastic gradient descent
 - SGD with momentum
 - Nesterov accelerated gradient
 - AdaGrad
 - Adadelta
 - RMSprop
 - Adam
 - variance reduction techniques

Stochastic Optimization

actual step

Adaptively changing learning rate AdaGrad, RMSProp

Gradient

actual step

 $\gamma \nabla L(\theta_t)$

Combination of momentum and adaptive learning rate

 $\mu \mathbf{m}_{t-1}$

Adam ADAptive Moment estimation) [Kingma' 2015]

$$\theta_{t+1} \leftarrow \theta_t - \frac{\gamma}{\sqrt{v_t}} \mathbf{m}_t$$

$$\mathbf{m}_{t+1} \leftarrow \mu_1 \mathbf{m}_t + (1 - \mu_1) \nabla L (\theta_t)$$

$$v_{t+1} \leftarrow \mu_2 v_t + (1 - \mu_2) \nabla L (\theta_t)^2$$

参考资料

- 孙仕亮,赵静.模式识别与机器学习. 北京:清 华大学出版社,2020.
- Bishop C M. Pattern Recognition and Machine Learning. New York, Springer, 2006.
- Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Process for Machine Learning. Cambridge, MA: MIT Press, 2006.
- Slim Essid. Telecom ParisTech. a tutorial on conditional random fields with applications to music analysis. November 2013.
- Hoffman, Matthew D., et al. "Stochastic variational inference." Journal of Machine Learning Research 14.5, 2013.
- An Introduction to MCMC for Machine Learning, Machine Learning, 2003.
- Aaron Courville. Variational Autoencoder and Extensions. Deep Learning Summer School 2015.
- Ian Goodfellow, Generative Adversarial Networks (GANs), NIPS 2016 tutorial.

