CONTROL 1

1- Una esferita de masa m=0.15 g y carga q=-5.0 nC pende de un hilo que se aparta 20° con respecto a la vertical como consecuencia de un campo eléctrico proveniente de un plano cargado uniformemente (figura). ¿Cuánto vale la densidad superficial de carga σ en dicho plano?

- 2- Una esfera conductora de radio $r_1 = 1.0$ cm posee una carga q_1 y está rodeada de un cascarón esférico concéntrico de radio interior $r_2 = 3.0$ cm, radio exterior $r_3 = 5.0$ cm y carga q_2 . El campo eléctrico a 2,0 cm del centro de la esfera es $9.0.10^4$ N/C radial hacia afuera y a 6.0 cm del mismo centro vale $1.5.10^4$ N/C radial hacia adentro. Calcular los valores de q_1 y de q_2 .
- 3- Un protón se mueve directamente hacia el centro de una esfera de 1,00 cm de radio cargada con +100 nC y se detiene a 1,00 cm de la esfera. Calcule la rapidez que alcanzará alejándose hacia el infinito.
- 4- En laboratorio 2: Electrostática. Escriba en su hoja el ítem y el sub ítem correcto.
 - a) Al acercarse muy próximo al electroscopio el electróforo cargado (disco de cobre y mango aislante), la varilla pivotante rota, entonces la/s carga/s son:
 - i. carga nula en cada varilla?
 - ii. una varilla tiene carga positiva y la otra carga negativa?
 - iii. la varilla fija y la pivotante tienen iguales cargas no nulas cada una?
 - b) Al observar el generador de Van de Graaff y sus efectos, en el interior del tubo conductor grande en aceite, las moléculas de las semillas se:
 - i. Cargaban.
 - ii. Polarizaban.
 - iii. Nada les pasa eléctricamente.

SOLUCIONES

1. Del diagrama de cuerpo libre que vimos en física 1, tenemos:

$$tan\theta = \frac{F_E}{w} = \frac{qE}{mg}$$
 \Rightarrow $\frac{\sigma}{2\epsilon_0} = E = g.tan\theta.\frac{m}{q}$ \Rightarrow $\sigma = g.tan\theta.\frac{m}{q}.2\epsilon_0 = 1.9 \frac{\mu C}{m^2}$

Pero como la carga puntual es negativa, entonces: $\sigma = -1.9 \frac{\mu C}{m^2}$

2. Al trazar superficies esféricas gaussianas concéntricas con las esferas y que pasen por los puntos por donde se conocen los campos eléctricos, tendremos:

a)
$$E = k \frac{Q}{r^2}$$
 \Rightarrow $Q = \frac{E \cdot r^2}{k}$ [con r = 0,02 m] $Q = \frac{9 \cdot 10^4 N/C \cdot (0,02m)^2}{9 \cdot 10^9 Nm^2/C^2} = 4 nC$

Como el campo es radial saliente, entonces: $q_1 = +4 nC$

b)
$$E' = k \frac{Q'}{r^2}$$
 \Rightarrow $Q' = \frac{E' \cdot r^2}{k}$ [con r = 0,06 m] $Q' = \frac{1,5 \cdot 10^4 N/C \cdot (0,06m)^2}{9 \cdot 10^9 Nm^2/C^2} = 6 nC$

Como el campo es radial entrante, entonces: Q' = -6 nC

Pero:
$$Q' = q_1 + q_2 = -6 \, nC$$

Entonces:
$$q_2 = -10 \, nC$$

3. Como la fuerza que actúa es conservativa, usamos el principio de conservación de la E_{mec} :

$$K_a + U_a = K_b + U_b$$
 para un punto en el infinito y para el punto donde se detiene.

$$\frac{1}{2}mv^2 + 0 = 0 + k\frac{q_1 \cdot q_2}{r}$$
 \Rightarrow $v = \sqrt{k\frac{2 \cdot q_1 \cdot q_2}{mr}}$

Entonces: $v = 2,94.10^6 \, m/s$

- 4. 4- En laboratorio 2: Electrostática. Escriba en su hoja el ítem y el sub ítem correcto.
 - a) i.

iii. la varilla fija y la pivotante tienen iguales cargas no nulas cada una

- b) i.
 - ii.

iii. Nada les pasa eléctricamente.