

图 3 加密算法流程

5.2 解密算法及流程

5.2.1 解密算法

设 mlen 为密文 $C=C_1||C_3||C_2$ 中 C_2 的比特长度, K_1_len 为分组密码算法中密钥 K_1 的比特长度, K_2_len

为函数 $MAC(K_2, \mathbb{Z})$ 中密钥 K_2 的比特长度。

为了对C进行解密,作为解密者的用户B应实现以下运算步骤:

- B1: 从 C 中取出比特串 C_1 ,将 C_1 的数据类型转换为椭圆曲线上的点,验证 $C_1 \in \mathcal{G}_1$ 是否成立,若不成立则报错并退出;
- B2: 计算群 G_T 中的元素 $w'=e(C_1, de_B)$,将 w'的数据类型转换为比特串;
- B3: 按加密明文的方法分类进行计算:
 - a) 如果加密明文的方法是基于密钥派生函数的序列密码算法,则
 - 1) 计算整数 $klen=mlen+K_2_len$,然后计算 $K'=KDF(C_1||w'||ID_B, klen)$ 。令 K_1' 为 K'最左边的 mlen 比特, K_2' 为剩下的 K_2 len 比特,若 K_1' 为全 0 比特串,则报错并退出;
 - 2) 计算 $M'=C_2 \oplus K_1'$ 。
 - b) 如果加密明文的方法是结合密钥派生函数的分组密码算法,则
 - 1) 计算整数 $klen=K_1_len+K_2_len$,然后计算 $K'=KDF(C_1||w'||ID_B, klen)$ 。令 K_1 '为 K'最左 边的 K_1 len 比特, K_2 '为剩下的 K_2 len 比特,若 K_1 '为全 0 比特串,则报错并退出;
 - 2) 计算 *M'=Dec(K*₁', *C*₂)。
- B4: 计算 $u=MAC(K_2', C_2)$, 从 C 中取出比特串 C_3 , 若 $u\neq C_3$, 则报错并退出;
- B5: 输出明文 M'。

5.2.2 解密算法流程

解密算法流程如图4。

图 4 解密算法流程