Prosodic prominence in speech perception: the influence of focus structure on the perception of durational and spectral cues

Jeremy Steffman and Sun-Ah Jun

jsteffman@ucla.edu jun@humnet.ucla.edu

The UCLA Phonetics Lab

- The sound system of a language can be described in terms of...
- (1) Segmental structure: contrastive phonetic content
 - represented by features, etc.
- (2) Prosodic structure: organization of segments into syllables, words, phrases...

- Listeners evidently extract both from the signal
- Mapping to both types of phonological structure is traditionally assumed to be fairly independent¹

- One logical possibility: parsing segment and prosody is independent because acoustic cues that specify each in a given language are non-overlapping
- However, this is not the case

Segmental cues, e.g. formant structure VOT closure duration

Prosodic cues, e.g. pitch duration intensity voice quality

- A body of phonetic research^{e.g. 1-5} suggests...
 - "segmental" cues also encode various prosodic properties
 - "prosodic" cues also encode various segmental contrasts

- Listeners would accordingly benefit from reconciling a cue value with the prosodic context in which it occurs
 - i.e. compensating for prosodic structuring of the signal
- Prosodic boundaries affect segmental categorization in this way^{1,2}
 - e.g. longer VOT is required for a voiceless percept...
 - but even longer VOT is required when a sound is phrase-initial
 - → accounting for prosodic changes in a cue value
- What about prosodic prominence?

Today's talk

- Today we present evidence that phrasal prominence mediates perception of segmental contrasts in American English, testing
 - a contrast that is cued by formants vowel categories
 - a contrast that is cued by duration coda stop voicing

Today's talk

- We manipulate phrasal prominence as cued by the realization of focus in American English
 - the test case: post-focus compression¹⁻³
- Words that are focused are:
 - phonologically accented
 - expanded in pitch and duration
 - more sonorous in formant structure (more on this later)
- Words that follow focused material within a phrase are:
 - phonologically de-accented
 - compressed in pitch and duration
 - less sonorous in formant structure

Manipulating prominence

Nuclear pitch accent (NPA) condition: I'll say [TARGET] now

Post-focus condition:

Manipulating prominence

Experiment 1: spectral cues

- Phrasal prominence on vowels is marked by phonetic sonority expansion¹⁻³
 - increased amplitude of jaw movements
 - lowered and back lingual articulations (in non-high vowels)
- An acoustic consequence
 - lower tongue position → raised first formant (F1)
 - more backed tongue position → lowered second formant (F2)

Experiment 1: method

- 2AFC task: participants categorized a target as "ebb" or "ab"
- /ε/ /æ/ varying only in the first and second formant 10- step continuum
 - /ɛ/ ('ebb') has lower F1 & higher F2 than /æ/ ('ab')

Experiment 1: continuum

- The continuum varies along...
 - a segmental dimension: vowel height and backness
 - a prosodic dimension: prominence, phonetic sonority in F1/F2

Experiment 1: Predictions

- Accordingly, in prominent contexts, higher F1 and lower F2 could be interpreted as an effect of prominence, not as cuing segmental contrast
- If listeners compensate accordingly, they would categorize more sounds as /ε/ in prominent contexts (= NPA condition)
 - i.e. attributing **high** F1 and **low** F2 to prominence, not segment

 (results assess by mixed-effects logistic regression with maximal by subject random slopes) **Experiment 1: Predictions**

increased "ebb" responses in Prediction: the NPA condition

 Visually: the NPA line is above/ right of the Post-focus line

Experiment 1 results

- Model estimates plotted with CI
- As predicted, a prominent (NPA) context shows increased /ɛ/ responses ($\beta = 0.42 \ z = 3.26$)

n = 30

Interim

- Experiment 1:
 - novel evidence for the involvement of prominence in perception of segmental material
- Experiment 2 goals:
 - replicate the pattern in Experiment 1 with a durational contrast
 - test possible involvement of domain-general effects relevant in the perception of duration

Experiment 2: method

- Recall: post-focus words are temporally compressed^{1,2}
 - will listeners' perception of duration be modulated accordingly?
- The test case: vowel duration as a cue to coda stop voicing in American English^{3,4}
 - vowels are longer before voiced coda stops (which are often devoiced)
 - this is a robust cue to voicing for listeners
- We created a **vowel duration** continuum ranging from "coat" (60ms) to "code" (120ms)

Experiment 2: temporal cues

- Predictions: in the Post-focus condition
 - overall shorter vowel durations required for a "code" percept, given prosodically driven adjustment of duration
 - compensation for compression would allow for mapping fewer target sounds to "coat" → decreased "coat" responses when Post-focus

Extending Exp 1: we synthesized target pitch to vary across conditions:

- higher in the NPA condition (marking prominence)
- lowered in the Post-focus condition (de-accentuation)
- Pitch patterns were otherwise the same as Exp. 1

Experiment 2: Psychoacoustic effects

- Perception of duration also influenced by...
 - Adjacent segment durations perception of durational cue is relative¹
 - Pitch on a segment higher pitch perceived as longer^{2,3}

	target pitch	pre-target duration		
NPA	higher pitch (accented)	shorter pre-target duration		
Post-focus	lower pitch (deaccented)	longer pre-target duration (accented "say")		
Comparison	shorter perceived target du	shorter perceived target duration when Post-focus		
Prediction	increased "coat" (short dur	increased "coat" (short duration) responses when Post-focus		

¹ e.g. Mitterer et al. 2016 ²Steffman & Jun 2019 ³Yu 2010

Experiment 2: Predictions

Psycho-acoustic predictions	Increased "coat" responses in the Post-focus condition
Prosodic predictions	Decreased "coat" responses in the Post-focus condition

- A third possibility: prosodic effects are limited by target vowel duration
 - Post-focus vowels are short, typically < 100 ms¹
 - Previous work^{2,3} suggests prosodic context effects are limited by their mapping to typical context durations
 - i.e. longer durations are too long to be interpreted as de-accented

Experiment 2 Results

- Prominence*vowel duration interaction ($\beta = 0.26$ z = 8.13)
- At shorter ends of the continuum: decreased "coat" responses in the Post-Focus condition
 - prosodic effect
- At longer ends of the continuum: increased "coat" responses in the Post-Focus condition
 - psychoacoustic effect

Summarizing Exp 2

- This effect restricted to vowel durations which map onto those appropriate for a prosodic context
 - similar findings for prosodic boundary effects¹
- In cases where other effects compete (duration perception), prosodic effects are mediated by language-typical durational patterning

Summing up

 Two test cases show prosodic prominence mediates perception of segmental categories

• Favors a perception/processing model in which both segmental and prosodic structures are extracted in parallel from the speech signal 1-3

Further directions

- Questions remain:
 - Are prominence effects categorical, or more gradient?
 - What makes something prominent to listeners?
 - e.g. segmental correlates of prominence such as glottalization

Further directions

- Crosslinguistic comparison: how do different prominence marking systems engender different perceptual outcomes?
 - In the spectral domain:
 - languages vary in the extent to which prominence impacts formant structure¹
 - In the temporal domain:
 - some languages (e.g. Mandarin²) don't exhibit post-focus compression
 - some languages (e.g. Taiwanese², Kyungsang Korean³) show post-focus expansion
- Do perceptual adjustments mirror these patterns?

Thank you!

Contact us: jsteffman@g.ucla.edu jun@humnet.ucla.edu

- Additional thanks are due to:
 - Adam Royer for recording speech materials
 - Yang Wang, Qingxia Guo, Danielle Bagnas and James Weller for help with data collection
 - The UCLA Phonetics seminar for helpful feedback

References

- Chen, M. (1970). Vowel Length Variation as a Function of the Voicing of the Consonant Environment. *Phonetica*, 22(3), 129–159.
- Cho, T. (2015). Language Effects on Timing at the Segmental and Suprasegmental Levels. In M. A. Redford (Ed.), *The Handbook of Speech Production* (pp. 505–529). John Wiley & Sons, Inc.
- Cho, T. (2016). Prosodic Boundary Strengthening in the Phonetics–Prosody Interface. *Language and Linguistics Compass*, 10(3), 120–141.
- Cho, T., McQueen, J. M., & Cox, E. A. (2007). Prosodically driven phonetic detail in speech processing: The case of domain-initial strengthening in English. *Journal of Phonetics*, *35*(2), 210–243.
- de Jong, K. (2004). Stress, lexical focus, and segmental focus in English: Patterns of variation in vowel duration. *Journal of Phonetics*, 32(4), 493–516.
- de Jong, K., Beckman, M. E., & Edwards, J. (1993). The Interplay Between Prosodic Structure and Coarticulation. *Language and Speech*, 36(2–3), 197–212.
- de Jong, K. J. (1995). The supraglottal articulation of prominence in English: Linguistic stress as localized hyperarticulation. *The Journal of the Acoustical Society of America*, 97(1), 491–504.
- Delattre, P. (2009). An acoustic and articulatory study of vowel reduction in four languages. *IRAL International Review of Applied Linguistics in Language Teaching*, 7(4), 295–326.

28

- Fougeron, C. (1999). Prosodically conditioned articulatory variations: A review. UCLA Working Papers in Phonetics, 1–80.
- Greenberg, S., Carvey, H., Hitchcock, L., & Chang, S. (2003). Temporal properties of spontaneous speech—A syllable-centric perspective. *Journal of Phonetics*, *31*(3), 465–485.
- Jun, J., Kim, J., Lee, H., & Jun, S.-A. (2006). The prosodic structure and pitch accent of Northern Kyungsang Korean. *Journal of East Asian Linguistics*, *15*(4), 289–317.
- Keating, P. (2006). Phonetic Encoding of Prosodic Structure. In J. Harrington & M. Tabain (Eds.), *Speech production: Models, phonetic processes, and techniques* (pp. 167–186). Macquarie Monographs in Cognitive Science, Psychology Press.
- Keating, P., Fougeron, C., Hsu, C., & Cho, T. (2003). Domain initial articulatory strengthening in four languages. In J. Local, R. Ogden, & R. Temple (Eds.), *Phonetic Interpretation: Papers in Laboratory Phonology VI*. Cambridge University Press.
- Kim, S., & Cho, T. (2013). Prosodic boundary information modulates phonetic categorization. *The Journal of the Acoustical Society of America*, 134(1), EL19–EL25.
- Kim, S., Mitterer, H., & Cho, T. (2018). A time course of prosodic modulation in phonological inferencing: The case of Korean post-obstruent tensing. *PLOS ONE*, *13*(8), e0202912.
- Mitterer, H., Cho, T., & Kim, S. (2016). How does prosody influence speech categorization? *Journal of Phonetics*, *54*, 68–79.
- Mitterer, H., Kim, S., & Cho, T. (2019). The glottal stop between segmental and suprasegmental processing: The case of Maltese. *Journal of Memory and Language*, 108, 104034.
- Raphael, L. J. (1972). Preceding Vowel Duration as a Cue to the Perception of the Voicing Characteristic of Word-Final Consonants in American English. *The Journal of the Acoustical Society of America*, *51*(4B), 1296–1303.

- Steffman, J. (2019). Phrase-final lengthening modulates listeners' perception of vowel duration as a cue to coda stop voicing. *The Journal of the Acoustical Society of America*, *145*(6), EL560–EL566.
- Steffman, J., & Jun, S.-A. (2019). Perceptual integration of pitch and duration: Prosodic and psychoacoustic influences in speech perception. *The Journal of the Acoustical Society of America*, *146*(3), EL251–EL257.
- Umeda, N. (1975). Vowel duration in American English. The Journal of the Acoustical Society of America, 58(2), 434–445.
- Van Summers, W. (1987). Effects of stress and final-consonant voicing on vowel production: Articulatory and acoustic analyses. *The Journal of the Acoustical Society of America*, 82(3), 847–863.
- Xu, Y., Chen, S., & Wang, B. (2012). Prosodic focus with and without post-focus compression: A typological divide within the same language family? *Tlir*, 29(1), 131–147.
- Xu, Y., & Xu, C. X. (2005). Phonetic realization of focus in English declarative intonation. *Journal of Phonetics*, 33(2), 159–197.
- Yu, A. (2010). Tonal effects on perceived vowel duration. In Cécile Fougeron, B. Kuehnert, M. Imperio, & N. Vallee (Eds.), Laboratory Phonology 10. Walter de Gruyter.

Appendix

Duration effects in Exp 1?

- Note: The /ε/ /æ/ contrast is also durational /æ/ is longer¹
 - how would this relate to durational contrast perception?
 - recall: longer pre-target duration in Post-focus condition

Psycho-acoustic predictions	shorter perceived target sound – increased /ε/ responses in the Post-focus condition
Prosodic predictions	compensation for sonority expansion - increased /ε/responses in the NPA condition – found in Exp. 1

32

Barplots Exp. 2

Exp 1 model

	β	SE	Z	р
Intercept	0.04	0.15	0.235	0.81
continuum	-2.55	0.25	-10.09	< 0.001
prominence	0.42	0.13	3.26	< 0.01
cont : prom	-0.11	0.05	-2.19	< 0.05

Exp 2 model

	β	SE	Z	р
Intercept	-0.32	0.06	-5.46	< 0.001
continuum	-0.73	80.0	-9.208	< 0.001
prominence	0.03	0.09	0.34	0.72
cont : prom	0.26	0.03	8.215	< 0.001

Exp 2 interaction (emmeans)

Step (ms)	est.	SE	z-ratio	р
60	0.74	0.20	3.59	<0.01
70	0.47	0.19	2.44	0.01
80	0.20	0.19	1.1	0.27
90	-0.06	0.18	-0.35	0.72
100	-0.33	0.18	-1.78	0.07
110	-0.59	0.19	-3.06	<0.01
120	-0.86	0.21	-4.14	<0.001