Chapter 2
Database
System
Concepts
and
Architecture

Addison-Wesley is an imprint of

Chapter 2 Outline

Data Models, Schemas, and Instances

Three-Schema Architecture and Data Independence

Database Languages and Interfaces

The Database System Environment

Centralized and Client/Server

Architectures

for DBMSs

Classification of Database Management

Database System Concepts and Architecture

Basic client/server DBMS architecture
Client module

Server module

Data Models, Schemas, and Instances

Data abstraction

Suppression of details of data organization and storage

Highlighting of the essential features for an improved understanding of data

Data Models, Schemas, and Instances (cont'd.)

Data model

Collection of concepts that describe the structure of a database

Provides means to achieve data abstraction

Basic operations

Specify retrievals and updates on the database

Dynamic aspect or **behavior** of a database application

 Allows the database designer to specify a set of valid operations allowed on database objects

Categories of Data Models

High-level or conceptual data models

Close to the way many users perceive data

Low-level or physical data models

Describe the details of how data is stored on computer storage media

Representational data models

Easily understood by end users

Also similar to how data organized in computer storage

Categories of Data Models⁷ (cont'd.)

Entity

Represents a real-world object or concept

Attribute

Represents some property of interest

Further describes an entity

Relationship among two or more entities

Represents an association among the entities

Entity-Relationship model

Categories of Data Models⁸ (cont'd.)

Relational data model

Used most frequently in traditional commercial DBMSs

Object data model

New family of higher-level implementation data models

Closer to conceptual data models

Categories of Data Models⁹ (cont'd.)

Physical data models

Describe how data is stored as files in the computer

Access path

 Structure that makes the search for particular database records efficient

Index

- Example of an access path
- Allows direct access to data using an index term or a keyword

Schemas, Instances, and 10 Database State

Database schema

Description of a database

Schema diagram

Displays selected aspects of schema

Schema construct

Each object in the schema

Database state or snapshot

Data in database at a particular moment in time

Schemas, Instances, and ¹¹ Database State (cont'd.)

Figure 2.1 Schema diagram for the database in Figure 1.2.

STUDENT							
Name	Student_number		Class	Major			
COURSE							
Course_name C		Course_n	umber	Credit_hour	s Depart	Department	
PREREQUISITE							
Course_number Prerequisite_number							
SECTION							
Section_identifier		er Course	_numbe	r Semeste	r Year	Instructor	
					•		
GRADE_REPORT							
Student	numbe	r Section	identifi	er Grade			

⁶Schema changes are usually needed as the requirements of the database applications change. Newer database systems include operations for allowing schema changes, although the schema change process is more involved than simple database updates.

⁷It is customary in database parlance to use *schemas* as the plural for *schema*, even though *schemata* is the proper plural form. The word *scheme* is also sometimes used to refer to a schema.

Schemas, Instances, and ¹² Database State (cont'd.)

Define a new database

Specify database schema to the DBMS

Initial state

Populated or loaded with the initial data

Valid state

Satisfies the structure and constraints specified in the schema

Schemas, Instances, and ¹³ Database State (cont'd.) Schema evolution

Changes applied to schema as application requirements change

Three-Schema Architecture¹⁴ and Data Independence

Internal level

Describes physical storage structure of the database

Conceptual level

Describes structure of the whole database for a community of users

External or view level

Describes part of the database that a particular user group is interested in

Three-Schema Architecture and Data Independence (cont'd.)

PEARSON

Data Independence

Capacity to change the schema at one level of a database system

Without having to change the schema at the next higher level

Types:

Logical

Physical

DBMS Languages

Data definition language (DDL)

Defines both schemas

Storage definition language (SDL)

Specifies the internal schema

View definition language (VDL)

Specifies user views/mappings to conceptual schema

Data manipulation language (DML)

Allows retrieval, insertion, deletion, modification

DBMS Languages (cont'd.)

High-level or nonprocedural DML

- Can be used on its own to specify complex database operations concisely
- Set-at-a-time or set-oriented

Low-level or procedural DML

- Must be embedded in a general-purpose programming language
- Record-at-a-time

DBMS Interfaces

Menu-based interfaces for Web clients or browsing

Forms-based interfaces

Graphical user interfaces

Natural language interfaces

Speech input and output

Interfaces for parametric users

Interfaces for the DBA

The Database System Environment

DBMS component modules

Buffer management

Stored data manager

DDL compiler

Interactive query interface

- Query compiler
- Query optimizer

Precompiler

The Database System Environment (cont'd.)

DBMS component modules
Runtime database processor
System catalog
Concurrency control system
Backup and recovery system

Figure 2.3
Component modules of a DBMS and their interactions.

Database System Utilities

Loading

Load existing data files

Backup

Creates a backup copy of the database

Database System Utilities 24 (cont'd.)

Database storage reorganization

Reorganize a set of database files into different file organizations

Performance monitoring

Monitors database usage and provides statistics to the DBA

Tools, Application Environments, and Communications Facilities

CASE Tools

Data dictionary (data repository) system

Stores design decisions, usage standards, application program descriptions, and user information

Application development environments Communications software

Centralized and Client/Server Architectures for DBMSs Centralized DBMSs Architecture

All DBMS functionality, application program execution, and user interface processing carried out on one machine

Figure 2.4
A physical centralized architecture.

Basic Client/Server Architectures

Servers with specific functionalities

File server

Maintains the files of the client machines.

Printer server

 Connected to various printers; all print requests by the clients are forwarded to this machine

Web servers or e-mail servers

Basic Client/Server Architectures (cont'd.)

Client machines

Provide user with:

- Appropriate interfaces to utilize these servers
- Local processing power to run local applications

Basic Client/Server Architectures (cont'd.)

Client

User machine that provides user interface capabilities and local processing

Server

System containing both hardware and software

Provides services to the client machines

 Such as file access, printing, archiving, or database access

Two-Tier Client/Server Architectures for DBMSs

Server handles

Query and transaction functionality related to SQL processing

Client handles

User interface programs and application programs

Two-Tier Client/Server Architectures (cont'd.)

Open Database Connectivity (ODBC)

Provides application programming interface (API)

Allows client-side programs to call the DBMS

 Both client and server machines must have the necessary software installed

JDBC

Allows Java client programs to access one or more DBMSs through a standard interface

Three-Tier and n-Tier Architectures for Web Applications

Application server or Web server

Adds intermediate layer between client and the database server

Runs application programs and stores business rules

N-tier

Divide the layers between the user and the stored data further into finer components

Classification of Database 36 Management Systems

Data model

- Relational
- Object
- Hierarchical and network (legacy)
- Native XML DBMS

Number of users

- Single-user
- Multiuser

Classification of Database 37 Management Systems (cont'd.) Number of sites

- Centralized
- Distributed
 - Homogeneous
 - Heterogeneous

Cost

- Open source
- Different types of licensing

Classification of Database 38 Management Systems (cont'd.) Types of access path options General or special-purpose

Classification of Database 39 Management Systems (cont'd.)

¹⁴CODASYL DBTG stands for Conference on Data Systems Languages Database Task Group, which is the committee that specified the network model and its language.

Summary

Concepts used in database systems

Main categories of data models

Types of languages supported by DMBSs

Interfaces provided by the DBMS

DBMS classification criteria:

Data model, number of users, number of sties, access paths, cost

