Lecture listings for online course

Master MATLAB through guided problem-solving

https://www.udemy.com/master-matlab-through-guided-problem-solving/

How to use this pdf document:

The table provides a list of all videos in this course, with video title, description, and key MATLAB skills. You can:

- 1. Browse through the list of videos as you would browse through the video list in the online course.
- 2. Search through the index for a MATLAB function or skill you want to improve, and then find the videos that highlight those skills.

Note that the numbering of the videos here refers only to the numbering in the index in this document. The videos are in the same order in the course website, but they are not numbered.

Number and Title	Description	Skills	
1. Stages of learning programming and completing projects	Course introduction How to become a master programmer	learning	
2. Write comments in lines and blocks	Getting started Learn several ways to comment your code.	comments, cells	
3. Using MATLAB for a personal	Compute average daily budget based on monthly	disp, num2str	
budget4. Personalize MATLAB colors5. Start MATLAB with an encour-	income/expenses. Make your MATLAB experience colorful. Specify start-up preferences.	options, preferences startup, set	
aging note			
6. Unsolved: Valid and invalid matrices	Vectors and variables Determine whether code is valid	matrices	
7. Working with text (characters and strings)	Parse and modify text.	regexp, cellfun, strfind	
8. html table from MATLAB code	Use MATLAB to write dynamic html code.	char, randi, clc, for, disp, fprintf	
9. Round pi to N significant digits 10. File/folder information using structures	Compute and print pi to any number of digits. Use dir and structures to query file/folder information	pi, format, round, disp dir, cellfun	
	Command statements		
11. Unsolved: Compare two while loops	Determine the differences between two loops	while	
12. Create an upper-triangular matrix	Use for-loops and if statements to create a triangular matrix.	zeros, for, if, sqrt	
13. Random count-down timer (Poisson-like)	Implement a random Poisson-like count-down timer.	while, randn, for, plot	
14. Display the day of 1 January	Compute the day of 1 January, any year	mod, switch, clock, fprintf, disp	
	Importing and exporting data		
15. Import formatted text data	Use fgetl to import data from a formatted text file.	fgetl, strcmpi, while, toggle, str2double, regexp	
16. Import Excel-format data	Import data from an Excel file and identify missing data values.	xlsread, find, cell2mat, unique, isnan, ind2sub, warning	
17. Convert US\$ to Euros using upto-date info	Import data from the web to convert currencies.	urlread, strfind, fprintf, sscanf	
Translate formulas into code			
18. Laplace and log-normal distributions	Convert distribution functions into MATLAB.	exp, abs, plot, linspace, sqrt, log	
19. Complex numbers and Euler's formula	Make complex numbers, apply Euler's formula, and test the law of exponents.	complex, 1i, exp, sin, abs, angle,	
20. Piecewise functions	Implement a piecewise formula	linspace, zeros, length, find, dsearchn, plot	
21. Piecewise function in one line of code	Produce a piecewise function using one line of code.	dsearchn, sin	
22. Sigmoid function23. Unsolved: Sigmoid and error	Implement a 3-parameter sigmoid function Parameterize the sigmoid to look like the ERF	linspace, exp, get erf	
function 24. Circular p-value and its approx-	function Implement a long and tedious function, and then	exp, sqrt, contourf	
imation	its approximation.		

Number and Title	Description	Skills
25. Compute variance and standard deviation26. Unsolved: Sort data up and	Descriptive statistics Implement algorithms to compute variance and standard deviation Sort numeric data	
down 27. Data transformations (log, sqrt, rank)	Transform datasets to have different distributions	log, sqrt, tiedrank, atanh, hist
	2D plotting	
28. Bars and errorbars	Generate data to learn about bar and errorbar.	bsxfun, subplot, mean, std, bar, errorbar
29. Dots	Make scatterplots to show data.	exp, linspace, plot, get/set, scatter, log
30. Multidimensional data with colored scatter	Use color for multidimensional data on a 2D plot.	linspace, sin, exp, randn, scatter
31. Unsolved: imagesc vs. pcolor	Determine the difference between two image plotting functions	imagesc, pcolor
32. Histograms	Make histograms of log-normal distributions.	exp, randn, histogram, hist, plot, num2str, pause, iqr, title
33. Uncertainty in future money (using patch)	Use patches to visualize the future value of your money.	patch, get/set, deal
34. Blend pictures using transparency	Use transparency to combine pictures.	imagesc, alphadata, imread, meshgrid, interp2, imresize, sin, logspace, set
35. Vertically stacking data series	View multichannel data in a single line plot.	eig, sqrt, detrend, cumsum, bsxfun
36. Distance matrix from generated points	Compute a distance matrix from mouse-generated points.	ginput, strcmp, numel, bsxfun, nonzeros, triu
37. Gabor patch marginal histograms	Create a Gabor patch and show its marginal distributions	ndgrid, sin, cos, exp, axes
	3D plotting	
38. Colorful cube (a.k.a. the happy Borg ship)	Generate a cube of connected nodes.	linspace, meshgrid, randn, scatter3
39. Expanding wavelets with surfaces	Surface map of wavelets	zeros, for, surf, rotate3d
40. Textured Gaussian surfaces	Curved surface with various textures.	linspace, meshgrid, exp, surf, shading
41. A ball in 3D color space	Define and plot a sphere in RGB space	meshgrid, sqrt, ind2sub, scatter3, rotate3d
42. Plane in R3 spanned by two vectors	Plot a plane defined by two 3D vectors.	ezmesh, get/set, rotate3d, plot3
43. Complex sinc surface44. The prickly Gabor patch	Create a modern-art table using the sinc function Create a Gabor patch and show with its normals	sin, complex, surf, abs ndgrid, mesh, surfnorm
	Segmentation	
45. Derivative-based time series segmentation	Identify jumps in a simulated stock market.	conv, linspace, diff, zscore, num2str
46. Intensity-based image segmentation	Segment a smoothed random image based on relative intensity.	meshgrid, exp, conv2, bwla- beln, logical
47. identify neurons in a mouse brain slice	Segment a high-res image to identify brain cells.	imread, hist, imagesc, contour, bwconncomp, cellfun, false, continue, log

Number and Title Description		Skills	
Data animations			
48. The square chases the mouse	A square moves to the mouse-click location.	while, get/set, currentpoint, mouse	
49. The magically materializing peaks	Animate the famous "peaks" function to materialize slowly and randomly.	peaks, set, for, pause	
50. Smooth sailing: The movie	Generate a movie of traveling waves on standing		
51. Real-time audio spectrum from	waves. Collect mic data and analyze in real time.	while, audiorecorder, fft, abs	
mic 52. Möbius transformation	Watch how the Mobius transformation glides	complex, set, imagesc	
53. UFO on a sandcastle	across the screen. Create and animate a glowing ball on a surface	sphere, Gaussian, meshgrid, set	
or on a sandcasoic	Croave and ammade a growing ban on a barrace	spirore, Gaussian, mesiigira, see	
54. Interface to select a file	Graphical user interfaces Dialog box to select files and folders.	uigetfile, uigetdir	
55. Input and message boxes	Simple GUIs to evalute chocolate consumption.	questdlg, inputdlg, msgbox	
56. GUI to create random land-scapes	User interface to make adjustable 3D landscapes.	figure, uicontrol, get/set, function, fft, handles, align	
57. GUIDE to sigmoid parameter space	Create a GUI that helps understand the sigmoid parameters	get/set, exp, GUIDE, handles, guidata	
	Functions and anonymous functions		
58. Damped oscillator	Create an anonymous function to produce a damped oscillator	inline, func2str	
59. Unsolved: damped arcsine	Implement a damped arcsine anonymous function and explore its parameter space	exp, asin	
60. Find and extract a function core	Inspect the median function to find the important	median, sort, floor	
61. Smooth plotting function with	code, and put that in a separate function. Apply a mean smoothing filter and optionally plot	function, nargin, varargin,	
options 62. Unsolved: Zscore function	the results. write a function that computes the zscore with	isempty, floor zscore, mean, std	
	various options		
63. Unsolved: manual peak-picking	Find, min, and max Use datacursor to find a local minimum	datacursormode	
64. Find negative extrema in a 2D function	Finding extreme points is not as easy as you might think!	linspace, bsxfun, surf, shading, max, min, find, sub2ind, plot3	
		, , , , , , , ,	
65. Unsolved: Find ridges of a 2D surface	Plot points on the ridges of a 2D landscape	find, max, min	
66. Find local maxima	Indentify local maxima of a sinc function	sin, max, plot, dsearchn, diff, detrend	
67. Replace image pixels in an intensity range	Change the color of mid-range intensity pixels	sum, hist, log, imagesc,	
68. Find signal clipping points	Mark time points where a signal gets clipped (e.g., amp saturation)	diff, mode, find	
69. Function limits	Calculus and differential equations Compute the limits of two functions at interesting	limit, fplot, syms	
70. Function derivatives	Use the symbolic toolbox to compute the deriva-	syms, diff, subs, pretty	
71. Function integration	tive and value of a function Compute integrals and partial integrals, symboli-	int	
72. Solving differential equations	cally and numerically. Solve an ODE and plot the results	diff, dsolve, quiver, meshgrid, ezplot	

Number and Title	Description	Skills
	Cleaning univariate time series	
73. Threshold median filter	Remove extreme noise spikes with median filter.	randperm, round, rand, find, median, min, max
74. Interpolate missing time points	Find missing data values and interpolate to fill-in.	deal, conv, randperm, bwcon- ncomp, cellfun, continue, diff
75. Unsolved: all-points median filter	Median-filter a time series at all points, not just extreme points	median
76. Spectral mixing interpolation	Fill-in missing data based on spectral mixing.	deal, cumsum, nan, fft, detrend
77. Polynomial fitting to remove drifts	Find an optimal polynomial model order and remove slow drifts from data.	polyval, polyfit, sum, log, min
78. Unsolved: polynomial fitting to isolate drifts	Use polynomial fitting to separate low-frequency signal from high-frequency noise	polyfit, polyval
79. Unsolved: Local maximima in noisy data	Find local maxima in noisy data	diff, find, randn
	Cleaning multivariate time series	
80. Reject data based on extreme covariance	Use covariance distances to identify and remove artifact data	cov, sqrt, histogram
81. Effects of averaging on covariance matrices	Compare different ways of computing covariance matrices for "phase-locked" and "non-phase-locked" data	linspace, sin, bsxfun, repmat
82. Simulate tri-component timespace data	Combine forward models of sine, Gaussian, and linear slope to create spatiotemporal patterns	$\begin{array}{ll} meshgrid, & exp, & imagesc, & interp1 \end{array}$
83. Unsolved: Tri-component data without loops	Reproduce the multivariate dataset without any for-loops.	for
84. Space-based single channel interpolation	Corrupt random pixels in space-time data, and reconstruct using spatial interpolation	${\it ceil, set, scattered} \\ {\it Interpolant}$
85. Spatial smoothing on a grid of channels.	Add random noise to space-time data and removing using spatial convolution.	conv2, mean
86. Spatial sharpening via Laplacian.	Apply the Laplacian operator to sharpen the space-time dataset	conv2
	Time series analysis	
87. High-pass filter using FIR filter	High-pass filter a time series to remove slow trends.	firls, filtfilt, fft, floor, cumsum
88. Narrow-band filter via frequency-domain Gaussian	Apply a narrowband filter to broadband noise via circular convolution.	linspace, exp, ifft, bsxfun, dsearchn, diff, get/set
89. Causal vs. zero-phase-shift filter	See the difference between causal and acausal filter.	sin, exp, firls, filter,
90. Line noise notch filter	Use FIR filters to remove electrical line noise.	fir1, filtfilt, fft,
91. Compute envelope over peaky,	Use automated peak-detection to interpolate over	randperm, zscore, for, linspace,
noisy signal 92. Frequency-domain mean filter	maximum values. Show that the running-mean filter can be imple-	dsearchn, interp1, zoom tic/toc, mean, fft, bar
- v	mented (faster) in the frequency domain.	,
93. Create a "chirp" (FM signal)	Create signals with time-varying frequencies and compute instantaneous frequency.	sin, mean, fft, abs, angle, hilbert, unwrap, diff
94. Detrended fluctuation analysis	Compute the DFA (similar to Hurst exponent) of different colored noise.	randn, ifft, ceil, cumsum, detrend, reshape, sqrt, log10, legend

Number and Title	Description	Skills
 95. Power spectrum from FFT and Welch's method 96. Spectrogram of bird call 97. Phase-scramble narrowband time series 98. Hilbert transform 99. Oscillations in human brain recordings 100. Time frequency analysis via wavelet convolution 101. Unsolved: Time-frequency 	Spectral analysis Compute the power spectrum of a multispectral signal using two methods Show the time-frequency response of a bird call Produce narrowband random data, then see what happens when you scramble the phases. Implement the Hilbert transform Adapt existing code to see the spectral features of human electrical brain activity. Extract time-frequency power using complex Morlet wavelet convolution. Implement a time-frequency analysis of the spec-	fft, abs audioread, spectrogram, soundsc ifft, rand complex, ifft, 1i fft, abs, mean, linspace sin, deal, exp, fft, floor, contourf, subplot exp, sin, 1i, fft
analysis of interpolated signal	trally filtered corrupted time series.	
102. Unsolved: Plot vectors and compute lengths103. Hermitian vs. regular trans-	Matrix analysis Plot vectors in 2D and 3D and compute and report the vector lengths Learn the difference between Hermitian and regu-	sqrt, norm transpose, complex
pose 104. Create a symmetric matrix:	lar transpose, and why Hermitian is needed. Create a symmetric from asymmetric square ma-	transpose, reshape
Additive 105. Create a square symmetric matrix: Multiplicative	trix. Multiply a rectangular matrix by its transpose to get a square symmetric matrix.	transpose, imagesc, set
106. MxM matrix with rank M-1	Learn about matrix rank and create a reduced-rank matrix.	rank, randn, bsxfun, size
107. MxN matrix with rank r via SVD	Use matrix decomposition to create a reduced-rank approximation of a matrix.	svd, rank, title, norm
108. Create a random Hankel matrix	Two ways to create a Hankel matrix from a random vector.	hankel, numel, subplot
109. Unsolved: Element-wise Han- kel matrix with mod function	Find an alternative algorithm to create the Hankel matrix using matrix indexing.	hankel, for
110. Unsolved: Create a Toeplitz matrix	Repeat the Hankel matrix project but with a Toeplitz matrix	toeplitz, hankel
111. Eigenvectors of a Hankel matrix112. Compute a unit vector in some	Explore the rhythmic nature of eigenvectors of a Hankel matrix. Scale a vector to length=1 to obtain a unit vector	hankel, eig, sort, diff, sign, numel, diag norm
direction 113. Orthogonalize a pair of vectors	Decompose a vector into parallel and orthogonal components, relative to some other vector.	norm, orthogonalize, handle-visibility
114. Gram-Schmidt algorithm	Create an orthogonal matrix using the Gram-Schmidt algorithm	dot, norm, qr
115. Matrix inverse via QR decomposition	Use QR decomposition to compute the inverse of a matrix.	qr, inv
116. Visualize the quadratic form of a 2x2 matrix	Compute and make a surface of the quadratic form of a 2x2 matrix.	for, zeros, surf, rotate3d, shading
117. Eigenvectors and quadratic form	Compute and plot the eigenvectors of a matrix, and display on top of the quadratic form	eig
118. PCA of low-rank space-time data	Generate 3D data and perform a principal components analysis	eig, meshgrid
119. Covariance shrinkage regularization in PCA	Explore the effects of shrinkage of eigenvalues and eigenvectors	meshgrid, exp, reshape, pause, eig, sort, for, axis
120. Circular histogram	Circular distributions and analyses Generate histograms of uniform and bulged phase angle distributions.	sin, angle, hilbert, polarplot, rose
121. Compute and plot mean vector length	Comptue the average of a set of unit vectors.	angle, hilbert, mean, exp, polarplot
122. Phase difference between two distributions	Extract phase angles from two signals, and compute the variance of the phase angle differences.	angle, abs, hilbert, sin, detrend, set

Number and Title	Description	Skills
123. Unsolved: Sierpinksi triangle as dense matrix	Fractal time series and images Convert XY indices into a full matrix.	zeros, imagesc, round
124. Brownian motion	Show Brownian motion (random walk) in the time and frequency domains.	cumsum, fft, randn
125. Cantor set and devil's staircase	Compute the Cantor's set and its accompanying devil's staircase	repmat, reshape, plot
126. Unsolved: Initialize the Cantor set	Repeat the Cantor set with indexing instead of concatenation.	zeros, for, cat
127. Mandelbrot set	Create the "quadratic map," which leads to the famous fractal flower.	complex, meshgrid
128. Weierstrass function	Explore a member of the Weierstrass function family.	COS
129. Fractal circles and bubbles	Create circles and bubbles with radii drawn from a scale-free distribution	sin, cos, sphere, surf
	Nonparametric statistics	
130. 2D space of Wilcoxon effect sizes	Explore the mean-deviation space of Wilcoxon effects sizes	contourf, colorbar, ranksum
131. KL divergence of two distributions	Compute two probability densities and the KL divergence between them.	histcounts, isfinite
132. 2D space of KL divergences	Generate a space of KL distances based on distribution parameters.	histcounts, colormap
133. Permutation testing	Use permutation testing to determine whether two distributions are significantly different.	histogram, subplot
134. Bootstrapping for confidence intervals	Compute 95% confidence intervals around the mean of a distribution	mean, subplot, hist
135. Unsolved: bootstrapping medians	Create a complex function, split the distribution into three groups, and compute the median for each subgroup.	randsample, histogram, prctile, complex, isfinite
	Nonlinear model fitting	
136. Fit a Gaussian to a distribu-	Generate noisy Gaussian data, and find the pa-	exp, function handles, fmin-
tion 137. Two-piece linear regression	rameters that make a model best fit the data. Generate random data drawn from a triangle- distribution, and then piece a two-piece linear re-	search sqrt, hist, fminsearch
138. Fit a sine wave	gression to the data. Use several nonlinear search methods to identify the three sine-wave parametres of a given sine curve.	sin, fminsearch, plot
139. Fit a circle to a noisy ring	Fit rings to noisy circles and ovals.	cos, lsqnonlin, tic, toc, randn, fminsearch

Index

1i, 19, 98, 101	eig, 35, 111, 117–119 erf, 23
abs, 18, 19, 43, 51, 93, 95, 99, 122	errorbar, 28
align, 56	exp, 18, 19, 22, 24, 29, 30, 32, 37, 40, 46, 57, 59, 82, 88,
alphadata, 34	89, 100, 101, 119, 121, 136
angle, 19, 93, 120–122	ezmesh, 42
asin, 59	ezplot, 72
	czpiot, 12
atanh, 27	false, 47
audioread, 96	fft, 51, 56, 76, 87, 90, 92, 93, 95, 99–101, 124
audiorecorder, 51	
axes, 37	fgetl, 15
axis, 119	figure, 56
	filter, 89
bar, 28, 92	filtfilt, 87, 90
bsxfun, 28, 35, 36, 64, 81, 88, 106	find, 16, 20, 64, 65, 68, 73, 79
bwconncomp, 47, 74	fir1, 90
bwlabeln, 46	firls, 87, 89
, -	floor, 60, 61, 87, 100
cat, 126	fminsearch, 136–139
ceil, 84, 94	for, 8, 12, 13, 39, 49, 83, 91, 109, 116, 119, 126
cell2mat, 16	format, 9
	fplot, 69
cellfun, 7, 10, 47, 74	fprintf, 8, 14, 17
cells, 2	func2str, 58
char, 8	function, 56, 61
clc, 8	function handles, 136
clock, 14	function nandles, 150
colorbar, 130	Gaussian, 53
colormap, 132	get, 22
comments, 2	get/set, 29, 33, 42, 48, 56, 57, 88
complex, 19, 43, 52, 98, 103, 127, 135	ginput, 36
continue, 47, 74	
contour, 47	guidata, 57
contourf, 24, 100, 130	GUIDE, 57
conv, 45, 74	handles 56 57
conv2, 46, 85, 86	handles, 56, 57
cos, 37, 128, 129, 139	handlevisibility, 113
cov, 80	hankel, 108–111
cumsum, 35, 76, 87, 94, 124	hilbert, 93, 120–122
	hist, 27, 32, 47, 67, 134, 137
currentpoint, 48	histcounts, 131, 132
1 49	histogram, 32, 80, 133, 135
datacursormode, 63	
deal, 33, 74, 76, 100	if, 12
detrend, 35, 66, 76, 94, 122	ifft, 88, 94, 97, 98
diag, 111	imagesc, 31, 34, 47, 52, 67, 82, 105, 123
diff, 45, 66, 68, 70, 72, 74, 79, 88, 93, 111	imread, 34, 47
dir, 10	imresize, 34
disp, 3, 8, 9, 14	ind2sub, 16, 41
dot, 114	inline, 58
dsearchn, 20, 21, 66, 88, 91	inputdlg, 55
dsolve, 72	int, 71
~~~~=·~j •=	, • -

10 INDEX

interp1, 82, 91	randn, 13, 30, 32, 38, 79, 94, 106, 124, 139
interp2, 34	randperm, 73, 74, 91
inv, 115	randsample, 135
iqr, 32	rank, 106, 107
isempty, 61	ranksum, 130
isfinite, 131, 135	regexp, 7, 15
isnan, 16	repmat, 81, 125
	reshape, 94, 104, 119, 125
learning, 1	rose, 120
legend, 94	rotate3d, 39, 41, 42, 116
length, 20	round, 9, 73, 123
limit, 69	
linspace, 18, 20, 22, 29, 30, 38, 40, 45, 64, 81, 88, 91, 99	scatter, 29, 30
log, 18, 27, 29, 47, 67, 77	scatter3, 38, 41
$\log 10, 94$	scatteredInterpolant, 84
logical, 46	set, 5, 34, 49, 52, 53, 84, 105, 122
logspace, 34	shading, 40, 64, 116
lsqnonlin, 139	sign, 111
	sin, 19, 21, 30, 34, 37, 43, 66, 81, 89, 93, 100, 101, 120,
matrices, 6	122, 129, 138
$\max, 64-66, 73$	size, 106
mean, 28, 62, 85, 92, 93, 99, 121, 134	sort, 26, 60, 111, 119
median, 60, 73, 75	soundsc, 96
mesh, 44	spectrogram, 96
meshgrid, 34, 38, 40, 41, 46, 53, 72, 82, 118, 119, 127	sphere, 53, 129
min, 64, 65, 73, 77	sqrt, 12, 18, 24, 27, 35, 41, 80, 94, 102, 137
mod, 14	sscanf, 17
mode, 68	startup, 5
mouse, 48	std, 25, 28, 62
msgbox, 55	str2double, 15
	strcmp, 36
nan, 76	strcmpi, 15
nargin, 61	strfind, 7, 17
ndgrid, 37, 44	sub2ind, 64
nonzeros, 36	subplot, 28, 100, 108, 133, 134
norm, 102, 107, 112–114	subs, $70$
num2str, 3, 32, 45	sum, 67, 77
numel, 36, 108, 111	surf, 39, 40, 43, 64, 116, 129
options, 4	surfnorm, 44
orthogonalize, 113	svd, 107
orthogonalize, 115	switch, 14
patch, 33	syms, 69, 70
pause, 32, 49, 119	#:a 190
peolor, 31	tic, 139
peaks, 49	tic/toc, 92
pi, 9	tiedrank, 27
plot, 13, 18, 20, 29, 32, 66, 125, 138	title, 32, 107
plot3, 42, 64	toc, 139
polarplot, 120, 121	toeplitz, 110
polyfit, 77, 78	toggle, 15
polyval, 77, 78	transpose, 103–105
protile, 135	triu, 36
preferences, 4	uicontrol, 56
pretty, 70	uigetdir, 54
p.2000, 10	uigetfile, 54
qr, 114, 115	unique, 16
questdlg, 55	unwrap, 93
quiver, 72	urlread, 17
	••••
rand, 73, 97	var, 25
randi, 8	varargin, 61

INDEX 11

warning, 16 while, 11, 13, 15, 48, 51

xlsread, 16

zeros, 12, 20, 39, 116, 123, 126 zoom, 91 zscore, 45, 62, 91