Chapter 2 Configuration Space

- 2.1 DOF of a Rigid Body
- 2.2 DOF of a Robot
- 2.3 C-space Topology and Representation
- 2.4 Configuration and Velocity Constraints
- 2.5 Task Space and Workspace

Chapter 3	Rigid-Body Motions
Chapter 4	Forward Kinematics
Chapter 5	Velocity Kinematics and Statics
Chapter 6	Inverse Kinematics
Chapter 7	Kinematics of Closed Chains
Chapter 8	Dynamics of Open Chains
Chapter 9	Trajectory Generation
Chapter 10	Motion Planning
Chapter 11	Robot Control
Chapter 12	Grasping and Manipulation
Chapter 13	Wheeled Mobile Robest Snch and Park, Cambridge University Press

Important concepts, symbols, and equations

• k independent holonomic constraints on $(\theta_1, \dots, \theta_n)$ reduce an n-dim C-space to n-k dof.

$$g(\theta) = \begin{bmatrix} g_1(\theta_1, \dots, \theta_n) \\ \vdots \\ g_k(\theta_1, \dots, \theta_n) \end{bmatrix} = 0$$

- Pfaffian constraints are constraints on velocity: $A(\theta)\dot{\theta}=0$
- If velocity constraints can be integrated to equivalent configuration constraints, they are holonomic. If not, they are nonholonomic: they reduce the dimension of the feasible velocities, but not the dimension of the C-space.
- Determining if constraints are holonomic or nonholonomic is sometimes difficult (Chapter 13).

Important concepts, symbols, and equations (cont.)

- The task space is the space in which a task is most naturally represented. It is independent of a robot.
- The workspace is usually a specification of the reachable space by a robot (or its wrist, or end-effector).
 - Often defined in terms of (x,y,z) translational positions only.
 - Sometimes the dexterous workspace is the set of translational positions that can be reached with arbitrary orientation.

3R planar robot has its endpoint pinned by a revolute joint, making a four-bar linkage.

$$L_{1}\cos\theta_{1} + L_{2}\cos(\theta_{1} + \theta_{2}) + \dots + L_{4}\cos(\theta_{1} + \dots + \theta_{4}) = 0,$$

$$L_{1}\sin\theta_{1} + L_{2}\sin(\theta_{1} + \theta_{2}) + \dots + L_{4}\sin(\theta_{1} + \dots + \theta_{4}) = 0,$$

$$\theta_{1} + \theta_{2} + \theta_{3} + \theta_{4} - 2\pi = 0.$$

"loop-closure" equations

dof?

What does the C-space look like embedded in $(\theta_1, \theta_2, \theta_3, \theta_4)$?

What could be an explicit parameterization?

disk rolling upright on a plane

$$\left[egin{array}{c} \dot{x} \\ \dot{y} \end{array}
ight] = r\dot{ heta} \left[egin{array}{c} \cos\phi \\ \sin\phi \end{array}
ight]$$

$$q = [q_1 \ q_2 \ q_3 \ q_4]^{\mathrm{T}} = [x \ y \ \phi \ \theta]^{\mathrm{T}}$$

$$\begin{bmatrix} 1 & 0 & 0 & -r\cos q_3 \\ 0 & 1 & 0 & -r\sin q_3 \end{bmatrix} \dot{q} = 0$$

$$A(q)\dot{q} = 0, A(q) \in \mathbb{R}^{2\times4}$$

starting with n dof, add k holonomic constraints, m nonholonomic constraints

- a coin constrained to stand upright on a plane
- a coin constrained to roll upright on a plane

a wheel rolling on a line in the plane of the page

- a sphere touching a plane
- a sphere rolling on a plane

How many holonomic constraints k and nonholonomic constraints m?

A slice of a position-only workspace for a typical 6R robot (here, the Mecademic Meca500)

Task spaces for:

manipulating a rigid object?

operating a laser pointer?

carrying a tray of glasses to keep them vertical?