Chapitre VI - Variables aléatoires

II - Variables aléatoires discrètes

Exemple 2:

Reprenons la variable aléatoire Y égale au nombre de boules noires tirées au cours des deux tirages dans l'urne.

On a déjà calculé P(Y=2).

La loi de Y est :

y_i	0	1	2
$p(Y=y_i)$			

Exemple 2:

Reprenons la variable aléatoire Y égale au nombre de boules noires tirées au cours des deux tirages dans l'urne.

On a déjà calculé P(Y=2).

Pour (Y = 1), il y a 4 chemins de l'arbre qui permettent d'obtenir une et une seule boule noire.

Ainsi $P(Y = 1) = 0,4 \times 0,4 + 0,4 \times 0,2 + 0,4 \times 0,4 + 0,2 \times 0,4 = 0,48$

La loi de Y est:

y_i	0	1	2
$p(Y=y_i)$			

Exemple 2:

Reprenons la variable aléatoire Y égale au nombre de boules noires tirées au cours des deux tirages dans l'urne.

On a déjà calculé P(Y=2).

Pour (Y = 1), il y a 4 chemins de l'arbre qui permettent d'obtenir une et une seule boule noire.

Ainsi $P(Y=1)=0,4\times 0,4+0,4\times 0,2+0,4\times 0,4+0,2\times 0,4=0,48.$

La somme des probabilités étant égale à 1, on en déduit que :

$$P(Y = 0) = 1 - P(Y = 1) - P(Y = 2) = 0.36.$$

La loi de Y est :

y_i	0	1	2
$p(Y=y_i)$			

Exemple 2:

Reprenons la variable aléatoire Y égale au nombre de boules noires tirées au cours des deux tirages dans l'urne.

On a déjà calculé P(Y=2).

Pour (Y = 1), il y a 4 chemins de l'arbre qui permettent d'obtenir une et une seule boule noire.

 $0,4 \qquad 0,2 \qquad V$ $0,4 \qquad R \qquad 0,4 \qquad R$ $0,2 \qquad V$ $0,4 \qquad R$ $0,2 \qquad V$

Ainsi
$$P(Y=1)=0,4\times 0,4+0,4\times 0,2+0,4\times 0,4+0,2\times 0,4=0,48.$$

La somme des probabilités étant égale à 1, on en déduit que :

$$P(Y = 0) = 1 - P(Y = 1) - P(Y = 2) = 0.36.$$

La loi de Y est alors :

y_i	0	1	2
$p(Y=y_i)$	0,36	0,48	0, 16

Exemple 2:

Reprenons la variable aléatoire Y égale au nombre de boules noires tirées au cours des deux tirages dans l'urne.

On a déjà calculé P(Y=2).

Pour (Y=1), il y a 4 chemins de l'arbre qui permettent d'obtenir une et une seule boule noire.

Ainsi
$$P(Y = 1) = 0, 4 \times 0, 4 + 0, 4 \times 0, 2 + 0, 4 \times 0, 4 + 0, 2 \times 0, 4 = 0, 48$$
.

La somme des probabilités étant égale à 1, on en déduit que :

$$P(Y = 0) = 1 - P(Y = 1) - P(Y = 2) = 0.36.$$

La loi de Y est alors :

y_i	0	1	2
$p(Y=y_i)$	0,36	0,48	0, 16

Si on s'intéresse à la probabilité d'avoir au plus 1 boule noire lors de ce tirage, alors on détermine

$$P(Y \le 1) = P(Y = 0) + P(Y = 1) = 0.36 + 0.48 = 0.84.$$