Walmart Sales Forecasting

Pipitton Sanseeha 9/Jan/2023

Outline

- Executive summary
- Problem understanding
- Exploratory data analysis (EDA)
 - California
 - Texas
 - Wisconsin
 - Sales performance by state
 - Total
- Predictive analysis
- Conclusions

Executive summary

In this study, we examine Walmart sales in three states (California, Texas, and Wisconsin). First, we find business insight by doing exploratory data analysis. We found total sales depend on population density and month but do not depend on event. Finally, we employ a decision tree regression model to forecast revenues for the following 28 days. The model performs well.

Problem understanding

- Walmart is one of the notable retail corporation. They have provided sales data for stores in three states and includes item level, department, product categories, and store details.
- The goal of this study is to gain business insight and predict daily sales for the next 28 days.

Exploratory data analysis

How to calculate total sales

					Cale	inda		
					d	W	m_yr_wk	
Sales_train					d_1		_w_1	
Item_id	quantity	d			d_2		w_2	
Item_1	x_1	d_1 _			:			
Item_2	x_2	d_2			d_n		w_n	
	:			Sell prices				
Item_n	x_n	d_n		Item_id	wm_yr_	wk	sell_prio	ce
				Item_1	w_1	+	p_1	
				Item_2	w_2		p_2	
					:			
			·	Item_n	w_n	_	p_n	

Calendar

California (CA)

California (CA)

Texas (TX)

Texas (TX)

Wisconsin (WI)

Trend changed in 2013

Wisconsin (WI)

Sales performance by state

Sales performance by state

Sales performance by state

- CA_1 has the highest sales.
- CA_4 has the lowest sales.
- All stores in WI have contribute lower than 10% to the total sales.

Population density

TX and WI have the same population density. This might be the reason that total sales in TX and WI are roughly the same.

Sales performance of all store

Sales performance of all store

• We predict daily sales for the next 28 days by using a decision tree model.

Mo	del					
Input	target					
d_1	d_29		Train/test data for a decision tree mod			
d_2	d_30					
d_3	d_31					
:						
d_n-2	None		The next 20 days			
d_n-1	None		The next 28 days			
d_n	None					

• The model has r2 score of 0.92

$$r2(y, \hat{y}) = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

The data do not show a clear periodic trend.

There is no correlation between number of event and total sales.

Conclusions

Conclusions

- The highest sales are from CA.
- The food category has the highest sales, while hobbies and household items rank second and third, respectively.
- Total sales in each state depend on population density.
- Total sales increase every year.
- Total sales do not show a clear periodic function.
- Total sales do not depend on events.
- Total sales can be accurately predicted using our decision tree regression model

For the full report in Jupyter notebook

• https://github.com/pipitton-s/Coraline assignment