Master of Science on Computational Science

Institute of Computational Science

prof. Dr. Rolf Krause & Dr. Drosos Kourounis

17 Sep 2015, LAB1

Solution of Partial differential equations (PDEs)

Analytical methods can be used only in specific 2D or 3D geometries

Why Finite Elements?

Finite elements are flexible enough to handle

- Any geometry
- Inhomogeneous coefficients
- Anisotropic tensors fields
- Arbitrary boundary conditions

Lets see some examples ...

Aerodynamics

Structural Optimization

Brain, heart: biomedical applications

Source localization

Heart simulation

Reservoir simulation

Reservoir simulation

Inhomogeneous and anisotropic tensor fields (permeability)

Seismic Inversion

A framework for multi-scale seismic modelling and inversion (ETH Zurich)

Identifiability in FWI

$$\frac{\partial^2 \mathbf{u}}{\partial t^2} - \nabla \cdot \boldsymbol{\sigma} = \mathbf{f}$$

- Acoustic, elastic, poroelastic waves
- Algorithms aware of limited data
- Optimize seismic experiments

The linear system

After discretization in space or space and time we end up with

$$A x = b$$
, or in the time dependent case,
 $A_n x_n = b_n$

Solution techniques

- Direct sparse methods
- Iterative methods

Direct sparse solvers

Complexity in 2D

- $O(N^{1.5})$ factorization
- $O(N \log N)$ solution

Complexity in 3D

- $O(N^2)$ factorization
- $O(N^{1.5})$ solution

Available Software

- PARDISO
- UMFPACK, CHOLMOD
- SUPERLU
- MUMPS

Efficient linear algebra

- Permutations P and Q chosen to preserve sparsity and maintain stability in PAQ = LU.
- L = Lower triangular, U = Upper triangular (sparse)

Nested dissection permutation P

Nested dissection ordering on a 7×7 grid

Direct Sparse Solvers

PARDISO performance in 2D

mesh	El	memory			
nodes	init	fact	back-sub	total	MB
65175	0.704	0.265	0.019	0.988	26.0
263838	3.199	1.539	0.111	4.849	117.5
1068112	14.766	9.518	0.535	24.819	527.7

PARDISO performance in 3D

mesh	E	memory			
nodes	init	fact	back-sub	total	MB
32002	0.636	2.783	0.069	3.488	80.4
256011	6.925	185.469	1.428	193.8	1438.3
2000396	76.625	11762.1	21.46	11860	24403.0

Iterative Krylov subspace methods

They work with matrix-vector products Ay for given vectors y

Symmetric systems

- PCG
- MINRES
- SYMMLQ
- LSMR.
- SQMR

Nonsymmetric systems

- GMRES
- CGS
- BICGSTAB
- QMR
- LSQR

Preconditioners

$$A x = b$$

left:
$$P^{-1}A x = P^{-1}b$$

right:
$$AP^{-1} y = b$$
, $P x = y$

Iterative Krylov subspace methods

At each timestep of the simulation whether we solve linear or nonlinear PDEs we need to solve until convergence one or several linear systems:

At the *n*th timestep

$$A_n x_n = b_n$$

Left preconditioning

$$P_n^{-1}(A_n \ x_n) = P_n^{-1} \ b_n$$

High condition number

Lower condition number

Iterative Krylov subspace methods require only matrix-vector products Ay for given vectors y and depending on the type of the matrix we have

Symmetric matrices

- PCG
- MINRES

Nonsymmetric matrices

- GMRES
- BICGSTAB

Generalized minimum residual methods

GMRES(A,M,b,tol)

end while

$$x_0 = M^{-1}b, \ r_0 = b - Ax_0,$$

$$\beta = \|r_0\|_2 \ u_1 = \frac{r_0}{\beta}, \ k = 0$$
while
$$\|r_k\|_2 > \beta \ tol$$

$$k = k + 1 \ z_k = M^{-1}v_k, \ w = Az_k$$
for $i = 1, 2, \dots, k$ do
$$h_{i,k} = u_i^T w, \ w = w - h_{i,k}u_i$$
end for
$$h_{k+1,k} = \|w\|_2, \ u_{k+1} = \frac{w}{h_{k+1,k}}$$

$$V_k = [v_1, \dots, v_k]$$

$$H_k = \{h_{i,j}\}, \ 1 \le i \le j + 1, \ 1 \le j \le k$$

$$y_k = \operatorname{argmin}_y \|\beta e_1 - H_k y\|_2$$

$$x_k = x_0 + M^{-1}V_k \ y_k, \ r_k = b - A x_k$$

FGMRES(A,M,b,tol)

$$x_{0} = M_{0}^{-1}b, \ r_{0} = b - Ax_{0},$$

$$\beta = \|r_{0}\|_{2} \ u_{1} = \frac{r_{0}}{\beta}, \ k = 0$$
while
$$\|r_{k}\|_{2} > \beta \ tol$$

$$k = k + 1, z_{k} = M_{k}^{-1}v_{k}, \ w = Az_{k}$$
for $i = 1, 2, \dots, k$ do
$$h_{i,k} = u_{i}^{T}w, \ w = w - h_{i,k}u_{i}$$
end for
$$h_{k+1,k} = \|w\|_{2}, \ u_{k+1} = \frac{w}{h_{k+1,k}}$$

$$V_{k} = [v_{1}, \dots, v_{k}], \ Z_{k} = [z_{1}, \dots, z_{k}]$$

$$H_{k} = \{h_{i,j}\}, \ 1 \le i \le j + 1, \ 1 \le j \le k$$

$$y_{k} = \operatorname{argmin}_{y} \|\beta e_{1} - H_{k} \ y\|_{2}$$

$$x_{k} = x_{0} + Z_{k} \ y_{k}, \ r_{k} = b - A \ x_{k}$$
end while

Sophisticated iterative methods: domain decomposition

Our journey to the Finite Element realm

will step through

- the Mesh generation $(IO)^a$
- 2 the Discretization (Hexahedra/Tetrahedra)
- the Linear Algebra (Direct/Iterative solvers)
- the Sparse Linear Algebra
- **5** the **Implementation** in MATLAB^b
- **6** the **Assignments** in \LaTeX^c
- the Additional Software in FEnICS^d

```
<sup>a</sup>https://wci.llnl.gov/simulation/computer-codes/visit/
```

bhttp://www.mathworks.ch/moler/exm/book.pdf

^chttps://www.macports.org | \$sudo port install texlive +full

dhttp://fenicsproject.org