Package 'tidyspec'

June 12, 2025

Type Package

Title Spectroscopy Analysis Using the Tidy Data Philosophy

Version 0.1.0

Maintainer Marcel Ferreira <marcel.ferreira@unesp.br>

Description

Enables the analysis of spectroscopy data such as infrared ('IR'), Raman, and nuclear magnetic resonance ('NMR') using the tidy data framework from the 'tidyverse'. The 'tidyspec' package provides functions for data transformation, normalization, baseline correction, smoothing, derivatives, and both interactive and static visualization. It promotes structured, reproducible workflows for spectral data exploration and preprocessing. Implemented methods include Savitzky and Golay (1964) ``Smoothing and Differentiation of Data by Simplified Least Squares Procedures" <doi:10.1021/ac60214a047>, Sternberg (1983) ``Biomedical Image Processing" https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1654163>, Zimmermann and Kohler (1996) ``Baseline correction using the rolling ball algorithm" <doi:10.1016/0168-583X(95)00908-6>, Beattie and Esmonde-White (2021) ``Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra" <doi:10.1177/0003702820987847>, Wickham et al. (2019) ``Welcome to the tidyverse" <doi:10.21105/joss.01686>, and Kuhn, Wickham and Hvitfeldt (2024) ``recipes: Preprocessing and Feature Engineering Steps for Model-

ing" <https://CRAN.R-project.org/package=recipes>.

License MIT + file LICENSE

Encoding UTF-8 LazyData true

URL https://github.com/marceelrf/tidyspec

BugReports https://github.com/marceelrf/tidyspec/issues

RoxygenNote 7.2.3 Depends R (>= 4.1.0)

Imports crayon, dplyr, ggplot2, glue, plotly, purrr, recipes, readr, readxl, rlang, scales, signal, tibble, tidyr, tidyselect, timetk

Suggests gridExtra, knitr, rmarkdown, tidyverse

2 Contents

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2025-06-12 14:20:02 UTC

Contents

Index

check_wn_col
CoHAspec
demo_rolling_ball
plot_rolling_ball
rolling_ball 5
rolling_ball_morphology
set_spec_wn
smooth_baseline
spec_abs2trans
spec_blc_rollingBall
spec_bl_rollingBall
spec_diff
spec_filter
spec_norm_01
spec_norm_minmax
spec_norm_var
spec_pca
spec_pca_screeplot
spec_pca_wn_contrib
spec_read
spec_select
spec_smartplot
spec_smartplotly
spec_smooth_avg
spec_smooth_sga
spec_trans2abs

22

check_wn_col 3

check_wn_col

Check the Currently Set Wavenumber Column

Description

This function checks which column has been set as the default wavenumber column. If no column has been set, it prints a message prompting the user to define one.

Usage

```
check_wn_col(show_val = FALSE)
```

Arguments

show_val

Logical. If 'TRUE', the function returns the name of the current wavenumber column. Default is 'FALSE'.

Value

If 'show_val = TRUE', returns the name of the wavenumber column (character). Otherwise, it only prints a message.

Examples

```
set_spec_wn("Wavenumber") # Set the wavenumber column
check_wn_col() # Check which column is set
check_wn_col(show_val = TRUE) # Check and return the column name
```

CoHAspec

CoHAspec Dataset

Description

A dataset containing spectral absorbance measurements for different concentrations of CoHA.

Usage

CoHAspec

demo_rolling_ball

Format

A data frame with 6 rows and 5 columns:

Wavenumber Numeric. The spectral wavenumber (cm-1).

CoHA01 Numeric. Absorbance values for CoHA at 1 mM Cobalt concentration.

CoHA025 Numeric. Absorbance values for CoHA at 2.5 mM Cobalt concentration.

CoHA05 Numeric. Absorbance values for CoHA at 5 mM Cobalt concentration.

CoHA100 Numeric. Absorbance values for CoHA at 10 mM Cobalt concentration.

Source

de Almeida GS, Ferreira MR, da Costa Fernandes CJ, et al. Development of cobalt (Co)-doped monetites for bone regeneration. J Biomed Mater Res. 2024; 112(1):e35319. <doi:10.1002/jbm.b.35319>

Examples

```
data(CoHAspec)
head(CoHAspec)
```

demo_rolling_ball

Usage Example and Test

Description

Function to demonstrate the use of implemented functions

Usage

```
demo_rolling_ball(verbose = TRUE)
```

Arguments

verbose

Logical indicating whether to print progress messages

Value

A list containing two elements:

simple Results from the simple rolling ball methodmorphology Results from the mathematical morphology method

```
# Run the demonstration
demo_results <- demo_rolling_ball()

# Access results
simple_method <- demo_results$simple
morphology_method <- demo_results$morphology</pre>
```

plot_rolling_ball 5

plot_rolling_ball

Plot Rolling Ball Results

Description

Convenience function to visualize the results

Usage

```
plot_rolling_ball(
  result,
  title = "Rolling Ball Baseline Correction",
  x_values = NULL
)
```

Arguments

result Result from rolling_ball or rolling_ball_morphology function

title Plot title

x_values X-axis values (optional)

Value

No return value, called for side effects (creates a plot)

rolling_ball

Rolling Ball Baseline Correction

Description

Implements the rolling ball baseline correction method

Usage

```
rolling_ball(x, wm, ws = 0)
```

Arguments

x Numeric vector containing the spectrum	m/cional valuec
A INMINISTIC VECTOR CONTAINING THE SPECIF	ili signai vaiucs

wm Window width (ball radius). Larger values = smoother baseline

ws Smoothing window width (optional)

Value

A list with three components:

baseline Numeric vector containing the estimated baseline values
 corrected Numeric vector containing the baseline-corrected signal (original - baseline)
 original Numeric vector containing the original input signal

Examples

rolling_ball_morphology

Enhanced Rolling Ball with Mathematical Morphology

Description

More sophisticated version of rolling ball using mathematical morphology concepts

Usage

```
rolling_ball_morphology(x, radius, smooth = TRUE)
```

Arguments

x Numeric vector containing the spectrum/signal values

radius Radius of the structuring ball

smooth Apply additional smoothing (logical)

Value

A list with three components:

baseline Numeric vector containing the estimated baseline values using morphological operationscorrected Numeric vector containing the baseline-corrected signal (original - baseline)original Numeric vector containing the original input signal

set_spec_wn 7

set_spec_wn

Set the Default Wavenumber Column

Description

Defines a default wavenumber column name to be used by other functions in the package when 'wn_col' is not explicitly provided.

Usage

```
set_spec_wn(col_name)
```

Arguments

col_name

A string specifying the name of the wavenumber column.

Value

Invisibly returns the assigned column name.

See Also

```
[spec_select()]
```

Examples

```
set_spec_wn("Wavenumber")
```

smooth_baseline

Baseline Smoothing

Description

Auxiliary function to smooth the baseline using moving average

Usage

```
smooth_baseline(baseline, ws)
```

Arguments

baseline Vector with the baseline ws Smoothing window width

Value

Smoothed numeric vector of the same length as input

8 spec_blc_rollingBall

spec_abs2trans

Convert Absorbance Data to Transmittance

Description

This function converts absorbance data to transmittance using the formula $T=10^{(2-A)}$, where A is the absorbance and T is the transmittance.

Usage

```
spec_abs2trans(.data, wn_col = NULL)
```

Arguments

. data A 'data.frame' or 'tibble' containing spectral data in absorbance.

wn_col A character string specifying the column name for the wavelength data. Default is '"Wn"'.

Value

A 'tibble' with the converted transmittance data, containing the wavelength column and the numeric transmittance columns. Any rows with infinite values are removed.

```
spec_blc_rollingBall Apply Rolling Ball Baseline Correction to Spectral Data
```

Description

This function applies a rolling ball baseline correction to spectral data within a specified wavelength range. It allows for correction of either absorbance or transmittance data.

```
spec_blc_rollingBall(
   .data,
   wn_col = NULL,
   wn_min = NULL,
   wn_max = NULL,
   wm,
   ws = 0,
   is_abs = TRUE
)
```

spec_bl_rollingBall 9

Arguments

.data	A 'data.frame' or 'tibble' containing spectral data.
wn_col	A character string specifying the column name for the wavelength data. Default is '"Wn"'.
wn_min	A numeric value specifying the minimum wavelength to consider for the base-line correction.
wn_max	A numeric value specifying the maximum wavelength to consider for the base-line correction.
wm	A numeric value for the window size of the rolling ball algorithm.
WS	A numeric value for the smoothing factor of the rolling ball algorithm.
is_abs	A logical value indicating whether the data is already in absorbance. If 'TRUE', absorbance is used directly; if 'FALSE', the data is converted to absorbance before applying the baseline correction.

Value

A 'tibble' with the baseline-corrected spectral data, containing the wavelength column and the corrected numeric columns.

References

Baseline estimation performed using a custom rolling ball implementation.

```
spec_bl_rollingBall Extract Rolling Ball Baseline from Spectral Data
```

Description

This function extracts the rolling ball baseline from spectral data within a specified wavelength range. It returns only the baseline, not the corrected data.

```
spec_bl_rollingBall(
   .data,
   wn_col = NULL,
   wn_min = NULL,
   wn_max = NULL,
   wm,
   ws = 0,
   is_abs = TRUE
)
```

spec_diff

Arguments

.data	A 'data.frame' or 'tibble' containing spectral data.
wn_col	A character string specifying the column name for the wavelength data. Default is '"Wn"'.
wn_min	A numeric value specifying the minimum wavelength to consider for the base-line correction.
wn_max	A numeric value specifying the maximum wavelength to consider for the base-line correction.
wm	A numeric value for the window size of the rolling ball algorithm.
WS	A numeric value for the smoothing factor of the rolling ball algorithm.
is_abs	A logical value indicating whether the data is already in absorbance. If 'TRUE', absorbance is used directly; if 'FALSE', the data is converted to absorbance before extracting the baseline.

Value

A 'tibble' with the baseline data, containing the wavelength column and the baseline for each numeric column.

References

Baseline estimation performed using a custom rolling ball implementation.

spec_diff	Apply Differentiation to Spectral Data	

Description

This function applies numerical differentiation to spectral data, allowing for the calculation of the first or higher-order differences.

Usage

```
spec_diff(.data, wn_col = NULL, degree = 1)
```

Arguments

.data	A 'data.frame' or 'tibble' containing spectral data.
wn_col	A character string specifying the column name for the wavelength data. Default is '" Wn "'.
degree	A numeric value specifying the degree of differentiation. If 'degree' is 0, the original data is returned without any changes.

Value

A 'tibble' with the differentiated spectral data, containing the wavelength column and the differentiated numeric columns. If 'degree' is 0, the original data is returned.

spec_filter 11

spec	filter	

Filter spectral data by wavenumber range

Description

This function filters the spectral dataset based on a specified wavenumber ('wn') range. It requires the wavenumber column to be previously set using [set_spec_wn()]. If 'wn_min' and/or 'wn_max' are provided, the data will be filtered accordingly. If neither is provided, the original dataset is returned unchanged.

Usage

```
spec_filter(.data, wn_min = NULL, wn_max = NULL)
```

Arguments

wn_min Optional numeric value. Minimum wavenumber value to keep.
wn_max Optional numeric value. Maximum wavenumber value to keep.

Value

A filtered data frame based on the wavenumber column.

Examples

```
set_spec_wn("Wavenumber")
spec_filter(CoHAspec, wn_min = 500, wn_max = 1800)
```

spec_norm_01

Normalize Spectral Data to the [0, 1] Range

Description

This function normalizes the numeric spectral data in each column to the [0, 1] range, preserving the wavelength column.

Usage

```
spec_norm_01(.data, wn_col = NULL)
```

Arguments

. data A 'data.frame' or 'tibble' containing spectral data.

wn_col A character string specifying the column name for the wavelength data. Default

is "Wn".

spec_norm_var

Value

A 'tibble' with the normalized spectral data, containing the wavelength column and the normalized numeric columns.

spec_norm_minmax Normalize Spectral Data to a Specified Range	spec_norm_minmax	Normalize Spectral Data to a Specified Range	
---	------------------	--	--

Description

This function normalizes the numeric spectral data in each column to a specified range [min, max], preserving the wavelength column.

Usage

```
spec_norm_minmax(.data, wn_col = NULL, min = 0, max = 1)
```

Arguments

.data	A 'data.frame' or 'tibble' containing spectral data.
wn_col	A character string specifying the column name for the wavelength data. Default is '"Wn"'.
min	A numeric value specifying the minimum value of the desired range. Default is 0.
max	A numeric value specifying the maximum value of the desired range. Default is 1.

Value

A 'tibble' with the normalized spectral data, containing the wavelength column and the normalized numeric columns.

Description

This function standardizes the numeric spectral data in each column to have a mean of 0 and a standard deviation of 1 (unit variance), while preserving the wavelength column.

```
spec_norm_var(.data, wn_col = NULL)
```

spec_pca 13

Arguments

.data	A 'data.frame' or 'tibble' containing spectral data.
wn_col	A character string specifying the column name for the wavelength data. Default is "Wn".

Value

A 'tibble' with the standardized spectral data, containing the wavelength column and the standardized numeric columns.

spec_pca	Perform Principal Component Analysis (PCA) on Spectral Data	

Description

This function computes a Principal Component Analysis (PCA) on spectral data, excluding the wavenumber column from the analysis.

Usage

```
spec_pca(.data, wn_col = NULL, scale = TRUE, center = TRUE)
```

Arguments

.data	A data frame containing spectral data, with one column representing wavenumbers and the remaining columns containing spectral intensity values.
wn_col	A string specifying the name of the column that contains the wavenumber values. If NULL, the function attempts to retrieve the default wavenumber column set by 'set_spec_wn()'.
scale	A logical value indicating whether the spectral data should be scaled (default is TRUE).
center	A logical value indicating whether the spectral data should be centered (default is TRUE).

Value

A 'prcomp' object containing the PCA results, including principal components, standard deviations, and loadings.

```
set_spec_wn("Wavenumber")
pca_result <- spec_pca(CoHAspec)
summary(pca_result)</pre>
```

spec_pca_screeplot

spec_pca_screeplot Scree plot for PCA results

Description

Creates a customizable scree plot based on a 'prcomp' object showing variance explained by each component.

Usage

```
spec_pca_screeplot(
  pca,
  n = 10,
  show_labels = TRUE,
  show_cumulative = TRUE,
  bar_color = "steelblue",
  line_color = "darkred",
  show_kaiser = FALSE,
  title = "Scree Plot",
  subtitle = NULL,
  accuracy = 1
)
```

Arguments

A PCA object returned by [prcomp()]. рса Number of components to display. Defaults to 10. show_labels Logical. Show percentage labels on bars? Default is TRUE. show_cumulative Logical. Show cumulative variance line? Default is TRUE. bar_color Fill color for bars. Default is "steelblue". line_color Color of the cumulative line and points. Default is "darkred". show_kaiser Logical. Show Kaiser criterion line? Default is FALSE. Plot title. Default is "Scree Plot". title subtitle Optional plot subtitle. accuracy Number of decimal places for variance percentages. Default is 1.

Value

A ggplot2 scree plot object.

```
pca <- prcomp(USArrests, scale. = TRUE)
spec_pca_screeplot(pca, n = 4)
spec_pca_screeplot(pca, show_kaiser = TRUE, bar_color = "darkblue")</pre>
```

spec_pca_wn_contrib

spec_pca_wn_contrib

Compute Wavenumber Contributions to Principal Components

Description

This function calculates the contribution of each wavenumber to the principal components (PCs) in a PCA result. Contributions are computed as the squared loadings multiplied by 100.

This function calculates the contribution of each wavenumber to the principal components (PCs) in a PCA result. Contributions are computed as the squared loadings multiplied by 100.

Usage

```
spec_pca_wn_contrib(PCA)
spec_pca_wn_contrib(PCA)
```

Arguments

PCA

An object of class 'prcomp', containing the results of a principal component analysis.

Details

The function extracts the PCA loadings (rotation matrix) and computes the squared values of each loading, scaled to percentage values. This helps interpret the importance of each wavenumber in defining the principal components.

The function extracts the PCA loadings (rotation matrix) and computes the squared values of each loading, scaled to percentage values. This helps interpret the importance of each wavenumber in defining the principal components.

Value

A tibble containing the wavenumber column and the percentage contribution of each wavenumber to each principal component.

A tibble containing the wavenumber column and the percentage contribution of each wavenumber to each principal component.

```
pca_result <- spec_pca(CoHAspec)
wn_contrib <- spec_pca_wn_contrib(pca_result)
print(wn_contrib)

pca_result <- spec_pca(CoHAspec)
wn_contrib <- spec_pca_wn_contrib(pca_result)</pre>
```

spec_read

```
print(wn_contrib)
```

spec_read

Read Spectral Data from Various File Formats

Description

This function reads spectral data from a file, automatically detecting the format and using either 'readr' or 'readxl' functions. It also sets the specified wavenumber column as the default using 'set_spec_wn()'.

Usage

```
spec_read(file, wn_col, ...)
```

Arguments

file	Path to the file to be read.
wn_col	Character. Name of the column containing wavenumber values. This column will be set as the default wavenumber column.
• • •	Additional arguments passed to 'readr::read_delim()', 'readr::read_csv()', or 'readxl::read_excel()', depending on the file format.

Details

The function automatically determines the file format based on the extension: - '.txt', '.csv', '.tsv', and '.csv2' are read using 'readr' functions. - '.xls' and '.xlsx' are read using 'readxl::read_excel()'.

If the specified 'wn_col' does not exist in the data, an error is returned.

Value

A tibble containing the spectral data.

```
file_path <- system.file("extdata", "CoHAspec.csv", package = "tidyspec")
df <- spec_read(file_path, wn_col = "Wavenumber")
check_wn_col() # Verifica se a coluna de wavenumber está definida</pre>
```

spec_select 17

spec_select

Select Specific Columns in a Spectral Data Frame

Description

This function selects user-specified columns from a spectral dataset, always ensuring that the wavenumber column ('wn_col') is included, unless explicitly excluded.

Usage

```
spec_select(.data, ...)
```

Arguments

.data A data frame containing spectral data.... Column selection helpers (e.g., column names, -column_to_exclude).

Value

A data frame containing the selected columns.

See Also

```
[dplyr::select()], [set_spec_wn()]
```

spec_smartplot

Create a Custom Plot for Spectral Data

Description

This function generates a customizable plot for spectral data, allowing for the selection of plot type (absorbance or transmittance), x-axis direction, and plot geometry (points or lines).

```
spec_smartplot(
   .data,
   wn_col = NULL,
   xdir = c("reverse", "standard"),
   geom = c("point", "line"),
   xmin = NULL,
   xmax = NULL,
   alpha = 0.8,
   type = c("absorbance", "transmittance")
)
```

spec_smartplotly

Arguments

.data	A 'data.frame' or 'tibble' containing spectral data.
wn_col	A character string specifying the column name for the wavelength or wavenumber data. This parameter is required.
xdir	A character string specifying the direction of the x-axis. Choices are "reverse" for reverse direction (typically used for wavenumber) or "standard" for standard direction.
geom	A character string specifying the geometry of the plot. Choices are "point" for a scatter plot or "line" for a line plot.
xmin	A numeric value specifying the minimum x-axis value for the plot. If not provided, the minimum value from the 'wn_col' data will be used.
xmax	A numeric value specifying the maximum x-axis value for the plot. If not provided, the maximum value from the 'wn_col' data will be used.
alpha	A numeric value specifying the transparency level of the plotted points or lines. Default is 0.8.
type	A character string specifying the y-labes as transmittance or absorbance. Default is absorbance.

Value

A 'ggplot' object representing the customized spectral plot (absorbance or transmittance as a function of wavelength/wavenumber).

spec_smartplotly

Create an Interactive Plot for Spectral Data using Plotly

Description

This function generates an interactive Plotly plot for spectral data, allowing for the selection of plot type (absorbance or transmittance), x-axis direction, and plot geometry (points or lines).

```
spec_smartplotly(
   .data,
   wn_col = NULL,
   type = c("absorbance", "transmittance"),
   xdir = c("reverse", "standard"),
   geom = c("point", "line"),
   xmin = NULL,
   xmax = NULL,
   alpha = 0.8
)
```

spec_smooth_avg 19

Arguments

.data	A 'data.frame' or 'tibble' containing spectral data.
wn_col	A character string specifying the column name for the wavelength or wavenumber data. Default is "Wn".
type	A character string specifying the type of data to plot. Choices are "absorbance" or "transmittance".
xdir	A character string specifying the direction of the x-axis. Choices are "reverse" for reverse direction (typically used for wavenumber) or "standard" for standard direction.
geom	A character string specifying the geometry of the plot. Choices are "point" for a scatter plot or "line" for a line plot.
xmin	A numeric value specifying the minimum x-axis value for the plot. If not provided, the minimum value from the 'wn_col' data will be used.
xmax	A numeric value specifying the maximum x-axis value for the plot. If not provided, the maximum value from the 'wn_col' data will be used.
alpha	A numeric value specifying the transparency level of the plotted points or lines. Default is 0.8.

Value

A 'plotly' object representing the interactive spectral plot.

spec_smooth_avg	Apply Smoothing to Spectral Data Using a Moving Average	

Description

This function applies a moving average smoothing to numeric spectral data using a specified window size and polynomial degree, while preserving the wavelength column.

Usage

```
spec_smooth_avg(.data, wn_col = NULL, window = 15, degree = 2)
```

Arguments

.data	A 'data.frame' or 'tibble' containing spectral data.
wn_col	A character string specifying the column name for the wavelength data. Default is '"Wn"'.
window	A numeric value specifying the window size for the moving average smoothing. Default is 15.
degree	A numeric value specifying the degree of the polynomial for smoothing. Default is 2.

20 spec_trans2abs

Value

A 'tibble' with the smoothed spectral data, containing the wavelength column and the smoothed numeric columns.

spec_smooth_sga

Apply Savitzky-Golay Smoothing to Spectral Data

Description

This function applies Savitzky-Golay smoothing to numeric spectral data using a specified window size, polynomial order, and differentiation degree, while preserving the wavelength column.

Usage

```
spec_smooth_sga(.data, wn_col = NULL, window = 15, forder = 4, degree = 0)
```

Arguments

.data	A 'data.frame' or 'tibble' containing spectral data.
wn_col	A character string specifying the column name for the wavelength data. Default is "Wn".
window	A numeric value specifying the window size for the Savitzky-Golay smoothing. Default is 15.
forder	A numeric value specifying the polynomial order for smoothing. Default is 4.
degree	A numeric value specifying the degree of differentiation. Default is 0 (no differentiation).

Value

A 'tibble' with the smoothed spectral data, containing the wavelength column and the smoothed numeric columns.

spec_trans2abs	Convert Spectral Data from Transmittance to Absorbance	

Description

This function converts transmittance data to absorbance using the formula 'A = $2 - \log 10(T)$ ', where 'T' is the transmittance. It also filters out any infinite values resulting from the transformation, while preserving the wavelength column.

```
spec_trans2abs(.data, wn_col = NULL)
```

spec_trans2abs 21

Arguments

.data A 'data.frame' or 'tibble' containing spectral data.

wn_col A character string specifying the column name for the wavelength data. Default

is "Wn".

Value

A 'tibble' with the converted absorbance data, containing the wavelength column and the absorbance numeric columns.

Index

```
* datasets
    CoHAspec, 3
check_wn_col, 3
CoHAspec, 3
{\tt demo\_rolling\_ball, 4}
{\tt plot\_rolling\_ball}, {\tt 5}
rolling_ball, 5
rolling_ball_morphology, 6
set_spec_wn, 7
smooth_baseline, 7
spec_abs2trans, 8
spec_bl_rollingBall, 9
spec\_blc\_rollingBall, 8
{\tt spec\_diff}, {\color{red} 10}
spec_filter, 11
spec_norm_01, 11
{\tt spec\_norm\_minmax}, {\tt 12}
spec_norm_var, 12
spec_pca, 13
{\tt spec\_pca\_screeplot}, {\tt 14}
spec_pca_wn_contrib, 15
spec_read, 16
spec_select, 17
spec_smartplot, 17
spec_smartplotly, 18
spec_smooth_avg, 19
spec_smooth_sga, 20
spec_trans2abs, 20
```