Applications Rationnelles et Systèmes Linéaires en Géométrie Projective

Marco Ramponi

§1. ÉCHAUFFEMENT

Dans le plan \mathbb{R}^2 , un cercle C est donné par une équation de la forme :

$$C: x^2 + y^2 + ax + by + c = 0.$$

Le rayon r de C est tel que $4r^2=\alpha^2+b^2-4c>0$. Le centre de C est le point $(-\alpha/2,-b/2)$. Il est naturel d'identifier C avec un point $(\alpha,b,c)\in\mathbb{R}^3$ qui satisfait $\alpha^2+b^2-4c>0$. Notons $\mathcal N$ le paraboloïde de $\mathbb R^3$ d'équation 1

$$\mathcal{N}: a^2 + b^2 - 4c = 0.$$

L'espace de cercles est donc la région Ω des points de \mathbb{R}^3 externes à \mathcal{N} ,

$$\Omega = \{(a, b, c) \in \mathbb{R}^3 : a^2 + b^2 - 4c > 0\}.$$

EXERCICE. Considérons une droite ℓ dans \mathbb{R}^3 d'équations paramétriques

$$\ell = \{(a + tm, b + tn, c + tp) : t \in \mathbb{R}\},$$

Décrire la famille de cercles correspondent dans \mathbb{R}^2 . Dessiner (avec l'ordinateur si on préfère) des exemples des familles dans les cas :

- (i) ℓ droite verticale (par exemple m = n = 0, p = 1).
- (ii) ℓ intersecte N dans 2 points.
- (iii) ℓ intersecte \mathcal{N} dans 1 point (elle est tangente).
- (iv) ℓ n'intersecte pas \mathcal{N} .

EXERCICE. Décrire le lieu de \mathbb{R}^3 qui représente les cercles des rayon 1 qui passent par l'origine de \mathbb{R}^2 .

L'exemple des cercles représente un cas particulier d'un phénomène général qui se produit en géométrie algébrique. Comme d'habitude, tout devient beaucoup plus symétrique si on considère nos objets définit sur $\mathbb C$ plutôt que sur $\mathbb R$ et si on se place dans le contexte *projectif*, plutôt que le contexte *affine*.

Soit \mathbb{P}^n l'espace projectif complexe n-dimensionnel, c'est à dire l'ensemble des classes d'équivalence des vecteurs $(x_0,\ldots,x_n)\in\mathbb{C}^{n+1}\setminus\{0\}$, où on considère équivalents tout vecteurs sur la même droite passant par l'origine de

^{1.} ${\cal N}$ est une surface obtenue par rotation d'une parabole sur le plan XZ atour de l'axe Z.

 \mathbb{C}^{n+1} . Dit autrement, on considère l'action de \mathbb{C}^* sur \mathbb{C}^{n+1} définie par multiplication scalaire et on prend le quotient :

$$\mathbb{P}^n = \frac{\mathbb{C}^{n+1} \setminus \{0\}}{\mathbb{C}^*}.$$

La classe d'équivalence de $(x_0, ..., x_n)$ est dénotée $(x_0 : ... : x_n) = x \in \mathbb{P}^n$. L'expression $x = (x_0 : ... : x_n)$ est dite expression de x en cordonnées homogènes.

Plus généralement, si V est un espace vectoriel sur \mathbb{C} on dénote avec

$$\mathbb{P}(V) = \frac{V \setminus \{0\}}{\mathbb{C}^*}$$

l'espace projectif associé.

EXERCICE. Donner l'exemple d'une fonction f = f(x) sur \mathbb{P}^n , à valeurs dans \mathbb{C} , en terme des cordonnées homogènes de $x \in \mathbb{P}^n$. Est-t-elle bien définie ?

Un hyperplan de \mathbb{P}^n est définit par une équation de la forme

$$a_0x_0 + \cdots + a_nx_n = 0.$$

On remarque que pour tout $\lambda \in \mathbb{C}^*$, si on substitue a_i avec λa_i , l'équation ne change pas. Ainsi, un tel hyperplan est complètement déterminé par un point $(a_0 : \ldots : a_n) \in \mathbb{P}^n$. Soit $|\mathcal{O}(1)|$ l'espace qui paramétrise tout hyperplan de \mathbb{P}^n . Il s'agit d'un espace projectif de dimension n, selon la correspondance

$$\alpha_0 x_0 + \dots + \alpha_n x_n = 0 \longleftrightarrow (\alpha_0 : \dots : \alpha_n) \in \mathbb{P}^n \simeq |\mathcal{O}(1)|.$$

Donc, on dit que l'espace des hyperplan de \mathbb{P}^n est de dimension n. Plus généralement, une hypersurface de degré $d \in \mathbb{N}$ est définie par

$$F(x_0,\ldots,x_n)=0,$$

où F est un polynôme homogène de degré d, c'est à dire

$$F(\lambda x_0, \dots, \lambda x_n) = \lambda^d F(x_0, \dots, x_n) \quad \forall \lambda \in \mathbb{C}^*$$

Soit $|\mathcal{O}(d)|$ l'espace qui paramétrise toute hypersurfaces de degré d de \mathbb{P}^n .

EXERCICE. Calculer la dimension de $|\mathcal{O}(d)|$.

EXERCICE. Calculer la dimension du sous-espace $\mathcal{S} \subset |\mathcal{O}(d)|$ donné par les hypersurfaces de degré d de \mathbb{P}^n qui passent par le point $\mathfrak{p}=(1:0:\ldots:0)$.

Par exemple, une conique dans le plan \mathbb{P}^2 est définie par

$$C: a_{00}x_0^2 + a_{01}x_0x_1 + a_{02}x_0x_2 + a_{11}x_1^2 + a_{12}x_1x_2 + a_{22}x_2^2 = 0.$$

L'équation ne change pas si on la multiplie par $\lambda \in \mathbb{C}^*$. Ainsi, on obtient une correspondance biunivoque {coniques de \mathbb{P}^2 } \longleftrightarrow {points de \mathbb{P}^5 }, en associant à C le point de \mathbb{P}^5 qui correspond au vecteur des coefficients \mathfrak{a}_{ij} de C.

EXERCICE. Décrire le lieu de \mathbb{P}^5 qui représente les coniques qui passent par $p \in \mathbb{P}^2$.

EXERCICE. Soit A la matrice symétrique $A=(\alpha_{ij})$ associée à C. Alors C est irréductible 2 si et seulement si $\det A \neq 0$. Décrire le lieu $\Delta \subset \mathbb{P}^5$ qui correspond aux coniques réductibles. Décrire le sous-ensemble $V \subset \Delta$ qui correspond aux "double droites", i.e. aux coniques de la forme $(\alpha x_0 + b x_1 + c x_2)^2 = 0$.

^{2.} une conique réductible est l'union de deux droites (pas nécessairement différentes).

§2. DÉFINITION D'APPLICATION RATIONNELLE

On dénotera l'espace vectoriel de polynômes homogènes de degré d avec

$$S_d = \mathbb{C}[x_0, \dots, x_n]_d$$
.

Une variété projective est un sous-ensemble X de \mathbb{P}^n de la forme

$$X = \{f_1 = \dots = f_k = 0\} \subset \mathbb{P}^n \quad (f_i \in S_{d_i})$$

REMARQUE. On supposera toujours X lisse et irréductible.

EXEMPLE. Si $X = \{f = 0\}$, on dit que X est une *hypersurface* de \mathbb{P}^n . Par exemple, la *surface quadrique* dans l'espace est définie par

$$Q = \{x_0x_3 - x_1x_2 = 0\} \subset \mathbb{P}^3.$$

Peut-on définir des fonctions sur \mathbb{P}^n ? Plus généralement, sur une variété X dans \mathbb{P}^n ? Malheureusement, un polynôme homogène $f \in S_d$ ne définit pas une fonction. Par contre, si $f,g \in S_d$, alors

$$\frac{f(\lambda x)}{g(\lambda x)} = \frac{f(x)}{g(x)},$$

et donc f/g donne quelque chose de bien défini, pour (presque) tout $x \in X$, au moins si on suppose que g ne soit pas identiquement nulle sur X. Plus précisément, soit $I(X) := \{\text{polynômes homogènes } g \text{ tel que } g|_X \equiv 0\}.$

Définition. Le corps des fonctions rationnelles de X est

$$\mathbb{C}(X) := \{f/g : f, g \in S_d, g \notin I(X)\}/\sim$$

où $f/g \sim f'/g'$ si et seulement si fg' et f'g sont égales sur X, i.e. $fg'-f'g \in I(X)$. On dit que une fonction rationnelle $f \in \mathbb{C}(X)$ est *régulière dans* $x \in X$ si on peut écrire f(x) = g(x)/h(x) avec $h(x) \neq 0$. Le *domaine* dom(f) est défini comme l'ensemble des points réguliers. Soit $U \subset X$ un ouvert. On dit que f est *régulière dans* U si on à $U \subset dom(f)$. On dénotera

$$\mathcal{O}(U) = \{\text{fonctions regulieres dans } U\}.$$

On dit qu'on à une *application rationnelle* f de X vers \mathbb{P}^m si pour tout $x \in X$ on peut écrire

$$f(x) = (f_0(x) : ... : f_m(x)),$$

avec $f_i \in \mathbb{C}(X)$. L'ensemble des *points réguliers* est dénoté toujours avec dom(f), et définit par : $x \in \text{dom}(f)$ si on peut écrire $f(x) = (f_0(x) : \dots : f_m(x))$, avec

- (i) $x \in dom(f_i)$, pour tout i = 0, ..., m.
- (ii) $f_i(x) \neq 0$, pour au moins un j.

L'image de f est définie par $\operatorname{Im}(f) = f(\operatorname{dom} f)$. Vu que f n'est pas toujours définie partout, on écrit $f: X \dashrightarrow \mathbb{P}^m$. Plus généralement, si $W \subset \mathbb{P}^m$ est une variété et $\operatorname{Im}(f) \subset W$ on à une application rationnelle de X vers W et on écrit

$$f: X \dashrightarrow W$$
.

Si dom(f) = X, on appel f un *morphisme* et on écrit $f : X \to W$.

EXEMPLES

- (i) $f: \mathbb{P}^1 \longrightarrow \mathbb{P}^3$, $f(x_0: x_1) = (x_0^3: x_0^2x_1: x_0x_1^2: x_1^3)$. Tout les points de \mathbb{P}^1 sont réguliers pour f. Il s'agit donc d'un morphisme $f: \mathbb{P}^1 \longrightarrow \mathbb{P}^3$.
- (ii) $f: \mathbb{P}^2 \dashrightarrow \mathbb{P}^5$, $f(x_0: x_1: x_2) = (x_0^2: x_0x_1: x_0x_2: x_1^2: x_1x_2: x_2^2)$. Est-elle définie partout? L'image est appelée *surface de Veronese* $V \subset \mathbb{P}^5$.
- (iii) $f: \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$, $f(x_0: x_1: x_2) = (x_1x_2: x_0x_2: x_0x_1)$. Ce n'est pas défini pour trois points $a, b, c \in \mathbb{P}^2$. On observe que $f \circ f = id_{\mathbb{P}^2}$. L'application f est appelée *transformation de Cremona*.
- (iv) $f: \mathbb{P}^3 \dashrightarrow \mathbb{P}^2$, $f(x_0: x_1: x_2: x_3) = (x_1: x_2: x_3)$ est définie partout sauf en un point p. On peut voir que pour tout $q \neq p$, l'image f(q) est le point d'intersection de la droite $\ell = \langle p, q \rangle$ avec le plan $\mathbb{P}^2 = \{x_0 = 0\} \subset \mathbb{P}^3$. L'application f est appelée *projection par* p *sur un hyperplan*.
- (v) Soit f comme dans le dernier exemple et soit g la restriction de f à la quadrique $Q = \{x_0x_3 x_1x_2 = 0\} \subset \mathbb{P}^3$. On obtient une application rationnelle $g: Q \dashrightarrow \mathbb{P}^2$, qui est inversible : on peut inverser g par l'application rationnelle $h: \mathbb{P}^2 \dashrightarrow Q$, $h(x_1: x_2: x_3) = (x_1x_2/x_3: x_1: x_2: x_3) \in Q$. Ainsi, on dit que Q et \mathbb{P}^2 sont deux surfaces *birationnelles*.

§3. DIVISEURS

Soit $X \subset \mathbb{P}^n$ une variété (lisse, irréductible). En gros, une sous-variété de X de codimension 1 est un sous-ensemble $Y \subset X$ qui est localement le lieu des zéros d'une fonction régulière de X. Un peu plus précisément, pour quelque recouvrement $X = \bigcup U_i$, on veut $Y \cap U_i = \{f_i = 0\}$, avec $f_i \in \mathcal{O}(U_i)$.

On est pas complètement satisfaits avec cette définition car, par exemple elle ne distingue pas la droite $x_0 = 0$ dans \mathbb{P}^2 par la double droite $x_0^2 = 0$.

Définition. Une sous-variété de X de codimension 1 de X est un sous-ensemble $Y \subset X$ tel que pour quelque recouvrement $X = \bigcup U_i$, on à $Y \cap U_i = \{f_i = 0\}$, avec $f_i \in \mathcal{O}(U_i)$ qui satisfaisait la condition suivante :

si
$$g \in \mathcal{O}(U_i)$$
 est telle que $g|_Y \equiv 0$ alors $g/f_i \in \mathcal{O}(U_i)$.

Cette condition implique en particulier $f_i/f_j \in \mathcal{O}(U_i \cap U_j)$ et, par symétrie, aussi $f_j/f_i \in \mathcal{O}(U_i \cap U_j)$. Dit autrement, on à f_i/f_j régulier et sans zéros sur l'intersection $U_i \cap U_j$. On écrit donc $f_i/f_j \in \mathcal{O}^*(U_i \cap U_j)$. Finalement, avec cette définition, une sous-variété Y de X est la donnée Y = (U_i, f_i) d'une famille des fonctions régulières $f_i \in \mathcal{O}(U_i)$ satisfaisant la condition écrite dessous, qui implique en particulier la condition (plus faible)

$$\frac{f_i}{f_j} \in \mathcal{O}^*(U_i \cap U_j).$$

On peut facilement généraliser cette situation.

Définition. Un *diviseur* (*de Cartier*) sur une variété X est la donnée d'une famille $D = (U_i, g_i)$, où $X = \bigcup U_i$ et $g_i \in \mathbb{C}(U_i)$ satisfaisants la condition

$$\frac{g_i}{g_i} \in \mathcal{O}^*(U_i \cap U_j).$$

- Si toute g_i sont régulières, i.e. $g_i \in \mathcal{O}(U_i)$, on appel D *effectif* et on écrit $D \geq 0$. C'est le cas le plus intéressant : on peut imaginer un diviseur effectif comme une somme, possiblement avec des multiplicités, de sousvariété de codimension 1 de X.
- Si la donnée des g_i est tout simplement celle d'une seule fonction rationnelle globale $g \in \mathbb{C}(X)$, i.e. $D = (U_i, g|_{U_i})$, on dit que D est un diviseur *principal* et on écrit D = (g).
- Souvent, pour $D=(U_{\mathfrak{i}},g_{\mathfrak{i}})$ on va tout simplement écrire $D=(g_{\mathfrak{i}}).$

En gros, on s'intéresse surtout aux diviseurs effectifs, mais voici la raison principale pour introduire le concept de diviseur : l'ensemble des diviseurs de X, qu'on va dénoter avec $\mathrm{Div}(X)$ a la structure d'un groupe. Si $D, D' \in \mathrm{Div}(X)$ on définit la somme D+D' comme le diviseur qui à pour famille de fonctions le produit des celles de D et D', c'est à dire $D+D'=(g_ig_i')$. En particulier, on remarque que pour $D=(g_i)$ on à $-D=(1/g_i)$.

Les diviseurs principales forment un sous-groupe de Div(X). Comme on considère les diviseurs principales des objets "triviales" dans ce cadre, on les mets à la corbeille en prenant le quotient : on définit le *groupe de Picard* de X,

$$Pic(X) := Div(X) / \sim$$

où $D \sim D'$ si et seulement si D - D' est un diviseurs principal, c'est à dire $D - D' = (g_i/g_i') = (g)$, pour quelque fonction rationnelle $g \in \mathbb{C}(X)$.

EXEMPLE. Regardons le cas de l'espace projectif $X = \mathbb{P}^n$. Soit Y une hypersurface de \mathbb{P}^n , donnée par le lieu des zéros d'un polynôme homogène $F \in S_d$. On à un recouvrement standard de $\mathbb{P}^n = \bigcup U_i$, avec $U_i = \{x_i \neq 0\} \simeq \mathbb{A}^n$. Alors

$$Y = (U_i, q_i) \in Div(\mathbb{P}^n),$$

où les g_i sont les fonctions régulières $g_i = F/x_i^d \in \mathcal{O}(U_i)$.

Soit H un hyperplan de \mathbb{P}^n , définit par $\{L=0\}$ avec $L\in S_1$. On observe :

$$Y - dH = (F/x_i^d) - (L^d/x_i^d) = (F/L).$$

Y-dH est ainsi un diviseur principal, donné par la fonction rationnelle globale $F/L \in \mathbb{C}(\mathbb{P}^n)$. Donc $Y-dH \sim 0$, i.e. $Y \sim dH$. On en déduit que le groupe de Picard de \mathbb{P}^n est isomorphe à \mathbb{Z} , et engendré par la classe de H, c'est à dire

$$Pic(\mathbb{P}^n) = \mathbb{Z}[H].$$

§4. Systèmes linéaires

Soit $D = (g_i)$ un diviseur sur une variété X (lisse, irréductible).

Définition. Le système linéaire (complet) associé à D est

$$|D| := \{ \text{diviseurs effectifs D}' \text{ tels que D}' \sim D \}.$$

Définition. Une *section* de D est une fonction rationnelle $s \in \mathbb{C}(X)$ tel que

$$sg_{\mathfrak{i}}\in \mathcal{O}(U_{\mathfrak{i}}).$$

L'ensemble $\mathcal{L}(D)$ des sections de D est naturellement un espace vectoriel. Si $s \in \mathcal{L}(D)$ n'est pas la section zero, alors on peut lui associer un diviseur effectif $(s) + D \geq 0$. On va le dénoter avec

$$div(s) := (s) + D.$$

Évidemment div(s) $\in |D|$.

On peut maintenant observer que |D| est un espace projectif :

- (i) si $D' \in |D|$ alors $D' = (g'_i) \sim (g_i) = D$. Donc $g'_i = sg_i$, pour quelque $s \in \mathbb{C}(X)$. Évidemment $s \in \mathcal{L}(D)$ et div(s, D) = D'.
- (ii) si s, s' $\in \mathcal{L}(D)$ alors $div(s, D) \sim div(s', D)$.
- (iii) $\operatorname{div}(s, D) = \operatorname{div}(\lambda s, D)$ pour tout $\lambda \in \mathbb{C}^*$.

Enfin, on en déduit que

$$|D| \simeq \mathbb{P}(\mathcal{L}(D)).$$

Connaître la dimension de $\mathcal{L}(D)$ devient évidemment un problème intéressant, dit *problème de Riemann-Roch*. Un résultat d'immense importance en géométrie algébrique c'est le *théorème de Riemann-Roch-Hirzebruch*. Il s'agit d'une formule pour dim $\mathcal{L}(D)$ en terme de propriétés cohomologiques de D.

Définition. Soit $D \in Div(X)$. Un *système linéaire* est un sous-espace linéaire

$$\mathcal{S} \subset |D|$$
.

C'est à dire, $S = \mathbb{P}(V)$ pour quelque sous-espace vectoriel $V \subset \mathcal{L}(D)$.

Concrètement, si on choisi une base s_0, \ldots, s_k de $V \subset \mathcal{L}(D)$ on a

$$\mathcal{S} = \{D_{\mathfrak{a}}\}_{\mathfrak{a} \in \mathbb{P}^k},$$

où, pour $\mathfrak{a}=(\mathfrak{a}_0:\ldots:\mathfrak{a}_k)$, le diviseur $D_\mathfrak{a}\in\mathcal{S}$ s'écrit comme combinaison

$$D_{\alpha} = a_0 \operatorname{div}(s_0) + \cdots + a_k \operatorname{div}(s_k).$$

EXEMPLE. Soit $X=\mathbb{P}^n$ et D une hypersurface de \mathbb{P}^n . Alors on sait $D\sim dH$, où $H=\mathbb{P}^{n-1}\subset \mathbb{P}^n$ est un hyperplan. Soit $H=\{L=0\}$, pour quelque $L\in S_1$. Alors $D=(g_i)$ avec $g_i=L^d/x_i^d$ dans le recouvrement standard. On remarque que effectivement

$$\frac{g_\mathfrak{i}}{g_\mathfrak{j}} = \left(\frac{x_\mathfrak{j}}{x_\mathfrak{i}}\right)^d \in \mathcal{O}^*(U_\mathfrak{i} \cap U_\mathfrak{j}).$$

Considérons maintenant un polynôme $G \in S_d$. Alors la fonction rationnelle $s = G/L^d$ est une section de D, car $sg_i = G/x_i^d \in \mathcal{O}(U_i)$. On remarque aussi que $div(s,D) = (G/x_i^d)$ est le diviseur de l'hypersurface définie par G = 0.

Finalement, on obtient une injection $S_d \hookrightarrow \mathcal{L}(D)$. Avec un peu d'effort on peut tout à fait démontrer qu'il s'agit d'un isomorphisme

$$S_d \simeq \mathcal{L}(D)$$
.

En particulier, on obtient dim $\mathcal{L}(D) = \binom{n+d}{n}$ et

$$|D| \simeq \mathbb{P}(\mathbb{C}[x_0, \dots, x_n]_d).$$

§5. SYSTÈMES LINÉAIRES ET APPLICATIONS RATIONNELLES

Soit $D=(g_i)$ un diviseur sur une variété X (lisse, irréductible). Supposons $\dim \mathcal{L}(D)>0$. Alors $|D|=\mathbb{P}(\mathcal{L}(D))=\mathbb{P}^N$. Soit s_0,\ldots,s_N une base de $\mathcal{L}(D)$. Alors on obtient une application rationnelle $f_D:X\dashrightarrow |D|=\mathbb{P}^n$, définie par

$$f(x) = (s_0(x) : ... : s_N(x)).$$

Elle n'est pas définie dans le lieu de base de D, l'ensemble

Bs
$$|D| := \{x \in X : s(x) = 0 \text{ pour tout } s \in \mathcal{L}(D)\}.$$

Géométriquement, le lieu de base est l'intersection des toute sous-variété de codimension 1 définies par les diviseurs effectifs du système linéaire |D|.

En particulier, f_D est un morphisme si et seulement si Bs |D| est vide.

De façon similaire, si $\mathcal{S} \subset |D|$ est un système linéaire on obtient une application rationnelle $f_{\mathcal{S}}$, en choisissant une base de $W \subset \mathcal{L}(D)$, où $\mathcal{S} = \mathbb{P}(W)$.

EXEMPLE. Soit $H = \mathbb{P}^{n-1} \subset \mathbb{P}^n$ un hyperplan et $p \in \mathbb{P}^n$. Considérons

$$S = \{\text{hyperplans par p}\} \subset |H|$$
.

On voit bien que S est un hyperplan dans |H|. En fait, si $\mathfrak{p}=(\mathfrak{p}_0:\ldots:\mathfrak{p}_n)$ et si l'équation de H est donnée par $\mathfrak{a}_0x_0+\cdots+\mathfrak{a}_nx_n=0$ alors

$$S \simeq \{(a_0:\ldots:a_n) \in \mathbb{P}^n: a_0p_0+\cdots+a_np_n=0\} \simeq \mathbb{P}^{n-1}.$$

Par exemple, soit p = (1 : 0 : ... : 0). Alors $S = \{a_0 = 0\}$ et en terme de sections on peut choisir la base $S = \mathbb{P}(\langle x_1, ..., x_n \rangle)$. On obtient

$$f_S(x_0:...:x_n) = (x_1:...:x_n),$$

application rationnelle qu'on appel projection par p sur un hyperplan.

EXEMPLE. Dans \mathbb{P}^2 , on considère le systèmes complet des coniques |2H| et

$$S = \{\text{coniques par } \alpha \text{ et } b\} \subset |2H|,$$

où a et b sont deux point fixes de \mathbb{P}^2 . De façon tout à fait similaire à l'exemple précédent, la condition de passer par un point est équivalente à une condition linéaire, i.e. à "couper" avec un hyperplan dans $|2H| \simeq \mathbb{P}^5$. Donc

$$\dim S = \dim |2H| - 2 = 3.$$

Alors $f_S: \mathbb{P}^2 \dashrightarrow \mathbb{P}^3$ et l'image de f est une quadrique de \mathbb{P}^3 . Par exemple, si a=(1:0:0) et b=(0:1:0) on peut choisir la base

$$\mathcal{L}(2H) = \langle x_0^2, x_0 x_1, x_0 x_2, x_1^2, x_1 x_2, x_2^2 \rangle.$$

Alors $S = \mathbb{P}(\langle x_0 x_1, x_0 x_2, x_1 x_2, x_2^2 \rangle)$ et on obtient

$$f_{\mathcal{S}}(x_0:x_1:x_2)=(x_0x_1:x_0x_2:x_1x_2:x_2^2).$$

et son image est la quadrique $Q = \{z_0z_3 - z_1z_2\} \subset \mathbb{P}^3$.

EXEMPLE. On fixe trois points pas alignés $a, b, c \in \mathbb{P}^2$ et on considère

$$S = \{\text{coniques par } a, b \text{ et } c\} \subset |2H|,$$

Alors dim S=2 et f_S est une transformation de Cremona $f_S:\mathbb{P}^2\dashrightarrow\mathbb{P}^2$, qui n'est pas définie pour \mathfrak{a} , \mathfrak{b} et \mathfrak{c} . Par exemple, si \mathfrak{a} et \mathfrak{b} sont comme dans le dernier exemple et $\mathfrak{c}=(0:0:1)$ on obtient l'involution de \mathbb{P}^2 définie par

$$f_{\mathcal{S}}(x_0:x_1:x_2)=(x_0x_1:x_0x_2:x_1x_2)=(\frac{1}{x_2}:\frac{1}{x_1}:\frac{1}{x_0}).$$

Que se passe-t-il si on choisi a, b, c sont sur une droite?

Exemple. On fixe 8 points $p_{\mathfrak i}$ en position générale 3 dans $\mathbb P^2$ et on considère

$$\mathcal{S} = \{ \text{cubiques de } \mathbb{P}^2 \text{ par les } p_i \} \subset |3H|.$$

Alors dim $S = \dim |3H| - 8 = 1$ et $S = \{C_{\lambda,\mu}\}_{(\lambda:\mu)\in\mathbb{P}^1}$ est un *pinceau* engendré par deux cubiques, i.e. chaque cubique de S s'écrit comme combinaison

$$C_{\lambda,\mu} = \lambda C_0 + \mu C_{\infty}$$
.

Par conséquent, si p est le neuvième point d'intersection de C_0 et C_{∞} , toutes les $C_{\lambda,\mu}$ doivent aussi passer par p. On à obtenu un résultat classique :

THEOREM. Si une cubique C passe par 8 points d'intersections de deux cubiques C' et C" alors C passe aussi par le neuvième point d'intersection de C' et C".

^{3.} Ils ne sont pas trois sur une droite, ni six sur une conique.