CSCI 4061 Discussion 6

2/26/18

Overview

- Hard Links
- Soft Links
- Dynamic Memory Management
- Exercise

Links

- A reference to a file.
- Cheaper than duplicating
- Changes made to the inode from any link are visible via all links.

Hard Links

- Reference a file's inode.
- Are not effected by name changes.
- Count of hard links maintained by OS.
 - When count == 0, file/inode is deleted.

Soft Links

- Reference a file by name.
- Soft links can be 'bad' if the file/link they referenced is deleted/renamed.
- Count is not maintained.
- A file with soft links may be deleted.

Istat and readlink

- Istat(char*, struct stat*) performs stat(), but if the file is a soft link, the data is about the link, not the file.
 - S_ISLNK(stat->st_mode);

 readlink(char* path, char* buff, int size) places the name of the file referenced by path in buff. Does not null-terminate the string.

Dynamic Memory Management

- Memory allocated statically is placed on the stack.
 - Without the use of malloc
 - Does <u>not</u> persist after returning from function calls.
- Memory allocated dynamically is placed on the heap.
 - Allocated using malloc.
 - Persists after function calls.
 - If not freed, can lead to memory leaks.

Exercise

- For this exercise, we will observe the performance of performing a 'shallow copy' with link() and a deep copy using read/write(). Takes in 3 arguments, the old directory and the names of two new directories for the shallow and deep copies.
- Finish writing shallowCopy(), which creates hard links in a new directory to every file in the old directory.
- Finish writing deepCopy(), which actually copies all the files in the old directory to the new one.
- Record the time it takes to copy the whole directory in each case and print out the results.