ANALISI MATEMATICA III A.A. 2006-2007

Tracce delle lezioni del 7 e 8 febbraio 2007

February 8, 2007

1 Derivazione

Teorema (Derivazione) Sia $f \in C^1(\mathbb{R})$ e $f \in L^1(\mathbb{R}), f' \in L^1(\mathbb{R})$. Allora

$$\mathfrak{F}\left\{f'\right\} = j\omega\mathfrak{F}\left\{f\right\}.$$

Corollario Sia $f \in C^N(\mathbb{R})$ e $f \in L^1(\mathbb{R}), f' \in L^1(\mathbb{R}), \dots, f^{(N)} \in L^1(\mathbb{R}).$ Allora

$$\mathfrak{F}\left\{f^{(N)}\right\} = (j\omega)^N \mathfrak{F}\left\{f\right\}.$$

In particolare, se $f \in C^2(\mathbb{R})$ e $f \in L^1(\mathbb{R}), f' \in L^1(\mathbb{R}), f'' \in L^1(\mathbb{R}),$ allora

$$\mathfrak{F}\left\{ f^{''}\right\} = -\omega^2 \mathfrak{F}\left\{ f\right\}.$$

Si osservi che l'ipotesi " $f \in C^1(\mathbb{R})$ " nel precedente Teorema non può essere tralasciata, come mette in luce l'esempio dell'impulso rettangolare.

2 Integrabilità della trasformata

Ricordiamo la formula dell'antitrasformata:

Teorema Sia $f \in L^1(\mathbb{R})$ e si supponga inoltre che f sia sviluppabile in serie di Fourier in ogni intervallo chiuso [-L, L]. Ciò premesso si ha

$$f(t) = \frac{1}{2\pi} v.p. \int_{-\infty}^{+\infty} F(\omega) e^{j\omega t} d\omega.$$
 (1)

Se $F \in L^1(\mathbb{R})$ allora l'integrale in (1) converge non solo nel senso del valore principale, ma anche in senso generalizzato (0 improprio). In altre parole, se $F \in L^1(\mathbb{R})$ la formula dell'antitrasformata diviene

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega)e^{j\omega t} d\omega.$$
 (2)

Se $f \in L^1(\mathbb{R})$ puo' accadere che la sua trasformata $F = \mathfrak{F}\{f\}$ non appartenga a $L^1(\mathbb{R})$, come illustra, ad esempio il caso dell'impulso rettangolare. Pertanto, come si dice, lo spazio L^1 non è chiuso rispetto all'operatore "trasformata di Fourier".

Condizioni sufficienti affinchè la trasformata appartenga a $L^1(\mathbb{R})$ si ottengono come immediata conseguenza del teorema della derivazione. Si hanno infatti i seguenti:

Corollario 1 Sia $f \in C^n(\mathbb{R}), f.$ $f',, f^{(n)} \in L^1(\mathbb{R}); allora F = o(\omega^{-n})$ per $|\omega| \to \infty$, ossia

$$\lim_{|\omega| \to \infty} \frac{F(\omega)}{\omega^{-n}} = 0$$

dove $F = \mathfrak{F}\{f\}$.

Il significato di tale Corollario è il seguente: "la trasformata di Fourier F di una funzione $f \in L^1(\mathbb{R})$ tende a zero (per $|\omega| \to +\infty$) tanto più velocemente, quanto più f è "liscia" (e con derivate in $L^1(\mathbb{R})$)"

Corollario 2 Sia $f \in C^2(\mathbb{R}), f.$ $f', f'' \in L^1(\mathbb{R}); allora <math>F \in L^1(\mathbb{R})$ (equindi nella formula della antitrasformata si può omettere la sigla v.p., in quanto, in tal caso, (1) e (2) coincidono.

3 Il Teorema del campionamento

Un'importante applicazione della trasformata di Fourier nell'ambito della trasmissione di segnali è data dal Teorema di Shannon (o del campionamento) : si veda Cap. 3.14 in M. Marini "Metodi Matematici per lo studio delle reti elettriche", Edizioni Cedam, 1999.

4 Altre proprietà

1. Integrazione - Siano $f,g\in L^1(\mathbb{R})$, dove $g(t)=\int_{-\infty}^t f(\tau)d\tau$. Posto $F(\omega)=\mathfrak{F}\left\{f\right\}$, si ha

$$\mathfrak{F}\left\{g\right\} = \frac{F(\omega)}{j\omega}.$$

Poiché la trasformata di Fourier in $L^1(\mathbb{R})$ è una funzione continua per ogni $\omega \in \mathbb{R}$, dalla proprietà precedente si ha anche il

Corollario Siano $f, g \in L^1(\mathbb{R})$, dove $g(t) = \int_{-\infty}^t f(\tau) d\tau$. Posto $F(\omega) = \mathfrak{F}\{f\}$, si ha

$$\lim_{\omega \to 0} F(\omega) = 0.$$

2. Convoluzione - Siano $f, g \in L^1(\mathbb{R})$. Si chiama prodotto di convoluzione di $f \in g$, e si indica con f * g, la funzione

$$(f * g)(t) = \int_{-\infty}^{+\infty} f(\tau)g(t - \tau)d\tau.$$

Tale definizione è lecita, nel senso che è possibile provare che

$$f, g \in L^1(\mathbb{R}) \Longrightarrow f * g \in L^1(\mathbb{R}).$$

Teorema - Siano $f,g\in L^1(\mathbb{R})$. Posto $F(\omega)=\mathfrak{F}\left\{f\right\},G(\omega)=\mathfrak{F}\left\{g\right\},$ si ha

$$\mathfrak{F}\{f*g\} = F(\omega)G(\omega).$$

Se **inoltre** f, g sono nulle sul semiasse negativo, ossia se per t < 0 si ha

$$f(t) = g(t) = 0,$$

allora è immediato verificare che (per t > 0)

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau)d\tau.$$
 (3)

Il prodotto di convoluzione interviene nella risolubilità di equazioni (o sistemi) differenziali lineari a coefficienti costanti. A titolo di esempio, per l'equazione lineare scalare

$$y' = cy + b(t), \tag{4}$$

dove c è una costante reale e b una funzione continua (a tratti) in $[0, \infty)$ si ha

$$y(t) = e^{ct}y(0) + e^{ct} * b(t).$$
 (5)

Si osservi che la funzione e^{ct} è una soluzione dell'equazione lineare omogenea

$$x'(t) = cx(t); (6)$$

precisamente è la soluzione x di (6) tale che x(0) = 1. La formula (5) mette in luce che per la risolubilità di (4) è sufficiente allora determinare tale soluzione. Così, ad esempio, tutte le soluzioni di

$$y' + 7y = \frac{2t}{t^2 + 1}$$

sono date da

$$y(t) = e^{-7t}y(0) + e^{-7t} * \frac{2t}{t^2 + 1}.$$

5 Trasformata di Laplace

5.1 Definizione

Introduzione, Preliminari, Funzioni di classe Λ , ascissa di convergenza: si veda Cap. 1.1, 1.2, 1.3 del testo M. Marini "Metodi Matematici per lo studio delle reti elettriche", Edizioni Cedam, 1999.

Si ha poi il seguente:

Teorema. Sia $f \in \Lambda$ e sia α_f la sua ascissa di convergenza. Allora la funzione $f(t)e^{-xt} \in L^1(\mathbb{R})$ per ogni $x > \alpha_f$.

In virtù di tale teorema, possiamo porre allora la seguente

Definizione. Sia $f \in \Lambda$ e sia α_f la sua ascissa di convergenza. Si chiama **trasformata di Laplace di** f, e si indica con L[f(t)], la trasformata di Fourier di $f(t)e^{-xt}$, con $x > \alpha_f$, ossia

$$L[f(t)] = \mathfrak{F}\left\{f(t)e^{-xt}\right\}, \ dove \ x > \alpha_f. \tag{7}$$

Ricordando la definizione di trasformata di Fourier, si ottiene allora la ben nota

$$L[f(t)] = F(s) = \int_0^{+\infty} f(t)e^{-st}dt$$

dove s è un qualunque numero complesso con Re $s = x > \alpha_f$.

5.2 Principali proprietà

Sia $f \in \Lambda$, α_f la sua ascissa di convergenza e F(s) = L[f(t)] la sua trasformata di Laplace. Allora:

- F è analitica per ogni s tale che $\operatorname{Re} s > \alpha_f$.
- Vale il seguente

$$\lim_{\mathrm{Re}\,s\to+\infty}F(s)=0.$$

• linearita'.

$$L[c_1 f(t) + c_2 g(t)] = c_1 L[f(t)] + c_2 L[g(t)]$$

dove anche $g \in \Lambda$ e c_i , i = 1, 2, sono numeri complessi.

• traslazione temporale.

$$L[f(t-A)] = F(s)e^{-As}$$
, con $A > 0$;

• traslazione in frequenza (o smorzamento).

$$L[f(t)e^{\gamma t}] = F(s - \gamma), \text{ con } \gamma \in \mathbb{C};$$

• derivazione. Sia $f \in C^1[0, +\infty), f, f' \in \Lambda$. Allora

$$L[f'(t)] = sF(s) - f(0+)$$

dove $f(0+) = \lim_{t\to 0+} f(t)$.

• integrazione. Posto $g(t) = \int_0^t f(r) dr$, sia anche $g \in \Lambda$. Allora

$$L[g(t)] = \frac{F(s)}{s}$$

Si confrontino queste proprietà con le "corrispondenti" viste per la trasformata di Fourier, evidenziandone le analogie e differenze.

5.3 Formula di Bromwich-Mellin

Si veda Cap. 1.13.1, 1.13.2, del testo M. Marini "Metodi Matematici per lo studio delle reti elettriche", Edizioni Cedam, 1999.

Formula di Bromwich-Mellin - Sia $f \in \Lambda$ e sia α_f la sua ascissa di convergenza. Sia inoltre f sviluppabile in serie di Fourier in $[0, L], \forall L > 0$. Indicata con F(s) = L[f(t)] la sua trasformata di Laplace, si ha per t > 0

$$f(t) = \frac{1}{2\pi j} v.p. \int_{x-j\infty}^{x+j\infty} F(s)e^{st}ds$$

dove $x > \alpha_f$.

Tale formula, nota anche sotto il nome di formula di Riemann-Fourier, puo' essere facilmente ottenuta dalla formula di inversione per la trasformata di Fourier e da (7).

Nel caso in cui F sia razionale, vale il seguente:

Teorema Sia F razionale. Allora esiste $f \in \Lambda$ tale che F(s) = L[f(t)] se e solo se F è propria.

Utilizzando poi la teoria dei residui e il Lemma di Jordan, si puo' provare il seguente:

Teorema Sia F razionale propria, F(s) = N(s)/D(s) con N, D polinomi primi tra loro. Allora l'antitrasformata di Laplace di F(s) è data, per t > 0, dalla funzione

$$f(t) = \sum_{s_i} \text{Res}[F(s)e^{st}, s_i],$$

dove s_i rappresentano gli zeri del polinomio D, i.e. le singolarità di F.

6 Equazioni differenziali lineari - Richiami

Si consideri l'equazione differenziale lineare del secondo ordine omogenea

$$y'' + a(x)y' + b(x)y = 0 (8)$$

dove le funzioni a, b sono continue a tratti in un intervallo I dell'asse reale. Allora:

- 1. Per ogni $x_0 \in I$ e per ogni $c_1, c_2 \in \mathbb{R}$ esiste un'unica soluzione y = y(x) di (8) tale che $y(x_0) = c_1, y'(x_0) = c_2$.
- 2. Ogni soluzione di (8) è persistente, ossia è definita in tutto l'intervallo $\cal I$
- 3. L'insieme delle soluzioni di (8) è uno spazio lineare di dimensione 2 .