CSI 3131 Winter 2023 Operating Systems

Instructor: Mohammad Alnabhan

E-mail: Malnabha@uottawa.ca

Office: STE 5084

Office Hours: Monday @ 3:00 PM - 4:00 PM

Course Website: Brightspace

Enquiry Center: Brightspace Discussion Group – NO EMAILS

Textbook and Reading

Course Notes:

Made available on PDF files

Textbook:

 Operating System Concepts by Silberchatz, Galvin, Gange, 10th Ed., John Wiley & Sons Inc., 2018

Other useful books:

- "Operating Systems: Internals and Design Principles" by William Stallings, 9th Ed., Pearson, 2018.
- "Modern Operating Systems" by Andrew S. Tanenbaum, 4th Ed., Pearson, 2015.

Schedule

Lectures:

Tuesdays	16:00 – 17:20	STE B0138
Thursdays	14:30 – 15:50	STE B0138

Lab/Tutorial

Tutorials 1 (Thurs)	16:00 – 17:20	CRX C030
Tutorials 2 (Thurs)	16:00 – 17:20	CRX C040
Lab 1 (Tues)	17:30 – 18:50	CBY B02
Lab 2 (Thurs)	17:30 - 18:50	CBY B02

Labs and Tutorials will start in Week 2.

- Tutorials: Theoretical exercises.
- Labs: To gain experience with tools used to complete the assignments.

Grading

Assignements (A): 15% 3 or 4 (20% if 4 assignments)

Participation: 5% (NEW)

Midterm (M): 30%

Final Exam (E): 50%

Attendance Policy:

- A minimum of 80% attendance policy is being forced.
- No marks on attendance, but we will counting participations during lectures.
- Extra marks may depend on attendance and participation

You must have at least 50% on M+E to pass the course.

Assignments and Exams

Assignments

- C-programming under Unix/Linux (process creation/IPC)
- Process synchronization using semaphores (in Java)
- Implementing parts of a basic OS in a simple simulator (in Java)

Exams

- Closed book
- Diverse format: multiple choice, answer questions, solve problems
- Need to know and understand concepts and algorithms, as well as being able to apply this knowledge

Midterm

- February 16, 2022 (Thursday, 14:30 15:20 during Class)
- Tentative material, Module 1 to 5, Process synchronization (Ch 1 to 6 in textbook).

Final

Comprehensive, with more weight on post-midterm topics (TBD)

Office Hours and After Lectures

What are students expecting:

- During Lectures? The kind of questions the professor will answer!
- After Lectures questions?
- During Labs?
- During Tutorials?
- Professor Office hour?
- □ TA Office hour?

Course Organization Questions?

Course Objectives

You are expected to:

- Learn basic concepts and principles behind the design of operating systems
- Get exposed to the problems operating systems designers face, explore the tradeoffs and solutions to these problems
- See how are these issues solved in practice in real operating systems
- Be able to apply these concepts and techniques in relevant circumstances
- Get some hands-on experience programming OS type problems (process creation, inter-process-communications, process synchronization, mutual exclusion, deadlock avoidance)

Topics Covered

- What Operating Systems Do
- Computer-System Organization
- Computer-System Architecture
- Operating-System Structure
- Operating-System Operations
- Process Management
- Memory Management
- Storage and I/O Management
- Protection and Security
- Distributed Systems
- Special-Purpose Systems
- Computing Environments

Background/intro

The main stuff

Advanced topics, not covered

Topics Covered

Introduction/Background/Overview

- Computer systems overview
- Operating systems overview: interface, system calls, design and implementation issues, OS structure

Process Management

- Processes and threads
- Interprocess communication
- CPU scheduling algorithms and criteria
- Process/thread synchronization problems and solutions
- Deadlocks prevention, avoidance, detection, recovery

Topics Covered (contd.)

Memory Management

- Basic main memory management (swapping, contiguous memory allocation, paging, segmentation)
- Virtual memory (demand paging, copy-on-write, page replacement, allocating kernel memory)

Storage Management and Input/Output

- File-System interface (files, directories, mounting file system, file sharing)
- File-System implementation
- Mass-storage structure (disk structure, scheduling, management)
- Swap space management
- I/O systems (hardware, application I/O interface, kernel I/O subsystem)