مسئلهی فروشندهی دورهگرد

یک الگوریتمِ PTAS برای حالت اقلیدسی

عليرضا محموديان

دی ۱۳۹۷

مسئلهی فروشندهی دورهگرد

مسئله

پیداکردنِ دورِ همیلتونی با هزینهی کمینه

- در حالتِ کلی تقریبپذیر نیست.
- $^{\circ}$ تابعِ هزینهی متریک \rightarrow تقریب با فاکتورِ $^{\circ}$
 - PTAS \leftarrow تابع هزينهي اقليدسي \bullet

- ساختِ نمونهی تقریبپذیر از روی نمونهی اصلی
- هزینهی دورِ بهینهی نمونهی تقریبپذیر با هر تقریبِ دلخواه به
 حواب اصلی نادیک میشود (PTAS)
 - بدستآوردن جوابِ خوشرفتار در زمان چندجملهای (DP)
 - جواب خوشرفتار PTAS نیست
 - وجود جوابِ PTAS با تحلیل تصادفی

- ساختِ نمونهی تقریبپذیر از روی نمونهی اصلی
- هزینهی دورِ بهینهی نمونهی تقریبپذیر با هر تقریبِ دلخواه به جوابِ اصلی نزدیک میشود (PTAS)
 - بدستآوردن جوابِ خوشرفتار در زمان چندجملهای (DP)
 - جواب خوشرفتار PTAS نیست
 - وجود جوابِ PTAS با تحليلِ تصادفی

Y IF

- ساختِ نمونهی تقریبپذیر از روی نمونهی اصلی
- هزینهی دورِ بهینهی نمونهی تقریبپذیر با هر تقریبِ دلخواه به جوابِ اصلی نزدیک میشود (PTAS)
 - بدستآوردن جواب خوشرفتار در زمان چندجملهای (DP)
 - جواب خوشرفتار PTAS نیست
 - وجود جوابِ PTAS با تحلیل تصادفی

Y 14

- ساختِ نمونهی تقریبپذیر از روی نمونهی اصلی
- هزینهی دورِ بهینهی نمونهی تقریبپذیر با هر تقریبِ دلخواه به جواب اصلی نزدیک میشود (PTAS)
 - بدستآوردنِ جوابِ خوشرفتار در زمانِ چندجملهای (DP)
 - جواب خوشرفتار PTAS نیست
 - وجود جواب PTAS با تحلیل تصادفی

Y 14

- ساختِ نمونهی تقریبپذیر از روی نمونهی اصلی
- هزینهی دورِ بهینهی نمونهی تقریبپذیر با هر تقریبِ دلخواه به جواب اصلی نزدیک میشود (PTAS)
 - بدستآوردن جواب خوشرفتار در زمان چندجملهای (DP)
 - جواب خوشرفتار PTAS نیست
 - وجود جوابِ PTAS با تحليلِ تصادفی

تعريف

ا. اندازهی نمونه، n، توانی از ۲ باشد

۲. مختصاتِ هر گره اعدادی صحیح در بازهی $[0,O(n)]^d$ باشند

۳. یال با هزینهی کمتر از ۴ نداشته باشد

۱۴ <u>۱</u>۴

تعريف

- ۱. اندازهی نمونه، n، توانی از ۲ باشد
- ۲. مختصاتِ هر گره اعدادی صحیح در بازهی $[0,O(n)]^d$ باشند
 - ۳. یال با هزینهی کمتر از ۴ نداشته باشد

1k

تعريف

- ا. اندازهی نمونه، n، توانی از ۲ باشد
- ۲. مختصاتِ هر گره اعدادی صحیح در بازهی $[0,O(n)]^d$ باشند
 - ۳. یال با هزینهی کمتر از ۴ نداشته باشد

"

- به نمونهی اولیه به تعدادِ کافی گرهی تکراری
 میافزاییم تا اندازهی آن توانی از دو شود.
 - آن را با کوچکترین مربعِ ممکن محصور

 - واضح استُ که این کار دورِ بهینه را تغییر نمیدهد.

Ik

- به نمونهی اولیه به تعدادِ کافی گرهی تکراری
 میافزاییم تا اندازهی آن توانی از دو شود.
 - آن را با کوچکترین مربعِ ممکن محصور ک

 - واضح است که این کار دورِ بهینه را تغییر نم دهد.

. Ik

- به نمونهی اولیه به تعدادِ کافی گرهی تکراری
 میافزاییم تا اندازهی آن توانی از دو شود.
 - آن را با کوچکترین مربعِ ممکن محصور - کند
 - برای ϵ زوج، نمونه را تاجایی بزرگ میکنیم که طول ضلع مربع برابر با $8n/\epsilon$ شود.
 - واضح است که این کار دورِ بهینه را تغییر نمیدهد.

- به نمونهی اولیه به تعدادِ کافی گرهی تکراری
 میافزاییم تا اندازهی آن توانی از دو شود.
 - آن را با کوچکترین مربعِ ممکن محصور
 - برای $ilde{arphi}$ زوج، نمونه را تاجایی بزرگ میکنیم که طول ضلع مربع برابر با $8n/\epsilon$ شود.
 - واضح است که این کار دورِ بهینه را تغییر نمیدهد.

Ik

• هر گره را به مختصاتِ مضربِ ۴ قبلی

- هر گره حداکثر ۴ واحد جابهجا میشود.
 - هزینهی هر یال حداکثر ۸ واحد تغییر
 - هزینهی یک دورِ همیلتونی حداکثر $8n = \epsilon I$

- هر گره را به مختصاتِ مضربِ ۴ قبلی
- هر گره حداکثر ۴ واحد جابهجا میشود.
 - هزینهی هر یال حداکثر ۸ واحد تغییر
 - هزینهی یک دورِ همیلتونی حداکثر $8n = \epsilon L$

- هر گره را به مختصاتِ مضربِ ۴ قبلی
- هر گره حداکثر ۴ واحد جابهجا میشود.
 - هزینهی هر یال حداکثر ۸ واحد تغییر میکند.
 - هزینهی یک دورِ همیلتونی حداکثر $8n = \epsilon L$

- هر گره را به مختصاتِ مضربِ ۴ قبلی میریم
- هر گره حداکثر ۴ واحد جابهجا میشود.
 - هزینهی هر یال حداکثر ۸ واحد تغییر
 - هزینهی یک دورِ همیلتونی حداکثر $\mathbf{s} = 6L$ تغییر میکند.

نمونهی تقریبپذیر: تقریب دلحواه

تمرین ۱

برای هر نمونهی دلخواهِ ،ETSP جوابِ نمونهی تقریبپذیر، برای هر نمونهی جوابِ اصلی برای هر ϵ دلخواه است.

برهان:

$$L \leq OPT_{Orig}$$
 $OPT_{Apx} - OPT_{Orig} \leq \epsilon L$
 $\Rightarrow OPT_{Apx} \leq (1 + \epsilon)OPT_{Orig} \quad \Box$

• پس از این بدون کاستن از کلیت، فرض میکنیم نمونه تقریبپذیر است.

نمونهی تقریبپذیر: تقریب دلحواه

تمرین ۱

برای هر نمونهی دلخواهِ ،ETSP جوابِ نمونهی تقریبپذیر، رای هر نمونهی جوابِ اصلی برای هر ϵ دلخواه است.

برهان:

$$L \leq OPT_{Orig}$$
 $OPT_{Apx} - OPT_{Orig} \leq \epsilon L$ $\Rightarrow OPT_{Apx} \leq (1 + \epsilon)OPT_{Orig}$ \square

• پس از این بدون کاستن از کلیت، فرض میکنیم نمونه تقریبپذیر است.

نمونهی تقریبپذیر: تقریب دلحواه

تمرین ۱

برای هر نمونهی دلخواهِ ،ETSP جوابِ نمونهی تقریبپذیر، برای هر نمونهی جوابِ اصلی برای هر ϵ دلخواه است.

برهان:

$$L \leq OPT_{Orig}$$
 $OPT_{Apx} - OPT_{Orig} \leq \epsilon L$ $\Rightarrow OPT_{Apx} \leq (1 + \epsilon)OPT_{Orig}$ \square

• پس از این بدون کاستن از کلیت، فرض میکنیم نمونه تقریبپذیر است.

جوابِ خوشرفتار

تقسیمبندی پایه

- مربعِ نمونه را به صورتِ بازگشتی به چهار مربعِ اصلی تقسیم میکنیم.
- وچون L توانی از ۲ است، پس از g(L) = O(lg(n)) سطح به مربعهای \bullet اصلی یکه می رسیم.
 - به این ساختار، تقسیمبندی پایه میگوییم.

V

تقسیمبندی پایه

- مربعِ نمونه را به صورتِ بازگشتی به چهار مربعِ اصلی تقسیم میکنیم.
- وچون L توانی از ۲ است، پس از lg(L) = O(lg(n)) سطح به مربعهای \bullet اصلی یکه میرسیم.
 - به این ساختار، تقسیمبندی پایه میگوییم.

V

تقسیمبندی پایه

- مربع نمونه را به صورتِ بازگشتی به چهار مربع اصلی تقسیم میکنیم.
- وون L توانی از ۲ است، پس از lg(L) = O(lg(n)) سطح به مربعهای \bullet اصلی یکه میرسیم.
 - به این ساختار، تقسیمبندیِ پایه میگوییم.

- روی خطوطِ سطحِ *i-*ام، 2*mi* درگاه با فاصلهی برایر اضافه میکنیم.
 - و هر مربع اصلی سطح i-ام ۴ درگاه
 در گوشهها و 1 − m درگاه روی هر
 ضلع خواهد داشت.
 - مربعِ بزرگتر آنها را بامربعهای
 درونش به اشتراک میگذارد.

- روی خطوطِ سطحِ -iام، $2m^i$ درگاه با فاصلهی برابر اضافه میکنیم.
 - و هر مربع اصلی سطح i-ام ۴ درگاه
 در گوشهها و 1 − m درگاه روی هر
 ضلع خواهد داشت.
 - مربعِ بزرگتر آنها را بامربعهای
 درونش به اشتراک میگذارد.

- روی خطوطِ سطحِ *i-*ام، 2*mⁱ* درگاه با فاصلهی برابر اضافه میکنیم.
 - هر مربعِ اصلیِ سطحِ i-ام ۴ درگاه
 در گوشهها و 1 − m درگاه روی هر
 ضلع خواهد داشت.
 - مربع بزرگتر آنها را بامربعهای درونش به اشتراک میگذارد.

- روی خطوطِ سطحِ i-ام، 2mⁱ درگاه با
 فاصلهی برابر اضافه میکنیم.
 - هر مربع اصلی سطح i-ام ۴ درگاه
 در گوشهها و 1 − m درگاه روی هر
 ضلع خواهد داشت.
 - مربعِ بزرگتر آنها را بامربعهای درونش به اشتراک میگذارد.

تعریف

- ۱. دقیقاً یک بار از هر گرهی اصلی عبور کند.
 - ۲. حداکثر دو بار از هر درگاه عبور کند.
- ۳. تنها در درگاهها خطوطِ تقسیم را قطع کند.
 - ۴. تنها در درگاهها خودش را قطع کند.

لم ۲• به دلیلِ خاصیتِ مثلثی، ویژگیِ ۲ را میتوان به کمکِ میانبرزدن تضمین کرد.

تعریف

- ۱. دقیقاً یک بار از هر گرهی اصلی عبور کند.
 - ۲. حداکثر دو بار از هر درگاه عبور کند.
- ۳. تنها در درگاهها خطوطِ تقسیم را قطع کند.
 - ۴. تنها در درگاهها خودش را قطع کند.

لم ۲• به دلیلِ خاصیتِ مثلثی، ویژگیِ ۲ را میتوان به کمکِ میانبرزدن تضمین کرد.

تعریف

- ۱. دقیقاً یک بار از هر گرهی اصلی عبور کند.
 - ۲. حداکثر دو بار از هر درگاه عبور کند.
- ۳. تنها در درگاهها خطوطِ تقسیم را قطع کند.
 - ۴. تنها در درگاهها خودش را قطع کند.

لم ۲• به دلیلِ خاصیتِ مثلثی، ویژگیِ ۲ را میتوان به کمکِ میانبرزدن تضمین کرد.

تعریف

- ۱. دقیقاً یک بار از هر گرهی اصلی عبور کند.
 - ۲. حداکثر دو بار از هر درگاه عبور کند.
- ۳. تنها در درگاهها خطوطِ تقسیم را قطع کند.
 - ۴. تنها در درگاهها خودش را قطع کند.

لم ۲• به دلیلِ خاصیتِ مثلثی، ویژگیِ ۲ را میتوان به کمکِ میانبرزدن تضمین کرد.

تعريف

- ۱. دقیقاً یک بار از هر گرهی اصلی عبور کند.
 - ۲. حداکثر دو بار از هر درگاه عبور کند.
- ۳. تنها در درگاهها خطوطِ تقسیم را قطع کند.
 - ۴. تنها در درگاهها خودش را قطع کند.

لم ۲• به دلیلِ خاصیتِ مثلثی، ویژگیِ ۲ را میتوان به کمکِ میانبرزدن تضمین کرد.

$$(m=2)$$
 مثال

• 14

لم ۳

دورِ خوشرفتارِ بهینه در زمانِ چندجملهای نسبت به اندازهی ورودی قابل محاسبه است.

برهان:

فرض کنید au چنین دوری باشد.

اولا دقت کنید تعدادِ مربعهای اصلی O(n) است. ابتدا حالاتِ مختلفِ قطعاتِ au که میتواند داخل یک مربع اصلی باشد را میشماریم.

1) 14

لم ۳

دورِ خوشرفتارِ بهینه در زمانِ چندجملهای نسبت به اندازهی ورودی قابل محاسبه است.

برهان:

فرض کنید au چنین دوری باشد.

اولاً دقت کنید تعدادِ مربعهای اصلی O(n) است. ابتدا حالاتِ مختلفِ قطعاتِ au که میتواند داخلِ یک مربعِ اصلی باشد را میشماریم.

درگاههای ورودی/خروجی × جفتهای ممکن = حالاتِ مختلفِ

• هر مربع اصلی حداکثر 4m درگاه دارد.

 هر درگاه ۱،۰ یا ۲ بار استفاده میشود.
 ⇒ تعداد حالاتِ مختلفِ استفاده درگاهها برای ورود/خروج τ ≥

 $3^{4m} = n^{O(1/\epsilon)}$

• درگاههای ورودی/خروجی × جفتهای ممکن = حالاتِ مختلفِ

- هر مربع اصلی حداکثر 4m درگاه دارد.
- هر درگاه ∘، ۱ یا ۲ بار استفاده میشود.

 \Rightarrow تعداد حالاتِ مختلفِ استفاده درگاهها $\geq au$ برای ورود/خروج

 $3^{4m} = n^{O(1/\epsilon)}$

درگاههای ورودی/خروجی × جفتهای ممکن = حالاتِ مختلفِ

- هر مربع اصلی حداکثر 4m درگاه دارد.
- هر درگاه ۱،۰ یا ۲ بار استفاده میشود. \Rightarrow تعداد حالاتِ مختلفِ استفاده درگاهها برای ورود/خروج $\tau \geq \tau$

$$3^{4m} = n^{O(1/\epsilon)}$$

• درگاههای ورودی/خروجی × جفتهای ممکن = حالاتِ مختلفِ

• مسیر اصلی نمیتواند خود را قطع کند.

• ورود و خروج au از طریقِ درگاهها تابعِ قاعدهی دایک خواهد بود.

⇒ تعداد حالاتِ مختلفِ جفتشدنِ درگاهھ

$$C_{4m} = 2^{O(m)} = n^{O(1/\epsilon)}$$

• درگاههای ورودی/خروجی × جفتهای ممکن = حالاتِ مختلفِ

- مسیر اصلی نمیتواند خود را قطع کند.
 - ورود و خروج au از طریقِ درگاهها تابعِ قاعدهی دایک خواهد بود.

⇒ تعداد حالاتِ مختلفِ جفتشدنِ درگاهھ

$$C_{4m} = 2^{O(m)} = n^{O(1/\epsilon)}$$

• درگاههای ورودی/خروجی × جفتهای ممکن = حالاتِ مختلفِ

- مسیر اصلی نمیتواند خود را قطع کند.
 - ورود و خروج au از طریقِ درگاهها تابعِ قاعدهی دایک خواهد بود.

⇒ تعداد حالاتِ مختلفِ جفتشدنِ درگاهها

$$C_{4m} = 2^{O(m)} = n^{O(1/\epsilon)}$$

دور خوشرفتار: یافتن بهینه

dynamic programming الگوريتم

۱. برای هر مربع اصلی در درختِ تقسیمبندیِ پایه

ا. مختصاتِ هر گره اعدادی صحیح در بازهی $[0,O(n)]^d$ باشند

۳. یال با هزینهی کمتر از ۴ نداشته باشد

دور خوشرفتار: یافتن بهینه

dynamic programming الگوريتم

۱. برای هر مربع اصلی در درختِ تقسیمبندیِ پایه

۲. مختصاتِ هر گره اعدادی صحیح در بازهی $[0,O(n)]^d$ باشند

۳. یال با هزینهی کمتر از ۴ نداشته باشد

دور خوشرفتار: یافتن بهینه

dynamic programming الگوريتم

- ۱. برای هر مربع اصلی در درختِ تقسیمبندیِ پایه
- ۲. مختصاتِ هر گره اعدادی صحیح در بازهی $[0,O(n)]^d$ باشند
 - ۳. یال با هزینهی کمتر از ۴ نداشته باشد