Factor groupoids and prescribed *K*-theory GPOTS 2021

Mitch Haslehurst

Department of Mathematics & Statistics University of Victoria

May 14, 2021

Motivation

Problem. Given some K-theory data, find a groupoid G such that the data is $K_*(C_r^*(G))$.

Motivation

Problem. Given some K-theory data, find a groupoid G such that the data is $K_*(C_r^*(G))$.

Notable references:

Li, X. "Every classifiable simple C^* -algebra has a Cartan subalgebra". Invent. math. 219, 653–699 (2020).

Putnam, I.F. "Some classifiable groupoid C^* -algebras with prescribed K-theory". Math. Ann. 370, 1361–1387 (2018).

Factor groupoids

G' is a factor groupoid of G if $\pi:G\to G'$ is a surjective groupoid morphism.

Factor groupoids

G' is a factor groupoid of G if $\pi:G\to G'$ is a surjective groupoid morphism.

Assume:

- $oldsymbol{0}$ G and G' are locally compact Hausdorff and étale,
- \bullet $\pi|_{G^u}: G^u \to (G')^{\pi(u)}$ is bijective for all u in $G^{(0)}$.

Factor groupoids

G' is a factor groupoid of G if $\pi:G\to G'$ is a surjective groupoid morphism.

Assume:

- $oldsymbol{0}$ G and G' are locally compact Hausdorff and étale,
- ${f 2}$ π is continuous and proper,
- 3 $\pi|_{G^u}: G^u \to (G')^{\pi(u)}$ is bijective for all u in $G^{(0)}$.

Obtain an inclusion $C^*_r(G')\subseteq C^*_r(G)$ via $b\mapsto b\circ\pi$ (b in $C_c(G'))$

Let (V, E) be a Bratteli diagram.

Let (V, E) be a Bratteli diagram.

Let (V, E) be a Bratteli diagram.

The *infinite path space* X_E of (V, E) is a totally disconnected compact metric space.

Let (V, E) be a Bratteli diagram.

The *infinite path space* X_E of (V, E) is a totally disconnected compact metric space.

Tail-equivalence $R_E \subseteq X_E \times X_E$ has an étale topology in which $C_r^*(R_E)$ is an AF-algebra.

Let (V, E) be a Bratteli diagram.

The *infinite path space* X_E of (V, E) is a totally disconnected compact metric space.

Tail-equivalence $R_E \subseteq X_E \times X_E$ has an étale topology in which $C_r^*(R_E)$ is an AF-algebra.

Goal: make a factor groupoid of R_E .

The space $X_{\!arepsilon}$

Let (V, E) and (W, F) be two Bratteli diagrams.

Let (V, E) and (W, F) be two Bratteli diagrams.

Two graph embeddings $\xi^0, \xi^1 : (W, F) \to (V, E)$ with $\xi^0|_W = \xi^1|_W$ and $\xi^0(F) \cap \xi^1(F) = \emptyset$.

Let (V, E) and (W, F) be two Bratteli diagrams.

Two graph embeddings $\xi^0, \xi^1: (W, F) \to (V, E)$ with $\xi^0|_W = \xi^1|_W$ and $\xi^0(F) \cap \xi^1(F) = \emptyset$.

Equivalence relation \sim_{ξ} on X_E :

$$(x_1, x_2, \dots, x_{n_0-1}, x_{n_0}, \xi^0(z_{n_0+1}), \xi^0(z_{n_0+2}), \dots)$$
 (1)

$$\sim_{\xi} (x_1, x_2, \dots, x_{n_0-1}, x'_{n_0}, \xi^1(z_{n_0+1}), \xi^1(z_{n_0+2}), \dots)$$
 (2)

Denote $X_{\xi} := X_E / \sim_{\xi}$ and $\rho : X_E \to X_{\xi}$ the quotient map.

Denote $X_{\xi} := X_E / \sim_{\xi}$ and $\rho : X_E \to X_{\xi}$ the quotient map.

Facts:

- **1** X_{ξ} is a second-countable compact Hausdorff space,
- 2 the covering dimension of X_{ξ} is 1,
- \odot each connected component is either a single point or homeomorphic to S^1 .

Example 1. We let (V, E) be the Bratteli diagram with one vertex at each level and two edges at each level. Identify X_E with $\{0,1\}^{\omega}$.

(W, F) is a single path, and for f in F, $\xi^{j}(f) = j$ for j = 0, 1.

Example 1. We let (V, E) be the Bratteli diagram with one vertex at each level and two edges at each level. Identify X_E with $\{0,1\}^{\omega}$.

(W, F) is a single path, and for f in F, $\xi^{j}(f) = j$ for j = 0, 1.

$$(x_1, x_2, \ldots, x_n, 1, 0, 0, 0, 0, \ldots)$$
 (3)

$$\sim_{\xi} (x_1, x_2, \dots, x_n, 0, 1, 1, 1, 1, \dots)$$
 (4)

Example 1. We let (V, E) be the Bratteli diagram with one vertex at each level and two edges at each level. Identify X_E with $\{0,1\}^{\omega}$.

(W, F) is a single path, and for f in F, $\xi^{j}(f) = j$ for j = 0, 1.

$$(x_1, x_2, \ldots, x_n, 1, 0, 0, 0, 0, \ldots)$$
 (3)

$$\sim_{\xi} (x_1, x_2, \dots, x_n, 0, 1, 1, 1, 1, \dots)$$
 (4)

$$\{0,1\}^\omega o S^1: (x_n) \mapsto \exp\left(2\pi i \sum_{n=1}^\infty x_n 2^{-n}\right)$$

Example 1. We let (V, E) be the Bratteli diagram with one vertex at each level and two edges at each level. Identify X_E with $\{0,1\}^{\omega}$.

(W, F) is a single path, and for f in F, $\xi^{j}(f) = j$ for j = 0, 1.

$$(x_1, x_2, \ldots, x_n, 1, 0, 0, 0, 0, \ldots)$$
 (3)

$$\sim_{\xi} (x_1, x_2, \dots, x_n, 0, 1, 1, 1, 1, \dots)$$
 (4)

$$\{0,1\}^\omega o S^1: (x_n) \mapsto \exp\left(2\pi i \sum_{n=1}^\infty x_n 2^{-n}\right)$$

The fibres are precisely the \sim_{ξ} equivalence classes, so X_{ξ} is homeomorphic to S^1 .

Example 2. Let (V, E) have one vertex and three edges at each level. Identify X_E with $\{0, 1, 2\}^{\omega}$.

(W,F) is again a single path, and for f in F, $\xi^0(f)=0$ and $\xi^1(f)=2$.

Example 2. Let (V, E) have one vertex and three edges at each level. Identify X_E with $\{0, 1, 2\}^{\omega}$.

(W,F) is again a single path, and for f in F, $\xi^0(f)=0$ and $\xi^1(f)=2$.

There is a nested sequence $X_1 \subseteq X_2 \subseteq X_3 \subseteq \cdots \subseteq X_E$ such that

$$X_E = \overline{\bigcup_{n=1}^{\infty} X_n}$$

and each $\rho(X_n)$ is a disjoint union of finitely many circles.

The groupoid R_{ξ}

Let
$$R_{\xi} = \rho \times \rho(R_E)$$
.

With the quotient topology, R_{ξ} is a second-countable locally compact Hausdorff étale groupoid, and a factor of R_{E} via $\rho \times \rho : R_{E} \to R_{\xi}$.

The groupoid R_{ξ}

Let
$$R_{\xi} = \rho \times \rho(R_E)$$
.

With the quotient topology, R_{ξ} is a second-countable locally compact Hausdorff étale groupoid, and a factor of R_{E} via $\rho \times \rho : R_{E} \to R_{\xi}$.

We want to analyze the K-theory of $C_r^*(R_\xi) \subseteq C_r^*(R_E)$.

If $A' \subseteq A$, there is a six-term exact sequence

If $A' \subseteq A$, there is a six-term exact sequence

$$K_1(A) \longrightarrow K_0(A';A) \longrightarrow K_0(A')$$

$$\downarrow^{\iota_*} \qquad \qquad \downarrow^{\iota_*}$$
 $K_1(A') \longleftarrow K_1(A';A) \longleftarrow K_0(A)$

If $A' \subseteq A$, there is a six-term exact sequence

 $K_*(A'; A)$ is the *relative* K-theory of the inclusion $A' \subseteq A$.

If $A' \subseteq A$, there is a six-term exact sequence

$$K_1(A) \longrightarrow K_0(A';A) \longrightarrow K_0(A')$$

$$\downarrow^{\iota_*} \qquad \qquad \downarrow^{\iota_*}$$
 $K_1(A') \longleftarrow K_1(A';A) \longleftarrow K_0(A)$

 $K_*(A'; A)$ is the *relative* K-theory of the inclusion $A' \subseteq A$.

Excision: (Putnam, 2020)

$$K_*(C_r^*(G'); C_r^*(G)) \cong K_*(C_r^*(H'); C_r^*(H))$$

where $H \subseteq G$ and $H' \subseteq G'$ are where π is not one-to-one.

Through the results on the previous slide, we obtain

$$K_0(C_r^*(R_{\xi})) \cong K_0(C_r^*(R_E)) \qquad K_1(C_r^*(R_{\xi})) \cong K_0(C_r^*(R_F))$$

Through the results on the previous slide, we obtain

$$K_0(C_r^*(R_{\xi})) \cong K_0(C_r^*(R_E)) \qquad K_1(C_r^*(R_{\xi})) \cong K_0(C_r^*(R_F))$$

Through the set-up $\xi^0, \xi^1: (W, F) \to (V, E)$, we can prescribe $K_*(C_r^*(R_{\mathcal{E}}))$.

Further work

- **1** Increasing the number of embeddings ξ^j :
 - More complicated connected components
 - Still one-dimensional
 - \bullet \bullet the same, K_1 more direct summands
- ② (Based on work of Deeley, Putnam, Strung) $\pi: \tilde{X} \to X_E$ where $\pi^{-1}(x)$ is either a single point or homeomorphic to a fixed point set of an iterated function system

Thank you!

References

- Deeley, R.J.; Putnam, I.F.; Strung, K.R. "Non-homogeneous extensions of Cantor minimal systems". to appear, Proc. A.M.S.
- We Haslehurst, M.J. "Relative K-theory for C*-algebras". (in preparation)
- Haslehurst, M.J. "Some examples of factor groupoids". (in preparation)
- Li, X. "Every classifiable simple C*-algebra has a Cartan subalgebra". Invent. math. 219, 653–699 (2020).
- Putnam, I.F. "Some classifiable groupoid C*-algebras with prescribed K-theory". Math. Ann. 370, 1361–1387 (2018).
- Putnam, I.F. "An excision theorem for the K-theory of C*-algebras, with applications to groupoid C*-algebras". to appear, Munster Mathematics Journal.

