

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (An Autonomous Institute Affiliated to University of Mumbai)

Duration: 3 Hours

Branch: MCA

Semester: IV

End Semester Examination May 2019

Max. Marks: 60 Class: SYMCA

Course Code: MCA43

Name of the Course: Design and Analysis of Algorithms

Instructions:

(1) All questions are compulsory

(2) Draw neat diagrams

(3) Assume suitable data if necessary

QN			Marks	CO's
Q.1	a.	Define asymptotic notations. Map following functions to respective notation	[6]	CO-1
		1. $(f(n)) \ge \{g(n) : \text{ there exists } c > 0 \text{ and } n_0 \text{ such that } g(n) \le c \cdot f(n) \text{ for all } n > n_0. \}$		
		2. $(f(n)) = \{ g(n)_3 : \text{ there exists } c > 0 \text{ and } n_0 \text{ such that } f(n) \le c.g(n) \text{ for all } n > n_0. \}$		
		$(f(n)) = \{ g(n) \text{ if and only if } g(n) = O(f(n)) \text{ and } g(n) = O(f(n)) \text{ for all } n > n_g. \}$		
		[OR] Find the bounding function and complexity of following code.		
		1.		
		void function(int n)		
		<pre>int count = 0; for (int i=n/2; i<=n; i++)</pre>		
		for (int j=1; j<=n; j = 2 * j) for (int k=1; k<=n; k = k * 2)		
	>	Count++;		
		2.		
		<pre>void function(int n) {</pre>		
		int count = 0; for (int i=0; i <n; i++)<="" td=""><td></td><td></td></n;>		
		for (int j=i; j< i*i; j++) if (j%i == 0)		
		for (int k=0; k <j; k++)="" printf("*");<="" td=""><td>Tues</td><td></td></j;>	Tues	
)		
	b.	Compare P and NP problems give examples in detail	[6]	CO-6

Q.2	a.	Apply quick sort mechanism to sort following array	[6]	CO-2
		A = (38 81 22 48 13 69 93 14 45 58 79 72)		
	b.	Explain in detail merge sort. Illustrate the algorithm with a numeric example. Provide complete analysis of the same.	[6]	CO-2
Q.3	a.	Determine the cost and structure of an optimal binary search tree for a set of $n=7$ keys with the following probabilities: I 1 2 3 4 KEYS 10 20 30 40 FRQ 4 2 6 3	[5]	CO-3
	b.	State the Greedy Knapsack? Find an optimal solution to the Knapsack instance n=3, m=20, (P1, P2, P3) = (25, 24, 15) and (W1, W2, W3) = (18, 15, 10). [OR] Apply Prim's algorithm to find Minimum spanning tree on following graph 1	[5]	CO-3
	c.	Given a chain of four matrices, A1, A2, A3, A4 (5.4,8,6,7). Find the cost of matrix multiplication.	[5]	CO-3
Q.4	a.	Write an algorithm to determine the Hamiltonian cycle in a given graph using backtracking.	[5]	CO-4
	b.	Generate FIFO branch and bound solution for the given knapsack problem. m = 15, n = 3. (P1 P2 P3) = (10, 6, 8) (w1 w2 w3) = (10, 12, 3) [OR] Write a backtracking algorithm to solve sum of subsets problem with m=35, w= {20, 18, 15, 12, 10, 7, 5} to the variable tuple size formulation.	[5]	CO-4

1														
	c.	Consider start and goal state for a 15 puzzle problem as shown in figure 1 and figure 2. Show all intermediate states with justification										[5]	CO-4	
			1	2	3	4		I	2	3	4			
			5	6		8		5	6	7	8			
			9	10	7	11		7	10	11	12			
			13	14	15	12		13	14	15				
						irt Sta				re 2 Gi				
Q.5	a.	a. Maximize the flow from s=1 to t=7 in the flow network below using Ford-Fulkerson algorithm										[6]	CO-5	
														c
		9 4												
		1 6 2 5 8 7												
	123 G 2 5													
		[OR]	1											
		Gene and p	rate	e the ern.	fini	te au	toma	ta (5	-tup	ple)	for	pattern matching for following string	24 (Ţ
		Strin	g:	abc	dssp	issp	itabe	d						
		Patte	ern	: ssp	oit									
											-			

(C

C