Московский физико-технический институт Физтех-школа прикладной математики и информатики

ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ

I CEMECTP

Лектор: Лукашов Алексей Леонидович

Автор: Даниил Максимов Проект на Github

Содержание

1	Предварительные сведения		2
	1.1	Элементы математической логики	2
	1.2	"Наивная" теория множеств	2
	1.3	Отображения и функции	4
	1.4	Декартово произведение и отношения	4
2	О числах		
	2.1	Натуральные числа	6
	2.2	Целые числа	8
	2.3	Рациональные числа	Ć
	2.4	Действительные числа	11
	2.5	Комплексные числа	18
3	Пределы		22
	3.1	Дополнительные свойства действительных чисел	23
	3.2	Предел последовательности	24
	3.3	Предел функции	34
	3.4	Непрерывность	
	3.5	Непрерывность элементарных функций	46
	3.6	Сравнение функций	55
4	Дифференциальное исчисление функций одной переменной		57
	4.1	Производная	57
	4.2	Дифференцируемость	62
	4.3	Производные и дифференциалы высших порядков	65
	4.4	Свойства производных	69
	4.5	Равномерная непрерывность	76
	4.6	Формула Тейлора	77
	4.7	Исследование функции с помощью производной	85
5	Вектор-функции и топология пространства \mathbb{R}^n		92
	5 1	Пространство \mathbb{R}^n	92

1 Предварительные сведения

1.1 Элементы математической логики

Определение 1.1. Высказывание - это выражение, принимающее либо значение истины (1), либо ложности (0).

Определение 1.2. Предикат - это высказывание, зависящее от переменных.

Обозначения

- 1. Высказывания обозначаюся заглавными латинскими буквами: A, B, \dots
- 2. $A(x_1, ..., x_n)$ предикат
- 3. := является по определению
- 4. $\neg A$ отрицание высказывания A. Логическое "не".
- 5. $A \wedge B$ конъюнкция. Логическое "и".
- 6. $A \lor B$ дизъюнкция. Логическое "или".
- 7. $A \to B$ импликация. Логическое "если A, то B".
- 8. $A \Leftrightarrow B$ эквивалентность

Пример (предиката). $B(a) = ((\forall b \in \mathbb{R}) \ (\exists c \in \mathbb{R}) \ | \ (\forall x \in \mathbb{R}) \ ax^2 + bx + c \geqslant 0)$

Эквивалентность и равносильность

Эквивалентность \Leftrightarrow нужно не путать с логической равносильностью \equiv . Первое является логической операцией, тогда как второе точно гарантирует, что высказывание B имеет ровно то же значение, что и высказывание A.

1.2 "Наивная" теория множеств

Обозначения

- 1. А, В, . . . множества. Обозначаются заглавными латинскими буквами (как правило).
- 2. $a \in A$ элемент a принадлежит множеству A. То же самое, что и $A \ni a$.
- 3. $\neg (a \in A) \Leftrightarrow a \notin A$

Операции над множествами

Определение 1.3. Объединением множество A и B называется множество $A \cup B := \{x \mid (x \in A) \lor (x \in B)\}$

Определение 1.4. Пересечением множество A и B называется множество $A \cap B := \{x \mid (x \in A) \land (x \in B)\}$

Определение 1.5. *Разностью множеств* A и B называется множество $A \backslash B := \{x \mid (x \in A) \land (x \notin B)\}.$

Также используется и второе обозначение $A \setminus B \Leftrightarrow C_A B$. C - это сокращение от французского compl'ement.

Определение 1.6. Симметрической разностью множество $A \bowtie B$ называется множество $A \triangle B := \{x \mid (x \in (A \backslash B)) \lor ()x \in (B \backslash A)\} \Leftrightarrow (A \backslash B) \cup (B \backslash A)$

Определение 1.7. Универсальным множеством U называется такое множество, которое включает в себя все множества рассматриваемой системы, кроме самого себя. Обычно обозначается как U от слова universal.

Определение 1.8. Дополнением множества A называется C_UA . Другим обозначением служит $A^C := C_UA$

Определение 1.9. *Пустым множеством* \varnothing называется такое множество, которое не содержит в себе элементов. Оно существует и единственно.

Свойства операций над множествами

⊳ Коммутативность

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

Ассоциативность

$$(A \cup B) \cup C = A \cup (B \cup C)$$
$$(A \cap B) \cap C = A \cap (B \cap C)$$

⊳ Дистрибутивность

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

⊳ Идемпотентность

$$A \cup A = A$$
$$A \cap A = A$$

Двойственность (правила де Моргана)

$$(A \cup B)^C = A^C \cap B^C$$
$$(A \cap B)^C = A^C \cup B^C$$

Универсальное множество

$$U \cap A = A$$
$$U \cup A = U$$

⊳ Пустое множество

$$\emptyset \cap A = \emptyset$$
$$\emptyset \cup A = A$$

1.3 Отображения и функции

Определение 1.10. $(f\mid X\to Y)\Leftrightarrow (\forall x\in X)(\exists!y\in Y)y=f(x)$ - отображение (функция) из X в Y

Определение 1.11. Множество X называется областью определения f

Определение 1.12. f(X) - множество значений f. Более точная формулировка выглядит так:

$$f(X) = \{ y \in Y (\exists x \in X) f(x) = y \}$$

Ещё множество значений f называют образом множества X

Свойства отображений

- \lor Инъекция $(f(x_1) = f(x_2)) \Rightarrow (x_1 = x_2)$, то есть функция однозначна
- f(X) = Y, то есть f(x) принимает все возможные значения из множества Y
- \triangleright Биекция Когда f одновременно и инъективна, и сюръективна

Определение 1.13. $f^{-1}(Y)$ называется *прообразом множества* Y и определяется как

$$f^{-1}(Y):=\{x\in X\ |\ (\exists y\in Y)y=f(x)\}$$

1.4 Декартово произведение и отношения

Определение 1.14. Декартовым произведением называют множество

$$A\times B:=\{(a,b)\mid (a\in A)\wedge (b\in B)\}$$

При этом (a,b) называется упорядоченной парой, то есть, в отличие от множеств, верно $(a,b) \neq (b,a)$

Определение 1.15. Декартово произведение множества X на само себя называется ∂e -картовым квадратом (или куб, если мы говорим о третьей степени). Обозначается как $X \times X = X^2$

Определение 1.16. Подмножество $R\subset X^2$ называется бинарным отношением на множестве X

 $(x,y) \in R := xRy$ - введём краткую запись того, что упорядоченная пара принадлежит отношению.

Определение 1.17. Бинарное отношение R называется *отношением эквивалентности*, если выполнены условия:

- 1. Рефлексивность $\forall x \in X \Rightarrow xRx$
- 2. Симметричность $\forall x, y \in X(xRy) \Rightarrow (yRx)$
- 3. Транзитивность $\forall x, y, z \in X(xRy) \land (yRz) \Rightarrow (xRz)$

Определение 1.18. Бинарное отношение R называется *отношением порядка*, если выполнены условия:

- 1. Рефлексивность $\forall x \in X \Rightarrow xRx$
- 2. Антисимметричность $\forall x, y \in X \ (xRy) \land (yRx) \Rightarrow (x=y)$
- 3. Транзитивность $\forall x, y, z \in X \ (xRy) \land (yRz) \Rightarrow (xRz)$

Определение(не материал лектора). Бинарное отношение R называется *отношением строгого порядка*, если выполнены условия:

- 1. Антирефлексивность $\forall x \in X \Rightarrow \neg x R x$
- 2. Антисимметричность $\forall x, y \in X \ (xRy) \land (yRx) \Rightarrow (x=y)$
- 3. Транзитивность $\forall x, y, z \in X \ (xRy) \land (yRz) \Rightarrow (xRz)$

Пример. Отношение ⊂ между множествами

Определение 1.19. Говорят, что множество X линейно упорядоченно, если на нём задано отношение порядка \prec такое, что $\forall x, y \in X(x \prec y) \lor (y \prec x)$ - всегда истинное высказывание

Исходя из этого, нетрудно заметить, что множества сами по себе не являются линейно упорядоченными.

Замечание автора. Дополнительно стоит заметить, что отношения на множествах как бы не являются отношениями. Мы не можем говорить о множестве всех множеств, иначе мы получим парадокс Рассела.

Определение 1.20. Если на множестве X задано отношение порядка, но оно не является линейно упорядоченным, то его называют *частично упорядоченным*

Определение 1.21. Если на множестве X определено отношение эквивалентности R, то множество X называется *классом эквивалентности*, если $\forall x,y \in XxRy$

Теорема 1.1. Если на множестве X задано отношение эквивалентности R, то X может быть разбито на классы эквивалентности:

$$X = \bigcup_{\alpha \in A} X_{\alpha}$$

При этом выполнены свойства:

- 1. $\forall \alpha_1 \neq \alpha_2 \ X_{\alpha_1} \cap X_{\alpha_2} = \emptyset$
- 2. $(\forall \alpha)(\forall x, y \in X_{\alpha}) xRy$
- 3. $(\forall \alpha_1 \neq \alpha_2)(\forall x \in X_{\alpha_1})(\forall y \in X_{\alpha_2}) \neg (xRy)$

2 О числах

2.1 Натуральные числа

Определение 2.1. Sc(n) - следующий элемент за n (от английского слова successor - преемник)

Аксиомы Пеано

Определение 2.2. Аксиомы Пеано - это набор бездоказательных высказываний, позволяющих на своей основе построить всю систему натуральных чисел (т.е. определить все элементы, отношения и операции)

- 1. 1 есть натуральное число, то есть $1 \in \mathbb{N}$
- 2. $\forall n \in \mathbb{N} \ \exists Sc(n) \in \mathbb{N}$ для любого числа существует следующее за ним
- $3. \ \forall n \in \mathbb{N} \ 1 \neq Sc(n)$ число 1 не является чьим-либо преемником
- 4. $Sc(n) = Sc(m) \Rightarrow n = m$ то есть Sc инъективна
- 5. (Аксиома индукции) $\forall \mathfrak{M} \subset \mathbb{N} \mid (1 \in \mathfrak{M}) \land (\forall n \in \mathfrak{M} \Rightarrow Sc(n) \in \mathfrak{M}) \Rightarrow \mathfrak{M} = \mathbb{N}$

Пример. Понятно, что данным аксиомам могут соответствовать разные модели. Одной из таких является модель Фреге-Рассела:

$$\{\varnothing\} := 1, Sc(n) := n \cup \{n\}$$

$$\Rightarrow \{\varnothing, \{\varnothing\}\} = 2, \{\varnothing, \{\varnothing\}, \{\varnothing\}, \{\varnothing\}\}\} = 3$$

Сложение

Чтобы определить операцию сложения, нам необходимо ввести 2 аксиомы:

- 1. m+1 := Sc(m)
- 2. m + Sc(n) := Sc(m+n)

Замечание. Эта аксиома не интуитивна (ведь мы не определили m+n), но верна за счёт первой.

База n=1: m+Sc(1):=Sc(m+1) - всё верно и определено. Пусть мы верно m+Sc(n)=Sc(m+n). Тогда поймём, что и m+Sc(Sc(n))=Sc(m+Sc(n)) - также определено и верно, в силу предыдущего шага. \Rightarrow аксиома верна и для любых m и n из натуральных. (Несмотря на наличие "доказательной" части, данное выражение остаётся аксиомой, иначе базу не обосновать)

Из этих двух аксиом следует, что операция сложения существует и единственна.

Умножение

Чтобы определить операцию умножения, нам необходимо ввести 2 аксиомы:

- 1. $m \cdot 1 := m$
- 2. $m \cdot Sc(n) := m \cdot n + m$

Из этих двух аксиом следует, что операция сложения существует и единственна.

Пример. Доказать: $2 \cdot 2 = 4$

Что такое 2? По определению, 2:=Sc(1). Аналогично 3:=Sc(2), 4:=Sc(3) То есть, имеем:

$$2 \cdot 2 = 2 \cdot Sc(1) = 2 \cdot 1 + 2 = 2 + Sc(1) = Sc(2+1) = Sc(Sc(2)) = Sc(3) = 4$$
, что и требовалось доказать.

Отношение строгого порядка на множестве натуральных чисел(не материал лектора)

Определение 2.3. Отношение строгого порядка < (>) на множестве $\mathbb N$ определяется как

$$a < b := \exists p \in \mathbb{N} \mid a + p = b$$

Отношение порядка на множестве натуральных чисел

Такими отношениями являются ≤ и ≥.

Определение 2.4.
$$a \leqslant b := (a = b) \lor (\exists p \in \mathbb{N} \mid a + p = b)$$
. Для \geqslant аналогично.

Замечание автора. Эквивалентным определением будет являться $a \leqslant b := (a = b) \lor (a < b)$

Из определения становится возможным доказать теорему, что отношения \leq и \geq являются отношениями порядка. (Для этого необходимо доказать 3 свойства).

Свойства операций и отношений на натуральных числах

Для $\forall m, n, p \in \mathbb{N}$ верно следующее:

- Сложение
 - -m+n=n+m (коммутативность)
 - -(m+n) + p = m + (n+p) (ассоциативность)
- ⊳ Умножение
 - $-m \cdot n = n \cdot m$ (коммутативность)
 - $-(m \cdot n) \cdot p = m \cdot (n \cdot p)$ (ассоциативность)
- \triangleright Дистрибутивность сложения и умножения $m \cdot (n+p) = m \cdot n + m \cdot p$
- ⊳ Отношение порядка

- $-m \leq m$ (рефлексивность)
- $-(m \leqslant n) \land (n \leqslant m) \Rightarrow (m=n)$ (антисимметричность)
- -(m ≤ n) ∧ (n ≤ p) ⇒ (m ≤ p) (транзитивность)
- $-(m \leqslant n) \lor (n \leqslant m) = \mathbb{1}$ то есть выражение истинно всегда
- $-(m \leqslant n) \Rightarrow (m+p \leqslant n+p)$
- $-(m \leqslant n) \Rightarrow (m \cdot p \leqslant n \cdot p)$
- $-m \leqslant p \Rightarrow \exists n \mid m \cdot n \geqslant p$ (свойство Архимеда)

2.2 Целые числа

Определение 2.5. *Множеством целых чисел* называется множество $\mathbb{Z} = \mathbb{N} \cup \{0\} \cup \{-n \mid n \in \mathbb{N}\}$

Из определения сразу следует, что $\mathbb{N} \subset \mathbb{Z}$

Сложение

Рассмотрим $m, n \in \mathbb{N}$:

- 1. $m + n \Rightarrow$ сложение происходит также, как и с натуральными числами.
- 2. (-m) + (-n) = -(m+n)

3.
$$m + (-n) = \begin{cases} p \in \mathbb{N} \mid n+p=m, \text{ если } m > n \\ 0, \text{ если } m=n \\ -p, p \in \mathbb{N} \mid m+p=n, \text{ если } m < n \end{cases}$$

Умножение

Рассмотрим $m, n \in \mathbb{N}$:

- 1. $m \cdot n \Rightarrow$ умножение происходит также, как и с натуральными числами.
- 2. $(-m) \cdot (-n) := m \cdot n$
- 3. $m \cdot (-n) := -(m \cdot n)$

Свойства операций и отношений на множестве целых чисел

- ⊳ Сложение
 - Все свойства сложения натуральных чисел верны и для целых.
 - -m+0 := m (существование нейтрального к сложению числа)
 - $-\forall m \in \mathbb{Z} \exists (-m) \in \mathbb{Z} \mid m + (-m) = 0$ (существование обратного числа по сложению)
- ⊳ Умножение
 - Все свойства умножения натуральных чисел верны и для целых.

$$-m \cdot 0 := 0$$

- ⊳ Отношение порядка
 - $(\forall m \in \mathbb{Z})(\forall n \in \mathbb{Z})(\forall p \in \mathbb{N}) \ (m \leqslant n) \Rightarrow (m \cdot p \leqslant n \cdot p)$
 - $-(\forall m_1 \in \mathbb{Z})(\forall m_2 \in \mathbb{Z} \setminus \{0\}) \exists n \in \mathbb{Z} \mid n \cdot m_2 \geqslant m_1 \text{ (свойство Архимеда)}$

2.3 Рациональные числа

Определение 2.6. Рациональным числом называется число вида $\frac{m}{n}$, где $m \in \mathbb{Z}, n \in \mathbb{N}$. Несложно понять, что упорядоченная пара (m,n) будет полностью задавать такое число. Множество рациональных чисел обозначают как \mathbb{Q} .

Отношение эквивалентности на множестве рациональных чисел

Определение 2.7. Скажем, что (m, n)R(p, q) := (mq = np)

Утверждение 2.1. Отношение R является отношением эквивалентности на множестве рациональных чисел

Доказательство. Для доказательства необходимо проверить, что выполнены все свойства отношения эквивалентности:

- 1. (m,n)R(m,n) := (mn = nm) верно.
- 2. $(m,n)R(p,q) \Rightarrow (p,q)R(m,n)$. (m,n)R(p,q) := (mq = np), а (p,q)R(m,n) := (pn = qm). Так как $(mq = np) \Leftrightarrow (pn = qm)$, то симметричность также верна.
- 3. $(m,n)R(p,q)\wedge(p,q)R(r,s)\Rightarrow (m,n)R(r,s)$. Опуская формальности, имеем 2 равенства: mq=np и ps=qr. Домножим первое на s, а второе на n: $mqs=nps=psn=qrn\Rightarrow mqs=qrn\Rightarrow ms=rn=nr$ верно.

 \Rightarrow все 3 свойства верны, а значит R является отношением эквивалентности, что и требовалось доказать. $\hfill\Box$

Положительное рациональное число

Определение 2.8. Положительным рациональным числом называется класс эквивалентности в \mathbb{N}^2 по отношению R на множестве \mathbb{O} .

Множество всех положительных чисел обозначается за \mathbb{Q}_+

Используя это определение, множество всех рациональных чисел задаётся как $\mathbb{Q} = \mathbb{Q}_+ \cup \{0\} \cup \{-r \mid r \in \mathbb{Q}_+\}$

Отсюда также следует, что $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$

Замечание автора. Рациональное число определяется как класс эквивалентности из-за того факта, что $\frac{1}{2}=\frac{2}{4}$ и так далее. Определение положительного рационального числа через N^2 справедливо, так как $\mathbb{N}\subset\mathbb{Z}\Rightarrow\mathbb{N}^2\subset\mathbb{Z}\times\mathbb{N}$

Отношение строгого порядка на множестве рациональных чисел(не материал лектора)

Определение 2.9. Отношение строгого порядка < (>) на множестве $\mathbb Q$ задаётся как

$$\frac{p}{q} < \frac{m}{n} := p \cdot n < m \cdot q$$

Замечание автора. В данном определении всё верно, так как $q, n \in \mathbb{N}$ по определению рациональных чисел.

Отношение порядка на множестве рациональных чисел(не материал лектора)

Определение 2.10. Отношение порядка \leq (\geqslant) на множестве $\mathbb Q$ задаётся как и на предыдущих:

$$a \leqslant b := (a = b) \lor (a < b)$$

Свойства операций и отношений на множестве рациональных чисел

- ⊳ Сложение
 - Все свойства сложения целых чисел верны и для рациональных.
- ⊳ Умножение
 - Все свойства умножения целых чисел верны и для рациональных.
 - $\forall p \in \mathbb{Q} \; \exists p^{-1} \; | \; p \cdot p^{-1} = 1 \; ($ существование обратного числа по умножению)
- ⊳ Отношение порядка
 - Все свойства отношения порядка целых чисел верны и для отношения порядка рациональных чисел (хоть определение и отличается от того, что используется на целых числах).

Теорема 2.1. Если некоторое r является рациональным числом, то оно представимо в виде периодической десятичной дроби и наоборот.

$$r \in \mathbb{Q} \Leftrightarrow (r = \alpha_0, \alpha_1 \dots \alpha_k(\beta_1 \dots \beta_t)), \alpha_0 \in \mathbb{N} \cup \{0\}, \forall i > 0 \ \alpha_i \in \{0, 1, \dots, 9\}, \forall \beta_i \in \{0, 1, \dots, 9\}$$

Доказательство. Пусть есть число $r \in \mathbb{Q}_+$ (не умаляя общности). Покажем, что оно представимо в виде периодической десятичной дроби:

Пусть [r] - целая часть числа r. Тогда понятно, что $[r] := \alpha_0$. Рассмотрим $r - [r] = \frac{m}{n}, 0 \le m < n$ (несложно доказать, что это верно. и по-другому быть не может).

Далее возможно только 2 случая:

$$\begin{cases} m=0 \Rightarrow r=\alpha_0, (0) \Rightarrow \ \text{периодическая десятичная дробь} \\ m\neq 0 \end{cases}$$

Продолжим рассуждения для второго случая. Согласно свойству Архимеда,

$$\exists p \in \mathbb{N} \mid 10^p \cdot m \geqslant n$$

Если взять $p=p_{\min},$ то будет также выполнено

$$10^{p-1} \cdot m < n$$

Рассмотрим $r_1 = \frac{10^p \cdot m}{n} = \psi_1, \alpha'_1 \dots$, где ψ_1 тоже цифра (это можно доказать из неравенств выше).

Повторим алгоритм для r_1 и получим некоторое m_1 . Если оно тоже не 0, то продолжаем дальше.

Если на каждом шаге $m_i \neq 0$, то сделав n шагов, мы гарантированно получим период дроби. Действительно, если на каком-то из n-1 шага у нас совпало текущее m_i с некоторым $m_j, j < i$, то мы снова нашли период. А на n-м шаге m_j покроют все числа от 1 до n-1. То есть, мы либо получим 0, либо попадём в уже какое-то $m_j \Rightarrow$ нашли период. \Rightarrow получили периодическую десятичную дробь, что и требовалось показать.

Теперь покажем, что если есть периодическая десятичная дробь $\alpha_0, \alpha_1 \dots \alpha_k(\beta_1 \dots \beta_t)$, то она представима в виде $\frac{m}{n}, m \in \mathbb{Z}, n \in \mathbb{N}$:

Обозначим $r = \alpha_0, \alpha_1 \dots \alpha_k(\beta_1 \dots \beta_t)$, тогда

$$r \cdot 10^{k+t} = \alpha_0 \alpha_1 \dots \alpha_k \beta_1 \dots \beta_t, (\beta_1 \dots \beta_t)$$

$$r \cdot 10^k = \alpha_0 \alpha_1 \dots \alpha_k, (\beta_1 \dots \beta_t)$$

$$r \cdot 10^k \cdot (10^t - 1) = \alpha_0 \alpha_1 \dots \alpha_k \beta_1 \dots \beta_t - \alpha_0 \alpha_1 \dots \alpha_k = [r \cdot 10^{k+t}] - [r \cdot 10^k]$$

$$\Rightarrow r = \frac{[r \cdot 10^{k+t}] - [r \cdot 10^k]}{10^k \cdot (10^t - 1)}$$

Числитель целое число, а знаменатель - натуральное \Rightarrow периодическая десятичная дробь представима как $\frac{m}{n}$, что и требовалось показать.

2.4 Действительные числа

Определение 2.11. Рациональным отрезком называется $\{r\in\mathbb{Q}\mid p\leqslant r\leqslant q\}:=[p;q]_{\mathbb{Q}},$ где $p,q\in\mathbb{Q}$

Определение 2.12. Системой вложенных рациональных отрезков называется $\{[p_n;q_n]_{\mathbb{Q}}\}_{n=1}^{\infty}$, если $\forall n \in \mathbb{N} \ [p_{n+1};q_{n+1}]_{\mathbb{Q}} \subset [p_n;q_n]_{\mathbb{Q}}$

Определение 2.13. Систему вложенных рациональных отрезков называют *стягиваю- щейся*, если $\forall \epsilon \in \mathbb{Q}_+ \ \exists N \in \mathbb{N} \mid \forall n > N \ q_n - p_n < \epsilon$

Далее будем опускать слово вложенных и писать вместо него стягивающихся.

Отношение эквивалентности на множестве систем стягивающихся отрезков

Определение 2.14. Две системы стягивающихся рациональных отрезков $\{[p_n;q_n]_{\mathbb{Q}}\}_{n=1}^{\infty}$ и $\{[r_n;s_n]_{\mathbb{Q}}\}_{n=1}^{\infty}$ называются эквивалентными, если: $\{[min(p_n,r_n);max(q_n,s_n)]_{\mathbb{Q}}\}_{n=1}^{\infty}$ - тоже стягивающаяся последовательность

Утверждение 2.2. Определение эквивалентности систем стягивающихся рациональных отрезков удовлетворяет всем свойствам отношения эквивалентности.

Доказательство. Рефлексивность очевидна, так как $min(p_n, p_n) = p_n$ ну и $max(q_n, q_n) = q_n$, что эквивалентно изначальной стягивающейся последовательности.

Симметричность тоже очевидна, так как минимум и максимум - инвариант относительно перестановки.

Транзитивность

$$\begin{cases} \{[p_n; q_n]_{\mathbb{Q}}\}_{n=1}^{\infty} \sim \{[r_n; s_n]_{\mathbb{Q}}\}_{n=1}^{\infty} \\ \{[r_n; s_n]_{\mathbb{Q}}\}_{n=1}^{\infty} \sim \{[t_n; u_n]_{\mathbb{Q}}\}_{n=1}^{\infty} \end{cases} \Rightarrow \{[p_n; q_n]_{\mathbb{Q}}\}_{n=1}^{\infty} \sim \{[t_n; u_n]_{\mathbb{Q}}\}_{n=1}^{\infty}$$

Из условия следует, что

$$\{[min(p_n,r_n);max(q_n,s_n)]_{\mathbb{Q}}\}_{n=1}^{\infty} - \text{стягивающаяся, то есть}$$

$$\forall \epsilon \in \mathbb{Q} \ \exists N_1 \in \mathbb{N} \mid \forall n > N_1 \ max(q_n,s_n) - min(p_n,r_n) < \frac{\epsilon}{2}$$

$$\{[min(r_n,t_n);max(s_n,u_n)]_{\mathbb{Q}}\}_{n=1}^{\infty} - \text{стягивающаяся, то есть}$$

$$\forall \epsilon \in \mathbb{Q} \ \exists N_2 \in \mathbb{N} \mid \forall n > N_2 \ max(s_n,u_n) - min(r_n,t_n) < \frac{\epsilon}{2}$$

Если положить $\forall n > max(N_1, N_2)$, то оба неравенства будут верны одновременно. Тогда, нужно доказать следующее:

$$max(q_n, u_n) - min(p_n, t_n) < \epsilon$$

Для этого рассмотрим по отдельности 4 случая:

- 1. $\max(q_n,u_n) \min(p_n,t_n) = q_n p_n$ Заметим, что $q_n p_n \leqslant \max(q_n,s_n) p_n \leqslant \max(q_n,s_n) \min(p_n,r_n) < \epsilon$. Следовательно $\max(q_n,u_n) \min(p_n,t_n) = q_n p_n < \epsilon$
- 2. $max(q_n, u_n) min(p_n, t_n) = u_n t_n$ аналогично 1му случаю
- 3. $\max(q_n, u_n) \min(p_n, t_n) = q_n t_n$ Заметим, что $q_n - t_n = (q_n - r_n) + (r_n - t_n)$. Далее $q_n - r_n \leqslant \max(q_n, s_n) - r_n \leqslant \max(q_n, s_n) - \min(p_n, r_n) < \frac{\epsilon}{2}$. А также $r_n - t_n \leqslant s_n - t_n \leqslant \max(s_n, u_n) - t_n \leqslant \max(s_n, u_n) - \min(r_n, t_n) < \frac{\epsilon}{2}$.

Складывая два выражения, получим: $max(q_n,u_n)-min(p_n,t_n)=q_n-t_n<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$

4. $max(q_n,u_n) - min(p_n,t_n) = u_n - p_n$ - аналогично 3му случаю

Таким образом,
$$\{[p_n;q_n]_{\mathbb{Q}}\}_{n=1}^{\infty}=\{[t_n;u_n]_{\mathbb{Q}}\}_{n=1}^{\infty}\Rightarrow$$
 транзитивность верна.

Определение 2.15. Действительным числом называется класс эквивалентности систем стягивающихся рациональных отрезков.

Утверждение 2.3. Множество рациональных чисел вложено в множество действительных $\mathbb{Q} \subset \mathbb{R}$.

Доказательство. Действительно, $r \in \mathbb{Q} \Leftrightarrow \{[r;r]_{\mathbb{Q}}\}_{n=1}^{\infty}$ - система стягивающихся рациональных отрезков.

Сложение

Определение 2.16. Суммой двух действительных чисел с представлениями $\{[p_n;q_n]_{\mathbb{Q}}\}_{n=1}^{\infty}$ и $\{[r_n;s_n]_{\mathbb{Q}}\}_{n=1}^{\infty}$ называется число с представлением $\{[p_n+r_n;q_n+s_n]_{\mathbb{Q}}\}_{n=1}^{\infty}$

Утверждение 2.4. Определение сложения двух действительных чисел корректно, то есть сложение не зависит от того, каких представителей классов эквивалентностей мы складываем.

$$\begin{cases}
\{[p_n; q_n]_{\mathbb{Q}}\}_{n=1}^{\infty} \sim \{[p'_n; q'_n]_{\mathbb{Q}}\}_{n=1}^{\infty} \\
\{[r_n; s_n]_{\mathbb{Q}}\}_{n=1}^{\infty} \sim \{[r'_n; s'_n]_{\mathbb{Q}}\}_{n=1}^{\infty}
\end{cases} \Rightarrow \{[p_n + r_n; q_n + s_n]_{\mathbb{Q}}\}_{n=1}^{\infty} \sim \{[p'_n + r'_n; q'_n + s'_n]_{\mathbb{Q}}\}_{n=1}^{\infty}$$

Доказательство. По условию:

$$\forall \epsilon \in \mathbb{Q}_{+} \ \exists N_{1} \in \mathbb{N} \ | \ \forall n > N_{1} \ \max(q_{n}, q'_{n}) - \min(p_{n}, p'_{n}) < \frac{\epsilon}{2}$$
$$\forall \epsilon \in \mathbb{Q}_{+} \ \exists N_{2} \in \mathbb{N} \ | \ \forall n > N_{2} \ \max(s_{n}, s'_{n}) - \min(r_{n}, r'_{n}) < \frac{\epsilon}{2}$$

А нам необходимо показать, что

$$\forall \epsilon \in \mathbb{Q}_+ \ \exists N = \max(N_1, N_2) \in \mathbb{N} \ | \ \forall n > N \ \max(q_n + s_n, q'_n + s'_n) - \min(p_n + r_n, p'_n + r'_n)$$

Покажем цепочку неравенств:

$$\max(q_{n} + s_{n}, q'_{n} + s'_{n}) - \min(p_{n} + r_{n}, p'_{n}, + r'_{n}) \leqslant (\max(q_{n}, q'_{n}) + \max(s_{n}, s'_{n})) - (\min(p_{n}, p'_{n}) + \min(r_{n}, r'_{n})) = (\max(q_{n}, q'_{n}) - \min(p_{n}, p'_{n})) + (\max(s_{n}, s'_{n}) - \min(r_{n}, r'_{n})) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \quad (2.1)$$

Следовательно,

$$\{[p_n + r_n; q_n + s_n]_{\mathbb{Q}}\}_{n=1}^{\infty} \sim \{[p'_n + r'_n; q'_n + s'_n]_{\mathbb{Q}}\}_{n=1}^{\infty}$$

Свойства сложения

Для сложения действительных чисел верны следующие свойства:

$$\forall x, y, z \in \mathbb{R}$$

 $\triangleright x + y = y + x$ (коммутативность)

 $\triangleright (x+y) + z = x + (y+z)$ (ассоциативность)

> x + 0 = x (существование нейтрального элемента относительно сложения)

 $\triangleright x + (-x) = 0$, где -x - представитель $\{[-q_n; -p_n]_{\mathbb{Q}}\}_{n=1}^{\infty}$ (существование обратного элемента относительно сложения)

Положительное действительное число

Определение 2.17. Действительное число a называется положительным (a > 0), если для любого представителя его класса систем стягивающихся рациональных отрезков найдётся такое $n \in \mathbb{N}$, что $p_n > 0$.

Отношение строгого порядка на множестве действительных чисел

Определение 2.18. Действительное число a состоит в отношении > с числом b, если a+(-b)>0. Для < аналогично.

Отношение порядка на множестве действительных чисел

Определение 2.19. Отношение порядка на множестве действительных чисел задаётся как

$$a \leqslant b := (a = b) \lor (a < b)$$

Утверждение 2.5. Данное определение отношения порядка на \mathbb{R} удовлетворяет всем условиям отношения порядка.

Доказательство. Рефлексивность верна, так как a = a.

Симметричность. По условию имеем:

$$(a \leqslant b) := (a < b) \lor (a = b) \Leftrightarrow (b - a > 0) \lor (a = b)$$
$$(b \leqslant a) := (b < a) \lor (a = b) \Leftrightarrow (a - b > 0) \lor (a = b)$$

Заметим, что случаи, где мы берём хотя бы 1 скобку с < (>) приводят к закономерному противоречию 0>0. Поэтому единственно возможным вариантом остаётся утверждение, что a=b.

Транзитивность. По условию имеем:

$$(a \leqslant b) := (a < b) \lor (a = b) \Leftrightarrow (b - a > 0) \lor (a = b)$$
$$(b \leqslant c) := (b < c) \lor (b = c) \Leftrightarrow (c - b > 0) \lor (b = c)$$

Необходимо показать, что верно высказывание

$$((c-a>0)\vee(a=c))\equiv 1$$

Так как одновременно из одного неравенства оказаться верной может только одна скобка, то рассморим все случаи:

1.
$$(a = b) \land (b = c) \Rightarrow a = c$$

2.
$$(a = b) \land (c - b > 0) \Rightarrow c - a > 0$$

3.
$$(b - a > 0) \land (b = c) \Rightarrow c - a > 0$$

4.
$$(b-a>0) \land (c-b>0) \Rightarrow (c-b) + (b-a) = c-a>0$$

Утверждение 2.6. Множество \mathbb{R} является линейно упорядоченным относительно отношения $\leq (\geq)$

Замечание. Действительное число $\{[p_n;q_n]_{\mathbb{Q}}\}_{n=1}^{\infty}\sim\{[p_n;q_n]_{\mathbb{Q}}\}_{n=m}^{\infty},$ где $m\in\mathbb{N}$

Доказательство. Нам необходимо доказать, что для любых $a, b \in \mathbb{R}$ верно выражение:

$$(a \leqslant b) \lor (b \leqslant a)$$

Исходя из определения данного отношения, его можно переписать в виде

$$(a < b) \lor (a = b) \lor (a > b)$$

В силу корректности операции сложения и определения отношения < (>), равносильной формой записи является

$$(a - b < 0) \lor (a - b = 0) \lor (a - b > 0)$$

Или же положим $c=a-b:=\{[p_n;q_n]_{\mathbb{Q}}\}_{n=1}^{\infty}$:

$$(c < 0) \lor (c = 0) \lor (c > 0)$$

Тогда, рассмотрим случай, когда $\forall n \in \mathbb{N} \ p_n \leqslant 0 \leqslant q_n$. Покажем, что в таком случае $\{[p_n;q_n]_{\mathbb{Q}}\}_{n=1}^{\infty} \sim \{[0;0]_{\mathbb{Q}}\}_{n=1}^{\infty}$

По определению ~ нужно проверить, что

$$\forall \epsilon \in \mathbb{Q}_+ \ \exists N \in \mathbb{N} \mid \forall n > N \ \max(q_n, 0) - \min(p_n, 0) < \epsilon$$

Из условия следует, что $\max(q_n, 0) - \min(p_n, 0) = q_n - p_n < \epsilon$. А значит, эквивалентность верна и c = 0.

В силу линейной упорядоченности \mathbb{Q} , остаются лишь случаи, когда $q_n < 0$ и $p_n > 0$. А они прямо по определению соответствуют случаям, когда c < 0 и c > 0 соответственно. \square

Лемма 2.1. Если $\{[p_n;q_n]_{\mathbb{Q}}\}_{n=1}^{\infty}$ представляет число $c\in\mathbb{R}$, то $\forall n\in\mathbb{N}$ $p_n\leqslant c\leqslant q_n$

Доказательство. Предположим обратное, то есть

$$\exists N_0 \in \mathbb{N} \mid \forall n_0 > N_0 \ p_{n_0} > c$$

Из этого следует, что

$$p_{n_0} - c > 0$$

Выражение слева является числом, поэтому сопоставим ему систему

$$p_{n_0} - c := \{ [r_n; s_n]_{\mathbb{Q}} \}_{n=1}^{\infty}$$

Так как $p_{n_0} - c > 0$, то по определению

$$\exists N_1 \in \mathbb{N} \mid \forall n_1 > N_1 \ r_{n_1} > 0$$

А число p_{n_0} будет представлять система

$$p_{n_0} := \{ [p_{n_0}; p_{n_0}]_{\mathbb{Q}} \}_{n=1}^{\infty}$$

Рассмотрим $n > \max(N_0, N_1)$. Тогда, разность $p_{n_0} - (p_{n_0} - c)$ с одной стороны, равна

$$p_{n_0} - (p_{n_0} - c) = p_{n_0} - p_{n_0} + c = c$$

А с другой стороны,

$$p_{n_0} - (p_{n_0} - c) := \{ [p_{n_0} - s_n; p_{n_0} - r_n]_{\mathbb{Q}} \}_{n=1}^{\infty}$$

Стало быть,

$$\{[p_{n_0}-s_n;p_{n_0}-r_n]_{\mathbb{Q}}\}_{n=1}^{\infty}\sim\{[p_n;q_n]_{\mathbb{Q}}\}_{n=1}^{\infty}$$

Выясним отношения между границами отрезков:

$$p_{n_0} - s_n \leqslant p_{n_0} - r_n < p_{n_0} \leqslant p_n \leqslant q_n$$

А если системы эквивалентны, то

$$\max(q_n, p_{n_0} - r_n) - \min(p_n, p_{n_0} - s_n) = q_n - p_{n_0} + s_n > 0$$

Произведение

Определение 2.20. Произведением двух положительных действительных чисел с представлениями $\{[p_n;q_n]_{\mathbb{Q}}\}_{n=1}^{\infty},\ p_1>0$ и $\{[r_n;s_n]_{\mathbb{Q}}\}_{n=1}^{\infty},\ r_1>0$ называют действительное число $\{[p_n\cdot r_n;q_n\cdot s_n]_{\mathbb{Q}}\}_{n=1}^{\infty}$

Доопределим произведение на всё множество \mathbb{R} :

$$a \cdot b :=$$

1.
$$a \cdot (-b), \forall a > 0, b < 0$$

2.
$$(-a) \cdot (-b), \forall a < 0, b < 0$$

A также $a \cdot 0 = 0 \cdot a = 0, \forall a \in \mathbb{R}$

Утверждение 2.7. Произведение двух действительных чисел определено корректно.

$$\begin{cases} \{[p_n; q_n]_{\mathbb{Q}}\}_{n=1}^{\infty} \sim \{[p'_n; q'_n]_{\mathbb{Q}}\}_{n=1}^{\infty} \\ \{[r_n; s_n]_{\mathbb{Q}}\}_{n=1}^{\infty} \sim \{[r'_n; s'_n]_{\mathbb{Q}}\}_{n=1}^{\infty} \end{cases} \Rightarrow \{[p_n \cdot r_n; q_n \cdot s_n]_{\mathbb{Q}}\}_{n=1}^{\infty} \sim \{[p'_n \cdot r'_n; q'_n \cdot s'_n]_{\mathbb{Q}}\}_{n=1}^{\infty}$$

Замечание автора. Надеюсь, очевидно, что $p_1' > 0, q_1' > 0$ (нам нужно доказать корректность основного определения)

Доказательство. Для начала покажем, что просто произведение положительных действительных чисел вообще является системой стягивающейся рациональных отрезков:

$$\begin{cases} p_n r_n \leqslant q_n s_n \\ p_n \leqslant q_n \end{cases} \Rightarrow p_n r_n \leqslant q_n r_n \leqslant q_n s_n$$
$$q_n s_n - p_n r_n \leqslant q_n (s_n - r_n) + r_n (q_n - p_n) \leqslant q_1 (s_n - r_n) + r_1 (q_n - p_n)$$

 $\{[p_n;q_n]_{\mathbb{Q}}\}_{n=1}^{\infty}$ - система стягивающихся рациональных отрезков

$$\Rightarrow \forall \epsilon \in \mathbb{Q}_+ \ \exists N_1 \in \mathbb{N} \mid \forall n > N_1 \ q_n - p_n < \frac{\epsilon}{2s_1}$$

Аналогично для $\{[r_n;s_n]_{\mathbb{Q}}\}_{n=1}^{\infty}$

$$\Rightarrow \forall \epsilon \in \mathbb{Q}_+ \ \exists N_2 \in \mathbb{N} \mid \forall n > N_2 \ s_n - r_n < \frac{\epsilon}{2q_1}$$

 $\Rightarrow q_n s_n - p_n r_n \leqslant q_1(s_n - r_n) + r_1(q_n - p_n) < q_1 \cdot \frac{\epsilon}{2q_1} + r_1 \cdot \frac{\epsilon}{2r_1} = \epsilon$, что и требовалось доказать. Далее покажем, что произведения разных представителей классов эквивалентны:

$$\max(q_{n}s_{n}, q'_{n}s'_{n}) - \min(p_{n}r_{n}, p'_{n}r'_{n}) \leqslant \\ \max(q_{n}, q'_{n}) \cdot \max(s_{n}, s'_{n}) - \min(p_{n}, p'_{n}) \cdot \min(r_{n}, r'_{n}) = \\ \max(q_{n}, q'_{n}) \cdot \max(s_{n}, s'_{n}) - \max(s_{n}, s'_{n}) \cdot \min(p_{n}, p'_{n}) + \\ \max(s_{n}, s'_{n}) \cdot \min(p_{n}, p'_{n}) - \min(p_{n}, p'_{n}) \cdot \min(r_{n}, r'_{n}) = \\ \max(s_{n}, s'_{n}) \cdot (\max(q_{n}, q'_{n}) - \min(p_{n}, p'_{n})) + \min(p_{n}, p'_{n}) \cdot (\max(s_{n}, s'_{n}) - \min(r_{n}, r'_{n})) \leqslant \\ \max(s_{1}, s'_{1}) \cdot (\max(q_{n}, q'_{n}) - \min(p_{n}, p'_{n})) + \max(p_{1}, p'_{1}) \cdot (\max(s_{n}, s'_{n}) - \min(r_{n}, r'_{n})) \quad (2.2)$$

Из условия следует, что

$$\forall \epsilon \in \mathbb{Q}_{+} \ \exists N_{1} \in \mathbb{N} \ | \ \forall n > N_{1} \ \max(q_{n}, q'_{n}) - \min(p_{n}, p'_{n}) < \frac{\epsilon}{2 \cdot \max(s_{1}, s_{1})}$$
$$\forall \epsilon \in \mathbb{Q}_{+} \ \exists N_{2} \in \mathbb{N} \ | \ \forall n > N_{2} \ \max(s_{n}, s'_{n}) - \min(r_{n}, r'_{n}) < \frac{\epsilon}{2 \cdot \max(p_{1}, p_{1})}$$

А значит

$$\max(q_n s_n, q'_n s'_n) - \min(p_n r_n, p'_n, r'_n) < \epsilon$$

Свойства произведения

Для произведения действительных чисел верны следующие свойства: $\forall x,y,z\in\mathbb{R}$

$$\triangleright x \cdot y = y \cdot x$$

$$\triangleright x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$\triangleright x \cdot 1 = x$$

Обратное действительное число по произведению

Определение 2.21. Если $a \in \mathbb{R}$, a > 0, представимое как $\{[p_n; q_n]_{\mathbb{Q}}\}_{n=1}^{\infty}$, $p_1 > 0$, то числом, обратным κ данному, называется $\frac{1}{a} = a^{-1} > 0$, равное $\{[\frac{1}{a_n}; \frac{1}{p_n}]_{\mathbb{Q}}\}_{n=1}^{\infty}$

Данное определение дополняется для всех ненулевых действительных чисел как

$$a < 0 \Rightarrow \frac{1}{a} = \frac{1}{(-a)}$$

Утверждение 2.8. Определение обратного действительного числа по произведению корректно.

$$\{[p_n;q_n]_{\mathbb{Q}}\}_{n=1}^{\infty} \sim \{[p'_n;q'_n]_{\mathbb{Q}}\}_{n=1}^{\infty} \Rightarrow \{[\frac{1}{q_n};\frac{1}{p_n}]_{\mathbb{Q}}\}_{n=1}^{\infty} \sim \{[\frac{1}{s_n};\frac{1}{r_n}]_{\mathbb{Q}}\}_{n=1}^{\infty}$$

Доказательство. Докажем, что такая система стягивающихся отрезков вообще будет стягиваться:

$$\frac{1}{p_n} - \frac{1}{q_n} = \frac{q_n - p_n}{p_n \cdot q_n} \leqslant \frac{q_n - p_n}{p_n^2} \leqslant \frac{q_n - p_n}{p_1^2}$$

По условию стягивания изначального числа:

$$\forall \epsilon \in \mathbb{Q}_{+} \exists N \in \mathbb{N} \mid \forall n > N \ q_{n} - p_{n} < \epsilon * p_{1}^{2}$$

$$\Rightarrow \frac{1}{p_{n}} - \frac{1}{q_{n}} \leqslant \frac{q_{n} - p_{n}}{p_{1}^{2}} < \frac{\epsilon \cdot p_{1}^{2}}{p_{1}^{2}} = \epsilon$$

Теперь докажем, что определение не зависит от представителя класса:

$$\begin{cases} \{[p_n; q_n]_{\mathbb{Q}}\}_{n=1}^{\infty} \sim \{[p'_n; q'_n]_{\mathbb{Q}}\}_{n=1}^{\infty} \\ \{[r_n; s_n]_{\mathbb{Q}}\}_{n=1}^{\infty} \sim \{[r'_n; s'_n]_{\mathbb{Q}}\}_{n=1}^{\infty} \end{cases}$$

Свойство полноты

Определение 2.22. Любое действительное число разбивает по отношению порядка множество \mathbb{R} на две части

$$A \neq \varnothing, \ B \neq \varnothing, \ A \cap B = \varnothing, A \cup B = \mathbb{R}$$

$$\forall a \in A, b \in B \ \ a \leqslant b$$

$$\exists c \in \mathbb{R} \mid \forall a \in A, b \in B \ \ a \leqslant c \leqslant b$$

Доказательство. Построим $\{[p_n;q_n]_{\mathbb{Q}}\}_{n=1}^{\infty}$ - система стягивающихся отрезков

$$p_n$$
 — наибольшее $\frac{1}{10^{n-1}}\mathbb{Z}\cap A,\ q_n$ — наименьшее $\frac{1}{10^{n-1}}\mathbb{Z}\cap B$

Предположим, что $\exists b \in B \mid c > b \Rightarrow c + (-b) > 0$

$$\frac{1}{10^{n-1}} < c - b$$

$$c - p_n \leqslant q_n - p_n < c - b \Rightarrow p_n > b$$

А так как $p_n \in A, b \in B$, то мы получили противоречие.

2.5 Комплексные числа

Определение 2.23. *Множеством комплексных чисел* называют множество $\mathbb{C} = \mathbb{R}^2$.

Сложение

Определение 2.24. *Суммой* двух комплексных чисел (a,b) и (c,d) называют число

$$(a,b) + (c,d) := (a+c,b+d)$$

Умножение

Определение 2.25. *Произведением* двух комплексных чисел (a,b) и (c,d) называют число

$$(a,b)\cdot(c,d) := (ac - bd, ad + bc)$$

Мнимая единица

Определение 2.26. *Мнимой единицей і* называют комплексное число (0,1), которое из определения выше имеет свойство:

$$i^2 := -1$$

Утверждение 2.9. *Множество* \mathbb{R} *вложено в множество* \mathbb{C} .

Доказательство. Действительно, если $a \in R$, то a = (a, 0). Несложно проверить, что все операции будут точно такими же, как и с обычными действительными числами.

Алгебраическая форма комплексного числа

Определение 2.27. Заметим, что $(a, b) = a \cdot (1, 0) + b \cdot (0, 1)$. То есть:

$$(a,b) = a + bi$$

Запись числа z в виде a+bi называется алгебраической формой комплексного числа

Определение 2.28. Модулем комплексного числа нызывают число:

$$|z| := \sqrt{a^2 + b^2}$$

Определение 2.29. *Реальной частью* комплексного числа называют число a в его алгебраической форме:

$$Re(a + bi) := a$$

Определение 2.30. *Мнимой частью* комплексного числа называют число a в его алгебраической форме:

$$\operatorname{Im}(a+bi) := b$$

Неравенство треугольника

Геометрически очевидны следующие неравенства:

$$|z_1 + z_2| \le |z_1| + |z_2|$$

 $|z_1 - z_2| \ge ||z_1| - |z_2||$

Деление комплексных чисел

Определение 2.31. Комплексное число z_3 называется *частным* от деления числа z_1 на число z_2 , если верно равенство:

$$z_2 \cdot z_3 = z_1 \Leftrightarrow z_3 := \frac{z_1}{z_2} := z_1/z_2$$

Следствие. Выведем действительную и мнимую часть частного, если $z_1 = a + bi$, а $z_2 = c + di$. При этом обозначим $z_3 = x + yi$:

$$(c+di) \cdot (x+yi) = a+bi$$

$$cx - dy + (cy+dx)i = a+bi$$

$$\Rightarrow \begin{cases} a = cx - dy \\ b = cy + dx \end{cases} \Rightarrow \begin{cases} x = \frac{ac+bd}{c^2+d^2} \\ y = \frac{bc-ad}{c^2+d^2} \end{cases}$$

Комплексно сопряженное число

Определение 2.32. Число \bar{z} называется комплексно сопряжённым к числу z, если

$$z = a + bi \Rightarrow \bar{z} = a - bi$$

Утверждение 2.10. Произведение комплексного числа z на своё сопряженное является квадратом модуля

Доказательство. Пусть z = a + bi. Тогда:

$$z \cdot \bar{z} = (a + bi) \cdot (a - bi) = a^2 + b^2 = |z|^2$$

Аргумент комплексного числа

Определение 2.33. Аргументом комплексного числа z=a+bi называется угол φ , отсчитываемый от положительного направления оси Re, с точностью до $2\pi k, k \in \mathbb{Z}$

$$\arg z = \varphi + 2\pi k, k \in \mathbb{Z}$$

Угол считается положительным, если отсчитывается против часовой стрелки, и отрицательным, если наоборот.

Замечание. Аргумент определен только для комплексного числа, не равного нулю.

Комплексное число в полярной записи

Определение 2.34. Несложно заметить, что

$$a = |z| \cdot \cos \varphi$$
$$b = |z| \cdot \sin \varphi$$
$$\Rightarrow z = |z|(\cos \varphi + i \sin \varphi)$$

Умножение чисел в полярных координатах

Пусть есть 2 комплексных числа z_1 и z_2 :

$$z_1 = |z_1|(\cos \varphi + i \sin \varphi)$$

$$z_2 = |z_2|(\cos \psi + i \sin \psi)$$

Найдём их произведение в виде комплексного числа, записанного в полярных координатах:

$$z_{1} \cdot z_{2} = |z_{1}||z_{2}|(\cos \varphi + i \sin \varphi)(\cos \psi + i \sin \psi) =$$

$$|z_{1}||z_{2}|(\cos \varphi \cdot \cos \psi - \sin \varphi \cdot \sin \psi + i(\sin \varphi \cdot \cos \psi + \sin \psi \cdot \cos \varphi)) =$$

$$|z_{1}||z_{2}|(\cos(\varphi + \psi) + i \sin(\varphi + \psi)) \quad (2.3)$$

Таким образом,

$$\begin{cases} \arg(z \cdot w) = \arg(z) + \arg(w) \\ |z_1 \cdot z_2| = |z_1| \cdot |z_2| \end{cases}$$

Показательная форма комплексного числа

Определение 2.35. Комплексное число можно записать как степень по натуральному основанию

$$\cos\varphi + i\sin\varphi = e^{i\varphi}$$

Также это выражение называется формулой Эйлера. С её помощью, комплексное число можно записать в показательной форме.

$$z = |z| \cdot e^{i\varphi}$$

Замечание. Сейчас формулу Эйлера нужно принять "на веру". В будущем её можно и нужно доказать.

Комплексное расширение тригонометрических функций

Имея на руках формулу Эйлера, можно вывести интересные выражения для тригонометрических функций:

$$e^{i\varphi} = \cos \varphi + i \sin \varphi$$

$$e^{-i\varphi} = \cos \varphi - i \sin \varphi$$

$$\Rightarrow \cos \varphi = \frac{e^{i\varphi} + e^{-i\varphi}}{2}$$

$$\sin \varphi = \frac{e^{i\varphi} - e^{-i\varphi}}{2}$$

$$\operatorname{tg} \varphi = \frac{\sin \varphi}{\cos \varphi}$$

$$\operatorname{ctg} \varphi = \frac{\cos \varphi}{\sin \varphi}$$

Формула Муавра

Определение 2.36. Формулой Муавра называется выражение:

$$(\cos \varphi + i \sin \varphi)^n = \cos n\varphi + i \sin n\varphi, \, n \in \mathbb{Z}$$

С помощью формулы Муавра можно находить натуральную степень комплексного числа:

$$z^n = |z|^n (\cos n\varphi + i\sin n\varphi) = (|z|(\cos \varphi + i\sin \varphi))^n$$

Натуральный корень из комплексного числа

Решим уравнение $z^n = w$

1.
$$w = 0 \Rightarrow z = 0$$

2.

$$w \neq 0 \Rightarrow w = |w|(\cos \psi + i \sin \psi)$$

$$z = |z|(\cos \varphi + i \sin \varphi)$$

$$z^{n} = |z|^{n}(\cos n\varphi + i \sin n\varphi)$$

$$\Rightarrow |z| = \sqrt[n]{|w|}, n\varphi = \psi + 2\pi k, k \in \mathbb{Z}$$

$$\varphi = \frac{\psi + 2\pi k}{n}, k = \{0, 1, \dots n - 1\}$$

3 Пределы

3.1 Дополнительные свойства действительных чисел

Плотность множества рациональных чисел в множестве действительных

Утверждение 3.1. Между любыми двумя неравными числами найдётся рациональное

$$(\forall a, b \in \mathbb{R} \mid a < b)(\exists r \in \mathbb{Q}) \mid a < r < b$$

Доказательство. По определению действительных чисел

$$a := \{ [p_n; q_n]_{\mathbb{Q}} \}_{n=1}^{\infty}, b := \{ [r_n; s_n]_{\mathbb{Q}} \}_{n=1}^{\infty} \}$$

$$q_n - p_n = s_n - r_n = \frac{1}{10^{n-1}}$$
 (такое п найдётся) $< \frac{b-a}{2} \Rightarrow q_n < r_n$ $r := \frac{q_n + r_n}{2}$, так как $a \in [p_n; q_n]$ и $b \in [r_n; s_n]$

Равномощность

Определение 3.1. Множества A и B называются pавномощнымu, если существует биекция из A в B

Счётность

Определение 3.2. Множство A называется счётным, если оно равномощно $\mathbb N$

Теорема Кантора

Утверждение 3.2. \mathbb{Q} счётно, R - несчётно

Доказательство. По определению рационального числа, $(\forall r \in \mathbb{Q}) \ r = \frac{m}{n}, m \in \mathbb{Z}, n \in \mathbb{N}$. То есть число полностью задаётся парой (m, n). Отсюда

$$\mathbb{Z} \times \mathbb{N} \simeq \mathbb{N} \times \mathbb{N} \simeq \mathbb{N}$$

Так как $\mathbb Q$ не более мощно, чем $Z \times \mathbb N$ и является бесконечным, то $\mathbb Q \simeq \mathbb N$.

При помощи функций несложно показать, что $\mathbb{R} \simeq [0;1)$. Предположим, что [0;1) - счётно, то есть $[0,1)=\{x_1,x_2,\dots\}$ Запишем каждое число в виде десятичной дроби:

$$x_1 = 0, \alpha_{11}\alpha_{12}\alpha_{13}$$

$$x_2 = 0, \alpha_{21}\alpha_{22}\alpha_{23}$$

$$x_3 = 0, \alpha_{31}\alpha_{32}\alpha_{33}$$
:

Рассмотрим число $\gamma = 0, \alpha_{11}\alpha_{22}\alpha_{33}\dots$ Сдвинем циклически на 1 назад каждую цифру числа (т.е. $\alpha'_{ii} = \alpha_{ii} - 1$ если > 0, иначе $\alpha'_{ii} = 9$) и посмотрим на число γ'

$$\gamma' = 0, \alpha'_{11}\alpha'_{22}\alpha'_{33}\dots$$

Утверждение - данное число никогда не встречалось в таблице. Действительно, для любого $x_m, m \in \mathbb{N}$ они будут различны в α_{mm} знаке. То есть предположение неверно и

$$\mathbb{R} \geq \mathbb{N}$$

Определение 3.3. Если A - ограниченное сверху множество действительных чисел, то число $b \in \mathbb{R} \mid (\forall a \in A) \ a \leq b$ называется верхней гранью множества A.

Наименьшая из верхних граней называется mочной верхней гранью, обозначаемая как $\sup A$ (supremum)

Определение 3.4. Если A - ограниченное снизу множество действительных чисел, то число $b \in \mathbb{R} \mid (\forall a \in A) \ a \geqslant b$ называется *ниженей гранью* множества A.

Наибольшая из нижних граней называется mочной нижней гранью, обозначаемая как inf A (infinum)

Утверждение 3.3. Любое непустое ограниченное сверху (снизу) множество действительных чисел имеет точную верхнюю (нижнюю) грань.

Доказательство. Пусть $E \subset \mathbb{R}$ - ограниченное сверху множество. Обозначим через B множество всех верхних граней множества E. Тогда $A := \mathbb{R} \backslash B$. Множество E - непустое. А значит $\exists x \in E$. Это значит, что

$$\forall a \in \mathbb{R} \mid a < x \Rightarrow a \in A$$

То есть и A - непустое множество. При этом

$$(\forall b \in B)(\forall l \in \mathbb{R} \mid l > b) \Rightarrow l \in B$$

Значит, A и B обладают свойством полноты. Из сказанного выше имеем

$$A \cap B = \emptyset, \forall a \in A, b \in B \ a < b$$

$$\exists c \in \mathbb{R} \mid \forall a \in A, b \in B \ a \leqslant c \leqslant b$$

Утверждение в том, что

$$c \in B \Rightarrow c = \sup E$$

Предположим обратное. Тогда

$$c \notin B \Rightarrow \exists x \in E \mid x > c$$

Рассмотрим число $\frac{c+x}{2}$

$$c < \frac{c+x}{2} < x$$

Так как $\frac{c+x}{2} < x,$ то $\frac{c+x}{2} \in A \Rightarrow c$ не является $\sup E.$ Противоречие.

3.2 Предел последовательности

Определение 3.5. Число $l \in \mathbb{R}$ называется *пределом последовательности* $\{x_n\}_{n=1}^{\infty} \subset R$, если

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \mid \forall n > N \ |x_n - l| < \varepsilon$$

Определение 3.6. Говорят, что последовательность $\{x_n\}_{n=1}^{\infty}$ сходящаяся, или сходится к l, если $\exists l \in \mathbb{R} \mid \lim_{n \to \infty} x_n = l$

Пример.

$$\lim_{n\to\infty}\frac{1}{n}=0 \Leftrightarrow \forall \varepsilon>0 \; \exists N\in\mathbb{N} \; | \; n>N \; |\frac{1}{n}-0|<\varepsilon$$

Положим $N:=\left\lceil\frac{1}{\varepsilon}\right\rceil+1$. Тогда $\forall n>N\Rightarrow n>\frac{1}{\varepsilon}\Rightarrow \left|\frac{1}{n}-0\right|<\varepsilon\Rightarrow$ предел доказан.

Теорема 3.1. Числовая последовательность может иметь не более чем один предел.

Доказательство. Предположим, что $\exists l_1, l_2 \in \mathbb{R} \mid \lim_{n \to \infty} x_n = l_1, \lim_{n \to \infty} x_n = l_2$. Тогда:

$$\begin{cases} \lim_{n \to \infty} x_n = l_1 \Leftrightarrow \forall \varepsilon > 0 \ \exists N_1 \in \mathbb{N} \mid \forall n > N_1 \mid |x_n - l_1| < \varepsilon \Leftrightarrow l_1 - \varepsilon < x_n < l_1 + \varepsilon \\ \lim_{n \to \infty} x_n = l_2 \Leftrightarrow \forall \varepsilon > 0 \ \exists N_2 \in \mathbb{N} \mid \forall n > N_2 \mid |x_n - l_2| < \varepsilon \Leftrightarrow l_2 - \varepsilon < x_n < l_2 + \varepsilon \end{cases}$$

Рассмотрим $\varepsilon = \frac{l_2 - l_1}{2} > 0, \forall n > max(N_1, N_2)$:

$$\begin{cases} l_1 + \varepsilon = l_1 + \frac{l_2 - l_1}{2} = \frac{l_1 + l_2}{2} \\ l_2 - \varepsilon = l_2 - \frac{l_2 - l_1}{2} = \frac{l_1 + l_2}{2} \end{cases}$$

Свойства предела, связанные с неравенствами

Теорема 3.2. 1. (Ограниченность сходящейся последовательности) Если последовательность сходится, то она ограничена.

- 2. (Отделенность от нуля и сохранение знака) Если последовательность $\{x_n\}_{n=1}^{\infty}$ сходится κ $l \neq 0$, то $\exists N \in \mathbb{N} \mid \forall n > N \ \operatorname{sgn} x_n = \operatorname{sgn} l \ u \ |x_n| = \frac{|l|}{2}$
- 3. (Переход к пределу в неравенстве) Если $\lim_{n\to\infty} x = x_0$, $\lim_{n\to\infty} y = y_0$ и $\exists N \in \mathbb{N} \mid n \geqslant N$ $x_n \leqslant y_n$, то $x_0 \leqslant y_0$
- 4. (О промежуточной последовательности) Если $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n = l$ и $\exists N\in\mathbb{N}\mid \forall n>N$ $x_n\leqslant y_n\leqslant z_n,$ то $\lim_{n\to\infty} y_n=l$

Доказательство. 1. По условию, $\exists l \in \mathbb{R} \mid \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \mid \forall n > N \ |x_n - l| < \varepsilon$.

Положим $\varepsilon := 1 > 0$. Тогда $\forall n > N \ l - 1 < x_n < l + 1$. Отсюда следует, что

$$x_n \leqslant \max(x_1, x_2, \dots, x_N, l+1) \Rightarrow \{x_n\}_{n=1}^{\infty}$$
 — ограничена сверху $x_n \geqslant \min(x_1, x_2, \dots, x_N, l-1) \Rightarrow \{x_n\}_{n=1}^{\infty}$ — ограничена снизу

2. По условию, $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \mid \forall n > N \ |x_n - l| < \varepsilon \Leftrightarrow l - \varepsilon < x_n < l + \varepsilon.$ Тогда, рассмотрим $\varepsilon := \frac{|l|}{2} > 0.$

$$l > 0 \Rightarrow x_n > l - \varepsilon = \frac{l}{2} > 0$$

 $l < 0 \Rightarrow x_n < l + \varepsilon = \frac{l}{2} < 0$

3. От противного. Пусть $x_0 > y_0$. Тогда, по условию:

$$\lim_{n \to \infty} x_n = x_0 \Leftrightarrow \forall \varepsilon > 0 \ \exists N_1 \in \mathbb{N} \mid \forall n > N_1 \ x_0 - \varepsilon < x_n < x_0 + \varepsilon$$

$$\lim_{n \to \infty} y_n = y_0 \Leftrightarrow \forall \varepsilon > 0 \ \exists N_2 \in \mathbb{N} \mid \forall n > N_2 \ y_0 - \varepsilon < y_n < y_0 + \varepsilon$$

Рассмотрим $\varepsilon := \frac{x_0 - y_0}{2} > 0, \forall n > \max(N_1, N_2)$:

$$y_n < y_0 + \varepsilon = \frac{x_0 + y_0}{2} = x_0 - \varepsilon < x_n$$

Получили противоречие.

4. По условию,

$$\begin{cases} \lim_{n \to \infty} x_n = l \Leftrightarrow \forall \varepsilon > 0 \ \exists N_1 \in \mathbb{N} \mid \forall n > N_1 \ | x_n - l | < \varepsilon \\ \lim_{n \to \infty} z_n = l \Leftrightarrow \forall \varepsilon > 0 \ \exists N_2 \in \mathbb{N} \mid \forall n > N_2 \ | z_n - l | < \varepsilon \end{cases}$$

Отсюда следует: $l-\varepsilon < x_n \leqslant y_n \leqslant z_n < l+\varepsilon \Rightarrow |y_n-l| < \varepsilon$, то есть $\lim_{n\to\infty} y_n = l$

Арифметические операции со сходящимися последовательностями

Пусть $\lim_{n\to\infty} x_n = x_0$, $\lim_{n\to\infty} y_n = y_0$. Тогда

1.
$$\lim_{n \to \infty} (x_n + y_n) = x_0 + y_0$$

2.
$$\lim_{n \to \infty} (x_n - y_n) = x_0 - y_0$$

$$3. \lim_{n \to \infty} (x_n \cdot y_n) = x_0 \cdot y_0$$

4. Если
$$\forall n \in \mathbb{N}$$
 $y_n \neq 0$ и $y_0 \neq 0$, то $\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{x_0}{y_0}$

Доказательство. 1-2. По определению

$$\forall \varepsilon > 0 \ \exists N_1 \in \mathbb{N} \mid \forall n > N_1 \ |x_n - x_0| < \frac{\varepsilon}{2}$$

$$\forall \varepsilon > 0 \ \exists N_2 \in \mathbb{N} \mid \forall n > N_2 \ |y_n - y_0| < \frac{\varepsilon}{2}$$

Рассмотрим $\forall n > \max(N_1, N_2)$, тогда

$$|(x_n \pm y_n) - (x_0 \pm y_0)| \leqslant |x_n - x_0| + |y_n - y_0| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

3.
$$\forall \varepsilon > 0 \; \exists N_1 \in \mathbb{N} \; | \; \forall n > N_1 \; |x_n - x_0| < \frac{\varepsilon}{2}$$
 Из теоремы выше, $\exists C > 0 \; | \; \forall n \in \mathbb{N} \; |x_n| \leqslant C$
$$\lim_{n \to \infty} y_n = y_0 \Leftrightarrow \forall \varepsilon > 0 \; \exists N_2 \in \mathbb{N} \; | \; \forall n > N_2 \; |y_n - y_0| < \frac{\varepsilon}{2C}$$

Рассмотрим $\forall n > \max(N_1, N_2)$:

$$|x_n y_n - x_0 y_0| \leqslant |x_n y_n - x_n y_0| + |x_n y_0 - x_0 y_0| = |x_n| \cdot |y_n - y_0| + |y_0| \cdot |x_n - x_0| < C \cdot \frac{\varepsilon}{2C} + \frac{\varepsilon}{2} = \varepsilon$$

4. По условию,

$$\forall \varepsilon > 0 \ \exists N_1 \in \mathbb{N} \mid \forall n > N_1 \mid x_n - x_0 \mid < \frac{|y_0|}{2} \cdot \frac{\varepsilon}{2}$$

$$\forall \varepsilon > 0 \ \exists N_2 \in \mathbb{N} \mid \forall n > N_2 \mid y_n - y_0 \mid < \frac{|y_0|^2}{2(|x_0| + 1)} \cdot \frac{\varepsilon}{2}$$

Так как $\lim_{n\to\infty} y_n = y_0 \neq 0$, то начиная с некоторого номера $|y_n| > \frac{|y_0|}{2}$. Будем считать, что это верно $\forall n > N_2$ (иначе можно nodeunyme наше значение N_2 вправо настолько, что это станет верно).

Рассмотрим $\forall n > \max(N_1, N_2)$

$$\begin{aligned} \left| \frac{x_n}{y_n} - \frac{x_0}{y_0} \right| &= \left| \frac{x_n y_0 - y_n x_0}{y_n y_0} \right| \leqslant \frac{|x_n y_0 - x_0 y_0|}{|y_n| \cdot |y_0|} + \frac{|x_0 y_0 - y_n x_0|}{|y_n| \cdot |y_0|} = \\ &= \frac{|x_n - x_0|}{|y_n|} + \frac{|x_0| \cdot |y_0 - y_n|}{|y_n| \cdot |y_0|} < |x_n - x_0| \cdot \frac{2}{|y_0|} + |y_0 - y_n| \cdot \frac{2|x_0|}{|y_0|^2} < \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \cdot \frac{|x_0|}{|x_0| + 1} < \varepsilon \end{aligned}$$

Определение 3.7. Последовательность $\{x_n\}_{n=1}^{\infty}$ называется бесконечно малой, если

$$\lim_{n\to\infty} x_n = 0$$

Теорема 3.3. (Предел произведения б.м. и ограниченной последовательностей) Если $\{x_n\}_{n=1}^{\infty}$ - бесконечно малая, а $\{y_n\}_{n=1}^{\infty}$ ограничена, то $\{x_ny_n\}_{n=1}^{\infty}$ - бесконечно малая последовательность.

Доказательство.
$$\{y_n\}_{n=1}^{\infty}$$
 - ограниченная $\Rightarrow \exists M>0 \mid \forall n\in\mathbb{N} \mid y_n\mid\leqslant M$ $\{x_n\}_{n=1}^{\infty}$ - бесконечно малая $\Rightarrow \forall \varepsilon>0 \;\exists N\in\mathbb{N} \mid \forall n>N \;|x_n|<\frac{\varepsilon}{M}$

Определение 3.8. ε -окрестностью числа $l \in \mathbb{R}$ называется $U_{\varepsilon}(l) := (l - \varepsilon, l + \varepsilon)$. При этом $\varepsilon > 0$.

Определение 3.9. Предел последовательности через ε -окрестность определяется как $\lim_{n\to\infty}x_n=l\Leftrightarrow \forall \varepsilon>0\ \exists N\in\mathbb{N}\mid \forall n>N\ x_n\in U_\varepsilon(l)$

Определение 3.10. Отрицательной бесконечностью называется объект, для которого верно высказывание

$$\forall x \in \mathbb{R} \Rightarrow -\infty < x$$

Определение 3.11. Положительной бесконечностью называется объект, для которого верно высказывание

$$\forall x \in \mathbb{R} \Rightarrow x < +\infty$$

Определение 3.12. *Расширенным действительным множеством* называется множество

$$\bar{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$$

Определение 3.13. ε -окрестность для бесконечностей определяется как

$$U_{\varepsilon}(+\infty) := \left(\frac{1}{\varepsilon}; +\infty\right)$$

$$U_{\varepsilon}(-\infty) := \left(-\infty; -\frac{1}{\varepsilon}\right)$$

$$U_{\varepsilon}(\infty) := U_{\varepsilon}(-\infty) \cup U_{\varepsilon}(+\infty)$$

Определение 3.14. Последовательностью $\{x_n\}_{n=1}^{\infty}$ называется бесконечно большой, если

$$\lim_{n \to \infty} x_n = -\infty, +\infty$$
 или ∞

Теорема 3.4. (Связь б.м. и б.б. последовательностей) Если $x_n \neq 0 \ \forall n \in \mathbb{N}, \ mo \ \{x_n\}_{n=1}^{\infty}$ - б.м. $\Leftrightarrow \{\frac{1}{x_n}\}_{n=1}^{\infty}$ - б.б.

Доказательство. 1. $\{x_n\}_{n=1}^{\infty}$ - б.м. $\Rightarrow \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \mid \forall n > N \ |x_n| < \varepsilon$. Отсюда следует, что $\left|\frac{1}{x_n}\right| > \frac{1}{\varepsilon} \Leftrightarrow \frac{1}{x_n} \in U_{\varepsilon}(\infty) \Leftrightarrow \lim_{n \to \infty} \frac{1}{x_n} = \infty$

2.
$$\lim_{n \to \infty} \frac{1}{x_n} = \infty \Leftrightarrow \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \mid n > N \ \left| \frac{1}{x_n} \right| > \frac{1}{\varepsilon} \Rightarrow 0 < |x_n| < \varepsilon \Leftrightarrow \lim_{n \to \infty} x_n = 0$$

Определение 3.15. Последовательность $\{x_n\}_{n=1}^{\infty}$ называется *неубывающей*, если

$$\forall n \in \mathbb{N} \ x_n \leqslant x_{n+1}$$

Определение 3.16. Последовательность $\{x_n\}_{n=1}^{\infty}$ называется *невозрастающей*, если

$$\forall n \in \mathbb{N} \ x_n \geqslant x_{n+1}$$

Определение 3.17. Последовательность $\{x_n\}_{n=1}^{\infty}$ называется убывающей, если

$$\forall n \in \mathbb{N} \ x_n > x_{n+1}$$

Определение 3.18. Последовательность $\{x_n\}_{n=1}^{\infty}$ называется *неубывающей*, если

$$\forall n \in \mathbb{N} \ x_n < x_{n+1}$$

Теорема 3.5. (Вейерштрасса о монотонных последовательностях) Если $\{x_n\}_{n=1}^{\infty}$ ограниченная сверху и неубывающая последовательность, то $\exists \lim_{n\to\infty} x_n = \sup\{x_n\}$. Если же невозрастающая и ограниченная снизу, то $\lim_{n\to\infty} x_n = \inf\{x_n\}$

Доказательство. Приведём доказательство только для ограниченной сверху и неубывающей последовательности.

$$l := \sup\{x_n\} \Leftrightarrow \begin{cases} \forall n \in \mathbb{N} \ x_n \leqslant l \\ \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ l - \varepsilon < x_N \leqslant l \end{cases}$$

ФПМИ МФТИ, осень 2021

Рассмотрим $\forall n > N$. Тогда

$$l + \varepsilon > l \geqslant x_n \geqslant x_{n-1} \geqslant \ldots \geqslant x_N > l - \varepsilon \Rightarrow |x_n - l| < \varepsilon$$

То есть

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ | \ \forall n > N | x_n - l | < \varepsilon$$

Что и доказывает наше утверждение.

Утверждение 3.4. Каждая монотонная последовательность имеет предел в $\bar{\mathbb{R}}$

Доказательство. Для доказательства данного утверждения нам нужно дополнить теорему Вейерштрасса двумя случаями:

Пусть $\{x_n\}_{n=1}^{\infty}$ - неубывающая неограниченная сверху $\Rightarrow \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \mid x_N > \frac{1}{\varepsilon}$ и при этом $\forall n > N \ x_n \geqslant x_{n-1} \geqslant \ldots \geqslant x_N > \frac{1}{\varepsilon} \Rightarrow \lim_{n \to \infty} x_n = +\infty$.

Аналогично доказывается случай для невозрастающей неограниченной снизу последовательности. \Box

Определение 3.19. Последовательность вложенных отрезков - это $\{[a_n;b_n]\}_{n=1}^{\infty},\ a_n\leqslant b_n\ \forall n\in\mathbb{N}\ \text{такая, что }\forall n\in\mathbb{N}\ [a_n;b_n]\supset [a_{n+1};b_{n+1}]$

Теорема 3.6. (Принцип Кантора вложенных отрезков) Каждая система вложенных отрезков имеет непустое пересечение, то есть

$$\bigcap_{n=1}^{\infty} [a_n; b_n] \neq \emptyset$$

Доказательство. $[a_n;b_n]\supset [a_{n+1};b_{n+1}]\Rightarrow ((a_n\leqslant a_{n+1})\wedge (b_n\geqslant b_{n+1}))$ Следовательно, $\{a_n\}$ - неубывающая, а $\{b_n\}$ - невозрастающая $a_n\leqslant b_n\leqslant b_1$, а $a_1\leqslant a_n\leqslant b_n$, то есть

$$\exists a = \lim_{n \to \infty} a_n = \sup\{a_n\}$$
$$\exists b = \lim_{n \to \infty} b_n = \inf\{b_n\}$$

Так как $\forall n \in \mathbb{N} a_n \leqslant b_n$, то предельный переход даёт неравенство $a \leqslant b$

Ну а учитывая равенства у пределов, получим $a_n \le a \le b \le b_n$, то есть $\forall n \in \mathbb{N} \ [a_n; b_n] \supset [a; b]$, что и доказывает непустоту пересечения.

Определение 3.20. Стягивающейся системой отрезков называется система вложенных отрезков, длины которых образуют б.м. последовательность.

Дополнение. Система стягивающихся отрезков имеет пересечение, состоящее из одной точки.

Доказательство.
$$a_n \leqslant a \leqslant b \leqslant b_n \Rightarrow 0 \leqslant b - a \leqslant b_n - a_n \Rightarrow a = b$$

Определение 3.21. Подпоследовательностью последовательности $\{x_n\}_{n=1}^{\infty}$ называется $\{x_{n_k}\}_{k=1}^{\infty}$, где $\{n_k\}_{k=1}^{\infty}$ - возрастающая последовательность натуральных чисел

Определение 3.22. Частичным пределом последовательности $\{x_n\}_{n=1}^{\infty}$ называется предел её подпоследовательности.

Теорема 3.7. (Эквивалентное определение частичного предела) Число $l \in \mathbb{R}$ является частичным пределом $\{x_n\}_{n=1}^{\infty}$ тогда и только тогда, когда $\forall \varepsilon > 0 \ \forall N \in \mathbb{N} \ \exists n > N \mid |x_n - x_n|$ $|l|<\varepsilon$

Доказательство. 1. l - частичный предел. То есть

$$l = \lim_{k \to \infty} x_{n_k} \Leftrightarrow \forall \varepsilon > 0 \ \exists K \in \mathbb{N} \mid \forall k > K \ |x_{n_k} - l| < \varepsilon$$

При этом помним, что $\{n_k\}$ - возрастающая последовательность натуральных чисел Следовательно, для $\forall N \in \mathbb{N}$ найдётся $K_1 \in \mathbb{N} \mid n_{K_1} > N$, а значит и $n := n_{K_1+1} \Rightarrow n > 1$ $n_{K_1} > N, |x_n - l| < \varepsilon$

В итоге имеем:

$$\forall \varepsilon > 0 \ \forall N \in \mathbb{N} \ \exists n > N \mid |x_n - l| < \varepsilon$$

2. Пусть для l верно, что $\forall \varepsilon > 0 \ \forall N \in \mathbb{N} \ \exists n > N \ | \ |x_n - l| < \varepsilon$

Построим сходящуюся подпоследовательность:

$$\varepsilon := 1$$
 $N := 1$ $\exists n_1 \in \mathbb{N} \mid n_1 > 1, |x_{n_1} - l| < 1$
 $\varepsilon := 1/2$ $N := n_1$ $\exists n_2 \in \mathbb{N} \mid n_2 > n_1, |x_{n_2} - l| < 1/2$

По построению $\{x_{n_k}\}_{k=1}^{\infty}$ такова, что $\forall \varepsilon > 0 \ \exists K \in \mathbb{N} \mid \forall k > K \ |x_{n_k} - l| < \varepsilon$

Теорема 3.8. (Больцано-Вейерштрасса) Из каждой ограниченной последовательности можно выделить сходящуюся подпоследовательность

Доказательство. $\{x_n\}_{n=1}^{\infty}$ - ограниченная, то есть $\exists [a_1;b_1]\supset \{x_n\}_{n=1}^{\infty}$

Разделим отрезок пополам. Утверждение: хотя бы 1 из половин содержит бесконечное число членов последовательности.

Пусть $[a_2;b_2]$ - та из половин $[a_1;b_1]$, которая содержит бесконечно много членов последовательности $\{x_n\}$. Продолжая, получим последовательность вложенных отрезков $\{[a_n;b_n]\}_{n=1}^{\infty}$. Так как $b_n - a_n = \frac{b_1 - a_1}{2^{n-1}}$.

Следовательно, $\{[a_n;b_n]\}_{n=1}^{\infty}$ - стягивающаяся система, пусть $c=\bigcap_{n=1}^{\infty}[a_n;b_n]$. Докажем, что c - частичный предел.

$$x_{n_1}=x_1\;;\;x_{n_2}\in [a_2;b_2]\;;\;\dots\;;\;x_{n_k}\in [a_k;b_k].$$
 Отсюда $0\leqslant |c-x_{n_k}|\leqslant \frac{b_1-a_1}{2^{n-1}}\to 0.$

Дополнение. Каждая числовая последовательность $\forall \{x_n\}_{n=1}^{\infty}$ имеет хотя бы 1 частичный предел, то есть $\exists \{x_{n_k}\}_{k=1}^{\infty} \mid \lim_{k \to \infty} x_{n_k} = l \in \mathbb{R}$

Доказательство. Если последовательность ограничена, то смотрим теорему Больцано-Вейерштрасса.

Если последовательность неограничена сверху, то построим подпоследовательность:

$$M := 1$$
 $\Rightarrow \exists n_1 \in \mathbb{N} \mid x_{n_1} > 1$
 $M := \max(2, x_1, x_2, \dots, x_{n_1})$ $\Rightarrow \exists n_2 \in \mathbb{N} \mid x_{n_2} > \max(2, x_{n_2}) \geqslant 2, n_2 > n_1$

ФПМИ МФТИ, осень 2021

Получили $\{x_{n_k}\}_{k=1}^{\infty}$ такую, что $\forall k \in \mathbb{N}$ $x_{n_k} > k$. Несложно показать, что данная последовательность - бесконечно большая.

Аналогично доказывается случай, когда последовательность неограничена снизу.

Определение 3.23. Верхним пределом последовательности $\{x_n\}_{n=1}^{\infty} \subset R$ называется наибольший из её частичных пределов $\overline{\lim}_{n\to\infty} x_n$.

Определение 3.24. *Ниэкним пределом последовательности* $\{x_n\}_{n=1}^{\infty} \subset R$ называется наименьший из её частичных пределов $\lim_{n\to\infty} x_n$.

Теорема 3.9. (3 определения верхнего и нижнего пределов) Для любой ограниченной последовательности $\{x_n\}_{n=1}^{\infty}$ существуют $L = \overline{\lim_{n \to \infty}} x_n$, $l = \underline{\lim_{n \to \infty}} x_n$. Для них справедливы следующие утверждения:

1.
$$(\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \mid \forall n > N \ x_n < L + \varepsilon) \land (\forall \varepsilon > 0 \ \forall N \in \mathbb{N} \ \exists n > N \ x_n > L - \varepsilon)$$

 $(\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \mid \forall n > N \ x_n > l - \varepsilon) \land (\forall \varepsilon > 0 \ \forall N \in \mathbb{N} \ \exists n > N \ \mid x_n < l + \varepsilon)$

2.
$$L = \lim_{n \to \infty} \sup\{x_n, x_{n+1}, \dots\}; \ l = \lim_{n \to \infty} \inf\{x_n, x_{n+1}, \dots\}$$

Причём определения равносильны (стандартное и эти 2 пункта).

Доказательство. Доказательство приводится только для верхнего предела. Для нижнего просто аналогично.

Рассмотрим последовательность $s_n := \sup\{x_n, x_{n+1}, \dots\} = \sup_{m \geqslant n} x_m$. Несложно заметить 2 утверждения из данного определения:

$$s_n \geqslant s_{n+1}$$

 $s_n \geqslant \inf\{x_n\}$

А значит по теореме Вейерштрасса, данная последовательность сходится и имеет предел $L:=\lim_{n\to\infty}s_n=\inf\{s_n\}.$

Покажем, что для этой последовательности верен первый пункт. По определению предела

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \mid \forall n > N \ |s_n - L| < \varepsilon$$

Так как $s_n := \sup\{x_n, x_{n+1}, \dots\}$, то $x_n \leqslant s_n < L + \varepsilon$ (доказано следствие первой части п.1. из п.2.).

Рассмотрим $N \in \mathbb{N}$ и $s_{N+1} = \sup\{x_{N+1}, x_{N+2}, \dots\}$. Так как $L = \inf\{s_n\}$, то

$$s_{N+1} \geqslant L$$

А так как $s_n := \sup\{x_n, x_{n+1}, \dots\}$, то ещё имеем

$$\forall \varepsilon > 0 \ \forall N \in \mathbb{N} \ \exists n > N \mid x_n > s_{N+1} - \varepsilon \geqslant L - \varepsilon \Rightarrow x_n > L - \varepsilon$$

(доказано следствие второй части п.1. из п.2.)

Теперь докажем, что из пункта 1. L - наибольший частичный предел $\{x_n\}$. Построим подпоследовательность:

$$\varepsilon := 1 \qquad \Rightarrow \exists n_1 \in \mathbb{N} \mid |x_{n_1} - L| < 1$$

$$\varepsilon := 1/2 \qquad \Rightarrow N_2' := \max(N_2, n_1) \ \exists n_2 > N_2' \mid |x_{n_2} - L| < 1/2$$

Существование номера обусловлено тем, что мы вначале применяем первую часть пункта 1., а затем подставляем во вторую часть пункта 1. $N'_i := \max(N_i, n_{i-1})$ и находим такое $n > N'_i$, что для него верны оба неравенства сразу.

Получили $\{x_{n_k}\}_{k=1}^{\infty}$ такую, что $\lim_{k\to\infty} x_{n_k} = L$

Рассмотрим произвольную $\{x_{m_i}\}_{i=1}^{k\to\infty}$ такую, что $\exists\lim_{i\to\infty}x_{m_i}=t$ Из уже доказанного пункта 1. следует, что

$$\forall \varepsilon > 0 \ \exists I \in \mathbb{N} \mid \forall i > I \ x_{m_i} < L + \varepsilon$$

Совершая предельный переход в неравенстве, получим

$$\forall \varepsilon > 0 \ t \leqslant L + \varepsilon$$

Отсюда понятно, что $t \leqslant L$, то есть L действительно наибольший частичный предел. \square

Замечание автора. Определения равносильны, так как мы получили цепочку утверждений, связанную следующим образом:

Соответствие определению наибольшего частичного предела ⇒

Последовательность $s_n \Rightarrow$

Первый пункт теоремы \Rightarrow

Из последнего утверждения следует первое, как показано в доказательстве. А переход из первого во второе обусловлено тем, что мы всегда можем рассмотреть s_n и прийти к первому утверждению для неё.

Определение 3.25. Последовательность $\{x_n\}_{n=1}^{\infty}$ называется фундаментальной, или же последовательностью Коши, если $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \mid \forall n > N, p \in \mathbb{N} \mid x_{n+p} - x_n \mid < \varepsilon$

Теорема 3.10. (Критерий Коши) Последовательность $\{x_n\}_{n=1}^{\infty}$ сходится тогда и только тогда, когда она фундаментальна.

Доказательство. 1. Сходимость \Rightarrow фундаментальность

Пусть
$$\lim_{n\to\infty} x_n = l$$
, тогда

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \mid \forall n > N \ |x_n - l| < \frac{\varepsilon}{2}$$

Тогда,
$$\forall p \in \mathbb{N} \ n+p > N \Rightarrow |x_{n+p}-l| < \frac{\varepsilon}{2}$$
$$|x_{n+p}-x_n| = |x_{n+p}-l+l-x_n| \leqslant |x_{n+p}-l| + |l-x_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

2. Фундаментальность ⇒ ограниченность

Согласно свойству фундаментальности, положим $\varepsilon := 1 \Rightarrow n := N + 1$. Теперь,

$$\forall p \in \mathbb{N} |x_{N+1+p} - x_{N+1}| < 1 \Rightarrow x_{N+1} - 1 < x_{N+1+p} < x_{N+1} + 1$$

Отсюда для $\forall n \in \mathbb{N}$

$$\min(x_1, \dots, x_{N+1}) - 1 < x_n < \max(x_1, \dots, x_{N+1}) + 1$$

3. Фундаментальность \Rightarrow ограниченность \Rightarrow сходимость.

Так как последовательность ограничена, то по теореме Больцано-Вейерштрасса можно выделить сходящуюся подпоследовательность.

$$\exists \{x_{n_k}\}_{k=1}^{\infty} \mid \lim_{k \to \infty} x_{n_k} = l$$

По определению предела,

$$\forall \varepsilon > 0 \ \exists K \in \mathbb{N} \mid \forall k > K \ |x_{n_k} - l| < \frac{\varepsilon}{2}$$

При этом исходная последовательность фундаментальна. То есть

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \mid \forall n > N, p \in \mathbb{N} \mid x_{n+p} - x_n \mid < \frac{\varepsilon}{2}$$

Рассмотрим $\forall m > \max(N, n_{K+1})$, тогда

$$|x_m - l| \le |x_m - x_{n_{K+1}}| + |x_{n_{K+1}} - l| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Теорема 3.11. (Число Эйлера) Последовательность $\{x_n = (1+\frac{1}{n})^n\}_{n=1}^{\infty}$ сходится. Её предел называется числом e.

$$e \approx 2.718281828459045...$$

Доказательство. Рассмотрим последовательность $y_n := \left(1 + \frac{1}{n}\right)^{n+1}$. Докажем, что y_n убывает.

$$\frac{y_{n-1}}{y_n} = \frac{\left(1 + \frac{1}{n-1}\right)^n}{\left(1 + \frac{1}{n}\right)^{n+1}} = \left(\frac{\frac{n}{n-1}}{\frac{n+1}{n}}\right)^{n+1} \cdot \frac{1}{1 + \frac{1}{n-1}} = \left(\frac{n^2}{n^2 - 1}\right)^{n+1} \cdot \frac{1}{1 + \frac{1}{n-1}} = \left(1 + \frac{1}{n^2 - 1}\right)^{n+1} \cdot \frac{1}{1 + \frac{1}{n-1}} \ge \left(1 + \frac{n+1}{n^2 - 1}\right) \cdot \frac{1}{1 + \frac{1}{n-1}} = \left(1 + \frac{1}{n-1}\right) \cdot \frac{1}{1 + \frac{1}{n-1}} = 1, n > 1$$

При этом $\{y_n\}$ - ограниченная снизу последовательность, так как $\forall n \in \mathbb{N} \ y_n \geqslant 0$ Следовательно, по теореме Вейерштрасса $\{y_n\}$ сходится. Её предел равен e.

Покажем, что к тому же пределу сходится и x_n :

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n \cdot \left(1 + \frac{1}{n}\right) = e \cdot (1 + 0) = e$$

3.3 Предел функции

Определение 3.26. Проколотой δ -окрестностью точки $a \in \mathbb{R}$ называется множество

$$\mathring{U}_{\delta}(a) := (a - \delta; a) \cup (a; a + \delta)$$

Замечание. Далее, если не оговорено иного, будем считать, что $f:X\to\mathbb{R},\,X\subset\mathbb{R}$ определена в некоторой $\mathring{U}_{\delta_0}(a)\subset X,\,\delta_0>0$

Определение 3.27. (Предел по Коши)

$$\lim_{x \to a} f(x) = A \Leftrightarrow \forall \varepsilon > 0 \; \exists \delta > 0 \; | \; \forall x \in \mathring{U}_{\delta}(a) \; f(x) \in U_{\varepsilon}(A)$$

Определение 3.28. (Предел по Гейне)

$$\lim_{x \to a} f(x) = A \Leftrightarrow \left(\forall \{x_n\} \subset X \setminus \{a\} \ \lim_{n \to \infty} x_n = a \right) \ \lim_{n \to \infty} f(x_n) = A$$

Теорема 3.12. Определения предела функции по Коши и по Гейне эквивалентны.

Доказательство. 1. $(K \Rightarrow \Gamma)$

Рассмотрим $\forall \{x_n\} \subset X \setminus \{a\} \mid \lim_{n \to \infty} x_n = a$. По определению предела

$$\forall \delta > 0 \ \exists N \in \mathbb{N} \mid \forall n > N \ |x_n - a| < \delta$$

Так как $\forall n \in \mathbb{N} \ x_n \in X \setminus \{a\}$, то отсюда следует

$$\forall \delta > 0 \; \exists N \in \mathbb{N} \; \big| \; \forall n > N \; x_n \in \mathring{U}_{\delta}(a)$$

По условию выполнено утверждение:

$$\lim_{x \to a} f(x) = A \Leftrightarrow \forall \varepsilon > 0 \; \exists \delta > 0 \; \big| \; \forall x \in \mathring{U}_{\delta}(a) \; f(x) \in U_{\varepsilon}(A)$$

То есть для любого $\varepsilon > 0$ найдётся $\delta > 0$, для которого верно 2 условия:

$$\begin{cases} \exists N \in \mathbb{N} \mid \forall n > N \ x_n \in \mathring{U}_{\delta}(a) \\ \forall x \in \mathring{U}_{\delta}(a) \ f(x) \in U_{\varepsilon}(A) \end{cases}$$

В итоге имеем:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ | \ \forall n > N \ f(x_n) \in U_{\varepsilon}(A) \Leftrightarrow \lim_{n \to \infty} f(x_n) = A$$

2.
$$(\Gamma \Rightarrow K)$$

Докажем от противного, то есть при выполненности определения Гейне неверно определение Коши:

$$\exists \varepsilon > 0 \mid \forall \delta > 0 \ \exists x \in \mathring{U}_{\delta}(a) \mid f(x) \notin U_{\varepsilon}(A)$$

Зафиксируем ε и подставим разные δ :

$$\delta := 1 \qquad \exists x_1 \in \mathring{U}_1(a) \qquad f(x_1) \notin U_{\varepsilon}(A)$$

$$\delta := 1/2 \qquad \exists x_2 \in \mathring{U}_{1/2}(a) \qquad f(x_2) \notin U_{\varepsilon}(A)$$

$$\vdots$$

$$\delta := 1/n \qquad \exists x_n \in \mathring{U}_{1/n}(a) \qquad f(x_n) \notin U_{\varepsilon}(A)$$

Получили последовательность $\{x_n\}_{n=1}^{\infty} \mid \forall n \in \mathbb{N} \ x_n \in \mathring{U}_{1/n}(a), \ f(x_n) \notin U_{\varepsilon}(A)$ Но при этом, для этой последовательности верно утверждение:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \big| \ \forall n > N \ x_n \in \mathring{U}_{\varepsilon}(a) \Leftrightarrow \lim_{n \to \infty} x_n = a$$

А из определения предела по Гейне это будет означать, что

$$\lim_{n \to \infty} f(x_n) = A \Leftrightarrow \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \big| \ \forall n > N \ f(x_n) \in U_{\varepsilon}(A)$$

Получили противоречие. (Потому что хотя бы для одного ε , которое мы зафиксировали для последовательности, это выполнено не будет)

Геометрический смысл предела функции

$$\lim_{x \to a} f(x) = A \Leftrightarrow \forall \varepsilon > 0 \; \exists \delta > 0 \; | \; \forall x, \; 0 < |x - a| < \delta \Rightarrow |f(x) - A| < \varepsilon$$

Пример. Почему мы не берём сам предел в окрестность? А потому, что мы это используем при расчёте пределов:

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1} = \lim_{x \to 1} (x + 1) = 2$$

Проверка:
$$\forall \varepsilon > 0 \ \exists \delta > 0 \ | \ \forall x, \ 0 < |x-1| < \delta \ \left| \frac{x^2-1}{x-1} - 2 \right| < \varepsilon$$

Примем $\delta := \varepsilon$: $0 < |x-1| < \varepsilon \Rightarrow \left| \frac{(x-1)(x+1)}{x-1} - 2 \right| = |x-1| < \varepsilon$

Если мы бы допустили, что a включено в δ -окрестность, то никакое бы δ не подошло - для значения x=a=1 было бы неверно, что $f(1)\in U_{\delta}(2)$

Пример. (Функция Дирихле)

$$f(x) = \begin{cases} 1, x \in \mathbb{Q} \\ 0, x \in \mathbb{R} \backslash \mathbb{Q} \end{cases} = 1$$

Докажем, что $\forall a \in \mathbb{R} \ \not\exists x \mid \lim_{x \to a} f(x) = A$:

1.
$$a \in \mathbb{Q}$$

$$x'_n = a - \frac{1}{n} \in \mathbb{Q} \Rightarrow f(x'_n) = 1$$

 $x''_n = a - \frac{\sqrt{2}}{n} \in \mathbb{R} \setminus \mathbb{Q} \Rightarrow f(x''_n) = 0$

$$a \in \mathbb{R} \setminus \mathbb{Q}$$

$$x'_n = a - \frac{1}{n} \in \mathbb{R} \backslash \mathbb{Q} \Rightarrow f(x'_n) = 0$$

 $x_n''=(a)_n\in\mathbb{Q}\Rightarrow f(x_n'')=1$ (десятичное представление a до n-го знака)

Свойства предела функции, связанные с неравенствами

- 1. (Ограниченность) Если $\lim_{x\to a} f(x) = A \in \mathbb{R}$, то f(x) ограничена в некоторой проколотой окрестности точки a.
- 2. (Отделимость от 0 и сохранение знака) Если $\lim_{x\to a} f(x) = A \in \mathbb{R}$, то $\exists C>0$ такое, что в некоторой проколотой окрестности точки $a \mid f(x) \mid \geqslant C$ и знак f(x) тот же, что и у A.
- 3. (Переход к пределу в неравенствах) Если

$$\begin{cases} \exists \delta > 0 \mid \forall x \in \mathring{U}_{\delta}(a) \ f(x) \leqslant g(x) \\ \exists \lim_{x \to a} f(x), \lim_{x \to a} g(x) \in \mathbb{R} \end{cases}$$

то $A \leq B$.

4. (Теорема о трёх функциях) Если $\exists \delta > 0 \mid \forall x \in \mathring{U}_{\delta}(a), f(x) \leqslant g(x) \leqslant h(x)$ и $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = A \in \mathbb{R}$, то $\lim_{x \to a} g(x) = A$.

Доказательство. 1. $\forall \varepsilon > 0 \; \exists \delta > 0 \; | \; \forall x \in \mathring{U}_{\delta}(a) \; |f(x) - A| < \varepsilon$

Рассмотрим $\varepsilon := 1$: $\exists \delta > 0 \mid \forall x \in \mathring{U}_{\delta}(a) \ A - 1 < f(x) < A + 1$

2. $\forall \varepsilon > 0 \; \exists \delta > 0 \; | \; \forall x \in \mathring{U}_{\delta}(a) \; f(x) \in U_{\varepsilon}(A)$

Первый случай $A = \pm \infty$, $\varepsilon := 1 \Rightarrow f(x) \in U_1(\pm \infty) \Rightarrow \operatorname{sgn} f(x) = \pm 1$

Если же $A \in \mathbb{R} \setminus \{0\}$, то $\varepsilon := \frac{|A|}{2} > 0$, $f(x) \in U_{\varepsilon}(A) \Leftrightarrow |f(x) - A| < \frac{|A|}{2}$

Раскроем модуль: $A - \frac{|A|}{2} < f(x) < A + \frac{|A|}{2}$

Если $A>0 \Rightarrow A-\frac{|A|}{2}=\frac{A}{2}>0$. Иначе $A+\frac{|A|}{2}=\frac{A}{2}<0$.

3. Рассмотрим $\{x_n\}_{n=1}^{\infty} \mid x_n \neq a, \lim_{n \to \infty} x_n = a$ и $\lim_{n \to \infty} f(x_n) = A, \lim_{n \to \infty} g(x_n) = B$

Так как последовательность сходится к a, то с какого-то номера $N \in \mathbb{N}$ она будет полностью в проколотой δ -окрестности a. А для элементов из неё будет выполняться

$$f(x_n) \leqslant g(x_n)$$

А значит, мы можем сделать предельный переход в неравенстве для последовательностей и получить

$$\lim_{n \to \infty} f(x_n) \leqslant \lim_{n \to \infty} g(x_n) \Rightarrow A \leqslant B$$

4. Доказательство аналогично третьему, через предел по Гейне и теорему о трёх последовательностях

Свойства предела функции, связанные с арифметическими операциями

Пусть
$$\lim_{x \to a} f(x) = A$$
, $\lim_{x \to a} g(x) = B$, $A, B \in \mathbb{R}$. Тогда

- 1. $\lim_{x \to a} (f \pm g)(x) = A \pm B$
- $2. \lim_{x \to a} (f \cdot g)(x) = A \cdot B$
- 3. Если $B \neq 0$, то $\lim_{x \to c} \left(\frac{f}{a}\right)(x) = \frac{A}{B}$

Доказательство. Доказательство сводится к свойствам последовательностей. Небольшое отличие есть только в доказательстве третьего пункта:

$$B \neq 0 \Rightarrow \exists \delta > 0 \mid \forall x \in \mathring{U}_{\delta}(a) \ g(x) \neq 0$$

Рассмотрим
$$\forall \{x_n\}_{n=1}^{\infty}, x_n \neq a, \lim_{n \to \infty} x_n = a$$
Мы знаем, что
$$\begin{cases} \lim_{n \to \infty} f(x_n) = A \\ \lim_{n \to \infty} g(x_n) = B \end{cases} \Rightarrow \lim_{n \to \infty} \frac{f(x_n)}{g(x_n)} = \frac{A}{B}$$

Критерий Коши существования предела функции

Теорема 3.13.
$$\exists \lim_{x \to a} f(x) \in \mathbb{R} \Leftrightarrow \underbrace{\forall \varepsilon > 0 \ \exists \delta > 0 \mid \forall x_1, x_2 \in \mathring{U}_{\delta}(a) \ |f(x_1) - f(x_2)| < \varepsilon}_{\text{Условие Коши}}$$

Доказательство. Докажем необходимость:

Из определения предела:

$$\lim_{x \to a} f(x) = A \in \mathbb{R} \Leftrightarrow \forall \varepsilon > 0 \; \exists \delta > 0 \; | \; \forall x \in \mathring{U}_{\delta}(a) \; |f(x) - A| < \frac{\varepsilon}{2}$$

По неравенству треугольника: $\forall x_1, x_2 \in \mathring{U}_{\delta}(a) |f(x_1) - f(x_2)| \leq |f(x_1) - A| + |A - f(x_2)| < \varepsilon$

Докажем достаточность:

Рассмотрим $\forall \{x_n\} \subset X \setminus \{a\} \mid \lim_{n \to \infty} x_n = a$. Из определения предела:

$$\lim_{n \to \infty} x_n = a \Leftrightarrow \forall \delta > 0 \ \exists N \in \mathbb{N} \ \big| \ \forall n > N \ x_n \in \mathring{U}_{\delta}(a)$$

Согласно этому утверждению и условию Коши, мы получаем

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ | \ \forall n, m > N \ |f(x_n) - f(x_m)| < \varepsilon$$

Что в точности означает фундаментальность последовательности $f(x_n)$, то есть она сходящаяся.

Определение 3.29. Пусть f определена на $(a;b) \mid -\infty < a < b < +\infty$ Левосторонним пределом в точке b называется $B \in \mathbb{R} \cup \{\infty\}$ такое, что

1.
$$\forall \varepsilon > 0 \; \exists \delta > 0 \; | \; \forall x, b - \delta < x < b \; f(x) \in U_{\varepsilon}(B)$$

2.
$$\forall \{x_n\}_{n=1}^{\infty} \subset (a;b), \lim_{n \to \infty} x_n = b \lim_{n \to \infty} f(x_n) = B$$

Обозначается как

$$f(b-0) := \lim_{x \to b-0} f(x) = B$$

Правосторонним пределом в точке a называется $A \in \mathbb{R} \cup \{\infty\}$ такое, что

1.
$$\forall \varepsilon > 0 \; \exists \delta > 0 \; | \; \forall x, \; a < x < a + \delta \quad f(x) \in U_{\varepsilon}(A)$$

2.
$$\forall \{x_n\}_{n=1}^{\infty} \subset (a;b), \lim_{n \to \infty} x_n = a \lim_{n \to \infty} f(x_n) = A$$

Обозначается как

$$f(b+0) := \lim_{x \to a+0} f(x) = A$$

Определение 3.30. $(b-\delta;b)$ называется *певосторонней* окрестностью точки b. $(a;a+\delta)$ называется *правосторонней* окрестностью точки a.

Теорема 3.14. (Связь предела и односторонних пределов) Пусть f ограничена в $U_{\delta}(a)$, $a \in \mathbb{R}$. Тогда

$$\exists \lim_{x \to a} f(x) \Leftrightarrow \exists \lim_{x \to a-0} f(x) = \lim_{x \to a+0} f(x)$$

Доказательство. 1. Пусть $\exists \lim_{x \to a} f(x) = A$, тогда

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; | \; \forall x, \; 0 < |x - a| < \delta, \; f(x) \in U_{\varepsilon}(A)$$

Отсюда следует, что $\forall x \mid a < x < a + \delta, f(x) \in U_{\varepsilon}(A)$ и $\forall x \mid a - \delta < x < a, f(x) \in U_{\varepsilon}(A)$, что равносильно утверждению справа.

2. Пусть
$$\exists \lim_{x \to a-0} f(x) = \lim_{x \to a+0} f(x) = A$$
. Тогда

$$\forall \varepsilon > 0 \ \exists \delta_1 > 0 \ | \ \forall x, \ a - \delta_1 < x < a \ f(x) \in U_{\varepsilon}(A)$$

$$\forall \varepsilon > 0 \; \exists \delta_2 > 0 \; | \; \forall x, \, a < x < a + \delta_2 \; f(x) \in U_{\varepsilon}(A)$$

Выберем $\delta := \min(\delta_1, \delta_2)$, получим

$$\delta_1 \geqslant \delta \Rightarrow a - \delta_1 \leqslant a - \delta$$

 $\delta_2 \geqslant \delta \Rightarrow a + \delta_2 \geqslant a + \delta$

Рассмотрим $\forall x \in \mathring{U}_{\delta}(a)$:

$$a < x < a + \delta \Rightarrow a < x < a + \delta_2$$

$$a - \delta < x < a \Rightarrow a - \delta_1 < x < a$$

Любой из этих случаев ведёт к тому, что $f(x) \in U_{\varepsilon}(A)$. А значит

$$\forall \varepsilon > 0 \exists \delta > 0 \mid \forall x, \ x \in \mathring{U}_{\delta}(a) \ f(x) \in U_{\varepsilon}(A)$$

Что равносильно левой стороне утверждения.

Определение 3.31. Функция f называется

- ightharpoonup неубывающей на X, если $\forall x_1, x_2 \in X, x_1 < x_2 \Rightarrow f(x_1) \leqslant f(x_2)$
- ightharpoonup невозрастающей на X, если $\forall x_1, x_2 \in X, x_1 < x_2 \Rightarrow f(x_1) \geqslant f(x_2)$
- \triangleright убывающей на X, если $\forall x_1, x_2 \in X, x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$
- \triangleright возрастающей на X, если $\forall x_1, x_2 \in X, x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$

В любом из этих случаев f монотонна на X, в 2х последних f строго монотонна на X.

Теорема 3.15. (Существование односторонних пределов монотонной функции) Если f монотонна на $(a;b), -\infty < a < b < +\infty, mo$

$$\exists \lim_{x \to a+0} f(x) \in \bar{\mathbb{R}}, \ \lim_{x \to b-0} f(x) \in \bar{\mathbb{R}}$$

причём если f неубывающая, то

$$\lim_{x \to a+0} f(x) = \inf_{x \in (a;b)} f(x), \ \lim_{x \to b-0} f(x) = \sup_{x \in (a;b)} f(x)$$

если f невозрастающая, то

$$\lim_{x \to a+0} f(x) = \sup_{x \in (a;b)} f(x), \ \lim_{x \to b-0} f(x) = \inf_{x \in (a;b)} f(x)$$

Доказательство. Пусть f неубывающая. Положим $\sup_{x \in (a;b)} f(x) := M$

1. $M = +\infty$. Тогда

$$\forall \varepsilon > 0 \ \exists x_0 \in (a;b) \mid f(x_0) > \frac{1}{\varepsilon}$$

Отсюда $\exists \delta := b - x_0 > 0 \mid \forall x, b - \delta < x < b \Rightarrow \frac{1}{\varepsilon} < f(x) \leqslant f(x)$, то есть $f(x_0) \in U_{\varepsilon}(+\infty)$. В итоге

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; | \; \forall x, \, b - \delta < x < b \; f(x) \in U_{\varepsilon}(M) \Leftrightarrow \lim_{x \to b - 0} f(x) = +\infty = M$$

2. $M < +\infty$. Тогда

$$\forall \varepsilon > 0 \ \exists x_0 \in (a; b) \mid f(x_0) \in (M - \varepsilon; M]$$

Отсюда уже аналогично получим, что

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; | \; \forall x, \, b - \delta < x < b \; f(x) \in U_{\varepsilon}(M) \Leftrightarrow \lim_{x \to b = 0} f(x) = M$$

Если
$$a=-\infty$$
, то $\lim_{x\to -\infty}f(x)$ вместо $\lim_{x\to a+0}f(x)$

Если
$$b = +\infty$$
, то $\lim_{x \to +\infty} f(x)$ вместо $\lim_{x \to b-0} f(x)$

3.4 Непрерывность

Непрерывность в точке

Определение 3.32. Если f определена в некоторой окрестности точки x_0 и $\lim_{x\to x_0} f(x) = f(x_0)$, то функция называется непрерывной в точке x_0 .

Определение 3.33. Если f определена на $[x_0; x_0 + \delta_0]$, где $\delta_0 > 0$ и $\lim_{x \to x_0 + 0} f(x) = f(x_0)$, то f называется непрерывной справа в точке x_0 .

Определение 3.34. Если f определена на $[x_0 - \delta_0; x_0]$, где $\delta_0 > 0$ и $\lim_{x \to x_0 - 0} f(x) = f(x_0)$, то f называется непрерывной слева в точке x_0 .

Теорема 3.16. Пусть f определена в некоторой окрестности точки x_0 . Тогда, следующие утверждения эквивалентны:

1. f непрерывна в точке x_0

2.
$$\forall \varepsilon > 0 \; \exists \delta > 0 \; | \; (\forall x, |x - x_0| < \delta) \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

3.
$$\left(\forall \{x_n\}_{n=1}^{\infty}, \lim_{n \to \infty} x_n = x_0 \right) \lim_{n \to \infty} f(x_n) = f(x_0)$$

Точки разрыва

Определение 3.35. Пусть f определена в проколотой окрестности точки x_0 . Если $\lim_{x \to x_0} f(x) \neq f(x_0)$, то x_0 называется *точкой разрыва* функции f(x).

Замечание. Неравенство полагается верным также и в тех случаях, когда хоть одна из частей не определена.

Определение 3.36. Если $\exists \lim_{x \to x_0 = 0} f(x)$, $\lim_{x \to x_0 + 0} f(x) \in \mathbb{R}$, то точка разрыва называется точкой разрыва первого рода.

В противном случае точкой разрыва второго рода.

Определение 3.37. Если $\lim_{x\to x_0-0} f(x) = \lim_{x\to x_0+0} f(x) \in \mathbb{R}$ и $\neq f(x_0)$, то x_0 называется точкой устранимого разрыва.

Определение 3.38. Если хотя бы 1 из односторонних пределов бесконечен, то x_0 называется точкой бесконечного разрыва.

Определение 3.39. Величину $\lim_{x\to x_0+0} f(x) - \lim_{x\to x_0-0} f(x)$ называется *скачком функции* в точке x_0 .

Пример.
$$f(x) = \operatorname{sgn} x = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$

$$\lim_{x \to 0+0} f(x) = 1$$

$$\lim_{x \to 0-0} f(x) = -1$$

Пример. $f(x) = \operatorname{sgn}^2 x$

$$\lim_{x \to 0} \operatorname{sgn}^2 x = 1 \neq \operatorname{sgn}^2 0 = 0$$

Пример. $f(x) = \frac{1}{x}$

$$\lim_{x \to -0} \frac{1}{x} = -\infty$$

$$\lim_{x \to +0} \frac{1}{x} = +\infty$$

Пример. $f(x) = \sin \frac{1}{x}$ Рассмотрим

$$\begin{cases} x'_n = \frac{1}{\frac{\pi}{2} + 2\pi n}, \ n \in \mathbb{N} \\ x''_n = \frac{1}{\frac{\pi}{2} + 2\pi n} \end{cases} \Rightarrow \begin{cases} \lim_{n \to \infty} f(x'_n) = 1 \\ \lim_{n \to \infty} f(x''_n) = -1 \end{cases}$$

Теорема 3.17. (О точках разрыва монотонной функции) Если f(x) монотонна на (a;b), $-\infty \le a < b \le +\infty$, то она может иметь на (a;b) лишь точки разрыва 1го рода, причём неустранимого разрыва, и число таких точек разрыва не более чем счётно.

Доказательство. $\forall x_0 \in (a;b) \exists \lim_{x \to x_0 = 0} f(x), \lim_{x \to x_0 \neq 0} f(x) \in \mathbb{R}$

Считая f неубывающей функцией, то

$$\forall x < x_0 \Rightarrow f(x) \leqslant f(x_0) \Rightarrow f(x_0 - 0) \leqslant f(x_0) \leqslant f(x_0 + 0)$$

 $f(x_0 - 0) \neq f(x_0 + 0)$, иначе бы точки разрыва не было.

$$x_1 < x_2 \Rightarrow f(x_1 - 0) < f(x_1 + 0) \le f(x_2 - 0) < f(x_2 + 0)$$

Отсюда $(f(x_1-0); f(x_1+0)) \cap (f(x_2-0); f(x_2+0)) = \emptyset$. То есть, мы получили систему непересекающихся отрезков на прямой действительных чисел, которая является не более чем счётным множеством (каждому отрезку можно сопоставить рациональное число внутри него).

Пример. (Функция Римана)

$$f(x) = \begin{cases} \frac{1}{n}, & \text{если } x = \frac{m}{n} \\ 0, & \text{если } x \in \mathbb{R} \backslash \mathbb{Q} \end{cases}$$

Докажем, что f непрерывна в $x_0 \in \mathbb{R} \setminus \mathbb{Q}$

$$\forall \varepsilon > 0 \ \exists \delta := \min \left(\left| x_0 - \frac{\lfloor nx_0 \rfloor}{n} \right|, \left| x_0 - \frac{\lfloor nx_0 + 1 \rfloor}{n} \right|, \frac{1}{n} \geqslant \varepsilon \right) > 0$$

Это означает, что

$$\forall x, |x - x_0| < \delta \Rightarrow |f(x)| < \varepsilon$$

Непрерывность на множестве

Определение 3.40. Функция называется *непрерывной на множестве* X, если

$$\forall x_0 \in X \ \left(\forall \{x_n\} \subset X, \lim_{x \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = f(x_0) \right)$$

или по Коши

$$\forall x_0 \in X \quad (\forall \varepsilon > 0 \ \exists \delta > 0 \ | \ \forall x \in X \cap U_\delta(x_0) \ | f(x) - f(x_0) | < \varepsilon)$$

Теорема 3.18. (Первая теорема Вейерштрасса о непрерывных на отрезке функциях) Если f непрерывна на [a;b], то она ограничена на [a;b]

Доказательство. Докажем от противного. Пусть f - неограничена сверху (снизу аналогично). Это означает

$$\forall \varepsilon > 0 \ \exists x_{\frac{1}{\varepsilon}} \in [a; b] \mid f(x_{\frac{1}{\varepsilon}}) > \frac{1}{\varepsilon}$$

Последовательно будем брать $\varepsilon := 1, \frac{1}{2}, \dots, \frac{1}{n}, \dots$

Получим $\{x_n\}_{n=1}^{\infty} \subset [a;b], f(x_n) > n$. По теореме Больцано-Вейерштрасса

$$\exists \{x_{n_k}\}_{k=1}^{\infty}, \ \lim_{k \to \infty} x_{n_k} = x_0 \in [a; b]$$

A из этого следует, что $\lim_{k\to\infty} f(x_{n_k}) = f(x_0)$, что неверно $(f(x_n) > n)$.

Теорема 3.19. (Вторая теорема Вейерштрасса о непрерывных на отрезке функциях) Если f непрерывна на [a;b], то она достигает своих точных верхней и нижней граней. То есть

$$\exists x', x'' \in [a; b] \mid f(x') = \inf_{x \in [a; b]} f(x), f(x'') = \sup_{x \in [a; b]} f(x)$$

Доказательство. По определению минимума

$$m := \inf_{x \in [a;b]} f(x) \Rightarrow \forall \varepsilon > 0 \ \exists x \in [a;b] \mid m \leqslant f(x) < m + \varepsilon$$

Построим подпоследовательность через выбор ε :

$$\varepsilon := 1 \qquad m \leqslant f(x_1) < m + 1$$

$$\varepsilon := 1/2 \qquad m \leqslant f(x_2) < m + 1/2$$

$$\vdots$$

$$\varepsilon := 1/n \qquad m \leqslant f(x_n) < m + 1/n$$

$$\vdots$$

Получили ограниченную последовательность $\{x_n\}_{n=1}^{\infty}$. По теореме Больцано-Вейерштрасса:

$$\exists \{x_{n_k}\}_{k=1}^{\infty} \subset \{x_n\}_{n=1}^{\infty} \mid \lim_{k \to \infty} x_{n_k} = x' \in [a; b]$$

Так как для $\forall n \in \mathbb{N}$ верно

$$m \leqslant f(x_n) < m + 1/n$$

то в силу непрерывности f, можно совершить предельный переход:

$$m \leqslant f(x') \leqslant m \Leftrightarrow f(x') = m$$

Теорема 3.20. (Больцано-Коши о промежуточных значениях)

Если f непрерывна на [a;b], то $\forall c = f(x_1) < d = f(x_2)$, где $\{x_1, x_2\} \subset [a;b] \ \forall u \in (c;d) \ \exists \gamma \in [a;b] \ | \ f(\gamma) = u$

Замечание автора. В классической версии данной теоремы утверждается, что $\exists \gamma$ не просто в [a;b], а в $[\min(x_1,x_2);\max(x_1,x_2)]$. Из доказательства лектора это следует.

Доказательство. Рассмотрим c < u = 0 < d. Положим $\{a_1, b_1\} := \{x_1, x_2\}$. Не умаляя общности будем считать $a_1 < b_1$. В силу условия имеем

$$f(a_1) \cdot f(b_1) < 0$$

Посмотрим на $f(\frac{a_1+b_1}{2})$. Если оно равно 0, то мы нашли подходящее нам $\gamma:=\frac{a_1+b_1}{2}$. Иначе рассмотрим одну из половин $[a_2;b_2]$ изначального отрезка такую, что на её концах функция тоже принимает разные значения (то есть $\{\frac{a_1+b_1}{2}\}\subset\{a_2,b_2\}$)

$$f(a_2) \cdot f(b_2) < 0$$

Продолжим рассуждения рекурсивно. Если мы так и не дошли до конкретного γ , то мы получили систему вложенных отрезков $\{[a_n;b_n]\}_{n=1}^{\infty}$. Несложно заметить, что

$$[a_n; b_n] \supset [a_{n+1}; b_{n+1}]$$

 $b_n - a_n = \frac{b_1 - a_1}{2^{n-1}}$

То есть полученная система - стягивающаяся. А по принципу Кантора вложенных отрезков это нам даёт

$$\exists \{\gamma\} = \bigcap_{n=1}^{\infty} [a_n; b_n]$$

Равенство имеет место, потому что $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = \gamma$ по построению. В силу непрерывности функции и принципа Кантора

$$\forall n \in \mathbb{N} \ a_n \leqslant \gamma \leqslant b_n \Rightarrow f(\gamma) = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$

Так как по построению $f(a_n) \cdot f(b_n) < 0$, то предельный переход даёт неравенство

$$f^2(\gamma)\leqslant 0 \Leftrightarrow f(\gamma)=0$$

При любом другом u мы можем рассмотреть вспомогательную функцию F(x) = f(x) - u, для которой верно доказанное утверждение, а значит получим и нужное:

$$F(\gamma) = 0 = f(\gamma) - u \Rightarrow f(\gamma) = u$$

Следствия свойств предела функции

- 1. (Ограниченность непрерывной функции) Если f непрерывна в x_0 , то она ограничена в некоторой окрестности точки x_0 .
- 2. (Отделимость от нуля и сохранение знака непрерывной функции) Если f непрерывна в x_0 и $f(x_0) \neq 0$, то в некоторой окрестности x_0 $|f(x)| > \frac{|f(x_0)|}{2}$ и $\operatorname{sgn} f(x) = \operatorname{sgn} f(x_0)$.
- 3. (Арифметические операции с непрерывными функциями) Если f и g непрерывны в x_0 , то $f \pm g$, $f \cdot g$ и (если $g(x_0) \neq 0$) $\frac{f}{g}$ непрерывны в x_0 .

Определение 3.41. Композицией функций f и g называется

$$(g \circ f)(x) := g(f(x))$$

Теорема 3.21. (Переход к пределу под знаком непрерывной функции) Если $\lim_{x\to a} f(x) = b$ и g непрерывна в точке b, то $\lim_{x\to a} (g\circ f)(x) = g(b)$

Доказательство. Рассмотрим $\Big(\forall \{x_n\}_{n=1}^\infty, \ x_n \neq a, \ \lim_{n\to\infty} x_n = a\Big) \ \lim_{n\to\infty} f(x_n) = b$ Положим $y_n := f(x_n)$

$$\{y_n\}_{n=1}^{\infty}, \lim_{n\to\infty} y_n = b \Rightarrow \lim_{n\to\infty} g(y_n) = g(b)$$

Дополнение. (Следствие теоремы выше. Непрерывность сложной функции) Если f непрерывна в a, g непрерывна в f(a), то $g \circ f$ непрерывна в a.

Замечание. (Предел сложной функции) Для того, чтобы из $\lim_{x\to a} f(x) = b$ и $\lim_{y\to b} g(y) = l$ следовало $\lim_{x\to a} (g\circ f)(x) = l$, достаточно потребовать, чтобы $f(x)\neq b$ в некоторой проколотой окрестности точки a.

Промежутки

Определение 3.42. Множество $I \subset \mathbb{R}$ называется *промежутком*, если $\forall x_1 < x_2, \{x_1, x_2\} \subset I \Rightarrow [x_1; x_2] \subset I$. Если таких x_1, x_2 не существует (то есть $I = \emptyset$ либо один элемент), то I называется вырожеденным промежутком

Лемма 3.1. I - невырожденный промежуток $\Leftrightarrow (\exists a < b, \{a,b\} \subset \mathbb{R})$ такие, что

$$I = \begin{bmatrix} (-\infty; +\infty) \\ (-\infty; a) \\ (b; +\infty) \\ (-\infty; a] \\ [b; +\infty) \\ [a; b] \\ (a; b] \\ [a; b) \\ (a; b) \end{bmatrix}$$

Доказательство. Здесь приведено доказательство двух возможных случаев. Остальные - аналогично.

Пусть I - невырожденный промежуток, который неограничен сверху и ограничен снизу. Тогда $\exists a := \inf I$. Сам по себе I может оказаться каким угодно, но точно верно, что (так как $I \subset \overline{\mathbb{R}}$)

$$I \subset [a; +\infty)$$

Выберем $\forall x_0 \in (a; +\infty)$. Из этого следует, что

$$\exists x_2 \in I \cap (x_0; +\infty)$$
, иначе I ограничено сверху $\exists x_1 \in I \cap (a; x_0)$, иначе inf I определен неверно

А значит и $[x_1; x_2] \subset I$, то есть $x_0 \in I$. Следовательно, $(a; +\infty) \subset I$. Ну а из этого уже либо $I = (a; +\infty)$, либо $I = [a; +\infty)$, в зависимости от достижимости инфинума.

Лемма 3.2. Если f непрерывна на промежутке I, то f(I) - промежуток

Доказательство. Будем считать, что f - непостоянна. (Иной случай тривиален) Рассмотрим $\forall y_1 < y_2, \{y_1, y_2\} \subset f(I)$ Это значит, что

$$\exists x_1 < x_2, \{x_1, x_2\} \subset I \mid \{f(x_1), f(x_2)\} = \{y_1, y_2\}$$

Так как мы работаем с промежутком, то $[x_1; x_2] \subset I$, f непрерывна на $[x_1; x_2] \Rightarrow \forall c \in (y_1; y_2) \; \exists d \in (x_1; x_2) \; | \; f(d) = c$ по теореме Больцано-Коши. А это означает, что

$$[y_1;y_2]\subset f(I)$$

Лемма 3.3. Пусть f - строго монотонна на промежутке I. Тогда f непрерывна на I тогда u только тогда, когда f(I) - промежуток.

Доказательство. Нужно доказать только достаточность, остальное следует из предыдущей леммы.

Пусть f(I) - промежуток. Предположим, что f - разрывная, x_0 - не концевая точка I и f не непрерывна в x_0 . Будем считать, что f - возрастающая. Тогда

$$f(x_0 - 0) < f(x_0 + 0)$$

 $\Phi \Pi M M \Phi T M$, осень 2021

Рассмотрим $\forall x < x_0 \Rightarrow f(x) \leqslant f(x_0 - 0)$. Аналогично $\forall x > x_0 \Rightarrow f(x) \geqslant f(x_0 + 0)$. Отсюда следует, что

$$f(I) \subset (-\infty; f(x_0 - 0)] \cup \{f(x_0)\} \cup [f(x_0 + 0); +\infty)$$

Так как x_0 - не концевая точка I, то из каждого полуинтервала можно выбрать $y_1, y_2 \in f(I)$ соответственно. Но по определению промежутка $[y_1; y_2] \subset f(I)$, то есть $(f(x_0 - 0); f(x_0 + 0)) \in [y_1; y_2] \Rightarrow (f(x_0 - 0); f(x_0 + 0)) \in f(I)$, что противоречит условию.

Пусть теперь x_0 - концевая точка, например, $x_0 = \inf I$. Раз f - возрастающая, то

$$\exists f(x_0 + 0) > f(x_0)$$

Получаем $f(I) \subset \{f(x_0)\} \cup [f(x_0+0); +\infty)$. Взяв y_1 и y_2 из разных частей, снова получим противоречие.

Определение 3.43. Если f инъективна на X, то на f(X) определена обратная функция f^{-1} :

$$y = f(x) \Leftrightarrow x = f^{-1}(y)$$

Теорема 3.22. (Теорема об обратной функции) Если f непрерывна u строго монотонна на промежутке I, то на промежутке f(I) определена обратная функция f^{-1} , строго монотонная e том же смысле, что e f, e непрерывная на f(I).

Доказательство. Будем рассматривать такую f, что $\forall x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$. Положим

$$y_1 := f(x_1)$$

 $y_2 := f(x_2)$

То есть

$$f^{-1}(y_1) := x_1$$

 $f^{-1}(y_2) := x_2$

 $f^{-1}(y_1) < f^{-1}(y_2)$, то есть f^{-1} монотонно возрастает.

По лемме 3.3 f(I) - промежуток. А значит, f^{-1} определена на промежутке и при этом строго монотонна. Следовательно, по той же лемме, f^{-1} - непрерывна на f(I).

3.5 Непрерывность элементарных функций

1. $y=x^n,\,n\in\mathbb{N},\,n$ - нечётное

Возрастает на $(-\infty; +\infty)$, непрерывна

Обратная: $f^{-1}(y) := \sqrt[n]{x}$

2. $y=x^n, n \in \mathbb{N}, n$ - чётное

Возрастает на $[0; +\infty)$, непрерывна

$$f^{-1}(y) = \sqrt[n]{x}$$

3. $y = x^r, r \in \mathbb{Q}$

Определена и непрерывна на $(0; +\infty)$

Тригонометрические функции

Лемма 3.4. $\forall x \in (0; \frac{\pi}{2}) \Rightarrow \sin x < x < \operatorname{tg} x$

Доказательство. Рассмотрим рисунок, на котором $x \in (0; \frac{\pi}{2})$. Согласно обозначениям, $\sin x = MA$, $\operatorname{tg} x = BC$. При этом несложно увидеть, что

$$S_{\triangle OMC} < S_{OMC} < S_{\triangle OBC}$$

где
$$S_{\triangle OMC}=rac{\sin x}{2},\,S_{OMC}=rac{x}{2},\,S_{\triangle OBC}=rac{\operatorname{tg} x}{2}.$$
 То есть

$$\frac{\sin x}{2} < \frac{x}{2} < \frac{\operatorname{tg} x}{2} \Rightarrow \sin x < x < \operatorname{tg} x$$

Следствие. $|\sin x| \leq |x| \ \forall x \in \mathbb{R}$

Доказательство. Если мы положим $x \in (-\frac{\pi}{2}; 0]$, то получим

$$(-x) \in [0; \frac{\pi}{2})$$

$$\sin x = -\sin(-x)$$

$$x = -(-x)$$

По уже доказанной лемме 3.4 имеем

$$\sin(-x) \leqslant (-x) \Rightarrow -\sin(-x) \geqslant -(-x) \Leftrightarrow \sin(x) \geqslant x$$

Но при этом мы имеем дело с отрицательными числами. А стало быть

$$|\sin x| \leqslant |x|, \ x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

За рамками данного интервала x уже точно по модулю за областью значений $\sin x$. Поэтому утверждение верно $\forall x \in \mathbb{R}$.

Hепрерывность sin и cos

Докажем, что $\lim_{x\to a}\sin x=\sin a$ при $\forall a\in\mathbb{R}$

$$|\sin x - \sin a| = \left| 2\sin \frac{x - a}{2} \cos \frac{x + a}{2} \right| \leqslant 2 \cdot \left| \sin \frac{x - a}{2} \right| \cdot \left| \cos \frac{x + a}{2} \right| \leqslant 2 \cdot \left| \frac{x - a}{2} \right| \cdot 1 = |x - a|$$

Для доказательства предела достаточно взять $\delta := \varepsilon/2$. Следовательно, $\sin x$ - непрерывная на всей области определения.

Теперь докажем, что $\lim_{x\to a}\cos x=\cos a$ при $\forall a\in\mathbb{R}$

$$|\cos x - \cos a| = \left| -2 \cdot \sin \frac{x+a}{2} \cdot \sin \frac{x-a}{2} \right| \le 2 \cdot 1 \cdot \left| \frac{x-a}{2} \right| = |x-a|$$

Снова достаточно взять $\delta := \varepsilon/2$ и доказательство получено.

Теорема 3.23. (Первый замечательный предел) Предел $\lim_{x\to 0} \frac{\sin x}{x}$ существует и равен 1.

Доказательство. Рассмотрим $x \in (0; \frac{\pi}{2})$. Тогда, по лемме 3.4 получим:

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$

В предельном переходе

$$1 \leqslant \lim_{x \to 0+} \frac{x}{\sin x} \leqslant 1$$

Следовательно $\lim_{x\to 0+} \frac{\sin x}{x} = 1$

Непрерывность показательной функции

Лемма 3.5.

$$\lim_{n \to \infty} \sqrt[n]{a} = 1, \, \forall a > 0$$

Доказательство. Рассмотрим 3 случая:

- 1. a = 1 тривиально
- 2. a > 1. В таком случае, $\sqrt[n]{a} > 1$. А значит

 $\sqrt[n]{a}=1+lpha_n$, где $lpha_n$ - просто какая-то последовательность, причем $lpha_n>0$

Возведём все в n-ю степень и применим неравенство Бернулли:

$$a = (1 + \alpha_n)^n \geqslant 1 + n\alpha_n$$

Отсюда имеем

$$0 < \alpha_n < \frac{a-1}{n}$$

Несложно увидеть, что $\lim_{n\to\infty}\frac{a-1}{n}=0$. Ну а значит

 $\lim_{n\to\infty} \alpha_n = 0$ - бесконечно малая последовательность

Используя предельный переход в равенстве, имеем

$$\lim_{n \to \infty} \sqrt[n]{a} = \lim_{n \to \infty} (1 + \alpha_n) = 1 + 0 = 1$$

3. a < 1. Теперь $\sqrt[n]{a} < 1$. Но всё равно можно применить тот же трюк:

$$\sqrt[n]{a} = \frac{1}{1+\alpha_n}$$
, где $\alpha_n > 0$

Тогда получим

$$a = (1 + \alpha_n)^{-n} \geqslant 1 - n\alpha_n$$

$$0 < \alpha_n \leqslant \frac{1 - a}{n} \Rightarrow \lim_{n \to \infty} \alpha_n = 0$$

$$\Rightarrow \lim_{n \to \infty} \sqrt[n]{a} = \lim_{n \to \infty} \frac{1}{1 + \alpha_n} = \frac{1}{1 + 0} = 1$$

Считая, что все рациональные степени уже определены, дадим определение a^x в общем случае

Определение 3.44. a^x при $\forall x \geqslant 0$ определяется как

1. a > 1

Введём понятие $(x)_n$:

$$(x)_n := \frac{\lfloor 10^n \cdot x \rfloor}{10^n}$$

То есть $(x)_n$ - это число x, у которого оставили ровно n знаков после запятой, а остальное удалили. Понятно, что это - рациональное число, и степень $a^{(x)_n}$ определена.

Заметим, что $\{(x)_n\}$ - неубывающая последовательность. Стало быть, и $\{a^{(x)_n}\}$ - тоже неубывающая. При этом

$$\forall n \in \mathbb{N} \ (x)_n \leqslant \lceil x \rceil \Rightarrow a^{(x)_n} \leqslant a^{\lceil x \rceil}$$

То есть, $\{a^{(x)_n}\}$ к тому же и ограниченная сверху. По теореме Вейерштрасса, она имеет предел. Её предел и называют a^x :

$$a^x := \lim_{n \to \infty} a^{(x)_n}$$

- $2. \ a=1 \Rightarrow a^1=a$
- 3. 0 < a < 1

Определяется через предел как и в случае 1., только теорема Вейерштрасса будет для невозрастающей последовательности.

Для x < 0 определим a^x как

$$a^x = \frac{1}{a^{-x}}$$

Покажем, что если $x_1 < x_2$, то и $a^{x_1} < a^{x_2}$:

Начиная с некоторого $N \in \mathbb{N}$, будет в точности выполнено неравенство $\forall n > N$

$$(x_1)_n \leqslant x_1 < (x_2)_n \leqslant x_2$$

А значит найдутся 2 рациональных числа $r_1 < r_2$ такие, что

$$(x_1)_n \leqslant x_1 < r_1 < r_2 < (x_2)_n$$

Предельный переход даёт неравенство

$$a^{x_1} \leqslant a^{r_1} < a^{r_2} \leqslant a^{x_2}$$

Которое и даёт $a^{x_1} < a^{x_2}$

Лемма 3.6. (Корректность определения показательной функции) $(\forall x \in \mathbb{R})$ $(\forall \{r_n\} \subset \mathbb{Q}, \lim_{n \to \infty} r_n = x) \Rightarrow \lim_{n \to \infty} a^{r_n} = a^x$

Доказательство. Доказательство проводится для a>1. Для другого случая аналогично. Заметим, что обе последовательности $a^{-\frac{1}{n}}-1$ и $a^{\frac{1}{n}}-1$ стремятся к нулю. То есть

$$\forall \varepsilon > 0 \ \exists K \in \mathbb{N} \ \big| \ \max(|a^{-\frac{1}{K}} - 1|, a^{\frac{1}{K}} - 1) < \varepsilon$$

Докажем, что $\{a^{r_n}\}$ - фундаментальная последовательность.

$$a^{r_{n+p}} - a^{r_n} = a^{r_n} \cdot (a^{r_{n+p}-r_n} - 1)$$

Так как $\{r_n\}$ сходится, то $\exists M \mid \forall n \in \mathbb{N} \ r_n \leqslant M$. Отсюда

$$a^{r_n} \leq a^M$$

Сама $\{r_n\}$ фундаментальна. То есть

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \big| \ \forall n > N, p \in \mathbb{N} \ \big| r_{n+p} - r_n \big| < \varepsilon \Rightarrow \ \varepsilon := \frac{1}{K}, \ -\frac{1}{K} < r_{n+p} - r_n < \frac{1}{K}$$

Следовательно

$$a^{-\frac{1}{K}} - 1 < a^{r_{n+p}-r_n} - 1 < a^{\frac{1}{K}} - 1$$

Ну а отсюда уже (перевыбрали окрестность из первого утверждения доказательства)

$$|a^{r_{n+p}-r_n}-1| < \max(|a^{-\frac{1}{K}}-1|, |a^{\frac{1}{K}}-1|) < \frac{\varepsilon}{a^M}$$

В итоге имеем

$$|a^{r_n} \cdot (a^{r_{n+p}-r_n}-1)| < a^{r_n} \cdot \frac{\varepsilon}{a^M} < \varepsilon$$

Покажем, что у $\{a^{(x)_n}\}$ и $\{a^{r_n}\}$ одинаковые пределы. Для этого рассмотрим последова-

тельность:

$$z_n = \begin{cases} r_k, & n = 2k - 1 \\ (x)_k, & n = 2k \end{cases}$$

По определению предела

$$\forall \varepsilon > 0 \ \exists K_1 \in \mathbb{N} \ | \ \forall k > K_1 \ (|r_k - x| < \varepsilon \Leftrightarrow |z_{2k-1} - x| < \varepsilon)$$

$$\forall \varepsilon > 0 \ \exists K_2 \in \mathbb{N} \ | \ \forall k > K_2 \ (|(x)_k - x| < \varepsilon \Leftrightarrow |z_{2k} - x| < \varepsilon)$$

Следовательно

$$\forall \varepsilon > 0 \ \exists N := 2 \cdot \max(K_1, K_2) \ | \ \forall n > N \ |z_n - x| < \varepsilon$$

То есть $\{z_n\}$ - сходящаяся последовательность рациональных чисел. А из доказанного это значит, что существует предел $\lim_{n\to\infty} a^{z_n}$. Но если $\lim_{n\to\infty} a^{r_n} \neq \lim_{n\to\infty} a^{(x)_n}$, то последовательность $\{a^{z_n}\}$ расходится. Отсюда заключаем, что

$$(\forall x \in \mathbb{R}) \ (\forall \{r_n\} \subset \mathbb{Q}, \ \lim_{n \to \infty} r_n = x) \Rightarrow \lim_{n \to \infty} a^{r_n} = a^x$$

Свойства показательной функции

1.
$$a^{x_1+x_2} = a^{x_1} \cdot a^{x_2}$$

$$2. \ a^x \cdot b^x = (a \cdot b)^x$$

3.
$$(a^x)^y = a^{x \cdot y}$$

Доказательство. Докажем свойство суммы:

$$\begin{cases} \lim_{n \to \infty} (x_1)_n = x_1 \\ \lim_{n \to \infty} (x_2)_n = x_2 \end{cases} \Rightarrow \lim_{n \to \infty} ((x_1)_n + (x_2)_n) = x_1 + x_2$$

При этом

$$\lim_{n \to \infty} a^{(x_1)_n} = a^{x_1}$$
$$\lim_{n \to \infty} a^{(x_2)_n} = a^{x_2}$$

Тогда

$$\lim_{n \to \infty} a^{(x_1)_n + (x_2)_n} = a^{x_1 + x_2}$$

Второе свойство доказывается аналогично.

Третье свойство уже сложнее. Пусть x, y > 0,

$$\{r'_n\}$$
 — возрастает к x $\{r''_n\}$ — убывает к x $\{p'_n\}$ — возрастает к y $\{p''_n\}$ — убывает к y

Отсюда цепочка неравенств:

$$a^{r'_n \cdot p'_n} = (a^{r'_n})^{p'_n} \leqslant (a^x)^{p'_n} \leqslant (a^x)^y \leqslant (a^x)^{p''_n} \leqslant (a^{r''_n})^{p''_n} = a^{r''_n \cdot p''_n}$$

Пределы обоих концов стремятся к $a^{x\cdot y}$, откуда уже по теореме о трёх последовательностях имеем нужное нам равенство.

Теорема 3.24. a^x - непрерывная функция на $\mathbb{R} \ \forall a \in (0;1) \cup (1;\infty)$

Доказательство. $a^{x} - a^{x_0} = a^{x_0}(a^{x-x_0} - 1)$

Это значит, что достаточно установить факт

$$\lim_{x\to 0} a^x = 1$$

Рассмотрим $|x| < \frac{1}{K}$ для произвольного K. Тогда

$$a^{-\frac{1}{K}} - 1 < a^x - 1 < a^{\frac{1}{K}} - 1 \Rightarrow |a^x - 1| < \max(|a^{-\frac{1}{K}} - 1|, |a^{\frac{1}{K}} - 1|)$$

При этом

$$\forall \varepsilon > 0 \ \exists K \in \mathbb{N} \ \big| \ \max(|a^{\frac{1}{K}} - 1|, |a^{-\frac{1}{K}} - 1|) < \varepsilon$$

Отсюда

$$\forall \varepsilon > 0 \ \exists \delta := \frac{1}{K} \ | \ \forall x, \ |x| < \delta \ |a^x - 1| < \varepsilon$$

Что и требовалось доказать.

Следствие. (Непрерывность логарифма) $\log_a x$ - непрерывная функция на $(0; +\infty)$

 Δ оказательство. Будем считать a > 1. Начнём с доказательнства, что

$$\sup_{x \in \mathbb{R}} a^x = +\infty$$
$$\inf_{x \in \mathbb{R}} a^x = 0$$

Рассмотрим $x \in \mathbb{N}$ и $a = 1 + \alpha$ ($\alpha > 0$). По неравенству Бернулли

$$(1+\alpha)^x \geqslant 1+x\alpha$$

Следовательно, очень просто подобрать x такое, что оно будет больше любого M. Отсюда неограниченность сверху. Теперь, посмотрим на значения при отрицательном аргументе:

$$(1+\alpha)^{-x} = \frac{1}{(1+\alpha)^x} \leqslant \frac{1}{1+x\alpha}$$

Отсюда следует инфинум, равный нулю.

То есть $f((-\infty; +\infty)) = (0; +\infty)$, при этом $f(x) = a^x$ непрерывна и строго монотонна на всей области определения. По теореме об обратной функции это нам даёт, что $f^{-1}(y) := \log_a(y)$ строго монотонна и непрерывна на $(0; +\infty)$.

Теорема 3.25. (Второй замечательный предел)

$$\lim_{x \to 0} (1+x)^{1/x} = e$$

Доказательство. Положим 0 < x < 1.

$$n_x := \left\lfloor \frac{1}{x} \right\rfloor$$

$$n_x \leqslant \frac{1}{x} < n_x + 1 \Rightarrow \frac{1}{n_x + 1} < x \leqslant \frac{1}{n_x}$$

Рассмотрим функцию

$$f(x) = \left(1 + \frac{1}{n_x}\right)^{n_x + 1}$$

Положим $x_1 < x_2$. Следовательно

$$\frac{1}{x_2} < \frac{1}{x_1} \Rightarrow n_{x_2} \leqslant n_{x_1} \Rightarrow f(x_2) \geqslant f(x_1) \geqslant 1$$
 (в силу последовательности числа Эйлера)

По теореме Вейерштрасса предел f(x) существует.

Сделаем замечательное наблюдение:

$$f\left(\frac{1}{n}\right) = \left(1 + \frac{1}{n}\right)^n \Rightarrow \lim_{n \to \infty} f(1/n) = e$$

Напишем цепочку неравенств:

$$(1+x)^{1/x} \ge (1+x)^{n_x} > \left(1 + \frac{1}{n_x + 1}\right)^{n_x}$$
$$(1+x)^{1/x} \le \left(1 + \frac{1}{n_x}\right)^{1/x} < \left(1 + \frac{1}{n_x}\right)^{n_x + 1}$$

Крайняя левая и крайняя правая оценки стремятся к е. А значит

$$\lim_{x \to 0+} f(x) = e$$

Осталось доказать левый предел. Сделаем замену x = -y:

$$\lim_{x \to 0^{-}} (1+x)^{1/x} = \lim_{y \to 0^{+}} (1-y)^{-1/y} = \lim_{y \to 0^{+}} \left(\frac{1}{1-y}\right)^{1/y} = \lim_{y \to 0^{+}} \left(\frac{1}{1-y}\right)^{1/y} = \lim_{y \to 0^{+}} \left(1+\frac{y}{1-y}\right)^{1/y} = \lim_{t \to 0^{+}} (1+t)^{\frac{1-t}{t}} = \lim_{t \to 0^{+}} (1+t)^{1/t} \cdot \frac{1}{1+t} = e \cdot 1 = e$$

По теореме о связи предела с односторонними пределами, в итоге получаем

$$\lim_{x \to 0} (1+x)^{1/x} = e$$

Лемма 3.7. $\forall a \in (0;1) \cup (1;+\infty)$

$$1. \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$$

2.
$$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln_a}$$

3.
$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a$$

Доказательство. 1. Введём q(y):

$$g(y) = \begin{cases} (1+y)^{1/y}, \ y \neq 0 \\ e, y = 0 \end{cases}$$

В силу второго замечательного предела

$$\lim_{y \to 0} (1+y)^{1/y} = e = g(0)$$

То есть, g(y) непрерывна в 0. Дополнительно введём y = f(x) = 1/x. Для этой функции есть предел

$$\lim_{x \to \infty} f(x) = 0$$

По теореме о пределе композиции функций получим

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \lim_{x \to \infty} g(f(x)) = g(0) = e$$

2. В силу непрерывности логарифма в 0 применим композицию:

$$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \lim_{x \to 0} \log_a((1+x)^{1/x}) = \log_a(\lim_{x \to 0} (1+x)^{1/x}) = \log_a e = \frac{1}{\ln a}$$

3. Положим $f(x) = a^x - 1$. Если выразить x через y = f(x), то получится

$$x = \log_a(y+1)$$

А выражение предела получает вид

$$\frac{a^x - 1}{x} = \frac{y}{\log_a(y+1)}$$

Если подставить в такое выражение y=0, то мы получим неопределённость. Это можно исправить, определив g(y) как

$$g(y) := \begin{cases} \frac{y}{\log_a(y+1)}, & y \neq 0\\ \ln a, & y = 0 \end{cases}$$

Посчитаем предел

$$\lim_{y \to 0} g(y) = \lim_{y \to 0} \frac{1}{\frac{1}{g(y)}} = \lim_{y \to 0} \frac{1}{\frac{\log_a(y+1)}{y}} = \frac{1}{\frac{1}{\ln a}} = \ln a$$

То есть g(y) непрерывно в 0. При этом

$$\lim_{x \to 0} f(x) = 1 - 1 = 0$$

По теореме о композиции функций получим

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \lim_{x \to 0} g(f(x)) = g(0) = \ln a$$

Гиперболические функции

Определение 3.45.

$$\sh x := \frac{e^x - e^{-x}}{2} - \text{ гиперболический синус}$$

$$\ch x := \frac{e^x + e^{-x}}{2} - \text{ гиперболический косинуc}$$

$$\th x := \frac{\sh x}{\ch x}$$

$$\coth x := \frac{\ch x}{\sh x}$$

Все гиперболические функции непрерывны на своих областях определения.

Свойства гиперболических функций

- 1. $\operatorname{ch}^2 x \operatorname{sh}^2 x = 1$ основное гиперболическое тождество
- $2. \cosh^2 x + \sinh^2 x = \cosh 2x$
- 3. $2 \cdot \operatorname{sh} x \cdot \operatorname{ch} x = \operatorname{sh} 2x$

Обратные функции

$$y = \operatorname{sh} x \Leftrightarrow x = \operatorname{Arsh} y$$

В этом нет смысла, так как можно решить уравнение явно

$$y = \frac{e^x - e^{-x}}{2} \Leftrightarrow e^{2x} - 2ye^x - 1 = 0 \Leftrightarrow x = \ln(y + \sqrt{y^2 + 1})$$

Дополнение.
$$\lim_{x\to 0} \frac{\sinh x}{x} = \lim_{x\to 0} \frac{e^x - e^{-x}}{2x} = \lim_{x\to 0} \frac{e^x - 1}{2x} - \frac{e^{-x} - 1}{2z} = \frac{1}{2} + \lim_{t\to 0} \frac{e^t - 1}{2t} = 1$$

3.6 Сравнение функций

Определение 3.46. Пусть $f(x) = \lambda(x) \cdot g(x)$.

1. Если $\lambda(x)$ ограничена в некоторой проколотой окрестности, то f(x) = O(g(x)) при $x \to a$

- 2. Если $\lim_{x\to a}\lambda(x)=0$, то f(x)=o(g(x)) при $x\to a$
- 3. Если $\lim_{x\to a}\lambda(x)=1,$ то $f(x)\sim g(x)$ при $x\to a.$ (эквивалентны)

Теорема 3.26. Если $g(x) \neq 0$ в некоторой проколотой окрестности точки a, mo

- 1. $\frac{f(x)}{g(x)}$ ограничена в некоторой проколотой окрестности точки $a \Leftrightarrow f(x) = O(g(x))$ при $x \to a$
- 2. $\lim_{x \to a} \frac{f(x)}{g(x)} = 0 \Leftrightarrow f(x) = o(g(x)) \ npu \ x \to a$
- 3. $\lim_{x \to a} \frac{f(x)}{g(x)} = 1 \Leftrightarrow f(x) \sim g(x) \text{ npu } x \to a$

Доказательство. Положим $\lambda(x) := \frac{f(x)}{g(x)}$. А дальше всё уже следует из сказанного выше.

Пример. $\sin x \cdot \sin \frac{1}{x} = O(\sin \frac{1}{x})$ при $x \to 0$.

Пример. $x \cdot \sin \frac{1}{x} = o(\sin \frac{1}{x})$ при $x \to 0$.

Теорема 3.27. $f(x) \sim g(x)$ $npu \ x \to a \Leftrightarrow f(x) - g(x) = o(g(x))$ $npu \ x \to a$.

Доказательство. Положим $f(x) \sim g(x)$ при $x \to a$. Тогда

$$f(x) = \lambda(x) \cdot g(x), \lim_{x \to a} \lambda(x) = 1$$

Следовательно,

$$f(x) - g(x) = (\lambda(x) - 1) \cdot g(x), \lim_{x \to a} (\lambda(x) - 1) = 0 \Rightarrow f(x) - g(x) = o(g(x))$$

Теорема 3.28. (Использование эквивалентных при вычислении пределов) Если $f_1(x) \sim f_2(x)$ при $x \to a$, то

$$\lim_{x \to a} f_1(x) \cdot g(x) = \lim_{x \to a} f_2(x) \cdot g(x)$$

А также

$$\lim_{x \to a} \frac{g(x)}{f_1(x)} = \lim_{x \to a} \frac{g(x)}{f_2(x)}$$

при условии, что хотя бы один из пределов в каждом равенстве существует

Доказательство. По условию

$$f_1(x) = \lambda(x) \cdot f_2(x)$$

Отсюда если существует предел одной, то автоматически существует предел и второй. Для дробей

$$\frac{g(x)}{f_1(x)} = \frac{1}{\lambda(x)} \cdot \frac{g(x)}{f_2(x)}$$

Утверждение 3.5. $\sin x \sim \operatorname{tg} x \sim (e^x - 1) \sim \ln(1 + x) \sim \operatorname{sh} x \sim \operatorname{th} x \sim \arcsin x \sim \operatorname{arctg} x \sim x$ при $x \to 0$

Замечание. Мы можем писать o(f) = O(f) и подобное, подразумевая, что на самом деле мы рассматриваем некоторое g = o(f)

Определение 3.47. Если f = O(g) и g = O(f) при $x \to a$, то говорят, что

$$f \approx q$$

4 Дифференциальное исчисление функций одной переменной

4.1 Производная

Определение 4.1. Пусть y = f(x) определена в некоторой окрестности точки $a \in \mathbb{R}$.

Приращением δy этой функции в точке a, соответствующим приращению аргумента δx , называется $\delta y = f(a + \delta x) - f(a)$.

 Π роизводной функции y=f(x) в точке a называется предел (если он существует и конечен)

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} =: f'(a)$$

Теорема 4.1. Если функция имеет производную в точке а, то она непрерывна в этой точке.

Доказательство. По условию,

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a) + \alpha(x)$$

Если совершить предельный переход, то увидим, что

$$\lim_{x \to a} \alpha(x) = 0$$

Следовательно,

$$f(x) - f(a) = f'(a)(x - a) + \alpha(x)(x - a)$$

при $x \to a$. Перенесём f(a) в другую сторону и в предельном переходе получим, что

$$\lim_{x \to a} f(x) = f(a) + 0 + 0 = f(a)$$

Теорема 4.2. (Арифметические операции и производные) Если $\exists f'(a)$ и g'(a), то

1.
$$(f \pm g)'(a) = f'(a) \pm g'(a)$$

2.
$$(f \cdot q)'(a) = f'(a) \cdot q(a) + f(a) \cdot q'(a)$$

3. Ecnu
$$g(a) \neq 0$$
, mo $\left(\frac{f}{g}\right)'(a) = \frac{f'(a) \cdot g(a) - f(a) \cdot g'(a)}{g^2(a)}$

Доказательство.

1.

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}, \ g'(a) = \lim_{x \to a} \frac{g(x) - g(a)}{x - a}$$

Отсюда

$$\lim_{x \to a} \frac{(f(x) \pm g(x)) - (f(a) \pm g(a))}{x - a} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \pm \lim_{x \to a} \frac{g(x) - g(a)}{x - a}$$

2. Аналогично первому,

$$\frac{(f \cdot g)(x) - (f \cdot g)(a)}{x - a} = \frac{f(x)g(x) - f(a)g(x)}{x - a} + \frac{f(a)g(x) - f(a)g(a)}{x - a} = \frac{f(x) - f(a)}{x - a} \cdot g(x) + f(a) \cdot \frac{g(x) - g(a)}{x - a}$$

Что в предельном переходе даёт

$$f'(a) \cdot g(a) + f(a) \cdot g'(a).$$

3. Аналогично первому и второму,

$$\frac{(\frac{f}{g})(x) - (\frac{f}{g})(a)}{x - a} = \frac{f(x)g(a) - f(a)g(x)}{g(x)g(a)(x - a)} = \frac{f(x)g(a) - f(a)g(a)}{g(x)g(a)(x - a)} + \frac{f(a)g(a) - f(a)g(x)}{g(x)g(a)(x - a)}$$

В предельном переходе получим

$$\frac{g(a)f'(a)}{g^2(a)} - \frac{f(a)g'(a)}{g^2(a)}$$

Теорема 4.3. (Производные элементарных функций) Для всех а из областей определения соответствующих функций справедливы равенства:

$$1. \left. (\sin x)' \right|_{x=a} = \cos a$$

$$2. \left(\cos x\right)'\Big|_{x=a} = -\sin a$$

3.
$$(\operatorname{tg} x)'|_{x=a} = \frac{1}{\cos^2 a}$$

$$4. \left(\operatorname{ctg} x \right)' \Big|_{x=a} = -\frac{1}{\sin^2 a}$$

5.
$$(x^b)'|_{x=a} = b \cdot a^{b-1}(x > 0)$$

6.
$$(b^x)'|_{x=a} = b^a \ln b$$

$$7. \left. (\operatorname{sh} x)' \right|_{x=a} = \operatorname{ch} a$$

8.
$$(\operatorname{ch} x)'|_{x=a} = \operatorname{sh} a$$

9.
$$(\operatorname{th} x)'|_{x=a} = \frac{1}{\operatorname{ch}^2 a}$$

10.
$$(\operatorname{cth} x)'|_{x=a} = -\frac{1}{\operatorname{sh}^2 a}$$

Доказательство. Рутинно

$$1. \lim_{x \to a} \frac{\sin x - \sin a}{x - a} = \lim_{x \to a} \frac{2 \sin \frac{x - a}{2} \cos \frac{x + a}{2}}{x - a} = \lim_{x \to a} \cos \frac{x + a}{2} = \cos a, \text{ за счёт } \sin \frac{x - a}{2} \sim \frac{x - a}{2} \text{ при } x \to a$$

2.
$$\lim_{x \to a} \frac{\cos x - \cos a}{x - a} = \lim_{x \to a} \frac{-2\sin\frac{x - a}{2}\sin\frac{x + a}{2}}{x - a} = \lim_{x \to a} (-\sin\frac{x + a}{2}) = -\sin a$$

- 3. Аналогично
- 4. Аналогично

5.

$$\lim_{x \to a} \frac{x^b - a^b}{x - a} = a^b \lim_{x \to a} \frac{\left(\frac{x}{a}\right)^b - 1}{x - a} = a^b \lim_{x \to a} \frac{e^{b \ln a} - 1}{x - a} = a^b \lim_{x \to a} \frac{b \ln \frac{x}{a}}{x - a} = a^b \cdot b \cdot \lim_{x \to a} \frac{x - a}{a(x - a)} = b \cdot a^{b - 1}$$

Верно из-за $\ln(1+t) \sim t, t \to 0$.

6. $\lim_{x \to a} \frac{b^x - b^a}{x - a} = b^a \lim_{x \to a} \frac{b^{x-a} - 1}{x - a} = b^a \cdot \ln b$

В силу одной из форм второго замечательного предела

7.

$$(\operatorname{sh} x)'\big|_{x=a} = \left(\frac{e^x - e^{-x}}{2}\right)' = \frac{1}{2}\left(e^a - \left(\frac{1}{e^x}\right)'\right) = \frac{1}{2}\left(e^a - \frac{e^{-a}}{e^{2a}}\right) = \frac{e^a + e^{-a}}{2} = \operatorname{ch} a$$

- 8. Аналогично
- 9. Аналогично

10.
$$(\coth x)'|_{x=a} = \left(\frac{\cosh x}{\sinh x}\right)' = \frac{(\cosh x)' \cdot \sinh a - \cosh a \cdot (\sinh x)'}{\sinh^2 a} = \frac{\sinh^2 a - \cosh^2 a}{\sinh^2 a} = -\frac{1}{\sinh^2 a}$$

Теорема 4.4. (Производная обратной функции) Если f(x) непрерывна и строго монотонна на $U_{\delta}(a)$, $\delta > 0$ и $\exists f'(a) \neq 0$, то обратная функция f^{-1} имеет производную в точке f(a), равную

$$(f^{-1})'(f(a)) = \frac{1}{f'(a)}$$

Доказательство. Во первых, обратная функция определена, непрерывна и строго монотонна на интервале $f(U_{\delta}(a))$. Для краткости обозначим $\varphi = f^{-1}$. Рассмотрим $[a - \delta; a + \delta]$.

Для определённости будем считать f - возрастающей функцией. Тогда, φ определена на $y \in [f(a-\delta); f(a+\delta)]$. По определению производной, нам надо найти предел

$$\lim_{\Delta y \to 0} \frac{\varphi(f(a) + \Delta y) - \varphi(f(a))}{\Delta y}$$

Обозначим

$$\Delta x := \varphi(f(a) + \Delta y) - \varphi(f(a))$$

Тогда

$$\lim_{\Delta y \to 0} \Delta x = 0$$

В силу непрерывности $\varphi(y)$. Дополнительно имеем, что

$$a + \Delta x = \varphi(f(a) + \Delta y)$$

То есть

$$f(a + \Delta x) - f(a) = f(a) + \Delta y - f(a) = \Delta y$$

Отсюда исходный предел выражается как

$$\lim_{\Delta y \to 0} \frac{\varphi(f(a) + \Delta y) - \varphi(f(a))}{\Delta y} = \lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y} = \lim_{\Delta y \to 0} \frac{1}{\frac{\Delta y}{\Delta x}} = \frac{1}{\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}} = \frac{1}{f'(a)}$$

Следствие. (Производные обратных тригонометрических и логарифмических функций) Для всех a из интервалов, входящих в область определения, справедливы равенства:

$$(\arcsin x)'\big|_{x=a} = \frac{1}{\sqrt{1 - a^2}}$$

$$(\arccos x)'\big|_{x=a} = -\frac{1}{\sqrt{1 - a^2}}$$

$$(\arctan x)'\big|_{x=a} = \frac{1}{1 + a^2}$$

$$(\arctan x)'\big|_{x=a} = -\frac{1}{1 + a^2}$$

$$(\log_b x)'\big|_{x=a} = \frac{1}{a \cdot \ln b}, b \in (0; 1) \cup (1; +\infty)$$

Доказательство.

$$(\arcsin x)'\big|_{x=a} = \frac{1}{(\sin y)\big|_{y=\arcsin a}} = \frac{1}{\cos(\arcsin a)}$$

Так как $\arcsin a \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$, то

$$(\arcsin x)'\big|_{x=a} = \frac{1}{\sqrt{1-\sin^2(\arcsin a)}} = \frac{1}{\sqrt{1-a^2}}$$

$$(\operatorname{arctg} x)'|_{x=a} = \frac{1}{(\operatorname{tg} y)'|_{y=\operatorname{arctg} a}} = \cos^2(\operatorname{arctg} a) = \frac{1}{\operatorname{tg}^2(\operatorname{arctg} a) + 1} = \frac{1}{1+a^2}$$

C arcctg аналогично.

$$(\log_b x)'\big|_{x=a} = \frac{1}{(b^y)'\big|_{y=\log_b a}} = \frac{1}{b^{\log_b a} \cdot \ln b} = \frac{1}{a \cdot \ln b}$$

Замечание. Предположение непрерывности функции в окрестности точки a существенно.

Пример. Определим y = f(x) как

$$f\left(\frac{1}{n}\right) := \frac{1}{2n-1}, \, \forall n \in \mathbb{N}$$

Будем считать, что

$$f\left(\frac{1}{n} + 0\right) := f\left(\frac{1}{n}\right)$$

При этом

$$f\left(\frac{1}{n} - 0\right) := \frac{1}{2n}$$

И дополнительно

$$f(0) := 0$$

$$f(-x) := -f(x), \forall x \in (0, 1]$$

Посчитаем предел $\lim_{\Delta x \to 0+} \frac{\Delta y}{\Delta x}$ в нуле.

Рассмотрим случай $\Delta x \in [\frac{1}{n+1}; \frac{1}{n})$. Тогда

$$\Delta y = f(0 + \Delta x) - f(0) = f(\Delta x)$$

Отсюда

$$\frac{1/(2n+1)}{1/n} \leqslant \frac{\Delta y}{\Delta x} \leqslant \frac{1/2n}{1/(n+1)}$$

В предельном переходе имеем

$$\frac{1}{2} \leqslant \lim_{\Delta x \to 0+} \frac{\Delta y}{\Delta x} \leqslant \frac{1}{2}$$

А отсюда

$$f([-1;1]) = [-1;1] \setminus \bigcup_{n=1}^{\infty} \left(\left(\frac{1}{2n}; \frac{1}{2n-1} \right) \cup \left(-\frac{1}{2n-1}; -\frac{1}{2n} \right) \right)$$

То есть окрестность нуля не включена в область определения обратной функции f^{-1} и мы не можем говорить о непрерывности и производной в нуле для неё.

П

4.2 Дифференцируемость

Определение 4.2. Функция y = f(x) называется $\partial u \phi \phi$ еренцируемой в точке $a \in \mathbb{R}$, если её приращение в этой точке может быть записано в виде

$$\Delta y = A\Delta x + o(\Delta x), \ \Delta x \to 0$$

где $A \in \mathbb{R}$.

Выражение $A\Delta x$ называется дифференциалом функции y=f(x) в точке a. Обозначается как $dy:=A\Delta x$

Теорема 4.5. (Дифференцируемость и производная) Функция y = f(x) дифференцируема в точке а тогда и только тогда, когда она имеет производную в этой точке. При этом A в точности равно f'(a).

Доказательство. Пусть f дифференцируема в точке a. То есть

$$\Delta y = A\Delta x + o(\Delta x), \, \Delta x \to 0$$

Так как функция определена в окрестности нуля, то мы можем записать

$$\frac{\Delta y}{\Delta x} = A + o(1), \ \Delta x \to 0$$

Отсюда имеем

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = A = f'(a)$$

В обратную сторону доказывается аналогично.

Следствие. Если f дифференцируема в точке a, то она непрерывна в точке a.

Замечание. Утверждение верно лишь в одну сторону

Пример. y=|x|. Тогда если рассмотреть $a=0\lim_{\Delta x\to 0}\Delta y=0,\ \Delta y=|\Delta x|$ При этом рассмотрим односторонние пределы:

$$\lim_{\Delta x \to 0+} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0+} \frac{\Delta x}{\Delta x} = 1$$

$$\lim_{\Delta x \to 0-} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0-} -\frac{\Delta x}{\Delta x} = -1$$

Замечание. Если смотреть предел производной лишь с одной стороны, то можно говорить о правосторонней и левосторонней производной.

Пример.

$$y = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Здесь предела в точке 0 нет вообще

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \sin \frac{1}{\Delta x}$$

Теорема 4.6. (Дифференцируемость сложной функции) Если u = f(y) дифференцируема в точке g(a), функция y = f(x) дифференцируема в точке a, то композиция u = h(x) = f(g(x)) дифференцируема в точке a, причём $h'(a) = f'(g(a)) \cdot g'(a)$

Доказательство. По условию

$$\Delta u = f'(g(a))\Delta y + o(\Delta y), \ \Delta y \to 0$$

Где

$$\Delta u = f(g(a) + \Delta y) - f(g(a))$$

А также

$$\Delta y = g'(a)\Delta x + o(\Delta x), \ \Delta x \to 0$$

С другой стороны

$$\Delta y = g(a + \Delta x) - g(a)$$

Отсюда получим

$$\Delta u = f(g(a) + g(a + \Delta x) - g(a)) - f(g(a)) = h(a + \Delta x) - h(a)$$

Подставим всё в выражение Δu :

$$\Delta u = f'(g(a))g'(a)\Delta x + f'(g(a)) \cdot o(\Delta x) + o(g(a + \Delta x) - g(a)), \ \Delta x \to 0$$

В силу определения о-маленького

$$o(g(a + \Delta x) - g(a)) = \lambda(\Delta x) \cdot (g(a + \Delta x) - g(a)) = \lambda(\Delta x)g'(a)\Delta x + \lambda(x)o(\Delta x) = o(\Delta x) + \lambda(x) \cdot o(\Delta x), \ \Delta x \to 0$$

В итоге имеем

$$\Delta u = f'(g(a))g'(a)\Delta x + o(\Delta x), \ \Delta x \to 0$$

Замечание. По определению считается, что $dx := \Delta x$. Это можно также получить из функции y = x. Отсюда получаем, что

$$dy = f'(a)dx, \ y' = \frac{dy}{dx}$$

Следствие. (Инвариантность формы первого дифференциала) Формула для дифференциала dy = f'(a)dx справедлива как в случае, когда x - независимая переменная, так и в случае, когда x является функцией от другой переменной.

Доказательство. Пусть x = g(t), y = f(x). Тогда

$$y = f(x) = f(g(t)) =: h(t)$$

Положим a = q(b).

$$h'(b) = f'(a) \cdot g'(b)$$
$$dx = g'(b)dt$$

Распишем dy:

$$dy = h'(b) \cdot dt = f'(a) \cdot g'(h)dt = f'(a)dx$$

Определение 4.3. *Касательной* к графику функции y = f(x) в точке a; f(a) называется предельное положение секущей, то есть прямой, проходящей через точки (a; f(a)) и $(a + \Delta x; f(a + \Delta x))$ при $\Delta x \to 0$

Доказательство. Уравнение секущей имеет вид

$$\frac{y - f(a)}{x - a} = \frac{f(a + \Delta x) - f(a)}{\Delta x}$$

То есть

$$y = f(a) + \frac{f(a + \Delta x) - f(a)}{\Delta x}(x - a)$$

Определение 4.4. Если предел $\lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x} = +\infty$ или $-\infty$ и f(x) непрерывна в точке a, то будем говорить, что f'(a) равна $+\infty$ или $-\infty$ соответственно.

Пример. $f(x) = \sqrt[3]{x}$. Посчитаем f'(0):

$$f'(0) = \lim_{\Delta x \to 0} \frac{\sqrt[3]{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0} \frac{1}{\sqrt[3]{(\Delta x)^2}} = +\infty$$

Пример. $f(x) = \sqrt[3]{|x|}$. Если посмотреть на график, то касательная в нуле вроде есть. Но предел будет

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \infty$$

Что не соответсвует нашему определению.

Теорема 4.7. (Геометрический смысл производной и дифференциала) Пусть f(x) непрерывна в некоторой окрестности точки а. Тогда, касательная к графику y = f(x) в точке (a; f(a)) существует тогда и только тогда, когда существует предел $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \in \bar{\mathbb{R}}$.

При этом уравнение касательной в случае дифференцируемости в точке а:

$$y = f(a) + f'(a)(x - a)$$

В случае бесконечной производной в точке а:

$$x = a$$

Дифференциал представляет приращение ординаты касательной, соответствующее приращению Δx .

4.3 Производные и дифференциалы высших порядков

Определение 4.5. Если рассмотреть производную как функцию и от неё можно тоже взять производную, то мы получим *производную второго порядка*:

$$f''(x) := (f'(x))' \Big|_{x=a}$$

Индуктивно определяется так:

$$f^{(0)}(x) := f(x)$$

$$f^{(n)}(a) := (f^{(n-1)}(x))'|_{x=a}$$

Пример.

$$(\sin x)' = \cos x$$
$$(\cos x)' = -\sin x$$
$$(-\sin x)' = \cos x$$
:

Несложно понять, что

$$(\sin x)^{(n)} = \sin(x + \frac{n\pi}{2}), n \in \mathbb{N} \cup \{0\}$$

Доказательство по индукции

$$(\sin x)^{(n+1)} = \left((\sin x)^{(n)}\right)' = \left(\sin(x + \frac{n\pi}{2})\right)' = \cos(x + \frac{n\pi}{2}) = \sin\left(x + \frac{(n+1)\pi}{2}\right)$$

Производные высших порядков некоторых функций

- 1. $(\sin x)^{(n)} =$
- 2. $(\cos x)^{(n)} =$

3.
$$(x^{\alpha})^{(n)}=\alpha\cdot(\alpha-1)\cdot\dots\cdot(\alpha-n+1)x^{\alpha-n}=n!\cdot C_{\alpha}^n\cdot x^{\alpha-n}$$
, где

$$C_{\alpha}^{n} = \frac{\alpha!}{n! \cdot (\alpha - n)!} = \frac{\alpha \cdot (\alpha - 1) \cdot (\alpha - n + 1)}{n!}$$

Теорема 4.8. (Формула Лейбница) Если существуют конечные производные порядка n функций f и g в некоторой точке, то для их произведения в этой точке справедлива формула

$$(f \cdot g)^{(n)} = \sum_{k=0}^{n} C_n^k f^{(k)} \cdot g^{(n-k)}$$

Доказательство. Здесь лектор доказывает свойства биномиальных коэффициентов, но я этого здесь делать не стану: всё можно найти в конспекте по ОКТЧ.

Доказательство же формулы проведём по индукции:

 \triangleright База n=1:

$$(fg)' = \sum_{k=0}^{1} C_1^k f^{(k)} g^{(1-k)} = fg' + f'g$$
 - верно

 \triangleright Утверждением примем нашу формулу из теоремы. Покажем, что она верна для n+1:

$$\begin{split} (fg)^{(n+1)} &= \left((fg)^{(n)} \right)' = \sum_{k=0}^n C_n^k \left(f^{(k)} g^{(n-k)} \right)' = \sum_{k=0}^n C_n^k f^{(k+1)} g^{(n-k)} + \sum_{k=0}^n C_n^k f^{(k)} g^{(n+1-k)} = \\ C_n^n f^{(n+1)} g^{(0)} &+ \sum_{k=0}^{n-1} C_n^k f^{(k+1)} g^{(n-k)} + C_n^0 f^{(0)} g^{(n+1)} + \sum_{m=0}^{n-1} C_n^{m+1} f^{(m+1)} g^{(n-m)} = \\ C_n^n f^{(n+1)} g^{(0)} &+ C_n^0 f^{(0)} g^{(n+1)} + \sum_{j=0}^{n-1} \left(C_n^j + C_n^{j+1} \right) f^{(j+1)} g^{(n-j)} = \\ C_{n+1}^0 f^{(0)} g^{(n+1)} &+ \sum_{t=1}^n C_n^t f^{(t)} g^{(n+1-t)} + C_{n+1}^{n+1} f^{(n+1)} g^{(0)} = \sum_{t=0}^{n+1} C_{n+1}^t f^{(t)} g^{(n+1-t)} \end{split}$$

4. $(a^x)^{(n)} = a^x \cdot \ln^n a$

5.
$$(\ln x)^{(n)} = (x^{-1})^{(n-1)} = (n-1)! \cdot C_{-1}^{n-1} \cdot x^{-1-(n-1)} = (-1)^{(n-1)}(n-1)! \cdot x^{-n}$$

Следствие. (Бином Ньютона)

$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$$

Доказательство. С одной стороны,

$$((\alpha\beta)^x)^{(n)} = (\alpha\beta)^x \cdot \ln^n(\alpha\beta) = (\alpha\beta)^x (\ln\alpha + \ln\beta)^n$$

С другой стороны, по формуле Лейбница

$$((\alpha\beta)^x) = (\alpha^x \cdot \beta^x)^{(n)} = \sum_{k=0}^n C_n^k (\alpha^x)^{(k)} (\beta^x)^{(n-k)} = \sum_{k=0}^n C_n^k (\alpha^x \ln^k \alpha) (\beta^x \ln^{(n-k)} \beta) =$$

$$(\alpha\beta)^x \sum_{k=0}^n C_n^k \ln^k \alpha \cdot \ln^{(n-k)} \beta$$

Положив $a := \ln \alpha$ и $b := \ln \beta$, получим необходимое утверждение.

Теорема 4.9. (Формула Фаа-ди-Бруно) Если существует производная n-го порядка функции g в точке a u f в точке g(a), то

$$(f \circ g)^{(n)} = \sum_{\pi \in \Pi_n} (f^{(|\pi|)} \circ g) \cdot \prod_{B \in \pi} g^{(|B|)}$$

где

- ightharpoonup по обозначает множество всех разбиений $\{1,2,\ldots,n\}$ на непустые подмножества
- $ightharpoonup \pi$ разбиение множества $\{1, 2, ..., n\}$ на непустые подмножества. То есть элемент $B \in \pi$ одно из множеств, на которые разбили исходное множество
- $\triangleright |A|$ число элементов множества A

Доказательство. По индукции

 \triangleright База $n=1:\Rightarrow\Pi_1=\{\{\{1\}\}\}\}$

$$(f \circ q)' = (f' \circ q) \cdot q'$$
 - верно

 \triangleright Утверждением является наша формула. Докажем, что если она верна для n, то верна и для n+1:

$$(f \circ g)^{(n+1)} = ((f \circ g)^{(n)})' = \sum_{\pi \in \Pi_n} \left((f^{(|\pi|)} \circ g) \cdot \prod_{B \in \pi} g^{(|B|)} \right)'$$

' Распишем производную одного слагаемого, принадлежащего разбиению $\pi^* \in \Pi_n$:

$$\left((f^{(|\pi^*|)} \circ g) \cdot \prod_{B \in \pi^*} g^{(|B|)} \right)' = (f^{(|\pi^*|)} \circ g)' \cdot \prod_{B \in \pi^*} g^{(|B|)} + (f^{(|\pi^*|)} \circ g) \cdot \left(\prod_{B \in \pi^*} g^{(|B|)} \right)'$$

Теперь, у нас добавился к множеству $\{1, 2, ..., n\}$ элемент n+1. Если взять любое разбиение $\pi \in \Pi_{n+1}$, то есть несколько вариантов того, какой оно имеет вид:

1. Элемент n+1 обособлен в отдельную часть. То есть $\pi=\pi^*\cup\{n+1\},\,\pi^*\in\Pi_n$. Каждое слагаемое таких разбиений по нашей формуле должно иметь вид:

$$(f^{(|\pi^*|+1)} \circ g) \cdot \prod_{B \in \pi^*} g^{(|B|)} \cdot g'$$

что в точности равно левой части суммы из производной слагаемого:

$$(f^{(|\pi^*|)} \circ g)' \cdot \prod_{B \in \pi^*} g^{(|B|)} = (f^{(|\pi^*|+1)} \circ g) \cdot g' \cdot \prod_{B \in \pi^*} g^{(|B|)}$$

2. Элемент n+1 помещён в некоторое $B_i \in \pi^*$. Это значит, что $|\pi| = |\pi^*|$. Каждое слагаемое таких разбиений по нашей формуле должно иметь вид:

$$(f^{(|\pi^*|)} \circ g) \cdot g^{(|B_i|+1)} \cdot \prod_{B \in \pi^* \setminus B_i} g^{(|B|)}$$

Поймём, что π^* соответствует не одно разбиение из Π_{n+1} , а целое множество (действительно, мы можем выбирать разные B_i). Тогда, сумма слагаемых по всем π , полученным из π^* записывается как

$$\sum_{B_i \in \pi^*} (f^{(|\pi^*|)} \circ g) \cdot g^{(|B_i|+1)} \cdot \prod_{B \in \pi^* \backslash B_i} g^{(|B|)} = (f^{(|\pi^*|)} \circ g) \sum_{B_i \in \pi^*} g^{(|B_i+1|)} \cdot \prod_{B \in \pi \backslash B_i} g^{(|B|)}$$

что в точности совпадает с правой частью суммы из производной слагаемого:

$$(f^{(|\pi^*|)} \circ g) \cdot \left(\prod_{B \in \pi^*} g^{(|B|)} \right)' = (f^{(|\pi^*|)} \circ g) \cdot \left(g^{(|B_1|)} \cdot \prod_{B \in \pi^* \backslash B_1} g^{(|B|)} \right)' =$$

$$(f^{(|\pi^*|)} \circ g) \cdot \left(g^{(|B_1|+1)} \cdot \prod_{B \in \pi^* \backslash B_1} g^{(|B|)} + g^{(|B_1|)} \cdot \left(\prod_{B \in \pi^* \backslash B_1} g^{(|B|)} \right)' \right) = \dots =$$

$$(f^{(|\pi^*|)} \circ g) \sum_{B_i \in \pi^*} g^{(|B_i+1|)} \cdot \prod_{B \in \pi \backslash B_i} g^{(|B|)}$$

Пример. Рассмотрим $(f \circ g)^{(4)}$. Все разбиения тогда можно представить как способы разложить 4 на слагаемые(каждое слагаемое символизирует |B|):

 $\triangleright 4 = 4 \Rightarrow$ есть только 1 разбиение длины 4 - это всё множество. То есть слагаемое имеет вид

$$(f' \circ g) \cdot g''''$$

 $\triangleright 4 = 3 + 1$ - есть $C_4^1 = 4$ способов сделать разбиение с такими мощностями B. Нетрудно убедиться, что каждое разбиение имеет одинаковое слагаемое

$$(f'' \circ g) \cdot g' \cdot g'''$$

Их сумма будет соответственно

$$4 \cdot (f'' \circ g) \cdot g' \cdot g'''$$

ightarrow 4 = 2 + 1 + 1 - это $C_4^2 = 6$ способов сделать разбиение

$$\Rightarrow 6 \cdot (f''' \circ g) \cdot g'' \cdot g' \cdot g'$$

 $\triangleright \ 4 = 2 + 2$ - это $\frac{C_4^2}{2} = 3$, потому что мы учитываем каждое разбиение дважды

$$3 \cdot (f'' \circ g) \cdot g'' \cdot g''$$

 $\triangleright 4 = 1 + 1 + 1 + 1 -$ это 1 разбиение

$$(f'''' \circ g) \cdot g' \cdot g' \cdot g' \cdot g'$$

Собственно, $(f \circ g)^{(4)}$ - это сумма всех полученных слагаемых

Дифференциалы высших порядков

Определение 4.6. Дифференциалом n-го порядка от f(x), где x - независимая переменная, в точке a называется дифференциал от дифференциала n-1-го порядка, причём в качестве dx в каждом из дифференциалов перётся одно и то же число (Δx)

$$d^n f := d(d^{n-1} f)$$

Следствие.

$$d^n f(a) = f^{(n)}(a) dx^n$$

если x - независимая переменная

Пример. Пусть f(x) - функция переменной $x = \varphi(t)$, где t - независимая переменная.

$$f(x) = f(\varphi(t)) = h(t)$$

Отсюда

$$d^{2}f = d^{2}h = h''dt^{2} = ((f' \circ \varphi) \cdot \varphi') dt^{2} = ((f'' \circ \varphi)(\varphi')^{2} + (f' \circ \varphi)\varphi'') dt^{2} = (f'' \circ \varphi)(\varphi'dt)^{2} + (f' \circ \varphi)\varphi''dt^{2} = f''dx^{2} + f'd^{2}x$$

4.4 Свойства производных

Определение 4.7. Точка x_0 называется точкой (строго) локального максимума функции f(x), если $\forall x$ из некоторой $\mathring{U}_{\delta}(x_0)$ выполняется $f(x) \leqslant f(x_0)$ ($f(x) < f(x_0)$)

Определение 4.8. Точка x_0 называется точкой (строго) локального минимума функции f(x), если $\forall x$ из некоторой $\mathring{U}_{\delta}(x_0)$ выполняется $f(x) \geqslant f(x_0)$ ($f(x) > f(x_0)$)

Определение 4.9. Точки локального минимума и максимума в общем случае называются *точками локального экстремума*

Теорема 4.10. (Теорема Ферма) Если x_0 - точка локального экстремума функции f, дифференцируемой в x_0 , то

$$f'(x_0) = 0$$

Доказательство. Пусть x_0 - точка локального максимума. Это значит, что в некоторой окрестности точки x_0 имеет место неравенство

$$f(x_0 + \Delta x) \leqslant f(x_0)$$

Рассмотрим односторонние пределы производной:

$$f'_{+}(x_0) = \lim_{\Delta x \to 0+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \le 0$$
$$f'_{-}(x_0) = \lim_{\Delta x \to 0-} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \ge 0$$

В силу дифференцируемости f в точке x_0 :

$$0 \leqslant f'_{-}(x_0) = f'(x_0) = f'_{+}(x_0) \leqslant 0$$

Что верно тогда и только тогда, когда

$$f'(x_0) = 0$$

Теорема 4.11. (Ролля) Если f непрерывна на [a;b], дифференцируема на (a;b) и f(a)=f(b), то

$$\exists c \in (a; b) \mid f'(c) = 0$$

Доказательство. f непрерывна на [a;b]. Пусть f не постоянна (иначе тривиально). Тогда, по теореме Вейерштрасса

$$\exists \max_{x \in [a;b]} f(x) > \min_{x \in [a;b]} f(x)$$

Хотя бы одно из этих чисел (пусть max) не совпадает с f(a) = f(b). Следовательно,

$$\max_{x \in [a;b]} f(x) = f(c), c \in (a;b)$$

То есть c - точка локального максимума. По теореме Ферма f'(c)=0

Теорема 4.12. (Обобщенная теорема о среднем) Если f, g непрерывны на [a; b], дифференцируемы на (a; b), то

$$\exists c \in (a; b) \mid (f(b) - f(a))g'(c) = (g(b) - g(a))f'(c)$$

Доказательство. Рассмотрим функцию h(x):

$$h(x) = (f(b) - f(a))g(x) - (g(b) - g(a))f(x)$$

Посчитаем h(a) и h(b):

$$h(a) = (f(b) - f(a))g(a) - (g(b) - g(a))f(a) = f(b)g(a) - g(b)f(a)$$

$$h(b) = (f(b) - f(a))g(b) - (g(b) - g(a))f(b) = g(a)f(b) - f(a)g(b)$$

Отсюда по теореме Ролля

$$\exists c \in (a;b) \mid h'(c) = 0$$

А это в свою очередь значит

$$(f(b) - f(a))g'(c) - (g(b) - g(a))f'(c) = 0$$
$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c)$$

Следствие. (Теорема Лагранжа о среднем) Если f непрерывна на [a;b], дифференцируема на (a;b), то $\exists c \in (a;b)$ такое, что

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

Доказательство. По теореме 4.12 возьмём g(x) = x

Следствие. (Теорема Коши о среднем) Если f, g непрерывна на [a; b], дифференцируема на (a; b), g' не обращается в нуль на (a; b), то

$$\exists c \in (a; b) \mid \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Доказательство. Всё, что нам надо обосновать, так это то, что мы можем поделить обе части уравнения в теореме 4.12 за счёт данных нам условий.

Предположим, что g(b) = g(a). Но тогда g удовлетворяет требованиям теоремы Ролля. Следовательно,

$$\exists t \in (a; b) \mid g'(t) = 0$$

что противоречит условию. Отсюда следует, что мы можем смело поделить обе части на $(g(b)-g(a))\cdot g'(c)$

Замечание. Смысл теоремы Коши тот же самый, что и у теоремы Лагранжа, но в предположении, что некоторая функция задана параметрически на осях: x = g(t) и y = f(t) соответственно.

Пример.

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Функция f - непрерывная и дифференцируемая на \mathbb{R} . Но пример примечателен тем, что производная всё же разрывная в 0.

 $x \neq 0$. Тогда, просто посчитаем производную по свойствам:

$$f'(x) = 2x\sin\frac{1}{x} - \cos\frac{1}{x}$$

> x = 0. Посчитаем эту производную по определению:

$$f'(0) = \lim_{\Delta x \to 0} \frac{f(\Delta x) - 0}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x^2 \sin \frac{1}{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0} \Delta x \sin \frac{1}{\Delta x} = 0$$

Но при этом $\exists \lim_{x\to 0} f'(x)$. Проверить это можно, взяв 2 последовательности Гейне:

$$x_n = \frac{1}{\frac{\pi}{2} + 2\pi n} \Rightarrow f'(x_n) = \frac{2}{\frac{\pi}{2} + 2\pi n} \Rightarrow \lim_{n \to \infty} f'(x_n) = 0$$
$$x_n = \frac{1}{2\pi n} \Rightarrow f'(x_n) = -1 \Rightarrow \lim_{n \to \infty} f'(x_n) = -1$$

To есть f'(x) разрывная в нуле.

Геометрический смысл теорем Ролля и Лагранжа

Теорема 4.13. (Дарбу) Пусть f дифференцируема на (a;b) и $\exists f'_{+}(a), f'_{-}(b) \in \mathbb{R}$. Тогда для любого c в интервале между $f'_{+}(a)$ и $f'_{-}(b)$ существует $\xi \in (a;b)$ такое, что $f'(\xi) = c$ Доказательство.

1.
$$c = 0 \Rightarrow f'_{+}(a) \cdot f'_{-}(b) < 0$$

Так как f дифференцируема на (a;b) и односторонние производные конечны, то f непрерывна на [a;b]. А значит по теореме Вейерштрасса

$$\exists \xi \in [a; b] \mid f(\xi) = \max_{x \in [a; b]} f(x)$$

При этом $\xi \neq a$, так как по определению односторонней производной

$$f'_{+}(a) = \lim_{\Delta x \to 0+} \frac{f(a + \Delta x) - f(a)}{\Delta x}$$

Если предположить, что $f'_{+}(a) > 0$, то из равенства выше следует

$$f(a + \Delta x) - f(a) > 0 \Rightarrow f(a + \Delta x) > f(a)$$

для достаточного малого Δx . Поэтому точка a точно не максимум на отрезке. Аналогично получим, что $\xi \neq b$, и в данном предположении $f'_{-}(b) < 0$. Таким же образом рассматривается случай, когда $f'_{+}(a) < 0 \Rightarrow f'_{-}(b) > 0$. Отсюда

$$\exists \xi \in (a;b) \mid f(\xi) = \max_{x \in [a;b]} f(x)$$

и по теореме Ферма получаем, что

$$f'(\xi) = 0 = c$$

2. $c \neq 0$

Сведём случай к уже доказанному. Достаточно рассмотреть вспомогательную функцию

$$F(x) = f(x) - cx$$

Так как прямая определена и дифференцируема на всей числовой прямой, то

$$F'(x) = f'(x) - c$$

для интервала (a; b). По уже доказанному,

$$\exists \xi \in (a;b) \mid F'(\xi) = f'(\xi) - c = 0 \Rightarrow f'(\xi) = c$$

Следствие. Если f дифференцируема на (a;b), то f' не может иметь точек разрыва первого рода.

Доказательство. От противного. Пусть точка $x_0 \in (a;b)$ - разрыв первого рода. Тогда, как минимум 2 числа из $f'(x_0 - 0), f'(x_0), f'(x_0 + 0)$ не равны друг другу.

Доказательство сводится к разбору 6 случаев. Для примера докажем случай, когда $f'(x_0) < f'(x_0+0)$. Тогда, раз $f'(x_0+0)$ существует и конечен, то

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; | \; \forall x \in (x_0; x_0 + \delta) \; |f'(x) - f'(x_0 + 0)| < \varepsilon$$

Положим $\varepsilon := \frac{f'(x_0+0)-f'(x_0)}{2}$. Отсюда следует, что

$$\exists \delta > 0 \mid \forall x \in (x_0; x_0 + \delta) \ f'(x) > f'(x_0 + 0) - \frac{f'(x_0 + 0) - f'(x_0)}{2} = f'(x_0) + \frac{f'(x_0 + 0) - f'(x_0)}{2}$$

Теперь посмотрим на интервал $(x_0; x_0 + \delta/2)$. Так как функция дифференцируема на $(a; b) \supset (x_0; x_0 + \delta/2)$, то f на этом интервале удовлетворяет условиям теоремы Дарбу. Значит

$$\forall c \in (f'_{+}(x_0); f'(x_0 + \delta/2)) \; \exists \xi \in (x_0; x_0 + \delta/2) \; | \; f'(\xi) = c$$

при этом $f'_+(x_0) = f'(x_0)$ и $f'(x_0 + \delta/2) > f'(x_0) + \frac{f'(x_0 + 0) - f'(x_0)}{2}$. То есть для $c = f'(x_0) + \frac{f'(x_0 + 0) - f'(x_0)}{2}$ у нас найдётся ξ такое, что $f'(\xi) = c$. Но при этом $\xi \in (x_0; x_0 + \delta/2) \subset (x_0; x_0 + \delta)$, а значит $f'(\xi) > f'(x_0) + \frac{f'(x_0 + 0) - f'(x_0)}{2}$. Получили противоречие.

Теорема 4.14. (Правило Лопиталя для случая $\frac{0}{0}$) Пусть f, g дифференцируемы на (a;b), npu этом $\exists \lim_{x\to a+0} f(x) = \lim_{x\to a+0} g(x) = 0$ $u \exists \lim_{x\to a+0} \frac{f'(x)}{g'(x)} = C \in \mathbb{R}$. Тогда

$$\exists \lim_{x \to a+0} \frac{f(x)}{g(x)} = C$$

Замечание. Аналогичное утверждение верно для предела $x \to b-0$, а также для любого предела $x \to x_0, x_0 \in (a;b)$.

Доказательство. Доопределим f(a) = g(a) = 0. Из существование предела отношения производных следует, что

$$\exists \delta > 0 \mid \forall x \in (a; a + \delta) \ g'(x) \neq 0$$

Следовательно, на отрезке $\left[a;a+\frac{\delta}{2}\right]$ для функции g выполнены все условия теоремы Коши

о среднем. Значит

$$\forall x \in \left(a; a + \frac{\delta}{2}\right) \ \exists \xi \in (a; x) \mid \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(\xi)}{g'(\xi)} = \frac{f(x)}{g(x)}$$

при этом понятно, что $\xi=\xi(x)$. Так как $a<\xi(x)< x$, то если устремить x к a+0, то $a<\xi(x)\leqslant a+0\Rightarrow \xi(x)\to a+0$. Отсюда получаем

$$\lim_{x \to a+0} \frac{f'(\xi(x))}{g'(\xi(x))} = \lim_{x \to a+0} \frac{f'(x)}{g'(x)} = C = \lim_{x \to a+0} \frac{f(x)}{g(x)}$$

Следствие. (Признак дифференцируемости) Если f дифференцируема в $\mathring{U}_{\delta}(x_0)$, непрерывна в x_0 и $\exists \lim_{x \to x_0} f'(x) \in \overline{\mathbb{R}}$, то

$$\exists f'(x_0) = \lim_{x \to x_0} f'(x)$$

Доказательство. Пусть $F(x)=f(x)-f(x_0),\,g(x)=x-x_0.$ Тогда, $\forall x\in \mathring{U}_\delta(x_0)$

$$F'(x) = f'(x)$$
$$g'(x) = 1$$

Следовательно,

$$\exists \lim_{x \to x_0} \frac{F'(x)}{g'(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)} \in \bar{\mathbb{R}}$$

при этом $\lim_{x \to x_0} F(x) = \lim_{x \to x_0} g(x) = 0$. А значит

$$\exists \lim_{x \to x_0} \frac{F(x)}{g(x)} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) = \lim_{x \to x_0} \frac{F'(x)}{g'(x)} \in \overline{\mathbb{R}}$$

Теорема 4.15. (Правило Лопиталя для случая $\frac{\infty}{\infty}$) Пусть f,g дифференцируемы на (a;b), $\exists \lim_{x\to a+0} g(x) = \pm \infty \ u \ \exists \lim_{x\to a+0} \frac{f'(x)}{g'(x)} = C \in \mathbb{R}.$ Тогда

$$\exists \lim_{x \to a+0} \frac{f(x)}{g(x)} = C$$

Замечание. Аналогичное утверждение верно для предела $x \to b-0$, а также для любого предела $x \to x_0, x_0 \in (a;b)$.

Доказательство. Докажем случай для $\lim_{x\to a+0} g(x) = +\infty$:

 $ho = -\infty$. Тогда, выберем $\forall p > q > C$. Из существования предела отношения производных следует, что

$$\exists \delta_1 > 0 \mid \forall x \in (a; a + \delta_1) \quad \frac{f'(x)}{g'(x)} < q$$

$$\exists \delta_2 \in (0; \delta_1) \mid \forall x \in (a; a + \delta_2) \quad g(x) > 0$$

Зафиксируем $y > x > a, y \in (a; a + \delta_2)$. Тогда

$$\exists \delta_3 > 0 \mid \forall x \in (a; a + \delta_3) \subset (a; y) \ g(y) - g(x) < 0$$

Заметим, что f, g удовлетворяют условиям теоремы Коши о среднем на отрезке [x;y]. То есть

$$\exists \xi \in (x; y) \subset (a; a + \delta_1) \mid \frac{f(y) - f(x)}{g(y) - g(x)} = \frac{f'(\xi)}{g'(\xi)} < q$$

Если убрать равенство с ξ , то получим

$$\frac{f(y) - f(x)}{g(y) - g(x)} < q$$

Умножим обе части на $\frac{g(x)-g(y)}{g(x)}>0$ при $x\in(a;a+\delta_3)$. Отсюда имеем

$$\frac{f(x) - f(y)}{g(x)} < q \cdot \frac{g(x) - g(y)}{g(x)}$$

$$\Rightarrow \frac{f(x)}{g(x)} < q - q \cdot \frac{g(y)}{g(x)} + \frac{f(y)}{g(x)}$$

Из последнего неравенства следует, что

$$\forall p > C \ \exists \delta_4 > 0 \ | \ \forall x \in (a; a + \delta_4) \ \frac{f(x)}{g(x)} < p$$

Откуда согласно $C=-\infty$ имеем

$$\forall \varepsilon > 0 \; \exists \delta_4 > 0 \; \big| \; \forall x \in (a; a + \delta_4) \; \frac{f(x)}{g(x)} < -\frac{1}{\varepsilon} \Leftrightarrow \lim_{x \to a + 0} \frac{f(x)}{g(x)} = -\infty = \lim_{x \to a + 0} \frac{f'(x)}{g'(x)}$$

ho $C=+\infty$. Тогда аналогично случаю выше, получается утверждение

$$\forall r < C \ \exists \delta_5 > 0 \ | \ \forall x \in (a; a + \delta_5) \ \frac{f(x)}{g(x)} > r$$

 $> -\infty < C < +\infty$. Ключевые утверждения, полученные выше, будут верны и в конечном случае, потому что $\exists p > C > r$. А значит

$$\forall \varepsilon > 0 \exists \delta := \min(\delta_4, \delta_5) \mid \forall x \in (a; a + \delta) \ r < \frac{f(x)}{g(x)} < p$$

где $r := C - \varepsilon$, $p := C + \varepsilon$. То есть

$$\forall \varepsilon > 0 \exists \delta \mid \forall x \in (a; a + \delta) \quad \left| \frac{f(x)}{g(x)} - C \right| < \varepsilon \Leftrightarrow \lim_{x \to a + 0} \frac{f(x)}{g(x)} = C = \lim_{x \to a + 0} \frac{f'(x)}{g'(x)}$$

Замечание. Правило Лопиталя работает и в случаях, когда $x \to \pm \infty$

4.5 Равномерная непрерывность

Определение 4.10. f равномерно непрерывна на множестве $X \subset \mathbb{R}$, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ | \ \forall x, y \in X, |x - y| < \delta \ |f(x) - f(y)| < \varepsilon$$

Замечание. Отличие от обычного определения заключается в том, что выбор δ не зависит от рассматриваемой точки x.

Пример.

$$X = (0;1), f(x) = \frac{1}{x}$$
 - неравномерно непрерывна

То есть нужно доказать утверждение

$$\exists \varepsilon > 0 \mid \forall \delta > 0 \ \exists x, y \in X, |x - y| < \delta \ \left| \frac{1}{x} - \frac{1}{y} \right| \geqslant \varepsilon$$

Для любого $\delta > 0$ найдётся $n \in \mathbb{N}$ такое, что верно неравенство

$$\frac{1}{n} \leqslant \delta < \frac{1}{n-1}$$

Положим $x_n = \frac{1}{n}$, а $y_n = \frac{1}{3n}$. Тогда

$$|x_n - y_n| = \frac{2}{3n} < \frac{1}{n} \le \delta$$

$$\left| \frac{1}{x_n} - \frac{1}{y_n} \right| = 2n \ge 2$$

Отсюда наше утверждение выполнено $\forall \varepsilon \leqslant 2$, что и требовалось доказать.

Теорема 4.16. (Кантора о равномерной непрерывности) Если f непрерывна на [a;b], то она равномерно непрерывна на нём.

Доказательство. От противного. Пусть f неравномерно непрерывна на [a;b]:

$$\exists \varepsilon_0 \mid (\forall \delta > 0 \ \exists x, y \in [a; b], |x - y| < \delta) \ |f(x) - f(y)| \geqslant \varepsilon_0$$

Построим $\{x_n\}$ и $\{y_n\}$, последовательно выбирая $\delta=1,\frac{1}{2},\ldots,\frac{1}{n},\ldots$ То есть:

$$\exists \{x_n\}, \{y_n\} \subset [a;b] \mid |x_n - y_n| < \frac{1}{n} |f(x_n) - f(y_n)| \geqslant \varepsilon_0$$

Так как последовательность $\{x_n\}$ ограничена, то по теореме Больцано-Вейерштрасса из неё можно выделить сходящуюся подпоследовательность:

$$\exists \{x_{n_k}\} \subset \{x_n\} \mid \lim_{k \to \infty} x_{n_k} = x_0 \in [a; b]$$

Тогда

$$|x_{n_k} - y_{n_k}| < \frac{1}{n_k} \Leftrightarrow x_{n_k} - \frac{1}{n_k} < y_{n_k} < x_{n_k} + \frac{1}{n_k}$$

Это нам даёт, что

$$\lim_{k \to \infty} y_{n_k} = x_0$$

А раз функция непрерывна, то верны равенства

$$\lim_{k \to \infty} f(x_{n_k}) = f(x_0)$$

$$\lim_{k \to \infty} f(y_{n_k}) = f(x_0)$$

Получили противоречие с условием, что $|f(x_n) - f(y_n)| \ge \varepsilon_0$

Теорема 4.17. (Признак равномерной непрерывности) Если f дифференцируема на промежутке I и имеет ограниченную производную на этом промежутке, то она равномерно непрерывна

Доказательство. Нужно доказать, что

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ | \ \forall x_1, x_2 \in I, \ |x_1 - x_2| < \delta \ |f(x_1) - f(x_2)| < \varepsilon$$

По теореме Лагранжа

$$\exists \xi \mid f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1)$$

Так как производная ограничена, то

$$\exists M > 0 \mid \forall x \in I \mid |f'(x)| \leqslant M$$

Поэтому положим $\delta := \frac{\varepsilon}{M}$ и тогда следует, что

$$|f(x_2) - f(x_1)| \leqslant M \cdot |x_2 - x_1| < \varepsilon$$

Геометрический смысл равномерной непрерывности

4.6 Формула Тейлора

Определение 4.11. Функция f называется n раз дифференцируемой в точке x_0 , если её производные $f', f'', \ldots, f^{(n-1)}$ определены в некоторой окрестности точки x_0 и $f^{(n-1)}$ дифференцируема в точке x_0 .

Лемма 4.1. Для любой функции f, n раз дифференцируемой e точке e0, существует единственный многочлен $P_n(f,x)$ степени не выше e1 такой, что $P_n^{(k)}(f,x_0) = f^{(k)}(x_0)$ для e2 для e3 для e4 для e5 для e6 для e7 для e8 для e9 для e8 для e9 дл

$$P_n(f,x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

Этот многочлен называется многочленом Tейлора функции f в точке x_0 степени n.

Доказательство. Докажем, что приведённый многочлен удовлетворяет всем условиям, сказанным в лемме. То есть докажем, что существует многочлен, подходящий лемме. Сразу из определения следует, что

$$P_n(f, x_0) = f(x_0)$$

Теперь возьмём k-ю производную данного многочлена. Несложно понять, что слагаемые $(x-x_0)^j$, где j < k, сократятся полностью. Для остальных имеем

$$((x-x_0)^j)^{(k)} = j(j-1)\dots(j-k+1)(x-x_0)^{j-k}$$

То есть

$$P_n^{(k)}(f,x) = \sum_{j=k}^n \frac{f^{(j)}(x_0)}{j!} \cdot j(j-1) \dots (j-k+1)(x-x_0)^{j-k} = \sum_{j=k}^n \frac{f^{(j)}(x_0)}{(j-k)!} (x-x_0)^{j-k}$$

B точке $x=x_0$ это нам даёт

$$P_n^{(k)}(f, x_0) = \frac{f^{(k)}(x_0)}{0!} = f^{(k)}(x_0)$$

Теперь докажем единственность: пусть даны 2 различных многочлена P и Q степени не выше n, удовлетворяющие условиям леммы. Тогда

$$(P-Q)^{(n)}(x_0) = 0, k = 0, \dots, n$$

При этом разность многочленов - тоже многочлен вида

$$(P-Q)(x) = a_0 + a_1(x-x_0) + \dots + a_n(x-x_0)^n$$

Последовательно рассматривая все k-е производные получим, что

$$a_0 = a_1 = \ldots = a_n = 0$$

To ecte P(x) = Q(x)

Замечание. При подстановке $x = x_0$ можно заметить, что полное слагаемое имеет вид

$$\frac{f^{(j)}(x_0)}{(j-k)!}(x_0-x_0)^{j-k}$$

Казалось бы, при j=k мы имеем дело с неопределённостью. Но помним, что производная - это предел при $x \to x_0$, который мы вначале считаем, а потом уже делаем подстановку $x=x_0$. Здесь точно такая же ситуация - мы вначале должны полностью досчитать производную, а потом подставлять $x=x_0$. То есть вначале будет $(x-x_0)^0=1$, и только потом подстановка x (которая с единицей уже ничего не сделает).

Лемма 4.2. Пусть φ и ψ n+1 раз дифференцируемы в окрестности точки x_0 , а также

$$\varphi(x_0) = \varphi'(x_0) = \dots = \varphi^{(n)}(x_0) = \psi(x_0) = \psi'(x_0) = \dots = \psi^{(n)}(x_0) = 0$$

$$\psi', \psi'', \dots, \psi^{(n)} \neq 0 \text{ s } \mathring{U}_{\delta}(x_0)$$

Тогда $\forall x \in \mathring{U}_{\delta}(x_0)$ существует ξ между x_0 и x такое, что

$$\frac{\varphi(x)}{\psi(x)} = \frac{\varphi^{(n+1)}(\xi)}{\psi^{(n+1)}(\xi)}$$

Доказательство. По теореме Коши

$$\exists \xi_1 \mid \frac{\varphi(x)}{\psi(x)} = \frac{\varphi(x) - \varphi(x_0)}{\psi(x) - \psi(x_0)} = \frac{\varphi'(\xi_1)}{\psi'(\xi_1)}$$

В силу того, что $\varphi'(x_0) = \psi'(x_0) = 0$, а также φ и ψ снова удовлетворяют условиям теоремы Коши, получим

$$\exists \xi_2 \mid \frac{\varphi'(\xi_1) - \varphi'(x_0)}{\psi'(\xi_1) - \psi(x_0)} = \frac{\varphi''(\xi_2)}{\psi''(\xi_2)} = \frac{\varphi(x)}{\psi(x)}$$

И так продолжаем до $\xi = \xi_{n+1}$:

$$\frac{\varphi^{(n)}(\xi_n) - \varphi^{(n)}(x_0)}{\psi^{(n)}(\xi_n) - \psi^{(n)}(x_0)} = \frac{\varphi^{(n+1)}(\xi)}{\psi^{(n+1)}(\xi)}$$

Теорема 4.18. (Формула Тейлора с остаточным членом в форме Лагранжа) Если f дифференцируема n+1 раз в окрестности $U_{\delta}(x_0)$, то $\forall x \in U_{\delta}(x_0)$ существует ξ между x_0 и x такое, что

$$f(x) = P_n(f, x) + \frac{f^{(n+1)(\xi)}}{(n+1)!} (x - x_0)^{n+1} =$$

$$f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

Доказательство. Рассмотрим функции

$$\varphi(x) := f(x) - P_n(f, x)$$

$$\psi(x) := (x - x_0)^{n+1}$$

Заметим, что данные функции удовлетворяют условиям леммы 4.2. То есть

$$\frac{f(x) - P_n(f, x)}{(x - x_0)^{n+1}} = \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

Следовательно

$$f(x) = P_n(f, x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

Теорема 4.19. (Формула Тейлора с остаточным членом в форме Пеано) Если f n раз дифференцируема в точке x_0 , то

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \ldots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n), x \to x_0$$

Доказательство. Положим

$$\varphi(x) = f(x) - P_n(f, x)$$

$$\psi(x) = (x - x_0)^n$$

Отсюда

$$\varphi(x_0) = \ldots = \varphi^{(n-2)}(x_0) = \psi(x_0) = \ldots = \psi^{(n-2)}(x_0) = 0$$

То есть по лемме $4.2 \; \exists \xi \; \text{между} \; x \; \text{и} \; x_0 \; \text{такое, что}$

$$\frac{f(x) - P_n(f, x)}{(x - x_0)^n} = \frac{f^{(n-1)}(\xi) - P_n^{(n-1)}(f, \xi)}{n! \cdot (\xi - x_0)}$$

Посчитаем предел

$$\lim_{x \to x_0} \frac{f^{(n-1)}(x) - P_n^{(n-1)}(f, x)}{x - x_0} = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x_0)}{x - x_0} - \lim_{x \to x_0} \frac{P_n^{(n-1)}(f, x) - P_n^{(n-1)}(f, x_0)}{x - x_0} = f^{(n)}(x_0) - P_n^{(n)}(f, x_0) = 0$$

Это означает, что

$$\lim_{x \to x_0} \frac{f^{(n-1)}(\xi) - P_n^{(n-1)}(f, \xi)}{n! \cdot (\xi - x_0)} = \lim_{x \to x_0} \frac{f(x) - P_n(f, x)}{(x - x_0)^n} = 0$$

Следовательно

$$f(x) = P_n(f, x) + o((x - x_0)^n), x \to x_0$$

Теорема 4.20. (Единственность разложения по формуле Тейлора) Если

$$f(x) = a_0 + a_1(x - x_0) + \ldots + a_n(x - x_0)^n + o((x - x_0)^n), x \to x_0$$

u

$$f(x) = b_0 + b_1(x - x_0) + \dots + b_n(x - x_0)^n + o((x - x_0)^n), x \to x_0$$

mo

$$a_k = b_k, \ k = 0, 1, \dots, n$$

Доказательство. Рассмотрим разность этих многочленов:

$$f(x) - f(x) = (a_0 - b_0) + (a_1 - b_1)(x - x_0) + \dots + (a_n - b_n)(x - x_0)^n + o((x - x_0)^n) = 0, x \to x_0$$

В предельном переходе получим

$$\lim_{x \to x_0} (a_0 - b_0) + (a_1 - b_1)(x - x_0) + \dots + (a_n - b_n)(x - x_0)^n + o((x - x_0)^n) = a_0 - b_0 = 0$$

Отсюда $a_0 = b_0$. Теперь разность имеет вид:

$$f(x) - f(x) = (a_1 - b_1)(x - x_0) + \dots + (a_n - b_n)(x - x_0)^n + o((x - x_0)^n) = 0, x \to x_0$$

При этом $x - x_0 \neq 0$. Значит, можно разделить уравнение на $(x - x_0)$ и снова взять предел. В этот раз получим $a_1 = b_1$. Делая так n+1 раз, придём к нужному утверждению

$$a_k = b_k, k = 0, 1, \dots, n$$

Следствие. Если f(x) n раз дифференцируема в точке x_0 и

$$f(x) = a_0 + a_1(x - x_0) + \ldots + a_n(x - x_0)^n + o((x - x_0)^n), x \to x_0$$

TO

$$a_k = \frac{f^{(k)}(x_0)}{k!}, k = 0, 1, \dots, n$$

Причём формула существенна только для n>1. Для n=1 - разложение равносильно дифференцируемости в точке x_0 .

Пример. Данная функция имеет асимптотическое разложение, но не дважды дифференцируема в нуле (то есть коэффициенты не совпадут с теми, что есть в формуле Тейлора)

$$f(x) = \begin{cases} x^3 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Из определения сразу видно, что есть разложение

$$f(x) = a_0 + a_1(x-0) + a_2(x-0)^2 + o((x-0)^2)$$

Первая производная имеет вид

$$f'(x) = \begin{cases} 3x^2 \sin \frac{1}{x} - x \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Посчитаем f''(0):

$$f''(0) = \lim_{\Delta x \to 0} \frac{f'(0 + \Delta x) - f'(0)}{0 + \Delta x - 0} = \lim_{\Delta x \to 0} \frac{3\Delta x^2 \sin\frac{1}{\Delta x} - \Delta x \cos\frac{1}{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0} \left(3\Delta x \sin\frac{1}{\Delta x} - \cos\frac{1}{\Delta x}\right) - \text{расходится}$$

Определение 4.12. Если $x_0=0$, то формулы Тейлора называются также *формулами* Mаклорена

Формулы Маклорена основных элементарных функций

1.
$$e^x: (e^x)^{(n)} = e^x \Rightarrow e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + o(x^n), x \to 0$$

2.
$$\sin x : (\sin x)^{(n)} = \sin(x + \frac{n\pi}{2})$$
. To есть

$$(\sin x)^{(n)}(0) = \sin \frac{n\pi}{2} = \begin{cases} 0, & n = 2k \\ (-1)^{k-1}, & n = 2k-1 \end{cases}, k \in \mathbb{N}$$

Так как синус имеет любую производную, то для любого n, если k - это частное от

деления на 2, формулу Маклорена можно записать так:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{k-1} \frac{x^{2k-1}}{(2k-1)!} + o(x^{2k}), x \to 0$$

Формула Маклорена в виде Лагранжа также имеет вид:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots + (-1)^k \frac{x^{2k+1}}{(2k+1)!} \sin\left(\xi + \frac{2k+1}{2}\pi\right)$$

3. $\cos x : (\cos x)^{(n)} = \cos(x + \frac{n\pi}{2})$. То есть

$$(\cos x)^{(n)}(0) = \cos \frac{n\pi}{2} = \begin{cases} 0, & n = 2k - 1\\ (-1)^k, & n = 2k \end{cases}$$

Отсюда формула Маклорена для косинуса имеет вид:

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{(-1)^k}{(2k)!} x^{2k} + o(x^{2k}), x \to 0$$

4.
$$(1+x)^{\alpha}: ((1+x)^{\alpha})^{(n)} = \alpha(\alpha-1)\dots(\alpha-n+1)(1+x)^{\alpha-n} = n!C_{\alpha}^{n}(1+x)^{\alpha-n}$$
, где $\alpha \notin \mathbb{N}$
$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^{2} + \dots + \underbrace{\frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}}_{C^{n}}x^{n} + o(x^{n}), x \to 0$$

Если $\alpha \in \mathbb{N}$, то на каком-то шаге производная станет нулём и будет таковой дальше. (То есть можно будет получить точное разложение, бином Ньютона)

5.
$$\ln(1+x): (\ln(1+x))^{(n)} = ((1+x)^{-1})^{(n-1)}$$
 To есть
$$(\ln(1+x))^{(n)} = (-1)\cdot(-2)\cdot\ldots\cdot(-1-(n-2))\cdot(1+x)^{-1-(n-1)} = (-1)^{n-1}\cdot(n-1)!\cdot(1+x)^{-n}$$

Формула Маклорена для логарифма имеет вид:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n)$$

Замечание. Если f - чётная функция, то в формуле Маклорена все нечётные степени имеют нулевые коэффициенты. Если f - нечётная, то четные степени имеют нулевые коэффициенты.

Доказательство. Пусть f - чётная функция. Посчитаем f'(-x) по определению:

$$f'(-x) = \lim_{\Delta x \to 0} \frac{f(-x + \Delta x) - f(-x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x - \Delta x) - f(x)}{\Delta x} = \lim_{t \to 0} \frac{f(x + t) - f(x)}{-t} = -f'(x)$$

То есть f'(0) = -f'(0). Значит, f'(0) = 0. Аналогично доказывается, что если f - нечётная, то f' - чётная.

Дополнение. Рассмотрим функцию

$$f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0\\ 1, & x = 0 \end{cases}$$

Она непрерывна на \mathbb{R} . Раз мы знаем разложение синуса, то можно записать выражение

$$f(x) = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \dots + (-1)^{k-1} \frac{x^{2k-2}}{(2k-1)!} + o(x^{2k-1}), x \to 0$$

Является ли оно формулой Тейлора? Как оказывается, да. Но для доказательства нужно показать, что f(x) дифференцируема n раз в нуле, что сделать крайне трудно.

Некоторые приёмы разложения функций по формуле Тейлора

1. Если
$$f'(x) = \sum_{k=0}^n b_k x^k + o(x^n), x \to 0$$
 и $\exists f^{(n+1)}(0),$ то

$$f(x) = f(0) + \sum_{k=0}^{n} \frac{b_k}{k+1} x^{k+1} + o(x^{n+1}), x \to 0$$

Доказательство. Разложим f(x) по формуле Маклорена:

$$f(x) = f(0) + \sum_{k=0}^{n} a_k x^{k+1} + o(x^{n+1}), x \to 0$$

При этом
$$a_k = \frac{f^{(k+1)}(0)}{(k+1)!} = \frac{(f')^{(k)}(0)}{k!} \cdot \frac{1}{k+1} = \frac{b_k}{k+1}$$

Пример.

$$(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$$

Разложим производную $\operatorname{arcctg} x$ в ряд Маклорена:

$$-\frac{1}{1+x^2} = -(1+x^2)^{-1} = \sum_{k=0}^{n} C_{-1}^k \cdot k! \cdot x^{2k} + o(x^{2n+1}) = \sum_{k=0}^{n} (-1)^{k+1} x^{2k} + o(x^{2n+1})$$

Отсюда получаем, что

$$\operatorname{arcctg} x = \frac{\pi}{2} + \sum_{k=0}^{n} \frac{(-1)^{k+1}}{2k+1} x^{2k+1} + o(x^{2n+2}), x \to 0$$

2. (Метод неопределённых коэффициентов)

Пример. Пусть f имеет вид

$$f(x) = \begin{cases} x \operatorname{ctg} x, & x \neq 0 \\ 1, & x = 0 \end{cases}$$

Тогда f(x) при $x \neq 0$ имеет ещё вид

$$f(x) = \frac{\cos x}{\frac{\sin x}{x}} = \frac{1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^5)}{1 - \frac{x^2}{3!} + \frac{x^4}{5!} + o(x^5)} = a_0 + a_2 x^2 + a_4 x^4 + o(x^5), \ x \to 0$$

$$\left(1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^5)\right) = \left(a_0 + a_2 x^2 + a_4 x^4 + o(x^5)\right) \cdot \left(1 - \frac{x^2}{6} + \frac{x^4}{120} + o(x^5)\right), \ x \to 0$$

Чтобы равенство выполнялось, должны быть равны коэффициенты при одинаковых степенях у приведённых многочленов. Отсюда имеем

$$1 = a_0$$

$$-\frac{1}{2} = a_2 - \frac{a_0}{6} \Rightarrow a_2 = -\frac{1}{3}$$

$$\frac{1}{24} = a_4 - \frac{a_2}{6} + \frac{a_0}{120} \Rightarrow a_4 = -\frac{1}{45}$$

То есть

$$f(x) = 1 - \frac{x^2}{3} - \frac{x^4}{45} + o(x^5)$$

Но опять же, нужно доказать, что это формула Тейлора. Иначе это просто асимптотическое разложение

3. (Применение формулы Тейлора для подсчёта пределов)

Пример. Вычислим следующий предел:

$$\lim_{x \to 0} \left(e^{x^2 \operatorname{ctg} x} + \ln(1 - x) \right)^{1/\left(\operatorname{arcctg}(\operatorname{sh} x) + \sin x - \frac{\pi}{2}\right)}$$

Заметим, что он представим в виде

$$\lim_{x \to 0} (1 + u(x))^{1/v(x)} = \lim_{x \to 0} e^{\frac{\ln(1 + u(x))}{v(x)}}$$

где $u, v = o(1), x \to 0$. Тогда, в силу эквивлентности

$$\lim_{x \to 0} e^{\frac{\ln(1 + u(x))}{v(x)}} = \lim_{x \to 0} e^{\frac{u(x)}{v(x)}}$$

Pаспишем u(x):

$$u(x) = e^{x\left(1 - \frac{1}{3}x^2 - \frac{1}{45}x^4 + o(x^5)\right)} - x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \frac{x^5}{5} + o(x^5) - 1 =$$

$$1 + x\left(1 - \frac{1}{3}x^2 + o(x^3)\right) + \frac{x^2\left(1 - \frac{1}{3}x^2 + o(x^3)\right)^2}{2!} + \frac{x^3\left(1 - \frac{1}{3}x^2 + o(x^3)\right)^3}{3!} +$$

$$o\left(x^3\left(1 - \frac{1}{3}x^2 + o(x^3)\right)^3\right) - 1 - x - \frac{x^2}{2} - \frac{x^3}{3} + o(x^3) = \left(-\frac{1}{3} + \frac{1}{6} - \frac{1}{3}\right)x^3 + o(x^3) =$$

$$-\frac{1}{2}x^3 + o(x^3)$$

Теперь v(x):

$$\operatorname{sh} x = \frac{e^x - e^{-x}}{2} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^6)$$

$$\operatorname{arcctg}(\operatorname{sh} x) = \frac{\pi}{2} - \left(x + \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^6)\right) + \frac{1}{3}\left(x + \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^6)\right)^3 - \frac{1}{5}\left(x + \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^6)\right)^5 + o\left(\left(x + \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^6)\right)^6\right) = \frac{\pi}{2} - x + \left(\frac{1}{3} - \frac{1}{6}\right)x^3 + \left(\frac{1}{6} - \frac{1}{120} - \frac{1}{5}\right)x^5 + o(x^6), \ x \to 0$$

В итоге имеем

$$v(x) = \frac{\pi}{2} - x + \frac{1}{6}x^3 - \frac{1}{24}x^5 + o(x^6) + x - \frac{1}{6}x^3 + \frac{1}{120}x^5 + o(x^6) - \frac{\pi}{2} = -\frac{1}{30}x^5 + o(x^6), x \to 0$$

Отсюда предел получает вид

$$\lim_{x \to 0} e^{\frac{u(x)}{v(x)}} = \lim_{x \to 0} e^{\frac{-\frac{1}{2}x^3 + o(x^3)}{\frac{1}{30}x^5 + o(x^6)}} = +\infty$$

4.7 Исследование функции с помощью производной

Теорема 4.21. (Необходимое и достаточное условия монотонности функции) Если f дифференцируема на (a;b), то

- 1. $\forall x \in (a;b) \ f'(x) \geqslant 0 \Leftrightarrow f(x)$ неубывающая на (a;b)
- 2. $\forall x \in (a;b) \ f'(x) \leqslant 0 \Leftrightarrow f(x)$ невозрастающая на (a;b)
- 3. $\forall x \in (a;b) \ f'(x) > 0 \Rightarrow f(x)$ возрастающая на (a;b)
- 4. $\forall x \in (a;b) \ f'(x) < 0 \Rightarrow f(x)$ убывающая на (a;b)

Доказательство. Докажем первый случай. Начнём с утверждения \Rightarrow : Рассмотрим $\forall a < x_1 < x_2 < b$. Тогда, по теореме Лагранжа

$$\exists c \in (x_1; x_2) \mid \frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c)$$

Отсюда

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1) \geqslant 0$$

Теперь докажем \Leftarrow : посчитаем производную в некоторой точке $x_0 \in (a;b)$:

$$f'(x_0) = f'_+(x_0) = \lim_{\Delta x \to 0+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Так как $x_0 + \Delta x > x_0 \Rightarrow f(x_0 + \Delta x) \geqslant f(x_0)$. Отсюда

$$f'(x_0) = f'_+(x_0) \geqslant 0$$

Замечание. В случаях 3 и 4 утверждение верно в одну сторону. Контрпример:

$$y = \pm x^3, x \in (-1; 1)$$

Замечание. Если дополнительно потребовать непрерывности f на [a;b], то в теорема будет верна на [a;b].

Теорема 4.22. (Первое достаточное условие локального экстремума) Пусть f непрерывна в $U_{\delta}(x_0)$, дифференцируема в $\mathring{U}_{\delta}(x_0)$. Тогда

- 1. Если $\forall x \in (x_0 \delta, x_0)$ f'(x) < 0 и $\forall x \in (x_0, x_0 + \delta)$ f'(x) > 0, то x_0 является точкой строгого локального минимума.
- 2. Если $\forall x \in (x_0 \delta, x_0) \ f'(x) > 0 \ u \ \forall x \in (x_0, x_0 + \delta) \ f'(x) < 0$, то x_0 является точкой строгого локального максимума.

Доказательство. Докажем первый случай. Выберем $x_1 \in (x_0 - \delta; x_0)$. Тогда, f непрерывна на $[x_1; x_0]$ и $\forall x \in (x_1; x_0)$ f'(x) < 0. То есть, f убывает на $[x_1; x_0]$ по теореме 4.21. Аналогично доказывается, что f возрастает на $[x_0; x_2]$. Значит

$$\exists \delta' = \min(x_0 - x_1, x_2 - x_0) \mid \forall x \in \mathring{U}_{\delta'}(x_0) \ f(x) > f(x_0)$$

 x_0 - локальный минимум.

Теорема 4.23. (Второе достаточное условие локального экстремума) Пусть $f^{(n)}(x_0) \neq 0$, $a f'(x_0) = \ldots = f^{(n-1)}(x_0) = 0$. Тогда

1. При п - чётном

$$\begin{cases} f^{(n)}(x_0) > 0 \Rightarrow x_0 \text{ - точка строгого локального минимума} \\ f^{(n)}(x_0) < 0 \Rightarrow x_0 \text{ - точка строгого локального максимума} \end{cases}$$

2. При n - нечётном x_0 не является точкой локального экстремума

Доказательство. По формуле Тейлора с остаточным членом в форме Пеано можно записать разложение:

$$f(x) = f(x_0) + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n), x \to x_0$$

Перепишем это выражение в другом виде:

$$n! \cdot \frac{f(x) - f(x_0)}{f^{(n)}(x_0)} = (x - x_0)^n + o((x - x_0)^n), \ x \to x_0$$

Если n чётно, то справа стоит положительное число. То есть

$$\frac{f(x) - f(x_0)}{f^{(n)}(x_0)} > 0, \ x \to x_0$$

Если $f^{(n)}(x_0)>0$, то и $f(x)>f(x_0)$, $\forall x\in \mathring{U}_\delta(x_0)$. Следовательно x_0 - точка строгого локального минимума. Аналогично при $f^{(n)}(x_0)<0$ x_0 - точка строгого локального максимума.

Если n нечётно, то выражение справа положительно при $x \to x_0 + 0$ и отрицательно при $x \to x_0 - 0$. Это значит, что какой бы знак мы не выбрали для $f^{(n)}(x_0)$, разность $f(x) - f(x_0)$ принимает разные знаки по разные стороны от x_0 , то есть x_0 не является точкой локального экстремума.

Определение 4.13. Функция f называется выпуклой вниз на (a;b), если её график лежит не выше любой хорды, стягивающей две точки графика.

Определение 4.14. Функция f называется выпуклой вверх на (a;b), если её график лежит не ниже любой хорды, стягивающей две точки графика.

Геометрический смысл выпуклости

Аналитический смысл выпуклости

Возьмём 2 точки $a < x_1 \leqslant x_2 < b$. Координаты точки на хорде можно выразить параметрически:

$$\begin{cases} x_0 = tx_1 + (1-t)x_2 \\ y_0 = tf(x_1) + (1-t)f(x_2) \end{cases}, t \in [0; 1]$$

Выпуклость вниз по определению означает, что

$$f(tx_1 + (1-t)x_2) \leqslant tf(x_1) + (1-t)f(x_2)$$

Замечание. Если неравенство - строгое $\forall t \in (0;1), \ \forall x_1, x_2 \in (a;b), \ \text{то} \ f \ cmрого выпукла вниз (вверх)$

Теорема 4.24. (Необходимое и достаточное условия строгой выпуклости) Пусть f дважды дифференцируема на (a;b). Тогда

- 1. $\forall x \in (a;b)$ $f''(x) \geqslant 0 \Leftrightarrow f$ выпукла вниз на (a;b)
- 2. $\forall x \in (a;b) \ f''(x) \leqslant 0 \Leftrightarrow f$ выпукла вверх на (a;b)
- 3. $\forall x \in (a;b) \ f''(x) > 0 \Rightarrow f$ строго выпукла вниз на (a;b)
- 4. $\forall x \in (a;b) \ f''(x) < 0 \Rightarrow f$ строго выпукла вверх на (a;b)

Доказательство. Докажем первый случай. Начнём с достаточности. Для этого распишем функцию в точках x_1 и x_2 по формуле Тейлора:

$$f(x_1) = f(x_0) + f'(x_0)(x_1 - x_0) + \frac{f''(\xi_1)}{2!}(x_1 - x_0)^2, \ x_1 < \xi_1 < x_0$$

$$f(x_2) = f(x_0) + f'(x_0)(x_2 - x_0) + \frac{f''(\xi_2)}{2!}(x_2 - x_0)^2, \ x_0 < \xi_2 < x_2$$

При этом естественно $a < x_1 < x_2 < b$. Так как вторая производная в точках ξ_1 и ξ_2 неотрицательна, то

$$f(x_1) \ge f(x_0) + f'(x_0)(x_1 - x_0)$$

$$f(x_2) \ge f(x_0) + f'(x_0)(x_2 - x_0)$$

Раз $x_0 \in (x_1; x_2)$, то $\exists t \in (0; 1) \mid x_0 = tx_1 + (1 - t)x_2$. Домножим уравнения на t > 0 и 1 - t > 0 соответственно и сложим. Получим

$$t \cdot f(x_1) + (1-t) \cdot f(x_2) \geqslant f(x_0) + f'(x_0) (tx_1 + (1-t)x_2 - x_0) \geqslant f(x_0) = f(tx_1 + (1-t)x_2)$$

Теперь докажем необходимость. Выберем $\forall x_0 \in (a;b)$. Положим $\delta := \min(b-x_0, x_0-a)$ и рассмотрим $\forall u \in (-\delta; \delta)$. Тогда $f(x_0 \pm u)$ - определены и могут быть записаны по Формуле Тейлора:

$$f(x_0 \pm u) = f(x_0) \pm f'(x_0)u + \frac{f''(x_0)}{2!}u^2 + o(u^2), u \to 0$$

Положим $x_1, x_2 \mid x_1 < x_2, \{x_1, x_2\} = \{f(x_0 - u), f(x_0 + u)\}$. Тогда $t = \frac{1}{2}$ для x_0 при любом u. То есть

$$f(x_0) \leqslant \frac{1}{2}f(x_0 - u) + \frac{1}{2}f(x_0 + u)$$

Подставим формулы Тейлора вместо $f(x_0 \pm u)$. Получим

$$\frac{1}{2}\left(f(x_0 - u) + f(x_0 + u)\right) = f(x_0) + \frac{f''(x_0)}{2}u^2 + o(u^2), u \to 0$$

Перепишем данное выражение в другом виде

$$\frac{1}{u^2} \left(\frac{1}{2} \left(f(x_0 - u) + f(x_0 + u) \right) - f(x_0) \right) = \frac{f''(x_0)}{2} + o(1), \ u \to 0$$

Раз правая часть имеет предел, то и левая тоже. При этом левая часть положительна. Значит

$$\frac{f''(x_0)}{2} \geqslant 0 \Leftrightarrow f''(x_0) \geqslant 0$$

Замечание. В случаях 3 и 4 утверждение верно в одну сторону. Контрпример:

$$y = \pm x^4, x \in (-1; 1)$$

Определение 4.15. Пусть f непрерывна на $U_{\delta_0}(x_0), \exists f'(x_0) \in \mathbb{R}$ и $\exists \delta \in (0; \delta_0),$ то

 \triangleright либо на $(x_0 - \delta; x_0)$ f выпукла вниз, а на $(x_0; x_0 + \delta)$ выпукла вверх;

 \triangleright либо на $(x_0 - \delta; x_0)$ f выпукла вверх, а на $(x_0; x_0 + \delta)$ выпукла вниз.

Тогда x_0 называется точкой перегиба f(x).

Теорема 4.25. (Необходимое и достаточное условия точки перегиба) Если f непрерывна в $U_{\delta}(x_0)$, $\exists f'(x_0) \in \mathbb{R}$ и f дважды дифференцируема в $\mathring{U}_{\delta_0}(x_0)$, то x_0 является точкой перегиба функции f(x) тогда и только тогда, когда $\exists \delta > 0$

$$\triangleright$$
 либо $\forall x \in (x_0 - \delta; x_0)$ $f''(x) \geqslant 0$ $u \ \forall x \in (x_0; x_0 + \delta)$ $f''(x) \leqslant 0$;

$$\triangleright$$
 либо $\forall x \in (x_0 - \delta; x_0)$ $f''(x) \leqslant 0$ $u \ \forall x \in (x_0; x_0 + \delta)$ $f''(x) \geqslant 0$

Доказательство. Напрямую следует из необходимого и достаточного условий выпуклости \Box

Теорема 4.26. (Геометрическое необходимое условие точки перегиба) Если f дважды дифференцируема в окрестности точки x_0 и $y_{\kappa ac}(x) = f(x_0) + f'(x_0)(x - x_0)$ - уравнение касательной к графику f(x) в точке x_0 , то выполнение одного из следующих пары условий даёт следствие, что x_0 - точка перегиба

1.
$$\forall x \in (x_0 - \delta; x_0) \ y_{\kappa ac}(x) \leqslant f(x) \ u \ \forall x \in (x_0; x_0 + \delta) \ y_{\kappa ac}(x) \geqslant f(x);$$

2.
$$\forall x \in (x_0 - \delta; x_0) \ y_{\kappa ac}(x) \geqslant f(x) \ u \ \forall x \in (x_0; x_0 + \delta) \ y_{\kappa ac}(x) \leqslant f(x)$$
.

Доказательство. Распишем f(x) по формуле Тейлора:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(\xi)}{2!}(x - x_0)^2 = y_{\text{kac}}(x) + \frac{f''(\xi)}{2!}(x - x_0)^2$$

Доказательство свелось к смене знаков второй производной.

Замечание. Условия в теореме не являются достаточными. Контрпримером является

$$f(x) = \begin{cases} (2 + \sin\frac{1}{x})x^5, & x \neq 0\\ 0, & x = 0 \end{cases}$$

Производная имеет вид

$$f'(x) = \begin{cases} -x^3 \cos \frac{1}{x} + 5x^4(2 + \sin \frac{1}{x}), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Вторая производная:

$$f''(x) = \begin{cases} -x\sin\frac{1}{x} - 8x^2\cos\frac{1}{x} + 20x^3(2+\sin\frac{1}{x}), & x \neq 0\\ 0, & x = 0 \end{cases}$$

Рассмотрим значение второй производной при стремлении к нулю:

$$f''(x) = -x\sin\frac{1}{x} - 8x^2\cos\frac{1}{x} + 20x^3(2 + \sin\frac{1}{x}) = -x\left(\sin\frac{1}{x} + 8x\cos\frac{1}{x} - 20x^2(2 + \sin\frac{1}{x})\right)$$

То есть f'' бесконечно много раз меняет свой знак при стремлении к 0, хотя при этом выполнены условия на $y_{\rm kac}$

Определение 4.16. Прямая $x = x_0$ называется вертикальной асимптотой графика функции f(x), если хотя бы один из односторонних пределов $f(x_0 \pm 0)$ бесконечен.

Определение 4.17. Прямая y = kx + b называется *асимптотой* графика функции f(x), если

$$\lim_{x \to +\infty} (f(x) - (kx + b)) = 0$$

или

$$\lim_{x \to -\infty} (f(x) - (kx + b)) = 0$$

Если k=0, то асимптота называется горизонтальной, при $k\neq 0$ - наклонной.

Теорема 4.27. Прямая y = kx + b является асимптотой графика функции y = f(x) тогда и только тогда, когда существуют пределы

$$\lim_{x \to +\infty} \frac{f(x)}{x} = k$$

$$\lim_{x \to +\infty} (f(x) - kx) = b$$

 \mathcal{L} ля $-\infty$ аналогично.

Доказательство. Покажем необходимость: пусть y = kx + b - асимптота. Значит

$$\lim_{x \to +\infty} (f(x) - kx - b) = 0$$

Заметим следующие пределы:

$$\lim_{x \to +\infty} \frac{f(x) - kx - b}{x} = 0$$

$$\lim_{x \to +\infty} \frac{kx + b}{x} = k$$

Отсюда следует, что

$$\lim_{x \to +\infty} \frac{f(x) - kx - b}{r} = 0 = \lim_{x \to +\infty} \frac{f(x)}{r} - k \Leftrightarrow \lim_{x \to +\infty} \frac{f(x)}{r} = k$$

А второй предел получается из самого первого простым добавлением b в обе части:

$$\lim_{x \to +\infty} (f(x) - kx - b) + b = b = \lim_{x \to +\infty} (f(x) - kx)$$

Теперь покажем необходимость:

$$\lim_{x \to +\infty} (f(x) - kx) = b \Rightarrow \lim_{x \to +\infty} (f(x) - (kx + b)) = 0$$

Схема исследования функции и построения графика

- 1. Область определения, особенности (чётность, нечётность, периодичность)
- 2. Промежутки знакопостоянства, точки пересечения с осями координат
- 3. Монотонность, экстремумы

- 4. Выпуклость, точки перегиба
- 5. Асимптоты
- 6. Построение графика

Пример.

$$y = \sqrt{|x^2 - 3x + 2|}$$

- 1. $D(y) = \mathbb{R}$, функция общего вида, непериодична
- 2. $y\geqslant 0$, точки пересечения с осями: $(0,\sqrt{2}),\,(1,0),\,(2,0)$
- 3. При $x \neq 1, x \neq 2$:

$$y' = \frac{(2x-3) \cdot \operatorname{sgn}(x^2 - 3x + 2)}{2\sqrt{|x^2 - 3x + 2|}}$$

Здесь должна быть числовая ось со знаками производной. Из рисунка следует, что

$$x=1,\,$$
 - локальный минимум, $y(1)=0$ $x=\frac{3}{2},\,$ - локальный максимум, $y\left(\frac{3}{2}\right)=\frac{1}{2}$ $x=2,\,$ - локальный минимум, $y(2)=0$

4. При $x \neq 1, x \neq 2$

$$y'' = \frac{1}{2} \cdot \frac{2\operatorname{sgn}(x^2 - 3x + 2)\sqrt{|x^2 - 3x + 2|} - \frac{(2x - 3)^2\operatorname{sgn}^2(x^2 - 3x + 2)}{2\sqrt{|x^2 - 3x + 2|}}}{|x^2 - 3x + 2|} = \frac{1}{4} \cdot \frac{4(x^2 - 3x + 2) - (2x - 3)^2}{|x^2 - 3x + 2|^{3/2}} = \frac{-1}{4|x^2 - 3x + 2|^{3/2}}$$

Здесь должна быть числовая ось с направлениями выпуклости на интервалах.

5. Сразу понятно, что у функции нету вертикальных асимптот. Найдём предел

$$\lim_{x \to +\infty} \frac{y}{x} = \lim_{x \to +\infty} \sqrt{\frac{x^2 - 3x + 2}{x^2}} = 1$$

Теперь ещё предел:

$$\lim_{x \to +\infty} y - x = \lim_{x \to +\infty} \sqrt{x^2 - 3x + 2} - x = \lim_{x \to +\infty} \frac{x^2 - 3x + 2 - x^2}{\sqrt{x^2 - 3x + 2} + x} = -\frac{3}{2}$$

То есть $y=x-\frac{3}{2}$ - правая наклонная асимптота. Аналогично проделаем для $x\to -\infty$:

$$\lim_{x \to -\infty} \frac{y}{x} = -\lim_{x \to -\infty} \sqrt{\frac{x^2 - 3x + 2}{x^2}} = -1$$

$$\lim_{x \to -\infty} \sqrt{x^2 - 3x + 2} - (-1)x = \lim_{x \to -\infty} \frac{x^2 - 3x + 2 - x^2}{\sqrt{x^2 - 3x + 2} - x} = \frac{3}{2}$$

Отсюда $y = -x + \frac{3}{2}$ - левая наклонная асимптота.

6. Тут должен быть график функции

5 Вектор-функции и топология пространства \mathbb{R}^n

5.1 Пространство \mathbb{R}^n

Обозначения

$$\vec{x} = (x_1, \dots, x_n)$$
 - вектор; $\begin{pmatrix} \xi^1 \\ \vdots \\ \xi^n \end{pmatrix}$ - координатный столбец

Алгебраические структуры

Определение 5.1. Вещественным линейным пространством называется множество X, на котором определены операции $+: X \times X \to X$ и $\cdot: \mathbb{R} \times X \to X$, удовлетворяющие аксиомам линейного пространства:

1.
$$\forall \vec{x}, \vec{y} \ \vec{x} + \vec{y} = \vec{y} + \vec{x}$$

2.
$$\forall \vec{x}, \vec{y}, \vec{z} \ (\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$$

3.
$$\exists \vec{0} \mid \forall \vec{x} \in X \quad \vec{x} + \vec{0} = \vec{x}$$

4.
$$\forall \vec{x} \in X \ \exists (-\vec{x}) \in X \ | \ \vec{x} + (-\vec{x}) = \vec{0}$$

5.
$$\forall \alpha, \beta \in \mathbb{R} \ \forall \vec{x} \in X \ \alpha(\beta \vec{x}) = (\alpha \beta) \vec{x}$$

6.
$$\forall \alpha, \beta \in \mathbb{R} \ \forall \vec{x} \in X \ (\alpha + \beta)\vec{x} = \alpha \vec{x} + \beta \vec{x}$$

7.
$$\forall \alpha \in \mathbb{R} \ \forall \vec{x}, \vec{y} \in X \ \alpha(\vec{x} + \vec{y}) = \alpha \vec{x} + \alpha \vec{y}$$

8.
$$\forall \vec{x} \in X \ 1 \cdot \vec{x} = \vec{x}$$

Утверждение 5.1. Ноль и обратный элемент единственны

Доказательство. Единственность обратного элемента:

$$(\vec{x} + (-\vec{x})_1) + (-\vec{x})_2 = (-\vec{x})_2 = (-\vec{x})_1 = (\vec{x} + (-\vec{x})_2) + (-\vec{x})_1$$

Единственность нуля:

$$\vec{0}_1 + \vec{0}_2 = \vec{0}_1 = \vec{0}_2 = \vec{0}_2 + \vec{0}_1$$

Утверждение 5.2.

$$(-1)\vec{x} = -\vec{x}$$

Определение 5.2. *Комплексным* линейным пространствм называется линейное пространство над \mathbb{C} . Определяется аналогично вещественному.

Лемма 5.1. \mathbb{R}^n является вещественным линейным пространством, а \mathbb{C}^n - комплексным линейным пространством.

Доказательство. Следует напрямую из определения.

Определение 5.3. Отображение линейного пространства X_1 над $\mathbb{R}(\mathbb{C})$ на линейное пространство X_2 над $\mathbb{R}(\mathbb{C})$ называется линейным отображением (оператором), если

$$\forall \vec{x}, \vec{y} \in X_1 \ L(\vec{x} + \vec{y}) = L(\vec{x}) + L(\vec{y})$$

$$\triangleright \ \forall \alpha \in \mathbb{R}(\mathbb{C}) \ \forall \vec{x} \in X_1 \ L(\alpha \vec{x}) = \alpha L(\vec{x})$$

Определение 5.4. Если существует биекция линейного пространства X_1 на X_2 , являющаяся линейным оператором вместе со своим обратным, то $X_1 \simeq X_2$

Определение 5.5. Говорят, что на действительном линейном пространстве X задана комплексная структура, если существует линейный оператор $\mathbf{j}: X \to X$ такой, что

$$j^2 = -\mathrm{id}_X$$

Пример. На \mathbb{R}^2 комплексная структура задаётся оператором

$$\mathfrak{j}:(x,y)\to(-y,x)$$

Пример.

$$\{(x_1, x_2) \in \mathbb{R}^2 \mid x_2 = 0\} \simeq \mathbb{R}$$

Пример.

$$\{(z_1, z_2) \in \mathbb{C}^2 \mid z_2 = 0\} \simeq \mathbb{C}$$

Лемма 5.2. Комплексная структура на \mathbb{R}^{2n} задаётся оператором с матрицей

$$\begin{pmatrix} 0 & -1 & \cdots & & 0 \\ 1 & 0 & -1 & \cdots & \vdots \\ \vdots & 1 & 0 & \ddots & \\ \vdots & \ddots & \ddots & -1 \\ 0 & \cdots & & 1 & 0 \end{pmatrix}$$

Определение 5.6. Вещественным *евклидовым* пространством называется вещественное линейное пространство X, для любых элементов \vec{x}, \vec{y} которого опредлено число $\langle \vec{x}, \vec{y} \rangle \in \mathbb{R}$ так, чтобы

$$ightarrow \ orall ec{x} \in X \ \ \langle ec{x}, ec{x}
angle \geqslant 0$$
, причём $\langle ec{x}, ec{x}
angle > = 0 \Leftrightarrow ec{x} = ec{0}$

$$\, \triangleright \, \, \forall \vec{x}, \vec{y} \in X \ \ \, \langle \vec{x}, \vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle$$

$$\triangleright \ \forall \alpha, \beta \in \mathbb{R} \ \langle \alpha \vec{x} + \beta \vec{y}, \vec{z} \rangle = \alpha \langle \vec{x}, \vec{z} \rangle + \beta \langle \vec{y}, \vec{z} \rangle$$

To есть $\langle \vec{x}, \vec{y} \rangle$ - скалярное произведение

Лемма 5.3. \mathbb{R}^n является вещественным евклидовым пространством c

$$\langle \vec{x}, \vec{y} \rangle = \sum_{i=0}^{n} x_i y_i$$

$$\vec{x} = (x_1, \dots, x_n); \ \vec{y} = (y_1, \dots, y_n)$$

Теорема 5.1. (Неравенство Коши-Буняковского-Шварца) Если X - вещественное евклидовое пространство, то

$$\forall \vec{x}, \vec{y} \in X \quad \langle \vec{x}, \vec{y} \rangle \leqslant \langle \vec{x}, \vec{x} \rangle \cdot \langle \vec{y}, \vec{y} \rangle$$

причём равенство имеет место тогда и только тогда, когда $\exists \lambda \in \mathbb{R} \mid \vec{x} = \lambda \vec{y}$.

Доказательство. Рассмотрим скалярное произведение $\langle \vec{x} + \lambda \vec{y}, \vec{x} + \lambda \vec{y} \rangle$, $\lambda \in \mathbb{R}$:

$$\langle \vec{x} + \lambda \vec{y}, \vec{x} + \lambda \vec{y} \rangle = \langle \vec{x}, \vec{x} + \lambda \vec{y} \rangle + \lambda \langle \vec{y}, \vec{x} + \lambda \vec{y} \rangle = \langle \vec{x} + \lambda \vec{y}, \vec{x} \rangle + \lambda \langle \vec{x} + \lambda \vec{y}, \vec{y} \rangle =$$

$$\langle \vec{x}, \vec{x} \rangle + \lambda \langle \vec{y}, \vec{x} \rangle + \lambda^2 \langle \vec{y}, \vec{y} \rangle + \lambda \langle \vec{x}, \vec{y} \rangle = \langle \vec{x}, \vec{x} \rangle + 2\lambda \langle \vec{x}, \vec{y} \rangle + \lambda^2 \langle \vec{y}, \vec{y} \rangle \geqslant 0$$

Раз у квадратного трёхчлена относительно λ коэффициент при старшей степени положителен и весь он неотрицателен, то дискриминант должен быть неположителен:

$$\frac{D}{4} = \langle \vec{x}, \vec{y} \rangle^2 - \langle \vec{x}, \vec{x} \rangle \cdot \langle \vec{y}, \vec{y} \rangle \leqslant 0$$

Отсюда

$$\langle \vec{x}, \vec{y} \rangle \leqslant \langle \vec{x}, \vec{y} \rangle^2 \leqslant \langle \vec{x}, \vec{x} \rangle \cdot \langle \vec{y}, \vec{y} \rangle$$

При этом если D=0 и выражение выше обращается в равенство, то $\vec{x}+\lambda\vec{y}=\vec{0}\Leftrightarrow\vec{x}=(-\lambda)\vec{y}$

Следствие.

$$\sum_{i=1}^{n} x_i y_i \leqslant \left(\sum_{i=1}^{n} x_i^2\right) \cdot \sum_{i=1}^{n} y_i^2, \ x_i, y_i \in \mathbb{R}$$

Определение 5.7. Комплексным евклидовым (унитарным) пространством называется комплексное линейное пространство X, для любых двух элементов которого $\vec{x}, \vec{y} \in X$ определено число $\langle \vec{x}, \vec{y} \rangle \in Cm$ так, что

$$ho \ \forall \vec{x}, \vec{y} \in X \ \langle \vec{x}, \vec{x} \rangle \geqslant 0$$
, причём $\langle \vec{x}, \vec{x} \rangle = 0 \Leftrightarrow \vec{x} = \vec{0}$

$$\, \triangleright \, \, \forall \vec{x}, \vec{y} \in X \ \ \, \langle \vec{x}, \vec{y} \rangle = \overline{\langle \vec{y}, \vec{x} \rangle}$$

$$\, \triangleright \, \, \forall \vec{x}, \vec{y}, \vec{z} \in X \, \, \forall \alpha, \beta \in \mathbb{C} \, \, \, \left\langle \alpha \vec{x} + \beta \vec{y}, \vec{z} \right\rangle = \alpha \langle \vec{x}, \vec{z} \rangle + \beta \langle \vec{y}, \vec{z} \rangle$$

 $\langle \vec{x}, \vec{y} \rangle$ называется *эрмитовым* скалярным произведением.

Лемма 5.4. \mathbb{C}^n является унитарным $c\ \langle \vec{z}, \vec{w} \rangle = \sum_{i=0}^n z_i \bar{w}_i$, для $\vec{z} = (z_1, \dots, z_n)$ $u\ \vec{w} = (w_1, \dots, w_n)$.

Теорема 5.2. (Неравенство Коши-Буняковского-Шварца для унитарных пространств) Если X - унитарное пространство, то для любых $\vec{z}, \vec{w} \in X$ верно неравенство

$$|\langle \vec{z}, \vec{w} \rangle| \leqslant \sqrt{\langle \vec{z}, \vec{z} \rangle} \cdot \sqrt{\langle \vec{w}, \vec{w} \rangle}$$

причём равенство имеет место тогда и только тогда, когда $\exists \lambda \in \mathbb{C} \mid \vec{z} = \lambda \vec{w}$ или $\vec{w} = \vec{0}$ Доказательство. Обозначим $\langle \vec{z}, \vec{w} \rangle = |\langle \vec{z}, \vec{w} \rangle| e^{i\varphi}$. Рассмотрим $\langle \vec{z} + \lambda e^{i\varphi} \vec{w}, \vec{z} + \lambda e^{i\varphi} \vec{w} \rangle$, $\lambda \in \mathbb{R}$:

$$\begin{aligned} \langle \vec{z} + \lambda e^{i\varphi} \vec{w}, \vec{z} + \lambda e^{i\varphi} \vec{w} \rangle &= \langle \vec{z}, \vec{z} + \lambda e^{i\varphi} \vec{w} \rangle + \lambda e^{i\varphi} \langle \vec{w}, \vec{z} + \lambda e^{i\varphi} \vec{w} \rangle = \\ \overline{\langle \vec{z} + \lambda e^{i\varphi} \vec{w}, \vec{z} \rangle} &+ \lambda e^{i\varphi} \overline{\langle \vec{z} + \lambda e^{i\varphi} \vec{w}, \vec{w} \rangle} &= \overline{\langle \vec{z}, \vec{z} \rangle} + \overline{\lambda e^{i\varphi}} \cdot \overline{\langle \vec{w}, \vec{z} \rangle} + \lambda e^{i\varphi} \overline{\langle \vec{z}, \vec{w} \rangle} + \lambda e^{i\varphi} \cdot \overline{\lambda e^{i\varphi}} \cdot \overline{\langle \vec{w}, \vec{w} \rangle} = \\ \overline{\langle \vec{z}, \vec{z} \rangle} &+ 2\lambda |\langle \vec{z}, \vec{w} \rangle| + \lambda^2 \langle \vec{w}, \vec{w} \rangle \geqslant 0 \end{aligned}$$

И снова получили квадратный трёхчлен относительно λ :

$$\frac{D}{4} = |\langle \vec{z}, \vec{w} \rangle|^2 - \langle \vec{w}, \vec{w} \rangle \cdot \langle \vec{z}, \vec{z} \rangle \leqslant 0$$

Отсюда

$$|\langle \vec{z}, \vec{w} \rangle| \leqslant \sqrt{\langle \vec{w}, \vec{w} \rangle} \cdot \sqrt{\langle \vec{z}, \vec{z} \rangle}$$

Следствие. Для любых комплексных чисел

$$\left| \sum_{i=1}^n z_i w_i \right| \leqslant \sqrt{\sum_{i=1}^n |z_i|^2} \cdot \sqrt{\sum_{i=1}^n |w_i|^2}$$

Дополнение. Если в определении вещественного евклидового пространства заменить свойство 1. на

$$\forall \vec{y} \in X \quad \left(\langle \vec{x}, \vec{y} \rangle = 0 \Leftrightarrow \vec{x} = \vec{0} \right)$$

то получим определение псевдоевклидового пространства.

Пример. R^4 - псевдоевклидово пространство, где для любых векторов $\vec{x} = (x_0, x_1, x_2, x_3)$ и $\vec{y} = (y_0, y_1, y_2, y_3)$ скалярное произведение имеет вид

$$\langle \vec{x}, \vec{y} \rangle = x_0 y_0 - x_1 y_1 - x_2 y_2 - x_3 y_3$$

Это пространство носит имя npocmpancma Munkoackoro и играет большую роль в Специальной Теории Относительности.

Топологические структуры

Определение 5.8. Линейное пространство над $\mathbb{R}(\mathbb{C})$ называется *нормированным*, если $\forall \vec{x} \in X$ определено число $||\vec{x}|| \in \mathbb{R}$ - норма, так, что

- 1. $\forall \vec{x} \in X \ ||\vec{x}|| \geqslant 0$, причём $||\vec{x}|| = 0 \Leftrightarrow \vec{x} = \vec{0}$
- 2. $\forall \alpha \in \mathbb{R}(\mathbb{C}), \forall \vec{x} \in X \ ||\alpha \vec{x}|| = |\alpha| \cdot ||\vec{x}||$
- 3. $\forall \vec{x}, \vec{y} \in X \ ||\vec{x} + \vec{y}|| \leq ||\vec{x}|| + ||\vec{y}||$

Теорема 5.3. Евклидово пространство над $\mathbb{R}(\mathbb{C})$ является линейным нормированным пространством (ЛНП) $c \ ||\vec{x}|| = \sqrt{\langle \vec{x}, \vec{x} \rangle}$.

Доказательство.

1. В обоих случаях следует из определения:

$$\vec{x} = \vec{0} \Leftrightarrow \langle \vec{x}, \vec{x} \rangle = 0 \Leftrightarrow ||\vec{x}|| = 0$$

 $\vec{x} \neq \vec{0} \Leftrightarrow \langle \vec{x}, \vec{x} \rangle > 0 \Leftrightarrow ||\vec{x}|| > 0$

2. Докажем комплексный случай как более сложный:

$$||\alpha \vec{x}|| = \sqrt{\langle \alpha \vec{x}, \alpha \vec{x} \rangle} = \sqrt{\alpha \langle \vec{x}, \alpha \vec{x} \rangle} = \sqrt{\alpha \overline{\langle \alpha \vec{x}, \vec{x} \rangle}} = \sqrt{\alpha \cdot \overline{\alpha} \overline{\langle \vec{x}, \vec{x} \rangle}} = |\alpha| \sqrt{\langle \vec{x}, \vec{x} \rangle} = |\alpha| \cdot ||\vec{x}||$$

3.

$$\begin{aligned} ||\vec{x} + \vec{y}||^2 &= \langle \vec{x} + \vec{y}, \vec{x} + \vec{y} \rangle = \langle \vec{x}, \vec{x} + \vec{y} \rangle + \langle \vec{y}, \vec{x} + \vec{y} \rangle = \overline{\langle \vec{x} + \vec{y}, \vec{x} \rangle} + \overline{\langle \vec{x} + \vec{y}, \vec{y} \rangle} = \\ & \langle \vec{x}, \vec{x} \rangle + \overline{\langle \vec{y}, \vec{x} \rangle} + \overline{\langle \vec{x}, \vec{y} \rangle} + \langle \vec{y}, \vec{y} \rangle = \langle \vec{x}, \vec{x} \rangle + 2\operatorname{Re}(\langle \vec{x}, \vec{y} \rangle) + \langle \vec{y}, \vec{y} \rangle \leqslant \\ & \langle \vec{x}, \vec{x} \rangle + 2|\langle \vec{x}, \vec{y} \rangle| + \langle \vec{y}, \vec{y} \rangle \leqslant \langle \vec{x}, \vec{x} \rangle + 2\sqrt{\langle \vec{x}, \vec{x} \rangle} \sqrt{\langle \vec{y}, \vec{y} \rangle} + \langle \vec{y}, \vec{y} \rangle = \left(\sqrt{\langle \vec{x}, \vec{x} \rangle} + \sqrt{\langle \vec{y}, \vec{y} \rangle}\right)^2 = \\ & (||\vec{x}|| + ||\vec{y}||)^2 \end{aligned}$$

Следствие. (Неравенство Минковского)

$$\sqrt{\sum_{i=1}^{n} (x_i + y_i)^2} \leqslant \sqrt{\sum_{i=1}^{n} x_i^2} \cdot \sqrt{\sum_{i=1}^{n} y_i^2}, \ x_i, y_i \in \mathbb{R}$$

Лемма 5.5. \mathbb{R}^n - ЛНП $c ||\vec{x}|| = \sqrt{\sum_{i=1}^n x_i^2}$. При этом в \mathbb{R}^2 и \mathbb{R}^3 норма совпадает c длиной вектора.

Лемма 5.6.
$$\mathbb{C}^n$$
 - ЛНП $c ||\vec{z}|| = \sqrt{\sum_{i=1}^n |z_i|^2}$

Определение 5.9. *Метрическим* пространством называется множество X такое, что для любых $x, y \in X$ определено действительное число $\rho(x, y)$ (метрическое расстояние) и верны следующие утверждения:

- 1. $\forall x, y \in X \ \rho(x, y) \geqslant 0$, причём $\rho(x, y) = 0 \Leftrightarrow x = y$
- 2. $\forall x, y \in X \quad \rho(x, y) = \rho(y, x)$
- 3. $\forall x, y, z \in X \quad \rho(x, y) \leq \rho(x, z) + \rho(z, y)$

Теорема 5.4. Каждое линейное нормированное множество (над $\mathbb{R}(\mathbb{C})$) является метрическим пространством с метрикой, индуцированной нормой по формуле:

$$\rho(x,y) = ||x - y||$$

Доказательство. Доказательство сводится к проверке свойств:

1. Очевидно

2. $\rho(y,x) = ||y-x|| = ||(-1)\cdot(x-y)|| = |-1|\cdot||x-y|| = ||x-y|| = \rho(x,y)$

3.

$$\rho(x,y) = ||x-y|| = ||(x-z) + (z-y)|| \le ||x-z|| + ||z-y|| = \rho(x,z) + \rho(z,y)$$

Следствие. \mathbb{R}^n и \mathbb{C}^n - метрические пространства с метрикой

$$\rho(\vec{x}, \vec{y}) = ||\vec{x} - \vec{y}||$$

Утверждение 5.3. Любое множество является метрическим пространством

 $\rho(x,y) = \begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases}$

Замечание. Дальнейшие определения даны для метрического пространства X. В качестве примера удобно брать $X=\mathbb{R}^2$.

Определение 5.10. *Открытым шаром* с центром в точке $x_0 \in X$ радиусом $\varepsilon > 0$ (или же ε -окрестностью точки x_0) называется множество

$$U_{\varepsilon}(x_0) = \{ x \in X \mid \rho(x, x_0) < \varepsilon \}$$

Определение 5.11. Точка x_0 называется *внутренней точкой* множества $A \subset X$, если она принадлежит A вместе с некоторой своей ε -окрестностью:

$$U_{\varepsilon}(x_0) \subset A$$

Определение 5.12. Внутренностью множества A называется множество всех внутренних точек множества A. Обозначается как

int
$$A$$
, \mathring{A}

От слова interior.

Определение 5.13. Множество $A \subset X$ называется *открытым*, если все его точки - внутренние, то есть $A \subset \text{int } A$. Естественно, \varnothing - открытое множество.

Определение 5.14. Точка x_0 называется точкой прикосновения множества $A \subset X$, если

$$\forall \varepsilon > 0 \ U_{\varepsilon}(x_0) \cap A \neq \emptyset$$

Определение 5.15. Множество всех точек прикосновения множества $A \subset X$ называется его *замыканием* и обозначается как

$$\operatorname{cl} A, \, \bar{A}$$

Определение 5.16. Множество $A \subset X$ называется *замкнутым*, если оно содержит все свои точки прикосновения, то есть $A \supset \operatorname{cl} A$. Естественно, что \varnothing - замкнутое множество

Определение 5.17. Замкнутым шаром с центром в точке $x_0 \in X$ и радиусом $\varepsilon > 0$ называется

$$\bar{B}_{\varepsilon}(x_0) = \{ x \in X \mid \rho(x_0, x) \leqslant \varepsilon \}$$

Лемма 5.7. Для любого $A \subset X$ верно, что

$$\operatorname{int} A \subset A \subset \operatorname{cl} A$$

Доказательство. Первое включение очевидно, потому что любая внутренняя точка принадлежит A.

Второе включение следует из того, что если $x_0 \in A$, то

$$\forall \varepsilon > 0 \ U_{\varepsilon}(x_0) \cap A \supset \{x_0\}$$

Значит, любая точка A также лежит и в замыкании A.

Следствие. A - открытое множество \Leftrightarrow int A=A A - замкнутое множество \Leftrightarrow $\operatorname{cl} A=A$

Лемма 5.8. $\forall A_1 \subset A_2 \subset X$ верно, что

$$int A_1 \subset int A_2$$
$$cl A_1 \subset cl A_2$$

Лемма 5.9. Открытый шар является открытым множеством.

Доказательство. Рассмотрим $\forall x_1 \in U_{\varepsilon}(x_0)$. Тогда

$$\rho(x_0, x_1) < \varepsilon$$

Рассмотрим шар с центром в точке x_1 и радиусом $\varepsilon - \rho(x_0, x_1)$. Выберем $\forall x_2 \in U_{\varepsilon - \rho(x_0, x_1)}(x_1)$. Тогда

$$\rho(x_1, x_2) < \varepsilon - \rho(x_0, x_1)$$

Отсюда следует

$$\rho(x_0, x_2) \leqslant \rho(x_0, x_1) + \rho(x_1, x_2) < \varepsilon$$

То есть $U_{\varepsilon-\rho(x_0,x_1)}(x_1) \subset U_{\varepsilon}(x_0)$. Значит x_1 - внутренняя точка. А раз x_1 было ещё и произвольной точкой открытого шара, то открытый шар является открытым множеством. \square

Лемма 5.10. Замкнутый шар является замкнутым множеством.

Доказательство. Пусть x - точка прикосновения для $\bar{B}_{\varepsilon}(x_0)$. Это означает, что

$$\forall \eta > 0 \ U_{\eta}(x) \cap \bar{B}_{\varepsilon}(x_0) \neq \varnothing \Rightarrow \exists x_1 \in U_{\eta}(x) \cap \bar{B}_{\varepsilon}(x_0)$$

Оценим расстояние от x_0 до x:

$$\rho(x_0, x) \leqslant \rho(x_0, x_1) + \rho(x_1, x) < \varepsilon + \eta$$

То есть получили утверждение

$$\forall \eta > 0 \ \rho(x_0, x) < \varepsilon + \eta$$

Значит

$$\rho(x_0, x) \leqslant \varepsilon$$

Следовательно, x - точка замкнутого шара.

Теорема 5.5.

- 1. Внутренность любого множества $A \subset X$ открыта.
- 2. Замыкание любого множества $A\subset X$ замкнуто.

Доказательство.

1. Положим G := int A. Выберем $\forall x_0 \in G$. Раз точка лежит в данном множестве, то

$$\exists \varepsilon > 0 \mid U_{\varepsilon}(x_0) \subset A$$

По лемме 5.8 из этого следует

int
$$U_{\varepsilon}(x_0) \subset \operatorname{int} A$$

Так как открытый шар является открытым множеством, получаем вложение

$$U_{\varepsilon}(x_0) \subset G$$

То есть x_0 - внутренняя точка G. Значит G - открытое множество

2. Положим $K := \operatorname{cl} A$. Пусть x_0 - точка прикосновения множества K. Это означает

$$\forall \varepsilon > 0 \ U_{\varepsilon/2}(x_0) \cap K \neq 0$$

Обозначим за $x_1 \in U_{\varepsilon/2}(x_0) \cap K$. Тогда сразу x_1 - точка прикосновения множества A. То есть

$$U_{\varepsilon/2}(x_1) \cap A \neq \emptyset$$

Теперь выберем $x_2 \in U_{\varepsilon/2}(x_1) \cap A$ и оценим расстояние между ней и x_0 :

$$\rho(x_0, x_2) \leqslant \rho(x_0, x_1) + \rho(x_1, x_2) < \varepsilon$$

Следовательно

$$\forall \varepsilon > 0 \ U_{\varepsilon}(x_0) \cap A \supset \{x_2\}$$

Значит x_0 - точка прикосновения множества $A \Rightarrow x_0 \in K$.

Пример. Порой геометрическая интерпретация данной модели обманывает, ибо здесь есть возможность шара с большим радиусом оказаться вложенным в шар с меньшим

радиусом. Рассмотрим метрическое пространство X = (-1; 1):

$$U_1(0) = (-1; 1)$$

 $U_{5/4}(1/2) = \left(-\frac{3}{4}; 1\right) \Rightarrow U_{5/4}(1/2) \subsetneq U_1(0)$

Лемма 5.11. Для любого $A \subset X$ верны равенства

$$\triangleright X \setminus \operatorname{int} A = \operatorname{cl}(X \setminus A)$$

$$\triangleright X \setminus \operatorname{cl} A = \operatorname{int}(X \setminus A)$$

Доказательство.

 \triangleright

$$x \in X \setminus \operatorname{int} A \Leftrightarrow (\forall \varepsilon > 0 \ U_{\varepsilon}(x) \cap (X \setminus A) \neq \varnothing) \Leftrightarrow x \in \operatorname{cl}(X \setminus A)$$

 \triangleright

$$x \in X \setminus \operatorname{cl} A \Leftrightarrow (\exists \varepsilon > 0 \mid U_{\varepsilon}(x) \cap A = \varnothing) \Leftrightarrow (\exists \varepsilon > 0 \mid U_{\varepsilon}(x) \subset X \setminus A) \Leftrightarrow x \in \operatorname{int}(X \setminus A)$$

Следствие. $A \subset X$ - открытое множество тогда и только тогда, когда $X \setminus A$ - замкнутое.

Определение 5.18. Внутренняя точка дополнения множества $A \subset X$ называется внешней точкой.

Определение 5.19. *Границей* множества $A \subset X$ называется множество

$$\partial A = \operatorname{cl} A \setminus \operatorname{int} A$$

Все точки ∂ называются граничными точками множества ∂A .

Лемма 5.12.
$$x_0 \in \partial A \Leftrightarrow (\forall \varepsilon > 0 \ U_{\varepsilon}(x_0) \cap A \neq \emptyset, \ U_{\varepsilon}(x_0) \cap (X \setminus A) \neq \emptyset)$$

Доказательство. $x_0 \in \partial A \Leftrightarrow x_0 \in \operatorname{cl} A \setminus \operatorname{int} A$. Значит, $x_0 \in \operatorname{cl} A$:

$$\forall \varepsilon > 0 \ U_{\varepsilon}(x_0) \cap A \neq \emptyset$$

при этом $x_0 \notin \text{int } A$:

$$\forall \varepsilon > 0 \ U_{\varepsilon}(x_0) \cap (X \backslash A) \neq \varnothing$$

Теорема 5.6. (Основное свойство совокупности открытых множеств) Пусть x - метрическое пространство. Тогда совокупность \mathcal{T} открытых подмножеств X обладает следующими свойствами:

1.
$$\emptyset \in \mathcal{T}, X \in \mathcal{T}$$

2.
$$\forall G_1, G_2 \in \mathcal{T} \Rightarrow G_1 \cap G_2 \in \mathcal{T}$$

3.
$$\forall \{G_{\alpha}\}_{\alpha \in A} \subset \mathcal{T} \Rightarrow \bigcup_{\alpha \in A} G_{\alpha} \in \mathcal{T}$$

Доказательство.

- 1. \varnothing замкнутое и открытое множество. Следовательно $X \backslash \varnothing = X$ открытое множество.
- 2. Рассмотрим $\forall x \in G_1 \cap G_2$. Из выбора следует

$$\exists \varepsilon_1 \mid U_{\varepsilon_1} \subset G_1$$
$$\exists \varepsilon_2 \mid U_{\varepsilon_2} \subset G_2$$

Следовательно, $U_{\min(\varepsilon_1,\varepsilon_2)} \subset G_1 \cap G_2$.

3.
$$x \in \bigcup_{\alpha \in A} G_{\alpha} \Rightarrow (\exists \alpha_0 \in A \mid x \in G_{\alpha_0})$$
. Значит

$$\exists \varepsilon > 0 \mid U_{\varepsilon}(x) \subset G_{\alpha_0} \subset \bigcup_{\alpha \in A} G_{\alpha}$$

Определение 5.20. Множество X называется топологическим пространством, если в нём выделена система подмножеств \mathcal{T} , называемых открытыми, которая удовлетворяет свойствам из теоремы 5.6.

Множество \mathcal{T} называется топологией множества X.

Определение 5.21. Пусть X - топологическое пространство с топологией \mathcal{T} . Тогда x_0 называется пределом последовательности $\{x_n\}_{n=1}^{\infty} \subset X$, если

$$\forall G \in \mathcal{T}, x_0 \in G \ \exists N \in \mathbb{N} \mid \forall n > N \ x_n \in G$$

Предел обозначается как

$$\lim_{n \to \infty} x_n = x_0$$

Пример. Если не накладывать на топологию никаких дополнительных ограничений, то предел не обязан быть даже единственным. Рассмотрим $X = \{a, b\}$ с топологией $\mathcal{T} = \{\varnothing, \{a, b\}\}$. Рассмотрим последовательность

$$x_n = a, n \in \mathbb{N}$$

Тогда понятно, что $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} x_n = b$.

Замечание автора. Чтобы обеспечить единственность предела, достаточно добавить свойство $xaycdop\phiosocmu$:

$$\forall x, y \in X \ \exists G_x, G_y \in \mathcal{T} \ \big| \ (x \in G_x) \land (y \in G_y) \land (G_x \cap G_y = \varnothing)$$

Топологическое пространство со свойством хаусдорфовости называется $X a y c d o p \phi o b \omega m n p o c m p a h c m p$