DiffGeo

Luka Ilić, Johannnes Mader, Jakob Deutsch, Fabian Schuh $9.~\mathrm{M\ddot{a}rz}~2018$

Inhaltsverzeichnis

1	Kurven	4
	1.1 Parametrisierung und Bogenlänge	4

Einleitung

Das folgende Skriptum wird von einigen Studenten (oben angeführt) während der Vorlesung geschrieben und danach auf Fehler kontrolliert und bearbeitet. Natürlich schleichen sich nach Möglichkeit Fehler ein, die übersehen werden, dies ist gerne bei den schreibenden Personen anzumerken. Das Skriptum enthält großteils das Tafelbild der Stunden und keinenfalls die Garantie in irgendeiner Weise vollständig zu sein. (Wir geben unser Bestes.)

Viel Vergnügen mit DiffGeo

1 Kurven

1.1 Parametrisierung und Bogenlänge

Wiederholung: Ein Euklidischer Raum \mathcal{E} ist:

- 1. Ein affiner Raum (\mathcal{E}, V, τ)
- 2. über einem Euklid. Vektorraum (V, <, >).

Dabei: $\tau: V \times \mathcal{E} \to \mathcal{E}; (v, X) \mapsto \tau_v(X) =: X + v$ genügt

- 1. $\tau_0 = id_{\mathcal{E}} \text{ und } \forall v, w \in V \ \tau_v \circ \tau_w = \tau_{v+w}$
- 2. $\forall X, Y \in \mathcal{E} \exists ! v \in V \ \tau_v(x) = Y \ ((d.h. \ \tau \ ist \ einfach \ transitiv)).$

Definition. Eine (parametrisierte-) Kurve ist eine Abbildung

$$X:I\to\mathcal{E}$$

auf einem offenen Intervall $I \subseteq \mathbb{R}$, die regulär ist (d.h. $\forall t \in I \ X'(t) \neq 0$). Wir nennen X auch Parametrisierung der Kurve C = X(I).

Bemerkung. Alle Abbildungen in dieser VO sind beliebig oft differenzierbar (d.h. C^{∞}).

Beispiel. Eine (Kreis-) Helix mit Radius r > 0 und Ganghöhe h ist die Kurve

$$X: \mathbb{R} \to \mathcal{E}^3; t \mapsto X(t) := O + e_1 r \cos(t) + e_2 r \sin(t) + e_3 ht.$$

Definition. Umparametrisierung einer param. Kurve $X: I \to \mathcal{E}$ ist eine param. Kurve

$$\widetilde{X}: \widetilde{I} \to \mathcal{E}; s \mapsto \widetilde{X}(s) = X(t(s)),$$

wobei $t:\widetilde{I}\to I$ eine surjektive, reguläre Abbildung ist.

Motivation: Für eine Kurve $t\mapsto X(t)$

- 1. X'(t) ist Geschwindigkeit(-svektor) ("veloicity"),
- 2. |X'(t)| ist (skalare) Geschwindigkeit ("speed").

Rekonstruktion durch Integration:

$$X(t) = X(o) + \int_{o}^{t} X'(t)dt$$

und die Länge des Weges von X(0) nach X(t):

$$s(t) = \int_{0}^{t} |X'(t)| dt$$

Definition.

Die Bogenlänge einer Kurve $X:I\to\mathcal{E}$ von X(0) für $o\in I$, ist

$$s(t) := \int_{o}^{t} |X'(t)| dt$$

(wobei $\int_0^s |X'(t)| dt$ auch als $\int_0^t ds$ geschrieben wird)

Bemerkung. Dies ist tatsächlich die Länge des Kurvenbogens zwischen X(o) und X(t), wie man z.B. durch polygonale Approximation beweist (s. Ana2 VO) Also: Die Bogenlänge zwischen zwei Punkten ist *invariant* ("ändert sich nicht") unter Umparametrisierung.

Lemma und Definition. Jede Kurve $t \mapsto X(t)$ kann man nach Bogenlänge (um-) parametrisieren, d.h. so, dass sie konstante Geschwindigkeit 1 ($|X'(t)| \equiv 1$) hat. Dies ist die Bogenlängenparametrisierung und üblicherweise notiert $s \mapsto X(s)$ diesen Zusammenhang.

Beweis. Wähle $o \in I$ und bemerke

$$s'(t) = |X'(t)| > 0.$$

Also ist $t \mapsto s(t)$ streng monoton wachsend, kann also invertiert werden, um t = t(s) zu erhalten: Damit erhält man für

$$\widetilde{X} := X \circ t$$
$$|\widetilde{X}'(s)| = |X'(t(s))| * |t'(s)| = \frac{s'(t)}{s'(t)} = 1,$$

d.h. \widetilde{X} ist nach Bogenlänge parametrisiert. (nämlich durch Division mit der Inversen.)

Bemerkung. Eine Bogenlängenparametrisierung ist eindeutig bis auf Wahl von o und Orientierung.

Beispiel. Eine Helix

$$t \mapsto X(t) = O + e_1 r \cos(t) + e_2 r \sin(t) + e_3 ht$$

hat Bogenlänge

$$s(t) = \int_{O}^{t} \sqrt{r^2 + h^2} dt = \sqrt{r^2 + h^2} * t$$

und somit Bogenlängenparametrisierung

$$s \mapsto \widetilde{X}(s) = O + e_1 r \cos \frac{s}{\sqrt{r^2 + h^2}} + e_2 r \sin \frac{s}{\sqrt{r^2 + h^2}} + e_3 \frac{hs}{\sqrt{r^2 + h^2}}.$$

Bemerkung und Beispiel.

Üblicherweise ist es nicht möglich eine Bogenlängenparam. in elem. Funktionen anzugeben: Eine Ellipse

$$t \mapsto O + e_1 a \cos(t) + e_2 b \sin(t) (a > b > 0)$$

hat Bogenlänge

$$s(t) = \int_{0}^{t} \sqrt{b^2 + (a^2 - b^2)\sin(t)} dt,$$

dies ist ein elliptisches Integral, also nicht mit elem. Funktionen invertierbar.