MAT137 Lecture 27

Huan Vo

University of Toronto

January 29, 2018

Agenda

Integration of trigonometric functions
Integration by trigonometric substitution

For each of the following integrals, state the substitution one should use

(a)
$$\int \sin^5 x \, \mathrm{d}x$$

(b)
$$\int \cos^3 x \, \mathrm{d}x$$

(c)
$$\int \sin^5 x \cos^4 x \, \mathrm{d}x$$

(d)
$$\int \sin^4 x \cos^5 x \, \mathrm{d}x$$

(e)
$$\int \sqrt{\cos x + 1} \sin^9 x \, \mathrm{d}x$$

Evaluate

$$\int \sin^2 x \cos^2 x \, \mathrm{d}x.$$

For each of the following integrals, state the substitution one should use

(a)
$$\int \tan^4 x \sec^4 x \, \mathrm{d}x$$

(b)
$$\int \tan^5 x \sec^3 x \, dx$$

(c)
$$\int \tan x \, \mathrm{d}x$$

(d)
$$\int \tan^3 x \, \mathrm{d}x$$

(e)
$$\int \tan^2 x \cos^3 x \, \mathrm{d}x$$

5 / 8

Use integration by parts to evaluate

$$\int \sec^3 x \, \mathrm{d}x.$$

Hint. Let $u = \sec x$ and $dv = \sec^2 x dx$.

Evaluate

$$\int \tan^4 x \, \mathrm{d}x.$$

Hint. Write $\tan^2 x = \sec^2 x - 1$.

Next Class: Thursday February 1

Watch videos 9.15, 9.16, 9.17 in Playlist 9.