Sudoku Solver

Ingo Prötel, Christoph Hanke, Benjamin Müller

Introduction Sudoku

Fill in the digits 1 - 9 so that

each row and

each column and

each 3x3 sub-grid

contains each digit exactly once.

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
8 4 7			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
	_			8			7	9

Data

Four different datasets from Kaggle:

- https://www.kaggle.com/datasets/bryanpark/sudoku
 1 million puzzles
- https://www.kaggle.com/datasets/rohanrao/sudoku9 million puzzles
- https://www.kaggle.com/datasets/radcliffe/3-million-sudoku-puzzles-with-ratings
 3 million puzzles
- https://www.kaggle.com/datasets/informoney/4-million-sudoku-puzzles-easytoha rd
 - 4 million puzzles

Data Content

- 17 000 000 solutions are 16 999 295 unique
- between 1 64 missing digits

Base Model

- Convolutional Neural Network-based Sudoku Solver
- Sudokus are zero mean-centred normalized ([-0.5, .05]) and represented by a (9,9,1)-Tensor
- the model transforms every sudoku field into a multi-class classification of size 9
- -> size of probability tensor is 81x9 which is converted to a 9x9 solution tensor using softmax
- Loss function is sparse_categorical_crossentropy

Base Model

```
keras.models.Sequential([
 Conv2D(filters=64, kernel_size=(3,3), activation="relu", padding='same', input_shape=(9,9,1)),
 BatchNormalization(),
 Conv2D(filters=64, kernel_size=(3,3), activation="relu", padding='same'),
 BatchNormalization().
 Conv2D(filters=128, kernel_size=(1,1), activation="relu", padding='same'),
 Flatten(),
Dense(81*9),
 Reshape((-1, 9)),
Activation('softmax')
```

Base Model

- First approach: predict everything at once
 - -> bad performance
- Second approach: predict only one field per iteration
 - take the value with highest probability and start all over again with n+1 given values
 - human centered approach
 - takes very long (~ 20 seconds per sudoku)
 - higher reliability (99% on certain datasets)

How to improve this already good base model?

- Looking for ways to make it faster and/or even more reliable
- Let's support the model with additional information!
 - every column and row has a sum of $45 (\Sigma i=[1;9])$
 - every column and row has a product of 362.880 (☐ i=[1;9])
 - expand the 9x9 tensor to a 10x10 resp. 11x11 tensor
 - Idea: the CNN uses some kind of linear regression which is interwoven to the inference process

Ur	nsc	olv∈	ed S	Sudo	oku:	:					Со	rr	ect	: St	ıdok	cu:						
[0	0	4	3	0	0	2	0	9	18]	I	8	6	4	3	7	1	2	5	9	45]	
[0	0	5	0	0	9	0	0	1	15]	[3	2	5	8	4	9	7	6	1	45]	
[0	7	0	0	6	0	0	4	3	20]	[9	7	1	2	6	5	8	4	3	45]	
[0	0	6	0	0	2	0	8	7	23]	[4	3	6	1	9	2	5	8	7	45]	
[1	9	0	0	0	7	4	0	0	21]	[1	9	8	6	5	7	4	3	2	45]	
[0	5	0	0	8	3	0	0	0	16]	[2	5	7	4	8	3	9	1	6	45]	
[6	0	0	0	0	0	1	0	5	12]	[6	8	9	7	3	4	1	2	5	45]	
[0	0	3	5	0	8	6	9	0	31]	[7	1	3	5	2	8	6	9	4	45]	
[0	4	2	9	1	0	3	0	0	19]	[5	4	2	9	1	6	3	7	8	45]	
[7	25	20	17	15	29	16	21	25	0]	[4	5	45	45	45	45	45	45	45	45	0]	

Difficulties:

Model becomes quite big:

```
o model.add(Dense(81*9)) # (9x9x9)
o -> model.add(Dense(100*45)) # (10x10x45)
o -> model.add(Dense(121*362.880)) # (11x11x362.880)
```

Difficulties:

Model becomes quite big:

```
o model.add(Dense(81*9)) # (9x9x9)
o -> model.add(Dense(100*45)) # (10x10x45)
o -> model.add(Dense(121*362.880)) # (11x11x362.880)
```

- "45" and "362.880" is <u>always</u> the correct answer
 - -> Model doesn't care at all about the additional information!

Custom loss function

- Make loss function aware of Sudoku specifics
- Check the difference in the count of each digit
- Use the difference to modify the given 'regular' loss function
- Process as tensors

Custom loss function

```
def custom loss function(y true, y pred):
   error = []
   y pred1=tf.math.argmax(y pred,axis=2)
   a, b = y pred1.get shape()
   for i in range(a):
      , , cnts = tf.unique with counts(y pred1[i,:])
      cnts diff = tf.abs(cnts-9)
      pred error = tf.reduce sum(cnts diff) / 144
      error.append(pred error)
   corrector = 1 + tf.square(tf.reduce mean(error))
   corrector = tf.cast(corrector, tf.float32)
   scce = tf.keras.losses.SparseCategoricalCrossentropy()
   result = scce(y true, y pred)
   return result * corrector
```

Reduce runtime - reduce model complexity

```
keras.models.Sequential([
Conv2D(filters=64, kernel_size=(3,3), activation="relu", padding='same', input_shape=(9,9,1)),
BatchNormalization(),
Conv2D(filters=64, kernel_size=(3,3), activation="relu", padding='same'),
BatchNormalization(),
Conv2D(filters=128, kernel_size=(1,1), activation="relu", padding='same'),

Flatten(),
Dense(81*9),
Reshape((-1, 9)),
Activation('softmax')
])
```

- Delete Layers
- 2. Reduce number of filters

Reduce runtime - pruning

- remove redundant neurons
- remove rarely activated neurons

Reduce runtime - Results

Model	Learntime	#Param (in Mio)	testtime	<u>iterative</u> complete	relative	testtime	oneshot complete	relative
64, 64, 64, 128	7214	7.6	257.72	1	1	6.32	0	0.70
64, 64, 128	1581	7.6	223.99	1	1	5.11	0	0.72
64, 64, 128 P	2529	7.6	252.42	1	1	6.08	0	0.72
64 ,64	1010	3.8	215.86	1	1	4.82	0	0.70
32, 32	575	1.9	211.36	0.96	0.64	5.10	0	0.67
16, 16	366	0.9	210.96	1	1	5.07	0	0.70
16, 16 P	467	7.6	220.55	1	1	5.35	0	0.70
8, 8	259	0.5	209.18	0	0.47	4.97	0	0.52
64	783	3.8	215.60	0	0.31	4.97	0	0.35

Reduce runtime - Result & followup measures

- model reduction without losing accuracy is possible
- BUT: reducing model complexity had a low effect on testtime

- use better Pruning methods
- time is lost in the interactive process due to array methods?
 - enhance by using faster array methods
- go for the oneshot approach
 - o make larger models and prune them
 - Is it possible to reach 100% with this approach?

Picture of first 6 filters

- black means low activation
- white high activation

Lessons learned

- Get a better understanding at reading error messages
- Good looking learning curve doesn't automatically mean good predictions
- Shaping is a pain!
- What is a tensor and what is a numpy array?
- Training takes time
- Batch size matters
- Al is not the solution to everything
- ChatGPT is better in generating a classical backtracking solution than solving sudokus itself

The End

Questions?