Properties of Transposes

If A and B are matrices (with sizes such that the matrix operations are defined) and c is a scalar, then the properties below are true.

1.
$$(A^T)^T = A$$
 Transpose of a transpose

2.
$$(A+B)^T = A^T + B^T$$
 Transpose of a sum

3.
$$(cA)^T = c(A^T)$$
 Transpose of a scalar multiple

4.
$$(AB)^T = B^T A^T$$
 Transpose of a product

Proof

The transpose operation interchanges rows and columns. To prove Property 1, let A be an $m \times n$ matrix. Observe that A^T has size $n \times m$ abd $(A^T)^T$ has size $m \times n$, the same as A. To show that $(A^T)^T = A$, you must show that the ij^{th} entries are the same. Let a_{ij} be the ij^{th} entry of A. Then a_{ij} is the ji^{th} entry of A^T , and the ij^{th} entry of $(A^T)^T$. This proves Property 1.