Article

Customer Churn Analysis

Problem Definition

In this article, we are going to analyze and predict customer churn prediction using Machine Learning, and exploratory data analysis techniques. with the help of features, we are going to predict the customer churn

About the Dataset

- customerID
- gender
- SeniorCitizen
- Partner
- Dependents
- tenure
- PhoneService
- MultipleLines
- ❖ InternetService
- OnlineSecurity
- OnlineBackup
- DeviceProtection
- TechSupport
- StreamingTV
- StreamingMovies
- Contract
- PaperlessBilling
- PaymentMethod
- MonthlyCharges
- ❖ TotalCharges
- Churn

1. Data Reading

Importing libraries

import pandas as pd
from pandas.plotting import scatter_matrix
import matplotlib.pyplot as plt
import pickle
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
import seaborn as sns
from sklearn.linear_model import LinearRegression
import statsmodels.formula.api as smf
import numpy as np

2. Exploratory Data Analysis and Data Cleaning

Using the shape method for checking the size of rows and columns in the dataset

```
data.shape (7043, 21)
```

We have 7043 rows and 21 column in our dataset

Checking some more information regarding the dataset

data.info()

```
10 OnlineBackup 7043 non-null object
11 DeviceProtection 7043 non-null object
12 TechSupport 7043 non-null object
13 StreamingTV 7043 non-null object
14 StreamingMovies 7043 non-null object
15 Contract 7043 non-null object
16 PaperlessBilling 7043 non-null object
17 PaymontMothod 7043 non-null object
17 PaymentMethod 7043 non-null object
18 MonthlyCharges 7043 non-null float64
19 TotalCharges 7043 non-null object
20 Churn 7043 non-null object
```

dtypes: float64(1), int64(2), object(18)

memory usage: 1.1+ MB

Checking if dataset contain any Null value

data.isnull().sum()

customerID	0
gender	0
SeniorCitizen	0
Partner	0
Dependents	0
tenure	0
PhoneService	0
MultipleLines	0
InternetService	0
OnlineSecurity	0
OnlineBackup	0
DeviceProtection	0
TechSupport	0
StreamingTV	0
StreamingMovies	0
Contract	0
PaperlessBilling	0
PaymentMethod	0
MonthlyCharges	0
TotalCharges	0
Churn	0
dtype: int64	

Using describe function to study data

data.describe()

	SeniorCitizen	tenure	MonthlyCharges
count	7043.000000	7043.000000	7043.000000
mean	0.162147	32.371149	64.761692

	SeniorCitizen	tenure	MonthlyCharges
std	0.368612	24.559481	30.090047
min	0.000000	0.000000	18.250000
25%	0.000000	9.000000	35.500000
50%	0.000000	29.000000	70.350000
75%	0.000000	55.000000	89.850000
max	1.000000	72.000000	118.750000

Dropping some irrelevant column

data.drop(columns ="customerID", axis =1, inplace = True)

Changing column into Numerical form

data.TotalCharges = pd.to_numeric(data.TotalCharges , errors ='coerce')

Checking changes

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
0	gender	7043 non-null	object
1	SeniorCitizen	7043 non-null	int64
2	Partner	7043 non-null	object
3	Dependents	7043 non-null	object
4	tenure	7043 non-null	int64
5	PhoneService	7043 non-null	object
6	MultipleLines	7043 non-null	object
7	InternetService	7043 non-null	object
8	OnlineSecurity	7043 non-null	object
9	OnlineBackup	7043 non-null	object
10	DeviceProtection	7043 non-null	object
11	TechSupport	7043 non-null	object
12	StreamingTV	7043 non-null	object
13	StreamingMovies	7043 non-null	object
14	Contract	7043 non-null	object
15	PaperlessBilling	7043 non-null	object
16	PaymentMethod	7043 non-null	object

```
17 MonthlyCharges 7043 non-null float64
18 TotalCharges 7032 non-null float64
19 Churn 7043 non-null object
dtypes: float64(2), int64(2), object(16)
memory usage: 1.1+ MB
```

Replacing data with numerical data by using .replace method

```
data.replace("No phone service","No", inplace =True)
data.replace("No internet service","No", inplace =True)
data.replace({'Partner':{'No':0,'Yes':1},'Dependents':{'No':0,'Yes':1},'PhoneService':{'No':0,'Yes':1},'Multi
pleLines':{'No':0,'Yes':1},'OnlineSecurity':{"No":0,"Yes":1},

'OnlineBackup':{'No':0,'Yes':1},'DeviceProtection':{'No':0,'Yes':1},'TechSupport':{'No':0,'Yes':1},'Streamin
```

'StreamingMovies':{'No':0,'Yes':1},'PaperlessBilling':{'No':0,'Yes':1},'Churn':{'No':0,'Yes':1},'gender':{'Male ':0,'Female':1}},inplace =True)

Using scatter matrix for better visualization

gTV':{'No':0,'Yes':1},

Making dummies of some columns and storing all data in a new variable data1 =pd.get_dummies(data=data, columns =['InternetService','Contract','PaymentMethod'])

Using line plot for understanding the relation between Monthly charges and Total charges

Importing libraries for model building

from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression

from sklearn.preprocessing import LabelEncoder

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score,confusion_matrix,roc_curve,roc_auc_score

from sklearn.metrics import classification_report

from sklearn.preprocessing import MinMaxScaler

from sklearn.ensemble import RandomForestClassifier

from sklearn.tree import DecisionTreeClassifier

Scaling the data using min max scaler

```
scale_colum =["tenure","MonthlyCharges","TotalCharges",]
scaler = MinMaxScaler()
data1[scale colum] =scaler.fit transform(data1[scale colum])
separating the features and target variable
x =data1.drop("Churn",axis =1)
y =data1["Churn"]
Using test train split for splitting the dataset
x_train,x_test,y_train,y_test= train_test_split(x,y, test_size=0.2 , random_state =5)
print(x train,y train)
Using Logistic regression for prediction
Using .fit method to train the model
Ir =LogisticRegression()
lr.fit(x_train,y_train)
y pred =lr.predict(x test)
y pred
array([0, 0, 0, ..., 1, 1, 0], dtype=int64)
Checking the accuracy and confusion matrix
print("Accuracy =",accuracy score(y test,y pred))
print("Confusion matrix =", confusion matrix(y test, y pred))
Accuracy = 0.7945984363894811
Confusion matrix = [[890 \ 109]]
 [180 228]]
Printing classification report
print(classification report(y test, y pred))
 print(classification_report(y_tes =
```

	precision	recall	f1-score	support
0	0.83	0.89	0.86	999
1	0.68	0.56	0.61	408
accuracy			0.79	1407
macro avg	0.75	0.72	0.74	1407
weighted avg	0.79	0.79	0.79	1407

Using ROC curve

```
# ROC Curve
fpr,tpr,threshold =roc_curve(y_test,y_pred)
print("Threshold
                            :",threshold)
print("True Psitive Rate :",tpr)
print("False Positive Rate :",fpr)
Threshold
                    : [2 1 0]
True Psitive Rate : [0. 0.55882353 1. False Positive Rate : [0. 0.10910911 1.
Plotting ROC curve
plt.plot(fpr,tpr,color="r" , label ="ROC")
plt.plot([0,1],[0,1], color ="b" ,linestyle ="--")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("Receiver Operating Characteristic (ROC) Curve")
plt.legend()
plt.show()
```


Checking AUC score

AUC curve

auc_score =roc_auc_score(y_test,y_pred)
print(auc_score)
0.7248572101513279

Fitting data into different model for better results

Using Decision Tree Classifier

dtc =DecisionTreeClassifier()
dtc.fit(x_train,y_train)

```
y_predi =dtc.predict(x_test)
y_predi
array([0, 0, 1, ..., 1, 1, 0], dtype=int64)
```

checking accuracy and confusion matrix

```
print("Accuracy =",accuracy_score(y_test,y_predi))
print("Confusion matrix =",confusion_matrix(y_test,y_predi))
Accuracy = 0.7043354655294953
Confusion matrix = [[784 215]
[201 207]]
```

print(classification_report(y_test,y_predi))

	precision	recall	f1-score	support
0 1	0.80 0.49	0.78 0.51	0.79 0.50	999 408
accuracy macro avg weighted avg	0.64 0.71	0.65 0.70	0.70 0.64 0.71	1407 1407 1407

using Random Forest Classifier

```
rf =RandomForestClassifier()
rf.fit(x train,y train)
```

y_predict =rf.predict(x_test) y_predict

```
array([0, 0, 0, ..., 1, 1], dtype=int64)
```

```
print("Accuracy =",accuracy_score(y_test,y_predict))
print("Confusion matrix =",confusion_matrix(y_test,y_predict))
```

```
Accuracy = 0.7718550106609808
Confusion matrix = [[891 108]
[213 195]]
```

<pre>print(classification_report(y_test,y_predict))</pre>						
		precision	recall	f1-score	support	
	0	0.81	0.89	0.85	999	
	1	0.64	0.48	0.55	408	
accurac	У			0.77	1407	
macro av	g	0.73	0.68	0.70	1407	
weighted av	g	0.76	0.77	0.76	1407	

conclusion

In this article, we saw how to apply Different libraries to choose the best machine learning algorithm for the task at hand.

We analyzed the dataset and then find the null values, information regarding the dataset removed all the Null values and then used some methods to clean the data. and build a machine learning model further.

We have tried different machine learning models