Chapter 7: One sample tests

(Ott & Longnecker Sections: 5.4-5.7)

Part 1

https://dzwang91.github.io/stat324/

Review of hypothesis testing

- **1** State the null hypothesis H_0 and the alternative hypothesis H_A .
- **2** Choose a significance level α . Typically 0.05, 0.01.
- **3** Choose a test statistic $T_n(X_1,...,X_n)$ and establish the rejection region.
- **4** Collect Data $X_1,, X_n$. Two approaches:
 - compute the realization of the test statistic. If the test statistic is in the rejection region, we reject H_0 , otherwise we do not reject H_0 .
 - compute p-value. If p-value is greater than the given significance level, we do not reject H_0 . Otherwise, we reject H_0 .

Review of hypothesis testing

- **1** State the null hypothesis H_0 and the alternative hypothesis H_A .
- **2** Choose a significance level α . Typically 0.05, 0.01.
- **3** Choose a test statistic $T_n(X_1,...,X_n)$ and establish the rejection region.
- **4** Collect Data $X_1, ..., X_n$. Two approaches:
 - compute the realization of the test statistic. If the test statistic is in the rejection region, we reject H_0 , otherwise we do not reject H_0 .
 - compute p-value. If p-value is greater than the given significance level, we do not reject H_0 . Otherwise, we reject H_0 .

How do we choose the test statistic, rejection region and p-value?

One-tailed test (left tail)

$$H_0: \theta = \theta_0 \text{ v.s. } H_A: \theta < \theta_0$$

• If the following is the distribution of the test statistic given H_0 is true, then which part is the rejection region?

$$H_0$$
: $\mu = 1.5$ v.s. H_A : $\mu < 1.5$

• Consider a specific case of H_A : $\mu = 1.4$.

Shade the probability that test statistic realizes to region A (or B or C) under $\mu=1.5$ and $\mu=1.4$.

$$H_0$$
: $\mu = 1.5$ v.s. H_A : $\mu < 1.5$

• Consider a specific case of H_A : $\mu = 1.4$.

Shade the probability that test statistic realizes to region A (or B or C) under $\mu=1.5$ and $\mu=1.4$.

• Region A is the reject region.

One-tailed test (left tail)

$$H_0: \theta = \theta_0 \text{ v.s. } H_A: \theta < \theta_0$$

• If the following is the distribution of the test statistic given H_0 is true, then region A is the reject region.

One-tailed test (right tail)

$$H_0: \theta = \theta_0 \text{ v.s. } H_A: \theta > \theta_0$$

• If the following is the distribution of the test statistic given H_0 is true, then which part of A, B, C is the rejection region?

One-tailed test (right tail)

$$H_0: \theta = \theta_0 \text{ v.s. } H_A: \theta > \theta_0$$

• If the following is the distribution of the test statistic given H_0 is true, then which part of A, B, C is the rejection region?

Two-tailed test

$$H_0: \theta = \theta_0 \text{ v.s. } H_A: \theta \neq \theta_0$$

Two-tailed test

$$H_0: \theta = \theta_0 \text{ v.s. } H_A: \theta \neq \theta_0$$

 \Leftrightarrow

$$H_0: \theta = \theta_0 \text{ v.s. } H_A: \theta < \theta_0 \text{ or } \theta > \theta_0$$

 Rejection region is in both of the left and right tails of the test statistic.

Two-tailed test

$$H_0: \theta = \theta_0 \text{ v.s. } H_{\Delta}: \theta \neq \theta_0$$

 \Leftrightarrow

$$H_0: \theta = \theta_0$$
 v.s. $H_A: \theta < \theta_0$ or $\theta > \theta_0$

 Rejection region is in both of the left and right tails of the test statistic.

 Conclusion: The rejection region corresponds to the alternative hypothesis.

Outline

$$H_0: \mu = \mu_0$$
 v.s. $H_A: \mu \neq \mu_0$

Population mean

$$H_0: \mu = \mu_0$$
 v.s. $H_A: \mu < \mu_0$

$$H_0: \mu = \mu_0$$
 v.s. $H_A: \mu > \mu_0$

parametric tests

Sample mean test

Z test

T test

Sample mean test: use sampling distribution of \bar{X}

Two-tailed sample mean test

$$H_0: \mu = \mu_0 \text{ v.s. } H_A: \mu \neq \mu_0$$

- We collect a sample of size n, $X_1, ..., X_n$ with known population variance σ^2 .
- Test statistic: sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.
- Under H_0 , the sampling distribution of \bar{X} is approximately normal distributed with mean μ_0 and standard deviation σ/\sqrt{n} . (Why?)

Two-tailed sample mean test continued

How do we decide the rejection region?

• Use the distribution of the test statistic under H_0 to determine a rejection region that limits the type I error at significance level α :

$$\alpha = \mathbb{P}(\text{reject } H_0 \mid H_0 \text{ is true})$$

• Rejection region: $\bar{X} \geq b$ or $\bar{X} \leq a$

Two-tailed sample mean test continued

How do we decide the rejection region?

• Use the distribution of the test statistic under H_0 to determine a rejection region that limits the type I error at significance level α :

$$\alpha = \mathbb{P}(\text{reject } H_0 \mid H_0 \text{ is true})$$

• Rejection region: $\bar{X} \geq b$ or $\bar{X} \leq a$

How do we decide a and b?

Two-tailed sample mean test continued

• Choice of *b*:

 \Rightarrow

$$rac{lpha}{2} = \mathbb{P}(ar{X} \ge b) = \mathbb{P}(rac{ar{X} - \mu_0}{\sigma/\sqrt{n}} \ge rac{b - \mu_0}{\sigma/\sqrt{n}})$$
 $rac{b - \mu_0}{\sigma/\sqrt{n}} = z_{lpha/2}$
 $b = \mu_0 + z_{lpha/2} rac{\sigma}{\sqrt{n}}$

• Choice of a:

$$\frac{\alpha}{2} = \mathbb{P}(\bar{X} \le a) = \mathbb{P}(\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \le \frac{a - \mu_0}{\sigma/\sqrt{n}})$$

$$\Rightarrow \frac{a - \mu_0}{\sigma/\sqrt{n}} = -z_{\alpha/2}$$

$$\Rightarrow a = \mu_0 - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

How do we compute p-value?

- p-value is the probability of a test statistic realizing to a value that is as or more extreme than the one actually observed given the null hypothesis is true.
- If we denote the realization of \bar{X} is c, then p-value formula:

$$\operatorname{\mathsf{p-value}} = \mathbb{P}(\bar{X} \geq |c|) + \mathbb{P}(\bar{X} \leq -|c|) = 2\mathbb{P}(\bar{X} \geq |c|)$$

One-tailed sample mean test (left tail)

$$H_0: \mu = \mu_0 \text{ v.s. } H_A: \mu < \mu_0$$

- Assume the population variance σ^2 is known.
- Rejection region: $\bar{X} \leq a$

One-tailed sample mean test (left tail)

Choice of a:

$$\alpha = \mathbb{P}(\bar{X} \le a) = \mathbb{P}(\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \le \frac{a - \mu_0}{\sigma/\sqrt{n}})$$

$$\Rightarrow \frac{a - \mu_0}{\sigma/\sqrt{n}} = -z_{\alpha}$$

$$\Rightarrow a = \mu_0 - z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

One-tailed sample mean test (left tail)

Choice of a:

$$\alpha = \mathbb{P}(\bar{X} \le a) = \mathbb{P}(\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \le \frac{a - \mu_0}{\sigma/\sqrt{n}})$$

$$\Rightarrow \frac{a - \mu_0}{\sigma/\sqrt{n}} = -z_{\alpha}$$

$$\Rightarrow a = \mu_0 - z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

• If we denote the realization of \bar{X} is c, then p-value formula:

$$\mathsf{p\text{-}value} = \mathbb{P}(\bar{X} \leq -|c|)$$

One-tailed sample mean test (right tail)

$$H_0: \mu = \mu_0 \text{ v.s. } H_A: \mu > \mu_0$$

- Assume the population variance σ^2 is known.
- Rejection region: $\bar{X} \geq b$

One-tailed sample mean test (right tail)

• Choice of b:

$$\alpha = \mathbb{P}(\bar{X} \ge b) = \mathbb{P}(\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \ge \frac{b - \mu_0}{\sigma/\sqrt{n}})$$

$$\Rightarrow \frac{b - \mu_0}{\sigma/\sqrt{n}} = z_{\alpha}$$

$$\Rightarrow b = \mu_0 + z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

One-tailed sample mean test (right tail)

• Choice of b:

$$\alpha = \mathbb{P}(\bar{X} \ge b) = \mathbb{P}(\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \ge \frac{b - \mu_0}{\sigma/\sqrt{n}})$$

$$\Rightarrow \frac{b - \mu_0}{\sigma/\sqrt{n}} = z_{\alpha}$$

$$\Rightarrow b = \mu_0 + z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

• If we denote the realization of \bar{X} is c, then p-value formula:

$$\mathsf{p\text{-}value} = \mathbb{P}(\bar{X} \geq |c|)$$

Z test: use sampling distribution of $\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}$

Z test

• Under $H_0: \mu = \mu_0$,

$$Z = rac{ar{X} - \mu_0}{\sigma/\sqrt{n}} pprox N(0,1)$$

Z test

• Under H_0 : $\mu = \mu_0$,

$$Z = rac{ar{X} - \mu_0}{\sigma / \sqrt{n}} pprox N(0, 1)$$

• When $H_A: \mu \neq \mu_0$, the rejection region is

$$Z > z_{\alpha/2}$$
 or $Z < -z_{\alpha/2}$.

• When H_A : $\mu < \mu_0$, the rejection region is

$$Z<-z_{\alpha}$$
.

• When H_A : $\mu > \mu_0$, the rejection region is

$$Z > z_{\alpha}$$
.

Z test

• Under $H_0: \mu = \mu_0$,

$$Z = rac{ar{X} - \mu_0}{\sigma / \sqrt{n}} pprox N(0, 1)$$

• When $H_A: \mu \neq \mu_0$, the rejection region is

$$Z > z_{\alpha/2}$$
 or $Z < -z_{\alpha/2}$.

• When H_A : $\mu < \mu_0$, the rejection region is

$$Z<-z_{\alpha}$$
.

• When $H_A: \mu > \mu_0$, the rejection region is

$$Z>z_{\alpha}$$
.

Conclusion: Z test is equivalent to sample mean test.

A batch of 100 resistors have an average of 102 Ohms. Assuming a population standard deviation of 8 Ohms, test whether the population mean is 100 Ohms at a significance level $\alpha=0.05$.

A batch of 100 resistors have an average of 102 Ohms. Assuming a population standard deviation of 8 Ohms, test whether the population mean is 100 Ohms at a significance level $\alpha=0.05$.

• Step 1: H_0 : $\mu = 100$, H_A : $\mu \neq 100$.

A batch of 100 resistors have an average of 102 Ohms. Assuming a population standard deviation of 8 Ohms, test whether the population mean is 100 Ohms at a significance level $\alpha=0.05$.

- Step 1: H_0 : $\mu = 100$, H_A : $\mu \neq 100$.
- Step 2: Choose $\alpha = 0.05$

A batch of 100 resistors have an average of 102 Ohms. Assuming a population standard deviation of 8 Ohms, test whether the population mean is 100 Ohms at a significance level $\alpha = 0.05$.

- Step 1: H_0 : $\mu = 100$, H_A : $\mu \neq 100$.
- Step 2: Choose $\alpha = 0.05$
- Step 3: reject H_0 if $\bar{X} < a$ or $\bar{X} > b$ with

$$a = \mu_0 - z_{0.025} \frac{\sigma}{\sqrt{100}} = 100 - 1.96 \frac{8}{10} = 98.432$$

$$b = \mu_0 + z_{0.025} \frac{\sigma}{\sqrt{100}} = 100 + 1.96 \frac{8}{10} = 101.568$$

A batch of 100 resistors have an average of 102 Ohms. Assuming a population standard deviation of 8 Ohms, test whether the population mean is 100 Ohms at a significance level $\alpha=0.05$.

- Step 1: H_0 : $\mu = 100$, H_A : $\mu \neq 100$.
- Step 2: Choose $\alpha = 0.05$
- Step 3: reject H_0 if $\bar{X} < a$ or $\bar{X} > b$ with

$$a = \mu_0 - z_{0.025} \frac{\sigma}{\sqrt{100}} = 100 - 1.96 \frac{8}{10} = 98.432$$

$$b = \mu_0 + z_{0.025} \frac{\sigma}{\sqrt{100}} = 100 + 1.96 \frac{8}{10} = 101.568$$

• Step 4: $\bar{X} = 102 > b$, therefore reject H_0 .

A quality control engineer finds that a sample of 100 light bulbs had an average life-time of 470 hours. Assuming a population standard deviation of $\sigma=25$ hours, test whether the population mean is 480 hours vs. the alternative hypothesis $\mu<$ 480 at a significance level of $\alpha=$ 0.05.

A quality control engineer finds that a sample of 100 light bulbs had an average life-time of 470 hours. Assuming a population standard deviation of $\sigma=25$ hours, test whether the population mean is 480 hours vs. the alternative hypothesis $\mu<$ 480 at a significance level of $\alpha=$ 0.05.

• Step 1: H_0 : $\mu = 480$, H_A : $\mu < 480$.

A quality control engineer finds that a sample of 100 light bulbs had an average life-time of 470 hours. Assuming a population standard deviation of $\sigma=25$ hours, test whether the population mean is 480 hours vs. the alternative hypothesis $\mu<$ 480 at a significance level of $\alpha=$ 0.05.

- Step 1: H_0 : $\mu = 480$, H_A : $\mu < 480$.
- Step 2: Choose $\alpha = 0.05$

A quality control engineer finds that a sample of 100 light bulbs had an average life-time of 470 hours. Assuming a population standard deviation of $\sigma=25$ hours, test whether the population mean is 480 hours vs. the alternative hypothesis $\mu<$ 480 at a significance level of $\alpha=$ 0.05.

- Step 1: H_0 : $\mu = 480$, H_A : $\mu < 480$.
- Step 2: Choose $\alpha = 0.05$
- Step 3: reject H_0 if

$$\bar{X} < \mu_0 - z_{0.05} \frac{\sigma}{\sqrt{n}} = 480 - 1.645 \frac{25}{10} = 475.9$$

A quality control engineer finds that a sample of 100 light bulbs had an average life-time of 470 hours. Assuming a population standard deviation of $\sigma=25$ hours, test whether the population mean is 480 hours vs. the alternative hypothesis $\mu<$ 480 at a significance level of $\alpha=$ 0.05.

- Step 1: H_0 : $\mu = 480$, H_A : $\mu < 480$.
- Step 2: Choose $\alpha = 0.05$
- Step 3: reject H_0 if

$$\bar{X} < \mu_0 - z_{0.05} \frac{\sigma}{\sqrt{n}} = 480 - 1.645 \frac{25}{10} = 475.9$$

• Step 4: $\bar{X} = 470 < 475.9$, therefore reject H_0 .

What if the population standard deviation is unknown?

T test

T test

- We collect a sample $X_1, ..., X_n$ from a normal distribution, but with unknown variance σ^2 .
- Test statistic: $T=rac{ar{X}-\mu_0}{s/\sqrt{n}}$, where s is the sample standard deviation
- Under $H_0: \mu = \mu_0$, the sampling distribution of $\frac{\bar{X} \mu_0}{s/\sqrt{n}}$ is a t-distribution with degrees of freedom n-1.

T test

- We collect a sample $X_1, ..., X_n$ from a normal distribution, but with unknown variance σ^2 .
- Test statistic: $T=rac{ar{X}-\mu_0}{s/\sqrt{n}}$, where s is the sample standard deviation
- Under $H_0: \mu = \mu_0$, the sampling distribution of $\frac{\bar{X} \mu_0}{s/\sqrt{n}}$ is a t-distribution with degrees of freedom n-1.
- Rejection region:
 - When $H_A: \mu \neq \mu_0$: $T < -t_{\alpha/2,n-1}$ or $T > t_{\alpha/2,n-1}$.
 - When $H_A: \mu < \mu_0$: $T < -t_{\alpha,n-1}$.
 - When $H_A: \mu > \mu_0$: $T > t_{\alpha, n-1}$.

Story

A paint shop uses an automatic device to apply paint to engine blocks. It is important that the amount applied is of a minimum thickness.

Primary Research Question

Its customer, a manufacturer wants to know the average thickness of paint in a warehouse. It is supposed to be 1.50mm.

 $\mu = 1.50$ mm?

Sampling

16 blocks are selected randomly and then measured from thousands of blocks in the warehouse.

n = 16

Data

1.29, 1.12, 0.88, 1.65, 1.48, 1.59, 1.04, 0.83, 1.76, 1.31, 0.88, 1.71, 1.83, 1.09, 1.62, 1.49 (in mm)

$$\bar{x} = 1.358$$

 $s = 0.3385$

• Normality?

• Normality?

• Step 1:

$$H_0$$
: $\mu = 1.5$, H_A : $\mu \neq 1.5$

- Step 2: Choose $\alpha = 0.05$
- Step 3: Rejection region is $T < -t_{15,0.025}$ or $T > t_{15,0.025}$. From t table, $t_{15,0.025} = 2.13$.
- Step 4: $t_{obs}=\frac{1.348-1.50}{\frac{0.3385}{\sqrt{16}}}=-1.796.$ t_{obs} does not fall in the rejection region, so we do not reject the null.

Hypothesis testing using p-value

• For a two-sided test,

$$\mathsf{p\text{-}value} = \mathbb{P}(\mathit{T}_{\mathit{n}-1} \geq |\mathit{t}_{\mathit{obs}}|) + \mathbb{P}(\mathit{T}_{\mathit{n}-1} \leq -|\mathit{t}_{\mathit{obs}}|)$$

• If we choose $\alpha=0.05$, then since 0.094>0.05, we do not reject the null. However, if $\alpha=0.1$, we reject the null.

What's the next?

We'll discuss how to calculate the sample size and power in hypothesis testing in the next lecture.