A-8. Tranzystor bipolarny – charakterystyki

wersja 04'2022

1. Zakres ćwiczenia

Celem ćwiczenia jest pomiar podstawowych statycznych charakterystyk stałoprądowych dla krzemowego tranzystora bipolarnego typu *n-p-n*, a następnie wyznaczenie małosygnałowych parametrów tranzystora w funkcji punktu pracy na podstawie uzyskanych charakterystyk.

2. Wstęp [1] [2] [3] [4]

Tranzystor bipolarny to trójelektrodowy półprzewodnikowy element elektroniczny posiadający zdolność sterowania sygnału wyjściowego poprzez niezależny sygnał wejściowy. Konstrukcyjnie tranzystor zbudowany jest z trzech warstw półprzewodnika o różnym typie przewodnictwa i wyróżnia się dwa rodzaje (rysunki poniżej):

- typu *n-p-n*,
- typu *p-n-p*.

Rysunek 1. Tranzystor typu *n-p-n*: jego obrazowa konstrukcja i symbol.

Rysunek 2. Tranzystor typu *p-n-p*: jego obrazowa konstrukcja i symbol.

Poszczególne warstwy zależnie od swojej funkcjonalności noszą nazwy:

- emiter (oznaczenie E) obszar silnego domieszkowania donorowego dla *n-p-n* lub akceptorowego dla *p-n-p* dostarczającego swoich większościowych nośników ładunku do obszaru środkowego,
- baza (oznaczenie B) środkowa warstwa dość cienka o słabym domieszkowaniu własnym, której zadaniem jest kontrolowane transportowanie wstrzykiwanych nośników z obszaru emitera,
- kolektor (oznaczenie C) warstwa zbiorcza.

Zależności prądowo-napięciowe występujących dwu złączy diodowych są nieliniowe i prezentują sobą rodziny charakterystyk opisane poniżej.

Charakterystyka wejściowa – opisuje zależność I-V złącza baza-emiter, tj. prąd bazy I_B w funkcji napięcia baza-emiter U_{BE} , przy ustalonym napięciu między kolektorem a emiterem U_{CE} (Rysunek 3). Charakterystyka ta opisana jest klasycznym równaniem Shockley'a złącza diodowego p-n:

$$I_B \approx I_S \left(e^{U_{BE}/\eta V_T} - 1 \right) \tag{1}$$

gdzie: I_S – prąd nasycenia złącza, zależny w szczególności od konstrukcji tranzystora i poziomu domieszkowania,

 $V_T = \frac{kT}{q_e}$, potencjał termiczny,

k -stała Boltzmanna,

T – temperatura złącza,

 q_e – ładunek elementarny elektronu,

 η - parametr idealności złącza przyjmujący wartość z zakresu od 1 do 2.

Prąd nasycenia złącza I_S silnie zależy od temperatury w następujący sposób:

$$I_S \sim T^{3/2} \exp\left(-E_g/kT\right) \tag{2}$$

gdzie: E_g – wartość przerwy energetycznej półprzewodnika z którego wykonany jest tranzystor.

Rysunek 3. Charakterystyka wejściowa tranzystora bipolarnego.

Charakterystyka przejściowa – odpowiada zależności prądu kolektora I_C w funkcji napięcia baza-emiter U_{BE} dla U_{CE} =const (Rysunek 4):

$$I_C \approx \beta I_S \left(e^{U_{BE}/\eta V_T} - 1 \right) \tag{3}$$

gdzie: β - stały współczynnik.

Rysunek 4. Charakterystyka przejściowa tranzystora bipolarnego.

Charakterystyka wyjściowa – reprezentuje zależność prądu kolektora I_C od napięcia panującego na wyprowadzeniach kolektor-emiter U_{CE} przy dostarczonym napięciu złącza baza-emiter U_{BE} i stałym prądzie bazy I_B (Rysunek 5). Charakterystyka ta podzielona jest na obszary pracy, które opisane są niezależnymi formułami matematycznymi prostego modelu Ebersa-Molla [5]. W normalnym zakresie aktywnym zależność od napięcia U_{CE} przyjmuje postać:

$$I_C \approx \beta I_S \left(e^{U_{BE}/\eta V_T} - 1 \right) \left[1 + \frac{U_{CE}}{U_A} \right] \tag{4}$$

gdzie: U_A – napięcie Early'ego wskazujące dodatkową zależność liniową prądu I_C od napięcia U_{CE} ze współczynnikiem nachylenia $1/U_A$.

Rysunek 5. Charakterystyka wyjściowa tranzystora bipolarnego.

Charakterystyka zwrotna – przedstawia zależność prądu kolektora I_C od prądu bazy I_B przy ustalonym napięciu U_{CE} (Rysunek 6). Zależność ta w części obszaru pracy tranzystora jest liniowa, a współczynnik nachylenia tej zależności przyjmuje nazwę współczynnika wzmocnienia prądowego i jest oznaczane symbolem β lub h_{FE} .

Rysunek 6. Charakterystyka zwrotna tranzystora bipolarnego.

Przykładowe rzeczywiste charakterystyki tranzystora bipolarnego o symbolu BC547 umieszczono w dodatku do tej instrukcji, które zostały zaczerpnięte z noty katalogowej producenta tranzystora.

Z zaprezentowanymi charakterystykami związane są parametry małosygnałowe tranzystora, które reprezentują współczynnik nachylenia stycznej do danej krzywej w określonym punkcie zmiennej niezależnej wykresu. Wyróżniamy następujące parametry małosygnałowe dla tranzystora bipolarnego:

•
$$r_{be}$$
 – rezystancja dynamiczna złącza baza-emiter, definiowana jako:
 $r_{be} = \frac{dU_{BE}}{dI_B} \approx \frac{\beta}{g_m}$ (5)

•
$$r_{ce}$$
 – rezystancja dynamiczna charakterystyki wyjściowej, definiowana jako:
 $r_{ce} = \frac{dU_{CE}}{dI_C} \approx \frac{I_C}{U_A}$ (6)

 g_m – transkonduktancja, która odzwierciedla nachylenie charakterystyki przejściowej, definiowana jako:

$$g_m = \frac{dI_C}{dU_{RE}} \approx \frac{I_C}{V_T} \tag{7}$$

•
$$\beta$$
- współczynnik wzmocnienia prądowego:

$$\beta = \frac{dI_C}{dI_B}$$
(8)

Wykorzystując przytoczone formuły matematyczne po zróżniczkowaniu zgodnie z powyższymi definicjami uzyskuje się przybliżone wzory na parametry małosygnałowe w zakresie aktywnym – normalnym, które zostały podane powyżej.

3. Program ćwiczenia

Program ćwiczenia i sposób opracowania sprawozdań zgodnie z wytycznymi prowadzącego.

4. Dodatek

Dane katalogowe tranzystora BC547 (*n-p-n*) produkcji Fairchild Semi. [6]:

BC546/547/548/549/550

Switching and Applications

- High Voltage: BC548, V_{CEO}=85V
 Low Noise: BC549, BC550
- · Complement to BC556 ... BC560

NPN Epitaxial Silicon Transistor

Absolute Maximum Ratings Ta=25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CBO}	Collector-Base Voltage : BC546	80	V
	: BC547/550	50	V
	: BC548/549	30	V
V _{CEO}	Collector-Emitter Voltage : BC546	65	V
	: BC547/550	45	V
	: BC548/549	30	V
V _{EBO}	Emitter-Base Voltage : BC546/547	6	V
	: BC548/549/550	5	V
l _C	Collector Current (DC)	100	mA
Pc	Collector Power Dissipation	500	mW
TJ	Junction Temperature	150	°C
T _{STG}	Storage Temperature	-65 ~ 150	°C

Electrical Characteristics Ta=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
I _{CBO}	Collector Cut-off Current	V _{CB} =30V, I _E =0			15	nA
h _{FE}	DC Current Gain	V _{CE} =5V, I _C =2mA	110		800	
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C =10mA, I _B =0.5mA I _C =100mA, I _B =5mA		90 200	250 600	mV mV
V _{BE} (sat)	Base-Emitter Saturation Voltage	I _C =10mA, I _B =0.5mA I _C =100mA, I _B =5mA		700 900		mV mV
V _{BE} (on)	Base-Emitter On Voltage	V _{CE} =5V, I _C =2mA V _{CE} =5V, I _C =10mA	580	660	700 720	mV mV
f _T	Current Gain Bandwidth Product	V _{CE} =5V, I _C =10mA, f=100MHz		300		MHz
Cob	Output Capacitance	V _{CB} =10V, I _E =0, f=1MHz		3.5	6	pF
CIP	Input Capacitance	V _{EB} =0.5V, I _C =0, f=1MHz		9		pF
NF	Noise Figure : BC546/547/548	V _{CE} =5V, I _C =200μA		2	10	dB
	: BC549/550	f=1KHz, R _G =2KΩ		1.2	4	dB
	: BC549	V _{CE} =5V, I _C =200μA		1.4	4	dB
	: BC550	R _G =2KΩ, f=30~15000MHz		1.4	3	dB

her Classification

TE .								
Classification	Α	В	С					
h _{FE}	110 ~ 220	200 ~ 450	420 ~ 800					

©2002 Fairchild Semiconductor Corporation

©2002 Fairchild Semiconductor Corporation

Rev. A2, August 2002

Bibliografia

- [1] S. Kuta, Układy Elektroniczne, cz. 1, Kraków: Wydawnictwa AGH, 1995.
- [2] J. Koprowski, Podstawowe przyrządy półprzewodnikowe, Kraków: Wydawnictwa AGH, 2009.
- [3] W. H. Paul Horowitz, Sztuka elektroniki, Tom 1-2, Wydawnictwa Komunikacji i Łączności.
- [4] B. Razavi, Fundamentals of Microelectronics, John Wiley and Sons, 2008.
- [5] J. M. R.S. Ebers, "Large-Signal Behavior of Function Transistors," *Proc. IRE vol. 42*, pp. 1761 1772, Dec. 1954.
- [6] "AllDatasheet," [Online]. Available: https://www.alldatasheet.com/datasheet-pdf/pdf/50729/FAIRCHILD/BC546.html.