

#### UNIVERSIDAD SIMON BOLIVAR Departamento de Matemáticas Puras y Aplicadas.

## MA1116 abril-julio de 2009

### Ejercicios sugeridos para:

## los temas de las clases del 19 y 21 de mayo de 2009.

#### Temas:

Vectores en el plano y en el espacio. Producto escalar. Proyecciones. Producto vectorial. Rectas y planos en el espacio.

Secciones 3.1, 3.2, 3.3, 3.4, 3.5 del texto.

#### Observación importante:

es muy importante que Usted resuelva también muchos ejercicios del texto.

- **E1.-** Dados los puntos A(1,0), B(3,1), C(4, 3), D(2, 2), averigüe si los siguientes vectores del plano son todos diferentes o no :
- 1a)  $\mathbf{AB}$ , 1b)  $\mathbf{CD}$ , 1c)  $\mathbf{AC}$ , 1d)  $\mathbf{DC}$ , 1e)  $\mathbf{u} = \mathbf{AB} + \mathbf{BC} + \mathbf{CD} + \mathbf{DA}$ , 1f)  $\mathbf{v} = \mathbf{AB} + \mathbf{CD}$ , 1g)  $\mathbf{DD}$ .
- E2.- Con los mismos datos del ejercicio anterior, halle las coordenadas del vector 2AC-BD.
- **E3.-** Con los mismos datos del ejercicio anterior, halle, si posible, un valor de la constante k tal que el vector **AB**+k.**BC** sea :
- **3a**) paralelo al vector  $\mathbf{w} = (1, 7)$ ;
- **3b**) perpendicular al vector  $\mathbf{w} + \mathbf{AC}$ .
- **E4.-** Dados dos vectores  $\mathbf{u} = (u_1, u_2)$ ,  $\mathbf{v} = (v_1, v_2)$ , escriba las dos fórmulas (algebráica y geométrica) que expresan el producto escalar  $\mathbf{u} \cdot \mathbf{v}$ .
- **E5.-** Usando las fórmulas del producto escalar para hallar el coseno de los tres ángulos internos del triángulo de vértices A(-46, 45), B(1, 1), C(4, 5), averigüe si el triángulo dado es o no es rectángulo.
- **E6.-** En el plano cartesiano (Oxy) halle los dos vectores unitarios (es decir : de módulo =1) perpendiculares a la recta de ecuación 4x-3y+7=0.
- **E7.-** En el espacio tridimensional (Oxyz) halle todos los vectores unitarios perpendiculares al vector  $\mathbf{u} = (3, 4, 12)$ ; Hay sólo dos?
- **E8.-** Diga si es cierto o falso que la expresión  $\mathbf{u}(t) = t(1, 2, 5) = (t, 2t, 5t)$  representa todos los vectores del espacio tridimensional que son paralelos al vector  $\mathbf{v} = (1, 2, 5)$ .
- **E9.-** Usando la fórmula para la distancia de dos puntos en el espacio, escriba la ecuación de la esfera que tiene centro C(1, 0, -2) y radio r=5.



### UNIVERSIDAD SIMON BOLIVAR Departamento de Matemáticas Puras y Aplicadas.

## MA1116 abril-julio de 2009

- E10. Halle el vector proy<sub> $\mathbf{u}$ </sub>( $\mathbf{v}$ ) proyección de  $\mathbf{v}$  sobre  $\mathbf{u}$ , siendo  $\mathbf{u}$ =(1, 2, 2),  $\mathbf{v}$ =(-5,0,3);
- verifique que el vector  $\mathbf{w} = \mathbf{v}$ -proy $\mathbf{u}(\mathbf{v})$  es ortogonal (perpendicular) al vector  $\mathbf{u}$ . **E11.-** Dado (en el espacio) un paralelogramo de vértices A,B,C,D (con  $\mathbf{AB} = \mathbf{DC}$ ), demuestre (usando vectores y sus operaciones) que las dos diagonales del paralelogramo se bisecan en sus puntos medios.
- **E12.-** Halle la distancia del punto C(2, 2, 4) a la recta que pasa por los dos puntos A(1, 2, 3), B(3, 3, 5).[sugerencia: observe que si C' es un punto de la recta tal que el segmento CC' sea perpendicular a la recta, entonces el vector AC' es la proyección del vector AC sobre el vector AB].
- **E13.-** Diga, justificando, si los tres puntos A(1, 7, 0), B(5, -5, 20), C(-2, 16, -15) pertenecen o no a una misma recta.
- **E14.-** Sea (Oxyz) un sistema de coordenadas cartesianas en el espacio, con los ejes orientados de tal forma que un observador, con los piés en el origen y la cabeza en el semieje z positivo, vea <u>antihoraria</u> la rotación del eje x, para sobreponerse al eje, girando por el ángulo menor.
- Dados dos vectores  $\mathbf{u} = (u_1, u_2, u_3)$ ,  $\mathbf{v} = (v_1, v_2, v_3)$ , escriba la definición del producto vectorial  $\mathbf{u} \times \mathbf{v}$  y la fórmula algebráica que lo expresa.
- **E15.-** Use el producto vectorial, para obtener un vector,  $\mathbf{u}$ , perpendicular al plano que contiene los tres puntos A(1, 0, 3), B(2, -5, 0), C(1, 1, 7).
- **E16.-** Con los mismo datos del ejercicio anterior, halle la distancia del punto D(2, 3, 4) al plano que pasa por los puntos A, B, C [sugerencia: proyecte el vector AD sobre el vector  $\mathbf{u}$ ].
- **E17.-** Dado, en el espacio (Oxyz) un paralelogramo de vértices A, B, C, D (con **AB=DC**), exprese el área del paralelogramo ABCD y el área del triángulo ABD por medio del producto vectorial **AB**x**AD**.
- E18.- a)Diga si es cierto o falso que el valor absoluto del producto "mixto" (ABxAC).AD representa el volumen de un paralelepípedo uno de cuyos vértices es A y cuyas tres aristas, relativas al vértice A son los segmentos AB, AC, AD.
  b)¿ Qué relación tiene ese número con el volumen de la piramide de vértices A, B, C, D?
- **E19.-** Use el resultado del ejercicio anterior para verificar si los cuatro puntos A(1, 2, 3), B(1, -2, 0), C(2, 1, 5), D(1, 2, 1) pertenecen o no a un mismo plano.
- **E20.-** Averigüe si los tres vectores **AB, BC, CD** (siendo A, B, C, D los mismos puntos que en el ejercicio anterior) son paralelos a un mismo plano o no.
- **E21.-** Averigüe si las dos rectas que pasan, respectivamente, por los puntos A, B y C, D (los mismos de los dos ejercicios anteriores), pertenecen a un mismo plano o no.



#### UNIVERSIDAD SIMON BOLIVAR Departamento de Matemáticas

### MA1116 abril-julio de 2009

- Departamento de Matemáticas Puras y Aplicadas.
- **E22.-** Halle el coseno del ángulo agudo que forman las dos rectas del ejercicio anterior.
- **E23.-** Dado el vector  $\mathbf{w} = (1, 1, 1)$ , halle dos vectores unitarios  $\mathbf{u}$ ,  $\mathbf{v}$ , tales que los tres vectores  $\mathbf{u}$ ,  $\mathbf{v}$ ,  $\mathbf{w}$  sean dos a dos perpendiculares. [nota : hay infinitas posibles soluciones]. [sugerencia : halle primero dos vectores,  $\mathbf{u}$ ,  $\mathbf{v}$ , tales que  $\mathbf{u}$ ,  $\mathbf{v}$ ,  $\mathbf{w}$  sean dos a dos perpendiculares y luego divida a los dos, cada uno por su módulo].
- **E24.-** Escriba una ecuación paramétrica vectorial, ecuaciones paramétricas escalares y ecuaciones simétricas, para cada una de las siguientes rectas :
- **24a**) Recta, r, que para por A(1, 2, 3) y es paralela al vector  $\mathbf{u}(-1, 5, 2)$ ;
- **24b**) recta, s, que pasa por los dos puntos (A(1, 2, 3), B(, 3, 5, 9);
- **24c**) recta, m, intersección de los dos planos de ecuaciones x+y-z=1, x+3y-4z=0.
- **E25.-** Halle una ecuación para cada uno de los siguientes planos :
- **25a**) Plano.  $\alpha$ , que pasa por el punto A(1, 3, 0) y es perpendicular a la recta que pasa por los puntos P(2, 2, 2), Q(3, 4, 7);
- **25b**) plano.  $\beta$ , que pasa por los tres puntos A(1, 1, 0), B(2, -1, 4), C(2, 3, 1);
- **25c**) plano,  $\gamma$ , que pasa por los dos puntos A(1, 1, 0), B(2, -1, 4) y es paralelo a la recta de ecuaciones x-1= 2y+4 = 3-z;
- **25d**) plano,  $\delta$ , que pasa por el punto A(1, 1, 0) y además es perpendicular al plano de ecuación x+4y-3z=17 y paralelo a la recta de ecuaciones x = y = z.
- **E26.-** Halle el coseno del ángulo agudo que forma la recta representada por x = 2y = 3z con la recta intersección de los dos planos de ecuaciones x+z=0, x 2z + 3y = 6.
- **E27.-** Halle el seno del ángulo agudo que forman el plano de ecuación x+y+2z=4 con la recta que pasa por los puntos A(1, 1, 1), B(2, 3, -5).
- **E28.-** Halle la distancia del punto C(2, 2, 4) a la recta que pasa por los dos puntos A(1, 2, 3), B(3, 3, 5).
- **E29.-** Halle la distancia entre las dos rectas representadas por :  $\begin{cases} x+y-3z=4 \\ x-y+7z=0 \end{cases}$ , x=y=z. [sugerencia : si A es un punto de la primera recta, B es un punto de la segunda recta, **u** es un vector perpendicular a ámbas rectas, entonces la distancia pedida es el módulo del vector proy**u** AB ].
- **E30.-** Dado el tetraedro de vértices O(0, 0, 0), A(1, 2,-3), B(1, 1, 0), C(3,-2, 5), halle la proyección ortogonal del vértice A sobre el triángulo OBC [ es decir : el punto de intersección del plano por O, B, C con la recta que pasa por A y es perpendicular a tal plano].



#### MA1116 abril-julio de 2009

Departamento de Matemáticas Puras y Aplicadas.

## respuestas.

**SE1**) 
$$AB = (2, 1) = DC$$
;  $CD = (-2, -1)$ ;  $AC = (3, 3)$ ;  $u = v = DD = (0, 0)$ .

**SE2**) 
$$2AC - BD = 2(3, 3) - (-1, 1) = (7, 5)$$
.

SE3a) AB + k. BC = 
$$(2+k, 1+2k)$$
 =  $(?) \lambda(1, 7) \Rightarrow$  
$$\begin{cases} 2+k = \lambda \\ 1+2k = 7\lambda \end{cases} \Rightarrow \begin{cases} \lambda - k = 2 \\ 7 \lambda - 2k = 1 \end{cases} \Rightarrow \begin{bmatrix} 1 & -1 \\ 7 & -2 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{vmatrix} -3/5 \\ -13/5 \end{bmatrix} \Rightarrow k = \frac{-13}{5};$$

**3b)** 
$$(1,7)+\mathbf{AC} = (4,10)$$
;  $(\mathbf{AB} + \mathbf{k}. \mathbf{BC}).(4,10) = 0 \Rightarrow (2+\mathbf{k}).4+(1+2\mathbf{k}).10 = 0 \Rightarrow 3+4\mathbf{k} = 0 \Rightarrow \mathbf{k} = \frac{-3}{4}$ .

**SE4)**  $\mathbf{u}.\mathbf{v} = \mathbf{u}_1\mathbf{v}_1 + \mathbf{u}_2\mathbf{v}_2$  ;

 $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| \cdot |\mathbf{v}| \cdot \cos(\varphi)$  siendo  $\varphi$  el ángulo que forman los dos vectores.

**SE5**) 
$$AB = (47, -44)$$
;  $BC = (3, 4)$ ;  $CA = (-50, 40)$ .

El coseno del ángulo que forman dos vectores,  $\mathbf{u}$ ,  $\mathbf{v}$  se obtiene despejando  $\cos(\varphi)$  de la igualdad :  $\mathbf{u}_1\mathbf{v}_1 + \mathbf{u}_2\mathbf{v}_2 = |\mathbf{u}| \cdot |\mathbf{v}| \cdot \cos(\varphi)$ ;

para que el triángulo sea rectángulo, dos de los lados del triángulo deben ser perpendiculares y por lo tanto tener coseno del ángulo que forman =0.

Como ninguno de los tres productos escalares AB.BC, BC.CA, CA.AB es nulo, resulta que el triángulo dado <u>no es</u> rectángulo.

Por ejemplo : **AB.BC**= (47, -44). $(3, 4) = 141-160 = -19 \neq 0$  etc.

**SE6**) Hallemos dos cualesquiera puntos (distintos), A(-1, 1), B(2, 5) de la recta dada; el vector

 $\mathbf{AB} = (3, 4)$  es un vector paralelo a la recta. Un vector,  $\mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2)$  será perpendicular a la recta si y sólo si  $\mathbf{u} \cdot (3, 4) = 0$ , luego  $3\mathbf{u}_1 + 4\mathbf{u}_2 = 0$ , de manera que todos los vectores perpendiculares a la recta se obtienen con la fórmula :  $(\mathbf{u}_1, \mathbf{u}_2) = (4\mathbf{t}, -3\mathbf{t})$ ;

para que uno de tales vectores tenga módulo =1, deberá ser  $(4t)^2+(-3t)^2=1 \Rightarrow t=\pm\frac{1}{5}$ .

Entonces los dos vectores pedidos son :  $(\frac{4}{5}, \frac{-3}{5})$  y su opuesto.

**SE7**) Un vector,  $\mathbf{u} = (u_1, u_2, u_3)$  es perpendicular al vector (3, 4, 12) si y sólo si  $(u_1, u_2, u_3).(3, 4, 12) = 0$ , por lo tanto, resolviendo el sistema homogéneo (de una sola

ecuación...): [3 4 12 | 0] tenemos : 
$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \\ 0 \end{bmatrix} + b \begin{bmatrix} 4 \\ 0 \\ -1 \end{bmatrix}$$
; entonces todos los vectores

unitarios perpendiculares al vector dado, se obtienen con la fórmula:



#### MA1116 abril-julio de 2009

Departamento de Matemáticas Puras y Aplicadas.

 $\frac{(4a+4b, -3a, -b)}{\sqrt{(4a+4b)^2+9a^2+b^2}}$ , con valores arbitrarios (no ámbos nulos) de las constantes a, b, de manera que hay más que dos vectores como los que se piden (hay un número infinito de ellos).

**SE8**) Es cierto : por definición, el vector  $\lambda AB$  es un vector paralelo al vector AB; inversamente, si el vector PQ es paralelo al vector (no nulo) AB y si  $t = \frac{PQ}{AB} = \text{cociente de las}$  longitudes de los segmentos PQ, AB, entonces, si los segmentos orientados AB, PQ tienen el mismo sentido, se tiene PQ= t.AB, mientras que si tienen sentido opuesto, se tiene : PQ= -t.AB.

**SE9**) 
$$(x-1)^2+y^2+(z+2)^2=25$$
.

$$\begin{split} \textbf{SE10}) & \operatorname{proy}_{\boldsymbol{u}}(\boldsymbol{v}) = \frac{(\boldsymbol{v}.\boldsymbol{u})\boldsymbol{u}}{|\boldsymbol{u}|^2} = \frac{(-5,0,3).(1,2,2)}{9}(1,2,2) = (\frac{1}{9},\frac{2}{9},\frac{2}{9}) \; ; \\ \boldsymbol{w} = \boldsymbol{v} - \operatorname{proy}_{\boldsymbol{u}}(\boldsymbol{v}) = (-5,0,3) - (\frac{1}{9},\frac{2}{9},\frac{2}{9}) = (\frac{-46}{9},\frac{-2}{9},\frac{25}{9}) \; ; \\ \boldsymbol{w}.\boldsymbol{u} = (\frac{-46}{9},\frac{-2}{9},\frac{25}{9})(1,2,2) = (-46-4+50) \, / \, 9 = 0. \end{split}$$

**SE11**) Indiquemos con M el punto medio de la diagonal AC y con N el punto medio de la diagonal BD. Verificaremos que M=N constatando que los dos vectores **AM**, **AN** son iguales.

$$\mathbf{AM} = \frac{1}{2}\mathbf{AC} = \frac{1}{2}(\mathbf{AB} + \mathbf{BC}); \mathbf{AN} = \mathbf{AB} + \frac{1}{2}\mathbf{BD} = \mathbf{AB} + \frac{1}{2}(\mathbf{BC} + \mathbf{CD}) =$$

$$= \frac{1}{2}(2\mathbf{AB} + \mathbf{BC} + \mathbf{CD}) = \frac{1}{2}(\mathbf{AB} + (\mathbf{AB} + \mathbf{BC} + \mathbf{CD})) = \frac{1}{2}(\mathbf{AB} + \mathbf{AD}) \text{ y como los dos vectores}$$

$$\mathbf{BC}, \mathbf{AD} \text{ estan representados por lados opuestos de un paralelogramo, orientados en forma concorde, se tiene  $\mathbf{BC} = \mathbf{AD}$  por lo cual  $\mathbf{AN} = \mathbf{AM}$ .$$

**SE12**) 
$$AB = (2, 1, 2)$$
,  $AC = (1, 0, 1)$ . Siguiendo la sugerencia :  $proy_{AB}(AC) = \frac{AC.AB}{(AB)^2} AB = \frac{4}{9}(2, 1, 2)$ ;  $C'C = AC - proy_{AB}(AC) = \frac{(1, -4, 1)}{9}$ ; Distancia del pto. C a la recta por A,  $B = |CC'| = \frac{\sqrt{2}}{3}$ .

**SE13**)  $\mathbf{AB} = (4,-12,20)$ ;  $\mathbf{AC} = (-3,9,-15)$ ; como  $\mathbf{AC} = \frac{-3}{4}\mathbf{AB}$ , los tres puntos efectivamente pertenecen a la misma recta.



#### MA1116 abril-julio de 2009

Departamento de Matemáticas Puras y Aplicadas.

**SE14**) el producto vectorial,  $\mathbf{w} = \mathbf{u} \times \mathbf{v}$  es un vector i) cuyo módulo es  $|\mathbf{w}| = |\mathbf{u}| \cdot |\mathbf{v}| \cdot |\operatorname{sen}(\varphi)|$ ;

ii) cuya dirección es perpendicular a las direcciones de **u**, **v**;

iii) cuyo sentido es tal que, si OA, OB, OC son segmentos orientados tales que  $\mathbf{u} = \mathbf{OA}, \mathbf{v} = \mathbf{OB}, \mathbf{w} = \mathbf{OC}$ , entonces un observador con los piés en O y la cabeza en C, ve antihoraria la rotación que lleva OA a sobreponerse a OB, girando por el ángulo menor.

La fórmula algebráica que representa al producto vectorial  $\mathbf{u} \times \mathbf{v}$ , es  $\mathbf{w} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix}$ .

**SE15)** 
$$\mathbf{AB} = (1,-5,-3)$$
,  $\mathbf{AC} = (0, 1, 4)$ ,  $\mathbf{u} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -5 & -3 \\ 0 & 1 & 4 \end{bmatrix} = (-17, -4, 1)$ .

**SE16)** AD = (1, 3, 1); la distancia pedida es igual al módulo del vector :

$$\text{proy}_{\mathbf{u}}(\mathbf{A}\mathbf{D}) = \frac{(1, 3, 1).(-17, -4, 1)}{|\mathbf{u}|^2} \ \mathbf{u} = \frac{-28}{|\mathbf{u}|^2} \ \mathbf{u} \ ; \ |\text{proy}_{\mathbf{u}}(\mathbf{A}\mathbf{D})| = \frac{28}{|\mathbf{u}|} = \frac{28}{\sqrt{306}} = \frac{14\sqrt{34}}{51} \ .$$

**SE17**) Area del paralelogramo =  $|\mathbf{AB} \times \mathbf{AD}|$ ; área del triángulo =  $\frac{1}{2} |\mathbf{AB} \times \mathbf{AD}|$ .

SE18a) es cierto;

**18b**) volumen de la piramide de vértices A, B, C, D =  $\frac{1}{6} | (\mathbf{AB} \times \mathbf{AC}) \cdot \mathbf{AD} |$ .

**Observación importante**: se puede pensar de obtener el producto escalar de dos vectores,  $\mathbf{m} = (m_1, m_2, m_3) = m_1 \mathbf{i} + m_2 \mathbf{j} + m_3 \mathbf{k}$ ,  $\mathbf{w} = (w_1, w_2, w_3) = w_1 \mathbf{i} + w_2 \mathbf{j} + w_3 \mathbf{k}$ , reemplazando los símbolos i, j, k en la fórmula del primer factor, respectivamente, por las componentes del segundo factor ( $m_1i+m_2j+m_3k$ ).( $w_1i+w_2j+w_3k$ ) =  $m_1w_1+m_2w_2+m_3w_3$ ; actuando en esta forma, en el caso del producto escalar de los dos vectores :

$$\begin{array}{c|c} \textbf{u}_{x}\textbf{v} = \begin{bmatrix} \textbf{i} & \textbf{j} & \textbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}, \textbf{m} = (m_1, m_2, m_3) \text{, se obtione que el "producto mixto" } (\textbf{u}_{x}\textbf{v}).\textbf{m} \text{ se} \\ \\ \text{puede expresar reemplazando en el determinante} \\ \text{m}_{1} & \text{m}_{2} & \text{u}_{3} \\ \\ \text{m}_{1} & \text{m}_{2} & \text{m}_{3} \\ \\ \text{v}_{1} & \text{v}_{2} & \text{v}_{3} \\ \\ \text{v}_{1} & \text{v}_{2} & \text{v}_{3} \\ \\ \text{v}_{1} & \text{v}_{2} & \text{v}_{3} \\ \\ \text{.} \\ \end{array} \right. , \text{los símbolos } \textbf{i}, \textbf{j}, \textbf{k} \text{, por } \\ \\ \text{m}_{1} & \text{m}_{2} & \text{m}_{3} \\ \\ \text{v}_{1} & \text{v}_{2} & \text{v}_{3} \\ \\ \text{.} \\ \\ \text{.} \\ \end{array} \right.$$

$$m_1, m_2, m_3$$
, y se obtiene : (**u**x**v**).**m**= 
$$\begin{bmatrix} m_1 & m_2 & m_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$$



# UNIVERSIDAD SIMON BOLIVAR Departamento de Matemáticas

#### MA1116 abril-julio de 2009

Departamento de Matemáticas Puras y Aplicadas.

**SE19**) **AB**= 
$$(0,-4,-3)$$
, **AC** =  $(1,-1,2)$ . **AD** =  $(0,0,-2)$ ; 
$$\begin{bmatrix} 0 & -4 & -3 \\ 1 & -1 & 2 \\ 0 & 0 & -2 \end{bmatrix} = -8 \neq 0$$
;

esto significa que el tetraedro (=piramide de base triangular) de vértices A, B, C, D tiene volumen no nulo (8/6 unidades cúbicas de medida) por lo cual los cuatro puntos <u>no pueden</u> pertenecer a un mismo plano.

**SE20**) Los tres vectores que se mencionan serían paralelos a un mismo plano si y sólo si los cuatro puntos A, B, C, D perteneciesen a un mismo plano, así que, por el resultado del ejercicio anterior, resulta que los tres vectores no son paralelos a un mismo plano.

**SE21**) No pertenecen a un mismo plano, ya que a un tal plano pertenecerían los cuatro puntos A, B, C, D [ver ejercicio 19].

**SE22**) **AB**= (0,-4,-3), **CD** = (-1, 1,-4); **AB.CD**= AB.CD.cos(
$$\varphi$$
) = (0,-4,-3).(-1, 1,-4)= 8;   
AB =  $|\mathbf{AB}|$  = 5, CD=  $|\mathbf{CD}|$  =  $\sqrt{18}$ ; cos( $\varphi$ ) =  $\frac{8}{AB.CD}$  =  $\frac{8}{15\sqrt{2}}$  =  $\frac{4\sqrt{2}}{15}$ .

El ángulo que forman dos rectas en el espacio, se define generalmente como el ángulo que forman dos rectas paralelas a las dadas , que pasen por un mismo punto (y se hallan por lo tanto en un mismo plano); en el caso genérico, se obtiene un ángulo agudo, $\phi$ , y su complemento obtuso  $\pi$ - $\phi$  (suponiendo que los dos rectas no sean perpendiculares). Como el número que resultó de los cálculos de este ejercicio es positivo, se trata efectivamente del coseno del ángulo agudo; si hubiese resultado negativo, hubiéramos tenido que considerar su opuesto.

**SE23**) Sean  $\mathbf{u} = (u_1, u_2, u_3)$ ,  $\mathbf{v} = (v_1, v_2, v_3)$ ; para que  $\mathbf{u}$  sea perpendicular a (1, 0, 0) debe ser:  $\mathbf{u} \cdot (1, 1, 1) = u_1 + u_2 + u_3 = 0$ , por ejemplo podemos considerar  $\mathbf{u} = (0, 1, -1)$ ;

para que  $\mathbf{v}$  sea perpendicular a ámbos, (1, 1, 1), (0, 1, -1), debe ser :  $\begin{cases} v_1 + v_2 + v_3 = 0 \\ v_2 - v_3 = 0 \end{cases}$  así que podemos tomar  $\mathbf{v} = (-2a, a, a)$  con cualquier  $a \neq 0$ , por ejemplo  $\mathbf{v} = (-2, 1, 1)$ .

Por último, obtengamos los vectores pedidos, dividiendo **u**, **v** cada uno por su módulo :

$$\mathbf{u} = (0, \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}), \mathbf{v} = (\frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}).$$

**SE24a**) ecuación paramétrica vectorial :  $\mathbf{OP} = (1, 2, 3) + t(-1, 5, 2)$ ;

ecuaciones paramétricas escalares : 
$$\begin{cases} x=1-t \\ y=2+5t \\ z=3+2t \end{cases}$$
; ecuaciones simétricas : 
$$\frac{x-1}{-1} = \frac{y-2}{5} = \frac{z-3}{2}$$



### MA1116 abril-julio de 2009

Departamento de Matemáticas Puras y Aplicadas.

**ojo**: estas ecuaciones **no** son únicas ya que dependen de un punto de la recta y un vector paralelo. A título de ejemplo, si en lugar de usar el punto A(1, 2, 3) y el vector  $\mathbf{u}$ =(-1, 5, 2) hubiésemos usado otro punto de la recta, por ejemplo B(0, 7, 5) y otro vector paralelo, por ejemplo  $\mathbf{v}$ =(2,-10,-4), habríamos hallados las ecuaciones siguientes:

**OP** =(0, 7, 5)+t((2,-10,-4); 
$$\begin{cases} x=2t \\ y=7-10t \\ z=5-4t \end{cases}; \frac{x}{2} = \frac{y-7}{-10} = \frac{z-5}{-4} .$$

**24b) u=AB**=(2, 3, 6); **OP**=(1, 2, 3)+t(2, 3, 6); 
$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{6}$$
;  $\begin{cases} x=1+2t \\ y=2+3t \\ z=3+6t \end{cases}$ .

**24c**) 
$$\begin{bmatrix} 1 & 1 & -1 & 1 & 1 \\ 1 & 3 & -4 & 1 & 0 \end{bmatrix} \Rightarrow ... \Rightarrow \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & -\frac{3}{2} \end{bmatrix} \Rightarrow \begin{bmatrix} x = 3/2 - (1/2)t \\ y = -(1/2) + (3/2)t \\ z = t \end{bmatrix}$$
; usando el punto

C(1, 1, 1) [que se obtiene de la representación paramétrica hallada, con t=1] y el vector paralelo  $\mathbf{u}$ = (-1, 3, 2), podemos también obtener otra representación paramétrica :

**OP**= (1, 1, 1)+t(-1, 3, 2); 
$$\begin{cases} x=1-t \\ y=1+3t \\ z=1+2t \end{cases}$$
 y las ecuaciones simétricas:  $\frac{x-1}{-1} = \frac{y-1}{3} = \frac{z-1}{2}$ .

**SE25a**) vector perpendicular al plano : 
$$\mathbf{n} = \mathbf{PQ} = (1, 2, 5)$$
 ;  $1.(x-1) + 2.(y-3) + 5.(z-0) = 0$  ;  $x + 2y + 5z - 7 = 0$  .

**25b**) un vector perpendicular al plano dado, se obtiene como vector perpendicular a los dos vectores  $\mathbf{AB} = (1,-2,4)$ ,  $\mathbf{AC} = (1,2,1) \Rightarrow \mathbf{n} = (1,-2,4)x(1,2,1) = (-10,3,4)$ ; -10.(x-1)+3.(y-1)+4.(z-0) = 0; -10x+3y+4z+7 = 0.

**25c**) un vector paralelo a la recta dada es  $\mathbf{v}$ =(2, 1,-2); un vector perpendicular al plano pedido será perpendicular a los vectores  $\mathbf{v}$ ,  $\mathbf{AB}$ = (1,-2, 4), así que podemos tomar:  $\mathbf{n}$ =  $\mathbf{AB}$ x $\mathbf{v}$ =(0, 10, 5) o (0, 2, 1)  $\Rightarrow$  ecuación del plano pedido:  $2\mathbf{y}$ + $\mathbf{z}$  = 2.

**25d**) un vector perpendicular al plano que se busca , será perpendicular a los vectores  $(1, 4, -3), (1, 1, 1), \text{ luego } \mathbf{n} = (1, 4, -3)x(1, 1, 1) = (7, -4, -3) \Rightarrow 7(x-1)-4(y-1)-3(z-0) = 0$ ; 7x-4y-3z-3=0.

**SE26**) vector paralelo a la primera recta :  $\mathbf{u} = (6, 3, 2)$ ; vector paralelo a la segunda recta :  $\mathbf{v} = (-1, 1, 1)$ ;  $|\mathbf{u}| \cdot |\mathbf{v}| \cos(\phi) = \mathbf{u} \cdot \mathbf{v} = (6, 3, 2) \cdot (-1, 1, 1) = -6 + 3 + 2 = -1$ ;  $|\mathbf{u}| = 7$ ;  $|\mathbf{v}| = \sqrt{3} \Rightarrow \cos(\phi) = \frac{-1}{7\sqrt{3}} = \cos(\phi) = \frac{-1}{7\sqrt{3}} = \cos(\phi) = \frac{-1}{7\sqrt{3}} = \cos(\phi) = \cos(\phi) = \frac{-1}{7\sqrt{3}} = \cos(\phi) =$ 



### MA1116 abril-julio de 2009

Departamento de Matemáticas Puras y Aplicadas.

obtenemos el coseno del ángulo agudo que forman las dos rectas dadas :  $\frac{1}{7\sqrt{3}} = \frac{\sqrt{3}}{21}$ 

SE27) el seno del ángulo agudo entre el plano y la recta dados, es el coseno del ángulo agudo que forman la recta dada y una perpendicular al plano. Por lo tanto tenemos, considerando los dos vectores :  $\mathbf{n} = (1, 1, 2)$ ,  $\mathbf{u} = -1, -2, 6$   $\Rightarrow$ 

$$\Rightarrow \qquad sen(\alpha) = \cos(\phi) = \frac{\mathbf{n.u}}{|\mathbf{n}|.|\mathbf{u}|} = \frac{9}{\sqrt{6}.\sqrt{41}}.$$

SE28) Este es el ejercicio #12 de este problemario IV:

$$\mathbf{AB} = (2, 1, 2)$$
,  $\mathbf{AC} = (1, 0, 1)$ . Siguiendo la sugerencia [del ejercicio 12]:   
 $\operatorname{proy}_{\mathbf{AB}}(\mathbf{AC}) = \frac{\mathbf{AC}.\mathbf{AB}}{(\mathbf{AB})^2} \mathbf{AB} = \frac{4}{9}(2, 1, 2)$ ;  $\mathbf{C'C} = \mathbf{AC} - \operatorname{proy}_{\mathbf{AB}}(\mathbf{AC}) = \frac{(1, -4, 1)}{9}$ ;

Distancia del pto. C a la recta por A, B =  $|\mathbf{CC'}| = \frac{\sqrt{2}}{3}$ .

**SE29**) hallemos previamente dos vectores :  $\mathbf{v}=(1, 1, -3)\mathbf{x}(1, -1, 7) = (4, -10, -2)$ , paralelo a la primera recta,  $\mathbf{w} = (1, 1, 1)$ , paralelo a la segunda recta,  $\mathbf{v} = \mathbf{w} \times (\frac{1}{2})\mathbf{v} = (4, 3, -7)$ . Un punto de la primera recta es A(2, 2, 0), un punto de la segunda recta es B(0, 0, 0). Siguiendo la sugerencia :  $\operatorname{proy}_{\mathbf{u}}(\mathbf{AB}) = \frac{(-2, -2, 0).(4, 3-7)}{|\mathbf{u}|^2} \mathbf{u} \implies |\operatorname{proy}_{\mathbf{u}}(\mathbf{AB})| = \frac{14}{\sqrt{74}}$ .

SE30) Para hallar la ecuación del plano que pasa por los puntos O, B, C, hallemos un vector.

**n**, perpendicular a los vectores **OB**= (1, 1, 0), **OC** = (3, -2, 5): **n** = (1, -1, -1);

ecuación del plano,  $\alpha$ , que pasa por O, B, C: x-y-z = 0; recta, r, por A, perpendicular al

plano  $\alpha:\begin{cases} x=1+t \\ y=2-t \\ z=-3-t \end{cases}$ ; el punto, A', intersección de la recta r con el plano  $\alpha$ , se puede obtener

resolviendo el sistema de cuatro ecuaciones y cuatro incógnitas :  $\begin{cases} x=1+t \\ y=2-t \\ z=-3-t \\ x-y-z=0 \end{cases} \Rightarrow$ 

$$(1+t)-(2-t)-(-3-t) = 0 \implies t = -2/3 \implies A'(1/3, 8/3, -7/3)$$
.