Experimentación y métricas de evaluación

Francisco Gómez Fernández (Pachi)

Métodos Numéricos Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Clase de hoy

- ► Métricas de evaluación: Precision/Recall y Accuracy
- Cross-validation y K-Fold cross-validation.
- Problema a analizar: "Clasificación de noticias"
- Experimentación: ¿Qué experimentar y cómo?
- Variantes para mostrar resultados
- Consultas de TP2

Motivación: detección de caras

- ▶ Objetivo: dada una imagen / decidir si contiene una cara o no
- ▶ Problema de clasificación binaria: 1 = es cara, 0 = no es cara
- ▶ Se quiere obtener un clasificador *clf* que puede verse como una función: $clf: \mathbb{R} \times \mathbb{R} \to \{0,1\}$

Ejemplo: se tienen tres imágenes l_1, l_2 e l_3

 $clf(I_1) = 1$

 $clf(I_2) = 0$

 $clf(I_3)=0$

Motivación: detección de caras

Ahora evalúo mi clasificador en 10 imágenes distintas.

- ¿Qué desempeño obtuvo mi clasificador?
- ¿Cómo sé si mi clasificador funciona bien?
 - ¿Qué significa que funcionó bien o mal?
- ¿Cómo mido el desempeño?
- Necesito definir alguna métrica
- ¿En qué conjunto evalúo mi métrica?

Precision y Recall para clasificación binaria

		Ver	dad
		Si	No
Predicción	Si	tp	fp
	No	fn	tn

¿Cuántos de los elementos recuperados son **relevantes**?

Precision =

sion = —

$$Precision = \frac{tp}{tp+fp}$$

¿Cuántos elementos relevantes fueron recuperados?

$$Recall = \frac{tp}{tp+fn}$$

Motivación: detección de caras

Ahora calculemos estas métricas para el ejemplo anterior.

$$fp = 1$$

▶
$$tp = 5$$
 $fp = 1$ $tn = 2$

$$fn = 2$$

$$Precision = \frac{tp}{tp + fp} = \frac{5}{6} = 0.83$$

"De los recuperados, qué porcentaje son relevantes"

$$Recall = \frac{tp}{tp + fn} = \frac{5}{7} = 0.71$$

"De los relevantes, qué porcentaje son recuperados"

- ¿Qué significa un valor de 1 en precision o recall?
 - Sistemas robustos: alto porcentaje de recall (o sensibilidad)
 - Sistemas precisos: alto porcentaje de precisión
- ¿Se puede prescindir de una o de la otra?

Más métricas

F-measures: métricas combinadas de Precision y Recall

- ► Media armónica: $F_1 = 2 \frac{precision \times recall}{precision + recall}$
- ▶ Fórmula general: $F_{\beta} = (1 + \beta^2) \frac{precision \times recall}{\beta^2 precision + recall}$
- $ightharpoonup F_2$ enfatiza recall mientras que $F_{0.5}$ enfatiza precision

Esta métrica sirve para establecer un compromiso entre *precision* y *recall*. Precision y Recall son dos medidas importantes que no necesariamente tienen la misma calidad para un mismo clasificador,

Tasa de eficacia o exactitud

$$\mathsf{Accuracy} = \frac{tp + tn}{tp + tn + fp + fn}$$

Mide el porcentaje de muestras bien clasificadas sobre el total.

- A favor: es fácil de entender y reportar
- ► En contra: puede ser engañosa. Ej: un 95 % parece muy bueno pero ¿y si hay 2 clases y el 98 % del total pertenece a una?

Curvas de Precision/Recall (P/R) ¹

Muestra la relación entre ambas métricas para una clase particular.

El clasificador, además del resultado de la clasificación, debe devolver un valor de confianza o probabilidad en la clasificación.

¿Cómo encontramos el mejor umbral de decisión?

- ► Se calculan pares de P/R para distintos umbrales de decisión
- ▶ Un área bajo la curva (AUC) grande representa altos valores de P/R
- Un sistema ideal con alto P/R devolverá muchos resultados y todos bien clasificados

Otras métricas (que no usaremos en el TP)

- ► True Positive Rate (TPR) = $\frac{tp}{tp + fn} = \frac{tp}{P}$ También llamado *sensitivity* o *recall*.
 - Ej.: Porcentaje de pacientes enfermos correctamente diagnosticados.
- False Negative Rate (FNR) = $\frac{fn}{tp + fn} = \frac{fn}{P}$ También llamado *miss rate*.
 - Ej.: Porcentaje de pacientes enfermos incorrectamente diagnosticados.
- True Negative Rate (TNR) = $\frac{tn}{tn + fp} = \frac{tn}{N}$ También llamado *specificity*.
 - Ej.: Porcentaje de pacientes sanos correctamente diagnosticados.
- False Positive Rate (FPR) = $\frac{fp}{tn + fp} = \frac{fp}{N}$ También llamado porcentaje de falsas alarmas. Ej.: Porcentaje de pacientes sanos incorrectamente diagnosticados.
- P=tp+fn (tamaño del conjunto de relevantes o casos positivos) N=fp+tn (tamaño del conjunto de irrelevantes o casos negativos)

Motivación 2: clasificación de noticias

- Objetivo: dada una noticia Q se quiere decidir a qué tópico (entre N posibles) pertenece
- ▶ Problema de clasificación multiclase: 1 = deportes, 2 = cultura, ..., N = política

Procedimiento:

1. Ante una nueva noticia (query)

id	section	topic	text	title
643	Procesados	????	"El presidente Mauricio "	"Panama Papers: Macri compli"

- 2. Procesar el texto (contenido) de la noticia
- 3. Comparar con noticias anteriores (clasificador ya entrenado)
- Asignar una categoría (número entre 1 y N) de acuerdo al resultado del clasificador
- ¿Como mido el desempeño de mi clasificador?
- ▶ ¡ Me sirven las métricas anteriores?
- ¿En qué conjunto evalúo mi métrica?

Precision y Recall para clasificación multiclase

Dada una clase i = 1...N, se calcula para cada una: tp_i, fp_i, tn_i y fn_i de forma análoga al caso binario.

- tpi son las muestras que realmente pertenecían a la clase i y fueron exitosamente identificadas como tales.
- ► fp_i son aquellas muestras que fueron identificadas como pertenecientes a la clase i cuando realmente no lo eran.

Precision y Recall para clasificación multiclase

- La precision en el caso de un clasificador multiclase, se define como el promedio de las precision para cada una de las clases.
- ▶ El *recall* en el caso de un clasificador multiclase, se define como el **promedio** del *recall* para cada una de las clases.
- ► El Accuracy mide el porcentaje de muestras bien clasificadas sobre el total

 Accuracy tp + tn

Accuracy =
$$\frac{tp + tn}{tp + tn + fp + fn}$$

- ¿Está bien promediar estos valores?
- ▶ Se suelen reportar por *clase*. Más si están desbalanceadas.

Matriz de confusión

- La matriz de confusión muestra para cada par de clases $c_i \neq c_j$, cuántos documentos de c_i se asignaron incorrectamente a c_j o correctamente entre c_i y c_i .
- La matriz de confusión puede ayudar a identificar dónde se debe mejorar la precisión del sistema.

Ejemplo de clasificación de noticias:

Validación y cross-validation

- Evaluar el modelo en los datos de entrenamiento puede darnos una impresión errónea.
- ► Separa los datos <u>al azar</u> para evitar tomar patrones en las divisiones en dos partes. Ejemplo:
 - ► Entrenamiento (100 p)% Validación p% (con p = 20%)
- ightharpoonup Y si <u>al azar</u> no funciona tan bien? \rightarrow k-Fold Cross Validation
 - 1. Desordenar los datos
 - 2. Separar en K folds del mismo tamaño
 - 3. Para i = 1...K: Entrenar sobre todos los folds menos el i y validar sobre el i

²Diapo adaptada de la clase de Aprendizaje Automático.

Lectura recomendada

An Introduction to Information Retrieval

Manning, Raghavan y Schutze. Año 2009.

Disponible online: http://www.informationretrieval.org/

- Capítulo 8: "Evaluation in information retrieval".
- Capítulo 14.3: "k nearest neighbor".
- Capítulo 14.5: "Classification with more than two classes".

El problema: motivación

canchallena com > Tenis > Sebastián Torok > US Open

US OPEN

Lunes 14 de septiembre de 2015 | 07:17

No es una utopía: Djokovic puede alcanzar el récord de Grand Slam

Llegó a 10 títulos de los Grandes, siete menos que los que reúne su vencido, Roger Federer; sin embargo, acumula méritos propios para aventurar que podría alcanzar semejante hito

Por Sebastián Torok | canchallena.com

Objetivo

En función del contenido (texto) de las noticias decidir qué categoría (deportes, espectáculos, tecnología, etc.) le corresponde.

Objetivo deseable

Poder devolver un valor de probabilidad o confianza en la predicción/clasificación de cada noticia.

El problema: una propuesta de solución

Datos con noticias etiquetadas

id	section	topic	text	title
3066966	Deportes	Deportes	"NUEVA YORK Novak "	"No es una utopía: "
3065926	"El Mundo"	Internacionales	"Los bomberos tratan de "	"Declaran el estado de"
1:	:	:	:	:
2496990	Tecnología	Tecnología	"La plataforma de video "	"La tiranía digital del "

Datos nuevos a categorizar o clasificar

id	section	topic	text	title
6431364	Procesados	????	"El presidente Mauricio "	"Panama Papers: la respuesta de Macri "

Clasificación supervisada

- ► Usar el conjunto de datos de etiquetados para entrenar un predictor que nos permita predecir las etiquetas de nuevos datos con etiqueta desconocida
- ➤ Se asume que los nuevos datos sobre los cuales no se entrenó el predictor, tienen el mismo origen o fueron producidos por la misma fuente (desconocida) que estamos tratando de modelar

El problema: una propuesta de solución

Paso previo

Utilizando el conjunto de entrenamiento, entrenar un clasificador que permita predecir el tópico de las noticias.

Ante una nueva noticia (query)

-					
	id	section	topic	text	title
	6431364	Procesados	????	"El presidente Mauricio "	"Panama Papers: la respuesta de Macri "

- 1. Procesar el texto (contenido) de la noticia
- 2. Comparar con noticias anteriores (clasificador ya entrenado)
- 3. Asignar una categoría de acuerdo al resultado del clasificador
- 4. Devolver la confianza de la clasificación

Métodos empleados

- ► Bag of words
- ▶ N-grams + Stemming
- ► Term frequency—inverse document frequency (tf—idf)

Bag of words

¿Virtudes? ¿Problemas?

N-grams

- ightharpoonup La probabilidad de un "N-grama" está dada por los N-1 anteriores
- $P(g_n|g_{n-1},g_{n-2},\ldots,g_{n-N+1}) = \frac{\#(g_n,g_{n-1},g_{n-2},\ldots,g_{n-N+1})}{\#(g_{n-1},g_{n-2},\ldots,g_{n-N+1})}$
- Bigramas, trigramas, etc.
- En nuestro caso, se puede hacer sobre palabras o sobre caracteres
 - Otras aplicaciones: detección de idioma (letras), cadenas de proteínas, fonemas (en el contexto de procesamiento del habla), features visuales (en el contexto del procesamiento de imágenes), etc..
- ▶ ¡Virtudes? ¡Problemas?

Stemming

- ▶ ¿Tiene sentido considerar separadamente palabras como investigadora, investigador, investigadoras, investigadores, investigar, investigaron, investigación, etc.?
- Stemming: reemplazar palabras por su tema o "palabra madre" (word stem).
 Se utiliza antes de aplicar, por ejemplo, bag of words.
- ¿Virtudes? ¿Problemas?

Tf-idf

- tf-idf: cuán importante es una palabra en un documento respecto del conjunto de todos los documentos
- ▶ Dados *d* un documento en *D* y *t* un término,
- term frequency: $tf(t) = \frac{\#apariciones \ de \ t \ en \ d}{\#términos \ en \ d}$
- inverse document frequency: $idf(t) = \log_{\frac{|D|}{\#documentos \text{ que contienen a } t}}$
- $tf-idf(t) = tf(t) \cdot idf(t)$
- ¿Virtudes? ¿Problemas?

¿Qué experimentar y cómo?

Ciclo de desarrollo y elaboración de experimentos

- 1. Entender el problema y sus **objetivos**
- 2. Proponer una **solución** y elaborar hipótesis o conjeturas que la demuestren, expliquen o justifiquen.
- 3. Visualizar los resultados preliminares.
 - ¿Qué medidas de "performance" podré usar?
 - ¿Qué es performance?
 - ▶ ¿Qué mido? ¡Qué miedo!

Resultados

Corremos el clasificador sobre los datos y obtenemos 82,4 % de accuracy. Nada mal.

¿Algo interesante para destacar?

Resultados - Problemas

- Muchas instancias de "Cultura" son clasificadas como otras categorías, principalmente como "Política"
- Algo similar sucede con "Sociedad"
- ► Tal vez esas categorías tienen muchas palabras en común. ¿Y si sacamos las stopwords³ del texto? Accuracy: 88,8 %

³Las palabras más usadas en un lenguaje, como por ejemplo artículos y preposiciones, no aportan información relevante al tipo de texto pero pueden influir negativamente en la clasificación.

Resultados - Curvas P/R

¿Y ahora qué podemos decir?

Resumen

- ▶ La experimentación no es sólo reportar resultados. En base a los resultados se gana entendimiento y se repiensa el problema y esto permite iterar nuevamente con experimentos.
- Es importante elegir una manera adecuada para mostrar los resultados. Ciertas características pueden quedar ocultas detrás de medidas mentirosas.
- Siempre recordando los límites en términos de tiempo que hay en los TPs.