In []:	Step 1: Preprocessing and Data Visualisation #import libraries import pandas as pd import numpy as np import tensorflow as tf
In []:	<pre>from tensorflow import keras df = pd.read_csv("magic04.data", header=None)</pre>
Out[]:	0 1 2 3 4 5 6 7 8 9 10 0 28.7967 16.0021 2.6449 0.3918 0.1982 27.7004 22.0110 -8.2027 40.0920 81.8828 g 1 31.6036 11.7235 2.5185 0.5303 0.3773 26.2722 23.8238 -9.9574 6.3609 205.2610 g 2 162.0520 136.0310 4.0612 0.0374 0.0187 116.7410 -64.8580 -45.2160 76.9600 256.7880 g 3 23.8172 9.5728 2.3385 0.6147 0.3922 27.2107 -6.4633 -7.1513 10.4490 116.7370 g 4 75.1362 30.9205 3.1611 0.3168 0.1832 -5.5277 28.5525 21.8393 4.6480 356.4620 g
In []:	<pre># Calculate skewness of each feature import pandas as pd import matplotlib.pyplot as plt skewness = df.iloc[:, 0:10].skew(axis=0, skipna=True) print(skewness)</pre>
	<pre># Create a DataFrame with skewness values and corresponding feature names features = [f"Feature {i}" for i in range(1, 11)] data = {'Feature': features, 'Skewness': skewness} df_skewness = pd.DataFrame(data)</pre>
	<pre># Create a histogram plt.figure(figsize=(10, 6)) plt.bar(df_skewness['Feature'], df_skewness['Skewness'], color='skyblue') plt.xlabel('Features') plt.ylabel('Skewness') plt.title('Skewness of Features') plt.xticks(rotation=45) plt.tight_layout() # Show the plot plt.show()</pre>
	0 2.013652 1 3.371628 2 0.875507 3 0.485888 4 0.685695
	6 -1.123078 7 0.120121 8 0.850890 9 0.229587 dtype: float64
	Skewness of Features 3 -
	2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
In []:	<pre>Step 2: Pre Processing X = df.iloc[:, 0:10] X.head()</pre>
Out[]:	0 1 2 3 4 5 6 7 8 9 0 28.7967 16.0021 2.6449 0.3918 0.1982 27.7004 22.0110 -8.2027 40.0920 81.8828 1 31.6036 11.7235 2.5185 0.5303 0.3773 26.2722 23.8238 -9.9574 6.3609 205.2610 2 162.0520 136.0310 4.0612 0.0374 0.0187 116.7410 -64.8580 -45.2160 76.9600 256.7880 3 23.8172 9.5728 2.3385 0.6147 0.3922 27.2107 -6.4633 -7.1513 10.4490 116.7370 4 75.1362 30.9205 3.1611 0.3168 0.1832 -5.5277 28.5525 21.8393 4.6480 356.4620
	y = df[10] Step 2a: Perform scaling on the data From sklagen proprocessing import StandardScalar
<pre>In []: Out[]:</pre>	<pre>from sklearn.preprocessing import StandardScaler scale = StandardScaler() X = scale.fit_transform(X) pd.DataFrame(X).describe()</pre> 0 1 2 3 4 5 6 7 8 9
	count 1.902000e+04
<pre>In []: Out[]:</pre>	Step 2b: Encode Y column (g, h) # Encode the columns manually # Change 'g' to 1 and 'h' to 0 y = y.replace('g', 1) y = y.replace('h', 0) y.value_counts()
out[].	1 12332 0 6688 Name: count, dtype: int64 Step 2c: Split the data into training and testing sets
	<pre>from sklearn.model_selection import train_test_split # Split the data into training and testing sets (2/3 training, 1/3 testing) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33) # See the shape of the training and testing sets print("X_train shape:", X_train.shape) print("X_test shape:", X_test.shape) print("Y_test shape:", y_test.shape) print("Y_test shape:", y_test.shape) X_train shape: (12743, 10) X_test shape: (6277, 10) y_train shape: (12743,) Y_test shape: (6277,)</pre>
In []:	from keras import layers
	<pre># Use ANN to predict gamma or hardon # Use 2 hidden layers # Any ANN architecture is allowed model = Sequential([layers.Dense(16, activation='relu', input_shape=(10,)), # 10 input neurons layers.Dense(10, activation='relu'), layers.Dense(1, activation='sigmoid') # 1 output neuron]) # Compile model</pre>
In []:	<pre>model.compile(optimizer='adam', loss='binary_crossentropy',</pre>
	Epoch 1/10 1275/1275 [====================================
	1275/1275 [====================================
	Step 4a: Evaluate the model using the training data # evaluating and predicting the model model.evaluate(X_train, y_train) model.predict(X_train) 399/399 [===================================
	399/399 [=============] - 0s 241us/step
	# evaluating and predicting the model model.evaluate(X_test, y_test) model.predict(X_test) 197/197 [====================================
Out[]:	array([[0.80010927],
In []:	Step 5: Hyperparameter Tuning from scikeras.wrappers import KerasClassifier from keras.layers import Dense
	<pre>def create_model(n_hidden=2, n_neurons=16, a=0.01, b=0.01, input_shape=[10]): model = Sequential() # Input layer model.add(keras.layers.Dense(</pre>
	# Output layer model.add(keras.layers.Dense(1)) model.compile(loss='binary_crossentropy',
In []·	# Create a KerasRegressor with the build_model function model_fine_tune = KerasClassifier(model=create_model, verbose=0) # Using GridSearchCV to find the best params for the model
	<pre># Using GriosearchCV to find the best params for the model from sklearn.model_selection import GridSearchCV # Create the parameter grid based on the results of random search param_grid = { 'n_hidden': [1, 2, 5], 'n_neurons': [10, 16, 20], 'a': [0.1, 0.001], 'b': [0.1, 0.001] } model_fine_tune.get_params().keys()</pre>
In []: Out[]: In []:	
Out[]:	<pre>grid = GridSearchCV(estimator=model_fine_tune, param_grid=param_grid, cv=5) grid_result = grid.fit(X_train, y_train, validation_data=(X_test, y_test)) grid_result.best_params_ grid_result.best_score_</pre>
	<pre>print('RESULTS:') print("Best parameters: %s" % grid_result.best_params_) print("Best score: %f" % grid_result.best_score_) print("Best estimator: %s" % grid_result.best_estimator_) print("Scorer: %s" % grid_result.scorer_)</pre>
	RESULTS: Best parameters: {'batch_size': 15, 'epochs': 100, 'optimizer': 'sgd'} Best score: 0.863926 Best estimator: KerasClassifier(
	validation_batch_size=None verbose=0 callbacks=None validation_split=0.0 shuffle=True run_eagerly=False epochs=100
	epochs=100 class_weight=None) Scorer: <sklearn.metricsscorerpassthroughscorer 0x283055840="" at="" object=""> Step 6: Result Analysis 1. Best parameters for Scikeras' KerasClassifier:</sklearn.metricsscorerpassthroughscorer>

Assignment 2 Task 2

batch_size: 15epochs: 100

2. Difference before fine tuning:

• optimizer: sgd This results in best score of 0.863926

Name: Elroy Chua Ming Xuan UOW ID: 7431673 Data set: https://archive.ics.uci.edu/dataset/159/magic+gamma+telescope

