Reglas de Asociación

Diplomatura en Ciencia de Datos, Aprendizaje Automático y sus Aplicaciones FaMAF-UNC agosto 2018

Contexto

- El algoritmo más popular es Apriori (Agrawal et al 1993)
- Todos los datos tienen que ser categóricos
- Inicialmente se usó para Análisis del Carrito de la Compra (Market Basket Analysis)

```
Pan \Rightarrow Leche [sop = 5%, conf = 100%]
```

Terminología

I = {i1, i2, ..., im}: un conjunto de items.

Transacción t:

t un conjunto de items, y t \subseteq I.

Base de datos de transacciones: un conjunto de transacciones T = {t1, t2, ..., tn}.

Ejemplo

Transacciones de compra de mercado:

```
t1: {pan, queso, leche}
t2: {manzana, huevos, sal, yogur}
...
tn: {bizcocho, huevos, leche}
```

Conceptos:

- Un item: un item/artículo en el carrito de la compra
- l: todos los items que se venden en el negocio
- transacción: items comprados en un carrito

Ejemplo

Un dataset de documentos de texto. Cada documento es una bolsa de palabras

doc1: Estudiante, Enseñar, Escuela

doc2: Estudiante, Escuela

doc3: Enseñar, Escuela, Ciudad, Partido

doc4: Beisbol, Basket

doc5: Basket, Player, Espectador

doc6: Beisbol, Entrenador, Partido, Equipo

doc7: Basket, Equipo, Ciudad, Partido

Una transacción t contiene X, un conjunto de items (itemset) en I, si $X \subseteq t$.

Una regla de asociación es una implicación:

$$X \rightarrow Y$$
, donde X, $Y \subset I$, $y \times \bigcap Y = \emptyset$

Un itemset es un conjunto de items.

```
X = \{leche, pan, cereal\}
```

Un k-itemset es un itemset con k items.

```
{leche, pan, cereal} es un 3-itemset
```

Métricas

Soporte: La regla tiene Soporte sup en T (el dataset de transacciones) si sup% de las transacciones contienen X U Y.

$$sup = Pr(X \cup Y).$$

Confianza: La regla tiene Confianza conf en T si conf% de las transacciones que contienen X también contienen Y.

$$conf = Pr(Y \mid X)$$

Un regla de asociación es un patrón que dice que cuando ocurre X, ocurre Y con una cierta probabilidad.

Objetivo de las reglas de asociación

Encontrar todas las reglas que satisfacen un soporte mínimo y confianza mínimo

- Todas las reglas
- No hay items objetivo

Una visión simplista de los datos, porque no incluye:

- cantidad
- precio
- promociones

Algoritmos de reglas

- Hay muchos!
- Usan diferentes estrategias y estructuras de datos
- Pero los conjuntos de reglas resultantes son todos los mismos: dado un dataset, un soporte mínimo y una confianza mínima, el conjunto de reglas de asociación en T es determinístico.

Vamos a ver Apriori (Agrawal et al. 1983)

Algoritmo Apriori

Pasos

1. Encontrar todos los itemsets con soporte mínimo (itemsets frecuentes)

{pollo, ropa, leche}
$$[sop = 3/7]$$

2. Usar los itemsets para generar reglas

ropa
$$\rightarrow$$
 leche, pollo [sop = 3/7, conf = 3/3]

Encontrar itemsets frecuentes

Itemset frecuente → Soporte ≥ minsup

propiedad apriori (downward closure): todos los subconjuntos de un itemset frecuente también son itemsets frecuentes

Encontrar itemsets frecuentes

Iterativo (por niveles)

Encontrar todos los itemsets frecuentes de 1 item, entonces todos los itemsets frecuentes de 2 items, y así sucesivamente

- → en cada iteración k, considerar solamente los itemsets que contienen un itemset frecuente k-1
- Los items están ordenados, para evitar repeticiones

Encontrar confianza

Para cada itemset frecuente X,

Para cada subconjunto no vacío A de X,

Sea
$$B = X - A$$

$$Soporte(A \rightarrow B) = Soporte(A \cup B) = Soporte(X)$$

A → B es una regla de asociación si

Confianza(A \rightarrow B) \geq minconf,

Esta información ya se obtuvo en el momento de generación de itemsets, no hay que recorrer el dataset de vuelta

Ejemplo

Supongamos {2,3,4} es frecuente, con sop=50%

Subconjuntos propios no vacíos: {2,3}, {2,4}, {3,4}, {2}, {3}, {4}, con sop=50%, 50%, 75%, 75%, 75%, 75% respectivamente

Generan estas reglas de asociación:

- 2.3 → 4. Confianza=100%
- 2,4 → 3, Confianza=100%
- $3.4 \rightarrow 2$. Confianza=67%
- $2 \Rightarrow 3,4$, Confianza=67%
- $3 \rightarrow 2.4$, Confianza=67%
- 4 → 2,3, Confianza=67%

Consideraciones sobre Apriori

Parece muy caro pero...

- Búsqueda por niveles, explotando la propiedad de downward closure
- El parámetro k (tamaño del itemset más grande) limita el coste
- Escalable!

- El espacio de todas las reglas de asociación es exponencial, O(2m), donde m es el número de items en I.
- Explota la sparseness de los datos, los valores altos de Soporte y Confianza.
- Igualmente: un número enorme de reglas!!!

Diferentes soportes mínimos

Diferentes soportes mínimos

- El soporte mínimo genérico asume que todos los items se distribuyen igual
- En muchas aplicaciones, algunos items son muy frecuentes y otros no
- Si el soporte mínimo es muy alto, no encontramos reglas para items poco frecuentes
- Si el soporte mínimo es muy bajo, hay demasiadas reglas

Solución:

- Especificar diferentes soportes mínimos para diferentes items
- Propagar a reglas

Sea MIS(i) el valor MIS del item i. El soporte mínimo de una regla R es el valor MIS más bajo de todos los items de la regla

Ejemplo

```
pan, zapatos, ropa
```

Los valores MIS especificados por el usuario son:

$$MIS(pan) = 2\%$$
 $MIS(zapatos) = 0.1\%$ $MIS(ropa) = 0.2\%$

Esta regla no supera el soporte mínimo:

```
ropa \rightarrow pan [sup=0.15%,conf =70%]
```

Esta regla sí supera el soporte mínimo:

```
ropa \rightarrow zapatos [sup=0.15%,conf =70%]
```

Downward closure

Este modelo no preserva downward closure!

Ejemplo: consideramos los cuatro items 1, 2, 3 y 4 en una base de datos. Sus soportes mínimos son

$$MIS(1) = 10\%$$
 $MIS(2) = 20\%$

$$MIS(3) = 5\%$$
 $MIS(4) = 6\%$

{1, 2} con Soporte 9% es infrecuente, pero {1, 2, 3} y {1, 2, 4} podrían ser frecuentes.

Valoración diferentes soportes mínimos

- Contiene al modelo con soporte mínimo genérico
- Es un modelo más realista para aplicaciones prácticas
- Ayuda a encontrar reglas para items raros sin producir un montón de reglas inútiles con items frecuentes
- Podemos forzar a hacer reglas solamente con esos items

Reglas de asociación con clase

Reglas de asociación con clase

- Las reglas de asociación no tienen objetivo: encuentran todas las reglas que existen en los datos, cualquier item puede aparecer como consecuente o condición de una regla
- En algunas aplicaciones nos interesan algunos objetivos concretos

Ejemplo: encontrar palabras asociadas a algún tema

Reglas de asociación con clase

Sea un dataset de transacciones T con n transacciones.

Cada transacción también se etiqueta con una clase y.

Sea I el conjunto de todos los items en T, Y las etiquetas de clase y I \cap Y = \emptyset .

Una regla de asociación con clase es una implicación de la forma

$$X \rightarrow y$$
, donde $X \subseteq I$, $y \in Y$.

Las definiciones de Soporte y Confianza son igual que en las reglas de asociación normales.

Ejemplo

```
doc 1: Estudiante, Enseñar, Escuela : Educación
```

```
doc 2: Estudiante, Escuela : Educación
```

```
minsup = 20% y minconf = 60%
```

Partido
$$\rightarrow$$
 Deporte [sup= 2/7, conf = 2/3]

Algoritmo

Se pueden minar en un solo paso!

Encontrar todos los ruleitems que tienen soporte > minsup, con forma:

(condset, y), y representa una regla condset → y

Donde condset es un conjunto de items de I (i.e., condset \subseteq I), y \in Y es una etiqueta de clase.

El algoritmo apriori se puede modificar para generar reglas con clase

Clase y diferentes soportes mínimos

El usuario puede especificar diferentes soportes mínimos para diferentes clases

Ejemplo:

- tenemos la clase Sí y la clase No
- Queremos soporte 5% para la clase Sí y Soporte 10% para la clase No

Si especificamos soporte mínimo de 100% para una clase, no se generan reglas para esa clase