		(P	seet Numbers					
	by Travis Ratinharan Perfect Numbers								
	Optimized Approach								
	· bef	· before we get into the approach we need to understand a bit about perfect number theory.							
		k b/w Perfect Numbers & Mersenne Primed							
		Lo 6 = 1 + 2 + 3							
	al all a	. The reason we call it a perfect number is that it equals the sum of							
100	it's proper factors (i.e. factors excluding the number itself)								
		· Another was	to look of this	look at this is that the sum of all factors of is equal to twice that number +3+6=12=2(6) meter is 28					
			ober is equal to twice that number $2+3+6=12=2(6)$						
			t number is 28 +2+4+7+14						
	· The	The next perfect number is 28							
	*	L> 28 = 1 +	1+2+3+6=12=2(6) ct number is 28 +2+4+7+14 and people factors number is 496 +2+4+8+16+31+62+124+248						
	sum of people factors								
	The	The next perfect number is 496							
	₩ 496 = 1+2+4+8+16+31+62+124+248								
	· The next perfect number is 8128, we will reflain from listing all its proper								
	facto	factors to keep things concise.							
	"The	re abon we	are able to fin	nd perfect number is thanks to Mersenne Primes.					
				Alle trans to be broken					
		$2^n-1=prime$							
	., 1	450 if 2n-1 equals a prime number than it is a mersenne prime.							
	'Let's	go through s	ome examples to so	eo this					
	n	2"-1	2-1 is Prime?	-1					
	1	1	False	* generally speaking 1 is not confidered a frime #.					
	(2)	3	True	- A pattern that may stick but to you is that					
	3	7	True	2"-1 equals a prime # when his a prime #					
	4	15	False	However we see that Il is a prime # but it corresponding 2-1 value, 2047, is not a prime.					
	(5	31	True	So lots consider the reverse of this pattern,					
STATE OF	6	63	False	I't d-1 is a prime, then n must					
	7	127	True	be a prime.					
	8	255	False	LaThis statement turns out to be true.					
	9	511	False False						
	10	1023	False						

2047

11

False

	"If we revisit our perfect numbers you will see that there is a link to Massenne Primes						
	· 14 46 => 1 + 2 + 3 + 6 11 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1						
	3 is a Mersenne Prime						
	1>28 ⇒ 1 + 2 + 4 + ①+ 14 + 28						
	L> 7 is a Mersenne Prime						
	496 ⇒ 1+2+4+8+ 16+31+62+124+248						
	La 31 is . Mersenne Prime						
	~ 8128 => 1+2+4+8+16+32+64+(127)+254+508+1016+2032+4064						
	127 is a Mersenne Prime						
	, So we can see that the Mersenne Primes match up with the factors of						
	perfect numbers.						
	· Let's	see if we can	find a deeper pattern by visualizing this re	lationship.			
	n		2º-1 Matching Perfect Number	*Note: there is only			
	2	3 (11)	STEE TILLIAMETTING OF THE STATE	ever 1 mersource prime			
	3	THE RESIDENCE OF THE PARTY OF T	28	in an even perfect number			
	5	31	496 (18) (18)	and every even perfect			
	7	127	8128	hiersonne prime as			
3	13	8191	? (61)	one of it's factors.			
4	n=2 for	2 -1 = 3 we	see that	Mote: we have not found an odd perfect number			
15.	n=3 -for 2n-1	-7. 53 x	2 = 6	So fail. Yet no one has proved			
	N= S MAIN	131 W 7 X /	4 = 28 hors a spens of the	that odd perfect numbers don't exist.			
	1 for 2 1-1	W 31x	6 = 496	Bond CKIN.			
	· for 2"-1=127 > 127 × 64 = 8128						
	what is the pattern here?						
	We notice that						
- 61	$3 \times 2 = 3 \times 2 = 5 \times 2 = 6$						
	$n=3$ $t > 7 \times 2^{n-1} = 7 \times 2^{3-1} = 7 \times 2^2 = 7 \times 4 = 28$						
	$^{n=5}$ $\stackrel{1}{\rightarrow}$ $31 \times 2^{n-1} = 31 \times 2^{5-1} = 31 \times 2^{4} = 31 \times 16 = 496$						
	$n=7$ $\rightarrow 127 \times 2^{n-1} = 127 \times 2^{7-1} = 127 \times 2^6 = 127 \times 64 = 8128$						
	· So the pattern here is that:						
	(> if 2 ⁿ -1 is a Mersenne Prime than: (2 ⁿ -1) (2 ⁿ⁻¹) = perfect number						
	-> proof on next page						

-

```
Let's Prove this ....
    lets consider the perfect number 496.
        Recall that we said a perfect number is a number whose sum of
       factors equals twice the number.
        496 = 1+2+4+8+16+31+62+124+248+496 = 992=2 (496)
                                       we can notice a pattern here.
         we can identify a pattern here by isolating the Mersenne Prime, 31,
         out of the sequence of sum of factors, i.c.:
  1+2+4+8+16+31+62+124+248+496=(1+2+4+8+16)+31(1+2+4+8+16)
  recall that for 496, the corresponding Mersonne Prime is 271=31 31x16=496

For which n=5.

So we can rewrite our segmence as
      496=> (1+2+4+8+16)+31(1+2+4+8+16)
              = (1+31) · (1+2+4+8+16)
              = (321) \cdot (31) (2^{n}) \cdot (2^{n-1}) = 2^{5} \cdot 2^{5} = 32 \cdot 31
              = 992
              = 2(496)
   : Notice how we can break this sequence of additions into (2"). (2"-1)
    where n is the corresponding value such that 2n-1 is the matching Mersonne Prime.
· Nowe see from this example that (2"). (2"-1) = 2 (perfect number).
   This implies that by factoring out 2 we get:
                            (2^{n-1}) \cdot (2^n - 1) = perfect number.
    we can even see this from our example case for which the
     perfect number is 496 and n=5; (25-1). (25-1)=24. (25-1)=16.31=496
 · Now let's prove this formally for the general case.
```

Froof: * Calculate sum of factors of 2n-1(2n-1) $2^{n-1}(2^n-1) \Rightarrow = (1+2^1+2^3+...+2^{n-2})(2^n-1)$ $+(2^{n}-1)+2^{1}(2^{n}-1)+2^{2}(2^{n}-1)+2^{3}(2^{n}-1)+...+2^{n-2}(2^{n}-1)+2^{n-1}(2^{n}-1)$ = (+2'+22+23+...+2h-1)+ (2ⁿ-1) (1+2¹+2²+2³+...+2ⁿ⁻²+2ⁿ⁻¹) $= (1+2^{n})(1+2^{1}+2^{2}+2^{3}+2^{n-2}+2^{n-1})$ = 2ⁿ (1+2+2+23+ - +2ⁿ⁻²+ 2ⁿ⁻¹) flet T= 1+2+22+23+ -+ 2m2+2m1 (then 2T= 2+2+2+2+2++...+2+2+2" then 2T-T= 2n-1 So T = 2 -1 } geometric series 1+2+22+23+... + 2n-2+2n-1 = 2n-1 $= 2^{n} (2^{n} - 1)$ -> recall that the sum of factors should equal twice the original perfect number, so to get the perfect number we must factor out 2. $= 2 (2^{n-1})(2^n-1) = 2 \times perfect number$ (2ⁿ⁻¹)(2ⁿ-1) = perfect number as long as 2-1 is a Mersenne Prime, because the sum of factors of the expression (2n-1)(2n-1) equals twice the expression, Which is the definition of a perfect number TE & a commerced Tilled (and) a to ashillion the set

=> Optimized Appoach · Now that we understand that if 2"-1 is a Mersonne Prime then (2"-1) (2"-") 15 a perfect number · Wealso saw that if 2 1 is a Mersoune Prime then n must be a prime. "So we can generate our prime numbers within a our range of values a and b., let p be on entry in the list of prime numbers Then for each prime number p, apply the formula: 2-1 and then check if the resulting value is a prime. if it is then we have just found a Mersenne Prime, and it's n value · After Iterating through our list of primes, we should have a corresponding filtered list of Mersenne Primes, and their corresponding n-value. Then we can iterate through this filtered list and apply the formula: (2"-1)(2"-1) to get our perfect numbers. during this step we will and bounds checking to make sure that for a perfect number 2, it's as 266. * Before we do this we must understand I all o ever 1 How to generate primes. @ How to check if a number is a prime. OGENERATING Primes with Sieve of Erntosthenes. Algorithms find primes up to N. For all numbers a: from 2 to sgrt(n) IF a is unmarked THEN a is prime for all multiples of a: (acn) mark multiples as composite

(2) Check if a number is a prime - Start with 2 · Check if number is divisible by 2. · if it is, it's not a prime Check for prime divisors: * optional this can be done of just add number divisors - if the number isn't divisible by 2, more onto the next prime number and se if its divisible.

Stop at the square root: The smallest factor of a number greater than one connot be greater than the square root of that number * · Continue Checking for prime divisors until you reach a number greater than the square most of the original number. . If you don't find any prime divisors then the number is prime to Generate Perfect Numbers => Now we can summarize our approach: within range A & B 1) Generate Prime numbers within B. we sieve of Eradosthenes @ Generate Mersenne Primes from Prime numbers 13 use formula 2-1, and verify if result is a prime number (3) From Mersenne Primes use (2"-1).(2"-1) to Generate Perfect Numbers La use boundary check to verify that the generated purfect number falls within A & B.