

Why use least squares?

Using house pricing example.

Assume
$$y^{(i)} = 0^T x^{(i)} + \varepsilon^{(i)}$$

"error" unandeled effects, random noices

 $\varepsilon^{(i)} \sim N(0, \tau^2)$ assume i.i.d independently indentically distributed error feron for one house with mean 0, variance τ^2 is independent from other $P(\varepsilon^{(i)}) = \sqrt{2\pi} \tau \exp\left(-\frac{(\varepsilon^{(i)})^2}{2\sigma^2}\right)$

implies that: $P(y^{(i)} | x^{(i)}; \theta) = \sqrt{2\pi} \tau \exp\left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2}\right)$