SEL 0637 - Controle Adaptativo

Prova 2 - 2023

Livro: Adaptive Control Tutorial

Autores: Petros Ioannou and Baris Fidan

Exercício 1:

Considere a seguinte planta de segunda ordem

Figura 1: Esquema de controle adaptativo por modelo de referência

$$y_p = -n_1 \frac{s + n_2}{s_2 + n_3 s + n_4} u_p, \tag{1}$$

e um modelo de referência dado por

$$y_m = \frac{4}{s+5}r. (2)$$

Projete uma lei de Controle por Modelo de Referência, baseada no diagrama da Figura 1, que garanta estabilidade do modelo em malha fechada e satisfaça o objetivo de controle $y_p \to y_m$ com $t \to \infty$ para qualquer sinal de referência r. Considere n_1 como sendo o maior algarismo do seu número USP, n_2 o segundo maior algarismo, n_3 o terceiro e n_4 o quarto maior algarismo do seu número USP. Repita o algarismo, se for necessário. Apresente graficamente as respostas no tempo de y_p do sistema realimentado e y_m . Mostre todas as contas, detalhadamente, para obter o controlador.

Exercício 2:

Considere a seguinte planta de segunda ordem:

$$\dot{x} = -5x + bz - \mu u,$$

$$\mu \dot{z} = -z + 10u,$$

$$y = z$$
(3)

sendo $0 \le \mu << 1$ e b desconhecido. A saída da planta deve ser ajustada para acompanhar a saída x_m do modelo de referencia

$$\dot{x}_m = -x_m + r. (4)$$

- a) Obtenha o modelo da planta de ordem reduzida.
- b) Mostre, com simulações, que a lei de controle adaptativa

$$u = lr, \quad \dot{l} = -\gamma er, \quad e = x - x_m$$
 (5)

satisfaz o objetivo de controle para o modelo de ordem reduzida.

- c) Calcule o limite inferior do produto γr^2 em função de μ e b, para o qual a lei de controle do item b) será instável se aplicada à planta (3), com a ordem plena.
- d) Qual deve ser o valor mínimo de b para que a saída y acompanhe x_m , com a lei de controle definida no item b)?