The Case of Cubical Type Theory

Bruno Barras j.w.w. Valentin Maestracci and Luc Chabassier

June 24, 2022

Why Cubical Type Theory?

Encoding of Cubical Type Theory:

- Having a 21st century formalism in Dedukti
- (Encoding HoTT is not fun enough)
- Raises challenging problems of broad interest

Encoding Type Theories in Dedukti

Encoding a Type Theory T usually consists of:

- \triangleright a Dedukti theory D(T),
- ▶ a translation that turns T-term t into a Dedukti term [t] in theory D(T).

Expected property (in this talk):

Soundness: a well-typed term in T leads to a well-typed term

$$\vdash_{\mathcal{T}} M : A \Rightarrow D(\mathcal{T}) \vdash_{\lambda \Pi/\mathcal{R}} \llbracket M \rrbracket : \llbracket A \rrbracket$$

Definitional Equality: the nice case

Type theories usually use definitional equality through a conversion rule

 $\frac{\vdash_{\mathcal{T}} M : A \vdash_{\mathcal{T}} A = B}{\vdash_{\mathcal{T}} M : B}$

It is convenient to have that whenever $\vdash_T A = B$, we have the corresponding conversion $\vdash_{\lambda \Pi / \mathcal{R}} \llbracket A \rrbracket = \llbracket B \rrbracket$.

Issue: cases where do not know how to turn equality of T into rewriting rules and have this property?

And when it is not possible?

Encode definitional equality of T as a propositional equality in Dedukti

Conversion rule is justified by inserting transports

Eventually ends up in "transport hell"

A general framework has been introduced to help in this situation: Two Layers Type Theories (2LTT, Annenkov, Kraus et al)

Overview

Cubical Type Theory

Encoding 2LTTs in Dedukti

Encoding Cubical TT as a 2LTT

Facing the Transport Hell

Cubical Type Theory

Geometric (higher dimensional) interpretation of TT

► Introduces an interval "pretype" I with endpoints 0 and 1 (actually a de Morgan algebra)

Paths as I-indexed functions

- Path construction and application: similar to non-dependent product
- Path induction takes the form of a composition operation
- That's cubical magic!

Dimension 1...

Judgement $i : \mathbb{I} \vdash M : A$ represents a (continuous) path in A:

(heterogeneous path if A depends on i)

Dimension 2 and beyond...

Judgement $i : \mathbb{I}, j : \mathbb{I} \vdash M : A$ represents a square in A:

Judgement $i : \mathbb{I}, j : \mathbb{I}, k : \mathbb{I} \vdash M : A$ represents a cube in A, etc.

Faces

Judgement contexts may be restricted to a set of faces of an

hypercube: $\Gamma, \phi \vdash$

Judgement $\vdash \phi : \mathbb{F}$ expresses that face ϕ is well-formed

Example: $i = 1 \lor i = 0 \land j = 0 \vdash M : A$

Typing Rules

cf CCHM paper (CHM would do as well).

Path introduction and application:

$$\frac{i : \mathbb{I} \vdash M : A}{\vdash \langle i \rangle M : \operatorname{Path}_{A} M(i0) M(i1)} \xrightarrow{\begin{array}{c} \vdash p : \operatorname{Path}_{A} t u & \vdash r : \mathbb{I} \\ \vdash p : A \end{array}}$$

$$\frac{\vdash p : \operatorname{Path}_{A} t u & \vdash r : \mathbb{I}}{\vdash p : \operatorname{Path}_{A} t u} \xrightarrow{\begin{array}{c} \vdash p : \operatorname{Path}_{A} t u \\ \vdash p : D : A \end{array}}$$

Composition:

$$i: \mathbb{I} \vdash A \text{ type } \vdash \phi: \mathbb{F}$$

$$\phi, i: \mathbb{I} \vdash u: A(i) \vdash a_0: A(i0)[\phi \Rightarrow u(i0)]$$

$$\vdash \text{comp}^i A \phi u a_0: A(i1)[\phi \Rightarrow u(i1)]$$

(where $\vdash M : A[\phi \Rightarrow N]$ means $\vdash M : A$ and $\phi \vdash M = N$)

Challenges

Encode a de Morgan algebra:

- Associative Commutative
- Non-linear rules (complement)

Path reduction rules

Some rules require typing information

Expressing the coherence condition of composition

- ▶ Composition rule cannot be expressed by a mere $\lambda\Pi/\mathcal{R}$ type
- Face witnesses are in the context (shallow encoding)
- ⇒ Coherence condition has to be materialized by a type

Overview

Cubical Type Theory

Encoding 2LTTs in Dedukti

Encoding Cubical TT as a 2LTT

Facing the Transport Hell

Two Layers Type Theories

2 copies of MLTT: internal and external layers

In Dedukti:

```
T : Type. (; code for internal types ;)

def El : T -> Type (; decoding fun ;)

xT : Type. (; code for external types ;)

def xEl : xT -> Type.
```

...and the types constructors (the usual suspects):

```
False, True, Pi, Sig, Nat, Eq xFalse, xTrue, xPi, xSig, xNat, xEq
```

Embedding the inner layer inside the outer one

Every internal type has an isomorphic external type

```
def c : T -> xT.

(; iso between El A and xEl (c A) ;)
def cUp : A : T -> El A -> xEl (c A).
def cDown : A : T -> xEl (c A) -> El A.

[A, a] cDown A (cUp A a) --> a.
[A, a] cUp A (cDown A a) --> a.
```

No alignment of internal/external type constructors:

- xEq is assumed to enjoy Uniqueness of Identity Proofs (UIP) and functional extensionality (FunExt)
- ► Eq (renamed Path) satisfies Univalence

Overview

Cubical Type Theory

Encoding 2LTTs in Dedukti

Encoding Cubical TT as a 2LTT

Facing the Transport Hel

Cubical as a Two Layer TT

The external layer encodes judgements:

 Cubical's definitional equality is an external (propositional) equality

lacktriangle The interval ${\mathbb I}$ and face type ${\mathbb F}$ are external types

de Morgan algebra

Symbols and rewrite rules related to a de Morgan algebra

Adding ACD makes the system non-confluent $(a \lor a \land b = a)$

⇒ ACD remain at the external level (deemed less useful than the above laws)

Encoding paths

```
def Path: A: T -> El A -> El A -> T.
def lam : A : T ->
          p : (xEl I -> El A) ->
          El (Path A (p 0) (p 1)).
def app : A : T -> u : El A -> v : El A ->
      El (Path A u v) -> xEl I -> El A.
[A, p, u, v, r] app A u v (lam A p) r \longrightarrow (p r).
[A, p, u, v] app A u v p 0 --> u.
[A, p, u, v] app A u v p 1 \rightarrow v.
(; use annotations to avoid typed reduction ;)
```

Face operations

Some implementations reuse \mathbb{I} for elements of \mathbb{F} . We don't.

```
def eq0 : xEl I -> xEl F. (; hyperplane ;)
def eq1 : xEl I -> xEl F. (; hyperplane ;)
def Fmin: xEl F -> xEl F -> xEl F.(;intersection;)
def Fmax: xEl F -> xEl F -> xEl F. (; union ;)
```

eq0 is intended to be applied to variables

Those rewrite rules explain what happens when an interval variable is substituted:

```
[f, g] eq0 (Fmin f g) --> Fmax (eq0 f) (eq0 g).
(; ... more similar rules ... ;)
```

Face constraints in the context

How do we represent contexts Γ , ϕ ?

 ϕ is turned into a proposition that tells which points belong to the face. Ideally it should be irrelevant (a la SProp). Plan B is to use the external equality...

```
def faceType : xEl F -> xT.
```

This type is isomorphic to its Curry-Howard representation:

```
faceType (eq0 i) \approx xEq I i 0 faceType (eq1 i) \approx xEq I i 1 faceType (Fmin f g) \approx faceType f \times faceType g faceType (Fmax f g) \approx || faceType f + faceType g ||
```

Up to isomorphism otherwise we lose confluence:

```
\texttt{facType} \ \texttt{f} \times \texttt{1} \leftarrow \texttt{faceType}(\texttt{Fmin} \ \texttt{f} \ \texttt{1f}) \rightarrow \texttt{faceType} \ \texttt{f}
```

Compositions

```
\frac{i: \mathbb{I} \vdash A \text{ type } \phi, i: \mathbb{I} \vdash u: A(i) \vdash a_0: A(i0)[\phi \Rightarrow u(i0)]}{\vdash \text{comp}^i A \phi \ u \ a_0: A(i1)[\phi \Rightarrow u(i1)]}
```

(hiding El and xEl)

Glueing

Glueing is the feature of CTT from which Univalence is derived. It constructs paths between isomorphic types.

Not yet implemented

(Does not look good)

Overview

Cubical Type Theory

Encoding 2LTTs in Dedukti

Encoding Cubical TT as a 2LTT

Facing the Transport Hell

Usefulness of the encoding

Can we actually encode Cubical terms in our encoding?

- Each non-structural rule of Cubical is represented by a Dedukti symbol
- Conversion steps are represented by a transport steps

Translation [t] has the same shape as t + t transports at any place

Transport hell:

- Simple transports when type do not match because of a conversion is manageable
- Hell comes from the fact that a single term may be decorated by transports in many ways
 They are all provably equal

Such transports are hardly manageable by humans

Generating transports

This problem is similar to that of translating Extensional Type Theory to Intensional Type Theory

Previous work (Winterhalter et al):

- ► ETT can be translated to ITT + UIP + FunExt
- implemented in MetaCoq

Chabassier ported this work to Dedukti

generates directly well-typed terms

Bad news: both attempts do not scale to non-trivial terms

Conclusions

Many challenges, few victories

However a solution exists in principle thanks to 2LTT

Possible paths to explore

- Try to optimize transports
 Strong incentive to squeeze external equality
- Extend Dedukti with useful adhoc structures (AC, ACUI, ACDUI)
- Extend Dedukti with simple decision procedures