A PRIMEIRA LEI E OUTROS CONCEITOS FUNDAMENTAIS

Referência Base: Capítulo 2: SMITH, J. M.; VAN NESS, H. C.; ABBOTT, M. M. Introdução à termodinâmica da engenharia química. Rio de Janeiro: LTC, 2007.

EXPERIÊNCIAS DE JOULE

- Deixa-se cair dois corpos de uma altura *h* ligados a um eixo que faz girar várias palhetas dentro de água.
- Mede-se o trabalho realizado sobre a água pelo agitador e a variação na temperatura da água.
- Observou-se que era sempre necessário uma determinada quantidade de trabalho para elevar um grau na temperatura da água.
- A temperatura inicial da água pode ser restabelecida pelo contato com um corpo mais frio.
- Joule mostrou que há uma relação entre calor e trabalho e que calor e trabalho são formas de energia.

Energia Interna (U)

É a soma de todas as modalidades de energia que um sistema possui em seu interior.

Abarca a soma das energias cinéticas das partículas constituintes - atrelada ao movimento térmico dessas - as energias potenciais de todas as interações entre tais partículas microscópicas, com destaque para a elétrica no caso das energias nas ligações químicas (energia química) e para a nuclear no caso das energias de interação entre núcleons (energia nuclear); e a soma das energias das partículas de campo confinadas.

Exemplo de um sistema gasoso evidenciando uma das parcelas de sua energia interna: a sua energia térmica

wikipedia

- ENERGIA INTERNA NÃO TEM UMA DEFINIÇÃO EXATA EM TERMODINÂMICA.
- NÃO PODE SER MEDIDA DIRETAMENTE.
- SOMENTE VARIAÇÕES DA ENERGIA INTERNA PODEM SER MEDIDAS.

A Primeira Lei da Termodinâmica

A primeira lei da termodinâmica é uma versão da lei de conservação da energia.

Embora a energia assuma várias formas, a quantidade de energia contida num sistema é constante e, quando energia em uma forma desaparece, ela reaparece simultaneamente sob outras formas.

A energia total transferida para um sistema é igual à variação de sua energia interna, ou seja, em todo processo natural, a energia do universo se conserva.

Observa-se também a equivalência entre trabalho e calor

 Δ (Energy of the system) $+ \Delta$ (Energy of surroundings) = 0 (1)

Balanço de energia em sistemas fechados

Um sistema fechado é aquele em que a massa é obrigatoriamente constante. (Massa nem entra e nem sai.)

Para começar o desenvolvimento dos conceitos termodinâmicos, é necessário estudar os sistemas fechados que são mais simples. Posteriormente passaremos ao estudo dos sistemas abertos que são muito mais importantes do ponto de vista industrial.

Se o sistema é fechado, então toda troca de energia dele com as vizinhanças é feita por meio de trabalho e calor.

$$\Delta$$
(Energia das vizinhanças) = $\pm Q \pm W$

Devem estar sempre referenciados ao sistema

Convenciona-se:

Q e W serão positivos <u>quando escoam das vizinhanças para dentro do</u> <u>sistema</u>. Em caso contrario serão negativos.

Não podemos perder de vista que:

$$Q_{sistema} = \text{-}Q_{vizinhanças}$$

$$W_{sistema} = -W_{vizinhanças}$$

Aplicando na Eq 1:

$$\Delta$$
(Energy of surroundings) = $Q_{\text{surr}} + W_{\text{surr}} = -Q - W$

$$\Delta$$
(Energy of the system) = $Q + W$
(2)

A VARIAÇÃO DE ENERGIA TOTAL DE UM SISTEMA FECHADO E IGUAL A ENERGIA LIQUIDA TRANSFERIDA EM FORMA DE CALOR E TRABALHO

Sistemas fechados = apenas a energia interna muda.

$$\Delta U^r = Q + W \quad (3)$$

Energia interna total do sistema

Em forma diferencial, temos:

$$dU^t = dQ + dW \tag{4}$$

Propriedade extensiva: depende da quantidade de matéria que o sistema possui.

$$V' = mV \qquad V' = nV \qquad U' = mU \qquad U' = mU$$

Propriedades intensivas: independem da quantidade de matéria que o sistema possui.

Para um sistema fechado com n moles.

$$\Delta(nU) = n \, \Delta U = Q + W \quad (5)$$

$$d(nU) = n dU = dQ + dW$$
 (6)

EXISTE UMA FORMA DE ENERGIA, A ENERGIA INTERNA, QUE E UMA PROPRIEDADE INTRINSECA DE UM SISTEMA. PARA UM SISTEMA FECHADO EM REPOUSO, VARIAÇÕES NESSA PROPRIEDADE SÃO FORNECIDAS PELAS EQS 5 E 6.

Estado Termodinâmico e Funções de Estado

O conjunto dos valores das propriedades termodinâmicas de um sistema denomina-se **estado termodinâmico** ou estado do sistema.

As variáveis que não dependem da historia passada de um sistema para assumirem determinado valor são chamadas funções de estado. Ou seja, dependem apenas das condições presentes/atuais do sistema.

No caso das variáveis Q e W, estas não correspondem a funções de estado. **Dependem das variações de energia envolvidas no processo para atingir determinado estado.**

Para um sistema fechado, pode-se atingir determinado estado por diferentes processos. Neste caso, as quantidades de calor (Q) e trabalho (W) vão diferir para cada processo. No entanto, a soma Q + W vai ser sempre a mesma.

Esta é a base para se identificar a energia interna como função de estado.

Equilíbrio

A discussão sobre equilíbrio termodinâmico ocorre em duas partes, sendo a primeira feita a partir de três tipos particulares de equilíbrio, a saber, o térmico, o mecânico e o químico e de fases. Estes três tipos de equilíbrio são caracterizados por meio de propriedades termodinâmicas intensivas cujas homogeneidades (homogeneidade indica igualdade espacial) são exigidas, respectivamente, a temperatura, a pressão e os potenciais químicos de todas as espécies químicas presentes.

O equilíbrio termodinâmico é apresentado como um estado em que os três equilíbrios acontecem simultaneamente, ou seja, um sistema será considerado em equilíbrio (neste trabalho, o termo equilíbrio será utilizado como sinônimo de equilíbrio termodinâmico) quando estiver em equilíbrio térmico, mecânico e químico/de fases.

A REGRA DAS FASES

$$F = 2 - \pi + N$$

Fornece o numero mínimo de variáveis intensivas que devem ser especificadas para fixar o valor de todas as outras variáveis.

Para qualquer sistema fechado, o estado de equilíbrio é completamente definido pela REGRA DAS FASES.

Processo REVERSIVEL e IRREVERSIVEL

Processos Reversíveis: São processos termodinâmicos que podem ser desfeitos através de pequenas mudanças no ambiente.

- Não tem atrito;
- Nunca está mais que infinitesimalmente afastado do equilíbrio;
- Acontece por meio de uma sucessão de estágios de equilíbrio;
- Pode ser revertido em qualquer ponto por meio;
- Quando revertido, volta no mesmo sentido, restaurando o estado inicial tanto do sistema como das vizinhanças.

Processos Irreversíveis: São processos termodinâmicos que não podem ser desfeitos através de pequenas mudanças no ambiente.

Exemplos:

- Envelhecimento dos seres vivos
- Um copo de vidro que cai
- Um pão assado.

Como se houvesse uma seta do tempo indicando para onde o processo segue e não volta mais.

Processo REVERSIVEL e IRREVERSIVEL

m

Um sistema que passa por um processo irreversível não está impedido de retornar ao seu estado inicial. No entanto, naturalmente, se o sistema retornar ao estado inicial não será possível fazer o mesmo com sua vizinhança. Causas que tornam um processo irreversível: "Atrito, Expansão não resistida, mistura de duas substancias diferentes, troca de calor com diferença de temperatura..."

Processo MECANICAMENTE REVERSIVEL

Todos os processos reais são acompanhados em maior ou menor escala de algum efeito dissipativo.

O máximo que um processo pode chegar perto da reversibilidade é atingir duas exigências:

- Equilíbrio interno do sistema Caracterizado pela uniformidade das propriedades internas do sistema.
- O sistema nunca fica mais que infinitesimalmente afastado do equilíbrio mecânico com sua vizinhança. **Ex:** No caso anterior, a pressão interna (P) do sistema não está mais que um valor diminuto fora do equilíbrio com a vizinhança.

TODOS OS PROCESSOS REAIS QUE SATISFAZEM AS DUAS EXIGÊNCIAS ACIMA SÃO DITOS <u>MECANICAMENTE REVERSÍVEIS</u>.

Processos a V constante e P constante

Num sistema fechado contendo n moles de um fluido:

$$d(nU) = dQ + dW^{(7)}$$

Q e W representam calor trocado e trabalho total qualquer que seja n. Se o processo for mecanicamente reversível:

$$dW = -P d(nV)$$
 (8)

Lembrando da Eq. 6: d(nU) = n dU = dQ + dW

Substituindo a Eq. 6 na Eq 8:

$$d(nU) = dQ - P d(nV)$$
(9)

Balanço de energia para n moles de fluido homogêneo num sistema fechado passando por um processo mecanicamente reversível.

Processo a Volume constante

Se o processo ocorre a volume total constante.

$$dQ = d(nU) \quad (10)$$

Integrando: $Q = n \Delta U$ (11)

Num sistema fechado em um processo mecanicamente reversível a V constante calor trocado é igual a variação de energia interna.

Processo a Pressão constante

Explicitando dQ na Eq 9: dQ = d(nU) + P d(nV)

Se P for constante:
$$dQ = d(nU) + d(nPV) = d[n(U + PV)]$$

DEFINIÇÃO de ENTALPIA:
$$H \equiv U + PV$$
 (12) Para 1 mol de massa ou substância \uparrow \uparrow \uparrow Propriedades intensivas

$$dQ = d(nH) (13)$$

$$Q = n.\Delta H$$
 (14)

Num sistema fechado em um processo mecanicamente reversível a P constante calor trocado é igual a variação de entalpia do sistema.

Exemplo 2.8

A Entalpia

$$dH = dU + d(PV)$$
 (15)

Para 1 mol de massa ou substância

$$\Delta H = \Delta U + \Delta (PV)$$
 (16)

U, H, V → Propriedades intensivas e funções de estado Podem ser tabuladas Q e W não podem ser tabuladas

A maior utilidade de H reside no fato de esta ser uma propriedade intensiva e função de estado por advir da combinação de propriedades intensivas e também funções de estado (pressão, volume especifico, energia interna especifica). Por este motivo, facilmente calculada (tabulada).

Capacidade calorífica ou Capacidade Termica (C = dQ/dT)

- A capacidade calorífica de uma substância é uma propriedade extensiva (C).
 - Capacidade calorífica específica (C_e)

 $c_e = C/m$, em joules por kelvin por grama

Capacidade calorífica molar (C_m)

 $c_m = c_s/n$, em joules por kelvin por mol

Capacidades Caloríficas Especiais

➤ Capacidade calorífica a volume constante (C_V)

DEFINIÇÃO:
$$C_V \equiv \left(\frac{\partial U}{\partial T}\right)_V$$
 (17)
$$dU = C_V dT (18)$$

$$\Delta U = \int_{T_1}^{T_2} C_V dT (19)$$

Processo mecanicamente reversível. Eq 11

$$Q = n \ \Delta U = n \int_{T_1}^{T_2} C_V \ dT \ (20)$$

Capacidade calorífica a pressão constante (C_p)

DEFINIÇÃO:
$$C_P \equiv \left(\frac{\partial H}{\partial T}\right)_P (21)$$

$$Q = n \ \Delta H = n \int_{T_1}^{T_2} C_P \, dT \ (24)$$

$$dH = C_P dT \quad (22)$$

$$\Delta H = \int_{T_1}^{T_2} C_P dT$$
 (23) Exemplo 2.9

BALANÇOS DE MASSA E ENERGIA EM SISTEMAS ABERTOS

As leis da conservação de massa e energia se aplicam a todos os sistemas, sejam eles <u>fechados ou abertos</u>.

MEDIDAS DE ESCOAMENTO

Vazão mássica: m

Vazão molar: n

Vazão volumétrica: q

Velocidade: u

$$\dot{m} = uA\rho \quad (25)$$

$$\dot{n} = uA\rho$$
 (26)

M: Massa molar

A: área da seção transversal

ρ: densidade molar ou

especifica

u: velocidade media da corrente

na direção normal a A

BALANÇO DE MASSA EM SISTEMAS ABERTOS

$$\frac{d m_{vc}}{dt} + \Delta (\dot{m})_{corr} = 0 \qquad (27)$$

$$\Delta(\dot{m})_{corr} = \dot{m}_3 - (\dot{m}_1 + \dot{m}_2)$$

Substituindo a Eq 25 na Eq 27:

$$\frac{d m_{vc}}{dt} + \Delta (\rho u A)_{corr} = 0$$
 (28)

Equação da continuidade

Em estado estacionário:

$$\Delta(\rho uA)_{corr} = 0$$

Lembrando que o estado estacionário implica na não variação da massa do VC com o tempo.

BALANÇO DE ENERGIA GERAL

$$\frac{d(mU)_{vc}}{dt} = -\Delta[(U + \frac{u^2}{2} + zg)\dot{m}]_{corr} + \mathbf{\dot{Q}} + \text{ taxa de trabalho}$$
 (29)

taxa de trabalho =
$$\mathbf{W}_{e} - \Delta[(PV)\dot{m}]_{corr}$$

$$\mathbf{\dot{W}}_{e}=\mathbf{\dot{W}}$$

Lembrando que um Δ representa:
"O que sai menos o que entra."
Mas no caso de um escoamento, o fluido vai de uma região de maior pressão para uma região de menor pressão.

Substituindo na Eq. 29:

$$\frac{d(mU)_{vc}}{dt} = -\Delta[(U + u^2/2 + zg)\dot{m}]_{corr} + \dot{\mathbf{Q}} - \Delta[(\mathbf{PV})\dot{m}]_{corr} + \dot{\mathbf{W}}$$

Lembrando: $H \equiv U + PV$

Chegamos, depois de substituição:

$$\frac{d(mU)_{vc}}{dt} + \Delta[(H + u^2/2 + zg)\dot{m}]_{corr} = \dot{\mathbf{Q}} + \dot{\mathbf{W}} \quad (30)$$

SIMPLIFICAÇÃO

Frequentemente as parcelas de variação das energia cinética e potencial nas correntes não precisam ser são levadas em conta. Sendo assim podemos simplificar:

$$\frac{d(mU)_{vc}}{dt} + \Delta(H\dot{m})_{corr} = \dot{\mathbf{Q}} + \dot{\mathbf{W}} \quad (31)$$

Caso de escoamento permanente em estado estacionário

Em estado estacionário as parcelas variantes com o tempo ficam zeradas. Isso também significa que as propriedades do volume de controle não variam. O único tipo de trabalho que pode ocorrer é o trabalho de eixo. A APLICAÇÃO DESSA EQUAÇÃO SE DÁ EM PROCESSOS COM ESCOAMENTO ESTACIONARIO EM ESTADO ESTACIONARIO.

$$\Delta[(H + 1/2u^2 + zg)\dot{m}]_{corr} = Q + W_e$$
 (32)

SIMPLIFICAÇÃO: processo com uma entrada e uma saída.

$$\Delta(H + u^2/2 + zg)\dot{m} = \dot{Q} + \dot{W}_e$$
 (33)

Dividindo pela vazão mássica:
$$\Delta H + \Delta u^2 / 2 + g\Delta z = Q + W_e$$
 (34)

$$E_{cin}$$
 e E_{pot} negligenciadas: $\Delta H = Q + W_{e}$ (35)

Muitas vezes W_e fica somente W

Escoamento permanente, ou estacionário: aquele no qual a velocidade e a pressão num determinado ponto, não variam com o tempo. A velocidade e a pressão podem variar de um ponto para outro do fluxo, mas se mantêm constantes em cada ponto imóvel do espaço, em qualquer momento do tempo, fazendo a pressão e a velocidade em um ponto serem funções das coordenadas do ponto e não dependentes do tempo. No escoamento permanente a corrente fluida é dita "estável".

REFERÊNCIAS

- . VAN NESS, H.C.; SMITH J. M.; ABBOTT, M. M. Introdução à Termodinâmica da Engenharia Química, 7a Ed. Rio de Janeiro: LTC, 2009.
- . KORETSKY, M. D. **Termodinâmica para Engenharia Química**, 1^a ed. Rio de Janeiro: LTC, 2007.