ECON2125/8013

Lecture 6

John Stachurski

Semester 1, 2015

Announcements

None

New Topic LINEAR ALGEBRA

Motivation

Linear algebra is used to study linear models

Foundational for many disciplines related to economics

- Economic theory
- Econometrics and statistics
- Finance
- Operations research

Example

Equilibrium in a single market with price p

$$q_d = a + bp$$

$$q_s = c + dp$$

$$q_s = q_d$$

What price p clears the market, and at what quantity $q=q_s=q_d$?

Remark: Here a, b, c, d are the model parameters or coefficients

Treated as fixed for a single computation but might vary between computations to better fit the data

Example

Determination of income

$$C = a + b(Y - T)$$

$$E = C + I$$

$$G = T$$

$$Y = E$$

Solve for Y as a function of I and G

Bigger, more complex systems found in problems related to

- Regression and forecasting
- Portfolio analysis
- Ranking systems
- Etc., etc. any number of applications

A general system of equations:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1K}x_K = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2K}x_K = b_2$$

$$\vdots$$

$$a_{N1}x_1 + a_{N2}x_2 + \dots + a_{NK}x_K = b_N$$

Typically

- the a_{nm} and b_n are exogenous / given / parameters
- the values x_n are endogenous

Key question

• What values of x_1, \ldots, x_K solve this system?

We often write this in matrix form

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1K} \\ a_{21} & a_{22} & \cdots & a_{2K} \\ \vdots & \vdots & & \vdots \\ a_{N1} & a_{N2} & \cdots & a_{NK} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_K \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_K \end{pmatrix}$$

or

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

And we solve it on a computer


```
In [1]: import numpy as np
```

In [2]: from scipy.linalg import solve

In
$$[4]$$
: b = $(1, 2, 0)$

In [5]: A, b = np.asarray(A), np.asarray(b)

In [6]: solve(A, b)

Out[6]: array([0. , 3.5, -1.5])

This tells us that the solution is

$$array([0., 3.5, -1.5])$$

That is,

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 3.5 \\ -1.5 \end{pmatrix}$$

Hey, this is easy — what do we need to study for?

But now let's try this similar looking problem

```
In [1]: import numpy as np
```

In [2]: from scipy.linalg import solve

In [3]: A = [[0, 2, 4], ...: [1, 4, 8], ...: [0, 3, 6]]

In [4]: b = (1, 2, 0)

In [5]: A, b = np.asarray(A), np.asarray(b)

In [6]: solve(A, b)

This is the output that we get

```
LinAlgError Traceback (most recent call last)

<ipython-input-8-4fb5f41eaf7c> in <module>()

----> 1 solve(A, b)

/home/john/anaconda/lib/python2.7/site-packages/scipy/linal
97 return x
98 if info > 0:

---> 99 raise LinAlgError("singular matrix")
100 raise ValueError('illegal value in %d-th argume LinAlgError: singular matrix
```

What does this mean? How can we fix it?

Moral: We still need to understand the concepts

Vector Space

Recall that $\mathbb{R}^N := \text{set of all } N\text{-vectors}$

An N-vector \mathbf{x} is a tuple of N real numbers:

$$\mathbf{x} = (x_1, \dots, x_N)$$
 where $x_n \in \mathbb{R}$ for each n

We can also write x vertically, like so:

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix}$$

Figure : Visualization of vector \mathbf{x} in \mathbb{R}^2

Figure : Three vectors in \mathbb{R}^2

The vector of ones will be denoted 1

$$\mathbf{1} := \left(\begin{array}{c} 1 \\ \vdots \\ 1 \end{array} \right)$$

Vector of zeros will be denoted 0

$$\mathbf{0} := \left(\begin{array}{c} 0 \\ \vdots \\ 0 \end{array} \right)$$

Linear Operations

Two fundamental algebraic operations:

- 1. Vector addition
- 2. Scalar multiplication
- 1. Sum of $\mathbf{x} \in \mathbb{R}^N$ and $\mathbf{y} \in \mathbb{R}^N$ defined by

$$\mathbf{x} + \mathbf{y} :=: \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix} := \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_N + y_N \end{pmatrix}$$

Example 1:

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} + \begin{pmatrix} 2 \\ 4 \\ 6 \\ 8 \end{pmatrix} := \begin{pmatrix} 3 \\ 6 \\ 9 \\ 12 \end{pmatrix}$$

Example 2:

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} := \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$$

Figure: Vector addition

2. Scalar product of $\alpha \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^N$ defined by

$$\alpha \mathbf{x} = \alpha \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix} := \begin{pmatrix} \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_N \end{pmatrix}$$

Example 1:

$$0.5 \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} := \begin{pmatrix} 0.5 \\ 1.0 \\ 1.5 \\ 2.0 \end{pmatrix}$$

Example 2:

$$-1\begin{pmatrix} 1\\2\\3\\4 \end{pmatrix} := \begin{pmatrix} -1\\-2\\-3\\-4 \end{pmatrix}$$

Figure: Scalar multiplication

Subtraction performed element by element, analogous to addition

$$\mathbf{x} - \mathbf{y} := \begin{pmatrix} x_1 - y_1 \\ x_2 - y_2 \\ \vdots \\ x_N - y_N \end{pmatrix}$$

Def can be given in terms of addition and scalar multiplication:

$$\mathbf{x} - \mathbf{y} := \mathbf{x} + (-1)\mathbf{y}$$

Figure: Difference between vectors

Incidentally, most high level numerical libraries treat vector addition and scalar multiplication in the same way — elementwise

```
In [1]: import numpy as np
In [2]: x = np.array((2, 4, 6))
In [3]: y = np.array((10, 10, 10))
In [4]: x + y # Vector addition
Out[4]: array([12, 14, 16])
In [6]: 2 * x # Scalar multiplication
Out[6]: array([4, 8, 12])
```

$$\mathbf{y} = \sum_{k=1}^K \alpha_k \mathbf{x}_k = \alpha_1 \mathbf{x}_1 + \dots + \alpha_K \mathbf{x}_K$$

where $\alpha_1, \ldots, \alpha_K$ are scalars

Example.

$$0.5 \begin{pmatrix} 6.0 \\ 2.0 \\ 8.0 \end{pmatrix} + 3.0 \begin{pmatrix} 0 \\ 1.0 \\ -1.0 \end{pmatrix} = \begin{pmatrix} 3.0 \\ 4.0 \\ 1.0 \end{pmatrix}$$

Inner Product

The inner product of two vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^N is

$$\mathbf{x}'\mathbf{y} := \sum_{n=1}^{N} x_n y_n$$

Example: $\mathbf{x} = (2,3)$ and $\mathbf{y} = (-1,1)$ implies that

$$\mathbf{x}'\mathbf{y} = 2 \times (-1) + 3 \times 1 = 1$$

Example: $\mathbf{x} = (1/N)\mathbf{1}$ and $\mathbf{y} = (y_1, \dots, y_N)$ implies

$$\mathbf{x}'\mathbf{y} = \frac{1}{N} \sum_{n=1}^{N} y_n$$

```
In [1]: import numpy as np
```

In
$$[2]$$
: $x = np.array((1, 2, 3, 4))$

In
$$[3]: y = np.array((2, 4, 6, 8))$$

In [6]: np.sum(x * y) # Inner product

Out[6]: 60

Fact. For any $\alpha, \beta \in \mathbb{R}$ and any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^N$, the following statements are true:

- 1. x'y = y'x
- 2. $(\alpha \mathbf{x})'(\beta \mathbf{y}) = \alpha \beta(\mathbf{x}'\mathbf{y})$
- 3. x'(y+z) = x'y + x'z

For example, item 2 is true because

$$(\alpha \mathbf{x})'(\beta \mathbf{y}) = \sum_{n=1}^{N} \alpha x_n \beta y_n = \alpha \beta \sum_{n=1}^{N} x_n y_n = \alpha \beta (\mathbf{x}' \mathbf{y})$$

Ex. Use above rules to show that $(\alpha \mathbf{y} + \beta \mathbf{z})'\mathbf{x} = \alpha \mathbf{x}'\mathbf{y} + \beta \mathbf{x}'\mathbf{z}$

The next result is a generalization

Fact. Inner products of linear combinations satisfy

$$\left(\sum_{k=1}^{K} \alpha_k \mathbf{x}_k\right)' \left(\sum_{j=1}^{J} \beta_j \mathbf{y}_j\right) = \sum_{k=1}^{K} \sum_{j=1}^{J} \alpha_k \beta_j \mathbf{x}_k' \mathbf{y}_j$$

Norms and Distance

The (Euclidean) **norm** of $\mathbf{x} \in \mathbb{R}^N$ is defined as

$$\|\mathbf{x}\| := \sqrt{\mathbf{x}'\mathbf{x}} = \left(\sum_{n=1}^{N} x_n^2\right)^{1/2}$$

Interpretation:

- ||x|| represents the "length" of x
- $\|\mathbf{x} \mathbf{y}\|$ represents distance between \mathbf{x} and \mathbf{y}

Figure : Length of red line $=\sqrt{x_1^2+x_2^2}=:\|\mathbf{x}\|$

 $\|\mathbf{x} - \mathbf{y}\|$ represents distance between \mathbf{x} and \mathbf{y}

Fact. For any $\alpha \in \mathbb{R}$ and any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^N$, the following statements are true:

- 1. $\|\mathbf{x}\| \ge 0$ and $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{0}$
- $2. \|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$
- 3. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (triangle inequality)
- 4. $|x'y| \le ||x|| ||y||$ (Cauchy-Schwarz inequality)

For example, let's show that $\|\mathbf{x}\| = 0 \iff \mathbf{x} = \mathbf{0}$

First let's assume that $\|\mathbf{x}\| = 0$ and show $\mathbf{x} = \mathbf{0}$

Since $\|\mathbf{x}\| = 0$ we have $\|\mathbf{x}\|^2 = 0$ and hence $\sum_{n=1}^N x_n^2 = 0$

That is $x_n = 0$ for all n, or, equivalently, $\mathbf{x} = \mathbf{0}$

Next let's assume that $\mathbf{x} = \mathbf{0}$ and show $\|\mathbf{x}\| = 0$

This is immediate from the definition of the norm

Fact. If $\mathbf{x} \in \mathbb{R}^N$ is nonzero, then the solution to the optimization problem

$$\max_{\mathbf{y}} \mathbf{x}' \mathbf{y} \quad \text{ subject to } \quad \mathbf{y} \in \mathbb{R}^N \text{ and } \|\mathbf{y}\| = 1$$

is
$$\hat{\mathbf{x}} := \mathbf{x}/\|\mathbf{x}\|$$

Proof: Fix nonzero $\mathbf{x} \in \mathbb{R}^N$

Let $\hat{\mathbf{x}} := \mathbf{x}/\|\mathbf{x}\| := \alpha \mathbf{x}$ when $\alpha := 1/\|\mathbf{x}\|$

Evidently $\|\hat{\mathbf{x}}\| = 1$

Pick any other $\mathbf{y} \in \mathbb{R}^N$ satisfying $\|\mathbf{y}\| = 1$

The Cauchy-Schwarz inequality yields

$$|y'x \le |y'x| \le ||y|| ||x|| = ||x|| = \frac{x'x}{||x||} = \hat{x}'x$$

Hence \hat{x} is the maximizer, as claimed

Span

Let $X \subset \mathbb{R}^N$ be any nonempty set

Set of all possible linear combinations of elements of X is called the **span** of X, denoted by $\operatorname{span}(X)$

For finite $X := \{x_1, \dots, x_K\}$ the span can be expressed as

$$\mathrm{span}(X) := \left\{ \text{ all } \sum_{k=1}^K \alpha_k \mathbf{x}_k \text{ such that } (\alpha_1, \dots, \alpha_K) \in \mathbb{R}^K \right\}$$

We are mainly interested in the span of finite sets...

Let's start with the span of a singleton

Let
$$X = \{\mathbf{1}\} \subset \mathbb{R}^2$$
, where $\mathbf{1} := (1,1)$

The span of X is all vectors of the form

$$\alpha \mathbf{1} = \begin{pmatrix} \alpha \\ \alpha \end{pmatrix} \quad \text{with} \quad \alpha \in \mathbb{R}$$

Constitutes a line in the plane that passes through

- the vector **1** (set $\alpha = 1$)
- the origin $\mathbf{0}$ (set $\alpha = 0$)

Figure : The span of $\mathbf{1}:=(1,1)$ in \mathbb{R}^2

Let
$$\mathbf{x}_1 = (3, 4, 2)$$
 and let $\mathbf{x}_2 = (3, -4, 0.4)$

By definition, the span is all vectors of the form

$$\mathbf{y} = lpha \left(egin{array}{c} 3 \ 4 \ 2 \end{array}
ight) + eta \left(egin{array}{c} 3 \ -4 \ 0.4 \end{array}
ight) \quad ext{where} \quad lpha,eta \in \mathbb{R}$$

It turns out to be a plane that passes through

- the vector \mathbf{x}_1
- the vector x₂
- the origin 0

Figure : Span of x_1, x_2

Fact. If $X \subset Y$, then $span(X) \subset span(Y)$

To see this, pick any nonempty $X \subset Y \subset \mathbb{R}^N$

Letting $\mathbf{z} \in \operatorname{span}(X)$, we have

$$\mathbf{z} = \sum_{k=1}^K \alpha_k \mathbf{x}_k$$
 for some $\mathbf{x}_1, \dots, \mathbf{x}_K \in X$, $\alpha_1, \dots, \alpha_K \in \mathbb{R}$

Since $X \subset Y$, each \mathbf{x}_k is also in Y, giving us

$$\mathbf{z} = \sum_{k=1}^K \alpha_k \mathbf{x}_k$$
 for some $\mathbf{x}_1, \dots, \mathbf{x}_K \in Y, \ \alpha_1, \dots, \alpha_K \in \mathbb{R}$

Hence $\mathbf{z} \in \operatorname{span}(\Upsilon)$

Let Y be any subset of \mathbb{R}^N , and let $X := \{\mathbf{x}_1, \dots, \mathbf{x}_K\}$

If $Y \subset \text{span}(X)$, we say that the vectors in X span the set Y

Alternatively, we say that X is a **spanning set** for Y

A nice situation: Y is large but X is small

 \implies large set Y "described" by the small number of vectors in X

Consider the vectors $\{\mathbf{e}_1,\ldots,\mathbf{e}_N\}\subset\mathbb{R}^N$, where

$$\mathbf{e}_1 := \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \mathbf{e}_2 := \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \mathbf{e}_N := \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

That is, e_n has all zeros except for a 1 as the n-th element

Vectors $\mathbf{e}_1, \dots, \mathbf{e}_N$ called the **canonical basis vectors** of \mathbb{R}^N

Figure : Canonical basis vectors in \mathbb{R}^2

Fact. The span of $\{\mathbf{e}_1,\ldots,\mathbf{e}_N\}$ is equal to all of \mathbb{R}^N

Proof for N = 2:

Pick any $\mathbf{y} \in \mathbb{R}^2$

We have

$$\mathbf{y} := \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} y_1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ y_1 \end{pmatrix}$$
$$= y_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2$$

Thus, $y \in \text{span}\{e_1, e_2\}$

Since \mathbf{y} arbitrary, we have shown that $\mathrm{span}\{\mathbf{e}_1,\mathbf{e}_2\}=\mathbb{R}^2$

Figure : Canonical basis vectors in \mathbb{R}^2

Example. Consider the set

$$P := \{(x_1, x_2, 0) \in \mathbb{R}^3 : x_1, x_2 \in \mathbb{R}\}\$$

Graphically, $P = \text{flat plane in } \mathbb{R}^3$, where height coordinate = 0

Let \mathbf{e}_1 and \mathbf{e}_2 be the canonical basis vectors in \mathbb{R}^3

 $\underline{\mathsf{Claim}} \colon \mathsf{span}\{\mathbf{e}_1, \mathbf{e}_2\} = P$

Proof:

Let $\mathbf{x} = (x_1, x_2, 0)$ be any element of P

We can write x as

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$$

In other words, $P \subset \text{span}\{\mathbf{e}_1, \mathbf{e}_2\}$

Conversely (check it) we have span $\{\mathbf{e}_1, \mathbf{e}_2\} \subset P$

Figure : span $\{\mathbf{e}_1, \mathbf{e}_2\} = P$

Linear Subspaces

A nonempty $S \subset \mathbb{R}^N$ called a **linear subspace** of \mathbb{R}^N if

$$\mathbf{x}, \mathbf{y} \in S \text{ and } \alpha, \beta \in \mathbb{R} \implies \alpha \mathbf{x} + \beta \mathbf{y} \in S$$

In other words, $S \subset \mathbb{R}^N$ is "closed" under vector addition and scalar multiplication

Note: Sometimes we just say subspace...

Example. \mathbb{R}^N itself is a linear subspace of \mathbb{R}^N

Fix
$$\mathbf{a} \in \mathbb{R}^N$$
 and let $A := \{ \mathbf{x} \in \mathbb{R}^N : \mathbf{a}'\mathbf{x} = 0 \}$

Fact. The set A is a linear subspace of \mathbb{R}^N

Proof: Let $\mathbf{x}, \mathbf{y} \in A$ and let $\alpha, \beta \in \mathbb{R}$

We must show that $\mathbf{z} := \alpha \mathbf{x} + \beta \mathbf{y} \in A$

Equivalently, that $\mathbf{a}'\mathbf{z} = 0$

True because

$$\mathbf{a}'\mathbf{z} = \mathbf{a}'(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha \mathbf{a}'\mathbf{x} + \beta \mathbf{a}'\mathbf{y} = 0 + 0 = 0$$

Fact. If Z is a nonempty subset of \mathbb{R}^N , then $\mathrm{span}(Z)$ is a linear subspace

Proof: If $\mathbf{x}, \mathbf{y} \in \operatorname{span}(Z)$, then \exists vectors \mathbf{z}_k in Z and scalars γ_k and δ_k such that

$$\mathbf{x} = \sum_{k=1}^{K} \gamma_k \mathbf{z}_k \quad \text{and} \quad \mathbf{y} = \sum_{k=1}^{K} \delta_k \mathbf{z}_k$$

$$\therefore \quad \alpha \mathbf{x} = \sum_{k=1}^{K} \alpha \gamma_k \mathbf{z}_k \quad \text{and} \quad \beta \mathbf{y} = \sum_{k=1}^{K} \beta \delta_k \mathbf{z}_k$$

$$\therefore \quad \alpha \mathbf{x} + \beta \mathbf{y} = \sum_{k=1}^{K} (\alpha \gamma_k + \beta \delta_k) \mathbf{z}_k$$

This vector clearly lies in span(Z)

Fact. If S and S' are two linear subspaces of \mathbb{R}^N , then $S \cap S'$ is also a linear subspace of \mathbb{R}^N .

Proof: Let S and S' be two linear subspaces of \mathbb{R}^N

Fix $\mathbf{x}, \mathbf{y} \in S \cap S'$ and $\alpha, \beta \in \mathbb{R}$

We claim that $\mathbf{z} := \alpha \mathbf{x} + \beta \mathbf{y} \in S \cap S'$

- Since $\mathbf{x}, \mathbf{y} \in S$ and S is a linear subspace we have $\mathbf{z} \in S$
- Since $\mathbf{x}, \mathbf{y} \in S'$ and S' is a linear subspace we have $\mathbf{z} \in S'$

Therefore $\mathbf{z} \in S \cap S'$

Other examples of linear subspaces

- ullet The singleton $\{{f 0}\}$ in \mathbb{R}^N
- \bullet Lines through the origin in \mathbb{R}^2 and \mathbb{R}^3
- ullet Planes through the origin in \mathbb{R}^3

Ex. Let S be a linear subspace of \mathbb{R}^N . Show that

- **1**. **0** ∈ *S*
- 2. If $X \subset S$, then $\operatorname{span}(X) \subset S$
- 3. $\operatorname{span}(S) = S$