

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/11
Paper 1 Pure Mather	natics 1 (P1)	Oc	tober/November 2017
			1 hour 45 minutes
Candidates answer or	n the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

•••	
••	 •••••
••	
•••	
•••	
•••	
•••	•
•••	••••••
••	••••••
••	
•••	
••	
••	
•••	
•••	•••••
••	••••••
••	
•••	••••••
••	

					•••••	•••••
	•••••		•••••		•••••	•••••
						•••••
					•••••	
		•••••			•••••	
•••••		, 	••••••	•••••	•••••	•••••
						•••••
	•••••					•••••
						•••••
		•••••			•••••	•••••
					•	
	•••••		•••••		•••••	•••••
						•••••
					•••••	
•••••	•••••	,		•••••	••••••	•••••
						•••••
						•••••

I	Find the value of r .	
•		
•		
•		
_		
•		
•		
•		
•		
•		
•		
•		
•		
•		

			ind the val	uc of n.				
		•••••			•••••		•••••	
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	••••••	•••••••	• • • • • • • • • • • • • • • • • • • •	••••••		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
							•••••	
	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
••••••	••••••	••••••	••••••	••••••		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
							•••••	
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
••••••	••••••	••••••	••••••	••••••		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
							•••••	
							•••••	
•••••	•••••	•••••		•••••			•••••	••••••
•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••		•••••	••••••

	n^3 , of such a cone is given by $V = \frac{1}{3}\pi r^2 h$. The machines produce cones for which $h + r = 18$.
(i)	Show that $V = 6\pi r^2 - \frac{1}{3}\pi r^3$. [1]
(ii)	Given that r can vary, find the non-zero value of r for which V has a stationary value and show that the stationary value is a maximum. [4]

		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		• • • • • •
(iii)	Find the maximum volume of a cone that can be made by these machines.	[1]
(iii)	Find the maximum volume of a cone that can be made by these machines.	
(iii)		
(iii)		

The diagram shows an isosceles triangle ABC in which AC = 16 cm and AB = BC = 10 cm. The circular arcs BE and BD have centres at A and C respectively, where D and E lie on AC.

(i)	Show that angle $BAC = 0.6435$ radians, correct to 4 decimal places.	ij
		••
		••
(ii)	Find the area of the shaded region. [5	5]
		••
		••
		••
		••

•••••
••••••
•••••
 •••••
 •••••
•••••
•••••

The points A(1, 1) and B(5, 9) lie on the curve $6y = 5x^2 - 18x + 19$.

6

Show that the equation of the perpendicular bisector of AB is $2y = 13 - x$.	[4

The perpendicular bisector of AB meets the curve at C and D.

)	Find, by calculation, the distance CD, giving your answer in the form $\sqrt{\left(\frac{p}{q}\right)}$, where p and d
	integers.

7 (a)

The diagram shows part of the graph of $y = a + b \sin x$. Find the values of the constants a and b . [2]

(b) (i) Show	that	the	equation

(i)	Show that the equation									
	$(\sin\theta + 2\cos\theta)(1 + \sin\theta - \cos\theta) = \sin\theta(1 + \cos\theta)$									
	may be expressed as $3\cos^2\theta - 2\cos\theta - 1 = 0$. [3]									
	$(\sin\theta + 2\cos\theta)(1 + \sin\theta - \cos\theta) = \sin\theta(1 + \cos\theta)$									
	for $-180^{\circ} \le \theta \le 180^{\circ}$. [4]									

Ŭ	of R in terms of \mathbf{p} and \mathbf{q} , simplifying your answer.	
••		••••••
••		
••		•••••
••		••••••
••		
••		•••••
••		
••		
••		•••••
••		•••••
••		•••••
••		
••		
••		•••••

									•		ng.										
				• • • • • • •					•••••						•••••						
•••	•••••	•••••	•••••	• • • • • • •	•••••	• • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • •	•••••	•••••	•••••	•••••	• • • • • •	• • • • • • •	• • • •
				• • • • • • •					•••••						•••••					• • • • • • •	
• • •	•••••	•••••	•••••	• • • • • • •	•••••	• • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • •	• • • • • •	• • • • • • •	•••••	•••••	• • • • • • •	• • • • • • •	••••
				• • • • • • • • • • • • • • • • • • • •					••••						• • • • • •					• • • • • • •	
• • •	••••••	••••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	• • • • • • •	••••
• • •		•••••	•••••	• • • • • • •			•••••	•••••	•••••	•••••	•••••	•••••	•••••		• • • • • •			•••••		• • • • • • •	••••
				• • • • • • •											• • • • • •						
• • •	•••••	•••••	•••••	• • • • • • •			•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • •	• • • • • •		•••••	•••••	• • • • • • •	• • • • • • •	••••
				• • • • • • • •											•••••					• • • • • • •	
• • •	•••••	•••••	•••••	• • • • • • •	•••••	• • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • •	•••••	•••••	•••••	•••••	• • • • • •	• • • • • • •	• • • •
•••				• • • • • • •					•••••						••••					• • • • • • •	
• • •	•••••	•••••	•••••	• • • • • • •	•••••	• • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • •	••••
• • •				• • • • • • •			•••••	•••••	•••••	•••••	•••••		•••••		• • • • • •			•••••		• • • • • • •	• • • •
• • •	•••••	•••••	•••••	• • • • • • •	•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••	• • • • • • •	••••
				• • • • • • •											••••					• • • • • • •	
• • •	•••••	•••••	•••••	• • • • • • •	•••••	• • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • •	• • • • • • •	• • • •
				• • • • • • •			•••••		••••						• • • • • •			•••••		• • • • • • •	••••
• • •			•••••	•			•••••	•••••	•	•••••	•••••	•••••			•			••••		•	••••
• • •	•••••	•••••	•••••	• • • • • • •			•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••	• • • • • •	• • • • • •	• • • •
															• • • • • •						
• • • •	•••••	•••••	•••••	• • • • • • •	•••••		•••••	•••••	••••	•••••	•••••	•••••	•••••		••••	•••••	•••••	•••••	•••••	• • • • • • •	••••
				• • • • • • •											• • • • • •					• • • • • • •	

9	Functions	f and	g are	defined	for $x >$	> 3 by

$$f: x \mapsto \frac{1}{x^2 - 9},$$
$$g: x \mapsto 2x - 3.$$

	Find and simplify an expression for $gg(x)$.	[2
(ii)	Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[4
(11)	The air expression for T (x) and state the domain of T.	ניי
		•••••
		• • • • • • • • • • • • • • • • • • • •

(iii)	Solve the equation $fg(x) = \frac{1}{7}$. [4]

10

The diagram shows part of the curve $y = \frac{1}{2}(x^4 - 1)$, defined for $x \ge 0$.

(1)	Find, showing all necessary working, the area of the shaded region.	[3]
		•••••
(ii)	Find, showing all necessary working, the volume obtained when the shaded region through 360° about the <i>x</i> -axis.	is rotated [4]
		••••••

(iii)	Find, showing all necessary working, the volume obtained when the shaded region is rotated
` /	
	through 360° about the y-axis. [5]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.