Introduction to backpropagation

In this lesson

- Virginia Tech Hokies
- Matrices
- Gradient descent flavors (full, batch, sgd)
- Correlation
- Overfitting
- Backpropagation

Hokies

Let's learn how a network learns entire datasets

Run

PASS!!!

Run

Image 1	Image 2	Image 3	Label
YES	NO	YES	Run
NO	YES	YES	Pass
NO	NO	YES	Run
YES	YES	YES	Pass
No	YES	YES	Pass
YES	NO	YES	Run

Neural networks don't read football placards.

```
matching, function ngSwitchWatchAction(value) {
                 #, #1 = previousElements.length; i < ii; ++i) {
sElements[i].remove();</pre>
        # (i = 0, ii = selectedScopes.length; i < ii; ++i) {
## selected = selectedElements[i];</pre>
      selectedTiements.length = 0;
selectedScopes.length = 0;
# ((selectedTranscludes = ngSwitchController.cases[']'
 scape.@eval(attr.change);
forEach(selectedTranscludes, function(selectedTransclude) (
  var selectedScope = scope.$new();
```


What	What you wanna know		
Image 1	Image 2	Image 3	Label
YES	NO	YES	Run
NO	YES	YES	Pass
NO	NO	YES	Run
YES	YES	YES	Pass
No	YES	YES	Pass
YES	NO	YES	Run

We need to see this in a math context.

			at data	
Poste	r Boar	ds	Board	
Image 1	Image 2	Image 3	Image 1	lm

YES

YES

YES

YES

YES

YES

YES

NO

NO

YES

No

YES

NO

YES

NO

YES

YES

NO

0

0

0

oste	r Boar	rds
age 1	Image 2	Image 3

lPoster Roard	C	Board

Image 3

YES

YES

YES

YES

YES

YES

Image 2

BOTH

YES

NO

YES

BOTH

NO

Image 1

YES

NO

NO

YES

No

YES

Roard	Pattern

.5

0

.5

0

Image 2

Image 3

Image 1

Image 1

10

10

10

Image 2

5

10

0

10

5

0

Image 3

10

10

10

10

10

10

Poster Boards	Board Pattern		

Image 3

YES

YES

YES

YES

YES

YES

Image 2

BOTH

YES

NO

YES

BOTH

NO

Image 1

YES

NO

NO

YES

No

YES

stochastic gradient descent

Stochastic gradient descent updates weights one example

regular gradient descent

(Average/Regular/Full) gradient descent updates weights one dataset at a time.

batch/mini batch gradient descent

(BATCH) gradient descent updates weights one dataset at a time.

TRUISM: Neural Networks Learn Correlations

Push/Pull of weights comes from the data

Push/Pull of weights comes from the data

Image 1	Image 2	Image 3	Label
1	0	1	Run
0	1	1	Pass
0	0	1	Run
1	1	1	Pass
0	1	1	Pass
1	0	1	Run

Image 1	Image 2	Image 3	Label
-	0	-	Run
0	+	+	Pass
0	0	-	Run
+	+	+	Pass
0	+	+	Pass
-	0	-	Run

Up and down pressure

Image 1	Image 2	Image 3	Label
1	0	1	Run
0	1	1	Pass
0	0	1	Run
1	1	1	Pass
0	1	1	Pass
1	0	1	Run

Image 1	Image 2	Image 3	Label
-	0	-	Run
0	+	+	Pass
0	0	-	Run
+	+	+	Pass
0	+	+	Pass
-	0	-	Run

Up and down pressure

Overfitting Correlation Oops...

Overfitting

How does it learn with all the conflicts?

Know thyself - correlation

Image 1	Image 2	Image 3	Label	Image 1	Image 2	Image 3	Label
1	0	1	Run	-	0	-	Run
0	1	1	Pass	0	+	+	Pass
0	0	1	Run	0	0	-	Run
1	1	1	Pass	+	+	+	Pass
0	1	1	Pass	0	+	+	Pass
1	0	1	Run	-	0	-	Run

Image 1	Image 2	Image 3	Label
1	0	1	Run
0	1	1	Pass
0	0	1	Run
1	1	1	Pass
0	1	1	Pass
1	0	1	Run

Image 1	Image 2	Image 3	Label
-	0	-	Run
0	+	+	Pass
0	0	-	Run
+	+	+	Pass
0	+	+	Pass
-	0	-	Run

Image 1	Image 2	Image 3	Label
1	0	1	Run
0	1	1	Pass
0	0	1	Run
1	1	1	Pass
0	1	1	Pass
1	0	1	Run

Image 1	Image 2	Image 3	Label
-	0	-	Run
0	+	+	Pass
0	0	-	Run
+	+	+	Pass
0	+	+	Pass
-	0	-	Run

Edge case: Conflicting pressure

Image 1	Image 2	Image 3	Label
1	0	1	Pass
0	1	1	Pass
0	0	1	Run
1	1	1	Run

Image 1	Image 2	Image 3	Label
+	0	+	Pass
0	+	+	Pass
0	0	-	Run
-	-	-	Run

Learning indirect correlation

create an intermediate data set

Backpropagation: Intuition

Linear vs. nonlinear

LEARNING VOYAGE

37

The Insight

ABSORB

Why do deep networks matter?

- No individual pixel correlates with whether there's a dog in the picture.
- Only different configurations of pixels correlate with whether Daisy is in the picture.

