

Advanced Encryption Standard (AES)

Killian O'Brien

6G6Z0024 Applied Cryptography 2023/24

Lecture Week 06 – Mon 06 November 2023

Introduction

- The **Advanced Encryption Standard** (AES), published by NIST in 2001.
- To replace DES due to security concerns over small key size and other considerations.
- AES designed to be more secure and fast.
- From 2008 on, chip manufacturers implement AES capabilities in low-level chip design.
- Now the most widely used cipher.

Polynomial arithmetic and the fields $GF(2^n)$

• Consider all polynomials

$$f(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \cdots + a_1x + a_0 = \sum_{i=0}^{n-1} a_ix^i, \quad a_i \in \mathbb{Z}_2.$$

of degree n-1 or less.

- Arithmetic follows the rules of + and \cdot for polynomials, with arithmetic of the coefficients a_i carried out in \mathbb{Z}_2 , i.e. addition of coefficients is the same as XOR.
- If multiplication results in a polynomial of degree greater than n-1 then the product is reduced modulo a specified irreducible polynomial m(x) of degree n, the modulos polynomial.

AES and $\mathrm{GF}(2^8)$.

• The Advanceed Encryption Standard (AES) uses such a field $GF(2^8)$, consisting of polynomials of degree less than or equal to 7, with binary coefficients and polynomial operations carried out modulo the irreducible polynomial

$$m(x) = x^8 + x^4 + x^3 + x + 1.$$

- The figure on the right shows the calculation of an example product in $\mathrm{GF}(2^8)$.
- AES uses this since it is designed to operate on 8-bit bytes.
 - \circ addition of bytes is just bit-wise XOR.

$$m(x) = x^8 + x^4 + x^3 + x + 1.$$

The Advanced Encryption Standard (AES) uses arithmetic in the finite field $GF(2^8)$, with the irreducible polynomial $m(x) = x^8 + x^4 + x^3 + x + 1$. Consider the two polynomials $f(x) = x^6 + x^4 + x^2 + x + 1$ and $g(x) = x^7 + x + 1$. Then

$$f(x) + g(x) = x^6 + x^4 + x^2 + x + 1 + x^7 + x + 1$$
$$= x^7 + x^6 + x^4 + x^2$$

$$f(x) \times g(x) = x^{13} + x^{11} + x^9 + x^8 + x^7$$

$$+ x^7 + x^5 + x^3 + x^2 + x$$

$$+ x^6 + x^4 + x^2 + x + 1$$

$$= x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1$$

$$x^{5} + x^{3}$$

$$x^{8} + x^{4} + x^{3} + x + 1 \overline{\smash)}x^{13} + x^{11} + x^{9} + x^{8} + x^{6} + x^{5} + x^{4} + x^{3} + 1$$

$$\underline{x^{13}} + x^{9} + x^{8} + x^{6} + x^{5}$$

$$\underline{x^{11}} + x^{4} + x^{3}$$

$$\underline{x^{11}} + x^{7} + x^{6} + x^{4} + x^{3}$$

$$\underline{x^{7} + x^{6}} + x^{1}$$

Therefore, $f(x) \times g(x) \mod m(x) = x^7 + x^6 + 1$.

The structure of AES

- Operates on plaintext message blocks of 16 bytes = 128 bits.
- Various key lengths allowed, 16, 24 or 32 bytes. Ciphers referred to as AES-128, AES-192 or AES-256, depending on how many bits used in key.
- Throughout encryption (and decryption) the message block is maintained as a 4×4 array of bytes. This is referred to as the **state**.
- First four bytes form the first column, next four bytes the second column, and so on.
- ullet An initial transformation of the state is followed by N rounds. Where N depends on the ley length used.
 - $\circ~N=10$ for 128 bit key.
 - $\circ~N=12$ for 192 bit key.
 - $\circ~N=14$ for 256 bit key.
- ullet The key passes through a $\it key \, explansion \, transformation \, to \, provide <math>N+1 \, sub$ -keys to be used in the initial transformation and $N \, rounds$.
- Each sub-key consists for four 4-byte **words**, which form the columns of the **round key matrix**.

AES detail

- This figure exposes the transformations within each round, for AES-128. The other schemes are similar.
- Note that is departs from the Feistel design. There is no notion of dividing the block into halves.
- Rounds 1 9 consists of four transformations
 - Substitute bytes: and S-box type permutation of the bytes of the state.
 - **Shift rows**: a simple permutation of the bytes within each row of the state.
 - \circ **Mix columns**: a transformation that combines the bytes within each column of the state. This transformation utilies the ${
 m GF}(2^8)$ field.
 - $\circ\,$ Add round key: bit-wise XOR of the state with the appropriate round key matrix.
- The decryption algorithm reverses all the transformations. At each horizontal level, the intermediate states of the encryption and decryption algorithms are the same.

Visualizing a single round

- This figure visualizes the four transformations within a typical round.
- Here the state matrix is shown laid out as a row of 16 bytes.

Substitute bytes

- This figure shows the how the substitute bytes transformation is defined.
- For each entry of the incoming state matrix, i.e. for each byte
 - \circ the first four bits denote the row index x of the S-box
 - \circ the second four bits denote the column index y of the S-box
 - the S-box entry at that row and column is a byte that replaces the original byte of the state.
- After replacing each entry of the incoming state matrix, we get the outgoing state matrix.

The S-box itself

- This figure shows the S-box.
- Remember
 - o a four bit block is denoted by a hexadecimal digit
 - 0,1,...9,a,b,c,d,e,f.
 - o a single byte (i.e. a 8-bit block) is denoted by a two-digit hexadecimal number.
- A corresponding inverse S-box table is used in the decryption algorithm.
- Lots of detail in Stallings on the contruction of this S-box table.
 - Designed like this to minimize any correlation between incoming and outgoing bits.

		y															
		0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
	2	В7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A 0	52	3B	D6	В3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	СВ	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
	7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
x	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
	Α	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A 9	6C	56	F4	EA	65	7A	AE	08
	С	BA	78	25	2E	1C	A 6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
	Е	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	B 0	54	BB	16

EA	04	65	85		87	F2	4D	97
83	45	5D	96		EC	6E	4C	90
5C	33	98	B0	\rightarrow	4A	C3	46	E7
F0	2D	AD	C5		8C	D8	95	A6

(a) S-box

• An example substitute bytes transformation is shown here

The shift rows transformation

- In each of the second, third and fourth rows of state, permute the bytes in each row as shown.
- This has a significant effect on the original positions of the bits within the 128 bit message block.

Mix columns transformation

• The equation shows how the incoming state matrix $s_{i,j}$ is multiplied by the matrix of constants to get the outgoing state matrix $s_{i,j}'$, shown on the right of the equation.

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,0} & s'_{1,1} & s'_{1,2} & s'_{1,3} \\ s'_{2,0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3,0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix}$$
 (6.3)

- ullet This results in the following transformations within the $j^{
 m th}$ column of the state
- The operations \oplus and \cdot shown here are the operations from $GF(2^8)$, carried out on the entries of the state, i.e. on the bytes, i.e. on the 8-bit blocks which are interpreted as the coefficients of degree 7 polynomials.
- $s'_{0,j} = (2 \cdot s_{0,j}) \oplus (3 \cdot s_{1,j}) \oplus s_{2,j} \oplus s_{3,j}$ $s'_{1,j} = s_{0,j} \oplus (2 \cdot s_{1,j}) \oplus (3 \cdot s_{2,j}) \oplus s_{3,j}$ $s'_{2,j} = s_{0,j} \oplus s_{1,j} \oplus (2 \cdot s_{2,j}) \oplus (3 \cdot s_{3,j})$ $s'_{3,j} = (3 \cdot s_{0,j}) \oplus s_{1,j} \oplus s_{2,j} \oplus (2 \cdot s_{3,j})$
- So \oplus is bitwise XOR and \cdot is the multiplication obtained from the multiplication of these polynomials, modulo the polynomial $m(x)=x^8+x^4+x^3+x+1$.
- The design of this Mix Columns transformation ensures good mixing of the bytes within a column, and the use of the constants 01, 02 and 03 results in efficient implementation of the encryption algorithm.

Add round key transformation

- ullet Perhaps the most straightforward, this is just bitwise XOR amongst the bit entries of the state and round key matrices.
- Consider the examples shown here of

incoming state \oplus round key = outgoing state

47	40	A3	4C		AC	19	28	57		EB	59	8B	1B
37	D4	70	9F		77	FA	D 1	5C		40	2E	A 1	C3
94	E4	3A	42	\oplus	66	DC	29	00	=	F2	38	13	42
ED	A5	A 6	BC		F3	21	41	6A		1E	84	E7	D ₆

A summary flowchart for AES encryption

- This figure summarizes a typical encryption round.
- We still need to describe the key expansion process for the derivation of the round keys from the original key.

Key expansion in AES

- ullet **Key expansion** is the process where the initial key is expanded to produce the N+1 round keys for the initial transformation and the N rounds of AES.
- Each round key consists of four 4-byte words, i.e. the four columns of the round key matrix.

Key expansion in AES-128

ullet The $i^{
m th}$ of the N+1 round keys consist of the four keywords

$$w_{4i+0}, w_{4i+1}, w_{4i+2}, w_{4i+3}. \$$

- The 16 bytes of the initial key form the first four key words w_0, w_1, w_3, w_3 as shown.
- An iterative process creates the 40 subsequent key words.

$$\circ \:$$
 for $j=1,2,3$, and $i=1,\ldots,10$,

$$w_{4i+j} = w_{4i+j-1} \oplus w_{4(i-1)+j}.$$

 \circ for j=0 and $i=1\dots 10$,

$$w_{4i} = g(w_{4i-1}) \oplus w_{4(i-1)}.$$

- \circ the function g is the composition of
 - a circular left-shift of the word bytes
 - an S-box byte substitution using the same S-box table as in the AES encryption rounds
 - \circ a bitwise XOR with the word formed by the bytes RC_i , 00, 00, 00. The round constants RC_i are shown on table on next slide.

Design considerations of the key expansion algorithm

• The round constants RC_i.

j	1	2	3	4	5	6	7	8	9	10
RC[j]	01	02	04	08	10	20	40	80	1B	36

- These transformations were chosen to ensure these features, amongst others,
 - speedy implementations in software and chip hardware,
 - o partial knowledge of the original key or intermediate round keys will not enable determination of many other bits of other key words,
 - o use of different round constants eliminates any potential symmetries in the round key generations,
 - o diffusion, i.e. each bit of the original key effects many round key bits.
- Further details, worked examples, and illustrations of bit diffusion from plaintext and key differences can be found in <u>Stallings, Chapter 6: AES</u>

