Dictionnaire de données

- Toutes les informations circulant au sein de l'établissement à automatiser.
- Toutes les règles de gestion.
- Toutes les règles d'organisation.
- Toutes les opérations à automatiser.
- Toutes les contraintes implicites ou explicites, qui doivent suivre une bases de Pr. Ezziyyani Mostafa F.S.T de données.

Soit le dictionnaire de données suivant :

Attribut:

1. Cod_Cli : Code d'un client

2. Nom_Cli : Nom d'un client

3. Pre_Cli : prénom d'un client

4. Num_Comd : Numéro de la commande

5. Date_com : Date de la commande

6. Ref_art : Référence d'un article

7. Tot_Com : Totale de la commande.

8. PU : Prix unitaire d'un article

9. Qte_cmd : Quantité Commandée

• Règle de gestion :

- Un client peut passer une plusieurs commandes
- Une commande n'appartient qu'à un seul client
- Les lignes d'une même 0commande contient des articles différents.
- Le prix unitaire des articleszeompriscentres sloch et 1100 DH.

Dépendances fonctionnelles

Définition :

Une donnée (B) est en dépendance fonctionnelle d'une donnée (A), quand la connaissance d'une valeur de la donnée (A) permet d'identifier une et une seule valeur de la donné (B)

• Notation. $A \rightarrow B$

Dépendances fonctionnelles

Exemple

```
• Cod_Cli → Nom_Cli
(Source) (But)
```

Remarques

- Les DFs dépendent des règles de Gestion.
- La source d'une DF peut être composée de plusieurs attributs.

Dépendances fonctionnelles complètes (irréductibles)

Définition

Une DFC est une DF dont la source est composée de plusieurs attributs et aucun sous ensemble d'attributs de la source n'est en dépendance avec le but

■ **Notation** (Attribut, ..., Attribut) → Attribut. (Source)

(But)

Dépendances fonctionnelles complètes

Exemples :

- 1. (Num_Cmd, Nom_Cli) → Pre_Cli→N'est pas une DFC
- 2. (Num_Cmd, Cod_Art) → Qte_Cmd;

 → Est une DFC

Relation

Définition

Une relation est un ensemble des attributs (données) caractérisée par un nom.

(Voir la définition compète par la suite)

777

Clé d'une relation

Définition

La clé d'une relation est la source, d'une DF, de tous les attributs de la relation.

Dépendances fonctionnelles

- Règle d'inférence d'Armstrong Soient A, B et C trois données
- 1. Réflexivité : $A \rightarrow A$.
- 2. Augmentation : si $A \rightarrow B$, alors $A + C \rightarrow B + C$.
- 3. Transitivité : si $A \rightarrow B$ et $B \rightarrow C$, alors $A \rightarrow C$.
- 4. Union : si A \rightarrow B et A \rightarrow C alors A \rightarrow B+C.
- 5. Composition : si A \rightarrow B et C \rightarrow D alors A+C \rightarrow B+D.

Procédure de normalisation

Définition

Une réduction successive d'un ensemble donné de relations en une forme plus satisfaite. Avec la possibilité de prendre le résultat aux entrées sans perte des informations (réversibilité).

Cod_Cli	Nom_Cli	Num_Com
CC1	Nom1	CD1
CC2	Nom1	CD2

!OK

Cod_Cli	Nom_Cli
CC1	Nom1
CC2	Nom1

Nom_Cli	Num_Com
Nom1	CD1
Nom1	CD2

OK

Cod_Cli	Nom_Cli
CC1	Nom1
CC2	Nom1

Cod_Cli	Num_Com
CC1	CD1
CC2	CD2

Normalisation du dictionnaire de données

Définition

Une relation est dite normalisée si chaque attribut (donnée) n'est pas présenté plusieurs fois et si aucun attribut n'est décomposable (calculable) en d'autres.

Première forme normale (1.F.N)

- Une relation est en 1.F.N:
 - Si elle possède une clé.
 - Tous les attributs sont atomique.

Première forme normale (1.F.N)

- (Nom_cli, Pre_Cli):
 - ne possède pas la clé.
- (Num_Cmd, Date_Cmd, Total)
 - Total est calculable.

Deuxième forme normale (2.F.N)

- Une relation est en 2.F.N:
 - En 1.F.N
 - Toute colonne qui n'appartient pas à la clé n'est pas en dépendance fonctionnellement avec un sous ensemble strict de cette clé.

Deuxième forme normale (2.F.N)

Exemple:

- (*Cod_cli, Num_Com*, Date_Com)
 - → Est en 1FN mais, n'est pas en 2FN ???

Num_Com → Date_Com

Troisième forme normale (3.F.N)

- Une relation est en 3.F.N:
 - En 2.F.N
 - Toutes les DFs issus de la clé sont directes (Pas de transitivité de DF).

Deuxième forme normale (3.F.N)

Exemple:

- (Num_Com, Cod_cli, Date_Com, Nom_cli)
 - → Est en 2FN mais, n'est pas en 3FN

???

Num_Com → Cod_cli → Nom_cli

forme normale de BOYCE/CODD (F.N.B.C)

- Une relation est en F.N.B.C
 - En 3.F.N
 - Sa clé est formée de plusieurs attributs
 - Aucun attribut de la clé n'est but d'une DF ayant pour source un attribut de la relation ne composant pas la clé.

- Exemple : soit le DD suivant :
 - Liste de données
 - Cod_Etud : code d'un étudiant
 - Code_Prof : code d'un professeur
 - Code_Mat : Code matière
 - Règles de gestion:
 - Pour chaque matière, chaque étudiant de cette matière n'a qu'un seul professeur
 - Chaque professeur enseigne une seule matière
 - Chaque matière est enseigné par une ou plusieurs professeurs

Soit la relation suivante :

R(Cod_Etud, Cod_Mat, Cod_prof)

Cette relation est en 3FN, mais n'est pas en FNBC On a ???

- 1. Possède une clé : (Cod_Etud, Cod_Mat)
- 2. Irreductible à gauche
- 3. Pas de transitivité

Mais!!!

Cod_Prof → Cod_Mat

Objectifs de la normalisation

- Éliminer la redondance de données
- Mises à jour multiples
- Eviter l'incohérence des données
- Eviter la perte de données.