Climate Change, Adaptation, and Sovereign Risk

Sarah Duffy

University of Oxford

September 2025

Motivation: Adaptation and Sovereign Risk

Climate change is projected to increase the frequency and severity of natural disasters

- Climate Policy attention turning towards adaptation: adjusting to this 'new normal'
- E.g. seawalls, reefs, early warning systems
- Adaptation can limit damages, but it is costly

Motivation: Adaptation and Sovereign Risk

Climate change is projected to increase the frequency and severity of natural disasters

- Climate Policy attention turning towards adaptation: adjusting to this 'new normal'
- E.g. seawalls, reefs, early warning systems
- Adaptation can limit damages, but it is costly

Many disaster-prone economies also fiscally constrained

- e.g. Cyclone activity concentrated around tropics
- Climate change likely to increase borrowing costs further: climate defaults?
- Calls for 'debt relief for climate resilience'

Motivation: Adaptation and Sovereign Risk

Climate change is projected to increase the frequency and severity of natural disasters

- Climate Policy attention turning towards adaptation: adjusting to this 'new normal'
- E.g. seawalls, reefs, early warning systems
- Adaptation can limit damages, but it is costly

Many disaster-prone economies also fiscally constrained

- e.g. Cyclone activity concentrated around tropics
- Climate change likely to increase borrowing costs further: climate defaults?
- Calls for 'debt relief for climate resilience'

This paper:

- 1. How does sovereign risk affect the adaptation motive?
- 2. Could debt relief help?

Takeaways

- Analytical Model: Sovereign default + natural disasters, endogenous adaptation
 - Climate change increases spreads
 - Adaptation reduces spreads
 - Default risk constrains adaptation of emerging markets: Adaptation Trap

Takeaways

- Analytical Model: Sovereign default + natural disasters, endogenous adaptation
 - Climate change increases spreads
 - Adaptation reduces spreads
 - Default risk constrains adaptation of emerging markets: Adaptation Trap
- Data: Novel adaptation measure from government budgets
 - Adaptation increasing in exposure + ratings
- Data: Causal evidence on cyclones + sovereign risk
 - Hurricane → default prob ↑, driven by low adaptation economies

Takeaways

- Analytical Model: Sovereign default + natural disasters, endogenous adaptation
 - Climate change increases spreads
 - Adaptation reduces spreads
 - Default risk constrains adaptation of emerging markets: Adaptation Trap
- Data: Novel adaptation measure from government budgets
 - Adaptation increasing in exposure + ratings
- Data: Causal evidence on cyclones + sovereign risk
 - Hurricane \rightarrow default prob \uparrow , driven by low adaptation economies
- Quantitative Model: long term debt, adaptation capital
 - Counterfactual: perfect financial markets
 - Adaptation investment / GDP in Caribbean is 13% lower
 - GDP effects of hurricanes are 10% higher increases with climate change
 - Debt relief can help

Relation to the Literature

Climate Change and Sovereign Risk

- Climate Change exacerbates fiscal vulnerabilities (Mallucci, 2022; Phan + Schwartzmann, 2023)

Contribution: Endogenous Adaptation

Climate Change and Adaptation

- Substantial welfare gains from adaptation in macro models (Hong et al, 2023; Fried, 2021)
- Access to finance matters for individual adaptation (e.g. Lane, 2024)

Contribution: Default risk affecting aggregate adaptation

Adaptation: Measurement

- Evidence of particular adaptation actions (e.g. Grover and Khan, 2024)
- Latent variable approach to macro-adaptation (e.g. Burke et al, 2024)

Contribution: Direct measure of aggregate adaptation

Outline

- 1. Simple Model
 - Analytical Results: spreads, climate change, and adaptation
- 2. Data
 - A new measure of adaptation
 - Validating the model
- 3. Quantitative Model
 - Calibration using adaptation measure
 - Quantitative Results: the adaptation trap
 - Debt Relief Counterfactuals

Model

$$y_t = y_{t-1}^{\rho} (1 - x_t) \frac{\text{disaster intensity}}{d_t F(\Lambda_t) \epsilon_t}$$

$$\mathbb{P}(x_t=1)=p_t$$

where $d_t \stackrel{iid}{\sim} F(d)$, $log(\epsilon_t) \stackrel{iid}{\sim} N(\mu_{\epsilon}, \sigma_{\epsilon}^2)$

Model

disaster indicator disaster intensity
$$y_t = y_{t-1}^{\rho}(1-x_t) \frac{d_t}{d_t} F(\Lambda_t) \epsilon_t$$

$$\mathbb{P}(\mathsf{x}_t=1)=\mathsf{p}_t$$

where $d_t \stackrel{iid}{\sim} F(d)$, $log(\epsilon_t) \stackrel{iid}{\sim} N(\mu_{\epsilon}, \sigma_{\epsilon}^2)$

Sovereign maximizes utility:

$$U = In(C_1) + \beta \mathbb{E} In(C_2)$$

adaptation investment
$$C_1 = y_1 + qB - \lambda$$

$$C_2 = \begin{cases} y_2 - B & \text{if } D_2 = 0 \\ \phi(y_2)y_2 & \text{if } D_2 = 1, \end{cases}$$

Model: Default

Sovereign chooses to default if $C_2(D_2 = 1) > C_2(D_2 = 0)$.

Assume simple procyclical default costs (Aguiar et al)

$$\phi(y_2) = (1 - \bar{I}e^{\phi g})$$

Model: Default

Sovereign chooses to default if $C_2(D_2 = 1) > C_2(D_2 = 0)$.

Assume simple procyclical default costs (Aguiar et al)

$$\phi(y_2) = (1 - \bar{l}e^{\phi g})$$

Therefore, default if the disaster adjusted growth rate is below an endogenous default threshold:

$$\underbrace{g + \frac{1}{1 + \psi} \ln(1 - x_t d_t F(\Lambda_t))}_{\widetilde{g}} < \underbrace{\frac{1}{1 + \psi} \ln\left(\frac{B}{\overline{l} y_1^{\rho}}\right)}_{\widetilde{g}(B)}$$

7/29

Spread

Continuum of risk neutral investors implies:

$$q = rac{1-s}{1+r} \qquad \qquad s = \mathbb{P}(D_2 = 1) = \mathbb{P}(ilde{g} < ar{g}(B))$$

Analytical characterization:

$$egin{aligned} s(B,\lambda) &= (1-
ho) \Phi_g(ar{g}) +
ho \mathsf{E}_{d'} \left[\Phi_g \left(ar{g} - rac{1}{1+\psi} \mathit{ln} (1 - d_t (1-\lambda_t))
ight)
ight] \end{aligned}$$

Climate Change, Adaptation, and the Spread

Proposition 1: The Spread is Increasing in Climate Change

$$\frac{\partial s}{\partial p} > 0$$

$$\hat{\Phi}_d \overset{\mathsf{fosd}}{\geq} \bar{\Phi}_d \Rightarrow s(\cdot, \cdot | \hat{\Phi}_d) \geq s(\cdot, \cdot | \bar{\Phi}_d).$$

Climate Change, Adaptation, and the Spread

Proposition 1: The Spread is Increasing in Climate Change

$$\frac{\partial s}{\partial p} > 0$$

$$\hat{\Phi}_d \overset{\mathsf{fosd}}{\geq} \bar{\Phi}_d \Rightarrow s(\cdot, \cdot | \hat{\Phi}_d) \geq s(\cdot, \cdot | \bar{\Phi}_d).$$

Proposition 2: Spread decreasing in adaptation

$$egin{aligned} rac{\partial s}{\partial \lambda} &= -
ho \mathcal{E}_{d'} \left[\phi_g \left(ar{g} - rac{1}{1+\psi} \ln(1-d(1-\lambda))
ight) \cdot rac{d}{(1+\psi)(1-d(1-\lambda))}
ight] < 0 \ & \left. rac{\partial s}{\partial
ho} < rac{\partial s}{\partial
ho}
ight|_{\lambda=0} \end{aligned}$$

Adaptation with Sovereign Risk

The optimal choice of adaptation trades off benefits and costs

- Counterfactual: commitment \rightarrow MC = MB damage reduction
- Now, additional effect through the spread

Adaptation with Sovereign Risk

The optimal choice of adaptation trades off benefits and costs

- Counterfactual: commitment \rightarrow MC = MB damage reduction
- Now, additional effect through the spread

 $FOC(\lambda)$:

$$\frac{f'(\lambda)}{C_1} = \underbrace{\beta \mathbb{E} \left(\frac{y_2'(\lambda)}{C_R} - s(\lambda) \frac{y_2'(\lambda)B}{y_2 C_R} \right)}_{\text{MB damage reduction}} + \underbrace{\beta \mathbb{E} \left(s'(\lambda) (u(C_D) - u(C_R) \right)}_{\text{MB reduced default prob}} - \underbrace{\frac{1}{1+r} s'(\lambda)B}_{\text{MB lower spread}}$$

Adaptation with Sovereign Risk

The optimal choice of adaptation trades off benefits and costs

- Counterfactual: commitment → MC = MB damage reduction
- Now, additional effect through the spread

 $FOC(\lambda)$:

$$\underbrace{\frac{f'(\lambda)}{C_1}}_{\text{MB damage reduction}} = \underbrace{\beta \mathbb{E} \left(\frac{y_2'(\lambda)}{C_R} - s(\lambda) \frac{y_2'(\lambda)B}{y_2 C_R} \right)}_{\text{MB reduced default prob}} + \underbrace{\beta \mathbb{E} \left(s'(\lambda) (u(C_D) - u(C_R) \right)}_{\text{MB reduced default prob}} - \underbrace{\frac{1}{1+r} s'(\lambda)B}_{\text{MB lower spread}}$$

 $\lambda^* \gtrless \lambda_c^*$ depends on the relative strength of these channels

For emerging markets: $\lambda^* < \lambda_c^*$

Roadmap

1. Simple Model

- Analytical Results: spreads, climate change, and adaptation

2. Data

- A new measure of adaptation
- Validating the model

3. Quantitative Model

- Calibration using adaptation measure
- Quantitative Results: the adaptation trap
- Debt Relief Counterfactuals

Measuring Adaptation

No data on aggregate adaptation across countries

Macro literature uses a latent variable approach. Infer adaptation if:

- High hazard exposure \rightarrow lower damages from a disaster of a give size
- Or, damages from a disaster of a given size are falling over time

Measuring Adaptation

No data on aggregate adaptation across countries

Macro literature uses a latent variable approach. Infer adaptation if:

- High hazard exposure ightarrow lower damages from a disaster of a give size
- Or, damages from a disaster of a given size are falling over time

Adaptation is inferred, not observed

- Don't know what actions are taking place
- Panel variation and low power ightarrow can't compare adaptation across countries

Here: build a direct measure of adaptation expenditure utilising data from government budgets

- Rich source of information on spending by purpose.
- Generate a dollar amount spent.

Measuring Adaptation: Keyword Discovery

Which budget entries correspond to adaptation?

- Problem: 'niche language'

Approach: transfer learning

- 1. Supply list of initial keywords unambiguously describing adaptation ▶ keywords
- 2. Build auxiliary corpus of adaptation related text

 sources
- 3. Construct word embeddings in that corpus word embeddings
- 4. Identify terms with high semantic similarity to at least one of the initial keywords \(\mathbb{C} \) example
- 5. Search for instances of the final set of keywords in budgets and record monetary value

Measuring Adaptation: Keyword Discovery

Which budget entries correspond to adaptation?

- Problem: 'niche language'

Approach: transfer learning

- 1. Supply list of initial keywords unambiguously describing adaptation **keywords**
- 2. Build auxiliary corpus of adaptation related text

 sources
- 3. Construct word embeddings in that corpus word embeddings
- 4. Identify terms with high semantic similarity to at least one of the initial keywords \(\mathbb{C} \) example
- 5. Search for instances of the final set of keywords in budgets and record monetary value

Sample: Rated economies in Latin America and the Caribbean with

- English or Spanish budgets
- Machine readable budgets

▶ sample

Measuring Adaptation

Spend on average 0.31% (1.1%) of GDP (Total expenditure) on adaptation.

	N	Mean	St. Dev.	Min	Max
Adaptation Total / GDP	163	0.31%	0.0031	0.001	0.0187
Adaptation Total / Expenditure	163	1.1%	0.0100	0.0038	0.0538

Table: Panel of 19 Latin American and Caribbean countries 2014-2025.

Adaptation Expenditure is:

- 1. Increasing in disaster exposure

 exposure
- 2. Trending upwards over time trend

Possible to disaggregate measure by action https://disaggregate https://disa

Adaptation Expenditure is Increasing in Rating

Adaptation Expenditure is Increasing in Rating

adapt		
67,554,921*** (16,647,312)	30,964,525*** (9,241,031)	
0.0022*** (0.0002)	0.0069*** (0.0018)	
143,757,032** (62,519,154)		
121,350,937** (48,299,257)		
No	Yes	
Yes	Yes	
98	105	
0.95	0.84	
	67,554,921*** (16,647,312) 0.0022*** (0.0002) 143,757,032** (62,519,154) 121,350,937** (48,299,257) No Yes 98	

Cyclones and Sovereign Risk

Data:

- International Best Track Archive: hurricane location at 6-hourly intervals
- Map to country units:
- $D_{it} = 1$ if country i experiences at least category 1 hurricane in year t
- CDS spreads (36 countries)
- Default indicators (80 countries)

Cyclones and Sovereign Risk

Data:

- International Best Track Archive: hurricane location at 6-hourly intervals
- Map to country units:
- $D_{it} = 1$ if country i experiences at least category 1 hurricane in year t
- CDS spreads (36 countries)
- Default indicators (80 countries)

Contribution:

- Previous empirical literature on disasters + sovereign risk uses EMDAT
- Disaster incidence data collated from news articles + insurance claims \rightarrow selection bias
- Combine with adaptation data

Cyclones cause sovereign risk to increase ...

Figure: LP irf. Hurricane shock, CDS outcome.

Cyclones cause sovereign risk to increase ...

Figure: LP irf. Hurricane shock, CDS outcome.

Figure: LP irf. Hurricane shock, default indicator outcome.

... mostly for low adaptation economies

Figure: LP irfs. Hurricane shock, default indicator outcome. High adaptation: above median adaptation/GDP.

Taking Stock

- 1. Governments invest in adaptation
- 2. The level of adaptation is increasing in exposure
- 3. The level of adaptation is declining in sovereign risk
- 4. Cyclones increase sovereign risk, attenuated by adaptation

Taking Stock

- 1. Governments invest in adaptation
- 2. The level of adaptation is increasing in exposure
- 3. The level of adaptation is declining in sovereign risk
- 4. Cyclones increase sovereign risk, attenuated by adaptation

How quantitatively important is this sovereign risk - adaptation channel?

- What does it mean for the welfare effects of disasters? and climate change?
- Could debt relief help?

Extend the two period model: infinite horizon details details

- Long term debt
- Adaptation investment cumulates into capital
- Quadratic default costs
- Estimated to match moments details

Quantitative Model

Law of motion for adaptation:

$$\Lambda_t = (1 - \delta)\Lambda_{t-1} + \lambda_{t-1}.$$

Quantitative Model

Law of motion for adaptation:

$$\Lambda_t = (1 - \delta)\Lambda_{t-1} + \lambda_{t-1}.$$

Bond issued at t promises an infinite stream of coupons, which decreases at a constant rate ψ .

Resource constraint:

$$C_{t} = \begin{cases} y_{t} + q_{t}(b_{t+1} - (1 - \psi)b_{t}) - b_{t} - \lambda_{t} & \text{if } D_{t} = 0\\ \phi(y_{t})y_{t} - \lambda_{t} & \text{if } D_{t} = 1, \end{cases}$$

where $\phi(y_t)$ is the endowment cost of default. Regain access w.p. η .

Quantitative Model

Law of motion for adaptation:

$$\Lambda_t = (1 - \delta)\Lambda_{t-1} + \lambda_{t-1}.$$

Bond issued at t promises an infinite stream of coupons, which decreases at a constant rate ψ .

Resource constraint:

$$C_t = \begin{cases} y_t + q_t(b_{t+1} - (1 - \psi)b_t) - b_t - \lambda_t & \text{if } D_t = 0\\ \phi(y_t)y_t - \lambda_t & \text{if } D_t = 1, \end{cases}$$

where $\phi(y_t)$ is the endowment cost of default. Regain access w.p. η .

Bond price:

$$q_t = rac{1}{1+r} \mathbb{E} \left((1-D_{t+1}) + (1-\psi)(1-D_{t+1}q_{t+1}) \right).$$

Functional Forms

Quadratic costs of default:

$$\phi(y) = \max\{-d_0y + d_1y^2, 0\}.$$

CRRA utility:

$$U(c) = rac{c^{1-\gamma}}{1-\gamma},$$

Adaptation benefits:

$$F(\Lambda_t) = exp\left(-\alpha\Lambda_t^{1/\alpha}\right),$$

Calibration Strategy: Population Weighted Caribbean

- 1. Standard parameters: η , γ , δ
- 2. Calibrated externally from data: r, ψ , p, ρ , μ_{ϵ} , σ_{ϵ} , σ_{d}
 - Estimate:

$$\log(y_t) = \rho \log(y_{t-1}) - \xi x_t + \varepsilon$$

- Model counterpart:

$$\xi_t = F(\Lambda_t)d_t$$

- 3. Jointly calibrated to target moments:
 - μ_d : mean GDP loss from disaster, ξ
 - α : adaptation investment to GDP ratio
 - β : debt to GDP ratio
 - d₀: mean spread
 - d_1 : std dev spread

Model Performance

	Model	Data
Targeted		
Adaptation Investment/GDP	0.003	0.003
Debt/GDP	0.401	0.414
GDP loss — Cyclone	0.052	0.050
Mean Spread	502	526
Std. dev Spread	352	374
Untargeted		
Default Frequency	0.048	0.051
Median Spread	121	143
Spread Increase — Cyclone	0.015	0.01
Untargeted		
Adaptation Capital/GDP	0.029	
Percent Damages Avoided	0.45	
Market Value Debt/GDP	0.37	
Welfare Loss		
	5.1%	

Sovereign Risk Restricts Adaptation

	Simulated Moments: Caribbean	
Moment	Model	Commitment Counterfactual
Adaptation Investment/GDP	0.003	+13%
GDP loss per Hurricane	0.05	-10%
Welfare loss from Hurricanes	5.1%	4.62%

- GDP loss from a hurricane is 10% larger due to the sovereign risk- adaptation channel
- This gap increases to 13% with a projected increase in frequency and severity by end of century
 - 29.1% increase in p, 48.5% increase in $\mu_{\rm d}$

"Liquidity is not enough: these crises have systemic roots. Only investment will change their course... lending should prioritize building climate resilience in climate vulnerable countries."

- Bridgetown Initiative

"Liquidity is not enough: these crises have systemic roots. Only investment will change their course... lending should prioritize building climate resilience in climate vulnerable countries."

- Bridgetown Initiative

IMF Resilience and Sustainability Trust:

- New lending facility established 2022
- Earmarked to provide long term funding to increase capacity to address climate (and pandemic) preparedness

"Liquidity is not enough: these crises have systemic roots. Only investment will change their course... lending should prioritize building climate resilience in climate vulnerable countries."

- Bridgetown Initiative

IMF Resilience and Sustainability Trust:

- New lending facility established 2022
- Earmarked to provide long term funding to increase capacity to address climate (and pandemic) preparedness

Consider loan 10% of pre-loan output, 3 year grace period

- Default free due to seniority ightarrow at risk free rate

$$\tilde{F} = r(1+r)^g F$$

Simulated Moments: Caribbean					
Moment Baseline Commitment Loan Counterfactual					
Adaptation Investment/GDP	0.003	+13%	+5%		
GDP loss per Hurricane	0.05	-10%	-4%		
Welfare loss from Hurricanes	5.1%	4.62%	4.87%		

Policy Counterfactual: Adaptation Bond

Increase in prevalence of 'green bonds'

- Use of proceeds bonds potentially pose a problem for governments: fungibility requirements
- Instead, outcome linked bonds
- E.g. Chile: bond linked to greenhouse gas reduction

Policy Counterfactual: Adaptation Bond

Increase in prevalence of 'green bonds'

- Use of proceeds bonds potentially pose a problem for governments: fungibility requirements
- Instead, outcome linked bonds
- E.g. Chile: bond linked to greenhouse gas reduction

Here consider an 'Adaptation Bond'

- 2.5% coupon reduction if adaptation capital 5% larger

$$q_t^{AB} = rac{1}{1+r} \mathbb{E}\left((1-D_{t+1})(1-c* \mathbb{1}_{\Lambda_{t+1} > \Lambda^*}) + (1-D_{t+1})(1-\psi)q_{t+1}^{AB}
ight).$$

Policy Counterfactual: Adaptation Bond

Simulated Moments: Caribbean				
Moment	Baseline	Commitment	Bond Counterfactual	
Adaptation Investment/GDP	0.003	+13%	+10%	
GDP loss per Hurricane	0.05	-10%	-8%	
Welfare loss from Hurricanes	5.1%	4.62%	4.71%	

Conclusion

Sovereign Risk restricts adaptation and increases the costs of disasters

- Theory: Framework integrating sovereign risk, climate risk, and adaptation
 - Adaptation causes spreads to fall
 - Sovereign risk restricts adaptation
- Data: New dataset of adaptation expenditures
 - Robust negative correlation between sovereign risk and adaptation
 - Adaptation attenuates sovereign risk effects of disasters
- Quantitative: Quantitative model matches Caribbean data
 - Hurricanes have a 10% larger effect through restricted adaptation than they would have under commitment
 - This wedge grows with climate change
 - Debt relief can help: adaptation bond, interest free loan

Details

Assume:

- T = 2
- $\Lambda_1 = 0$, $y_1 = 1$
- log utility
- Simple pro-cyclical default costs: $\phi(y_t) = \left(1 ar{l}e^{\psi g}
 ight)$

Default if $C_2(D = 1) > C_2(D = 0)$, i.e. if:

$$\underbrace{g + \frac{1}{1 + \psi} \ln(1 - x_t d_t (1 - \lambda_t))}_{\tilde{g}} < \underbrace{\frac{1}{1 + \psi} \ln\left(\frac{B}{\overline{l} y_1^{\rho}}\right)}_{\tilde{g}(B)}$$

▶ back

Initial Keywords

- adaptation
- climate_adaptation
- coastal_protection
- seawall
- shoreline_management
- coral_reef_restoration
- stormwater_management
- mangrove_plantation
- coastal_management
- urban_green_area
- air_conditioning_system
- shading
- drainage
- flood_insurance

- irrigation
- water_management
- natural_disaster_management
- national_disaster_management
- drought_management
- flood_management
- hazard_mapping
- cyclone_shelter
- storm_management
- wastewater_management
- managed_retreat
- ecosystem_restoration
- watershed_management
- wetlands_management

Adaptation Text: Sources

Adaptation specific text comes from a number of sources:

- Adaptation sections of Nationally Determined Contributions, as submitted to the UN
- National Adaptation Plans, as submitted to the UN
- UNEP Adaptation Gap Reports
- UNFCCC Adaptation related reports
- Adaptation Communications, as submitted to the UN
- Country Climate and Development Reports, from the World Bank
- Reports from the Global Commission on Climate Adaptation
- Adaptation specific reports from the World Bank and Asian Development Bank

▶ back

Word Embeddings

Word embedding: real-valued vector representation of a word

- Words closer in the vector space are expected to be similar in meaning
- Use GloVe model from Stanford NLP group trained on my adaptation corpus

Keyword Discovery

	Initial Term: sea wall
Output Term	Cosine Similarity
sea defense	0.89
groyne	0.86
tidal barrier	0.81
dune restor	0.79
waterfront protec	0.78
gullies	0.72
breakwater	0.71

▶ back

Sample

- Latin America: 18 sovereigns. Caribbean: 13 sovereigns
- Lose 2 due to language
 - Haiti, Brazil
- Lose 3 due to lack of rating
 - Saint Lucia, Antigua + Barbuda, Dominica
- Lose 7 due to lack of machine readability
 - Trinidad and Tobago, Cuba, Bolivia, El Salvador, Nicaragua, Paraguay, Venezuela
- Lose 74 country-year observations due to lack of availability

Final sample: Unbalanced panel of 19 economies 2014-2025

- 163 country-year observations

▶ back

Exposure

Adaptation Measure: Disaggregated

How are governments adapting?

Line Items: Descriptive Statistics

	N	Mean	St. Dev.	Min	Max
Line Items (country x year)	163	17.7	23.3	3	126
Line Items (country average)	19	20.33	23.4	4.9	75.4

	N	Corr	p-value
(Line Items, T/GDP)	163	-0.0967	0.2489
(avg Line Items, avg T/GDP)	19	-0.131	0.589

Expenditure Comparisons

Mean
0.31%
1.3%
3.4%

Table: Source: ELAC

Official Debt: Share of Total

Country	Share of
	Official Debt (%)
Argentina	7
The Bahamas	3
Barbados	20
Chile	3
Colombia	14
Costa Rica	7
Dominican Republic	16
Ecuador	29
Guatemala	26
Jamaica	22
Mexico	4
Panama	25
Peru	8
Uruguay	7
Average	14

Table: Share of Official Debt in Total Public Debt (2018)

Data

- 1. sovrate:
 - Index from 0-21
 - From World Bank
- 2. exposure:
 - climate vulnerability index from INFORM RISK
 - Constructed by the EU commission
- 3. regulatory quality:
 - World Bank Index

Robustness

- Narrower measures of adaptation: disaster preparedness, meteorological services
- Validation with hand read budgets
- English and Spanish subsamples
- Drop 10% of sample
- Stricter word embedding cutoffs
- Instrument for ratings with a global factor

▶ back

Model

$$y_t = y_{t-1}^{
ho}(1 - x_t | d_t (1 - \Lambda_t))\epsilon_t$$

Law of motion for adaptation:

$$\Lambda_t = (1 - \delta)\Lambda_{t-1} + \lambda_{t-1},$$

Model

$$y_t = y_{t-1}^{\rho} (1 - x_t | d_t (1 - \Lambda_t)) \epsilon_t$$

Law of motion for adaptation:

$$\Lambda_t = (1 - \delta)\Lambda_{t-1} + \lambda_{t-1},$$

Bond issued at t promises an infinite stream of coupons, which decreases at a constant rate $\psi.$

Resource constraint:

$$C_t = egin{cases} y_t + q_t(b_{t+1} - (1-\psi)b_t) - b_t - f(\lambda_t) & ext{if } D_t = 0 \ \phi(y_t)y_t - f(\lambda_t) & ext{if } D_t = 1, \end{cases}$$

where $\phi(y_t)$ is the endowment cost of default. Regain access w.p. η . Bond price:

$$q_t = rac{1}{1+r} \mathbb{E} \left((1-D_{t+1}) + (1-\psi)(1-D_{t+1}q_{t+1})
ight).$$

recursive equilibrium

back

Recursive Equilibrium

Restrict attention to Markov Perfect Equilibria.

Equilibrium defined by:

1) a set of value functions for the representative household: total value V, the value with market access V_{nd} , and the value in default V_d :

$$V = \max_{D} \{ (1 - D)V_{nd} + DV_{d} \}, \tag{1}$$

$$V_{nd}(y,b,\Lambda) = \max_{b',\Lambda'} u(c) + \beta \mathbb{E}[V(y',b',\Lambda')], \tag{2}$$

$$V_d(y,0,\Lambda) = \max_{\Lambda'} u(c) + \beta \mathbb{E}[(1-\eta)V_d(y',0,\Lambda') + \eta V(y',b',\Lambda')], \tag{3}$$

- 2) government policies for default D, bond issuance b, and adaptation Λ , and
- 3) a government debt price function q such that:
 - the debt price function is consistent with optimization by foreign lenders,
 - the value functions and the policy functions solve the maximization problem,
 - and the resource constraint of the household is satisfied.

Calibration Strategy

- 1. External parameters: η , γ , δ
- 2. Calibrated directly from data: r, ψ , p, ρ , μ_{ϵ} , σ_{ϵ}^2 , σ_{d}^2
 - Estimate:

$$\log(y_t) = \rho \log(y_{t-1}) - \xi x_t + \varepsilon$$

- Model counterpart:

$$\xi_t = (1 - \Lambda_t) d_t$$

- 3. Jointly calibrated to target moments:
 - μ_d : mean GDP loss from disaster, ξ
 - α : adaptation investment to GDP ratio
 - β : debt to GDP ratio
 - κ : mean spread

Solution Algorithm

Discretize output, debt, adaptation.

Iterative algorithm:

- 1. Initial guesses for the unconditional debt price function and for the value functions
- 2. Update the value function V_{nd} by solving the maximization problem in the market access case
 - Each possible choice of debt and adaptation is associated with an additive taste shock.
 - The sovereign chooses b' conditional on having chosen a particular Λ' subject to taste shocks, and that Λ' is chosen subject to taste shocks for a fixed b'.
 - Probability of choosing a given discrete value is given by the multinomial logit formula.
- 3. Update the value function V by solving the discrete choice default problem.
 - Introduce extreme value shocks to the default problem.
- 4. Update the default value function V_d making use of the update values of V and V_{nd} .
- 5. Repeat (2-4) until value functions have converged.
- Update the unconditional debt price function by imposing the default policy and the average equilibrium price function.
- 7. Repeat (2-6) until convergence of the unconditional debt price function.

Calibration: Jamaica

Calibrated Parameters: Jamaica				
Moment		Value	Source/Target statistic	
Relative risk aversion	γ	2	Standard	
Readmission probability	λ	0.33	Richmond and Dias (2009)	
Depreciation	δ	0.1	Standard	
Risk free rate	r^{rf}	0.0451	US T-Bill	
Duration	ψ	0.0564	Average Maturity	
Hurricane Frequency	p	0.103	NOAA	
Endowment autocorr	ρ	0.96	Data	
Endowment st dev	σ_ϵ	0.026	Data	
Discount factor	β	0.89	Debt/GDP	
Output cost	κ	0.67	Mean Spread	
Hurricane intensity	$\mu_{\sf d}$	0.025	Mean hurricane loss	
Adaptation cost	α	2.1	Adaptation investment/ GDP	

Model Performance

Quantitative Analys	sis: Simulated Moments	
Moment	Model	Data
Average Spread	554	519
Debt/GDP	0.50	0.49
Default frequency	0.048	0.051
GDP loss per Cyclone	0.023	0.023
Adaptation Investment/GDP	0.0044	0.0044

Bond Price

