

### Big Data and IBM Solution

Zeming Zhao

zhaozm@cn.ibm.com

November 1, 2014 © 2014 IBM Corporation

### Agenda

- Big Data
- Hadoop Brief Introduction
- HDFS Structure and Characteristic
- MapReduce Model
- o Q&A

### What is Big Data



- everything **around us** at all times.
  Every digital process and social media exchange produces it.
  Systems, sensors and mobile devices transmit it.
- Big data is an all-encompassing term for any collection of data sets so large and complex that it becomes difficult to process using traditional data processing applications.

### 3Vs Characteristics of Big Data

Volume: How much data

Velocity: How fast data is processed

Variety: The various types of data

### Changes made by Big Data

#### Competitive advantage

Data is emerging as the world's newest resource for competitive advantage.



#### Decision making

Decision making is moving from the elite few to the empowered many.



#### Value of data

platform, analyzing, collection and visualization



### Big Data Technology

#### Systems

Your infrastructure must capitalize on real-time information flowing through your organization. It must be optimized for analytics to respond dynamically to the increasing demands of big data.

#### Privacy

Your platform must comprise stringent policies and practices around privacy and insights on which your business relies.

#### Storage

Your infrastructure must embody a defensible disposal strategy that reduces the run rate of storage and risk.

#### Security

Your infrastructure must have strong security measures built in to guard your organization against internal and external threats.



### Categories of Data Technology



### Big Data Technology

| Type | Consumer                                                                                   | Service Provided by Cloud                                                                                                                     | Service Level<br>Coverage                                                                                               | Customization                                                                                                                                                               |
|------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SaaS | End user                                                                                   | Finished application                                                                                                                          | <ul> <li>Application uptime</li> <li>Application Performance</li> </ul>                                                 | <ul> <li>Minimal to no customization</li> <li>Capabilities dictated by market or provider</li> </ul>                                                                        |
| PaaS | Application<br>owner                                                                       | <ul> <li>Runtime environment<br/>for application code</li> <li>Cloud storage</li> <li>Other Cloud services<br/>such as integration</li> </ul> | <ul> <li>Environment availability</li> <li>Environment performance</li> <li>No application coverage</li> </ul>          | <ul> <li>High degree of application level customization available within constraints of the service offered</li> <li>Many applications will need to be rewritten</li> </ul> |
| laaS | Application<br>owner or IT<br>provides OS,<br>middleware,<br>and<br>application<br>support | Virtual server     Cloud storage                                                                                                              | <ul> <li>Virtual server availability</li> <li>Time to provision</li> <li>No platform or application coverage</li> </ul> | Minimal constraints on applications installed on standardized virtual OS builds  © 2014 IBM Con                                                                             |

### Value/Opportunity of Big Data

- O Discover the new role of data scientist

  4.4 million data and analytics jobs is needed globally. only one-third of those jobs will be filled.
- O Privacy, security and governance
  While big data can provide significant value, it
  also presents significant risk.
- O Create new business models with big data

  Data-driven marketing and ad targeting and something new

# 4.4MILLION data scientists needed by 2015



### Agenda

- Big Data
- Hadoop Brief Introduction
- HDFS Structure and Characteristic
- MapReduce Model
- o Q&A

### Three Papers from Google

**December, 2004**Jeffrey Dean
Sanjay Ghemawat



MapReduce
Simplified
Data Processing on
Large Clusters

BigTable
A Distributed
Storage System for
Structured Data



November, 2006
Fay W. Chang
Jeffrey Dean
Sanjay Ghemawat
Wilson C. Hsie
etc.

The Google File System

October, 2003
Sanjay Ghemawat
Howard Gobioff
Shun-Tak Leung



### **Hadoop Brief Introduction**

- The Apache Hadoop project develops <u>open-source</u> software for reliable, <u>scalable</u>, <u>distributed computing</u>. Implemented in Java.
- The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is designed to scale up from single servers to <a href="mailto:thousands of machines">thousands of machines</a>, each offering local computation and storage. <a href="mailto:Rather than rely on hardware to deliver high-availability">Rather than rely on hardware to deliver high-availability</a>, the library itself is designed to <a href="mailto:detect and handle failures at the application layer">detect and handle failures at the application layer</a>, so delivering a highly-available service on top of a cluster of computers, each of which may be prone to failures.





**Doug Cutting** 

### The Companies around Hadoop













YAHOO!





















### The Companies around Hadoop

#### o Yahoo:

More than 100,000 CPUs in more than 25,000 computers running it.

The biggest cluster: 4000 nodes, 2 x 4CPU boxes, with 4 x 1 TB disk, and 16 GB RAM.

#### o Amazon :

Process millions of sessions daily for analytics.
Using both Java and streaming APIs.

#### Facebook:

Use it to store copies of internal log and dimension data sources. a source for reporting and analytics, with machine learning algorithms.

#### o BaiDu

~10K cluster size

#### o Sina

>1K cluster size

### Agenda

- Big Data
- Hadoop Brief Introduction
- HDFS Structure and Characteristic
- MapReduce Model
- o Q&A

### **HDFS** Brief Introduction

- <u>Hadoop Distributed File System</u> (HDFS) is the primary storage system used by Hadoop applications. HDFS creates <u>multiple replicas</u> of data blocks and <u>distributes</u> them on compute nodes throughout a cluster to enable reliable, extremely rapid computations.
- For huge data (PB)
- Large scale distributed file system
- Cheap PC servers
- Based on file system of OS
- For rarely modified data
- Reliable

### **HDFS** Brief Introduction

#### Master-Slave architecture

Master: Name node (1, single-point failure)

Slave: Data node (N) SecondaryNameNode(1)

#### Distributed

Every long file is split into blocks of 64MB, each block is allocated

to different storage node.

#### o Checkpoint:

fsimage + edit log

#### Reliability

Multiple replicas for each block (default: 3)

#### Scalable

Add disks/nodes



**HDFS Architecture** 



© 2014 IBM Corporation

#### HDFS create/write

FSDataOutputStream is returned by DistributedFileSystem after contacting NameNode.

Upload file is split into multiple packets. Only after the *first* block has been stored into all the replica, the **second** block begins to upload.



#### HDFS read

FSDataOutputStream is returned by DistributedFileSystem after contacting NameNode to find the block address.

FSDataOutputStream read the block from the <u>nearest</u> datanode, if fails it goes to the replica.



### Agenda

- Big Data
- Hadoop Brief Introduction
- HDFS Structure and Characteristic
- MapReduce Model
- o Q&A

### MapReduce Model

/usr/file1

hello world hi how are you

/usr/file2

hello suzhou you are the best

/usr/file3

hello guys suzhou is the best



/usr/wc

are 2
best 2
guys 1
hello 3
hi 1
how 1
is 1
suzhou 2
the 2
world 1
you 2

How it works?

### MapReduce Model

Two major functions – map and reduce

#### Map function

Written by user

Takes input pairs and produce a set of intermediate key/value pairs

Intermediate key/value pairs are grouped and passed to reduce function

#### Reduce function

Accepts an intermediate key and a set of values for the key Merges together these values

### Major components of Hadoop MapReduce 1.x

#### Job Tracker

Cluster manager

Job manager

Job scheduler

#### Task tracker

Task JVM spawner

Monitor

Shuffle server







Q&A



## 参考资料

http://hadoop.apache.org