Roll No.	
	_

SHAMBHUNATH INSTITUTE OF ENGINEERING AND TECHNOLOGY

→ Subject Code:BEC101

Subject:Fundamentals of Electronics Engineering

Course: B.Tech.

SEMESTER: I"

SECOND SESSIONAL EXAMINATION, ODD SEMESTER, (2022-2023)

Branch: EC, CSE, EE, ME, CE

Time -2 Hrs

Maximum Marks - 45

SECTION - A

1. Attempt all questions in brief.

QN	QUESTION	Marks	CO	BL
a	A 400 watt carrier is modulated to a depth of 75 percent. Calculate the total power in the modulated wave.	2	CO5	2
سظر	Why BJT is called current controlled device?	2	CO2	2
Je.	What is PIV for half-wave and full-wave centre-tapped transformer rectifier?	2	CO1	3
4.	State two differences between FET and BJT.	2	CO2	1,
~.	What is the need for modulation?	2	CO5	1
J.	Draw the V-I characteristics of an ideal diode in forward and reverse bias conditions.	2	CO1	6

SECTION - B

2. Attempt any <u>ONE</u> part of the following:

QN	QUESTION	Marks	CO	BL
	Draw and explain the working of a bridge rectifier with input and output waveforms. Calculate efficiency and ripple factor.	5	CO1	5
b.	Draw the block diagram of a communication system and explain each block in brief.	5	CO5	6

Attempt any ONE part of the following:

QN	QUESTION	Marks	CO	BL
a.	What is voltage multiplier? Draw and explain the voltage doubler circuit.	5	CO1	3
N.	Describe the construction and working of a NPN transistor in CE configuration with respect to size and doping.	5	CO2	6

_	4 Atte	empt any <u>ONE</u> part of the following: OUESTION	Marks	СО	BL
	a.	Describe working of n-channel JFET with help of constructional diagram and draw its drain and transfer characteristics.	5	CO2	4
	b.	Explain the input and output characteristics of a BJT in the CE configuration.	5	CO5	1

SECTION - C

5. Attempt any ONE part of the following:

QN	QUESTION	Marks	CO	BL
1.	Explain the V-I characteristics of PN junction diode.	6	CO1	2
D.	For a JFET given $I_{DSS} = 6$ mA and $V_P = -4.5$ V: a. Determine I_D at $V_{GS} = -2$ V and -3.6 V. b. Determine V_{GS} at $I_D = 3$ mA and 5.5 mA.	6	CO2	1

6. Attempt any ONE part of the following:

QUESTION	Marks	CO	BL
(i) Prove the following relation between total power and carrier power in AM wave.	6		3
$P_t = P_c(1 + \frac{m^2}{2})$		CO5	
The antenna current of an AM transmitter is 8 ampere when only the carrier		= =	
sine wave. Find the percentage modulation. Determine the antenna current when the percent of modulation changes to 0.8.			
Determine V_L , I_R , I_L , I_Z for the given circuit. R_i is 470Ω .	6	CO1	5
			-
$\frac{1}{2\pi} V_{l0} = 20 V = \frac{1}{2\pi} P_{2\text{max}} = 400 \text{ mW}, S P_{L} V $			
			•
	(i) Prove the following relation between total power and carrier power in AM wave. $P_t = P_c(1 + \frac{m^2}{2})$ (ii) The antenna current of an AM transmitter is 8 ampere when only the carrier is sent, but it increases to 8.93 ampere when the carrier is modulated by a single sine wave. Find the percentage modulation. Determine the antenna current when the percent of modulation changes to 0.8. Determine V_L , I_R , I_L , I_Z for the given circuit. R_i is 470 Ω .	(i) Prove the following relation between total power and carrier power in AM wave. $P_t = P_c(1 + \frac{m^2}{2})$ (ii) The antenna current of an AM transmitter is 8 ampere when only the carrier is sent, but it increases to 8.93 ampere when the carrier is modulated by a single sine wave. Find the percentage modulation. Determine the antenna current when the percent of modulation changes to 0.8. Determine V_L , I_R , I_L , I_Z for the given circuit. R_i , is 470Ω .	(i) Prove the following relation between total power and carrier power in AM wave. $P_t = P_c(1 + \frac{m^2}{2})$ (ii) The antenna current of an AM transmitter is 8 ampere when only the carrier is sent, but it increases to 8.93 ampere when the carrier is modulated by a single sine wave. Find the percentage modulation. Determine the antenna current when the percent of modulation changes to 0.8. Determine V_L , I_R , I_L , I_Z for the given circuit. R_i is 470Ω .

7 Attempt any ONE part of the following:

QN	QUESTION	Marks	CO	BL
a.	Write short notes on (a) LED (b) Tunnel Diode	6	CO1	1
b.	Define Amplitude Modulation. Derive the expression for AM modulated waveform.	6	CO5	2

SHAMBHUNATH INSTITUTE OF ENGINEERING AND TECHNOLOGY

Subject Code: BEC 101

Subject: Fundamentals of Electronics Engineering

Course: B.Tech.

SEMESTER: 1"

FIRST SESSIONAL EXAMINATION, ODD SEMESTER, (2022-2023)

Branch: (CE/EC/EE/ME/CS)

Time -1hr 30 min

Maximum Marks - 30

NOTE: Attempt all sections

SECTION - A

1 Att	tempt all questions in brief.		(4*2	(8 = 8)
QN		Marks	CO	BL
a.	Define the terms: (i) Minterm (ii) Maxterm	2	4	LI
b.	Write the characteristics of an ideal op-amp.	2	3	Li
c.	For a given op-amp, CMRR=104 and Aa=105, find its common mode gain.	2	3	L3
d.	Simplify the Boolean function using Boolean Algebra theorems: A'B'C'+A'B C'+A B'C'+A B C'	2	4	L5

SECTION - B (1*5 = 5)2. Attempt any ONE part of the following: **OUESTION** Marks CO BLON Draw the circuit diagram of noninverting amplifier using op-amp; derive the 5 3 L5 a. expression for voltage gain. Simplify the following logical expression using K-map L5 $Y(A,B,C,D) = \Sigma m(1,3,4,6,8,9,11,13,15) + d(0,2,14).$ 5 4 b. Realize the minimized expression using the basic gates.

SECTION - C

	3. Atten	npt any ONE part of the following:			(1*5	= 5)
1	QN	QUESTION		Marks	CO	BL
	a.	Write technical short notes on the following: (i) Inverting comparator (ii) Differential and Common-Mode Operation	J	5	3	Li
	b.	Minimize using K-map and realize using basic gates only. $F(A, B, C, D) = \Pi M(3, 4, 5, 7, 9, 13, 14, 15). d(0, 2, 8).$		5	4	L3

4. Attempt any ONE part of the following: (1*6 = 6)QN QUESTION Marks CO BL Explain how the basic gates can be realized using NAND gates only. L2 6 4 Draw a differential amplifier circuit using op-amp and find the output voltage b. 6 3 L5in terms of different input voltage.

	mpt any ONE part of the following:		(1*6	= 6
QN	QUESTION	Marks	CO	Bl
	Convert the following :-			
	i) $(1101.00101)_{i} = ()_{i}$			157
	ii) $(457)_{i}=()_{10}$		11	111
a.	iii) $(101110.0101)_z = ()_{10}$	6	4	L.
	iv) $(82.35)_{10} = ()_4$			
	v) $(ABC.75)_{16} = ()_{10}$			
b.	Draw the circuit diagram of integrator and differentiator using op-amps, derive	-	2	1.5
	the expression its output voltage.	6	, J	LLS