Homework 1

Zach Neveu

January 15, 2020

1. Problem 1

```
def divide_by_three(integerlist):
    """

This function outputs a list where, if the integer on
    the input list is divisible by three, the corresponding
    output is 1 else the output is 0
    """

return [integerlist[i]%3 == 0 for i in range(len(integerlist))]
```

2. Problem 2: full adder

Table 1: Truth table of full adder							
Input 0	Input 1	C_{in}	Sum	Carry			
0	0	0	0	0			
0	0	1	1	0			
0	1	0	1	0			
0	1	1	0	1			
1	0	0	1	0			
1	0	1	0	1			
1	1	0	0	1			
1	1	1	1	1			

Figure 1: Full Adder on Simplified Logic Slices

3. Problem 3: "101" Detector

Figure 2: State machine for "101" detector

Table 2: States to binary for "101" recognizer
State Binary Representation

State	biliary Representation
A	"00"
В	"01"
C	"10"

Table 3: Truth Table for State and Output of "101" detector

Q	A	Q_0	Q_1	Q_0^*	Q_1^*	Output
Α	0	0	0	0	0	0
В	0	0	1	1	0	0
С	0	1	0	0	0	0
n/a	0	1	1	X	X	X
A	1	0	0	0	1	0
В	1	0	1	0	1	0
С	1	1	0	0	1	1
n/a	1	1	1	X	X	X

$$Q_0^* = \overline{x} \wedge \overline{Q_0}$$

$$Q_1^* = x$$

$$Output = x \wedge Q_0.$$
(1)

Figure 3: Equations for State and Output of "101" detector

Figure 4: "101" recognizer implemented on simplified logic slices