Comments on HW 9.

Ex 45 (1): Show that \mathbb{Q}_p and \mathbb{R} are not isomorphic.

The easiest way to do this is by contradiction. If there were a field isomorphism

$$\varphi: \mathbb{R} \to \mathbb{Q}_p$$

then $\varphi(p) = p$. (This is true for any isomorphism of fields of characteristic zero.)

Then, $p = \varphi(p) = \varphi(\sqrt{p}^2) = \varphi^2(\sqrt{p})$ and taking norms we find

$$\frac{1}{p} = |\varphi^2(\sqrt{p})|_p = |\varphi(\sqrt{p})|_p^2.$$

Since norms are non-negative and multiplicative, taking square roots yields

$$\frac{1}{\sqrt{p}} = |\varphi(\sqrt{p})|_p$$

which contradicts that the p-adic norm takes values in the set $\{p^n \mid n \in \mathbb{Z}\}$.

Ex 46: Prove that the equation

$$(x^2 - 2)(x^2 - 17)(x^2 - 34) = 0 (1)$$

has a root in \mathbb{Q}_p for all p, but not in \mathbb{Q} .

Proof. First, it is clear that $\sqrt{2}, \sqrt{17}, \sqrt{34} \notin \mathbb{Q}$ so (1) has no roots in the rational numbers. However, these roots are real numbers, so this equation has roots for $p=\infty$.

Assume now that p=2. Since $17\equiv 1 \pmod 8$, 17 is a square in \mathbb{Q}_2 by Exercise 42. If p=17, then $6^2=36\equiv 2 \pmod {17}$ so 2 is a square mod 17. By Proposition 1.43, x^2-2 has a root in \mathbb{Q}_{17} .

For the last case, assume that p is odd but not equal to 17. If either of 2 or 17 are quadratic residues mod p, then (1) has a root in \mathbb{Q}_p . If both 2 and 17 are quadratic non-residues mod p, then their product 34 is a quadratic residue mod p and again (1) has a root in \mathbb{Q}_p by Proposition 1.43. \square

Ex 44: Alas.