PMOS Bias Problem

Given: $V_T = -1 \text{ V}$, $K_p = 8 \mu \text{A/V}^2$, W/L = 25, $\lambda = 0$, current $I = 100 \mu \text{A}$, supply $V_S = 10 \text{ V}$.

Thus the device transconductance parameter

$$K \equiv K_p \frac{W}{L} = 8 \times 25 = 200 \ \mu \text{A/V}^2.$$

Let the bottom node (also the gate) be V_X . Then

$$V_{SG} = V_S - V_G = 10 - V_X,$$
 $V_D = V_X + IR,$ $V_{SD} = V_S - V_D = 10 - (V_X + IR) = V_{SG} - IR.$

Region condition

For a PMOS (with $|V_T| = 1 \text{ V}$):

saturation:
$$V_{SD} \ge V_{SG} - |V_T| \iff IR \le 1 \text{ V}.$$

Hence the boundary is $R = 10 \text{ k}\Omega$.

- $R < 10 \text{ k}\Omega$: saturation.
- $R > 10 \text{ k}\Omega$: triode.

Device equations (with $\lambda = 0$)

saturation:
$$I = \frac{1}{2}K (V_{SG} - |V_T|)^2 = \frac{1}{2}K (V_{SG} - 1)^2$$
,
triode: $I = K[(V_{SG} - |V_T|)V_{SD} - \frac{1}{2}V_{SD}^2] = K[(V_{SG} - 1)V_{SD} - \frac{1}{2}V_{SD}^2]$.

Solutions

(a) R = 0 (saturation)

100
$$\mu$$
A = $\frac{1}{2}$ (200) $(V_{SG} - 1)^2 \mu$ A $\Rightarrow (V_{SG} - 1)^2 = 1 \Rightarrow V_{SG} = 2.00 \text{ V}.$
 $V_{SD} = V_{SG} - IR = 2.00 - 0 = 2.00 \text{ V}.$

(b) $R = 20 \text{ k}\Omega$ (triode) Here IR = 2 V and $V_{SD} = V_{SG} - 2$.

$$\frac{I}{K} = (V_{SG} - 1)(V_{SG} - 2) - \frac{1}{2}(V_{SG} - 2)^2 \implies 0.5 = \frac{1}{2}V_{SG}^2 - V_{SG}.$$

Hence $V_{SG} = 2.414 \text{ V}$ and $V_{SD} = 0.414 \text{ V}$.

(c) $R = 50 \text{ k}\Omega$ (triode) $IR = 5 \text{ V}, V_{SD} = V_{SG} - 5$. Solving

$$0.5 = \frac{1}{2}V_{SG}^2 - V_{SG} + 5 - \frac{1}{2}(5)^2$$

gives $V_{SG} = 5.123 \text{ V}$ and $V_{SD} = 0.123 \text{ V}$.

(d)
$$R = 100 \text{ k}\Omega$$
 (triode) $IR = 10 \text{ V}, V_{SD} = V_{SG} - 10.$ Solving

$$0.5 = \frac{1}{2}V_{SG}^2 - V_{SG} + 10 - \frac{1}{2}(10)^2$$

gives $V_{SG} = 10.055 \text{ V}$ and $V_{SD} = 0.055 \text{ V}$.

Compact closed form in triode

With $V_R \equiv IR \ (> 1 \text{ V})$:

$$V_{SG} = 1 + \sqrt{(V_R - 1)^2 + 1}, \qquad V_{SD} = V_{SG} - V_R.$$

Numerical summary

$R(k\Omega)$	V_{SG} (V)	V_{SD} (V)
0	2.000	2.000
20	2.414	0.414
50	5.123	0.123
100	10.055	0.055