

Automatic Bayesian Density Analysis

Antonio Vergari Max-Plank-Institute IS

Zoubin Ghahramani

University of Cambridge Uber Al Labs

Aleiandro Molina

TU Darmstadt

Kristian Kersting

TII Darmstadt

Robert Peharz University of Cambridge

Isabel Valera Max-Plank-Institute IS

	X^1	X^2	X^3	X^4	X^5
\mathbf{x}_8					
\mathbf{x}_7					
\mathbf{x}_6					
\mathbf{x}_5					
\mathbf{x}_4					
\mathbf{x}_3					
\mathbf{x}_2					
\mathbf{x}_1					

The "data understanding" pipeline

1a. infer statistical types

⇒ is it a Gaussian?

 \Rightarrow is it an ordinal RV?

The "data understanding" pipeline

1a. infer statistical types

1b. infer dependencies

 \Rightarrow does X^4 depend on X^1 ?

The "data understanding" pipeline

- 1a. infer statistical types
- 1b. infer dependencies
- 2. missing values estimation

The "data understanding" pipeline

- 1a. infer statistical types
- 1b. infer dependencies
- 2. missing values estimation
- 3. anomaly detection

The "data understanding" pipeline

- 1a. infer statistical types
- 1b. infer dependencies
- 2. missing values estimation
- 3. anomaly detection
- 4. pattern mining

The "data understanding" pipeline

- 1a. infer statistical types
- 1b. infer dependencies
- 2. missing values estimation
- 3. anomaly detection
- 4. pattern mining

...what if there is no statistician around?

Automatic exploratory data analysis for non-statisticians

ABDA: representation

global level ⇒ dependencies among features

local level ⇒ heterogeneous data types

ABDA: representation

global level comprises a hierarchy of latent variables

⇒ Sum-Product Network (SPN)

SPNs

An SPN compiles a joint distribution into:

⇒ independent groups of RVs

leaf nodes

⇒ small, tractable models

SPNs allow to tractably

marginalize any set of RVs perform MAP inference (approximate)

ABDA: representation

The local level comprises mixtures over collections of likelihood models

ABDA: learning and inference

Learning the hierarchy of \mathbf{Z}_n \Rightarrow data-agnostic structure learning

LVs partitioning the data

⇒ hierarchical co-clustering!

Bayesian posterior inference

⇒ efficient Gibbs sampling

Type inference

Best likelihood models explaining the data

Mixture proportions represent *uncertainty over likelihood models*

Type inference

Extensive synthetic experiments

⇒ ground truth available

Recovering uncertainty over likelihoods

⇒ high cosine similarity over weight vectors

Predicting most likely "global types"

 \Rightarrow e.g., X^1 is Gaussian, X^4 is Poisson \Rightarrow accurate up to small finite sample sizes

Type inference

Missing values estimation

Marginalizing over missing values

⇒ easy via SPN inference!

Imputation via MAP inference

⇒ linear time approximation

$$\tilde{\mathbf{x}}_n^m = \operatorname*{argmax}_{\mathbf{x}_n^m} \mathcal{S}(\mathbf{x}_n^m \,|\, \mathbf{x}_n^o)$$

Missing values estimation

50% missing

	ISLV	ABDA	MSPN
Abalone	-0.89 ± 0.36	-0.05 ± 0.02	0.14
Adult	-	-0.69 \pm 0.01	-5.83
Austral.	-9.37 ±0.69	-1.63 \pm 0.04	-3.76
Autism	-2.67 ± 0.16	-1.24 \pm 0.01	-1.57
Breast	-4.29 ± 0.17	-2.85 ± 0.01	-3.06
Chess	-2.58 ± 0.04	-1.87 ±0.01	-3.92
Crx	-11.96 ±1.01	-1.20 ±0.04	-3.51
Derma.	-3.57 ± 0.32	-0.99 \pm 0.01	-1.01
Diabetes	-12.52 ± 0.52	-2.37 ±0.09	-4.01
German	-4.06 ± 0.28	-1.55 \pm 0.01	-1.60
Student	-3.80±0.29	-1.57 ±0.01	-1.58
Wine	-1.34 ±0.01	-0.92 ± 0.01	-0.41

Real-world benchmarks from UCI

⇒ repeated trials, different missing percentages

Faster and more accurate than ISLV

⇒ also modeling statistical type uncertainty

and more robust than MSPNs

⇒ same data-agnostic structure learning

Anomaly detection

Grouping anomalies together

micro-clusters

relegating them into low-density

regions \Rightarrow e.g., tails of distributions

log-likelihood as anomaly score

⇒ for outliers (transductive case)

⇒ for novelties (inductive case)

Anomaly detection

	1SVM	LOF	HBOS	ABDA
Aloi	51.71 ± 0.02	74.19 ± 0.70	52.86 ± 0.53	47.20 ± 0.02
Thyroid	46.18 ± 0.39	62.38 ± 1.04	62.77 ± 3.69	84.88 ± 0.96
Breast	45.77 ± 11.1	98.06 ± 0.70	94.47 ± 0.79	98.36 ± 0.07
Kdd99	53.40 ± 3.63	46.39 ± 1.95	87.59 ± 4.70	99.79 ± 0.10
Letter	63.38 ± 17.6	86.55 ± 2.23	60.47 ± 1.80	70.36 ± 0.01
Pen-glo	$46.86\!\pm\!1.02$	87.25 ± 1.94	71.93 ± 1.68	89.87 ± 2.87
Pen-loc	44.11 ± 6.07	98.72 ± 0.20	64.30 ± 2.70	90.86 ± 0.79
Satellite	52.14 ± 3.08	83.51 ± 11.9	90.92 ± 0.16	94.55 ± 0.68
Shuttle	89.37 ± 5.13	66.29 ± 1.69	98.47 \pm 0.24	78.61 ± 0.02
Speech	45.61±3.64	49.37 ±0.87	47.47±0.10	46.96±0.01

Unsupervised outlier detection real-world benchmarks

ABDA is competitive w.r.t. methods specifically designed for outlier detection

Pattern mining

Single pattern from each leaf L_j^d :

$$\mathcal{P} \colon \pi_l^d \le X^d < \pi_h^d$$

for a user-specified threshold θ :

$$\mathcal{S}_{\mathsf{L}_i^d}(\mathcal{P}) \geq \theta$$

Conjunctive patterns from partitions

$$\mathcal{P}^{\mathsf{N}} = \mathcal{P}_1 \wedge \ldots \wedge \mathcal{P}_{|\mathsf{sc}(\mathsf{N})|}$$

Pattern mining

Ranking by their *relevance* aka *support*:

```
p_{\mathcal{S}}(\mathcal{P}^i)
\mathcal{P}_1: 0.088 < \text{Height} < 0.224 \land
         0.158 < \text{ShellWeight} < 0.425 \quad (\text{supp}(\mathcal{P}_1) = 0.507)
P_2: 0.483 < Length < 0.684 \land
         0.364 \leq \text{Diameter} < 0.547 \quad (\text{supp}(\mathcal{P}_2) = 0.489)
\mathcal{P}_3: 0.596 < WholeWeight < 1.040 \land 0.205 < ShuckedWeight < 0.491 \land
         0.076 < \text{VisceraWeight} < 0.281 \ (\text{supp}(\mathcal{P}_3) = 0.223)
\mathcal{P}_4: 0.596 < \text{WholeWeight} < 1.040 \land 0.205 < \text{ShuckedWeight} < 0.491 \land
         0.076 < \text{VisceraWeight} < 0.281 \quad (\text{supp}(\mathcal{P}_4) = 0.202)
\mathcal{P}_5: 0.313 < Length < 0.554 \land 0.230 < Diameter < 0.438 \land
         0.023 < \text{Height} < 0.197 \land 0.165 < \text{WholeWeight} < 0.639 \land
         0.037 \le \text{ShuckedWeight} \le 0.408 \quad \land 0.019 \le \text{VisceraWeight} \le 0.192 \quad \land
         0.027 \leq \text{ShellWeight} \leq 0.27 \quad \land \quad 5 \leq \text{Rings} \leq 13 \quad (\text{supp}(\mathcal{P}_5) = 0.111)
```

Automatic exploratory data analysis for non-statisticians

for the details

visit us at poster #5839

code

github.com/probabilistic-learning/abda

for more on SPNs

github.com/SPFlow/SPFlow

...and even more

github.com/arranger1044/awesome-spn