ผู้จัดการฝ่ายการตลาดแชมพูยี่ห้อหนึ่งต้องการศึกษาอิทธิพลของระดับชั้นวางสินค้าที่มีต่อยอดขาย ผลิตภัณฑ์ของตน โดยเชื่อว่าผลิตภัณฑ์ของตนที่วางชั้นระดับสายตาจะมียอดขายสูงกว่าที่วางระดับ ต่ำกว่าสายตา จากการสุ่มห้างสรรพสินค้ามา 10 แห่งแล้วบันทึกยอดขายในช่วง 2 สัปดาห์ โดย สัปดาห์หนึ่งวางบนชั้นระดับสายตา และอีกสัปดาห์หนึ่งวางระดับต่ำกว่าสายตา ความเชื่อของ ผู้จัดการฝ่ายการตลาดผู้นี้ถูกต้องหรือไม่ โดยข้อมูลที่บันทึก (หน่วย: พันบาท/สัปดาห์) มีดังนี้

ห้างที่ <u>i</u>	1	2	3	4	5	6	7	8	9	10
ระดับสายตา $\left(X_{_{\! 1}} ight)$	181	172	190	187	210	202	166	173	183	184
ต่ำกว่าระดับสายตา ($X_{\scriptscriptstyle 2}$)	178	172	185	184	201	201	160	168	180	179
ผลต่าง (D_i)	3	0	5	3	9	1	6	5	3	5

เมื่อกำหนดให้ ผลต่างมีการแจกแจงแบบปกติ

เมื่อกำหนดให้ ผลต่างมีการแจกแจงแบบปกติ

ถ้าให้ Mu_D แทน ผลต่างยอคขายผลิตภัณฑ์ที่วางในระดับสายตาและต่ำกว่าสายตา

1.1 ข้อใดถูกต้องเกี่ยวกับตั้งสมมติฐาน

(B)
$$Mu_D = 0 \text{ vs H1: } Mu_D > 0$$

- C) $Mu_D = 0$ vs H1: $Mu_D < 0$
- 1.2 จากข้อมูลผลต่างตัวอย่าง จะเลือกสถิติทคสอบในข้อใค
- A) Z test สำหรับการทดสอบค่าเฉลี่ยประชากร 1 กลุ่ม
- B) t test สำหรับการทคสอบค่าเฉลี่ยประชากร 1 กลุ่ม
- (C))-test กรณีผลต่างค่าเฉลี่ยประชากร 2 กลุ่ม กรณีทั้งสองกลุ่มเป็นอิสระต่อกัน
 - 1.3 จากข้อมูลผลต่างตัวอย่าง จงคำนวณค่า p-value ที่ได้จาก สถิติทคสอบในข้อ 1.2 (ทศนิยม 5 ตำแหน่ง)
 - 1.4 ถ้ากำหนด ระดับนัยสำคัญเท่ากับ 0.01 จาก ข้อ 1.1 1.3 ความเชื่อของผู้จัดการฝ่ายการตลาดถูกต้องหรือไม่ เพราะเหตุใด

1.3 (๑ากการประมาณดา ช่องของผลต่างค่า เพลีย ด้วย Excel ชื่อในผลีพที่ ดามเกางาง

t-Test: Two-Sample Assuming Unequal Variances							
	Variable 1	Variable 2					
Mean	184.8	180.8					
Variance	181.9556	169.9556					
Observations	10	10					
Hypothesized Mean Difference	0						
df	18						
t Stat	0.674285						
P(T<=t) one-tail	0.254349						
t Critical one-tail	1.734064						
P(T<=t) two-tail	0.508698						
t Critical two-tail	2.100922						

เปรียบเทียบ่างสถิศากบ้อ 1.3กับ ดาจกฦตา

นาวาลัง 0.01 #