

Universidade Estadual de Campinas

FACULDADE DE ENGENHARIA MECÂNICA

ES664 - Laboratório de Eletrônica para Automação Industrial

Projeto Final Servo-acionamento de motor DC

Nome: RA Daniel Dello Russo Oliveira 101918 Marcelli Tiemi Kian 117892

1 Objetivos

Este projeto tem como objetivo realizar o acionamento de um motor DC utilizando conversor de potência, controlar a posição por meio de servo-acionamento, e integrar componentes elétricos e mecânicos por malha de controle.

2 Motor e Conversor de Potência

Implementamos no Simulink o circuito apresentado na figura 1. Configuramos o bloco do motor DC disponível para que atuasse como motor DC de ímãs permanentes. Definimos os parâmetros do motor conforme especificado na tabela 1. Determinamos o torque nominal do motor utilizando a equação 1 e a constante de torque/corrente de armadura nominal resolvendo as equações 2 e 3. Existem duas combinações possíveis de constante de torque e corrente nominal que atingem os pré requisitos, escolhemos a menor corrente.

$$T_{nom} = \frac{P_{nom}}{\omega_{nom}} \tag{1}$$

$$V_{nom} = R_a * I_{nom} + k_t * \omega_{nom} \tag{2}$$

$$T_{nom} = k_t * I_{nom} \tag{3}$$

Tabela 1: Parâmetros do motor DC

Parâmetro	Valor
Potência nominal	5~HP
Velocidade nominal	$1750 \ rpm$
Tensão nominal	240 V
Torque nominal	$20.3455 \ Nm$
Corrente nominal	19.7128 A
Resistência de armadura (R_a)	$2,58 \Omega$
Indutância de armadura (L_a)	28~mH
Inércia (J)	$2,22 \times 10^{-2} \ kg \ m^2$
Atrito viscoso (B)	$2,95 \times 10^{-3} \ N \ m \ s$
Constante de Torque (k_t)	$1.0321 \ Nm/A$

Figura 1: Esquemático da simulação para dimensionamento do motor DC e conversor

Para o acionamento do motor, utilizamos uma ponte H composta por MOS-FETs, sendo que o circuito de acionamento funciona com a diferença de potencial entre sinal de controle (v_{cont}) e uma onda triangular (v_{tri}) , com funcionamento explicado pela figura 2. Para fins de simulação utilizamos v_{cont} e v_{tri} variando entre 0 V e 100 V, mas este valor pode variar desde que atenda aos requisitos de acionamento do MOSFET.

- (a) Controle e onda triangular
- (b) Duty cycle e tensão de saída

Figura 2: Esquema de funcionamento do circuito de controle da ponte H

A fim de garantir um bom fator de forma na saída do conversor, colocamos um capacitor de filtro C_f em paralelo com a carga. Para o motor em questão chegamos ao seguinte valor:

$$C_f = 1000 \ \mu F \tag{4}$$

Fizemos a simulação da resposta do motor a um degrau com $V_{out}=240~V$, sem cargas, apenas com os parâmetros físicos definidos nele mesmo. Obtivemos os resultados de tensão e correntes de armadura $(v_a \ e \ i_a)$, e também curvas de torque e velocidade angular $(T_{em} \ e \ \omega_m)$ conforme figura 3.

Figura 3: Resposta ao degrau de 240 V no motor DC

Podemos ver que ainda existe uma oscilação significativa na tensão de armadura, porém julgamos inviável aumentar a capacitância de filtro. Notamos também que a velocidade atingida supera a velocidade nominal, fator esperado uma vez que estamos trabalhando sem carga. Existe um pico de corrente que ultrapassa significativamente o valor nominal e que pode vir a danificar o motor.

3 Servo-acionamento

Iniciamos o projeto do servo-acionamento pelo controle PI de corrente. Utilizando o Simulink, conforme figura 4.

Figura 4: Esquemático da simulação do controlador de corrente

Para facilitar o controle somamos um offset de 50% no duty-cycle de saída, assim se o esforço de controle for negativo a tensão sobre o motor será negativa e se este for positivo a tensão será positiva. Dimensionamos o controlador PI para que ele responda a um degrau unitário com erro estacionário de menos de 0,2 A e com tempo de resposta menor do que 100 ms. Para isso escolhemos as constantes proporcional e integral de maneira iterativa, ajustando-as de para atingir nosso objetivo. As constantes escolhidas foram:

$$k_p = 3 \tag{5}$$

$$k_i = 100 \tag{6}$$

A resposta do controlador ao degrau unitário está apresentada na figura 5, podemos ver que ele tem uma resposta satisfatória considerando os requisitos de projeto.

Figura 5: Resposta do controlador de corrente ao degrau unitário

Projetamos então um controlador PI para a velocidade angular do motor, cuja saída é saturada no valor de corrente nominal e serve de referência para nosso controlador de corrente. O esquema desse sistema pode ser visto na figura 6.

Figura 6: Esquemático da simulação do controlador de velocidade

Projetamos esse controlador para que ele possua um erro estacionário de menos do que $0.2\ rad/s$ com tempo de resposta menor do que $400\ ms$. Para

isso encontramos as constantes:

$$k_p = 10 (7)$$

$$k_i = 1 \tag{8}$$

Simulamos a resposta do controlador a um degrau de velocidade de $100 \ rad/s$ para um motor sem carga, encontrando os resultados apresentados na figura 7. Podemos ver que novamente o controlador cumpre os requisitos do projeto e que o problema do pico de corrente no motor foi resolvido.

Figura 7: Resposta ao degrau de $100 \ rad/s$ para controlador de velocidade

O dimensionamento dos ganhos de ambos controladores seguiram o mesmo procedimento, nós primeiro encontramos um valor para o ganho proporcional que atendia os pré requisitos de tempo de resposta e depois ajustamos a constante integral para controlar o erro estacionário.

- 4 Modelagem do Manipulador
- 5 Acoplamento Motor-Robô