Intégration CUPGE 2^e année 2024 – 2025

TD6 - Exercice 3

1. Notons $f_n(x) = \frac{n\sqrt{x}+1}{nx+1}$. Les fonctions f_n sont définies et continues sur [0,1], donc leurs intégrales ne sont pas généralisées. On a :

$$f_n(x) = \frac{\sqrt{x} + \frac{1}{n}}{x + \frac{1}{n}} \xrightarrow[n \to +\infty]{} \frac{1}{\sqrt{x}},$$

donc (f_n) converge simplement sur]0,1] vers la fonction f définie par $f(x)=\frac{1}{\sqrt{x}}$ qui est localement intégrable sur]0,1]. Pour tout $x \in]0,1]$, on a la domination :

$$|f_n(x)| = \frac{n\sqrt{x}+1}{nx+1} = \frac{n\sqrt{x}+1}{\left(n\sqrt{x}+\frac{1}{\sqrt{x}}\right)\sqrt{x}} \le \frac{n\sqrt{x}+1}{\left(n\sqrt{x}+1\right)\sqrt{x}} = \frac{1}{\sqrt{x}},$$

car $\sqrt{x} \le 1$ sur]0,1]. La fonction $\frac{1}{\sqrt{x}}$ est intégrable sur]0,1] (critère de Riemann), donc le théorème de convergence dominée s'applique :

$$\lim_{n \to +\infty} \int_0^1 f_n(x) \, \mathrm{d}x = \int_0^1 f(x) \, \mathrm{d}x = \int_0^1 \frac{1}{\sqrt{x}} \, \mathrm{d}x = 2.$$

- 2. Notons $f_n(x) = \frac{\ln(x)}{n^2 + x^2}$. Pour tout $n \in \mathbb{N}^*$, la fonction f_n est définie et continue sur $]0, +\infty[$ donc localement intégrable. Montrons que l'intégrale généralisée de f_n est convergente :
 - en $+\infty$: $\ln(x) = o(\sqrt{x})$ (croissance comparée) donc $f_n(x) = o(x^{-3/2})$. Puisque $f_n(x)$ est positive au voisinage de $+\infty$ et que $x^{-3/2}$ est intégrable au voisinage de $+\infty$ par critère de Riemann, f_n est intégrable au voisinage de $+\infty$.
 - en 0 : $f_n(x) \sim \frac{\ln x}{n^2}$ (pour $n \neq 0$). Or, $\ln x$ est intégrable au voisinage de 0 et f_n est de signe constant au voisinage de 0, donc f_n est intégrable au voisinage de 0.

La suite (f_n) converge simplement vers la fonction nulle et est dominée :

$$\forall n \ge 1, \quad |f_n(x)| \le \frac{|\ln x|}{1 + x^2} =: g(x)$$

avec g intégrable sur $]0,+\infty[$ (car $g \sim |\ln x|$ en 0 et $g = o(x^{-3/2})$ en $+\infty$). Par le théorème de convergence dominée :

$$\lim_{n \to +\infty} \int_0^{+\infty} \frac{\ln(x)}{n^2 + x^2} \, \mathrm{d}x = 0.$$

3. Notons $f_n(x) = \frac{n^2 x^4 + 3x^2 + 7}{(n^2 x^4 + 3)(x^2 + 1)}$. La fonction f_n est continue donc localement intégrable sur $[1, +\infty[$. De plus, f_n est positive et $f_n(x) \sim \frac{1}{1+x^2}$ en $+\infty$, donc f_n est intégrable au voisinage de $+\infty$. La suite (f_n) converge simplement vers $f(x) = \frac{1}{x^2 + 1}$ et est dominée :

$$\forall n \ge 1, \quad |f_n(x)| = \frac{x^4 + \frac{3x^2}{n} + \frac{7}{n}}{\left(x^4 + \frac{3}{n}\right)\left(x^2 + 1\right)} \le \frac{x^4 + 3x^2 + 7}{x^4\left(x^2 + 1\right)} =: g(x)$$

et g est intégrable sur $[1, +\infty[$ car $g(x) \sim \frac{1}{x^2}$ en $+\infty$. Par le théorème de convergence dominée :

$$\lim_{n \to +\infty} \int_{1}^{+\infty} f_n(x) \, \mathrm{d}x = \int_{1}^{+\infty} \frac{1}{x^2 + 1} \, \mathrm{d}x = \lim_{x \to +\infty} \arctan(x) - \arctan(1) = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}.$$

4. *Même chose que le 1.*

- **5.** Similaire à l'exercice $2: f_n(x) = \frac{\sin(nx^n)}{nx^n\sqrt{x}}$ est dominée par $\frac{1}{\sqrt{x}}$ sur]0,1[et par $\frac{1}{x\sqrt{x}}$ sur $]1,+\infty[$, et (f_n) converge simplement vers $f(x) = \frac{1}{\sqrt{x}}$ si x < 1 et 0 si $x \ge 1$.
- **6.** Notons $f_n(x) = \frac{1}{(1+x^2)\sqrt[n]{1+x^n}}$. Puisque $\sqrt[n]{1+x^n} \ge 1$ pour tout $x \ge 0$, on a :

$$0 \le f_n(x) \le \frac{1}{1+x^2},$$

donc f_n est intégrable sur \mathbb{R}_+ par comparaison, et la suite (f_n) est dominée par $g(x) = \frac{1}{1+x^2}$. Calculons la limite simple de (f_n) . Si $x \le 1$, on a :

$$\sqrt[n]{1+x^n} = (1+x^n)^{\frac{1}{n}} = \exp\left(\frac{1}{n}\ln(1+x^n)\right) \to 1,$$

et si x > 1:

$$\sqrt[n]{1+x^n} = \sqrt[n]{x^n(1+x^{-n})} = x\sqrt[n]{1+x^{-n}} \to x.$$

Donc (f_n) converge simplement vers la fonction :

$$f(x) = \begin{cases} \frac{1}{1+x^2} & 0 \le x \le 1\\ \frac{1}{(1+x^2)x} & x > 1 \end{cases}$$

qui est localement intégrable sur \mathbb{R}_+ car continue. Par le théorème de convergence dominée :

$$\lim_{n \to +\infty} \int_0^{+\infty} f_n(x) \, \mathrm{d}x = \int_0^{+\infty} f(x) \, \mathrm{d}x = \int_0^1 \frac{1}{1+x^2} \, \mathrm{d}x + \int_1^{+\infty} \frac{1}{(1+x^2)x} \, \mathrm{d}x.$$

La première intégrale vaut $\frac{\pi}{4}$. Pour la seconde, on décompose en éléments simples :

$$\frac{1}{(1+x^2)x} = \frac{1}{x} - \frac{x}{1+x^2}.$$

Donc:

$$\int_{1}^{+\infty} \frac{1}{(1+x^2)x} dx = \left[\ln x - \frac{1}{2} \ln(1+x^2) \right]_{1}^{+\infty} = \lim_{x \to +\infty} \left(\ln x - \frac{1}{2} \ln(1+x^2) \right) + \frac{\ln 2}{2}.$$

Calculons cette dernière limite :

$$\ln x - \frac{1}{2}\ln(1+x^2) = \ln\left(\frac{x}{\sqrt{1+x^2}}\right) \xrightarrow[x \to +\infty]{} \ln(1) = 0.$$

Finalement:

$$\lim_{n\to+\infty}\int_0^{+\infty} f_n(x) \,\mathrm{d}x = \frac{\pi}{4} + \frac{\ln 2}{2}.$$