

Inference

Message Passing

Cluster Graph Properties

Cluster Graphs

- Undirected graph such that:
 - nodes are clusters $C_i \subseteq \{X_1,...,X_n\}$
 - edge between C_i and C_j associated with sepset $S_{i,j} \subseteq C_i \cap C_j$

小级像\

Family Preservation

- Given set of factors Φ , we assign each ϕ_k to a cluster $C_{\alpha(k)}$ s.t. Scope $[\phi_k] \subseteq C_{\alpha(k)}$
- For each factor $\phi_k \in \Phi$, there exists a cluster C_i s.t. $Scope[\phi_k] \subseteq C_i$

11.3/2

Running Intersection Property

• For each pair of clusters C_i , C_j and variable $X \in C_i \cap C_j$ there exists a unique path between C_i and C_j for which all clusters and sepsets contain X

Running Intersection Property

 Equivalently: For any X, the set of clusters and sepsets containing X forms a tree

Example Cluster Graph

Illegal Cluster Graph I

Illegal Cluster Graph II

violates maigreeass

Alternative Legal Cluster Graph

Bethe Cluster Graph

Summary

- Cluster graph must satisfy two properties
 - family preservation: allows Φ to be encoded
 - running intersection: connects all information about any variable, but without feedback loops
- · Bethe cluster graph is often first default
- Richer cluster graph structures can offer different tradeoffs wrt computational cost and preservation of dependencies