### Scotogenic seesaw and baryogenesis



#### with gauged Baryon number

#### Diego Restrepo

Instituto de Física Universidad de Antioquia Phenomenology Group http://gfif.udea.edu.co



## Focus on arXiv:2205.05762

In collaboration with

Andrés Rivera (UdeA), Walter Tangarife (Loyola University Chicago)

#### Least Action

#### SO(3) scalar product

$$L = \frac{1}{2}m\mathbf{v}^2 - V(|\mathbf{r}|) = \frac{1}{2}m\mathbf{v} \cdot \mathbf{v} - V(|\mathbf{r}|)$$

#### Lie groups



$$U = \exp\left(i\sum_{j} T_{j}\theta^{j}\right),\tag{1}$$

where  $\theta^{j}$  are the parameters of the transformation and  $T_{i}$  are the generators.

## SO(1)

Consider the  $1 \times 1$ 

$$K = -i, (2)$$

which generates an element of dilaton group , SO(1),  $R(\xi)$ 

$$\lambda(\xi) = e^{\xi}, \tag{3}$$

which are just the group of the real exponentials. Such a number can be transformed as

$$x \to x' = e^{\xi} x, \tag{4}$$

that corresponds to a boost by  $e^{\xi}$ . We can defin the invariant scalar product just as the division of real numbers, such that

$$x \cdot y \to x' \cdot y' \equiv \frac{x'}{y'} = \frac{e^{\xi} x}{e^{\xi} y} = \frac{x}{y} = x \cdot y. \tag{5}$$

#### SO(1,1)

Queremos obtener una representación  $2 \times 2$  del álgebra

$$K = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix} \to K^2 = -\mathbf{1} \,, \tag{6}$$

que genera un elemento del grupo  $\mathsf{SO}(1,1)$  con parámetro  $\xi$ 

$$\Lambda = \exp(i\xi K) = \begin{pmatrix} \cosh \xi & \sinh \xi \\ \sinh \xi & \cosh \xi \end{pmatrix}, \qquad (7)$$

La transformación de una coordenada temporaloide y otra espacialoide (c=1)

$$\begin{pmatrix} t \\ x \end{pmatrix} = \begin{pmatrix} x^0 \\ x^1 \end{pmatrix} \to \begin{pmatrix} x'^0 \\ x'^1 \end{pmatrix} \begin{pmatrix} \cosh \xi & \sinh \xi \\ \sinh \xi & \cosh \xi \end{pmatrix} \begin{pmatrix} x^0 \\ x^1 \end{pmatrix}$$

4

$$\cosh \xi = \gamma = \frac{1}{\sqrt{1 - v^2}}$$

**Special**: parameter  $\xi$  or v is constant, e.g, inertial system invariance: *Global* conservation of E and p (still action at a distance!)

**General**: parameter  $\xi(t, \mathbf{x})$  or  $v(t, \mathbf{x})$  is constant, e.g, accelerated system invariance: **Local** conservation of E and  $\mathbf{p}$ 



Noether's paradigm

### U(1): From special $\theta$ to general $\theta(t, x)$



What is a particle wavicle? https://www.quantamagazine.org/what-is-a-particle-20201112/

#### Is a "Quantum Excitation of a Field"



#### Is a "Irreducible Representation of a Group"



Н





absorción

Emisión

7



Under a general Lorentz transformation we have.

$$A^{\mu}(x) \to A'^{\mu}(x) = \Lambda^{\mu}{}_{\nu}A^{\nu}(\Lambda^{-1}x).$$
 (8)

A pure underscript 4-vector is

$$\partial_{\mu} = \frac{\partial}{\partial x^{\mu}} = \left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) = (\partial_{0}, \nabla). \tag{9}$$

From

$$\frac{1}{\chi'^{\mu}} = \left(\Lambda^{-1}\right)^{\nu}{}_{\mu} \frac{1}{\chi^{\nu}} \,, \tag{10}$$

the tranformation properties for a  $\partial_{\mu} = \partial/\partial x^{\mu}$ , are

$$\partial_{\mu}^{\prime} = \left(\Lambda^{-1}\right)^{\nu}_{\mu} \partial_{\nu} \,. \tag{11}$$

In this way, the invariant scalar product between the 4-vector field and the four-gradient is just

$$\partial_{\mu}A^{\mu} \to \partial'_{\mu}A'^{\mu} = \partial_{\mu}A^{\mu} \,. \tag{12}$$

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                 |  | Name                    |                  | Symbol |                          | SU(N)              |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------------------------|------------------|--------|--------------------------|--------------------|
| $\begin{array}{c cccc} \text{Name} & \text{Symbol} & \text{Lorentz} \\ \hline \text{Photon} & A^{\mu} & \Lambda^{\mu}{}_{\nu}A^{\nu} \\ \end{array}$ |  | scalar <i>N</i> -plet   |                  | Ψ      |                          | UΨ                 |
| Photon $A^{\mu}$ $\Lambda^{\mu}_{\nu}A^{\nu}$                                                                                                        |  | scalar anti- <i>N</i> - | $\Psi^{\dagger}$ |        | $\Psi^\dagger U^\dagger$ |                    |
|                                                                                                                                                      |  |                         |                  | bol    | Lore                     | ntz                |
| 4-gradient $\partial_{\mu}$ $\partial_{ u} ig( {\Lambda}^{-1} ig)^{ u}_{\phantom{ u}\mu}$                                                            |  |                         |                  |        | $\Lambda^{\mu}_{\ \nu}$  | $4^{ u}$           |
|                                                                                                                                                      |  | 4-gradient              | $\partial_{\mu}$ |        | $\partial_{\nu}(I)$      | $(-1)^{\nu}_{\mu}$ |

**Table 1:** Scalar products:  $\Psi^{\dagger}\Psi$ ,  $\partial_{\mu}A^{\mu}$ ,  $A^{\nu}A_{\nu}$ ,  $\partial_{\mu}\partial^{\mu}$ 

| Name                               | Symbol                                                  | Lorentz                                                                                                   | U(1)                                    |
|------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------|
| e <sub>L</sub> : electron left     | $\xi_{\alpha}$                                          | $S_{\alpha}{}^{\beta}\xi_{\beta}$                                                                         | $e^{i\theta}\xi_{\alpha}$               |
| $(e_L)^{\dagger}$ : positron right | $(\xi_{m{lpha}})^\dagger = \xi_{\dot{m{lpha}}}^\dagger$ | $\xi^{\dagger}_{\dot{eta}} ig[ \mathcal{S}^{\dagger} ig]^{\dot{eta}}_{}\dot{lpha}}$                       | $\xi^{\dagger}_{\dot{lpha}}e^{-i	heta}$ |
| e <sub>R</sub> : electron right    | $(\eta^{lpha})^{\dagger}=\eta^{\dagger}{}^{\dot{lpha}}$ | $\left[ \left( S^{-1} \right)^{\dagger} \right]^{\dot{\alpha}}_{\dot{\beta}} \eta^{\dagger  \dot{\beta}}$ | $e^{i	heta}\eta^{\dagger}\dot{lpha}$    |
| $(e_R)^{\dagger}$ : positron left  | $\eta^{\color{red}lpha}$                                | $\eta^{\beta} [S^{-1}]_{\beta}^{\alpha}$                                                                  | $e^{-i\theta}\eta^{\alpha}$             |

Table 2: electron components

#### **Scalar products**

- $\mathcal{Y}(1)$  Majorana scalars:  $\xi^{\alpha}\xi_{\alpha} + \xi^{\dagger}_{\dot{\alpha}}\xi^{\dagger\dot{\alpha}}$ ,  $\eta^{\alpha}\eta_{\alpha} + \eta^{\dagger}_{\dot{\alpha}}\eta^{\dagger\dot{\alpha}}$ .
- Dirac scalar:  $\eta^{\alpha}\xi_{\alpha} + \xi^{\dagger}_{\dot{\alpha}}\eta^{\dagger}^{\dot{\alpha}}$ .
- Tensor under subgroup SL(2,C) but vector under SO(1,3):  $S^{\dagger \dot{\alpha}}{}_{\dot{\beta}} \overline{\sigma}^{\mu \, \dot{\beta} \beta} S_{\beta}{}^{\alpha} = \Lambda^{\mu}{}_{\nu} \overline{\sigma}^{\nu \, \dot{\alpha} \alpha}$

| Name                               | Symbol                                                  | Lorentz                                                                                       | U(1)                                    |
|------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------|
| e <sub>L</sub> : electron left     | $\xi_{\alpha}$                                          | $S_{\alpha}{}^{\beta}\xi_{\beta}$                                                             | $e^{i\theta}\xi_{\alpha}$               |
| $(e_L)^{\dagger}$ : positron right | $(\xi_{m{lpha}})^\dagger = \xi_{\dot{m{lpha}}}^\dagger$ | $\xi^{\dagger}_{\dot{eta}}ig[S^{\dagger}ig]^{\dot{eta}}_{\dot{lpha}}$                         | $\xi^{\dagger}_{\dot{lpha}}e^{-i	heta}$ |
| e <sub>R</sub> : electron right    | $(\eta^{lpha})^{\dagger}=\eta^{\dagger\dot{lpha}}$      | $\left[\left(S^{-1}\right)^{\dagger}\right]^{\dot{lpha}}_{}\dot{eta}}\eta^{\dagger\dot{eta}}$ | $e^{i	heta}\eta^{\dagger}\dot{lpha}$    |
| $(e_R)^{\dagger}$ : positron left  | $\eta^{\color{red}lpha}$                                | $\eta^{\beta} [S^{-1}]_{\beta}^{\alpha}$                                                      | $e^{-i\theta}\eta^{\alpha}$             |

Table 3: electron components

General theory: QED 
$$\rightarrow D_{\mu} = i\partial_{\mu} - ieA_{\mu}$$
,  $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ 

$$\begin{split} \xi^{\alpha} &\to \xi'^{\alpha} = e^{i\theta(x)}\xi^{\alpha} & \eta_{\alpha} \to \eta_{\alpha}' = e^{-i\theta(x)}\eta_{\alpha} \\ D_{\mu}\xi^{\alpha} &\to (D_{\mu}\xi^{\alpha})' = e^{i\theta(x)}D_{\mu}\xi^{\alpha} & D_{\mu}\eta_{\alpha} \to (D_{\mu}\eta_{\alpha})' = e^{-i\theta(x)}D_{\mu}\eta_{\alpha} \\ \mathcal{L} &= i\xi_{\dot{\alpha}}^{\dagger} \overline{\sigma}^{\mu\,\dot{\alpha}\alpha}D_{\mu}\xi_{\alpha} + i\eta^{\alpha}\sigma_{\alpha\dot{\alpha}}^{\mu}D_{\mu}\eta^{\dagger\,\dot{\alpha}} - m\left(\eta^{\alpha}\xi_{\alpha} + \xi_{\dot{\alpha}}^{\dagger}\eta^{\dagger\,\dot{\alpha}}\right) - \frac{1}{4}F^{\mu\nu}F_{\mu\nu} \end{split}$$

| Name                               | Symbol                                               | Lorentz                                                                                                      | <i>U</i> (1)                            |
|------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| e <sub>L</sub> : electron left     | $\xi_{\alpha}$                                       | $S_{\alpha}{}^{\beta}\xi_{eta}$                                                                              | $e^{i\theta}\xi_{\alpha}$               |
| $(e_L)^{\dagger}$ : positron right | $(\xi_{lpha})^{\dagger}=\xi_{\dot{lpha}}^{\dagger}$  | $\xi^{\dagger}_{\dot{eta}}ig[S^{\dagger}ig]^{\dot{eta}}_{\dot{lpha}}$                                        | $\xi^{\dagger}_{\dot{lpha}}e^{-i	heta}$ |
| e <sub>R</sub> : electron right    | $(\eta^{lpha})^{\dagger}=\eta^{\dagger\;\dot{lpha}}$ | $\left[ \left( S^{-1} \right)^{\dagger} \right]^{\dot{\alpha}}_{\ \dot{\beta}} \eta^{\dagger \ \dot{\beta}}$ | $e^{i	heta}\eta^{\dagger}\dot{lpha}$    |
| $(e_R)^{\dagger}$ : positron left  | $\eta^{\color{red}lpha}$                             | $\eta^{eta} [S^{-1}]_{eta}^{\alpha^{\Gamma}}$                                                                | $e^{-i\theta}\eta^{\alpha}$             |

Table 3: electron components

## General theory: QED $\rightarrow D_{\mu} = i\partial_{\mu} - ieA_{\mu}$ , $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ .

$$\begin{split} \xi^{\alpha} &\to \xi'^{\alpha} = e^{i\theta(x)}\xi^{\alpha} & \eta_{\alpha} \to \eta'_{\alpha} = e^{-i\theta(x)}\eta_{\alpha} \\ D_{\mu}\xi^{\alpha} &\to (D_{\mu}\xi^{\alpha})' = e^{i\theta(x)}D_{\mu}\xi^{\alpha} & D_{\mu}\eta_{\alpha} \to (D_{\mu}\eta_{\alpha})' = e^{-i\theta(x)}D_{\mu}\eta_{\alpha} \\ \mathcal{L} &= i\xi^{\dagger}_{\dot{\alpha}}\overline{\sigma}^{\mu}{}^{\dot{\alpha}\alpha}D_{\mu}\xi_{\alpha} + i\eta^{\alpha}\sigma^{\mu}_{\alpha\dot{\alpha}}D_{\mu}\eta^{\dagger}{}^{\dot{\alpha}} - m\left(\eta^{\alpha}\xi_{\alpha} + \xi^{\dagger}_{\dot{\alpha}}\eta^{\dagger}{}^{\dot{\alpha}}\right) - \frac{1}{4}F^{\mu\nu}F_{\mu\nu} \\ \mathcal{L} &= i\overline{\psi}\gamma^{\mu}D_{\mu}\psi - m\overline{\psi}\psi - \frac{1}{4}F^{\mu\nu}F_{\mu\nu} \,. \end{split}$$

#### Dirac spinor

$$\psi = \begin{pmatrix} e_L \\ e_R \end{pmatrix}$$

$$\gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu} \\ \overline{\sigma}^{\mu} & 0 \end{pmatrix}$$

$$\overline{\psi} = \psi^{\dagger} \gamma^{0} .$$

$$\mathsf{SU}(2)_L \qquad \qquad o D_\mu = \mathbf{1} \partial_\mu - i \mathsf{g}_2 rac{ au_i}{2} W^i_\mu$$

: 17 years later... (stages of grief ightarrow 1967)





$$\mathcal{L} = i(L)^{\dagger} \, \overline{\sigma}^{\mu} D_{\mu} L - \frac{1}{4} W_{\mu\nu}^{i} W_{i}^{\mu\nu}$$



# $SU(2)_L imes U(1)_Y o D_\mu = \mathbf{1} \partial_\mu - i g_2 \frac{\tau_i}{2} W^i_\mu - i g_1 B_\mu : \mathbf{17} \text{ years later...} \text{ (stages of grief} o \mathbf{1967})$

## Not mass, hypercharge,

Field Lorentz 
$$SU(2)_L$$
  $U(1)_Y$   $L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$   $\xi_{\alpha}$   $\mathbf{2}$   $-1/2$ 



$$\mathcal{L} = i(L)^{\dagger} \, \overline{\sigma}^{\mu} D_{\mu} L - \frac{1}{4} W_{\mu\nu}^{i} W_{i}^{\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}$$



# $SU(2)_L \times U(1)_Y \to D_\mu = \mathbf{1} \partial_\mu - i g_2 \frac{\tau_i}{2} W_\mu^i - i g_1 B_\mu : \mathbf{17} \text{ years later... (stages of grief} \to \mathbf{1967})$

#### Not mass, hypercharge, not Dirac

Field Lorentz 
$$SU(2)_L$$
  $U(1)_Y$ 

$$L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \qquad \xi_{\alpha} \qquad \mathbf{2} \qquad -1/2 \qquad \begin{vmatrix} \psi^{\circ} \rangle = |\uparrow\downarrow\rangle + |\downarrow\downarrow\rangle \\ (e_R)^{\dagger} \qquad \eta^{\alpha} \qquad \mathbf{1} \qquad -1 \qquad |\psi^{-}\rangle \qquad |\downarrow\downarrow\rangle$$



$$\mathcal{L} = i(L)^{\dagger} \, \overline{\sigma}^{\mu} D_{\mu} L - \frac{1}{4} W_{\mu\nu}^{i} W_{i}^{\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} - i(e_{R})^{\dagger} \, \sigma^{\mu} D_{\mu} e_{R}$$



# $SU(2)_L imes U(1)_Y o D_\mu = 1\partial_\mu - ig_2\frac{ au_i}{2}W_\mu^i - ig_1B_\mu: 17$ years later... (stages of grief o 1967)

Higgs mechanism: tachyonic mass 
$$\mu^2 < 0$$
, and condensate

Field Lorentz 
$$SU(2)_L$$
  $U(1)_Y$   $L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$   $\xi_{\alpha}$   $\mathbf{2}$   $-1/2$   $\begin{pmatrix} e_R \end{pmatrix}^{\dagger}$   $\eta^{\alpha}$   $\mathbf{1}$   $-1$ 

$$\frac{(e_{R})^{\dagger}}{(e_{R})^{\dagger}} \frac{\eta^{\alpha}}{\sqrt{2}} \mathbf{1} -1$$

$$\Phi = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} = \left[ \frac{H(x) + v}{\sqrt{2}} \right] \exp \left[ i \frac{\tau^{i}}{2} G_{i}(x) \right] - \mathbf{2} \qquad 1/2$$



Contempt

$$\mathcal{L} = i(L)^{\dagger} \overline{\sigma}^{\mu} D_{\mu} L - \frac{1}{4} W_{\mu\nu}^{i} W_{i}^{\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} - i(e_{R})^{\dagger} \sigma^{\mu} D_{\mu} e_{R} + (e_{R})^{\dagger} \Phi^{\dagger} L - (D^{\mu} \Phi)^{\dagger} D_{\mu} \Phi - \mu^{2} \Phi^{\dagger} \Phi - \lambda \left(\Phi^{\dagger} \Phi\right)^{\mu} \Phi^{\mu\nu}$$

#### Higgs mechanism: tachyonic mass and condensate

Field Lorentz  $SU(2)_L$  $U(1)_Y$ 

Contempt

 $L = \begin{pmatrix} \nu_L \\ e_l \end{pmatrix}$ 

 $\xi_{\alpha}$  2 -1/2 

 $-rac{1}{2}m_{H}^{2}H^{2}\left(1+rac{H}{V}+rac{H^{2}}{4v^{2}}
ight)+\left(m_{W}^{2}W^{\mu-}W_{\mu}^{+}+rac{1}{2}m_{Z}^{2}Z^{\mu}Z_{\mu}
ight)\left(1+2rac{H}{V}+rac{H^{2}}{v^{2}}
ight)+rac{m_{e}}{V}\overline{\psi}\psi H$ 

 $SU(2)_L \times U(1)_Y \rightarrow D_\mu = \mathbf{1}\partial_\mu - ig_2\frac{\tau_i}{2}W_\mu^i - ig_1B_\mu : \mathbf{17} \text{ years later...}$  (stages of grief  $\rightarrow \mathbf{1967}$ )

 $\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \left[ \frac{H(x) + v}{\sqrt{2}} \right] \exp \left[ i \frac{\tau^i}{2} G_i(x) \right]$ 

 $\mathcal{L} = i(L)^{\dagger} \overline{\sigma}^{\mu} D_{\mu} L - \frac{1}{4} W_{\mu\nu}^{i} W_{i}^{\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} - i(e_R)^{\dagger} \sigma^{\mu} D_{\mu} e_R + (e_R)^{\dagger} \Phi^{\dagger} L - (D^{\mu} \Phi)^{\dagger} D_{\mu} \Phi - \mu^2 \Phi^{\dagger} \Phi - \lambda \left(\Phi^{\dagger} \Phi\right)^{\dagger} \Phi^{\mu} D_{\mu} \Phi + \frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4}$ 

$$\Phi \to \Phi' = \exp\left[i\frac{\tau^i}{2}\theta_i(x)\right] \Phi = \frac{1}{\sqrt{2}}[H(x) + v]$$

$$\mathcal{L} = i\overline{\psi}\gamma^\mu\partial\psi - m_e\overline{\psi}\psi - i(\nu_L)^\dagger\overline{\sigma}^\mu\partial_\mu\nu_L + \frac{1}{2}\partial^\mu H\partial_\mu H + \frac{e}{\cos\theta_W\sin\theta_W}\overline{\nu_L}\nu_LZ_\mu + \cdots$$

$$\begin{pmatrix} \phi^{0} \end{pmatrix} \begin{bmatrix} \sqrt{2} \end{bmatrix} \begin{bmatrix} 2 & 1 \end{bmatrix}$$

$$= i(I)^{\dagger} \overline{\sigma}^{\mu} D I = \frac{1}{2} W^{i} W^{\mu\nu} = \frac{1}{2} B B^{\mu\nu} = i(a_{0})^{\dagger} \sigma^{\mu} D a_{0} + (a_{0})^{\dagger}$$

$$\begin{pmatrix} W_{\mu}^{3} \end{pmatrix} = \begin{pmatrix} \cos \theta & \cos \theta \end{pmatrix}$$

$$= \begin{pmatrix} \cos \theta_W & \sin \theta_W \\ -\sin \theta_W & \cos \theta_W \end{pmatrix}$$

$$\cos \theta_{W_j}$$

$$\begin{pmatrix} B_W \\ B \theta_W \end{pmatrix} \begin{pmatrix} Z_\mu \\ A_\mu \end{pmatrix}$$

$$\begin{pmatrix} \theta_W \\ \delta \theta_W \end{pmatrix} \begin{pmatrix} Z_\mu \\ A_\mu \end{pmatrix}$$

$$V \setminus A_{\mu}$$

13

# $SU(2)_L \times U(1)_Y o D_\mu = \mathbf{1} \partial_\mu - i g_2 \frac{\tau_i}{2} W_\mu^i - i g_1 B_\mu$ : 21 years later... (stages of grief o 1971)

#### Z and W phenomenology and discovery

Field Lorentz 
$$SU(2)_L$$
  $U(1)_Y$   $L = \begin{pmatrix} \nu_L \\ e_I \end{pmatrix}$   $\xi_{\alpha}$   $\mathbf{2}$   $-1/2$ 

$$\begin{pmatrix} e_L \end{pmatrix}$$

$$\begin{pmatrix} e_R \end{pmatrix}^{\dagger} \qquad \eta^{\alpha} \qquad \mathbf{1} \qquad -1$$

$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \left[ \frac{H(x) + v}{\sqrt{2}} \right] \exp \left[ i \frac{\tau^i}{2} G_i(x) \right] \qquad - \qquad \mathbf{2} \qquad 1/2$$



**Bargaining** 

$$\mathcal{L} = i(L)^{\dagger} \overline{\sigma}^{\mu} D_{\mu} L - \frac{1}{4} W_{\mu\nu}^{i} W_{i}^{\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} - i(e_{R})^{\dagger} \sigma^{\mu} D_{\mu} e_{R} + (e_{R})^{\dagger} \Phi^{\dagger} L - (D^{\mu} \Phi)^{\dagger} D_{\mu} \Phi - \mu^{2} \Phi^{\dagger} \Phi - \lambda \left(\Phi^{\dagger} \Phi\right)^{\dagger} \Phi + \Phi' = \exp\left[i\frac{\tau^{i}}{2}\theta_{i}(x)\right] \Phi = \frac{1}{\sqrt{2}} [H(x) + v]$$

$$\mathcal{L} = i\overline{\psi}\gamma^{\mu}\partial\psi - m_{e}\overline{\psi}\psi - i(\nu_{L})^{\dagger}\overline{\sigma}^{\mu}\partial_{\mu}\nu_{L} + \frac{1}{2}\partial^{\mu}H\partial_{\mu}H + \frac{e}{\cos\theta_{W}\sin\theta_{W}}\overline{\nu_{L}}\nu_{L}Z_{\mu} + \cdots$$

$$-\frac{1}{2}m_{H}^{2}H^{2}\left(1 + \frac{H}{v} + \frac{H^{2}}{4v^{2}}\right) + \left(m_{W}^{2}W^{\mu-}W_{\mu}^{+} + \frac{1}{2}m_{Z}^{2}Z^{\mu}Z_{\mu}\right)\left(1 + 2\frac{H}{v} + \frac{H^{2}}{v^{2}}\right) + \frac{m_{e}}{v}\overline{\psi}\psi H$$

# $SU(2)_L \times U(1)_Y \rightarrow D_\mu = \mathbf{1} \partial_\mu - ig_2 \frac{\tau_i}{2} W_\mu^i - ig_1 B_\mu : \mathbf{32} \text{ years later...} \text{ (stages of grief} \rightarrow \mathbf{1982})$

1/2

#### Hierarchy problem

 $\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \left[ \frac{H(x) + v}{\sqrt{2}} \right] \exp \left[ i \frac{\tau^i}{2} G_i(x) \right]$ 



credit: quantumdiaries.org

$$\mathcal{L} = i(L)^{\dagger} \overline{\sigma}^{\mu} D_{\mu} L - \frac{1}{4} W_{\mu\nu}^{i} W_{i}^{\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} - i(e_{R})^{\dagger} \sigma^{\mu} D_{\mu} e_{R} + (e_{R})^{\dagger} \Phi^{\dagger} L - (D^{\mu} \Phi)^{\dagger} D_{\mu} \Phi - \mu^{2} \Phi^{\dagger} \Phi - \lambda \left(\Phi^{\dagger} \Phi\right)^{\dagger} \Phi + \Phi' = \exp \left[i \frac{\tau^{i}}{2} \theta_{i}(x)\right] \Phi = \frac{1}{\sqrt{2}} [H(x) + v]$$

$$\mathcal{L} = i\overline{\psi}\gamma^{\mu}\partial\psi - m_{e}\overline{\psi}\psi - i(\nu_{L})^{\dagger}\overline{\sigma}^{\mu}\partial_{\mu}\nu_{L} + \frac{1}{2}\partial^{\mu}H\partial_{\mu}H + \frac{e}{\cos\theta_{W}\sin\theta_{W}}\overline{\nu_{L}}\nu_{L}Z_{\mu} + \cdots$$

$$-\frac{1}{2}m_{H}^{2}H^{2}\left(1 + \frac{H}{v} + \frac{H^{2}}{4v^{2}}\right) + \left(m_{W}^{2}W^{\mu-}W_{\mu}^{+} + \frac{1}{2}m_{Z}^{2}Z^{\mu}Z_{\mu}\right)\left(1 + 2\frac{H}{v} + \frac{H^{2}}{v^{2}}\right) + \frac{m_{e}}{v}\overline{\psi}\psi H$$

# $SU(2)_L \times U(1)_Y \rightarrow D_\mu = \mathbf{1} \partial_\mu - ig_2 \frac{\tau_i}{2} W_\mu^i - ig_1 \mathcal{B}_\mu : \mathbf{62} \text{ years later...} \text{ (stages of grief} \rightarrow \mathbf{2012})$

# Higgs discovery!

Field Lorentz 
$$SU(2)_L$$
  $U(1)_Y$ 

$$L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \qquad \qquad \xi_{\alpha} \qquad \qquad \mathbf{2} \qquad -1/2$$

$$\begin{pmatrix} e_R \end{pmatrix}^{\dagger} \qquad \qquad \mathbf{1} \qquad -1$$

$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \begin{bmatrix} \frac{H(x)+v}{\sqrt{2}} \end{bmatrix} \exp\left[i\frac{\tau^i}{2}G_i(x)\right] \qquad - \qquad \qquad \mathbf{2} \qquad \qquad 1/2$$

# 

m<sub>4/</sub> (GeV)

$$\mathcal{L} = i\overline{\psi}\gamma^{\mu}\partial\psi - m_{e}\overline{\psi}\psi - i(\nu_{L})^{\dagger}\overline{\sigma}^{\mu}\partial_{\mu}\nu_{L} + \frac{1}{2}\partial^{\mu}H\partial_{\mu}H + \frac{e}{\cos\theta_{W}\sin\theta_{W}}\overline{\nu_{L}}\nu_{L}Z_{\mu} + \cdots$$

$$-\frac{1}{2}m_{H}^{2}H^{2}\left(1 + \frac{H}{v} + \frac{H^{2}}{4v^{2}}\right) + \left(m_{W}^{2}W^{\mu-}W_{\mu}^{+} + \frac{1}{2}m_{Z}^{2}Z^{\mu}Z_{\mu}\right)\left(1 + 2\frac{H}{v} + \frac{H^{2}}{v^{2}}\right) + \frac{m_{e}}{v}\overline{\psi}\psi H$$











#### Jacobus Kapteyn -Wikipedia

Prof Jacobus Cornelius Kapteyn FRS FRSE LLD (19 January 1851 - 18 June 1922) was a Dutch astronomer. He carried out extensive studies of the Milky Way and was the discoverer of evidence for galactic rotation. Kapteyn was also among the first to suggest ...





#### Fritz Zwicky -Wikipedia

Fritz Zwicky (; German: ; February 14, 1898 - February 8, 1974) was a Swiss astronomer. He worked most of his life at the California Institute of Technology in the United States of America, where he made many important contributions in theoretical and o...



