Pending claims in this application are claims 1-5, 7-14, and 19-32. This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

- 1. (Previously Presented) An aluminum based alloy, said alloy comprising:
 - 1.0 2.0% by weight manganese;a maximum of 0.6% by weight iron;0.001% to 0.003% by weight beryllium; and the remainder being aluminum.
- 2. (Previously Presented) The aluminum alloy of claim 1 further comprising 2.5 4.0% by weight magnesium said alloy characterized by an elongation value of at least 17%.
- 3. (Original) The aluminum alloy of claim 2 further comprising a maximum of 0.45% by weight silicon.
- 4. (Original) The aluminum alloy of claim 3 further comprising a maximum of 0.10% by weight copper.
- 5. (Previously Presented) The aluminum alloy of claim 1 further comprising a maximum of 0.45% by weight silicon and said alloy characterized by an elongation value of at least 17%.

6. (Cancelled)

- 7. (Previously Presented) The aluminum alloy of claim 1 further comprising less than 1.75% by weight magnesium and wherein said alloy has an elongation value of at least 17%.
- 8. (Previously Presented) The aluminum alloy of claim 7 further comprising a maximum of 0.10% by weight zinc.

- 9. (Previously Presented) The aluminum alloy of claim 7 further comprising a maximum of 0.2% by weight titanium.
- 10. (Withdrawn) The aluminum alloy of claim 8 further comprising 4.2 5.0% by weight copper.
- 11. (Previously Presented) The aluminum alloy of claim 8 further comprising a maximum of 0.2% by weight cooper.
- 12. (Original) An aluminum based alloy for use in forming a die cast product, said alloy having an elongation value of at least 17%, said alloy comprising
 - 2.5 4.0% by weight magnesium;
 - 1.0 2.0% by weight manganese;
 - 0.25 0.6% by weight iron;
 - 0.2 0.45% by weight silicon;

less than 0.003% by weight beryllium;

the remainder being aluminum.

- 13. (Previously Presented) The aluminum alloy of claim 12 further comprising 0.05 0.10% by weight copper.
- 14. (Previously Presented) The aluminum alloy of claim 13 further comprising a maximum of 0.10% by weight zinc.

15.-18. (Cancelled)

- 19. (Previously Presented) A structural article of manufacture comprising an aluminum alloy having a yield strength of greater than or equal to 11.95 kgf/mm² and an elongation value of greater than or equal to 18%, said aluminum alloy comprising
 - 2.5 4.0% by weight magnesium;
 - 1.0 2.0% by weight manganese;
 - a maximum of 0.6% by weight iron;
 - a maximum of 0.45% by weight silicon;
 - a maximum of 0.10% by weight copper;

less than 0.003% by weight beryllium; the remainder being aluminum.

- 20. (Previously Presented) The article of claim 19 wherein the aluminum alloy includes about 1.1% manganese by weight.
 - 21. (Withdrawn) A die-castable aluminum alloy comprising:
 - 0.25-0.70% by weight magnesium
 - 1.0 2.0% by weight manganese;
 - a maximum of 0.2% by weight iron;
 - 6.5-7.5% by weight silicon;

a maximum of 0.2% by weight each of additional elements selected from the group consisting of zinc, copper and titanium; and

the remainder being aluminum, wherein said alloy has an elongation value of at least 17%.

- 22. (Withdrawn) The alloy of claim 21 in which a maximum of 0.1% by weight zinc is present as an additional element.
- 23. (Withdrawn) The alloy of claim 22 in which a maximum of 0.2% by weight copper is present as an additional element.
- 24. (Withdrawn) The alloy of claim 23 in which a maximum of 0.2% by weight titanium is present as an additional element.
- 25. (Withdrawn) The alloy of claim 24 in which magnesium is present at 0.25-0.45% by weight.
- 26. (Withdrawn) The alloy of claim 24 in which 0.04-0.07 by weight beryllium is present as an additional element.
- 27. (Withdrawn) The alloy of claim 25 in which magnesium is present at 0.4-0.7% by weight.

28. (Withdrawn) A die-castable aluminum alloy comprising:

0.15-0.35% by weight magnesium

1.0 - 2.0% by weight manganese;

a maximum of 0.1% by weight iron;

4.2-5.0% by weight copper;

a maximum of 0.2% by weight each of additional elements selected from the group consisting of zinc, silicon, nickel, tin, and titanium; and

the remainder being aluminum, wherein said alloy has an elongation value of at least 17%.

- 29. (Withdrawn) The alloy of claim 28 in which a maximum of 0.1% by weight zinc is present as an additional element.
- 30. (Withdrawn) The alloy of claim 29 in which a maximum of 0.05% by weight silicon is present as an additional element.
- 31. (Withdrawn) The alloy of claim 30 in which a maximum of 0.2% by weight titanium is present as an additional element.
- 32. (Previously Presented) A method of producing components by die casting an aluminum alloy, the method comprising the steps of:

providing an aluminum alloy having magnesium, zinc, silicon, copper, beryllium, titanium, nickel, and tin present in percentages by weight consistent with a known aluminum alloy;

maintaining the iron content of the provided alloy at or below the iron content of the known aluminum alloy;

adjusting the manganese content of the alloy to between 1.0-2.0% by weight; heating the alloy to a temperature conducive to die casting; casting a component from the alloy; and removing the cast component from the die.