ÇEV 806 Hava Kirliliği ve İklim Değişimi

5 - Atmosferin Yapısı ve Hava Kirliliği

Doç. Dr. Özgür ZEYDAN

https://ozgurzeydan.com.tr/

Atmosferin Yapısı

- Hava kirliliğinin oluşumu, etkileri ve kontrol yöntemlerini belirleyebilmek:
 - Atmosferi oluşturan gazlar
 - Atmosferin katmanları
 - Bu katmanlardaki fiziksel ve kimyasal reaksiyonlar
- bilinmelidir.

Yer Seviyesi Konsantrasyonlara Etki Eden Faktörler

Introduction to Air Quality Forecasting

Pawan Gupta & Melanie Follette-Cook

September 23, 2021

https://appliedsciences.nasa.gov/join-mission/training/english/arset-introduction-and-access-global-air-quality-forecasting-data-and

Temiz kuru havanın bileşimi

Not: 1 ppm hacim = 0.0001% hacim

Molekül	Sembol	ppm (hacim)	μg/m³
Azot	N_2	780000	8.95 × 10 ⁸
Oksijen	O_2	209400	2.74 × 10 ⁸
Argon	Ar	9300	1.52×10^{7}
Karbon Dioksit	CO_2	315	5.67 × 10 ⁵
Neon	Ne	18	1.49 × 10 ⁴
Helyum	He	5.2	8.50×10^{2}
Metan	CH ₄	1.0 – 1.2	$6.56 - 7.87 \times 10^{2}$
Kripton	Kr	1.0	3.43×10^{3}
Nitröz Oksit	N ₂ O	0.5	9.00×10^{2}
Hidrojen	H ₂	0.5	4.13 × 10 ¹
Ksenon	Xe	0.08	4.29 × 10 ²

Kreider J F, Cohen R R H, Cook N E, Curtiss P S, Illangasekare T, Kreith F, Rabl A and Zannetti P (1999) Environmental Engineering, *Mechanical Engineering Handbook*, Ed. F. Kreith, CRC Press LLC, U.S.A.

Karışım Oranı (C_x)

1 ppm (vol) pollutant =
$$\frac{1 \text{ liter pollutant}}{10^6 \text{ liter air}}$$
$$= \frac{(1 \text{ liter/22.4}) \times \text{MW} \times 10^6 \,\mu\text{g/gm}}{10^6 \text{ liters} \times 298^\circ\text{K/273}^\circ\text{K} \times 10^{-3} \,\text{m}^3/\text{liter}}$$
$$= 40.9 \times \text{MW} \,\mu\text{g/m}^3$$

(25 °C ve 760 mm Hg basınç altında)

ppm: milyonda bir (parts per million)

ppb: milyarda bir (parts per billion)

ppt: trilyonda bir (parts per trillion)

Problem

- https://www.co2.earth/ web sitesi Ağustos 2024 tarihi için küresel CO₂ konsantrasyonunu 422.71 ppm olarak belirtmiştir.
- ightharpoonup Buna göre atmosferdeki CO_2 konsantrasyonunu $\mu g/m^3$ olarak hesaplayınız.
- \rightarrow MW_{CO2} = 44 gr/mol
- $\ge 1 \text{ ppmv} = 40.9 \times \text{MW } \mu\text{g/m}^3 = 40.9 \times 44 = 1799.6 \ \mu\text{g/m}^3$
- > 422.71 ppmv \rightarrow 1799.6 × 422.71 = 7.61 × 10⁵ μ g/m³

Kuru Havanın Molekül Ağırlığı

- $> M_a = \sum_i C_i M_i$
- $> M_a = C_{N2}M_{N2} + C_{O2}M_{O2} + C_{Ar}M_{Ar} + \cdots$
- $M_a = (0.78).(28 \times 10^{-3}) + (0.21).(32 \times 10^{-3}) + (0.01).(40 \times 10^{-3})$
- $M_a = 28.96 \times 10^{-3} \text{ kg/mol}$

Bağıl Nem (Relative Humidity) (RH)

- Havadaki nemin, aynı sıcaklıkta havanın taşıyabileceği maksimum neme oranıdır.
- > RH sıcaklığa bağlıdır.

$$>RH(\%) = 100.\frac{P_{H2O}}{P_{H2O,sat(T)}}$$

> RH ≥ 100% → Bulut oluşumu

Nemli Havanın Molekül Ağırlığı

- $> M_{a,nemli} = (1 C_{H20})M_{a,kuru} + C_{H20}M_{H20}$
- Örneğin, su buharının karışım oranı 0.03 ise nemli havanın molekül ağırlığı nedir?
- $M_{a,nemli} = (1 0.03) \times 28.96 \times 10^{-3} kg/mol + 0.03 \times 18 \times 10^{-3} kg/mol$
- $M_{a,nemli} = 28.63 \times 10^{-3} kg/mol$
- ➤ Nemli hava kuru havadan daha hafiftir.

Atmosfer Katmanları

Troposfer

- > Yer yüzeyinden başlayan ilk 11-12 km'lik atmosfer katmanı.
- Meteorolojik olaylar bu bölgede gerçekleşir.
- ➤ Yükseğe çıkıldıkça sıcaklık yaklaşık 15 °C'den (288 K) -57°C'ye (216 K) düşer.
- Basınç 1013 mb'dan 20-140 mb'a kadar düşer.

Serbest Troposfer – Sınır Katman Tabakası

PBL yüksekliği (HPBL) genellikle 1-2 km arasında değişir (zamana ve konuma bağlı).

http://www.shodor.org/os411/courses/411c/module06/unit01/page01.html

Sınır Katman Tabaka Yüksekliği (HPBL)

- Karışım Yüksekliği olarak da bilinir.
- Hava kirleticilerinin hava içerisinde tam karışımlı oldukları yüksekliktir.
- Karışım yüksekliğinin belirlenmesi hava kirliliği problemlerinde oldukça önemlidir.

Seasonal Variation in the Height of the Mixing Layer

©The COMET Program

http://stream1.cmatc.cn/pub/comet/FireWeather/S290Unit6AtmosphericStability/comet/fire/s290/unit6/print_3.htm

Stratosfer

- > 11-50. km'ler arasında troposferin üzerinde yer alır.
- > 20-30. km'ler arasında Ozon tabakası bulunur.
- > Bu tabaka güneşten gelen UV-B ışınlarını tutar.

Atmosferik Basınç

- $\triangleright P_A = \rho_{H_g}.g.h$
- $ightharpoonup
 ho_{Hg}$: civanın özgül ağırlığı (13.6 gr/cm³)
- g : yerçekimi ivmesi (9.8 m/s²)
- > h : yükseklik (deniz seviyesinde 76 cm)

Pa = 1.013×10^5 Pa = 1013 hPa = 1013 mb= 1 atm = 760 mm Hg = 760 torr

Atmosferin Kütlesi

Dünya yer yüzeyindeki ortalama basınç 984 hPa ise toplam atmosfer kütlesini (m_{atm}) ve mol sayısını (N_{atm}) hesaplayınız.

$$ightharpoonup P =
ho. g.h = rac{m_{atm}}{V}.g.h = rac{m_{atm}}{A.h}.g.h = rac{m_{atm}.g}{4.\pi R^2}$$

$$>N_{atm} = \frac{m_{atm}}{M_a} = \frac{5.2 \times 10^{18} kg}{28.96 \times 10^{-3} kg/mol} = 1.8 \times 10^{20} mol$$

Atmosferdeki Gazların Kütlesi

Atmosferin kütlesi ve karışım oranı bilinirse, atmosferdeki gazların kütlesi hesaplanabilir. Örneğin sanayi devriminden bu yana atmosfere atılan CO₂ miktarını hesaplayalım.

$$C_{CO2} = \frac{n_{CO2}}{n_a} = \frac{N_C}{N_a} = \frac{M_a}{M_c} \cdot \frac{m_C}{m_a}$$

- Nc: toplam karbon (karbondioksit) mol sayısı
- ➤ Na: atmosferdeki toplam mol sayısı
- mc: toplam karbon (karbondioksit) kütlesi
- ma: atmosferin toplam kütlesi

Sanayi Devriminden Bu Yana Atmosfere Atılan CO₂

$$C_{CO2} = \frac{n_{CO2}}{n_a} = \frac{N_C}{N_a} = \frac{M_a}{M_c} \cdot \frac{m_C}{m_a}$$

- > CO₂: 422.71 ppm (Ağustos 2024 https://www.co2.earth/)
- $\Delta m_C = 3.07 \times 10^{14} kg = 307 \text{ milyar ton}$

Daniel J. Jacob'un "Introduction to Atmospheric Chemistry" kitabından uyarlanmıştır.

Problem

- Toplam atmosferdeki kütlenin ne kadarı troposferdedir?
- $> \frac{P_{tropopoz}}{P_{y\ddot{u}zey}} = \frac{100 \ hPa}{1000 hPa}$
- > F_{troposfer}: troposfer fonksiyonu
- $F_{\text{troposfer}} = 1 \frac{P_{tropopoz}}{P_{y\ddot{u}zey}} = 0.90$

- ➤ Toplam atmosferdeki kütlenin ne kadarı stratosferdedir?
- ightharpoonup P_{stratopoz} = 0.9 hPa
- $F_{\text{stratosfer}} = \frac{P_{tropopoz} P_{stratopoz}}{P_{y\ddot{u}zey}} = 0.099$

Atmosferin Kütle Dağılımı

- Troposfer = % 90
- Stratosfer = % 9.9
- Mezosfer = % 0.1

Atmosferik Taşınım

Atmosfer içinde ısının ya da diğer özelliklerin dikey hareketine Konveksyion (convection) denilir.

Atmosfer içinde ısının ya da diğer özelliklerin yatay hareketine Adveksiyon (advection) denilir.

Atmosferik Taşınım

Atmosferik taşınımda etkin olan kuvvetler:

- Yerçekimi
- Basınç gradyanı
- Coriolis kuvveti

Yataydaki taşınım basınç gradyanı ile coriolis kuvveti arasındaki dengeye bağlıdır.

Dikeydeki taşınım yerçekimi ile basınç gradyanı arasındaki dengeye bağlıdır.

Coriolis Kuvveti

- Kuzey yarım kürede bütün sapmalar sağ tarafa doğru olur.
- Güney yarım kürede bütün sapmalar sol tarafa doğru olur.
- Ekvatorda coriolis kuvveti sıfırdır.

Coriolis Etkisi Video

https://www.youtube.com/watch?v=mcPs OdQOYU

Alçak ve Yüksek Basınç

Air motion in cyclones & anticyclones

Yüksek Basınç - Hava Kalitesi İlişkisi

Introduction to Air Quality Forecasting

Pawan Gupta & Melanie Follette-Cook

Pawan Gupta & Melanie Follette-Cool

September 23, 2021

https://appliedsciences.nasa.gov/join-mission/training/english/arset-introduction-and-access-global-air-quality-forecasting-data-and

Alçak Basınç - Hava Kalitesi İlişkisi

Introduction to Air Quality Forecasting

Pawan Gupta & Melanie Follette-Cook

rawan Gupia & Melanie Foliene-Coo

September 23, 2021

https://appliedsciences.nasa.gov/join-mission/training/english/arset-introduction-and-access-global-air-quality-forecasting-data-and

Hava Parseline Yatayda Etki Eden Kuvvetler

1222

 $> \gamma_c = 2. w. V. sin \lambda$

 $\succ \gamma_c$: coriolis ivmesi

> w: dünyanın açısal hızı

V: nesnenin dünyadaki hızı

 $\geq \lambda$: Enlem

$$\triangleright \gamma_p = -\frac{1}{\rho} \cdot \nabla \cdot P$$

 $\succ \gamma_p$: basınç ivmesi

$$\triangleright \nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$$

∇: gradyan vektörü

 $\succ \gamma_f$: sürtünme ivmesi

Rüzgar Hareketleri

- Ekvator bölgesi: Intertropical Convegence Zone (ITCZ)
- ➤ 20° 30° enlemler: doğu rüzgarları
- ≥ 30°: yüksek basınç bölgesi
- > 30°'den yukarı enlemler: batı rüzgarları

Rüzgar hareketleri video https://www.youtube.com/watch?v=Ye45DGkqUkE

Tropopoz yüksekliği

Atmosferde Yatay Taşınım

https://acmg.seas.harvard.edu/education

Havanın Kaldırma Kuvveti (Bouyancy)

P(top)

P(bottom)

 \triangleright Fnet = $(\rho' - \rho)$.Vg

$$> \gamma_b = \frac{\rho' - \rho}{\rho} \cdot g$$

- $\succ \gamma_b$: bouyancy ivmelenmesi
- ρ': cismin özkütlesi
- ρ: akışkanın özkütlesi
- g: yerçekimi ivmesi
- İdeal gaz kanunundan ρ ~ 1/T

$$ho \gamma_b = \frac{1/T' - 1/T}{1/T}.g = \frac{T - T'}{T}.g$$

Atmosferik Stabilite

Kuru havanın adiyabatik yükselmesi (Dry adiyabatik lapse rate)

$$\Gamma = -dT/dz = \frac{g}{C_p} = 9.8 \text{ K km}^{-1}$$

- ➤ Adiyabatik: ısı alışverişi yok (dQ=0)
- → -dT/dz : lapse rate
- > Cp:1.0 x 10³ J kg⁻¹ K⁻¹ (havanın ısı kapasitesi)
- ➤ Sıcaklık her 100 metrede yaklaşık 1°C azalır.

Bazı Tanımlar

- > Yatayda hava hareketlerinin kesilmesi: rüzgarsız hava (calm)
- ➤ Dikeyde artan hava sıcaklığı nedeniyle hava hareketinin engellenmesi: inversiyon veya sıcaklık terslemesi (inversion)
- Yatay ve dikeyde hava hareketinin 24 saatten fazla gerçekleşmesi: durağanlık (stagnation)
- Durağanlık ile birlikte kirletici konsantrasyonlarının artması: epizod (episode)

Sıcaklık Terslemesi (İnversion)

Atmosferde Dikey Taşınım

Meteorolojinin Hava Kalitesine Etkileri

- Kirleticilerin kaynaktan alıcıya kadar olan taşınım meteorolojik olayların etkisi ile gerçekleşir:
- Yatay taşınım rüzgar hızı ve yönüne bağlıdır.
- Dikey taşınım basınca bağlıdır.
- Sıcaklık profili de taşınımda etkilidir (inversiyon).
- > Fotokimyasal reaksiyonlar güneş radyasyonuna bağlı gerçekleşir.
- Sulu fazda gerçekleşen reaksiyonlar su konsantrasyonuna bağlıdır.
- Yağış ile kirletici giderimi gerçekleşir (yaş çökelme).

Hava Kirliliğinin Meteorolojiye Etkileri

- > Ozon ve PAN gibi kirleticiler fotokimyasal sisi oluşturur.
- Sis, güneş radyasyonunu engelleyerek yerel meteorolojik şartları değiştirir.
- Aerosoller güneş radyasyonunu engelleyerek yerel meteorolojik şartları değiştirir.
- > Toz taşınımları çamurlu yağmur yağmasına sebep olur.
- Sera gazı konsantrasyonlarının artması iklim değişikliğine ve dolayısıyla rüzgar, sıcaklık ve yağış gibi meteorolojik faktörlerin değişmesine sebep olur.