

One hidden layer Neural Network

Neural Networks Overview

What is a Neural Network?

One hidden layer Neural Network

One hidden layer Neural Network

Computing a Neural Network's Output

$$z = w^T x + b$$
$$a = \sigma(z)$$

Neural Network Representation learning

Given input x:

$$z^{[1]} = W^{[1]} + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$a^{[1]} = w^{[2]} a^{[1]} + b^{[2]}$$

$$a^{[2]} = w^{[2]} a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

$$a^{[2]} = \sigma(z^{[2]})$$

$$a^{[2]} = \sigma(z^{[2]})$$

One hidden layer Neural Network

Vectorizing across multiple examples

Vectorizing across multiple examples

Vectorizing across multiple examples

One hidden layer Neural Network

Explanation for vectorized implementation

Justification for vectorized implementation

Recap of vectorizing across multiple examples


```
for i = 1 to m
                                     + z^{[1](i)} = W^{[1]}x^{(i)} + b^{[1]}
                                    \Rightarrow a^{[1](i)} = \sigma(z^{[1](i)})
                                  \Rightarrow z^{[2](i)} = W^{[2]}a^{[1](i)} + b^{[2]}
                            \Rightarrow a^{[2](i)} = \sigma(z^{[2](i)})
                                                                                                                                                                                                                      \chi = \alpha^{(0)} \quad \chi = \alpha^{(0)} \quad \chi^{(0)} = \alpha^{(0)
 Z^{[1]} = W^{[1]}X + b^{[1]} \leftarrow W^{[1]}X^{(0)} + b^{[1]}
         A^{[1]} = \sigma(Z^{[1]})
Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}
     A^{[2]} = \sigma(Z^{[2]})
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Andrew Ng
```


One hidden layer Neural Network

Activation functions

Activation functions

Pros and cons of activation functions

One hidden layer Neural Network

Why do you need non-linear activation functions?

Activation function

One hidden layer Neural Network

Derivatives of activation functions

Sigmoid activation function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$a = g(z) = \frac{1}{(1 + e^{-z})}$$

$$= \frac{1$$

Tanh activation function

ReLU and Leaky ReLU

ReLU

$$g(t) = mox(0, 2)$$

$$\Rightarrow g'(t) = \begin{cases} 0 & \text{if } 2 < 0 \\ 1 & \text{if } t \geq 0 \end{cases}$$

$$\Rightarrow g'(t) = \begin{cases} 1 & \text{if } t \geq 0 \\ 1 & \text{if } t \geq 0 \end{cases}$$

$$\Rightarrow g'(t) = \begin{cases} 0 & \text{on } t \neq 0 \\ 1 & \text{otherwise} \end{cases}$$

Leaky ReLU

$$g(z) = \max(0.01z, z)$$
 $g'(z) = \{0.01 : t > 0.00\}$
 $f(z) = \{0.01 : t > 0.00\}$

One hidden layer Neural Network

Gradient descent for neural networks

Gradient descent for neural networks

Parameters:
$$(J^{(1)})$$
 $b^{(2)}$ $(J^{(2)})$ $(J^{(2$

Formulas for computing derivatives

Formal propagation:
$$Z_{(1)} = P_{(1)}(S_{(1)}) = e(S_{(2)})$$

$$Y_{(1)} = P_{(2)}(S_{(2)}) = e(S_{(2)})$$

$$Y_{(2)} = P_{(2)}(S_{(2)}) = e(S_{(2)})$$

$$Y_{(2)} = P_{(2)}(S_{(2)}) = e(S_{(2)})$$

Andrew Ng

One hidden layer Neural Network

Backpropagation intuition (Optional)

Computing gradients

Logistic regression

Neural network gradients $z^{[2]} = W^{[2]}x + b^{[2]}$ duri = de a Tos -> > db = dztz] K $\left(\begin{array}{ccc} n & \zeta & \zeta & \zeta & \zeta \end{array} \right)$

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$
 $dW^{[2]} = dz^{[2]}a^{[1]^T}$
 $db^{[2]} = dz^{[2]}$
 $dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$
 $dW^{[1]} = dz^{[1]}x^T$
 $db^{[1]} = dz^{[1]}$

Vectorized Implementation:

$$z^{(1)} = (\omega^{(1)} \times + b^{(1)})$$

$$z^{(1)} = g^{(1)}(z^{(1)})$$

$$z^{(1)} = \left[z^{(1)}(z^{(1)})\right]$$

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$db^{[1]} = dz^{[1]}$$

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$db^{[1]} = dz^{[1]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dw^{[1]} = dz^{[1]}x^T$$

$$db^{[1]} = dz^{[1]}$$

$$db^{[1]} = dz^{[1]}$$

$$db^{[1]} = \frac{1}{m}np. sum(dz^{[1]}, axis = 1, keepdims = True)$$

One hidden layer Neural Network

Random Initialization

What happens if you initialize weights to zero?

Random initialization

