ESPACIOS METRICAS I

EVEMPLOS:

· (a,b) ES ABIERTO HOLD:

AFIRMO:
$$3(C, E) \subseteq (a, b) = C$$

$$= 3(C)$$

$$3(c, \epsilon) = \{x: |x-c| \le \}$$

= $(c-\epsilon, c+\epsilon) = (a, b)$

3BS:

7. Sea (E, d) un espacio métrico. Sean $x \in E$ y r > 0.

(a) Probar que $\{x\}$ es un conjunto cerrado.

(b) Probar que B(x,r) es un conjunto abierto.

$$(a,b) = B(x,r), \qquad \frac{2}{7}$$

$$con x = a+b, r = b-a \qquad 0$$

$$2 \qquad b-a$$

$$-)(a,b) \iff unb \Rightarrow Lb$$

$$ue60 \iff BBIELT$$

•
$$(a,b]^{\circ} = (a,b)$$
:
2) $\forall ce(ab), vimbs \exists r>0/$
 $\exists (c,r) \subseteq (a,b) \subseteq (a,b]$
=) $ce(a,b]^{\circ}$
 $ce(a,b]$; $zvz c \neq b$
 $ce(a,b]$; $zvz c \neq b$
 $ce(a,b]$, $ze(4szo)$

$$B(b, \xi) \not= (a, b]$$
. EN EFECTO
 $b+\xi/2 \in B(b, \xi) \setminus (a, b]$
 $(b-\xi/3+\xi)$

$$2)(\mathbb{R}^2, \mathbb{J}_1).$$

$$560() = \{(x, y) \in \mathbb{R}^2 : y > 0\}$$

$$(x, y) \in \mathbb{R}^2 : y > 0\}$$

SEA
$$(X_0, Y_0) \in V$$
, SEA $\Gamma = Y_0$

AFIRMO: $3((X_0, Y_0), \Gamma) \subseteq V$

SEA $(X, Y) \in 3((X_0, Y_0), \Gamma)$. Asi,

 $\Gamma > d_2((X, Y), (X_0, Y_0))$
 $= (X - X_0) + (Y - Y_0)^2$
 $= |Y - Y_0|$

RECE N

- (a) Probar que $d_{\infty}(x,y) \leq d_2(x,y) \leq d_1(x,y) \leq nd_{\infty}(x,y)$.
- (b) Deducir de (a) que $B_1(x,r) \subseteq B_2(x,r) \subseteq B_\infty(x,r) \subseteq B_1(x,nr)$.

PENSOR: USIR COTION Œ, SON QVIV:

- · U A3 FURD dos
- · U 13 Paro 22
- () AB PARO JA

EVEMPLO: E = \{f:[0,1] ->1R, f CONT\}
= ([0,1])

VINOS QUE E ADINITE DOS MOTRILOS:

· da f, 3) = máx {|fx)-5x):

 $\times \in [0,1]$

50 fEE, f=6; 50 d>6 AFIRMO: $B_{\infty}(f,f) \rightarrow \epsilon s$ ABIRETO PARO da NO ES ABERTO más aun, $f \in 300(1,3) \setminus 300(1,3)$ ES DECIR, (720) $3(f, \xi) \subseteq 3\infty(f, \delta)$ = 2ve = 2ve - + = = 1 Bo(1, 8)

 $\frac{\partial s}{\partial s} = \frac{1}{2} \cdot 7^{2} = \frac{7}{2} < \frac{5}{2}$ $\frac{\partial s}{\partial s} = \frac{1}{2} \cdot 7^{2} = \frac{7}{2} < \frac{5}{2}$ $\frac{\partial s}{\partial s} = \frac{1}{2} \cdot 7^{2} = \frac{7}{2} < \frac{5}{2}$ $\frac{\partial s}{\partial s} = \frac{1}{2} \cdot 7^{2} = \frac{7}{2} < \frac{5}{2}$ $= \frac{1}{2} \cdot 7^{2} = \frac{7}{2} < \frac{5}{2} < \frac{5}{2}$ $= \frac{1}{2} \cdot 7^{2} = \frac{7}{2} < \frac{5}{2} < \frac{5}{2}$ $= \frac{1}{2} \cdot 7^{2} = \frac{7}{2} < \frac{5}{2} < \frac{5}{2$