3. gaiko lehenengo zatia: AFD, AFED eta ε-AFED-en diseinua Bilboko IITUE 1,6 puntu

2014-11-27

1 Automata finitu deterministen (AFD-en) diseinua (0,500 puntu)

 $A = \{a, b, c\}$ alfabetoaren gainean definitutako honako bi lengoaientzat AFD bana diseinatu:

1.1 *a-*z hasi, *a-*z bukatu eta *aa* azpikatea duten hitzez eratutako lengoaia (0,250 puntu)

a sinboloaz hasi, a sinboloaz bukatu eta gainera aa azpikatea duten hitzez eratutako L_1 lengoaia. Adibidez, abbaaba, aababa, aaca, aa eta aaaaa hitzak L_1 lengoaiakoak dira baina aac, acbba, bbccc, a, bbbb eta ε hitzak ez dira L_1 lengoaiakoak. L_1 lengoaiaren definizio formala honako hau da:

$$L_1 = \{ w \mid w \in A^* \land |w| \ge 2 \land w(1) = a \land w(|w|) = a \land \exists u, v(u \in A^* \land v \in A^* \land w = uaav) \}$$

1.2 a-z hasi edo a-z bukatu edo aa azpikatea duten hitzez eratutako lengoaia (0,250 puntu)

a sinboloaz hasi edo a sinboloaz bukatu edo aa azpikatea duten hitzez eratutako L_2 lengoaia. Hitz bakoitzak baldintza horietako bat edo gehiago bete ditzake. Adibidez, accc, bbaab, bcba, aaca, aa, a eta aaaaa hitzak L_2 lengoaiakoak dira baina bacb, cbabab, bbccc, bbbb eta ε hitzak ez dira L_2 lengoaiakoak. L_2 lengoaiaren definizio formala honako hau da:

$$L_2 = \{ w \mid w \in A^* \land |w| \ge 1 \land (w(1) = a \lor w(|w|) = a \lor \exists u, v(u \in A^* \land v \in A^* \land w = uaav)) \}$$

2 Automata finitu ez deterministen (AFED-en) diseinua (0,250 puntu)

AFD-en diseinuko ariketako L_2 lengoaiari dagokion AFED bat diseinatu. Nahitaezkoa da AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat bi gezi edo gehiago ateratzea. Baita ere nahitaezkoa da AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat gezirik ez ateratzea.

3 ε trantsizioak dituzten automata finitu ez deterministen (ε -AFED-en) diseinua (0,250 puntu)

AFD-en diseinuko ariketako L_2 lengoaiari dagokion ε -AFED bat diseinatu. Nahitaezkoa da ε -AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat edo ε sinboloarentzat bi gezi edo gehiago ateratzea eta gutxienez egoera batetik gutxienez A-ko sinbolo batentzat gezirik ez ateratzea. Gainera, derrigorrezkoa da baita ere gutxienez ε trantsizio bat egotea.

Jarraian erakusten den AFD-a kontuan hartuz, hor zehazten den konputazio bakoitzari dagokion konfigurazio deterministez eratutako sekuentzia (edo adar bakarreko zuhaitza) garatu urratsez urrats, bukaeran AFD-ak "Bai" ala "Ez" erantzungo duen esanez:

- 1. $\delta^*(q_0, abba)$
- 2. $\delta^*(q_0, acca)$
- 3. $\delta^*(q_0, aa)$
- 4. $\delta^*(q_0, abc)$
- 5. $\delta^*(q_0,\varepsilon)$

Kasu bakoitzak 0,020 balio du.

5 Konputazio ez deterministen garapena (0,100 puntu)

Jarraian erakusten den AFED-a kontuan hartuz, hor zehazten den konputazio bakoitzari dagokion konfigurazio deterministez eratutako zuhaitza garatu urratsez urrats, bukaeran AFED-ak "Bai" ala "Ez" erantzungo duen esanez:

- 1. $\nu^*(r_0, aba)$
- 2. $\nu^*(r_0, aaa)$
- 3. $\nu^*(r_0, caaa)$

4.
$$\nu^*(r_0, cca)$$

5.
$$\nu^*(r_0,\varepsilon)$$

Kasu bakoitzak 0,020 balio du.

6 ε trantsizioak dituzten konputazio ez deterministen garapena (0,100 puntu)

Jarraian erakusten den ε -AFED-a kontuan hartuz, hor zehazten diren konputazioak konfigurazio deterministez osatutako zuhaitzen bidez garatu urratsez urrats, bukaeran ε -AFED-ak "Bai" ala "Ez" erantzungo duen esanez:

E

- 1. $\lambda^*(s_0, abca)$
- 2. $\lambda^*(s_0, aaa)$
- 3. $\lambda^*(s_0, abb)$
- 4. $\lambda^*(s_0, a)$
- 5. $\lambda^*(s_0, \varepsilon)$

Kasu bakoitzak 0,020 balio du.

7 AFD-en minimizazioa (0,300 puntu)

 $A = \{a, b, c\}$ alfabetoaren gainean definitutako honako AFD hau minimizatu:

δ	a	b	c
q_0	q_1	q_2	q_3
q_1	q_1	q_4	q_5
q_2	q_8	q_2	q_6
q_3	q_8	q_9	q_3
q_4	q_8	q_4	q_7
q_5	q_8	q_9	q_5
q_6	q_8	q_9	q_6
q_7	q_8	q_9	q_7
q_8	q_8	q_9	q_{10}
q_9	q_8	q_9	q_{10}
q_{10}	q_8	q_9	q_{10}

3. gaiko lehenengo zatia: AFD, AFED eta ε-AFED-en diseinua Bilboko IITUE 1,6 puntu

2014-11-26

1 Automata finitu deterministen (AFD-en) diseinua (0,500 puntu)

 $A = \{a, b, c\}$ alfabetoaren gainean definitutako honako bi lengoaientzat AFD bana diseinatu:

1.1 ababc zero edo gehiagotan errepikatuz osatutako hitzez eratutako lengoaia (0,250 puntu)

ababc zero edo gehiagotan errepikatuz osatutako hitzez eratutako L_1 lengoaia. Adibidez, ε , ababc eta ababcababc hitzak L_1 lengoaiakoak dira baina aac, aabcbc, aacc, aaa, ab, ababab, abc, abcab, abababcabc eta abcabccccc hitzak ez dira L_1 lengoaiakoak. L_1 lengoaiaren definizio formala honako hau da:

$$L_1 = \{ w \mid w \in A^* \land \exists k (k \ge 0 \land w = (ababc)^k) \}$$

1.2 ab katea bikoitia den kopuru batean edo abc katea bikoitia den kopuru batean errepikatuz osatutako hitzez eratutako lengoaia (0,250 puntu)

ab katea bikoitia den kopuru batean edo abc katea bikoitia den kopuru batean errepikatuz osatutako hitzez eratutako L_2 lengoaia. Adibidez, ε , abab, abcabc, abababab, abcabcabcabcabc eta abcabc hitzak L_2 lengoaia-koak dira baina aac, aabcbc, aac, aa, ab, ababab, abc, ababa, abababcabc eta abcabcccc hitzak ez dira L_2 lengoaiakoak. L_2 lengoaiaren definizio formala honako hau da:

$$L_2 = \{w \mid w \in A^* \wedge \exists k (k \geq 0 \wedge k \bmod 2 = 0 \wedge (w = (ab)^k \vee w = (abc)^k))\}$$

2 Automata finitu ez deterministen (AFED-en) diseinua (0,250 puntu)

AFD-en diseinuko ariketako L_2 lengoaiari dagokion AFED bat diseinatu. Nahitaezkoa da AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat bi gezi edo gehiago ateratzea. Baita ere nahitaezkoa da AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat gezirik ez ateratzea.

3 ε trantsizioak dituzten automata finitu ez deterministen (ε -AFED-en) diseinua (0,250 puntu)

AFD-en diseinuko ariketako L_2 lengoaiari dagokion ε -AFED bat diseinatu. Nahitaezkoa da ε -AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat edo ε sinboloarentzat bi gezi edo gehiago ateratzea eta gutxienez egoera batetik gutxienez A-ko sinbolo batentzat gezirik ez ateratzea. Gainera, derrigorrezkoa da baita ere gutxienez ε trantsizio bat egotea.

Jarraian erakusten den AFD-a kontuan hartuz, hor zehazten den konputazio bakoitzari dagokion konfigurazio deterministez eratutako sekuentzia (edo adar bakarreko zuhaitza) garatu urratsez urrats, bukaeran AFD-ak "Bai" ala "Ez" erantzungo duen esanez:

- 1. $\delta^*(q_0, abba)$
- 2. $\delta^*(q_0, abaa)$
- 3. $\delta^*(q_0, bcab)$
- 4. $\delta^*(q_0, bcbc)$
- 5. $\delta^*(q_0,\varepsilon)$

Kasu bakoitzak 0,020 balio du.

5 Konputazio ez deterministen garapena (0,100 puntu)

Jarraian erakusten den AFED-a kontuan hartuz, hor zehazten den konputazio bakoitzari dagokien konfigurazio deterministez eratutako zuhaitza garatu urratsez urrats, bukaeran AFED-ak "Bai" ala "Ez" erantzungo duen esanez:

- 1. $\nu^*(r_0, aba)$
- 2. $\nu^*(r_0, aaa)$
- 3. $\nu^*(r_0, acc)$
- 4. $\nu^*(r_0, ccc)$
- 5. $\nu^*(r_0,\varepsilon)$

Kasu bakoitzak 0,020 balio du.

6 ε trantsizioak dituzten konputazio ez deterministen garapena (0,100 puntu)

Jarraian erakusten den ε -AFED-a kontuan hartuz, hor zehazten diren konputazioak konfigurazio deterministez osatutako zuhaitzen bidez garatu urratsez urrats, bukaeran ε -AFED-ak "Bai" ala "Ez" erantzungo duen esanez:

- 1. $\lambda^*(s_0, abbc)$
- 2. $\lambda^*(s_0, aaa)$
- 3. $\lambda^*(s_0, ac)$
- 4. $\lambda^*(s_0, c)$
- 5. $\lambda^*(s_0,\varepsilon)$

Kasu bakoitzak 0,020 balio du.

7 AFD-en minimizazioa (0,300 puntu)

 $A = \{a,b,c\}$ alfabetoaren gainean definitutako honako AFD hau minimizatu:

δ	a	b	c
q_0	q_1	q_2	q_3
q_1	q_1	q_4	q_5
q_2	q_9	q_2	q_6
q_3	q_{10}	q_{10}	q_3
q_4	q_8	q_4	q_7
q_5	q_8	q_8	q_5
q_6	q_9	q_9	q_6
q_7	q_8	q_8	q_7
q_8	q_8	q_8	q_8
q_9	q_9	q_9	q_9
q_{10}	q_{10}	q_{10}	q_{10}

3. gaiko lehenengo zatia: AFD, AFED eta ε-AFED-en diseinua Bilboko IITUE 1,6 puntu

2015-11-19

1 Automata finitu deterministen (AFD-en) diseinua (0,500 puntu)

 $A = \{a, b, c\}$ alfabetoaren gainean definitutako honako bi lengoaientzat AFD bana diseinatu:

1.1 a-rekin hasi eta aa eta bb azpihitzak dituzten hitzez eratutako L_1 lengoaia

a sinboloarekin hasteaz gain, aa eta bb azpihitzak gutxienez behin eta edozein ordenatan (lehenengo aa eta gero bb edo alderantziz) dituzten hitzez eratutako L_1 lengoaia. Adibidez, abbbaac, acaabbc, aacccbb eta acaaaccbbcaa hitzak L_1 lengoaiakoak dira baina ε , a, aaa, b, aacabac, aabcbc, bbcaa eta bccaccc hitzak ez dira L_1 lengoaiakoak. L_1 lengoaiaren definizio formala honako hau da:

$$L_1 = \{ w \mid w \in A^* \land \exists u, v, x(u \in A^* \land v \in A^* \land x \in A^* \land (w = auaavbbx \lor w = aubbvaax \lor w = aavbbx)) \}$$

1.2 a-rekin hasi eta aa edo bb azpihitza duten hitzez eratutako L_2 lengoaia

a sinboloarekin hasteaz gain, aa edo bb azpihitzak (edo biak) gutxienez behin dituzten hitzez eratutako L_2 lengoaia. Adibidez, abbbaac, acaabbc, aaa, aacabac, abbc, acaacbcaaaa eta acaaabbcaa hitzak L_2 lengoaiakoak dira baina ε , a, aba, b, baacabac, bbcaa eta bccaccc hitzak ez dira L_2 lengoaiakoak. L_2 lengoaiaren definizio formala honako hau da:

$$L_2 = \{ w \mid w \in A^* \land \exists u, v (u \in A^* \land v \in A^* \land (w = auaav \lor w = aubbv \lor w = aav)) \}$$

2 Automata finitu ez-deterministen (AFED-en) diseinua (0,250 puntu)

AFD-en diseinuko ariketako L_1 lengoaiari dagokion AFED bat diseinatu. Nahitaezkoa da AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat bi gezi edo gehiago ateratzea. Baita ere nahitaezkoa da AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat gezirik ez ateratzea.

3 ε trantsizioak dituzten automata finitu ez-deterministen (ε -AFED-en) diseinua (0,250 puntu)

AFD-en diseinuko ariketako L_1 lengoaiari dagokion ε -AFED bat diseinatu. Nahitaezkoa da ε -AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat edo ε sinboloarentzat bi gezi edo gehiago ateratzea eta gutxienez egoera batetik gutxienez A-ko sinbolo batentzat gezirik ez ateratzea. Gainera, derrigorrezkoa da baita ere gutxienez ε trantsizio bat egotea.

Jarraian erakusten den AFD-a kontuan hartuz, hor zehazten den konputazio bakoitzari dagokion konfigurazio deterministez eratutako sekuentzia (edo adar bakarreko zuhaitza) garatu urratsez urrats, bukaeran AFD-ak "Bai" ala "Ez" erantzungo duen esanez:

- 1. $\delta^*(q_0, aabbb)$
- 2. $\delta^*(q_0, aaa)$
- 3. $\delta^*(q_0, acb)$
- 4. $\delta^*(q_0, b)$
- 5. $\delta^*(q_0,\varepsilon)$

Kasu bakoitzak 0,020 balio du.

5 Konputazio ez-deterministen garapena (0,100 puntu)

Jarraian erakusten den AFED-a kontuan hartuz, hor zehazten den konputazio bakoitzari dagokion konfigurazio deterministez eratutako zuhaitza garatu urratsez urrats, bukaeran AFED-ak "Bai" ala "Ez" erantzungo duen esanez:

- 1. $\nu^*(r_0, aaac)$
- 2. $\nu^*(r_0, acaa)$
- 3. $\nu^*(r_0, acb)$
- 4. $\nu^*(r_0, b)$
- 5. $\nu^*(r_0,\varepsilon)$

Kasu bakoitzak 0,020 balio du.

6 ε trantsizioak dituzten konputazio ez-deterministen garapena (0,100 puntu)

Jarraian erakusten den ε -AFED-a kontuan hartuz, hor zehazten diren konputazioak konfigurazio deterministez osatutako zuhaitzen bidez garatu urratsez urrats, bukaeran ε -AFED-ak "Bai" ala "Ez" erantzungo duen esanez:

- 1. $\lambda^*(s_0, aba)$
- 2. $\lambda^*(s_0, abab)$
- 3. $\lambda^*(s_0, abc)$
- 4. $\lambda^*(s_0, ab)$
- 5. $\lambda^*(s_0, \varepsilon)$

Kasu bakoitzak 0,020 balio du.

7 AFD-en minimizazioa (0,300 puntu)

 $A = \{a,b,c\}$ alfabetoaren gainean definitutako honako AFD hau minimizatu:

δ	a	b	c
q_0	q_1	q_5	q_0
q_1	q_2	q_4	q_1
q_2	q_1	q_3	q_2
q_3	q_4	q_2	q_3
q_4	q_3	q_1	q_4
q_5	q_6	q_0	q_5
q_6	q_7	q_8	q_6
q_7	q_6	q_9	q_7
q_8	q_9	q_6	q_8
q_9	q_8	q_7	q_9

3. gaiko lehenengo zatia: AFD, AFED eta ε -AFED-en diseinua Bilboko IITUE 1,6 puntu

2015-11-18

1 Automata finitu deterministen (AFD-en) diseinua (0,500 puntu)

 $A = \{a, b, c\}$ alfabetoaren gainean definitutako honako bi lengoaientzat AFD bana diseinatu:

1.1 Osagai denak a izan gabe a kopuru bakoitia duten hitzez eratutako L_1 lengoaia

a kopuru bakoitia edukitzeaz gain, b edo c sinboloen agerpenak ere badituzten hitzez eratutako L_1 lengoaia. Adibidez, cabbb, abaabc, aaab eta ababcababa hitzak L_1 lengoaiakoak dira baina ε , a, aaa, b, aacabac, aabcbc eta bccccc hitzak ez dira L_1 lengoaiakoak. L_1 lengoaiaren definizio formala honako hau da:

$$L_1 = \{ w \mid w \in A^* \land |w|_a \bmod 2 \neq 0 \land |w|_a \neq |w| \}$$

1.2 b-rik eta c-rik ez duten edo a kopuru bakoitia duten edo a-rik ez duten hitzez eratutako L_2 lengoaia

Gutxienez honako hiru baldintza hauetakoren bat betetzen duten hitzez osatutako L_2 lengoaia:

- ullet b-rik eta c-rik ez edukitzea edo
- a kopurua bakoitia izatea edo
- a-rik ez edukitzea.

Adibidez, ε , aa, aaa, abaabc, aaab, ccc eta bbcb hitzak L_2 lengoaiakoak dira baina aab, bcaababa eta acaaa hitzak ez dira L_2 lengoaiakoak. L_2 lengoaiaren definizio formala honako hau da:

$$L_2 = \{ w \mid w \in A^* \land (|w|_a = |w| \lor |w|_a \bmod 2 \neq 0 \lor |w|_a = 0) \}$$

2 Automata finitu ez-deterministen (AFED-en) diseinua (0,250 puntu)

AFD-en diseinuko ariketako L_2 lengoaiari dagokion AFED bat diseinatu. Nahitaezkoa da AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat bi gezi edo gehiago ateratzea. Baita ere nahitaezkoa da AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat gezirik ez ateratzea.

3 ε trantsizioak dituzten automata finitu ez-deterministen (ε -AFED-en) diseinua (0,250 puntu)

AFD-en diseinuko ariketako L_2 lengoaiari dagokion ε -AFED bat diseinatu. Nahitaezkoa da ε -AFED horretan gutxienez egoera batetik gutxienez A-ko sinbolo batentzat edo ε sinboloarentzat bi gezi edo gehiago ateratzea eta gutxienez egoera batetik gutxienez A-ko sinbolo batentzat gezirik ez ateratzea. Gainera, derrigorrezkoa da baita ere gutxienez ε trantsizio bat egotea.

Jarraian erakusten den AFD-a kontuan hartuz, hor zehazten den konputazio bakoitzari dagokion konfigurazio deterministez eratutako sekuentzia (edo adar bakarreko zuhaitza) garatu urratsez urrats, bukaeran AFD-ak "Bai" ala "Ez" erantzungo duen esanez:

- 1. $\delta^*(q_0, abcaab)$
- 2. $\delta^*(q_0, abb)$
- 3. $\delta^*(q_0, cab)$
- 4. $\delta^*(q_0, aca)$
- 5. $\delta^*(q_0,\varepsilon)$

Kasu bakoitzak 0,020 balio du.

5 Konputazio ez-deterministen garapena (0,100 puntu)

Jarraian erakusten den AFED-a kontuan hartuz, hor zehazten den konputazio bakoitzari dagokion konfigurazio deterministez eratutako zuhaitza garatu urratsez urrats, bukaeran AFED-ak "Bai" ala "Ez" erantzungo duen esanez:

- 1. $\nu^*(r_0, aaac)$
- 2. $\nu^*(r_0, acaa)$
- 3. $\nu^*(r_0, aaa)$
- 4. $\nu^*(r_0, b)$
- 5. $\nu^*(r_0,\varepsilon)$

Kasu bakoitzak 0,020 balio du.

6 ε trantsizioak dituzten konputazio ez-deterministen garapena (0,100 puntu)

Jarraian erakusten den ε -AFED-a kontuan hartuz, hor zehazten diren konputazioak konfigurazio deterministez osatutako zuhaitzen bidez garatu urratsez urrats, bukaeran ε -AFED-ak "Bai" ala "Ez" erantzungo duen esanez:

- 1. $\lambda^*(s_0, abac)$
- 2. $\lambda^*(s_0, abab)$
- 3. $\lambda^*(s_0, bbb)$
- 4. $\lambda^*(s_0, a)$
- 5. $\lambda^*(s_0,\varepsilon)$

Kasu bakoitzak 0,020 balio du.

7 AFD-en minimizazioa (0,300 puntu)

 $A = \{a,b,c\}$ alfabetoaren gainean definitutako honako AFD hau minimizatu:

δ	a	b	c
q_0	q_1	q_9	q_{10}
q_1	q_2	q_3	q_5
q_2	q_2	q_2	q_2
q_3	q_6	q_4	q_5
q_4	q_4	q_4	q_4
q_5	q_6	q_7	q_5
q_6	q_8	q_7	q_5
q_7	q_6	q_8	q_5
q_8	q_8	q_8	q_8
q_9	q_{10}	q_{10}	q_{10}
q_{10}	q_9	q_9	q_9

3. gaiko lehenengo zatia: AFD-ak eta minimizazioa Bilboko IITUE 1,6 puntu

2014-01-13

1 Automata finitu deterministen (AFD-en) diseinua (0,900 puntu)

 $A = \{a, b, c\}$ alfabetoaren gainean definitutako honako hiru lengoaientzat AFD bana diseinatu:

1.1 c-rik ez eta, edozein ordenatan, gutxienez a bat eta gutxienez b bat dituzten hitzen lengoaia (0,300 puntu)

c sinboloaren agerpenik ez eta gutxienez a sinboloaren agerpen bat eta gutxienez b sinboloaren agerpen bat dituzten hitzez osatutako L_1 lengoaia. a eta b sinboloen agerpenei dagokionez, ordenak ez du garrantzirik. Adibidez, bbbab, ababbb, ba, ab eta bbbaaaa hitzak L_1 lengoaiakoak dira baina aac, aabcbc, aacc, aaa, bbbb eta ε hitzak ez dira L_1 lengoaiakoak. L_1 lengoaiaren definizio formala honako hau da:

$$L_1 = \{ w \mid w \in A^* \land |w|_a \ge 1 \land |w|_b \ge 1 \land |w|_c = 0 \}$$

1.2 c-rik agertzen bada, a-rik eta b-rik ez duten hitzen lengoaia (0,300 puntu)

c sinboloaren agerpenik baldin badute, a eta b sinboloen agerpenik ez duten hitzen L_2 lengoaia. Beraz hitz batean a eta b nahasian ager daitezke, baina c agertzen bada, orduan hitza c-ren errepikapenez osatutakoa izango da, hau da, ez du a-rik eta b-rik izango. Adibidez, abaabba, aaba, aaa, ε , ccc, bb eta bbaaab hitzak L_2 lengoaiakoak dira baina aacb, bccbbb, cccaa eta ccaaabab ez. Jarraian L_2 lengoaiaren bi definizio formal erakusten dira:

$$\begin{split} L_2 &= \{ w \mid w \in A^* \land (|w|_c = |w| \lor |w|_c = 0) \} \\ L_2 &= \{ w \mid w \in A^* \land (|w|_c \ge 1 \rightarrow (|w|_a = 0 \land |w|_b = 0)) \} \end{split}$$

1.3 Bi zati osatuz agertzen diren bi sinboloren errepikapenez osatutako hitzen lengoaia (0,300 puntu)

Bi zati osatuz agertzen diren alfabetoko bi sinbolo desberdinen errepikapenez eratutako hitzen L_3 lengoaia. Zati bakoitzak gutxienez elementu bat izan beharko du. Adibidez, aaabbbb, bbaaaa, ccccaa, bbbccc, aaac eta cbbb hitzak L_3 lengoaiakoak dira baina aaba, a, aa, abbabcaa eta ε ez. L_3 lengoaiaren definizio formala honako hau da:

$$L_3 = \{ w \mid w \in A^* \land \exists \alpha, \beta, u, v \mid (\alpha \in A \land \beta \in A \land u \in A^* \land v \in A^* \land \alpha \neq \beta \land |u| \geq 1 \land |v| \geq 1 \land |u| = |u|_{\alpha} \land |v| = |v|_{\beta} \land w = uv \} \}$$

Jarraian erakusten den AFD-a kontuan hartuz, hor zehazten diren konputazioak garatu urratsez urrats, bukaeran AFD-ak "Bai" ala "Ez" erantzungo duen esanez:

- 1. $\delta^*(q_0, aba)$
- 2. $\delta^*(q_0, aaa)$
- 3. $\delta^*(q_0, \varepsilon)$
- 4. $\delta^*(q_0, abb)$
- 5. $\delta^*(q_0, a)$

Kasu bakoitzak 0,030 balio du.

3 AFD-en minimizazioa (0,550 puntu)

 $A=\{a,b,c\}$ alfabetoaren gainean definitutako honako AFD hau minimizatu:

