§5. 和空間と直和

輪講#3

2025-02-23

可換な行列による部分空間

定理: $A \in M_n$ について, $C(A) = \{X \in M_n \mid XA = AX\}$ はベクトル空間 M_n の 部分空間をなす.ただし,和とスカラー倍は自然に定まるものとする.

Proof: O を含むことと、和とスカラー倍で閉じていることを示す.

- $OA = AO = O \ \ \, \ \ \, \ \ \, \ \, O \in C(A).$
- $X,Y \in C(A)$ ならば, (X+Y)A = XA + YA = AX + AY = A(X+Y) より $X+Y \in C(A)$.
- $X \in C(A)$ ならば, (cX)A = A(cX) より $cX \in C(A)$.

Remark C(A) は(群としての) M_n の部分群となり,中心化群と呼ばれる.

Question C(A) の次元はいくつになるだろうか?

Motivation A を簡単な標準形にしたい.

- A の相似変換に対して W が不変ならよいが,そうではない……
- 実際, $XA = AX \Leftrightarrow PXP^{-1}PAP^{-1} = PAP^{-1}PXP^{-1}$.
- 不変ではないけれど,線形同型写像 $F: X \mapsto PXP^{-1}$ を考えられる.

定理: 正方行列 A,B が相似なら, $C(A) \simeq C(B)$. 特に $\dim C(A) = \dim C(B)$.

Proof: $B = P^{-1}AP$ となるような正則行列 P をとれる.

線形同型写像 $F:C(A)\ni X\mapsto PXP^{-1}\in B$ が存在する.

Remark 有限次元なら, $V \simeq W \Leftrightarrow \dim V = \dim W$.

- したがって,A を初めから Jordan 標準形として考えてよい.
- A が対角化可能という条件付きでさらに考察してみよう.

- 始めから $A = diag(\lambda_1, \dots, \lambda_n)$ としてよい.
- - ・特にC(A)が部分空間であることがただちにわかる.
- $f(E_{ij})=(\lambda_j-\lambda_i)E_{ij}$. つまり, E_{ij} は固有値 $\lambda_j-\lambda_i$ の固有ベクトル.
- $C(A) = \operatorname{Ker} f$ は f の固有値 0 の固有空間に等しい.
 - $\bullet \ \dim C(A) = \# \big\{ (i,j) \mid \lambda_i = \lambda_j \big\}.$

定理: 対角化可能な正方行列 A の相異なる固有値を $\mu_1, ..., \mu_s$ とし,それぞれの重複度を $m_1, ..., m_s$ とする.このとき, $\dim C(A) = \sum_{i=1}^s \left(m_i\right)^2$.

Example:

$$A = \begin{pmatrix} 8 & -9 & -2 \\ 6 & -7 & -2 \\ -6 & 9 & 4 \end{pmatrix} \xrightarrow{\text{diagonize}} D = \begin{pmatrix} \boxed{1} \\ \boxed{2} \\ \boxed{2} \end{pmatrix}.$$

したがって、 $\dim C(A) = \dim C(D) = 1^2 + 2^2 = 5$.

実際,Dと可換な行列 X は次のような形をしているハズである:

$$X = \begin{pmatrix} * & \\ & * & \\ & * & * \end{pmatrix}.$$

本編

• *V*: ℂ上のベクトル空間.

• $W_1, ..., W_m : V$ の部分空間.

定理 5.1: 和空間 $W_1+\cdots+W_m\coloneqq \left\{x_1+\cdots+x_m\mid x_i\in W_i\right\}$ は V の部分空間.

定義 5.1: 任意の $x \in W_1 + \cdots + W_m$ が

$$oldsymbol{x} = oldsymbol{x}_1 + \cdots + oldsymbol{x}_m \ \ ig(oldsymbol{x}_j \in W_jig)$$

と一意的に表されるとき,

$$W_1 + \dots + W_m = W_1 \oplus \dots \oplus W_m$$

と表し, $W_1 + \cdots + W_m$ は W_1, \cdots, W_m の**直和**であるという.

直和の特徴付け

定理 5.2: 次の 1 ~ 4 は互いに同値.

- 1. $W_1 + \cdots + W_m$ は W_1, \cdots, W_m の直和.
- 2. $x_1\in W_1, \cdots, x_m\in W_m$ に対して $x_1+\cdots+x_m=0$ ならば、 $x_1=\cdots=x_m=0$.
- 3. $x_1 \in W_1 \setminus \{\mathbf{0}\}, \cdots, x_m \in W_m \setminus \{\mathbf{0}\}$ とすると, x_1, \cdots, x_m は一次独立.
- 4. 各 $j=2,\cdots,m$ に対して、 $\left(W_1+\cdots+W_{j-1}\right)\cap W_j=\{\mathbf{0}\}.$

Proof: $\mathbf{1}\Rightarrow \mathbf{2}, \mathbf{2}\Rightarrow \mathbf{3}$ は明らか. $\mathbf{3}\Rightarrow \mathbf{4}$ は対偶が簡単に従う. $\mathbf{4}\Rightarrow \mathbf{1}$ を示す. $\mathbf{w}\in W_1+\dots+W_m$ に対して, $\mathbf{w}=\sum_j x_j=\sum_j y_j(x_j,y_j\in W_j)$ とすると, $\mathbf{z}_j=\mathbf{x}_j-\mathbf{y}_j\in W_j$ として $\sum_{j< m}\mathbf{z}_j=-\mathbf{z}_m$ だが,4 の主張よりその両辺は $\mathbf{0}$ に等しい.これを繰り返すことで $\forall j,\mathbf{z}_j=\mathbf{0}$ となり, \mathbf{w} の分解の一意性が従う.

定理 5.3: $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2)$.

Proof: $n_0=\dim(W_1\cap W_2)$ とし, $W_1\cap W_2$ の基底 z_1,\cdots,z_{n_0} をとる. これを延長することで,次のように基底をとることができる:

- W_1 の基底 $z_1, ..., z_{n_0}, x_{n_0+1}, ..., x_{n_1}$. ただし, $n_1 = \dim W_1$.
- W_2 の基底 $oldsymbol{z}_1, ..., oldsymbol{z}_{n_0}, oldsymbol{y}_{n_0+1}, ..., oldsymbol{y}_{n_2}$. ただし, $n_2 = \dim W_2$.

Claim $z_1, ..., z_{n_0}, x_{n_0+1}, ..., x_{n_1}, y_{n_0+1}, ..., y_{n_2}$ は $W_1 + W_2$ の基底をなす.

Proof: $w_1 + w_2 \in W_1 + W_2$ に対して,

- $w_1 = c_1 z_1 + \dots + c_{n_0} z_{n_0} + c_{n_0+1} x_{n_0+1} + \dots + c_{n_1} x_{n_1}$
- $\bullet \ \, \boldsymbol{w}_2 = d_1\boldsymbol{z}_1 + \dots + d_{n_0}\boldsymbol{z}_{n_0} + d_{n_0+1}\boldsymbol{y}_{n_0+1} + \dots + d_{n_1}\boldsymbol{y}_{n_1}$

なる $\left(c_{i}\right)_{i}$ 、 $\left(d_{i}\right)_{i}$ が一意に存在するから,次の分解も一意的:

$$\label{eq:w1} \pmb{w}_1 + \pmb{w}_2 = \sum_{i \leq n_0} (c_i + d_i) \pmb{z}_i + \sum_{n_0 < i \leq n_1} c_i \pmb{x}_i + \sum_{n_0 < i \leq n_2} d_i \pmb{y}_i.$$

定理 5.4:
$$\dim(W_1+\cdots+W_m)=\sum_{j=1}^m\dim W_j-\sum_{j=2}^m\dim \left(\left(W_1+\cdots+W_{j-1}\right)\cap W_j\right)$$
.

Example:

$$\dim(W_1 + W_2 + W_3) = \dim W_1 + \dim W_2 + \dim W_3$$

$$-\dim(W_1 \cap W_2) - \dim((W_1 + W_2) \cap W_3).$$

Proof: m に関する帰納法. 簡単なので略.

§ 5. 和空間と直和 2025-02-23 10 / 10