Waiting Time Estimation in Nonstationary Queueing System

221870264 Shaozhe Ke 221870001 Zihao Ma

April 27, 2025

Background

- Arrival rate: $\lambda(t)$ changes over time
- ullet Service times: Exponentially distributed with rate μ
- Goal: Estimate expected waiting time E[W(t)] over time

k-Nearest Neighbors

Given a query time τ_0 , the kNN waiting time estimator is:

$$\widehat{W}_{\mathsf{kNN}}(au_0) = rac{1}{k} \sum_{i \in \mathcal{N}_k(au_0)} w_i$$

where $\mathcal{N}_k(\tau_0)$ denotes the set of k nearest arrival times to τ_0 .

Algorithm implementation

Algorithm 1 kNN Estimation via LORO-CV

- 1: **Input:** Search range $k_L < k_U$, NN = "nearest neighbors."
- 2: **for** j = 1, 2, ..., n **do**
- 3: $S_{\text{test}} \leftarrow \{W(t_{ii}), t_{ii}; i = 1, 2, \dots, M_i\}$ Set aside one replication as test set
- 4: $S_{\text{train}} \leftarrow \text{all data except } S_{\text{test}}$ Dust remaining data as training set 5:
- Find k_U nearest neighbors in S_{train} for each $t_{ij} \in S_{\text{test}}$ Store indices of k_U nearest neighbors into $\mathbf{M}_{ind} \in \mathbb{R}^{|S_{test}| \times k_U}$ 6:
- 7: end for
- 8: **for** $k = k_L$ to k_U **do**
- 9: Extract the first k columns from \mathbf{M}_{ind}
- Find k-nearest neighbors for each $t_{ij} \in S_{\text{test}}$ and compute $\hat{W}(t_{ii}, k)$ 10:
- 11: end for
- 12: **for** $k = k_l$ to k_{ll} **do**
- \triangleright Compute the EMSE for each k 13: Compute the empirical mean squared error (EMSE):
 - $EMSE(k) = \frac{\sum_{j=1}^{n} \sum_{i=1}^{M_{j}} \left[W_{ij} \hat{W}(t_{ij}, k) \right]^{2}}{\sum_{i=1}^{n} M_{i}}$

- 14: end for
- 15: Output: k^* that minimizes EMSE(k)

▶ Loop through all replications

 \triangleright Search for optimal k

KDE-Mode Clustering Estimator

First, estimate the arrival time density using KDE:

$$\widehat{p}_h(t) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{t-t_i}{h}\right)$$

Then, identify the cluster $C(\tau_0)$ containing τ_0 , and compute:

$$\widehat{W}_{\mathsf{KDE-mode}}(au_0) = rac{1}{|C(au_0)|} \sum_{i \in C(au_0)} w_i$$

KDE-Mode Clustering

- Step 1: Estimate arrival time density $\hat{p}_h(t)$ using KDE [Silverman, 1986].
- Step 2: Detect all modes (local maxima) $\{m_1, m_2, \dots, m_K\}$.
- Step 3: Assign each arrival time t_i to the nearest mode:

$$m_k = \arg\min_k |t_i - m_k|$$

- Step 4: For a query τ_0 , find its nearest mode $m^*(\tau_0)$.
- Step 5: Estimate $\widehat{W}_{KDE-mode}(\tau_0)$ by averaging waiting times within cluster $C(m^*(\tau_0))$.

Mean-Shift Clustering (Iterative Mode Seeking)

- Step 1: Estimate arrival time density $\hat{p}_h(t)$ using KDE [Silverman, 1986].
- Step 2: Initialize each sample $x^{(0)} = t_i$.
- Step 3: Iteratively update according to Mean-Shift rule [Fukunaga and Hostetler, 1975]:

$$x^{(k+1)} = \frac{\sum_{i=1}^{n} K\left(\frac{x^{(k)} - t_i}{h}\right) t_i}{\sum_{i=1}^{n} K\left(\frac{x^{(k)} - t_i}{h}\right)}$$

until convergence.

- Step 4: Each sample t_i converges to a local mode m_k .
- Step 5: Samples converging to the same mode form a cluster.

Remarks

KDE-Mode Clustering can be viewed as a non-iterative simplification of Mean-Shift clustering, where samples are directly assigned to pre-detected modes.

Bandwidth h = 0.3

Bandwidth h = 0.5

Bandwidth h = 1

Bandwidth h = 2

Kolmogorov Forward Equations

For the nonstationary M(t)/M/1 queue:

For n = 0 (empty system):

$$\frac{d}{dt}p_0(t) = \mu p_1(t) - \lambda(t)p_0(t)$$

For $1 \le n \le N_{max} - 1$ **:**

$$\frac{d}{dt}p_n(t) = \lambda(t)p_{n-1}(t) + \mu p_{n+1}(t) - (\lambda(t) + \mu)p_n(t)$$

For $n = N_{\text{max}}$ (maximum capacity):

$$rac{d}{dt}
ho_{\mathsf{N}_{\mathsf{max}}}(t) = \lambda(t)
ho_{\mathsf{N}_{\mathsf{max}}-1}(t) - \mu
ho_{\mathsf{N}_{\mathsf{max}}}(t)$$

12 / 22

Computation of Expected Waiting Time

Once the state probabilities $p_n(t)$ are obtained by solving the Kolmogorov Forward Equations:

Step 1: Expected number of customers (queue length)

$$E[L(t)] = \sum_{n=0}^{N_{\text{max}}} n \cdot p_n(t)$$

Step 2: Apply Little's Law

$$E[W(t)] = \frac{E[L(t)]}{\mu}$$

where μ is the constant service rate.

Results: E[W(t)] Comparison

Comparison of KDE-mode Estimators vs Kolmogorov True Curve

True E[W(t)] vs KDE-mode estimates

Results: kNN-KDE Comparison (bandwidth=0.1)

Results: kNN-KDE Comparison (bandwidth=0.3)

Results: kNN-KDE Comparison (bandwidth=0.3)

Erlang Arrival Process

- Erlang (k, λ) interarrival times: sum of k i.i.d. exponential (λ) random variables.
- PDF of interarrival time:

$$f_T(t) = \frac{\lambda^k t^{k-1} e^{-\lambda t}}{(k-1)!}, \quad t \ge 0$$

- Special case:
 - k = 1: reduces to standard Poisson process.
- Variability (coefficient of variation) decreases as k increases.

$E_k(t)/M/1$ Queue Model

- Customers arrive according to Erlang (k, λ) process.
- ullet Service times are exponentially distributed with rate μ .
- State description:
 - *n*: number of customers in the system.
 - $s \in \{0, 1, \dots, k-1\}$: current arrival phase.
- System state: (n, s).

Kolmogorov Forward Equations

Define $p_{n,s}(t) = P$ system has n customers and phase s at time t. Then, the equations are:

$$\frac{d}{dt}p_{n,s}(t) = (\text{inflow}) - (\text{outflow})$$

where:

- Phase transitions due to Erlang arrival stages.
- Customer arrivals when phase completes.
- Service completions.

Mean Queue Length

Define:

L(t) = number of customers in the system at time t

Then:

$$\mathbb{E}[L(t)] = \sum_{n=0}^{\infty} n \sum_{s=0}^{k-1} p_{n,s}(t)$$

• Differentiating $\mathbb{E}[L(t)]$ and using the forward equations leads to an ODE for E[L(t)].

References I

Fukunaga, K. and Hostetler, L. (1975).

The estimation of the gradient of a density function, with applications in pattern recognition.

IEEE Transactions on Information Theory, 21(1):32–40.

Silverman, B. W. (1986).

Density Estimation for Statistics and Data Analysis.

Chapman and Hall.