Оглавление

1	$T\Phi$	КΠ
	1.1	Теорема Фубини
	1.2	Поверхностный интеграл I рода
	1.3	Ориентированные поверхности в \mathbb{R}^3
	1.4	Формула Гаусса—Остроградского
	1.5	Формула Грина

Глава 1

ΤΦΚΠ

1.1. Теорема Фубини

Обозначение. m-почти всюду \equiv всюду, за исключением множеств меры 0, для меры Лебега размерности m

Теорема 1. Имеется некое множество $E \subset \mathbb{R}^{m+n}, \quad m, n \geq 1, \quad E \subset \mathfrak{M}_{m+n}$

$$M \in \mathbb{R}^{m+n}, \quad M = (X, Y), \quad X \in \mathbb{R}^m, Y \in \mathbb{R}^n$$

Возьмём $\forall X \in \mathbb{R}^m$. Определим множества

$$E(X, \cdot) = \{ Y \in \mathbb{R}^n \mid (X, Y) \in E \}, \qquad E(\cdot, Y) = \{ X \in \mathbb{R}^m \mid (X, Y) \in E \}$$

Тогда

- 1. Для m-п. в. X $E(X, \cdot) \in \mathfrak{M}_n$.
 - Для n-п. в. Y $E(\cdot,Y) \in \mathfrak{M}_m$
- 2. Пусть μ_k мера Лебега в \mathbb{R}^k . Тогда

$$\mu_{m+n}E = \int_{\mathbb{R}^{m+n}} \mu_n E(X, \cdot) d\mu_m(X) = \int_{\mathbb{R}^{m+n}} \mu_m E(\cdot, Y) d\mu_n(X)$$

3. $f: E \to \mathbb{R}$

$$\forall X \in \mathbb{R}^m \quad f_X : E(X, \cdot) \to \mathbb{R} : \quad f_X(Y) = f(X, Y)$$

 $\forall Y \in \mathbb{R}^n \quad f_Y : E(\cdot, Y) \to \mathbb{R} : \quad f_Y(X) = f(X, Y)$

Для m-п. в. X f_X измерима по Y на $E(X,\cdot)$. Для n-п. в. Y f_Y измерима по X на $E(\cdot,Y)$.

- 4. $f \in \mathcal{L}(E)$. Тогда
 - ullet для m-п. в. X $f_X \in \mathscr{L}ig(E(X,\cdot)ig);$
 - для n-п. в. Y $f_Y \in \mathcal{L}(E(\cdot, Y));$

$$\int_{E} f d \mu_{m+n} = \int_{\mathbb{R}^m} \left(\int_{E(X,\cdot)} f_X d \mu_n \right) d \mu_m(X) = \int_{\mathbb{R}^n} \left(\int_{E(\cdot,Y)} f_Y d \mu_m \right) d \mu_n(Y),$$

или

$$\int\limits_E f \, \mathrm{d}\, \mu_{m+n} = \int\limits_{\mathbb{R}^m} \left(f(X,Y) \, \mathrm{d}\, \mu_n(Y) \right) \, \mathrm{d}\, \mu_m(X) = \int\limits_{\mathbb{R}^n} \left(\int\limits_{E(\cdot,Y)} f(X,Y) \, \mathrm{d}\, \mu_m(X) \right) \, \mathrm{d}\, \mu_n(Y)$$

Примечание. В прошлом семестре обещали доказать теорему об интегралах по параметру. Она следует из теоремы Фубини.

1.2. Поверхностный интеграл І рода

Определение 1. $D \subset \mathbb{R}^n$ — открыто, связно, m > n.

 \mathcal{C}^1 -поверхностью будем называть отображение $F:D\to\mathbb{R}^n$ такое, что $F\in\mathcal{C}^1(D)$, т. е.

$$F = \begin{bmatrix} f_1 \\ \vdots \\ f_m \end{bmatrix}, \quad f_k \in \mathcal{C}^1(D),$$

F — биекция, rank $\mathcal{D}F(X) = n \quad \forall X \in D$.

Определение 2. $S = F(D), \quad E \subset S$

Будем говорить, что E S-измеримо, если $F^{-1}(E) \subset \mathfrak{M}_n$

Определим S-меру:

$$\mu_S E := \int_{F^{-1}(E)} \sqrt{\det((\mathcal{D}F(X))^T \mathcal{D}F(X))} d\mu_n(X)$$

Определение 3. $F:S \to \mathbb{R}$

Будем говорить, что f *S-измерима*, если $\varphi(X) = f(F(X))$ измерима на $F^{-1}(E)$.

Определение 4. $f \in \mathscr{L}_S(E)$

$$\int_{E} f d\mu_{S} := \int_{F^{-1}(E)} f(F(X)) \sqrt{\det((\mathcal{D}F(X))^{T} \mathcal{D}F(X))} d\mu_{n}(X)$$

Определение 5. *Кусочно-гладкой* поверхностью будем называть $S = \bigcup_{k=1}^{N} S_k$, где $S_k - \mathcal{C}^1$ -поверхность, при этом $S_k \cap S_l = \emptyset$ или $\mu_{S_k}(S_k \cap S_l) = 0$.

Определение 6. $E \subset S$

Будем говорить, что E S-измеримо, если $E \cap S_k$ S_k измеримо $\forall k$

$$\mu_S E = \sum_{k=1}^N \mu_{S_k}(E \cap S_k)$$

Определение 7. $f: E \to \mathbb{R}$

Будем говорить, что f S-измерима, если $f|_{S_k}$ S_k -измерима $\forall k$.

Определение 8. $f \in \mathscr{L}_S(E) \iff f \big|_{S_k} \in \mathscr{L}_{S_k}(E \cap S_k)$

$$\int_{E} f \, \mathrm{d} \, \mu_{S} = \sum_{k=1}^{N} \int_{E \cap S_{k}} f \big|_{S_{k}} \, \mathrm{d} \, \mu_{S_{k}}$$

3

1.3. Ориентированные поверхности в \mathbb{R}^3

Определение 9.
$$D \subset \mathbb{R}^2$$
 открыто, связно, $F: D \to \mathbb{R}^3 - \mathcal{C}^1$ -поверхность в \mathbb{R}^3 $S = F(D), \quad F = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix}, \quad X \in D, \quad T_1(X) = \begin{bmatrix} f'_{1\ x_1}(X) \\ f'_{2\ x_2}(X) \\ f'_{3\ x_3}(X) \end{bmatrix}, \quad T_2(X) = \begin{bmatrix} f'_{1\ x_2}(X) \\ f'_{2\ x_2}(X) \\ f'_{3\ x_2}(X) \end{bmatrix}$

Рассмотрим ориентацию $\stackrel{\longleftarrow}{S}$ $(T_1(X), T_2(X)).$

$$f \in \mathcal{L}_S(E), \quad E \subset S, \quad i \neq j, \quad i, j \in \{1, 2, 3\}$$

$$\int_{S \cap E} f(Y) \, \mathrm{d} \, y_i \wedge \mathrm{d} \, y_j \coloneqq \int_{F^{-1}(E)} f(F(X)) \begin{vmatrix} f'_{i x_1}(X) & f'_{i x_2}(X) \\ f'_{j x_1}(X) & f'_{j x_2}(X) \end{vmatrix} \, \mathrm{d} \, \mu_2(X)$$

Определение 10. $\overset{\smile}{S} = \bigcup_{k=1}^N \overset{\smile}{S}_k$ — ориентированная кусочно-гладкая поверхность в \mathbb{R}^3 , $E \subset S$.

$$\int_{S \cap E} f(Y) \, \mathrm{d} \, y_i \wedge \mathrm{d} \, y_j := \sum_{k=1}^N \int f \big|_{S_k} \, \mathrm{d} \, y_i \wedge \mathrm{d} \, y_j$$

1.4. Формула Гаусса—Остроградского

Теорема 2. $V \subset \mathbb{R}^3$ ограничено, связно, $\partial V = \bigcup_{k=1}^N \overline{S}_k, \quad S_k \cap S_l = \emptyset$

 $\stackrel{\smile}{S}_k$, $y \in S_k$ $(T_1(Y), T_2(Y))$, $T_1(Y) \times T_2(Y)$ направлен вне V. $\varphi \in \mathcal{C}(\overline{V})$, $i \in \{1, 2, 3\}$, $\varphi'_{y_i} \in \mathcal{C}(\overline{V})$

$$\sigma = \Big\{1, \quad (i,j,k)$$
 — чётная, $-1, \quad$ иначе

Тогда

$$\int_{Y_i} \varphi(Y) \, \mathrm{d} \, y_i \wedge \mathrm{d} \, y_j \wedge \mathrm{d} \, y_k = \sigma \cdot \int_{Y} \varphi'_{y_i}(Y) \, \mathrm{d} \, \mu_3(Y)$$

В частности, при $\varphi(Y) = y_1$,

$$\int\limits_{\partial V} x_1 \, \mathrm{d} \, x_2 \wedge \mathrm{d} \, x_3 = \int\limits_{V} 1 \, \mathrm{d} \, \mu_3 = \mu_3 V$$

1.5. Формула Грина

Теорема 3. $D \subset \mathbb{R}^2$ — область, ∂D , $\stackrel{\smile}{\partial} D$, $f \in \mathcal{C}(\overline{D}), f'_{x_1} \in \mathcal{C}(\overline{D}), M = (x_1, x_2)$. Тогда

$$\int_{\partial D} f(M) dx_2 = \int_{D} f'_{x_1}(M) d\mu_2(M)$$

 $g\in\mathcal{C}(\overline{D}),\quad g'_{x_2}\in\mathcal{C}(\overline{D}).$ Тогда

$$\int_{\partial D} g(M) dx_1 = -\int_{D} g'_{x_2}(M) d\mu_2(M)$$