APPENDIX I:

THE CHANGES IN THE CLAIMS (version with markings, showing the changes made):

1. (amended) A tricyclic benzoylpyrazole [derivative of the] compound of formula I

where:

X is oxygen, sulfur, S=0, $S(=0)_2$, CR^6R^7 , NR^8 or a bond;

Y together with the two carbons to which it is attached forms a saturated, partially saturated or unsaturated 5— or 6-membered heterocycle which contains one to three identical or different heteroatoms selected from the following group: oxygen, sulfur and nitrogen;

 R^1 , R^2 , R^6 , R^7 are hydrogen, C_1 — C_6 —alkyl, C_1 — C_6 —haloalkyl, C_1 — C_6 —alkoxy or C_1 — C_6 —haloalkoxy;

 R^3 is halogen, C_1 — C_6 —alkyl, C_1 — C_6 —haloalkyl, C_1 — C_6 —alkoxy or C_1 — C_6 —haloalkoxy;

is hydrogen, nitro, halogen, cyano, C_1 — C_6 —alkyl, C_1 — C_6 —haloalkyl, C_1 — C_6 —alkoxy, C_1 — C_6 —haloalkoxy, C_1 — C_6 —alkylthio, C_1 — C_6 —haloalkylsulfinyl, C_1 — C_6 —haloalkylsulfinyl, C_1 — C_6 —alkylsulfonyl, C_1 — C_6 —haloalkylsulfonyl, aminosulfonyl, C_1 — C_6 —alkyl) aminosulfonyl, C_1 — C_6 —alkyl) aminosulfonyl, C_1 — C_6 —alkyl) aminosulfonyl, C_1 — C_6 —alkylsulfonyl) amino, C_1 — C_6 —haloalkylsulfonyl) amino, C_1 — C_6 —alkyl)— C_1 — C_1 —C

R⁵ is hydrogen, C₁-C₆-alkyl or halogen;

R8 is hydrogen, C_1 — C_6 —alkyl, C_1 — C_6 —haloalkyl, C_1 — C_6 —alkylcarbonyl, formyl, C_1 — C_6 —alkoxycarbonyl, C_1 — C_6 —haloalkoxycarbonyl, C_1 — C_6 —alkylsulfonyl or C_1 — C_6 —haloalkylsulfonyl;

l is 0, 1 or 2;

R9 is a radical IIa or IIb

where

 R^{10} is hydroxyl, mercapto, halogen, OR^{13} , SR^{13} , SO_2R^{14} , $NR^{15}R^{16}$ or N-bonded heterocyclyl, where the heterocyclyl radical may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

 R^{11} is hydrogen, C_1 — C_6 —alkyl, C_1 — C_6 —haloalkyl, C_3 - C_6 -cycloalkyl, hydroxyl, C_1 — C_6 —alkoxy or C_1 — C_6 —haloalkoxy;

 R^{12} is hydrogen, halogen, C_1 — C_6 —alkyl, C_1 — C_6 —haloalkyl, hydroxyl, C_1 — C_6 —alkoxy, C_1 — C_6 —haloalkoxy, C_1 — C_6 —alkylthio;

R¹³ is C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl, C₃-C₆-alkynyl, C₃-C₆-haloalkynyl, C₃-C₆-cycloalkyl, C₁-C₂₀-alkylcarbonyl, C₂-C₂₀-alkenylcarbonyl, C₂-C₆-alkynylcarbonyl, C₃-C₆-cycloalkylcarbonyl, C₁-C₆-alkoxycarbonyl, C₃-C₆-alkenyloxycarbonyl, C₃-C₆-alkynyloxycarbonyl, C₁-C₆-alkylthiocarbonyl, C₁-C₆-alkylaminocarbonyl, C₃-C₆-alkynylaminocarbonyl, N,N-di(C₁-C₆-alkyl)aminocarbonyl, N-(C₃-C₆-alkenyl)-N-(C₁-C₆-alkyl)aminocarbonyl, N-(C₃-C₆-alkyl)-N-(C₁-C₆-alkyl)aminocarbonyl, N-(C₃-C₆-alkyl)-N-(C₁-C₆-alkyl)aminocarbonyl,

cyano, C_1 — C_4 —alkoxy, C_1 — C_4 —alkylthio, $di(C_1$ — C_4 —alkyl)amino, C_1 — C_4 —alkylcarbonyl, C_1 — C_4 —alkoxycarbonyl, C_1 — C_4 —alkoxycarbonyl, $di(C_1$ — C_4 —alkoxycarbonyl, $di(C_1$ — C_4 —alkylamino— C_1 — C_4 —alkoxycarbonyl, $di(C_1$ — C_4 —alkylaminocarbonyl, $di(C_1$ — C_4 —al-

kyl)aminocarbonyl, aminocarbonyl, C_1 — C_4 —alkylcarbonyloxy or C_3 — C_6 —cycloalkyl;

is phenyl, heterocyclyl, phenyl- C_1 - C_6 -alkyl, heterocyclyl- C_1 - C_6 -alkyl, phenylcarbonyl- C_1 - C_6 -alkyl, phenylcarbonyl, heterocyclylcarbonyl, phenoxycarbonyl, phenyloxythiocarbonyl, heterocyclyloxycarbonyl, heterocyclyloxythiocarbonyl, phenylaminocarbonyl, N- $(C_1$ - C_6 -alkyl)-N-(phenyl)aminocarbonyl, heterocyclylaminocarbonyl, N- $(C_1$ - C_6 -alkyl)-N-(phenyl)aminocarbonyl, heterocyclylaminocarbonyl, phenyl- C_2 - C_6 -alkenylcarbonyl or heterocyclyl- C_2 - C_6 -alkenylcarbonyl, where the phenyl and the heterocyclyl radical of the 18 lastmentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, heterocyclyl or N-bonded heterocyclyl, where the two lastmentioned substituents for their part may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

 R^{14} is C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -cycloalkyl, C_1 - C_6 -alkoxy, $di(C_1$ - C_6 -alkyl)amino or $di(C_1$ - C_6 -haloalkyl)amino, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three of the following groups:

cyano, C_1 — C_4 —alkoxy, C_1 — C_4 —alkylthio, $di(C_1$ — C_4 —alkyl)amino, C_1 — C_4 —alkylcarbonyl, C_1 — C_4 —alkoxycarbonyl, C_1 — C_4 —alkoxycarbonyl, $di(C_1$ — C_4 —alkyl)amino— C_1 — C_4 —alkoxycarbonyl, hydroxycarbonyl, C_1 — C_4 —alkylaminocarbonyl, $di(C_1$ — C_4 —alkyl)aminocarbonyl, aminocarbonyl, C_1 — C_4 —alkylcarbonyloxy or C_3 — C_6 —cycloalkyl;

is phenyl, heterocyclyl, phenyl— C_1 — C_6 —alkyl, heterocyclyl— C_1 — C_6 —alkyl, phenoxy, heterocyclyloxy, where the phenyl and the heterocyclyl radical of the lastmentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

R¹⁵ is C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl, C_3 - C_6 -alkynyl, C_3 - C_6 -alkenyloxy, C_3 - C_6 -alkynyloxy, di(C_1 - C_6 -alkyl)amino or C_1 - C_6 -alkylcarbonylamino, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three radicals of the following group:

cyano, C_1 — C_4 —alkoxy, C_1 — C_4 —alkylthio, $di(C_1$ — C_4 —alkyl)amino, C_1 — C_4 —alkylcarbonyl, C_1 — C_4 —alkoxycarbonyl, C_1 — C_4 —alkoxycarbonyl, $di(C_1$ — C_4 —alkyl)amino— C_1 — C_4 —alkoxycarbonyl, $di(C_1$ — C_4 —alkylaminocarbonyl, $di(C_1$ — C_4 —alkyl)aminocarbonyl, $di(C_1$ — C_4 —alkyl)aminocarbonyl, aminocarbonyl, C_1 — C_4 —alkylcarbonyloxy or C_3 — C_6 —cycloalkyl;

is phenyl, heterocyclyl, phenyl— C_1 — C_6 —alkyl or heterocyclyl— C_1 — C_6 —alkyl, where the phenyl or heterocyclyl radical of the four lastmentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

 R^{16} is C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl or C_1 - C_6 -alkylcarbonyl;

[and their] or an agriculturally useful [salts] salt thereof.

- 2. (amended) [A] The tricyclic benzoylpyrazole [derivative of the] compound of formula I [as claimed] defined in claim 1 where R⁹ is IIa.
- 3. (twice amended) [A] The tricyclic benzoylpyrazole [derivative of the] compound of formula I [as claimed] defined in claim 1 where X is oxygen, sulfur or a bond.
- 4. (twice amended) [A] The tricyclic benzoylpyrazole [derivative of the] compound of formula I [as claimed] defined in claim 1 where
 - together with the two carbons to which it is attached forms a heterocycle selected from the following group: dihydropyrazolediyl, dihydroisoxazolediyl, pyrazolediyl, isoxazolediyl or pyrimidinediyl.
- 5. (twice amended) [A] The tricyclic benzoylpyrazole [derivative of the]

 compound of formula I [as claimed] defined in claim 1 where

 R¹, R² are hydrogen;
 - R^3 is C_1-C_6 -alkyl;

- R^4 is nitro, halogen, C_1-C_6 -alkyl, C_1-C_6 -haloalkyl, C_1-C_6 -alkoxy, C_1-C_6 -alkylthio or C_1-C_6 -alkylsulfonyl;
- R⁵ is hydrogen;
- l is 0 oder 1.
- 6. (twice amended) [A] The tricyclic benzoylpyrazole [derivative of the] compound of formula I [as claimed] defined in claim 1 where
 - R¹⁰ is hydroxyl;
 - R^{11} is C_1-C_6 -alkyl or C_3-C_6 -cycloalkyl;
 - R^{12} is hydrogen or C_1-C_6 -alkyl.
- 7. (amended) A process for preparing [compounds of the] the compound of formula I where R^{10} = halogen as claimed in claim 1, which comprises reacting a tricyclic benzoylpyrazole [derivative of the] compound of formula I α (= I where R^{10} = hydroxyl),

$$R^{12}$$
 O X R^{3} $I\alpha$ R^{11} OH R^{12} R^{12} R^{13} R^{12} R^{12} R^{12} R^{13} R^{12} R^{13} R^{12} R^{13} R^{12} R^{13} $R^$

where the variables R^1 to R^5 , R^{11} and R^{12} , X, Y and 1 are as defined in claim 1, with a halogenating agent.

8. (amended) A process for preparing [compounds of the] the compound of formula I where $R^{10} = OR^{13}$ as claimed in claim 1, which comprises reacting a tricyclic benzoylpyrazole [derivative of the] compound of formula I α (= I where R^{10} = hydroxyl),

$$\begin{array}{c|c}
R^{12} & O & X \\
 & & & & \\
N & & & & \\
OH & & & & \\
R^{5} & & & & \\
\end{array}$$

where the variables R^1 to R^5 , R^{11} and R^{12} , X, Y and 1 are as defined in claim 1, with a compound of [the] formula III

where the variable R^{13} is as defined in claim 1 and L^1 is a nucleophilically replaceable leaving group.

9. (amended) A process for preparing [compounds of the] the compound of formula I where $R^{10} = OR^{13}$, SR^{13} , $NR^{15}R^{16}$ or N-bonded heterocyclyl

as claimed in claim 1, which comprises reacting a compound of [the] formula I β (\equiv I where R¹⁰ = halogen),

where the variables R^1 to R^5 , R^{11} and $R^{12},$ X, Y and 1 are as defined in claim 1, with a compound of [the] formula $IV\alpha$, $IV\beta$, $IV\gamma$ or $IV\delta$

HOR 13 HSR 13 NHR 15 R 16 H(N-bonded heterocyclyl) IVα IVβ IVγ IVδ

where the variables R^{13} to R^{16} are as defined in claim 1, [if appropriate] optionally in the presence of a base.

10. (amended) A process for preparing [compounds of the] the compound of formula I where $R^{10} = SO_2R^{14}$ as claimed in claim 1, which comprises reacting a compound of [the] formula Iy (\equiv I where $R^{10} = SR^{14}$),

$$R^{12}$$
 R^{10} R

where the variables R^1 to R^5 , R^{11} and R^{12} , X, Y and 1 are as defined in claim 1, with an oxidizing agent.

11. (amended) A process for preparing [compounds of the] the compound of formula I where R⁹ = IIa as claimed in claim 1, which comprises reacting a metalated pyrazole [derivative of the] compound of formula V where M is a metal and R¹⁰ to R¹² are as defined in claim 1, except for R¹⁰ = hydroxyl and mercapto, with a tricyclic benzoic acid [derivative of the] compound of formula VIα where R¹ to R⁵, X, Y and l are as defined in claim 1 and L² is a nucleophilically replaceable leaving group.

$$R^{12}$$
 N
 R^{10}
 R^{10}

12. (amended) A process for preparing [tricyclic benzoylpyrazole derivatives of] the compound of formula I α (= I where R¹⁰ = hydroxyl) as claimed in claim 1, which comprises acylating a pyrazole of [the] formula VII in which the variables R¹¹ and R¹² are as defined in claim 1

with an activated tricyclic benzoic acid of [$\frac{1}{2}$ formula VI β or with a tricyclic benzoic acid of formula VI γ ,

where the variables R^1 to R^5 , X, Y and 1 are as defined in claim 1 and L^3 is a nucleophilically replaceable leaving group, and rearranging the acylation product, [if appropriate] optionally in the presence of a catalyst.

13. (amended) A process for preparing [tricyclic benzoylpyrazole derivatives of] the compound of formula $I\alpha$ (\equiv I where R^{10} = hydroxyl) as claimed in claim 1, which comprises reacting a pyrazole of [the] formula VII in which the variables R^{11} and R^{12} are as defined in claim 1, or an alkali metal salt thereof,

with a tricyclic benzene [derivative of the] compound of formula IX where L^4 is a leaving group and the variables X, Y, R^1 to R^5 and 1 are as defined in claim 1

$$\begin{array}{c|c}
R^1 & R^2 \\
\hline
R^3 & \\
Y & \\
R^4 & \\
R^5 & \\
\end{array}$$

in the presence of carbon monoxide, a catalyst and a base.

- 14. (amended) A composition, comprising a herbicidally effective amount of at least one [tricyclic benzoylpyrazole derivative of the] compound of formula I or an agriculturally useful salt [of I] thereof as claimed in claim 1 and auxiliaries which are customary for formulating crop protection agents.
- 15. (amended) A process for preparing [compositions as claimed] the composition defined in claim 14, which comprises mixing a herbicidally effective amount of at least one [tricyclic benzoylpyrazole derivative of the] compound of formula I or an agriculturally useful salt [of I as claimed in claim 1] thereof and auxiliaries which are customary for formulating crop protection agents.
- 16. (amended) A method for controlling undesirable vegetation, which comprises allowing a herbicidally effective amount of at least one [tricyclic benzoylpyrazole derivative of the] compound of formula I or an agriculturally useful salt [of I] thereof as claimed in claim 1 to act on plants, their habitat [and/]or on seed.

Claim 17 has been canceled.

18. (amended) A tricyclic benzoic acid [derivative of the] compound of formula VI

$$R^{1}$$
 R^{2} R^{3} V R^{5}

in which the variables X, Y, \mathbb{R}^1 to \mathbb{R}^3 and \mathbb{R}^5 and 1 are as defined in claim 1 and

Is nitro, halogen, cyano, C_1 — C_6 —alkyl, C_1 — C_6 —haloalkyl, C_1 — C_6 —alkoxy, C_1 — C_6 —haloalkoxy, C_1 — C_6 —alkylthio, C_1 — C_6 —haloalkylsulfinyl, C_1 — C_6 —haloalkylsulfinyl, C_1 — C_6 —alkylsulfonyl, C_1 — C_6 —haloalkylsulfonyl, aminosulfonyl, C_1 — C_6 —alkyl) aminosulfonyl, C_1 — C_6 —alkyl) aminosulfonyl, C_1 — C_6 —alkylsulfonyl) amino, C_1 — C_6 —haloalkylsulfonyl) amino, C_1 — C_6 —alkylsulfonyl) amino or C_1 — C_6 —alkyl)— C_1 — C_6 —alkylsulfonyl) amino;

 R^{17} is hydroxyl or a radical which can be removed by hydrolysis.

19. (amended) A tricyclic benzene [derivative of the] compound of formula IX

$$\begin{array}{c|c}
R^1 & R^2 \\
X & Y \\
R^4 & IX
\end{array}$$

in which the variables X, Y, \mathbb{R}^1 to \mathbb{R}^3 and \mathbb{R}^5 and 1 are as defined in claim 1 and

 R^4 is nitro, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C_1-C_6 -alkylthio, C_1-C_6 -haloalkylthio, C_1-C_6 -alkylsulfinyl, C_1-C_6 -haloalkylsulfinyl, C_1-C_6 -alkylsulfonyl, C_1-C_6 -haloalkylaminosulfonyl, $N-(C_1-C_6-alkyl)$ aminosulfonyl, $N, N-di(C_1-C_6-alkyl)$ aminosulfonyl, $N-(C_1-C_6-alkyl)$ ami- $N-(C_1-C_6-haloalkylsulfonyl)$ amino, no, $N-(C_1-C_6-al$ $ky1)-N-(C_1-C_6-alkylsulfonyl)amino$ or $N-(C_1-C_6-a_1$ $ky1)-N-(C_1-C_6-haloalkylsulfonyl)amino;$

 R^5 is hydrogen or C_1 - C_6 -alkyl;

L⁴ is halogen, C_1 - C_6 -alkylsulfonyloxy, C_1 - C_6 -haloalkylsulfonyloxy or phenylsulfonyloxy, where the phenyl ring of the lastmentioned radical may be unsubstituted or partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy.

20. (amended) An aniline compound of [the] formula XV [and a nitrile of the formula XVI]

$$H_2N$$
 X
 H_2N
 H_3
 H_4
 H_5

in which the variables X, Y, \mathbb{R}^1 to \mathbb{R}^3 and \mathbb{R}^5 and 1 are in each case as defined in claim 1 and

- R⁴ is nitro, halogen, cyano, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_6 -haloalkylthio, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -alkylsulfonyl, aminosulfonyl, N- $(C_1$ - C_6 -alkylsulfonyl, N- $(C_1$ - C_6 -alkylsulfonyl) aminosulfonyl, N- $(C_1$ - C_6 -alkylsulfonyl) amino, N- $(C_1$ - C_6 -alkylsulfonyl) amino, N- $(C_1$ - C_6 -haloalkylsulfonyl) amino or N- $(C_1$ - C_6 -alkyl)-N- $(C_1$ - C_6 -alkylsulfonyl) amino.
- 21. (amended) A nitrile compound of [the] formula XVI

$$\begin{array}{c|c}
R^1 & R^2 \\
 & & \\
R^3 & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

in which the variables X, Y, \mathbb{R}^1 to \mathbb{R}^3 and 1 are in each case as defined in claim 1 and

R⁴ is nitro, halogen, cyano, C_1 - C_6 -haloalkyl, C_1 - C_6 -alkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -haloalkylthio, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -haloalkylsulfonyl, aminosulfonyl, N- $(C_1$ - C_6 -alkyl) aminosulfonyl, N- $(C_1$ - C_6 -alkyl) aminosulfonyl) amino, N- $(C_1$ - C_6 -haloalkylsulfonyl) amino, N- $(C_1$ - C_6 -alkylsulfonyl) amino, N- $(C_1$ - C_6 -alkylsulfonyl) amino or N- $(C_1$ - C_6 -alkyl)-N- $(C_1$ - C_6 -haloalkylsulfonyl) amino; N- $(C_1$ - C_6 -alkyl)-N- $(C_1$ - C_6 -haloalkylsulfonyl) amino; N- $(C_1$ - C_6 -alkyl).

New Claims 22 and 23 have been added.

22. (new) The compound of formula I defined in claim 1, wherein
X is a bond;

- Y together with the two carbons to which it is attached forms a 1,2-isoxazole ring which is saturated, partially saturated or unsaturated; and
- \mathbb{R}^9 is a radical IIa.
- 23. (new) The compound of formula I defined in claim 22, wherein \mathbb{R}^{10} is hydroxyl, mercapto, halogen, OR^{13} , SR^{13} , SO_2R^{14} or $NR^{15}R^{16}$.