SemMat1 - cvičenie 8 - Geometrická postupnosť a rady

1. Určte prvý člen a kvocient geometrickej postupnosti, v ktorej platí

a)
$$a_4 = -\frac{8}{3}$$
, $a_6 = -\frac{32}{3}$.

- b) $a_1 a_2 + a_3 = 9$ a $a_4 a_5 + a_6 = 72$.
- c) $a_1 + a_4 = 112$ a $a_2 + a_3 = 48$.
- d) $a_1 + a_2 = 4$ a $a_2 a_4 = -24$
- e) $a_1 + a_4 = \frac{70}{9}$ a $a_1 a_2 + a_3 = \frac{28}{9}$.
- 2. Určte také číslo, aby postupne zväčšené o 7, 15, 27 dalo 3 za sebou idúce členy geometrickej postupnosti.
- 3. Určte *n*-tý člen postupnosti a určte, či sa jedná o geometrickú postupnosť:

a)
$$\frac{1}{2}$$
, 1, 3, 9, ...

- a) $\frac{1}{3}$, 1, 3, 9, ... b) 5, 10, 40, 320, ... c) $\frac{2}{5}$, $-\frac{4}{25}$, $\frac{8}{125}$, $-\frac{16}{625}$, ...
- 4. Zistite, či je daná postupnosť geometrická. Ak áno, vypočítajte prvý člen a kvocient geometrickej postupnosti:
- a) $a_n = 3^n + 2$ b) $a_n = 3^{n+2}$ c) $a_n = \frac{2}{7} \cdot \left(\frac{1}{8}\right)^{n-1}$ d) $a_n = (n-0.5)^2$

- e) $a_n = 2^{(n-0.5)}$ f) $a_n = n(n+2)$
- g) $a_n = \frac{6}{5} \cdot \left(\frac{3}{4}\right)^{2-n}$
- 5. Vypočítajte členy a_2, a_5, a_7 geometrickej postupnosti, ak poznáte

a)
$$a_1 = 2, a_4 = 1$$

b)
$$a_2 = 4, q = 3$$

a)
$$a_1 = 2, a_4 = 1$$
 b) $a_2 = 4, q = 8$ c) $a_8 = 2, a_{10} = \frac{1}{2}$

d)
$$a_3 = -3, q = -\frac{1}{3}$$

d)
$$a_3 = -3, q = -\frac{1}{3}$$
 e) $a_{161} = 2a_{159}, a_1 = \sqrt[3]{2}$

- 6. Vypočítajte súčty s_4, s_6, s_{10} geometrickej postupností, ak poznáte

- a) $a_1 = 1, a_4 = 8$ b) $a_2 = 2, q = 3$ c) $a_8 = 1, a_{10} = 4$

d)
$$a_3 = -5, q = -\frac{1}{5}$$

d)
$$a_3 = -5, q = -\frac{1}{5}$$
 e) $a_{161} = 2a_{159}, a_1 = \sqrt[3]{2}$

- 7. Súčet prvého a tretieho člena geometrickej postupnosti je 30, súčet prvých troch členov tejto postupnosti je 42. Určite prvý člen a kvocient postupnosti.
- 8. Pre členy geometrickej postupnosti platí $a_1 + a_4 = -21$ a $a_2 + a_5 = 42$. Určte jej *n*-tý člen.

- 9. V štvorčlennej geometrickej postupnosti je súčet nepárnych členov 5, súčet párnych 10. Koľko členov musíme sčítať, aby sme dostali číslo väčšie než 1 000 a k číslu 1 000 najbližšie
- 10. Kváder, ktorého dĺžky hrán tvoria geometrickú postupnosť, má povrch P = 78 a súčet dĺžok hrán prechádzajúcich jedným vrcholom je 13. Vypočítajte objem kvádra.
- 11. Daný je prvý člen $a_1 = 6144$ a kvocient $q = \frac{1}{2}$ geometrickej postupnosti. Zistite,

koľko členov má táto postupnosť, ak viete, že jej posledný člen $a_n = 48$. Vypočítajte súčet s, všetkých členov tejto postupnosti.

12. Vypočítajte súčet nekonečného geometrického radu:

a)
$$\frac{3}{5} + \frac{6}{15} + \frac{12}{45} + \frac{24}{135} + \cdots$$

a)
$$\frac{3}{5} + \frac{6}{15} + \frac{12}{45} + \frac{24}{135} + \cdots$$
 b) $\frac{2}{53} - \frac{10}{53} + \frac{50}{53} - \frac{250}{53} + \cdots$

- 13. V lese je približne 80 000 m³ dreva. Ročný prírastok sa odhaduje na 2 %. Na konci každého roka sa vyrúbe 2 500 m³ dreva. Vypočítajte koľko dreva zostane v lese
 - a) po jednom roku,
 - b) po dvoch rokoch,
 - c) po desiatich rokoch. Čo sa deje s lesom?
- 14. Zapíšte čísla $0.23\overline{7}$, $0.\overline{28}$ $0.7\overline{368}$ a v tvare $\frac{p}{q}$, kde $p,q \in N$, pričom použijete súčet nekonečného geometrického radu.
- 15. Preveďte číslo $0,\overline{3}_6$ zo šestkovej sústavy do desiatkovej, pričom použijete súčet nekonečného geometrického radu.
- 16. Riešte v R rovnicu

a)
$$1+3^x+9^x+27^x+...=\frac{3+\sqrt{3}}{2}$$

b)
$$\sqrt{x^3}.\sqrt[4]{x^3}.\sqrt[8]{x^3}.\sqrt[16]{x^3}...=1$$

c)
$$1 - \frac{3}{x} + \frac{9}{x^2} - \frac{27}{x^3} + \dots = \frac{8}{x+10}$$

Nezabudnite potom vždy spraviť skúšku správnosti (aby ste overili, či postupnosť vôbec konverguje).