< VOLTAR

Sistemas de numeração e conversão de bases -Conversões; bit e byte (conceituação)

Cálculo de conversão de bases para responder às questões pertinentes à execução das especificações nas configurações de sistemas, comunicação remota e linguagem de máquina.

NESTE TÓPICO

Marcar tópico

Conversão do sistema binário para hexadecimal

A conversão de um número binário para hexadecimal pode ser feita de forma indireta pelos métodos de conversão anteriores: converte-se do sistema binário para o decimal e depois do decimal para o sistema hexadecimal. Porém, uma conversão direta do sistema binário para o sistema hexadecimal pode ser efetuada substituindo-se quatro dígitos binários por um dígito hexadecimal, pois com quatro dígitos binários obtenho no máximo o número 16, que é a base do sistema hexadecimal.

Exemplo 1: Conversão do número 11101_2 em binário para o sistema hexadecimal.

- 1. Obtenho os quatro últimos dígitos do número binário: 1101
- 2. Converto diretamente para hexadecimal: 1101_2 = 13_{10} = D_{16}
- 3. Com isso, obtenho o último dígito do número hexadecimal: D_{16}
- 4. Repito o mesmo método para os dígitos restantes do número binário: $1_2 = 1_{10} = 1_{16}$
- 5. Unindo os dois dígitos, obtenho o número em hexadecimal: $11101_2 = 1D_{16}$

Exemplo 2: Conversão do número 100101010_2 em binário para o sistema hexadecimal.

 $1010_2 = 10_{10} = A_{16}$

$$0010_2 = 2_{10} = 2_{16}$$

$$1_2 = 1_{10} = 1_{16}$$

$$100101010_2 = 12A_{16}$$

A conversão de hexadecimal para binário pode ser feita de forma indireta: converte-se de hexadecimal para decimal e de decimal para binário. Uma forma direta pode ser executada do modo contrário ao anterior: converte-se em quatro dígitos binários cada dígito hexadecimal. O último dígito do número hexadecimal fornece o valor dos quatro últimos dígitos do número binário.

Exemplo 3: Conversão do número CDF hexadecimal para o sistema binário.

$$F_{16} = 15_{10} = 1111_2$$

$$D_{16} = 13_{10} = 1101_2$$

$$C_{16} = 12_{10} = 1100_2$$

$$CDF_{16} = 1100110111111_2$$

Exemplo 4: Conversão do número 1002_{16} hexadecimal para o sistema binário.

$$2_{16} = 0010_2$$

$$0_{16} = 0000_2$$

$$0_{16} = 0000_2$$

$$1_{16} = 0001_2$$

$$1002_{16} = 1000000000010_2$$

Para conhecer um pouco mais sobre essa representação, veja o infográfico abaixo. Este infográfico faz parte da sequência desta aula e, portanto, é essencial para a aprendizagem.

11/10/2022 20:44

Tabela comparativa entre os sistemas de numeração Bit e byte (byte, kbyte, mbyte)

Decimal	Binário	Hexadecimal	Octal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	8	10
9	1001	9	11
10	1010	A	12
Decimal	Binário	Hexadecimal	Octal
Decimal 0	Binário 0000	Hexadecimal 0	Octal 0
0	0000	0	0
0	0000 0001	0	0
0 1 2	0000 0001 0010	0 1 2	0 1 2
0 1 2 3	0000 0001 0010 0011	0 1 2 3	0 1 2 3
0 1 2 3 4	0000 0001 0010 0011 0100	0 1 2 3 4	0 1 2 3 4
0 1 2 3 4 5	0000 0001 0010 0011 0100 0101	0 1 2 3 4 5	0 1 2 3 4 5
0 1 2 3 4 5	0000 0001 0010 0011 0100 0101 0110	0 1 2 3 4 5	0 1 2 3 4 5

9	1001	9	11
10	1010	A	12
Decimal	Binário	Hexadecimal	Octal
11	1011	В	13
12	1100	С	14
13	1101	D	15
14	1110	E	16
15	1111	F	17

((•

O computador trabalha com sinais elétricos em dois níveis R 0 e +V ou 0 e RV R, os quais são chamados de estados lógicos. Para definir cada estado lógico, ficou estabelecido que, quando temos 0 V (zero volt), o valor do estado lógico é 0 (zero), e, quando temos + V ou ? V, o valor do estado lógico é 1.

Assim, com a disponibilidade de apenas dois números, os cientistas criaram uma tabela de combinações desses estados. As tabelas são formadas de uma composição de 8 estados lógicos. Essa combinação é chamada de byte, e cada um dos estados lógicos são chamados de bit. Um conjunto de 8 bits, portanto, equivale a um byte.

Para representar a linguagem do usuário, o computador usa a relação da tabela de combinações dos estados lógicos para compor um caractere, o qual se constitui das letras de uma palavra ou de pontuações das frases. Um caractere equivale ao conjunto de 8 bits (1byte). Uma palavra se forma com a combinação de um conjunto de bytes. Por isso, cada letra, número, pontuação e sinais gráficos se forma no computador pela associação de 8 bits.

No entanto, para não haver diversidade de tabelas entre os fabricantes, garantindo a interoperabilidade entre eles, padronizou-se o mesmo valor para cada caractere. Instituiu-se a tabela ASCII (American Standard Code for Information Intercharge) como um conjunto de códigos-padrão para o computador representar números, letras, pontuação e outros caracteres.

Tabela ASC II

A tabela ASC II mostra no que um valor hexadecimal (decimal) corresponde ao código ASC II. Clique no botaão para abrir o texto complementar.

COMPLEMENTAR

 $(http://ead.uninove.br/ead/disciplinas/impressos/_g/arco80_100/a04tc01_arco80_100.pdf)$

Os computadores têm suas características de processamento expressas em número de bits (8, 16, 32 ou 64). Cada instrução enviada para o microprocessador pode ser formada por 1byte, 2 bytes, 3 bytes e 4 bytes.

Assim, dependendo da instrução, são necessárias de 1 a 4 linhas de memória para armazená-la.

O espaço em disco ou memórias define-se como múltiplos de 1kbyte, em que 1kbyte é igual a 1024 bytes (2^{10}). A tabela a seguir mostra os múltiplos do byte.

Múltiplos do Byte	Abreviação	Valor
Quilobyte	КВ	10 ³ do byte (ou 1024 bytes)
Megabyte	MB	10 ⁶ do byte (ou 1024 KB)
Gigabyte	GB	10 ⁹ do byte (ou 1024 MB)
Terabyte	ТВ	10 ¹² do byte (ou 1024 GB)
Petabyte	РВ	10 ¹⁵ do byte (ou 1024 TB)

Agora que você já estudou esta aula, resolva os exercícios e verifique seu conhecimento.

Caso fique alguma dúvida, leve a questão ao Fórum e divida com seus colegas e professor.

EXERCÍCIO

 $(http://ead.uninove.br/ead/disciplinas/impressos/_g/arco80_100/a04ex01_arco80_100.pdf)\\$

Referências

STALLINGS, Willian. Arquitetura e organização de computadores. 5. ed. Prentice Hall. São Paulo, 2006.

TANENBAUM. Andrew S. Organização estruturada de computadores. 5. ed. Rio de Janeiro: LTC, 2007.

MACHADO, Francis B.; MAIA, Luiz P. Arquitetura de sistemas operacionais. 4. ed. Rio de Janeiro: LTC, 2007.

WEBER, Raul Fernando. Arquitetura de computadores pessoais. 2. ed. Porto Alegre: Sagra Luzzatto, 2003.

_____. Fundamentos de arquitetura de computadores. 3. ed. Porto Alegre: Sagra Luzzatto, 2004.

Avalie este tópico

 $\triangle \triangle \triangle$

® Todos os direitos reservados

Ajuda? (https://ava.un idCurso=)

(https://www.uninove.br/conheca-

a-

uninove/biblioteca/sobre-

a-

biblioteca/apresentacao/)

Portal Uninove

(http://www.uninove.br)

Mapa do Site

