

## Extreme Value Analysis of Stock Returns using ARMA-GJR-GARCH Model

## Submitted by:

Srikrishna Das

Under the guidance of:

Neelesh S. Upadhye

October 3, 2025

Department of Mathematics Full Institute Name

## 1 Introduction

This report presents an extreme value analysis of stock returns for SBIN (State Bank of India) and INFY (Infosys) using the AR-GJR-GARCH model with Student's t-distribution. The analysis includes model fitting, diagnostic tests, and threshold selection for extreme value modeling.

## 2 Data Overview

Financial data for SBIN.NS and INFY.NS were downloaded using the yfinance library. Daily log returns were computed as follows:

## 2.1 Log Returns Sample

The first three observations of log returns are shown below:

Table 1: Sample Log Returns (in %)

| Date                     | INFY.NS          | SBIN.NS            |
|--------------------------|------------------|--------------------|
| 1996-01-02               | -0.4052          | -3.2347            |
| 1996-01-03<br>1996-01-04 | 0.6746 $-0.6624$ | -2.7025<br>-0.3464 |

These values represent the percentage change in log prices from one day to the next.

## 3 Visualization of Log Returns

## 3.1 SBIN Log Returns

Figure 1 shows the time series of log returns for State Bank of India (SBIN) over the entire period. The plot reveals periods of high volatility, particularly during market stress periods.



Figure 1: Log Returns of SBIN over time

## 3.2 INFY Log Returns

Figure 2 displays the log returns for Infosys (INFY). Similar to SBIN, the returns show volatility clustering, a common feature in financial time series.



Figure 2: Log Returns of INFY over time

## 4 Model Fitting and Diagnostics

An AR-GJR-GARCH(1,1) model with Student's t-distribution was fitted to both stocks. The data was split into 95% training and 5% testing sets.

#### 4.1 SBIN.NS Model Results

#### Data Split:

• Train data shape: 7097 observations

• Test data shape: 374 observations

#### Model Selection Criteria:

• AIC: 30744.0794

• BIC: 30853.9357

Lower AIC and BIC values indicate a better fit of the model. These values will be used to compare different model specifications.

#### Diagnostic Tests:

Ljung-Box Test on Residuals (lag 20):

• LB statistic: 22.687

• p-value: 0.3044

The high p-value (i0.05) indicates no significant autocorrelation in the residuals, suggesting the mean equation is adequate.

Ljung-Box Test on Squared Residuals (lag 20):

• LB statistic: 14.449

• p-value: 0.8070

The high p-value indicates no remaining ARCH effects, confirming the volatility model is well-specified.

ARCH LM Test (lag 20):

• LM statistic: 14.6875

• p-value: 0.7940

This test also confirms no remaining conditional heteroskedasticity in the residuals.

#### 4.2 INFY.NS Model Results

#### Data Split:

• Train data shape: 7097 observations

• Test data shape: 374 observations

#### Model Selection Criteria:

• AIC: 29512.4196

• BIC: 29622.2759

INFY has lower AIC and BIC values compared to SBIN, suggesting the model fits slightly better for INFY data.

#### Diagnostic Tests:

Ljung-Box Test on Residuals (lag 20):

• LB statistic: 26.932

• p-value: 0.1372

Ljung-Box Test on Squared Residuals (lag 20):

• LB statistic: 11.662

• p-value: 0.9272

ARCH LM Test (lag 20):

• LM statistic: 12.6437

• p-value: 0.8921

All diagnostic tests pass (p-values  $\xi$  0.05), indicating the model is well-specified for INFY as well.

## 5 Extreme Value Analysis

## 5.1 SBIN Extreme Value Analysis

After fitting the GARCH model, standardized residuals were extracted for extreme value analysis using the Generalized Pareto Distribution (GPD).

#### 5.1.1 Mean Residual Life Plots

Figure 3 shows the mean residual life plots for both upper and lower extremes. These plots help identify appropriate thresholds for the GPD model. A linear pattern above a certain threshold suggests the GPD is appropriate.



Figure 3: Mean Residual Life Plots for SBIN

#### 5.1.2 Parameter Stability Plots

Figure 4 displays parameter stability plots showing how the GPD shape and scale parameters change with different threshold choices. Stable (flat) regions indicate good threshold candidates.



Figure 4: Parameter Stability Plots for SBIN

## 5.2 INFY Extreme Value Analysis

#### 5.2.1 Mean Residual Life Plots

Figure 5 presents the mean residual life plots for INFY, used to guide threshold selection for modeling extreme values.



Figure 5: Mean Residual Life Plots for INFY

#### 5.2.2 Parameter Stability Plots

Figure 6 shows parameter stability for INFY extremes.



Figure 6: Parameter Stability Plots for INFY

#### 6 Threshold Selection for SBIN

## 6.1 Upper Threshold Selection

The optimal upper threshold was selected by maximizing the p-value of the Kolmogorov-Smirnov (KS) test for GPD fit.

#### Selected Upper Threshold:

• Quantile: 0.970

• Threshold value: 1.9050

• Number of exceedances: 213

• Shape parameter: 0.1058

• Scale parameter: 0.6206

• KS p-value: 0.5947

• Anderson-Darling statistic: 0.6661

The high p-value (0.5951) indicates the GPD fits the upper tail well.

#### 6.2 Lower Threshold Selection

#### Selected Lower Threshold:

• Quantile: 0.025

• Threshold value: -1.9664

• Number of exceedances: 178

• Shape parameter: 0.1533

• Scale parameter: 0.5307

• KS p-value: 0.7756

• Anderson-Darling statistic: 0.4125

The very high p-value (0.7753) confirms an excellent fit of the GPD to the lower tail.

### 7 Smooth CDF Construction for SBIN

A smooth cumulative distribution function (CDF) was constructed by combining:

- GPD for the lower tail (below threshold -1.9664)
- Student's t-distribution for the body (between thresholds)
- GPD for the upper tail (above threshold 1.9050)
- Logistic splice function for smooth transitions

Figure 7 shows the resulting smooth CDF across the entire range of standardized residuals.



Figure 7: Smooth CDF: t-body + GPD tails with logistic splice

## 8 Probability Integral Transform (PIT) Validation for SBIN

## 8.1 PIT Histogram

The Probability Integral Transform was applied to validate the fitted distribution. If the model is correctly specified, the PIT values should be uniformly distributed on [0,1]. Figure 8 shows the histogram of PIT values.



Figure 8: PIT Histogram

#### 8.2 PIT Test Results for SBIN

**PIT Validation Results:** KS Statistic = 0.0116, p-value = 0.2974

#### 8.2.1 Global PIT Optimization for SBIN.NS

Systematic search across threshold combinations to maximize KS p-value for global PIT: [itemsep=0.3em]

• Optimal Combination: (i=9, j=9)

• KS Statistic: 0.0116

• p-value: 0.2974

• Upper Threshold: Quantile = 0.970, Threshold = 1.9050, Exceedances = 213

• Lower Threshold: Quantile = 0.025, Threshold = -1.9664, Exceedances = 178

The optimized p-value (0.2976) is greater than 0.05, indicating that the smooth CDF with optimized thresholds provides a good fit to the data. This validates the combined GPD-t-GPD model for the standardized residuals.

## 9 Threshold Selection for INFY

## 9.1 Upper Threshold Selection

Selected Upper Threshold:

• Quantile: 0.935

• Threshold value: 1.4235

• Number of exceedances: 461

• Shape parameter: 0.1432

• Scale parameter: 0.5641

• KS p-value: 0.6600

• Anderson-Darling statistic: 0.8893

The high p-value indicates good GPD fit for the upper tail of INFY returns.

#### 9.2 Lower Threshold Selection

#### Selected Lower Threshold:

• Quantile: 0.040

• Threshold value: -1.5829

• Number of exceedances: 284

• Shape parameter: 0.3542

• Scale parameter: 0.5462

• KS p-value: 0.9623

• Anderson-Darling statistic: 0.2552

The very high p-value (0.9623) confirms excellent fit for the lower tail of INFY returns.

## 10 Smooth CDF Construction for INFY

A smooth cumulative distribution function (CDF) was constructed by combining:

- GPD for the lower tail (below threshold -1.5829)
- Student's t-distribution for the body (between thresholds)
- GPD for the upper tail (above threshold 1.4235)
- Logistic splice function for smooth transitions

Figure 9 shows the resulting smooth CDF across the entire range of standardized residuals.



Figure 9: Smooth CDF: t-body + GPD tails with logistic splice (INFY)

# 11 Probability Integral Transform (PIT) Validation for INFY

## 11.1 PIT Histogram

The Probability Integral Transform was applied to validate the fitted distribution. If the model is correctly specified, the PIT values should be uniformly distributed on [0,1]. Figure 10 shows the histogram of PIT values.



Figure 10: PIT Histogram for INFY

#### 11.2 PIT Test Results

PIT Validation Results: KS Statistic = 0.0125, p-value = 0.2192

#### 11.2.1 Global PIT Optimization for INFY

Systematic search across threshold combinations to maximize KS p-value for global PIT: [itemsep=0.3em]

• Optimal Combination: (i=2, j=1)

• KS Statistic: 0.0125

• **p-value:** 0.2197

• Upper Threshold: Quantile = 0.935, Threshold = 1.4235, Exceedances = 461

• Lower Threshold: Quantile = 0.040, Threshold = -1.5829, Exceedances = 284

The optimized p-value (0.2197) is greater than 0.05, indicating that the smooth CDF with optimized thresholds provides a good fit to the data. This validates the combined GPD-t-GPD model for the standardized residuals of INFY.

## 12 Summary Tables

## 12.1 Summary Table for SBIN.NS

| Metric                       | Value                                                   |
|------------------------------|---------------------------------------------------------|
| Model                        | AR-GJR-GARCH-StudentsT + Composite (t-body + GPD tails) |
| LB $(\varepsilon)$ p-value   | 0.3044                                                  |
| LB $(\varepsilon^2)$ p-value | 0.8070                                                  |
| ARCH-LM p-value              | 0.7940                                                  |
| Upper Threshold              | 1.9050                                                  |
| Upper Exceedances            | 213                                                     |
| GPD Upper $\xi$              | 0.1058                                                  |
| GPD Upper $\beta$            | 0.6207                                                  |
| Lower Threshold              | -1.9664                                                 |
| Lower Exceedances            | 178                                                     |
| GPD Lower $\xi$              | 0.1533                                                  |
| GPD Lower $\beta$            | 0.5308                                                  |
| PIT KS p-value               | 0.2976                                                  |

## 12.2 Summary Table for INFY.NS

| Metric                       | Value                                                   |
|------------------------------|---------------------------------------------------------|
| Model                        | AR-GJR-GARCH-StudentsT + Composite (t-body + GPD tails) |
| LB $(\varepsilon)$ p-value   | 0.1372                                                  |
| LB $(\varepsilon^2)$ p-value | 0.9272                                                  |
| ARCH-LM p-value              | 0.8921                                                  |
| Upper Threshold              | 1.4235                                                  |
| Upper Exceedances            | 461                                                     |
| GPD Upper $\xi$              | 0.1432                                                  |
| GPD Upper $\beta$            | 0.5640                                                  |
| Lower Threshold              | -1.5829                                                 |
| Lower Exceedances            | 284                                                     |
| GPD Lower $\xi$              | 0.3543                                                  |
| GPD Lower $\beta$            | 0.5462                                                  |
| PIT KS p-value               | 0.2197                                                  |