

IS313

USN 1 M S

M S RAMAIAH INSTITUTE OF TECHNOLOGY

(AUTONOMOUS INSTITUTE, AFFILIATED TO VTU)

BANGALORE - 560 054

SEMESTER END EXAMINATIONS - JANUARY 2015

Course & Branch : B.E. - INFORMATION SCIENCE & ENGG.

Semester : III

Subject

Data Structures

Max. Marks : 100

Subject Code

: IS313

Duration : 3 Hrs

Instructions to the Candidates:

Answer one full question from each unit.

UNIT - I

1. a) Write a C program to implement a stack of character strings.

(10)

b) Write a C program to convert infix to postfix expression.

(10) (10)

2 a) Write an algorithm to evaluate the following postfix expression. Give the stack conversion table for the same.

Expression: ABC + * CBA - + *

(A = 2, B = 3, C = 5)

b) Covert the following infix expression into postfix expression.

(05)

- a. A * (B + C/D)
- b. ((X Y) * (P + G))/(M + N)
- c. $((A + (B C) * D)^{A}E + F)$
- d. (a+b-c)*(d-e)/(f-g+h)

e. $1+(2+(3+(4+(5+(6^{(1+2))))))$

c) Give the step-by-step operation of **Tower of Hanoi** for four discs (05) pictorially.

UNIT - II

3. a) What is a queue? Explain the various types of queues along with its (10) operations that can be performed on queues.

t the (10)

- b) Assume the queue size to be 4 and write function to insert an item at the rear and delete an item at the front in circular queue and also trace the following set of operations.
 - a. Insert item 23
 - b. Insert item 99
 - c. Delete one Item
 - d. Insert item 54
 - e. Insert item 88
 - f. Insert item 12
 - g. Delete one item
 - h. Insert 61
 - i. Delete all items one by one
- 4. a) Write a C program to implement linear queues using structures.
 b) Write a C program to implement ascending order priority queue.

(10) (10)

UNIT - III

5. a) Briefly discuss the advantages of double linked list over single linked list (10) and write a C function to insert a given integer value into an ordered doubly linked list.

IS313

-			_
	b)	Write a program to generate Fibonacci series for first 20 numbers and store each Fibonacci number in a node using circular linked list	(10)
6.	a) b) c)	Write a C routine to search for a key item in a singly list. Write a C routine that concatenates two circular list. Create an ordered linked list of students whose structure contains id, name and rank. (Order the list based on the rank of a student).	(05) (05) (10)
UNIT – IV			
7.	a) b)	Write a C program to implement Stacks using Linked List. Define the following: a. Binary Tree b. Complete Binary Tree	(10) (05)
		c. Directed Graph	
		d. In-degree	
•	c) .	 e. Almost Complete Binary tree Write a function to count the number of leaf nodes in a tree using recursive function call. 	(05)
8.	a) b)	Write a C program to implement Queues using Linked List Write a C routine to insert an item into a Binary tree. Explain with an example.	(10) (10)
UNIT – V			
9.	a)	What is Hashing? How does hashing differs from indexing? Explain different types of hashing functions.	(10)
	b)	Explain the insert and delete mechanism for B-trees • Insert: 5, 3, 21, 9, 1, 13, 2, 7, 10, 12, 4, 8 • Delete: 2, 21, 10, 3, 4	(10)
10.	a)	Write a short notes on 1. B+ Trees 2. Collisions	(05) (05)
	b)	Explain chained progressive overflow with an example ***********************************	(10)

