Лекція 19. Біноміальні коефіцієнти. Розбиття

19.1. Біном Ньютона

Кількість сполучень C_n^r називають також біноміальними коефіцієнтами. Зміст цієї назви встановлює наступна теорема, відома також як формула бінома Ньютона.

<u>Теорема 19.1</u> (біноміальна). Нехай х та у – змінні, n – додатне ціле число. Тоді

$$(x+y)^n = \sum_{j=0}^n C_n^j x^j y^{n-j} = \sum_{j=0}^n C_n^j x^{n-j} y^j.$$

Доведення. Будемо проводити доведення за методом математичної індукції. Доведемо для n=1:

$$(x+y)^{1} = x + y = 1x^{1}y^{0} + 1x^{0}y^{1} = C_{1}^{0}x^{1}y^{0} + C_{1}^{1}x^{0}y^{1} = \sum_{i=0}^{1} C_{1}^{i}x^{i}y^{1-i}.$$

Припустимо, що рівність виконується для n-1 і доведемо її для довільного n.

$$(x+y)^{n} = (x+y)(x+y)^{n-1} = (x+y)\sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j-1} = \sum_{j=0}^{n-1} x C_{n-1}^{j} x^{j} y^{n-j-1} + \sum_{j=0}^{n-1} y C_{n-1}^{j} x^{j} y^{n-j-1} = \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j-1} + \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j-1} = \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j} + \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j} = \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j} + \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j} = \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j} + \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j} = \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j} + \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j} = \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j} + \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j} = \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j} + \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j} = \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j} + \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j} = \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j} + \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j} = \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j} + \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j} = \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j} + \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j} = \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j} + \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j} + \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j} + \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j} = \sum_{j=0}^{n-1} C_{n-1}^{j} x^{j} y^{n-j} + \sum_{j=0}^{n-1} C_{n-1$$

Аналогічно доводиться друга рівність.

Наслідок 1.
$$\sum_{j=0}^{n} C_n^j = 2^n$$
.

Доведення.

$$2^{n} = (1+1)^{n} = \sum_{j=0}^{n} C_{n}^{j} 1^{j} 1^{n-j} = \sum_{j=0}^{n} C_{n}^{j}. \blacktriangleright$$

Наслідок 2.
$$\sum_{j=0}^{n} (-1)^{j} C_{n}^{j} = 0$$
.

Доведення.

$$0^{n} = (-1+1)^{n} = \sum_{j=0}^{n} C_{n}^{j} (-1)^{j} 1^{n-j} = \sum_{j=0}^{n} (-1)^{j} C_{n}^{j}.$$

Наслідок 3.
$$(x-y)^n = \sum_{j=0}^n (-1)^j C_n^j x^j y^{n-j}$$
.

Доведення. Залишаємо читачеві на самостійну роботу. ► Наприклад, запишемо розклад вигляду (x+y)⁴. Скориставшись біноміальною теоремою отримаємо:

$$(x+y)^4 = C_4^0 x^4 y^0 + C_4^1 x^3 y^1 + C_4^2 x^2 y^2 + C_4^3 x^1 y^3 + C_4^4 x^0 y^4 =$$

$$= x^4 + 4x^3 y + 6x^2 y^2 + 4xy^3 + y^4.$$

Біноміальні коефіцієнти мають цілий ряд важливих властивостей, які встановлює наступні теореми.

Теорема 19.2.
$$\sum_{i=0}^{n} jC_n^j = n2^{n-1}$$
.

Доведення. Розглянемо наступну послідовність, яка складається з чисел 1,...,п. Спочатку виписані всі підмножини довжиною 0, потім всі підмножини довжиною 1 і т.д. Маємо C_n^j підмножин потужності j, де кожна підмножина має довжину j, таки чином всього в цій послідовності $\sum_{j=0}^{n} jC_{n}^{j}$ чисел. З іншого боку, кожне число х входить в цю послідовність

$$2^{|\{1,\dots,n\}\setminus\{x\}|}=2^{n-1}$$
 разів, а всього чисел п. \blacktriangleright

Теорема 19.3.
$$C_{n+m}^k = \sum_{j=0}^k C_n^j C_m^{k-j}$$
.

Доведення. C_{n+m}^k - це число способів вибрати к предметів з п+т предметів. Предмети можна вибирати в два прийоми: спочатку вибрати ј предметів з перших п предметів, а потім вибрати недостатні k-j предметів з т предметів, які залишились. Звідси загальне число способів вибрати к предметів складає $\sum_{j=0}^k C_n^j C_m^{k-j}$. ▶

3 твердження 18.4 $C_n^r = C_{n-1}^r + C_{n-1}^{r-1}$ випливає ефективний спосіб рекурентного обчислення значень біноміальних коефіцієнтів, який можна зобразити в графічному способі, відомий як **трикутник Паскаля**.

В цьому рівносторонньому трикутнику кожне число (окрім одиниць збоку) ϵ сумою двох чисел, які стоять над ним. Число сполучень C_n^r знаходиться в (n+1) рядку на (r+1) місці.

19.2. Поліноміальна теорема

Як узагальнення біному Ньютона розглянемо вираз у вигляді $(x_1+x_2+...+x_k)^n$. Основний результат сформульовано в наведеній нижче теоремі.

<u>Теорема 19.4</u> (поліноміальна).

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{\substack{n_1 \ge 0, \dots, n_k \ge 0 \\ n_1 + \dots + n_k = n}} P_n(n_1, n_2, \dots, n_k) x_1^{n_1} x_2^{n_2} \dots x_k^{n_k}.$$

Доведення. Запишемо $(x_1+x_2+...+x_k)^n$ у вигляді добутку п співмножників і розкриємо дужки. Коефіцієнт при $x_1^{n_1}x_2^{n_2}...x_k^{n_k}$ дорівнює кількості перестановок із повтореннями таких, що елемент x_1 міститься в кожній з них n_1 разів, x_2-n_2 разів і т.д., а всього елементів $n_1+n_2+...+n_k=n$. Очевидно, що цей коефіцієнт дорівнює $P_n(n_1,...,n_k)$. ▶

Отриману формулу називають **поліноміальною**. Вона, зокрема, дає змогу доводити деякі властивості чисел $P_n(n_1,...,n_k)$. Зазначимо дві з них.

Наслідок 1. Нехай
$$x_1 = x_2 = ... = x_k = 1$$
; тоді

$$\sum_{\substack{n_1 \ge 0, \dots, n_k \ge 0 \\ n_1 + \dots + n_k = n}} P_n(n_1, n_2, \dots, n_k) = k^n.$$

Наслідок 2.

$$\overline{P_n(n_1, n_2, ..., n_k)} = P_{n-1}(n_1-1, n_2, ..., n_k) + P_{n-1}(n_1, n_2-1, ..., n_k) + ... + P_{n-1}(n_1, n_2, ..., n_k-1).$$

Доведення. Цей вираз отримуємо з теореми 19.4, помноживши обидві частини поліноміальної формули для n-1 на $(x_1+x_2+...+x_k)$ та порівнявши коефіцієнти при однакових доданках. ▶

19.3. Задача про цілочислові розв'язки

Цю задачу формулюють так: знайти кількість розв'язків рівняння $x_1+x_2+...+x_k=n$ у цілих невід'ємних числах, де n- ціле невід'ємне число.

Узявши такі невід'ємні цілі числа $x_1,x_2,...,x_k$, що $x_1+x_2+...+x_k=n$, можна отримати сполучення з повтореннями з k елементів по n, а саме: елементів першого типу $-x_1$ одиниць, другого $-x_2$ одиниць і т.д. Навпаки, якщо є сполучення з повтореннями з k елементів по n, то кількості елементів кожного типу задовольняють рівнянню $x_1+x_2+...+x_k=n$ у цілих невід'ємних числах. Отже, кількість цілих невід'ємних розв'язків цього рівняння дорівнює

$$\widetilde{C}_k^n = C_{n+k-1}^n = \frac{(n+k-1)!}{n!(k-1)!}.$$

Наприклад, знайдемо кількість невід'ємних цілих розв'язків рівняння $x_1+x_2+x_3=11$. Безпосереднє використання попередньої формули дає:

$$\widetilde{C}_{3}^{11} = C_{3+11-1}^{11} = C_{13}^{11} = \frac{13!}{11! \cdot 2!} = 78.$$

Кількість розв'язків рівняння $x_1+x_2+...+x_k=n$ у цілих невід'ємних числах можна визначити й тоді, коли на змінні накладено певні обмеження.

Наприклад, знайдемо кількість невід'ємних цілих розв'язків рівняння $x_1+x_2+x_3=11$ за умов $x_1\ge 1$, $x_2\ge 2$, $x_3\ge 3$. Очевидно, що ця задача еквівалентна рівнянню $x_1+x_2+x_3=5$ без обмежень. Справді, потрібно взяти щонайменше один елемент першого типу, два елементи другого типу, три елементи третього типу – разом 1+2+3=6 елементів; отже, 11-6=5 елементів залишається для довільного вибору,

$$\widetilde{C}_3^5 = C_{3+5-1}^5 = C_7^5 = \frac{7!}{5! \cdot 2!} = 21.$$

Визначимо кількість розв'язків нерівності $x_1+x_2+x_3 \le 11$ у цілих невід'ємних числах. Уведемо допоміжну змінну x_4 , яка може набувати цілих невід'ємних значень і перейдемо до еквівалентної задачі: визначити кількість розв'язків рівняння $x_1+x_2+x_3+x_4=11$ у цілих невід'ємних числах. Отже,

$$\widetilde{C}_{4}^{11} = C_{4+11-1}^{11} = C_{14}^{11} = \frac{14!}{11! \cdot 3!} = 364.$$

19.4. Розбиття. Числа Стірлінга другого роду та числа Белла

Пригадаємо означення розбиття множини з лекції 1 (означення 1.10). Сукупність множин $A_1, A_2, ..., A_n$ називається **розбиттям** множини $A_i, A_i, A_j = A$ та $A_i \cap A_j = \emptyset$, $\forall i \neq j$.

Підмножини $A_1, A_2, ..., A_n$ множини A називаються блоками розбиття.

Наприклад, якщо $A = \{a,b,c\}$, то ϵ такі розбиття цієї множини на k не порожніх частин:

 $k=1: \{\{a,b,c\}\}\$ (одне розбиття);

 $k=2: \{\{a,b\},\{c\}\}, \{\{a,c\},\{b\}\}, \{\{b,c\},\{a\}\}\}$ (три розбиття);

 $k=3: \{\{a\}, \{b\}, \{c\}\}\}$ (одне розбиття).

<u>Означення 19.1.</u> Кількість розбиттів n-елементної множини на k-блоків називається **числом Стірлінга другого роду** і позначається $\Phi(n,k)$. За означенням встановимо:

 $\Phi(n, 0) = 0$ при n>0?

 $\Phi(n, n) = 1$,

 $\Phi(0, 0) = 1$,

 $\Phi(n, k) = 0$ при k > n.

Теорема 19.5. $\Phi(n, k) = \Phi(n-1, k-1) + k \cdot \Phi(n-1, k)$.

Доведення. Довільне розбиття множини A на k не порожніх частин можна отримати так:

- із розбиття множини $A\setminus\{a_n\}$ на (k-1) непорожню частину додаванням підмножини $\{a_n\}$ кількість дорівнює $\Phi(n-1, k-1)$;
- із розбиття множини $A\setminus\{a_n\}$ на k непорожніх частин додаванням до однієї з цих частин елемента a_n (це можна зробити k способами) кількість дорівнює $k\cdot\Phi(n-1,k)$.

Звідси випливає, що $\Phi(n, k) = \Phi(n-1, k-1) + k \cdot \Phi(n-1, k)$

За допомогою цієї теореми можна побудувати таблицю для чисел $\Phi(n,k)$.

k n	1	2	3	4	5	6	
1	1						
2	1	1					
3	1	3	1				
4	1	7	6	1			
5	1	15	25	10	1		
6	1	31	90	65	15	1	

Теорема 19.6 (без доведення).
$$\Phi(n,k) = \sum_{j=k-1}^{n-1} C_{n-1}^{j} \cdot \Phi(j,k-1)$$
.

<u>Означення 19.2.</u> Кількість усіх розбиттів n-елементної множини називають **числом Белла** і позначають $\Phi(n)$. За означенням:

$$\Phi(n) = \sum_{k=1}^{n} \Phi(n,k) .$$

Теорема 19.7 (без доведення).
$$\Phi(n+1) = \sum_{j=0}^{n} C_n^j \cdot \Phi(j)$$
.