# Experiment 3

# S A Aravind Eswar and Eshan Sharma

# 1 **А**ім

Study and plot Bode plot of magnitude and phase response for 1-stage, 2-stage, 3-stage RC Low pass filter.

### 2 MATERIALS AND APPARATUS REQUIRED

- 1) 3 Reistors (1k $\Omega$  used)
- 2) 3 Capasitors (0.1 $\mu$ F used)
- 3) Bread Board
- 4) Function Generator
- 5) Oscilloscope

#### 3 THEORY

The transfter function of a 1-stage RC circuit would be the following,

$$\mathbf{H}(\mathbf{s}) = \frac{1}{1 + sRC}$$

where,

$$s = i\omega$$

expanding, we get,

$$\mathbf{H}(\mathbf{s}) = \frac{1}{\sqrt{1 + (\omega RC)^2}} e^{j\theta}$$

where,

$$\theta = \tan^{-1} \left( -\omega RC \right)$$

Applying logarithm on both sides, we get,

$$\log \mathbf{H}(\mathbf{s}) = \log \left( \frac{1}{\sqrt{1 + (\omega RC)^2}} e^{j \tan^{-1}(-\omega RC)} \right)$$
$$= -\frac{1}{2} \log \left( 1 + (\omega RC)^2 \right) + j \tan^{-1}(-\omega RC)$$

Calculating Amplitude gain,

1

$$A = 20 \log (|\mathbf{H}(\mathbf{s})|)$$
$$A = -10 \log (1 + (\omega RC)^{2})$$

This gives the exact equation for Bode plot of the amplitude gain. For phase difference,

$$\theta = 20 \tan^{-1} (-\omega RC)$$

Similarly,

The transfer function of 2-stage RC circuit would be,

$$\mathbf{H}(\mathbf{s}) = \left(\frac{1}{1 - (\omega RC)^2 + 3sRC}\right)$$

And following this, we get,

$$\log \mathbf{H}(\mathbf{s}) = -\frac{1}{2} \log \left( (1 - (\omega RC)^2)^2 + (3\omega RC)^2 \right) + j \tan^{-1} \left( \frac{-3\omega RC}{1 - (\omega RC)^2} \right)$$

And,

The transfer function for 3-state RC circuit is given as,

$$\mathbf{H}(\mathbf{s}) = \left(\frac{1}{(sRC)^3 + 5(sRC)^2 + 6sRC + 1}\right)$$

And following that we get,

$$\log \mathbf{H}(\mathbf{s}) = -\frac{1}{2} \log \left( \left( 1 - 5 (\omega RC)^2 \right)^2 + \left( 6 \omega RC - (\omega RC)^3 \right) \right) + j \tan^{-1} \left( -\omega RC \frac{6 - (\omega RC)^2}{1 - 5 (\omega RC)^2} \right)$$

#### 4 Procedure



Fig. 1: Circuit Diagram

# 1) Make connections as given in fig. 1

- 2) Give input **Vin** in the open end.
- 3) Measure Voltage across A-A' and Phase difference between input voltage and output voltage for 1 cascade circuit analysis.
- 4) Record observations for multiple input frequencies.
- 5) Repeat the experiment for B B' and C C' for 2 cascade and 3 cascade circuit analysis respectively.
- 6) Compare the theoreical caltuations and observed values.

# 5 Observations

| f              | Vout           | $\Delta t$   |
|----------------|----------------|--------------|
| 10 <i>Hz</i>   | 5.001 <i>V</i> | 5.6ms        |
| 100 <i>Hz</i>  | 5.001 <i>V</i> | 560μs        |
| 500Hz          | 5.001 <i>V</i> | $300\mu s$   |
| 1000Hz         | 3.201 <i>V</i> | 96μ <i>s</i> |
| 5000Hz         | 1.441 <i>V</i> | $31.2\mu s$  |
| 10 <i>kHz</i>  | 880mV          | $18.4 \mu s$ |
| 50 <i>kHz</i>  | 200mV          | $4.48\mu s$  |
| 100 <i>kHz</i> | 104mV          | $2.2\mu s$   |
| 500kHz         | 30mV           | _            |
| 1MHz           | 16 <i>mV</i>   | _            |

TABLE I: Obsereved 1 Cascade Circuit Response

| f             | V <sub>out</sub> | $\Delta t$   |
|---------------|------------------|--------------|
| 10 <i>Hz</i>  | 5.001 <i>V</i>   | 5.2ms        |
| 50 <i>Hz</i>  | 5.001 <i>V</i>   | 520µs        |
| 100Hz         | 5.001 <i>V</i>   | $320\mu s$   |
| 500Hz         | 4.401 <i>V</i>   | 216µs        |
| 1kHz          | 3.001 <i>V</i>   | $184\mu s$   |
| 5kHz          | 580mV            | $68\mu s$    |
| 10kHz         | 184 <i>mV</i>    | $40\mu s$    |
| 50 <i>kHz</i> | 16 <i>mV</i>     | $10.8 \mu s$ |

TABLE II: Obsereved 2 Cascade Circuit Response

| f             | Vout           | $\Delta t$    |
|---------------|----------------|---------------|
| 10Hz          | 4.601 <i>V</i> | 1.6 <i>ms</i> |
| 50 <i>Hz</i>  | 5.001 <i>V</i> | $200\mu s$    |
| 100 <i>Hs</i> | 5.001 <i>V</i> | $220\mu s$    |
| 1kHz          | 3.001 <i>V</i> | 176µs         |
| 5kHz          | 120mV          | _             |
| 10 <i>kHz</i> | 30 <i>mV</i>   | _             |

TABLE III: Observed 3 Cascade Circuit Response



Fig. 2: Amplitude graph for 1 cascase response



Fig. 3: Amplitude graph for 2 cascase response



Fig. 4: Amplitude graph for 3 cascase response



Fig. 5: Phase graph for 1 cascase response



Fig. 6: Phase graph for 2 cascase response



Fig. 7: Phase graph for 2 cascase response