20.04.06

주제 Maximum Likelihood Estimation(MLE)

이론

Maximum Likelihood Estimation (MLE)

MLE의 Overfitting 문제

Overfitting 실습

모델 설정.

관찰하기

머신러닝 모델 설계 Tips

Learning rate 조절

Learning Rate 실습

Data Preprocessing (데이터 선처리)

Data Preprocessing

Overfitting 방지

DNN에서의 오버피팅 방지

머신러닝 모델을 평가하는 방법

Training / Testing Data Set

Online Learning

실습

이론

Maximum Likelihood Estimation(MLE)

한국 말로는 '최대 가능도 추정'이라고 부른다.

Likelihood란 무엇이고. MLE를 왜 하는 것일까?

압정을 땅에 던졌을 때 압정이 떨어진 모양을 두 가지 케이스로 나누는 걸 생각해보자. 납작한 부분이 바닥에 완전히 닿은 경우 Class 1, 뾰 족한 부분이 바닥을 짚는 경우를 Class 2라고 생각해보자. 물론 물리적으로 정확한 확률 분포가 있기야 할 것이다. 하지만 우리는 이걸 머신 러닝을 통해 구해보도록 하겠다.

Binomial distribution이기 때문에 압정이 떨어진 모양은 베르누이 분포를 가질 것이다. 이 베르누이 분포를 갖는 동작을 여러 번 반복하면 이항분포로서 나타난다. (아래 수식)

$$K \sim \mathcal{B}(n,\theta) P(K=k) = \binom{n}{k} \theta^k (1-\theta)^{n-k} = \frac{n!}{k!(n-k)!} \cdot \theta^k (1-\theta)^{n-k}$$

n과 k는 우리의 관찰 결과로 채워 넣으면, 이 함수는 theta에 따른 함수인데, 이걸 그래프로 그리면 theta에 따른 likelihood를 나타내는 언덕 모양이 된다. (likelihood 가 확률에 비례하므로)우리는 이 likelihood가 가장 큰 지점의 theta를 찾아야 한다. 그래서 경사하강법과 매 우 유사한 방식으로 최대점을 찾는 것이다.(Optimization via Gradient Descent) 대충 이런 모양이 될 거다.

$$\theta := \theta - \alpha \nabla_{\theta} L(x; \theta)$$

뭐 이런 식으로 θ를 업데이트한다.

만약 연속적이고 가우시안 분포(=정규 분포)였다면 $f(\theta)$ 가 아니라 $f(\mu,\sigma)$ 로 구해야 할 것이다.

음........ 추후에 보충해야 할 것 같다. <u>일단 참고할 만한 링크 저장</u>

MLE의 Overfitting 문제

MLE를 쓸 경우, 가장 확률적으로 적합한 모델을 기계적으로 찾는 방법이기 때문에 조금 불균질한, 튀는 데이터에 대해서도 전부 수용할 수 있는 **복잡한 모델**을 내놓을 수가 있다. 이렇게 학습 데이터에 과도하게 딱 맞는 모델이 나오는 상황을 **Overfitting** 이라고 부른다.

이를 해결하는 방법에 대해선 밑(<Overfitting 방지>항목)에서 설명하겠다.

Overfitting 실습

모델이 Training set에 대해 과적합되어, 새로운 데이터인 Test Set에는 적용되지 못하는 현상을 관찰해보겠다.

Imports

In [14]:

```
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

# For reproductibitily
torch.manual_seed(1)
```

Out[14]:

<torch._C.Generator at 0×7f85c45fc750>

Training Set과 Testing Set 나누어서 선언해줌

In [0]:

모델 설정.

이전에 배웠던 Softmax Regression용 모듈을 적용한다.

In [0]:

```
class SoftmaxClassifierModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.linear = nn.Linear(3, 3)

def forward(self, x):
    return self.linear(x)

model = SoftmaxClassifierModel()

# optimizer 설정
optimizer = optim.SGD(model.parameters(), lr = 0.1)
```

관찰하기

Training Set에 대해 위 모듈을 적용해 모델을 학습시키는 함수를 만든다.

```
# Training data에 대해 Seftmax Regression을 20회에 걸쳐 수행하고 결과 출력하는 함수 def train(model, optimizer, x_train, y_train):
    nb_epochs = 20;
    for epoch in range (nb_epochs):

# H(x) 계산
    prediction = model(x_train) # |prediction| = |x_train| = (m, 3)

# cost 계산
    cost = F.cross_entropy(prediction, y_train)

# cost로 H(x) 계산

optimizer.zero_grad()
    cost.backward()
    optimizer.step()

print('E: {:4d}/{} Cost: {:.6f}'.format(epoch, nb_epochs, cost.item()))
```

Test를 통해 Accuracy를 구하는 함수도 만들어준다.

```
def test(model, opt, x_test, y_test):
    prediction = model(x_test) # model을 test set에 통과시킴. |x_test| = (m',3)
    predicted_classes = prediction.max(1)[1] # |prediction| = (m',3)
# max 함수는 입력된 dimention의 방향에 맞는 최대값을 구해주는 함수였던 것 같다..
correct_count = (predicted_classes == y_test).sum().item()
cost = F.cross_entropy(prediction, y_test) # 정답과의 cross entropy를 구한다.

print('Accuracy: {}% Cost: {:.6f}'.format(correct_count / len(y_test) * 100, cost.item()))
```

함수를 호출해 작동시키고, 결과를 지켜 본다.

```
train(model, optimizer, x_train, y_train)
test(model, optimizer, x_test, y_test)
```

▼ 실행 결과

```
E: 0/20 Cost: 2.203667
E: 1/20 Cost: 1.199645
E: 2/20 Cost: 1.142985
E: 3/20 Cost: 1.117769
E: 4/20 Cost: 1.100901
E: 5/20 Cost: 1.089523
E: 6/20 Cost: 1.079872
E: 7/20 Cost: 1.071320
E: 8/20 Cost: 1.063325
E: 9/20 Cost: 1.055720
E: 10/20 Cost: 1.048378
E: 11/20 Cost: 1.041245
E: 12/20 Cost: 1.034285
E: 13/20 Cost: 1.027478
E: 14/20 Cost: 1.020813
E: 15/20 Cost: 1.014279
E: 16/20 Cost: 1.007872
E: 17/20 Cost: 1.001586
E: 18/20 Cost: 0.995419
```

E: 19/20 Cost: 0.989365 Accuracy: 0.0% Cost: 1.425844

위 결과에서 Trainig Set에 대한 Cost는 점차 낮아지는 것을 관찰 할 수 있으나, Test Set에 대한 Cost는 외려 다소 큰 것을 볼 수 있다. 20 Epoch에 도달했을 지점엔 이미 overfitting이 진행되었다는 걸 알 수 있다.

머신러닝 모델 설계 Tips

Learning rate 조절

Cost Function을 최소화하기 위한 Gradient Descent Algorithm을 복기해보자.

$$-\alpha \ \triangle \ \mathcal{L}(w_1, w_2)$$

에서 α 는 프로그램에서 우리가 $Ir(learning\ rate)$ 으로 지정해주었던 상수다. 이 α 값을 어느 정도로 정해줘야 가장 괜찮은 모델을 뽑을 수 있을까?

- α가 너무 작다면 : 학습이 너무 더뎌서 많은 epoch가 필요함
- α가 너무 **크다면** : 최솟값으로 다가가질 않고 건너뛰는, **overshooting** 발생 가능성 있음. (따라서 혹시 cost가 작아지지 않고 계속 발산하기만 한다면 learning rate을 너무 크게 잡진 않았는지 검토해봐야함.)

학습률 조절에 관한 시각적인 실습을 여기서 간단하게 해볼 수 있다.

검색을 해보니, 차라리 overshooting은 바로 알아차릴 수나 있어서 learning rate이 너무 작은 경우에 비해 더 괜찮은 문제라고 한다. 그리고 적절한 learning rate을 찾는 일반론적인 방법은 딱히 없다고 한다. 여러 번 해보는 게 최선이라고.

Learning Rate 실습

• Gradient Descent에서 learning rate을 너무 **크게** 잡았을 때 overshooting 하는 모습을 관찰해보겠다. Ir을 e의 5승(대략 148.4)으로 잡았다.

model = SoftmaxClassifierModel()
optimizer = optim.SGD(model.parameters(), lr = 1e5)
train(model, optimizer, x_train, y_train)

▼ 실행 결과

E: 0/20 Cost: 1.280268 E: 1/20 Cost: 976950.750000 E: 2/20 Cost: 1279135.000000 E: 3/20 Cost: 1198379.125000 E: 4/20 Cost: 1098825.625000

```
E: 5/20 Cost: 1968197.625000
E: 6/20 Cost: 284763.125000
E: 7/20 Cost: 1532260.000000
E: 8/20 Cost: 1651504.250000
E: 9/20 Cost: 521878.437500
E: 10/20 Cost: 1397263.125000
E: 11/20 Cost: 750986.250000
E: 12/20 Cost: 918691.750000
E: 13/20 Cost: 1487888.125000
E: 14/20 Cost: 1582260.125000
E: 15/20 Cost: 685818.000000
E: 16/20 Cost: 1140048.750000
E: 17/20 Cost: 940566.750000
E: 18/20 Cost: 931638.125000
E: 19/20 Cost: 1971322.625000
```

• 이번에는 Learning rate이 너무 작을 때 cost 값이 잘 줄어들지 않는 것을 관찰하겠다.

```
model = SoftmaxClassifierModel()
optimizer = optim.SGD(model.parameters(), lr = 1e-10)
train(model, optimizer, x_train, y_train)
```

▼ 실행 결과

E: 0/20 Cost: 3.187324 E: 1/20 Cost: 3.187324 E: 2/20 Cost: 3.187324 E: 3/20 Cost: 3.187324 E: 4/20 Cost: 3.187324 E: 5/20 Cost: 3.187324 E: 6/20 Cost: 3.187324 E: 7/20 Cost: 3.187324 E: 8/20 Cost: 3.187324 E: 9/20 Cost: 3.187324 E: 10/20 Cost: 3.187324 E: 11/20 Cost: 3.187324 E: 12/20 Cost: 3.187324 E: 13/20 Cost: 3.187324 E: 14/20 Cost: 3.187324 E: 15/20 Cost: 3.187324 E: 16/20 Cost: 3.187324 E: 17/20 Cost: 3.187324 E: 18/20 Cost: 3.187324 E: 19/20 Cost: 3.187324

아무튼 이렇게 학습이 발산을 하거나, 너무 더디게 진행될 경우 Ir을 조절해주는 노하우가 필요하다

Data Preprocessing (데이터 선처리)

데이터 선처리를 해야 할 경우가 있다.

Data preprocessing for gradient descent:
 y = w1x1 + w2x2 + b 와 같은 모델을 이용해 학습하는 경우를 살펴 보자.
 w1, w2를 변수로 갖는 그래프는 대략 한 곳을 최저점으로 삼는 움푹 패인 모양이 될 것임.이런 모양을 갖는 것이 이상적이다.
 그러나 실제로는 x1과 x2의 분산 값이 서로 비슷하지 않다면, 저게 균일한 원형이 되지 않을 것이다.

Data (X) preprocessing for gradient descent

Data (X) preprocessing for gradient descent

x1	x2	У
1	9000	Α
2	-5000	Α
4	-2000	В
6	8000	В
9	9000	С

이런 모양이 될 경우 한 축에 대해서 α 값을 잘 조정해 주었더라도 다른 축에 대해선 너무 큰 값이 되어 위 그림에서 w2축에 대해 overshooting(?)이 발생한 것처럼 cost가 수렴하지 않고 튕겨다니는 걸 볼 수 있다. 이를 해결하기 위해 normalize 를 한다. 다음에 소개하는 것은 그 방법 중 하나다.

Standardization

수식으로는,

$$x_j' = rac{x_j - \mu_j}{\sigma_j}$$

이렇게 표현되며, 실제 코드로 옮길 땐

```
x_{std}[:,0] = (x[:,0] - x[:,0].mean) / x[:,0].std()
```

이런 식이다.

어디서 많이 봤다 했더니 고등학교 수학에서 정규분포를 표준화하는 공식과 동일한 것 같다.

Data Preprocessing

데이터 전처리(선처리)

In [0]:

Mean Square Error 값을 쓰게 될 것임.

아래 코드는 x_train 벡터들을 Normalization 시키는 과정이다.

방법 - Standardization; 정규화

$$x'_j = \frac{x_j - \mu_j}{\sigma_j}$$

In [34]:

```
mu = x_train.mean(dim=0)
sigma = x_train.std(dim=0)
norm_x_train = (x_train - mu)/sigma
print(norm_x_train)

tensor([[-1.0674, -0.3758, -0.8398], [ 0.7418, 0.2778, 0.5863], [ 0.3799, 0.5229, 0.3486], [ 1.0132, 1.0948, 1.1409], [-1.0674, -1.5
```

정규 분포를 따르는 training set을 만들어 주었다.

그 이후엔 데이터에 맞게 regression 모델을 짜주겠다.

```
class MultivariableLinearRegressionModel(nn.Module):
   def __init__(self):
    super().__init__()
   self.linear = nn.Linear(3, 1)
```

```
def forward(self, x):
return self.linear(x)
```

In [0]:

```
model = MultivariableLinearRegressionModel()
optimizer = optim.SGD(model.parameters(), lr = 1e-1)
```

Training 함수 짜기

In [0]:

```
# Training

def train(model, optimizer, x_train, y_train):
    nb_epochs = 20
    for epoch in range(nb_epochs):

# H(x) 계산
    prediction = model(x_train)
# |x_train| = (m, 3)
# |prediction| = (m, 1)

# Cost는 MSE로 계산
    cost = F.mse_loss(prediction, y_train)
# cost를 토대로 H(x) 개선
    optimizer.zero_grad()
    cost.backward()
    optimizer.step()

print('E: {:4d} / {} Cost: {:.6f} '.format(epoch, nb_epochs, cost.item()))
```

In [38]:

```
print("*** Training with Preprocessed Data")
train(model, optimizer, norm_x_train, y_train)
print("*** Without data Preprocessing... ")
model = MultivariableLinearRegressionModel()
optimizer = optim.SGD(model.parameters(), lr = 1e-1)
train(model, optimizer, x_train, y_train)
```

▼ 실행 결과

```
*** Training with Preprocessed Data
E: 0 / 20 Cost: 29615.740234
E: 1 / 20 Cost: 18803.878906
E: 2 / 20 Cost: 11991.029297
E: 3 / 20 Cost: 7661.868164
E: 4 / 20 Cost: 4900.236816
E: 5 / 20 Cost: 3135.413574
E: 6 / 20 Cost: 2006.681396
E: 7 / 20 Cost: 1284.504639
E: 8 / 20 Cost: 822.366089
E: 9 / 20 Cost: 526.605774
E: 10 / 20 Cost: 337.314728
E: 11 / 20 Cost: 216.160767
E: 12 / 20 Cost: 138.613449
E: 13 / 20 Cost: 88.974701
E: 14 / 20 Cost: 57.197395
E: 15 / 20 Cost: 36.851803
```

```
E: 16 / 20 Cost: 23.822887
E: 17 / 20 Cost: 15.476827
E: 18 / 20 Cost: 10.128090
E: 19 / 20 Cost: 6.697937
*** Without data Preprocessing...
E: 0 / 20 Cost: 57621.976562
E: 1 / 20 Cost: 1115690762240.000000
E: 2 / 20 Cost: 21603378185380036608.000000
E: 3 / 20 Cost: 418311281336289389130547200.000000
E: 4 / 20 Cost: 8099858389234773491298680935809024.000000
E: 5 / 20 Cost: inf
E: 6 / 20 Cost: inf
E: 7 / 20 Cost: inf
E: 8 / 20 Cost: inf
E: 9 / 20 Cost: inf
E: 10 / 20 Cost: inf
E: 11 / 20 Cost: inf
E: 12 / 20 Cost: nan
E: 13 / 20 Cost: nan
E: 14 / 20 Cost: nan
E: 15 / 20 Cost: nan
E: 16 / 20 Cost: nan
E: 17 / 20 Cost: nan
E: 18 / 20 Cost: nan
E: 19 / 20 Cost: nan
```

normalization이 필요한 데이터셋은 어떤 걸까? $|y_{train}|$ 이 (m, 2)와 같이 2차원 prediction 구조를 가질 때, 두 colomn 사이의 수의 스케일이 서로 다르다면 training 모델은 더 큰 값에만 집중을 하게 된다.

전처리를 수행하게 되면 똑같은 범위의 값으로 바뀔 것이고, 모델은 두가지 데이터에 대해 공정하게 학습을 할 수 있을 것이다.

Overfitting 방지

머신러닝의 가장 큰 골칫거리라고 한다.

'학습 데이터' 그 자체에 너무 딱 맞는 모델로 발전했을 경우를 일컫는다.

학습 데이터로 실험을 해보면 cost도 적고 잘 맞는 것처럼 보이는데, 실전에 투입해서 다른 데이터를 넣어보면 결과가 썩 만족스럽지 않은 현상이 나타난다.

위 그림에서 두 Error(Loss) 간의 거리가 멀어지는 지점을 overfitting 되는 지점으로 생각한다. 성공적인 모델을 만들기 위해선 위 그림에서 High Bias와 High Variance 사이의 구간에 해당하는 모델을 선택해야 한다.

- 해결방법
 - 트레이닝 데이터를 굉~장히 많이 쓴다 (적은 데이터 셋 환경일 수록 소수의 튀는 값들이 더 큰 영향을 주기 때문. 표본이 많을 수록 모집단과 비슷하다.)
 - feature(데이터를 설명하는 특징)의 개수를 될 수 있는 한 줄여준다.
 - Regularization(일반화) 여러 방법이 있다.
 - Early stopping : 모델이 너무 복잡해지기 전에, Validation Loss가 더이상 낮아지지 않는 지점에서 훈련을 중단하는 방법
 - L2 Regularization : weight에 너무 큰 수를 넣지 않는 방법. 너무 구불구불하고 자세한 모델을 만들지 않도록...

Cost 함수를 이렇게 만드는 식이다.

$$\mathcal{L} = rac{1}{N} \sum_{i} \mathcal{D} \left(S(Wx_i + b)
ight) + \lambda \sum W^2$$

즉 각각의 element에 대한 W가 클 수록 Cost가 증가하도록 하는 것.

이 때 λ 를 regularization strength라고 부르고, 모델을 단순하게 만드는 걸 얼마나 중요하게 생각하느냐를 반영할 수 있는 상수다.

• 그렇다면 이 람다 값은 어떻게 정할까?

위 링크의 Stack Overflow 답변에 의하면, 이 역시 Training data의 일부를 λ =0에서부터 값을 점점 키우면서 돌려 보면서 모델이 예측값을 어떻게 내놓는지를 관찰하며 결정해야 한다. 그리고 결정한 값에서 살짝 작게 잡아야 전체 데이터에 맞을 것...이라고 말하는 것 같다.

더 나아가면, 람다 값을 직접 관찰하며 임의로 정해 줘야 한다는 모호함을 피하고 싶다면, Tikhonov Regularization 이라는 다른 일반화 방법에선 상수값에 대한 솔루션을 확실하게 정해줄 수 있으니 그 쪽을 권한다는 답변도 있다.

- 딥러닝에선 Neural Network 크기를 줄이는 방법이 유효하다.
- 가장 많이 사용되는 Dropout, Batch normalization 이라는 방법이 있는데, 이 역시 딥러닝에서 사용되는 기술이다. 추후에 다루겠다고 함.

DNN에서의 오버피팅 방지

- Deap Neural Network의 과정
 - 1. 입력 데이터가 1D vector고 10개의 feature가 있다고 하면, 5개 유닛을 가진 softmax layer가 나올 것이다.
 - 2. 오버피팅이 될 때까지 size를 늘려 나간다. (input, output은 고정한 채로 중간의 깊이와 너비만 확장) : Training Set의 Loss는 낮아지면서, Validation Set의 Loss는 높아지기 시작할 때가 overfitting 될 때이니 이걸 확인하고, regularization 방법(drop-out, batch-normalization)을 추가해준다.
 - 3. 2의 과정을 반복한다.

머신러닝 모델을 평가하는 방법

학습을 충분히 시킨 모델이 얼마나 적합한지 평가하려면 어떻게 해야 할까?

학습 데이터 세트를 그대로 평가에 갖다 쓰는 건 유효하지 않다.

따라서 모델이 한 번도 접해보지 않은, Test set이라는 새로운 데이터 뭉치가 필요하다.

실전에선 training set과 testing set을 어느 정도 비율로 섞어서 모델을 검증하는 편이라고 한다.

- 정확도(Accuracy) 평가
 - 단순하게도, 예측으로 정답을 얼마나 맞췄는지를 비율로 나타낸다.
 - 이미지 인식 분야의 경우 95~99% 정도의 정확도를 가짐.

Training / Testing Data Set

- Training Set (비율 0.8)
 - Training set : 모델을 학습시킴
 - Validation set (비율 0~0.1): Development set이라고도 부른다.
 기능 (1) α, λ과 같은 조절하는 역할의 상수들을 모의 시험을 해보며 어떤 값이 제일 좋을지 튜닝함.
 기능 (2) 우리는 궁극적으로는 test set을 잘 맞추는 모델을 설계하길 목표로 하기 때문에, test set과 얼마나 맞는지 따지며 Training하기를 '반복'한다면 Test Set에 대해 과적합이 될 가능성도 있다. 그래서 Training Set에 대해 development set으로 새 데이터에 대한 적용 가능성을 테스트하고, 그 다음에 test set을 접하게 만들면 훨씬 정확한 모델을 만들 수 있다. 하지만 이쪽에 데 이터 분량을 얼마나 할당해 줄지는 상황에 따라 다르다!
- Test Set (비율 0.1~0.2)

학습 단계에선 절대 개입하지 않는, 정확도 평가용 데이터 셋.

Online Learning

방대한 분량의 학습 데이터 셋을 여러 묶음으로 쪼개서 (A, B, C, D, ... 라고 부르겠다.)

A set에 대해 학습을 시키고, 그 모델을 이어받아 B set에 대해 학습을 시키고, 이전 결과를 또 이어받은 상태로 C set도 학습시키고... 하는 방식을 Online Learning이라고 부른다.

이전 데이터를 그대로 답습하는 게 아니라 추가로 학습을 시키는 점에서 장점이 있다.

실습

여기다가도 따로 정리하고 싶었는데 시간적/에너지적 여유가 없어서 colab으로 정리한 걸 그대로 가져오도록 하겠음. 과제 링크 건 것과 똑같음.

Lab 07-1 Overfitting & Overshooting

- 내용:
 - 1. Training data에 Overfitting되는 걸 확인하는 방법 알아보기
 - 2. Learning rate을 너무 낮게 / 높게 설정했을 때의 cost값 변화 관찰하기

3. 데이터 전처리 방법을 배우고, 전처리를 하지 않았을 때의 결과와 비교하기

Lab 07-2 How to use MNIST dataset

- 내용:
 - 1. MNIST dataset을 import하고 PyTorch에 맞게 가공하는 방법 알아보기
 - 2. 굉장히 많은 수의 데이터를 불러와서 학습시키고 테스트하는 프로그램의 스크립트 구조 배우기