Графы Ноймайера и их конструкции

Елена Константинова

Институт математики им. С.Л. Соболева, НГУ, Математический центр в Академгородке

Вторая конференция математических центров России Секция «Комбинаторика, дискретная геометрия, случайные структуры»

> МГУ, Россия 7-11 ноября 2022

Main source of the talk

The talk is mainly based on the paper:

A general construction of strictly Neumaier graphs and a related switching, https://arxiv.org/abs/2109.13884

by

- ♦ Rhys J. Evans
- ♦ Sergey Goryainov
- Elena V. Konstantinova
- ♦ Alexander D. Mednykh

In: Arnold Neumaier, Regular cliques in graphs and special 1 1/2 designs, In: Finite Geometries and Designs: Proceedings of the Second Isle of Thorns Conference 1980, Eds. P.J. Cameron, J.W.P. Hirschfeld, D.R. Hughes, 1981, 244–259. https://doi.org/10.1017/CB09781107325579.027

Arnold Neumaier studied:

- regular cliques in edge-regular graphs, and
- a certain class of designs whose point graphs are strongly regular and contain regular cliques.

Question

Does there exist an edge-regular, non-strongly regular graph which contains regular clique?

Almost 40 years later, Gary Greaves and Jack Koolen finally proved that such graphs exist, and give two general constructions of graphs:

Gary R. W. Greaves, and Jack H. Koolen, Edge-regular graphs with regular cliques, European Journal of Combinatorics, 342(10) (2019) 2818-2820. https://doi.org/10.1016/j.ejc.2018.04.004

Gary R. W. Greaves, and Jack H. Koolen, Another construction of edge-regular graphs with regular cliques, Discrete Mathematics, 342(10) (2018) 2818-2820. https://doi.org/10.1016/j.disc.2018.09.032.

At the end of 2018, it was suggested by Sergey Goryainov to use the following definitions for the graphs under considerations.

Neumaier graph

A non-complete edge-regular graph containing a regular clique.

Strictly Neumaier graph

A non-strongly regular Neumaier graph.

These definitions first appeared in the paper:

Rhys J. Evans, Sergey Goryainov, and Dmitry Panasenko, The smallest strictly Neumaier graph and its generalisation, Electronic Journal of Combinatorics, 26(2) (2019) P2.29. https://doi.org/10.37236/8189

After the first constructions of strictly Neumaier graphs were published, there has been an increased interest the study of these graphs.

All currently known constructions (as of 21/09/2022) can be found in the webpage by Rhys J. Evans:

https://rhysje00.github.io/projects/neumaier_graphs

Strongly regular graph vs edge-regular graph

Definition

G is a strongly regular graph if:

- ullet every two adjacent vertices have λ common neighbours (edge-regular graph)
- \bullet every two non-adjacent vertices have μ common neighbours (co-edge-regular).

SRG(9,4,1,2): the lattice graph $L_{3,3}$ / 3×3 rook's graph

Regularity of subsets

Definition

A vertex subset $X \subset V$ of a graph G = (V, E) is e-regular if for every $v \notin X$: $|N(v) \cap X| = e$, where e is called the nexus.

 3×3 rook's graph is the graph of triangular duoprism 1-regular subset \cong 1-regular clique

Neumaier's question

Theorem (Neumaier, 1981)

A vertex- and edge-transitive graph with a regular clique is strongly regular.

Problem (Neumaier, 1981)

Is a regular, edge-regular graph with a regular clique necessarily SRG?

(strictly) Neumaier graph (2018)

A Neumaier graph is a regular, edge-regular graph with a regular clique. It is a strictly Neumaier graph if it is not strongly regular. A Neumaier graph has parameters $(n,k,\lambda;e,s)$ if it is an edge-regular graph with parameters (n,k,λ) , admitting an e-regular clique of size s.

Open questions (2018)

Do strictly Neumaier graphs exist? For which parameter sets do strictly Neumaier graphs exist?

Known results

Greaves-Koolen (2018) Edge-regular graphs with regular cliques

There are (infinitely many) strictly Neumaier graphs.

Parametrised Cayley graphs.

Evans-Goryainov-Panasenko (2019)

- 1. The smallest strictly Neumaier graph.
- 2. There is an infinite class of strictly Neumaier graphs.

Based on affine polar graphs.

Abaid-De Boeck-Koolen-(2020-2021+)

- 1. An infinite class of Neumaier graphs and non-existence results.
- 2. Neumaier graphs with few eigenvalues.

Evans-Goryainov machine

Let $\Gamma^{(1)},\ldots,\Gamma^{(t)}$ be edge-regular graphs with parameters (n,k,λ) that admit a partition into perfect 1-codes of size a, where a is a proper divisor of $\lambda+2$, and $t=\frac{\lambda+2}{a}$. For any $j\in\{1,\ldots,t\}$, let $H_1^{(j)},\ldots,H_{\frac{n}{a}}^{(j)}$ denote the perfect 1-codes that partition the vertex set of $\Gamma^{(j)}$. Let $\Pi=(\pi_2,\ldots,\pi_t)$ be a (t-1)-tuple of permutations from $Sym(\{1,\ldots,\frac{n}{a}\})$. Denote by $F_{\Pi}(\Gamma^{(1)},\ldots,\Gamma^{(t)})$ the graph obtained as follows.

- **1** Take the disjoint union of the graphs $\Gamma^{(1)}, \ldots, \Gamma^{(t)}$.
- ② For any $i \in \{1, \ldots, \frac{n}{a}\}$, connect any two vertices from $H_i^{(1)} \cup H_{\pi_2(i)}^{(2)} \cup \ldots \cup H_{\pi_t(i)}^{(t)}$ to form a 1-regular clique of size at.

Main result (EGKM-2022+)

The graph $F_{\Pi}(\Gamma^{(1)},\ldots,\Gamma^{(t)})$ is a Neumaier graph with parameters $(nt,k+at-1,\lambda;1,at)$ whose vertex set admits a partition into 1-regular cliques of size at. Moreover, if $t\geqslant 2$, then $F_{\Pi}(\Gamma^{(1)},\ldots,\Gamma^{(t)})$ is a strictly Neumaier graph.

Examples

Construction given by a pair of icosahedrons:

The icosahedral graph is an edge-regular graph with parameters (12,5,2) that admits a partition into 6 perfect 1-codes of size a=2. Thus, we can use $t=\frac{\lambda+2}{a}=2$ copies of the icosahedral graph in the general construction to produce four pairwise non-isomorphic strictly Neumaier graphs (depending on the choice of the permutation π_2) with parameters (24,8,2;1,4).

Step 1: find a perfect 1-code

Hint: The ideal I generated by an element of norm 7

Step 2: find a partition of the triangular grid into 7 perfect 1-codes

Hint: I is an additive subgroup of index 7 in $\mathbb{Z}[\omega]$

Step 3: fix a block of 4 balls of radius 1

Step 4-1: consider a tessellation given an additive subgroup

Hint: additive shifts by $T_1 := \{2(-2 + \omega)x + 14y \mid x, y \in \mathbb{Z}\}$

Step 4-2: consider a tessellation given an additive subgroup

Hint: additive shifts by $T_2 := \{(5 + \omega)x + 28y \mid x, y \in \mathbb{Z}\}$

Step 5-1: consider a quotient graph Δ_1 of the triangular grid by \mathcal{T}_1

Hint: $\Delta_1 := Cay(G_1, \{\pm(1+T_1), \pm(\omega+T_1), \pm(\omega^2+T_1)\})$, where $G_1 := \mathbb{Z}[\omega]/T_1$

Step 5 - 2: consider a quotient graph Δ_2 of the triangular grid by T_2

Hint: $\Delta_2 := Cay(G_2, \{\pm(1+T_2), \pm(\omega+T_2), \pm(\omega^2+T_2)\})$, where $G_2 := \mathbb{Z}[\omega]/T_2$

Finally,

- ullet each of the graphs Δ_1 and Δ_2 is edge-regular with parameters (28, 6, 2)
- and admits a partition into perfect 1-codes of size a = 4;
- these partitions are given by the original partition of the triangular grid into perfect 1-codes;
- \bullet apply Evans-Goryainov machine and get two strictly Neumaier graphs with parameters (28, 9, 2; 1, 4).

- *n*-dimensional case of the triangular grid?
- other grids? (operation on grids?)
- how one can use root systems?
- generalisation to hyperbolic spaces?

Main problems:

- find a perfect code
- ♦ find a subgroup

Thanks for your attention!