Blockchain Smart Contracts vs. SWIFT: Settlement & Transfer Comparison

Question

How does the blockchain smart contract as a means to settle and transfer equal or different from the SWIFT transfer and settlement?

Fundamental Differences

Aspect	Blockchain Smart Contracts	SWIFT System
Core Technology	Distributed ledger technology	Centralized messaging network
Settlement Mechanism	Direct asset transfer on-chain	Messaging that triggers separate settlement
Trust Model	Trustless (code- based execution)	Trusted intermediaries required
Settlement Finality	Minutes to hours (blockchain- dependent)	1-3 business days (correspondent banking)
Available 24/7	Yes	No (follows banking hours)

Transaction	Public (on public	Private between
Visibility	blockchains)	participants

Key Differentiating Features

1. Settlement Process

Blockchain Smart Contracts:

- **Direct Settlement**: Assets move directly between parties on the blockchain
- Atomic Execution: All-or-nothing execution guaranteed by code
- **Self-Execution**: Contract automatically executes when conditions are met
- No Intermediaries: Direct peer-to-peer settlement
- Programmable Logic: Complex settlement conditions can be encoded

SWIFT System:

- Messaging Only: SWIFT only communicates instructions, doesn't move money
- Multi-Step Process: Separate clearing and settlement phases
- Correspondent Banking: Requires a network of intermediary banks
- Manual Intervention: Often requires human approval steps
- **Standardized Messages**: Uses predefined message formats (MT103, MT202, etc.)

2. Asset Type Handling

Blockchain Smart Contracts:

- Native Digital Assets: Direct transfer of cryptocurrencies
- Tokenized Assets: Can handle tokenized versions of any asset
- Programmable Money: Can include complex transfer logic

 Multi-Asset Capability: Can settle multiple assets in one transaction

SWIFT System:

- Traditional Currencies Only: Primarily fiat currencies
- Bank Ledger Entries: Represents bookkeeping entries, not direct asset transfers
- **Separate Asset Classes**: Different message types for different transactions
- Separate Processes: Securities settlement requires different systems

3. Security Model

Blockchain Smart Contracts:

- Cryptographic Security: Based on public-key cryptography
- Immutable Records: Transaction history cannot be altered
- Code-Based Execution: Relies on correctness of smart contract code
- Consensus Mechanism: Validated by network consensus
- Security Risks: Smart contract vulnerabilities, private key management

SWIFT System:

- Network Security: Closed proprietary network
- Institutional Security: Based on trusted relationships between banks
- Layered Authentication: Multiple security checks and balances
- Human Oversight: Manual verification at multiple points
- Security Risks: Fraudulent message insertion, insider threats

4. Compliance and Regulation

Blockchain Smart Contracts:

- Regulatory Uncertainty: Evolving regulatory frameworks
- Compliance Challenges: KYC/AML integration more complex
- Jurisdictional Questions: Unclear which laws apply
- **Programmable Compliance**: Can encode some compliance rules in contracts
- Sanction Screening: More challenging to implement effectively

SWIFT System:

- Established Regulatory Framework: Well-defined compliance requirements
- Integrated Compliance Tools: Built-in SWIFT compliance utilities
- Clear Jurisdiction: Based on established banking regulations
- Standardized Procedures: Well-defined sanction screening processes
- Regulatory Reporting: Built-in capabilities for required reporting

Implementation in NVC Banking Platform

1. Blockchain Settlement Implementation (Current)

The NVC platform currently uses:

- Settlement Smart Contract: Handles the transfer of assets between parties
- MultiSig Wallet: Requires multiple approvals for high-value transactions
- NVC Token (NVCT): Digital asset used for settlement
- Public Network: Ethereum blockchain (Sepolia testnet)

Key code in

```
blockchain.py
```

.

```
def settle payment via contract(from address, to address,
amount in eth, private key, transaction id):
    """Settle a payment using the settlement smart
contract"""
    settlement contract = get settlement contract()
    # Convert ETH amount to Wei (smallest Ethereum unit)
    amount in wei = Web3.toWei(amount in eth, 'ether')
    # Get transaction count to determine nonce
    web3 = qet web3()
    nonce = web3.eth.getTransactionCount(from address)
    # Create contract transaction
    tx = settlement contract.functions.createSettlement(
        to address,
        str(transaction id)
    ).buildTransaction({
        'chainId': int(web3.net.version),
        'gas': 2000000,
        'gasPrice': web3.eth.gasPrice,
        'nonce': nonce,
        'value': amount in wei
    })
    # Sign transaction with private key
    signed tx = web3.eth.account.signTransaction(tx,
private key)
    # Send transaction and get hash
    tx hash =
web3.eth.sendRawTransaction(signed tx.rawTransaction)
    return web3.toHex(tx hash)
```

2. SWIFT Implementation (In Development)

The platform would implement SWIFT messaging through:

• Message Generation: Create standardized MT messages

- Message Validation: Ensure compliance with SWIFT standards
- **Secure Transmission**: Send messages through SWIFT network
- **Status Tracking**: Monitor message delivery and responses
- Reconciliation: Match SWIFT messages with internal transactions

Example implementation in

```
swift_integration.py
```

:

```
def create mt103 message(transaction, sender info,
receiver info):
    """Create a MT103 (Single Customer Credit Transfer)
message"""
    # Format according to SWIFT MT103 standards
    message = {
        "Block1": {
            "ApplicationID": "F",
            "ServiceID": "01",
            "ReceivingLTAddress": receiver info["bic"],
            "SessionNumber": generate session number(),
            "SequenceNumber": generate sequence number()
        },
        "Block2": {
            "MessageType": "103",
            "SenderInputTime": current time format(),
            "MIR": generate mir(),
            "MessagePriority": "N"
        },
        "Block3": {
            "Tag108": "MT103",
        },
        "Block4": {
            "Tag20": transaction.transaction id, # Reference
            "Tag23B": "CRED", # Credit instruction
            "Tag32A": format date amount(transaction.date,
transaction.amount, transaction.currency),
            "Tag50K": format ordering customer(sender info),
            "Tag59": format beneficiary(receiver_info),
```

Strategic Integration: Hybrid Approach for NVC

A hybrid approach leverages strengths of both systems:

1. For Speed and Direct Settlement:

- Use blockchain for direct, immediate settlements
- Ideal for platform-to-platform transfers
- Perfect for NVC token transfers

2. For Traditional Banking Integration:

- Use SWIFT for connecting to traditional banking system
- $\,{}^{\circ}$ Essential for large corporate and institutional clients
- Required for cross-border fiat transactions

3. Smart Routing System:

- Analyze each transaction for optimal settlement path
- Consider speed requirements, cost, and counterparty capabilities
- Automatically choose blockchain or SWIFT settlement

4. Unified Customer Experience:

- Hide technical settlement details from users
- Provide consistent interface regardless of settlement method

Offer transparency options for those who want details

Practical Considerations for Implementation

1. Settlement Finality:

- Blockchain: Wait for sufficient confirmations (higher security)
- SWIFT: Clear difference between message delivery and actual settlement

2. Reconciliation Processes:

- Blockchain: On-chain verification sufficient
- SWIFT: Need end-of-day reconciliation with correspondent banks

3. Liquidity Management:

- Blockchain: Pre-fund wallets with sufficient crypto assets
- SWIFT: Maintain nostro/vostro accounts with correspondent banks

4. Cost Structures:

- Blockchain: Gas fees (variable) + platform fees (if any)
- SWIFT: Message fees + correspondent banking fees (typically higher)

NVC Banking Platform: Blockchain vs SWIFT Comparison

Date: April 22, 2025