Diseño de Experimentos - 3007340 DOE - Experimentos de Comparaciones Simples desde Modelos ANOVA

Nelfi González Alvarez

Profesora Asociada Escuela de Estadística e-mail: ngonzale@unal.edu.co

Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín

UNIVERSIDAD NACIONAL DE COLOMBIA

Escuela de Estadística Semestre 02 de 2021

Contenido I

- Comparaciones Simples
- 2 Comparaciones con m.a independientes con varianzas poblacionales iguales
- Comparaciones con muestras pareadas

Contenido

- Comparaciones Simples
- 2 Comparaciones con m.a independientes con varianzas poblacionales iguales
- Comparaciones con muestras pareadas

Comparaciones Simples

Según Montgomery (2020), los experimentos donde solo se comparan dos condiciones o tratamientos son llamados experimentos de comparaciones simples. Los dos tratamientos comparados son definidos por dos niveles de un único factor de efectos fijos. Las estructuras de diseño usadas son:

- Completamente aleatorizada (o con muestras aleatorias independientes):
 - Las unidades experimentales (U.E) son homogéneas entre sí
 - Las U.E se asignan completamente al azar a los tratamientos.
 - Los tratamientos también se observan en orden aleatorio.
 - Se obtienen dos m.a independientes de la respuesta, de tamaños n_1 , n_2 , respectivamente, con Y_{ij} , $i = 1, 2, j = 1, ..., n_i$, respectivamente.
- De comparaciones pareadas:
 - Las U.E no son homogéneas.
 - Para mejorar la precisión en las comparaciones de tratamientos, y suponiendo que las U.E son suficientemente grandes, cada una se particiona en dos partes que son aleatoriamente asignadas entre los dos tratamientos.
 - El orden en que cada tratamiento es observado dentro de cada U.E también es aleatorizado.
 - Se cuenta con n observaciones de la respuesta por cada tratamiento pero pareadas según U.E, de modo que las muestras Y_{ij} , con i = 1, 2, j = 1, ..., n, no son independientes por el pareamiento dentro de cada U.E.

Propiedades estadísticas Test de hipótesis de interés Funciones R asociadas Ejemplo 1

Contenido

- Comparaciones Simples
- Comparaciones con m.a independientes con varianzas poblacionales iguales
 - Propiedades estadísticas
 - Test de hipótesis de interés
 - Funciones R asociadas
 - Ejemplo 1
- Comparaciones con muestras pareadas

Comparaciones con m.a independientes con varianzas poblacionales iguales

- Y_{ij} : j-ésima respuesta en i-ésimo tratamiento, $i = 1, 2, j = 1, ..., n_i$.
- I_{1,ij}: Indicadora del tratamiento 1 evaluada en j-ésima respuesta en i-ésimo tratamiento. Vale 1 para i = 1 y 0 para i = 2.
- I_{2,ij}: Indicadora del tratamiento 2 evaluada en j-ésima respuesta en i-ésimo tratamiento. Vale 1 para i = 2 y 0 para i = 1.
- ε_{ij} : Error aleatorio en *j*-ésima respuesta en *i*-ésimo tratamiento.
- μ_i : Respuesta media en el tratamiento i.
- μ: Respuesta media global.
- α_i : Efecto fijo del *i*-ésimo tratamiento, es tal que $\mu_i = \mu + \alpha_i$.

Modelos ANOVA → test Anova

Modelos de RLM equivalentes test MRL

$$Y_{ij} = \mu_i + \varepsilon_{ij}, \ \varepsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$$

(1a)
$$Y_{ij} = \mu_1 I_{1,ij} + \mu_2 I_{2,ij} + \varepsilon_{ij}, \ \varepsilon_{ij} \stackrel{iid}{\sim} N(0,\sigma^2)$$

$$Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}, \ \varepsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$$
 (1b)

$$Y_{ij} = \frac{\mu + \alpha_1 I_{1,ij} + \alpha_2 I_{2,ij} + \varepsilon_{ij}}{2} \approx N(0, \sigma^2)$$

sujeto a
$$\sum_{i=1}^{2} n_i \alpha_i = 0$$

sujeto a
$$\sum_{i=1}^{2} n_i \alpha_i = 0$$

(2a)

(2b)

Nota 2.1

- El modelo de regresión en (2a), es un modelo de regresión lineal múltiple sin intercepto, luego para ajustarlo usamos:
 - $> modelo1=lm(Y\sim-1+I1+I2)$

donde los objetos I1 e I2 son las variables indicadoras de los tratamientos 1 y 2, respectivamente.

Para ajustar el modelo en (2b), tenemos que de la restricción lineal $\sum_{i=1}^{2} n_i \alpha_i = 0$, podemos escribir $\alpha_2 = -\frac{n_1}{n_2} \alpha_1$, luego podemos reescribir el modelo así:

$$Y_{ij} = \mu + \alpha_1 X_{ij} + \varepsilon_{ij}, \ \varepsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$$
 (3a)

con
$$X_{ij} = I_{1,ij} - \frac{n_1}{n_2} I_{2,ij}$$
. (3b)

Este último modelo es el que se ajusta por mínimos cuadrados: Vira test en (12b)

- > X=I1-(n1/n2)*I2
- $> modelo2=lm(Y\sim X)$

donde los objetos I1 e I2 son las variables indicadoras de los tratamientos 1 y 2, n1 y n2, los tamaños de muestra, respectivamente.

Propiedades estadísticas Test de hipótesis de interés Funciones R asociadas

Propiedades estadísticas

Bajo los modelos anteriores,

$$Y_{1j} \stackrel{iid}{\sim} N(\mu_1, \sigma^2) \tag{4a}$$

$$Y_{2j} \stackrel{iid}{\sim} N(\mu_2, \sigma^2) \tag{4b}$$

Todas las Yij son mutuamente independientes, de donde también tenemos que

$$\bar{Y}_{1\bullet} = \frac{1}{n_1} \sum_{j=1}^{n_1} Y_{1j} \sim N(\mu_1, \sigma^2/n_1)$$
 (5a)

$$\bar{Y}_{2\bullet} = \frac{1}{n_2} \sum_{j=1}^{n_2} Y_{2j} \sim N(\mu_2, \sigma^2/n_2)$$
 (5b)

siendo $\bar{Y}_{1\bullet}$ y $\bar{Y}_{2\bullet}$ independientes, de modo que

$$\left(\bar{Y}_{1\bullet} - \bar{Y}_{2\bullet}\right) \sim N\left(\mu_1 - \mu_2, \sigma^2 \left[\frac{1}{n_1} + \frac{1}{n_2}\right]\right) \tag{6}$$

Un estimador insesgado de σ^2 es

$$S_p^2 = \frac{\sum_{i=1}^2 (n_i - 1) S_i^2}{\sum_{i=1}^2 (n_i - 1)}, \quad \text{con} \quad S_i^2 = \frac{1}{n-1} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{i\bullet})^2$$
 (7)

Test de hipótesis de interés

$$H_0: \mu_1 = \mu_2 \quad \text{vs.} \quad H_1: \mu_1 \neq \mu_2$$
 (8)

Bajo poblaciones normales de varianzas iguales, conocemos que el estadistico de prueba, su distribución bajo H_0 y criterio de decisión con valor P, son:

Nota 2.2

$$T_0 = \frac{\bar{Y}_{1\bullet} - \bar{Y}_{2\bullet}}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{\sqrt{\frac{n_1 n_2}{n_1 + n_2}} \left(\bar{Y}_{1\bullet} - \bar{Y}_{2\bullet}\right)}{S_p} \sim t_{n_1 + n_2 - 2}$$
(9a)

rechazar
$$H_0$$
 si $P(|t_{n_1+n_2-2}| > |T_0|)$ es pequeño. (9b)

A continuación veamos esta prueba desde el punto de vista de los modelos ANOVA y de regresión.

Propiedades estadísticas **Test de hipótesis de interés** Funciones R asociadas Ejemplo 1

Modelo ANOVA

Para los modelos en (1a)-(1b), respectivamente,

$$H_0: \mu_1 = \mu_2 \quad \text{vs.} \quad H_1: \mu_1 \neq \mu_2$$
 (10a)

$$H_0: \alpha_1 = \alpha_2 = 0$$
 vs.

$$H_1: \alpha_i \neq 0$$
 para al menos un $i = 1, 2$ (10b)

En ambos casos, bajo H_0 y $\varepsilon_{ij} \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$, el estadístico de prueba, su distribución y su valor P:

$$F_0 = \frac{SSA}{MSF} \sim f_{1,n_1+n_2-2}, \text{ con}$$
 (11a)

$$SSA = \frac{n_1 n_2}{n_1 + n_2} (\bar{Y}_{1\bullet} - \bar{Y}_{2\bullet})^2, \quad MSE = S_p^2 \quad (11b)$$

Valor P:
$$P(f_{1,n_1+n_2-2} > F_0)$$
. (11c)

Modelo de regresión lineal

Para modelo en ((2a)), ((3a)), respectivamente,

 $H_0: \mu_1 = \mu_2$ vs. $H_1: \mu_1 \neq \mu_2$

(12a)

$$H_0: \alpha_1 = 0$$
 vs. $H_1: \alpha_1 \neq 0$ (12b)

En ambos casos, bajo H_0 y $\varepsilon_{ij} \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$, el estadístico de prueba, su distribución y su valor P:

$$F_0 = \frac{[SSE(MR) - SSE(MF)]}{MSE(MF)} \sim f_{1,n_1+n_2-2} \quad (13a)$$

donde MR es el modelo reducido bajo H_0 :

$$Y_{ij} = \mu + \varepsilon_{ij} \ \varepsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$$
 (13b)

Valor P:
$$P(f_{1,n_1+n_2-2} > F_0)$$
. (13c)

Nota 2.2

MF: Modelo FULL o completo, es el modelo en (2a) y (3a), respectivamente. Puede demostrarse que [SSE(MR) - SSE(MF)] es igual al SSA del modelo ANOVA y SSE(MF) es igual al SSE del modelo ANOVA, por tanto, los estadísticos F_0 en las ecuaciones (11a) y (13a), son iguales y estos son a su vez iguales al cuadrado del estadístico T_0 en (9a). Luego, los correspondientes valores P en ecuaciones (9b), (11c), (13c), t ambién son iguales.

Funciones R asociadas

Para modelos ANOVA es necesario definir una variable tipo **factor** cuyos niveles son los dos tratamientos a comparar en términos de medias:

- aov (Y~Factor): Para el ajuste del modelo ANOVA.
- anova(...), summary(...): Sobre modelos ANOVA obtienen la tabla ANOVA.
- fit.contrast(...): Función de la librería gmodels, para estimar contrastes de medias (entre estos, las diferencias de medias) y sus I.C.
- 1smeans(...): Función de la librería 1smeans, para estimar medias de tratamientos y sus I.C.
- emmeans (...): Función de la librería emmeans (va a sustituir a 1smeans y sus funciones), hace lo mismo que 1smeans.

En modelos de regresión. Además de la función 1m(...),

- summary(...): Sobre objetos 1m, obtiene la tabla de parámetros estimados.
- confint(...): Sobre objetos 1m, obtiene I.C para los parámetros estimados.
- linearHypothesis (...): Función de la librería car, usada para realizar pruebas de hipótesis sobre subconjuntos de parámetros de modelos de regresión.
- Anova (...): Función de la librería car, por defecto da las sumas de cuadrados tipo II y el estadístico F y valor P, para la prueba de significancia individual de coeficientes de regresión asociados a los predictores del modelo.

Nota 2.3

En R se cuenta también con las siguientes funciones para la comparación de varianzas y de medias de dos poblaciones normales:

- t.test(...): Función para prueba t sobre la comparación de medias de dos poblaciones normales, con muestras independientes y con muestras pareadas. Permite considerar en la hipótesis alternativa tanto la diferencia como las correspondientes a las desigualdades de cola derecha y cola izquierda. Además, con muestras independientes, permite considerar tanto el caso de varianzas iguales como el de varianzas diferentes (aproximación Satterwaite).
- var.test(...): Función para pruebas F sobre la razón de varianzas de dos poblaciones normales. Con la opción alternative="two.sided" permite probar la igualdad de varianzas.

Ejemplo 1

Se prueban diez piezas en cada nivel de temperatura y se mide el encogimiento sufrido en unidades de porcentaje multiplicado por 10. Los resultados son

Temperatura baja	Temperatura alta		
(nivel 2)	(nivel 1)		
17.2	21.4		
17.5	20.9		
18.6	19.8		
15.9	20.4		
16.4	20.6		
17.3	21.0		
16.8	20.8		
18.4	19.9		
16.7	21.1		
17.6	20.3		
$\bar{Y}_{2\bullet} = 17.24$	$\bar{Y}_{1\bullet} = 20.62$		
$S_2^2 = 0.7093333$	$S_1^2 = 0.2706667$		
$\bar{Y}_{\bullet \bullet} = 18.93$ (promedio global)			

- Analice los boxplots comparativos e interprete
- Compare las varianzas en cada temperatura
- **⑤** ¿La *T*⁰ tiene algún efecto en el encogimiento?
- Dé un intervalo de confianza para la diferencia de medias.

Propiedades estadísticas Test de hipótesis de interés Funciones R asociadas Ejemplo 1

Lectura de los datos, medidas y gráficos descriptivos

```
rm(list=ls(all=TRUE))
datos4=data.frame(Temperatura=factor(rep(c("baja","alta"),times=10)),encogimiento=scan())
17.2 21.4
17.5 20.9
18.6 19.8
15.9 20.4
16.4 20.6
17.3 21.0
16.8 20.8
18.4 19.9
16 7 21 1
17.6 20.3
attach (datos4)
medias=sapply(split(encogimiento, Temperatura), mean)
medias
mean(encogimiento) #promedio global
vari=sapply(split(encogimiento, Temperatura), var); vari
boxplot(encogimiento~Temperatura,boxwex=0.5)
```

Solución mediante test t usual: Primero probamos la igualdad de varianzas

$$H_0: \sigma_1^2 = \sigma_2^2$$
 vs. $H_1: \sigma_1^2 \neq \sigma_2^2$

Estadístico	Valor P	región crítica de nivel $\alpha = 0.05$		
$F_0 = \frac{S_1^2}{S_2^2} \sim f_{n_1 - 1, n_2 - 1} = f_{9,9}$	Si $F_0 < 1 : VP = 2P(f_{9,9} < F_0)$ Si $F_0 > 1 : VP = 2P(f_{9,9} > F_0)$	$F_0 < f_{1-\alpha/2,n_1-1,n_2-1} = 0.2483859$, 6 $F_0 > f_{\alpha/2,n_1-1,n_2-1} = 4.025994$		
$\frac{52}{2} \text{I.C del } (1-\alpha)\%100 = 95\% \text{ para } \sigma_1^2/\sigma_2^2$				
$ [F_0 \times f_{1-\alpha/2, n_2-1, n_1-1}; F_0 \times f_{\alpha/2, n_1-1, n_2-1}] = [F_0 \times f_{0.975, 9, 9}; F_0 \times f_{0.025, 9, 9}] $				

Conclusión: Las varianzas son estadísticamente iguales

Propiedades estadísticas Test de hipótesis de interés Funciones R asociadas Ejemplo 1

Ahora probamos la igualdad de medias bajo varianzas iguales, pero desconocidas

$$H_0: \mu_1 = \mu_2$$
 vs. $H_1: \mu_1 \neq \mu_2$

Estadístico	Valor P	región crítica de nivel $\alpha = 0.05$			
$T_0 = \frac{\bar{Y}_{1\bullet} - \bar{Y}_{2\bullet}}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} t_{n_1 + n_2 - 2} = t_{18}$	$P(t_{18} > T_0)$	$ T_0 > t_{\alpha/2,18} = 2.100922$			
I.C del $(1 - \alpha)$ %100 = 95%, para $\mu_1 - \mu_2$					
$\left(\bar{Y}_{1\bullet} - \bar{Y}_{2\bullet}\right) \pm t_{0.025, n_1 + n_2 - 2} \times S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} = \left(\bar{Y}_{1\bullet} - \bar{Y}_{2\bullet}\right) \pm t_{0.025, 18} \times S_p \sqrt{\frac{1}{5}}$					

Conclusión: Las medias son estadísticamente distintas, entonces la temperatura tiene efecto sobre el encogimiento de las piezas.

Solución mediante modelos ANOVA: Asumen la igualdad de varianzas. En el ejemplo, $n_1 = n_2 = 10$. Los modelos son

- De medias de tratamientos: $Y_{ij} = \mu_i + \varepsilon_{ij}$, $\varepsilon_{ij} \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$, i = 1, 2, j = 1, ..., 10, o bien,
- De efectos de tratamientos: $Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}$, $\varepsilon_{ij} \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$, sujeto a $\sum_{i=1}^2 n_i \alpha_i = 0$; como $n_1 = n_2$, la restricción se reduce a $\sum_{i=1}^2 \alpha_i = 0$

 $H_0: \mu_1 = \mu_2 \ vs. \ H_1: \mu_1 \neq \mu_2 \ \text{\'o} \ H_0: \alpha_1 = \alpha_2 = 0 \ vs. \ H_1: \alpha_i \neq 0 \ \text{para al menos un} \ i = 1, 2$

Estadistico	valor r	region critica de nivei $\alpha = 0.05$					
$F_0 = \frac{\frac{n_1 n_2}{n_1 + n_2} \left(\bar{Y}_{1\bullet} - \bar{Y}_{2\bullet} \right)^2}{S_p^2} \sim f_{1,n_1 + n_2 - 2} = f_{1,18}$	$P(f_{1,18} > F_0)$	$F_0 > f_{\alpha,1,18} = 4.413873$					
<pre>> modeloanova=aov(encogimiento~Temperatura) > summary(modeloanova)</pre>							
Df Sum Sq Mean Sq F	value Pr(>	$F) P(f_{1,18} > F_0)$					
Temperatura 1 57.12 57.12	116.6 2.71e-	09***					
Residuals 18 8.82 0.49							

Conclusión: Medias estadísticamente distintas (la *T*^o afecta el encogimiento).

Las estimaciones de las medias de tratamientos: Teniendo en cuenta que bajo supuestos del modelo, $\bar{Y}_{i\bullet} \sim N\left(\mu_i, \sigma^2/n_i\right)$ y que $\widehat{\sigma}^2 = MSE = S_p^2$,

Tratamiento	Estimación de µ _i	IC del 95 % para μ _i
T^{0} alta $(i=1)$	$\widehat{\mu}_1 = \overline{Y}_{1 \bullet}$	$\bar{Y}_{1 \bullet} \pm t_{0.025, n_1 + n_2 - 2} \times S_p / \sqrt{n_1}$
T^0 baja $(i=2)$	$\widehat{\mu}_2 = \widehat{Y}_{2\bullet}$	$Y_{2\bullet} \pm t_{0.025,n_1+n_2-2} \times S_p / \sqrt{n_2}$

> library(lsmeans)
> lsmeans (modeloanova,~Temperatura)
Temperatura lsmean SE df lower.CL upper.CL alta 20.62 0.2213594 18 20.15494 21.08506 baja 17.24 0.2213594 18 16.77494 17.70506
Confidence level used: 0.95
El error estándar de \bar{Y}_i . es $S_p/\sqrt{n_i}$

El I.C del 95 % de confianza para la diferencia de medias $(\mu_1 - \mu_2)$, calculado con modelo ANOVA:

$$\left(\bar{Y}_{1\bullet} - \bar{Y}_{2\bullet}\right) \pm t_{0.025, n_1 + n_2} \times S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} = \left(\bar{Y}_{1\bullet} - \bar{Y}_{2\bullet}\right) \pm t_{0.025, 18} \times S_p \sqrt{\frac{1}{5}}$$

```
#DIFERENCIA DE MEDIAS DE TRATAMIENTOS > library(gmodels) > fit.contrast(modeloanova, "Temperatura", rbind(":Alto menos Bajo"=c(1,-1)), conf=0.95)  
Estimate Std. Error t value Pr(>|t|) lower CI upper CI Temperatura:Alto menos Bajo 3.38 0.3130495 10.79701 2.709665e-09 2.722307 4.037693  
Estadístico T_0 y valor P: P(|t_{18}| > |T_0|) para test: H_0: \mu_1 - \mu_2 = 0 vs. H_1: \mu_1 - \mu_2 \neq 0
```

Conclusión: Como el I.C no contiene el cero, las medias son estadísticamente distintas y además, como los límites son positivos, $(\mu_1 - \mu_2) > 0$.

Solución mediante modelo de regresión con medias de tratamientos: Asume la igualdad de varianzas. Recuerde que en el ejemplo, $n_1 = n_2 = 10$, entonces para el MRL hay $N = n_1 + n_2 = 20$ obs.

$$Y_{ij} = \mu_1 I_{1,ij} + \mu_2 I_{2,ij} + \varepsilon_{ij}, \quad \varepsilon_{ij} \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$$

Con $I_{1,ij} = 1$ si i = 1 y 0 si i = 2, y con $I_{2,ij} = 1$ si i = 2 y 0 si i = 1. El ajuste del modelo nos da las estimaciones de las medias de tratamientos,

```
> mrlm1=lm(encogimiento~-1+Temperatura)
> summary(mrlm1)
Call: lm(formula = encogimiento ~ -1 + Temperatura)
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
                   20,6200
                                 0.2214
                                           93.15 <2e-16 ***
Temperaturaalta
Temperaturabaja 17.2400
                                 0.2214,
                                          77.88 <2e-16 ***
> confint(mrlm1)
                                         medias estimadas, \overline{Y}_{i} y sus errores estándar S_n/\sqrt{n_i}
                               97.5 %
                     2.5 %
Temperaturaalta 20.15494
                            21.08506
                                                  I.C para \mu_1 y \mu_2,
Temperaturabaja 16.77494 17.70506
                                                  respectivamente
```

La prueba sobre la igualdad de las medias es realizada como muestra la siguiente diapositiva.

$$H_0: \mu_1 = \mu_2 \ vs. \ H_1: \mu_1 \neq \mu_2$$

Estadístico	Valor P	región crítica de nivel $\alpha = 0.05$			
$F_0 = \frac{[SSE(MR) - SSE(MF)]}{MSE(MF)} \sim f_{1,N-2}$	$=f_{1,18}$ $P(f_{1,18} > F_0)$	$F_0 > f_{\alpha,1,18} = 4.413873$			
El modelo reducido es $Y_{ij} = \mu_1 \left(I_{1,ij} + I_{2,ij} \right) + \varepsilon_{ij} = \mu_1 + \varepsilon_{ij}$, $\varepsilon_{ij} \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$.					

```
> library(car)
> linearHypothesis(mrlm1,c("Temperaturaalta-Temperaturabaja=0"))
Linear hypothesis test
                   g.l(SSE(MR))
Hypothesis:
{\tt Temperaturabaja = 0} \qquad {\tt SSE(MR)}
Model 1: restricted model
Model 2: encogimiento ~ -1 + Temperatura
  Res.Df.
            RSS. Df Sum of So
                                                      P(f_{1.18} > F_0)
                       57.122 116.58 2.71e-09 ***
                                  -SSE(MR) - SSE(MF)
                            g.l(SSE(MR)) - g.l(SSE(MF))
                       -SSE(MF)
                  g.l(SSE(MF))
```

Conclusión: Medias estadísticamente distintas (la *T*^o afecta el encogimiento).

Solución mediante modelo de regresión con efectos de tratamientos: Asume la igualdad de varianzas. Recuerde que $n_1=n_2=10$, $N=n_1+n_2=20$ obs., $X_{ij}=I_{1,ij}-(n_1/n_2)I_{2,ij}$ y que $\alpha_2=-(n_1/n_2)\alpha_1$,

Test de hipótesis de interés Funciones R asociadas Eiemplo 1

$$Y_{ij} = \mu + \alpha_1 X_{ij} + \varepsilon_{ij}$$
, $\varepsilon_{ij} \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$. Test de interés: $H_0 : \alpha_1 = 0$ vs. $H_1 : \alpha_1 \neq 0$

Estadístico	Valor P	región crítica de nivel $\alpha = 0.05$
$T_{0} = \frac{\frac{\alpha_{1}}{\sqrt{\frac{MSE}{S_{XX}}}}} = \frac{\frac{n_{2}(\tilde{Y}_{1} \bullet - \tilde{Y}_{2} \bullet)}{n_{1} + n_{2}}}{\sqrt{\frac{S_{p}^{2}}{\frac{n_{1}(n_{1} + n_{2})}{n_{2}}}}} = \frac{\sqrt{\frac{n_{1}n_{2}}{n_{1} + n_{2}}}(\tilde{Y}_{1} \bullet - \tilde{Y}_{2} \bullet)}{S_{p}}$ $= \text{entonces } T_{0} \sim t_{n_{1} + n_{2} - 2} = t_{18}$	$P(t_{18} > T_0)$	$ T_0 > t_{\alpha/2,18} = 2.100922$

Conclusión: la T^o afecta el encogimiento (Medias estadísticamente distintas).

Como el modelo es de RLS, podemos también probar que $H_0: \alpha_1 = 0$ vs. $H_1: \alpha_1 \neq 0$ mediante el test ANOVA del modelo,

ĺ	Estadístico	Valor P	región crítica de nivel $\alpha = 0.05$
	$F_0 = \frac{SSR}{MSE} \sim f_{1,N-2} = f_{1,18}$	$P\left(f_{1,18} > F_0\right)$	$F_0 > f_{\alpha,1,18} = 4.413873$

```
> I1=ifelse(Temperatura=="alta",1,0); I2=ifelse(Temperatura=="baja",1,0)
> X=I1-I2 #desde que n 1=n 2
> mrlm2=lm(encogimiento~X)
> anova(mrlm2)
Analysis of Variance Table
                                                 P(f_{1.18} > F_0)
Response: encogimiento
          Df Sum Sg Mean Sg F value
           1 57,122
                      57,122
                              116.58 2.71e-09
Residuals 187
                       0.490
                                  MSE
   SSR
                            SSE
```

Conclusión: la T^0 afecta el encogimiento (Medias estadísticamente distintas).

En los modelos ANOVA y de RL podemos chequear supuestos mediante el análisis de residuos. En la comparación de dos tratamientos con muestras normales e independientes, puede mostrarse que en ambos modelos, $\widehat{Y}_{ij} = \bar{Y}_{i\bullet}$ y por tanto los residuos ordinarios son $\widehat{\varepsilon}_{ij} = Y_{ij} - \bar{Y}_{i\bullet}$. También podemos calcular residuos internamente estudentizados,

¿Qué se concluye?

Programa residuos estudentizados modelos ANOVA y de RLS

Contenido

- Comparaciones Simples
- 2 Comparaciones con m.a independientes con varianzas poblacionales iguales
- Comparaciones con muestras pareadas
 - Test de hipótesis de interés
 - Modelo ANOVA y de regresión con muestras pareadas
 - Pruebas en modelos ANOVA y de RLM equivalentes a comparación de medias con muestras paread
 - Ajuste en R del modelo ANOVA y de RLM asociado a comparaciones pareadas
 - Ejemplo 2

Comparaciones con muestras pareadas

- Y_{ij} : Respuesta observada en la j-ésima unidad experimental con el i-ésimo tratamiento, i = 1, 2, j = 1, ..., n.
- ε_{ij} : Error aleatorio en *j*-ésima unidad experimental con *i*-ésimo tratamiento.
- μ_i : Respuesta media en el tratamiento i.
- β_j : Efecto de la j-ésima unidad experimental sobre la respuesta media.

El modelo estadístico es como sigue:

$$Y_{ij} = \mu_i + \beta_j + \varepsilon_{ij}, \ i = 1, 2, \ j = 1, 2, \dots, n$$
 (14)

Siguiendo a Montgomery (2020), los ε_{ij} son variables aleatorias de media cero y varianza $\text{Var}\big[\varepsilon_{ij}\big] = \sigma_i^2$, i=1,2. Por otra parte, los Y_{ij} dentro de una misma U.E no son necesariamente independientes, pero si lo son las observadas sobre U.E distintas.

Sin embargo,

para eliminar los efectos de las U.E, se examinarán las diferencias pareadas,

$$\underbrace{Y_{1j} - Y_{2j}}_{d_j} = \underbrace{\mu_1 - \mu_2}_{\mu_d} + \underbrace{\varepsilon_{1j} - \varepsilon_{2j}}_{\varepsilon_{d,j}}, j = 1, \dots, n$$

$$\tag{15}$$

Suponemos que $\varepsilon_{d,i} \stackrel{iid}{\sim} N(0,\sigma_d^2)$, de modo que $d_i \stackrel{iid}{\sim} N(\mu_d,\sigma_d^2)$.

Test de hipótesis de interés

$$H_0: \mu_1 = \mu_2 \iff \mu_d = 0 \quad \text{vs} \quad H_1: \mu_1 \neq \mu_2 \iff \mu_d \neq 0.$$
 (16)

Bajo los supuestos $d_j \stackrel{iid}{\sim} N(\mu_d, \sigma_d^2)$, con σ_d^2 desconocido, el estadístico de la prueba, su distribución bajo H_0 y el criterio de decissión, es, Nota 3.1

$$T_0 = \frac{\bar{d}}{S_d/\sqrt{n}} \sim t_{n-1}, \quad \text{con}, \tag{17a}$$

$$\bar{d} = \frac{1}{n} \sum_{j=1}^{n} d_j, \quad S_d^2 = \frac{1}{n-1} \sum_{j=1}^{n} (d_j - \bar{d})^2,$$
 (17b)

rechazar
$$H_0$$
 si $P(|t_{n-1}| > |T_0|)$ es pequeño. (17c)

Modelo ANOVA y de regresión con muestras pareadas

- Y_{ij} : j-ésima respuesta en i-ésimo tratamiento, i = 1, 2, j = 1, ..., n.
- $I_{1,ij}$: Indicadora del tratamiento 1 evaluada en j-ésima respuesta en i-ésimo tratamiento. Vale 1 para i = 1 y 0 para i = 2.
- I_{2,ij}: Indicadora del tratamiento 2 evaluada en j-ésima respuesta en i-ésimo tratamiento. Vale 1 para i = 2 y 0 para i = 1.
- Z_{k,ij}: Indicadora de la k-ésima U.E en la j-ésima respuesta en i-ésimo tratamiento.
 Vale 1 para j = k y cero para j ≠ k, con k = 1,...,n.
- ε_{ij} : Error aleatorio en *j*-ésima respuesta en *i*-ésimo tratamiento.
- $\mu_{i\bullet}$: Respuesta media en el tratamiento i.
- μ: Respuesta media global.
- α_i : Efecto **fijo** del *i*-ésimo tratamiento, es tal que $\mu_{i\bullet} = \mu + \alpha_i$.
- β_i: Efecto fijo de la j-ésima U.E

est Anova

Modelo ANOVA MRLM equivalente

$$Y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}, \ \varepsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$$
(18)
$$Y_{ij} = \mu + \alpha_1 I_{1,ij} + \alpha_2 I_{2,ij} + \sum_{k=1}^n \beta_k Z_{k,ij} + \varepsilon_{ij},$$
(19)
$$\text{sujeto a } \sum_{i=1}^2 \alpha_i = 0, \ \sum_{i=1}^n \beta_j = 0$$

$$\varepsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2), \text{ sujeto a } \sum_{i=1}^2 \alpha_i = 0, \ \sum_{i=1}^n \beta_j = 0$$

Para el ajuste del MRLM satisfaciendo las restricciones, éste debe replantearse así: Si hacemos $\alpha_2 = -\alpha_1$ y $\beta_n = -\sum_{j=1}^{n-1} \beta_j$, entonces, test MRL, Nota 3.1

$$Y_{ij} = \mu + \alpha_1 X_{ij} + \beta_1 W_{1,ij} + \beta_2 W_{2,ij} + \dots + \beta_{n-1} W_{n-1,ij} + \varepsilon_{ij}, \ \varepsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2)$$
 (20a)

con

$$X_{ij} = I_{1,ij} - I_{2,ij}, (20b)$$

$$W_{1,ij} = Z_{1,ij} - Z_{n,ij}, W_{2,ij} = Z_{2,ij} - Z_{n,ij}, \dots, W_{n-1,ij} = Z_{n-1,ij} - Z_{n,ij}$$
(20c)

Recordando que $I_{1,ij},\,I_{2,ij},\,Z_{1,ij},\dots,Z_{n,ij}$, son variables indicadoras, note que $X_{ij}\in\{-1,1\}$ mientras que $W_{k,ij}\in\{-1,0,1\}$, para $k=1,2,\dots,n-1$. Por MCO ajustamos este MRLM hallando a $\widehat{\alpha_1},\,\widehat{\beta_1},\dots,\widehat{\beta_{n-1}}$, en tanto que $\widehat{\alpha_2}=-\widehat{\alpha_1}$ y $\widehat{\beta_n}=-\sum_{j=1}^{n-1}\widehat{\beta_j}$.

Pruebas en modelos ANOVA y de RLM equivalentes a comparación de medias con muestras pareadas

Modelo ANOVA

Para el modelo en (18),

$$H_0: \alpha_1 = \alpha_2 = 0$$
 vs.

$$H_1: \alpha_i \neq 0$$
 para al menos un $i = 1, 2$ (21)

Bajo H_0 y $\varepsilon_{ij} \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$, el estadístico de prueba, su distribución y su valor P:

$$F_0 = \frac{SSA}{MSE} \sim f_{1,n-1}, \quad \text{con}$$
 (22a)

$$SSA = \frac{n}{2} (\bar{Y}_{1\bullet} - \bar{Y}_{2\bullet})^2, \quad MSE = \frac{1}{2} S_d^2$$
 (22b)

Valor P:
$$P(f_{1,n-1} > F_0)$$
. (22c)

Modelo de regresión lineal

Para modelo en (20a),

$$H_0: \alpha_1 = 0$$
 vs.
 $H_1: \alpha_1 \neq 0$ (23)

Bajo H_0 y $\varepsilon_{ij} \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$, el estadístico de prueba, su distribución y su valor P:

$$F_0 = \frac{[SSE(MR) - SSE(MF)]}{MSE(MF)} \sim f_{1,n-1}$$
 (24a)

donde MR es el modelo reducido bajo H_0 :

$$Y_{ij} = \mu + \sum_{k=1}^{n-1} \beta_k W_{k,ij} + \varepsilon_{ij}, \ \varepsilon_{ij} \stackrel{iid}{\sim} N(0, \sigma^2) \quad (24b)$$

Valor P:
$$P(f_{1,n-1} > F_0)$$
. (24c)

Con relación a los tests en los test en modelos ANOVA y de RLM equivalente, con muestras pareadas,

Nota 3.1

- MF: Modelo FULL o completo, es el modelo en (20a).
- Puede demostrarse que [SSE(MR) SSE(MF)] es igual al SSA del modelo ANOVA,
- también puede demonstrarse que SSE(MF) es igual al SSE del modelo ANOVA
- por tanto, los estadísticos F_0 en las ecuaciones (22a) y (24a), son iguales y estos son a su vez iguales al cuadrado del estadístico T_0 en (17a). Luego, los correspondientes valores P en ecuaciones (17c), (22c) y(24c), también son iguales.

Ajuste en R del modelo ANOVA y de RLM asociado a comparaciones pareadas

- Para el ajuste del modelo ANOVA en ecuación (18):
 - > modelo1=aov(Y~Factor1+Factor2)
 donde,
 - Factor 1 debe ser un objeto R tipo factor cuyos niveles son los dos tratamientos cuyas medias se quieren comparar
 - Factor2 también un objeto R tipo factor cuyos niveles representan a las U.E tomadas como los niveles de un factor del bloqueo.
- Para el ajuste del MRLM en ecuación (20a), por ejemplo con n = 10 U.E

```
> X=I1-I2
> W1=Z1-Z10; W2=Z2-Z10; W3=Z3-Z10; W4=Z4-Z10; W5=Z5-Z10
> W6=Z6-Z10; W7=Z7-Z10; W8=Z8-Z10; W9=Z9-Z10
```

```
> modelo2=lm(Y\sim X+W1+W2+W3+W4+W5+W6+W7+W8+W9)
```

donde los objetos l1 e l2 son las variables indicadoras de los tratamientos 1 y 2, respectivamente y los objetos Z1, ..., Z10, son las variables indicadoras de los bloques.

Ejemplo 2

Se realizó un experimento para ver si dos técnicos tienen alguna tendencia a obtener diferentes resultados cuando determinan la pureza de cierto producto. Cada muestra fue dividida en dos porciones y cada técnico determinó la pureza de una de las porciones. Los resultados se muestran a continuación.

		Muestras							
Técnico	j = 1	2	3	4	5	6	7	8	Promedios
i = 1	74.0	73.1	73.5	73.9	71.2	72.5	73.0	74.3	$\bar{Y}_{1\bullet} = 73.1875$
i = 2	73.0	71.3	73.2	71.1	70.3	71.5	73.4	72.4	$\bar{Y}_{2\bullet} = 72.0250$
Diferencias: $d_j = Y_{1j} - Y_{2j}$	1.0	1.8	0.3	2.8	0.9	1.0	-0.4	1.9	$\bar{d} = 1.1625$
$S_d^2 = 0.99125$, $\bar{Y}_{\bullet \bullet} = 72.60625$ (promedio de las obs. Y_{ij}).									

Lectura de los datos, medidas y gráficos descriptivos

```
rm(list=ls(all=TRUE))
datos9=data.frame(Técnico=factor(rep(c(1,2),each=8)),muestra=factor(rep(1:8,times=2)),
                   Pureza=scan())
74.0 73.1 73.5 73.9 71.2 72.5 73.0 74.3
73 0 71 3 73 2 71 1 70 3 71 5 73 4 72 4
attach(datos9)
medias=sapply(split(Pureza, Técnico), mean) #Medias medidas según técnico
medias
medias2=sapply(split(Pureza, muestra), mean) #Medias medidas en cada muestra
medias2
difer=Pureza[Técnico==1]-Pureza[Técnico==2] #diferencias entre pares de observaciones
mean(difer) #media muestral diferencias entre pares de observaciones
var(difer) #Varianza muestral diferencias entre pares de observaciones
#Gráficos descriptivo
plot(as.numeric(muestra), Pureza, col=as.numeric(Técnico), pch=as.numeric(Técnico),
      xlab="muestra",cex=1.5,ylim=c(70,75))
lines(1:8,medias2,type="b",pch=19,lty=2,col=4)
segments(1:8, Pureza[Técnico==1],1:8, Pureza[Técnico==2])
legend("topleft", legend=c("Técnico 1", "Técnico 2", "Media medidas pureza por pieza"),
        pch=c(1:2,19),col=c(1:2,4),bg="cornsilk")
boxplot(difer,boxwex=0.5,ylab="Diferencias por pares") #Distribución de las diferencias
                                                        #pareadas
abline(h=0,ltv=3,col=2)
```

Solución mediante test t usual:

$$H_0: \mu_1 = \mu_2 \iff \mu_d = 0 \quad vs. \quad H_1: \mu_1 \neq \mu_2 \iff \mu_d \neq 0$$

Estadístico	Valor P región crítica de nivel $\alpha = 0$.			
$T_0 = \frac{d}{S_d/\sqrt{n}} t_{n-1} = t_7$ $P(t_7 > T_0)$ $ T_0 > t_{\alpha/2,7} = 2.364624$				
I.C del $(1-\alpha)$ %100 = 95%, para $\mu_1 - \mu_2$				
$\bar{d} \pm t_{0.025, n-1} \times \frac{Sd}{\sqrt{n}} = \bar{d} \pm t_{0.025, 7} \times \frac{Sd}{\sqrt{8}}$				

```
>t.test(Pureza-Técnico,var.equal=TRUE,alternative="two.sided",paired=TRUE) Paired t-test P(|t_7|>|T_0|) data: Pureza by Técnico t=3.3025, \ df=7, \ p-value=0.01308 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: 0.3301447 \ 1.9948553 sample estimates: 0.3301447 \ 1.9948553 sample estimates: 0.3301447 \ 1.9948553 Media muestral de las diferencias, 0.330147 \ 1.9948553
```

Conclusión: En promedio, las mediciones de los técnicos no son iguales.

Solución mediante modelo ANOVA de efectos de tratamientos y de bloques: Asume la igualdad de varianzas. El número de obs. es N = 2n = 16. El modelo es

$$Y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}, \ \varepsilon_{ij} \stackrel{\text{iid}}{\sim} N\left(0, \sigma^2\right) \quad \text{sujeto a: } \sum_{i=1}^2 \alpha_i = 0, \ \sum_{j=1}^8 \beta_j = 0$$

 $H_0: \mu_1 = \mu_2 \ vs. \ H_1: \mu_1 \neq \mu_2 \ ó \ H_0: \alpha_1 = \alpha_2 = 0 \ vs. \ H_1: \alpha_i \neq 0$ para al menos un i = 1, 2

Estadístico	Valor P	región crítica de nivel $\alpha = 0.05$
$F_0 = \frac{SSA}{MSE} = \frac{\frac{n}{2} \left(\hat{Y}_{1 \bullet} - \hat{Y}_{2 \bullet} \right)^2}{\frac{S_d^2}{2}} = \frac{n\bar{d}^2}{S_d^2} \sim f_{1,n-1} = f_{1,7}$	$P(f_{1,7} > F_0)$	$F_0 > f_{\alpha,1,7} = 5.591448$

Conclusión: En promedio, las mediciones de los técnicos no son iguales.

Solución con MRL con efectos de tratamientos y de bloques: Asume la igualdad de varianzas. N = 2n = 16, $X_{ij} = I_{1,ij} - I_{2,ij}$, $W_{k,ij} = Z_{k,ij} - Z_{8,ij}$, para k = 1,...,7, y que $I_{1,ij}$, $I_{2,ij}$, son las indicadoras para los técnicos 1 y 2, y $Z_{1,ij},\ldots,Z_{8,ij}$, son las indicadoras para las muestras 1 a 8, respectivamente.

$$Y_{ij} = \mu + \alpha_1 X_{ij} + \beta_1 W_{1,ij} + \beta_2 W_{2,ij} + \dots + \beta_7 W_{7,ij} + \varepsilon_{ij}, \quad \varepsilon_{ij} \stackrel{\text{iid}}{\sim} N(0, \sigma^2).$$

Test de interés: $H_0: \alpha_1 = 0$ vs. $H_1: \alpha_1 \neq 0$

Estadístico	Valor P	región crítica de nivel $\alpha = 0.05$
$T_0 = \frac{\widehat{\alpha}_1}{\text{s.e}(\widehat{\alpha}_1)} = \frac{\frac{1}{2} \left(\bar{Y}_1 \bullet - \bar{Y}_2 \bullet \right)}{\sqrt{S_d^2 / 4n}} = \frac{\bar{d}}{S_d / \sqrt{n}} \sim t_{n-1} = t_7$	$P(t_7 > T_0)$	$ T_0 > t_{\alpha/2,7} = 2.364624$

- > #INDICADORAS
- > Il=ifelse(Técnico=="1",1,0); I2=ifelse(Técnico=="2",1,0); Z1=ifelse(muestra=="1",1,0); Z2=ifelse(muestra=="2",1,0) > Z3=ifelse(muestra=="3",1,0); Z4=ifelse(muestra=="4",1,0); Z5=ifelse(muestra=="5",1,0); Z6=ifelse(muestra=="6",1,0)
- > Z7=ifelse(muestra=="7",1,0); Z8=ifelse(muestra=="8",1,0)
- > #VARIABLES EXPLICATORIAS PARA EL AJUSTE POR REGRESIÓN
- > X=I1-I2; W1=Z1-Z8; W2=Z2-Z8; W3=Z3-Z8; W4=Z4-Z8; W5=Z5-Z8; W6=Z6-Z8; W7=Z7-Z8 > mrlm=lm(Pureza~X+W1+W2+W3+W4+W5+W6+W7); summary(mrlm)
- Call: lm(formula = Pureza X + W1 + W2 + W3 + W4 + W5 + W6 + W7)

Coefficients:

Estimate Std. Error t value Pr(>|t|) $P(|t_7| > |T_0|)$ (Intercept) 72.6062 0.1760 412.532 < 2e-16 0.8938 0.4657 1.919 0.09642 0.4657 -0.872 0.41190 W3 0.7437 0.4657 1.597 0.15425 -0.1063 0.4657 -0.228 0.82603 0.4657 -3.986 0.00528 ** -0.6063 0.4657 -1.302 0.23414 W7 1.275 0.24297 0.4657

Conclusión: En promedio, las mediciones de los técnicos no son iguales

Residual standard error: 0.704 on 7 degrees of freedom Multiple R-squared: 0.8376, Adjusted R-squared: 0.6521

F-statistic: 4.515 on 8 and 7 DF, p-value: 0.03094

O bien, mediante test ANOVA

$$H_0: \underline{\alpha_1} = 0 \ vs. \ H_1: \underline{\alpha_1} \neq 0$$

Estadístico	Valor P	región crítica de nivel $\alpha = 0.05$
$F_0 = \frac{[SSE(MR) - SSE(MF)]}{MSE(MF)} \sim f_{1,n-1} = f_{1,7}$	$P\big(f_{1,7}>F_0\big)$	$F_0 > f_{\alpha,1,7} = 5.591448$
El modelo reducido es $Y_{ij} = \mu + \beta_1 W_{1,ij} + \beta_2 W_{2,ij} + \dots + \beta_7 W_{7,ij} + \varepsilon_{ij}, \varepsilon_{ij} \stackrel{\text{iid}}{\sim} N(0,\sigma^2).$		

Conclusión: En promedio, las mediciones de los técnicos no son iguales.

En los modelos ANOVA y de RL podemos chequear supuestos mediante el análisis de residuos. En la comparación de dos tratamientos con muestras normales pareadas, puede mostrarse que en ambos modelos, $\widehat{Y}_{ij} = \bar{Y}_{i\bullet} + \bar{Y}_{\bullet j} - \bar{Y}_{\bullet \bullet}$ y por tanto los residuos ordinarios son $\widehat{\epsilon}_{ij} = Y_{ij} - \bar{Y}_{i\bullet} - \bar{Y}_{\bullet j} + \bar{Y}_{\bullet \bullet}$. También podemos calcular residuos internamente estudentizados,

¿Qué se concluve?

Programa residuos estudentizados modelos ANOVA y de RLM

Referencias

```
#GRÁFICO DE RESIDUOS ESTUDENTIZADOS INTERNAMENTE
win.graph(width=8.5,height=6)
layout(rbind(c(1.1.2.2.3.3).c(4.4.5.5.6.6)))
plot(fitted(modeloanova),rstandard(modeloanova),main="residuos estudentizados vs. ajustados\nModelo ANOVA",
      vlim=c(-2.5,2.5),cex=1.5)
abline(h=c(-2.0.2),ltv=2.col=2)
stripchart (rstandard (modeloanova) ~Técnico, main="residuos estudentizados vs. Técnico\nModelo ANOVA",
            xlab="Técnico", vertical=T, ylim=c(-2.5,2.5), pch=1:2,col=c(1:2),cex=1.5)
abline(h=c(-2,0,2),lty=2,col=2)
stripchart(rstandard(modeloanova)~muestra,main="residuos estudentizados vs. muestra\nModelo ANOVA",
            vlim=c(-2.5,2.5),xlab="muestra",vertical=T,pch=1,cex=1.5)
abline(h=c(-2.0.2).ltv=2.col=2)
plot(fitted(mrlm),rstandard(mrlm),main="residuos estudentizados vs. ajustados\nMRLM",
    ylim=c(-2.5,2.5),cex=1.5)
abline(h=c(-2,0,2),lty=2,col=2)
plot(X,rstandard(mrlm),xlab="X",main="residuos estudentizados vs. X\nModelo de efectos con MRLM",
       vlim=c(-2.5,2.5), pch=as.numeric(Técnico),col=as.numeric(Técnico),cex=1.5)
abline(h=c(-2,0,2),ltv=2,col=2)
stripchart(rstandard(mrlm)~muestra,main="residuos estudentizados vs. muestra\nModelo de efectos con MRLM",
vlim=c(-2.5,2.5),xlab="muestra",vertical=T,pch=1,cex=1.5)
abline(h=c(-2,0,2),ltv=2,col=2)
```

- Dean, A., Voss, D., and Draguljić, D. (2017). Design and Analysis of Experiments, 2nd Edition. Springer.
- Gutiérrez Pulido, H. y de la Vara Salazar, R. (2012). Análisis y Diseño de Experimentos, 3ª Edición. McGraw-Hill.
- Kuehl, R. O. (2001). Diseño de Experimentos. Principios Estadísticos de Diseño y Análisis de Investigación, 2ª Edición. Thomson Learning.
- Kutner, M. H., Nachtsheim, C. J., Neter, J., and Li, W. (2005). Applied Linear Statistical Models, 5th Edition. McGraw-Hill Irwin.
- Montgomery, D. C. (2020). *Design and Analysis of Experiments*, 10th Edition. John Wiley & Sons, Inc.