CS & IT ENGINEERING

Theory of Computation Finite Automata: DFA-1

Lecture No. 5

Important Regular Exps

3)
$$(a+b)^* = (a(a+b+\epsilon)^* = a(a^*)^* = a(b^*)^* = a(b^$$

Has is divisible by 3

(*ababab*+***

Even no. of as over z={a,b} $= b^*(b^*ab^*ab^*) = (b^*ab^*ab^*) + b^*$ = (b* ab*ab*)* b* = (b* ab*a) b* = 15 (15) a 1 a 6 x L= {E,b,aa,bb,aab,aba,baa,bbb,--.} = 1* (ab*ab*)* zero as

2 as leven no.sfas

4 as moof 65 is army

Even no of as but exclude zero no of as even = 2, 4, 5. - - -

EX Hopas

by Hopas

by Hopas

by Hopas

continued as a second a se

= {a, aa, ab, aaa, aab, aba, bbb, ---} to de

$$a (avb)^*$$
 $a (a+b)^* = (ab)^*$
 $a (a+b)^* = (ab)^* = a$
 $a (a)^* = aa$
 $a (a)^* = aa$
 $a (a)^* = aa$
 $a (a)^* = aa$
 $a (a)^* = ab$
 $a (a)^* = ab$

$$=(a^*b^*a^*b^*)^{+}$$
 $=(a^*b^*+a^*b^*)^{+}$
 $=(a^*b^*+a^*b^*)^{+}$
 $=(a^*b^*+a^*b^*)^{+}$
 $=(a^*b^*+a^*b^*)^{+}$

$$(a+b+\xi)^{+} = (a+b+\xi)^{+}$$

$$= (a+aa+aaa+\cdots+b+bb+\cdots+\xi)^{+}$$
no reed

Exp = (a+b)* All strongs generated

x + b = E + a + b3 types:

Evens sted on bolk 0

Ь9 11

$$\frac{abx}{abx}$$
 $\pm \frac{bax}{abx}$ $\pm \frac{bax}{abx}$ $\pm \frac{bax}{abx}$ $\pm \frac{abx}{abx}$ $\pm \frac{abx}{abx}$

revery gatifical condition $L = \{w \in \{a, b\}^* : \#_a(w) \le 3\}. = \{\varepsilon, a, b, aa, ab, ba, bb,$ > min=E $X.b*(a \cup \varepsilon)b*(a \cup \varepsilon)b*(a \cup \varepsilon)b*$ B.b* (a) b* (a $\cup \varepsilon$) b* (a $\cup \varepsilon$) b* nin = a C. $b^*(a) b^*(a) b^*(a \cup \varepsilon) b^*$ min = aa D. b* $(a \cup \varepsilon)$ b* (a) b* (a) b* min- aa

$$L = \{w \in \{a, b\}^* : \#_a(w) >= 3\}.$$

A.
$$b^*(\underline{a \cup \epsilon})b^*(\underline{a \cup \epsilon})b^*(\underline{a \cup \epsilon})b^*$$

B.
$$(a \cup b) * (a) b* (a \cup \varepsilon) b* (a \cup \varepsilon) b* \longrightarrow min = 0$$

C.
$$b^*(a)b^*(a)b^*(a \cup \varepsilon)b^* \longrightarrow min = \alpha\alpha$$

$$L1 = a*b*$$

 $L2 = a*b*$

Find L2-L1.

A. a* B. b*

C. $a^* + b^*$

$$L_2 = \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$$

A.
$$L1 = L2$$

B. L1 U L2 =
$$(a+b)*$$

$$C.(L1)* = (L2)*$$

A. L1 is subset of L2

B. L2 is subset of L1

C L1 U L2 = L1

$$XUY=X$$

 $L1 = a^+b^+$ and $L2 = a^*b^*$. Which of the following is FALSE?

A. L1 is subset of L2

B. L1* = L2* FALSE

C. L1 U L2 = L2

 $L1 = a^+ + b^+$ and $L2 = a^* + b^*$. Which of the following is TRUE?

A.
$$L1 = L2$$

B. $L1^{+} = L2^{+}$
C. $L1 U L2 = L2$
D. None

A. L1+=L2*

B. L1+=L2+

C. L1*=L2+=
$$\frac{1}{2}$$
= $\frac{1}{2}$

D. None

$$=(a)^{+}=a^{+}$$
 $=(a)^{+}=a^{+}$
 $=(a)^{+}=a^{+}$
 $=(a)^{+}=a^{+}$
 $=(a)^{+}=a^{+}$

$$A = a^*$$
 and $B = b^*$
 $AB = ?$

A.
$$\{ a^{n}b^{n} | n > = 0 \}$$

B.
$$\{ a^m b^n | m, n > = 0 \}$$

C.
$$(a+b)^* \supset AB$$

$$A = aa*$$
 and $B = bb*$
 $(AUB)* = ?$

A.
$$\{ a^n b^n | n > = 0 \}$$

B.
$$\{a^mb^n | m, n \ge 0\}$$

$$A = aa^{*} = at$$
 $B = bb^{*} = b^{*}$
 $(AUB)^{*} = (a+b)^{*}$
 $= (a+b)^{*}$

Given the language $L = \{ab, aa, baa\}$, which of the following strings are not in L^* ?

- 1) abaabaaabaa E
- 2) aaaabaaaa ← [★]
- 3) baaaaabaaaab
- A. 1 only
- B. 2 only
- C. 3 only
 - D. None

$$L = ab + aa + baa$$

$$L^* = (ab + aa + baa)^*$$

The length of the shortest string NOT in the language (over $\Sigma = \{a, b\}$) of the following regular expression is

a*(ba)*a*

A. 1

B. 2

C. 3

D. 4

$$L = a(a+b)^*$$
 is equivalent to _____

$$B.(a^{+}b^{*})^{+}$$

D. All of the above

$$(ab)^{+} = (ab)^{+}$$
 $(ab)^{+} = (ab)^{+}$
 $(aab)^{+}$
 $(aab)^{+}$
 $(aab)^{+}$
 $(aaa)^{+}$

$$L = (a+b)*b$$
 is equivalent to _____

$$(a+b)^* = b(ab^*)^*$$

$$(b + ba) (b + a)^* (ab + b)$$

$$b(\varepsilon + a) (b + a)^* (a + \varepsilon) b$$
A. $(a+b)^* (a+b)^* (a+b)^*$

$$(\xi + a)(\alpha + b)^{*}(\xi + a)$$
= $(\alpha + b)^{*}$

$$\{w \in \{a, b\}^* : \#_a(w) \equiv_3 0\}.$$

Has is devisible by 3

$$(a \cup b)^* (a \cup \varepsilon) b^* = (a+b)$$

A.
$$(a+b)(a+b)^* = (a+b)^+$$

D. None

 $L=\{w \in \{a, b\}^* \mid w \text{ has bba as a substring}\}\$ Which of the following describes L?

A.
$$(a \cup b)*bba (a \cup b)*$$

B.
$$(a \cup b)^{\oplus}$$
 bba $(a \cup b)^*$

$$\mathcal{L}$$
. $(a \cup b)^{\oplus}$ bba $(a \cup b)^{\oplus}$

D.
$$(a \cup b)^*$$
 bba $(a \cup b)^+$

$$L=\{w \in \{a,b\}^*\} = (a+b)^*$$

1.
$$(a + b)^*$$

2.
$$(a + b + epsilon)^+$$

3. Epsilon
$$+ (a + b)^+$$

5.
$$(b^*a^*)^*$$
 $\rightarrow \alpha \times$

How many of above are equivalent to given L?

Which Two of the following four regular expressions are equivalent?

(i)
$$(00)^*(\varepsilon + 0) = 0$$
 (ii) $(00)^*$

$$(00)^{*}(\xi+0)$$
 $(00)^{*}(\xi+0)$
 $=0$
 $(00)^{*}(\xi+0)$
 $=0$
 $=0$
 $=0$

$$(00)^{*} + 0(00)^{*} = 0^{*}$$

If the regular set A is represented by $A = (01+1)^*$ and the regular set 'B' is represented by $B = ((01)^*1^*)^*$, which of the following is true? (GATE - 98)

(a)
$$A \subset B$$

(b)
$$B \subset A$$

(c) A and B are incomparable (d) A = B

$$A \subseteq B$$
 $A \supseteq B$
 $A \supseteq B$
 $A \supseteq B$

Pw

(a)
$$110^* (0+1)$$
 (b) $1(0+1)^*101$ (c) $(10)^* (01)^* (00+11)^*$ (d) $(00+(11)^* 0)^*$

Let S and T be languages over $\Sigma = \{a, b\}$ represented by the regular expressions (a + b*)* and (a + b)*, respectively. Which of the following is true? (GATE - 2000)

(a)
$$S \subset T$$

(b)
$$T \subset S$$

$$(c) S = T$$

(d)
$$S \cap T = \phi$$

 Σ^* with the concatenation operator for strings (GATE - 03)

- (b) Forms a non-commutative group
- (c) Does not have a right identity element
- (d) Forms a group if the empty string is removed from Σ^*

(Leng Voor)

(a)
$$(1*0)*1*=(0+1)*$$
 (b) $0+(0+10)*$

(c)
$$(0+1)*10(0+1)*$$

(d) None of the above

Which one of the following languages over the alphabet $\{0, 1\}$ is described by the regular expression $(0+1)^*0(0+1)^*0(0+1)^*$ (GATE - 09)

- (a) The set of all strings containing the substring 00
- (b) The set of all strings containing at most two 0's
- (e) The set of all strings containing at least two 0's
- (d) The set of all strings that begin and end with either 0 or 1

Pw

Consider the languages $L_1 = \phi$ and $L_2 = \{a\}$. Which one of the following represents $L_1 L_2^* \cup L_1^*$? (GATE - 13)

(a)
$$\{\epsilon\}$$
 (b) ϕ (c) a^* (d) $\{\epsilon, a\}$

$$L_1 L_2^* \cup L_1^* = \emptyset \quad \alpha^* \cup \emptyset \quad = \emptyset \quad (1 + \epsilon)$$

$$= \emptyset \quad (1 + \epsilon)$$

$$= \emptyset \quad (2 + \epsilon)$$

Which one of the following regular expressions represents the language: the set of all binary strings having two consecutive 0's and two consecutive 1's? (GATE – 16 – SET1)

Containing (a) $(0+1)^*$ $0011(0+1)^* + (0+1)^*$ $1100(0+1)^*$ (b) (0+1)* (00(0+1)* 11+11(0+1)* 00)(0+1)* as substomy $(c)(0+1)^*00(0+1)^*+(0+1)^*11(0+1)^*$ 00(0+1)* 11+11(0+1)* 00

Pw

Let $r = 1(1+0)^*$, $s = 11^*0$ and $t = 1^*0$ be three regular expressions. Which one of the following is true? (GATE - 91)

(a)
$$L(s) \subseteq L(r)$$
 and $L(s) \subseteq L(t)$

(b)
$$L(r) \subseteq L(s)$$
 and $L(s) \subseteq L(t)$

(c)
$$L(s) \subseteq L(t)$$
 and $L(s) \subseteq L(r)$

(d)
$$L(t) \subseteq L(s)$$
 and $L(s) \subseteq L(r)$.

Which of the following regular expression identities are true?

(GATE - 92)

(a)
$$r(*) = r^*$$
 (b) $(r^*s^*)^* = (r+s)^*$
(c) $(r+s)^* = r^* + s^*$ (d) $r^*s^* = r^* + s^*$

Which one of the following regular expressions represents the set of all binary strings with an odd number of 1's?

A.
$$((0+1)^*1(0+1)^*1)^*10^*$$

B. $(0^*10^*10^*)^*0^*1 \longrightarrow 0 \times$

C. $10^*(0^*10^*10^*)^* \longrightarrow 0 \times$

D. $(0^*10^*10^*)^*10^* \longrightarrow 0 \times$

No answer

GATE 2020

Which one of the following regular expressions over {0, 1} denotes the set of all strings not containing 100 as a substring?

(GATE - 97) (a) $0^*(1^+0)^*$ (b) $0^* 1010^*$ ξ^* (c) $0^*1^*01^*$ ξ^* (d) $0^* (10+1)^*$

(a)
$$0^*(1^+0)^*$$

(c)
$$0^*1^*01^* > \xi \times$$

Model GATE Questions

- Identify correct regular expression for given Language.
- Find the expression that can generate given String.
- Find the string that can be generated by given expression.
- Find shortest length string generated by given expression.
- Identify the equivalent expression for given expression.
 - Identify equivalent expressions from given expressions.
- Find number of equivalence classes for the language generated by given expression.
- Find the language generated by expression is finite or infinite.

Summary

Ly Reg Exp Revision done

Next class: FA

