Krasnoyarsk, Russia

Cooperative Multi-Objective Genetic Algorithm with Parallel Implementation

Christina Brester and Eugene Semenkin

Krasnoyarsk, Russia

 Motivation
 Background
 Proposed approach
 Results and Discussion
 Conclusion and Future plans

Integration of Evolutionary Computation and Machine Learning

Learning	
Pros	Cons
The classification accuracy of the best evolutionary and non-evolutionary methods are comparable;	X Evolutionary methods are
Population-based search is easily parallelized;	generally much slower than the non-evolutionary alternatives
These methods can work in the dynamic non- stationary environment;	Possible solution: parallelization
Feature selection and learning in one process might be combined;	X The performance of evolutionary algorithms varies significantly for different problems
From an optimization perspective, learning problems are typically large, non-differentiable, noisy, deceptive, multimodal, high-dimensional, and highly constrained. Evolutionary algorithms are an effective tool for such problems.	Possible solution: cooperative algorithms

Integration of Evolutionary Computation and Machine

Learning	
Pros	Cons
The classification accuracy of the best evolutionary and non-evolutionary methods are comparable;	
Population-based search is easily parallelized;	X Evolutionary methods are generally much slower than the non-evolutionary alternatives
These methods can work in the dynamic non- stationary environment;	Possible solution: parallelization
Feature selection and learning in one process might be combined;	X The performance of evolutionary algorithms varies significantly for different problems
From an optimization perspective, learning problems are typically large, non-differentiable, noisy, deceptive, multimodal, high-dimensional, and highly constrained. Evolutionary algorithms are an effective tool for such problems.	Possible solution: cooperative algorithms

Outline

Motivation

• The Evolutionary Computation and Machine Learning Integration

Background

- Conventional Multi-Objective Genetic Algorithms
- Test Problems
- Experiment Conditions
- Experimental Results and Discussion

Proposed approach

- The Island Model
- Cooperative Multi-objective Genetic Algorithm

Results and Discussion

- Experiment Conditions
- Experimental Results and Discussion

Conclusion and Future Plans

Motivation

Background

Proposed approach

Results and Discussion

Conclusion and Future plans

Multi-Objective Genetic Algorithms (MOGAs)

- Generate the initial population
- Evaluate criteria values
- While (stop-criterion!=true), do:

{

- Estimate fitness-values;
- Choose the most appropriate individuals with the mating selection operator based on their fitness-values;
- Produce new candidate solutions with recombination;
 - Modify the obtained individuals with mutation;
- Compose the new population (environmental selection);

}

Krasnoyarsk, Russia

 Motivation
 Background
 Proposed approach
 Results and Discussion
 Conclusion and Future plans

Multi-Objective Genetic Algorithms

Designing a MOGA, researchers are faced with some issues:

- fitness assignment strategies,
- diversity preservation techniques,
- ways of elitism implementation.

Our task:

✓ To investigate the effectiveness of MOGAs, which are based on various heuristic mechanisms

Krasnoyarsk, Russi

 Motivation
 Background
 Proposed approach
 Results and Discussion
 Conclusion and Future plans

Basic features of the MOGA used

MOGA	Fitness Assignment	Diversity Preservation	Elitism
NSGA-II	Pareto-dominance (niching mechanism) and diversity estimation (crowding distance)	Crowding distance	Combination of the previous population and the offspring
PICEA-g	Pareto-dominance (with generating goal vectors)	Nearest neighbour technique	The archive set and combination of the previous population and the offspring
SPEA2	Pareto-dominance (niching mechanism) and density estimation (the distance to the k-th nearest neighbour in the objective space)	Nearest neighbour technique	The archive set

Krasnoyarsk, Russia

Motivation

Background

Proposed approach

Results and Discussion

Conclusion and Future plans

Some of Test Instances CEC'2009

 $f_{1} = x_{1} + \frac{2}{|J_{1}|} \sum_{j \in J_{1}} (x_{j} - \sin(6\pi x_{1} + \frac{j\pi}{n}))^{2} \rightarrow min,$ $f_{2} = 1 - \sqrt{x_{1}} + \frac{2}{|J_{2}|} \sum_{j \in J_{2}} (x_{j} - \sin(6\pi x_{1} + \frac{j\pi}{n}))^{2} \rightarrow min,$ $\text{Where } n = 30, J_{1} = \{j | j \text{ is odd}, \ 2 \leq j \leq n\}$ $\text{and } J_{2} = \{j | j \text{ is even}, \ 2 \leq j \leq n\}. \ x \in [0,1] \cdot [-1,1]^{n-1}.$

Pareto Set and Front

Pareto Set: $0 \le x_1 \le 1$, $x_j = \sin(6\pi x_1 + \frac{j\pi}{n}), j = 2, ..., n$. Pareto Front: $f_2 = 1 - \sqrt{f_1}, 0 \le f_1 \le 1$.

Krasnoyarsk, Russia

Motivation

Background

Proposed approach

Results and Discussion

Conclusion and Future plans

Some of Test Instances CEC'2009

Νo Test Problem Pareto Set and Front Pareto Set: $0 \le x_1 \le 1$, $f_1 = x_1 + \frac{2}{|J_1|} \sum_{i \in J_1} y_i^2 \to min,$ $\left(\left(0.3x_1^2\cdot\cos\left(24\pi x_1+\frac{4j\pi}{n}\right)\right)+\right.$ UF2 $x_{j} = \begin{cases} +0.6x_{1} \cdot \cos\left(6\pi x_{1} + \frac{j\pi}{n}\right), j \in J_{1}, \\ \left(0.3x_{1}^{2} \cdot \cos\left(24\pi x_{1} + \frac{4j\pi}{n}\right)\right) + \end{cases}$ $f_2 = 1 - \sqrt{x_1} + \frac{2}{|J_2|} \sum_{i \in I} y_i^2 \to min,$ where $n = 30, J_1 = \{j | j \text{ is odd}, 2 \le j \le n \}$ and $+0.6x_1 \cdot \sin\left(6\pi x_1 + \frac{j\pi}{\pi}\right), j \in J_2.$ $J_2 = \{j | j \text{ is even, } 2 \leq j \leq n\}.$ $y_{j} = \begin{cases} x_{j} - \left(0.3x_{1}^{2} \cdot \cos\left(24\pi x_{1} + \frac{4j\pi}{n}\right) + 0.6x_{1}\right) \cdot \\ \cdot \cos\left(6\pi x_{1} + \frac{j\pi}{n}\right), j \in J_{1}, \\ x_{j} - \left(0.3x_{1}^{2} \cdot \cos\left(24\pi x_{1} + \frac{4j\pi}{n}\right) + 0.6x_{1}\right) \cdot \\ \cdot \sin\left(6\pi x_{1} + \frac{j\pi}{n}\right), j \in J_{2}, \end{cases}$ Pareto Front: $f_2 = 1 - \sqrt{f_1}$, $0 \le f_1 \le 1$. Pareto set Pareto front 0.5 $x \in [0,1] \cdot [-1,1]^{n-1}$. 1.0 0.8 -0.5₽ 0,6 0.4 0.5 0 0.2 10 0.8 1.0 0.6

Krasnoyarsk, Russi

Motivation

Background

Proposed approach

Results and Discussion

Conclusion and Future plans

Some of Test Instances CEC'2009

$N_{\overline{0}}$	Test Problem	Pareto Set and Front
UF4	$f_{1} = x_{1} + \frac{2}{ J_{1} } \sum_{j \in J_{1}} h(y_{j}) \to min,$ $f_{2} = 1 - x_{1}^{2} + \frac{2}{ J_{2} } \sum_{j \in J_{2}} h(y_{j}) \to min,$ where $n = 30, J_{1} = \{j j \text{ is odd}, \ 2 \le j \le n \}$ and $J_{2} = \{j j \text{ is even}, \ 2 \le j \le n \},$ $y_{j} = x_{j} - \sin\left(6\pi x_{1} + \frac{j\pi}{n}\right), j = 2,, n,$ $h(t) = \frac{ t }{1 + e^{2 t }},$ $\bar{x} \in [0,1] \cdot [-2,2]^{n-1}.$	Pareto Set: $0 \le x_1 \le 1$, $x_j = \sin\left(6\pi x_1 + \frac{j\pi}{n}\right), j = 2,, n$. Pareto Front: $f_2 = 1 - f_1^2$, $0 \le f_1 \le 1$.

Krasnoyarsk, Russi

MotivationBackgroundProposed approachResults and DiscussionConclusion and Future plans

Performance Metric

The metric *IGD* was used to estimate the quality of obtained Pareto Front approximations:

$$IGD(A, P^*) = \frac{\sum_{v \in P^*} d(v, A)}{|P^*|},$$

where P^* is a set of uniformly distributed points along the Pareto Front (in the objective space), A is an approximate set to the Pareto Front, d(v,A) is the minimum Euclidean distance between v and the points in A.

In short, the $IGD(A, P^*)$ value reflects the average distance from P^* to A.

Krasnoyarsk, Russia

 Motivation
 Background
 Proposed approach
 Results and Discussion
 Conclusion and Future plans

Experiment Conditions

- The maximal number of function evaluations was equal to 300 000.
- The maximal number of solutions in the approximate set produced by each algorithm for computing the IGD metric was 100 and 150 for twoobjective and three-objective problems respectively.
- For all of the test instances IGD values were averaged over 25 runs of each algorithm.

 Motivation
 Background
 Proposed approach
 Results and Discussion
 Conclusion and Future plans

Experiment Conditions

For all of the algorithms the following settings were defined:

- binary tournament selection,
- uniform recombination,
- o **the mutation probability** $p_m=1/n$, where n is the length of the chromosome.
- As usual, MOGAs (NSGA-II, SPEA2, and PICEA-g) operated with binary strings and therefore, we used **standard binary coding** to get real values of variables.

Krasnoyarsk, Russi

 Motivation
 Background
 Proposed approach
 Results and Discussion
 Conclusion and Future plans

Experimental Results

Took frame	NSO	GA-II	PICEA-g		SPEA2	
Test func.	IGD	Time (sec.)	IGD	Time (sec.)	IGD	Time (sec.)
UF1	0.097	196.060	0.107	42.327	0.100	236.677
UF2	0.061	181.520	0.060	84.538	0.078	262.089
UF3	0.191	181.150	0.222	36.781	0.326	237.594
UF4	0.055	182.233	0.0570	75.837	0.083	243.208
UF5	0.426	181.509	0.498	33.844	0.518	240.198
UF6	0.335	183.085	0.346	34.997	0.319	237.906
UF7	0.085	181.039	0.091	75.556	0.125	245.891
UF8	0.269	190.269	0.191	166.056	0.259	253.813
UF9	0.319	191.105	0.290	107.157	0.407	406.996
UF10	0.626	186.267	0.421	118.744	0.534	290.870

Krasnoyarsk, Russia

 Motivation
 Background
 Proposed approach
 Results and Discussion
 Conclusion and Future plans

Discussion

• A **t-test** (with the significance level p=0.05) was used to compare the results:

there was no one MOGA which demonstrated the highest effectiveness (in the sense of the IGD metric) for all of the test problems.

Possible solution: Cooperation of genetic algorithms which are based on different concepts (study NSGA-II, PICEA-g, and SPEA2)

 Motivation
 Background
 Proposed approach
 Results and Discussion
 Conclusion and Future plans

Cooperative Multi-Objective Genetic Algorithm

Island model ...

- ✓ is based on parallel work of islands;
- has an ability to preserve genetic diversity;
- ✓ could be applied to separable problems.

Krasnoyarsk, Russia

 Motivation
 Background
 Proposed approach
 Results and Discussion
 Conclusion and Future plans

Experiment Conditions

- The computational resources (300 000 function evaluations) were distributed to all of the components equally.
- The migration size was 50 (in total each island got 100 points from two others).
- The migration interval was 25 generations.
- Again all results were averaged over 25 runs.

Time

236.68

262.09

237.59

243.21

240.20

237.91

245.89

253.81

407.00

290.87

(sec.)

Result of

t-test

Outperforms the best

value Corresponds to the **best**

value Corresponds to the **best**

value Corresponds to the **best**

value

Outperforms the best

value

Outperforms the best

Outperforms the **best**

value

Corresponds to the

Corresponds to the **best**

second value

value Corresponds to the **best**

value

value

Conclusion and Future plans

SIBERIAN STATE AEROSPACE UNIVERSITY Krasnoyarsk, Russia

> Cooperative algorithm

IGD

0.068

0.056

0.202

0.058

0.338

0.254

0.084

0.259

0.314

0.533

Time

56.57

64.84

55.95

60.27

56.39

56.01

60.27

87.24

78.53

75.12

(sec.)

Proposed approach		Results and Discussion				
	F					

IGD

0.010

0.078

0.326

0.083

0.518

0.319

0.125

0.259

0.407

0.534

Experimental Regults

<u> </u>				
Test	NSGA-II	PICEA-g	SPEA2	

IGD

0.107

0.060

0.222

0.0570

0.498

0.346

0.091

0.191

0.290

0.421

Time

(sec.)

42.33

84.54

36.78

75.84

33.84

35.00

75.56

166.06

107.16

118.74

Background

Time

196.06

181.52

181.15

182.23

181.51

183.09

181.04

190.27

191.11

186.27

(sec.)

Motivation

IGD

0.097

0.061

0.191

0.055

0.426

0.335

0.085

0.269

0.319

0.626

func.

TORT

UF2

UF3

UF4

UF5

UF6

UF7

UF8

UF9

UF10

Krasnoyarsk, Russia

 Motivation
 Background
 Proposed approach
 Results and Discussion
 Conclusion and Future plans

Conclusions and Future Plans

The proposed multi-agent heuristic procedure:

- ✓ does **not require additional experiments** to expose the most appropriate algorithm for the problem considered,
- ✓ might be effectively used instead of any of its component,
- ✓ allows us to decrease the computational time significantly due to the parallel work of island model components.

The algorithm developed has already been applied:

- > to select informative features from data bases (two criteria were introduced the Intra- and Inter-class distances).
- > to design neural network models taking into account two criteria (the computational complexity and the accuracy).

Krasnoyarsk, Russia

Motivation Background Proposed approach Results and Discussion Conclusion and Future plans

Thanks a lot!

