Deep Recommender Systems

Jill-Jênn Vie¹³ Basile Clement³

Florian Yger² Kévin Cocchi³

Ryan Lahfa³ H Thomas Chalumeau³

Hisashi Kashima⁴

- ¹ Inria Lille
- ² Université Paris-Dauphine (France)
- ³ Mangaki (Paris, France)

I – Collaborative filtering

Mangaki, recommendations of anime/manga

Rate anime/manga and receive recommendations

350,000 ratings by 2,000 users on 10,000 anime & manga

- myAnimeList
- AniDB
- AniList
- (soon) TVtropes

Build a profile

Steins;Gate

Suzumiya Haruhi no Shoushitsu

Suzumiya Haruhi no Yuuutsu

Terror in Resonance

The Night is Short, Walk On Girl

Time of Eve

5 centimètres par seconde

.hack//Liminality

.hack//Sign

A Certain Scientific Railgun S

Mangaki prioritizes your watchlist

Angel Beats!

Pokemon: Lucario and the Mystery of Mew Dimension W Haibane Renmei A Silent Voice **Neon Genesis Evangelion** Mind Game Record of Lodoss War Ghost in the Shell: Stand Alone Complex Neon Genesis Evangelion: The End of Evangelion

Browse the rankings: top works

- >>> from mangaki.models import Work
- >>> Work.objects.filter(category__slug='anime').top()[:8]

Why nonprofit?

- Why should blockbusters get all the fun/clicks/money?
- Maybe there is one precious, unknown anime for you
 - and we can help you find it

Driven by passion, not profit

- Everything is open source: github.com/mangaki
- Python (Django), Vue.js
- Many Jupyter notebooks (check 'em out!)

Awards: Microsoft Prize (2014) Japan Foundation (2016)

A simple idea: precious pearls

Work.objects.filter(category__slug='anime').pearls()[:8]

Recommender Systems

Problem

- Every user rates few items (1 %)
- How to infer missing ratings?

Example

Sacha	3	5	2	2
Ondine	4	1	4	5
Pierre	3	3	1	4
Joëlle	5	2	2	5

What is a machine learning algorithm?

Fit

Ondine	like	Zootopia
Ondine	favorite	Porco Rosso
Sacha	favorite	Tokikake
Sacha	dislike	The Martian

Predict

Ondine	?favorite	The Martian
Sacha	?like	Zootopia

What is a bad machine learning algorithm?

Fit

Ondine	like	Zootopia
Ondine	favorite	Porco Rosso
Sacha	favorite	Tokikake
Sacha	dislike	The Martian

100% correct

Predict

Ondine	dislike	The Martian (was: favorite)
Sacha	neutral	Zootopia (was: like)

20% correct

Cannot generalize

What is a good machine learning algorithm?

Fit

Ondine	favorite	Zootopia (was: like)
Ondine	favorite	Porco Rosso
Sacha	favorite	Tokikake
Sacha	dislike	The Martian

90% correct

Predict

Ondine	like	The Martian (was: favorite)
Sacha	favorite	Zootopia (was: like)

90% correct

How to compare algorithms?

Penalty

If I predict: favorite for favorite \rightarrow 0 error

dislike for favorite $\rightarrow (4 - (-2))^2 = 36$ error

like for favorite \rightarrow 4 error

Error: Mean value of (difference)2

RMSE: square root of that

Divide / Fit / Predict

A likes 1		C likes 1		E ?neutral 3
B likes 2	B dislikes 3	C likes 2	D ?wontsee 3	C ?willsee 2
	B likes 4		D ?wontsee 4	

Matrix factorization \rightarrow reduce dimension to generalize

Idea: Do user2vec for all users, item2vec for all movies such that users like movies that are in their direction.

Fit

lacksquare R ratings, U user vectors, W work vectors.

$$R = UW^T$$
 $\hat{r}_{ij}^{ALS} = U_i \cdot W_j$

Predict: Will user *i* like item *j*?

• Just compute $U_i \cdot W_j$ and you will find out!

Algorithm ALS: Alternating Least Squares (Zhou, 2008)

- Until convergence (~ 20 iterations):
 - Fix U (users) learn W (works) in order to minimize the error (+ something)
 - Fix W find U

Illustration of ALS

Illustration of ALS

Why + something? Regularize to generalize

Just minimize RMSE May not be optimal

 $\label{eq:minimize} \mbox{Minimize RMSE} + \mbox{regularization:}$

 \Rightarrow easier to optimize

Visualizing all anime

What did we do, precisely?

Newton's method

To find the zeroes of $f : \mathbf{R} \to \mathbf{R}$:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Optimization

What if we want to minimize $\mathcal{L}: \mathbf{R}^n \to \mathbf{R}$?

$$x_{n+1} = x_n - \underbrace{\mathcal{HL}(x_n)}_{n \times n \text{ matrix}}^{-1} \nabla \mathcal{L}(x_n)$$

What if it is costly?

$$x_{n+1} = x_n - \gamma \nabla \mathcal{L}(x_n)$$

Oh, we just invented gradient descent.

Alternating Least Squares

find U_k that minimizes

$$f(U_k) = \sum_{i,j} (\underbrace{U_i \cdot W_j}_{pred} - \underbrace{r_{ij}}_{real})^2 + \underbrace{\lambda ||U_i||_2^2 + \lambda ||W_j||_2^2}_{regularization}$$

(by the way: the derivative of $u \cdot v$ with respect to u is v)

find the zeroes of

$$f'(U_k) = \sum_{j \text{ rated by } k} 2(U_k \cdot W_j - r_{kj})W_j + 2\lambda U_k = 0$$

can be rewritten $AU_k = B$ so $U_k = A^{-1}B$ (easy!)

Complexity: $O(n^3)$ where n is the number of items rated by U_k

Stochastic Gradient Descent

$$U_k \leftarrow U_k - \gamma f'(U_k)$$

$$U_k \leftarrow (1 - 2\gamma\lambda)U_k - 2\gamma\sum_{j \text{ rated by } k}\underbrace{\left(U_k \cdot W_j - r_{kj}\right)}_{\text{prediction error}}W_j$$

 U_k is updated according to its neighbors W_j

Benchmarks

ALS: minimizing U then W then U then W SGD: minimizing U and W at the same time

Drawback with collaborative filtering

Issue: Item Cold-Start

- If no ratings are available for a work j \Rightarrow Its vector W_j cannot be learned :-(
- No way to distinguish between unrated works.

But we have (many) posters!

II – Factorization Machines

Learning multidimensional feature embeddings

Logistic Regression

Learn a bias for each feature (each user, item, etc.)

Factorization Machines

Learn a bias and an embedding for each feature

What can be done with multidimensional embeddings?

Interpreting the components

Items that discriminate only over one dimension

Interpreting the components

Items that highly discriminate over both dimensions

How to model pairwise interactions with side information?

If you know user i watched item j on TV (not theatre) How to model it?

y: rating of user i over item j

Biases

$$y = \theta_i + e_j$$

Collaborative filtering

$$y = \theta_i + e_j + \langle \mathbf{v}_{\mathsf{user}} \, \mathbf{i}, \, \mathbf{v}_{\mathsf{item}} \, \mathbf{j} \rangle$$

With side information

$$y = \theta_i + e_j + w_{\mathsf{TV}} + \langle \mathbf{\textit{v}}_{\mathsf{user}\; \textit{\textbf{i}}}, \, \mathbf{\textit{v}}_{\mathsf{item}\; \textit{\textbf{j}}} \rangle + \langle \mathbf{\textit{v}}_{\mathsf{user}\; \textit{\textbf{i}}}, \, \mathbf{\textit{v}}_{\mathsf{TV}} \rangle + \langle \mathbf{\textit{v}}_{\mathsf{item}\; \textit{\textbf{j}}}, \, \mathbf{\textit{v}}_{\mathsf{TV}} \rangle$$

Factorization Machines

Just pick features (ex. user, item, skill) and you get a model Each feature k is modeled by bias w_k and embedding v_k .

Jill-Jênn Vie and Hisashi Kashima. "Knowledge Tracing Machines: Factorization Machines for Knowledge Tracing". In: 33th AAAI Conference on Artificial Intelligence. 2019. URL: http://arxiv.org/abs/1811.03388

Regression with sparse features (very elegant!)

x concatenation of one-hot vectors (ex. at positions s and t)

$$\begin{aligned} \langle \boldsymbol{w}, \boldsymbol{x} \rangle &= \sum_{i} w_{i} x_{i} = w_{s} + w_{t} \\ ||V\boldsymbol{x}||^{2} &= \sum_{i,j} x_{i} x_{j} \langle \boldsymbol{v}_{i}, \boldsymbol{v}_{j} \rangle \geq 0 \\ \frac{1}{2} (||V\boldsymbol{x}||^{2} - \mathbf{1}^{T} (V \circ V) (\boldsymbol{x} \circ \boldsymbol{x})) &= \sum_{i < j} x_{i} x_{j} \langle \boldsymbol{v}_{i}, \boldsymbol{v}_{j} \rangle = \langle \boldsymbol{v}_{s}, \boldsymbol{v}_{t} \rangle \end{aligned}$$

Factorization machines (Rendle 2012)

$$P(\langle \pmb{x}, \pmb{v}_i \rangle)$$
 for a polynomial P

The Blondel Trilogy

- Polynomial networks and FMs (ICML 2016)
- Multi-output polynomial networks and FMs (NIPS 2017)
- Higher-order FMs (NIPS 2016)

III - Binary factorization

Chess players have Elo ratings

Elo ratings are updated after each match

If player 1 (550) beats player 2 (600)

Then player 1 will \uparrow (560) and player 2 will \downarrow (590)

Let's ask Harvard students

(The Social Network)

K-Factor???

(Not The Social Network)

Old models still used today

$$P(heta_i ext{ beats } heta_j) = rac{1}{1+10^{(heta_j- heta_i)/400}}$$

Item response theory (1960)

$$P(\theta_i \text{ solves } d_j) = \frac{1}{1 + e^{-(\theta_i - d_j)}}$$

Examples

Used in PISA, GMAT, Pix.

Maximum likelihood estimation

Given outcomes $r \in \{0, 1\}$, how to estimate θ ?

$$p = \frac{1}{1 + e^{-(\theta - d)}} = \sigma(\theta - d)$$

Thanks to logistic function: p' = p(1 - p)

$$L(\theta) = \log p^{r} (1-p)^{1-r} = r \log p + (1-r) \log(1-p)$$

$$\nabla_{\theta} L = \frac{\partial L}{\partial \theta} = r - p$$

$$\theta_{t+1} = \theta_t + \gamma \underbrace{\nabla_{\theta} L}_{r-p}$$

Thus it is online gradient ascent! K-factor $= \gamma =$ learning rate.

The chess statistician Jeff Sonas believes that the original K=10 value (for players rated above 2400) is inaccurate in Elo's work.

Evolving over time

Players ability increase as they win matches over other players So players may have an optimistic strategy to plan their matches

Factorization: learning vectors

From some R_{ij} infer other R_{ij}

Collaborative filtering

Learn model U, V such that $R \simeq UV$ $\widehat{r}_{ij} = \langle \boldsymbol{u}_i, \boldsymbol{v}_i \rangle$

Optimize regularized least squares

$$\sum_{i,j} (\hat{r}_{ij} - r_{ij})^2 + \lambda(||U||_F^2 + ||V||_F^2)$$

Binary version

Learn model U,V such that $R\simeq \sigma(UV)$ $\widehat{r_{ij}}=\sigma(\langle oldsymbol{u}_i,oldsymbol{v}_j
angle)$

Optimize likelihood

EM algorithm via MCMC: sample U, optimize V (Cai, 2010)

Slow, $d \le 6$

Scaling to big data

Gradient descent

For each example update parameters

Batch gradient descent

Compute the gradient on all examples and update parameters

Stochastic gradient descent

Sample examples and update parameters

Minibatch gradient descent

Sample a minibatch of examples and update parameters

Scaling to high dimension

$$\theta_{t+1} = \theta_t - \gamma \nabla_{\theta} \mathcal{L} \Rightarrow \text{Replace } \nabla_{\theta} \mathcal{L} \text{ with an unbiased estimate } \tilde{\nabla}_{\theta} \mathcal{L}$$

IV – Deep Factorization

Drawback with collaborative filtering

Issue: Item Cold-Start

- If no ratings are available for a work j \Rightarrow Its vector W_j cannot be learned :-(
- No way to distinguish between unrated works.

But we have (many) posters!

Illustration2Vec (Saito and Matsui, 2015)

- CNN (VGG-16) pretrained on ImageNet (photos)
- Retrained on Danbooru (1.5M manga illustrations with tags)
- 502 most frequent tags kept, outputs tag weights

LASSO for sparse linear regression

T matrix of 15000 works \times 502 tags (T_j : tags of work j)

Fit

- Each user is described by its preferences over tags P_i
- LASSO constraint: user likes/hates few tags
- Learn user preferences P_i such that

$$\hat{r}_{ij}^{LASSO} = P_i \cdot T_j.$$

Predict: Will user *i* like work *j*?

- Here is a new work with a poster and tags T_j
- Just compute $P_i \cdot T_j$ and you will find out!

Interpretation and explanation of user preferences

You seem to like magical girls but not blonde hair ⇒ Look! All of them are brown hair! Buy now!

Combine models

Which model should we choose between ALS and LASSO?

Answer Both!

Methods boosting, bagging, model stacking, blending.

Idea find α_j s.t. $\hat{r}_{ij} \triangleq \alpha_j \hat{r}_{ij}^{ALS} + (1 - \alpha_j) \hat{r}_{ij}^{LASSO}$. If popular, listen to ALS more than LASSO

$$\hat{r}^{BALSE}_{ij} = \begin{cases} \hat{r}^{ALS}_{ij} & \text{if item } j \text{ was rated at least } \gamma \text{ times} \\ \hat{r}^{LASSO}_{ij} & \text{otherwise} \end{cases}$$

But we can't: Not differentiable!

$$\hat{r}_{ij}^{BALSE} = \sigma(\beta(R_j - \gamma))\hat{r}_{ij}^{ALS} + (1 - \sigma(\beta(R_j - \gamma)))\hat{r}_{ij}^{LASSO}$$

 β and γ are learned by stochastic gradient descent.

Blended Alternate Least Squares with Explanation (BALSE)

Comparing algorithms: cross-validation

- 80% of the ratings are used for training
- 20% of the ratings are kept for testing

Different sets of items:

- Whole test set of works
- 1000 works least rated (1.5%)
- Cold-start: works not seen in the training set (only the posters)

Results

RMSE	Test set	1000 least rated (1.5%)	Cold-start items
ALS	1.157	1.299	1.493
LASSO	1.446	1.347	1.358
BALSE	1.150	1.247	1.316

Summing up

We presented BALSE, a model that:

- uses information in the ratings (collaborative filtering)
- uses information in the posters using CNNs (content-based)
- combine them in a nonlinear way

to improve the recommendations, and explain them.

Future work: Make your neural network watch the anime

Extract frames from episodes

Cowboy Bebop EP 23 "Brain Scratch", Sunrise

Coming soon: Watching assistant

Deep Factorization Machines

Learn layers $W^{(\ell)}$ and $b^{(\ell)}$ such that:

$$\begin{split} & \boldsymbol{a}^0(\boldsymbol{x}) = (\boldsymbol{v}_{\text{user}}, \boldsymbol{v}_{\text{item}}, \boldsymbol{v}_{\text{skill}}, \ldots) \\ & \boldsymbol{a}^{(\ell+1)}(\boldsymbol{x}) = \text{ReLU}(\boldsymbol{W}^{(\ell)}\boldsymbol{a}^{(\ell)}(\boldsymbol{x}) + \boldsymbol{b}^{(\ell)}) \quad \ell = 0, \ldots, L-1 \\ & y_{DNN}(\boldsymbol{x}) = \text{ReLU}(\boldsymbol{W}^{(L)}\boldsymbol{a}^{(L)}(\boldsymbol{x}) + \boldsymbol{b}^{(L)}) \end{split}$$

$$logit p(\mathbf{x}) = y_{FM}(\mathbf{x}) + y_{DNN}(\mathbf{x})$$

Jill-Jênn Vie. "Deep Factorization Machines for Knowledge Tracing". In: *The 13th Workshop on Innovative Use of NLP for Building Educational Applications*. 2018. URL: https://arxiv.org/abs/1805.00356

Comparison

- FM: y_{FM} factorization machine with $\lambda=0.01$
- Deep: y_{DNN}: multilayer perceptron
- DeepFM: $y_{DNN} + y_{FM}$ with shared embedding
- Bayesian FM: $w_k, v_{kf} \sim \mathcal{N}(\mu_f, 1/\lambda_f)$ $\mu_f \sim \mathcal{N}(0, 1), \ \lambda_f \sim \Gamma(1, 1)$ (trained using Gibbs sampling)

Various types of side information

- first: <discrete> (user, token, countries, etc.)
- last: <discrete> + <continuous> (time + days)
- pfa: <discrete> + wins + fails

Duolingo dataset

# user:D2inSf5	+ countries:	X days	1.793 client:web session:lesson format:reverse_translate time:16			
8rgJEAPw1001	She	PRON	Case=Nom Gender=Fem Number=Sing Person=3 PronType=Prs fPOS=PRON++PRP	nsubj		
8rgJEAPw1002		VERB	Mood=Ind Number=Sing Person=3 Tense=Pres VerbForm=Fin fPOS=VERB++VBZ	сор		
8rgJEAPw1003	my	PRON	Number=Sing Person=1 Poss=Yes PronType=Prs fPOS=PRON++PRP\$	nmod:poss		
8rgJEAPw1004	mother	NOUN	Degree=Pos fPOS=ADJ++JJ	R00T		
8rgJEAPw1005	and	CONJ	fPOS=CONJ++CC			
8rgJEAPw1006	he	PRON	Case=Nom Gender=Masc Number=Sing Person=3 PronType=Prs fPOS=PRON++PRP	nsubj		
8rgJEAPw1007		VERB	Mood=Ind Number=Sing Person=3 Tense=Pres VerbForm=Fin fPOS=VERB++VBZ	сор		
8rgJEAPw1008	my	PRON	Number=Sing Person=1 Poss=Yes PronType=Prs fPOS=PRON++PRP\$	nmod:poss		
8rgJEAPw1009	father	NOUN	Number=Sing fPOS=NOUN++NN	conj		
# user:D2inSf5+ countries:MX days:2.689 client:web session:practice format:reverse_translate time:6						
oMGsnnH/0101	When	ADV	PronType=Int fPOS=ADV++WRB	advmod		
oMGsnnH/0102	can	AUX	VerbForm=Fin fPOS=AUX++MD	aux		
oMGsnnH/0103		PRON	Case=Nom Number=Sing Person=1 PronType=Prs fPOS=PRON++PRP	nsubj		
oMGsnnH/0104	help	VERB	VerbForm=Inf fPOS=VERB++VB	ROOT		

Results

Model	d	epoch	train	first	last	pfa
Bayesian FM	20	500/500	_	0.822	_	_
Bayesian FM	20	500/500	_	_	0.817	_
DeepFM	20	15/1000	0.872	0.814	_	_
Bayesian FM	20	100/100	_	_	0.813	_
FM	20	20/1000	0.874	0.811	_	_
Bayesian FM	20	500/500	_	_	_	0.806
FM	20	21/1000	0.884	_	_	0.805
FM	20	37/1000	0.885	_	8.0	_
DeepFM	20	77/1000	0.89	_	0.792	_
Deep	20	7/1000	0.826	0.791	_	_
Deep	20	321/1000	0.826	_	0.79	_
LR	0	50/50	_	_	_	0.789
LR	0	50/50	_	0.783	_	_
LR	0	50/50	_	_	0.783	_

Duolingo ranking

Rank	Team	Algo	AUC
1	SanaLabs	RNN + GBDT	.857
2	singsound	RNN	.854
2	NYU	GBDT	.854
4	CECL	LR + L1 (13M feat.)	.843
5	TMU	RNN	.839
7 (off)	JJV	Bayesian FM	.822
8 (off)	JJV	DeepFM	.814
10	JJV	DeepFM	.809
15	Duolingo	LR	.771

Burr Settles et al. "Second language acquisition modeling". In: Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications. 2018, pp. 56–65. URL:

Try our recommender system: mangaki.fr

Any questions?

Know more

Al for Manga & Anime: research.mangaki.fr

- Burr Settles et al. "Second language acquisition modeling". In: Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications. 2018, pp. 56–65. URL: http://sharedtask.duolingo.com.
- Jill-Jênn Vie. "Deep Factorization Machines for Knowledge Tracing". In: The 13th Workshop on Innovative Use of NLP for Building Educational Applications. 2018. URL: https://arxiv.org/abs/1805.00356.
 - Jill-Jênn Vie and Hisashi Kashima. "Knowledge Tracing Machines: Factorization Machines for Knowledge Tracing". In: 33th AAAI Conference on Artificial Intelligence. 2019. URL: http://arxiv.org/abs/1811.03388.