EC303	CMOS VLSI Design	PCC	3-0-0	3 Credits
-------	------------------	-----	-------	-----------

Pre-requisites: None

Course Outcomes: After the completion of the course the student will be able to:

CO1	Explain the fabrication, operation and characteristics MOSFET					
CO2	Analyze the performance of CMOS inverter					
CO3	Design digital circuits using CMOS gates					
CO4	Design analog circuits using CMOS gates					
CO5	Outline the latest trends in CMOS technology					

Mapping of course outcomes with program outcomes:

PO	P01	P02	P03	P04	PO5	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO1	3	1	2	-	-	-	-	-	-	-	-	-	2	-
CO2	3	2	3	-	-	-	-	•	-	-	•	-	2	2
CO3	3	3	3	-	-	-	-	•	-	-	•	-	2	2
CO4	3	3	3	1	1	-	-	ı	1	-	•	-	2	2
CO5	1	2	-	-	-	-	-	-	•	-	-	-	2	2

Detailed Syllabus:

INTRODUCTION to MOSFETs: Unit process steps of CMOS technology, Fabrication process flow: NMOS, PMOS, Twin well CMOS; Structure and operation of the MOS transistor, I-V and C-V characteristics, MOSFET capacitances, layout, design rules, Scaling and Short channel effects.

MOS INVERTERS: Inverters with resistive, MOSFET load; CMOS inverter: Voltage transfer characteristics, Noise margins, switching characteristics, calculation of delay times; effect of load on switching characteristics and driving large loads, logical effort of paths

Digital circuits using CMOS: Pseudo NMOS, Pass transistor, transmission gates, Dynamic logic, Domino logic, Differential cascode voltage switch logic, design of combinational circuits, design of sequential circuits, timing requirements.

Analog circuits: Second order effects in MOSFETs. Single stage Amplifiers: Common-source stage, Source follower, Common-gate, Cascode stage, Differential Amplifiers, Passive and Active current mirrors, CMOS operational amplifier, gain boosting techniques.

Trends in CMOS technology: SOI, FinFET and multi-gate FET, 2D materials based FETs, On-chip interconnects.

Reading:

- 1. Sung-Mo Kang, Yusuf Leblebici Chulwoo kim, Digital Integrated Circuits: Analysis and Design, 4th Edition, McGraw Hill Education, 2016.
- 2. Behzad Razavi, Design of Analog CMOS Integrated Circuits, 2nd Edition, McGraw Hill Education, 2016.
- 3. Jan M RABAEY, Digital Integrated Circuits, 2nd Edition, Pearson Education, 2003.
- 4. Neil H.E. Weste and David Harris, CMOS VLSI Design: A circuits and systems perspective, 4th Edition, Pearson Education, 2015.