Department of Atmospheric Sciences National Central University Advanced Applied Mathematics Homework III 2021/10/13/-2021/10/27

- (1) 10 pts 考慮 u'' + u + x = 0, u(0) = 0, u(1) = 0。如果此微分方程是某變分問題的 Euler-Lagrangian 方程
 - (a) 用 Rayleigh-Ritz 法求解 *u* 令可選取的基礎函數為 *x*(1-*x*), *x*²(1-*x*), *x*³(1-*x*)......
 為了簡單起見,只用一項來求解。
 - (b) 請證明其解析解為 $u(x) = \frac{\sin(x)}{\sin(1)} x$ 請繪圖表示兩個解,並比較近似解和解析解在 x = 0.25, 0.5, 0.75 處的值。

Considering u'' + u + x = 0, u(0) = 0, u(1) = 0. If this PDE is the Euler-Lagrangian equation of a variational problem

- (a) Use Rayleigh-Ritz method to solve u. You can choose x(1-x), $x^2(1-x)$, $x^3(1-x)$ as your basic functions, but for simplicity, you can use only one term.
- (b) Please show that the analytic solution of this equation is $u(x) = \frac{\sin(x)}{\sin(1)} x.$

Please plot two solutions, and compare the values from these two solutions at x = 0.25, 0.5, 0.75.

- (2) 20 pts. (Please write the codes and solve the resulting equation with a tri-diagonal matrix all by yourself).
- (a) Use cubic spline function to compute the coefficients a_i , b_i , c_i , d_i for each sector, and fill out the parentheses (up to four digits after the decimal point) in the following table.
- (b) Plot the distribution of y = y(x).

Data				Results								
i	χ_i	y_i	h_i	a_i		b_i		c_i		d_I		
0	0	-7	1	()	()	()	()	
1	1	-5	1	()	()	()	()	
2	2	2	1	()	()	()	()	
3	3	18	1	()	()	()	()	
4	4	40										

(3) 20 pts. Same as above, but now the values of y are changed, and the distances of each sector are different.

Data				Results							
i	χ_i	y_i	h_i	a_i		b_i		c_i		d_i	
0	0	20	1	()	()	()	()
1	1	-8	2	()	()	()	()
2	3	10	3	()	()	()	()
3	6	2	4	()	()	()	()
4	10	-7									