MC-202 Árvores B

lago A. Carvalho iagoac@ic.unicamp.br

Universidade Estadual de Campinas

 1° semestre/2020

Um problema: Trabalhamos com 1.000.000 de registros e cada um pode ser muito grande (uma foto, por exemplo). Portanto, não podemos guardá-los todos na memória. Toda vez que executamos um programa, temos que executar cerca de 1000 consultas nesse banco de dados.

Um problema: Trabalhamos com 1.000.000 de registros e cada um pode ser muito grande (uma foto, por exemplo). Portanto, não podemos guardá-los todos na memória. Toda vez que executamos um programa, temos que executar cerca de 1000 consultas nesse banco de dados.

Onde armazenar os dados?

Um problema: Trabalhamos com 1.000.000 de registros e cada um pode ser muito grande (uma foto, por exemplo). Portanto, não podemos guardá-los todos na memória. Toda vez que executamos um programa, temos que executar cerca de 1000 consultas nesse banco de dados.

Onde armazenar os dados?

Um problema: Trabalhamos com 1.000.000 de registros e cada um pode ser muito grande (uma foto, por exemplo). Portanto, não podemos guardá-los todos na memória. Toda vez que executamos um programa, temos que executar cerca de 1000 consultas nesse banco de dados.

- Onde armazenar os dados?
- Qual estrutura de dados?

Um problema: Trabalhamos com 1.000.000 de registros e cada um pode ser muito grande (uma foto, por exemplo). Portanto, não podemos guardá-los todos na memória. Toda vez que executamos um programa, temos que executar cerca de 1000 consultas nesse banco de dados.

- Onde armazenar os dados?
- Qual estrutura de dados?

Tentativa: usar uma árvore binária de busca balanceada no disco

Quanto tempo vai levar para realizar as $1000\ \mathrm{consultas}$?

Quanto tempo vai levar para realizar as 1000 consultas?

• ler um nó no disco pode demorar 5 ms

Quanto tempo vai levar para realizar as 1000 consultas?

- ler um nó no disco pode demorar 5 ms
- a árvore tem 1.000.000 de nós

Quanto tempo vai levar para realizar as 1000 consultas?

- ler um nó no disco pode demorar 5 ms
- a árvore tem 1.000.000 de nós
- a altura é de $\log_2(1.000.000) \approx 20$ nós

Quanto tempo vai levar para realizar as $1000\ \mathrm{consultas}$?

- ler um nó no disco pode demorar 5 ms
- a árvore tem 1.000.000 de nós
- a altura é de $\log_2(1.000.000) \approx 20$ nós

TEMPO

Quanto tempo vai levar para realizar as 1000 consultas?

- ler um nó no disco pode demorar 5 ms
- a árvore tem 1.000.000 de nós
- a altura é de $\log_2(1.000.000) \approx 20$ nós

TEMPO = 1000 buscas

Quanto tempo vai levar para realizar as 1000 consultas?

- ler um nó no disco pode demorar 5 ms
- a árvore tem 1.000.000 de nós
- a altura é de $\log_2(1.000.000) \approx 20$ nós

TEMPO = $1000 \text{ buscas} \times 20 \text{ nós/busca}$

Quanto tempo vai levar para realizar as $1000\ \mathrm{consultas}$?

- ler um nó no disco pode demorar 5 ms
- a árvore tem 1.000.000 de nós
- a altura é de $\log_2(1.000.000) \approx 20$ nós

TEMPO = $1000 \text{ buscas} \times 20 \text{ nós/busca} \times 5 \text{ ms/nó}$

Quanto tempo vai levar para realizar as 1000 consultas?

- ler um nó no disco pode demorar 5 ms
- a árvore tem 1.000.000 de nós
- a altura é de $\log_2(1.000.000) \approx 20$ nós

TEMPO = $1000 \text{ buscas} \times 20 \text{ nós/busca} \times 5 \text{ ms/nó} = 100 \text{ s}$

Quanto tempo vai levar para realizar as $1000\ \mathrm{consultas}$?

- ler um nó no disco pode demorar 5 ms
- a árvore tem 1.000.000 de nós
- a altura é de $\log_2(1.000.000) \approx 20$ nós

TEMPO = $1000 \text{ buscas} \times 20 \text{ nós/busca} \times 5 \text{ ms/nó} = 100 \text{ s}$

Solução: diminuir a altura da árvore para diminuir número de leituras no disco

A memória do computador é dividida em uma hierarquia:

• HDD (Hard Disk Drive) ou SSD (Solid-State Drive)

- HDD (Hard Disk Drive) ou SSD (Solid-State Drive)
 - Memória permanente, onde gravamos arquivos

- HDD (Hard Disk Drive) ou SSD (Solid-State Drive)
 - Memória permanente, onde gravamos arquivos
 - Chamada de memória secundária

- HDD (Hard Disk Drive) ou SSD (Solid-State Drive)
 - Memória permanente, onde gravamos arquivos
 - Chamada de memória secundária
- RAM (Random-Access Memory)

- HDD (Hard Disk Drive) ou SSD (Solid-State Drive)
 - Memória permanente, onde gravamos arquivos
 - Chamada de memória secundária
- RAM (Random-Access Memory)
 - Onde são armazenados os programas em execução

- HDD (Hard Disk Drive) ou SSD (Solid-State Drive)
 - Memória permanente, onde gravamos arquivos
 - Chamada de memória secundária
- RAM (Random-Access Memory)
 - Onde são armazenados os programas em execução
 - e a memória alocada pelos mesmos

- HDD (Hard Disk Drive) ou SSD (Solid-State Drive)
 - Memória permanente, onde gravamos arquivos
 - Chamada de memória secundária
- RAM (Random-Access Memory)
 - Onde são armazenados os programas em execução
 - e a memória alocada pelos mesmos
 - Memória volátil, é apagada se o computador é desligado

- HDD (Hard Disk Drive) ou SSD (Solid-State Drive)
 - Memória permanente, onde gravamos arquivos
 - Chamada de memória secundária
- RAM (Random-Access Memory)
 - Onde são armazenados os programas em execução
 - e a memória alocada pelos mesmos
 - Memória volátil, é apagada se o computador é desligado
- Memória Cache

- HDD (Hard Disk Drive) ou SSD (Solid-State Drive)
 - Memória permanente, onde gravamos arquivos
 - Chamada de memória secundária
- RAM (Random-Access Memory)
 - Onde são armazenados os programas em execução
 - e a memória alocada pelos mesmos
 - Memória volátil, é apagada se o computador é desligado
- Memória Cache
 - Muito próxima do processador para ter acesso rápido

A memória do computador é dividida em uma hierarquia:

- HDD (Hard Disk Drive) ou SSD (Solid-State Drive)
 - Memória permanente, onde gravamos arquivos
 - Chamada de memória secundária
- RAM (Random-Access Memory)
 - Onde são armazenados os programas em execução
 - e a memória alocada pelos mesmos
 - Memória volátil, é apagada se o computador é desligado

Memória Cache

- Muito próxima do processador para ter acesso rápido
- A informação é copiada da RAM para a Cache

Velocidade

Tamanho

US\$ por GB

¹em um processador 2GHz

	Velocidade	Tamanho	US\$ por GB
HDD	até 200 MB/s	até 4TB	0,05

5

¹em um processador 2GHz

	Velocidade	Tamanho	US\$ por GB
HDD	até 200 MB/s	até 4TB	0,05
SSD	200 a 2500 MB/s	até 512 GB	0,3

5

¹em um processador 2GHz

	Velocidade	Tamanho	US\$ por GB
HDD	até 200 MB/s	até 4TB	0,05
SSD	200 a 2500 MB/s	até 512 GB	0,3
RAM	2 a 20 GB/s	até 64 GB	7,5

¹em um processador 2GHz

	Velocidade	Tamanho	US\$ por GB
HDD	até 200 MB/s	até 4TB	0,05
SSD	200 a 2500 MB/s	até 512 GB	0,3
RAM	2 a 20 GB/s	até 64 GB	7,5
Cache	32 a 64 GB/s ¹	até 25 MB	não é vendida

ı

¹em um processador 2GHz

Queremos armazenar registros na memória secundária:

Queremos armazenar registros na memória secundária:

• A informação não cabe na memória principal

Queremos armazenar registros na memória secundária:

- A informação não cabe na memória principal
 - ou queremos que a informação seja permanente

Queremos armazenar registros na memória secundária:

- A informação não cabe na memória principal
 - ou queremos que a informação seja permanente
- A memória secundária é dividida em páginas

- A informação não cabe na memória principal
 - ou queremos que a informação seja permanente
- A memória secundária é dividida em páginas
 - usualmente de 2MB a 16MB

- A informação não cabe na memória principal
 - ou queremos que a informação seja permanente
- A memória secundária é dividida em páginas
 - usualmente de 2MB a 16MB
- Se a página está na memória, podemos acessá-la

- A informação não cabe na memória principal
 - ou queremos que a informação seja permanente
- A memória secundária é dividida em páginas
 - usualmente de 2MB a 16MB
- Se a página está na memória, podemos acessá-la
- Se não está, precisamos lê-la na memória secundária

- A informação não cabe na memória principal
 - ou queremos que a informação seja permanente
- A memória secundária é dividida em páginas
 - usualmente de 2MB a 16MB
- Se a página está na memória, podemos acessá-la
- Se não está, precisamos lê-la na memória secundária
- O acesso a memória secundária é muito mais lento

- A informação não cabe na memória principal
 - ou queremos que a informação seja permanente
- A memória secundária é dividida em páginas
 - usualmente de 2MB a 16MB
- Se a página está na memória, podemos acessá-la
- Se não está, precisamos lê-la na memória secundária
- O acesso a memória secundária é muito mais lento
 - queremos ler o menor número de páginas possível

- A informação não cabe na memória principal
 - ou queremos que a informação seja permanente
- A memória secundária é dividida em páginas
 - usualmente de 2MB a 16MB
- Se a página está na memória, podemos acessá-la
- Se não está, precisamos lê-la na memória secundária
- O acesso a memória secundária é muito mais lento
 - queremos ler o menor número de páginas possível
 - acessar páginas que estão na memória é rápido

Usaremos pseudocódigo para apresentar a ED:

• Transmitem a ideia principal de um algoritmo

- Transmitem a ideia principal de um algoritmo
- Não há preocupação com detalhes de implementação

- Transmitem a ideia principal de um algoritmo
- Não há preocupação com detalhes de implementação
 - são agnósticos em relação a linguagem de programação

- Transmitem a ideia principal de um algoritmo
- Não há preocupação com detalhes de implementação
 - são agnósticos em relação a linguagem de programação
- É uma forma mais abstrata de falar de algoritmos

- Transmitem a ideia principal de um algoritmo
- Não há preocupação com detalhes de implementação
 - são agnósticos em relação a linguagem de programação
- É uma forma mais abstrata de falar de algoritmos
- Precisamos tomar o cuidado de:

- Transmitem a ideia principal de um algoritmo
- Não há preocupação com detalhes de implementação
 - são agnósticos em relação a linguagem de programação
- É uma forma mais abstrata de falar de algoritmos
- Precisamos tomar o cuidado de:
 - Deixar o algoritmo explicito

- Transmitem a ideia principal de um algoritmo
- Não há preocupação com detalhes de implementação
 - são agnósticos em relação a linguagem de programação
- É uma forma mais abstrata de falar de algoritmos
- Precisamos tomar o cuidado de:
 - Deixar o algoritmo explicito
 - E que cada passo possa ser feito pelo computador

Usaremos pseudocódigo para apresentar a ED:

- Transmitem a ideia principal de um algoritmo
- Não há preocupação com detalhes de implementação
 - são agnósticos em relação a linguagem de programação
- É uma forma mais abstrata de falar de algoritmos
- Precisamos tomar o cuidado de:
 - Deixar o algoritmo explicito
 - E que cada passo possa ser feito pelo computador

Se x é ponteiro para um objeto na memória secundária

Usaremos pseudocódigo para apresentar a ED:

- Transmitem a ideia principal de um algoritmo
- Não há preocupação com detalhes de implementação
 - são agnósticos em relação a linguagem de programação
- É uma forma mais abstrata de falar de algoritmos
- Precisamos tomar o cuidado de:
 - Deixar o algoritmo explicito
 - E que cada passo possa ser feito pelo computador

Se x é ponteiro para um objeto na memória secundária

• LEDoDisco(x): lê x da memória secundária

Usaremos pseudocódigo para apresentar a ED:

- Transmitem a ideia principal de um algoritmo
- Não há preocupação com detalhes de implementação
 - são agnósticos em relação a linguagem de programação
- É uma forma mais abstrata de falar de algoritmos
- Precisamos tomar o cuidado de:
 - Deixar o algoritmo explicito
 - E que cada passo possa ser feito pelo computador

Se x é ponteiro para um objeto na memória secundária

- LEDoDisco(x): lê x da memória secundária
- ESCREVENODISCO(x): grava x na memória secundária

Podemos generalizar árvores binárias de busca

Podemos generalizar árvores binárias de busca

• Ex: árvores ternárias de busca

Podemos generalizar árvores binárias de busca

- Ex: árvores ternárias de busca
 - Nó pode ter 0, 1, 2 ou 3 filhos

Podemos generalizar árvores binárias de busca

- Ex: árvores ternárias de busca
 - Nó pode ter 0, 1, 2 ou 3 filhos

Podemos generalizar árvores binárias de busca

- Ex: árvores ternárias de busca
 - Nó pode ter 0, 1, 2 ou 3 filhos

Como fazer busca?

São árvores M-árias de busca com propriedades adicionais

São árvores M-árias de busca com propriedades adicionais

Cada nó \boldsymbol{x} tem os seguintes campos:

São árvores M-árias de busca com propriedades adicionais

Cada nó x tem os seguintes campos:

• x.n é o número de chaves armazenadas em x

São árvores M-árias de busca com propriedades adicionais

Cada nó x tem os seguintes campos:

- x.n é o número de chaves armazenadas em x
- x. chave[i] é i-ésima chave armazenada

São árvores M-árias de busca com propriedades adicionais

Cada nó x tem os seguintes campos:

- x.n é o número de chaves armazenadas em x
- x. chave[i] é i-ésima chave armazenada
 - $x.chave[1] < x.chave[2] < \dots < x.chave[x.n]$

São árvores M-árias de busca com propriedades adicionais

Cada nó x tem os seguintes campos:

- x.n é o número de chaves armazenadas em x
- x. chave[i] é i-ésima chave armazenada
 - $-x.chave[1] < x.chave[2] < \dots < x.chave[x.n]$
- x.folha indica se x é uma folha ou não

São árvores M-árias de busca com propriedades adicionais

Cada nó x tem os seguintes campos:

- x.n é o número de chaves armazenadas em x
- x. chave[i] é i-ésima chave armazenada $x. chave[1] < x. chave[2] < \cdots < x. chave[x.n]$
- x. folha indica se x é uma folha ou não

São árvores M-árias de busca com propriedades adicionais

Cada nó x tem os seguintes campos:

- x.n é o número de chaves armazenadas em x
- x. chave[i] é i-ésima chave armazenada $x. chave[1] < x. chave[2] < \cdots < x. chave[x.n]$
- x. folha indica se x é uma folha ou não

Cada nó interno x contém x. n+1 ponteiros

• x.c[i] é o ponteiro para o i-ésimo filho

São árvores M-árias de busca com propriedades adicionais

Cada nó x tem os seguintes campos:

- x.n é o número de chaves armazenadas em x
- x. chave[i] é i-ésima chave armazenada $x. chave[1] < x. chave[2] < \cdots < x. chave[x.n]$
- x. folha indica se x é uma folha ou não

- x.c[i] é o ponteiro para o i-ésimo filho
- ullet se a chave k está na subárvore x.c[i], então

São árvores M-árias de busca com propriedades adicionais

Cada nó x tem os seguintes campos:

- x.n é o número de chaves armazenadas em x
- x. chave[i] é i-ésima chave armazenada $x. chave[1] < x. chave[2] < \cdots < x. chave[x.n]$
- x. folha indica se x é uma folha ou não

- x.c[i] é o ponteiro para o i-ésimo filho
- ullet se a chave k está na subárvore x.c[i], então
 - -k < x.chave[1] se i = 1

São árvores M-árias de busca com propriedades adicionais

Cada nó x tem os seguintes campos:

- x.n é o número de chaves armazenadas em x
- x. chave[i] é i-ésima chave armazenada - $x. chave[1] < x. chave[2] < \cdots < x. chave[x.n]$
- x. folha indica se x é uma folha ou não

- x.c[i] é o ponteiro para o i-ésimo filho
- ullet se a chave k está na subárvore x.c[i], então
 - -k < x.chave[1] se i = 1
 - -x.chave[x.n] < k se i = x.n+1

São árvores M-árias de busca com propriedades adicionais

Cada nó x tem os seguintes campos:

- x.n é o número de chaves armazenadas em x
- $x. \, chave[i]$ é i-ésima chave armazenada
 - $-x.chave[1] < x.chave[2] < \dots < x.chave[x.n]$
- x.folha indica se x é uma folha ou não

- x.c[i] é o ponteiro para o i-ésimo filho
- ullet se a chave k está na subárvore x.c[i], então
 - -k < x.chave[1] se i = 1
 - -x. chave[x.n] < k se i = x.n + 1
 - $\ x. \, chave[i-1] < k < x. \, chave[i]$ caso contrário

São árvores M-árias de busca com propriedades adicionais

Cada nó x tem os seguintes campos:

- x.n é o número de chaves armazenadas em x
- x. chave[i] é i-ésima chave armazenada - $x. chave[1] < x. chave[2] < \cdots < x. chave[x.n]$
- x. folha indica se x é uma folha ou não

Cada nó interno x contém x. n+1 ponteiros

- x.c[i] é o ponteiro para o i-ésimo filho
- ullet se a chave k está na subárvore x.c[i], então
 - -k < x.chave[1] se i = 1
 - -x.chave[x.n] < k se i = x.n + 1
 - $\ x. \ chave[i-1] < k < x. \ chave[i]$ caso contrário

O T. raiz indica o nó que é a raiz da árvore

Propriedades das Árvores B

Toda folha está à mesma distância h da raiz

Toda folha está à mesma distância h da raiz

• *h* é a altura da árvore

Toda folha está à mesma distância h da raiz

• h é a altura da árvore

Existe uma constante t que é o $\operatorname{\mathsf{grau}}$ $\operatorname{\mathsf{mínimo}}$ da árvore

Toda folha está à mesma distância h da raiz

• h é a altura da árvore

Existe uma constante t que é o grau mínimo da árvore

• Todo nó exceto a raiz precisa ter pelo menos t-1 chaves

Toda folha está à mesma distância h da raiz

• h é a altura da árvore

Existe uma constante t que é o grau mínimo da árvore

- Todo nó exceto a raiz precisa ter pelo menos t-1 chaves
 - ou seja, cada nó interno tem pelo menos t filhos

Toda folha está à mesma distância h da raiz

• h é a altura da árvore

Existe uma constante t que é o grau mínimo da árvore

- Todo nó exceto a raiz precisa ter pelo menos t-1 chaves ou seja, cada nó interno tem pelo menos t filhos
- Todo nó tem no máximo 2t 1 chaves

Toda folha está à mesma distância h da raiz

• h é a altura da árvore

Existe uma constante t que é o grau mínimo da árvore

- Todo nó exceto a raiz precisa ter pelo menos t-1 chaves
 - ou seja, cada nó interno tem pelo menos t filhos
- Todo nó tem no máximo 2t 1 chaves
 - ou seja, cada nó interno tem no máximo 2t filhos

Exemplo

Para t=2:

- cada nó não raiz tem pelo menos 1 registro
- cada nó tem no máximo 3 registros

Outro exemplo

Para t = 3:

- cada nó não raiz tem pelo menos 2 registros
- cada nó tem no máximo 5 registros

Uma árvore B com n chaves tem altura $h \leq \log_t \frac{n+1}{2}$

• a raiz tem pelo menos 2 filhos

- a raiz tem pelo menos 2 filhos
- esses filhos têm pelo menos 2t filhos

- a raiz tem pelo menos 2 filhos
- esses filhos têm pelo menos 2t filhos
- que têm pelo menos $2t^2$ filhos

- a raiz tem pelo menos 2 filhos
- esses filhos têm pelo menos 2t filhos
- que têm pelo menos $2t^2$ filhos
- e assim por diante

Uma árvore B com n chaves tem altura $h \leq \log_t \frac{n+1}{2}$

- a raiz tem pelo menos 2 filhos
- esses filhos têm pelo menos 2t filhos
- que têm pelo menos $2t^2$ filhos
- e assim por diante

A árvore é muito larga e muito baixa!

Queremos que um nó caiba em uma página do disco

Queremos que um nó caiba em uma página do disco

• mas não queremos utilizar mal a página do disco

Queremos que um nó caiba em uma página do disco

• mas não queremos utilizar mal a página do disco

Escolha t máximo tal que 2t-1 chaves caibam na página

Queremos que um nó caiba em uma página do disco

• mas não queremos utilizar mal a página do disco

Escolha t máximo tal que 2t-1 chaves caibam na página

• Se t = 1001 e h = 2, armazenamos até 10^9 chaves

Queremos que um nó caiba em uma página do disco

mas não queremos utilizar mal a página do disco

Escolha t máximo tal que 2t-1 chaves caibam na página

- Se t = 1001 e h = 2, armazenamos até 10^9 chaves
- i.e., fazemos dois acessos ao disco

Queremos que um nó caiba em uma página do disco

mas não queremos utilizar mal a página do disco

Escolha t máximo tal que 2t-1 chaves caibam na página

- Se t = 1001 e h = 2, armazenamos até 10^9 chaves
- i.e., fazemos dois acessos ao disco

Consideramos que o registro está junto com a chave

- Queremos que um nó caiba em uma página do disco
 - mas não queremos utilizar mal a página do disco

Escolha t máximo tal que 2t-1 chaves caibam na página

- Se t = 1001 e h = 2, armazenamos até 10^9 chaves
- i.e., fazemos dois acessos ao disco

Consideramos que o registro está junto com a chave

Ou então temos um ponteiro para o registro

Queremos que um nó caiba em uma página do disco

• mas não queremos utilizar mal a página do disco

Escolha t máximo tal que 2t-1 chaves caibam na página

- Se t = 1001 e h = 2, armazenamos até 10^9 chaves
- i.e., fazemos dois acessos ao disco

Consideramos que o registro está junto com a chave

• Ou então temos um ponteiro para o registro

Quando t = 2, temos as Árvores 2 - 3 - 4

- Queremos que um nó caiba em uma página do disco
 - mas não queremos utilizar mal a página do disco

Escolha t máximo tal que 2t-1 chaves caibam na página

- Se t = 1001 e h = 2, armazenamos até 10^9 chaves
- i.e., fazemos dois acessos ao disco

Consideramos que o registro está junto com a chave

• Ou então temos um ponteiro para o registro

Quando t=2, temos as Árvores 2-3-4

• Equivalentes às árvores rubro-negras

Queremos que um nó caiba em uma página do disco

mas não queremos utilizar mal a página do disco

Escolha t máximo tal que 2t-1 chaves caibam na página

- Se t = 1001 e h = 2, armazenamos até 10^9 chaves
- i.e., fazemos dois acessos ao disco

Consideramos que o registro está junto com a chave

Ou então temos um ponteiro para o registro

Quando t = 2, temos as Árvores 2 - 3 - 4

• Equivalentes às árvores rubro-negras

Queremos que um nó caiba em uma página do disco

• mas não queremos utilizar mal a página do disco

Escolha t máximo tal que 2t-1 chaves caibam na página

- Se t = 1001 e h = 2, armazenamos até 10^9 chaves
- i.e., fazemos dois acessos ao disco

Consideramos que o registro está junto com a chave

• Ou então temos um ponteiro para o registro

Quando t=2, temos as Árvores 2-3-4

Equivalentes às árvores rubro-negras

Queremos que um nó caiba em uma página do disco

mas não queremos utilizar mal a página do disco

Escolha t máximo tal que 2t-1 chaves caibam na página

- Se t = 1001 e h = 2, armazenamos até 10^9 chaves
- i.e., fazemos dois acessos ao disco

Consideramos que o registro está junto com a chave

Ou então temos um ponteiro para o registro

Quando t = 2, temos as Árvores 2 - 3 - 4

• Equivalentes às árvores rubro-negras

Para procurar a chave k no nó x

ullet Basta verificar se a chave está em x

- ullet Basta verificar se a chave está em x
- Se não estiver, basta buscar no filho correto

- ullet Basta verificar se a chave está em x
- Se não estiver, basta buscar no filho correto

- ullet Basta verificar se a chave está em x
- Se n\u00e3o estiver, basta buscar no filho correto

```
\begin{array}{lll} {\rm Busca}(x,k) & & & \\ 1 & i=1 & & \\ 2 & {\rm enquanto} \ i \leq x. \ n \ {\rm e} \ k > x. \ chave[i] \\ 3 & i=i+1 & \\ 4 & {\rm se} \ i \leq x. \ n \ {\rm e} \ k = = x. \ chave[i] \\ 5 & {\rm retorne} \ (x,i) & \\ 6 & {\rm sen\~ao} \ {\rm se} \ x. \ folha & \\ 7 & {\rm retorne} \ {\rm NIL} & \\ 8 & {\rm sen\~ao} & \\ 9 & {\rm LeDoDisco}(x. \ c[i]) & \\ 10 & {\rm retorne} \ {\rm Busca}(x. \ c[i], k) & \\ \end{array}
```

Criamos uma árvore vazia

Criamos uma árvore vazia

• Basta alocar o nó e definir os campos

Criamos uma árvore vazia

• Basta alocar o nó e definir os campos

Criamos uma árvore vazia

• Basta alocar o nó e definir os campos

${\tt Inicia}(T)$

- 1 x = Aloca()
- $2 \quad x. folha = {\tt Verdadeiro}$
- 3 x.n = 0
- 4 EscreveNoDisco(x)
- 5 T. raiz = x

Inserção

A inserção ocorre sempre em um nó folha

A inserção ocorre sempre em um nó folha

ullet porém, o nó folha pode estar cheio $(x.\,n==2t-1)$

- porém, o nó folha pode estar cheio (x. n == 2t 1)
- ullet dividimos o nó na chave mediana $(x.\mathit{chave}[t])$

- porém, o nó folha pode estar cheio (x. n == 2t 1)
- dividimos o nó na chave mediana (x. chave[t])
 - em dois nós com t-1 chaves

- porém, o nó folha pode estar cheio (x.n == 2t 1)
- dividimos o nó na chave mediana (x. chave[t])
 - em dois nós com t-1 chaves
 - inserimos x. chave[t] no pai para representar a quebra

- porém, o nó folha pode estar cheio (x. n == 2t 1)
- dividimos o nó na chave mediana (x. chave[t])
 - em dois nós com t-1 chaves
 - inserimos x. chave[t] no pai para representar a quebra
 - mas o pai poderia estar cheio...

- porém, o nó folha pode estar cheio (x. n == 2t 1)
- dividimos o nó na chave mediana (x. chave[t])
 - em dois nós com t-1 chaves
 - inserimos x. chave[t] no pai para representar a quebra
 - mas o pai poderia estar cheio...
- dividimos todo nó cheio no caminho a inserção

- porém, o nó folha pode estar cheio (x. n == 2t 1)
- dividimos o nó na chave mediana (x. chave[t])
 - em dois nós com t-1 chaves
 - inserimos x. chave[t] no pai para representar a quebra
 - mas o pai poderia estar cheio...
- dividimos todo nó cheio no caminho a inserção
 - assim, o pai nunca estará cheio

A inserção ocorre sempre em um nó folha

- porém, o nó folha pode estar cheio (x. n == 2t 1)
- dividimos o nó na chave mediana (x. chave[t])
 - em dois nós com t-1 chaves
 - inserimos x. chave[t] no pai para representar a quebra
 - mas o pai poderia estar cheio...
- dividimos todo nó cheio no caminho a inserção
 - assim, o pai nunca estará cheio

Exemplo: t = 3

A inserção ocorre sempre em um nó folha

- porém, o nó folha pode estar cheio (x.n == 2t 1)
- dividimos o nó na chave mediana (x. chave[t])
 - em dois nós com t-1 chaves
 - inserimos x. chave[t] no pai para representar a quebra
 - mas o pai poderia estar cheio...
- dividimos todo nó cheio no caminho a inserção
 - assim, o pai nunca estará cheio

Exemplo: t = 3


```
DIVIDEFILHO(x,i)
 1 \quad z = Aloca()
 2 y = x. c[i]
 3 z. folha = y. folha
 4 z.n = t - 1
 5 para j=1 até t-1
    z. chave[j] = y. chave[j+t]
    se não y. folha
    para j=1 até t
         z. c[j] = y. c[j+t]
10 y. n = t - 1
    para j = x \cdot n + 1 decrescendo até i + 1
11
12 x. c[j+1] = x. c[j]
13 x. c[i+1] = z
14
    para i = x \cdot n decrescendo até i
15 x. chave[j+1] = x. chave[j]
16
    x. chave[i] = y. chave[t]
17
    x. n = x. n + 1
18 EscreveNoDisco(y)
19 ESCREVENODISCO(z)
20
    EscreveNoDisco(x)
                                    18
```

```
DIVIDEFILHO(x,i)
 1 \quad z = Aloca()
 2 y = x. c[i]
 3 z. folha = y. folha
 4 z.n = t - 1
 5 para j=1 até t-1
    z. chave[j] = y. chave[j+t]
    se não y. folha
    para j=1 até t
                                                T_1 T_2 T_3 T_4 T_5
         z. c[j] = y. c[j+t]
10
    y. n = t - 1
     para i = x \cdot n + 1 decrescendo até i + 1
11
12
    x. c[j+1] = x. c[j]
    x. c[i + 1] = z
13
14
    para j = x.n decrescendo até i
15
       x. chave[j+1] = x. chave[j]
16
    x. chave[i] = y. chave[t]
17
    x. n = x. n + 1
18 EscreveNoDisco(y)
19
    EscreveNoDisco(z)
20
    EscreveNoDisco(x)
```

```
DIVIDEFILHO(x,i)
 1 \quad z = Aloca()
 2 y = x. c[i]
 3 z. folha = y. folha
 4 z.n = t - 1
 5 para j = 1 até t - 1
    z. chave[j] = y. chave[j+t]
    se não y. folha
    para j=1 até t
         z. c[j] = y. c[j+t]
10
    y. n = t - 1
    para i = x \cdot n + 1 decrescendo até i + 1
11
12
    x. c[j+1] = x. c[j]
    x. c[i+1] = z
13
14
    para j = x.n decrescendo até i
15
       x. chave[j+1] = x. chave[j]
16
    x. chave[i] = y. chave[t]
17
    x. n = x. n + 1
18 EscreveNoDisco(y)
19
    EscreveNoDisco(z)
20
    EscreveNoDisco(x)
```

h

e f g

 T_0 T_1 T_2 T_3 T_4 T_5

```
DIVIDEFILHO(x,i)
 1 \quad z = Aloca()
 2 y = x. c[i]
 3 z. folha = y. folha
 4 z.n = t - 1
 5 para j = 1 até t - 1
    z. chave[j] = y. chave[j+t]
    se não y. folha
    para j=1 até t
         z. c[j] = y. c[j+t]
10
    y. n = t - 1
    para i = x \cdot n + 1 decrescendo até i + 1
11
12
    x. c[j+1] = x. c[j]
    x. c[i+1] = z
13
14
    para j = x.n decrescendo até i
15
       x. chave[j+1] = x. chave[j]
16
    x. chave[i] = y. chave[t]
17
    x. n = x. n + 1
18 EscreveNoDisco(y)
19
    EscreveNoDisco(z)
20
    EscreveNoDisco(x)
```

e f g h

 T_3 T_4 T_5

 T_0 T_1 T_2 T_3 T_4 T_5

```
DIVIDEFILHO(x,i)
 1 \quad z = Aloca()
 2 y = x. c[i]
 3 z. folha = y. folha
 4 z.n = t - 1
 5 para j = 1 até t - 1
     z. chave[j] = y. chave[j+t]
    se não y. folha
                                                     f g h
     para j=1 até t
                                               T_0 T_1 T_2 T_3 T_4 T_5
                                                                   T_3 T_4 T_5
          z. c[j] = y. c[j+t]
10
    y. n = t - 1
     para i = x \cdot n + 1 decrescendo até i + 1
11
12
       x. c[j+1] = x. c[j]
    x. c[i+1] = z
13
14
    para j = x.n decrescendo até i
       x. chave[j+1] = x. chave[j]
15
16
     x. chave[i] = y. chave[t]
17
    x. n = x. n + 1
18 EscreveNoDisco(y)
19
    EscreveNoDisco(z)
20
    EscreveNoDisco(x)
                                      18
```

```
DIVIDEFILHO(x,i)
 1 \quad z = Aloca()
 2 y = x. c[i]
 3 z. folha = y. folha
 4 z.n = t - 1
 5 para j=1 até t-1
     z. chave[j] = y. chave[j+t]
    se não y. folha
     para j=1 até t
                                              T_0 T_1 T_2
         z. c[j] = y. c[j+t]
10
    y. n = t - 1
     para i = x \cdot n + 1 decrescendo até i + 1
11
12
       x. c[j+1] = x. c[j]
    x. c[i+1] = z
13
14
    para j = x.n decrescendo até i
       x. chave[j+1] = x. chave[j]
15
16
     x. chave[i] = y. chave[t]
17
    x. n = x. n + 1
18 EscreveNoDisco(y)
19
    EscreveNoDisco(z)
20
     EscreveNoDisco(x)
                                     18
```

 T_3 T_4 T_5

```
DIVIDEFILHO(x,i)
 1 \quad z = Aloca()
 2 y = x. c[i]
 3 z. folha = y. folha
 4 z.n = t - 1
 5 para j=1 até t-1
    z. chave[j] = y. chave[j+t]
    se não y. folha
    para j=1 até t
         z. c[j] = y. c[j+t]
10
    y. n = t - 1
    para i = x \cdot n + 1 decrescendo até i + 1
11
12
    x. c[j+1] = x. c[j]
    x. c[i+1] = z
13
14
    para j = x.n decrescendo até i
       x. chave[j+1] = x. chave[j]
15
16
    x. chave[i] = y. chave[t]
17
    x. n = x. n + 1
18 EscreveNoDisco(y)
19
    EscreveNoDisco(z)
20
    EscreveNoDisco(x)
```

$$y \underbrace{\begin{array}{c} \text{d e} \\ \text{I I I} \\ \text{T}_0 \text{ } \text{T}_1 \text{ } \text{T}_2 \end{array}} z \underbrace{\begin{array}{c} \text{g h} \\ \text{I I I} \\ \text{T}_3 \text{ } \text{T}_4 \text{ } \text{T}_5 \end{array}}$$

Inserindo

Vamos inserir a chave k na árvore T

• verificamos se não é necessário dividir a raiz

```
\begin{array}{lll} {\rm Insere}(T,k) \\ & 1 & r = T.\,raiz \\ & 2 & {\rm se}\,\,r.\,n == 2t-1 \\ & 3 & s = {\rm Aloca}() \\ & 4 & T.\,raiz = s \\ & 5 & s.\,folha = {\rm Falso} \\ & 6 & s.\,n = 0 \\ & 7 & s.\,c[1] = r \\ & 8 & {\rm DivideFilho}(s,1) \\ & 9 & {\rm InserenãoCheio}(s,k) \\ & 10 & {\rm senão} \\ & 11 & {\rm InserenãoCheio}(r,k) \end{array}
```

Inserindo chave k em um nó não-cheio x

```
InserenãoCheio(x,k)
 1 i = x, n
    se x. folha
 3
      enquanto i \geq 1 e k < x. chave[i]
         x. chave[i+1] = x. chave[i]
 5
     i = i - 1
    x. chave[i+1] = k
    x. n = x. n + 1
 8
      EscreveNoDisco(x)
 9
    senão
10
       enquanto i > 1 e k < x. chave[i]
       i = i - 1
11
12 i = i + 1
13
    LEDoDisco(x. c[i])
       se x. c[i]. n == 2t - 1
14
15
         DivideFilho(x,i)
16
         se k > x. chave[i]
17
           i = i + 1
18
       InserenãoCheio(x. c[i], k)
```


Remoção

A remoção é mais complicada que a inserção

Remoção

A remoção é mais complicada que a inserção

• Ela pode ocorrer em qualquer lugar da árvore

A remoção é mais complicada que a inserção

- Ela pode ocorrer em qualquer lugar da árvore
- Cada nó precisa continuar com pelo menos t-1 chaves

A remoção é mais complicada que a inserção

- Ela pode ocorrer em qualquer lugar da árvore
- Cada nó precisa continuar com pelo menos t-1 chaves
 - ${\mathord{\hspace{1pt}\text{--}}}\xspace$ exceto a raiz que tem que ter pelo menos 1 chave

A remoção é mais complicada que a inserção

- Ela pode ocorrer em qualquer lugar da árvore
- Cada nó precisa continuar com pelo menos t-1 chaves
 - exceto a raiz que tem que ter pelo menos 1 chave

A remoção é mais complicada que a inserção

- Ela pode ocorrer em qualquer lugar da árvore
- Cada nó precisa continuar com pelo menos t-1 chaves
 - exceto a raiz que tem que ter pelo menos 1 chave

Para resolver esse problema, garantimos que os nós no caminho da remoção têm pelo menos t chaves

nesse caso não há problema em remover

A remoção é mais complicada que a inserção

- Ela pode ocorrer em qualquer lugar da árvore
- Cada nó precisa continuar com pelo menos t-1 chaves
 - exceto a raiz que tem que ter pelo menos 1 chave

- nesse caso não há problema em remover
- se não houver, tentamos mover uma chave de um vizinho

A remoção é mais complicada que a inserção

- Ela pode ocorrer em qualquer lugar da árvore
- Cada nó precisa continuar com pelo menos t-1 chaves
 - exceto a raiz que tem que ter pelo menos 1 chave

- nesse caso não há problema em remover
- se não houver, tentamos mover uma chave de um vizinho
- nem sempre conseguimos

A remoção é mais complicada que a inserção

- Ela pode ocorrer em qualquer lugar da árvore
- Cada nó precisa continuar com pelo menos t-1 chaves
 - exceto a raiz que tem que ter pelo menos 1 chave

- nesse caso não há problema em remover
- se não houver, tentamos mover uma chave de um vizinho
- nem sempre conseguimos
 - quando cada um dos dois vizinhos tiver apenas t-1 chaves

A remoção é mais complicada que a inserção

- Ela pode ocorrer em qualquer lugar da árvore
- Cada nó precisa continuar com pelo menos t-1 chaves
 - exceto a raiz que tem que ter pelo menos 1 chave

- nesse caso não há problema em remover
- se não houver, tentamos mover uma chave de um vizinho
- nem sempre conseguimos
 - quando cada um dos dois vizinhos tiver apenas t-1 chaves
 - juntamos os nós formando um nó com 2t-1 chaves

Árvores B^* :

Árvores B^* :

• Nós não raiz precisam ficar pelo menos 2/3 cheios

Árvores B^* :

• Nós não raiz precisam ficar pelo menos 2/3 cheios

Árvores B^+ :

Árvores B^* :

• Nós não raiz precisam ficar pelo menos 2/3 cheios

Árvores B^+ :

 Mantêm cópias das chaves nos nós internos, mas as chaves e os registros são armazenados nas folhas

Árvores B^* :

• Nós não raiz precisam ficar pelo menos 2/3 cheios

Árvores B^+ :

- Mantêm cópias das chaves nos nós internos, mas as chaves e os registros são armazenados nas folhas
- Permite acesso sequencial dos dados

Árvores B^* :

• Nós não raiz precisam ficar pelo menos 2/3 cheios

Árvores B^+ :

- Mantêm cópias das chaves nos nós internos, mas as chaves e os registros são armazenados nas folhas
- Permite acesso sequencial dos dados

Exercício

Qual a árvore obtida após inserirmos sequenciamente os números 13 e 33 na árvore seguinte?

