

Technologiemodul

Flex Cam _____

Referenzhandbuch

Inhalt

1.1	Über diese Dokumentation Dokumenthistorie
1.2	Verwendete Konventionen
1.3	Definition der verwendeten Hinweise
2	Sicherheitshinweise
3	Funktionsbeschreibung "Flex Cam"
3.1	Übersicht der Funktionen
3.2	Wichtige Hinweise zum Betrieb des Technologiemoduls
3.3	Funktionsbaustein L_TT1P_FlexCam[Base/State]
	3.3.1 Eingänge und Ausgänge
	3.3.2 Eingänge
	3.3.3 Ausgänge
	3.3.4 Parameter
3.4	State machine
3.5	Signalflussplane
	3.5.1 Struktur des Signamusses
3.6	Handfahren (Jogging)
3.7	Referenzfahrt (Homing) Kurvenformate (Kurven-Handling)
3.8	Kurvenformate (Kurven-Handling)
3.9	Kurvenscheibe zyklisch fanren
3.10	Kurvenscheibe einmal fahren Master-Achse mit Kurvenscheiben variabler Taktlängen fahren
3.11	Master-Achse mit Kurvenscheiben variabler Taktlängen fahren
3.12	Slave-Achse mit Kurvenscheiben variabler Taktlängen fahren
3.13	Kurvenscheibenwechsel
3.14	Auf die Kurvenscheibe einkuppeln
	3.14.1 Mit Kupplungsmodus "absolute" einkuppeln
	3.14.2 Mit Kupplungsmodus "relative" einkuppeln
	3.14.3 Mit Kupplungsmodus "ramp_pos" einkuppeln
	3.14.4 Mit Kupplungsmodus "ramp_time" einkuppeln
215	3.14.5 Mit Kupplungsmodus "ramp_VelAcc" einkuppeln
3.15	Von der Kurvenscheibe auskuppeln
	3.15.1 Im Kupplungsmodus "absolute"/"relative" auskuppeln
	3.15.2 Im Kupplungsmodus "ramp_pos" auskuppeln
	3.15.3 Im Kupplungsmodus "ramp_time" auskuppeln
2 16	3.15.4 Im Kupplungsmodus "ramp_VelAcc" auskuppeln
3.16 3.17	Zwangsöffnung / Notöffnung Skalierung der Kurvenscheibe
5.17	3.17.1 Rechenbeispiele: Absolute und relative Skalierungsfaktoren seitens der Master-Achse
	3.17.1 Rechemberspiele: Absolute und relative Skalierungsfaktoren seitens der Master-Achse
	3.17.3 Skalierung der Position über den Rampengenerator
3.18	
3.19	Offset für Master- und Slave-Achse Berechnung von Extremwerten einer Kurvenscheibe (Base-Variante)
3.20	Wegbasiertes Einkuppeln der Slave-Achse mit oder ohne Reversieren
3.21	Wegbasiertes Auskuppeln der Slave-Achse mit oder ohne Reversieren
3.22	Skalierung der Kurvenscheibe mit oder ohne Reversieren
3.23	Offset für Master- und Slave-Achse mit oder ohne Reversieren
3.24	
3.25	Schaltsequenz für KurvenscheibenBerechnung von Extremwerten einer Kurvenscheibe (State-Variante)
3.26	CPU-Auslastung (Beispiel Controller 3231 C)
	Index
	Ihre Meinung ist uns wichtig

1 Über diese Dokumentation

Diese Dokumentation ...

- enthält ausführliche Informationen zu den Funktionalitäten des Technologiemoduls "Register Control";
- ordnet sich in die Handbuchsammlung "Controller-based Automation" ein. Diese besteht aus folgenden Dokumentationen:

Dokumentationstyp	Thema		
Produktkatalog	Controller-based Automation (Systemübersicht, Beispieltopologien) Lenze-Controller (Produktinformationen, Technische Daten)		
Systemhandbücher	Visualisierung (Systemübersicht/Beispieltopologien)		
Kommunikationshandbücher Online-Hilfen	Bussysteme • Controller-based Automation EtherCAT® • Controller-based Automation CANopen® • Controller-based Automation PROFIBUS® • Controller-based Automation PROFINET®		
Referenzhandbücher Online-Hilfen	Lenze-Controller: • Controller 3200 C • Controller c300 • Controller p300 • Controller p500		
Software-Handbücher Online-Hilfen	Lenze Engineering Tools: • »PLC Designer« (Programmierung) • »Engineer« (Parametrierung, Konfigurierung, Diagnose) • »VisiWinNET® Smart« (Visualisierung) • »Backup & Restore« (Datensicherung, Wiederherstellung, Aktualisierung)		

Weitere Technische Dokumentationen zu Lenze-Produkten

Weitere Informationen zu Lenze-Produkten, die in Verbindung mit der Controller-based Automation verwendbar sind, finden Sie in folgenden Dokumentationen:

Pla	nung / Projektierung / Technische Daten
	Produktkataloge
Мо	ntage und Verdrahtung
	Montageanleitungen
	Gerätehandbücher • Inverter Drives/Servo Drives
Par	rametrierung / Konfigurierung / Inbetriebnahme
	Online-Hilfe / Referenzhandbücher Controller Inverter Drives/Servo Drives I/O-System 1000 (EPM-Sxxx)
	Online-Hilfe / Kommunikationshandbücher • Bussysteme • Kommunikationsmodule
Bei	spielapplikationen und Vorlagen
	Online-Hilfe / Software- und Referenzhandbücher • Application Sample i700 • Application Samples 8400/9400 • FAST Application Template Lenze/PackML • FAST Technologiemodule

- ☐ Gedruckte Dokumentation
- ☐ PDF-Datei / Online-Hilfe im Lenze **Engineering Tool**

Aktuelle Dokumentationen und Software-Updates zu Lenze-Produkten finden Sie im Download-Bereich unter:

www.lenze.com

Zielgruppe

Diese Dokumentation richtet sich an alle Personen, die ein Lenze-Automationssystem auf Basis der Application Software Lenze FAST programmieren und in Betrieb nehmen.

1.1 Dokumenthistorie

1.1 Dokumenthistorie

Version	1		Beschreibung
3.2	05/2017	TD17	Inhaltliche Struktur geändert.Allgemeine Korrekturen
3.1	04/2016	TD17	Allgemeine Korrekturen
3.0	10/2015	TD17	Korrekturen und Ergänzungen Inhaltliche Struktur geändert.
2.1	05/2015	TD17	Allgemeine Korrekturen
2.0	01/2015	TD17	 Allgemeine redaktionelle Überarbeitung Modularisierung der Inhalte für die »PLC Designer« Online-Hilfe
1.0	04/2014	TD00	Erstausgabe

1.2 Verwendete Konventionen

1.2 Verwendete Konventionen

Diese Dokumentation verwendet folgende Konventionen zur Unterscheidung verschiedener Arten von Information:

Informationsart	Auszeichnung	Beispiele/Hinweise						
Zahlenschreibweise								
Dezimaltrennzeichen	Punkt	Es wird generell der Dezimalpunkt verwendet. Zum Beispiel: 1234.56						
Textauszeichnung								
Programmname	» «	»PLC Designer«						
Variablenbezeichner	kursiv	Durch Setzen von <i>bEnable</i> auf TRUE						
Funktionsbausteine	fett	Der Funktionsbaustein L_MC1P_AxisBasicControl						
Funktionsbibliotheken		Die Funktionsbibliothek L_TT1P_TechnolgyModules						
Quellcode	Schriftart "Corier new"	<pre>dwNumerator := 1; dwDenominator := 1;</pre>						
Symbole	Symbole							
Seitenverweis	(🕮 6)	Verweis auf weiterführenden Informationen: Seitenzahl in PDF-Datei.						

Variablenbezeichner

Die von Lenze verwendeten Konventionen, die für die Variablenbezeichner von Lenze Systembausteinen, Funktionsbausteinen sowie Funktionen verwendet werden, basieren auf der sogenannten "Ungarischen Notation", wodurch anhand des Bezeichners sofort auf die wichtigsten Eigenschaften (z. B. den Datentyp) der entsprechenden Variable geschlossen werden kann, z. B. xAxisEnabled.

1.3 Definition der verwendeten Hinweise

._____

1.3 Definition der verwendeten Hinweise

Um auf Gefahren und wichtige Informationen hinzuweisen, werden in dieser Dokumentation folgende Signalwörter und Symbole verwendet:

Sicherheitshinweise

Aufbau der Sicherheitshinweise:

Piktogramm und Signalwort!

(kennzeichnen die Art und die Schwere der Gefahr)

Hinweistext

(beschreibt die Gefahr und gibt Hinweise, wie sie vermieden werden kann)

Piktogramm	Signalwort	Bedeutung
A	Gefahr!	Gefahr von Personenschäden durch gefährliche elektrische Spannung Hinweis auf eine unmittelbar drohende Gefahr, die den Tod oder schwere Verletzungen zur Folge haben kann, wenn nicht die entsprechenden Maßnahmen getroffen werden.
\triangle	Gefahr!	Gefahr von Personenschäden durch eine allgemeine Gefahrenquelle Hinweis auf eine unmittelbar drohende Gefahr, die den Tod oder schwere Verletzungen zur Folge haben kann, wenn nicht die entsprechenden Maßnahmen getroffen werden.
STOP	Stop!	Gefahr von Sachschäden Hinweis auf eine mögliche Gefahr, die Sachschäden zur Folge haben kann, wenn nicht die entsprechenden Maßnahmen getroffen werden.

Anwendungshinweise

Piktogramm	Signalwort	Bedeutung
i	Hinweis!	Wichtiger Hinweis für die störungsfreie Funktion
	Tipp!	Nützlicher Tipp für zum einfachen Bedienen
Ý		Verweis auf andere Dokumentation

2 Sicherheitshinweise

Beachten Sie die Sicherheitshinweise in dieser Dokumentation, wenn Sie ein Automationssystem oder eine Anlage mit einem Lenze-Controller in Betrieb nehmen möchten.

Die Gerätedokumentation enthält Sicherheitshinweise, die Sie beachten müssen!

Lesen Sie die mitgelieferten und zugehörigen Dokumentationen der jeweiligen Komponenten des Automationssystems sorgfältig durch, bevor Sie mit der Inbetriebnahme des Controllers und der angeschlossenen Geräte beginnen.

Gefahr!

Hohe elektrische Spannung

Personenschäden durch gefährliche elektrische Spannung

Mögliche Folgen

Tod oder schwere Verletzungen

Schutzmaßnahmen

Die Spannungsversorgung ausschalten, bevor Arbeiten an den Komponenten des Automationssystems durchgeführt werden.

Nach dem Ausschalten der Spannungsversorgung spannungsführende Geräteteile und Leistungsanschlüsse nicht sofort berühren, weil Kondensatoren aufgeladen sein können.

Die entsprechenden Hinweisschilder auf dem Gerät beachten.

Gefahr!

Personenschäden

Verletzungsgefahr besteht durch ...

- nicht vorhersehbare Motorbewegungen (z. B. ungewollte Drehrichtung, zu hohe Geschwindigkeit oder ruckhafter Lauf);
- unzulässige Betriebszustände bei der Parametrierung, während eine Online-Verbindung zum Gerät besteht.

Mögliche Folgen

Tod oder schwere Verletzungen

Schutzmaßnahmen

- Anlagen mit eingebauten Invertern ggf. mit zusätzlichen Überwachungs- und Schutzeinrichtungen nach den jeweils gültigen Sicherheitsbestimmungen ausrüsten (z. B. Gesetz über technische Arbeitsmittel, Unfallverhütungsvorschriften).
- Während der Inbetriebnahme einen ausreichenden Sicherheitsabstand zum Motor oder den vom Motor angetriebenen Maschinenteilen einhalten.

Stop!

Beschädigung oder Zerstörung von Maschinenteilen

Beschädigung oder Zerstörung von Maschinenteilen besteht durch ...

- Kurzschluss oder statische Entladungen (ESD);
- nicht vorhersehbare Motorbewegungen (z. B. ungewollte Drehrichtung, zu hohe Geschwindigkeit oder ruckhafter Lauf);
- unzulässige Betriebszustände bei der Parametrierung, während eine Online-Verbindung zum Gerät besteht.

Schutzmaßnahmen

- Vor allen Arbeiten an den Komponenten des Automationssystems immer die Spannungsversorgung ausschalten.
- Elektronische Bauelemente und Kontakte nur berühren, wenn zuvor ESD-Maßnahmen getroffen wurden.
- · Anlagen mit eingebauten Invertern ggf. mit zusätzlichen Überwachungs- und Schutzeinrichtungen nach den jeweils gültigen Sicherheitsbestimmungen ausrüsten (z. B. Gesetz über technische Arbeitsmittel, Unfallverhütungsvorschriften).

[3-1] Typische Mechanik des Technologiemoduls

Das Technologiemodul "Flex Cam" ist eine allgemein gültige Anwendung für die Realisierung von Kurvenscheiben.

- In der Variante "Base" können Kurvenscheiben mit Polynom 5. Grades oder mit linearer Interpolation zwischen den Stützpunkten berechnet und gefahren werden. Das Setzen eines Offset und eines Skalierungsfaktors (in X- und Y-Richtung der Kurvenscheibe) für die Masterund Slave-Achse können mit Rampengenerator (stetige Verstellung) oder ohne Rampengenerator (sprunghafte Verstellung) zu jedem Zeitpunkt in einer Kurvenscheibe erfolgen. Außerdem ist es möglich, sprungfrei über verschiedene Kupplungsmodi auf die Kurvenscheibe einzukuppeln oder aus der Kurvenscheibe auskuppeln.
- In der Variante "State" ist der Funktionsumfang der Base-Variante erweitert: Hier wird zusätzliche ein Kupplungsmodus ohne Reversieren angeboten. Außerdem kann der Rampengenerator für Offset-Werte und Skalierungsfaktoren auf der Master-Achse ohne zu Reversieren gefahren werden. Eine weitere Funktion der State-Variante ist es, mehrere Kurvenscheiben in einer vorgegeben Sequenz zu fahren.
- ▶ Übersicht der Funktionen (□ 11)

3.1 Übersicht der Funktionen

._____

3.1 Übersicht der Funktionen

Neben den Grundfunktionen zur Bedienung des Funktionsbausteins **L_MC1P_AxisBasicControl**, der **Stopp-Funktion** und der **Halt-Funktion** bietet das Technologiemodul folgende Funktionalitäten, die den Varianten "Base" und "State" zugeordnet sind:

Funktionalität	Variante		
	Base	State	
Handfahren (Jogging) (32)	•	•	
Referenzfahrt (Homing) (33)	•	•	
Kurvenformate (Kurven-Handling) (34)	•	•	
Kurvenscheibe zyklisch fahren (35)	•	•	
Kurvenscheibe einmal fahren (36)	•	•	
Master-Achse mit Kurvenscheiben variabler Taktlängen fahren (37)	•	•	
Slave-Achse mit Kurvenscheiben variabler Taktlängen fahren (38)	•	•	
Kurvenscheibenwechsel (39)	•	•	
Auf die Kurvenscheibe einkuppeln (40)	•	•	
Von der Kurvenscheibe auskuppeln (□ 50)	•	•	
Zwangsöffnung / Notöffnung (56)	•	•	
Skalierung der Kurvenscheibe (57)	•	•	
Offset für Master- und Slave-Achse (62)	•	•	
Berechnung von Extremwerten einer Kurvenscheibe (Base-Variante) (64)	•	•	
Wegbasiertes Einkuppeln der Slave-Achse mit oder ohne Reversieren (65)		•	
Wegbasiertes Auskuppeln der Slave-Achse mit oder ohne Reversieren (67)		•	
Skalierung der Kurvenscheibe mit oder ohne Reversieren (69)		•	
Offset für Master- und Slave-Achse mit oder ohne Reversieren (70)		•	
Schaltsequenz für Kurvenscheiben (💷 71)		•	
Berechnung von Extremwerten einer Kurvenscheibe (State-Variante) (72)		•	

»PLC Designer« Online-Hilfe

Hier finden Sie ausführliche Informationen zum Funktionsbaustein L_MC1P_AxisBasicControl, zur Stopp-Funktion und zur Halt-Funktion.

3.2 Wichtige Hinweise zum Betrieb des Technologiemoduls

3.2 Wichtige Hinweise zum Betrieb des Technologiemoduls

Einstellung des Betriebsmodus

Der Betriebsmodus (Mode of Operation) für die Salve-Achse muss auf "Zyklisch synchrone Position" (csp) eingestellt werden, da die Slave-Achse über den resultierenden Positionsleitwert aus der Kurvenscheibe geführt wird.

Kontrollierter Anlauf der Achsen

Bewegungsbefehle, die im gesperrten Achszustand (xAxisEnabled = FALSE) gesetzt werden, müssen nach der Freigabe (xRequlatorOn = TRUE) erneut durch eine FALSE ∕TRUE-Flanke aktiviert werden.

So wird verhindert, dass der Antrieb nach der Reglerfreigabe unkontrolliert anläuft.

Beispiel Handfahren (Jogging) (32):

- 1. Im gesperrten Achzustand (xAxisEnabled = FALSE) wird xJogPos = TRUE gesetzt.
 - xRegulatorOn = FALSE (Achse ist gersperrt.) ==> Zustand "READY" (xAxisEnabled = FALSE)
 - xJoqPos = TRUE (Handfahren soll ausgeführt werden.)
- 2. Achse freigeben.
 - xRegulatorOn = TRUE ==> Zustand "READY" (xAxisEnabled = TRUE)
- 3. Handfahren ausführen.
 - xJoqPos = FALSE

 TRUE ==> Zustand "JOGPOS"

3.3 Funktionsbaustein L_TT1P_FlexCam[Base/State]

3.3 Funktionsbaustein L_TT1P_FlexCam[Base/State]

Die Abbildung zeigt die Zugehörigkeit der Ein- und Ausgänge für die Varianten "Base" und "State". Die zusätzlichen Ein- und Ausgänge der Variante "State" sind schattiert dargestellt.

3.3 Funktionsbaustein L_TT1P_FlexCam[Base/State]

3.3.1 Eingänge und Ausgänge

Bezeichner Datentyp		Beschreibung		gbar in ante
			Base	State
MasterAxis		Referenz auf die Master-Achse (Leitachse)	•	•
	AXIS_REF			
SlaveAxis		Referenz auf die Slave-Achse	•	•
	AXIS_REF			

Eingänge 3.3.2

Bezeichner Datentyp	Beschreibung		Verfügbar in Variante	
			Base	State
xEnableInternalControl BOOL	TRUE	In der Visualisierung ist die interne Steuerung der Achse über die Schaltfläche "Internal Control" auswählbar.	•	•
xEnable	Ausführ	ung des Funktionsbausteins	•	•
BOOL	TRUE	Der Funktionsbaustein wird ausgeführt.		
	FALSE	Der Funktionsbaustein wird nicht ausgeführt.		
scCtrlABC scCtrl_ABC	• scCtr • Liegt gewe • Vom	sstruktur für den Funktionsbaustein _AxisBasicControl ABC kann im Zustand "Ready" genutzt werden. eine Anforderung an, wird in den Zustand "Service" cchselt. Zustand "Service" wird zurück in den Zustand "Ready" cchselt, wenn keine Anforderung mehr anliegt.	•	•
xResetError BOOL	TRUE	Fehler der Achse oder der Software zurücksetzen.	•	•
xRegulatorOn BOOL	TRUE	Reglerfreigabe der Achse aktivieren (über den Funktionsbaustein MC_Power).	•	•
xStop BOOL	TRUE	Aktive Bewegung abbrechen und Achse mit der über den Parameter IrStopDec definierten Verzögerung in den Stillstand führen. • Ein Wechsel in den Zustand "Stop" erfolgt. • Das Technologiemodul bleibt im Zustand "Stop", solange xStop = TRUE (oder xHalt = TRUE) gesetzt ist. • Der Eingang ist auch bei "Internal Control" aktiv.	•	•
xHalt BOOL	TRUE	Aktive Bewegung abbrechen und Achse mit der über den Parameter IrHaltDec definierten Verzögerung in den Stillstand führen. • Ein Wechsel in den Zustand "Stop" erfolgt. • Das Technologiemodul bleibt im Zustand "Stop", solange xHalt = TRUE (oder xStop = TRUE) gesetzt ist.	•	•
scPar	1	meterstruktur enthält die Parameter des	•	•
L_TT1P_scPar_FlexCam[Base /State]		ogiemoduls. entyp ist abhängig von der verwendeten Variante (Base/		
xJogPos BOOL	TRUE	Achse in positive Richtung fahren (Handfahren). Ist xJogNeg auch TRUE, wird die Fahrrichtung beibehalten, die zuerst gewählt wurde.	•	•
xJogNeg BOOL	TRUE	Achse in negative Richtung fahren (Handfahren). Ist xJogPos auch TRUE, wird die Fahrrichtung beibehalten, die zuerst gewählt wurde.	•	•
xHomeExecute BOOL	-	Der Eingang ist flankengesteuert und wertet die steigende Flanke aus.		•
	FALSE7 TRUE	Referenzierung starten. Der Abbruch der Funktion erfolgt über den Eingang xStop.		
xHomeAbsSwitch BOOL	TRUE	Anschluss für Referenzschalter: Bei Referenzfahrmodi mit Referenzschalter verbinden Sie diesen Eingang mit dem Digitalsignal, das den Zustand des Referenzschalters wiedergibt.	•	•
xEnableHWLimit BOOL	TRUE	Die Auswertung der Fahrbereichsendschalter (Hardware- Endschalter) wird aktiviert.	•	•

3

Bezeichner Da	atentyp			Verfügbar Variante	
				Base	State
xHWLimitPos	BOOL	Diesen E	Hardware-Endschalter ingang mit dem entsprechenden Digitaleingang verbinden, der Endschalter angeschlossen ist.	•	•
		TRUE	 Der positive Hardware-Endschalter wurde erreicht oder angefahren. Der Ausgang xHwLimitSwitchPos wird ebenfalls auf TRUE gesetzt. Die Achse wird mit der Verzögerung in Parameter alrStopDec in den Stillstand geführt. Es erfolgt ein Wechsel in den Zustand "ERROR" mit der Fehlermeldung '20500' (HWLimitPos). 		
xHWLimitNeg	BOOL	Diesen E	er Hardware-Endschalter ingang mit dem entsprechenden Digitaleingang verbinden, der Endschalter angeschlossen ist.	•	•
		TRUE	 Der negative Hardware-Endschalter wurde erreicht oder angefahren. Der Ausgang xHwLimitSwitchNeg wird ebenfalls auf TRUE gesetzt. Die Achse wird mit der Verzögerung in Parameter alrStopDec in den Stillstand geführt. Es erfolgt ein Wechsel in den Zustand "ERROR" mit der Fehlermeldung '20501' (HWLimitNeg). 		
xSyncCam	BOOL	TRUE	 Auf die Kurvenscheibe einkuppeln, entsprechend dem Kupplungsmodus in Parameter "eSyncMode". Der Eingang xSyncOutInstant wird mir einer höheren Priorität ausgeführt. Solange der Eingang xSyncOutInstant = TRUE gestzt ist, kann auf die Kurvenscheibe nicht eingekuppelt werden. 	•	•
		FALSE	Aus der Kurvenscheibe auskuppeln, entsprechend dem Kupplungsmodus in Parameter "eSyncMode".		
xSyncOutInstant	BOOL	TRUE	Sofortiges Auskuppeln aus der Kurvenscheibe • Die Slave-Achse wird mit der Verzögerung aus Parameter IrSyncOutInstantDec in den Stillstand geführt. • Der Kupplungsmodus in Parameter "eSyncMode" hat hierbei keinen Einfluss.	•	•
xCamChangeInstant	BOOL	verwend	teigenden Flanke (FALSEØTRUE) wird von der aktuell leten Kurvenscheibe noch im aktuellen Taktzyklus auf die elegte Kurvenscheibe gewechselt.	•	•
IrSetOffsetMaster	LREAL	Die resul Addition "IrSetOff • Einhe	Positions-Offset der Master-Achse Die resultierende X-Position der Kurvenscheibe ergibt sich aus der Addition der Master-Achsenposition mit dem Offset "IrSetOffsetMaster". • Einheit: units • Initialwert: 0		•
IrSetOffsetSlave	LREAL	Positions-Offset der Slave-Achse Die resultierende Position der Slave-Achse ergibt sich aus der Addition der Y-Position mit dem Offset "IrSetOffsetSlave". • Einheit: units • Initialwert: 0		•	•
IrSetScalingMaster	LREAL	Die resul Multiplik Skalieru Negative	Skalierungsfaktor der Master-Achse Die resultierende X-Position der Kurvenscheibe ergibt sich aus der Multiplikation der Master-Achsposition mit dem X- Skalierungsfaktor "IrSetScalingMaster". Negative Werte sind nicht erlaubt. • Initialwert: 1		•

Bezeichner Datentyp	Beschreibung			Verfügbar in Variante	
			Base	State	
IrSetScalingSlave LREAL	Skalierungsfaktor der Slave-Achse Die resultierende gedehnte/gestauchte Y-Sollposition ergibt sich aus der Multiplikation des Y-Wertes der Kurvenscheibe mit dem Y- Skalierungsfaktor "IrSetScalingSlave". Negative Werte sind nicht erlaubt. • Initialwert: 1		•	•	
CamTable1 MC_CAM_REF	Referenz au	uf die Kurvenscheibe 1	•	•	
CamTable2 MC_CAM_REF	Referenz au	uf die Kurvenscheibe 2		•	
CamTable3 MC_CAM_REF	Referenz au	uf die Kurvenscheibe 3		•	
CamTable4 MC_CAM_REF	Referenz au	uf die Kurvenscheibe 4		•	
eSetCamTable L_TT1P_CamTable		ner Kurvenscheibe 1 (Kurvenscheibe 1)		•	
	1 Ku	urvenscheibe 1			
	2 Kı	urvenscheibe 2			
	3 Kı	urvenscheibe 3			
	4 Kı	urvenscheibe 4			
xCamSequencer BOOL	Κι	chaltsequenz für Kurvenscheiben aktivieren. urvenscheiben werden nach der Schaltreihenfolge in arameter eCamSequenceMode gefahren.		•	

Ausgänge 3.3.3

3.3

Bezeichner Datentyp	Beschreibung		Verfügbar in Variante		
			Base	State	
xInternalControlActive BOOL	TRUE	Die interne Steuerung der Achse ist über die Visualisierung aktiviert. (Eingang xEnableInternalControl = TRUE)	•	•	
eTMState L_TT1P_States		r Zustand des Technologiemoduls machine (💷 27)	•	•	
scStatusABC scStatus_ABC		der Zustandsdaten des Funktionsbausteins _AxisBasicControl	es Funktionsbausteins • •		
xError BOOL	TRUE	Im Technologiemodul liegt ein Fehler vor.	•	•	
xWarning BOOL	TRUE	Im Technologiemodul liegt eine Warnung vor.	•	•	
eErrorID L_IE1P_Error		chler- oder Warnungsmeldung, wenn xError = TRUE oder ng = TRUE ist.	•	•	
		zhandbuch "FAST Technologiemodule": len Sie Informationen zu Fehler- oder Warnungsmeldungen.			
scErrorInfo L_TT1P_scErrorInfo		Fehlerinformationsstruktur für eine genauere Analyse der Fehlerursache			
scSignalFlow L_TT1P_scSF_FlexCam[Base/ State]	Der Date State).	•			
xAxisEnabled	TRUE	flusspläne (□ 28) Die Achse ist freigegeben.	•	•	
BOOL					
xDone BOOL	TRUE	Die Anforderung/Aktion wurde erfolgreich abgeschlossen.	•	•	
xBusy BOOL	TRUE	Die Anforderung/Aktion wird zur Zeit ausgeführt.	•	•	
xIsHomed BOOL	TRUE	Die Achse ist referenziert (Referenz bekannt).	•	•	
IrSetOffsetMasterOut LREAL	Position	s-Offset zwischen der Master-Achsposition und der X- der Kurvenscheibe eit: units	•	•	
IrSetOffsetSlaveOut LREAL		s-Offset zwischen der Y-Position und der Slave-Achsposition eit: units	•	•	
xHwLimitSwitchPos BOOL	TRUE	 Der positive Hardware-Endschalter wurde erreicht oder angefahren. Der Eingang xHwLimitPos muss mit dem Digitaleingang, an dem der Endschalter angeschlossen ist, verbunden sein. Der Eingang xHWLimitPos ist ebenfalls auf TRUE gesetzt. Der Antrieb wird mit der in Parameter IrStopDec eingestellten Verzögerung in den Stillstand geführt. Es erfolgt ein Wechsel in den Zustand "ERROR" mit der Fehlermeldung '20500' (HWLimitPos). 	•	•	

3

Bezeichner Datentyp		Beschreibung		Verfügbar in Variante		
				Base	State	
xHwLimitSwitchNeg	BOOL	TRUE	 Der negative Hardware-Endschalter wurde erreicht oder angefahren. Der Eingang xHwLimitNeg muss mit dem Digitaleingang, an dem der Endschalter angeschlossen ist, verbunden sein. Der Eingang xHWLimitNeg ist ebenfalls auf TRUE gesetzt. Der Antrieb wird mit der in Parameter IrStopDec eingestellten Verzögerung in den Stillstand geführt. Es erfolgt ein Wechsel in den Zustand "ERROR" mit der Fehlermeldung '20501' (HWLimitNeg). 	•	•	
xSwLimitEnabled	BOOL	TRUE	Die Überwachung der Software-Endlagen aktivieren.	•	•	
xSwLimitSwitchActive	BOOL	TRUE	 Eine Software-Endlage wurde erreicht oder überschritten. Der Antrieb wird mit der in Parameter IrStopDec eingestellten Verzögerung in den Stillstand geführt. Es erfolgt ein Wechsel in den Zustand "ERROR" mit der Fehlermeldung '20306' (SWLimitPos) oder '20307' (SWLimitNeg). 	•	•	
xCamSynchronised	BOOL	TRUE	Die Y-Achse ist mit der Kurvenscheibe synchronisiert.	•	•	
xAccDecSync	BOOL	TRUE	Die Synchronisierungsfunktion ist aktiv. Die Achse wird auf- oder absynchronisiert (die Kupplung öffnet oder schließt).	•	•	
xEndOfProfile	BOOL	TRUE	Letzter Zyklus im aktuellen Profil der Kurvenscheibe • Zur Erkennung werden die aktuellen Werte extrapoliert. • Das Signal liegt für einen Taktzyklus an.	•	•	
IrSetXPosOut	LREAL		der X-Achse aus der Kurvenscheibe it: units	•	•	
IrSetXVelOut	LREAL		schwindigkeit der X-Achse aus der Kurvenscheibe Einheit: units/s			
IrSetXAccOut	LREAL	Beschleu • Einhe	inigung der X-Achse aus der Kurvenscheibe eit: units/s ²	•	•	
IrSetYPosOut	LREAL		der Y-Achse aus der Kurvenscheibe it: units	•	•	
IrSetYVelOut	LREAL	l	ndigkeit der Y-Achse aus der Kurvenscheibe it: units/s	•	•	
IrSetYAccOut	LREAL		ınigung der Y-Achse aus der Kurvenscheibe it: units/s ²	•	•	
IrActSlavePos	LREAL		Position der Slave-Achse it: units	•	•	
IrActSlaveVel	LREAL	l	Geschwindigkeit der Slave-Achse it: units/s	•	•	
IrSlaveMaxPos	LREAL	Die Bere gesetzt v	le Position der Slave-Achse chnung erfolgt, wenn der Eingang xCamBounds = TRUE wird. eit: units	•	•	
IrSlaveMinPos	LREAL	Die Bere gesetzt v	e Position der Slave-Achse chnung erfolgt, wenn der Eingang xCamBounds = TRUE wird. it: units	•	•	

Bezeichner Datentyp	Beschreibung			gbar in ante		
			Base	State		
IrSlaveMaxVel LREAL	Dieser W maxima wird. Die Bere gesetzt	Maximale Geschwindigkeit der Slave-Achse Dieser Wert wird erreicht, wenn die Master-Achse mit der maximalen Geschwindigkeit in Parameter IrMasterVelMax gefahren wird. Die Berechnung erfolgt, wenn der Eingang xCamBounds = TRUE gesetzt wird. • Einheit: units/s				
IrSlaveMaxAcc LREAL	Dieser W maxima maxima wird. Die xCamBo	iaximale Beschleunigung der Slave-Achse ieser Wert wird erreicht, wenn die Master-Achse mit der iaximalen Geschwindigkeit in Parameter IrMasterVelMax und der aximalen Beschleunigung in Parameter IrMasterAccMax gefahren ird. Die Berechnung erfolgt, wenn der Eingang CamBounds = TRUE gesetzt wird. • Einheit: units/s²				
eSetCamTableOut	Aktuell g	geschaltete Kurvenscheibe		•		
L_TT1P_CamTable	1	Kurvenscheibe 1				
	2	Kurvenscheibe 2				
	3	Kurvenscheibe 3				
	4	Kurvenscheibe 4				
xCamSequencerActive BOOL	TRUE	Schaltsequenz für Kurvenscheiben ist aktiv. Kurvenscheiben werden nach der Schaltreihenfolge in Parameter eCamSequenceMode gefahren.		•		

Funktionsbaustein L_TT1P_FlexCam[Base/State]

3.3.4 Parameter

L_TT1P_scPar_FlexCam[Base/State]

Die Struktur L_TT1P_scPar_FlexCam[Base/State] enthält die Parameter des Technologiemoduls.

Bezeichner Datenty	Beschreibung	Verfügbar in Variante	
		Base	State
IrStopDec LREA	Verzögerung für die Stopp-Funktion und bei Auslösung der Hardware-Endschalter, Software-Endlagen und Schleppfehlerüberwachung • Einheit: units/s ² • Initialwert: 10000	•	•
IrStopJerk LREA	Ruck für die Stopp-Funktion und bei Auslösung der Hardware- Endschalter, Software-Endlagen und Schleppfehlerüberwachung • Einheit: units/s³ • Initialwert: 100000	•	•
IrHaltDec LREA	Verzögerung für die Halt-Funktion Vorgabe, mit welcher Geschwindigkeitsänderung maximal bis zum Stillstand verzögert werden soll. • Einheit: units/s² • Initialwert: 3600 • Nur positive Werte sind zulässig.	•	•
IrJerk LREA	Ruck zum Ausgleich bei einer Offsetwert-, Kupplungs- oder Haltfunktion • Einheit: units/s ³ • Initialwert: 100000	•	•
lrJogJerk LREA	Ruck für das Handfahren • Einheit: units/s³ • Initialwert: 10000	•	•
lrJogVel LREA	Maximale Geschwindigkeit, mit der das Handfahren durchgeführt werden soll. • Einheit: units/s • Initialwert: 10	•	•
IrJogAcc LREA	Beschleunigung für das Handfahren Vorgabe, mit welcher Geschwindigkeitsänderung maximal beschleunigt werden soll. • Einheit: units/s² • Initialwert: 100	•	•
lrJogDec LREA	Verzögerung für das Handfahren Vorgabe, mit welcher Geschwindigkeitsänderung maximal bis zum Stillstand verzögert werden soll. • Einheit: units/s² • Initialwert: 100	•	•
IrHomePosition LREA	Referenzposition für eine Referenzfahrt (Homing) • Einheit: units • Initialwert: 0	•	•
xUseHomeExtParameter BOO	Auswahl der zu verwendenden Homing-Parameter • Initialwert: FALSE	•	•
	FALSE Die in den Achsdaten definierten Homing-Parameter werden verwendet.		
	TRUE Die Homing-Parameter scHomeExtParameter aus der Applikation werden verwendet.		
scHomeExtParameter L_MC1P_HomeParamete	 Homing-Parameter aus der Applikation Nur relevant, wenn xUseHomeExtParameter = TRUE. 	•	•

3

Bezeichner Datentyp	Beschreibung		gbar in ante
		Base	State
scHomeExtTP MC_TRIGGER_REF	 Übergabe eines externen Touch-Probe-Ereignisses Nur relevant bei der Touch-Probe-Konfiguration "Externer Geber". Zur Beschreibung der Struktur MC_TRIGGER_REF siehe Funktionsbaustein MC_TouchProbe. 	•	•
eSyncMode L_TT1P_ClutchMode	Modus für den Ein-/Auskuppelvorgang • Initialwert: 0 (absolute)		•
	0 absolute: Sofortiges Kuppeln; die Slave-Position wird auf die Y- Position gesetzt.		
	relative: Sofortiges Kuppeln; die Slave-Position wird mit relativem Bezug auf die Y-Position gesetzt.		
	2 ramp_pos: Wegbasiertes Kuppeln auf die Kurvenscheibe		
	3 ramp_time: Zeitbasiertes Kuppeln innerhalb eines Zeitfensters		
	4 ramp_VelAcc: Profilbasiertes Kupplen über die Parameter IrSyncVel, IrSyncAcc, IrSyncDec, IrSyncJerk		
eSyncDirection L_TT1P_ClutchDirection	Einkuppelrichtung bezogen auf die Bewegung der Master-Achse • Der Kuppelvorgang wird eingeleitet, wenn die Master-Achse in die gültige Richtung dreht. • Initialwert: 0 (mcCurrentDirection)	•	•
	-1 mcNegativeDirection: Einkuppeln in negative Richtung der Master-Achse		
	0 mcCurrentDirection: Einkuppeln in beide Richtungen der Master-Achse		
	1 mcPositiveDirection: Einkuppeln in positive Richtung Master-Achse		
lrMasterSyncInDist LREAL	Distanz der Einkuppelbewegung der Master-Achse im wegbasierten Kupplungsmodus (Parameter eSyncMode = 2) • Einheit: units • Initialwert: 100	•	•
IrMasterSyncInPos LREAL	Die Master-Sollposition im wegbasierten Kupplungsmodus (Parameter eSyncMode = 2), ab der die Kupplung vollständig geschlossen ist. • Einheit: units • Initialwert: 0	•	•
IrMasterSyncOutDist LREAL	Distanz der Auskuppelbewegung der Master-Achse im wegbasierten Kupplungsmodus (Parameter eSyncMode = 2) • Einheit: units • Initialwert: 100	•	•
IrSlaveSyncOutPos LREAL	Soll-Auskuppelposition der Slave-Achse im • wegbasierten Kupplungsmodus (Parameter eSyncMode = 2) • zeitgesteuerten Kupplungsmodus (eSyncMode = 3) • profilgesteuerten Kupplungsmodus (eSyncMode = 4) An dieser Position wird die Slave-Achse angehalten, sobald der Auskuppelvorgang abgeschlossen ist. • Einheit: units • Initialwert: 0	•	•

Bezeichner Datentyp		Beschrei	bung		gbar in ante		
				Base	State		
lrSyncInTime	LREAL	(Parame	auer des Einkuppelvorgangs im zeitbasierten Kupplungsmodus Parameter eSyncMode = 3) • Einheit: s • Initialwert: 5				
IrSyncOutTime	LREAL	(Parame	uer des Auskuppelvorgangs im zeitbasierten Kupplungsmodus rameter eSyncMode = 3) Einheit: s Initialwert: 5				
IrSyncOutInstantDec		Eingang • Einhe	rung für das Auskuppeln von der Kurvenscheibe, wenn der xSyncOutInstant = TRUE gesetzt wird. eit: units/s ² lwert: 10000	•	•		
IrSyncVel	LREAL	im Modi • Einhe	ximale Geschwindigkeit, mit welcher der Ein-/Auskuppelvorgang Modus eSyncMode = 4 (ramp_VelAc) durchgeführt werden soll. Einheit: units/s nitialwert: 100				
IrSyncAcc	LREAL	eSyncMo Vorgabe beschled • Einhe	schleunigung für den Ein-/Auskuppelvorgang im Modus yncMode = 4 (ramp_VelAc) rgabe, mit welcher Geschwindigkeitsänderung maximal schleunigt werden soll. Einheit: units/s ² Initialwert: 1000				
IrSyncDec	LREAL	eSyncMo Vorgabe Stillstan • Einhe	erzögerung für den Ein-/Auskuppelvorgang im Modus yncMode = 4 (ramp_VelAc) orgabe, mit welcher Geschwindigkeitsänderung maximal bis zum illstand verzögert werden soll. Einheit: units/s ²				
IrSyncJerk	LREAL	(ramp_\ • Einhe	uck für den Ein-/Auskuppelvorgang im Modus eSyncMode = 4 amp_VelAc) • Einheit: units/s ³ • Initialwert: 1000000				
xCamCyclic		TRUE	Die Kurvenscheibe wird zyklisch gefahren. (Initialwert)	•	•		
	REAL	FALSE	Die Kurvenscheibe wird einmal gefahren.				
xMasterAbsolute	BOOL		ur Position der Master-Achse lwert: TRUE	•	•		
		TRUE	Absoluter Bezug zwischen der Position der Master-Achse und der Kurvenscheibe				
		FALSE	Relativer Bezug zwischen der Position der Master-Achse und der Kurvenscheibe				
xSlaveAbsolute	REAL	Bezug zur Position der Slave-Achse L • Initialwert: TRUE		•	•		
		TRUE	Absoluter Bezug zwischen der Position der Slave-Achse und der Kurvenscheibe				
		FALSE	Relativer Bezug zwischen der Position der Slave-Achse und der Kurvenscheibe (Initialwert)				

3

Bezeichner Datentyp	Beschreibung		Verfügbar in Variante	
				State
eOffsetModeMaster L_TT1P_OffsetMode	IrSetOff:	ur Übernahme des Offset für die Master-Achse (Eingang setMaster) lwert: 0 (x_zero)	•	•
	0	x_zero: Übernahme des Offset im "Nulldurchgang" der Kurvenscheibe		
	1	direct: Sofortige Übernahme des Offset		
	2	ramp_in: Übernahme des Offset über den Rampengenerator mit den Parametern IrOffsetScalingVel, IrOffsetScalingAcc, IrOffsetScalingDec und IrJerk		
eOffsetModeSlave L_TT1P_OffsetMode	IrSetOff	ur Übernahme des Offset für die Slave-Achse (Eingang setSlave) lwert: 0 (x_zero)		•
	0	x_zero: Übernahme des Offset im "Nulldurchgang" der Kurvenscheibe		
	1	direct: Sofortige Übernahme des Offset		
	2	ramp_in: Übernahme des Offset über den Rampengenerator mit den Parametern IrOffsetScalingVel, IrOffsetScalingAcc, IrOffsetScalingDec und IrJerk		
IrOffsetScalingMasterVel LREAL	Skalieru • Einhe	ung der Geschwindigkeit zum Ausgleich einer Offset- und ngsänderung iit: units/s lwert: 100	•	•
IrOffsetScalingMasterAcc LREAL	Skalieru • Einhe	ung der Beschleunigung zum Ausgleich einer Offset- und ngsänderung it: units/s ² lwert: 1000	•	•
IrOffsetScalingMasterDec LREAL	Skalieru • Einhe	ung der Verzögerung zum Ausgleich einer Offset- und ngsänderung it: units/s ² lwert: 1000	•	•
eScalingModeMaster L_TT1P_ScalingMode	(Eingang	ur Übernahme des Skalierungsfaktors für die Master-Achse IrSetScalingMaster) Iwert: 0 (x_zero)	•	•
	0	x_zero: Skalierungs im "Nulldurchgang" der Kurvenscheibe		
	1	absolute: Absolute Skalierung der Position		
	2	relative: Relative Skalierung der Position, absolute Skalierung der Geschwindigkeit		
	3	ramp_absolute: Absolute Skalierung der Position über den Rampengenerator mit den Parametern IrOffsetScalingVel, IrOffsetScalingAcc, IrOffsetScalingDec und IrJerk		
	4	ramp_realtive: Relative Skalierung der Position über den Rampengenerator mit den Parametern lrOffsetScalingVel, IrOffsetScalingAcc, lrOffsetScalingDec und IrJerk		

Bezeichner Datentyp	Beschrei	Beschreibung		gbar in iante
			Base	State
eScalingModeSlave L_TT1P_ScalingMode	(Eingang	Modus zur Übernahme des Skalierungsfaktors für die Slave-Achse (Eingang IrSetScalingSlave) • Initialwert: 0 (x_zero)		•
	0	x_zero: Skalierungs im "Nulldurchgang" der Kurvenscheibe		
	1	absolute: Absolute Skalierung der Position	-	
	2	relative: Relative Skalierung der Position, absolute Skalierung der Geschwindigkeit		
	3	ramp_absolute: Absolute Skalierung der Position über den Rampengenerator mit den Parametern lrOffsetScalingVel, IrOffsetScalingAcc, lrOffsetScalingDec und IrJerk		
	4	ramp_realtive: Relative Skalierung der Position über den Rampengenerator mit den Parametern IrOffsetScalingVel, IrOffsetScalingAcc, IrOffsetScalingDec und IrJerk		
IrOffsetScalingSlaveVel LREAL	Skalierui • Einhe	Begrenzung der Geschwindigkeit zum Ausgleich einer Offset- und skalierungsänderung • Einheit: units/s • Initialwert: 100		•
IrOffsetScalingSlaveAcc LREAL	Skalierui • Einhe	Begrenzung der Beschleunigung zum Ausgleich einer Offset- und Skalierungsänderung • Einheit: units/s² • Initialwert: 1000		•
IrOffsetScalingSlaveDec LREAL	Skalierui • Einhe	grenzung der Verzögerung zum Ausgleich einer Offset- und alierungsänderung Einheit: units/s ² Initialwert: 1000		•
xCalcCamBounds BOOL	TRUE	Extremwerte der Slave-Achse (IrSlaveMaxPos, IrSlaveMinPos, IrSlaveMaxVel, IrSlaveMaxAcc) werden abhängig von den Parametern IrMasterMaxVel und IrMasterMaxAcc berechnet.	•	•
IrMasterMaxVel LREAL	der Kurv • Einhe	e Geschwindigkeit der Master-Achse für die Überprüfung enscheiben it: unit/s wert: 100	•	•
IrMasterMaxAcc LREAL	der Kurv • Einhe	Aaximale Beschleunigung der Master-Achse für die Überprüfung er Kurvenscheiben • Einheit: units/s² • Initialwert: 1000		•
ePosCtrlDirection L_TT1P_Direction	Kupplun	svorgabe für den Rampengenerator der X-Achse und der g auf die Position wert: 0 (Both)		•
	0	Both: Die Slave-Achse darf in positive und negative Richtung fahren. Ein Reversieren der X-Achse ist erlaubt.		
	1	Direction Master: Die Slave-Achse darf nur in die Richtung fahren, in die auch die Master-Achse fährt.		

Bezeichner Datentyp	Beschreibung				Verfüg Vari	gbar in ante
			Base	State		
eCamSequenceMode L_TT1P_CamSequenceMode	Die Freig xCamSe	ihenfolge der Kurvenscheiben gabe der Schaltreihenfolge erfolgt über den Eingang quencer lwert: 0 (Kurvenscheibe 1 zyklisch fahren)		•		
	0	Kurvenscheibe 1 zyklisch fahren				
	1	Kurvenscheibe 3 zyklisch fahren				
	2	 xCamSequncer = TRUE: Kurvenscheibe 1 → Kurvenscheibe 3 zyklisch fahren xCamSequncer = FALSE: Kurvenscheibe 1 				
	3	 xCamSequncer = TRUE: Kurvenscheibe 1 → Kurvenscheibe 2 → Kurvenscheibe 3 zyklisch fahren xCamSequncer = FALSE: Kurvenscheibe 3 → Kurvenscheibe 1 				

3.4 State machine

3.4 State machine

- [3-2] State machine des Technologiemoduls
 - (*1 Im Zustand "Ready" muss xRegulatorOn auf TRUE gesetzt werden.
 - (*2 Im Zustand "ERROR" muss xResetError zum Quittieren und Zurücksetzen der Fehler auf TRUE gesetzt werden.

3.5 Signalflusspläne

3.5 Signalflusspläne

In den Abbildungen ist der Haupt-Signalfluss der umgesetzten Funktionen dargestellt. Der Signalfluss der Zusatzfunktionen, wie z. B. "Handfahren", sind hier nicht dargestellt.

[3-3] Signalfluss: Flex Cam

[3-4] Signalfluss: Umrechnung von der Position der Master-Achse zur X-Position

3.5 Signalflusspläne

[3-5] Signalfluss: Umrechnung von der Y-Position zur Position der Slave-Achse

3.5 Signalflusspläne

3.5.1 Struktur des Signalflusses

L_TT1P_scSF_FlexCam[Base/State]

Die Inhalte der Struktur **L_TT1P_scSF_FlexCam[Base/State]** sind nur lesbar und bieten eine praktische Diagnosemöglichkeit innerhalb des Signalflusses (<u>Signalflusspläne</u> (<u>QQ 28</u>)).

Bezeichner Datentyp	Beschrei	chreibung		gbar in ante
			Base	State
IP01_IrSetScalingMaster LREAL	Die resu Multipli Skalieru Negativ	kalierungsfaktor der Master-Achse ie resultierende X-Position der Kurvenscheibe ergibt sich aus der kultiplikation der Master-Achsposition mit dem X- kalierungsfaktor "IrSetScalingMaster". egative Werte sind nicht erlaubt. • Initialwert: 1		
IP02_eScalingModeMaster L_TT1P_ScalingMode	(Eingang	ur Übernahme des Skalierungsfaktors für die Master-Achse g IrSetScalingMaster) lwert: 0	•	•
	0	x_zero: Skalierungs im "Nulldurchgang" der Kurvenscheibe		
	1	absolute: Absolute Skalierung der Position		
	2	relative: Relative Skalierung der Position, absolute Skalierung der Geschwindigkeit		
	3	ramp_absolute: Absolute Skalierung der Position über den Rampengenerator mit den Parametern IrOffsetScalingVel, IrOffsetScalingAcc, IrOffsetScalingDec und IrJerk		
	4	ramp_realtive: Relative Skalierung der Position über den Rampengenerator mit den Parametern IrOffsetScalingVel, IrOffsetScalingAcc, IrOffsetScalingDec und IrJerk		
IP03_IrSetOffsetMaster LREAL	Die resu Additior "IrSetOfi • Einhe	s-Offset der Master-Achse Itierende X-Position der Kurvenscheibe ergibt sich aus der der Master-Achsenposition mit dem Offset fsetMaster". eit: units Iwert: 0	•	•
IP04_IrSetOffsetSlave LREAL	Die resu Additior • Einhe	s-Offset der Slave-Achse Itierende Position der Slave-Achse ergibt sich aus der der Y-Position mit dem Offset "IrSetOffsetSlave". eit: units Iwert: 0	•	•
IP05_eOffsetModeSlave L_TT1P_OffsetMode	IrSetOff	ur Übernahme des Offset für die Slave-Achse (Eingang setSlave) lwert: 0	•	•
	0	x_zero: Übernahme des Offset im "Nulldurchgang" der Kurvenscheibe		
	1	direct: Sofortige Übernahme des Offset		
	2	ramp_in: Übernahme des Offset über den Rampengenerator mit den Parametern IrOffsetScalingVel, IrOffsetScalingAcc, IrOffsetScalingDec und IrJerk		

3.5 Signalflusspläne

Bezeichner Datentyp	Beschreibung		gbar in ante
			State
IP06_IrSetScalingSlave LREAL	Skalierungsfaktor der Slave-Achse Die resultierende gedehnte/gestauchte Y-Sollposition ergibt sich aus der Multiplikation des Y-Wertes der Kurvenscheibe mit dem Y- Skalierungsfaktor "IrSetScalingSlave". Negative Werte sind nicht erlaubt. • Initialwert: 1	•	•
IP07_eScalingModeSlave L_TT1P_ScalingMode	Modus zur Übernahme des Skalierungsfaktors für die Slave-Achse (Eingang IrSetScalingSlave) • Initialwert: 0	•	•
	0 x_zero: Skalierungs im "Nulldurchgang" der Kurvenscheibe		
	1 absolute: Absolute Skalierung der Position		
	2 relative: Relative Skalierung der Position, absolute Skalierung der Geschwindigkeit		
	ramp_absolute: Absolute Skalierung der Position über den Rampengenerator mit den Parametern IrOffsetScalingVel, IrOffsetScalingAcc, IrOffsetScalingDec und IrJerk		
	ramp_realtive: Relative Skalierung der Position über den Rampengenerator mit den Parametern IrOffsetScalingVel, IrOffsetScalingAcc, IrOffsetScalingDec und IrJerk		
IP08_CamTable1 MC_CAM_REF	Referenz auf die Kurvenscheibe 1	•	•
IP09_CamTable2 MC_CAM_REF	Referenz auf die Kurvenscheibe 2		•
IP10_CamTable3 MC_CAM_REF	Referenz auf die Kurvenscheibe 3		•
IP11_CamTable4 MC_CAM_REF	Referenz auf die Kurvenscheibe 4		•
MP01_IrSetMasterPos LREAL	Sollposition der Master-Achse • Einheit: units	•	•
MP02_lrSetSlavePos LREAL	Sollposition der Slave-Achse • Einheit: units	•	•
MP03_IrConvertMasterTo XPos LREAL	Berechnete Position der X-Achse • Einheit: units	•	•
MP04_IrCamProfilerPosOut LREAL			•
MP05_IrSetYPos	Resultierende Position der Y-Achse • Einheit: units		•
MP06_IrConvertYToSlavePos LREAL	Berechnete Position der Slave-Achse • Einheit: units	•	•
OP01_IrSetXPosOut	Position der X-Achse aus der Kurvenscheibe • Einheit: units	•	•
OP02_IrSetYPosOut LREAL	Position der Y-Achse aus der Kurvenscheibe • Einheit: units	•	•

3.6 Handfahren (Jogging)

3.6 Handfahren (Jogging)

Vorausetzung

- Das Technologiemodul befindet sich im Zustand "Ready".
- Die Slave-Achse ist freigeben (xRegulatorOn = TRUE).

Ausführung

Zum Handfahren der Achse wird die Handfahr-Geschwindigkeit IrJoqVel verwendet.

Mit dem Eingang xJogPos = TRUE wird die Achse in positive Richtung und mit dem Eingang xJogNeg = TRUE in negative Richtung gefahren. Die Achse wird solange gefahren, wie der Eingang TRUE gesetzt bleibt.

Der laufende Fahrbefehl kann nicht durch den anderen Jog-Befehl abgelöst werden. Erst wenn beide Eingänge zurückgesetzt wurden, wechselt die <u>State machine</u> (<u>QQ 27</u>) wieder zurück in den Zustand "Ready".

Einzustellende Parameter

Die Parameter für das Handfahren befinden sich in der Parameterstruktur LTT1P scPar FlexCam[Base/State] (L 21).

Die Parameterwerte können während des Betriebes verändert werden. Sie werden bei erneutem Setzen der Eingänge xJogPos = TRUE oder xJogNeg = TRUE übernommen.

3.7 Referenzfahrt (Homing)

3.7 Referenzfahrt (Homing)

Vorausetzung

- Das Technologiemodul befindet sich im Zustand "Ready".
- Die Slave-Achse ist freigeben (xRegulatorOn = TRUE).

Ausführung

Mit einer steigenden Flanke (FALSE/TRUE) am Eingang xHomeExecute wird die Referenzfahrt gestartet. Die Achse fährt solange, bis die Referenzposition erreicht ist. Nach erfolgreicher Referenzierung wechselt die <u>State machine</u> (LLL 27) wieder zurück in den Zustand "Ready".

Die Referenzfahrt wird <u>nicht</u> unterbrochen, wenn der Eingang *xHomeExecute* vorzeitig auf FALSE gesetzt wird. Der Abbruch der Funktion erfolgt über den Eingang *xStop*.

Einzustellende Parameter

Die Parameter für die Referenzfahrt befinden sich in der Parameterstruktur L TT1P scPar FlexCam[Base/State] (12 21).

```
xUseHomeExtParameter : BOOL := FALSE;
lrHomePosition : LREAL := 0.0;
scHomeExtParameter : L_MC1P_HomeParameter;
scHomeExtTP : MC_TRIGGER_REF;
```

3.8 Kurvenformate (Kurven-Handling)

3.8 Kurvenformate (Kurven-Handling)

Das Eingangsformat für die Kurvenscheibe ist im Funktionsbaustein MC_CAM_REF definiert. Dies vereinfacht den Umgang mit den Kurvendaten. Eine zusätzliche Verwendung des Funktionsbausteins MC_CamTableSelect ist <u>nicht</u> notwendig.

Unterstützt werden Kurvenscheiben aus dem »Cam Editor«.

- Datenmodell: Segmente oder Punktetabelle
- Bewegungsgesetz: Gerade (linear), Polynom 5. Grades

Hinweis!

Während der Fahrt einer Kurvenscheibe dürfen die Stützpunkte innerhalb der Struktur nicht verändert werden.

Die Kurvendaten, Randbedingungen oder Stützpunkte werden intern nicht kopiert, sondern direkt vom Technologiemlodul für die Bewegungsführung verwendet. Änderungen der Daten haben direkte Auswirkungen auf die aktive Kurvenscheibe.

3.9 Kurvenscheibe zyklisch fahren

._____

3.9 Kurvenscheibe zyklisch fahren

Mit dem Parameter *xCamCyclic* = TRUE werden die Kurvenscheiben zyklisch hintereinander gefahren.

Liegt die Position der Master-Achse außerhalb des definierten Bereiches der X-Achse, so wird diese in die Kurvenscheibe hineingerechnet, d. h. ab der 2. Kurvenscheibe ist der Bezug zur Master-Position relativ.

So lassen sich kurvenabhängige Taktlängen realisieren, ohne die "externe" Modulo-Taktlänge der Master-Achse anpassen zu müssen. Allerdings geht in diesem Fall die absolute Zuordnung zwischen Master- und Kurventakt verloren.

[3-6] Verlauf: Kurvenscheibe zyklisch fahren

3.10 Kurvenscheibe einmal fahren

3.10

Mit dem Parameter xCamCyclic = FALSE wird die Kurvenscheibe einmal gefahren.

Liegt die Master-Position außerhalb der definierten Kurvenscheibe, so wird der letzte gültige Wert ausgegeben.

[3-7] Verlauf: Kurvenscheibe einmal fahren

3.11 Master-Achse mit Kurvenscheiben variabler Taktlängen fahren

3.11 Master-Achse mit Kurvenscheiben variabler Taktlängen fahren

Die Master-Achse hat eine konstante Taktlänge. Um Kurvenscheiben mit variablen Taktlängen fahren zu können, wird eine technologiemodul-interne X-Achse mit variablen Taktlängen verwendet.

Die X-Achse wird über die Parameter Geschwindigkeit, Beschleunigung und Ruck mit der Master-Achse gekuppelt. Um den Bezug der Position zwischen der X-Achse und der Master-Achse herzustellen, wird der Parameter *xMasterAbsolute* verwendet. Dies bezieht sich immer auf den erstmaligen Start/Durchlauf der gerade aktiven Kurvenscheibe:

- xMasterAbsolute = FALSE
 - Die X-Position der Kurvenscheibe wird relativ zur Master-Position gefahren.

 Dazu wird bei Aktivierung der Kurvenscheibe der Startpunkt der X-Achse auf den Anfang der Kurvenscheibe gesetzt. So lassen sich kurvenabhängige Taktlängen realisieren, ohne die "externe" Modulo-Taktlänge der Master-Achse anpassen zu müssen. Allerdings geht in diesem Fall die absolute Zuordnung zwischen Master-Takt und X-Takt der Kurvenscheibe verloren.
- xMasterAbsolute = TRUE
 Die Master-Position wird direkt zur Kurvenscheibenberechnung herangezogen.

 Dazu wird bei Aktivierung der Kurvenscheibe die X-Position direkt auf die Master-Position gesetzt. Die Taktzuordnung zwischen Master-Takt und X-Takt der Kurvenscheibe bleibt immer erhalten, wenn die X-Taktlänge der Modulo-Taktlänge der Master-Achse entspricht.

 Wird die X-Taktlänge ungleich der Modulo-Taktlänge der Master-Achse eingestellt, so wird nach dem ersten Durchlauf der Kurvenscheibe automatisch der relative Bezug zur Master-Achse eingestellt (siehe oben, xMasterAbsolute = FALSE).

3.12 Slave-Achse mit Kurvenscheiben variabler Taktlängen fahren

3.12 Slave-Achse mit Kurvenscheiben variabler Taktlängen fahren

Die Slave-Achse hat eine konstante Taktlänge. Um Kurvenscheiben mit variablen Taktlängen fahren zu können, wird eine technologiemodul-interne Y-Achse mit variablen Taktlängen verwendet.

Die Slave-Achse wird über die Parameter Geschwindigkeit, Beschleunigung und Ruck mit der Y-Achse gekuppelt. Um den Bezug der Position zwischen der Y-Achse und der Slave-Achse herzustellen, wird der Parameter xSlaveAbsolute verwendet. Dies bezieht sich immer auf den erstmaligen Start/Durchlauf der gerade aktiven Kurvenscheibe:

xSlaveAbsolute = FALSE

Bei der ersten Aktivierung der Kurvenscheibe wird zwischen der aktuellen Slave-Position und der Y-Startposition ein interner Offset eingestellt. Damit wird die Kurvenscheibe ohne Sprünge der Slave-Achse aktiviert. So lassen sich kurvenabhängige Taktlängen realisieren, ohne die "externe" Modulo-Taktlänge der Slave-Achse anpassen zu müssen. Allerdings geht in diesem Fall die absolute Zuordnung zwischen Slave-Takt und Y-Takt der Kurvenscheibe verloren.

xSlaveAbsolute = TRUE

Die Position der Slave-Achse wird auf die Y-Position aus der Kurvenscheibe gesetzt. Beim zweiten Durchlauf der Kurvenscheibe wird die Position der Slave-Achse relativ zur Y-Achse berechnet. Die Taktzuordnung zwischen Y-Takt der Kurvenscheibe und Modulo-Takt der Slave-Achse bleibt immer erhalten, wenn die Y-Taktlänge der Modulo-Taktlänge der Slave-Achse entspricht.

Wird die Y-Taktlänge ungleich der Modulo-Taktlänge der Slave-Achse eingestellt, so wird nach dem ersten Durchlauf der Kurvenscheibe automatisch der relative Bezug zur Slave-Achse eingestellt (siehe oben, *xMasterAbsolute* = FALSE).

3.13 Kurvenscheibenwechsel

3.13 Kurvenscheibenwechsel

Hinweis!

Während der Fahrt einer Kurvenscheibe dürfen die Stützpunkte innerhalb der Struktur nicht verändert werden.

Die Kurvendaten, Randbedingungen oder Stützpunkte werden intern nicht kopiert, sondern direkt vom Technologiemlodul für die Bewegungsführung verwendet. Änderungen der Daten haben direkte Auswirkungen auf die aktive Kurvenscheibe.

Wird während des Betriebs die Kurvenscheibe am Eingang *CamTable1* geändert, so erfolgt die Übernahme erst am Kurvenende der Slave-Achse, nachdem der Ausgang *xEndOfProfile* = TRUE gesetzt wurde. Das Kurvenende ist der Endpunkt der Kurvenscheibe, an dem der Y-seitige Endpunkt in der Darstellung endet. Somit ist sichergestellt, dass die Kurvenscheibe auch bei einem vorhandenen X-Offset immer am Y-seitigen Kurvenende umgeschaltet wird.

Eine Plausibilitätsprüfung, ob die Kurvenscheiben ineinander passen, erfolgt nicht und muss vom Anwender sichergestellt werden.

Mit dem Eingang xCamChangeInstant = TRUE kann ein sofortiger Wechsel der Kurvenscheibe erzwungen werden. Wird eine Umschaltung aktiv, so werden die Daten der neuen Kurvenscheibe sofort übernommen. Ein erneuter Kupplungsvorgang erfolgt nicht.

3.14 Auf die Kurvenscheibe einkuppeln

3.14 Auf die Kurvenscheibe einkuppeln

Der Einkuppelvorgang der Slave-Achse auf die Position der Kurvenscheibe (resultierende Y-Position der Kurvenscheibe inklusive Y-Offset und Y-Skalierung) erfolgt mit dem Eingang xSyncCam = TRUE.

Änderungen des Y-Offset oder des Y-Skalierungsfaktors während des Einkuppelvorgangs werden nicht übernommen. Diese Parameter werden beim Start des Einkuppelvorgangs intern "eingefroren" und erst nach erfolgreicher Kupplung der Slave-Achse mit der Y-Position der Kurvenscheibe wieder freigegeben.

Für den den Einkuppelvorgang kann über den Parameter *eSyncMode* in der Parameterstruktur <u>L TT1P scPar FlexCam[Base/State]</u> (<u>L</u> 21) der Kupplungsmodus festgelegt werden:

Kupplungsmodus eSyncMode	Weitere Informationen
0 (absolute)	▶ Mit Kupplungsmodus "absolute" einkuppeln (□ 41)
1 (relative)	► Mit Kupplungsmodus "relative" einkuppeln (□ 42)
2 (ramp_pos)	► Mit Kupplungsmodus "ramp_pos" einkuppeln (□ 43)
3 (ramp_time)	► Mit Kupplungsmodus "ramp_time" einkuppeln (□ 46)
4 (ramp_VelAcc)	► Mit Kupplungsmodus "ramp_VelAcc" einkuppeln (□ 48)

3.14 Auf die Kurvenscheibe einkuppeln

3.14.1 Mit Kupplungsmodus "absolute" einkuppeln

Die Position, Geschwindigkeit und Beschleunigung der Slave-Achse werden direkt auf die resultierende Y-Position der Kurvenscheibe gesetzt.

Um Unregelmäßigkeiten in der Antriebsbewegung zu vermeiden, muss die Slave-Achse vorher auf die resultierende Y-Position der Kurvenscheibe gefahren werden oder sich dort bereits befinden. Falls dies nicht sichergestellt werden kann, muss ein alternativer Kupplungsmodus eingestellt werden.

[3-8] Verlauf: Einkuppelvorgang mit eSyncMode = 0 (absolute)

3.14.2 Mit Kupplungsmodus "relative" einkuppeln

Die Position, Geschwindigkeit und Beschleunigung der Slave-Achse werden direkt auf die resultierende Y-Position der Kurvenscheibe gesetzt.

Im Gegensatz zum Modus "absolute" muss sich Slave-Achse nicht auf der resultierende Y-Position der Kurvenscheibe befinden. Daraus ergibt sich ein Offset zwischen der Position der Slave-Achse und der resultierenden Y-Position der Kurvenscheibe.

Um Unregelmäßigkeiten in der Antriebsbewegung zu vermeiden, muss die Master-Achse während des Einkuppelvorgangs stehen.

[3-9] Verlauf: Einkuppelvorgang mit eSyncMode = 1 (relative)

3.14 Auf die Kurvenscheibe einkuppeln

._____

3.14.3 Mit Kupplungsmodus "ramp_pos" einkuppeln

Die Slave-Achse wird wegbasiert über ein Polynom 5. Grades auf die resultierende Y-Position der Kurvenscheibe positioniert.

In diesem Modus kann die Slave-Achse auf eine bereits laufende Kurvenbewegung synchronisieren, wobei der Einkuppelvorgang über mehrere Takte der Kurvenscheibe erfolgen kann. Der Übergang in den Kurvenscheibenbetrieb nimmt hierbei etwas mehr Zeit in Anspruch.

Über den Parameter *eSyncDirection* wird die Einkuppelrichtung bezogen auf die Drehrichtung der Master-Achse eingestellt.

Der Parameter *IrMasterSyncInPos* bestimmt die Position der Master-Achse, ab welcher die Slave-Achse synchronisiert sein soll.

Mit dem Parameter *IrMasterSyncInDist* wird festgelegt, über welche Distanz der Master-Achse die Slave-Achse auf die Kurvenposition gefahren wird. Die Synchronisierung der Slave-Achse auf die Y-Position der Kurvenscheibe kann nur bei einer fahrenden Master-Achse erfolgen.

Einzustellende Parameter

```
eSyncMode : L_TT1P_SyncMode := 2;
eSyncDirection : L_TT1P_SyncDirection := 0; // [mcCurrentDirection]
lrMasterSyncInPos : LREAL := 0;
lrMasterSyncInDist : LREAL := 100;
```


[3-10] Verlauf: Einkuppelvorgang mit eSyncMode = 2 (ramp_pos)

[3-11] Verlauf: Einkuppelvorgang mit eSyncMode = 2 (ramp_pos) und eSyncDirection = 1 (Positive Richtung)

3.14 Auf die Kurvenscheibe einkuppeln

3.14.4 Mit Kupplungsmodus "ramp_time" einkuppeln

Die Slave-Achse kuppelt innerhalb einer definierten Zeit (Parameter *IrSyncInTime*) über ein Polynom 5. Grades von ihrer aktuellen Position auf die resultierende Y-Position der Kurvenscheibe ein. Die Bewegung wird innerhalb des Taktes der Modulo-Achsen ausgeführt.

Dieser Kupplungsmodus ist unabhängig von der Bewegung der Master-Achse. Die Synchronisierung der Slave-Achse auf die Y-Position der Kurvenscheibe erfolgt auch bei stehender Master-Achse.

Einzustellende Parameter

```
eSyncMode : L_TT1P_SyncMode := 3;
eSyncDirection : L_TT1P_SyncDirection := 0; // [mcCurrentDirection]
lrSyncInTime : LREAL := 5;
```

[3-12] Verlauf: Einkuppelvorgang mit eSyncMode = 3 (ramp_time)

3.14 Auf die Kurvenscheibe einkuppeln

3.14.5 Mit Kupplungsmodus "ramp VelAcc" einkuppeln

Die Slave-Achse kuppelt über den Profilgenerator mit den Parametern *IrSyncVel*, *IrSyncAcc*, *IrSyncDec* und *IrSyncJerk* von ihrer aktuellen Position auf die resultierende Y-Position der Kurvenscheibe ein.

Die Bewegung wird innerhalb des Taktes bei den Modulo-Achsen ausgeführt.

Die resultierende Geschwindigkeit der Slave-Achse in der Einkuppelphase ergibt sich aus der Summe der Geschwindigkeit von der Kurvenscheibe und der Geschwindigkeit in Parameter *IrSyncVel*.

Die Beschleunigung der Slave-Achse in der Einkuppelphase ergibt sich ebenfalls aus der Summer der Beschleunigung von der Kurvenscheibe und der Beschleunigung und Verzögerung der Kupplung (Parameter IrSyncAcc, IrSyncDec).

Dieser Kupplungsmodus ist unabhängig von der Bewegung der Master-Achse. Die Synchronisierung der Slave-Achse auf die Y-Position der Kurvenscheibe erfolgt auch, wenn die Master-Achse stillsteht.

Einzustellende Parameter

```
eSyncMode : L_TT1P_SyncMode := 4;
lrSyncVel : LREAL := 100;
lrSyncAcc : LREAL := 1000;
lrSyncDec : LREAL := 10000;
lrSyncJerk : LREAL := 100000;
```


[3-13] Verlauf: Einkuppelvorgang mit eSyncMode = 4 (ramp_VelAcc)

3.15 Von der Kurvenscheibe auskuppeln

3.15 Von der Kurvenscheibe auskuppeln

Der Auskuppelvorgang der Slave-Achse von der aktuellen Position der Kurvenscheibe erfolgt mit dem Eingang xSyncCam = FALSE.

Für den den Auskuppelvorgang kann über den Parameter *eSyncMode* in der Parameterstruktur <u>L TT1P scPar FlexCam[Base/State]</u> (<u>L 21</u>) der Kupplungsmodus festgelegt werden:

Kupplungsmodus eSyncMode	Weitere Informationen
0 (absolute)	▶ Im Kupplungsmodus "absolute"/"relative" auskuppeln (□ 50)
1 (relative)	
2 (ramp_pos)	▶ Im Kupplungsmodus "ramp_pos" auskuppeln (□ 50)
3 (ramp_time)	▶ Im Kupplungsmodus "ramp_time" auskuppeln (□ 52)
4 (ramp_VelAcc)	▶ Im Kupplungsmodus "ramp_VelAcc" auskuppeln (□ 54)

3.15.1 Im Kupplungsmodus "absolute"/"relative" auskuppeln

Die Kupplung zur Master-Achse wird mit dem Eingang xSyncCam = FALSE sofort aufgehoben.

Die Position der Slave-Achse wird "eingefroren"; die Slave-Geschwindigkeit und -Beschleunigung werden auf Null gesetzt.

Um Sprünge zu vermeiden, muss sich die Y-Position der Kurvenscheibe oder die Master-Achse/X-Achse im Stillstand befinden (z. B. über eine Ruhephase im Kurvenverlauf).

3.15.2 Im Kupplungsmodus "ramp_pos" auskuppeln

Der positionsgesteuerte Auskuppelvorgang an der laufenden Kurvenscheibe erfolgt mit einem Polynom 5. Grades mit dem Eingang xSyncCam = FALSE.

In diesem Modus kann nur bei fahrender Master-Achse ausgekuppelt werden. Der Auskuppelvorgang kann über mehrere Takte erfolgen.

Mit dem Parameter *IrMasterSyncOutDist* wird der Bremsweg der Master-Achse vorgegeben. Daraus ergibt sich die Position, an der sich die Slave-Achse von der Kurvenscheibe löst.

Der Parameter *IrSlaveSyncOutPos* bestimmt die Position, ab welcher sich die Slave-Achse im Stillstand befinden soll.

Einzustellende Parameter

```
eSyncMode : L_TT1P_SyncMode := 2;
lrMasterSyncOutDist : LREAL := 0;
lrSlaveSyncOutPos : LREAL := 100;
```


[3-14] Verlauf: Auskuppelvorgang mit eSyncMode = 2 (ramp_pos)

3.15 Von der Kurvenscheibe auskuppeln

3.15.3 Im Kupplungsmodus "ramp_time" auskuppeln

Mit dem Eingang xSyncCam = FALSE wird die Slave-Achse von der aktuellen Y-Position der Kurvenscheibe innerhalb der definierten Zeit im Parameter IrSyncOutTime ausgekuppelt.

Der Parameter *IrSlaveSyncOutPos* bestimmt die Position, ab welcher sich die Slave-Achse im Stillstand befinden soll.

Dieser Kupplungsmodus ist unabhängig von der Bewegung der Master-Achse.

Einzustellende Parameter

```
eSyncMode : L_TT1P_SyncMode := 3;
lrSyncOutTime : LREAL := 5;
lrSlaveSyncOutPos : LREAL := 100;
```


[3-15] Verlauf: Auskuppelvorgang mit eSyncMode = 3 (ramp_time)

3.15 Von der Kurvenscheibe auskuppeln

3.15.4 Im Kupplungsmodus "ramp_VelAcc" auskuppeln

Mit dem Eingang xSyncCam = FALSE wird die Slave-Achse von der aktuellen Y-Position der Kurvenscheibe profilgesteuert ausgekuppelt. Dabei wird die Slave-Achse mit den Parametern IrSyncVel, IrSyncAcc, IrSyncDec und IrSyncJerk in den Stillstand geführt.

Der Parameter *IrSlaveSyncOutPos* bestimmt die Position, ab welcher sich die Slave-Achse im Stillstand befinden soll.

Dieser Kupplungsmodus ist unabhängig von der Bewegung der Master-Achse.

Einzustellende Parameter

```
eSyncMode : L_TT1P_SyncMode := 4;
lrSlaveSyncOutPos : LREAL := 100;
lrSyncVel : LREAL := 100;
lrSyncAcc : LREAL := 1000;
lrSyncDec : LREAL := 1000;
lrSyncJerk : LREAL := 100000;
```


[3-16] Verlauf: Auskuppelvorgang mit eSyncMode = 4 (ramp_VelAcc)

3.16 Zwangsöffnung / Notöffnung

3.16 Zwangsöffnung / Notöffnung

Mit dem Eingang xSyncOutInstant = TRUE wird die Slave-Achse über die im Parameter IrSyncOutInstantDec eingestellte Verzögerung sofort an der aktuellen Kurvenposition ausgekuppelt und gestoppt.

Die Kupplung bleibt geöffnet, solange der Eingang xSyncOutInstant = TRUE gesetzt ist. Der Eingang xSyncOutInstant hat höhere Priorität als der Eingang xSyncCam.

Der Parameter *IrSyncOutInstantDec* befindet sich in der Parameterstruktur <u>L TT1P scPar FlexCam[Base/State]</u> (<u>Q 21</u>).

3.17 Skalierung der Kurvenscheibe

3.17 Skalierung der Kurvenscheibe

Eine Skalierung der Kurvenscheibe erfolgt mit Skalierungsfaktoren über die Eingänge IrSetScalingMaster und IrSetScalingSlave.

Die Einstellung des Eingangs IrSetScalingMaster hat zur Folge, dass die X-Achse gegenüber der Master-Achse gedehnt oder gestaucht wird. Über den Eingang IrSetScalingSlave wird die Slave-Achse gegenüber der Y-Achse gedehnt oder gestaucht. Die Skalierungsfaktoren haben keinen Einfluss auf die Länge/Taktlänge der Kurvenscheiben und der Achsen.

Die Auswahl des Modus zur Übernahme der Skalierungsfaktoren für die Master-Achse wird über den Parameter eScalingModeMaster und für die Slave-Achse über den Parameter eScalingModeSlave eingestellt.

Einstellung/Modus in: eScalingModeMaster eScalingModeSlave	Beschreibung
0 (x_zero)	Standard-Einstellung: Die Skalierungsfaktoren werden im "Nulldurchgang" der Kurvenscheibe übernommen. Der "Nulldurchgang" ist als Startpunkt einer Kurvenscheibe bei positiver Master-Drehrichtung oder als Endpunkt einer Kurvenscheibe bei negativer Master-Drehrichtung definiert.
1 (absolute)	Absolute Skalierung der Position Die Skalierungsfaktoren werden sofort nach der Vorgabe oder Änderung übernommen. Eine direkte Vorgabe oder Änderung der Skalierungsfaktoren führt zu einem Sprung der Sollposition, auch bei Stillstand der Achsen.
2 (relative)	Relative Skalierung der Position, absolute Skalierung der Geschwindigkeit Die Skalierungsfaktoren werden sofort nach der Vorgabe oder Änderung übernommen. Eine direkte Vorgabe oder Änderung der Skalierungsfaktoren führt zu einem Sprung der Sollposition, auch bei Stillstand der Achsen.
3 (ramp_absolute)	Absolute <u>Skalierung der Position über den Rampengenerator</u> (60) mit den Parametern IrOffsetScalingVel, IrOffsetScalingAcc, IrOffsetScalingDec und IrJerk
4 (ramp_relative)	Relative <u>Skalierung der Position über den Rampengenerator</u> (60) mit den Parametern lrOffsetScalingVel, lrOffsetScalingAcc, lrOffsetScalingDec und lrJerk

3.17 Skalierung der Kurvenscheibe

3.17.1 Rechenbeispiele: Absolute und relative Skalierungsfaktoren seitens der Master-Achse

Taktzyklus:	t = 0		t = 1		t = 2	
Skalierungsfaktor:	IrSetScalingMaster = 1		IrSetScalingMaster = 2		IrSetScalingMaster = 1	
Absolute Skalierungsf	aktoren					
Achse	Master	X-Achse	Master	X-Achse	Master	X-Achse
Position	100	100	101	202	102	102
Geschwindigkeit	1000	1000	1000	2000	1000	1000
Beschleunigung	0	0	0	0	0	0
Relative Skalierungsfa	ktoren					
Achse	Master	X-Achse	Master	X-Achse	Master	X-Achse
Position	100	100	101	102	102	103
Geschwindigkeit	1000	1000	1000	2000	1000	1000
Beschleunigung	0	0	0	0	0	0
Absolute Skalierungsf	aktoren <u>ohne</u> a	bsolute Zuordni	ung zwischen M	laster- und Kurv	en-Takt	
Achse	Master	X-Achse	Master	X-Achse	Master	X-Achse
Position	100	53	101	108	102	55
Geschwindigkeit	1000	1000	1000	2000	1000	1000
Beschleunigung	0	0	0	0	0	0
Relative Skalierungsfaktoren <u>ohne</u> absolute Zuordnung zwischen Master- und Kurven-Takt						
Achse	Master	X-Achse	Master	X-Achse	Master	X-Achse
Position	100	53	101	55	102	56
Geschwindigkeit	1000	1000	1000	2000	1000	1000
Beschleunigung	0	0	0	0	0	0

3.17 Skalierung der Kurvenscheibe

3.17.2 Rechenbeispiele: Absolute und relative Skalierungsfaktoren seitens der Slave-Achse

Taktzyklus:	t = 0		t = 1		t = 2	
Skalierungsfaktor:	IrSetScalingSlave = 1		IrSetScalingSlave = 2		IrSetScalingSlave = 1	
Absolute Skalierungsf	aktoren					
Achse	Y-Achse	Slave	Y-Achse	Slave	Y-Achse	Slave
Position	100	100	101	202	102	102
Geschwindigkeit	1000	1000	1000	2000	1000	1000
Beschleunigung	0	0	0	0	0	0
Relative Skalierungsfa	ktoren					
Achse	Y-Achse	Slave	Y-Achse	Slave	Y-Achse	Slave
Position	100	100	101	102	102	103
Geschwindigkeit	1000	1000	1000	2000	1000	1000
Beschleunigung	0	0	0	0	0	0
Absolute Skalierungsf	Absolute Skalierungsfaktoren <u>ohne</u> absolute Zuordnung zwischen Master- und Kurven-Takt					
Achse	Y-Achse	Slave	Y-Achse	Slave	Y-Achse	Slave
Position	100	50	101	152	102	52
Geschwindigkeit	1000	1000	1000	2000	1000	1000
Beschleunigung	0	0	0	0	0	0
Relative Skalierungsfaktoren <u>ohne</u> absolute Zuordnung zwischen Master- und Kurven-Takt						
Achse	Y-Achse	Slave	Y-Achse	Slave	Y-Achse	Slave
Position	100	50	101	52	102	53
Geschwindigkeit	1000	1000	1000	2000	1000	1000
Beschleunigung	0	0	0	0	0	0

3.17 Skalierung der Kurvenscheibe

3.17.3 Skalierung der Position über den Rampengenerator

Um die Skalierungsfaktoren trotz sprunghafter Werteänderung an den Eingängen IrSetScalingMaster oder IrSetScalingSlave intern stetig ändern zu können, können Rampengeneratoren verwendet werden: Rampen-Modi "3 (ramp_absolute)" und "4 (ramp_relative)" in Parameter eScalingModeMaster oder eScalingModeSlave.

Ein Rampengenerator führt eine Ausgleichsbewegung über eine Rampenfunktion zwischen dem letzten und dem neuen Skalierungsfaktor aus. Wird der Skalierungsfaktor während der Ausgleichsbewegung des Rampengenerators erneut geändert, so führt der Rampengenerator eine neue Ausgleichsbewegung mit dem aktuellen Wert durch.

Das Verstellprofil für den Skalierungsfaktor wird über die Parameter *IrOffsetScalingVel*, *IrOffsetScalingAcc*, *IrOffsetScalingDec* und *IrJerk* eingestellt.

Mit dem Parameter *IrJerk* wird der maximale Ruck begrenzt. Üblicherweise wird der Ruck auf das 100-fache der Beschleunigung eingestellt. Sollten die Rampengeneratoren aktiv sein und ein Kurvenscheibenwechsel vorliegen, so werden die Rampengeneratoren nicht abgebrochen. Die Ausgleichsbewegung wird vollständig bis zum Ende ausgeführt.

Einzustellende Parameter

```
eScalingModeMaster : L_TT1P_ScalingMode := 0; // [x_zero]
eScalingModeSlave : L_TT1P_ScalingMode := 0; // [x_zero]
lrOffsetScalingVel : LREAL := 100;
lrOffsetScalingAcc : LREAL := 1000;
lrOffsetScalingDec : LREAL := 1000;
lrJerk : LREAL := 10000;
```

[3-17] Verlauf: Skalierung einer Kurvenscheibe (X-Achse/Y-Achse 0..180) mit Skalierungsfaktor 0.5 für Master und 2.0 für Slave

3.18 Offset für Master- und Slave-Achse

3.18 Offset für Master- und Slave-Achse

Ein Offset wird über die Eingänge IrSetOffsetMaster und IrSetOffsetSlave vorgegeben.

Die X-Position (Eingangsposition für die Kurvenfunktion) ergibt sich aus der Summe der Position der Master-Achse und des Offset *IrSetOffsetMaster*.

Die Slave-Position ergibt sich aus der Summe der (ggf. skalierten) Y-Position der Kurvenscheibe und des Offset *IrSetOffsetSlaves*.

Die Auswahl des Modus zur Übernahme von Offset-Werten für die Master-Achse wird über den Parameter eOffsetModeMaster und für die Slave-Achse über den Parameter eOffsetModeSlave eingestellt.

Einstellung/Modus in: eOffsetModeMaster eOffsetModeSlave	Beschreibung
0 (x_zero)	Standard-Einstellung: Die Offset-Werte werden im "Nulldurchgang" der Kurvenscheibe übernommen. Der "Nulldurchgang" ist als Startpunkt einer Kurvenscheibe bei positiver Master-Drehrichtung oder als Endpunkt einer Kurvenscheibe bei negativer Master-Drehrichtung definiert.
1 (direct)	Die Offset-Werte werden sofort nach der Vorgabe oder Änderung übernommen. Eine direkte Vorgabe oder Änderung der Offset-Werte führt zu einem Sprung der Sollposition, auch bei Stillstand der Achsen.
2 (ramp_in)	Der Rampengenerator führt den aktuellen Offset über die Profilparameter IrOffsetScalingVel, IrOffsetScalingAcc, IrOffsetScalingDec und IrJerk auf den Soll- Offset. Mit dem Parameter IrJerk wird der maximale Ruck begrenzt. Üblicherweise wird der Ruck auf das 100-fache der Beschleunigung eingestellt.

Sind die Rampengeneratoren aktiv (Modus "2 (ramp_in)") und ein Kurvenscheibenwechsel liegt vor, so werden die Rampengeneratoren nicht abgebrochen. Die Ausgleichsbewegung wird vollständig bis zum Ende ausgeführt.

Einzustellende Parameter

Die einzustellenden Parameter befinden sich in der Parameterstruktur $\underline{L\ TT1P\ scPar\ FlexCam[Base/State]}$ ($\underline{\square\ 21}$).

```
eOffsetModeMaster : L_TT1P_OffsetMode := 0;  // [x_zero]
eOffsetModeSlave : L_TT1P_OffsetMode := 0;  // [x_zero]
lrOffsetScalingVel : LREAL := 100;
lrOffsetScalingAcc : LREAL := 1000;
lrOffsetScalingDec : LREAL := 1000;
lrJerk : LREAL := 10000;
```

._____

[3-18] Verlauf: Offset-Werte einer Kurvenscheibe (X-Achse/Y-Achse 0..180) mit Offset-Wert 10 für Master und 20 für Slave

3.19 Berechnung von Extremwerten einer Kurvenscheibe (Base-Variante)

3.19 Berechnung von Extremwerten einer Kurvenscheibe (Base-Variante)

Das Technologiemodul bietet die Möglichkeit, die Kurvenscheibe am Eingang *CamTable1* auf Maximalwerte der Position, der Geschwindigkeit und der Beschleunigung zu untersuchen. Die Berechnung der Maximalwerte wird mit dem Parameter *xCalcCamBounds* = TRUE ausgeführt.

Für die Berechnung wird die maximale Geschwindigkeit (Parameter *IrMasterMaxVel*) und die maximale Beschleunigung (Parameter *IrMasterMaxAcc*) der Master-Achse benötigt.

An den Ausgängen *IrSlaveMaxVel* und *IrSlaveMaxAcc* werden die maximale Geschwindigkeit und die maximale Beschleunigung der Slave-Achse ausgegeben. Die maximale und minimale Position der Slave-Achse wird an den Ausgängen *IrSlaveMaxPos* und *IrSlaveMinPos* ausgegeben. Diese Werte werden automatisch aktualisiert.

Einzustellende Parameter

```
xCalcCamBounds : BOOL := TRUE;
lrMasterMaxVel : LREAL := 100;
lrMasterMaxAcc : LREAL := 1000;
```

3.20 Wegbasiertes Einkuppeln der Slave-Achse mit oder ohne Reversieren

3.20 Wegbasiertes Einkuppeln der Slave-Achse mit oder ohne Reversieren

Mit dem Parameter *eSyncMode* = 2 (ramp_pos) wird die Slave-Achse wegbasiert über ein Polynom 5. Grades auf die resultierende Y-Position der Kurvenscheibe positioniert.

In diesem Modus kann die Slave-Achse auf eine bereits laufende Kurvenbewegung synchronisieren, wobei der Einkuppelvorgang über mehrere Takte der Kurvenscheibe erfolgen kann. Der Übergang in den Kurvenscheibenbetrieb nimmt hierbei etwas mehr Zeit in Anspruch.

Über den Parameter *eSyncDirection* wird die Einkuppelrichtung bezogen auf die Drehrichtung der Master-Achse eingestellt.

Der Parameter *IrMasterSyncInPos* bestimmt die Position der Master-Achse, ab welcher die Slave-Achse synchronisiert sein soll.

Mit dem Parameter *IrMasterSyncInDist* wird festgelegt, über welche Distanz der Master-Achse die Slave-Achse auf die Kurvenposition gefahren wird. Die Synchronisierung der Slave-Achse auf die Y-Position der Kurvenscheibe kann nur bei einer fahrenden Master-Achse erfolgen.

Mit dem Parameter *ePosCtrlDirection* = 0 (both) wird während des Einkuppelvorgangs das Reversieren der Slave-Achse erlaubt (Bewegung entgegen der Master-Achse). Soll das Reversieren während des Einkuppelvorgangs unterbunden werden, muss der Parameter *ePosCtrlDirection* = 1 (Direction Master) eingestellt werden.

Einzustellende Parameter

```
eSyncMode : L_TT1P_SyncMode := 2;
eSyncDirection : L_TT1P_SyncDirection := 0; // [mcCurrentDirection]
lrMasterSyncInPos : LREAL := 0;
lrMasterSyncInDist : LREAL := 100;
ePosCtrlDirection : L_TT1P_Direction := 0; // [0: both, 1: Direction Master]
```

[3-19] Verlauf: Einkuppelvorgang mit eSyncMode = 2 (ramp_pos)

3.21 Wegbasiertes Auskuppeln der Slave-Achse mit oder ohne Reversieren

3.21 Wegbasiertes Auskuppeln der Slave-Achse mit oder ohne Reversieren

Im Kupplungsmodus *eSyncMode* = 2 (ramp_pos) erfolgt der positionsgesteuerte Auskuppelvorgang an der laufenden Kurvenscheibe mit einem Polynom 5. Grades durch Setzen des Eingangs *xSyncCam* = FALSE.

In diesem Modus kann nur bei fahrender Master-Achse ausgekuppelt werden. Der Auskuppelvorgang kann über mehrere Takte erfolgen.

Mit dem Parameter *IrMasterSyncOutDist* wird der Bremsweg der Master-Achse vorgegeben. Daraus ergibt sich die Position, an der sich die Slave-Achse von der Kurvenscheibe löst.

Der Parameter *IrSlaveSyncOutPos* bestimmt die Position, ab welcher sich die Slave-Achse im Stillstand befinden soll.

Mit dem Parameter *ePosCtrlDirection* = 0 (both) wird während des Auskuppelvorgangs das Reversieren der Slave-Achse erlaubt (Bewegung entgegen der Master-Achse). Soll das Reversieren während des Auskuppelvorgangs unterbunden werden, muss der Parameter *ePosCtrlDirection* = 1 (Direction Master) eingestellt werden.

Einzustellende Parameter

```
eSyncMode : L_TT1P_SyncMode := 2;
lrMasterSyncOutDist : LREAL := 0;
lrSlaveSyncOutPos : LREAL := 100;
ePosCtrlDirection : L_TT1P_Direction := 0; // [0: both, 1: Direction Master]
```


[3-20] Verlauf: Auskuppelvorgang mit eSyncMode = 2 (ramp_pos)

3.22 Skalierung der Kurvenscheibe mit oder ohne Reversieren

3.22 Skalierung der Kurvenscheibe mit oder ohne Reversieren

Die Skalierung der Kurvenscheibe erfolgt in der State-Variante genauso wie in der Base-Variante:

▶ Skalierung der Kurvenscheibe (□ 57)

Die Skalierungsfaktoren können sofort oder über den Rampengenerator übernommen werden:

▶ <u>Skalierung der Position über den Rampengenerator</u> (☐ 60)

Allerdings kann in der State-Variante die Ausgleichsbewegung vom Rampengenerator seitens der Master-Achse ohne zu Reversieren ausgeführt werden.

Mit dem Parameter *ePosCtrlDirection* = 0 (both) wird während der Ausgleichsbewegung das Reversieren erlaubt. Soll das Reversieren während der Ausgleichsbewegung unterbunden werden, muss der Parameter *ePosCtrlDirection* = 1 (Direction Master) eingestellt werden.

Einzustellende Parameter

```
eScalingModeMaster : L_TT1P_ScalingMode := 0;  // [x_zero]
eScalingModeSlave : L_TT1P_ScalingMode := 0;  // [x_zero]
lrOffsetScalingVel : LREAL := 100;
lrOffsetScalingAcc : LREAL := 1000;
lrOffsetScalingDec : LREAL := 1000;
lrJerk : LREAL := 10000;
ePosCtrlDirection : L_TT1P_Direction := 0;  // [0: both, 1: Direction Master]
```

3.23 Offset für Master- und Slave-Achse mit oder ohne Reversieren

3.23 Offset für Master- und Slave-Achse mit oder ohne Reversieren

Die Verwendung von Offsets für die Master- und Slave-Achse erfolgt in der State-Variante genauso wie in der Base-Variante:

▶ Skalierung der Kurvenscheibe (☐ 57)

Allerdings kann in der State-Variante die Ausgleichsbewegung vom Rampengenerator seitens der Master-Achse ohne zu Reversieren ausgeführt werden.

Mit dem Parameter *ePosCtrlDirection* = 0 (both) wird während der Ausgleichsbewegung das Reversieren erlaubt. Soll das Reversieren während der Ausgleichsbewegung unterbunden werden, muss der Parameter *ePosCtrlDirection* = 1 (Direction Master) eingestellt werden.

Einzustellende Parameter

```
eOffsetModeMaster : L_TT1P_OffsetMode := 0;  // [x_zero]
eOffsetModeSlave : L_TT1P_OffsetMode := 0;  // [x_zero]
lrOffsetScalingVel : LREAL := 100;
lrOffsetScalingAcc : LREAL := 1000;
lrOffsetScalingDec : LREAL := 1000;
lrJerk : LREAL := 10000;
ePosCtrlDirection : L_TT1P_Direction := 0;  // [0: both, 1: Direction Master]
```

3.24 Schaltsequenz für Kurvenscheiben

3.24 Schaltsequenz für Kurvenscheiben

Mit einer Schaltsequenz ist es möglich, mehrere Kurvenscheiben in einer Reihenfolge nacheinander fahren zu lassen.

Die Schaltsequenz wird mit dem Eingang xCamSequencer = TRUE aktiviert. Der Ausgang xCamSequencerActive gibt den Status zurück, ob die Schaltsequenz gefahren wird.

Mit dem Parameter *eCamSequenceMode* in der Parameterstruktur <u>L_TT1P_scPar_FlexCam[Base/State]</u> (<u>Q_21</u>) können folgende Schaltsequenzen ausgewählt werden:

Einstellung in		Beschreibung	
eCamSequenceMode	xCamSequencer		
0	TRUE	Kurvenscheibe 1 wird zyklisch gefahren.	
1	TRUE	Kurvenscheibe 3 wird zyklisch gefahren.	
2	TRUE	Kurvenscheibe 1 wird einmal gefahren, danach wird Kurvenscheibe 3 zyklisch gefahren.	
	FALSE	Nach Kurvenscheibe 3 wird Kurvenscheibe 1 einmal gefahren.	
3 TRUE		Kurvenscheiben 1 und 2 werden nacheinander einmal gefahren, danach wird Kurvenscheibe 3 zyklisch gefahren.	
	FALSE	Nach Kurvenscheibe 3 wird Kurvenscheibe 4 einmal gefahren, danach wird Kurvenscheibe 1 einmal gefahren.	

3.25

Berechnung von Extremwerten einer Kurvenscheibe (State-Variante)

3.25 Berechnung von Extremwerten einer Kurvenscheibe (State-Variante)

Die State-Variante bietet die Möglichkeit, eine am Eingang eSetCamTable gewählte Kurvenscheibe oder alle Kurvenscheiben einer Kurvenscheibensequenz (wenn Eingang xCamSequencer = TRUE) auf Maximalwerte der Position, der Geschwindigkeit und der Beschleunigung zu untersuchen. Die Berechnung der Maximalwerte wird mit dem Parameter xCalcCamBounds = TRUE ausgeführt.

Für die Berechnung wird die maximale Geschwindigkeit (Parameter *IrMasterMaxVel*) und die maximale Beschleunigung (Parameter *IrMasterMaxAcc*) der Master-Achse benötigt.

An den Ausgängen *IrSlaveMaxVel* und *IrSlaveMaxAcc* werden die maximale Geschwindigkeit und die maximale Beschleunigung der Slave-Achse ausgegeben. Die maximale und minimale Position der Slave-Achse wird an den Ausgängen *IrSlaveMaxPos* und *IrSlaveMinPos* ausgegeben. Diese Werte werden automatisch aktualisiert.

Einzustellende Parameter

```
xCalcCamBounds : BOOL := TRUE;
lrMasterMaxVel : LREAL := 100;
lrMasterMaxAcc : LREAL := 1000;
```

3.26 CPU-Auslastung (Beispiel Controller 3231 C)

3.26 CPU-Auslastung (Beispiel Controller 3231 C)

Die folgende Tabelle zeigt die CPU-Auslastung in Mikrosekunden am Beispiel des Controller 3231 C (ATOM™-Prozessor, 1.6 GHz).

Variante	Beschaltung des Technologiemoduls	CPU-Auslastung	
		Durchschnitt	Maximale Spitze
Base	xEnable := TRUE; xRegulatorOn := TRUE; xSyncCam := TRUE;	80 μs	155 μs
State	xEnable := TRUE; xRegulatorOn := TRUE; xSyncCam := TRUE;	95 μs	166 μs

Α	J
Anlauf der Achsen 12	Jogging (Handfahren) 32
Anwendungshinweise 7	
Aufbau der Sicherheitshinweise 7	K
Ausgänge 18	Kontrollierter Anlauf der Achsen <u>12</u>
Auskuppeln im Kupplungsmodus "absolute"/"relative" 50	Kupplungsmodus "absolute" einkuppeln 41
Auskuppeln im Kupplungsmodus "ramp_pos" 50	Kupplungsmodus "absolute"/"relative" auskuppeln <u>50</u>
Auskuppeln im Kupplungsmodus "ramp_time" 52	Kupplungsmodus "ramp_pos" auskuppeln 50
Auskuppeln im Kupplungsmodus "ramp_VelAcc" 54	Kupplungsmodus "ramp_pos" einkuppeln 43
Auskuppeln mit/ohne Reversieren 67	Kupplungsmodus "ramp_time" auskuppeln <u>52</u>
Auskuppeln von der Kurvenscheibe <u>50</u>	Kupplungsmodus "ramp_time" einkuppeln 46
	Kupplungsmodus "ramp_VelAcc" auskuppeln 54
В	Kupplungsmodus "ramp_VelAcc" einkuppeln 48
Berechnung von Extremwerten einer Kurvenscheibe (Base-	Kupplungsmodus "relative" einkuppeln 42
Variante) <u>64</u> Berechnung von Extremwerten einer Kurvenscheibe (State-	Kupplungsmodus eSyncMode = 2 (ramp_pos) auskuppeln mit/ohne Reversieren 67
Variante) 72 Betriebsmodus 12	Kupplungsmodus eSyncMode = 2 (ramp_pos) einkuppeln mit/ ohne Reversieren 65
==	Kurvenformate (Kurven-Handling) 34
C	Kurvenscheibe einmal fahren 36
CPU-Auslastung (Beispiel Controller 3231 C) 73	Kurvenscheibe skalieren 57
· —	Kurvenscheibe skalieren mit/ohne Reversieren 69
D	Kurvenscheibe zyklisch fahren 35
Dokumenthistorie <u>5</u>	Kurvenscheibenwechsel 39
	<u></u>
E	L
Eingänge <u>15</u>	L_TT1P_FlexCamBase <u>13</u>
Eingänge und Ausgänge 14	L_TT1P_FlexCamState <u>13</u>
Einkuppeln auf die Kurvenscheibe <u>40</u>	L_TT1P_scPar_FlexCamBase <u>21</u>
Einkuppeln mit Kupplungsmodus "absolute" 41	L_TT1P_scPar_FlexCamState <u>21</u>
Einkuppeln mit Kupplungsmodus "ramp_pos" 43	L_TT1P_scSF_FlexCamBase <u>30</u>
Einkuppeln mit Kupplungsmodus "ramp_time" 46	L_TT1P_scSF_FlexCamState <u>30</u>
Einkuppeln mit Kupplungsmodus "ramp_VelAcc" 48	
Einkuppeln mit Kupplungsmodus "relative" 42	M
Einkuppeln mit/ohne Reversieren <u>65</u> E-Mail an Lenze 76	Master-Achse mit Kurvenscheiben variabler Taktlängen fahren <u>37</u>
Extremwerte einer Kurvenscheibe (Base-Variante) 64	_
Extremwerte einer Kurvenscheibe (State-Variante) 72	N
	Notöffnung <u>56</u>
F	
Feedback an Lenze <u>76</u>	0
Flex Cam (Funktionsbeschreibung) <u>10</u>	Offset für Master- und Slave-Achse <u>62</u>
Funktionen des Technologiemoduls (Übersicht) 11	Offset für Master- und Slave-Achse mit/ohne Reversieren 70
Funktionsbaustein L_TT1P_FlexCamBase/State 13	D
Funktionsbeschreibung "Flex Cam" 10	P
G	Parameterstruktur L_TT1P_scPar_FlexCamBase/State 21
Gestaltung der Sicherheitshinweise 7	R
<u>-</u>	Rampengenerator zur Skalierung der Position <u>60</u>
Н	Referenzfahrt (Homing) 33
Handfahren (Jogging) 32	
Hinweise zum Betrieb des Technologiemoduls $\underline{12}$	
Homing (Referenzfahrt) 33	

Index

S Schaltsequenz für Kurvenscheiben 71 Sicherheitshinweise 7, 8 Signalflusspläne 28 Skalierung der Kurvenscheibe <u>57</u> Skalierung der Kurvenscheibe mit/ohne Reversieren <u>69</u> Skalierung der Position über den Rampengenerator <u>60</u> Slave-Achse mit Kurvenscheiben variabler Taktlängen fahren 38 State machine 27 Struktur des Signalflusses L_TT1P_scSF_FlexCamBase/State ٧ Variablenbezeichner 6 Verwendete Konventionen <u>6</u> Z Zielgruppe 4 Zustände 27 Zwangsöffnung <u>56</u>

Ihre Meinung ist uns wichtig

Wir erstellten diese Anleitung nach bestem Wissen mit dem Ziel, Sie bestmöglich beim Umgang mit unserem Produkt zu unterstützen.

Vielleicht ist uns das nicht überall gelungen. Wenn Sie das feststellen sollten, senden Sie uns Ihre Anregungen und Ihre Kritik in einer kurzen E-Mail an:

feedback-docu@lenze.com

Vielen Dank für Ihre Unterstützung. Ihr Lenze-Dokumentationsteam Lenze Automation GmbH Postfach 10 13 52, 31763 Hameln Hans-Lenze-Straße 1, 31855 Aerzen GERMANY HR Hannover B 205381

£ +49 5154 82-0

<u>+49 5154 82-2800</u>

@ lenze@lenze.com

<u>www.lenze.com</u>

Service

Lenze Service GmbH Breslauer Straße 3, 32699 Extertal GERMANY

© 008000 24 46877 (24 h helpline)

💾 +49 5154 82-1112

@ service@lenze.com

