

planetmath.org

Math for the people, by the people.

essential boundary

Canonical name EssentialBoundary
Date of creation 2013-03-22 15:01:54
Last modified on 2013-03-22 15:01:54

Owner paolini (1187) Last modified by paolini (1187)

Numerical id 9

Author paolini (1187) Entry type Definition Classification msc 49-00 Let $E \subset \mathbf{R}^n$ be a measurable set. We define the essential boundary of E as

$$\partial^* E := \{ x \in \mathbf{R}^n \colon 0 < |E \cap B_\rho(x)| < |B_\rho(x)|, \quad \forall \rho > 0 \}$$

where $|\cdot|$ is the Lebesgue measure.

Compare the definition of $\partial^* E$ with the definition of the topological boundary ∂E which can be written as

$$\partial E = \{ x \in \mathbf{R}^n : \emptyset \subsetneq E \cap B_{\rho}(x) \subsetneq B_{\rho}(x), \quad \forall \rho > 0 \}.$$

Hence one clearly has $\partial^* E \subset \partial E$.

Notice that the essential boundary does not depend on the Lebesgue representative of the set E, in the sense that if $|E\triangle F| = 0$ then $\partial^* E = \partial^* F$. For example if $E = \mathbf{Q}^n \subset \mathbf{R}^n$ is the set of points with rational coordinates, one has $\partial^* E = \emptyset$ while $\partial E = \mathbf{R}^n$.

Nevertheless one can easily prove that $\partial^* E$ is always a closed set (in the usual sense).