MA 227-103 — Summer 2017 — Dr. Clontz

Name:	Exercise T	Type:
J#:	\mathbf{Quiz}	
Date: 2017 June 23		
Standard: This student is able to C06: ChainRule. Apply the multivariable Chain Rule to compute derivatives and find normal vectors.		Mark:
3/4 * reath	tempt due on:	

Let the equation $3x^2y = 4y^2 + 3x - 10$ define y as a differentiable function of x near the point $\langle 1, -1 \rangle$. Use partial derivatives to find $\frac{dy}{dx}$ at the point $\langle 1, -1 \rangle$.

MA 227-103 — Summer 2017 — Dr. Clontz

Name:	Exercise Type:	
J#:	Quiz	
Date: 2017 June 23		
Standard: This student is able to S06: Lineariz. Compute the linearization of a two-variable real-valued function at a point and use it for approximation.		Mark:
2/3 * reat	tempt due on:	

Find the linearization L(x,y) for $f(x,y) = ye^{xy}$ at the point $\langle 0,2 \rangle$. Then use it to show that $f(-0.01,2.03) \approx 1.99$. (Hint: Don't forget to use the product rule to find f_y .)