ME591 - Homework 3

 $\begin{array}{c} {\rm Herman~Kolstad~Jakobsen} \\ 20196493 \end{array}$

October 7, 2019

Problem 1

Note: The MATLAB code for this problem can be found in the .zip folder.

1a)

The histograms and estimated probability distributions for the three cases with $m=1,\,m=5$ and m=15 are shown in fig. 1, fig. 2 and fig. 3, respectively.

Figure 1: Histogram and estimated probability distribution for m=1

Figure 2: Histogram and estimated probability distribution for m=5

Figure 3: Histogram and estimated probability distribution for m=15

1b)

The estimated errors for m=1 and m=15 are shown in fig. 4 and fig. 5, respectively.

Note: I did not know what error values and plots to expect. Hence, there is a good chance that the plots are incorrect. The Matlab code generating these plots can be found in the .zip folder.

Figure 4: Estimation errors for m = 1

Figure 5: Estimation errors for m = 15

1c)

Looking at fig. 1, fig. 2 and fig. 3, the Central Limit Theorem is clearly shown. For both cases where m=5 and m=15, the estimated probability distribution tends towards a normal distribution. However, as the number of class intervals increases in fig. 3, the estimated probability density gets more rough. The probability density estimate in fig. 2 is smoother in comparison.

The histogram in fig. 1 shows almost an ideal uniform distribution, but small deviations are shown for especially x=3 and x=4. This is in compliance with the estimated errors in fig. 4. The bias error is zero, which means no error is expected. However, some random error leads to a deviation between the estimated and the ideal probability distribution. From fig. 4, it is also shown that a higher number of data samples results in a smaller random error.

As seen in fig. 5, a higher number of class intervals results in a higher random error. Further, the random error has its highest values at the end-values of x. Since the approximated bias error is independent of the number of samples, it is equal for both cases with N=36 and N=3600. Similar to the case with m=1, the random error decreases as the number of data samples increases.

According to the slides given in lecture the bias error for m=15 should be smaller than the bias error for m=1, since we have more class intervals for m=15. The reason for this not being true can be the fact that the probability distribution for m=1 is uniform. The phenomenon of more class intervals resulting in smaller bias error could maybe be seen by comparing the errors of m=5 and m=15?

MESGI	Homework	3	1		. Jakol	os en
	.0	3		201964	6493	
Problem 2a)						
Given that				-		
y(£) =	x (t - 20)					
The autocon	elation is the	n				
Ryy (~)	= E[y(+)y(++2)]				4
	$= E \left[\times (t - \tau_0) \times (\tau_0) \right]$	6-2+2				, ,
Defining						
u= t-	76	, , ,	3	,		
yields				ļ.	-	
Ryy (2)= E[x(u) x ((u+2)				
	= Rxx-(2)					
	is defined as				correlat	40 D
	6r x(4) is					
Rxx (2)	5xx(+) e 1217+2 d+	F 2	(ejzTFZd-	5	8(2)	1112.3
) ~			
Hence						
Ryy (2))= \frac{6}{2}\delta(\varphi)					

The cross correlation of input and output is $R_{xy}(z) = E[x(t) y(t+z)]$ $= E \left[\times (t) \times (t - T_0 + T) \right]$ Defining V= T-T 50 $R_{\times y}(y+T_0) = E(x(t) \times (t+v)$ = Rxx (v) Substituting back the variable yields $R_{xy}(z) = R_{xx}(z-z_0) = \frac{6}{2}\delta(z-z_0)$ The cross correlation of output and input is $R_{yx}(z) = E[y(t) x(t+z)]$ = E[x(t-To)x(t+z)] Defining w= t-20 Substitution gives Ryx(2) = E[x(4) x(4+2+20)] = Rxx (2+ To) Hence Ryx (2) = = 5 (2+ 20)

2 c)
Given the following condition
Sxy (+) = Syx (+))
Inserting the spectral density functions yields
$\left \frac{G}{2}e^{-j2\pi\xi}\mathcal{T}_{0}\right =\left \frac{G}{2}e^{j2\pi\xi}\mathcal{T}_{0}\right $
$= \frac{ G }{2} \left e^{-\frac{1}{2}\pi f \tau_0} \right = \left \frac{G}{2} \right \left e^{\frac{1}{2}\pi f \tau_0} \right $
<u>G</u> _ <u>G</u> _ 2
The condition is satisfied independent of the frequency.
Hence, the condition is fulfilled in the following
frequency region
- \infty \ \alpha \ \xi \ \xi \ \infty \
2d)
Given the following condition
≤xy (f) = 5yx (f)
Inserting the spectral density functions yields
$\frac{G}{2}e^{-j2\pi}f^{2}\delta = \frac{G}{2}e^{j2\pi}f^{2}\delta$
The condition is only satisfied when
F=0

So

Rem (2) =
$$\frac{1}{B^2} \left(\frac{1}{52\pi 2} \left[\frac{1}{52\pi 7} \left[\frac{1}{52$$

Ultimately $R_{xx}(z) = \frac{1}{2(\pi B z)^2} - \frac{1}{2(\pi B z)^2} \cos(2\pi B z)$
$Rxx(z) = \frac{1}{2(\pi B z)^2} \left(1 - \cos(2\pi B z) \right)$
The rate of change is given by the derivative. Hence $\frac{d}{d\tau} R_{xx}(\tau) = \frac{1}{2(\pi B)^2} \frac{d}{d\tau} \left(\tau^2 \left(1 - \cos(2\pi B \tau) \right) \right)$
$= \frac{1}{2(\pi B)^2} \left[-2\tau^{-3} \left(1 - \cos \left(2\pi B \tau \right) \right) + \tau^{-2} 2\pi B \sin \left(2\pi B \tau \right) \right]$ $= \frac{1}{\pi B \tau^2} \sin \left(2\pi B \tau \right) - \frac{1}{(\pi B)^2 \tau^3} \left(1 - \cos \left(2\pi B \tau \right) \right)$
For $B=C$: $\frac{d}{d\tau} R_{xx} \left(\mathcal{Z}; B=c \right)^{-1} \frac{1}{\pi c \tau^{2}} \sin(2\pi c \tau) - \frac{1}{(\pi c)^{2} \tau^{3}} \left(1 - \cos(2\pi c \tau) \right)$
For $B = 2C$: $\frac{d}{dz} R_{xx} \left(\tau; B = 2C \right) = \frac{1}{2\pi c \tau^2} \sin(4\pi c \tau) - \frac{1}{(2\pi c)^2} \frac{1}{2^3} \left(1 - \cos(4\pi c \tau) \right)$
The derivatives give no obvious concluding answer regarding the decay.

Scanned by CamScanner