Enseignement

Enseignement

Logiciels

MATLAB

Obtenir MATLAB

Entrer des données

Faire un graphique

Faire une régression ("un fit")

Python

Obtenir

Entrer des données

Faire un graphique

Gnuplot

Obtenir gnuplot

Entrer des données

Faire un graphique

Logiciels

Différents documents, scripts, figures ou autres reliés à l'enseignement.

1. Graphiques

- 1. Le logiciel MATLAB (Windows+Mac) peut être utilisé pour faire des graphiques. Des ordinateurs au laboratoire ont le logiciel MATLAB. Une licence étudiante est aussi disponible à la Faculté.
- 2. Le langage de programmation Python permet de faire des graphiques grâce au package matplotlib.
- 3. Le logiciel Gnuplot est gratuit et permet de faire des graphiques acceptables.
- 4. Le logiciel Excel permet de faire des graphiques en pointe de tarte (délicieux).
- 2. Analyse d'images
 - 1. Plusieurs montages utilsent le logiciel d'analyse d'images **ImageJ ou Fiji**. Pour le télécharger (gratuitement), consultez le site <u>Fiji</u>
 - 2. Le logiciel MATLAB peut être utilisé pour faire les analyses. Des ordinateurs au laboratoire ont le logiciel MATLAB. Une licence étudiante est aussi disponible a la Faculté.

MATLAB

Obtenir MATLAB

• Utilisez les ordinateurs de laboratoire ou obtenez une licence facultaire - etudiant.

Entrer des données

• À la main (aide MATLAB: Les matrices):

```
x = [0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6]

y = [0 \ 3.5 \ 4 \ 6.2 \ 4.4 \ 4.5 \ 8.0];
```

• Du disque (aide MATLAB: Importer des fichiers texte):

```
donnees = dlmread('file.dat');
x=donnees(:,1)
y=donnees(:,2)
```

Vous pouvez utiliser load('data.txt'), mais les données seront dans la variable data.

Faire un graphique

 Vous pouvez utiliser la commande plot, mais vous pouvez aussi utiliser le fichier de commande ci-dessous, appelé <u>plotNice.m</u> pour faire un graphique de bonne qualité.

```
matlab
plot(x,y);
plotNice("Titre", "Axe des X", "Axe des Y", x,y);
```

```
set(gca, 'FontSize', 20);
set(gcf, 'color', [1 1 1]);
end
```

Faire une régression ("un fit")

 Vous pouvez utiliser la commande fit avec le type de régression (aide MATLAB, tous les modèles):

```
f=fit(x,y,'poly2')
plot(f,x,y);
```

Python

Obtenir

- Dans bien des cas, vous voudrez avoir l'ensemble des modules scientifiques. L'installation de Anaconda est recommandée: tout s'installe en bloc. Sinon:
 - Utilisez les ordinateurs de laboratoire.
 - OS X et Linux: Ouvrez un terminal. Python vient avec le systeme.
 - Windows: Téléchargez et installez Python sur votre machine: https://www.python.org/do
 wnloads/

Entrer des données

• À la main:

```
x = [0, 1, 2, 3, 4, 5, 6];

y = [0, 3.5, 4, 6.2, 4.4, 4.5, 8.0];
```

• Du disque:

```
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
donnees = np.loadtxt('data.txt')
x=donnees[:,0]
y=donnees[:,1]
```

Faire un graphique

• Vous pouvez utiliser la commande plot de matplotlib:

```
import numpy as np
import matplotlib
import matplotlib.pyplot as plt

x = [ 0, 1, 2, 3, 4, 5, 6 ];
y = [ 0, 3.5, 4, 6.2, 4.4, 4.5, 8.0];

donnees = np.loadtxt('data.txt')
x=donnees[:,0]
y=donnees[:,1]

plt.plot(x, y)

plt.show()
```

Gnuplot

Obtenir gnuplot

- Utilisez les ordinateurs de laboratoire.
- Windows: Téléchargez <u>l'application fonctionnelle</u> sur sourceforget.net
- OS X/Linux: Téléchargez le code source sur http://sourceforge.net/projects/gnuplot/files/gnuplot/files/gnuplot/5.0.1/ et compilez vous même l'application avec: ./configure; make install dans le repertoire du code.
- OS X: Utilisez macport et tapez : sudo port install gnuplot

Entrer des données

- À la main
 - gnuplot ne travaille pas facilement avec des données hors d'un fichier. Entrez les données dans un fichier et nommez-le 'data.txt' par exemple. Séparez les colonnes par une tabulation. Aide format Gnuplot
- D'un fichier

```
set xlabel 'exposition (mR)'
set ylabel 'niveau de gris (UA)'
plot 'data.txt' using 1:2 title "valeur mesuree" lw 3 pt 5 ps 3
```

Faire un graphique

```
set xlabel 'Axe des X'
set ylabel 'Axe des Y'
plot 'data.txt' using 1:2 title "Valeur mesurée" lw 3 pt 5 ps 3
```