Percentiles

Moments

- Quantitative measures of the **shape** of a probability density function
- Mathematically:

$$\mu_n = \int_{-\infty}^{\infty} (x - c)^n f(x) dx$$
 (for moment *n* around value *c*)

First Moment:

mean - measure of location

(Variance)

Second Moment:

Standard deviation - measure of spread

Third Moment:

skewness - measure of symmetry

Fourth Moment:

kurtosis - measure of peakedness

	U	Inivariate Analysis - Numerical	
Statistics	Visualization	Equation	Description
Count	Histogram	N	The number of values (observations) of the variable.
Minimum	Box Plot	Min	The smallest value of the variable.
Maximum	Box Plot	Max	The largest value of the variable.
Mean	Box Plot	$\bar{X} = \frac{\sum X}{N}$	The sum of the values divided by the count.
Median	Box Plot	\tilde{X}	The middle value. Below and above median lies an equal number of values.
/lode	Histogram		The most frequent value. There can be more than one mode.
Quantile	Box Plot	Q_k	A set of 'cut points' that divide a set of data into groups containing equal numbers of values (Quartile, Quintile, Percentile,).
Range	Box Plot	Max-Min	The difference between maximum and minimum.
Variance	Histogram	$S^2 = \frac{\sum (X - \bar{X})^2}{N - 1}$	A measure of data dispersion.
Standard Deviation	Histogram	$S = \sqrt{S^2}$	The square root of variance.
Coefficient of Deviation	Histogram	$CV = \frac{S}{\overline{X}} \times 100\%$	A measure of data dispersion divided by mean.
Skewness	Histogram	$\frac{N}{(N-1)(N-2)} \sum \left(\frac{X-\bar{X}}{S}\right)^3$	A measure of symmetry or asymmetry in the distribution of data.
Kurtosis	Histogram	$ \frac{\left[\frac{N(N+1)}{(N-1)(N-2)(N-3)} \sum_{j=1}^{N} \left(\frac{X-\bar{X}}{S}\right)^{4}\right]}{-\frac{3(N-1)^{2}}{(N-2)(N-3)}} $	A measure of whether the data are peaked or flat relative to a normal distribution.

Skew

Kurtosis

MatPlotLib - graphs

Covariance

- A descriptive measure of the linear association between 2 variables:
 - A positive value indicates a direct or increasing linear relationship
 - A negative value indicates a decreasing relationship

Covariance formula

Sample Covariance

$$s_{xy} = \frac{\Sigma(x_i - \bar{x})(y_i - \bar{y})}{n - 1}$$

$$\sigma_{xy} = \frac{\Sigma(x_i - \mu_x)(y_i - \mu_y)}{N}$$
Sample Covariance

Population Covariance

Population Covariance

Morkers

4 able Produ

x	y	$(x_i - \overline{x})$	$(y_i - \overline{y})$	$(x_i - \overline{x})(y_i - \overline{y})$
12	20	-9.3	-21.2	197.16
30	60	8.7	18.8	163.56
15	27	-6.3	-14.2	89.46
24	50	2.7	8.8	23.76
14	21	-7.3	-20.2	147.46
18	30	-3.3	-11.2	36.96
28	61	6.7	19.8	132.66
26	54	4.7	12.8	60.16
19	32	-2.3	-9.2	21.16
27	57	5.7	15.8	90.06
$\dot{x} = 21.3$	$\bar{y} = 41.2$			$\Sigma = 962.4$

$$Cov(x,y) = s_{xy} = \frac{962.4}{n-1}$$

$$\frac{962.4}{9}$$

$$Cov(x,y) = 106.93$$

Correlation vs Covariance

- Covariance provides the DIRECTION (positive, negative, near zero) of the linear relationship between 2 variables
- Correlation provides both DIRECTION and STRENGTH
- Covariance result has no upper/lower bounds and its size is dependent on the scale of the variables
- Correlation is always between -1 and +1

Correlation is NOT Causation

Correlation

Correlation Formula

• r is called a (Pearson) correlation coefficient

$$r = \frac{Covariance (x, y)}{Standard \ Deviation(x) \times Standard \ Deviation (y)}$$

Can be written as:

$$r = \frac{Cov(x, y)}{s_x s_y}$$

Correlation Example

х	у	$(x_i - \overline{x})(y_i - \overline{y})$		
12	20	197.16		
30	60	163.56	962	
15	27	89.46	$Cov(x,y) = s_{xy} = \frac{902}{n - 1}$	
24	50	23.76	n-	
14	21	147.46	962	
18	30	36.96	9	
28	61	132.66	9	
26	54	60.16		
19	32	21.16	Cov(x,y) = 106.	
27	57	90.06		
$\dot{x} = 21.3$	$\bar{y} = 41.2$	$\Sigma = 962.4$	$s_x = 6.48$ $s_y = 16.$	

$$r = \frac{Cov(x, y)}{s_x s_y}$$

$$r = \frac{s_{xy}}{s_x s_y}$$

$$r = \frac{106.93}{6.48 \times 16.69}$$

$$r = \frac{106.93}{108.15}$$

$$r = .989$$

If $|r| \ge \frac{2}{\sqrt{n}}$, then a relationship exists

So for our problem: $|r| \ge \frac{2}{\sqrt{10}} = .632$ is the rule of thumb threshold

Correlation Examples

Correlation Coefficient can be tricky...

Same correlation coefficient!

Correlation is NOT causation/causality!

https://www.youtube.com/watch?v=Cl8zetzDBfM

#