## Lecture 4 - Ordered Counting

Tuesday, September 14, 2021 1:57 PM

Theorem:

If (Ci) are a partition of S

then.

CI MINITES STATES OF THE CONTROL OF

 $P(E) = \sum_{i} P(EC_{i})$ 

Pf. (ECi) partitions E

resolven

- DECI = E

= ECinEG= & Hitj

2 By Additivity

P(E) = P(VECi) = IP(ECi)

Equally Likely Outcomes

I have a sample space S

 $S = \{A_1, A_2, \ldots, A_n\}$  so that |S| = n.

assume that

$$\frac{1}{n} = P(sais) = P(sais) + ij$$

Rationale: 52;3 fa (=1,-.., h partition S

$$I = P(S) = \sum_{i=1}^{N} P(SA_i)$$
  
same  $\forall i$ 

the only way this works is if P(sa;3) = /n.

More generally: If ECS then if all out comes one egrally likely

Ex, Poll a six-sided die.

If all volls one egrally likely then

$$E = \{2, 6\}$$
  
then  $I = 1, -2$ .

Ex, An experiment consist of 3 factors:

(1) 2 temperature settings 2) 2 pressure settings 3) 4 humidity settings

Q: How many possible experiments? 16=2-2-4

Theorem: Fundamental Theorem of Counting (FTC) If I have a task consisting of the different subtasks where the ith fask Can be dove in ni ways. The fotal number of ways I can complete the overall task is

> $N = \mathcal{N}_1 \cdot \mathcal{N}_2 \cdot \mathcal{N}_3 \cdot \cdots \mathcal{N}_k$  $= \prod_{i=1}^{n} n_{i}$

Ex. A man has 5 shirts, 2 pairs of



$$E = \text{lin order}''$$

$$S = \text{all possible orderings}$$

$$P(E) = \frac{|E|}{|S|} = \frac{1}{7??}$$

|        |              | 4       |
|--------|--------------|---------|
| task # | fask         | #ways   |
| 1      | choose card/ | (52)    |
| Ž      | // 2         | (5/ )   |
| 3      | 11 3         | 50      |
|        | ,            | multipy |
| Ċ      | -            |         |
| 52     | 11 52        | 1 /     |
| ,      |              |         |

$$P(s) = \frac{1}{5251.50...3.2.}$$

Defu! Factorial

For my non-negative integer n we define n factorial as

$$n! = (n)(n-1)(n-2) - (3)(2)(1)$$

$$= n i$$

$$= |n|i$$

$$= |-1|i$$

note: 0!=1

Ex. Previ example

P(E) = /7/

Sampling wand w/o Replacement/Ordering

Ordering:

draw 1: draw 2:

(1) (3) (2) (1) (3)

Are these different?

Replacement

Con I draw (1)(1)(2)?

Yes: W replacement

No: W/o replacement.

|                                                                                                             | 4 Scenemios:                                                          |                     |                |  |  |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------|----------------|--|--|
|                                                                                                             |                                                                       | W/o replacement     | w/ replacement |  |  |
|                                                                                                             | ordered                                                               | $\frac{n!}{(n-r)!}$ | 2)             |  |  |
|                                                                                                             | un-ordered                                                            | 4                   | 3              |  |  |
|                                                                                                             | Permutation:  A permutation is an ordering of a Collection of objects |                     |                |  |  |
| Ex. Object A, Az Az Hren permetrons ave  3 objects 6 permetations  A, A |                                                                       |                     |                |  |  |
|                                                                                                             | Theorem! The number of ways to permule n items is n!                  |                     |                |  |  |
|                                                                                                             |                                                                       | TC w/ k= Y          |                |  |  |

Lectures 2 Page 7

| fask # | task        | # ways      |
|--------|-------------|-------------|
|        | choise item | n           |
| 3      | 11 2        | n-1 product |
|        | 1           | is n'       |
| N      | n n         | 1           |

Theorem: Ordered Sampling W/o Replacement

If I have no items and I sample

r of them (r < n) w/o replacement

but w/ ordering. The number of ways I

can draw this sample is

$$(n)_{r} = \frac{n!}{(n-r)!}$$

Pf. Use FTC.

|        | · · · · · · · · · · · · · · · · · · · | ,        |
|--------|---------------------------------------|----------|
| task # | task                                  | # way    |
| 0-0-01 | \ "                                   |          |
| 1      | Chouse Hem 1                          | n        |
| 2      | 11 2                                  | n-1      |
| 3      | 4 3                                   | n-2      |
| · ·    | ,                                     | ,        |
| · ·    |                                       |          |
| Y      | 11 7                                  | \n-r+1 / |
|        |                                       |          |

r n-r+1> total # ways is n(n-1)(n-2)---(n-r+1) $\frac{N!}{(n-r)!} = \frac{(n(n-1)(n-2)\cdots(n-r+1)(n-r))}{(n-r)!} = \frac{(n-r)(n-r)(n-r-1)(n-r-2)}{(n-r-1)(n-r-2)}$ Ex. I form a committee of 10 students where the committee hus 3 members:

Pres, VP, treasurer. Q: How many ways can I form this committee? By prev. theorem I can do this in  $\frac{10!}{(10-3)!} = \frac{10!}{7!} = \frac{10.9.8.7.6/4/1}{4.6.8/-1/1}$ = 10.9.8 = 720Ex. Lotto. I have 25 balls in a basket

Lectures 2 Page 9



| Theorem: Sampling w/ replacement w/ ordering                              |
|---------------------------------------------------------------------------|
| The number of ways to same ritems<br>from n w/replacement and ordering is |
| h                                                                         |
| pf. Use FTC w/ k=r                                                        |
| task the task thank  1 chose Hem 1 2 n 3 n i product is in n.n.           |
| Ex Braille alpabet. How many different braille Configurations?            |
| Configuration.                                                            |

S = 2Idea! Sample humps /not-bump from basket

(r=6) So formula says can do in 2 ways.