

OPTICAL TRANSMITTER

Patent number: JP2000106543 (A)
Publication date: 2000-04-11
Inventor(s): MIYAMOTO YUTAKA; YONENAGA KAZUSHIGE; KUWABARA SHOICHIRO
Applicant(s): NIPPON TELEGRAPH & TELEPHONE
Classification:
- **international:** G02F1/01; H04B10/04; H04B10/06; H04B10/142; H04B10/152; H04L25/493; G02F1/01; H04B10/04; H04B10/06; H04B10/142; H04B10/152; H04L25/493; (IPC1-7): H04B10/152; G02F1/01; H04B10/04; H04B10/06; H04B10/142; H04L25/493
- **europen:**
Application number: JP19990212153 19990727
Priority number(s): JP19990212153 19990727; JP19980214209 19980729

Also published as:

JP3371857 (B2)

Abstract of JP 2000106543 (A)

PROBLEM TO BE SOLVED: To prevent a case where the inter-code interference is easily caused on an optical fiber transmission line and at an optical transmitting/receiving part by modulating the intensity of continuous beams so as to make the phases of optical modulation signals corresponding to the 1st and 3rd levels of a differential signal be different from each other by π . **SOLUTION:** The precoding circuits 1 and 1' output the value of an exclusive OR between the NRZ(non-return-to-zero) differential signals inputted from the input terminals 14 and 14' and the signals obtained by delaying by one bit the value and the code value of the NRZ differential signals. The band pass filters 2 and 2' serving as the differential coding means generate the differential electric signal pulses of different polarities at the rise and fall points of the said exclusive OR value.; Then a light intensity modulator 4 serving as a light intensity modulating means returns a differential electric pulse waveform around the 2nd level of a ternary differential electric signal in response to the differential electric signal pulses and also modulates the intensity of continuous beams so as to make the optical modulation signals corresponding to the 1st and 3rd levels of the differential signal be different from each other by π .

Data supplied from the esp@cenet database — Worldwide

Partial Translation of JPA 2000-106543

[0028] The first example of this invention relates to an optical transmission device equipped with input terminals 14 and 14' for inputting NRZ electrical signals and means for changing into RZ optical signals said NRZ electrical signals inputted through input terminals 14 and 14', as shown in Fig. 1.

[0029] The present invention is characterized in that said changing means comprises precoding circuits 1 and 1' which output the value of an exclusive OR between the NR differential signals inputted from the input terminals 14 and 14' and the signals obtained by delaying by one bit the value and the code value of the NRZ differential signals, band pass filters 2 and 2' serving as differential coding means to generate differential electric signal pulses of different polarities at the rise and fall points of the said exclusive OR value and light intensity modulator 4 serving as a light intensity modulating means to return a differential electric pulse waveform around the second level of a ternary differential electric signal in response to the differential electric signal pulses and also modulate the intensity of continuous beams so as to make the optical modulation signals corresponding to the first and third levels of the differential signal be different from each other by π . In this connection, light intensity modulator 4 includes a Mach Zehnder intensity modulator.

[0038] (First Embodiment) The first embodiment according to

the present invention will be explained with reference to Figs. 1 to 9. As shown in Fig. 1, the device of the first embodiment is comprised of precoding circuits 1 and 1', which output precoded and encoded NRZ electrical signals by introducing multiplexed NRZ differential electrical signals from input terminals 14 and 14', band pass filters 2 and 2' serving as differential circuits to generate differential signal pulses, each of which has the same amplitude with respect to the ground level and a different polarity, driving circuits 3 and 3' of a charge coupled type to amplify the differential signals up to a driving voltage of light intensity modulator 4, push-pull type Mach Zehnder intensity modulator 4 which produces RZ optical signals from differential derivative signals amplified by driving circuits 3 and 3', and optical amplifier 6 which amplifies outputs of light intensity modulator 4. Precoding circuits 1 and 1' and band pass filters 2 and 2' may be formed as bipolar code converters having complementary outputs. The structure of precoding circuits 2 and 2' is shown in Fig. 2. Precoding circuits 2 and 2' of the present invention is comprised of exclusive OR circuit 7 and one bit delay circuit 8. The waveforms of the light transmitting device according to the first embodiment of the present invention are shown in Fig. 3.

[0039] The advantages of the present invention will be explained hereinafter. The present invention has four advantageous points, as follows:

- 1) As NRZ electrical signal is precoded and converted to a derivative signal by passive microwave components, the input signal becomes a DC balanced code having no DC component and a three valued signal. Therefore, driving

circuits 3 and 3' do not need to have base band amplification characteristics from a DC, thus allowing amplification of a 3 dB zone with B(Hz) which is a half of a conventional device. 2) In a prior art system which amplifies an RZ electrical signal without modification, when a capacitive coupling type driving circuit is used, the DC level of its driving waveform fluctuates due to fluctuation in signal mark ratio. Therefore, the output dynamic range of the driving circuit should be set to more than 2. In addition, the prior art system requires a control circuit for compensating a bias point of light intensity modulator 4 with a mark ratio, which bias point fluctuates based on the mark ratio. Contrary to this, the present invention resolves the above-mentioned problem, since a derivative signal does not include a DC component, and therefore there is no fluctuation in DC level due to a mark ratio. 3) Fig. 4 is a diagram for explaining the operation of light intensity modulator 4 according to the present invention. In Fig. 4, the axis of abscissas shows the magnitude of a driving voltage and the axis of ordinate shows the intensity of a light. Utilizing periodical characteristics of the electro-optic responsibility of light intensity modulator 4 of a push-pull type Mach-Zehnder device and choosing operational points as shown in Fig. 4, pulses having different derivative signal characteristics are turned back around the DC level (the second level) of point A. As a result, RZ optical signal pulses are produced with light intensity modulator 4 having a one-stage-structure. In this instance, the light phases at point B (the first level) and point C (the third level) of Fig. 4 differ by π from each other. Point B and point C

correspond to rising edges of a phase of respective encoded NRZ electrical signals, and therefore the phases of adjacent RZ optical signal pulses are inverted relative to each other. In addition, the duty cycle of the pulses becomes 1/2 by utilizing a 1/4 wavelength short stub line (at clock frequency B (Hz) of a transmission rate). As a result, a produced RZ optical signal zone becomes $2B$, which can be modulated with light intensity modulator 4 having a one-stage-structure. Therefore, the output power required for light source 5 can be the same level as that required for an NRZ modulation. 4) Fig. 5 shows an optical spectrum of an RZ optical signal from an optical transmission device according to the present invention. In the present invention, since a derivative signal is used, the existing probability of point B and point C shown in Fig. 4 is inevitably 1/2. Therefore, as shown in Fig. 5, the produced RZ optical signal has no component of a carrier frequency not depending on a mark ratio, and thus an RZ optical signal spectrum density becomes lower than that of a prior art. Therefore, in the present invention, the RZ optical signal power, where the maximum value of a spectrum density of the RZ optical signal of the present invention is equal to a threshold density value of a stimulated Brillouin scattering (SBS), can be made higher than an RZ optical signal power of prior art. In addition, since the spectrum density is low, the effect of cross talk due to four wave mixing (FWM), which has been a problem in a prior art RZ or NRZ transmission, can be reduced.

[0040] An optical transmission/reception device utilizing an optical transmission device according to the first embodiment of the present invention is shown in Fig. 6.

The example shown in Fig. 6 relates to an experiment for transmitting a phase inverted RZ signal with a 10G bit/s transmission rate. NRZ differential electric signals outputted from data source 10 are inputted to precoding circuit 1 and 1', respectively. The outputs from precoding circuits 1 and 1' are converted to the aforementioned derivative signals by band pass filters 2 and 2'. The derivative signals are then amplified by driving circuits 3 and 3', and a continuous light wave from light source 5 is intensity-modulated by the output signals from driving circuits 3 and 3' by light intensity modulator 4. The output from light intensity modulator 4 is amplified by light amplifier 6 and transmitted to a reception side through transmission path 12. In the reception side, attenuator 9 first limits the gain of reception signals which are then inputted to reception device 13. In reception device 13, NRZ electric signals and clock signals are regenerated and these signals are inputted to reception terminal 11. The structure and operation of the reception side are well-known and do not relate directly to the present invention, and therefore an explanation thereof is omitted.

[0041] Band pass filters 2 and 2', which generate derivative signals can also be realized with 1/4 wavelength short stub lines (transmission rate clock frequency B (Hz)), and can also be realized with suitable band pass filters. In this structure, the zone of light intensity modulator 4 is about 8 GHz, and therefore a 10G bit/s phase inverted RZ optical signal can be generated with the zone, which is a half of that of the prior art structure.

【特許請求の範囲】

【請求項1】 N R Z (Non-Return-to-Zero)電気信号を入力する入力端子と、この入力端子から入力された前記N R Z電気信号をR Z (Return-to-Zero)光信号に変換する手段とを備えた光伝送装置において、前記変換する手段は、N R Z差動電気信号を入力し当該N R Z差動電気信号の値と当該N R Z差動電気信号の符号値を1ビット遅延させた信号との排他的論理和の値を出力するプリコード手段と、この排他的論理和の値の立ち上がり点および立ち下り点でそれぞれ極性の異なる微分電気信号パルスを生成する微分符号化手段と、この微分電気信号パルスにしたがって3値微分電気信号の第2のレベルを中心に微分電気パルス波形を折り返し、かつ微分信号の第1と第3のレベルに対応する光変調信号位相が π 異なるように連続光を強度変調する光強度変調手段とを備えたことを特徴とする光伝送装置。

【請求項2】 N R Z (Non-Return-to-Zero)電気信号を入力する端子と、この入力端子から入力された前記N R Z電気信号をR Z (Return-to-Zero)光信号に変換する手段とを備えた光伝送装置において、

前記変換する手段は、シングルエンドN R Z電気入力信号を入力し、当該N R Z電気信号の値と当該N R Z電気信号の符号値を1ビット遅延させた信号との排他的論理和の値を差動出力するプリコード手段と、この排他の論理和の値の立ち上がり点および、たち下り点で、それぞれ極性の異なる微分電気パルスを生成する微分符号化手段と、この微分電気パルスにしたがって、3値の微分電気信号の第2のレベルを中心に微分電気パルス波形を折り返し、微分信号の第1と第3のレベルに対応する光変調位相が π 異なるように連続光を強度変調する光強度変調手段とを備えたことを特徴とする光伝送装置。

【請求項3】 N R Z (Non-Return-to-Zero)電気信号を入力する端子と、この入力端子から入力された前記N R Z電気信号をR Z (Return-to-Zero)光信号に変換する手段とを備えた光伝送装置において、前記変換する手段は、当該N R Z電気信号が同期するクロック電気信号を発生する手段と、当該クロック電気信号を入力として、当該クロック電気信号に同期した光クロックパルス信号を発生するクロックパルス光源と、シングルエンドN R Z電気入力信号を入力し、当該N R Z電気信号の値と当該N R Z電気信号の符号値を1ビット遅延させた信号との排他の論理和の値を差動出力するプリコード手段と、N R Z電気入力信号とプリコードされた差動N R Z信号を入力として、N R Z電気入力信号とプリコードされた差動N R Z信号の論理積の値を差動出力する2つの差動論理積符号手段と、前記光クロック光信号を入力として、前記差動論理積符号にしたがって、各アームの変調部が電気的に絶縁され直列に配置された2つ変調部を変調するより、当該光クロック光入力信号の強度と位相を独立に変調し出力光信号のマークビット

の位相が交互に π 異なるように強度変調する光強度変調手段とを備えたことを特徴とする光伝送装置。

【請求項4】 請求項1、2、3記載の光強度変調手段は、動作点バイアス電圧が、当該差動論理積符号と電気的に分離された端子に印加されることを特徴とする光伝送装置。

【請求項5】 N R Z (Non-Return-to-Zero)電気信号を入力する端子と、この入力端子から入力された前記N R Z電気信号をR Z (Return-to-Zero)光信号に変換する手段とを備えた光伝送装置において、

前記変換する手段は、当該N R Z電気信号が同期するクロック電気信号を発生する手段と、当該クロック電気信号を入力として、当該クロック電気信号に同期した光クロックパルス信号を発生するクロックパルス光源と、シングルエンドN R Z電気入力信号を入力し、当該N R Z電気信号の値と当該N R Z電気信号の符号値を1ビット遅延させた信号との排他の論理和の値を差動出力するプリコード手段と、N R Z電気入力信号とプリコードされた差動N R Z信号を入力として、N R Z電気入力信号とプリコードされた差動N R Z信号の論理積の値を差動出力する2つの差動論理積符号手段と、2つの当該差動論理積符号からの論理の異なる2つの論理積符号化N R Z信号のパワ加算を行うパワ加算符号を出力するパワ加算手段と、当該光クロック光信号を入力として、当該パワ加算符号にしたがって、3値のパワ加算符号の第2のレベルを中心にパワ加算符号を折り返し、パワ加算符号の第1と第3のレベルに対応する光変調位相が π 異なるように当該光クロック光信号を強度変調する光強度変調手段とを備えたことを特徴とする光伝送装置。

【請求項6】 前記光強度変調手段は、マッハツエンダ強度変調器を含む請求項1、2、3、4、5のひとつに記載の光伝送装置。

【請求項7】 N R Z (Non-Return-to-Zero)電気信号を入力する入力端子と、この入力端子から入力された前記N R Z電気信号をR Z (Return-to-Zero)光信号に変換する手段とを備えた光伝送装置において、

前記変換する手段は、クロック信号にしたがって連続光を光強度変調を行う第1の光強度変調手段と、この第1の光強度変調手段の出力光信号をN R Z電気信号にしたがって光強度変調を行う第2の光強度変調手段と、当該N R Z電気信号を入力し当該N R Z電気信号の値と当該N R Z電気信号の符号値を1ビット遅延させた信号との排他の論理和の値を出力するプリコード手段と、この排他の論理和の値にしたがって前記第2の光強度変調手段の出力光信号の1パルス毎に π ずつの位相変化を与える位相変調手段とを備えたことを特徴とする光伝送装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は光通信の伝送装置および送受信装置に関する。本発明は特にR Z光信号帯域

および送信部のベースバンド電気信号帯域を縮小させる技術に関する。

【0002】

【従来の技術】近年の光ファイバ伝送方式では、高出力かつ広い増幅帯域特性をもつ光ファイバ増幅器が広く用いられるようになり、光ファイバ伝送路内でのファイバ内入力光パワーは、10 dBmを容易に超えるようになってきた。その結果、光ファイバ中の屈折率が入力光信号強度によって変調されるKerr効果により、光信号自身が位相変調をうけ、光変調スペクトルが広がり、光ファイバの分散との相互作用により波形歪が生じる。また波長多重システムにおいて、チャネル同士の非線形クロストークによる波形歪、S/N劣化が生じる。

【0003】この影響は、信号フォーマットに強く依存することが知られており、例えば、RZ(Return-to-Zero)信号は、NRZ(Non-Return-to-Zero)信号に比べてそのパルス幅がビットごとにそろっているため、長距離伝送した場合の非線形効果による波形歪の劣化が容易であるなどの利点があることが報告されている。

【0004】例えば文献：D.Breuer et al., Comparison of NRZ and RZ-Modulation Format for 40-Gbit/s TD M Standard-Fiber Systems, IEEE Photon. Technol. Lett. vol.9 No.3 pp.398-400, 1997”では、1.3 μm零分散ファイバ伝送路を中継区間ごとに分散補償した線形中継系において、RZ信号はNRZ信号に比べて40 Gbit/sにおいて再生中継距離を約3倍程度拡大できることが、シュミレーションで予測されている。また、文献：R.M.Jopson et al., Evaluation of return-to-zero modulation for wavelength-division-multiplexed transmission over conventional single-mode-fiber, R. M.Jopson et al, in Tech. Digest of Optical Fiber Comm. Conf.'98 FE1, p.406-407, 1998”では、10-Gbit/s波長WDM伝送系において、RZ信号はNRZ信号に比べて1チャネルあたりのパワーが増大できることが実験的に示されている。また文献：A.Sano et al. IEEE Electronics Letters Vol.30, p.1694-1695 1994では、データに同期した位相変調を施すことにより、SBS散乱レベルが改善でき、ファイバ内入射パワーを増加することができる。

【0005】従って、高速光伝送システムでは、RZ信号の形で伝送することが好ましい。

【0006】信号のフォーマットがRZ(Return-to-Zero)である光信号を伝送する従来の光伝送装置の構成を図28および29に示す。図28は、入力されたNRZ電気信号がNRZ/RZ変換回路51においてRZ電気信号に変換され、RZ光強度変調器駆動回路52により増幅されたRZ電気信号によりRZ光強度変調器50を直接駆動し、光源5からの連続(CW)光を変調してRZ光信号を生成する構成である。

【0007】図29は、まず、入力されたNRZ電気信号

が、NRZ光強度変調器駆動回路62により増幅され、1段目のNRZ光強度変調器60で光源5からの連続(CW)光を変調してNRZ光信号を生成する。次に、入力されたNRZ電気信号(伝送速度: B (bit/s))に同期した入力クロック信号(周波数: B (Hz))を用いてクロック光強度変調器駆動回路63により、2段目のクロック光強度変調器61をサイン波で駆動することにより、1段目のNRZ光強度変調器60で生成されたNRZ光信号から、RZ光信号を生成している(例えば、A.Sano et al. IEEE Electronics Letters vol.30, p.1694-1695 1994)。

【0008】また、特開平8-254673(：ゼロ復帰フォーマットにおけるデータ符号化されたパルスを発生するための方法と装置)(対応USP 5,625,722) (Method and apparatus for generating data encoded pulses in return-to-zero format)においては、光のマッハツエンダ型変調器の透過率の周期性を全波整流特性として利用し、2値NRZ電気信号を、RZ光信号に変換する構成が示されている。2値NRZ電気信号を入力とし、エンコーダとよばれるプリコード回路でプリコーディングされた符号化NRZ電気信号に変換し、分歧したのち一方の論理を反転させる。マッハツエンダ型変調器を差動構成の符号化NRZ電気信号で変調することにより、RZ信号を発生させている。

【0009】また、クロック電気信号から、光クロックパルス信号を発生できる発生変調する構成が、以下の3つの文献にしめされている。文献(K.Iwatsuki et al. "Generation of transform limited gain-switched DFB-LD pulses < 6 ps with linear fiber compression and spectral window", Electronics Letters vol.27, pp 1981-1982, 1991)には当該発生素子として利得スイッチ半導体レーザを用いる方法、文献(M.Suzuki, et al. "New application of sinusoidal driven InGaAsP electroabsorption modulator to in-line optical gate with ASE noise reduction effect", J.Lightwave Technol. 1, 1992, vol.10 pp.1912-1918")にはCW発振している半導体レーザ光信号を電界吸収型半導体変調器で変調する方法、文献(K.Sato et al. "Frequency Range Extension of actively mode-locked lasers integrated with electroabsorption modulators using chirped grating" J. of selected topics in quantum electronics vol.3 No.2, 1997, pp.250-255)には集積化されたモード同期半導体レーザを用いる方法が示されている。但し、上記には変調手段は述べられていない。

【0010】

【発明が解決しようとする課題】上記従来技術では、いずれの方法を用いても、生成されるRZ光信号の光変調帯域が4B以上(伝送速度: B (bit/s))になり、NRZ光信号帯域の2倍以上となる。このため、NRZ光信号に比較して伝送路の波長分散により波形歪が生じ

やすい問題がある。図30は従来例の光伝送装置によるNRZ光信号スペクトルを示す図であり、図31は従来例の光伝送装置によるRZ光信号スペクトルを示す図である。図30および図31からわかるように、従来例技術によるとRZ光信号の光変調帯域がNRZ光信号帯域の2倍以上となる。

【0011】また、図28に示す従来例技術では、電気段でNRZ電気信号からRZ電気信号に変換するためのNRZ/RZ変換回路51と、RZ電気信号を増幅するRZ光強度変調器駆動回路52と、RZ光強度変調器50とに関し、NRZ電気信号で必要な帯域の2倍(DCから2B(Hz)まで)の広帯域特性が必要であり、伝送速度が上がるにしたがって現実的な回路の設計が困難になる問題がある。

【0012】図29に示す従来例技術では、光強度変調器がNRZ光強度変調器60およびクロック光強度変調器61の二段構成となるから、最終段で出力されるRZ光信号のS/N比をNRZ光信号と同程度に維持するには、光強度変調器の一段分の損失と変調損を補うために、光源5の出力を6~9dB程度増大する必要があり、光源5の高出力化の実現が課題となる。またNRZ光信号と同期クロック信号の変調位相を制御するための位相制御回路64が必要となる繁雑さがある。

【0013】また、従来技術では、いずれの装置を用いても、生成されるRZ光信号の変調スペクトルに連続光のキャリア周波数を中心 $\pm n \cdot B$ (Hz)で線スペクトルを持つ。このため伝送ファイバに入力される信号パワーが約7dBmを超えると、分散シフトファイバ伝送路では、誘導ブリルアン散乱(SBS)により閾値的にファイバ内光入力パワーが制限を受ける。このため連続光源の光周波数線幅を拡大してSBSによる光入力パワーを緩和することが必要となり、このためのSBS抑圧用線幅変調回路53などの外部回路が必要となる繁雑さがある。

【0014】また、RZ光信号には、図31に示すように、光のキャリア周波数成分(f c)があるために、RZ光信号スペクトル密度が高く、RZ光信号スペクトル密度の最大値が誘導ブリルアン散乱(SBS)による閾値密度と等しくなるRZ光信号パワーより高い送信パワーをファイバ内に入力すると、SBSによりこれらの高密度スペクトル成分が後方散乱を受け、波形歪を生じる(例えば、H. Kawakami et al. "Overmodulation of intensity modulated signal due to Stimulated Brillouin Scattering Electron. Lett. vol.30, No.18 pp.1507-1508, 1994)。また、これらのRZ光信号を波長多重(WDM)した場合には、光信号スペクトル密度の高い部分が4光波混合(FWM)を起こしやすく、ポンプテプリッシュョンによるクロストーク等が発生しやすい。

【0015】さらに、従来のRZ電気信号をそのまま増幅する方式では、容量結合型の駆動回路を用いると信号

のマーク率変動により駆動波形のDCレベル変動が生じ、駆動回路の出力ダイナミックレンジを約2倍以上とする必要があり、また、マーク率によって変動する光強度変調器のバイアス点をマーク率によって補償する制御回路が必要である。

【0016】以上述べたように、従来構成では、RZ光信号発生に必要な光スペクトル帯域がNRZ光信号に比較して2倍以上となり、光ファイバ伝送路の波長分散による信号劣化の影響を受け易いこと、RZ電気信号を扱う電気回路に要求される帯域がNRZ電気信号伝送時に比べ2倍となり高速化が難しいこと、SBSによるファイバ内光入力パワー制限を受け易く、外部回路による光周波数線幅の拡大が必要となること、4光波混合(FWM)によるクロストークが発生し易いこと、信号のマーク率変動により駆動波形のDCレベル変動が生じること、が問題点である。

【0017】本発明は、このような背景に行われたものであって、RZ光信号発生に必要な光スペクトル帯域を従来の半分以下で実現し、光ファイバ伝送路の波長分散による信号劣化の影響をうけにくくすることができる光伝送装置を提供することを目的とする。本発明は、電気回路、光強度変調器に要求される電気信号帯域を伝送速度B程度で発生することができる光伝送装置を提供することを目的とする。本発明は、SBSによるファイバ内光入力パワー制限を本質的に除くことができる光伝送装置を提供することを目的とする。本発明は、光源の出力パワーを低減させることができる光伝送装置を提供することを目的とする。本発明は、4光波混合(FWM)によるクロストークの影響を低減することができる光伝送装置を提供することを目的とする。本発明は、信号のマーク率変化によるDCレベル変動のない光伝送装置を提供することを目的とする。本発明は、光ファイバ伝送路および光送受信部で生じる符号間干渉を引き起こし難い光伝送装置を提供することを目的とする。

【0018】

【課題を解決するための手段】本発明は、NRZ電気信号を入力する入力端子と、この入力端子から入力された前記NRZ電気信号をRZ光信号に変換する手段とを備えた光伝送装置である。本発明の特徴とするところは、前記変換する手段は、NRZ差動電気信号を入力し当該NRZ差動電気信号の値と当該NRZ差動電気信号の符号値を1ビット遅延させた信号との排他的論理和の値を出力するプリコード手段と、この排他的論理和の値の立ち上がり点および立ち下がり点でそれぞれ極性の異なる微分電気信号パルスを生成する微分符号化手段と、この微分電気信号パルスにしたがって3値の微分電気信号の第2のレベルを中心に、微分電気パルス波形を折り返し、かつ、微分信号の第1と第3のレベルに対応する光変調信号位相が異なるように連続光を光RZ強度変調する光強度変調手段とを備えるところにある。なお、前

記光強度変調手段は、マッハツエンタ強度変調器を含む構成とすることが望ましい。

【0019】また入力N R Z電気信号がシングルエンド入力の場合においても、プリコード手段の出力が差動出力になっていれば、等しい機能を実現する。

【0020】このように、N R Z電気信号をプリコーディングしたのち微分信号に変換することにより、入力信号が直流成分を含まない直流平衡符号でありかつ3値信号となっているため、電気回路、光強度変調器は、直流からのベースバンド増幅・変調特性が必要なくなり、要求される帯域を伝送速度B程度で発生することができる。さらに、微分信号は直流成分を含まないため、マーク率によるDCレベル変動がない。また、一段構成の光強度変調器で変調できるため、連続光源に要求される出力パワを低減させることができる。

【0021】さらに、微分信号を用いているため生成されたR Z光信号は、マーク率によらず光のキャリア周波数成分はなくなり、R Z光信号スペクトル密度が従来構成のR Z光信号スペクトル密度に比べ低くなる。このため、本発明のR Z光信号のスペクトル密度の最大値が誘導ブリルアン散乱(S B S)によるしきい値密度と等しくなるR Z光信号パワが、従来構成のR Z光信号より高くできる。また、スペクトル密度が低いことにより、伝送路の零分散波長付近で波長多重伝送した場合でも、従来のR Z、N R Z伝送で問題となる4光波混合(F W M)によるクロストークの影響を低減できる。

【0022】さらに、パルスbyパルスの位相が反転しているため、伝送路における偏波分散等によるマルチパスによりフェージングがおきても、パルスエッジの重なり部分において位相が反転しているため、強度変調された信号は、パルスエッジの重なり部分の強度は干渉により相殺され、符号間干渉を引き起こし難い。

【0023】本発明のもう一つの構成として、前記変換する手段は、当該N R Z電気信号が同期するクロック電気信号を発生する手段と、当該クロック電気信号を入力として、当該クロック電気信号に同期した光クロックパルス信号を発生するクロックパルス光源と、シングルエンドN R Z電気入力信号を入力し、当該N R Z電気信号の値と当該N R Z電気信号の符号値を1ビット遅延させた信号との排他的論理和の値を差動出力するプリコード手段と、N R Z電気入力信号とプリコードされた差動N R Z信号の論理積の値を差動出力する2つの差動論理積符号手段と、当該光クロック光信号を入力として、当該差動論理積符号にしたがって、各アームの変調部が電気的に絶縁され直列に配置された2つ変調部を変調するより、当該光クロック光入力信号の強度と位相を独立に変調し出力光信号のマークビットの位相が交互にπ異なるように強度変調する光強度変調手段とを備える構成とすることもできる。

【0024】本発明のまたもう一つの構成として、前記変換する手段は、当該N R Z電気信号が同期するクロック電気信号を発生する手段と、当該クロック電気信号を入力として、当該クロック電気信号に同期した光クロックパルス信号を発生するクロックパルス光源と、シングルエンドN R Z電気入力信号を入力し、当該N R Z電気信号の値と当該N R Z電気信号の符号値を1ビット遅延させた信号との排他的論理和の値を差動出力するプリコード手段と、当該N R Z電気入力信号と当該プリコードされた差動N R Z信号を入力として、当該N R Z電気入力信号と当該プリコードされた差動N R Z信号の論理積の値を差動出力する2つの差動論理積符号手段と、2つの当該差動論理積手段からの論理の異なる2つの論理積符号化N R Z信号のパワ加算を行うパワ加算符号を出力するパワ加算手段と、当該光クロック光信号を入力として、当該パワ加算符号にしたがって、3値のパワ加算符号の第2のレベルを中心にパワ加算符号を折り返し、パワ加算符号の第1と第3のレベルに対応する光変調位相がπ異なるように当該光クロック光信号を強度変調手段とを備える構成とすることもできる。

【0025】本発明の別の構成として、前記変換する手段は、クロック信号にしたがって連続光を光強度変調を行う第1の光強度変調手段と、この第1の光強度変調手段の出力光信号をN R Z電気信号にしたがって光強度変調を行う第2の光強度変調手段と、当該N R Z電気信号を入力し当該N R Z電気信号の値と当該N R Z電気信号の符号値を1ビット遅延させた信号との排他的論理和の値を出力するプリコード手段と、この排他的論理和の値にしたがって前記第2の光強度変調手段の出力光信号の1パルス毎にπずつの位相変化を与える位相変調手段とを備える構成とすることもできる。

【0026】

【発明の実施の形態】発明の実施の形態を図1、図10、図12、図20および図26を参照して説明する。図1は本発明第1実施例の光伝送装置の要部ブロック構成図である。図10は本発明の第2実施例の光伝送装置の要部ブロック構成図である。

【0027】図12は、本発明の第3実施例の光伝送装置の要部ブロック図である。図20は本発明の第4実施例の光伝送装置の要部ブロック図である。図26は、本発明の第5の光伝送装置の要部ブロック図である。

【0028】本発明の第1実施例は、図1に示すように、N R Z電気信号を入力する入力端子14および14'、この入力端子14および14'から入力された前記N R Z電気信号をR Z光信号に変換する手段とを備えた光伝送装置である。

【0029】ここで、本発明の特徴とすることとは、前記変換する手段は、入力端子14および14'から入力されたN R Z差動電気信号を当該N R Z差動電気信号の値と当該N R Z差動電気信号の符号値を1ビット遅延さ

せた信号との排他的論理和の値を出力するプリコード手段であるプリコード回路1および1' と、この排他的論理和の値の立ち上がり点および立ち下がり点でそれぞれ極性の異なる微分電気信号パルスを生成する微分符号化手段であるバンドパスフィルタ2および2' と、この微分電気信号パルスにしたがって3値微分電気信号の第2のレベルを中心に微分電気パルス波形を折り返し、かつ、微分信号の第1と第3のレベルに対応する光変調信号位相が π 異なるように連続光を強度変調する光強度変調手段である光強度変調器4とを備えるところにある。なお、光強度変調器4は、マッハツェンダ強度変調器を含む。

【0030】本発明の第2の実施例は、図10に示すように、NRZ電気信号を入力する入力端子71とこの入力端子71から入力された前記NRZ電気信号をRZ光信号に変換する手段とを備えた光伝送装置である。

【0031】ここで、本発明の特徴とするところは、前記変換する手段は、入力端子71から入力されたシングルエンドNRZ電気信号を当該NRZ電気信号の値と当該NRZ電気信号の符号値を1ビット遅延させた信号との排他的論理和の値を差動出力するプリコード手段である差動出力プリコード手段72と、この排他的論理和の値の立ち上がり点および、たち下がり点で、それぞれ極性の異なる微分電気パルスを生成する微分符号化手段であるバンドパスフィルタ2および2' と、この微分電気パルスにしたがって、3値の微分電気信号の第2のレベルを中心に微分電気パルス波形を折り返し、微分信号の第1と第3のレベルに対応する光変調位相が π 異なるように連続光を強度変調する光強度変調手段である光強度変調器4とを備えるところにある。なお光強度変調器4はマッハツェンダ強度変調器を含む。

【0032】本発明の第3の実施例は、図12に示すように、NRZ電気信号を入力する入力端子81とこの入力端子81から入力された前記NRZ電気信号をRZ光信号に変換する手段とを備えた光伝送装置である。

【0033】ここで、本発明の特徴とするところは、前記変換する手段は、当該NRZ電気信号が同期するクロック電気信号を発生する手段である電気クロック発生回路86と、当該クロック電気信号を入力として、当該クロック電気信号に同期した光クロックパルス信号を発生するクロックパルス光源83と、シングルエンドNRZ電気入力信号を入力し、当該NRZ電気信号の値と当該NRZ電気信号の符号値を1ビット遅延させた信号との排他的論理和の値を差動出力するプリコード手段72と、NRZ電気入力信号とプリコードされた差動NRZ信号を入力として、NRZ電気入力信号とプリコードされた差動NRZ信号の論理積の値を差動出力する2つの差動論理積符号手段73、73'、82、82' と、当該光クロック光信号を入力として、当該差動論理積符号にしたがって、各アームの変調部が電気的に絶縁され直

列に配置された2つ変調部を変調するより、当該光クロック光入力信号の強度と位相を独立に変調し出力光信号のマークビットの位相が交互に π 異なるように強度変調する光強度変調手段84とを備えるところにある。

【0034】本発明の第4の実施例は、図20に示すように、NRZ電気信号を入力する入力端子91と、この入力端子91から入力された前記NRZ電気信号をRZ光信号に変換する手段とを備えた光伝送装置である。

【0035】ここで、本発明の特徴とするところは、前記交換する手段は、当該NRZ電気信号が同期するクロック電気信号を発生する手段である電気クロック発生回路86と、当該クロック電気信号を入力として、当該クロック電気信号に同期した光クロックパルス信号を発生するクロックパルス光源83と、シングルエンドNRZ電気入力信号を入力し、当該NRZ電気信号の値と当該NRZ電気信号の符号値を1ビット遅延させた信号との排他的論理和の値を差動出力するプリコード手段72と、NRZ電気入力信号とプリコードされた差動NRZ信号を入力として、NRZ電気入力信号とプリコードされた差動NRZ信号の論理積の値を差動出力する2つの差動論理積符号手段82、82' と、2つの当該差動論理積手段からの論理の異なる2つの論理積符号化NRZ信号のパワ加算を行うパワ加算符号を出力するパワ加算手段100、101と、当該光クロック光信号を入力として、当該パワ加算符号にしたがって、3値のパワ加算符号の第2のレベルを中心にパワ加算符号を折り返し、パワ加算符号の第1と第3のレベルに対応する光変調位相が π 異なるように当該光クロック光信号を強度変調する光強度変調手段102とを備えるところにある。

【0036】本発明の第5実施例は、図26に示すように、NRZ電気信号を入力する入力端子18と、この入力端子18から入力された前記NRZ電気信号をRZ光信号に変換する手段とを備えた光伝送装置である。

【0037】ここで、本発明の特徴とするところは、前記交換する手段は、入力端子19から入力されたクロック信号にしたがって連続光を光強度変調を行う第1の光強度変調手段である光強度変調器31と、この光強度変調器31の出力光信号をNRZ電気信号にしたがって光強度変調を行う第2の光強度変調手段である光強度変調器32と、当該NRZ電気信号を入力し当該NRZ電気信号の値と当該NRZ電気信号の符号値を1ビット遅延させた信号との排他的論理和の値を出力するプリコード手段であるプリコード回路1と、この排他的論理和の値にしたがって光強度変調器32の出力光信号のマークパルス毎に π ずつの位相変化を与える位相変調手段である位相変調器40とを備えるところにある。

【0038】

【実施例】(第1実施例) 本発明第1実施例を図1～図9を参照して説明する。図1に示すように、多重化されたNRZ差動電気信号を入力端子14および14' から

入力し、各々プリコーディングされた符号化NRZ電気信号を出力するプリコーディング回路1および1' と、符号化NRZ電気信号を入力とし、グランドレベルを中心とする微分信号パルスを生成する微分回路としてのバンドパスフィルタ2および2' と、微分信号を光強度変調器4の駆動電圧まで増幅する容量結合型の駆動回路3および3' と、駆動回路3および3' により増幅された差動微分信号を入力として、RZ光信号を生成するpush-pullタイプのMach-Zehnder型の光強度変調器4と、光強度変調器4の出力を増幅する光増幅器6から構成されている。プリコード回路1および1' とバンドパスフィルタ2および2' は、相補的な出力をもつバイポーラ符号変換器として構成されてもよい。また、図2にプリコード回路2および2' の構成を示す。本発明のプリコード回路2および2' は、排他的論理回路7および1ビット遅延回路8により構成される。本発明の第1実施例の光伝送装置の各部の波形を図3に示す。

【0039】ここで、本発明の利点を説明する。本発明の利点は、以下の4点である。1) NRZ電気信号をプリコーディングしたのち受動マイクロ波部品等により微分信号に変換することにより、入力信号が直流成分を含まない直流平衡符号でありかつ3値信号となっているため、駆動回路3および3' は、直流からのベースバンド増幅特性が必要なくなり、3dB帯域も従来の半分のB(Hz)で増幅が可能となる。2) 従来のRZ電気信号をそのまま増幅する方式では、容量結合型の駆動回路を用いると信号のマーク率変動により駆動波形のDCレベル変動が生じ、駆動回路の出力ダイナミックレンジを約2倍以上とする必要があり、また、マーク率によって変動する光強度変調器4のバイアス点をマーク率によって補償する制御回路が必要であった。本発明を用いれば、微分信号は直流成分を含まないため、マーク率によるDCレベル変動がなく上記の問題が解決される。3) また、図4は本発明の光強度変調器4の動作を説明するための図であり、横軸に駆動電圧をとり、縦軸に光強度をとる。push-pullタイプのMach-Zehnder型の光強度変調器4の周期的な電気光応答特性を利用し、動作点として図4のように選ぶことにより、微分信号の異なる特性を持つパルスが、点Aの直流レベル(第2のレベル)を中心折り返され、結果として一段構成の光強度変調器4からRZ光信号パルスが生成される。このとき、図4の点B(第1のレベル)と点C(第3のレベル)の光の位相は π だけ異なり、各々符号化NRZ電気信号の位相の立ち上がりエッジと立ち上がりエッジに対応しているため、隣合うRZ光信号パルス位相は必ず反転している。また、1/4波長ショートスタブ線路(伝送速度のクロック周波数B(Hz)における)を用いることによりほぼパルスduty cycleが1/2となる。これにより、生成されたRZ光信号帯域は2Bとなり、一段構

成の光強度変調器4で変調できるため、光源5に要求される出力パワーもNRZ変調時と同等にできる。4) 図5は本発明の光伝送装置によるRZ光信号の光スペクトルを示す図であるが、微分信号を用いているため、図4の点Bと点Cの存在確率は必ず1/2となり、生成されたRZ光信号は、図5に示すように、マーク率によらず光のキャリア周波数成分はなくなり、RZ光信号スペクトル密度が従来例のRZ光信号スペクトル密度に比べ低くなる。このため、本発明のRZ光信号のスペクトル密度の最大値が誘導ブリルアン散乱(SBS)による閾値密度と等しくなるRZ光信号パワーが、従来例のRZ光信号より高くできる。また、スペクトル密度が低いことにより、伝送路の零分散波長付近で波長多重伝送した場合でも、従来のRZ、NRZ伝送で問題となつた4光波混合(FWM)によるクロストークの影響を低減することができる。

【0040】本発明の第1実施例の光伝送装置を用いた光送受信装置を図6に示す。図6の例は、伝送速度10Gb/sにおける位相反転RZ信号伝送実験の構成例である。データソース10から出力されたNRZ差動電気信号は、それぞれプリコード回路1および1' に入力される。プリコード回路1および1' の出力は、バンドパスフィルタ2および2' により前述した微分信号に変換される。この微分信号は駆動回路3および3' により増幅され、光強度変調器4内で光源5からの連続光が駆動回路3および3' の出力信号によって強度変調される。光強度変調器4の出力は光増幅器6によって増幅され、伝送路12により受信側に伝送される。受信側では、まず、アッテネータ9により受信信号の利得が制限され、受信装置13に入力される。受信装置13では、NRZ電気信号およびクロック信号が再生されて受信端末11に入力される。なお、受信側の構成および動作は既知の技術であり、本発明とは直接関係がないので説明は省略する。

【0041】微分信号を生成するバンドパスフィルタ2および2' は、1/4波長ショートスタブ線路(伝送速度のクロック周波数B(Hz)における)を用いて実現している。これは適当なバンドパスフィルタを用いても構成できる。本構成では、光強度変調器4の帯域は約8GHzであり従来構成の約半分の帯域で10Gb/s位相反転RZ光信号を発生させた。

【0042】図7は本発明の光伝送装置によるRZ光信号波形を示す図である。図7に示すように、信号のマーク率を1/2、1/4、1/8と変化させても、DCレベル変動制御回路を使わずに安定なRZ光信号が発生できている。

【0043】図8は本発明の光伝送装置によるRZ光信号の光スペクトルおよび従来例の光伝送装置によるRZ光信号の光スペクトルを示す図である。横軸に相対周波数をとり、縦軸に相対出力をとる。図8に示すように、

従来例に比べ、光信号帯域は約半分になっていることが分かる。さらに、図9は本発明と従来例との波長分散耐力を示す図であり、横軸に分散範囲をとり、縦軸に受信感度をとる。図9は、10Gbit/sにおける波長分散特性を従来例と本発明とで比較した。図9から受信感度が1dB劣化する分散範囲を比較すると、従来例のRZ光信号は1000ps/nmであるのに対して、本発明は1700ps/nmであり1.7倍となっている。以上から波長分散による劣化の耐力が拡大されていることが明らかである。

【0044】(第2実施例)本発明の第2実施例を図10および図11を用いて説明する。図10は本発明の第2実施例の光伝送装置の要部ブロック構成図である。図11は、本発明の第2の実施例の光伝送装置のプリコード手段を示す図である。本発明の第2の実施例では、図10に示すようにシングルエンド入力のNRZ電気信号から、差動のプリコード信号出力を出力する例である。

【0045】多重化されたシングルエンドNRZ電気信号を入力端子71から入力し、プリコーディングされた符号化NRZ電気信号を出力する差動プリコーディング回路72と、符号化NRZ電気信号を入力とし、グランドレベルを中心に振幅が等しく極性の異なる微分電気パルスを生成する微分回路としてのバンドパスフィルタ2および2'を微分信号を、光強度変調器4の駆動電圧まで増幅する容量結合型の駆動回路3および3'により増幅された差動微分信号を入力として、RZ光信号を生成するpush-pullタイプのMach-Zehnder型の光強度変調器4と、光強度変調器4の出力を増幅する光増幅器6より構成されている。本発明の差動プリコード回路72は、図11に示すように、排他的論理和7および1ビット遅延回路8および、プリコーディングされた出力が相補的な符号化NRZ信号を出力できるよう、出力段に差動変換回路73により構成される。

【0046】(第3実施例)本発明の第3実施例を図12～19を用いて説明する。図12は本発明の第3実施例の光伝送装置の要部ブロック構成図である。図13は、本発明の第3の実施例の光伝送装置のプリコード手段を示す図である。図14は、本発明の第3の実施例の光伝送装置の各部の波形を示す図である。図15は、本発明の第3の実施例の光変調手段に印加する2値電気信号のバイアス状態を説明する図である。図16、17は本発明の第3の実施例の光伝送装置の光強度変調器のバイアス印加方法を説明する図である。

【0047】NRZ電気信号が同期するクロック電気信号を発生する電気クロック発生回路86と、当該クロック電気信号に同期した光クロックパルス信号を発生するクロックパルス光源83と、シングルエンドNRZ電気信号を入力端子81から入力し、プリコーディングされた符号化NRZ電気信号を出力する差動プリコーディング回路72と、入力NRZ電気信号とプリコードNRZ

電気信号の論理積をおこなう差動論理積(AND)回路82、82'、当該論理積出力を差動出力する差動変換回路73および、光強度変調器84より構成される。

【0048】本構成では、電気回路における信号が全て2値NRZ信号ですみ、電気段における3値信号の処理が不要である特徴がある。またパタンジッタのすぐない光パルス列を変調するため、変調された光RZ信号のパタンジッタを低減することが可能である。入力NRZ電気信号をプリコード回路72に入力し、入力NRZ電気信号中のマークビットが入力されるごとに極性が反転する差動プリコード符号化NRZ出力B1、B2をえる。AND回路82、82'において、入力NRZ電気信号Aとプリコード符号化NRZ電気信号B1、B2の論理積(AND)を行うことにより、入力NRZ電気信号中にマークビットが入力されるごとに当該論理積信号出力ポートC2、C3に交互にマークビットとが出力する。図12は、光強度変調器84としてMZ型強度変調器を用いた場合をしめしており、第1の光変調部と第2の変調部が直列に接続されたプッシュプル構成となっている。2つの光変調部に印加される論理積信号C2、C3は、差動変換回路によって差動出力D1/D2およびD3/D4に変換され、図15に示すようにバイアスされたのち2つの変調部にpush-pull構成で印加される。入力NRZ電気信号中にマークビットが入力されるごとに、AND回路82、82'が交互に開き、第1の変調部と第2の変調部が交互に変調され、結果として第1の変調部で変調されたRZ光信号ビットの位相と第2の変調部で変調されたRZ光信号ビットの位相は必ずしているように変調される。

【0049】図16は、光強度変調器84の動作バイアスを設定する構成を示している。光電気変換手段でモニタした平均パワーとともに、第1および第2の変調部とは電気的に絶縁されたバイアスポート85を通して2つ光導波路の内どちらか一方にバイアスを印加する。

【0050】図17は、光強度変調器84の動作バイアスを設定する別の構成を示している。図18はバイアス制御回路の具体的構成を示している。また図19はマーク率変動を検出するローパスフィルタ回路(LPF)94を示している。図17では、第1の変調部及び第2の変調部の駆動回路21'及び21"の振幅を、各々異なる周波数で微弱に変調したのち、強度変調器84を変調する。強度変調器84を変調したRZ光変調信号は一部分岐されたのち光電気変換手段で電気信号に変換される。バンドパスフィルタBPF1およびBPF2において、各々のバイアス制御回路で変調した周波数成分をぬきだした後、バイアス制御回路1、2(88、88')にそれぞれ入力される。図18のバイアス制御回路では、もとの変調周波数信号源90の変調位相と検出信号91の位相の位相差とをミキサ92で検出することによりバイアス信号の変化の向きを検出し、検出信号91の

振幅を最小にするように制御する。このときマーク率検出回路では、マーク率を検出し、あらかじめ測定した duty cycle の値とを考慮して、図 18 におけるバイアス印加電圧に加算器 93 により補正を加え、出力する。

【0051】(第4実施例) 本発明の第4実施例を図 20~25 を用いて説明する。図 20 は本発明の第4実施例の光伝送装置の要部ブロック構成図である。図 21 は、本発明の第4の実施例の光伝送装置のパワ加算手段の例を説明する図である。図 22 は、本発明の第4の実施例の光伝送装置のプリコード手段を示す図である。図 23 は、本発明の第4の実施例の光伝送装置の各部の波形を示す図である。図 24 は、本発明の第4の実施例の光変調手段に印加する3値パワ加算電気信号のバイアス状態を説明する図である。図 25 は、本発明の第4の実施例の光伝送装置の光強度変調器のバイアス印加方法を説明する図である。

【0052】本構成では、パタンジッタのすぐない光パルス列を変調するため、変調された光 RZ 信号のパタンジッタを低減することが可能である。入力 NRZ 電気信号をプリコード回路 72 に入力し、入力 NRZ 電気信号中のマークビットが入力されるごとに極性が反転する差動プリコード符号化 NRZ 出力 B1、B2 をえる。AND 回路 82、82' において、入力 NRZ 電気信号 A とプリコード符号化 NRZ 電気信号 B1、B2 の論理積 (AND) を行うことにより、入力 NRZ 電気信号中にマークビットが入力されるごとに当該論理積信号出力ポート C2、C3 に交互に当該マークビットが出力される。但し、C2 出力信号は、当該 NRZ 電気信号入力に対して、論理が反転している。図 20 は、光強度変調器 102 として MZ 型強度変調器を用いた場合をしめしており、ピッシュプル構成となっている。論理積信号 C1、C2、C3、C4 は、パワ加算回路 100、101 によって 3 値の差動パワ加算出力信号 D1'、D2' に変換され、図 24 に示すようにバイアスされたのち変調部に push-pull 構成で印加される。MZ 型光強度変調器 102 では、差動パワ加算出力信号の第2のレベルを中心に差動パワ加算出力信号電気パルス波形を折り返し、差動パワ加算出力信号の第1と第3のレベルに対応する光変調位相が π 異なるようにクロックパルス光源からの RZ 光クロックパルスが変調される。

【0053】図 21 はパワ加算回路 100、101 を受動部品で構成した例である。50 オーム系では、抵抗値 R を 50 オームに選ぶことにより 6 dB パワ加算ができる。図 25 は、光強度変調器 102 の動作バイアスをあたえる構成例である。変調部とは電気的に絶縁されたバイアスポート 104 を通して 2 つ光導波路の内どちらか一方にバイアスを印加する。

【0054】(第5実施例) 本発明の第5実施例を図 26 および図 27 を参照して説明する。図 26 は本発明の

第5実施例の光伝送装置の要部ブロック構成図である。図 27 は本発明の第5実施例の光伝送装置の各部信号波形を示す図である。本発明の第5実施例では、図 26 に示すように、光強度変調と光位相変調とをそれぞれ光強度変調器 31、32 および位相変調器 40 により行う例である。

【0055】光源 5 から出力された連続光は光強度変調器 31 で、伝送速度に同期したクロック信号により変調され、クロックパルス列信号光を発生し、このクロックパルス列信号光は、光強度変調器 32 により、データである NRZ 電気信号により強度変調され、通常の RZ 光信号を生成する。データ信号は一部分岐され、プリコード回路 1 で、図 27 に示すように、符号変換 (D 点) され、この符号化 NRZ 電気信号にしたがって、図 30 の E 点の光位相変化に示すように、位相変調器 40 により (0, π) の位相変調がなされることにより個々のパルスは交互に位相が π 異なる RZ 光信号が生成される。

【0056】

【発明の効果】以上説明したように、本発明によれば、駆動回路／光強度変調器に必要とされる電気信号帯域を従来装置の半分にできるので、光伝送装置の高速化が実現できる。また光信号帯域を従来装置の半分にできるので、光ファイバ伝送路の波長分散による伝送品質劣化を低減することができる光伝送装置を実現できる。本発明では、光キャリアが抑圧された変調方式であるから、光信号スペクトルに線スペクトル周波数成分を含まない。したがって SBS によるファイバ内入力パワ制限、4 光波混合による波形歪に対して有利である。またパルス by パルスの位相が反転しているから、伝送路における偏波分散等によるマルチパスによりフェージングが起きても、パルスエッジの重なり部分において位相が反転しているから、強度変調された信号は、パルスエッジの重なり部分の強度は干渉により相殺され、符号間干渉を引き起こし難い。

【0057】すなわち、RZ 光信号発生に必要な光スペクトル帯域を従来の半分以下で実現することができる。また、電気回路、光強度変調器に要求される帯域を伝送速度 B 程度で発生することができる。さらに、SBS によるファイバ内光入力パワ制限を本質的に除くことができる。また、光源の出力パワを低減させることができ。さらに、信号のマーク率変化による DC レベル変動がない。また、4 光波混合 (FWM) によるクロストークの影響を低減することができる。さらに、符号間干渉を引き起こし難い。

【図面の簡単な説明】

【図 1】本発明第1実施例の光伝送装置の要部ブロック構成図。

【図 2】プリコード回路の構成を示す図。

【図 3】本発明第1実施例の光伝送装置の各部の波形を示す図。

【図4】本発明の光強度変調器の動作を説明するための図。

【図5】本発明の光伝送装置によるRZ光信号の光スペクトルを示す図。

【図6】本発明第1実施例の光伝送装置を用いた光送受信装置の構成を示す図。

【図7】本発明の光伝送装置によるRZ光信号波形を示す図。

【図8】本発明の光伝送装置によるRZ光信号の光スペクトルおよび従来例の光伝送装置によるRZ光信号の光スペクトルを示す図。

【図9】本発明と従来例との波長分散耐力を示す図。

【図10】本発明の第2実施例の光伝送装置の要部ブロック図。

【図11】本発明の第2実施例の差動プリコード回路の構成を示す図。

【図12】本発明の第3実施例の光伝送装置の要部ブロック図。

【図13】本発明の第3実施例の差動プリコード回路の構成を示す図。

【図14】本発明の第3実施例の光伝送装置の各部の波形を示す図。

【図15】本発明の第3実施例の光強度変調器の動作を説明するための図。

【図16】本発明の第3実施例の光強度変調器のバイアス制御の構成例を示す図。

【図17】本発明の第3実施例の光強度変調器の別のバイアス制御の構成例を示す図。

【図18】本発明の第3実施例の光強度変調器のバイアス制御回路の実施例を示す図。

【図19】本発明の第3実施例のマーク率変動を検出回路の構成を示す図。

【図20】本発明の第4実施例の光伝送装置の要部ブロック図。

【図21】本発明の第4実施例のパワ加算回路の構成を示す図。

【図22】本発明の第4実施例の差動プリコード回路の構成を示す図。

【図23】本発明の第4実施例の光伝送装置の各部の波形を示す図。

【図24】本発明の第4実施例の光強度変調器の動作を説明するための図。

【図25】本発明の第4実施例の光強度変調器のバイアス制御の構成例を示す図。

【図26】本発明第5実施例の光伝送装置の要部ブロック構成図。

【図27】本発明第5実施例の光伝送装置の各部信号波形を示す図。

【図28】従来の光伝送装置の構成を示す図。

【図29】従来の光伝送装置の構成を示す図。

【図30】従来例の光伝送装置によるNRZ光信号スペクトルを示す図。

【図31】従来例の光伝送装置によるRZ光信号スペクトルを示す図。

【符号の説明】

- 1、1' プリコード回路
- 2、2' バンドパスフィルタ
- 3、3'、21、22、23 駆動回路
- 4、31、32 光強度変調器
- 5 光源
- 6 光増幅器
- 7 排他的論理回路
- 8 1ビット遅延回路
- 9 アッテネータ
- 10 データソース
- 11 受信端末
- 12 伝送路
- 13 受信装置
- 14、14'、18、19 入力端子
- 40 位相変調器
- 50 RZ光強度変調器
- 51 NRZ/RZ変換回路
- 52 RZ光強度変調器駆動回路
- 53 SBS抑圧用線幅変調回路
- 60 NRZ光強度変調器
- 61 クロック光強度変調器
- 62 NRZ光強度変調器駆動回路
- 63 クロック光強度変調器駆動回路
- 64 位相制御回路
- 71、81 シングルエンドNRZ入力端子
- 72 差動プリコード回路
- 82 論理積回路
- 83 クロックパルス光源
- 84 光強度変調器
- 85 バイアスポート
- 90 变調周波数信号源
- 92 位相比較器
- 93 加算器
- 94 低域通過フィルタ (Low Pass Filter:LPF)
- 100、101 パワ加算器
- 102 光強度変調器
- 104 バイアス印加端子

【図1】

【図2】

【図3】

【図18】

【図19】

【図5】

【図9】

【図4】

【図7】

【図6】

【図21】

【図11】

【図13】

【図8】

【図30】

【図31】

【図10】

【図15】

【図12】

【図14】

【図22】

【図23】

【図16】

【図17】

【図24】

【図20】

【図25】

【図26】

【図27】

【図28】

【図29】

フロントページの続き

(51) Int.Cl.⁷
H 04 L 25/493

識別記号

F I

(参考)