Aufgabe 3

- (a) Primitiv rekursive Funktionen
 - (i) Zeigen Sie, dass die folgendermaßen definierte Funktion if: $\mathbb{N}\times\mathbb{N}\times\mathbb{N}\mathbb{N}$ primitiv rekursiv ist. sonst
 - (ii) Wir nehmen eine primitiv rekursive Funktionp: NN an und definieren g(n) als die Funktion, welche die größte Zahl i < n zurückliefert, für die p(/) = 0 gilt. Falls kein solches i existiert, soll g(n) = 0 gelten: $a(n) = max \ (i < n \mid p) = 0 \ U \ 0)$ if (b, x, y) = (falls b=0)

Zeigen Sie, dass g: N > N primitiv rekursiv ist. (Sie dürfen obige Funktion if als primitiv rekursiv voraussetzen.)

- (b) Sei $\Sigma = \{a, b, c\}$ und $L \subseteq \Sigma^*$ mit $L = \{a^i b^i c^i | i \in N\}$.
 - (i) Beschreiben Sie eine Turingmaschine, welche die Sprache Z entscheidet. Eine textuelle Beschreibung der Konstruktionsidee ist ausreichend.
 - (ii) Geben Sie Zeit- und Speicherkomplexität (abhängig von der Länge der Eingabe) Ihrer Turingmaschine an.
- (c) Sei & = 0, 1. Jedes we L* kodiert eine Turingmaschine M,. Die von M, berechnete Funktion bezeichnen wir mit gy.
 - (i) Warum ist w e £* | 3x: @,(&) = xx nicht entscheidbar?
 - (ii) Warum ist w e $Z^* \mid 3x$: w = xx entscheidbar?