## EE160 Homework 4

Deadline: 2022-12-24, 23:59:59, Submit your homework on Blackboard (Hint:You can use MATLAB to help you do the homework.)

1. A block diagram of a turret lathe control system is shown in Figure 1. The parameters in the system are  $n=0.2,\ J=10^{-3}$  and  $b=2.0\times10^{-2}$ . It is necessary to attain an accuracy of  $4.7\times10^{-4}$  inches. To satisfy this condition, a steady-state position accuracy of 2% is specified for a ramp input. Design a cascade compensator to be inserted before the controller in order to provide a response to a step command with a percent overshoot of  $P.O \le 4.5\%$ . A suitable damping ratio for this system is  $\zeta \ge 0.7$ . The gain of the controller is  $K_R = 5$ . Design a suitable phase-lag compensator with the following two methods.



Figure 1: A feedback control system

- (a) Use bode plot.(10')
- (b) Use root locus.(10')

Solution: The transfer function is  $G(s) = \frac{5000}{s(s+5)(s+20)}$ . To meet the steady-state accuracy. We need  $K_v \geq 50$ . The uncompensated  $K_v = 50$ , so the steady-state accuracy can be met. Thus K = 1. The uncompensated system has  $P.M. = -15^{\circ}$ .

(a)

$$T(s) = \frac{Y(s)}{R(s)} = \frac{5000}{s^3 + 25s^2 + 100s + 5000}$$
$$\frac{K\alpha(1 + \tau s)}{(1 + \alpha \tau s)}$$

We can let

Since  $\zeta = 0.7$ , we can know the linear approximation is  $\zeta = 0.01P.M.$ . Thus, the phase margin of desired the system is  $P.M. = \frac{\eta}{0.01} = 70^{\circ}$ .

$$\tan P.M. = \frac{1 - \alpha}{2\sqrt{\alpha}}$$
$$\frac{1 - \alpha}{\alpha + 1} = \sin P.M. = \sin 70^{\circ}$$
$$\alpha = 32.16$$

We can choose  $\alpha=50$  to satisfy the loop gain and the phase margin. We can let the compensator satisfy

$$G_c(s) = \frac{bs+1}{50bs+1}$$



Figure 2: bode plot of the open-loop system

We can know that the phase margin changes with b in the following way:



Figure 3: Phase margin versus b

We can choose b = 15 The transfer function of the compensator is

$$G_c(s) = \frac{1 + 20s}{1 + 1000s}$$

The total loop transfer function is

$$G_c(s)G(s) = \frac{5000(1+20s)}{s(s+5)(s+20)(1+1000s)}$$

## The step response is



Figure 4: The step response of the closed-loop system

We can see that P.O. and steady-state accuracy requirement is satisfied.

(b) Since we require  $\zeta=0.7$  to meet the P.O. specifications. We can also know that the uncompensated loop transfer function is

$$L(j\omega) = G_c(j\omega)G(j\omega) = \frac{5000K}{j\omega(j\omega + 5)(j\omega + 20)}$$

The root locus is as follow:



Figure 5: root locus of the system

The roots are  $s = -2.19 \pm 2.21j$ . The gain K = 0.04. Therefore,  $K_v = \frac{5000}{20*5} \cdot K = 2$ . Thus, the required ratio of the zero to the pole of the compensator is

$$\left| \frac{z}{p} \right| = \alpha = \frac{K_{v,comp}}{K_{v,unc}} = 25$$

We can choose z = 0.004 and then p = 0.004/25. The compensator is

$$G_c(s) = \frac{0.04(250s+1)}{(6250s+1)}$$

The compensated system loop transfer function is

$$L(s) = G_c(s)G(s) = \frac{200(250s+1)}{s(s+5)(s+20)(6250s+1)}$$

The step response of the system is



Figure 6: The step response of the closed-loop system

We can see that P.O. and steady-state accuracy requirement is satisfied.

2. Consider a unity feedback system in Figure 7. We want the step response of the system to have a percent overshoot of  $P.O. \leq 9\%$  and a settling time (with a 2% criterion) of  $T_s \leq 4$  s.



Figure 7: A feedback control system

(a) Design a phase-lead compensator  $G_c(s)$  to achieve the dominant roots desired. (15')

(b) If we add a PD controller between the system and the compensator, and change the system to  $\frac{1}{s(s+1)(s+2)}$ . Design a first-order compensator( $\frac{s+z}{s+p}$ ) and a first-order prefilter( $\frac{z}{s+z}$ ), and determine the coefficients that yield the optimal deadbeat response.(15')

Solution:

(a) From the overshoot specification P.O.=9%. Thus,  $\zeta\geq 0.61$ . The plant transfer function is

$$G(s) = \frac{10}{s(s+1)(s+10)}$$

Let  $G_p = 1$ . We can know the uncompensated system, K = 20 is a good choice.  $K_v = 20/10 = 2$ ,  $\alpha = 50/2 = 25$ . We can choose the compensator

$$G_c(s) = K \frac{s + 0.5}{s + 12.5}$$

By root locus, we can know that K=60 yield  $P.O.\approx 9\%$ . The compensated system is  $\frac{600(s+0.5)}{s(s+12.5)(s+1)(s+10)}$ . The step response is



Figure 8: The step response of the closed-loop system

(b) The PD controller is  $K_d s + K_p$ . In order to simplify our problem, we can choose  $\frac{K_d}{K_p} = 1$ The closed-loop transfer function is

$$T(s) = \frac{K_p z}{(s+p)s(s+2) + K_p(s+z)}$$
$$= \frac{K_p z}{s^3 + (2+p)s^2 + (K_p + 2p)s + K_p z}$$

We use Table 10.2 to determine the required coefficients

| System | Coefficients |      |      |      |            | Percent        | Percent        | 90% Rise            | Settling            |
|--------|--------------|------|------|------|------------|----------------|----------------|---------------------|---------------------|
| Order  | α            | β    | γ    | δ    | $\epsilon$ | Overshoot P.O. | Overshoot P.U. | Time T <sub>r</sub> | Time T <sub>s</sub> |
| 2nd    | 1.82         |      |      |      |            | 0.10%          | 0.00%          | 3.47                | 4.82                |
| 3rd    | 1.90         | 2.20 |      |      |            | 1.65%          | 1.36%          | 3.48                | 4.04                |
| 4th    | 2.20         | 3.50 | 2.80 |      |            | 0.89%          | 0.95%          | 4.16                | 4.81                |
| 5th    | 2.70         | 4.90 | 5.40 | 3.40 |            | 1.29%          | 0.37%          | 4.84                | 5.43                |
| 6th    | 3.15         | 6.50 | 8.70 | 7.55 | 4.05       | 1.63%          | 0.94%          | 5.49                | 6.04                |

Figure 9: Table 10.2

$$\alpha = 1.9, \beta = 2.2$$

If we select  $T_s=2s$ , then  $\omega_n T_s=4.04$ , and thus  $\omega_n=2.02$ 

$$q(s) = s^3 + \alpha \omega_n s^2 + \beta \omega_n^2 s + \omega_n^3 = s^3 + 3.84s^2 + 8.98s + 8.24$$

Then, we determine that

$$p = 1.84, z = 1.55, K_d = 5.30, K_p = 5.30$$

We can see the step response of the system is



Figure 10: The step response of the closed-loop system

## 3. Prove the following propositions:

- (a) If two state-space models share the same controllable canonical form, the two models are consistent in controllability. (5')
- (b) Consider a general system

$$\dot{x} = Ax + Bu$$

$$y = Cx \tag{1}$$

Define the dual system of (1)

$$\dot{x} = A^{\top} x + C^{\top} u$$

$$y = B^{\top} x \tag{2}$$

Show that system (1) is observable if and only if system (2) is controllable. (5')

Solution:

(a)

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

z = P x, P is invertable.

$$\dot{z} = PAP^{-1}z + PBu$$
$$y = CP^{-1}x$$

$$R_1 = \begin{bmatrix} PB & PAP^{-1}PB & PA^2P^{-1}PB & \cdots & PA^{n-1}P^{-1}PB \end{bmatrix} = P \begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \end{bmatrix}$$
  
 $R_0 = \begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \end{bmatrix}$ 

 $\operatorname{rank}(R_0) = \operatorname{rank}(R_1)$ 

4.

$$R_o = \begin{bmatrix} C & CA & CA^2 & \cdots & CA^{n-1} \end{bmatrix}$$

$$R_c = \begin{bmatrix} C^\top & A^\top C^\top & (A^2)^\top C^\top & \cdots & (A^{n-1})^\top C^\top \end{bmatrix}$$

$$R_o = R_c^\top$$

 $\operatorname{rank}(R_c) = \operatorname{rank}(R_c)$ 

5. Consider the third-order system

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

where

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -8 & -3 & -1 \end{bmatrix} \quad B = \begin{bmatrix} -1 \\ 2 \\ -6 \end{bmatrix} \quad C = \begin{bmatrix} 2 & 8 & 10 \end{bmatrix}$$

- (a) Sketch a block diagram model of the system. (5')
- (b) Write the transfer function of the system G(s) = Y(s)/U(s). (5')
- (c) Check the controllability and observability of the system. (5')
- (d) Design a full-state observer for the system with an expected settling time of less than 1 second. (5')
- (e) Suppose system state x(t) is available. Design a full-state feedback controller for the system. The desired poles of the closed-loop system are  $\begin{bmatrix} -4+j3 & -4-j3 & -8 \end{bmatrix}$ . (7')
- (f) Prove that if (A, B) are controllable, (A, C) are observable, the closed-loop system with full-state observer-based feedback controller is stable. Verify the proposition with the control scheme designed above. (8')
- (g) Consider a piece-wise constant reference signal r(t). Design a compensator such that the tracking error y(t) r(t) asymptotically converges to zero. (5')

Solution:

(a) No standard answer. Full score if satisfy the requirements of the block diagram



(b) 
$$G(s) = -\frac{46s^2 + 10s + 110}{s^3 + s^2 + 3s + 8}$$

(c) 
$$R_c = \begin{bmatrix} 1 & -1 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

full-rank

$$R_o = \begin{bmatrix} -46 & 36 & -8 \\ -10 & 28 & 260 \\ -110 & 368 & -288 \end{bmatrix}$$

full-rank

(d) 
$$\operatorname{Re}\{\operatorname{eig}(A-LC)\}<-1$$

(e) 
$$K = \begin{bmatrix} 15 & 86 & 192 \end{bmatrix}$$

(f) 
$$\begin{bmatrix} A+BK & -BK \\ 0 & A+LC \end{bmatrix}$$

verify:

$$\operatorname{Re}\left\{\operatorname{eig}\left(\left[\begin{matrix}A & BK \\ -LC & A+LC+BK\end{matrix}\right]\right)\right\}<0$$

(g) introduce integral term to overcome steady state error. E.g.:

$$e(t) = y(t) - r(t)$$
 
$$u(t) = -K_i \int_0^t e(\tau)d\tau - K\hat{x}(t)$$

 $K_i > 0$ 

6. Consider a LRC circuit with input voltage  $v_i(t)$  and output voltage  $v_o(t)$ . The system model is given as

$$\frac{V_o(s)}{V_i(s)} = \frac{1}{LCs^2 + RCs + 1}$$

where L = 0.1, R = 0.5, C = 20.

(a) Write the above system into the state space model

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t)$$

where  $x(t) = [v_o(t) \ \dot{v}_o(t)]^{\top} \ (3')$ 

- (b) Suppose input u(t) is unknown. Design a system state observer  $\hat{x}(t)$  such that the amplitude of the frequency response of observation error  $e(t) = C\hat{x}(t) y(t)$  is smaller than -15 dB. (7')
- (c) Design the infinite LQR controller law u(t) = -Kx(t) that minimizes the infinite horizon cost

 $\int_{0}^{\infty} 3v_{o}^{2}(t) + \dot{v}_{o}^{2} + v_{i}^{2}(t)dt$ 

Write the corresponding optimal control problem in standard form, indicate Q matrix and R matrix, then solve the control gain K explicitly. (5')

(d) Compare the performance and control effort of (c) and  $K = \begin{bmatrix} -0.5 & -2 \end{bmatrix}$  using MATLAB. The initial state is given as  $x_0 = \begin{bmatrix} 3, 2 \end{bmatrix}^{\top}$ , simulation time T = 100s. (5')

Solution:

(a)  $A = \begin{bmatrix} 0 & 1 \\ -0.5 & -5 \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 0.5 \end{bmatrix} \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix}$ 

(b)  $G(s) = \frac{E(s)}{U(s)} = -C(sI - A - LC)^{-1}B = \frac{1}{l_1 + 5l_2 - 10s + l_2s - 2s^2 - 1}$   $G(jw) = \frac{1}{(l_1 + 5l_2 - 1 + 2w^2) + (l_2 - 10)jw}$   $p(w^2) = (l_1 + 5l_2 - 1 + 2w^2)^2 + (l_2 - 10)^2w^2 = 0$ 

 $p(w^2)$  is a quadratic polynomial of  $w^2$ , substitute L, then find the min value of  $p(w^2)$  and  $\max_w |G(jw)| = 1/p(w^2) < 15dB$ 

(c)  $Q = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \quad R = 1 \quad K = [0.407 \ 0.618]$ 



Figure 11: K cost



Figure 12: LQR cost



Figure 13: K state



Figure 14: LQR state