- Initialize by setting OPEN equal to a set containing only the start node and setting CLOSED, SOLUTION, SOLUTION_COSTS, SOLUTION_GOALS, and LABEL each equal to the empty set.
- Find the set of nodes in OPEN, call it ND, that have at least one node selection function value that is not dominated by:
 - 1.1.the cost of any solution path already discovered (i.e., in SOLUTION_COSTS), nor by
 - the node selection function values of any other potential solution represented by a node on OPEN.
- Terminate or select a node for expansion.
 - 2.1. If ND is empty, do the following:
 - 2.1.1.Use the set of preferred solution path costs in SOLUTION_ COSTS and the LABEL sets. If any, to trace through backpointers from the goal nodes in SOLUTION_ GOALS to s.
 - 2.1.2. Place any solution paths in SOLUTION.
 - 2.1.3. Stop.
 - 2.2. Otherwise, do the following:
 - 2.2.1.Use a domain-specific heuristic to choose a node n from ND for expansion, taking goals, if any, first.
 - 2.2.2. Remove n from OPEN.
 - 2.2.3. Place n on CLOSED.
- Do bookkeeping to maintain accrued costs and node selection function values.
- 4. Identify solutions.
 - 4.1. If n is a goal node, do the following:
 - 4.1.1.Add it to SOLUTION_ GOALS,
 - 4.1.2. Add its current costs to SOLUTION_COSTS.
 - 4.1.3.Remove any dominated members of SOLUTION_ COSTS.
 - 4.1.4.Go to Step (6).
 - 4.2. Otherwise, continue.