	ii) $x + 4$ $x^{3} - 20x^{2} + 84x - 326$ $x + 4)\overline{x^{4} - 16x^{3} + 4x^{2} + 10x - 11}$ $\underline{-(x^{4} + 4x^{3})}$
	$ \begin{array}{r} -20x^{3} + 4x^{2} \\ -(-20x^{3} - 80x^{2}) \\ 84x^{2} + 10x \\ -(84x^{2} + 336x) \\ -326x - 11 \\ \underline{-(-326x - 1304)} \end{array} $
	iii) $x - 1$ $(x - 1)x^4 - 16x^3 + 4x^2 + 10x - 11$
2.	 b) Are any of the binomials in part a) factors of x⁴ - 16x³ + 4x² + 10x - Explain. No, this is because there is a remainder when you try to divide it with any of above binomials, meaning it doesn't factor fully. State the degree of the quotient for each of the following division states:
	State the degree of the quotient for each of the following division stants, if possible. a) $(x^4 - 15x^3 + 2x^2 + 12x - 10) \div (x^2 - 4)$ b) $(5x^3 - 4x^2 + 3x - 4) \div (x + 3)$
	c) $(x^4 - 7x^3 + 2x^2 + 9x) \div (x^3 - x^2 + 2x + 1)$ d) $(2x^2 + 5x - 4) \div (x^4 + 3x^3 - 5x^2 + 4x - 2)$
3.	Complete the divisions in question 2, if possible. a) $(x^4 - 15x^3 + 2x^2 + 12x - 10) \div (x^2 - 4)$ b) $(5x^3 - 4x^2 + 3x - 4) \div (x + 3)$
1	c) $(x^4 - 7x^3 + 2x^2 + 9x) \div (x^3 - x^2 + 2x + 1)$ d) $(2x^2 + 5x - 4) \div (x^4 + 3x^3 - 5x^2 + 4x - 2)$
±•	
5.	$3x^3 + x^2 - 6x + 16$ $x + 2$ $3x^2 - 5x + 4$ 8 Calculate each of the following using long division. a) $(x^3 - 2x + 1) \div (x - 4)$
	b) $(x^3 + 2x^2 - 6x + 1) \div (x + 2)$ c) $(2x^3 + 5x^2 - 4x - 5) \div (2x + 1)$ d) $(x^4 + 3x^3 - 2x^2 + 5x - 1) \div (x^2 + 7)$
	e) $(x^4 + 6x^2 - 8x + 12) \div (x^3 - x^2 - x + 1)$ f) $(x^5 + 4x^4 + 9x + 8) \div (x^4 + x^3 + x^2 + x - 2)$

Polynomial Division

Jacob Zante

September 9th, 2024

a) Divide $x^4 - 16x^3 + 4x^2 + 10x - 11$ by each of the following binomials.

1.