

Research

Hands-on Tutorial

Supported by Microsoft Research

Program overview

- The CADRE project (Val Pentchev)
- Hands on intro to CADRE (Mat Hutchinson)
- Interactive demo with packages and notebooks (Filipi Silva)
- CADRE fellow presentation (Yi Bu)
- Demo for scalability and Reproducibility (Xiaoran Yan)
- Q&A and conclusion

Microsoft Academic Graph

https://academic.microsoft.com/home

Research more, search less

Try a topic, author, journal, etc. or any combination of these

C

Publications

210,365,701

Coming soon

Authors

254,317,172

Learn more

Proceedings of the 24th International Conference on

World Wide Web 2015.

Fields of Study

229,763

Learn more

Conferences

4,341

Learn more

Journals

48,659

Learn more

Institutions

25,439

Learn more

Tutorial Resources

- https://cadre.iu.edu/
- https://cadre.iu.edu/newsand-events/events/rome
- https://github.com/iunicadre/ISSI-tutorial

Research

The CADRE project

Val Pentchev

CADRE Leadership

Partners

University of Iowa Libraries

University of Michigan Libraries

Michigan State University Libraries

INDIANA UNIVERSITY

NETWORK SCIENCE INSTITUTE

University of Minnesota Libraries

Ohio State University Libraries

Penn State University Libraries

Purdue University Libraries

Rutgers University Libraries

Health Partners

Pervasive Technology Institute

Midwest Big Data Hub

South Big Data Hub

West Big Data Hub

Microsoft Research

Web of Science Group

CADRE Project - The Dilemma

- Libraries cannot provide researchers with sustainable, standardized access to licensed datasets for text & data mining
- It is cost-prohibitive for most individual libraries to develop and implement infrastructure to provide access to licensed big data sets and large or unwieldy open data sets
- Many researchers who could benefit from text and data mining library-acquired resources, lack programming skills and would only be able to do so via a graphical user interface

CADRE Project - The Solution

- CADRE is a cloud-based platform that will provide secure access to library-licensed datasets and open, non-consumptive datasets
- By sharing the cost of this solution across a large number of academic libraries, we are able to provide a superior solution at a lower cost to members, as well as a free service tier for nonmembers
- CADRE will feature a graphical user interface; standardized, multiple data formats; shared and custom computational resources; and a space to share and store queries, algorithms, derived data, results of analyses, workflows, and visualizations.

CADRE Project - Indiana University Network Science Institute (IUNI)

- IUNI http://iuni.iu.edu a unique startup in an established academic institution
 - A cross-campus, transdisciplinary institute that brings together faculty who engage in network research from various scientific fields

• IUNI's mission

 To strengthen the theories, methods, analytic tools, and practice of network science, and to foster collaborative, interdisciplinary network science approaches to understanding and improving the complex challenges of our world

• IUNI's Teams

- A team of IT professional
- A team of research scientists

CADRE Project – Goals Identify Constituents' Needs

- Understanding users' needs and expectations
 - User stories, Product Owner Council meetings, Communication
- Informatics/computer science researchers and labs
 - APIs, Notebooks, Access to Raw Data and Cloud Compute Resources
- Science of Science community
 - Interface Access to Databases and Cloud Native Technologies
- Library and research community outside of computer science
 - Web Interface guiding Query Building and suggesting the most appropriate backend technology on a case by case basis

CADRE Project – Goals Research Asset Commons

Federated Login

- Access from any affiliated institution using single sign on (CILogon, inCommon, Shibboleth etc.)
- Restricted access to proprietary resources, based on login credentials

Collaboration

- Ability to save and share with specific users, community or the public metadata, queries, results, annotations, visualizations, algorithms, code, containers and virtual machines
- Community building and collaboration based around same data access privileges and goals

Reproducibility, Replicability, Provenance and Transparency

- Use of the same, well documented original datasets
- DOIs identifying any and every data change or permutation
- Saved and shared workflows a pipelines trough Packages and Containers
- Ability to publish using unique identifiers leading back to Research Asset Commons

CADRE Project – Goals Identify the Proper Technology

Raw data access

- Access to XML, JSON, CSV etc. files in their native form. Containerized tools and packages
- Access to data using cloud native technologies like U-SQL and Athena/Glue
- Access to cloud distributed computing using Databricks and SPARK on HDInsight and EMR

Database access

- Researching on currently available cloud and serverless Relational Database implementations for each dataset and query type
- Researching on currently available Graph Database implementations for each dataset and query type.
 Currently comparing Neo4j, Tiger Graph, AgensGraph, cloud native and in-memory alternatives

Web interface

- Guided Query Building
- Ability to suggest the most appropriate technology on a case by case basis
- User control over execution and use of resources

SHARED BIGDATA-GATEWAY FOR RESEARCH LIBRARIES (SBD-GATEWAY)

Research

Hands on intro to CADRE

Mat Hutchinson

Demo 1

https://github.com/iuni-cadre/ISSI-tutorial

Questions?

Research

Interactive demo

Filipi Silva

Demo 2

https://github.com/iuni-cadre/ISSI-tutorial

Demo 3

https://github.com/iuni-cadre/ISSI-tutorial

Questions?

Research

CADRE Fellows

Xiaoran Yan

CADRE related events

- 2019 CADRE meeting
- CADRE Fellowship open
- 1st Fellows announced
- ISSI workshop & tutorial
- 2020 CADRE meeting
- BTAA Library Conference 2020
- 2020 CADRE hack-a-thon

CADRE Fellowship program

- Gain access to the big bibliometric data sets
- Receive data and technical support for your project
- Join the CADRE community on Slack channels,
 GitHub repositories and other platforms
- Have early access to free cloud computing resources
- Receive travel scholarships

Utilizing Data Citation for Aggregating, Contextualizing, and Engaging with Research Data in STEM Education Research

Researchers: Michael Witt, Loran Carleton Parker, Ann Bessenbacher Affiliation: Purdue University

MCAP: Mapping Collaborations and Partnerships in SDG Research

Researchers: Jane Payumo, Devin Higgins, Scout Calvert, Guangming He Affiliation: Michigan State University

The global network of air links and scientific collaboration – a quasi-experimental analysis

Researchers: Katy Börner, Adam Ploszaj, Lisel Record, Bruce Herr II Affiliation: Indiana University Bloomington and University of Warsaw

Measuring and Modeling the Dynamics of Science Using the CADRE Platform

Researchers: Russell Funk, Michael Park, Thomas Gebhart, Britta Glennon, Julia Lane, Raviv Murciano-Goroff, Matthew Ross, Jina Lee, Erin Leahey

Affiliation: University of Minnesota, University of Pennsylvania, New York University, Boston University, University of Arizona

Comparative analysis of legacy and emerging journals in mathematical biology

Researchers: Marisa Conte, Samuel Hansen, Scott Martin, Santiago Schnell

Affiliation: University of Michigan and University of Michigan Medical School

Systematic over-time study of the similarities and differences in research across mathematics and the sciences

Researcher: Samuel Hansen

Affiliation: University of Michigan

A user story from CADRE fellows

Understanding citation impact of scientific publications through ego-centered citation networks

Researchers: Yi Bu, Chao Min, Ying Ding Affiliation: Indiana University Bloomington and Nanjing University

Microsoft[®] Research

Exploring ego-centered citation networks: A technical introduction

Yi Bu¹, Chao Min², and Ying Ding¹

1: School of Informatics, Computing, and Engineering, Indiana University, U.S.A.
2: School of Information Management, Nanjing University, China

Understanding citation impact of scientific publications

- Scientific impact as a type of impact
- Citation impact as a type of scientific impact
 - ✓ Citation impact among all types of impact
 - ✓ Citation impact of scientific publications
- Benefits from understanding citation impact
 - ✓ Indicator perspective: Measuring citation impact offers a useful way of examining the scientific impact of a publication.
 - ✓ More general perspective: Measuring citation impact can also assist in understanding knowledge diffusion and the use of information.

Understanding citation impact of scientific publications (cont.)

- Previous ways of understanding citation impact of scientific publications:
 - ✓ Count-based strategies: raw citation count, normalized citation measures...
 - ✓ Network-based strategies: PageRank, EigenFactor...

Understanding citation impact of scientific publications (cont.)

- Local details are missing!
 - √ "Deep" or "wide" impact?

Understanding citation impact of scientific publications (cont.)

- Local details are missing!
 - ✓ How does an article impact other research, and what are the patterns? The direct citations between citing publications (DCCPs) offer a good way to mine how a publication impacts other research.

	citing publication						
Cited publication		SSH	BHS	PSE	LES	MCS	subtotal
	SSH	11138	224	16	5	37	11420
	BHS	440	1254	2	11	1	1708
	PSE	137	1	19	3	18	178
	LES	57	13	3	11	0	84
	MCS	194	0	17	0	26	237
	subtotal	11966	1492	57	30	82	13627

year	SSH	BHS	PSE	LES	MCS
2006	13	0	0	0	0
2007	111	0	0	0	0
2008	455	0	2	2	4
2009	753	9	3	0	0
2010	1155	19	0	1	0
2011	1310	80	2	1	12
2012	1092	39	3	1	9
2013	1440	187	19	3	41
2014	1110	449	30	2	31
2015	1161	361	12	12	13
2016	1491	290	44	57	60
2017	1329	274	63	5	67
1					

Ego-centered citation networks as a tool to understand citation impact

Preliminary research questions

- Do DCCPs occur frequently?
- How does DCCPs differ in papers with different citation impacts and in different years?

Preliminary results: The universality of DCCPs

Preliminary results (cont.)

Technical details: Extracting citing relationships from the raw MAG tables

• SQL extraction as a .txt file:

```
import psycopg2
conn = psycopg2.connect(database = 'core_data', user = 'buyi', password =
cur = conn.cursor()
cur.execute("SELECT paper_id, paper_reference_id FROM mag_core.paper_references;")
outFile = open("mag_citing.txt", "w+")
lines = ['citing id=====cited id']
for row in cur:
if str(row[0]) in paper_id_set and str(row[1]) in paper_id_set:
lines.append('{:}======{:}'.format(str(row[0]), str(row[1])))
if len(lines) % 100000 == 0:
outFile.write('\n'.join(lines) + '\n')
lines = []
outFile.write('\n'.join(lines) + '\n')
cur.close()
```

- .txt file to a Python dictionary:
 - √ If paper in paper_citing.keys()

Difficulty 1: How to extract DCCPs?

Difficulty 1: How to extract DCCPs? (cont.)

- This task is computationally expensive:
 - ✓ In MAG, we have ~0.1 billion papers. The below Python script will perhaps take forever...

```
indirect_citation = defaultdict(list)
for paper in paper_year.keys(): # for papers that have pub_year information
  for citing_paper_1 in paper_citing[paper]:
    for citing_paper_2 in paper_citing[paper]:
    if citing_paper_1 in paper_citing[citing_paper_2]:
        temp = []
        temp.append(citing_paper_1)
        temp.append(citing_paper_2)
        indirect_citation[paper].append(temp)
```


Difficulty 2: Self-citations in ego-centered citation networks?

- If two papers (A and B) share at least one co-author and B cites A, such citation is called a self-citation (first-order self-citation).
- How about these circumstances, when B cites A?
 - ✓ A and B don't share co-authors, but A and C do, and B and C do. [second-order self-citations]
 - ✓ A and B don't share co-authors, but A and C do, B and D do, and C and D do. [third-order self-citations]
 - ✓ This indicates how researchers' social distance impacts on their self-citation patterns.
- How to technically achieve these?

Difficulty 2: Self-citations in ego-centered citation networks?

- Completing this task is also QUITE computationally expensive:
 - ✓ Deriving n-order self-citations need to know the shortest paths and their lengths in the co-authorship and citation networks
 - ✓ Such networks are quite huge (hundreds of millions of nodes in the citation network, and millions of nodes in the co-authorship network)

Questions?

Presenter: Yi Bu, Indiana University

Email: buyi@iu.edu

Website: https://buyi08.wixsite.com/yi-bu

Research

Scalability & Reproducibility

Xiaoran Yan

Difficulty 1: How to extract DCCPs?

Difficulty 1: How to extract DCCPs? (cont.)

- This task is computationally expensive:
 - ✓ In MAG, we have ~0.1 billion papers. The below Python script will perhaps take forever...

```
indirect_citation = defaultdict(list)
for paper in paper_year.keys(): # for papers that have pub_year information
  for citing_paper_1 in paper_citing[paper]:
    for citing_paper_2 in paper_citing[paper]:
    if citing_paper_1 in paper_citing[citing_paper_2]:
        temp = []
        temp.append(citing_paper_1)
        temp.append(citing_paper_2)
        indirect_citation[paper].append(temp)
```

- An easy to use graphical interface of a query builder with preview functionality
- A unified engine with optimized combinations of solutions based on relational/graph/document databases
- For users who want intuitive and quick access of data, no programing skills required
- In development: APIs for power users

Access over 220 million scientific publications

Effortlessly query data and analyze results

Reproduce research & leverage tools

Databases behind the query interface

Databases behind the query interface

Database	Database Type	Language support	Distributed
Neo4j	Native graph database	Cypher	No
RedisGraph	In-memory data structure store (Graphs represented as sparse adjacency matrices)	Subset of Cypher	No
TigerGraph	Native graph database	GSQL	Yes
JanusGraph	Supports various storage backends (Apache Cassandra, Apache HBase, Google Cloud Bigtable, Oracle BerkeleyDB)	Native integration with the Apache TinkerPop (Gremlin stack).	Yes

Demo 4

https://github.com/iuni-cadre/ISSI-tutorial

Questions?

Presenter: Xiaoran Yan, Indiana University

Email: yan30@iu.edu

Access over 220 million scientific publications

Effortlessly query data and analyze results

Reproduce research & leverage tools

The reproducibility "Crisis"

Spectrum of Reproducibility

Computational

Empirical

Stodden, Victoria. "Resolving Irreproducibility in Empirical and Computational Research" (2013)

Current solutions

Big data pipelines in the industry

Empowered by the open-source ecosystem

The old way: Applications on host

Heavyweight, non-portable Relies on OS package manager

The new way: Deploy containers

Small and fast, portable Uses OS-level virtualization

Reproducible notebooks on Kubernetes

https://github.com/iunicadre/ReproducibilityDemo /wiki/A-demo-ofreproducibility

Demo 5

https://github.com/iuni-cadre/ISSI-tutorial

Reproducible notebooks on Kubernetes

Turn a Git repo into a collection of interactive notebooks

Have a repository full of Jupyter notebooks? With Binder, open those notebooks in an executable environment, making your code immediately reproducible by anyone, anywhere.

The CADRE ecosystem

3 rd party	Plugins and extensionsComputing resourcesOther data sets		
RAC	Package marketplaceDerivatives dataPipeline builder		
CADRE core	Centralized databasesData APICoding environment		

SHARED BIGDATA-GATEWAY FOR RESEARCH LIBRARIES (SBD-GATEWAY)

Microsoft Research

Q&A

The CADRE TEAM

CADRE related events

- 2019 CADRE meeting
- CADRE Fellowship open
- 1st Fellows announced
- ISSI workshop & tutorial
- 2020 CADRE meeting
- BTAA Library Conference 2020
- 2020 CADRE hackathon

Contact Us

Tutorial Resources

- https://cadre.iu.edu/
- https://cadre.iu.edu/newsand-events/events/rome
- https://github.com/iunicadre/ISSI-tutorial