



Figure 1



Figure 2



Figure 3



Figure 4



B

EWGRKN-CAIILENDOSISRNHAVLT-ANFSV p95  
HSIGRSSSKNPLIKNDKSIISRQHITPKWEINNS xrs2

THEISQRDEIPVTPTKONSHYGTTFVNE-ERMQNG p95  
SDIUKHSS-----CLVNRKGRLTSLNKKFMKVGET xrs2

ESRTIHKSCGCTFCFEG---SKFRIEYE p95  
-----LNASDVKSTIIELGTEPIRIEPE xrs2

C

|      | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|------|---|---|---|---|---|---|---|---|---|
| 23.9 | + | - | - | - | - | - | - | - | - |
| 9.4  | - | - | - | - | - | - | - | - | - |
| 6.7  | + | - | - | - | - | - | - | - | - |
| 4.4  | + | - | - | - | - | - | - | - | - |

**FIGURE 6**



**FIGURE 5**



**FIGURE 7**



**FIGURE 8**



**FIGURE 9**



**FIGURE 10**



**FIGURE 11**

**Figure 12**

| Amino Acid | Codon                        |
|------------|------------------------------|
| Phe        | UUU, UUC                     |
| Ser        | UCU, UCC, UCA, UCG, AGU, AGC |
| Tyr        | UAU, UAC                     |
| Cys        | UGU, UGC                     |
| Leu        | UUA, UUG, CUU, CUC, CUA, CUG |
| Trp        | UGG                          |
| Pro        | CCU, CCC, CCA, CCG           |
| His        | CAU, CAC                     |
| Arg        | CGU, CGC, CGA, CGG, AGA, AGG |
| Gln        | CAA, CAG                     |
| Ile        | AUU, AUC, AUA                |
| Thr        | ACU, ACC, ACA, ACG           |
| Asn        | AAU, AAC                     |
| Lys        | AAA, AAG                     |
| Met        | AUG                          |
| Val        | GUU, GUC, GUA, GUG           |
| Ala        | GCU, GCC, GCA, GCG           |
| Asp        | GAU, GAC                     |
| Gly        | GGU, GGC, GGA, GGG           |
| Glu        | GAA, GAG                     |

FIGURE 13

| Original Residue | Exemplary Substitutions                | Preferred Substitutions |
|------------------|----------------------------------------|-------------------------|
| Ala (A)          | val; leu; ile                          | val                     |
| Arg (R)          | lys; gln; asn                          | lys                     |
| Asn (N)          | gln; his; lys; arg                     | gln                     |
| Asp (D)          | glu                                    | glu                     |
| Cys (C)          | ser                                    | ser                     |
| Gln (Q)          | asn                                    | asn                     |
| Glu (E)          | asp                                    | asp                     |
| Gly (G)          | pro                                    | pro                     |
| His (H)          | asn; gln; lys; arg                     | arg                     |
| Ile (I)          | leu; val; met; ala; phe<br>norleucine  | leu                     |
| Leu (L)          | norleucine; ile; val; met;<br>ala; phe | ile                     |
| Lys (K)          | arg; gln; asn                          | arg                     |
| Met (M)          | leu; phe; ile                          | leu                     |
| Phe (F)          | leu; val; ile; ala                     | leu                     |
| Pro (P)          | gly                                    | gly                     |
| Ser (S)          | thr                                    | thr                     |
| Thr (T)          | ser                                    | ser                     |
| Trp (W)          | tyr                                    | tyr                     |
| Tyr (Y)          | trp; phe; thr; ser                     | phe                     |
| Val (V)          | ile; leu; met; phe; ala;<br>norleucine | leu                     |

9  
8  
7  
6  
5  
4  
3  
2  
1

ttcggcacgaggcgcggttgcacgtcgccccagccctgaggagccgaccatgtggaaactgtgcccgcggcc  
cgccaggaggagaaccatacagactttgactggcggtgagtacgttgttgaaggaaaaactgtgccattctaattgaa  
aatgatcaatcgatcagccaaatcatgtgtttaactgtctaactttctgttaaccacactgactcaaaacagatgaaat  
ccctgtattgacattaaagataattctaaagtatgttgcacccatgttgaaggaaaaatgcagaatggctttccgaa  
cttgaagtccccggatggtattactttggagtgttggaaagtaattcagaatagagtatgagcccttgggttgcattgc  
tcttcatttttagatgtctctggaaaactgtcttaatcaagctataatgtcaacttgaggattactgttaaaacaattg  
gacagaagaatgcactcacccatgttcatgttgcattaaacaatgtgcactcattgtggacgtc  
caattgttaaagccagaatatttactgaattccgttgcatttttttttttttttttttttttttttttttttttttttttttt  
tacccacccatgttgcatttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt  
agggaaaacatttatatttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt  
gtttgataacagaagaatgaagaacataatttttttttttttttttttttttttttttttttttttttttttttttttttttt  
aactcacagacctaattccgtactgtcatttttttttttttttttttttttttttttttttttttttttttttttttttttt  
acctattcctgaaggcatttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt  
gtacaggattaaagacaacaactccaggaccaaggcccttccatgttgcatttttttttttttttttttttttttttttt  
ccagtgaacactacaacatacgttagtgcacacagaatcagacacacatgggatttttttttttttttttttttttttt  
aatcaaagtctccaaatgaaacaaaaattcagaatgtttccatgttgcacccactgttgcacccactgttgcacca  
gctctaataataatgttatgttgcatttttttttttttttttttttttttttttttttttttttttttttttttttttt  
ccaagtataataaaagtaaaagatagggttctcagcagcagcagaccaactccatcagaaactactttttagccgttac  
aaaaaaaaaggaaaggatgttgcatttttttttttttttttttttttttttttttttttttttttttttttttttttttt  
tagaacaacacaacctgttgcacccatgttgcatttttttttttttttttttttttttttttttttttttttttttt  
aactcagacataacttatttacagatacagatttttttttttttttttttttttttttttttttttttttttttttt  
aaagctaaagatcaaataaaaaaaaaggaaatggatgttgcatttttttttttttttttttttttttttttttttt  
aaaaccacagatgttgcatttttttttttttttttttttttttttttttttttttttttttttttttttttttttt  
atagaaaacaaatgacacttttgcatttttttttttttttttttttttttttttttttttttttttttttttttt  
acgtgaactcaaggaagactcactatggtcagtttttttttttttttttttttttttttttttttttttttttt  
ttccaaaaaaagctgttatttttttttttttttttttttttttttttttttttttttttttttttttttttttt  
gatgattatgttgcatttttttttttttttttttttttttttttttttttttttttttttttttttttttttt  
tggaggatcagatctatgttgcatttttttttttttttttttttttttttttttttttttttttttttttttt  
aaaatcaacatgcacaaagaaagactctctgttgcatttttttttttttttttttttttttttttttttttt  
aggatttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt  
tatagaagcgatttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt  
taacaatttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt  
taatataatgttgcatttttttttttttttttttttttttttttttttttttttttttttttttttttttttt  
ttgttcccttcagaaaaatttttttttttttttttttttttttttttttttttttttttttttttttttttt  
tatttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt  
aaaattataggaaatcaatataatgttttttttttttttttttttttttttttttttttttttttttttttt  
atccaaacaaaatggcttcagtttttttttttttttttttttttttttttttttttttttttttttttttt  
ttcatcaacatgggttttagtttttttttttttttttttttttttttttttttttttttttttttttttt  
gtctgttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt  
aaaggagatgttgcatttttttttttttttttttttttttttttttttttttttttttttttttttttttt  
tatttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt  
aatggaaacagtggaaatggggccatatttttttttttttttttttttttttttttttttttttttttttt  
ctctacatcacttcacccatgttgcatttttttttttttttttttttttttttttttttttttttttttt  
gctgttgcagggtggaaactccagtttttttttttttttttttttttttttttttttttttttttttttt  
gaaacagaaaaatttttttttttttttttttttttttttttttttttttttttttttttttttttttttt  
gttgcatttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt  
atttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt  
gtctccattttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt  
actggccctactatagcatttttttttttttttttttttttttttttttttttttttttttttttttt  
aaatatttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt  
ttaatttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt  
atacgtatttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt  
gacaaggtaaaatttttttttttttttttttttttttttttttttttttttttttttttttttttt  
tattatataaacttttttttttttttttttttttttttttttttttttttttttttttttttttt  
tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt  
caatttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt  
gct

FIGURE 14

100 200 300 400 500 600 700 800 900

MWKLLPAAGPAGGEPYRLLTGVEYVVGRKNCAILIELDQSISRNHAVLTANFSVTNLSQTDEIPVLTLDNSKYGTFVNE  
EKMONGFSRTLKGDGITFGVFGSKFRIEYEPLVACSSCLDVSGKTALNQAILQLGGFTVNNWTEECTHLVMVSVKVTIK  
TICALICGRPIVKPEYFTEFLKAVQSKKOPPQIESFYPPLEPSIGSKNVDLSGRQERKQIFKGKTFIFLNAKQHKKLSS  
AVVFGGGEARLITEENEEEHNFLAPGTCVVDTGITNSQTLIPDCQKKWIQSIMDMILQRQGLRPIPEAEIGLAVIFMTTK  
NYCDPQGHGSTGLKTTPGPSLSQGVSVDEKLMP SAPVNNTTYVADTESEQADTWDLSERPKEIKVSKMEQKFRMLSQDA  
PTVKESCKTSSNNNSMVSNTLAKMRIPNYQLSPTKLP SINKSKDRASQQQQTNSIRNYFQPSTKKRERDEENQEMSSCKS  
ARIETSCSLLEQTQPATPSLWKQNKEQHLSENEVPDNTSDNNLFDTDLKSIVKNSASKSHAAEKLRSNKKREMDDVAIED  
EVLEQLFKDTKPELEIDVVKVQKQEEDVNRKRPRMDIETNDTFSDEAVPESSKISQENEIGKKRELKEDSLWSAKEISNN  
DKLQDDSEMLPKKLLTEFRSLVIKNSTS RNP SGINDDYGQLKNFKFKVTVYPGAGKLPHIIGGSDLIAHHARKNTELE  
EWLRQEMEVQNQHAKEESSLADDLFRYNPYLKRRR.

## FIGURE 15