[시험용 정리] Big Data Analytics : Data Mining

- 연세대 김현중 교수님 자료-

목차

1.	데이터 마이닝	4
	● 데이터 마이닝이란	4
	KDD(Knowledge Discovery in Database) 프로세스	4
	● 데이터 마이닝 모델 타입	5
2.	Linear Regression	5
	● 회귀 분석	5
	Simple Linear Regression	5
	● ANOVA 테이블	6
	● 가설 검증(F-Statistic)	6
	● 통계적 추론(Statistical Inference)	6
	● Linear Regression의 해석	6
	● 변수선택 알고리즘	7
	✓ All Subsets	7
	✓ Backward Elimination	8
	✓ Forward Selection	8
	✓ Stepwise Selection	9
3.	Logistic Regression	9
	● 분류(classification)란	9
	● 분류 모델의 종류	9
	● 1변수에서의 Logistic Regression	10
	● 2변수에서의 Logistic Regression	
	● [중요] 새로운 사례에 대한 스코어 계산하기	11
	● Logistic Regression의 해석	
	OR(Odds Ratio)	
4.	Logistic Regression과 OR	
5.	판별 분석(Discriminant Analysis)	
	LDA(Linear Discriminant Analysis)	13
	QDA(Quadratic Discriminant Analysis)	
6.	K-nearest neighbor	15
	● Nearest neighbor의 개념	
	K-nearest neighbor	
	5-nearest neighbor	16

7.	Evaluation 기법	16
	● 데이터의 역할	16
	● 모델 비교 방법	17
	Confusion Matrix	17
	● 에러율과 정확도의 한계	18
	● 민감도(sensitivity)와 특이도(specificity)	18
	✔ 민감도(sensitivity)	18
	✓ 특이도(specificity)	18
8.	차트	19
	● Lift(Gain) 차트 만들기	19
	● Lift를 통한 모델 비교하기 사례	20
	● ROC 커브	21
	AUROC(Area Under ROC)	22
	● [중요] AUROC 계산하기	22
9.	의사결정 트리(Decision Tree)	23
	Gini Impurity	23
	● 트리를 만들 때 고려사항	23
	● CART 알고리즘의 특징	24
	● CART의 방식: 분할할 기준(split)을 어떻게 찾을 것인가?	24
	● CART의 방식: Split이 많다면, 어느 split을 선택해야 하나?	24
	● CART의 방식: 언제 분할을 멈출 것인가?	25
	● CART의 방식: 트리의 일부 가지를 쳐낼 것인가(prunig)?	25
	Surrogate split	25
	● Decision Tree를 사용한 변수 선택	25
10.	신경망(Neural Networks)	26
	● 아키텍처	26
	✔ 전형적인 선형 모델의 구조	
	✓ 신경망 모델의 구조	
	● [중요] 신경망 노드의 출력값 계산	27
	● 유의사항	28
11.	Support Vector Machine	28
12.	앙상블(Ensemble) 기법	28
	Bagging	28
	Boosting	29
	● Adaboost의 사례	
13.	3/	
	● 클러스터링(Clustering)	
	• 거리(Distance)	
	● 계층적 군집 분석(Hierarchical Cluster Method)	31

	✓ 병합 계층 군집화(Agglomerative Hierarchical Method)	31
	✓ 분할 계층 군집화(Divisive Hierarchical Method)	31
•	· 거리 계산 방법	32
•	● [중요] Single Linkage를 사용한 군집화	33
14.	K-means clustering	34
•	특징	34
•	알고리즘	34
•	유의사항	34
15.	연관성 분석(Association Analysis)	34
•	연관성 분석이란	34
•	연관 규칙	35
•	동시 구매표	35
•	N지도(Support)와 신뢰도(Confidence)	35
	✓ 지지도(support)	36
	✓ 신뢰도(confidence)	36
•	▶ [중요] 지지와 신뢰도 계산 예제	36
•	항상도(Lift)	37
	✓ 지지도와 신뢰도의 한계	37
	√ 향상도	37

1. 데이터 마이닝

● 데이터 마이닝이란

- 다양한 데이터 분석 도구를 사용하여 데이터간의 패턴과 관계를 찾는 프로세스
- 사람이 최소한으로 개입하여, 컴퓨터 도구를 활용하는 탐색적 데이터 분석(exploratory data analysis)
- 과거의 데이터를 기반으로 예측 모형(predictive model) 을 만들어서 미래의 데이터에 모 델을 적용

통계학에서는 과거의 데이터에 대해 인과관계를 발견하는 한편, 분석에서는 예측 모형을 만들어서 미래의 데이터를 예측한다.

● KDD(Knowledge Discovery in Database) 프로세스

- 데이터로부터 유용한 정보와 패턴을 찾는 프로세스
- 데이터 마이닝은 KDD 프로세스의 한 단계

Modified from [FPSS96C]

- 수집(selection): 다양한 데이터 정보원으로부터 데이터를 수집
- 전처리(preprocessing): 데이터 cleansing
- 변환(transformation) : 표준 형식으로 데이터 변환
- 데이터 마이닝 : 의미 있는 결과를 도출
- 해석 및 평가 : 사용자에게 분석 결과를 유의미한 형태로 전달
- 전처리는 전체 KDD 프로세스에서 약 80% 정도의 시간을 소요한다.

● 데이터 마이닝 모델 타입

- 회귀(regression) : 연속형 값에 대한 예측 모델링

- 분류(classification): 범주형 또는 이산형 값에 대한 예측 모델링

- 클러스터링(clustering): 데이터를 다수의 그룹으로 분할

2. Linear Regression

● 회귀 분석

- 독립 변수(x1, x2,, xk)와 연속형 종속 변수(y) 사이의 관계를 평가하기 위한 통계적인 기 법
- Y = f(x1, x2, ..., xk)를 만족하는 함수 f를 찾는 방법
- 이를 통해 y를 예측하거나 설명하기에 가장 중요한 독립변수를 결정하는 과정

Simple Linear Regression

- x, y가 각각 1개인 경우

● ANOVA 테이블

● 가설 검증(F-Statistic)

귀무가설 H_0 : $\beta_1 = \beta_2 = \bullet \bullet \bullet = \beta_k = 0$ (반드시 =이 있어야 함) 대립가설 H_1 : H_0 is false (반드시 =이 있어선 안됨)

- 기본적으로 귀무가설이 참이라고 본다.
- p-value가 작을수록 더 강한 증거이며, 이 경우에는 대립가설이 참이 된다. (일반적으로 p-value < 0.05)

● 통계적 추론(Statistical Inference)

- 다변량 회귀에서는 각각의 파라미터에 대해 가설을 검증할 수 있다.

$$H_0$$
: $β_i = 0$ => xi 변수가 중요하지 않다는 의미

 H_1 : $β_i ≠ 0$ => xi 변수가 유의미하다는 의미

● Linear Regression의 해석

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr ≻ F
Mode I	6	6550.96274	1091.82712	70.12	<.0001
Error	93	1448.03726	15.57029		
Corrected Total	99	7999.00000			
Root MSE	3.94592	R-Square	0.8190		
Dependent Mean	46.10000	Adj R-Sq	0.8073		
Coeff Var	8.55948				

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	3.53938	4.12105	0.86	0.3926
X1	Delivery Speed	1	2.41862	0.45002	5.37	≺.0001
X2	Price Level	1	2.70770	0.44582	6.07	<.0001
хз	Price Flexibility	1	1.90715	0.44659	4.27	≺.0001
Х4	Manufacturer Image	1	0.78675	0.37051	2.12	0.0364
X13	Type of Industry	1	-1.64286	0.79695	-2.06	0.0421
X14	Type of Buying Situation	1	4.64784	0.82855	5.61	≺.0001
개별적인	x 변수의 유의성		p-v	alue가 작을	수록 중요	한 변수

- 일반적으로 변수의 p-value가 5%보다 작으면 그 변수를 유의하다고 본다.

● 변수선택 알고리즘

✓ All Subsets

√ Backward Elimination

- 모든 변수를 포함하는 모델로부터 시작한다.
- 가장 높은 p-value를 가지는 변수를 제거한다.
- 남아있는 변수가 모두 유의할 때까지 작업을 계속한다.
- 빅데이터에 가장 적합한 방식이다.

✓ Forward Selection

- 하나 또는 그 이상의 변수를 사용한 모델로부터 시작한다.
- 남아있는 각 변수를 차례대로 추가해서 가장 작은 p-value를 가지는 변수를 추가한다.
- 유의미한 변수를 추가할 수 없을 때까지 작업을 계속한다.

√ Stepwise Selection

0		
2	0	
3	1	
4	2	
6	3	
6	4	
	5	
Stop Stop	6	
	Stop	

- 하나 또는 그 이상의 변수를 사용한 모델로부터 시작한다.
- 남아있는 각 변수를 차례대로 추가해서 가장 작은 p-value를 가지는 변수를 추가한다.
- 만약 변수를 추가해서 기존 변수의 p-value가 기준치보다 큰 경우에는 해당 변수를 제거한다..
- 유의미한 변수를 추가/삭제할 수 없을 때까지 작업을 계속한다.

3. Logistic Regression

● 분류(classification)란

- 범주형 또는 이산형 값에 대한 예측 모델링
- 분류는 교사 학습(supervised learning)
- 학습 데이터(.training data)를 사용해서 모델을 분류 모델을 만든다.

● 분류 모델의 종류

- Logistic Regression
- Discriminant Analysis
- K-nearest neighbors
- Decision Tree
- Nural Networks
- Support Vector Machine

1변수에서의 Logistic Regression

-
$$logit(\hat{y}) = b_0 + b_1 x = log(\frac{\hat{y}}{1-\hat{y}})$$

- $\hat{y} = \frac{e^{b_0 + b_1 x}}{1 + e^{b_0 + b_1 x}}$

$$\hat{y} = \frac{e^{b_0 + b_1 x}}{1 + e^{b_0 + b_1 x}}$$

2변수에서의 Logistic Regression

Hyperplane at y = 0.5

● [중요] 새로운 사례에 대한 스코어 계산하기

아래와 같이 x와 logistic 함수가 주어진 경우, p 값을 구하라

$$\mathbf{x} = (1.1, 3.0)$$

$$logit(\hat{p}) = 1.6 - .14x_1 + .50x_2$$

$$\vec{p} = \frac{e^{logit(\hat{p})}}{1 + e^{logit(\hat{p})}}$$

• Logistic Regression의 해석

OR(Odds Ratio)

- $odds = \frac{probability that some event will occur}{probability that some event will not occur}$
- odds ratio의 예

E.g. A=store owners, B=salesmen

- P(default_A)=.25, P(default_B)=.10
- Odds(default_A)=1/3, Odds(default_B)=1/9
- OR(A:B)=3
- Store owners have three times higher risk of becoming default than salesman

4. Logistic Regression과 OR

$$OR(A:B) = \frac{odds(A)}{odds(B)} = \frac{e^{\beta_0 + \beta_1 x_A}}{e^{\beta_0 + \beta_1 x_B}} = e^{\beta_1 (x_A - x_B)}$$

$$-\log\left(\frac{p}{1-p}\right) = \log(odds) = b0 + b1x$$

- $odds = e^{b0+b1x}$
- 만약 x 가 나이라면, 나이가 1증가할 때 마다 odds는 $\mathbf{e}^{\mathbf{b_1}}$ 만큼 증가한다.
- 또한 odds ratio가 1이라는 뜻은, b1이 0이라는 뜻이므로, x 변수는 독립변수 y와 무관하다는 뜻이다.

5. 판별 분석(Discriminant Analysis)

- 분류 방법 중 하나로, 정규분포를 가정한다.

LDA(Linear Discriminant Analysis)

- 동일한 평균과 분산을 가지는 정규 분포를 가정
- 1차워,

- LDA에서는 hyperplane이 직선(또는 평면)이다.
- 따라서 LDA에서는 오분류가 발생할 빈도가 높아진다. QDA의 hyperplane은 곡선이므로 오분류가 발생할 빈도가 낮아진다.

• QDA(Quadratic Discriminant Analysis)

- 서로 다른 평균과 분산을 가지는 정규 분포를 가정
- 1차원

- 2차원,

6. K-nearest neighbor

- Nearest neighbor의 개념
- 정규분포를 가정하지 않는다.
- 새로운 사례에 대해, 학습 데이터 중 해당 사례가 가장 가까운 데이터들을 찾는다. (Mahalanobis distance, Eucledian Distance 등을 사용해서)
- 새로운 사례를 가장 근접한 이웃 그룹에 할당한다.

K-nearest neighbor

- 가장 가까운 K개의 데이터를 찾는다.

5-nearest neighbor

 K_1 belongs to group 1

 K_2 belongs to group 2

$$K_1 + K_2 = K = 5$$

- 세모로부터 가장 가까운 5개의 데이터를 찾는다.
- 그 중에서 가장 많은 데이터를 가지는 이웃그룹에 세모를 할당한다.

7. Evaluation 기법

● 데이터의 역할

In sample : 모델 개발에 사용된 데이터
 In sampe 데이터 중 70%는 training용으로, 30%는 validation용으로 사용

- Out of sample : 모델 개발에 사용되지 않은 동시점의 데이터

- Out of time : 개발 후 관찰된 데이터(미래 데이터)

- 층화 추출(stratified sampling): 모집단에서 랜덤으로 표본 추출을 할 경우, 사례가 적은 Bad는 모델링을 할 수 있을 정도로 충분히 추출하지 못할 수도 있다. 이 경우 전체 training data에서의 Good: Bad의 비율을 그대로 유지한 채 추출해야 한다.
- validation data는 모델을 최적화하거나, overfitting을 방지하기 위한 용도로 활용한다.

● 모델 비교 방법

- 정확도(accuracy) 또는 에러율
- Lift 차트
- ROC 커브
- KS 통계

Confusion Matrix

Predicted Class

- 에러율(error rate): 전체 데이터 중 거짓 예측한 데이터의 비율
- Redistribution error : training data에 대한 에러율
- Validation data error : validation data에 대한 에러율
- Redistribution error는 항상 Validation data error보다 낮다. 에러율을 측정할 때는 Validation data error를 사용해야 한다.

● 에러율과 정확도의 한계

Predicted

Actual

	Non-Buyer	Buyer	
Non-buyer	8500	500	9000
Buyer	500	500	1000
	9000	1000	10000

- 위의 confusion matrix에서 정확도는 90%이며, 에러율은 10%다. 하지만 원하는 결과가 실제로 구매할 고객을 찾는 것이라면, 구매할 것이라고 예측한 고객 1000명 중에서 실제로 구매한 사람은 500명, 즉 50%정도밖에 예측하지 못한다.

● 민감도(sensitivity)와 특이도(specificity)

✓ 민감도(sensitivity)

- 실제 Positive 중 Positive로 예측한 비율 민감도 = TP / P = 500 / 1000 = 50%

✓ 특이도(specificity)

- 실제 Negative 중 Negative로 예측한 비율 특이도 = TN / N = 8500 / 9000 = 94.4%

Predicted

Actual

	Non-Buyer	Buyer		
Non-buyer	8500 _{TN}	500	9000	N
Buyer	500	500 TP	1000	Р
	9000	1000	10000	

8. 차트

- Lift(Gain) 차트 만들기
- 데이터셋의 각 데이터는 예측확률을 가진다.
- 전체 데이터셋을 예측확률에 대해 내림차순으로 정렬한다.

Rank	Predicted probability	Actual class
1	0.95	Yes
2	0.93	Yes
3	0.93	No
4	0.88	Yes
	🔻	

- 만약 모델이 제대로 만들어졌다면, 예측확률이 높은 사람들이 실제로 Y일 경우가 많을 것이다라는 가정에 기반한다.
- 전체 데이터를 십분위로 분할하여 아래와 같이 만든다.

Decile	Frequency of "buy"	% Captured Response	% Response	Lift
1	174	174/381=45.6	174/200=87	87/19=4.57
2	110	110/381=28.8	110/200=55	55/19=2.89
3	38	38/381=9.9	38/200=19	19/19=1.00
4	14	14/381=3.6	14/200=7	7/19=0.36
5	11	11/381=2.8	11/200=5.5	5.5/19=0.28
6	10	10/381=2.6	10/200=5	5/19=0.26
7	7	7/381=1.8	7/200=3.5	3.5/19=0.18
8	10	10/381=2.6	10/200=5	5/19=0.26
9	3	3/381=0.7	3/200=1.5	1.5/19=0.07
10	4	4/381=1.0	4/200=2	2/19=0.10

- Frequency of "buy" : 200명 중 실제로 구매한 사람
- % Captured Response : 반웅검출율
 - = 해당 등급의 실제 구매자 / 전체 구매자
- % response : 반웅률
 - = 해당 등급의 실제 구매자 / 200명
- Lift: 향상도
 - = 반응률 / 기본 향상도
- 좋은 모델이라면 Lift가 빠른 속도로 감소해야 한다.

- 첫 번째의 경우,

정확도 : 정확환 예측 / 전체 = (360 + 80) / 1000 = 44%

민감도 : Positive / 실제 Positive = 80 / 100 = 80%

● ROC 커브

- 오류(1-특이도)가 같은 상황이라면, 곡선이 위로 갈수록 제대로 맞출 확률이 높다.

• AUROC(Area Under ROC)

등급	등급내인원	부도수	점상수	누적부도수	누적정상수	민감도	1-특이도	면적
1	1000	200	800	200	800	0.192308	0,089286	0.008585
2	1000	180	820	380	1620	0,365385	0,180804	0.025519
3	1000	160	840	540	2460	0.519231	0.274554	0.041466
4	1000	140	860	680	3320	0,653846	0,370536	0.056297
5	1000	100	900	780	4220	0,75	0,470982	0,070506
6	1000	80	920	860	5140	0.826923	0.573661	0.080958
7	1000	70	930	930	6070	0,894231	0,677455	0.089323
8	1000	50	950	980	7020	0,942308	0,783482	0,097361
9	1000	40	960	1020	7980	0.980769	0.890625	0.103022
10	1000	20	980	1040	8960	1	1	0,108323
총수	10000	1040	8960	1	1		AUROC=	0.681362

- 80%이상 good
- 75%이상 moderate
- AR= 2*AUROC-100%

- AUROC가 80%이상일 때 good

● [중요] AUROC 계산하기

1등급,

	예측		
실제			
	0	800	8960
	1	200	1040

민감도 = 200 / 1040

1- 특이도 = 800 / 8960

2등급,

	예측				
실제		0	1		
	0		1620	8960	
	1		380	1040	

민감도 = 380 / 1040

1- 특이도 = 1620 / 8960

각 등급별로 계산 후에, 각 구간별로 위의 사다리꼴 넓이에서 아래 사다리꼴의 넓이를 뺀다.

9. 의사결정 트리(Decision Tree)

- Good 또는 Bad가 많이 모여 있는 부분을 찾는 방법
- 유사도(similarity)를 최대화할 수 있는 방향으로 입력 변수를 분할한다.
- 장점 : 해석이 쉽다 / 범주형 변수를 가변수화 하지 않고 그대로 사용할 수 있다.
- 단점 : 정확도가 떨어진다.

• Gini Impurity

그룹이 유사한 정도를 측정하는 방법

$$1 - \sum_{j=1}^{r} p_j^2 = 2 \sum_{j < k} p_j p_k$$

Pr(interspecific encounter) = $1-2(3/8)^2-2(1/8)^2 = .69$

Pr(interspecific encounter) = $1-(6/7)^2-(1/7)^2 = .24$

- Gini Impurity가 높다는 말은 유사하지 않은 아이템이 많이 섞여 있다는 의미
- Gini Impurity가 낮은 방향으로 분할해야 한다.

● 트리를 만들 때 고려사항

- 분할할 기준(split)을 어떻게 찾을 것인가?
- Split이 많다면, 어느 split을 선택해야 하나?
- 언제 분할을 멈출 것인가?
- 트리의 일부 가지를 쳐낼 것인가(prunig)?

● CART 알고리즘의 특징

- 분할 정복
- 한번에 하나의 변수만 사용한다.
- 이진 트리
- Greedy search : 가능한 모든 조건을 검색한다
- CART의 방식: 분할할 기준(split)을 어떻게 찾을 것인가?
- Greedy Search
- CART의 방식: Split이 많다면, 어느 split을 선택해야 하나?
- Gini Impurity가 가장 낮은 split을 선택한다.

Weighted average = 0.25*13/25 + 0.374*12/25 = 0.31

- Goodness of split
- = $imp(t)-(n_1/n)*imp(t1)-(n_2/n)*imp(t2)$

Goodness(s1) = 0.492 - 0.31 = 0.182

● CART의 방식: 언제 분할을 멈출 것인가?

- 트리의 높이가 특정 크기보다 클 때
- 하위 트리의 노드 개수가 특정 개수보다 작을 때
- Impurity가 감소 크기가 정해진 크기 보다 작을 때 등

● CART의 방식: 트리의 일부 가지를 쳐낼 것인가(prunig)?

- Training data에 대해 모델을 만들 때 overfitting을 하게 되면, 해당 모델은 validation data 에서는 예측율이 떨어진다.
- Decision Tree를 만들 때 overfitting을 막기 위해, 오류율이 높은 가지를 쳐내야 한다.

Surrogate split

- 미래의 데이터에 missing value가 있더라도 decision tree를 사용하기 위해, 추가적인 split을 만들어둔다.

● Decision Tree를 사용한 변수 선택

- 중요하지 않은 변수를 필터링하기 위한 목적으로 Decision Tree를 사용할 수 있다.
- Decision Tree의 split 정보를 기준으로 변수를 선택할 수 있다.

-

10.신경망(Neural Networks)

- 비선형 통계 모델

- Universal approximator

장점 : 정확도가 높다단점 : 해석력이 낮다.(Decision Tree의 정반대)

● 아키텍처

✓ 전형적인 선형 모델의 구조

✓ 신경망 모델의 구조

- [중요] 신경망 노드의 출력값 계산
- 입력 노드의 경우

출력 = w * x

- Hidden Layer 노드의 경우,

Left 출력 = $w_1x_1 + w_2x_2 + w_3x_3$

Right 출력에서는 활성화 함수(Activation Function)의 적용: Sigmoid = $\frac{e^x}{1+\ e^x}$

Right
$$^{\sharp q} = \frac{1}{1 + e^{w_1x_1 + w_2x_2 + w_3x_3}}$$

● 유의사항

- 분산이 적은 연속형 데이터, 또는 범주별로 빈도수가 비슷한 데이터에 가장 효과적이다.
- Hidden layer/node가 증가할수록 overfitting할 가능성이 높아지므로
- 먼저 hidden layer가 하나도 없는 상태에서 시작한 후, validation dataset에 대해 에러율이 낮아질 때까지 hidden layer/node를 추가시켜 나가는 점진적인 방식으로 적용해 본다.

11.Support Vector Machine

12.앙상블(Ensemble) 기법

- 다수의 방법을 사용하여 나온 결과를 다수결에 따라 결정하는 방법
- 앙상블에 사용할 각 방법이 정확도가 낮은 경우에만 효과를 볼 수 있음.
- 만약 이미 정확도가 높은 방법이라면, 앙상블을 쓰더라도 효과가 크지 않음
- 일반적으로 Decision Tree를 활용함
- 주요 기법에는 Bagging, Boosting이 있음

Bagging

- 복원 추출(bootstrap)

- 3개의 영역에서 2개의 영역이 겹치는 부분을 선택

Boosting

- 가중치를 적용
- 오분류 항목에 대해서 높은 가중치를, 나머지 항목에 대해서는 낮은 가중치를 적용

_

● Adaboost의 사례

Train da	ata			F	Round	1		F	Round	2		Rοι	und 3
x1 x2	У	W1		h1e	е	W2		h2e	e	W3		h3e	е
1 5	+	0.10		0	0.00	0.07		0	0.00	0.05		1	0.05
2 3	+	0.10		0	0.00	0.07		0	0.00	0.05		1	0.05
3 2	_	0.10		0	0.00	0.07		1	0.07	0.17		0	0.00
4 6	_	0.10		0	0.00	0.07		1	0.07	0.17		0	0.00
4 7	+	0.10		1	0.10	0.17		0	0.00	0.11		0	0.00
5 9	+	0.10		1	0.10	0.17		0	0.00	0.11		0	0.00
6 5	_	0.10		0	0.00	0.07		1	0.07	0.17		0	0.00
6 7	+	0.10		1	0.10	0.17		0	0.00	0.11		0	0.00
8 5	_	0.10		0	0.00	0.07		0	0.00	0.05		0	0.00
8 8	_	0.10		0	0.00	0.07		0	0.00	0.05		1	0.05
		1.00		e1	0.30	1.00		e2	0.21	1.00		e3	0.14
		₹	•	c1	0.42	+	:	c2	0.65	:	į	c3	0.92
Initiali	/ zatio	on			Z 1	0.92			Z2	0.82			

13.비교사 학습(Unsupervised Learning)

- 클러스터링(Clustering)
- 동일한 군집ㅂ에 속하는 개체는 여러 속성이 서로 비슷하고, 서로 다른 군집에 속한 개체는 그렇지 않도록 군집을 구성한다.

● 거리(Distance)

- 유사도를 측정하는 척도
- 거리의 정의
 - d(x,y)=0 => x=y
 - d(x,y) >= 0
 - $\bullet \quad d(x,y)=d(y,x)$
 - $d(x,y) \le d(x,z) + d(z,y)$ (triangular inequality)
- 거리의 종류

▶ 유클리드(Euclid) 거리

ho p차원 공간에서 주어진 두 점 \mathbf{x} =(\mathbf{x} 1,..., \mathbf{x} \mathbf{p}) 와 \mathbf{y} =(\mathbf{y} 1,..., \mathbf{y} \mathbf{p})사이의 유클리드 거리 \mathbf{d} (\mathbf{x} , \mathbf{y})는

$$d(x, y) = \left(\sum_{i=1}^{p} (\chi_i - y_i)^2\right)^{1/2}$$

로 정의 된다.

▶ p=2인 경우

►Minkowski 거리

$$d(x,y) = (\sum_{i=1}^{p} (\chi_i - y_i)^m)^{1/m}$$

▶표준화 거리

$$d(x,y) = (\sum_{i=1}^{p} ((\chi_i - \gamma_i)/S_i)^2)^{1/2}$$

▶Mahalanobis 거리

$$d(x,y) = \chi^{'} \Sigma^{-1} y$$

● 계층적 군집 분석(Hierarchical Cluster Method)

- ✓ 병합 계층 군집화(Agglomerative Hierarchical Method)
- 단일 개체로부터 시작하여 서로 유사한 개체끼리 병합하는 방법
 - ✓ 분할 계층 군집화(Divisive Hierarchical Method)
- 단일 그룹에서 시작하여, 두 개의 하위 그룹으로 분할하는 방법

● 거리 계산 방법

1. Single Linkage (minimum distance or nearest neighbor)

$$d_{(UV)W} = \min(d_{UW}, d_{VW})$$

2.Complete Linkage (maximum distance or furthest neighbor)

$$d_{(UV)W} = \max\left(d_{UW}, d_{VW}\right)$$

3.Average Linkage (average distance)

$$d_{(UV)W} = \frac{\sum_{i=1}^{n_{UV}} \sum_{j=1}^{n_{W}} d_{ij}}{n_{UV} n_{W}}$$

where

d _y =	distance between object i in cluster \emph{UV} and object j
	in cluster W
n _{uv} =	# of objects in cluster UV
n _v =	# of objects in cluster W

예제

method		cluster distance
single	=	d ₂₄
complete	=	d ₁₃
average	=	$\frac{d_{11} + d_{1*} + d_{15} + d_{11} + d_{2*} + d_{25}}{6}$

● [중요] Single Linkage를 사용한 군집화

1) Let
$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & & & \\ 2 & 9 & 0 & & \\ 3 & 7 & 0 & & \\ 6 & 5 & 9 & 0 & \\ 5 & 11 & 10 & 2 & 8 & 0 \end{bmatrix}$$
 $d_{53} = 2$ is the minimum. Object 5 and 3 are merged: (35)

2) Let

$$D = \begin{cases} (35) \begin{bmatrix} 0 \\ 3 & 0 \\ 7 & 9 & 0 \\ 8 & 6 & 5 & 0 \end{cases}$$

$$d_{(35)1} = \min(d_{31}, d_{51}) = \min(3, 11) = 3$$

$$d_{(35)2} = \min(d_{32}, d_{52}) = \min(7, 10) = 7$$

$$d_{(35)4} = \min(d_{34}, d_{54}) = \min(9, 8) = 8$$

$$d_{(35)1} = \min(d_{31}, d_{51}) = \min(3, 11) = 3$$
$$d_{(35)2} = \min(d_{32}, d_{52}) = \min(7, 10) = 7$$

$$d_{(35)4} = \min(d_{34}, d_{54}) = \min(9, 8) = 8$$

 $d_{(35)1} = 3$ is the minimum. We merge 1 and (35) to get (135).

3) (135) 2 4
$$D = \begin{bmatrix} (135) & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$d_{(135)2} = \min(d_{(35)2}, d_{12}) = \min(7, 9) = 7$$

$$d_{(135)4} = \min(d_{(35)4}, d_{14}) = \min(8, 6) = 6$$

 $d_{42} = 5$ is the minimum. We merge 2 and 4 to get (24).

4)
$$(135) (24)$$

$$D = {\begin{pmatrix} 135 \end{pmatrix}} {\begin{pmatrix} 0 \\ 6 \end{pmatrix}}$$

$$\vdots d_{(24)(135)} = \min \left(d_{2(135)}, d_{4(135)} \right) = \min \left(7, 6 \right) = 6$$

- dendrogram으로 시각화

14.K-means clustering

● 특징

- 사전에 결정된 군집수 k에 기반하여 전체 데이터를 유사한 k개의 군집으로 분할한다.
- 평균만 계산하기 때문에, 대용량 데이터를 빠르게 처리할 수 있다.
- 군집수 K는 반복적으로 K를 달리 사용해 봐서 가장 적합한 K를 결정한다.

● 알고리즘

- 군집수 k를 선택한다.
- 초기 K개 군집의 중심을 선택한다.
- 각 개체를 K개의 중심 중 가장 가까운 거리에 있는 군집에 할당한다.
- 중심을 새로 계산하여, 새로운 중심과 기존의 중심이 차이가 없을 때까지 위의 과정을 반복한다.

● 유의사항

- 군집 분석은 자료 사이의 거리를 이용하기 때문에, 각 자료의 단위가 결과에 큰 영향을 미친다. 따라서 각 변수의 단위를 표준화하여야 한다.
- 좋은 결과란, 각 군집 안에서 분산이 최소화 되는 것.
- 군집화의 목적은 해당 군집이 어떤 변수에 의해서 형성되었는지를 파악하기 위해서다.
- 찾아진 군집이 무엇을 의미하는지를 데이터만 이용해서는 해석이 어렵다.

15.연관성 분석(Association Analysis)

● 연관성 분석이란

- 데이터 안에 존재하는 항목간의 연관 규칙을 발견하는 과정
- 장바구니 분석이라고도 부른다.

● 연관 규칙

- If A, then B 형태

- 모든 연관 규칙이 유용한 것은 아니다.

자명한 규칙: 대다수의 사람들이 이미 알고 있는 규칙으로 효용성이 없다.

설명이 불가능한 규칙 : 세밀한 조사가 필요

● 동시 구매표

- 각 품목별로 동시에 구매한 품목들에 대한 매트릭스

- 모든 품목에 대해 동시 구매표를 만들게 되면 생성이 오래 걸리므로, 관심 품목을 한정해 서 동시 구매표를 작성해야 한다.

- 동시구매표의 예

<거래내역>

고객번호	품목
1	오렌지 쥬스,사이다
2	우유, 오렌지 쥬스, 식기세척제
3	오렌지 쥬스, 세제
4	오렌지 쥬스, 세제, 사이다
5	식기 세척제, 사이다

<동시 구매표>

	오렌지 쥬스	식기 세척제	우유	사이다	세제
오렌지 쥬스	4	1	1	2	2
식기 세척제	1	2	1	1	0
우유	1	1	1	0	0
사이다	2	1	0	3	1
세제	2	0	0	1	2

- 두 상품이 몇번이나 함께 팔렸는지 확인 가능
- 대각선상의 숫자는 해당 품목을 포함하는 총 거래수를 의미. 즉 오렌지 주스를 산 총 거래수는 4다.

● 지지도(Support)와 신뢰도(Confidence)

규칙이 유용하기 위해서는 일정 이상의 지지도와 신뢰로를 만족해야 한다.

If A, then B 의 규칙에서,

✓ 지지도(support)

- 지지도(A,B) = 전체 거래 중, 품목 A와 품목 B를 동시에 포함하는 거래의 비율
 - = 품목 A와 B를 동시에 포함하는 거래 수 / 전체 거래수
 - $= P(A^B)$

_

✓ 신뢰도(confidence)

- 신뢰도(A,B) = A를 포함하는 거래 중, 품목 A와 품목 B를 동시에 포함하는 거래의 비율
 - = 품목 A와 B를 동시에 포함하는 거래 수 / 품목 A를 포함하는 거래 수
- $= P(A^B) / P(A) = P(B \mid A)$

● [중요] 지지와 신뢰도 계산 예제

- 동시 거래 내역이 다음과 같을 때,

항목	거래의 수	항목	거래의 수
A	100	A+C	300
В	150	B+C	200
С	200	A+B+C	100
A+B	400	추가 안함	550

전체거래 회수 =2000

- 지지도 계산

항목	품목이 포함된 총 거래의 수	확률	항목	품목이 포함된 총 거래의 수	확률
A	900	0.450	A+C	400	0.200
В	850	0.425	B+C	300	0.150
С	800	0.400	A+B+C	100	0.05
A+B	500	0.250			

지지도(A+B) = (400 + 100) / 2000 = 0.25

- 신뢰도 계산

▶ 모든 연관성 규칙에 대한 신뢰도

규칙		P(A*B)	P(A)	신뢰도
A	В	25	45	0.556
В	A	25	42.5	0.588
С	В	15	40	0.375
В	С	15	42.5	0.353
A	С	25	45	0.556

규칙	P(A*B)	P(A)	신뢰도
C A	20	40	0.500
(A+B) C	5	25	0.200
(B+C) A	5	15	0.333
(A+C) B	5	20	0.250

A, then B의 신뢰도 = P(A^B) / P(A) = 0.25 / 0.45 = 0.556 (B + C), then A의 신뢰도 = P(B^C^A) / P(B^C) = 0.05 / 0.15 = 0.333

● 향상도(Lift)

✓ 지지도와 신뢰도의 한계

- If (B + C), then A의 신뢰도는 0.333이다. 하지만 이 규칙은 유용하지 못한데, 전체 거래에 서 A가 일어날 확률(즉 조건 자체가 없더라도 A를 구매할 확률)_)이 0.45로 더 크기 때문이다.
- 이처럼 연관성 규칙의 유의미성을 파악하려면 해당 규칙이 조건이 없을 때에 비해 얼마
 나 향상시킬 수 있는지를 측정해야 한다.

√ 향상도

- If A, then B 규칙의 향상도 = P(B | A) / P(B)
- 향상도가 클수록, 품목 A의 구매 여부가 품목 B의 구매 여부에 큰 영향을 미치게 된다.

- 향상도가 1이면, P(B | A) = P(B), 즉 A의 구매 여부가 B의 구매여부에 영향을 전혀 미치지 않는다는 뜻이다.
- 따라서 향상도가 1보다 큰 값을 가지는 규칙만이 유의미하다.

향상도	의미
1	두 품목이 독립적인 관계
< 1	두 품목이 서로 음의 상관 관계
> 1	두 품목이 서로 양의 상관 관계