Verification of Neural Network Controllers: Inverted Pendulum Benchmark and Extension to Tethered Delivery

Calum A

16/9/2025

1 Overview & Scope

This coursework project explores the safe control of autonomous systems with neural network (NN) components. I propose to begin with the inverted pendulum benchmark outlined in the ARCH-COMP document, then extend the same verification workflow to a novel cyber-physical system: drone winched delivery.

Aerial winched delivery - pioneered by companies like Zipline¹ - uses an UAV (drone) to lower packages on a tether via a motorised winch. While efficient, this introduces risks such as payload swing, slack or broken tether, winch overload, and collisions with the environment.

To study this, we model a stationary UAV acting as an anchor point, with the plant consisting of the winch, tether, and payload. The controller commands winch rate to follow a descent profile while suppressing swing under wind disturbances. We then verify both NN properties (e.g. bounded outputs, robustness) and closed-loop safety of the overall system over a finite horizon.

2 Approach

Phase A: Inverted Pendulum Benchmark

We first reproduce the classical inverted pendulum benchmark used in ARCH-COMP:

¹www.zipline.com/technology

- Dynamics: pendulum of mass m and length L, actuated by torque T, with viscous friction c.
- Equations:

$$\ddot{\theta} = \frac{g}{L}\sin\theta + \frac{1}{mL^2}T - c\dot{\theta},$$

where θ is the angle relative to the upward vertical.

• State-space form: $x_1 = \theta$, $x_2 = \dot{\theta}$,

$$\dot{x}_1 = x_2, \quad \dot{x}_2 = \frac{g}{L}\sin x_1 + \frac{1}{mL^2}(T - cx_2).$$

- Controllers trained using behaviour cloning.
- Typical parameters: $m = 0.5, L = 0.5, c = 0, g = 1, \Delta t = 0.05$.
- Initial set: $x \in [1.0, 1.2] \times [0.0, 0.2]$.
- Specification: $\forall t \in [0.5, 1] : \theta \in [0, 1]$.

This system provides a minimal but non-trivial case for:

- NN property verification (bounded output, robustness, monotonicity) using tools such as Vehicle/Marabou.
- Closed-loop reachability analysis using CORA, to check angle envelopes and actuation safety.

Phase B: Extension to Tethered Delivery

Having validated the workflow on the inverted pendulum, we extend the same verification pipeline to a winched payload (tethered delivery) system:

- Plant: stationary UAV (anchor point) + winch + tether + payload.
- States: $x = [L, \dot{L}, \phi, \dot{\phi}]^{\top}$, where L is tether length and ϕ swing angle.
- Dynamics: variable-length pendulum, with actuator model $\dot{L} = u$ or $\tau_w \ddot{L} + \dot{L} = u$.
- Safety properties: bounded swing angle, no slack/overload in tension, safe tracking of descent profile.
- Verification: NN-level properties in Vehicle/Marabou; closed-loop reachability in CORA over finite horizon.

This two-phase approach balances tractability with novelty: we first obtain reproducible results on a known benchmark, then demonstrate how the same methods transfer to a safety-critical real-world inspired system.

3 Assumptions (Tethered Delivery)

- Anchor point fixed in space (UAV holds position).
- Planar motion in vertical plane; small-angle linearisation used for verification.
- Bounded lateral disturbance $a_w(t)$ (wind proxy).
- Inputs/outputs normalised for NN training and verification.
- Winch tracks commanded rate within limits.

4 States, Inputs, Outputs (Tethered Delivery)

States:

$$x = [L, \dot{L}, \phi, \dot{\phi}]^{\top}$$

• L (m): tether length

• \dot{L} (m/s): tether length rate

• ϕ (rad): swing angle (0 = vertical down)

• $\dot{\phi}$ (rad/s): angular rate

Input (control): u, winch rate command (m/s), after governor: $|u| \leq u_{\text{max}}$. i.e. actual input seen by the winch is not the raw neural network output, but the corrected version that has passed through a governor layer.

Disturbance: $a_w(t)$ (m/s²), lateral acceleration proxy, $|a_w| \le a_{\text{max}}$.

Outputs of interest:

- Tether tension T (N)
- Pod position $x = L \sin \phi$, $z = L \cos \phi$

5 Dynamics

Viscous terms: c_{ϕ} (about pivot), c_L (line); mass m, gravity g.

Angular Equation of Motion²

$$L\ddot{\phi} + 2\dot{L}\dot{\phi} + \frac{c_{\phi}}{mL}\dot{\phi} + g\sin\phi = a_w(t)\cos\phi$$

Length / tension relation

$$\ddot{L} - L\dot{\phi}^2 + \frac{c_L}{m}\dot{L} - g\cos\phi = -\frac{T}{m} + a_w(t)\sin phi$$

$$\Rightarrow T = m\left(-\ddot{L} + L\dot{\phi}^2 + g\cos\phi - a_w(t)\sin\phi\right) - c_L\dot{L}$$

Actuator model (choose for verification)

- Kinematic winch (simplest): $\dot{L} = u$ (rate-limited & saturated).
- First-order (optional): $\tau_w \ddot{L} + \dot{L} = u$.

Small-angle linearisation

Assuming small angles we can linearise the equation of motion to make it friendlier for verification.

$$\sin \phi \approx \phi$$
, $\cos \phi \approx 1 \quad \Rightarrow \quad L\ddot{\phi} + 2\dot{L}\dot{\phi} + \frac{c_{\phi}}{m}\dot{\phi} + g\phi = a_w(t)$

6 Controller Stack

- NN policy f_{θ} : tiny multilayer perceptron (MLP), inputs $[\phi, \dot{\phi}, L, \dot{L}]$ (normalised), output $u_{\text{NN}} \in [-u_{\text{max}}, u_{\text{max}}]$.
- Command governor: saturate/rate-limit; blend with baseline swing-damping u_{PID} if desired; track $L_{\text{ref}}(t)$.
- Runtime assurance (shield): override/clip to maintain $T \in [T_{\min}, T_{\max}], |\phi| \le \phi_{\max}, |u| \le u_{\max}.$

7 Operating Ranges (example numbers)

- m = 2.0 kg, q = 9.81
- $c_{\phi} = 0.3 \text{ N} \cdot \text{m} \cdot \text{s}, c_L = 5 \text{ N} \cdot \text{s/m}$

²I derived the equations of motion below using the Euler-Lagrange approach, v happy for someone to sense check my work!!

- $u_{\text{max}} = 0.6 \text{ m/s}, |\dot{u}| \le 1.0 \text{ m/s}^2$
- $T_{\min} = 5 \text{ N (no slack)}, T_{\max} = 400 \text{ N}$
- $\phi_{\rm max} = 10^{\circ} \approx 0.1745 \text{ rad}$
- Disturbance $a_w \in [-0.5, 0.5] \text{ m/s}^2$
- Descent profile $L_{\text{ref}}(t)$: 10 \rightarrow 12 m over 8 s (0.25 m/s nominal)

8 Initial & Disturbance Sets (for CORA)

$$\mathcal{X}_0: L \in [10, 12] \text{ m}, \dot{L} = 0, \phi \in [-5^{\circ}, 5^{\circ}], \dot{\phi} \in [-5^{\circ}/\text{s}, 5^{\circ}/\text{s}]$$

 $a_w(t)$ piecewise-constant per step within bounds.

9 Verification Properties

A) Stand-alone NN (Vehicle/Marabou)

- Bounded output: $\forall x \in \mathcal{X} : u_{\min} \leq f_{\theta}(x) \leq u_{\max}$.
- Robustness (ϵ -ball): $\forall x^*, \forall x : \|x x^*\|_{\infty} \le \epsilon \Rightarrow |f_{\theta}(x) f_{\theta}(x^*)| \le \delta$. Or Lipschitz: $|f_{\theta}(x) - f_{\theta}(x^*)| \le L\|x - x^*\|_{\infty}$.
- Anti-slack rule: if $T(x) \leq T_{\text{low}}$ and $|\phi| \geq \phi_g$, then $f_{\theta}(x) \leq 0$ (no payout).
- Rate moderation (optional): if $|\phi|$ increases then $|f_{\theta}(x)|$ does not increase beyond a bound.

B) Closed-loop CPS (CORA, finite horizon $T_h = 5-10 \text{ s}$)

- Swing envelope: $|\phi(t)| \le \phi_{\text{max}}$ for all $t \in [0, T_h]$.
- No slack / overload: $T_{\min} \leq T(t) \leq T_{\max}$.
- Profile tracking: $|L(t) L_{ref}(t)| \leq \Delta L_{max}$ (e.g., 0.5 m).
- Horizontal corridor: $|x(t)| = |L\sin\phi| \le x_{\text{max}}$ (e.g., 1.0 m).
- Ground clearance: $z(t) = -L\cos\phi \ge z_{\min}$ until touchdown.