

RNN - Рекуррентные нейронные сети

Преподаватель: Герард Костин

Зачем нужны RNN

Пример использования

Как проблему бронирования сетью Feedforward?

На входе: слово

(Каждое слово представлено в

виде вектора)

Taipei

Bag-of-word

Как представить слово в виде вектора?

vocab = {apple, bag, cat, dog, elephant}

вектор - это размер словаря.

Каждое измерение соответствует слову в vocab.

Размерность слова - 1, остальные - 0.

bag =
$$[0 \ 1 \ 0 \ 0]$$

cat =
$$[0 \ 0 \ 1 \ 0 \ 0]$$

$$dog = [0 \ 0 \ 0 \ 1 \ 0]$$

elephant =
$$[0 \ 0 \ 0 \ 1]$$

Другие методы

Dimension for "Other"

Word hashing

Пример **использования**

Как проблему бронирования сетью Feedforward?

На входе: слово

(Каждое слово представлено в

виде вектора)

На Выходе:

Распределение

вероятности того, что

входное слово

принадлежит искомому

Taipei

классу

Example Application

time of departure

Recurrent Neural Network (RNN)

RNN

Одна и та же сеть используется снова и снова.

Вероятность "arrive" Вероятность "Taipei" і Вероятность "on"

RNN может быть глубокой ...

Elman Network & Jordan Network

Bidirectional RNN

Обучение

К сожалению

• RNN сети очень сложно учить На реальных примерах

Сложная поверхность ошибки

Пропадающий градиент/ Взрыв Градиента

Many to Many (Output is shorter)

$$\frac{\partial h_t}{\partial \mathbf{h}_k} = \prod_{t \geq i > k} \frac{\partial h_i}{\partial h_{i-1}} = \prod_{t \geq i > k} \mathbf{W}_{hh}^T diag[g'(h_{i-1})]$$

$$\left\| \frac{\partial h_i}{\partial h_{i-1}} \right\| \leq \left\| \mathbf{W}_{hh}^T \right\| \left\| diag(g'(h_{i-1})) \right\|$$
Largest Singular value of W_{hh}

 $\gamma_W \gamma_g =$ an upper bound for the norm of jacobian!

$$\left\| \frac{\partial h_3}{\partial h_k} \right\| \leq \left(\gamma_W \gamma_g \right)^{t-k}$$

Достаточное условие для исчезающего градиента $\gamma\gamma WW\gamma\gamma gg$ < 1 и (t-k) -> ∞ то долгосрочные вклады уходят в 0 экспоненциально быстро с t-k (метод степенной итерации). Следовательно, достаточное условие возникновения исчезающего градиента: : $\gamma\gamma WW$ < $1/\gamma\gamma gg$ i.e. for sigmoid, $\gamma\gamma WW$ < 4 i.e., for tanh,

Необходимое условие для взрывающегося градиента $\gamma\gamma WW\gamma\gamma gg>1$ и (t-k) - > ∞ то долгосрочные вклады уходят в бесконечность экспоненциально быстро с t-k (метод степенной итерации). Следовательно, достаточное условие возникновения исчезающего градиента: : $\gamma\gamma WW<1/\gamma\gamma gg \text{ i.e. for sigmoid, } \gamma\gamma WW<4 \text{ i.e., for tanh,}$

Many to one

Вход - это векторная последовательность, а на выходе - только одно значе

Many to Many (Output is shorter)

• И вход, и выход - это последовательности, но выход короче.

• Распознавание речи

(character sequence)

В белом плаще с кровавым

подбоем, шаркающей

Output: походкой...

Input: