Mona Albarqi, Albatool Moathen

Final Report

Introduction

The goal of this project was to analyze factors influencing individual happiness and develop a predictive model to estimate happiness levels using socio-demographic and lifestyle variables. By leveraging a dataset with features such as income, health, and social contact, the project aimed to answer: What are the primary predictors of happiness, and how accurately can these levels be predicted?

This report documents the methodology, analysis, and findings, including key insights and challenges encountered.

Data

Dataset Description

- The dataset contains 6000 rows and 11 columns, representing socio-demographic and lifestyle information.
- The target variable is HAPPINESS, a categorical variable with three levels: "Very Happy," "Pretty Happy," and "Not Too Happy."
- Predictors include:
 - o Numeric Features: AGE, INCOME, EDUCATION, SOCIAL_CONTACT.
 - Categorical Features: MARITAL_STATUS, GENDER, EMPLOYMENT_STATUS, HEALTH, RELIGION, POLITICAL VIEWS.

Data Preprocessing

1. Handling Missing Values:

- Numeric columns were imputed using mean values.
- o Categorical columns were imputed using mode values.

2. Encoding Categorical Variables:

 Label encoding was applied to transform non-numeric features into numeric values.

3. Feature Scaling:

 Numeric features were standardized using StandardScaler to ensure compatibility with the models.

4. Exploratory Data Analysis:

- Distributions of numeric variables were visualized.
- o Correlation analysis revealed relationships between predictors.

Methodology

Models

1. Logistic Regression:

o A baseline classification model for its simplicity and interpretability.

2. Random Forest Classifier:

 An ensemble model selected for its ability to handle non-linear relationships and provide feature importance.

Evaluation Metrics

- Accuracy: Proportion of correctly classified instances.
- Precision, Recall, F1-Score: Evaluated for each class to measure predictive quality.
- Confusion Matrix: Visualized true vs. predicted classifications.

Train-Test Split

• Data was split into training (80%) and testing (20%) subsets.

Results

Model Performance

- Logistic Regression:
 - o Accuracy: 0.68
 - Classification Report: Precision, Recall, and F1-scores were moderate across classes.

Random Forest Classifier:

- o Accuracy: 0.74
- Classification Report: Higher scores compared to Logistic Regression, particularly for minority classes.

Feature Importance

- Top predictors of happiness (Random Forest):
 - 1. INCOME
 - 2. HEALTH
 - 3. SOCIAL_CONTACT
- These results suggest that financial stability, physical well-being, and social engagement significantly influence happiness levels.

Visualizations

 Confusion matrices and feature importance plots highlighted key insights and model performance.

Discussion

Key Findings

- Random Forest outperformed Logistic Regression in both accuracy and handling class imbalances.
- INCOME, HEALTH, and SOCIAL_CONTACT emerged as the most influential predictors of happiness.

Practical Implications

- Policies aimed at improving income levels and healthcare access could significantly enhance societal happiness.
- Encouraging social interactions and community engagement also appears vital.

Limitations

- The dataset was synthetic and may not fully capture real-world complexities.
- Missing values were imputed, which might introduce bias.
- Further analysis with a more diverse dataset is recommended.

Conclusion

This project successfully identified key drivers of happiness and demonstrated the utility of machine learning in socio-demographic analyses. While Random Forest proved to be the superior model, future work should focus on refining data collection and exploring additional predictors.

References

- General Social Survey (GSS): gss.norc.org
- Scikit-learn Documentation: <u>scikit-learn.org</u>