Generic Properties Of Groups

Marcin Petrykowski

September 22, 2022

Contents

1	Prel	iminaries	1
2 Weak generic types		nk generic types	2
		Introduction	
	2.2	Basic properties of weak generic sets and types	2
	2.3	Characterizations of weak genericity	5
	2.4	Stationary	10
3 Problems		11	

1 Preliminaries

If $p(\bar{x})$ is a type over A, then we call the set of realizations of p in M

$$p(M^n) = \{\bar{a} \in M^n : (\forall \varphi(\bar{x}) \in p(\bar{x}))M \vDash \varphi(\bar{a})\} \vDash \bigcap_{\varphi(\bar{x}) \in p(\bar{x})} \varphi(M^n)$$

type definable over A. If V is a 0-type-definable subset of M^n , then we sometimes identify V with the set

$$[V] = \{\operatorname{tp}(\bar{a}): \bar{a} \in V\} \subseteq S_n(\emptyset)$$

A first order structure M is κ -saturated if for any $A\subseteq M$ with $|A|<\kappa$, $n<\omega$ and $p\in S_n(A)$, p has a realization in M.

A group (G,\cdot) is definable in a structure M is G is a definable subset of M^n for some $n<\omega$ and the group action $\cdot:G\times G\to G$ is a definable function in M. If p(x) is a type over G and $g\in G$, then

$$g\cdot p(x)=\{g\cdot \varphi(x):\varphi(x)\in p(x)\}=\{\varphi(g^{-1}\cdot x):\varphi(x)\in p(x)\}$$

A group (G, \cdot) is definable in a structure M if G is a definable

An infinite totally ordered first order structure (M, <, ...) is **o-minimal** if every definable subset of M is a union of finitely many intervals and points.

Let $(M,<,\dots)$ be an o-minimal structure. We usually say "ultimately" instead of "for all sufficiently large $a\in M$ ". We denote an open interval with endpoints a and b by (a,b) and a closed one by [a,b]. In contrast, $\langle a,b\rangle$ denotes the pair of elements a and b.

If $a\in M\cup\{-\infty\}$, $b\in M\cup\{+\infty\}$, a< b and $f:(a,b)\to M$ is a definable function, then there are $a=a_1<\dots< a_n=b$ s.t. each interval (a_i,a_{i+1}) of f is either constant or strictly monotone and continuous in the order topology. In particular, every definable function $f:M\to M$ is ultimately continuous and monotone

2 Weak generic types

2.1 Introduction

Definition 2.1. A set $X \subseteq G$ is (**left**) **generic** if some finitely many left G-translates of X cover G. We say that a formula $\varphi(x)$ is (**left**) **generic** if the set $\varphi(G)$ of elements of G realizing φ is (**left**) **generic**. Finally, we say that a type p(x) of elements of G is (**left**) **generic** if every formula $\varphi(x)$ with $p(x) \vdash \varphi(x)$ is (**left**) **generic**

In the stable case left generic = right generic

and each partial generic type extends to a complete generic type (since type is definable)

Definition 2.2. A set $A \subseteq G$ is **weak generic**, if for some non-generic $B \subseteq G$ we have that $A \cup B$ is generic. A formula $\varphi(x)$ is **weak generic** if the set $\varphi(G)$ is weak generic. A type p(x) of elements of G is weak generic if every formula $\varphi(x)$ with $p(x) \vdash \varphi(x)$ is weak generic

2.2 Basic properties of weak generic sets and types

Lemma 2.3. Assume that G is a group and X is a definable subset of G. TFAE

- 1. the set X is weak generic
- 2. for some finitely many elements $a_1,\dots,a_n\in G$ the set $G\setminus\bigcup_{i=1}^n a_i\cdot X$ is not generic
- 3. for some definable non-generic set $Y \subseteq G$ the set $X \cup Y$ is generic

Proof. $1 \Rightarrow 2$: Assume X is weak generic, then there is non-generic set $Y \subseteq G$ s.t. $X \cup Y$ is generic. Then there are $a_1, \dots, a_n \in G$ s.t.

$$\bigcup_{i=1}^n a_i \cdot (X \cup Y) = \bigcup_{i=1}^n a_i \cdot X \cup \bigcup_{i=1}^n a_i \cdot Y = G$$

This means that

$$G \smallsetminus \bigcup_{i=1}^n a_i \cdot X \subseteq \bigcup_{i=1}^n a_i \cdot Y$$

 $2\Rightarrow 3$: Let $Y=G\smallsetminus\bigcup_{i=1}^n a_i\cdot X$. Then Y is definable and not generic so putting $a_{n+1}=e$. Then $G=\bigcup_{i=1}^{n+1} a_i\cdot (X\cup Y)$

Lemma 2.4. 1. If $X,Y\subseteq G$ are not weak generic, then $X\cup Y$ is not weak generic

2. If p(x) is a (partial) weak generic type over $A \subseteq G$, then p(x) may be extended to a complete weak generic type over A

Proof. 1. Let $Z \subseteq G$ be non-generic. Y is not weak generic so $Y \cup Z$ is not generic, so $Y \cup Z \cup X$ is not generic

2. non weak generics form an ideal

Let $q(x) = \{\varphi(x) \in L(A) : p(x) \cup \{\neg \varphi(x)\}\$ is not weak generic $\}$. Then $p \subseteq q$. We shall show that q is a consistent partial type over A. If not, then

$$G \vDash \neg \exists x \bigwedge_{k=1}^{n} \varphi_k(x)$$

for some $n<\omega$ and $\varphi_1,\ldots,\varphi_n\in q$. By compactness, for each $k\in\{1,\ldots,n\}$ we can find a finite set of formulas $p_k\subseteq p$ s.t. the type $p_k(x)\cup\{\neg\varphi_k(x)\}$ is not weak generic. Let $\psi(x)=\bigwedge\{p_k(x):1\leq k\leq n\}$ and note that for every $k\in\{1,\ldots,n\}$ the set $\psi(G)\cap\neg\varphi_k(G)$ is not weak generic. By 1, neither is the union

$$\bigcup_{k=1}^n (\psi(G) \cap \neg \varphi_k(G)) = \psi(G) \cap \bigcup_{k=1}^n \neg \varphi_k(G) = \psi(G) \cap G = \psi(G)$$

contradicting the fact that $p(x) \vdash \psi(x)$. Finally we take any $r(x) \in S(A)$ with $r \supseteq q$ and the proof is complete

We see that (complete) weak generic types exist. By Lemma 2.4, the set

$$WGEN(A) = \{ p \in S(A) : p \text{ is weak generic} \}$$

is closed and non-empty in S(A)

Lemma 2.5. Assume G is a group and $A \subseteq G$

- 1. If some weak generic type $p(x) \in S(G)$ is generic, then all weak generic types $q(x) \in S(A)$ are generic
- 2. If for every $p, q \in WGEN(G)$ there is $g \in G$ s.t. $g \cdot p = q$, then all weak generic types $q(x) \in S(A)$ are generic
- 3. If there is just one weak generic type in S(A), then it is generic
- *Proof.* 1. Suppose that some weak generic type $q(x) \in S(A)$ is not generic. Then some definable generic set $X \subseteq G$ may be divided into two non-generic definable sets X_1, X_2 . Since X is generic, some left G-translates X' of X belongs to p(x). Then the corresponding translates X'_1, X'_2 of X_1, X_2 are also non-generic and one of them belongs to p(x). Hence p(x) is not generic, a contradiction
 - 2. If not, then we can find a formula $\varphi(x) \in L(A)$ which is weak generic but not generic. Note that $\{\neg g \cdot \varphi(x) : g \in G\}$ is a partial weak generic type over G: for each $m < \omega$ and $g_1, \ldots, g_m \in G$, the set $\bigcup_{i=1}^m g_i \cdot \varphi(G)$ is not generic, which implies that the set $\bigcap_{i=1}^m (G \setminus g_i \cdot \varphi(G))$ is weak generic. Extend the type $\{\neg g \cdot \varphi(x) : g \in G\}$ to some $q(x) \in WGEN(G)$. Next extend $\varphi(x)$ to $p(x) \in WGEN(G)$. Then $\forall g \in G \ g \cdot p \neq q$, a contradiction

3. by 2, immediately

By Lemma 2.5 (1), in the stable case weak generic = generic

As an example note that if $G=(G,<,+,\dots)$ is o-minimal, then there are exactly two complete weak generic types, corresponding to $-\infty$ and $+\infty$, and they are not generic

Lemma 2.6. Assume that $G \prec H$ and $\varphi(x) \in L(G)$

- 1. If $\varphi(G)$ is weak generic in G, then $\varphi(H)$ is weak generic in H
- 2. If G is \aleph_0 -saturated and $\varphi(H)$ is weak generic in H, then $\varphi(G)$ is weak generic in G

- *Proof.* 1. There is a non-generic formula $\psi(x) \in L(G)$ s.t. $\varphi(G) \cup \psi(G)$ is generic in G, therefore $\psi(H)$ is not generic in H and $\varphi(H) \cup \psi(H)$ is generic in H. Thus $\varphi(H)$ is weak generic in H
 - 2. There is a formula $\psi(x) \in L(H)$ s.t. $\psi(H)$ is not generic in H and $\varphi(H) \cup \psi(H)$ is generic in H. We have that $\psi(x) = \psi(x,b)$ where $b \subset H$. Let $A \subseteq G$ be a finite set containing all parameters of $\varphi(x)$. By \aleph_0 -saturation of G, we are able to find in G a tuple $a \subset G$ s.t. $\operatorname{tp}(a/A) = \operatorname{tp}(b/A)$. Then $\psi(x,a) \in L(G)$ has properties needed to deduce the weak genericity of the set $\varphi(G)$ in G. Namely $\psi(G,a)$ is not generic in G and $\varphi(G) \cup \psi(G,a)$ is generic in G. If $\psi(G,a)$ is generic in G, then for some $0 < n < \omega$ we have that

$$G \vDash \exists x_1, \dots, x_n \forall y \exists z (\psi(z,a) \land \bigvee_{k=1}^n y = x_k \cdot z)$$

and the same holds in H since $G \prec H$, which would lead to a contradiction

All lemmas in this section remain true if we consider a group (G,\cdot) definable in a first order structure M. Then G is a definable subset of M^n for some $n<\omega$ and for every $A\subseteq M$ we define the set WGEN(A) of complete weak generic types over A as the set

$$\{p \in S_n(A): \forall \varphi(x_1,\dots,x_n) \in p, G \cap \varphi(M^n) \text{ is weak generic in } G\}$$

2.3 Characterizations of weak genericity

Proposition 2.7. Assume G is a definable group in an o-minimal structure M and X is a definable weak generic subset of G. Then dim(X) = dim(G)

Proof. Suppose $\dim(X) < \dim(G)$. Take a generic set A and a non-generic set B s.t. $A = B \cup X$ (where A and B are definable subsets of G, apply Lemma 2.3) Choose a finite $S \subseteq G$ with $S \cdot A = G$. Then $G \setminus (S \cdot B) \subseteq S \cdot X$ and

$$\dim(G \smallsetminus (S \cdot B)) \leq \dim(S \cdot X) = \dim(X) < \dim(G)$$

Hence the set $S \cdot B$ is large in the sense

Assume G is a group and $X,Y\subseteq G$. We say that the set X is **translation disjoint** from the set Y if for some $a\in G$, $a\cdot X\cap Y=\emptyset$

Lemma 2.8. Assume G is a group and X is a weak generic subset of G. Then for some finite $A \subseteq G$ there is no finite covering of X by sets that are translation disjoint from $A \cdot X$

Proof. take $Y \supseteq X$ generic and $Y \setminus X$ not generic. We have that $G = A \cdot Y$ for some finite $A \subseteq G$. We shall prove that A meets conditions of the lemma.

Suppose for some $X_0,\ldots,X_{n-1}\subseteq G$ and $a_0,\ldots,a_{n-1}\in G$ we have that

$$X = \bigcup_{i < n} X_i \text{ and } \bigwedge_{i < n} (a_i \cdot X_i) \cap (A \cdot X) = \emptyset$$

Then for each i < n, $a_i \cdot X_i \subseteq G \setminus A \cdot X \subseteq A \cdot (Y \setminus X)$. So for each i < n, $X_i \subseteq a_i^{-1} \cdot A \cdot (Y \setminus X)$, which implies that $X \subseteq \{a_0^{-1}, \dots, a_{n-1}^{-1}\} \cdot A \cdot (Y \setminus X)$ and finally

$$G = A \cdot Y = A \cdot (Y \setminus X) \cup A \cdot X \subseteq (A \cup (A \cdot \{a_0^{-1}, \dots, a_{n-1}^{-1}\} \cdot A)) \cdot (Y \setminus X)$$

Then *G* is covered by finitely many things

Corollary 2.9. Assume G is a group and X is a weak generic subset of G. Then the set $X \cdot X^{-1}$ is generic in G

Proof. Take a finite $A \subseteq G$ as in Lemma 2.8. Then for each $a \in G$, $a \cdot X \cap A \cdot X \neq \emptyset$, which implies that $a \in A \cdot X \cdot X^{-1}$. So $G = A \cdot X \cdot X^{-1}$

From now on, let $(G,<,+,\dots)$ be an o-minimal expansion of an ordered group (G,<,+). Then the group G is commutative, divisible and torsion-free. By $(G^n,+)$ we mean the product of groups $(G,+)\times \dots \times (G,+)$ (n times). The ordering of G is dense since for every $a,b\in G$ with a< b we have that $a<\frac{a+b}{2}< b$

Theorem 2.10. Assume that (G, <, +, ...) is an o-minimal expansion of an ordered group (G, <, +), $0 < n < \omega$ and $\varphi(x_1, ..., x_n) \in L(G)$. TFAE

- 1. $\varphi(x_1,\ldots,x_n)$ is weak generic in $(G^n,+)$
- 2. $\neg \varphi(x_1, \dots, x_n)$ is not generic in $(G^n, +)$
- 3. the set $\varphi(G^n)$ contains arbitrarily large n-dimensional boxes

$$(\forall R > 0)(\exists a_1, \dots, a_n \in G)[a_1, a_1 + R] \times \dots \times [a_n, a_n + R] \subseteq \varphi(G^n)$$

Proof. $3\Rightarrow 2$: suppose there is $k<\omega$ and $\langle g_1^1,\dots,g_n^1\rangle,\dots,\langle g_1^k,\dots,g_n^k\rangle\in G^n$ we have that

$$G^n = \bigcup_{j=1}^k (\langle g_1^j, \dots, g_n^j \rangle + (G^n \smallsetminus \varphi(G^n))$$

Put $M=\max\{\left|g_i^j\right|:1\leq i\leq n,1\leq j\leq k\}$. Using 3 we are able to find $a_1,\dots,a_n\in G$ s.t.

$$[a_1-M,a_1+M]\times \cdots \times [a_n-M,a_n+M]\subseteq \varphi(G^m)$$

Then

$$\langle a_1,\dots,a_n\rangle\notin \bigcup_{j=1}^k(\langle g_1^j,\dots,g_n^j\rangle+(G^n\smallsetminus\varphi(G^n)))$$

a contradiction

 $2\Rightarrow 1$: since the set $G^n=\varphi(G^n)\cup (G^n\smallsetminus \varphi(G^n))$ is generic in $(G^n,+)$ and the set $G^n\smallsetminus \varphi(G^n)$ is not generic

 $1\Rightarrow 3$: W.L.O.G., $n\geq 2$. Using Lemma 2.4 (2) find $p(x_1,\dots,x_n)\in S_n(G)$ s.t. p is a weak generic type in $(G^n,+)$ and $\varphi\in p$. Extend G to a $|G|^+$ -saturated group $H\succ G$. Take $\langle a_1,\dots,a_n\rangle\in H^n$ realizing p and fix a positive $R\in G$. We shall show that the following condition holds

$$(\forall a \in H)(a_n \leq a \leq a_n + R \Rightarrow \operatorname{tp}(a/Ga_{< n}) = \operatorname{tp}(a_n/Ga_{< n})) \qquad (\star)$$

For the sake of contradiction assume that for some $a\in [a_n,a_n+R]_H$ the types $\operatorname{tp}(a/Ga_{< n})$ and $\operatorname{tp}(a_n/Ga_{< n})$ are distinct. By the o-minimality of H, we can find $b\in [a_n,a_n+R]_H$ with $b\in \operatorname{dcl}(Ga_{< n})$ (dense). Let $\psi(x_1,\dots,x_{n-1},y)\in L(G)$ be s.t. $H\models \psi(a_{< n},b)\wedge \exists !y\psi(a_{< n},y).$ As $b-R\leq a_n\leq b$, we have that $\chi\in p$ where

$$\chi(x_1,\ldots,x_n) = \exists ! y \psi(x_{< n},y) \wedge \forall y (\psi(y_{< n},y) \rightarrow (y-R \leq x_n \leq y))$$

Since $\chi \in p$, the set $\chi(G^n)$ is weak generic in $(G^n, +)$ We define $f: G^{n-1} \to G$ as:

$$f(c_{< n}) = \begin{cases} c_n - R & G \vDash \chi(\bar{c}) \\ 0 & \text{otherwise} \end{cases}$$

Take $\langle c_1,\dots,c_{n-1}\rangle\in G^{n-1}$. If there is $c_n\in G$ s.t. $G\vDash \chi(c_1,\dots,c_n)$, then there exists just one $d\in G$ with $G\vDash \psi(c_1,\dots,c_{n-1},d)$ and we put $f(c_1,\dots,c_{n-1})=$

d-R. Otherwise we put $f(c_1, \dots, c_{n-1}) = 0$. Then the function f is definable over G and we consider the following formula over G:

$$\delta(x_1,\ldots,x_n)=f(x_1,\ldots,x_{n-1})\leq x_n\leq f(x_1,\ldots,x_{n-1})+R$$

Since $\chi(G^n)\subseteq \delta(G^n)\subseteq G^n$, the set $\delta(G^n)$ is weak generic in $(G^n,+)$. Let $A\subseteq G^n$ be a finite set chosen for $\delta(G^n)$ as in Lemma 2.8. Consider an arbitrary $\langle h_1,\dots,h_{n-1}\rangle\in H^{n-1}$. Choose $M_{h\in\mathbb{R}}\in G$ s.t.

$$\{\langle h_1, \dots, h_n \rangle : f(h_{< n}) + M_{h_{< n}} \leq h_n \leq f(h_{< n}) + M_{h_{< n}} + R\} \cap (A + \delta(H^n)) = \emptyset$$

(exists since $\delta(H^n)$ is bounded and A is finite) If $\operatorname{tp}(h_{< n}/G) = \operatorname{tp}(h'_{< n}/G)$, then $M_{h_{< n}}$ is good also for $h'_{< n}$. By compactness, for each $q(x_1,\dots,x_{n-1}) \in S_{n-1}(G)$ we can find a formula $\varphi_q(x_1,\dots,x_{n-1}) \in L(G)$ and $M_q \in G$ s.t. for every $h_{< n} \in H^{n-1}$ with $H \vDash \varphi_q(h_{< n})$ we have

$$\{\langle h_1,\dots,h_n\rangle: f(h_{\leq n})+M_a\leq h_n\leq f(h_{\leq n})+M_a+R\}\cap (A+\delta(H^n))=\emptyset$$

Again by compactness, $S_{n-1}(G)=[\varphi_{q_1}]\cup\cdots\cup[\varphi_{q_k}]$ for some $k<\omega$ and $q_1,\ldots,q_k\in S_{n-1}(G)$. If not, then $\forall n\in\omega,G\vDash\bigwedge_{i=1}^n\neg\varphi_q i$, that is, $\{\neg\varphi_{q_i}:i\in\omega\}$ is consistent with G, then realized by H, which leads to a contradiction. For $i\in\{1,\ldots,k\}$ put $X_i=(\varphi_{q_i}(G^{n-1})\times G)\cap\delta(G^n)$ and $e_i=\langle 0,\ldots,0,M_{q_i}\rangle\in G^n$. Then $\delta(G^n)=X_1\cup\cdots\cup X_k$ and for every $i\in\{1,\ldots,k\}$ we have that $(e_i+X_i)\cap(A+\delta(G^n))=\emptyset$. This contradicts the choice of A and finishes the proof of (\star)

Corollary 2.11. Assume that (G, <, +, ...) is an o-minimal expansion of an ordered group (G, <, +), $0 < n, k < \omega$ and $\varphi(x_1, ..., x_n, y_1, ..., y_k) \in L$

- 1. there is $\psi_1(y_1, \dots, y_k)$ s.t. for every $\langle a_1, \dots, a_k \rangle \in G^k$ we have that $G \models \psi_1(a)$ iff $\varphi(G^n, a)$ is weak generic in $(G^n, +)$
- 2. There is $\psi_2(y_1, \dots, y_k)$ s.t. for every $\langle a_1, \dots, a_k \rangle \in G^k$ we have that $G \models \psi_2(a)$ iff $\varphi(G^n, a)$ is generic in $(G^n, +)$
- 3. there is a natural number N s.t. for every φ -definable $X \subseteq G^n$ the set X is generic in $(G^n, +)$ iff G^n may be covered by at most N left translates of X

Proof. 1. let $\psi_1(y_1, \dots, y_k)$ be

$$\forall r \exists z_1, \dots, z_n \forall x_1, \dots, x_n ((\bigwedge_{i=1}^n z_i \leq x_i \wedge x_i \leq z_i + r) \rightarrow \varphi(x_1, \dots, x_n, y_1, \dots, y_k))$$

3. Assume that n=1. Let $\psi_2(y_1,\ldots,y_k)$ be such as 2. Suppose for every $N<\omega$ we can find $\langle a_1,\ldots,a_k\rangle\in G^k$ s.t. the set $\varphi(G,a_1,\ldots,a_k)$ is generic in G but not N-generic. Then the set of formulas

$$\bigcup_{N<\omega}\{\psi_2(y_1,\ldots,y_k)\wedge \forall z_1,\ldots,z_N \exists t \forall x (\varphi(x,y_1,\ldots,y_k) \rightarrow \bigwedge_{i=1}^N t \neq z_i \cdot x)\}$$

is a type in variables y_1,\ldots,y_k and has a realization $\langle b_1,\ldots,b_k\rangle\in H^k$ in some \aleph_0 -saturated elementary extension H of G. Then we reach a contradiction as the set $\varphi(H,b_1,\ldots,b_k)$ is simultaneously generic and not generic in H

Corollary 2.12. Assume that (G, <, +, ...) is an o-minimal expansion of an ordered group (G, <, +), $0 < n < \omega$, and $p(x_1, ..., x_n) \in S_n(G)$. TFAE

1. $p(x_1, ..., x_n)$ is weak generic in $(G^n, +)$

2.
$$\langle g_1, \ldots, g_n \rangle + p(x_1, \ldots, x_n) = p(x_1, \ldots, x_n)$$
 for every $\langle g_1, \ldots, g_n \rangle \in G^n$

Proof. $1 \Rightarrow 2$: suppose

$$\langle g_1, \dots, g_n \rangle + p(x_1, \dots, x_n) \neq p(x_1, \dots, x_n)$$

for some $\langle g_1,\dots,g_n\rangle\in G^n$. Then for some $\varphi(x_1,\dots,x_n)\in p(x_1,\dots,x_n)$ we have that $(\langle g_1,\dots,g_n\rangle+\varphi(G^n))\cap\varphi(G^n)=\emptyset$. $\varphi(G^n)$ is weak generic in $(G^n,+)$ and hence contains arbitrarily large boxes. Take any $R>\max(|g_1|,\dots,|g_n|)$ and choose $a_1,\dots,a_n\in G$ s.t.

$$B = [a_1, a_1 + R] \times \cdots \times [a_n, a_n + R] \subseteq \varphi(G^n)$$

we obtain

$$\emptyset \neq (\langle g_1, \dots, g_n \rangle + B) \cap B \subseteq (\langle g_1, \dots, g_n \rangle + \varphi(G^n)) \cap \varphi(G^n) = \emptyset$$

a contradiction

 $2\Rightarrow 1$: we shall prove a more general fact. Namely if G is a group and $p(x)\in S(G)$ is s.t. for every $g\in G$ we have that $g\cdot p=p$, then p is weak generic in G

If not, then we can find a formula $\varphi(x) \in p(x)$ which is not weak generic in G. Then $\neg \varphi(x)$ is generic in G so there are $m < \omega$ and $g_1, \ldots, g_m \in G$ s.t $G = \bigcup_{i=1}^m g_i(G \setminus \varphi(G))$. Thus $\bigcap_{i=1}^m g_i \cdot \varphi(G) = \emptyset$, which contradicts the fact that the formulas $g_1 \cdot \varphi, \ldots, g_m \cdot \varphi$ belong to the consistent type p(x)

2.4 Stationary

In this section we assume that $(G,<,+,\dots)$ is an o-minimal expansion of an ordered group (G,<,+)

Recall that in stable group all weak generic types are generic. Moreover, all of them are stationary over any model M. This means that every (weak) generic type $p \in S(M)$ has a unique extension to a (weak) generic type $q \in S(A)$ for each $A \supseteq M$

Definition 2.13. We call a weak generic type p over a set A **stationary** if for every $B \supseteq A$ the type p has just one extension to a complete weak generic type over B

In general weak generic types do not need to be stationary

Example 2.1. we shall prove that the types $p_1(x) = \{x < a : a \in G\}$ and $p_2(x) = \{x > a : a \in G\}$ are the only two weak generic types in (G, +) complete over G and that both of them are stationary

By the o-minimality of $(G,<,+,\dots)$, every definable subset of G is a union of finitely many points and intervals. For every $a,b\in G$ the interval (a,b) is not weak generic in (G,+) by Lemma 2.3 (2). Thus no type in $S_1(G)$ but p_1 and p_2 is weak generic in (G,+)

On the other hand, all intervals of the form $(-\infty,a)$ or $(b,+\infty)$ are weak generic in (G,+) since their complements in G are not generic in (G,+). This gives us the weak genericity of the types p_1 and p_2

If H is any elementary extension of G, then there are also two complete (over H) weak generic types in (H,+). This means that p_1 and p_2 are stationary

Definition 2.14. We call an o-minimal structure (M,<,...) stationary if for every elementary extension N of M and N-definable function $g:N\to N$ there exists an M-definable function $f:N\to N$ s.t. $g(x)\le f(x)$ for all sufficiently large $x\in N$

Theorem 2.15. Assume $(M,<,\dots)$ is a stationary o-minimal structure and N>M. For every N-definable map $g:N\to N$ with $\lim_{x\to +\infty}g(x)=+\infty$ we can find an M-definable map $f:N\to N$ s.t. $\lim_{x\to +\infty}f(x)=+\infty$ and $f(x)\leq g(x)$ for all sufficiently large $x\in N$

Proof. First of all, assume that g is a bijection. Then g^{-1} exists and by the stationary of $(M,<,\dots)$ we can find an M-definable function $f:N\to N$ s.t. ultimately $g^{-1}\le f$. We have that $\lim_{x\to +\infty}g^{-1}(x)=+\infty$, which implies that $\lim_{x\to +\infty}f(x)=+\infty$. Since f is M-definable, we can choose $a\in M$

s.t. f is strictly increasing on $(a,+\infty)$ (monotonicity theorem). We define a function $f_1:N\to N$ as follows

$$f_1(x) = \begin{cases} f(x) & x > a \\ f(a) + x - a & x \le a \end{cases}$$

Then f_1 is an M-definable bijection, hence f_1^{-1} exists and also is M-definable. Moreover, $\lim_{x\to+\infty}f_1^{-1}(x)=+\infty$ and ultimately $f_1^{-1}\leq g$ so f_1^{-1} has the desired properties

If g is not a bijection, then proceeding as above we can find an N-definable bijection $g_1:N\to N$ s.t. ultimately $g_1=g$

By the o-minimality of $(G,<,+,\dots)$, every definable subset of the set $G\times G$ is a union of finitely many cells of dimension 0,1,2. By Proposition 2.7, we are interested only in cells of dimension 2. They are of the form

$$C_{a,b}^{f,g} = \{ \langle x, y \rangle \in G \times G : a < x < b \land f(x) < y < g(x) \}$$

where $\{-\infty\} \cup G \ni a < b \in G \cup \{\infty\}$ and $f,g:(a,b \to G \cup \{-\infty,\infty\})$ are definable maps s.t. f(x) < g(x) for each $x \in (a,b)$. If $a,b \in G$, then the cell $C_{a,b}^{f,g}$ is not weak generic in $(G,+) \times (G,+)$ by Theorem 2.10

3 Problems

2.1 2.4