Module No: 03

Classification

Classification

- Classification is a form of data analysis that extracts models describing important data classes.
- Such models, called classifiers, predict categorical class labels
- E.g. we can build a classification model to categorize bank loan applications as either safe or risky
- A bank loans officer need to analysis from the data to learn which loan applicants are "safe" and which are "risky" for the bank to sanction loan

General Approach

- General approach of classification is divided into two-steps
- In the first step, we build a classification model based on previous data.
- In the second step, we determine if the model's accuracy is acceptable, and if so, we use the model to classify new data.

First Step

4

Second Step

General Approach

The data classification process:

(a) Learning:

- Training data are analyzed by a classification algorithm.
- Here, the class label attribute is *loan decision*, and the learned model or classifier is represented in the form of classification rules

(b) Classification:

- Test data are used to estimate the accuracy of the classification rules.
- If the accuracy is considered acceptable, the rules can be applied to the classification of new data tuples.

Decision Tree Induction

- Decision tree induction is the learning of decision trees from class-labeled training tuples.
- A decision tree is a flowchart-like tree structure, where each internal node (nonleaf node) denotes a test on an attribute
- Each branch represents an outcome of the test, and each leaf node (or terminal node) holds a class label.
- The topmost node in a tree is the root node.
- A typical decision tree is shown in Figure

A decision tree for the concept buys_computer, indicating whether an AllElectronics customer is likely to purchase a computer. Each internal (nonleaf) node represents a test on an attribute. Each leaf node represents a class (either buys_computer = yes or buys_computer = no).

Decision Tree Induction

"How are decision trees used for classification?"

- Given a tuple, X, for which the associated class label is unknown, the attribute values of the tuple are tested against the decision tree.
- A path is traced from the root to a leaf node, which holds the class prediction for that tuple.
- Decision trees can easily be converted to classification rules.

Rule Extraction from a Decision Tree

- Decision tree classifiers are a popular method of
- To extract rules from a decision tree, one rule is created for each path from the root to a leaf node.
- Each splitting criterion along a given path is logically ANDed to form the rule antecedent ("IF" part)
- The leaf node holds the class prediction, forming the rule consequent ("THEN" part)

-

Rule Extraction from a Decision Tree

The rules extracted from Figure 8.2 are as follows:

R1: IF age = youth	AND $student = no$	THEN buys_computer = no
R2: IF $age = youth$	AND $student = yes$	THEN buys_computer = yes
R3: IF age = middle_aged		THEN buys_computer = yes
R4: IF age = senior	AND credit_rating = excellent	THEN buys_computer = yes
R5: IF $age = senior$	AND credit_rating = fair	THEN buys_computer =1nlo

Q. Apply Decision tree algorithm on following dataset

Age	Income	Credit_rating	Sanction_loan
Senior	low	fair	no
middle_aged	high	excellent	yes
Senior	high	excellent	no
middle_aged	high	fair	yes
middle_aged	low	excellent	no
youth	high	excellent	yes
Senior	high	fair	no
youth	low	fair	yes
middle_aged	low	fair	no
youth	high	fair	yes

class attribute

P= N= class entrophy

$$= \frac{-P}{P+N} \log_2 \left(\frac{P}{P+N}\right) - \frac{N}{P+N} \log_2 \left(\frac{N}{P+N}\right)$$

			· ·
Age	Income	Credit_rating	Sanction_loan
Senior	low	fair	no
middle_aged	high	excellent	yes
Senior	high	excellent	no
middle_aged	high	fair	yes
middle_aged	low	excellent	no
youth	high	excellent	yes
Senior	high	fair	no
youth	low	fair	yes
middle_aged	low	fair	no
youth	high	fair	yes

class attribute

Consider ____ attribute and make a Table

	p _i	ni	$I(p_{i,n_i})$
p=	=	n=	-

Age	Income	Credit_rating	Sanction_loan
Senior	low	fair	no
middle_aged	high	excellent	yes
Senior	high	excellent	no
middle_aged	high	fair	yes
middle_aged	low	excellent	no
youth	high	excellent	yes
Senior	high	fair	no
youth	low	fair	yes
middle_aged	low	fair	no
youth	high	fair	yes

Information gain=

$$= \frac{-p}{p+n} \log_2\left(\frac{p}{p+n}\right) - \frac{n}{p+n} \log_2\left(\frac{n}{p+n}\right)$$

Entropy of _____attribute =
$$\sum \frac{p_i + n_i}{P+N} * I(p_i, n_i)$$

class attribute

	71				
Age	Income	Credit_rating	Sanction_loan		
Senior	low	fair	no		
middle_aged	high	excellent	yes		
Senior	high	excellent	no		
middle_aged	high	fair	yes		
middle_aged	low	excellent	no		
youth	high	excellent	yes		
Senior	high	fair	no		
youth	low	fair	yes		
middle_aged	low	fair	no		
youth	high	fair	yes		

ompetition

Yes

No

NO

Yes

Hge_

old

old

old

Profit

Down

Down

Down

Down

DOWN

UP

Up

Up

Up

UP

Type

SIW

5/0

HIW

5/0

Age: Down old mid $\times 3/10 = 0$ $T(old) = -\left[\frac{3}{3}\log_2(\frac{3}{3}) + \frac{9}{3}\log_2(\frac{9}{3})\right] = 0$ $I(mid) = -\left[\frac{2}{4}\log_2(\frac{2}{4}) + \frac{2}{4}\log_2(\frac{2}{4})\right] = 1 \times 4|10 = 0.4$ I (new) = -[\frac{9}{3}\log_2(\frac{9}{3})+\frac{3}{3}\log_2(\frac{3}{3})]=0 \times \frac{3}{10}=0 E(Age) = 0.4 I-9=-[= 1092(=) + = 1092(=)] $= -\left[0.5 \times \log_{2}^{2} + 0.5 \log_{2}^{2}\right]$ = $-[0.5 \times (-1 \log_2^2) + 0.5 \times (-1 \log_2^2)]$ = -[-0.5-0.5] = -[-1]

$$= -[-0.5 - 0.5] = -[-1]$$

$$= -[-0.5 - 0.5] = -[-1]$$

$$= -[-0.5 - 0.5] = -[-1]$$

$$= -[-0.5 - 0.5] = -[-1]$$

$$= -[-0.5 - 0.5] = -[-1]$$

$$= -[-0.5 - 0.5] = -[-1]$$

$$= -[-0.5 - 0.5] = -[-1]$$

4			
Age Old old old mid mid mid mid mid mid mid men men	Competition Yes No No Yes Yes No Yes No Yes	Type 5/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3	Profit Down Down Down Down Down Down Down Down
Gair	n (Age) -in (Competition n (Type) $G = 1$	n)→ C	,0)·124

Q. Apply Decision tree algorithm on following dataset

Class-Labeled Training Tuples from the AllElectronics Customer Database

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no 19

fair

excellent

yes

yes

low

medium

income	student	credit_rating	class
medium	no	fair	yes
low	yes	fair	yes
low	yes	excellent	no
medium	yes	fair	yes
medium	no	excellent	no

senior

income	student	credit_rating	class
high	no	fair	yes
low	yes	excellent	yes
medium	no	excellent	yes
high	yes	fair	yes

yes

yes

The attribute age has the highest information gain and therefore becomes the splitting attribute at the root node of the decision tree. Branches are grown for each outcome of age. The tuples are shown partitioned accordingly.