Computer Vision 3

Ş.l. dr. ing. Mihai DOGARIU

www.mdogariu.aimultimedialab.ro

Organizare

Ş.l. dr. ing. Mihai DOGARIU Email: mihai.dogariu@upb.ro

Web: www.mdogariu.aimutimedialab.ro

Materiale curs & laborator: https://github.com/MihaiDogariu/CV3

Punctaj:

- 50% colocviu laborator
- 50% examen final

minim 50% din total pentru promovare

Organizare

Bonusuri (facultative):

- quiz săptămânal:
 - în aceeași zi a săptămânii (de stabilit)
 - 2-3 întrebări, aprox. 1 min/întrebare
 - Clasament (Q1: +20 pct, Q2: +10 pct)

- prelegere la curs:
 - 5-10 minute la începutul fiecărui curs
 - stabilim tema împreună în avans
 - maxim 2 prelegeri, +10 pct/prelegere

Organizare

Pre-requisites:

- Python cunoștințe de bază
- Git/GitHub cunoștințe minime (https://github.com/git-guides)
- CV 1 & CV 2
- IC 1 & IC 2
- PyTorch reprezintă un avantaj

Structura cursului

- M1. Introducere
- M2. Fundamentele Învățării Adânci (Deep Learning Fundamentals)
- M3. Învățare Adâncă Supervizată (Supervised Deep Learning)
- M4. Învățare Adâncă Nesupervizată (Unsupervised Deep Learning)

M1. Introducere

- 1.1. Motivația
- 1.2. Scurt istoric
- 1.3. Aplicații existente
- 1.4. Utilitare

Identificarea nevoii

➤ Nevoia de automatizare a unor procese (de cele mai multe ori, redundante).

Capacitatea umană de lucru este limitată și supusă greșelilor, mai ales după un timp îndelungat de lucru (~6 ore).

➤ Creșterea raportului eficiență/cost.

Rezolvarea problemei

➤ Utilizarea "mașinilor" pentru a lucra în locul nostru.

Computer Vision 3, ş.l. Mihai DOGARIU

Rezolvarea problemei => alte probleme

➤ Cum înlocuim partea umană?

Inteligență artificială

➤ Cum evaluăm performanța unui astfel de sistem?

Metrici: mAP, accuracy, SSIM, RMSE etc.

Când decidem că s-a ajuns la inteligență artificială pură?

Test Turing, Test Feigenbaum, CAPTCHA, etc.

Testul Turing v1 (Imitation game)

- ≥ 2 persoane (M+F) scriu
 un bilet către arbitru
- ➤ M încearcă să convingă arbitrul că este F
- F încearcă să convingă arbitrul că este F
- Arbitrul trebuie să își dea seama cine este M și cine este F

Testul Turing v2

➤M este înlocuit de un calculator

Arbitrul trebuie să își dea seama cine este calculatorul și cine este F

Testul Feigenbaum

- ➤M este înlocuit de un calculator
- F este înlocuită de un expert în domeniu
- Calculatorul și expertul trebuie să rezolve aceeași sarcină de lucru
- Cine se descurcă mai bine?

AI, ML, DL, CV?

Artificial Intelligence (AI) = abilitatea unui calculator de a îndeplini sarcini pentru care este necesară inteligența (non-/umană).

Machine Learning (ML) = subdomeniu al Al în care sistemele sunt dezvoltate cu capacitatea de a învăța pe baza exemplelor întâlnite.

Deep Learning (DL) = subdomeniu al ML în care sistemele sunt dezvoltate pe modelul rețelei de neuroni a creierului uman.

Computer Vision (CV) = domeniu interdisciplinar în care calculatoarele sunt învățate să interpreteze la nivel înalt informația din imagini digitale.

Walter Pitts & Warren McCulloch – model matematic ce imită funcționalitatea unui neuron uman: neuron artificial.

19A3

Frank Rosenblatt – primul algoritm de clasificare binară supervizat bazat pe neuroni artificiali: perceptronul.

Neuron Artificial

3,951

Henry J. Kelley – primul model de propagare înapoi continuă: backpropagation.

Neuron Artificial

Stuart Dreyfus – model de propagare înapoi folosind regula înlănțuirii derivatelor: backpropagation with chain rule.

Neuron Artificial

Perceptronul

Backpropagation

Alexey Grigoryevich Ivakhnenko & Valentin Grigorevich Lapareprezentare ierarhică a unei rețele neuronale: primul perceptron multistrat (MLP).

Seppo Linnainmaa – implementează propagarea înapoi în cod.

Kunihiko Fukushima – prima rețea convoluțională: Neocognitron. Poate recunoaște litere.

John Hopfield – rețelele Hopfield, precursor al rețelelor recurente.

David Ackley, Geoffrey Hinton & Terrence Sejnowski – rețea neuronală recurentă stocastică: Boltzmann Machine.

David Rumelhart, Geoffrey Hinton and Ronald Williams – implementarea propagării înapoi în rețele neuronale. Milestone.

Paul Smolensky – o versiune nouă de Boltzmann Machine, cu restricții: Restricted Boltzmann Machine (RBM).

Yann LeCun – prima rețea neuronală convoluțională care poate recunoaște cifre scrise de mână rapid și cu acuratețe: LeNet. Milestone

Perceptronul
Backpropagation
Backprop w/ chain rule
MLP
Al winter
Coded backprop
Neocognitron
Hopfield net
Boltzmann Machine
Network backprop
RBM

1943/921/960/965/962/969/990/990/985/986/986/989

Neuron Artificial

Christopher Watkins – progrese în domeniul învățării consolidate: Q-Learning.

Sepp Hochreiter & Jürgen Schmidhuber – model de rețea neuronală recurentă revoluționar: Long Short-Term Memory (LSTM). Milestone.

Yann LeCun – bază de date pentru recunoașterea cifrelor scrise de mână: MNIST.

Andrew Ng – atrage atenția asupra utilizării plăcilor grafice (GPU) pentru antrenarea rețelelor neuronale.

Boltzmann Machine 3ackprop w/ chain Vetwork backprop Backpropagation Neuron Artificial Coded backprop Neocognitron Perceptronul Hopfield net Q-Learning Al winter MNIST LeNet LSTM RBM , 2986, 2989, 2989, 2991 2951 2960 2962 2965 2969 2910 2980 2982 2986

Fei-Fei Li – lansează cea mai populară (și exhaustivă la acel moment) bază de date de imagini: ImageNet.

Yoshua Bengio, Antoine Bordes & Xavier Glorot – propun o metodă pentru combaterea dispariției gradientului: Rectified Linear Unit (ReLU).

Alex Krizhevsky – propune un model de rețea neuronală convoluțională ce depășește categoric cel mai bun rezultat la acel moment: AlexNet. Milestone.

Ian Goodfellow – propune un model de rețea care poate sintetiza imagini realiste: Generative Adversarial Network (GAN). Milestone.

Kaiming He – prima rețea neuronală foarte adâncă (sute de straturi): ResNet. Milestone.

DeepMind – departamentul de AI al Google creează o rețea neuronală care bate cel mai bun jucător de Go al lumii: AlphaGo.

Yoshua Bengio, Geoffrey Hinton & Yann LeCun – Turing Award.

Alexey Dosovitskiy et al – o echipă a Google Brain adaptează arhitectura de tip Transformer pentru recunoașterea imaginilor – Visual Transformers (ViT).

Chat GPT – Open Al lansează cel mai performant chatbot.

John Hopfield și Geoffrey Hinton primesc premiul Nobel pentru fizică "for foundational discoveries and inventions that enable machine learning with artificial neural networks".

Explozia Deep Learning

Ce a dus la avansul exponențial al Deep Learning în ultima perioadă?

- 1. putere de calcul superioară (hardware) GPU
- 2. mult mai multe date disponibile => rezultate mai bune
- 3. framework-uri optimizate (software): Tensorflow, PyTorch, Caffe, MXNet etc.
- efort financiar şi atenţie din partea industriei: Facebook Al Research (FAIR), Google Deepmind, NVIDIA, Microsoft Research, AWS Deep Learning etc.

Exemple celebre

Şah: Deep Blue vs Gary Kasparov (1997)

Exemple celebre

Jeopardy: IBM Watson vs Brad Rutter & Ken Jennings (2011)

Exemple celebre

Go: Google AlphaGo vs

Lee Sedol (2016)

- 1. Clasificare de imagini
 - input: imagine
 - output: scor de apartenență la diferite clase

- 2. Recunoaștere de fețe (localizare + clasificare, un singur obiect)
 - input: imagine cu fața unei persoane
 - output: identitatea persoanei

- 3. Detecție automată de obiecte
 - input: imagine
 - output: [x1, x2, y1, y2, etichetă, scor] pentru fiecare obiect

- 4. Segmentare semantică
 - input: imagine
 - output: imagine cu o paletă redusă de culori

- 5. Restaurare de imagini denoising
 - input: imagine cu zgomot
 - output: imagine fără zgomot

10.10.2024

- 6. Restaurare de imagini inpainting
 - input: imagine cu zone lipsă
 - output: imagine completă

7. Transfer de stil

- input: imagine țintă + stil nou
- output: imagine cu noul stil

- 8. Generare de imagini
 - input: zgomot alb
 - output: imagine HD

Utilitare

Deep Learning Frameworks:

- ▶PyTorch Meta AI;
- ➤ Tensorflow Google;
- ➤ Keras Google, front-end pentru Tensorflow;
- ➤ MXNet Apache Software Foundation;
- ➤ DeepLearning4J (DL4J) Konduit;
- ➤ Caffe Berkeley Vision and Learning Center;
- ➤ Microsoft Cognitive Toolkit (CNTK) Microsoft;

obsolete

Bibliografie

- [1] https://machinelearningknowledge.ai/brief-history-of-deep-learning/, accesat octombrie 2022.
- [2] Turing, A. M., & Haugeland, J. (1950). Computing machinery and intelligence. The Turing Test: Verbal Behavior as the Hallmark of Intelligence, 29-56.
- [3] Feigenbaum, E. A. (2003). Some challenges and grand challenges for computational intelligence. Journal of the ACM (JACM), 50(1), 32-40.