VL IL

	10 s	steps	20 s	steps	50 steps	
Methods	Avg	Last	Avg	Last	Avg	Last
iCaRL (Rebuffi et al., 2017)	65.27	50.74	61.20	43.74	56.08	36.62
UCIR (Hou et al., 2019)	58.66	43.39	58.17	40.63	56.86	37.09
BiC (Wu et al., 2019)	68.80	53.54	66.48	47.02	62.09	41.04
RPSNet (Rajasegaran et al., 2019b)	68.60	57.05	-	-		-
WA (Zhao et al., 2020)	69.46	53.78	67.33	47.31	64.32	42.14
PODNet (Douillard et al., 2020)	58.03	41.05	53.97	35.02	51.19	32.99
DER (w/o P) (Yan et al., 2021)	75.36	65.22	74.09	62.48	72.41	59.08
DER (Yan et al., 2021)	74.64	64.35	73.98	62.55	72.05	59.76
DyTox (Douillard et al., 2022)	67.33	51.68	67.30	48.45	64.39	43.47
DyTox+ (Douillard et al., 2022)	74.10	62.34	71.62	57.43	68.90	51.09
Continual-CLIP	75.17	66.72	75.95	66.72	76.49	66.72

ImageNet100-B0 ImageNet1K ImageNet100-B50 **Methods** Last Avg Last Avg Avg Last iCaRL (Rebuffi et al., 2017) 38.40 22.70 UCIR (Hou et al., 2019) 68.09 57.30 WA (Zhao et al., 2020) 65.67 55.60 TPCIL (Tao et al., 2020) 74.81 66.91 PODNet (Douillard et al., 2020) 74.33 Simple-DER (Li et al., 2021b) 66.63 59.24 DER (w/o P) (Yan et al., 2021) 60.16 78.20 77.18 66.70 68.84 74.92 DER (Yan et al., 2021) 76.12 66.73 58.62 77.13 72.06 66.06 DyTox (Douillard et al., 2022) 73.96 62.20 DyTox+ (Douillard et al., 2022) 77.15 67.70 70.88 60.00 Continual-CLIP 85.00 75.42 75.51 67.71 79.69 75.42

$$\mathcal{L}_{ ext{dist_img}} = ext{CE}(oldsymbol{p}, \overline{oldsymbol{p}}) = -\sum_{j=1}^m oldsymbol{p}_j \cdot \log \overline{oldsymbol{p}}_j,$$

$$\mathcal{L} = \mathcal{L}_{ce} + \lambda \cdot (\mathcal{L}_{lwf_img} + \mathcal{L}_{lwf_txt}).$$

$$\hat{\theta}_t = \begin{cases} \theta_0 & t = 0\\ \frac{1}{t+1}\theta_t + \frac{t}{t+1} \cdot \hat{\theta}_{t-1} & \text{every I iterations} \end{cases}.$$

Preventing Zero-Shot Transfer Degradation in Continual Learning of Vision-Language Models

$$\mathbf{y}^t = \sum_{i=1}^{N_E} W_i^t \mathcal{E}_i(\mathbf{x}^t), \qquad W^t = Softmax(Topk(\mathcal{R}^t(\mathbf{c}^t))),$$

(b) The inference stage

$$d^t = ||\boldsymbol{f}_i^t - \boldsymbol{f}_o^t||^2,$$

	Method	Aircraft [49]	Caltech101 [21]	CIFAR100 [38]	DTD [9]	EuroSAT [25]	Flowers [54]	Food [4]	MNIST [13]	OxfordPet [58]	Cars [37]	SUN397 [69]	Average
CLIP	Zero-shot 5-shot Full Fine-tune	24.3 30.6	88.4 93.5	68.2 76.8	44.6 65.1	54.9 91.7	71.0 92.9	88.5 83.3	59.4 96.6	89.0 84.9	64.7 65.4	65.2 71.3	65.3 77.5
	5-shot Fine-tune Adapter	29.7	90.0	75.3	63.9	81.1	94.2	87.8	90.4	89.0	68.2	72.5	76.6
Transfer	Continual-FT		72.8	53.0	36.4	35.4	43.3	68.4	47.4	72.6	30.0	52.7	51.2
	LwF [42]		72.1	49.2	35.9	44.5	41.1	66.6	50.5	69.0	19.0	51.7	50.0
	LwF-VR [15]		82.2	62.5	40.1	40.1	56.3	80.0	60.9	77.6	40.5	60.8	60.1
	WiSE-FT [67]		77.6	60.0	41.3	39.4	53.0	76.6	58.1	75.5	37.3	58.2	57.7
	ZSCL [78]		<u>84.0</u>	<u>68.1</u>	44.8	<u>46.8</u>	<u>63.6</u>	<u>84.9</u>	<u>61.4</u>	<u>81.4</u>	<u>55.5</u>	<u>62.2</u>	<u>65.3</u>
	Ours		87.9	68.2	<u>44.1</u>	48.1	64.7	88.8	69.0	89.1	64.5	65.1	68.9 (+3.6)
	Continual-FT	28.1	86.4	59.1	52.8	55.8	62.0	70.2	64.7	75.5	35.0	54.0	58.5
	LwF [42]	23.5	77.4	43.5	41.7	43.5	52.2	54.6	63.4	68.0	21.3	52.6	49.2
Average	LwF-VR [15]	24.9	<u>89.1</u>	64.2	53.4	54.3	70.8	79.2	66.5	79.2	44.1	61.6	62.5
/er	WiSE-FT [67]	32.0	87.7	61.0	<u>55.8</u>	<u>68.1</u>	69.3	76.8	<u>71.5</u>	77.6	42.0	59.3	63.7
A	ZSCL [78]	28.2	88.6	<u>66.5</u>	53.5	56.3	<u>73.4</u>	<u>83.1</u>	56.4	<u>82.4</u>	<u>57.5</u>	<u>62.9</u>	<u>64.4</u>
	Ours	30.0	89.6	73.9	58.7	69.3	79.3	88.1	76.5	89.1	65.3	65.8	71.4(+7.0)
Last	Continual-FT	27.8	86.9	60.1	58.4	56.6	75.7	73.8	93.1	82.5	57.0	66.8	67.1
	LwF [42]	22.1	58.2	17.9	32.1	28.1	66.7	46.0	84.3	64.1	31.5	60.1	46.5
	LwF-VR [15]	22.9	89.8	59.3	57.1	57.6	79.2	78.3	77.7	83.6	60.1	69.8	66.9
	WiSE-FT [67]	30.8	88.9	59.6	<u>60.3</u>	80.9	81.7	77.1	94.9	83.2	62.8	70.0	<u>71.9</u>
	ZSCL [78]	26.8	88.5	<u>63.7</u>	55.7	60.2	82.1	<u>82.6</u>	58.6	<u>85.9</u>	<u>66.7</u>	<u>70.4</u>	67.4
	Ours	<u>30.1</u>	<u>89.3</u>	74.9	64.0	82.3	89.4	87.1	89.0	89.1	69.5	72.5	76.1(+4.2)

Figure 5. t-SNE on DDAS's output of each task on full-shot and few-shot MTIL. The corresponding task names from id = 1 - 11 are matches with the datasets listed from left to right in Table 1.

$$o = W_0 x + \Delta W x = W_0 x + \sum_{i=1}^{N} G(x)_i E_i(x)$$
 (3) $\Delta W_E = BA$ $o = W_0 x + \frac{\alpha}{r} \sum_{i=1}^{N} \omega_i \cdot B_i A_i x$

$$G(\cdot) = Softmax(xW_g)$$

- 1.Experts 数量 10 → 6 2.路由权重分布
- 3.DDAS具体精度