

Introdução ao Processamento Digital de Imagem MC920 / MO443

Prof. Hélio Pedrini

Instituto de Computação UNICAMP

http://www.ic.unicamp.br/~helio

Roteiro

- Realce
 - Brilho e Contraste
 - Histograma
 - Transformação da Escala de Cinza
 - Transformações Lineares e Não-Lineares
 - Equalização de Histograma
 - Hiperbolização de Histograma
 - Filtragem de Imagens
 - Filtragem no Domínio Espacial
 - Correlação e Convolução
 - Filtragem com Preservação de Bordas
 - Filtragem no Domínio de Frequência
 - Técnica de Meios-Tons
 - Realce de Imagens Baseado em Cores

Realce de Imagens

- Técnicas de realce de imagens buscam acentuar ou melhorar a aparência de determinadas características da imagem, tornando-a mais adequada à aplicação em questão.
- O realce é necessário quando a imagem sofre um processo de degradação ou perda de qualidade em decorrência de:
 - ▶ introdução de ruído.
 - perda de contraste.
 - borramento.
 - distorção causada pelo equipamento de aquisição.
 - condição inadequada de iluminação.
- Principais abordagens:
 - métodos no domínio espacial: processamento baseado na manipulação direta dos pixels das imagens.
 - métodos no domínio de frequência: processamento baseado na modificação da imagem com a aplicação de transformadas, como a de Fourier.

- O brilho está associado à sensação visual da intensidade luminosa de uma fonte.
- A habilidade do sistema visual humano para discriminar níveis distintos de brilho é um aspecto importante na apresentação de resultados que envolvem imagens digitais.
- Evidências experimentais indicam que a sensibilidade do sistema visual humano ao brilho possui resposta logarítmica com relação à intensidade de luz incidente no olho.
- O fato de que o brilho percebido pelo sistema visual humano não corresponde a uma função linear da intensidade pode ser demonstrado por alguns fenômenos.

- O primeiro fenômeno, conhecido por bandas de Mach, é baseado no princípio de que o sistema visual tende a subestimar ou superestimar a intensidade próxima às transições entre regiões de intensidades diferentes.
- Fenômeno descoberto pelo físico Ernst Mach (1838-1916).

(a) faixas com intensidades diferentes

(b) brilho percebido

- Embora a intensidade de cada faixa ou região da figura (a) seja constante, percebe-se um padrão de brilho alterado, particularmente quando próximo das bordas.
- A figura (b) mostra como o olho humano percebe uma transição abrupta de intensidade.
- As linhas sólidas representam as intensidades reais, enquanto as linhas tracejadas representam o brilho percebido pelo olho humano.

- Outro fenômeno, conhecido como *contraste simultâneo*, está relacionado ao fato de que o brilho aparente de uma região depende fortemente da intensidade do fundo.
- Na figura a seguir, todos os quadrados centrais possuem exatamente a mesma intensidade, embora pareçam se tornar mais escuros à medida que as intensidades dos fundos se tornam mais claras.

 Outro exemplo de contraste simultâneo é conhecido como anel de Benussi-Koffka, em que um anel com intensidade uniforme aparenta ter brilho diferente quando uma reta separa os fundos da imagem.

- O contraste pode ser definido como uma medida da variação relativa da luminância, ou seja, da intensidade luminosa por unidade de área.
- Diversas formulações têm sido propostas para expressar o contraste.
- Segundo a lei de Weber, a resposta do sistema visual humano depende significativamente de variações locais de luminância, ao invés da luminância absoluta.

• Um experimento utilizado para determinar a habilidade do sistema visual para discriminar mudanças de luminância consiste em apresentar, a um observador, um objeto com luminância $L_F = L + \Delta L$ em um fundo $L_B = L$.

• Uma questão de interesse é identificar qual a diferença $\Delta L = L_F - L_B$ suficientemente necessária para o observador notar a mudança entre o objeto e o fundo.

- A lei de Weber estabelece que a intensidade adicional de estímulo (luminância) necessária para que o sistema visual humano possa observar uma alteração é proporcional à intensidade inicial, em uma relação constante.
- Essa relação, chamada de contraste de Weber ou lei de Weber-Fechner, é definida como

$$C_W = \frac{\Delta L}{L}$$

- O contraste mínimo para um observador detectar uma mudança em intensidade permanece aproximadamente constante sobre um grande intervalo de intensidades (figura (b)), devido às capacidades de adaptação do sistema visual humano.
- Para esse intervalo, a relação de Weber é aproximadamente igual a 0.02 (ou 2%).
- Fora desse intervalo, a habilidade em discriminar intensidades pelo sistema visual humano diminui.

• No caso de padrões periódicos (por exemplo, senoidais) com desvios simétricos variando de L_{\min} a L_{\max} , uma medida de contraste, proposta por Michelson (1927), é definida como

$$C_M = \frac{L_{\text{max}} - L_{\text{min}}}{L_{\text{max}} + L_{\text{min}}}$$

em que L_{\min} e L_{\max} correspondem à luminância (intensidade por unidade de área) mínima e máxima do padrão.

- As definições de contraste C_W e C_M não são equivalentes e não possuem o mesmo intervalo de valores.
- O contraste de Michelson pode variar de 0 a 1, enquanto o contraste de Weber pode variar de -1 a ∞ .

- Embora essas medidas sejam bons preditores de contraste para padrões simples, elas falham quando os estímulos tornam-se mais complexos e cobrem um intervalo de frequência maior.
- Além disso, essas definições globais não são apropriadas para medir o contraste em imagens naturais, já que poucos pontos muito brilhantes ou muito escuros determinariam o contraste de toda a imagem, enquanto a percepção humana varia com a média local de luminância.
- Uma medida de contraste local foi definida por Beghdadi e Khellaf (1997). Dado um pixel f com coordenadas (x, y), centrado em uma vizinhança w_f , o contraste no pixel é definido como

$$C_f = \frac{|I_{(x,y)} - \bar{I}_{(x,y)}|}{\bar{I}_{(x,y)}}$$

em que $I_{(x,y)}$ é o nível de cinza do pixel e $\overline{I}_{(x,y)}$ é o nível de cinza médio dentro da vizinhança w_f .

- O histograma de uma imagem corresponde à distribuição dos níveis de cinza da imagem.
- A figura a seguir mostra uma imagem e seu histograma correspondente.

(a) imagem

- Seja f(x, y) uma imagem representada por uma matriz bidimensional, com dimensões M × N pixels e contendo L níveis de cinza no intervalo [0, L_{max}].
- O algoritmo a seguir calcula o histograma de uma imagem.

Algoritmo 1 Calcula o histograma (vetor H) de uma imagem f(x, y)

```
1: - atribuir valor zero a todos os elementos do vetor
```

- 2: for i = 0 até Lmax do
- $3: \quad H[i] = 0$
- 4: end for
- 5: calcular distribuição dos níveis de cinza para cada pixel da imagem
- 6: for x = 0 até M 1 do
- 7: for y = 0 até N 1 do
- 8: H[f(x,y)] = H[f(x,y)] + 1
- 9: end for
- 10: end for

- Uma imagem possui um único histograma, entretanto, a recíproca não é em geral verdadeira.
- O histograma pode ser visto como uma distribuição discreta de probabilidade, pois o número de pixels para um determinado nível de cinza pode ser utilizado para calcular a probabilidade de se encontrar um pixel com aquele valor de cinza na imagem.
- Dessa forma, o histograma $p_k(f)$ pode ser expresso como

$$p_k(f) = \frac{n_k}{n} = \frac{H(k)}{MN}$$

em que $n_k = H(k)$ representa o número de ocorrências do nível de cinza k e n = MN corresponde ao número total de pixels na imagem f.

 Várias medidas estatísticas podem ser obtidas a partir do histograma de uma imagem, tais como valores mínimo e máximo, valor médio, variância e desvio padrão dos níveis de cinza da imagem.

• O contraste de uma imagem pode ser avaliado observando-se o seu histograma.

- Os histogramas mostrados nas figuras (a) a (c) apresentam escalas de níveis de cinza estreitas e, portanto, correspondem a imagens de baixo contraste.
- Por outro lado, a figura (d) mostra um histograma com valores de níveis de cinza melhor distribuídos ao longo da escala, correspondendo a uma imagem de alto contraste.

Transformação da Escala de Cinza

- O objetivo das transformações de contraste é melhorar a qualidade das imagens sob critérios subjetivos ao sistema visual humano, tornando mais fácil a percepção de informações contidas nas imagens.
- O intervalo de contraste é a diferença entre os valores de intensidade máximo e mínimo que f(x, y) pode assumir.
- Quando uma imagem n\u00e3o ocupa todo o intervalo de cinza poss\u00edvel, pode-se ampliar o intervalo de contraste.
- Isso pode ser feito por meio de um mapeamento das variações de contraste dentro do intervalo de níveis de cinza $[L_{\min}, L_{\max}]$ da imagem original para a variação máxima do dispositivo de visualização, geralmente, no intervalo [0,255].
- Essa transformação é realizada por uma função de mapeamento, tal que cada valor de cinza na imagem original é mapeado para um novo valor de cinza.

Transformação da Escala de Cinza

ullet Uma função de transformação T de níveis de cinza pode ser descrita como

$$g = T(f)$$

em que f e g representam o nível de cinza dos pixels de uma imagem de entrada f e da imagem modificada g, respectivamente.

• Dois exemplos de transformações são ilustrados na figura a seguir.

Transformação da Escala de Cinza

- Se T possui a forma mostrada na figura (a), o efeito dessa transformação produzirá uma imagem de maior contraste do que a original, por meio do escurecimento dos níveis abaixo de t e do clareamento daqueles acima de t na imagem original.
- Nessa técnica, conhecida como alargamento de contraste, os valores de f(x,y) abaixo de t são comprimidos pela função de transformação em uma estreita faixa de g(x,y) próxima do nível mais escuro; o efeito oposto ocorre para valores de f(x,y) maiores que t.
- A figura (b) produz uma imagem com dois níveis de cinza, ou seja, uma imagem binária

Transformações Lineares e Não-Lineares

- A escolha da função T determina qual será o efeito visual obtido e deve ser escolhida de acordo com a imagem original e o efeito desejado.
- Uma transformação linear pode ser descrita como

$$g = af + b \tag{1}$$

tal que o parâmetro a controla a escala de níveis de cinza da imagem resultante e b ajusta seu brilho.

Transformações Lineares e Não-Lineares

- Seja uma imagem de entrada com valores de níveis de cinza mínimo e máximo f_{\min} e f_{\max} , respectivamente.
- Para mapear o intervalo de intensidade [f_{min}, f_{max}] dessa imagem em uma nova imagem com intervalo [g_{min}, g_{max}], pode-se utilizar a transformação

$$g = rac{g_{ ext{max}} - g_{ ext{min}}}{f_{ ext{max}} - f_{ ext{min}}} (f - f_{ ext{min}}) + g_{ ext{min}}$$

• É interessante notar que o valor

$$a = \frac{g_{\text{max}} - g_{\text{min}}}{f_{\text{max}} - f_{\text{min}}}$$

determina se o intervalo de níveis de cinza será expandido ou comprimido. Se o valor de a for 1, o intervalo permanece o mesmo, com os níveis de cinza apenas deslocados, dependendo de f_{\min} e g_{\min} . Se o valor de a for maior que 1, o intervalo é expandido; se for menor que 1, o intervalo é comprimido.

- Uma função de alteração da escala de cinza muito útil é a transformação linear por partes, caracterizada pela existência de um conjunto de intervalos lineares.
- O realce na imagem é realizado de acordo com as intensidades dos pixels que se situam em intervalos específicos.
- Quando a imagem a ser transformada apresenta histograma muito irregular ou quando o objetivo é salientar um aspecto específico da imagem, essa técnica pode oferecer melhores resultados que uma única transformação linear.

- A figura (a) mostra um exemplo de transformação linear por partes.
- A figura (c) apresenta o resultado da alteração da escala de cinza da imagem original, mostrada em (b), obtido pela transformação linear por partes.

(c) imagem transformada

- Outra função linear comum é a transformação inversa, que produz o negativo de uma imagem.
- Nessa transformação, a intensidade da imagem de saída diminui à medida que a intensidade da imagem de entrada aumenta.
- As figuras (a) e (b) ilustram o uso da transformação inversa.

(a) imagem original

(b) negativo da imagem

- Funções de mapeamento não-lineares também podem ser utilizadas para realçar detalhes específicos na imagem.
- Enquanto em uma transformação linear o parâmetro a da equação 1 é fixo, em uma transformação não-linear este parâmetro pode variar.
- As principais transformações de contraste não-lineares são baseadas nas funções:
 - logaritmo.
 - raiz quadrada.
 - exponencial.
 - quadrado.

- A transformação pelo logaritmo substitui cada valor de pixel da imagem pelo seu logaritmo.
- Essa transformação propicia um realce maior nos pixels de baixa intensidade, ou seja, regiões escuras da imagem.
- Muitas implementações utilizam o logaritmo base 10 ou natural, embora a base não influencie o comportamento da curva, apenas a escala dos valores resultantes.
- Uma vez que a função logaritmo não é definida para o valor 0, o qual pode estar presente na imagem, a transformação é descrita pela função $g = T(f) = a \log(f+1)$, em que a é um fator de ajuste para manter os valores de intensidade resultantes dentro do intervalo válido, tipicamente [0,255].
- Caso f_{max} seja a maior intensidade presente na imagem, o parâmetro a poderia ser dado por $a = 255/\log(1 + f_{\text{max}})$.

- A transformação exponencial substitui cada valor de pixel da imagem pelo seu exponencial.
- Essa transformação propicia um realce maior nos pixels de alta intensidade, ou seja, regiões claras da imagem.
- Uma vez que os pixels da imagem de entrada podem assumir o valor 0, a transformação é descrita pela função $g=T(f)=a(e^f-1)$, para evitar que o valor resultante seja deslocado pelo parâmetro a.

- A transformação quadrado é descrita pela função $g = T(f) = af^2$.
- Semelhante à função exponencial, a transformação quadrado aumenta o contraste das regiões da imagem com média e alta intensidades.
- A transformação pela *raiz quadrada* é descrita pela função $g = T(f) = a\sqrt{f}$.
- Semelhante à função logaritmo, a transformação raiz quadrada aumenta o contraste das regiões da imagem com baixa e média intensidades.

• Ilustrações das principais transformações lineares e não-lineares da escala de cinza.

 Exemplos de resultados da aplicação de um conjunto de transformações não-lineares a uma imagem de entrada.

- A escolha adequada de uma transformação da escala de cinza é, em geral, essencialmente empírica.
- Entretanto, há uma classe de métodos em que a transformação tem por finalidade produzir uma imagem cujo histograma tenha um formato desejado.
- Um desses métodos é a equalização de histograma: modifica o histograma da imagem original f de tal forma que a imagem transformada g possua uma distribuição mais uniforme dos seus níveis de cinza, ou seja, os níveis devem aparecer na imagem aproximadamente com a mesma frequência.
- Os níveis de cinza de uma imagem podem ser considerados como variáveis aleatórias no intervalo [0,1].
- Se os níveis de cinza forem variáveis contínuas, os valores originais e transformados podem ser caracterizados por suas funções densidade de probabilidade $p_f(f)$ e $p_g(g)$, respectivamente.

- Os valores de f e g representam os níveis de cinza das imagens original e transformada, ambos normalizados no intervalo [0,1].
- A função densidade de probabilidade dos níveis de cinza transformados pode ser obtida a partir da função $p_f(f)$ e da transformação T(f), monotonicamente crescente no intervalo $0 \le f \le 1$, como

$$\rho_{g}(g) = \left[p_{f}(f) \frac{df}{dg} \right]_{f=T^{-1}(g)}$$
 (2)

em que $f = T^{-1}(g)$ é a transformação inversa dos níveis de cinza g para f.

• Uma função de transformação *T* que pode ser utilizada é a *função de distribuição* acumulada de *f* , definida como

$$g = T(f) = \int_0^f p_f(w)dw \quad 0 \le f \le 1$$
 (3)

em que w é uma variável da integração.

A partir da equação 3, a derivada de g com relação a f é

$$\frac{dg}{df} = p_f(f)$$

• Substituindo-se df/dg na equação 2, resulta

$$ho_{g}(g) = \left[p_{f}(f) rac{1}{p_{f}(f)}
ight]_{f = T^{-1}(g)} = 1 igg|_{f = T^{-1}(g)} = 1 \qquad \qquad 0 \leq g \leq 1$$

que é uma função de densidade uniforme no intervalo definido para g, ou seja, [0,1].

- Pode-se concluir que o uso da função de distribuição acumulada como a função de transformação, g=T(f), produz uma imagem cujos níveis de cinza possuem densidade uniforme.
- Em termos de realce de imagens, esse resultado pode implicar um aumento significativo da escala de níveis de cinza dos pixels da imagem.

 Antes de reformular os conceitos anteriores para o caso discreto, um exemplo é apresentado a seguir.

Exemplo:

Seja a função de densidade de probabilidade dada por

$$p_f(f) = egin{cases} -rac{f}{2}+1, & 0 \leq f \leq 1 \ 0, & ext{caso contrário} \end{cases}$$

Essa função de densidade de probabilidade é mostrada na figura (a) a seguir. Substituindo a função $p_f(f)$ na equação 3, tem-se que

$$g = T(f) = \int_0^f \left(-\frac{w}{2} + 1\right) dw = \left(-\frac{w^2}{4} + w\right) \Big|_0^f = -\frac{f^2}{4} + f$$

Portanto, $f^2 - 4f + 4g = 0$. Resolvendo para f em termos de g, tem-se

$$f = T^{-1}(g) = 2 \pm 2\sqrt{1-g}$$

Desde que f está no intervalo [0,1], apenas a solução $f=T^{-1}(g)=2-2\sqrt{1-g}$ é válida.

A função densidade de probabilidade de g é obtida por meio da equação 2, ou seja

$$p_{g}(g) = \left[p_{f}(f) \frac{df}{dg} \right]_{f=T^{-1}(g)} = \left[\left(-\frac{f}{2} + 1 \right) \frac{df}{dg} \right]_{f=2-2\sqrt{1-g}} =$$

$$= -\frac{1}{2} (2 - 2\sqrt{1-g}) + 1 \frac{d}{dg} (2 - 2\sqrt{1-g}) =$$

$$= \sqrt{1-g} \frac{1}{\sqrt{1-g}} = 1 \qquad 0 \le g \le 1$$

que é uma densidade uniforme no intervalo desejado.

A figura (b) mostra a função de transformação T(f) e a figura (c) mostra a função densidade $p_g(g)$.

Figura: Método de transformação por densidade uniforme. (a) função de densidade de probabilidade original; (b) função de transformação; (c) densidade uniforme.

- Os conceitos previamente discutidos devem ser expressos na forma discreta para serem úteis em processamento de imagens.
- Dada uma imagem contendo $n=M\times N$ pixels, assumindo valores discretos para os níveis de cinza $k=0,1,\ldots,L-1$, uma forma de se equalizar um histograma é utilizar a função de distribuição acumulada de probabilidade, a qual pode ser expressa por

$$g_k = T(f_k) = \sum_{i=0}^k p_f(f_i) = \sum_{i=0}^k \frac{n_i}{n}$$
 $k = 0, 1, ..., L-1$ (4)

em que n_i é o número de ocorrências do nível de cinza i, e $p_f(f_i)$ é a probabilidade do i-ésimo nível de cinza.

- A equação 4 é a forma discreta da função de transformação dada pela equação 3.
- Para que a função de distribuição acumulada de probabilidade, mostrada na equação 4, possa ser utilizada para equalizar o histograma de uma imagem, deve-se normalizar os níveis de cinza da imagem no intervalo $0 \le f_k \le 1$.

 O algoritmo abaixo apresenta a técnica de equalização de histograma por meio da função de distribuição acumulada de probabilidade.

Algoritmo 2 Equalização de histograma

- 1: calcular o histograma da imagem a ser transformada
- 2: normalizar o histograma, tal que $0 \le f_k \le 1$
- 3: for k=0 até L-1 do
- 4: calcular função distribuição acumulada de probabilidade

5:
$$g_k = \sum_{i=0}^{n} p_f(f_i)$$

- 6: arredondar valor para nível de cinza mais próximo
- 7: $g_k = \text{round}(g_k \times L_{\text{max}})$
- 8: end for
- 9: agrupar valores f_k para formar g_k

• Exemplo de aplicação da equalização de histograma.

(c) imagem equalizada

(d) histograma da imagem equalizada

- A equalização de histograma possui a vantagem de ser completamente automática com relação às técnicas manuais de alteração de contraste.
- Entretanto, há situações nas quais a equalização de histograma pode degradar uma imagem: um exemplo é quando a imagem a ser transformada possui um histograma com grande concentração de pixels em poucos níveis de cinza.

Exemplo:

Ilustração da equalização de histograma de uma imagem com oito níveis de cinza, conforme distribuição mostrada a seguir.

Níveis de cinza (k)	0	1	2	3	4	5	6	7
Número de pixels (n_k)	1314	3837	5820	4110	2374	921	629	516

Tabela: Histograma a ser equalizado.

Inicialmente, deve-se encontrar a probabilidade p_f com que cada nível de cinza k aparece na imagem f, ou seja

$$p_f(f_0) = 1314/19521 \approx 0.067$$

 $p_f(f_1) = 3837/19521 \approx 0.197$
 $p_f(f_2) = 5820/19521 \approx 0.298$
 $p_f(f_3) = 4110/19521 \approx 0.211$
 $p_f(f_4) = 2374/19521 \approx 0.122$
 $p_f(f_5) = 921/19521 \approx 0.047$
 $p_f(f_6) = 629/19521 \approx 0.032$
 $p_f(f_7) = 516/19521 \approx 0.026$

Calculando a função distribuição acumulada de probabilidade, obtém-se

$$g_0 = T(f_0) = \sum_{i=0}^{0} p_f(f_0) = 0.067$$

 $g_1 = T(f_1) = \sum_{i=0}^{1} p_f(f_1) = 0.264$

De forma similar

$$g_2 = 0.562$$
 $g_3 = 0.773$ $g_4 = 0.895$ $g_5 = 0.942$ $g_6 = 0.974$ $g_7 = 1$

Como a imagem foi quantizada com oito níveis de cinza, cada valor g_k deverá ser substituído pelo nível de cinza mais próximo, ou seja

$$g_0 = g_0 \times 7 = 0.067 \times 7 = 0.469 \approx 0$$

Analogamente para os outros valores de g_k , tem-se

$$g_1 = 0.264 \times 7 = 1.848 \approx 2$$

$$g_2=0.562\times 7=3.934\approx 4$$

$$g_3 = 0.773 \times 7 = 5.411 \approx 5$$

$$g_4 = 0.895 \times 7 = 6.265 \approx 6$$

$$g_5 = 0.942 \times 7 = 6.594 \approx 7$$

$$g_6 = 0.974 \times 7 = 6.818 \approx 7$$

$$g_7 = 1 \times 7 = 7$$

O nível original $f_0=0$ é mapeado para o nível $g_0=0$, ou seja, os 1314 pixels que apresentavam nível de cinza 0 permanecem inalterados.

De forma similar, os pixels com nível de cinza 1 são mapeados para o nível 2 e assim por diante.

Os resultados da equalização estão mostrados a seguir.

k	0	1	2	3	4	5	6	7
f_k	0	1/7	2/7	3/7	4/7	5/7	6/7	7/7
n_{f_k}	1314	3837	5820	4110	2374	921	629	516
$p_f(f_k) = n_{f_k}/n$	0.067	0.197	0.298	0.211	0.122	0.047	0.032	0.026
g _k	0.067	0.264	0.562	0.773	0.895	0.942	0.974	1
$round(g_k \times 7)$	0	2	4	5	6	7	7	7
n_{g_k}	1314	0	3837	0	5820	4110	2374	2066

A função round(x) aproxima o argumento x para seu valor inteiro mais próximo.

• As figuras (a) e (b) mostram o histograma original e equalizado, respectivamente.

- Pode-se observar que os níveis de cinza da imagem resultante não ocorrem uniformemente com a mesma frequência, o que caracterizaria uma equalização de histograma ideal.
- Entretanto, o histograma original, tipicamente de uma imagem escura, foi transformado em uma imagem com níveis de cinza melhor distribuídos.

Hiperbolização de Histograma

- A técnica de hiperbolização de histograma tem como objetivo melhorar a qualidade visual da imagem transformada levando-se em conta aspectos relativos à percepção de brilho, ao invés da redistribuição dos níveis de cinza de forma uniforme, como ocorre na equalização de histograma.
- A hiperbolização de histograma é baseada na lei de Weber-Fechner, a qual estabelece que o sistema visual humano possui resposta logarítmica com relação ao brilho percebido.
- A imagem original é transformada de modo a produzir um histograma uniforme do brilho percebido, cuja forma é hiperbólica.

- Apesar de sua grande utilização em realce de imagens, a técnica de equalização de histograma apresenta a característica de alterar o histograma da imagem, porém, sempre de acordo com uma função de transformação padrão, tipicamente definida como a função de distribuição acumulada dos níveis de cinza da imagem.
- Há situações em que é desejável poder definir formas específicas para o histograma da imagem.
- A técnica conhecida como *especificação de histograma* transforma uma imagem de forma que seu histograma apresente uma distribuição particular.

- Sejam p_f(f) e p_h(h) as funções densidade de probabilidade original e especificada, respectivamente.
- Conforme visto anteriormente, o histograma da imagem original f pode ser equalizado pela função de transformação

$$g_k = T_1(f_k) = \sum_{i=0}^k p_f(f_i)$$
 $k = 0, 1, ..., L-1$ (5)

em que f e g representam os níveis de cinza das imagens original e equalizada, respectivamente.

- Seja $T_2(h)$ a função de transformação que realiza a equalização do histograma especificado, como ilustrado na figura (a) a seguir.
- Assim, uma maneira de obter os níveis de cinza z da imagem é calcular a função de transformação inversa, $h = T_2^{-1}(g)$, como mostrado na figura (b).

Figura: Especificação de histograma. (a) equalização do histograma especificado pela função $T_2(h)$; (b) cálculo da função de transformação inversa $T_2^{-1}(h)$.

- Portanto, a especificação de histograma envolve a aplicação de duas funções de transformação, $T_1(f)$ seguida de $T_2^{-1}(h)$.
- Esse mapeamento pode ser combinado em uma única expressão para produzir os níveis especificados a partir dos pixels originais, ou seja

$$h = T_2^{-1}(T_1(f))$$

- Assim, a especificação de histograma pode ser realizada pela determinação de $T_1(f)$ e sua combinação com a função de transformação inversa T_2^{-1} .
- Para o caso em que os níveis de cinza da imagem são considerados como variáveis contínuas, a função inversa poderia ser obtida analiticamente.
- Na forma discreta, o número de níveis de cinza é, em geral, relativamente pequeno, tornando viável o cálculo do mapeamento de cada valor de pixel da imagem.

Exemplo:

Deseja-se modificar o histograma original apresentado no exemplo mostrado anteriormente (equalização de histograma), tal que a distribuição de pixels resultante seja dada pela tabela a seguir.

Tabela: Histograma a ser modificado.

Níveis de cinza (k)	0	1	2	3	4	5	6	7
Número de pixels (n_k)	0	0	0	1913	3923	7769	3946	1970
$p_h(h_k) = n_{h_k}/n$	0	0	0	0.098	0.201	0.398	0.202	0.101

O próximo passo consiste em obter a função de distribuição acumulada de probabilidade desejada. Analogamente ao cálculo da distribuição acumulada para o histograma original, obtém-se

$$h_0 = T_2(h_0) = \sum_{i=0}^{0} p_h(h_0) = 0$$

De forma similar

$$h_1 = 0$$
 $h_2 = 0$ $h_3 = 0.098$ $h_4 = 0.299$ $h_5 = 0.697$ $h_6 = 0.899$ $h_7 = 1$

O cálculo da função inversa consiste em encontrar, para cada valor de g_k , o valor de h_k mais próximo a g_k . Por exemplo, o valor h_k que mais se aproxima de $g_2=0.562$ é $T_1(h_5)=0.697$, ou seja, $T_2^{-1}(0.697)=h_5$.

Portanto, os pixels que, após a equalização do histograma original, foram realocados para o nível de cinza g_2 , serão mapeados para o nível de cinza h_5 .

Isso significa que os 5820 pixels que apresentavam originalmente o nível de cinza 2 e que foram transferidos para g_4 devido à equalização serão novamente transferidos para h_5 para satisfazer a especificação de histograma. Os demais valores de g_k podem ser obtidos de forma análoga.

Assumindo que o cálculo da inversa, para um determinado valor de g_k percorrerá os diversos valores de v_k , armazenando o índice do último valor que seja mais próximo de g_k , obtém-se

É importante ressaltar que, se o cálculo da função inversa assumisse outra estratégia para mapear os níveis de cinza, por exemplo, armazenando-se o índice do primeiro valor que se aproximasse de g_k , o mapeamento produziria outros resultados.

A tabela a seguir apresenta os valores obtidos para o histograma resultante.

Níveis de cinza (h_k)	0	1	2	3	4	5	6	7
Número de pixels (n_{h_k})	0	0	0	1314	3837	9930	3295	1145

Para facilitar a comparação entre o histograma especificado e o histograma obtido, a figura a seguir apresenta cada um deles.

Pode-se observar que, embora cada um dos níveis de cinza especificados possua uma determinada quantidade de pixels, o histograma resultante não possui exatamente a mesma forma do histograma especificado.

Assim como no caso da equalização de histograma, essa diferença se deve ao fato de que a transformação produz resultados exatos apenas no caso contínuo.

Filtragem de Imagens

- As operações de filtragem podem ser realizadas tanto no domínio do espaço quanto de frequência.
- Os filtros são normalmente classificados em três categorias:
 - passa-baixas.
 - passa-altas.
 - passa-faixa.
- A figura abaixo ilustra esses tipos de filtros no domínio de frequência para o caso unidimensional

Filtragem de Imagens

- Um filtro passa-baixas atenua as altas frequências que estão relacionadas com a informação de detalhes da imagem.
- Um filtro passa-altas realça as altas frequências e são normalmente usados para realçar os detalhes na imagem.
- Um filtro passa-faixa seleciona um intervalo de frequências do sinal para ser realçado.
- O efeito visual de um filtro passa-baixas é o de suavização da imagem, uma vez que as altas frequências, que correspondem às transições abruptas, são atenuadas. A suavização tende também, pelas mesmas razões, a minimizar o efeito do ruído em imagens.
- Para filtros passa-altas, o efeito obtido é, em geral, o de tornar mais nítidas as transições entre regiões diferentes, conhecidas como bordas. Um efeito indesejado desses filtros é o de enfatizar o ruído presente na imagem.

- O domínio espacial refere-se ao próprio plano da imagem, ou seja, ao conjunto de pixels que compõe uma imagem.
- No domínio espacial, o nível de cinza de um ponto f(x,y) após a transformação depende do valor do nível de cinza original do ponto e de outros pontos da vizinhança de f(x,y).
- Em geral, os pontos mais próximos contribuem mais significativamente para o novo valor de nível de cinza do que os pontos mais afastados.
- Os operadores de filtragem são geralmente classificados em filtros lineares e não-lineares.
- Filtros lineares calculam o valor resultante do pixel f'(x,y) como uma combinação linear dos níveis de cinza em uma vizinhança local do pixel f(x,y) na imagem original.

- No domínio espacial, o processo de filtragem normalmente é realizado por meio de matrizes denominadas máscaras, as quais são aplicadas sobre a imagem.
- A cada posição da máscara está associado um valor numérico, chamado de peso ou coeficiente.
- A aplicação da máscara com centro na coordenada (x, y), sendo x a posição da coluna e y a posição de uma dada linha da imagem, consiste na substituição do valor do pixel na posição (x, y) por um novo valor, o qual depende dos valores dos pixels vizinhos e dos pesos da máscara.
- Os coeficientes do filtro são multiplicados pelos níveis de cinza dos pixels correspondentes e então somados, substituindo o nível de cinza do pixel central.

• A figura abaixo mostra uma máscara genérica de 3×3 pixels. Denotando os níveis de cinza da imagem sob a máscara por $z_i = f(x, y), \ 1 \le i \le 9$, a resposta da máscara é

$$R = w_1 z_1 + w_2 z_2 + \ldots + w_9 z_9 = \sum_{i=1}^{9} w_i z_i$$
 (6)

em que w_i representa os coeficientes da máscara.

w_1	<i>W</i> ₂	W ₃
W4	<i>W</i> 5	W 6
W ₇	W 8	W 9

Figura: Máscara de 3×3 pixels com coeficientes arbitrários.

- Se o centro da máscara estiver em uma posição (x,y) na imagem, o nível de cinza do pixel posicionado em (x,y) será substituído por R, conforme equação 6.
- A máscara é então movida para a próxima posição de pixel na imagem e o processo se repete até que todas as posições de pixels tenham sido cobertas.
- A figura a seguir ilustra essa operação, em que a imagem e a máscara possuem dimensões $M \times N$ e $m \times n$ pixels, respectivamente.

- Dois conceitos estão relacionados à filtragem espacial, a correlação e a convolução.
- Para ilustrar o funcionamento de cada uma dessas duas operações, a filtragem será inicialmente aplicada a uma imagem unidimensional e, posteriormente, para o caso bidimensional.
- Uma das operações mais simples que pode ser realizada por meio da correlação é a filtragem da média, que consiste em substituir cada pixel da imagem unidimensional pela média de seu nível de cinza e de seus dois vizinhos.

• Seja a imagem unidimensional f representada pelo vetor mostrado a seguir:

- A operação de filtragem produz uma nova imagem a partir da imagem de entrada.
- Deve-se notar, entretanto, que cada pixel da imagem resultante depende apenas dos pixels da imagem original, ou seja, os resultados da média de um pixel não afetam os resultados dos outros pixels.
- O cálculo da média para o pixel com valor 3, por exemplo, produzirá o valor 4, resultado da média aritmética entre 2, 3 e 7.
- Nesse caso, a janela considerada na filtragem é de apenas três pixels, entretanto, há situações em que vizinhanças maiores devem ser utilizadas.

- A filtragem da média pode ser realizada pelo deslocamento de uma máscara com pesos iguais a 1/3, em que cada um dos valores dos pixels é multiplicado por esse peso e então somados.
- A máscara (1/3, 1/3, 1/3) forma uma estrutura chamada filtro.
- A aplicação do filtro a cada um dos pixels da imagem corresponde ao processo de correlação.
- Uma definição mais formal da correlação é agora apresentada. Seja w o filtro de correlação.
- Em geral, seleciona-se um filtro com número ímpar de elementos, tal que, durante seu deslocamento sobre a imagem, o centro do filtro esteja localizado sobre o pixel sob consideração na imagem.

• Dessa forma, a correlação da imagem f com um filtro w pode ser expressa como

$$\mathbf{w} \cdot \mathbf{f}(\mathbf{x}) = \sum_{i=\lfloor -m/2 \rfloor}^{\lfloor m/2 \rfloor} \mathbf{w}(i) \ f(\mathbf{x} + i) \tag{7}$$

 A correlação para o caso bidimensional é similar. Considerando que a imagem e o filtro possuem agora duas dimensões, a correlação é definida como

$$w \cdot f(x,y) = \sum_{i=|-m/2|}^{\lfloor m/2 \rfloor} \sum_{j=|-n/2|}^{\lfloor n/2 \rfloor} w(i,j) f(x+i,y+j)$$
 (8)

- A convolução consiste em um processo similar à correlação, com a diferença de que o filtro w deve sofrer uma reflexão (ou, equivalentemente, uma rotação de 180 graus) antes de ser aplicado à imagem.
- Assim, o resultado da convolução de uma imagem unidimensional com o filtro (2,7,8) é exatamente o mesmo que a correlação com o filtro (8,7,2).

 A convolução de uma imagem f unidimensional por um filtro w pode ser expressa como

$$w * f(x) = \sum_{i=\lfloor -m/2 \rfloor}^{\lfloor m/2 \rfloor} w(i) f(x-i)$$
 (9)

 Para o caso da convolução bidimensional, os pesos do filtro devem ser refletidos tanto na horizontal quanto na vertical, ou seja

$$w(x,y) * f(x,y) = \sum_{i=\lfloor -m/2 \rfloor}^{\lfloor m/2 \rfloor} \sum_{j=\lfloor -n/2 \rfloor}^{\lfloor n/2 \rfloor} w(i,j) f(x-i,y-j)$$
 (10)

 Deve-se notar que a correlação e a convolução são idênticas quando o filtro é simétrico

Algoritmo 3 Processo de convolução de uma imagem

Entrada: imagem f de $M \times N$ pixels e uma máscara w de $m \times n$ pixels. Saída: imagem g de $M \times N$ pixels.

```
1: x1 = |m/2|
2: y1 = |n/2|
3: for x = 0 até M - 1 do
     for v = 0 até N - 1 do
       soma = 0
5.
    for i = -x1 até x1 do
          for i = -v1 até v1 do
7:
            soma = soma + w(i,j) * f(x - i, y - j)
8.
          end for
9:
       end for
10.
      g(x, y) = soma
11:
     end for
12.
13: end for
```

- Na operação de filtragem, deve-se calcular os pontos pertencentes à borda de modo diferente dos demais, já que estes não dispõem de todos os vizinhos.
- Por questões de simetria, tipicamente são utilizadas janelas quadradas com $n \times n$ pixels, em que n é um número ímpar.
- Por questões de eficiência computacional, normalmente são selecionados valores pequenos para n.
- Por exemplo, a aplicação de uma máscara de tamanho 3×3 pixels a uma imagem de 512×512 pixels requer nove multiplicações e oito adições para cada pixel, resultando em um total de $2\,359\,296$ multiplicações e $2\,097\,152$ adições (desconsiderando efeitos de borda da imagem).

Correlação e Convolução

Exemplo:

Seja a região da imagem mostrada na figura abaixo, cujos níveis de cinza estão destacados. A máscara de correlação é mostrada à direita.

O resultado da correlação para a região em destaque é igual a 137*(-1)+115*0+153*1+177*(-2)+213*1+103*2+115*(-1)+182*0+158*1=124. O resultado da convolução é igual a 137*1+115*0+153*(-1)+177*2+213*1+103*(-2)+115*1+182*0+158*(-1)=302.

- O efeito de um filtro passa-baixa é o de suavização da imagem, uma vez que as frequências altas que correspondem às transições abruptas são atenuadas.
- A suavização tende também, pelas mesmas razões, a minimizar o efeito do ruído em imagens.
- Por outro lado, devido ao borramento causado pela filtragem passa-baixa, detalhes finos podem ser removidos da imagem.

• Alguns exemplos de filtros passa-baixas são mostrados abaixo.

$$h_4 = \frac{1}{10} \begin{bmatrix} \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{bmatrix}$$

$$h_4 = \frac{1}{10} \begin{bmatrix} \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{1} & \frac{1}{1} & 1 \end{bmatrix} \qquad h_5 = \frac{1}{16} \begin{bmatrix} \frac{1}{1} & \frac{1}{2} & \frac{1}{1} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{2} \\ \frac{1}{1} & \frac{1}{2} & \frac{1}{1} \end{bmatrix}$$

- As máscaras h₁, h₂ e h₃ possuem todos seus coeficientes iguais a 1, e o resultado da convolução é dividido por um fator de normalização.
- Tais filtros são denominados filtros da média, em que cada pixel é substituído pelo valor médio de seus vizinhos.
- O fator de normalização é, em geral, igual à soma dos coeficientes da máscara, de modo a preservar o valor médio.
- Dessa forma, a aplicação de filtros da média em uma região homogênea da imagem, ou seja, com níveis de cinza constantes, não sofrerá alteração de seus níveis de cinza.
- ullet Os filtros h_4 e h_5 introduzem uma ponderação conforme a distância e a orientação dos pontos vizinhos.

 A figura abaixo mostra exemplos de aplicação do filtro da média com diferentes tamanhos de máscara.

- Filtros passa-baixas que possuem coeficientes iguais a 1, tais como os filtros h_1 , h_2 e h_3 mostrados anteriormente, são também conhecidos como *filtros-caixa*.
- Seja a um número inteiro que corresponde às dimensões da máscara. No caso unidimensional, esses filtros podem ser expressos como

$$f_1(x) = \begin{cases} \frac{1}{a}, & \text{se } |x| < \frac{a}{2} \\ 0, & \text{caso contrário} \end{cases}$$
 (11)

Uma extensão para o caso bidimensional é dada por

$$f_2(x,y) = \begin{cases} \frac{1}{a^2}, & \text{se } |x| < \frac{a}{2} \text{ e } |y| < \frac{a}{2} \\ 0, & \text{caso contrário} \end{cases}$$
 (12)

• Gráficos para os filtros apresentados nas equações 11 e 12 são mostrados nas figuras (a) e (b), respectivamente.

(a) filtro-caixa unidimensional

- Como mencionado anteriormente, um dos grandes problemas relacionados à eliminação de ruído em imagens por meio de filtros passa-baixas é a supressão de detalhes finos e bordas da imagem.
- O processamento com filtros não-lineares procura evitar a suavização homogênea ao longo das regiões próximas a essas bordas.
- Uma classe de filtros n\u00e3o-lineares bastante empregada em processamento de imagens \u00e9 formada pelos filtros estat\u00edsticos de ordem.
- Dada uma vizinhança contendo m pixels, estes pixels são ordenados em um novo conjunto p₁, p₂...pm, em que pi ≤ pi+1, i = 1, 2, ..., m-1.
- Em imagens monocromáticas, a ordenação poderia ser realizada pelas intensidades dos pixels.
- Por outro lado, em imagens multibandas, as cores dos pixels poderiam ser utilizadas na ordenação dos pixels.

- Um dos filtros não-lineares mais importantes é o filtro da mediana, o qual consiste em substituir a intensidade de cada pixel pela mediana das intensidades na vizinhança do pixel.
- Para uma vizinhança de $n \times n$ pixels, sendo n ímpar, a mediana das intensidades ordenadas encontra-se na posição $(n^2 + 1)/2$.
- O filtro da mediana é adequado para reduzir o efeito de ruído impulsivo do tipo sal-e-pimenta, já que os níveis de cinza dos pixels que diferem significativamente de seus vizinhos (valores altos ou baixos), em uma dada vizinhança, serão descartados pelo filtro.
- Além disso, o filtro da mediana não introduz valores de níveis de cinza diferentes daqueles contidos na imagem original e, por afetar menos as bordas, pode ser aplicado iterativamente.

• Exemplos da aplicação do filtro da média e da mediana em uma imagem corrompida por ruído impulsivo (sal-e-pimenta).

(b) com ruído impulsivo

(c) após filtro da média 5 ×5

(d) após filtro da mediana 5×5

- Além do filtro da mediana, outros filtros estatísticos de ordem frequentemente utilizados são os filtros mínimo, máximo e da moda.
- No filtro mínimo, uma máscara é aplicada a cada pixel da imagem, sendo que o pixel central à máscara tem seu valor substituído pelo menor valor dentre os valores de intensidade dos pixels contidos na vizinhança delimitada pela máscara: regiões mais escuras de uma imagem são aumentadas, dominando as áreas mais claras.
- Analogamente, no filtro máximo é escolhido o maior valor dentre os valores de intensidade dos pixels da vizinhança para substituir o valor do pixel central à máscara: regiões mais claras de uma imagem são aumentadas, dominando as áreas mais escuras.
- O filtro da moda seleciona o valor que ocorre com maior frequência na vizinhança para substituir o valor do pixel central à máscara.

- Exemplos de aplicação dos filtros estatísticos de ordem descritos anteriormente para uma vizinhança de 3 x 3 pixels em uma imagem.
- Após a ordenação dos nove valores de intensidade dos pixels na vizinhança considerada da imagem original, os novos valores do pixel central são calculados para cada filtro e substituídos na imagem resultante.

15	10	25	15	10	25	15	10	25	15	10	25		15	10	25
20	35	10	20	10	10	20	40	10	20	25	10		20	35	10
35	40	35	35	40	35	35	40	35	35	40	35		35	40	35
(a)			(b)			(c)			(d)				(e)		

Figura: Exemplos de filtros estatísticos de ordem em uma vizinhança de 3×3 pixels. (a) valores originais de intensidade; (b) filtro mínimo; (c) filtro máximo; (d) filtro da mediana; (e) filtro da moda.

- Nos filtros Gaussianos, os coeficientes da máscara são derivados a partir de uma função Gaussiana bidimensional.
- ullet A função Gaussiana discreta com média zero e desvio padrão σ é definida como

$$G(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(\frac{-(x^2+y^2)}{2\sigma^2}\right)$$

que é usada como um filtro de suavização.

• Um gráfico dessa função é mostrada na figura a seguir.

Figura: Função Gaussiana bidimensional com média (0,0) e $\sigma=1$.

- Características úteis em processamento de imagens:
 - Em duas dimensões, funções Gaussianas são simétricas com relação à rotação. Isso significa que o grau de suavização realizado pelo filtro será o mesmo em todas as direções, ou seja, o filtro é isotrópico.
 - A suavização da imagem é realizada por meio da substituição de cada pixel por uma média ponderada dos pixels vizinhos, tal que o peso dado a um vizinho decresce monotonicamente com a distância do pixel central.
 - ② A largura de um filtro Gaussiano, ou seja, seu grau de suavização está relacionado com o parâmetro σ . Quanto maior o valor de σ , maior a largura do filtro Gaussiano e maior o seu grau de suavização.
 - Funções Gaussianas são separáveis, portanto, uma convolução Gaussiana pode ser realizada processando a imagem com um filtro Gaussiano unidirecional e então processando o resultado com o mesmo filtro unidirecional orientado ortogonalmente ao filtro Gaussiano utilizado no primeiro estágio. Esse processo reduz consideravelmente o número de operações utilizadas na convolução Gaussiana.

 Uma maneira comum de aproximar os coeficientes de um filtro Gaussiano é utilizar a expansão binomial

$$(a+b)^{n} = \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} a^{n-k} b^{k}$$

 Os coeficientes da expansão binomial podem ser obtidos por meio do triângulo de Pascal, cujas sete primeiras linhas são mostradas abaixo.

- Uma máscara unidimensional de tamanho *n* pode ser obtida tomando-se a *n*-ésima linha do triângulo de Pascal.
- Por exemplo, a máscara

$$\frac{1}{16} \boxed{1 \mid 4 \mid 6 \mid 4 \mid 1}$$

pode ser obtida pela quinta linha do triângulo de Pascal, dividida por um fator de escala igual à soma dos coeficientes da máscara, ou seja, 2^{n-1} .

ullet O desvio padrão σ do filtro Gaussiano pode ser obtido como

$$\sigma = \frac{\sqrt{n-1}}{2}$$

ullet Uma máscara bidimensional para implementar o filtro Gaussiano com $\sigma=1.0$ pode ser obtida a partir de duas máscaras unidimensionais horizontal e vertical:

	1								1	4	6	4	1
1	4	1						1	4	16	24	16	4
$\frac{1}{16}$	6	$\frac{1}{16}$	1	4	6	4	1	$=\frac{1}{256}$	6	24	36	24	6
10	4	10					•	250	4	16	24	16	4
	1								1	4	6	4	1

(13)

ullet Exemplo de aplicação do filtro Gaussiano 5 imes 5 mostrado em 13.

Figura: Filtro Gaussiano. (a) imagem original; (b) imagem suavizada por filtro Gaussiano.

- As técnicas de filtragem passa-baixa para redução de ruído, como os filtros estatísticos da média ou mediana, podem suprimir detalhes importantes da imagem, por exemplo, linhas finas ou cantos de objetos.
- Isso ocorre porque tais filtros não levam em consideração se um determinado pixel está localizado sobre uma borda ou se os pixels vizinhos apresentam uma certa orientação.
- As figuras (a) e (b) ilustram regiões contendo uma linha vertical e o canto de um objeto em uma imagem, respectivamente, tal que a aplicação de um filtro da mediana causaria a supressão de detalhes.

Figura: Supressão de detalhes em duas regiões após filtragem da mediana. (a) linha fina vertical; (b) canto de objeto.

- Máscaras não retangulares podem ser utilizadas para reduzir o efeito da supressão de determinados detalhes da imagem.
- Por exemplo, a máscara ilustrada na figura a seguir, centrada em um pixel de interesse, poderia ser aplicada em casos nos quais linhas horizontais e verticais necessitam ser preservadas na filtragem da mediana.

Figura: Vizinhança para preservar linhas horizontais e verticais na filtragem da mediana.

- Uma das primeiras técnicas de filtragem com preservação de bordas foi proposta por Kuwahara et al. (1976).
- O filtro considera uma região quadrada de dimensões $(2k-1) \times (2k-1)$ pixels ao redor de um pixel (x,y) da imagem.
- ullet Essa região é subdividida em quatro janelas de $k \times k$ pixels, conforme figura a seguir.

Figura: Máscaras de Kuwahara et al. (1976).

- A variância dos níveis de cinza para cada janela é calculada.
- O valor de cada pixel (x, y) da imagem é substituído pela média dos níveis de cinza da janela, cuja variância é mínima.
- O método baseia-se no fato de que as regiões contendo bordas possuem uma variância mais alta do que regiões homogêneas, tal que a média é selecionada sobre as regiões suaves que não cruzam bordas.
- O algoritmo a seguir ilustra a técnica de filtragem com preservação de bordas baseada no cálculo de variância de um conjunto de máscaras.

Algoritmo 4 Filtragem com preservação de bordas

- 1: for cada pixel f(x, y) da imagem de entrada do
- 2: calcular variância de cada máscara do conjunto sobre o pixel f(x, y).
- 3: escolher a máscara cuja variância é mínima.
- 4: atribuir ao pixel f(x, y) na imagem de saída a intensidade média na máscara escolhida.
- 5. end for

- Métodos similares para preservação de bordas baseada no cálculo da variância de um conjunto de máscaras foram propostos por outros autores.
- Tomita e Tsuji (1977), Nagao e Matsuyama (1979) e Somboonkaew et al. (1999) propõem um conjunto de cinco, nove e doze máscaras, respectivamente, de 5×5 pixels para o processo de suavização.
- Nesses métodos, o valor de cada pixel da imagem é substituído pela média da máscara cuja variância é mínima.

Figura: Máscaras de Tomita e Tsuji (1977).

Figura: Máscaras de Nagao e Matsuyama (1979).

Figura: Máscaras de Somboonkaew et al. (1999).

- Outra técnica de filtragem com preservação de bordas foi proposta por Wang, Vagnucci e Li (1981). O filtro, conhecido como filtro ponderado pelo inverso do gradiente (GIW, do inglês, Gradient Inverse Weighted Filter), é baseado no princípio de que as variações dos níveis de cinza no interior de uma região são menores do que as variações entre regiões.
- ullet A diferença entre os níveis de cinza de pixels em uma vizinhança V é definida como

$$\Delta(x,y) = |f(x+m,y+n) - f(x,y)|$$

em que f(x, y) é o nível de cinza do pixel (x, y), m e n podem assumir os valores -1, 0 ou 1, mas não podem ser ambos iguais a zero.

ullet O inverso absoluto do gradiente no ponto (x,y) é definido a partir dessa diferença como

$$\delta(x,y) = \begin{cases} \frac{1}{\Delta(x,y)}, & \text{se } \Delta(x,y) \neq 0\\ 2, & \text{se } \Delta(x,y) = 0 \end{cases}$$

• A saída do filtro GIW possui a forma

$$f'(x,y) = 0.5 f(x,y) + 0.5 g(x,y)$$
(14)

em que

$$g(x,y) = \sum_{m,n \in V} W(m,n) \ f(x+m,y+n) \tag{15}$$

е

$$W(m,n) = \frac{\delta(x,y)}{\sum_{x,y} \delta(x,y)}$$
 (16)

Wang (1992) aperfeiçou o filtro GIW para a forma

$$f'(x,y) = K(x,y) f(x,y) + [1 - K(x,y)] g(x,y)$$
(17)

em que

$$K(x,y) = \frac{\sigma_{g(x,y)}^2}{\sigma_{f(x,y)}^2 + \sigma_{g(x,y)}^2}$$
(18)

- Assume-se que f(m,n), para m,n=0,1,2,..., são variáveis aleatórias independentes que seguem uma distribuição Gaussiana com variância $\sigma_f^2(x,y)$. A variância de g(x,y) é dada por $\sigma_{g(x,y)}^2$.
- Da equação 18, se $\sigma_{f(x,y)}^2$ e $\sigma_{g(x,y)}^2$ forem iguais, então K(x,y)=0.5, obtendo-se o filtro original apresentado na equação 14. Entretanto, em muitas situações, $\sigma_{g(x,y)}^2$ é muito menor que $\sigma_{f(x,y)}^2$.

• Como um valor exato para $\sigma_{g(x,y)}^2$ não é disponível, Wang (1992) considera W(x,y) como uma constante no ponto (x,y) para se obter um valor aproximado dado por

$$\sigma_{g(x,y)}^2 = \sigma_{f(x,y)}^2 \left[\sum_{m,n \in V} W(m,n)^2 \right]$$
 (19)

• Substituindo a equação 19 em 18, obtém-se

$$K(x,y) = \frac{D(x,y)}{1 + D(x,y)} \tag{20}$$

em que
$$D(x,y) = \sum_{m,n \in V} W(x,y)^2$$
.

• Tanto o filtro GIW original quanto sua versão aperfeiçoada envolvem apenas operações aritméticas simples e não requerem o ajuste de parâmetros.

- Adelmann (1999) propõe uma técnica de filtragem para redução de ruído, procurando preservar detalhes finos da imagem.
- Inicialmente, um teste é realizado para cada pixel da imagem para determinar se ele está localizado sobre uma borda, considerando-se cada uma das possíveis orientações representadas pelas máscaras de tamanho 5 x 5 pixels mostradas na figura a seguir.

Figura: Máscaras de Adelmann (1999) para detecção de bordas em diferentes orientações. (a) horizontal; (b) vertical; (c)-(d) diagonais.

- A média dos pixels dispostos de acordo com cada uma dessas orientações é
 calculada com respeito ao pixel central da vizinhança, seguida por um processo de
 diferenciação, o qual consiste na multiplicação de uma matriz de 1 × 2 pixels com
 um núcleo de diferenciação de 1 × 2 pixels com valores -1 e 1, cujo objetivo é
 determinar a presenca de borda.
- O processo de diferenciação para a orientação da figura anterior (a) é ilustrado na figura a seguir, em que \overline{X}_1 e \overline{X}_2 representam a média calculada para cada linha, no interior da vizinhança do pixel.

Figura: Processo de diferenciação para a orientação horizontal.

- Quanto maior a diferença absoluta $|\overline{X}_1 \overline{X}_2|$, mais pronunciada é a borda.
- A diferença mais alta entre todas as orientações é selecionada.
- Flutuações mínimas nos níveis de cinza podem ocorrer mesmo em regiões praticamente homogêneas (planas) da imagem, tal que a diferença pode ser comparada com um limiar para determinar o que deve ou não ser preservado como borda.
- Finalmente, o valor do pixel central da vizinhança é substituído por uma média calculada para os pixels dispostos de acordo com uma das máscaras da figura a seguir, dependendo da orientação que a borda foi estimada.

Figura: Máscaras para cálculo do pixel central.

- Caso o pixel central não esteja sobre uma borda, ou seja, o pixel pertence a uma região plana da imagem, o valor do pixel central é substituído pela média dos pixels mostrados na figura (e).
- Dessa forma, pode-se obter uma suavização mais acentuada e mais efetiva em termos de redução de ruído nessas áreas da imagem.

Filtros Passa-Altas

- Os filtros passa-altas podem ser usados para realçar certas características presentes na imagem, tais como bordas, linhas ou regiões de interesse.
- Dois exemplos de filtros passa-altas são mostrados a seguir:

$$h_2 = \begin{array}{|c|c|c|c|c|} \hline -1 & -1 & -1 \\ \hline -1 & 8 & -1 \\ \hline -1 & -1 & -1 \\ \hline \end{array}$$

Filtros Passa-Altas

 A figura (b) mostra o resultado da aplicação do filtro passa-alta h₂ sobre a imagem da figura (a).

Figura: Filtro passa-alta. (a) imagem original; (b) resultado após aplicação de filtro passa-alta.

Filtragem no Domínio de Frequência

- A base matemática das técnicas de filtragem no domínio de frequência é o teorema da convolução.
- Seja g(x, y) a imagem formada pela convolução (denotada pelo símbolo *) da imagem f(x, y) com um operador linear h(x, y), ou seja

$$g(x,y) = f(x,y) * h(x,y)$$

 Então, pelo teorema da convolução, a seguinte relação no domínio de frequência é satisfeita

$$G(u, v) = F(u, v)H(u, v)$$

em que G, F e H são os resultados obtidos pela aplicação da transformada de Fourier nas imagens g, f e h, respectivamente.

 Na terminologia de sistemas lineares, a transformada H(u, v) é denominada função de transferência do filtro.

Filtragem no Domínio de Frequência

- O problema consiste, então, em definir a função H(u, v) que conduza à imagem desejada G(u, v).
- A transformada inversa, $F^{-1}\{G(u,v)\}$, define a imagem filtrada no domínio espacial g(x,y).

- O objetivo de um filtro passa-baixa é manter os componentes de baixa frequência e reduzir os componentes das bandas de alta frequência.
- Um filtro passa-baixa ideal pode ser representado pela função de transferência

$$H(u,v) = \begin{cases} 1, \text{ se } D(u,v) \le D_0 \\ 0, \text{ se } D(u,v) > D_0 \end{cases}$$
 (21)

em que D_0 é a frequência de corte medida a partir da origem e D(u, v) é a distância do ponto (u, v) até a origem do plano da frequência, ou seja

$$D(u, v) = \sqrt{u^2 + v^2}$$
 (22)

 Um gráfico em perspectiva e a seção transversal de um filtro passa-baixa são mostrados na figura a seguir.

Figura: Filtro passa-baixa. (a) gráfico da função de transferência; (b) seção transversal do filtro.

- Os filtros passa-baixas considerados aqui s\u00e3o radialmente sim\u00e9tricos com respeito \u00e0
 origem.
- A especificação de filtros radialmente centrados em um quadrado de frequência é baseada na hipótese de que a origem da transformada de Fourier está centrada no quadrado.

- Pode-se observar que, de acordo com a equação 21, todas as frequências contidas dentro do círculo de raio D_0 não sofrem atenuações, enquanto todas as frequências fora deste círculo são completamente atenuadas, por isso, o termo filtro *ideal*.
- Assim como no domínio espacial, os filtros passa-baixas no domínio de frequência causam uma suavização da imagem, uma vez que as altas frequências, correspondendo às transicões abruptas, são atenuadas.
- Tais filtros tendem a minimizar o efeito de ruído, entretanto, diminuem a nitidez da imagem.

ullet O filtro passa-baixa de Butterworth de ordem n é dado pela função de transferência

$$H(u, v) = \frac{1}{1 + [D(u, v)/D_0]^{2n}}$$

- Essa função define um filtro passa-baixa que não apresenta a transição abrupta na frequência de corte, como ocorre com o filtro passa-baixa ideal.
- Um gráfico em perspectiva e a seção transversal de um filtro passa-baixa são mostrados a seguir.

- Normalmente, o valor de frequência de corte D₀ corresponde a uma fração do valor máximo de H(u, v).
- Pode-se verificar facilmente que, quando $D(u,v)=D_0$, então H(u,v)=0.5, ou seja, o valor de H(u,v) reduz-se para 50% de seu valor máximo.
- Outro valor tipicamente utilizado é $1/\sqrt{2}$ do valor máximo de H(u,v), resultando em

$$H(u,v) = \frac{1}{1 + [\sqrt{2} - 1][D(u,v)/D_0]^{2n}} \approx \frac{1}{1 + 0.414[D(u,v)/D_0]^{2n}}$$

- As transições bruscas de um sinal estão associadas aos componentes de alta frequência do espectro de Fourier.
- Assim, um realce da imagem, com ênfase nessas transições, pode ser obtido deixando-se passar as altas frequências e atenuando-se as demais.
- As transições entre diferentes regiões da imagem tornam-se mais nítidas, entretanto, possuem o efeito indesejado de enfatizar o ruído que possa existir na imagem.

 Um filtro passa-alta ideal, ilustrado na figura a seguir, é dado pela função de transferência

$$H(u,v) = \begin{cases} 0, \text{ se } D(u,v) \leq D_0 \\ 1, \text{ se } D(u,v) > D_0 \end{cases}$$

em que D_0 é a frequência de corte medida a partir da origem, no plano da frequência, e D(u,v) é definida como anteriormente na equação 22.

Figura: Filtro passa-alta. (a) gráfico da função de transferência; (b) seção transversal do filtro para n=1.

 O filtro passa-alta de Butterworth de ordem n, ilustrado na figura a seguir, é definido pela função

$$H(u,v) = \frac{1}{1 + [D_0/D(u,v)]^{2n}}$$

- Assim como no caso do filtro passa-baixa de Butterworth, quando $D(u, v) = D_0$, o valor de H(u, v) reduz-se para 50% do seu valor máximo.
- Um valor tipicamente utilizado é $1/\sqrt{2}$ do valor máximo de H(u, v), resultando em

$$H(u,v) = \frac{1}{1 + [\sqrt{2} - 1][D_0/D(u,v)]^{2n}} \approx \frac{1}{1 + 0.414[D_0/D(u,v)]^{2n}}$$

- Um filtro passa-faixa permite a passagem das frequências localizadas em uma faixa ou banda específica, enquanto atenua ou completamente suprime todas as outras frequências.
- Um filtro passa-faixa ideal é dado pela função

$$H(u,v) = \begin{cases} 0, \text{ se } D(u,v) < D_0 - \frac{W}{2} \text{ ou se } D(u,v) > D_0 + \frac{W}{2} \\ 1, \text{ se } D_0 - \frac{W}{2} \le D(u,v) \le D_0 + \frac{W}{2} \end{cases}$$

em que W é a largura da banda, D_0 é o raio da região para passagem das frequências de corte em torno da origem e D(u, v) é definida como anteriormente na equação 22.

 Um gráfico em perspectiva e a seção transversal de um filtro passa-faixa são mostrados na figura abaixo.

 O filtro passa-faixa de Butterworth de ordem n, ilustrado na figura a seguir, é definido pela função

$$H(u,v) = 1 - \frac{1}{1 + [W \ D(u,v)]/[D^2(u,v) - D_0^2]^{2n}}$$

em que W, D_0 e D(u,v) são definidos de maneira similar ao filtro passa-faixa ideal.

• Um gráfico em perspectiva e a seção transversal de um filtro passa-faixa de Butterworth são mostrados na figura a seguir.

• Assim como no caso do filtro passa-baixa de Butterworth, quando $D(u, v) = D_0$, o valor de H(u, v) reduz-se para 50% do seu valor máximo. Um valor tipicamente utilizado é $1/\sqrt{2}$ do valor máximo de H(u, v), resultando em

$$H(u,v) = \frac{1}{1 + [\sqrt{2} - 1][D_0/D(u,v)]^{2n}} \approx \frac{1}{1 + 0.414[D_0/D(u,v)]^{2n}}$$

- A técnica de meios-tons (halftoning) é um processo que emprega padrões formados por pontos pretos e brancos para reduzir o número de níveis de cinza de uma imagem.
- Devido à tendência do sistema visual humano em atenuar a distinção entre pontos com tons diferentes, os padrões de pontos pretos e brancos produzem um efeito visual como se a imagem fosse composta de tons de cinza claros e escuros.
- Essa técnica é bastante antiga e muito utilizada na impressão de imagens em jornais e revistas, em que apenas os níveis preto (tinta) e branco (papel) são necessários.
- Há diversos métodos para geração de imagens meios-tons, em particular:
 - pontilhado ordenado (ordered dithering).
 - pontilhado com difusão de erro (dithering with error diffusion).

- A técnica de meios-tons consiste, basicamente, em imprimir em cada unidade de resolução (por exemplo, 0.25 × 0.25 cm²) um círculo de tinta preta cujo tamanho é inversamente proporcional à intensidade da imagem na unidade de resolução.
- Dessa forma, os pontos são menores nas regiões claras da imagem e maiores nas regiões escuras.
- Exemplo de um conjunto de regiões de 2 × 2 pixels utilizado para formar cinco padrões é mostrado a seguir.

Figura: Cinco padrões de 2×2 pixels.

- Alguns cuidados são necessários durante a geração dos padrões:
 - os pontos devem ser dispostos de maneira a minimizar efeitos indesejáveis na imagem resultante, por exemplo, a ocorrência de linhas horizontais ou verticais em uma parte da imagem.
 - se um pixel for preto no padrão i, ele também deve ser preto em todos os padrões j > i, reduzindo a ocorrência de falsos contornos na imagem.
- Padrões de tamanho 3×3 e 3×2 pixels são mostrados a seguir.

Figura: Dez padrões de 3×3 pixels.

Figura: Sete padrões de 3×2 pixels.

- Para padrões com dimensões $n \times m$ pixels e dois níveis (branco e preto), o número de arranjos distintos é nm+1.
- É importante ocorrer um equilíbrio entre a resolução espacial e a profundidade da imagem, conceitos discutidos anteriormente.
- O uso de padrões de 3 x 3 pixels limita a resolução espacial para um terço em cada dimensão da imagem, entretanto, fornece 10 níveis de cinza.
- Evidentemente, a escolha da relação entre a resolução espacial e a profundidade da imagem depende da acuidade visual humana e da distância da qual a imagem é vista.

• Os conjuntos de padrões de 2×2 , 3×3 e 3×2 pixels mostrados anteriormente podem ser representados, respectivamente, por meio das matrizes ilustradas a seguir, tal que um determinado padrão i é formado pela ativação dos elementos da matriz cujos valores são menores do que i.

6 8	F		
1 0			i l
2	_	_	l .

Figura: Padrões representados por matrizes.

- Devido a essa ordem na qual os padrões são formados, essa técnica de meios-tons é conhecida como pontilhado ordenado.
- Os valores das células da matriz podem ser utilizados como limiares: se o valor (normalizado) do pixel for menor que o número correspondente à célula da matriz, o pixel será substituído pelo valor preto, caso contrário, será substituído pelo valor branco.

(c)

 Padrões maiores (quadrados) podem ser gerados a partir de matrizes de ordem 2ⁿ × 2ⁿ, conforme a relação de recorrência:

$$D_n = \begin{bmatrix} 4D_{n/2} + 2U_{n/2} & 4D_{n/2} \\ 4D_{n/2} + U_{n/2} & 4D_{n/2} + 3U_{n/2} \end{bmatrix} \qquad n \ge 4$$

em que D_2 é a matriz de ordem 2×2 , ilustrada na figura (a) anterior, e U_n é uma matriz $n \times n$, cujos elementos são todos unitários.

- Técnicas de pontilhado com difusão de erro procuram distribuir a diferença entre o valor exato de cada pixel e seu valor aproximado a um conjunto de pixels adjacentes.
- Algumas propostas para distribuição de erro em técnicas de pontilhado são mostradas nas figuras a seguir.

	f(x,y)	7/16
3/16	5/16	1/16

Floyd e Steinberg

			f(x,y)		32/200	
12/200		26/200		30/200		16/200
	12/200		26/200		12/200	
5/200		12/200		12/200		5/200

Stevenson e Arce

		f(x,y)	8/32	4/32
2/32	4/32	8/32	4/32	2/32

Burkes

		f(x,y)	8/42	4/42
2/42	4/42	8/42	4/42	2/42
1/42	2/42	4/42	2/42	1/42

Stucki

		f(x,y)	5/32	3/32
2/32	4/32	5/32	4/32	2/32
	2/32	3/32	2/32	

Sierra

		f(x,y)	7/48	5/48
3/48	5/48	7/48	5/48	3/48
1/48	3/48	5/48	3/48	1/48

Jarvis, Judice e Ninke

 Um algoritmo para a técnica de pontilhado com difusão de erro de Floyd e Steinberg é apresentado a seguir.

Algoritmo 5 Técnica proposta por Floyd e Steinberg (1976)

```
1: entrada: imagem f(x, y) com 256 níveis de cinza
 2: saída: imagem g(x, y) com 2 níveis de cinza
   for x = 0 até M - 1 do
     for y = 0 até N - 1 do
        if f(x, y) < 128 then
 5:
          g(x,y) = 0 // \text{ cor branca}
6:
        else
7:
           g(x, y) = 1 // \text{ cor preta}
8:
        end if
9:
        // armazenar o erro (diferença entre o valor exato do pixel e o valor aproximado)
10:
        erro = f(x, y) - g(x, y) * 255
11:
        // distribuir o erro aos pixels adjacentes
12:
        f(x+1,y) = f(x+1,y) + (7/16)*erro
13:
        f(x-1, y+1) = f(x-1, y+1) + (3/16)*erro
14:
        f(x, y + 1) = f(x, y + 1) + (5/16)*erro
15.
        f(x+1,y+1) = f(x+1,y+1) + (1/16)*erro
16.
      end for
17.
18: end for
```

- A ordem na qual a imagem é percorrida pode produzir resultados diferentes no processo de meio-tom.
- A varredura da esquerda para a direita (figura (a) a seguir) pode gerar padrões indesejados ou a impressão de uma certa direcionalidade na imagem resultante.
- Para evitar esses efeitos, uma opção é alternar a direção de varredura a cada linha (figura (b)).
- Uma outra abordagem utiliza curvas de preenchimento do espaço para distribuir o erro de quantização da imagem.

 A curva de Hilbert, proposta por David Hilbert em 1891 e baseada nas curvas de preenchimento descritas pelo matemático italiano Giuseppe Peano em 1890, possui características úteis para geração de imagens em meios-tons, dentre elas o percurso que visita exatamente uma vez cada ponto disposto em uma grade quadrada (figura (c)).

Figura: Formas de varredura da imagem. (a) unidirecional; (b) alternada; (c) curva de Hilbert

- As figuras (c) e (d) a seguir mostram as imagens obtidas pela aplicação das técnicas de pontilhado ordenado e pontilhado com difusão de erro, formadas com os padrões de 3×3 mostrados anteriormente.
- A figura (b) mostra o resultado da conversão da imagem original da figura (a) por meio da técnica de limiarização global, em que pixels da imagem com valores iguais ou superiores a 150 são convertidos para a cor branca e valores inferiores a 150 são convertidos para a cor preta.
- Pode-se observar que, quando comparada com a técnica de meio-tom, a técnica de limiarização resulta em grande perda de detalhes finos.

Figura: Aplicação da técnica de meios-tons com os padrões da figura 20. (a) imagem original com 256 níveis de cinza; (b) imagem binária; (c) resultado obtido pelo pontilhado ordenado; (d) resultado obtido pelo pontilhado com difusão de erro.

Realce de Imagens Baseado em Cores

- As cores presentes em uma imagem desempenham um papel significativo no processo de identificação de objetos realizado tanto pelos seres humanos quanto pelos computadores.
- O sistema visual humano é capaz de discernir milhares de tons e intensidades de cores, comparado com apenas algumas dezenas de níveis de cinza.
- Algumas técnicas para realçar imagens por meio do uso de cores são apresentadas a seguir.

Transformação Pseudocor

- A transformação pseudocor converte uma imagem de níveis de cinza em uma imagem colorida, mapeando-se cada nível de cinza ou faixa de níveis em uma cor diferente.
- Uma função de mapeamento é mostrada a seguir, em que cada faixa de níveis de cinza é associada a uma cor diferente.

Essa técnica, também conhecida como fatiamento por densidade, pode ser útil
quando a imagem possui várias regiões de interesse com pouca variação de níveis de
cinza entre si, as quais podem ser realçadas pela atribuição de uma cor diferente a
cada uma das regiões.

Transformação Pseudocor

 A figura a seguir mostra uma imagem em níveis de cinza e o resultado da transformação pseudocor.

- A principal desvantagem da técnica de transformação pseudocor é que certos detalhes da imagem podem ser perdidos pelo uso reduzido de um conjunto de cores.
- Além disso, contornos artificiais também podem ser criados entre as regiões pela associação de uma única cor a uma faixa de níveis de cinza.

Realce com Transformação HSI

- O modelo HSI é apropriado para realce de imagens coloridas, pois as informações de matiz (H), saturação (S) e intensidade (I) da imagem são representadas separadamente.
- Um exemplo de realce de imagens coloridas é mostrado a seguir:
 - na imagem colorida original, representada com o modelo RGB, alguns detalhes não estão nítidos.
 - após a conversão da imagem para o modelo HSI, seu componente de intensidade é equalizado.
 - a imagem resultante é novamente convertida para o modelo RGB, cujos detalhes são visivelmente mais aparentes.
 - ▶ a distribuição das intensidades antes e após a equalização são também apresentadas.

Realce com Transformação HSI

Figura: Realce com transformação HSI. (a) imagem original (modelo RGB) (b) histograma de intensidade da imagem original; (c) imagem resultante após equalização e conversão para o modelo RGB; (d) histograma de intensidade da imagem equalizada.

Realce com Transformação HSI

- Uma aplicação da transformação HSI é a fusão de imagens multiespectrais com uma imagem pancromática (composta de apenas uma banda) de alta resolução espacial.
- No processo de fusão, a imagem composta por três bandas multiespectrais é transformada do modelo de cores RGB para o modelo HSI.
- A imagem associada à intensidade é então substituída pela banda pancromática.
 Posteriormente, a transformação inversa de HSI para RGB é aplicada, resultando em uma imagem multiespectral com melhor resolução espacial do que a imagem original.

Realce por Falsa Cor

- A técnica de realce por falsa cor utiliza um conjunto de cores para destacar certas regiões de interesse ou informações espectrais, auxiliando a interpretação das imagens.
- A transformação pode ser aplicada em imagens monocromáticas ou coloridas.
- Embora o resultado possa produzir imagens cujas cores não correspondam aos valores espectrais reais da cena, o realce por falsa cor pode melhorar significativamente a qualidade visual das imagens.

Realce por Falsa Cor

 Um exemplo de aplicação da técnica de realce por falsa cor, ilustrada na figura a seguir, é a redistribuição de cores em uma imagem de satélite de baixo contraste para tornar certos detalhes mais perceptíveis.

Figura: Realce por falsa cor. (a) imagem original; (b) imagem após redistribuição de cores.