Politechnika Warszawska Wydział Elektryczny

SPRAWOZDANIE Z PROJEKTU WIRTUALNA KAMERA "SPOLENS"

Autor:
Daniel Sporysz

Spis treści

1	1 Opis projektu	Opis projektu										$\frac{2}{2}$					
2	2 Wymagania technicz	Wymagania techniczne															
3	Funkcjonalność programu													2			
	3.1 Interfejs graficzny														 	•	2
	3.2 Translacja														 		3
	3.3 Rotacja														 		4
	3.4 Zoom														 	•	5
	3.5 Płaszczyzna ścina	jąca (Clipping	Plane)												 	•	6
4	Struktura pliku konfiguracyjnego											7					
	4.1 Przykładowy plik	konfiguracyjn	у												 		7
	4.2 Linie zaczynające	się od P													 		7
	4.3 Linie zaczynajace	się od C													 		7

1 Opis projektu

"Spolens" to program do generowania widoku na trójwymiarową przestrzeń, widzianego z wirtualnej kamery, której ruchami i parametrami sterować można za pomocą klawiatury. Konfiguracja położenia i koloru elementów w przestrzeni jest wczytywana z pliku przy starcie programu.

2 Wymagania techniczne

Do uruchomienia należy zainstalować Python 3.8, a następnie zainstalować moduł Pyglet do Python.

3 Funkcjonalność programu

3.1 Interfejs graficzny

Po wywołaniu programu, tworzone jest nowe okno w którym wyświetlany jest widok z wirtualnej kamery, klawisze sterujące oraz wartości parametrów.

 ${\bf W}$ zaznaczeniu @1 wypisana jest lista klawiszy sterujących wraz z nazwą akcji, która jest z nimi związana.

Zaznaczenie @2 wskazuje na aktualne wartości parametrow.

3.2 Translacja

Przesunięciem kontrolujemy za pomocą klawiszy:

- A/D w osi OY,
- W/S w osi OX,
- Q/E w osi OZ.

3.3 Rotacja

Rotacją kontrolujemy za pomocą klawiszy:

- F/H w osi OY,
- T/G w osi OX,
- R/Y w osi OZ.

3.4 Zoom

Przybliżeniem kontrolujemy za pomocą klawiszy Z/X. Dodatkowo informacja o wartości tego parametru jest wyświetlana w lewnym dolnym rogu. Jest to operacja różna od przesunięcia w osi OZ. Widać to po rozciągnięciu sześcianu.

3.5 Płaszczyzna ścinająca (Clipping Plane)

Linie, które są za płaszczyzną ścinającą (kamerą), są ignorowane przy rysowaniu. Zaś linie które przechodzą przez tą płaszczyznę, są przycinane do punktu przecięcia się płaszczyzny z linią. Zapewnia to poprawne wyświetlanie obrazu w każdej pozycji kamery.

Płaszczyzną ścinającą (clipping plane) sterujemy klawiszami C/V, a wartość parametru jest wyświetlana w lewym dolnym rogu.

4 Struktura pliku konfiguracyjnego

Plik w formacie .TXT składa się z linii w których ważny jest pierwszy znak, który określa typ danych jakie zawiera linia.

Tymi znakami są P i C, a linie które zaczynaja się z innym znakiem są ignorowane.

4.1 Przykładowy plik konfiguracyjny

```
p frontDownLeft 30 30 60
P frontDownRight 60 30 60
C frontDownLeft frontDownRight 1 0 0 1
P top 45 75 75
C frontUpLeft top 1 1 1 1
```

4.2 Linie zaczynające się od P

Linie zaczynające się od P (od Point), definiują punkty i zawierają dane w formacie:

Gdzie:

- [nazwa punktu] to unikalny identyfikator punktu, którego należy używać przy definiowaniu połączeń (lini),
- [x] [y] [z] to parametry położenia punktu w przestrzeni trójwymiarowej.

4.3 Linie zaczynajace się od C

Linie zaczynajace się od C (od Connection), definiują połączenia pomiędzy punktami i zawierają dane w formacie:

C [nazwa punktu] [nazwa punktu2] [R] [G] [B] [A]

Gdzie:

- [nazwa punktu] i [nazwa punktu2] to ID punktów między którymi biegnie linia,
- [R] [G] [B] [A] to parametry koloru w formacie RGBA w przedziale wartości od 0 do 1.