

# Normalisation – Part 3

Assignment Project Exam Help

Summary tand. Discussion

WeChat: cstutorcs



### **Summary of Normal Forms**

 1NF, 3NF and BCNF are popular in practice. Other normal forms are rarely used.

1NF: Assignment Project Exam Help

(part of the definition for the relational data model);
https://tutorcs.com
an intermediate result in the history of database design

theorie Chat: cstutorcs

**3NF:** lossless and dependencies can be preserved;

**BCNF**: lossless but dependencies may not be preserved.

- 3NF can only minimise (not necessarily eliminate) redundancy. So a relation schema in 3NF may still have update anomalies.
- A relation schema in BCNF eliminates redundancy.



# Why Denormalisation?

- Do we need to normalize relation schemas in all cases when designing a relational database?
- The normalisation process may degrade performance when data are frequently queried.

https://tutorcs.com

- Since relation schemas are decomposed into many smaller ones after normalisation, querication in order to return the results.
- Unfortunately, join operation is very expensive.
- When data is more frequently queried rather than being updated (e.g., data warehousing system), a weaker normal form is desired (i.e., denormalisation).



#### **Denormalisation**

- Denormalisation is a design process that
  - happens after the normalisation process,
  - is often perforing mount of the paysidak desight stage, and
  - reduces the number of relations that need to be joined for certain queries. https://tutorcs.com
- We need to distinguisMeChat: cstutorcs
  - Unnormalised there is no systematic design.
  - Normalised redundancy is reduced after a systematic design (to minimise data inconsistencies).
  - Denormalised redundancy is introduced after analysing the normalised design (to improve efficiency of queries)



#### **Trade-offs**



 A good database design is to find a balance between desired properties, then normalise/denormalise relations to a desired degree.

### **Trade-offs – Data Redundancy vs. Query Efficiency**

- Normalisation: No Data Redundancy but No Efficient Query Processing
- Data redundancies are eliminated in the following relations.

| STUDENT |                         |                           |           | Course             |      |
|---------|-------------------------|---------------------------|-----------|--------------------|------|
| Name    | SAudention              | nentæroje                 | ct Exam H | e <b>p</b> ourseNo | Unit |
| Tom     | 123456                  | 25/01/1988                |           | COMP2400           | 6    |
| Michael | 12345 <mark>8ttt</mark> | ) \$2.1/ <b>Q4(109</b> 55 | .com      | COMP8740           | 12   |

| WeChat cs FNPOrcs |                 |                 |  |  |  |  |  |
|-------------------|-----------------|-----------------|--|--|--|--|--|
| StudentID         | <u>CourseNo</u> | <u>Semester</u> |  |  |  |  |  |
| 123456            | COMP2400        | 2010 S2         |  |  |  |  |  |
| 123456            | COMP8740        | 2011 S2         |  |  |  |  |  |
| 123458            | COMP2400        | 2009 S2         |  |  |  |  |  |

• However, the query for "list the names of students who enrolled in a course with 6 units" requires 2 join operations.

```
SELECT Name, CourseNo FROM ENROL e, COURSE c, STUDENT s WHERE e.StudentID=s.StudentID and e.CourseNo=c.CourseNo and c.Unit=6;
```

## **Trade-offs – Data Redundancy vs. Query Efficiency**

- Denormalisation: Data Redundancy but Efficient Query Processing
- If a student enrolled 15 courses, then the name and DoB of this student need to be stored be stored by the student was a student of the stude

| https://tutereslaem |                  |               |                   |          |      |  |  |  |
|---------------------|------------------|---------------|-------------------|----------|------|--|--|--|
| Name                | StudentID        | DoB           | <u>CourseNo</u>   | Semester | Unit |  |  |  |
| Tom                 | 123 <b>456</b> C | had/ocsable o | <b>rcs</b> MP2400 | 2010 S2  | 6    |  |  |  |
| Tom                 | 123456           | 25/01/1988    | COMP8740          | 2011 S2  | 12   |  |  |  |
| Michael             | 123458           | 21/04/1985    | COMP2400          | 2009 S2  | 6    |  |  |  |

 However, the query for "list the names of students who enrolled a course with 6 units" can be processed efficiently (no join needed).

SELECT Name, CourseNo FROM ENROLMENT WHERE Unit=6;

#### **Discussion**

- Both normalisation and denormalisation are useful in database design.
  - Normalisation: obtain database schema avoiding redundancies and data inconsistencies
  - Denormalisation: psin/nonalized relation schemata for the sake of better query processing

#### WeChat: cstutorcs

- Some problems of (de-)normalisation:
  - FDs cannot handle null values.
  - To apply normalisation, FDs must be fully specified.
  - The algorithms for normalisation are not deterministic, leading to different decompositions.