Computer Architecture

Fall, 2022 Week 8 2021.10.30

組別	:	簽名:_	
		_	

Group6

Which of the following statements are true?

83

- (A) 0 10000101 01001100000000000000000 in IEEE 754 represents 83:375 in decimal.
- (C)If some values are divided by zero, MIPS will raise an exception.
- (D)In bias 15, 01101 represents -2.

1+4+8

Ans: (B),(D)

(A)
$$1+2^{-\frac{7}{4}}+2^{-\frac{6}{5}}+2^{-6}\approx 1.296875$$
, 1.296875 x $2^{6}=83$

(B)
$$128+2-129=3$$
 -1.518125 $\times 2^3=-12.625$
 $1+2^{-1}+2^{-4}+2^{-6}=1.518125$

Please explain/fill in the following according to the IEEE 754 standard:

- a. Why is there a need for the designation of denormal (subnormal numbers) in the standard?
- b. Why does the value of the mantissa (significand) always ignores the digit left to the decimal point?
- c. Why is there a need for the biased notation (instead of a 2's complement representation for signed numbers)?
- d. How many different NaN values are there in the single-precision floating point number standard? (Answer can be presented in exponent notation)

Ans: 27-Eunderflow

a. To exploit the FP range as much as possible

C. To make comparison easier

$$d. \quad 2^{24}-1 \quad (2^{23}-1)\times 2$$

Please fill out the table according to steps of 1011/0110 and the following flow chart. Write down Quotient and Remainder.

Step Rema		inder	Divisor	Description
0	0000	1011	0110	Initialization
1.1	0001	0110	1210	shift left
1. 2	1011	0110		substiate
1.36	00/0	1100		Restore original value shift left
2.2	1100	1100		Substrate
2.36	0101	1000		Restore original value shift left
3.2	ш	1000		substlate
3.3b	1911	0000		Restore original value shift left
4,2	0101	0000		substrate
4,3a	1210	0001		shift left add 1
done	0101	0001		shift remainder right

Quotient: Remainder:

Hint:

To fill the Description, there are some options:

- Shift xxxxxxxxxx left/right
- xxxxxxxxxx < 0 / > 0
- Restore original value
- Subtract/Add xxxxxxx
- Set the new significant bit to 1/0

.

Which of the following statements are true?

- (a) The unsigned multiplier of two 32-bit numbers requires a 32-bit register for multiplicand and a 32-bit register for product.
- (b) Based on 32-bit IEEE 754 standard's single precision, no other floating point number is greater than 0x7f800000.
- (c) Hi and Lo registers are used in both multiplication and division, and Hi would store the quotient in division.
- (d) If there were only 16 bits for significand field in floating point representation, it is equivalent to 4 decimal digits of precision.
- (e) For 32-bit unsigned division, we only need 32 iterations and shift one register to get the correct result.
- (f) By IEEE-754 single precision floating-point representation, the largest positive normalized number is $+(1-2^{-23})\times 2^{+127}$.
- \checkmark (g) Exponents with all 1's are reserved for $\pm \infty$ and NaN.

Ans: B.D.E,G

(A) 64 bit

(C, H): remainder, Lo: quotient

(F) (2-2"3) x 2"11

True or False:

- A. when we use mult \$11, \$t2, we will push most significant 32 bits to lo and least significant 32 bits to hi.
- B. In multiply version 2 we will place multiplier to product register's right hand and shift right until the multiply end.
- C. Divide version 1 and multiply version 1 have same repetition times.
- D. when we use div \$11, \$12, we will push remainder to hi and quotient to lo, and we can use mflo \$13 and mfhi \$14 to copy the lo and hi value to register t3 and t4.
- E. For 32-bit IEEE 754 floating-point standard, the smallest positive single precision denormalized number is: $0.0000\ 0000\ 0000\ 0000\ 0000$ 0000 0012 x 2 $^{-126}$.
 - F. 0.687510 = 0.01112
- G. In the IEEE 754 floating-point representation, the precision of represented numbers is determined by the size of exponent.
 - H. In the IEEE 754, we use 2's complement in exponent field.

Ans: B, D, E

- (C) mul: 32 of cles, div: 33 cycles
- (F) 1.687510 = 0,10112
- (G) Significant-bit number
- (H) biased notation

Below are some steps for performing a basic floating-point multiplication. Please order the steps.

- a. Normalize the product and check for overflow/underflow when shifting
- b. Add the exponents of operands to get the exponent of the product
- c. Round the mantissa and renormalize when necessary
- d. Multiply the mantissa of operands
- e. Set the sign of the product

Ans: b. d. a. c, e

Half-precision floating-point (FP16) has 1 bit of signed bit, 5 bits of exponent, and 10 bits of mantissa. The exponent uses bias of 15.

S	Exponent				Significand										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

For the following question, calculate the results and represent them in FP16 bit representation:

1)
$$13_{(10)}$$
2) $1.111_{(2)} \times 2^{4} - 14 - 1.000_{(2)} \times 2^{4} - 13$
3) $1024_{(10)} \times 512_{(10)}$
(hint: $512 = 2^{9}$, $1024 = 2^{10}$)
$$= -1 \times 2^{-17}$$
Ans: 0 lools 1010000000
$$= -15 = -14$$
(2) overflow
$$= -0.0001 \times 2^{-13} = -0.001 \times 2^{-14} \text{ (denormalized)}$$
(3) overflow
$$= 0.1111 = 0.00000000$$

$$= 0.1111 = 0.00000000$$