Devoir maison 9.

À rendre le lundi 21 mars 2022

Exercice 1

Les questions sont indépendantes entre elles et portent sur différentes notions d'algèbre linéaire.

Structure d'espace vectoriel

Dans chaque cas, déterminer si F est un sous-espace vectoriel de l'espace vectoriel E, ou non.

1°)
$$F = \{(x, y, z) \in \mathbb{R}^3 / (x+1)^2 + z - 4y = (x-1)^2\}$$
 avec $E = \mathbb{R}^3$.

2°)
$$F = \{(x, y, z) \in \mathbb{R}^3 / xy = 0\} \text{ avec } E = \mathbb{R}^3.$$

3°)
$$F = \{f - g / f : \mathbb{R} \to \mathbb{R} \text{ et } g : \mathbb{R} \to \mathbb{R} \text{ sont croissantes} \} \text{ avec } E = \mathcal{F}(\mathbb{R}, \mathbb{R}).$$

Intersection de sous-espaces vectoriels

On note $E = \mathbb{R}^{\mathbb{N}}$ l'espace des suites réelles.

Soit F, G et H les sous-espaces vectoriels de E suivants :

$$F = \{ u \in E \ / \ \forall n \in \mathbb{N}, \ u_{n+2} + u_{n+1} - 2u_n = 0 \}$$

$$G = \{ u \in E \ / \ \forall n \in \mathbb{N}, \ u_{n+2} - u_{n+1} - 6u_n = 0 \}$$

$$H = \{ u \in E \ / \ \forall n \in \mathbb{N}, \ u_{n+2} - 2u_{n+1} - 3u_n = 0 \}.$$

On répondra aux deux questions suivantes sans résoudre les relations de récurrence linéaires d'ordre 2.

- **4°)** Montrer que $F \cap G$ est une droite vectorielle.
- 5°) Montrer que F et H sont en somme directe.

Sous-espaces vectoriels supplémentaires et applications linéaires

 6°) Soit E un \mathbb{C} -espace vectoriel.

Soit
$$f \in \mathcal{L}(E)$$
 tel que $f \circ f = -\operatorname{id}_E$.
On note $V = \{x \in E \ / \ f(x) = ix\}$ et $W = \{x \in E \ / \ f(x) = -ix\}$.
Montrer que : $E = V \oplus W$.

Projection

7°) On note
$$E = \mathcal{M}_n(\mathbb{R})$$
.
Soit $p: E \to E$
$$A \mapsto \frac{1}{2}(A + {}^{t}A)$$

Montrer que p est une projection et la caractériser.