

Aircraft Collision Avoidance Controller

Presenters: Adit Negi, Jay Barot

CS6376: Hybrid and Embedded Systems Instructor: Professor Abhishek Dubey

Vanderbilt University, Fall 2023

Introduction

The **traffic collision avoidance system (TCAS)** has been a vital safety feature in large transport aircraft since the 1990s.

It has **proven** highly **effective** in preventing midair collisions.

However, as we look to the **future** of air traffic control and management, **challenges** arise.

High-density airspace and the integration of **unmanned aerial vehicles (UAVs)** pose new complexities.

Related Work

The **Aircraft Collision Avoidance System X (ACAS X)** introduces a partially observed Markov decision process for future collision avoidance.

ACAS X focuses on reducing collision risk and false alarms, primarily issuing **vertical avoidance** actions due to computation and storage constraints.

Traditional radar-based systems face limitations in coverage, restricting implementation to close encounter scenarios and increasing pilot workload.

ACAS Xp, a future version, relies solely on **autonomous dependent surveillance-broadcast (ADS-B)** for broader application in general aviation aircraft.

Autonomous Dependent Surveillance Broadcast (ADS-B)

ADS-B is a **vital component of the U.S. Federal Aviation Administration's**NextGen air transportation system.

It broadcasts state and trajectory intent information from navigation satellites to other aircraft and ground stations.

ADS-B's **broader surveillance coverage** compared to radar facilitates early conflict detection and resolution.

Challenges arise in <u>adapting the current TCAS for ADS-B data</u>, leading researchers to explore new approaches.

Holdsworth et al. suggest collision avoidance planning with ADS-B and dynamic programming.

Kochenderfer et al. propose using a partially observable Markov decision process to validate ADS-B reports in the collision avoidance system.

Lin et al. present a sampling-based path planning method using ADS-B to avoid collisions with commercial aircraft.

Dataset

Example of data collected by ADS-B Receiver

Frame #	Aircraft ID	x (km)	y (km)	z (km)	wind _x (m/s)	wind _y (m/s)
0	10620674	1.3407	0.0026	0.3353	0.0	0.0
1	10620674	1.3135	0.0021	0.3353	0.0	0.0
2	10620674	1.2863	0.0017	0.3353	0.0	0.0
:	:	:	:	1	i i	i.
405	10620674	-3.8946	1.5872	0.9751	0.0	0.0

Carnegie Mellon University
The Robotics Institute

Collision Detection

Algorithm Flowchart

Output Walkthrough

Visualization

Thank You