Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

FLOOD PLAIN MANAGEMENT STUDY

COLORADO RIVER TRIBUTARIES

PORCUPINE CREEK, BEAVER CREEK, MAMM CREEK, DRY HOLLOW CREEK, DIVIDE CREEK, GARFIELD CREEK, ALKALI CREEK, SOUTH CANYON CREEK, CANYON CREEK, ELK CREEK

Prepared by the
U.S. Department of Agriculture
Soil Conservation Service
Denver, Colorado
in cooperation with the
Colorado Water Conservation Board
Town of New Castle
and Garfield County, Colorado
July 1986

This report includes information on the flood hazard areas along 10 Colorado River Tributaries in the vicinity of Glenwood Springs and New Castle, Colorado.

Because of the potential flood damages, detailed flood hazard studies have been recognized as an essential item in guiding the use of flood plains. The purpose of this report is to provide adequate mapping and data for implementing flood plain management programs.

Included in the report are information on past floods, the potential for future floods, flooded area maps, water surface profiles, selected cross sections, peak discharge data, and recommendations for reducing potential flood damages.

The Soil Conservation Service conducted the technical studies and prepared the report. These services were carried out in accordance with the Plan of Work of February 1984.

The assistance and cooperation provided by the Colorado Water Conservation Board, Town of New Castle and Garfield County are appreciated and gratefully acknowledged. Financial assistance provided by the Board, the town and county included funds for photogrammetric maps, and cross section data.

The survey, hydrologic, hydraulic, and other pertinent data and computations are on file with the U.S. Department of Agriculture, Soil Conservation Service, 2490 West 26th Avenue, Denver, Colorado 80217, telephone (303) 964-0295. Additional copies of this report may be obtained from the Colorado Water Conservation Board, or the Soil Conservation Service.

MAT R 447

881380

TABLE OF CONTENTS

	Page
INTRODUCTION	1
DESCRIPTION OF STUDY AREA	4
Basin Characteristics Study Limits Natural and Beneficial Flood Plain Values	
RELATED FLOOD STUDIES	7
FLOOD HISTORY	8
INVESTIGATIONS AND ANALYSIS	10
Interpretation and Use of Report Hydrology Hydraulics	
FLOOD PLAIN MANAGEMENT	16
Local Regulations Colorado Natural Hazard Area Regulations Colorado Water Conservation Board Designations Model Regulations Flood Insurance Flood Warning and Flood Forecasting Systems Evacuation Plan Structural Flood Control Measures	
RECOMMENDATIONS	23
GLOSSARY OF TERMS	24
BIBLIOGRAPHY AND REFERENCES	27
APPENDIX - Separate Document Showing Floodway Tables	

LIST OF TABLES, MAPS, EXHIBITS

Drainage Basin Map	After Pg. 5
Regional Discharge - Frequency Curve	After Pg. 13
Hydrology Summary Table	Pg. 14
Index Map	After Pg. 28
Flood Plain Maps	Sheets 1-29
Flood Profiles	Sheets 1-37
Typical Valley Cross Sections	Figures 1-10
Flood Frequency - Elevation - Discharge Data (Table 1)	Pgs. 1-45

FLOOD PLAIN MANAGEMENT STUDY COLORADO RIVER TRIBUTARIES COLORADO

INTRODUCTION

This flood plain management report was prepared by the U.S. Department of Agriculture, Soil Conservation Service, in cooperation with the Colorado Water Conservation Board, Town of New Castle and Garfield County. Interpretations of the flood plain management study and recommendations to reduce damages are included; however, it is beyond the scope of this report to provide detailed proposals or plans to rectify the flooding problems.

Objectives

The objective of this study is to provide flood plain management information and mapping to the town of New Castle and Garfield County for use in implementing flood plain management programs which will minimize potential flood losses. Included in the report are engineering and hydrologic data which will facilitate the development of a flood plain management plan, road and bridge designs, and flood control measures (if needed).

Authority

This study was requested by the town of New Castle and Garfield County through the Colorado Water Conservation Board (CWCB). The CWCB is the state coordinator for all flood plain information studies and is responsible for setting priorities and scheduling these studies. The CWCB and the Soil Conservation Service entered into a Joint Coordination Agreement for flood hazard analyses in January 1972 (revised November 1978). The Plan of Work for the Study was prepared in February, 1984.

Section 37-60-106(1)(c), Colorado Revised Statutes, authorizes the Colorado Water Conservation Board "to designate and approve storm or floodwater runoff channels or basins, and to make such designations available to legislative bodies of cities and incorporated towns, to county planning commissions, and to boards of adjustment of cities, incorporated towns, and counties of this state." The Board provides assistance to local governments in development and adoption of effective floodplain ordinances. In addition, the Board will provide technical assistance to local entities during the performance of floodplain information studies within Colorado. Presently, direct financial assistance for the performance of floodplain studies is no longer available from the board.

Section 30-28-111 C.R.S. for county governments and Section 31-23-301 C.R.S. for municipal governments of the Colorado Revised Statutes, states: The cities, incorporated towns, and counties within the study area may provide zoning regulations: "...to establish, regulate, restrict, and limit such uses on or along any storm or floodwater runoff channel or basin that has been designated and approved by the Colorado Water Conservation Board, in order to lessen or avoid the hazards to persons and damage to property resulting from the accumulation of storm or floodwaters..."

Therefore, upon official approval of this report by the Colorado Water Conservation Board, the areas described as being inundated by the 100-year flood can be designated as flood hazard areas and their use regulated accordingly by the local agencies.

Flood plain management studies are carried out by the Soil

Conservation Service as an outgrowth of the recommendations in A Report by

the Task Force on Federal Flood Control Policy, House Document No. 465 (89th Congress, August 10, 1966), especially Recommendation 9(c), Regulation of Land Use, which recommended the preparation of preliminary reports for guidance in those areas where assistance is needed before a full flood plain information report can be prepared or were a full report is not scheduled.

Authority for funding flood plain management studies is provided by Section 6 of Public Law 83-566, which authorizes the U.S. Department of Agriculture to cooperate with other federal, state and local agencies to make investigations and surveys of the watersheds and rivers and other waterways as a basis for the development of coordinated programs. In carrying out flood plain management studies, the Soil Conservation Service is being responsive to Executive Order 11988, entitled "Flood Plain Management", and Executive Order 11990, entitled "Protection of Wetlands" (both effective May 24, 1977).

DESCRIPTION OF THE STUDY AREA

Basin Characteristics

This study involves 10 tributaries to the Colorado River totaling about 27 miles of stream. Two of the tributaries are adjacent and located north of the Colorado River. Their northern boundaries reach an elevation of about 10,000-11,000 feet near the Garfield-Rio Blanco County line in the White River National Forest. These tributaries flow in a southerly direction to the Colorado River at an elevation of about 5,500-5,600 feet.

The remaining 8 adjacent tributaries are south of the Colorado River. Their southern boundaries reach an elevation of about 9,000-10,000 feet with parts of their drainages extending into Mesa County. These tributaries flow in a northerly direction to the Colorado River at an elevation of about 5,200-5,600 feet.

The topography is primarily plateau-like table land deeply cut by watercourses which form steep canyons. The region is rich in coal and oil shale deposits.

The climate of the area is influenced by Pacific storm systems that move from west to east. The nearest national weather station, representative of the lower part of the basin, is at Glenwood Springs. The mean annual temperature is 48°F with about 138 days of growing season between the spring and fall 32°F frost occurrences. The mean annual precipitation is just over 16 inches. This increases to about 40 inches at the higher elevations of the northern tributaries and 30 inches for the southern tributaries. Wintertime precipitation is usually in the form of snow during October to early April.

The soils include Mollisols at the higher elevations in the upper basin and Aridisols and Entisols in the lower part of the basin. Fluvents are dominant adjacent to stream channels. The geologic formations include the Tertiary Green River, which contains oil shale deposits, and the Wasatch.

The higher ridges have conifer and aspen while lower areas have juniper and pinyon interspersed with sagebrush. Willows and cottonwoods grow along the streams. There is a considerable amount of irrigated cropland throughout the larger tributary watersheds.

The town of New Castle, at the mouth of Elk Creek, is the only community in the study area. There are scattered residential and business properties along several of the tributaries.

Study Limits

The area of study includes the tributary flood plains from the Colorado River upstream the Channel distances shown in the following table:

Tributary		Stream Reach
Porcupine Cr. Beaver Cr. Mamm Cr. Dry Hollow Cr. Divide Cr Garfield Cr. Alkali Cr. South Canyon Cr. Canyon Cr. Elk Cr.	Total	1.11 miles 1.36 2.57 2.16 5.61 1.99 1.82 3.16 1.21 6.01 27.00

Natural and beneficial Flood Plain Values

Flood plains along the various tributaries contain areas of irrigated pasture and hayland interspersed with areas of natural vegetation. The flood plain vegetation consists of a variety of forbs, grasses, sedges and rushes interspersed with cottonwoods, willows and siberian elm. The meandering channel provides an interesting diversity in landscape and vegetation. This diversity enhances the visual aestheties and wildlife habitat values in the area.

These flood plains support a variety of wildlife species such as:

mule deer, coyote, cottontail, red-winged blackbird, blue herron, song

sparrow, black-headed grosbeak, red-tailed hawk, golden eagle, bald eagle,

Canada goose, mallard and many other species of wildlife. These reparian

areas are very important in the arid regions of Colorado. The proximity

to water and robust vegetation supported by the water regime attract more

species of wildlife to this habitat type than any other in western

Colorado.

RELATED FLOOD STUDIES

The Corps of Engineers, Sacramento District, prepared an Internal Official Memorandum Report "Flood Insurance Study Hydrology, Garfield and Mesa Counties, Colorado" dated November 1975. This was a relatively broad study that included drainage area vs. cubic feet per second per square mile envelope curves. The curves were intended for estimating peak discharges on streams in Garfield and Mesa Counties, Colorado, for flood insurance purposes.

The Corps of Engineers, Sacramento District, prepared a flood plain information report "Colorado River and Rifle, Government, and Hubbard Gulch Creeks" (Apr 1973). The Corps is currently involved in an additional study of the Colorado River Main Stem that extends beyond the limits of this 1973 study.

The Soil Conservation Service carried out a Flood Plain Management Study on Parachute Creek and Roan Creek (Aug 1985). The hydrology for the study included the development of a discharge-frequency-drainage area regional curve that has been used in this Colorado River Tributaries Study.

The Federal Emergency Management Agency published a flood insurance study for Garfield County, unincorporated areas (Jan 3, 1986).

FLOOD HISTORY

Major flooding along streams in this study is caused by rapid melting of the mountain snowpack during late May to early July as well as summer rainstorms. There is also the potential for flooding as a result of rainfall occurring on melting snow. The snowmelt floods are characterized by moderate peaks, large volumes, and long durations. The summer floods have characteristics of high peaks, short flow durations, and relatively small volumes.

The size of drainage area varies from Porcupine Creek (9.7 square miles) to Elk Creek (177 square miles) and Divide Creek (200 square miles). Therefore, the flood season may vary from snowmelt flooding in May on Divide Creek to a thunderstorm flashflood in August on Porcupine Creek.

Most of the streams do not have stream gage devices to help record their flood history. The sparce information available shows 1957 to be a high snow pack year which produced high spring runoff in many Colorado river tributaries. Canyon Creek flowed 1000 cfs on June 29, West Divide Creek flowed 535 cfs on June 4, and Elk Creek flowed 1770 cfs on May 10. The spring of 1984 was also a high runoff period with Mamma Creek flowing 430 cfs on June 6, and West Divide Creek flowing 1410 cfs on May 14.

There is no published history of flooding on Porcupine Creek however, field observations indicate it is an active flooding stream from summer rainstorm. Streamflow data on Beaver Creek indicates it has never flowed more than 100 cfs, the maximum of record is 85 cfs on May 24, 1964. There does appear to be a significant difference in watershed characteristics between Porcupine and Beaver Creeks, such as type and condition of vegetation, even though they are adjacent drainages.

The following table is a selection of data from limited streamflow information available;

Stream	Streamflow Station	Maximum Discharge (cfs)	Date
Elk Creek	130	1400	May 27, 1922
	9087500	1770	June 10, 1957
	9087500	1560	May 28, 1958
West Divide Creek	132	876	May 13, 1941
	9089500	535	June 4, 1957
	9089500	1410	May 14, 1984
Canyon Creek	9085500	1000	June 29, 1957
	9085200	966	June 19, 1983
Mamm Creek	9091100	430	June 6, 1984
Beaver Creek	9092500	72	June 5, 1957
	9092500	85	May 24, 1964

Source: Water Resource Data, Colorado U.S. Geological Survey.

INVESTIGATIONS AND ANALYSIS

Interpretation and Use of Report

A. Frequency and Discharge

The 10-, 50-, 100-, and 500-year flood events are used as the flood frequencies for this flood plain analysis. Thus, the data developed in this report will be suitable not only for regulation purposes, and H.B. 1041 designation but also for Federal Insurance Administration flood insurance studies conducted by the Federal Emergency Management Agency.

These various flood events have an average occurrence of once in the number of years as indicated. For example, the 100-year flood occurs, on the average, once in a 100-year period, and has a one percent chance of being equaled or exceeded in any given year.

The particular uses for the various flood events in addition to those stated above are as follows:

10-Year and 50-Year Flood Events

Information regarding these lower frequency floods is especially useful for future engineering studies and land use planning purposes related to minor road systems, minor channel improvements, the location of parks and recreational facilities, agricultural lands, and appurtenant structures. The use of the lower frequencey floods may be considered in planning flood prevention projects to protect agricultural areas, or other property where risk to life is not a factor.

100-Year Flood Event

The 100-year flood event may be used in lieu of lower frequencies for engineering design purposes where greater security from structure failure is desired.

However, the most important use of the 100-year flood event lies in flood plain management and land use planning as set forth in the state statutes. The State of Colorado considers the 100-year frequency flood as the flood event to be used in designing and protecting structures and dwellings for human occupation. Therefore, all flood plain regulations are based upon the 100-year flood.

500-Year Flood Event

The 500-year flood event is useful in making the public aware that floods larger than the 100-year flood can and do occur. Just because a person is living above the 100-year flood boundary does not mean that he is completely safe from flooding. The 500-year flood event can also be used for regulating high risk developments within the flood plain such as nuclear power plants, or the storage or manufacture of toxic or explosive materials.

B. Flood Elevation

Flood crest elevations for the 10-, 50-, 100-, and 500-year floods, as determined at each cross section, may be found in Table 1 "Flood Frequency-Elevation and Discharge Data". Figures, 1 through 10, show a graphical representation of high water elevations at typical valley cross sections. Water surface elevations computed at each cross section were used to prepare flood profiles, sheets 1 through 37, which show the streambed elevation in relation to water surface elevations for the 10-, 50-, 100-, and 500-year frequency floods.

The flood profiles may be used in areas where controversy arises over the 100-year flood boundary shown on the Flood Plain Maps. Since the flood profile exhibits give the water surface elevation at a specific point on the reference line, the flood elevations can be surveyed on the ground to alleviate any discrepancies on the base map.

C. Flooded Areas

Flood plain maps, sheets 1 through 29, show the boundary of the 100-year flood plain. Normally the 500-year frequency flood plain is also shown on these maps, however the steep sloping tributaries involved in this study make it impossible in most locations to differentiate between the two frequencies on the scale of maps published in this report. The flood plain boundary was plotted from the flood profiles by determining channel stationing of flood contours at the same interval as the topographic maps. Flood contours, shown as wiggly lines, extend perpendicular to the direction of flow and intersect the ground at the edge of the flood plain.

The area included within the 100-year flood line boundry is about 613 acres for the 10 tributaries.

D. Floodway

Artifical fill encroachment on flood plains can reduce the areal extent of a flood plain and provide additional space for other uses. As an alternative to the present flooding situation, a possible floodway with flood plain encroachment was analyzed in this study. The resulting effects on flood elevations are shown in an Appendix separate from this report.

Hydrology

Tributaries to the Colorado River in the vicinity of DeBeque to Glenwood Springs, Colorado are streams that flood from snowmelt as well as from summer rain. The intent of this analysis was to separate the annual peak discharges into rainfall events and snowmelt events. Separate frequency curves should be combined statistically to produce a final discharge frequency curve. There was insufficient streamflow data of rainfall flood events to accomplish this, therefore the SCS TR-20 computer program was used to simulate rainfall flood peaks. The model was used on 16 watersheds of varying sizes and a regional curve of drainage area vs. peak discharge and frequency was developed for rainfall flooding. The TR-20 analysis included the standard SCS Type II (24 hour) rainfall distribution and curve numbers for an average antecedent soil moisture condition (AMC-II). The discharge vs. drainage area data from this analysis were plotted, and a regression line fitted for several frequencies.

A regional curve was developed for snowmelt flood events using data from 8 stream gages in the area. The Log Pearson III frequency distribution (as defined in WRC Bulletin 17-B) was used with a regional skew weighted with each computed station skew. The data was plotted and discharge-drainage area lines drawn for several frequencies.

The two regional discharge frequency-drainage area curves (rainfall and snowmelt) were combined using a standard probability equation:

This combined regional curve is recommended for studies along the Colorado River Tributaries in the vicinity of Debeque to Glenwood Springs, Colorado for streams that have independent snowmelt and rainfall flood histories.

DISCHARGE-FREQUENCY-DRAINAGE AREA RELATIONSHIP FOR COLORADO RIVER TRIBUTARIES IN THE VICINITY OF DEBEQUE TO GLENWOOD SPR. COLORADO

10 8 7 6 5 3 10 8 CHA LOGARITHMIC 3 X 3 CYCLES KEUFFEL & ESSER CO. MADE IN USA 1.0 100. DRAINAGE AREA (SQ. MI)

Ref: Soil Conservation Service, Denver, Co.

The following table is a hydrology summary showing discharge frequency data at selected locations:

Location	Dr. Area	Discharge - cfs.			
Tributary & Cross Section	Sq. Mi.	10-yr.	50-yr.	100-Yr.	500-Yr.
Porcupine	9.7	610	880	1040	1580
Beaver Sec 355 Sec 359	4.0-5.0 13.0	414 690	612 1020	720 1 20 0	1134 1890
Mamm	62.0	1380	2310	2850	5000
Dry Hollow	11.3	650	950	1120	1740
Divide Sec 519 Sec 542 Sec 543 Sec 551 Sec 557 Sec 558 Sec 562	200.0 198.30 1.09 197.21 195.49 190.35 5.14	2350 2330 240 2310 2290 2280 465	4400 4375 290 4350 4325 4300 640	5600 5575 310 5550 5525 5500 730	10000 9950 390 9900 9850 9800 1070
Garfield	43.6	1180	1920	2380	4000
Alkali	14.4	720	1090	1290	2000
South Canyon	10.6	630	930	1080	1670
Canyon	55.3	1300	2200	2700	4600
Elk Sec 633 Sec 646 Sec 652 Sec 653 Sec 671	177.1 0.26 169.9 130.0 39.9	2200 60 2180 1900 1120	4200 70 4000 3450 1840	5200 78 5100 4380 2250	9300 101 9100 7700 3780

Hydraulics

The U.S. Army Engineers HEC-2 computer program was used to perform water surface profile computations. Numerous bridges and culverts exist along the channels through the study reach. Dimensions for these road crossings were determined from field investigations and the data was integrated into appropriate cross section data.

Cross section data, and reach length information were obtained from photogrammetric maps. Maps were prepared especially for this study, at a scale of 1 inch = 200 ft. with 2.0 ft contour intervals.

Hydraulic roughness coefficients (Mannings N-Values) were determined from field investigations and documented with photographs (in technical addendum). A tabulation of roughness coefficients is included in the technical addendum.

Water surface profiles, typical cross sections and maps showing the 100-year flood boundaries are shown on included exhibits and flood plain maps. Table 1 shows computed flood elevations at specific cross sections.

Flood lines were located on the maps by transferring flood elevations (at map contour intervals) from plotted profiles (from HEC-2) to the maps, using stationing along the main channel as the location reference. These points were connected and smoothed to create the map flood lines.

FLOOD PLAIN MANAGEMENT

Potential flood damages to existing development and possible loss of life can be alleviated or lessened through non-structural and structural flood hazard mitigation methods.

Non-structural methods include: local flood plain regulations, land treatment, flood warning and forecasting systems, flood insurance, flood proofing, flood fighting and emergency evacuations.

Local Regulations

The need to minimize property damage due to flooding has been recognized by planners and local community officials. Subdividers and developers are required to submit proposed storm drainage plans to the planning commission for approval. In the past, drainage plans have been prepared singularly or on a plat-by-plat basis. Information contained in this report will be useful in developing a master drainage plan for the study area. This report provides the outline of flood hazard areas on large scale maps specifically for this purpose.

The city may provide zoning regulations...

..."to establish, regulate, restrict, and limit such uses on or along any storm or floodwater runoff channel or basin, as such storm or floodwater runoff channel or basin has been designated and approved by the Colorado Water Conservation Board, in order to lessen or avoid the hazards to persons and damage to property resulting from the accumulation of storm or floodwaters"...

as stated in Section 30-28-111 for county governments and Sections 31-23-301 for municipal governments of the Colorado Revised Statutes.

Colorado Natural Hazard Area Regulations

In 1974, the Colorado General Assembly passed House Bill 1041, a bill "concerning land use, and providing for identification, designation, and administration of areas and activities of State interest,..." (H.B. 1041, Title 24, Article 65.1, CRS, as amended). Areas of State interest include natural hazard areas, or those areas that are "so adverse to past, current, or foreseeable construction or land use as to constitute a significant hazard to public health and safety or to property." Flood plains are natural hazard areas.

With reference to the administration of natural hazard areas, section 24-65.1-202(2)(a) of the Act provides: Flood plains shall be administered so as to minimize significant hazard to public health and safety or to property; open space activities shall be encouraged; structures shall be designed in terms of use and hazards; disposal sites and systems shall be protected from inundation by floodwaters; and activities shall be discouraged which, in time of flooding, would create significant hazards to public health and safety or to property.

The Act further provides that after promulgation of guidelines for land use in natural hazard areas..., the natural hazard areas shall be administered by local government in a manner which is consistent with the guidelines for land use in each of the natural hazard areas.

Colorado Water Conservation Board Designation

Concerning the designation of the flood plain, the Colorado Water Conservation Board is charged with the primary responsibility for:

- 1. Making recommendations to local governments and the Colorado Land Use Commission.
- 2. Providing technical assistance to local governments.

The Board's power and duty is ...

..."to devise and formulate methods, means and plans for bringing about the greater utilization of the waters of the state and prevention of flood damages therefrom, and to designate and approve storm or floodwater runoff channels or basins, and to make such designations available to legislative bodies of cities and incorporated towns, to county planning commissions, and to boards of adjustment of cities, incorporated towns, and counties of this state"...

as stated in Section 37-60-106 (1) (c) of the Colorado Revised Statutes

Upon review and approval of this report, the Colorado Water

Conservation Board will designate and approve as flood plain areas those

areas inundated by the 100-year flood as described by the floodwater

surface elevations and profiles in this report. The use of the designated

flood plain areas may then be regulated by the local government.

Model Regulations

Model flood plain regulations have been promulgated by the Colorado Water Conservation Board, with the purpose to promote public health, safety, and general welfare, and minimize flood hazards and losses. The model includes provisions designed to:

- Promote sound planning and land use, and permit only such uses within flood plains that will not endanger life, health, and public safety or property in times of flooding.
- Protect the public from avoidable financial expenditures for flood control projects, flood relief measures, and the repair and restoration of damaged public facilities.
- 3. Prevent avoidable interruption of business and commerce;
- 4. Minimize victimization of unwary home and land purchasers; and

5. Facilitate the administration of flood hazard areas by establishing requirements that must be met before use or development is permitted.

The Board's model flood plain regulations offer two options for management of the 100-year flood plain. These are the Hazard Area Concept and the Floodway Concept.

The Hazard Area concept defines the areas of the flood plain in which waters of the 100-year flood attain a maximum depth greater than one and one-half feet as a high hazard areas, and a depth less than this as a low hazard area. The Board recommends that no basements should be allowed for structures located within the low hazard area and all habitable living quarters (first floors) should be constructed a minimum of one foot above the 100-year floodwater surface elevations. Development is prohibited in high hazard areas.

The Floodway concept, used in this study, defines the channel of a stream and adjacent flood plain areas that must be kept free of development in order to safely pass the 100-year flood with a minimal rise in the water surface elevation. The rise must be no more than one foot to meet federal standards.

The U.S. Army Engineers HEC-2 computer program was used to make the floodway analysis. Floodway information is included in a separate appendix. Data are in tabular form and include floodway widths, cross sectional flow area, and average velocities. Computations are for an increase in rise of water surface elevations of 1.0 feet above the 100-year flood.

Flood Insurance

The National Flood Insurance Act of 1968 (Title XIII of the Housing and Urban development Act, P.L. 90-448) recognized the necessity for flood plain management. This Act makes federally subsidized insurance available to citizens in communities that adopt regulations controlling future developments of their flood plain. In respect to encroachment on the flood plain, the regulations require:

- (1) New residential construction or substantial improvement of existing homes must have the lowest floor level above the elevation of the 100-year flood.
- (2) Non-residential construction must meet the same standard or be flood proofed to that level.

The 1968 Act benefits owners of structures already in the flood-prone areas by providing insurance coverage that had been unavailable through private companies. The Act created a cooperative program of insurance against flood damage by the private flood insurance industry and the federal government.

The amount of coverage available and the premium rate varies considerably depending on property location within the flood plain and the property value. All property owners shown in this study to be within areas subject to flooding should consider the purchase of flood insurance.

Additional information on the flood Insurance Program is available from local insurance agents or brokers and the:

Federal Emergency Management Agency, Region VIII Natural and Technological Hazard Division Building 710 Denver Federal Center Denver, Colorado 80225

Telephone 235-4830

The National Flood Insurance Program uses the floodway concept in it's rate studies for communities participating in the regular phase of the programs.

Flood Warning and Flood Forecasting Systems

The National Oceanic and Atmospheric Administration (NOAA) through its' National Weather Service (NWS), maintains year-around surveillance of weather and flood conditions. Daily weather forecasts are issued through the NWS and disseminated by radio and television stations. A general alert to the danger of flash flooding is one of the services provided by the National Weather Service.

Evacuation Plan

An "Emergency Evacuation and Operations Plan" would provide for alerting the public of potential flooding, and coordinating community and county services during an emergency. Plan implementation during the time of an emergency requires cooperation of the general public as well as local officials. This is especially important for flood fighting, evacuation, and rescue operations. Communication is extremely important during flood alerts. Warnings issued through the National Weather Service are disseminated by radio to state and local officials.

Structural Flood Control Measures

Under present conditions, bridges and culverts along lower reaches of most of the tributaries restrict flow and contribute to out-of-channel flooding. If these bridges could be enlarged to accommodate the 100-year discharge without causing excessive backwater effects, the flood elevations and areas innundated would be reduced. This may not be economically practical except in select high flood damage locations.

Other structural measures such as floodwater retarding dams were not evaluated.

RECOMMENDATIONS

The following recommendations are included for consideration in reducing potential flood damages.

- Local units of government should implement a flood plain management or flood hazard mitigation plan.
- 2. Existing restrictions that contribute to overbank flooding should be corrected where possible and when possible.
- Detailed studies of specific structural alternative measures such as floodways, dikes, or floodwater retarding structures should be considered.
- 4. Owners and occupants of buildings and other property within or adjacent to the delineated flood boundary should consider flood insurance.
- 5. Public information and education programs on flood hazards should be made available to the public.
- 6. Native habitat along the main channels should be maintained to preserve channel stability and provide wildlife habitat.

GLOSSARY OF TERMS

- Channel A natural or artificial water course of perceptible extent with definite banks to confine and conduct continuously or periodically flowing water. Channel flow is that water which is flowing within the limits of the defined channel.
- <u>Flood</u> Water from a river, stream, water course, lake or other body of standing water, that temporarily overflows the boundaries within which it is ordinarily confined.
- Flood Crest The maximum stage or elevtion reached by the waters of a flood at a given location.
- Flood Frequency A means of expressing the probability of flood occurrences as determined from statistical analysis of representative streamflow or rainfall and runoff records. The frequency of a particular stage or discharge is usually expressed as occurring once in a specified number of years. The 10-, 50-, 100- and 500-year frequency floods have an average frequency of occurrence in the order of once in the number of years as indicated.
- 10-Year Flood A flood having an average frequency of occurrence of once in 10 years. It has a 10 percent chance of being equaled or exceeded in any given year.
- 100-Year Flood A flood having an average frequency of occurrence of once in 100 years. It has a l percent chance of being equaled or exceeded in any given year.
- Flood Hazard Areas Areas susceptible to flood damage.
- Flood Peak The highest stage or discharge attained during a flood event; also referred to as peak stage or peak discharge.

- Flood Plain The relatively flat or lowland area adjoining a river, stream, watercourse, lake, or other body of standing water which has been or may be covered temporarily by flood water. For administrative purposes the flood plain may be defined as the area that would be inundated by the loo-year flood.
- Left Stream Bank The left bank of the stream when looking downstream.
- Perched Channel Flow A condition where the flow elevation in the outer portions of the flood plain is higher than the flow elevation in the main channel. This condition occurs when a higher secondary channel receives inflow from some location upstream and maintains a flatter slope than the main channel.
- Reach A hydraulic engineering term used to describe longitudinal segments of a stream or river.
- Right Stream Bank The right bank of the stream when looking downstream.
- Runoff That part of precipitation, as well as any other flow contributions, which appears in surface streams of either perennial or intermittent form.
- Stream Any natural channel or depression through which water flows whether continuously, intermittently, or periodically, including modification of the natural channel or depression.
- Structure Anything constructed or erected, the use of which requires a more or less permanent location on or in the ground. Includes but is not limited to bridges, buildings, canals, dams, ditches, diversions, irrigation systems, pumps, pipelines, railroads, roads sewage disposal systems, underground conduits, water supply systems and wells.
- Typical Valley Cross Section An engineering drawing of a vertical section of a stream channel and adjoining landscape as viewed in a

- downstream direction. The drawing represents a specified location within a designated stream reach.
- Water Surface Profile (This term is synonymous with Flood Profile) a graph showing the relationship of the water surface elevation of a flood event to location along a stream or river.
- <u>Watersheds</u> A drainage basin or area which collects runoff and transmits it usually by means of streams and tributaries to the outlet of the basin.

BIBLIOGRAPHY AND REFERENCES

- Colorado Division of Wildlife 1978. Essential Habitat for Threatend or Colo. DOW, 84 pp.
- Colorado Water Conservation Board Graph -100-Year Runoff Ratio vs.
 Drainage Area, Colorado River Basin in Colorado, April, 1979.
- Colorado Water Conservation Board <u>Manual for Estimating Flood</u>

 <u>Characteristics of Natural Flow Streams in Colorado</u> Technical

 <u>Manual No. 1, 1976.</u>
- Colorado Water Conservation Board <u>Manual for Local Governments</u>, Flood <u>Plain Management</u>, Flood Control and Flood Disaster Programs, June 1976.
- Colorado Water Conservation Board, <u>Memorandum Una Dam and Reservoir</u> Feasibility Study Hydrology, March, 1982.
- Denver Engineering Corporation, <u>Hydrology Report for City of Aspen and</u>
 Pitkin County (Unincorporated) Flood Insurance Studies, January 1984.
- Morrison-Knudsen Co. Ins., <u>Clear Creek Shale Oil Project</u>, Planning Study No. 67, July 1981.
- Simons, Li & Associates, Inc., <u>Hydrology Report For Town of Rangley, City</u> of Rifle and Garfield County Flood Insurance Studies, January 1983.
- U.S. Department of Agriculture, Soil Conservation Service Flood Plain Management and Wetlands Protection, Implementation of Executive Orders 11988 and 11990, Federal Register, Vol. 43, No. 107, June 2, 1978.
- U.S. Department of Agriculture, Soil Conservation Service <u>Guide for Selecting Roughness Coefficients "N" Values for Channels, December 1963.</u>
- U.S. Department of the Army, Corps of Engineers, <u>Flood Insurance Study</u> <u>Hydrology</u>, Garfield and Mesa Counties, November 1975.
- U.S. Department of the Army, Corps of Engineers, Flood Plain Information, Colorado River and Rifle, Government, and Hubbard Gulch Creeks, Rifle Colorado, April 1973.
- U.S. Department of the Army, Corps of Engineers, <u>HEC-2 Water Surface Profile</u>, January 1981.
- U.S. Department of the Army, Office of the Chief of Engineers A Perspective on Flood Plain Regulations for Flood Plain Management, EP 1165-2-304, June 1976.

- U.S. Department of Housing and Urban Development, Federal Insurance Administration - Elevated Residential Structures, Reducing Flood Damage Through Building Design, HUD-FIA-184, Guide Manual, September 1976.
- U.S. Department of Housing and Urban Development, Federal Insurance Administration - National Flood Insurance Program, Federal Register, Vol. 41, No. 207, October 26, 1976.
- U.S. Department of the Interior, Geological Survey <u>Water Supply Paper</u> 997, Floods in Colorado, by Robert Follansbee and Leon R. Sawyer, 1948.
- U.S. Department of the Interior <u>Water Supply Paper 1681</u>, <u>Magnitude and Frequency of Floods in the U.S.</u>, <u>Part 7</u>.
- U.S. Water Resources Council Regulation of Flood Hazard Areas to Reduce Flood Losses, Volume One and Two, 1971 and 1972.
- Federal Emergency Management Agency A Unified National Program for Flood Plain Management, March 1986.

FLOOD PLAIN INDEX MAP Colorado River Tributaries Flood Plain Management Study

FEET UPSTREAM OF LOWER STUDY LIMIT

(H.S.L.)

FEET UPSTREAM OF LOWER STUDY LIMIT

FEET UPSTREAM OF LOWER STUDY LIMIT

(H.S.L.

FEET

FEET UPSTREAM OF LOWER STUDY LIMIT

FEET

IN

ELEVATION

COLORADO RIVER TRIBUTARIĘS FLOOD PLAIN MANAGEMENT STUDY

COLORADO RIVER TRIBUTARIES FLOOD PLAIN MANAGEMENT STUDY

TYPICAL VALLEY CROSS-SECTION

Figure 2

5460

5455

2450ET

ELEVATION

544\$

5465

COLORADO RIVER TRIBUTARIES FLOOD PLAIN MANAGEMENT STUDY TYPICAL VALLEY CROSS-SECTION

TYPICAL VÁLLEY CROSS-SECTION
COLORADO RIVER TRIBUTARIES FLOOD PLAIN MANAGEMENT STUDY

COLORADO RIVER TRIBUTARIES FLOOD PLAIN MANAGEMENT STUDY TYPICAL VALLEY CROSS-SECTION

TYPICAL VALLEY CROSS-SECTION
COLORADO RIVER TRIBUTARIES FLOOD PLAIN MANAGEMENT STUDY

Figure 7

TYPICAL VALLEY CROSS-SECTION
COLORADO RIVER TRIBUTARIES FLOOD PLAIN MANAGEMENT STUDY

5678

5674

5670

5666

TYPICAL VALLEY CROSS-SECTION
COLORADO RIVER TRIBUTARIES FLOOD PLAIN MANAGEMENT STUDY

ELEVATION

5654

THE

5662

5658

COLORADO RIVER TRIBUTARIES FLOOD PLAIN MANAGEMENT STUDY

TYPICAL VALLEY CROSS-SECTION

Figure 10

Vertical	500-Year Flood	5209.7 31800_2/	5251.6 1580	5275.1 1580	5290.3 1580	5293.8 1580	5295.3 1580	5295.3 1580	5318.9 1580
Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	100-Year Flood		5250.5 1040	5274.2 1040	5289.7 1040	5291.2 1040	5294.7 1040	5294.7 1040	5318.7 1040
-Elevation Feet National Geodeti Datum, and Peak Discharge c.f.s.	50-Year Flood	5209.7 31800_2/_3	5250.2 880	5273.9 880	5288.8 880	5290 . 7 880	5994.5 880	5294.5 880	5318.6 880
Crest-E	10-Year Flood		5249.4 610	5273.3 610	5287.8 610	5289.7 610	5294.1 610	5294.1 610	5318.4 610
Stream Bed Elevation	Feet (Meters) N.G.V.D.	5199.7	5244.5	5269.8	5282.2	5285.6	5285.6	5286.9	5315.5
Identification		Co. River at Porcupine Cr.	Porcupine Cr.	Porcupine Cr.	Porcupine Cr.	County Road 320	County Road 320	Porcupine Cr.	Porcupine Cr.
Stationing from Mouth	Feet (Meters)	00 + 0	19 + 80	29 + 60	33 + 60	33 + 80	34 +25	34 + 45	42 + 45
Cross	Design- nation	343	344	345	346	347.1	347.2	348	349

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. ات

^{2/} Discharge in Colorado River at 25 Year Frequency

Crost-Flowstion Boot National Condutic Vertical	narge c.f.s.	100-Year 500-Year Flood	5345.2 1040 1580	5373.6 5374.3 1040 1580			
lowation Foot Natio	Datum, and Peak Discharge c.f.s.	50-Year Flood	5345.2 534 880 104	5373.4 537 880 104			
7.00t	Dai	10-Year Flood	5345.2 610	5373.0 610			
Crrosm Bod	Elevation	Feet (Meters) N.G.V.D.	5344.8	5370.0			
エイクカナッチュー	Taentiircation		Porcupine Cr.	Copper Study Limit			
10 to	from Mouth	Feet (Meters)	51 + 05	58 + 65			
00000	Section	Design- nation	350	351			

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 71

Cross	Stationing from Mouth	Identification	Stream Bed Elevation	Crest-E Da	Crest-Elevation Feet National Geodeti Datum, and Peak Discharge c.f.s.	National Geodetic Vertical Discharge c.f.s.	Vertical
Design- nation	Feet (Meters)		Feet (Meters) N.G.V.D.	10-Year Flood	50-Year Flood	100-Year Flood	500-Year Flood
354	00 + 0	Co. River at Beaver Cr.	5209.6	5224.1 31300 2/	5224.1 31300 2/	5224.1 31300 2/	5224.1 31300 2/
355	6 + 20	Beaver Cr.	5244.0	5248.1 414	5248.8 612	5249.1 720	5250.1 1134
356	15 + 20	Beaver Cr.	5288.7	5291.5 414	5292.0 612	5292.3 720	5292.9 1134
357	22 + 70	Beaver Cr.	5318.0	5320.4 414	5320.8 612	5320.9 720	5321.4 1134
358	28 + 90	Beaver Cr.	5347.5	5349.6 690	5350.0 1020	5350.1 1200	5350.3 1890
359	35 + 90	Beaver Cr.	5388.6	5390 . 8 690	5391.1 1020	5391.3 1200	5392.0 1890
360	43 + 30	Beaver Cr.	5427.0	5430.4 690	5431.0 1020	5431.3 1200	5432.1 1890
361.1	47 + 70	County Road 320	5450.2	5453 . 9 690	5454.7 1020	5455.1 1200	5456.3 1890

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 71

^{2/} Discharge in Colorado River at 25 year frequency.

Vertical	500-Year Flood	5460.0 1890	5494.1 1890	5531.6 1890	5559.4 1890	5591.2 1890	5635.0 1890	
Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	100-Year Flood	5459.2 1200	5493.3 1200	5530.7 1200	5558.1 1200	5590.4 1200	5633.5 1200	
-Elevation Feet National Geodeti Datum, and Peak Discharge c.f.s.	50-Year Flood	5459.0 1020	5493.1 1020	5530.4 1020	5557.7 1020	5590.2 1020	5633.2 1020	
Crest-E Da	10-Year Flood	5458.5 690	5492.5 690	5529.8 690	5557.0 690	5589.7 690	5632.4 690	
Stream Bed Elevation	Feet (Meters) N.G.V.D.	5450.2	5489.5	5527.3	5553.2	5587.6	5628.9	
Identification		Beaver Cr.	Upper Study Limit					
Stationing from Mouth	Feet (Meters)	47 + 95	54 + 55	61 + 15	65 + 55	71 + 55	71 + 65	
Cross	Design- nation	361.2	362	363	364	365	366	

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1

Cross	Stationing from Mouth	Identification	Stream Bed Elevation	Crest-E	Crest-Elevation Feet N Datum, and Peak D	Feet National Geodetic Vertical Peak Discharge c.f.s.	Vertical
Design- nation	Feet (Meters)		Feet (Meters) N.G.V.D.	10-Year Flood	50-Year Flood	100-Year Flood	500-Year Flood
445	00 + 0	Co. River at Mamm Cr.	5344.5	5353.7 30800 2/	5353.7 30800 2/	5353.7 30800 2/	5353.7 30800 2/
944	11 + 80	Mamm Cr.	5349.5	5355.0 1380	5355.1 2310	5355.2 2850	5356.1 5000
447	17 + 80	Mamm Cr.	5354.9	5357.9 1380	5358.8 2310	5359.6 2850	5360.5 5000
448	24 + 80	Mamm Cr.	5365.0	5369.8 1380	5371.3 2310	5372.3 2850	5374.4
677	26 + 15	Mamm Cr.	5367.0	5371.6 1380	5373.0 2310	5373.2 2850	5375.4 5000
450	26 + 90	Mamm Cr.	5369.0	5373.4 1380	5374.9 2310	5375.6 2850	5378.8 5000
451.1	28 + 30	Interstate Highway I-70	5371.1	5375.4 1380	5377.0 2310	5377.8 2850	5378. 2 5000
451.2	28 + 80	Interstate Highway I-70	5371.1	5375.4 1380	5377.0 2310	5377.8 2850	5378.3 5000

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 7

^{2/} Discharge in Colorado River at 25 year frequency.

/ertical	500-Year Flood	5379.0 5000	5380.1 5000	5380.1 5000	5380.5 5000	5385.6 5000	5388.0 5000	5388.1 5000	5389.0 5000
onal Geodetic V harge c.f.s.	100-Year Flood	5377.8	5378.2 2850	5378.2	5378.5	5384.4	5384.4 2850	5384.9 2850	5386.6 2850
Crest-Elevation Feet National Geodetic Vertica Datum, and Peak Discharge c.f.s.	50-Year Flood	5377.0 53 2310 28	5377.5 53 2310 28	5377.5 53310 28	5377.9 53 2310 28	5383.8 53 2310 28	5383.8 53 2310 28	5384.0 53 2310 28	5386.3 53 2310 28
Crest-Ele Dati	10-Year Flood	5375.4	5376.2 1380	5376.2 1380	5376.5 1380	5381.2 1380	5382.9 1380	5382.9 1380	5383.5 1380
Stream Bed Elevation	Feet (Meters) N.G.V.D.	5371.3	5371.5	5371.5	5371.6	5374.8	5375.0	5375.0	5375.0
Identification		Mamm Cr.	Interstate Highway I-70	Interstate Highway I-70	Mamm Cr.	Mamm Cr.	County Road	County Road	Mamm Cr.
Stationing from Mouth	Feet (Meters)	29 + 20	29 + 60	30 + 10	31 + 10	34 + 10	34 + 55	34 + 70	34 + 95
Cross Section	Design- nation	452	453.1	453.2	454	455	456.1	456.2	457

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1/

TABLE 1

Cross Section	Stationing from Mouth	Identification	Stream Bed Elevation	Crest-E	-Elevation Feet National Geodeti Datum, and Peak Discharge c.f.s.	Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	Vertical
Design- nation	Feet (Meters)		Feet (Meters) N.G.V.D.	10-Year Flood	50-Year Flood	100-Year Flood	500-Year Flood
458	39 + 75	Mamm Cr.	5379.1	5383.8 1380	5386.3 2310	5386.6 2850	5389.0 5000
459	47 + 75	Mamm Cr.	5386.2	5389.1 1380	5389.9 2310	5390 . 3 2850	5390.9 5000
095	55 + 15	Mamm Cr.	5393.2	5399.0 1380	5399.8 2310	5400.2 2850	5401.4 5000
461.1	55 + 50	County Road 315	5394.5	5401.6 1380	5404.3 2310	5405.7 2850	5412.9 5000
461.2	56 + 30	County Road 315	5394.5	5410.6 1380	5411.1 2310	5411.3 2850	5413.0 5000
462	56 + 70	Mamm Cr.	5394.8	5411.1 1380	5412.1 2310	5412.5 2850	5413.8 5000
463	96 + 50	Mamm Cr.	5403.0	5411,1 1380	5412.1 2310	5412.5 2850	5413.8 5000
797	78 + 90	Mamm Cr.	5413.6	5417.7 1380	5418.8 2310	5419.4 2850	5422.3 5000

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1/

Cross	Stationing from Mouth	Identification	Stream Bed Elevation	Crest-E	-Elevation Feet National Geodeti Datum, and Peak Discharge c.f.s.	Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	Vertical
Design- nation	Feet (Meters)		Feet (Meters) N.G.V.D.	10-Year Flood	50-Year Flood	100-Year Flood	500-Year Flood
465	87 + 50	Mamm Cr.	5421.9	5428.7 1380	5430.5 2310	5431.3 2850	5434.8 5000
997	101 + 90	Mamm Cr.	5436.5	5441.0 1380	5441.8 2310	5442.3 2850	5442.9 5000
467	113 + 70	Mamm Cr.	9746.6	5452.3 1380	5453.0 2310	5453.3 2850	5454.3
897	121 + 30	Mamm Cr.	5454.5	5458.4 1380	5459.1 2310	5459.4 2850	5460.6 5000
697	135 + 70	Upstream Study Limit	5467.6	5472.0 1380	5472.4 2310	5472.6 2850	5473.3 5000
	, , , , , , , , , , , , , , , , , , ,		* † † † † † † † † † † † † † † † † † † †				
1		***	*****				

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1

0-Year 100-Year Flood 540.2 30.2 30400 2/ 30.400 2/ 30.400 2/ 30.400 2/ 30.400 2/ 30.5 54.2 30.5	Cross Section	Stationing from Mouth	Identification	Stream Bed Elevation	Crest-E	-Elevation Feet Na Datum, and Peak D	Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	Vertical
0 + 00 co. River at Dry Hollow 5399.7 5407.8 5407.8 5407.8 5407.8 5407.8 5407.8 5407.8 5407.8 5407.8 5407.8 5407.8 5407.8 5407.8 5407.8 5407.8 5400.2/ 30400 2/	ion	Feet (Meters)		Feet (Meters) N.G.V.D.		50-Year Flood	100-Year Flood	500-Year Flood
13 + 20 Rising Sun Ditch 5414.1 5418.4 5419.3 5419.7 21 + 20 Dry Hollow 5423.3 5428.0 5428.5 5428.7 29 + 40 Dry Hollow 5426.4 5429.1 5429.6 5429.8 29 + 70 County Road 5431.0 5435.2 5436.2 5436.7 29 + 95 County Road 5431.0 5435.4 5439.3 5430.0 30 + 25 Dry Hollow 5432.4 5436.8 5439.7 5440.0 38 + 65 Dry Hollow 5437.4 5441.3 5441.8 5441.8		00 + 0	Co. River at Dry Hollow	5399.7			5407.8 30400 2/	5407.8 30400 2/
21 + 20 Dry Hollow 5423.3 5428.0 5428.5 5428.7 29 + 40 Dry Hollow 5426.4 5429.1 5429.6 5429.8 29 + 70 County Road 5431.0 5435.2 5436.2 5436.7 29 + 95 County Road 5431.0 5435.4 5439.3 5439.5 30 + 25 Dry Hollow 5432.4 5436.8 5439.7 5440.0 38 + 65 Dry Hollow 5437.4 5441.8 5441.8 5442.1		13 + 20	Rising Sun Ditch	5414.1	5418.4 650	5419.3 950	5419.7 1120	5421.0 1740
29 + 40 Dry Hollow 5426.4 5429.1 5429.6 5429.8 29 + 70 County Road 5431.0 5435.2 5436.2 5436.7 29 + 95 County Road 5431.0 5435.4 5439.3 5439.5 30 + 25 Dry Hollow 5432.4 5436.8 5439.7 5440.0 38 + 65 Dry Hollow 5437.4 5441.3 5441.8 5441.8 5442.1		21 + 20	Dry Hollow	5423.3	5428.0 650	5428.5 950	5428.7 1120	5429.4 1740
29 + 70 County Road 5431.0 5435.2 5436.2 5436.7 29 + 95 County Road 5431.0 5435.4 5439.3 5439.5 30 + 25 Dry Hollow 5432.4 5436.8 5439.7 5440.0 38 + 65 Dry Hollow 5437.4 5441.3 5441.8 5442.1		29 + 40	Dry Hollow	5426.4	5429.1 650	5429.6 950	5429.8 1120	5430.5 1740
29 + 95 County Road 5431.0 5435.4 5439.3 5439.5 30 + 25 Dry Hollow 5432.4 5436.8 5439.7 5440.0 38 + 65 Dry Hollow 5437.4 5441.3 5441.8 5442.1	1	29 + 70	County Road	5431.0	5435.2 650	543 6. 2 950	5436.7 1120	5439.6 1740
Dry Hollow 5432.4 5436.8 5439.7 5440.0 Dry Hollow 5437.4 5441.3 5441.8 5442.1	2	29 + 95	County Road	5431.0	5435.4 650	5439.3 950	5439.5 1120	5440.2 1740
Dry Hollow 5437.4 5441.3 5441.8 5442.1 650 950 1120		30 + 25	Dry Hollow	5432.4	5436.8 650	5439.7 950	5440.0 1120	5440.7 1740
		38 + 65	Dry Hollow	5437.4	5441.3 650	5441.8 950	5442.1 1120	5442.9 1740

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1

2/ Discharge in Colorado River at 25 year frequency.

Cross	Stationing	Identification	Stream Bed	Crest-E	levation Feet Na	Crest-Elevation Feet National Geodetic Vertica	Vertical
Section Design-	from Mouth		Elevation	Da	Datum, and Peak D	and Peak Discharge c.f.s.	
nation	Feet (Meters)		Feet (Meters) N.G.V.D.	10-Year Flood	50-Year Flood	100-Year Flood	500-Year Flood
495	50 + 65	Dry Hollow	5448.0	5452.8 650	5453.6 950	5453.9 1120	5454.8 1740
965	57 + 65	Dry Hollow	5455.3	5458.8 650	5459.5 950	5459.8 1120	5460.6 1740
497.1	57 + 90	Private Road	5456.0	5460.7 650	5461.9 950	5462.5 1120	5465.6 1740
497.2	58 + 15	Private Road	5456.0	5464.9 650	5465.3 950	5465.5 1120	5466.3 1740
498	58 + 45	Dry Hollow	5457.0	5465.2 650	5465.7 650	5466.0 1120	5466.7 1740
664	96 + 05	Dry Hollow	5467.5	5470.9 650	5471.2 950	5471 . 3 1120	5471.9 1740
200	71 + 65	Dry Hollow	5472.9	5476.5 650	5477.1 950	5477.4 1120	5478.1 1740
501	84 + 05	Dry Hollow	5488.4	5493.2 650	5493.6 950	5493.9 1120	5494.5 1740

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 71

TABLE 1

Vertical	500-Year Flood	5509.7 1740	5526.4 1740	5529.4 1740	5533.6 1740	5534.8 1740	5535.0 1740	
itional Geodetic scharge c.f.s.	100-Year Flood	5508.7 1120	5525.2 1120	5528.2 1120	5533.0 1120	5534.0 1120	5534.2 1120	
Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	50-Year Flood	5508.2 950	5525.1 950	5527.7 950	5532.6 950	5533.8 950	5534.0 950	
Crest-E	10-Year Flood	5507.4 650	5524.5 650	5526.9 650	5529.9 650	5532 . 9 650	5533.2 650	
Stream Bed Elevation	Feet (Meters) N.G.V.D.	5503.0	5520.6	5523.1	5524.0	5524.0	5524.9	
Identification		Dry Hollow	Dry Hollow	Dry Hollow	Private Road	Private Road	Upper Study Limit	
Stationing from Mouth	Feet (Meters)	97 + 85	110 + 85	113 + 25	113 + 50	113 + 75	114 + 05	
Cross	Design- nation	502	503	504	505.1	505.2	909	

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1/

	ear 1								
Vertica	500-Year Flood	5443.8 2990 <u>2</u> /	5453.6 10000	5460.8 10000	5463.0 10000	5464.6 10000	5464.7 10000	5470.0 10000	5481.5 10000
ion Feet National Geodetic Vertical and Peak Discharge c.f.s.	100-Year Flood	5443.8 29900 <u>2</u> /	5452.3 5600	5459.3 5600	5461.6 5600	5463.3 5600	5463.4 5600	5468.5 5600	5480.6 5600
Crest-Elevation Feet N Datum, and Peak D	50-Year Flood	5443.8 2990 <u>2</u> /	5451.7 4400	5458.7 4400	5460.8 4400	5462.8 4400	5462.9 4400	5467.9 4400	5480.2 4400
Crest-F	10-Year Flood	5443.8 29900 <u>2</u> /	5448.8 2350	5457.5 2350	5457.5 2350	5457.5 2350	5458.4 2350	5467.3 2350	5478.6 2350
Stream Bed Elevation	Feet (Meters) N.G.V.D.	5437.1	5444.0	5451.3	5451.8	5451.8	5452.4	5462.3	5474.3
Identification		CO River at Divide Cr	Divide Cr	Divide Cr	County Rd 311	County Rd 311	Divide Cr	Divide Cr	Divide Cr
Stationing from Lower	Study Limit Feet (Meters)	00 + 0	00 + 6	12 + 20	13 + 45	13 + 80	13 + 90	21 + 30	29 + 00
Cross	Design- nation	518	519	520	521.1	521.2	522	523	524

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. Discharge in Colorado River at 25 year frequency. 1/

7

Design- Study Limit Reet (Meters) Teet (Meters) 10-Year Flood 50-Year Flood 50-Year Flood 500-Year Flood 500-Yea	Cross	Stationing from Lower	Identification	Stream Bed Elevation	Crest-E.	-Elevation Feet National Geodeti Datum, and Peak Discharge c.f.s.	Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	Vertical
Divide Cr 5480.9 5486.6 5487.5 5487.9 5600 10 Divide Cr 5489.1 2350 4400 5600 10 Divide Cr 5499.1 2350 5501.9 5502.8 5503.1 5600 Divide Cr 5505.5 2350 4400 5503.1 5600 10 Divide Cr 5513.1 2350 4400 5600 10 10 Divide Cr 5521.3 2350 4400 5600 10 10 Divide Cr 5521.3 2350 4400 5600 10 10 Divide Cr 5532.6 5539.0 5539.9 55600 10 10 Divide Cr 5532.6 5539.0 5559.0 5500 10 10 Divide Cr 5552.0 2350 4400 5550.3 5550.0 10 Divide Cr 5532.6 5559.0 5559.9 5550.0 10 Divide Cr 5545.0 5553.0 5553.0 <td>on -</td> <td>Study Limit Feet (Meters)</td> <td></td> <td>Feet (Meters) N.G.V.D.</td> <td>10-Year Flood</td> <td>lear ood</td> <td>100-Year Flood</td> <td>500-Year Flood</td>	on -	Study Limit Feet (Meters)		Feet (Meters) N.G.V.D.	10-Year Flood	lear ood	100-Year Flood	500-Year Flood
Divide Cr 5489.1 5494.4 5497.2 5497.9 Divide Cr 5489.1 5350.9 4400 5600 Divide Cr 5505.5 2350 4400 5600 Divide Cr 5513.1 5526.6 5521.5 5522.1 Divide Cr 5521.3 5526.6 5528.3 5529.0 Divide Cr 5532.6 5539.0 5539.0 5540.3 Divide Cr 5532.6 5539.0 5539.0 5500.3 Divide Cr 5532.6 5539.0 5500.3 5600 Divide Cr 5532.6 5539.0 5500.3 5600 Divide Cr 5532.6 5539.0 5559.0 5600 Divide Cr 5552.0 5559.0 5500.0 5600 Divide Cr 5552.0 5559.0 5559.0 5600 5552.0 5553.4 5559.0 5600 5600 5552.0 5553.4 5555.0 5559.0 5600 5555.0 5555.0 5555.0		37 + 50	Divide Cr	5480.9	5486.6 2350		5487.9 5600	5489.1 10000
Divide Cr 5496.0 5501.9 5502.8 5503.1 5503.1 5509.6 5500.8 5500.1 5500.4 5500.0 5500.4 5500.0 5500.0 5510.9 5500.0 5513.1 5513.1 2350 4400 5500.0 5500.0 5532.6 5533.0 5539.9 5540.3 5500.0 5000.0 5553.6 5552.0 5553.4 5550.0 5553.4 5550.0 5553.4 5550.0 5553.4 5550.0 5553.4 5500.0 5500.0 5553.4 5555.0 5553.4 5550.0 5553.4 5550.0 5553.4 5550.0 5553.4 5550.0 5553.4 5550.0 5553.4 5550.0 5553.4 5550.0 5553.4 5550.0 5553.4 5550.0 5553.4 5550.0 5550.0 5553.4 5550.0 555		45 + 50	Divide Cr	5489.1	5494.4 2350	5497.2 4400	5497.9 5600	5498.8 10000
Divide Cr 5505.5 5509.6 5510.4 5510.9 Divide Cr 5513.1 2350 4400 5600 Divide Cr 5521.3 2350 4400 5600 Divide Cr 5532.6 5539.0 5539.9 5540.3 Divide Cr 5532.6 2350 4400 5540.3 Divide Cr 5552.0 5539.9 5540.3 5552.0 5553.6 5539.9 5500 0 Divide Cr 5545.0 5553.4 5554.0		53 + 10	Divide Cr	5496.0	5501.9 2350	5502.8 4400	5503.1 5600	5504.6 10000
Divide Cr 5513.1 5519.7 5521.5 5522.1 Divide Cr 5521.3 5526.6 5528.3 5600 Divide Cr 5532.6 5539.0 5539.0 5540.3 Divide Cr 5532.6 5539.0 5540.3 5600 0 Divide Cr 5552.0 5552.0 5553.4 5554.0 0 Divide Cr 5545.0 5553.4 5554.0 5600		62 + 30	Divide Cr	5505.5	5509.6 2350	5510.4 4400	5510.9 5600	5512.1 10000
Divide Cr 5521.3 2350 4400 5529.0 5600 Divide Cr 5532.6 5539.0 5539.9 5540.3 5600 Divide Cr 5545.0 5552.0 5553.4 5554.0 5600		72 + 50	Divide Cr	5513.1	5519.7 2350	5521.5 4400	5522.1 5600	5524.0 10000
Divide Cr 5532.6 5539.9 5540.3 5600 Divide Cr 5545.0 553.4 5554.0 5500	_	80 + 10	Divide Cr	5521.3	5526.6 2350	5528.3 4400	5529.0 5600	5530.7 10000
Divide Cr 5545.0 5552.0 5553.4 5554.0 5600		92 + 70	Divide Cr	5532.6	5539.0 2350	5539.9 4400	5540.3 5600	5541.2 10000
		109 + 90	Divide Cr	5545.0	5552.0 2350	5553.4 4400	5554.0 5600	5555.9 10000

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1

Vertical	500-Year Flood	5562.6 10000	5571.6 10000	5580.9 10000	5590.9 10000	5603.1 10000	5603.5 10000	5605.5 10000	5 615. 5 10000
ional Geodetic	Year	5560.9 5600	5570.3 5600	5579.9 5600	5589.9 5600	5601.5 5600	5602.5 5600	5604.1 5600	5614.4 5600
Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	rear	5560.3 4400	5569.3 4400		5589.4 4400	5601.1 4400	5602.1 4400	5603.6 4400	5614.0 4400
Crest-El Dat	ear od	5558.9 2350	5568.2 2350	5578.4 2350	5588.2 2350	5600.0 2350	5601.1 2350	5602.5 2350	5612.4 2350
Stream Bed Elevation	Feet (Meters) N.G.V.D.	5552.0	5561.8	5571.5	5581.7	5595.2	5597.0	5598.2	5607.9
Identification		Divide Cr	Divide Cr	Divide Cr					
Stationing from Lower	Study Limit Feet (Meters)	121 + 30	133 + 50	141 + 50	147 + 00	158 + 60	158 + 95	160 + 15	167 + 55
Cross	Design- nation	533	534	535	536	537	538	539	540

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc.

1

-	from Lower	Identification	Stream bed Elevation	Orest-Elevation Datum, and	Datum, and Peak Discharge c.f.s.	reet national Geodetic Vertical Peak Discharge c.f.s.	Vertical
Design- Stu nation Fee	Study Limit Feet (Meters)		Feet (Meters) N.G.V.D.		50-Year Flood	100-Year Flood	500-Year Flood
541 173	173 + 55	Divide Cr		5625.8 2350	5628.8 4400	5629.7 5600	5631.8 10000
542 174	174 + 85	Divide Cr at Tribe #1	5625.7	5631.2 2350	5632.5 4400	5633.0 5600	5634.5 10000
551 181	181 + 25	Divide Cr	5638.3	5643.6 2310	5645. 4 4350	5646. 3 5550	5648.3 9900
553 182	182 + 05	Divide Cr at Tribe #2	0.0495	5645.2 2310	5647. 2 4350	5649.1 5550	5650.9 9900
554 189	189 + 05	Divide Cr	5653.0	5658.7 2280	5661.1 4300	5 662. 4 5500	5666. 3 9800
555 190	190 + 75	Divide Cr	5654.0	5661.6 2280	5664. 5 4300	5666.0 5500	5669.4 9800
556.1 191	191 + 35	Private Road	5655.0	5661.9 2280	5664. 5 4300	5666.5 5500	5669.4 9800
556.2 191	191 + 55	Private Road	5655.0	5663.9 2280	5666.6 4300	5668.2 5500	5670. 4 9800

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1

Vertical	500-Year Flood	5670.4 9800	5670.4 9800	5672.5 9800	5676.3 9800	5677.4 9800		
Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	100-Year Flood	5668.2 5500	5668.5 5500	5670.9 5500	5674.1 5500	5675.2 5500		
-Elevation Feet National Geodeti Datum, and Peak Discharge c.f.s.	Year	1	5667.9 4300	5670 . 1 4300	5673.3 4300	5674.5 4300		
Crest-E	10-Year Flood	5663 . 9 2280	5665.2 2280	5668.7 2280	5671.7 2280	5673.5 2280		
Stream Bed Elevation	Feet (Meters) N.G.V.D.	5656.0	5660.0	5665.1	5664.6	5667.0		-
Identification		Divide Cr	Divide Cr	Divide Cr	Divide Cr	Upper Study Limit		
Stationing from Mouth	Feet (Meters)	191 + 85	192 + 95	193 + 40	205 + 40	223 + 60		
Cross	Design- nation	557	558	559	260	561	,	

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1

Vertical	500-Year Flood	5634.5 10000	5668.5 390	5722.2 390	5754.1 390	5763.9 390	5769.3 390	5775.1 390	5775.2 390
tional Geodetic scharge c.f.s.	100-Year Flood	5633.0 5600	5668.2 310	5721.9 310	5753.9 310	5763.8 310	5769.2 310	5774 . 8 310	5774.9 310
Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	Vear		5668.1 290	5721.8 290	5753.8 290	5763.7 290	5769.1 290	5774.7 290	5774.8 290
Crest-El Dat	10-Year Flood		5667.9 240	5721.7 240	5753 . 6 240	5763.6 240		5774.5 240	5774.6 240
Stream Bed Elevation	Feet (Meters) N.G.V.D.		5664.6	5719.4	5751.4	5762.6 240	5768.2	5772.1	5772.1
Identification		Divide Cr Trib #1	Divide Cr Trib #1	Divide Cr Trib #1	Divide Cr Trib #1	Divide Cr Trib #1	Divide Cr Trib #1	Private Road	Private Road
Stationing from Lower	Study Limit Feet (Meters)	174 + 85	182 + 65	191 + 05	198 + 35	198 + 60	200 + 60	205 + 00	205 + 35
Cross Section	Design- nation	542	543	544	545	976	547	549.1	549.2

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1

Vertical	500-Year Flood	5780.4 390				
Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	100-Year Flood	5780.3 310		·		
levation Feet Nitum, and Peak D	50-Year Flood	5780.2 290				
Crest-E	10-Year Flood	5780.1 240				
Stream Bed Elevation	Feet (Meters) N.G.V.D.					
Identification		Upper Study Limit				
Stationing from Lower	Study Limit Feet (Meters)	207 + 15				
		550				

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1

Vertical	500-Year Flood	5650.9 9900	5670.2 1070	5674.0 1070	5676.8 1070	5677.3 1070	5677.4 1070	5689.8 1070	5693.8 1070
tional Geodetic scharge c.f.s.	100-Year Flood	5549.1 5550	5669.8 730	5673.4 730	5676.2 730	5676.5 730	5676.6 730	5689.1 730	5692.4 730
Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	50-Year Flood		5669.5 640	5673.2 640	5676.0 640	5676.3 640	5676.4 640		5692.1 640
Crest-El Dat		5645.2 2310	5669 <u>.</u> 3 465	5672.8 465	5675.6 465	5675.7 465	5675.8 465	5688.6 465	5691.5 465
Stream Bed Elevation	Feet (Meters) N.G.V.D.		5665.3	2669.0	5670.9	5670.9	5671.9	5684.5	5688.2
Identification		Divide Cr at Trib #2	Divide Cr Trib #2	Divide Cr Trib #2	Private Road	Private Road	Divide CR Trib #2	Divide Cr Trib #2	County Road
Stationing from Lower	Study Limit Feet (Meters)	182 + 05	189 + 85	191 + 85	192 + 35	192 + 55	192 + 85	197 + 25	198 + 05
Cross	Design- nation	553	562	563	564.1	564.2	565	999	567.1

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1

ical	500-Year Flood	9• (9.	1.0	33	9.1	<u></u>	
Vert	5C	5694 1070	56% 6 1070	5715.1 1070	5724.3 1070	5734 . 6 1070	5657.7 1070	
Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	100-Year Flood	5694 .2 730	5694.2 730	5714.2 730	5723.6 730	5733.7 730	5657. 0 730	
Levation Feet Nitum, and Peak D	50-Year Flood	5694.1 640	5694.1 640	5713.9 640	5723.4 640	5733.4 640	5656.8 640	
Crest-E	10-Year Flood	•	5692.7 465	5713.3 465	5722.9 465	5732.9 465	5756.3 465	
Stream Bed Elevation			5689.6	5708.7	5719.0	5729.4	5752.6	
Identification		County Road	Divide Cr Tribe #2	Divide Cr Trib #2	Divide Cr Trib #2	Divide Cr Trib #2	Upper Study Limit	
Stationing from Lower	Study Limit Feet (Meters)	198 + 40	198 + 50	205 + 70	209 + 70	214 + 20	222 + 40	
Cross Section	Design- nation	567.2	568	569	570	571	572	

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1

Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	r 100-Year 500-Year Flood	5501.5 550 29400 <u>2</u> / 294	550 6.1 5507.6 2380 4000	5519.1 5521.7 2380 4000	5538.1 5538.8 2380 4000	5540.3 5544.7 2380 4000	5543.2 5545.6 2380 4000	5544.4 5546.2 2380 4000	5562.1 5564.9 2380 4000
levation Factor I	50-Year Flood	5501.5 29400 <u>2</u> /	5505.5 1920	5518.4 1920	5537.7 1920	5539.4 1920	5542.8 1920	5543.7 1920	5561. 4 1920
Crest-E		5501.5 29400 <u>2</u> /	5504.5 1180	5517.0 1180	5537.1 1180	5538.5 1180	5540.4 1180	5540 . 7 1180	5559 <u>.</u> 9 1180
Stream Bed Elevation	Feet (Meters)	5492.1	5500.8	5512.6	5532.8	5533.1	5553.1	5536.4	5554.3
Identification		CO River at Garfield Cr	Garfield Cr	Garfield Cr	Garfield Cr	County Road 335	County Road 335	Garfield Cr	Garfield Cr
Stationing from Lower	Study Limit Feet (Meters)	00 + 0	7 + 00	12 + 50	17 + 90	19 + 30	19 + 52	19 + 97	26 + 97
Cross	Design- nation	585	586	587	588	589.1	589.2	290	591

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. Discharge in Colorado River at 25 year frequency.

1

⁷

ertical	500-Year Flood	5584.8 4000	5602.4 4000	5606.1 4000	5611.6 4000	5612.3 4000	5622.8 4000	5649.8 4000	5659.2 4000
al Geodetic Vage c.f.s.	-Year ood								
Nationa Dischar)1 I	5583.3 2380	5600.9 2380	5603.7 2380	5603.8 2380	5606.1 2380	5620.8 2380	5649.0 2380	5657.5 2380
Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	50-Year Flood	5582.7 1920	5600.0 1920	5602.9 1920	5603.0 1920	5605.0 1920	5620.1 1920	5648.6 1920	5657.0 1920
Crest-E	10-Year Flood	5581.3 1180	5598.7 1180	5601.4 1180	5601.5 1180	5602.9 1180	5618.8 1180	5647.1 1180	5656.6 1180
Stream Bed Elevation	Feet (Meters) N.G.V.D.	5575.8	5594.0	5597.0	5597.0	5598.0	5614.0	5642.1	5651.9
Identification		Garfield Cr	Garfield Cr	County Road 312	County Road 312	Garfield Cr	Garfield Cr	Garfield Cr	Garfield Cr
Stationing from Lower	Study Limit Feet (Meters)	33 + 97	76 + 04	41 + 67	41 + 92	42 + 07	75 + 65	61 + 47	68 + 47
Cross	Design- nation	592	593	594.1	594.2	595	596	597	598

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1/

TABLE 1

Vertical	500-Year	5666.7	5668.4	5669. 3	5669.8	5689.1	5712.0	5731.5	5743.7
	Flood	4000	4000	4000	4000	4000	4000	4000	4000
tional Geodetic	100-Year	5665.7	5667.5	5668.0	5668.6	5687.3	5710.9	5729.8	5741.6
scharge c.f.s.	Flood	2380	2380	2380	2380	2380	2380	2380	2380
Crest-Elevation Feet National Geodetic Vertical	50-Year	5665.2		5667.5	5668.0	5686.4	5710.5	5729.2	5741.0
Datum, and Peak Discharge c.f.s.	Flood	1920		1920	1920	1920	1920	1920	1920
Crest-El	10-Year	5663.6	5665.7	5665.8	5666.8	5684.1	5709.4	5727.9	5739.7
	Flood	1180	1180	1180	1180	1180	1180	1180	1180
Stream Bed Elevation	Feet (Meters) N.G.V.D.	5658.8	5658.8	5658.8	5661.7	5678.2	5704.5	5722.7	5735.4
Identification		Garfield Cr	Private Road	Private Road	Garfield Cr	Garfield Cr	Garfield Cr	Garfield Cr	Upper Study Limit
Stationing from Lower	Study Limit Feet (Meters)	71 + 07	72 + 07	72 + 22	72 + 82	83 + 02	92 + 02	100 + 42	105 + 22
Cross Section	Design- nation	599	600.1	600.2	601	602	603	6 04	605

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. اب

Vertical	500-Year Flood	5524.9 $29400 \ \underline{2}/$	5536.8 2000	5543.5 2000	5543.8 2000	5544.7 2000	5558.4 2000	5574.0 2000	5575.9 2000
Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	100-Year Flood	5524.9 29400 <u>2</u> /	5534.9 1290	5543.4 1290	5543.5 1290	5544.1 1290	5557.1 1290	5573.1 1290	5574.2 1290
-Elevation Feet National Geodeti Datum, and Peak Discharge c.f.s.	50-Year Flood	5524.9 29400 <u>2</u> /		5543.3 1090	5543.4 1090	5543.8 1090			5573 . 6 1090
Crest-E Da	10-Year Flood	5524.9 29400 <u>2</u> /	5533.0 720	5543.1 720	5543.2 720	5543.2 720	5555.6 720	5572.2 720	5572,4 720
Stream Bed Elevation	Feet (Meters) N.G.V.D.	5506.8	5528.3	5528.3	5530.5	5536.2	5550.2	5568.0	5568.5
Identification		CO River at Alkali Cr	Dam	Dam	Alkali Cr	Alkali Cr	Alkali Cr	Alkali Cr	County Road 335
Stationing from Lower	Study Limit Feet (Meters)	00 + 0	9 + 30	6 + 05	07 + 9	12 + 10	17 + 90	23 + 50	23 + 90
Cross Section	Design- nation	610	611.1	611.2	612	613	614	615	616.1

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. Discharge in Colorado River at 25 year frequency.

Table page 24

7

1

Cross	Stationing from Lower	Identification	Stream Bed Elevation	Crest-E	-Elevation Feet National Geodeti Datum, and Peak Discharge c.f.s.	Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	Vertical
Design- nation	Study Limit Feet (Meters)			10-Year Flood	<i>lear</i> ood		500-Year Flood
616.2	24 + 30	County Road 335		557 6. 2 720		5587.2 1290	5589.2 2000
617	24 + 40	Alkali Cr	5568.8	5576.3 720	5582.9 1090	5587.3 1290	5589.3 2000
618	29 + 40	Alkali Cr	5584.5	5587.5 720	5588.3 1090	5588.6 1290	5589.7 2000
619	37 + 65	Alkali Cr	5605.8	5610.3 720	5611.1 1090	5611.5 1290	5612.7 2000
620	44 + 45	Alkali Cr	5628.4	5631.3 720	5631.9 1090	5632.2 1290	5633. 1 2000
621	50 + 75	Alkali Cr	5643.3	5647.2 720	5647.9 1090	5648.2 1290	5649.2 2000
622	58 + 95	Alkali Cr	5664.6	5668.7 720	5669.5 1090	5669.9 1290	5671.2 2000
623	64 + 75	Alkali Cr	5679.1	5683 . 3 720	5684.3 1090	5684.7 1290	5686.0 2000
				•			

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1

		1	1		1	1	1	ı	
Vertical	500-Year Flood	5690.7 2000	5699.2 2000	5699.4 2000	5714.5 2000	5729.7 2000	5756. 3 2000	5787.6 2000	
ational Geodetic ischarge c.f.s.	100-Year Flood	5688.8 1290	5698.5 1290	5698.6 1290	5713.3 1290	5728.3 1290	5754.6 1290	5786.5 1290	
Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	50-Year Flood	5688.1 1090	5698.2 1090	5698.3 1090	5713.0 1090	5727.8 1090	5754.0 1090	5786.1 1090	
Crest-E	10-Year Flood	5686.8 720	5697.5 720	5697.6 720	5712.2 720	5726.9 720	5752.8 720	5785.3 720	
Stream Bed Elevation	Feet (Meters) N.G.V.D.	5682.0	5682.0	5684.4	5707.4	5722.0	5747.3	5781.8	
Identification		County Road 314	County Road 314	Alkali Cr	Alkali Cr	Alkali Cr	Alkali Cr	Upper Study Limit	
Stationing from Lower	Study Limit Feet (Meters)	65 + 75	0+ + 99	67 + 20	75 + 60	08 + 08	06 + 88	95 + 90	
Cross	Design- nation	624.1	624.2	625	626	627	628	629	

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. Discharge in Colorado River at 25 year frequency.

Table page 27

7

1

FLOOD FREQUENCY-ELEVATION AND DISCHARGE DATA 1/

TABLE 1

Vertical	500-Year	5822.9	5859.7	5888.5	5921.1	5924.8	5928.8	5929.1	5951.8
	Flood	1670	1670	1670	1670	1670	1670	1670	1670
Crest-Elevation Feet National Geodetic Vertical	100-Year	5821.5	5858.6	5887.5	5919.9	5923.0	5928.1	5928.1	5951.0
Datum, and Peak Discharge c.f.s.	Flood	1080	1080	1080	1080	1080	1080	1080	1080
-Elevation Feet National Geodeti	ear	5821.0	5858.3	5887.2	5919.6	5922.5	5927.9	5927.9	5950.6
Datum, and Peak Discharge c.f.s.		930	930	930	930	930	930	930	930
Crest-E	10-Year	5820.0	5857.6	5886.5	5918 . 8	5921.3	5927.4	5927.4	5949.7
Dat	Flood	630	630	630	630	630	630	630	630
Stream Bed Elevation	Feet (Meters) N.G.V.D.	5815.7	5854.9	5882.3	5915.2	5916.8	1916.8	5921.2	5946.0
Identification		So. Canyon	So. Canyon	So. Canyon	So. Canyon	County Road 134	County Road 134	So. Canyon	So. Canyon
Stationing from Lower	Study Limit Feet (Meters)	34 + 15	44 + 15	50 + 95	56 + 75	57 + 05	57 + 30	57 + 60	0+ + 79
Cross Section	Design- nation	775	776	777	778	779.1	779.2	781	782

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1

Cross Section	Stationing from Lower	Identification	Stream Bed Elevation	Crest-E	levation Feet N tum, and Peak D	Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	Vertical
Design- nation	Study Limit Feet (Meters)		Feet (Meters) N.G.V.D.	10-Year Flood	50-Year Flood	100-Year Flood	500-Year Flood
783	67 + 20	So. Canyon		5960.3 630	5960.9 930	5961.2 1080	5962.1 1670
784	70 + 40	So. Canyon	5971.5	5977.5 630	5978.5 930	5979.6 1080	5980.5 1670
785	75 + 10	So. Canyon	5993.6	5997.4 630	5998.2 930	5998.6 1080	5999.8 1670
786	81 + 40	So. Canyon	6023.5	6027.4 630	6028.3 930	5028.7 1080	6030.0 1670
6002	92 + 60	So. Canyon	0.8809	6092.0 630	6092.7 930	6093.0 1080	6094.1 1670
6003	06 + 86	So. Canyon	6125.5	6130.4 630	6131.2 930	6131.5 1080	6132.6 1670
6004	104 + 50	So. Canyon	6161.5	6165.2 630	6166.0 930	6166.3 1080	6167.3 1670
9009	109 + 70	So. Canyon	6198.0	6202.4 630	6203.2 930	6303.7 1080	6204.6 1670

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. $\overline{1}$

Vertical	500-Year	6240.0	6284.1	6345.3	6404.8	6441.2	6445.1	6446.5	6448.0
	Flood	1670	1670	1670	1670	1670	1670	1670	1670
Crest-Elevation Feet National Geodetic Vertical	100-Year	6238.5	6283.2	6344.5	6403.7	6439.8	6443.7	6444.5	6447.4
Datum, and Peak Discharge c.f.s.	Flood	1080	1080	1080	1080	1080	1080	1080	1080
-Elevation Feet National Geodeti	50-Year	6238.0	6282.9	6344.2	6403.4	6439.4	6443.3	6444.1	6447.2
Datum, and Peak Discharge c.f.s.	Flood	930	930	930	930	930	930	930	930
Crest-E	10-Year	6237.1	6282 . 2	6343 . 6	6402 . 7	6438.5	6442.3	6443.2	6446.7
Da	Flood	630	630	630	630	630	630	630	630
Stream Bed Elevation	Feet (Meters) N.G.V.D.	6232.0	6278.0	6340.5	6399.5	6434.0	6438.0	6439.3	6439.3
Identification		So. Canyon	So. Canyon	So. Canyon	So. Canyon	So. Canyon	So. Canyon	County Road 134	County Road 134
Stationing from Lower	Study Limit Feet (Meters)	116 + 10	122 + 90	132 + 00	140 + 00	146 + 50	150 + 70	150 + 80	151 + 05
Cross	Design- nation	9009	2009	8009	6009	6010	6011	6012.1	6012.2

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1

Vertical	500-Year Flood	6448.0 1670	6460.8 1670	6496.4 1670			
Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	Year	1	6460.0 1080	6495.6 1080			
levation Feet Nature, and Peak Di	50-Year Flood	6447.2 930	6459.7 930	6495•3 930			
Crest-E Da	10-Year Flood	630 630	6459.1 630	6494.7 630			
Stream Bed Elevation	Feet (Meters) N.G.V.D.	6443.0	6456.0	6491.0			
Identification		So. Canyon	So. Canyon	Upper Study Limit			
Stationing from Lower	Study Limit Feet (Meters)	151 + 30	158 + 10	167 + 10			
_	Design- nation	6013	6014	6015			

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1

Cross	Stationing from Lower	Identification	Stream Bed Elevation	Crest-E	Crest-Elevation Feet National Geodeti Datum, and Peak Discharge c.f.s.	Feet National Geodetic Vertical Peak Discharge c.f.s.	Vertical
Design- nation	Study Limit Feet (Meters)		Feet (Meters) N.G.V.D.	10-Year Flood	50-Year Flood	100-Year Flood	500-Year Flood
735	00 + 0	Co River at Canyon Cr	5601.2	5615.8 28500 <u>2</u> /	5615.8 28500 <u>2</u> /	5615.8 28500 <u>2</u> /	5615.8 28500 <u>2</u> /
736	2 + 40	Canyon Cr	5610.7	5618.3 1300	5618.4 2200	5618.5 2700	5618.6 4600
737.1	2 + 75	Denver Rio Grande Western Railroad	5612.9	5618.3 1300	5618.4 2200	5618.5 2700	5618.7 4600
737.2	3 + 10	Denver Rio Grande Western Railroad	5612.9	5618.4 1300	5618.5 2200	5618.6 2700	5619 . 0 4600
738	3 + 83	Canyon Cr	5613.8	5618.4 1300	5618.5 2200	5618.9 2700	5620 . 8 4600
739.1	7 + 08	Interstate Highway I-70	5618.5	5623.3 1300	5625.1 2200	5626.0 2700	5628.8 4600
739.2	9 + 58	Interstate Highway I-70	5618.5	5623.4 1300	5625.2 2200	5629.2 2700	5631.6 4600
740	7 + 28	Canyon Cr	5623.5	5627.2 1300	5628.6 2200	5629.3 2700	5632.4 4600

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. Discharge in Colorao River at 25 year frequency. 1

Table page 32

7

Cross	Stationing from Lower	Identification	Stream Bed Elevation	Crest-E Da	-Elevation Feet N Datum, and Peak D	Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	Vertical
Design- nation	Study Limit Feet (Meters)		Feet (Meters) N.G.V.D.	sar	50-Year Flood	100-Year Flood	500-Year Flood
741.1	7 + 63	Frontage Road	5624.0	5627.6 1300	5629.1 2200	5629.8 2700	5632.4 4600
741.2	7 + 81	Frontage Road	5624.0	5627.7 1300	5629.2 2200	5634.8 2700	5636.9 4600
742	60 + 8	Canyon Cr	5625.6	5629.3 1300	5630.7 2200	5634.8 2700	5636.9 4600
743	12 + 49	Canyon Cr	5636.0	5639.4 1300	5640.5 2200	5640.9 2700	5642.2 4600
744	19 + 34	Canyon Cr	5654.4	5657.7 1300	5658.9 2200	5659.5 2700	5661 • 4 4600
745	27 + 14	Canyon Cr	5673.9	5676.7 1300	5677.8 2200	5678.3 2700	5680.0 4600
97/	31 + 34	Canyon Cr	5688.2	5691.5 1300	5692.8 2200	5693.4 2700	5695.7 4600
747	34 + 09	Canyon Cr	5693.8	5697.1 1300	5698.3 2200	5698.9 2700	5700.7 4600

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1,

TABLE 1

Cross	Stationing from Lower	Identification	Stream Bed Elevation	Crest-E.	-Elevation Feet National Geodeti Datum, and Peak Discharge c.f.s.	Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	Vertical
Design- nation	Stud Limit Feet (Meters)		<u>~</u>	10-Year Flood	50-Year Flood	100-Year Flood	500-Year Flood
748	69 + 07	Canyon Cr		5716.6 1300	5718.1 2200	5718.9 2700	5721.3 4600
749	69 + 97	Canyon Cr	5729.2	5732.0 1300	5733.1 2200	5733.7 2700	5735.5 4600
750	55 + 29	Canyon Cr	5758.0	5761.2 1300	5762.2 2200	5762.7 2700	5764.1 4600
751	63 + 69	Upper Study Limit	5792.2	5795.3 1300	5796.5 2200	5797.1 2700	5799.0 4600

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1,

Cross Section	Stationing from Lower	Identification	Stream Bed Elevation	Crest-E Da	-Elevation Feet National Geodeti Datum, and Peak Discharge c.f.s.	Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	Vertical
Design- nation	Study Limit Feet (Meters)		Feet (Meters) N.G.V.D.	10-Year Flood	50-Year Flood	100-Year Flood	500-Year Flood
632	00 + 0	Co River at Elk Cr	5516.5	5531.0 29400 <u>2</u> /	5531.0 29400 <u>2</u> /	5531.0 29400 <u>2</u> /	5531.0 29400 <u>2</u> /
633	5 + 80	Elk Cr	5523.5	5533.4 2200	5533.4 4200	5533.4 5200	5533.4 9300
634	9 + 45	Interstate Highway I-70	5524.1	5533.4 2200	5533.4 4200	5533.4 5200	5533.8 9300
635	7 + 55	Interstate Highway I-70	5524.1	5533.4 2200	5533.6 4200	5533.9 5200	5534.5 9300
636	7 + 85	Elk Cr	5526.4	5533.4 2200	5533.9 4200	5200	5538.5 9300
637	9 + 70	Elk Cr	5529.3	5534.3 2200	5535.2 4200	5535.5 5200	5538.5 9300
638.1	10 + 40	Denver & Rio Grande Western Railroad	5530.0	5534.9 2200	5535.3 4200	5535.5 5200	5538.5 9300
638.2	10 + 90	Denver & Rio Grande Western Railroad	5530.0	5534.9 2200	5535.3 4200	5535.5 5200	5538.5 9300

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc.

Discharge in Colorado River at 25 year frequency. 7

Table page 35

7

	ear d								
Vertica	500-Year Flood	5540.9 9300	5544.2 9300	5544.2 9300	5544.2 9300	5544.7 9300	5550.2 9300	5554.5 9300	5563.0 9300
ion Feet National Geodetic Vertical and Peak Discharge c.f.s.	100-Year Flood	5538.7 5200	5541.4 5200	5541.4 5200	5541.4 5200	5541.8 5200	5547.2 5200	5551.9 5200	5560.9 5200
Crest-Elevation Feet N Datum, and Peak D	50-Year Flood	5537.9 4200	5540.8 4200	5541.3 4200	5541.3 4200	5541.3 4200	5546.6 4200	5551.1 4200	5560.3 4200
Crest-E Da	10-Year Flood	5535.9 2200	5539.1 2200	5539.9 2200	5539.9 2200	5539.9 2200	5544.9 2200	5549.2 2200	5558.7 2200
Stream Bed Elevation	Feet (Meters) N.G.V.D.	5532.2	5535.1	5535.5	5535.5	5535.7	5540.5	5544.9	5554.1
Identification		Elk Cr	Elk Cr	New Castle Main St	New Castle Main St	Elk Gr	Elk Cr	Elk Cr	Elk Cr
Stationing from Lower	Study Limit Feet (Meters)	11 + 70	13 + 60	14 + 20	14 + 55	14 + 85	19 + 05	22 + 55	29 + 45
Cross	Design- nation	639	079	641.1	641.2	642	643	7/ 79	645

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1/

Table page 36

Cross	Stationing from Lower	Identification	Stream Bed Elevation	Crest-E	-Elevation Feet National Geodeti Datum, and Peak Discharge c.f.s.	Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	Vertical
Stud	Study Limit Feet (Meters)		Feet (Meters)	10-Year Flood	50-Year Flood	100-Year Flood	500-Year Flood
36	36 + 45	Elk Cr		5568.1 2200			5571.5 9300
3	44 + 85	Elk Cr	5574.4	5577.2 2200	5578.6 4200	5579.0 5200	5580.7 9300
58	58 + 85	Elk Cr	5592.1	5595.1 2200	5596.5 4200	5596.9 5200	5598.2 9300
89	68 + 45	Elk Cr	5600.9	5605.3 2200	5606.4 4200	5606.8 5200	5608.1 9300
79	79 + 75	Elk Cr at East Elk Cr	5616.1	5619.2 2180	5619.9 4000	5620.3 5100	5621.4 9100
87	87 + 75	Elk Cr	5622.7	5626.6 1900	5627.8 3450	5628.2 4380	5629.8 7700
94	96 + 96	Elk Cr	5629.8	5633.5 1900	5634.6 3450	5635.2 4380	5636.3 7700
100	102 + 55	Elk Cr	5636.9	5641.5 1900	5642.5 3450	5643.2 4380	5644.6 7700
				•			

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1

TABLE 1

	ear 1								
Vertica]	500-Year Flood	5652.1 7700	5661.5 7700	5667.4 7700	5673.7 7700	5675.8 7700	5677. 2 7700	5678.5 7700	5685.5 7700
Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	100-Year Flood	5651.2 4380	5658.8 4380	5666.3 4380	5670.9 4380	5673.5 4380	5675.3 4380	5677.6 4380	5684.0 4380
-Elevation Feet N Datum, and Peak D		5650.8 3450	5658.1 3450	5665.7 3450	3450	3450	5674.1 3450	3450	5683.3 3450
Crest-I	10-Year Flood	5649.5 1900	5656.7 1900	5664.3 1900	5668.1 1900	5668.8 1900	5671.0 1900	5676.3 1900	5681.9 1900
Stream Bed Elevation	Feet (Meters) N.G.V.D.	5645.5	5653.3	5659.5	5663.8	5664.0	5665.3	5670.5	5677.8
Identification		Elk Cr	Elk Cr	Elk Cr					
Stationing from Lower	Study Limit Feet (Meters)	113 + 75	122 + 55	130 + 50	136 + 10	136 + 35	136 + 95	143 + 20	150 + 00
Cross	Design- nation	959	657	658	629	099	661	662	663

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1

Cross	Stationing from Lower	Identification	Stream Bed Elevation	Crest-E	-Elevation Feet National Geodeti Datum, and Peak Discharge c.f.s.	Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	Vertical
Design- nation	Study Limit Feet (Meters)		(s	10-Year Flood	50-Year Flood	100-Year Flood	500-Year Flood
999	155 + 30	Elk Cr		i,	5689.0 3450	5689.5 4380	5691.2 7700
665	167 + 50	Elk Cr	5695.8	5699.8 1900	5700.7 3450	5701.2 4380	5702.4 7700
999	174 + 30	Elk Cr	5698.5	5704.1 1900	5705.7 3450	5706.3 4380	5708.3 7700
299	180 + 10	Elk Cr	5705.4	5709.1 1900	5710.9 3450	5711.5 4380	5713.2 7700
899	185 + 40	Elk Cr	5710.2	5715.3 1900	5716.7 3450	5717.4 4380	5719.0 7700
699	191 + 20	Elk Cr	5714.6	5719.7 1900	5721.2 3450	5721.6 4380	5722.7 7700
029	201 + 80	Upper Study Limit	5722.3	5728.0 1900	5728.4 3450	5728.7 4380	5730.0 7700

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1

TABLE 1

cal	500-Year Flood	7	les les	2	6	2	dt.	\c	
Verti	500. F1.	5621.4 9100	5637.3 3780	5638.5 3780	5638.9 3780	5639.5 3780	5646.4 3780	5655.6 3780	5670. 3780
Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	100-Year Flood	5602.3 5100	563 6. 0 2250	5637.7 2250	5637 . 9 2250	5638.5 2250	5645.6 2250	5654.5 2250	5669.4 2250
-Elevation Feet Datum, and Peak I	50-Year Flood	5619.9 4000	5635.4 1840	5637.4 1840	5637.6 1840	5638.2 1840	5645.2 1840	5654.1 1840	5669.1 1840
Crest-E	10-Year Flood	5619.2 2180	5634.4 1120	5634.6 1120	5634.6 1120	5636.6 1120	5644.2 1120	5652.9 1120	5667.5 1120
Stream Bed Elevation	Feet (Meters) N.G.V.D.		5629.9	5630.0	5630.0	5630.1	5640.3	5649.5	5663.7
Identification		Elk Cr at East Elk Cr	East Elk Cr	Private Road	Private Road	East Elk Cr	East Elk Cr	East Elk Cr	Foot Bridge
Stationing from Lower	Study Limit Feet (Meters)	79 + 75	88 + 15	88 + 25	88 + 40	88 + 60	93 + 00	08 + 96	104 + 80
Cross	Design- nation	652	671	672.1	672.2	673	674	675	9/9

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1

rtical	500-Year Flood	5671.6 3780	5693.4 3780	5705.1 3780	5705.9 3780	5707.6 3780	5709.8 3780	5721.2 3780	5734.8 3780
tic Ver		378	378	5705 3780	378	576 378	378	378	378
ational Geode ischarge c.f.	100-Year Flood	5670.9 2250	5691 . 6 2250	5703.7 2250	5703.7 2250	5705.0 2250	5706.5 2250	5719.9 2250	5733.2 2250
Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	50-Year Flood	5670.5 1840	5691.1 1840	5703.2 1840	5703.2 1840	5703.5 1840	5705.0 1840	5719.4 1840	5732.7 1840
Crest-E	10-Year Flood	5669.2 1120	5690.1 1120	5701.8 1120	5702.2 1120	5702.3 1120	5703.1 1120	5717.8 1120	5731.8 1120
Stream Bed Elevation	Feet (Meters) N.G.V.D.	5665.2	5687.0	5697.4	5697.5	5697.5	5697.6	5713.7	5728.9
Identification		East Elk Cr	East Elk Cr	East Elk Cr	Buford Road	Buford Road	East Elk Cr	East Elk Cr	East Elk Cr
Stationing from Lower	Study Limit Feet (Meters)	105 + 15	116 + 55	122+ 55	122 + 70	122 + 95	123 + 35	130 + 65	136 + 35
Cross	Design- nation	678	679	089	681.1	681.2	682	683	189 9

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1/

Vertical	500-Year	5758.3	5769.3	5772.7	5774.5	5774.5	5783.7	5786.0	5787.3
	Flood	3780	3780	3780	3780	3780	3780	3780	3780
ion Feet National Geodetic Vertical	100-Year	5757.0	5768.1	5771.8	5773.3	5773.3	5781.4	5783.2	5785.4
and Peak Discharge c.f.s.	Flood	2250	2250	2250	2250	2250	2250	2250	2250
Crest-Elevation Feet Na	50-Year	5755.8	5767.9	5771.4	5772.8	5772.8	5781.0	5782.6	5784.9
Datum, and Peak Di	Flood	1840	1840	1840	1840	1840	1840	1840	1840
Crest-E.	10-Year	5754.8	5767.1	5768.7	5769.9	5770.6	5780.0	5781.4	5781.5
	Flood	1120	1120	1120	1120	1120	1120	1120	1120
Stream Bed Elevation	Feet (Meters) N.G.V.D.	5751.7	5764.2	5764.5	5764.5	5765.7	5776.9	5778.2	5778.2
Identification		East Elk Cr	East Elk Cr	Private Road	Private Road	East Elk Cr	East Elk Cr	Private Road	Private Road
	Study Limit Feet (Meters)	145 + 15	152 + 15	152 + 50	152 + 68	152 + 83	158 + 63	159 + 08	159 + 26
-	Design- nation	685	989	687.1	687.2	889	689	690.1	690.2

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc.

1

Vertical	500-Year Flood	5787.3 3780	5793.7 3780	5798.1 3780	5798.2 3780	5809.3 3780	5812.1 3780	5812.2 3780	5812.8 3780
Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	100-Year Flood	5785.8 2250	5791.9 2250	5796.7 2250	5796.9 2250	5808.0 250	5810.5 2250	5810.6 2250	5811.6 2250
-Elevation Feet National Geodeti Datum, and Peak Discharge c.f.s.	50-Year Flood		5791.4 1840	5796.2 1840	5796.4 1840	5807.6 1840	5808.5 1840	5808.7 1840	5810.7 1840
Crest-E		5782.7 1120	5790.3 1120	5795.3 1120	5795.5 1120	580 6.7 1120	5807.0 1120	5807.5 1120	5808.5 1120
Stream Bed Elevation	Feet (Meters) N.G.V.D.		5787.1	5792.3	5790.8	5802.9	5803.1	5803.1	5804.0
Identification		East Elk Cr	East Elk Cr	East Elk Cr	Dam	East Elk Cr	Private Road	Private Road	
Stationing from Lower	Study Limit Feet (Meters)	159 + 71	160 36	164 + 76	165 + 16	171 + 76	172 + 14	172 + 29	172 + 52
Cross	Design- nation	691	692	693	769	695	696.1	696.2	269

Flood elevations pertain to the primary charmel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1

Vertical	500-Year	5814.2	5815.9	5820.2	5820.2	5820.4	5827.9	5831.7	5832.3
	Flood	3780	3780	3780	3780	3780	3780	3780	3780
ion Feet National Geodetic Vertical	100-Year	5812.5	5812.8	5814.8	5815.9	5819.3	5827.1	5828.8	5830 . 0
and Peak Discharge c.f.s.	Flood	2250	2250	2250	2250	2250	2250	2250	2250
Crest-Elevation Feet Na	50-Year		5812.1	5813.1	5814.5	5819.0	5826.9	5828.1	5829.5
Datum, and Peak D	Flood		1840	1840	1840	1840	1840	1840	1840
Crest-E	ear		5810.7	5811.2	5812.4	5818.2	5826.4	582 6. 8	5826.8
Da	od		1120	1120	1120	1120	1120	1120	1120
Stream Bed Elevation	Feet (Meters) N.G.V.D.	5806.8	5807.0	5807.0	5808.3	5815.2	5822.7	5823.0	5823.0
Identification		East Elk Cr	Private Road	Private Road	East Elk Cr	East Elk Cr	East Elk Cr	Private Road	Private Road
Stationing from Lower	Study Limit Feet (Meters)	175 + 22	175 + 42	175 + 57	175 + 92	180 + 92	186 + 32	186 + 72	186 + 87
Cross	Design- nation	869	699.1	699.2	700	701	702	703.1	703.2

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. 1

Table page 44

Vertical	500-Year Flood	5832.7 3780	5842.9 3780			
Crest-Elevation Feet National Geodetic Vertical Datum, and Peak Discharge c.f.s.	100-Year Flood	5831.2 2250	5842.3 2250			
-Elevation Feet National Geodeti Datum, and Peak Discharge c.f.s.	50-Year Flood	5830.6 1840	5841.9 1840			
Crest-E	10-Year Flood	1	5841.2 1120			
Stream Bed Elevation	Feet (Meters) N.G.V.D.		5837.5			
Identification		East Elk Cr	Upper Study Limit			
Stationing from Lower	Study Limit Feet (Meters)	187 + 12	195 + 52			
		704	705			

Flood elevations pertain to the primary channel and usually remain constant in a lateral direction across the flood plain. However, flood elevations in the outer portions of a cross section may differ from the primary channel due to road crossings, upstream diversions, etc. ار

Table page 45

