AWS Academy Machine Learning Foundations

Module 4: Introducing Forecasting

Module overview

Sections

- 1. Forecasting overview
- 2. Processing time series data
- 3. Using Amazon Forecast
- 4. Guided lab
- 5. Module wrap-up

Demonstrations

 Creating a forecast with Amazon Forecast

Guided Lab

 Creating a Forecast with Amazon Forecast

Module objectives

At the end of this module, you should be able to:

- Describe the business problems solved by using Amazon Forecast
- Describe the challenges of working with time series data
- List the steps that are required to create a forecast by using Amazon Forecast
- Use Amazon Forecast to make a prediction

Module 4: Introducing Forecasting

Section 1: Forecasting overview

Overview of forecasting

- Predicting future values that are based on historical data
 - Can be either univariate or multivariate
- Common patterns
 - Trends: Patterns that increase, decrease, or are stagnant
 - Seasonal: Pattern that is based on seasons
 - Cyclical: Other repeating patterns
 - Irregular: Patterns that might appear to be random

Trending data

Cyclical data

Seasonal data

Irregular data

Forecasting use cases

Sales and demand

Energy
© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Consumption

Inventory

Weather forecasts

Module 4: Introducing Forecasting

Section 2: Processing time series data

Time series data

Related data informs the time series data for example, price or promotions

Metadata might also be needed to explain predictions—for example, brand name or category

Unit Sales Product #21232

^{© 2020,} Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Time and date challenges

Incomplete and varying timestamps

UTC, local, and time ZONS he time in UTC format?

T13:15:30Z

yyyy-mm-dd Includes time

HH:MM:SS

yyyy-dd-mm Year, day, month

yyyy-mm-dd Year, month, day

yyyy-mm No day

ss: Second

s s

mm-dd No

year

Time series handling: Missing data

Note: Zero is sometimes the perfect fill value

Time series handling: Downsampling

yyyy-mm-dd HH:MM:SS					yyyy-mm-dd			
InvoiceDate	Item	Quantity						
2009-12-01 07:45:00	21232	24			InvoiceDate	Item	Quantity	
2009-12-01 10:06:00	21232	36		Mean/	2009-12-01	21232	60	
2010-12-08 14:21:00	21232	17		Sum	2010-12-08	21232	26	
2010-12-08 13:11:00	21232	9			2010-12-09	21232	44	
2010-12-09 18:28:00	21232	44						

Time series handling: Upsampling

yyyy-mm-dd						yyyy-mm-dd HH:MM:SS		
						InvoiceDate	Item	Quantity
InvoiceDate	Item	Quantity			ı	2009-12-01 ??:??:??	21232	??
2009-12-01	21232	60		2		2009-12-01 ??:??:??	21232	??
2010-12-08	21232	26		•		2010-12-08 ??:??:??	21232	??
2010-12-09	21232	44			l	2010-12-08 ??:??:??	21232	??
						2010-12-09 ??:??:??	21232	44

Reasons to upsample:

- Match different time series
- Irregular time series
- Knowledge of domain

Time series handling: Smoothing data

Smoothing function

Why are you smoothing?

- Data preparation
- Visualization

How does smoothing affect your outcome?

- Cleaner data to model
- Model compatibility
- Production improvements

Seasonality

- Seasonality frequency
 - Hourly, daily, quarterly, yearly
 - Spring, summer, fall, winter
 - Major holiday sales, winter holiday season
- Incorporating holidays

Time series correlations

Total revenue generated by arcades

correlates with

Computer science doctorates awarded in the US

This chart is originally from Tyler Vigen: Spurious Correlations

tylervigen.com

Stationarity, trends, and autocorrelation

- Stationarity
 - How stable is the system?
 - Does the past inform the future?
- Trends
 - Correlation issues
- Autocorrelation
 - How points in time are linearly related

Influences algorithm choice

Using pandas for time series data

Time-aware index

```
dataframe['2010-01-04']
dataframe['2010-02':'2010-03']
dataframe['weekday_name'] = dataframe.index.weekday_name
```

GroupBy and resampling operations

```
dataframe.groupby('StockCode')
dataframe.groupby('StockCode').resample('D').sum()
```

Autocorrelation

```
dataframe['Quantity'].autocorr()
```

Time series algorithms

- Autoregressive Integrated Moving Average (ARIMA)
- DeepAR+
- Exponential Smoothing (ETS)
- Non-Parametric Time Series (NPTS)
- Prophet

Section 2 key takeaways

- Time series data is sequenced
- Time challenges
 - Different formats
 - Missing data
 - Seasonality
 - Correlations
- The pandas library offers support for time series data
- With Amazon Forecast, you can choose between five algorithms

Module 4: Introducing Forecasting

Section 3: Using Amazon Forecast

Amazon Forecast workflow

Amazon Forecast overview

Supported domains

- Retail
- Inventory planning
- Amazon EC2 capacity
- Work force

Retail forecasting example

- Time series data
 - Transactional sales data
 - Timestamp, item, quantity
- Metadata
 - Category, item color
 - Item, metadata
- Related data
 - Time series
 - In-stock data
 - Promotion data
 - ▼Timestamp, item, price

Web traffic forecast example

- Time series data
 - Webpage ID
 - Page views per month
 - Timestamp
- Related and metadata
 - Page category
 - Geographic identifier

Selecting an Amazon Forecast algorithm aws academy

You can select from the following list of algorithms:

- ARIMA
- DeepAR+
- ETS
- NPTS
- Prophet

Evaluating your forecast: Back testing

Predictor accuracy metrics are based on back testing.

Evaluation metrics: wQuantileLoss

- Quantiles determined for 10%, 50%, and 90% quantiles
- wQuantileLoss is the average error for each quantile in a set
 - Works best for models with greater variability in the errors

Root mean square error (RMSE)

RMSE is the square of the errors.

	Actual				:	
Гest	result	Prediction	Deltas			
1	2	4		2		
2	4	8		4		
3	8	12		4		
4	16	28		12		
		RMSE	6.7	0820	4	
		ı			ı	
				٦		
		Work	orks best for a			
	model where mos					
errors are of simi						
				si	ze	

Model accuracy example

Web retailer of shoes wants to predict how often it will be unable to fill orders for AnyCompany brand shoes.

Amazon Forecast predicts demand of 1,000 pairs per month

- P10: 10% of the time, fewer than 880 pairs will be ordered
- P50: 50% of the time, fewer than 1,050 pairs will be ordered
- P90: 90% of the time, fewer than 1,200 pairs will be ordered

P10 = 880

P50 = 1050

P90 = 1200

Forecast = 1000

Demonstration: Creating a forecast with Amazon Forecast

Section 3 key takeaways

- You can use Amazon Forecast for time series data
- Schemas are specific for domains
- Data can include
 - Time series data
 - Metadata
 - Related data
- Data is split into training and testing data by accounting for time
- Use RMSE and wQuantileLoss metrics to evaluate model

Module 4 – Guided Lab: Creating a Forecast with Amazon Forecast

Module 4: Introducing Forecasting

Module wrap-up

Module summary

In summary, in this module you learned how to:

- Describe the business problems solved by using Amazon Forecast
- Describe the challenges of working with time series data
- List the steps that are required to create a forecast by using Amazon Forecast
- Use Amazon Forecast to make a prediction

Complete the knowledge check

Additional resources

- Amazon Forecast documentation
- Amazon Forecast product page
- How to not use machine learning for time series forecasting
- Time series forecasting principles Amazon Forecast whitepaper

Thank you

