

SMULATE2 ALGORITHM PRECISTION

G.Starpopo Al for robotic

วัตถุประสงค์

เป็นการจำลองการคาดการณ์ว่าผลลัพธ์จากข้อมูลที่มีอยู่ ผ่านattribute ของข้อมูล ลูกค้าธนาคารที่เลิกใช้บริการ ไปแล้วหรือยังใช้อยู่ โดยเรายังไม่ได้ใช้ข้อมูลของ นนร. มาสร้างโมเดล

โดยวัตถุประสงค์ที่ว่าหาก เรามีข้อมูลคุณลักษณะของ นนร. แต่ละคนตำแหน่งอะไรบ้าง ในปีถัดไป เราก็อาจจะ สามารถคาดการณ์ ตำแหน่ง นักเรียนบังคับบัญชาได้

ANGORITHM

เหตุผลที่เลือกใช้ Decision Tree และ KNN:

1. Decision Tree:

- nunานต่อข้อมูลที่มีลักษณะเฉพาะ: Decision Tree สามารถจัดการกับข้อมูลที่มีลักษณะเฉพาะ (non-linear relationships) ได้ดีเพราะมัน แบ่งข้อมูลตามเงื่อนไขต่างๆ
- o ตีความง่าย: การตีความผลลัพธ์จาก Decision Tree ง่ายกว่า เพราะสามารถแสดงเป็นกราฟที่เข้าใจได้ง่าย
- o ไม่ต้องการการปรับมาตรวัดระยะห่าง: ไม่มีความจำเป็นในการเลือกหรือปรับมาตรวัดระยะห่าง เช่น Euclidean distance
- ข้อดี: เข้าใจง่าย เพราะมันเหมือนต้นไม้ที่แสดงการตัดสินใจทีละขั้นตอน
- ข้อเสีย: อาจทำงานได้ไม่ดีถ้าข้อมูลมีความซับซ้อนมากหรือมีข้อมูลเสียง (noise)

2.KNN:

- การเรียนรู้ที่ไม่ต้องฝึก (Lazy Learning): KNN ไม่ต้องใช้เวลาในการฝึก (training) มาก เพียงแต่ใช้เวลาในการคำนวณระยะห่างในระหว่าง การทำนาย
- ยืดหยุ่นสูง: สามารถปรับการทำงานตามลักษณะของข้อมูลได้โดยการเลือกค่า k และมาตรวัดระยะห่างที่เหมาะสม
- ไม่ต้องสร้างโมเดล: ไม่มีการสร้างโมเดลที่ต้องจัดเก็บ การทำนายจะอิงตามข้อมูลที่มีอยู่ทั้งหมด
- ข้อดี: ทำงานได้ดีเมื่อข้อมูลมีความชัดเจนและมีรูปแบบที่เรียบง่าย
- ข้อเสีย: อาจช้าและใช้ทรัพยากรมากเมื่อต้องทำงานกับข้อมูลจำนวนมาก

DATA

ข้อมูล ลูกค้าธนาคารที่เลิกใช้บริการไปแล้วหรือยังใช้อยู่

HEADER ของข้อมูล

					_			_				_	_		
Д	sCrCard Is	HasCr	nOtPro	N	Balance	Tenure	Age	der	y Gen	Geograph	CreditScor	Surname	Customer	RowNumb	1
	1		1)	0	2	42	ale	Fem	France	619	Hargrave	15634602	1	2
	0		1	5	83807.86	1	41	ale	Fem	Spain	608	Hill	15647311	2	3
	1		3	3	159660.8	8	42	ale	Fem	France	502	Onio	15619304	3	4
	0		2)	0	1	39	ale	Fem	France	699	Boni	15701354	4	5
	1		1	3	125510.8	2	43	ale	Fem	Spain	850	Mitchell	15737888	5	6
	1		2	3	113755.8	8	44	е	Mal	Spain	645	Chu	15574012	6	7
	1		2)	0	7	50	е	Mal	France	822	Bartlett	15592531	7	8
	1		4	7	115046.7	4	29	ale	Fem	Germany	376	Obinna	15656148	8	9
	0		2	L	142051.1	4	44	e	Mal	France	501	Не	15792365	9	10
	1		1)	134603.9	2	27	е	Mal	France	684	H?	15592389	10	11
	0		2	7	102016.7	6	31	е	Mal	France	528	Bearce	15767821	11	12
	1		2)	0	3	24	е	Mal	Spain	497	Andrews	15737173	12	13
	1		2)	0	10	34	ale	Fem	France	476	Kay	15632264	13	14
	0		2)	0	5	25	ale	Fem	France	549	Chin	15691483	14	15
	4		2		^	7	25	1_	F	r:_	C2F	C	45700000	4 -	1/
	1 0 1 1 0		1 2 2 2 2	7))	102016.7 0 0	6 3 10 5	31 24 34 25	e e nale nale	Mal Mal Fem	France Spain France France	528 497 476 549	Bearce Andrews Kay Chin	15767821 15737173 15632264 15691483	11 12 13 14	12 13 14 15

DECISIONTRECLASSIFIE

DecisionTreeClassifier เป็นโมเดลการเรียนรู้ด้วยเครื่อง (Machine Learning) ที่ใช้สำหรับ การจัดหมวดหมู่ข้อมูล (Classification) โดยสร้างโมเดลในรูปแบบของโครงสร้างต้นไม้ (Tree Structure)

- Root Node (โหนดราก): เป็นโหนดเริ่มต้นของต้นไม้การตัดสินใจ มันคือจุดที่เริ่มการแบ่ง ข้อมูลครั้งแรก โดยใช้คุณสมบัติที่ดีที่สุดในการแบ่งข้อมูลออกเป็นกลุ่มย่อยๆ
- Internal Node (โหนดภายใน): โหนดภายในคือตำแหน่งที่ทำการแบ่งข้อมูลเพิ่มเติมตาม คุณสมบัติอื่นๆ โหนดเหล่านี้จะมีเส้นทางออกไปยังโหนดลูก (Child Node) หลายๆ อัน ขึ้น อยู่กับการตัดสินใจของโหนดนั้นๆ
- Leaf Node (โหนดใบ): โหนดใบคือจุดสิ้นสุดของเส้นทางในต้นไม้การตัดสินใจ และจะให้ ผลลัพธ์สุดท้ายหรือการจำแนกประเภทนั้นๆ ไม่มีการแบ่งข้อมูลต่อจากโหนดใบนี้
- **Decision Node (โหนดการตัดสินใจ)**: โหนดการตัดสินใจเป็นโหนดที่มีการเลือกเส้นทาง ตามเกณฑ์การตัดสินใจ เช่น การเปรียบเทียบค่าของคุณสมบัติ โดยโหนดการตัดสินใจจะ พิจารณาจากข้อมูลที่มีอยู่และเลือกเส้นทางที่เหมาะสมในการดำเนินการต่อ

DECISIONTREECLASSIFIE

DECISIONTREECLASSIFIE


```
import pandas as pd
  import seaborn as sns
  import matplotlib.pyplot as plt
  from sklearn.preprocessing import LabelEncoder
  from sklearn.model_selection import train_test_split
  from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatrixDisplay
  from sklearn.tree import DecisionTreeClassifier, plot_tree
# Load the dataset
csv = pd.read csv("Churn Modeling.csv")
df = pd.DataFrame(csv)
df = df.drop('RowNumber', axis=1)
df = df.drop('CustomerId', axis=1)
df = df.drop('Surname', axis=1)
print(df.info())
# Initialize LabelEncoder
le = LabelEncoder()
# Encode categorical variables
df['Geography'] = le.fit_transform(df['Geography'])
df['Gender'] = le.fit_transform(df['Gender'])
```

Check for NaN values

nan_count = df.isnull().sum().sum()
print(f"Number of NaN: {nan_count}")

```
# Fill NaN values with the mean of the column
df = df.fillna(df.mean())
                                                                                                                                                - 1.0
                                                                                         reditScore - 1 0.0079.002-9.00400084006B.01-20.0056.02-60.001-9.02
# Plot correlation matrix
                                                                                         eography -
                                                                                                                                                - 0.8
corr_matrix = df.corr()
                                                                                           Gender -
sns.heatmap(corr_matrix, annot=True)
                                                                                                                                                - 0.6
                                                                                             Age -
plt.show()
                                                                                           Tenure -
                                                                                                                                                - 0.4
# Prepare data for modeling
                                                                                          Balance -
X = df.drop('Exited', axis=1)
                                                                                         )fProducts -
y = df['Exited']
                                                                                                                                                - 0.2
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
                                                                                         HasCrCard -
                                                                                                                                                0.0
                                                                                         reMember -
# Binning certain columns in training data
                                                                                         tedSalary -
X_train['Age'] = pd.cut(X_train['Age'],
                                                                                                                                                 -0.2
                         bins=[0, 30, 40, 50, 60, 70, 80, 90, 100],
                                                                                            Exited -
                          labels=['0', '30', '40', '50', '60', '70', '80', '90'])
                                                                                                                     ance
                                                                                                          ender
                                                                                                                         ducts
X_train['Balance'] = pd.cut(X_train['Balance'],
                              bins=[0, 50000, 100000, 150000, 200000, 250000],
                              labels=['0', '50000', '100000', '150000', '200000'])
X train['EstimatedSalary'] = pd.cut(X_train['EstimatedSalary'],
                                       bins=[0, 50000, 100000, 150000, 200000, 250000],
                                       labels=['0', '50000', '100000', '150000', '2000000'])
print(X train[:100])
```

```
# Train a decision tree model
model = DecisionTreeClassifier()
model.fit(X_train, y_train)
# Predict and evaluate the model
y_pred = model.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
print(f"Score: {accuracy_score(y_test, y_pred)}")
# Plot confusion matrix
disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot()
plt.show()
Score: 0.78633333333333333
```


PRECISION

KNN

KNN (K-Nearest Neighbors) คือ อัลกอริธึมการเรียนรู้ของเครื่องที่ใช้สำหรับการจำแนก ประเภท (classification) หรือการคาดการณ์ค่า (regression) โดยวิธีการทำงานหลักของ KNN คือการหาค่า "K" ที่ใกล้เคียงที่สุด (nearest neighbors) จากจุดข้อมูลที่ต้องการคาดการณ์หรือ จำแนกประเภท และใช้ข้อมูลของเพื่อนบ้าน(ข้อมูลที่อยู่ใกล้กัน)เหล่านั้นในการตัดสินใจ

k = 1

Nearest point is red, so x_{test} classified as red

k = 3

Nearest points are {red, blue, blue} so x_{test} classified as blue

k = 4

Nearest points are {red, red, blue, blue} so classification of x_{test} is not properly defined

KNN

หลักการทำงานของ KNN

- 1.การเลือกค่า K: เลือกจำนวน K ที่เป็นจำนวนเพื่อนบ้านที่ใกล้เคียงที่สุดที่ใช้ในการคำนวณ
- 2 การคำนวณระยะทาง: คำนวณระยะทางระหว่างจุดข้อมูลที่ต้องการคาดการณ์กับจุดข้อมูลใน ชุดข้อมูลที่มีอยู่ โดยปกติจะใช้ระยะทาง Euclidean
- 3.การเลือก K จุดที่ใกล้ที่สุด: หาค่า K จุดที่มีระยะทางใกล้เคียงที่สุด
- 4.การจำแนกประเภทหรือคาดการณ์ค่า:
 - สำหรับการจำแนกประเภท: นับจำนวนประเภทของจุดเพื่อนบ้านที่ใกล้ที่สุด และกำหนด ประเภทที่พบมากที่สุดให้กับจุดที่ต้องการคาดการณ์
 - สำหรับการคาดการณ์ค่า: คำนวณค่าเฉลี่ย (หรือค่าอื่น ๆ) ของค่าใน K จุดที่ใกล้ที่สุดและใช้ ค่าเฉลี่ยนี้เป็นการคาดการณ์


```
import pandas as pd
       import seaborn as sns
       import matplotlib.pyplot as plt
       from sklearn.preprocessing import LabelEncoder
       from sklearn.model_selection import train_test_split
 5
       from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatrixDisplay
       from sklearn.neighbors import KNeighborsClassifier
       from sklearn.preprocessing import StandardScaler
 8
9
       # Load the dataset
10
       csv = pd.read_csv("Churn Modeling.csv")
11
       df = pd.DataFrame(csv)
12
13
       df = df.drop('RowNumber', axis=1)
14
       df = df.drop('CustomerId', axis=1)
15
       df = df.drop('Surname', axis=1)
16
17
       print(df.info())
18
19
```

```
20
        # Initialize LabelEncoder
        le = LabelEncoder()
21
22
        # Encode categorical variables
23
                                                                                                                            - 1.0
                                                                 reditScore - 1 0.0079.002-9.000400084006B.01-20.005B.02-60.001-9.02
        df['Geography'] = le.fit_transform(df['Geography'])
24
        df['Gender'] = le.fit_transform(df['Gender'])
25
                                                                  Geography -
                                                                                                                            - 0.8
26
                                                                    Gender -
27
        # Check for NaN values
                                                                                                                             - 0.6
                                                                       Age -
        nan_count = df.isnull().sum().sum()
28
                                                                     Tenure -
        print(f"Number of NaN: {nan_count}")
29
                                                                                                                             - 0.4
                                                                   Balance -
30
                                                                  )fProducts -
        # Fill NaN values with the mean of the column
31
                                                                                                                             - 0.2
                                                                  HasCrCard -
        df = df.fillna(df.mean())
32
                                                                                                                             - 0.0
                                                                  veMember -
33
        # Plot correlation matrix
34
                                                                  itedSalary -
                                                                                                                              -0.2
        corr_matrix = df.corr()
35
                                                                     Exited -
        sns.heatmap(corr_matrix, annot=True)
36
37
        plt.show()
38
```

```
# Prepare data for modeling
39
       X = df.drop('Exited', axis=1)
40
       y = df['Exited']
41
42
       X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
43
       # Standardize the data
44
       scaler = StandardScaler()
45
       X_train = scaler.fit_transform(X_train)
46
       X_test = scaler.transform(X_test)
47
48
       # Train a KNN model
49
       knn = KNeighborsClassifier(n_neighbors=5)
50
       knn.fit(X_train, y_train)
51
52
       # Predict and evaluate the model
53
       y_pred = knn.predict(X_test)
54
       cm = confusion_matrix(y_test, y_pred)
55
56
       print(f"Score: {accuracy_score(y_test, y_pred)}")
57
```

```
# Plot confusion matrix

disp = ConfusionMatrixDisplay(confusion_matrix=cm)

disp.plot()

plt.show()

None

Number of NaN: 0

Score: 0.838
```

PRECISION

SUMMARY

DecisionTreeClassifie

Score: 0.7863333333333333

KNN

Score: 0.838

THANK YOU

