Package Jackstrap

May 12, 2020	
Type Package	
Title Jackstrap Sousa & Stosic (2005) (Outliers in DEA)	
Version 0.1.0	
Author Kleber Morais de Sousa, Maria da Conceição Sampaio de Sousa, Paulo Aguiar do Monte	
Maintainer Kleber Morais de Sousa <kleberfinancas@gmail.com></kleberfinancas@gmail.com>	
Description This package applies the method developed by Sousa and Stosic (2005) Technical Efficiency of t 181.	he Brazilian Municipali
Depends R (>= 2.15.1), fBasics, Benchmarking, dplyr, ggplot2, foreach, doParallel, reshape, tidyr	
License GPL-3	
Encoding UTF-8	
LazyData TRUE	
RoxygenNote 6.1.1	
Suggests knitr, rmarkdown	
VignetteBuilder knitr	
R topics documented:	
hist_jack_ks	2
hist_jack_step	2
jackstrap	3
jackstrap_ks	4
municipalities	5
plot_jackstrap_ks	6
summary_jackstrap	6
Index	8

2 hist_jack_step

hist_jack_ks	Histogram with Jackstrap Efficiency Indicators: This function builds graphics with distributions of efficiency indicators without outliers and complete sample. The outliers are defined by K-S Test.

Description

Histogram with Jackstrap Efficiency Indicators: This function builds graphics with distributions of efficiency indicators without outliers and complete sample. The outliers are defined by K-S Test.

Usage

```
hist_jack_ks(efficiency, model_hist_ks)
```

Arguments

efficiency is the jackstrap object created by jackstrap function.

model_hist_ks is the desired graphic model. There are four kinds: 1- Density Histogram of

efficiency indicator with complete sample and without outliers by K-S test; 2 - Histogram of efficiency with complete sample and without outliers by K-S test; 3 - Histogram of efficiency without ouliers by K-S test; 4 - Histogram of

efficiency with complete sample.

Value

Return the plot with efficiency indicators with complete sample and/or without outliers by combination leverage level and K-S test;

Examples

```
hist_jack_ks(efficiency_ks, 1)
hist_jack_ks(efficiency_ks, 2)
hist_jack_ks(efficiency_ks, 3)
hist_jack_ks(efficiency_ks, 4)
```

hist_jack_step

Histogram with Jackstrap Efficiency Indicators: This function builds a graphic with indicator distributions without outliers and complete sample. The outliers are defined by heaviside step function.

Description

Histogram with Jackstrap Efficiency Indicators: This function builds a graphic with indicator distributions without outliers and complete sample. The outliers are defined by heaviside step function method.

Usage

```
hist_jack_step(efficiency, model_hist_step)
```

jackstrap 3

Arguments

```
efficiency is the jackstrap object created by jackstrap function. model_hist_step
```

is the desired graphic model. There are four kinds: 1- Density Histogram of efficiency indicators with complete sample and without outliers by heaviside step function; 2 - Histogram of efficiency with complete sample and without outliers by heaviside step function; 3 - Histogram of efficiency without ouliers by heaviside step function; 4 - Histogram of efficiency with complete sample.

Value

Return the plot with efficiency indicators with complete sample and/or without outliers by heaviside step function;

Examples

```
hist_jack_step(efficiency, 1)
hist_jack_step(efficiency, 2)
hist_jack_step(efficiency, 3)
hist_jack_step(efficiency, 4)
```

jackstrap

Jackstrap Method: The tool identifies outliers in Nonparametric Frontier. This function applies the developed tecnique by Sousa and Stosic (2005) Technical Efficiency of the Brazilian Municipalites: Correcting Nonparametric Frontier Meansurements for Outliers

Description

Jackstrap Method: Tool identifies outliers in Nonparametric Frontier. This function applies the developed tecnique by Sousa and Stosic (2005) Technical Efficiency of the Brazilian Municipalites: Correcting Nonparametric Frontier Meansurements for Outliers

Usage

```
jackstrap(data, ycolumn, xcolumn, bootstrap = 1000,
   perc_sample_buble = 0.2, dea_method = "vrs",
   orientation_dea = "in", n_seed = NULL, repos = FALSE,
   num_cores = 1)
```

Arguments

perc_sample_buble

data is the dataset with input and output used to mensure efficiency; Dataset needs to

have this form: 1th column: name of DMU (string); 2th column: code of DMU

(integer); n columns of output variables; n columns of input variables.

ycolumn is the quantity of y columns of dataset.

xcolumn is the quantity of x columns of dataset.

bootstrap is the quantity of applied resampling.

is the percentage of sample in each bubble.

4 jackstrap_ks

dea_method is the DEA method: "crs" is DEA with constant returns to scale (CCR); "vrs" is

DEA with varible returns to scale; and "fdh" is Free Disposal Hull (FDH) with

variable returns to scale.

orientation_dea

is the direction of the DEA: "in" for focus on inputs; and "out" for focus on

outputs.

n_seed is the code as seed used to get new random samples.

repos identify if the resampling method is with replacement TRUE or not FALSE.

num_cores is the number of cores available to process.

Value

Return the jackstrap object with follow informations: "parameters" contain the parameters used on function; "bootstrap" is quantity of applied resampling; "mean_leverage" is leverage average for each DMU; "mean_geral_leverage" is general average of leverage and step function threshold; "sum_leverage" is accrued leverage on all resampling for each DMU; "count_dmu" is amount of each DMU selected by bootstrap. "efficiency_step_func" are efficiency indicators obtained by heaviside step function criteria; "result_kstest_method" are p-values of K-S test obtained by removing sequencially one by one the high leverage DMU; "efficiency_ks_method" are efficiency indicators obtained by K-S test criteria.

Examples

jackstrap_ks

Jackstrap KS Method: The tool identifies outliers in Nonparametric Frontier. This function applies the developed tecnique by Sousa and Stosic (2005) Technical Efficiency of the Brazilian Municipalites: Correcting Nonparametric Frontier Meansurements for Outliers and to use the K-S test with criteria to define outliers

Description

Jackstrap KS Method: Tool identifies outliers in Nonparametric Frontier. This function applies the developed tecnique by Sousa and Stosic (2005) Technical Efficiency of the Brazilian Municipalites: Correcting Nonparametric Frontier Meansurements for Outliers and to use the K-S test with criteria to define outliers

Usage

```
jackstrap_ks(data, jackstrap_obj, num_cores, perc)
```

municipalities 5

Arguments

data is the dataset with input and output used to mensure efficiency; Dataset need to

have this form: 1th column: name of DMU (string); 2th column: code of DMU

(integer); n columns of output variables; n columns of input variables.

jackstrap_obj is the object created by the function jackstrap.

num_cores is number of cores used to process.

perc is the percentage of sample used to K-S test.

Value

Return the jackstrap object increased with follow informations: "result_kstest_method" are p-values of K-S test obtained by removing sequencially one by one the high leverage DMU; "efficiency_ks_method" are efficiency indicators obtained by K-S test criteria.

Examples

efficiency_ks <- jackstrap_ks (data=municipalities, jackstrap_obj=efficiency, num_cores = 4, perc=0.80)

municipalities

Dataset of Brazilian Municipalities

Description

Dataset of Brazilian Municipalities

Usage

municipalities

Format

A data frame with 489 rows (DMUs) and 3 variables (2 outputs and 1 inputs):

Description of DMUs string variable with descriptions of the each DMUs

Code integer variable identifies each DMU for integer code

y1 float variable with quantity of first produced output with resources

y2 float variable with quantity of second produced output with resources

x1 float variable with first input (resource) used to produce outpus (y)

6 summary_jackstrap

plot_jackstrap_ks	Plot Jackstrap KS: This function plots p-value of Kolmogorov-Smirnov
h-10-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	Test in order decresing of leverage.

Description

Plot Jackstrap KS: This function plots p-value of Kolmogorov-Smirnov Test in order decresing of leverage.

Usage

```
plot_jackstrap_ks(data_plot, model_plot)
```

Arguments

data_plot is the jackstrap object created by jackstrap function.

model_plot is the desired model. There are two models: 1 - The graphic shows the amount

of removed DMU on x axis and p-value of K-S test on y axis; 2 - The graphic

shows DMU code on x axis and p-value of K-S test on y axis.

Value

Return the plot with p-value of K-S test and removed DMU or DMU code.

Examples

```
plot_jackstrap_ks(efficiency_ks, 1)
```

summary_jackstrap	Summary Jackstrap: This function shows the main outcomes with
outlier technique developed by Sousa and Stosic(2005).	

Description

Summary Jackstrap: This function shows the main outcomes with outlier technique developed by Sousa and Stosic(2005).

Usage

```
summary_jackstrap(object_jackstrap)
```

Arguments

```
object_jackstrap
```

is the jackstrap object created by jackstrap function.

data is the dataset of research.

summary_jackstrap 7

Value

Return the data frame with follow informations: "parameters" contain the parameters used on function; "outliers_by_step_func" are the outliers by heaviside step function criteria; "outliers_by_ks" are the outliers by K-S test; "dmu_efficiency_by_step_func" are DMUs evaluated as efficients by heaviside step function criteria; "dmu_inefficiency_by_step_func" are the DMUs evaluated as maximum inefficient by heaviside step function criteria; "dmu_efficiency_ks" are DMUs evaluated as efficients by K-S test criteria; "dmu_inefficiency_by_ks" are the DMUs evaluated as maximum inefficient by K-S test criteria.

Examples

summary_efic <- summary_jackstrap(efficiency_ks)</pre>

Index

```
*Topic datasets
municipalities, 5
hist_jack_ks, 2
hist_jack_step, 2
jackstrap, 3
jackstrap_ks, 4
municipalities, 5
plot_jackstrap_ks, 6
summary_jackstrap, 6
```