1.6 L'Hôpital's Rule

THEOREM 6 L'Hôpital's Rule (First Form)

Suppose that f(a) = g(a) = 0, that f'(a) and g'(a) exist, and that $g'(a) \neq 0$. Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}.$$

EXAMPLE 1 Using L'Hôpital's Rule

(a)
$$\lim_{x \to 0} \frac{3x - \sin x}{x} = \frac{3 - \cos x}{1} \Big|_{x=0} = 2$$

(b)
$$\lim_{x \to 0} \frac{\sqrt{1+x}-1}{x} = \frac{\frac{1}{2\sqrt{1+x}}}{1} \Big|_{x=0} = \frac{1}{2}$$

EXAMPLE 5 Working with the Indeterminate Form ∞/∞

Find

(a)
$$\lim_{x \to \pi/2} \frac{\sec x}{1 + \tan x}$$
 (b) $\lim_{x \to \infty} \frac{\ln x}{2\sqrt{x}}$ (c) $\lim_{x \to \infty} \frac{e^x}{x^2}$.

Solution

(a) The numerator and denominator are discontinuous at $x = \pi/2$, so we investigate the one-sided limits there. To apply l'Hôpital's Rule, we can choose I to be any open interval with $x = \pi/2$ as an endpoint.

$$\lim_{x \to (\pi/2)^{-}} \frac{\sec x}{1 + \tan x} \qquad \frac{\infty}{\infty} \text{ from the left}$$

$$= \lim_{x \to (\pi/2)^{-}} \frac{\sec x \tan x}{\sec^2 x} = \lim_{x \to (\pi/2)^{-}} \sin x = 1$$

The right-hand limit is 1 also, with $(-\infty)/(-\infty)$ as the indeterminate form. Therefore, the two-sided limit is equal to 1.

(b)
$$\lim_{x \to \infty} \frac{\ln x}{2\sqrt{x}} = \lim_{x \to \infty} \frac{1/x}{1/\sqrt{x}} = \lim_{x \to \infty} \frac{1}{\sqrt{x}} = 0$$

(c)
$$\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{e^x}{2x} = \lim_{x \to \infty} \frac{e^x}{2} = \infty$$

EXAMPLE 6 Working with the Indeterminate Form $\infty \cdot 0$

Find

(a)
$$\lim_{x \to \infty} \left(x \sin \frac{1}{x} \right)$$
 (b) $\lim_{x \to 0^+} \sqrt{x} \ln x$

Solution

(a)
$$\lim_{x \to \infty} \left(x \sin \frac{1}{x} \right)$$
 $\infty \cdot 0$

$$= \lim_{h \to 0^+} \left(\frac{1}{h} \sin h \right) = 1$$
 Let $h = 1/x$.

(b)
$$\lim_{x \to 0^+} \sqrt{x} \ln x = \lim_{x \to 0^+} \frac{\ln x}{1/\sqrt{x}}$$

 $= \lim_{x \to 0^+} \frac{1/x}{-1/2x^{3/2}} = \lim_{x \to 0^+} (-2\sqrt{x}) = 0$

EXAMPLE 8 Working with the Indeterminate Form 1^{∞}

Apply l'Hôpital's Rule to show that $\lim_{x\to 0^+} (1+x)^{1/x} = e$.

Solution The limit leads to the indeterminate form 1^{∞} . We let $f(x) = (1 + x)^{1/x}$ and find $\lim_{x\to 0^+} \ln f(x)$. Since

$$\ln f(x) = \ln (1 + x)^{1/x} = \frac{1}{x} \ln (1 + x),$$

l' Hôpital's Rule now applies to give

$$\lim_{x \to 0^{+}} \ln f(x) = \lim_{x \to 0^{+}} \frac{\ln (1+x)}{x} \qquad \frac{0}{0}$$

$$= \lim_{x \to 0^{+}} \frac{\frac{1}{1+x}}{1}$$

$$= \frac{1}{1} = 1.$$

Therefore,

$$\lim_{x \to 0^+} (1+x)^{1/x} = \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} e^{\ln f(x)} = e^1 = e.$$

EXAMPLE 9 An Indeterminant Form ∞^0

Find $\lim_{x\to\infty} x^{1/x}$.

Solution The limit leads to the indeterminate form ∞^0 . We let $f(x) = x^{1/x}$ and find $\lim_{x\to\infty} \ln f(x)$. Since

$$\ln f(x) = \ln x^{1/x} = \frac{\ln x}{x},$$

l'Hôpital's Rule gives

$$\lim_{x \to \infty} \ln f(x) = \lim_{x \to \infty} \frac{\ln x}{x} \qquad \frac{\infty}{\infty}$$
$$= \lim_{x \to \infty} \frac{1/x}{1}$$
$$= \frac{0}{1} = 0.$$

Therefore,

$$\lim_{x \to \infty} x^{1/x} = \lim_{x \to \infty} f(x) = \lim_{x \to \infty} e^{\ln f(x)} = e^0 = 1.$$

Excecise 1.6

use l'Hôpital's Rule to evaluate the limit.

1.
$$\lim_{x \to 2} \frac{x - 2}{x^2 - 4}$$

$$\lim_{x \to 0} \frac{\sin 5x}{x}$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

$$4. \quad \lim_{x \to 0} \frac{\sin x - x}{x^3}$$

$$\lim_{t \to 0} \frac{t \sin t}{1 - \cos t}$$

$$6. \qquad \lim_{x \to 0^+} \left(1 + \frac{1}{x} \right)^x$$

7.
$$\lim_{x \to 0^{+}} x^{x}$$
8.
$$\lim_{x \to 0} \frac{3^{x} - 1}{2^{x} - 1}$$