OPTIMASI PEMASANGAN KAPASITOR PADA SISTEM JARINGAN LISTRIK DISTRIBUSI DI BALI MENGGUNAKAN METODE QUANTUM GENETIC ALGORITHM

Maria Gusti Agung Ayu Permata, Antonius Ibi Weking*, Widyadi Setiawan Jurusan Teknik Elektro, Fakultas Teknik Universitas Udayana Email: *tony@unud.ac.id

Abstrak

Penelitian ini melakukan optimasi pemasangan kapasitor pada sistem jaringan listrik distribusi di Penyulang Penyabangan, Singaraja, Bali menggunakan metode Quantum Genetic Algorithm untuk mengurangi dampak dari meningkatnya arus reaktif. Penyulang ini, terdiri dari 162 bus di mana 62 bus yang langsung terhubung ke beban dan 5 bus diantaranya terhubung dengan konsumen tegangan menengah. Hasil dari penelitian ini didapatkan besar kapasitas kapasitor yang terpasang di 31 bus yang memiliki nilai faktor daya kurang dari batas yang diizinkan dan nilai rugirugi daya menurun dari sebesar 0,0674 MW dan 0,0546 MVAr menjadi sebesar 0,0543 MW dan 0,0442 MVAr.

Kata Kunci: Kapasitor, Rugi-rugi Daya, Faktor Daya, Quantum Genetic Algorithm.

Abstract

This study optimized the installation of capacitors on the distribution grid system in Penyabangan feeder, Singaraja, Bali using the Quantum Genetic Algorithm method to reduce the impact of increasing reactive currents. This feeder, consisting of 162 buses in which 62 buses are directly connected to the load and 5 buses are connected to medium voltage cosumers. The results of this study are obtained by the capacity of capacitors installed in 31 buses that have a power factor value less than the permitted limit and the power loss values decrease from 0,0674 MW and 0,0546 MVAr to 0,0543 MW and 0,0442 MVAr.

Keywords: Capacitors, Power Losses, Power Factors, Quantum Genetic Algorithm.

1. PENDAHULUAN

Energi listrik digunakan untuk memenuhi kebutuhan sehari-hari seperti penerangan, pemanas, hiburan, dan beraneka ragam peralatan listrik (beban) yang digunakan lainnya. Melihat bagaimana pentingnya energi listrik, maka kebutuhan listrik terus meningkat dari tahun ke tahun. Peningkatan ini diikuti dengan peningkatan permintaan suplai daya reaktif akibat beban yang bersifat induktif meningkat. Contoh beban yang bersifat induktif adalah trafo pada rectifier, lampu TL, dan motor induksi (AC). Beban yang bersifat induktif membutuhkan daya reaktif. Jika suatu sistem jaringan tidak memiliki sumber daya reaktif di daerah sekitar beban, semua kebutuhan beban reaktif akan dipikul oleh generator. Hal ini menyebabkan mengalirnya arus reaktif pada mengakibatkan terjadinya jaringan yang penurunan faktor daya, jatuh tegangan dan besarnya rugi-rugi daya. Pemasangan kapasitor merupakan salah satu cara untuk mengurangi dampak dari meningkatnya arus reaktif. [1]

Pemasangan kapasitor pada jaringan listrik distribusi yang besar sangatlah sulit karena perlunya mengetahui seberapa besar kapasitas kapasitor yang tepat agar dapat memperbaiki faktor daya dan mengurangi rugi-rugi daya. karena itu. dilakukan penelitian menggunakan metode Quantum Genetic Algorithm (QGA) untuk memperbaiki faktor daya dan mengurangi rugi-rugi daya. Pemilihan QGA sebagai metode yang digunakan karena merupakan evolusi dari Algoritma Genetika yang dapat diterapkan pada berbagai masalah optimasi dan dapat memecahkan masalah optimasi kombinatorial.

Penelitian ini menggunakan data Penyulang Penyabangan, Singaraja, Bali Utara. Pada penyulang ini terdapat palguna, tambak dan sebagainva yang dapat menyebabkan terjadinya jatuh tegangan, penurunan faktor daya, dan besarnya rugi-rugi daya karena generator yang dimiliki telah rusak. Tujuan penelitian ini adalah untuk mengetahui besar kapasitas kapasitor yang maksimal untuk mendapatkan nilai faktor daya yang baik untuk kelistrikkan tersebut sehingga memperbaiki rugi-rugi daya pada jaringan.

2. TINJAUAN PUSTAKA

2.1 Sistem Distribusi

Sistem distribusi merupakan bagian dari sistem listrik yang berfungsi untuk menyalurkan atau mendistribusikan energi listrik antara sumber energi listrik yang berjumlah besar pelanggan switch dengan lavanan. Berdasarkan bentuk jaringannya, sistem jaringan distribusi tenaga listrik terdiri dari jaringan distribusi sistem radial, jaringan disrtibusi sistem rangkaian tertutup (loop circuit), dan jaringan distribusi sistem spindel. [2] Pada penelitian ini digunakan penyulang penyabangan di mana sistem jaringan distribusinya adalah sistem radial. Pada penyulang ini masih terdapat bus berbeban yang faktor dayanya rendah.

2.2 Faktor Daya

Faktor daya atau power factor (pf atau cos θ) adalah perbandingan antara daya aktif (Watt) dengan daya semu (VA). Dari gambar 1, didapatkan persamaan daya aktif (P), daya reaktif (Q), dan daya semu (S) sebagai berikut di bawah ini. [3]

$$S = \sqrt{P^2 + Q^2}$$
 (1)

$$P = V I \cos \varphi \quad (Watt) \quad \dots \tag{2}$$

$$Q = V I \sin \varphi \ (VAr)$$
 (3)

$$\widetilde{S} = V I$$
 (VA)

$$S = V I \qquad (VA) \qquad (4)$$

$$Faktor Daya (PF) = \frac{P}{S} = \frac{W}{VA} \qquad (5)$$

$$\cos\theta = \mathrm{pf} = \frac{P}{S} \tag{6}$$

Di mana:

P = Dava Aktif (W)

Q = Daya Reaktif (VAr)

S = Daya Semu (VA)

V = Tegangan (V)

I = Arus(A)

 $\varphi = \text{Sudut Fasa } (^{\circ})$

Dengan mengasumsikan beban disuplai dengan daya aktif (P), daya reaktif tertinggal

(Q₁) dan daya semu (S₁) pada faktor daya tertinggal bahwa: [4]

$$\cos \theta_1 = \frac{P}{S_1} \tag{7}$$

$$\cos \theta_1 = \frac{P}{\left(P^2 + Q_1^2\right)^{\frac{1}{2}}}$$
 (8)

Gambar 1 Segitia Daya

Daya reaktif yang dikirimkan ke konsumen, tidak dimanfaatkan oleh konsumen. Jika penggunaan daya reaktif lebih besar dari total daya yang dikirimkan ke konsumen, sudut akan meningkat dan menghasilkan faktor daya yang lebih rendah dari yang diharapkan serta menurunkan efisiensi dari sistem distribusi ketenagalistrikan. Salah satu cara untuk memperbaiki faktor daya dengan dilakukannya pemasangan kapasitor. Kapasitor berfungsi sebagai pembangkit daya reaktif sehingga kebutuhan daya reaktif beban induktif dapat diperoleh dari kapasitor. [3] Kapasitor bank harus mempunyai daya Q_c yang sama dengan daya reaktif dari sistem yang faktor dayanya akan diperbaiki. Besarnya daya reaktif yang diperlukan untuk mengubah faktor daya dari (cos θ_1) menjadi (cos θ_2) dapat ditentukan dengan: [5]

$$Q_C = P \times (\tan \theta_1 - \tan \theta_2)$$
 (9)

Di mana:

Qc = Kompensasi daya reaktif yang dibutuhkan (kVAr)

= Daya aktif (kW)

 $\cos \theta_1$ = faktor daya (pf) lama

 $\cos \theta_2$ = faktor daya (pf) baru atau target

Ketika kapasitor bank dipasang secara paralel pada beban, maka nilai faktor daya yang baru ($\cos \theta_2$) sebagai berikut di bawah ini:

$$\cos \theta_2 = \frac{P}{S_2}$$

$$= \frac{P}{\left(P^2 + Q^2\right)^{\frac{1}{2}}} = \frac{P}{\left(P^2 + \left(Q_1 - Q_C\right)^2\right)^{\frac{1}{2}}} \quad \dots \quad (10)$$

Dari Gambar 2, dapat dilihat daya semu dan daya reaktif menurun dari daya semu pertama (S₁) kVA menjadi daya semu kedua (S₂) kVA dan dari Q₁ kVAr menjadi Q₂ kVAr. [4]

Gambar 2 Ilustrasi dari Koreksi Faktor Daya

2.3 Bank Kapasitor

Bank kapasitor adalah peralatan yang digunakan untuk memperbaiki kualitas pasokan energi listrik seperti memperbaiki mutu tegangan di sisi beban, memperbaiki faktor daya ($\cos \theta$) dan mengurangi rugi-rugi transmisi. Efisiensi pada suatu jaringan akan meningkat dengan dipasangnya kapasitor shunt karena memperbaiki faktor daya. [6]

Jika kapasitor dihubungkan secara paralel pada saluran, maka kapasitor akan memberi arus reaktif untuk mengimbangi arus yang diambil oleh beban induktif. Kapasitor shunt akan memberikan arus leading dengan menghitung sebagian atau seluruh komponen lagging dari arus beban induktif pada tempat di mana kapasitor itu terpasang. [5]

2.4 Metode Newton Raphson

Meode ini digunakan untuk menghitung rugi dalam sistem serta menghitung tegangan pada masing-masing bus. Dalam menerapkan metode ini pada penyelesaian persamaan aliran beban dapat memilih untuk menyatakan tegangan-tegangan bus dan admitansiadmitansi saluran dalam bentuk polar. Persamaan tegangan bus dan admitasnsiadmitani saluran dalam bentuk polar sebagai berikut: [8]

$$P_k - jQ_k = V_k^* \sum_{n=1}^{N} Y_{kn} V_n$$
 (11)

$$V_k = |V_k| \angle \delta_k \quad \tag{12}$$

$$V_n = |V_n| \angle \delta_n \tag{13}$$

$$|Y_{kn}| = |Y_{kn}| \angle \theta_{kn} \tag{14}$$

$$P_{k} - jQ_{k} = \sum_{n=k}^{N} n = 1 |V_{k}V_{n}Y_{kn}| \angle (\theta_{kn} + \delta_{n} - \delta_{k})$$
 (15)

$$Q_{k} = -\sum_{n=1}^{N} n = 1 |V_{k}V_{n}Y_{kn}| \sin(\theta_{kn} + \delta_{n} - \delta_{k})$$
 (16)

$$\Delta P_k = P_{k,spec} - P_{k,calc}$$

$$\Delta Q_k = Q_{k,spec} - Q_{k,calc}$$

$$(17)$$

$$\Delta Q_k = Q_{k \, snec} - Q_{k \, calc} \quad \dots \tag{18}$$

Di mana:

P_k = Daya aktif pada suatu bus k Q_k = Daya reaktif pada suatu bus k

V_k = Tegangan pada bus k

V_n = Tegangan pada bus n

Y_{kn} = Admitansi pada saluran bus k-n $\delta_{n/k}$ = Sudut fasa tegangan pada bus n/k

Quantum Genetic Algorithm

Metode QGA adalah metode optimasi probabilistik berdasarkan komputasi kuantum, dikombinasikan dengan teori perhitungan kuantum dan teori algoritma genetika. Quantum Genetic Algorithm atau algoritma genetika kuantum (QGA) adalah algoritma evolusioner (EA) yang prinsipnya merupakan metode pencarian dan optimasi stokastik berdasarkan prinsip biologis alami.

QGA didasarkan pada konsep qubit dan superposisi keadaan mekanika kuantum. Pada komputasi kuantum, qubit atau quantum bit adalah unit dasar dari informasi kuantum. Sebuat qubit mungkin dapat berada dalam status '1', status '0', atau dalam keadaan koheren superposisi manapun dari keduanya disaat waktu bersamaan.

Pada umumnya, *m-qubit* direpresntasikan oleh vektor status superposisi dalam 2^m dimensi. Persamaan status qubit dapat direpresentasikan sebagai berikut:

$$|\psi\rangle = |\alpha|^2 + |\beta|^2 \tag{19}$$

Di mana α dan β merupakan amplitudo probabilitas atau bilangan kompleks yang digunakan dalam menggambarkan perilaku dari status tersebut, dan suatu status yang sesuai disebut amplifikasi amplitudo (amplitude amplification). Kondisi normalisasi dari status tersebut adalah sebagai berikut:

$$|\alpha|^2 + |\beta|^2 = 1$$
 (20)

 $|\alpha|^2$ adalah probabilitas *qubit* dalam status 0 dan $|\beta|^2$ adalah probabilitas *qubit* berada dalam status 1. Status qubit dapat dilihat pada Gambar 5. Satu *qubit* individu didefinisikan dengan sepasang angka (α, β) sebagai berikut :

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \dots (21)$$

Gambar 5 Status Quantum Bit (Qubit)

Persamaan (21) merupakan karakteristik dari persamaan (19) dan (20). Satu *qubit* individu dengan panjang *m* didefinisikan sebagai *string qubit*. Untuk merepresentasikan *m-qubit* didefinisikan sebagai berikut:

$$\begin{bmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_m \\ \beta_1 & \beta_2 & \dots & \beta_m \end{bmatrix}$$
 (22)

Di mana, $|\alpha_i|^2 + |\beta_i|^2 = 1$, i = 1, 2, 3, ..., m. Represntasi ini memiliki keuntungan bahwa ia mampu mewakili status superposisi manapun.

Konvergensi atau keadaan menuju satu titik juga bisa diperoleh dengan representasi *qubit*. Artinya, representasi *qubit* mampu memiliki dua karakteristik eksplorasi dan eksploitasi secara bersamaan.[9]

2.5.1 Gerbang Rotasi (Rotation Gate)

Gerbang rotasi (Q-Gate) didefinisikan sebagai operator variasi QGA yang digunakan untuk mendapatkan qubit (α dan β) yang baru dengan mengubah α dan β yang lama. $|\alpha'|^2 + |\beta'|^2 = 1$ dimana α' dan β' adalah nilai qubit yang terbaru. Persamaan Q-Gate sebagai qubit yaitu:[9]

$$\begin{bmatrix} \alpha_{j}(t+1) \\ \beta_{j}(t+1) \end{bmatrix} = R_{i}(t) \times \begin{bmatrix} \alpha_{j}(t) \\ \beta_{j}(t) \end{bmatrix}, \dots (23)$$

$$(j = 1, 2, \dots, n)$$

$$R_{i}(t) = \begin{bmatrix} \cos \Delta \theta_{i} & -\sin \Delta \theta_{i} \\ \sin \Delta \theta_{i} & \cos \Delta \theta_{i} \end{bmatrix}, \qquad (24)$$

$$(i = 1, 2, ..., n)$$

 $(i-1,2,\ldots,n)$

Di mana,

n = jumlah *qubit* di dalam individu *qubit*.

 $\mathbf{R}_{i}(\mathbf{t}) = \text{gerbang rotasi.}$

 $\Delta\theta_i$ = sudut rotasi (Gambar 6) dari setiap anggota populasi (qubit).

 Δf_i = Perbedaan normalisasi antara pencapaian setiap anggota populasi dan global optimal terbaik.

$$\Delta \theta_i = \Delta f_i \times sign[\alpha_b(t) - \alpha_j(t)] \times$$

$$sign \left[\beta_{j}(t) \times \sin \Delta f_{i} - \alpha_{j}(t) \times \right] \qquad (25)$$

$$\left(1 - \cos \Delta f_{i} \right)$$

$$\Delta f_i = \pi \times \left(1 - \frac{f(b)}{f(p_i(t))}\right), (i = 1, 2, ..., n) \dots$$

$$sign[\alpha_b(t) - \alpha_j(t)]$$
(26)

$$= \begin{cases} +1 & jika \quad \alpha_b \ge \alpha_j \\ -1 & jika \quad \alpha_b < \alpha_j \end{cases}$$
 (27)

$$sign\left[\beta_{j}(t) \times \sin \Delta f_{i} - \alpha_{j}(t) \times \left(1 - \cos \Delta f_{i}\right)\right]$$

$$= \begin{cases} +1 \ jika \ \beta_{j} \times \sin \Delta f_{i} \ge \alpha_{j} \times \left(1 - \cos \Delta f_{i}\right) \\ -1 \ jika \ \beta_{j} \times \sin \Delta f_{i} < \alpha_{j} \times \left(1 - \cos \Delta f_{i}\right) \end{cases}$$
(28)

Di mana

 α_j , β_j = amplifikasi amplitudo *qubit jth* pada satu *qubit ith*.

b = satu *qubit* pada populasi terbaik.

 $f(p_i(t))$ = tujuan tercapai dari satu *qubit ith*.

f(b) = salah satu populasi terbaik (individu aubit b)

Fungsi sign pada persamaan (25) menunjukkan arah rotasi $\Delta\theta_i$ sehingga untuk $\alpha_j(t+1)$ menjadi lebih dekat dengan $\alpha_j(t)$. Fungsi sign yang pertama mempertimbangkan perbedaan amplifikasi amplitudo antara $\alpha_b(t)$ dan $\alpha_j(t)$. Fungsi sign kedua merupakan lokasi dari individu qubit. Pada Gambar 6, dapat dilihat jika lokasi qubit berada pada kuadran pertama atau ketiga tandanya diatur positif (+), untuk kuadran kedua dan keempat tandannya diatur negatif (-) [10]

Gambar 6 Dasar Quantum Bit (Qubit)

2.5.2 Langkah-langkah QGA

Langkah-langkah kerja metode QGA dalam mengoptimalkan penempatan kapasitor untuk memperbesar nilai faktor daya sebagai berikut di bawah ini.

- 1. t = 0, di mana t adalah perhitungan generasi atau iterasi.
- 2. İnisilaisasi populasi dari anggota populasi (qubit string)

 $U(0) = \{u_1(0), u_2(0), \dots, u_n(0)\}\$

Setiap string qubit diwakili sebagai berikut:

$$u_1(0) = \begin{bmatrix} \alpha_1(0) & \alpha_2(0) \\ \beta_1(0) & \beta_2(0) \end{bmatrix} \cdots \begin{bmatrix} \alpha_m(0) \\ \beta_m(0) \end{bmatrix}$$

3. Pada semua *string qubit* inisialisai amplifikasi amplitude dengan :

$$u_1(0) = \begin{vmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \dots \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \dots \end{vmatrix}$$

 Buatlah secara acak sebuah solusi set biner H(0) dengan mengamati keadaan U(0):

$$H(0) = \{h_1(0), h_2(0), \dots, h_n(0)\}$$

Setiap lokasi kapasitor diwakili oleh bilangan biner 10 bit. 9 bit awal menunjukkan lokasi kapasitor yang akan dipasang, 1 bit lainnya menunjukkan kapasitas kapasitor yang akan dipasang.

- 5. Evaluasi setiap $h_i(0)$ (i = 1, 2, ..., n) dan siapkan matriks data bus.
- 6. Dengan menggunakan data bus, jalankan *load flow* dan dapatkan rugi-rugi daya dan nilai faktor daya.
- 7. Hitung fungsi objektif dan simpan nilai *fitness*.
- 8. Lakukan langkah (5) (7) untuk setiap anggota populasi.
- 9. Temukan anggota populasi dengan nilai fungsi objektif tertinggi dan simpan sebagai pemenang iterasi.
- 10. Iterasi selanjutnya (t = t + 1).
- 11. Buat populasi berikutnya dari populasi saat ini dengan memutar masing-masing anggota sehingga generasi baru lebih dekat dengan pemenang. Lihat Gambar 6, rotasi dilakukan dengan matriks rotator yang dihitung dengan persamaan (20) dan (23).
- Lakukan langkah 4 6 sebanyak yang dibutuhkan.
- 13. Solusi yang paling optimal adalah pemenang iterasi terakhir.

2.6 Sistem Optimasi

Optimasi adalah proses memaksimasi atau meminimasi suatu fungsi tujuan dengan tetap memperhatikan pembatas yang ada. Permasalahan optimasi dengan lebih dari satu fungsi tujuan disebut optimasi multitujuan (multiobjective).

Pada penelitian ini digunakan Penyulang Penyabangan, Singaraja, Bali Utara. Diagram Single line penyulang ini dapat dilihat pada Gambar 7. Sumber listrik penyulang ini berasal dari Trafo II / 10 MVA, Gardu induk Pemaron. Parameter yang diperlukan dalam penelitian ini adalah sebagai berikut:

- Data tegangan dan arus yang mengalir pada saluran.
- Data total daya yang dibangkitkan berupa daya aktif (MW) dan daya reaktif (MVAr) yang disuplai ke masing-masing bus.
- Data setiap beban.

Nilai kapasitas kapasitor berupa bilangan integer dengan nilai gen berisi 0,001 MVAr sampai 0,400 MVAr. Kromosom berisikan informasi besar kapasitas daya reaktif yang disuntikkan pada sistem bus. Pengujian nilai kromosom adalah fungsi objektif.

Fungsi objektif pada penelitian ini adalah meminimalisasi rugi-rugi daya dengan pemasangan kapasitor yang optimal. Persamaan fungsi objektif pada penelitian ini sebagai berikut:

$$Minimum \quad F(x) = S_{loss}$$

$$S_{loss} = \sum_{i=1}^{bus..no} \sum_{j=1}^{bus..no} (S_{ij} + S_{ji})$$
 (29)

Nilai fungsi objektif yang dicari adalah nilai minimum, maka nilai *fitness* yang dicari harus nilai minimum *fitness*, dengan persamaan sebagai berikut:

$$Minimum \quad Fitness = \frac{1}{P_{loss}}$$
 (30)

Solusi dari setiap generasi mencari minimum fungsi objektif dan nilai terbesar dari fitness. Batasan-batasan yang digunakan adalah sebagai berikut:

- Batas Faktor Daya : $0.85 \le PF \le 1$ (32)
- Batas Kapasitor Shunt :

$$Qc_{\min} \le Qc \le Qc_{\max}$$
(33)

Diagram alur program optimasi dapat dilihat pada Gambar 8.

Gambar 7 Single Line Diagram Penyulang Penyabagan

Gambar 8 Diagram Alur Program Optimasi

3. HASIL DAN PEMBAHASAN

Penelitian ini menggunakan simulasi berbasis matlab. Parameter-parameter yang sudah diapatkan digunakan sebagai parameter input untuk analisa aliran daya dan menjalankan simulasi program optimasi pemasangan kapasitor dengan metode quantum genetic algorithm (QGA).

Program ini mencari bus berbeban yang memiliki faktor daya di luar batas yang diizinkan. Jika terdapat bus yang memiliki faktor daya di luar batas yang diizinkan, bus tersebut akan dipasang kapasitor. Perbaikan faktor daya diikuti dengan perbaikan total rugi-rugi daya pada jaringan tersebut.

3.1 Hasil

Program ini memberitahukan grafik tingkah laku dari *quantum genetic algorithm*. Grafik tingkah laku dari QGA dapat dilihat pada Gambar 9.

Gambar 9 Grafik Tingkah Laku *Quantum Genetic Algorithm*

Pada Gambar 9, dapat dilihat bahwa rugirugi daya mengalami penurunan. Hal ini disebabkan terdapat beberapa bus berbeban yang memiliki nilai faktor daya kurang dari batas yang diizinkan. Kemudian di setiap iterasi diperiksa dan dipasang kapasitor bank pada bus-bus tersebut sehingga total rugi-rugi daya berkurang. Total rugi-rugi daya sebelum optimasi pemasangan kapasitor dengan metode QGA memiliki total rugi-rugi daya sebesar 0,0674 MW dan 0,0546 MVAr. Setelah dijalankan simulasi program optimasi pemasangan kapasitor dengan metode QGA, total rugirugi daya menurun menjadi 0,0543 MW dan 0,0442 MVAr.

Pada tabel 1, Setelah dilakukan optimasi pemasangan kapasitor dengan metode QGA, nilai faktor daya diperbaiki sehingga tidak ada bus yang memiliki nilai faktor daya diluar batas yang diizinkan.

Tabel 1 Nilai Faktor Daya Setelah Terpasang Kapasitor

Bus		Faktor Daya	Bus		Faktor Daya
No. Bus	ID	Setelah Terpasang Kapasitor	No. Bus	ID	Setelah Terpasang Kapasitor
1	Bus GI Pemaron	0,952522	87	Bus421	0,949174
6	Bus509	0,857493	91	Bus478	0,999941
9	Bus507	0,855732	93	Bus479	0,853796
11	Bus310	0,851171	95	Bus482	0,850265
13	Bus440	0,988817	97	Bus484	1.000000
16	Bus505	0,999934	99	Bus473	0,851036
18	Bus311	0,999984	102	Bus477	0,999438
20	Bus504	0,997252	103	Bus476	0,850798
22	Bus437	0,998053	107	Bus470	0,854199
26	Bus503	0,854199	109	Bus471	0,850265
27	Bus314	0,857493	112	Bus469	0,998835
29	Bus434	0,996614	115	Bus333	0,857493
33	Bus444	0,992907	117	Bus339	0,868243
35	Bus446	0,998164	119	Bus341	0,997252
38	Bus499	0,999557	121	Bus415	0,963270
40	Bus501	0,998835	126	Bus345	0,868243
43	Bus449	0,851658	128	Bus468	0,852601
46	Bus320	0,997800	130	Bus348	0,998246
49	Bus502	0,999814	132	Bus412	0,999987
52	Bus431	0,850265	137	Bus356	0,850265
55	Bus492	0,857493	139	Bus460	0,986639
58	Bus493	0,850265	141	Bus462	0,850798
60	Bus497	0,992907	144	Bus350	0,983153
62	Bus498	0,993468	146	Bus466	1.000000
65	Bus428	0,972548	148	Bus467	0,964685
68	Bus426	0,999963	152	Bus359	0,868243
70	Bus424	0,853282	154	Bus1190	0,850798
73	Bus309	0,999997	156	Bus408	0,851658
75	Bus487	0,850707	159	Bus456	0,851658
77	Bus324	0,999983	161	Bus458	0,851036
80	Bus488	0,850265	163	Bus404	0,852601
84	Bus490	0,852601			

Pada tabel 2, dapat dilihat lokasi dan kapasitas kapasitor yang terpasang. Dari total bus berbeban sebanyak 62 bus, dibutuhkan pemasangan kapasitor di 29 bus berbeban dengan kapasitas yang dibutuhkan sesuai dengan tabel 2. Dengan dipasang kapasitor pada bus-bus tersebut, kapasitor *shunt* memberikan arus reaktif untuk mengimbangi arus yang diambil oleh beban induktif.

Tabel 2 Lokasi dan Kapasitas Kapasitor yang

Terpasang							
Bus		Kapasitas Kapasitor (Mvar)	Bus		Kapasitas Kapasitor (Mvar)		
No. Bus	ID	Setelah Terpasang Kapasitor	No. Bus	ID	Setelah Terpasang Kapasitor		
13	Bus440	0,021	68	Bus426	0,046		
16	Bus505	0,012	73	Bus309	0,231		
18	Bus311	0,023	77	Bus324	0,03		
20	Bus504	0,008	87	Bus421	0,012		
22	Bus437	0,027	91	Bus478	0,066		
29	Bus434	0,023	102	Bus477	0,019		
33	Bus444	0,003	112	Bus469	0,01		
35	Bus446	0,015	119	Bus341	0,008		

38	Bus499	0,009	121	Bus415	0,01
40	Bus501	0,01	130	Bus348	0,007
46	Bus320	0,041	132	Bus412	0,06
49	Bus502	0,03	139	Bus460	0,04
60	Bus497	0,005	144	Bus350	0,006
62	Bus498	0,005	148	Bus467	0,009
65	Bus428	0,015			

4 SIMPULAN DAN SARAN

4.1 Simpulan

Berdasarkan hasil penelitian dan pembahasan yang telah dilakukan, maka dapat dikemukakan kesimpulan dari penelitian ini sebagai berikut di bawah ini.

- Setelah dilakukan optimasi pemasangan kapasitor dengan metode QGA, tidak terdapat bus yang memiliki nilai faktor daya diluar batas yang diizinkan. Perubahan nilai faktor daya dari sebelum dan setelah optimasi pemasangan kapasitor dapat dilihat pada tabel 1.
- Setelah dilakukan optimasi pemasangan kapasitor dengan metode QGA, total rugirugi daya menurun dari sebesar 0,0674 MW dan 0,0546 MVAr menjadi 0,0543 MW dan 0.0442 MVAr.
- 3. Setelah dilakukan optimasi pemasangan kapasitor dengan metode QGA, kapasitor terpasang pada 29 bus dengan kapasitas kapasitor yang digunakan berbeda-beda. Lokasi dan besar kapasitas kapasitor yang terpasang dapat dilihat pada tabel 2.

4.2 Saran

Saran yang dapat disampaikan dari ini penelitian adalah untuk penelitian selanjutnya dapat mengembangkan sistem ini seperti dengan memperhitungkan faktor ekonomis dan faktor harmonisa akibat penambahan kapasitor bank tersebut.

3 DAFTAR PUSTAKA

- [1] Habsoro Sigit Wisnu, dkk, Analisa Penempatan Kapasitor Bank untuk Perhitungan Drop Voltage Pada Feeder Batang 02 Tahun 2012-2016 dengan Software ETAP 7.0.0, TRANSIENT, 2013, VOL.2, hal 1.
- [2] Syahputra Dr. Ramadoni. Transmisi dan Distribusi Tenaga Listrik, Yogyakarta: LP3M UMY Yogyakarta. 2017:130-132
- [3] Rahmaan Aulia Bagus Ar, dkk. Optimalisasi Penempatan Kapasitor Bank untuk Memperbaiki Kualitas Daya Pada Sistem Kelistrikan PT. Semen Indonesia

- Aceh Menggunkan Metode Genetic Algorithm (GA), Jurnal Teknik ITS Vol.5. 2016:B230-B231.
- [4] Shafira Andita Noor, dkk. Penentuan Letak dan Kapasitas Optimal Bank Kapasitor pada Jaringan Transmisi 150 kV Sumatera Utara Menggunakan Artificial Bee Colony Algorithm, Jurnal Teknik ITS Vol.5. 2016: A752.
- [5] Bandri Sepanur, Topan Danial. Studi Analisa Pemasangan Kapasitor Pada Jaringan Udara Tegangan Menengah 20 kV Terhadap Drop Tegangan (Aplikasi pada Feeder 7 Pinang GI Muaro Bungo), Jurnal Teknik Mesin Vol.4, No1. 2014: 32-33.
- [6] PT. PLN (PERSERO). Buku Pedoman Pemeliharaan Kapasitor. Jakarta: PT. PLN (Persero) No. 0520-2.K/DIR/2014. 2014: 2-3.
- [7] Manurung Chandra Wimartono, dkk. Optimasi Pemasangan dan Kapasitas Kapasitor Shunt Pada Jaringan Penjulang Menjangan. Jurnal Teknologi Elektro, Vol.16. 2017: 8.
- [8] Stevenson William D. Analisis Sistem Tenaga Listrik. Jakarta: Penerbit Erlangga. 1984: 215-217.
- [9] Aryani Ni Ketut, dkk. Optimal Placement and Sizing of Distributed Generation Algorithm for Reducing Losses and Improving Voltage Profile, TENCON, 2011, hal 109.
- [10]Fan xin, dkk. Network Optimization Method Based on Improved Quantum Genetic Algorithm, Fourth International Symposium on Information Science and Engineering, 2012, hal 423.