Подалгебры, порождающие элементы, вложения

Определение 1.1 (Подалгебра). Подалгебра - алгебра $\mathcal{B}=(B,J)$ является подалдгеброй $\mathcal{A}=(A,I),$ если $B\subseteq A$ и J(f) - ограничение на B для всякого f

Определение 1.2 (Ограничение операции). Ограничение операции - n-местная операция g на B является ограничением операции f множеством B если

$$g(b_1,...,b_n) = f(b_1,...,b_n)$$

для любых $b_1, ..., b_n$ из B

Пример 1.1 (Пример ограничения операции).

Пример 1.2 (Пример подалгебры). Пример подалгебры:

$$(\mathbb{C},+,\cdot)\supseteq (\mathbb{R},+,\cdot)\supseteq (\mathbb{Q},+,\cdot)$$

Доказательство.

Следствие 1.1. Отношение "является подалгеброй" транзитивно

$$A \subseteq B, B \subseteq C \Rightarrow A \subseteq C$$

П

Доказательство.

Теорема 1.1. Если $\mathcal{A} = (A, I)$ - алгебра, то B ($B \subseteq A; B \neq \emptyset$) является носителем некоторой подалгебры тогда и только тогда, когда B замкнута относительно сигнатурной операции в алгебре \mathcal{A} Доказательство.

 $1. \Rightarrow$

B - носитель подалгебры $\mathcal{B} = (B,J)$ и $B \subseteq A$, тогда

$$f^{\mathcal{A}}(b_1,...,b_n) = f^{\mathcal{B}}(b_1,...,b_n) \in B$$

B замкнута относительно сигнатурной операции в алгебре ${\cal A}$

2. \Leftarrow В замкнута относительно сигнатурной операции в алгебре \mathcal{A} , тогда

$$J(f)$$
 - функция на B

$$J(f)(b_1,...,b_n) = f^{\mathcal{A}}(b_1,...,b_n) \in B$$

$$J(f)$$
 - ограниение $f^{\mathcal{A}}$ на B

следовательно $\mathcal{B} = (B,J)$ - подалгебра и B - её носитель

Пример 1.3 (Пример на 1.1).

Теорема 1.2.

Доказательство.