Parte Teórica

Cotações: 1 a 8 - 0.5 cada; 9 - 2.5; 10 - 1.5; 11a - 2 b - 2 c - 2; 12a - 1 b - 2.5 c - 2.5

Respostas 1	l a 8	obrigatoriamei	ite dadas na	ı folha do	enunciado
-------------	-------	----------------	--------------	------------	-----------

Respostas 1 a 8 obrigatoriamente dadas na ioina do enunciado
1. CAN é usado:
2. O SPI é um interface:
3. O conteúdo do Registo de Controle de um módulo de entrada/saída:
4. Baud Rate define:
5. No USB 2.0 a comunicação é do tipo:
6. A arbitragem no bus PCI é
7. Para a memória central dos computadores utiliza-se
8. Numa unidade de disco em que o tempo médio de posicionamento das cabeças de leitura/escrita é de 4 ms e a velocidade rotacional é de 7200 rpm (≈ 8,3 ms por rotação), o tempo médio de acesso a um bloco situado no cilindro em que as cabeças se encontram posicionadas é
9. Na invocação de procedimentos a convenção usada no MIPS é a de que o conteúdo dos registos temporários (\$t0 a \$t9) não necessita de ser preservado pelo procedimento. No entanto o conteúdo desses registos é preservado pelas rotinas de serviço a interrupções. Explique a razão.
10. Considere uma linha série operando a 9600 baud, em que os carateres são codificados com 8 bits com paridade par e um stop bit. Quantos carateres são transmitidos por segundo?

11. Num dado processador a mudança de contexto e o início da execução da rotina de tratamento da interrupção consome 500 ciclos de relógio (e igual numero de ciclos para retomar a execução do

Parte Teórica

programa que estava a ser executado quando ocorreu a interrupção). Por outro lado o *polling* de um dispositivo de E/S consome 250 ciclos. Um dispositivo de E/S ligado ao processador gera 200 pedidos por segundo, em que cada pedido consome 5000 ciclos após a rotina de serviço da interrupção ter iniciado a execução. Quando não estão a ser usadas interrupções o processador interroga o dispositivo cada 0,5ms.

- a. Quantos ciclos por segundo gasta o processador a atender o dispositivo quando são usadas interrupções?
- b. Quantos ciclos por segundo são gastos em I/O quando é usado *polling*? (não inclua tempos de mudança de contexto no cálculo)
- c. Qual a frequência com que o processador teria de interrogar o dispositivo para que *polling* consumisse tantos ciclos como as interrupções? Seria essa frequência de *polling* capaz de responder às exigências do dispositivo de E/S?
- 12. Um sistema de 32-bits com a memória byte-addressble tem uma cache direct-mapped de 64 Bytes. Determinado programa gera a seguinte série de referências, indicadas como endereços de palavras: 1, 4, 8, 5, 20, 17, 19, 56, 9, 11, 4, 43, 5, 6, 9, 17

Assuma que cada linha da cache tem uma palavra:

- a. Quantas linhas tem a cache?
- b. Assumindo que a cache está inicialmente vazia, indique quais as referências da lista que são *hits* e quais são *misses*

Endereço de memória	Linha da cache onde é mapeado o endereço	Hit /Miss
1	1 mod 16 = 1	
4	4 mod 16 =4	
8	8 mod 16 = 8	
5	5 mod 16 = 5	
20	20 mod 16 = 4	
17	17 mod 16 = 1	
19	19 mod 16 = 3	
56	56 mod 16 = 8	
9	9 mod 16 = 9	
11	11 mod 16 = 11	<u></u>
4	4 mod 16 = 4	<u></u>
43	43 mod 16 = 11	<u></u>
5	5 mod 16 = 5	
6	6 mod 16 = 6	
9	9 mod 16 = 9	
17	17 mod 16 = 1	

Parte Teórica

c. Indique qual o conteúdo final da cache

Linha da cache	Endereço de memória da palavra em cache	
0		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		