

NPN Silicon RF Transistor

- For low noise, high-gain broadband amplifiers at collector currents from 0.5 mA to 12 mA
- f_T = 8 GHz F = 1.45 dB at 900 MHz

ESD: Electrostatic discharge sensitive device, observe handling precaution!

Туре	Marking	Pin Configuration			Package
BFR181W	RFs	1 = B	2 = E	3 = C	SOT323

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CEO}	12	V
Collector-emitter voltage	V _{CES}	20	
Collector-base voltage	V _{CBO}	20	
Emitter-base voltage	V _{EBO}	2	
Collector current	l _C	20	mA
Base current	l _B	2	
Total power dissipation	P _{tot}	175	mW
<i>T</i> _S ≤ 90 °C ¹⁾			
Junction temperature	T_{j}	150	°C
Ambient temperature	T _A	-65 150	
Storage temperature	T _{stg}	-65 150	

Thermal Resistance

Junction - soldering point ²⁾	$R_{\rm th,JS}$	≤ 345	K/W

 $^{^{1}}T_{\mathrm{S}}$ is measured on the collector lead at the soldering point to the pcb

 $^{^{2}}$ For calculation of R_{thJA} please refer to Application Note Thermal Resistance

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified.

Parameter	Symbol	Values			Unit			
		min.	typ.	max.]			
DC characteristics								
Collector-emitter breakdown voltage	V _{(BR)CEO}	12	-	-	V			
$I_{\rm C} = 1 \text{ mA}, I_{\rm B} = 0$								
Collector-emitter cutoff current	I _{CES}	-	-	100	μΑ			
$V_{CE} = 20 \text{ V}, \ V_{BE} = 0$								
Collector-base cutoff current	I _{CBO}	-	-	100	nA			
$V_{\rm CB} = 10 \text{ V}, I_{\rm E} = 0$								
Emitter-base cutoff current	l _{EBO}	-	-	1	μΑ			
$V_{EB} = 1 \text{ V}, I_{C} = 0$								
DC current gain	h _{FE}	50	100	200	-			
$I_{\rm C} = 5 \text{ mA}, \ V_{\rm CE} = 8 \text{ V}$								

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified.

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
AC characteristics (verified by random sampling)	-				
Transition frequency	f _T	6	8	-	GHz
$I_{\rm C}$ = 10 mA, $V_{\rm CE}$ = 8 V, f = 500 MHz					
Collector-base capacitance	C _{cb}	-	0.32	0.5	pF
$V_{CB} = 10 \text{ V}, f = 1 \text{ MHz}$					
Collector-emitter capacitance	C _{ce}	-	0.22	-	
$V_{CE} = 10 \text{ V}, f = 1 \text{ MHz}$					
Emitter-base capacitance	C _{eb}	-	0.3	-	
$V_{EB} = 0.5 \text{ V}, f = 1 \text{ MHz}$					
Noise figure	F				dB
$I_{\rm C} = 2 \text{ mA}, \ V_{\rm CE} = 8 \text{ V}, \ Z_{\rm S} = Z_{\rm Sopt}$					
f = 900 MHz		-	1.45	-	
f = 1.8 GHz		-	1.8	-	
Power gain, maximum stable 1)	G _{ms}	-	18.5	-	
$I_{\text{C}} = 5 \text{ mA}, V_{\text{CE}} = 8 \text{ V}, Z_{\text{S}} = Z_{\text{Sopt}}, Z_{\text{L}} = Z_{\text{Lopt}},$					
f = 900 MHz					
Power gain, maximum available ²⁾	G _{ma}	-	13	-	
$I_{\text{C}} = 5 \text{ mA}, V_{\text{CE}} = 8 \text{ V}, Z_{\text{S}} = Z_{\text{Sopt}}, Z_{\text{L}} = Z_{\text{Lopt}},$					
f = 1.8 GHz					
Transducer gain	$ S_{21e} ^2$				
$I_{\rm C} = 5 \text{ mA}, \ V_{\rm CE} = 8 \text{ V}, \ Z_{\rm S} = Z_{\rm L} = 50 \Omega$					
f = 900 MHz		-	15	-	
f = 1.8 GHz		-	9.5	-	

 $^{^{1}}G_{ms} = |S_{21} / S_{12}|$

 $^{{}^{2}}G_{ma} = |S_{21} / S_{12}| (k-(k^{2}-1)^{1/2})$

SPICE Parameters (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax) :

Transistor Chip Data

IS =	0.0010519	fA	BF =	96.461	-	NF =	0.90617	-
VAF =	22.403	V	IKF =	0.12146	Α	ISE =	12.603	fA
NE =	1.7631	-	BR =	16.504	-	NR =	0.87757	-
VAR =	5.1127	V	IKR =	0.24951	Α	ISC =	0.01195	fA
NC =	1.6528	-	RB =	9.9037	Ω	IRB =	0.69278	mA
RBM =	6.6315	Ω	RE =	2.1372	Ω	RC =	2.2171	Ω
CJE =	1.8168	fF	VJE =	0.73155	V	MJE =	0.43619	-
TF =	17.028	ps	XTF =	0.33814	-	VTF =	0.12571	V
ITF =	1.0549	mA	PTF =	0	deg	CJC =	319.69	fF
VJC =	1.1633	V	MJC =	0.30013	-	XCJC =	0.082903	-
TR =	2.7449	ns	CJS =	0	fF	VJS =	0.75	V
MJS =	0	-	XTB =	0	-	EG =	1.11	eV
XTI =	3	-	FC =	0.99768	-	TNOM	300	K

All parameters are ready to use, no scalling is necessary.

Extracted on behalf of Infineon Technologies AG by:

Institut für Mobil-und Satellitentechnik (IMST)

Package Equivalent Circuit:

For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet: http://www.infineon.com/products/discrete/index.htm

Total power dissipation $P_{\text{tot}} = f(T_{\text{S}})$

Permissible Pulse Load $R_{thJS} = f(t_p)$

10³ KW 10² 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D = 0 tp

Permissible Pulse Load

$$P_{\text{totmax}}/P_{\text{totDC}} = f(t_{\text{p}})$$

Collector-base capacitance $C_{Cb} = f(V_{CB})$

f = 1MHz

Power Gain G_{ma} , $G_{ms} = f(I_C)$

f = 0.9 GHz

 V_{CE} = Parameter

Transition frequency $f_T = f(I_C)$

 V_{CE} = Parameter

Power Gain G_{ma} , $G_{\text{ms}} = f(I_{\text{C}})$

f = 1.8 GHz

 V_{CE} = Parameter

Power Gain G_{ma} , $G_{ms} = f(V_{CE})$:______ $|S_{21}|^2 = f(V_{CE})$:------

f = Parameter

Power Gain G_{ma} , $G_{ms} = f(t)$

V_{CE} = Parameter

Intermodulation Intercept Point $IP_3=f(I_C)$

(3rd order, Output, $Z_S = Z_L = 50\Omega$)

 V_{CE} = Parameter, f = 900MHz

Power Gain $|S_{21}|^2 = f(f)$

 V_{CE} = Parameter

