Calcul Numeric - Tema #8

- **Ex. 1** Să se afle polinomul de interpolare Lagrange $P_2(x)$ a funcției f(x) = sin(x) relativ la diviziunea $(-\frac{\pi}{2}, 0, \frac{\pi}{2})$, utilizând metodele Neville și Newton cu diferențe divizate. Să se evalueze eroarea $|P_2(\frac{\pi}{6}) f(\frac{\pi}{6})|$.
- **Ex. 2** Fiind date funcția $f(x) = 3^x$ și diviziunea (-2, -1, 0, 1, 2), să se aproximeze $\sqrt{3}$ folosind metoda Neville.
- **Ex.** 3 Fiind date $x_j = j, j = \overline{1,4}, P_{1,2}(x) = x + 1, P_{2,3}(x) = 3x 1, P_{2,3,4}\left(\frac{3}{2}\right) = 4$, să se calculeze $P_{1,2,3,4}\left(\frac{3}{2}\right)$.
- **Ex. 4** Fie polinomul $P_2(x) = f[x_1] + f[x_1, x_2](x x_1) + a_3(x x_1)(x x_2)$. Folosind $P_2(x_3)$ arătați că $a_3 = f[x_1, x_2, x_3]$.
- Ex. 5 1) Să se construiască în Matlab următoarele proceduri conform sintaxelor:
 - a) $y = \mathbf{MetNeville}(X, Y, x) \ (y = P_n(x));$
 - b) $y = \mathbf{MetNDD}(X, Y, x), (y = P_n(x));$
 - c) $[y, z] = \mathbf{MetHermite}(X, Y, Z, x), (y = H_{2n+1}(x), z = H'_{2n+1}(x)),$

folosind metodele Neville, Newton cu diferențe divizate și Hermite. Vectorii X, Y, Z reprezintă nodurile de interpolare, respectiv valorile funcțiilor f, f' în nodurile de interpolare.

- 2) Să se construiască în Matlab în aceeași figură, graficele funcției f pe intervalul [a,b], punctele $(X_i,Y_i), i=\overline{1,n+1}$ și polinomul P_n obținut alternativ prin una din cele trei metode. Datele problemei sunt: $f(x)=\sin(x), n=3, a=-\pi/2, b=\pi/2$. Se va considera diviziunea $(X_i)_{i=\overline{1,n+1}}$ echidistantă. Pentru construcția graficelor funcției f și P_n , folosiți o discretizare cu 100 noduri. Intr-o altă figură să se construiască derivata f' și derivata polinomului Hermite calculat numeric conform procedurii **MetHermite**.
- 3) Reprezentați grafic într-o altă figură eroarea $E = |f P_n|$.
- **Ex. 6** Fiind dată funcția $f(x) = 3xe^x e^{2x}$, să se aproximeze f(1.03) folosind polinomul Hermite de gradul cel mult 3 și nodurile $x_1 = 1, x_2 = 1.05$. Evaluați eroarea $|f(1.03) H_3(1.03)|$.