Section 1.4 Solving Systems of Linear Equations

- **Thm 1.7** Let $A\vec{x} = \vec{b}$ be a linear system, and let $[A|\vec{b}] \sim [H|\vec{c}]$, where H is in row-echelon form.
 - (a) The system $A\vec{x} = \vec{b}$ is inconsistent if and only the augmented matrix $[H|\vec{c}]$ has a row with all entries 0 to the left of the partition and a non-zero entry to the right of the partition.
 - (b) If $A\vec{x} = \vec{b}$ is consistent and every column of H contains a pivot, the system has a unique solution.
 - (c) If $A\vec{x} = \vec{B}$ is consistent and some column of H has no pivot, the system has infinitely many solutions, with as many free variables as there are pivot-free columns in H.

38.

We need a vector \vec{b} so that $[A|\vec{b}]$ has solution, where

$$[A|\vec{b}] = \begin{bmatrix} 1 & 2 & b_1 \\ 3 & 6 & b_2 \end{bmatrix}$$
, and $rref[A|\vec{b}] = \begin{bmatrix} 1 & 2 & b_1 \\ 0 & 0 & b_2 - 3b_1 \end{bmatrix}$

Therefore, the linear system is consistent only if $b_2 - 3b_1 = 0$ by Theorem 1.7 (3).

40.

We need a vector \vec{b} so that $[A|\vec{b}]$ has solution, where

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 2 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$

Since $rref(A) = I_3$, the linear system is consistent with all possible b_i by Theorem 1.7 (2).