LATENT VARIABLE MODELS Session 2: Basic CFA models

Contents this afternoon: Reflective and formative factor models Model estimation, evaluation, modification Parameter estimation Assessing model fit Model modification

□ Latent variables (<u>LV</u>s) are variables

Latent variables

- $\hfill\Box$ Latent variables (<u>LV</u>s) are variables that are not directly observed, but are inferred from other variables that are directly observed (<u>OV</u>s)
- □ LVs represent a construct or concept that researchers are interested in, but cannot directly measure:
 - E.g., depression, anxiety, aggressiveness, socio-economic status, wellbeing, quality of life, social skills, intelligence, mathematical abilities, ...
 - □ In this workshop: focus on continuous LVs
 - LVs can also be categorical (latent classes), but outside scope of this course

Factor analysis

- □ Confirmatory factor analysis (CFA)
 - We have a (relatively) clear idea about:
 - number of factors underlying observed variables
 - with which observed variables they are related
 - what they represent
- □ Exploratory factor analysis (EFA)
 - □ When we have no clear idea about that
 - Not in this course
- □ Both assume arrows to go from factor to indicator (i.e., reflective model)

Formative measurement model

The score on the latent factor of person i is given by: $\eta_i = \tau + \lambda_i y_{ii}$

Often, we assume a centered model (i.e., all means are zero), so τ (intercepts) is zero and can be omitted:

Coefficients

- □ A factor loading is a regression coefficient:
 - □ Unstandardized factor loadina:
 - expected increase in OV, when LV increases by 1 (reflective model)
 - Expected increase in LV, when OV increase by 1 (formative model)
 - □ Standardized factor loading:
 - bivariate correlation between OV and LV
 - expected increase in SDs of OV, when LV increases by 1 SD (reflective model)

Identification

- □ E.g., we have 1 reflective LV, with 3 indicator variables
- There are 6 pieces of information about the scales and associations of the variables in the sample data
- $\ \square$ In the (population) model, there are 7 unknowns (parameters) to
 - We assign a constant value to ('fix') one of the parameters
 - □ Then values of other 6 parameters can be freely estimated, using the sample information
 - In other words: this yields a unique solution -> the model is identified

	X ₁		X ₃	
X ₁	Var(X ₁)			
X ₂	Cov(X _{1,} X ₂)	Var(X ₂)		
X ₃	Cov(X _{1,} X ₃)	Cov(X ₂ , X ₃)	Var(X ₃)	

Identification: Reflective LVs

- □ Minimum requirements for identification of reflective LVs - rules of thumb:
 - > 3 indicator variables per LV (preferred)
 - Scale of LV has to be set by fixing a single parameter
 - Some errors are allowed to correlate
 - □ 3 indicator variables per LV
 - Scale of LV has to be set by fixing a parameter
 - No error covariances
 - 2 indicator variables per LV
 - Scale of LV has to be set by fixing a parameter
 - No error covariances
 - Both loadings set to equality
 - 1 indicator variable per LV
 - Better use observed variable, without underlying LV

Identification: Reflective LVs

3 ways to identify scale of an LV:

- 1. Standardize LV: fix LV's variance to 1 ■ In lavaan: use model syntax, or set 'std.lv = TRUE' in cfa() function
- 2. Marker variable: set factor loading of an item to 1 Best practice: use the item most strongly correlated with the factor
 - Most common practice: use first item (not a major sin but always check if marker item is substantially correlated with factor)
 Default in lavaan's cfa() function
- 3. Effects coding: set sum of loadings equal to the number of indicator variables
 - See example 3.3.1 in Beaujean book
 - Very rarely used, so skipped in this course

Yield same standardized solution, but different unstandardized solutions.

Identification: Reflective vs. Formative LVs

Reflective model can be identified through a single restriction: then # of parameters to be estimated = # of sample statistics

Formative model is not identified here. Formative measurement models require at least 1 additional variable, caused by the formative LV, to be identified.

Two basic conditions for model identification: 1) The number of free(ly estimated) parameters in the model ≤ the number of non-redundant (unique) elements in the sample variance-covariance matrix 2) Each latent variable needs to be assigned a scale (i.e., mean and variance) Thus: In SEMs with OVs only, the model is always (just- or over-) identified In models with LVs, some parameter values have to be fixed to a constant by the user for the model to be identified Further assumptions: Normality: all latent variables (latent factors and residuals/errors) are normally distributed (thus note: OVs need not be normally distributed) Linearity (associations between variables in the model are linear)

Examples and exercises Example 3.3 and 3.4 – Part I

SEM parameter matrices

- □ This mornings examples involved a **structural model** only:
 - □ β: a matrix of regression coefficients (single-headed arrows)
 - Ψ: a matrix of (co)variances not explained by the regression equations (double headed arrows)
- □ SEMs with LVs also involve a **measurement** model:
 - □ Λ: a matrix of factor loadings, relating observed variables to reflective latent variables
 - □ Θ: a matrix of measurement error variances

SEM parameter matrices

- $\label{eq:when SEMs involve both a measurement} \begin{tabular}{ll} \begin{tabular}{ll} \square When SEMs involve both a measurement and structural model, model-implied covariance matrix is given by: $\hat{\Sigma} = \Lambda \big(I-\beta\big)^{-1} \Psi \Big[\big(I-\beta\big)^{-1} \Big]^T \Lambda^T + \Theta \end{tabular}$
- $\hfill\Box$ If model involves **measurement** model only, this simplifies to: $\hat{\Sigma} = \Lambda \Psi \Lambda^T + \Theta$
- □ If model involves **structural** model only, this simplifies to: $\hat{\Sigma} = (I \beta)^{-1} \Psi [(I \beta)^{-1}]^T$

SEM parameter matrices

- If P is the number of observed variables and Q the number of latent variables in the model*, then:
 - lacksquare eta (beta) is a QxQ matrix
 - Regression coefficients between latent vars
 - $\ \ \ \Psi$ (psi) is a QxQ matrix
 - (Co)variances of latent vars
 - \blacksquare Λ (lambda) is a PxQ matrix
 - Factor loadings, relating observed to latent vars
 - □ **Θ** (theta) is a PxP matrix
 - Measurement error (co)variances of observed vars
- * and there are no formative latent variables and all regression relationships specified are between latent variables only

Examples and exercises

- □ Example 3.3 and 3.4 part II
- □ Additional Exercise 1a

Parameter estimation

- Most often, parameter estimation in a SEM is performed by maximum likelihood (ML)
- □ Sometimes, ML estimates have closed form solutions, and can be calculated directly using a fomula
 - $\hfill \Box$ e.g., ML estimates for the population mean and variance:

$$\hat{\mu}_X = \overline{X} = \frac{1}{N} \sum_N X$$

$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_N (X - \overline{X})^2$$

- SEMs generally have a large number of parameters to be estimated, and an iterative procedure is more efficient to estimate the parameters
 - □ Therefore, output reports 'lavaan converged normally after ... iterations'

Parameter estimation and model fit

The outcome of the optimization process provides:

- 1. The ML estimates of the parameter values
- 2. The standard errors of the ML parameter estimates
 - Based on the 2nd order derivative of the likelihood function
 - With large sample sizes, the ratio of each estimated parameter to its standard error is approximately z-distributed
 - Gives a z- and p-value for each parameter in the output
- 3. The value of the likelihood function F_{ML}
 - Under the null hypothesis (i.e., the model-implied cov matrix is the true cov matrix in the population), -2 times the log-likelihood value at the final parameter estimates follows a chi-square distribution with df degrees of freedom
 - Allows for a statistical test of overall model fit when df > 0
 - When df = 0, the model always fits perfectly: likelihood = 1 and log(likelihood) = 0

Assessing model fit

- □ Model fit should be evaluated in several ways:
 - 1. Overal model fit: assessed with model fit indices
 - Individual parameter estimates
 - Parameter estimates substantial and statistically (in)significant where expected?
 - Are estimated parameter values plausible? E.g., expected sign of regression coefficients? Values as large or small as expected? E.g., |standardized factor loadings| > .30 ?
 - 3. Possible sources of misfit
 - Strikingly large residuals (co)variances or means?
 - Strikingly large modification index values?

Assessing overal model fit

- \Box Statistical test of model fit: χ^2 (df)
 - Tests whether difference between the population and model-implied covariance matrix is zero
- $\hfill\Box$ In a SEM model, χ^2 value quantifies difference
 - $lue{}$ observed (sample) covariance matrix $oldsymbol{S}$ and
 - lacktriangle model-implied (population) covariance matrix $\widehat{f \Sigma}$
 - lacksquare χ^2 =0 if model fits perfectly, when $\hat{f \Sigma}$ ${\it S}$ = ${\bf 0}$
 - In all other cases, $\chi^2 > 0$
 - lacksquare The larger the difference between $\widehat{\Sigma}$ and S, the larger the χ^2

Assessing overal model fit

- The larger the difference between $\widehat{\Sigma}$ and S, the larger the χ^2
- χ^2 value is also affected by other factors, affecting type I and II error rates of the χ^2 test:
 - □ Sample size
- x² value almost always significant with sample sizes > 75
 x² assesses statistical significance, but what about substantial significance?
 - One remedy: fit indices, are less dependent on sample size
 - Model complexity
 - More observed variables in model -> larger χ^2 value
 - Remedy: Evaluate individual parameter estimates and residual (co)variances to assess model fit
 - Departures from multivariate normality
 - \blacksquare Increasing non-normality -> in- or deflated χ^2 value
 - Remedy: use robust ML estimation

Assessing overal model fit

- \square In addition to $\chi^2(df)$, many other model fit indices
 - □ Lavaan provides > 40 of them for a single model
 - □ Have to make a selection:
 - Incremental fit indices (e.g., CFI)
 - Parsimony-based indices (e.g., RMSEA, AIC, BIC)
 - Absolute fit indices (e.g., SRMR)

Incremental fit indices

- $\hfill\Box$ Higher values indicate better fitting model (range: 0-1; rarely, values > 1 occur)
- $lue{}$ Compare the fit of the proposed model with that of a null model
 - □ The null model has:
 - Zero correlation between variables in the model (so no latent variables)
 - Variances of observed variables equal to sample variances
- □ Value depends on the average size of the correlations in the data
 - □ If average correlation between variables is not very high, then incremental fit indices not very high.

Incremental fit indices

- □ Comparative fit index
 - \square Let $d = \chi^2 df$
 - □ CFI = <u>d(Null Model)</u> <u>d(Proposed Model)</u> d(Null Model)
- □ Bentler-Bonett Index or Normed Fit Index (NFI)
 - □ χ²(Null Model) χ²(Proposed Model) $\chi^2(\text{Null Model})$
 - Not so often used, due to no penalty for model complexity
- □ Tucker Lewis Index or Non-normed Fit Index (NNFI):
 - χ²/df(Null Model) χ²/df(Proposed Model)

 $\chi^2/df(Null Model) - 1$

Parsimony-based indices

- □ Information-theoretic criteria:
 - Model with lowest value has best fit
 - Note that there are various ways to calculate AIC, so never compare between software packages!
 - AIC: Akaike's Information Criterion
 - Penalty for every additional, freely estimated parameter is 2
 - BIC: Bayesian Information Criterion
 - Penalty for every additional, freely estimated parameter is nat.log(N), where N is the total sample size
 - SSABIC: Sample-Size Adjusted BIC
 - Penalty for every additional, freely estimated parameter is ln([N+2]/24)

Parsimony-based indices

□ RMSEA: Root Mean Square Error of Approximation

$$RMSEA = \sqrt{\frac{\chi^2 - df}{df \cdot (N - 1)}}$$

- Lower values indicate better fitting model
- Also, confidence interval can be calculated
- And the p-value for RMSEA <= 0.05 (if p-value > .05, hypothesis of close fit is retained)
- - Smaller values indicate better fit
 - Various rules of thumb have been proposed, ranging from 2 to 6 (what is good depends also on sample size)

Absolute fit indices

□ SRMR: Standardized Root Mean Squared Residual

$$RMR = \sqrt{\frac{\sum\limits_{i=1,j=1}^{p} i \left(s_{ij} - \hat{\sigma}_{ij}\right)^2}{p(p+1)/2}} \qquad \begin{array}{c} s_{ij} \text{ is an eleme} \\ \hat{\sigma}_{ij} \text{ is an elem} \\ \end{array}$$

 a_{ij} is an element of the empirical covariance matrix S,

- $\hat{\sigma}_{ij}$ is an element of the model-implied matrix covariance $\Sigma(\hat{\theta})$, and in the number of absorbed with less
- Average difference between the observed and modelimplied correlations
- □ Has no penalty for model complexity
- □ SRMR = 0 indicates perfect fit

Overall model fit – cut-off values

- Based on simulations, Hu & Bentler (1999) derived the following cut-off values for good model fit:
 - □ CFI/TLI ≥ .95
 - □ SRMR ≤ .08
 - RMSEA ≤ .06
- □ Other authors suggest more lenient criteria
 - Sometimes, CFI ≥ .90 and/or RMSEA ≤ .08 called 'adequate' or 'acceptable'
- Model fit is not an all-or-nothing question, rules-ofthumb above offer a good starting point

Examples and exercises

- □ Example 3.3 and 3.4 part III
- □ Exercise 3.1
- □ Exercise 3.2

Improving model fit

- □ Residual (co)variances
 - Observed sample (co)variances minus model-implied covariances
 - $\hfill\Box$ Can be obtained in lavaan with the residuals() function
 - $\hfill \square$ Using this information, the model may be improved

Improving model fit

■ Modification indices

- $\hfill\Box$ Give an estimate of how much the $\chi^2\text{-value}$ of model fit will decrease when a parameter is freely estimated
- $\hfill\Box$ It can be interpreted as a $\chi^2\text{-value}$ with 1 df
 - Rule of thumb: if MI > 5, consider estimating parameter freely

Percentage Points of the Chi-Square Distribution

Degrees of Freedom	Probability of a larger value of x "								
	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09

Examples and exercises

- □ Example 3.3 and 3.4 parts IV and V
- □ Additional exercise 1c
- □ Additional exercise 2

Robust ML estimation

- Robust ML estimation, like ML, assumes the data follow a multivariate normal distribution, but that the data have more or less kurtosis than a normal distribution
 - □ Thus does not correct for skewness!
- □ Kurtosis: measure of the shape of the distribution
 □ From Greek word for bulging
- □ The degree of kurtosis in a data set is related to how incorrect the log-likelihood value will be
 - Leptokurtic data:
 χ² too large, SEs too small
 - Platykurtic data: χ² too small, SEs too large

Robust ML estimation

- □ Parameter estimates under MLR are just ML estimates
- $\hfill\Box$ SEs and model χ^2 value are adjusted under MLR, depending on kurtosis of data:
 - $\hfill\Box$ Model χ^2 value and associated fit statistics are adjusted
 - smaller χ^2 when data are leptokurtic
 - larger χ^2 when data are platykurtic
 - Model SEs are adjusted
 - smaller SEs when data are leptokurtic
 - larger SEs when data show platykurtosis
- If data have normal kurtosis, no adjustment is made (so safe to always use MLR)

Robust ML estimation

- □ Invoked by adding argument 'estimator = "MLR" ' in model-fitting function (e.g., lavaan(), sem(), cfa(), growth functions)
- □ Works only when raw data is supplied
 - When only covariance matrix (and/or means) are supplied, there is no info about the kurtosis of the data, so adjusted the standard errors and test statistic is not possible

Examples and exercises

□ Additional exercise 3