Al Planning for Autonomy 1. Plan & Goal Recognition Contents of the Lecture

Tim Miller and Nir Lipovetzky

Winter Term 2019

Outline of the Lecture

Perceiving and Interpreting the Behavior of Others

Plan and Goal Recognition in Al

3 Plan and Goal Recognition and Classical Planning

The Heider-Simmel Experiment

Figure: An Experimental Study of Apparent Behavior. F. Heider, M. Simmel. The American Journal of Psychology, Vol. 57, No. 2, April 1944

Link to video (YouTube)

Parsing the Big Triangle

Figure: The BIG triangle T.

PollEv.com/nirlipo

Question!

What kind of person is the Big Triangle?

(A): Aggressive, mean, angry. (B): Strong, powerful.

(C): (D): Ugly, sly.

- \rightarrow (A): 97% of Heider & Simmel 1944 experimental subjects thought so.
- \rightarrow (B): 14% thought the Big triangle was a bully.
- \rightarrow (C): 8% didn't think T was very bright.
- \rightarrow (D): And a 2% were perhaps letting their imagination go wild a bit too much.

what about the Smaller one...

Figure: The small triangle t.

PollEv.com/nirlipo

Question!

What kind of person is the Small Triangle?

(A): Fearless, defiant, cocky. (B): Passive–aggressive.

(C): Clever, weak. (D): Protective, loyal, devoted.

- \rightarrow (A): 47% of the subjects chose words in this category.
- \rightarrow (B): 11% found that t was a bit unpleasant.
- \rightarrow (C): 53% had a lot of imagination.
- \rightarrow (D): And 14% chose this one.

and about the circle...

Figure: The circle c.

PollEv.com/nirlipo

Question!

What kind of person is the Circle?

(A): Frightened, fearful, helpless.

(B): Fidgety, playful, nervous.

(C): Clever, smart.

(D): Courageous.

- \rightarrow (A): 75% of the subjects certainly didn't think much of c.
- \rightarrow (B): And 61% found c a bit of a handful.
- → (C): 14% saw a lot of nuance in a black dot.
- \rightarrow (D): And 11% found c to be *brave* (when T isn't around).

Significance of Heider & Simmel Results

Leaving aside issues with *priming* experimental subjects...

It does seem that

- 1 humans tend to ascribe intentions to anything that changes over time,
- 2 this rests on deeply rooted assumptions.

Heider & Simmel results are the first quantitative characterization of:

Folk Psychology

Human capacity to explain and predict behavior and mental state of others

... we're usually very good at it, but we fail often!

A Theory of Common Sense

The Intentional Stance, Daniel Dennett (1988)

- **1 Decide** to consider the object being observed as *rational*.
- Work out its beliefs and goals based on its place and purpose in the world.
- Use practical reasoning to assess what the agent ought to do to pursue its goals.

The above provides a *systematic*, *reason–giving explanation* for actions, based on deeply embedded beliefs about the agent.

Plan and Goal Recognition in Artificial Intelligence

Key Idea: use generative models of behavior to predict actions.

Plan Recognition (PR) is Planning in reverse.

- Planning we seek *plans* π to *achieve* goals G.
- PR: find goals G accounting for partially observed plan π .

Formalising GR as a Multi–Agent Task

Two possible *roles* for each agent:

- Actor performs actions to change the state of the world.
- **Observer** *perceives* actions and updates its beliefs on the **Actor** intentions.

and three possible stances for the Actor:

- Adversarial obfuscates deliberately its goals.
- Cooperative tries to tell the **Observer** what she is up to.
- Indifferent does not care about the Observer.

Open Challenge -> Stances could be changing over time

Components of Goal Recognition Task

Actions describe what the Actor does

ullet Walking from X to Y, opening a door, using a credit card...

Goals describe what the Actor wants

To have breakfast, Park a car, Wreck a web service...

Plans describe how goals can be achieved

- Ordered sequences of actions
- These can be ranked according to cost or efficiency

Sensor Model describes what does the **Observer** perceives

- Does it always see every action done by the Actor?
- Are actions observed *directly*? Or only their *effects* are?
- Does it know exactly where in the world the Actor is?

Goal Recognition can be modeled using STRIPS

Example: Agent on a Grid World

- starts in "I", may be heading to "A", "B", ..., "F".
- moves along compass directions *North*, etc. with cost 1 and *North West*, etc. with cost $\sqrt{2}$.

Example

Actor now at (4,8) after going N once, and twice NW.

Question!

Assuming the Actor prefers CHEAPEST plans which goals are most likely?

(A): A & B.

(B): C.

(C): D

(D): E & F

 \rightarrow (A) & (B): Cheapest plans for A, B, C exist with those actions embedded.

 \rightarrow (C) & (D): Cheapest plans for D, E & F do not have those actions. Tim Miller and Nir Lipovetzky Al Planning for Autonomy Chapter 1: Plan & Goal Recognition

Example

Actor now at (5,5) after going N twice and once NE.

Question!

For which goal(s) observed actions are in a CHEAPEST plan?

(A): A & B.

(B): C.

(C): D, E & F

(D): None

 \rightarrow (D) : Observed actions **are not** in any of the cheapest plans for **any** of the goals.

10 11

So Folk Psychology is Useless?

Remarks

- Verify obs sufficient for G Easy
- Determine to what degree obs necessary for G Hard

Folk Psychology with Counterfactual Reasoning

Counterfactual Reasoning (Pearl, 2001) to Establish Necessity

Compare **cost** of best plans that do not comply with observed actions, with best plans that do.

 \rightarrow Then it follows B and C more likely than A or the rest.

Example

Question!

Actor at (9,3), has gone NE, N and three times E, which are the most likely goals?

(A): A & B.

(B): C & D.

(C): E

(D): *F*

 \rightarrow (C) : For E this difference is *minimal*.

Key Facts of the Model-Based Approach

- lacktriangledown \diamond given implicitly, requires to solve $|\mathcal{G}|$ planning tasks
- Plans "extracted" with off-the-shelf planning algorithms.
- **9** Plausibility of goals $\mathcal G$ given as a probability distribution
 - Goals are *plausible* when motivate plans *consistent* with O,
 - and when O is necessary to achieve goals efficiently.

Roadmap

- Make off-the-shelf planners compute plans constrained w.r.t. O,
- ② Derive P(G|O) from best plans that comply with and work around O.

PR as planning: Inferring the Goal Probabilities

Goal

Obtain probability distribution P(G|O), $G \in \mathcal{G}$.

Outline of Approach

From Bayes' Rule $P(G|O) = \alpha P(O|G) Prob(G)$, where

- α norm, constant
- \bullet Prob(G) given in problem specification
- ullet P(O|G) function of extra cost needed to not comply with O

$$P(O|G) = \operatorname{function}(c^*(P'[G+\overline{O}])) - c^*(P'[G+O])) \tag{1}$$

Goals as Predictors for O (informally)

Properties

- \bigcirc G predicts O badly when it would be more efficient to deviate from O.
- \bigcirc G predicts O perfectly when G unfeasible if not doing O.

Demo: A Slightly More Interesting STRIPS Model

Fluents: facts about the world

- Locations of people
- State of appliances
- Locations of objects

Actions: stuff people may do

- Move across the place
- Interaction with objects & appliances

Goals: why people do stuff

- Cook some foodstuff
- Watch a movie
- Listen to a record
- Go to sleep
- Get ready to leave for work

Unitary action costs (to keep it simple)

GITHUB Repo Pull Requests Welcome!

Anyone looking for a Masters' project? Thor 2 has been released!

- Article An Experimental Study of Apparent Behavior. F. Heider, M. Simmel. The American Journal of Psychology, 57(2), 1944
 - A Probabilistic Plan Recognition Algorithm based on Plan Tree Grammars C. Geib, R. Goldman, Artificial Intelligence 173(11), 2009
 - Probabilistic Plan Recognition using off-the-shelf Classical Planners. M. Ramirez and H. Geffner. Proceedings AAAI. 2010.
 - Landmark-Based Heuristics for Goal Recognition. R. Pereira. N. Oren and F. Meneguzzi.
 - Proceedings AAAI, 2017.

 Heuristic Online Goal Recognition in Continuous Domains, M. Vered and G. Kaminka.
 - Proceedings IJCAI, 2017.
 - *Plan Recognition in Continuous Domains*, G. Kaminka and M. Vered and N. Agmon, Proceedings AAAI, 2018.
 - Book Chapter 4, Section 4.3 A Concise Introduction to Models and Methods for Automated Planning. B. Bonet & H. Geffner, 2013.
- Video Lecture Engineering & Reverse-engineering Human Common Sense, J. Tenenbaum, Allen Institute for AI, 2015.
- Video Lecture Steps towards Collaborative Dialogue, P. Cohen, Monash University, 2018.