

Information Technology

FIT5190 Introduction to IT Research Methods

Lecture 9

Quantitative Data Analysis

Distributions and Hypothesis Testing

Slides prepared by

David Green, Frada Burstein, Jacques Steyn, Geoff Webb, Chung-Hsing Yeh

Learning objectives

- Understand
 - Probability distributions
 - Parametric versus non-parametric hypothesis testing
 - Type I and type II errors
- Be able to
 - Apply a t-test on sample means
 - Apply a sign test on sample medians

Overview

- This lecture extends the discussion of hypothesis testing using elementary probability and statistics introduced in the last lecture to include topics such as
 - Distributions,
 - parametric and non-parametric tests,
 - hypothesis testing using the t-test and types of errors.

Probability distributions

- A probability distribution is a function that describes the probability of each value of a variable.
- Example: If we roll 2 dice, what is the probability distribution for the sum of their values?

Source: http://en.wikipedia.org/wiki/File:Dice_Distribution_(bar).svg

More examples

Distributions of Exam Scores in Six Sections of a Statistics Course Source: http://vassarstats.net/textbook/ch2pt1.html

Another example: exponential distribution

Exponential Probability Distribution Function

Describes the time between events which occur continuously and independently at a constant average rate

Standardised distributions: Gaussian

- Also known as the Normal Distribution.
- Values cluster around a central value called the mean.

Source: http://www.chemicool.com/definition/gaussian_distribution.html

Parameters of a distribution

- Parameters of a distribution
 - Summarise the distribution shape, position, etc.
- Example:

Parameters of the Normal (Gaussian) distribution:

- Mean (average)
- Variance (standard deviation squared)

Mean and standard deviations

Source: http://www.jlplanner.com/html/gauss.html

Note: variance (σ^2) is standard deviation (σ) squared

Mean, mode and median

- The mean, mode and median are three forms of average.
 - Measures of central tendency
- Mean
 - Most commonly used
 - Sum of values divided by number of values
- Mode
 - The most frequent value
- Median
 - The most central value

Mean, mode and median

- The *mean*, *mode* and *median* are three forms of *average*.
 - Measures of central tendency
 - Tell you about the typical case
- Mean
 - Most commonly used
 - Sum of values divided by number of values
- Mode
 - The most frequent value
- Median
 - The middle value

• Example:

1, 2, 2, 2, 4, 4, 8, 8, 16

• Mean = 5.22

• Mode = 2

Median = 4

Measures of spread

- Averages don't tell you how often and how much the population differs from the average
- Variance and standard deviation tell you this
- Variance = mean squared deviation from the population mean
- Standard deviation = square root of variance

Central Limit Theorem (CLT)

- Under repeated sampling (with a sufficiently large number of observations generated randomly and independently), the sample means approximate a normal distribution.
 - Its mean equals the sample mean.
 - Its standard deviation is σ/\sqrt{n} , where n is the number of samples.
- The CLT means that we can base hypothesis tests on the normal distribution, no matter what the underlying distribution may be.

Parametric hypothesis testing

- Parametric hypothesis tests are often used to measure the quality of sample parameters or to test whether estimates on a given parameter are equal for two samples.
- Most common distribution parameters
 - Mean (average)
 - Variance (standard deviation squared)
- Test for the mean of a sample
- Test for means of two samples

Reminder: statistical hypothesis tests

- A statistic is a number calculated from a sample of observations
 - e.g. Average crop size
- Assuming the null hypothesis H₀
 - What is the probability of getting that number (or a more extreme value) purely by chance?
 - e.g. What is the probability of getting a bigger crop by chance?
- Significance
 - The probability that the result is not chance

Statistical hypothesis testing - summary

- The method
 - Use a set of observations
 - Set a "significance level" α (acceptance level) e.g. 0.01 or 0.05
 - Assuming the null hypothesis H_0 is true, calculate the probability p_0 of getting the observed result (p-value)
 - If $p_0 > \alpha$ retain the null hypothesis
 - If $p_0 < \alpha$ reject the null hypothesis

Example: plant fertilizer experiment #2

- Do we accept or reject an hypothesis?
 - H₁: "Fertilizer makes a difference to crop size"
 - H₀: "Fertilizer makes no difference to crop size"
- Convert the hypothesis into a statement about the distribution of observations
 - The average size of apples from fertilized trees will differ to those from unfertilized trees
 - H₁: Average(X | fertilized) ≠ Average(X | unfertilized)
 - H₀: Average(X | fertilized) = Average(X | unfertilized)

Populations and samples

We use samples to estimate statistical parameters of populations

Population

- Size large
- Mean μ
- Variance σ^2
- Statistic e.g. $Z\sim N(\mu,\sigma)$

Sample

- Size
- Mean $\bar{\chi}$
- Variance s²
- Statistic t

$$s^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \overline{x}_{1})^{2}$$

Significance tests

- 1. Set a significance level α (e.g. 0.05)
- 2. Compute a suitable statistic *X* from a sample
- 3. Compute $p(|x| > |X| | H_0)$ **
 - Probability of getting the result or a more extreme result if the null hypothesis H₀ is true
- 4. If $p(|x|>|X| \mid H_0) < \alpha$, then reject H_0
 - i.e. the alternative hypothesis H₁ is "significant" (acceptable)
 - $-\alpha$ is the "rejection region"
- 5. It not, then reject H₁

** |x| means absolute value of x (ignores negation signs) H_0 : $\mu = \mu_0$ H_1 : $\mu > \mu_0$

19

 α

X

Hypotheses about the mean μ

One tailed test

$$H_0$$
: $\mu = \mu_0$

$$H_1$$
: $\mu > \mu_0$

Two tailed test

$$H_0$$
: $\mu = \mu_0$

$$H_1$$
: $\mu \neq \mu_0$

 H_1 : The mean of the sample is greater H_1 : The mean of the sample is different than the mean of the population from the mean of the population

 α = significance level

Student's *t*-distribution

- The t-distribution expresses the way in which sample means vary about the population mean.
- Use the t-test when the population variance is not known.
- The statistic *t*, given by

$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

follows a t-distribution.

Fatter tails than normal distribution = higher probability of large values 21

t-test on the mean of a sample

- Null hypothesis
 - $-\mu = \mu_0$ (assumes the population mean is known)
- Alternative hypothesis
 - One tailed test $\mu > \mu_0$ (or $\mu > \mu_0$)
 - Two tailed test $\mu \neq \mu_0$
- Test statistic

$$t = \frac{\overline{x} - \mu_0}{\sqrt{n}}$$

$$df = n - 1$$

Practical notes re calculations

• Spreadsheets provide several functions for calculating *t* in different ways:

```
TDIST returns value of p given t and df

TINV returns value of t given p and df

TTEST performs a t-test between two samples, returning the p value
```

- Be careful to check whether a test calculates values for a 1 or 2 sided test.
- Different authors calculate values in different ways (e.g. divide by *n-1* instead of *n*). So cite a reference for the version you use.

Example: t-test on the mean of a sample

- Improvements to an algorithm must take significantly less than 3000 seconds to solve a complex problem.
- A trial sample of 8 runs gave these results:

3005	2925	2935	2965	2995	3005	2935	2905

Hypothesis test

$$- H_0$$
: $\mu = 3000$; H_1 : $\mu < 3000$

$$- \text{ Set } \alpha = 0.05$$

$$- df = 8 - 1 = 7$$

- Critical t value required to reject H_0 : t(0.05, 7) = 1.895
- So we require t < -1.89 (mean must be $< \mu$, so negative)

$$-t = (\bar{x} - \mu_0)/\text{s}\sqrt{n} = (2958.75 - 3000)/(39.26 \times 2.83) = -0.37$$

So retain null hypothesis; i.e. no improvement

t-test for difference between means of two samples

- Null hypothesis
 - $-\mu_1 = \mu_2$ (i.e. no population mean is known)
- Alternative hypothesis
 - One tailed test $\mu_1 > \mu_2$ (or $\mu_1 < \mu_2$)
 - Two tailed test $\mu_1 \neq \mu_2$
- Test statistic for $(\mu_1 \mu_2)$ $(\overline{X}_1 \overline{X}_2)$

$$t = \frac{\overline{x}_1 - \overline{x}_2}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \qquad df = n_1 + n_2 - 2$$

t-test for difference between sample means

- Since the population variance is unknown, we have to use the variance from the two samples i.e. $\sigma_{\overline{X}_1-\overline{X}_2}$
- In general, the variances and sample sizes are different, so we use the formula

$$s^{2} = \frac{\sum_{i=1}^{n_{1}} (x_{i} - \bar{x}_{1})^{2} + \sum_{i=1}^{n_{2}} (x_{i} - \bar{x}_{2})^{2}}{n_{1} + n_{2} - 2}$$

• If the samples are the same size, this simplifies to

$$t = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\sum_{i} (S_1^2 + S_2^2)/(n-1)}}$$

Plant fertiliser experiment

Categorical approach

- Classify each plant as "large" or "small"
- Use chi-square to test hypothesis about size

Scalar approach

- Measure size of each plant
- Use t-test to test hypothesis about size

Example: plant fertilizer experiment #3

Fertilized	Unfertilized
32	35
37	31
35	29
28	25
41	34
44	40
35	27
31	32
34	31

H₀:
$$\mu_1 = \mu_2$$
 H₁: $\mu_1 > \mu_2$
mean₁ = 35.22, $s_1 = 4.94$
mean₂ = 31.56, $s_2 = 4.48$
Pooled $s^2 = (195.56 + 160.33)/(9 + 9 - 2) = 22.24$
so $s = 4.72$
 $t = (35.22 - 31.56)/4.72 * sqrt(2/9) = 1.64$
Set $\alpha = 0.05$, and $df = 9 + 9 - 2 = 16$
 t required = $t(0.05, 16) = 1.746$

Conclusion:

- 1. Retain null hypothesis
- 2. Fertilization does not increase size

Parametric vs. non-parametric hypothesis testing

Parametric statistics

- Parametric statistics are based on an assumption that the population from which the sample(s) are drawn conform to a specific distribution.
- e.g. the *t*-test assumes that the population(s) conform to normal distributions.
- e.g. if assume population A is a normal distribution with mean μ and standard deviation σ and another case is greater than μ + 3σ then there is less than 0.3% chance that the new case belongs to A.

Strengths of parametric statistics

- Typically easy to calculate
 - t-test only requires simple calculations using the mean and variance.
- Powerful
 - Requires relatively little data to reject false null hypothesis.

Limitations of parametric statistics

 More likely to falsely reject the null hypothesis if the assumptions made are incorrect.

Non-parametric statistics

- Non-parametric statistics make no assumptions about the form of distribution(s) from which the data are drawn.
- e.g. the chi-square test.

Strengths of non-parametric statistics

- As non-parametric methods make fewer assumptions, their applicability is much wider than the corresponding parametric methods.
- They can be applied safely in situations where less is known about the application in question.
- Non-parametric methods may be easier to use.
- Non-parametric methods leave less room for improper use and misunderstanding.

Limitations of non-parametric statistics

- Non parametric statistics are "less powerful" than parametric statistics.
 - They require larger samples to yield the same level of significance.
 - They are less likely to reject the null hypothesis.

Matching parametric and non-parametric tests

- Most parametric tests have a counterpart nonparametric test.
- e.g. t-test and Mann–Whitney U test
 - also known as Mann–Whitney–Wilcoxon (MWW) or Wilcoxon rank-sum test
- *t*-test tests whether **means** of two populations differ.
- Mann–Whitney U test tests whether the medians differ.

Test assumptions

- Every statistical test is based on a number of assumptions about the data.
 - e.g. the form of distribution
- It is important to check that the assumptions of a test hold for your data.
- One assumption made by most tests is that all data points are independent of each other.
 - True for coin tosses
 - Not true for most time series

Matched-pairs tests

- Most tests assume that the values in one treatment are independent of those in the other(s).
- Matched pairs tests assume that they are related.
 - Pre and post tests (i.e. Before and After tests)
 - Performance of two different populations on each of many tasks

Before	After
2	3
3	2
2	4

Matched-pairs tests

- The matched-pairs *t*-test
 - Two tailed null hypothesis
 - The means are identical.

Before	After
2	3
3	2
2	4

- One tailed null hypothesis
 - One specified mean is greater than the other.
- Assumes that the differences are normally distributed.
 - Unlikely to be true unless the data are ratio scale.

Matched-pairs tests

- The sign test (non-parametric)
 - One tailed null hypothesis
 - Medians are identical.

Before	After
2	3
3	2
2	4

- Two tailed null hypothesis
 - The median of one specified population is greater than that of the other.
- Assumptions
 - The values are on the same scale hence comparable
 - The values for one pair are independent of the values of another.

Sign test method

- If the medians are identical then p(X > Y) = 0.5.
- Count the number of pairs for which each treatment has the higher value.
 - Ignore those cases where the values are the same.
- Under the null hypothesis, this will follow the binomial distribution, which can be used to calculate the probability of obtaining the observed difference by chance.

Before	After
2	3
3	2
2	4

Example

Company image before and after viewing web site

Image before	Image after	Image before	Image after
2	3	6	5
3	2	4	4
2	4	1	3
4	4	3	5
6	3	2	4
2	4	3	4
2	5	4	4
5	5	1	4
3	5	3	4
3	5	2	5

Example

- Frequencies
 - Image After < Image Before: 3
 - Image After > Image Before: 13
 - Image After = Image Before: 4
 - Total: 20
- One-tailed significance
 - -0.0106

Power of statistical tests

- Statistical tests are only as good as their reliability
- Two types of errors are possible
 - Type I Reject H_0 when it is true (α)
 - Type II Retain H_0 when it is false (β)
- Type I & II errors have probabilities denoted α and β
- The power of a statistical test = $1-\beta$,
 - i.e. the probability that it will reject H₀ if H₀ is false

Hypothesis testing		Test result	
		Retain H ₀	Reject H ₀
	True	1 - α	Type I error α
H_0	False	Type II error β	1- β

Type I and Type II errors

Multiple testing

- If you do many significance tests, then it is likely that you will incorrectly reject the null hypothesis for at least some of them.
- Family-wise error rate (FWER)
 - The risk that any out of a 'family' of tests will incorrectly reject the null hypothesis.

Bonferroni correction

- Let *n* be the number of tests.
- Set α to desired maximum risk of any error.
- Reject all null-hypotheses where $p \le \alpha/n$.
- Unnecessarily strict
 - Reduces power of individual tests more than necessary to control FWER.

Bonferroni correction example

- p values
 - 0.001, 0.105, 0.021, 0.009, 0.011
- X
 - -0.05
- Bonferroni adjusted $p \le \alpha/n = 0.05/5$
 - -0.01
- Reject hypotheses with p=0.001 and p=0.009

Holm procedure

- Order p values from lowest to highest.
- Assign them indexes i from 0 (for lowest p value)
 to n-1 (for highest p value).
- Test each p_i against $p_i \le \alpha / (n-i)$ until the first one fails, then reject that hypothesis and all hypotheses with higher i.

Holm procedure example

- p values
 - 0.001, 0.105, 0.021, 0.009, 0.011
- Sorted p values
 - 0.001, 0.009, 0.011, 0.026, 0.105
- 0x
 - -0.05
- Adjusted α values
 - 0.01, 0.0125, 0.0166, 0.025, 0.05
- Reject hypotheses with p=0.001, p=0.009 and p=0.011

Criticisms of hypothesis testing

- "All differences are significant, given large enough sample sizes" (Paul Meehl, 1967, inter alia)
 - Meehl performed a massive survey of HS students in US Midwest (ca. 50,000), measuring dozens of attributes. The majority of attributes were correlated to statistical significance (e.g. religion and musical talent).
- "There are lies, damned lies, and then there are statistics"
 - If one test fails, try another that shows what you want!
- Some critics argue that most published studies are wrong
 - Researchers publish only positive results.
 - Negative cases are ignored, so experiments continue until there is a positive result.

Hypothesis testing summary

Be aware

- that some significant results will be false positives.
- if sample size is small, the evidence is weak, check the power.
- if sample size is huge, the effect size may be small, check the effect size.
- if H₀ and H₁ are highly divergent, or H₁ is on the other tail, significance may be misleading, (check the likelihood ratio)
- There are many other tests for other cases and for other experimental designs
 - Refer to statistics texts for details.

References

- Leedy, P. D., Ormord, J.E. (2010). Practical Research: Planning and Design (8th ed.). Prentice Hall. Upper Saddle River, NJ.
- Siegel, S., Castellan, N.J., Jr. (1989). *Non-parametric Statistics for the Behavioural Sciences*. McGraw-Hill, New York.
- Cramer, D. (1998). Fundamental Statistics for Social Research: Step by Step Calculations and Computer Techniques Using SPSS for Windows. Rutledge, London.

Readings

- Web Center for Social Research Methods
 - http://www.socialresearchmethods.net/
 - See section on Selecting Statistics
- Tutorial on tests of significance
 - http://www.csulb.edu/~msaintg/ppa696/696stsig.htm
- McRel (2004) Tutorial on Understanding Statistics. ECS.
 - http://www.ecs.org/html/educationIssues/Research/primer/understandingtutorial.asp
 - See section on Selecting Statistics