Unidade II - Imagem Digital

IME 04-10842 Computação Gráfica Professor Guilherme Mota

Definições Formais

Níveis de Abstração na Representação de Imagens

Imagem Continua

$$f: U \subset \mathbb{R}^2 \to C$$

 $f \rightarrow$ função imagem

 $C \rightarrow \text{espaço de cor}, C = \mathbb{R}^n$

 $U \rightarrow$ suporte da imagem

 $f(U) \subset C \rightarrow \text{gamute}$

Discretização

Imagem contínua

Imagem discreta

Processo de Amostragem

Sinal de entrada S(t)

Sinal de saída S[t]

Sinal contínuo

Sinal Continuo

Sinal Discreto

Sinal Digital

Imagem Digital

$$f: U \subset \mathbb{R}^2 \to C$$

$$f \rightarrow$$
 função imagem

$$C \rightarrow$$
 espaço de cor

$$U \rightarrow$$
 suporte da imagem

U e C são discretizados

Níveis de Abstração na Representação de Imagens

Persistência de Imagens Digitais

Formatos raster de arquivos de imagem

- Não comprimido
 - BMP (Windows bitmap)
 - Famĺia PNM (Portable Any Map)
 - PBM (binário)
 - PGM (tons de cinza)
 - PPM (pixelmap)

- Comprimido
 - Com perda de informação
 - JPEG (Joint Photographic Experts Group)
 - Sem perda de informação
 - TIFF (Tagged Image File Format) Compressão LZW opcional
 - GIF (Graphics Interchange Format)
 - PNG (Portable Network Graphic) Sucessor open source do GIF

Formatos vetoriais de arquivos de imagem

- SVG (Scalable Vector Graphics) Padrão aberto criado e mantido pelo W3C
- PDF (Portable Document File)
- CDR Formato proprietário do Corel Draw não existe documento público de descrição deste formato
- EPS (Encapsulated PostScript)

Limitações da Discretização

Amostragem - Teorema de Nyquist $f_s > 2B$

Espectro do Sinal de Entrada

Aliasing $f_s < 2B$

Reconstrução

Limite de Representação

float Imagem [M][N][3];

Sistemas de Coordenadas de Imagens Digitais

Sistema de coordenadas da imagem digital

Computação Gráfica

Sistema de coordenadas da imagem digital

Processamento Digital de Imagens

Sistema de coordenadas da imagem digital

Ambientes matriciais (exemplo Octave)

Representação de uma lmagem

Representação Espacial

Imagem discreta

$$U = [a, b] \times [c, d] = (x, y) \in \mathbb{R}^2$$
; $a \le x \le b$ e $c \le y \le d$

Para
$$a = c = o$$

 $P \Delta = (x_j, y_k) \in \mathbb{R}^2$;
onde,
 $x_j = j \Delta x, j = 0, 1, ..., m-1, \Delta x = b/m$
 $y_k = k \Delta y, k = 0, 1, ..., n-1, \Delta y = d/n$

$$c_{jk} = [j \Delta x, (j+1)\Delta x] \times [k \Delta y, (k+1)\Delta y] \subset P \Delta$$

 $j = 0, ..., m-1; k = 0, ..., n-1$

Discretização

Amostragem pontual

Amostragem por área

Amostragem Pontual

Imagem contínua

Imagem discreta

Amostragem por Área

Imagem contínua

Imagem discreta

Quantização - Bits por pixel

Reconstrução de Imagens Digitais

Núcleos de Reconstrução 1D

Reconstrução 1D - Núcleo Constante

Valor contínuo corresponde ao valor discreto do vizinho mais próximo.

Reconstrução 1D - Núcleo Triangular

Valor contínuo corresponde à combinação de duas funções lineares uma para cada vizinho discreto

Núcleos de Reconstrução 2D

Reconstrução 2D - Núcleo Constante

Reconstrução 2D - Núcleo Triangular

Reconstrução 2D: Área de influência

Constante

Triangular

Cúbico

Resultado de Reconstrução 2D

(a)

Constante

Triangular

Cúbico

Conceitos de Imagens Digitais

Resolução Espacial 32 x 32

Resolução Espacial 64 x 64

Resolução Espacial 128 x 128

Resolução Espacial 256 x 256

Resolução Espacial 512 x 512

Histograma de Imagens

Brilho de Imagens Digitais

Contraste de Imagens Digitais

Operações Pontuais

$$f: \{(x,y) \in U \subset \mathbb{R}^2\} \rightarrow C$$
 $f': \{(x,y) \in U \subset \mathbb{R}^2\} \rightarrow C'$

$$g:c_i\to c_i'$$
 $g(f)\Leftrightarrow f'$

 $g(f) \Leftrightarrow f'$

$$f: \{(x,y) \in U \subset \mathbb{R}^2\} \rightarrow C$$
 $f': \{(x,y) \in U \subset \mathbb{R}^2\} \rightarrow C'$

$$g: c_i \rightarrow c_i'; c_i' = 1 - c_i$$

$$f: \{(x,y) \in U \subset \mathbb{R}^2\} \rightarrow C$$
 $f': \{(x,y) \in U \subset \mathbb{R}^2\} \rightarrow C'$

$$g: c_i \rightarrow c_i'; c_i' = \frac{c_i}{2}$$

$$f: \{(x,y) \in U \subset \mathbb{R}^2\} \to C \quad f': \{(x,y) \in U \subset \mathbb{R}^2\} \to C'$$

$$g: c_i \rightarrow c_i'; c_i' = c_i^{\gamma} \text{ para } \gamma = 0,1$$

$$f: \{(x,y) \in U \subset \mathbb{R}^2\} \to C$$
 $f': \{(x,y) \in U \subset \mathbb{R}^2\} \to C'$

$$g: c_i \rightarrow c_i'; c_i' = c_i^{\gamma} \text{ para } \gamma = 0.5$$

$$f: \{(x,y) \in U \subset \mathbb{R}^2\} \to C \quad f': \{(x,y) \in U \subset \mathbb{R}^2\} \to C'$$

$$g: c_i \rightarrow c_i'; c_i' = c_i^{\gamma} \text{ para } \gamma = 1$$

$$f: \{(x, y) \in U \subset \mathbb{R}^2\} \to C \quad f': \{(x, y) \in U \subset \mathbb{R}^2\} \to C'$$

$$g: c_i \rightarrow c_i'; c_i' = c_i^{\gamma} \text{ para } \gamma = 3$$

$$f: \{(x, y) \in U \subset \mathbb{R}^2\} \to C \quad f': \{(x, y) \in U \subset \mathbb{R}^2\} \to C'$$

$$g: c_i \rightarrow c_i'; c_i' = c_i^{\gamma} \text{ para } \gamma = 5$$

$$f: \{(x, y) \in U \subset \mathbb{R}^2\} \to C \quad f': \{(x, y) \in U \subset \mathbb{R}^2\} \to C'$$

$$g: c_i \to c_i'; c_i' = c_i < 150$$

Transformações Geométricas

Algoritmo básico de transformação geométrica

• Sejam:

$$f: \{(x, y) \in U \subset \mathbb{R}^2\} \to C$$
$$f': \{(x', y') \in U' \subset \mathbb{R}^2\} \to C$$

$$\mathbf{T}: \{(x, y) \in \mathbb{R}^2\} \to \{(x', y') \in \mathbb{R}^2\}$$
$$\mathbf{T}^{-1}: \{(x', y') \in \mathbb{R}^2\} \to \{(x, y) \in \mathbb{R}^2\}$$

• Algoritmo de transformação

$$\forall (x_i', y_i') \in U': \mathbf{T}^{-1}(x_i', y_i') \Rightarrow (x_i, y_i)$$

$$f_r = \sum_{j,k} f_{jk} \phi(x - j, y - k)$$

Algoritmo básico de transformação geométrica

Transformações de Coordenadas: Afim 2D

- Uma transformação afim define uma geometria afim.
- Propriedades geométricas preservadas:
 - Paralelismo
 - Colinearidade
 - Proporcionalidade das distâncias entre pontos colineares

$$\mathbf{p}' = \mathbf{T} \times \mathbf{p}$$

$$\begin{vmatrix} x' \\ y' \\ 1 \end{vmatrix} = \begin{vmatrix} a_2 & a_1 & a_0 \\ b_2 & b_1 & b_0 \\ 0 & 0 & 1 \end{vmatrix} \times \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$$

Tipos de Transformações Afim 2D

Nome

Identidade

Escala

Rotação

Translação

Matriz (T)

 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$egin{bmatrix} c_x & 0 & 0 \ 0 & c_y & 0 \ 0 & 0 & 1 \ \end{bmatrix}$$

$$\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}$$

$$\begin{vmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{vmatrix}$$

Equações

$$x' = x$$
$$y' = y$$

$$x' = c_x x$$
$$y' = c_y y$$

$$x' = \cos \theta \cdot x - \sin \theta \cdot y$$
$$y' = \sin \theta \cdot x + \cos \theta \cdot y$$

$$x' = x + t_x$$
$$y' = y + t_y$$

Exemplo

Tipos de Transformações Afim 2D

Nome

Matriz (T)

Equações

Exemplo

Cisalhamento vertical

$$\begin{vmatrix} 1 & s_{v} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$x' = x + s_v y$$
$$y' = y$$

Cisalhamento horizontal

$$\begin{vmatrix} 1 & 0 & 0 \\ s_h & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$x' = x$$
$$y' = s_h x + y$$

O produto de transformações afim produz uma transformação afim

Dúvidas

