

Química orgânica: Introdução e conceitos fundamentais

Professor Me. Ivanilson Vieira Souza Junior

Graduado em Química (UESB 2017)
Mestre em Química Analítica (UESB 2019)

Histórico

- ✓ No início do século XIX, Berzelius definiu a Química Orgânica como a química dos compostos dos seres vivos
- ✓ De acordo com ele, somente os seres vivos possuiriam a força vital responsável pela produção de substâncias orgânicas
- ✓ O Princípio da Força Vital começa a ser derrubado quando Wöhler, em 1822, sintetizou pela primeira vez um composto orgânico, a ureia
- ✓ Estudos de Lavoisier verificaram que todo composto orgânico era formado pelo elemento carbono

Síntese de Friedrich Wöhler

cianato de amônio (inorgânico)

ureia (orgânico)

Definição atual

✓ A Química Orgânica, hoje, é definida como a química dos compostos do elemento carbono

✓ Algumas substâncias, apesar de possuírem carbono, não são orgânicas, são as substâncias de transição. Exemplos: C grafite, C diamante, cianetos, cianatos, carbonatos, bicarbonatos

O carbono é tetravalente

A estabilidade química do carbono é atingida ao fazer quatro ligações e obter oito elétrons na sua camada de valência, seguindo a teoria do octeto

O cátion do hexametilbenzeno (+2)

Obtenção dos compostos orgânicos

✓ Naturais: Ácidos nucleicos (DNA e RNA), carboidratos, lipídios, proteína, gás metano, petróleo

✓ Sintéticos: detergentes, solventes, tintas, medicamentos, agrotóxicos, plásticos, combustíveis, polímeros

O gás metano

CH₄

Metano

Biodigestor

QUESTÃO 48

A coleta das fezes dos animais domésticos em sacolas plásticas e o seu descarte em lixeiras convencionais podem criar condições de degradação que geram produtos prejudiciais ao meio ambiente (Figura 1).

Figura 1

A Figura 2 ilustra o Projeto Park Spark, desenvolvido em Cambridge, MA (EUA), em que as fezes dos animais domésticos são recolhidas em sacolas biodegradáveis e jogadas em um biodigestor instalado em parques públicos; e os produtos são utilizados em equipamentos no próprio parque.

Figura 2

Disponivel em: http://parksparkproject.com. Acesso em: 30 ago. 2013 (adaptado).

Uma inovação desse projeto é possibilitar o(a)

- Q queima de gás metano.
- 3 armazenamento de gás carbônico.
- decomposição aeróbica das fezes.
- uso mais eficiente de combustíveis fósseis.
- fixação de carbono em moléculas orgânicas.

O carbono forma ligações múltiplas

Ligação dupla entre dois átomos de carbono)c=c(.c::c.
Ligação dupla entre um carbono e um oxigênio)c=o	.c::o;
Ligação tripla entre um carbono e um nitrogênio	-c≡n	·C::N:

Ligações entre os átomos de carbono

Ligações entre os átomos de carbono

- (a) Sobreposição frontal da ligação σ e sobreposição lateral da ligação π
- (b) Ligações: simples, dupla e tripla

Ligações entre os átomos de carbono

$$H \stackrel{-}{\leftarrow} C \stackrel{\pi}{=} C \stackrel{-}{\leftarrow} C \stackrel{-}{\leftarrow} H$$

Hibridização do carbono

- Explicar a formação das ligações químicas e sua estabilidade
- carbono faz quatro ligações, porém só possui dois elétrons desemparelhados no orbital p

Hibridização do carbono

Hibridização do Carbono

Conceito: combinação entre os elétrons dos orbitais s e p que possibilita a formação de ligações químicas estáveis, a partir de orbitais híbridos

Ligação simples: Hibridização sp³

Ligação dupla: hibridização sp²

Ligação tripla ou duas duplas: hibridização sp

Hibridização do Carbono e Geometria molecular

Hibridização e geometria molecular

Hibridização	Ocorrência	Geometria molecular	Ângulo entre as ligações
sp³	IIIII. A	tetraédrica	109º,28' ou 109,5º
sp ²	/C \	trigonal plana	120°
sp	= C = ou - C ≡	linear	180°

QUESTÃO 97

O grafeno é uma forma alotrópica do carbono constituído por uma folha planar (arranjo bidimensional) de átomos de carbono compactados e com a espessura de apenas um átomo. Sua estrutura é hexagonal, conforme a figura.

Nesse arranjo, os átomos de carbono possuem hibridação

- A sp de geometria linear.
- sp² de geometria trigonal planar.
- sp³ alternados com carbonos com hibridação sp de geometria linear.
- sp³d de geometria planar.
- sp³d² com geometria hexagonal planar.

Classificação do Carbono quanto ao número de ligantes

✓ Primário: um ligante carbono

✓ Secundário: dois ligantes carbono

✓ Terciário: três ligantes carbono

✓ Quaternário: quatro ligantes carbono

Classificação do Carbono quanto ao número de ligantes

Qual a classificação dos átomos de carbono abaixo?

QUESTÃO 75

As moléculas de nanoputians lembram figuras humanas e foram criadas para estimular o interesse de jovens na compreensão da linguagem expressa em fórmulas estruturais, muito usadas em química orgânica. Um exemplo é o NanoKid, representado na figura:

CHANTEAU, S. H.; TOUR, J. M. The Journal of Organic Chemistry, v. 68, n. 23, 2003 (adaptado).

Em que parte do corpo do NanoKid existe carbono quaternário?

- Mãos.
- O Cabeça.
- O Tórax.
- Abdömen.
- @ Pés.

Cadeias Carbônicas

O carbono liga-se a diversas classes de elementos químicos por estabelecer ligações estáveis com esses átomos

A gasolina

Como são representadas as cadeias carbônicas?

Fórmulas Químicas

√ Fórmula estrutural plana

√ Fórmula estrutural condensada

√ Fórmula estrutural espacial em linha, traço ou bastão

√ Fórmula molecular

Fórmula estrutural plana e condensada

Fórmula estrutural espacial em linha, traço ou bastão

Fórmula Molecular

Fórmula Molecular: C₃H₈O

Fórmula Molecular

Para Hidrocarbonetos saturados: H=2.C + 2

Fórmula Molecular: C₁₀H₂₂

Qual a fórmula molecular dos compostos abaixo?

Referências

BRUICE, Paula Yurkanis. Química orgânica: volume 1. 4ª ed. São Paulo: Pearson Prentice Hall, 2006.

USBERCO, João; PHILIPPE, Spitaleri. Química: volume único, 1ª ed. Saraiva, 2020.

USBERCO, João; SALVADOR, Edgard. Química: química orgânica, 3. Saraiva, 2014.