Tutorial on Recent Practical Vowpal Wabbit Improvements

Zhen Qin

zqin001@cs.ucr.edu

eHarmony®

Vaclav Petricek

Microsoft® Research

Lihong Li, Nikos Karampatziakis, John Langford

Microsoft® Research

Online, effective, and efficient

Heavily used in a dozen of companies (and their productions)

Simply works

In this tutorial...

Several new features added in Vowpal Wabbit (usability, measure of generalization, new reductions)

Techniques used in VW
Why (related) new features necessary
How they help and how to use them in practice

Hashing Trick

--invert_hash

#1

--readable_model

--invert_hash

2135463:0.4234

3462733:-0.1111

1367328:0.4401

1231234:-0.0021

Age=45:0.4234

Age=30:-0.1111

Male:0.4401

Female:-0.0021

--invert_hash

#1

Use existing --audit code

1. Intercept feature name and index

2. Store in map<string,int>

3. Output the readable model

--invert_hash

#1

vw -invert_hash file.txt

Supports gd, oaa, csoaa, wap ...

Measuring model performance

It is generalization that matters

training testing

Measuring model performance

since	example	example	current	current	current
last	counter	weight	label	predict	features
0.666667	2	3.0	1.0000	0.0000	5
0.477056	5	7.0	1.0000	0.3314	5
0.329351	8	11.0	1.0000	0.6017	5
0.023256	17	23.0	1.0000	0.9784	5
0.000023	33	44.0	0.0000	0.0001	5
0.000000	65	87.0	1.0000	1.0000	5
	1ast 0.666667 0.477056 0.329351 0.023256 0.000023	last counter 0.666667 2 0.477056 5 0.329351 8 0.023256 17 0.000023 33	last counter weight 0.666667 2 3.0 0.477056 5 7.0 0.329351 8 11.0 0.023256 17 23.0 0.000023 33 44.0	last counter weight label 0.666667 2 3.0 1.0000 0.477056 5 7.0 1.0000 0.329351 8 11.0 1.0000 0.023256 17 23.0 1.0000 0.000023 33 44.0 0.0000	last counter weight label predict 0.666667 2 3.0 1.0000 0.0000 0.477056 5 7.0 1.0000 0.3314 0.329351 8 11.0 1.0000 0.6017 0.023256 17 23.0 1.0000 0.9784 0.000023 33 44.0 0.0000 0.0001

Progressive validation loss

Will not work for multi-pass learning

Now: default behavior for multipass!

Holdout validation

--early_terminate

Usage

vw –f model –passes 10

(by default)

Holdout 1 in every 10 examples, print out validation loss after the 1st pass (with an 'h' in the end), early terminate if validation loss does not decrease for 3 passes

vw –f model –passes 10 –holdout_period 5 – early_terminate 2

Vw –f model –passes 10 –holdout_off

Reductions

--bs: boostrapping

efficiently provides some understanding of prediction variations sometimes effectively trade computational time for increased accuracy via ensembling

--bs: algorithm

```
Input: example E with importance weight W, user-specified number of bootstrapping rounds N  

Training: Prediction: for i = 1..N for i = 1..N do do  
Z ~ Poisson(1) * W p_i = \text{predict}(E, i) learn(E, Z, i) done done return majority(p) // or mean(p)
```

--bs: why Poisson?

 $Binom(n,1/n) \rightarrow Possion(n*(1/n))$

Nikunj Oza and Stuart Russell (2001)

--bs: bootstrapping

#4

Implemented as Reduction, take advantage of what is inside VW

--bs: boostrapping

#4

Keep memory access local and maximize cache hits stride

Running time

75k dataset: 74746 examples, 3000 features, 20 passes

RCV1 Training: 781265 examples, 80 features, single pass

Note RCV1 training needs heavy example parsing

--bs:bootstrapping

#4

Better performance via model averaging

Method	Error Rate		
Base Learner (BL)	6.01%		
BL + Online BS (N=20)	5.37%		
Tuned Learner (TL)	4.64%		
TL + Online BS (N=4)	4.58%		

RCV1 Testing data: 23149 examples

TL: Single pass learning with options -b 23 -l 0.25 --ngram 2 --skips 4

--bs: usage

#4

vw --bs 100 --bs_method mean (default)

vw --bs 100 --bs_method vote

vw --bs 100 --p predictions.txt

Predictions.txt

1.00 0.94 1.12

1.00 0.85 1.20

• • • • •

--top k

#5

Choose the top k of any set of base instances Recommendation example:

Training:

```
user1-movie1' 5 | features......
user1-movie2' 3 | features......
user1-movie3' 4 | features......
user1-movie4' 1 | features......
user2-movie1' 4 | features......
user2-movie2' 4 | features......
user2-movie3' 3 | features......
user2-movie4' 2 | features......
```


--top k

```
#5
```

```
Testing:
newuser1-movie1' | features......
newuser1-movie2' | features......
newuser1-movie3' | features......
newuser1-movie4' | features......
newuser2-movie1' | features......
newuser2-movie2' | features......
newuser2-movie3' | features......
```

newuser2-movie4' | features......

Top k recommendation for each set (separated by a newline in VW) newuser1-movie3 newuser1-movie2

--top k

Implemented as reduction, easily fits online setting

For each example E

if E is not newline

p <- predict(E)

push(E,p) to a minimum priority queue with maximum size of k

else (finished processing a set)

print out information in pq to prediction file and clear pq

--top k usage

#5

vw --d testdata -i model -t --top 2 -p predictions.txt

predictions.txt:

newuser1-movie3 3.7

newuser1-movie2 4.1

newuser2-movie4 2.7

newuser2-movie1 3.1

Summary of Contributions

```
--invert hash
                    #1
--holdout_period
                    #2
--early_terminate
                    #3
--bs
                    #4
--top k
                    #5
-q a:, -q ::, -q :a
--feature mask
```

Thanks!

- zqin001@cs.ucr.edu
- Poster on online bootstrapping
- Vowpal Wabbit Yahoo mailing list