

Publication status: Preprint has been published in a journal as an article DOI of the published article: https://doi.org/10.2139/ssrn.3573891

Coronavirus 2: Analysis of Regularity of Complete Genome (SARS-CoV-2/Hu/DP/Kng/19-020 RNA)

Yuri Morales-López

https://doi.org/10.1590/SciELOPreprints.29

Submitted on: 2020-04-10

Posted on: 2020-06-04 (version 2)

(YYYY-MM-DD)

Coronavirus 2: Analysis of Regularity of Complete Genome (SARS-CoV-2/Hu/DP/Kng/19-020 RNA)

Yuri Morales-López
Universidad Nacional, Costa Rica
(CC: BY-NC-ND)

Abstract

This paper shows a technique for the detection of regularities in the complete genome of Coronavirus 2. For this, the concept of intervals in the RNA chain and their comparison within the known sequence is used. The Maximum Regularity Index was applied. The results show that areas of high regularity are identified that coincide with ORF10, Gene N, nucleocapsid phosphoprotein and others. The interval around **3500** and the interval around **11000**, respectively, appear with high values of regularity and this do not correspond to particularly documented elements (both within Gene: **Orf1ab**). It might be in the interest of giving importance to that region. The detection of regularities can enhance the creation of biochemical or genetic techniques to deactivate certain functions of Coronavirus 2 or control its effects.

Keywords

Coronavirus 2; SARS-CoV-2; Complete Genome; RNA; index of maximum regularity; Covid-19; NCBI

Introduction

Coronavirus 2 has a sequence of 29902 nt (April 10th, 2020) [1]. Its full lineage is: Viruses; Riboviria; Nidovirals; Cornidovirineae; Coronaviridae; Orthocoronavirinae; Betacoronavirus; Sarbecovirus; Severe acute respiratory syndrome-related coronavirus and its genbank acronym is SARS-CoV2.

A method has been applied in which chains of RNA of a certain length are taken and compared with chains of the same length within the complete genome. In previous work this technique has been applied to other microorganisms [2],[3],[4].

Methodology

The index of maximum regularity $i_{max,r}$ was defined in [5] and in other papers such as [4] has been widely described.

In summary, a string or interval $l_{\rm c}$ is defined. It considers the new sequences that are generated l_c-1 when a shift is made, one nucleotide at a time. Each ordered pair is part

of the set $B \times B$, where $B = \{A, G, T, C\}$. This procedure is repeated considering the original sequence together with the one generated by reversing its order.

Denoted by $n_{A,A,d}$, $n_{A,G,d}$, $n_{A,C,d}$, $n_{A,T,d}$, $n_{G,A,d}$, $n_{G,A,d}$, $n_{G,G,d}$, $n_{G,C,d}$, $n_{G,T,d}$, $n_{C,A,d}$, $n_{C,C,d}$, $n_{C,C,d}$, $n_{C,T,d}$, $n_{T,A,d}$, $n_{T,C,d}$, $n_{T,$

$$i_{max,r} = \frac{max\{D_1, \cdots, D_{l_c-1}, D_0^*, \cdots, D_{l_c-1}^*\}}{\left(l_c - \frac{l_c}{16}\right)^2 + 15\left(\frac{l_c}{16}\right)^2}$$

Where
$$D^*_d = \left(n_{A,A,d} - \frac{l_c}{16}\right)^2 + \left(n_{A,G,d} - \frac{l_c}{16}\right)^2 + \dots + \left(n_{T,T,d} - \frac{l_c}{16}\right)^2$$

Results

The $i_{max,r}$ was applied to the complete genome of Coronavirus 2. Below are the results of coincidence with the genes already discovered by other techniques (NCBI, 2020) and possible areas of study for possible deepening.

For a visualization on the components of Coronavirus 2, the configuration of the NCBI (2020) is shown.

Image 1: Diagram on the structure of Coronavirus 2.

Note: From [6].

Graph 1 presents the analysis made for 20nt intervals

Graph 1: Index of Maximum Regularity, 16 nt, SARS-CoV2

In the indicated regions, there are intervals that take higher values (Table 1).

Table 1: Index of Maximum Regularity, 20 nt, SARS-CoV2 vs NCBI

Interval (middle point)	$i_{max,r}$	Already classified by NCBI
21578,5	0,546666667	Gene S (start)
29875,5	0,546666667	Gene ORF10
29876,5	0,546666667	Gene ORF10
29877,5	0,546666667	Gene ORF10
29390,5	0,504	Gene N
29882,5	0,504	Gene ORF10
29883,5	0,504	Gene ORF10
11077,5	0,488	Undefined
3952,5	0,482666667	Undefined
11075,5	0,482666667	Undefined
11076,5	0,482666667	Undefined
11078,5	0,482666667	Undefined
11079,5	0,482666667	Undefined
11080,5	0,482666667	Undefined
11180,5	0,482666667	Undefined
29880,5	0,482666667	Gene ORF10
29881,5	0,482666667	Gene ORF10

Thus, it is evident that in the areas near the intervals around 21578, 29876, 29390, 3952, 11076 have high values. As consulted in the database, this is positive because **Gene S, Gene N** and **ORF10** were identified. It is important to research in more detail what happens around **11078** interval (20 nt). It should be clarified that **Gene: Orf1ab** is in the range [269,

21 558] (71% of the entire genome) which is extremely wide and the $i_{max,r}$ indicates something of importance around 11000

The following is the complete genome analysis with 16 nt. (Graph 2 and Table 2)

Graph 2: Index of Maximum Regularity, 16 nt, SARS-CoV2

Table 2: Index of Maximum Regularity, 16 nt, SARS-CoV2 vs NCBI

Interval (middle point)	$i_{max,r}$	Already classified by NCBI
29881,5	0,766666667	Gene ORF10
29882,5	0,766666667	Gene ORF10
11078,5	0,758333333	Undefined
11079,5	0,758333333	Undefined
29878,5	0,758333333	Gene ORF10
29879,5	0,758333333	Gene ORF10
29880,5	0,65	Gene ORF10
29884,5	0,6	Gene ORF10
11076,5	0,558333333	Undefined
11077,5	0,558333333	Undefined
11182,5	0,558333333	Undefined
21576,5	0,558333333	Gene S (start)
21577,5	0,558333333	Gene S (start)
21581,5	0,558333333	Gene S (start)
29883,5	0,558333333	Gene ORF10
11080,5	0,55	Undefined
11081,5	0,55	Undefined
11082,5	0,55	Undefined
11083,5	0,55	Undefined
21580,5	0,55	Gene S (start)
29875,5	0,55	Gene ORF10
29876,5	0,55	Gene ORF10
29877,5	0,55	Gene ORF10

In this string size, **Gene S (start)** and **Gene ORF10** are identified. And again, the $i_{max,r}$ points to an important zone around the **11000** interval.

When calculating with a length interval of 28 nt, the sectors around **3500** and **11000** appear with high values. Longer chains are not considered because the probability of occurrence decreases with the number of combinations of the four possibilities.

Conclusions

During the analysis **Gene S, Gene N** and **ORF10** were identified. The interval around **3500** and the interval around **11000**, respectively, appear with high values of regularity and this do not correspond to documented elements (both within Gene: **Orf1ab**). It might be in the interest of giving importance to that region.

The strategy developed here may offer insights into Coronavirus 2 and eventually, with much more research and sophistication, a treatment may be found.

Acknowledgements

To the memory of Dra. Tatiana Láscaris-Comneno-Slepuin.

References

- [1] National Center for Biotechnology Information NCBI (2020), "Severe acute respiratory syndrome coronavirus 2 SARS-CoV-2/Hu/DP/Kng/19-020 RNA, complete genome", [Online]. Available WWW: https://www.ncbi.nlm.nih.gov/nuccore/LC528232.1?report=genbank
- [2] A. Ugalde, Y. Morales, & T. Láscaris-Comneno, (2010). "Mathematics Applied to the Detection of Genetic Regularities in the Yeast Yarrowia lipolytica". *Proceedings of the XVII International Symposium on Mathematical Methods Applied to the Sciences*. San José, Costa Rica. Feb, 2010. pág. 276
- [3] Y. Morales López, A. Ugalde León, y T. Láscaris-Comneno Slepuin, "Análisis de regularidad de genomas para detección de telómeros y secuencias autónomamente replicativas", Revista Uniciencia, vol. 24, n. 1, pp. 103-110, ene. 2010.
- [4] T. Láscaris-Comneno-Slepuin, A. Ugalde-León, y Y. Morales-López, "Análisis de regularidad para el reconocimiento de telómeros en Candida parapsilosis mitochondrion y el cromosoma XVI de Saccharomyces cerevisae", Tecnología en Marcha, vol. 24, n. 4, p. pág. 59, may 2011. https://revistas.tec.ac.cr/index.php/tec marcha/article/view/157

- [5] T. Láscaris-Comneno, O. Skliar & V. Medina "Determinación de valores del índice de máxima regularidad correspondientes a diversas secuencias de bases de ADN. Un nuevo método computacional en Genética", *Proceedings IX Congreso Internacional de BioMatemática*, Concepción, Chile, 1999, pp. 81-97.
- [6] National Center for Biotechnology Information NCBI (2020), "Severe acute respiratory syndrome coronavirus 2 SARS-CoV-2/Hu/DP/Kng/19-020 RNA, complete genome [Graphics]", [Online]. Available WWW: https://go.usa.gov/xvZKf

This preprint was submitted under the following conditions:

- The authors declare that they are aware that they are solely responsible for the content of the preprint and that the deposit in SciELO Preprints does not mean any commitment on the part of SciELO, except its preservation and dissemination.
- The authors declare that the necessary Terms of Free and Informed Consent of participants or patients in the research were obtained and are described in the manuscript, when applicable.
- The authors declare that the preparation of the manuscript followed the ethical norms of scientific communication.
- The authors declare that the data, applications, and other content underlying the manuscript are referenced.
- The deposited manuscript is in PDF format.
- The authors declare that the research that originated the manuscript followed good ethical practices and that the necessary approvals from research ethics committees, when applicable, are described in the manuscript.
- The authors declare that once a manuscript is posted on the SciELO Preprints server, it can only be taken down on request to the SciELO Preprints server Editorial Secretariat, who will post a retraction notice in its place.
- The authors agree that the approved manuscript will be made available under a <u>Creative Commons CC-BY</u> license.
- The submitting author declares that the contributions of all authors and conflict of interest statement are included explicitly and in specific sections of the manuscript.
- The authors declare that the manuscript was not deposited and/or previously made available on another preprint server or published by a journal.
- If the manuscript is being reviewed or being prepared for publishing but not yet published by a journal, the authors declare that they have received authorization from the journal to make this deposit.
- The submitting author declares that all authors of the manuscript agree with the submission to SciELO Preprints.