华东师范大学数据科学与工程学院实验报告

课程名称: 统计学习与机器方法	年级: 2019	实践成绩:
指导教师 : 董启文	姓名: 周辛娜	学号: 10195501442
上机实践名称: Project1七种方法解决二分类问题	上机实践时间:	2021.12.15

实验数据集:

uci心脏病数据集

数据下载网址: Index of /ml/machine-learning-databases/heart-disease (uci.edu)。共有4个数据 库,分别为克利夫兰,匈牙利,瑞士和VA长滩,这里采用的是克利夫兰数据库的实验集。下载的是 processed.cleveland.data,由于文件后缀是.data,不是机器学习中常用的.csv,所以后面需要整理数 据得到.csv文件。

- Parent Directory
- IndexWARNING
- ask-detrano
- bak
- cleve.modcleveland.data
- costs/
- <u>heart-disease.names</u>
- hungarian.datalong-beach-va.data
- <u>new.data</u>
- processed.cleveland.data
- processed.hungarian.data
- processed.switzerland.data
- processed.va.data
- reprocessed.hungarian.data switzerland.data

一、探索性数据分析

数据全貌:

	63.0	1.0	1.0.1	145.0	233.0	1.0.2	2.0	150.0	0.0	2.3	3.0	0.0.1	6.0	0
0	67.0	1.0	4.0	160.0	286.0	0.0	2.0	108.0	1.0	1.5	2.0	3.0	3.0	2
1	67.0	1.0	4.0	120.0	229.0	0.0	2.0	129.0	1.0	2.6	2.0	2.0	7.0	1
2	37.0	1.0	3.0	130.0	250.0	0.0	0.0	187.0	0.0	3.5	3.0	0.0	3.0	0
3	41.0	0.0	2.0	130.0	204.0	0.0	2.0	172.0	0.0	1.4	1.0	0.0	3.0	0
4	56.0	1.0	2.0	120.0	236.0	0.0	0.0	178.0	0.0	8.0	1.0	0.0	3.0	0
297	45.0	1.0	1.0	110.0	264.0	0.0	0.0	132.0	0.0	1.2	2.0	0.0	7.0	1
298	68.0	1.0	4.0	144.0	193.0	1.0	0.0	141.0	0.0	3.4	2.0	2.0	7.0	2
299	57.0	1.0	4.0	130.0	131.0	0.0	0.0	115.0	1.0	1.2	2.0	1.0	7.0	3
300	57.0	0.0	2.0	130.0	236.0	0.0	2.0	174.0	0.0	0.0	2.0	1.0	3.0	1
301	38.0	1.0	3.0	138.0	175.0	0.0	0.0	173.0	0.0	0.0	1.0	?	3.0	0

直接通过pd.read_csv函数读取processed.cleveland.data文件,得到现在的数据全貌。

数据集有302行,14列,每行表示一个病人,13列特征,1列标签,可以看到现在的文档中是没有列名的,就需要加入列名,从官网上下载了heart-disease.names文件,了解了具体每一列的详细信息,从而进行添加。

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	num
0	67.0	1.0	4.0	160.0	286.0	0.0	2.0	108.0	1.0	1.5	2.0	3.0	3.0	2
1	67.0	1.0	4.0	120.0	229.0	0.0	2.0	129.0	1.0	2.6	2.0	2.0	7.0	1
2	37.0	1.0	3.0	130.0	250.0	0.0	0.0	187.0	0.0	3.5	3.0	0.0	3.0	0
3	41.0	0.0	2.0	130.0	204.0	0.0	2.0	172.0	0.0	1.4	1.0	0.0	3.0	0
4	56.0	1.0	2.0	120.0	236.0	0.0	0.0	178.0	0.0	0.8	1.0	0.0	3.0	0
297	45.0	1.0	1.0	110.0	264.0	0.0	0.0	132.0	0.0	1.2	2.0	0.0	7.0	1
298	68.0	1.0	4.0	144.0	193.0	1.0	0.0	141.0	0.0	3.4	2.0	2.0	7.0	2
299	57.0	1.0	4.0	130.0	131.0	0.0	0.0	115.0	1.0	1.2	2.0	1.0	7.0	3
300	57.0	0.0	2.0	130.0	236.0	0.0	2.0	174.0	0.0	0.0	2.0	1.0	3.0	1
301	38.0	1.0	3.0	138.0	175.0	0.0	0.0	173.0	0.0	0.0	1.0	?	3.0	0

302 rows × 14 columns

现在是修改之后的数据,由于"目标"字段(num)是指患者中是否存在心脏病。它是介于 0(无存在)到 4 之间的整数值。克利夫兰数据库的实验集中在简单地尝试区分存在(值1,2,3,4) 和不存在(值0)。所以这里1,2,3,4是代表同样的意思,都是患者患病,实质上这就是一个二分类问题,为了方便后续模型处理,所以这里将num不大于0的都处理成1。经过这两个处理后再查看数据是否有缺失值,发现没有缺失值,故进行下一步。

数据可视化:

查看各列之间的关系:

二、数据预处理

1. 区分定类 定序 定距 定比四种特征,将定类特征由整数编码转为实际对应的字符串

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	num
0	67.0	male	asymptomatic	160.0	286.0	fasting blood sugar > 120 mg/dl	showing probable or definite left ventricular	108.0	yes	1.5	2.0	3.0	3.0	1
1	67.0	male	asymptomatic	120.0	229.0	fasting blood sugar > 120 mg/dl	showing probable or definite left ventricular	129.0	yes	2.6	2.0	2.0	7.0	1
2	37.0	male	non-anginal pain	130.0	250.0	fasting blood sugar > 120 mg/dl	normal	187.0	no	3.5	3.0	0.0	3.0	0
3	41.0	female	atypical angina	130.0	204.0	fasting blood sugar > 120 mg/dl	showing probable or definite left ventricular	172.0	no	1.4	1.0	0.0	3.0	0
4	56.0	male	atypical angina	120.0	236.0	fasting blood sugar > 120 mg/dl	normal	178.0	no	0.8	1.0	0.0	3.0	0

2. 在pandas中,离散的定类和定序特征应该是object这样的对象类型,连续的定距和定比特征应该是int64或者是float64这样的浮点数类型,将离散的定类和定序特征转为one-hot独热向量编码。

	age	trestbps	chol	thalach	oldpeak	slope	num	sex_female	sex_male	cp_asymptomatic	 exang_yes	ca_0.0	ca_1.0	ca_2.0	ca_3.0	ca_?	thal_3.0	thal_6.0	thal_7.0	thal_?
0	67.0	160.0	286.0	108.0	1.5	2.0	1	0	1	1	 1	0	0	0	1	0	1	0	0	0
1	67.0	120.0	229.0	129.0	2.6	2.0	1	0	1	1	 1	0	0	1	0	0	0	0	1	0
2	37.0	130.0	250.0	187.0	3.5	3.0	0	0	1	0	 0	1	0	0	0	0	1	0	0	0
3	41.0	130.0	204.0	172.0	1.4	1.0	0	1	0	0	 0	1	0	0	0	0	1	0	0	0
4	56.0	120.0	236.0	178.0	0.8	1.0	0	0	1	0	 0	1	0	0	0	0	1	0	0	0

三、划分训练集测试集

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=0)

四、归一化

五、构建模型:

1.多层神经感知机MLP:

1) 先进行网格搜索,得到最优超参数:

MLPClassifier(hidden_layer_sizes=4, max_iter=1500)

2) 在最优模型上得到的混淆矩阵:

3) classification report:

	precision	recall	f1-score	support
healthy with disease	0.89 0.76	0.76 0.89	0.82 0.82	33 28
accuracy macro avg weighted avg	0.83 0.83	0.83 0.82	0.82 0.82 0.82	61 61 61

正确率达到82%,表现一般。

2.AdaBoost Classifier:

1) 先进行网格搜索,得到最优超参数:

AdaBoostClassifier(learning_rate=0.095)

2) 在最优模型上得到的混淆矩阵:

3) classification report:

	precision	recall	f1-score	support
healthy	0.88	0.88	0.88	33
with disease	0.86	0.86	0.86	28
accuracy			0.87	61
macro avg	0.87	0.87	0.87	61
weighted avg	0.87	0.87	0.87	61

正确率达到87%,表现较好

3.KNN:

- 1) 先进行网格搜索,得到最优超参数 k=3
- 2) 在最优模型上得到的混淆矩阵:

3) classification report:

	precision	recall	f1-score	support
healthy	0.65	0.73	0.69	33
with disease	0.62	0.54	0.58	28
accuracy			0.64	61
macro avg	0.64	0.63	0.63	61
weighted avg	0.64	0.64	0.64	61

正确率达到64%, 表现不佳。

4. Gaussian Naive Bayes:

1) 先进行网格搜索,得到最优超参数:

GaussianNB(var_smoothing=0.0001)

2) 在最优模型上得到的混淆矩阵:

3) classification report:

	precision	recall	f1-score	support
healthy with disease	0.85 0.82	0.85 0.82	0.85 0.82	33 28
accuracy macro avg weighted avg	0.83 0.84	0.83 0.84	0.84 0.83 0.84	61 61 61

正确率达到84%,表现较好。

5. Neural network:

构建了两层神经网络,第一层的神经元个数是128个,第二层的为输出层,神经元个数为1

训练过程中的loss history和classification accuracy:

可以看到学习率设置得比较合理。最后在验证集的准确率有达到80%以上。

得到的ROC曲线:

ROC曲线围成的面积达到了0.9037, 表现较好

auc(fpr,tpr)

0.9036796536796537

6.Random forest:

1) 先进行网格搜索,得到最优超参数:

RandomForestClassifier(max_depth=6, n_estimators=110, random_state=5)

1) 在最优模型上得到的混淆矩阵:

3) classification report:

	precision	recall	f1-score	support
healthy	0.90	0.85	0.88	33
with disease	0.83	0.89	0.86	28
accuracy	0.07	0.07	0.87	61 61
macro avg	0.87	0.87	0.87	61
weighted avg	0.87	0.87	0.87	

正确率达到87%

定量分析:

得到的ROC曲线:

ROC曲线围成的面积: 0.9329, 表现较好, 优于Neural network

auc(fpr,tpr)

0.9329004329004329

7.SVM:

1) 先进行网格搜索,得到最优超参数:

SVC(gamma=0.0001)

2) 在最优模型上得到的混淆矩阵:

3) classification report:

	precision	recall	f1-score	support
healthy with disease	0.65 0.67	0.79 0.50	0.71 0.57	33 28
accuracy macro avg weighted avg	0.66 0.66	0.64 0.66	0.66 0.64 0.65	61 61 61

正确率达到66%,表现在该数据集上表现不佳

六、模型进行汇总与比较

1.用时比较

mlp用时:00:18:013573s

adaboost用时:00:06:187602s

knn用时:00:01:113120s

naive bayes用时:00:00:650259s random forest用时:00:10:567751s

svm(rbf)用时:00:00:692116s

2. learning curve比较:

可以看到,在运行时间上,naive bayes用时最短,其次是svm(rbf),knn,adaboost和random forest 用时比较短,最长的是mlp。

朴素贝叶斯可以在很少的样本上获得不错的结果,不仅用时比较短,而且在learning curve中的表现也还不错。朴素贝叶斯计算速度远远胜过svm,random forest这样复杂的模型。朴素贝叶斯的分类效果其实不如其他分类器,贝叶斯天生学习能力比较弱。随着训练样本量的逐渐增大,贝叶斯和adaboost的训练准确率却逐渐下降,这证明样本量越大,贝叶斯需要学习的东西越多,对训练集的拟合程度也越来越差,反而比较少量的样本可以让贝叶斯还有较高的训练准确率。

再看过拟合的问题,首先可以观察到,所有模型在样本量很少的时候都是处于过拟合的状态,即在训练集上表现好,测试集上表现糟糕,但随着样本的逐渐增多,过拟合问题就逐渐消失了,不过每个模型的处理手段不同。比较强大的分类器,如svm,random forest是依靠快速升高模型在测试集上的表现来减轻过拟合问题,朴素贝叶斯不同,是依赖训练集上的准确率下降,测试集上的准确率上升来解决过拟合的问题。

接下来,再看每个算法在测试集上的拟合结果,即泛化误差的大小,随着训练样本数量的上升,所有模型的测试表现都上升了,但svm,knn,mlp在测试集上的表现远远不如adaboost,naive bayes和random forest。

3. 模型分类效果不好的原因:

- 1.超参数设置不合理
- 2.特征工程没做好
- 3.模型本身不适合

经过此次实验可以看到,svm,knn,mlp表现不佳,由于在实验过程中,采用了网格搜索交叉验证的方式选取了模型的超参数,所以应该从第二个和第三个原因去看待,这次实验是没有做特征选择的,应该是特征工程这一块还可以进一步优化,此外,也可能是svm,knn,mlp本身对于该数据集的表现能力就不强。

七、总结

本次实验采用克利夫兰数据库的实验集的uci心脏病数据集,采用七种方法实现了对于数据的分类,通过探索性数据分析、数据可视化、划分训练集测试集、归一化、网格搜索交叉验证确定模型最优参数、比较最后的运行时间、learning curve以及最后分类的准确性。在本数据集上,adaboost,naive bayes和random forest表现较优。