LinLED : Détection de gestes simples via une interface homme-machine utilisant des capteurs linéaires bio-inspirés

Étudiant : Madou FALL¹

Encadrants: D. Martinez², S. Viollet², J. Monnoyer³

Présentation du 11/07/2025.

INSTITUT //////....
DES SCIENCES ETIENNE
DU MOUVEMENT JULES

¹Master 2 Traitement du Signal et des Images (TSI), Aix-Marseille Université, Marseille, France

²Institut des Sciences du Mouvement (ISM - UMR 7287), Aix-Marseille Université & CNRS

³ Groupe Stellantis, Constructeur automobile multinational (Peugeot, Fiat, Citroën, ...)

Contexte

- Explorer une technologie innovante : interaction sans contact (depuis les années 2010)
- Répondre à un besoin industriel : interface intuitive embarquée dans les véhicules modernes
- Neonode (fondée en 2003) est un acteur majeur des interfaces à laser pour interaction sans contact et concurrent direct de LinLed

Figure: Interaction sans contact dans un système automobile^a

^aGroupe Stellantis

Pourquoi ce stage?

Le projet LinLED¹ se distingue par sa précision, sa rapidité, et une gestuelle naturelle.

FALL Madou LinLED Projet Présentation du 11/07/2025.

¹Stephane Viollet, Chauvet Martin, and Ingargiola Jean-Marc (2023). "LinLED: Low latency and accurate contactless gesture interaction". In: Companion Publication of the 25th International Conference on Multimodal Interaction, pp. 61-65

Le principe en une phrase

Interagir avec une machine (comme l'écran d'une voiture),
par un simple geste de la main,
grâce à des capteurs bio-inspirés,
sans aucun contact physique.

Pourquoi bio-inspirés ?

Figure: Poissons électriques : Utilisent des champs électriques pour percevoir leur environnement.²

FALL Madou LinLED Projet Présentation du 11/07/2025.

²Myriah Haggard and Maurice J Chacron (2023). "Coding of object location by heterogeneous neural populations with spatially dependent correlations in weakly electric fish". In: *PLOS Computational Biology* 19.3, e1010938

LinLED

• Système : bio-inspiré

• Technologie : Capteurs infrarouges (IR)

• Portée : Jusqu'à 500 mm

• Latence : 1 ms

• Sorties analogiques : 18 au total

• Amplificateurs à verrouillage de phase³ utilisés pour la démodulation.

$$W_s = 1 \cdot w_1 + 2 \cdot w_2 + \cdots$$
 et $S = w_1 + w_2 + \cdots$

Figure: Réseau linéaire (1D) de LEDs IR et de photodiodes composant LinLED.

FALL Madou LinLED Projet Présentation du 11/07/2025.

³Circuits électroniques qui extraient un signal faible noyé dans le bruit, en filtrant précisément la fréquence d'intérêt.

Défi technologique

Comment reconnaître un geste humain en temps réel avec des capteurs infrarouges ?

- Acquisition précise de signaux faibles
- Apprentissage de gestes variés
- Intégration sur microcontrôleur embarqué

Figure: LinLED avec bande LED pour retour visuel

Mode d'acquisition des signaux

Arduino:

- capture 18 signaux analogiques
- utilise une carte Teensy 4.1
- transmet via port série

MATI AR ·

- reçoit les données en temps réel
- affiche les signaux pour suivi visuel
- enregistre pour analyse ultérieur

Figure: Câblage d'alimentation LinLED

Gestes à capturés

- (a) **Click** : mouvement de la main vers LinLED pour sélectionner.
- (b) **Swipe Right** : mouvement de droite à gauche.
- (c) **Swipe Left** : mouvement de gauche à droite.

(d) **Still**: main immobile pendant 1 à 5 secondes

(e) In Out: avancer puis reculer la main devant LinLED.

Signaux bruts des gestes capturés

Visualisation : Courbes de la somme pondérée des 16 capteurs IR pour chaque geste enregistré.

Chaque geste produit une signature temporelle unique exploitable.

Base de données

- Collecte auprès de 20 volontaires
- Profil:
 - 15 participants de moins de 30 ans
 - 5 participants de plus de 30 ans
- 5 gestes différents
- **C** Chaque geste répété 10 fois par participant
- 1 Aucun Consignes
- Assure spontanéité et diversité des gestes

Apprentissage Automatique (Machine Learning)

Nous avons utilisé Python pour tester plusieurs modèles, avec et sans filtrage.

Pourquoi l'auto-apprentissage ?

- Reconnaît bien les gestes
- S'adapte aux styles variés
- Rapide à entraîner et utiliser

Données:

- 1000 gestes enregistrés dont :
 - 800 pour l'entraînement
 - 200 pour le test

Classifieurs utilisés

(a) Random Forest

(b) HistGradientBoosting

(c) K-Nearest Neighbors (KNN)

Filtres appliqués – Exemple sur le geste Still

- Filtre passe-bas (Butterworth) Supprime les variations rapides (bruit) et rend le signal plus fluide.
- Filtre de Savitzky-Golay⁴ Lisse le signal tout en conservant les détails comme les pics.
- Moyenne exponentielle⁵ Réduit les fortes variations du signal de manière progressive.

Donnée brute

Filtre: Passe-bas (Butterworth)

⁴Ronald W Schafer (2011). "What is a savitzky-golay filter?" In: *IEEE Signal processing magazine* 28.4, pp. 111–117

⁵Masafumi Nakano, Akihiko Takahashi, and Soichiro Takahashi (2017). "Generalized exponential moving average (EMA) model with particle filtering and anomaly detection". In: Expert Systems with Applications 73, pp. 187–200

Analyse des données

K-Nearest Neighbors (KNN)

Paramètres : 3 voisins, distance de Manhattan (p=1), pondération par distance

ullet Sans filtrage : 88.65 %

Avec filtrage :

Passe-bas: 90.07 %Savitzky-Golay: 89.72 %

• Moyenne exponentielle: 89.72 %

Matrice de confusion (%) Click 88.0 4.0 8.0 0.0 0.0 Vraies étiquettes 11.1 70.4 3.7 14.8 0.0 InOut 7.1 7.1 0.0 0.0 Still -40 3.6 7.1 0.0 85.7 3.6 SwipeLeft 20 SwipeRight 3.8 0.0 0.0 0.0 96.2 - 0 nOut Still SwipeRight Sick SwipeLeft Prédictions

Figure: avec filtre Passe-bas

Random Forest

Paramètres : 200 arbres, profondeur max = 10, min. échantillons par feuille = 2, min. échantillons pour division = 2

ullet Sans filtrage : 89.36 %

Avec filtrage :

Passe-bas : 93.62 %Savitzky-Golay : 90.78 %

Moyenne exponentielle: 93.97 %

Figure: avec filtre moyenne exponentielle

Analyse des données

HistGradientBoosting

Paramètres : régularisation L2 = 1, taux d'apprentissage = 0,2, profondeur maximale non limitée. 200 itérations

 \bullet Sans filtrage : 91.49 %

Avec filtrage :

Passe-bas: 93.26 %Savitzky-Golay: 92.91 %

Moyenne exponentielle : 96.81 %

			Matrice	de confu	ısion (%)		- 10
Vraies étiquettes	Click	100.0	0.0	0.0	0.0	0.0	- 80
	InOut	7.4	85.2	3.7	3.7	0.0	
	Still	3.6	0.0	92.9	3.6	0.0	- 60
	SwipeLeft	0.0	0.0	0.0	100.0	0.0	-40
	SwipeRight	0.0	0.0	0.0	0.0	100.0	- 20
		CICK	lnout	≣ Prédiction	SwipeLeft	SwipeRight	-0

Figure: avec filtre Moyenne exponentielle

Critères de choix des modèles

Pour sélectionner le meilleur modèle, plusieurs aspects ont été pris en compte :

- La précision pour bien reconnaître les gestes.
- La rapidité d'apprentissage.
- La vitesse de prédiction.
- La robustesse face au bruit dans les données.
- La simplicité d'implémentation et d'utilisation.

Choix final: le modèle Random Forest avec le filtre passe-bas.

Ce choix s'explique par sa bonne précision (93,62 %), sa robustesse aux données bruitées grâce au filtre, et un temps d'apprentissage et de prédiction rapide, adapté à notre application.

FALL Madou LinLED Projet Présentation du 11/07/2025. 16/18

Et après ?

- Élargir la base de données pour améliorer la robustesse et la généralisation du modèle.
- **Déploiement sur microcontrôleur** pour une utilisation en temps réel :
 - IHM dans la voiture
 - Optimisation pour du système embarqué
 - Communication avec l'IHM du véhicule

Figure: IHM

Merci pour votre attention!