### VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI - 590018



#### A PROJECT REPORT ON

## "PREDICTING HEART DISEASE AND TYPE CLASSIFICATION"

Submitted in partial fulfillment of the requirements of the award of degree of

# BACHELOR OF ENGINEERING IN COMPUTER SCIENCE & ENGINEERING

#### **Submitted By:**

| SADHANA B S   | [4VV15CS094] |
|---------------|--------------|
| SHARMILA M    | [4VV15CS100] |
| ASHOK KUMAR L | [4VV16CS401] |
| RAEHAN KHAN   | [4VV16CS417] |

#### UNDER THE GUIDANCE OF

Dr. T H SREENIVAS

Professor **Dept. of CSE VVCE, Mysuru** 



2018-2019

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING VIDYAVARDHAKA COLLEGE OF ENGINEERING MYSURU-570002

## Vidyavardhaka College of Engineering Gokulam 3<sup>rd</sup> Stage, Mysuru-570002

Department of Computer Science and Engineering,



#### **CERTIFICATE**

This is to certify that the mini-project report entitled "PREDICTING HEART DISEASE AND CLASSIFYING ITS TYPE" is a bonafide work carried out by SADHANA B S (4VV15CS094), SHARMILA M (4VV15CS100), ASHOK KUMAR L (4VV16CS401) and RAEHAN KHAN (4VV16CS417) students of 8<sup>th</sup> semester Computer Science and Engineering, Vidyavardhaka College of Engineering, Mysuru in partial fulfillment of the award of the degree of Bachelor of Engineering in Computer Science & Engineering of the Visvesvaraya Technological University, Belagavi, during the academic year 2018-2019. It is certified that all the suggestions and corrections indicated for the internal assessment have been incorporated in the report deposited in the department library. The report has been approved as it satisfies the requirements in respect of mini-project work prescribed for the said degree.

| Signature of the Guide | Signature of the HOD | Signature of the Principal |
|------------------------|----------------------|----------------------------|
| (Dr. T H Sreenivas)    | (Dr. Ravi Kumar V)   | (Dr. B Sadashive Gowda)    |
| Name of the Examiners  |                      | Signature with Date        |
|                        |                      |                            |

1)

2)

#### **ACKNOWLEDGEMENT**

If words are considered as the tokens of acknowledges, then the words play the heralding role of expressing our gratitude.

With proud gratitude we thank God Almighty for all the blessings showered on us and for completing our project successfully.

We owe our gratitude to The Principal, **Dr. B Sadashive Gowda** for his whole hearted support and for his kind permission to undergo the project.

We wish to express our deepest gratitude to **Dr. Ravi Kumar V**, Head of Department, Computer Science and Engineering, VVCE, for his profound alacrity in our project and his valuable suggestions.

We wish to enunciate our special thanks to our paradigmatic and relevant Project coordinators **Prof. Jamuna**, **Prof. Ambika V** and **Prof. Harshitha K**, Assistant Professors in Computer Science and Engineering, VVCE and internal guide **Dr. T H Sreenivas**, Professor in Computer Science and Engineering, VVCE who gave us throughout our project period with their valuable suggestions and for devoting their precious time in making this project a success.

In the end, we are anxious to offer our sincere thanks to our family members and friends for their valuable suggestions, encouragement and unwavering support.

> SADHANA B S (4VV15CS094) SHARMILA M(4VV15CS100) ASHOK KUMAR L (4VV16CS401) RAEHAN KHAN (4VV16CS417)

#### **ABSTRACT**

One of the potentially fatal grievous disease is heart disease that can lead to either death or a serious lifelong impairment. It is estimated by a recent survey that approximately 17.5million people die every year due to heart disease. It is predicted that the death rate may increase upto 75 million in the year 2030. Medical diagnosis is one of the most important and difficult task to be done as it plays an important role in diagnosing disease accurately and efficiently. In order to obtain accurate results an automated computer oriented decision support system must be achieved. For this purpose machine learning algorithm can be used. Presently in the field of medical science the chance of predicting heart attack is around 67%, so doctors are in need of definite decision support system.

Medical prognosis plays imperative role and yet convoluted task that needs to be carried out productively and precisely. Nearly all the hospitals utilizes some hospital administration system to superintend medical help to patients. Tragically nearly all of the systems seldom employ the vast clinical reports where vital information is concealed. A system is introduced which predicts and diagnoses the disease using different features. Unambiguousness of the prediction degree is elevated when more number of attributes are used. The aim is to perform predictive analysis using machine learning algorithms. The purpose here is to develop an economical treatment using data mining techniques for expediting data base decision support system.

### TABLE OF CONTENTS

|   | CHAPTERS                                      | Page No |
|---|-----------------------------------------------|---------|
| 1 | . INTRODUCTION                                |         |
|   | <b>1.1</b> Motivation                         | 02      |
|   | 1.2 Objective of our Project                  | 02      |
|   | 1.3 Overview of Problem                       | 03      |
|   | 1.4 Need for the Proposed System              | 03      |
|   | 1.5 Advantages of Proposed System             | 03      |
| 2 | LITERATURE SURVEY                             | 04      |
| 3 | SYSTEM REQUIREMENTS AND SPECIFICATION         |         |
|   | <b>3.1</b> Software Requirement Specification | 07      |
|   | <b>3.2</b> Functional Requirements            | 08      |
|   | <b>3.3</b> Non Functional Requirements        | 08      |
|   | <b>3.4</b> Software Requirements              | 08      |
|   | <b>3.5</b> Hardware Requirements              | 09      |
| 4 | SYSTEM ANALYSIS                               |         |
|   | 4.1 Existing System                           | 10      |
|   | <b>4.2</b> Proposed System                    | 10      |
|   | <b>4.3</b> Classifier                         | 11      |
|   | 4.3.1 ANN Algorithm                           | 14      |
| 5 | SYSTEM DESIGN                                 |         |
|   | <b>5.1</b> Use Case Diagram                   | 16      |
|   | 5.2 Data Flow Diagram                         | 17      |
|   | <b>5.3</b> Sequence Diagram                   | 18      |
|   | <b>5.4</b> Activity Diagram                   | 19      |
|   |                                               |         |

| <b>5.5</b> High Level Design      | 20 |
|-----------------------------------|----|
| <b>5.5.1</b> System Architecture  | 20 |
| 6 IMPLEMENTATION                  |    |
| <b>6.1</b> Data collection        | 23 |
| <b>6.2</b> Probability Generation | 26 |
| <b>6.3</b> Genarating Results     | 29 |
| <b>6.4</b> About Tools            | 30 |
| <b>6.4.1</b> Bootstrap            | 30 |
| <b>6.4.2</b> Keras                | 31 |
| <b>6.4.3</b> CSS                  | 31 |
| <b>6.4.4</b> Google colab         | 32 |
| <b>6.4.5</b> Tensorflow. Js       | 33 |
| 7 RESULTS AND ANALYSIS            |    |
| <b>7.1</b> Testing                | 34 |
| 7.2 Snapshots                     | 36 |
| CONCLUSTION                       | 41 |
| FUTURE ENHANCEMENT                | 42 |
| REFERENCES                        | 43 |

## LIST OF FIGURES

| FIGURES                                               | Page NO |
|-------------------------------------------------------|---------|
| 4.1 Heart Disease Prediction System Architecture      | 11      |
| 4.2 Layers of ANN                                     | 13      |
| 4.3 Graphical Representation Of Neuron In ANN         | 14      |
| 5.1 Use Case Diagram                                  | 16      |
| 5.2 Data flow Diagram                                 | 17      |
| 5.3 Sequence Diagram                                  | 18      |
| 5.4 Activity Diagram                                  | 19      |
| 5.5 System Architecture                               | 21      |
| 6.1 Probability Generation                            | 27      |
| 7.2(a) Home page                                      | 35      |
| 7.2(b) Attributes form                                | 36      |
| 7.2(c) Disease Prediction                             | 37      |
| 7.2(d) Coronary heart disease type Classification     | 37      |
| 7.2(e) Heart Arrhythmia type Classification           | 38      |
| 7.2(f) Hypertensive Heart disease type Classification | 38      |
| 7.2(g) Myocardial Infraction type Classification      | 39      |
| 7.2(h) Disease cannot be Classified                   | 39      |

## LIST OF TABLES

| Table Name                                | Page NO |  |
|-------------------------------------------|---------|--|
| 6.1. Dataset Structure for Prediction     | 23      |  |
| 6.2. Dataset Structure for Classification | 24      |  |
| 6.3. List of Attributes                   | 25      |  |
| 7.1 Test cases                            | 35      |  |