Lecture 15: Optimization

CS 109B, STAT 121B, AC 209B, CSE 109B

Mark Glickman and Pavlos Protopapas

Learning vs. Optimization

Goal of learning: minimize generalization error

$$J(\theta) = \mathbf{E}_{(x,y) \sim p_{data}} \left[L(f(x;\theta), y) \right]$$

• In practice, empirical risk minimization:

$$\hat{J}(\theta) = \frac{1}{m} \sum_{i=1}^{m} L(f(x^{(i)}; \theta), y^{(i)})$$

Quantity optimized different from the quantity we care about

Batch vs. Stochastic Algorithms

Shuffle the data before mini-batch

- Batch algorithms
 - Optimize empirical risk using exact gradients
- Stochastic algorithms
 - Estimates gradient from a small random sample

$$\nabla J(\theta) = \mathbf{E}_{(x,y) \sim p_{data}} \left[\nabla L(f(x;\theta), y) \right]$$

Large mini-batch: gradient computation expensive

Small mini-batch: greater variance in estimate, longer steps for convergence

Critical Points

- Points with zero gradient
- Saddle point and min and maxDerivative may be 0 but point is max
- 2nd-derivate (Hessian) determines curvature

Goodfellow et al. (2016)

Stochastic Gradient Descent

- Take small steps in direction of negative gradient
- Sample m examples from training set and compute:

$$g = \frac{1}{m} \sum_{i} \nabla L(f(x^{(i)}; \theta), y^{(i)})$$

Update parameters:

$$\theta = \theta - \varepsilon_k g$$

In practice: shuffle training set once and pass through multiple times

Stochastic Gradient Descent

Oscillations because updates do not exploit curvature information

Outline

- Challenges in Optimization
- Momentum
- Adaptive Learning Rate
- Parameter Initialization
- Batch Normalization

Local Minima

Local Minima

- Old view: local minima is major problem in neural network training
- Recent view:
 - For sufficiently large neural networks, most local minima incur low cost
 - Not important to find true global minimum

Saddle Points

- Recent studies indicate that in high dim, saddle points are more likely than local min
- Gradient can be very small near saddle points

Saddle Points

- SGD is seen to escape saddle points
 - Moves down-hill, uses noisy gradients

- Second-order methods get stuck
 - solves for a point with zero gradient

Poor Conditioning

- Poorly conditioned Hessian matrix
 - High curvature: small steps leads to huge increase
- Learning is slow despite strong gradients

No Critical Points

Some cost functions do not have critical points

No Critical Points

Gradient norm increases, but validation error decreases

Convolution Nets for Object Detection

Goodfellow et al. (2016)

Early stopping not useful if convergence before it

Linear activation

$$\mathbf{h}_1 = \mathbf{W}\mathbf{x}$$

$$\mathbf{h}_i = \mathbf{W}\mathbf{h}_{i-1}, \quad i = 2...n$$

$$y = \sigma(h_1^n + h_2^n)$$
, where $\sigma(s) = \frac{1}{1 + e^{-s}}$

Suppose
$$\mathbf{W} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$
:

$$\begin{bmatrix} h_1^1 \\ h_2^1 \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \cdots \qquad \begin{bmatrix} h_1^n \\ h_2^n \end{bmatrix} = \begin{bmatrix} a^n & 0 \\ 0 & b^n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$y = \sigma(a^{n}x_{1} + b^{n}x_{2})$$

$$\nabla y = \sigma'(a^{n}x_{1} + b^{n}x_{2}) \begin{bmatrix} na^{n-1}x_{1} \\ nb^{n-1}x_{2} \end{bmatrix}$$

Suppose
$$x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Case 1: a = 1, b = 2:

$$y \to 1$$
, $\nabla y \to \begin{bmatrix} n \\ n2^{n-1} \end{bmatrix}$ Explodes!

Case 2: a = 0.5, b = 0.9:

$$y \to 0, \quad \nabla y \to \begin{vmatrix} 0 \\ 0 \end{vmatrix}$$
 Vanishes!

- Exploding gradients lead to cliffs
- Can be mitigated using gradient clipping

Poor correspondence between local and global structure

It is really difficult to train large neural networks

Outline

- Challenges in Optimization
- Momentum
- Adaptive Learning Rate
- Parameter Initialization
- Batch Normalization

SGD is slow when there is high curvature

- Average gradient presents faster path to opt:
 - vertical components cancel out

- Uses past gradients for update
- Maintains a new quantity: 'velocity'
- Exponentially decaying average of gradients:

$$v = \alpha v + (-\varepsilon g)$$
Current gradient update

 $\alpha \in [0,1)$ controls how quickly effect of past gradients decay

Compute gradient estimate:

$$g = \frac{1}{m} \sum_{i} \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})$$

Update velocity:

$$v = \alpha v - \varepsilon g$$

Update parameters:

$$\theta = \theta + v$$

Damped oscillations: gradients in opposite directions get cancelled out

Goodfellow et al. (2016)

 $J(\theta)$

Nesterov Momentum

Apply an interim update:

$$\tilde{\theta} = \theta + v$$

Perform a correction based on gradient at the interim point:

$$g = \frac{1}{m} \sum_{i} \nabla_{\theta} L(f(x^{(i)}; \tilde{\theta}), y^{(i)})$$

$$v = \alpha v - \varepsilon g$$

$$\theta = \theta + v$$
Momentum based on look-ahead slope

Outline

- Challenges in Optimization
- Momentum
- Adaptive Learning Rate
- Parameter Initialization
- Batch Normalization

Adaptive Learning Rates

- Oscillations along vertical direction
- If learning rate too large, bounces around
- Learning must be slower along parameter 2
- Use a different learning rate for each parameter?

AdaGrad

Accumulate squared gradients:

• Update each parameter:
$$\theta_i = r_i + g_i^2$$
 Inversely proportional to cumulative squared gradient
$$\theta_i = \theta_i - \frac{\varepsilon}{\delta + \sqrt{r_i}} g_i$$

Greater progress along gently sloped directions

RMSProp

- For non-convex problems, AdaGrad can prematurely decrease learning rate
- Use exponentially weighted average for gradient accumulation

$$r_i = \rho r_i + (1 - \rho)g_i^2$$

$$\theta_i = \theta_i - \frac{\varepsilon}{\delta + \sqrt{r_i}} g_i$$

Adam

- RMSProp + Momentum
- Estimate first moment:

$$v_i = \rho_1 v_i + (1 - \rho_1) g_i$$

Estimate second moment:

$$r_i = \rho_2 r_i + (1 - \rho_2) g_i^2$$

Update parameters:

$$\theta_i = \theta_i - \frac{\varepsilon}{\delta + \sqrt{r_i}} v_i$$

Also applies bias correction to v and r

Works well in practice, is fairly robust to hyper-parameters

Outline

- Challenges in Optimization
- Momentum
- Adaptive Learning Rate
- Parameter Initialization
- Batch Normalization

Parameter Initialization

- Goal: break symmetry between units
 - so that each unit computes a different function
- Initialize all weights (not biases) randomly
 - Gaussian or uniform distribution
- Scale of initialization?
 - Large -> grad explosion, Small -> grad vanishing

Xavier Initialization

- Heuristic for all outputs to have unit variance
- For a fully-connected layer with m inputs:

$$W_{ij} \sim N\left(0, \frac{1}{m}\right)$$

For ReLU units, it is recommended:

$$W_{ij} \sim N\left(0, \frac{2}{m}\right)$$

Normalized Initialization

Fully-connected layer with m inputs, n outputs:

$$W_{ij} \sim U\left(-\sqrt{\frac{6}{m+n}}, \sqrt{\frac{6}{m+n}}\right)$$

- Heuristic trades off between initialize all layers have same activation and gradient variance
- Sparse variant when m is large
 - Initialize k nonzero weights in each unit

Bias Initialization

- Output unit bias
 - Marginal statistics of the output in the training set
- Hidden unit bias

- If initialised with only W=0, we want biases to be as close to std dev, mean as possible.

- Avoid saturation at initialization
- E.g. in ReLU, initialize bias to 0.1 instead of 0
- Units controlling participation of other units
 - Set bias to allow participation at initialization

Outline

- Challenges in Optimization
- Momentum
- Adaptive Learning Rate
- Parameter Initialization
- Batch Normalization

Feature Normalization

Good practice to normalize features before applying learning algorithm:

- Features in same scale: mean 0 and variance 1
 - Speeds up learning

Feature Normalization

Before normalization

After normalization

Internal Covariance Shift

Each hidden layer changes distribution of inputs to next layer: *slows down learning*

- Training time:
 - Mini-batch of activations for layer to normalize

$$H = \left[\begin{array}{ccc} H_{11} & \cdots & H_{1K} \\ \vdots & \ddots & \vdots \\ H_{N1} & \cdots & H_{NK} \end{array} \right] \begin{array}{c} K \text{ hidden layer activations} \\ \end{array}$$

N data points in mini-batch

- Training time:
 - Mini-batch of activations for layer to normalize

$$H' = \frac{H - \mu}{\sigma}$$

where

$$\mu = \frac{1}{m} \sum_{i} H_{i,:} \qquad \sigma$$

Vector of mean activations across mini-batch

$$\mu = \frac{1}{m} \sum_{i} H_{i,:} \qquad \sigma = \sqrt{\frac{1}{m} \sum_{i} (H - \mu)_{i}^{2} + \delta}$$

Vector of SD of each unit across mini-batch

- Training time:
 - Normalization can reduce expressive power
 - Instead use:

Allows network to control range of normalization

- Differentiate the joint loss for N mini-batches
- Back-propagate through the norm operations
- Test time:
 - Model needs to be evaluated on a single example
 - Replace μ and σ with running averages collected during training