خوشه بندی

آموزش بدون ناظر

شيوه آموزش: بدون نظارت (unsupervised)

خوشەبندى

انتساب اشیاء به خوشهها بهطوری که اشیاء یک خوشه:

- بیشترین شباهت را با هم داشته باشند.
- بیشترین تفاوت بین خوشههای مختلف موجود باشد.

خوشەبندى

We have a set of unlabeled data points $\{x^{(i)}\}_{i=1}^N$ and we intend to **find groups of similar objects** (based on the observed features)

high intra-cluster similarity: cohesive within clusters low inter-cluster similarity: distinctive between clusters

كاربردهاي خوشهبندي

- بازیابی اطلاعات (کلاستر کردن اسناد متنی و تصاویر بر اساس محتویات آنها)
 - خوشەبندى كاربران شبكەهاى اجتماعى (community detection)
 - بیوانفورماتیک (خوشهبندی ژنهای مشابه بر اساس دادههای میکروآرای)
 - بازاریابی (Marketing)
 - یافتن الگوهای هواشناسی
 - بینایی رایانهای (Computer Vision)
 - ... •

رویکردهای کلی الگوریتمهای خوشهبندی

۱- پارتیشنبندی (Partitioning)

۲- سلسله مراتبی (Hierarchical)

خوشهبندي افرازي

Partitional Clustering

$$\mathcal{X} = \left\{ \boldsymbol{x}^{(i)} \right\}_{i=1}^{N}$$

$$\mathcal{C} = \{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_K\}$$

- $\forall j, C_j \neq \emptyset$
- $\bigcup_{j=1}^K \mathcal{C}_j = \mathcal{X}$
- $\forall i, j, \ \mathcal{C}_i \cap \mathcal{C}_j = \emptyset$

مثال

	X	Y
A	1	1
В	2	1
C	4	3
D	5	4

تمرين

	X	Y
A	1	1
В	1	0
C	0	2
D	2	4
E	3	5

K-Means

(The Lloyd's method)

Select k random points $c_1, c_2, ..., c_k$ as cluster's initial centroids.

Repeat until converges (or other stopping criterion):

for i=1 to N do:

Assign $x^{(i)}$ to the closet cluster and thus C_j contains all data that are closer to c_j than to any other cluster

for j=1 to k do
$$c_j = \frac{1}{|c_j|} \sum_{x^{(i)} \in c_j} x^{(i)}$$

K-means Clustering

a set $x^{(1)}$, ..., $x^{(N)}$ of data points and an integer K (in d-dim feature space)

ورودی:

set of K representatives $c_1, c_2, ..., c_K \in \mathbb{R}^d$ as the cluster representatives

خروجي:

choose $c_1, c_2, ..., c_K$ to minimize:

تابع هدف:

$$\sum_{i=1}^{N} \min_{j \in 1, \dots, K} d^{2}(x^{(i)}, c_{j})$$

همگرایی K-Means

·الگوریتم k-means همواره همگرا است.

در هر دو فاز مقدار تابع هزینه کم میشود.

بهينه محلي

الگوریتم k-means ممکن است در بهینه محلی گیر بیفتد.

1

نقاط قوت K-Means

- پیادهسازی ساده
- پیچیدگی زمانی الگوریتم: O(nkt)

نقاط ضعف K-Means

- مقدار k از قبل باید تنظیم شود.
- اغلب در یک بهینه محلی پایان میابد.
- برای کشف کلاسترها با شکلهای دلخواه مناسب نیست.
- برای دادههای categorical کار نمی کند. (مانند ویژگی رنگ)
- نویز و دادههای پرت می تواند مشکل قابل توجهی برای خوشه بندی باشد.
 - انتخاب اولیه مرکز خوشهها در نتیجه نهایی تاثیرگذار است.
- در مرحلهای از تکرار الگوریتم، ممکن است تعداد اعضای یک خوشه صفر شود.
 - ترجیح میدهد خوشهها تقریبا هماندازه باشند.

k-means is not suitable for discovering clusters that are not hyper-ellipsoids (or hyper-spheres).

(A): Two natural cluster

(B): k-means cluster

d(a,b)=	x2 - x1	+	y2 - y1	١
---------	---------	---	---------	---

		(2,10)	(5,8)	(1,2)	cluster
A1	(2,10)	0	5	9	1
A2	(2,5)	5	6	4	3
A3	(8,4)	12	7	9	2
A4	(5,8)	5	0	10	2
A5	(7,5)	10	5	9	2
A6	(6,4)	10	5	7	2
A7	(1,2)	9	10	0	3
A8	(4,9)	3	2	10	2

$$(8+5+7+6+4)/5 = 6$$
. $(4+8+5+4+9)/5 = 6$
 $(2+1)/2$, = 1.5 $(5+2)/2$) = 3.5

((2+1)/2• (5+2)/2)=(1.5,3.5)

 $((2+5+4)/2 \cdot (10+8+9)/2)=(3.67,9)$

((8+7+6)/4 , (4+5+4)/4)=(7,4.3)

((2+1)/2 , (5+2)/2)=(1.5,3.5)