KU LEUVEN

Design of Analog and Mixed-Signal Integrated Circuits B-KUL-H05E3A

Gain-Boosting + Advice Session 6

Ir. Alberto Gatti, Jun Feng, Shuangmu Li, Prayag Wakale Prof. Filip Tavernier and prof. Tim Piessens Departement Elektrotechniek (ESAT)

Gain Boosting

Struggling to get more gain?

Folded cascode? not much better

Cascoding through current subtraction, not via mirroring

But, gain again mainly set by two transistors (M2, M5) and output impedance of M4, M3

A technique to consider...

The CMOS Gain-Boosting Technique

KLAAS BULT AND GOVERT J.G.M. GEELEN

Philips Research Laboratories, Eindhoven, The Netherlands

Received January 9, 1991; Revised April 5, 1991.

Gain-boosting

- Additional gain A_{add}
- In some books "regulated cascode"

[Bult & Geelen, 1991]

Gain-boosting in DAMSIC

On both high and low sides!

In your case:

- A_{add} depends on the gain boosting OTA
- "How fast does A_{add}
 need to be...?"

Good question!

- Too slow:
 - Settling issues
- Too fast:
 - Stability issues!
- Main difference?
 - Small load...

Bult to the rescue, again

- Within saferange, near theGBW of theoriginal design
- Start with the same speed…!

In practice? Recall that the load is small!

Just insert an additional capacitor that dominates the loop.
 Your OTA is small

STB analysis is your friend!

Why is this such a popular technique?

- Infinite gain @ max. speed
- Good use of supply!

[Bult & Geelen, 1991]

Suggested design method

- Use the idealOTA to verify/understand gain-boosting
 - Main difference is lack of CMFB..!
 - Especially learn to check stability!
- Draw up specs for the boosting OTA
 - Main difference = size, output CM... + add another CMFB loop!
- Design boosting OTA what can you do with a folded-cascode?
 - Check DC operating point and stability! Probably need to retune C_{ADD}
- Rescale for noise if needed

If time is tight:

A1 can be the same as A2...

→ Use DC sources to shift operating points

Feel free to do even better!

References

- Paper by Bult and Geelen see Toledo
 - Should be enough
- Razavi's CMOS design book has a short subsection on it
 - But no deep explanation of the settling / stability issues
- Some videos on Youtube, but above should be sufficient!

Next Weeks & Final Assessment

Remaining design sessions 6, 7, 8

- For you to work on gain boosting with folded cascode
 - No more extra material

- Intermediate report 2: symmetric OTA by next Monday noon
 - Feedback next week Tuesday morning

Session 8: extra 30 mins to compensate for P&D

Design of Analog and Mixed Signal Integrated Circuits

After that: prepare for final assessment

- Final Report: May 2nd at noon
 - Merge 3 reports, key npart is gain-boosted OTA design
 - **Everyone** submits one on their own (for admin reasons)

- Oral Presentations: May 9th
 - Slides: upload in advance by 7th of May
 - 5 min presentation + 10 min Q&A (longer for trio)
 - Detailed info + schedule will follow on Toledo

Thanks, questions?

Bonus Material

"Why don't the posted targets work from the get-go?"

One aspect: parasitics at OTA input

Analysis of transient response in phase ϕ_2

 $G_m/C_{L,TOT}$

Effective circuit

- Finite gain OTA $\rightarrow V_{\epsilon} \neq 0$

- The feedback signal is a current!

Shunt/shunt feedback!

A few tricks on the block diagram...

v_i* is just a rescaled version of the input

$$\beta = \frac{V_{fb}}{V_O} = \frac{C_{fb}}{C_{in} + C_{fb} + C_x}$$

$$-\frac{C_{in}}{C_{in} + C_{fb} + C_x} = -\frac{C_{in}}{C_{fb}} \beta$$

$$\frac{V_O}{V_{step}} = -\frac{C_{in}}{C_{fb}} \beta \frac{A_V}{1 + \beta A_V} = -\frac{C_{in}}{C_{fb}} \cdot \frac{G_m R_O \beta}{1 + G_m R_O \beta} \cdot \frac{1}{1 + s \frac{C_{L,TOT}}{\beta G_m}}$$

Ideal gain Gain error Settling error
$$\frac{1}{V} = -\frac{C_{in}}{C_{fb}} \cdot \frac{G_m R_O \beta}{1 + G_m R_O \beta} \cdot \frac{1}{1 + S \frac{C_{L,TOT}}{\beta G_m}}$$

$$\cdot \frac{G_m R_O \beta}{1 + G_m R_O \beta}$$

$$\frac{1}{1+s\frac{C_{L,TOT}}{\beta G_{m}}}$$

To the time domain

v_i* is just a rescaled version of the input

$$\beta = \frac{V_{fb}}{V_O} = \frac{C_{fb}}{C_{in} + C_{fb} + C_x}$$

$$\tau = \frac{1}{\omega_u} = \frac{1}{\frac{\beta G_m}{C_{L,TOT}}}$$

Feedback and load

$$\beta = \frac{C_{fb}}{C_{in} + C_{fb} + C_x}$$

$$\frac{V_O}{V_I^*} = \frac{A_V}{1 + \beta A_V} \cong \frac{1}{\beta} \frac{1}{1 + \frac{sC_{L,TOT}}{\beta G_m}}$$

