UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA

PNV3314 - Dinâmica de Sistemas I

ESTUDO SOBRE UM MODELO DE SISTEMA DINÂMICO

Simulador de Prancha com Mola e Amortecedor

Professor/Orientador:

Professor Jordi Mas Soler

Monitor Eric Armani

Integrantes:

Taumanni Ioannou, 13684130

Daniel Alves de Souza, 13695806

SÃO PAULO

SUMÁRIO

1. INTRODUÇÃO	3
2. MODELO FÍSICO	5
3. EQUAÇÕES DE MOVIMENTO	7
3.1. PRIMEIRA PARTE DO SISTEMA ACOPLADO	7
3.2. SISTEMA TODO DESACOPLADO	7
4. EQUAÇÕES DE ESTADO	8
5. SIMULAÇÃO COMPUTACIONAL	10
6. PARÂMETROS CARACTERÍSTICOS	13
6.1. FREQUÊNCIA NATURAL	
6.2. AMORTECIMENTO CRÍTICO	14
6.3. FATOR ZETA	
7. FUNÇÃO DE TRANSFERÊNCIA	15
8. CONCLUSÃO	16
9. REFERÊNCIAS	18
10. ROTINAS PARA SIMULAÇÃO	18

1. INTRODUÇÃO

O estudo sobre a dinâmica de sistemas se baseia em compreender o movimento e a reação das forças que atuam em sistemas diversos, sendo algo essencial para compreender a modelagem e o funcionamento dos mesmos, auxiliando desde a criação do projeto inicial até a manutenção do mesmo. Esse estudo pode-se aplicar nas mais diversas situações do cotidiano, desde equipamentos de academia, suspensão de veículos automotores, balanço de um navio e até mesmo no corpo humano.

Este relatório explorará alguns conceitos na modelagem de um sistema dinâmico específico de um simulador de prancha de snowboard. No caso, o simulador pertence a uma escola de Ski, a *Ski Academy* ^[1], da cidade de Lisboa, Portugal. Nessa escola, alguns medalhistas olímpicos utilizam esse simulador devido às tecnologias do equipamento, como a realidade virtual e a força G.

Figura 1 - Simulador utilizado na Ski Academy

Com algumas adaptações para utilizar os conceitos aprendidos em sala de aula, o sistema foi modelado sendo adicionado molas e amortecedores à prancha de snowboard e as pernas do atleta que utilizará o simulador. Com isso, é possível explorar as Equações de Movimento do sistema e dos seus componentes, as Equações de Estado dos mesmos, os parâmetros característicos (como frequência e amortecimento) e a Função de Transferência.

2. MODELO FÍSICO

Dado a problemática, o primeiro passo para o estudo do simulador seria fazer uma adaptação, considerando não só a prancha de snowboard, mas também o atleta que iria em cima da mesma. Então, pensando nas pernas do atleta como um conjunto de mola e amortecedor, e considerando que cada perna possui características diferentes, foi adicionado molas e amortecedores à uma massa m. No caso da prancha de massa M, as molas e amortecedores devem ser iguais para garantir a harmonia da mesma. Sendo assim, obteve-se o seguinte resultado:

Figura 2 - Desenho esquemático da Primeira Parte do Sistema

Num segundo pensamento, para o movimento lateral da prancha, foi decidido fixar uma corda ou haste de massa desprezível e tamanho conhecido conectando a prancha à uma mola, tendo o seguinte resultado:

Com isso, é possível obter diversas informações em relação ao sistema modelado, sendo elas necessárias para entender seu funcionamento e suas características. Neste estudo, veremos como os componentes do sistema se comportam separadamente, analisando a parte 1 e a parte 2.

3. EQUAÇÕES DE MOVIMENTO

3.1. PRIMEIRA PARTE DO SISTEMA ACOPLADO

Para a primeira parte do sistema, observando seu acoplamento, é preciso que sejam separadas as equações de movimento para a massa M e para a massa m. Nesse caso, podemos encontrá-las através do método de Newton.

Nesse caso, para a massa M, temos a equação I:

$$My_{M}^{\bullet\bullet} = -2c_{S}y_{M}^{\bullet} - 2k_{S}y_{M} + k_{1}(y_{m} - y_{M}) + c_{1}(y_{m}^{\bullet} - y_{M}^{\bullet}) + k_{2}(y_{m} - y_{M}) + c_{2}(y_{m}^{\bullet} - y_{M}^{\bullet})$$

$$\Leftrightarrow My_{M}^{\bullet\bullet} = -2(c_{S}y_{M}^{\bullet} + k_{S}y_{M}) + (k_{1} + k_{2})(y_{m} - y_{M}) + (c_{1} + c_{2})(y_{m}^{\bullet} - y_{M}^{\bullet}) \text{ (I)}$$

E para a massa m, temos a equação II:

$$my_{m}^{\bullet \bullet} = -c_{1}(y_{m}^{\bullet} - y_{M}^{\bullet}) - k_{1}(y_{m}^{\bullet} - y_{M}^{\bullet}) - c_{2}(y_{m}^{\bullet} - y_{M}^{\bullet}) - k_{2}(y_{m}^{\bullet} - y_{M}^{\bullet})$$

$$\Leftrightarrow my_{m}^{\bullet \bullet} = -(c_{1}^{\bullet} + c_{2}^{\bullet})(y_{m}^{\bullet} - y_{M}^{\bullet}) - (k_{1}^{\bullet} + k_{2}^{\bullet})(y_{m}^{\bullet} - y_{M}^{\bullet}) \text{ (II)}$$

3.2. SISTEMA TODO DESACOPLADO

Já para o sistema desacoplado, é preciso separar apenas os componentes da primeira parte do sistema, e com isso, teremos para a massa M e m, respectivamente:

$$My_{M}^{\bullet \bullet} + 2c_{S}y_{M}^{\bullet} + 2k_{S}y_{M} = 0 \text{ (III)}$$

$$my_{m}^{\bullet \bullet} + (c_{1} + c_{2})y_{m}^{\bullet} + (k_{1} + k_{2})y_{m} = 0 \text{ (IV)}$$

Agora, analisando a segunda parte do sistema, podemos definir a equação através do método de Lagrange:

$$U(\vartheta) = \frac{1}{2}k_T \vartheta^2; x(t) = R * \vartheta(t); M + m = N$$

$$T = \frac{1}{2}Nx^{\bullet 2} = \frac{1}{2}NR^2 \vartheta^{\bullet 2}$$

$$\Leftrightarrow L = T - U = \frac{1}{2}NR^2 \vartheta^{\bullet 2} - \frac{1}{2}k_T \vartheta^2$$

Aplicando a Equação de Lagrange:

$$\Leftrightarrow NR^2\vartheta^{\bullet\bullet} + k_T\vartheta = 0$$

Com isso, conclui-se que a equação de movimento será:

$$Nx^{\bullet \bullet} + \frac{k_T}{R}x = 0 \text{ (V)}$$

4. EQUAÇÕES DE ESTADO

Obtendo as Equações de Movimento, podemos também, a partir delas, obter as Equações de Estado do sistema. Com elas, é possível compreender, com o auxílio das suas variáveis, o estado que o sistema terá em determinado instante de tempo.

Sendo assim, utilizando o sistema desacoplado, temos, para as massas M e m, respectivamente:

$$y_{M}^{\bullet} = v_{M} <=> Mv_{M}^{\bullet} = -2c_{S}v_{M} - 2k_{S}y_{M}$$
$$=> X_{M}^{\bullet} = A_{M} * X_{M}$$

onde A_M :

$$\begin{array}{ccc}
0 & 1 \\
-2k_{S}/M & -2c_{S}/M
\end{array}$$

e *X_M*:

$$v_{_{M}}$$

$$y_m^{\bullet} = v_m^{} <=> mv_m^{\bullet} = - (c_1 + c_2)v_m^{} - (k_1 + k_2)y_m^{}$$

$$=> X_m^{\bullet} = B_m * X_m^{}$$

onde B_m :

$$\begin{array}{|c|c|c|c|c|}\hline & 0 & 1 & \\ -(k_1 + k_2)/m & -(c_1 + c_2)/m & \\ \hline \end{array}$$

e *X*_m:

\boldsymbol{y}_m	
$v_{_m}$	

5. SIMULAÇÃO COMPUTACIONAL

Através do auxílio de um programa em Python, é possível observar graficamente como o sistema se comporta, considerando sua movimentação com acoplamento e sem acoplamento, tanto das partes 1 quanto da parte 2. Sendo assim, o código [2] nos retorna os seguintes gráficos característicos da movimentação do sistema:

Figura 4 - Gráfico da Movimentação do Sistema Acoplado

Figura 5 - Gráfico da Movimentação do Sistema Desacoplado

Figura 6 - Gráfico da Movimentação da Segunda Parte do Sistema

Vale ressaltar que, para os gráficos gerados, as variáveis receberam valores específicos, seguindo a tabela abaixo:

Tabela 1 - Valores utilizados para geração dos gráficos

M	100 kg
m	50 kg
ks	2000 N/m
cs	100 Ns/m
k1	3000 N/m
c1	150 Ns/m
k2	2500 N/m
c2	120 Ns/m
N	M+m = 150 kg
kT	1000 Nm/rad
R	2 m

6. PARÂMETROS CARACTERÍSTICOS

Tendo conhecimento das Equações de Movimento e Equações de Estado do sistema, é possível obter também alguns parâmetros característicos do sistema, como a frequência natural e o amortecimento das partes desacopladas.

6.1. FREQUÊNCIA NATURAL

Com as Equações de Movimento (III), (IV) e (V), as frequências naturais do sistema podem ser calculadas. Para calcular a frequência natural do sistema, podemos utilizar as equações de estado ou as equações de movimento. Geralmente, a frequência natural ωn de um sistema massa-mola-amortecedor é dada pela seguinte fórmula:

$$\omega_n = \sqrt{\frac{k}{m}}$$

Para o sistema desacoplado, podemos calcular a frequência natural para cada massa individualmente. Vamos fazer isso para a massa M e a massa m, utilizando as constantes k_s e M para a massa Me as constantes k_1+k_2 e m para a massa m.

Para a massa M:

$$\omega_{nM} = \sqrt{\frac{k_s}{M}}$$

Para a massa m:

$$\omega_{nm} = \sqrt{\frac{k_1 + k_2}{m}}$$

Já observando a segunda parte do sistema (com a massa N=M+m), podemos obter ω_{nN} da seguinte forma:

$$Nx^{\bullet \bullet} + \frac{k_T}{R}x = 0 <=> x^{\bullet \bullet} + \frac{k_T}{NR}x = 0$$

Nesse caso, podemos definir:

$$\omega_{nN}^2 = \frac{k_T}{NR} <=> x^{\bullet \bullet} + \omega_{nN}^2 x = 0$$

Sendo assim, a frequência será dada por:

$$\omega_{nN} = \sqrt{\frac{k_T}{NR}}$$

6.2. AMORTECIMENTO CRÍTICO

Para calcular o amortecimento crítico de cada massa individualmente no sistema desacoplado, podemos usar a seguinte fórmula:

$$c_{cr\text{\'{i}tico}} = \, 2 \sqrt{mk}$$

Calculando para cada massa no sistema desacoplado, temos:

Para a massa M:

$$c_{crítico,M} = 2\sqrt{Mk_s}$$

Para a massa m:

$$c_{crítico,m} = 2\sqrt{mk_1}$$

6.3. FATOR ZETA

Para calcular o fator de amortecimento (ζ) para cada massa individualmente no sistema desacoplado, utiliza-se a fórmula:

$$\zeta = \frac{c}{c_{critico}}$$

Calculando para cada massa no sistema desacoplado, temos:

Para a massa M:

$$\zeta = \frac{c_s}{2\sqrt{mk_1}}$$

Para a massa m:

$$\zeta = \frac{c_1 + c_2}{2\sqrt{Mk_s}}$$

7. FUNÇÃO DE TRANSFERÊNCIA

Para calcular a Função de Transferência, utilizaremos o conceito da Transformada de Laplace para tal. No caso, supondo que é aplicada uma excitação a partir de uma força f(t), podemos definir a Função de Transferência como:

$$X_{Massa}(s) = \frac{Y_{Massa}(s)}{F(s)}$$
, onde $Y_{Massa}(s)$ é a transformada para $Y_{Massa}(t)$ e $F(s)$ é a transformada para a força $f(t)$.

Dadas as Equações de Movimento (III) e (IV), temos:

Para a massa M:

$$My_M^{\bullet \bullet} + 2c_S y_M^{\bullet} + 2k_S y_M = f(t)$$

=> Laplace
$$\to Ms^2 y_M(s) + 2c_S sy_M(s) + 2k_S y_M(s) = F(s)$$

 $<=> X_M(s) = \frac{Y_M(s)}{F(s)} = \frac{1}{(Ms^2 + 2c_S + 2k_S)}$

Para a massa m:

$$my_{m}^{\bullet\bullet} + (c_{1} + c_{2})y_{m}^{\bullet} + (k_{1} + k_{2})y_{m} = f(t)$$

$$=> \text{Laplace} \rightarrow ms^{2}y_{m}(s) + (c_{1} + c_{2})sy_{m}(s) + (k_{1} + k_{2})y_{m}(s) = F(s)$$

$$<=> X_{m}(s) = \frac{Y_{m}(s)}{F(s)} = \frac{1}{(ms^{2} + (c_{1} + c_{2})s + (k_{1} + k_{2}))}$$

8. CONCLUSÃO

O relatório abrange importantes conceitos na modelagem de sistemas dinâmicos, trazendo a aplicação no caso de um simulador de prancha de snowboard. São derivadas as equações de movimento para as partes acopladas e desacopladas do sistema, utilizando métodos de Newton e Lagrange. As equações de estado são então obtidas a partir das equações de movimento, proporcionando uma compreensão mais profunda do comportamento do sistema em diferentes cenários.

É apresentada também uma simulação computacional como uma ferramenta para visualizar graficamente o comportamento do sistema, tanto com acoplamento quanto sem acoplamento, fornecendo insights valiosos para análise. Então, os parâmetros característicos do sistema, como frequência natural, amortecimento crítico e fator de amortecimento, são então calculados e discutidos em detalhes, contribuindo para uma compreensão mais completa do sistema modelado.

Por fim, a função de transferência é derivada utilizando a Transformada de Laplace, fornecendo uma representação matemática da relação entre as entradas de força e as saídas de deslocamento do sistema. Portanto, pode se afirmar que o relatório cumpre com sucesso seu objetivo de aplicar os conceitos teóricos aprendidos a respeito de modelagem de sistemas.

Com a modelagem do sistema, foi possível entender o comportamento do simulador de snowboard e fazer previsões de seus movimentos com a simulação computacional, de forma a verificar e aplicar de maneira prática a teoria aprendida em sala de aula. Com isso, os próximos passos do estudo envolverá a união dos componentes e partes do sistema dinâmico, para que possa ser compreendido seu funcionamento em harmonia.

9. REFERÊNCIAS

[1] Simulador - Ski Academy Lisboa. Disponível em: https://skiacademy.pt/simulador/

[2] Código da Simulação - Github. Disponível em:

https://github.com/GregoTsunami/Dinamica-de-Sistemas PNV3314/blob/main/rotina.py

^[2]Função de Transferência. Disponível em: https://apcmode.com/?page_id=332

10. ROTINAS PARA SIMULAÇÃO

O Código da simulação está disponível nos seguintes links:

https://github.com/GregoTsunami/Dinamica-de-Sistemas_PNV3314/blob/main/rotina.py
https://drive.google.com/drive/folders/10V70gTeLri4pmSDVzbYqK0Ildy2dsSM6?usp=
sharing