

Splinoids project outline

GODIN-DUBOIS Kevin

March 31st, 2020

Splinoids

Spline + Boids

- 2D creatures
- Low-level combat
- Low-level vision
- Growth
- Autonomous reproduction
- Sexual dimorphism

30 s (0" 30')

Anatomy

Combat

- Based on physical collision of primitives
- Both creatures receive damage¹
- Artifacts are denser and more resilient than the body
- Health regenerates but is costly

¹Unlike [2]

Motion

Tank-like behavior: $\{1, 1\} \rightarrow \text{Foward}$ $\{-1,-1\} \rightarrow \text{Backward}$ $\{-1, 1\} \rightarrow \text{Rotation}$ $\{1,-1\} \rightarrow$

Vision

Parameterized by number of rays and angles

Audition

Not implemented

- Similar approach to [1]
- Multiple emission channels (neural-controlled)
- As many reception
- Hearing range managed by physics engine
- Signal intensity = strength / distance²

Life-Cycle

Age conditions life-step:

- $[0, c_0]$ youth
- $[c_0, c_1]$ maturity
- $[c_1, 1]$ old age

Life-Cycle Youth

- Progressive growth of body size and artifacts
- Initial states are highly vulnerable

Life-Cycle Maturity

- Reproductive behavior
- Based on energy accumulation²
- ANN-controlled decision
- Not yet implemented

 $^{^{2}}$ as in [3]

Life-Cycle Senescence

Reduction of maximal speed

> increased chance of star vation and being preyed upon

Sexual dimorphism

Identical genotype (except gender)

 \rightarrow different phenotypes (shapes and colors)

Metabolism

- Energy extracted from plants or corpses
- Baseline life cost
- Consumed energy returned to the environment

Metabolism Clock speed

- ANN-controlled value
- Genetically controlled bounds
- Impacts:
 - Motion speed
 - Resource absorption
 - Resource consumption
 - Regeneration

Neural controller

Environment

Environment

Environment

- Size
- Taurus
- Obstacles
- Plants

References

• References

David Kadish, Sebastian Risi, and Laura Beloff. "An artificial life approach to studying niche differentiation in soundscape ecology". In: *The 2019 Conference on Artificial Life*. Cambridge, MA: MIT Press, 2019, pp. 52–59.

Thomas Miconi. "Evosphere: Evolutionary dynamics in a population of fighting virtual creatures". In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). IEEE, June 2008, pp. 3066-3073.

Peter Paul Pichler and Lola Cañamero. "Evolving morphological and behavioral diversity without predefined behavior primitives". In: Artificial Life XI: Proceedings of the 11th International Conference on the Simulation and Synthesis of Living Systems, ALIFE 2008 (2008), pp. 474–481.