

Diese Arbeit wurde vorgelegt am Lehrstuhl für Production Engineering of E-Mobility Components (PEM) der RWTH Aachen.

Bachelorarbeit

Name: Julian Callard

Matr.-Nr.: 377888

Thema: Innovative Batteriezellkonzepte für eine opti-

male thermische Anbindung

Betreuender Assistent: Jonas Gorsch, M.Sc.

1. Prüfer: Prof. Dr.-Ing. Peter Mustermann

2. Prüfer: Dr.-Ing. Thomas Mustermann

Aachen, den 13. Mai 2021

Inhalt und Ergebnis dieser Arbeit sind ausschließlich zum internen Gebrauch bestimmt. Alle Urheberrechte liegen bei der RWTH Aachen. Ohne ausdrückliche Genehmigung des betreuenden Lehrstuhls ist es nicht gestattet, diese Arbeit oder Teile daraus an Dritte weiterzugeben.

I. Inhaltsverzeichnis

I. Inhaltsverzeichnis

l	Inhaltsverzeichnis	i
II	Formelzeichen und Abkürzungen	ii
Ш	Abbildungsverzeichnis	iii
IV	Tabellenverzeichnis	iv
	Einleitung	٧
2	Motivation	
	Grundlagen und Stand der Technik	
4	Methodik	6
5	Auswertung	7
6	Zusammenfassung und Ausblick	8
V	Literatur	9
VI	Anhang	10
\/ 11	Fidaestattlicha Varsicharung	11

II. Formelzeichen und Abkürzungen

Formelzeichen	Einheit	Beschreibung
a(t)	$\frac{m}{s^2}$	Beschleunigungsverlauf
b_{Fzg}	m	Fahrzeugbreite
Abkürzung		Beschreibung
KFZ		Kraftfahrzeug
PEM		Production Engineering E-Mobility Components

•									
ш	п	Δh	hıl	Mı.	ınc	CV	Orz	$\Delta I \cap$	hnis
ш	Ш	\neg v	ווטי	uι	טו ווג	IJν	ᄗᅩ	こいし	111113

iii

III.	Abbi	ldungsve	erzeichnis
------	-------------	----------	------------

Abbildung 3.1:	Blah	2
Abbildung 3.2:	Blah	4

IV. Tabellenverzeichnis iv

11/	Iahai	lenverze	NIAH	nic
IV.	Iavei	ICIIVCIZO	71 G I I	11113

Tabelle 2.1:	Vergleich der Energiedichten von Energieträgern in Fahrzeugen	1
Tabelle 3.1:	Bauformen der Batteriezellen	3

1. Einleitung v

1. Einleitung

1.1. Abstract

Durch fortlaufende Entwicklung im Bereich der elektro-chemischen Energiespeicher in Form von Lithium-Ionen-Batterien (LIB's) gewinnen diese als Energieträger in der Mobilitätbranche stetig an Relevanz. Sowohl in Elektrofahrzeugen als auch in Konzepten und Neuentwicklungen in der Light-Aircraft-Branche finden LIB's immer mehr Anwendungen. Da die Energiedichte dieser Batteriezellen aktuell noch einen Bruchteil der Energiedichte von konventionellen Treibstoffen beträgt und die Ladezeiten aufgrund geringer C-Raten ein Vielfaches der zum Tanken von Treibstoff benötigten Zeit betragen, haben Verluste und Leistung, die für die Kühlung/Aufheizung der Energiespeicher aufgewendet werden muss, zusammen mit dem benötigten Gewicht für Kühlkreisläufe bei der Reichweite und Effizienz der Luft- und Kraftfahrzeuge einen signifikant negativen Effekt. Daher ist die optimale thermische Anbindung der Batteriezellen wünschenswert. Durch optimierte Wärmeleitung und geringerem Ohm'schen Widerstand können die Systemeffizienz erhöht und die Ladedauer reduziert werden.

In dieser Arbeit soll ein Konzept für eine thermisch optimierte prismatische Zelle aus bereits existierenden Konzepten für andere Zelltypen erarbeitet und dann anhand einer thermischen Simulation validiert werden.

1.2. Aufbau der Arbeit

2. Motivation 1

2. Motivation

Der Transportsektor trägt in der EU mit einem Anteil von ca. 25% signifikant zu der gesamten Treibhausgasemission (THG) bei. Um die Ziele der EU-Kommission zu erreichen, soll bis 2030 die Anzahl der Fahrzeuge mit konventionellem Antrieb halbiert werden. Bis 2050 soll auf Fahrzeuge mit Benzin- oder Diesel-Motoren komplett verzichtet werden. Eines der Hindernisse für eine Marktdurchdringung der Fahrzeuge mit elektrochemischen Energiespeicher in Form von Lithium-Ionen-Batterien (LIB's) ist die begrenzte Reichweite dieser Fahrzeugklasse¹.

Die Energiedichte von aktuellen LIB's² liegt nach Tabelle 2.1 weit unter der von konventionellen Treibstoffen³, ist jedoch verglichen mit älteren Batterietechnologien erheblich höher⁴. Da auch die Batterie-Aufladezeiten ein Vielfaches der Dauer einer Tankfüllung mit einem Flüssigtreibstoff beträgt, haben Verluste die durch Widerstand oder Abwärme entstehen, zusammen mit Leistung die für das Kühlen bzw. Aufheizen der Batterie aufgewendet werden muss, einen signifikant negativen Effekt auf die Reichweite und Effizienz der Fahrzeuge.

Тур	Wert	Einheit
Lithium-Ionen-Batterie:	430 - 800	Wh/I
Nickel-Cadmium-Batterie:	130	Wh/I
Benzin:	9700	Wh/I
Diesel:	10700	Wh/I

Tabelle 2.1: Vergleich der Energiedichten von Energieträgern in Fahrzeugen

Besonders deutlich ist dieser Effekt in der Luftfahrtbranche.

Die früheren Konzepte des elektrischen Fliegens waren zwar erfolgreich darin, dass sie das Fliegen mit elektrischem Antrieb ermöglichten, scheiterten jedoch an der geringen Energiedichte verfügbarer Energiespeicher wie Nickel-Cadmium-Batterien und der damit verbundenen möglichen Reichweite⁵.

Durch die Entwicklung von Lithium-Ionen-Batterietechnologie haben die elektrochemischen Energiespeicher erstmals eine ausreichende Energiedichte um relevante Reichweiten von bis zu 250km zu ermöglichen.⁶.

Da die Reichweite sich antiproportional zum Gewicht verhält resultiert ein geringeres Gewicht bei gleicher Batteriekapazität in erweiterter Reichweite⁷.

Daher kann die Effizienz, Ladezeit und Reichweite von elektrischen Fahrzeugen mithilfe innovativer Kühlkonzepte gesteigert werden. In dieser Arbeit sollen diese Konzepte erarbeitet und validiert werden.

Vgl. Ajanovic und Glatt (Wirtschaftliche und ökologische Aspekte der Elektromobilität: Economic and ecological aspects of electric vehicles) 2020, S.136-146.

Vgl. Hettesheimer et al. (Entwicklungsperspektiven für Zellformate von Lithium-Ionen-Batteiren in der Elektromobilität) 2017, S. 11.

³ Vgl. Beloit EDU (Energy Density Table).

⁴ Vgl. Sollmann (Nickel-Cadmium-Batterien) 2018.

Vgl. Hepperle (Electric Flight - Potential and Limitations) 2012, S. 4.

⁶ Vgl. Lilium (Lilium Jet).

Vgl. Traub (Range and Endurance Estimates for Battery-Powered Aircraft) 2011, S. 705.

3. Grundlagen und Stand der Technik

3.1. Lithium-lonen-Batterietechnologie

In diesem Kapitel wird ein Überblick über die Lithium-Ionen-Batterietechnologie verschafft. Außerdem wird das thermische und elektrische Verhalten der Zellen erläutert. Zuletzt werden noch Alterungsmechanismen und Temperaturabhängigkeiten betrachtet.

Aufbau und Funktionsweise

Der Begriff Lithium-Ionen-Batterie umfasst viele verschiedene Batterietechnologien, welche alle auf dem gleichen Wirkprinzip beruhen. Analog zu allen anderen Batterietypen besteht eine Lithium-Ionen-Batterie aus dem Elektrolyten, einem Separator und zwei Elektroden.

Nach Konvention wird nach den elektrischen Zuständen beim Entladevorgang die negativ geladene Elektrode als Anode und die positiv geladene Elektrode als Kathode bezeichnet.

Abbildung 3.1: Aufbau Lithium-Ionen-Batteriezelle in Anlehnung an Ecker u. Sauer 2013

Wie in Abbildung 3.1 dargestellt, können die Lithium-Ionen durch das Elektrolyt von der Kathode zur Anode oder umgekehrt ?wandern?.

Um die Oberfläche für das Einlagern der Ionen möglichst groß zu gestalten, sind die Materialien der beiden Elektroden hochporös. Dies ermöglicht zudem eine hohe Reaktionsrate.

Die Kathode einer **LIB** (Lithium-Ionen-Batterie) besteht meist aus einem Metalloxid, die Anode aus einer Kohlenstoffmodifikation, oftmals Graphit. Für die Bindung der Elektrodenmaterialien wird häufig Polyvinylidenfluorid (PVFD) in verschiedenen Formen verwendet.

Diese Materialien werden dann auf einer dünnen Metallfolie aufgetragen. An der Kathode kommt hierfür Aluminium zum Einsatz, an der Anode wird Kupfer verwendet. Diese Metallfolien dienen gleichzeitig als Stromableiter.

Der Separator besteht normalerweise aus einem porösen Polymer. Die Bauteile der Batterie, Elektroden und Separator sind in einem Elektrolyt getränkt. Dieses besteht aus Lithiumsalz das in einem organischem Solvat gelöst ist. Das Solvat wird so gewählt, dass es bei den im Betrieb auftretenden Spannungszuständen trotzdem weitgehend stabil ist.

Die Bauform der Batteriezellen ist meist einer von drei etablierten Typen, wie in Tabelle 3.1 dargestellt ist. Bei allen Typen bestehen die Zellen aus mehreren Lagen von Elektroden-Separator-Elektroden-Stapeln, die je nach Typ geschichtet oder gewickelt werden.

Das Gehäuse oder das Verpackungsmaterial der Batteriezellen ist ausschließlich aus Metall.

Diese Maßnahme dient der Abdichtung der Zelle, da Wassereintritt die Hydrolyse des Leitsalzes $LiPF_6$ zu Fluorwasserstoff anstoßen kann. Zudem verhindert das Metall das Diffundieren des Elektrolyten aus der Zelle nach außen⁸.

Tabelle 3.1: Bauformen der Batteriezellen

Bauform	Geschichtet	Gewickelt
Zylindrisch		Ja
Prismatisch	Ja	Ja
Pouch-Bag	Ja	

Je nachdem ob eine höhere Energiedichte oder Leistungsdichte bei den Batteriezellen gewünscht ist, können die Aktivmaterialschichten den Anforderungen entsprechend ausgelegt werden. Bei dünneren Schichten ist die Leistungsdichte, bei gleichzeitig geringerer Energiedichte, höher⁹.

Batterietechnologien

Der größte Unterschied zwischen den LIB-Technologien liegt in der Materialzusammensetzung der Elektroden

Beginnend mit der Lithium-Kobalt-Oxid-Batterie (LCO) von Sony in den 1990er-Jahren, wurden seitdem auch Lithium-Nickel-Oxid- (LNO) oder Lithium-Mangan-Oxid-Batteriezellen (LMO) entwickelt. LNO und LCO weisen beide eine hohe Kapazität auf, LNO besitzt jedoch eine geringe thermische Stabilität und LCO ist aufgrund des Kobaltgehalts in Sachen Kosten, Sicherheit und Umweltverträglichkeit nicht ideal für den Massenmarkt. LMO ist zwar stabil, löst sich jedoch bei Raumtemperatur teilweise im Elektrolyten.

Um diese Nachteile auszugleichen wurden beispielsweise die Lithium-Nickel-Mangan-Kobalt-Batteriezelle (NMC) oder die Lithium-Nickel-Kobalt-Aluminium-Batteriezelle (NCA) entwickelt. Eine weitere Variation ist die Batteriezelle mit einer Kathode auf Eisenphosphatbasis (LFP). Diese besitzt verglichen mit den anderen Varianten eine geringere Spannungslage und gravimetrische Energiedichte. Da aber kein Kobalt verbaut wird, besitzt diese Technologie relevante Umweltvorteile.

Auch eine alternative Anoden-Technologie, die sogenannte LTO-Zelle (Lithiumtitanat), kommt aktuell auf den Markt. Sie besitzt zwar eine geringere Energiedichte im Vergleich zu anderen Technologien, weist sich jedoch durch eine hohe Leistungsdichte und Lebensdauer aus.

Elektrische und chemische Funktionsweise der Lithium-Ionen-Batterietechnologie

Während des Entladevorgangs, was dem Auslagern von Lithium aus der negativen Elektrode entspricht, werden Elektronen ausgegeben. Die Lithium-Ionen wandern durch das Elektrolyt und den Separator zur positiven Elektrode und lagern sich dort ein. Gleichzeitig fließen die Elektronen durch die externe Verbindung über einen Verbraucher zur positiven Elektrode wo Aluminium als Stromableiter dient. Beim Laden wird dieser Prozess umgekehrt¹⁰.

Der Interkalationsprozess der Lithium-Ionen ist nahezu reversibel. Daher tritt unter normalem

⁸ Vgl. Wöhrle (Lithium-Ionen-Zelle) 2013, S.107-117.

VIg. Ecker und Sauer, Prof. Dr. rer. nat. D. U. (Batterietechnik - Lithium-Ionen-Batterien) 2013, S.66-67.

¹⁰ Vgl. Leuthner (Übersicht zu Lithium-Ionen-Batterien) 2013, S. 13-19.

Gebrauch meist kein Lithium-Plating auf¹¹.

Beim Lithium-Plating setzt sich reines Lithium an der Anode ab und verringert so die Kapazität der Batterie.

Durch den nahezu reversiblen Prozess ist der Wirkungsgrad von Lithium-Ionen-Batterien sehr hoch. Dieser ist nach Gleichung 1 definiert als die Energie die bei der Entladung frei wird geteilt durch die Energie, die beim Laden aufgewendet wird¹².

$$Wirkungsgrad = \frac{Entladeenerige}{Ladeenergie}$$
 (1)

Bauformen der Lithium-Ionen-Batterien

Wie in Tabelle 3.1 dargestellt, gibt es drei Bauformen von Lithium-Ionen-Batterien. Da in dieser Arbeit nur die zylindrische und prismatische Bauform relevant ist, werden nur sie hier behandelt. Die zylindrische Zelle besitzt gewickelte Elektroden-Separator-Elektroden-Paare. Analog zu einer klassischen AA-Batterie sind die positiven und negativen Anschlüsse auf jeweils einer der beiden Stirnseiten angebracht. In der konventionellen Batteriezelle wird der Strom durch ein sogenanntes "Tab" aus den Kathoden-Anoden-Paaren entnommen.

Die Bauform der zylindrischen Zell wird häufig durch ein Zahlenkürzel angegeben, bei dem die ersten beiden Ziffern den Durchmesser in [mm] vorgeben. Die nächsten beiden Ziffern stehen für die Zellhöhe, wieder in [mm]. Die letzte Ziffer ist eine 0 und schließt die Zahl ab. Zum Beispiel ist eine häufige Bauform die 18650er Zelle mit einem Durchmesser von 18 mm und einer Höhe von 65 mm. Auch viel verwendet werden die 26650er- und die 21700er-Zellgrößen¹³.

Abbildung 3.2: Prismatische und zylindrische Batteriezelle in Anlehnung an Ecker u. Sauer 2013

Vgl. DAHN et al. (Thermal stability of LixCoO2, LixNiO2 and 2-MnO2 and consequences for the safety of Li-ion cells) 1994, S. 265-270.

¹² Vgl. Leuthner (Übersicht zu Lithium-Ionen-Batterien) 2013, S. 13-19.

Vgl. (Lithium-Ionen-Batterietechnik: Zylindrische Zellen) 2021.

Der Aufbau der prismatischen Zelle (siehe Abbildung 3.2) ist relativ einfach.

In diesem Bauformat werden gewickelte oder gestapelte Elektrodenpaare verwendet. Die Spannnungs-, bzw. Stromentnahme erfolgt über "*Tabs*" in der Zelle und wird nach außen über an der Kopfseite der Batteriezelle angebrachte Anschlüsse entnommen.

Die Größe der prismatischen Zellen variiert stark und wird je nach Anwendungsfall bestimmt¹⁴.

Alterungsmechanismen und Batteriezelltemperatur

Die Leistung von LIB's hängt stark von der Zelltemperatur ab.

Mit sinkender Temperatur steigt der innere Widerstand der Zelle und die verfügbare Kapazität nimmt ab. Dies führt zu verminderter abnehmbarer Energie und geringerer maximaler Leistung. Bei hoher Zelltemperatur kann jedoch die Sicherheit der Batteriezelle nicht mehr gewährleistet werden und es finden Alterungsprozesse statt. Die Zelltemperatur ist hierbei von der Außentemperatur und dem Laden bzw. Entladen der Batterie abhängig¹⁵.

Die Temperaturgradienten die sich beim Benutzen der Batterie in der Zelle ausbilden, können auch Alterungsgradienten hervorrufen. Hinzu kommt, dass starke Temperaturgradienten, die z.B. während hoher C-Raten auftreten, Verformungen der Elektrodenwickel induzieren können¹⁶. Es ist also zu Schlussfolgern, dass eine homogene Temperaturverteilung innerhalb der Zelle von Vorteil ist.

Vgl. (Lithium-Ionen_Batterietechnik: Prismatische Zellen) 2021.

Vgl. Liu et al. (Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors) 2014, S.1001-1010.

Vgl. Waldmann et al. (Influence of Cell Design on Temperatures and Temperature Gradients in Lithium-Ion Cells: An In Operando Study) 2015, S.921-927.

4. Methodik 6

4. Methodik

5. Auswertung 7

5. Auswertung

6. Zusammenfassung und Ausblick

V. Literatur 9

V. Literatur

Ajanovic, A.; Glatt, A. Wirtschaftliche und ökologische Aspekte der Elektromobilität: Economic and ecological aspects of electric vehicles. In: *e & i Elektrotechnik und Informationstechnik* 137, 2020, S. 136–146.

- Beloit EDU. Energy Density Table.
- **DAHN, J.; Fuller, E. W.; OBROVAC, M.; Sacken, U. von**. Thermal stability of LixCoO2, LixNiO2 and 2-MnO2 and consequences for the safety of Li-ion cells. In: *Solid State Ionics* 69, 1994, S. 265–270.
- Ecker, M.; Sauer, Prof. Dr. rer. nat. D. U. Batterietechnik Lithium-Ionen-Batterien. In: *MTZ Wissen*, 2013, S. 66–70.
- Hepperle, M. Electric Flight Potential and Limitations. Germany, 2012.
- Hettesheimer, T.; Thielmann, A.; Neef, C.; Möller, K.-C.; Wolter, M.; Lorentz, V.; Gepp, M.; Wenger, M.; Prill, T.; Zausch, J.; Kitzler, P.; Montnacher, J.; Miller, M.; Hagen, M.; Fanz, P. Entwicklungsperspektiven für Zellformate von Lithium-Ionen-Batteiren in der Elektromobilität. Fraunhofer-Allianz-Batterien, 2017.
- **Leuthner, S.** Übersicht zu Lithium-Ionen-Batterien. In: *Handbuch Lithium-Ionen-Batterien*. Hrsg. von R. Korthauer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, S. 13–19.
- **Lilium**. Lilium Jet.

Lithium-Ionen-Batterietechnik: Zylindrische Zellen. 2021.

Lithium-Ionen_Batterietechnik: Prismatische Zellen. 2021.

- Liu, G.; Ouyang, M.; Lu, L.; Li, J.; Han, X. Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors. In: *Journal of Thermal Analysis and Calorimetry* 116.2, 2014, S. 1001–1010.
- Sollmann, D. Nickel-Cadmium-Batterien. 2018.
- **Traub, L. W.** Range and Endurance Estimates for Battery-Powered Aircraft. In: *Journal of Aircraft* 48.2, 2011, S. 703–707.
- Waldmann, T.; Bisle, G.; Hogg, B.; Stumpp, S.; Danzer, M. A.; Kasper, M.; Axmann, P.; Wohlfahrt-Mehrens, M. Influence of Cell Design on Temperatures and Temperature Gradients in Lithium-Ion Cells: An In Operando Study. In: *Journal of The Electrochemical Society* 162.6, 2015, A921–A927.
- Wöhrle, T. Lithium-Ionen-Zelle. Springer Verlag, 2013.

VI. Anhang

VI. Anhang

VII. Eidesstattliche Versicherung

Callard, Julian	Matrikelnummer: 377888
Ich versichere hiermit an Eides Statt, dass ic Titel HIER DEN TITEL EINFÜGEN selbststä erbracht habe. Ich habe keine anderen als d benutzt. Für den Fall, dass die Arbeit zusätzli erkläre ich, dass die schriftliche und die elekt Die Arbeit hat in gleicher oder ähnlicher Forr vorgelegen.	ndig und ohne unzulässige fremde Hilfe ie angegebenen Quellen und Hilfsmittel ch auf einem Datenträger eingereicht wird, ronische Form vollständig übereinstimmen.
Ort, Datum	Unterschrift
Dalahmuman	
Belehrung: §156 StGB: Falsche Versicherung an Eides Statt Wer vor einer zur Abnahme einer Versicherung an Eid Versicherung falsch abgibt oder unter Berufung auf ei Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe	ine solche Versicherung flasch aussagt, wird mit
§161 StGB: Fahrlässiger Falscheid; fahrlässige fa (1) Wenn eine der in den §§154 bis 156 bezeichneten ist, so tritt Freiheitsstrafe bis zu einem Jahr oder Geld (2) Staflosigkeit tritt ein, wenn der Täter die falsche Al §158 Abs. 2 und 3 gelten entsprechend.	Handlungen aus Fahrlässigkeit begangen worden Istrafe ein.
Die vorstehende Belehrung habe ich zur Ker	nntnis genommen:
Ort, Datum	Unterschrift