

(1) Publication number: 0 420 396 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication of patent specification: 08.09.93 Bulletin 93/36

(51) Int. Cl.5: A61K 31/415

(21) Application number: 90307998.6

(22) Date of filing: 20.07.90

- (54) Imidazole derivatives as histamine H3-agonists.
- 30 Priority: 25.07.89 GB 8916947
- (43) Date of publication of application : 03.04.91 Bulletin 91/14
- (45) Publication of the grant of the patent: 08.09.93 Bulletin 93/36
- (A) Designated Contracting States: CH DE FR GB IT LI NL
- G6 References cited:
 US-A- 3 759 944
 US-A- 3 891 764
 US-A- 3 954 982
 TRENDS IN PHARMACOLOGICAL SCIENCES,
 vol. 10, no. 4, April 1989, pages 159-162; J.F.
 VAN DER WERF et al.: "The histamine H3
 receptor: a general presynaptic histamergic
 regulatory system?"

- (3) Proprietor: SMITH KLINE & FRENCH LABORATORIES LIMITED Mundells
 Welwyn Garden City Hertfordshire, AL7 1EY (GB)
- (72) Inventor: Howson, William, Smith Kline & French Research Ltd The Frythe, Welwyn Hertfordshire, AL6 9AR (GB)
- (4) Representative: Waters, David Martin, Dr. et al Corporate Patents, Smithkline Beecham,2 Mundells Welwyn Garden City Hertfordshire AL7 1EY (GB)

420 396 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any p rson may give notice to the European Patent Office of opposition to the European patent d. Notice of opposition shall be filed in a written reasoned statement. It shall not be de m d to have been filed until the opposition of e has been paid (Art. 99(1) European patent convention).

D ripti n

The present invention r lates to the use of imidazole derivatives in the manufacture of medicam into having histamine H_{π} agonist activity.

Histamine, a physiologically active compound endogenous in mammals, x rts its action by interacting with certain sites called receptors. One type of receptor is known as a histamine H_1 -receptor (Ash and Schild, Brit. J. Pharmac. Chemother. $\underline{27}$ 427 (1966)) and the actions of histamine mediated through these receptors are blocked by H_1 -antagonists such as mepyramine. A second type of receptor is known as the histamine H_2 -receptor (Black et al., Nature 1972, $\underline{236}$, 385) which is not blocked by mepyramine but by H_2 -antagonists such as burimamide or cimetidine. A third type of receptor known as the histamine H_3 -receptor has more recently been identified (e.g. Arrang et al., Nature 1987, $\underline{327}$, 117 and Van der Werf et al., (1989) Trends Pharmacol. Sci. 10, 159) which is stimulated by H_3 -agonists such as (R)- α -methylhistamine and blocked by H_3 -antagonists such as thioperamide.

US-A-3759944 discloses isothiourea derivatives which are described as acting at histamine receptors other than the H₁-receptor and are of utility in inhibiting certain actions of histamine which are not inhibited by H₁-antagonists. A particular isothiourea described is S-[2-(4(5)-imidazolyl)ethyl]isothiourea dihydrobromide or dihydrochloride. This compound is also disclosed in US-A-3954982 wherein it is described as an H₂-antagonist. The prime utility of an H₂-antagonist would be in the treatment of duodenal, gastric, recurrent and stomal ulceration and reflux oesophagitis.

US-A-3891764 discloses amidine derivatives as histamine H₂-antagonists. A particular compound described is 4-(4(5)-imidazolyl)but yramidine dihydrochloride.

It has now been discovered that the above named imidazole compounds are highly potent selective histamine H₃-agonists.

Accordingly the present invention provides the use of a compound of the formula (1):

25

30

35

40

50

5

10

15

20

or a pharmaceutically acceptable salt thereof:

wherein X is CH2 or S,

in the manufacture of a medicament having histamine-H₃-agonist activity.

Particular compounds of the formula (1) are:

S-[2-(4(5)-imidazolyl)ethyl]isothiourea or 4-(4(5)-imidazolyl)butyramidine or pharmaceutically acceptable salts thereof.

These compounds can form pharmaceutically acceptable acid addition salts with hydrochloric, hydrobromic, sulphuric, phosphoric, acetic, citric, maleic, lactic, ascorbic, fumaric, oxalic, methanesulphonic and ethanesulphonic acids.

In order to use a compound of the formula (1) or a pharmaceutically acceptable salt thereof for the treatment of humans and other mammals it is normally formulated in accordance with standard pharmaceutical practice as a pharmaceutical composition.

Compounds of formula (1) and their pharmaceutically acceptable salts can be administered in standard manner for example orally, sublingually, parenterally, transdermally, rectally, via inhalation or via buccal administration.

Compounds of formula (1) and their pharmaceutically acceptable salts which are active when given orally or via buccal administration can be formulated appropriately in dosage forms such as liquids, syrups, tablets, capsules and lozenges. An oral liquid formulation will generally consist of a suspension or solution of the compound or salt in a liquid carrier for example, ethanol, glycerine or water with a flavouring or colouring agent. Where the composition is in the form of a tablet, any pharmaceutical carrier routinely used for preparing solid formulations can be used. Examples of such carriers include magnesium stearate, starch, celluloses, lactose and sucrose. Whose the composition is in the form of a capsule, any routine necapsulation is suitable, for xample using the aforementioned carriers in a hard gelatin capsule should be aforementioned carrier or in a hard gelatin capsule should be aforementioned carrier or in a hard gelatin capsule should be aforementioned carrier or or a soft gelatin should be aforementioned carrier or or a soft gelatin should be considered, for example aqueous gums, celluloses, silicates or oils and are incorporated in a soft

gelatin capsule shell.

10

15

20

30

35

45

50

55

Typical parenteral compositions consist of a solution or susp nsion of the compound or salt in a sterile aquious or non-aquious carrier optionally containing a par interally acceptable oil or solubilising agent, for example polyethyle neiglycol, polyvinylpyrrolidone, 2-pyrrolidone, cyclodextrin, lecithin, arachis oil, or sesam oil

A typical suppository formulation comprises a compound of formula (1) or a pharmaceutically acceptable salt thereof which is active when administered in this way, with a binding and/or lubricating agent, for example polymeric glycols, gelatins, cocoa-butter or other low melting vegetable waxes or fats or their synthetic analogues.

Typical transdermal formulations comprise a conventional aqueous or non-aqueous vehicle, for example a cream, ointment, lotion or paste or are in the form of a medicated plaster, patch or membrane.

Typical compositions for inhalation are in the form of a solution, suspension or emulsion that may be administered in the form of an aerosol using a conventional propellant such as dichlorodifluoromethane or trichlorofluoromethane, or are in the form of a powder for insufflation.

Preferably the composition is in unit dosage form, for example a tablet, capsule or metered aerosol dose, so that the patient may administer to himself a single dose.

Each dosage unit for oral administration contains suitably from 0.1 mg to 50 mg, and preferably from 1 mg to 25 mg, and each dosage unit for parenteral administration contains suitably from 0.1 mg to 25 mg, of a compound of formula (1) or a pharmaceutically acceptable salt thereof calculated as the free base.

The daily dosage regimen for oral administration is suitably about 0.1 mg to 200 mg, preferably 1 mg to 100 mg, of a compound of formula (1) or a pharmaceutically acceptable sail thereof calculated as the free base. The daily dosage regimen for parenteral administration is suitably about 0.1 mg to 100 mg, for example about 1 mg to 40 mg, of a compound of the formula (1) or a pharmaceutically acceptable sail thereof calculated as the free base. The active ingredient may be administered as required for example from 1 to 4 times a day or by infusion. For administration by inhalation dosages are controlled by a valve, are administered as required and for an adult are conveniently in the range 0.1-5.0 mg of a compound of the formula (1) or a pharmaceutically acceptable sail thereof.

The compounds of this invention may be co-administered with other pharmaceutically active compounds, for example in combination, concurrently or sequentially. Conveniently the compounds of this invention and the other active compound or compounds are formulated in a pharmaceutical composition. Examples of compounds which may be included in pharmaceutical compositions with the compounds of the formula (1) are H₁-antagonists such as mepyramine, H₂-antagonists such as cimetidine or ranitidine, phosphodiesterase inhibitors such as theophylline or aminophylline, bronchodilators such as sympathomimetic amines for example isoprenaline, isoetharine, salbutamol, phenylephrine or ephidrine or anti-allergic agents such as disodium cromoglycate.

The histamine H_{3} -agonist activity of the compounds of formula (1) was assessed by a method similar to that described by Trzeciakowski (1987), J. Pharmacol. Exp. Ther., $\frac{243}{1}$, 874-880. Inhibition of the electrically evoked twitch responses of the guinea-pig ileum by histamine H_{3} -receptor agonists was studied by addition of graded concentrations of the compound (in volumes of 25 μ l or 79 μ l) to the organ bath in a sequential manner. Each concentration of agonist was washed out of the bath when the response had reached equilibrium. A four minute period was allowed between each addition of the compound. The concentration of compound which caused 50% inhibition of the twitch response is given as the EC₅₀ (nM). The following results were obtained:

Compound of formula (1)	EC ₅₀ (nM)
X = S	4.6
$X = CH_2$	1.1
(R)-α-methylhistamine	6 0

The activity of the compounds of the formula (1) at the histamine H₁- or H₂-receptor was assessed sub-

EP 0 420 396 B1

tantially as described by Parsons et al., Agents and Actions, 1976, $\underline{7}(1)$, 31. On the guinea-pig atrium the compund of the f rmula (1) wher in X is S demonstrated histamine H_2 -agonist activity in the range 5 x 10^{-6} M to 10^{-4} M whilst the corresponding compound where X is CH_2 had no histamine H_2 -agonist activity up to 10^{-6} M.

Results blain d on the guin a-pig atrium demonstrat weak histamine H₂-antagonist activity:

pA ₂
4.1
<u>ca</u> 3.6

15

20

25

30

35

5

10

On the guinea-pig ileum the compound of the formula (1) wherein X is S demonstrated histamine H_1 -agonist activity in the range 10^{-4} to $10^{-3}M$, whilst the corresponding compound where X is CH_2 had no histamine H_1 -agonist activity up to $10^{-5}M$.

On the guinea-pig ileum the compound of the formula (1) wherein X is CH₂ had no histamine H₁-antagonist activity up to 10⁻⁵M.

The above results indicate that the compounds of the formula (1) are highly potent selective histamine H_3 -agonists, being about 10000 times more potent at the histamine H_3 -receptor than at either the histamine H_1 - or H_2 -receptor.

Agonists of the histamine H_3 -receptor are believed to inhibit the synthesis and release of neurotransmitters such as histamine and are therefore likely to decrease neurotransmitter release in the digestive tract and in the nervous, cardiovascular and immune systems. They are likely to have utility as a sedative, as a sleep regulator, anti-convulsant, regulator of hypothalamo-hypophyseal secretion, anti-depressant and modulator of cerebral circulation. Modification of release of the messengers of immune responses is likely to modulate the immune system.

It is believed that the compounds of the formula (1) will be particularly useful in the treatment of allergic diseases such as allergic asthma, allergic rhinitis or urticaria or in the treatment of gastrointestinal motility disorders such as irritable bowel syndrome. The use of histamine H_1 - or H_2 -antagonists alone or in combination is not regarded as being efficacious. Histamine H_1 or H_2 -agonists would be contra-indicated for such disease states

The following example serves to illustrate a pharmaceutical composition of this invention.

Example 1

A pharmaceutical composition for oral administration is prepared containing:

40

45

50

55

EP 0 420 396 B1

			% by weight
		4-(4-(5)-imidazolyl)butyramidine	55
5	A	Dibasic calcium phosphate dihydrate	20
		Approved colouring agent	0.5
10		Polyvinylpyrrolidone	4.0
			% by weight
		Microcrystalline Cellulose	8.0
15		Maize Starch	8.0
	В	Sodium glycollate	4.0
		Magnesium Stearate	0.5

by mixing-together the ingredients A (substituting lactose or microcrystalline cellose for dibasic calcium phosphate dihydrate if desired), adding a concentrated solution of polyvinylpyrrolidone and granulating, drying and screening the dried granules; adding the ingredients B to the dried granules and compressing the mixture into tablets containing 10 mg, 25 mg or 50 mg of the free base.

Claims

20

25

30

35

40

45

1. The use of a compound of the formula (1):

 $(CH_2)_2X \longrightarrow NH$ NH_2 (1)

or a pharmaceutically acceptable salt thereof wherein X is CH_2 or S in the manufacture of a medicament having histamine H_3 -agonist activity.

2. The use of a compound of the formula (1):

HN N NH₂

or a pharmaceutically acceptable salt thereof wherein X is CH₂ or S in the manufacture of a medicament for treating allergic disease.

3. The use of a compound of the formula (1):

55

$$(CH2)2X NH$$

$$NH2$$

$$(1)$$

or a pharmaceutically acceptable salt thereof wherein X is CH₂ or S in the manufacture of a medicament for treating gastrointestinal motility disorders.

- 4. The use according to any one of claims 1 to 3 wherein the compound of the formula (1) is S-[2-(4(5)-imidazolyl)ethyl)isothiourea or a pharmaceutically acceptable salt thereof.
- The use according to any one of claims 1 to 4 wherein the compound of the formula (1) is 4-(4(5)-imidazolyl)butyramidine or a pharmaceutically acceptable salt thereof.

Patentansprüche

5

10

15

20

25

30

35

40

45

50

1. Verwendung einer Verbindung der Formel (1)

$$(CH2)2X NH$$

$$NH2$$

$$(1)$$

oder eines pharmazeutisch verträglichen Salzes davon, wobei der Rest X CH₂ oder S bedeutet, für die Herstellung eines Medikaments mit Histamin H₃-Agonist-Wirksamkeit.

2. Verwendung einer Verbindung der Formel (1)

$$(CH_2)_2X \qquad NH$$

$$NH_2 \qquad (1)$$

oder eines pharmazeutisch verträglichen Salzes davon, wobei der Rest X CH₂ oder S bedeutet, für die Herstellung eines Medikaments zur Behandlung allergischer Erkrankungen.

Verwendung einer Verbindung der Formel (1)

$$(CH2)2X NH NH2$$

oder eines pharmazeutisch verträglichen Salzes davon, wobei der Rest X CH₂ oder S bedeutet, für die Herstellung eines Medikaments zur Behandlung gastrointestinaler Motilitätsst "rungen.

- Verwendung nach inem der Ansprüche 1 bis 3, wobei die Verbindung der Formel (1) S-[2-(4(5)-lmida-z lyl) thyl]isothioharnstoff oder ein pharmazeutisch verträgliches Salz dav n ist.
 - 5. Verwendung nach in m der Ansprüche 1 bis 4, wobei die Verbindung der Formel (1) 4-(4(5)-

EP 0 420 396 B1

lmidazolyl)butyramidin oder ein pharmaz utisch verträglich s Salz davon ist.

R v ndi ations

5

10

1. Utilisation d'un composé de formule (1):

$$(CH_2)_2 \times NH$$

$$NH_2$$

$$(1)$$

ou d'un sel de celui-ci acceptable du point de vue pharmaceutique, dans laquelle X est CH₂ ou S, dans la fabrication d'un médicament ayant une activité agoniste H₃ de l'histamine.

2. Utilisation d'un composé de formule (1):

$$(CH2)2X NH$$

$$HN N NH2$$
(1)

ou d'un sel de celui-ci acceptable du point de vue pharmaceutique, dans laquelle X est CH₂ ou S, dans la fabrication d'un médicament pour le traitement de maladies allergiques.

3. Utilisation d'un composé de formule (1):

$$(CH_2)_2X \qquad NH$$

$$NH_2 \qquad (1)$$

ou d'un sel de celui-ci acceptable du point de vue pharmaceutique, dans laquelle X est CH₂ ou S, dans la fabrication d'un médicament pour le traitement de troubles de la mobilité gastro-intestinale.

- 4. Utilisation suivant l'une quelconque des revendications 1 à 3, dans laquelle le composé de formule (1) est la S-[2-(4(5)-imidazolyl)-éthyl]-isothiourée ou un sel de celle-ci acceptable du point de vue pharmaceutique.
- Utilisation suivant l'une quelconque des revendications 1 à 4, dans laquelle le composé de formule (1) est la 4-(4(5)-imidazolyl)-butyramidine ou un sel de celle-ci acceptable du point de vue pharmaceutique.

50

30

35

40

55