

Laborbericht

Ermittlung Aerodynamischer Größen im Flugversuch mit der Do 128-6

Marco De GaetanoMatr.Nr.: 4813585Jens KarchMatr.Nr.: 4790996Philip MargenfeldMatr.Nr.: 4791034Kilian SchultzMatr.Nr.: 4510545Wentao WuMatr.Nr.: 4787695

Betreuer: Mark Bitter (mark.bitter@tu-braunschweig.de)

Inhaltsverzeichnis

No	menl	klaturverzeichnis	i
Ab	bilduı	ngsverzeichnis	ii
Та	bellen	verzeichnis	iii
1	Einle	eitung	1
2	Theo	oretische Grundlagen	2
	2.1	Stationärer Gleitflug	2
	2.2	Umrechnen der Versuchsdaten	3
3	Vers	uchsdurchführung	4
	3.1	Ergebnisse	5
4	Mas	senabschätzung	6
5	Ausv	vertung der Messdaten	7
6	Dars	tellung der Ergebnisse	8
7	Inter	pretation der Ergebnisse	9
	7.1	Analyse durch Marco De Gaetano	9
	7.2	Analyse durch Jens Karch	10
	7.3	Analyse durch Philip Margenfeld	11
	7.4	Analyse durch Kilian Schultz	12
	7.5	Analyse durch Wentao Wu	13
8	Fazit	und Fehlerdiskussion	14
	8.1	Marco	14
	8.2	Jens	14
	8.3	Philip	14
	8.4	Kilian	14
	8.5	Wentao	14
Lit	eratu	rverzeichnis	15

Nomenklaturverzeichnis

Lateinische Formelzeichen

Auftriebskraft	[N]
Auftriebsbeiwert	[1]
Widerstandsbeiwert	[1]
Erdbeschleunigung	$[m/s^2]$
Masse	[kg]
Querkraft	[N]
Geschwindigkeit	[m/s]
Widerstandskraft	[N]
Sinkgeschwindigkeit	[m/s]
	Auftriebsbeiwert Widerstandsbeiwert Erdbeschleunigung Masse Querkraft Geschwindigkeit Widerstandskraft

Griechische Formelzeichen

ε	reziproke Gleitzahl	[1]
γ	Bahnneigungswinkel	[°]

Abbildungsverzeichnis

1.1	Luftkräfte an einem Flugzeu	⁷ [1]]

Tabellenverzeichnis

3.1	Technische Daten des	Versuchsflugzeugs Do 128-6		4
-----	----------------------	----------------------------	--	---

1 Einleitung

Eine Grundvoraussetzung um die Bewegung und Dynamik von Flugkörpern und insbesondere von Flugzeugen zu verstehen, ist das ermitteln wichtiger aerodynamischer Größen. Das Wort Aerodynamik setzt sich aus den zwei altgriechischen Wörtern *aer* (dt. Luft) und *dynamis* (dt. Kraft) zusammen und beschreibt somit das Verhalten eines luftumströmten Körpers.

Abbildung 1.1: Luftkräfte an einem Flugzeug [1]

Im Windkanal können solche umströmten Körper getestet werden, wobei durch direkte Kraftmessung ermittelt werden kann, wie groß die Luftkräfte (Auftrieb A , Widerstand W und die hier nicht näher betrachtete Querkraft Q) sind. Aus diesen Kräften lassen sich dann die dimensionslosen aerodynamischen Kennwerte ableiten.

In diesem Labor sollen jedoch die aerodynamischen Eigenschaften des Forschungsflugzeugs der TU Braunschweig, einer Dornier Aircraft Do 128-6, analysiert werden. Natürlich kann ein Flugzeug mit diesen Dimensionen nicht ohne weiteres in einem Windkanal geprüft werden. Um also die aerodynamischen Größen zu ermitteln, bedienen wir uns in diesem Labor einer anderen Methode: der Bestimmung aller Kennwerte ohne direkte Kraftmessung im **stationären Sinkflug**. Diese Methodik wird in Kapitel 3 genauer beschrieben.

Das Labor hilft uns das theoretische Wissen, welches wir in Vorlesungen wie Flugmechanik I (Flugleistungen) erlernt haben, auf die Probe zu stellen und erstmals praktisch einzusetzen. Dazu zählt das be- und umrechnen diverser flugmechanischer Größen, aber auch die Erstellung, Analyse und Interpretation von charakteristischen Diagrammen, wie zum Beispiel der LILIENTHAL-Polare. Dabei werden wir nicht immer auf verlässliche Daten stoßen und lernen dem entsprechend auch mit solchen fehlerbehafteten Daten sinnvoll umzugehen.

2 Theoretische Grundlagen

Um die aerodynamischen Größen, wie Auftrieb, Widerstand und deren Beiwerte ohne direkte Kraftmessung zu bestimmen, sind einige Formeln sowie theoretische Grundlagen erforderlich. Da für den Flugversuch nur der stationäre Sinkflug ohne Schub (Gleiten) relevant ist, wird im Folgendem nur dieser Zustand betrachtet.

Zusätzlich werden folgende Vereinfachungen getroffen:

- konst. Bahnwinkel: $\gamma = const.$
- Propellerschub gleicht Propellerwiderstand aus: F = 0
- konst. Geschwindigkeit $V_I AS = const.$
- Instrumente sind auf Standardatmosphäre kalibriert
- Einbaufehler der Messinstrumente werden nicht berücksichtigt
- Vernachlässigung vom Wind

2.1 Stationärer Gleitflug

Der Grundsatz des stationären Fluges ist, dass die am Flugzeug angreifenden Kräfte im Gleichgewicht stehen.

Das Kräftegleichgewicht mit den zuvor getroffenen Annahmen liefert:

$$W + mg * sin(\gamma) = 0 \tag{2.1}$$

$$A - mg * cos(\gamma) = 0 (2.2)$$

Durch trigonometrische Beziehungen ergibt sich:

$$\sin(\gamma) = -\frac{w_g}{V} \tag{2.3}$$

Abbildung 1.1 verdeutlicht diese Zusammenhänge.

Der nach oben hin positiv definierte Bahnwinkel γ ergibt sich aus dem Kräftegleichgewicht zu:

$$tan(\gamma) = -\frac{W}{A} \tag{2.4}$$

und unter Verwendung der Auftriebs- und Widerstandsbeiwerte zu:

$$tan(\gamma) = -\frac{C_W}{C_A} \tag{2.5}$$

Um Aussagen über die aerodynamische Güte eines Flugzeuges treffen zu können wird die reziproke Gleitzahl ϵ eingeführt. Sie ergibt sich aus dem Verhältnis von Widerstand und Auftrieb.

$$\varepsilon = \frac{W}{A} = -tan(\gamma) \tag{2.6}$$

2.2 Umrechnen der Versuchsdaten

2.2.1 Fluggeschwindigkeit

Die bei dem Testflug abgelesene Fluggeschwindigkeit (V_{IAS} : indicated airspeed) muss vor der Auswertung in die reale Geschwindigkeit (V_{TAS} : true airspeed) umgerechnet werden.

$$V_{TAS} = V_{IAS} * \sqrt{\frac{\varrho_0}{\varrho_{real}}}$$
 (2.7)

Die reale Dichte ergibt sich unter Annahme einer isobaren Zustandsänderung aus:

$$\varrho_{real} = \varrho_{INA} * \frac{T_{INA}}{T_{real}} \tag{2.8}$$

Gl. 2.8 in Gl. 2.7:

$$V_{TAS} = V_{IAS} * \sqrt{\frac{\varrho_0}{\varrho_0} * \frac{T_{real}}{T_{INA}}}$$
 (2.9)

3 Versuchsdurchführung

Der Flugversuch fand am Dienstag den 21.05.2019 um 13:00 Uhr am Forschungsflughafen Braunschweig-Wolfsburg (EDVE) statt. Insgesamt waren sechs Personen an Bord des Forschungsflugzeuges, darunter ein Pilot vom Institut für Flugführung sowie wir fünf Laboranten. Damit ergab sich ein Besatzungsgewicht von $427\ kg$.

Das genutzte Forschungsflugzeug war eine Do 128-6 aus dem Hause Dornier Aircraft mit der Registrierung D-IBUF. Die technischen Daten dieses Flugzeugmusters können aus nachfolgender Tabelle entnommen werden:

Bezeichnung	Formelzeichen	Wert
Flügelbezugsfläche	S	29 m²
Spannweite	Ъ	15,55 m
Rüstmasse	$m_{(}Rst)$	3188 kg
Kraftstoffvolumen max.	$V_{(Kraftst, max)}$	1470 <i>l</i>
Kraftstoffdichte	$\rho_{(Kraftst)}$	0,784 kg l

Tabelle 3.1: Technische Daten des Versuchsflugzeugs Do 128-6

Zum Zeitpunkt des Flugversuchs war die Wolkenuntergrenze etwas niedrig (Wolkenuntergrenze bei 1600 ft AMSL laut METAR, entspricht etwa 700 ft AGL), doch im Verlauf des Flugversuchs stieg die Wolkenuntergrenze an, sodass der Flugversuch problemlos durchgeführt werden konnte. Die Bodenwerte während des Versuchs lagen bei einer Temperatur von 20 C (rund 293 K) und einem Druckwert von 1006 hPa. Die lokale METAR Meldung kurz vor dem Versuch lautete wie folgt:

EDVE 211120Z 31010KT 280V350 9999 SCT016 20/15 Q1006

Um 13:18 Uhr hob das Flugzeug auf Piste 26 in Richtung Westen ab. Nach etwa 8 Minuten begann der eigentliche Versuch, indem der Pilot vier stationäre Sinkflüge mit unterschiedlichen Geschwindigkeiten einleitete. Ziel war es dabei einen Gleitflug zu simulieren, also die Sinkflüge ohne Schub durchzuführen. Da die Triebwerke allerdings Widerstand erzeugen, wurde der Schub nicht ganz auf Null zurückgefahren, sondern nur soweit, dass dieser Widerstand überwunden wird. Durch diese Methode lassen sich die Luftkräfte (Auftrieb und Widerstand) nach Gleichung 2.2 und 2.1 berechnen.

Um 13:40 Uhr landete das Flugzeug wieder am Forschungsflugzeug. Der Versuch war damit beendet.

3.1 Ergebnisse

Alle Sinkflüge wurden in einem Höheninterval von 1000 ft durchgeführt. Dabei starteten wir bei etwa 2500 ft und sanken auf rund 1500 ft ab. Sämtliche Höhenangaben beziehen sich dabei auf die angezeigte Höhe über der Bezugsfläche 1013,25 hPa.

Die Geschwindigkeit wurde als Stellfaktor der vier verschiedenen Sinkflüge gewählt. Beim ersten Sinkflug starteten wir mit einer angezeigten Geschwindigkeit von 80 kt, wobei versucht wurde diese Geschwindigkeit möglichst konstant bis zum Ende des Sinkflugs zu halten. Der zweite Sinkflug wurde dann bei 100 kt, der dritte bei 120 kt und der letzte bei 140 kt angezeigter Geschwindigkeit durchgeführt.

Zu Beginn und Ende jedes Sinkflugs wurden die Temperatur, sowie der aktuelle (seit Triebwerkstart) verbrauchte Kraftstoff abgelesen. Zudem wurde die Zeit gestoppt, die für den Sinkflug über 1000 ft benötigt wurde.

Die nachfolgende Tabelle zeigt unsere ermittelten Ergebnisse zu den Sinkflügen.

4 Massenabschätzung

5 Auswertung der Messdaten

6 Darstellung der Ergebnisse

7 Interpretation der Ergebnisse

- 7.1 Analyse durch Marco De Gaetano
- 7.1.1 Höhenruder-Trimmkurve
- 7.1.2 Auftriebsbeiwert über den Anstellwinkel
- 7.1.3 LILIENTHAL-Polare
- 7.1.4 Widerstand über die Fluggeschwindigkeit
- 7.1.5 Staudruck und Fluggeschwindigkeit über dem Anstellwinkel

7.2 Analyse durch Jens Karch

- 7.2.1 Höhenruder-Trimmkurve
- 7.2.2 Auftriebsbeiwert über den Anstellwinkel
- 7.2.3 LILIENTHAL-Polare
- 7.2.4 Widerstand über die Fluggeschwindigkeit
- 7.2.5 Staudruck und Fluggeschwindigkeit über dem Anstellwinkel

7.3 Analyse durch Philip Margenfeld

- 7.3.1 Höhenruder-Trimmkurve
- 7.3.2 Auftriebsbeiwert über den Anstellwinkel
- 7.3.3 LILIENTHAL-Polare
- 7.3.4 Widerstand über die Fluggeschwindigkeit
- 7.3.5 Staudruck und Fluggeschwindigkeit über dem Anstellwinkel

7.4 Analyse durch Kilian Schultz

- 7.4.1 Höhenruder-Trimmkurve
- 7.4.2 Auftriebsbeiwert über den Anstellwinkel
- 7.4.3 LILIENTHAL-Polare
- 7.4.4 Widerstand über die Fluggeschwindigkeit
- 7.4.5 Staudruck und Fluggeschwindigkeit über dem Anstellwinkel

7.5 Analyse durch Wentao Wu

- 7.5.1 Höhenruder-Trimmkurve
- 7.5.2 Auftriebsbeiwert über den Anstellwinkel
- 7.5.3 LILIENTHAL-Polare
- 7.5.4 Widerstand über die Fluggeschwindigkeit
- 7.5.5 Staudruck und Fluggeschwindigkeit über dem Anstellwinkel

8 Fazit und Fehlerdiskussion

- 8.1 Marco
- 8.2 Jens
- 8.3 Philip
- 8.4 Kilian
- 8.5 Wentao

Literaturverzeichnis

[1] Institut für Flugführung. Skript: Versuch Flugmechanik zum Kompetenzfeldlabor der Luft- und Raumffahrttechnik. Technische Universität Braunschweig, SS2019.