

Incertezas

Como mencionado na Seção 3.4, um dos procedimentos para se determinar o volume de amostragem consiste em posicionar um papel milimetrado alinhado com o LASER instalado na câmara de nuvens. Este procedimento como qualquer outro relativo a medições associa uma incerteza no valor do volume de amostragem. O valor da incerteza Δv_a de 1,76 do volume de amostragem é obtido a partir de uma análise da repercussão que um erro no posicionamento do papel milimetrado em relação a câmera digital, utilizado para calibração da relação pixel/milimetro, pode acarretar.

Considerando-se que o LASER tem aproximadamente 2 mm de diâmetro, é admitido um possível erro de posicionamento de \pm 1.0 mm em relação ao eixo axial do mesmo no momento da calibração. Assim sendo, foram tiradas três fotografias do papel milimetrado nas posições 1.0 mm atrás do eixo, no centro do eixo e 1.0 mm a frente do eixo. Isto implica em três diferentes relações pixel/milimetro, sendo que a correta é aquela cujo papel milimetrado encontra-se perfeitamente alinhado com o centro axial do LASER. A possibilidade de um erro de \pm 1.0 mm é uma condição bastante conservadora, pois, na prática o LASER fornece uma boa orientação no posicionamento do papel milimetrado dentro da câmara de nuvens. A fotografia

mostrada na Figura C.1 mostra o papel milimetrado posicionado dentro da câmara de nuvens e a Figura C.2 mostra a fotografia do papel milimetrado tirada pela câmera digital instalada na câmara de nuvens mostrando a relação *pixel*/milimetro e a incerteza de cada medida devido ao erro de posicionamento dentro da câmara de nuvens.

Figura C.1: papel milimetrado posicionado dentro da câmara de nuvens.

Figura C.2: fotografia do papel milimetrado tirada pela câmera do CCNC-SDCC para calibração considerando o erro da relação *pixel*/milimetro devido ao erro de posicionamento dentro da câmara de nuvens.

Conforme a Seção 3.4 o volume de amostragem V_a é definido por

$$V_a = \pi r^2 l, \tag{C.1}$$

em que r é o raio da luz LASER e l é o comprimento da luz LASER na região de interesse.

Os valores de r e l são obtidos, com a ajuda do papel milimetrado, por:

$$r = \frac{ab}{2c} \quad e \tag{C.2}$$

$$l = \frac{de}{f}. (C.3)$$

em que a é comprimento de c pixels na direção vertical, b é o número de pixels do diâmetro do laser estimados de acordo com a Seção 3.4, d é o comprimento de f pixels na direção horizontal e e é o máximo comprimento de pixels visíveis do volume de amostragem.

Considerando-se que a incerteza na determinação da relação pixel/milimetro implica em uma incerteza em r e l, a incerteza Δv_a é, desta forma, definida por:

$$\Delta v_a = \frac{\partial v}{\partial a} \Delta a + \frac{\partial v}{\partial b} \Delta b + \frac{\partial v}{\partial c} \Delta c + \frac{\partial v}{\partial d} \Delta d + \frac{\partial v}{\partial e} \Delta e + \frac{\partial v}{\partial f} \Delta f, \tag{C.4}$$

em que Δa , Δb , Δc , Δd , Δe e Δf são as incertezas dos respectivos parâmetros.

Os valores dos parâmetros e de suas incertezas são mostrados na Tabela a seguir:

Tabela C.1: parâmetros e suas incertezas

Parâmetro	Medida	Incerteza	Unidade
a	2.0	0,05	$_{ m mm}$
b	73	1	pixel
c	89	1	pixel
d	14	0.05	mm
е	620	10	pixel
f	606	10	pixel