

For a get V, the orthogonal Complexant of V is given as

V = { y & y is orthogonal to all the vectors of V?

= { y , (y, x) = 0; V x e V}

X = V , Y eV ; x e R; x e V

(x Y + Y 2 , x > = x < Y 1 x > + Y 2 , x > = 0

⇒ $AY_{A} + Y_{2} \in Y^{\perp}$ ⇒ V^{\perp} is a vector space:

Rank-mility Theorem: $A \in IR$ Jim $(R(A)) = Jim (R(A^{\top})) = vank(A) = r$ Jim N(A) = n - Jim (R(A)) = n - rJim $N(A^{\top}) = m - Jim (R(A^{\top})) = m - r$ $N(A) = (R(A^{\top}))^{\perp}$; $N(A^{\top}) = (R(A))^{\perp}$

$$\frac{1}{1} \times \frac{1}{1} \times \frac{1}$$

Exercise: Let F, G two vector spa Subspaces of the vector space 12th. Prove that 1 1) (FUG) = F DG 2) F + G = (FDG) - (Rg:1 2- FCFUG - GCFUG ⇒ (FUG) CFL; (FUG) CGL (= ⇒ (FUG) CF OG+ (X,Y)= 0 YY FUG $x \in (F \cup G)^{\perp}$ → F+ nG1 C (FOG) (FUG) = F

$$\frac{\text{Expli}}{\text{Pv}_{2}(V_{1})^{\frac{3}{2}}} = \frac{(3i, 2, 5)}{\text{Pv}_{2}(V_{1})} = \frac{(5, 3, 3i)}{\text{Pv}_{2}(V_{1})} = \frac{(3i, 2, 5)}{\text{Pv}_{2}(V_{1})} = \frac{(5, 3, 3i)}{\text{Pv}_{2}(V_{1})} = \frac{(5, 3, 3i)}{\text{Pv}_{2}(V_{1})$$

$$\frac{dD}{du-P_{v}(u)} + \sqrt{\frac{dv}{v}} = \frac{dv}{v} + \frac{dv}{v} + \frac{dv}{v} = \frac{dv}{v} + \frac{dv}{$$

Explit
$$\frac{1}{1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}; b_{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \mathbf{U} = \begin{pmatrix} 3 \\ 3 \\ 2 \end{pmatrix}; \frac{P(u)_{2}(3)}{3}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \\ 3 \end{pmatrix} = A^{T} P_{Y}(u) = A^{T} U.$$

$$A^{T}(u - P_{Y}(u)) = 0.$$

Sb_1....lm | , Lie R', 1=2, _, m. V= span Sb_1, _...lm |. U-P_V(U) & W(AT)

A=[b] ...lm

P_V= A (AAT)^-1 AT, P_V= A (AAT) B U.

$A \times = U'$	42 u-P,(4)
AX=4 has	<u>/</u> V)
AX=4 has	Solution.
Ly & Cock A	
The Closest,	vetor to u flat is in the span
of \$16; 1 ^m = V	$\Rightarrow P(u)$
	Least-square Salutions.