Matrix Manual

Linlin Ge

1 Symbols

Symbols	Descriptions
=	is equivalent to
:= <u>\</u>	equal by definition
≈	is approximately
~	similar or weak approximately

2 Norm on Vector Space

Definition 2.1. The size of a vector $v = (a_1, \dots, a_n)^T$ is

$$||v|| = ||v||_2 = \sqrt{a_1^2 + \dots + a_n^2}$$
 (2.1)

3 Matrix Norms

Definition 3.1. 1-norm is maximal column sum

$$||A||_1 = \max_{j=1}^n \sum_{i=1}^n |a_{ij}|$$
(3.1)

Definition 3.2. ∞ -norm is maximal row sum

$$||A||_1 = \max_{i=1}^n \sum_{j=1}^n |a_{ij}|$$
(3.2)

Definition 3.3. 2-norm

$$||A||_2 = \max_{i=1}^n \sqrt{\lambda_i(A^T A)}$$
 (3.3)

Theorem 3.1 For $A, B \in M_n(R)$

- (I) $||A|| \ge 0$, with equality if and only if A = O
- (II) $||A + B|| \le ||A|| + ||B||$

- (III) ||cA|| = |c|||A||
- (IV) $||AB|| \le ||A|| ||B||$
- (V) $||A|| = ||A^T||$

(VI)
$$||AA^T|| = ||A^TA|| = ||A||^2$$
. Thus $||A|| = \sqrt{||AA^T||} = \sqrt{||A^TA||}$

- (VII) $|(Av, w)| \le ||A|| ||v|| ||w||$
- (VIII) $||A||_{sup} \le ||A|| \le n\sqrt{n}||A||_{sup}$

References