IN THE CLAIMS

The status of each claim in the application is provided below:

1. (Twice Amended) A compound represented by formula (I):

$$\begin{array}{c|c}
X & 6 & N & 2 & NHR^1 & R^3 \\
X & 6 & N & 2 & NHR^2 & R^4
\end{array}$$

$$\begin{array}{c|c}
X & 0 & NHR^1 & R^3 & R^4 & R^4 & R^4 & R^4
\end{array}$$

wherein

X is hydrogen, halogen, trifluoromethyl, lower alkyl, unsubstituted or substituted phenyl, lower alkyl-thio, phenyl-lower alkyl-thio, lower alkyl-sulfonyl, or phenyl-lower alkyl-sulfonyl;

Y is hydroxyl, mercapto, lower alkoxy, lower alkyl-thio, halogen, lower alkyl, unsubstituted or substituted mononuclear aryl, or $-N(R^2)_2$;

R¹ is hydrogen or lower alkyl;

each R² is, independently, -R⁷, -(CH₂)_m-OR⁸, -(CH₂)_m-NR⁷R¹⁰,

-(CH₂)_n(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸, -(CH₂CH₂O)_m-R⁸,

 $-(CH_{2}CH_{2}O)_{m}-CH_{2}CH_{2}NR^{7}R^{10}, -(CH_{2})_{n}-C(=O)NR^{7}R^{10}, -(CH_{2})_{n}-Z_{g}-R^{7}, -(CH_{2})_{m}-NR^{10}-R^{10}+R^{1$

CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸, -(CH₂)_n-CO₂R⁷, or

$$--(CH_2)_n$$
 O
 R^7

R³ and R⁴ are each, independently, hydrogen, a group represented by formula (A), lower alkyl, hydroxy lower alkyl, phenyl, phenyl-lower alkyl, (halophenyl)-lower alkyl, lower-(alkylphenylalkyl), lower (alkoxyphenyl)-lower alkyl, naphthyl-lower alkyl, or pyridyl- lower alkyl, with the proviso that at least one of R³ and R⁴ is a group represented by formula (A):

wherein

each R^L is, independently, -R⁷, -(CH₂)_n-OR⁸, -O-(CH₂)_m-OR⁸,

 $-(CH_2)_n-NR^7R^{10}$, $-O-(CH_2)_m-NR^7R^{10}$, $-(CH_2)_n(CHOR^8)(CHOR^8)_n-CH_2OR^8$,

-O-(CH₂)_m(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸, -(CH₂CH₂O)_m-R⁸,

 $-O-(CH_2CH_2O)_m-R^8$, $-(CH_2CH_2O)_m-CH_2CH_2NR^7R^{10}$,

 $-O-(CH_2CH_2O)_m-CH_2CH_2NR^7R^{10}$, $-(CH_2)_n-C(=O)NR^7R^{10}$,

 $-O-(CH_2)_m-C(=O)NR^7R^{10}, -(CH_2)_n-(Z)_g-R^7, -O-(CH_2)_m-(Z)_g-R^7,$

 $-(CH_2)_n-NR^{10}-CH_2(CHOR^8)(CHOR^8)_n-CH_2OR^8$

 $-O-(CH_2)_m-NR^{10}-CH_2(CHOR^8)(CHOR^8)_n-CH_2OR^8$

-(CH₂)_n-CO₂R⁷, -O-(CH₂)_m-CO₂R⁷, -OSO₃H, -O-glucuronide, -O-glucose,

$$-O + CH_2 + O + R^7$$

$$R^7 \qquad O + CH_2 = O + R^7$$

$$R^7 \qquad O + R^7$$

$$R^7 \qquad O + R^7$$

$$R^7 \qquad O + R^7$$

each o is, independently, an integer from 0 to 10;

each p is an integer from 0 to 10;

with the proviso that the sum of o and p in each contiguous chain is from 1 to 10;

each x is, independently, O, NR10, C(=O), CHOH, C(=N-R10),

CHNR⁷R¹⁰, or represents a single bond;

each R⁵ is, independently, -(CH₂)_m-OR⁸, -O- (CH₂)_m-OR⁸,

 $-(CH_2)_n-NR^7R^{10}$, $-O-(CH_2)_m-NR^7R^{10}$, $-(CH_2)_n(CHOR^8)(CHOR^8)_n-CH_2OR^8$,

 $-O-(CH_2)_m(CHOR^8)(CHOR^8)_n-CH_2OR^8$, $-(CH_2CH_2O)_m-R^8$,

-O-(CH₂CH₂O)_m-R⁸, -(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰,

 $-O-(CH_2CH_2O)_m-CH_2CH_2NR^7R^{10}$, $-(CH_2)_n-C(=O)NR^7R^{10}$,

 $-O-(CH_2)_m-C(=O)NR^7R^{10}$, $-(CH_2)_n-(Z)_g-R^7$, $-O-(CH_2)_m-(Z)_g-R^7$,

 $-(CH_2)_n$ -NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,

-O-(CH₂)_m-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,

-(CH₂)_n-CO₂R⁷, -O-(CH₂)_m-CO₂R⁷, -OSO₃H, -O-glucuronide, -O-glucose,

$$-O + CH_2 + O + R^7$$

$$O + O + CH_2 + O + R^7$$

$$O + O + O + CH_2 + O + CH_2$$

each
$$R^6$$
 is, independently, $-R^7$, $-OR^{11}$, $-N(R^7)_2$, $-(CH_2)_m$ - OR^8 ,

$$-O-(CH_2)_m-OR^8$$
, $-(CH_2)_n-NR^7R^{10}$, $-O-(CH_2)_m-NR^7R^{10}$,

$$-(CH_2)_n(CHOR^8)(CHOR^8)n-CH_2OR^8, -O-(CH_2)_m(CHOR^8)(CHOR^8)_n-CH_2OR^8,\\$$

$$-(CH_{2}CH_{2}O)_{m}-R^{8}, -O-(CH_{2}CH_{2}O)_{m}-R^{8}, -(CH_{2}CH_{2}O)m-CH_{2}CH_{2}NR^{7}R^{10},$$

$$-O-(CH_2CH_2O)_m-CH_2CH_2NR^7R^{10}$$
, $-(CH_2)_n-C(=O)NR^7R^{10}$,

$$-O-(CH_2)_m-C(=O)NR^7R^{10}, -(CH_2)n-(Z)_g-R^7, -O-(CH_2)_m-(Z)_g-R^7,$$

$$-(CH2)n-NR10-CH2(CHOR8)(CHOR8)n-CH2OR8,$$

-(CH₂)_n-CO₂R⁷, -O-(CH₂)_m-CO₂R⁷, -OSO₃H, -O-glucuronide, -O-glucose,

$$-O + CH_2 + O + R^7$$

$$R^7 - (CH_2)_n - CH_2$$

$$R^7$$

wherein when two R^6 are $-OR^{11}$ and are located adjacent to each other on a phenyl ring, the alkyl moieties of the two R^6 may be bonded together to form a methylenedioxy group;

each R⁷ is, independently, hydrogen or lower alkyl;

each R⁸ is, independently, hydrogen, lower alkyl, -C(=O)-R¹¹, glucuronide, 2-tetrahydropyranyl, or

each R⁹ is, independently, -CO₂R⁷, -CON(R⁷)₂, - SO₂CH₃, or -C(=O)R⁷;
each R¹⁰ is, independently, -H, -SO₂CH₃, - CO₂R⁷, -C(=O)NR⁷R⁹,

-C(=O)R⁷, or -CH₂-(CHOH)_n-CH₂OH;
each Z is, independently, CHOH, C(=O), CHNR⁷R¹⁰, C=NR¹⁰, or NR¹⁰;
each R¹¹ is, independently, lower alkyl;
each g is, independently, an integer from 1 to 6;
each m is, independently, an integer from 0 to 7;
each Q is, independently, an integer from 0 to 7;
or a pharmaceutically acceptable salt thereof, and
inclusive of all enantiomers, diastereomers, and racemic mixtures thereof.

- 2. (Previously Presented) The compound of Claim 1, wherein Y is -NH₂.
- 3. (Previously Presented) The compound of Claim 2, wherein R² is hydrogen.
- 4. (Previously Presented) The compound of Claim 3, wherein R¹ is hydrogen.
- 5. (Previously Presented) The compound of Claim 4, wherein X is chlorine.

6. (Previously Presented) The compound of Claim 5, wherein R ³ is hydrogen.
7. (Previously Presented) The compound of Claim 6, wherein each R ^L is hydrogen.
8. (Previously Presented) The compound of Claim 7, wherein o is 4.
9. (Previously Presented) The compound of Claim 8, wherein p is 0.
10. (Previously Presented) The compound of Claim 9, wherein x represents a single bond.
11. (Previously Presented) The compound of Claim 10, wherein each \mathbb{R}^6 is hydrogen.
12. Canceled.
13. Canceled.
14. (Previously Amended) The compound of Claim 11, wherein R ⁵ is -(CH ₂) _m -OR ⁸ .
15. (Previously Presented) The compound of Claim 14, which is represented by the formula:

$$\begin{array}{c|c} & O & NH \\ \hline Cl & N & NH \\ \hline H_2N & N & NH_2 \\ \end{array}$$

16. (Previously Presented) The compound of Claim 14, which is represented by the formula:

$$\begin{array}{c} CI \\ NH \\ NH \\ NH_2 \end{array}$$

- 17. (Previously Amended) The compound of Claim 11, wherein R^5 is -O-(CH₂)_m-OR⁸.
- 18. (Previously Presented) The compound of Claim 17, which is represented by the formula:

$$\begin{array}{c|c} & O & NH \\ \hline & N & NH \\ \hline & NH_2 & NH_2 & \\ \end{array}$$

19. (Previously Presented) The compound of Claim 17, which is represented by the formula:

20. (Previously Presented) The compound of Claim 17, which is represented by the formula:

$$\begin{array}{c|c} & & & & \\ & &$$

- 21. (Previously Amended) The compound of Claim 11, wherein R^5 is $-(CH_2)_n$ NR^7R^{10} .
- 22. (Previously Presented) The compound of Claim 21, which is represented by the formula:

$$\begin{array}{c|c} & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

- 23. (Previously Amended) The compound of Claim 11, wherein R^5 is -O-(CH₂)_m-NR⁷R¹⁰.
- 24. (Previously Presented) The compound of Claim 23, which is represented by the formula:

$$\begin{array}{c|c} & O & NH \\ \hline & NH & NH \\ \hline & NH_2 & NH_2 \\ \end{array}$$

25. (Previously Presented) The compound of Claim 23, which is represented by the formula:

$$\begin{array}{c|c} O-CH_2-CH_2NHCO_2C(CH_3)_3 \\ \hline \\ H_2N & NH_2 \end{array}$$

26. (Previously Amended) The compound of Claim 11, wherein R^5 is $-(CH_2)_n(CHOR^8)(CHOR^8)_n-CH_2OR^8$.

- 27. (Previously Amended) The compound of Claim 11, wherein R^5 is $-O-(CH_2)_m(CHOR^8)(CHOR^8)_n-CH_2OR^8$.
- 28. (Previously Presented) The compound of Claim 27, which is represented by the formula:

29. (Previously Presented) The compound of Claim 27, which is represented by the formula:

30. (Previously Presented) The compound of Claim 27, which is represented by the formula:

31. (Previously Presented) The compound of Claim 27, which is represented by the formula:

$$\begin{array}{c} O \\ O \\ NH \\ NH \\ NH_2 \end{array}$$
 OH

32. (Previously Presented) The compound of Claim 27, which is represented by the formula:

- 33. (Previously Amended) The compound of Claim 11, wherein R^5 is -(CH₂CH₂O)_m- R^8 .
- 34. (Previously Amended) The compound of Claim 11, wherein R^5 is -O-(CH₂CH₂O)_m- R^8 .
- 35. (Previously Presented) The compound of Claim 34, which is represented by the formula:

36. (Previously Presented) The compound of Claim 34, which is represented by the formula:

$$\begin{array}{c|c} & & & & \\ & &$$

37. (Previously Presented) The compound of Claim 34, which is represented by the formula:

38. (Previously Amended) The compound of Claim 11, wherein R^5 is -(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰.

- 39. (Previously Amended) The compound of Claim 11, wherein R^5 is -O-(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰.
- 40. (Previously Amended) The compound of Claim 11, wherein R^5 is $-(CH_2)_n$ - $C(=O)NR^7R^{10}$.
- 41. (Previously Amended) The compound of Claim 11, wherein R^5 is -O-(CH₂)_m-C(=O)NR⁷R¹⁰.

- 42. (Previously Amended) The compound of Claim 11, wherein R^5 is -(CH₂)_n-(Z)_g- R^7 .
- 43. (Previously Amended) The compound of Claim 11, wherein R^5 is -O-(CH₂)_m-(Z)_g- R^7 .
- 44. (Previously Presented) The compound of Claim 43, which is represented by the formula:

$$\begin{array}{c|c} O - CH_2 - CHOH - CH_2NH_2 \\ \hline \\ H_2N & N \\ \end{array}$$

45. (Previously Presented) The compound of Claim 43, which is represented by the formula:

$$Cl$$
 N
 NH
 NH
 NH
 NH
 NH

46. (Previously Amended) The compound of Claim 11, wherein R^5 is- $(CH_2)_n$ - NR^{10} - $CH_2(CHOR^8)(CHOR^8)_n$ - CH_2OR^8 .

- 47. (Previously Amended) The compound of Claim 11, wherein R^5 is -O-(CH₂)_m-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸.
- 48. (Previously Amended) The compound of Claim 11, wherein R^5 is -O-(CH₂)_m-CO₂ R^7 .
 - 49. (Previously Amended) The compound of Claim 11, wherein R⁵ is -OSO₃H.
- 50. (Previously Amended) The compound of Claim 11, wherein R⁵ is -O-glucuronide.
 - 51. (Previously Amended) The compound of Claim 11, wherein R⁵ is -O-glucose.
 - 52. (Previously Amended) The compound of Claim 11, wherein R⁵ is

$$-O \leftarrow CH_2$$
 $\longrightarrow O$
 $\longrightarrow R^7$
 $\longrightarrow R^7$

53. (Previously Presented) The compound of Claim 52, which is represented by the formula:

54. (Previously Amended) The compound of Claim 11, wherein R⁵ is

$$-(CH_2)_n - \begin{pmatrix} O & R^7 \\ & & \\ & & \\ & & \end{pmatrix}^{R^7}$$

55. (Previously Amended) The compound of Claim 11, wherein R⁵ is

56. (Previously Presented) The compound of Claim 55, which is represented by the formula:

57. (Previously Amended) The compound of Claim 1, wherein

X is halogen;

Y is $-N(R^7)_2$;

 R^1 is hydrogen or C_1 - C_3 alkyl;

 R^2 is $-R^7$, $-(CH_2)_m$ -OR⁸, or $-(CH_2)_n$ -CO₂R⁷;

R³ is a group represented by formula (A); and

R⁴ is hydrogen, a group represented by formula (A), or lower alkyl.

58. (Previously Amended) The compound of Claim 57, wherein

X is chloro or bromo;

Y is $-N(R^7)_2$;

R² is hydrogen or C₁-C₃ alkyl;

at most three R^6 are other than hydrogen as defined above; and at most three R^L are other than hydrogen as defined above.

- 59. (Previously Presented) The compound of Claim 58, wherein Y is -NH₂.
- 60. (Previously Amended) The compound of Claim 59, wherein R^4 is hydrogen; at most one R^L is other than hydrogen as defined above; and at most two R^6 are other than hydrogen as defined above.
- 61. (Previously Presented) The compound of Claim 1, wherein R⁵ is -(CH₂)_m-OR⁸.
- 62. (Previously Presented) The compound of Claim 1, wherein R^5 is -O-(CH₂)_m-OR⁸.
- 63. (Previously Presented) The compound of Claim 1, wherein R^5 is $-(CH_2)_n$ NR^7R^{10} .
- 64. (Previously Presented) The compound of Claim 1, wherein R^5 is -O-(CH₂)_m-NR⁷R¹⁰.
- 65. (Previously Presented) The compound of Claim 1, wherein R^5 is $-(CH_2)_n(CHOR^8)(CHOR^8)_n-CH_2OR^8$.
- 66. (Previously Presented) The compound of Claim 1, wherein R^5 is $-O-(CH_2)_m(CHOR^8)_n-CH_2OR^8$.

- 67. (Previously Presented) The compound of Claim 1, wherein R^5 is $-(CH_2CH_2O)_m$ - R^8 .
- 68. (Previously Presented) The compound of Claim 1, wherein R^5 is -O-($CH_2CH_2O)_m$ - R^8 .
- 69. (Previously Presented) The compound of Claim 1, wherein R^5 is -(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰.
- 70. (Previously Presented) The compound of Claim 1, wherein R⁵ is -O-(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰.
- 71. (Previously Presented) The compound of Claim 1, wherein R^5 is $-(CH_2)_n$ - $C(=O)NR^7R^{10}$.
- 72. (Previously Presented) The compound of Claim 1, wherein R^5 is -O-(CH₂)_m-C(=O)NR⁷R¹⁰.
 - 73. (Previously Presented) The compound of Claim 1, wherein R^5 is $-(CH_2)_n-(Z)_g-R^7$.
- 74. (Previously Presented) The compound of Claim 1, wherein R^5 is -O-(CH₂)_m-(Z)_g- R^7 .
- 75. (Previously Presented) The compound of Claim 1, wherein R^5 is - $(CH_2)_n$ - NR^{10} - $CH_2(CHOR^8)(CHOR^8)_n$ - CH_2OR^8 .

- 76. (Previously Presented) The compound of Claim 1, wherein R^5 is -O-(CH₂)_m-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸.
- 77. (Previously Presented) The compound of Claim 1, wherein R^5 is -O-(CH₂)_m-CO₂ R^7 .
 - 78. (Previously Presented) The compound of Claim 1, wherein R⁵ is -OSO₃H.
 - 79. (Previously Presented) The compound of Claim 1, wherein R⁵ is -O-glucuronide.
 - 80. (Previously Presented) The compound of Claim 1, wherein R⁵ is -O-glucose.
 - 81. (Previously Presented) The compound of Claim 1, wherein R⁵ is

$$-O + CH_2$$
 $\longrightarrow O$
 $\longrightarrow R^7$
 $\longrightarrow R^7$

82. (Previously Presented) The compound of Claim 1, wherein R⁵ is

$$-(CH_2)_n$$
 R^7

83. (Previously Presented) The compound of Claim 1, wherein R⁵ is

- 84. (Previously Presented) The compound of Claim 1, wherein x is a single bond.
- 85. (Previously Presented) The compound of Claim 1, which is in the form of a pharmaceutically acceptable salt.
- 86. (Previously Presented) A pharmaceutical composition, comprising the compound of Claim 1 and a pharmaceutically acceptable carrier.
 - 87. (Cancelled).
 - 88. (Cancelled).
 - 89. (Previously Presented) A method of blocking sodium channels, comprising: contacting sodium channels with an effective amount of the compound of Claim 1.
 - 90. (Cancelled).
 - 91. (Cancelled).

92. (Cancelled).
93. (Cancelled).
94. (Cancelled).
95. (Cancelled).
96. (Cancelled).
97. (Cancelled).
98. (Cancelled).
99. (Cancelled).
100. (Cancelled).
101. (Cancelled).
102. (Cancelled).
103. (Cancelled).

117. (Previously Presented) A composition, comprising:

the compound of Claim 1; and

a P2Y2 inhibitor.

118. (Previously Presented) A composition, comprising:

the compound of Claim 1; and

a bronchodilator.

119. (Currently Amended) The compound of Claim 1, wherein R⁵ is selected from the group consisting of

-O-(CH₂)₃-OH, -NH₂, -O-CH₂-(CHOH)₂-CH₂OH -O-CH₂-CHOH-CH₂OH,

-O-CH₂CH₂-O-tetrahydropyran-2-yl,-O- CH₂CHOH-CH₂-O-glucuronide,

-O-CH₂CH₂OH, -O-(CH₂CH₂O)₄-CH₃, -O- CH₂CH₂OCH₃,

-O-CH₂-(CHOC(=O)CH₃)-CH₂-OC(=O)CH₃, - O-(CH₂CH₂O)₂-CH₃,

 $\hbox{-OCH$_2$-CHOH-CHOH-CH$_2$OH, -CH$_2$OH, -$\frac{-CO$_2$CH$_3$}{,}$}$

$$-O \leftarrow CH_2$$
 R^7
 R^7

and

120. (Currently Amended) The compound of Claim 1, wherein R⁵ is selected from the group consisting of para -O-(CH₂)₃-OH, para -NH₂, para -O-CH₂-(CHOH)₂-CH₂OH, ortho -O-CH₂-CHOH-CH₂OH, meta -O-CH₂-CHOH-CH₂OH, para -O-CH₂CH₂-O-tetrahydropyran- 2-yl, para -O-CH₂CHOH-CH₂-O-glucuronide, para -O-CH₂CH₂OH, para -O-(CH₂CH₂O)₄-CH₃, para -O-CH₂CH₂OCH₃, para -O-CH₂-(CHOC(=O)CH₃)-CH₂-OC(=O)CH₃, para -O-(CH₂CH₂O)₂-CH₃, -OCH₂-CHOH-CHOH-CH₂OH, para - CH₂OH, para -CO₂CH₃, para -SO₃H, para -O-glucuronide, para

$$-O + CH_2$$
 $\longrightarrow O$
 $\longrightarrow R^7$
 $\longrightarrow R^7$

and

para

121. (Previously Amended) The compound of Claim 119, wherein X is chloro or bromo;

Y is $-N(R^7)_2$;

 R^1 is hydrogen or C_1 - C_3 alkyl;

R² is hydrogen or C₁-C₃ alkyl;

R³ is a group represented by formula (A); and

 R^4 is hydrogen, a group represented by formula (A), or lower alkyl; at most three R^6 are other than hydrogen as defined above; and at most three R^L are other than hydrogen as defined above.

122. (Previously Amended) The compound of Claim 121, wherein R⁴ is hydrogen;

at most one R^L is other than hydrogen as defined above; and at most two R^6 are other than hydrogen as defined above.

123. (Previously Amended) The compound of Claim 120, wherein X is chloro or bromo;

Y is $-N(R^7)_2$;

R¹ is hydrogen or C₁-C₃ alkyl;

 R^2 is hydrogen or C_1 - C_3 alkyl;

R³ is a group represented by formula (A); and

 R^4 is hydrogen, a group represented by formula (A), or lower alkyl; at most three R^6 are other than hydrogen as defined above; and at most three R^L are other than hydrogen as defined above.

124. (Previously Amended) The compound of Claim 123, wherein R^4 is hydrogen;

at most one R^L is other than hydrogen as defined above; and at most two R^6 are other than hydrogen as defined above.

125. (New) A compound represented by formula (I):

$$X \xrightarrow{6} N \xrightarrow{2} NHR^{1} R^{3}$$

$$Y \xrightarrow{4} NHR^{2}$$

$$NHR^{2}$$

$$R^{4}$$

$$NHR^{2}$$

$$NHR^{2}$$

$$NHR^{2}$$

wherein

X is hydrogen, halogen, trifluoromethyl, lower alkyl, unsubstituted or substituted phenyl, lower alkyl-thio, phenyl-lower alkyl-thio, lower alkyl-sulfonyl, or phenyl-lower alkyl-sulfonyl;

Y is hydrogen, hydroxyl, mercapto, lower alkoxy, lower alkyl-thio, halogen, lower alkyl, unsubstituted or substituted mononuclear aryl, or $-N(R^2)_2$;

R¹ is hydrogen or lower alkyl;

each R² is, independently, -R⁷, -(CH₂)_m-OR⁸, -(CH₂)_m-NR⁷R¹⁰,

 $\hbox{-(CH$_2$)}_n\hbox{(CHOR8)}(\hbox{CHOR8})_n\hbox{-CH$_2$OR8, -(CH$_2$CH$_2$O)}_m\hbox{-R8,}$

 $-(CH_{2}CH_{2}O)_{m}-CH_{2}CH_{2}NR^{7}R^{10}, -(CH_{2})_{n}-C(=O)NR^{7}R^{10}, -(CH_{2})_{n}-Z_{g}-R^{7}, -(CH_{2})_{m}-NR^{10}-R^{10}+R^{1$

 $CH_2(CHOR^8)(CHOR^8)_n-CH_2OR^8$, - $(CH_2)_n-CO_2R^7$, or

$$CH_2$$

R³ and R⁴ are each, independently, hydrogen, a group represented by formula (A), lower alkyl, hydroxy lower alkyl, phenyl-lower alkyl, (halophenyl)-lower alkyl, lower-(alkylphenylalkyl), lower (alkoxyphenyl)-lower alkyl, naphthyl-lower alkyl, or pyridyl- lower alkyl, with the proviso that at least one of R³ and R⁴ is a group represented by formula (A):

$$\underbrace{--(C(R^L)_2)_{\overline{0}}}_{\overline{Q}} x \underbrace{--(C(R^L)_2)_{\overline{p}}}_{\overline{Q}} \underbrace{-Q}_{\overline{Q}}^{R^5}$$

$$(A)$$

wherein

$$-O + CH_2$$
 R^7
 R^7
 CCH_2
 R^7
 R^7
 R^7
 R^7
 R^7

each o is, independently, an integer from 4 to 10;

each p is an integer from 0 to 10;

with the proviso that the sum of o and p in each contiguous chain is from 4 to 10;

each x is, independently, O, NR10, C(=O), CHOH, C(=N-R10),

CHNR⁷R¹⁰, or represents a single bond;

each R⁵ is, independently, -(CH₂)_m-OR⁸, -O- (CH₂)_m-OR⁸,

 $-(CH_2)_n-NR^7R^{10}$, $-O-(CH_2)_m-NR^7R^{10}$, $-(CH_2)_n(CHOR^8)(CHOR^8)_n-CH_2OR^8$,

-O-(CH₂)_m(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸, -(CH₂CH₂O)_m-R⁸,

-O-(CH₂CH₂O)_m-R⁸, -(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰,

 $-O-(CH_2CH_2O)_m-CH_2CH_2NR^7R^{10}$, $-(CH_2)_n-C(=O)NR^7R^{10}$,

 $-O-(CH_2)_m-C(=O)NR^7R^{10}$, $-(CH_2)_n-(Z)_g-R^7$, $-O-(CH_2)_m-(Z)_g-R^7$,

 $-(CH_2)_n-NR^{10}-CH_2(CHOR^8)(CHOR^8)_n-CH_2OR^8$,

-O-(CH₂)_m-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,

- $(CH_2)_n$ - CO_2R^7 , -O- $(CH_2)_m$ - CO_2R^7 , -OSO₃H, -O-glucuronide, -O-glucose,

$$-O + CH_2 + O + R^7$$

$$O + O + CH_2 + O + R^7$$

$$O + O + O + CH_2 + O + CH_2$$

each R^6 is, independently, $-R^7$, $-OR^{11}$, $-N(R^7)_2$, $-(CH_2)_m$ - OR^8 ,

 $-O-(CH_2)_m-OR^8$, $-(CH_2)_n-NR^7R^{10}$, $-O-(CH_2)_m-NR^7R^{10}$,

-(CH₂)_n(CHOR⁸)(CHOR⁸)n-CH₂OR⁸, -O-(CH₂)_m(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,

 $-(CH_2CH_2O)_m-R^8$, $-O-(CH_2CH_2O)_m-R^8$, $-(CH_2CH_2O)m-CH_2CH_2NR^7R^{10}$,

 $-O-(CH_2CH_2O)_m-CH_2CH_2NR^7R^{10}$, $-(CH_2)_n-C(=O)NR^7R^{10}$,

 $-O-(CH_2)_m-C(=O)NR^7R^{10}, -(CH_2)n-(Z)_g-R^7, -O-(CH_2)_m-(Z)_g-R^7,$

-(CH₂)_n-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,

 $-O-(CH_2)_m-NR^{10}-CH_2(CHOR^8)(CHOR^8)_n-CH_2OR^8$,

 $-(CH_2)_n-CO_2R^7$, $-O-(CH_2)_m-CO_2R^7$, $-OSO_3H$, -O-glucuronide, -O-glucose,

$$-O + CH_2 + O + R^7$$

$$R^7$$

$$O + CH_2 + O + R^7$$

$$O + CH_2 + O +$$

wherein when two R^6 are $-OR^{11}$ and are located adjacent to each other on a phenyl ring, the alkyl moieties of the two R^6 may be bonded together to form a methylenedioxy group;

each R^7 is, independently, hydrogen or lower alkyl; each R^8 is, independently, hydrogen, lower alkyl, $-C(=O)-R^{11}$, glucuronide, 2-tetrahydropyranyl, or

each R⁹ is, independently, -CO₂R⁷, -CON(R⁷)₂, - SO₂CH₃, or -C(=O)R⁷; each R¹⁰ is, independently, -H, -SO₂CH₃, - CO₂R⁷, -C(=O)NR⁷R⁹,

-C(=O)R⁷, or -CH₂-(CHOH)_n-CH₂OH; each Z is, independently, CHOH, C(=O), CHNR⁷R¹⁰, C=NR¹⁰, or NR¹⁰; each R¹¹ is, independently, lower alkyl; each g is, independently, an integer from 1 to 6; each m is, independently, an integer from 1 to 7; each n is, independently, an integer from 0 to 7; each Q is, independently, C-R⁵ or C-R⁶, wherein one Q is C-R⁵; or a pharmaceutically acceptable salt thereof, and inclusive of all enantiomers, diastereomers, and racemic mixtures thereof.

126. (New) A method of blocking sodium channels, comprising:

contacting sodium channels with an effective amount of the compound as defined in any one of Claims 2-11, 14-85, 119, 120-125.

127. (New) A method of blocking sodium channels, comprising:

contacting sodium channels with an effective amount of the composition as defined in any one of Claims 86, 117, and 118.