CS528 Energy/Power Aware Scheduling of Tasks

A Sahu Dept of CSE, IIT Guwahati

Outline

- Power Aware
- Task with Hard Deadlines
- Energy Efficiency
- Energy Efficient Scheduling
- Real Time Tasks

Announcement

Mid-Sem Paper Showing Friday 5PM to 6PM, CSE Seminar Room

Class AVG: 26.09 out of 50

Power Aware Scheduling Vs Energy Aware Scheduling

- Power Budget should not exceed
 - Minimized
 - Monthly Expenses: CAP ===> Solution is EMI
 - Power CAP: If your system have 100W design, at any instance of time you should not run things above 100W
 - Suppose you have 3KW wiring in your home, you have 3 AC with each of 1.5KW rating, At a given time, you can run maximum of 2 AC.
- Total energy budget should not exceed
 - Battery capacity, mah (mobile), AH (UPS)
 - Minimized: EC
 - Power and Time

Top 500 HPC System

https://www.top500.org/lists/top500/2021/11/

- 1. Fugaku remains the No. 1 system. Japan
 - 7,630,848 cores : **442 Pflop/s** on HPL Benchmarks.
 - •This puts it 3x ahead of the No. 2 system in the list.
- 2. Summit, an IBM-built system at the Oak Ridge National Laboratory (ORNL), USA,
 - 148.8 Pflop/s on the HPL benchmark
 - 4,356 nodes, each housing
 - two Power9 CPUs with 22 cores each
 - and six NVIDIA Tesla V100 GPUs, each with 80 streaming multiprocessors (S.M.).
 - Nodes are linked together with a Mellanox dual-rail EDR InfiniBand network.
- 3. Sierra, at Lawrence Livermore National Lab, USA,
 - Architecture is very similar to Summit.
 - 4,320 nodes with two Power9 CPUs and four NVIDIA Tesla V100 GPUs.
 Sierra achieved 94.6 Pflop/s.

Top 500 HPC System

https://www.top500.org/lists/top500/2022/11/

1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory	Cores 8,730,112	Pmax- Pflop/s 1,102.00 1,685.65	Power KW 21,100
2	United States Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan		442.01 537.21	29,899
3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,220,288	309.10 428.70	6,016
4	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quadrail NVIDIA HDR100 Infiniband, Atos EuroHPC/CINECA	1,463,616	174.70 255.75	5,610

Green500: evolution

- 2008: best result = 536 MFlops/Watt
- 2009: best result = 723 MFlops/Watt
 - -Cell cluster, ranking 110 in top500
- 2010: best result = 1684 MFlops/Watt
 - IBM BlueGene/Q prototype 1, ranking 101 in top500,
 - Peakperf: 65 TFlops;
- 2011: best result = 2097 MFlops/Watt
 - -IBM BlueGene/Q prototype 2
 - power consumption: 41 kW / Peak 85 TFlop/s

Green500: evolution

https://www.top500.org/lists/green500/2022/11/

1	500 rank	Henri - Lenovo ThinkSystem SR670 V2, Intel Xeon Platinum 8362 2800Mhz (32C), NVIDIA H100 80GB PCIe, Infiniband HDR, Lenovo Flatiron Institute United States	Cores: 5,920	PF/S 2.04	Power KW 31	GF/W 65.091
2	32	Frontier TDS - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory United States	120,832	19.20	309	62.684
3	11	Adastra - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE Grand Equipement National de Calcul Intensif - Centre Informatique National de l'Enseignement Suprieur (GENCI-CINES) France	319,072	46.10	921	58.021

Power Aware Scheduling Vs Energy Aware Scheduling

- Power Budget should not exceed
 - Minimized
 - Monthly Expenses: CAP ===> Solution is EMI
 - Power CAP: If your system have 100 design, at any instance of time you should not run things above 100W
 - Suppose you have 3KW wiring in your home, you have 3 AC with each of 1.5KW rating, At a given time, you can run maximum of 2 AC.
- Total energy budget should not exceed
 - Battery capcity, mah (mobile), AH (UPS)
 - Minimized: EC
 - Power and Time

Speed Matters or Not: I

- Assume you have an Royal Enfield Bullet, you need to go from IITG to GS road, 30KM in 1 hours
- Petrol consumption is almost same at any speed. Example it 2ml/minute at 10kmph and 2.1ml/minute at 100kmph.
- How to save petrol?
 - Sol: Go at higher controllable speed

Speed Matters or Not: I

- Assume you have an Bike, you need to go from IITG to GS road, 30KM in 1 hours
- Petrol consumption is exponentially/quadratic increasing with speed. Example it 2ml/minute at 10kmph and 20ml/minute at 100kmph.
- How to save petrol?
 - Sol: Go at slower speed to meet the deadline
 - Above example 30kmph
 - Critical Speed

Power and Energy Consumptions

- CPU: dynamic power P_d = C_{ef} * V_{dd}² * f
 - -C_{ef}: switch capacitance, V_{dd}: supply voltage
 - -f : processor freq \rightarrow linear related to V_{dd} P α f³
 - Battery Powered System Reduce Energy usage

$$E = P. t \alpha f^3 t$$

- Execution time t is inverse to f, t α 1/f So E α f²

Power Aware Scheduling

Static slack: uniformly slow down all tasks

Energy Aware Scheduling

- E= P * T, More refined model P=P_s+ α *f³
- Suppose f=[0:1].
- E= $(P_s + \alpha *f^3)*T/f = T*[P_s/f + \alpha.f^2]$
- Min at dE/df=0, $-P_s*1/(f^2)+2$. $\alpha.f=0$

$$\rightarrow$$
 2. α .f=P_s/(f²) \rightarrow f³ =P_s/2. α

$$\Rightarrow f_c = \sqrt[3]{P_s/2.\alpha}$$

Full consumption of Splendor

- Instantaneous Petrol Consumption: P= 5+50f^3
- Distance to travel 30km in 60 minutes deadline

$$-F_c$$
=0.368399
Fuel Consumption of Spelender

Full consumption of Bullet

- P= 200+20f^3
- Distance 30km in 60 minutes

