Food and Agriculture Organization of the United Nations (FAO)

ETUDE DE SANTÉ PUBLIQUE

Etude de grande ampleur sur le thème de la sousnutrition dans le monde

- "Etat de l'art" des recherches déjà publiées
- Etude statistique destinée à orienter les recherches vers des pays particuliers
- Mettre en lumière différentes causes de la faim

I/ Etat de la situation

- Chaque jour, 25 000 personnes décèdent à cause de la faim
- ▶ Intimement lié à la question de la pauvreté
- ▶ 1/3 animaux, 1/3 humain, 1/3 perdu
- Mieux répartir ce que l'on a.
- 60% des personnes souffrant de la faim dans le monde sont des agriculteurs ou des pêcheurs
- ▶ 1/3 des Américains obèses. 2% de la pop américaine en agriculteurs

- Libéralisation des échanges + subvention dans les pays riches
- Pays riches exédentaires en matière d'agriculture
- ▶ PAC
- Politique des pays pauvres négligent l'agriculture qui pourrait les nourrir.
- Problème non technologique.
 Causes climatiques, politiques, juridiques

- La faim dans le monde résulte t'elle d'un manque de production, ou de problèmes technologiques?
- Quelles sont les prévisions de population en 2050 ? Aura t'on besoin d'augmenter drastiquement la production alimentaire ?

II/ Etude statistique destinée à orienter les recherches vers des pays particuliers Etat des lieux de la population mondiale

```
print(totalPop)
```

annee

2013 6.997326e+09

Name: Population, dtype: float64

Pour un pays donné, on peut calculer les données de plusieurs manières

Production + Importations - Exportations +Variation de stock =

 Disponibilité intérieure = Semences + Pertes + Nourriture + Aliments pour animaux + Traitement + Autres utilisations

les 20 aliments les plus caloriques, en utilisant le ratio énergie/poids

produit	origine	
Huiles de Foie de Poisso	animaux	11809.003531
Huile de Sésame	vegetaux	10146.064841
Huile d'Olive	vegetaux	9292.674322
Huile de Germe de Maïs	vegetaux	9257.130389
Huile de Son de Riz	vegetaux	9206.134101
Huile de Colza&Moutarde	vegetaux	9149.964104
Huile d'Arachide	vegetaux	9118.262843
Huile de Tournesol	vegetaux	9027.791629
Huile de Palmistes	vegetaux	9012.117711
Huile Graines de Coton	vegetaux	8972.360166
Huile de Coco	vegetaux	8932.572320
Huiles de Poissons	animaux	8917.431319
Huile de Soja	vegetaux	8900.180815
Huile de Palme	vegetaux	8791.217534
Huil Plantes Oleif Autr	vegetaux	8720.818117
Graisses Animales Crue	animaux	7579.278844
Beurre, Ghee	animaux	7470.526350
Sésame	vegetaux	6136.984310
Arachides Decortiquees	vegetaux	5705.476348
Palmistes	vegetaux	5475.000000
Name: ratio_kcal_kg, dtyp	e: float64	

5 aliments les plus riches en protéines

produit	origine	
Graines Colza/Moutarde	vegetaux	0.365000
Soja	vegetaux	0.272545
Arachides Decortiquees	vegetaux	0.250913
Pois	vegetaux	0.224239
Légumineuses Autres	vegetaux	0.223047
Haricots	vegetaux	0.218658

Combien d'humains pourraient être nour<mark>ris</mark> si toute la disponibilité intérieure mondiale de produits végétaux était utilisée pour de la nourriture ?

```
#dispo_int_veg_prot = df_pop[df_pop["origine"] == "vegetal"]
dispo_int_veg_prot = df_pop.loc[df_pop["origine"] == "vegetal", :].copy()
print("Disponibilité intérieure mondiale de produits d'origine végétale : {:.2E}"\
      .format(dispo_int_veg_prot["Tot_dispo_prot_kg"].sum()), "kg de protéines")
Disponibilité intérieure mondiale de produits d'origine végétale : 1.25E+11 kg de protéines
# Conversion du besoin en protéines /jour --> /an
besoin prot p = 0.060 * 365
nb_h = dispo_int_veg_prot["Tot_dispo_prot_kg"].sum() / besoin_prot_p
print("Disponibilité intérieure mondiale en protéines de produits d'origine végétale en nombre d'humair
      .format(nb h))
print("Pourcentage de la population mondiale : {:.1f}".format(nb_h / population["population"].sum() * 1
Disponibilité intérieure mondiale en protéines de produits d'origine végétale en nombre d'humains :5.
72E+09
Pourcentage de la population mondiale : 81.7 %
```

```
# Sur DF dispoVegeInt, ajouter une colonne de la somme Nourriture + Aliments pour animaux + Pertes
dispo_int_veg_prot['Sum_VegePertes'] = dispo_int_veg_prot[['Tot_dispo_alim_kg','Aliments pour animaux',

# Somme totale de Nourriture + Aliments pour animaux + Pertes
vege_kcal1 = dispo_int_veg_prot['Sum_VegePertes'].sum()

# Calcul du nombre d'humains qui pourraient être nourris en terme de KCAL, sous forme de % de la populo
vege_kcal1 = (dispo_int_veg_prot['Sum_VegePertes'] * dispo_int_veg_prot['ratio_kcal_kg']).sum() / (2300
print(" ")
print('La disponibilité alimentaire en produits végétaux en termes de calories, est de', round(vege_kcal; ce qui pourrait nourrir', round(vege_kcal1*100/population['population'].sum(), 1), '% de l
print(" ")
```

La disponibilité alimentaire en produits végétaux en termes de calories, est de 10922883198 kcal; ce qui pourrait nourrir 156.1 % de la population mondiale.

La disponibilité alimentaire en produits végétaux en termes de protéines, est de 932744674318 kg; ce qui pourrait nourrir 133.3 % de la population mondiale.

Combien d'humains pourraient être nourris si toute la disponibilité alimentaire en produits végétaux destinée aux animaux, et les pertes de produits végétaux étaient utilisés pour de la nourriture?

En KCAL

```
# Nombre d'humains (rappel : 2300 kcal / personne)
besoin_kcal_p = 2300*365
nb_h = df_pop["Tot_dispo_alim_kcal"].sum() / besoin_kcal_p

print("{:.2E}".format(df_pop["Tot_dispo_alim_kcal"].sum()))
print("Disponibilité alimentaire mondiale en énergie (tous produits confondus) en nombre d'humains : {:
print("Pourcentage de la population mondiale : {:.1f}".format(nb_h / population["population"].sum() * 1

7.36E+15
Disponibilité alimentaire mondiale en énergie (tous produits confondus) en nombre d'humains : 8.77E+0
9
Pourcentage de la population mondiale : 125.4 %
```

En Proteines

```
# Nombre d'humains (rappel : 0,060 kg / personne)

nb_h = df_pop["Tot_dispo_prot_kg"].sum() / besoin_prot_p

print("Disponibilité alimentaire mondiale en énergie (tous produits confondus) en nombre d'humains : {:
print("Pourcentage de la population mondiale : {:.1f}".format(nb_h / population["population"].sum() * :

Disponibilité alimentaire mondiale en énergie (tous produits confondus) en nombre d'humains : 9.46E+0

Pourcentage de la population mondiale : 135.2 %
```

Combien d'humains pourraient être nourris avec la disponibilité alimentaire mondiale

Proportion de sous alimentés

```
proportionSousAlimentes = sousalimentation[sousalimentation['Année'] == 2013]['pop_sousalim'].sum()
print(int(proportionSousAlimentes), 'de personnes sous-nutries en 2013')

743800000 de personnes sous-nutries en 2013

# On calcul le ratio de personnes sous-alimentées sur la population totale
ratioPopulationSousAlimentes = ((proportionSousAlimentes) / totalPopulation)*100

print('Proportion de la population sous-alimentées en 2013', round(ratioPopulationSousAlimentes,2), "%'
Proportion de la population sous-alimentées en 2013 10.63 %
```

Céréales alimentation animale

	Produit	Code Produit
0	Blé	2511
1	Riz (Eq Blanchi)	2805
2	Orge	2513
3	Maïs	2514
4	Millet	2517
5	Blé	2511
6	Riz (Eq Blanchi)	2805
7	Orge	2513
8	Maïs	2514
9	Seigle	2515
10	Avoine	2516
11	Millet	2517
12	Sorgho	2518
13	Céréales, Autres	2520

La part de nourriture animale sur la part globale de céréales à destination humaine et animale est de 45.91 %

Part de nourriture animale sur la part globale de céréales à destination humaine

	Tot_dispo_alim_kg	alimentsPourAnimaux	autresUtilisations	disponibiliteInterieure	ratio_Autres_Utilisation	ratio_Alim_Animale
produit						
Huile de Soja	2.452454e+15	0.000000e+00	9.200000e+09	1.165800e+10	0.789158	0.000000
Huile de Palme	6.824144e+15	0.000000e+00	1.856800e+10	2.561800e+10	0.724803	0.000000
Manioc	3.524161e+15	2.466900e+10	1.146100e+10	4.310700e+10	0.265873	0.000007
Maïs	5.525332e+16	3.921620e+11	1.818680e+11	6.877850e+11	0.264426	0.000007
Sucre Eq Brut	6.496927e+16	0.000000e+00	2.996000e+09	7.845300e+10	0.038188	0.000000

Les 3 produits qui ont la plus grande valeur pour chacun des 2 ratios

```
s USA diminuaient leur production de produits animaux de 10%
ilanAlimentairePopulation['pays'] == "États-Unis d'Amérique") & (BilanAlimentairePopulation['is_cereal']),:]
duction de produits animaux, cela libèrerait :', dispo_USA['alimentsPourAnimaux'].sum()*0.1/1000000, 'Milles Tonnes de céréales')

↓
```

Si les USA diminuaient de 10% leur production de produits animaux, cela libèrerait : 14009.6 Milles Tonnes de céréales

Combien de tonnes de céréales pourraient être libérées si les USA diminuaient leur production de produits animaux de 10%?

Mettre en lumière différentes causes de la faim

```
# Calcul de la proportion de manioc exportée pour la Thaïlande
thai_manioc = BilanAlimentairePopulation.loc[(BilanAlimentairePopulation['pays'] == "Thaïlande") & (BilanAlimentairePopulation['pays'] == "Thaïlande"] & (BilanAlimentairePopulation['pays'] & (BilanAl
```

Les 10 pays ayant le plus haut ratio disponibilité alimentaire/habitant en termes de protéines (en kg) par habitant, puis en termes de kcal par habitant.

	pays	ratio_dipo_prot_pays_kg_habts
0	Islande	48.566900
1	Israël	46.720000
2	Lituanie	45.391400
3	Maldives	44.646800
4	Finlande	42.909400
5	Luxembourg	41.478600
6	Monténégro	40.843500
7	Pays-Bas	40.682900
8	Albanie	40.650049
9	Portugal	40.467550

	pays	ratio_dipo_pays_kcal_habts
0	Autriche	1376050.0
1	Belgique	1364005.0
2	Turquie	1353420.0
3	États-Unis d'Amérique	1343930.0
4	Israël	1317650.0
5	Irlande	1314730.0
6	Italie	1305970.0
7	Luxembourg	1292100.0
8	Égypte	1284070.0
9	Allemagne	1278595.0

Les 10 pays ayant le plus faible ratio disponibilité alimentaire/habitant en termes de protéines (en kg) par habitant, puis en termes de kcal par habitant.

	pays	ratio_dipo_prot_pays_kg_habts
0	Libéria	13.74590
1	Guinée-Bissau	16.07825
2	Mozambique	16.67320
3	République centrafricaine	16.80460
4	Madagascar	17.04185
5	Haïti	17.41050
6	Zimbabwe	17.63680
7	Congo	18.76465
8	Ouganda	19.21360
9	Sao Tomé-et-Principe	19.38150

	pays	ratio_dipo_pays_kcal_habts
0	République centrafricaine	685835
1	Zambie	702260
2	Madagascar	750440
3	Afghanistan	761755
4	Haïti	762485
5	République populaire démocratique de Corée	763945
6	Tchad	769785
7	Zimbabwe	771245
8	Ouganda	775990
9	Timor-Leste	777085

	pays	pertes_pays_kg
0	Arménie	2.280000e+08
1	Afghanistan	1.135000e+09
2	Albanie	2.760000e+08
3	Algérie	3.753000e+09
4	Angola	4.799000e+09

166	Luxembourg	1.100000e+07
167	Serbie	7.070000e+08
168	Monténégro	3.300000e+07
169	Soudan	1.670000e+08
170	Chine	9.035800e+10

La quantité totale (en kg) de produits perdus par pays en 2013.

	pays	taux_sous_nutrition
0	Haïti	50.4022
1	Zambie	48.1464
2	Zimbabwe	46.6431
3	République centrafricaine	43.3276
4	République populaire démocratique de Corée	42.5788
5	Congo	40.4676
6	Tchad	38.2066
7	Angola	37.7235
8	Libéria	37.2613
9	Madagascar	35.7688

Les 10 pays pour lesquels la proportion de personnes sous-alimentées est la plus forte.

produit ratio_autres_sur_dispo_interieure

Alcool, non Comestible	0.981982
Plantes Aquatiques	0.918852
Huile de Palmistes	0.783431
Piments	0.739130
Huile de Palme	0.650285
Huile de Colza&Moutarde	0.618201
Huile de Coco	0.567152
Huil Plantes Oleif Autr	0.553192
Palmistes	0.531346
Huile de Son de Riz	0.502955
	Plantes Aquatiques Huile de Palmistes Piments Huile de Palme Huile de Colza&Moutarde Huile de Coco Huil Plantes Oleif Autr Palmistes

Les 10 produits pour lesquels le ratio Autres utilisations/Dispo nibilité intérieure est le plus élevé.

Conclusion

- La faim dans le monde résulte t'elle d'un manque de production, ou de problèmes technologiques?
- Quelles sont les prévisions de population en 2050 ? Aura t'on besoin d'augmenter drastiquement la production alimentaire ?

Alcool, non Comestible

On peut l'utiliser dans la fabrication de l'alcool à usage médical L'alcool à 70° modifié, de couleur jaune. Il est utilisé comme des désinfectants des objets et des surfaces inertes.

<u>Huile de Colza</u>

Utilisée comme carburant dans des automobiles compatibles par exemple

Question 20: pour quelques uns des produits identifiés dans cette dernière requête SQL, supposez quelles sont ces "autres utilisations" possibles