LAST LECTURE

- What/Why/How of Verification
- A Brief History of Verification
- Course Logistics

COURSE STRUCTURE

CONSTRAINT SOLVERS

- Propositional Logic, SAT solving, DPLL
- First-Order Logic, SMT
- First-Order Theories

DEDUCTIVE VERIFICATION

- Operational Semantics
- Strongest Post-condition, Weakest Precondition
- Hoare Logic

MODEL CHECKING AND OTHER VERIFICATION TECHNIQUES

- Predicate Abstraction, CEGAR
- Abstract Interpretation
- Property-directed Reachability

•

LOGIC

- Logic is the foundation of computation.
- We will use Logic for multiple purposes:
 - Expressing correctness specifications
 - Expressing all executions of a program
 - Mathematical guarantees of logic will translate to guarantees of program correctness
 - · Decision procedures for logic will be used for verification.

PROPOSITIONAL LOGIC

PROPOSITIONAL LOGIC

Is
$$p \to q \to r \leftrightarrow (p \land q) \to r$$
 valid?
Is $p \land \bot \to \neg q \lor \top$ satisfiable?

SYNTAX

$$p \wedge \bot \rightarrow \neg q \vee \top$$

Atom

Truth Values - ⊥: False, ⊤: True

Propositional Variables - p,q,r...

Logical Connectives

 \wedge : and, \vee : or, \neg : not, \rightarrow : implies, \leftrightarrow : if and only if(iff)

Literal

Atom or its negation

Formula

A literal or the application of logical connectives to formulae

SEMANTICS

Interpretation I

I : Propositional Variables → Truth Values

Given an interpretation I and Formula F,

 $I \models F$

MODEL

OF

F evaluates to True under I

 $I \nvDash F$

F evaluates to False under I

SEMANTICS: INDUCTIVE DEFINITION

Base Case:

$I \vDash \top$		
$I \nvDash \bot$		
$I \vDash p$	iff I[p]=true	
$I \nvDash p$	iff I[p]=false	

Inductive Case:

$I \vDash \neg F$	iff $I \nvDash F$
$I \vDash F_1 \land F_2$	iff $I \vDash F_1$ and $I \vDash F_2$
$I \vDash F_1 \lor F_2$	iff $I \vDash F_1$ or $I \vDash F_2$
$I \vDash F_1 \to F_2$	iff $I \nvDash F_1$ or $I \vDash F_2$
$I \vDash F_1 \leftrightarrow F_2$	iff $I \vDash F_1$ and $I \vDash F_2$, or $I \nvDash F_1$ and $I \nvDash F_2$

 $I = \{p : True, q : False\}$

$$F = p \land q \to p \lor \neg q$$

Does $I \models F$?

1.
$$I \models p$$

2.
$$I \not\models q$$

3.
$$I \nvDash p \land q$$

4.
$$I \models p \land q \rightarrow p \lor \neg q$$

SATISFIABILITY AND VALIDITY

- A formula F is satisfiable iff there exists an interpretation I such that $I \models F$.
- A formula F is valid iff for all interpretations I, $I \models F$.
- A formula F is valid iff $\neg F$ is unsatisfiable.
 - A Decision Procedure for satisfiability is therefore also a decision procedure for validity

QUESTIONS

- A formula can either be sat, unsat or valid.
 - Does Validity ⇒ Satisfiability?
 - Does Satisfiability ⇒ Validity?
- Can a decision procedure for Validity be used as a decision procedure for Satisfiability?
 - F is satisfiable iff ¬F is not valid.
- Which of the following formulae are sat, unsat or valid?
 - $p \land q \rightarrow p \lor q$
 - $p \lor q \rightarrow \neg p \lor \neg q$
 - $(p \to q \to r) \land (p \land q \land \neg r)$

MORE TERMINOLOGY

- Formulae F_1 and F_2 are equivalent (denoted by $F_1 \Leftrightarrow F_2$) when the formula $F_1 \leftrightarrow F_2$ is valid.
 - Example: $p \to q \Leftrightarrow \neg p \lor q$
- Formula F_1 implies F_2 (denoted by $F_1 \Rightarrow F_2$) when the formula $F_1 \to F_2$ is valid.
 - Example: $(p \to q) \land p \Rightarrow q$
- Formulae F_1 and F_2 are equisatisfiable when F_1 is satisfiable if and only if F_2 is satisfiable.
 - Example: $p \land (q \lor r)$ and $q \lor r$ are equisatisfiable

MORE EXAMPLES

Which of the following are true?

•
$$\neg (F_1 \land F_2) \Leftrightarrow \neg F_1 \lor \neg F_2$$

•
$$(F_1 \leftrightarrow F_2) \land (F_2 \leftrightarrow F_3) \Rightarrow (F_1 \leftrightarrow F_3)$$

- $p \Leftrightarrow p \land q$
- p and q are equisatisfiable.
- What is the simplest example of two formulae which are not equisatisfiable?

DECISION PROCEDURES FOR SATISFIABILITY AND VALIDITY

- Two methods
 - Truth Tables: Search for satisfying interpretation
 - Semantic Argument: Rule-based deductive approach
- Modern SAT solvers use combination of both approaches

TRUTH TABLES - EXAMPLE

$$p \land q \rightarrow p \lor \neg q$$

p	q	$\neg q$	$p \wedge q$	$p \vee \neg q$	$ \begin{array}{c} p \land q \to \\ p \lor \neg q \end{array} $
0	0	1	0	1	1
0	1	0	0	0	1
1	0	1	0	1	1
1	1	0	1	1	1

TRUTH TABLES - EXAMPLE

 $p \land q \rightarrow p \lor \neg q$ is valid

p	q	$\neg q$	$p \wedge q$	$p \vee \neg q$	$\begin{array}{c} p \land q \rightarrow \\ p \lor \neg q \end{array}$
0	0	1	0	1	1
0	1	0	0	0	1
1	0	1	0	1	1
1	1	0	1	1	1

SEMANTIC ARGUMENT METHOD

- Deductive approach for showing validity based on proof rules
- Main Idea: Proof by Contradiction.
 - Assume that a falsifying interpretation exists.
 - Use proof rules to deduce more facts.
 - Find contradictory facts.

$$\frac{I \models \neg F}{I \not\models F}$$

$$\frac{I \not\models \neg F}{I \models F}$$

PROOF RULES (CONJUNCTION)

$$\begin{array}{c|c} I & \models & F \wedge G \\ \hline I & \models & F \\ I & \models & G \end{array}$$

PROOF RULES (CONJUNCTION)

$$\begin{array}{c|c} I & \models & F \wedge G \\ \hline I & \models & F \\ I & \models & G \end{array}$$

$$\frac{I \not\models F \land G}{I \not\models F \mid I \not\models G}$$

PROOF RULES (CONJUNCTION)

$$\begin{array}{c|c} I & \models & F \wedge G \\ \hline I & \models & F \\ I & \models & G \end{array}$$

PROOF RULES (DISJUNCTION)

$$\frac{I \models F \lor G}{I \models F \mid I \models G}$$

$$\begin{array}{c|c} I \not \models F \lor G \\ \hline I \not \models F \\ I \not \models G \end{array}$$

PROOF RULES (IMPLICATION)

$$\frac{I \models F \to G}{I \not\models F \mid I \models G}$$

$$\begin{array}{c|cccc}
I & \not\models & F \to G \\
\hline
I & \models & F \\
I & \not\models & G
\end{array}$$

PROOF RULES (IFF)

$$\frac{I \not\models F \leftrightarrow G}{I \models F \land \neg G \mid I \models \neg F \land G}$$

PROOF RULES (CONTRADICTION)

$$\begin{array}{c|c} I & \models & F \\ \hline I & \not\models & F \\ \hline I & \models & \bot \end{array}$$

$$I \nvDash p \land q \rightarrow p \lor \neg q$$

$$I \nvDash p \land q \to p \lor \neg q$$
$$I \vDash p \land q \quad I \nvDash p \lor \neg q$$

$$I \nvDash p \land q \rightarrow p \lor \neg q$$

$$I \vDash p \land q \qquad I \nvDash p \lor \neg q$$

$$I \vDash p \qquad \qquad I \nvDash p$$

$$I \vDash q \qquad \qquad I \nvDash \neg q$$

Prove that $(p \rightarrow q \land p) \rightarrow q$ is valid

Prove that
$$(p \to q \land p) \to q$$
 is valid $I \not\models (p \to q \land p) \to q$

Prove that
$$(p \to q \land p) \to q$$
 is valid $I \nvDash (p \to q \land p) \to q$

$$I \vDash (p \rightarrow q \land p) \quad I \nvDash q$$

Prove that
$$(p \to q \land p) \to q$$
 is valid $I \nvDash (p \to q \land p) \to q$
$$I \vDash (p \to q \land p) \quad I \nvDash q$$

$$I \vDash (p \to q) \quad I \vDash p$$

Prove that
$$(p \to q \land p) \to q$$
 is valid $I \nvDash (p \to q \land p) \to q$
$$I \vDash (p \to q \land p) \quad I \nvDash q$$

$$I \vDash (p \to q) \quad I \vDash p$$

$$I \nvDash p \quad I \vDash q$$

Prove that
$$(p \to q \land p) \to q$$
 is valid $I \nvDash (p \to q \land p) \to q$
$$I \vDash (p \to q \land p) \quad I \nvDash q$$

$$I \vDash (p \to q) \quad I \vDash p$$

$$I \nvDash p \quad I \vDash q$$
 CONTRADICTION

Prove that
$$(p \to q \land p) \to q$$
 is valid $I \nvDash (p \to q \land p) \to q$
$$I \vDash (p \to q \land p) \qquad I \nvDash q$$

$$I \vDash (p \to q) \qquad I \vDash p$$

$$I \nvDash p \qquad I \vDash q$$

$$CONTRADICTION$$

Each branch should lead to a contradiction