INE5403 - Fundamentos de Matemática Discreta para a Computação

- 6) Relações de Ordenamento
 - 6.1) Conjuntos Parcialmente Ordenados (Posets)
 - 6.2) Extremos de Posets
 - 6.3) Reticulados
 - 6.4) Álgebras Booleanas Finitas

Definição: Considere o poset (A, \leq) com a ordem parcial \leq . Então:

- a) Um elemento a∈ A é chamado de um **elemento maximal** de A se não existe c∈ A tal que a < c (a≤c, a≠c).
- b) Um elemento b∈ A é chamado de um elemento
 minimal de A se não existe c∈ A tal que c<b (c≤b, c≠b).

Exemplos:

- 1. (**Z**⁺,≤): elemento minimal: 1, maximal: não tem
- 2. (**R**,≤): elemento minimal: não tem, maximal: não tem
- 3. $(\{1,2,3,4\},\leq)$: elemento minimal: 1, maximal: 4
- 4. $(\{1,2,3,4\},\geq)$: elemento minimal: 4, maximal: 1

Exemplo: Considere o poset A com o diagrama de Hasse abaixo:

- a1, a2 e a3 são elementos *maximais* de A
- b1, b2 e b3 são elementos *minimais* de A

<u>Exemplo</u>: Quais elementos do poset ({2,4,5,10,12,20,25},|) são maximais e quais são minimais?

- Elementos maximais: 12, 20 e 25.
- Elementos minimais: 2 e 5.
- Note que um poset pode ter mais do que um elemento maximal e mais do que um elemento minimal.

Teorema: Seja (A,≤) um poset finito e não vazio com ordem parcial ≤. Então A tem pelo menos um elemento maximal e ao menos um elemento minimal.

Prova:

- Seja a∈A. Se a não é maximal, então pode-se achar a₁∈A com a<a₁.
- Se a_1 não é maximal então pode-se achar a_2 ∈ A com a_1 < a_2 .
- Este argumento n\u00e3o pode ser continuado indefinidamente, pois o conjunto A \u00e9 finito.
- Assim, eventualmente será formada a seguinte cadeia: $a < a_1 < a_2 < a_3 < ... < a_{k-1} < a_k$
- Não é possível encontrar mais algum b∈ A tal que a_k<b.
- Logo, a_k é um elemento maximal de (A,≤).

- Com o conceito de elementos minimais, pode-se estabelecer um algoritmo para encontrar uma ordenação topológica de um dado poset finito (A,≤).
- O algoritmo abaixo produz um vetor chamado SORT que satisfaz: SORT[1] < SORT[2] < ...
- A relação < sobre A definida desta forma é uma ordenação topológica de (A,≤).

Algoritmo SORT:

- 1. $I \leftarrow 1$
- $2. S \leftarrow A$
- 3. Enquanto $S \neq \emptyset$
 - a. Escolha um elemento minimal a do conjunto S
 - b. $SORT[I] \leftarrow a$
 - c. $I \leftarrow I+1$
 - d. $S \leftarrow S \{a\}$

Exemplo: Seja A={a,b,c,d,e} e seja o diagrama de Hasse de ≤ sobre A dado por:

Exemplo (cont.): Seja A={a,b,c,d,e} e seja o diagrama de Hasse de ≤ sobre A dado por:

Passo 1:

Exemplo (cont.): Seja A={a,b,c,d,e} e seja o diagrama de Hasse de ≤ sobre A dado por:

Passo 2:

SORT							
d	е						

Exemplo (cont.): Seja A={a,b,c,d,e} e seja o diagrama de Hasse de ≤ sobre A dado por:

Passo 3:

a ● I

SORT								
d	е	С						

Exemplo (cont.): Seja A={a,b,c,d,e} e seja o diagrama de Hasse de ≤ sobre A dado por:

Passo 4:

a 🗨

SORT							
d	е	С	b				

Exemplo (cont.): Seja A={a,b,c,d,e} e seja o diagrama de Hasse de ≤ sobre A dado por:

Passo 5:

Definição: Seja o poset (A,≤). Então:

- Um elemento a∈ A é chamado de um maior elemento de A se b≤a para todo b∈ A
- 2) Um elemento a∈ A é chamado de um **menor elemento** de A se a≤b para todo b∈ A.

Nota: Dado um poset (A, \leq) , um elemento $a \in A$ é um maior (ou menor) elemento se e somente se ele é um menor (maior) elemento do poset dual (A, \geq) .

<u>Exemplo</u>: Determine se os posets representados por cada um dos diagramas de Hasse abaixo possuem um maior elemento e um menor elemento.

- (A): menor elemento é a, não tem maior elemento
- (B): não tem menor nem maior elemento
- (C): não tem menor elemento, maior elemento é d
- (D): menor elemento é a, maior elemento é d

Exemplo: Seja A um conjunto. Determine se há um maior elemento e um menor elemento no poset $(P(A),\subseteq)$.

Solução:

- O menor elemento é o conjunto vazio, pois Ø ⊆ T para qualquer subconjunto T de A.
- O próprio conjunto A é o maior elemento deste poset, pois T ⊆ A sempre que T é um subconjunto de A.

Exemplo: Há um maior elemento e um menor elemento no poset (Z+,|)?

Solução:

- o inteiro 1 é o menor elemento, pois 1|n sempre que n é um inteiro positivo.
- Não há maior elemento, pois não existe inteiro que seja divisível por todos os inteiros positivos.

Definição: Sejam um poset (A,≤) <u>e um subconjunto</u> B<u></u>A. Então:

a) um elemento a∈ A é chamado de uma **cota superior** ("upper bound") de B, se:

 $b \le a$, para todo $b \in B$

b) um elemento a∈ A é chamado de uma cota inferior ("lower bound") de B, se:

 $a \le b$, para todo $b \in B$.

Exemplo: Seja o poset A={a,b,c,d,e,f,g,h} com o diagrama de Hasse abaixo. Ache todas as cotas superiores e inferiores dos seguintes subconjuntos de A:

a)
$$B_1 = \{a,b\}$$

b)
$$B_2 = \{c,d,e\}$$

- B₁ não tem cotas inferiores
- suas cotas superiores são: c,d,e,f,g,h
- as cotas superiores de B₂ são: f,g,h
- suas cotas inferiores são:
 c,a,b

<u>Exercício</u>: Encontre as cotas superiores e inferiores dos subconjuntos {a,b,c},{j,h} e {a,c,d,f} no poset cujo diagrama de Hasse é dado por:

- cotas superiores de {a,b,c}: e,f,j,h
- única cota inferior: a
- não há cotas superiores de {j,h}
- suas cotas inferiores são:
 a,b,c,d,e,f
- cotas superiores de {a,c,d,f}: f,h,j
- sua cota inferior é: a

Observações:

- Note que um subconjunto B de um poset pode ou n\u00e3o ter cotas inferiores ou superiores (em A).
- Além isto, uma cota superior ou inferior de B pode ou não pertencer ao próprio B.

Definição (1):

- Um elemento x é chamado de Menor Cota Superior (LUB "Least Upper Bound") de um subconjunto A se x é uma cota superior menor do que qualquer outra cota superior de A.
 - ou seja, x será a menor cota superior de A se:

 $a \le x$ para todo $a \in A$ e

 $x \le z$ para todo z que seja uma cota superior de A

Definição (2):

 Um elemento y é chamado de Maior Cota Inferior (GLB - "Greatast Lower Bound") de A se y é uma cota inferior de A e z ≤ y para todo z que seja uma cota inferior de A

Exemplo: Seja o poset A={a,b,c,d,e,f,g,h} com o diagrama de Hasse abaixo. Ache todos os LUBs e GLBs de:

a)
$$B_1 = \{a,b\}$$

b)
$$B_2 = \{c,d,e\}$$

- Como B₁ não tem cotas inferiores, também não terá GLBs
- LUB(B_1) = C
- Como as cotas inferiores de B₂ são c,a,b, temos que GLB(B₂) = c
- As cotas superiores de B₂ são f,g,h então, como f não é comparável com g, concluímos que B₂ não tem LUB

<u>Exercício</u>: Encontre a LUB e a GLB de {b,d,g}, se elas existirem, no poset cujo diagrama de Hasse é:

- as cotas superiores de {b,d,g} são: g,h
- então, como g < h, g é a menor cota superior (LUB)
- as cotas inferiores de {b,d,g} são:
 a,b
- então, como a <b, b é a maior cota inferior (GLB)

Exemplo: Encontre a menor cota superior e a maior cota inferior dos conjuntos $\{3,9,12\}$ e $\{1,2,4,5,10\}$, se elas existirem, no poset $(\mathbf{Z}^+,|)$.

- Solução:
- GLBs (maiores cotas inferiores):
 - um inteiro é uma cota inferior de {3,9,12} se 3,9, e 12 forem divisíveis por este inteiro
 - → os únicos inteiros deste tipo são 1 e 3
 - \rightarrow então, como 1|3, 3 é a *maior cota inferior* de {3,9,12}
 - a única cota inferior do conjunto {1,2,4,5,10} é o 1
 - \rightarrow portanto, 1 é a *maior cota inferior* para $\{1,2,4,5,10\}$

Exemplo (cont.): Encontre a menor cota superior e a maior cota inferior dos conjuntos $\{3,9,12\}$ e $\{1,2,4,5,10\}$, se elas existirem, no poset $(\mathbf{Z}^+,|)$.

- LUBs (menores cotas superiores):
 - um inteiro é uma cota superior de {3,9,12} sse ele for divisível por 3, 9 e 12.
 - → os inteiros com esta propriedade são aqueles divisíveis pelo mmc de 3, 9 e 12, que é 36.
 - \rightarrow então, 36 é a *menor cota superior* de {3,9,12}
 - um inteiro é uma cota superior para o conjunto {1,2,4,5,10} sse ele for divisível por 1,2,4,5,10
 - → os inteiros com esta propriedade são aqueles divisíveis pelo mmc de 1,2,4,5,10, que é 20.
 - \rightarrow então, 20 é a *menor cota superior* de $\{1,2,4,5,10\}$

Teorema: Seja (A,≤) um poset. Então um subconjunto B qualquer de A tem no máximo um LUB e um GLB.

Teorema: Suponha que (A, \le) e (A', \le') são posets isomorfos sob o isomorfismo $f:A \rightarrow A'$. Então tem-se que:

- a) se a é um elemento maximal (minimal) de (A, \le) , então f(a) é um elemento maximal (minimal) de (A', \le') ;
- b) se a é o maior (menor) elemento de (A, \le) , então f(a) é o maior (menor) elemento de (A', \le') ;
- c) se a é uma cota superior (inferior) de um subconjunto B de A, então f(a) é uma cota superior (inferior) do subconjunto f(B) de A'
- d) se todo subconjunto de (A,\leq) tem LUB (GLB), então todo subconjunto de (A',\leq') tem um LUB (GLB).

Exemplo: Mostre que os posets (A, \le) e (A', \le') , cujos diagramas de Hasse estão mostrados abaixo, *não são isomórficos*.

Solução: Os 2 posets não são isomórficos porque (A,≤) possui um maior elemento a, enquanto que (A',≤') não possui um maior elemento.

 Também se pode argumentar que eles não são isomórficos porque (A,≤) não tem um menor elemento enquanto que (A',≤') tem.