# Long term measures of the resonating vocal tract: establishing correlation and complementarity

Peter French, Paul Foulkes, Philip Harrison, Vincent Hughes, Eugenia San Segundo & Louisa Stevens

University of York & J P French Associates





# Voice and identity: source, filter, biometric

#### aims

- individual speaker characterisation: properties of the voice that are specific to the individual
  - focus on (1) filter (vocal tract) and (2) source (larynx)
- combination of linguistic/phonetic and ASR methods (cf. Gonzalez-Rodriguez et al. 2014)
- improve the performance of forensic voice comparison systems





- stage 1: focus on the vocal tract (filter)
- underlying assumption: physiology of vocal tract = unique to individuals
  - differences between individuals should be manifested in vocal tract output

#### • but...

- no direct access to physiological measures in FVC
- limited to indirect output measures







to better understand the speaker-specifics of

the vocal tract...



• to better understand the speaker-specifics of the vocal tract...

biology/ physiology

# first step: important to understand the relationships between vocal tract output measures



- auditory features
  - Vocal Profile Analysis (VPA; Laver et al. 1981)
  - 27 supralaryngeal features (linguistic-phonetic)
    - labial, mandibular, lingual, pharyngeal, vocal tract tension features
- acoustic features
  - semi-automatic: long-term formant distributions
     (LTFDs) (Jessen, Heeren et al., Krebs & Braun, Meuwly et al. @ IAFPA 2015) (linguistic-phonetic)
  - automatic: MFCCs/LPCCs (ASR)

- why these features?
  - long-term features = more likely to capture broad individual differences in vocal tract physiology
    - cf. segmental variables: more susceptible to systematic within-sp variability (empirical question?)
    - easier to extract data automatically
  - combination of features from linguistics/ phonetics and ASR
    - general move towards the integration of analytic approach from different sub-fields

### research questions

- 1. to what extent are long-term vocal tract output measures related?
- 2. to what extent do these long-term vocal tract measures provide complementary information?

### 2. Methods

- corpus = DyViS (Nolan et al. 2009)
  - 100 male speakers
  - Standard Southern British English (SSBE)
  - 18-25 years old





- Task 2 studio (near-end) recordings
  - information exchange task with 'accomplice' over landline telephone
  - 44.1kHz/ 16-bit depth audio
  - 10-15 minutes in duration

### 2. Methods

### preparation of sound files

- manual editing to remove overlapping speech, overlapping background noise and nonlinguistic sounds (e.g. clicks, audible breath)
- silences > 100 ms removed
- clipping detected and sections removed
- samples reduced to 4 minutes

Date of recording: ...... Judge: ...... Recording ID: .......

### 2.1 VPA analysis

- in-house JPFA version of Laver (1981) VPA scheme
  - used 7 (incl. 0) scalar degrees
  - representing deviations from 'neutral' setting

|                   | FIR     | ST PASS     | SECON                   | D PASS   |          |          |          |               |   |
|-------------------|---------|-------------|-------------------------|----------|----------|----------|----------|---------------|---|
|                   |         |             |                         | moderate |          | ite      | extreme  |               |   |
|                   | Neutral | Non-neutral | SETTING                 | 1        | 2        | 3        | 4        | 5             | 6 |
| A. VOCAL TRAC     | T FEATU | RES         |                         |          |          |          |          |               |   |
| 1. Labial         |         |             | Lip rounding/protrusion |          |          |          |          |               | Γ |
|                   |         |             | Lip spreading           | П        | П        | П        | П        | П             | Г |
|                   |         |             | Labiodentalization      |          |          |          |          |               | Г |
|                   |         |             | Extensive range         |          | П        |          |          |               | Г |
|                   |         |             | Minimised range         |          | П        | П        |          | П             | Т |
| 2. Mandibular     |         |             | Close jaw               | Г        |          |          |          |               |   |
|                   |         |             | Open jaw                |          | П        | П        |          | П             | Т |
|                   |         |             | Protruded jaw           | П        | П        | П        |          | П             | Т |
|                   |         |             | Extensive range         |          | $\vdash$ | Т        |          |               | Τ |
|                   |         |             | Minimised range         | Т        | Т        | Т        | Т        | T             | T |
| 3. Lingual        |         |             | Advanced tip/blade      | Т        | $\vdash$ | Т        | $\vdash$ | T             | T |
| tip/blade         |         |             | Retracted tip/blade     | Г        | Г        | Т        |          | П             | Т |
| 4. Lingual body   |         |             | Fronted tongue body     | Г        | $\vdash$ | T        | $\vdash$ | T             | T |
|                   |         |             | Backed tongue body      |          |          |          |          |               | Τ |
|                   |         |             | Raised tongue body      | Т        | $\vdash$ | т        | $\vdash$ | T             | T |
|                   |         |             | Lowered tongue body     | Г        | Г        | Т        |          | П             | Т |
|                   |         |             | Extensive range         | Г        | П        | Т        |          |               | Т |
|                   |         |             | Minimised range         | Г        | $\vdash$ | T        |          | T             | T |
| 5. Pharyngeal     |         |             | Pharyngeal constriction |          | $\vdash$ | T        |          |               | Τ |
|                   |         |             | Pharyngeal expansion    | Т        | $\vdash$ | Т        | $\vdash$ | T             | T |
| 6. Velopharyngeal |         |             | Audible nasal escape    |          |          |          |          | $\overline{}$ | T |
|                   |         |             | Nasal                   | Г        | П        | Т        | Т        | T             | T |
|                   |         |             | Denasal                 | Г        | $\vdash$ | T        | $\vdash$ | T             | T |
| 7. Larynx height  |         |             | Raised larvnx           |          | $\vdash$ | T        |          |               | Τ |
|                   |         |             | Lowered larynx          |          |          |          |          |               |   |
| B. OVERALL MU     | SCULAR  | TENSION     |                         |          |          |          |          |               |   |
| 8. Vocal tract    |         |             | Tense vocal tract       | П        | П        | Т        | П        | П             | Т |
| tension           |         |             | Lax vocal tract         | $\vdash$ |          | $\vdash$ |          |               | T |
| 9. Larvngeal      |         |             | Tense larvnx            | Г        |          |          | Г        |               | T |
| tension           |         |             | Lax larynx              | $\vdash$ | $\vdash$ | -        | $\vdash$ | -             | Τ |

- auditory analysis performed by LS
  - only 27 supralaryngeal features analysed here

# 2.2 MFCC/LPCC analyses

- pre-emphasis filter applied (value = 0.97)
- entire signal divided into a series of overlapping frames
  - 20 ms hamming window shifted at 10 ms intervals
  - 50% overlap between adjacent frames
- 16 MFCCs/16 LPCCs extracted from each frame using RASTAMAT toolkit (Ellis 2005) in MATLAB

### 2.3 LTFDs



- automatic separation into C and V using StkCV (Andre-Obrecht 1988)
- vowel-only samples
  - 25 ms Gaussian window shifted at 5 ms
- F1~F4 values extracted from each frame
  - iCAbS tracker (Harrison & Clermont 2012)



### 3. Experiment (1): correlations

#### method

- by-speaker means calculated for LTF1~LTF4
   (LTFM = long term formant mean)
- Spearman correlations (non-parametric) matrix generated for LTFDs and VPA scores
- plotted as heatmaps based on rho value:
  - dark colours = stronger correlation
  - red = positive correlation
  - blue = negative correlation

## 3. Experiment (1): correlations

**VPA** (supralaryngeal) ~ LTFD

#### VPA (Supralaryngeal) ~ LTFDs



# 3. Experiment (1): correlations

#### LTFD 1

```
• backed tongue body rho = 0.200 p = 0.045*
```

• pharyngeal constriction rho = 
$$0.298$$
  $p = 0.0026**$ 

• pharyngeal expansion rho = 
$$-0.213$$
  $p = 0.034*$ 

• lowered larynx rho = 
$$-0.248$$
  $p = 0.013*$ 

#### LTFD 2

• fronted tongue body rho = 
$$0.239$$
  $p = 0.0164*$ 

#### LTFD 3

• tense vocal tract rho = 
$$0.242$$
  $p = 0.041$ \*

#### LTFD 4

• pharyngeal constriction rho = 
$$-0.220$$
  $p = 0.028*$ 

#### method

- 1024 Gaussian GMMs generated in MATLAB (ISP toolkit) for each speaker for the MFCCs/LPCCs
- Kullback-Leibler (KL) divergences between speaker models
  - measure of distance (similarity) between speakers
  - **near** = similar/ **far** = dissimilar
- speakers plotted in 2D KL divergence space using multidimensional scaling

#### method

- cluster analysis (using GMMs) performed using coordinates in KL divergence space to identify speaker groups
  - N clusters determined by AIC fit statistic
- speaker clusters analysed relative to VPA profiles
- outlying speakers identified and analysed
  - supralaryngeal VPA scores
  - any other features (e.g. segmental, temporal, technical) which might separate these speakers from the clusters

#### 16 MFCCs





#### 16 MFCCs





#### 16 MFCCs

- outliers (as identified by the clustering):
  - -19(022-2-060330)
  - -22 (025-2-060425)
  - -35 (028-2-060426)
  - -29 (032-2-060428)
  - -64 (072-2-061009)
- are these speakers unusual in terms of overall supralaryngeal VPA profiles?

#### yes...

| Sp 19               | Sp 22      | Sp 25                      | Sp 29      | Sp 64                 |
|---------------------|------------|----------------------------|------------|-----------------------|
| Advanced tongue tip | Low larynx | Audible<br>nasal<br>escape | Lax larynx | Advance<br>tongue tip |
| Tense vocal tract   | Lax larynx |                            |            | Lax larynx            |
| Nasal               |            |                            |            | Whispery              |

<sup>\*\*</sup>Agreement reached between two independent phoneticians. Procedure: blind evaluation; two passes each expert.

is there systematicity in the clustering of speakers? yes...



### ...and no

Speakers clustered in the middle:

Sp 05
Sp 07
Sp 42
Sp 56
Sp 89



#### 16 LPCCs





#### 16 LPCCs

- which speakers are grouped together?
  - no clear explanation for the groupings of speakers in the two main clusters
  - general supralaryngeal VPA profiles = very similar (accent features)
    - advanced tongue tip
    - sibilance
    - fronted tongue body

#### 16 LPCCs

- outliers (as identified by the clustering):
  - -12 (015-2-060324)
  - -22 (025-2-060425)
  - -35 (038-2-060504)
  - -36 (039-2-060504)
  - -43 (047-2-060607)
  - **44 (048-2-060608)**
- are these speakers unusual in terms of overall supralaryngeal VPA profiles?

#### yes...

possible to find dimensions on which speakers differ

#### ... and no

- but these speakers aren't especially distinctive relative to the group
- greater between-speaker VPA differences for speaker pairs in the centre of the clusters

• interrelationships between long-term measures of vocal tract output...



 interrelationships between long-term measures of vocal tract output...



 interrelationships between long-term measures of vocal tract output...



• interrelationships between long-term measures of vocal tract output...



 interrelationships between long-term measures of vocal tract output...



### 6. Conclusion

- complementary VT information provided by auditory (supralaryngeal VPA) and acoustic (LTFDs to some extent and CCs) analyses
  - potential for improving the performance of ASRs by including independent VPA information
- further complementary information provided by laryngeal VPA (Gonzalez-Rodriguez et al. 2014) and segmental features

# **Thanks! Questions?**





