Работа № 1

«Длинная» арифметика. Тип данных — массив Цель работы: реализовать арифметические операции над числами, выходящими за разрядную сетку персонального компьютера, выбрать необходимые типы данных для хранения и обработки указанных чисел.

Краткие теоретические сведения

Современный персональный компьютер (ПК) часто применяется для выполнения вычислений. При этом, для хранения исходных данных и результатов вычислений обычно используются стандартные числовые типы данных (целые и вещественные, в том числе, удвоенной точности). Каждый тип данных характеризуется определенным диапазоном значений чисел, который, в свою очередь, зависит от размера области памяти, выделяемой под хранение переменной этого типа, от наличия знака в числе и от типа представления числа (целое или вещественное).

Целое число X со знаком представляется в ПК следующим образом: если $X \ge 0$, то число записывается как беззнаковое, если X < 0, то число переводится в дополнительный код и записывается как 2^k − |X|, где k − количество разрядов, выделенное под представление числа.

Таким образом, если под хранение целого положительного числа выделено 16 разрядов, то его максимальное значение не может превышать 2^{16} -1=65 535, если выделено 32 разряда, то максимальное значение составит 2^{32} -1=4 294 967 295. Для 64 разрядов максимально возможное значение числа равно 2^{64} -1=18 446 744 073 709 551 615.

Для 64-разрядного процессора принципиально невозможно использовать больше 20 десятичных разрядов для представления числа, поэтому при необходимости обрабатывать числа большей размерности (например, при выполнении астрономических расчетов) хранение данных и их обработку должен реализовать программист.

Вещественные числа обычно хранятся и используются в представлении с плавающей точкой в виде:

$$X = M * E^p$$
,

где $\,M-\,$ мантисса со знаком, $E-\,$ основание (10 или 16), $p-\,$ целый порядок со знаком.

Если десятичная точка расположена в мантиссе перед первой значащей цифрой числа, то при фиксированном количестве разрядов, отведённых под мантиссу, обеспечивается возможность сохранить максимальное количество значащих цифр, то есть обеспечить максимальную точность представления числа в ПК. Из сказанного следует, что мантисса должна быть *правильной дробью*, первая цифра которой отлична от нуля, т.е. М находится в интервале [0.1, 0.99...9]. Такое представление вещественных чисел называется *нормализованным*.

Таким образом, длина мантиссы определяет точность представления числа, а длина порядка ограничивает диапазон допустимых значений. При этом, если мантисса выходит за разрядную сетку ПК, то происходит ее округление. При выходе за заданный диапазон величины порядка могут возникнуть проблемы, связанные с переполнением порядка (при положительном порядке) или получением машинного нуля (при отрицательном порядке).

Максимально под представление мантиссы отводится 52 разряда, а под представление порядка -11 разрядов. В этом случае возможные значения чисел находятся в диапазоне от 3.6 E - 4951 до 1.1 E + 4932.

В том случае, если требуется очень высокая точность вычислений (не ниже 20–30 знаков после десятичной точки) или необходимо обрабатывать числа с большим порядком (превышает 5000) (в навигационных системах или в системах наведения), то задача выбора необходимых структур для хранения и обработки данных и реализации необходимых операций над ними также возлагается на программиста.

Задание

Составить программу умножения или деления двух чисел, порядок которых находится в диапазоне от –99999 до +99999 (т.е. имеет не более 5 разрядов), а длина мантиссы не превышает, например 30 разрядов. (Длина мантиссы дана в варианте задания и могут отличаться от данного примера)

Программа должна осуществлять ввод чисел в указанном диапазоне значений и выдавать результат в нормализованной форме $\pm 0.m1$ E $\pm K1$, где число m1 определено до 30 значащих цифр, число K1- до 5 цифр. При невозможности произвести вычисления должно выдаваться соответствующее сообщение.

При получении результата с порядком, большим по модулю, чем указано, необходимо сообщить о достижении машинного нуля или машинной бесконечности (переполнение порядка)

Указания к выполнению работы

При выполнении лабораторной работы следует обратить внимание, что при хранении чисел в оперативной памяти компьютера необходимо обеспечить следующий формат их представления (рис. 1,2):

Рис.1. Представление целого числа

Рис.2. Представление вещественного числа

При вводе целого числа не допускается ввод точки и порядка. Возможен ввод знака перед числом. В случае положительного числа знак опционален.

Ввод вещественного числа НЕ обязательно осуществлять в нормализованном виде. При этом количество значащих цифр не должно превышать указанное в задании.

Ведущие нули (не значащие – до точки и/или до первой цифры) в расчете длины числа не учитываются. Значащие нули после точки учитываются при подсчете длины числа.

Десятичное число может представляться без точки: 123 (как целое).

При наличии точки в числе возможны следующие варианты его представления:

.00025, +123001**.**, -123**.**456.

Также допускается представление числа в экспоненциальной форме:

1234567 Е –20, 1234567 Е 20 или 123.4567 Е23.

Так как работа ведется в консольном режиме и с длинными числами, хорошо бы предусмотреть «линейку» над вводимым числом, например:

В программе должна быть реализована возможность ввода чисел в любом из перечисленных представлений.

Результат при выдаче на печать должен быть нормализован в виде: знак 0.мантисса Е знак порядок. Первая цифра мантиссы не является нулем.

Указанный формат не имеет стандартного представления в машине, поэтому программист сам должен выбрать типы данных, используя которые возможно осуществить необходимые действия (ввод, вывод, обработку) с данными числами. Наиболее предпочтительным типом для этого является массив, например, массив символов или чисел — для ввода и вывода числа, числовой массив — для обработки. Но, можно использовать структуру для хранения всего числа, например, знак мантиссы, мантисса, знак порядка, порядок. Можно разбить мантиссу на несколько частей, обрабатывая их, а затем «склеивая» число. Выбор — за программистом.

Проще производить вычисления, если перед обработкой числа нормализованы, т.е. приведены к такому виду, когда после нуля следует значащая цифра. При нормализации порядок входных данных может выйти за пределы указанного диапазона, но при правильных исходных данных, это не должно приводить к ошибке. Для этого необходимо предусмотреть дополнительные разряды в тех структурах данных, которые предназначены для хранения и обработки промежуточных результатов вычисления.

Если в результате умножения или деления чисел длина мантиссы стала больше указанного количества знаков, то необходимо произвести округление (если 31-й разряд больше или равен 5, то к 30-му разряду добавляется единица, если меньше 5, то 31-й разряд отбрасывается). При этом может возникнуть циклический поразрядный перенос из младшего разряда в старший с коррекцией порядка. Например, для 5-ти разрядов:

99999 E 01+00008 E 01=100007 E 01 \rightarrow 10001 E 02.

Так же как нет стандартных типов для хранения таких больших чисел, так нет и стандартных арифметических операций для их обработки, поэтому необходимо разработать эти операции самостоятельно. Если мантисса хранится в массиве, то, удобно использовать алгоритм умножения и деления в «столбик».

Примеры обработки и представления длинных чисел в массиве цифр

Рассмотрим наиболее простое для понимания представление длинных чисел в виде массива значащих цифр (каждая цифра длинного числа является элементом массива чисел)

Пример 1. Умножение длинного числа (3123456789) на короткое (7)

Таблица 1. Умножения длинного числа на короткое в «столбик»

№	Значение разрядов в массиве									
1	3	1 2 3 4 5 6 7 8 9								
2	21	7	14	21	28	35	42	49	56	63
3	21	8	14+2=16	21+3=24	28+3=31	35+4=39	42+5=47	49+6=55	56+6=62	3
			< - 1	<-2	<-3	<-3	< - 4	<-5	<-6	<-6
4	21	8	6	4	1	9	7	5	2	3

Первая строка таблицы 1 — содержимое массива, представляющего цифры исходного числа.

На первом шаге каждая цифра длинного числа умножается на короткое число. Полученный массив представлен в строке 2 таблицы 1.

Далее в результирующий массив (строка 4 таблицы 1) записывается последняя цифра числа из массива произведений цифр, а старший разряд произведения суммируется с значением из предыдущей ячейки (старший разряд) (показано в строке 3 таблицы 1).

В примере обработка числа идет справа налево, но для удобства работы с массивом, можно хранить цифры числа в «перевернутом» виде, начиная с младших разрядов. Об этом необходимо помнить при выводе числа.

Пример 2. Умножение «длинного» числа на «длинное»

Числа хранятся в массивах цифр, но в «перевернутом» виде, где старшие разряды хранятся слева, а младшие — справа. Например, числа: 456789 * 62345 хранятся в виде: 987654*54326.

При умножении двух длинных чисел в «столбик», первое число умножается на каждую цифру второго. Результат умножения на і-ю цифру прибавляется к общему результату (в массиве чисел) со сдвигом на і+1.

Таблица 2. Умножение длинного числа на длинное в «столбик»

		Значение разрядов в массиве								
5	45	40	35	30	25	20				
4		36	32	28	24	20	16			
3			27	24	21	18	15	12		
2				18	16	14	12	10	8	
6					54	48	42	36	30	24
	45	76	94	100	140	120	85	58	38	24
	4 ->	80	102	110	151	135	98	67	44	28
		8->	10->	11->	15->	13->	9->	6->	4->	
	5	0	2	0	1	5	8	7	4	28

Результат = 28'478'510'205

Пример 3. Деление чисел в столбик

Таблица 3. Алгоритм деления двух чисел в столбик

1	12345 67 3748	Определить неполное делимое.				
	<u> </u>	Сравнить старшие разряды у				
		делителя и делимого. Если старший				
		разряд делимого больше, то длина				
		неполного делимого равна длине				
		делителя, если меньше, то длина				
		неполного делителя на 1 больше,				
		если равны, то сравнить следующие				
		разряды				
2	12345, 3748 (: 1000)	разделить неполное делимое и				
	12:3=4	делитель на $10^{(k-1)}$, где к — длина				
		делителя. Получить их частное t				
3	4 * 3748 = 14992	а. Умножить t на делитель.				
	12345 < 14992:	b. Если результат больше				
	4-1=3	неполного делимого, то				
	4-1=3	уменьшить t = t-1, иначе с				
	3 * 3748 = 11244	с. умножить t на делитель				
	12345 - 11244 =	d. Найти разность делимого и				
	1101	делителя				
	1101					
4	11016	Сносим следующую цифру				
		делимого. Если ее нет, ставим 0 и				
		изменяем порядок				
Далее п	Далее повторить действия с п.2. до тех пор, пока неполное делимое и					
остаток не будут равны 0 или пока количество значащих цифр не						

остаток не будут равны 0 или пока количество значащих цифр не будет равным длине результата + 1. Затем, при необходимости,

Обработка длинных чисел при хранении нескольких цифр числа в каждом элементе массива

Представление чисел можно сделать более эффективным, если в каждый элемент массива (типа int) вводить числа до 10^4 .

Например, число 123456789 можно представить:

$$1 \ 2345 \ 6789 = 0001 * 10^8 + 2345 * 10^4 + 6789 * 10^0 =$$
$$= 1 * (10^4)^2 + 2345 * (10^4)^1 + 6789 * (10^4)^0$$

Таким образом, представляем наше число в системе счисления с основанием 10000. Для удобства вычисления можно представить число в виде массива, записывая элементы в обратном порядке, где индекс элемента массива соответствует степени при преобразовании: | 6789 | 2345 | 0001 |

Выбор системы счисления опционален. В данном примере для хранения длинного числа предусматривался массив чисел типа int. Так что при умножении двух четырехзначных чисел не произойдет выход за границы типа.

Пример 4. Сложение двух чисел.

A = 2345'6781'3245 B = 348'7654'8749'1384

Таблица 4. Пример работы алгоритма сложения двух длинных чисел, хранящихся в массиве по тетрадам

	1 ' '			-
A	3245	6781	2345	0
В	1384	8749	7654	348
С	4629	15530	9999	348
		1 ->	1 ->	
С	4629	5530	0000	349

C = 349'0000'5530'4629

Числа по тетрадам записываются в массивы в обратном порядке, слева младшие разряды, справа – старшие.

Складываются соответствующие элементы массивов. В случае, когда длина суммы становится больше 4, в текущем разряде остается только 4 младшие цифры. Пятая, старшая цифра, суммируется с числом следующего разряда.

Пример 5. Умножение «длинного» числа на «короткое»

A = 2345'6781'3245 B = 756

Таблица 5. Умножение длинного числа на короткое. Хранение по тетрадам

A	3245		6781	2345	0
В	756				
C	3245 *	756 =	6781 * 756 = 512 '6436	2345 * 756 =	
	245 '3220		+245 = 512 6681	177'2820	
				+ 512 = 177 3332	
		245 ->	512 ->	177 ->	
C	3220		6681	3332	177

C = 177 3332 6681 3220

Алгоритм аналогичен представленному в примере 1. Здесь число представлено по тетрадам в CC_{10000} . При этом число хранится в перевернутом виде, то есть младшие разряды слева, старшие справа.

Каждая цифра числа (в СС₁₀₀₀₀) умножается на «короткое число», размером не более 1 тетрады. Далее, в случае, когда результат умножения больше 9999, младшие разряды сохраняются в результирующем массиве, а старшие разряды суммируются со следующим элементом массива.

Пример 6. Умножение «длинного» числа на «длинное»

A = 1'2345'6789'1234 B = 12'3456

Таблица 6. Умножение длинного числа на длинное в «столбик»

	1234	6789	2345	1	
3456	1234 * 3456	6789 * 3456	2345 * 3456	1 * 3456	
	426'4704	2346'2784	810'4320	3456	
12		1234 * 12	6789 * 12	2345 * 12	1 * 12
		1'4808	8'1468	2'8140	12
	426 4704	2347 7592	818 5788	3 1596	12
		+ 426	+ 2347	+ 818	+ 4
		2347 8018	818 8135	3 2414	15
	426 ->	2347 ->	818 ->	3->	
	4704	8018	8135	2414	15

C = 15 2414 8135 8018 4704

Алгоритм работы аналогичен алгоритму, описанному в примере 2.

Числа представлены тетрадами и записываются в массив в обратном порядке, слева младшие разряды, справа - старшие.

Каждый следующий разряд второго множителя сдвигается на i+1 в результирующем массиве. На каждой позиции результирующего массива остаются только 4 младших разряда, а все старшие разряды суммируются со следующим элементом массива.

Все логически завершенные фрагменты алгоритма (ввод, вывод, обработка и т.п.) необходимо оформить в виде подпрограмм. Проект должен быть многофайловым.

При разработке интерфейса программы следует предусмотреть:

- указание операции, производимой программой,
- указание формата и диапазона вводимых данных,
- указание формата выводимых данных,
- наличие пояснений при выводе результата.

При тестировании программы необходимо:

- проверить правильность ввода и вывода данных (т.е. их соответствие требуемому формату);
- обеспечить вывод сообщений при отсутствии входных данных («пустой ввод»);
- проверить правильность выполнения операций;
- реализовать округление при превышении разрядности мантиссы;
- отследить возникновение переполнения и/или машинного нуля.

Необходимо также протестировать программу на границах допустимых значений данных, задавая самое большое и самое маленькое число в заданном диапазоне представления.

Содержание отчета

Отчет по лабораторной работе должны содержать:

- 1) описание условия задачи;
- 2) описание Т3, включающем внешнюю спецификацию:
 - а. описание исходных данных (не языка программирования, а данных, понятных пользователю) и результатов (то есть, типы, форматы, точность, способ передачи, ограничения);
 - b. описание задачи, реализуемой программой;
 - с. способ обращения к программе;
 - d. описание возможных аварийных ситуаций и ошибок пользователя.
- 3) описание внутренних СД (на языке программирования);
- 4) описание алгоритма (в любом виде);
- 5) набор тестов, с указанием, что проверяется;
- 6) выводы по проделанной работе

Кроме того, в отчете должны быть даны ответы на следующие вопросы.

- 1. Каков возможный диапазон чисел, представляемых в ПК?
- 2. Какова возможная точность представления чисел, чем она определяется?
- 3. Какие стандартные операции возможны над числами?
- 4. Какой тип данных может выбрать программист, если обрабатываемые числа превышают возможный диапазон представления чисел в ПК?
- 5. Как можно осуществить операции над числами, выходящими за рамки машинного представления?

Отчет представляется в электронном или печатном виде.