#### PCT

#### WELTORGANISATION FÜR GEISTIGES EIGENTUM

# Internationales Büro INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 5:

(11) Internationale Veröffentlichungsnummer:

WO 93/14548

H02J 7/04

A1

(43) Internationales

Veröffentlichungsdatum:

22. Juli 1993 (22.07.93)

(21) Internationales Aktenzeichen:

PCT/DE92/01060

(22) Internationales Anmeldedatum:

18. Dezember 1992 (18.12.92)

PT, SE).

1332 (10.12.32)

(30) Prioritätsdaten:

P 42 00 693.7

14. Januar 1992 (14.01.92) DE

Veröffentlicht

Mit internationalem Recherchenbericht.

(81) Bestimmungsstaaten: JP, US, europäisches Patent (AT, BE,

CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL,

(71) Anmelder (für alle Bestimmungsstaaten ausser US): RO-BERT BOSCH GMBH [DE/DE]; Postfach 30 02 20, D-7000 Stuttgart 30 (DE).

(72) Erfinder; und

(75) Erfinder, and (75) Erfinder, Armin [DE/DE]; Talstrasse 10, D-7022 Leinfelden-Echterdingen (DE). HAERLE, Vinzenz [DE/DE]; Achalmstrasse 5/1, D-7449 Neckartenzlingen (DE).

(54) Title: METHOD OF CHARGING ACCUMULATORS

(54) Bezeichnung: VERFAHREN ZUM LADEN VON AKKUMULATOREN



#### (57) Abstract

Proposed is a method and device for charging accumulators, in which the instantaneous voltage of the accumulators and their temperature and/or the voltage and temperature time derivatives are measured in order to regulate the charging current. The method and device are characterized in that the measured values are linked to each other by fuzzy-logic techniques.

#### (57) Zusammenfassung

Es werden ein Verfahren und eine Vorrichtung zum Laden von Akkumulatoren vorgeschlagen, bei denen die momentane Spannung der Akkumulatoren sowie deren Temperatur und/oder die Ableitungen von Spannungen und Temperatur nach der Zeit gemessen werden, um den Ladestrom einzustellen. Verfahren und Vorrichtung zeichnen sich dadurch aus, daß die Meßwerte nach Art der Fuzzy-Logik miteinander verknüpft werden.







## LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

|   | ΑT | Österreich                     |     |                                   | MR | Mauritanien                    |
|---|----|--------------------------------|-----|-----------------------------------|----|--------------------------------|
|   | AU | Australien                     | FŘ  | Frankreich                        | MW | Malawi                         |
|   | BB | Barbados                       | GA  | Gahon                             | NL | Niederlande                    |
|   | BE | Belgien                        | CB  | Vereinigtes Königreich            | NO | Norwegen                       |
|   | BF | Burkina Faso                   | GN  | Guinea                            | NZ | Neusceland                     |
|   | BC | Bulgarien                      | GR  | Griechenland                      | PL | Polen                          |
|   | BJ | Benin                          | HU  | Ungarn                            | PT | Portugal                       |
|   | BR | Brasilien                      | 1E  | Irland                            | RO | Rumänien                       |
|   | CA | Kanada                         | IT  | Italien ·                         | RU | Russische Föderation           |
|   | CF | Zentrale Afrikanische Republik | JР  | Japan                             | SD | Sudan                          |
|   | CG | Kongo                          | KP  | Demokratische Volksrepublik Korea | SE | Schweden                       |
|   | CH | Schweiz                        | KR  | Republik Korca                    | SK | Slowakischen Republik          |
|   | CI | Côte d'Ivoire                  | ΚZ  | Kasachstan                        | SN | Senegal                        |
|   | CM | Kamerun                        | LI  | Liechtenstein                     | SU | Soviet Union                   |
|   | CS | Tschechoslowakei               | LK  | Sri Lanka                         | TD | Tschad                         |
|   | CZ | Tschechischen Republik         | LU  | Luxemburg                         | TG | Togo                           |
|   |    | Deutschland                    | MC  | Monaco                            | UA | Ukraine                        |
|   | DE | Dänemark                       | MG  | Madagaskar                        | US | Vereinigte Staaten von Amerika |
|   | DK | <del></del>                    | Mi. | Mali                              | VN | Vietnam                        |
| • | ES | Spanien<br>Finnland            | MN  | Mongotei                          |    |                                |



WO 93/14548 PCT/DE92/01060

Verfahren zum Laden von Akkumulatoren

Stand der Technik

Die Erfindung betrifft ein Verfahren zum Laden von Akkumulatoren nach der Gattung des Anspruchs 1, außerdem ein Ladegerät für Akkumulatoren gemäß Oberbegriff des Anspruchs 6.

In elektrischen Geräten werden zunehmend Batterien durch Wechselakkumulatoren ersetzt, beispielsweise in Elektrowerkzeugen. Die Akkumulatoren weisen ein-Reihe geschaltete Zellen auf, beiin spielsweise NiCad- aber auch NiH-Zellen auf. Zur Erfassung der Zellentemperatur werden geeignete Sensoren, beispielsweise NTC-Widerstände oder Dioden, zwischen die Zellen eingebracht. Beim Wiederaufladen der Akkumulatoren werden verschiedene Abschaltkriterien berücksichtigt, beispielsweise Temperatur-, Spannungs- oder Zeitabschaltung. Auch werden häufig mehrere Kriterien kombiniert. Beschädigungen der Zellen konnten auch dann noch vermieden werden, wenn bei Ladezeiten bis zu einer Stunde Berücksichtigung eines der Abschaltkriteriums ein Fehler auftrat.

#### Vorteile der Erfindung

Das erfindungsgemäße Verfahren mit den in Anspruch 1 genannten Merkmalen, so wie die Vorrichtung gemäß Anspruch 6 haben demgegenüber den Vorteil, daß schonende Ladezyklen gewährleistet sind, die die Lebensdauer der Zellen verlängern, auch wenn die Ladezeit wesentlich verkürzt wird.

Durch den Einsatz der Fuzzy-Logik können vielfältige Randbedingungen berücksichtigt und ein sehr schonendes Ladeverfahren realisiert werden, ohne den Aufwand zur Realisierung des Verfahrens wesentlich zu erhöhen.

Bei einer bevorzugten Ausführungsform des Verfahrens werden Spannung und Temperatur des Akkumulators beziehungsweise von dessen Zellen sowie die zeitliche Ableitung dieser Meßwerte erfaßt. Mit Hilfe relativ weniger Signale kann bereits ein sehr schonendes Ladeverfahren realisiert werden.

Bevorzugt wird außerdem eine Ausführungsform des Verfahrens, bei der verschiedene Ladevorgänge danach unterschieden werden können, ob die Temperatur des Akkumulators hoch oder niedrig oder ob die Temperatur des Akkumulators beziehungsweise der Zellen steigt oder fällt. Durch die Berücksichtigung dieser Meßwerte kann auf einfache Weise ein schonendens Laden des Akkumulators sichergestellt werden.

Weitere Ausführungsformen ergeben sich aus den übrigen Unteransprüchen.

Ein bevorzugtes Ausführungsbeispiel eines Ladegeräts für Akkumulatoren zeichnet sich dadurch aus, daß ein Fuzzy-Prozessor vorgesehen ist. Durch den Einsatz eines derartigen Prozessors ist das Ladegerät besonders geeignet Akkumulatoren schonend aufzuladen damit die Lebensdauer der einzelnen Zellen zu verlängern.

Als besonders vorteilhaft hat sich der Einsatz des Verfahrens beziehungsweise des Ladegeräts beim La-. den von NiCad- und/oder NiH-Akkumulatoren erwiesen.

#### Zeichnung

Die Erfindung wird im folgenden Anhang der Zeichnung näher erläutert. Es zeigen:

- Figur 1 Ein Blockschaltbild eines Ladegeräts;
- Figur 2 Ein Diagramm zur Verdeutlichung der Durchführung des Verfahrens zum Laden von Akkumulatoren;
- Figur 3 Mitgliedschaftsfunktionen von Eingangsgrößen und
- Figur 4 Die Mitgliedschaftsfunktion einer Ausgangsgröße.

#### Beschreibung der Ausführungsbeispiele

Figur 1 zeigt ein schematisches Blockschaltbild eines Ladegeräts 1 zum Landen eines Akkumulators 3. Das Ladegerät ist an eine geeignete Netzversorgung

anschließbar. Die abgegriffene Spannung wird durch eine Filterschaltung 5 geglättet und einem Gleichrichter 7 zugeführt. Dessen Ausgangssignal wird über einen DC-Wandler 9 an einen Stromregler 11 weitergeleitet, an dessen Ausgangsklemmen 13 der Akkumulator 3 angeschlossen ist.

Der Akkumulator ist mit einem Temperatursensor versehen, der hier als NTC-Widerstand 15 ausgebildet ist und der hier beispielhaft mit seinem einen Ende an einem Anschluß des Akkumulators 3 angeschlossen ist. Der NTC-Widerstand 15 ist andererseits mit einer Eingangsklemme 17 des Ladegeräts 1 verbunden.

Das Ladegerät 1 weist einen Mikroprozessor 19 auf, der eine Fuzzy-Logik 21 umfaßt. An diese werden als Eingangssignale die an dem zu ladenden Akkumulator 3 anliegende Spannung U, deren Ableitung nach der Zeit, bezeichnet als dU, die Temperatur T des Akkumulators so wie deren als dT bezeichnete Ableitung nach der Zeit.

Aus Figur 1 ist noch ersichtlich, daß der Mikroprozessor 19 mit einer Meßwertaufbereitungsstufe 20
versehen ist, in welcher die zeitliche Ableitung
der Spannung dU/dt sowie die zeitliche Ableitung
der Temperatur dT/dt erzeugt werden. Überdies wird
in der Signalaufbereitungsstufe 20 eine Glättung
der Signale vorgenommen, um möglichst eine fehlerfreie Weiterverarbeitung zu gewährleisten.

Die Eingangssignale werden von der Logikschaltung ausgewertet und daraus der Ladestrom I berechnet, den der Stromregler 11 für den Ladevorgang des Akkumulators 3 vorgibt. Der Mikroprozessor 19, beziehungsweise dessen Fuzzy-Logik 21 sind daher über eine Steuerleitung 23 mit dem Stromregler 11 verbunden.

Anhand des in Figur 2 wiedergebenden Funktionsdiagramms wird das Verfahren zum Laden eines Akkumulators näher erläutert.

Bei der Inbetriebnahme des Ladegeräts 1 in Figur 1 wird das Ladeverfahren in einem ersten Schritt 31 gestartet. Zunächst findet in einem zweiten Schritt 33, eine übliche Initialisierung statt, die dazu dient das Ladegerät in einen betriebsbereiten Zustand zuversetzen.

In einem dritten Schritt 35 wird auf geeignete Weise festgestellt, welcher Art der an die Ausgangsklemmen 13 des Ladegeräts 1 angeschlossene Akkumulator 3 ist.

In einem weiteren Schritt 37 werden die dem Ladegerät 1 zugeführten Meßwerte erfaßt und im nächsten Schritt 39 für die Auswertungslogik, die Fuzzy-Logik 21, aufbereitet.

Die aufbereiteten Meßwerte werden im nächsten Schritt 41 von der Fuzzy-Logik aufgearbeitet beziehungsweise ausgewertet und der für die Ladestromregelung erforderliche Ladestrom I berechnet. Die Steuerung des Ladevorgangs wird durch den nächsten Schritt 43 angedeutet.

Es erfolgt nun eine Abfrage 45, ob der zu ladende Akkumulator 3 voll ist oder nicht. Ist dies nicht der Fall, fällt das System zurück in den Verfah-

rensschritt 37, in welchem die Meßwerte erfaßt werden und nach einer Meßwertaufbereitung im Schritt 39 in der Fuzzy-Logik aufgearbeitet werden (Schritt 41). Nach dem Regelschritt 43 erfolgt wiederum die Abfrage 45, ob der Akkumulator voll ist oder nicht.

Ist schließlich der Akkumulator auf den gewünschten Ladezustand gebracht, erfolgt in einem weiteren Schritt 47 eine Erhaltungsladung.

Solange das Ladegerät 1 nicht leerläuft, wird die Erhaltungsladung aufrecht erhalten. Die Abfrage bezüglich des Leerlaufs erfolgt in dem Verfahrensschritt 49.

Wird der Akkumulator von dem Ladegerät 1 abgeklemmt, so wird dies in der Leerlaufabfrage 49 erkannt. Bei Anschluß eines neuen zu ladenden Akkumulators fällt das Verfahren zurück in den Schritt
33, der der Initialisierung des Geräts dient. Die
oben beschriebenen Verfahrensschritte 35 bis 49
werden dann nacheinander durchgeführt.

Aus Figur 1 ist ersichtlich, daß die Fuzzy-Logikschaltung 21 diverse Eingangssignale verarbeitet. Beispielhaft wurden hier die Temperatur T und die Spannung U des zu ladenden Akkumulators als Eingangssignale angenommen, darüber hinaus die Änderungen dieser Meßwerte über der Zeit.

Figur 3 zeigt die sogenannten Mitgliedschaftsfunktionen dieser Eingangsgrößen. In dem obersten Diagramm ist mit  $\mu T$  die Akkumulatortemperatur über der Temperatur in  $^{O}C$ .

Die Zugehörigkeit ist für verschiedene Klassen aufgezeichnet, nämlich für die Klasse "kleine Akkumulatortemperatur", "normale Akkumulatortemperatur" und "hohe beziehungsweise große Akkumulatortemperatur" eingetragen. Die Zugehörigkeit ist kontinuierlich zwischen dem Wert "0" und dem Wert "1" aufgetragen, wobei dem Wert "0" die Aussage "keine Zugehörigkeit" und dem Wert "1" die 100%-ige Zugehörigkeit zugeordnet sind.

Die Klassen sind hier so eingeteilt, daß die erste Klasse "kleine Akkumulatortemperatur" die Zugehörigkeit "1" für alle Werte unter -4 OC annimmt. Die Zugehörigkeit dieser Klasse fällt dann von dem Wert "1" bei -4 OC auf den Wert "0" bei +7 OC.

Die zweite Klasse "Akkumulatortemperatur normal" weist einen ansteigenden Zugehörigkeitsgrad von dem Wert "0" für -4 °C bis zum Wert "1" bei +7 °C auf. Die Zugehörigkeit behält den Wert "1" bis +45 °C bei und fällt dann auf den Wert "0" bei +65 °C ab.

Die dritte Klasse der Akkumulatortemperatur weist eine ansteigende Zugehörigkeit von +45 bis +65 °C auf. Die Zugehörigkeit behält den Wert "1" für alle Temperaturen oberhalb +65 °C bei.

In dem zweitobersten Diagramm gemäß Figur 3 ist die Mitgliedschaftsfunktion für die Akkumulatrospannung pro Zelle wieder gegeben. Durch die Bezeichnung  $\mu U^*$  soll angedeutet werden, daß hier ein bewerteter Spannungswert für die Regelung des Ladevorgangs herangezogen wird.

Es wird hier von der Zugehörigkeit zu zwei Klassen ausgegangen, nämlich zu einer ersten Klasse "kleine Akkumulatorspannung" und zu einer zweiten Klasse "große Akkumulatorspannung".

Die Zugehörigkeit ist auch hier durch den Kurvenverlauf zwischen dem Wert "1" und "0" angegeben. Hundertprozentige Zugehörigkeit, das heißt, der Wert "1" ist, einer Akkumulatorspannung von ≤ 1,5 V/Zelle definiert. Die Zugehörigkeit dieser Klasse sinkt dann auf den Wert "0" für die Spannung 1,6 V pro Zelle.

Die zweite Klasse "große Akkumulatorspannung" beginnt ausgehend von dem Werten "0" bei 1,5 V/Zelle und nimmt bei 1,6 V/Zelle den Wert "1" an.

Das dritte Diagramm in Figur 3 zeigt die Änderung der Akkumulatortemperatur über der Zeit, wobei als Einheit mK/s gewählt ist.

Es sind hier drei Klassen zu unterscheiden, nämlich "negative Temperaturänderung", "positive Temperaturänderung" und "sehr große positive Temperaturänderung".

Die Zugehörigkeit der ersten Klasse "negative Temperaturänderung" hat für dT/dt = -20 mK/s den Wert "1" und fällt bis dT/dt = 13 mK/s auf den Wert "0" ab. Die Zugehörigkeit der zweiten Klasse steigt vom Wert "0" bei dT/dt = -20 mK/s auf den Wert "1" bei dT/dt = 13 mK/s an und fällt ab dT/dt = 27 mK/s auf den Wert "0" ab, der bei dT/dt = 85 mK/s erreicht wird.

Entsprechend steigt die Zugehörigkeit der dritten Klasse "sehr große positive Temperaturänderung" zwischen dT/dt = 27 mK/s und dT/dt = 85 mK/s von "0" auf den Wert "1" an.

Schließlich ist im vierten Diagramm gemäß Figur 3 die am Akkumulator liegende Spannungsänderung über der Zeit eingetragen, wobei die Änderung dU/dt die Einheit mV/Zelle,s aufweist, also in mV pro Zelle und Sekunde gemessen wird.

Die Zugehörigkeit der Spannungsänderung  $\mu$ dU weist auch hier drei Klassen auf, nämlich "negative Spannungsänderung", "positive Spannungsänderung" und "sehr große positive Spannungsänderung".

Die erste Klasse "negative Spannungsänderung" hat den Wert "1" bei dU/dt = -0.6 mV/Zelle,s und fällt dann bis dU/dt = -0.1 mV/Zelle,s auf den Wert "0" ab.

Innerhalb dieses Wertebereiches steigt die Zugehörigkeit der zweiten Klasse von dem Wert "0" auf den Wert "1" an, um dann zwischen den Werten 0,6 und 1,5 mV/Zelle,s auf den Wert "0" abzufallen.

Entsprechend ist ein Anstieg der Zugehörigkeit von dem Wert "0" auf den Wert "1" in der Klasse "sehr große Spannungsänderungen" zu beobachten. Oberhalb von 1,5 mV/Zelle,s bleibt der Wert der Zugehörigkeit der dritten Klasse erhalten.

Selbstverständlich sind die Zahlenwerte für die Übergangsbereiche zwischen zwei Klassen innerhalb der einzelnen Mitgliedschaftsfunktionen hier ledig-

lich beispielhaft gewählt. Deren Festlegung kann an die zu ladenden Akkumulatoren angepaßt werden.

Figur 4 zeigt nun die Mitgliedschaftsfunktion der Ausgangsgröße  $\mu I$ , also des Ladestroms, der dem Akkumulator 3 über die Anschlußklemmen 13 in Abhängigkeit von dem auf der Steuerleitung 23 anliegenden Steuersignal vom Stromregler 11 eingespeist wird.

Für den in Ampere gemessenen Ladestrom I werden vier Klassen unterschieden, die Ladeströmen von OA, 2A, 4A und 6A zugeordnet werden.

Die Zugehörigkeit der Klasse OA steigt von dem Wert "O" auf den Wert "1" zwischen -2A und OA, um dann zwischen OA und +2A wiederum den Wert "O" anzunehmen.

Die Zugehörigkeit der Klasse 2A geht aus von dem Wert "0" bei 0A, erreicht den Wert "1" bei +2A und fällt dann wiederum auf den Wert "0" ab, der bei 4A erreicht wird.

Der Zugehörigkeitsgrad der Klasse 4A steigt zwischen +2A und 4A von "0" auf "1" unf fällt dann wiederum auf den Wert "0" ab, der bei 6A erreicht ist.

Schließlich ist für die Klasse 6A zwischen 4A und 6A ein Anstieg des Zugehörigkeitsgrads von "0" auf "1" festzustellen und anschließend ein Abfall auf den Wert "0" bei 8A.

Die mit Hilfe des Ladegerätes gemäß Figur 1 beziehungsweise der Mitgliedschaftsfunktionen realisierbaren Ladeströme ergeben sich aus der Auswertung
der Eingangsgrößen, wie sie in Figur 3 wiedergeben
sind. Aus der folgenden Tabelle ist der dabei feststellbare Regelsatz ablesbar, aus dem sich die Ladeströme für die verschiedenen Lade- beziehungsweise Temperaturzustände eines Akkumulators ablesen
lassen. Mit x sind in der folgenden Tabelle die
Meßwerte gekennzeichnet, die ohne Gewichtung bleiben.

Geht man beispielsweise in der Tabelle auf die erste Zeile des Regelsatzes ein, so ergibt sich daraus, daß der Ladestrom I den Wert OA annimmt, wenn die gewichtete Akkumulatorspannung pro Zelle groß ist. Dabei spielen weder die Temperatur noch deren zeitliche Änderung noch die Änderung der Akkumulatorspannung pro Zeit eine Rolle.

Andere -mit x gekennzeichnete- Spannungszustände des Akkumulators bleiben ohne Berücksichtigung. Es wirken sich in diesem Fall nur die übrigen Eingangsgrößen auf die Einstellung des Ladestroms aus. Es ist allerdings auch ersichtlich, daß bei einer kleinen Temperatur des Akkumulators sowohl bei einer negativen als auch bei einer positiven Temperaturänderung die Spannungsänderung am Akkumulator unberücksichtigt bleibt. Im ersten Fall, bei einer negativen Temperaturänderung, stellt sich ein Ladestrom von I = 4A, bei einer positiven Temperaturänderung des Akkumulatros ein Ladestrom von I = 6A.

Dem Regelsatz ist überdies zu entnehmen, daß bei einer hohen Temperatur des Akkumulators die Spannungsänderung dU ebenfalls ohne Einfluß bleibt. Je nach dem, ob die Temperaturänderung des Akkumulators negativ, positiv oder sehr stark positiv ist, stellt sich ein Ladestrom von 2A, 0A und 0A ein.

In den übrigen Fällen gehen die Temperatur, die Änderung der Spannung pro Zeit und die Änderung der Temperatur über der Zeit in die Einstellung des Ladestroms I ein. Die jeweiligen Werte lassen sich aus der nachfolgenden Tabelle ablesen.

| บ*   | т       | đŪ       | Т        | I |
|------|---------|----------|----------|---|
| groß | x       | x        | х        | 0 |
| x    | klein   | x        | negativ  | 4 |
| x    | klein . | x        | positiv  | 6 |
| ×    | klein   | negativ  | pos.groß | 0 |
| x    | normal  | positiv  | negativ  | 6 |
| x    | normal  | positiv  | positiv  | 6 |
| x    | normal  | positiv  | pos.groß | 4 |
| x    | normal  | pos.groß | negativ  | 6 |
| x    | normal  | pos.groß | positiv  | 6 |
| x    | normal  | pos.groß | pos.groß | 4 |
| ×    | normal  | negativ  | negativ  | 6 |
| x    | normal  | negativ  | positiv  | 0 |
| x    | normal  | negativ  | pos.groß | 0 |
| x    | groß    | x        | negativ  | 2 |
| x    | groß    | x        | positiv  | 0 |
| ×    | groß    | х        | pos.groß | 0 |

Durch den Einsatz der Fuzzy-Logik ist es möglich, die Spannung und die Temperatur sowie die zeitlichen Ableitungen dieser Werte an einem Akkumulator während eines Ladevorgangs zu erfassen. Dabei ist eine Verknüpfung mit den Begriffen "Spannung hoch", "Spannung niedrig", "Spannung steigt" oder "Spannung fällt" möglich, wobei die Begriffe "Temperatur hoch", "Temperatur niedrig", "Temperatur steigt" oder "Temperatur fällt" ebenfalls mit den genannten Begriffen verknüpft werden können. Auf jeden Fall ist sichergestellt, daß unter unterschiedlichen Bedingungen immer ein optimaler Ladestrom eingestellt wird, so daß eine schonende Ladung von Akkumulatoren realisierbar ist und eine besonders lange Lebensdauer der einzelnen Zellen des Akkumulators sichergestellt ist.

Vorzugsweise können bei der Einstellung des Laderaums die Regelwerte von Temperatur und Spannung eines Akkumulators -und auch die Ableitungen nach der Zeit- über mehrere Meßzyklen gemittelt werden, um einen möglichst gleichmäßigen und damit schonenden Ladevorgang zu gewährleisten.

Durch die Erfassung der verschiedenen Randbedingungen kann auch bei einer starken Verkürzung der Ladezeit auf 15 oder gar 5 Minuten eine Schonung der Akkumulatoren eingehalten werden.

Aus dem oben Gesagten ergibt sich ohne weiteres, daß sowohl das Verfahren als auch das erläuterte Ladegerät sehr wohl geeignet sind, bei Ladeverfahren von NiCad- oder NiH-Zellen aufweisenden Akkumulatoren eingesetzt zu werden.

#### Ansprüche

- 1. Verfahren zum Laden von Akkumulatoren, bei dem die momentane Spannung der Akkumulatoren sowie deren Temperatur und/oder die Ableitungen von Spannung und Temperatur nach der Zeit gemessen werden, um den Ladestrom einzustellen, dadurch gekennzeichnet, daß die Meßwerte nach Art der Fuzzy-Logik miteinander verknüpft werden.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Spannung und Temperatur sowie deren Ableitungen nach der Zeit erfaßt werden.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Fälle "Spannung hoch", "Spannung niedrig", "Spannung steigt" oder "Spannung fällt" unterschieden werden und der Ladevorgang entsprechend gesteuert wird.
- 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Fälle "Temperatur des
  Akkumulators hoch", "Temperatur des Akkumulators
  niedrig", "Temperatur des Akkumulators steigt" und

"Temperatur des Akkumulators fällt" unterschieden werden.

- 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die momentane Spannung oder die Temperatur des Akkumulators über mehrere Messungen erfaßt und vorzugsweise gemittelt werden.
- 6. Ladegerät für Akkumulatoren mit Mitteln zur Erfassung der momentanen Spannung und/oder der Temperatur der Akkumulatoren und mit einem den Ladevorgang beeinflussenden Steuergerät, insbesondere zur Durchführung eines Ladevorgangs nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Steuergerät (1) so ausgelegt ist, daß die für den Ladevorgang relevanten Größen nach Art der Fuzzy-Logik zur Einstellung des Ladestroms (I) verknüpfbar sind.
- 7. Ladegerät nach Anspruch 6, dadurch gekennzeichnet, daß im Steuergerät (I) die der Spannung (U) und der Temperatur (T) sowie deren Ableitungen nach der Zeit zugeordneten Signale miteinander verknüpfbar sind.
- 8. Ladegerät nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß Spannung (U) und Temperatur (T) in mehreren aufeinanderfolgenden Messungen erfaßbar und vorzugsweise mittelbar sind.
- 9. Ladegerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Steuergerät (1) als Mikroprozessor (19) ausgelegt ist.

PCT/DE92/01060

- 10. Ladegerät nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Steuergerät (1) als Fuzzy-Prozessor (19,21) ausgelegt ist.
- 11. Verwendung eines Ladegeräts nach einem der vorhergehenden Ansprüche zum Laden von NiCad- und/oder NiH-Akkumulatoren.





J





Fig. 4

#### INTERNATIONAL SEARCH REPORT

International application No. PCT/DE 92/01060

#### A. CLASSIFICATION OF SUBJECT MATTER

IPC 5 H02J 7/04

According to International Patent Classification (IPC) or to both national classification and IPC

#### B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 5 H02J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

#### C. DOCUMENTS CONSIDERED TO BE RELEVANT

| Citation of document, with indication, where appropriate, of the relevant passages                                      | Relevant to claim No.                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WO,Al, 9209130 (AST RESEARCH INC.), 29 May 1992 (29.05.92), page 2, line 22 - page 4, line 12                           | 1-11                                                                                                                                                                                                                                                                                                                                                                       |
| US,A, 4308493 (HANS-KURT KÖTHE ET AL),<br>29 December 1981 (29.12.81), column 1,<br>line 1 - column 3, line 34          | 1-11                                                                                                                                                                                                                                                                                                                                                                       |
| US,A, 4370606 (HIROMI KAKUMOTO ET AL), 25 January 1983 (25.01.83)                                                       | 1-11                                                                                                                                                                                                                                                                                                                                                                       |
| Control Engineering, vol. 38, no. 9, July 1991,<br>Nick Infelise, " A Clear Vision of Fuzzy Logic"<br>page 28 - page 30 | 1-11                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                         | WO,Al, 9209130 (AST RESEARCH INC.), 29 May 1992 (29.05.92), page 2, line 22 - page 4, line 12  US,A, 4308493 (HANS-KURT KÖTHE ET AL), 29 December 1981 (29.12.81), column 1, line 1 - column 3, line 34  US,A, 4370606 (HIROMI KAKUMOTO ET AL), 25 January 1983 (25.01.83)  Control Engineering, vol. 38, no. 9, July 1991, Nick Infelise, "A Clear Vision of Fuzzy Logic" |

| X               | Further documents are listed in the continuation of Box C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Σ     | 3                                                              | See patent family annex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "A" "E" "L" "O" | Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filling date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means document published prior to the international filling date but later than the priority date claimed | "Y"   | date<br>the<br>doc<br>con<br>step<br>doc<br>con<br>con<br>bein | or document published after the international filing date or priority and not in conflict with the application but cited to understand principle or theory underlying the invention ament of particular relevance; the claimed invention cannot be sidered novel or cannot be considered to involve an inventive owhen the document is taken alone ament of particular relevance; the claimed invention cannot be sidered to involve an inventive step when the document is taken alone and the particular relevance; the claimed invention cannot be sidered to involve an inventive step when the document is abined with one or more other such documents, such combination and obvious to a person skilled in the art cument member of the same patent family |
|                 | of the actual completion of the international search March 1993 (24.03.93)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date  |                                                                | ailing of the international search report  13 April 1993 (13.04.93)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | e and mailing address of the ISA/<br>cropean Patent Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Autho | orize                                                          | d officer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Telephone No.

Facsimile No.

## INTERNATIONAL SEARCH REPORT

Information on patent family members

26/02/93

International application No. PCT/DE 92/01060

| Patent document cited in search report WO-A1- 9209130 |         | Publication<br>date | Patent family<br>member(s)                               |                                                                  | Publication date                                                     |  |
|-------------------------------------------------------|---------|---------------------|----------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|--|
|                                                       |         | 29/05/92            | AU-A-                                                    | 9025591                                                          | 11/06/92                                                             |  |
| <br>US-A-                                             | 4308493 | 29/12/81            | CA-A-<br>DE-A,C-<br>FR-A,B-<br>GB-A-<br>JP-A-<br>SE-A-   | 1075767<br>2636034<br>2361755<br>1561608<br>53021750<br>7709106  | 15/04/80<br>16/02/78<br>10/03/78<br>27/02/80<br>28/02/78<br>12/02/78 |  |
| US-A-                                                 | 4370606 | 25/01/83            | DE-A,C-<br>FR-A,B-<br>GB-A,B-<br>JP-C-<br>JP-A-<br>JP-B- | 3038538<br>2467501<br>2061643<br>1190768<br>56068230<br>58022931 | 30/04/81<br>17/04/81<br>13/05/81<br>13/02/84<br>08/06/81<br>12/05/83 |  |

## INTERNATIONALER RECHERCHENBERICHT

nternationales Aktenzeichen
PCT/DE 92/01060

| A. KLASS           | IFIZIERUNG DES ANMELDUNGSGEGENSTANDI                                                                                                                               | <u>SS</u>                                                                                                                                |                                   |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
|                    |                                                                                                                                                                    |                                                                                                                                          |                                   |
| IPC5: H            | 02J 7/04<br>ernationalen Patentklassifikation (IPK) oder nach der nationalen                                                                                       | Klassifikation und der IPK                                                                                                               |                                   |
|                    | ERCHIERTE GEBIETE                                                                                                                                                  |                                                                                                                                          |                                   |
| Recherchiert       | er Mindestprüfstoff (Klassifikationssystem und Klassifikationssyr                                                                                                  | nbole)                                                                                                                                   |                                   |
| IPC5: H            | 12.1                                                                                                                                                               |                                                                                                                                          |                                   |
|                    | er nicht zum Mindestprüfstoff gehörende Veröffentlichungen, so                                                                                                     | weit diese unter die recherchierten                                                                                                      | Gebiete fallen                    |
|                    |                                                                                                                                                                    |                                                                                                                                          |                                   |
|                    |                                                                                                                                                                    | (Name day Datambank and own)                                                                                                             | vormandate Suchhegriffe)          |
| Während de         | internationalen Recherche konsultierte elektronische Datenbank                                                                                                     | (Name der Datenbark did evt.                                                                                                             | ver wendear Duonocgrand)          |
|                    |                                                                                                                                                                    | •                                                                                                                                        |                                   |
|                    | IL, INSPEC                                                                                                                                                         |                                                                                                                                          |                                   |
| C. ALS W           | ESENTLICH ANGESEHENE UNTERLAGEN                                                                                                                                    |                                                                                                                                          |                                   |
| Kategorie*         | Bezeichning der Veröffentlichung, soweit erforderlich un kommenden Teile                                                                                           | ter Angabe der in Betracht                                                                                                               | Betr. Anspruch Nr.                |
| X,P                | WO, A1, 9209130 (AST RESEARCH INC.),                                                                                                                               | 29 Mai 1992                                                                                                                              | 1-11                              |
| ۸,۲                | (29.05.92), Seite 2, Zeile 22 - Se                                                                                                                                 | eite 4, Zeile 12                                                                                                                         |                                   |
|                    |                                                                                                                                                                    |                                                                                                                                          |                                   |
|                    |                                                                                                                                                                    |                                                                                                                                          |                                   |
| Х                  | US, A, 4308493 (HANS-KURT KÖTHE ET AL                                                                                                                              | ),<br>+o 1                                                                                                                               | 1-11                              |
| ł                  | 29 Dezember 1981 (29.12.81), Spal<br>Zeile 1 - Spalte 3, Zeile 34                                                                                                  | LE 1,                                                                                                                                    |                                   |
|                    | zerie i oparet e, nevre i                                                                                                                                          |                                                                                                                                          |                                   |
|                    |                                                                                                                                                                    |                                                                                                                                          |                                   |
| x                  | US, A, 4370606 (HIROMI KAKUMOTO ET AL                                                                                                                              | ), 25 Januar                                                                                                                             | 1-11                              |
|                    | 1983 (25.01.83)                                                                                                                                                    |                                                                                                                                          |                                   |
|                    |                                                                                                                                                                    |                                                                                                                                          |                                   |
|                    |                                                                                                                                                                    |                                                                                                                                          |                                   |
|                    | ·                                                                                                                                                                  | •                                                                                                                                        |                                   |
|                    |                                                                                                                                                                    |                                                                                                                                          |                                   |
|                    |                                                                                                                                                                    |                                                                                                                                          |                                   |
| 137-14             | lere Veröffentlichungen sind der Fortsetzung von                                                                                                                   | X Siehe Anhang Patentfa                                                                                                                  | milie.                            |
| Feld Feld          | C zu entnehmen.                                                                                                                                                    |                                                                                                                                          |                                   |
|                    |                                                                                                                                                                    | Spätere Veröffentlichung, die nach dem inte<br>Prioritätsdatum veröffentlicht worden ist un<br>undern nur zum Verständnis des der Erfinc |                                   |
| als best           | anders bedeutsam ansusenen itt                                                                                                                                     | der ihr zugrundeliegenden Theorie ungegebe                                                                                               | en ist.                           |
| Anmel              | ledatum veröffentlicht worden ist                                                                                                                                  | allein aufgrund dieser Veröffentlichung nich<br>Tätigkeit beruhend betrachtet werden                                                     | t sit den oder sat eurogenemen    |
| zu lass<br>bericht | genannten Veröffentlichung belegt werden soll oder die aus einem anderen                                                                                           | Veröffentlichung von besonderer Bedeutung<br>nicht als auf erfinderischer Tätigkeit beruhe<br>Veröffentlichung mit einer oder mehreren \ | ng betrachtet werden, webb die    |
| "O" Veròffi        | eren Grund angegeben ist (wie ausgesunrt)<br>milichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine                                              | Verbindung gabracht wird und diese Verbin<br>ist                                                                                         | dung für einen Fachman nahellegen |
| ADA VANTO          | lung oder andere Maßnahmen bezieht<br>entlichung, die vor dem internationalen Anmeldedatum, aber nach dem "&"<br>ruchten Prioritätsdatum veröffentlicht worden ist | Veröffentlichung, die Mitglied derseiben Pu                                                                                              | tentfamilie ist                   |
|                    | Abschlusses der internationalen Recherche Absen                                                                                                                    | dedatum des internationalen Rech                                                                                                         | erchenberichts                    |
|                    |                                                                                                                                                                    | 1 3. 04. 93                                                                                                                              |                                   |
| 24 Mär             | z 1993                                                                                                                                                             | mächtigter Bediensteter                                                                                                                  |                                   |
| Name und           | Furgozisches Patentamt, P.B. 5818 Patentiaan 2                                                                                                                     | monaker penemen.                                                                                                                         |                                   |
|                    | NL-2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.  HAKA                                                                                               | AN SANDH                                                                                                                                 |                                   |
|                    | Fax: (+31-70) 340-3016                                                                                                                                             |                                                                                                                                          |                                   |

## INTERNATIONALER RECHERCHENBERICHT

Inumationales Aktenzeichen
PCT/DE 92/01060

|             | POI/DE .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 72,01000               |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|
| C (Fortset) | zung). ALS WESENTLICH ANGESEHENE UNTERLAGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |  |
| ategorie*   | The second of th | cht Betr. Anspruch Nr. |  |
| A           | Control Engineering, Band 38, Nr 9, Juli 1991, Nick Infelise, "A Clear Vision of Fuzzy Logic" Seite 28 - Seite 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-11                   |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ٠                      |  |
|             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |
| -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                      |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |

## INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören 26/02/93

Internationales Aktenzeichen PCT/DE 92/01060

| Im Recherchenbericht angefurtes Patentdokument  WO-A1- 9209130 |         | Datum der<br>Veröffentlichung | Mitglied(er) der<br>Patentfamilie                        |                                                                  | Datum der<br>Veröffentlichung                                        |  |
|----------------------------------------------------------------|---------|-------------------------------|----------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|--|
|                                                                |         | 29/05/92                      | AU-A-                                                    | 9025591                                                          | 11/06/92                                                             |  |
| US-A-                                                          | 4308493 | 29/12/81                      | CA-A-<br>DE-A,C-<br>FR-A,B-<br>GB-A-<br>JP-A-<br>SE-A-   | 1075767<br>2636034<br>2361755<br>1561608<br>53021750<br>7709106  | 15/04/80<br>16/02/78<br>10/03/78<br>27/02/80<br>28/02/78<br>12/02/78 |  |
| US-A-                                                          | 4370606 | 25/01/83                      | DE-A,C-<br>FR-A,B-<br>GB-A,B-<br>JP-C-<br>JP-A-<br>JP-B- | 3038538<br>2467501<br>2061643<br>1190768<br>56068230<br>58022931 | 30/04/81<br>17/04/81<br>13/05/81<br>13/02/84<br>08/06/81<br>12/05/83 |  |