بسمه تعالى

پاسخ سری دوم تمرینها _ _ درس جبرخطی ۱ _ دانشگاه صنعتی شریف علیرضا توفیقی محمدی _ رشته علوم کامپیوتر _ شمارهدانشجویی: ۹۶۱۰۰۳۶۳

۱ سوال ۴

چون $v_1,...,v_{n+2}>$ زیرفضای از v_1 است، پس بعد آن حداکثر $v_1,...,v_{n+2}>$ تا از چون v_1 ها زائد بوده و میتوان به صورت ترکیب خطیای از بقیه ی عناصر نوشت، فرض کنید این دو عضو v_n و v_{n+2} و v_{n+2} بند، پس داریم:

$$v_{n+1} = \sum_{i=1}^{n} t_i v_i \to A = v_{n+1} - \sum_{i=1}^{n} t_i v_i = 0$$
 (1)

$$v_{n+2} = \sum_{i=1}^{n} s_i v_i \to B = v_{n+2} - \sum_{i=1}^{n} s_i v_i = 0$$
 (2)

$$T = 1 - \sum_{i=1}^{n} t_i$$

$$S = 1 - \sum_{i=1}^{n} s_i$$

T اگر مجموع ضرایب عبارت (۱) را T و مجموع ضرایب عبارت (۲) را S مینامیم. اگر یکی از S و گر برابر با صفر بود که همان عبارت جواب مسئله است زیرا مجموع ضرایب آن • شده و ضریب جمله ی اول آن ناصفر (یک) است.

حال اگر $S \neq 0, T \neq 0$ در این داریم:

$$S \times A - T \times B = 0 \rightarrow S \times (v_{n+1} - \sum_{i=1}^{n} t_i v_i) - T \times (v_{n+2} - \sum_{i=1}^{n} s_i v_i) = 0$$

$$\rightarrow -T \times v_{n+2} + S \times v_{n+1} + \sum_{i=1}^{n} (Ts_i - St_i)v_i = 0$$

که در ترکیب خطی بالا مجموع ضرایب برابر است با:

$$-T + S + \sum_{i=1}^{n} T \cdot s_i - S \cdot t_i = -T(1 - \sum_{i=1}^{n} s_i) + S(1 - \sum_{i=1}^{n} t_i) = -T \times S + S \times T = 0$$

مجموع ضرایب ترکیب خطی نیز • شد و همچنین ضریب v_{n+1} برابر با $S \neq 0$ است پس این ترکیب خطی شرایط مسئله را دارد و حکم ثابت شد.

۲ سوال ۵

طبق *، اعداد حقیقی $a_1, ..., a_{n+2}$ وجود دارند که بعضی از آنها ناصفر بوده و

$$a_1 + \cdots + a_{n+2} = 0$$
 و $a_1.u_1 + \cdots + a_{n+2}.u_{n+2} = 0$

حال عبارت زیر را در نظر بگیرید:

$$a_1.u_1 + \cdots + a_{n+2}.u_{n+2} = 0$$

چون مجموع ضرایب این ترکیب خطی صفر است، پس مجموع ضرایب مثبت با مجموع ضرایب مثبت با مجموع ضرایب منفی برابر است، این مجموع را s در نظر بگیرید، همچنین بردارهایی که ضریب آنها منفی است را به سمت چپ تساوی منتقل کنید و سپس دو طرف معادله را در $\frac{1}{s}$ ضرب کنید. هر طرف تمام ضرایب مثبت و مجموع ضرایب هر طرف برابر با $\frac{1}{s}$ است، پس هر طرف یک نقطه از یک پوش محدب است پس دو پوش محدب پیدا کردیم که باهم اشتراک دارند.

٣ سوال ۶

شرط لازم و کافی برای اینکه بردار $v=a_1v_1+\cdots+a_nv_n$ باید داشته باشد تا $a_i\neq 0$ باید داشته باشد یک پایه برای $S=\{v_1,...,v_{i-1},v,v_{i+1},...,v_n\}$

V برای اینکار ثابت میکنیم اگر $a_i=0$ باشد، $a_i=0$ باشد، v_i بایهای برای اینکار ثابت میکنیم اگر $a_i\neq 0$ بایهای برای v_i است. نیست و همچنین اگر v_i آنگاه v_i آنگاه v_i آنگاه و بایهای برای v_i باشد، در این صورت v_i را میتوان به صورت ترکیب خطیای از بقیه عناصر v_i است v_i مستقل خطی نیست پس نمی تواند یک پایه برای v_i باشد. (همچنین حتی v_i مولدی برای v_i باشد. (همچنین حتی v_i مولدی برای v_i باشد: نیز نست!)

اگر $a_i \neq 0$ در این صورت اثبات میکنیم S مستقل خطی است. فرض کنید:

$$b_1v_1 + \dots + b_{i-1}v_{i-1} + b_iv + b_{i+1}v_{i+1} + \dots + b_nv_n = 0$$

اگر $b_i = 0$ باشد در این صورت:

$$b_1v_1 + \dots + b_{i-1}v_{i-1} + b_{i+1}v_{i+1} + \dots + b_nv_n = 0$$

که چون $\{v_1, ..., v_{i-1}, v_{i+1}, ..., v_n\}$ مستقل خطی است، پس

$$b_1 = \dots = b_{i-1} = b_{i+1} = \dots = b_n = 0$$

که در این حالت مسئله حل شد. $b_i \neq 0$ حال اگر

$$-b_{i}v = b_{1}v_{1} + \dots + b_{i-1}v_{i-1} + b_{i+1}v_{i+1} + \dots + b_{n}v_{n}$$

$$\rightarrow -b_{i}a_{1}v_{1} + \dots + -b_{i}a_{n}v_{n} = b_{1}v_{1} + \dots + b_{i-1}v_{i-1} + b_{i+1}v_{i+1} + \dots + b_{n}v_{n}$$

$$\rightarrow -b_{i}a_{i}v_{i} = (b_{1}+b_{i}a_{1})v_{1} + \dots + (b_{i-1}+b_{i}a_{i-1})v_{i-1} + (b_{i+1}+b_{i}a_{i+1})v_{i+1} + \dots + (b_{n}+b_{i}a_{n})v_{n}$$

$$b_{i} \neq 0, a_{i} \neq 0$$

$$\Rightarrow b_{i}v_{1} \neq 0$$

۴ سوال ۷

S=vبرای اینکه ویژگی مورد نیاز برای v را پیدا کنیم، فرض کنید v ای دلخواه داریم، برای اینکه v باشد، باید دو شرط زیر صدق کند: v یک پایه برای v باشد، باید دو شرط زیر صدق کند:

V اولا S مولدی برای V باشد.

S باشد. ثانیا S مستقل خطی باشد.

با توجه به اینکه $S>\subseteq V$ اگر شرط دوم برقرار باشد آنگاه $\dim(< S>)=\dim(V)$ و نتیجه می گیریم که S>=V است و شرط اول را نتیجه می دهد. پس تنها بررسی شرط دوم لازم است. فرض کنید اعداد t_1, \ldots, t_n موجود باشند به طوری که:

$$t_1(v_1 - v) + \dots + t_n(v_n - v) = 0 \to \sum_{i=1}^n t_i v_i = (\sum_{i=1}^n t_i)v$$

حال دو حالت داريم:

ا. اگر $\sum_{i=1}^n t_i = 0$ باشد:

$$\sum_{i=1}^{n} t_i v_i = 0$$

و چون $\{v_1,...,v_n\}$ مستقل خطی است نتیجه میگیریم $\{v_1,...,v_n\}$ مستقل خطی است. درنتیجه $\{v_1,...,v_n-v\}$ مستقل خطی است.

اگر
$$t_i
eq 0$$
 باشد: آنگاه

$$v = \frac{\sum_{i=1}^{n} t_i v_i}{\sum_{i=1}^{n} t_i}$$

$$\to v = \sum_{i=1}^{n} s_i v_i, (s_i = \frac{t_i}{\sum_{i=1}^{n} t_i} \to \sum_{i=1}^{n} s_i = 1)$$

چون ما میخواهیم $\{v_1-v,...,v_n-v\}$ مستقل خطی شوند، پس باید نتیجه ی این عبارت یعنی چون ما میخواهیم $v=\sum_{i=1}^n s_i v_i, \sum_{i=1}^n s_i = 1$ برای اینکه شرط مسئله برقرار شود این است که $v=\sum_{i=1}^n a_i \neq 1$ شود، همچنین هر $v=a_1v_1+...+a_nv_n$ مسئله برقرار شود این است که $v=\sum_{i=1}^n a_i \neq 1$ شود، همچنین هر $v=\sum_{i=1}^n a_i \neq 1$ شود را در نظر بگیریم، چون حالت دوم در استقلال خطی $v=\sum_{i=1}^n a_i \neq 1$ نمی دهد، پس $v=\sum_{i=1}^n a_i \neq 1$ حتما مستقل خطی بوده و همچنین اگر $v=\sum_{i=1}^n a_i = 1$ ای داشتیم که $v=\sum_{i=1}^n a_i = 1$ بود، $v=\sum_{i=1}^n a_i = 1$ حتما وابسته ی خطی است زیرا: $v=\sum_{i=1}^n a_i = 1$ می در حالی که چون $v=\sum_{i=1}^n a_i = 1$ برده پس حداقل یکی از $v=\sum_{i=1}^n a_i = 1$ می ناصفر است و

وابستهي خطي است.

 $\cdot \sum_{i=1}^n a_i \neq 1$ این است که $v = a_1 v_1 + \ldots + a_n v_n$ پس شرط لازم و کافی برای $v = a_1 v_1 + \ldots + a_n v_n$ است که این از نظر هندسی به این معنی است که v بر روی صفحهی تعمیمیافتهی تشکیل شده از نقاط v_1,\ldots,v_n نباشد.

 $\{v_1 - v, ..., v_n - v\}$

۵ سوال ۸

خیر، به طور مثال دو مجموعهی زیر را در نظر بگیرید:

$$S_1 = e_1, ..., e_n$$

$$S_2 = 2e_1, ..., 2e_n$$

هردوی این مجموعهها مولد \mathbb{R}^n اند، پس داریم:

$$< S_1 > \cap < S_2 > = R^n \cap R^n = R^n$$

در حالي که

$$\langle S_1 \cap S_2 \rangle = \langle \emptyset \rangle = 0$$

 $< S_1 > \cap < S_2 >
eq < S_1 \cap S_2 >$ پس اگر n
eq 0 باشد در مثال ما

. $W_1 \subseteq W_1$ یک زیرفضای R^n است، اگر و تنها اگر $W_2 \subseteq W_1$ یا $W_1 \subseteq W_2$. برای اثبات ادعای بالا اگر یکی زیرمجموعهی دیگری باشد آنگاه اجتماع این دو نیز برابر با زیرفضای بزرگتر می شود و در نتیجه خود یک زیرفضای برداری است. حال فرض کنید $W_1 \not\subseteq W_1 \subseteq W_1$ و $W_2 \not\subseteq W_2$ در این صورت

 $\exists v \in W_1 \land v \notin W_2, \exists u \in W_2 \land u \notin W_1$

حال اگر $W_1 \cup W_2 >= W_1 \cup W_2$ عمچنین از $W_1 \cup W_2 >= W_1 \cup W_2 >= W_1 \cup W_2$ همچنین پون قبل می دانیم: $W_1 \cup W_2 >= W_1 + W_2$ پس باید $W_1 \cup W_2 >= W_1 + W_2$ همچنین پون قبل می دانیم: v + u است، نتیجه می گیریم: $v + u \in W_1 + W_2 = W_1 \cup W_2$ این با $v + u \in W_1$ باشد پس چون با $w \in W_1$ باشد پس چون $w \in W_1$ باشد پس چون $w \in W_1$ یک در یاد نقش است داریم: $w \in W_1$ با یک زیر فضای بر داری نیست. $w \notin W_1$ با یک زیر فضای بر داری نیست.

همچنین در مورد W_1^c چون W_1^c پس W_1^c پس W_1^c پس برداری نیست.

۷ سوال ۱۰

در قسمت نخست سوال فرض می کنیم $W_1\subseteq W$ است و باید دو چیز را ثابت کنیم: $v_1\in W\cap W_1$ و $W\cap W_1$ مستقل خطی اند. که برای اثبات آن فرض کنید $W\cap W_1$ بود نتیجه $W_1,v_2\in W\cap W_1$ داریم به طوری که $v_1+v_2=0$ است. چون $w_1,v_2\in W\cap W_2$ بود نتیجه می گیریم $v_1\in W_1$ و به طور مشابه نتیجه می گیریم $v_1\in W_1$ است و از استقلال خطی $v_1\in W_1$ فریدیم $v_1\in W_1$ و ثابت شد $v_1\in W_1$ و ثابت شد $v_1\in W_2$ استقل خطی اند.

. است. $W=(W\cap W_1)\oplus (W\cap W_2)$ است

برای اینکار ثابت میکنیم هر عضو طرف چپ در طرف راست و هر عضو طرف راست در طرف چپ است.

 $v=u+w, u\in W\cap W_1, w\in W\cap W_2$ عضو دلخواه v از طرف راست را در نظر بگیرید داریم: $v=u+w, u, w\in W\to v\in W$ پس پس $v=u+w, u, w\in W\to v\in W$ و ثابت شد هر عضو طرف راست در طرف چپ است. حال عضو دلخواه $v=u+w, u, w\in W\to v\in W$ از طرف چپ را در نظر بگیرید:

 $w \in W \subseteq V \to w = v + u, v \in W_1, u \in W_2$

از طرفي:

 $v \in W_1 \subseteq W \to v \in W \to v \in W \cap W_1$

 $u \in W_2$ بود داریم: $u \in W_2$ بود داریم

 $v \in W, v + u \in W \rightarrow u \in W \rightarrow u \in (W \cap W_2)$

پس از دو عبارت قبل نتیجه میگیریم:

 $v + u \in (W \cap W_1) + (W \cap W_2) \rightarrow w \in (W \cap W_1) \oplus (W \cap W_2)$

و ثابت شد هر عضو طرف چپ نیز در سمت راست است و حکم ثابت شد.

 \mathbb{R}^n حال اگر W شامل W_1,W_2 نباشد، مثال نقضی را در \mathbb{R}^2 مطرح میکنیم که قابل تعمیم به W_1,W_2 است.

است. $W_1 = \langle e_1 \rangle, W_2 = \langle e_2 \rangle, V = W_1 \oplus W_2 = R^2$ است. فرض کنید $W = \langle (1,1) \rangle$ در نظر بگیرید.

 $W \cap W_1 = 0, W \cap W_2 = 0 \to W \neq (W \cap W_1) \oplus (W \cap W_2)$

و مثال نقض درست است.