

Acta Crystallographica Section E

#### **Structure Reports**

#### **Online**

ISSN 1600-5368

# 4-[4-(Heptyloxy)benzoyloxy]phenyl 2-oxo-7-trifluoromethyl-2*H*-chromene-3-carboxylate

H. C. Devarajegowda, B. S. Palakshamurthy, \*\*
H. N. Harishkumar, P. A. Suchetan and S. Sreenivasa

<sup>a</sup>Department of Physics, Yuvaraja's College (Constituent College), University of Mysore Mysore, Karnataka 570 005, India, <sup>b</sup>Department of Chemistry Kuvempu University, Shankaraghatta Shimoga, Karnataka, India, <sup>c</sup>Department of Studies and Research in Chemistry, U.C.S, Tumkur University, Tumkur, Karnataka 572 103, India, and <sup>d</sup>Department of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India

Correspondence e-mail: palaksha.bspm@gmail.com

Received 8 June 2013; accepted 25 July 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma(C-C) = 0.006$  Å; disorder in main residue; R factor = 0.104; wR factor = 0.316; data-to-parameter ratio = 12.2.

The title compound,  $C_{31}H_{27}F_3O_7$ , is a liquid crystal and exhibits enantiotropic SmA and nematic phase transitions. In the crystal, the the 2H-chromene ring system makes dihedral angles of 54.46 (17) and 7.79 (16)°, respectively, with the central benzene ring and 4-(heptyloxy)benzene ring. The three F atoms of the  $-CF_3$  group are disordered over two sets of sites, with an occupancy ratio of 0.62 (3):0.38 (3). The crystal structre features two pairs of  $C-H\cdots O$  hydrogen bonds, which form inversion dimers and generate  $R_2^2(10)$  and  $R_2^2(30)$  ring patterns.  $C-H\cdots O$  interactions along [100] and  $C-H\cdots \pi$  interactions futher consolidate the packing, leading to a three-dimensional network.

#### **Related literature**

For similar structures, see: Palakshamurthy, Sreenivasa *et al.* (2013), Palakshamurthy, Devarajegowda *et al.* (2013). For graph-set notation for hydrogen bonds, see: Bernstein *et al.* (1995).

#### **Experimental**

Crystal data

 $\begin{array}{lll} C_{31}H_{27}F_{3}O_{7} & \gamma = 88.486 \ (7)^{\circ} \\ M_{r} = 568.53 & V = 1384.8 \ (3) \ \mathring{A}^{3} \\ \text{Triclinic, } P\overline{1} & Z = 2 \\ a = 5.6810 \ (3) \ \mathring{A} & \text{Mo } K\alpha \ \text{radiation} \\ b = 16.036 \ (2) \ \mathring{A} & \mu = 0.11 \ \text{mm}^{-1} \\ c = 16.2954 \ (18) \ \mathring{A} & T = 296 \ \text{K} \\ \alpha = 68.940 \ (12)^{\circ} & 0.32 \times 0.24 \times 0.18 \ \text{mm} \\ \beta = 88.914 \ (6)^{\circ} \end{array}$ 

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2007)  $T_{min} = 0.966, T_{max} = 0.981$  8822 measured reflections 4876 independent reflections 2837 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.079$ 

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.104 & 399 \ {\rm parameters} \\ WR(F^2) = 0.316 & {\rm H-atom\ parameters\ constrained} \\ S = 0.99 & \Delta\rho_{\rm max} = 0.40\ {\rm e\ \mathring{A}^{-3}} \\ 4876\ {\rm reflections} & \Delta\rho_{\rm min} = -0.42\ {\rm e\ \mathring{A}^{-3}} \end{array}$ 

**Table 1** Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C12-C17 and C19-C24 rings, respectively.

| $D-H\cdots A$             | D-H  | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D-\mathrm{H}\cdots A$ |
|---------------------------|------|-------------------------|-------------------------|------------------------|
| C3-H3···O6 <sup>i</sup>   | 0.93 | 2.53                    | 3.313 (5)               | 142                    |
| $C8-H8\cdots O3^{i}$      | 0.93 | 2.44                    | 3.277 (4)               | 150                    |
| $C16-H16\cdots O6^{ii}$   | 0.93 | 2.45                    | 3.350 (5)               | 163                    |
| $C14-H14\cdots Cg2^{iii}$ | 0.93 | 2.81                    | 3.517 (5)               | 133                    |
| $C23-H23\cdots Cg1^{iv}$  | 0.93 | 2.94                    | 3.650 (5)               | 134                    |

Symmetry codes: (i) -x, -y+2, -z+1; (ii) x+1, y, z; (iii) -x+2, -y+1, -z; (iv) -x+1, -y+1, -z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *APEX2* and *SAINT-Plus* (Bruker, 2009); data reduction: *SAINT-Plus* and *XPREP* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97*.

The authors thank Professor T. N. Guru Row and Vijithkumar, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for the data collection. BSPM thanks H. T. Srinivasa, Raman Research Institute, Bangalore, for his help with the characterization.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2229).

#### References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). *Angew. Chem. Int. Ed. Engl.* **34**, 1555–1573.

Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

### organic compounds

Palakshamurthy, B. S., Devarajegowda, H. C., Srinivasa, H. T., Sreenivasa, S. & Vijithkumar, (2013). *Acta Cryst.* E**69**, o621–o622.

Palakshamurthy, B. S., Sreenivasa, S., Srinivasa, H. T., Roopashree, K. R. & Devarajegowda, H. C. (2013). *Acta Cryst.* E**69**, o212.

Sheldrick, G. M. (2007). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst*. A**64**, 112–122.

Acta Cryst. (2013). E69, o1355-o1356 [doi:10.1107/S1600536813020679]

## 4-[4-(Heptyloxy)benzoyloxy]phenyl 2-oxo-7-trifluoromethyl-2*H*-chromene-3-carboxylate

## H. C. Devarajegowda, B. S. Palakshamurthy, H. N. Harishkumar, P. A. Suchetan and S. Sreenivasa

#### Comment

As a part of our continued efforts to study the structure of coumarin based liquid crystals (LC), we report herein the crystal structure of 4-(4-(heptyloxy)benzoyloxy)phenyl 7-(trifluoromethyl)-2-oxo-2*H*-chromene-3-carboxylate (I), and its comparision with 4-(decyloxy)phenyl 7-(trifluoromethyl)- 2-oxo-2*H*-chromene-3-carboxylate (II), 4-(octyloxy)phenyl 2-oxo-2*H*-chromene-3 –carboxylate (III) (Palakshamurthy, Sreenivasa *et al.*, 2013; Palakshamurthy, Devarajegowda *et al.*, 2013). The title compound,  $C_{31}H_{27}F_{3}O_{7}$ , is a liquid crystal (LC) exhibiting enantiotropic SmA, nematic phase transitions at 520.2(2.0), 522.7(2.7) on heating and at 519.6(2.0), 522.1(2.9) on cooling [The transition temperature in K and the associated enthalpy values in kJ mol-1 (in italics)] The asymmetric unit of 4-(4-(heptyloxy)benzoyloxy)phenyl 7-(trifluoromethyl)-2-oxo-2*H*-chromene-3-carboxylate is shown in Fig.1.The three F atoms of the –CF3 group are disordered over two sets of sites with occupancy factors 0.62 (3):0.38 (3).The dihedral angle between the 2*H*-chromene ring and the benzene ring A in the compound I is 54.46 (17)°, compared to the observed values of 62.97 (2)°, 21.11 (1)° in compounds II and III respectively. The crystal structre is stabilized by two pairs of C8—H8···O3 and C3—H3···O6 hydrogen bonds form inversion dimers and generate  $R_2$ -2(10) and  $R_2$ -2(30) ring patterns respectively (Bernstein *et al.*, 1995). The C16—H16···O6 contact and C—H···Cg1 (centroid of C12—C17) and C—H···Cg2 (centroid of C19—C24) interactions further strengthen the packing (Fig. 2, Fig. 3).

#### **Experimental**

A mixture of 7-(trifluoromethyl)-2-oxo-2H-chromene-3-carboxylic acid (258 mg, 0.01 mmol), 4-hydroxyphenyl 4-(heptyloxy)benzoate (358 mg, 0.01 mmol), N,N-dicyclohexylcarbodiimide (DCC) (210 mg, 0.012 mmol) and catalytic quantity of dimethylaminopyridimidine with anhydrous tetrahydrofuran (5 ml) was stirred for 24hrs at room temperature. The N,N-dicyclohexylurea formed was filtered off and the filtrate was diluted with dichloromethane (25 ml). This solution was washed successively with water (2 x 30 ml), 5% aqueous acetic acid (3 x 50 ml), water (3 x 50ml) and was then dried (Na<sub>2</sub>SO<sub>4</sub>). The residue obtained on removal of solvent was chromatographed on silica gel and eluted with chloroform as an eluent. Removal of solvent from the eluate afforded a white solid material which was crystallized repeatedly from ethanol to get colourless blocks.

#### Refinement

The H atoms bound to carbon were positioned with idealized geometry using a riding model with d(C–H) = 0.93-0.97 Å. All C–H atoms were refined with isotropic displacement parameters set to 1.2–1.5  $U_{eq}$ (C). The F1, F2, and F3 fluorine atoms of the –CF3 group were disordered over two sites and refined with site occupancy factors 0.62 (3):0.38 (3).

#### **Computing details**

Data collection: *APEX2* (Bruker, 2009); cell refinement: *APEX2* and *SAINT-Plus* (Bruker, 2009); data reduction: *SAINT-Plus* and *XPREP* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).



**Figure 1**Molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. Only the major component of the disordered CF<sub>3</sub> group is shown.



Figure 2
Crystal packing of the title compound with hydrogen bonds drawn as dashed lines.



Figure 3 Packing of the title compound. C—H··· $\pi$  interactions are shown as dashed lines.

#### 4-[4-(Heptyloxy)benzoyloxy]phenyl 2-oxo-7-trifluoromethyl-2H-chromene-3-carboxylate

| Crystat data                         |
|--------------------------------------|
| $C_{31}H_{27}F_3O_7$                 |
| $M_r = 568.53$                       |
| Triclinic, $P\overline{1}$           |
| Hall symbol: -P 1                    |
| a = 5.6810 (3)  Å                    |
| b = 16.036 (2) Å                     |
| c = 16.2954 (18)  Å                  |
| $\alpha = 68.940 (12)^{\circ}$       |
| $\beta = 88.914 (6)^{\circ}$         |
| $\gamma = 88.486 \ (7)^{\circ}$      |
| $V = 1384 \text{ g} (3) \text{ Å}^3$ |

Crystal data

Data collection

Z=2

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 1.03 pixels mm<sup>-1</sup> phi and  $\omega$  scans Absorption correction: multi-scan (SADABS; Sheldrick, 2007)  $T_{min} = 0.966$ ,  $T_{max} = 0.981$ 

Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.104$   $wR(F^2) = 0.316$  S = 0.994876 reflections 399 parameters 0 restraints 0 constraints

Primary atom site location: structure-invariant

direct methods

F(000) = 592Blocks  $D_x = 1.363 \text{ Mg m}^{-3}$ Melting point: 434 K Mo  $K\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2837 reflections  $\theta = 2.5 - 25^{\circ}$   $\mu = 0.11 \text{ mm}^{-1}$  T = 296 KBlock, colourless  $0.32 \times 0.24 \times 0.18 \text{ mm}$ 

8822 measured reflections 4876 independent reflections 2837 reflections with  $I > 2\sigma(I)$   $R_{\text{int}} = 0.079$   $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$   $h = -6 \rightarrow 6$   $k = -19 \rightarrow 18$  $l = -19 \rightarrow 17$ 

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.1918P)^2]$  where  $P = (F_o^2 + 2F_c^2)/3$ 

 $(\Delta/\sigma)_{\rm max} < 0.001$   $\Delta\rho_{\rm max} = 0.40 \text{ e Å}^{-3}$  $\Delta\rho_{\rm min} = -0.42 \text{ e Å}^{-3}$ 

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement.** Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | X           | у          | Z          | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|-------------|------------|------------|-----------------------------|-----------|
| C1  | 0.5018 (9)  | 1.1195 (3) | 0.0428 (3) | 0.0728 (13)                 |           |
| C2  | 0.4321 (7)  | 1.0781 (3) | 0.1360(3)  | 0.0538 (10)                 |           |
| C3  | 0.2160 (7)  | 1.1040 (3) | 0.1631(3)  | 0.0580 (10)                 |           |
| Н3  | 0.1172      | 1.1448     | 0.1225     | 0.070*                      |           |
| C4  | 0.1518 (6)  | 1.0687 (2) | 0.2499 (3) | 0.0519 (10)                 |           |
| H4  | 0.0076      | 1.0854     | 0.2679     | 0.062*                      |           |
| C5  | 0.2991 (6)  | 1.0080(2)  | 0.3119(3)  | 0.0459 (9)                  |           |
| C6  | 0.5150(6)   | 0.9843 (2) | 0.2825 (3) | 0.0470 (9)                  |           |
| C7  | 0.5806 (7)  | 1.0184(3)  | 0.1946 (3) | 0.0566 (10)                 |           |
| H7  | 0.7228      | 1.0009     | 0.1758     | 0.068*                      |           |
| C8  | 0.2469 (6)  | 0.9689(2)  | 0.4027 (2) | 0.0450 (9)                  |           |
| H8  | 0.1043      | 0.9838     | 0.4234     | 0.054*                      |           |
| C9  | 0.3928 (5)  | 0.9114(2)  | 0.4601 (2) | 0.0442 (8)                  |           |
| C10 | 0.6252 (6)  | 0.8895 (2) | 0.4300(3)  | 0.0485 (9)                  |           |
| C11 | 0.3301 (6)  | 0.8718 (2) | 0.5537 (2) | 0.0446 (8)                  |           |
| C12 | 0.3494 (6)  | 0.7435 (2) | 0.6811 (3) | 0.0465 (9)                  |           |
| C13 | 0.1534 (7)  | 0.6919(3)  | 0.7119 (3) | 0.0547 (10)                 |           |
| H13 | 0.0419      | 0.6868     | 0.6730     | 0.066*                      |           |
| C14 | 0.1256 (6)  | 0.6483 (3) | 0.8005(3)  | 0.0551 (10)                 |           |
| H14 | -0.0056     | 0.6133     | 0.8222     | 0.066*                      |           |
| C15 | 0.2911 (6)  | 0.6561(2)  | 0.8575 (3) | 0.0506 (9)                  |           |
| C16 | 0.4882 (7)  | 0.7071 (3) | 0.8258 (3) | 0.0566 (10)                 |           |
| H16 | 0.6005      | 0.7120     | 0.8645     | 0.068*                      |           |
| C17 | 0.5167 (6)  | 0.7501(3)  | 0.7371 (3) | 0.0591 (11)                 |           |
| H17 | 0.6499      | 0.7838     | 0.7151     | 0.071*                      |           |
| C18 | 0.0998 (6)  | 0.6353(3)  | 0.9943 (3) | 0.0527 (10)                 |           |
| C19 | 0.1256 (6)  | 0.5916(2)  | 1.0887 (3) | 0.0481 (9)                  |           |
| C20 | -0.0520(6)  | 0.6051(3)  | 1.1441 (3) | 0.0552 (10)                 |           |
| H20 | -0.1829     | 0.6408     | 1.1195     | 0.066*                      |           |
| C21 | -0.0360 (6) | 0.5673 (3) | 1.2323 (3) | 0.0579 (10)                 |           |
| H21 | -0.1572     | 0.5764     | 1.2676     | 0.069*                      |           |
| C22 | 0.1589 (6)  | 0.5149 (2) | 1.2712 (3) | 0.0482 (9)                  |           |
| C23 | 0.3373 (6)  | 0.5008(2)  | 1.2179 (3) | 0.0521 (9)                  |           |
| H23 | 0.4680      | 0.4652     | 1.2430     | 0.062*                      |           |
| C24 | 0.3204 (6)  | 0.5393 (2) | 1.1281 (2) | 0.0491 (9)                  |           |
| H24 | 0.4419      | 0.5303     | 1.0930     | 0.059*                      |           |
| C25 | 0.3583 (7)  | 0.4275 (3) | 1.4026 (3) | 0.0586 (10)                 |           |

| H25A | 0.4969      | 0.4643       | 1.3873       | 0.070*      |         |
|------|-------------|--------------|--------------|-------------|---------|
| H25B | 0.3840      | 0.3777       | 1.3827       | 0.070*      |         |
| C26  | 0.3225 (7)  | 0.3932 (3)   | 1.4994 (3)   | 0.0633 (11) |         |
| H26A | 0.1929      | 0.3520       | 1.5147       | 0.076*      |         |
| H26B | 0.2803      | 0.4427       | 1.5181       | 0.076*      |         |
| C27  | 0.5406 (8)  | 0.3461 (3)   | 1.5475 (3)   | 0.0638 (11) |         |
| H27A | 0.5867      | 0.2993       | 1.5254       | 0.077*      |         |
| H27B | 0.6671      | 0.3886       | 1.5333       | 0.077*      |         |
| C28  | 0.5177 (7)  | 0.3050(3)    | 1.6459 (3)   | 0.0624 (11) |         |
| H28A | 0.3880      | 0.2639       | 1.6609       | 0.075*      |         |
| H28B | 0.4810      | 0.3517       | 1.6691       | 0.075*      |         |
| C29  | 0.7420(8)   | 0.2550(3)    | 1.6890(3)    | 0.0666 (12) |         |
| H29A | 0.7791      | 0.2093       | 1.6645       | 0.080*      |         |
| H29B | 0.8705      | 0.2966       | 1.6736       | 0.080*      |         |
| C30  | 0.7303 (8)  | 0.2118 (3)   | 1.7865 (3)   | 0.0759 (14) |         |
| H30A | 0.5981      | 0.1719       | 1.8024       | 0.091*      |         |
| H30B | 0.7017      | 0.2576       | 1.8116       | 0.091*      |         |
| C31  | 0.9507 (10) | 0.1598 (5)   | 1.8258 (4)   | 0.108(2)    |         |
| H31A | 0.9800      | 0.1141       | 1.8014       | 0.162*      |         |
| H31B | 0.9312      | 0.1327       | 1.8884       | 0.162*      |         |
| H31C | 1.0814      | 0.1994       | 1.8125       | 0.162*      |         |
| O1   | 0.6675 (4)  | 0.92522 (17) | 0.34057 (18) | 0.0549 (7)  |         |
| O2   | 0.7777 (5)  | 0.8451 (2)   | 0.4762 (2)   | 0.0744 (10) |         |
| O3   | 0.2319 (5)  | 0.91399 (18) | 0.5935 (2)   | 0.0646 (8)  |         |
| O6   | -0.0516(5)  | 0.6888 (2)   | 0.9571 (2)   | 0.0797 (10) |         |
| F1   | 0.656 (4)   | 1.0696 (9)   | 0.0209 (8)   | 0.130 (5)   | 0.62(3) |
| F2   | 0.600 (4)   | 1.1943 (10)  | 0.0239 (8)   | 0.120 (5)   | 0.62(3) |
| F3   | 0.346 (2)   | 1.1281 (18)  | -0.0147(10)  | 0.139 (7)   | 0.62(3) |
| F1A  | 0.364 (7)   | 1.091 (2)    | -0.0042 (18) | 0.149 (11)  | 0.38(3) |
| F2A  | 0.731 (3)   | 1.100(2)     | 0.0245 (10)  | 0.143 (11)  | 0.38(3) |
| F3A  | 0.471 (6)   | 1.2076 (13)  | 0.0083 (16)  | 0.140 (10)  | 0.38(3) |
| O4   | 0.3862 (5)  | 0.78518 (16) | 0.59002 (17) | 0.0557 (7)  |         |
| O7   | 0.1577 (5)  | 0.47897 (19) | 1.35995 (19) | 0.0611 (8)  |         |
| O5   | 0.2751 (4)  | 0.61051 (18) | 0.94774 (17) | 0.0576 (7)  |         |
|      |             |              |              |             |         |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|            | $U^{11}$    | $U^{22}$    | $U^{33}$ | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------------|-------------|-------------|----------|--------------|--------------|--------------|
| C1         | 0.088(3)    | 0.074(3)    | 0.056(3) | -0.002(3)    | 0.008(3)     | -0.023 (2)   |
| C2         | 0.063(2)    | 0.059(2)    | 0.038(2) | -0.0074(18)  | 0.0065 (17)  | -0.0160(18)  |
| C3         | 0.057(2)    | 0.058(2)    | 0.051(3) | -0.0010(18)  | -0.0035 (18) | -0.0096 (19) |
| C4         | 0.0464 (19) | 0.052(2)    | 0.051(2) | 0.0005 (16)  | 0.0053 (16)  | -0.0110(17)  |
| C5         | 0.0412 (17) | 0.0395 (18) | 0.054(2) | -0.0005 (14) | 0.0032 (15)  | -0.0130 (16) |
| C6         | 0.0469 (19) | 0.0453 (18) | 0.047(2) | 0.0002 (15)  | 0.0064 (16)  | -0.0154(17)  |
| C <b>7</b> | 0.052(2)    | 0.061(2)    | 0.056(3) | -0.0052(18)  | 0.0122 (18)  | -0.021(2)    |
| C8         | 0.0376 (17) | 0.0443 (18) | 0.050(2) | 0.0004 (14)  | 0.0087 (15)  | -0.0137(17)  |
| C9         | 0.0366 (17) | 0.0465 (19) | 0.049(2) | 0.0017 (14)  | 0.0058 (15)  | -0.0177 (16) |
| C10        | 0.0400 (18) | 0.0465 (19) | 0.051(2) | 0.0026 (15)  | 0.0101 (16)  | -0.0080 (16) |
| C11        | 0.0453 (18) | 0.0428 (18) | 0.045(2) | 0.0025 (14)  | 0.0046 (15)  | -0.0157 (16) |
| C12        | 0.052(2)    | 0.0383 (17) | 0.047(2) | 0.0065 (15)  | 0.0048 (16)  | -0.0134(16)  |

| C13 | 0.056(2)    | 0.057(2)    | 0.048(2)    | -0.0072 (17) | -0.0036 (17) | -0.0152 (18) |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C14 | 0.051(2)    | 0.061(2)    | 0.047(2)    | -0.0108(17)  | 0.0033 (17)  | -0.0123(18)  |
| C15 | 0.052(2)    | 0.049(2)    | 0.041(2)    | 0.0089 (16)  | 0.0031 (16)  | -0.0065 (16) |
| C16 | 0.050(2)    | 0.063(2)    | 0.055(3)    | 0.0000 (17)  | -0.0044(17)  | -0.0198(19)  |
| C17 | 0.053(2)    | 0.052(2)    | 0.069(3)    | -0.0066 (17) | 0.0071 (19)  | -0.018(2)    |
| C18 | 0.050(2)    | 0.056(2)    | 0.048(2)    | 0.0028 (17)  | 0.0021 (17)  | -0.0138(18)  |
| C19 | 0.0479 (19) | 0.0474 (19) | 0.043(2)    | 0.0010 (15)  | 0.0024 (16)  | -0.0100 (16) |
| C20 | 0.0459 (19) | 0.062(2)    | 0.053(2)    | 0.0130 (17)  | -0.0005 (17) | -0.0158 (19) |
| C21 | 0.050(2)    | 0.071(2)    | 0.050(2)    | 0.0088 (18)  | 0.0098 (17)  | -0.020(2)    |
| C22 | 0.0475 (19) | 0.0475 (19) | 0.046(2)    | -0.0013 (15) | 0.0033 (16)  | -0.0129 (16) |
| C23 | 0.0414 (18) | 0.055(2)    | 0.055(3)    | 0.0092 (15)  | -0.0008 (16) | -0.0157 (18) |
| C24 | 0.0448 (18) | 0.058(2)    | 0.041(2)    | 0.0042 (15)  | 0.0044 (15)  | -0.0146 (17) |
| C25 | 0.062(2)    | 0.064(2)    | 0.049(3)    | 0.0108 (18)  | 0.0024 (18)  | -0.0188 (19) |
| C26 | 0.073(3)    | 0.069(3)    | 0.045 (3)   | 0.003(2)     | 0.004(2)     | -0.017(2)    |
| C27 | 0.072(3)    | 0.062(2)    | 0.056(3)    | 0.007(2)     | 0.000(2)     | -0.021 (2)   |
| C28 | 0.074(3)    | 0.066(2)    | 0.044(2)    | 0.008(2)     | 0.002(2)     | -0.0174 (19) |
| C29 | 0.077(3)    | 0.068(3)    | 0.052(3)    | 0.010(2)     | 0.000(2)     | -0.021(2)    |
| C30 | 0.076(3)    | 0.084(3)    | 0.056(3)    | 0.006(2)     | -0.003(2)    | -0.013(2)    |
| C31 | 0.088(3)    | 0.150 (5)   | 0.066 (4)   | 0.036(3)     | -0.003(3)    | -0.017(4)    |
| O1  | 0.0460 (13) | 0.0605 (16) | 0.0526 (17) | 0.0086 (11)  | 0.0122 (12)  | -0.0149(13)  |
| O2  | 0.0458 (15) | 0.082(2)    | 0.072(2)    | 0.0167 (14)  | 0.0041 (14)  | -0.0008(17)  |
| O3  | 0.0740 (18) | 0.0595 (16) | 0.0583 (19) | 0.0182 (13)  | 0.0114 (14)  | -0.0206 (14) |
| O6  | 0.0733 (19) | 0.097(2)    | 0.059(2)    | 0.0362 (17)  | -0.0088 (15) | -0.0179(17)  |
| F1  | 0.161 (12)  | 0.120(7)    | 0.103 (7)   | 0.017 (7)    | 0.066 (7)    | -0.040(5)    |
| F2  | 0.191 (13)  | 0.085 (7)   | 0.077 (5)   | -0.064(8)    | 0.047 (7)    | -0.018(5)    |
| F3  | 0.124 (7)   | 0.211 (18)  | 0.049 (4)   | -0.048(8)    | -0.016 (4)   | -0.002(8)    |
| F1A | 0.26(3)     | 0.142 (16)  | 0.059 (12)  | -0.055(13)   | 0.000 (11)   | -0.048(12)   |
| F2A | 0.077 (7)   | 0.23(3)     | 0.047 (6)   | 0.004 (10)   | 0.025 (5)    | 0.041 (10)   |
| F3A | 0.194 (19)  | 0.086(8)    | 0.089 (10)  | 0.059 (13)   | 0.059 (12)   | 0.026 (7)    |
| O4  | 0.0720 (17) | 0.0430 (14) | 0.0482 (17) | 0.0063 (12)  | 0.0114 (13)  | -0.0126 (12) |
| O7  | 0.0623 (16) | 0.0725 (18) | 0.0451 (17) | 0.0126 (13)  | 0.0021 (12)  | -0.0179 (14) |
| O5  | 0.0637 (16) | 0.0617 (16) | 0.0388 (15) | 0.0136 (12)  | 0.0025 (12)  | -0.0089 (12) |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| C1—F2  | 1.268 (9)  | C17—H17 | 0.9300    |
|--------|------------|---------|-----------|
| C1—F3  | 1.268 (14) | C18—O6  | 1.204 (4) |
| C1—F1  | 1.302 (12) | C18—O5  | 1.376 (5) |
| C1—F1A | 1.31 (3)   | C18—O5  | 1.376 (5) |
| C1—F3A | 1.328 (17) | C18—C19 | 1.451 (5) |
| C1—F2A | 1.379 (18) | C19—C24 | 1.390 (5) |
| C1—C2  | 1.473 (6)  | C19—C20 | 1.405 (6) |
| C2—C7  | 1.368 (5)  | C20—C21 | 1.349 (5) |
| C2—C3  | 1.399 (6)  | C20—H20 | 0.9300    |
| C3—C4  | 1.367 (6)  | C21—C22 | 1.389 (5) |
| C3—H3  | 0.9300     | C21—H21 | 0.9300    |
| C4—C5  | 1.397 (5)  | C22—O7  | 1.351 (5) |
| C4—H4  | 0.9300     | C22—C23 | 1.389 (6) |
| C5—C6  | 1.401 (5)  | C23—C24 | 1.373 (5) |
| C5—C8  | 1.412 (5)  | C23—H23 | 0.9300    |
|        |            |         |           |

| C( 01      | 1 272 (4)  | C24 1124     | 0.0200    |
|------------|------------|--------------|-----------|
| C6—O1      | 1.373 (4)  | C24—H24      | 0.9300    |
| C6—C7      | 1.385 (5)  | C25—O7       | 1.425 (4) |
| C7—H7      | 0.9300     | C25—C26      | 1.484 (5) |
| C8—C9      | 1.334 (5)  | C25—H25A     | 0.9700    |
| C8—H8      | 0.9300     | C25—H25B     | 0.9700    |
| C9—C11     | 1.467 (5)  | C26—C27      | 1.512 (6) |
| C9—C10     | 1.477 (5)  | C26—H26A     | 0.9700    |
| C10—O2     | 1.197 (4)  | C26—H26B     | 0.9700    |
| C10—O1     | 1.379 (5)  | C27—C28      | 1.503 (6) |
| C11—O3     | 1.212 (5)  | C27—H27A     | 0.9700    |
| C11—O4     | 1.332 (4)  | C27—H27B     | 0.9700    |
| C12—C17    | 1.362 (5)  | C28—C29      | 1.528 (6) |
| C12—C13    | 1.381 (5)  | C28—H28A     | 0.9700    |
| C12—O4     | 1.405 (4)  | C28—H28B     | 0.9700    |
| C13—C14    | 1.368 (5)  | C29—C30      | 1.488 (6) |
| C13—H13    | 0.9300     | C29—H29A     | 0.9700    |
| C14—C15    | 1.372 (5)  | C29—H29B     | 0.9700    |
| C14—H14    | 0.9300     | C30—C31      | 1.505 (7) |
| C15—C16    | 1.383 (5)  | C30—H30A     | 0.9700    |
| C15—O5     | 1.390 (4)  | C30—H30B     | 0.9700    |
| C15—O5     | 1.390 (4)  | C31—H31A     | 0.9600    |
| C16—C17    | 1.368 (6)  | C31—H31B     | 0.9600    |
| C16—H16    | 0.9300     | C31—H31C     | 0.9600    |
| C10—1110   | 0.9300     | C31—H31C     | 0.9000    |
| F2—C1—F3   | 107.6 (10) | O6—C18—O5    | 121.0 (4) |
| F2—C1—F1   | 104.7 (8)  | O6—C18—C19   | 126.5 (4) |
| F3—C1—F1   | 100.0 (12) | O5—C18—C19   | 112.5 (3) |
| F2—C1—F1A  | * *        | O5—C18—C19   | , ,       |
| F1—C1—F1A  | 130.1 (13) | C24—C19—C20  | 112.5 (3) |
|            | 82.3 (17)  |              | 117.6 (4) |
| F3—C1—F3A  | 77.9 (13)  | C24—C19—C18  | 123.9 (4) |
| F1—C1—F3A  | 128.4 (10) | C20—C19—C18  | 118.5 (3) |
| F1A—C1—F3A | 103.1 (17) | C21—C20—C19  | 121.2 (3) |
| F2—C1—F2A  | 77.5 (10)  | C21—C20—H20  | 119.4     |
| F3—C1—F2A  | 118.2 (12) | C19—C20—H20  | 119.4     |
| F1A—C1—F2A | 107.4 (19) | C20—C21—C22  | 120.9 (4) |
| F3A—C1—F2A | 107.3 (12) | C20—C21—H21  | 119.6     |
| F2—C1—C2   | 114.1 (6)  | C22—C21—H21  | 119.6     |
| F3—C1—C2   | 117.8 (8)  | O7—C22—C23   | 124.3 (3) |
| F1—C1—C2   | 111.0 (6)  | O7—C22—C21   | 116.5 (3) |
| F1A—C1—C2  | 108.6 (14) | C23—C22—C21  | 119.1 (4) |
| F3A—C1—C2  | 115.2 (10) | C24—C23—C22  | 119.9 (3) |
| F2A—C1—C2  | 114.4 (7)  | C24—C23—H23  | 120.1     |
| C7—C2—C3   | 121.3 (4)  | C22—C23—H23  | 120.1     |
| C7—C2—C1   | 120.2 (4)  | C23—C24—C19  | 121.4 (4) |
| C3—C2—C1   | 118.4 (4)  | C23—C24—H24  | 119.3     |
| C4—C3—C2   | 119.3 (3)  | C19—C24—H24  | 119.3     |
| C4—C3—H3   | 120.3      | O7—C25—C26   | 110.2 (3) |
| C2—C3—H3   | 120.3      | O7—C25—H25A  | 109.6     |
| C3—C4—C5   | 121.1 (4)  | C26—C25—H25A | 109.6     |
|            | • •        |              |           |

| C3—C4—H4     | 119.4      | O7—C25—H25B     | 109.6      |
|--------------|------------|-----------------|------------|
| C5—C4—H4     | 119.4      | C26—C25—H25B    | 109.6      |
| C4—C5—C6     | 118.0 (4)  | H25A—C25—H25B   | 108.1      |
| C4—C5—C8     | 124.7 (3)  | C25—C26—C27     | 111.9 (4)  |
| C6—C5—C8     | 117.3 (3)  | C25—C26—H26A    | 109.2      |
| O1—C6—C7     | 117.9 (3)  | C27—C26—H26A    | 109.2      |
| O1—C6—C5     | 120.6 (3)  | C25—C26—H26B    | 109.2      |
| C7—C6—C5     | 121.5 (3)  | C27—C26—H26B    | 109.2      |
| C2—C7—C6     | 118.7 (4)  | H26A—C26—H26B   | 107.9      |
| C2—C7—H7     | 120.7      | C28—C27—C26     | 115.8 (4)  |
| C6—C7—H7     | 120.7      | C28—C27—H27A    | 108.3      |
| C9—C8—C5     | 123.0 (3)  | C26—C27—H27A    | 108.3      |
| C9—C8—H8     | 118.5      | C28—C27—H27B    | 108.3      |
| C5—C8—H8     | 118.5      | C26—C27—H27B    | 108.3      |
| C8—C9—C11    |            | H27A—C27—H27B   | 107.4      |
|              | 121.1 (3)  |                 |            |
| C8—C9—C10    | 119.8 (3)  | C27—C28—C29     | 112.5 (4)  |
| C11—C9—C10   | 119.1 (3)  | C27—C28—H28A    | 109.1      |
| O2—C10—O1    | 118.2 (3)  | C29—C28—H28A    | 109.1      |
| O2—C10—C9    | 125.7 (4)  | C27—C28—H28B    | 109.1      |
| 01—C10—C9    | 116.0 (3)  | C29—C28—H28B    | 109.1      |
| O3—C11—O4    | 123.4 (4)  | H28A—C28—H28B   | 107.8      |
| O3—C11—C9    | 122.8 (3)  | C30—C29—C28     | 115.2 (4)  |
| O4—C11—C9    | 113.7 (3)  | C30—C29—H29A    | 108.5      |
| C17—C12—C13  | 121.2 (4)  | C28—C29—H29A    | 108.5      |
| C17—C12—O4   | 119.0 (3)  | C30—C29—H29B    | 108.5      |
| C13—C12—O4   | 119.7 (3)  | C28—C29—H29B    | 108.5      |
| C14—C13—C12  | 119.1 (3)  | H29A—C29—H29B   | 107.5      |
| C14—C13—H13  | 120.5      | C29—C30—C31     | 113.4 (5)  |
| C12—C13—H13  | 120.5      | C29—C30—H30A    | 108.9      |
| C13—C14—C15  | 120.1 (3)  | C31—C30—H30A    | 108.9      |
| C13—C14—H14  | 120.0      | C29—C30—H30B    | 108.9      |
| C15—C14—H14  | 120.0      | C31—C30—H30B    | 108.9      |
| C14—C15—C16  | 120.4 (4)  | H30A—C30—H30B   | 107.7      |
| C14—C15—O5   | 122.2 (3)  | C30—C31—H31A    | 109.5      |
| C16—C15—O5   | 117.3 (3)  | C30—C31—H31B    | 109.5      |
| C14—C15—O5   | 122.2 (3)  | H31A—C31—H31B   | 109.5      |
| C16—C15—O5   | 117.3 (3)  | C30—C31—H31C    | 109.5      |
| C17—C16—C15  | 119.5 (4)  | H31A—C31—H31C   | 109.5      |
| C17—C16—H16  | 120.3      | H31B—C31—H31C   | 109.5      |
| C15—C16—H16  | 120.3      | C6—O1—C10       | 123.1 (3)  |
| C12—C17—C16  | 119.8 (3)  | C11—O4—C12      | 117.5 (3)  |
| C12—C17—H17  | 120.1      | C22—O7—C25      | 118.3 (3)  |
| C16—C17—H17  | 120.1      | C18—O5—C15      | 118.6 (3)  |
| O6—C18—O5    | 121.0 (4)  | 010 02 012      | 110.0 (3)  |
| 30 310 33    | 121.0 (1)  |                 |            |
| F2—C1—C2—C7  | -93.5 (14) | O5—C15—C16—C17  | 177.2 (3)  |
| F3—C1—C2—C7  | 139.0 (15) | C13—C12—C17—C16 | -1.9 (6)   |
| F1—C1—C2—C7  | 24.5 (13)  | O4—C12—C17—C16  | -177.4 (3) |
| F1A—C1—C2—C7 | 113 (2)    | C15—C16—C17—C10 | 1.0 (6)    |
| 11/1/        | 113 (4)    | C15—C10—C1/—C12 | 1.0 (0)    |

| F3A—C1—C2—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F2—C1—C2—C3       84.1 (14)       O5—C18—C19—C24       7.5 (5)         F3—C1—C2—C3       -43.4 (16)       O6—C18—C19—C20       6.4 (6)         F1—C1—C2—C3       -157.9 (12)       O5—C18—C19—C20       -174.8 (3)         F1A—C1—C2—C3       -69 (2)       O5—C18—C19—C20       -174.8 (3)         F3A—C1—C2—C3       46 (2)       C24—C19—C20—C21       -1.3 (6)         F2A—C1—C2—C3       170.8 (19)       C18—C19—C20—C21       -179.1 (3)         C7—C2—C3—C4       -0.2 (6)       C19—C20—C21—C22       1.1 (6)         C1—C2—C3—C4       -177.7 (4)       C20—C21—C22—O7       -179.2 (3)         C2—C3—C4—C5       0.6 (6)       C20—C21—C22—C23       -0.9 (6)         C3—C4—C5—C6       0.0 (5)       07—C22—C23—C24       179.1 (3)         C3—C4—C5—C8       179.7 (3)       C21—C22—C23—C24       0.8 (6)         C4—C5—C6—O1       179.7 (3)       C22—C23—C24—C19       -1.1 (6)         C8—C5—C6—O1       0.0 (5)       C20—C19—C24—C23       1.3 (5)         C4—C5—C6—C7       -1.1 (5)       C18—C19—C24—C23       178.9 (3) |
| F3—C1—C2—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| F1—C1—C2—C3         -157.9 (12)         O5—C18—C19—C20         -174.8 (3)           F1A—C1—C2—C3         -69 (2)         O5—C18—C19—C20         -174.8 (3)           F3A—C1—C2—C3         46 (2)         C24—C19—C20—C21         -1.3 (6)           F2A—C1—C2—C3         170.8 (19)         C18—C19—C20—C21         -179.1 (3)           C7—C2—C3—C4         -0.2 (6)         C19—C20—C21—C22         1.1 (6)           C1—C2—C3—C4         -177.7 (4)         C20—C21—C22—O7         -179.2 (3)           C2—C3—C4—C5         0.6 (6)         C20—C21—C22—C23         -0.9 (6)           C3—C4—C5—C6         0.0 (5)         07—C22—C23—C24         179.1 (3)           C3—C4—C5—C8         179.7 (3)         C21—C22—C23—C24         0.8 (6)           C4—C5—C6—O1         179.7 (3)         C22—C23—C24—C19         -1.1 (6)           C8—C5—C6—O1         0.0 (5)         C20—C19—C24—C23         1.3 (5)           C4—C5—C6—C7         -1.1 (5)         C18—C19—C24—C23         178.9 (3)                                                  |
| F1A—C1—C2—C3       -69 (2)       O5—C18—C19—C20       -174.8 (3)         F3A—C1—C2—C3       46 (2)       C24—C19—C20—C21       -1.3 (6)         F2A—C1—C2—C3       170.8 (19)       C18—C19—C20—C21       -179.1 (3)         C7—C2—C3—C4       -0.2 (6)       C19—C20—C21—C22       1.1 (6)         C1—C2—C3—C4       -177.7 (4)       C20—C21—C22—O7       -179.2 (3)         C2—C3—C4—C5       0.6 (6)       C20—C21—C22—C23       -0.9 (6)         C3—C4—C5—C6       0.0 (5)       O7—C22—C23—C24       179.1 (3)         C3—C4—C5—C8       179.7 (3)       C21—C22—C23—C24       0.8 (6)         C4—C5—C6—O1       179.7 (3)       C22—C23—C24—C19       -1.1 (6)         C8—C5—C6—O1       0.0 (5)       C20—C19—C24—C23       1.3 (5)         C4—C5—C6—C7       -1.1 (5)       C18—C19—C24—C23       178.9 (3)                                                                                                                                                                                                                            |
| F3A—C1—C2—C3       46 (2)       C24—C19—C20—C21       -1.3 (6)         F2A—C1—C2—C3       170.8 (19)       C18—C19—C20—C21       -179.1 (3)         C7—C2—C3—C4       -0.2 (6)       C19—C20—C21—C22       1.1 (6)         C1—C2—C3—C4       -177.7 (4)       C20—C21—C22—O7       -179.2 (3)         C2—C3—C4—C5       0.6 (6)       C20—C21—C22—C23       -0.9 (6)         C3—C4—C5—C6       0.0 (5)       07—C22—C23—C24       179.1 (3)         C3—C4—C5—C8       179.7 (3)       C21—C22—C23—C24       0.8 (6)         C4—C5—C6—O1       179.7 (3)       C22—C23—C24—C19       -1.1 (6)         C8—C5—C6—O1       0.0 (5)       C20—C19—C24—C23       1.3 (5)         C4—C5—C6—C7       -1.1 (5)       C18—C19—C24—C23       178.9 (3)                                                                                                                                                                                                                                                                                                     |
| F2A—C1—C2—C3       170.8 (19)       C18—C19—C20—C21       -179.1 (3)         C7—C2—C3—C4       -0.2 (6)       C19—C20—C21—C22       1.1 (6)         C1—C2—C3—C4       -177.7 (4)       C20—C21—C22—O7       -179.2 (3)         C2—C3—C4—C5       0.6 (6)       C20—C21—C22—C23       -0.9 (6)         C3—C4—C5—C6       0.0 (5)       O7—C22—C23—C24       179.1 (3)         C3—C4—C5—C8       179.7 (3)       C21—C22—C23—C24       0.8 (6)         C4—C5—C6—O1       179.7 (3)       C22—C23—C24—C19       -1.1 (6)         C8—C5—C6—O1       0.0 (5)       C20—C19—C24—C23       1.3 (5)         C4—C5—C6—C7       -1.1 (5)       C18—C19—C24—C23       178.9 (3)                                                                                                                                                                                                                                                                                                                                                                            |
| C7—C2—C3—C4       -0.2 (6)       C19—C20—C21—C22       1.1 (6)         C1—C2—C3—C4       -177.7 (4)       C20—C21—C22—O7       -179.2 (3)         C2—C3—C4—C5       0.6 (6)       C20—C21—C22—C23       -0.9 (6)         C3—C4—C5—C6       0.0 (5)       07—C22—C23—C24       179.1 (3)         C3—C4—C5—C8       179.7 (3)       C21—C22—C23—C24       0.8 (6)         C4—C5—C6—O1       179.7 (3)       C22—C23—C24—C19       -1.1 (6)         C8—C5—C6—O1       0.0 (5)       C20—C19—C24—C23       1.3 (5)         C4—C5—C6—C7       -1.1 (5)       C18—C19—C24—C23       178.9 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C1—C2—C3—C4       -177.7 (4)       C20—C21—C22—O7       -179.2 (3)         C2—C3—C4—C5       0.6 (6)       C20—C21—C22—C23       -0.9 (6)         C3—C4—C5—C6       0.0 (5)       O7—C22—C23—C24       179.1 (3)         C3—C4—C5—C8       179.7 (3)       C21—C22—C23—C24       0.8 (6)         C4—C5—C6—O1       179.7 (3)       C22—C23—C24—C19       -1.1 (6)         C8—C5—C6—O1       0.0 (5)       C20—C19—C24—C23       1.3 (5)         C4—C5—C6—C7       -1.1 (5)       C18—C19—C24—C23       178.9 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C2—C3—C4—C5       0.6 (6)       C20—C21—C22—C23       -0.9 (6)         C3—C4—C5—C6       0.0 (5)       O7—C22—C23—C24       179.1 (3)         C3—C4—C5—C8       179.7 (3)       C21—C22—C23—C24       0.8 (6)         C4—C5—C6—O1       179.7 (3)       C22—C23—C24—C19       -1.1 (6)         C8—C5—C6—O1       0.0 (5)       C20—C19—C24—C23       1.3 (5)         C4—C5—C6—C7       -1.1 (5)       C18—C19—C24—C23       178.9 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C3—C4—C5—C6       0.0 (5)       O7—C22—C23—C24       179.1 (3)         C3—C4—C5—C8       179.7 (3)       C21—C22—C23—C24       0.8 (6)         C4—C5—C6—O1       179.7 (3)       C22—C23—C24—C19       -1.1 (6)         C8—C5—C6—O1       0.0 (5)       C20—C19—C24—C23       1.3 (5)         C4—C5—C6—C7       -1.1 (5)       C18—C19—C24—C23       178.9 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C3—C4—C5—C8       179.7 (3)       C21—C22—C23—C24       0.8 (6)         C4—C5—C6—O1       179.7 (3)       C22—C23—C24—C19       -1.1 (6)         C8—C5—C6—O1       0.0 (5)       C20—C19—C24—C23       1.3 (5)         C4—C5—C6—C7       -1.1 (5)       C18—C19—C24—C23       178.9 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C4—C5—C6—O1       179.7 (3)       C22—C23—C24—C19       -1.1 (6)         C8—C5—C6—O1       0.0 (5)       C20—C19—C24—C23       1.3 (5)         C4—C5—C6—C7       -1.1 (5)       C18—C19—C24—C23       178.9 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C8—C5—C6—O1 0.0 (5) C20—C19—C24—C23 1.3 (5) C4—C5—C6—C7 -1.1 (5) C18—C19—C24—C23 178.9 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C4—C5—C6—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C8—C5—C6—C7 179.2 (3) O7—C25—C26—C27 -174.3 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C3-C2-C7-C6 $-0.9$ (6) $C25-C26-C27-C28$ $-177.1$ (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C1—C2—C7—C6 176.6 (4) C26—C27—C28—C29 177.3 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| O1—C6—C7—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C5—C6—C7—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C4—C5—C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C6—C5—C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C5—C8—C9—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C5—C8—C9—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C8—C9—C10—O2 173.4 (4) O3—C11—O4—C12 -6.4 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C11—C9—C10—O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C8—C9—C10—O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C11—C9—C10—O1 176.7 (3) C13—C12—O4—C11 101.0 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C8—C9—C11—O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C10—C9—C11—O3 137.6 (4) C21—C22—O7—C25 -177.7 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| C8—C9—C11—O4 138.4 (3) C26—C25—O7—C22 -179.4 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C10—C9—C11—O4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C17—C12—C13—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| O4—C12—C13—C14 176.9 (3) O6—C18—O5—C15 7.6 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C12—C13—C14—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C13—C14—C15—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| C13—C14—C15—O5 — -177.5 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C13—C14—C15—O5 — -177.5 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C14—C15—C16—C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| O5—C15—C16—C17 177.2 (3) O5—C15—O5—C18 0 (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

#### Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C12–C17 and C19–C24 rings, respectively.

| <i>D</i> —H··· <i>A</i>    | <i>D</i> —Н | H…A  | D··· $A$  | <i>D</i> —H··· <i>A</i> |
|----------------------------|-------------|------|-----------|-------------------------|
| C3—H3···O6 <sup>i</sup>    | 0.93        | 2.53 | 3.313 (5) | 142                     |
| C8—H8···O3 <sup>i</sup>    | 0.93        | 2.44 | 3.277 (4) | 150                     |
| C16—H16···O6 <sup>ii</sup> | 0.93        | 2.45 | 3.350 (5) | 163                     |

| C24—H24···O5                          | 0.93 | 2.45 | 2.759 (5) | 100 |  |
|---------------------------------------|------|------|-----------|-----|--|
| C14—H14··· <i>Cg</i> 2 <sup>iii</sup> | 0.93 | 2.81 | 3.517 (5) | 133 |  |
| C23—H23··· <i>Cg</i> 1 <sup>iv</sup>  | 0.93 | 2.94 | 3.650 (5) | 134 |  |

Symmetry codes: (i) -x, -y+2, -z+1; (ii) x+1, y, z; (iii) -x+2, -y+1, -z; (iv) -x+1, -y+1, -z.