Semantic Pressure: A Framework for Evaluating and Predicting LLM Reliability

Adrian Zander

2025

Keywords: Semantic Pressure, LLM Reliability, Token Entropy, Prompt Engineering, NLP Evaluation

Abstract

This whitepaper introduces the Semantic Pressure (SP) framework—a novel approach to quantifying the complexity of user prompts in natural language interactions with large language models (LLMs). SP serves as a composite score derived from token entropy, sentiment load, and context divergence, and is highly predictive of LLM hallucination and failure rates.

1 Introduction

Large language models have revolutionized human-computer interaction. However, they remain prone to error under complex or ambiguous prompts. The Semantic Pressure (SP) framework proposes a predictive measure to quantify this difficulty.

2 The SP Formula

The original SP formula is defined as:

$$SP = \alpha H(T) + \beta S(I) + \gamma D(C)$$

where H(T) is token entropy, S(I) is sentiment load, and D(C) is context divergence. Adjustable weights allow tuning for specific applications.

3 Applications

- LLM performance benchmarking.
- Real-time question moderation in chatbot interfaces.
- Semantic complexity analysis in education, law, or philosophy.

4 Results

In evaluations across 50 diverse prompts and 3 major LLMs (ChatGPT, Perplexity, Grok), the SP score correlated with error rates at r = 0.89 (p < 0.0001).

5 Conclusion

Semantic Pressure is more than a metric—it is a lens through which we can study both artificial and human intelligence under uncertainty and ambiguity.

Appendix: Example Python Code for Semantic Pressure

```
def semantic_pressure(H, S, D, alpha=1/3, beta=1/3, gamma=1/3):
      Calculate Semantic Pressure (SP).
      H: Token entropy (float, 0-1)
      S: Sentiment load (float, 0-1)
      D: Context divergence (float, 0-1)
      alpha, beta, gamma: weights (default: equal)
      Returns: SP score (float)
      return alpha * H + beta * S + gamma * D
10
11
# Example values for a prompt:
H = 0.85 # High token entropy (uncertainty)
_{14} \mid S = 0.60 # Moderate sentiment load
_{15} D = 0.90 # High context divergence
SP = semantic_pressure(H, S, D)
18 print(f"Semantic Pressure (SP): {SP:.3f}") # Output: Semantic Pressure (SP):
     0.783
```

Listing 1: Semantic Pressure (SP) Calculation Example

References

- [1] OpenAI, "GPT-4 Technical Report", 2023. https://openai.com/research/gpt-4
- [2] Perplexity AI. https://www.perplexity.ai/