

主讲人: 李全龙

本讲主题

安全电子邮件基本原理

电子邮件安全威胁

❖垃圾邮件

- 增加网络负荷,占用服务器空间
- ❖诈骗邮件
 - 能迅速让大量受害者上当
- ❖邮件炸弹
 - 短时间内向同一邮箱发送大量电子邮件
- ❖通过电子邮件/附件传播网络蠕虫/病毒
- ❖电子邮件欺骗、钓鱼式攻击

主讲人: 李全龙

电子邮件安全需求

❖机密性

- 只有真正的接收方才能阅读邮件
- ❖完整性
 - 电子邮件在传输过程中不被修改
- ❖身份认证性
 - 电子邮件的发送者不被假冒
- ❖抗抵赖性
 - 发信人无法否认发过电子邮件

主讲人: 李全龙

安全电子邮件基本原理

* 邮件具有单向性和非实时性

不能通过建立隧道来保证安全, 只能对邮件本身加密 ❖ Alice期望向Bob发送机密 邮件m

- ❖ 生成随机对称密钥, K_s
- ❖ 利用K_s加密报文 (为了效率)
- ❖ 同时,利用Bob的公钥加密K_S
- ❖ 将K_s(m)和K_B(K_s)发送给Bob

Bob:

- ❖ 利用他的私钥解密Kg(Ks), 获得Ks
- ❖ 利用K_s解密K_s(m)恢复m

安全电子邮件基本原理

❖ Alice期望提供发送者认证与报文完整性

- ❖ Alice对报文进行数字签名
- * 发送报文(明文)和数字签名

李全龙

安全电子邮件基本原理

❖ Alice期望提供保密、发送者认证与报文完整性

Alice使用3个密钥: 她自己的私钥、Bob的公钥和新生成的对称密钥

