

Designnotat

Tittel: Op-AMP

Forfattere: Eirik Mathias Silnes

Versjon: 1.0 Dato: 2. oktober 2023

Innhold

3 Realisering 4 Konklusjon 5 Takk Referanser	1	Problembeskrivelse	2
4 Konklusjon 5 Takk Referanser	2	Prinsipiell løsning	3
5 Takk 4 Referanser	3	Realisering	4
Referanser	4	Konklusjon	4
	5	Takk	4
A Fullstendige utregninger	Referanser		5
	A	Fullstendige utregninger	6

1 Problembeskrivelse

I dette designnotatet skal det designes en operasjonsforsterker på transistor nivå. En ideell operasjonsforsterkar har følgene egenskaper og modell som vist i fig 1.

- Inngangsimpedansen til $R_i = \infty$
- Utgangsimpedansen til $R_o = 0$
- Utgangen er gitt som

$$V_{out} = f(V_{+} - V_{-}) = \begin{cases} min\{V, A(v^{+} - v^{-})\} & for \ v^{+} - v^{-} > 0\\ max\{V, A(v^{+} - v^{-})\} & for \ v^{+} - v^{-} < 0 \end{cases}$$
(1)

Spesielt i dette designnotatet skal de følgene egenskapene undersøkest nærmere:

- forsterkningen A ved sinuspåtrykk med frkvens f = 1kHz og
- Total harmonisk distorsjon (THD) ved sinuspåtrykk med frekvens f = 1kHz

De to pungtene skal undersøkest med to forskjellige lastmotstander $R_L = 100k\Omega$ og $R_L = 100\Omega$. Det skal også undersøkest hvor godt kretsløsningen virker som en opamp i en inverterende forsterker med forsterkning A = -10 og $R_L = 1k\Omega$. Sammenlign dette med ved både åpen løkke forsterkning og negativ tilbakekobling.

Figur 1: Ideell opamp modell

2 Prinsipiell løsning

En differensialforsterker er en nøkkelkomponent i designet av operasjonsforsterkere (op-amp)[2, s. 105]. I en differensialforsterker benyttes ofte to inngangstransistorer i en konfigurasjon som tillater differensiell signalbehandling. Bipolare transistorer, som for eksempel NPN- og PNP-transistorer, er valgt for deres egenskaper som forsterkningsenheter og deres evne til å drive signaler med høy presisjon. Et typisk eksempel på en differensialforsterker er vist i figur 2.

Figur 2: Differensialforsterker som en operasjonsforsterker

3 Realisering

Oppkoblingen ble gjort som vist i den prinsippielle løsningen i figur 2, hvor strømkliden ble realisert som i figur 3. Modellene og verdiene som ble brukt vises i tabell 4.

Komponent	Verdi/Produknummer
$Q_1\&Q_2\&Q_5$	BC547A (NPN)
$Q_3\&Q_4$	BC557B (PNP)
R_{I1}	$3\mathrm{k}\Omega$
R_{I2}	$0\Omega - 10k\Omega$
R_{I3}	$10 \mathrm{k}\Omega$

Figur 3: Realisert strømkilde.

Figur 4: Komponenter og verdier brukt i designet.

Den oppkoblede kretsen vises i figur 5.

Figur 5: Realisert opperasjonsforsterker

4 Konklusjon

5 Takk

Referanser

- $[1]\,$ L. Lundheim, Design prosjekt~6, Institutt for elektronisk systemdesign NTNU 2023.
- [2] P. Horowitz, W. Hill, *The Art of Electronics*, Cambridge University Press, 3. utgave, 2016.

A Fullstendige utregninger