

2022학년도 3-2 기말고사 대비

DATE NAME GRADE

중급 10회

1. 그림과 같이 $\overline{BC} = 4\sqrt{6}$, $\angle B = 75^{\circ}$, $\angle C = 45^{\circ}$ 인 삼각형 모양의 땅이 있다고 할 때, 이 땅의 넓이는?

- ① $6\sqrt{3}+12$
- ② $6\sqrt{3} + 24$
- $3 8\sqrt{3}+12$

- $9 8\sqrt{3} + 24$
- ${f 2}$. 그림과 같이 $50\,{
 m m}$ 떨어진 두 지점 ${
 m A}$, ${
 m B}$ 에서 탑의 꼭대기 지점 ${
 m C}$ 를 올려다본 각의 크기가 각각 30° , 45° 일 때, 이 탑의 높이는?

- ① $20(1+\sqrt{3})$ m ② $25(1+\sqrt{3})$ m
- $30(1+\sqrt{3}) \text{ m}$

- $40(1+\sqrt{3}) \text{ m}$ $50(1+\sqrt{3}) \text{ m}$
- $oldsymbol{3}$. 그림과 같이 B 지점에서 D 지점까지의 거리가 $80\,\mathrm{m}$ 이고, A지점에서 건물의 꼭대기 $\mathbb C$ 지점을 올려다본 각이 50° , 건물의 $\mathbb Q$ 부분인 D 지점을 내려다본 각이 32° 일 때, 다음 중 이 건물의 높이를 구하는 식은?

- $80(\tan 50^{\circ} + \tan 32^{\circ})$
- $80(\tan 40^{\circ} + \tan 58^{\circ})$
- $80(\sin 50^{\circ} + \sin 32^{\circ})$
- $80(\tan 50^{\circ} + \cos 32^{\circ})$
- $80(\cos 50^{\circ} + \cos 32^{\circ})$

4. 그림과 같이 두 직각삼각형 ABC, DBC에 대하여 $\angle BAC = 60^{\circ}$, $\angle DBC = 45^{\circ}$ 이고 $\overline{BC} = 8$ 일 때, \overline{BE} 의 길이는?

- ① $4(\sqrt{3}-1)$ ② $2(\sqrt{6}+\sqrt{2})$
- $3 4(\sqrt{3}+1)$
- $4 \quad 2(\sqrt{6} + \sqrt{3})$ $5 \quad 4(\sqrt{6} \sqrt{2})$
- 5. 다음 도형의 넓이를 구하면?

- ① $8\sqrt{3} \text{ cm}^2$
- ② $8\sqrt{6} \text{ cm}^2$
- $3 12\sqrt{3} \text{ cm}^2$
- $4 ext{ } 14\sqrt{3} ext{ cm}^2$
- ⑤ $18\sqrt{6} \text{ cm}^2$
- **6.** 그림과 같은 평행사변형 ABCD의 둘레의 길이가 $28\sqrt{2}$ 이고 $\angle\,\mathrm{B}=60^\circ$, $\overline{\mathrm{AB}}:\overline{\mathrm{BC}}=3:4$ 일 때, 평행사변형의 넓이는?

- ① $24\sqrt{2}$
- ② $24\sqrt{3}$
- $348\sqrt{3}$

- $42\sqrt{2}$
- ⑤ $60\sqrt{6}$

7. 다음 그림과 같은 $\square ABCD에서 \angle BAC = \angle DAC이고$, | AB = 20 cm, | AD = 15 cm이다. △ABC의 넓이가 160 cm²일 때, △ACD의 넓이는?

- \bigcirc 120 cm²
- ② 130 cm^2
- $3 140 \text{ cm}^2$
- $4 150 \text{ cm}^2$ ⑤ 155 cm^2
- 8. 다음 그림은 원 모양 종이의 일부가 찢어진 것이다. 이때 이 원의 반지름의 길이는?

- ① 7 cm ② $\frac{15}{2}$ cm ③ 8 cm ④ $\frac{17}{2}$ cm ⑤ 9 cm

9. 그림과 같이 중심이 같은 두 원에서 작은 원에 접하는 큰 원의 현 AB의 길이가 20일 때, 색칠한 부분의 넓이를 구하면?

- \bigcirc 100π
- 200π
- 300π
- 400π
- ⑤ 500π

10. 그림과 같이 $\angle C = \angle D = 90^{\circ}$ 인 사다리꼴 ABCD가 반지름의 길이가 $4 \, \mathrm{cm}$ 인 원 O에 외접하고 있다. $\overline{\mathrm{AB}} = 10 \, \mathrm{cm}$ 일 때 □ABCD의 넓이는?

- \bigcirc 36 cm² $4 mtext{72 cm}^2$
- $2 ext{ } 36\sqrt{2} ext{ cm}^2$
- $36\sqrt{3}$ cm² ⑤ $72\sqrt{2} \text{ cm}^2$

11. 그림과 같이 한 변의 길이가 12 cm인 정사각형 ABCD의 변 BC를 지름으로 하는 반원 O가 있다. 선분 AE는 반원 O의 접선이고 점 F는 반원 O의 접점일 때, 선분 AE의 길이는?

① 10 cm

④ 15 cm

- ② 12 cm
- ⑤ 16 cm

③ 14 cm

12. 그림과 같이 \overline{AB} 는 원 O의 지름이고, $\overline{AB}=8\,\mathrm{cm}$, $\overline{CD}=6\,\mathrm{cm}$ 이며

- $(4-\sqrt{7})$ cm

- $(3-\sqrt{7})$ cm

13. 그림과 같이 \overline{AB} 는 반원 O의 지름이고 \overline{AD} , \overline{BC} , \overline{CD} 는 반원 O의 접선이다. $\overline{AD} = 6 \text{ cm}$, $\overline{BC} = 4 \text{ cm}$ 일 때, $\triangle DOC$ 의 넓이는?

- $\begin{array}{cc} \textcircled{1} & 5\sqrt{6} \ \text{cm}^2 \\ \textcircled{4} & 30\sqrt{6} \ \text{cm}^2 \end{array}$
- $2 10\sqrt{6} \text{ cm}^2$
- $5 ext{ } 40\sqrt{6} ext{ cm}^2$

14. 그림에서 \widehat{AB} 의 길이는 원 둘레의 길이의 $\frac{1}{9}$ 이고 $\widehat{AB}:\widehat{CD}=1:3$ 일 때 $\angle x$ 의 크기는?

- ① 75°
- ② 76°
- ③ 78°
- 4 80°
- ⑤ 82°

 $3 \quad 20\sqrt{6} \text{ cm}^2$

15. 그림에서 $\widehat{AD}=8$ cm, $\widehat{BC}=10$ cm이고 \widehat{AD} 의 길이가 원의 둘레의 길이의 $\frac{1}{3}$ 배일 때, \angle BPC의 크기는?

- ① 130°
- ② 135°
- ③ 140°
- 4 145°
- ⑤ 150°

16. 다음 그림에서 $\angle P = 30^{\circ}$, $\angle ABC = 17^{\circ}$ 일 때, $\angle x$ 의 크기는?

- ① 63°
- $② 64^{\circ}$
- 365°
- 466°
- ⑤ 67°

17. 그림의 반지름의 길이가 5 cm 인 원 O 위에 있는 점 A, B, P에 대하여 호 AB의 길이가 $\frac{10}{9}\pi\,\mathrm{cm}$ 이다. 이때 $\angle\,\mathrm{APB}$ 의 크기는?

- ① 20°
- ② 25°
- 30°
- 435°
- \odot 40°

18. 그림의 원 O에서 $\widehat{PA}:\widehat{PB}=1:2$, $\angle AOB=234^{\circ}$ 일 때 ∠ABP의 크기는?

- ① 15°
- ② 16°
- ③ 18°
- 4 20°
- ⑤ 21°

19. 그림과 같이 원 모양의 공연장에 가로의 길이가 $18 \,\mathrm{m}$ 인 무대가 있다. 점 P 에서 공연장 무대의 양 끝을 바라본 각의 크기가 30° 일 때, 이 공연장의 지름의 길이는?

- ① 18 m
 - ② 24 m
- ③ 30 m
- ④ 36 m
- ⑤ 40 m

20. 원 O에서 $\widehat{AB} = \widehat{BC}$ 이고 $\angle ABC = 140^{\circ}$ 일 때 $\angle ADB$ 의 크기는?

- ① 16°
- ② 17°
- ③ 18°
- 4 19°
- ⑤ 20°

 $\mathbf{21}$. 그림에서 직선 ST가 두 원의 공통접선이고 접점 P를 지나는 두 직선이 두 원과 각각 점 A, B, C, D에서 만난다.

- $\angle CAP = 55^{\circ}$, $\angle BDP = 60^{\circ}$ 일 때 $\angle BPD$ 의 크기는?
- ① 40°
- ② 45°
- ③ 50°
- 4 55°
- ⑤ 65°

22. 그림과 같은 원 O에서 지름 BD의 길이가 12 cm이고, 원 O에 내접하는 삼각형 ACD에서 $\angle CAD = 60^{\circ}$ 일 때 \overline{CD} 의 길이는?

- ① 6 cm
 - ② 8 cm
- ③ $6\sqrt{2}$ cm ④ $6\sqrt{3}$ cm ⑤ 10 cm

23. 다음 중 네 점 A, B, C, D가 한 원 위에 있는 것은? (정답 2개)

24. 다음 그림에서 ∠ADC=33°일 때 ∠ABD의 크기는?

- ① 87°
- ② 75°
- ③ 67°

서술형 주관식

25. 그림과 같이 지면 위의 한 지점 D로부터 1 km 상공의 C 지점까지 수직으로 올라간 드론을 지면 위의 두 지점 A, B에서 올려다본 각의 크기가 각각 a° , b° 이었다.

두 지점 A, B 사이의 거리를 $\tan a^{\circ}$, $\tan b^{\circ}$ 를 이용하여 나타내어라.

26. 그림에서 \overline{CP} , \overline{CQ} , \overline{AB} 는 각각 반지름이 8인 원 O의 접선이고 세 점 P, R, Q는 각각 접점이며 $\overline{OC}=17$ 이다.

다음의 각 물음에 답하여라.

- (1) <u>PC</u>의 길이를 구하여라.
- (2) △ABC의 둘레의 길이를 구하여라.

27. 직선 AT는 점 A를 접점으로 하는 원 ○의 접선이고, ∠ABC=30°일 때, 다음의 각 물음에 답하여라.

- (1) ∠BAT의 크기를 구하여라.
- (2) △ABT는 어떤 삼각형인지 말하여라.

- 1) ④
- 2) ②
- 3) ①
- 4) ⑤
- 5) ④
- 6) ③
- 7) ①
- 8) ②
- 9) ①
- 10) ④
- 11) ④
- 12) ③
- 13) ②
- 14) ④
- 15) ②
- 16) ②
- 17) ①
- 18) ⑤
- 19) ④
- 20) ⑤
- 21) ⑤
- 22) ④
- 23) ③, ⑤
- 24) ④
- 25) $\left(\frac{1}{\tan a^{\circ}} \frac{1}{\tan b^{\circ}}\right) \operatorname{kn}$
- 26) (1) 15 (2) 30
- 27) (1) 120° (2) 이등변삼각형