

CHURCHLANDS SENIOR HIGH SCHOOL MATHEMATICS SPECIALIST 3, 4 TEST ONE 2017

Calculator Section Chapters 1, 2,

Name	Time: 40 minutes
	Total: 36 marks

- 1. [5 marks:3,2]
- a) State the complex relationship represented by the shaded region.

b) Sketch the following regions in the complex plane.

$$\left\{z: -\frac{\pi}{2} < arg(z) \le \frac{3\pi}{4}\right\}$$

2. [3 marks]

If $z = \sqrt{2} cis(\frac{-4\pi}{5})$, find $w = z^9$ expressing your answer in exact polar form.

3. [6 marks]

Find the 4 fourth roots of -4 in the form $z=rcis\theta$ where $r \ge 0$ and $-\pi < \theta \le \pi$. You need to show evidence of having used De Moivre's theorem to gain full marks.

a) State the exact value of $(1-\sqrt{3}i)^4$ in Cartesian form.

b) Hence, determine exact values for all the roots of $z^4 = -648 + 648 \sqrt{3}i$

c) Sketch all the solutions from your answer above on the Argand diagram below.

5.[3 marks]

On the argand diagram below, the 12 points p_1 , p_2 , p_3 , ... p_{12} are evenly spaced around the circle of radius 3.

Find the points which represent complex numbers such that $z^3 = -27i$

6.[3marks]

Consider $f(z)=z^3+9z^2+28z+20$, $z \in C$ (complex numbers). Given f(-1)=0, factorize f(z) over C.

7. [6marks:3,3]

a) Sketch in the complex plane the region defined by $1 \le \forall z - 8 - 6i \le 4$.

b) Determine in polar form $rcis\theta$, $-\pi < \theta \le \pi$, the complex number z that satisfies |z-8-6i|=4 and has the minimum argument.