Projekt bazy danych dla Lotniska

Przedmiot: Bazy danych

Prowadzący: dr inż. Arkadiusz Mirakowski

Autor: Jan Kieżun Grupa 6, informatyka praktyczna, Rok I

1. Opis bazy danych

W tym punkcie umieszczamy w formie opisu jakie jest przeznaczenie bazy danych, co baza danych umożliwia, jakich danych dostarcza itd.

Baza danych umożliwia generalne funkcjonowanie lotniska. Posiada informacje o pracownikach obiektu, pilotach samolotów, podróżujących, biletach, samolotach i ich właścicielach oraz odlotach i przylotach. Baza danych umożliwia kupienie biletu na konkretny wylot, itd.

2. Diagram związków encji - DBDesigner (min. 8 encji)

Rys.1. Diagram związków encji – DBDesigner4

3. Omówienie tabel (min. 8 tabel)

- 1) Tabela "Piloci" przechowuje informacje o pilotach- imie, nazwisko, pesel, idLicencji. Jest powiązana poprzez idPilot z odlotami i przylotami
- Tabela Pracownicy posiada informacje o pracownikach dane osobiste, wyplata, rola. Jest powiązana z odlotami i przylotami, bo uwzględniam stewardessy
- Tabela WłascicielSamoloty posiada dane o firmie lub osobie prywatnej, która jest właścicielem samolotu, naturalnie jest powiązana z tabelą Samoloty
- 4) Tabela Samoloty ma informacje o ich modelu, wadze i liczbie miejsc. Jest powiązana z odlotami i przylotami
- 5) Tabela Hangar przechowuje informacje o miejscu samolotu w hangarze
- 6) Tabela Klient posiada podstawowe informacje i kliencie, czyli pesel, imie. nazwisko i numer telefonu

- 7) Tabela Bilety ściąga informacje o kliencie z tabeli Klient i o odlocie z tabeli Odloty. Cena uwzględniona jest w tabeli Odloty
- 8) Tabela Odloty posiada informacje o czasie odloty, z jakiej strefy odleci samolot, miejsce docelowe oraz uproszczony model ceny(bilet jest ma cenę niezależną od klasy). Bierze też informacje o samolocie, pilocie, i reszcie załogi z reszty tabel
- 9) Tabela Przyloty jest bardzo podobna do tabeli Odloty. Różni się zaledwie kolumną "cena"

Arial,11

4. Definicje tabel

W tym punkcie umieszczamy definicje wszystkich encji wykorzystanych w projekcie, zgodnie z poniższym wzorem:

Piloci

nazwa atrybutu	typ atrybutu	inne cechy atrybutu
idPilot	int	PK
PESEL	VARCHAR(20)	
imie	VARCHAR(40)	
nazwisko	VARCHAR(40)	
idLicencji	VARCHAR(40)	

Pracownicy

nazwa atrybutu	typ atrybutu	inne cechy atrybutu
idPracownik	int	PK
PESEL	VARCHAR(20)	
imie	VARCHAR(40)	
nazwisko	VARCHAR(40)	
rola	VARCHAR(40)	
wyplataBrutto	FLOAT	

WlascicielSamolotu

nazwa atrybutu	typ atrybutu	inne cechy atrybutu
idWlasciciel	int	PK
rodzajWlasciciela	VARCHAR(10)	
nazwaFirmy	VARCHAR(40)	
imie	VARCHAR(40)	
nazwisko	VARCHAR(40)	

Klienci

nazwa atrybutu	typ atrybutu	inne cechy atrybutu
idKlient	int	PK
PESEL	VARCHAR(20)	
imie	VARCHAR(40)	
nazwisko	VARCHAR(40)	
nrTelefonu	VARCHAR(20)	

Samoloty

nazwa atrybutu	typ atrybutu	inne cechy atrybutu
idSamolot	int	PK
idWlasciciela	INTEGER	FK
liczbaMiejsc	INTEGER	
waga	FLOAT	
model	VARCHAR(40)	

Hangar

nazwa atrybutu	typ atrybutu	inne cechy atrybutu
idSamolot	int	PK
miejsce	VARCHAR(20)	

Odloty

nazwa atrybutu	typ atrybutu	inne cechy atrybutu
idOdlot	int	PK
czas	DATETIME	
idSamolot	INTEGER	FK
idPilot	INTEGER	FK
idPracownik	INTEGER	FK
strefa	VARCHAR(10)	
dokad	VARCHAR(40)	
cena	FLOAT	

Przyloty

<u> </u>		
nazwa atrybutu	typ atrybutu	inne cechy atrybutu
idPrzylot	int	PK
czas	DATETIME	
idSamolot	INTEGER	FK
idPilot	INTEGER	FK
idPracownik	INTEGER	FK
strefa	VARCHAR(10)	
skad	VARCHAR(40)	

Bilety

nazwa atrybutu	typ atrybutu	inne cechy atrybutu
idBilet	int	PK
idKlient	INTEGER	FK
idOdlot	INTEGER	FK
klasa	INTEGER	

5. Relacje bazodanowe

W tym punkcie umieszczamy kody źródłowe T-SQL związane z utworzeniem wszystkich relacji w bazie danych na podstawie diagramu encji z p. 2 według poniższego wzoru:

Relacja 1 – 1:n – Piloci – Przyloty

```
add CONSTRAINT FK_Piloci_idPilot foreign key (idPilot)
references Piloci_(idPilot)
```

Relacja 2 - 1:n - Piloci - Odloty

Alter table Odloty add CONSTRAINT FK_Piloci_idPilot foreign key (idPilot) references Piloci (idPilot)

Relacja 3 - 1:n - WlascicielSamolotu - Samoloty

Alter table Samoloty add CONSTRAINT FK_WlascicielSamolotu_idWlasciciel foreign key (idWlasciciel) references WlascicielSamolotu (idWlasciciel)

Relacja 4 – 1:n – Samoloty – Przyloty

Alter table Przyloty add CONSTRAINT FK_Samoloty_idSamolot foreign key (idSamolot) references Samoloty (idSamolot)

Relacja 5 - 1:n - Samoloty - Odloty

Alter table Odloty add CONSTRAINT FK_Samoloty_idSamolot foreign key (idSamolot) references Samoloty (idSamolot)

Relacja 6 - 1:n - Pracownicy - Przyloty

Alter table Przyloty add CONSTRAINT FK_Pracownicy_idPracownik foreign key (idPracownik) references Pracownicy (idPracownik)

Relacja 7 - 1:n - Pracownicy - Odloty

Alter table Odloty add CONSTRAINT FK_Pracownicy_idPracownik foreign key (idPracownik) references Pracownicy (idPracownik)

Relacja 8 - 1:1 - Hangar - Samoloty

Alter table Hangar add CONSTRAINT FK_Samoloty_idSamolot foreign key (idSamolot) references Samoloty (idSamolot)

Relacja 9 - 1:n -Klienci- Bilety

Alter table Bilety add CONSTRAINT FK_Klienci_idKlient foreign key (idKlient) references Kliency (idKlient)

Relacja 10 - 1:n - Odloty - Bilety

Alter table Bilety add CONSTRAINT FK_Odloty_idOdlot foreign key (idOdlot) references Odloty(idOdlot)

Termin oddania – 14 blok (przedostatni)

Sposób oddania: droga mailowa, format PDF.