# Nondeterministic Finite Automata (NFA) Help Automata (NFA) Automata (NFA)

CS 536

Add WeChat powcoder

### **Previous Lecture**

Scanner: converts respectively by the sequence of token bowcoder.com

Scanner implemented using FSMs

FSM: DFA or NFA

### This Lecture

NFAs from a formal perspective https://powcoder.com

Theorem: NFAs and DFAs are equivalent

Regular languages and Regular expressions

## Creating a Scanner



## NFAs, formally



transition function  $\delta: Q \times \Sigma \to 2^Q$ 

|    | 0    | 1           |
|----|------|-------------|
| s1 | {s1} | {s1,<br>s2} |
|    |      | s2}         |
| s2 |      |             |

### NFA

To check if string is in *L(M)* of NFA *M*, simulate **set** of **choices** it could make



Consumes all input (without getting stuck)

Ends in one of the final states

### NFA and DFA are Equivalent

Two automata M and M' are equivalent iff L(M) = L(M')

Lemmas to be provenent Project Exam Help

https://powcoder.com

Lemma 1: Given a DEAMCIONE can construct an NFA M' that recognizes the same language as M, i.e., L(M') = L(M)

Lemma 2: Given an NFA M, one can construct a DFA M' that recognizes the same language as M, i.e., L(M') = L(M)

## Proving Lemma 2

Lemma 2: Given an NFA M, one can construct a DFA M' that recognizes the same language as M, i.e., L(M') = L(M)

Assignment Project Exam Help

https://powcoder.com
Part 1: Given an NFA M without ε-transitions, one can construct a DFA M' that recognizes the same language as M

**Part 2**: Given an NFA M with  $\epsilon$ -transitions, one can construct an NFA M' without  $\epsilon$ -transitions that recognizes the same language as M



# NFA w/o $\epsilon$ -Transitions to DFA

NFA M to DFAM' Assignment Project Exam Help

Intuition: Use a single state in M' to simulate sets of states in M

M has |Q| states

M' can have only up to  $2^{|Q|}$  states

# NFA w/o ε-Transitions to DFA



https://powcoder.com

| Ac | ld WeChat powcode<br>X | r   |
|----|------------------------|-----|
| A  | {A, B}                 | {A} |
| В  | {C}                    | {C} |
| С  | {D}                    | {D} |
| D  | {}                     | {}  |



**Build** new DFA M' where  $Q' = 2^Q$ 



To build DFA: Add an edge from state S on character c to state S' if S' represents the set of all states that a state in S could possibly transition to on input c

## Proving Lemma 2

Lemma 2: Given an NFA M, one can construct a DFA M' that recognizes the same language as M, i.e., L(M') = L(M) https://powcoder.com

Part 1: Given an NFA M without E-transitions, one can construct a DFA M' that recognizes the same language as M

Part 2: Given an NFA M with  $\epsilon$ -transitions, one can construct an NFA M' without  $\epsilon$ -transitions that recognizes the same language as M

### ε-transitions

**E.g.**: x<sup>n</sup>, where n is even **or** divisible by 3



### Eliminating ε-transitions

We want to construct ε-free NFA M' that is equivalent to M

#### **Definition: Epsilon Closure**

eclose(s) = set of all states reachable from s using zerosprimore epsilon transitions



https://powcoder.com

| A | dd WeC | hat powcoder eclose |
|---|--------|---------------------|
|   | Р      | {P, Q, R}           |
|   | Q      | {Q}                 |
|   | R      | {R}                 |
|   | Q1     | {Q1}                |
|   | R1     | {R1}                |
|   | R2     | {R2}                |



## Proving Lemma 2

Lemma 2: Given an NFA M, one can construct a DFA M' that recognizes the same language as M, i.e., L(M') = L(M) https://powcoder.com

Part 1: Given an NFA M without E-transitions, one can construct a DFA M' that recognizes the same language as M

Part 2: Given an NFA M with  $\epsilon$ -transitions, one can construct an NFA M' without  $\epsilon$ -transitions that recognizes the same language as M

### Summary of FSMs

DFAs and NFAs are equivalent Help

An NFA can be converted into a DFA, which can be Add WeChat powcoder implemented via the table-driven approach

 $\epsilon$ -transitions do not add expressiveness to NFAs Algorithm to remove  $\epsilon$ -transitions

# Regular Languages and Regular Expressions

Add WeChat powcoder

### Regular Language

Any language recognized by an FSM is a regular language removed by an FSM is a

```
Examples: https://powcoder.com
```

- Single-line comments beginning with //
- Integer literals
- {ε, ab, abab, ababab, abababab, ....}
- C/C++ identifiers

# Regular Expression

A pattern that defines a regular language

Regular language: set of (potentially infinite) strings https://powcoder.com

Regular expression: represents a set of (potentially infinite) strings by a single pattern

 $\{\varepsilon, ab, abab, ababab, ababab, ababab, ....\} \Leftrightarrow (ab)^*$ 

### Why do we need them?

Each token in a programming language can be defined by a regular language, Help

Scanner-generator input: one regular expression for each token to be recognized by scanner

Regular expressions are inputs to a scanner generator

## Regular Expression

```
operands: single characters, epsilon operators: from how/rto high oprecedence "or": a | b Add WeChat powcoder "followed by": a.b, ab "Kleene star": a* (0 or more a-s)
```

## Regular Expression

#### Conventions:

```
aa is a . a Assignment Project Exam Help a+is aa^* https://powcoder.com letter is a|b|c|d|...|y|z|A|B|We|Zhat powcoder digit is 0|1|2|...|9 not(x) all characters except x . is any character parentheses for grouping, e.g., (ab)^* is \{\epsilon, ab, abab, abab, abab, abab, abab, abab
```

```
Precedence: * > . > |
digit | letter letter
   (digit) | (letter, letter)
Assignment Project Exam Help
   one digit, or two the tressoder.com
digit | letter letter* Add WeChat powcoder
   (digit) | (letter . (letter)*)
   one digit, or one or more letters
   digit | letter+
```

```
Hex strings start with 0x or 0X Assignment Project Exam Help followed by one or more hexaple pipo at digits componently end with I or L Add WeChat powcoder O(x|X)hexdigit+(L|I|\epsilon) where hexdigit = digit|a|b|c|d|e|f|A|...|F
```

```
Integer literals: sequence of digits preceded by optional +/-

Assignment Project Exam Help

https://powcoder.com
```

Example: -543<sub>Add</sub> 1/5<sub>Ch</sub>QQQ<sub>coder</sub>

Regular expression  $(+|-|\epsilon)$  digit+

```
Single-line comments Project Exam Help
```

Example: // thistis//2000/mment

Add WeChat powcoder

Regular expression
//(not('\n'))\*'\n'

C/C++ identifiers: sequence of letters/digits/ underscores; cannot beginewith a digit; cannot end with an underscore coder.com

Example: a, \_bbb7, cs\_536er

### Recap

Regular Languages

Languages recognized/defined by FSMs
Assignment Project Exam Help

https://powcoder.com

Regular Expression Add WeChat powcoder

Single-pattern representations of regular languages

Used for defining tokens in a scanner generator

## Creating a Scanner

