《计算机系统》 **浮点数**

湖南大学

《计算机系统》课程教学组

内容提要

C语言中的浮点数

二进制小数

●思考: 1011.1012?

• 表示方法

● 答案:

分子为小数部分二进制的值。即:

 $.101_2 = 5/8 = 0.625$

二进制小数举例

十进制	二进制
5 3/4	101.11 ₂
2 7/8	10.111 ₂
1 13/16	1.1101 ₂

• 观察

- 小数点右移一位——乘2
- 小数点左移一位——除2
- 形如 0.111111...₂ 表示刚好小于1.0的数
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - 也可以简单的用 1.0 ε来表示

二进制小数 表示范围

- ●限制
 - •只能精确表示诸如 x/2^k的数
 - 其他的值只能近似表示

Value	Representation
1/3	0.0101010101[01]2
1/5	0.001100110011[0011]2
1/10	0.0001100110011[0011]2

内容提要

C语言中的浮点数

IEEE 浮点数

●IEEE 754标准

- ●于1985建立(之前由每个计算机制造商设计自己的规则)
- 支持所有主流的CPU

面向数字运算的精确性

- 支持舍入,溢出等操作
- ●定义在一组小而一致的规则上——相当优雅,容易理解

IEEE 浮点数

•数学形式:

$$(-1)^{s} M 2^{E}$$

- ●符号位s 确定了这个数是负数还是正数,数值0的符号位特殊处理
- ●尾数M(Significand)是一个二进制小数,通常规定在 范围 [1.0,2.0)中.
- ●阶码 E (Exponent)表示2的幂

s	ехр	frac
符号	阶码	尾数

浮点数类型

• 单精度: 32 bits

•双精度: 64 bits

S	ехр	frac
1	11-bits	52-bits

●扩展精度: 80 bits (Intel only)

S	ехр	frac
1	15-bits	63 or 64-bits

类别1:规格化值

- 判断条件: exp ≠ 000...0 且 exp ≠ 111...1,即:阶码不为全0或全1
- 阶码字段被解释为以偏置(biased)形式表示的有符号整数:

$$E = Exp - Bias$$

- Exp: 无符号数 exp
- Bias = 2^{k-1} 1, 其中k为<mark>阶码位数</mark>(单精度:127, 双精度:1023)
- ●尾数: M = (1.xxx...x)₂
 - xxx...x: frac的位表示
 - ●最小值 000...0 (M = 1.0)
 - •最大值:111...1 (M = 2.0 ε)

规格化值示例

- <u>值</u>: Float F = 15213.0;
 - $15213_{10} = 11101101101101_2 = 1.1101101101101_2 \times 2^{13}$
- ●尾数
 - M = 1.1101101101101_2
- 阶码
 - E = 13
 - *Bias* = 127
 - Exp = 140 = **10001100**₂
- Result:

1101101101101000000000

符号

阶码

尾数

类别2:非规格化值

- ●判断条件: exp = 000...0 即:阶码为全0
- 阶码:E = 1 Bias (为了非规格化与规格化值之间的平滑过渡)
- ●尾数: M = (0.xxx...x)₂ (xxx...x: frac的位表示)

- ●例如:
 - ●exp = 000...0, frac = 000...0, 此时值为 "0" ,符号位决定 "+0"或者 "-0"
 - Exp = 000...0, frac ≠ 000...0, 此时为非常接近0.0的数

类别3:特殊值

●判断条件: exp = 111...1 , 即:阶码为全1

- ●情况1: exp = 111...1, frac = 000...0,
 - ●表示的是无穷大,由符号位决定是"+∞"还是"-∞"
 - ●可用来表示溢出结果,例如 1.0/+0.0 = +∞; 1.0/-0.0 = -∞

- ●情况2: exp = 111...1, frac ≠ 000...0,
 - ●表示的是<mark>不是一个数(NaN)</mark>,用来表示一些无法表示的数,例如:

$$sqrt(-1)$$
, $\infty-\infty$, $\infty*\infty$

浮点数表示范围

内容提要

C语言中的浮点数

浮点数示例

- ●8-位浮点数表示
 - 一位符号位
 - 四位阶码位
 - 三位尾数位

- IEEE规范
 - 规格化数, 非规格化数
 - 能够表示 0, NaN, 无穷

浮点数示例 s exp frac Ε Value 0 0 0000 000 -6 0 0000 001 -6 1/8*1/64 = 1/512最小的非规格化数(接近0) 0 0000 010 -6 **2/8*1/64 = 2/512** 非规格化数 0 0000 110 -6 6/8*1/64 = 6/512 0 0000 111 -6 **7/8*1/64 = 7/512** 最大的非规格化数 0 0001 000 -6 8/8*1/64 = 8/512 最小的规格化数 0 0001 001 -6 9/8*1/64 = 9/512 0 0110 110 -1 **14/8*1/2 = 14/16** 从下最靠近1 0 0110 111 -1 **15/8*1/2 = 15/16** 0 0111 000 0 8/8*1 = 1 0 0 0111 001 9/8*1 = 9/8从上最靠近1 0 0 0111 010 10/8*1 = 10/8 规格化数 0 1110 110 14/8*128 = 224 0 1110 111 **15/8*128 = 240** 最大的规格化数 0 1111 000 inf n/a

取值分布

•6 位浮点数表示

- •e = 3 3位阶码
- •f = 2 2位尾数
- Bias 3

取值分布(局部放大)

•6 位浮点数表示

- •e = 3 3位阶码
- •f = 2 2位尾数
- Bias 3

-1 -0.5 0 0.5

◆ Denormalized ▲ Normalized ■ Infinity

1 000 00

1 000 01

1 000 10

1 000 11

浮点数属性

描述	阶码	尾数	数值
0	000	0000	0.0
最小的非规格化正数 Single ≈ 1.4 x 10 ⁻⁴⁵ Double ≈ 4.9 x 10 ⁻³²⁴	000	0001	2-{23,52} x 2-{126,1022}
最大的非规格化正数 Single ≈ 1.18 x 10 ⁻³⁸ Double ≈ 2.2 x 10 ⁻³⁰⁸	0000	1111	(1.0 – ε) x 2 ^{- {126,1022}}
最小的规格化正数 正好比最大的非规格化正数大1	0001	0000	1.0 x 2 ^{-{126,1022}}
1	0111	0000	1.0
最大的规格化正数 Single ≈ 3.4 x 10 ³⁸ Double ≈ 1.8 x 10 ³⁰⁸	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$

内容提要

C语言中的浮点数

浮点运算思路

•
$$x + f y = Round(x + y)$$

•
$$x \times f y = Round(x \times y)$$

- 基本思路
 - 首先计算精确结果
 - 然后通过"舍入"来得到近似结果

浮点数的舍入

• 舍入方式()

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	-\$1
Round down $(-\infty)$	\$1	\$1	\$1	\$2	-\$2
Round up (+∞)	\$2	\$2	\$2	\$3	-\$1
Nearest Even (默认)	\$1	\$2	\$2	\$2	- \$2

●各种模式的优点是什么?

向偶数舍入能找到最接近的匹配值;其它三种用于计算上界和下界。

向偶数舍入

- 缺省的舍入方案
 - 其他的方案都会产生统计偏差
- 也可以舍入到其他数位
 - 中间值舍入到偶数
 - 例如:舍入到百分位
 - 1.2349999
 1.23
 (Less than half way)
 - 1.2350001
 1.24 (Greater than half way)
 - 1.2350000 1.24 (Half way—round up)
 - 1.2450000 1.24 (Half way—round down)

二进制舍入

- ●二进制数舍入
 - "偶数" 是指 0
 - "中间值" 是指舍入位的右边正好是 100...2的形式

• 例如:

舍入到 1/4 (小数点右边两位)

Value	Binary	Rounded	Action	
	Rounded	Value		
2 3/32	10.00011 2	10.002	(<1/2—down)	2
2 3/16	10.00110 ²	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.10100 ²	10.10 ²	(1/2—down)	2 1/2

浮点数乘法

$$(-1)^{s1}$$
 M1 2^{E1} x $(-1)^{s2}$ M2 2^{E2}

- ●精确结果: (-1)^s M 2^E
 - ●符号位 s: s1 ^ s2
 - ●尾数M: M1 x M2
 - ●阶码 E: E1 + E2
- ●调整
 - 如果M ≥ 2, M 右移一位, E = E+1
 - ●如果 E超出表示范围,溢出
 - 将M 舍入到 frac 的位数范围

•① 对阶,小阶向大阶对齐

•② 尾数进行加法运算

•③ 结果规格化并进行舍入处理

●④ 判断溢出

•① 对阶,小阶向大阶对齐

- 两个浮点数进行加减运算时,首先要使两个数的阶码相同,即小数点的位置 对齐。若两个数的阶码相同,表示小数点的位置是对齐的,就可以对尾数进 行加减运算。反之,若两个数的阶码不相同,表示小数点的位置没有对齐, 此时必须使两个数的阶码相同,这个过程称为对阶。
- ・将原来阶码小的数的尾数右移|△E|位,其阶码值加上|△E|,即每右移一次尾数要使阶码加1,则该浮点数的值不变(但精度变差了)

•② 尾数进行加法运算

•实现尾数的加运算,对两个完成对阶后的浮点数执行求和操作。

- •③ 结果规格化并进行舍入处理
 - 如果尾数不是规格化数,则需要进行规格化处理,并进行舍入。
- ④ 判断溢出
 - 根据阶码来判断是否溢出

浮点数加法 的数学特性

- •与阿贝尔群比较
 - ●有交换性
 - •没有结合性(由于舍入)
 - \bullet 3.14+1e10 1e10 = 0 vs. 3.14+(1e10 1e10) = 3.14
- ●単调性
 - $a \ge b \Rightarrow a+c \ge b+c$?
 - Except for infinities & NaNs

浮点数乘法 的数学特性

- ●可交换性
 - •a*b = b*a
- ●不可结合性
 - •a*b*c ≠ a*(b*c)
- 不具备分配性
 - •a*(b+c) ≠ a*b + a*c
- ●单调性
 - $a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c$ (Except for infinities & NaNs)

内容提要

C语言中的浮点数

C语言中的 浮点数

- ●C 提供了两种浮点数表示方式
 - float single precision
 - double double precision

●转换

- 在 int, float, and double 的转换过程中位级表示会改变
- double/float → int
 - 值向零舍入,对于无法表示或超出范围的值没有进行定义
- int → double
 - 能够保留精确值
- int → float
 - 数字不会溢出,但可能被舍入

浮点数谜题

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

 x == (int)(float) x

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN

•
$$d < 0.0$$
 \Rightarrow $((d*2) < 0.0)$

•
$$d > f$$
 \Rightarrow $-f > -d$

浮点数总结

●IEEE浮点数采用 M x 2^E的形式表示(近似表示)

●提供了表示一些特殊值(正负无穷,NaN)的方法

•只有有限的范围和精度

不遵守普遍的算术属性(例如结合性)

下一节:

程序的机器级表示:基础

湖南大学

《计算机系统》课程教学组

