Билет 34

Автор $1,, AвторN$
21 июня 2020 г.

Содержани	\mathbf{e}
-----------	--------------

0.1	Билет 34: Эквивалентные	е определения нормы	оператора	. 1

Билет 34 СОДЕРЖАНИЕ

0.1. Билет 34: Эквивалентные определения нормы оператора.

Теорема 0.1.

Пусть $\langle X,\|\cdot\|_X \rangle,\ \langle Y,\|\cdot\|_Y \rangle$ - нормированные пространства, $A:X\mapsto Y$ - линейный оператор. Следующие значения равны:

$$N_1 \|A\| = \sup_{\|x\|_Y \le 1} \|Ax\|_Y$$

$$N_2 \sup_{\|x\|_X < 1} \|Ax\|_Y$$

$$N_3 \sup_{\|x\|_X=1} \|Ax\|_Y$$

$$N_4 \sup_{x \neq 0} \frac{\|Ax\|_Y}{\|x\|_X}$$

$$N_5 \inf_{c>0} \{ \forall x \in X \|Ax\|_Y \leqslant c \|x\|_X \}$$

Доказательство.

Будем доказывать следующие факты:

- 1. $N_1 \ge N_2$
- 2. $N_1 \leq N_2$
- 3. $N_1 \ge N_3$
- 4. $N_3 = N_4$
- 5. $N_4 \ge N_5$
- 6. $N_4 \leq N_5$
- 7. $N_1 \leq N_5$

Лемма $(N_1 \geqslant N_2)$.

Заметим, что N_2 это супремум по подмножеству элементов участвующих в супрермуме N_1 , значит $N_1\geqslant N_2$.

Лемма $(N_1 \leqslant N_2)$.

Возьмём $\varepsilon > 0$

$$\begin{split} \|x\|_X \leqslant 1 \implies \left\| \frac{x}{1+\varepsilon} \right\|_X < 1 \\ \implies \left\| A \left(\frac{x}{1+\varepsilon} \right) \right\|_Y \leqslant N_2 \\ \implies \frac{1}{1+\varepsilon} \left\| Ax \right\|_Y \leqslant N_2 \\ \implies \|Ax\|_Y \leqslant (1+\varepsilon)N_2 \\ \implies N_1 \leqslant (1+\varepsilon)N_2 \text{ так-как верно для произвольного } x \text{ c } \|x\|_X \leqslant 1 \\ \implies N_1 \leqslant N_2 \text{ предельный переход при } \varepsilon \to 0 \end{split}$$

Билет 34 СОДЕРЖАНИЕ

 Π емма $(N_1 \geqslant N_3)$.

Заметим, что N_3 это супремум по подмножеству элементов участвующих в супрермуме N_1 , значит $N_1\geqslant N_3$.

Лемма $(N_3 = N_4)$.

$$\frac{\|Ax\|_{Y}}{\|x\|_{X}} = \left\| \frac{Ax}{\|x\|_{X}} \right\|_{Y} = \left\| A\left(\frac{x}{\|x\|_{X}}\right) \right\|_{Y} \implies N_{3} = N_{4}.$$

Лемма $(N_4 \geqslant N_5)$.

$$||Ax||_Y \leqslant N_4 ||x||_X \implies \frac{||Ax||_Y}{||x||_X} \leqslant N_4 \implies N_5 \leqslant N_4.$$

 Π емма $(N_4 \leqslant N_5)$.

Предположим $N_5 < N_4$, тогда $\frac{\|Ax\|_Y}{\|x\|_X} \leqslant N_5 < N_4$, что противоречит тому, что N_4 - наименьшая верхня грань. Значит, $N_5 \geqslant N_4$.

Лемма $(N_1 \leqslant N_5)$.

Пусть $||x||_X \leqslant 1$.

$$\|Ax\|_Y\leqslant N_5\,\|x\|_X\implies \|Ax\|_Y\leqslant N_5$$
 $\implies N_1\leqslant N_5$ так-как верно для любого x с $\|x\|_X\leqslant 1$

Следствие.

- 1. $||Ax|| \leq ||A|| \, ||x||$
- 2. $||BA|| \leq ||B|| \, ||A||$

Доказательство.

$$\begin{split} \sup_{\|x\| \leqslant 1} \|B(A(x))\| &\leqslant \sup_{\|y\| \leqslant \|A\|} \|By\| \\ &= \sup_{\|y\| \leqslant \|A\|} \left\| \|A\| \, B\left(\frac{y}{\|A\|}\right) \right\| \\ &= \|A\| \sup_{\|y\| \leqslant 1} \|By\| \\ &= \|A\| \, \|B\| \end{split}$$