

A primary survey

By: Nima Pourdamghani

Advisor: Dr. Hamid Reza Rabiee

Outline

- Human Pose Estimation: The Problem
 - Applications
 - Different Approaches
 - Single Camera: Input Features
 - Silhouettes
 - Output Models
 - Performance Measures
- Challenges
 - Depth Ambiguity
 - Other Challenges
- Previous Works
 - Model Based Methods
 - Learning Based Methods
 - Methods Which Reduce Dimensionality
 - Main Surveys
 - Main Labs
- Data Bases
 - Existing Data Bases
 - Problem of ground truth
- My Approach

Applications

- It's the problem of inferring a model of human body's state from input data
- Computer Games Industry
 - Realistic animations
 - Human Computer Interaction
- Sports Science
 - Visually analysis the movements
- Physiotherapy
 - Gait analysis
- Video surveillance
 - Motion tracking

Different Approaches

De-facto Approaches

- Easier to infer the pose
- Expensive
- Not available in real problems

Vision Based

- Single Camera
- Multi Camera
- Widely used

Single Camera: Input Features

- Most important: silhouette
 - Simple and reliable extraction
 - Assuming robust background
 - Insensitive to irrelevant surface attributes
 - Preserves most of the information
 - Edges
 - Shape contexts
 - Local histogram of edges
- Edges
 - Combination of edge and silhouette
- Motions
 - Direct use: HMM, Particle Filters
 - Needs initialization
 - Use into learning, combination with other features
- Colors
- Morphological skeleton
- Center of limbs
- ...

Output Models

- **❖ THERE EXISTS NO STANDARD ⊗**
 - Different applications
- * Kinematic tree model (mostly used)
 - How many joints?
 - How many degree of freedom per joint? (max 3)
 - Dimensionality changes.
- Volumetric models
 - Represent variations in body size
- * Each model has its own variations

Performance Measures

- mean (over all angels) Root Mean Square (RMS) absolute difference errors
 - $D(x,x') = \frac{1}{m} \sum_{i=1}^{m} |((x_i x_i' + 180) \mod 360) 180|$
- We don't always have the ground truth
- different applications need different output models
 - No standard
 - Most Comparisons are subjective
 - Most papers didn't compare with any other method

Depth Ambiguity

- The problem is ill posed!
 - 3D world is projected into 2D
- Depth ambiguity is the main challenge
- Use multiple Cameras
- Combine other features
 - motion
 - Limbs' edges
 - Color

Other Challenges

- Self occlusion
- High input dimension
- High output dimension
- General image processing challenges
 - Motion blurs
 - Unconstrained lightening
 - These are usually ignored

Model Based Methods

- Not Learning Based!
 - Deals with individual frame/video
- Estimate directly from each frame
 - Has many possible solutions
 - Needs to know positions of each body part
- Solve an optimization problem
 - Forward rendering to predict the images
 - Solve over pose variables
 - Expensive
 - Need good initialization
 - Have many local minima
- ❖ [7] uses skin color to segment the body into limbs and combine color, shape and contour features for pose estimation (PAMI 2009)
- ❖ [8] enforces constant appearance and integrate appearance information besides edges to reliably find body segments. (PAMI 2007)

Learning Based Methods (Supervised)

- Little work exists
- Supervised methods
 - [4] learn a perceptron between image and model (ICCV 2000)
 - [5] uses KNN (ICCV 2003)
 - [6] uses RVM (Relevance Vector Machine an extension to SVM) and includes prev. frames to reduce ambiguity (PAMI 2006)
 - [9] combines silhouettes and internal edges and uses K-means (PAMI 2007)

Learning Based Methods (Semi-Supervised)

- * There are so few semi-supervised works
 - [2] (ICPR 2008) and [3] (ICML 2007) use Gaussian Process
 - [12,13] presented a new learning method, they learn GMM using semi-supervised techniques and tested the method on human pose estimation
 - [14] uses manifold regularization

Methods Which Reduce Dimensionality

- * Reduce data dimensionality prior to estimation
- ❖ [10] (CVPR 2004) Used LLE to Learn a nonlinear projection from input space to a low dimensional (3D) manifold space and another projection from manifold space to model space
 - Discuss more: eigenvectors of the Laplacian matrix are good basis for a nonlinear transformation, so graph based methods might implicitly do this work.
- *[11] (ICCV 2007) extends [10] for other activities than gait

Main Surveys

- * Most (almost all) surveys are on human motion tracking
- * Here are some good ones:
 - Hen YW, Paramesran R. "Single camera 3D human pose estimation: A Review of current techniques." In: 2009 International Conference for Technical Postgraduates (TECHPOS). IEEE; 2009:1-8.
 - Sminchisescu C. "3D Human Motion Analysis in Monocular Video Techniques and Challenges." COMPUTATIONAL IMAGING AND VISION. 2008;36:185.
 - Cited by 9
 - Poppe R. "Vision-based human motion analysis: An overview." Computer Vision and Image Understanding. 2007;108(1-2):4-18.
 - Cited by 115
 - Moeslund TB, Hilton A, Krüger V. "A survey of advances in vision-based human motion capture and analysis." Computer Vision and Image Understanding. 2006;104(2-3):90-126.
 - Cited bye 505
 - Moeslund T. "A Survey of Computer Vision-Based Human Motion Capture." Computer Vision and Image Understanding. 2001;81(3):231-268.
 - Cited bye 871

Main Labs

- * Most Labs work on human motion tracking or activity recognition
- CMU Graphics Lab (mocap)
 - CMU motion capture database
- * CMU, Entertainment Technology Center (ETC) Project
 - The Master Motion project is using an optical motion capture system and wireless VR to explore how virtual reality can be used to learn physical movement.
- University of Washington, Department of Computer Science & Engineering, motion capture lab
 - Its primary purpose is to advance current cutting-edge research in computer animation tools and techniques.
- Vision lab in Brown university
 - HumanEva

Existing Databases

- HumanEva (I & II)
 - From vision lab of Brown university
 - 7 calibrated video sequences
 - 4 subjects performing a 6 common actions
 - Contains training, validation and testing sets
- CMU Graphics Lab Motion Capture Database
 - For activity recognition
 - De-facto
 - Contains many activities
- HEDVIG KJELLSTRÖM Database
 - Walking straight, Walking in a circle
- Georgia Tech, GVU Center/College of Computing
 - Gait (walking) data
- There are others but...
 - HumanEva is the best
 - Hedvig 's is commonly used

Problem of Ground Truth

- Finding the ground truth for pose estimation is hard
- Most databases don't have training set (except for humaneva)
- * A trick: Use Poser
 - A software for creating realistic animations.
 - This way we will have clean silhouettes and precise training data
 - Some other works including [6] (PAMI 2006) have used poser.

My Approach

- Use silhouette plus some other feature to reduce ambiguity as input data
 - Options: prev. frames, internal edges, center of limbs
- Use a Kinematic tree model as output
- Use POSER or HumanEva as training data
- Use HumanEva or/and Some other dataset as test data
- Learn a regression function (probably using graph based methods) over training data
 - The work done by [10,11] proves the existence of a wellformed manifold over the data
- Compare to some method like [6]

Referrences

- [1] Hen YW, Paramesran R. Single camera 3D human pose estimation: A Review of current techniques. In: 2009 International Conference for Technical Postgraduates (TECHPOS). Ieee; 2009:1-8.
- [2] Zhao X, Ning H, Liu Y, Huang T. Discriminative estimation of 3D human pose using gaussian processes. In: 19th International Conference on Pattern Recognition, 2008. ICPR 2008. Ieee; 2008:1–4.
- * [3] Ek C, Torr P, Lawrence N. Gaussian process latent variable models for human pose estimation. In: *Proceedings of the 4th international conference on Machine learning for multimodal interaction*. Springer-Verlag; 2007:132–143.
- [4] Rosales R, Sclaroff S. Inferring body pose without tracking body parts. In: IEEE conference on Computer Vision and Pattern Recognition (cvpr).; 2000.
- * [5] Shakhnarovich G, Viola P, Darrell T. Fast pose estimation with parameter-sensitive hashing. In: *Proceedings Ninth IEEE International Conference on Computer Vision*. Ieee; 2003:750-757 vol.2.
- [6] Agarwal A, Triggs B, Rhone-Alpes I, Montbonnot F. Recovering 3D human pose from monocular images. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI). 2006;28(1):44–58.
- [7] Lee MW, Nevatia R. Human pose tracking in monocular sequence using multilevel structured models. IEEE Transactions on Pattern Analysis and Pattern Recognition(PAMI). 2009;31(1):27-38.
- * [8] 1. Ramanan D, Forsyth D, Zisserman A. Tracking people by learning their appearance. *IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)*. 2007;29:pp65-81.
- [9] 1. Sminchisescu C, Kanaujia A, Metaxas DN. BMA³E: Discriminative Density Propagation for Visual Tracking. *IEEE Transactions on Pattern Analysis and Pattern Recognition (PAMI)*. 2007;29(11):2030-2044.
- [10] Elgammal a. Inferring 3D body pose from silhouettes using activity manifold learning. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004. 2004:681-688.
- [11] Lee C, Elgammal A. Modeling View and Posture Manifolds for Tracking. 2007 IEEE 11th International Conference on Computer Vision. 2007:1-8.
- [12] 1. Navaratnam R, Fitzgibbon A, Cipolla R. Semisupervised learning of joint density models for human pose estimation. In: *Proc. British Machine Vision Conference BMVC.*; 2006:679-688.
- [13] 1. Navaratnam R, Fitzgibbon AW, Cipolla R. The Joint Manifold Model for Semi-supervised Multi-valued Regression. In: 2 07 IEEE 11th International Conference on Computer Vision. Ieee; 2007:1-8.
- [14] 1. Li Y, Jia K, Zhang G. Semi-Supervised Human Pose Estimation Piloted by Manifold Structure. In: 2009 International Conference on Information Engineering and Computer Science. Ieee; 2009:1-4.