Electrodinámica Clásica. Tarea # 1

Favio Vázquez*

Instituto de Ciencias Nucleares. Universidad Nacional Autónoma de México.

Problema 1. Problema 1.2 de Classical Electrodynamics (3ra ed) de Jackson [1].

La función delta de Dirac en tres dimensiones puede tomarse como el límite impropio mientras $\alpha \to 0$ de la función gaussiana

$$D(\alpha; x, y, z) = (2\pi)^{-3/2} \alpha^{-3} \exp \left[-\frac{1}{2a} (x^2 + y^2 + z^2) \right].$$

Considere un sistemas de coordenadas ortogonal general especificado por las superficies u = constante, v = constante, w = constante, con elementos de longitud du/U, dv/V, dw/W en las tres direcciones perpendiculares. Mostrar que

$$\delta(\mathbf{x} - \mathbf{x}') = \delta(u - u')\delta(v - v')\delta(w - w') \cdot UVW$$

considerando el límite de la gaussiana arriba. Note que mientras $\alpha \to 0$, sólo el elemento de longitud infinitesimal necesita ser usado para la distancia e entre los puntos en la exponencial.

Solución:

Problema 2. Problema 1.3 de Classical Electrodynamics (3ra ed) de Jackson [1].

Usando las funciones delta de Dirac en las coordenadas apropiadas, exprese las siguientes distribuciones de carga como las densidades de carga tridimensionales $\rho(\mathbf{b})$.

- (a) En coordenadas esféricas, una carga Q uniformemente distribuida sobre una concha esférica de radio R.
- (b) En coordenadas cilíndricas, una carga λ por unidad de longitud uniformemente distribuida sobre una superficie cilíndrica de radio b.
- (c) En coordenadas cilíndricas, una carga Q extendida uniformemente sobre un disco plano de grosor despreciable y radio R.
- (d) Lo mismo que en la parte (c), pero usando coordenadas esféricas.

Solución:

 $^{^*}$ Correo: favio.vazquezp@gmail.com

Problema 3. Problema 1.4 de Classical Electrodynamics (3ra ed) de Jackson [1].

Cada una de las esferas cargadas de radio a, una conductora, una con una densidad de carga uniforma adentro de su volumen, y una con una densidad de carga esféricamente simétrica que varía radialmente como r^n (n > -3), tiene una carga total Q. Use el teorema de Gauss para obtener los campos eléctricos tanto adentro como afuera de la esfera. Esboce el comportamiento de los campos como una función del radio para las primeras dos esfera, y para la tercera com n = -2, +2.

Solución:

Problema 4. Problema 1.5 de Classical Electrodynamics (3ra ed) de Jackson [1].

El potencial promedio en el tiempo de un átomo de hidrógeno neutro está dado por

$$\Phi = \frac{q}{4\pi\epsilon_0} \frac{e^{-\alpha r}}{r} \left(1 + \frac{\alpha r}{2} \right)$$

donde q es la magnitud de la carga electrónica, y $\alpha^{-1} = a_0/2$, siendo a_0 el radio de Bohr. Encuentre la distribución de carga (tanto continua como discreta) que dará este potencial e interpreta tu resultado físicamente.

Solución:

Problema 5. Problema 1.6 de Classical Electrodynamics (3ra ed) de Jackson [1].

Un capacitor simple es un dispositivo formado por dos conductores aislados adyacentes el uno del otro. Si cargas iguales y opuestas se colocan en los conductores, habrá una cierta diferencia de potencial entre ellos. La razón de la magnitud de la carga en un conductor a la magnitud de la diferencia de potencial es llamada capacitancia (en unidades SI se mide en faradios). Usando la ley de Gauss, calcule la capacitancia de

- (a) dos láminas grandes, planas, de área A, separadas por una pequeña distancia d;
- (b) dos esferas concéntricas conductoras con radios $a, b \ (b > a)$;
- (c) dos cilindros concéntricos conductores de longitud L, grande comparada a sus radios $a, b \ (b > a)$.
- (d) ¿Cuál es el diámetro interno del conductor externo en un cable coaxial lleno de aire, cuyo conductor central es un alambre cilíndrico de diámetro 1 mm y cuya capacitancia es 3×10^{-11} F/m? ¿ 3×10^{-12} F/m?

Solución:

Referencias

[1] J. Jackson, Classical Electrodynamics, 3ra edición. John Wiley and Sons, Inc. 1999.