Statistical Analyses on SleepStudy Dataset

Data Visualization:

1.a. Comparative Boxplot of Alcoholic Drinks per Week by Class Standing

```
1 data = SleepStudy
 3 # 1.a.
 4 # Convert ClassYear to factor with labels
 5 data$ClassYear = factor(data$ClassYear, levels = 1:4, labels = c
   ("Freshman", "Sophomore", "Junior", "Senior"))
 7 # Construct boxplot
 8 windows()
9 boxplot(Drinks ~ ClassYear, data = data,
            main = "Alcoholic Drinks per Week by Class Standing",
10
            xlab = "Class Standing",
11
           ylab = "Number of Drinks per Week",
col = c("lightblue", "lightgreen", "lightyellow", "lightpink"),
12
13
            border = "darkgray")
14
```

Alcoholic Drinks per Week by Class Standing

The comparative boxplot suggests:

- Sophomores have the highest median, followed by juniors and seniors, then freshman. This suggests that sophomores drink more on average than other classes.
- Sophomores show the widest spread (highest IQR), suggesting high variability in drinking habits. Seniors have the narrowest IQR, suggesting more consistent drinking habits.
- Upperclassmen (sophomores to seniors) have extreme outliers.
- All in all, all upperclassmen (sophomores to seniors) drink more than freshman.

1.b. Comparative Boxplot of Overall GPA by Gender

```
16 # 1.b.
17
   # Convert Gender to character (0=female, 1=male)
18 data$Gender = as.character(data$Gender)
19
20 # Construct boxplot
21
    windows()
22
    boxplot(GPA ~ Gender, data = data,
23
            main = "Overall GPA by Gender",
            xlab = "Gender",
24
            ylab = "GPA",
25
            col = c("lightpink", "lightblue"),
26
            names = c("Female = 0", "Male = 1"),
27
            border = "darkgray")
28
```

Overall GPA by Gender

The comparative boxplot suggests:

- Female students have a slightly higher median GPA than male students.
- Male students show slightly more variability in performance, but females cluster more towards the end.

- One female student has a very low GPA (~2.0), which is unusual given the otherwise strong performance of the group.
- All in all, females outperform males in GPA at every quartile.

Hypothesis Testing:

2.a. Stress Level by Gender

1) Hypothesis

 μ_F = average stress level for female students

 μ_{M} = average stress level for male students

 H_0 : $\mu_F = \mu_M$ (no difference in stress)

 $H_1: \mu_F \neq \mu_M$ (difference in stress)

2) Preparation

- Alpha = 5%
- n > 30
- σ -unknown
- Independent samples (female vs. male students)
- Data Provided

So, a two-tailed, two-sample t-test is performed.

3) Computation & Comparison

```
30 # 2
31 # Subset the data by gender
32 MaleSleep=subset(data, data$Gender=="1")
33 FemaleSleep=subset(data, data$Gender=="0")
35 alpha = 0.05
36
37 # 2.a.
38 # Perform t-test
39 t.test(FemaleSleep$StressScore, MaleSleep$StressScore, alternative=
  "two.sided", conf.level=1-alpha)
       Welch Two Sample t-test
data: FemaleSleep$StressScore and MaleSleep$StressScore
t = 2.9552, df = 225.43, p-value = 0.003457
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.9773598 4.8892809
sample estimates:
mean of x mean of y
10.649007 7.715686
```

- p-value (0.003) < alpha (0.05)
- At $\alpha=0.05$, we reject the null hypothesis.
- We have enough statistical evidence to conclude that the stress level for female and male students are different.

2.b. Weekday Sleep by Gender

1) Hypothesis

 μ_F = average sleep on weekdays for female students

 $\mu_{\rm M}$ = average sleep on weekdays for male students

 $H_0: \mu_F \leq \mu_M$ (females sleep less or equal than males)

 H_1 : $\mu_F > \mu_M$ (females sleep more than males)

2) Preparation

- Alpha = 5%
- n > 30
- σ -unknown
- Independent samples (female vs. male students)
- Data Provided

So, a right-tailed, two-sample t-test is performed.

4) Interpretation

- p-value (0.154) > alpha (0.05)
- At α =0.05, we fail to reject the null hypothesis.
- We can conclude that there is **no significant evidence** that female students sleep more than male students on weekdays.

Simple Linear Regression:

3. Stress Score Predicted by Anxiety Score

1) Hypothesis

 H_0 : There is **no relationship** between anxiety score and stress score.

*H*₁: There is **a relationship** between anxiety score and stress score.

2) Preparation

- Alpha = 5%
- Both StressScore (dependent) and AnxietyScore (independent) are numeric.

```
# 3
# Construct scatter plot
windows()

# plot(data$AnxietyScore, data$StressScore, main="Stress Score vs.
    Anxiety Score", xlab="Anxiety Score", ylab="Stress Score")

# Create model
model_slr1 = lm(StressScore ~ AnxietyScore, data=data)

# Add regression line
abline(model_slr1, col="lightpink", lwd=2)
```

Stress Score vs. Anxiety Score

The scatterplot suggests **slightly strong positive linear** relationship between Stress Score and Anxiety Score.

```
56 # Regression analysis
57 summary(model_slr1)
Call:
lm(formula = StressScore ~ AnxietyScore, data = data)
Residuals:
                    Median
               1Q
                                 3Q
                                         Max
                  -0.8179
-16.4302 -3.6138
                             2.9984
                                     18.3862
Coefficients:
             Estimate Std. Error t value \frac{r(>|t|)}{r}
                                   7.222 6.09e-12 ***
(Intercept)
              3.72944
                         0.51637
AnxietyScore 1.06803
                         0.06915 15.445
                                         < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.705 on 251 degrees of freedom
Multiple R-squared: 0.4873,
                                Adjusted R-squared: 0.4852
F-statistic: 238.5 on 1 and 251 DF, p-value: < 2.2e-16
```

4) Interpretation

- p-value (<2e-16) < alpha (0.05)
- At $\alpha=0.05$, we reject the null hypothesis.
- We can conclude that anxiety is a significant predictor of stress.

4. Stress Score Predicted by Depression Score

1) Hypothesis

 H_0 : There is **no relationship** between depression score and stress score.

 H_1 : There is a relationship between despression score and stress score.

2) Preparation

- Alpha = 5%
- Both StressScore (dependent) and DepressionScore (independent) are numeric.

```
# 4
60  # Construct scatter plot
windows()
62  plot(data$DepressionScore, data$StressScore, main="Stress Score vs.
    Depression Score", xlab="Depression Score", ylab="Stress Score")
63
64  # Create model
65  model_slr2 = lm(StressScore ~ DepressionScore, data=data)
66
67  # Add regression line
68  abline(model_slr2, col="lightpink", lwd=2)
```

Stress Score vs. Depression Score

The scatterplot suggests **moderate positive linear** relationship between Stress Score and Depression Score.

3) Computation & Comparison

```
70 # Regression analysis
71 summary(model_slr2)
Call:
lm(formula = StressScore ~ DepressionScore, data = data)
Residuals:
   Min
           1Q Median
                      3Q
                               Max
-20.026 -4.179 -1.652 3.513 20.876
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
              0.0655 12.584 <2e-16 ***
DepressionScore 0.8242
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.239 on 251 degrees of freedom
Multiple R-squared: 0.3868,
                           Adjusted R-squared: 0.3844
F-statistic: 158.4 on 1 and 251 DF, p-value: < 2.2e-16
```

- p-value (<2e-16) < alpha (0.05)
- At $\alpha=0.05$, we reject the null hypothesis.
- We can conclude that depression is a significant predictor of stress.

Multiple Linear Regression:

5. Stress Score Predicted by Happiness, Weekday Sleep and Weekend Sleep

1) Hypothesis

 H_0 : $\beta_{Happiness} = \beta_{WeekdaySleep} = \beta_{WeekendSleep} = 0$ (None of the predictors significantly predict StressScore.)

 H_1 : At least one $\beta \neq 0$ (At least one predictor significantly predicts StressScore.)

2) Preparation

- Alpha = 5%
- F-test statistic

```
73 # 5
74 # Create model
75 model_mlr1 = lm(StressScore ~ Happiness + WeekdaySleep + WeekendSleep,
    data = data)
76
77 # Regression analysis
78 summary(model_mlr1)
```

```
Call:
lm(formula = StressScore ~ Happiness + WeekdaySleep + WeekendSleep,
   data = data)
Residuals:
   Min
            1Q Median
                        3Q
                                 Max
-13.396 -5.208 -1.722 4.382 27.014
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 22.62902 4.38780 5.157 5.11e-07 ***
           -0.52271 0.08557 -6.109 3.84e-09 ***
Happiness
WeekdaySleep -0.50494
                       0.40413 -1.249
                                         0.213
                                         0.117
WeekendSleep 0.54247
                       0.34519
                               1.571
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.411 on 249 degrees of freedom
Multiple R-squared: 0.1417,
                              Adjusted R-squared: 0.1314
F-statistic: 13.7 on 3 and 249 DF, p-value: 2.665e-08
```

- Overall p-value (2.665e-08) < alpha (0.05)
- At α=0.05, we reject the null hypothesis and there is at least one predictor that is statistically significant.
- **Happiness**: Significant => p-value (3.84e-09) < alpha
- WeekdaySleep: Not significant => p-value (0.213) > alpha
- WeekendSleep: Not significant => p-value (0.117) > alpha
- Happiness significantly predicts stress while sleep variables do not.

6. Stress Score Predicted by Anxiety and Depression

1) Hypothesis

 H_0 : $\beta_{AnxietyScore} = \beta_{DepressionScore} = 0$ (Neither AnxietyScore nor DepressionScore significantly predict StressScore.)

 H_1 : At least one $\beta \neq 0$ (At least one predictor significantly predicts StressScore.)

2) Preparation

- Alpha = 5%
- F-test statistic

```
# 6
81 # Create model
82 model_mlr2 = lm(StressScore ~ AnxietyScore + DepressionScore, data = data)
83
84 # Regression analysis
85 summary(model_mlr2)
```

```
Call:
Im(formula = StressScore ~ AnxietyScore + DepressionScore, data = data)
Residuals:
             1Q Median
    Min
                               3Q
                                       Max
-16.7552 -3.0351 -0.6377 2.7937 16.8150
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                                  5.527 8.16e-08 ***
                          0.48065
(Intercept)
               2.65676
AnxietyScore 0.79279
                          0.07073 11.208 < 2e-16 ***
DepressionScore 0.49045
                          0.06126 8.006 4.48e-14 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.1 on 250 degrees of freedom
Multiple R-squared: 0.5919,
                              Adjusted R-squared: 0.5886
F-statistic: 181.3 on 2 and 250 DF, p-value: < 2.2e-16
```

- Overall p-value (2.2e-16) < alpha (0.05)
- At α=0.05, we reject the null hypothesis and there is at least one predictor that is statistically significant.
- AnxietyScore: Significant => p-value (<2e-16) < alpha
- **DepressionScore**: Significant => p-value (4.48e-14) > alpha
- Both anxiety and depression significantly predicts stress in the model, with anxiety showing a stronger effect.

Chi Square for Categorical Variables:

7. Association between Gender and Alcohol Use

1) Hypothesis

*H*₀: Gender and alcohol use are **not associated**.

*H*₁: Gender and alcohol use are **associated**.

2) Preparation

- Alpha = 5%
- Both Gender and AlcoholUse are categorical.
- Check expected counts ≥ 5 in all cells (for Chi-square validity)

```
> # 7
> # Create contingency table
> table1 = table(
   "Gender" = ifelse(data$Gender == 0, "0=Female", "1=Male"),
  "Alcoholuse" = data$Alcoholuse
+ )
> table1
         AlcoholUse
Gender Abstain Heavy Light Moderate
 0=Female 20
1=Male 14
                    5 60 66
                     11
                           23
                                   54
> # Perform chi-square test
> chisq.test(table1)
       Pearson's Chi-squared test
data: table1
X-squared = 11.961, df = 3, p-value = 0.007517
```

The two-way table suggests:

 Alcohol use patterns vary significantly by gender, with females more likely in the "Light" and "Moderate" groups, while males are slightly more likely to be in the "Heavy" group.

4) Interpretation

- Test Statistic: $\chi^2 = 11.96$
- p-value (0.007517) < alpha (0.05)
- At α=0.05, we reject the null hypothesis and can conclude that there is a significant association between gender and alcohol use.

8. Association between Gender and All-nighters

1) Hypothesis

H_o: Gender and all-nighters are **not associated**.

*H*₁: Gender and all-nighters are **associated**.

2) Preparation

- Alpha = 5%
- Both Gender and All-nighters are categorical.
- Check expected counts ≥ 5 in all cells (for Chi-square validity)

3) Computation & Comparison

```
> # 8
> # Create contingency table
> table2 = table(
    "Gender" = ifelse(data$Gender == 0, "0=Female", "1=Male"),
   "AllNighter" = ifelse(data$AllNighter == 0, "0=No", "1=Yes")
+ )
> table2
         AllNighter
Gender
         0=No 1=Yes
 0=Female 139
                  12
  1=Male
            80
                   22
> # Perform chi-square test
> chisq.test(table2)
        Pearson's Chi-squared test with Yates' continuity correction
data: table2
X-squared = 8.5746, df = 1, p-value = 0.003409
```

The two-way table suggests:

• There is a **difference** in all-nighter behavior by gender. **Males** show a **higher** frequency of pulling all-nighters than females.

- Test Statistic: $\chi^2 = 8.57$
- p-value (0.0034) < alpha (0.05)
- At α=0.05, we reject the null hypothesis and can conclude that there is a significant association between gender and all-nighters.

ANOVA:

9. GPA Differences by Class Standing

1) Hypothesis

 H_0 : $\mu_{Freshman} = \mu_{Sophomore} = \mu_{Junior} = \mu_{Senior}$ (There is **no significant difference** in mean GPA among class standings.)

*H*₁: At least one class standing has a significantly different mean GPA from the others.

2) Preparation

- Variables
 - o Independent: ClassYear (categorical, 4 levels)
 - Dependent: GPA (continuous)
- ANOVA Conditions
 - Normality: n > 30

```
# Check Normality
# Check Numerical Variable
windows();
hist(data$GPA)
```

Histogram of data\$GPA

The **histogram** of GPA suggests a reasonably normal distribution. Since our sample size is 40 (n > 30), we assume normality by the **Central Limit Theorem (CLT).**

- o **Independence:** Assume random sampling
- Homogeneity/ Equality of Variances

```
> sd_by_gpa = tapply(data$GPA, data$ClassYear, sd)
> sd_by_gpa
0.3661250 0.3736898 0.4198895 0.3639701
> sds = c(0.3661250, 0.3736898, 0.4198895, 0.3639701)
> vector <- sds
> result <- FALSE
> # Loop through each element in the vector
> for (i in 1:length(vector)) {
   for (j in 1:length(vector)) {
     if (i != j && vector[i] > 2 * vector[j]) {
       result <- TRUE
        break
      }
    if (result) break
> # Print the result: We want to see FALSE
> print(result)
[1] FALSE
```

To check the assumption of homogeneity of variances, we verified that no group's standard deviation exceeded **twice** that of another group. Since this condition was met (FALSE result from the test), we assume **equal variances** and proceed with ANOVA.

3) ANOVA Test

A one-way ANOVA is conducted to compare the mean GPA among the class years.

ANOVA Test Interpretation

- p-value (2.91e-07) < alpha (0.05)
- At α=0.05, we reject the null hypothesis and can conclude that there is at least
 one class standing has a significantly different mean GPA from the others.
- 4) Post Hoc Analysis (Tukey's HSD Test)

Since the ANOVA test showed significance, we perform **Tukey's HSD** to determine **which groups differ**.

```
# Convert ClassYear to factor with labels
data$ClassYear = factor(data$ClassYear, levels = 1:4, labels = c
("Freshman", "Sophomore", "Junior", "Senior"))
```

```
> tukey_result = TukeyHSD(one.way1)
> print(tukey_result)
  Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = GPA ~ ClassYear, data = data)
$ClassYear
                            diff
                                          lwr
                                                               p adj
                                                      upr
Sophomore-Freshman -0.40029339 -0.57581330 -0.2247735 0.0000001
Junior-Freshman -0.31398345 -0.51032301 -0.1176439 0.0002808
Senior-Freshman -0.29629339 -0.49021368 -0.1023731 0.0005822
Junior-Sophomore 0.08630994 -0.08142649 0.2540464 0.5441416
Senior-Sophomore 0.10400000 -0.06089804 0.2688980 0.3629506
Senior-Junior
                     0.01769006 -0.16921460 0.2045947 0.9948334
```

Tukey's HSD Test Interpretation

• 3 out of 6 groups - **Sophomore vs. Freshman** (p = 0.0000001), **Junior vs. Freshman** (p = 0.00028), **Senior vs. Freshman** (p = 0.00058) - show a significant difference.

5) Conclusion

- Freshmen GPAs significantly lower than Sophomores (-0.40), Juniors (-0.31), and Seniors (-0.30)
- Upperclassmen (Sophomore-Senior) show no significant differences.

10. GPA Differences by Alcohol Use

1) Hypothesis

 H_0 : $\mu_{Abstain} = \mu_{Light} = \mu_{Moderate} = \mu_{Heavy}$ (There is **no significant difference** in mean GPA across alcohol use groups.)

 H_1 : At least one alcohol use group has a significantly different mean GPA from the others.

2) Preparation

- Variables
 - o Independent: AlcoholUse (categorical, 4 levels)
 - o Dependent: GPA (continuous)
- ANOVA Conditions
 - o **Normality**: n > 30 (Checked normality for GPA in question 9)
 - o Independence: Assume random sampling
 - Homogeneity/ Equality of Variances

```
> sd_by_gpa = tapply(data$GPA, data$AlcoholUse, sd)
> sd_by_gpa
  Abstain    Heavy    Light Moderate
0.4793122 0.4367589 0.3849260 0.3888629
```

```
> # Standard Deviation Condition for Equality of Variances
> # Is one std dev >= three times another gp Std Dev?
> sds = c(0.4793122, 0.4367589, 0.3849260, 0.3888629)
> vector <- sds
> result <- FALSE</pre>
> # Loop through each element in the vector
> for (i in 1:length(vector)) {
   for (j in 1:length(vector)) {
      if (i != j && vector[i] > 2 * vector[j]) {
        result <- TRUE
        break
      }
    if (result) break
+ }
> # Print the result: We want to see FALSE
> print(result)
[1] FALSE
```

To check the assumption of homogeneity of variances, we verified that no group's standard deviation exceeded **twice** that of another group. Since this condition was met (FALSE result from the test), we assume **equal variances** and proceed with ANOVA.

3) ANOVA Test

A one-way ANOVA is conducted to compare the mean GPA among the alcohol use groups.

ANOVA Test Interpretation

- p-value (0.299) > alpha (0.05)
- At α=0.05, we fail to reject the null hypothesis and can conclude that there is no significant difference in mean GPA across alcohol use groups.