7. PLC 아날로그 입출력 처리

7.1 A/D, D/A 변환 원리

(PLC에서 아날로그 신호를 디지털로, 디지털 신호를 아날로그로 변환하는 핵심 개념)

☑ 개요

PLC는 대부분의 제어 연산을 **디지털(0과 1)** 형태로 처리하지만, 센서나 액추에이터는 **아날로그(연속적인 전압/전류)** 신호를 사용한다.

이를 위해 PLC는 A/D (Analog to Digital) 변환기와 D/A (Digital to Analog) 변환기를 통해 서로 다른 신호 체계를 연결한다.

☑ 1. A/D 변환 (Analog → Digital)

★ 정의

• 아날로그 전압/전류 신호(예: 0~10V, 4~20mA)를 PLC 내부에서 처리 가능한 디지털 수치(예: 0~4095)로 변환

★ 주요 개념

항목	설명
입력 범위	예: 0~10V, -10~10V, 4~20mA 등
해상도	몇 비트로 표현하는가? (예: 12bit → 0~4095)
샘플링 주기	얼마나 자주 측정하는가? (ms 단위 주기)
오차	양자화 오차, 비선형성 등

📌 예제: 0~10V 입력, 12bit A/D

입력 전압(V)	디지털 값 (0~4095)
0V	0
5V	2048
10V	4095

→ 디지털 값 = (입력 전압 / 10V) × 4095

☑ 2. D/A 변환 (Digital → Analog)

★ 정의

PLC 내부의 디지털 값(예: 0~4095)을
 아날로그 전압/전류(예: 0~10V, 4~20mA) 신호로 변환하여 출력

◆ 예제: 0~4095 디지털 값 → 0~10V 아날로그 출력

디지털 값	출력 전압(V)
0	OV
2048	5V
4095	10V

→ 전압 = (디지털 값 / 4095) × 10V

☑ 3. 비트 수에 따른 해상도 비교

해상도 (bit)	표현 가능한 값의 수	최소 분해능 (0~10V 기준)
8bit	256	10V / 255 ≈ 0.039V
10bit	1024	10V / 1023 ≈ 0.0098V
12bit	4096	10V / 4095 ≈ 0.0024V
16bit	65536	10V / 65535 ≈ 0.00015V

→ 비트 수가 많을수록 정밀하게 측정/제어 가능

☑ 4. 아날로그 신호 타입 비교

신호 유형	설명	장점	단점
0~10V	전압형	저렴하고 간단	노이즈에 민감
-10~10V	양극 전압	방향성 표현 가능	간섭 영향 ↑
4~20mA	전류형	노이즈 강함, 단선 감지 가능	회로 설계 복잡
1~5V	센서 전용	저전력, 간단	낮은 분해능

☑ 5. PLC 아날로그 모듈 연동

★ 입력

- 센서 → A/D 입력 모듈 (전압/전류 선택)
- 예: 온도센서, 거리센서, 압력센서

★ 출력

- PLC 내부 연산 결과 \rightarrow D/A 출력 모듈 \rightarrow 액추에이터
- 예: 인버터 속도 제어, 유량 제어 밸브

☑ 6. 응용 예

분야	A/D 입력 예	D/A 출력 예
HVAC	온도센서	밸브 개도율 제어
자동화 라인	압력센서	모터 속도 제어
정밀기계	위치 피드백	진동 제어 시스템
수처리	수위 센서	펌프 제어

☑ 7. 설계 시 주의사항

- 입력 전압 범위와 센서 출력 범위가 일치하는지 확인
- 신호 노이즈 제거를 위해 쉴딩, 필터 사용
- 전류 신호는 **단선 감지 가능성**이 있으므로 신뢰성 ↑
- **이중 절연 설계**로 PLC 보호

☑ 정리

- A/D 변환은 연속적인 센서 값을 PLC에서 처리 가능한 수치로 변환
- D/A 변환은 연산 결과를 아날로그 액추에이터에 전달
- 해상도(Bit 수), 입력 범위, 샘플링 주기 등을 고려해 설계
- 전압 vs 전류 신호는 상황에 따라 선택

7.2 전류 루프(4-20mA), 전압 입력(0-10V)

(PLC에서 가장 널리 사용되는 아날로그 입력 방식의 구조와 차이)

✓ 개요

센서의 아날로그 출력은 PLC의 아날로그 입력 모듈에 전달되어 처리된다. 그때 사용하는 대표적인 입력 방식은 다음 두 가지다:

- 전류 루프(Current Loop): 4~20mA
- 전압 입력(Voltage Input): 0~10V, -10~10V, 1~5V 등

각 방식은 **전기적 특성, 신뢰성, 노이즈 내성, 거리 제약** 등에서 차이가 있으며 **현장 조건에 맞춰 적절히 선택해야 한다.**

☑ 1. 전류 루프 (4~20mA)

★ 개념

- 센서가 4mA~20mA의 전류를 발생시키고, PLC는 이 전류 값을 측정함
- 전류는 회로 내에서 동일하게 흐르므로 전압 강하나 간섭에 강함
- 4mA는 **제로값이 아님** → **센서 단선 감지**가 가능

★ 특징

항목	설명
전송 신뢰성	매우 높음 (장거리 가능)
노이즈 내성	우수
배선 수	2선 또는 3선 방식
센서 단선 감지	4mA 미만이면 단선 판단 가능
거리 영향	작음 (수십~수백 m까지 가능)
회로 설계	전류 루프 회로 필요 (전원 포함)

🖈 예시

실제 전류	측정된 값 (12bit 기준)
4mA	0
12mA	2047
20mA	4095

 \rightarrow 디지털 값 = (측정전류 - 4mA) / $16mA \times 4095$

■ 전류 루프 회로 구성

```
1 [센서 +24V] — PLC AI+
2 | 1
3 [센서 출력]
4 | I
5 [GND] — PLC AI-
```

- 센서가 전류를 "끌어당기며" 루프를 형성
- PLC는 이 전류를 측정

✓ 2. 전압 입력 (0~10V)

★ 개념

- 센서가 **0~10V 또는 -10~+10V** 범위의 전압을 출력
- PLC는 입력 모듈의 **전압을 샘플링**하여 디지털로 변환

★ 특징

항목	설명
설정 간편성	매우 간단 (전원만 연결)
배선 수	보통 3선
노이즈 내성	전류 루프보다 낮음
거리 제한	짧은 거리 권장 (10~20m 이내)
단선 감지	기본적으로 불가
주로 사용처	실험실, 근거리 환경, 정밀 제어 장비 등

🖈 예시

입력 전압	디지털 값 (12bit 기준)
0V	0
5V	2047
10V	4095

→ 디지털 값 = (입력전압 / 10V) × 4095

■ 전압 입력 배선 예

1 [센서 출력 +] ----- PLC AI+ 2 [GND]------ PLC AI-

- 단순 전압 분배 방식
- 차폐선(쉴드선) 필수

☑ 3. 전류 vs 전압 비교 요약

항목	전류 루프 (4~20mA)	전압 입력 (0~10V)
신호 안정성	★★★★★ (우수)	***
노이즈 내성	우수	낮음
배선 길이 영향	거의 없음	있음 (전압 강하)
단선 감지	가능 (4mA 미만)	불가
정밀도	높음	보통
회로 구성	약간 복잡	간단
적용 분야	산업 현장 전반	실험실, 정밀 기기, 근거리

☑ 4. 설계 시 고려 사항

항목	체크포인트
PLC 입력 모듈 타입	전류 전용? 전압 전용? 혼용 가능?
센서 출력 타입	4 20mA? 0 10V? 둘 다 제공?
전송 거리	10m 이상은 전류 루프 권장
환경 노이즈	고주파기기 많은가? 쉴딩 가능한가?
정밀도 요구	12bit 이상 필요한가?

☑ 5. 결론

- 전류 루프(4~20mA)
 - ightarrow **산업 자동화 표준**, 장거리/노이즈 강한 환경, 신뢰성 요구에 적합
- 전압 입력(0~10V)
 - → **근거리, 저렴한 설치**, 회로 단순한 환경에서 적합

7.3 센서(온도, 압력, 거리) 연동

(PLC와 다양한 아날로그 센서를 연동하는 실전 기술 및 회로 구성)

☑ 개요

PLC는 다양한 **물리량(온도, 압력, 거리 등)**을 측정하기 위해 센서와 연동하며, 이들 센서는 대부분 **아날로그 출력(전압 or 전류)**을 사용한다. 따라서 **정확한 센서 선택, 배선, 입력 범위 설정, 변환 수식 적용**이 중요하다.

☑ 1. 온도 센서 (Thermocouple, RTD, Analog Sensor)

📌 종류별 개요

센서 종류	특징	출력 방식	사용 예
Thermocouple	열기전력 기반, 고온 측정	mV 출력 (비선형)	용광로, 히터
RTD (Pt100)	저항 기반, 정밀	저항 값 (선형) → 전압 변환 필요	정밀 온도 제어
Analog Temp Sensor	0 10V, 4 20mA 출력	PLC 직결 가능	환경 온도 감시

RTD 예 (Pt100)

- 온도 변화에 따라 저항 변화
- RTD 모듈 필요 (3선식 RTD)
- Pt100 저항값: 0°C = 100Ω, 100°C = 약 138.5Ω

📘 Analog 출력 센서 예

- 센서 사양:
 - $0\sim100^{\circ}C \rightarrow 4\sim20\text{mA}$
- PLC 아날로그 입력으로 직접 연동 가능
- 1 변환식:
- 2 온도 = ((입력 전류 4mA) / 16mA) × 100℃

☑ 2. 압력 센서 (Pressure Transmitter)

★ 일반 사양

- 출력: 4~20mA or 0~10V
- 측정 범위: 0~10bar, 0~100psi 등
- 출력 선형 (직선 비례 관계)

예제

- 센서 스펙: 0~10bar → 4~20mA
- PLC 아날로그 입력 값 = 2048 (12bit 기준)
 - → 전류 = (2048 / 4095) × 16mA + 4mA ≈ 12mA
 - → 압력 = ((12mA 4mA) / 16mA) × 10bar = 5bar

★ 배선

```
1 [센서 +24V] PLC AI+
2 |
3 [센서]
4 |
5 [GND] PLC AI-
```

• 쉴딩 필수, 접지 주의

☑ 3. 거리 센서 (Ultrasonic, Laser, Infrared 등)

★ 센서 타입

종류	특징	출력
초음파 거리 센서	거리 측정 범용	0 10V, 4 20mA
레이저 거리 센서	정밀 측정	시리얼 통신 or 4~20mA
IR 센서	근접 검출용	전압 출력

📘 예: 초음파 센서

- 출력: 0~2m → 0~10V
- PLC 연결 후 변환:
- 1 | 거리 = (전압 / 10V) × 2m
- 출력: 0~3m → 4~20mA

✓ 4. PLC 연동 절차 요약

- 1. 센서 선택
 - o 출력 타입 확인 (전압 vs 전류)
 - ㅇ 측정 범위 확인
- 2. **PLC 입력 모듈 확인**
 - ㅇ 전압 입력인지, 전류 입력인지 일치 여부 확인
- 3. **배선 구성**
 - o 센서 전원 (24V) 공급
 - o GND 공통
 - ㅇ 쉴딩/접지 고려
- 4. 아날로그 입력 변환 수식 작성
 - ㅇ 전압/전류값 → 물리량으로 환산
- 5. **스케일링 처리**
 - 내부 변수 범위 (예: 0~4095) → 실제 단위로 매핑

☑ 5. PLC 내부 처리 예 (Structured Text)

```
1 // 12bit 입력 (0~4095), 0~100℃ → 4~20mA
2 // 아날로그 입력값: AI := 2048
3
4 Temp := ((AI / 4095.0) * 16.0 + 4.0 - 4.0) / 16.0 * 100.0;
```

☑ 6. 주의사항

주의 항목	설명
센서 전원 확인	24V 필요 여부, 오픈 컬렉터 타입 등
출력 선형 여부	일부 센서는 비선형 → 보정 필요
절연 여부	센서와 PLC 간 절연 여부 확인
스케일링 일관성	스케일링 오류 시 제어값 왜곡

✓ 정리

- 온도/압력/거리 센서는 PLC와 연동 시 출력 타입과 측정 범위 확인 필수
- 4~20mA 전류 출력은 노이즈에 강하고 산업 현장에 적합
- 스케일링 변환 수식과 신호 안정성 확보가 핵심
- PLC 내부 변수에 매핑하여 제어 로직에 통합 가능

7.4 PID 제어 구조

(PLC에서 온도, 속도, 유량 등의 정밀한 제어를 위한 핵심 알고리즘)

✓ 개요

PID 제어는 **Proportional(비례), Integral(적분), Derivative(미분)** 세 요소를 결합하여, 제어 대상의 출력이 목표값(Setpoint)에 빠르게 도달하고 안정되도록 만드는 **피드백 제어 방식**이다. PLC에서는 **온도 제어, 압력 제어, 모터 속도 제어, 유량 제어** 등에 널리 사용된다.

✓ 1. PID 제어란?

PID 제어는 다음과 같은 수학식으로 표현된다:

$$u(t) = K_p \cdot e(t) + K_i \cdot \int e(t) \, dt + K_d \cdot rac{de(t)}{dt}$$

- u(t): 제어 출력
- e(t) = SP PV: 오차 (Setpoint Process Variable)
- K_p: 비례 이득
- K_i: 적분 이득
- *K*_d: 미분 이득

☑ 2. 각 요소의 역할

요소	설명	주요 효과
P (비례)	현재 오차에 비례한 출력	빠른 반응 유도
l (적분)	오차의 누적에 따라 출력	잔류 오차 제거
D (미분)	오차 변화 속도에 따라 출력	초과 응답 방지 , 안정화

✓ 3. PID 블록 구성 (PLC)

- SP: 목표값 (Set Point) 예: 100°C
- PV: 실제값 (Process Variable) 예: 현재 온도
- MV: 제어 출력 (Manipulated Variable) 예: 히터 전류, 인버터 주파수 등

✓ 4. PID 파라미터 조정

파라미터	설정 방법	효과
K_p (비례 상수)	높일수록 반응 빠름	너무 크면 진동 발생
K_i (적분 상수)	낮출수록 안정적	너무 크면 오버슈트
K_d (미분 상수)	진동 억제	너무 크면 노이즈 확대

★ 자동 튜닝 기능

많은 PLC는 **자동 PID 튜닝** 기능을 제공

→ Ziegler-Nichols 방식이나 Trial-and-Error 기반으로 자동 조정

✓ 5. PID 제어 예시 (온도 제어)

- 목표 온도: 120°C
- 현재 온도(PV): 100°C
- PID 출력(MV): 0~100% (히터에 적용)

```
1  e := SP - PV;
2  P := Kp * e;
3  I := I + Ki * e * dt;
4  D := Kd * (e - e_prev) / dt;
5  6  MV := P + I + D;
```

→ MV는 히터의 SSR 제어, 인버터 출력, 아날로그 출력으로 사용됨

☑ 6. 실무 적용 분야

분야	제어 대상	설명
온도 제어	히터, 냉각팬	오븐, 금형, 환경 제어
압력 제어	밸브	공정 배관 압력 유지
속도 제어	인버터	모터 회전수 제어
유량 제어	펌프	정밀 유체 제어

☑ 7. PLC 내 PID 기능 사용법 (예: Siemens, LS, Mitsubishi)

- 전용 PID Function Block 제공 (예: FB41 in Siemens)
- 입력값: SP, PV, P/I/D 계수
- 출력값: MV (PWM or Analog Output)

📌 예 (Structured Text 형식)

```
1 PID(SP := 100.0,
2     PV := SensorValue,
3     Kp := 2.0,
4     Ki := 1.0,
5     Kd := 0.1,
6     OUT => OutputValue);
```

☑ 8. 튜닝 시 고려사항

문제	원인	대응
진동 발생	Kp 너무 큼	P 감소, D 증가
느린 반응	Kp 너무 작음	P 증가
오버슈트	Ki 너무 큼	l 감소
노이즈 민감	D 너무 큼	D 감소, 필터 추가

🔽 9. 고급 기법

기법	설명
Cascade PID	이중 루프 구조 (1차+2차)
Feed-forward 제어	외란 예측 기반 추가 보정

기법	설명
Gain Scheduling	구간별 PID 계수 자동 전환
Fuzzy PID	퍼지 논리와 결합된 PID

✓ 정리

- PID는 정밀한 목표값 유지에 필수적인 제어 구조
- PLC에서는 PID 기능 블록으로 간편하게 구현 가능
- P/I/D 계수는 반드시 **적절히 조정**해야 진동 없이 빠른 응답이 가능
- 다양한 물리량 제어에 널리 활용됨

7.5 스케일링/디스케일링 처리

(센서 입력값과 실제 물리량 간의 환산을 자동화하는 PLC의 핵심 기법)

✓ 개요

센서의 아날로그 출력(전압 또는 전류)은 **디지털 값(Digital Input: 0~4095 등)**으로 PLC에 입력된다. 이 입력값은 실제 물리적 단위(°C, bar, mm 등)와 일치하지 않기 때문에, 스케일링(Scaling) 및 **디스케일링(De-scaling)** 과정을 통해 정확한 값으로 변환해야 한다.

🔽 1. 정의

용어	설명
스케일링(Scaling)	아날로그 입력값을 실제 물리량으로 변환
디스케일링(De-scaling)	제어 값을 아날로그 출력 신호로 변환 (ex: 0~10V로 출력)

☑ 2. 스케일링 공식

아날로그 입력값 RawInput 을 실물값으로 바꾸는 공식은 다음과 같다:

$$ext{RealValue} = rac{(RawInput-InMin)}{(InMax-InMin)} imes (RealMax-RealMin) + RealMin$$

• RawInput : 아날로그 입력값 (예: 0~4095)

• InMin, InMax: 입력값의 범위

• RealMin, RealMax: 변환할 실제 물리량의 범위

♦ 예제 1: 0~10V 입력 → 0~100°C 온도

- PLC 아날로그 입력값: 0~4095
- 전압 입력 센서: 0~10V → 0~100°C
- 현재 입력값: 2048

$$RealValue = (2048 - 0)/(4095 - 0) \times (100 - 0) + 0 \approx 50$$
 °C

♦ 예제 2: 4~20mA 입력 → 0~5000L 유량

- PLC Raw 값 범위: 0~4095
- 4mA = 0L, 20mA = 5000L
- 대응하는 디지털 입력:
 - o 4mA → 약 820
 - \circ 20mA \rightarrow 4095

$$RealValue = (Raw - 820)/(3275) \times 5000$$

 \rightarrow 3275 = 4095 - 820

☑ 3. 디스케일링 공식 (출력용)

제어 출력값 RealOutput 을 아날로그 출력 범위로 환산:

$$ext{RawOutput} = rac{(RealOutput - RealMin)}{(RealMax - RealMin)} imes (OutMax - OutMin) + OutMin$$

- PWM / Analog 출력 시 사용
- 예: 0~100% 제어 → 4~20mA 출력

♦ 예제: 0~100% 제어값 → 4~20mA 출력

$$RawOutput = (75 - 0)/(100 - 0) \times (4095 - 820) + 820 \approx 3270$$

→ 75% 제어 시 출력 전류 = 약 16.7mA

✓ 4. PLC에서의 구현 예 (Structured Text)

☑ 5. 전용 함수 블록 사용 (PLC 브랜드별)

제조사	함수 이름
Siemens	SCALE, UNSCALE, FC105, FC106
LS	SCALE_REAL, LIMIT, MATH
Mitsubishi	SCL2, REV_SCL2
Allen Bradley	SCP (Scale with Parameters)

Siemens 예 (FC105)

```
1    SCALE(
2         IN := AI,
3         HI_LIM := 100.0,
4         LO_LIM := 0.0,
5         BIPOLAR := FALSE,
6         RET_VAL := STATUS,
7         OUT := TEMP_C
8     );
```

☑ 6. 스케일링 처리 시 유의사항

항목	설명
센서 사양 정확히 확인	출력 범위 정확히 알고 있어야 계산 가능
해상도 오차 고려	예: 12bit → ±0.025% 정도의 오차 존재
아날로그 노이즈 필터링	이동 평균 / 저역통과필터 사용 권장
디스케일링 후 포화제한 적용	4~20mA 제한 내에서 Clip 처리 필요

☑ 7. 정리

- 센서 입력은 대부분 디지털 값으로 수집되므로 스케일링이 필수
- 출력 제어를 위한 디스케일링도 함께 구현해야 함
- 수동 계산, 함수 블록, Structured Text 등으로 구현 가능
- 정확한 센서 스펙 파악과 비례 계산이 핵심

7.6 Analog Alarm 설정

(센서값이 특정 범위를 벗어났을 때 경고를 발생시키는 실전 감시 기법)

✓ 개요

Analog Alarm은 온도, 압력, 유량 등과 같은 연속적인 물리량이 특정 임계값을 초과하거나 미달할 경우 **경고(Alarm), 에러(Trip), 차단(Interlock)** 등을 트리거하기 위한 **PLC 기반의 감시 로직**이다.

이 기능은 산업 현장의 안정성과 장비 보호를 위해 반드시 구현해야 하는 핵심 보호 장치 중 하나다.

☑ 1. 알람의 종류

알람 유형	설명	예시
High High (HH)	극단적 고값 초과	압력 > 8.0bar → 긴급정지
High (H)	일반적 고값 초과	압력 > 6.0bar → 경고등 점등
Low (L)	일반적 저값 미만	온도 < 10°C → 예열 활성화
Low Low (LL)	극단적 저값 미만	유량 < 0.5L/min → 펌프 차단

보통 H/HH 또는 L/LL 두 단계로 설계하며, 주의(Warning) \rightarrow 정지(Trip) 순으로 이어지는 구조가 일반적이다.

☑ 2. 기본 로직 구조

```
1 // 예: 압력 센서 (0~10 bar)
2 IF Pressure > 8.0 THEN
3 HH_Alarm := TRUE;
4 ELSIF Pressure > 6.0 THEN
5 H_Alarm := TRUE;
6 ELSE
7 H_Alarm := FALSE;
8 HH_Alarm := FALSE;
9 END_IF;
```

☑ 3. 히스테리시스(Hysteresis) 적용

센서값이 임계값에서 **출렁이며 알람이 반복 발생**하지 않도록, 일정한 **여유값(ΔH)**을 적용하여 **알람 진입/해제 조건을 분리**한다.

```
1 // H 알람: 진입 6.0bar / 해제 5.8bar
2 IF Pressure > 6.0 THEN
3 H_Alarm := TRUE;
4 ELSIF Pressure < 5.8 THEN
5 H_Alarm := FALSE;
6 END_IF;
```

☑ 4. 알람 상태 유지 (라칭, Reset 포함)

알람 발생 후 사용자가 **Reset 버튼**을 누를 때까지 유지하는 구조:

```
If Pressure > 8.0 THEN
HH_Alarm := TRUE;
If ResetButton = TRUE THEN
HH_Alarm := FALSE;
END_IF;
If ResetButton = TRUE THEN
```

☑ 5. PLC 실전 구현 예 (Structured Text)

```
1 // 예: 온도 센서 (0~100℃)
   IF Temp >= 90.0 THEN
     Alarm_HH := TRUE;
4 ELSIF Temp <= 10.0 THEN
5
     Alarm_LL := TRUE;
6 END_IF;
7
   // 히스테리시스
9 | IF Temp < 88.0 THEN
    Alarm_HH := FALSE;
10
11 END_IF;
12 | IF Temp > 12.0 THEN
13
     Alarm_LL := FALSE;
14 END_IF;
```

☑ 6. 알람 이벤트 출력

구성 요소	구현 방식	
알람 표시등	디지털 출력으로 LED 점등	
HMI 연동	내부 태그(BOOL)로 알람 발생 전달	
버저 / 사이렌	알람 유지 시 ON	
로그 저장	알람 발생 시 시간 및 PV 저장 (추후 분석용)	

☑ 7. 다중 알람 처리 구조 예

☑ 8. 주의사항

항목	설명
센서 이상값 필터링	센서 단선 시 알람 오작동 방지
입력 노이즈 처리	필터링 후 알람 적용 (이동 평균 등)
상태 유지 조건 명확히	자동 해제 vs 수동 해제 분리
기록 및 알림 이력	시간 스탬프 저장, HMI 표시 연동

☑ 9. 실무 예시 요약

항목	목표	알람 조건	조치
유량 제어	5~10 L/min	<3.0 (LL), >12.0 (HH)	펌프 정지, 벨브 차단
온도 제어	20~80°C	<10°C (L), >90°C (H)	히터 켜기, 냉각기 작동
압력 제어	1~6 bar	<0.5bar (LL), >8.0bar (HH)	압력해제밸브 작동

✓ 정리

- 아날로그 알람은 상한/하한 조건을 감시하여 설비 안정성 확보에 필수
- 히스테리시스와 상태 유지 로직은 꼭 구현할 것
- HMI, 로그, 경고등, 음향 장치 등 다양한 출력 장치와 연동 가능
- 알람 이력 저장과 분석은 추후 유지보수 및 품질 개선에 핵심 자료