Bridging the ICN Deployment Gap with IPoC

Susmit Shannigrahi, Colorado State Univ. Chengyu Fan, Colorado State Univ. Greg White, CableLabs

Background

- ICN seems attractive for mobile networking
 - Elegant consumer mobility via stateful forwarding
 - Multipath connectivity managed by the mobile device
 - In-network caching and processing
- How do we get there?
 - Network slicing? and run two networks in parallel?
 - ICN over IP? and lose the benefits above?

Concept

Explore the idea of using ICN as THE forwarding plane for 5G

• Support ALL existing IP services via an "IP over ICN" protocol – replacing LTE-EPC (GTP Tunnels) for IP Mobility

 Enable deployment of native ICN applications, preserving the benefits

IP over ICN (IPoC) Goals

- Support all existing IP applications & transports without modification
 - Incl. TCP, UDP, SCTP, DCTCP, QUIC, BBR, etc.
 - ...maybe not IP multicast.
- No change to IP stacks
- Leverage consumer mobility of ICN
- Support multipath connectivity
- High performance
- Low overhead
- Be a compelling replacement for EPC

Architecture

Leverage consumer mobility

- IPoC Client only sends Interest messages
 - "upstream" IP packets carried as Interest payloads
- IPoC Gateway only sends Content Objects
 - Containing "downstream" IP packets as payloads

"Upstream" (UE->Network) Packet Flow

"Downstream" (Network->UE) Packet Flow

IPoC Naming Convention

- ndn:/ipoc/<hex_ipaddr>/<b64_seq>
- hex_ipaddr: Client IP address
- b64_seq: Interest Sequence Number
 - base64-encoded, monotonically increasing (with rollover)

Managing In-flight Count and Flow balance

- Gateway sends IDR to the client with each content
 - Interest Deficit Report included in Content Object
 - Allowed IDR values: -1, 0, 1
 - Client adds IDR value to its Interest Deficit Count

Evaluation – Efficiency and Throughput

Reciprocal Benefits for 5G networks - LTE Handover vs. IPoC Handover

- IPoC significantly simplifies handover compared to LTE-EPC
- UE simply detaches from old link, establishes new link, and resends unexpired PIT entries (without payload).
- No handover-specific functions in GW, eNodeB/gNodeB, or network routers
- Soft handover & multipath connectivity are simple

Hard vs Soft Handover Simulation

Dual link – 5G/5G or 5G/WiFi

Implementations and future plans

- ndnSim implementation (ca. 2017)
 - Published at 2018 SIGCOMM NEAT
 - Soon to be be available in github
 - Possible NDN testbed deployment?

Questions and Comments?

"Upstream" IP packet handling

- Client: Upon receipt of one or more IP packets from the local stack:
 - Send an Interest message
 - Name formed by client's IP address and next sequence number
 - Body contains entire IP packet(s)
- Gateway: Upon receipt of an Interest message
 - De-encapsulate IP packet(s) and add to resequencer for forwarding to IP network
 - Resequencer ensures in-order delivery
 - Add Sequence Number to the "Client Interest Table"

Client Interest Table (CIT)

- The CIT is a FIFO queue maintained by the gateway
- CIT contains received Interest Sequence Number and Arrival Time tuples
- One CIT per active client IP address

"Downstream" IP packet handling

Gateway:

- Arriving IP packets are queued on a per-client-IP basis*
- Queues are serviced in a round-robin manner
- Queue blocks when its CIT is empty
- Packet(s) are dequeued to form a Content Object
- CIT entry is dequeued to form CO name
- CO includes a CO Sequence Number (monotonically increasing, with rollover)
 - CO Sequence Number space is independent of Interest Sequence Number space
- Client: Upon receipt of a Content Object
 - De-encapsulate IP packet(s) and add to resequencer for delivery to IP stack

3/20/18 IETF 101 - ICNRG 24