Gibbs sampler and MCMC (R scripts)

Jingchen (Monika) Hu

MATH 347 Bayesian Statistics

Installing the necessary packages

```
install.packages("devtools")
require(devtools)
devtools::install_github("bayesball/ProbBayes")

require(ggplot2)
require(gridExtra)
require(ProbBayes)
require(tidyverse)
crcblue <- "#2905a1"</pre>
```

Example: Expenditures in the Consumer Expenditure Surveys The TOTEXPPQ variable in the CE sample

```
CEsample <- read_csv("CEsample1.csv")</pre>
summary(CEsample$TotalExpLastQ)
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                               Max.
##
              3522
                                      11450 1270598
        30
                      6417
                              9513
sd(CEsample$TotalExpLastQ)
## [1] 19341.25
ggplot(data = CEsample, aes(TotalExpLastQ)) +
  geom_density(color = crcblue, size = 1) +
  labs(title = "Total expenditure last Q") +
  theme_grey(base_size = 8, base_family = "")
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## i Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
```


$\label{log_transformation} \mbox{Log transformation of the TOTEXPPQ variable}$

```
CEsample$LogTotalExpLastQ <- log(CEsample$TotalExpLastQ)
ggplot(data = CEsample, aes(LogTotalExpLastQ)) +
  geom_density(color = crcblue, size = 1) +
  labs(title = "Total expenditure last Q (log)") +
  theme_grey(base_size = 8, base_family = "")</pre>
```

Total expenditure last Q (log)

The Normal distribution

```
ggplot(data = data.frame(y = c(-5, 5)), aes(y)) +
  stat_function(fun = dnorm, args = list(mean = 0, sd = 0.5), aes(color = "Normal(0, 0.5)")) +
  stat_function(fun = dnorm, args = list(mean = 0, sd = 1), aes(color = "Normal(0, 1)")) +
  stat_function(fun = dnorm, args = list(mean = 0, sd = 2), aes(color = "Normal(0, 2)")) +
  stat_function(fun = dnorm, args = list(mean = -2, sd = 0.5), aes(color = "Normal(-2, 0.5)"))
  ylab("f(y)")
```


Prior and posterior distributions for mean AND standard deviation

Some derivations

Notice that we have unknown μ and σ here. They are **both** unknown. And we derive the full conditional posterior distributions (conditioning on all of the data and every other parameters, even though they are unknown).

e.g.

- $\mu | y_1, ..., y_n, \phi$
- $\phi|y_1,...,y_n,\mu$

Assuming independence, joint density = product of marginal density

$$\pi(\mu, \sigma) = \pi_1(\mu)\pi_2(\sigma) \tag{1}$$

$$L(\mu, \sigma) = f(y_1, ..., y_n | \mu, \sigma)$$
(2)

$$\implies \pi(\mu, \sigma | y_1, ..., y_n) \propto \pi(\mu, \sigma) L(\mu, \sigma)$$
 (3)

Then we need to derive the probability distribution of $\mu|y_1,...,y_n,\phi$ and $\phi|y_1,...,y_n,\mu$

$$\pi(\mu, \sigma) = \pi_1(\mu)\pi_2(\sigma) \tag{4}$$

$$= \frac{1}{\sqrt{2\pi\sigma_0^2}} exp(-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}) \frac{\beta^{\alpha}}{\Gamma(\alpha)} (\frac{1}{\sigma^2})^{\alpha - 1} exp(-\frac{\beta}{\sigma^2})$$
 (5)

$$L(\mu, \sigma) = f(y_1, ..., y_n | \mu, \sigma) \tag{6}$$

$$= \prod_{i=1}^{n} \left[\frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{(y_i - \mu)^2}{2\sigma^2}\right) \right]$$
 (7)

$$= \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n exp\left(-\frac{\sum (y_i - \mu)^2}{2\sigma^2}\right) \tag{8}$$

Since

$$\pi(\mu, \sigma | y_1, ..., y_n) \propto \pi(\mu, \sigma) L(\mu, \sigma) \tag{9}$$

so we have

$$\pi(\mu|y_1, ..., y_n, \sigma) \propto exp(-\frac{(\mu - \mu_0)^2}{2\sigma_0^2})exp(-\frac{\sum (y_i - \mu)^2}{2\sigma^2})$$
 (10)

$$\pi(\frac{1}{\sigma^2}|y_1, ..., y_n, \mu) \propto (\frac{1}{\sigma^2})^{\alpha - 1} exp(-\frac{\beta}{\sigma^2}) (\frac{1}{\sigma^2})^{\frac{n}{2}} exp(-\frac{\sum (y_i - \mu)^2}{2\sigma^2})$$
(11)

In general, let's say we have 4 unknown parameters $\theta_1, \theta_2, \theta_3, \theta_4$ and the joint prior $\pi(\theta_1, \theta_2, \theta_3, \theta_4)$ and the likelihood $L(\theta_1, \theta_2, \theta_3, \theta_4)$. Then we have $\pi(\theta_1, \theta_2, \theta_3, \theta_4|y_1, ..., y_n) \propto \pi(\theta_1, \theta_2, \theta_3, \theta_4)L(\theta_1, \theta_2, \theta_3, \theta_4)$.

And then, we get

- $\pi(\theta_1|-) \propto ...$
- $\pi(\theta_2|-) \propto \dots$
- $\pi(\theta_3|-) \propto \dots$
- $\pi(\theta_4|-) \propto ...$

Use R/RStudio to run a Gibbs sampler

```
gibbs_normal <- function(input, S, seed){
  set.seed(seed)
  ybar <- mean(input$y)
  n <- length(input$y)
  para <- matrix(0, S, 2) # Sx2 zero matrix</pre>
```

```
phi <- input$phi_init
for(s in 1:S){
    mu1 <- (input$mu_0/input$sigma_0^2 + n*phi*ybar)/
    (1/input$sigma_0^2 + n*phi)
    sigma1 <- sqrt(1/(1/input$sigma_0^2 + n*phi))
    mu <- rnorm(1, mean = mu1, sd = sigma1)
    alpha1 <- input$alpha + n/2
    beta1 <- input$beta + sum((input$y - mu)^2)/2
    phi <- rgamma(1, shape = alpha1, rate = beta1)
    para[s, ] <- c(mu, phi)
}
para }</pre>
```

• Run the Gibbs sampler:

```
input <- list(y = CEsample$LogTotalExpLastQ, mu_0 = 5,sigma_0 = 1,
alpha = 1, beta = 1,phi_init = 1)
output <- gibbs_normal(input, S = 10000, seed = 123)</pre>
```

• Extract posterior draws of mu and phi from the Gibbs sampler output:

```
para_post <- as.data.frame(output)
names(para_post) <- c("mu", "phi")

ggplot(para_post, aes(mu)) +
  geom_density(size = 2, color = crcblue) +
  labs(title = "Posterior draws of mu") +
  theme_grey(base_size = 8,
  base_family = "")</pre>
```

Posterior draws of mu


```
quantile(para_post$mu, c(0.025,0.975))
```

97.5%

##

2.5%

```
## 8.725482 8.769543
ggplot(para_post, aes(phi)) +
  geom_density(size = 2, color = crcblue) +
  labs(title = "Posterior draws of phi") +
  theme_grey(base_size = 8,
  base_family = "")
```

Posterior draws of phi


```
quantile(para_post$phi, c(0.025,0.975))
```

```
## 2.5% 97.5%
## 1.206482 1.294191
```

• Exercise 1: Update the Gibbs sampler to initiate it with mu_init. Compare your results to the existing results. You should get similar results meaning that it doesn't matter you start with μ or ϕ if indeed the Gibbs sampler has converted to the true posterior, you can even try different initial values.

```
gibbs_normal <- function(input, S, seed){
    set.seed(seed)
    ybar <- mean(input$y)
    n <- length(input$y)
    para <- matrix(0, S, 2) # Sx2 zero matrix
    mu <- input$mu_init # change here
    for(s in 1:S){
        # start with phi first
        alpha1 <- input$alpha + n/2
        beta1 <- input$beta + sum((input$y - mu)^2)/2
        phi <- rgamma(1, shape = alpha1, rate = beta1)

mu1 <- (input$mu_0/input$sigma_0^2 + n*phi*ybar)/
        (1/input$sigma_0^2 + n*phi)</pre>
```

```
sigma1 <- sqrt(1/(1/input$sigma_0^2 + n*phi))
mu <- rnorm(1, mean = mu1, sd = sigma1)
para[s, ] <- c(mu, phi)
}
para }</pre>
```

• Exercise 2: Update the Gibbs sampler to initiate it with mu_init and phi_init. Compare your results to the existing results.

If it converges, eventually the results should be the same.

Use JAGS (Just Another Gibbs Sampler) and Bayesian inferences

JAGS for unknown mean and standard deviation case

- R package runjags to run Markov chain Monte Carlo simulations.
- Descriptive of the sampling model and the prior.
- Installing JAGS software and runjags R package
 - Download JAGS at this link
 - Install and load runjags R package

```
#install.packages("runjags")
```

library(runjags)

- Only need to focus on the sampling density and the prior:
 - The sampling density:

$$y_1, \dots, y_n \mid \mu, \sigma \stackrel{i.i.d.}{\sim} \text{Normal}(\mu, \sigma).$$

- The prior distributions:

$$\mu \sim \text{Normal}(\mu_0, \sigma_0),$$

 $1/\sigma^2 = \phi \sim \text{Gamma}(\alpha, \beta).$

```
modelString <- "
model{

# The sampling density
for (i in 1:N) {
    y[i] ~ dnorm(mu, phi)
}

# The prior distributions
mu ~ dnorm(mu_0, phi_0)
phi ~ dgamma(alpha, beta)
}
"</pre>
```

• Pass the data and hyperparameter values to JAGS:

```
y <- CEsample$LogTotalExpLastQ
N <- length(y)
the_data <- list("y" = y, "N" = N, "mu_0" = 5, "phi_0" = 1/1^2,
"alpha" = 1,"beta" = 1)</pre>
```

• Run the JAGS code for this model:

```
posterior <- run.jags(modelString,</pre>
                  data = the_data,
                  monitor = c("mu", "phi"),
                  n.chains = 1,
                  adapt = 1000,
                  burnin = 2000,
                  sample = 5000,
                  thin = 1)
## Compiling rjags model...
## Calling the simulation using the rjags method...
## Note: the model did not require adaptation
## Burning in the model for 2000 iterations...
## Running the model for 5000 iterations...
## Simulation complete
## Calculating summary statistics...
## Warning: Convergence cannot be assessed with only 1 chain
## Finished running the simulation
```

• Obtain posterior summaries of mu and phi:

```
summary(posterior)
```

```
MCerr MC%ofSD
##
       Lower95
                  Median Upper95
                                      Mean
                                                   SD Mode
## mu 8.725792 8.747913 8.770037 8.747900 0.01129891
                                                        NA 0.0001552814
                                                                             1.4
## phi 1.204248 1.250242 1.291397 1.250135 0.02229710
                                                        NA 0.0003153286
                                                                             1.4
##
       SSeff
                    AC.10 psrf
        5295 -0.004944652
                            NA
## phi 5000 0.013941605
```

MCMC diagnostics

Trace plots example

```
plot(posterior, vars = "mu")
## Generating plots...
```


ACF plots example

```
plot(posterior, vars = "mu")
```

Generating plots...

Effective sample size example

• The column of SSeff; recall sample is 5000.

```
summary(posterior)
##
        Lower95
                  Median Upper95
                                                    SD Mode
                                                                   MCerr MC%ofSD
                                      Mean
## mu 8.725792 8.747913 8.770037 8.747900 0.01129891
                                                         NA 0.0001552814
                                                                              1.4
  phi 1.204248 1.250242 1.291397 1.250135 0.02229710
                                                         NA 0.0003153286
                                                                              1.4
##
       SSeff
                    AC.10 psrf
  mu
        5295 -0.004944652
                            NA
## phi
        5000 0.013941605
```

MCMC diagnostics for the CE example

```
plot(posterior, vars = "mu")
```

Generating plots...

MCMC diagnostics for the CE example cont'd

```
plot(posterior, vars = "phi")
```

Generating plots...

Gelman-Rubin diagnostics example

• Create intinial values of mu and phi:

• Feed in inits1 and inits2, and let n.chains = 2:

```
## Compiling rjags model...
```

^{##} Calling the simulation using the rjags method...

```
## Note: the model did not require adaptation
## Burning in the model for 2000 iterations...
## Running the model for 5000 iterations...
## Simulation complete
## Calculating summary statistics...
## Calculating the Gelman-Rubin statistic for 2 variables....
## Finished running the simulation
```

Gelman-Rubin diagnostics example cont'd

• Return psrf from the output, as Gelman-Rubin diagnostic results:

posterior_2chains\$psrf

MCMC diagnostics for the CE example, 2 chains

```
plot(posterior_2chains, vars = "mu")
## Generating plots...
```


Useful diagnostics/functions in coda package

• One needs to convert parameter draws into an MCMC object. For example:

```
# install.packages("coda")

library(coda)
output <- gibbs_normal(input, S = 10000, seed = 123)
para_post = as.data.frame(output)
names(para_post) = c("mu", "phi")</pre>
```

• Then one can perform MCMC diagnostics. For example:

```
mu.mcmc = as.mcmc(para_post$mu)
traceplot(mu.mcmc)
```


autocorr.plot(mu.mcmc)


```
effectiveSize(mu.mcmc)
```

var1 ## 10355.44

gelman.diag(mu.mcmc)

Note: gelman.diag() needs at least 2 chains.

Recap