ENGR-E 533 "Deep Learning Systems" Lecture 03: Deep Learning Toolboxes

Minje Kim

Department of Intelligent Systems Engineering

Email: minje@indiana.edu

Website: http://minjekim.com

Research Group: http://saige.sice.indiana.edu
Meeting Request: http://doodle.com/minje

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Intro to the GPU Resources

- A little bit about GPU computing
 - GPUs are different from CPUs in terms of their number of cores
 - Tesla V100 has 5120 FP32 cores
 - A better choice for a task with many simple sub-tasks, such as matrix multiplication
 - Each core is much less powerful than a usual CPU core
- o Common packages you might need
 - Tensorflow or PyTorch
 - You may want to use some even higher lever wrappers like Keras, but I wouldn't cover them during the class
 - Jupyter
 - A nice interactive development framework
 - Tensorboard
 - If you want to see what's going on in your network

Baby TensorFlow

- Computational Graphs
- In TF things are represented with computational graphs
 - That consist of tensors and operations on them
- Building and running the computational graphs are separate
 - You define the graph first
 - This procedure is to represent what you want to do symbolically
 - It doesn't do any computation
 - · Running the graph
 - Visit the graph nodes as required by the session's **run** method
 - Actually does the computation
- o What for?
 - · One obvious reason is to make your life easier by doing differentiation for you
 - So, it does the differentiation on the symbolic representations
 - And then actually calculate the gradient when you run the graph

Baby TensorFlow

- Tensors

- Three different kinds of tensors
 - tf.Variable: something TF can change
 - tf.placeholder: something you can change
 - tf.constant: something nobody doesn't change once initialized
- o For example,
 - You want to train a classifier from a very large training dataset $m{Y} pprox \mathcal{G}(m{X}; \mathbb{W})$

$$rac{\partial \mathcal{E}}{\partial m{W}^{(2)}} = (\hat{m{Y}} - m{Y}) m{H}^ op$$
 A heavy matrix operation, maybe too large for the main memory

- So, you want to do something called **Stochastic** Gradient Descent (SGD), where
 - You sample a data point and calculate the gradient by using it
 - Or, you divide the entire data matrix into smaller pieces, called **minibatches** and calculate gradients for each of them
- Then.
 - tf. Variable: $W^{(2)}$ You can set TF to update them during the run (of course you can initialize them as you want)

 - tf.constant: vector of ones for bias Once initialized nobody cares about this

This will be a very large data matrix

Baby TensorFlow

- Running the graph
- o If everything is symbolic, when do we actually do the operation?
 - In TF, there's a concept called "session" where all the variables and operations are actually taken care of
 - tf.session.run(fetches, feed dict=None, ...)
 - fetches: The graph element you want to run
 - feed_dict: You can assign some values to the placeholder tensors
- o Chain reaction
 - Running a graph element means running all the operations and evaluating tensors that are necessary for the fetched one
- o For example,
 - You are interested in the training cost $\mathcal{E} = -\sum_t \sum_{c,t} Y_{c,t} \log \hat{Y}_{c,t}$
 - You define this cost as a graph element
 - If you do sess. run() on it, you need to know \hat{Y} , the prediction of the class labels
 - sess.run() traverses the graph to get this done
- o tf.gradients(cost, variables)
 - Does the differentiation w.r.t. the variables
 - · Most of the time you'll use a wrapper that calls this function internally

Baby PyTorch

- Difference between TF and PyTorch

- o The look
 - TF: you construct the graph first and then run the graph
 - PT: it does construct the graph but things are more seamless
 - Therefore the source code is more similar to the regular numpy codes
- The tensors
 - TF: there are three different types of tensors
 - PT: a tensor is basically an N-dimensional array that has nothing to do with deep learning
 - But you can specify a tensor in the GPU memory if you want
 - torch.autograd.Variable defines a wrapper that turns a tensor into a PT variable
 - With which you can do all the cool things like automatic gradient calculation
- GPU computing
 - TF: if the same operation has two kernels for both CPU and GPU computing, GPU version gets the priority
 - PT: there are some predefined GPU data types and a way to convert tensors
 - e.g. torch. FloatTensor versus torch. **cuda**. FloatTensor
 - cuda(): copies the tensor in the GPU memory

Baby PyTorch

- Difference between TF and PyTorch
- The gradients
 - TF: tf.gradients(cost, variables) differentiates the cost function w.r.t. the variable during the graph construction
 - The procedure is symbolic, so are the derivatives
 - PT: all variables have their own . grad component that holds the actual gradient values
 - It's called "autograd" so things are still automatic, but treated differently
 - When . backward() method is called, the node is differentiated w.r.t. the leaf nodes in a recursive way
 - To do so, the forward pass records the input to the node
 - The backward pass calculate the gradients of all the intermediate nodes on the way back

TF versus PT

- TensorFlow
 - Google
 - Seems to have a larger user community
 - Said to be better in building a serious project

- PyTorch
 - Facebook
 - · Rapidly evolving
 - Easier to quickly see the proof of concept

I do have my own preference, but for this course choose whatever you prefer

Minje Kim

Department of Intelligent Systems Engineering

Email: minje@indiana.edu

Website: http://minjekim.com

Research Group: http://saige.sice.indiana.edu
Meeting Request: http://doodle.com/minje