amino-6-chloroparine, hypoxanthine, inosine and xanthine; 7-deaza-8-aza derivatives adenine, guanine, 2-aminopurine, 2,6-diaminopurine, 2-amino-6-chloropurine, hypoxanthine, inosine and xanthine; 1-deaza derivatives of 2-aminopurine, 2,6-diaminopurine, 2-amino-6-chloropurine, hypoxanthine, inosine and xanthine; 7-deaza derivatives of 2-aminopurine, 2,6-diaminopurine, 2-amino-6-chloropurine, hypoxanthine, inosine and xanthine; 3-deaza derivatives of 2-aminopurine, 2,6-diaminopurine, 2-amino-6-chloropurine, hypoxanthine, inosine and xanthine; 6-azacytosine; 5-fluorocytosine; 5-chlorocytosine; 5-iodocytosine; 5-bromocytosine; 5-methylcytosine; 5-bromovinyluracil; 5-fluorouracil; 5-chlorouracil; 5-iodouracil; 5-bromouracil; 5-trifluoromethyluracil; 5-methoxymethyluracil; 5-ethynyluracil; 5-propynyluracil and the like.

Preferably, B is a 9-purinyl residue selected from guanyl, 3-deazaguanyl, 1-deazaguanyl, 8-azaguanyl, 7-deazaguanyl, adenyl, 3-deazaadenyl, 1-deazaadenyl, 8-azaadenyl, 7-deazaadenyl, 2,6-diaminopurinyl, 2-aminopurinyl, 6-chloro-2-aminopurinyl and 6-thio-2-aminopurinyl, or a B is a 1-pyrimidinyl residue selected from cytosinyl, 5-halocytosinyl, and 5-(C1-C3-alkyl)cytosinyl.

The invention compounds, such as those of the formulas $(L^1)(RO)P(O)$ -Z-B, are optionally esterified at the phosphorus atom by the group R defined above.

Exemplary R groups include X^1 , X^2 , X^3 , R^5 , NHR^{6A} and N(R^{6A}), wherein X^1 is selected from the group consisting of 2- and 3-pyrrolyl, 2- and 3-thienyl, 2- and 4-imidazolyl, 2-, 4- and 5-oxazolyl, 3- and 4-isoxazolyl, 2-, 4- and 5-thiazolyl, 3-, 4- and 5-isothiazolyl, 3- and 4-pyrazolyl, 1-, 2-, 3- and 4-pyridinyl, and 2-, 4- and 5-pyrimidinyl;

X² is selected from the group consisting of phenyl, benzyl,
-C₆H₄CH₂-N(CH₃)₂, 2-, 3- and 4-alkoxyphenyl (C₁-C₁₂ alkyl including 2-, 3- and 4methoxyphenyl and 2-, 3- and 4-ethoxyphenyl), 2-, 3- and 4-halophenyl (including 2-, 3and 4-fluorophenyl), 2,3-, 2,4-, 2,5-, 2,6-, 3,4- and 3,5-dihalophenyl (including 2,4difluorophenyl and 2,4-dichlorophenyl), 2-, 3- and 4-haloalkylphenyl (1 to 5 halogen

atoms, C1-C12 alkyl including 2-, 3- and 4-trifluoromethylphenyl and 2-, 3-, and 4-trichloromethylphenyl), 2-, 3- and 4-cyanophenyl, carboalkoxyphenyl (C1-C4 alkyl including 2-, 3- and 4-carboethoxyphenyl (-C6H4-C(O)-OC2H5) and 2,3-, 2,4-, 2,5-, 2,6-, 3,4- and 3,5-dicarboethoxyphenyl), 2-, 3-, and 4-nitrophenyl, 2-, 3- and 4-haloalkylbenzyl (1 to 5 halogen atoms (C1-C12 alkyl including 4-trifluoromethylbenzyl), alkylsalicylphenyl (C1-C4 alkyl including 2-, 3- and 4-ethylsalicylphenyl), 2-, 3- and 4-acetylphenyl, phenyl substituted by methoxy, ethoxy, OH, NH2, halo, C1-C4 alkyl or C1-C4 alkyl substituted by OH or by 1 to 3 halo atoms, and -C10H6OH; and

 X^3 is selected from the group consisting of alkoxy ethyl (C1-C6 alkyl including -CH2-CH2-O-CH3),

$$\sim$$

adamantoyloxymethyl, pivaloyloxy(methoxyethyl)methyl (-CH(CH2CH2OCH3)-O-C(O)-C(CH3)3), 1-adamantane-carbonyloxymethyleneoxymethyl-, pivaloyloxymethyl (-CH2-O-C(O)-C(CH3)3), pivaloyloxy(methoxymethyl)-methyl (-CH(CH2OCH3)-O-C(O)-C(CH3)3, pivaloyloxyisobutyl (-CH(CH(CH3)2)-O-C(O)-C(CH3)3), isobutyryloxymethyl (-CH2-O-C(O)-CH2-CH(CH3)2), cyclohexanoyloxymethyl (-CH2-O-C(O)-C6H11), isopropyl (-CH(CH3)2), t-butyl (-C(CH3)3), -CH2-CH3, -(CH2)2-CH3, -(CH2)3-CH3, -(CH2)4-CH3, -(CH2)5-CH3, -CH2-CH2F, -CH2CH2Cl, -CH2-CF3 and -CH2-CCl3;

or two R groups are joined to form substituents selected from the group consisting of -C10H6- and -C6H4C6H4-, $\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2}$

wherein R^5 is selected from the group consisting of $CH_2C(O)N(R^{6A})_2$, $CH_2C(O)OR^{6A}$, $CH_2OC(O)R^{6A}$, $CH(R^{6A})OC(O)R^{6A}$, $CH_2C(R^{6A})_2CH_2OH$, CH_2OR^{6A} , NH- CH_2 -C(O)O- CH_2CH_3 , $N(CH_3)$ - CH_2 -C(O)O- CH_2CH_3 , NHR^{40} ,

CH₂-O-C(O)-C₆H₅, CH₂-O-C(O)-C₁₀H₁₅, -CH₂-O-C(O)-CH₂CH₃, CH₂-O-C(O)-CH(CH₃)₂, CH₂-O-C(O)-C(CH₃)₃, and CH₂-O-C(O)-CH₂-C₆H₅;

wherein R^{6A} is selected from the group consisting of C_1 - C_{20} alkyl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N and halogen (1 to 5 halogen atoms), C_6 - C_{20} aryl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N and halogen (1 to 5 halogen atoms) or C_7 - C_{20} aryl-alkyl which is unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N and halogen (1 to 5 halogen atoms), wherein O and N are substituted for carbon and provided that the total number of R^5 or R carbon atoms is less than 25 (preferably about 4 - about 14) for compounds where R^5 or R is selected from the group consisting of $N(R^{6A})_2$, $CH_2C(O)N(R^{6A})_2$, $CH_2C(O)OR^{6A}$, $CH_2OC(O)R^{6A}$, CH_2

wherein R^{40} is C_1 - C_{20} alkyl.

The invention compounds are optionally alkylated at the α -nitrogen atom of the amino acid by the R^1 group defined above. Exemplary R^1 groups include H, CH3, CH2CH3, benzyl, 4-O-N-methylpiperidinyl

methylpiperidinyl and the like.

The invention compounds are optionally esterified at the amino acid carboxyl moiety by the R⁴ group defined above. Exemplary R⁴ groups include H, methyl, ethyl, propyl, isopropyl, Easyl, t-butyl (C(CH3)3), phenyl (-C6H5), benzyl (-CH2-C6H5), 1-pyridyl, 3-pyridyl, 1-pyrimidinyl, N-ethylmorpholino

(-CH₂-CH₂-N[(CH₂)₂(CH₂)₂]O), N-2-propylmorpholino (-CH(CH₃)-CH₂-N[(CH₂)₂(CH₂)₂]O), methoxyethyl (-CH₂-CH₂-O-CH₃), 4-N-methylpiperidyl (-CH[(CH₂)₂(CH₂)₂]N(CH₃)), 3-N-methylpiperidyl, phenol which is 2-, 3-, or 4-substituted by N(R³⁰)₂ where R³⁰ is independently H or C₁-C₆ alkyl unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N, COOR⁴ and halogen or C₆-C₁₂ aryl unsubstituted or substituted by substituents independently selected from the group consisting of OH, O, N, COOR⁴, N(R⁷)₂ and halogen (including 2-, 3-, and 4-N,N-dimethylaminophenol and 2-, 3-, and 4-N,N-diethylaminophenol), 1-ethylpiperazinyl

[; -CH2-CH2-NC4H8NH], and N⁴-substituted 1-ethyl-piperazinyl (-(CH2)2-N[(CH2)2]NR², where \mathbb{R}^2 is as \mathbb{C} fined above).

Additional compounds that are included in the invention are nucleotide analog dimers that are linked via an amino or carboxyl group. As used herein, dimers (or trimers) refer to the presence of two (or three) nucleoside residues that comprise a compound. Thus, a $-L^1$ -P(O)(L^1)-Z-B or $-P(O)(L^1)$ -Z-B radical covalently linked to a $-L^1$ -P(O)(L^1)-Z-B or $-P(O)(L^1)$ -Z-B radical gives B-Z-P(O)(L^1)-P(O)(L^1)-Z-B, B-Z-P(O)(L^1)-L1-P(O)(L^1)-Z-B or B-Z-P(O)(L^1)-L1-L1-P(O)(L^1)-Z-B.