

# COMP 2211 Exploring Artificial Intelligence Multilayer Perceptron - Derivation of Backpropagation Dr. Desmond Tsoi

Department of Computer Science & Engineering
The Hong Kong University of Science and Technology, Hong Kong SAR, China



## Sigmoid Function

 Sigmoid function is typically used as a transfer function between neurons. It is continuous and differentiable:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Useful property of sigmoid function is the simplicity of computing its derivative.

$$\frac{d\sigma}{dx} = \sigma(x)(1 - \sigma(x))$$

#### Error Calculation

• Given a set of training data point  $t_k$  and output layer output  $O_k$ , we can write the error as:

$$E = \frac{1}{2} \sum_{k \in K} (O_k - t_k)^2$$

- We want to calculate  $\frac{\partial E}{\partial W_{ij}}$  and  $\frac{\partial E}{\partial W_{jk}}$ . The rate of change of the error with respect to the given connective weight, so we can minimize them.
- Now, we consider two cases:
  - 1. Output layer node
  - 2. Hidden layer node

## Case 1: Output Layer Node

$$\begin{split} E &= \frac{1}{2} \sum_{k \in K} (O_k - t_k)^2 \\ \frac{\partial E}{\partial W_{jk}} &= \frac{\partial (\frac{1}{2} \sum_{k \in K} (O_k - t_k)^2)}{\partial W_{jk}} \\ &= (O_k - t_k) \frac{\partial O_k}{\partial W_{jk}} = (O_k - t_k) \frac{\partial \sigma(x_k)}{\partial W_{jk}} \\ &= (O_k - t_k) \sigma(x_k) (1 - \sigma(x_k)) \frac{\partial x_k}{\partial W_{jk}} \\ &= (O_k - t_k) O_k (1 - O_k) O_j \end{split}$$

#### Note

The summation disappears in the derivative. It is because when we take the partial derivative with respect to the j-th node, the only term that survives in the error is j-th, and thus we can ignore the remaining terms in the summation.

- $\bullet \ \frac{\partial x_k}{\partial W_{jk}} = \frac{\partial (W_{jk}O_j)}{\partial W_{jk}} = O_j$
- For notation purposes, define  $\delta_k$  to be the expression  $(O_k t_k)O_k(1 O_k)$ , so we can rewrite the equation above as

$$\frac{\partial E}{\partial W_{jk}} = O_j \delta_k$$

## Case 2: Hidden Layer Node

$$\begin{split} \frac{\partial \mathcal{E}}{\partial W_{ij}} &= \frac{\partial (\frac{1}{2} \sum_{k \in \mathcal{K}} (O_k - t_k)^2)}{\partial W_{ij}} = \sum_{k \in \mathcal{K}} (O_k - t_k) \frac{\partial O_k}{\partial W_{ij}} = \sum_{k \in \mathcal{K}} (O_k - t_k) \frac{\partial \sigma(x_k)}{\partial W_{ij}} \\ &= \sum_{k \in \mathcal{K}} (O_k - t_k) \sigma(x_k) (1 - \sigma(x_k)) \frac{\partial x_k}{\partial W_{ij}} = \sum_{k \in \mathcal{K}} (O_k - t_k) O_k (1 - O_k) \frac{\partial x_k}{\partial O_j} \cdot \frac{\partial O_j}{\partial W_{ij}} \\ &= \sum_{k \in \mathcal{K}} (O_k - t_k) O_k (1 - O_k) \frac{\partial (W_{jk} O_j)}{\partial O_j} \cdot \frac{\partial O_j}{\partial W_{ij}} \\ &= \sum_{k \in \mathcal{K}} (O_k - t_k) O_k (1 - O_k) W_{jk} \cdot \frac{\partial O_j}{\partial W_{ij}} = \frac{\partial O_j}{\partial W_{ij}} \cdot \sum_{k \in \mathcal{K}} (O_k - t_k) O_k (1 - O_k) W_{jk} \\ &= \frac{\partial \sigma(x_j)}{\partial x_j} \cdot \sum_{k \in \mathcal{K}} (O_k - t_k) O_k (1 - O_k) W_{jk} \\ &= \frac{\partial \sigma(x_j)}{\partial x_j} \cdot \frac{\partial x_j}{\partial W_{ij}} \cdot \sum_{k \in \mathcal{K}} (O_k - t_k) O_k (1 - O_k) W_{jk} \end{split}$$

#### Note

The summation does not disappear because the layers are fully connected, each of the hidden unit outputs affect the state of each output unit.

# Case 2: Hidden Layer Node (Cont'd)

$$\begin{split} \frac{\partial E}{\partial W_{ij}} &= \sigma(x_j)(1 - \sigma(x_j)) \frac{\partial x_j}{\partial W_{ij}} \cdot \sum_{k \in K} (O_k - t_k) O_k (1 - O_k) W_{jk} \\ &= O_j (1 - O_j) \frac{\partial x_j}{\partial W_{ij}} \cdot \sum_{k \in K} (O_k - t_k) O_k (1 - O_k) W_{jk} \\ &= O_j (1 - O_j) \frac{\partial (W_{ij} O_i)}{\partial W_{ij}} \cdot \sum_{k \in K} (O_k - t_k) O_k (1 - O_k) W_{jk} \\ &= O_j (1 - O_j) O_i \cdot \sum_{k \in K} (O_k - t_k) O_k (1 - O_k) W_{jk} \\ &= O_i O_j (1 - O_j) \sum_{k \in K} \delta_k W_{jk} \end{split}$$

• Similar to before, we will define all terms besides  $O_i$  to be  $\delta_j = O_j(1 - O_j) \sum_{k \in K} \delta_k W_{jk}$ , so we have

$$\frac{\partial E}{\partial W_{ii}} = O_i \delta_j$$

## How Weights Affect Errors?

• For an output layer node  $k \in K$ 

$$\frac{\partial E}{\partial W_{jk}} = O_j \delta_k$$

where 
$$\delta_k = (O_k - t_k)O_k(1 - O_k)$$

• For a hidden layer node  $j \in J$ 

$$\frac{\partial E}{\partial W_{ij}} = O_i \delta_j$$

where 
$$\delta_j = O_j(1 - O_j) \sum_{k \in K} \delta_k W_{jk}$$

### How About the Bias?

ullet If we incorporate the bias term heta into the equation you will find that

$$\frac{\partial O}{\partial \theta} = 1$$

• This is why we view the bias term as output from a node which is always one. This holds for any layer *I*, a substitution into the previous equations gives us that

$$\frac{\partial E}{\partial \theta} = \delta_I$$

# The Back Propagation Algorithm using Gradient Descent

- 1. Run the network forward with your input data to get the network output.
- 2. For each output node, compute

$$\delta_k = (O_k - t_k)O_k(1 - O_k)$$

3. For each hidden node, compute

$$\delta_j = O_j(1 - O_j) \sum_{k \in K} \delta_k W_{jk}$$

- 4. Update the weights and biases as follows:
  - Given

$$\Delta W_{xy} = -\eta \delta_y O_x$$
$$\Delta \theta = -\eta \delta_y$$

Apply

$$W_{xy} \leftarrow W_{xy} + \Delta W_{xy}$$
  
 $\theta \leftarrow \theta + \Delta \theta$ 

where  $\eta$  denotes learning rate. Typically,  $\eta$  is a value between 0 and 1.

That's all!

Any questions?

