Prova Modelo de Exame Nacional de Matemática A Prova 635 | Ensino Secundário | Junho de 2016 | adaptada para 2020 12° Ano de Escolaridade

Simulação de Prova 635

Duração da Prova: 150 minutos. | Tolerância: 30 minutos.

9 Páginas

- Utilize apenas caneta ou esferográfica de tinta azul ou preta.
- Não é permitido o uso de corretor. Risque aquilo que pretende que não seja classificado.
- É permitido o uso de régua, compasso, esquadro e transferidor.
- Apresente apenas uma resposta para cada item.
- As cotações dos itens encontram-se no final da prova.

- A prova inclui um formulário.
- Nas respostas aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.
- Nas respostas aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as
 justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente
 sempre o valor exato.
- Itens cujas respostas contribuem obrigatoriamente para a classificação final:

7.1, **10.1**, **13.1** e **13.2**

Estes itens estão assinalados no enunciado através de uma moldura que os rodeia.

• Dos restantes 14 itens da prova, apenas contribuem para a classificação final os 8 itens cujas respostas obtenham melhor pontuação.

Prova modelo n.º 3 Autor: Carlos Frias Página 1 de 9

Formulário

Geometria

Comprimento de um arco de circunferência

 αr (α - amplitude, em radianos, do ângulo ao centro; r - raio)

Área de um polígono regular:

 $Semiperimetro \times Apótema$

Área de um sector circular:

 $\frac{\alpha r^2}{2}$ (α - amplitude, em radianos, do ângulo ao centro; r - raio)

Área lateral de um cone:

 πrg (r - raio da base; g - geratriz)

Área de uma superfície esférica:

 $4\pi r^2$ (r - raio)

Volume de uma pirâmide:

 $\frac{1}{3} \times \acute{A}rea\ da\ base \times Altura$

Volume de um cone:

 $\frac{1}{3} \times \acute{A}rea\ da\ base \times Altura$

Volume de uma esfera:

 $\frac{4}{3}\pi r^3 \ (r - raio)$

Progressões:

Soma dos n primeiros termos de uma progressão (u_n) :

Progressão aritmética:

$$\frac{u_1 + u_n}{2} \times n$$

Progressão geométrica:

$$u_1 \times \frac{1 - r^n}{1 - r}$$

Trigonometria

$$\sin(a+b) = \sin a \cos b + \sin b \cos a$$
$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

Complexos

$$\begin{split} \left(\rho e^{i\theta}\right)^n &= \rho^n e^{in\theta} \\ \sqrt[n]{\rho e^{i\theta}} &= \sqrt[n]{\rho} e^{i\frac{\theta+2k\pi}{n}} \ (k \in \{0,...,n-1\} \ \text{e} \ n \in \mathbb{N}) \end{split}$$

Regras de derivação

$$(u+v)' = u' + v'$$

$$(uv)' = u'v + uv'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$(u^n)' = nu^{n-1}u' \ (n \in \mathbb{R})$$

$$(\sin u)' = u' \cos u$$

$$(\cos u)' = -u' \sin u$$

$$(\tan u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u'e^u$$

$$(a^u)' = u'a^u \ln a \ (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \ln a} \ (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim_{x \to 0} \left(1 + \frac{1}{n}\right)^n = e \ (n \in \mathbb{N})$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \ (p \in \mathbb{R})$$

1. (a_n) é a progressão geométrica de razão e, cujo primeiro termo é igual a 2. Considere também a sucessão (b_n) de termo geral $b_n = \ln(a_n)$.

Qual é o valor exato da soma dos dez primeiros termos da sucessão (b_n) ?

- (A) $4.5 + 2 \ln(2)$
- **(B)** $5 \ln \left(4 \cdot e^9 \right)$
- (C) $\frac{2 \cdot e^{10} 2}{e 1}$ (D) $\frac{2}{1 e}$
- 2. No plano complexo da figura está representado um quadrado [ABCD] e um triângulo equilátero [BEF], ambos centrados na origem.

Sabe-se que:

- o perímetro de [ABCD] é $4\sqrt{2}$
- $\frac{7\pi}{18}$ rad é um argumento do número complexo cuja imagem geométrica é o ponto A
- ullet A, B, C e D são as imagens geométricas das raízes quartas de um número complexo z
- ullet B, E e F são as imagens geométricas das raízes cúbicas de um número complexo w

Determine $z^9 + w$, sem utilizar a calculadora.

Apresente o resultado na forma trigonométrica.

3. Em \mathbb{C} , conjunto dos números complexos, considere a condição $1 \le |z| \le 2 \land \left| \frac{\pi}{3} + 2 \operatorname{Arg}(z) \right| = \pi$.

Em qual das opções seguintes está representado, no plano complexo, o conjunto de pontos definido por esta condição?

4. A figura mostra a planificação de dois dados equilibrados, um tetraédrico e outro cúbico, com as faces numeradas como a figura ilustra.

Considere a experiência aleatória que consiste lançar uma vez cada um dos dados e assinalar num referencial o.n. xOy o ponto de coordenadas (a,b), sendo a o valor obtido no dado tetraédrico e b o valor obtido no dado cúbico.

Sejam os acontecimentos:

- A: "O ponto coordenadas (a, b) não pertence ao primeiro quadrante"
- B: "O produto dos valores obtidos no dado tetraédrico e no dado cúbico é negativo"

Sem utilizar a fórmula da probabilidade condicionada, determine o valor de P(B|A).

Numa composição justifique a sua resposta, começando por explicar o significado de P(B|A)no contexto da situação descrita.

5. Na figura está representado, em referencial o.n. xOy, o losango [OABC].

Sabe-se que:

- ullet O é a origem do referencial
- ullet C pertence ao semieixo negativo das abcissas
- $\frac{2\pi}{3}$ rad é a amplitude do ângulo ABC
- o perímetro de [OABC] é igual a 16

Qual das condições seguintes define a reta AC?

(A)
$$\sqrt{3}x - 3y + 4\sqrt{3} = 0$$

(C)
$$\sqrt{3}x - y + 4\sqrt{3} = 0$$

(A)
$$\sqrt{3}x - 3y + 4\sqrt{3} = 0$$
 (C) $\sqrt{3}x - y + 4\sqrt{3}$ (B) $(x, y) = (-4, 0) + \lambda (6, \sqrt{3}), \lambda \in \mathbb{R}$ (D) $2x - 3y + 8 = 0$

(D)
$$2x - 3y + 8 = 0$$

6. Na figura está representada, em referencial o.n. xOy, parte do gráfico da função g, de domínio \mathbb{R}^+ .

Tal como a figura sugere:

- a reta de equação x = 0 é assíntota vertical do gráfico de g
- a reta que passa pelos pontos de coordenadas (-3,0) e (0,1) é assíntota oblíqua do gráfico

Considere a função h, de domínio \mathbb{R}^+ , definida por $h(x) = \frac{3x}{g(x)} + 1$

Qual das equações seguintes define a assíntota não vertical do gráfico da função h?

(A)
$$y = 9$$

(B)
$$y = 10$$

(B)
$$y = 10$$
 (C) $y = 9x + 1$ **(D)** $y = 8$

(D)
$$y = 8$$

Página 5 de 9

7. Considere a função f, real de variável real, definida por $f(x) = \log_2 (3x^2 - 5x - 2)$. Na figura, estão representados, em referencial o.n. xOy, parte do gráfico da função f e dois vetores, \overrightarrow{PQ} e \overrightarrow{PR} .

Sabe-se que:

- P é o ponto de interseção do gráfico de f com o eixo Ox cuja abcissa é negativa
- Q e R são pontos do gráfico de f, com abcissa positiva
- \bullet Os vetores \overrightarrow{PQ} e \overrightarrow{PR} têm ambos norma 3

7.1.

Utilize as capacidades gráficas da sua calculadora para determinar, com aproximação às centésimas do radiano, a amplitude do ângulo formado pelos vetores \overrightarrow{PQ} e \overrightarrow{PR} . Na sua resposta apresente o(s) gráfico(s) visualizado(s) na sua calculadora, bem como as coordenadas dos pontos relevantes à resolução do problema.

Sugestão: Percorra as seguintes etapas:

- Com a ajuda da calculadora gráfica, determine com aproximação às milésimas, a abcissa do ponto P
- Escreva uma equação que defina o lugar geométrico dos pontos do plano cuja distância ao ponto Pé igual a 3
- Resolva a equação anterior em ordem a y
- \bullet Com a ajuda da calculadora gráfica determine as coordenadas dos pontos Q e R, com aproximação às milésimas
- Determine a amplitude do ângulo pretendido
- **7.2.** Resolva, em \mathbb{R} e por processos analíticos, a inequação:

$$1 + \log_2(x - 2) \le f(x) - \log_4(x^2)$$

Apresente o conjunto solução utilizando a notação de intervalos de números reais.

8. Para um certo número real positivo, k, é contínua a função f definida em $\left[\frac{\pi}{2}, +\infty\right[$ por:

$$f(x) = \begin{cases} \frac{\tan x}{\pi - x} & \text{se } \frac{\pi}{2} < x < \pi \\ k + \ln(2 + \cos(x)) & \text{se } x \ge \pi \end{cases}$$

Qual \acute{e} o valor de k?

(A)
$$-1$$

(C)
$$-1 - \ln(2)$$

(C)
$$-1 - \ln(2)$$
 (D) $-1 - \ln(3)$

9. Numa caixa estão colocadas cinco bolas indistinguíveis ao tato. Três bolas azuis e duas bolas brancas.

Considere a seguinte experiência aleatória:

• "retirar as bolas da caixa, uma a uma, ao acaso, até que saiam consecutivamente duas bolas com a mesma cor"

Qual dos seguintes é o valor da probabilidade de serem extraídas todas as bolas?

(A)
$$\frac{1}{15}$$

(B)
$$\frac{1}{10}$$

(C)
$$\frac{1}{5}$$

(D)
$$\frac{4}{5}$$

10. Na figura está representado um trapézio [ACDE] e um triângulo retângulo e isósceles [BED].

Sabe-se que:

- B é o ponto médio de [AC];
- $\overline{BE} = \overline{BD} = 1$;
- θ é a amplitude, em radianos, dos ângulos BAE e BCD, com $\theta \in \left]0, \frac{\pi}{2}\right[$.

Seja A a função que a cada valor de θ faz corresponder a área do trapézio [ACDE]. Resolva os itens seguintes por processos analíticos.

10.1.

Mostre que
$$A(\theta) = 1 + \frac{1}{2 \tan \theta}, \forall \theta \in \left]0, \frac{\pi}{2}\right[.$$

- 10.2. Prove que a função A é estritamente decrescente.
- 11. De uma certa linha do triângulo de Pascal sabe-se que a soma dos três primeiros elementos dessa linha com os últimos três elementos da linha seguinte é 258.

Quantos elementos dessa linha são superiores a 1000?

- **(A)** 10
- **(B)** 9

(C) 8

- (D) 7
- 12. Na figura está representada, em referencial o.n. xOy, parte do gráfico da função h'', função segunda derivada da função h, de domínio \mathbb{R}^+ .

Qual das afirmações é verdadeira?

- (A) O gráfico da função h apresenta apenas um ponto de inflexão.
- **(B)** O gráfico da função h apresenta concavidade voltada para cima em \mathbb{R}^+ .
- (C) A função h', primeira derivada da função h, tem apenas um extremo relativo.
- (D) A função h', primeira derivada da função h, tem dois extremos relativos.

Na figura está representado, em referencial o.n. Oxyz, a pirâmide não regular [ABCDV].

Sabe-se que:

- O é a origem do referencial;
- [ABCD] é um trapézio retângulo contido no plano xOy;
- os pontos C e D pertencem ao eixo Oy e têm ordenadas 3 e -2, respetivamente;
- o ponto V pertence ao semieixo positivo das cotas;
- o plano ABV é definido por 5x y + 3z = 12.
- 13.1. Defina por uma equação vetorial a reta perpendicular ao plano ABV que contém o ponto V.
- **13.2.** Determine, por processos analíticos, o volume da pirâmide [ABCDV].
- **14.** Considere a função g, de domínio \mathbb{R} , definida por $g(x) = x^2 + 6e^{-x}$.
 - **14.1.** Utilizando a definição de derivada de uma função num ponto, mostre que $g'(1) = \frac{2e-6}{e}$.
 - 14.2. Resolva, em \mathbb{R} e por processos analíticos, a equação $x^2+e^x=g(x)+1.$

\mathbf{FIM}

Cotações

• As pontuações obtidas nas respostas a estes 4 itens da prova contribuem obrigatoriamente para a classificação final.

Itens	7.1	10.1	13.1	13.2	Subtotal
Cotação (pontos)	18	18	18	18	72

• Destes 14 itens, contribuem para a classificação final da prova os 8 itens cujas respostas obtenham melhor pontuação.

Itens	1	2	3	4	5	6	7.2	8	Subtotal
		9	10.2	11	12	14.1	14.2		
Cotação (pontos)	$8 \times 16 \text{ pontos}$								128

Prova modelo n.º 3 Autor: Carlos Frias Página 9 de 9