Parkinson's
Disease (PD)
Detection from
Audio Signal data

Prepared By,

Manthiramoorthy Cheranthian

Introduction

Aim is to discriminate healthy people from those with PD based on biomedical voice measurements

Dataset:

- Dataset has information of 32 individuals (6 recording per patient)
- Data consists of biomedical voice measurements of patients.
- Target variable- Status Binary 0/1 indicating presence of PD or not.


```
##Creating a function for Normalization
##WE use Min Max Normalization

normalize=function(x){
   return ((x-min(x,na.rm = TRUE))/(max(x,na.rm = TRUE)-min(x,na.rm = TRUE)))
}

##Applying the function to the entire dataset
norm_data=as.data.frame(apply(x, 2, normalize))
norm_data$status=y
str(norm_data)
```

Data Preparation:

- Normalizing the data since each variable are in different scale ranges.
- Normalizing the data using Min Max scaler function.

Exploratory Data Analysis

To confirm the significance using t.tests:

t.tests also proves that all the variables are significant in affecting target PD variable.

0.2 0.6 1.0 MDVP.RAP Jitter.DDP MDVP.Shimmer MDVP.Shimmer.dB. 100 150 200 250 100 150 200 0.00000 0.00015 0.005 0.015 0.02 0.06 0.10

Testing Collinearity between Independent variables:

- It seems like there are some strong correlations and collinearity problem between independent variables
- It's better to remove the highly collinear variables using VIF else it might weaken our model

Collinearity Reduction:

```
##Selecting significant variables are very essential in developing a string model
##we have the following possible ways to select significant variables
##Regularization (TO penalize the coefficients towards zero for the insgnificant variables)
##Subset Selection
##Exhaustive Regression to look at all possible Linear models but it is inefficient compute wise
##hence we select Stepwise method which selects only restricted possible models which is computatinally efficient
##Claculating VIF
modl=qlm(status~.,data=norm_data,family = binomial(link = 'logit'))
library(car)
vif(mod1)
##Eliminating variables with VIF > 5 which has higher collinearity
##FInally the selected variables are
##MDVP.Fhi.Hz.
##MDVP.Flo.Hz.
##NHR
##RPDE
##DFA
##spread2
##D2
```

```
##Step Wise Regression to select the significant variables step by step from a model with less AIC
interceptmodl=glm($tatus~1,data=train,family='binomial')
mod=glm(status~MDVP.Fo.Hz.+MDVP.Flo.Hz.+NHR+RPDE+DFA+spread2+D2,data=train,family='binomial')
step(interceptmodl,direction = 'both',scope = formula(mod))
```

```
Step: AIC=110.79
status ~ spread2 + MDVP.Flo.Hz. + D2 + DFA
              Df Deviance
                             AIC
<none>
                  100.794 110.79
+ MDVP.Fo.Hz. 1 99.462 111.46
             1 100.014 112.01
+ RPDE
- spread2
             1 104,249 112,25
+ NHR
               1 100.783 112.78
 DFA
            1 106.977 114.98
- MDVP.Flo.Hz. 1 112.621 120.62
- D2
               1 116,595 124,59
call: qlm(formula = status ~ spread2 + MDVP.Flo.Hz. + D2 + DFA, family = "binomial",
   data = train)
Coefficients:
 (Intercept)
                  spread2 MDVP.Flo.Hz.
                                                               DFA
                                               8.570
     -4.086
                  3, 243
                                -3.412
                                                             3.318
Degrees of Freedom: 151 Total (i.e. Null); 147 Residual
Null Deviance:
                   168.7
Residual Deviance: 100.8
                               AIC: 110.8
```

```
##THe final model obtained after step wise regression is ##-4.086+(3.243)*spread2+(-3.412)*MDVP.Flo.Hz.+(8.57)*D2+(3.318)*DFA ##Sigificant variables selected using Step wise regression ##spread2 ##MDVP.Flo.Hz. ##D2 ##DFA
```

Selecting Significant Variables using Step wise Regression:

 Final Model with reduced AIC (Akaike information criterion is an estimator of out of sample prediction error) is selected.

```
Step: AIC=99.07
status1 ~ spread2 + MDVP.Flo.Hz. + D2 + DFA + MDVP.Flo.Hz.:D2 +
   spread2:DFA
                      Df Deviance
                           85.072 99.072
<none>
+ DFA:D2
                      1 83.915 99.915
+ spread2:D2
                    1 84.016 100.016
+ MDVP.Flo.Hz.:DFA
                   1 85.005 101.005
+ MDVP.Flo.Hz.:spread2 1 85.062 101.062
- MDVP.Flo.Hz.:D2
                      1 91.646 103.646
                      1 95.767 107.767
- spread2:DFA
Call: qlm(formula = status1 ~ spread2 + MDVP.Flo.Hz. + D2 + DFA + MDVP.Flo.Hz.:D2 +
   spread2:DFA, family = "binomial", data = interactiondata)
Coefficients:
                                                                            DFA MDVP.Flo.Hz.:D2
                                   MDVP.Flo.Hz.
    (Intercept)
                        spread2
                                                          D2
                                        -17.566
        -9.216
                        24.894
                                                         -1.793
                                                                                          39, 340
                                                                         16.485
   spread2:DFA
        -31.297
Degrees of Freedom: 151 Total (i.e. Null); 145 Residual
Null Deviance:
                   168.7
Residual Deviance: 85.07
                               AIC: 99.07
```

Handling Interaction Effects:

- Some variables add value to the model only on combination with other variables.
- **Step 1**: Creating all combinations of 2-way interactions.
- **Step 2**: Using all individual and combined variables in a step wise regression model.
- **Step 3:** Getting significant interaction variables based on p values.
- After these steps, following variables have the significant interactions
- MDVP.Flo.Hz and D2
- Spread2 and DFA

Building a Logistic Regression model:

```
confusionMatrix(as.factor(pred),test$status,positive =
Confusion Matrix and Statistics
         Reference
Prediction 0 1
         1 9 32
              Accuracy: 0.7907
                 95% CI: (0.6396, 0.8996)
   No Information Rate: 0.7442
   P-Value [Acc > NIR] : 0.307745
                  Kappa : 0.2485
Mcnemar's Test P-Value : 0.007661
            Sensitivity: 1.0000
           Specificity: 0.1818
         Pos Pred Value : 0.7805
         Neg Pred Value : 1.0000
             Prevalence : 0.7442
         Detection Rate: 0.7442
  Detection Prevalence : 0.9535
     Balanced Accuracy: 0.5909
       'Positive' Class :
```

- Our model has high sensitivity which is what we highly desire but still specificity is very low.
- We can address this problem by doing sampling technique to balance the data since Negative values of PD is way too low compared to Positive values.
- We use over sampling to address this issue.

ROC Curve for Logistic Regression:

Oversampling:

```
##To solve the low specificity value we do balancing techniques on the data since Negative values are very lesser compared to Positive values ##We do over sampling to scale the negative values to match with the Positive values table(train\status) library(ROSE) over=ovun.sample(status~.,data=train,method='over',N=230)\statu table(over\status) ##Both 1 and 0 values are now equal to 115 values
```

Random Forest Model and plots over sampled data:

Random forests gave a descent accuracy along with Sensitivity and Specificity values


```
pr=predict(rf,test)
 confusionMatrix(pr,test$status,positive = '1')
confusion Matrix and Statistics
         Reference
Prediction 0 1
        1 4 31
              Accuracy: 0.8837
                95% CI: (0.7492, 0.9611)
   No Information Rate: 0.7442
   P-Value [Acc > NIR] : 0.02115
                 Kappa : 0.6646
Mcnemar's Test P-Value: 0.37109
           Sensitivity: 0.9688
           Specificity: 0.6364
        Pos Pred Value: 0.8857
        Neg Pred Value : 0.8750
            Prevalence: 0.7442
        Detection Rate: 0.7209
  Detection Prevalence: 0.8140
     Balanced Accuracy: 0.8026
       'Positive' Class : 1
```

- From rf plot we could see that error reduction rate stabilizes after 200 hence we select 200 as best number of trees
- Variable importance plot signifies which variables has higher significance sorted in order.

Building an SVM Model:

Finally SVM radial kernel has the highest accuracy, sensitivity and specificity values.

```
· svmmodel=svm(status ~ spread2 + MDVP.Flo.Hz. + D2 + DFA + MDVP.Flo.Hz.:D2+spread2:DFA, data = over.probability=TRUE)
 > summary(svmmodel)
call:
svm(formula = status ~ spread2 + MDVP.Flo.Hz. + D2 + DFA + MDVP.Flo.Hz.:D2 + spread2:DFA, data = over,
    probability = TRUE)
Parameters:
   SVM-Type: C-classification
 SVM-Kernel: radial
      cost: 1
Number of Support Vectors: 118
 (60 58)
Number of Classes: 2
Levels:
```

```
> confusionMatrix(pr,test$status,positive = '1')
Confusion Matrix and Statistics
          Reference
Prediction 0 1
        1 3 31
              Accuracy: 0.907
                95% CI: (0.7786, 0.9741)
   No Information Rate: 0.7442
    P-Value [Acc > NIR] : 0.007125
                 Kappa: 0.7402
Mcnemar's Test P-Value: 0.617075
           Sensitivity: 0.9688
           Specificity: 0.7273
        Pos Pred Value: 0.9118
        Neg Pred Value: 0.8889
            Prevalence: 0.7442
        Detection Rate: 0.7209
  Detection Prevalence: 0.7907
      Balanced Accuracy: 0.8480
```

Conclusion:

	Accuracy	Sensitivity	Specificity	F1-Score (2*Sensitivity*Speci ficity)/(Specificity+S pecificity)
Logistic Regression	79.07	100	18.18	30.76
Random Forests	88.37	96.88	63.64	76.81
SVM (radial)	90.7	96.88	72.73	83.08

- We select SVM with radial kernel as a best model for our analysis which has higher accuracy and sensitivity when compared to other models F1-score acts as an important parameter in selecting models which takes into account both Sensitivity and Specificity. Hence selecting SVM radial as a best model for our analysis Future developments may be done to create a neural networks model which can give even better prediction values compared to SVM.