Thermodynamic Analysis: Hydrogen Fuel Tank

Jerin Roberts, Dr. Walter Mérida, Dr. Omar Herrera

November 28, 2016

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

Overview

- Overview
- 2 Metrics
- Separation System
 3 Experimental System
- Sensors
- **(5)** Experimental Protocol
- **6** Summary

Why Hydrogen Fuel?

- High specific energy content
- Relatively Abundant
- Low Emissions

- Infrastructure Integration
- Simple Production
- Relatively Renewable

Hydrogen Storage

Can be stored in Liquid or Gaseous States

- Liquid Hydrogen Has very high Energy Density
- Gaseous Hydrogen uses cheap and simple storage

- Liquid Requires Complex Cryogenic Systems
- Gaseous Hydrogen Has to be Compressed to match acceptable energy density

Problem and Constraints

- Hydrogen Heats during throttling
- Hydrogen Heats during compression
- Fills times need to match current standards
- ullet Needs to be compressed \geq 350 Bar

Modelling Temperature Distribution

Temperature Distribution for 35MPa Tank during fast filling [Dicken, 2006]

Problem and Constraints

- Map 2D temperature distribution inside tank
- Determine mass transfer during a fast fill.
- Determine Pressure during fast fill
- Semi-portable system
- No modifications to tank
- Adhere to SAEJ2601 standards

Experimental Setup

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA

www.cerc.ubc.ca

Energy Research Centre

Data Acquisition System

Temperature

Thermocouple:

- Type T Special Grade
- 0.008mm Diameter $\tau = 0.15$ s
- $\pm 0.5^{\circ}$ C accuracy

ADC 2x NI 9213

- 16ch 24 bit ADC
- ±78.125mV input range @ 78 S/s
- accuracy with type T ±0.02°C

Temperature

Thin-Film Heat Flux Sensor:

- Type K Standard Grade
- $\tau = 1.5 \text{ s}$
- $\pm 1.1^{\circ}$ C accuracy

ADC 2x NI 9213

- 16ch 24 bit ADC
- $\bullet~\pm 78.125 mV$ input range @ 78 S/s
- ullet accuracy with type T $\pm 0.02^{\circ}$ C

Pressure

GEFRAN Diaphragm Transducer:

- 0-1000 Bar for 0-10V
- Response Time ≤ 1 msec
- $\pm 0.5\%$ accuracy FS

ADC 1x NI 9215

- 4ch 16 bit ADC
- ± 10 V input range @ 100 kS/s
- $\leq 0.2\%$ error (calibrated)

Mass Flow

Honeywell 3397 Load cell:

- 2mV/V ±0.25%
- 0-200lb range
- Universal Inline Amplifier ±10Vdc

ADC 1x NI 9215

- 4ch 16 bit ADC
- ± 10 V input range @ 100 kS/s
- $\leq 0.2\%$ error (calibrated)

Procedure

- Purge Tank and Set Pressure to 50 Bar
- Allow Temperature/Pressure to Stabilize
- Record Initial Conditions
- Apply Required Ramp Rate
- Measure P, T @ 10S/s HF, m @ 1S/s during Fast fill
- Measure P, T @ 10S/s HF, m @ 1S/s during cool down
- Record Final Conditions
- Repeat for different array configurations

Summary

Average Temperature = 335 K

Average Temperature = 332.4 K

• Temperature: T $\pm 0.16\%$

• Pressure: P +0.22%

• Heat Flux: HF $\pm 0.4\%$

• Mass: $m \pm 0.45\%$

References

Rothuizen, Erasmus Damgaard; Rokni, Masoud; Elmegaard, Brian (2013)

"A Thermodynamic Analysis of Fuelling Hydrogen Vehicles for Personal Transportation" Technical University of Denmark

Nils Koppels All, Bldg. 403 DK-2800 Kongens Lyngby Denmark

Dicken, Chris; (2006)

"Temperature Distribution within a Compressed Gas Cylinder during Fast Filling" Advanced Materials Research, Vols. 15-17, pp. 281-286, 2007

Hirotani, R. Tomioka, J.; Maeda, Y.; Mitsuishi, H.; Watanabe, S.; (2006)

"Thermal Behavior in Hydrogen Storage Tank for Fuel Cell Vehicle on Fast Filling" Proceedings of the 16th World Hydrogen Energy Conference, 13-16 June 2006, Lyon (France)

Thank-you

