Package 'MixedIndTests'

February 14, 2024

2 AutoDep

EstDepSerial	(
EstDepSerialMoebius	6
Finv	7
horseshoecrabs	8
lamb	9
select_p	9
SimAR1Poisson	10
SimCopulaSeries	11
TestIndCopula	12
TestIndSerCopula	13
TestIndSerCopulaMulti	14
X	15
Xbin	
Υ	16
	17

AutoDep

Index

Dependogram for Kendall's tau and Spearman's rho

Description

This function, used in EstDepSerial, draws the P-values of Kendall's tau and Spearman's rho for a given number of lags.

Usage

AutoDep(out)

Arguments

out

List of the output of EstDepSerial (P-values, subsets)

References

B.R Nasri (2021). Tests of serial dependence for arbitrary distributions

```
\label{eq:continuous} \begin{array}{ll} \text{out} <& \text{-EstDepSerial}(SimAR1Poisson(c(5,0.4),100),10) \\ \text{AutoDep(out)} \end{array}
```

Dependogram 3

Dependogram	Dependogram for Cramer-von Mises statistics	

Description

This function, used in EstDep, TestIndCopula and TestIndSerCopula, draws the P-values of the Moebius Cramer-von Mises statistics from the multilinear copula and their combination for a tests of randomness for k consectives values X(1), ..., X(k) or for a test of independence between random variables.

Usage

```
Dependogram(out, stat = "CVM")
```

Arguments

out List of the output from EstDep, EstDepSerial, TestIndCopula or TestIndSerCop-

ula (P-values, subsets)

stat Name of statistics to be used (default is "CVM")

References

Genest, Neslehova, Remillard & Murphy (2019). Testing for independence in arbitrary distributions

Examples

```
x <- matrix(rnorm(250),ncol=5)
out <-TestIndCopula(x)
Dependogram(out)</pre>
```

DependogramZ

Dependogram for Moebius correlations

Description

This function, used in EstDepMoebius and EstDepSerialMoebius plot the graphs of the correlation statistics of Spearman, van der Waerden and Savage as a function of the subsets for tests of randomness or test of independence between random variables. Under the null hypothesis, the statistics should be independent N(0,1).

Usage

```
DependogramZ(out, n)
```

4 EstDep

Arguments

out List of the output from EstDep, EstDepSerial, TestIndCopula or TestIndSerCop-

ula (P-values, subsets)

n Number of observations

References

Nasri & Remillard (2023). Tests of independence and randomness for arbitrary data using copulabased covariances

Examples

```
x <- matrix(rnorm(250),ncol=5)
out <-EstDepMoebius(x)
DependogramZ(out,50)</pre>
```

EstDep Kendall's tau and Spearman's rho statistics for testing independence

between random variables

Description

This function computes the matrix of pairs of Kendall's tau and Spearman's rho statistics between random variables with arbitrary distributions.

Usage

```
EstDep(x, graph = FALSE)
```

Arguments

x Data matrix

graph Set to TRUE for a dependogram for all pairs of Kendall's taus and Spearman's

rhos.

Value

stat List of Kendall's tau and Spearman's rho statistics from multilinear copula, and

test combinations LB

pvalue P-values for the tests statistics

References

Genest, Neslehova, Remillard & Murphy (2018). Testing for independence in arbitrary distributions

EstDepMoebius 5

Examples

```
x <- matrix(rnorm(500),ncol=10)
out <-EstDep(x)</pre>
```

EstDepMoebius Dependence measures and statistics for test of independence between random variables

Description

This function computes copula-based dependence measures for Moebius versions of Spearmans's rho, van der Waerden's coefficient, and Savage's coefficient, as well as their combination for tests of independence between random variables.

Usage

```
EstDepMoebius(x, trunc.level = 2, graph = FALSE)
```

Arguments

x	Data matrix
trunc.level	Only subsets of cardinality <= trunc.level (default=2) are considered for the Moebius statistics.
granh	Set to TRUE if one wants the dependogram of P-values for the Moebius statistics

Value

stat	List of statistics (spearman, vdw, savage) and test combinations Ln and Ln2 (only pairs)
pvalue	P-values for the tests
cardA	Cardinaly of the subsets for the Moebius statistics
subsets	Subsets for the Moebius statistics

References

B.R Nasri & B.N. Remillard (2023). Tests of independence and randomness for arbitrary data using copula-based covariances

```
x <- matrix(rnorm(250),ncol=5)
out <-EstDepMoebius(x,3)</pre>
```

6 EstDepSerialMoebius

EstDepSerial	Kendall's tau and Spearman's rho statistics for testing randomness in a univariate time series

Description

This function computes Kendall's tau and Spearman's rho statistics for tests of randomness in a time series with arbitrary distribution for pairs (X[i],X[i+k]), k=1:lags

Usage

```
EstDepSerial(x, lag, graph = FALSE)
```

Arguments

X	Time series
lag	Number of lags
graph	Set to TRUE for a dependogram for Kendall's tau and Spearman;s rho

Value

stat List of Kendall's tau and Spearman's rho statistics from multilinear copula, and

test combinations LB

pvalue P-values for the tests statistics

References

B.R Nasri (2022). Tests of serial dependence for arbitrary distributions

Examples

```
out <-EstDepSerial(SimAR1Poisson(c(5,0.4),100),10)</pre>
```

EstDepSerialMoebius	Dependence measures and statistics for test of randomness for a uni-
	variate time series

Description

This function computes copula-based dependence measures for Moebius versions of Spearmans's rho, van der Waerden's coefficient, and Savage's coefficient, as well as their combination for tests of randomness for p consecutive values Y(1), ..., Y(p).

Usage

```
EstDepSerialMoebius(y, p, trunc.level = 2, graph = FALSE)
```

Finv 7

Arguments

y Time series

p Number of consecutive observations

trunc.level Only subsets of cardinality <= trunc.level (default=2) are considered for the

Moebius statistics.

graph Set to TRUE if one wants the dependogram of P-values for the Moebius statistics

Value

stat List of statistics (spearman, vdw, savage) and test combinations Ln and Ln2

(only pairs)

pvalue P-values for the tests

card Cardinaly of the subsets for the Moebius statistics

subsets Subsets for the Moebius statistics

References

B.R Nasri & B.N. Remillard (2023). Tests of independence and randomness for arbitrary data using copula-based covariances

Examples

```
y<- SimAR1Poisson(c(5,0.2),100)
out <- EstDepSerialMoebius(y,4,4)</pre>
```

Finv

Quantile function of margins

Description

This function computes the quantile of seven cdf used in the simulatuons of Nasri (2022).

Usage

```
Finv(u, k)
```

Arguments

u vector of probabilitie	u	Vector of	probabilities
--------------------------	---	-----------	---------------

k Marginal distribution: [1] Bernoulli(0.8), [2] Poisson(6), [3] Negative binomial

with r = 1.5, p = 0.2, [4] Zero-inflated Poisson (10) with w = 0.1 and P(6.67) otherwise, [5] Zero-inflated Gaussian, [6] Discretized Gaussian, [7] Discrete

Pareto(1)

8 horseshoecrabs

Value

x Vector of quantiles

Author(s)

Bouchra R. Nasri January 2021

References

B.R Nasri (2022). Tests of serial dependence for arbitrary distributions

Examples

```
x = Finv(runif(100), 2)
```

horseshoecrabs

Horseshoecrabs dataset

Description

Horseshoe Crab Data from Table 3.2 of Agresti(2007). This data set consists of five variables, three of which are categorical, measured on 173 female crabs, each having a male attached in her nest.

Usage

data(horseshoecrabs)

Format

Data frame with 173 rows and 5 variables:

- X1: Color of the female (1: light medium, 2: medium, 3: dark medium, 4: dark)
- X2: Spine condition (1: both good. 2: one worn or broken, 3: both worn or broken)
- X3: Carapace width (cm)
- X4: Number of satellites, i.e., other males around the female
- X5: Weight (kg)

References

Agresti, A. (2007). An Introduction to Categorical data analysis, John Wiley & Sons, Wiley Series in Probability and Statistics, 2nd edition.

```
data(horseshoecrabs)
x =data.matrix(horseshoecrabs)
out = TestIndCopula(x,trunc.level=5,graph=TRUE)
```

lamb 9

lamb Fetal lamb dataset

Description

240 body movement measurements of a fetal lamb at consecutive 5 second intervals.

Usage

```
data(lamb)
```

Format

Count data.

References

Leroux B, Putterman M (1992). Maximum Penalized Likelihood estimation for independent and Markov-dependent Mixture models. Biometrics, 48, 545–558.

Examples

```
data(lamb)
plot(lamb)
```

select_p

Data-driven selection of p for the test of randomness

Description

This function uses a AIC/BIC type criterion to select p based on the data.

Usage

```
select_p(X, p0 = 2, d = 5, q = 2.4, lambda = 0.25)
```

Arguments

Χ	Time series
р0	Minimum value of p (default is 2)
d	Maximum value of p (default is 5)
q	Constant for selecting between AIC and BIC type penalty (default is 2.4)
lambda	Penalty term (default is 0.25); small values lead to p=d, large value lead to p=p0

10 SimAR1Poisson

Value

p Selected value of p

References

B.R Nasri (2021). Tests of serial dependence for arbitrary distributions

Examples

```
X \leftarrow SimAR1Poisson(c(5,0.2),100)
out \leftarrow select_p(X)
```

SimAR1Poisson

Simulation of a AR(1) Poisson process

Description

Conditionally on the past, X[t] is Poisson with lambda[t] = a+bX[t-1]

Usage

```
SimAR1Poisson(param, n)
```

Arguments

param [1] = a>0, param [2] = b, 0 <= b < 1 (for stationarity)

n Length of the series.

Value

X Simulated series

```
data <- SimAR1Poisson(c(5,0.4),500)
```

SimCopulaSeries 11

SimCopulaSeries	Simulation of a copula-based time series	

Description

This function simulates a Markovian time series (p-Markov for the Farlie-Gumbel-Morgenstern copula) with uniform margins using a copula family for the joint distribution of U[t], U[t-1].

Usage

```
SimCopulaSeries(family, n, tau = 0, param = NULL)
```

Arguments

family	"ind", "tent", "gaussian", "t" , "clayton", "fgm", "frank", "gumbel", joe" , "plackett" $$
n	length of the time series
tau	Kendall's tau of the copula family
param	extra copula parameter: for "fgm", param is the dimension of the copula; for "t", param = nu

Value

U Simulated time series

Author(s)

Bouchra R. Nasri January 2021

References

B.R Nasri (2022). Tests of serial dependence for arbitrary distributions

```
U = SimCopulaSeries("fgm",100,0.2, 3) # for the FGM, |tau| \le 2/9
```

TestIndCopula TestIndCopula

TestIndCopula Statistics and P-values for a test of independence between ran variables	dom
--	-----

Description

This function computes Cramer-von Mises statistics and their combination for a tests of independence between random variables with arbitrary distributions. The P-values are computed using Gaussian multipliers.

Usage

```
TestIndCopula(
   x,
   trunc.level = 2,
   B = 1000,
   par = FALSE,
   ncores = 2,
   graph = FALSE
)
```

Arguments

X	Data matrix
trunc.level	Only subsets of cardinality <= trunc.level (default=2) are considered for the Moebius statistics.
В	Number of multipliers samples (default = 1000)
par	Set to TRUE if one prefers paraller computing (slower)
ncores	Number of cores for parallel computing (default is 2)
graph	Set to TRUE if one wants the dependogram of P-values for the Moebius statistics

Value

nd
ì

References

Genest, Neslehova, Remillard & Murphy (2019). Testing for independence in arbitrary distributions

```
x <- matrix(rnorm(250),ncol=5)
out <-TestIndCopula(x)</pre>
```

TestIndSerCopula 13

TestIndSerCopula Statistics and P-values for a test of randomness for a univariate time series	ıe
--	----

Description

This function computes Cramer-von Mises statistics from the multilinear copula and their combination for tests of randomness of p consecutives values X(1), ..., X(p). The p-values are computed using Gaussian multipliers.

Usage

```
TestIndSerCopula(
    x,
    p,
    trunc.level = 2,
    B = 1000,
    par = FALSE,
    ncores = 2,
    graph = FALSE
)
```

Arguments

x	Time series
p	Number of consecutive observations
trunc.level	Only subsets of cardinality <= trunc.level (default=2) are considered for the Moebius statistics.
В	Number of multipliers samples (default = 1000)
par	Set to TRUE if one prefers paraller computing (slower)
ncores	Number of cores for parallel computing (default = 2)
graph	Set to TRUE if one wants the dependogram of P-values for the Moebius statistics

Value

stat	List of Cramer-von Mises statistics cvm, Sn, and test combinations Tn and Tn2 (only pairs)
pvalue	Approximated P-values for the tests using Gaussian multipliers
card	Cardinaly of the subsets for the Moebius statistics
subsets	Subsets for the Moebius statistics

References

B.R Nasri (2022). Tests of serial dependence for arbitrary distributions

Examples

```
X <- SimAR1Poisson(c(5,0.2),100)
out <- TestIndSerCopula(X,5,3)</pre>
```

 ${\tt TestIndSerCopulaMulti} \quad \textit{Statistics and P-values for a test of randomness for a multivariate time} \\ \quad \textit{series} \\$

Description

This function computes Cramer-von Mises statistics from the multilinear copula and their combination for a tests of randomness for p consecutives values of random vectors X(1), ..., X(p). The p-values are computed using Gaussian multipliers.

Usage

```
TestIndSerCopulaMulti(x, p, trunc.level = 2, B = 1000, graph = FALSE)
```

Arguments

x	Time series matrix
р	Number of consecutive vectors
trunc.level	Only subsets of cardinality <= trunc.level (default=2) are considered for the Moebius statistics.
В	Number of multipliers samples (default = 1000)
graph	Set to TRUE if one wants the dependogram of P-values for the Moebius statistics

Value

stat List of Cramer-von Mises statistics cvm, tilde Sn, and test combinations tilde Tn

and tilde Tn2 (only pairs), as defined in Nasri(2022).

pvalue Approximated P-values for the tests using Gaussian multipliers

References

B.R Nasri (2022). Tests of serial dependence for arbitrary distributions

```
data(Y)
out <- TestIndSerCopulaMulti(Y,5,5)</pre>
```

X 15

Χ

AR(1) Poisson with parameters

Description

Simulated AR(1) Poisson sequence of length n=100 with parameters c(5,0.4).

Usage

data(X)

Format

Count data.

Examples

data(X)
acf(X)

Xbin

Bernoulli sequence

Description

Simulated Bernoulli sequence.

Usage

data(Xbin)

Format

Count data.

Examples

data(Xbin)
plot(Xbin)

16 Y

Υ

VAR(1) Poisson with parameters

Description

Simulated VAR(1) Poisson sequence of length n=100.

Usage

data(Y)

Format

Count data.

Examples

data(Y)
acf(Y)

Index

```
\ast datasets
    horseshoecrabs, 8
    lamb, 9
    X, 15
    Xbin, 15
    Y, 16
AutoDep, 2
Dependogram, 3
DependogramZ, 3
EstDep, 4
EstDepMoebius, 5
EstDepSerial, 6
EstDepSerialMoebius, 6
Finv, 7
horseshoecrabs, 8
lamb, 9
select_p, 9
SimAR1Poisson, 10
SimCopulaSeries, 11
TestIndCopula, 12
TestIndSerCopula, 13
{\tt TestIndSerCopulaMulti, 14}
X, 15
Xbin, 15
Y, 16
```