CS 583: PROBABILISTIC GRAPHICAL MODELS

TOPIC: PARAMETER ESTIMATION

CHAPTERS: 17, 19, 20

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

COMPLETE DATA CHAPTER 17

PARAMETER ESTIMATION FOR BNS

- Assume the network structure is given
- \circ The data \mathcal{D} consists of fully observed instances of the network variables
 - $\mathcal{D} = \{x[1], x[2], ..., x[n]\}$
- Estimate the network parameters, i.e., learn the CPDs
- Two approaches
 - 1. Maximum likelihood estimation
 - 2. Bayesian estimation

SIMPLEST CASE — ONE VARIABLE

- Imagine we have a thumbtack
- Flip it, and it comes as heads or tails

- Assume we flip it 100 times and it comes head 30 times
- What is θ ?

THUMBTACK TOSSES

- Assume we have a set of thumbtack tosses
 - $\mathcal{D} = \{x[1], ..., x[n]\}$
- Also assume each toss, x[i], is IID
- We define a hypothesis space Θ
 - Θ is the set of all parameters $\theta \in [0, 1]$
- We formulate an *objective function*
 - The objective function tells us how good a given hypothesis (in this case θ) is

LIKELIHOOD

- What is the probability, or *likelihood*, of seeing the sequence H, T, T, H, H?
 - $\theta * (1 \theta) * (1 \theta) * \theta * \theta = \theta^3 (1 \theta)^2$

When is $L(\theta:\mathcal{D})$ maximum?

LIKELIHOOD/LOG-LIKELIHOOD

- Number of heads = h, number of tails = t
- Likelihood: $L(\theta:\mathcal{D}) = \theta^h(1-\theta)^t$
- Log-likelihood: $l(\theta:\mathcal{D}) = h \ln \theta + t \ln(1-\theta)$
- \circ Find θ that maximizes the log-likelihood
- Take derivate of $l(\theta; \mathcal{D})$ with respect to θ and set it to zero

MAXIMUM LIKELIHOOD FOR A MULTINOMIAL

- Domain of X is $\{A, B, C\}$
- We see A a times, B b times, and C c times.
- P(X=A) is p, P(X=B) is q, and P(C) = 1 p q
- What are p and q?
- o Proof?

CONSTRAINED OPTIMIZATION

- \circ Assume X can take k values
- $P(X=x_i) = \theta_i$
- \circ Find θ that maximizes the entropy
 - $H(X) = -\Sigma_i \theta_i \log_2 \theta_i$
- If we take the partial derive w.r.t. θ_i

• ...

CONSTRAINED OPTIMIZATION

Find
$$\mathbf{\theta}$$
 maximizing $f(\mathbf{\theta})$ subject to
$$c_1(\mathbf{\theta}) = 0$$
 ...
$$c_m(\mathbf{\theta}) = 0$$

Form the Lagrangian:

$$F(\mathbf{\theta}, \mathbf{\lambda}) = f(\mathbf{\theta}) - \sum_{j=1}^{m} \lambda_{j} c_{j}(\mathbf{\theta})$$

LAGRANGE MULTIPLIERS EXAMPLES

- 1. Maximize x*y st. x+y = 10
- 2. Maximize x+y st. $x^2+y^2=1$
- 3. Entropy
- 4. Maximum likelihood estimate for a multinomial

ML FOR BNS

- Simple structure
 - \bullet X \rightarrow Y
- General structure
 - The key is that the parameters for each variable can be optimized independently
 - Examples

BAYESIAN ESTIMATION

- Assume we flip a coin 10 times and we get 4 Heads, 6 Tails
 - What is P(C=H)?
- Assume we flip a thumbtack 10 times and we get 4 Heads,
 6 Tails
 - What is P(T=H)?
- What if we repeat the flips 10M times and we get 4M Heads and 6M Tails?
- Bayesian estimation will let us encode our *prior knowledge*

INDEPENDENCE?

- o Earlier, we assumed the tosses are independent
- This is true if we know θ
- If we don't know θ , then each toss tells us something about θ , thus the next toss

14

BAYESIAN ESTIMATION

• Rather than a single θ , we will instead have a probability distribution, $P(\theta)$, over θ

BAYESIAN ESTIMATION

- We treat the parameter θ as a random variable
- We ascribe a prior probability to θ , $P(\theta)$, encoding our prior knowledge

PARAMETERS

- $P(X[i] = x^1 | \theta_x) = \theta$; $P(X[i] = x^0 | \theta_x) = (1 \theta)$
- $\circ P(\theta_{x})$?
 - A continuous distribution over the interval [0,1]

POSTERIOR AND PREDICTION

- We are interested in
 - The probability of the next instance, given data
 - P(x[M+1] | D)
 - The posterior distribution of θ given data
 - $P(\theta \mid D)$

FACTORIZATION

 $= P(\theta_x)\theta^{M[1]}(1-\theta)^{M[0]}$

POSTERIOR AND P(X[M+1] | D)

Posterior distribution

$$P(\theta_X \mid D) = \frac{P(x[1], ..., x[M] \mid \theta_X) P(\theta_X)}{P(x[1], ..., x[M])}$$

$$P(x[M+1]|D) = \int_{0}^{1} P(x[M+1]|\theta_{X}, x[1], ...x[M]) P(\theta_{X}|x[1], ..., x[M]) d\theta$$

$$= \int_{0}^{1} P(x[M+1]|\theta_{X}) P(\theta_{X}|x[1], ..., x[M]) d\theta$$

$$\theta \text{ or } 1-\theta \text{ (if binary)}$$
Posterior

Think of taking a weighted average

P(X[M+1] | D)

$$P(x[M+1]|x[1],...,x[M]) = \int_{0}^{1} P(x[M+1]|\theta_{X})P(\theta_{X}|x[1],...,x[M])d\theta$$

$$= \int_{0}^{1} P(x[M+1]|\theta_{X}) \frac{P(\theta_{X})P(x[1],...,x[M]|\theta_{X})}{P(x[1],...,x[M])}$$

P(x[1], ..., x[M]) is a constant

$$P(x[M+1]|x[1],...,x[M]) \propto \int_{0}^{1} P(x[M+1]|\theta_{X})P(\theta_{X})P(x[1],...,x[M]|\theta_{X})d\theta$$

UNIFORM PRIOR

- We have a uniform prior over θ_x . That is, $p(\theta_x)=1$
- $P(X[M+1]=x^1 \mid x[1],...,x[M])$?

UNIFORM PRIOR

- We have a uniform prior over θ_x . That is, $p(\theta_x)=1$
- $P(X[M+1]=x^1 | x[1],...,x[M])$? That is, $P(X[M+1]=x^1 | D)$?
- For the binary case, $P(X[M+1]=x^1 \mid D) = (t+1) / (t+f+2)$, where t is the number of True cases and f is the number of False cases in D
- This is also called *Laplace smoothing*
- What about the posterior, $P(\theta \mid D)$, if the prior $P(\theta)$ is uniform?

BETA DISTRIBUTION

- $\theta \sim \text{Beta}(\alpha, \beta)$ if $P(\theta) = \gamma \theta^{\alpha 1} (1 \theta)^{\beta 1}$ where γ is a normalizing constant
- Mean: $\alpha/(\alpha+\beta)$
- Mode: $(\alpha-1)/(\alpha+\beta-2)$
- \bullet Note that the mode is closer to the mean when α and β are large
- Read more at
 - https://en.wikipedia.org/wiki/Beta_distribution

BETA DISTRIBUTION

 ${
m CS}$ 583 – Probabilistic Graphical Models – Illinois Institute of Technology

BETA DISTRIBUTION

- What is $P(X[M+1]=x^1 \mid D)$ if the prior is Beta (α,β) ?
 - $P(X[M+1]=x^1 \mid D) = (p + \alpha) / (p + n + \alpha + \beta)$
- What is the posterior, $P(\theta \mid D)$, if the prior is Beta (α, β) ?
 - $P(\theta \mid D) = Beta(p + \alpha, n + \beta)$
- \circ α and β work like pseudo-counts for the positive and negative cases respectively
- What values to choose for α and β ?
 - It depends on our belief and the strength of our belief

DIRICHLET PRIORS

• Generalizes the Beta distribution for multinomials

$$\theta \sim Dirichlet(\alpha_1, ..., \alpha_K) \text{ if } P(\theta) \propto \prod_{k=1}^K \theta_k^{\alpha_k - 1}$$

- What is $P(X[M+1]=x^i \mid D)$ if the prior is Dirichlet?
 - $P(X[M+1]=x^i \mid D) = (n_i+\alpha_i) / (\mid D\mid +\alpha)$ where n_i is the number of times the i^{th} case appears in D and $\alpha = \alpha_1 + \alpha_2 + \ldots + \alpha_K$
- What is the posterior, $P(\theta \mid D)$, if the prior is Dirichlet?
 - $P(\theta \mid D) = Dirichlet(n_1 + \alpha_1, n_2 + \alpha_2, ..., n_K + \alpha_K)$

BAYESIAN ESTIMATION

- In MLE for BNs, we optimized each parameter independently
- Can we do the same for Bayesian estimation for BNs?
 - Only if the prior also factorizes wrt the BN
- What about the priors? How do we choose them?
 - 1. Ask the prior for each variable to an expert
 - 2. Use the same prior for all variables
 - This is called the *K2 prior*
 - 3. Imagine a dataset D' of imaginary instances
 - The number of imaginary instances for x is |D'| *P'(x, pa(x))
 - This is called the *BDe prior*
 - What is P'?
 - Could be anything; e.g., a marginally independent distribution

28

BAYESIAN ESTIMATION EXAMPLES

- Try a dataset using
 - MLE
 - Bayesian
 - K2
 - BDe

ICU ALARM NETWORK – FIG 17.C.1

30

INCOMPLETE DATA CHAPTER 19

MISSING DATA

- 1. Accidental
 - E.g., sensor failure
- 2. Intentional
 - E.g., not all tests are ordered for medical diagnosis
- 3. Hidden variable
 - E.g., cluster assignment; hidden cause

APPROACHES

- 1. Ignore the data points with missing values
 - Not economical (throwing data away), not necessarily accurate (if missing intentionally), and might not be possible (hidden variables)
- 2. Gradient optimization
- 3. Expectation Maximization

EXPECTATION MAXIMIZATION (EM)

- Initialize θ
- Iterate
 - Expectation
 - $M[x, pa(x)] = \sum P(x, pa(x) | observed)$ for each X
 - Maximization
 - $\theta_x = M[x, pa(x)] / M[pa(x)]$ for each X

EM EXAMPLES

- Simple network
 - $X \to Y$
 - Let's see a few cases:
 - X is missing in a small percentage; sometimes X and sometimes Y is missing; X is a hidden variable
- A more complicated network:
 - A disease (D) variable and three test variables (T_1 , T_2 and T_3)
 - A naïve Bayes structure: D is the parent of T_1 , T_2 and T_3
 - T_1 is the fastest but least accurate test. T_2 requires more time but is more accurate. T_3 requires the most time but also is the most accurate test.
 - The doctors order T_1 for everyone first. Depending on the results, they might order T_2 , and depending on its results, they might order T_3
 - D might be totally hidden or might be observed for only a small subset of the data

MARKOV NETWORKS CHAPTER 20

OVERVIEW

- Compared with Bayesian networks, the same principles apply but the issues and solutions are quite different
- \circ The most important reason for the differences is the use of global normalization constant Z
- \circ Z couples all parameters together, preventing us from optimizing each parameter independently
- Even simple maximum likelihood parameter estimation does not have a closed form solution
- We often resort to iterative approaches such as gradient ascent
- The good news is that the likelihood objective is concave; iterative approaches converge to global optimum

SINGLE VARIABLE CASE

- We have a binary variable X with domain(X) = {T, F}.
- Parameters are θ_1 and θ_2
 - Remember, the only constraint on θ_1 and θ_2 is that they need to be non-negative
- Dataset D has a T and b F instances.
- What are the maximum likelihood estimates for θ_1 and θ_2 ?

GRADIENT ASCENT

- Find maximum of $f(\theta)$ where there is no closed form solution
- Start with some initial guess θ_0
- While change is not much
 - $\bullet \quad \theta_{i+1} = \theta_i + \eta * f'(\theta_i)$
- η is called the learning rate and it is a user specified parameter

$$f = -2x^2 + 8x + 10$$

40

 ${
m CS}$ 583 – Probabilistic Graphical Models – Illinois Institute of Technology

41

 ${
m CS}$ 583 – Probabilistic Graphical Models – Illinois Institute of Technology

$$f = -2x^2 + 8x + 10$$

- \circ f' = -4x + 8
- Start with $x_0 = 6$
- Use $\eta = 0.2$
- $x_1 = x_0 + \eta *f'(x_0)$
 - $x_1 = 6 + 0.2*(-4*6 + 8) = 6 0.2*16 = 6 3.2 = 2.8$
- $x_2 = x_1 + \eta *f'(x_1)$
 - $x_2 = 2.8 + 0.2*(-4*2.8 + 8) = 2.8 0.2*3.2 = 2.8 0.64 = 2.16$
- $x_3 = x_2 + \eta *f'(x_2)$
 - $x_3 = 2.16 + 0.2*(-4*2.16 + 8) = 2.16 0.2*0.64 = 2.16 0.128 = 2.032$
- $x_4 = x_3 + \eta *f'(x_3)$
 - $x_4 = 2.032 + 0.2*(-4*2.032 + 8) = 2.032 0.2*0.128 = 2.032 0.0256 = 2.0064$

SINGLE VARIABLE CASE — GRADIENT ASCENT

- We have a binary variable X with domain(X) = {T, F}.
- Parameters are θ_1 and θ_2
- Dataset *D* has 4 T and 6 F instances.
- Solve for θ_1 and θ_2 using θ_1 =1 and θ_2 =1 as the starting point and
 - learning rate λ =0.1
 - learning rate λ =0.2
 - learning rate λ =0.4
 - learning rate λ =0.5

LOG-LINEAR MODELS

- A distribution is a log-linear model over a Markov network \mathcal{H} is it is associated with
 - A set of features $\mathcal{F} = \{f_1(\mathbf{C}_1), ..., f_k(\mathbf{C}_k)\}$, where each \mathbf{C} is a complete subgraph in \mathcal{H} ,
 - A set of weights $w_1, ..., w_k$

$$P(X_1,...,X_n) = \frac{1}{Z(\mathbf{w})} e^{\sum_{i=1}^k w_i f_i(\mathbf{C}_i)}$$

• It is common to have several features over the same scope

Log-linear models — log-likelihood

- Given a domain $X=\{X_1, ..., X_n\}$ and a dataset $\mathcal{D}=\{\xi[1], \xi[2], ..., \xi[M]\}$, where $\xi[i]$ is an instance, i.e., a complete assignment to the variables X
- The log-likelihood is

$$l(\mathbf{w}:D) = \sum_{i} w_{i} \left(\sum_{m} f_{i} \left(\xi[m] \right) \right) - M \ln Z(\mathbf{w})$$

- We are abusing the notation a little for clarity. The feature functions are defined over cliques, but here we passed them the whole instance. They just ignore the irrelevant portions of the instance
- What is $l(\mathbf{w}:D)/M$?

Derivative of $l(\mathbf{w}:D)/M$ wrt to w_i

$$\frac{\partial}{\partial w_i} \frac{1}{M} l(\mathbf{w} : D) = \mathbf{E}_D[f_i] - \mathbf{E}_{\mathbf{w}}[f_i]$$

Let's prove it.

$$\mathbf{E}_D[f_i] - \mathbf{E}_{\mathbf{w}}[f_i]$$

- ullet $\mathbf{E}_D[f_i]$ can be computed by summing f_i over the instances in D and dividing by M
- How can we compute $\mathbf{E}_{\mathbf{w}}[f_i]$?
- $\bullet \quad \mathbf{E}_{\mathbf{w}}[f_i] = \sum P_{\mathbf{w}}(\mathbf{X}) f_i(\mathbf{X})$
- It is impossible to iterate over all possible values of X
- Remember f_i is defined over a set of variables \mathbf{C}_i and it ignores (i.e. equals zero for) the rest of the variables
- $\mathbf{E}_{\mathbf{w}}[f_i] = \sum P_{\mathbf{w}}(\mathbf{c}_i) f_i(\mathbf{c}_i)$
- Perform inference to compute $P_{\mathbf{w}}(\mathbf{c}_i)$
- Now we have the gradient, we can optimize w using gradient ascent

BAYESIAN PRIORS

- There was no closed form solution for the maximum likelihood formulation
- There is no closed form solution for full Bayesian approach either
- We instead find the parameters that maximize $P(\theta)P(D \mid \theta)$

L_2 -REGULARIZATION

- Assume P(w) is zero-mean diagonal Gaussian with equal variances
- In the log space, it gives rise to a penalty of the form

$$\frac{1}{2\sigma^2} \sum_{i=1}^k w_i^2$$

• It penalizes large weights

L_1 -REGULARIZATION

- Assume P(w) is zero-mean Laplacian distribution
- In the log space, it gives rise to a penalty of the form

$$\frac{1}{\beta} \sum_{i=1}^{k} |w_i|$$

• It penalizes large weights

WHY SMALL WEIGHTS?

- Large weights are more susceptible to the noise in the data
- A small difference in the feature value can cause big changes in the probability
- Small weights give rise to smoother probabilities

L_2 VS L_1

- L_2 forces the large weights to get closer to zero and places an emphasis on the large weights
 - Even though the weights get closer to zero, they are often not zero
- \circ L_1 also penalizes large weights but the emphasis is not necessarily on the large weights
 - Some of the weights become zero
 - Leads to sparser representation
- o Can you see these?

LEARNING RATE

- As we have seen with examples, the learning rate is an important parameter
- If it is too large, then we can overshoot
- If it is too small, then it takes a long time to converge
- There is no single value that works for all datasets and domains
- There are approaches that chooses an appropriate learning rate at each step
 - E.g., line search (more info at the appendix)

MN PARAMETER ESTIMATION SUMMARY

- There is no closed form solution for both maximum likelihood estimation and Bayesian estimation
- The likelihood function is concave; there is a single global optimum (note that the objective function has a single global optimum value but there might be many parameter values that achieve the same global optimum)
- Gradient ascent methods are applied to estimate the parameters
- The gradient computation requires running inference, which is costly
- In practice, regularization (L_2, L_1) is used to avoid overfitting