CF355 – Física Moderna

MECÂNICA QUÂNTICA

Capítulos 5 e 6 (Eisberg e Resnick)

[1] (a) Seguindo o processo do exemplo 5-9, verifique que a função de onda

$$\Psi_2(x,t) = \left\{ egin{array}{ll} A_2 \sin \left(rac{2\pi x}{a}
ight) \, \mathrm{e}^{-\mathrm{i} E_2 t/\hbar}, & |x| \leqslant a/2 \ \ 0, & |x| > a/2 \end{array}
ight.$$

é uma solução da equação de Schrödinger para uma partícula que está confinada à região $\left[-\frac{a}{2},\frac{a}{2}\right]$, podendo moverse livremente dentro dela. (b) Determine o valor da energia total E_2 deste primeiro estado excitado do sistema, e compare-o com o da energia total E_1 do estado fundamental $\Psi_1(x,t)$ obtido no exemplo 5-9. (c) Trace um gráfico para a densidade de probabilidade $P_2(x,t)$ associada a este estado e compare-o com o da densidade de probabilidade $P_1(x,t)$ associada ao estado fundamental. Dê um argumento qualitativo que relacione a diferença entre as duas densidades com a diferença nas energias totais dos dois estados. (d) Determine a constante de normalização A_2 . (e) Calcule o valor esperado de x, x^2 , p e p^2 . (f) Calcule as incertezas Δx e Δp e mostre que o produto satisfaz o princípio de incerteza. (g) Compare o produto das incertezas obtidas para este primeiro estado excitado com o produto obtido para o estado fundamental. Explique por que os produtos das incertezas são diferentes. (h) Considere agora a combinação linear (estado de superposição)

$$\Psi(x,t) = c_1 \Psi_1(x,t) + c_2 \Psi_2(x,t).$$

Obtenha uma relação envolvendo as constantes $c_{1,2}$ que, quando satisfeita, garanta que $\Psi(x,t)$ também esteja normalizada. Utilize as funções $\Psi_{1,2}(x,t)$ já normalizadas. (i) Calcule a densidade de probabilidade $P(x,t) = |\Psi(x,t)|^2$ associada ao estado de superposição. A relação $P = P_1 + P_2$ é satisfeita? Justifique. (j) A função

$$+e|\Psi(x,t)|^2$$

pode ser usada para descrever a densidade de carga oscilante associada a um próton confinado a um núcleo. Usando 10^{-27} kg para a massa do próton e 10^{-14} m para o diâmetro do núcleo, calcule a frequência e a energia do fóton emitido por essa distribuição de carga oscilante quando o próton passar do estado excitado para o estado fundamental. Em qual região do espectro eletromagnético está este fóton?

- [2] Mostre que soluções da equação de Schrödinger do tipo $\Psi(x,t) = \psi(x) e^{-iEt/\hbar}$ produzem uma equação de autovalor, sendo $\psi(x)$ as autofunções. O que há de especial com essas soluções?
- [3] Resolva os problemas do capítulo 5 em que aparecem gráficos de energias potenciais e ou de funções de onda.
- [4] (a) Encontre as autofunções para o potencial degrau. Estude ambos os casos, $E > V_0$ e $E < V_0$. (b) Determine os coeficientes de reflexão (R) e transmissão (T) e compare seus resultados com os previstos pela mecânica clássica.

[5] (a) Encontre as autofunções para a barreira de potencial. Estude ambos os casos, $E > V_0$ e $E < V_0$. (b) Determine os coeficientes de reflexão (R) e transmissão (T) e compare seus resultados com os previstos pela mecânica clássica.

[6] Reescreva a fórmula do coeficiente de transmissão T do problema anterior em função dos parâmetros adimensionais $x \equiv E/V_0$ e $y \equiv 2m V_0 a^2/\hbar^2$. Estude o tunelamento para valores grandes e pequenos desses parâmetros. Para que regime de valores de x e y os resultados de potencial degrau são recuperados? Em que regime o limite clássico emerge? Por que o parâmetro y é chamado de *opacidade da barreira*?

[7] Uma reação de fusão importante na produção de energia solar envolve a captura de um próton por um núcleo de carbono, que tem a carga seis vezes maior que a carga do próton e um raio $r \simeq 2 \times 10^{-15}$ m. (a) Faça uma estimativa do potencial coulombiano V que atua sobre o próton se ele estiver na superficie nuclear. (b) O próton incide sobre o núcleo devido a seu movimento térmico. Podemos realisticamente supor que sua energia total seja muito maior do que $10 k_B T$, onde k_B é a constante de Boltzmann e T é a temperatura interna do Sol, que é aproximadamente 10^7 K. Faça uma estimativa de sua energia total, e compare-a com a altura da barreira coulombiana. (c) Calcule a probabilidade de que o próton possa penetrar em uma barreira de potencial retangular de altura V se estendendo de r a 2r, ponto no qual a barreira de potencial coulombiana cai a V/2. (d) É a penetração da barreira de potencial coulombiana real maior ou menor do que a da barreira de potencial retangular da parte (c)?

[8] (a) Usando argumentos qualitativos, faça um esquema da forma de uma autofunção de *onda estacionária* não ligada para um poço de potencial quadrado finito. (b) A amplitude das oscilações é a mesma em todas as regiões? (c) O que prevê o comportamento da amplitude a respeito das probabilidades de encontrar a partícula em uma unidade de comprimento do eixo x em várias regiões? (d) A previsão está de acordo com o que seria esperado a partir da mecânica clássica? (e) Desenvolva uma condição para a energia total da partícula, em um estado não ligado, que faz com que a probabilidade de encontrá-la em uma unidade de comprimento do eixo x seja a mesma dentro e fora do poço. (Sugestão: O que importa é a relação entre o comprimento de onda de de Broglie dentro do poço e a largura do poço.)

[9] (a) Encontre as soluções *normalizadas* das autofunções para o *poço de potencial infinito* (partícula em uma caixa). (b) Mostre que a diferença fracional em energia entre autovalores adjacentes é

$$\frac{\Delta E_n}{E_n} = \frac{2n+1}{n^2}.$$

Use esta fórmula para discutir o limite clássico do sistema. (c) Calcule o produto das incertezas $\Delta x = (\overline{x^2} - \overline{x}^2)^{1/2}$ e $\Delta p = (\overline{p^2} - \overline{p}^2)^{1/2}$ e mostre que o resultado é consistente com o princípio de incerteza de Heisenberg para todo n. (d) Suponha que a partícula "oscilante" seja um elétron e considere que o mesmo tenha sido preparado no estado

$$\Psi_{nm}(x,t) = \frac{1}{N} \left[\psi_n(x) e^{-iE_n t/\hbar} + \psi_m(x) e^{-iE_m t/\hbar} \right],$$

com n e m arbitrários. Determine N para que $\Psi_{nm}(x,t)$ seja normalizada. Calcule o momento de dipolo elétrico médio

$$\langle \mu_e \rangle_{nm} = \int \mathrm{d}x \, \Psi_{nm}^*(x,t) \, (-ex) \, \Psi_{nm}(x,t).$$

(*Dica*: você não precisará calcular as integrais se souber aplicar argumentos de paridade!) O momento de dipolo elétrico oscila no tempo? Se sim, quais serão as possíveis frequências dos fótons emitidos? Quais serão as transições $n \to m$ permitidas ("regras de seleção")?

[10] Desloquemos agora o sistema de coordenadas do problema anterior de forma que

$$V(x) = \begin{cases} 0, & 0 < x < a, \\ \\ \infty, & x < 0 \quad \text{e} \quad x > a. \end{cases}$$

Como os resultados dos itens (a), (b) e (c) do problema anterior se alteram? Qual a paridade das novas autofunções?

[11] Passageiros de aviões frequentemente observam que a ponta da asa do avião oscila para cima e para baixo com períodos da ordem de 1 s e amplitudes de aproximadamente 0,1 m. (a) Estimando uma massa para as asas e comparando a energia do estado fundamental com a energia obtida a partir dos valores citados, mostre que a oscilação certamente não se deve ao movimento de ponto zero das asas. (b) Calcule a ordem de grandeza do número quântico n da oscilação observada.