Solutions to Recitation 2

L. F. Jaw

February 8, 2021

This is my own solution to the recitation 2 of 18.014, which includes Theorem I.9-10 and Exercise 4 from Apostol's *Calculus* (1: 18-19).

The cancellation law (Theorem I.7) implies the uniqueness of the inverse if it exists and thus we use the notation a^{-1} introduced in the Theorem I.8 freely without any ambiguity. Furthermore, if $a \neq 0$, then $a^{-1} \neq 0$. If otherwise, $a \cdot a^{-1} = a \cdot 0 = 0 \neq 1$.

1. If $a \neq 0$, then $b/a = b \cdot a^{-1}$.

We have

$$a \cdot (b/a) = b$$
 by definition of division,
 $= 1 \cdot b$ by the identity axiom,
 $= (aa^{-1}) \cdot b$ by the inverse axiom,
 $= a \cdot (a^{-1}b)$ by associativity,
 $= a \cdot (ba^{-1})$ by commutativity.

We apply the cancellation law (Theorem I.7) to the above and obtain $b/a = b \cdot a^{-1}$.

2. If $a \neq 0$, then $(a^{-1})^{-1} = a$.

Since $a \neq 0$, $a^{-1} \neq 0$. And we have

$$a^{-1} \cdot (a^{-1})^{-1} = 1$$
 by definition of reciprocal,
$$= a \cdot a^{-1}$$
 by the inverse axiom,
$$= a^{-1} \cdot a$$
 by commutativity.

By the cancellation law, we obtain $(a^{-1})^{-1} = a$.

3. Zero has no reciprocal.

Suppose zero has a reciprocal and let us denote it as 0^{-1} . Then

$$0 = 0 \cdot 0^{-1}$$
 by Theorem I.6,
= 1 by definition of reciprocal.

But by the identity axoim, $0 \neq 1$. This is contradictory.