DIGITAL CIRCUITS

Week-11, Lecture-3 Sequential Circuits

Sneh Saurabh 26th October, 2018

Digital Circuits: Announcements/Revision

Sequential Circuits Registers and Counters

Registers

- A register is a group of flip-flops each one of which share a common clock
- An **n-bit register** consists of a group of *n* flip-flops capable of storing *n* bits of binary information
- In addition to the flip-flops, a register may have combinational gates that perform certain data-processing tasks
- A synchronous counter is also a register that goes through a pre-defined sequence of binary states

Registers: Problem of naïve implementation

How to keep the contents of the register unchanged $(A_0, A_1 ...)$?

- \succ Keep inputs (I_0 , I_1 ...) unchanged
- ➤ Disable clock
- ✓ Provide another signal that decides whether to change the content or not

Register with parallel load

- The transfer of **new information** into a register is referred to as *loading* the register
- A separate control signal *Load* decides whether the register will be loaded or not

- Load = 1, Inputs $(I_0, I_1 ...)$ connected to D
- Load = 0, Outputs $(A_0, A_1 ...)$ connected to D

Shift Register

 Shift Register: A register capable of shifting the binary information held in each cell to its neighboring cell (in a particular direction)

- The output of a given flip-flop is connected to the D input of the flip-flop at its right
- This shift register is unidirectional (left-to-right)

- *SI* decides what goes into left-most bit
- The outputs appear serially on the port *SO*

Shift Register: Serial vs. Parallel Mode

Two modes of data transfer

- 1. **Serial Mode**: Information is transferred and manipulated **one bit at a time** by shifting the bits out of the source register and into the destination register
- **2. Parallel Mode: All the bits** of the register are transferred at the same time

Shift Register: Serial Mode

- Serial Out (SO_A) of register A is connected to Serial In (SI_B) of register B
- To prevent data loss: Output of register A is recirculated (SO_A connected to SI_A)
- Shift controls when the clock signal (*Clock*) is applied

Serial Mode: Timing Diagram (Problem)

Problem:

Assume that the shift registers consists of four bits.

Assume that initially Register A has bit pattern: 1011 and Register B has bit pattern: 0010.

Find out the bit pattern in Register A and B after Clock Pulse T_1 , T_2 , T_3 and T_4 .

Serial Mode: Timing Diagram (Solution)

Timing Pulse	Shift Register A				Shift Register <i>B</i>			
Initial value	1	0	1	1	0	0	1	0
After T_1	1	1	0	1	1	0	0	1
After T_2	1	1	1	0	1	1	0	0
After T_3	0	1	1	1	0	1	1	0
After T_4	1	0	1	1	1	0	1	1

Universal Shift Register: Functionality

- Unidirectional/Bi-directional shift registers:
 - ➤ A register capable of shifting in one direction only is a unidirectional shift register.
 - ➤ One that can shift in both directions is a bidirectional shift register.
- If the register has both shifts and parallel-load capabilities, it is referred to as a *universal shift register*

Mode Control		_				
s ₁	s ₀	Register Operation				
0	0	No change				
0	1	Shift right				
1	0	Shift left				
1	1	Parallel load				

Universal Shift Register: Implementation

