Memory checking in IVC-based zkVMs

ZKProof, Berlin 2024

Jens Groth, Nexus - <u>nexus.xyz</u> based on discussions with Yinuo Zhang

Virtual Machine

- ullet Program P specified according to an Instruction Set Architecture
- Input x to the program (public)
- Auxiliary input w to the program (maybe not public)
- Output y

Zero Knowledge Virtual Machine

Zero Knowledge Virtual Machine & matching verification algorithm

Inside the zkVM

Prover efficiency

- CPUs: #transistors per IC increases ~50%/year (Moore's law)
- zkVMs: #proved CPU cycles per second increases > 1000%/year (in 2024)

Polite language amongst cryptographers when describing prover time

Polynomial		O(1) exp	os $O(1)$ field ops per CPU cycle		•	e per ed cycle
Infini	ite Linea	r	$ ilde{O}(1)$ fiel per const	u ops	c cycles per proved cycle	
80s	90s	00s	10 s	20s	30s	

Prover efficiency is still the bottleneck

- Proof size
- Verification time
- Proving time

Timeline of complicated big things to prove

	dentification		Mix-nets		Everything
Anything		Voting	В	lockchair	7
80s	90s	00s	10 s	20s	30s

Slicing a long computation

Incrementally verifiable computation

$$\begin{array}{c} w_0 & w_1 \\ \downarrow & \downarrow \\ \downarrow & \downarrow \\ \hline & F \end{array} \stackrel{Z_1}{\longrightarrow} F \qquad \cdots \qquad \begin{array}{c} F \\ \hline & F \\ \hline & F \end{array} \stackrel{Z_{n-1}}{\longrightarrow} F \xrightarrow{Z_n} \\ \hline & F \\$$

IVC-based zkVM

$$z_{0} := (P, x, w) \xrightarrow{W_{0}} F_{VM} \xrightarrow{Z_{1}} F_{VM} \cdots \xrightarrow{W_{n-1}} F_{VM} \xrightarrow{Z_{n}} y := z_{n}$$

$$\pi_{0} := \text{default} \xrightarrow{\zeta_{0}^{2}} \pi_{1} \xrightarrow{\zeta_{0}^{2}} \pi_{1} \xrightarrow{\zeta_{0}^{2}} \pi_{1} \xrightarrow{Z_{n}} \pi_{n} \xrightarrow{\pi_{n-1}} \pi_{n} \xrightarrow{\pi_{n-1}} \pi_{n} \xrightarrow{\pi_{n-1}} \pi_{n} \xrightarrow{\pi_{n-1}} \pi_{n} \xrightarrow{\pi_{n-1}} \pi_{n} \xrightarrow{\pi_{n-1}} \pi_{n}$$

$$N \in X \cup S$$

IVC-handling by the zkVM

Preprocessing: prepare initial state, run VM to get y after n steps, P, x, wcreate digest of P, x, w, y, slice information into $w_0, w_1, \ldots, w_{n-1}$ W_0 W_{n-1} $z_0 := (\text{init, digest})$ $F_{VM} \xrightarrow{z_1} F_{VM} \cdots F_{VM} \xrightarrow{z_n} z_n = \text{ok?}$ NEXUS

The cost of maintaining memory

Prover cost: constraints for memory transition :-(

Externalizing the memory

 Prover cost: only pay for constraints on CPU state changes such as program counter and registers, and the actual changes to memory:-)

Strawman zkVM with externalized memory

 $P, x, w \mapsto Processing$: run VM to learn all memory accesses that happen and provide them as auxiliary input

$$w_0, \mathsf{mem}_0 \quad w_1, \mathsf{mem}_1 \quad w_{n-1}, \mathsf{mem}_{n-1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$z_0 := (\mathsf{init}_\mathit{CPU}, \mathsf{aux}) \quad F_\mathit{CPU} \quad z_1 \quad F_\mathit{CPU} \quad \cdots \quad F_\mathit{CPU} \quad \xrightarrow{z_n}$$

$$\pi_0 := \operatorname{default} \qquad \overline{P}_0 = \overline{P}_0 \overline{P}_0 =$$

Cheating zkVM prover exploiting inconsistent memory

Memory protection for the CPU

 F_{EXE} uses digest_i , check_i to check the memory accesses in mem_i are consistent with a global memory access pattern across the IVC computation. Then $\operatorname{calls} F_{CPU}$ as a subroutine to get z_{i+1}

NEXUS

zkVM with externalized memory

Processing: run VM to learn all memory accesses and provide them as auxiliary input together with memory-checking info

$$w_0$$
, mem_0 , check_0 w_{n-1} , mem_{n-1} , $\operatorname{check}_{n-1}$ z_0 , digest_0 F_{EXE} z_1 , digest_1 \cdots F_{EXE} z_n

$$\pi_0 := \mathsf{default} \qquad egin{equation} egin{equation} egin{equation} egin{equation} egin{equation} egin{equation} \pi_1 \ egin{equation} e$$

$$\frac{\mathsf{P}}{\mathsf{P}}$$
 $\frac{\pi_n}{\mathsf{P}}$

Memory checking via merkle trees of the memory

 $P, x, w \mapsto \frac{\text{Processing:}}{\text{Compute Merkle-commitments to initial memory}}$ For all memory accesses, provide Merkle-paths to relevant cells

$$w_0, \mathsf{mem}_0, \mathsf{mpaths}_0 \qquad w_{n-1}, \mathsf{mem}_{n-1}, \mathsf{mpaths}_{n-1} \ z_0, \mathsf{mroot}_0 \qquad F_{EXE} \xrightarrow{z_1, \mathsf{mroot}_1} \qquad \cdots \qquad F_{EXE} \xrightarrow{z_n, \mathsf{mroot}_n}$$

$$\pi_0 := \operatorname{default} \qquad \stackrel{\scriptstyle \mathcal{D}}{\underset{\scriptstyle \mathcal{D}}{\longleftarrow}} \qquad \stackrel{\scriptstyle \pi_1}{\underset{\scriptstyle \mathcal{D}}{\longleftarrow}} \qquad \stackrel{\scriptstyle \mathcal{D}}{\underset{\scriptstyle \mathcal{D}}{\longleftarrow}} \qquad \stackrel{\scriptstyle \pi_1}{\underset{\scriptstyle \mathcal{D}}{\longleftarrow}} \qquad \stackrel{\scriptstyle \mathcal{D}}{\underset{\scriptstyle \mathcal{D}}{\longleftarrow}} \qquad \stackrel{\scriptstyle \pi_1}{\underset{\scriptstyle \mathcal{D}}{\longleftarrow}} \qquad \stackrel{\scriptstyle \mathcal{D}}{\underset{\scriptstyle \mathcal{D}}} \qquad \stackrel{\scriptstyle \mathcal{D}}{\underset{\scriptstyle \mathcal{D}}{\longleftarrow}} \qquad \stackrel{\scriptstyle \mathcal{D}}{\underset{\scriptstyle \mathcal{D}}{\longleftarrow}} \qquad \stackrel{$$

$$\frac{P}{e}$$
 $\frac{\pi_n}{m}$

Keeping track of memory accesses

- Read and write set RS, WS used to track memory accesses
- Invariant: RS trails WS by the last values written to memory
- Initialize WS with tuples (a, v, t = 0) // starting memory
- ullet To read/write value v from/to address a at time t
 - find $(a, v_{\text{old}}, t_{\text{old}})$ in WS\RS // if a read, check $v = v_{\text{old}}$ - add $(a, v_{\text{old}}, t_{\text{old}})$ to RS // now RS has caught up with WS in address a - add (a, v, t) to WS // now RS trails WS in address a again
- ullet When the program is done, add for each address one tuple $(a, v_{\rm old}, t_{\rm old})$ to RS
- Theorem: memory is consistent if RS = WSS

Multiset hashing

- G (additive) group where dlog is hard
- ullet H maps a multiset S (of elements in a domain D) to an element in $\mathbb G$
- Homomorphic: $H(S_1) + H(S_2) = H(S_1 \cup S_2)$
- Collision resistant: infeasible to find $S_1 \neq S_2$ s.t. $H(S_1) = H(S_2)$
- \bullet Instantiation: Let $h:D\to \mathbb{G}$ be a hash function (modeled as a random oracle) and define

$$H(s_1, \ldots, s_n) = h(s_1) + \ldots + h(s_n)$$

Memory checking via multi-set hashing

 $P, x, w \rightarrow$ Processing: For all memory

For all memory accesses, record changes to RS and WS

Memory protection: check mem_i , ΔRS_i , ΔWS_i consistency Update digests

$$rd_{i+1} = rd_i + H(\Delta RS_i)$$
 $wd_{i+1} = wd_i + H(\Delta WS_i)$

Proving 2 hashes per access is less expensive than a Merkle path

Should memory checking be expensive in IVC?

- ullet Monolithic SNARKs pay O(1) field op constraints per memory access
- Recall we can ensure memory is consistent by tracking reads and writes Write set WS tracks writes (a, v, t)
 - The read set RS tracks reads (a, v, t)
 - We access memory by adding (a, v_{old}, t_{old}) to RS and (a, v, t) to WS
 - We always need $t_{\text{old}} < t$ and when reading $v_{\text{old}} = v$
- After a final read of the memory, we're happy if RS = WS
- So all we need is an efficient check that RS = WS

Memory checking via LogUp arguments [EagenKRN22, Haböck22]

- RS and WS consist of tuples (a, v, t) appearing in different orders in the execution
- Given a map from tuples (a, v, t) to field elements in \mathbb{F} , the RS tuples are represented as $r_1, \ldots, r_n \in \mathbb{F}$ and the WS tuples as $w_1, \ldots, w_n \in \mathbb{F}$

• Theorem:
$$r_1, \ldots, r_n$$
 is a permutation of w_1, \ldots, w_n if
$$\sum \frac{1}{r_i + H} = \sum \frac{1}{w_j + H}$$

ullet Monolithic SNARKs use a Fiat-Shamir challenge $h \leftarrow \mathbb{F}$ to test this equality

A suitable challenge

We would like to check a LogUp test

$$\sum_{i} \frac{1}{r_i + H} = \sum_{j} \frac{1}{w_j + H}$$
 by plugging in a pseudorandom challenge h

- Problem 1
 - Generate h early: the prover can cheat by choosing r_i, w_j that depend on h
 - ullet Generate h late: now the IVC is concluded and we missed our chance to use it
- Problem 2
 - The IVC is incremental, no step has the full memory view to compute the sums

Recall we have split the step function into memory checking and CPU checking

The execution trace is independent of the challenge h. It contains CPU state and memory accesses (a, v, t) that can be determined by what $F_{\rm CPU}$ sees.

Incrementally building the challenge [Soukhanov23]

- Preprocessing by the zkVM prover
 - run the VM to learn the CPU's view
 - memory accesses are part of the CPU's view, it knows the tuples (a, v, t)
 - commit to the CPU's view in each step c_0, \ldots, c_{n-1}
 - compute the challenge h via a hash chain (starting at some default h_0)

Incrementally verifying the challenge [Soukhanov23]

Preprocessing: create commitments c_0, \ldots, c_{n-1} to the values seen by each step, based on those commitments compute a hash chain to get h

 F_{EXE} on h_i, c_i computes $h_{i+1} = H(h_i, c_i)$ During execution it also checks c_i is correct, e.g., all memory accesses appear in the commitment

A suitable challenge

We would like to conduct a LogUp test

$$\sum_{i} \frac{1}{r_i + H} = \sum_{j} \frac{1}{w_j + H}$$
 by plugging in a pseudorandom challenge h

- The zkVM uses the precomputed hash-chain challenge h, which it gives as input to the IVC from the start
- ullet The IVC verifies h is correctly computed
- The zkVM prover also keeps track of partial LogUp sums for the read and write sets. At each step it updates the partial LogUp sums according to the memory accesses in this step

Checking the LogUp equality

Preprocessing: create commitments $c_0, ..., c_{n-1}$ to the values in each step, from those commitments compute a hash chain to get h

 $rsum_n = wsum_n?$

At the end
$$\operatorname{rsum}_n = \sum \frac{1}{r_i + h}$$
 and $\operatorname{wsum}_n = \sum \frac{1}{w_j + h}$

Comparing the memory-checking techniques

Technique	Efficiency (computation to verify per memory access)	Incrementaility (how IVC-like)	
Merkle	$O(\log M)$ hashes	High. Can get proof at any step and keep going	
Multiset hash	O(C) hashes	Medium. Can keep going and get proof at any step at the cost of finalizing the memory	
2-pass offline memory checking	O(1) field ops	Low. The first pass dictates the bound on the computation, you cannot get intermediate proofs.	

Nexus - nexus.xyz

- Nexus 1.0
 - VM inspired by RISC-V
 - Can compile Rust to VM
 - Open source on GitHub, MIT and Apache licensed
 - Not so fast yet: 100 proved CPU cycles/second
- Future
- 2024 goal: 1T proved CPU cycles/second
- Path to get there
 - a) fast core prover (single threaded)
 - b) prover network (massive parallelization)

Folding

Instance aggregation (prover and verifier)

Witness aggregation (prover)

Relaxed R1CS

Notation: $\overline{m} \in \mathbb{G}$ is a Pedersen commitment (non-randomized) to $m \in \mathbb{F}^n$

Setup: $A, B, C \in \mathbb{F}^{m \times n}$

Instance: $(\overline{w}, x, r, \overline{e}) \in \mathbb{G} \times \mathbb{F}^{\ell} \times \mathbb{F} \times \mathbb{G}$

Witness: $(w, e) \in \mathbb{F}^{n-1-\ell} \times \mathbb{F}^m$ openings of commitments such that z = (x, r, w) satisfies $Az \circ Bz = rCz + e$

Note: R1CS (non-relaxed) has r=1 and $\overline{e}=\overline{0}$

Example: Nova folding scheme

Instance aggregation

$$(\overline{W}, X, R, \overline{E})$$

$$(\overline{w}, x, r, \overline{e})$$

Prover and verifier

- P: Let
$$Z = (X, R, W), z = (x, r, w)$$

- P: Let
$$\overline{T} = \overline{AZ} \circ Bz + Az \circ BZ - RCz - rCZ$$

- P&V: Fiat-Shamir challenge ρ

$$(\overline{W+\rho w}, X+\rho x, R+\rho r, \overline{E+\rho T+\rho^2 e})$$

Witness aggregation

$$(W + \rho w, E + \rho e)$$

NEXUS

Nova modified to split pre-challenge values and post-challenge-values

Commitments to values verified in Nova are split into two Pedersen commitments, one to values known during preprocessing before h is known and before IVC has started.

The corresponding RR1CS variant is:

Instance:
$$(\overline{w}_{\text{pre}}, \overline{w}_{\text{post}}, x, r, \overline{e}) \in \mathbb{G}^2 \times \mathbb{F}^{\ell} \times \mathbb{F} \times \mathbb{G}$$

Witness: $(w_{\text{pre}}, w_{\text{post}}, e) \in \mathbb{F}^{n-1-\ell} \times \mathbb{F}^m$ openings of commitments such that $z = (x, r, w_{\text{pre}}, w_{\text{post}})$ satisfies $Az \circ Bz = rCz + e$

Incrementally verifiable computation based on folding - intuition

- ullet u_i R1CS instance claiming the current step i gives the correct z_i
- U_i RR1CS instance containing aggregated folding of $u_1, u_2, \ldots, u_{i-1}$
- ullet w_i witness for correct computation in step i
- ullet W_i aggregated RR1CS witness for U_i

Incrementally verifiable computation based on folding - intuition

Does not work, the prover could cheat with U_n

Incrementally verifiable computation based on folding - augmented step function

Better, but still sweeping things under the rug

Incrementally verifiable computation based on Nova folding

- ullet R1CS instance claiming the current step i is correctly computed and that U_i was correctly computed as a fold of U_{i-1}, u_{i-1}
- ullet U_i RR1CS instance containing aggregated folding of u_1,u_2,\ldots,u_{i-1}
- ullet d_i A digest (hash) of z_i, U_i // compact state, larger auxiliary input
- F' Augmented step function that unpacks digest, folds u_{i-1}, U_{i-1} to get U_i , computes $z_i = F(z_{i-1}, \omega_{i-1})$, and the digest d_i of z_i, U_i