CG1108 Sem 2 AY2010/11

Part2
Lecture 5

Contact details

Office address: E4-08-02

Email: elesahoo@nus.edu.sg

Phone: 65166470

H/P: 92222094

Mid-term Announcement

Date: 5 Mar 2011 (Saturday)

Time : 10am – 11am

Venue: LT6 and E3-06-01

Syllabus: Up to DC transients

(Lecture 1 to Lecture 5)

Topics learnt so far

KCL to

• Ohm's Law ✓ I= V V= IR

$$I = \frac{V}{R}$$
 , $V = IR$

• KVL, KCL Super node

- Node analysis, Mesh analysis
- Thevenin equivalent, Norton equivalent

Capacitors, Inductors

Remaining topics

- DC transients / Let 45
 AC steady-state / Let 6
- Magnetic circuits and DC motor
- Diodes, BJTs and MOSFETs
- Digital Logic
- Instrumentation and Meas. Systems
- Autonomous Vehicle Project

Mode of learning

- Review past material
- Introduce the concepts
- Isolate and deal with the mathematics
- Solve examples
- Onto the hands-on part in the lab
- Tutorial

Review

Steady state DC Transients

- Learning objectives:
 - Understand the meaning of transients.
 - Write differential equations for circuits containing inductors and capacitors.
 - Solving differential equations to find the time value of voltages and currents
 - Use of Oscilloscope and Signal generator

Transients

- The time-varying voltages and currents resulting from the adding or removing voltage and current source to circuits containing energy storage elements, are called **transients**.
- Voltage and current in such circuits are represented by First-order differential equations.

First order RC circuit

 Circuits with resistors and a single energy storage element (either inductor or capacitor) are said to be first-order circuit.

RC Cricruit with a DC source

RL circuit with DC source

$$-V_{s} + iR + L \frac{di}{dt} = 0$$

$$\left(\frac{L}{R}\right)\frac{di}{dt} + i = \frac{V_{s}}{R}$$

$$V_{s} = \frac{V_{s}}{R}$$

First order circuits with general sources

$$\tau \cdot \frac{dx(t)}{dt} + x(t) = f(t)$$
 forcing function

Steady-state is defined when time rate of the signal is zero.

$$\frac{dx(t)}{dt} = 0, \quad x_{ss} = f(t)$$

Solution of Differential eqn

$$\tau \frac{dx(t)}{dt} + x(t) = f(t)$$

- Two parts of the general solution
 - Complementary solution (homogeneous eqn)
 - Particular solution (forced solution)

$$x(t) = x_c(t) + x_p(t)$$

Homogeneous equation

$$\tau \frac{dx_c(t)}{dt} + x_c(t) = 0 \qquad \text{Homogeness 2ps.}$$

$$\int \frac{dx_c(t)/dt}{x_c(t)} = \frac{-1}{\tau} \cdot dt$$

$$\ln\left[x_c(t)\right] = \frac{-t}{\tau} + c$$

$$x_c(t) = e^c e^{-t/\tau} = Ke^{-t/\tau}$$

 Determine the homogeneous solution by applying the initial condition to the complete solution

Particular solution

- The particular solution is obtained from the forcing function.
- It is normally of the same functional form as the forcing function and its derivatives.
- A table containing various forcing functions and their corresponding particular solutions are readily available.
- http://www.efunda.com/math/ode/linearo de_undeterminedcoeff.cfm

When forcing function is DC

The particular solution is a constant

$$\tau \frac{dx(t)}{dt} + x(t) = f(t)$$

$$\tau \frac{dx_p}{dt} + x_p = K'$$
Let $x_p = K'$.

Then $0 + K' = K'$
i.e. $x_p = K'$ is a solution

f(t) is also the steady-state solution

Complete Solution

 $\int \frac{dx}{dt} + x = K'$ where K' is the steady-state solution (x_{ss})

$$x(t) = Ke^{-\frac{t}{\tau}} + K$$

Applying the initial condition, i.e. x(t) at t = 0:

$$\underline{x(0)} = Ke^0 + K' \Rightarrow \underline{K} = \underline{x(0)} - \underline{K'}$$

∴ final solution is:

$$x(t) = (x(0) - K')e^{-\frac{t}{\tau}} + K' = x(0)e^{-\frac{t}{\tau}} + K'(1 - e^{-\frac{t}{\tau}})$$

$$x(t) = x(0)e^{-\frac{t}{\tau}} + x_{ss}(1 - e^{-\frac{t}{\tau}})$$

Recap of the solution

$$\frac{dx}{dt} + x = f(t) \qquad x = x_{c} + x_{p}$$
S.S. Sol2: $\frac{dx}{dt} > 0 \Rightarrow x_{ss} = f(t)$

In we are case $f(t)$ is a conflant.

$$x_{p} \text{ is also a conflant.} \qquad f(t) = k'$$

$$x_{p} = k' \rightarrow \tau \frac{dx_{p}}{dt} + x_{p} = k'$$
Homogeneous egn: $f(t) = 0$

$$\tau \frac{dx}{dt} + x = 0 \Rightarrow \int \frac{dx_{p}}{dt} = \int -\frac{1}{1} dt = \int -\frac{1}{1} d$$

Recap of the solution

$$x_{c} = e^{-t/\tau + c} = e^{-t/\tau} = ke^{-t/\tau}$$
 $x = x_{c} + x_{p} = ke^{-t/\tau} + k'$
 $\frac{1}{2}$
 $x = x_{c} + x_{p} = ke^{-t/\tau} + k'$
 $\frac{1}{2}$
 $\frac{1}{2}$

Nature of the solution

$$x(t) = x(0)e^{-\frac{t}{\tau}} + x_{ss}(1 - e^{-\frac{t}{\tau}})$$

T = Time constant

n	e^{-n}	$(1-e^{-n})$
<i>1 L</i>	e	(1 C)

0	1	0
1	0.367879	0.632121
2	0.135335	0.864665
3	0.049787	0.950213
4	0.018316	0.981684
5	0.006738	0.993262
6	0.002479	0.997521
7	0.000912	0.999088

RC and RL comparing to the general form

 $\tau \frac{dx}{dt} + x = K'$ where K' is the steady - state solution (x_{ss})

$$x(t) = x(0)e^{-\frac{t}{\tau}} + \overline{x}_{ss}(1 - e^{-\frac{t}{\tau}})$$

$$(RC)\frac{dv_c}{dt} + v_c = V_s$$

$$\frac{L}{R}\frac{di_L}{dt} + i_L = \frac{V_S}{R}$$

Example1

Example2

Lab4: Objectives

- To learn about the behavior of capacitors and inductors in DC circuits.
- To learn about the use of the Oscilloscope.
- To learn about the charging / discharging of capacitors.
- To measure the time constants for RC, RL circuits using the oscilloscope.

Lab4: Equipment to be used

- Lab DC power supply
- Digital multi-meter
- Breadboard
- Oscilloscope
- Signal Generator

Oscilloscope

- Basic function
- The probe
- Internal square wave
- Auto-exec
- Vertical scale
- Horizontal scale
- Trigger source and level
- Cursor for measuring signals

Oscilloscope Tutorial on Youtube

http://www.youtube.com/watch?v=qlfo_-d82Co&feature=channel

http://www.youtube.com/watch?v=hUlgAu3QQWQ&feature=channel

http://www.youtube.com/watch?v=g_KuGEh0PyA&feature=channel

Signal / Function Generator

- Functions
- Frequency setting
- Main and Aux/TTL output

http://www.youtube.com/watch?v=_pDz6e2ADew&feature=related