

Later Generations

LSI
Large
Scale
Integration

VLSI
Very Large
Scale
Integration

Semiconductor Memory Microprocessors ULSI
Ultra Large
Scale
Integration

Semiconductor Memory

In 1970 Fairchild produced the first relatively capacious semiconductor memory

Chip was about the size of a single core

Could hold 256 bits of memory

Non-destructive

Much faster than core

In 1974 the price per bit of semiconductor memory dropped below the price per bit of core memory

There has been a continuing and rapid decline in memory cost accompanied by a corresponding increase in physical memory density Developments in memory and processor technologies changed the nature of computers in less than a decade

Since 1970 semiconductor memory has been through 13 generations

Each generation has provided four times the storage density of the previous generation, accompanied by declining cost per bit and declining access time

Microprocessors

- The density of elements on processor chips continued to rise
 - More and more elements were placed on each chip so that fewer and fewer chips were needed to construct a single computer processor
- 1971 Intel developed 4004
 - First chip to contain all of the components of a CPU on a single chip
 - Birth of microprocessor
- 1972 Intel developed 8008
 - First 8-bit microprocessor
- 1974 Intel developed 8080
 - First general purpose microprocessor
 - Faster, has a richer instruction set, has a large addressing capability

Evolution of Intel Microprocessors

	4004	8008	8080	8086	8088
Introduced	1971	1972	1974	1978	1979
Clock speeds	108 kHz	108 kHz	2 MHz	5 MHz, 8 MHz, 10 MHz	5 MHz, 8 MHz
Bus width	4 bits	8 bits	8 bits	16 bits	8 bits
Number of transistors	2,300	3,500	6,000	29,000	29,000
Feature size (μ m)	10		6	3	6
Addressable memory	640 Bytes	16 KB	64 KB	1 MB	1 MB

a. 1970s Processors

2	80286	386TM DX	386TM SX	486TM DX CPU
Introduced	1982	1985	1988	1989
Clock speeds	6 MHz - 12.5 MHz	16 MHz - 33 MHz	16 MHz - 33 MHz	25 MHz - 50 MHz
Bus width	16 bits	32 bits	16 bits	32 bits
Number of transistors	134,000	275,000	275,000	1.2 million
Feature size (μ m)	1.5	1	1	0.8 - 1
Addressabl e memory	16 MB	4 GB	16 MB	4 GB
Virtual memory	1 GB	64 TB	64 TB	64 TB
Cache	_			8 kB

b. 1980s Processors

Evolution of Intel Microprocessors

	486TM SX	Pentium	Pentium Pro	Pentium II	
Introduced	1991	1993	1995	1997	
Clock speeds	16 MHz - 33 MHz	60 MHz - 166 MHz,	150 MHz - 200 MHz	200 MHz - 300 MHz	
Bus width	32 bits	32 bits	64 bits	64 bits	
Number of	1.185 million	3.1 million	5.5 million	7.5 million	
transistors	1.105 111111011	3.1 million	3.5 mmon	7.5 IIIIII0II	
Feature size	1	0.8	0.6	0.35	
(µm)	1	0.0	0.0	0.55	
Addressable	4 GB	4 GB	64 GB	64 GB	
memory	TOD	1 62	0132	01 GB	
Virtual	64 TB	64 TB	64 TB	64 TB	
memory					
Cache	8 kB	8 kB	512 kB L1 and 1 MB L2	512 kB L2	

c. 1990s Processors

	Pentium III	Pentium 4	Core 2 Duo	Core i7 EE 990
Introduced	1999	2000	2006	2011
Clock speeds	450 - 660 MHz	1.3 - 1.8 GHz	1.06 - 1.2 GHz	3.5 GHz
Bus width	64 bits	64 bits	64 bits	64 bits
Number of	9.5 million	42 million	167 million	1170 million
transistors	7.5 mmon	42 IIIIII0II	107 million	1170 mmion
Feature size (nm)	250	180	65	32
Addressable	64 GB	64 GB	64 GB	64 GB
memory	04 GB	0 1	04 GB	0 4
Virtual memory	64 TB	64 TB	64 TB	64 TB
Cache	512 kB L2	256 kB L2	2 MB L2	1.5 MB L2/12 MB L3

d. Recent Processors

Microprocessor Speed

Techniques built into contemporary processors include:

Pipelining	 Processor moves data or instructions into a conceptual pipe with all stages of the pipe processing simultaneously 	
Branch prediction	 Processor looks ahead in the instruction code fetched from memory and predicts which branches, or groups of instructions, are likely to be processed next 	
Data flow analysis	 Processor analyzes which instructions are dependent on each other's results, or data, to create an optimized schedule of instructions 	
Speculative execution	 Using branch prediction and data flow analysis, some processors speculatively execute instructions ahead of their actual appearance in the program execution, holding the results in temporary locations, keeping execution engines as busy as possible 	
On board cache		
On board L1 & L2 cache		

Performance Balance

Processor speed increased

Memory capacity increased

Memory
speed
lags
behind
processor
speed

Login and Memory Performance Gap

Performance Balance

- Adjust the organization and architecture to compensate for the mismatch among the capabilities of the various components
- Architectural examples include:

Increase the number of bits that are retrieved at one time by making DRAMs "wider" rather than "deeper" and by using wide bus data paths

Reduce the frequency of memory access by incorporating increasingly complex and efficient cache structures between the processor and main memory

Change the DRAM
interface to make it
more efficient by
including a cache or
other buffering
scheme on the DRAM
chip

Increase the interconnect bandwidth between processors and memory by using higher speed buses and a hierarchy of buses to buffer and structure data flow

I/O Devices

- Peripherals with intensive I/O demands
- Large data throughput demands
- Processors can handle this
- Problem moving data
- Solutions:
- I. Caching
- II. Buffering
- III. Higher-speed interconnection buses
- IV. More elaborate bus structures
- v. Multiple-processor configurations

Typical I/O Device Data Rates

Figure 2.10 Typical I/O Device Data Rates

Key is Balance

Processor components Main memory I/O devices Interconnection structures

Improvements in Chip Organization and Architecture

- Increase hardware speed of processor
 - Fundamentally due to shrinking logic gate size
 - More gates, packed more tightly, increasing clock rate
 - Propagation time for signals reduced
- Increase size and speed of caches
 - Dedicating part of processor chip
 - Cache access times drop significantly
- Change processor organization and architecture
 - Increase effective speed of instruction execution
 - Parallelism

Problems with Clock Speed and Login Density

■ Power

- Power density increases with density of logic and clock speed
- Dissipating heat

■ RC delay

- Speed at which electrons flow limited by resistance and capacitance of metal wires connecting them
- Delay increases as RC product increases
- Wire interconnects thinner, increasing resistance
- Wires closer together, increasing capacitance

■ Memory latency

Memory speeds lag processor speeds

■ Beginning in the late 1980s, and continuing for about 15 years, two main strategies have been used to increase performance beyond what can be achieved simply by increasing clock speed.

- Increased Cache Capacity
- More Complex Execution Logic