Finite State Machines

Harris and Harris Chapter 3.5

Moore and Mealy Machines

The Moore Form:

Outputs are a function of *only* the current state.

Moore and Mealy Machines

The Mealy Form:

Outputs may be a function of *both* the current state and the inputs.

A mnemonic: Moore machines often have more states.

Mealy Machines are the Most General

Another, equivalent way of drawing Mealy Machines

This is exactly the synchronous digital logic paradigm

Moore vs. Mealy FSMs

Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it. The snail smiles whenever the last four digits it has crawled over are 1101. Design Moore and Mealy FSMs of the snail's brain.

Moore Machine: States indicate output

Moore Machine: States indicate output

Moore Machine: States indicate output

Moore Machine: States indicate output

Moore Machine

Next State			Outp	
Q	Α	D	Q	Υ
S0	0	S0	S0	0
S0	1	S1	S1	0
S1	0	S0	S2	0
S1	1	S2	S3	0
S2	0	S3	S4	1
S2	1	S2	1	
S3	0	S0		
S3	1	S4		
S4	0	S0		
S4	1	S2		

Moore Machine

Next State			Outp	ut
Q	A	D	Q	Y
000	0	000	000	0
000	1	001	001	0
001	0	000	010	0
001	1	010	011	0
010	0	011	100	1
010	1	010		
011	0	000		
011	1	100		
100	0	000		
100	1	010		

Mealy Machine

Q	A	D	Y
S0	0	S0	0
S0	1	S1	0
S1	0	S0	0
S1	1	S2	0
S2	0	S3	0
S2	1	S2	0
S3	0	S0	0
S3	1	S1	1

Mealy Machine

Q	Α	D	Y
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	11	0
10	1	10	0
11	0	00	0
11	1	01	1
01 10 10 11	1 0 1 0	10 11 10 00	0 0 0

More Intuitive (Non-Minimal) Solutions

Moore Form: Output Depends Only on State

Mealy Form: Output Depends on Input Immediately

Finite State Machine Design Process

- 1. Create state transition diagram (abstract implementation of spec)
- 2. Select state encoding
- 3. Create tables for output and next state logic
- 4. Minimize output and next state logic
- 5. Wire up design (produce schematic)