

Einführung in die Informatik

für die Studiengänge AI & I-TS+ "duale"

WS 2020/21

Hochschule RheinMain Prof. Dr. Heinz Werntges

Zur Entstehung dieser Veranstaltung

- Bis WS 02/03: Prof. Dr. Kröger
 - Gesamtkonzeption
 - umfangreiches Folienmaterial
 - Praktikum und Übungen
- WS 03/04: Prof. Dr. Gergeleit
 - Übernahme der Lehrveranstaltung
 - Material i.w. erhalten
- WS 04/05 WS 05/06: Prof. Dr. Werntges
 - Übernahme der Lehrveranstaltung, Anpassung an Bachelor-St.
 - Aktualisierungen und Ergänzungen
 - Umstellung auf neue deutsche Rechtschreibung
 - Folienanimationen, Kurztests, Unix/Linux-Anleitungen

Zur Entstehung dieser Veranstaltung

- WS 07/08 SS 09: Prof. Dr. Behrens
 - Viel eigenes Material
 - Inhaltlich etwas andere Akzente
- Ab WS 09/10: Prof. Dr. Werntges
 - Fortsetzung des Konzepts aus WS 05/06
 - Übernahme einiger Neuerungen von Prof. Behrens
- Ab WS 16/17: Prof. Dr. Werntges
 - Fortsetzung des Konzepts aus WS 11
 - Auslagerung einiger technischer Teile in "Grundlagen der digitalen Elektronik" (I-TS)
 - Gemeinsames Angebot auch für WI (2017 & 2018)

Organisatorischer Vorspann

- 1. Lernziele
- 2. Organisation der Veranstaltung
- 3. Inhaltlicher Überblick
- 4. Bewertung und Leistungsnachweis
- 5. Materialien

1. Lernziele

 Grundlegende Modelle, Methoden, Verfahren und Techniken kennen lernen, die bei der Konstruktion moderner informationstechnischer Systeme in Hardware und Software Verwendung finden

(Lehrform: Vorlesung und Übungen)

- Fragen stellen können
- Antworten verstehen können
- Weiteres Wissen selbstständig erarbeiten können
- Selbstständige Lösung von Aufgaben zur Festigung und Vertiefung des in der Vorlesung behandelten Stoffs
- Vorbereitung auf die Klausur

- Grundlegende Arbeitstechniken im Umgang mit Rechnern erlernen (Lehrform: Praktikum)
 - "Überleben" am UNIX-Rechner
 - "Überleben" im Internet
- Die Lehrveranstaltungen des Studienplans einordnen können.
- Nicht zuletzt: Spaß am Informatik-Studium bekommen!

2. Organisation der Veranstaltung

- Vorlesung (LV 1121):
 - 2-stündig
 - gemeinsam für alle BA-Studierenden im 1. Semester
- Ablauf einer Vorlesung (Beispiel)
 - Zunächst Hauptteil, ca. 60 Minuten
 - Unterbrechung durch Kurztest + Auswertung, 5-10 Min.
 - Fortsetzung des Hauptteils und/oder Praktikumsergänzungen

Organisation der Veranstaltung (2)

Praktikum:

- 2-stündig
- Gruppen zu ca. 15 Personen
- Betreuung durch den Dozenten oder Lehrbeauftragte
 - (K. Bernsau, B. Geib, T. Rupp, H. Werntges)
- 1. Abschnitt: Praktikum am Rechner (Grundlagen für das Studium)
- 2. Abschnitt: Papierübungen zur Vorlesung
 - Übungsleiter geben Antworten auf Verständnisfragen zur Vorlesung und zu den Übungsaufgaben
 - Vorbereitung zu Hause
 - Vorrechnen durch Studierende
 - gemeinsame Diskussion von Lösungen

Organisation der Veranstaltung (3)

Übungsgruppen:

- feste Übungsgruppe für alle Studierenden (Einteilung in Züge)
 (wurde während des Belegungsverfahrens zugeordnet)
- im Semester kein Wechsel möglich

Sonstige Betreuung:

- Freies Üben: Di. nachmittags in allen Rechnerräumen
- Meine Sprechstunde: Nach Vereinbarung, per BBB unter https://greenlight.cs.hs-rm.de/b/wer-4bv-0be-3gu
- E-Mail: heinz.werntges@hs-rm.de
- Webpage der Veranstaltung: In Stud.IP
 (http://studip.hs-rm.de/, dann Lehrveranstaltung auswählen)
- Dateien auf dem Fileserver:
 /home/staff/werntges/lv/einf-inf/
 (erscheinen auch in Stud.IP, Ordner "Praktikumsmaterial")

3. Inhaltlicher Überblick

Gliederung der Vorlesung:

- 1. Einführung, Geschichte der Informatik, Informatik & Gesellschaft
- 2. Grundbegriffe
- 3. Repräsentierung von Information in Rechensystemen
- 4. Grundlagen der Codierung
- 5. Schaltnetze, (Schaltwerke,) Boolesche Algebra
- 6. Architektur von Rechensystemen
- 7. (Gerätekunde)

Inhaltlicher Überblick (2)

Praktikum:

- "Überleben" am Unix-Rechner
 - Dokumentationen und Hilfesysteme: SelfLinux; man, info
 - Umgang mit dem Dateisystem und andere wichtige Kommandos
 - Editoren (vi)
 - Kommandointerpreter (shell)
 - Beispiel: Linux (wie zu Hause)
- "Überleben" im Internet
 - Informationsbeschaffung: WWW, URLs, Browser, Suchmaschinen
 - Kommunizieren: E-Mail, news
 - Netzwerk-Dienstprogramme (ftp, telnet; ssh, sftp)
 - Erstellen von einfachen HTML5-Dokumenten

Termine im WS 2020/21

(Stand: 02.11.20)

Datum (Fr)	Vorlesung	Praktikum/Übung
06.11.20	Organisatorisches, Einführung, Geschichte der Informatik	P1: Dateisystem
13.11.20	Informatik und Gesellschaft	P2: Der Editor vi
20.11.20	Grundbegriffe	P3: Utilities, Pipes
27.11.20	Repräsentierung v. Information (1)	P4: ssh, Mail, (s)ftp
04.12.20	Repräsentierung (2)	Ü5: Geschichte der Inf.
11.12.20	Repräsentierung (3), Linux	Ü6: Algorithmus, Zahlendarst.
18.12.20	Codierung (1)	Ü7: Repräsent., Codierungen
21.12.20 - 03.1.21	Nein (Weihnachtspause)	
8.01.21	Codierung (2), (X)HTML/5	P8: HTML5
15.01.21	Schaltnetze/werke, Boolesche Alg.	P8: HTML5
22.01.21	Schaltnetze/werke, Boolesche Alg.	Ü9: Codierungen
29.01.21	Architektur (1)	Ü10: Codierungen, Schaltnetze
05.02.21	Architektur (2)	Ü11: Codierungen
12.02.21	Gerätekunde	Ü12: Rechner-/System-Arch.
19.02.21	Gerätekunde/Fragestd., Klausurtipps	(Reservetermin)
Ab 22.02.21	Prüfungswochen	

Termine im WS 2020/21 (2)

Besondere Termine

- Praktikums- bzw. Übungstermine
 - Die <u>Freitags-Gruppen</u> im Anschluss an die Vorlesung <u>machen</u> den <u>Anfang</u>, alle anderen Gruppen haben ihre ersten Termine in der Folgewoche
 - Die Freitags-Gruppen beginnen daher mit den Übungsblättern stets eine Woche voreilend. Das gilt dann logischerweise auch für die Abgabefristen (außer wenn explizit anders angegeben) – bitte merken!

Termine im WS 2020/21 (3)

Praktikums- bzw. Übungstermine

- Das Modul beginnt mit <u>4 Praktikumsaufgaben</u> zum Erlernen der Unix/Linux-Umgebung und <u>zum Arbeiten mit der Kommandozeile</u> (Grundfertigkeiten, von vielen späteren Modulen benötigt).
- Die <u>erst später</u> einsetzenden <u>theoretischen Übungen</u> dienen zur Wiederholung und Vertiefung des <u>Vorlesung</u>s-Stoffs
- Praktikumsaufgaben (P) sind vorzubereiten (Einarbeitung), ihre
 Ergebnisse zum Termin in der Folgewoche abzugeben/vorzuführen
- Übungsaufgaben (Ü) sind <u>vor</u> ihrem jeweiligen Termin zu bearbeiten!
 Ihre Lösungen sind zum Termin abzugeben bzw. während des Termins vorzurechnen.

4. Bewertung und Leistungsnachweis

- LV 1121: Der Veranstaltung ist eine <u>Prüfungs</u>leistung im Sinne der Prüfungsordnung zugeordnet.
 - Bewertung: Abschlussklausur; bestanden bei ≥ 50% der Punkte
 - Max. 3 Versuche!
- LV 1122: Der Veranstaltung ist eine <u>Studien</u>leistung im Sinne der Prüfungsordnung zugeordnet.
 - Anwesenheitspflicht im Praktikum (75 %) ist notwendige Voraussetzung (max. 3 Fehl-Termine!)
 - Bewertung durch Leistung im Praktikum im Verlaufe des Semesters
 - Unix-Teil: Alle Aufgabenzettel werden bepunktet
 - Theorie-Teil: Bepunktung für Abgaben und zusätzlich Vorrechnen. Jede(r) kommt mindestens zweimal an die Reihe (Lose) und sollte stets alle Aufgaben vorbereiten!
 - Für beide Teile gilt: Regelmäßige und selbstständige Bearbeitung ist wichtiger als Fehlerfreiheit.
 - Notenvergabe über Gesamtpunktzahl, bestanden bei ≥ 50%.

Bewertung und Leistungsnachweis

Kurztests

- In einigen Vorlesungen werden Kurztests (ca. 5 min.) durchgeführt
- Schriftlich zu bearbeiten, gegenseitige Kontrolle/Korrektur
- Lösungen später im Web verfügbar
- Ohne Wertung zur Selbstkontrolle des Kenntnisstands und zur Aktivierung nach längeren Vorlesungseinheiten
- Alte Klausuren, Probeklausur?
 - Eine Klausur aus dem WS 2005/06 wird bereitgestellt
 - Musterlösungen werden <u>nicht</u> angeboten erarbeiten und diskutieren Sie das Material gemeinsam!

Bewertung und Leistungsnachweis

Einige Worte zum Zeitaufwand für diese LV

Generell: 1 SWS = 2,5 Std. Zeitaufwand insgesamt

Hier: 4 SWS = 10 Std./Woche,

also 6 Std./Woche zusätzlich zur Anwesenheitszeit

- Nutzung dieser 6 Stunden pro Woche
 - Vorlesung:
 - Nachbereitung, Nachvollziehen der VL-Beispiele & Kurztests
 - Erarbeitung der nicht gezeigten Folien (!)
 - Praktikum:
 - Vorbereitung auf die Themen des nächsten Praktikums
 - Insb. selbstständiges Erarbeiten der angegebenen SelfLinux-Kapitel (!!)
 - Auffrischung des jeweiligen Vorlesungsstoffs
 - Wer nachweislich völlig unvorbereitet erscheint, erhält keinen Anwesenheitsvermerk. ⇒ 75%-Regel!
 - Bearbeitung / Fertigstellung der Übungszettel
 - Plagiate werden mit 0 Punkten gewertet. Das gilt für alle Kopien, wenn Original nicht erkennbar.
 - Gegen Ende der LV: Klausurvorbereitungen

5. Materialien

- Folien zur Vorlesung
 - als PDF-Dateien über Stud.IP erhältlich
 - Aktuelle Einschränkungen wegen der "Wort-VG", §52a Urheber-G.
- Lehrbücher zur Vorlesung
 - werden für jedes Kapitel gesondert angegeben.
 - aufgrund der Stoffauswahl deckt kein Lehrbuch genau den behandelten Stoff ab.
- Übungs- bzw. Praktikumsanleitungen u. ggf. Material dazu
 - sind <u>selbstständig rechtzeitig</u> aus dem Dozentenverzeichnis bzw. von Stud.IP <u>abzuholen</u>, auszudrucken und vorzubereiten / zu bearbeiten.

- UNIX-Rechner des Studienbereichs zum freien Üben
 - Linux-Pools, R\u00e4ume C213, C413; C361, C377
 - nur außerhalb von Lehrveranstaltungen benutzbar, dienstags ab 14.15 Uhr
- UNIX-Handbücher und -Skripte sowie Online-Ressourcen
 - RRZN Hannover, wird von Fachschaft verkauft
 - Skripte verschiedener Hochschulen über den Web-Server des Fachbereichs erhältlich (in PostScript), Ausdruck zu Hause!
 z.B. Skript der Uni Karlsruhe "Einführung in UNIX"
 (W. Alex, 2004, 434 Seiten).
 - zahlreiche Lehrbücher im Handel und in der Bibliothek
 - The Linux Documentation Project (www.tldp.org)
 - SelfLinux (www.selflinux.org) (Tutorial + Referenz, auf Deutsch)

Empfohlene Ausstattung f ür zu Hause

- Linux
 - frei verfügbares UNIX für PC-Hardware
 - DVD-Versionen im Handel bzw. kostenlos per Download (z.B. OpenSuSE (Leap 15.2), Ubuntu 20.04 LTS, Mint 20, ...)
 - Für erste Versuche: Knoppix CD-ROM, bootfähig
- Windows
 - Windows 10 bietet optional ein "Windows-Subsystem für Linux"
 - mit Acrobat Reader (für .pdf), Ghostview (für .ps), Browser (Firefox ab 80.x, Chrome, MS Edge), Packer/Entpacker (z.B. infozip, Winzip, WinRAR), Editoren (vim und ultraedit), Textverarbeitung (z.B. Microsoft Word), zusätzlich Cygnus bash und gcc ("Cygwin"-Umgebung).
 - Tipp: Linux als Virtuelle Maschine installieren (VirtualBox, VMWare)
- Apple Mac
 - MacOS beruht bereits auf einer hochentwickelten Unix-Version