

TD2 - Conditionnement et indépendance

Exercice 1. On lance un dé rouge et un dé noir tous deux équilibrés. Calculer la probabilité des évènements suivants :

- 1. Un 3 avec le dé rouge sachant que la somme des points est 6.
- 2. Un nombre pair avec le dé rouge sachant que la somme des points est au plus 6.
- 3. Au moins un nombre pair sachant que la somme des points est au plus 10.

Exercice 2. On lance deux fois un même dé équilibré. Soient les évènements A : « le 1^{er} jet est impair », B : « le 2^e jet est impair » et C : « la somme des points est impaire ». Les évènements A, B et C sont-ils indépendants deux à deux? Sont-ils indépendants dans leur ensemble?

Exercice 3. On lance trois fois de suite une pièce équilibrée. On considère les évènements A : « le 1^{er} lancer donne face », B : « le 2^e lancer donne face » et C : « on obtient aucun pile après avoir obtenu une face ». Montrer que $P(A \cap B \cap C) = P(A)P(B)P(C)$. Les évènements A, B et C sont-ils mutuellement indépendants?

Exercice 4. On dispose de deux urnes A et B. Dans A, il y a 3 boules rouges et 2 boules noires, et dans B, il y a 4 boules rouges et 3 boules noires. On choisit au hasard une urne, puis une boule de cette urne. La boule tirée est rouge. Quelle est la probabilité qu'elle provienne de l'urne A?

Exercice 5. On considère une urne qui contient trois pièces de monnaie. Deux de ces pièces sont équilibrées, mais la troisième est truquée : la probabilité qu'elle tombe sur face est 0,6. On considère l'expérience aléatoire suivante : on tire uniformément au hasard une pièce de l'urne, et on la lance. Si la pièce est tombée sur face, quelle est la probabilité qu'elle soit truquée?

Exercice 6. Le dépistage systématique d'une maladie est effectué sur une population dont 0,1 % des individus est malade. Le test utilisé donne 95 % de résultats positifs pour les personnes atteintes par la maladie, et 1 % de résultat positifs pour les personnes non atteintes. Quelle est la probabilité qu'une personne prise au hasard soit atteinte sachant que le test a donné un résultat positif? soit indemne sachant que le test a donné un résultat négatif? (on pourra utiliser une calculatrice pour cet exercice)

Exercice 7. On s'intéresse à la transmission d'une information binaire (elle prend deux valeurs). On admet que le procédé de transmission directe entre deux individus A et B est tel que, lorsque A émet une valeur de l'information à destination de B, ce dernier reçoit la valeur émise par A avec la probabilité p, et donc l'autre valeur avec la probabilité q = 1 - p (on suppose que 0).

On considère des individus successifs $i_0, i_1, ..., i_n$ avec $n \in \mathbb{N}$. L'information émise par i_0 est transmise à i_1 , qui transmet la valeur reçue à i_2 , et ainsi de suite jusqu'à i_n . Entre deux individus, i_k et i_{k+1} , la transmission de l'information suit la loi décrite plus haut. On note A_k l'évènement modélisant le fait que la valeur de l'information reçue par i_k soit identique à celle émise par i_0 , on pose $p_0 = 1$ et $p_k = P(A_k)$.

- **1.** Exprimer p_{k+1} en fonction de p_k .
- **2.** En déduire l'expression de p_n en fonction de n et de p.

 Indication : on rappelle que pour étudier une suite arithmético-géométrique $(u_n)_{n\in\mathbb{N}}$, on pose une suite auxiliaire $v_n = u_n + \alpha$, avec $\alpha \in \mathbb{R}$ de sorte que $(v_n)_{n\in\mathbb{N}}$ soit géométrique.
- **3.** Calculer la limite de p_n lorsque n tend vers +∞. Déterminer la valeur de p pour que p_{100} = 99%.

Exercice 8. Soit $(\Omega, \mathcal{P}(\Omega), P)$ un espace probabilisé fini.

- 1. Soient A et B des évènements indépendants. Montrer que A^c et B sont indépendants.
- **2.** Montrer que si A_1, \ldots, A_n, B sont indépendants, alors A_1, \ldots, A_n, B^c sont indépendants.

- **3.** Montrer que pour tout entier $n \ge 2$, si A_1, \ldots, A_n sont des évènements indépendants, alors A_1^c, \ldots, A_n^c sont indépendants.
 - Indication : soit H_k la proposition « $A_1, ..., A_k, A_{k+1}^c, ..., A_n^c$ » sont indépendants; on pourra démontrer par récurrence sur k que H_k est vraie pour tout $k \in [0, n]$.

Exercice 9. Soit $n \in \mathbb{N}^*$. On considère l'expérience aléatoire consistant à choisir un entier uniformément au hasard entre 1 et n. On note $S_n = \{k \in [1, n] \mid \operatorname{pgcd}(k, n) = 1\}$ et $\varphi(n)$ le cardinal de S_n (φ est appelée la fonction indicatrice d'Euler).

- **1.** Déterminer S_n et calculer $\varphi(n)$ pour tout $n \in [2, 10]$.
- **2.** On considère les évènements A : « l'entier choisi est un multiple de 2 » et B : « l'entier choisi est un multiple de 5 ». Calculer P(A) et P(B) pour n = 100, et pour n = 101.
- **3.** On suppose que la décomposition en facteurs premiers de n s'écrit $\prod_{i=1}^k p_i^{\alpha_i}$, où $\alpha_i \ge 1$. On note A_i l'évènement « l'entier choisi est divisible par p_i ».
 - **a.** Soit A l'évènement « l'entier choisi est premier avec n ». Calculer P(A) en fonction de n et $\varphi(n)$.
 - **b.** Montrer que $P(A_i) = \frac{1}{p_i}$.
 - **c.** Montrer que $A_{i_1} \cap \cdots \cap A_{i_r}$ est l'évènement « l'entier choisi est divisible par $p_{i_1} \cdots p_{i_r}$ ».
 - **d.** Montrer que les évènements $A_1, ..., A_n$ sont indépendants.
 - **e.** Exprimer l'évènement A en fonction de A_1, \ldots, A_n , puis en déduire que $\varphi(n) = n \prod_{i=1}^k \left(1 \frac{1}{p_i}\right)$.

Exercice 10*. Soit $n \ge 2$ un entier. On consdière une urne contenant des jetons numérotés de 1 à n-1, et n caisses telles que la i-ième caisse contient des boules numérotées de 1 à i. On tire au hasard un jeton de l'urne : si le jeton porte le numéro i, on tire au hasard une boule de la i-ième caisse et une boule de la (i+1)-ième caisse. On s'intéresse à la probabilité p_n de tirer deux boules de même numéro.

- **1.** Proposer un espace de probabilité $(\Omega, \mathcal{P}(\Omega), P)$.
- **2.** Calculer p_2 .
- **3.** Montrer que $p_n = \frac{1}{n-1} \sum_{i=1}^{n-1} \frac{1}{i+1}$ si $n \ge 3$.

Indication : on pourra appliquer la formule des probabilités totales avec le système complet d'évènements A_1, \ldots, A_{n-1} , où A_i est l'évènement « le i-ième jeton est tiré ».

- **4.** On cherche un équivalent de p_n lorsque n tend vers $+\infty$.
 - **a.** Montrer que pour tout $k \in \mathbb{N}^*$, $\frac{1}{k+1} \le \log(k+1) \log(k) \le \frac{1}{k}$.
 - **b.** En déduire que $S_n 1 \le \log(n) \le S_n$, où $S_n = \sum_{i=1}^n \frac{1}{i}$.
 - **c.** En déduire la limite de $\frac{S_n}{\log(n)}$ lorsque n tend vers $+\infty$, puis donner un équivalent de p_n .