6. Aufgabenblatt

(Besprechung in den Tutorien 28.11.2022–02.12.2022)

Aufgabe 1. Mengendiagramm der Entscheidbarkeit

Sei Σ ein endliches Alphabet. Zeichnen Sie ein Mengendiagramm, in dem die folgenden Mengen auftreten:

- (a) die Klasse 2^{Σ^*} aller Sprachen (für eine Menge A ist $2^A = \{A' \mid A' \subseteq A\}$ die Potenzmenge von A),
- (b) die Klasse der entscheidbaren Sprachen,
- (c) die Klasse der co-entscheidbaren Sprachen (eine Sprache $L \in \Sigma^*$ ist co-entscheidbar genau dann, wenn $\Sigma^* \setminus L$ entscheidbar ist),
- (d) die Klasse der semi-entscheidbaren Sprachen,
- (e) die Klasse der co-semi-entscheidbaren Sprachen, (eine Sprache $L \in \Sigma^*$ ist co-semi-entscheidbar genau dann, wenn $\Sigma^* \setminus L$ semi-entscheidbar ist),
- (f) die Klasse der unentscheidbaren Sprachen,
- (g) die Klasse der rekursiv aufzählbaren Sprachen.

Aufgabe 2. Komplement des speziellen Halteproblems

Im Folgenden sei $\overline{K} := \{0, 1\}^* \setminus K$ das Komplement des speziellen Halteproblems $K := \{w \in \{0, 1\}^* \mid M_w \text{ hält auf Eingabe } w\}$. Sie können im Folgenden verwenden, dass K aufzählbar ist.

- (a) Ist \overline{K} entscheidbar?
- (b) Ist \overline{K} semi-entscheidbar?
- (c) Ist \overline{K} co-semi-entscheidbar?

Aufgabe 3. Abgeschlossenheit semi-entscheidbarer Sprachen

Seien $A, B \subseteq \Sigma^*$ zwei semi-entscheidbare Sprachen, die nicht entscheidbar sind. Zeigen Sie, dass

- (a) $A \cup B$ semi-entscheidbar ist,
- (b) $A \cap B$ semi-entscheidbar ist,
- (c) $\overline{A} := \Sigma^* \setminus A$ nicht semi-entscheidbar ist.

Aufgabe 4. Streng monoton rekursiv aufzählbare Sprachen sind entscheidbar

Sei Σ ein endliches geordnetes Alphabet und $<_{\text{lex}}$ die lexikographische Ordnung auf Σ^* . Wir definieren die Ordnung \prec auf Σ^* so, dass für zwei Wörter $a,b\in\Sigma^*$ gilt:

$$a \prec b \iff |a| < |b| \lor (|a| = |b| \land a <_{\text{lex}} b).$$

Eine Funktion $f: \mathbb{N} \to \Sigma^*$ ist streng monoton, wenn für alle $x, y \in \mathbb{N}$ mit x < y gilt, dass $f(x) \prec f(y)$. Eine Sprache $A \subseteq \Sigma^*$ ist streng monoton rekursiv aufzählbar, falls A von einer berechenbaren streng monotonen Funktion aufgezählt wird.

- (a) Sei $A \subseteq \Sigma^*$ streng monoton rekursiv aufzählbar. Zeigen Sie, dass A entscheidbar ist.
- (b) Sei $A\subseteq \Sigma^*$ un
endlich groß und entscheidbar. Zeigen Sie, dass A streng monoton rekursiv aufzählbar ist.