Joint Learning & Dynamic Pricing

· Dynamic pricing without knowing the demand function - Besbest Zeevi · Dynamic pricing with limited supply - Babaioff, Dughmi, Kleinbag, Slivkins

Model

- . Ritems, nagents, sequential apprival (k < n)(Alt: time horizon T, arrival rate 2 Poisson process)
- . Posted price Pt for agent t, PE[0,1]
- . Agent this value $V_t \sim F$. Funknown, $\in [0,1]$
- S(P) = 1 F(P) Sales trate | quantile . S(P) strictly ded R(P) = P S(P) - Revenue function

F negular $\Rightarrow R^{-}(P) \leq 0 + P \in [0,1]$ F strictly negular $\Rightarrow R^{-}(P) < 0$

· PMP = Monopolist piece (any max R(P))
Rev(Ailp)

Fixed price benchmark - $A_k(P)$. If $k = \alpha$, $A_k(P) = R(P) n$ Horosoppo let $A_k(P) = P min(k, nS(P)) = min(kp, nR(P))$

Then $2(P) - O(P \sqrt{R \log R}) \leq \frac{Rev(A_R(P))}{E \sqrt{R}} \leq \frac{2(P)}{R}$

thus the best choice of fixed price is p = argnex 2(p) = max [Pmp, 5 (k)] If - The upper bound is obvious. For the lower bound, let $X_t = \{1\} \{ \text{Sale to the agent} \}, X = \{\sum_{t=1}^n x_t, \mu = E[x] \ (= n S(t)) \}$ By Chernoff bonds, $P[X-u = -O(J_{\mu}logk)] \leq \frac{1}{k}$ => # of saler = $\mathbb{E}\left[\min\left[k, \times\right]\right] > \min\left(k, \mu - O(\sqrt{\mu \log k})\right)$ > min (k, u) - O (Nklogk) Regat = 18 D(p*)-[Row(A)] Capped UCB (n, k) - Choose parameter SE (0,1) - Set 'active prices' set $P = \{S(1+S)^i; i \in IN\}$ - While toward I runsold item · Pick P E argnax It (P) - Else set P = x (close shop!) Then - With S= k-1/3 (logn) 2/3 Capped UCB has reget = O((klogn)/3)
for City distribution (regular) - For any distrib (regular), I SF, CF s.t Cappel VCB inte

S= TR logn achiver nearet O(CF. TR logn) when R < SF. For MMR

Notes

. The choice of index It depends on (n,k), not instantaneous state

· Benchmark in P(P), not $\mathbb{E}[\text{Rev}(A_n^*(P))]$ - the previous lemma shows this is justified

. Need a refined UCB to hardle 'trate' prices.

Index should incorporate 'stock-out price' S'(k)

in addition to Pmp

More détails for Capped UCB (n, k)

$$- I_t(p) \stackrel{\triangle}{=} p. \min \left[k, n S_t^{UB}(p) \right]$$

$$S_{t}^{UB}(P) \stackrel{\triangle}{=} S_{t}(P) + 97_{t}(P)$$
empirical rate confidence radius

$$\int_{\mathbb{R}^{+}} \{P\} = \min \{R_{t}(P), P\}$$
, $\{R_{t}(P)\} = \# \text{ of sales at priop} \}$
 $\{R_{t}(P)\} = \# \text{ of agents of land} \}$
when $\{R_{t}(P)\} = \# \text{ of agents of land} \}$

$$91_{t}(P) = \frac{20c \log n}{N_{t}(P) + 1} + \sqrt{\frac{c \log n \cdot S_{t}(P)}{N_{t}(P) + 1}}$$

Henceforth, we define $Q = c \log n$

Pf of O((klogn)^{2/3}) (worst-case) negret

· $X_t = 1$ { Sale to the agent} ~ $Bin(S(P_t))$ $X = \sum_{t=1}^{n} X_t$, $S \stackrel{?}{=} E[X] = \sum_{t=1}^{n} S(P_t)$ } Suppose we ignore the praparity k to define X lie, we continue to sell after running out of items)

Then Rev = $\sum_{t=1}^{N} P_t X_t$, where $N=\max\{N \leq n \mid \sum_{t=1}^{N} t \leq k\}$

· Pf outline - First we define a set of good events' and analyze a deterministic algo under there. Then we bound the probability of not good events' to show small loss in regret.

· Lemma 2 With probability at least 1-n⁻². The following are true: for all $t \in \{1,2,...,7\}$, $P \in P$.

i) $|S(P) - S_t(P)| \leq \Re_t(P) \leq 3\left(\frac{d}{N_t(P)+1} + \sqrt{\frac{dS_t(P)}{N_t(P)+1}}\right)$ And
ii) $|X-S| \leq O\left(\sqrt{S\log n} + \log n\right)$ iii) $|Z_{t=1}^n P_t\left(X_t - S(P_t)\right)| \leq O\left(\sqrt{S\log n} + \log n\right)$

Note - the last two bounds depend on S, not n - 1-lendoth, assume i, ii ad iii and TRUE Define Pact = ang max [P(P)] (best action prior) $\Delta(P) = max (0, \frac{1}{n} P(Pact) - P(S(P)))$ Similar to $B(M^*-M)$ in DCB $N(P) = N_{PM}(P) = H$ of agents offered P obtained

Lemma 3 - $\forall P \in P$, $N(P) \Delta(P) \leq O(\log n) \left[1 + \frac{k}{n} \cdot \frac{1}{\Delta(P)}\right]$

 $Pf - by def'', \forall t, p \in P - |S(P) - \widehat{S}_t(P)| \leq \eta_t(P)$ $\Rightarrow \mathcal{D}(P) \leq T_t(P) \leq P. \min\left[k, n\left(S(P) + 2\mathfrak{I}_t(P)\right)\right]$

Thus - $\left[I_{t}(Q) > I(P_{at}^{*})\right]$ (choose highest $I_{t}(P)!$) $\left[I_{t}(P_{t}) \leq P_{t} \cdot \min\left[k, n\left(S(P_{t}) + 2n_{t}(P_{t})\right)\right]\right]$

 $\frac{D(P_{act}^*)}{n} \leq P_t \min \left[\frac{R}{n}, S(P_t) + 2\eta_t(P_t) \right]$

 $=) i) P_{t} \geqslant \frac{\mathcal{D}_{act}^{*}}{k}, ii) \mathcal{A}(P_{t}) \geqslant 2P_{t} \mathcal{D}_{t}(P_{t}), iii) \mathcal{A}(P_{t}) > 0$ $=) S(P_{t}) < \frac{k}{n}$

Now we use the form of 91+ (·)

Consider to the last time price P was chosen (for any
$$P \in P$$
)

$$= \sum_{k=1}^{n} \frac{1}{N(P)} \cdot N(P) = N_{t}(P) + 1 \qquad \text{I by defin}$$

$$- \Delta(P) \leq 2P \cdot P_{t}(P)$$

$$- \Delta(P) \geq 0 \leq \sum_{k=1}^{n} \frac{1}{N(P)} \cdot \frac{1}{N$$

from the assumed high prob events

· Now let's consider $\sum_{P_{+}} S(P_{+})$

$$\sum_{t=1}^{n} P_{t} S(P_{t}) \geq \sum_{t=1}^{n} \left[\frac{\mathcal{V}(P_{act}^{*})}{n} - \Delta(P_{t}) \right]$$

$$= 2 \left(0^{*} \right) - \sum_{t=1}^{n} \Delta(P_{t}) N(P_{t})$$

$$= \sum_{p \in P} \Delta(p) N(p)$$

$$= \sum_{P \in \mathcal{F}} N(P) \Delta(P) = \sum_{P \in \mathcal{P}(E)} \Delta(P) N(P) + \sum$$

This for any stP, any E>0

$$\int (P_{\text{aut}}^*) - \mathbb{E}[\text{Rev}] \leq E_n + O(\log_n) \left[|P_{\text{el}}| + \frac{\sum_{k} \sum_{k} \Delta(n)^{-1}}{n \text{ per}} \right] + \beta(k)$$

. For
$$P = \{ S(1+S)^i \}$$
, $D(P_{act}^*) - D(P^*) \ge -Sk$

- If
$$P^* < S$$
, $D(P^*) < Sk$. Else let $P_0 = m_0 P \in P$, $P < P^*$
=) $\frac{P_0}{P} > \frac{1}{HS} > 1 - S \Rightarrow D(P_0) > \frac{P_0}{P^*} D(P^*) > \frac{7}{P^*} - Sk$

· Putting everything together, we get

$$\leq E_n + O(\log_n) \left[Pel + \frac{k}{h} \sum_{p \in Pe} \Delta(p)^{-1} \right] + \beta(k) + Sk$$

$$\leq O(\log n) \left[\frac{|P_e|}{|E_n|} + O(\sqrt{\log n} + \log n) + Sk + \epsilon n \right]$$

Also Pel & flogn assume S = h, E = Sk

=) Regret
$$\leq O\left(8k + \frac{1}{5^2}(\log n)^2 + \sqrt{k\log n}\right)$$

* Standard Chesnoff bounds - For X, X2,..., Xn
$$\in$$
 [0,1], i.d., $X = \frac{1}{n} \sum_{i=1}^{n} x_i$, $\mu = \mathbb{E}[x]$. Then

i) $\mathbb{P}[|x-\mu| \gg \in \mu] \leq 2e^{-n\mu^2} \epsilon^2/3$ $\forall \theta = 1$

ii) $\mathbb{P}[x>a] < 2^{-an}$ for $a>6\mu$

* Lemma - In the above setting, let
$$\Re(\alpha, x) = \frac{\alpha}{n} + \sqrt{\frac{\alpha x}{n}}$$
.

Then $IP[|x-\mu| < \Re(\alpha, x) < 3\Re(\alpha, \mu)] > 1 - e^{-\Omega(\alpha)}$

Pf- The main idea is to separately deal with small and large u.

i) Consider
$$\mu > \alpha/6n$$
. Let $E = \frac{1}{2}\sqrt{\frac{\alpha}{6\mu n}}$. Now by (i)

 $P[|X-\mu| > En] < 2 \exp(\frac{-\kappa \alpha}{2\mu n}) = 2e^{-\epsilon \alpha}$
 $= |X-\mu| < \mu \leq \kappa/2 \quad \text{w.p.} \quad 1-e^{-\Omega(\alpha)}$

Also by choice of E , we have $\omega.P$ $1-e^{-\Omega(\alpha)}$

 $|x-\mu| < \frac{\nu}{2} \sqrt{\frac{\alpha}{6\mu n}} \leq \sqrt{\frac{\alpha x}{n}} \leq \Im(\alpha, x) \leq 1.5 \Im(\alpha, \mu)$

ii) Consider $\mu < \frac{9}{6}n$. Let $\alpha = \frac{\alpha}{n}$; by (ii) $\times < \frac{\alpha}{n} \quad \text{where } 1 - e^{-\Omega(\alpha)}$ $= \frac{1}{2} |x - \mu| < \frac{\alpha}{n} < \frac{9}{6}n < \frac{1}{2} = \frac{\alpha}{n} < \frac{1}{2} = \frac{1$

Now we return to own 'bad event' bounds $|S(p) - \widehat{S}_{t}(p)| \leq \mathcal{P}_{t}(p) \leq 3\left(\frac{\alpha}{N_{t}(p)_{t1}} + \sqrt{\frac{\alpha S_{t}(p)}{N_{t}(p)_{t1}}}\right)$ Pf- For any PEP, Let {Zi,p}iin = Ben(S(P)) nus 2) Sale to = {Zip=1} Now we can use our lemma it agent who sees P $\Rightarrow |P| |S(P) - \widehat{S}_{t}(P)| \leq \lambda_{t}(P) \leq 3\left(\frac{\alpha}{\lambda_{t}(P)+1} + \sqrt{\frac{\alpha}{\lambda_{t}(P)+1}}\right) \geq 1 - n^{4}$ Also $|P| \le n$ (if $d = c \log n$) 3) By union bound over t E E1,..., n3, pEP, we get the result.