Rajarsi Pal

Introduction Classical HAM Working Applications

Neurons Quantum

Structure

Working

Illustrations

Experiments
Updating
Strategy

Effective Capacity

issues

Discussion

References

Quantum Hopfield Networks

Rajarsi Pal

Indian Institute of Technology Madras

Term Project ID5841 Quantum Lab

But what is a Hopfield network ?

Rajarsi Pal

Introduction Classical HAM

Working

Applications

Quantum

Hopfield Mode

Working

Illustrations Experiments

Updating Strategy Effective

Issues

Discussion

References

A Hopfield Network is a type of recurrent neural network. They were introduced by J.Hopfield in 1982 as a model for associative memory. **Network architecture:**

How does it work ?

Rajarsi Pal

Introduction Classical HAM Working

Application

Quantum

Quantum

Hopfield Mode Structure

Working

Illustrations

Experiments

Strateg

Issues

Discussion

References

- define **Energy** as, $E(X) = -\frac{1}{2N} \sum_{i,j} X_i W_{i,j} X_j + \sum_i b_i X_i$
- Neuron activation ; $X_i(t+1) = g_\beta(-\frac{\partial E}{\partial X_i}) = g_\beta(\frac{1}{2N}\sum_j W_{i,j}X_j b_i)), g_\beta$ is the activation function

■ Claim: Energy decreases monotonically with iterations!

Applications

Rajarsi Pal

Introduction Classical HAM Working

Applications

Quantum

Quantum Hopfield Model

Structure

Illustration

Experiments
Updating
Strategy
Effective

Issues

Discussion

- Regenerate pattern from corrupted pattern
- Encode a given pattern into the weight matrix, such that stored patterns are at the Energy minima
- Since Energy decreseas monotonically to the minima, arbitrary initial configuration must converge to the stored pattern
- Reformulate the Cost function and Constraints into the Energy function
- By iteratively updating configurations Energy is minimised as Energy => Cost function, Cost function is minimised!

But how to make neurons Quantum ? [3], [2]

Rajarsi Pal

Introduction
Classical HAM
Working
Applications

Quantum

Quantum Hopfield Model Structure Working

Experiments Updating Strategy

Issues

Discussion

References

Non-linearity is an issue !

- Non-linear activation functions are necessary for neural networks.
- Quantum evolution is Unitary ⇒ inherently **linear**.!

Possible ways !

- Measurement based approach
 Measurements are not unitary: Trace out part of the system on each iteration.
- Basis Encoding
 This involves transformations of the form, $|s\rangle|0\rangle \rightarrow |s\rangle|\phi(s)\rangle$,
 where $\phi(s)$: non-linear function. Using *Quine McClusky* method
- Rotation Encoding What we will be using.

Quantum

Neurons

Hopfield Mode Structure

Working

Illustrations

Experiment

Updating Strategy Effective

Issues

Discussion

Miller's Model [QHAM]

Rajarsi Pal

Introduction Classical HAM Working

Quantum

Neurons Quantum

Hopfield Mode

Structure

Working

Illustrations

Experiments

Updating Strategy

Effective

Issues

Discussion

References

Encoding $\{\pm 1\}$ states into $|\textit{kets}\rangle$

$$\begin{split} |\psi(x_i)\rangle &= \cos(\tfrac{\pi}{4}x_i + \tfrac{\pi}{4})\,|0\rangle + \sin(\tfrac{\pi}{4}x_i + \tfrac{\pi}{4})\,|1\rangle \\ \text{Thus, } \vec{x} &= \{x_1, x_2, x_3..\} \implies |\psi(x_1, x_2...)\rangle = |\psi(x_1)\rangle\,|\psi(x_2)...\rangle \end{split}$$

Encoding W_{ij} into $R_y(\phi_{i,j})$

Idea: encode elements of W_{ij} as arguments to CR_y

Figure: Rotation Encoding

Introduction

Classical H

Working

Appliantio

_ **

Neurons

Quantum

Hopheid Wou

Structure

Working

Illustrations

Experiment

Updatin

Effectiv

Issues

Discussion

Miller's Model

Rajarsi Pal

Introduction Classical HAM Working

Quantum

Quantum Hopfield Mode

Working Illustrations

Experiments

Strategy Effective Capacity

Issues

Discussion

References

Updating the system

Idea:

- Use CR_y to update the $|ancilla\rangle$ initialised at $|0\rangle$.
- **SWAP** |*ancilla*⟩ with the qubit to be updated.

Figure: Updating qubit $|s3\rangle$ and $|s2\rangle$

Miller's Model

Rajarsi Pal

Introduction
Classical HAM
Working
Applications

Quantum Neurons

Hopfield Mod

Working

Illustrations

Updating Strategy Effective

Issues

Discussion

References

Effective Non-linearity

But how to get back the classical states ?

Idea: Use Majority voting

- Basically, run the circuit a number of times and estimate $P(|1\rangle)$ and $P(|0\rangle)$ my measuring it.
- Interpret the state as (+1) if $P(|1\rangle) > 0.5$ else as (-1)

Illustrations

Introduction Illustrations

Issues

References

990

Rajarsi Pal

4

Introduction

Classical HAM

vvorking

Applicatio

Neurone

Quantum

Hopfield Mode

Structure

vvorking

Illustrations

Experimen

Updating Strategy

Effective

issucs

Discussion

eterences

Best way to update states ?

Rajarsi Pa:

Introduction
Classical HAM
Working
Applications
Quantum
Neurons
Quantum
Hopfield Mode
Structure

Illustrations Experiments

Updating Strategy Effective

Issues

Discussion

References

Repeated vs. Final Measurement

- Measure all qubits after every updating step.
- Results are more accurate
- But involves mid-circuit measurements

- Measure all qubits only at the end.
- Results are often ambiguous.
- Avoids mid-circuit measurements.
 Evolution is more quantum in nature.

Best way to update states ?

Introduction

Updating Strategy

Figure: n= 4

Figure: n= 8

How well can it retrieve the patterns ?

Introduction Classical HAM

Illustrations Experiments

Effective Capacity

Issues

Discussion

References

Scaling of Eff. Capacity

- Check variation of **Density Accuracy** of the network against (m/n), where m is the no. of patterns, n is the no. of qubits, tuning **no.of updates** to n and 2n respectively.
- Check variation of **Density Accuracy** of the network against **no.of updates**, for different cases of **m** and **n**.

How well can it retrieve the patterns ?

Density Accuracy vs. m/n Introduction 0.78 0.76 D acc. 0.74 0.72 0.70 0.68 0.5 1.0 1.5 2.0 m/n

0.600 0.575

> 0.5 1.0 1.5 2.0 2.5

n= 12 - n= 10

- n= 8 - n= 5

n= 4

2.5

Effective Capacity

Issues

Where does it go wrong ?

Rajarsi Pal

Introduction
Classical HAM
Working
Applications
Quantum

Neurons
Quantum
Hopfield Mode
Structure
Working
Illustrations

Experiments
Updating
Strategy
Effective
Capacity

Issues

Discussion References

Majority Voting

- Unjustly collapses the state to the computational basis ⇒ looses essential quantum information.
- Looses all information on the phase of the state.
- Density accuracy falls drastically with no. of (m/n) ratio.

Repeated Updates

- Sequence of updates affect trajectory as update operators are non-commuting.
- Postponing the measurements to the end lead to states where $P(|0\rangle) = P(|1\rangle) = 0.5$ for all qubits.

Things to do better..

Rajarsi Pa

- Introduction
 Classical HAM
 Working
 Applications
 Quantum
 Neurons
 Quantum
 Hopfield Model
 Structure
 Working
- Experiments

Updating Strategy Effective Capacity

Issues

Discussion

- This model is not truly Quantum as it does not incorporate effects like superposition and entanglement into its design.
- There is no way to probe into the dynamics of the system i.e to find metrics like current **Energy**, **Hamming distance** to stored configurations.
- Capacity of the network indicates that it barely manages to satisfy the classical limit. No real quantum advantage!

References

Rajarsi Pal

Introduction
Classical HAM
Working
Applications
Quantum
Neurons
Quantum
Hopfield Model
Structure
Working

Experiments
Updating
Strategy
Effective
Capacity

Issues

Discussion

- [1] J J Hopfield. "Neural networks and physical systems with emergent collective computational abilities.". In: Proceedings of the National Academy of Sciences 79.8 (1982), pp. 2554–2558. DOI: 10.1073/pnas.79.8.2554. eprint: https://www.pnas.org/doi/pdf/10.1073/pnas.79.8.2554. URL: https://www.pnas.org/doi/abs/10.1073/pnas.79.8.2554.
- [2] Florian Marquardt. "Machine Learning and Quantum Devices". In: SciPost Phys. Lect. Notes (2021), p. 29. DOI: 10.21468/SciPostPhysLectNotes.29. URL: https://scipost.org/10.21468/SciPostPhysLectNotes.29.
- [3] Maria Schuld and Francesco Petruccione. Supervised Learning with Quantum Computers. 1st. Springer Publishing Company, Incorporated, 2018. ISBN: 3319964232.