Tests Summary

Туре	Test Name	When to use
	Shapiro-Wilk (best)	+ Straight line, Slope = 1 Test to see if data deviates from a straight line.
Normality	Kolmogorov-Smirnov (general)	- p<0.05 or p<0.1 Compares the cdf (cumulative density function) of the variable tested vs. cdf of a gaussian variable and determines the probability of observing a deviation as large or larger.
	Lilliefors	
	Anderson-Darling	
Homoscedasticity	Levene (best)	Best for non-normal distributions
	Bartlett	Best for normal distributions
	Fisher	Least robust if normality is not present
Bivariate	Cramer's V	
(2 discrete variables)	Chi-Square	
Bivariate (1 continuous, 1 discrete)	Parametric ANOVA	Requires normality & homoscedasticity
	Wilcoxon-Mann-Whitney	Non-parametric, 2 groups
	Kruskal-Wallis	Non-parametric, >2 groups

Mean comparison tests					
Form of distribution	Two samples	Three or more samples			
Normality & Homoscedasticity	Student's t test	ANOVA			
Normality & Heteroscedasticity	ormality & Heteroscedasticity Welch's <i>t</i> test				
Non-normality & Heteroscedasticity	Wilcoxon–Mann–Whitney	Kruskal–Wallis			
	Median test	Median test			
		Jonckheere-Terpstra			
		test (ordered samples)			

Tests

Tests for Normality

The normality of a variable can be verified by the following tests:

- 1. Shapiro-Wilk test (the best)
 - a. Normal distribution: Straight Line with Slope = 1
- 2. Kolmogorov-Smirnov test (the most general)
 - **a.** NOT a Normal distribution: If probability <0.05 or <0.10 we reject H_0
- 3. Lilliefors test
- 4. Anderson-Darling test

Tests for Normality								
Test	Statistic		P-Value					
Shapiro-Wilk	W	0.992264	Pr < W	0.9845				
Kolmogorov-Smirnov	D	0.051999	Pr > D	> 0.1500				
Cramer-von Mises	W-Sq	0.02621	Pr > W-Sq	> 0.2500				
Anderson-Darling	A-Sq	0.162071	Pr > A-Sq	> 0.2500				

Transformations Used to Reduce Skewness

- **1.** Log transformation (has to be adjusted for 0 and negative values)
 - a. If data is skewed, log transformation will transform the data to a form where we see a more normal distribution.
- 2. Square (left skew)
- 3. Square root (right skew)
- 4. Cube (right skew)

Test for Homoscedasticity and Heteroscedasticity

- 1. Levene Test (best low sensitivity to non-normality)
- 2. Bartlett Test (best if distribution is equal)
- 3. Fisher Test (least robust if normality is not present)

Test of Homogeneity of Variance					
Levene Statistic	Df1	Df2	Significance		
50.448	2	396	.000		

Bivariate Tests

Measuring Links between Two Discrete Variables

e.g. gender and smoking

- 1. Cramer's V
- 2. Chi-Square

Discrete

Discrete

Measuring Links between One Discrete & One Continuous Variable

e.g. dosage of a medicine and recovery time

Continuous

- 1. Parametric ANOVA Test
 - a. Requires normality/homoscedasticity assumption
- 2. Non-Parametric Approaches
 - a. Wilcoxon-Mann-Whitney (2 groups)
 - b. Kruskal-Wallis (>2 groups)