Thông tin về môn học

Thời lượng

Số tiết lý thuyết : 45

• Số tiết thực hành: 30

Điều kiện

 Nắm vững kiến thức về cơ sở dữ liệu, lập trình hướng đối tượng.

Mục tiêu

- Cung cấp những kiến thức cơ bản về hệ thống thông tin trong tổ chức.
- Phương pháp xây dựng hệ thống thông tin hướng đối tượng.

Thông tin về môn học

Tài liệu tham khảo

- Bài giảng Phân tích hệ thống của TS Đồng Thị Bích Thủy
 Đại học quốc gia thành phố Hồ Chí Minh.
- Giáo trình phân tích thiết kế hệ thống thông tin của tác giả Nguyễn Văn Vỵ
- A. Dennis, B.H. Wixom, D. Tegarden, Systems Analysis and Design – An Object-Oriented Approach with UML, John Wiley & Sons, 2002.
- J.F. George, D. Batra, J.S. Valacich, J.A. Hoffer, Object-Oriented Systems Analysis and Design, Pearson – Prentice Hall, 2004

Nội dung môn học

Chương 1: Đại cương về hệ thống thông tin

Chương 2: Ngôn ngữ mô hình hoá UML

Chương 3: Quản trị dự án CNTT

Chương 4: Xác định yêu cầu hệ thống

Chương 5: Mô hình hoá chức năng

Nội dung môn học

Chương 6: Mô hình hoá cấu trúc

Chương 7: Mô hình hoá hành vi

Chương 8: Thiết kế lớp và phương thức

Chương 9: Thiết kế giao diện người dùng

Nội dung môn học

- Chương 1. Đại cương về hệ thống thông tin
 - Định nghĩa hệ thống
 - Các đặc điểm và các khái niệm của hệ thống
 - Các đặc điểm của hệ thống hướng đối tượng
 - Các thành phần của hệ thống thông tin
 - Chu kỳ phát triển hệ thống
 - Các phương pháp luận phát triển hệ thống
 - Các giai đoạn phát triển hệ thống dùng OOSAD
 - Các vai trò của người phân tích hệ thống

- Chương 2. Ngôn ngữ mô hình hóa hợp nhất UML
 - Đối tượng và lớp
 - Phương thức và thông điệp
 - Tính bao đóng và che giấu thông tin
 - Tính tổng quát hóa và tính thừa kế
 - Tính đa hình và kết nối động
 - Giới thiệu các sơ đồ của UML

- Chương 3. Quản trị dự án
 - Kế hoạch chiến lược
 - Chọn dự án
 - Tầm quan trọng của lập kế hoạch
 - Đánh giá các yêu cầu hệ thống
 - Phân tích tính khả thi
 - Quản lý dự án trong SDC
 - Người quản lý dự án
 - Quá trình phát triển hệ thống OOSAD
 - Hoạt động và công việc quản lý dự án

- Chương 4. Xác định các yêu cầu hệ thống
 - Danh mục các yêu cầu hệ thống
 - Tìm hiểu thực tế
 - Phỏng vấn
 - Phương pháp phát triển hệ thống JAD
 - Khảo sát dùng bản câu hỏi
 - Phân tích tài liệu
 - Quan sát

- Chương 5. Mô hình hóa chức năng
 - Các thành phần của use-case diagram
 - Use-case và các bước tạo use-case
 - Các loại use-case
 - Mô tả use-case
 - Tác nhân và đường biên hệ thống
 - Các loại mối liên kết
 - Tạo use-case diagram

- Chương 6. Mô hình hóa cấu trúc
 - Mục đích của mô hình hóa cấu trúc
 - Lớp và thuộc tính
 - Tác vụ
 - Mối liên kết
 - The CRC
 - Class diagram
 - Object diagram

- Chương 7. Mô hình hóa hành vi
 - Sequence diagram
 - Các bước tạo sequence diagram
 - Collaboration diagram
 - Các bước tạo collaboration diagram
 - State machine diagram
 - Các bước tạo state machine diagram

- Chương 8. Thiết kế lớp và phương thức
 - Các mức trừu tượng hóa
 - Tính bao đóng
 - Tính đa hình
 - Tính thừa kế
 - Tính kết dính
 - Tính kết nối
 - Các loại ràng buộc
 - Mô tả phương thức
- Chương 9. Thiết kế giao diện người dùng
 - Các nguyên tắc thiết kế giao diện người dùng
 - Các nguyên tắc thiết kế nhập dữ liệu
 - Các nguyên tắc thiết kế xuất dữ liệu

Thông tin về môn học

Đánh giá

Gồm 3 cột điểm:

- Điểm chuyên cần (20%): điểm danh buổi học
- **Điểm kiểm tra** (30%): bài tập, seminar đồ án
- **Điểm thi** (50%): Theo hình thức chung của Nhà trường

Chương 1 TỔNG QUAN PHÂN TÍCH VÀ THIẾT KẾ HỆ THỐNG

Nội dung

- Định nghĩa tổ chức, hệ thống
- Các đặc điểm và các khái niệm của hệ thống
- Các đặc điểm của hệ thống hướng đối tượng
- Các thành phần của hệ thống thông tin
- Chu kỳ phát triển hệ thống
- Các phương pháp luận phát triển hệ thống
- Các giai đoạn phát triển hệ thống dùng OOSAD
- Các vai trò của người phân tích hệ thống

1- Các loại tổ chức kinh tế xã hội

- Tổ chức kinh tế: các xí nghiệp, công ty,... với các hoạt động đa dạng khác nhau như sản xuất, kinh doanh, ngân hàng, dịch vụ...
- Tổ chức hành chánh sự nghiệp: Úy ban nhân dân, Mặt trận... với mục đích phục vụ yêu cầu của nhân dân và thực hiện các công việc của cơ quan hành pháp.
- Tổ chức xã hội: như bệnh viện, câu lạc bộ, trường học...

2. Cơ cấu hoạt động trong tổ chức:

 Môi trường bên ngoài: bao gồm các đối tượng có liên quan đến hoạt động của tổ chức

Định nghĩa hệ thống

- Hệ thống là gì?
 - System
 - Một nhóm các thành phần phụ thuộc lẫn nhau hoặc tương tác lẫn nhau tạo nên một thể hợp nhất
 - Vd: hệ thống thanh toán, hệ thống truyền thông, hệ thống giao thông, hệ thống mạng)
 - Trong một hệ thống, mỗi một thành phần có thể có những chức năng khác nhau nhưng khi kết hợp lại chúng có những chức năng đặc biệt.

Định nghĩa hệ thống (tt)

- Các hệ thống có thể có các mối quan hệ:
 - Phân cách nhau và phân cách với môi trường bên ngoài.
 - Bao hàm nhau:
 - hệ thống này là bộ phận hay chứa hệ thống kia.
 - Giao nhau:
 - các thành phần của hệ thống này cũng là thành phần của hệ thống khác.
 - Có thể có ảnh hưởng qua lại lẫn nhau.

Định nghĩa hệ thống (tt)

Phân loại các hệ thống

- Phân loại theo tính chất của hệ thống:
 - Hệ thống mở
 - Hệ thống đóng
- Phân loại theo chủ thể tạo ra hệ thống:
 - Các hệ thống tự nhiên (không do con người tạo ra).
 - Vd: các nguyên tử, phân tử, tế bào, vật chất: (sông ngòi, núi non...), tổ chức sống (thực vật, động vật), các hành tinh, các thiên hà, vũ trụ...
 - · Các hệ thống do con người tạo nên.
 - Vd: Trường học, bệnh viện, máy tính, đơn vị công ty, nhà nước,...

Các đặc điểm của hệ thống

- Các đặc điểm của hệ thống
 - Phạm vi (boundary, scope):
 - giới hạn của hệ thống với môi trường.
 - Dữ liệu nhập (input):
 - dữ liệu từ môi trường vào hệ thống
 - Kết xuất (output):
 - dữ liệu từ hệ thống ra môi trường
 - Các thành phần (component):
 - các đối tượng tạo thành hệ thống
 - Các mối liên kết tương quan (interrelationship):
 - các mối liên kết giữa các thành phần của hệ thống
 - Các giao diện (interface):
 - cơ chế tương tác với một thành phần

Các đặc điểm của hệ thống (tt)

Khái niệm thông tin

Thông tin:

 là một hay tập hợp những phần tử phản ánh ý nghĩa về một đối tượng, một hiện tượng hay một quá trình nào đó của sự vật thông qua quá trình nhận thức.

Trong tin học, thông tin là:

 sự tinh lọc từ việc xử lý dữ liệu → hai thành phần quan trọng của hệ thống thông tin là thành phần dữ liệu và thành phần xử lý.

Khái niệm về hệ thống thông tin

Hệ thống thông tin:

 HTTT của một tổ chức là tập hợp có hệ thống những thông tin về tổ chức đó.

– Vd:

- Tập hợp các báo cáo kế toán của một tổ chức là HTTT về hoạt động tài chính của đơn vị đó.
- Học bạ và bằng tốt nghiệp là HTTT về kết quả học tập và rèn luyện của học sinh, sinh viên trong quá trình đào tạo tại trường...

Phân loại hệ thống thông tin

- Hệ thống xử lý giao dịch (Transaction processing system TPS):
 - là một HTTT có chức năng thu thập và xử lý dữ liệu về các giao dịch nghiệp vụ.
- Hệ thống thông tin quản lý (Management information system -MIS)
 - là HTTT cung cấp thông tin cho việc báo cáo hướng quản lý dựa trên việc xử lý giao dịch và các hoạt động của tổ chức.
- Hệ thống hỗ trợ quyết định (Decision support system DSS)
 - là HTTT vừa có thể trợ giúp xác định các thời cơ ra quyết định, vừa có thể cung cấp thông tin để trợ giúp việc ra quyết định.

Phân loại hệ thống thông tin (tt)

- Hệ thống thông tin điều hành (Excutive information system EİS)
 - là HTTT hỗ trợ nhu cầu lập kế hoạch và đánh giá của các nhà quản lý điều hành.
- Hệ thống chuyên gia (Expert System)
 - là HTTT thu thập tri thức chuyên môn của các chuyên gia rồi mô phỏng tri thức đó nhằm đem lại lợi ích cho người sử dụng bình thường.
- Hệ thống truyền thông và cộng tác (Communication and collaboration system)
 - là HTTT làm tăng hiệu quả giao tiếp giữa các nhân viên, đối tác, khách hàng và nhà cung cấp để củng cố khả năng cộng tác giữa họ.
- Hệ thống tự động văn phòng (Office automation system)
 - là HTTT hỗ trợ các hoạt động nghiệp vụ văn phòng nhằm cải thiện luồng công việc giữa các nhân viên.

- Hệ thống:
 - Là một tập hợp các thành phần liên quan với nhau và tạo ra các kết quả riêng biệt
- Các thành phần của hệ thống thông tin (Information system)
 - Phần cứng (hardware)
 - Phần mềm (soft ware)
 - Dữ liệu (data)
 - Quá trình (process)
 - Con người (people)

• Phần cứng:

- Là lớp vật lý của HTTT
 - Các máy tính
 - Mạng và các thiết bị truyền thông
 - Các thiết bị thu nhận
 - Cơ sở hạ tầng và công nghệ

• Dữ liệu:

- Được chứa trong các tập tin và CSDL
- Là thành phần quan trọng của mọi hệ thống

Quá trình:

 Cho biết các công việc mà người sử dụng, người quản lý và nhân viên phải thực hiện.

Phần mềm:

- Phần mềm hệ thống (System software) dùng để điều khiển phần cứng và các phần mềm khác.
 - Hệ điều hành
 - Phần mềm điều khiển thiết bị
 - Các tiện ích xử lý: chuyển đổi dạng dữ liệu, chép lưu, chống virus...
- Phần mềm ứng dụng (application software) là các chương trình xử lý dữ liệu để tạo ra thông tin
 - Thực hiện các chức năng nghiệp vụ
 - Ung dụng do công ty thực hiện (in-house application)
 - Gói sản phẩm phần mềm (software package) do công ty mua của nhà cung cấp.

Con người:

- Con người là người sử dụng hệ thống, được gọi là người sử dụng cuối cùng (end-user), là người cho/nhận thông tin với hệ thống.
- Người sử dụng bên trong (internal user)
 - Người quản lý
 - Kỹ thuật viên
 - Viên chức đoàn thể, ...
- Người sử dụng bên ngoài (external user)
 - Khách hàng
 - Nhà cung cấp
 - Những người khác tương tác với hệ thống,...

- Sự thành công của hệ thống phụ thuộc vào:
 - Hệ thống phải thỏa mãn các yêu cầu của người sử dụng.
 - Sự nỗ lực của những người chuyên nghiệp có kinh nghiệm
 - Người phân tích hệ thống
 - Người lập trình
 - Người quản lý CNTT

Chu kỳ phát triên hệ thống (SDLC)

- Các giai đoạn của SDLC (System Development Lifetime Circle):
 - Lập kế hoạch hệ thống
 - Khởi tạo dự án
 - Quản lý dự án
 - Phân tích hệ thống
 - Thiết kế hệ thống
 - Thực hiện hệ thống
 - Bảo trì

Chu kỳ phát triên hệ thống (SDLC)

- Lập kế hoạch hệ thống (System planning)
- Lập kế hoạch hệ thống (System planning)
 - Trả lời cho các câu hỏi:
 - > Tại sao IS được xây dựng?
 - > Nhóm dự án sẽ tiến hành xây dựng như thế nào?
 - Giai đoạn này gồm 2 bước: khởi tạo dự án và quản lý dự án.
 - Phân tích SWOT: điểm mạnh (Strength), điểm yếu (Weakness), cơ hội (Opportunity), mối đe dọa (Threat)
 - Thành phần tham gia: người phân tích, bộ phận quản lý người sử dụng (users management), bộ phận quản lý hệ thống (system management).

Chu kỳ phát triên hệ thống (SDLC) - Lập kế hoạch hệ thống - Khởi tạo dự án

Khởi tạo dự án (Project Initiation)

- Y tưởng cho hệ thống mới xuất phát từ nhu cầu kinh doanh/hoạt động.
- Bộ phận IS phối hợp với bộ phận khác nảy sinh nhu cầu tiến hành phân tích khả thi: tính khả thi về kỹ thuật, kinh tế, tổ chức.
- Các yêu cầu hệ thống và phân tích tính khả thi được trình tới ủy ban xét duyệt. Nếu được xét duyệt chuyển tới bước 2...
- Tóm lại, bước khởi tạo dự án nhằm đánh giá giá trị kinh doanh khi xây dựng hệ thống mới.

Chu kỳ phát triên hệ thống (SDLC) - Lập kế hoạch hệ thống – Quản trị dự án

Quản trị dự án (project management)

- Giám đốc dự án lập kế hoạch công tác, xây dựng đội ngũ nhân viên cho nhóm dự án, các biện pháp kỹ thuật nhằm giám sát và chỉ đạo nhóm dự án làm việc trong suốt quá trình SDLC.
- Deliverable cho quản trị dự án là một kế hoạch dự án, nhằm miêu tả nhóm dự án tiến hành phát triển hệ thống như thế nào?

Chu kỳ phát triển hệ thống (SDLC) - Phân tích hệ thống

- Phân tích hệ thống (System analysis)
 - Trả lời cho các câu hỏi:
 - Ai sẽ sử dụng hệ thống?
 - Hệ thống sẽ làm những gì?
 - Hệ thống được sử dụng ở đâu và khi nào?
 - Nhóm dự án điều tra hệ thống hiện tại, xác định những điều có thể cải tiến và phát triển khái niệm cho hệ thống mới.

Chu kỳ phát triển hệ thống (SDLC) - Phân tích hệ thống (tt)

Phân tích hệ thống (System analysis)

- Các bước thực hiện:
 - Phát triển chiến lược phân tích:
 - phân tích hệ thống hiện tại (As-Is system) cùng với những hạn chế của nó
 - nghiên cứu cách thiết kế một hệ thống mới (To-Be system).
 - Thu thập thông tin:
 - bằng phỏng vấn và các bảng câu hỏi.
 - Việc phân tích, quan niệm về hệ thống mới, và các mô hình được tổ hợp thành tài liệu - đề nghị hệ thống(system proposal)- được trinh bày tới nhà bảo trợ dự án và các nhà quyết định khác.
- Thành phần tham gia: người phân tích, bộ phận quản lý người sử dụng, bộ phận quản lý hệ thống, người sử dụng (user operation worker)

Chu kỳ phát triển hệ thống (SDLC)

- Thiết kế hệ thống
- Thiết kế hệ thống (System design)
 - Quyết định hệ thống sẽ vận hành như thế nào, liên quan đến phần cứng, phần mềm, cơ sở hạ tầng mạng, giao diện, biểu mẫu và các báo cáo; các chương trình cụ thể, files và CSDL cần thiết.

– Các bước thực hiện:

- Chiến lược thiết kế: hệ thống sẽ được phát triển bởi ai?
- Thiết kế kiến trúc: phần cứng, phần mềm và cơ sở hạ tầng mạng.
- Thiết kế giao diện: xác định cách mà user tương tác với hệ thống như thế nào.
- Các đặc tả về CSDL và các files: xác định dữ liệu gì sẽ được lưu trữ và được đặt ở đâu.
- Thiết kế chương trình: xác định các chương trình sẽ được viết.

Chu kỳ phát triển hệ thống (SDLC) - Thiết kế hệ thống (tt)

- Tập hợp các deliverables này gọi là đặc tả hệ thống và được chuyển tới nhóm lập trình để hiện thực.
- Cuối giai đoạn thiết kế, việc phân tích tính khả thi và kế hoạch dự án được rà xét lại, và quyết định khác được đưa ra bởi nhà bảo trợ dự án và ủy ban chứng nhận.
- Thành phần tham gia: người phân tích, bộ phận quản lý người sử dụng, bộ phận quản lý hệ thống, người sử dụng, người thiết kế hệ thống (system designer)

Chu kỳ phát triển hệ thống (SDLC) - Hiện thực hệ thống

Hiện thực hệ thống (System implementation)

- Là giai đoạn cuối cùng của SDLC, trong đó hệ thống thực sự được xây dựng.
- Là giai đoạn chiếm nhiều thời gian nhất và chi phí cao nhất.
- Các bước thực hiện:
 - Xây dựng hệ thống: gồm quá trình xây dựng hệ thống và test để đảm bảo hệ thống thực hiện theo đúng thiết kế.
 - Thay đổi hệ thống: thay hệ thống bằng hệ thống mới.
 - Kế hoạch đào tạo: đào tạo user để sử dụng hệ thống mới, giúp quản lý sự thay đổi gây nên bởi hệ thống mới.
 - Kế hoạch hỗ trợ: nhóm phân tích thiết lập kế hoạch trợ giúp (support plan) cho hệ thống, bao gồm tóm tắt về hệ thống và những sự thay đổi chính trong hệ thống.

Chu kỳ phát triển hệ thống (SDLC) - Hiện thực hệ thống (tt)

Hiện thực hệ thống (System implementation)

 Thành phần tham gia: người phân tích, bộ phận quản lý người sử dụng, bộ phận quản lý hệ thống, người sử dụng, người thiết kế hệ thống, người lập trình

Chu kỳ phát triển hệ thống (SDLC) (tt) - Bảo trì hệ thống

- Vận hành và hỗ trợ hệ thống (bảo trì)
 - System operation and support
 - Cung cấp việc bảo trì và các cải tiến cho HTTT mới
 - Hỗ trợ người sử dụng để đạt được năng suất cáo nhất từ hệ thống mới
 - Thành phần tham gia: người phân tích, bộ phận quản lý người sử dụng, bộ phận quản lý hệ thống, người sử dụng, người thiết kế hệ thống, người lập trình.

Chu kỳ phát triển hệ thống (SDLC) (tt)

- Hướng dẫn phát triển hệ thống
 - Làm theo kế hoạch
 - Kết hợp với người sử dụng
 - Xác định các cột mốc
 - Thiết lập các điểm kiểm tra
 - Phải linh động
 - Xác định chi phí chính xác, đáng tin cậy và thông tin hữu ích.

Chu kỳ phát triển hệ thống (SDLC) (tt)

Thời gian bảo trì hệ thống chiếm từ 48-60%

- Phương pháp là cách tiếp cận hình thức để thực hiện SDLC
- Mỗi phương pháp dựa trên yêu cầu và trọng tâm mà nó đặt vào trong mỗi giai đoạn thiết kế.
- Người lập trình có xu hướng chuyển từ gđ lập kế hoạch sang bước xây dựng trong gđ hiện thực. Tiếp cận này có thể cho các ctr nhỏ, nhưng đối với các yêu cầu phức tạp hoặc không rõ ràng thì người lập trình có thể bỏ quên các khía cạnh quan trọng.

- Phương pháp Thiết kế có cấu trúc
- Phương pháp thiết kế có cấu trúc
 - Thống trị trong những năm 1980.
 - Theo tiếp cận step-by-step
 - có nguồn gốc là phát triển theo thác nước (waterfall development)
 - Sử dụng các kỹ thuật mô hình hóa và sơ đồ hóa hình thức.
 - Sơ đồ dùng để biểu diễn các quá trình và dữ liệu: sơ đồ mô hình quá trình và sơ đồ mô hình dữ liệu. Tùy thuộc vào sự nhấn mạnh một trong 2 sơ đồ, ta có phương pháp đặt trọng tâm vào quá trình và phương pháp đặt trọng tâm vào dữ liệu.

- Phương pháp Thiết kế có cấu trúc (tt)

<u>Ưu điểm:</u>

- xác định các yêu cầu HT thời gian dài trước khi bắt đầu lập trình.
- Tối thiểu hóa sự thay đổi yêu cầu khi dự án bắt đầu.

Nhược điểm:

- Thiết kế phải hoàn thành trên giấy trước khi bắt đầu lập trình.
- Mất nhiều thời gian giữa việc hoàn thành các đề nghị hệ thống trong gỡ phân tích và bàn giao HT.
- HT có thể cũng phải điều chỉnh lại vì môi trường kinh doanh đã thay đổi trong gđ PT.

- Phương pháp Thiết kế có cấu trúc

Mô hình WaterFall - Sequency model

- Mô hình phát triển phần mềm đầu tiên
- Các công việc tiếp nối nhau một cách tuần tự
- Đặt nền móng cho các phương pháp phân tích, thiết kế, kiểm tra...

- Phương pháp Thiết kế có cấu trúc Mô hình WaterFall - Sequency model (tt)

- *Ưu điểm:* Dễ quản lí
- Khuyết điểm:
 - Bản chất của phát triển phần mềm là quá trình lặp đi lặp lại chứ không phải tuần tự
 - Các bước thực chất không tách biệt hoàn toàn mà có chồng lấn và tham khảo lại
 - Bắt buộc khách hàng đặc tả tất cả yêu cầu một cách chính xác và đầy đủ ngay từ ban đầu
 - Khách hàng thường phải chờ đợi rất lâu để thấy được phiên bản đầu tiên của sản phẩm
 - Tồn tại "delay" tích lũy trong nhóm làm việc -> dự án thường bị trể.
 - Chỉ phù hợp cho dự án nhỏ, đơn giản.

- Phương pháp Thiết kế có cấu trúc

Mô hình WaterFall – Sequency model (tt)

- Mô hình thác nước chỉ nên được sử dụng khi:
 - đội dự án đã có kinh nghiệm.
 - Yêu cầu từ khách hàng được xác định rõ ngay từ đầu
- Hiện nay mô hình thác nước vẫn được sử dụng rộng rãi

Các phương pháp luận phát triển hệ thống - Rapid Application Development (RAD)

- Rapid Application Development là mô hình tuần tự tuyến tính có thời gian phát triển rất ngắn
- Sử dụng các thành phần có sẵn càng nhiều càng tốt
- Sử dụng công cụ lập trình ở dạng tự động sinh mã chứ không phải các ngôn ngữ truyền thống
- Phụ thuộc vào công nghệ phát triển có tính reusable cao.

Các phương pháp luận phát triển hệ thống - Rapid Application Development (tt)

 Cách tiếp cận dựa trên RAD có thể tập trung vào tiến trình (Phased Development), tập trung vào dữ liệu (Prototyping) hoặc hướng đối tượng (Throw-away prototyping)

Phương pháp Phát triển theo nhiều giai đoạn (Phased Development)

- Chia toàn thể hệ thống thành một chuỗi các phiên bản được phát triển một cách tuần tự.
- Giai đoạn phân tích xác định toàn bộ khái niệm hệ thống, rồi nhóm dự án, user, người bảo trợ dự án phân loại các yêu cầu thành chuỗi các phiên bản. Yêu cầu cơ bản và quan trọng nhất được đưa vào phiên bản thứ nhất...

Prototyping

 Thực hiện các giai đoạn phân tích, thiết kế, và hiện thực đồng thời, và cả 3 giai đoạn được lặp lại trong một chu trình cho tới khi hệ thống được hoàn thành.

Prototyping

Prototyping – ưu & khuyết

- Prototype như là một cơ chế để nhận diện chính xác yêu cầu của khách hàng
 - Bản thân khách hàng chưa hiểu rõ yêu cầu của mình, cũng như các quy trình chưa được xác lập rõ ràng.
 - Khách hàng chưa hiểu rõ khả năng hổ trợ của hệ thống máy tính
- Kích thích sự thích thú của người dùng với dự án
 - Prototype có thể bị "throw-away" -> Lãng phí
 - Các process không được phân định rõ ràng
 - Hệ thống thông thường có cấu trúc lỏng lẻo
 - Cần có những kỹ năng đặc biệt trong quản lý và phát triển
 - Khách hàng hối thúc nhà phát triển hoàn thành sản phẩm một khi thấy được các prototype đầu tiên

Prototyping – Úng dụng

- Dùng cho các hệ thống nhỏ. Các chi phí khi thay đổi hệ thống là không quá lớn khi cần phải thay đổi sau khi thực hiện prototype
- Cần sự cấp bách về thời gian triển khai ngắn. Hệ thống cần được đưa vào ứng dụng từng phần trong khoảng thời gian nhất định.
- Trong trường hợp những hệ thống mà việc đặc tả các yêu cầu là rất khó và không rõ ràng ngay từ đầu.
- Thường sử dụng kết hợp với mô hình thác nước

Throw-away Prototyping

Throw-away Prototyping (tt)

- Tương tự với prototyping nhưng được dùng với mục đích khác hơn.
- Giai đoạn phân tích được dùng để thu thập thông tin và phát triển hệ thống, tuy nhiên nhiều yêu cầu đề nghị bởi user không được hiểu đúng, và những vấn đề kỹ thuật khác cần phải được giải quyết -> quá trình phân tích, thiết kế, cài đặt -> mẫu thử thiết kế.
 - Mẫu thử thiết kế: một bộ phận của hệ thống cần được tinh chế thêm, chỉ chứa các chi tiết cần quan tâm giúp user hiểu vấn đề.

Các phương pháp luận phát triển hệ thống - PP. PT TK Hướng đối tượng

PP. PT TK Hướng đối tượng

- Phương pháp RAD hoặc tập trung vào quá trình, hoặc tập trung vào dữ liệu. Nhưng quá trình và dữ liệu có quan hệ gần gũi đến nỗi khó đưa ra vấn đề đặt trọng tâm nào là chính.
- Phương pháp OO tuân theo sự tuần tự của RAD trong SDLC nhưng cân bằng giữa quá trình và dữ liệu bằng cách tập trung vào sự phân tích các vấn đề trên các đối tượng chứa cả dữ liệu và tiến trình.
- Tiếp cận OO hiện đại để phát triển IS phải: hướng Usecase, đặt trọng tâm vào kiến trúc (architecture centric), lặp và tăng trưởng (iterative and incremental)

Đặc điểm của hệ thống hướng đối tượng

Hướng Use-case:

- Là công cụ mô hình hóa chính cho việc định nghĩa hành vi của hệ thống.
- Use-case miêu tả user tương tác với hệ thống để thực hiện một số hoạt động, như đặt hàng, đặt chỗ, tìm kiếm thông tin, v.v.
- Use-case được dùng để xác định và giao tiếp các yêu cầu hoạt động cho hệ thống.
- Use-cases là đơn giản bởi chúng chỉ tập trung lên hoạt động ở một thời điểm

Đặc điểm của hệ thống hướng đối tượng (tt)

Đặt trọng tâm vào kiến trúc:

- Nhấn mạnh vào kiến trúc phần mềm của đặc tả hệ thống.
- Việc phân tích, thiết kế OO hiện đại nên hỗ trợ ít nhất 3 khung nhìn của hệ thống: khung nhìn chức năng (functional), khung nhìn tĩnh (static), và khung nhìn động (dynamic).

Đặc điểm của hệ thống hướng đối tượng (tt)

Đặt trọng tâm vào kiến trúc:

- Khung nhìn chức năng miêu tả hành vi ngoài của hệ thống qua lăng kính của user.
- Khung nhìn tĩnh miêu tả cấu trúc của hệ thống: thuộc tính, phương thức, lớp, quan hệ, thông điệp.
- Khung nhìn động miêu tả hành vi bên trong của hệ thống: truyền thông điệp giữa các đối tượng và thay đổi trạng thái bên trong đối tượng.

Đặc điểm của hệ thống hướng đối tượng (tt)

Lặp và tăng trưởng:

- Phân tích và thiết kế OO trải qua quá trình test và tinh chế liên tục trong suốt chu trình SDLC.
- Mỗi lần lặp làm cho hệ thống ngày càng gần hơn với nhu cầu thực tế của user.

Các phương pháp luận phát triển hệ thống - PP. PT TK Hướng đối tượng (tt)

Phương pháp luận hướng đối tượng:

- Object-oriented methodology
- Đối tượng (object): một thành phần của lớp
- Đối tượng có các thuộc tính (property)
- Lớp (class): tập các đối tượng giống nhau
- Phương thức (method): thay đổi các thuộc tính của đối tượng và mô tả hành vi của đối tượng
- Thông điệp (message): được truyền giữa các đối tượng
- Sử dụng các sơ đồ của UML (Unified Modelling Languge)

 Các điểm khác nhau giữa phân tích thiết kế có cấu trúc và phân tích thiết kế hướng đối tượng.

 Xu hướng hiện tại là sử dụng OOSAD, nhưng nhiều tố chức hiện nay vẫn sử dụng phương pháp phân tích hướng cấu trúc.

- Có năm giai đoạn để phát triển hệ thống phần mềm theo hướng đối tượng:
 - Phân tích yêu cầu (Requirement analysis)
 - Phân tích (Analysis)
 - Thiết kế (Design)
 - Lập trình (Programming)
 - Kiểm tra (Testing)

Phân tích yêu cầu

- Tìm hiểu các trường hợp sử dụng (use case) để nắm bắt các yêu cầu của khách hàng, của vấn đề cần giải quyết.
- Qua các trường hợp sử dụng này, các nhân tố bên ngoài có tham gia vào hệ thống cũng được mô hình hóa bằng các tác nhân.
- Mỗi trường hợp sử dụng được mô tả bằng văn bản, đặc tả yêu cầu của khách hàng.

Phân tích

- Từ các đặc tả yêu cầu có được sau phân tích yêu cầu, hệ thống bước đầu được mô hình hóa bởi các khái niệm lớp, đối tượng và các cơ chế để diễn tả hoạt động của hệ thống.
- Giai đoạn này chỉ mô tả các lớp trong lĩnh vực của vấn đề cần giải quyết chứ không đi sâu vào các chi tiết kỹ thuật.

Thiết kế

- Trong giai đoạn này, các kết quả của quá trình phân tích được mở rộng thành một giải pháp kỹ thuật.
- Một số các lớp được thêm vào để cung cấp cơ sở hạ tầng kỹ thuật như lớp giao diện, lớp cơ sở dữ liệu, lớp chức năng, ...

Lập trình

- Còn gọi là bước xây dựng
- Giai đoạn này sẽ đặc tả chi tiết kết quả của giai đoạn thiết kế.
- Các lớp của bước thiết kế sẽ được chuyển thành mã nguồn theo một ngôn ngữ lập trình theo hướng đối tượng nào đó.

Kiểm tra

- Có bốn hình thức kiểm tra hệ thống:
 - Kiểm tra từng đơn thể (unit testing):
 - được dùng kiểm tra các lớp hoặc các nhóm đơn.
 - Kiểm tra tính tích hợp (integration testing):
 - được kết hợp với các thành phần và các lớp để kiểm tra xem chúng hoạt động với nhau có đúng không.
 - Kiểm tra hệ thống (system testing):
 - chỉ để kiểm tra xem hệ thống có đáp ứng được chức năng mà người dùng yêu cầu không.
 - Kiểm tra tính chấp nhận được (acceptance testing):
 - kiếm tra này được thực hiện bởi khách hàng, được thực hiện giống kiểm tra hệ thống.

Vai trò của người phân tích

- Người phân tích hệ thống là:
 - Người tư vấn (consultant) bên ngoài cho các nghiệp vụ
 - Được thuê để xác định các vấn đề của HTTT
 - Chuyên gia (expert) bên trong một nghiệp vụ
 - Là nguồn kiến thức ở trong công ty
 - Là người giải quyết vấn đề
 - Tác nhân thay đổi (change agent)
 - Tạo điều kiện thay đổi cùng HTTT
 - Xây dựng kế hoạch thay đổi và thường xuyên giao tiếp với những người có liên quan
 - Người có các kỹ năng giao tiếp (communication skill) với người sử dụng, người quản lý, người lập trình và nhà chuyên môn

Vai trò của người phân tích (tt)

- Các kỹ năng cần có
 - Phân tích (analytical)
 - Kỹ thuật (technical)
 - Quản lý (managerial)
 - Quan hệ cá nhân (interpersonal)

Vai trò của người phân tích (tt)

- Các vai trò trong nhóm dự án (Project team)
 - Người phân tích nghiệp vụ
 - Người phân tích hệ thống
 - Người phân tích cơ sở hạ tầng
 - Người phân tích quản lý thay đổi
 - Người quản lý dự án

Vai trò của người phân tích (tt)

Role	Responsibilities
Business analyst	Analyzing the key business aspects of the system Identifying how the system will provide business value Designing the new business processes and policies
Systems analyst	Identifying how technology can improve business processes Designing the new business processes Designing the information system Ensuring that the system conforms to information systems standards
Infrastructure analyst	Ensuring the system conforms to infrastructure standards Identifying infrastructure changes needed to support the system
Change management analyst	Developing and executing a change management plan Developing and executing a user training plan
Project manager	Managing the team of analysts, programmers, technical writers, and other specialists Developing and monitoring the project plan Assigning resources Serving as the primary point of contact for the project