Stasjonære tilstander og tidsuarhengig Schrödingerligning (TUSL)

[PCH 2.3; DJG 2.1; IX 1.7.6, 2.1.a, 2.7.a]

Vi skal i dette kurset bare studere tidsuavhengige potensialer V, slik at Ĥ er uavhengig av t.

Vi prover produktlosning

$$\Psi(x,t) = \Psi(x) \cdot T(t)$$

Innsetting i SL og divisjon med & gir

Begge uttrykk må være lik en og samme konstant, som vi kan kalle E. Da løser vi lett for T(t):

$$\frac{\partial T}{T} = \frac{E}{i\hbar} dt \Rightarrow T(t) = e^{-iEt/\hbar}$$

Lign. for $\Psi(x)$ blir: $\hat{H}\Psi = E\Psi$ som er den fidsuauth. Schrödingerligningen (TUSL).

 $\Psi(x,t) = \Psi(x) e^{-iEt/\hbar}$ kalles naturlig nok en stasjonær tilstand siden sannsynlighetslettheten $|\Psi|^2 = |\Psi(x)|^2$

er nawhengig av tiden t. Siden ft er operator for Partikkelens energi, tolker vi E som mulige energiegenverdier og $\Psi(x)$ som mulige energiegentilstander (evt. energiegenfunksjoner).

(26)

TUSL vil ha diskrete egenverdier og/eller kontinuerlige energiband: tillatte energier } forbudt båndgap E3 tillatt E, diskret Kontinuerlia SL og TUSL er lineære ligninger, slik at den generelle Løsningen av SL er en vilharlig linearkombinasjon our stasjonare losninger: $\Psi(x/t) = \sum_{n} c_n \Psi_n(x) e^{-iE_nt/\hbar} + \int c_E \Psi_E(x) e^{-iEt/\hbar} dE$ Merk at his tilstander med ulike E-verdier bidrar til I (xxt), blir III2 tidsawhenging; dus I (xt) er da ikke stasjonær.

Partikkel i 1D boks [PCH 3.2; D7G 2.2; It 2.1]

V(x) = 0 for 0 < x < L; $V = \infty$ ellers

Klassisk: $E = K = \frac{1}{2}mv^2$, og alle $E \ge 0$ er tillatt. $v = \pm \sqrt{2E/m}$, partikkelen seiler fram og tilbake mellom to harde vegger.

Kvantemekanisk: SL har stasjonære Løsninger, $\Psi(x,t) = \Psi(x) e^{-iEt/\hbar}$

der 4(x) og E er hhv egenf. og egenv. til oper.

 $\hat{H} = \hat{K} + V = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x)$

 $d\sigma s$ $\hat{H} \Psi(x) = E \Psi(x)$

Utenfor boksen: $V=\infty \Rightarrow |\Psi|^2=0$; null sanns. for a finne partikkelen der $V=\infty$.

Inni boksen: V=0

 $\Rightarrow -\frac{t^2}{2m}\frac{d^2\Psi}{dx^2} = E\Psi ; E = K > 0$

=> \psi \frac{1}{4} + \kappa^2 \psi = 0 ; \k = \frac{1}{2mE'} / \frac{1}{h}

Generall løsning: $\Psi(x) = A \sin kx + B \cos kx$

Krever naturligvis kontinuerlig sanns. Fordeling $|\Psi|^2$ og Ψ :

 $\Psi(0) = 0 \Rightarrow B = 0 \Rightarrow \Psi(x) = A \sin kx$

 $\Psi(L) = 0 \Rightarrow sin kL = 0 \Rightarrow kL = nat; n=1,2,3,...$

=> Kvantisert energi: $E_n = \frac{t^2k_n^2}{2m} = \frac{n^2\pi^2t_n^2}{2mL^2}$

Normaning aw sanns.: $\int_{0}^{L} |\Psi_{n}(x)|^{2} dx = 1$

På intervallet 0 < x < L har sin² (nπx/L) n hele perioder og svinger mellom 0 og 1, dvs med middelverdi 1/2. Dermed:

 $|A_n|^2 \int_0^L \sin^2\left(\frac{n\pi x}{L}\right) dx = |A_n|^2 \cdot \frac{L}{2} = 1$

 \Rightarrow $A_n = \sqrt{\frac{2}{L}} e^{i\beta_n}$, med vilkårlig reell β_n .

Da $|\Psi_n|^2$ er uarh, ar β_n , velges $\beta_n = 0$, slik at $\Psi_n(x) = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L}$; $n = 1, 2, 3, \dots$

Vi ser likheten med stående bølger på en streng.

Merknader (med generell gyldighet):

· Symmetri:

Med symmetrisk V(x) må $|\Psi_n|^2$ være symmetrisk, dus $\Psi_n(x)$ enten symm. eller antisymm. Her er $\Psi_n(x)$ symm. for odde n og antisymm, for like n.

· Nullpunkter:

 $\Psi_n(x)$ har n-1 nullpunkter. Gjelder generelt for bundne tilstander, dvs $E_n < V(x \rightarrow \pm \infty)$.

[Her kommer de to nullpunktene i x=0 og x=L i tillegg pga grensebetingelsene når V→∞.] 2D: nodelinjer; 3D: nodeplan

· Grunntilstanden:

Tilstanden med lawest mulig energi. Her $\Psi_1(x)$, med $E_1 = \pi^2 h^2/2m L^2 > 0$. Videre er $\Psi_2(x)$ forste eksiterte tilstand osv.

· Grensebetingelser:

Skriver TUSL på formen $\Psi''/\Psi = \frac{2m}{\hbar^2} (V-E)$, og innser at Ψ''' er endelig der V er endelig. Da er både Ψ og Ψ'' kontinuerlige.

Der V gjør et uendelig sprang gjør Ψ''' det samme.

Da er Ψ'' diskontinuerlig, og Ψ får en "knekk".

Men Ψ , og dermed $|\Psi|^2$ er kontinuerlige overalt.

· Krumningsegenskaper:

Ψ''/Ψ har samme fortegn som V-E.

Klassisk tillatt område, E>V: Ψ''/Ψ ≤ 0

og Ψ krummer mot x-aksen.

Klassisk forbudt område, E < V: Ψ''/Ψ > 0

og Ψ krummer hort fra x-aksen.

Dette er

og Y krummer bort fra x-aksen. Dette er kvantemekanisk tillatt område, så lenge V < ∞.

· Ortogonalitet:

Et vektorsett $\{\vec{V_i}, \vec{V_2}, \dots\} = \{\vec{V_i}\}\$ er ortogonalt og normert, dus ortonormert, når

$$\overrightarrow{\nabla_i} \cdot \overrightarrow{\nabla_j} = \delta_{ij} = \begin{cases} 1 & \text{når } i=j \\ 0 & \text{når } i\neq j \end{cases}$$
Kronecker delta

Et funksjonssett {Yn(x)} er ortonormert når

$$\langle \Psi_n, \Psi_k \rangle = \int_{-\infty}^{\infty} \Psi_n^*(x) \Psi_k(x) dx = \delta_{nk}$$

Gjelder temmelig generelt for løsninger av TUSL. Se PCH kap. 2. Sjekk selv for partikkel i boks.

· Starttilstand og dens tidsutvikling:

En gitt \$\P(x,0)\$ kan uttrykkes som en lineærkombinasjon av energiegenfunksjoner,

$$\Psi(x,0) = \sum_{n} c_n \Psi_n(x)$$

Vi antar her et diskret spektrum, slik vi har med partikkel i boks (og generelt når V→∞ for |x|→∞).

Tid sutviklingen blir da $\Psi(x_1t) = \sum_{n} c_n \Psi_n(x) e^{-iE_n t/\hbar}$

dus en lineærkombinasjon av stasjonære tilstander. Koeffisientene Cn fastlegges slik:

 $\int_{-\infty}^{\infty} \Psi_n^*(x) \Psi(x,0) dx = \sum_j c_j \int_{-\infty}^{\infty} \Psi_n^*(x) \Psi_j(x) dx = \sum_j c_j \delta_{nj} = c_n$

Med en normert I(x,0) har vi:

 $1 = \int_{-\infty}^{\infty} \Psi^*(x,0) \Psi(x,0) dx = \sum_{n} \sum_{j} c_{n}^{*} c_{j} \int_{-\infty}^{\infty} \Psi_{n}^{*}(x) \Psi_{j}(x) dx = \sum_{n} |c_{n}|^{2}$

Da forblir I(x,t) normert:

。 至*(xit) 里(xit) dx =

 $= \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} \sum_{n=1}^{\infty} \sum_$

 $= \sum_{n} |c_n|^2 = 1$

Med andre ord, sannsynligheten er bevart.