Exercise 3.5.14:

Proof: by induction on the structure of t

Case 1: t is a value

this case is not applicable because t is in normal form.

Case 2: t = succ t1

in the evaluation rules the only rule that has succ on the left hand side is the E-SUCC rule, so for deriving $t \to t$ ' and $t \to t$ '' we use the same rule. Using induction hypothesis for smaller derivations $t1 \to t1$ ' and $t1 \to t1$ '', we can see that t1' = t1'', so succ t1' = succ t1''.

Case 3: t = pred t1

in the evaluation rules we have 3 rules that has pred on the left hand side (E-PRED, E-PREDZERO, E-PREDSUCC). But the different is the arguments of these rules (E-PRED get a non value, E-PREDZERO gets 0, E-PREDSUCC gets a succ nv) so for derivation $t \rightarrow t'$ and $t \rightarrow t'$ we use the same rule. If the rule is E-PRED we use induction hypothesis for smaller derivations $t1 \rightarrow t1'$ and $t1 \rightarrow t1''$, we see that t1' = t1'', so pred t1' = pred t1''. Else if the rule is E-PREDZERO or E-PREDSUCC we can immediately see the result.

Case 4: t = iszero t1

in the evaluation rules we have 3 rules that has iszero on the left hand side (E-ISZERO, E-ISZEROSUCC). But the different is the arguments of these rules (E-ISZERO get a non value, E-P ISZEROZERO gets 0, E-ISZEROSUCC gets a succ nv) so for derivation $t \rightarrow t$ and $t \rightarrow t$ we use the same rule. If the rule is E-ISZERO we use induction hypothesis for smaller derivations $t1 \rightarrow t1$ and $t1 \rightarrow t1$, we see that t1' = t1', so iszero t1' = t1'. Else if the rule is E-ISZEROZERO or E-ISZEROSUCC we can immediately see the result.

Exercise 3.5.16:

Theorem: $t \rightarrow^* t'$ (in the previous treatment) S.T. t' is stuck iff $t \rightarrow^* wrong$ (in the new treatment)

Proof: We will prove it in both directions

Direction left to right:

we will prove this part by proving the following Lemma:

Lemma 1: if t is stuck then $t \rightarrow^*$ wrong (in the new treatment)

Proof: by induction on structure of t

Case 1: t is either true or false or 0

since the assumption of Lemma 1 is that t is stuck this case is not applicable.

Case 2: t = if t1 then t2 else t3

since t is stuck, t1 cannot be true or false because the rule would be E-IFTRUE or E-IFFALSE and then t would not be stuck. So t1 has to be in normal form.

Case 2.1: t1 is either true or false or 0

this case is not applicable.

Case 2.2: t1 = if t11 then t21 else t31

we found out that t1 is in normal form, so it is stuck. We use induction hypothesis for smaller part of Lemma 1, so t1 \rightarrow * wrong. The rule would be like t \rightarrow * if wrong then t2 else t3 and the rule E-IFWRONG goes to wrong.

Case 2.3: t1 = succ t11

if t11 is a numeric value by using the rule E-IF-WRONG we will have $t \to wrong$. If t1 is not a numeric value then t1 is stuck and using induction hypothesis $t1 \to * wrong$, we see that $t \to * if$ wrong then t2 else t3. So the rule E-IF-WRONG goes to wrong.

Case 2.4: t1 = pred t11

if t11 is a numeric value by using the rule E-IF-WRONG we will have $t \to wrong$. If t1 is not a numeric value then t1 is stuck and using induction hypothesis $t1 \to * wrong$, we see that $t \to * if$ wrong then t2 else t3. So the rule E-IF-WRONG goes to wrong.

Case 2.5: t1 = iszero t11

if t11 is a numeric value by using the rule E-IF-WRONG we will have $t \to wrong$. If t1 is not a numeric value then t1 is stuck and using induction hypothesis t1 \to * wrong, we see that $t \to$ * if wrong then t2 else t3. So the rule E-IF-WRONG goes to wrong.

Case 3: t = succ t1

since t is stuck, t1 cannot be a value so it has to be in normal form. For t11, we can think of being true/false or it is not a value; if t1 is true/false we use rule E-SUCC-WRONG and it goes to wrong in new treatment, and if t1 is not a value so it is stuck and this is a smaller part of the Lemma 1 and we use induction hypothesis for $t1 \rightarrow *$ wrong.

Case 4: t = pred t1

since t is stuck t1 has to be in normal form. For t1, we can think of being true/false or it is not a value; if t1 is true/false we use rule E-PRED-WRONG and it goes to wrong in new treatment, and if t1 is not a value so it is stuck and this is a smaller part of the Lemma 1 and we use induction hypothesis for $t1 \rightarrow^*$ wrong.

Case 5: t = iszero t1

since t is stuck t1 has to be in normal form. For t1, we can think of being true/false or it is not a value; if t1 is true/false we use rule E-ISZERO-WRONG and it goes to wrong in new treatment, and if t1 is not a value so it is stuck and this is a smaller part of the Lemma 1 and we use induction hypothesis for $t1 \rightarrow *$ wrong.

Direction right to left:

we will prove this part by proving the following Lemma:

Lemma 2: if $t \rightarrow t'$ in the new treatment and t' has wrong in it, then t is stuck in the previous treatment

Proof: by induction on derivation in new treatment

Case 1: the rule for deriving $t \rightarrow t'$ is E-IF-WRONG

the rule will be if t then t1 else $t2 \rightarrow wrong$, so t is not true or false and the rule goes to stuck.

Case 2: the rule for deriving $t \rightarrow t'$ is E-SUCC-WRONG

the rule will be succ $t \rightarrow wrong$, so t is not a numeric value and the rule goes to stuck.

Case 3: the rule for deriving $t \rightarrow t'$ is E-PRED-WRONG

the rule will be pred $t \rightarrow wrong$, so t is not a numeric value and the rule goes to stuck.

Case 4: the rule for deriving $t \rightarrow t$ is E-ISZERO-WRONG

the rule will be iszero $t \rightarrow \text{wrong}$, so t is not a numeric value and the rule goes to stuck.

Exercise 9.3.9:

Theorem: If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$.

Proof:

Case T-VAR: t = x with x : T

This cannot happen since there is no evaluation rule to evaluate a variable

Case T-ABS: $t = \lambda x: T_1 \cdot t_2$

This also cannot happen for the same reason

Case T-APP: $t = t_1 t_2$ assuming $\Gamma \vdash t_1 : T_{11} \rightarrow T_{12}$ $\Gamma \vdash t_2 : T_{11}$ $T = T_{12}$

Case 3.1: t_1 is a value and t_2 is also a value

$$t_1 = \lambda x : T_{11} \cdot t_{12}$$
 $t_2 = v_2$

Then
$$t' = [x \rightarrow v_2]t_{12}$$
 by E-APPABS

By Inversion Lemma 2, we can know deduct

$$\Gamma$$
, $x : T_{11} \vdash t_2 : T_{12}$

and by using Lemma "Preservation of types under substitution" we can know Γ , $[x \to s] t_{12} : T_{12}$

Case 3.2:
$$t_1 \to t'_1$$
 $t' = t'_1 \ t_2$

Since we have $\Gamma \vdash t_1 : T_{11} \to T_{12}$, then by induction hypothesis we will know $\Gamma \vdash t'_1 : T_{11} \to T_{12}$

Then, according to T-APP

$$\frac{\Gamma \vdash t_1' \colon T_{11} \rightarrow T_{12} \quad \Gamma \vdash t_2 \colon T_{11}}{\Gamma \vdash t_1' \ t_2 \colon T_{12}}$$

Case 3.3:
$$t_1 = v_1$$
 $t_2 \to t_2'$ $t' = v_1 t_2'$

The proof of this case is similar to the previous one.

Case T-True: t = true : Bool

This cannot happen since there is no evaluation rule to evaluate true

Case T-False: t = false : Bool

This also cannot happen for the same reason

Case T-IF: $\Gamma \vdash t = if \ t_1 \ then \ t_2 \ else \ t_3 \ assuming \ \Gamma \vdash \ t_1 : Bool \ \Gamma \vdash \ t_2 : T \ \Gamma \vdash \ t_3 : T$

Case 6.1:
$$t_1 = true : Bool$$

Then by E-IFTrue,
$$t' = t_2 : Bool$$

Case 6.2:
$$t_1 = false : Bool$$

Proof just like case 6.1

Case 6.3:
$$t_1 \rightarrow t_1'$$

By induction hypothesis, we will know $\Gamma \vdash t_1' : Bool$

Then by T-IF

$$\frac{\varGamma \vdash t_1' : Bool \quad \varGamma \vdash t_2 : T \ \varGamma \vdash t_3 : T}{\varGamma \vdash t_1' \ t_2 : \ T_{12}}$$