Университет ИТМО Факультет ПИиКТ

Прикладная математика Лабораторная работа №2 «Построение оптимальных кодов»

Нестеров Дали Константинович Группа Р3302

Цель работы:

Изучение основных принципов эффективного кодирования и приобретение практических навыков построения оптимальных кодов на примере кодов Шеннона-Фано и Хаффмана, оценка их эффективности..

Задание:

- 1. Реализовать процедуры построения кода Шеннона-Фано и оптимального кода Хаффмана
- 2. Построить коды для текстового файла, распечатать кодовые таблицы, содержащие символ, вероятность, кодовое слово, длину кодового слова.
- 3. Сравнить среднюю длину кодовых слов, полученных двумя алгоритмами.

Описание входных данных:

В качестве входных данных были выбраны отрывки из трех произведений на английском языке: «Nightfall», «Infinite jest» и «Evgeny Onegin»

Решение поставленной задачи:

Ссылка на исходный код: https://github.com/sunDalik/Applied-Mathematics/tree/master/Lab2/src

Результат работы программы:

Таблица кодов для файла nightfall_demo.txt

Symbol	Probability P(x _i), bit	Shannon-Fano code	Huffman code
	0.2675	00	10
Е	0.0837	0100	1111
Т	0.0550	0101	0110
Α	0.0524	0110	0101
0	0.0519	0111	0100
S	0.0513	1000	0011
1	0.0507	1001	0001
N	0.0486	1010	0000
R	0.0422	10110	11101
	0.0406	10111	11100
Н	0.0388	11000	11010
L	0.0312	11001	11000
D	0.0298	11010	01110
U	0.0203	11011	110111
F	0.0174	111000	110011
С	0.0171	111001	110010
M	0.0156	111010	011111
G	0.0153	111011	011110
W	0.0147	111100	001011
Υ	0.0122	1111010	001001
Р	0.0116	1111011	001000
В	0.0099	1111100	1101101
V	0.0072	1111101	0010101
K	0.0054	11111100	11011001
X	0.0029	11111101	00101001
J	0.0012	1111111000	001010000
1	0.0008	1111111001	1101100001
Q	0.0007	1111111010	0010100011
Z	0.0007	1111111011	0010100010
5	0.0005	1111111100	11011000101
4	0.0005	11111111010	11011000100
6	0.0004	11111111011	11011000001
8	0.0004	11111111100	110110001111
3	0.0003	11111111101	110110001110
2	0.0003	111111111100	110110001101
7	0.0002	111111111101	110110000001
0	0.0002	111111111110	110110001100
9	0.0002	111111111111	110110000000

Сравнение кодов:

Файл nightfall_demo.txt:

Средняя длина кодового слова в коде Хаффмана: 4.2220

Средняя длина кодового слова в коде Шеннона-Фано: 4.2260

Вывод: В ходе выполнения лабораторной работы было установлен, что код Хаффмана кодирует лучше, чем код Шеннона-Фано.