3. <u>Лабораторная работа № 3. Системное проектирование</u> вычислительного комплекса путем стохастического моделирования

ЦЕЛЬ РАБОТЫ

В результате выполнения настоящей работы студенты должны:

- 1. Знать параметры и характеристики стохастических сетей, основы решения задачи системного проектирования вычислительного комплекса.
- 2. Уметь построить стохастическую сетевую модель вычислительной системы и рассчитать ее характеристики.
- 3. Помнить основные зависимости, связывающие параметры и характеристики стохастических сетевых моделей вычислительных систем.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 1. До начала лабораторного замятия самостоятельно изучить теорию работы по настоящим методическим указаниям.
- 2. Построить блок-схему вычислительной системы, моделирующую ее стохастическую сеть, граф передач сети, вручную выполнить проверку условия существования стационарного режима в сети и расчет ее характеристик.
- 3. На лабораторном занятии в дисплейном классе проделать несколько циклов системного проектирования вычислительного комплекса: расчет характеристик принятие решения и изменение параметров.
 - 4. Выполнить анализ полученных результатов и оформить отчет.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

1. Представление вычислительной системы в виде стохастической сети

Вычислительные системы и комплексы (ВС и ВК) можно рассматривать как совокупность устройств, процессы функционирования которых являются процессами, массового обслуживания, и для их: описания используются модели теории массового обслуживания. Основными моделями, изучаемыми в теории

массового обслуживания, являются одноканальные и многоканальные системы массового обслуживания (СМО).

B одноканальной CMO (рис. 1) обслуживание заявок организуется следующим образом. На вход CMO поступают заявки с интенсивностью λ . Так как CMO содержит только один канал (обслуживающий прибор), то в каждый момент времени может обслуживаться только одна заявка. Среднее время обслуживания заявки равно V. Другие заявки, поступившие в систему, когда канал занят обслуживанием, образуют очередь O. Из очереди заявки выбираются одна за другой.

Многоканальная СМО (рис. 2) содержит ${\bf K}$ однотипных каналов со средним временем обслуживания заявки каждым каналом ${\bf V}$. В системе одновременно может быть обслужено до ${\bf K}$ заявок. Заявки, заставшие все каналы занятыми, ожидают в очереди ${\bf O}$. Особенность данной СМО - полная доступность каналов, то есть любая заявка может быть обслужена любым свободный каналом.

Обычно BC состоит из нескольких подсистем» каждая из которых представляется одноканальной или многоканальной СМО. К таким подсистемам относятся процессоры и оперативная память, селекторные каналы (СК) с подключенными к ним внешними запоминающими устройствами (ВЗУ), мультиплексные каналы (МК) с подключенными к ним устройствами ввода-вывода (УВВ).

Модель процессора и оперативной памяти. Подсистема процессор - оперативная память рассматривается как одноканальная СМО (рис. 1). Каналом (обслуживавшим прибором) в этой системе является процессор. При работе ВС в многопрограммном режиме в оперативной памяти размещено множество программ. Подмножество готовых к выполнению программ соответствует очередь заявок в СМО. Программа, получившая доступ к процессору, переходит в состояние счета. Среднее время непрерывного счета программы определяет среднюю продолжительность V процесса обслуживания заявки в СМО. Процесс счета, то есть обслуживание программы процессором, прекращается в тот момент, когда программа обращается к подсистеме ввода-вывода, то есть к СК или МК. При этом считается, что заявка на счет обслужена и покидает систему процессор оперативная памяти. Обслуживание этой заявки будет продолжено другой СМО. Интенсивность λ пополнения очереди заявок в данной СМО определяется суммарной интенсивностью пополнения списка готовых к выполнению программ как за счет поступления новых программ в подсистему процессор - оперативная память, так и за. счет программ, для которых завершен ввод-вывод. Многопроцессорная система с общей оперативной памятью, содержащая одинаковые процессоры, представляется многоканальной СМО.

Модель мультиплексного канала. МК обеспечивает параллельную и независимую работу подключенных к нему УВВ. Поэтому ${\bf K}$ однотипных УВВ, соединенных с МК, рассматривается как ${\bf K}$ -канальная СМО (рис. 2) со средним временем обслуживания ${\bf V}$ заявки в любом канале этой СМО.

Модель селекторного канала. СК в отличие от МК работает в монопольном режиме. При передаче информации СК обслуживает в каждый момент времени лишь одно из множества соединенных с ним ВЗУ. Поэтому СК независимо от количества подключенных к нему ВЗУ рассматривается как одноканальная СМО (рис. 1) со средним временем обслуживания заявки \mathbf{V} .

Стохастическая сетевая модель вычислительного комплекса. ВС в целом можно представить в виде множества вышеописанных СМО, каждая из которых отображает процесс функционирования отдельного устройства или группы однотипных устройств. Совокупность взаимосвязанных СМО называется стохастической сетью. Структура сети отражает как структуру ВС, так и последовательность этапов вычислительного процесса, развивающегося в ВС.

Построим стохастическую сеть, которая моделирует работу ВС (рис.3), состоящую из процессора ПР, оперативной памяти ОП, селекторного канала СК с подключенными к нему тремя внешними запоминающими устройствами ВЗУ и мультиплексный канал МК с подключенными к нему устройствами ввода-вывода УВВ.

Процесс выполнения программы можно рассматривать как последовательность этапов счета, обращения к ВЗУ и УВВ. После реализации некоторой последовательности указанных этапов, число которых зависит от трудоемкости программы, последняя будет выполнена. Начало выполнения программы отмечается поступлением заявки в стохастическую сеть, а окончание программы - выходом заявки из сети.

Поэтому ВС с заданной структурой и указанным порядком выполнения программ можно представить стохастической сетью (рис. 4), содержащей системы массового обслуживания S_1 , S_2 , S_3 , отображающие этапы выполнения программы в подсистемах соответственно процессор - оперативная память, СК с подключениями к нему ВЗУ, МК с подключенными к нему УВВ. Заявки обслуживаются этими СМО и образуют к ним очереди соответственно O_1 , O_2 , O_3 . Системы S_1 и S_2 — одноканальные, а система S_3 двухканальная. Заявки поступают на вход сети с интенсивностью λ_0 и

подаются в СМО моделирующую работу подсистемы ВС процессор - оперативная память.

Процесс выполнения программы в BC носит многоэтапный характер и складывается из периодов работы процессора, СК и МК. В сетевой модели этот факт отражается циркуляцией заявок в сети по контурам $S_1 \leftrightarrow S_2$ или $S_1 \leftrightarrow S_3$.

Удобной формой графического представления стохастической сети является направленный граф передач (рис. 5), где система массового обслуживания S_0 - источник заявок.

В стохастической сети заявки могут поступить в системы S_2 или S_3 только из системы S_1 , так как обращения к подсистемам вводавывода ВС инициируются программами, выполняемыми процессором. Выбор направления перехода заявок из системы S_1 в системы S_2 и S_3 определяется соответствующими вероятностями p_{12} и p_{13} передач заявок. После нескольких этапов счета и ввода-вывода программа будет выполнена. Соответственно заявка с вероятностью p_{10} покидает стохастическую сеть. Вероятности передач p_{10} , p_{12} , p_{13} зависят от трудоемкости программ, реализуемых ВС. Так как стохастическая сеть не генерирует и не поглощает заявки» то соблюдаются равенства p_{10} + p_{12} + p_{13} =1 и p_{10} - p_{12} - p_{13} - p_{13} - p_{14} - p_{14} - p_{15} - p_{15} - p_{16} - p_{16} - p_{17} - p_{17} - p_{18} - p_{19} - $p_{$

Разомкнутые и замкнутые стохастические сети. Для описания ВС используют стохастические сети, разомкнутые и замкнутые. Для разомкнутой сети (рис. 6), где ${\bf C}$ - сеть, интенсивность источника заявок ${\bf \lambda}_0$ не зависит от состояния сети, то есть от числа заявок, уже поступивших в сеть. Для замкнутой сети (рис. 7), где ${\bf C}$ - сеть, интенсивность источника заявок всегда постоянна, она зависит от состояния сети, от числа заявок, циркулирующих в сети, но не зависит от внешней среды, в которой функционирует сеть. В этом случае источником заявок можно считать любую СМО сети. Исходя из понятия заявки, выделим дугу, проходя по которой, заявка, соответствующая завершенной программе, прекращает существование и инициирует новую заявку, соответствующую запуску очередной программы в ВС. Такая дуга отмечается точкой. Отмеченная дуга является фиктивным источником заявок с интенсивностью ${\bf \lambda}_0$.

Разомкнутые сети применяются для моделирования BC, в которых на обработке может находиться переменное число программ, например, систем с разделением времени, В таком случае заявки имеют смысл запросов к BC со стороны пользователей. Замкнутые сети применяются для моделирования BC, работающих в режиме пакетной обработки. Когда выполнение данной программы завершено, из пакета выбирается новая программа. Величина λ_0 не зависит от

каких-либо внешних причин, но определяется структурой стохастической сети и ее параметрами.

В дальнейшем будем рассматривать только разомкнутые стохастические сети.

2. Параметры стохастических сетей

Количество систем и каналов. Количество n систем, каналов K_1 , ..., K_n в системах S_1 , ..., S_n и связи между ними определяют структуру сети. Число систем в сети равно числу типов устройств обработки информации, входящих в ВС. Количество каналов (обслуживающих приборов) в СМО определяется числом однотипных устройств в ВС. Например, два одинаковых процессора» выполняющие программы из общей оперативной памяти, представляются двухканальной СМО. Каждый СК с подключенными к нему ВЗУ рассматривается как одноканальная СМО. МК с подключенными к нему УВВ представляется многоканальной СМО с количеством каналов, равным числу УВВ.

Матрица вероятностей передач. Связи между СМО, входящими в сеть, устанавливаются путем анализа этапов обработки программ в ходе вычислительного процесса. Для отображения связей между СМО сети используется направленный граф передач, вершины $S_1, ..., S_n$ которого соответствуют одноименным СМО, а дуги - связям между ними. Передача заявки в сети из системы S_i в систему S_j после завершения обработки этой заявки в системе S_i отражается на графе дугой, выходящей из S_i и входящей в S_j . В случае, когда заявка может бать передана из одной СМО в несколько других СМО, возникает неопределенность в выборе направления передачи. Для устранения неопределенности дуги графа взвешиваем вероятностями передач p_{ij} . Последние образуют матрицу P_i , размерность и элементы которой определяются структурой сети.

Разомкнутая сеть содержит \mathbf{n} СМО и источник \mathbf{S}_0 входного потока заявок, который можно рассматривать как СМО с бесконечным числом заявок и интенсивностью их обслуживания λ_0 . В результате матрица вероятностей передач разомкнутой сети состоит из $(\mathbf{n+1})$ строк и $(\mathbf{n+1})$ столбцов:

$$\mathbf{P} = \begin{array}{c} S_{0} & S_{1} \dots S_{n} \\ S_{0} & \hline P_{00} & P_{01} \dots P_{0n} \\ P_{10} & P_{11} \dots P_{1n} \\ \dots & \vdots \\ S_{n} & P_{n0} & P_{n1} \dots P_{nn} \end{array}$$
(1)

Вероятность передачи заявки из системы S_i в систему S_j определяется отношением интенсивности потока, поступившего из системы S_i в систему S_j , к интенсивности выходного потока системы S_i . В частности, если все заявки, обслуживаемые системой S_i , поступает в систему S_j , то $p_{ij}{=}1$, а если выход системы S_i не связан с входом система S_j , то $p_{ij}{=}0$. Поскольку заявки в сети не генерируется и не поглощаются, то заявка, покидая систему S_i , обязательно должна поступить в какую-либо систему S_j . Поэтому сумма элементов каждой строки матрицы (1) равна единице, то есть эта матрица является стохастической.

Интенсивности потоков и коэффициент передач. Вероятности передач p_{ij} однозначно определяют соотношения между интенсивностями потоков заявок, циркулирующих в сети и, в частности, поступающих на входы систем S_0 , ..., S_n сети. Интенсивности λ_0 , ..., λ_n потоков заявок, поступающих в системы S_0 , ..., S_n сети, определяются средним числом заявок, поступающих в единицу времени в эти системы.

Будем рассматривать только установившийся режим. Тогда на данном интервале времени среднее число заявок, поступивших в систему S_i будет равно среднему числу заявок, покинувших систему S_i , то есть интенсивности входного и выходного потоков заявок системы S_i будут равны между собой. Интенсивность входного потока заявок системы S_i равна сумме интенсивностей потоков заявок, поступающих в нее из других .систем S_i (j=0, ..., n). Поскольку заявки из системы S_i поступают в систему S_i с вероятностью p_{ji} , то интенсивность потока заявок, поступающего из системы S_i в систему S_j равна $p_{ji}*\lambda_j$, где λ_j интенсивность входного и, следовательно, выходного потока заявок системы S_i . С учетом этого на входе системы S_j имеется поток заявок с интенсивностью:

$$\lambda_{i} = \sum_{i=0}^{n} p_{ji} * \lambda_{j} \qquad (i=0, ..., n).$$
 (2)

Эти выражения представляют собой систему линейных алгебраических уравнений, которой соответствует каноническая форма:

$$\begin{cases}
(P_{00}-1)*\lambda_{0}+P_{10}*\lambda_{1}+...+P_{n0}*\lambda_{n}=0; \\
P_{01}*\lambda_{0}+(P_{11}-1)*\lambda_{1}+...+P_{n1}*\lambda_{n}=0; \\
... \\
P_{0n}*\lambda_{0}+P_{1n}*\lambda_{1}+...+(P_{nn}-1)*\lambda_{n}=0.
\end{cases} (3)$$

Из системы уравнений (3) находится соотношение для интенсивностей λ_i и λ_0 потоков заявок в виде λ_i = α_{0i} * λ_0 , где α_{0i} -

коэффициент передачи. Он определяется, как среднее число этапов обслуживания в системе S_j в расчете на одну заявку, поступившую от источника S_0 . Индекс 0 в коэффициенте α_{0j} обычно опускается. Тогда имеем:

$$\lambda_{j} = \alpha_{j} * \lambda_{0}$$
, (4) где $\alpha_{0} = 1$.

Для разомкнутых стохастических сетей известна интенсивность λ_0 источника заявок. Поэтому система уравнений (3) имеет единственное решение вида (4).

ПРИМЕР № І

Определись значения интенсивностей λ_j потоков заявок и коэффициентов передач α_j разомкнутой сети, представленной на рис. 5. Граф передач этой сети представлен на рис. 6. Матрица вероятностей передач этой сети:

$$P = \begin{bmatrix} S_0 & S_1 & S_2 & S_3 \\ S_0 & \begin{bmatrix} 0 & 1 & 0 & 0 \\ P_{10} & 0 & P_{12} & P_{13} \\ S_2 & 0 & 1 & 0 & 0 \\ S_3 & 0 & 1 & 0 & 0 \end{bmatrix}$$

Вход - по строкам, выход - по столбцам.

Примем: $\lambda_0=5$ с⁻¹; $P_{10}=0,1$; $P_{12}=0,4$; $P_{13}=0,5$.

Подставим значения интенсивности λ_0 источника заявок и вероятностей передач в систему уравнений (2) и выполним тождественные преобразования:

$$\begin{cases} \lambda_0 = P_{00} * \lambda_0 + P_{10} * \lambda_1 + P_{20} * \lambda_2 + P_{30} * \lambda_3 ; \\ \lambda_1 = P_{01} * \lambda_0 + P_{11} * \lambda_1 + P_{21} * \lambda_2 + P_{31} * \lambda_3 ; \\ \lambda_2 = P_{02} * \lambda_0 + P_{12} * \lambda_1 + P_{22} * \lambda_2 + P_{32} * \lambda_3 ; \\ \lambda_3 = P_{03} * \lambda_0 + P_{13} * \lambda_1 + P_{23} * \lambda_2 + P_{33} * \lambda_3 , \end{cases}$$

$$\begin{cases} \lambda_0 = P_{10} * \lambda_1; \\ \lambda_1 = \lambda_0 + \lambda_2 + \lambda_3; \\ \lambda_2 = P_{12} * \lambda_1; \\ \lambda_3 = P_{13} * \lambda_1, \end{cases}$$

```
 \begin{cases} 5 {=} 0, 1 {*} \lambda_1; \\ \lambda_1 {=} 5 {+} \lambda_2 {+} \lambda_3; \\ \lambda_2 {=} 0, 4 {*} \lambda_1; \\ \lambda_3 {=} 0, 5 {*} \lambda_1, \end{cases}
```

Решая последнюю систему уравнений, получаем: λ_1 =50, λ_2 =20, λ_3 =25.

Используя выражение (4) и рассчитанные значение λ_j , находим значения коэффициентов передач:

 $\alpha_1 = \lambda_1/\lambda_0 = 10;$ $\alpha_2 = \lambda_2/\lambda_0 = 4;$ $\alpha_3 = \lambda_3/\lambda_0 = 5.$

3. Характеристики разомкнутых стохастических сетей

Условие существования стационарного режима. В стационарном режиме вероятностные характеристики сети не изменяются во времени. Существование стационарного режима в сети связано с существованием стационарного режима в ее системах. Условие существования стационарного режима в отдельной СМО определяется числовым значением загрузки.

Под загрузкой ho_j одноканальной системы S_j понимается отношение времени, в течение которого канал обслуживает заявки, по времени функционирования канала. Значение загрузки ho_j определяется произведением ho_j = λ_j * V_j , где λ_j - интенсивность входного потока заявок, а V_j - среднее время обслуживания одной заявки в системе S_j .

Для многоканальной системы S_j с интенсивностью λ_j входного потока заявок и средним временем обслуживания V_j заявки в одном канале произведение $\lambda_j^*V_j$ определяет не загрузку системы, а среднее число занятых каналов β_j . Для нахождения загрузки ρ_j каждого из каналов K_j - канальной системы S_j нужно разделить среднее число занятых каналов $\beta_j = \lambda_j^*V_j$ на общее число каналов K_j в системе S_j : $\rho_j = \beta_j / K_j = \lambda_j^*(V_j / K_j)$. Таким образом, как для одноканальной, так и для многоканальной СМО, загрузка определяется следующим выражением:

$$\rho_{j} = \lambda_{j}^{*}(\mathbf{V}_{j}/\mathbf{K}_{j}). \tag{5}$$

Для системы $\mathbf{S_{j}}$ стационарный режим существует, если числовое значение загрузки меньше единицы, то есть выполняется условие:

$$\rho_{i} = \lambda_{i} * (V_{i} / K_{i}) < 1. \tag{6}$$

Поскольку из выражения (4) следует, что $\lambda_j = \alpha_j * \lambda_0$, то выражение (6) приводится к виду:

$$\alpha_j * \lambda_0 * (V_j / K_j) < 1,$$

то есть

$$\lambda_0 < K_i / (\alpha_i * V_i)$$
,

где α_i – коэффициент передачи системы S_i .

Последнее неравенство налагает ограничение сверху на интенсивность λ_0 потока заявок, поступающего в сеть. Следовательно, стационарный режим будет существовать в разомкнутой сети, если выполняется условие:

$$\lambda_0 < \min \{ K_1 / (\alpha_1 * V_1); K_2 / (\alpha_2 * V_2); ...; K_n / (\alpha_n * V_n) \}.$$
 (7)

Состояние сети и вероятность состояний. Под состоянием сети понимается вектор $(M_1, ..., M_n)$ характеризующий распределение заявок, находящихся в сети, среди систем $S_1, ..., S_n$. Состояние $(M_1, ..., M_n)$ соответствует случаю, когда в системе S_1 находится M_1 заявок, в системе S_2 находится M_2 заявок и т.д., в системе S_n находится M_n заявок. Заявки в системе S_j обслуживаются каналами этой СМО и стоят в очереди на обслуживание.

В стационарном режиме вероятность состояния разомкнутой сети определяется произведением вероятностей состояний составляющих сеть систем. Пусть Π_{Mj} - вероятность того, что в системе S_j находится M_j заявок. Тогда вероятность $Pr(M_1, ..., M_n)$ состояния $(M_1, ..., M_n)$ сети определяется следующим образом:

$$Pr(M_1, ..., M_n) = \prod_{M_1} \Pi_{M_2} \dots \Pi_{M_n} = \prod_{j=1}^n \prod_{M_j} .$$
 (8)

В теории массового обслуживания получена формула для определения вероятности Π_{Mj} состояния M_j многоканальной СМО:

$$\Pi_{Mj} = \begin{cases}
\Pi_{0j} * (\beta_{j}^{Mj} / M_{j}!) & \text{при } 0 \leq M_{j} \leq K_{j}; \\
\Pi_{0j} * (\beta_{j}^{Mj} / (K_{j}! * K_{j}^{Mj \cdot Kj})) & \text{при } M_{j} > K_{j},
\end{cases} \tag{9}$$

где:

$$\beta_{j} = \lambda_{j} * V_{j}; \tag{10}$$

$$\Pi_{0j} = [\beta_j^{Kj} / (K_j!*(1-\beta_j/K_j)) + \sum_{Mj=0}^{Kj-1} \beta_j^{Mj} / M_j!]^{-1}.$$
(11)

Выражение (10) определяет среднее число занятых каналов многоканальной СМО и загрузку канала одноканальной СМО. Выражение (11) характеризует вероятность простоя СМО. Для одноканальной СМО выражение (11) существенно упрощается:

$$\Pi_{0i} = \mathbf{1} - \mathbf{\rho}_i \,. \tag{12}$$

Заметим, что формулы (9), (10), (11) и формулы, представленные в описании лабораторной работы \mathbb{N}_2 2, соответственно (4), (6), (5), по существу тождественны и отличаются только обозначениями

переменных.

Последовательно подставляя выражения (10) и (II) в выражение (9), а последнее - в выражение (8), можно найти формулу для расчета вероятности $\mathbf{Pr}(\mathbf{M_1},...,\mathbf{M_n})$ состояния $(\mathbf{M_1},...,\mathbf{M_n})$ сети.

<u>Характеристики СМО.</u> На основе вероятностей состояния систем определяются все характеристики СМО:

- 1) средние длина очередей заявок $\mathbf{l_1}, ..., \mathbf{l_n}$, ожидающих обслуживания в системах $\mathbf{S_1}, ..., \mathbf{S_n}$;
- 2) средние числа заявок $\mathbf{m_1}, ..., \mathbf{m_n}$ пребывающих в системах $\mathbf{S_1}, ..., \mathbf{S_n}$;
- 3) средние времена ожидания $W_1, ..., W_n$ заявок в системах $S_1, ..., S_n$;
- 4) средние времена пребывания $U_1, ..., U_n$ заявок в системах $S_1, ..., S_n$.

Для нахождения характеристик $\mathbf{l_j}$, $\mathbf{m_j}$, $\mathbf{W_j}$, $\mathbf{U_j}$ многоканальной системы $\mathbf{S_j}$, содержащей $\mathbf{K_j}$ каналов со средним числом занятых каналов $\mathbf{\beta_j}$, в теорий массового обслуживания получены следующие формулы:

1) среднее число заявок, ожидающих обслуживания, то есть средняя длина очереди:

$$\mathbf{l}_{i} = (\beta_{i}^{Kj+1} / (K_{i}!*K_{i}*(1 - \beta_{i} / K_{i})^{2})) * \Pi_{0i};$$
(13)

2) среднее число заявок $\mathbf{m_j}$, пребывающих в системе, равно сумме средней длины очереди $\mathbf{l_j}$ и среднего числа занятых каналов $\boldsymbol{\beta_j}$:

$$\mathbf{m}_{\mathbf{j}} = \mathbf{l}_{\mathbf{j}} + \boldsymbol{\beta}_{\mathbf{j}}; \tag{14}$$

3) среднее время ожидания заявки в очереди W_j равно частному от деления средней длины очереди l_j на интенсивность λ_j входного потока заявок:

$$\mathbf{W_i} = \mathbf{l_i} / \lambda_i; \tag{15}$$

4) среднее время пребывания заявки в системе U_j равно частному от деления среднего числа заявок m_j , пребывающих в системе, на интенсивность λ_i входного потока заявок:

$$\mathbf{U_{j}} = \mathbf{m_{j}} / \lambda_{j}$$
; (16) или

$$\mathbf{U_j} = \mathbf{W_j} + \mathbf{V_j}; \tag{17}$$

Для одноканальной системы S_j формулы (9) и (13) – (16) существенно упрощаются, так как K_j =1, β_j = ρ_j . С учетом этого вероятность Π_{mi} состояния M_i системы S_i определяется так:

$$\Pi_{mj} = \rho_j^{Mj} * \Pi_{0j} = \rho_j^{Mj} * (1 - \rho_j).$$
 (18)

Характеристики одноканальной системы $\mathbf{S}_{\mathbf{j}}$:

1) среднее число заявок в очереди:

$$\mathbf{e}_{\mathbf{j}} = \rho_{\mathbf{j}}^{2} / (\mathbf{1} - \rho_{\mathbf{j}}); \tag{19}$$

2) среднее число заявок, пребывающих в системе:

$$\mathbf{m}_{\mathbf{j}} = \mathbf{\rho}_{\mathbf{j}} / (\mathbf{1} - \mathbf{\rho}_{\mathbf{j}}); \tag{20}$$

3) среднее время ожидания заявки в очереди:

$$\mathbf{W_i} = \mathbf{V_i} * \mathbf{\rho_i} / (\mathbf{1} - \mathbf{\rho_i}); \tag{21}$$

4) среднее время пребывания заявки в системе:

$$U_{j} = V_{j} / (1 - \rho_{j})$$
 (22)

<u>Характеристики сети</u> **l**, **m**, **W**, **U** определяются через одноименные характеристики СМО $\mathbf{l_j}$, $\mathbf{m_j}$, $\mathbf{W_j}$, $\mathbf{U_j}$, где $\mathbf{j=1,2,...,n}$, следующим образом:

1) среднее число заявок, ожидающих обслуживания в сети:

$$\mathbf{l} = \sum_{j=1}^{n} \mathbf{l}_{j};$$
(23)

2) среднее число заявок, пребывающих в сети:

$$\mathbf{m} = \sum_{j=1}^{n} \mathbf{m}_{j}; \tag{24}$$

3) среднее время ожидания W обслуживания заявки в сети учитывает, что каждая заявка поступает на обслуживание в систему $S_{\mathbf{j}}$ в среднем $\alpha_{\mathbf{j}}$ раз:

$$W = \sum_{i=1}^{n} \alpha_{i} W_{j}; \qquad (25)$$

4) среднее время пребывания U, заявки в сети учитывает, что каждая заявка поступает на обслуживание в систему S_j в среднем α_j раз:

$$\mathbf{U} = \sum_{j=1}^{n} \alpha_{j} * \mathbf{U}_{j}. \tag{26}$$

ПРИМЕР № 2

Определить среднее время пребывания U заявки в сети, содержащей одноканальную систему S_1 со средним временем обслуживания заявки V_1 =0,5 c и двухканальную систему S_2 со средним временем обслуживания заявки в канале V_2 =1 c. Интенсивность источника заявок λ_i =0,1 c. Матрица вероятностей передач сети:

$$P = \begin{array}{c|cccc} S_0 & S_1 & S_2 \\ \hline S_0 & 0 & 1 & 0 \\ S_1 & 0,2 & 0 & 0,8 \\ S_2 & 0 & 1 & 0 \\ \hline \end{array}$$

Для нахождения интенсивностей λ_1 и λ_2 входных потоков заявок соответствующих систем S_1 и S_2 используем систему уравнений (2):

$$\begin{cases} \lambda_0 = 0,2 * \lambda_1 \\ \lambda_1 = \lambda_0 + \lambda_2; \\ \lambda_2 = 0,8 * \lambda_1 \end{cases}$$

Решая данную систему уравнений, получим:

$$\lambda_1 = 5 * \lambda_0 = 5 * 0.1 = 0.5$$
;

$$\lambda_2 = 0.8*5*\lambda_0 = 0.8*0.5*0.1 = 0.4$$
.

Используя выражение (4), найдем коэффициенты передачи:

$$\alpha_1 = \lambda_1/\lambda_0 = 0,5/0,1=5$$
;

$$\alpha_2 = \lambda_2/\lambda_0 = 0,4/0,1=4$$
.

Проверим условие (7) существования стационарного режима в сети:

$$\lambda_0 < \min\{K_1/(\alpha_1 * V_1); K_2/(\alpha_2 * V_2)\}$$
.

В сети существует стационарный режим, поскольку данное неравенство выполняется:

$$0,1 < \min\{1/(5*0,5); 2/(4*1)\} = 0,4$$
.

Используя выражения (5) и (10), найдем загрузку канала системы S_1 и среднее число занятых каналов системы S_2 :

$$\rho_1 = \lambda_1 * V_1 = 0.5*0.5 = 0.25$$
;

$$\beta_2 = \lambda_2 * V_2 = 0,4*1 = 0,4$$
.

Подставляя полученные значения ρ_1 и β_2 в соответствующие выражения (12) и (11) и учитывая, что \mathbf{K}_2 =2, найдем вероятности простоя систем \mathbf{S}_1 и \mathbf{S}_2 :

$$\Pi_{01} = 1-\rho_1 = 1-0.25=0.75$$
;

$$\begin{split} &\Pi_{02}\!=\![\;\beta_2^{\;\;2}\,/\;(2!\;*\;(1\;-\;\beta_2\,/\;2))\;+\;\beta_2^{\;0}\!/0!\;+\;\beta_2^{\;1}\!/1!\;\;]^{\;-1}\!=\![\;0,\!4^2\,/\;(2!\;*\;(1\;-\;0,\!4\;/\;2))\\ &+\;0,\!4^0\!/0!\;+\;0,\!4^1\!/1!\;\;]^{\;-1}\!=\!0,\!67\;\;. \end{split}$$

Подставляя известное значение V_1 =0,5 и полученное значение ρ_1 =0,25 в выражение (22), найдем среднее время пребывания заявки в системе S_1 :

$$U_1=V_1/(1-\rho_1)=0.5/(1-0.25)=0.67$$
.

Подставляя известное значение $K_2=2$ и вычисленные значения $\beta_2=0,4$ и $\Pi_{02}=0,67$ в выражение (13), затем $\beta_2=0,4$ и полученное, значение I_2 — в выражение (14), далее $\lambda_2=0,4$ и полученное значение m_2 — в выражение (16), последовательно найдем:

$$l_2 = (\beta_2^{3} / (2!*2*(1 - \beta_2 / 2)^2)) * \Pi_{02} = (0,4^3 / (2!*2*(1 - 0,4 / 2)^2)) * 0,67 = 0.017:$$

$$m_2 = l_2 + \beta_2 = 0.017 + 0.4 = 0.417$$
;

$$U_2 = m_2 / \lambda_2 = 0,417 / 064 = 1,04$$
.

Подставляя значения U_1 =0,67 и U_2 =1,04 в выражение (26) и учитывая, что заявка попадает на обслуживание в системы S_1 и S_2 в среднем соответственно α_1 =5 и α_2 =4 раза, получим среднее время

пребывания заявки в сети:

$$U = \alpha_1 * U_1 + \alpha_2 * U_2 = 5*0,67 + 4*1,04 = 7,51$$
 [c].

МЕТОДИКА ВЫПОЛНЕНИЯ РАБОТЫ

- 1. Построить блок схему ВС, ее сетевую модель и рассчитать вручную характеристики стохастической сети.
- 1.1. Построить блок схему ВС, параметры которой заданы в таблице 1. При этом учесть, что к СК1 подключено несколько ВЗУ1, к СК2 подключено несколько ВЗУ2, к МК1 подключено несколько УВВ1, к МК2 подключено несколько УВВ2.
- 1.2. Для полученной BC построить моделирующую ее стохастическую сеть. При этом учесть обозначение систем в сети, заданные в таблице 2.
- 1.3. Для полученной сети построить граф передач и написать матрицу вероятностей передач. Численные значения вероятностей взять из таблицы 3.
- 1.4. Рассчитать интенсивности входных потоков заявок для всех СМО. Интенсивность источника заявок $\lambda_0 = 0.1$ (1/c).
 - 1.5. Найти коэффициенты передач.
- 1.6. Проверить условия существования стационарного режима в стохастической сети. Средние времена обслуживания одной заявки единицы оборудования приведены в таблице 4.
- 1.7. Рассчитать загрузки одноканальных СМО и средние числа занятых каналов многоканальных СМО.
- 1.8. Определить вероятности простоя каждой СМО и сети в пелом.
- 1.9. Для каждой СМО рассчитать среднее число заявок, ожидающих обслуживание, среднее число заявок, пребывающих в ней, среднее время ожидания заявки в очереди и среднее время пребывания заявки в системе.
- 1.10. Для стохастической сети определить среднее число заявок, ожидающих обслуживание в сети, среднее число заявок, пребывающих в сети, среднее время ожидания заявки в сети и среднее время пребывания заявки в сети.
 - 2. Выполнить расчеты в соответствие с п.1.
- Исследовать чувствительность характеристик сети к изменению ее отдельных параметров.

- 4. Выполнить несколько циклов системного проектирования ВК (принятия решения и изменения группы параметров ВС) с целью улучшения характеристик ВС. При этом следует учесть, что изменение числа процессоров, СК, МК, УВВ приводит к изменению блок схемы ВС и, следовательно, сопровождается изменением структуры моделирующей сети.
- 5. Выполнить анализ полученных результатов и сформулировать выводы о закономерностях, связывающих параметры и характеристики проектируемой ВС, и степени улучшения характеристик ВС в процессе проектирования.

СОДЕРЖАНИЕ ОТЧЕТА

- 1. Исходные данные, блок схема BC и ее сетевая модель, контрольные расчеты характеристик СМО и сети, выполненные в ручную. Материал излагается в соответствии с п. 1.
- 2. Результаты исследования чувствительности характеристик сети к изменению ее отдельных параметров, оформленных в виде таблиц и графиков.
- 3. Промежуточные и конечные результаты системного проектирования ВК, в том числе обоснования выбранных решений, модифицированные блок схемы ВС и сетевые модели, характеристики ВС, достигнутые в каждом цикле проектирования.
 - 4. Выводы по работе.

ЛИТЕРАТУРА

Основы теории вычислительных систем. – М.: Высш. шк., 1978.

МОДЕЛИ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

Рис. 1. Одноканальная система массового обслуживания

Рис. 2. Многоканальная система массового обслуживания

Рис. 3. Блок-схема вычислительной системы

Рис. 4. Стохастическая сетевая модель вычислительной системы

Рис. 5. Граф передач стохастической сети

Рис. 6. Разомкнутая стохастическая сеть

Рис. 7. Замкнутая стохастическая сеть

ЗАДАНИЯ

№	Количество			Количество ВЗУ и УВВ,			
задания				подключенных к каналам			
	ПР	CK	МК	CK1	СК2	MK1	MK2
1	1	1	1	3	0	2	0
2	1	1	2	3	0	2	2
3	1	2	1	2	2	2	0
4	1	2	2	2	2	2	2
5	2	1	1	3	0	2	0
б	2	1	2	3	0	2	2
7	2	2	1	2	2	2	0
8	2	2	2	2	2	2	2

Таблица 1

№ задания	Обозначения систем в сети						
	ПР	CK1	СК2	MK1	MK2		
1	S_1	S_2	-	S_3	-		
2	S_1	S_2	-	S_3	S_4		
3	S_1	S_2	S_3	S_4	-		
4	S_1	S_2	S_3	S_4	S_5		
5	S_1	S_2	-	S_3	-		
6	S_1	S_2	-	S_3	S_4		
7	S_1	S_2	S_3	S_4	-		
8	S_1	S_2	S_3	S_4	S_5		

Таблица 2

№ задания	Вероятности передач						
	P_{10}	P ₁₂	P ₁₃	P ₁₄	P ₁₅		
1	0,2	0,3	0,5	0	0		
2	0,2	0,1	0,3	0,4	0		
3	0,2	0,1	0,3	0,4	0		
4	0,2	0,1	0,2	0,3	0,2		
5	0,3	0,2	0,5	0	0		
6	0,3	0,1	0,4	0,2	0		
7	0,3	0,1	0,2	0,4	0		
8	0,3	0,1	0,2	0,2	0,2		

Таблица 3

Среднее время	Устройство						
обслуживания одной	ПР	В3У1	ВЗУ2	УВВ1	УВВ2		
заявки единицей							
оборудования, с							
V	0,5	0,2	0,3	0,5	1,0		

Таблица 4