

Enhanced usability in the MSstats family of statistical analysis software for quantitative mass spectrometry(MS)-based proteomics

Devon Kohler^{1,2}, Mateusz Staniak³, Deril Raju¹, Sarah Szvetecz^{1,2}, Anthony Wu^{1,2}, Olga Vitek^{1,2}

²Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, MA, USA

MSstats: Versatile software for differential analysis of MS-based proteomics experiments

MSstats is a family of statistical analysis software which can address a variety of biological questions and experimental designs. The software integrates with spectral processing tools used for identification and quantification and can be run via the command line or a GUI.

New converters integrate directly with spectral processing tools, reducing cumbersome manual work

Dedicated Converter	LF	TMT	PTM	LiP
FragPipe	/ *	✓	✓	
Skyline	✓		\checkmark	
Spectronaut	/*		\checkmark	✓
MaxQuant	✓	✓	✓	
Proteome Discoverer	√	√	✓	
DIA-NN	✓		✓	
OpenMS	√	√		
MetaMorpheus	✓		✓	
Progenesis	√		✓	
SpectroMine		✓		
OpenSWATH	√			
PEAKS Studio			✓	
DIA-Umpire	✓			

*Includes MSstatsBig Functionality

GUI data visualizations enhance the analysis of large experiments via increased interactivity

New TMT sample size calculations provide increased insight into experimental power¹

$$J = \frac{2(\sigma + \sigma_S + \sigma_T)}{\frac{\Delta^2}{(z_{1-\alpha/2} + z_{1-\beta})^2}} \quad ; \quad \alpha = (1-\beta) \frac{q}{1 + (1-q)m_0/m_1}$$

MSstatsBig and parallel processing greatly speed up workflows on large multi-gigabyte PSM files

All benchmarks were run using a large (187 sample) DIA experiment by Clark et al.² Leveraging MSstatsBig and multiple cores reduced the analysis time by 83% over the standard MSstats workflow.

MSstats analysis pipeline enables high quality analysis without major implementation burden

Comparisons were run using a DDA LFQ benchmark dataset from Van Puyvelde et al.³ The experiment included two mixtures with differing levels of human, yeast, and E.coli samples.

References

- 1. Bojkova et al. Nature 583, 469-472 (2020).
- 2. Clark et al. Cell 179, 964-983 (2019).
- 3. Van Puyvelde et al. Sci Data 9, 126 (2022).

The authors declare no competing financial interest

³University of Wrocław, Wrocław, Poland