Variables Aleatorias. Distribuciones de Probabilidad

Variables Aleatorias. Distribuciones de Probabilidad

Departamento Matemática Aplicada

Universidad de Málaga

Curso 2015-2016

Introducción

Dado un experimento aleatorio, al conjunto de sucesos elementales le hemos llamado espacio muestral (E). Supongamos que es discreto.

A cada suceso elemental podemos asociarle un número real de muchas formas diferentes. Cada una será una variable aleatoria.

Por ejemplo, al lanzar una moneda 4 veces, el espacio muestral es: $E = \{CCCC, CCCF, CCFC, CCFF, CFCC, CFCF, CFFC, CFFF, FCCC, FCCF, FCFC, FCFF, FFCC, FFFF, FFCC, FFFF\}$ donde C = 'Cara' y F = 'Cruz.

- 'Número de caras obtenidas'. Al suceso CFFF le corresponde un 1 y a FCFC un 2.
- 'Número de caras antes de la primera aparición de cruz'. Al suceso CFFF le corresponde un 1 y a FCFC un 0.
- 'Cada cara se valora multiplicada por el lugar de aparición'. Al suceso CFFF le corresponde un 1 (1+0+0+0) y a FCFC un 6 (0+2+0+4).

Definición

Sea (E, A, P) un espacio probabilístico, es decir un espacio muestral E, una álgebra o σ -álgebra A y una probabilidad P.

Definición

Decimos que X es una variable aleatoria sobre E, a una aplicación de $E \to \mathbb{R}$ que verifique la propiedad:

Para todo
$$x \in \mathbb{R}$$
, el conjunto $\{w \in E/X(w) \le x\} \in A$

Definición

Llamamos **soporte** de la variable aleatoria X (S_X), al conjunto de valores reales que puede tomar.

Ejemplo

Ejemplo

Dado el experimento aleatorio consistente en lanzar un dado y una moneda y la variable aleatoria ξ : 'valor obtenido en el dado, que se duplica si resulta cara al lanzar la moneda'.

- Determinar su espacio muestral.
- Hallar el aplicado de cada uno de los elementos de E.
- Determinar el soporte de X.
- $a) \; E = \{ '1C', \; '2C', \; '3C', \; '4C', \; '5C', \; '6C', \; '1F', \; '2F', \; '3F', \; '4F', \; '5F', \; '6F' \}$
- b) X('1C')=2, X('2C')=4, X('3C')=6, X('4C')=8, X('5C')=10, X('6C')=12, X('1F')=1, X('2F')=2, X('3F')=3, X('4F')=4, X('5F')=5, X('6F')=6.
- c) El soporte $S_X = \{1, 2, 3, 4, 5, 6, 8, 10, 12\}$

Variable aleatoria unidimensional Variable aleatoria discreta Variable aleatoria continua

Ejemplo

Ejemplo

Determinar el soporte para:

- La variable aleatoria 'Número de llamadas recibidas'.
- Obtener un número aleatorio x en [0,1). (x=rand(1,1))
- Multiplicar 6 por x y sumarle 1. (y=6*x+1)
- Quedarte con la parte entera de y. (z=floor(y))

Ejemplo

Un componente es sustituido cuando se avería o al cabo de 10 años.

- Determinar el soporte de la v.a. 'Duración del componente'.
- Si disponemos de 5 componentes iguales y cada uno sustituye al anterior. Lo mismo para la v.a. 'Duración de los 5 componentes'.
- Repetir los anteriores apartados si solo se sustituye por avería.

Función de distribución

Definición

Dado un espacio probabilístico (E,A,P) y una variable aleatoria X. Definimos la función de distribución de la variable aleatoria X como una función que verifica:

- ② $\mathbf{F}(\mathbf{x}) = \mathbf{P}(\omega \in \mathcal{A}/\mathbf{X}(\omega) \leq \mathbf{x})$

Propiedad

La función de distribución asociada a una variable aleatoria es única y caracteriza a la misma.

Esto es, si conocemos la función de distribución podemos calcular la probabilidad de que la variable aleatoria tome un valor.

ma

Propiedades de la función de distribución

- ② $P(X > x) = 1 P(X \le x) = 1 F(x)$
- 3 $P(a < X \le b) = F(b) F(a)$
- **5** $0 \le F(x) \le 1$

- **§** F(x) **es monótona no decreciente**, es decir: $a < b \Rightarrow F(a) \le F(b)$
- **9** F(x) es continua por la derecha, es decir, $\lim_{h\to 0^+} F(x+h) = F(x)$

Variable aleatoria continua

Ejemplo

Ejemplo

La función de distribución F(x) de una v.a. discreta ε viene dada por:

				()				,		,
X	$(-\infty,1)$	[1, 2)	[2,3)	[3, 4)	[4, 5)	[5, 6)	[6, 8)	[8, 10)	[10, 12)	$[12,\infty)$
F(x)	0	$\frac{1}{12}$	$\frac{3}{12}$	$\frac{4}{12}$	$\frac{6}{12}$	$\frac{7}{12}$	$\frac{9}{12}$	$\frac{10}{12}$	$\frac{11}{12}$	1

Hallar:

1)
$$P(\xi \le 3.5)$$
, 2) $P(\xi \le 7)$, 3) $P(\xi > 2)$, 4) $P(\xi \ge 2)$, 5) $P(3 < \xi \le 8)$.

1)
$$P(\xi \le 3.5) = F(3.5) = \frac{4}{12} = \frac{1}{3}$$
.

2)
$$P(\xi \le 7) = F(7) = \frac{9}{12} = \frac{3}{4}$$
.

3)
$$P(\xi > 2)=1-F(2)=\frac{3}{4}$$
.

4)
$$P(\xi \ge 2) = P(\xi = 2) + P(\xi > 2) = (F(2) - \lim_{h \to 0} F(2 - h)) + \frac{3}{4} = \frac{3}{12} - \frac{1}{12} + \frac{3}{4} = \frac{11}{12}$$

5)
$$P(3 < \xi \le 8) = F(8) - F(3) = \frac{10}{12} - \frac{4}{12} = 0.5.$$

NOTA: La variable ξ es la de un ejemplo anterior con lanzamiento de moneda y dado.

Tipos de variables aleatorias

Dependiendo de como sea el conjunto soporte podemos distinguir varios tipos de variables aleatorias.

Tipos de variables aleatorias.
$$\begin{cases} Discretas & Soporte finito \\ Soporte numerable \\ Continuas \\ Mixtas \end{cases}$$

Finita: Lanzamiento de un dado. Puntos obtenidos por un equipo de fútbol en una jornada ($S_P = \{0, 1, 3\}$).

Numerable: Días transcurridos hasta realizar un cambio de tarifa de móvil. Número de averías recibidas por un servicio técnico.

Continua: Alcance de una antena. Distancia recorrida por un vehículo en 1 hora. Consumo en litros de combustible en 100Km.

Mixta: a) Distancia alcanzada por un lanzador, si no lo realiza se codifica como -1.

Variable aleatoria discreta

Definición

Sea (E, A, P) un espacio probabilístico asociado a un experimento aleatorio y sea X una variable aleatoria. Diremos que se trata de una **variable aleatoria discreta** si su soporte es es un conjunto discreto. Es decir, la variable X toma solo un conjunto finito o infinito numerable de valores en \mathbb{R} .

Para este tipo de variable, la forma más simple de definirlas es dar la probabilidad p_i de que tome cada uno de los posible valores x_i de su soporte.

Definición

Definimos la **función de probabilidad** de una variable aleatoria discreta, mediante:

$$p(x_i) = P(\omega \in A/X(\omega) = x_i) = P(X = x_i)$$

Variable aleatoria unidimensional Variable aleatoria discreta Variable aleatoria continua

Ejemplos

Ejemplo

La función de probabilidad de la variable aleatoria: 'Suma de los valores obtenidos al lanzar 2 dados' es:

Xi	$p(x_i)$	Xi	$p(x_i)$
2	$\frac{1}{36}$	8	<u>5</u> 36
3	$\frac{2}{36}$	8 9 10	$\frac{4}{36}$
4	$\frac{3}{36}$	10	$\frac{3}{36}$
5 6	$\frac{\frac{36}{4}}{36}$	11	$\frac{2}{36}$
6	<u>5</u> 36	12	5 364 369 362 36 37 362 36
7	4 632 363 364 365 366 36		30

Ejemplo

La función de probabilidad de 'Número de caras' al lanzar 3 monedas es: P(0)=1/8, P(1)=3/8, P(2)=3/8, P(3)=1/8.

Ejemplo para v.a. numerable

Ejemplo

Sea la variable aleatoria 'Lanzar un dado hasta la primera aparición de un 5'. Hallar la función de probabilidad.

$$P(X=1)=P(\text{sacar 5 a la } 1^a)=1/6.$$

 $P(X=2)=P(\text{fallar la primera v saca$

P(X=2)=P(fallar la primera y sacar 5 a la 2^a)=(5/6)(1/6).

$$P(X=3)=P(fallar\ 2\ veces\ y\ sacar\ 5\ a\ la\ 3^a)=(5/6)(5/6)(1/6)==(5/6)^2(1/6),$$

. . .

$$P(X = k) = (5/6)^{k-1}(1/6)$$
, para $k = 1, 2, ...$ que es la función de probabilidad.

Propiedades

- La función de probabilidad caracteriza a la variable aleatoria discreta.
- Si P es una función de \mathbb{R} en [0,1] que verifica: $\sum_i P(X=x_i)=1$, entonces existe una v.a. que la tiene como función de probabilidad.

Ejemplo

¿Determina la función: $P(X = k) = (2/3)^k (1/3)$ con k = 0, 1, 2, ..., una función de probabilidad?

Para todo
$$k$$
, $0 \le P(X=k) \le 1$. Veamos si $\sum_{k=0}^{\infty} P(X=k) = 1$. $\sum_{k} P(X=k) = P(X=0) + P(X=1) + \dots = (2/3)^0 (1/3) + (2/3)^1 (1/3) + (2/3)^2 (1/3) + (2/3)^3 (1/3) + \dots = 1/3 + (2/3)(1/3) + (2/3)^2 (1/3) + \dots = \frac{1/3}{1-2/3} = 1$ luego define una función de probabilidad.

Representación gráfica. Ejemplo.

Tanto la función de probabilidad, como la de distribución de una variable aleatoria pueden ser representadas gráficamente.

Ejemplo

Sea ξ la variable aleatoria 'Número de caras' al lanzar 4 monedas. Hallar:

- Función de probabilidad.
- Función de distribución.
- Representar ambas gráficamente.
- $P(0) = P('\mathit{FFFF'}) = 1/16, \ P(1) = P('\mathit{CFFF'} \ \cup' \ \mathit{FCFF'} \ \cup' \ \mathit{FFCF'} \ \cup' \ \mathit{FFFC'}) = 4/16,$

$$P(2) = P(CCFF' \cup CFCF' \cup CFFC' \cup FCCF' \cup FCCF' \cup FCFC' \cup FFCC') = 6/16,$$

$$\dots P(3) = 4/16, \ P(4) = 1/16.$$

Ejemplo-cont

La función de probabilidad expresada como tabla y la La función de distribución $F(x) = P(\xi \le x)$ quedan:

x_i	p_i	1	(0	$\frac{1}{16}$
0	$\frac{1}{16}$		1	-
1	16 6	$P(X) = \langle$	2	16 6 16
2	$\frac{6}{16}$	$P(X) = \langle$	3	$\frac{\frac{1}{4}}{\frac{1}{1}6}$
3	$\frac{4}{16}$		4	$\frac{1}{16}$
4	$\frac{1}{16}$		Otro	0

X	F(x)
$(-\infty,0)$	0
[0, 1)	$\frac{1}{16}$
[1, 2)	
[2, 3)	16
[3, 4)	16 15
$[4,\infty)$	$\overset{\overline{16}}{1}$

$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{1}{16} & 0 \le x < 1 \\ \frac{5}{16} & 1 \le x < 2 \\ \frac{11}{16} & 2 \le x < 3 \\ \frac{15}{16} & 3 \le x < 4 \\ 1 & x \ge 4 \end{cases}$$

Función de probabilidad

Función de distribución

Esperanza matemática. Caso discreto

Definición

Se llama **esperanza matemática** de la variable aleatoria discreta *X* a:

$$E(X) = \sum_{x_i \in S_X} x_i P(X = x_i)$$

En el caso de que el soporte S_X sea un conjunto infinito numerable, será necesario que la serie sea absolutamente convergente, esto es $\sum_{x_i \in S_X} |x_i| P(X = x_i) < \infty$

Ejemplo

Hallar la esperanza matemática del 'Número de caras' al lanzar 4 monedas.

$$E(X) = 0P(0) + 1P(1) + 2P(2) + 3P(3) + 4P(4) = 0 \frac{1}{16} + 1 \frac{4}{16} + 2 \frac{6}{16} + 3 \frac{4}{16} + 4 \frac{1}{16} = 2 \frac{2}{16} + 3 \frac{4}{16} + 4 \frac{1}{16} = 2 \frac{2}{16} + 3 \frac{4}{16} + 3 \frac{4}{16} = 2 \frac{2}{16} + 3 \frac{2}{16} + 3 \frac{2}{16} = 2 \frac{2}{16} + 3 \frac{2}{16} + 3 \frac{2}{16} = 2 \frac{2}{16} + 3 \frac{2}{16} + 3 \frac{2}{16} = 2 \frac{2}{16} + 3 \frac{2}{16} + 3 \frac{2}{16} = 2 \frac{2}{16} + 3 \frac{2}{16} + 3 \frac{2}{16} = 2 \frac{2}{16} + 3 \frac{2}{16} + 3 \frac{2}{16} = 2 \frac{2}{16} + 3 \frac{2}{16} + 3 \frac{2}{16} = 2 \frac{2}{16} + 3 \frac{2}{16} + 3 \frac{2}{16} = 2 \frac{2}{16} + 3 \frac{2}{16} + 3 \frac{2}{16} = 2 \frac{2}{16} + 3 \frac{2}{16} + 3 \frac{2}{16} = 2 \frac{2}{16} + 3 \frac{2}{16} + 3 \frac{2}{16} = 2 \frac{2}{16} + 3 \frac{2}{16} + 3 \frac{2}{16} = 2 \frac{2}{16} + 3 \frac{2}{1$$

Generalización del concepto

Definición

Sea g una función real y X una variable aleatoria llamamos esperanza de g(x) a:

$$E(g(\boldsymbol{X})) = \sum_{\boldsymbol{x}_i \in S_{\boldsymbol{X}}} g(\boldsymbol{x}_i) P(\boldsymbol{X} = \boldsymbol{x}_i)$$

con la condición de que la serie sea absolutamente convergente: $\sum_{x_i \in S_Y} |g(x_i)| P(X = x_i)$

Ejemplo

Si X es la v.a. 'Número de caras' al lanzar 4 monedas. Hallar las esperanzas de: 1) X^2 , 2) X^3 , 3) $sen(\frac{\pi X}{2})$:

1)
$$E(X^2) = 0^2 P(0) + 1^2 P(1) + 2^2 P(2) + 3^2 P(3) + 4^2 P(4) = \frac{1 \cdot 4}{16} + \frac{4 \cdot 6}{16} + \frac{9 \cdot 4}{16} + \frac{16 \cdot 1}{16} = 5$$

Ejemplo-cont

2)
$$E(X^3) = 0^3 P(0) + 1^3 P(1) + 2^3 P(2) + 3^3 P(3) + 4^3 P(4) = \frac{1 \cdot 4}{16} + \frac{8 \cdot 6}{16} + \frac{27 \cdot 4}{16} + \frac{64 \cdot 1}{16} = 14$$

3)
$$E(\operatorname{sen}(\frac{\pi X}{2})) = \operatorname{sen}(0)P(0) + \operatorname{sen}(\frac{\pi}{2})P(1) + \operatorname{sen}(\pi)P(2) + \operatorname{sen}(\frac{3\pi}{2})P(3) + \operatorname{sen}(2\pi)P(4) = \frac{4}{16} - \frac{4}{16} = 0$$

Ejemplo

Sea ξ la variable aleatoria 'Número de lanzamientos' de un dado hasta la primera aparición de la cara '5'. Hallar $E(\xi)$.

Conocemos que
$$P(k) = (5/6)^{k-1}(1/6)$$
 para $k=1,2,...$, luego: $E(X) = 1(1/6) + 2(5/6)(1/6) + 3(5/6)^2(1/6) + 4(5/6)^3(1/6) + ... = \frac{1}{6}[1 + 2(5/6) + 3(5/6)^2 + 4(5/6)^3 + ...] = \frac{5}{6}$

$$S = 1 + 2(5/6) + 3(5/6)^2 + 4(5/6)^3 + ...$$

$$\frac{\frac{5}{6}S}{S} = +1(5/6) + 2(5/6)^2 + 3(5/6)^3 + ...$$

$$S - \frac{5}{6}S = 1 + (5/6) + (5/6)^2 + (5/6)^3 + ... \Rightarrow$$

$$\frac{S}{6} = \frac{1}{1 - 5/6} = 6 \Rightarrow S = 36 \Rightarrow E(X) = 6$$

Variable aleatoria continua

Definición

Se dice que una variable aleatoria es continua si su soporte es un intervalo real (finito o infinito) o unión de ellos.

Son variables aleatorias continuas: Temperatura, peso, duración de un componente,

Definimos la probabilidad de un intervalo:

$$P(a < \xi \le b) = P(\xi^{-1}(a, b]) = P(\omega \in \mathcal{A}/a < \xi(\omega) \le b)$$

En las variables aleatorias continuas (v.a.c.) se da la circunstancia de que la probabilidad de un punto es cero, aunque pueda ocurrir. Por ello:

- 1) $P(\xi < b) = P(\xi \le b) = F(b)$,
- 2) $P(\xi > a) = P(\xi \ge a) = 1 F(a)$
- 3) $P(a < \xi < b) = P(a < \xi \le b) = P(a \le \xi \le b) = P(a \le \xi \le b) = F(b) F(ab)$

Función de densidad

Definición

Dada una variable aleatoria continua ξ , decimos que la función y = f(t) real y no negativa es una función de densidad asociada a ξ , si verifica: $\mathbf{F}(\mathbf{x}) = \int_{-\infty}^{\mathbf{x}} \mathbf{f}(\mathbf{t}) d\mathbf{t}$, $\forall \mathbf{x} \in \mathbb{R}$

Propiedades:

- $\int_{-\infty}^{\infty} f(t)dt = 1$ (Consecuencia de $F(+\infty) = 1$)
- $P(\mathbf{a} < \xi < \mathbf{b}) = \int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{t}) d\mathbf{t}$ (Consecuencia de que $P(\mathbf{a} < \xi < \mathbf{b}) = F(\mathbf{b}) F(\mathbf{a})$
- La función de densidad es la derivada de la función de distribución: $f(x) = \frac{dF(x)}{dx}$
- $\mathbf{P}(\xi = \mathbf{a}) = \int_{\mathbf{a}}^{\mathbf{a}} \mathbf{f(t)} d\mathbf{t} = \mathbf{0}$ (La probabilidad de un punto es 0
- $P(\xi > b) = \int_{b}^{\infty} f(t)dt = 1 F(b)$

Interpretación de la función de densidad

La función de densidad además de caracterizar a la variable aleatoria sirve para calcular probabilidades. Así, las probabilidades:

$$P(a < X < b) = \int_a^b f(t)dt = F(b) - F(a)$$

$$P(X > b) = \int_b^\infty f(t)dt = 1 - F(b)$$

$$P(X < a) = \int_{-\infty}^a f(t)dt$$

pueden ser interpretadas como áreas bajo la función de densidad.

Ejemplo

Ejemplo

Sea ξ la v.a.c. determinada por la función de densidad:

$$f(x) = \max\{0, a - |2 - x|\}.$$

- Determinar el valor de a para que f(t) sea una función de densidad.
- Hallar la función de distribución.
- Hallar las probabilidades de los sucesos a) $P(\xi \le 1.5)$, b) $P(\xi > 2.3)$, c) $P(1.1 \le \xi \le 1.7)$ d) $P(1.5 \le \xi \le 2.5)$
- a) La forma de la función y = f(x) es triangular con máximo en x=2 y altura a, y base (2 a, 2 + a). Para que el área valga 1:

$$S = Bh/2 = (2a)a/2 = a^2 = 1 \Rightarrow \mathbf{a} = \mathbf{1}$$
 y resulta la figura.

b)
$$f(x) = \max\{0, 1 - |2 - x|\} =$$

$$\begin{cases} x - 1 & x \in (1, 2] \\ 3 - x & x \in (2, 3) \\ 0 & x \notin (1, 3) \end{cases}$$

Ejemplo-cont

Función de densidad de ξ

Función de distribución de ξ

Integramos para hallar la función de distribución: (la constante de integración se ajusta para que sea continua, así F(1)=0, F(2)=0.5, F(3)=1).

$$\mathbf{F}(\mathbf{x}) = \begin{cases} 0 & x \le 1\\ \frac{x^2}{2} - x + \frac{1}{2} & 1 < x \le 2\\ 3x - \frac{x^2}{2} - 3.5 & 2 < x < 3\\ 1 & x \le 3 \end{cases}$$

Ejemplo-cont2

• a)
$$P(\xi \le 1.5) = \int_{-\infty}^{1.5} f(t)dt = \int_{1}^{1.5} (t-1)dt = \{ \mathsf{M\'{a}s} \; \mathsf{f\'{a}cil} \} = F(1.5) = 0.125$$

• b)
$$P(\xi > 2.3) = \int_{2.3}^{\infty} f(t)dt = \int_{2.3}^{\infty} (3 - t)dt = \{\text{Más fácil}\} = 1 - F(2.3) = 1 - \left[3(2.3) - \frac{2.3^2}{2} - 3.5\right] = 0.245$$

• c)
$$P(1.1 \le \xi \le 1.7) = \int_{1.1}^{1.7} f(t) dt = \int_{1.1}^{1.7} t - 1 dt = \{\text{Más fácil}\} = F(1.7) - F(1.1) = 0.245 - 0.005 = 0.24$$

• d)
$$P(1.5 \le \xi \le 2.5) = \int_{1.5}^{2.5} f(t)dt = \int_{1.5}^{2} (t-1)dt + \int_{2}^{2.5} (3-t)dt = \{\text{Más fácil}\} = F(2.5) - F(1.5) = 0.875 - 0.125 = 0.75$$

Esperanza matemática. Caso Continuo

Definición

Se llama esperanza matemática de la v.a.c. X a:

$$\mathsf{E}(\mathsf{X}) = \int_{-\infty}^{\infty} \mathsf{x} \mathsf{f}(\mathsf{x}) \mathsf{d}\mathsf{x}$$

Solo quedará definida cuando la integral sea absolutamente convergente, es decir: $\int_{-\infty}^{\infty} |x| f(x) dx < \infty$

Ejemplo

Hallar la esperanza matemática de la función de la variable aleatoria ξ del ejemplo anterior.

La función de densidad era:
$$f(x) = \begin{cases} x-1 & x \in (1,2] \\ 3-x & x \in (2,3) \\ 0 & x \notin (1,3) \end{cases}$$
, entonces:

$$E(\xi) = \int_{-\infty}^{\infty} x f(x) dx = \int_{1}^{2} x(x-1) dx + \int_{2}^{3} x(3-x) dx = \left[\frac{x^{3}}{3} - \frac{x^{2}}{2}\right]_{1}^{2} + \left[3\frac{x^{2}}{2} - \frac{x^{3}}{3}\right]_{\substack{\text{IN EXTIGATIONS} \\ \text{DETINAL AGAINSTITES}}}^{3}$$

Variable aleatoria unidimensional Variable aleatoria discreta Variable aleatoria continua

Generalización del concepto

Definición

Sea g una función real y X una variable aleatoria continua llamamos esperanza de g(x) a:

$$\mathsf{E}(\mathbf{g}(\mathbf{X})) = \int_{-\infty}^{\infty} \mathbf{g}(\mathbf{x}) \mathsf{f}(\mathbf{x}) \mathsf{d}\mathbf{x}$$

con la condición de que la integral sea absolutamente convergente: $\int_{-\infty}^{\infty} |g(x)| f(x) dx$

Ejemplo

Hallar $E(sen(\xi))$

$$E[sen(\xi)] = \int_{-\infty}^{\infty} \sin(x)f(x)dx = \int_{1}^{2} \sin(x)(x-1)dx + \int_{2}^{3} \sin(x)(3-x)dx \approx 0.836$$

$$\lim_{x \to \infty} \cos(x)f(x)dx = \int_{1}^{2} \sin(x)(x-1)dx + \int_{2}^{3} \sin(x)(3-x)dx \approx 0.836$$

$$\lim_{x \to \infty} \cos(x)f(x)dx = \int_{1}^{2} \sin(x)(x-1)dx + \int_{2}^{3} \sin(x)(3-x)dx \approx 0.836$$

Propiedades de la esperanza matemática

Las siguientes propiedades son válidas para cualquier variable aleatoria:

- Es la media de la variable aleatoria: $\mathbf{\bar{X}} = \mathbf{E}(\mathbf{X})$.
- **E(k)=k.** (La esperanza matemática de una constante k es k.)
- E(aX+b)=aE(X)+b (Transformación afín)
- E(aX + bY) = aE(X) + bE(Y) (Linealidad)
- Si son independientes se verifica: $\mathbf{E}(\mathbf{XY}) = \mathbf{E}(\mathbf{X})\mathbf{E}(\mathbf{Y})$

Ejemplo

Sea X la v.a. 'Número de caras' al lanzar 4 monedas e Y 'Puntos obtenidos' al lanzar un dado. Hallar E(Y), E(X+Y) y E(3Y-2X+7).

$$E(Y) = 1\frac{1}{6} + 2\frac{1}{6} + \dots + 6\frac{1}{6} = \frac{21}{6} = 3.5$$

$$E(X + Y) = E(X) + E(Y) = 2 + 3.5 = 5.5,$$

$$E(3Y - 2X + 7) = 3E(Y) - 2E(X) + 7 = 3(3.5) - 2(2) + 7 = 13.5$$

Ejemplo

Ejemplo

Sea ξ la variable aleatoria continua dada por la función de

distribución:
$$F(x) = \begin{cases} 0 & x \le 0 \\ x^4 & 0 < x < 1 \\ 1 & x \ge 1 \end{cases}$$

Hallar: a) $E(\xi)$, b) $E(3\xi - 2)$, c) $E(\operatorname{sen}(\xi))$

a) Lo primero será hallar la función de densidad, $f(x) = \frac{dF(x)}{dx} = 4x^3$ para

$$x \in [0, 1]$$
. Luego: $E(\xi) = \int_0^1 x(4x^3) dx = \left[4\frac{x^5}{5}\right]_0^1 = \frac{4}{5} = 0.8$
 $E(3\xi - 2) = 3E(\xi) - 2 = 3(0.8) - 2 = 0.4$
 $E(\text{sen}(\xi)) = \int_0^1 \text{sen}(x)(4x^3) dx = 0.7084.$

Cálculo realizado con la instrucción Matlab:

>> h=inline('sin(x).*4.*x.^3'),quad(h,0,1)

aunque podría haberse calculado mediante integración por partes.

Momentos

Definición

Llamamos momento de orden r respecto al punto 'a' de la variable aleatoria X, a

$$\mathsf{M}_\mathsf{r}(\mathsf{a}) = \mathsf{E}((\mathsf{X} - \mathsf{a})^\mathsf{r})$$

Cuando a=0 se denominan momentos ordinarios de orden r:

$$\mathbf{m_r} = \mathbf{E}(\mathbf{X^r})$$
.

Cuando $a = \bar{X} = E(X)$ se denominan momentos centrales de orden r: $\mu_r = \mathbf{E}((\mathbf{X} - \mathbf{E}(\mathbf{X}))^r)$

Definición

Llamamos Varianza de una variable aleatoria X a su momento central de orden 2:

$$\mu_2 = \mathsf{E}((\mathsf{X} - \mathsf{E}(\mathsf{X}))^2) = \mathsf{E}(\mathsf{X}^2) - [\mathsf{E}(\mathsf{X})]^2 = \mathsf{m}_2 - \bar{\mathsf{X}}^2$$

Relaciones entre momentos

Definición

A la raíz cuadrada de la varianza la llamamos desviación típica de la variable aleatoria: $\sigma_{\mathbf{x}} = +\sqrt{\mathbf{V}(\mathbf{X})}$

Propiedades de los momentos:

•
$$m_0 = 1$$
, $m_1 = E(X) = \bar{X}$

•
$$m_2 = V(x) + \bar{X}^2$$
.

$$\mu_2 = V(x) = m_2 - \bar{X}^2$$

•
$$\mu_4 = m_4 - 4m_3\bar{X} + 6m_2\bar{X}^2 - 3\bar{X}^4$$

Parámetros

Parámetros de tendencia central: Son la media, moda y mediana.

- Media: Es la esperanza de X.
- Moda: Valor máximo de la función de probabilidad (discretas) o de la de densidad (continuas).
- **Mediana:** Valor x tal que F(x) = 0.5

Al igual que en descriptiva podemos hablar de cuantiles, cuartiles, El cuantil $c \in (0,1)$ es el valor x tal que F(x) = c.

Medidas de dispersión: Podemos hablar de rango, desviación típica, varianza.

Coeficiente de variación: $CV = \frac{\sigma_x}{|X|}$

Medidas de forma: (Coeficientes de Fisher)

Sesgo:
$$\gamma_1 = \frac{\mu_3}{\sigma^3}$$

Curtosis:
$$\gamma_2 \stackrel{\circ}{=} \frac{\mu_4}{\sigma^4} - 3$$

Variable aleatoria bidimensional

Definición

Sea (E, A, P) un espacio de probabilidad y sean X e Y dos variables aleatorias definidas sobre ese espacio. Una variable aleatoria bidimensional será una aplicación $(X, Y) \to \mathbb{R}^2$ que verifica:

$$\forall (\mathbf{x}, \mathbf{y}) \in \mathbb{R}^2$$
, el conjunto $\{\omega \in \mathcal{A} / \mathbf{X}(\omega) \leq \mathbf{x}, \mathbf{Y}(\omega) \leq \mathbf{y}\} \in \mathcal{A}$

Definición

Sea (E, A, P) un espacio de probabilidad y sea (X, Y) un a variable aleatoria bidimensional. Llamaremos función de distribución conjunta de la variable aleatoria (X, Y) a la función $F: \mathbb{R}^2 \to [0, 1]$, definida por: F(x, y) = P(X < x, Y < y)

Tipos de variables aleatorias bidimensionales

Cada una de las variables X e Y que forman la variable bidimensional podrá ser: discreta, continua o mixta. Sin embargo vamos a estudiar solamente:

- Variables aleatorias bidimensionales discretas: Cuando ambas son discretas (soporte finito o infinito numerable).
- Variables aleatorias bidimensionales continuas: Si ambas son continuas.

Variables aleatorias bidimensionales discretas

Definición

Podemos caracterizar la variable aleatoria bidimensional mediante la Función de probabilidad conjunta, donde

$$P(X=x_i,Y=y_j)=p_{i,j}$$

La función de probabilidad viene usualmente expresada en forma tabular.

$X \setminus Y$	<i>y</i> ₁	y 2		Уј		УL
<i>x</i> ₁	p ₁₁	<i>p</i> ₁₂		p_{1j}		p_{1L}
<i>x</i> ₂	<i>p</i> ₂₁	p_{22}		p_{2j}		p_{2L}
:	:	:	٠.	:	٠.	:
x _i	p _{i1}	p_{i2}		p_{ij}		p_{iL}
:	:	:	٠.	:	٠.	:
x_k	p_{k1}	n_{p2}		p_{kj}		p_{kL}

Variables discretas - cont.

Podremos definir todo lo que se ha indicado para tablas de frecuencias bidimensionales:

- Variables aleatorias marginales: (X e Y)
- Variables aleatorias condicionadas: $(X/Y = y_j)$ e $(Y/X = x_i)$
- Conceptos de dependencia, independencia y dependencia funcional.
- Momentos bidimensionales respecto a (a,b):

$$M_{rs}(a,b) = E[(X-a)^r(Y-b)^s] = \sum_i \sum_j (x_i-a)^r (y_j-b)^s p_{ij}$$

Si (a,b)=(0,0) se llaman momentos ordinarios:

$$m_{rs} = E(X^r Y^s)$$

Si $(a, b) = (\bar{X}, \bar{Y})$ se llaman momentos centrales:

$$\mu_{rs} = E[(X - \bar{X})^r (Y - \bar{Y})^s]$$

Conceptos de media, varianza, covarianza,

Ejemplo bidimensional discreta

Ejemplo

Sea la variable aleatoria bidimensional (X,Y) consistente en lanzar 4 monedas: $X = \{N \text{ úmero de caras en los dos primeros lanzamientos}\}\ e$ $Y = \{N \text{ úmero total de caras}\}\ .$ Hallar:

- La función de probabilidad conjunta.
- ② ¿Son independientes?
- 3 La función de distribución.
- Medias de X e Y, varianzas de X e Y, covarianza.
- **5** $P(X^2 + Y \le 3), P(2X + Y > 5)$
- 6 Rectas de regresión de Y/X y X/Y.
- Coeficiente de correlación lineal.

Ejemplo bidimensional discreta

1) Veamos como se calcula alguno de los términos de la tabla, por ejemplo para X=1, Y=2: Los casos que lo producen deben tener 1 cara en las dos primeros lanzamientos y otra cara en los dos últimos. Así, $\{X=1,Y=2\}=\{\mathit{CFCF},\mathit{CFFC},\mathit{FCCF},\mathit{FCFC}\}\$ y su probabilidad será 4/16.

$X \backslash Y$	0	1	2	3	4	
0	$\frac{1}{16}$	2 16	$\frac{1}{16}$	0	0	4/16
1	$\frac{1}{16}$	$\frac{\frac{2}{16}}{\frac{2}{16}}$	$\frac{\frac{1}{4}}{16}$	$\frac{2}{16}$	0	18 16
2	0	0	$ \begin{array}{r} \overline{16} \\ \underline{4} \\ \overline{16} \\ \underline{1} \\ \overline{16} \end{array} $	$\frac{\frac{2}{16}}{\frac{2}{16}}$	$\frac{1}{16}$	$\begin{array}{ c c }\hline \frac{4}{16} \\ 8 \\ \hline 16 \\ 4 \\ \hline 16 \\ \end{array}$
	$\frac{1}{16}$	4 16	<u>6</u>	4 16	1 16	1

2) Tendría que verificarse que p_{ij} fuese el producto de las marginales para todo i,j, y falla el primero: $P(X=0,Y=0) \neq P(X=0)P(Y=0)$, luego **no son independientes** existiendo dependencia estadística.

Ejemplo bidimensional discreta-2

3) La función de distribución expresada como tabla resulta:

$X \backslash Y$	$\mid (-\infty, 0)$	[0, 1)	[1, 2)	[2, 3)	[3, 4)	$[4,\infty)$
$(-\infty,0)$	0	0	0	0	0	0
[0,1)	0	$\frac{1}{16}$	3 16	<u>4</u> 16	4 16	$\frac{4}{16}$
[1, 2)	0	$\frac{1}{16}$	<u>5</u> 16	$\frac{10}{16}$	<u>12</u> 16	$\frac{12}{16}$
$[2,\infty)$	0	$\frac{1}{16}$	$\frac{5}{16}$	$\frac{11}{16}$	$\frac{15}{16}$	1

Para calcular el valor de una casilla, por ejemplo $x \in [1,2)$, $y \in [2,3)$ miramos en la tabla de la función de probabilidad y sumamos todas las probabilidades de las casillas con $X \le 1$ e $Y \le 2$, es decir:

$$P(0,0)+P(0,1)+P(0,2)+P(1,1)+P(1,2)=10/16.$$

Ejemplo bidimensional discreta-2

4) Para las medias y varianzas podemos usar las marginales (función de probabilidad)

Media de X:
$$E(X) = 0\frac{4}{16} + 1\frac{8}{16} + 2\frac{4}{16} = 1$$

Media de Y: $E(Y) = 0\frac{1}{16} + 1\frac{4}{16} + 2\frac{6}{16} + 3\frac{4}{16} + 4\frac{1}{16} = 2$
Varianza de X: $m_{2,0} = E(X^2) = 0^2\frac{4}{16} + 1^2\frac{8}{16} + 2^2\frac{4}{16} = \frac{24}{16} \Rightarrow V(X) = \frac{24}{16} - 1^2 = 0.5$

Varianza de Y:

$$m_{0,2} = E(Y^2) = 0^2 \frac{1}{16} + 1^2 \frac{4}{16} + 2^2 \frac{6}{16} + 3^2 \frac{4}{16} + 4^2 \frac{1}{16} = \frac{80}{16} \Rightarrow V(X) = \frac{80}{16} - 2^2 = 1$$

Covarianza:

$$m_{1,1} = E(XY) = 0 \cdot 0 \cdot \frac{1}{16} + 0 \cdot 1 \cdot \frac{2}{16} + 0 \cdot 2 \cdot \frac{1}{16} + 1 \cdot 1 \cdot \frac{2}{16} + 1 \cdot 2 \cdot \frac{4}{16} + 1 \cdot 3 \cdot \frac{2}{16} + 2 \cdot 2 \cdot \frac{1}{16} + 2 \cdot 3 \cdot \frac{2}{16} + 2 \cdot 4 \cdot \frac{1}{16} = \frac{40}{16} \Rightarrow \mathbf{Cov}(\mathbf{X}, \mathbf{Y}) = \frac{40}{16} - 1 \cdot 2 = 0.5$$

Ejemplo bidimensional discreta-3

5) $P(X^2 + Y \le 3)$: Las casillas de la tabla de la función de probabilidad que verifican la condición, (con $p_{ij} > 0$), son: (0,0),(0,1),(0,2), (1,1) y (1,2). $P(\{(0,0) \cup (0,1) \cup (0,2) \cup (1,1) \cup (1,2)\}) = \frac{10}{16}$

P(2X + Y > 5): Las casillas de la tabla de la función de probabilidad que verifican la condición, (con $p_{ij} > 0$), son: (2,2),(2,3) y (2,4). $P(\{(2,2) \cup (2,3) \cup (2,4)\}) = \frac{4}{16} = 0.25$

6) Podemos usar la fórmula: $Y - \bar{Y} = b(X - \bar{X})$, donde sabemos que: $\bar{X} = 1$, $\bar{Y} = 2$. $b = \frac{Cov}{V(x)} = \frac{0.5}{0.5} = 1 \Rightarrow m_{Y/X} = 1$ $b' = \frac{Cov}{V(y)} = \frac{0.5}{1} = 0.5$ $\Rightarrow m_{X/Y} = 2$ y las rectas son:

$$Y/X:$$
 $Y-2=1(X-1) \Rightarrow Y=X+1$
 $X/Y:$ $Y-2=2(X-1) \Rightarrow X=0.5Y$

7)
$$\rho = \sqrt{bb'} = \sqrt{1 \cdot 0.5} \approx 0.7071$$

Variables bidimensionales continuas

Definición

Llamamos función de densidad bidimensional de la variable aleatoria (X,Y) a una función $f:\mathbb{R}^2\to\mathbb{R}$, tal que sea:

Integrable y no negativa.

0

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(x,y) dy dx$$

• $\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y)$ en todos los puntos en donde esté definida esa derivada segunda.

Dada la función de densidad de la variable aleatoria, la probabilidad de $(a \le X \le b) \cap (c \le Y \le d)$ queda definida por:

$$P(\{(a \le X \le b) \cap (c \le Y \le d)\}) = \int_{c}^{d} \int_{a}^{b} f(x,y) dx dy$$
UNIVERSIDAD
DE MALAGA
DE MORALAGA

Variables continuas-cont

Variables aleatorias marginales: (X e Y)

$$F_1(x) = \int_{-\infty}^{x} \int_{-\infty}^{\infty} f(x, y) dy dx, \quad F_2(y) = \int_{-\infty}^{\infty} \int_{-\infty}^{y} f(x, y) dx dy$$

• Variables aleatorias condicionadas: $(X/Y \le b)$ e $(Y/X \le a)$

$$F_{X/Y \le b}(x) = \frac{P(X \le x, Y \le b)}{P(Y \le b)} = \frac{\int_{-\infty}^{x} \int_{-\infty}^{b} f(x, y) dy dx}{\int_{-\infty}^{\infty} \int_{-\infty}^{b} f(x, y) dy dx} = \frac{F(x, b)}{F(\infty, b)} = \frac{F(x, b)}{F_2(b)}$$

$$F_{Y/X \le a}(y) = \frac{P(X \le a, Y \le y)}{P(X \le a)} = \frac{\int_{-\infty}^{y} \int_{-\infty}^{a} f(x, y) dx dy}{\int_{-\infty}^{\infty} \int_{-\infty}^{a} f(x, y) dx dy} = \frac{F(a, y)}{F(a, \infty)} = \frac{F(a, y)}{F_1(a)}$$

• Variables aleatorias condicionadas: (X/Y = b) e (Y/X = a) Ahora los sucesos Y = b y X = a tienen probabilidad 0 (no está definida la

condicionada). Tomamos un intervalo de amplitud ϵ y límites cuando $\epsilon \to 0$:

$$F_{X/Y=b}(x) = \lim_{\epsilon \to 0} \frac{P(X \le x, b \le Y \le b + \epsilon)}{P(b \le Y \le b + \epsilon)} = \lim_{\epsilon \to 0} \frac{\int_{-\infty}^{x} \int_{b}^{b + \epsilon} f(x, y) dy dx}{\int_{-\infty}^{\infty} \int_{b}^{b + \epsilon} f(x, y) dy dx} = \frac{\int_{-\infty}^{x} f(x, b) dx}{\int_{-\infty}^{\infty} f(x, b) dx}$$

$$F_{Y/X \leq a}(y) = \lim_{\epsilon \to 0} \frac{P(a \leq X \leq a + \epsilon, Y \leq y)}{P(a \leq X \leq a + \epsilon)} = \lim_{\epsilon \to 0} \frac{\int_{-\infty}^{y} \int_{a}^{a + \epsilon} f(x, y) dx dy}{\int_{-\infty}^{\infty} \int_{a}^{a + \epsilon} f(x, y) dx dy}$$

$$\frac{\int_{-\infty}^{y} f(a,y)dy}{\int_{-\infty}^{\infty} f(a,y)dxdy}$$

Variables continuas-cont2

- Conceptos de dependencia, independencia y dependencia funcional.
- Momentos bidimensionales respecto a (a,b):

$$M_{rs}(a,b) = E[(X-a)^r(Y-b)^s] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x-a)^r (y-b)^s f(x,y) dxdy$$

Si (a,b)=(0,0) se llaman momentos ordinarios:

$$m_{rs} = E(X^r Y^s)$$

Si $(a,b)=(\bar{X},\bar{Y})$ se llaman momentos centrales:

$$\mu_{rs} = E[(X - \bar{X})^r (Y - \bar{Y})^s]$$

Conceptos de media, varianza, covarianza, . . .

4 D > 4 D > 4 D > 4 D >

Ejemplo variable bidimensional continua

Ejemplo

Sea la variable aleatoria (X,Y) con función de densidad:

$$f(x,y) = \begin{cases} c(x^2 + y) & 0 \le y \le 1 - x^2 \\ 0 & en el resto \end{cases}$$

- Dibuje la región de R² que representa el soporte de la variable aleatoria.
- 2 Determine el valor de c.
- 3 Hallar $P(X \ge 0)$.
- Hallar la probabilidad de que la variable aleatoria tome valor en el cuadrado de lado 1 y centro el origen de coordenadas.
- 5 Determinar la distribución marginal de X.
- 6 ¿Son X e Y variables independientes?
- Calcular la recta de regresión de Y/X y determinar la bondad del aiuste.

1) El soporte será la región donde f(x, y) > 0 y está representado en la figura:

2) Las funciones de densidad deben verificar:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dx dy = 1 \text{ que aquí queda:}$$

$$\int_{-1}^{1} \int_{0}^{1-x^2} c(x^2 + y) dy dx = 1$$

$$\int_{-1}^{1} c \left[x^{2}y + \frac{y^{2}}{2} \right]_{0}^{1 - x^{2}} dx = \int_{-1}^{1} c \left[x^{2} (1 - x^{2}) + \frac{(1 - x^{2})^{2}}{2} \right] dx =$$

$$= \frac{c}{2} \int_{-1}^{1} 1 - x^{4} dx = \frac{c}{2} \left[x - \frac{x^{5}}{5} \right]_{-1}^{1} = \frac{4c}{5} = 1 \Rightarrow c = 1.25$$

3)
$$P(X \ge 0) = 1.25 \int_0^1 \int_0^{1-x^2} (x^2 + y) dy dx =$$

$$=1.25\int_0^1 \left[x^2y + \frac{y^2}{2}\right]_0^{1-x^2} dx = \frac{1.25}{2}\int_0^1 1 - x^4 dx = \frac{1}{2}$$

4 D > 4 A > 4 B > 4 B >

4) Será el cuadrado C de extremos (-0.5,-0.5), (0.5,-0.5), (0.5,0.5) y (-0.5,0.5). Su intersección con el soporte es el rectángulo con y > 0, es decir: (-0.5,0), (0.5,-0), (0.5,0.5) y (-0.5,0.5).

$$P(C) = 1.25 \int_{-0.5}^{0.5} \int_{-0.5}^{0.5} \left[x^2 + y \right] dy dx = 1.25 \int_{-0.5}^{0.5} \int_{0}^{0.5} \left[x^2 y + \frac{y^2}{2} \right]_{0}^{0.5} dx =$$

$$= \frac{1.25}{2} \int_{0.5}^{0.5} (x^2 + 0.25) dx = \frac{1.25}{2} \left[\frac{x^3}{3} + 0.25x \right]_{0.5}^{0.5} \approx 0.2083$$

5) Marginal de X: Para $-1 \le x \le 1$ se obtiene:

$$F_1(x) = 1.25 \int_{-1}^{x} \int_{0}^{1-x^2} (x^2 + y) dy dx = 1.25 \int_{-1}^{x} \left[x^2 y + \frac{y^2}{2} \right]_{0}^{1-x^2} dx =$$

$$= \frac{1.25}{2} \int_{-1}^{x} (1 - x^4) dx = \frac{1.25}{2} \left[x - \frac{x^5}{5} \right]_{-1}^{x} = \frac{1}{8} (5x - x^5 + 4)$$
Si $x \le -1$, $F_1(x) = 0$, y si $x \ge 1$, $F_1(x) = 1$

UNIVERSIDAD DE MÁLAGA 基 かなぐ

- **6)** Existen varias formas de verlo, por ejemplo, calculando la marginal de y viendo que la función de densidad conjunta es el producto de las marginales. Pero es evidente que no son independientes, pues viendo la forma del soporte las condicionadas de Y/X=0.99 e Y/X=0 son diferentes. En la primera f(0.99,0.5)=0 y en la segunda F(0.99,0.5)>0.
- **7)** Sin embargo vamos a comprobar que verifica E(XY) = E(X)E(Y) y por tanto son incorreladas (Cov=0).

$$E(X) = \frac{5}{4} \int_{-1}^{1} \int_{0}^{1-x^{2}} x(x^{2} + y) dy dx = \frac{5}{4} \int_{-1}^{1} \left[x(x^{2}y + \frac{y^{2}}{2}) \right]_{0}^{1-x^{2}} dx =$$

$$= \frac{5}{8} \int_{-1}^{1} (-x^{5} + x) dx = \frac{5}{8} \left[-\frac{x^{6}}{6} + \frac{x^{2}}{2} \right]_{1}^{1} = 0$$

$$E(Y) = \frac{5}{4} \int_{-1}^{1} \int_{0}^{1-x^{2}} y(x^{2} + y) dy dx = \frac{5}{4} \int_{-1}^{1} \left[(x^{2} \frac{y^{2}}{2} + \frac{y^{3}}{3}) \right]_{0}^{1-x^{2}} dx =$$

$$= \frac{5}{24} \int_{-1}^{1} (x^{6} - 3x^{2} + 2) dx = \frac{10}{21}$$

$$E(XY) = \frac{5}{4} \int_{-1}^{1} \int_{0}^{1-x^{2}} xy(x^{2} + y) dy dx = \frac{5}{4} \int_{-1}^{1} \left[(x^{3} \frac{y^{2}}{2} + x \frac{y^{3}}{3}) \right]_{0}^{1-x^{2}} dx =$$

$$= \frac{5}{24} \int_{-1}^{1} (x^{7} - 3x^{3} + 2x) dx = 0$$

Cov=E(XY)-E(X)E(Y)=0 \Rightarrow $r=0, b=0, m_{Y/X}=0$ y la recta de regresión de Y/X queda: $Y-\frac{10}{21}=0(X-0)$ y es la recta $Y=\frac{10}{21}$ paralela al eje OX.

La recta X/Y será la recta vertical $\mathbf{X} = \mathbf{0}$ pues $m_{Y/X} = \frac{1}{\sqrt{p}} \frac{\sigma_{Y}}{\sigma_{X}} \cos \frac{r}{2} = 0$

La recta X/Y será la recta vertical $\mathbf{X} = \mathbf{0}$ pues $m_{X/Y} = \frac{1}{r} \frac{\sigma_y}{\sigma_x} = \infty$ con r = 0.

$$Y - \frac{10}{21} = \infty (X - 0) \Rightarrow \mathbf{X} = \mathbf{0}$$

Es la recta de pendiente ∞ que pasa por $(0, \frac{10}{21})$.

Bondad del ajuste: El ajuste es muy malo pues r=0 (incorreladas), esto quiere decir que mediante la regresión lineal, el conocer una variable no aporta conocimiento sobre la otra. $V_r = (1 - r^2)V(y) = V(y)$

