Assignment 4 Report

Name: Adarsh Sinha Stream: Electronic Systems

Roll No: 21307r005 **Dept.:** Electrical Engineering

Contents of the folder:

- 1. assignment-4.pdf: A copy of Assignment-4 Questionnaire
- **2. Proj_Brent32:** The main quartus prime project folder.
- 3. Proj_Brent32/Ety_BrentKung32.vhd: VHDL file for Brent-Kung 32 bit adder.
- 4. **Proj_Brent32/Ety_Testbench.vhd:** VHDL file for Testbench
- 5. **Proj_Brent32/TestData.txt:** Contains the data input and reference result for the test bench. It is in a format more convenient for program to read.
- 6. **Proj_Brent32/TestData_separateVisible.txt:** Contains the data input and results for the test bench. It is in a format more readable for programmer.
- 7. **Results:** Snapshot of Results obtained
- 8. Vlsi Assig4CodeExplaination.mp4: Video explanation of the code

Task: Make 32-bit Brent-Kung Adder

Theory and reference formulae:

- 1st Order formula for carry: $C_{i+1} = G_i + P_i$ C_i
- 2^{nd} Order formula for carry: $C_{2i+2} = G^2_{2i+1,2i} + P^2_{2i+1,2i}$ C_{2i}
- 3rd Order formula for carry: $C_{4i+4} = G^{3}_{4i+3,4i} + P^{2}_{4i+3,4i} \cdot C_{4i}$
- 4th Order formula for carry: $C_{8i+8} = G^4_{8i+7.8i} + P^4_{8i+7.8i} \cdot C_{8i}$
- 5th Order formula for carry: $C_{16i+16} = G_{16i+15,16i}^5 + P_{16i+15,16i}^5 \cdot C_{16i}$
- 6th Order formula for carry: $C_{32i+32} = G_{32i+31,32i}^6 + P_{32i+31,32i}^6 \cdot C_{32i}$

Using the Above mentioned reference formulae we can divide the Carries into following groups:

- Each Group is made based on when in the time, the variables needed to calculate these carries are available.
 - \circ Group 1: C₁, C₂, C₄, C₈, C₁₆, C₃₂.
 - \circ Group 2: C₃, C₅, C₆, C₉, C₁₀, C₁₂, C₁₇, C₁₈, C₂₀, C₂₄.
 - \circ Group 3: C₇, C₁₁, C₁₃, C₁₄, C₁₉, C₂₁, C₂₂, C₂₅, C₂₆, C₂₈.
 - Group 4: C₁₅, C₂₃, C₂₇, C₂₉, C₃₀.

RTL View of the adder:

Figure 1: Zoomed out RTL view of the synthesised Brent-Kung 32 bit adder

Figure 2: Encapsulated Levels of the Brunt-Kung Adder

Testbench input data arrangement

Figure 3: Input and Reference results for Brunt-Kung Adder

- The First Column is the 32 bit input-A for the adder
- The Second Column is the 32 bit input-B for the adder
- The Third Column is the 1 bit input-Carry for the adder
- The Fourth Column is the 33 bit reference output for input-A + input-B + input-Carry
- There are 64 data points randomly generated contained in the file.

Result:

The Adder passes all the test inputs provided indicating proper functioning. Following are the results of the ModelSim Simulation

Figure 4: ModelSim View

Proof of successful completion of testbench:

```
# add wave *
# view structure
# .main_pane.structure.interior.cs.body.struct
# view signals
# .main_pane.objects.interior.cs.body.tree
# run -all
# ** Note: Test Completed Successfully Without Error
# Time: 64 ns Iteration: 0 Instance: /ety_testbench
VSIM 2>
```

Figure 5: ModelSim Test Completion

Wave View of the result:

Figure 6: ModelSim Wave View

Observations:

- The Brent-Kung adder took 800 Pico Seconds to calculate One 32 bit sum, where each logic block takes 100 Pico Seconds of Delay. Therefore for 6 stages we should get around 600 picoseconds and some additional delay because the sum is generated after the carry is calculated.
- The Adder trades hardware resources for speed.