UNIVERSITY OF TORONTO

Faculty of Arts and Science

DECEMBER 2017 EXAMINATIONS

STA257H1S

Duration - 3 hours

Examination Aids: A calculator

First Name:	Surname:	_
Student Number:		

Instructions:

- Answer all questions, using only the booklets provided. If you use this exam paper to write on, note that it will not be looked at
- Print your name on each exam booklet
- Data from the normal distribution might be required for calculations. See the appendix
- Return this question set and your answer booklets

Question	Value
1	5
2	4
3	6
4	18
5	9
6	6
7	13
8	11
9	11
10	7
Total	90

This exam should have 7 pages including this page

TABLE 2 Cumulative Normal Distribution—Values of P Corresponding to z_P for the Normal Curve

z is the standard normal variable. The value of P for $-z_p$ equals 1 minus the value of P for $+z_p$; for example, the P for -1.62 equals 1-.9474=.0526.

z_p	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

This aid material will be provided to you along with your exam, on the day.

Number of ways to select
$$k$$
 elements out of n elements: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ $e^x = \sum_{j=0}^{\infty} x^j / j!$

Multiplication rule:
$$P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1) P(A_2 | A_1) P(A_3 | A_1 \cap A_2) \cdots P(A_n | A_1 \cap A_2 \cap \cdots \cap A_{n-1})$$

Total probability:
$$P(A) = P(A \cap B_1) + P(A \cap B_2) + \ldots + P(A \cap B_n) = P(A|B_1)P(B_1) + \ldots + P(A|B_n)P(B_n)$$

Sum of
$$n$$
 terms in a geometric series: $S_n = a \frac{1 - r^{n+1}}{1 - r}$ Bayes' Rule: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

Distribution	Probability mass/density function (pmf/pdf)	Notes
Bernoulli	$p(k p) = p^k (1-p)^{1-k}$	$k \in \{0,1\}, \text{ mean} = p$
Binomial	$p(k n,p) = \binom{n}{k} p^k (1-p)^{n-k}$	$k \in \{0, 1, 2, \ldots\}$
Geometric	$p(k p) = (1-p)^{k-1} p$	$k \in \{1, 2, 3, \ldots\}, \text{ mean} = p^{-1}$
Neg. binomial	$p(k r,p) = {\binom{k-1}{r-1}} p^r (1-p)^{k-r}$	$k \in \{r, r+1, r+2, \ldots\}$
Hypergeometric	$p(k m,r,n) = \binom{r}{k} \binom{n-r}{m-k} / \binom{n}{m}$	$k \in \{0, 1, \dots m\}$
Poisson	$p(k \lambda) = \frac{\lambda^k}{k!} e^{-\lambda}$	$k \in \{0, 1, 2, \ldots\}$
Uniform	$p(x a,b) = \frac{1}{b-a}$	$a \le x \le b$
Exponential	$p(x \lambda) = \lambda e^{-\lambda x}$	$x \ge 0$
Gamma	$p(x \alpha,\lambda) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$	$x \ge 0$, $\Gamma(\alpha) = \int_0^\infty u^{\alpha - 1} e^{-u} du$
Normal	$p(x \mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	$x \in \mathbb{R}$
Beta	$p(x a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}$	$0 \le x \le 1$, mean $= a/(a+b)$
Bivariate normal	$p(x, y \mu_1, \mu_2, \sigma_1, \sigma_2, \rho) = (*)$	$x \in \mathbb{R}, \ y \in \mathbb{R}$
Cauchy	$p(x) = \frac{1}{\pi(x^2 + 1)}$	$x \in \mathbb{R}$
Rayleigh	$p(x) = xe^{-x^2/2}$	$x \ge 0$, mean = $\sqrt{\pi/2}$
χ^2 or χ^2_n	$p(x n) = \frac{1}{2^{n/2} \Gamma(n/2)} x^{\frac{n}{2} - 1} e^{-x/2}$	$x \ge 0$
$t \text{ or } t_n$	$p(x n) = \frac{\Gamma[(n+1)/2]}{\sqrt{n\pi} \Gamma(n/2)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}$	$x \in \mathbb{R}$
F or $F_{m,n}$	$p(x m,n) = \frac{\Gamma[(m+n)/2]}{\Gamma(m/2)\Gamma(n/2)} \left(\frac{m}{n}\right)^{m/2} x^{m/2-1} \left(1 + \frac{m}{n}x\right)^{-(m+2)/2}$	$x \ge 0$, mean = $n/(n-2)$

$$* p(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_X)^2}{\sigma_X^2} + \frac{(y-\mu_Y)^2}{\sigma_Y^2} - \frac{2\rho(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y} \right] \right\}$$

Aid material continued. Not all will be needed and the equations aren't necessarily a complete summary.

Joint distributions

For independent
$$X$$
 and Y , with $Z = X + Y$, $p_Z(z) = \sum_{x = -\infty}^{\infty} p(x, z - x) = \sum_{x = -\infty}^{\infty} p_X(x) p_Y(z - x)$ or
$$f_Z(z) = \int_{-\infty}^{\infty} f_{XY}(x, z - x) dx = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx$$

For independent X and Y, with
$$Z = Y/X$$
, $f_Z(z) = \int_{-\infty}^{\infty} f(x, xz) |x| dx = \int_{-\infty}^{\infty} |x| f_X(x) f_Y(xz) dx$

$$f_{UV}(u,v) = f_{XY}(h_1(u,v), h_2(u,v)) \mid J^{-1}(h_1(u,v), h_2(u,v)) \mid \text{ where } J(x,y) = \det \begin{bmatrix} \frac{\partial g_1}{\partial x} & \frac{\partial g_1}{\partial y} \\ \frac{\partial g_2}{\partial x} & \frac{\partial g_2}{\partial y} \end{bmatrix}$$

Expected values

$$\begin{array}{lll} \mathrm{E}(X) &=& \sum_{i=1}^k x_i \, p(x_i) & \mathrm{var}(X) &=& \mathrm{E}\left\{\left[X - \mathrm{E}(X)\right]^2\right\} & \mathrm{cov}(X,Y) &=& \mathrm{E}\left\{\left[X - \mathrm{E}(X)\right]\left[Y - \mathrm{E}(Y)\right]\right\} \\ \mathrm{Markov's \ inequality:} \ P(X \geq t) &\leq& \mathrm{E}(X)/t & \mathrm{Chebyshev's \ inequality:} \ P(|X - \mu| > t) &\leq& \sigma^2/t^2 \\ \end{array}$$

CoLiCo:
$$\cos\left(a + \sum_{i=1}^{n} b_i X_i, c + \sum_{j=1}^{m} d_j Y_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} b_i d_j \cos(X_i, Y_j)$$

Correlation:
$$\rho = \text{cov}(X, Y) / \sqrt{\text{var}(X) \text{var}(Y)}$$

Variance and conditional expectation: var(Y) = var[E(Y|X)] + E[var(Y|X)]

$$MSE = E\{[Y - h(X)]^2\} \qquad \hat{Y} = \alpha + \beta X \text{ where } \alpha = \mu_Y - \beta \mu_X \text{ and } \beta = \rho \sigma_Y / \sigma_X$$

$$E(X^r) = M^{(r)}(0)$$
, where $M(t) = E(e^{tX})$. Also, $M_X(s) = E(e^{sX}) = E(e^{sX+t(0)}) = M_{XY}(s, 0)$

Limit theorems

Types of convergence:

- $Z_n \stackrel{d}{\to} Z$ if $\lim_{n\to\infty} F_n(z) = F(z)$ at every point at which F(z) is continuous
- $Z_n \stackrel{p}{\to} Z$ if $\lim_{n\to\infty} P(|Z_n Z| > \varepsilon) = 0$
- $Z_n \stackrel{\text{a.s.}}{\to} Z$ if $P(\lim_{n \to \infty} Z_n = Z) = 1$

Weak Law of Large Numbers: For $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, $E(X_i) = \mu$, and $var(X_i) = \sigma^2$, with X_i independent: $\bar{X}_n \stackrel{p}{\to} \mu$.

CLT: For
$$S_n = \sum_{i=1}^n X_i$$
, $E(X_i) = 0$, and $var(X_i) = \sigma^2$, with X_i i.i.d.: $\lim_{n \to \infty} P\left(\frac{S_n}{\sigma\sqrt{n}} \le x\right) = \Phi(x)$

Sample variance
$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$
 where $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$

Additional help

Integration by parts: $\int u \, dv = uv - \int v \, du$