

Machine Learning

Linear regression with one variable

Model representation

Housing Prices (Portland, OR)

500

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Classification: Discrete-valued output

Training set of housing prices (Portland, OR)

Notation:

m = Number of training examples

x's = "input" variable / features

y's = "output" variable / "target" variable

$$\begin{array}{c} (x^{(1)}) = 2104 \\ (x^{(2)}) = 1416 \\ (y^{(1)}) = 460 \end{array}$$

How do we represent h?

$$h_{e}(x) = \underbrace{\Theta_{0} + \Theta_{1} \times}_{\text{Shorthand:}} h(x)$$

$$\frac{h(x) = \Theta_{0}}{+\Theta_{1} \times}$$

Linear regression with one variable. Univariate linear regression.

Machine Learning

Linear regression with one variable

Cost function

Training Set

	Size in feet ² (x)	Price (\$) in 1000's (y)	
-	2104	460 7	
	1416	232	· M= 47
	1534	315	
	852	178	
	•••)

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i 's: Parameters

How to choose θ_i 's ?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Idea: Choose $heta_0, heta_1$ so that $h_ heta(x)$ is close to y for our training examples (x,y)

Regression is minimization problem

minimize
$$\frac{1}{2m} \approx \left(h_{\bullet}(x^{(i)}) - y^{(i)}\right)^2$$

$$\frac{1}{2m} \approx \left(h_{\bullet}(x^{(i)}) - y^{(i)}\right)^2$$

$$h_{\bullet}(x^{(i)}) = 0_{\circ} + \theta_{i}x^{(i)}$$

Idea: Choose $heta_0, heta_1$ so that $h_{ heta}(x)$ is close to y for our training examples (x,y)

J(00,0) = 1 = (ho(0)-40)

andrew N

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:
$$\min_{\theta_0,\theta_1}$$
 $J(\theta_0,\theta_1)$

Machine Learning

Linear regression with one variable

Cost function intuition I

<u>Simplified</u>

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:
$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

$$h_{\theta}(x) = \theta_1 x$$

$$\theta_1$$
 θ_1 θ_1

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\underset{\theta_1}{\text{minimize }} J(\theta_1) \qquad \bigcirc_{\mathsf{x}} (\mathsf{x}^{(i)})$$

$$h_{\theta}(x)$$

$$(\text{for fixed }\theta_1, \text{ this is a function of } x)$$

$$J(\theta_1)$$

$$(\text{function of the parameter }\theta_1)$$

$$J(\theta_1)$$

$$J$$

Andrew Ng

$$h_{\theta}(x)$$

$$(\text{for fixed }\theta_1, \text{ this is a function of } x)$$

$$J(\theta_1)$$

$$(\text{function of the parameter }\theta_1)$$

$$J(\theta_1)$$

$$J$$

Andrew Ng

$$h_{\theta}(x)$$
 (for fixed θ_1 , this is a function of x) (function of the parameter θ_1)
$$\frac{J(\theta_1)}{J(\theta_1)}$$
 (function of the parameter θ_1)
$$J(\theta_1)$$

$$J(\theta$$

Andrew Ng

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\theta_0, \theta_1$$

Cost Function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\underset{\theta_0,\theta_1}{\text{minimize}} \ J(\theta_0,\theta_1)$$

Cost Function

Cost Function

Activate Windows
So to Sepings to actions Windows

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$

(function of the parameters $heta_0, heta_1$)

(for fixed θ_0, θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$

(function of the parameters $heta_0, heta_1$)

Machine Learning

Linear regression with one variable

Gradient descent

Have some function $J(\theta_0, \theta_1)$

Want
$$\min_{ heta_0, heta_1} J(heta_0, heta_1)$$

Outline:

- Start with some θ_0, θ_1
- Keep changing $heta_0, heta_1$ to reduce $J(heta_0, heta_1)$ until we hopefully end up at a minimum

Have some function
$$J(\theta_0,\theta_1)$$
 $J(\Theta_0,\Theta_1)$ $J(\Theta_0,\Theta_1)$ $Main J(\Theta_0,\theta_1)$ $Main J(\Theta_0,\Theta_1)$ $Main J(\Theta_0,\Theta_1)$ $Main J(\Theta_0,\Theta_1)$ $Main J(\Theta_0,\Theta_1)$ $Main J(\Theta_0,\Theta_1)$

Outline:

- Start with some θ_0, θ_1 (Say $\Theta_0 = 0$, $\Theta_1 = 0$)
- Keep changing $\underline{\theta_0},\underline{\theta_1}$ to reduce $\underline{J(\theta_0,\theta_1)}$ until we hopefully end up at a minimum

Cost Function

Gradient descent algorithm

Assignment Truth assetion
$$a = b$$
 $a = b$ $a = a+1 \times a = a+1 \times a$

repeat until convergence {
$$\theta_{j} := \theta_{j} - \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) \quad \text{(for } j = 0 \text{ and } j = 1)$$
}

Learning Rate

Correct: Simultaneous update

$$\begin{aligned} & \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_0 := \operatorname{temp0} \\ & \theta_1 := \operatorname{temp1} \end{aligned}$$

Incorrect:

$$\begin{aligned} & \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ & \theta_0 := \operatorname{temp0} \\ & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ & \theta_1 := \operatorname{temp1} \end{aligned}$$

Gradient descent algorithm

repeat until convergence {

(for
$$j = 0$$
 and $j = 1$)

Assignment

$$\frac{\theta_{j} := \theta_{j} - \alpha}{\theta_{j}} J(\theta_{0}, \theta_{1})$$
learning rate

Correct: Simultaneous update

$$\underline{\quad} \text{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\rightarrow \text{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\rightarrow$$
 tempt := θ_1

$$\rightarrow \theta_0 := \text{temp0}$$

$$\theta_1 := \text{temp1}$$

$$:= \theta_0 - \alpha \frac{\partial}{\partial \theta} J(\theta_0, \theta_1)$$

$$\Rightarrow \text{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\rightarrow (\theta_0) := \text{temp0}$$

$$\rightarrow \text{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

 $\rightarrow \overline{\theta_1 := \text{temp1}}$

Andrew Ng

Truth assetion

Machine Learning

Linear regression with one variable

Gradient descent intuition

Gradient descent algorithm

$$\theta_1 := \theta_1 - \bigcirc \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

Machine Learning

Linear regression with one variable

Gradient descent for linear regression

Gradient descent algorithm

repeat until convergence { $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$ (for j=1 and j=0)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) = \frac{2}{\partial \phi_{j}} \int_{\mathbb{R}^{2}} \frac{\sum_{i=1}^{m} \left(h_{0}(x^{(i)}) - y^{(i)} \right)^{2}}{\sum_{i=1}^{m} \left(\phi_{0} + \phi_{1}(x^{(i)}) - y^{(i)} \right)^{2}}$$

$$= \frac{2}{\partial \phi_{j}} \int_{\mathbb{R}^{2}} \frac{\sum_{i=1}^{m} \left(\phi_{0} + \phi_{1}(x^{(i)}) - y^{(i)} \right)^{2}}{\sum_{i=1}^{m} \left(\phi_{0} + \phi_{1}(x^{(i)}) - y^{(i)} \right)^{2}}$$

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\bullet} \left(\chi^{(i)} \right) - y^{(i)} \right)$$

$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\bullet} \left(\chi^{(i)} \right) - y^{(i)} \right). \quad \chi^{(i)}$$

Gradient descent algorithm

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

update θ_0 and θ_1 simultaneously

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

 $J(\theta_0, \theta_1)$

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

Two extensions:

- 1. In $\min J(\theta_0, \theta_1)$, solve for θ_0, θ_1 exactly, without needing iterative algorithm (gradient descent).
- Learn with larger number of features.

	-		
Size (feet²)	Price (\$1000)		
2104	460		
1416	232		
1534	315		
852	178		

Two extensions:

- 1. In $\min J(\theta_0, \theta_1)$, solve for θ_0, θ_1 exactly, without needing iterative algorithm (gradient descent).
- Learn with larger number of features.

Size (feet ²)	Number of	Number of	Age of home	Price (\$1000)
100	bedrooms	floors	(years)	L.
×1	Xz	×3	Xu	
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Linear Algebra

Notation and set of the things you can do with matrices and vectors.

$$X = \begin{bmatrix} 2104 & 5 & 1 & 45 \\ 1416 & 3 & 2 & 40 \\ 1534 & 3 & 2 & 30 \\ 852 & 2 & 1 & 36 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 172 \end{bmatrix}$$

Topics:

- What are matrices and vectors
- Addition, subtraction, multiplication with matrices and vectors
- Matrix inverse, transpose