PROGRAMARE LOGICĂ SEMINAR 4 - REZOLUŢIA SLD -

Teorie:

- O clauză definită este o formulă de forma:
 - $-P(t_1,\ldots,t_n)$ (formulă atomică), unde P este un simbol de predicat, iar t_1,\ldots,t_n termeni
 - $-P_1 \wedge \ldots \wedge P_n \rightarrow Q$, unde toate P_i, Q sunt formule atomice.
- O regulă din Prolog $\mathbb{Q}: -\mathbb{P}_1, \dots, \mathbb{P}_n$ este o clauză $P_1 \wedge \dots \wedge P_n \to Q$, iar un fapt din Prolog $\mathbb{P}(\mathsf{t}_1, \dots, \mathsf{t}_n)$ este o formulă atomică $P(\mathsf{t}_1, \dots, \mathsf{t}_n)$.
- O clauză definită $P_1 \wedge \ldots \wedge P_n \to Q$ poate fi gândită ca formula $Q \vee \neg P_1 \vee \ldots \vee \neg P_n$.
- $\bullet\,$ Pentru o mulțime de clauze definite T, regula rezolutiei SLD este

$$\operatorname{SLD} \boxed{ \frac{\neg P_1 \lor \dots \lor \neg P_i \lor \dots \lor \neg P_n}{(\neg P_1 \lor \dots \lor \neg Q_1 \lor \dots \lor \neg Q_m \lor \dots \lor \neg P_n)\theta}}$$

unde $Q \vee \neg Q_1 \vee \cdots \vee \neg Q_m$ este o clauză definită din T (în care toate variabilele au fost redenumite) și θ este c.g.u pentru P_i și Q.

• Fie T o mulţime de clauze definite şi $P_1 \wedge \ldots \wedge P_m$ o ţintă, unde P_i sunt formule atomice. O derivare din T prin rezoluţie SLD este o secvenţă $G_0 := \neg P_1 \vee \ldots \vee \neg P_m, G_1, \ldots, G_k, \ldots$ în care G_{i+1} se obţine din G_i prin regula SLD. Dacă există un k cu $G_k = \square$ (clauza vidă), atunci derivarea se numeşte SLD-respingere.

Teoremă 1 (Completitudinea SLD-rezoluției). Sunt echivalente:

- (1) există o SLD-respingere a lui $P_1 \wedge \ldots \wedge P_m$ din T,
- (2) $T \vdash_b P_1 \land \ldots \land P_m$,
- (3) $T \models P_1 \wedge \cdots \wedge P_m$.
 - Fie T o mulțime de clauze definite și o țintă $G_0 = \neg P_1 \lor ... \lor \neg P_m$. Un arbore SLD este definit astfel:
 - Fiecare nod al arborelui este o ţintă (posibil vidă)
 - Rădăcina este G_0

3. q(X,Y) := p(Y).

- Dacă arborele are un nod G_i , iar G_{i+1} se obține din G_i folosind regula SLD folosind o clauză $C_i \in T$, atunci nodul G_i are copilul G_{i+1} . Muchia dintre G_i și G_{i+1} este etichetată cu C_i .
- Dacă un arbore SLD cu rădăcina G_0 are o frunză \square (clauza vidă), atunci există o SLD-respingere a lui G_0 din T.

Exercițiul 1: Găsiți o SLD-respingere pentru următoarele programe Prolog și ținte:

(a)

1. r := p, q. 5. t. ?- w.

2. s := p, q. 6. q.

3. v := t, u. 7. u.

4. w := v, s. 8. p.

(b)

1. q(X,Y) := q(Y,X), q(Y,f(f(Y))). ?- q(f(Z),a).

2. q(a,f(f(X))).

(c)

1. p(X) := q(X,f(Y)), r(a). 4. r(X) := q(X,Y). ?- p(X), q(Y,Z).

2. p(X) := r(X). 5. r(f(b)).

Rezolvare:

(a)
$$G_0 = \neg w$$
 $G_1 = \neg v \lor \neg s$ (4) $G_2 = \neg t \lor \neg u \lor \neg s$ (3) $G_3 = \neg u \lor \neg s$ (5) $G_4 = \neg s$ (7) $G_5 = \neg p \lor \neg q$ (2) $G_6 = \neg q$ (8) $G_7 = \square$ (6)

(b)
$$G_{0} = \neg q(f(Z), a) G_{1} = \neg q(a, f(Z)) \lor \neg q(a, f(f(a)))$$
 (1 cu \theta(X) = f(Z) \(\si \theta(Y) = a \)
G_{2} = \(\neg q(a, f(Z)) \) (2 cu \theta(X) = a)
G_{3} = \(\sum \) (2 cu \theta(Z) = f(X))

(c)
$$G_{0} = \neg p(X) \lor \neg q(Y, Z) G_{1} = \neg r(X_{1}) \lor \neg q(Y, Z) G_{2} = \neg q(Y, Z) G_{3} = \neg p(Z_{1}) G_{4} = \neg r(X) G_{5} = \square$$
 (2 $cu \theta(X) = X_{1}) (5 $cu \theta(X_{1}) = f(b)) (3 $cu \theta(X) = Y_{1} \ si \ \theta(Y) = Z_{1}) (2 $cu \theta(Z_{1}) = X) (5 $cu \theta(X) = f(b))$$$$$

Exercițiul 2: Desenați arborele SLD pentru programul Prolog de mai jos și ținta ?- p(X,X).

```
1. p(X,Y) := q(X,Z), r(Z,Y). 7. s(X) := t(X,a).

2. p(X,X) := s(X). 8. s(X) := t(X,b).

3. q(X,b). 9. s(X) := t(X,X).

4. q(b,a). 10. t(a,b).

5. q(X,a) := r(a,X). 11. t(b,a).

6. r(b,a).
```

Rezolvare:

