6. Linear-Time Construction of Suffix Trees McCreight's Algorithm

Kena Alexander 26/05/2015

McCreight's Method

McCreight's method

- Linear-time construction algorithm
- Space-saving improvement over Weiner's method.
- Same space efficiency as Ukkonen's method

Suffix Trees

Definition

- A suffix tree of a sequence, x is a *compressed trie* of all suffixes of the sequence x\$
- \$ is special end character

```
x = a b a a b $
1 a b a a b $
2 b a a b $
3 a a b $
4 a b $
5 b $
6 $
```


McCreight's Algorithm at a High Level

McCreight's algorithm

- Constructs the suffix tree T for m-length string S by
 - Inserting suffixes in order, one at a time starting from suffix one.
 - Iteratively for i=1,...,m+1 build tries, Ti,
 - where each in-between iteration is a Ti trie of sequences x[1..m+1], x[2..m+1], ..., x[i..m+1]

i	1	2	3	4	5	6
S	а	b	а	а	b	\$

Example

- Divided into *m* phases
 - In phase i + 1, tree T_{i+1} is constructed from T_i

Example

i	1	2	3	4	5	6
S	а	b	а	а	b	\$

Example

i	1	2	3	4	5	6
S	a	b	a	а	b	\$

 \mathcal{T}_2

• Example

i	1	2	3	4	5	6
S	а	b	а	а	b	\$

McCreight's Algorithm at a High Level

McCreight's algorithm

- Essential Trick
 - The essential trick is being clever in how we insert x[i..m]\$ into Ti so we don't spend $O(m^2)$ time to build the tree.

Terminology

Common Prefix

• A common prefix of strings x and y is a string p that is a prefix of both.

```
y:
p:
```

Example:

- x = abcabxabcd
- y = abcdabxa
- p = abc

Note: a, ab and abc are all common prefixes.

Terminology

• Longest Common Prefix

• The longest common prefix, p=LCP(x,y), is a prefix such that: $x[|p|+1] \neq y[|p|+1]$

Example

- x = abcabxabcd
- y = abcdabxa
- lcp = abc

Terminology

- Lowest Common Ancestor
- For suffixes of x, x[i..n], x[j..n], their longest common prefix is their lowest common ancestor in the suffix tree:

Head and Tail

Head

• Let head(i) denote the longest LCP of x[i..n]\$ and x[j..n]\$ for all j < i

Tail

• Let tail(i) be the string such that x[i..n]\$ = head(i)tail(i)

Head and Tail

Iteration

- Iteration *i* in McCreight's algorithm consist of
 - finding (or inserting) the node for head(i),
 - and appending tail(i))

The trick is a clever way of finding head(i)

Lemma

Lemma

• Let head(i) = x[i..i+h]. Then x[i+1..i+h] is a prefix of head(i+1)

- x = abcabxabcd
- Head = x[1..3] = abc
- Head+1 = bcd
- x[2..3] = bc

Lemma

Proof

- Trivial for h=0 (head(i) empty), so assume h>0:
- Let head(i) = ay:
- By def. exists $j \le i$ such that LCP(i,j) = ay
- Thus suffix j+1 and i+1 share prefix y
- Thus y is a prefix of LCP(i+1,j+1)
- Thus y is a prefix of head(i+1)

Suffix link

• Definition of suffix link

- Let $u = x\alpha$ denote an arbitrary string, where x denotes a single character and α denotes a (possibly empty) substring.
- Then the suffix link $s(u) = \alpha$ for $u = x\alpha$ or
- s(u) ="" (the root node) if u =""
- Suffix link is a pointer from a path labeled x[i..k] to a path labeled x[i+1..k]:

i+1

Corollary of Lemma

- s(head(i)) is a prefix of head(i+1)
- Thus s(head(i)) is an ancestor of head(i+1)

Slowscan and Fastscan

- Slowscan:
 - if we do not know if string y is in Ti, we must search character by character
- Fastscan (Rescanning):
 - if we do know that y is in x, we can jump directly from node to node
 - At node u at (path-depth) d, follow the edge with label starting with y[d]
 - Continue until we reach the end of y.
 - We will either end on a
 - Node (if y is in Ti)
 - Edge (if y is a prefix of a string in Ti)
 - s(head(i)) is a prefix of head(i+1)
 - Thus s(head(i)) is an ancestor of head(i+1)

Sketch of McCreight's Algorithm

- Begin with the tree T1:
- For i=1,...,n, build tree Ti+1 satisfying:
 - Ti+1 is a compressed trie for x[j..n], $j \le i+1$
 - All non-terminal nodes (with the possible exception of head(i)) have a suffix link s(-)
- Each iteration must:
 - Add node i+1
 - Potentially add head(i+1)
 - Add tail(i+1)
 - Add suffix link head(i) \rightarrow s(head(i))

iteration i

- Beginning of iteration
 - Let head(i)=uv
 - parent(head(i))=u
 - w=s(u)v=s(head(i))
- Rest of iteration
 - Move quickly to w, then search for head(i+1) starting there
 - By the invariant, s(parent(head(i))) and the suffix link exists;
 - by the lemma, w is an ancestor of head(i+1)

Observe: w is in T

- head(i) is a prefix of x[j..n] for some j < I
- Thus w is a prefix of x[j+1..n] for some j < I
 - i.e w is a prefix of some suffix $j \le i$
 - i.e. w is in Ti
- Consequently: we can search for w from s(u) using fastscan!

W

- If w is a node
 - Update s(head(i)) := w
 - Then search for head(i+1) using slowscan
- If w is on an edge
 - If w is not a node, then all suffix j<i with prefix w agree on the next lett er
 - By definition of head(i) there is j<i such that suffix x[i..n] and x[j..n] di ffers after head(i)
 - x[i+1..n] must also disagree at that character
 - Thus head(i+1) must be w
- Add node w, update head(i):=w and set head(i+1)=w

- Insert suffixes $x[1..m] \rightarrow x[m..m]$
- Step 1
 - Walk to the deepest node with a suffix link
- Step 2
 - Traverse down head(i+1) by looking at the first character of the edge
- Step 3
 - Traverse the rest of the suffix until we encounter an mismatch
 - Create a new node and using the remaining characters add an edge.

McCreight's Step 1

- Find the deepest node with a suffix link (lets call this head(i))
- head(i) can be divided into three substrings
 - xαβ
 - $x\alpha$ is the path label of the node y. if no such node exists $x\alpha =$ ""
 - If such a node exists then x is the first character and α is the rest of the characters in the string.
- If we follow the suffix link $s(x\alpha)$ we get to w whose label is α
- The rest of the string will be β

McCreight's Step 2

- Rescanning phase {Fastscan}
- Rescan the characters of β from node w
 - (analyze only the first characters and jump from node to node until a mismatch or no nodes to jump)
- We know that β is part of the tree therefore
 - The number of steps required to rescan is proportaional to the intermedi ate nodes visited while traversing β
- If there is no node at this point, create a new node, d
- Update the suffix link s(head(i)) to point to d

McCreight's Step 3

- Scanning phase {Slowscan}
- Let the remaining part of head(i) = tail(i). since we do not kno w the length of this we have to analyze each character down the subtree.
- If we get a mismatch then
 - Create a new node and let the remainder of characters be the leaf from this node.

Algorithm McCreight;

Step1:

Find the deepest node with a suffix link Follow the suffix link suff() to get to head(i) = $\alpha\beta$

Step2: {Fastscan}

analyze the first characters of head(i) comparing to β jumping nodes if match. if there is no node then create a node = d update the suffix link suff(head(i)) → d

Step3: {Slowscan}

let the remainder of head(i) be tail(i) compare each character of tail(i) to rest of characters of β until a mismatch. if we get a mismatch create a new node. let the remaining characters be the leaf.

i	1		3	4	5	6
S	a	b	a	a	b	\$

Algorithm McCreight;

Step1:

Find the deepest node with a suffix link Follow the suffix link suff() to get to head(i) = $\alpha\beta$

Step2: {Fastscan}

analyze the first characters of head(i) comparing to β jumping nodes if match. if there is no node then create a node = d update the suffix link suff(head(i)) → d

Step3: {Slowscan}

let the remainder of head(i) be tail(i) compare each character of tail(i) to rest of characters of β until a mismatch. if we get a mismatch create a new node. let the remaining characters be the leaf.

i	1		3	4	5	6
S	a	b	a	a	b	\$

Algorithm McCreight;

Step1:

Find the deepest node with a suffix link Follow the suffix link suff() to get to head(i) = $\alpha\beta$

Step2: {Fastscan}

analyze the first characters of head(i) comparing to β jumping nodes if match. if there is no node then create a node = d update the suffix link suff(head(i)) → d

Step3: {Slowscan}

let the remainder of head(i) be tail(i) compare each character of tail(i) to rest of characters of β until a mismatch. if we get a mismatch create a new node.

let the remaining characters be the leaf.

i	1	2		4	5	6
S	a	ь	a	a	b	\$

Algorithm McCreight;

Step1:

Find the deepest node with a suffix link Follow the suffix link suff() to get to head(i) = $\alpha\beta$

Step2: {Fastscan}

analyze the first characters of head(i) comparing to β jumping nodes if match. if there is no node then create a node = d update the suffix link suff(head(i)) → d

Step3: {Slowscan}

let the remainder of head(i) be tail(i) compare each character of tail(i) to rest of characters of β until a mismatch. if we get a mismatch create a new node.

let the remaining characters be the leaf.

i	1	2		4	5	6
S	a		a	a	b	\$

Algorithm McCreight;

Step1:

Find the deepest node with a suffix link Follow the suffix link suff() to get to head(i) = $\alpha\beta$

Step2: {Fastscan}

analyze the first characters of head(i) comparing to β jumping nodes if match. if there is no node then create a node = d update the suffix link suff(head(i)) → d

Step3: {Slowscan}

let the remainder of head(i) be tail(i) compare each character of tail(i) to rest of characters of β until a mismatch. if we get a mismatch create a new node.

let the remaining characters be the leaf.

i	1	2		4	5	6
S	a		a	a	b	\$

Algorithm McCreight;

Step1:

Find the deepest node with a suffix link Follow the suffix link suff() to get to head(i) = $\alpha\beta$

Step2: {Fastscan}

analyze the first characters of head(i) comparing to β jumping nodes if match. if there is no node then create a node = d update the suffix link suff(head(i)) → d

Step3: {Slowscan}

let the remainder of head(i) be tail(i) compare each character of tail(i) to rest of characters of β until a mismatch. if we get a mismatch create a new node.

let the remaining characters be the leaf.

Algorithm McCreight;

Step1:

Find the deepest node with a suffix link Follow the suffix link suff() to get to head(i) = $\alpha\beta$

Step2: {Fastscan}

analyze the first characters of head(i) comparing to β jumping nodes if match. if there is no node then create a node = d update the suffix link suff(head(i)) → d

Step3: {Slowscan}

let the remainder of head(i) be tail(i) compare each character of tail(i) to rest of characters of β until a mismatch. if we get a mismatch create a new node. let the remaining characters be the leaf.

Algorithm McCreight;

Step1:

Find the deepest node with a suffix link Follow the suffix link suff() to get to head(i) = $\alpha\beta$

Step2: {Fastscan}

analyze the first characters of head(i) comparing to β jumping nodes if match. if there is no node then create a node = d update the suffix link suff(head(i)) → d

Step3: {Slowscan}

let the remainder of head(i) be tail(i) compare each character of tail(i) to rest of characters of β until a mismatch. if we get a mismatch create a new node.

let the remaining characters be the leaf.

Algorithm McCreight;

Step1:

Find the deepest node with a suffix link Follow the suffix link suff() to get to head(i) = $\alpha\beta$

Step2: {Fastscan}

analyze the first characters of head(i) comparing to β jumping nodes if match. if there is no node then create a node = d update the suffix link suff(head(i)) → d

Step3: {Slowscan}

let the remainder of head(i) be tail(i) compare each character of tail(i) to rest of characters of β until a mismatch. if we get a mismatch create a new node.

let the remaining characters be the leaf.

Algorithm McCreight;

Step1:

Find the deepest node with a suffix link Follow the suffix link suff() to get to head(i) = $\alpha\beta$

Step2: {Fastscan}

analyze the first characters of head(i) comparing to β jumping nodes if match. if there is no node then create a node = d update the suffix link suff(head(i)) → d

Step3: {Slowscan}

let the remainder of head(i) be tail(i) compare each character of tail(i) to rest of characters of β until a mismatch. if we get a mismatch create a new node. let the remaining characters be the leaf.

Algorithm McCreight;

Step1:

Find the deepest node with a suffix link Follow the suffix link suff() to get to head(i) = $\alpha\beta$

Step2: {Fastscan}

analyze the first characters of head(i) comparing to β jumping nodes if match. if there is no node then create a node = d update the suffix link suff(head(i)) → d

Step3: {Slowscan}

let the remainder of head(i) be tail(i) compare each character of tail(i) to rest of characters of β until a mismatch. if we get a mismatch create a new node.

let the remaining characters be the leaf.

Algorithm McCreight;

Step1:

Find the deepest node with a suffix link Follow the suffix link suff() to get to head(i) = $\alpha\beta$

Step2: {Fastscan}

analyze the first characters of head(i) comparing to β jumping nodes if match. if there is no node then create a node = d update the suffix link suff(head(i)) → d

Step3: {Slowscan}

let the remainder of head(i) be tail(i) compare each character of tail(i) to rest of characters of β until a mismatch. if we get a mismatch create a new node. let the remaining characters be the leaf.

i	1	2	3	4	5	
S	a	b		a		\$

- Everything but searching is done in constant time per suffix,
- The running time is O(n + "slowscan" + "fastscan").

- Slowscan
 - We use slowscan to find head(i+1) from w=s(head(i)),
 - The complexity of one run of *slowscan* at stage *i* is proportional to |hea d(i+1)|-|head(i)|+1

- Fastscan
 - Fastscan uses time proportional to the number of nodes it processes.
 - If we define d(v) as the depth of node v
 - Fastscan increases the node depth
 - Following parent and suffix pointers decreases the node depth
- Time usage of fastscan is bounded by the total depth-increase (amortized analysis)

- Proposition
 - $d(v) \le d(s(v))+1$
- · Proof:
 - For any ancestor u of v, s(u) is an ancestor of s(v)
 - Except for the empty prefix and the single letter prefix of v, the s(u)'s are different

- Corollory
 - In each step, before calling fastscan, we decrease the depth by at most 2:
 - d(u) = d(head(i))-1;
 - $d(w) \ge d(u)-1$
 - The total decrease is thus 2n

- The time usage of fastscan is bounded by n plus the total decrea se of depth,
 - i.e. the time usage of fastscan is O(n)

Summary

- We iteratively build tries of suffixes of x.
- Using suffix links and fastscan we can quickly find where to in sert the next suffix in our current trie.
- By amortized analysis, the total running time becomes linear.