SOLUTION:

PART = A

CASE1

Afrase I Dissociative adsorbtion of hydrogen I so octavel +H2 -> Iso octavel A + B2 -> C. A+S = A-S B, t25 = 28.5 A.S +28.S = C.S + 25 C-S = C+S FAA = RAA [PACV - CAS KRA] - 1 8AB2 = BAB2 [PB2(- CBS] - () $ks = ks \left[c_{AS} c_{AS}^2 - c_{CS} c_{V}^2 \right] - 3$ 80 = Ad Ccs - Pctv] Rate simited step - surface Rnx estelp then eq 0 = eq (2) = eq (4) = 0 CAS = KAA PACU eg (2) = 0 => (BS = (KAB2 PB2)/2 CU eq@ = 0 => cs = Pc (v CT = CV + CAS + CBS + COS = CV + KAAPA CV + (KABZ PBZ)/2 CV + PC CV Cy = CT (1+ KAAPA+ (KAB2PB2)1/2+ PC KAB 8s = RS[KAAPACVKABZPBZCV2 - PC (3) $8s = -8'_A = 8s \left[k_{AA} k_{AB_2} P_A P_{B_2} - \frac{P_C}{\kappa_0} \right] (T^3)$ [1+ KAA PA + PC + KAB2 PB,]3

 $8'_{A} = 8_{S} = A_{S} \left[K_{AA} K_{AB_{2}} P_{A} P_{B_{2}} - \frac{P_{C}}{K_{D}} \right] (T^{3})$ $= \left[(1 + K_{AA} P_{A} + \frac{P_{C}}{K_{D}} + K_{AB_{3}})^{2} P_{B_{2}}^{1/2} \right]^{3}$ $= \left[(A_{S} K_{AA} K_{AB_{2}} G^{3}) P_{A} P_{B_{2}} \right]$ $= \left[(1 + K_{AA} P_{A} + \frac{P_{C}}{K_{D}} + K_{AB_{2}}^{1/2} P_{B_{2}}^{1/2}) \right]^{3}$ $= \left[(1 + K_{AA} P_{A} + \frac{P_{C}}{K_{D}} + K_{AB_{2}}^{1/2} P_{B_{2}}^{1/2}) \right]^{3}$ $= \left[(1 + K_{A} P_{A} + K_{3} P_{C} + K_{4} P_{B_{2}}^{1/2} T_{3}^{3}) \right]$ $= \left[(1 + K_{2} P_{A} + K_{3} P_{C} + K_{4} P_{B_{2}}^{1/2} T_{3}^{3}) \right]$ $= \left[(1 + K_{2} P_{A} + K_{3} P_{C} + K_{4} P_{B_{2}}^{1/2} T_{3}^{3}) \right]$ $= \left[(1 + K_{2} P_{A} + K_{3} P_{C} + K_{4} P_{B_{2}}^{1/2} T_{3}^{3}) \right]$ $= \left[(1 + K_{2} P_{A} + K_{3} P_{C} + K_{4} P_{B_{2}}^{1/2} T_{3}^{3}) \right]$ $= \left[(1 + K_{2} P_{A} + K_{3} P_{C} + K_{4} P_{B_{2}}^{1/2} T_{3}^{3}) \right]$ $= \left[(1 + K_{2} P_{A} + K_{3} P_{C} + K_{4} P_{B_{2}}^{1/2} T_{3}^{3}) \right]$ $= \left[(1 + K_{2} P_{A} + K_{3} P_{C} + K_{4} P_{B_{2}}^{1/2} T_{3}^{3}) \right]$ $= \left[(1 + K_{2} P_{A} + K_{3} P_{C} + K_{4} P_{B_{2}}^{1/2} T_{3}^{3}) \right]$ $= \left[(1 + K_{2} P_{A} + K_{3} P_{C} + K_{4} P_{B_{2}}^{1/2} T_{3}^{3} + K_{4} P_{B_{2}}^{1/2} T_{3}^{3} \right]$ $= \left[(1 + K_{2} P_{A} + K_{3} P_{C} + K_{4} P_{B_{2}}^{1/2} T_{3}^{3} + K_{4} P_{B_{2}}^{1/2} T_{3}^{3} \right]$ $= \left[(1 + K_{2} P_{A} + K_{3} P_{C} + K_{4} P_{B_{2}}^{1/2} T_{3}^{3} + K_{4} P_{B_{2}}^{1/2} T_{3}^{3} \right]$ $= \left[(1 + K_{2} P_{A} + K_{3} P_{C} + K_{4} P_{B_{2}}^{1/2} T_{3}^{3} + K_{4} P_{B_{2}}^{1/2} T_{3}^{3} + K_{4} P_{B_{2}}^{1/2} T_{3}^{3} \right]$ $= \left[(1 + K_{2} P_{A} + K_{3} P_{C} + K_{4} P_{B_{2}}^{1/2} T_{3}^{3} + K_{4}$

4	А	В	C	D	Е	F
1	RUN	RATE	Pb2	Pa	Pc	(Pa*Pb2/RATE)^0.33
2	1	0.0362	1	1	0	3.022946607
3	2	0.0239	1	1	1	3.471634799
4	3	0.039	3	1	1	4.252903703
5	4	0.0351	1	3	1	4.40492021
6	5	0.0114	1	1	3	4.443225787
7	6	0.0534	10	1	0	5.721188377
8	7	0.028	1	10	0	7.09491706
9	8	0.0033	1	1	10	6.716793862
10	9	0.038	2	2	2	4.721631957
11	10	0.009	1	1	4	4.807498568
12	11	0.0127	0.6	0.6	0.6	3.049062031
13	12	0.0566	5	5	5	7.615665478

WHEN Pa=Pb2=1

	А	В	C	D	Е	F
1	RUN	RATE	Pb2	Pa	Pc	(Pa*Pb2/RATE)^0.33
2	1	0.0362	1	1	0	3.022946607
3	2	0.0239	1	1	1	3.471634799
4	5	0.0114	1	1	3	4.443225787
5	8	0.0033	1	1	10	6.716793862
6	10	0.009	1	1	4	4.807498568

MALTAB CODE FOR MAKING GRAPH AND PLOT

WHEN Pc = 0

	А	В	C	D	Е	F	
1	RUN	RATE	Pb2	Pa	Pc	(Pa*Pb2/RATE)^0.33	
2	1	0.0362	1	1	0	3.022946607	<u>#</u>
3	6	0.0534	10	1	0	5.721188377	
4	7	0.028	1	10	0	7.09491706	
5							

$$\frac{P_{c} = 0}{P_{c}} = 0$$

$$\frac{P_{a} P_{a_{2}}}{P_{3}} = \frac{1}{K_{1}V_{3}} \left[1 + K_{2} P_{A} + K_{4} P_{0}^{1/2} \right]$$
Put $K_{1}^{1/3} = K_{5}$

$$\frac{K_{5}}{K_{5}} \left(\frac{P_{a} P_{a_{2}}}{K_{5}} \right)^{1/3} - K_{2} P_{A} - K_{4} P_{0}^{1/2} = 1$$
we have those conditions:
$$K_{5} (3.023) - K_{2}(1) - K_{4} (1) = 1$$

$$\frac{K_{5}}{K_{5}} (5.721) - K_{2}(1) - K_{4} (10)^{1/2} = 1$$

$$\frac{K_{5}}{K_{5}} (7.035) - K_{2} (10) - K_{4} (1) = 1$$

$$\frac{K_{5}}{K_{5}} = 0.756$$

$$\frac{K_{7}}{K_{7}} = 0.944$$

$$\frac{K_{7}}{K_{7}} = 0.943$$

$$\frac{K_{7}}{K_{7}} = 0.432$$

$$\frac{K_{7}}{K$$

when
$$K_{AA} = K_2 = 0.342$$
 $K_{AB_2} = K_4^2 = 0.891136$
 $K_D = K_3 = 3.6218$
 $R_S K_{AA} K_{AB_2} C_7^3 = K_1$
 $R_S C_7^3 = 1.417$

DE COLO II . responsely to noital racks evitaisans. I so - octane + mysesgen - Teo - octane A+B ->C 2.A === 2+ A B+5 = 8-5 2+ 2.3 = 2.8 +S C-5 == c+5 TAA = RAA [PACV - CAS KAA TAB = KAB [PBCV - CBS] 85 = & s [cAs CBS - CESCU] KD = kB [ccs - Pc CV] Rote limited Step -> Surgues RXN Stlp eq (3) = eq (1) = 0 eq @ =0 =) CAS = KAA PACU egg = 0 => CBC = KAB PBCV eq (0 = 0 =) cus = Pc (v CT = CV + CAS + CBS + CCS = 0, + KAA PACV + KAB PSCV+ PECV CV = CT IT KAAPATKAB PBT PC rs = ks [KAAPA(V KABPCV - PCCV CV KD KS $-\xi_{A}^{1} = \xi_{S} = R_{S} \left[K_{AA} K_{AB} P_{A} P_{B} - \frac{P_{C}}{K_{D} K_{S}} \right] C_{T}^{2}$ - CI+KAAPA+KABP3+Pc

Assume Israversible xxn for early calculation -b'= 83 = RS [KAA KAB PAPB] CT2 [1+ KAAPA +KABPB + PC] = [RS KAA KABCT] PAPB [I+KAAPA +KABPB+PE]2 TI+ KZPA+KgPB+KgPC]2 where $\begin{cases} k_g = k_g \otimes k_{AA} k_{AB}C_T^2 \end{cases}$ $\begin{cases} k_{T} = k_{AA} \\ k_{g} = k_{AB} \\ k_{g} = k_{AB} \end{cases}$ -> for linearization this equation -> (PAPB) /2 = 10-5 + K7 PA+ K8 PB+ K9 PC

	А	В	C	D	Е	F
1	RUN	RATE	Pb	Pa	Pc	(Pa*Pb/RATE)^0.5
2	1	0.0362	1	1	0	5.255883312
3	2	0.0239	1	1	1	6.468462274
4	3	0.039	3	1	1	8.770580193
5	4	0.0351	1	3	1	9.24500327
6	5	0.0114	1	1	3	9.365858116
7	6	0.0534	10	1	0	13.68451379
8	7	0.028	1	10	0	18.89822365
9	8	0.0033	1	1	10	17.4077656
10	9	0.038	2	2	2	10.25978352
11	10	0.009	1	1	4	10.54092553
12	11	0.0127	0.6	0.6	0.6	5.324139056
13	12	0.0566	5	5	5	21.01656759
4.4						

WHEN Pa = Pb = 1

4	А	В	C	D	Е	F
1	RUN	RATE	Pb	Pa	Pc	(Pa*Pb/RATE)^0.5
2	1	0.0362	1	1	0	5.255883312
3	2	0.0239	1	1	1	6.468462274
4	5	0.0114	1	1	3	9.365858116
5	8	0.0033	1	1	10	17.4077656
6	10	0.009	1	1	4	10.54092553

$$\frac{\int \sin^{2} P_{A} = P_{B} = 1}{\left(\frac{k_{B}}{k_{B}}\right)^{1/2}} = \left(\frac{k_{B}}{k_{B}}\right)^{1/2} = \left(\frac{k_{B}}{k_{B}}\right)^{1/2} = \left(\frac{k_{B}}{k_{B}}\right)^{1/2} + \left(\frac{1}{k_{B}}\right)^{1/2} + \frac{1}{k_{B}}$$

$$\frac{k_{B}}{k_{B}} = 1.214 \quad \frac{1}{k_{B}}\left(\frac{1+k_{B}}{1+k_{B}}\right) = 5.439$$

WHEN Pa = Pb = Pc

	А	В	С	D	Е	F	
1	RUN	RATE	Pb	Pa	Pc	(Pa*Pb/RATE)^0.5	
2	2	0.0239	1	1	1	6.468462274	
3	9	0.038	2	2	2	10.25978352	
4	11	0.0127	0.6	0.6	0.6	5.324139056	
5	12	0.0566	5	5	5	21.01656759	
6							

$$P_{A} = P_{B} = P_{C}.$$

$$P_{A} = P_{B} = P_{$$

WHEN Pc = 0

	А	В	С	D	Е	F
1	RUN	RATE	Pb	Pa	Pc	(Pa*Pb/RATE)^0.5
2	1	0.0362	1	1	0	5.255883312
3	6	0.0534	10	1	0	13.68451379
4	7	0.028	1	10	0	18.89822365
_						

7 + c = 013.68451 = 3.039 [I+ K (10) + Kg(10)]

13.8982 = 3.039 [I+ K (10) + Kg(10)]

13.68451 = 3.039 [I+ K (10) + Kg(10)]

14.6451 = 3.50296

10.6451 = 3.50296

10.6451 = 3.039 [I+ K (10) + Kg(10)]

15.6451 = 3.50296

10.6451 = 0.491744

16.6451 = 0.301122

- thelet land (

-8/2=85 = 0-1083 PAPB

[1+(0.431+44) PA+(0.301122) PB+(0-3995) PG]2

KAA= K7 = 0.491744

KAB = KZ = 0-301122

KD = 1/kg = 2.50 312

 $k_S C_T^2 = \frac{K_6}{K_7 K_8} = 0.731386$

Calculated rate means rate calculated by putting the valves of partial pressure of each species in rate equation defined in part 1 for both cases.

ERROR IN EXCEL SHEET MEANS

PERCENTAGE ERROR = (EXP RATE-CALCULATED RATE)/EXP RATE *100

RATE MEANS IN EXCEL SHEET = EXP RATE

Case 1

	Α	В	С	D	Е	F	G
1	RUN	RATE	Pb2	Pa	Pc	CALCULATED RATE	ERROR
2	1	0.0362	1	1	0	0.036162219	-0.104368169
3	2	0.0239	1	1	1	0.025688951	7.485150686
4	3	0.039	3	1	1	0.037647002	-3.469225443
5	4	0.0351	1	3	1	0.037893041	7.957380598
6	5	0.0114	1	1	3	0.01430632	25.49403137
7	6	0.0534	10	1	0	0.053317014	-0.155404487
8	7	0.028	1	10	0	0.027990937	-0.03236728
9	8	0.0033	1	1	10	0.003362343	1.88918031
10	9	0.038	2	2	2	0.037946154	-0.141699946
11	10	0.009	1	1	4	0.011088803	23.20891774
12	11	0.0127	0.6	0.6	0.6	0.016744654	31.84766906
13	12	0.0566	5	5	5	0.045297107	-19.96977622
14							

Case 2

	Α	В	C	D	Е	F	G
1	RUN	RATE	Pb	Pa	Pc	CALCULATED RATE	ERROR
2	1	0.0362	1	1	0	0.033692466	-6.92689
3	2	0.0239	1	1	1	0.022532135	-5.72329
4	3	0.039	3	1	1	0.041601338	6.670096
5	4	0.0351	1	3	1	0.032212813	-8.2256
6	5	0.0114	1	1	3	0.012102897	6.165766
7	6	0.0534	10	1	0	0.053411098	0.020783
8	7	0.028	1	10	0	0.028005835	0.020838
9	8	0.0033	1	1	10	0.003232894	-2.0335
10	9	0.038	2	2	2	0.03781289	-0.49239
11	10	0.009	1	1	4	0.009419052	4.656135
12	11	0.0127	0.6	0.6	0.6	0.013249217	4.324545
13	12	0.0566	5	5	5	0.055862663	-1.30272

By seeing the error in both cases we can say case ${f 2}$ modal is more accurate. AS ${f 2}^{ND}$ MODEL SHOW LESS ERROR

PART = C

© A+B

() as Associative adsorbtion, show less every
tharefore we solve using
$$2^{nA}$$
 case mechanism

 $\Rightarrow F_{n0} = F_{90} = 2.5$ moly

 $\Rightarrow F_{n0} = F_{90} = 2.5$ moly

 $\Rightarrow P_{1} = Y_{1} = Y_{1} = 2$
 $\Rightarrow Y_{1} = (0.10 \times 3) P_{1} P_{1} = 2$
 $\Rightarrow Y_{2} = (0.10 \times 3) P_{2} P_{3} P_{4} P_{5} = 2$
 $\Rightarrow Y_{2} = (0.10 \times 3) P_{2} P_{3} P_{4} P_{5} = 2$
 $\Rightarrow Y_{3} = (0.10 \times 3) P_{4} P_{5} = 2$
 $\Rightarrow Y_{4} = (0.10 \times 3) P_{4} P_{5} = 2$
 $\Rightarrow Y_{5} = (0.10 \times 3) P_{5} P_{5} P_{5} = 2$
 $\Rightarrow Y_{6} = (0.10 \times 3) P_{6} P_{5} = 2$
 $\Rightarrow Y_{6} = (0.10 \times 3) P_{6} P_{5} = 2$
 $\Rightarrow Y_{6} = (0.10 \times 3) P_{6} P_{5} = 2$
 $\Rightarrow Y_{6} = (0.10 \times 3) P_{6} P_{5} = 2$
 $\Rightarrow Y_{6} = (0.10 \times 3) P_{6} P_{5} = 2$
 $\Rightarrow Y_{6} = (0.10 \times 3) P_{6} P_{5} = 2$
 $\Rightarrow Y_{6} = (0.10 \times 3) P_{6} P_{5} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0.10 \times 3) P_{7} P_{7} = 2$
 $\Rightarrow Y_{7} = (0$

$$\begin{array}{l} -\delta_{A}^{1} = (0.1083)(C_{R0}RT)^{2} \left[\frac{1-YA}{1-0.5YA}\right]^{2} \\ \hline \left[\frac{1+C_{A1}RT}{(1-0.5YA)}\left(0.491744+0.301122\right)+0.3395XA}\right]^{2} \\ \hline \left[\frac{1+C_{A1}RT}{(1-0.5YA)}\left(0.491744+0.301122\right)+0.3395XA}\right]^{2} \\ \hline \left[\frac{1+C_{A1}RT}{(1-0.5YA)}\left(0.792866(1-YA)+0.3995XA}\right)^{2} \\ \hline \left[\frac{1+C_{A1}RT}{(1-0.5YA)}\left(0.792866(1-YA)+0.3995XA}\right)^{2} \\ \hline \left[\frac{1+C_{A1}RT}{(1-0.5YA)}\left(0.792866-0.393366XA}\right)^{2} \\ \hline \left[\frac{1+C_{A1}RT}{(1-0.5YA)}\left(0.792866-0.393366XA\right)\right]^{2} \\ \hline \left[\frac{1+C_{A1}RT}{(1-0.5YA)}\left(0.792$$

$$|S| = |S| = |S|$$

where a = 2-585732 b = 1.286732c = 346.26038

$$W = \frac{(b^{2})^{6.8}}{(-x_{A})^{2}} dx_{A}$$

$$= -dt \qquad \text{and} \qquad \frac{a}{b} - 1 = k = 1.0032$$

$$= -cb^{2} \int_{0.2}^{0.2} \frac{(k+t)^{2}}{t^{2}} dx_{A}$$

$$= -cb^{2} \int_{0.2}^{0.2} \frac{(k^{2}+2k+1)}{t^{2}} dt$$

$$= -cb^{2} \left[-k^{2} \left[\frac{1}{0.2} - 1 \right] + 2k \ln \left[\frac{0.2}{1} \right] + \left[\frac{0.2}{1} - 1 \right] \right]$$
Put the value of a, b, c, k from

but the value of a, b, C, k. then

$$w = 4656.621g$$
.
$$w = 4.656 kg$$

Phase
$$G_0 = 2.5$$
 melynin

Pro = years $T = 300^{\circ}C$

Pao = $G_0 = 2.5$ melynin

Pro = years $T = 300^{\circ}C$

Pao = $G_0 = 2.5$ melynin

Pao = $G_0 = 2.5$

LHAL

mass balance

In - Out + contration = ago

File - Filmal + (ri) Ac Sc (1-\$) dL = 0

FA=FAC(14A)

```
At = T (# D2) = T (# (1682) 2 ft
 = T(0.01543) ft2
no of tubes
total crossection Area = nog tubes x crossocion area
      = \bot \left( \Box q_{\gamma} \right)
           0=0-4 . 8c = 2.6. Jun3 = 73623.8 9/4+3
                        Fio = 2.5 mal = 150 mal/n
             (-\lambda) = 0.4332 (1-\lambda) = (grow 2nd model)

(2.5857-1-286 xA) = (grow 2nd model)
                      \frac{dX_A}{dL} = +(0.4332) \left(\frac{1-X_A}{2.5857-1.286X_A}\right)^2 + (0.01543)(0.6)(7363.8)
                         \frac{1}{dx} = (+1.9885) + \left(\frac{1-x_A}{2-5857-1-286x_A}\right) - (5)
         \frac{dP}{dL} = \frac{Q}{P_{0}Op} \left( \frac{1-Q}{Q_{3}} \right) \left[ \frac{150(1-Q)H}{Op} + 1.75Q \right]

\begin{cases}
9 = P_0(P_0) \begin{pmatrix} 2 \\ 2 - 4 \end{pmatrix}
\end{cases}
\begin{cases}
\frac{P}{S_0} = \begin{pmatrix} P \\ P_0 \end{pmatrix} \begin{pmatrix} F_0 \\ F_+ \end{pmatrix}
\end{cases}

                 1 dp = 2- XAPO (6)
                       βο = Poq (1-Ø) [ 150 (1-Ø) Η +1.75 G]

σορ βος Ορ
                         Ø = 0.4
                         Ap = ( \frac{1}{8} \text{inch}) \left( \frac{1}{12} \frac{1}{12} \text{in} \right) = \frac{1}{8} \text{X12} \frac{1}{12} \frac{1}{12} \text{in} \right) = \frac{1}{8} \text{X12} \frac{1}{12} \frac{1}{1
```

G= FAC MA+ FBOMB = (150) mol (2+112) S/nol (453.68) 1 (0.015 43) ft2 = 2443.189 (Lbm) Po = 4 atm x 2116 2166 (LS +2) Po = mass = CT (moss) = ft (molecular weight) Augmin= YAMA+ YBMB = 57-18 Lynol = 5+ (15 x (4 atm) $\frac{(0.7301) (473.15)(1.8)(1.8)(1.8)}{(0.7301)(473.15)(1.8)} \left(\frac{63}{43}\right)$ = 0-33667 (LB) Assume: [From Book] and [T=2] 4 = 0.02188 Lbm

 $\beta_0 = (4 \times 2116.21) \left(2443.189\right) (0.6) \left(\frac{8 \times 15}{(0.05188)} + (1.75)(2443.189)\right)$ = 151but the value in eq (16) 1 dp = 77123-11075 (2-4A) then two ODE $\frac{dx_{A}}{dL} = 3.3969 \left(\frac{1-x_{A}}{2.5857 - 1.286x_{A}} \right)$ XA0 = 0 (AX-5) 2+011. ESI +F = 16 Po= 8464.8664 L sanges (0-35) ft. (as Lmox=35ft (length of Ripe) for matlab code $\frac{dy_1}{dz} = 3.3969 \left(\frac{1-\frac{1}{2}}{2.5857-1.286141} \right) \frac{y_{10}=0}{1}$ [dyz = 77123.110 (2-41) [420=8464.8664] L -> (0-35) $P = 8.5021 \times 10^{3}$ $P = 8.5021 \times 10^{3}$ P = 0.401 ctm

MATLAB CODE TO SOLVE ODES

We know Xa = 0.8

Then find VALUES FOR L & P ACCORDING TO IT

THIS TABLE SHOW VALUE OF L

21	0.2665	
22	0.4920	
23	0.7176	
24	0.9431	
25	1.1686	
26	1.4469	
27	1.7253	
28	2.0036	
29	2.2820	
30	2.6274	
31	2.9728	
32	3.3182	
33	3.6636	
34	4.1395	
35	4.6154	
36	5.0914	
37	5.5673	
38	6.2733	
39	6.9792	
40	7.6852	

41	8.3912	
42	9.2662	
43	10.1412	
44	11.0162	
45	11.8912	
46	12.7662	
47	13.6412	
48	14.5162	
49	15.3912	
50	16.2662	
51	17.1412	
52	18.0162	
53	18.8912	
54	19.7662	
55	20.6412	
56	21.5162	
57	22.3912	
58	23.2662	
59	24.1412	
60	25.0162	

THIS TABLE SHOW VALUE OF Xa AND P AS Y1 AND Y2 respectively

H 73x2 double

	1	2
1	0	8.4649e+03
2	5.0236e-05	8.4649e+03
3	1.0047e-04	8.4649e+03
4	1.5070e-04	8.4649e+03
5	2.0093e-04	8.4649e+03
6	4.5204e-04	8.4649e+03
7	7.0308e-04	8.4649e+03
8	9.5406e-04	8.4649e+03
9	0.0012	8.4649e+03
10	0.0025	8.4649e+03
11	0.0037	8.4650e+03
12	0.0050	8.4650e+03
13	0.0062	8.4651e+03
14	0.0124	8.4653e+03
15	0.0186	8.4654e+03
16	0.0248	8.4656e+03
17	0.0309	8.4658e+03
18	0.0608	8.4668e+03
19	0.0898	8.4677e+03
20	0.1178	8.4686e+03

	_	
21	0.1449	8.4695e+03
22	0.2499	8.4732e+03
23	0.3404	8.4767e+03
24	0.4179	8.4801e+03
25	0.4843	8.4832e+03
26	0.5531	8.4870e+03
27	0.6098	8.4906e+03
28	0.6565	8.4940e+03
29	0.6954	8.4974e+03
30	0.7351	8.5014e+03
31	0.7671	8.5053e+03
32	0.7931	8.5091e+03
33	0.8146	8.5129e+03
34	0.8389	8.5179e+03
35	0.8581	8.5229e+03
36	0.8734	8.5278e+03
37	0.8861	8.5326e+03
38	0.9013	8.5396e+03
39	0.9131	8.5466e+03
40	0.9224	8.5535e+03

41	0.9300	8.5603e+03	
42	0.9378	8.5687e+03	
43	0.9442	8.5770e+03	
44	0.9493	8.5853e+03	
45	0.9537	8.5936e+03	
46	0.9574	8.6018e+03	
47	0.9605	8.6099e+03	
48	0.9633	8.6181e+03	
49	0.9657	8.6262e+03	
50	0.9678	8.6342e+03	
51	0.9697	8.6423e+03	
52	0.9713	8.6503e+03	
53	0.9728	8.6583e+03	
54	0.9742	8.6663e+03	
55	0.9754	8.6743e+03	
56	0.9765	8.6823e+03	
57	0.9776	8.6902e+03	
58	0.9785	8.6982e+03	
59	0.9794	8.7061e+03	
60	0.9802	8.7140e+03	

helight of cutlyst = (1-0) Re 3 & C Sensity of cutolyst length of cutolyst = (1-0.4) (2x0.01543) (3.3182) (73623.8)

= 4523.43 gram

= 4.52 Kg