Regression Testing

of database applications under an incremental software development settings

By: RAÚL H. ROSERO1,2, OMAR S. GÓMEZ2, AND GLEN RODRÍGUEZ

Presenter: Aryan Ebrahimpour

Professor: Saeed Zahedi

What is regression testing?

verifies previous features on a software product when it is modified or new features are added to it

a costly process

Why not retest all?

- Executing the total set of test cases is an expensive and laborious endeavor
- Therefore determining a subset of test cases to be executed in a software regression test is an active topic of research

Different approaches

- Minimization: using greedy algorithms
- **Selection**: using graph based algorithms
- Prioritization: using capacity based fault detection
- Recently **Soft computing**

Why soft computing?

- the execution of the complete suite of test cases is an *unacceptable*practice for iterative and incremental development environments
- This raised the study of soft computing approaches, in conjunction to agile approaches
- Lidentify test cases that **Guarantee an acceptable level** of verification of software product

A more effective alternative

- Local Cluster test cases according to a pattern, criterion and characteristic
 - Local Cluster: Test cases that detect the same fault
 - How to cluster? Based on:
 - Execution Profile
 - Histories of test runs
 - **Å** Function calls
 - A Partitioning programs
 - Filtering partitions
 - Access to database
- Finally: Sample the most representative test cases for each cluster

Challenges

- Determine the quality and size of clusters to balance the cost and effectiveness of approach
- Additional information to data such as numbers and sizes of clusters to be formed makes process expensive
 - Alternative: use unsupervised clustering
 - À Probabilistic approaches determines number of clusters

Challenges

- Lonventionally RT has been applied from Code perspective
 - Software is an FSM with constant Data
- Software with access to Database has two **Code** and **Data** perspective
 - Lode State is a set of labeled memory
 - **Data State** organized by different by different data models, such as relational
 - Large amount of **Data** can be affected by a single line of **code**

Paper specs

- A What are we presenting in this paper?
 - ART for software with DB access under incremental software dev context
- La Our approach:
 - Laccesses the DB)
 - Language Unsupervised
 - A Random values that selects a set of test cases

Related Work

Minimalization

Selection

Prioritization

 $task \rightarrow determine$ an ideal permutation of sequences of test cases to improve the RT technique

Proposed RT Approach

Terminology

TC: Test cases of a given increment

T: Set of test cases with access to the database

DB: Database schema

M: Matrix of similarities

G: Clusters of test cases

Tf: Set of test cases with faults

Gf: Clusters of test cases with faults

L: List of faults of the regression testing

Selection

TC: Test cases of a given increment

T: Set of test cases with access to the database

DB: Database schema M: Matrix of similarities

G: Clusters of test cases

Tf: Set of test cases with faults

Gf: Clusters of test cases with faults

L: List of faults of the regression testing

Similarity matrix construction

```
task → obtain info of tables and columns of each test case T
```

```
yield binary matrix M[m, n] where

0 → no DB access

1 → DB access operation
```

```
rows(m) → test cases cols(n) → field of DB tables
```

TABLE 2. Matrix of test cases accessing the DB.

	Tables						
	Table ₁			•	Table _n		
	Col_1	Col_2	Col i		Col_1	Col ₂	Coli
TC ₁	1	0	1		0	1	0
		•					:
TC_n							

Clusters Generation

- ✓ Unsupervised clustering
- ✓ Expectation maximization
- ✓ We determine a probabilistic distribution function to assign a membership of a test case to a cluster based on similarity matrix
- ✓ Finite gaussian mixture model which all attributes are random
- ✓ Result is one or more clusters

Clusters Selection

- ✓ Result: What clusters are going to be executed for RT
- ✓ Which clusters (New or modified test cases = Gf) are located
- ✓ Considering Tf: Test cases with faults

Clusters execution

- ✓ In this level, Gf are executed
- ✓ Generates a list L of faults related to test cases

Algorithm used in proposal

Algorithm Identifiers

Variable	Description			
DB	Database			
T	Set of test cases			
F	Set of features			
Fi	i-th feature, $f_i \in F$			
TC_i	Set of test cases from			
	i-th feature $f_i \in F$			
tc_i	i-th Test case of a feature			
$tc_{i,j}$	i-th Test case $tc_i \in TC_i$ from j-th			
	feature			
TestDB	Set of test cases with access to DB			
TestDBfailed	Set of test cases failed with access			
	to DB			
MatTestDB	Test cases matrix with access DB			
MatClusterTestDB	Test cases cluster matrix with			
	access DB			
MatClusterRegressionTestDB	Failed matrix of clustered test cases			
	with access to DB			
FaultsList	Set of faults for the regression test			
NumTestDB	Number of test cases with access to			
	the DB			

Main algorithm

- 1. For each feature (fi), a selection of test cases that access DB is performed
- 2. Similarity matrix construction
- 3. Clustering analysis
- 4. Execute clusters containing failed clusters, and their faults examined

Algorithm 1 clusterSelectionRegression Test

Input: f_i, TC_i

Output: Faults List

- 1: clusterSelectionRegressionTest process
- 2: repeat
- 3: for each f_i do //f $i \in F$
- 4: TestDB \leftarrow selectTestDB(f_i , TC_i)
- 5: MatTestBD ← buildMatrixTestDB(testDB)
- 6: MatClusterTestDB ← clusterizationEM(MatTestBD)
- 7: MatClusterRegressionTestDB ← (MatCluster TestDB ∩ TestDBfailed)
- 8: executeClusterRegressionTestDB (MatClusterRegressionTestDB)
- 9: end for
- 10: until \nexists f_i
- 11: end clusterSelectionRegressionTest process

SelectTestDb Algorithm

 For implementing this, authors created a tool that analyzes DB Schema (yeah, it's magic)

Algorithm 2 selectedTestDB

Input: f_i, TC_i

Output: TestDB, NumTestDB

1: selectedTestDB process

2: numTestDB \leftarrow 0

3: repeat

4: if TC_i access DB then

5: TestDB \leftarrow TestDB \cup TC_i

6: NumTestDB++

7: end if

8: until ∄ TC_i

9: end selectedTestDB process

Similarity matrix construction Algorithm

 For implementing this, authors created a tool that analyzes DB Schema (yeah, it's magic)

Algorithm 3 buildMatrixTestDB

Input: TestDB, numTestDB

Output: MatTestDB

1: buildMatrixTestDB process

2: i*←*1

3: while i < numTestBD do

4: $MatTestDB \leftarrow (MatTestDB \cup (TestDB_i))$

5: end while

6: end buildMatrixTestDB process

Cluster generation and selection Algorithm

- For implementing this, authors used
 Weka data mining tool for practical reasons
- Also used probabilistic algorithm EM
 (Expectation maximization) which has
 the advantage of determining a k
 number of clusters based on the
 information of the test cases of the
 similarity matrix

Algorithm 4 clusterizationEM

Input: MatTestDB

Output: MatClusterTestDB

1: clusterizationEM process

2: Θ Vector desconocido de parámetros

3: Θ^0 , Θ^1 ,, Θ^T , T criterio de convergencia

4: T←0

5: $\Theta^0 \leftarrow 0$

6: Repetir

7: $Q(\Theta, \Theta^t) \leftarrow E[\log p(x^g, x^m I \Theta) I x^g, \Theta^t]$

8: $\Theta^{t+1} \leftarrow \arg \max_{\Theta} Q(\Theta, \Theta^t)$

9: $t \leftarrow t+1$

10: until convergence criterion

11: end clusterizationEM process

$$egin{aligned} oldsymbol{ au}^{(t+1)} &= rg \max_{oldsymbol{ au}} \, Q(heta| heta^{(t)}) \ &= rg \max_{oldsymbol{ au}} \, \left\{ \left[\sum_{i=1}^n T_{1,i}^{(t)}
ight] \log au_1 + \left[\sum_{i=1}^n T_{2,i}^{(t)}
ight] \log au_2
ight\} \end{aligned}$$

$$au_{j}^{(t+1)} = rac{\sum_{i=1}^{n} T_{j,i}^{(t)}}{\sum_{i=1}^{n} (T_{1.i}^{(t)} + T_{2.i}^{(t)})} = rac{1}{n} \sum_{i=1}^{n} T_{j,i}^{(t)}$$

$$egin{aligned} (m{\mu}_1^{(t+1)}, \Sigma_1^{(t+1)}) &= rg \max_{m{\mu}_1, \Sigma_1} Q(heta | heta^{(t)}) \ &= rg \max_{m{\mu}_1, \Sigma_1} \ \sum_{i=1}^n T_{1,i}^{(t)} \left\{ -rac{1}{2} \log |\Sigma_1| - rac{1}{2} (\mathbf{x}_i - m{\mu}_1)^ op \Sigma_1^{-1} (\mathbf{x}_i - m{\mu}_1)
ight\} \end{aligned}$$

$$egin{aligned} \mathbf{\mu}_{2}^{(t+1)} &= rac{\sum_{i=1}^{n} T_{2,i}^{(t)} \mathbf{x}_{i}}{\sum_{i=1}^{n} T_{2,i}^{(t)}} \, {}_{ ext{\scriptsize 9}} \, \Sigma_{1}^{(t+1)} &= rac{\sum_{i=1}^{n} T_{1,i}^{(t)} (\mathbf{x}_{i} - oldsymbol{\mu}_{1}^{(t+1)}) (\mathbf{x}_{i} - oldsymbol{\mu}_{1}^{(t+1)})^{ op}}{\sum_{i=1}^{n} T_{1,i}^{(t)}} \, {}_{ ext{\scriptsize 9}} \, oldsymbol{\mu}_{1}^{(t+1)} &= rac{\sum_{i=1}^{n} T_{1,i}^{(t)} \mathbf{x}_{i}}{\sum_{i=1}^{n} T_{1,i}^{(t)}} \, {}_{ ext{\scriptsize 9}} \, oldsymbol{\mu}_{1}^{(t+1)} &= rac{\sum_{i=1}^{n} T_{1,i}^{(t)} \mathbf{x}_{i}}{\sum_{i=1}^{n} T_{2,i}^{(t)} (\mathbf{x}_{i} - oldsymbol{\mu}_{2}^{(t+1)}) (\mathbf{x}_{i} - oldsymbol{\mu}_{2}^{(t+1)})^{ op}} \, {}_{ ext{\scriptsize 1}} \, oldsymbol{\Sigma}_{i=1}^{n} \, T_{2,i}^{(t)} \, oldsymbol{\mu}_{1}^{(t+1)} \, oldsymbol{\pi}_{1}^{(t)} \, oldsymbol{\pi}_{1}^{(t)}$$

$$E_{Z| heta^{(t)},\mathbf{x}}[\log L(heta^{(t)};\mathbf{x},\mathbf{Z})] \leq E_{Z| heta^{(t-1)},\mathbf{x}}[\log L(heta^{(t-1)};\mathbf{x},\mathbf{Z})] + \epsilon$$

Cluster generation and selection Algorithm

- For implementing this, authors used
 Weka data mining tool for practical reasons
- Also used probabilistic algorithm EM
 (Expectation maximization) which has
 the advantage of determining a k
 number of clusters based on the
 information of the test cases of the
 similarity matrix

Algorithm 4 clusterizationEM

Input: MatTestDB

Output: MatClusterTestDB

1: clusterizationEM process

2: Θ Vector desconocido de parámetros

3: Θ^0 , Θ^1 ,, Θ^T , T criterio de convergencia

4: T←0

5: $\Theta^0 \leftarrow 0$

6: Repetir

7: $Q(\Theta, \Theta^t) \leftarrow E[\log p(x^g, x^m I \Theta) I x^g, \Theta^t]$

8: $\Theta^{t+1} \leftarrow \arg \max_{\Theta} Q(\Theta, \Theta^t)$

9: $t \leftarrow t+1$

10: until convergence criterion

11: end clusterizationEM process

Thank you!