Bayesian Network

Important Rules

• Sum rule: $P(X = a) = \sum_{b \in dom(Y)} P(X = a|Y = b)P(Y = b)$

• Bayes' rule: P(Y|X) = P(X|Y) P(Y) / P(X)

• Chain rule: $P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i | X_{i-1}, ..., X_1)$

X is independent of *Y* if P(X|Y) = P(X).

X is conditionally independent of Y given Z if P(X|Y,Z) = P(X|Z).

Conditional independence assertions allow chain rule to be simplified.

Bayesian Network

A Bayesian network is a directed acyclic graph (DAG) where:

- nodes are random variables
- directed arcs connect pairs of nodes (if $X \to Y$, then X has a direct influence on Y)
- each node has a conditional probability table specifying the parents' effects on the node

A Bayesian network is:

- 1. a representation of the joint probability distribution
- 2. an encoding of conditional independence assumptions

Inference

Task: Determine posterior probability of a set of query variables given exact values for some evidence variables.

P(Query|Evidence)

Dynamic System

So far, we assume the world does not change (i.e. static probability distribution).

Sometimes we need to reason over time:

- set of states
- set of time slices (snapshots of the world)
- different probability distribution over states at each time slice

Conditional probability table: $P(S_{t+1}|S_t,...,S_0)$

This can be viewed as a Bayesian network with one random variable per time slice.

Markov Chain

Markov assumption: $P(S_{t+1}|S_t,...,S_0) = P(S_{t+1}|S_t)$

A Markov chain is stationary if $P(S_{t+1}|S_t)$ is the same for each $t \ge 0$.

Hidden Markov Model

Set of states: S (hidden/latent random variables)

Set of observations: 0 (observable random variables)

Common tasks:

- Monitoring: $P(S_t|O_1,...,O_n)$
- Prediction: $P(S_{t+k}|O_1,...,O_n)$ where $k \ge 1$
- Hindsight: $P(S_{t-k}|O_1,...,O_n)$ where $1 \le k \le t$
- Most probable explanation: $\operatorname{argmax}_{S_0,\dots,S_t} P(S_0,\dots,S_t|O_1,\dots,O_t)$

HMMs are just DBNs with one state variable and one observation variable (???).