

Universidad Nacional de Cuyo - Facultad de Ingeniería

Química General e Inorgánica

TRABAJO PRÁCTICO 2:

Reacciones químicas

Profesora Titular: Dra. Graciela Valente

Profesora Adjunta: Dra. Cecilia Medaura

Jefes de Trabajos Prácticos:

Lic. Sebastián Drajlin Gordon

Lic. Liliana Ferrer
Prof. Inés Grillo
Ing. Carina Maroto
Dra. Rebeca Purpora
Ing. Alejandra Somonte

Ing. Silvina Tonini

Contenido: Ecuación química, clasificación de reacciones y balance.

ÍNDICE

I.	EJERCICIOS	3
II.	AUTOEVALUACIÓN6	ò
III.	RESPUESTAS	7

I. EJERCICIOS

1. El siguiente esquema representa una reacción química mediante el modelo de partículas. Las sustancias reactantes se han representado a la izquierda de la flecha, y a la derecha, los productos de la reacción.

A partir de la observación responde las siguientes preguntas:

- a. Describa a los reactivos y al producto en términos de sustancia simple/compuesta, molecular/atómica.
- b. ¿Qué tipo de reacción es la que se ha representado? ¿Cómo ha llegado a esa conclusión?
- c. Ejemplifique mediante una ecuación química la reacción representada.
- 2. Para las siguientes reacciones, lea atentamente las preguntas planteadas y responda:
 - a. Síntesis de óxido de calcio.
 - Plantee la ecuación correspondiente.
 - De acuerdo a esto, el óxido de calcio, ¿es reactivo o producto de la reacción?
 - b. Nitrato de plata + yoduro de potasio
 - Plantee la ecuación correspondiente.
 - ¿Qué tipo de reacción es?
 - ¿Alguno de los productos es poco soluble? ¿Qué pasará con dicha sustancia?
 - c. Ácido clorhídrico + hidróxido cúprico
 - Plantee la ecuación correspondiente.
 - De acuerdo a ello, clasifique dicha reacción.
 - Si se forma una sal,
 - ¿Qué anión tiene la sal? ¿Quién lo aporta?
 - ¿Qué catión tiene la sal? ¿Quién lo aporta?
 - d. Descomposición térmica del óxido de plata.
 - Plantee la ecuación correspondiente.
 - e. Descomposición térmica del clorato de potasio.
 - Plantee la ecuación correspondiente.
 - Ácido clorhídrico + estaño.
 - ¿Qué productos se formarán?
 - ¿Qué tipo de reacción será?

- g. Nitrato mercúrico + hidróxido de potasio.
 - ¿Qué tipo de sustancias son los reactivos en esta reacción?
 - Plantee la ecuación correspondiente.
- 3. Lea atentamente las siguientes situaciones que involucran reacciones químicas y luego conteste:
- I) En las plantas potabilizadoras de agua, las pequeñas partículas sólidas pueden "atraparse" en un precipitado de hidróxido de aluminio que cae al fondo del tanque de sedimentación, a partir de la reacción de sulfato de aluminio con hidróxido de calcio.
- II) Una prueba para identificar caliza, cuyo componente principal es carbonato de calcio, es agregar ácido clorhídrico diluido en frío, el cual provoca una rápida formación de burbujas.
 - a. Plantee una ecuación que represente la reacción para cada una de las situaciones planteadas.

I)

II)

- b. Indique en las ecuaciones el estado de agregación de las sustancias que intervienen en la reacción: sólidos muy poco solubles en agua (s) o sustancias disueltas en agua (ac), gas (g) o líquidas (l).
- c. Clasifique cada una de las reacciones consideradas:

I)

II)

d. Plantee las ecuaciones iónicas correspondientes. Nombre los iones. Tener en cuenta si las sustancias involucradas pueden disociarse o no en solución acuosa.

I)

II)

- 4. Complete, clasifique e iguale las siguientes reacciones. Recuerde que una misma reacción puede corresponder a más de un tipo. Nombre, en cada caso, el/los productos formados.
 - a. $H_2CO_{3(ac)} + Na_{(s)} \rightarrow$
 - b. Ba(OH)_{2(s)} + calor \rightarrow
 - c. $ZnCl_{2(ac)} + Na_2CO_{3(ac)} \rightarrow$
 - d. $Ca(OH)_{2(ac)} + HCI_{(ac)} \rightarrow$
 - e. $CH_{4(g)} + O_{2(g)} \rightarrow$
 - $\text{f.} \quad \text{Cl}_{2(g)} + \text{LiBr}_{(ac)} \rightarrow$
 - g. $Zn_{(s)} + HCI_{(ac)} \rightarrow$
 - h. $Na_{(s)} + O_{2(g)} \rightarrow$
 - i. $NH_4Cl_{(s)}$ + calor \rightarrow
 - j. $NaCl_{(ac)} + AgNO_{3(ac)} \rightarrow$
 - k. $CaO_{(s)} + CO_{2(q)} \rightarrow$
 - I. Na₂SO_{3(ac)} + H₂SO_{4(ac)} \rightarrow
 - m. $NH_4NO_{3(ac)} + NaOH_{(ac)} \rightarrow$

- n. $Fe_{(s)} + AgNO_{3(ac)} \rightarrow$
- o. $NH_{3(g)} + H_2O_{(I)} \rightarrow$
- p. $Cl_{2(g)} + H_{2(g)} \rightarrow$
- q. $KOH_{(ac)} + H_2SO_{4(ac)} \rightarrow dando sal ácida$
- r. $H_3PO_{4(ac)} + NaOH_{(ac)} \rightarrow dando sal diácida$
- s. $HNO_{3(ac)} + AI(OH)_{3(ac)} \rightarrow dando sal dibásica$
- t. $HCl_{(ac)} + Mg(OH)_{2(ac)} \rightarrow dando sal básica$
- u. Disociación del hidróxido de calcio en agua. Escriba ecuación iónica. Nombre los iones.
- v. Disociación del nitrato de magnesio en agua. Escriba ecuación iónica. Nombre los iones
- w. Disociación del carbonato de amonio en agua. Escriba ecuación iónica. Nombre los iones.
- x. Disociación total y progresiva del ácido fosfórico en agua. Escriba ecuación iónica. Nombre los iones.
- 5. Prediga si las siguientes reacciones pueden ocurrir o no. Escriba los productos para las reacciones que puedan tener lugar.
 - a. $Au_{(s)} + HCI_{(ac)} \rightarrow$
 - b. $Mg_{(s)} + CuSO_{4(ac)} \rightarrow$
 - c. $Ag_{(s)} + HCI_{(ac)} \rightarrow$
 - d. $Hg_{(l)} + H_2SO_{4(ac)} \rightarrow$
 - e. $AI_{(s)} + KCI_{(ac)} \rightarrow$
 - $f. \quad Br_{2(I)} + LiCI_{(ac)} \rightarrow$

II. AUTOEVALUACIÓN

Escriba las siguientes reacciones químicas en forma de ecuación, iguale y nombre los productos.

- 1. Síntesis del óxido de aluminio.
- 2. Síntesis del amoníaco.
- 3. Descomposición térmica del clorato de potasio.
- 4. Ácido clorhídrico + Estaño.
- 5. Nitrato plumboso + Yoduro de potasio.
- 6. Sulfato de amonio + Hidróxido de calcio.
- 7. Descomposición térmica del carbonato de calcio.
- 8. Sulfito de potasio + Ácido sulfúrico.
- 9. Ácido clorhídrico + Amoníaco.
- 10. Trióxido de dinitrógeno + Agua.
- 11. Síntesis del hidróxido de amonio.
- 12. Neutralización parcial del hidróxido de calcio con ácido nítrico.
- 13. Sulfuro ferroso + Zinc.
- 14. Síntesis del ácido perclórico.
- 15. Carbonato de magnesio + Ácido sulfúrico.
- 16. Ácido fosfórico + Hidróxido de calcio → dando sal ácida.
- 17. Ácido nitroso + Hidróxido de aluminio → dando sal básica.
- 18. Disociación del hidróxido de bario en agua. Escriba ecuación iónica.
- 19. Disociación del perclorato de magnesio en agua. Escriba ecuación iónica.
- 20. Disociación del carbonato básico cúprico en agua. Escriba ecuación iónica.
- 21. Cloruro de calcio + Carbonato de sodio.
- 22. Síntesis del ácido Clorhídrico.
- 23. Sulfato cúprico + Aluminio.
- 24. Neutralización parcial del hidróxido de magnesio con ácido nítrico.
- 25. Cloro + Bromuro de potasio.

III. RESPUESTAS

1.

- a. Reactivos A y B: sustancias simples por estar formadas por un mismo tipo de átomos. Son compuestos moleculares. Producto A₂B: sustancia compuesta por estar formada por distintos átomos. Compuesto molecular.
- b. Reacción de síntesis porque se forma un solo producto.

c.
$$2 H_2 + O_2 \rightarrow 2 H_2O$$

2.

a.

- $2 \text{ Ca}_{(s)} + O_{2(g)} \rightarrow 2 \text{ CaO}_{(s)}$
- Producto de la reacción

b.

- $AgNO_{3(ac)} + KI_{(ac)} \rightarrow AgI_{(s)} \downarrow + KNO_{3(ac)}$
- Doble desplazamiento
- El Agl es poco soluble y precipita.

C.

- $Cu(OH)_{2(ac)} + 2 HCI_{(ac)} \rightarrow CuCI_{2(ac)} + 2 H_2O_{(I)}$
- Doble desplazamiento / Neutralización
- El anión Cl⁻ es aportado por HCl_(ac) y el catión Cu²⁺ es aportado por Cu(OH)₂.

d.

• 2 Ag₂O_(s) + calor
$$\rightarrow$$
 4 Ag_(s) + O_{2(g)}

e.

f.

- SnCl_{2(ac)} + H_{2(ac)}
- Desplazamiento simple

g.

- Nitrato mercúrico: sal. Hidróxido de potasio: hidróxido.
- $Hg(NO_3)_{2(ac)} + 2 KOH_{(ac)} \rightarrow 2 KNO_{3(ac)} + HgO_{(s)} + H_2O_{(l)}$

3.

- a. b. y c.
 - I) $Al_2(SO_4)_{3(ac)}$ + 3 $Ca(OH)_{2(ac)}$ \rightarrow 3 $CaSO_{4(ac)}$ + 2 $Al(OH)_{3(s)}$ Doble desplazamiento
 - II) $CaCO_{3(s)}$ + 2 $HCI_{(ac)}$ \rightarrow $CaCI_{2(ac)}$ + $CO_{2(g)}$ + $H_2O_{(l)}$ Doble desplazamiento

d.

I)
$$2 A l_{(ac)}^{3+} + 3 S O_{4(ac)}^{2-} + 3 C a_{(ac)}^{2+} + 6 O H_{(ac)}^{-} \rightarrow 3 C a_{(ac)}^{2+} + 3 S O_{4(ac)}^{2-} + 2 A l(OH)_{3(s)}$$

II)
$$CaCO_{3(s)} + 2H_{(ac)}^{+} + 2Cl_{(ac)}^{-} \rightarrow Ca_{(ac)}^{2+} + 2Cl_{(ac)}^{-} + CO_{2(g)} + H_{2}O_{(l)}$$

4.

a.
$$H_2CO_{3(ac)} + Na_{(s)} \rightarrow Na_2CO_{3(ac)} + H_{2(g)}$$

Sustitución simple / Redox

Carbonato de sodio + Hidrógeno molecular

b.
$$Ba(OH)_{2(s)} + calor \rightarrow BaO_{(s)} + H_2O_{(l)}$$

Descomposición

c.
$$ZnCl_{2(ac)} + Na_2CO_{3(ac)} \rightarrow ZnCO_{3(s)} + 2 NaCl_{(ac)}$$

Óxido de bario + Agua

Doble desplazamiento

Carbonato de zinc + Cloruro de sodio

d.
$$Ca(OH)_{2(ac)} + 2 HCI_{(ac)} \rightarrow CaCI_{2(ac)} + H_2O_{(l)}$$

Sustitución doble/Neutralización

Cloruro de calcio + Agua

e.
$$CH_{4(g)} + 2 O_{2(g)} \rightarrow CO_{2(g)} + 2 H_2O_{(l)}$$

Combustión

Dióxido de carbono + Agua

f.
$$Cl_{2(g)} + 2 LiBr_{(ac)} \rightarrow 2 LiCl_{(ac)} + Br_{2(l)}$$

Sustitución simple / Redox

Cloruro de litio + Bromo molecular

g.
$$Zn_{(s)} + 2 HCI_{(ac)} \rightarrow ZnCI_{2(ac)} + H_{2(q)}$$

Sustitución simple / Redox

Cloruro de zinc + Hidrógeno molecular

h.
$$4 \text{ Na}_{(s)} + O_{2(g)} \rightarrow 2 \text{ Na}_2O_{(s)}$$

Síntesis o combinación

Óxido de sodio

i.
$$NH_4Cl_{(s)} + calor \rightarrow NH_{3(q)} + HCl_{(q)}$$

Descomposición

Amoníaco + Cloruro de hidrógeno

j.
$$NaCl_{(ac)} + AgNO_{3(ac)} \rightarrow NaNO_{3(ac)} + AgCl_{(s)} \downarrow$$

Sustitución doble

Nitrato de sodio + Cloruro de plata

Sulfato de sodio + Agua + Dióxido de azufre

k.
$$CaO_{(s)} + CO_{2(g)} \rightarrow CaCO_{3(s)}$$

Síntesis o combinación

Carbonato de calcio

$$\text{I.} \quad \text{Na}_2 \text{SO}_{3(\text{ac})} + \text{H}_2 \text{SO}_{4(\text{ac})} \rightarrow \text{Na}_2 \text{SO}_{4(\text{ac})} + \text{H}_2 \text{O}_{(\text{I})} + \text{SO}_{2(g)}$$

Sustitución doble

m. $NH_4NO_{3(ac)} + NaOH_{(ac)} \rightarrow NaNO_{3(ac)} + NH_{3(g)} + H_2O_{(l)}$

Sustitución doble

Nitrato de sodio + Amoníaco + Agua

n. $Fe_{(s)} + 2 AgNO_{3(ac)} \rightarrow Fe(NO_3)_{2(ac)} + 2 Ag_{(s)}$

Sustitución simple

Nitrato ferroso + Plata metálica

O.
$$NH_{3(g)} + H_2O_{(I)} \rightarrow NH_4OH_{(ac)}$$

Síntesis o combinación

Hidróxido de amonio

p.
$$Cl_{2(g)} + H_{2(g)} \rightarrow 2 HCl_{(g)}$$

Síntesis o combinación

Cloruro de hidrógeno

q.
$$KOH_{(ac)} + H_2SO_{4(ac)} \rightarrow KHSO_{4(ac)} + H_2O_{(I)}$$

Neutralización parcial

Sulfato ácido de potasio + Agua

r.
$$H_3PO_{4(ac)} + NaOH_{(ac)} \rightarrow NaH_2PO_{4(ac)} + H_2O_{(1)}$$

Neutralización parcial

Fosfato diácido de sodio + Agua

s.
$$HNO_{3(ac)} + AI(OH)_{3(ac)} \rightarrow AI(OH)_2NO_{3(ac)} + H_2O_{(I)}$$

Neutralización parcial

Nitrato dibásico de aluminio + Agua

t.
$$HCI_{(ac)} + Mg(OH)_2(ac) \rightarrow MgOHCI_{(ac)} + H_2O_{(1)}$$

Neutralización parcial

Cloruro básico de magnesio + Agua

u.
$$Ca(OH)_{2(ac)} \rightarrow Ca_{(ac)}^{2+} + 2OH_{(ac)}^{-}$$

Ionización total

Catión calcio + Anión hidroxilo/oxhidrilo

$$\text{V.} \ \ \text{Mg(NO}_3)_{2(ac)} \ \to \ \text{Mg}^{2+}_{(ac)} + 2 \ \text{NO}^-_{3(ac)}$$

W. $(NH_4)_2CO_{3(ac)} \rightarrow 2NH_{4(ac)}^+ + CO_{3(ac)}^{2-}$

Ionización total

Ionización total

Catión amonio + Anión carbonato

Ionización total

Catión hidrógeno + Anión fosfato

$$X. H_3PO_{4(ac)} \rightarrow 3 H_{(ac)}^+ + PO_{4(ac)}^{3-}$$

Disociación o ionización parcial progresiva

 $H_3PO_{4(ac)} \rightarrow H_{(ac)}^+ + H_2PO_{4(ac)}^-$

$$H_2PO_{4(ac)}^- \rightarrow H_{(ac)}^+ + HPO_{4(ac)}^{2-}$$

$$HPO_{4(ac)}^{2-} \rightarrow H_{(ac)}^{+} + PO_{4(ac)}^{3-}$$

Catión hidrógeno + Anión fosfato diácido

Catión hidrógeno + Anión fosfato ácido

Catión hidrógeno + Anión fosfato

5.

a.
$$Au_{(s)} + HCI_{(ac)} \rightarrow No$$
 hay reacción

b.
$$Mg_{(s)} + CuSO_{4(ac)} \rightarrow Cu_{(s)} + MgSO_{4(ac)}$$

c.
$$Ag_{(s)} + HCI_{(ac)} \rightarrow No$$
 hay reacción

d.
$$Hg_{(l)} + H_2SO_{4(ac)} \rightarrow No$$
 hay reacción

e.
$$Al_{(s)} + KCl_{(ac)} \rightarrow No$$
 hay reacción

f. $Br_{2(I)} + LiCI_{(ac)} \rightarrow No$ hay reacción

Autoevaluación

1. $4 \text{ Al}_{(s)} + 3 \text{ O}_{2(g)} \rightarrow 2 \text{ Al}_2 \text{O}_{3(s)}$

Óxido de aluminio

2. $N_{2(g)} + 3 H_{2(g)} \rightarrow 2 NH_{3(g)}$

Amoníaco

3. 2 KClO_{3(s)} + calor \rightarrow 2 KCl_(s) + 3 O_{2(g)}

Cloruro de potasio + Oxígeno molecular

4. $Sn_{(s)} + 2 HCl_{(ac)} \rightarrow SnCl_{2(ac)} + H_{2(g)}$

Cloruro de estaño (II) + Hidrógeno molecular

5. $Pb(NO_3)_{2(ac)} + 2 KI_{(ac)} \rightarrow PbI_{2(s)} \downarrow + 2 KNO_{3(ac)}$

Yoduro plumboso + Nitrato de potasio

6. $(NH_4)_2SO_{4(ac)} + Ca(OH)_{2(ac)} \rightarrow CaSO_{4(ac)} + 2NH_{3(g)} + 2H_2O_{(l)}$

Sulfato de calcio + Amoníaco + Agua

7. $CaCO_{3(s)} + calor \rightarrow CaO_{(s)} + CO_{2(g)}$

Óxido de calcio + Dióxido de carbono

8. $K_2SO_{3(ac)} + H_2SO_{4(ac)} \rightarrow K_2SO_{4(ac)} + SO_{2(g)} + H_2O_{(l)}$

Sulfato de potasio + Dióxido de azufre + Agua

9. $HCI_{(ac)} + NH_{3(g)} \rightarrow NH_4CI_{(ac)}$

Cloruro de amonio

10. $N_2O_{3(g)} + H_2O_{(I)} \rightarrow 2 HNO_{2(ac)}$

Ácido nitroso

11. $NH_{3(g)} + H_2O_{(I)} \rightarrow NH_4OH_{(ac)}$

Hidróxido de amonio

12. $Ca(OH)_{2(ac)} + HNO_{3(ac)} \rightarrow CaOHNO_{3(ac)} + H_2O_{(l)}$

Nitrato básico de calcio + Agua

13. $FeS_{(ac)} + Zn_{(s)} \rightarrow ZnS_{(ac)} + Fe_{(s)}$

Sulfuro de Cinc + Hierro metálico

14. $Cl_2O_{7(g)} + H_2O_{(l)} \rightarrow 2 HClO_{4(ac)}$

Ácido perclórico

15. $MgCO_{3(s)} + H_2SO_{4(ac)} \rightarrow MgSO_{4(ac)} + CO_{2(g)} + H_2O_{(l)}$

Sulfato de magnesio + Dióxido de carbono + Agua

16. $H_3PO_{4(ac)} + Ca(OH)_{2(ac)} \rightarrow CaHPO_{4(ac)} + 2 H_2O_{(l)}$

Fosfato ácido de calcio + Agua

17. 2 $HNO_{2(ac)} + AI(OH)_{3(ac)} \rightarrow AIOH(NO_2)_{2(ac)} + 2 H_2O_{(I)}$

Nitrito básico de aluminio + Agua
Catión bario + Anión oxhidrilo/hidroxilo

18. Ba(OH)_{2(ac)} \rightarrow Ba²⁺_(ac) + 2 OH⁻_(ac)

19. $Mg(ClO_4)_{2(ac)} \rightarrow Mg_{(ac)}^{2+} + 2 ClO_{4(ac)}^{-}$

Catión magnesio + Anión perclorato

20. $(CuOH)_2CO_{3(ac)} \rightarrow 2 (CuOH)^+_{(ac)} + CO^{2-}_{3(ac)}$ Catión básico cúprico + Anión carbonato

,

21. $CaCl_{2(ac)}$ + $Na_2CO_{3(ac)}$ \rightarrow $CaCO_{3(s)}$ \downarrow + 2 $NaCl_{(ac)}$ Carbonato de calcio + Cloruro de sodio

 $HCl_{(a)} \xrightarrow{H_2O} HCl_{(ac)}$

22. $Cl_{2(q)} + H_{2(q)} \rightarrow 2 HCl_{(q)}$

Cloruro de Hidrógeno

Ácido clorhídrico

23. 3 CuSO_{4(ac)} + 2 Al_(s) \rightarrow Al₂(SO₄)_{3(ac)} +3 Cu_(s)

Sulfato de Aluminio + Cobre metálico

24. $Mg(OH)_{2(ac)} + HNO_{3(ac)} \rightarrow MgOHNO_{3(ac)} + H_2O_{(I)}$

Nitrato básico de magnesio + Agua

25. $Cl_{2(g)}$ + 2 $KBr_{(ac)} \rightarrow 2 KCl_{(ac)} + Br_{2(l)}$

Cloruro de potasio + Bromo molecular