

TMSCA HIGH SCHOOL MATHEMATICS

TEST #9 ©

FEBRUARY 1, 2020

GENERAL DIRECTIONS

- 1. About this test:
- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are
 using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for
 accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA 1. Evaluate: $12 \times 3! \times 3^{-2} + 9^0 - 11 \times 4 + 5^2$

	(A) -10	(B) -5	(C) 0	(D) 5	(E) 10	
2.	eight TI-89 calculato purchased all of the l	rs for \$22.50 each, an HP Primes for \$250,	here she purchased six nd a poster of Allyson l the Latexo Math depar purchased the poster b	Felix for \$10. The Lartment purchased all	atexo UIL team of the TI-89s for	
	(A) \$190	(B) \$195	(C) \$200	(D) \$205	(E) \$210	
3.		_	a < b < c < d. The meest possible value of c?	an of the integers is 2	228, the median is	
	(A) 233	(B) 236	(C) 239	(D) 242	(E) 245	
4.	Consider \overline{AB} with consider bisectors		1 (3,0). Find the coord	dinates of the y-inter	cept of the	
	(A) 2.25	(B) 2.15	(C) 2.05	(D) 1.95	(E) 1.85	
5.	. Riley leaves the LHS track at 3:00 PM and begins running toward Grapeland at a speed of 8 mph. Camryn leaves the LHS track at 3:15 PM and begins running toward Grapeland at a speed of 10 mph. At what time does Camryn catch up to Riley?					
	(A) 4:00 PM	(B) 4:15 PM	(C) 4:30 PM	(D) 4:45 PM	(E) 5:00 PM	
6.	If $6x^2 + 11x - 35 = (a$	(x+b)(cx+d), then a	$\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d} = \underline{\qquad}$	·		
	(A) 4	(B) 5	(C) 6	(D) 7	(E) 8	
7.	Simplify: $\frac{\left(x^2 + x - \frac{1}{2}\right)^2}{\left(2x^2 + 9x\right)^2}$	$\frac{12}{+4} \times \frac{(2x^2 - x - 1)}{(x^2 + 2x - 3)}$				
	(A) 1	$(B) \frac{x-1}{x+4}$	$(C) \frac{2x+1}{2x-1}$	$(D) \frac{x+4}{x-1}$	$(E) \ \frac{x-3}{x+3}$	
8.	If $\frac{x+6}{x-5} + \frac{x-3}{x+4} = \frac{ax^2}{x^2}$	$\frac{c^2 + bx + c}{-x - 20}$, then $a + b$	o + c =			
	(A) 31	(B) 35	(C) 39	(D) 43	(E) 47	

(C) (-1, -10)

(D) (0, -4)

(E) (1, 2)

9. Find the point of intersection for the lines 6x - y = 4 and 2x - y = 8.

(B) (-2, -4)

(A) (-3, -10)

19-20 TMSCA HSM	IA Test 9			Page 2
10. Given: ∠ABC m∠ABC=	and ∠CBE are supplen	nentary angles and \overrightarrow{BD}	bisects ∠CBE. If m.	$\angle DBE = 32^{\circ}$,
(A) 114°	(B) 116°	(C) 118°	(D) 120°	(E) 122°
	e ABC with AB = 12, BC (nearest tent		oint D lies on \overline{AC} whe	re AD=CD.
(A) 16.4°	(B) 17.9°	(C) 19.3°	(D) 20.8°	(E) 22.2°
12. Given: Rhombe (nearest whole i	us ABCD with AB = 10 a number)	and $m\angle ABD = 53.13^{\circ}$.	Find the area of the r	hombus.
(A) 92	(B) 94	(C) 96	(D) 98	(E) 100
- C	e ABC with altitude \overline{BD} angle ABC. (nearest ten	•	$BCA = 45^{\circ}$, and $AD = 3$	5. Find the
(A) 35.6	(B) 35.9	(C) 36.2	(D) 36.5	(E) 36.8
32 ft tall. The b	te Bank is 48 ft tall and is ouildings are 66 ft apart. e car dealership. What i	Sydnee decides to con	nect a cable from the r	oof of the bank
(A) 67.9 ft	(B) 68.8 ft	(C) 69.7 ft	(D) 70.6 ft	(E) 71.5 ft
15. The point at wh	ich the three perpendicu	llar bisectors of the sid	es of a triangle interse	ct is the
(A) incenter	(B) circumcenter	(C) orthocenter	(D) Euler point	(E) centroid
E A	$\mathbf{D}^{\mathbf{C}}$ $\mathbf{BC} = 12.6$ $\mathbf{AD} = 17.8$			
16. EF divides trap	pezoid ABCD into two sin	milar trapezoids. EF =	= (nearest hu	ındredth)
(A) 14.82	(B) 15.05	(C) 15.20	(D) 15.27	(E) 15.49

- (A) **5.0**
- (B) 5.2
- (C) 5.4
- (D) 5.6
- (E) 5.8

- 18. $m\angle A = \underline{\hspace{1cm}}$ (rad). (nearest thousandth)
 - (A) 0.314
- (B) 0.463
- (C) 0.611
- (D) 0.759
- (E) 0.908

- 19. $\begin{bmatrix} 1 & 2 & 3 \\ -4 & -3 & -2 \\ 3 & 4 & 5 \end{bmatrix} \times \begin{bmatrix} -1 & -2 & -3 \\ 4 & 3 & 2 \\ -3 & -4 & -5 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \quad c + f + i = \underline{\qquad}.$
 - (A) -28
- (B) -24
- (C) -20
- (D) -16
- (E) -12
- 20. Consider the expansion of $(5x-2y)^7$. The sum of the coefficients of the x^3y^4 term and the x^2y^5 term is ______.
 - (A) 50500
- (B) 51400
- (C) 52300
- (D) 53200
- (E) 54100

- 21. Given: p+q=2 and $p^2+q^2=74$. $p^3+q^3=$ _____.
 - (A) 210
- (B) 212
- (C) 214
- (D) 216
- (E) 218
- 22. The sound level, β , in dB (decibels), is given by $\beta = 10 \log \left(\frac{I}{I_0} \right)$ where I is the intensity of the sound

measured in W/m², and I_0 is the threshold of hearing, with $I_0 = 10^{-12}$ W/m². Bishop is in the Sundown gym playing "Space Trucking" on his electric guitar at a sound level of 120 dB. Jacob, Abbigail, and Kade join him with their electric guitars. If they all play at the same intensity as Bishop, what is the sound level when all four of them play together? (nearest whole number)

- (A) 126 dB
- (B) 132 dB
- (C) 138 dB
- (D) 146 dB
- (E) 152 dB
- 23. Colby invested a total of \$120,000 in two municipal bonds in 2019. The Muenster bond paid 6.25% annual interest compounded quarterly and the Lindsay bond paid 7.50% annual interest compounded monthly. If he earned the same amount of interest from each bond, how much did he invest in the Muenster bond?
 - (A) \$65,728.37
- (B) \$65,742.38
- (C) \$65,756.39
- **(D)** \$65,770.40
- (E) \$65,784.41
- 24. At the Lubbock County Fair last fall, the Westerner UIL team sponsored an apple pie contest. First place received \$400, second placed received \$380, third place received \$360, fourth place received \$340, fifth place received \$320 and so on down to \$20. If all the entry fees added up to \$5600, how much profit did the Westerner UIL team make?
 - (A) \$1200
- **(B)** \$1300
- (C) \$1400
- (D) \$1500
- (E) \$1600

25.	25. The vertex of a parabola is located at the point $(3,6)$ and the equation of the directrix is $y=9$. Find the point at which the focus is located.						
	(A) (3, -3)	(B) (3,0)	(C) (3,3)	(D) (3,12)	(E) (3,15)		
26.	Simplify: $6\sqrt{48} - 9\sqrt{48}$	√ 27					
	$(\mathbf{A}) -4\sqrt{3}$	(B) $-3\sqrt{3}$	(C) $-2\sqrt{3}$	(D) $-\sqrt{3}$	(E) 0		
27.	The line $y = \frac{1}{3}x - 3$	intersects the parabol	$a y = (x-4)^2 - 6$ at po	ints P and Q.			
	Find the length of \overline{P}	$\overline{\mathbf{Q}}$. (nearest tenth)					
	(A) 3.8	(B) 4.0	(C) 4.2	(D) 4.4	(E) 4.6		
28.	$\csc\left(\frac{5\pi}{6}\right) + \sec\left(\frac{5\pi}{3}\right)$	$+\cot\left(\frac{5\pi}{4}\right) = $	·				
	(A) 0	(B) $\sqrt{2} + 1$	(C) $\sqrt{3} + 1$	(D) $2\sqrt{2} + 1$	(E) 5		
29.	29. $Arcsin\left(-\frac{1}{2}\right) + Arccos\left(-\frac{1}{2}\right) + Arctan(x) = \frac{\pi}{4}$. $x =$						
	(A) -2	(B) $-\sqrt{3}$	(C) -1	(D) $-\frac{1}{\sqrt{3}}$	$(E) \ \frac{1}{\sqrt{3}}$		
30. The sequence 0,1,1,2,3,5,8,13,,610 has terms.							
	(A) 14	(B) 15	(C) 16	(D) 17	(E) 18		
31.	31. P and Q are the roots of $10x^2 - x - 21 = 0$. $P^2 + Q^2 + 2PQ = $						
	(A) $\frac{1}{120}$	(B) $\frac{1}{100}$	(C) $\frac{1}{80}$	(D) $\frac{1}{60}$	(E) $\frac{1}{40}$		
32.	Simplify: $\frac{\sin\theta \cdot \tan\theta}{1 - \cos\theta}$	$\frac{\theta}{2}$ – 1					
	(A) $\csc\theta$	(B) 0	(C) $\cot \theta$	(D) -2	(E) $\sec \theta$		

(A) $\frac{3\pi}{2}$ (B) 2π (C) $\frac{5\pi}{2}$ (D) 3π (E) $\frac{7\pi}{2}$

33. Find the sum of the solutions to the equation $\sin x + 1 = \cos x$ in the interval $(0, 2\pi)$.

34. Given:	$\cos(\theta) = \frac{4}{5}$, where	$\theta < \theta < \frac{\pi}{2}$, and s	$\sin(\alpha) = -\frac{12}{13}$, where α	$\pi < \alpha < \frac{3\pi}{2}$. cos	$(\theta - \alpha) = \underline{\qquad}.$
	5	2	13	2	

- (A) $-\frac{56}{65}$
- (B) $-\frac{54}{65}$
- (C) $-\frac{52}{65}$ (D) $-\frac{10}{13}$
- 35. Consider the sketch of the curve represented by $x = 4 + 3\cos t$ and $y = 3 + 4\sin t$, $0 \le t \le 2\pi$. Find the eccentricity of the curve. (nearest hundredth)
 - (A) 0.60
- (B) 0.63
- (C) 0.66
- (D) 0.69
- (E) 0.72
- 36. Find the radius of the sphere $4x^2 + 4y^2 + 4z^2 8x + 4y + 12z = 0$. (nearest hundredth)
 - (A) 1.76
- (B) 1.87
- (C) 1.98
- (D) 2.09
- (E) 2.20

- 37. Given: f''(x) = 36x, f(1) = 5, f(-1) = -13. $f(2) = _____.$
 - (A) 48

- **(B)** 50
- (C) 52
- (D) 54
- (E) 56
- 38. Consider the function $f(x) = 2.5x^3 2.5x^2 2.5$ There is a local minimum at (a, b) and there is a local maximum at (c, d). b + d =_____. (nearest hundredth)
 - (A) -5.45
- (B) -5.41
- (C) -5.37
- (D) -5.33
- (E) -5.29
- 39. Find the volume of the region bounded by the graphs of $y_1 = \sqrt{3-x} + 2$ and $y_2 = (x+6)^2 + 1$ revolved around the line x = 8. (nearest whole number)
 - (A) 856
- (B) 878
- (C) 900
- (D) 922
- (E) 944
- 40. Find the slope of the line tangent to the circle $x^2 + y^2 = 25$ at the point (4, 3).
- (A) $-\frac{4}{3}$ (B) $-\frac{11}{9}$ (C) $-\frac{10}{9}$ (D) -1
- $(E) -\frac{8}{9}$

- 41. Find the value of the derivative of $f(x) = \log_6(\cos x)$ when $x = \frac{\pi}{4}$.
- (A) $-\frac{\sqrt{2}}{\ln(6)}$ (B) $-\frac{\ln(6)}{\sqrt{2}}$ (C) $-\frac{6}{\sin(6)}$ (D) $-\frac{1}{\ln(6)}$
- $(E) \ln(6)$
- 42. Aaron plans to fence a rectangular pasture next to the river that runs through his ranch northeast of Houston. Fencing costs \$36 for every 10-foot length of fence. He does not need any fence along the river. If his pasture needs to contain 8 acres of land, what is the minimum cost of the fence for the pasture? Smith's Farm Supply only sells fencing in 10-foot lengths.
 - (A) \$5204
- **(B)** \$5406
- (C) \$5608
- (D) \$5810
- (E) \$6012

43. Evaluate
$$\lim_{\Delta x \to 0} \left(\frac{\frac{8}{x + \Delta x} - \frac{8}{x}}{\Delta x} \right)$$

(A) 8ln(x)	(B) $-\frac{8}{r^2}$	(C) ln(8)	(D) $\frac{4}{-2}$	$(E) -\frac{1}{\ln(8)}$
	X		X	ln(8)

44. Consider the sequence $\frac{3}{2}, \frac{9}{5}, \frac{27}{8}, \frac{81}{11}, \dots$ Find the 8th term in the sequence.

(A) $\frac{6144}{17}$ (B) $\frac{6351}{20}$ (C) $\frac{6561}{23}$ (D) $\frac{6765}{26}$ (E) $\frac{6944}{29}$

45. Find the radius of convergence of $\sum_{n=0}^{\infty} 5(x-3)^n$.

(A) 1 (B) 2 (C) 3 (D) 4 (E) 5

46. Mauricio took six TMSCA mathematics tests from 2018 last week and his goal was to average at least 276 on the six tests. On his first five tests, he scored 256, 268, 274, 280, and 266. What is the lowest score he can make on test 6 that would allow him to achieve his goal?

(A) 304 (B) 306 (C) 308 (D) 310 (E) 312

47. On the BC Calculus semester exam at Wisdom High, the mean score was an 86 with a standard deviation of 2.5. Mrs. Gonzalez will give you an A+ on her exams if your score is at least 3 standard deviations above the mean score. What was the lowest score Cecil could have made in order to receive an A+ on the semester exam?

(A) 92 (B) 94 (C) 96 (D) 98 (E) 100

48. Dr. Jones, from the Biology Department at Anchorage University, developed a regression equation to predict the number of polar bears living in Alaska for any given year. He developed his model using data from 1980 to 2018. From this regression equation, he made a prediction for the number of polar bears that would be living in Alaska in 2050. Dr. Smith, from the Statistics Department, urged caution and pointed out that this is called ______ and such predictions are often not accurate.

(A) extrapolation (B) correlation (C) confounding (D) transforming (E) mean squaring

49. Tom has 10 blue marbles, 15 green marbles and 20 red marbles. He places all of the marbles in a jar and shakes the jar for 20 seconds. He randomly selects a marble from the jar and keeps it. He does this two more times and then looks at the three marbles he selected. Find the probability that none of the three marbles he selected are green. (nearest thousandth)

(A) 0.254 (B) 0.286 (C) 0.318 (D) 0.350 (E) 0.384

What is the pro	bability that Carter wi	ll be dealt a regular flus f the same suit. (nearest	h, or a straight flush, o	
(A) 0.00198	(B) 0.00226	(C) 0.00254	(D) 0.00282	(E) 0.00310
toughest class at Modern Physics analyzed his dat	t MIT were evenly dist , Fluid Mechanics, Ast a with a Goodness-of-	17 students at MIT in or ributed. They were requironomy II, Applied Ma Fit Test. In calculating ed count for each class a	uired to choose one fro thematics, or Chaos Th the Chi-Square statistic	m Cal III, DE II, leory. He c and the
(A) 30, 7	(B) 31, 5	(C) 31, 6	(D) 31,7	(E) 32, 7
Pepsi. Each student that they were just they were just the student they were just the student that they were just the student they were just the student the stude	dent was given two un	lus class think they can labeled cups of Coke and he probability that at learest tenth)	d one unlabeled cup of	Pepsi. Assume
(A) 3.7%	(B) 4.3%	(C) 4.9%	(D) 5.5%	(E) 6.1%
	9	merican males between third quartile is	•	0
(A) 228	(B) 230	(C) 232	(D) 234	(E) 236
annual income of	of the adults living in H	lculated the Least Squa Iemphill County. Whic near relationship betwee	h of the following value	es for the
(A) -0.925	(B) -0.855	(C) 0.125	(D) 0.855	(E) 0.925
55. ABCD ₁₆ – DCB	16 =16			
(A) 9B02	(B) 9C02	(C) 9D02	(D) 9E02	(E) 9F02
56. The number 53	is classified as which o	f the following types of	numbers?	
I. prime	II. self	III. lucky	V. polite	
(A) I, II only	(B) I, II, III onl	y (C) I, II, IV only	(D) I, IV only	(E) I only
57. The largest prin	ne divisor of 95! + 96!	is		
(A) 79	(B) 83	(C) 89	(D) 97	(E) 101

58. Simplify:
$$\frac{14m^4n^3 - 21m^{-2}n^{-6}}{7m^{-2}n^{-6}}$$

- $(A) \ -m^3 n^{-3} \qquad \qquad (B) \ 2m^2 n^{-3} 3 \qquad \qquad (C) \ 2m^{-8} n^{-18} 3m^4 n^{36} \qquad \qquad (D) \ 2m^6 n^9 3 \qquad \qquad (E) \ -1$

- 59. Express y in terms of x. $\ln y = \frac{1}{5} (\ln 8 + \ln x)$

- (A) $y = \sqrt[5]{8+x}$ (B) $y = \sqrt[5]{8x}$ (C) $y = \frac{e^{8x}}{5}$ (D) $y = \frac{e^{8+x}}{5}$
- 60. Ryan's favorite topic in BC Calculus is using a u-substitution to evaluate an integral. Here is one of his homework problems. "Evaluate $\int \frac{-6x^2}{\left(7-2x^3\right)^5} dx$." The best choice for u is _____.
 - $(A) -6x^2$
- (B) $(7-2x^3)^5$ (C) $6x^2$ (D) $2x^3$ (E) $7-2x^3$

2019 – 2020 TMSCA High School Mathematics Test 9 Answer Key

1. A	21. E	41. D
2. E	22. A	42. E
3. C	23. E	43. B
4. A	24. C	44. C
5. B	25. C	45. A
6. D	26. B	46. E
7. E	27. D	47. B
8. D	28. E	48. A
9. C	29. C	49. B
10. B	30. C	50. A
11. E	31. B	51. C
12. C	32. E	52. B
13. B	33. A	53. B
14. A	34. A	54. C
15. B	35. C	55. D
16. B	36. B	56. C
17. E	37. B	57. D
18. A	38. C	58. D
19. B	39. E	59. B
20. D	40. A	60. E

19-20 TMSCA HSMA Test 9 Selected Solutions

$$a+b+c+d=4(228) \qquad midpt = \left(\frac{3}{2},3\right)$$

$$b+c=452 \qquad m=-2$$
2. $(250+250+50-\left(6(25)+8(22.5)+10\right)=210$ 3. $d-a=36$ 4. $y-3=\frac{1}{2}\left(x-\frac{3}{2}\right)$

$$b=213, \ c=239 \qquad y=\frac{1}{2}x+\frac{9}{4}$$

$$8(t+.25) = 10t$$
5. $t = 1$
4:15

$$6. \frac{(2x+7)(3x-5)}{2+7+3-5=7}$$
7.
$$\frac{(x+4)(x-3)(2x+1)(x-1)}{(2x+1)(x+4)(x+3)(x-1)}$$
8.
$$\frac{2x^2+2x+39}{x^2-x-20}$$
9. $x = -1$
2+2+39=43

y = -10

10.
$$180 - (32 + 32) = 116^{\circ}$$
 11. $m\angle BAD = 92.86598...$ $m\angle ABD = 22.2^{\circ}$ 12. $(10)(10)\sin(106.26^{\circ}) = 96$

13.
$$P = 10 + 5\sqrt{6} + 5 + 5\sqrt{3} = 35.9$$
 14. $\frac{16^2 + 66^2 = x^2}{x = 67.9}$ 15. Circumcenter 16. $\sqrt{(12.66)(17.88)} = 15.05$

17.
$$\frac{x = AB = 23.2379...}{m\angle BAC = 14.4775^{\circ}}$$
 18. $m\angle A = \frac{70 - 34}{2} = 18^{\circ} \rightarrow 0.314 \text{ rad}$ 19. $-14 + 16 - 26 = -24$

20.
$$70000 - 16800 = 53200$$
 21. $p = 7$, $q = -5$ 22. $I = 1$ $\beta = 10 \log \left(\frac{I}{10^{-12}}\right)$ 22. $I = 1$ $\beta = 10 \log \left(\frac{4 \cdot 1}{10^{-12}}\right) = 126 \text{ dB}$

23.
$$x - x \left(1 + \frac{.-625}{4}\right)^4 = (120000 - x) - (120000 - x) \left(1 + \frac{.075}{12}\right)^{12}$$
 24. $\sum_{n=1}^{20} 20n = 4200$ 25. $\sum_{n=1}^{20} 20n = 4200 = 1400$

$$-\frac{\pi}{6} + \frac{2\pi}{3} + ? = \frac{\pi}{4}$$

29.
$$? = -\frac{\pi}{4}$$

$$\tan\left(-\frac{\pi}{4}\right) = -1$$

30.
$$F_{15} = 610$$

15+1=16

31.
$$(P+Q)^2 = \left(\frac{1}{10}\right)^2 = \frac{1}{100}$$

$$\frac{\sin x \sin x}{\cos x (1-\cos x)} - 1$$

$$32. \frac{\sin^2 x}{\cos x(1-\cos x)} - 1$$

$$\frac{(1-\cos x)(1+\cos x)}{\cos x(1-\cos x)}-1$$

$$\frac{1+\cos x - \cos x}{\cos x} = \frac{1}{\cos x} = \sec x$$

$$\theta = 36.869...$$

33.
$$\frac{3\pi}{2}$$

34.
$$\alpha = 247.3801...$$

$$\cos(\theta - \alpha) = -\frac{56}{65}$$

$$\cos t = \frac{x-4}{3}$$
, $\sin t = \frac{y-3}{4}$

35.
$$\frac{(x-4)^2}{9} + \frac{(y-3)^2}{16} = 1$$

$$16 = 9 + c^2, c = \sqrt{7}$$

$$e = \frac{\sqrt{7}}{4} = .66$$

$$4(x^2-2x+1)+4(y^2+y+.25)+4(z^2+3z+2.25)=0+4+1+9$$

36.
$$(x-1)^2 + (y+.5)^2 + (z+1.5)^2 = 3.5$$

$$r = \sqrt{3.5} = 1.87$$

$$f' = 18x^2 + c$$

$$f = 6x^3 + cx + d$$

37.
$$5 = 6 + c + d$$
$$-13 = -6 - c + d$$

$$-13 = -6 - c + d$$

$$f(x) = 6x^3 + 3x - 4$$

$$f(2) = 50$$

38.
$$b = -2.87037$$

 $d = -2.5$

$$d = -2.5$$

$$\mathbf{a} + \mathbf{b} = -5.37$$

39.
$$2\pi \int_{-8.080564}^{-4.086339} (8-x)(y_1-y_2)dx = 944$$

$$f = \frac{\ln(\cos x)}{\ln 6}$$

40.
$$\frac{dy}{dx} = -\frac{x}{y} = -\frac{4}{3}$$

40.
$$\frac{dy}{dx} = -\frac{x}{y} = -\frac{4}{3}$$
 41. $f' = \frac{1}{\ln(6) \cdot \cos x} \cdot (-\sin x)$

$$f'\left(\frac{\pi}{4}\right) = \frac{-\tan\left(\frac{\pi}{4}\right)}{\ln(6)} = -\frac{1}{\ln(6)}$$

$$xy = \frac{8(5280)^2}{640} = 348480$$

$$P = 2x + y = 2x + \frac{348480}{x}$$

42.
$$P' = 0$$
, $x = 417.42...$

$$n = \frac{1670}{10}(36) = \$6012$$

43.
$$\frac{d}{dx}\left(\frac{8}{x}\right) = -\frac{8}{x^2}$$

44.
$$\frac{3^8}{2+7(3)} = \frac{6562}{23}$$

$$\lim_{n \to 0} \left| \frac{5(x-3)^{n+1}}{5(x-3)^n} \right|$$
43. $\frac{d}{dx} \left(\frac{8}{x} \right) = -\frac{8}{x^2}$
44. $\frac{3^8}{2+7(3)} = \frac{6561}{23}$
45. $|x-3| < 1$
centered at $x = 3$

centered at
$$x = 3$$

$$R = 1$$

46.
$$\frac{256 + 268 + 274 + 280 + 266 + x}{6} = 276$$

$$x = 312$$
47.
$$\frac{86 + 3(2.5) = 93.5}{94}$$

48. When you make a prediction beyond the original observation range - extrapolation

49.
$$\frac{30}{45} \cdot \frac{29}{44} \cdot \frac{28}{43} = 0.286$$

49.
$$\frac{30}{45} \cdot \frac{29}{44} \cdot \frac{28}{43} = 0.286$$
 50. $\frac{{}_{4}C_{1} \cdot {}_{13}C_{5}}{{}_{52}C_{5}} = .00198$ 51. $\frac{217}{7} = 31$

$$51. \frac{217}{7} = 31$$

$$df = 7 - 1 = 6$$

Inverse Normal

52. binomialCdf
$$\left(30, \frac{1}{3}, 15, 30\right) = .04348$$
 Area = . 53. $\mu = 220$

4.3%

Area = .75
53.
$$\mu = 220$$

 $\sigma = 15$

230.117

56. self polite

57.
$$95+2=9$$

57.
$$95+2=97$$
 58. $2m^6n^9-3$ 59. $\ln y = \ln(8x)^{\frac{1}{5}}$ 60. $u=7-2x^3$

60.
$$u = 7 - 2x^3$$

54. Values close to zero 55. 9E02