IIT Jodhpur

Biological Vision and Applications Module 03-02: Reasoning for Vision

Hiranmay Ghosh

Vision is an "inverted problem"

• Naturally suited for abduction

Diversity in the natural world

Challenge for Computer Vision

Each human face is different

• How do we recognize a new human face?

Statistical similarity

- Fortunately, the images exhibit strong statistical similarity
- Super-imposition of several <u>natural</u> images
 - scale and pose normalized
 - Does not result in a blur background
 - Some statistical features stand out
- Possible to construct a statistical model (object/scene)

Source: Oliva and Torralba. The role of context in object recognition.

Imperfection in signal processing

Early vision

- An image is characterized by continuous homogeneous areas with interspersed discontinuities
 - Signify object contours in the scene
- Early vision detects the discontinuities (accentuates the contrasts)
 - Contour fragments are recognized
 - Noisy: Discontinuities / spurious edges
- Statistical properties of the contour fragments distribution leads to object recognition

Sparsity in image space for natural images

- Natural scenes: images captured with devices operating in the range of visual spectrum.
 - Includes scenes of natural and man-made objects
 - Excludes text images, computer graphics, animations, paintings, cartoons, X-ray images, etc.
- Combinatorially, it is possible to have $w \times h \times d$ distinct images
 - w, h: width and height of the image
 - d: number of possible color values
 - ightharpoonup For a 1024 imes 1024 gray-scale image, we have 256 million possibilities
- All the possibilities never arise in natural images
 - An image can be represented as a point in an image space with volume $w \times h \times d$
 - ► Natural scenes are localized in very narrow regions in the image space

Vision as statistical interpretation

- Human eyes have adapted to the statistics of the natural scenes
 - Key to robust vision despite noisy image data
 - e.g., we can "intuitively" reconstruct the occluded contour of the flower
- The statistical regularity is exploited to model vision as a process of statistical interpretation
 - Robust to natural variations / imperfections

Feature based representation in Computer Vision

- Image space $(w \times h \times d)$ is sparse
 - Scope for compressed representation
- A feature is an abstraction that characterizes the visual contents
 - It is a lower dimensional representation of an image
 - Results in data compression
- Examples of features
 - statistics of edges, colors, etc.

Abductive reasoning for vision

- The real world is in a conceptual state $h_i \in \mathcal{H}$
- A state manifests itself in observable data space ${\cal D}$
 - ightharpoonup Each state has h_i has a statistical model d_i
- We observe some data d
- Which model best explains the observed data?
- Use statistical match possible because
 - Statistical similarity of concepts
 - Sparsity of data space

 $Which \ model \ best \ explains \ observed \ data \ ?$

Quiz 03-02

End of Module 03-02