UNSUPERVISED DOMAIN ADAPTATION FOR SEMANTIC SEGMENTATION

Anurag Singh Zeynep Gerem

Outline

- Motivation
- Our Method
- Results

Image Transfer

Source image in target domain

Figure 1: Style transfer of source and target images

Fourier Domain Adaptation for Semantic Segmentation

Figure 2: An example of spectral transfer. A source image from GTA5 dataset transferred to target style [1]

 Mask with beta hyper-parameter to filter some range of frequencies

$$M_{\beta}(h, w) = \mathbb{1}_{(h, w) \in [-\beta H: \beta H, -\beta W: \beta W]}$$

The stylization of source to target is done according to

$$x^{s \to t} = \mathcal{F}^{-1}([M_{\beta} \circ \mathcal{F}^A(x^t) + (1 - M_{\beta}) \circ \mathcal{F}^A(x^s), \mathcal{F}^P(x^s)])$$

[1] Yanchao et al. Fda: Fourier domain adaptation for semantic segmentation. In CVPR, 2020.

Contrastive Learning with Class Imbalance

Distribution of pixels among classes in Cityscapes dataset

Avg False negative count over (30k) for 2k subset size

Unsupervised contrastive learning

➤ High number of false negatives

Supervised contrastive learning

Need for labels

OUR METHOD

PROPOSED METHOD

Model 1: Training to get pseudo labels

- Cross entropy on source images
- Entropy minimization on target images
- Get predictions for source stylized target images -> pseudo labels

Model 2: Training with pseudo labels

- Cross entropy on target stylized source images
- Entropy minimization on target images
- Supervised contrastive loss on target and source stylized target image pair using pseudo labels

Datasets

Source Domain Dataset

Target Domain Dataset

GTA5 Cityscapes

RESULTS

Training for pseudo labels

Train on grayscale source and target images
DeepLabV2 trained for 100k iterations
No image translation while training the model

Method	$_{load}$	sidewalk.	building	lle _M	fence	Pole	light	Ngjs	vegetation	terrain	Ŋs	Person	rider	car	tmc_k	p_{ds}	train	motocycle	b_{icycle}	mIoU
Trg in Trg	78.98	41.19	65.04	13.87	16.73	22.16	22.32	34.33	68.18	25.79	58.69	53.01	30.18	77.76	12.88	31.3	4.7	12.34	45.46	37.63
Trg in Src	89.42	40.66	76.9	13.96	22.18	24.03	21.51	39.23	80.78	24.08	81.87	48.06	33.16	80.88	34.43	42.23	26.33	15.59	45.99	44.28
Pseudo Labels	89.12	44.14	78.71	13.21	27.79	24.34	25.42	40.08	79.84	27.79	85.43	52.06	40.39	81.18	28.33	37.59	29.78	25.99	48.09	46.28

Table 1. Results of the first model on GTA-5→Cityscapes with DeepLab backbone

Pseudo label Visualization

UDA on ENet: Supervised Contrastive Learning

Cross entropy on source images

Contrastive loss with pseudo labels

Contrastive loss with ground truth labels

Method	I_{Oad}	sidewalk	building	Wall	$fe_{n_{Ce}}$	Pole	^{li} ght	sign	vegetation	terrain	Nys	Person	$^{I\dot{j}}de_{I}$	car.	truck	bu_S	train	motocycle	bicycle	mIoU
CE on Src	29.45	14.82	40.5	0.17	0.0	0.11	0.0	0.0	16.47	0.48	65.48	0.0	0.0	12.97	0.28	0.0	0.0	0.0	0.0	9.51
CL using PL	85.98	23.25	65.05	0.31	0.0	0.0	0.0	0.0	70.56	3.22	77.69	0.0	0.0	57.37	0.0	0.0	0.0	0.0	0.0	20.18
CL using GT	90.53	48.83	62.93	0.01	0.0	0.0	0.0	0.0	69.3	0.0	77.53	0.0	0.0	65.06	0.0	0.0	0.0	0.0	0.0	21.8

Table 3. Quantative comparison on GTA-5→Cityscapes with ENet backbone

Main Results:

Method	Foad	sidewalk	building	lle _M	fence	Pole	light	sign	vegetation	terrain	sky	Person	rider	car	truck	snq	train	motocycle	bicycle	mIoU
									VGG16 ł	ackbone	;									
CBST[23]	66.7	26.8	73.7	14.8	9.5	28.3	25.9	10.1	75.5	15.7	51.6	47.2	6.2	71.9	3.7	2.2	5.4	18.9	32.4	30.9
SIBAN[10]	83.4	13.0	77.8	20.4	17.5	24.6	22.8	9.6	81.3	29.6	77.3	42.7	10.9	76.0	22.8	17.9	5.7	14.2	2.0	34.2
Cycada[6]	85.2	37.2	76.5	21.8	15.0	23.8	22.9	21.5	80.5	31.3	60.7	50.5	9.0	76.9	17.1	28.2	4.5	9.8	0	35.4
AdvEnt[19]	86.9	28.7	78.7	28.5	25.2	17.1	20.3	10.9	80.0	26.4	70.2	47.1	8.4	81.5	26.0	17.2	18.9	11.7	1.6	36.1
DCAN[20]	82.3	26.7	77.4	23.7	20.5	20.4	30.3	15.9	80.9	25.4	69.5	52.6	11.1	79.6	24.9	21.2	1.30	17.0	6.70	36.2
CLAN[11]	88.0	30.6	79.2	23.4	20.5	26.1	23.0	14.8	81.6	34.5	72.0	45.8	7.9	80.5	26.6	29.9	0.0	10.7	0.0	36.6
LSD[15]	88.0	30.5	78.6	25.2	23.5	16.7	23.5	11.6	78.7	27.2	71.9	51.3	19.5	80.4	19.8	18.3	0.9	20.8	18.4	37.1
BDL[8]	89.2	40.9	81.2	29.1	19.2	14.2	29.0	19.6	83.7	35.9	80.7	54.7	23.3	82.7	25.8	28.0	2.3	25.7	19.9	41.3
FDA-MBT[21]	86.1	35.1	80.6	30.8	20.4	27.5	30.0	26.0	82.1	30.3	73.6	52.5	21.7	81.7	24.0	30.5	29.9	14.6	24.0	42.2
Ours	92.79	55.48	74.99	7.17	21.35	11.39	25.65	39.98	80.51	26.35	84.28	38.34	32.72	70.8	18.95	25.74	28.76	37.91	37.03	42.64
								Re	esNet101	backboi	ne									
AdaStruct[17]	86.5	25.9	79.8	22.1	20.0	23.6	33.1	21.8	81.8	25.9	75.9	57.3	26.2	76.3	29.8	32.1	7.2	29.5	32.5	41.4
DCAN[20]	85.0	30.8	81.3	25.8	21.2	22.2	25.4	26.6	83.4	36.7	76.2	58.9	24.9	80.7	29.5	42.9	2.5	26.9	11.6	41.7
DLOW[5]	87.1	33.5	80.5	24.5	13.2	29.8	29.5	26.6	82.6	26.7	81.8	55.9	25.3	78.0	33.5	38.7	0.0	22.9	34.5	42.3
Cycada[6]	86.7	35.6	80.1	19.8	17.5	38.0	39.9	41.5	82.7	27.9	73.6	64.9	19	65.0	12.0	28.6	4.5	31.1	42.0	42.7
CLAN[11]	87.0	27.1	79.6	27.3	23.3	28.3	35.5	24.2	83.6	27.4	74.2	58.6	28.0	76.2	33.1	36.7	6.7	31.9	31.4	43.2
ABStruct[2]	91.5	47.5	82.5	31.3	25.6	33.0	33.7	25.8	82.7	28.8	82.7	62.4	30.8	85.2	27.7	34.5	6.4	25.2	24.4	45.4
AdvEnt[19]	89.4	33.1	81.0	26.6	26.8	27.2	33.5	24.7	83.9	36.7	78.8	58.7	30.5	84.8	38.5	44.5	1.7	31.6	32.4	45.5
BDL[8]	91.0	44.7	84.2	34.6	27.6	30.2	36.0	36.0	85.0	43.6	83.0	58.6	31.6	83.3	35.3	49.7	3.3	28.8	35.6	48.5
FDA	90.0	40.5	79.4	25.3	26.7	30.6	31.9	29.3	79.4	28.8	76.5	56.4	27.5	81.7	27.7	45.1	17.0	23.8	29.6	44.6
FDA-MBT[21]	92.5	53.3	82.4	26.5	27.6	36.4	40.6	38.9	82.3	39.8	78.0	62.6	34.4	84.9	34.1	53.1	16.9	27.7	46.4	50.45
Ours	92.68	53.3	78.22	23.44	17.81	25.29	15.67	36.52	79.85	34.42	82.8	45.88	31.82	83.67	47.95	42.76	30.61	17.59	41.66	46.42

Table 1. Quantative comparison on GTA-5→Cityscapes with VGG16 and ResNet 101 backbone where FDA-BMT refers to the entire method proposed in [21] and FDA refers to single setting training.

Ablations

Method	road	sidewalk	building	lle _M	fence	pole	light	sign	vegetation	terrain	sky	Person	rider	car	truck	snq	train	motocycle	bicycle	mIoU
FDA $(\beta = 0.01, \lambda_{ent} = 0)$	29.45	14.82	40.5	0.17	0.0	0.11	0.0	0.0	16.47	0.48	65.48	0.0	0.0	12.97	0.28	0.0	0.0	0.0	0.0	9.51
FDA ($\beta = 0.01$)	82.42	2.96	59.78	0.04	0.0	0.02	0.0	0.0	64.96	18.46	61.65	0.0	0.0	48.11	0.87	0.0	0.0	0.0	0.0	17.86
FDA ($\beta = 0.05$)	82.41	13.73	56.1	0.01	0.0	0.77	0.0	0.0	65.06	5.01	62.1	0.0	0.0	33.86	2.25	0.0	0.0	0.0	0.0	16.91
FDA ($\beta = 0.09$)	72.07	22.07	56.32	0.66	0.0	2.17	0.0	0.0	63.37	12.83	57.97	0.0	0.0	30.11	1.46	0.0	0.0	0.0	0.0	16.79
CL using PL (Ours)	80.11	27.72	72.31	1.61	0.0	0.0	0.0	0.0	71.43	0.38	77.47	0.0	0.0	61.33	0.0	0.0	0.0	0.0	0.0	20.65
CL using GT	90.53	48.83	62.93	0.01	0.0	0.0	0.0	0.0	69.3	0.0	77.53	0.0	0.0	65.06	0.0	0.0	0.0	0.0	0.0	21.8
	Ablation on ENet backbone																			

Table 2. Ablation of the first and the second model for GTA-5→Cityscapes

	mIoU		
CE	CL	$\lambda_{ent} = 0$	
	√		46.42
\checkmark			45.42
			45.01
		✓	44.64

Table 3. Ablation on Deeplab backbone

Qualitative Results on DeepLab

Takeaway

- Contrastive Learning(CL) > psuedo label CE in unsupervised setting
- Contrastive Learning(CL) can have architecture & dataset challenges

Thank You

REPO LINK

