```
In [2]:
# pip install numpy
# pip install pandas
# pip install matplotlib
# pip install seaborn
In [5]:
import numpy as np
{\tt import\ pandas\ as\ pd}
import matplotlib.pyplot as plt
import seaborn as sns
In [10]:
df = pd.read csv("C:/Users/priya/Downloads/Expanded data with more features.csv/Expanded data with more fe
atures.csv")
print(df.head())
   Unnamed: 0 Gender EthnicGroup
                                        ParentEduc LunchType TestPrep
Λ
                                                       standard none
          O female NaN bachelor's degree
                     group C some college standard group B master's degree standard group A associate's degree free/reduced
           1 female
2 female
1
                                                                      NaN
2
                                                                      none
3
              male
                                                                     none
                     group C some college
4
           4
              male
                                                       standard
 ParentMaritalStatus PracticeSport IsFirstChild NrSiblings TransportMeans
0
                                                 3.0 school_bus
            married regularly
                                   yes
             married
                         sometimes
                                                       0.0
                                                                      NaN
                                           yes
2
             single
                       sometimes
                                           yes
                                                       4.0
                                                             school_bus
3
             married
                         never
                                                       1.0
                                                                      NaN
                                            no
                                                       0.0 school_bus
                      sometimes
4
             married
                                           yes
 WklyStudyHours MathScore ReadingScore WritingScore
                 71
0
           < 5
                                     71
         5 - 10
1
                        69
                                      90
                                                    88
                       87
          < 5
                                     93
2
                                                   91
         5 - 10
                                     56
3
                       45
                                                   42
                       76
4
         5 - 10
                                     78
                                                   7.5
In [11]:
df.describe()
```

Out[11]:

	Unnamed: 0	NrSiblings	MathScore	ReadingScore	WritingScore
count	30641.000000	29069.000000	30641.000000	30641.000000	30641.000000
mean	499.556607	2.145894	66.558402	69.377533	68.418622
std	288.747894	1.458242	15.361616	14.758952	15.443525
min	0.000000	0.000000	0.000000	10.000000	4.000000
25%	249.000000	1.000000	56.000000	59.000000	58.000000
50%	500.000000	2.000000	67.000000	70.000000	69.000000
75%	750.000000	3.000000	78.000000	80.000000	79.000000
max	999.000000	7.000000	100.000000	100.000000	100.000000

In [12]:

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 30641 entries, 0 to 30640 Data columns (total 15 columns): # Column Non-Null Count Dtype ___ _____ 0 Unnamed: 0 30641 non-null int64 1 Gender 30641 non-null object 2 28801 non-null object EthnicGroup 28796 non-null object 30641 non-null object 3 ParentEduc 4 LunchType 28811 non-null object TestPrep ParentMaritalStatus 29451 non-null object PracticeSport 30010 non-null object

```
9
     NrSiblings
                           29069 non-null
                                           float64
 10 TransportMeans
                           27507 non-null object
 11 WklyStudyHours
                           29686 non-null object
                           30641 non-null int64
30641 non-null int64
 12 MathScore
 13 ReadingScore
 14 WritingScore
                           30641 non-null int64
dtypes: float64(1), int64(4), object(10)
memory usage: 3.5+ MB
In [16]:
df.isnull().sum()
Out[16]:
Unnamed: 0
                           0
Gender
EthnicGroup
                        1840
                        1845
ParentEduc
LunchType
                           0
                        1830
```

Drop unnamed colum

IsFirstChild

TestPrep

MathScore

ReadingScore

WritingScore dtype: int64

IsFirstChild NrSiblings

TransportMeans WklyStudyHours

ParentMaritalStatus PracticeSport

29737 non-null

object

df = df.drop ("Unnamed: 0", axis=1) print(df.head())

change weekly study hours column

631

1572 3134

955

0

0 0

```
In [30]:
df["WklyStudyHours"] = df["WklyStudyHours"].str.replace("5-10","5-10")
df.head()
Out[30]:
```

Gender EthnicGroup ParentEduc LunchType TestPrep ParentMaritalStatus PracticeSport IsFirstChild NrSiblings TransportMeans Wi bachelor's female NaN standard none married regularly ves 3.0 school_bus degree female group C standard NaN married sometimes 0.0 NaN ves college master's female group B standard none single sometimes 4.0 school_bus degree associate's male group A free/reduced married 1.0 NaN none never no degree some standard married school bus male group C none sometimes 0.0 ves college

gender distribution

```
In [139]:
plt.figure(figsize= (4,3))
custom palette = {"male": "orange", "female": "violet"}
ax = sns.countplot(data=df, x="Gender", hue="Gender", palette=custom palette, legend=False)
ax.bar_label(ax.containers[0])
plt.title("Gender Distribution")
plt.show()
```


In []:

```
#from the above chart we have analyzed that:
#the number of females in the data is more than the number of males
```

In [42]:

```
gb = df.groupby("ParentEduc").agg({"MathScore":'mean', "ReadingScore":"mean", "WritingScore":"mean"})
print(gb)
```

	MathScore	ReadingScore	WritingScore
ParentEduc			
associate's degree	68.365586	71.124324	70.299099
bachelor's degree	70.466627	73.062020	73.331069
high school	64.435731	67.213997	65.421136
master's degree	72.336134	75.832921	76.356896
some college	66.390472	69.179708	68.501432
some high school	62.584013	65.510785	63.632409

In [53]:

```
plt.figure(figsize= (4,4))
sns.heatmap(gb, annot = True)
plt.title("Relationship between parent's Education and Student's Score")
plt.show()
```

Relationship between parent's Education and Student's Score

In []:

#from the above chart we have concluded that the education of the parents have a good imapact on there sco res

In [49]:

```
gb1 = df.groupby("ParentMaritalStatus").agg({"MathScore":'mean', "ReadingScore":"mean", "WritingScore":"mea
n"})
print(gb1)
```

```
MathScore ReadingScore WritingScore
ParentMaritalStatus
divorced
                     66.691197
                                   69.655011
                                                 68.799146
married
                     66.657326
                                   69.389575
                                                 68.420981
single
                     66.165704
                                  69.157250
                                                 68.174440
widowed
                     67.368866
                                   69.651438
                                                 68.563452
```

In [54]:

```
plt.figure(figsize= (3,3))
sns.heatmap(gb1, annot = True)
plt.title("Relationship between parent's Maritual Status and Student's Score")
plt.show()
```

Relationship between parent's Maritual Status and Student's Score

In []:

#from the above chart above chart we have concluded that there is no/negligible
#impact on the student's score due to their parents maritual status

In [58]:

```
sns.boxplot(data = df, x = "MathScore")
plt.show()
```


In [56]:

```
sns.boxplot(data = df, x = "ReadingScore")
plt.show()
```


In [60]:

```
sns.boxplot(data = df, x= "WritingScore")
plt.show()
```


In [62]:

```
print(df["EthnicGroup"].unique())
[nan 'group C' 'group B' 'group D' 'group E']
```

Distribution of Ethnic Groups

In [93]:

```
groupA = df.loc[(df['EthnicGroup'] == "group A")].count()
groupB = df.loc[(df['EthnicGroup'] == "group B")].count()
groupC = df.loc[(df['EthnicGroup'] == "group C")].count()
groupD = df.loc[(df['EthnicGroup'] == "group D")].count()
groupE = df.loc[(df['EthnicGroup'] == "group E")].count()

l = ["group A", "group B", "group C", "group D", "group E"]
mlist = [groupA["EthnicGroup"], groupB["EthnicGroup"], groupC["EthnicGroup"], groupD["EthnicGroup"], groupE["EthnicGroup"]]

plt.pie(mlist, labels = l, autopct = "%1.2f%%")
plt.title("Distribution of Ethnic Groups")
plt.show()
```

Distribution of Ethnic Groups

In [164]:

```
plt.figure(figsize= (5,5))
ax = sns.countplot(data = df, x = 'EthnicGroup', hue='EthnicGroup', palette='Set2', dodge=False, legend=F
alse)
for bars in ax.containers:
    ax.bar_label(bars)
plt.show()
```


In [166]:

 $\#The\ bar\ chart\ visualizes\ the\ distribution\ of\ different\ ethnic\ groups\ within\ the\ dataset.\ Each\ bar\ represents\ an\ ethnic$

#group and the height of the bar indicates the count of occurrences for that group in the dataset.

 $\#This\ visualization\ helps\ to\ understand\ the\ relative\ size\ of\ each\ ethnic\ group\ in\ the\ dataset,$ $\#showing\ that\ Groups\ C\ and\ D\ are\ the\ most\ prevalent,\ while\ Group\ A\ is\ the\ least\ prevalent.$

In [120]:

```
sns.set(rc={'figure.figsize':(4,4)})
ax = sns.countplot(data=df, x='WklyStudyHours', hue='WklyStudyHours', palette='Set2', dodge=False, legend
=False)

for bars in ax.containers:
    ax.bar_label(bars)
```

16246

In [121]:

#from The above graph we find most common range of weekly study hours is **5-10 hours**, indicating that a significant

#portion of individuals in the dataset study within this range.

#followed by **less than 5 hours**, suggesting that many individuals study relatively few hours each week.

conclusion

In [165]:

#we can conclude that parental education likely plays a role in students' academic performance,
#while factors such as gender and parental marital status may have minimal influence.
#Additionally, the distribution of ethnic groups in the dataset suggests diversity, and the study hours
#indicate varying levels of dedication to academic work.