Zastosowanie metod formalnych

Karol Kozlowski¹, Katarzyna Mielęcka ²

Politechnika Warszawska, Wydzial Elektryczny

Metody formalne

Metody formalne to matematyczne techniki wspomagające projektowanie i analizę systemów informatycznych. Główną zaletą metod formalnych są **matematyczne gwarancje poprawności**, szczególnie istotne w systemach krytycznych (medycznych, transportowych). Pozwalają one identyfikować złożone błędy, takie jak zakleszczenia czy warunki wyścigu, które często wymykają się tradycyjnym metodom testowania.

Kluczowe zalety metod formalnych

Some introduction of the list.

- Formalne gwarancje poprawności zapewnienie matematycznie udowodnionej poprawności systemów, szczególnie w przypadku wymagań bezpieczeństwa.
- Precyzyjna specyfikacja wymagań eliminacja niejednoznaczności dzięki matematycznym modelom i notacjom.
- Wykrywanie złożonych błędów identyfikacja problemów takich jak zakleszczenia (deadlocks) czy warunki wyścigu (race conditions), które trudno wykryć tradycyjnymi metodami testowania.

Enumerate List

Some introduction of the list.

- 1. Bulleted copy. Keep it short with bite-size chunks of information.
- **1.1** Bulleted copy. Keep it short with bite-size chunks of information.
- 2. Bulleted copy. Keep it short with bite-size chunks of information.
- 3. Bulleted copy. Keep it short with bite-size chunks of information.

System PVS w pigułce

pointer_env [P: TYPE, T: TYPE]: THEORY BEGIN pointer: TYPE = P + {nil} env: TYPE = [pointer \rightarrow (T + {undefined})] END pointer_env

Zastosowanie metod formalnych – TLA+

Metody formalne pozwalają na matematyczne modelowanie i automatyczną weryfikację systemów.

TLA+ wykorzystuje trzy główne podejścia:

- Modelowanie systemu zmienne, akcje, przestrzeń stanów,
- Inwarianty warunki poprawności w każdym stanie,
- Własności temporalne analiza zachowania w czasie.

Weryfikacja odbywa się za pomocą narzędzia TLC i model checkingu. TLA+ stosowany jest w Amazonie, Microsoftcie i Google.

Figure

LATEX can draw figures with the tikz package:

Figure: An Example of a Three-Hop Connection

Block with Another Color

A gray block with two different colors.

Thank you for using!

For issues on the template, please visit the Github page:

https://github.com/zhtluo/purdue-slide-template

Bibliografia

- Leslie Lamport, Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers, Addison-Wesley, 2002.
- Chris Newcombe et al., How Amazon Web Services Uses Formal Methods, Communications of the ACM, 2015.
- lgor Konnov, Jure Kukovec, Thanh-Hai Tran, TLA+ Model Checking Made Symbolic, CAV 2019.
- Hillel Wayne, *Practical TLA+: Planning Driven Development*, Lospinato Books, 2018.
- S. Poreda, Wykorzystanie metod formalnych do specyfikacji struktur wskaźnikowych, Uniwersytet Warszawski, 2023.
- Sławomir Lasota, Weryfikacja protokołu Needhama-Schroedera przy użyciu narzędzi SPIN i UPPAAL, Wydział Matematyki, Informatyki i Mechaniki, Uniwersytet Warszawski,
- Igor Wojnicki, Weryfikacja własności systemów współbieżnych z użyciem metod formalnych, Praca doktorska, Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, 2019,
- Leslie Lamport, Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers, Addison-Wesley, 2002.
- Chris Newcombe et al., How Amazon Web Services Uses Formal Methods, Communications of the ACM, 2015.
- Igor Konnov, Jure Kukovec, Thanh-Hai Tran, *TLA+ Model Checking Made Symbolic*, CAV 2019.
- Hillel Wayne, Practical TLA+: Planning Driven Development, Lospinato Books, 2018.
 S. Poreda, Wykorzystanie metod formalnych do specyfikacji struktur wskaźnikowych, Uniwersytet Warszawski, 2023.
- Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, Michael Deardeuff, How Amazon Web Services Uses Formal Methods, Communications of the ACM, Vol. 58, No. 4, pp. 66–73, 2015.