Crude Membrane protein extraction from tissues

Vivian Liu

Abstract

Citation: Vivian Liu Crude Membrane protein extraction from tissues. protocols.io

dx.doi.org/10.17504/protocols.io.djt4nm

Published: 30 Jul 2015

Before start

Prepare High salt buffer, Carbonate buffer, Wash buffer, Protease inhibitors Instruments you need: ULTRA-TURRAX Dispenser T10 basis S25 (IKA)(or other dispensers); Ultracentrifuge.

Protocol

Step 1.

Thaw 20-50 mg of tissue or 15CM dish cells in 1 mL of high salt buffer.

NOTES

Vivian Liu 30 Jul 2015

High salt buffer: To impair of ionic bonds.2 M NaCl, 10 mM HEPES-NaOH, pH 7.4, and 1 mM EDTA. Store at 4° C

Step 2.

Homogenize tissues using an IKA Ultra Turbax blender at maximum speed (~25,000rpm) for 30 s.

Step 3

Ultracentrifuge the suspension in Beckman MLA 130 at 100,000 g for 10 min. The tubes should be balanced to a difference less than 50 mg.

Step 4.

Discard the supernatant and homogenize pellets in 1 mL of carbonate buffer as in step 2.

NOTES

Vivian Liu 30 Jul 2015

Carbonate buffer: To allow efficient removal of soluble proteins1 M Na2CO3 and 1 mM EDTA, pH 11.3. Store at 4°C.

Step 5.

Incubate for 30 min with gentle mixing.

Step 6.

Collect the non-soluble material by centrifugation as in step 3 (If the content of integral membrane proteins in the purified membranes is not at least 30–40% of total identified proteins, steps 4–6 can be repeated two to three times).

Step 7.

Discard supernatant and resuspend pellets in wash buffer as in step 2.

NOTES

Vivian Liu 30 Jul 2015

Wash buffer: To melt non-integral membrane proteins.4 M urea, 100 mM NaCl, 10 mM HEPES-NaOH, pH 7.4, and 1 mM EDTA.

Step 8.

Collect the crude membranes by centrifugation as in step 3.