

The 2020 ICPC Vietnam Northern and Central Provincial Programming Contest FPT University November 1st, 2020

Problem F Palindrome Counter

Time Limit: 1 seconds Memory Limit: 512 Megabytes

Problem description

A palindromic number is a number (in some base b) that is the same when written forwards or backwards. The first few palindromic numbers are therefore are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, ... (rule 1).

In some special cases, 0012100, 00 is a palindromic number. Therefore, 12100, 1210, 00 is also a palindromic number (*rule 2*).

We can classify positive integers into three categories:

- Type 0: numbers that not palindromic number.
- Type 1: palindromic numbers according to rule 1.
- Type 2: palindromic numbers according to rule 2.

All palindrome that less than or equal to 100 are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20, 22, 30, 33, 40, 44, 50, 55, 60, 66, 70, 77, 80, 88, 90, 99, 100.

Given a number M is a non-negative integer. The function F(M) returns the number of palindromes (including the 2 types: type 1 and type 2) less than or equal to M ($0 \le M \le 10^{35}$).

M	0	15	39	55	60	85	88	90	100
F(M)	1	12	16	20	21	25	26	27	29

To simplify the problem, given a number N is a non-negative integer, the function P(N) returns the value of $F(10^N)$ ($0 \le N \le 35$).

N	0	1	2	3	4	 15	 35
P(N)	2	11	29	137	335	 144,444,413	 1,444,444,444,444,373

Task

Given a N positive numbers, your mission is to calculate P(N).

The 2020 ICPC Vietnam Northern and Central Provincial Programming Contest FPT University November 1st, 2020

Input

- On the first line is the number of test case, $1 \le T \le 36$.
- In the next T lines, each line contains a non-negative integer N_i ($1 \le i \le T$, $0 \le N_i \le 35$).

Output

The result has T lines, the i^{th} line contains the value of $P(N_i)$ ($1 \le i \le T$).

Example 1:

Input	Output
5	335
4	14429
7	14444444444444373
35	3444444403
20	144444413
15	

Example 2:

Input	Output
3	11
1	34427
8	344423
10	

Example 3:

Input	Output
5	34444444444383
30	29
2	137
3	14444444444444377
33	1444444444393
25	