Preparation of Whole Slide Images for usage in Neural Networks

Master Thesis

Submitted in partial fulfillment of the requirements for the degree of

Master of Science (M.Sc.) in Applied Computer Science

at the

Berlin University of Applied Sciences (HTW)

First Supervisor: Prof. Dr. Peter Hufnagl

Second Supervisor: Diplom Informatiker Benjaming Voigt

Submitted by: Sascha Nawrot (B.Sc.)

Berlin, April 18, 2016

Preface

Hello, this is the preface

Abstract

This is the abstract.

Contents

1	Intr	oducti	ion	3						
	1.1	Motiva	ation	3						
	1.2	Resear	rch Objective	4						
	1.3	About	this thesis	5						
2	Background 6									
	2.1	_	tion of terms	6						
		2.1.1	Deep Zoom Image Format	6						
		2.1.2	Microservice	7						
		2.1.3	Neural Network	8						
	2.2	Proces	ss Chain	9						
		2.2.1	Definition of Conversion Service	10						
		2.2.2	Definition of Annotation Service	11						
		2.2.3	Definition of Tessellation Service	12						
3	Methodology 13									
3.1 Conversion Service										
	_	3.1.1	Literature review	13						
		3.1.2	Chosen methods	13						
	3.2	Annot	cation Service	13						
	• -	3.2.1	Literature review	13						
		3.2.2	Chosen methods	13						
	3.3	Tessel	lation Service	13						
		3.3.1	Literature review	13						
		3.3.2	Chosen methods	13						
4	Implementation 14									
•	4.1		mentation of Conversion Service	14						
		4.1.1	Used technologies and frameworks	14						
		4.1.2	Documentation	14						
	4.2	Implei	mentation of Annotation Service	14						
		4.2.1	Used technologies and frameworks	14						
		4.2.2	Documentation	14						
	4.3	Implei	mentation of Tessellation Service	14						

		4.3.1 Used technologies and frameworks	14							
		1.3.2 Documentation	14							
5	Disc	Discussion 1								
	5.1	Conversion Service Test	15							
		5.1.1 Setup	15							
		5.1.2 Results	15							
	5.2	Annotation Service Test	15							
		5.2.1 Setup	15							
		5.2.2 Results	15							
	5.3	Tessellation Service Test	15							
		5.3.1 Setup	15							
		5.3.2 Results	15							
6	Con	Conclusion								
	6.1	Results	16							
	6.2	Conclusion	16							
	6.3	Future tasks	16							
Bibliography										
Li	List of Figures									
Li	List of Tables									

Introduction

1.1 Motivation

The medical discipline of pathology is in a digital transformation. Instead of looking at tissue samples through the means of traditional light microscopes it now is possible to digitalize those samples. This digitalization is done with the help of a so called slide scanner. The result of such an operation is awhole slide image (WHI) [2]. The digital nature of WHIs opens the door to the realm of image processesing and analysis which yields certain benefits, such as the use of image segmentation and registration methods to support the pathologist in his/her work. A very promising area of image analysis are the so called neural networks¹, which follow a machine learning approach. Their use, especially in the area of image classification and object recognition, made big breakthroughs possible in the recent past, e.g. Karpathy and Fei-Fei [1], who created a neural network which is capable of describing an image or a scene with written text (see fig. 1.1 for some examples).

There is enormous potential in the use of neural networks in the digital pathology as well, but to transfer these algorithms and technologies, certain hindrances must be overcome. One of those hindrances is the need for proper training samples and an established ground truth². While generally there are huge amounts of WHIs, most of them won't be usable without further preparation as a training sample. One way of preparing them are annotations. These can be added to the WHIs, stored and later used for training.

Therefore the goal of this thesis is to give tools into the hands of pathologists to annotate whole slide images and save those annotations in such a way that they will be usable later in the combination with neural networks.

¹See chapter 2.1.3

² Ground truth refers to a training sample whose outcome is known and validated as true.

Figure 1.1: Example results of the in [1] introduced model (source: http://cs.stanford.edu/people/karpathy/deepimagesent/

1.2 Research Objective

The objective of this thesis is the conceptualization and implementation of tools for WHIs, which allow for their annotation and a further usage in neural networks. As a requirement, the tools have to be implemented in the form of microservices³, each one with their own short documentation, including instructions for installation, usage and some examplary use cases. To achieve this goal, the implementation of 3 microservices is necessary.

The first microservice needs to be capable of converting a given set of image formats into the so called *Deep Zoom Image Format*⁴. The supported image formats are *.bif*, *.mrxs*, *.ndpi*, *.scn*, *.svs*, *.svslide*, *.tif*, *.tiff*, *.vms* and *.vmu*, in accordance with the capabilities of the Openslide framework [3].

The second microservices task is to give a tool at hand with which a pathologist will be able to annotate all those WHIs which were converted using the first microservice. Furthermore, the made annotations need to be persisted together with the highest resolution of the corresponding image.

The third microservice will be responsible for preparing the annotated WHIs for the further usage in neural networks. For that purpose the service needs to

³See chapter 2.1.2

⁴See chapter 2.1.1

be capable of dividing a single annotated whole slide image into multiple tiles, with the choice of either using the whole image or just the annotated areas. Furthermore, each tile needs enough information to reconstruct the whole image again afterwards.

1.3 About this thesis

Apart from the *Introduction*, there are 5 more chapters in this thesis.

Chapter 2 - Background defines some terminoligy and the general, required process chain which are all necessary to understand further chapters of this thesis. Furthermore, 3 microservices will be introduced in short.

Chapter 3 - Methodology gives an overview over the current state of research for each microservice, as well as best practices.

Chapter 4 - Implementation goes into further details about how each microservice is implemented and which software and frameworks were used for that.

Chapter 5 - Discussion will introduce a measurement for each microservice to measure its success. It will discuss the test setup as well as list the results.

Chapter 6 - Conclusion will interpret the Results from Chapter 5 and analyze them closer. Furthermore, it will give an idea of what steps are to be taken next in the future.

Background

2.1 Definition of terms

To prevent missunderstandings and confusion, the following subsections 2.1.1 - 2.1.3 will define some terminoligy which will be mandatory for the understanding of certain areas of this thesis.

2.1.1 Deep Zoom Image Format

Figure 2.1: 3 consecutive levels of a .dzi image (source: https://i-msdn.sec.s-msft.com/dynimg/IC141135.png)

The Deep Zoom Image Format (.dzi) is an xml-based file format maintained by Microsoft to improve performance and quality in the handling of large image

files. For this purpose an image is represented in a tiled pyramid (see fig. 2.1).

As seen in fig. 2.1 there are multiple versions of a single image in different resolutions. Each resolution in the pyramid is called a *level*. At each level the image is scaled down by the factor 4 (2 in each dimension). Furthermore, the image gets tiled up into 256^2 tiles (256 in each dimension) [7].

If a viewer wants to view a certain area of the image (e.g. the highlighted tile in the last image in fig. 2.1), only the corresponding tiles need to be loaded. This saves large amounts of bandwidth and memory. The same goes for a viewer, who is zoomed out very far. In such a view the full level of detail isn't needed, so that a version from a lower level can be loaded.

A .dzi file consists of two parts: a describing .xml file¹ and a folder with more subfolder. Each subfolder describes a level and as such contains all the tiles for that particular level.

2.1.2 Microservice

The concept of microservices is to seperate one monolithic software construct into several smaller, modular pieces of software. According to [9], the idea of microservices is not new, but can be found in the UNIX philosophy. Three basic ideas are stated in [9]:

- A program should fulfill only one task, and it should do it well.
- Programs should be able to work together.
- Besides, the programs should use a universal interface.

As such, microservices are a modularization concept. However, they differ from other concepts, since they are independet from each other. This is a trait, other modularization concepts usually lack. As a result, changes in one microservice don't bring up the necessity of deploying the whole product again but just the one service.

Because of their inherent traits, microservices need to be their own processes in one way or another, may it be as an actual operating system process or as e.g. a docker container².

One big advantage of this modularization is that each service can be written in a different programming language, using different frameworks and tools. Furthermore, each microservice can bring along its own support services and data storages, like data bases. It is imperative for the concept of modularization, however, that each microservice has its own storage of which it is in charge of.

A disadvantage of this modularization is, that inter process communication becomes a necessity. However, there are different approaches with which microservices can communicate. [9] suggests the following:

 $^{^1\}mathrm{Frameworks}$ like OpenSeaDragon also support further formats, such as .json.

²Docker is a tool, which enables software to be wrapped up in so called "containers". Those containers are a complete, but stripped down, filesystem containing everything the software needs to run (e.g. source code, runtime environment, system tools and libraries, ...). See https://www.docker.com/what-docker

- communication via protocols like REST³
- an HTML user interfaces with links to other microservices
- data replication

It is important to define how and with which technology to communicate with, when addressing each microservices to ensure that this particular one can actually be reached with the defined method.

2.1.3 Neural Network

Artificial neural networks (NN) are a group of models inspiried by biological neural networks⁴. In a NN, regardless if artificial or biological, many neurons are interconnected with each other. The construct of interconnected neurons can be seperated into layers, of which there are three kinds:

- input layer
- hidden layer
- output layer

Figure 2.2: 3 layer NN (source: http://docs.opencv.org/2.4/_images/mlp.png)

Basically, the input layer, as the name suggests, is the layer where the NN gets its input data from. After that, there are a number of hidden layers⁵,

 $^{^3}$ Representational state transfer (REST) is architectural style for distributed hypermedia systems, see [5].

⁴For the remainder of this thesis, neural network will always represent the artificial one, unless explicitly stated otherwise.

 $^{^5\}mathrm{A}$ NN doesn't necessarily need to have any hidden layers. For non trivial problems however, it becomes mandatory.

which are responsible for further computation of the input values. At the end is the output layer which is responsible for communicating the results of the prior operations (compare fig. 2.2). Each single neuron has input values and an output value. Once the input reaches a certain trigger point, the cell in the neuron sends a signal as output.

A huge benefit of NN, over other software models, is their ability to learn. While certain problems are easier to solve in a sequential, algorithmic fashion (say an equation or the towers of hanoi), certain problems are so complex that new approaches are needed, while other problems can't be solved algorithmic at all. With the use of adequate training samples, a NN can train to solve a problem, not unlike a human, by learning. Since this topic alone is enough for a number of theses, the author refers to [6] for further detailed information.

2.2 Process Chain

This section and its following subsections (2.2.1 - 2.2.3) are dedicated to illustrate the process chain necessary to accomplish the research objective stated in chapter 1.2. The process chain consists of the following steps:

- (a) convert WHIs of different⁶ formats to .dzi format
- (b) annotate .dzi images with the annotation tool made for this purpose
- (c) persist made annotations in a file
- (d) seperate annotated images into tiles of custom size
- (e) keep correspondence between tiles of an image and its annotations

To fulfill those steps, 3 Microservices will be introduced in the following subsections. Those are:

- Conversion Service (see chap. 2.2.1)
 This service will be responsible for converting WHIs into the .dzi format (a).
- Annotation Service (see chap. 2.2.2)
 This service will offer a tool to annotate an image (b) and persist made annotations (c).
- Tessellation Service (see chap. 2.2.3)
 This service will be responsible for seperating an image into tiles (d) and keep the correspondence between tiles and annotations (e).

 $^{^6\}mathrm{see}$ chap. 2.2.1 for a listing of valid input formats.

2.2.1 Definition of Conversion Service

The devices which create an WHI, so called whole slide scanners, create images in various formats, depending on the producer. The conversion service has the goal of converting those formats into the .dzi format, not only for unification, but also to add the deep zoom feature⁷ to the images (see fig. 2.3). This is of special importance, since an average WHI with 1.600 megapixels has a size of approximately 4.6 GB [4].

Figure 2.3: Visualization of the Conversion Service

The Conversion Service will be implemented as a python script, which upon calling takes every single WHI of a certain format inside a given folder and converts it to the .dzi format. Each converted WHI will be saved in another specified folder. Valid image formats (and their corresponding producers) for conversion are:

- .bif (Ventana)
- .mrxs (Mirax)
- .ndpi (Hamamatsu)
- .scn (Leica)
- .svs (Aperio)
- .svslide (Sakura)
- .tif (Aperio, Trestle, Ventana)
- .tiff (Philips)
- .vms (Hamamatsu)
- .vmu (Hamamatsu)

 $^{^7}$ See chap. 2.1.1

2.2.2 Definition of Annotation Service

The first step to create a valid training sample for a NN is to annotate the WHIs which will later serve as that. To do so, a GUI must be deployed which enables a pathologist to make annotations to an WHI. Additionally, the Annotation Service also needs to be capable to persist made annotations (see fig. 2.4). This will happen by saving the annotations into a file which will be placed next to the image.

Figure 2.4: Visualization of the Annotation Service

To enable the pathologist to make annotations in the first place, a GUI needs to be offered by the service. This GUI will be developed in iterations with the help of a number of pathologists to adapt it to their wishes and grant the best possible usability. The basic concept of the first iteration will be based on the Microdraw⁸ GUI (see fig. 2.5).

Figure 2.5: Microdraw GUI with opened WHI

 $^{^8{\}rm See}$ https://github.com/r03ert0/microdraw for more information on the Microdraw project

Microdraw is a webbased annotation tool, which describes itself as

"(...) a collaborative vectorial annotation tool for ultra high resolution data, such as that produced by high-throughput histology." [8]

Therefore, the GUI of the Annotation Service, or Annotation Service Viewer (ASV), will run as a web application in a browser. Annotations will be made by selecting a shape or annotation method from the various tools in the toolbar (see the gray bar on the left in fig. 2.5). After selecting the area to be annotated, an actual description of that area can be made via keyboard input.

When the pathologist is done or wants to save the made annotations, the Annotation Service will create a file in which they will be persisted in. Only one WHI can be opened in one ASV at a time.

2.2.3 Definition of Tessellation Service

Figure 2.6: Visualization of the Tessellation Service

Methodology

- 3.1 Conversion Service
- 3.1.1 Literature review
- 3.1.2 Chosen methods
- 3.2 Annotation Service
- 3.2.1 Literature review
- 3.2.2 Chosen methods
- 3.3 Tessellation Service
- 3.3.1 Literature review
- 3.3.2 Chosen methods

Implementation

- 4.1 Implementation of Conversion Service
- 4.1.1 Used technologies and frameworks
- 4.1.2 Documentation
- 4.2 Implementation of Annotation Service
- 4.2.1 Used technologies and frameworks
- 4.2.2 Documentation
- 4.3 Implementation of Tessellation Service
- 4.3.1 Used technologies and frameworks
- 4.3.2 Documentation

Discussion

- 5.1 Conversion Service Test
- 5.1.1 Setup
- 5.1.2 Results
- 5.2 Annotation Service Test
- 5.2.1 Setup
- 5.2.2 Results
- 5.3 Tessellation Service Test
- 5.3.1 Setup
- 5.3.2 Results

Conclusion

- 6.1 Results
- 6.2 Conclusion
- 6.3 Future tasks

Bibliography

- [1] L. Fei-Fei A. Karpathy. Deep Visual-Semantic Alignments for Generating Image Descriptions. Department of Computer Science, Standford University, 2015. http://cs.stanford.edu/people/karpathy/cvpr2015.pdf.
- [2] T. Cornish. An introduction to digital whole slide imaging and whole slide image analysis. http://www.hopkinsmedicine.org/mcp/PHENOCORE/CoursePDFs/2013/13%2019%20Cornish%20Digital%20Path.pdf, July 2013. Accessed: 12.04.2016.
- [3] A. Goode et al. Openslide: A vendor-neutral software foundation for digital pathology. *J pathol inform*, 4(1), September 2013. http://download.openslide.org/docs/JPatholInform_2013_4_1_27_119005.pdf.
- [4] N. Farahanil et al. Whole slide imaging in pathology: advantages, limitations, and emerging perspectives. Pathology and Laboratory Medicine International, 7, June 2015. https://www.dovepress.com/whole-slide-imaging-in-pathology-advantages-limitations-and-emerging-p-peer-reviewed-ful ref10.
- [5] R. Fielding. Architectural Styles and the Design of Network-based Software Architectures. PhD thesis, University of Carolina, 2000. http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.
- [6] D. Kriesel. A Brief Introduction to Neural Networks, 2007. http://www.dkriesel.com/en/science/neural_networks.
- [7] Microsoft. Deep zoom file format overview. https://msdn.microsoft.com/en-us/library/cc645077(v=vs.95).aspx. Accessed: 11.04.2016.
- [8] Roberto Toro. Microdraw. https://github.com/r03ert0/microdraw/wiki. Accessed: 18.04.2016.
- [9] E. Wolff. *Microservices Primer*. innoQ, January 2016. https://leanpub.com/microservices-primer/read.

List of Figures

1.1	Example results of the in $[1]$ introduced model (source: http://cs.sta	nford.edu/people/karpathy/deepi
2.1	3 consecutive levels of a .dzi image (source: https://i-msdn.sec.s-	
	msft.com/dynimg/IC141135.png)	6
2.2	3 layer NN (source: http://docs.opencv.org/2.4/_images/mlp.png)	8
2.3	Visualization of the Conversion Service	10
2.4	Visualization of the Annotation Service	11

List of Tables