PNo. of Page(s): 1 ENTH SEMESTER

B.E. MID SEM. EXAMINATION, NEW -2015 Internet and Web Engineering (IT-401)

1:30 Hrs. Marks: 20

Note: Attempt ALL questions.	
List some features of web engineering which makes is different from software engineering?	(4)
Why the web development process is evolutionary in nature?	(3)
Distinguish between internet, intranet and extranet with the help of suitable examples?	(3)
What is double DES? What kind of attack on double DES makes it useless?	(4)
Compare and contrast the attacks on digital signatures with attacks on cryptosystems.	(4)
Distinguish between the following: a. Feistel and non-Feistel block cipher. b. Diffusion and Confusion	(1*2=2)

Roll IVU....

No. of pages: 01

SEVENTH SEMESTER

B.E. (IT)

MID SEMESTER EXAMINATION, SEPTEMBER-2015 IT-402: Distributed Systems and Computing

Time: 1:30 Hrs.

Max. Marks: 20

Note:

Attempt ALL questions.

All questions carry equal marks. Assume suitable missing data, if any

- 1. What are Distributed Systems? Discuss the various models that are used for building distributed computing systems.
- 2. What is a fault and list its types in a distributed system? Explain the fault-handling mechanisms in distributed systems.
- 3. What are the useful characteristics in terms of multicast messages for constructing the distributed systems.
- **4.** What is the role of stub in remote procedure call execution? How do stubs make remote procedure call execution transparent?

OR

Differentiate between the following:

- a) Monolithic kernel and Microkernel
- b) Pipe and FIFO
- 5. What are the characteristics of inter-process communication. Describe the ways in which request reply protocol masks the heterogeneity of distributed system.

MID SEMESTER EXAMINATION, September-2015

IT-403: Compiler and Translator Design

Time: 1:30 Hrs Max. Marks: 20

Note: All questions are compulsory. Assume suitable missing data, if any.

- 1. a) Write down the phases of a compiler. What is the advantage of dividing the design of a compiler into front-end design and back-end design? [3]
 - b) Define the following terms with an example: Token, Lexeme, Regular Definitions, Context Free Grammar, Sentinels [5]
- 2. Construct NFA for the following regular expression using Thompson's construction.

a(a | b)*aab

Construct the corresponding DFA from the above NFA

[4]

3. Consider the following program:

```
main ()
{
    int x, y, z;
    if (x == y)
    z = x + y*10;
}
```

List down the lexemes, tokens and the attributes of the tokens, at the end of the lexical analysis of the above program. [4]

4. Test whether the grammar is LL(1) or not, and construct a predictive parsing table for the following grammar:

S -> A

 $A \rightarrow aB \mid Ad$

 $B \rightarrow bBC \mid f$

 $C \rightarrow g$

Parse the input string abfg using non-recursive predictive parser.

[4]

	•		•	
-	Total No. of Pages: 1 VII SEMESTER		Roll No	
1	Y	SEMESTER EXAMINATION, SEP	B.TECH (IT)
	Time: 1:30 Hrs	IT 404: PATTERN RECOGN		
V			Max Marks: 20 M	arks
0	Note: Attempt all questic Assume suitable n	nissing data, if any.		
		gnition? Explain different compone	ents of Pattern Recognition syst	(3)
	Q.2) Enumerate the difference understand by linearly separates.	ence between supervised and unsuperable class?	pervised classification. What d	o you . (2)
)	Q.3) Explain the concept problem. Also explain the (Generalized Bayes theory)	of Bayesian decision theory in ne concept of Bayesian decision	pattern recognition for a two n theory for Continuous Fe	class eatures (3)
	cases of covariance matrix. Case1) when off diagonal el	tivariate Normal Density function Gaussian bivariate Normal Densit lements are zero and variances are ments are zero and variances are	ty function considering the di	nape of afferent (4)
	Cases) when off diagonal el	ements are non zero and variance	es are also different	,
	(az). We have two actions:	either a normal (potentially im α1 (keep the mail) and α2 (put the last been received and its feat	the mail to (dev/mull) If D(co	11 -0 4-
	recor, are combated CISSE C	onditional probabilities' are p(x will retain the important mail i	$ \omega_1\rangle = 0.35$; $p(y \omega_2) = 0.00$	C
	verify by Bayesian risk, com	puting minimum risk classifier.	i they are potentially impor	rtant and
8	and deviation, covariance	Explain the relevance of each e matrix and probability densit at Functions for the normal den	V function in data analysis	(4)
		END		(4)
		——————————————————————————————————————	· •	

MID SEMESTER EXAMINATION, SEPTEMBER, 2015

September 1

IT 405: ADVANCES IN DIGITAL SYSTEM DESIGN

Max Marks: 20 Marks

Time: 1:30 Hrs

Note: Attempt all questions.

Assume suitable missing data, if any.

1. Explain ROM, PROM, PLA, PAL, and GLA.

(2.5)

- 2. Design a combinational circuit using a ROM. The circuit accepts a three-bit number and outputs a binary number equal to the square of the input number. (3)
- 3. Implement the following Boolean functions with PAL, by using three-wide AND-OR structure:

$$W(A, B, C, D) = \sum (2, 12, 13)$$

$$x(A, B, C, D) = \sum (7, 8, 9, 10, 11, 12, 13, 14, 15)$$

 $y(A, B, C, D) = \sum (0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15)$

$$z(A, B, C, D) = \sum (1, 2, 8, 12, 13)$$

(4)

4. Generate a behavior style VHDL code for ALU. The Functional Description of 4-bit Arithmetic Logic Unit is Controlled by the three function select inputs (S0 to S2), as shown in selection table. ALU can perform all the 8 possible logic operations. (4)

	_		A	
S ₂	S1	So	Function (F)	
0	O'	0	A+B	
0	0	1	A-B	
0	1	0	′ A-1	
0	1	1	, A+1	
1	0	0	A A B	
1	0	1	A∨B	
1	1	0	NOT A	
1	1	1	A (+) B	

- 5. Why parallel systems are required? List the common characteristics of parallel systems. Also differentiate between multiprocessors and multicomputers. (2.5)
- 6. Why multicomputers are good candidates for large-scale parallel computation? Explain in brief common interconnection networks for multicomputers. (2.5)
- 7. Write short note on(any ONE): 1) Different levels of abstraction in VHDL (1.5)

2) FPGA			(1.5)
,			