## Aim: Find the Outlier from the given data set using trimming and capping methods.

```
In [6]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [7]: df = pd.read\_csv('placement.csv')
df

Out[7]:

|     | cgpa | placement_exam_marks | placed |
|-----|------|----------------------|--------|
| 0   | 7.19 | 26.0                 | 1      |
| 1   | 7.46 | 38.0                 | 1      |
| 2   | 7.54 | 40.0                 | 1      |
| 3   | 6.42 | 8.0                  | 1      |
| 4   | 7.23 | 17.0                 | 0      |
|     |      |                      |        |
| 995 | 8.87 | 44.0                 | 1      |
| 996 | 9.12 | 65.0                 | 1      |
| 997 | 4.89 | 34.0                 | 0      |
| 998 | 8.62 | 46.0                 | 1      |
| 999 | 4.90 | 10.0                 | 1      |
|     |      |                      |        |

1000 rows × 3 columns

```
In [14]: plt.figure(figsize=(10,5))
    plt.subplot(1,2,1)
    sns.displot(df['cgpa'])
```

#### Out[14]: <seaborn.axisgrid.FacetGrid at 0x200fe1a2610>





```
In [10]: plt.subplot(1,2,2)
sns.displot(df['placement_exam_marks'])
```

Out[10]: <seaborn.axisgrid.FacetGrid at 0x200f5e9e520>





In [15]: df['placement\_exam\_marks'].describe()

```
Out[15]: count
                   1000.000000
                     32.225000
          mean
          std
                     19.130822
                      0.000000
          min
          25%
                     17.000000
          50%
                     28.000000
          75%
                     44.000000
                    100.000000
          max
```

Name: placement\_exam\_marks, dtype: float64

#### In [17]: sns.boxplot(df['placement\_exam\_marks'])

C:\Users\User39\anaconda3\lib\site-packages\seaborn\\_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit k eyword will result in an error or misinterpretation.

warnings.warn(

Out[17]: <AxesSubplot:xlabel='placement\_exam\_marks'>



```
In [18]: # finding highest boundries values
         print('Highest Boundary value of Cgpa',df['cgpa'].mean() + 3*df['cgpa'].std())
         Highest Boundary value of Cgpa 8.808933625397177
In [19]: # Finding lowest boundries value
         print('Lowest Boundary value of Cgpa',df['cgpa'].mean() - 3*df['cgpa'].std())
         Lowest Boundary value of Cgpa 5.113546374602842
In [20]: # finding outliers
         df[(df['cgpa']>8.80)| (df['cgpa']<5.11)]
Out[20]:
               cgpa placement_exam_marks placed
          485 4.92
                                   44.0
          995
              8.87
                                   44.0
                                            1
          996
               9.12
                                   65.0
                                            1
          997
              4.89
                                   34.0
                                            0
                                   10.0
          999 4.90
         Trimming
In [21]: df.shape
Out[21]: (1000, 3)
In [27]: new_df = df[(df['cgpa']<8.80) & (df['cgpa']>5.11)]
         new_df
Out[27]:
               cgpa placement_exam_marks placed
            0 7.19
                                   26.0
            1 7.46
                                   38.0
                                            1
              7.54
                                   40.0
                                            1
               6.42
                                    8.0
              7.23
                                   17.0
                                            0
          991
              7.04
                                   57.0
                                            0
          992
               6.26
                                   12.0
                                            0
              6.73
                                   21.0
          993
                                            1
          994 6.48
                                   63.0
                                            0
          998 8.62
                                   46.0
                                            1
         995 rows × 3 columns
In [26]: new_df.shape
Out[26]: (995, 3)
```

### **Z** Score

```
In [31]: df['cgpa_score'] = (df['cgpa'] - df['cgpa'].mean())/df['cgpa'].std()
          df
Out[31]:
                cgpa placement_exam_marks placed cgpa_score
             0
                7.19
                                       26.0
                                                      0.371425
             1
                7.46
                                       38.0
                                                      0.809810
             2
                7.54
                                       40.0
                                                      0.939701
             3
                6.42
                                        8.0
                                                 1
                                                     -0.878782
                7.23
                                       17.0
                                                 0
                                                      0.436371
           995
                8.87
                                       44.0
                                                 1
                                                      3.099150
           996
                9.12
                                       65.0
                                                 1
                                                      3.505062
           997
                                       34.0
                                                0
                                                     -3.362960
                4.89
           998
                8.62
                                       46.0
                                                      2.693239
           999
                4.90
                                       10.0
                                                     -3.346724
           1000 rows × 4 columns
In [32]: df.describe()
Out[32]:
                        cgpa placement_exam_marks
                                                                  cgpa_score
           count 1000.000000
                                        1000.000000 1000.000000
                                                                 1.000000e+03
                     6.961240
                                          32.225000
                                                       0.489000
                                                                -1.600275e-14
           mean
             std
                    0.615898
                                          19.130822
                                                       0.500129
                                                                1.000000e+00
             min
                    4.890000
                                           0.000000
                                                       0.000000 -3.362960e+00
             25%
                    6.550000
                                          17.000000
                                                       0.000000
                                                                -6.677081e-01
             50%
                    6.960000
                                          28.000000
                                                       0.000000
                                                                -2.013321e-03
                                          44.000000
            75%
                    7.370000
                                                       1.000000
                                                                 6.636815e-01
                    9.120000
                                         100.000000
                                                       1.000000 3.505062e+00
             max
In [33]: df['cgpa_score'].describe()
Out[33]: count
                    1.000000e+03
                    -1.600275e-14
          mean
                    1.000000e+00
          std
          min
                    -3.362960e+00
          25%
                    -6.677081e-01
          50%
                    -2.013321e-03
          75%
                    6.636815e-01
          max
                    3.505062e+00
          Name: cgpa_score, dtype: float64
In [35]: df[df['cgpa_score']>3]
Out[35]:
                cgpa placement exam marks placed cgpa score
           995 8.87
                                                      3.099150
                                       44.0
           996 9.12
                                       65.0
                                                      3.505062
In [37]: df[df['cgpa_score']< -3]</pre>
Out[37]:
                cgpa placement_exam_marks placed cgpa_score
           485
                4.92
                                       44.0
                                                     -3.314251
                                                     -3.362960
           997
                4.89
                                       34.0
                                                 0
                                                     -3.346724
           999
               4.90
                                       10.0
In [44]: new_df = df[(df['cgpa_score']<3) & (df['cgpa_score']>-3)]
          new_df.shape
Out[44]: (995, 4)
```

## Capping

Out[48]:

|       | cgpa        | placement_exam_marks | placed      | cgpa_score    | cgpa_cap    |
|-------|-------------|----------------------|-------------|---------------|-------------|
| count | 1000.000000 | 1000.000000          | 1000.000000 | 1.000000e+03  | 1000.000000 |
| mean  | 6.961240    | 32.225000            | 0.489000    | -1.600275e-14 | 6.961499    |
| std   | 0.615898    | 19.130822            | 0.500129    | 1.000000e+00  | 0.612688    |
| min   | 4.890000    | 0.000000             | 0.000000    | -3.362960e+00 | 5.113546    |
| 25%   | 6.550000    | 17.000000            | 0.000000    | -6.677081e-01 | 6.550000    |
| 50%   | 6.960000    | 28.000000            | 0.000000    | -2.013321e-03 | 6.960000    |
| 75%   | 7.370000    | 44.000000            | 1.000000    | 6.636815e-01  | 7.370000    |
| max   | 9.120000    | 100.000000           | 1.000000    | 3.505062e+00  | 8.808934    |

# Conclusion: Detected Outlier using Trimming and Capping when the data is normally distributed.

In [ ]: