Cognome e nome:	Sistemi Operativi – Appello del 9 settemi Matricola:	bre 2014 – Versione Compito A Posto:
Università degli Studi di Padova – Di		
Omversita degli Studi di Fadova – Di	<u> </u>	Laurea III IIIIOI IIIatica
Il presente esame scritto deve essere svolto in form Non è consentita la consultazione di libri o appun Saranno considerati <u>la chiarezza</u> , il rigore dell'espe	ti in forma cartacea o elettronica, né l'uso di p	palmari e telefoni cellulari.
Riportare con chiarezza qualunque <u>ipotesi aggiunti</u> Correzione, registrazione ed eventuale sessione ora	iva ritenuta necessaria alla risoluzione degli e ale: 15 settembre 2014, alle 9:30 in 2BC30.	esercizi.
Per superare l'esame il candidato deve acquisire a questi fogli. Riportare generalità e matricola negli Per la convalida e registrazione del voto finale il d	spazi indicati.	
Quesito 0: Scrivere Cognome e Nome in alto in og	gni facciata; scrivere la Matricola e il posto su	al primo foglio.
Quesito 1:		
Si consideri un sistema che utilizza la paginazione Si discutano brevemente vantaggi e svantaggi nell' [1.A] Pagine di dimensione ampia (vantaggi e svan	adottare pagine di dimensione ampia oppure	di piccola.
[1.B] Pagine di dimensione piccola (vantaggi e sva	ontaggi):	
[1.b] i agine di dimensione piccola (vantaggi e sva	mtaggi).	
Quesito 2:		
Si consideri la politica di <i>scheduling Round Robin</i> tutti con lo stesso comportamento. Ciascuna intera [2.A] Se $c < q$ quanto tempo aspetta al più un proc	zione dà luogo ad un CPU burst che richiede	la CPU per un tempo c .
[2.B] Se $c < q$ quanto tempo aspetta al più l'utente	prima aba la CDU finicas di alabarara l'intera	oziono?
[2.D] Se c \ q quanto tempo aspetta ai più i titente	prima ene la Ci O minsea di ciaborare i intera	ZIONE:
[2.C] Se $c > q$ quanto tempo aspetta l'utente pri ancora attivo? (Si consideri che c può essere espr quanto)		

Cognome e nome: Posto: Posto:	

Quesito 3:

E' noto che esistano 4 condizioni che concorrono all'insorgere di situazioni di stallo. Lo studente le elenchi illustrandole brevemente, ovvero in non più di due/tre righe ciascuna.

Quesito 4.

Quesito 4:		
Process A {	Process B {	Process C {
y= y + 2x ;	x= x + 1;	x= y * 3;
}	Print(x);	Print(y);

Sincronizzazione di 3 Processi con Semafori.

Per risolvere il seguente esercizio si faccia uso del meccanismo dei semafori.

Si considerino tre processi (A, B e C) i quali devono eseguire alcune operazioni sulle variabili x e y e poi stamparne il risultato finale.

A questo proposito, si consideri la seguente sequenza di avvenimenti:

- I processi A e C devono essere in attesa (ad un semaforo) di essere risvegliati
- Il processo B sveglia il processo A, che a sua volta sveglia il processo C.
- I tre processi accedono concorrentemente (ma in mutua esclusione) alle variabili condivise x e y, al fine di eseguire le operazioni riportate in figura.
- Nel caso in cui B e C eseguano le loro operazioni su *x* e *y* prima del processo A, i processi B e C si bloccano in attesa che A abbia terminato la computazione su x e y.
- Infine, B stampa il valore di x e \hat{C} stampa il valore di y (senza un particolare ordine prestabilito).

Si utilizzino i semafori (es. *SemA*, *SemB*, *SemC* e *Mutex*) dichiarandone i valori iniziali.

Assumendo che inizialmente si abbia x = 2 e y = 1, si discutano brevemente (nel retro di questo foglio o del precedente) i possibili valori di x e y al termine dell'esecuzione concorrente di un'istanza dei processi A, B e C.

Quesito 5:

Cognome e nome:

Un sistema ha 4 processi e 5 risorse da ripartire. L'attuale allocazione e i bisogni massimi sono i seguenti:

Processo	Allocate	Massimo
A	10112	11142
B	20111	22213
C	1 1 1 0 0	2 1 1 0 4
D	11101	11213

[5.A] Considerando il vettore delle risorse disponibili uguale a $[0\ 0\ 1\ 2\ x]$, si discuta per quale valore minimo di x questo sia uno stato sicuro e quando invece sia a rischio di deadlock.

[5.B] Per risolvere l'esercizio lo studente ha di fatto ripetutamente utilizzato una parte di un noto algoritmo. Tale algoritmo assegna risorse a processi solo se l'assegnazione fa rimanere il sistema in uno stato sicuro. Come si chiama questo algoritmo?

Quesito 6:

Si consideri la seguente serie di riferimenti a pagine di memoria: 1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

Si considerino le seguenti politiche di rimpiazzo LRU ed Optimal.

Quanti page fault avvengono considerando una RAM con solo 4 page frame ed inizialmente vuota?

Si completino inoltre le tabelle mostrando ad ogni istante il contenuto dei 4 page frame di cui è composta la RAM (non è necessario che lo studente mantenga un preciso ordine delle pagine virtuali nelle *page frame*).

Politica di rimpiazzo LRU; totale page fault?

r1	r2	r3	r4	r2	r1	r5	r6	r2	r1	r2	r3	r 7	r6	r3	r2	r1	r2	r3	r6

Politica di rimpiazzo **Optimal**; totale *page fault*?

r1	r2	r3	r4	r2	r1	r5	r6	r2	r1	r2	r3	r 7	r6	r3	r2	r1	r2	r3	r6

Sistemi Operativi – Ap	pello del 9 settembre 2014 – Versione Compito A
Matricola:	Posto:

Soluzione

Soluzione 1

A) Pagine ampie

Cognome e nome:

- Maggiore rischio di **frammentazione interna** ma tabella delle pagine più piccola
 - In media ogni processo lascia inutilizzata metà del suo ultimo page frame
- B) Pagine piccole
 - Maggiore ampiezza della tabella delle pagine ma minor frammentazione interna

Altre informazioni possono essere fornite... (si faccia riferimento a slide e libro di testo)

Soluzione 2

- [2.A] Un processo aspetta (N-1)c per ottenere la CPU.
- [2.B] L'utente aspetta (N-1)c + c = Nc
- [2.C] L'utente aspetta N qa + (N-1) b

Soluzione 3

Lo studente troverà facilmente la soluzione facendo riferimento alle dispense del corso o al libro di testo.

Soluzione 4

Una versione corretta dei tre processi è quella che segue; con SemA, SemB e SemC inizializzati a 0, e il semaforo Mutex inizializzato a 1.

Process A {	Process B {	Process C {
P(semA); V(semC);	V(semA);	P(semC);
P(mutex); y = y + 2*x V(mutex);	P(mutex); $x = x + 1$ $V(mutex);$	P(mutex); x = y*3; V(mutex);
V(semB); V(semC);	P(semB);	P(semC);
	Print(x);	Print(y);
}	}	}

I tre processi potrebbero entrare e uscire dalla sezione critica limitata da P(mutex) e V(mutex) in un ordine qualsiasi dunque per determinare il valore finale di x e y occorre provare tutte le combinazioni.

- Ordine A, B, C: risultato x = 15 e y = 5
- Ordine A, C, B: risultato x = 16 e y = 5
- Ordine B, A, C: risultato x = 21 e y = 7
- Ordine B, C, A: risultato x = 3 e y = 7
- Ordine C, A, B: risultato x = 4 e y = 7
- Ordine C, B, A: risultato x = 4 e y = 9

	Sistemi Operativi – Appello del 9 settemb	ore 2014 – Versione Compito A
Cognome e nome:	Matricola:	Posto:
Soluzione 5		

[5.A] La matrice delle necessità (massimo numero di risorse richieste dal processo - risorse allocate al processo) è la seguente:

01030

02102

10004

00112

Se x = 0 oppure x = 1, la deadlock è immediata.

Se x = 2, il processo D può essere eseguito fino alla fine. Quando ha finito, il vettore delle risorse disponibili è [1 1 2 2 3]. Sfortunatamente ora il sistema si trova in deadlock.

Se x = 3, dopo D, il vettore delle risorse disponibili è [1 1 2 2 4] e C può essere eseguito. Dopo il suo completamento, il vettore delle risorse disponibili diventa [2 2 3 2 4]; questo permette a B di essere eseguito e completato. Il vettore delle risorse disponibili diviene dunque [4 2 4 3 5], permettendo il completamento di A.

Quindi il valore più piccolo di x per evitare il verificarsi di deadlock è 3.

[5.B] L'Algoritmo del Banchiere (Banker's Algorithm)

Soluzione 6

Politica di rimpiazzo LRU; totale page fault? _10_ (quelli in grassetto)

r1	r2	r3	r4	r2	r1	r5	r6	r2	r1	r2	r3	r7	r6	r3	r2	r1	r2	r3	r6
1	2	3	4	2	1	5	6	2	1	2	3	7	6	3	2	1	2	3	6
	1	2	3	4	2	1	5	6	2	1	2	3	7	6	3	2	1	2	3
		1	2	3	4	2	1	5	6	6	1	2	3	7	6	3	3	1	2
			1	1	3	4	2	1	5	5	6	1	2	2	7	6	6	6	1

Politica di rimpiazzo **Optimal**; totale *page fault*? **8** (quelli in grassetto)

r1	r2	r3	r4	r2	r1	r5	r6	r2	r1	r2	r3	r 7	r6	r3	r2	r1	r2	r3	r6
1	2	3	4	4	4	5	6	6	6	6	6	7	7	7	7	1	1	1	1
	1	2	3	3	3	3	3	3	3	3	3	6	6	6	6	6	6	6	6
		1	2	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3
			1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2