Statistical Signal Processing Major Test: (7.4.2016)

Time: 2 hours Max. Marks: 40

1. A random process x(n) is known to consist of a single sinusoid in white noise

$$x(n) = Asin(n\omega_0 + \phi) + w(n)$$

where w(n) has a variance of σ_w^2 .

(a) Suppose the first three values of the autocorrelation sequence are estimated and found to be

$$r_x(0) = 1; \quad r_x(1) = \beta; \quad r_x(2) = 0$$

Use these values to estimate the variance of the white noise, the frequency of the sinusoid, ω_0 , and the sinusoid power, $P = \frac{1}{2}A^2$ via the Pisarenko harmonic decomposition. (6)

(b) How does the estimate of the noise variance depend on β ? Does the estimate of the sinusoid power depend on β ? Explain the reasons for these behaviours. (2)

2. Consider the AR process

$$y(n) + a_1y(n-1) + a_2y(n-2) = w(n)$$

where w(n) is a white noise process of zero mean and variance σ_w^2 .

Draw a schematic diagram for a second order adaptive predictor with time-varying coefficients $h_1(n), h_2(n)$ operating on the appropriate samples of $\{y(n)\}$, predicting y(n) from its two past samples, in which these coefficients are adapted via the gradient descent algorithm.(2)

- (b) Write an expression for the mean square prediction error σ_u^2 in the steady state. (3)
- (c) Write an expression for the 2×2 correlation matrix R of the tap signal vector. (3)
- (d) Write an expression for the eigenvalue spread of R. Why is it important? (2)
- 3(a) Consider the p'th order autoregressive sequence y(n). Show that for such a process the projection of y(n) onto the space spanned by the entire past $\{y(n-i); 1 \le i \le \infty\}$ is the same as the projection of of y(n) onto the space spanned only by the past p samples $\{y(n-i); 1 \le i \le p\}$.
- (b) Derive an expression for the Burg method for estimating the reflection coefficient for the *i'th* stage of a lattice filter based on minimisation of the sum of the forward and backward prediction residuals of the *i'th* stage. Are there any assumptions involved in deriving this expression? If so, clearly state these assumptions.

4. Consider the problem of noise cancellation for the following system:

$$x(n) = d(n) + v_1(n), \quad y(n) = v_2(n), \text{ where}$$
 $d(n) = sin(\omega_0 n + \phi)$ $v_1(n) = a_1 v_1(n-1) + v(n)$ $v_2(n) = a_2 v_2(n-1) + v(n)$

May 6, 2016

DRAFT

where v(n) is zero mean, unit variance white noise, and ϕ a random phase independent of v(n). This ensures that d(n) is uncorrelated with $v_1(n)$ and $v_2(n)$.

(a) Show that

$$R_{xy} = \frac{a_1^k}{1 - a_1 a_2} \quad k \ge 0$$

$$R_{yy}(k) = \frac{a_2^k}{1 - a_2^k} \quad k \ge 0$$

(6

- (b) Draw a schematic diagram for estimating d(n) via cancellation of $v_1(n)$ in w(n), by using y(n) as a reference. (2)
- (c) Show that the infinite order Wiener filter for estimating x(n) on the basis of y(n) has a (causal) impulse response

$$h_0 = 1, h_k = (a_1 - a_2)a_1^{k-1} \text{ for } k \ge 1.$$

(5)

May 6, 2016

DRAFT