Λογική Σχεδίαση - Λύσεις Προόδου Ακ. Έτους 2024 – 2025 -Τμήμα Α

Θέμα 1°

Α Ερώτημα:

Μετατροπή του (119)10 από δεκαδικό σε δυαδικό:

Διά 2	Πηλίκο	Υπόλοιπο (Ψηφίο)	Θέση Bit #
(119)/2	59	1	0
(59)/2	29	1	1
(29)/2	14	1	2
(14)/2	7	0	3
(7)/2	3	1	4
(3)/2	1	1	5
(1)/2	0	1	6

 $^{= (1110111)}_2$

Με 8 ψηφία (με κόκκινο τα ψηφία που προσθέτω για να γίνει 8-ψήφιος ο αριθμός):

(**0111 0111)**₂

Μετατροπή του (119)₁₀ = (**0111 0111)**₂ από δυαδικό σε δεκαεξαδικό:

	0111	0111
	7	7
= (77) ₁₆		

Με τον ίδιο τρόπο:

$$(44)_{10} = (00101100)_2 = (2C)_{16}$$

$$(17)_{10} = (00010001)_2 = (11)_{16}$$

Συνολικά:

Δεκαδικό	Δυαδικό	Δεκαεξαδικό		
119	0 111 0111	77		
44	0010 1100	2C		
17	0001 0001	11		

Β Ερώτημα:

Αντίθετος του (119)10 ως συμπλήρωμα του 2:

Ξεκινώ από δεξιά στον δυαδικό αριθμό, αφήνω ως έχουν τα ψηφία μέχρι και το πρώτο '1' και μετά συμπληρώνω τα υπόλοιπα ψηφία. Για το $(119)_{10} = (0111\ 0111)_2$ το πρώτο '1' το συναντάμε στη θέση 0, άρα

 $(0111\ 0111)'_2 = (1000\ 1001)_2$

Με τον ίδιο τρόπο, για τους (44) 10 και (17) αντίστοιχα, είναι:

 $(0010\ 1100)'_2 = (1101\ 0100)_2$

 $(0001\ 0001)'_2 = (1110\ 1111)_2$

Αντίθετος του 119 ως συμπλήρωμα του 16:

Υπολογίζω το συμπλήρωμα ως προς 15, και προθέτω μια μονάδα:

	F(15)	F(15)
-	7	7
	8	8
Προσθέτω το 1	+	1
	8	9

ή

Από τον αντίθετο του (119)10 στο δυαδικό:

1000	1001		
8	9		

Με τον ίδιο τρόπο:

Αντίθετος του (44)₁₀ ως συμπλήρωμα του 16, είναι:

	F(15)	F(15)
-	2	С
	D(13)	3
Προσθέτω το 1	+	1
	D(13)	4

ή

Από τον αντίθετο του (39)10 στο δυαδικό:

1101	0100
D(13)	4

Αντίθετος του (17)10 ως συμπλήρωμα του 16, είναι:

	F(15)	F(15)
-	1	1
	E(14)	E(14)
Προσθέτω το 1	+	1
	E(14)	F(15)

ή

Από τον αντίθετο του (17)₁₀ στο δυαδικό:

1110	1111
E(14)	F(15)

Συνολικά, τα συμπληρώματα είναι:

Δεκαδικός	Αντίθετος Δυαδικός (8 ψηφία)	Αντίθετος Δεκαεξαδικός (2 ψηφία)
119	1000 1001	89
44	1101 0100	D4
17	1110 1111	EF

Γ Ερώτημα:

$$\alpha + \beta = (119)_{10} + (44)_{10} = (163)_{10}$$

Δυαδική πρόσθεση:

	1	1	1	1	1				Κρατούμενα
	0	1	1	1	0	1	1	1	(119) ₁₀
+	0	0	1	0	1	1	0	0	(44) ₁₀
	1	0	1	0	0	0	1	1	(163)10

Δυαδική αφαίρεση (με χρήση συμπληρώματος του 2):

$$\beta - \gamma = (44)_{10} - (17)_{10} = (27)_{10}$$

		1	1		1	1				Κρατούμενα
		0	0	1	0	1	1	0	0	(44) ₁₀
+		1	1	1	0	1	1	1	1	Συμπλήρωμα του 2 (17)10
	1	0	0	0	1	1	0	1	1	(27) ₁₀

Προσοχή, έχουμε κρατούμενο, άρα το αποτέλεσμα είναι θετικό. Αγνοούμε το κρατούμενο και προκύπτει το τελικό αποτέλεσμα. Δηλαδή, $(0001\ 1011)_2 = (27)_{10}$.

Δεκαεξαδική πρόσθεση:

	1		Κρατούμενα
	7	7	(119)10
+	2	С	(44) ₁₀
	Α	3	(163)10

Δεκαεξαδική αφαίρεση (με χρήση συμπληρώματος του 16):

1	1	Κρατούμενα					
	2	С	(44) ₁₀				
+	Ε	F	(Συμπλήρωμα του 2 (17)10				
1	1	В	(27)10				

Προσοχή, έχουμε κρατούμενο, άρα το αποτέλεσμα είναι θετικό. Αγνοούμε το κρατούμενο και προκύπτει το τελικό αποτέλεσμα. Δηλαδή, $(1B)_{16} = (27)_{10}$.

Θέμα 2ο

Α Ερώτημα:

$$f(x, y) = (x+y)'(x'+y') = x'y'(x'+y') = (x'+y y')(x'x+y')(x'+y') = (x'+y) (x'+y') (x+y') (x'+y') (x'+y') = (x+y')(x'+y') = M_1M_2M_3 = \Pi(1, 2, 3)$$

$$g(x, y, z) = xy'z + xyz' + xz = xy'z + xyz' + x(y+y')z = xy'z + xyz' + xyz + xy'z = xy'z + xyz' + xyz = m_5 + m_6 + m_7 = \Sigma(5, 6, 7)$$

Β Ερώτημα:

Πίνακας Αληθείας της συνάρτησης f:

mi	Mi	x	у	x'	y'	х+у	(x + y)'	(x' + y')	F
0	0	0	0	1	1	0	1	1	1
1	1	0	1	1	0	1	0	1	0
2	2	1	0	0	1	1	0	1	0
3	3	1	1	0	0	1	0	0	0

Πίνακας Αληθείας της συνάρτησης g:

m _i	х	у	Z	xy'z	xyz'	ΧZ	g
0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0
2	0	1	0	0	0	0	0
3	0	1	1	0	0	0	0
4	1	0	0	0	0	0	0
5	1	0	1	1	0	1	1
6	1	1	0	0	1	0	1
7	1	1	1	0	0	1	1

Γ Ερώτημα:

$$f(x, y) = (x+y)'(x'+y') = x'y'(x'+y') = x'y'x' + x'y'y' = x'y' + x'y' = x'y' = (x+y)'$$

$$g(x, y, z) = xy'z + xz + xyz' = xz(y' + 1) + xyz' = xz1 + xyz' = xz + xyz' = x (z + yz') = (επιμεριστικός κανόνας) $x(z+y)(z+z') = x(z+y)(z+z') = x(z+z') = x(z+z')$$$

Δ Ερώτημα:

Με βάση το θεώρημα DeMorgan:

$$f'(x, y) = [(x + y)']' = x + y$$

$$g'(x, y, z) = [x(z + y)]' = x' + (y + z)' = x' + y'z'$$

Ε Ερώτημα:

