MY470_wk1_admin

September 30, 2024

0.0.1 MY470 Computer Programming

1 Welcome to Computer Programming

1.0.1 Week 1 Admin

1.1 Overview

- Course content
- Prerequisites and materials
- Course meetings
- Assesment and collaboration
- Weekly schedule

1.2 Why Do Social Scientists Need Computer Programming?

1.3 Why Do Social Scientists Need Computer Programming?

• Collect data

- Crawling websites and using APIs
- Online surveys and experiments
- Computational models and simulations
- Manage, analyze, and visualize data
 - Large data
 - Non-rectangular data (e.g. networks, text)
- Be autonomous and work independently
- Learn from and collaborate with engineers and scientists
- Generate and share reproducible workflows

1.4 Coding vs. Programming

1.5 Course Content

- Introduce the fundamentals of computer programming
- Cover the foundations of computer languages, object-oriented programming, and algorithms
- Learn how to design, write, and debug computer programs and how to evaluate algorithms
- Practice on applications from computational social science and social data science

1.6 Instructors

- Milena Tsvetkova, m.tsvetkova@lse.ac.uk
- Daniel De Kadt, d.n.de-kadt@lse.ac.uk
- Yuanmo He, y.he54@lse.ac.uk
- Sia Shahrizad (GTA)

Course administrator * Serena Ngai, methodology.admin@lse.ac.uk

1.7 Prerequisites and Software

• Introductory course — no prerequisites

- Laptop for in-person classes
- Software
 - Python (Anaconda distribution) to learn basic concepts in computer science
 - $-\mathbf{R}$ to experience another common programming language
 - Visual Studio Code and RStudio to write code
 - GitHub to share course documents and assignments

1.8 Course Materials

1.8.1 Lecture/seminar materials and sample answers to assignments

- https://github.com/lse-my470/lectures
- https://github.com/lse-my470/example-answers

1.8.2 Books

- Guttag, John V. Introduction to Computation and Programming Using Python: With Application to Understanding Data. Mit Press, 2016.
- Miller, Bradley N. and David Ranum. Problem Solving with DataStructures Python. Available Algorithms andUsina at https://runestone.academy/ns/books/published/pythonds/index.html.
- Grolemund, Garrett and Hadley Wickham. *R for Data Science*. O'Reilly, 2016. Available at http://r4ds.had.co.nz.

1.8.3 Additional resources

• MY470 additional resources

1.9 Course Procedure

- 1. Read required readings
- 2. Attend lecture
- 3. Attend class
- 4. Complete and submit problem set on GitHub
- (Schedule office hours on StudentHub to chat about programming and research, ask questions about the course content, or get clarification about feedback)
- (Post and answer clarifying questions about assignments on Moodle)
- (E-mail Milena if you have an urgent problem, e.g. cannot access GitHub to submit assignment)
- (E-mail methodology.admin@lse.ac.uk if you require a deadline extension)
- (Use additional resources to practice more)

1.10 Course Meetings

- Ten 2-hour lectures
 - Mondays 13:00-15:00 in CKK.2.04
- Ten 1.5-hour seminars
 - Tuesdays 10:00-11:30 in CKK.1.09
 - Tuesdays 11:30–13:00 in CKK.1.09

- Tuesdays 15:00–16:30 in CBG.2.02
- Tuesdays 16:30-18:00 in CBG.2.02
- No lecture/seminar in Week 6
- Office hours
 - Book on StudentHub

1.11 Assessment

- In-class assessment (50%)
 - 5 problem sets
 - * PS1-4 due at 12:00 on Mondays of weeks 4, 5, 6, and 8
 - * PS5 to complete in class on the Tuesday of week 10
 - We will try to give you grades and comments by Friday
- Take-home exam (50%)
 - Substantive Python project requiring you to demonstrate concepts and skills learned from the course
 - For students taking MY570: need to come up with own project, talk to Milena
 - Due at 12:00 noon on Monday, January 20, 2025

1.12 Assessment Criteria

- The code runs and does what it is expected to
- The code is written using the concepts, paradigms, and best practices covered in the course
 - Legibility
 - Modularity
 - Optimization

1.13 A Classic Software Development Joke

Source: Reddit

1.14 Assignment to Design a Swing: Submissions

1.15 Marks at LSE

1. Mark and Grade for a Course:

1.1 The examiners for each course will decide a numerical mark for each student using the following scale:

Grade	Mark
Distinction	70 - 100
Merit	60 - 69
Pass	50 - 59
Fail	(x+1) - 49
Bad Fail	0 - x

https://info.lse.ac.uk/Staff/Divisions/Academic-Registrars-Division/Teaching-Quality-Assurance-and-Review-Office/Assets/Documents/Calendar/SchemeTaughtMasters.pdf

1.16 Assignment to Design a Swing: Marks

1.17 Collaboration and Plagiarism Policy

- Assignments are individual unless we instruct you otherwise
- For individual assignments:
 - You are not allowed to discuss solutions with peers, friends, family, or roommates
 - You are not allowed to show your code or view others' code (including solutions shared by previous students)
 - You are not allowed to ask questions about the assignments on Q&A sites such as Stack Overflow
 - You are not allowed to use AI tools such as ChatGPT and Copilot unless we instruct you otherwise
- You can search for general advice online (e.g. on Stack Overflow) but always give credit in comments if you borrow code
- You can use the forum "Clarifying Questions about Assignments" on **Moodle** to ask questions about the assignment instructions (no code allowed, however)

1.18 Anonymity Regarding Marking

- You will use your GitHub username to submit assignments
- GitHub account and activity are checked by employers so good to have an active account
- We use detailed marking criteria to evaluate your work and aim to be objective

- However, if you are worried about anonymity, choose/change your username accordingly
- See here for issues associated with changing GitHub username

1.19 Course Outline

	Week	Language Topic	
1	_	What is Computation?	
2	Python	Data Types	
3	Python	Control Flow	
4	Python	Functions	
5	Python	Classes	
6	_	_	
7	Python	Testing and Debugging	
8	${ m R}$	Other Programming Languages	
9	Python, R	Algorithms and Order of Growth	
10	Python, R	Searching and Sorting Algorithms	
11	Python, R	Tree and Graph Algorithms	