NAACL 2021 follow-up

Fine-Tuning Pre-trained Language Model with Weak Supervision: A Contrastive-Regularized Self-Training Approach

https://www.aclweb.org/anthology/2021.naacl-main.84/

Yue Yu, Simiao Zuo, Haoming Jiang, Wendi Ren, Tuo Zhao, Chao Zhang

Background

- Deep learning model is label hungry
- Labeled data is expensive to obtain.

Our Goal: Fine-tuning Language Models with Weak Supervision

Traditional methods rely on manual annotations from domain experts – Time Consuming and Expensive

Unlabeled Text Data

We aim to only use existing knowledge base/heuristics as weak supervision to automatically perform downstream NLP tasks

Weak Supervision Sources

 Labeling Function – a unified ways to represent weak supervision

Drawbacks of Weak Supervision Sources

- Limited Coverage
 - Weak supervisions are often too specific to cover all cases
 - Many training data cannot be labeled

Noisy

- Weak supervisions are often too simple to capture the rich context information
- Pre-trained language models are usually giant models, which are especially vulnerable to the label noise

Our Framework: Self-training for LM Fine-tuning

- How to fine-tune pre-trained language models with weak supervision only, without any external knowledge?
 - Our solution: use self-training for denoising weak labels
- Self training can ...
 - Generate pseudo labels for unlabeled examples to augment the training set
 - Denoise the noisy labels via gradually refining the pseudo labels

Our Framework: Self-training for LM Fine-tuning

Overall framework

- Initialize with weakly labeled data
- Self-training with both labeled and unlabeled data

Self-training: Initialization with Weak Labels

ullet Directly fine-tune pre-trained language model f(heta) with weakly labeled data

$$\min L = \frac{1}{|X_L|} \sum_{(x_i, y_i) \in X_L} \ell(f(x_1; \theta), y_i)$$

- Early Stopping
 - Prevent the LM for overfitting to label noise

Self-training: Learning with All Data

Generate pseudo labels for all data

$$\min L = \frac{1}{|X_L|} \sum_{(x_i, y_i) \in X_L} KL(f(x_i; \theta), \widetilde{y_i})$$

- $\widetilde{y}_j = \frac{[f(x;\theta)]_j^2/f_i}{\sum_{j'}[f(x;\theta)]_{j'}^2/f_{j'}}$ is the soft label associated with x
- One potential drawback: Self-training suffers from error-propagation –
 More and more wrong examples are created!
- One Example:

Robust Self-training with Contrastive Regularization

• Contrastive Learning on *Feature Space* with High-confidence Samples

Similarity between samples

$$W_{ij} = \begin{cases} 1, & \text{if } \underset{k \in \mathcal{Y}}{\operatorname{argmax}} [\widetilde{\boldsymbol{y}}_i]_k = \underset{k \in \mathcal{Y}}{\operatorname{argmax}} [\widetilde{\boldsymbol{y}}_j]_k \\ 0, & \text{otherwise} \end{cases}$$

Contrastive Regularization

$$\ell = W_{ij}d_{ij}^2 + (1 - W_{ij})[\max(0, \gamma - d_{ij})]^2$$

Other Techniques for Improving Self-training

- Confidence-based Sample Reweighting
 - Reweight different samples based on prediction accuracy

$$\omega = 1 - \frac{H(\tilde{y})}{\log(C)}, H(\tilde{y}) = -\sum_{i=1}^{C} \tilde{y}_i \log \tilde{y}_i$$

Confidence-based regularizer encouraging smoothness over predictions

$$\ell = KL(u||f(x;\theta))$$

Final Loss

Evaluation on Various Benchmarks

Dataset	Agnews	IMDB	Yelp	TREC	MIT-R	ChemProt	WiC
Task		Text Class	sification		Slot Filling	Relation extraction	Word Sense Disambiguation
Fully supervised	92.54	94.26	97.27	96.68	88.51	79.66	70.53
w/ Weak Labels	82.25	74.89	74.89	62.25	70.95	44.80	59.36
Previous SOTA	86.28	88.04	92.05	80.20	74.41	53.48	64.88
Ours	87.52	90.54	95.97	82.59	76.61	54.36	67.71

- Our framework achieves better performance on all datasets compared w/ SOTA weakly-supervised baselines and fine-tuning baselines.
- Our performance is much closer to the fully-supervised result.

Ablation Study

Dataset	Agnews	IMDB	Yelp	TREC	MIT-R
Ours	87.52	90.54	95.97	82.59	76.61
$w/o R_1$	86.04	88.32	94.64	78.28	70.95
$w/o R_2$	85.91	89.32	93.96	77.11	74.11
w/o SR	86.72	87.10	93.08	79.77	74.29
w/o R_1/R_2	86.33	84.44	92.34	76.95	73.67
w/o Soft Label	86.07	89.72	93.73	71.91	73.05

- All components in our framework are useful for down-stream tasks.
- With contrastive regularization and sample reweighting, the selftraining becomes more stable

Extension to Semi-supervised Learning

Model	Dev	Test	#Params
Human Baseline	80.0		_
BERT (Devlin et al., 2019)	-	69.6	335M
RoBERTa (Liu et al., 2019)	70.5	69.9	356M
T5 (Raffel et al., 2019)	-	76.9	11,000M
Semi-Supervised Learning			
SenseBERT (Levine et al., 2020)	-	72.1	370M
RoBERTa-WL [†] (Liu et al., 2019)	72.3	70.2	125M
w/ MT [†] (Tarvainen and Valpola, 2017)	73.5	70.9	125M
w/ VAT [†] (Miyato et al., 2018)	74.2	71.2	125M
w/ COSINE [†]	76.0	73.2	125M
Transductive Learning			12 -
Snorkel [†] (Ratner et al., 2020)	80.5	-	1M
RoBERTa-WL [†] (Liu et al., 2019)	81.3	76.8	125M
w/ MT [†] (Tarvainen and Valpola, 2017)	82.1	77.1	125M
w/ VAT [†] (Miyato et al., 2018)	84.9	79.5	125M
w/ COSINE [†]	89.5	85.3	125M

- Semi-Supervised Learning: augment the original training data with sentence pairs extracted from lexical KB (wordnet)
- Transductive Setting: Have access to train data (w/o labels) and augment them to training set.
- Our framework can achieve best performance compared with other semi-supervised learning and transductive learning baselines.

Case Study

From left to right: (1) visualization of Exact Match, (2) results after the initialization step, (3) results after contrastive self-training, (4) wrong-label correction after self-training.

Our framework can gradually correct the wrong annotated examples.

Self-Training with Weak Supervision

https://www.aclweb.org/anthology/2021.naacl-main.66.pdf

Giannis Karamanolakis, Ahmed Hassan Awadallah, Subhabrata Mukherjee, Guoqing Zheng

Dominant Supervised Learning Paradigm: A Labeled Data Bottleneck

Task Specification

(e.g., document-level, binary sentiment classification)

"labeled data bottleneck"

Standard Benchmarks

- Fixed task specifications
- Large-scale labeled data

Real-World Applications

- Dynamic task specifications
- · Limited or no labeled data

Weak Supervision Via Domain-Specific Rules

- · Rules: heuristic labeling functions written by domain experts
- · Rules are used to automatically annotate unlabeled data

Example: regular expression patterns

```
Spam
classification

def regex_check_out(x):
    return SPAM if re.search("check.*out", x) else ABSTAIN

Question type
classification

def numeric_question(x):
    return NUMERIC if x.startswith("when") else ABSTAIN
```

Example: heuristic functions based on lexicons / models / knowledge bases

```
def sentiment_lexicon_score(x, sentiwordnet):
    if sentiwordnet(x) > 0.8:
        return POSITIVE
    elif sentiwordnet(x) < 0.2:
        return NEGATIVE
    else:
        ABSTAIN</pre>
```

Challenges in Learning with Weak Rules

$$rule(x_i) \to SPAM \not X$$

True label: HAM

 $rule(x_i) \rightarrow ABSTAIN$

Our ASTRA Framework for Weak Supervision

Figure 2: Our ASTRA framework for self-training with weak supervision.

Our Contributions:

- Present an iterative self-training mechanism for training deep neural networks (Student) with weak supervision
- Present a rule attention network (RAN Teacher) for aggregating multiple weak sources with instance-specific weights and construct an SSL objective
- 3. Show the effectiveness of ASTRA on six benchmarks for text classification

Limitation of Previous Methods for Weak Supervision

Previous work ignore unlabeled instances that are not covered by rules
 [Ratner et al., 2017; Bach et al., 2019; Awasthi et al., 2020]

Expert-defined rules are usually sparse:

We leverage all unlabeled instances for weak supervision via self-training

ASTRA: Weakly-Supervised Self-Training

- 1. Student
- 2. Teacher

Represents input x using contextualized representations

input x: "What is the percentage of water content in the human body?"

- Represents input x using contextualized representations
- Large-scale labeled data is expensive to obtain

Self-Training Paradigm

Few Labeled Data $D_{\!L}$

 $\underset{p_{\theta}}{\textbf{Student}}$

Unlabeled Data $D_{\cal U}$

- Represents input x using contextualized representations
- Large-scale labeled data is expensive to obtain

Self-Training Paradigm

$$\min_{\theta} \ \mathbb{E}_{x,y \in D_L} - \log \ p_{\theta}(y \mid x) + \lambda \mathbb{E}_{x \in D_U} \ \mathbb{E}_{y \sim p_{\theta^*}(y \mid x)} - \log \ p_{\theta}(y \mid x)$$
(-) Prone to error propagation

- Represents input x using contextualized representations
- Large-scale labeled data is expensive to obtain
- We train Student using Teacher's labels

Weakly-Supervised Self-Training

$$\min_{\theta} \ \mathbb{E}_{x,y \in D_L} - \log \ p_{\theta}(y \mid x) \ + \ \lambda \mathbb{E}_{x \in D_U} \ \mathbb{E}_{y \sim q_{\phi}^*(y \mid x)} - \log \ p_{\theta}(y \mid x)$$

Teacher: Rule Attention Network (RAN)

- RAN aggregates weak labels predicted by rules and Student
 - Heuristic rules cover only a subset of the data
 - Student covers more data via contextualized embeddings

Teacher: Rule Attention Network (RAN)

- RAN aggregates weak labels predicted by rules and Student
- RAN learns to predict instance-specific weights using rule attention
- RAN does not require rule supervision: we employ a SSL objective

RAN label

$$q_{i} = \frac{1}{Z} \sum_{j \in R} a_{i}^{j} q_{i}^{j} + (1 - a_{i}^{j}) u$$

Semi-Supervised Training Objective: $\mathscr{L}^{RAN} = -\sum_{(x_i, y_i) \in D_L} y_i \log q_i - \sum_{x_i \in D_L} q_i \log q_i$.

Cross-Entropy (labeled data) (unlabeled data)

high weights $a^j = 1$ for rules j that agree in predictions q^j

more details in our paper!

Summary of our ASTRA Framework

- 1. Train **Student** using few labeled data
- 2. Iterate:
 - 1. Train **RAN Teacher** to aggregate weak rules and Student
 - 2. Train Student using Teacher's labels

Access to rules during test time?

- YES -> use Teacher (Student + Rules)
- NO -> use Student

Experiments: Learning with Weak Supervision

Benchmark	# Rules	Rule Coverage
TREC (question classification)	68	46%
SMS (spam classification)	73	9%
YouTube (spam classification)	10	48%
CENSUS (income classification)	83	94%
MIT-R (slot filling)	15	1%
Spouse (relation classification)	9	8%

- Rule types: keywords, regular expressions, lexicons, knowledge bases
- Rules are sparse:
 - 66% of the examples are covered by fewer than 2 rules
 - 40% of the examples are not covered by any rule

Results Summary Across 6 Benchmarks

	Learning to Weight		Unlabeled	Average
Method	Rules	Instances	(no rules)	Accuracy
PosteriorReg (Hu et al., 2016)	✓	-	-	82.6
Snorkel (Ratner et al., 2017)	✓		-	82.9
L2R (Ren et al., 2018a)	-	✓	-	82.8
Standard self-training	-	-	✓	83.5
ImplyLoss (Awasthi et al., 2020)	✓	✓	-	85.2
ASTRA	✓	✓	✓	88.0 (+3.39

- · Self-training outperforms weak supervision approaches
- ASTRA outperforms all previous approaches:
 - (+) Learns instance-specific rule weights
 - (+) Leverages all unlabeled data
 - (+) Does not require rule supervision ("rule exemplars" in Awasthi et al., 2020)

Multi-Style Transfer with Discriminative Feedback on Disjoint Corpus

https://www.aclweb.org/anthology/2021.naacl-main.275.pdf

Navita Goyal, Anadhavelu Natarajan, Abhilasha Sancheti, Balaji Vasan Srinivasan

Figure 1: Model Architecture - Left: Generative pre-training using MLM objective, and Fine-tuning encoder-decoder LM with multiple discriminative losses and Right: Discriminator fine-tuning with language modeling (next token prediction) objective. Color for model blocks represents the pre-trained model used for initialization prior to fine-tuning.