Data-Driven Screening of Network Constraints for Unit Commitment

INFORMS Annual Meeting 2020

S. Pineda

J. M. Morales A. Jiménez-Cordero

OASYS group, University of Málaga (Spain)

November 11, 2020

What problem are we solving?

Short-term decisions

Spatial dimension

Classification

What problem are we solving?

Unit Commitment Problem			
Horizon	1 day		
	Generation commitment		
Decisions	Generation dispach		
	Power flows		
Objective	Min production cost		
	Generation = Demand		
Constraints	Unit technical limits		
	Line technical limits		
Comput. burden	High		

How is that problem formulated?

$$\min_{\mathbf{x} \in \mathbb{R}^n, \, \mathbf{y} \in \{0,1\}^m} f(\mathbf{x}, \mathbf{y}) \tag{1a}$$

$$g_i(\mathbf{x}, \mathbf{y}) \leqslant 0, \quad \forall i$$
 (1b)

$$h_j(\mathbf{x}) \leqslant 0, \quad \forall j$$
 (1c)

- Continuous variables x: power dispatches, power flows through lines
- ullet Binary variables $oldsymbol{y}$: on/off status of the generating units
- Objective function (1a) minimizes the total generation costs
- Equation (1b): technical constraints of generating units
- Equation (1c): technical constraints of network
- Even if all functions are linear, problem (1a)-(1c) is **NP-hard**

Can we remove constraints to reduce time?

- Constraint (2b) is an active constraint
- Constraint (2c) is an inactive constraint
- Constraint (2d) is a redundant constraint
- Constraint (2e) is defined as quasi-active constraint

x

How is the Unit Commitment problem formulated?

$$\min_{p_g, u_g, q_n, \epsilon_n} \quad \sum_g c_g p_g + L \sum_n |\epsilon_n| \tag{3a}$$

s.t.
$$q_n + \epsilon_n = \sum_{g:b_g = n} p_g - d_n, \forall n$$
 (3b)

$$\sum_{n} q_n = 0 \tag{3c}$$

$$u_g \underline{p}_g \leqslant p_g \leqslant u_g \rho_g \overline{p}_g, \forall g$$
 (3d)
 $-\overline{f}_l \leqslant \sum_n a_{ln} q_n \leqslant \overline{f}_l, \forall l$ (3e)

$$u_q \in \{0, 1\}, \forall q \tag{3f}$$

We compare 8 different methods to remove constraints (3e)

Benchmark

No network constraints are removed (Extremely high time)

Single-bus

- All network constraints are removed (Very fast)
- Close-to-optimal solutions in low-congested systems
- Highly suboptimal solutions in general

Perfect information

- Removes all constraints not binding at the optimum
- It cannot be implemented in practice
- It removes quasi-active constraints

Naive

- It removes line constraints that have not been congested in the past
- It requires access to historical data
- Low number of removed constraints

Constraint generation (CG)

• It starts by solving the UC without any network constraint

• Line constraints exceeding their capacity are iteratively added

- It provides the same solution as BN
- High computational burden since the UC is solved at each iteration

Roald method (RO)¹

Two optimization problems for each line are solved

$$\begin{aligned} \min_{p_g,q_n,d_n} / \max_{p_g,q_n,d_n} & & \sum_n a_{l'n} q_n \\ \text{s.t.} & & (3\text{b}), (3\text{c}), (3\text{d}), (3\text{e}) \\ & & & \underline{d}_n \leqslant d_n \leqslant \overline{d}_n, \forall n \end{aligned}$$

- If the objective functions reach the line limit, then its capacity constraints are kept. Otherwise, such constraints are removed.
- It only removes redundant constraints

¹Roald and Molzahn 2019.

Data-driven method (DD)

• Line congestion is inferred via statistical learning

No need for solving additional optimization problems

It removes not only redundant but also inactive constraints

ullet K-nearest neighbors is used for its simplicity and interpretability

Data-driven method (DD)

- Data on net demand and congestion status is denoted as $(\tilde{\mathbf{d}}_t, s_{lt}) \forall t$
- For a new time period \hat{t} , find the subset of closest K neighbors (\mathcal{N}_K) using the distance function below

$$\operatorname{dist}(\tilde{\mathbf{d}}_t, \tilde{\mathbf{d}}_t) = \|a_l^T(\tilde{\mathbf{d}}_t - \tilde{\mathbf{d}}_t)\|_2$$
 (5)

- ullet Two individuals are close if the net demand of those buses that have a higher impact on the power flow through line l are similar enough
- If $s_{lt} = 0 \ \forall t \in \mathcal{N}_K$, line l is assumed uncongested for \hat{t} and its capacity constraints are removed. Otherwise, such constraints are kept.

Data-driven method (DD)

- → Line is congested
- → Line is not congested
- $\blacksquare \rightarrow$ Line is assumed to be congested and its constraint is kept

Data-driven + constraint generation (DD+CG)

Use data to rapidly remove a large number of constraints

Then iteratively add violated line constraints

It also provides the same solution as BN

It requires way less iterations than CG

Have you tried it on a realistic case study?

• IEEE RTS-96 test system modified to accommodate 19 wind farms

• 73 nodes and 120 transmission lines

• 300 training days and 60 test days

We consider a low- and a high-congested case

Low-congested case

Method	Removed(%)	$\Delta cost(\%)$	Infes(%)	Time(%)
Benchmark	0	0.00	0.000	100
Single-bus	100	-0.04	0.044	19.8
Perfect	99.9	0.01	0.001	15.9
Naive	99.2	0.00	0.000	16.5
ConGen	99.9	0.00	0.000	27.0
Roald	85.8	0.00	0.000	24.8
Data-Driven	99.8	0.00	0.000	17.5
DD + CG	99.8	0.00	0.000	22.6

Low-congested case

Method	Removed(%)	$\Delta cost(\%)$	Infes(%)	Time(%)
Benchmark	0	0.00	0.000	100
Single-bus	100	-0.04	0.044	19.8
Perfect	99.9	0.01	0.001	15.9
Naive	99.2	0.00	0.000	16.5
ConGen	99.9	0.00	0.000	27.0
Roald	85.8	0.00	0.000	24.8
Data-Driven	99.8	0.00	0.000	17.5
DD+CG	99.8	0.00	0.000	22.6

Single-bus method provides acceptable results

Low-congested case

Method	Removed(%)	$\Delta cost(\%)$	Infes(%)	Time(%)
Benchmark	0	0.00	0.000	100
Single-bus	100	-0.04	0.044	19.8
Perfect	99.9	0.01	0.001	15.9
Naive	99.2	0.00	0.000	16.5
ConGen	99.9	0.00	0.000	27.0
Roald	85.8	0.00	0.000	24.8
Data-Driven	99.8	0.00	0.000	17.5
DD+CG	99.8	0.00	0.000	22.6

Five methods provide the same solution than the benchmark

Low-congested case

Method	Removed(%)	$\Delta cost(\%)$	Infes(%)	Time(%)
Benchmark	0	0.00	0.000	100
Single-bus	100	-0.04	0.044	19.8
Perfect	99.9	0.01	0.001	15.9
Naive	99.2	0.00	0.000	16.5
ConGen	99.9	0.00	0.000	27.0
Roald	85.8	0.00	0.000	24.8
Data-Driven	99.8	0.00	0.000	17.5
DD+CG	99.8	0.00	0.000	22.6

Roald is conservative and keeps 14% of line constraints

Low-congested case

Method	Removed(%)	$\Delta cost(\%)$	Infes(%)	Time(%)
Benchmark	0	0.00	0.000	100
Single-bus	100	-0.04	0.044	19.8
Perfect	99.9	0.01	0.001	15.9
Naive	99.2	0.00	0.000	16.5
ConGen	99.9	0.00	0.000	27.0
Roald	85.8	0.00	0.000	24.8
Data-Driven	99.8	0.00	0.000	17.5
DD+CG	99.8	0.00	0.000	22.6

Naive and Data-Driven achieve the highest time reduction

High-congested case

Method	Removed(%)	$\Delta cost(\%)$	Infes(%)	Time(%)
Benchmark	0	0.00	0.000	100.0
Single-bus	100	-20.14	10.557	3.1
Perfect	95.1	1.65	0.435	5.7
Naive	72.5	0.01	0.001	33.3
ConGen	83.2	0.00	0.000	65.4
Roald	21.7	0.00	0.000	80.4
Data-Driven	89.4	0.79	0.107	12.6
DD + CG	88.8	0.00	0.000	32.7

High-congested case

Method	Removed(%)	$\Delta cost(\%)$	Infes(%)	Time(%)
Benchmark	0	0.00	0.000	100.0
Single-bus	100	-20.14	10.557	3.1
Perfect	95.1	1.65	0.435	5.7
Naive	72.5	0.01	0.001	33.3
ConGen	83.2	0.00	0.000	65.4
Roald	21.7	0.00	0.000	80.4
Data-Driven	89.4	0.79	0.107	12.6
DD+CG	88.8	0.00	0.000	32.7

Single-bus approach is fast but provides catastrophic results

High-congested case

Method	Removed(%)	$\Delta cost(\%)$	Infes(%)	Time(%)
Benchmark	0	0.00	0.000	100.0
Single-bus	100	-20.14	10.557	3.1
Perfect	95.1	1.65	0.435	5.7
Naive	72.5	0.01	0.001	33.3
ConGen	83.2	0.00	0.000	65.4
Roald	21.7	0.00	0.000	80.4
Data-Driven	89.4	0.79	0.107	12.6
DD+CG	88.8	0.00	0.000	32.7

Perfect provides suboptimal results due to quasi-active constraints

High-congested case

Method	Removed(%)	$\Delta cost(\%)$	Infes(%)	Time(%)
Benchmark	0	0.00	0.000	100.0
Single-bus	100	-20.14	10.557	3.1
Perfect	95.1	1.65	0.435	5.7
Naive	72.5	0.01	0.001	33.3
ConGen	83.2	0.00	0.000	65.4
Roald	21.7	0.00	0.000	80.4
Data-Driven	89.4	0.79	0.107	12.6
DD+CG	88.8	0.00	0.000	32.7

ConGen removes a lot of constraints but requires high time

High-congested case

Method	Removed(%)	$\Delta cost(\%)$	Infes(%)	Time(%)
Benchmark	0	0.00	0.000	100.0
Single-bus	100	-20.14	10.557	3.1
Perfect	95.1	1.65	0.435	5.7
Naive	72.5	0.01	0.001	33.3
ConGen	83.2	0.00	0.000	65.4
Roald	21.7	0.00	0.000	80.4
Data-Driven	89.4	0.79	0.107	12.6
DD+CG	88.8	0.00	0.000	32.7

Roald only removes 22% of constraints and limits time reduction

High-congested case

Method	Removed(%)	$\Delta cost(\%)$	Infes(%)	Time(%)
Benchmark	0	0.00	0.000	100.0
Single-bus	100	-20.14	10.557	3.1
Perfect	95.1	1.65	0.435	5.7
Naive	72.5	0.01	0.001	33.3
ConGen	83.2	0.00	0.000	65.4
Roald	21.7	0.00	0.000	80.4
Data-Driven	89.4	0.79	0.107	12.6
DD+CG	88.8	0.00	0.000	32.7

Data-Driven removes most constraints but involves small infeasibilities

High-congested case

Method	Removed(%)	$\Delta cost(\%)$	Infes(%)	Time(%)
Benchmark	0	0.00	0.000	100.0
Single-bus	100	-20.14	10.557	3.1
Perfect	95.1	1.65	0.435	5.7
Naive	72.5	0.01	0.001	33.3
ConGen	83.2	0.00	0.000	65.4
Roald	21.7	0.00	0.000	80.4
Data-Driven	89.4	0.79	0.107	12.6
DD+CG	88.8	0.00	0.000	32.7

DD+CG provides the optimum and significantly reduces time

2000-bus case

Method	Removed(%)	$\Delta cost(\%)$	Infes(%)	Time(%)
Benchmark	0.0	0.00	0.00	100.0
Single-bus	100.0	-2.17	0.26	0.4
Perfect	99.7	-0.22	0.13	1.0
Naive	92.3	0.00	0.00	10.6
ConGen	98.8	0.00	0.00	8.9
Roald	54.3	0.00	0.00	64.7
Data-Driven	98.6	0.04	0.03	2.3
DD + CG	98.5	0.00	0.00	5.3

- Time of Data-Driven similar to Single-bus and Perfect
- Solution provided by Data-driven involve tiny inaccuracies
- DD+CG recovers the original solution at lowest time

Conclusions

Method	# Removed	Original solution	Time
Benchmark	•	•	XXX
Single-bus	•	•	X
Perfect	•	•	X
Naive	•	•	X
ConGen	•	•	XX
Roald	•	•	XX
Data-Driven	•	•	X
DD + CG	•	•	X

Thanks for the attention!

Questions?

More info: oasys.uma.es Email: spineda@uma.es