

Universidade do Minho DEPARTAMENTO DE MATEMÁTICA E APLICAÇÕES

Analise Matemática B

FICHA 7B MIECOM

Gradiente, Derivadas direccionais, Fórmula de Taylor, Plano tangente, Recta normal

- 1. Determine o campo vectorial gradiente (grad $f = \overrightarrow{\nabla} f$) das seguintes funções
 - (a) $f(x,y) = x^2 + y^2$,
 - (b) $f(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$.
- 2. Determine o gradiente (grad $f = \overrightarrow{\nabla} f$) da função $f(x, y, z) = (x^2 + \cos z) \exp(-x + y)$ no ponto $(a, b, c) = (1, 1, \pi)$.
- 3. Seja $f(x,y) = \ln \|\vec{r}\|$, onde $\vec{r} = (x,y)$. Mostre que $\overrightarrow{\nabla} f = \frac{\vec{r}}{\|\vec{r}\|^2}$
- 4. Calcule as derivadas dirigidas
 - (a) da função f(x, y, z) = xy + yz + zx no ponto (2, 1, 3) na direcção que vai deste ponto para o ponto M = (5, 5, 15).
 - (b) da função $f(x,y)=x^2-xy-2y^2$ no ponto (1,2) na direcção que faz com o eixo \overrightarrow{OX} um ângulo de 60° .
- 5. Sabendo que $D_{(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})}f(a,b)=3\sqrt{2}$ e $D_{(\frac{3}{5},-\frac{4}{5})}f(a,b)=5$, determine $\overrightarrow{\nabla}f(a,b)$.
- 6. Em que direcção a partir do ponto (2,0) a função f(x,y) = xy tem taxa de variação -1?
- 7. A temperatura no local (x,y) numa região do plano XOY é $T^{\circ}C$ onde $T(x,y)=x^2e^{-y}$.
 - (a) Em que direcção a partir do ponto (2,1) a temperatura aumenta mais depressa?
 - (b) Qual a taxa de crescimento nessa direcção?
- 8. Em que direcção a partir do ponto (a, b, c) a função $f(x, y, z) = x^2 + y^2 z^2$ aumenta metade da sua taxa de variação máxima nesse ponto?
- 9. Seja $f(x,y) = 100 x^2 y^2$
 - (a) Determine a derivada de f no ponto P = (3,4) segundo o vector $\cos \alpha \vec{e_1} + \sin \alpha \vec{e_2}$.
 - (b) Em que direcção se deve sair de P para que os valores da função aumentem o mais rapidamente possível?
 - (c) Interprete geometricamente o resultado, atendendo ao gréfico de f.
- 10. Desenvolva a fórmula de Taylor até aos termos de 2^a ordem da função $f(x,y)=xy^2$, em torno do ponto (1,2).
- 11. Determine polinómio de Taylor do grau indicado para as seguintes funções em torno dos pontos indicados

- (a) $f(x,y) = \ln(x^2 + y^2)$, grau 3, em torno do ponto (1,0);
- (b) $f(x,y) = \int_0^{x+y^2} \exp(-t^2) dt$, grau 3, em torno do ponto (0,0);
- (c) $f(x,y) = \frac{\sin x}{y}$, grau 2, em torno do ponto $(\frac{\pi}{2}, 1)$;
- 12. Determine as equações do plano tangente e da recta normal à superfície $x^2+y^2=4z$ no ponto (2,-4,5).
- 13. Mostre que o plano tangente ao parabolóide hiperbólico $z=x^2-y^2$ em (0,0,0) intersecta a superfície em duas linhas rectas.
- 14. Mostre que a superfície $x^2 2xyz + y^3 = 4$ é perpendicular à superfície $x^2 + 1 = -2y^2 + z^2$ no ponto de intersecção (1, -1, 2).