

RAPPORT DE STAGE

Fracturation de floes de glace par percution dans un modèle granulaire

ÉtudiantDesmond Roussel Nzoyem

Superviseur Stéphane Labbé

Enseignant référent Christophe PRUD'HOMME

Ce stage à été effectué dans le cadre du master 2 CSMI, du 03 février 2021, au 31 juillet 2021; initié par le groupe SASIPau LJLL.

Année académique 2020 - 2021

Remerciements

Table des matières

Re	emerciements	1
1	Introduction	1
2	Environnement économique du stage 2.1 Le secteur d'activité	2 2
	2.2 Le Laboratoire Jacques-Louis Lions	2
3	État de l'art	3
	3.1 Position du problème3.2 État de l'art	3 4
	3.2.1 Modélisation Théorique de la Dynamique des Glaces de Mer	5
	 3.2.2 Le modèle de l'environnement	10
	Glaces de Mer	10
	3.2.4 Validations et Exploitations du Modèle	13
	3.2.5 Discussion	14
4	Travaux et apports	16
	4.1 Les travaux effectués	16
	4.2 Les apports du stage	16
5	Déroulement du stage	17
	5.1 Journal de bord	17
6	Conclusion	18
Bibliographie		19

Introduction

Environnement économique du stage

- 2.1 Le secteur d'activité
- 2.2 Le Laboratoire Jacques-Louis Lions

État de l'art

3.1 Position du problème

Nous commençons par présenter une modélisation mathématique d'une plaque de glace (appelé floe) sur la mer. Six variables (locales) sont nécessaires pour décrire le floe occupant la région fermée de l'espace Ω (voir figure 3.1) :

- Un ouvert connexe $\omega \in \mathbb{R}^2$ décrivant la section longitudinale du floe;
- Deux fonctions $h_+, h_- \in \mathcal{F}(\omega, \mathbb{R})$ décrivant l'épaisseur du floe, telle que $\forall x \in \omega, h_-(x) \leq h_+(x)$;
- Le centre de masse du floe G(w);
- Deux vecteurs $\mathbf{e}_1(\omega)$ et $\mathbf{e}_2(\omega)$ formant une base sur ω .

FIGURE 3.1 – Illustration de la géométrie d'un floe de glace Ω .

On confond le floe au volume qu'il occupe dans l'espace Ω :

$$\Omega = \{(x, z) | x \in \omega \in \mathbb{R}^2, z \in]h_{-}(x), h_{+}(x)[\}.$$

Les fonctions h_- et h_+ permettent de définir trois quantités (voir figure 3.2) :

- L'épaisseur moyenne du floe : $\bar{h} = \sup_{x \in \omega} h_+(x) \inf_{x \in \omega} h_-(x)$;
- La plus forte épaisseur : $\bar{h}^* = \sup_{x \in \omega} |h_+(x) h_-(x)|$;
- La plus faible épaisseur : $\underline{h}^* = \inf_{x \in \omega} |h_+(x) h_-(x)|$.

Les vecteurs $\mathbf{e}_1(\omega)$ et $\mathbf{e}_2(\omega)$ sont liés à ω , et pointent vers un point fixe du bord $\partial \omega$ du floe c-à-d :

$$\exists \sigma_i \in \partial \omega \, | \, e_i(\omega) = \frac{\sigma_i - G(\omega)}{\|\sigma_i - G(\omega)\|}, \text{ pour } i \in \{1, 2\},$$

FIGURE 3.2 – Différentes épaisseurs décrivant un floe de glace. Pour l'instant, afin d'obtenir un floe relativement plat (i.e \bar{h} faible), h_- sera pris identiquement nul, et h_+ constant.

où $\|\cdot\|$ désigne la norme euclidienne de \mathbb{R}^2 . Notons que $\sigma_1 \neq \sigma_2$, et $\mathbf{e}_1(\omega) \cdot \mathbf{e}_2(\omega) = 0$ de façon à ce que la base orthonormée $(\mathbf{e}_1(\omega), \mathbf{e}_2(\omega))$ soit directe.

Un floe $\Omega = (\omega, \mathbf{e}_1(\omega), \mathbf{e}_2(\omega), G(\omega), h_-, h_+)$ se déplace sur la mer $M \in \mathbb{R}^2$. Au temps t après une translation de vecteur u(t) (et de matrice $\mathsf{T}_{u(t)}$), et une rotation de vecteur $\theta(t)$ (et de matrice $\mathsf{R}_{\theta(t)}$), on obtient le floe $\Omega(t)$ défini par :

$$\Omega(t) = (\omega', \mathbf{e}^1(\omega'), \mathbf{e}^2(\omega'), G(\omega'), h_-, h_+),$$

avec

$$\begin{cases} \boldsymbol{\omega}' = \mathsf{T}_{u(t)} \mathsf{R}_{\theta(t)} \boldsymbol{\omega}, \\ \mathsf{e}_1(\boldsymbol{\omega}') = \mathsf{T}_{u(t)} \mathsf{R}_{\theta(t)} \mathsf{e}_1(\boldsymbol{\omega}), \\ \mathsf{e}_2(\boldsymbol{\omega}') = \mathsf{T}_{u(t)} \mathsf{R}_{\theta(t)} \mathsf{e}_2(\boldsymbol{\omega}), \\ \boldsymbol{G}(\boldsymbol{\omega}') = \mathsf{T}_{u(t)} \mathsf{R}_{\theta(t)} \boldsymbol{G}(\boldsymbol{\omega}). \end{cases}$$

C'est cette dernière notation mettant en exergue la dépendance avec le temps que nous utiliserons tout au long de ce rapport.

Lors de leur mouvements sur la surface de la mer, les floes se fracturent sous l'effet des vents et des courants océaniques, des phénomènes thermodynamiques, etc. Nous nous intéresserons donc au phénomène de percussion en vue de l'initialisation des fractures dans les floes de glace. Afin de décrire le mouvement des floes de glace sur la mer, nous devons nous munir d'un repère absolu, que nous notons $\mathcal{R}_{abs} = (O, \mathbf{i}, \mathbf{j}, \mathbf{k})$. Le repère associé au floe Ω_i sera noté $\mathcal{R}_{\Omega_i} = (O, \mathbf{e_1}(\omega), \mathbf{e_2}(\omega), \mathbf{k})$. Dans ce repère absolu, le floe possède 3 degrés de libertés : l'abscisse et l'ordonné de son centre de gravité $G_i(\omega)$, et son orientation donnée par l'angle $\theta_i(t)$ (voir figure 3.3).

3.2 État de l'art

Une fois le modèle défini, il nous faut établir les équations décrivant la dynamique du floe, et celle de son environnement. Les travaux de RABATEL, 2015 et BALASOIU, 2020 ont extensivement traité le problème de modélisation dynamique et de simulation d'un assemblage de floe de glace. Nous résumons ici les principales idées de leurs raisonnements, tout en présentant l'état de l'art dans ce domaine.

^{1.} Pour l'instant, la mer est considérée comme un ouvert dans \mathbb{R}^2 . Plus tard, nous prendrons en compte sont épaisseur lorsque nous la modéliserons par une sphère de \mathbb{R}^3 .

FIGURE 3.3 – Positionnement d'un floe de glace Ω_i dans le repère absolu \mathcal{R}_{abs} .

3.2.1 Modélisation Théorique de la Dynamique des Glaces de Mer

3.2.1.1 La cinétique du floe

L'approche discrète décrite dans (Rabatel, 2015) utilise les mêmes notations que celles présentées à la section 3.1. Les obstacles 2 sont des floes aux mêmes propriétés que les floes de glace, à la seule différence qu'ils ont une masse (volumique) infinie. Dans (Rabatel, 2015), l'auteur travaille dans un repère orthonormé direct $\mathcal{R}_{abs} = (O, \mathbf{i}, \mathbf{j}, \mathbf{k})$; cependant, vu que la mer est considérée plane, le mouvement du floe peut être décrit dans le plan $\mathcal{P} = (O, \mathbf{i}, \mathbf{j})$. Ensuite, Rabatel désigne la vitesse angulaire du floe Ω_i par

$$\theta_i(t) = \theta_i(t)\mathbf{k} = (0, 0, \theta_i(t))^T$$
.

Soit P (de coordonné x) un point quelconque de $\mathcal{P} \subset \mathbb{R}^2$. Sa vitesse dans le repère \mathcal{R}_{abs} est donnée est donnée par la formule de Varignon :

$$\dot{P}(t) = \dot{G}_i(t) + \Theta_i(t) \wedge \mathbf{G_i} \mathbf{P},$$

où le symbole \wedge représente le produit vectoriel dans \mathbb{R}^3 . La masse (constante) du floe rigide indéformable est donnée par

$$M_i = \rho_i \int_{\Omega_i(t)} h_{i,+}(x) \, \mathrm{d}x.$$

Ensuite, l'auteur défini :

— la somme des forces par unité de volume qui s'applique au centre de masse du floe Ω_i :

$$\mathbf{F}_i = \rho_i \int_{\Omega_i(t)} \mathbf{F}(x) \, \mathrm{d}x,$$

— le moment cinétique 3 en G:

$$L_i = \rho_i \int_{\Omega^i(t)} \mathbf{G} \mathbf{P} \wedge \dot{\mathbf{P}}(t) \, \mathrm{d}x,$$

— le moment dynamique en *G* :

$$\mathfrak{M}_i = \int_{\Omega^i(t)} \mathbf{GP} \wedge \mathbf{F}(x) \, \mathrm{d}x.$$

^{2.} Nous faisons allusion aux obstacles au déplacement des floes. Il peut s'agir des iles, des stations offshore, etc.

^{3.} Il s'agit d'un moment dû à l'accélération du floe; alors que le moment dynamique est dû aux forces extérieures. Notons que ces deux vecteurs sont portés par **k**, et peuvent donc être remplacé par des scalaires correspondants.

Sous le formalisme de Newton-Euler, RABATEL montre que chaque floe Ω_i vérifie :

$$\begin{cases} M_i \frac{\mathrm{d}\dot{\mathbf{G}}_i(t)}{\mathrm{d}t} &= \mathbf{F}_i \\ \mathcal{I}_i \frac{\mathrm{d}\dot{\boldsymbol{\theta}}_i(t)}{\mathrm{d}t} &= \mathbf{M}_i \end{cases}$$

où \mathcal{I}_i représente le moment d'inertie du floe i. Ce système se réécrit facilement sous la forme

$$\mathcal{M}_i \frac{\mathrm{d}W_i(t)}{\mathrm{d}t} = \mathcal{H}_i(t), \tag{3.1}$$

avec

$$\mathcal{M}_{i} = \begin{pmatrix} M_{i} & 0 & 0 \\ 0 & M_{i} & 0 \\ 0 & 0 & \mathcal{I}_{i} \end{pmatrix}, \quad W_{i}(t) = \begin{pmatrix} \dot{\mathbf{G}}(t) \\ \dot{\theta}_{i}(t) \end{pmatrix}, \text{ et } \quad \mathcal{H}_{i}(t) = \begin{pmatrix} \mathbf{F}_{i}(t) \\ \mathbf{\mathfrak{M}}_{i}(t) \end{pmatrix}.$$

Pour un système *S* composé de *n* floes, le problème précédent doit être satisfait pour tous les floes. (RABATEL, 2015, p.18) montre que cela revient à résoudre l'équation

$$\mathcal{M}\frac{\mathrm{d}W(t)}{\mathrm{d}t} = \mathcal{H}(t),\tag{3.2}$$

avec

$$\mathcal{M}=(\mathcal{M}_i)_{1\leq i\leq n}$$
, $\mathcal{W}(t)=(\mathcal{W}_i(t))_{1\leq i\leq n}$, et $\mathcal{M}(t)=(\mathcal{M}_i(t))_{1\leq i\leq n}$.

L'énergie cinétique du floe Ω_i quant à elle sera donné par :

$$E_i(t) = \frac{1}{2}M_i\dot{G}_i(t)^2 + \frac{1}{2}I_i\dot{\theta}_i(t)^2.$$

3.2.1.2 L'interaction entre les floes

Le domaine de la mécanique du contact s'est grandement développé ces derniers siècles, avec plusieurs scientifiques qui ont tenté de décrire le phénomène de contact entre des corps rigides. Notons que le problème d'interaction entre les floes est un probleme de dynamique non-régulière (contraitement au probleme de éplacement des floes entre deux collisions qui lui, est un probleme de dynamque resguliere). Dans (RABATEL, 2015), l'auteur considère deux lois de contact afin de décrire des phénomènes précis:

- la condition unilatérale de Signorini (references) : afin de décrire la condition de non-interpénétration; cette consition est portée par la composante normale ⁴ de la force de contact ⁵ lors de la collision.
- la loi de friction de Coulomb (references) : afin de modéliser le comportement de friction pendant une collision. Cette condition est portée par la composante tangentielle de la force de contact.

Afin de traiter ces problemes de contact, deux approches principales ont été developpées par les scientifiques : l'approche non-régulière et l'approche de r;egularisation des lois de contact.

Parmis les pioniers dans l'approche de régularisation pour la résolution de la condition unilatérale de Signorini, nous pourvons citer Hertz; Nevins et Whitney [NW72, Whi77], Moore [MW88b]; Ces méthodes se sont largement répandues dans les études liées à la robotique, à la réalité virtuelle ou encore dans les opérations assistées par ordinateur, pour simuler un grand nombre d'objets en contact en petites ou grandes déformations comme des habits, des cheveux ou encore des organes (voir [WW90, VCMT95, BW98, RGF+ 04]). Concernant la seconde, la loi de friction de Coulomb, la discontinuité entre les phases de glissement et non glissement a été traitée de différentes façons; en utilisant la notion de coefficeint de restitution, ou des modeles masse-ressorts.

L'approche non-régulière a été développée en utilisant les concepts d'inclusion différentielles; ceci afin de traiter la condition de Signorini. Moreau [Mor85b], Aubin [AC84] et Monteiro Marques [MM85], ont montré

^{4.} la composante normale permet aussi d'assurer dissipation de l'énergie à travers la loi de Poisson.

^{5.} La force de contact est la somme d'une friction tangentielle, et d'une réation normale.

des résultats d'existence et d'unicité de solutions du probleme sans friction. Puis, des résultats similaires ont été établis pour le contact unique avec friction (voir [Mor85a, MM88, Pan85, JP85, MM94]). Cependant, cette notion d'inclusion differentielle est difficile à manipuler; raison pour laquelle le problème du contact multiple avec friction reste encore très peu traité. Il a donc fallu attendre les années 80 avec l'essort des méthodes LCP pour doner un nouvau soufle à l'approche non régulière. Nous pouvons citer ici les travaux de Lötstedt qui des preuves d'existence et d'unicité pour le contact avec la friction de Coulomb (voir [Lot81, Lot82b, Lot82a]). On cite aussi Klarbring et Pang, pour leur apport sur le plan des méthodes de programmations. (RABATEL, 2015) a opté pour cette approche car elle facilite la construction des solutions à partir d'algorithmes tels que ceux de Lemke (voir [Lem78]). RABATEL s'insipire aussi des travaux de Baraff [Bar93], qui écrit les forces de contact dans les repères locaux aux points de contact. Ces repères sont définis par la normale et la tangente aux points de contact. La condition de complémentarité se résume comme ceci : "S'il y a contact alors la réaction est strictement positive et l'accélération relative nulle, et s'il n'y a pas contact l'accélération relative est strictement positive et la réaction nulle. ". Cependant, les travaux de Baraff sur l'existence de solutions sont limités par l'approche accéleération-force qui est utilisée, et le coefficient de friction. En utilisant des formulations en vitesse et impulsion, les chercheurs ont réussi à démontrer l'existence de solutions pour toute configuration à contacts multiples avec n'importe quel coefficient de friction.

Pour traiter le problème de collision entre les floes, les glaciologues retiennent une multitude de modèles principalement intégrés aux milieux continus. Par exemple, dans les articles de Solomon [Sol70], ceux de Hibler [HI79] et ceux de Bratchie [Bra84], la force résultante des interactions est due à une contrainte interne. On note aussi les modèles basés sur théorie des flux de particules. Dans [SHL86, Hop85] par exemple, les collisions ne sont pas détectées précisément et les paramètres décrivant la collision sont déterminés par une méthode de Monte Carlo. L'introduction de ces déformations dans les modèles discrets de la banquise a été initié dans les années 90 par Hopkins [Hop96], et récement par Herman et Wilchinsky [Her11, WFH10]. Cependant, elles sont basées sur la régularisation des lois de contact. Avant les travaux de RABATEL, il n'existait pas de modèle discret de banquise en utilisant une dynamique du contact non régulière.

Le modèle décrit par (RABATEL et al., 2015, p.5892) utilise deux conditions de complémentarité pour déterminer les vitesses des floes après le contact. La première est une condition de Signorini (SIGNORINI, 1933) pour s'assurer de la non-interpénétration ⁶ des floes. Pour décrire ces conditions, il faut au préalable écrire le problème de contact entre floes comme un problème implicite, où les inconnus sont les impulsions après le choc ⁷. Pour cette condition de complémentarité, RABATEL se base donc sur les travaux de Delassus (1917), Moreau (63), (Pfeiffer and Glocker, 1996). RABATEL se base ensuite sur les travaux de [Stewart and Trinkle, 1996] pour décrire une deuxième condition de complémentarité vérifiant la loi de fraction de Coulomb. Dans (RABATEL et al., 2015, p.5892)complémentarité. Le problème résultant a ensuite résolu en utilisant un algorithme de Lemke [Cottle et al., 1992, Alg. 6.3.1].

Figure 3.4 – Interaction entre deux floes Ω_k et Ω_l au point P_i (Rabatel, 2015, p.26).

^{6.} Deux floes s'interpénètre si la "distance" entre ces deux floes est négative.

^{7.} Contrairement aux loi de contacts explicites (Hertz, Hooke, Coulomb), les loi implcites ne necessitent pas la connaissance de la nature du contact entre les floes (glissement ou accroche).

Soit P_j , $(j \in \{1, ..., n\})$ un point de contact entre les floes Ω_k et Ω_l (voir figure 3.4). Nous notons $\mathbf{F}_{kj}(t)$ la force de contact du floe Ω_k au floe Ω_l appliquée en P_j . Par convention, une matrice de contact $\mathbf{M}_{\mathbf{c}}$ est définie telle que son coefficient $c_k j$ vaut :

- -0 si le point de contact P_i n'est pas un point de contact du floe Ω_k ;
- −1 si le point de contact P_i est un point de contact entre les floes $Ω_k$ et $Ω_l$ avec k < l;
- -1 si le point de contact P_j est un point de contact entre les floes Ω_k et Ω_l avec k > l.

En notant E_k l'ensemble des points de contact du floe Ω_k au temps t, (Rabatel, 2015, p.26) définit la résultante des forces de contact $\mathbf{F}_k^c(t)$, au floe Ω_k comme :

$$\mathbf{F}_k^c(t) = \sum_{j \in E_k} c_{jk} \mathbf{F}_{kj}(t).$$

En rajoutent ces forces aux forces extérieures lors du bilan des forces à l' équation (3.3), pour un floe $\Omega_k(t)$, on obtient :

$$\mathcal{M}\frac{\mathrm{d}W(t)}{\mathrm{d}t} = \mathcal{H}(t) + \sum_{j \in E_k} \begin{pmatrix} \mathbf{F}_{kj}(t) \\ \mathbf{G}^{\mathbf{k}} \mathbf{P_j} \wedge \mathbf{F}_{kj}(t) \end{pmatrix}. \tag{3.3}$$

3.2.1.3 Formulation en problème linéaire de complémentarité

Il existe deux principales manières de formuler le problème du contact entre deux solides rigides. L'auteur de (Rabatel, 2015) opte pour le formalisme vitesse-impulsion, au détriment du formalisme accélération-force. En effet, L'approche en vitesse impulsion apporte l'avantage de pouvoir exprimer la force de friction de Coulomb directement par rapport à la vitesse. Il n'est pas nécessaire de connaître la nature du contact. Il nous faut donc définir les notions d'impulsion. Sur un intervalle de temps δt^* , s'il y a un contact entre les floes Ω_k et Ω_l au point P_j , nous dirons que le floe Ω_k a subi un choc provenant du floe Ω_l au point de contact P_j caractérisé par l'impulsion :

$$\mathcal{I}_{kj} = \int_{\delta t^*} c_{kj} \mathbf{F}_{kj}(t) \, \mathrm{d}t.$$

Rabatel fait donc apparaître les impulsions dans les équations des moments équation (3.3) pour le floe Ω_k sur l'intervalle temporel δt^* :

$$\mathcal{M}_k \int_{\delta t^*} \dot{W}_k(t) dt = \int_{\delta t^*} \mathcal{H}(t) dt + \sum_{j \in E_k} \begin{pmatrix} \mathcal{I}_{kj} \\ G_k P_j \wedge \mathcal{I}_{kj} \end{pmatrix}.$$

En écrivant $\delta t^* = [t^-, t^+]$, on peut donc introduire les inconnues $\beta, \lambda \in (\mathbb{R}^2)^m$ pour le problème de contact

$$\mathcal{M}(W(t^{+}) - W(t^{-})) = \int_{\delta t^{*}} \mathcal{H}(t) dt + \mathbf{B}\beta + \mathbf{J}\lambda, \qquad (3.4)$$

où ${\sf B}$ et ${\sf J}$ sont deux matrices de $(\mathbb{R}^3)^{n\times m}$ telle que

$$\mathbf{B} = (d_{kj})_{\substack{1 \leq k \leq n \\ 1 \leq j \leq m}}, \quad d_{kj} = \begin{cases} 0 \in \mathbb{R}^3 & \text{si } P_j \text{ n'est pas un point de contact de } \Omega_k \\ \begin{pmatrix} c_{kj} \mathbf{T}_j \\ c_{kj} \mathbf{P}_j \mathbf{G}_k \wedge \mathbf{T}_j \end{pmatrix} & \text{si } P_j \text{ est un point de contact de } \Omega_k \end{cases}$$

$$\mathbf{J} = (s_{kj})_{\substack{1 \leq k \leq n \\ 1 \leq j \leq m}}, \quad s_{kj} = \begin{cases} 0 \in \mathbb{R}^3 & \text{si } P_j \text{ n'est pas un point de contact de } \Omega_k \\ \begin{pmatrix} c_{kj} \mathbf{N}_j \\ c_{kj} \mathbf{P}_j \mathbf{G}_k \wedge \mathbf{N}_j \end{pmatrix} & \text{si } P_j \text{ est un point de contact de } \Omega_k \end{cases}$$

Les matrices **B** et **J** sont obtenues par décomposition des forces de contact dans le repère de contact $\mathcal{R}_{\Omega_j} = (P_i, \mathbf{T}_i, \mathbf{N}_i)$ (voir figure Plus Haut).

Afin de modéliser la friction dans une collision qui respecte la loi de Coulomb, (Rabatel, 2015) se base sur les travaux de Stewart et Trinkle (96) qui définissent une condition de complémentarité reliant la composante tangentielle β_j de l'impulsion appliquée au point P_j , la composante normale λ_j , la vitesse relative tangentielle du point P_j et le coefficient de friction μ . On introduit le vecteur $\tilde{\beta}$ contenant les composantes de l'impulsion tangentielle dans chacune des directions possible de glissement \mathbf{T}_j et $-\mathbf{T}_j$. Il devient alors possible de formuler le problème de contact (sur tout le système S) sans interpénétration par le problème linéaire de complémentarité :

$$\begin{cases}
\begin{pmatrix} 0 \\ \mathbf{w} \\ \gamma \\ \sigma \end{pmatrix} = \begin{pmatrix} \mathcal{M} & -\mathbf{J} & -\mathbf{D} & 0 \\ \mathbf{J}^{T} & 0 & 0 & 0 \\ \mathbf{D}^{T} & 0 & 0 & \mathbf{H} \\ 0 & \mu & -\mathbf{H}^{T} & 0 \end{pmatrix} \begin{pmatrix} W(t^{+}) \\ \lambda \\ \tilde{\beta} \\ \alpha \end{pmatrix} + \begin{pmatrix} \int_{\delta t^{*}} \mathcal{H}(t) \, \mathrm{d}t - \mathcal{M}W(t^{-}) \\ 0 \\ 0 \\ 0 \end{pmatrix} \\
\begin{pmatrix} \mathbf{w} \\ \gamma \\ \sigma \end{pmatrix} \ge 0, \quad \begin{pmatrix} \lambda \\ \tilde{\beta} \\ \alpha \end{pmatrix} \ge 0, \quad \begin{pmatrix} \mathbf{w} \\ \gamma \\ \sigma \end{pmatrix} \cdot \begin{pmatrix} \lambda \\ \tilde{\beta} \\ \alpha \end{pmatrix} = 0,
\end{cases} \tag{3.5}$$

avec

$$\mathbf{w} = \mathbf{J}^T W(t^+), \quad \mathbf{H}^T = (e_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le 2m}}, \quad \tilde{\beta} = (\tilde{\beta}_j)_{1 \le j \le m}, \quad \lambda = (\lambda_j)_{1 \le j \le m},$$

 μ est la matrice diagonale de diagonale (μ_1,\ldots,μ_m) ,

$$e_{ij} = \begin{cases} 1 \text{ si } j = 2(i-1) + 1 \text{ ou } j = 2(i-1) + 2 \\ 0 \text{ sinon} \end{cases},$$

$$D = (\mathbf{B}_1 | -\mathbf{B}_1 | \dots | \mathbf{B}_m | -\mathbf{B}_m)$$
 avec \mathbf{B}_j la colonne j de la matrice \mathbf{B} .

Le problème consiste alors à trouver les vitesses après contact $W(t^+)$, à l'aide des composantes inconnues tangentielle et normale des impulsions dans les repères de contact $(\tilde{\beta} \gamma)$, elles-mêmes inconnues du système.

3.2.1.4 Consistance énergétique

D'après l'auteur de (Rabatel, 2015, p.42), traiter le problème de contact à partir de lois non régulières ne permet pas d'obtenir des solutions satisfaisant à la fois la non-interpénétration, la friction de Coulomb et une consistance énergétique. Le problème a donc été divisé en une phase de compression et une phase de décompression suivant la loi de Poisson. La phase de compression modélise la capacité maximale des floes à emmagasiner, par la déformation, une partie ou la totalité de l'énergie cinétique transmise lors du contact. L'impulsion normale λ^c calculée durant cette phase (en résolvant le problème de complémentarité (équation (3.5))) correspond a un coefficient de restitution $\varepsilon=0$. Les impulsions obtenues durant cette phase correspondent a celles necessaires pour eviter la non penetration, et correspondent donc a une energie cinétique emmagsinée. La phase de décompression correspond à la restitution partielle ou complète de l'énergie cinétique emmagasinée par la déformation des floes. L'impulsion lors de cette phase, notée λ^d , est déterminée par $\lambda^d = \varepsilon \lambda^c$ (l'hypothèse de Poisson [GP95]). Durant la phase de décompression, Rabatel a donc opté pour la consistance énergétique et la non-interpénétration avec la solution :

$$W^N = (1 + \varepsilon)W^c - \varepsilon W(t^-),$$

où W^c représente les vitesses des floes après la phase de compression, et ε le coefficient de restitution pour les contacts considérés inélastiques.

3.2.2 Le modèle de l'environnement

L'environnement est l'ensemble des forces extérieures qui agissent sur les floes hormis les forces de contact qui sont décrites dans la partie précédente. Ces principales forces sont :

— La force de Coriolis F_c donnée pour un floe $\Omega_i(t)$ par :

$$\mathbf{F}_{c,i}(t) = -f\mathbf{k} \wedge \dot{\mathbf{G}}_i(t)$$

avec f le paramètre de Coriolis et \mathbf{k} le vecteur dirigé vers le haut du repère absolu \mathcal{R}_{abs} .

— Les forces de trainée associées au vent $\tau_a(t)$ et celle associée à l'océan $\tau_w(t)$:

$$\begin{split} & \boldsymbol{\tau}_a(t) = \rho_a C_a \|\mathbf{U}_a(t)\|\mathbf{U}_a(t), \\ & \boldsymbol{\tau}_w(t,P) = \rho_w C_w \|\mathbf{U}_w(t) - \dot{P}(t)\| \left(\mathbf{U}_w(t) - \dot{P}(t)\right), \end{split}$$

avec ρ la masse volumique du fluide (l'indice a pour l'air et w pour l'eau) et C un coefficient de traînée sans dimension (voir [HI86]); \mathbf{U}_a , \mathbf{U}_w , $\dot{P}(t)$ respectivement la vitesse du vent à l'interface glace/fluide, la vitesse du courant oceanique à l'interface glace/fluide, et la vitesse d'un point P du floe.

Le modèle de dynamique régulière définit en équation (3.3) peut se voire expliciter :

$$\begin{cases} M_i \frac{\mathrm{d}\dot{\mathbf{G}}_i(t)}{\mathrm{d}t} &= M_i \mathcal{F}_{c,i}(t) + \int_{\Omega_i(t)} \boldsymbol{\tau}_a(t) + \boldsymbol{\tau}_w(t,P) \, \mathrm{d}s, \\ \mathcal{I}_i \frac{\mathrm{d}\dot{\theta}_i(t)}{\mathrm{d}t} &= \int_{\Omega_i(t)} \mathbf{G}_i \mathbf{P} \wedge (\boldsymbol{\tau}_a(t) + \boldsymbol{\tau}_w(t,P)) \, \mathrm{d}s. \end{cases}$$

L'algorithme décrivant en détail le processus de collision ainsi que la consistance énergétique se trouve à la page 43 du document (RABATEL, 2015).

3.2.3 Méthodes Numériques et Algorithmiques Pour la Résolution de la Dynamique des Glaces de Mer

3.2.3.1 Discretisation temporelle

Pour simuler la dynamique des floes de glace soumis a des forces exterieurs ET possiblement des collisions, il faut intégrer la dynamique régulière (entre deux collisions), et la dynamique non régulière; et il existe deux principales methodes pour la discretisation en temps dans de tels \(\text{Mroblèmes}. \) La methode time-stepping (voir [Aca13] pour les schema de Moreau [Mor85a, Jea99], et de Schatzman-Paoli [PS02a, PS02b] par exemple, pour lesquels une convergence a pu etre exhibée à partir de la convergence en graphe de Moreau [Mor78]) offrent l'avantage de mieux traiter les points d'accumulation (RABATEL, 2015); et d'etre plus performant sur des problemes de multiples contacts. Cependant, RABATEL pour le schema event-driven opte pour la précision de la localisation des collisions et la facilité de manipulation. En plus, elles permettent d'utiliser des schémas d'intégration existant d'ordre élevé pour des équations différentielles ordinaires. le seuil de collision choisi est sufisament grand pour eviter de traiter les collisions une par une. le schema utilisé pour intégrer l'equation équation (3.3) est un schéma du type Euler explicite, pour sa facilité d'implémentation, sa facilité à prédire la localisation en espace et en temps des futures collisions et enfin sa capacité à dépasser les problèmes de points d'accumulation.

La simulation par la méthode event-driven demande la définition d'un pas de temps maximal pour lequel le schéma reste stable. Le pas de temps $\Delta t_m ax$ sera utilisé s s'il aucune collision n'est détectée entre les instants t et Δt . En se référent sur un modèle idéalisé 1D, RABATEL distingue deux critère pour la stabilité du schéma numérique au temps t:

— lorsque la vitesse caractéristique des floes $V_c(t) = N_a \mathbf{U}_a(t) + \mathbf{U}_w(t)$ est constante sur l'intervalle de simulation I, alors pour :

$$\Delta t \le \Delta t_{max} = \min\left(\frac{\rho}{2|\mathbf{U}_a(t)|\sqrt{\rho_a C_a \rho_w C_w}}, \frac{2K_t}{L_t}\right)$$
(3.6)

avec

avec
$$L_t = \rho^{-1} \rho_w C_w (N_a^2 \mathbf{U}_a^2 + (N_a \mathbf{U}_a + 2 \mathbf{U}_w)^2)$$
, et $K_t = |V_c(t)|$ constant,

le schéma est stabe i.e $\dot{\mathbf{G}}(t+\Delta t) \in [-K_t,K_t] = [-K_{t+\Delta t},K_{t+\Delta t}];$

— lorsque les variations de $V_c(t)$ entraînent une augmentation de K_t au cours du temps. La propriété de stabilité reste vérifiée car

$$\dot{\mathbf{G}}(t+\Delta t) \in [-K_t, K_t] \in [-K_{t+\Delta t}, K_{t+\Delta t}];$$

— lorsque les variations de $V_c(t)$ entraînent une diminution stricte de K_t au cours du temps, alors la condition de stabilité dans les deux cas précédent ne peut etre vérifiée. RABATEL introduit donc une seconde définition de la stabilité pour traiter ce cas. Il remarque que pour

$$\Delta t_{max} \le \begin{cases} \frac{-2x}{\tilde{L}_t^-} & \text{si } x \in]-\infty, K_{t+\Delta t}]\\ \frac{-2x}{-\tilde{L}_t^+} & \text{si } x \in]K_{t+\Delta t}, +\infty] \end{cases}$$
(3.7)

avec

$$\begin{split} \tilde{L}_t^- &= \rho^{-1} \rho_w C_w \left[N_a^2 \mathbf{U}_a (t + \Delta t)^2 - (\mathbf{U}_w (t + \Delta t) - x)^2 \right] \\ \tilde{L}_t^+ &= \rho^{-1} \rho_w C_w \left[N_a^2 \mathbf{U}_a (t + \Delta t)^2 + (\mathbf{U}_w (t + \Delta t) - x)^2 \right], \end{split}$$

on a la diminution de la vitesse des floes.

En conslusions, pour une vitesse infinitésimale initiale $\dot{G}(0) \in [-K_0, K_0]$, pour tout $t \in I$, et pour tout Δt_{max} vérifiant les équations (3.6) et (3.7), nous avons les vitesses des floes majorées par :

$$\max_{t \in I} K_t$$

RABATEL choisi donc de prendre

$$\Delta t_{max} = \min \left(\frac{3}{4} \frac{-2 \left(\max_{t \in I} K_{t} \right)}{\max_{t \in I} \tilde{L}_{t}^{-}}, \frac{3}{4} \frac{2 \left(\max_{t \in I} K_{t} \right)}{\max_{t \in I} - \tilde{L}_{t}^{+}}, \frac{\rho}{2 \left(\max_{t \in I} |\mathbf{U}_{a}(t)| \right) \sqrt{\rho_{a} C_{a} \rho_{w} C_{w}}} \right)$$

pour s'assurer que le modèle idéalisé vérifie les critères stabilité définis. Notons que le procédé global d'intégration de la dynamique pour le modèle se situe à la figure 2.2 du document (RABATEL, 2015, p.60), le schéma est repri à la figure 3.5.

3.2.3.2 Détection des collisions en espace

Des deux méthodes principales usilisées dans la littérature pour la détection des voisins, RABATEL a choisi la méthode de hierachie de volumes englobants facilité de mise en place et pour son efficacité même avec de grands ratios de tailles. L'alternative était la méthode de partitionnement de l'espace qui elle, souffre de plusiuers défaut non surmontables pour le modèle développé. Les méthodes de volumes englobants consistent à englober le contour de l'objet par des volumes à des échelles de plus en plus fines pour améliorer la détection.

3.2.3.3 Détection des contacts en temps

Il s'agit ici de trouver le pas de temps optimal i.e. un pas de temps Δt pour lequel la configuration des floes ne contenant pas d'interpénétrations sur l'intervalle de temps $[t, t + \Delta t]$ et, pour tout $\varepsilon > 0$, contient au moins

FIGURE 3.5 – Procédé global d'intégration de la dynamique pour notre modèle (RABATEL, 2015, p.60).

une interpénétration sur l'intervalle de temps $[t + \Delta t, t + \Delta t + \varepsilon]$ (Rabatel, 2015, p.87). Lorsque le critère de collision n'est pas vérifié, Rabatel montre qu'il suffit de prendre

$$\Delta t_{i,j} = -\frac{-\delta_{i,j(t)} - tol_3}{\mathbf{A}_{ij}(t) \cdot \left(\dot{G}_i(t) - \dot{G}_j(t)\right)},$$

avec

$$\mathbf{A}_{i,j}(t) = \frac{C_{0,i}(t) - C_{0,i}(t)}{d(C_{0,i}(t), C_{0,i}(t))}, \text{ et } tol_3 = \frac{\xi}{20}.$$

Lorsque le critère de collision est vérifié, il faut plutot prendre

$$\Delta t_{i,j} = \frac{\min(\eta_i, \eta_j) - tol_3}{\Gamma(t)},$$

avec

$$\Gamma(t) = \max \left(\|\dot{Q}_i^{i,j}(t)\|, \|\dot{Q}_j^{j,i}(t)\| \right),$$

où $\dot{Q}_i^{i,j}$ représente la distance parcourue par un point de $\Omega_i(t)$ relativement à $\Omega_j(t)$.

Une fois ce $\Delta t_{i,j}$ assurant la non-interpénétration trouvé, on peut donc de choisir

$$\Delta t = \min \left(\Delta t_{max}, \min_{\substack{(i,j) \in \{1,\dots,n\}^2 \\ i \neq j}} \Delta t_{i,j} \right).$$

Le lecteur est renvoyé au document (RABATEL, 2015, p.91) pour plus de détails sur la détection des contacts en temps.

3.2.3.4 Construction des repères de contacts

La construction d'un repere de contact n'est effectuée que lorsque le contact entre deux floes Ω_k et Ω_l est linéique (Rabatel, 2015, p.79), ou ponctuel et le vecteur porté par les points en contacts appartient au cone normal de P. La normale $\mathbf N$ est alors déterminée comme le vecteur unité dirigé par $\mathbf P \mathbf Q$. Si Q n'est pas unique, on se retrouve dans la situation où il peut exister plusieurs repères de contact pour un point de contact. Dans les autres cas, le repère de contact associé au point P n'est pas construit et P n'est pas considéré dans le traitement

des contacts (RABATEL, 2015, p.80). L'algorithme de detection des points de contacts afin de construire les repère de contact est explicité dans le document (RABATEL, 2015, p.76).

3.2.3.5 Simulation des événements collisions

Une fois les voisins détectés et les repères de contact construits, on peu passer à la prochaine étape qui consiste en la simulation de évènements de collisions. Ici, plusieurs choix s'offrent à RABATEL: les méthodes dites de régularisations, les méthodes dites itératives, et les méthodes dites de pivots (RABATEL, 2015, p.82). La prmière est adaptée aux modèles régularisants, ce qui n'est le cas de notre modèle. La deuxième par contre a extensivement étés utilisées dans la litterature; on peu citer Moreau [MP88, Mor99, Jea99], Aitken [Ait50]. Malheuresement, dès que la matrice A du problème de complémentarité à résoudre n'est plus symmétrique, ce deuxième groupe de techniques ne s'avère pas efficace. RABATEL choisi donc l'algorithme Lemke pour lequel il existe des preuves de convergence lorsque la matrice A est co-positive. Bien qu'il soit performant, il faut neanmoins noter que l'algorithme de Lemke étant une technique globale, c'est-à-dire traitant les contacts simultanément, il ne garantit pas une bonne propagation du contact.

3.2.3.6 Optimisations

La pemiere optimisation apporte est celle sur les distances de collision : deux floes sont en contact si la distance entre-eux n'est pas nulle, mais supérieure à un seul appelée distance de collision.

La deuxième concerne la condition de non-interpenetration (Rabatel, 2015, p.85). EN cas de congenstion, il est difficile que les floes décollent après contact. En insistant que $\mathbf{J}^T W(t^+) > 0$ après collision, on risque ne pas avoir de solution pour le problème linéaire de complémentarité associé. Rabatel relaxe donc la condition de Signorini en définissant un réel c et l'ensemble des vitesses admissibles devient :

$$V_c = \left\{ w \in \mathbb{R}^{3n} \,|\, \mathbf{J}^T w \ge c \right\}.$$

Une troisième optimisation concernant la définition de la notion d'erreur et de tolérance a été implementée. La quatrième consiste en la résolution d'un LCP en trois entatives (avec trois algorithmes de Lemke différents) même si cela augmente les coup de calculs (RABATEL, 2015, p.86). Si cette optimisation ne s'avère pas suffisance, une dernière optimisation consiste en la modification aléatoire de cetains coeficients de la matrice *A*, la permuation des lignes afin d'éviter des zeros sur la diagonale, la définition de la notion de contact actif.

3.2.4 Validations et Exploitations du Modèle

Les résultats ont été validés à travers plusieurs problèmes. Nous citons des exemples classique tels que la boîte glissante, le berceau de Newton, le canon de Newton, la balle rebondissante, etc. Il a ensuite été validé sur des scénarios simples de dérive libre soumise à des courants océanique et atmosphérique et des scénarios simples de collision. En effet, il a été vérifié que le comportement d'un objet simulé est cohérent avec le comportement théorique et avec les observations. Les principes phsiques suivants ont ainsi pu être testé par RABATEL:

- la conservation de la symétrie d'une configuration
- la satisfaction du modèle de Coulomb
- le traitement d'un point d'accumulation
- la cohérence temporelle ou la propagation des ondes de choc
- la conservation de l'énergie cinétique

Des telles exploitations telles que la dérive dans un canal étroit, pour des floes en bassins a été étudié. Aussi, la dérive soumise à un vent et un courant variable avec des vitesses du vent provenant de **ERAinterim**, à partir du modèle glace de mer et océan **TOPAZ**.

FIGURE 3.6 – Configuration à l'instant initial pour le scénario de dérive dans un canal étroit (RABATEL, 2015, p.124).

Figure 3.7 – Quelques résultats obtenus à deus heures différentes de la configuration des floes pour différentes valeurs du coefficient de restitution ε (Rabatel, 2015, p.126).

3.2.5 Discussion

Bien que les travaux de RABATEL on été testés et validés sur plusieurs configuration différentes, il reste néanmoins des points qui ne sont pas traités, et qui on e tres clairement été soulignés dans la thèse (RABATEL, 2015):

1. le modèle ne gère pas la rhéologie ⁸ de la glace : les floes sont des solides purement rigides (ils ne se déforment pas) et la dissipation d'énergie cinétique durant la collision est décrite en utilisant un coefficient purement empirique collision.

^{8.} La rhéologie est l'étude de la déformation et de l'écoulement de la matière sous l'effet d'une contrainte appliquée.

- 2. La loi de contact utilisée pour le glissement [Ste96], bien que tres riche, ne prends en compte toutes les vitesses possibles de deplacment. La construction d'une loi qui donnerait accès à la région entière, demanderait de prendre en compte un grand nombre de phénomènes intrinsèques aux contacts. Leur compréhension et leur rôle à chacun est difficile à déterminer.
- 3. les coefficient de friction et de restitution utilisées sont limitants. En realité, il n'est pas possible de prendre en compte ou d'interpreter mathematique certains effets lors du contact. par exemple, avec la dispertion de l'énergie (voir [NB14]). Cette dispersion est la conséquence de certains effets vibratoires à travers une chaîne de contact. Seuls les effets de dissipation dus aux phénomènes locaux comme l'endommagement, la viscosité ou la plasticité sont pris en compte à travers l'utilisation des coefficients de restitution et de friction.
- 4. Les vitesses obtenues après la phase de decompression afin d'assurer la disipation de l'energie cinetique possèdent une faiblesse (Rab, p.41) : elles ne sont solutions que sous certaines conditions, comme le fait que les chocs soient frontaux et qu'il n'y ait pas d'apport des forces extérieures autres que les forces de contact durant la collision.

Travaux et apports

- 4.1 Les travaux effectués
- 4.2 Les apports du stage
 - L' utilisation de TIKZ

Déroulement du stage

5.1 Journal de bord

Conclusion

Bibliographie

Balasoiu, Dimitri (2020). « Modélisation et simulation du comportement mécanique de floes de glace ». Thèse de doct. Université Grenoble Alpes.

RABATEL, Matthias (nov. 2015). « Modélisation dynamique d'un assemblage de floes rigides ». Theses. Université Grenoble Alpes. url: https://tel.archives-ouvertes.fr/tel-01293341.

RABATEL, Matthias et al. (2015). « Dynamics of an assembly of rigid ice floes ». In: *Journal of Geophysical Research: Oceans* 120.9, p. 5887-5909.

SIGNORINI, Antonio (1933). « Sopra alcune questioni di elastostatica ». In : *Atti della Societa Italiana per il Progresso delle Scienze* 27, p. 69.