Теория чисел (теория)

Владимир Латыпов

donrumata03@gmail.com

Vladimir Latypov

donrumata03@gmail.com

Содержание

1 Базовые определения	. 3
2 Идеалы	. 4
3 Евклиловы кольно	-

1 Базовые определения

Some red text

https://1

Definition 1.1 (*группа*) $\langle G, \star \rangle$ — группа, если

- 1. $\forall a, b, c \in G$ $a \star (b \star c) = (a \star b) \star c$ (ассоциативность)
- 2. $\exists e \in G \quad \forall x \in G \quad x \star e = e \star x = x$ (существование нейтрального элемента)
- 3. $\forall x \exists y \quad x \star y = y \star x = e$ (существование обратного элемента)

аксиома 1 даёт *полугруппу*, при добавлении аксиомы 4— получается *абелева груп- па*

Example 1.2

 \cdot S_n — группа, но не абелева

Definition 1.3 (кольцо)

- 1. $\langle R, + \rangle$ абелева группа
- 2. $\langle R \setminus \{0\}, \cdot \rangle$ полугруппа
- 3. $a \cdot (b+c) = a \cdot b + a \cdot c = (b+c) \cdot a$ (дистрибутивность умножения относительно сложения)

Remark 1.4 Будем работать с коммутативными кольцами (умножение коммутативно), преимущественно— с областями целостности

Example 1.5

- $\cdot \mathbb{Z}$ кольцо
- $\cdot R[x]$ кольцо многочленов над R от переменной x.

Definition 1.6 (Гомофморфизм колец) $f:R_1 o R_2$

- 1. f(x+y) = f(x) + f(y) («дистрибутивность» относительно сложения)
- 2. f(ab) = f(a)f(b) («дистрибутивность» относительно умножения)
- 3. $f(1_{R_1}) = 1_{R_2}$ (сохранение единицы)

Example 1.7 (Независимость третей аксиомы)

$$f: \begin{pmatrix} R \to R \times R \\ r \mapsto (r,0) \end{pmatrix}$$

- 1, 2 выполнены, но не 3

Definition 1.8 (поле)

- Коммутативное кольцо с единицей
- $m{\cdot}\ \, \forall x
 eq 0 \exists y \quad x \cdot y = y \cdot x = e$ (существование обратного элемента по умножению)

(пишут $y = x^{-1}$)

Remark 1.9 То есть ещё и $R\setminus\{0\}$ — абелева группа.

Example 1.10

- \mathbb{R}
- \mathbb{C}
- \mathbb{F}_2

Definition 1.11 (область целостности)

- 1 $1 \neq 0$
- 2. $\forall a,b \in R \quad ab=0 \Rightarrow a=0 \lor b=0$ (отсутствие делителей нуля)
- 2'. $\forall a \neq 0 \quad ab = ac \Rightarrow b = c$ (можно сокращать на всё, кроме нуля)

(2 и 2' эквивалентны)

Example 1.12 Z, любое поле (действительно, сократим через деление на обратный)

2 Идеалы

Definition 2.13 (идеал) $I \leq R$

- $\cdot \ \forall a,b \in I \quad a-b \in I$ (замкнутость относительно разности)
- $\cdot \ \forall r \in R, a \in I \quad r \cdot a \in I$ (замкнутость относительно умножения на элемент кольца)

Remark 2.14

- \cdot У любого кольца есть идеалы 0, R.
- $\cdot R$ поле \Rightarrow есть только эти идеалы

Remark 2.15 Идеалы в кольцах и нормальные подгруппы обозначают «меньше или равно с треугольничком»: \leq , остальные подструктуры — обычно просто \leq

Definition 2.16 (Операции над идеалами)

- Сложение
- Пересечение
- определяются поэлементно
- Умножение: натягиваем на произведение множеств по Минковскому

Definition 2.17 Идеал, порождённый подмножеством $S \subset R$:

$$(S) = \bigcap_{S \subset I \trianglelefteq R} I$$

Он же —

$$\left\{\sum r_i s_i \mid r_i \in R, s_i \in S\right\}$$

Remark 2.18

$$(a_1,...,a_n) = \left\{\sum_{i=1}^n = r_i s_i \mid r_i \in R\right\}$$

(линейная комбинация)

$$(a) = aR = Ra = \{ra \mid r \in R\}$$

Definition 2.19 Идеалы, которые можно породить одним элементом — *главные*.

Definition 2.20 ($PID/O\Gamma U$) Когда все идеалы — главные.

Definition 2.21 (Φ акторкольцо по идеалу) Введём отношение эквивалентности $a-b\in I$ и факторизуем по нему. Получим R/I — кольцо с элементами $x+I, \quad x\in R.$

Remark 2.22 Понятие идеала пошло из обобщения концепции делимости, «идеальные делители». Простой идеал — обобщение простого числа.

Definition 2.23 (Простой идеал) $p \le R$ — простой $\stackrel{\text{def}}{\Longleftrightarrow} ab \in p \Rightarrow a \in p \lor b \in p$. Эквивалентно: $ab \equiv 0 \Rightarrow a \equiv 0 \lor b \equiv 0$

Definition 2.24 (Нётерово кольцо) Конечно порождённое кольцо

Theorem 2.25 (Эквивалентные определения нётеровости)

- 1. Все идеалы конечно порождены
- 2. Вложенная расширяющаяся последовательность идеалов стабилизируется
- 3. У множества идеалов существует максимальный по включению (но не обязательно наибольший)

Proof

- (1) o (2): Пусть $I = \bigcup I_k = (a_1,...a_n)$. Каждое a_i лежит в каком-то I_{k_i} . Тогда стабилизция происходит уже при $I_{\max\{k_i\}}$.
- (2) o (3): Итеративно будем выбирать идеал, содержащий предыдцщий, пока таковой имеется.
- Если кончились, мы нашли максимальный
- Если нет, построили последовательность вложенных идеалов. Так как она стабилизирутеся, стабильное значение — наш ответ.

$$(3) \rightarrow (1)$$
: $I = \max\{J \mid J \subset I, J$ — конечно порождён $\}$.

Theorem 2.26 (Гильберта о нётеровости кольца многочленов над нётеровым кольцом) Пусть для $I ext{ } ext{$

Тогда $a(1)\subset a(2)\subset ...$ — вложенная цепочка идеалов $\unlhd R$. Пусть стабилизируется на a(k).

! TODO!

3 Евклидовы кольца

Definition 3.27 (Евклидово кольцо) $d:R\setminus\{0\} o\mathbb{N}_0$, тч

- 1 $d(ab) \ge d(a)$
- 2. $\forall a, b, b \neq 0 \exists q, r : a = bq + r, r = 0 \lor d(r) < d(b)$

Example 3.28 $\mathbb{Z}, F[x]$

Theorem 3.29 Евклидово → ОГИ

Proof Находим a — минимальный по d, если нашёлся не кратный, делим с остатком на a, получаем меньший, противоречие

Definition 3.30 (Φ акториальное кольцо (UFD — Unique factorization domain)) Область целостности

- Существует разложение на неприводимые множители
- Единственно с точностью до R^* : если $x=u\cdot a_1\cdot\ldots\cdot a_n=u\cdot b_1\cdot\ldots\cdot b_m\Rightarrow m=n\wedge a_i=b_{\sigma_i}\cdot w_i, w_i\in R^*$

Definition 3.31 (Неприводимый элемент) $a \neq 0, a \notin R^*$ $a = bc \Rightarrow b \in R^* \lor c \in R^*$

Remark 3.32 Неприводимость сохраняется при домножении на обратимые ($r \in R^*$)

Definition 3.33 (Простой элемент) $a\mid bc\Rightarrow a\mid b\vee a\mid c$ ($\Leftrightarrow aR$ — простой идеал)

Theorem 3.34 Простой ⇒ неприводимый

Proof

! TODO!

Theorem 3.35 В факториальном кольце: Неприводимый ⇒ простой

Proof

! TODO!

Corollary 3.36 В факториальном кольце простые идеалы высоты 1 (то есть $0 \le q \le p \Rightarrow q = 0 \lor q = p$) являются главными

Proof Элемент идеала раскладывается на множители, а по простоте какой-то $-\in p$, тогда $0\le \underbrace{(a_i)}_{\text{прост.}}\le p \to (a_i)=p$

! TODO !

Помечать разделение не лекции красивыми заголовками (как ornament header в latex)

Theorem 3.37 Евклидово \Rightarrow ОГИ \Rightarrow Факториальное

! TODO!
Перейти на lemmify

Proof (Eвклидово → OГИ) ... \Box

Definition 3.38 R^* — мультипликативная группа кольца (все, для которых есть обратный, с умножением)

Proof (ОГИ $o \phi$ акториальное) Схема: следует из двух свойств, докажем оба для ОГИ.

Lemma 3.39 В ОГИ: неприводимый → простой

Обобщение ОТА на произвольную ОГА с целых чисел.

Переформулируем: ...

Пусть есть такие элементы, возьмём цепочку максимальной длины, последний — приводим, представим как необратимые, тогда они сами представляются как ..., тогда и он тоже.

! TODO!

Definition 3.40 нснм — начиная с некоторого места

Remark 3.41 Нётеровость: не можем бесконечно делить, так как при переходе к множителям идеалы расширяются, но в какой-то момент стабилизируются.

Theorem 3.42 R факториально $\Rightarrow R[x]$ — тоже

Example 3.43 F — поле.

 $f \in F[x]$ — неприводим.

 $\frac{F[x]}{(f)}$ — область целостности, но докажем, что поле.

 $\overline{g} \quad \overline{\deg g < \deg f}$

· (f,g)=1, то есть $1=fp_1+gp_2$, $\overline{1}=\overline{f}\overline{p_1}+\overline{gp_2}$ $\dim_F K=\deg f$

Можем построить все конечные поля.

9

$$\begin{split} \mathbb{F}_{p[x]} \ni f, \deg f &= m \\ \mathbb{F}_{p^m}[x] \ll = & \times \frac{\mathbb{F}_{p[m]}}{(f)} \end{split}$$

Над конечным полем существуют неприводимые многочлены любой степени.