$CA\ Homework \#5$

b07902076 資工三 許世儒

Handwritten

4.31.1

	1		2	3	4	5	6	7	8	9 10) 1	1 1	2 1	3 1	4 1	5 1	6 17	1	8 1	9 2	10 2	1 2	2 2	3 2	:4
12.0 IF		ID	EX	ME	WB																				
12,0 IF		10	EX	ME	VVB																				
ENT		IF	ID	EX	ME	WB																			+
ne x12,13,TOP			IF	ID	EX	ME	WB																		
,,																									
ix5,x12,3				IF	ID	EX	ME	WB																	+
dd x6, x10, x5					IF	ID	EX	ME	WB																
d x7, 0(x6)						IF	ID	EX	ME	WB															+
d x29, 8(x6)							IF	ID	EX	ME	WB														
ub x30, x7, x29									IF	ID	EX	ME	WB												
ub x30, x7, x29									-	10	EX.	ME	WB												T
dd x31, x11, x5										IF	ID	EX	ME	WB											-
d x30, 0(x31)											IF	ID	EX	ME	WB										
a aso, c(ast)																									Т
nddi x12, x12, 2											IF	ID	EX	ME	WB										+
one x12, x13, TOP												IF	ID	EX	ME	WB									
slli x5, x12, 3													IF		EX	. AF									
III X5, X12, 3													IF.	ID	EX	ME	WB								
dd x6, x10, x5														IF	ID	EX	ME	WB							+
d x7, 0(x6)															IF	ID	EX	ME	WB						
d x29, 8(x6)																IF	ID	EX	ME	WB					+
ub x30, x7, x29																		IF	ID	EX	МЕ	WB			
44 - 21 - 11 - 4																			IF	lp.	EV	ME	NA/ID		
dd x31, x11, x5																			IF.	ID	EX	ME	WB		
i x30, 0(x31)																				IF	ID	EX	ME	WB	+
ddi x12, x12, 2																				IF	ID	EX	ME	WB	
ne x12, x13, TOP																					IF	ID	EX	ME	WB

4.31.2

For one iteration,

one-issue processor: 10 cycles

two-issue processor: 9 cycles

Therefore, speedup = $\frac{10}{9} \approx 1.11$

put addi x12, x12, 2 after ld x29, 8(x6) to avoid stalling and reduce one cycle

```
beqz x13, DONE
li x12, 0
TOP:
slli x5, x12, 3
add x6, x10, x5
ld x7, 0(x6)
ld x29, 8(x6)
addi x12, x12, 2
sub x30, x7, x29
add x31, x11, x5
sd x30, 0(x11)
bne x12, x13, TOP
DONE:
```

4.31.4

```
beqz x13, DONE
li x12, 0

TOP:
slli x5, x12, 3
add x6, x10, x5
ld x7, 0(x6)
add x31, x11, x5
ld x29, 8(x6)
addi x12, x12, 2
sub x30, x7, x29
sd x30, 0(x31)
bne x12, x13, TOP

DONE:
```

		1	2	3	4	5	6	7 8	3	9 10	11	12	13	14	15	16	5 17	18	
beqzx13,DONE	IF	ID	EX	ME	WB														
lix12,0	IF	ID	EX	ME	WB														
slli x5, x12, 3		IF	ID	EX	ME	WB													
add x6,x10,x5			IF	ID	EX	ME	WB												
ld x7, 0(x6)				IF	ID	EX	ME	WB											
add x31, x11, x5				IF	ID	EX	ME	WB											
ld x29, 8(x6)					IF	ID	EX	ME	WB										
addi x12, x12, 2					IF	ID	EX	ME	WB										
sub x30, x7, x29							IF	ID	EX	ME	WB								
sd x30, 0(x31)								IF	ID	EX	ME	WB							
bne x12, x13, TO	P							IF	ID	EX	ME	WB							
slli x5,x12,3									IF	ID	EX	ME	WB						
add x6,x10,x5				-						IF	ID	EX	ME	WB					
1d x7, 0(x6)											IF	ID	EX	ME	WB				
add x31, x11, x5											IF	ID	EX	ME	WB				
ld x29, 8(x6)				-								IF	ID	EX	ME	WB			
addi x12, x12, 2												IF	ID	EX	ME	WB			
sub x30, x7, x29														IF	ID	EX	ME	WB	
sd x30, 0(x31)											-		-		IF	ID	EX	ME	WB
bne x12, x13, TO	P						1								IF	ID	EX	ME	WB

4.31.6

For one instruction,

one-issue processor: 9 cycles

two-issue processor: 7 cycles

speedup: $\frac{9}{7} \approx 1.29$

Assume that register x14 and x15 can be used safely.

```
beqz x13, DONE
  li x12, 0
TOP:
  slli x5, x12, 3
  add x6, x10, x5
  1d x7, 0(x6)
  ld x29, 8(x6)
  ld x14, 16(x6)
  1d x15, 24(x6)
  addi x12, x12, 4
  sub x30, x7, x29
  add x31, x11, x5
  sd x30, 0(x31)
  sub x30, x15, x14
  sd x30, 16(x31)
  bne x12, x13, TOP
DONE:
```

4.31.8

Assume that register x14 and x15 can be used safely.

```
beqz x13, DONE
  li x12, 0
  addi x6, x10, 0
TOP:
  1d x7, 0(x6)
  add x31, x11, x5
  ld x29, 8(x6)
  addi x12, x12, 4
  1d x14, 16(x6)
  slli x5, x12, 3
  1d x15, 24(x6)
  sub x30, x7, x29
  sd x30, 0(x31)
  sub x11, x15, x14
  sd x11, 8(x31)
  add x6, x15, x5
  bne x12, x13, TOP
```

For one iteration,

one-issue processor: 13 cycles

two-issue processor: 8 cycles

speed up = $\frac{13}{8}$ = 1.625

4.31.10

We can no longer improve the code from 4.31.8 because every two instructions are processed in one cycle except for bne instruction in each iteration.

5.5.1

For each word is 8-byte. There are 5 bits of total offsets. Hence, there are 2⁵ bytes, so it's **four 8-byte words**.

5.5.2

There are five bits for index. Therefore, there are $2^5 = 32$ blocks.

5.5.3

Total bits \Rightarrow 32(blocks) \times (1 valid bit + 54 tag bits + 32 \times 8 data bits) = 32 \times 311 bits

Data bits \Rightarrow 32(blocks) \times 32 \times 8 data bits = 32 \times 256 bits

Ratio = $\frac{311}{256} \approx 1.215$

5.5.4

Address	Tag	Index	Offset	Hit/Miss	Bytes replaced
0x00	0x0	0x00	0x00	Miss	
0x04	0x0	0x00	0x04	Hit	
0x10	0x0	0x00	0x10	Hit	
0x84	0x0	0x04	0x04	Miss	
0xE8	0x0	0x07	0x08	Miss	
0xA0	0x0	0x05	0x00	Miss	
0x400	0x1	0x00	0x00	Miss	0x00-0x1F
0x1E	0x0	0x00	0x1E	Miss	0x400-0x41F
0x8C	0x0	0x04	0x0C	Hit	
0xC1C	0x3	0x00	0x1C	Miss	0x00-0x1F
0xB4	0x0	0x05	0x14	Hit	
0x884	0x2	0x04	0x04	Miss	0x80-0x9F

5.5.5

Hit Ratio =
$$\frac{4}{12} \approx 0.333$$

5.5.6

- <0, 3, Mem[0xC00]-Mem[0xC1F]>
- <4, 2, Mem[0x880]-Mem[0x89F]>
- <5, 0, Mem[0x0A0]-Mem[0x0BF]>
- <7, 0, Mem[0x0E0]-Mem[0x0FF]>

5.10.1

Clock rate for P1 =
$$\frac{1}{0.66 \times 10^{-9}}$$
 = 1.15 GHz
Clock rate for P2 = $\frac{1}{0.9 \times 10^{-9}}$ = 1.11 GHz

5.10.2

For P1:
$$1 + 8\% \times \left[\frac{70}{0.66}\right] = 9.56$$
 cycles

For P2:
$$1 + 6\% \times \left[\frac{70}{0.90}\right] = 5.68$$
 cycles

5.10.3

For P1: instruction cache miss + data cache miss = $1 + 8\% \times \left\lceil \frac{70}{0.66} \right\rceil + 36\% \times 8\% \times \left\lceil \frac{70}{0.66} \right\rceil = 12.64$

For P2: instruction cache miss + data cache miss = $1 + 6\% \times \left\lceil \frac{70}{0.90} \right\rceil + 36\% \times 6\% \times \left\lceil \frac{70}{0.90} \right\rceil = 7.36$

CPI for P1 = 12.64 and CPI for P2 = 7.36

For P1 per instruction: $0.66 \times 12.64 = 8.34 (ns)$

For P2 per instruction: $0.9 \times 7.36 = 6.62 (ns)$

Therefore, P2 is faster.

5.10.4

$$1 + 8\% \times (\left[\frac{5.62}{0.66}\right]) + 95\% \times \left[\frac{70}{0.66}\right]) = 9.85 \text{ cycles}$$

Therefore, it's worse with L2 cache.

5.10.5

instruction cache miss + data cache miss

$$= 1 + 8\% \times (\lceil \frac{5.62}{0.66} \rceil) + 95\% \times \lceil \frac{70}{0.66} \rceil) + 36\% \times 8\% \times (\lceil \frac{5.62}{0.66} \rceil + 95\% \times \lceil \frac{70}{0.66} \rceil)$$

= 13.04

5.10.6

Assume that the miss rate of L2 cache is p

$$1 + 8\% \times (\left\lceil \frac{5.62}{0.66} \right\rceil) + p \times \left\lceil \frac{70}{0.66} \right\rceil) + 36\% \times 8\% \times (\left\lceil \frac{5.62}{0.66} \right\rceil + p \times \left\lceil \frac{70}{0.66} \right\rceil) < 12.64$$

$$\Rightarrow p < 0.916$$

5.10.7

Assume that the miss rate of L2 cache is p

$$0.66[1 + 8\% \times (\lceil \frac{5.62}{0.66} \rceil) + p \times \lceil \frac{70}{0.66} \rceil) + 36\% \times 8\% \times (\lceil \frac{5.62}{0.66} \rceil + p \times \lceil \frac{70}{0.66} \rceil)] < 6.62$$

$$\Rightarrow p < 0.692$$

	TLB	Page table		7	TLB	
Address	hit/miss	hit/miss	Valid	Last access	Tag	Physical Page
		Miss	1	5	0xb	12
0x123d	Miss	Miss	1	2	0x7	4
0X1230	MISS	(Page	1	4	0x3	6
		fault)	1	0	0x1	13
			1	0	0x0	5
0x08b3	Miss	Hit	1	3	0x7	4
0x0803	IVIISS	пц	1	5	0x3	6
			1	1	0x1	13
	Hit		1	1	0x0	5
0x365c			1	4	0x7	4
0x365c			1	0	0x3	6
			1	2	0x1	13
		Man	1	2	0x0	5
0x871b	Miss	Miss	1	0	0x8	14
0x8/10	Miss	(Page	1	1	0x3	6
		fault)	1	3	0x1	13
			1	3	0x0	5
0xbee6	Miss	Hit	1	1	0x8	14
UXDEEG	IVIISS	пц	1	2	0x3	6
			1	0	0xb	12
			1	4	0x0	5
0x3140	Hit		1	2	0x8	14
UX3140	пи		1	0	0x3	6
			1	1	0xb	12
		Miss	1	0	0xc	15
0xc049	Miss	Miss	1	3	0x8	14
UACU49	171155	(Page fault)	1	1	0x3	6
		rauri)	1	2	0xb	12

	TLB	Page table			TLB	
Address	hit/miss	hit/miss	Valid	Last access	Tag	Physical Page
			1	5	0xb	12
01224	Minn	11:4	1	2	0x7	4
0x123d	Miss	Hit	1	4	0x3	6
			1	0	0x0	5
			1	6	0xb	12
05082	0x08b3 Hit		1	3	0x7	4
0.0003			1	5	0x3	6
			1	0	0x0	5
			1	7	0xb	12
0x365c	11:4		1	4	0x7	4
0x3030	365c Hit	-	1	6	0x3	6
			1	0	0x0	5
		Miss	1	0	0x2	13
0x871b	Miss		1	5	0x7	4
0x8/10	IVIISS	(Page	1	7	0x3	6
		fault)	1	1	0x0	5
			1	0	0x2	13
0xbee6	Hit		1	6	0x7	4
UXDEEO	HIL		1	8	0x3	6
			1	2	0x0	5
			1	1	0x2	13
0x3140	II:4		1	7	0x7	4
UX3140	3140 Hit		1	9	0x3	6
			1	0	0x0	5
			1	2	0x2	13
0xc049	Hit		1	8	0x7	4
030049	1111		1	0	0x3	6
			1	1	0x0	5

Advantages: the miss rate of TLB becomes lower

Disadvantages: fragmentation becomes higher and utilization of the physical memory becomes lower

		Page			TLB		
Address	TLB hit/miss	table hit/miss	Index	Last	Valid	Tag	Physical Page
		Man	0	5	1	0xb	12
0x123d	Miss	Miss	0	2	1	0x7	4
0X1230	MISS	(Page	1	4	1	0x3	6
		fault)	1	0	1	0x1	13
			0	0	1	0x0	5
0x08b3	Miss	Hit	0	3	1	0x7	4
0.0003	Miss	HIL	1	5	1	0x3	6
			1	1	1	0x1	13
			0	1	1	0x0	5
0x365c	11:4		0	4	1	0x7	4
0x3636	Hit		,	0	1	0x3	6
			1	2	1	0x1	13
		Miss	0	2	1	0x0	5
0x871b	Miss		0	0	1	0x8	14
0x6/10	IVIISS	(Page	1	1	1	0x3	6
		fault)	1	3	1	0x1	13
			0	3	1	0x0	5
0xbee6	Miss	Hit	U	1	1	0x8	14
UXDEEO	IVIISS	HIL	1	2	1	0x3	6
			1	0	1	0xb	12
			0	4	1	0x0	5
0x3140	Hit		U	2	1	0x8	14
033140	HIL		1	0	1	0x3	6
			1	1	1	0xb	12
		Miss	0	0	1	0xc	15
0xc049	Miss	(Page		2	1	0x8	14
UNCUTY	141199	fault)	1	0	1	0x3	6
		iauii)	1	1	1	0xb	12

5.16.4

	TLB	Page			TLB		
Address	hit/miss	table hit/miss	Index	Last access	Valid	Tag	Physical Page
		Miss	0	5	1	0xb	12
0x123d	Miss		1	0	1	0x0	13
0X123u	141199	(Page	2	4	1	0x3	6
		fault)	3	8	0	0x4	9
			0	0	1	0x0	5
0x08b3	Miss	Hit	1	1	1	0x0	13
0.0003	Miss	1111	2	5	1	0x3	6
			3	9	0	0x4	9
			0	1	1	0x0	5
0x365c	Miss	Hit	1	2	1	0x0	13
0x3630	IVIISS	піі	2	6	1	0x3	6
			3	0	1	0x0	6
		Man	0	0	1	0x2	14
0x871b	Miss	Miss	1	3	1	0x0	13
0x8/10	IVIISS	(Page	2	7	1	0x3	6
		fault)	3	1	1	0x0	6
			0	1	1	0x2	14
0xbee6	Miss	Hit	1	4	1	0x0	13
Uxbeeb	MISS	HIL	2	8	1	0x3	6
			3	0	1	0x2	12
			0	2	1	0x2	14
02140	Miss	77:4	1	5	1	0x0	13
0x3140	Miss	Hit	2	9	1	0x3	6
			3	0	1	0x0	6
		Miss	0	0	1	0x3	15
0x2040	Minn	Miss	1	6	1	0x0	13
0xc049	Miss	(Page	2	10	1	0x3	6
		fault)	3	1	1	0x0	6

5.16.5

TLB can help CPU to speed up (if TLB hit) the virtual address translation without looking up the page table. Without TLB, 2 memory accesses are always required. First for the page table and the second for the data.

6.7.1

W	X	у	Z	order
5	2	2	4	$Core1(2) \rightarrow Core2(1) \rightarrow Core3(4) \rightarrow Core4(3)$
3	2	2	4	$Core1(2) \rightarrow Core3 \rightarrow Core2(1) \rightarrow Core4$
3	2	2	2	$Core1(2) \rightarrow Core3(4) \rightarrow Core4(3) \rightarrow Core2(1)$
5	2	2	2	$Core1(2) \rightarrow Core4 \rightarrow Core2(1) \rightarrow Core3$
1	2	2	4	$Core3 \rightarrow Core1(2) \rightarrow Core2(1) \rightarrow Core4$
1	2	2	2	$Core3 \rightarrow Core1(2) \rightarrow Core4 \rightarrow Core2(1)$
1	2	2	0	$Core3(4) \rightarrow Core4(3) \rightarrow Core1(2) \rightarrow Core2(1)$
5	2	2	0	$Core4 \rightarrow Core1(2) \rightarrow Core2(1) \rightarrow Core3$
3	2	2	0	$Core4 \rightarrow Core1(2) \rightarrow Core2(1) \rightarrow Core3$

6.7.2

We can set synchronization right after each operation. Hence, all of four cores see the same value of each variable.

6.9.1

Core1	Core2
A2, A3	B2, B4
A1, A4	B1, B4
A1	B1, B3
A1	

It'll take 4 cycles and 4 issue slots are wasted.

6.9.2

Core1	Core2
A2, A3	B2, B4
A1, A4	B1, B4
A1	B1, B3
A1	

It'll take 4 cycles and 4 issue slots are wasted.

6.9.3

FU1	FU2
A1	A2
A1	
A1	
B1	B4
B1	B4
A3	
A4	
B2	
В3	

It'll take 9 cycles and 6 issue slots are wasted.

6.9.4

FU1	FU2
A1	B1
A1	B1
A1	B2
A2	В3
А3	B4
A4	B4

It'll take 6 cycles and 0 issue slots are wasted.

Programming

Part 1

	dhrystone	median	multiply	qsort	rsort	towers	vvadd
Configuration1	557901	8863	44964	269251	900737	7497	11839
Configuration2	539076	8864	45012	257849	902477	7497	5053
Configuration3	542215	8849	45051	257292	911861	7577	4808
Configuration4	545514	8864	45111	254121	884849	7577	4653
Configuration5	527399	8864	45112	254384	885937	7577	4653
Configuration6	575048	8841	44942	269269	901048	7457	11790
Configuration7	582524	8841	44942	269315	900876	7436	11808
Configuration8	551829	9329	45080	274437	1026332	7485	12880
Configuration9	551705	9343	45108	274363	1026321	7485	12758
Configuration10	552317	9291	45073	274179	1026003	7499	13000
Configuration11	547000	9352	45143	274401	1031835	7501	12741
Configuration12	548128	9380	45191	263376	1051311	7581	5876
Configuration13	547676	9306	45179	263742	1050557	7618	5641

- (1) are different since the data cache of Config1 is one-way while that of Config2 is two-way. Besides, this benchmark requires a lot of data loading and storing. Therefore, Config2 has higher hit rate rather than Config1, so Config2 can be faster.
- (2) are different since the replacement policy of Config3 is random while that of Config4 is lru. The policy of lru will replace the one least used recently. Therefore, it comes out a better performance than random.
- (3) are different since the data cache of Config1 is one-way while that of Config3 is 4-way. This benchmark Though the Config with higher "way" may raise hit rate, it requires extra complex control logic, especially with 4-way. Hence, it becomes slower.
- (4) are different since the instruction cache of Config1 is one-way, that of Config6 is 2-way while that of Config7 is 4-way. This benchmark focuses on string handling, so the multiple ways of instruction cache may be less effective. Therefore, the overhead of extra control logic is higher.
- (5) are different since Config12 is 1-bank while Config13 is 4-bank. With serveral banks, it'll lower the access delay, so Config13 will be faster.

 \bullet Config17 on 1-core: 180192 cycles

```
root@80d3f3aa9eba:~/emulator# ./Config17 benchmarks/mt-matmul.riscv
This emulator compiled with JTAG Remote Bitbang client. To enable, use +jtag_rbb_enable=1.
Listening on port 35553
matmul(cid, nc, 16, input1_data, input2_data, results_data); barrier(nc): 180192 cycles, 43.9 cycles/iter, 6.5 CPI
```

Config19 on 2-core: 92287 cycles

```
root@80d3f3aa9eba:~/emulator# ./Config19 benchmarks/mt-matmul.riscv
This emulator compiled with JTAG Remote Bitbang client. To enable, use +jtag_rbb_enable=1.
Listening on port 44139
matmul(cid, nc, 16, input1_data, input2_data, results_data); barrier(nc): 92287 cycles, 22.5 cycles/iter, 6.2 CPI
```

Config20 on 4-core: 48239 cycles

```
root@80d3f3aa9eba:~/emulator# ./Config20 benchmarks/mt-matmul.riscv
This emulator compiled with JTAG Remote Bitbang client. To enable, use +jtag_rbb_enable=1.
Listening on port 44203
matmul(cid, nc, 16, input1_data, input2_data, results_data); barrier(nc): 48239 cycles, 11.7 cycles/iter, 6.5 CPI
```

• It doesn't decrease linearly. It's because with more cores, it has to handle the problem of synchronization. Therefore, it'll cause some overhead cost.

Part 2

D\$	Bytes Read:	2554289
D\$	Bytes Written:	86768
D\$	Read Accesses:	594802
D\$	Write Accesses:	22210
D\$	Read Misses:	154608
D\$	Write Misses:	6161
D\$	Writebacks:	6183
D\$	Miss Rate:	26.056%
I\$	Bytes Read:	4838422
I\$	Bytes Written:	0
I\$	Read Accesses:	1465040
I\$	Write Accesses:	0
I\$	Read Misses:	93
I\$	Write Misses:	0
I\$	Writebacks:	0
I\$	Miss Rate:	0.006%

I simply transpose the matrix B and assign to another array with 2 sets and 8 ways of Dcache. By doing so, it can decrease the miss rate of data cache to roughly 26%.

Bonus

- exploiting conditional branch misprediction: Before the result of the bounds check is known, the CPU speculatively executes code following the condition by predicting the most likely outcome of the comparison. There are many reasons why the result of a bounds check may not be immediately known, for example, a cache miss preceding or during the bounds check, congestion of a required execution unit, complex arithmetic dependencies, or nested speculative execution.

eg: applying x = (address of a secret byte to read) - (base address of array1)

```
if (x < array1_size)
y = array2[array1[x] * 4096];</pre>
```

- poisoning indirect branches: the adversary mistrains the branch predictor with malicious destinations, such that speculative execution continues at a location chosen by the adversary. The branch predictor is (mis-)trained in one context and applies the prediction in a different context. More specifically, the adversary can misdirect speculative execution to locations that would never occur during a legitimate program execution.
- 1. Preventing speculative execution
 - 2. Preventing access to secret data
 - 3. Preventing data from entering covert channels