

Solemne 1 - Semestre 1 - 2017

CIT-2102

Instrucciones. Marque las casillas completamente sin sa le entregan. Las preguntas en total tienen un valor de 3 p	1 1 0 1
	← Marque su RUT sin dígito verificador (el número después del guión), y escriba sus nombres y apellidos abajo. Nombre(s) y apellido(s):
1. En un sistema multiplexado:	
Ninguna de las demás respuestas	Pueden existir múltiples fuentes de entrada y salida
Pueden existir solo múltiples filtros	Pueden existir solo múltiples fuentes de entrada
2. Los códigos generados por polinomios son: Hamming y Shannon ARQ y FEC 3. Un código lineal de grupo: Ninguna de las demás respuestas No contiene la palabra nula 4. La entropía es: El valor mínimo de la información de una fuente digital Ninguna de las demás respuestas	Ninguna de las demás respuestas BCH y Reed Solomon Contiene la palabra nula Contiene una cantidad infinita de palabras posibles El valor promedio de la información de una fuente digital El valor máximo de la información en una fuente analógica
una de las palabras de código, produce otra palabra del mismo código	acterizan porque: haciendo el producto vectorial entre los pares correspondientes de dígitos de cada una de las palabras de código, produce otra palabra del mismo código tienen una distancia de hamming mayor o igual a 3 Ninguna de las demás respuestas
6. La banda de TV está: Ninguna de las demás respuestas Por encima de la banda Satelital	Por encima de la banda de AM y por debajo de la banda de telefonía celular Por encima de la telefonía celular y por debajo de la banda Satelital
7. En un sistema digital:El ancho de banda del repetidor se acumula con la distancia	El ruido NO se acumula de repetidor a repetidor en sistemas de larga distancia

Ninguna de las demás respuestas

El ruido ${\bf SI}$ se acumula de repetidor a repetidor en sis-

temas de larga distancia

8. La propagación por Linea de Vista se produce cuando la fi	recuencia es:
Ninguna de las demás respuestas	
\square Mayor a $30MHz$	
9. Según Nyquist, si un pulso representa un bit de datos,	
Se pueden enviar pulsos que no interfieran entre ellos a	Ninguna de las demás respuestas
una velocidad no mayor de 2B pulsos/s	Se pueden recibir pulsos sin interferencia a una veloci-
Se puede reducir la cantidad de pulsos por unidad de tiempo	dad menor a 2S/N pulsos/s
10. Para una misma capacidad de corrección,	
un bloque más largo ofrece una relación menor que uno	Ninguna de las demás respuestas
más corto	un bloque más largo ofrece una relación equivalente a
un bloque más largo ofrece una relación mayor que uno más corto	uno más corto
11. Una señal $w(t) = A\cos(\omega_0 t + \phi_0)$ es determinística si:	
Para cada valor de t , el valor de $w(t)$ puede evaluarse	Es discreta en el dominio de los números Enteros
Ninguna de las demás respuestas	Es continua en todo el dominio de los números Reales
12. Los reproductores de CD usan:	
FECC	Ninguna de las demás respuestas
ARQ	L TCP
13. Problema 1 - 1.5 puntos:	
Un radioenlace entre dos ciudades (Tongoy y Los Vilos) está o	
motivos de obstáculos geográficos. Las ciudades están separa	
por encima del nivel de ambas ciudades. La empresa que pro y a 900MHz. El equipo que utiliza 1100MHz tiene una sensil	
sensibilidad de -85dBm. La potencia máxima de transmisión d	
1. Verifique que el enlace sea realizable	
	cia total necesaria, con las restricciones enumeradas anterior-
mente.	
	0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.5
14. Problema 2 - 1.5 puntos	
1. A partir de las matrices generadora (G) y de chequeo de síndrome asociada.	le paridad (H) provistas en las Figuras 1 y 2, calcule la tabla
2. Si se recibe 111101, verifique si es correcto, y si no lo es, \cdot	establezca cuál podría ser la palabra transmitida, si es posible.

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

Figura 1

$$\mathbf{H} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Figura 2

$$t = int \left(\frac{D_{\min} - 1}{2}\right)$$

$$D_{\min} - 1 = e + t$$

$$C_{i} \oplus C_{j} = C_{k}$$

$$P(e > R' errores) = 1 - \sum_{j=0}^{K} P(j errores)$$

$$P(j errores) = (P_{e})^{j} (1 - P_{e})^{n-j} \cdot {}^{n}C_{j}$$

$$M(x) = m_{k-1} x^{k-1} + \dots + m_{1} x + m_{0}$$

$$W(t) = A \cdot \cos(w_{0} \cdot t + \varphi_{0})$$

$$P(j errores) = (P_{e})^{j} (1 - P_{e})^{n-j} \cdot {}^{n}C_{j}$$

$${}^{n}C_{j} = \frac{n!}{j!(n-j)!} = {n \choose j}$$

$$t = \frac{n-k}{2} \quad C = B \cdot \log_{2} \left(1 + \frac{S}{N}\right)$$

$$\lambda = \frac{c}{f_{c}} \quad n = \sqrt{1 - \frac{81 \cdot N}{f^{2}}} \quad d^{2} + r^{2} = (r+h)^{2}$$

$$d^{2} = 2rh + h^{2}$$

$$P_{r} = \frac{P_{t}G_{t}G_{r}\lambda^{2}}{(4\pi d)^{2}} \quad d = \sqrt{(2 \cdot r \cdot h)} \quad I_{j} = \log_{2} \left(\frac{1}{P_{j}}\right) bits$$

$$H = \sum_{j=1}^{m} P_{j} \cdot I_{j} = \sum_{j=1}^{m} P_{j} \cdot \log_{2} \left(\frac{1}{P_{j}}\right) bits$$

$$R = \frac{H}{T} bits/s$$

$$s(t) = \sum_{k=-\infty}^{\infty} \prod \left(\frac{t - kT_{s}}{\tau}\right)$$

$$M = 2^n \qquad \left(\frac{S}{N}\right)_{dB} = 6.02 \, n + \alpha$$

$$\left(\frac{S}{N}\right)_{\text{salida}} = M^2$$

$$= M^2 \qquad \qquad \eta_{max} = \log_2 \left(1 + \frac{S}{N} \right)$$

$$\lambda = \frac{c}{f_c}$$

$$d = \sqrt{(2 \cdot r \cdot h)}$$

$$\frac{A_J^2}{R_c/R_b}$$

$$\frac{A_c^2}{2R_c}$$

$$\frac{A_c^2}{2R_c} \qquad \frac{R_b}{R_c} \qquad N = \frac{\delta^2 B}{3 f_s} = \frac{4\pi^2 A^2 f_a^2 B}{3 f_s^3}$$

$$r_{tierracorregido} = 8497 \times 10^3 m$$

$$\lambda = \frac{c}{f_c}$$

$$d = \sqrt{(2 \cdot r \cdot h)}$$

$$r_{tierracorregido} = 8497 \times 10^3 m$$

$$P_r = \frac{P_t G_t G_r \lambda^2}{(4 \pi d)^2}$$

$$B_T = 2\Delta F + (1+r)R$$

$$B_T = \left(\frac{1+r}{l}\right)R$$

$$P_f = \left(\frac{1}{2}\right)^K = 2^{-K}$$

$$B_T = 2(\beta + 1)B$$

$$B_{T} = 2\Delta F + (1+r)R$$

$$B_{T} = \left(\frac{1+r}{l}\right)R$$

$$B_{T} = \left(\frac{1+r}{l}\right)R$$

$$B_{T} = 2(\beta+1)B$$

$$D = \frac{2B}{l}$$

$$D = \frac{2B}{l+r}$$

$$D = \frac{2B}{1+r}$$

$$Mod_{Pos} = \frac{A_{max} - A_{min}}{2 \cdot A_{c}} \cdot 100 = \frac{max[m(t)] - min[m(t)]}{2} \cdot 100$$

$$B_{PCM} \geqslant \frac{1}{2} R = \frac{1}{2} n \cdot f_{s}$$

$$B_{PCM} \geqslant \frac{1}{2} R = \frac{1}{2} n \cdot f_s$$

