

	UZUPEŁNIA ZDAJĄCY	
KOD	PESEL	miejsce na naklejkę
		na naklejkę

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

DATA: 4 czerwca 2019 r. GODZINA ROZPOCZECIA: 9:00 CZAS PRACY: 170 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

UZUPEŁNIA ZESPÓŁ NADZORUJĄCY Uprawnienia zdającego do: dostosowania kryteriów oceniania nieprzenoszenia

zaznaczeń na kartę dostosowania w zw. z dyskalkulią

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 26 stron (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamknietych (1–25) zaznacz na karcie odpowiedzi, w części karty przeznaczonej dla zdającego. Zamaluj **p**ola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamietaj, że pominiecie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26–34) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki, a także z kalkulatora prostego.
- 9. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MMA-P1 **1**P-193

NOWA FORMULA

Zadanie 1. (0-1)

Rozwiązaniem równania $\frac{(x^2-2x-3)\cdot(x^2-9)}{x-1}=0$ <u>nie jest</u> liczba

- **A.** -3
- **B.** −1
- **C.** 1

W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

D. 3

Zadanie 2. (0-1)

Liczba $\frac{\log_3 27}{\log_3 \sqrt{27}}$ jest równa

- **A.** $-\frac{1}{2}$
- **B.** 2
- **C.** –2
- **D.** $\frac{1}{2}$

Zadanie 3. (0-1)

Jedną z liczb spełniających nierówność $(x-6)\cdot(x-2)^2\cdot(x+4)\cdot(x+10)>0$ jest

- **A.** −5
- **B.** 0
- **C.** 3
- **D.** 5

Zadanie 4. (0-1)

Liczba dodatnia a jest zapisana w postaci ułamka zwykłego. Jeżeli licznik tego ułamka zmniejszymy o 50%, a jego mianownik zwiększymy o 50%, to otrzymamy liczbę b taką, że

A.
$$b = \frac{1}{4}a$$
 B. $b = \frac{1}{3}a$ **C.** $b = \frac{1}{2}a$ **D.** $b = \frac{2}{3}a$

B.
$$b = \frac{1}{3}a$$

C.
$$b = \frac{1}{2}a$$

D.
$$b = \frac{2}{3}a$$

Zadanie 5. (0-1)

Funkcja liniowa f jest określona wzorem f(x) = (a+1)x+11, gdzie a to pewna liczba rzeczywista, ma miejsce zerowe równe $x = \frac{3}{4}$. Stąd wynika, że

A.
$$a = -\frac{41}{3}$$
 B. $a = \frac{41}{3}$ **C.** $a = -\frac{47}{3}$ **D.** $a = \frac{47}{3}$

B.
$$a = \frac{41}{3}$$

C.
$$a = -\frac{47}{3}$$

D.
$$a = \frac{47}{3}$$

Zadanie 6. (0–1)

Funkcja f jest określona dla każdej liczby rzeczywistej x wzorem $f(x) = (m\sqrt{5}-1)x+3$. Ta funkcja jest rosnąca dla każdej liczby *m* spełniającej warunek

A.
$$m > \frac{1}{\sqrt{5}}$$
 B. $m > 1 - \sqrt{5}$ **C.** $m < \sqrt{5} - 1$ **D.** $m < \frac{1}{\sqrt{5}}$

B.
$$m > 1 - \sqrt{5}$$

C.
$$m < \sqrt{5} - 1$$

D.
$$m < \frac{1}{\sqrt{5}}$$

Zadanie 7. (0-1)

Układ równań $\begin{cases} 2x - y = 2 \\ x + my = 1 \end{cases}$ ma nieskończenie wiele rozwiązań dla

A.
$$m = -1$$

B.
$$m = 1$$

C.
$$m = \frac{1}{2}$$

B.
$$m=1$$
 C. $m=\frac{1}{2}$ **D.** $m=-\frac{1}{2}$

Zadanie 8. (0-1)

Rysunek przedstawia wykres funkcji f zbudowany z 6 odcinków, przy czym punkty B = (2,-1) i C = (4,-1) należą do wykresu funkcji.

Równanie f(x) = -1 ma

- A. dokładnie jedno rozwiązanie.
- **B.** dokładnie dwa rozwiązania.
- C. dokładnie trzy rozwiązania.
- **D.** nieskończenie wiele rozwiązań.

Zadanie 9. (0-1)

Dany jest rosnący ciąg arytmetyczny (a_n) , określony dla liczb naturalnych $n \ge 1$, o wyrazach dodatnich. Jeśli $a_2 + a_9 = a_4 + a_k$, to k jest równe

A. 8

B. 7

C. 6

D. 5

Zadanie 10. (0-1)

W ciągu (a_n) określonym dla każdej liczby $n \ge 1$ jest spełniony warunek $a_{n+3} = -2 \cdot 3^{n+1}$. Wtedy

A. $a_5 = -54$ **B.** $a_5 = -27$ **C.** $a_5 = 27$ **D.** $a_5 = 54$

Zadanie 11. (0-1)

Dla każdej liczby rzeczywistej x wyrażenie $(3x-2)^2-(2x-3)(2x+3)$ jest po uproszczeniu równe

A. $5x^2 - 12x - 5$ **B.** $5x^2 - 13$ **C.** $5x^2 - 12x + 13$ **D.** $5x^2 + 5$

Zadanie 12. (0-1)

Kąt $\alpha \in (0^{\circ}, 180^{\circ})$ oraz wiadomo, że $\sin \alpha \cdot \cos \alpha = -\frac{3}{8}$. Wartość wyrażenia $(\cos \alpha - \sin \alpha)^2 + 2$ jest równa

A. $\frac{15}{4}$

B. $\frac{9}{4}$

C. $\frac{27}{8}$

D. $\frac{21}{8}$

Zadanie 13. (0-1)

Wartość wyrażenia $2\sin^2 18^\circ + \sin^2 72^\circ + \cos^2 18^\circ$ jest równa

A. 0

B. 1

C. 2

D. 4

Zadanie 14. (0-1)

Punkty B, C i D leżą na okręgu o środku S i promieniu r. Punkt A jest punktem wspólnym prostych BC i SD, a odcinki AB i SC są równej długości. Miara kata BCS jest równa 34° (zobacz rysunek). Wtedy

- A. $\alpha = 12^{\circ}$
- **B.** $\alpha = 17^{\circ}$
- C. $\alpha = 22^{\circ}$
- **D.** $\alpha = 34^{\circ}$

Zadanie 15. (0-1)

Pole trójkata ABC o wierzchołkach A = (0,0), B = (4,2), C = (2,6) jest równe

A. 5

- В. 10
- **C.** 15
- **D.** 20

Zadanie 16. (0-1)

Na okręgu o środku w punkcie O wybrano trzy punkty A, B, C tak, że $| \angle AOB | = 70^{\circ}$, $| \angle OAC | = 25^{\circ}$. Cięciwa AC przecina promień OB (zobacz rysunek). Wtedy miara $\angle OBC$ jest równa

- A. $\alpha = 25^{\circ}$
- **B.** $\alpha = 60^{\circ}$
- C. $\alpha = 70^{\circ}$
- **D.** $\alpha = 85^{\circ}$

Zadanie 17. (0-1)

W układzie współrzędnych na płaszczyźnie dany jest odcinek AB o końcach w punktach A = (7,4), B = (11,12). Punkt S leży wewnątrz odcinka AB oraz $|AS| = 3 \cdot |BS|$. Wówczas

- **A.** S = (8, 6) **B.** S = (9, 8) **C.** S = (10, 10) **D.** S = (13, 16)

Zadanie 18. (0-1)

Suma odległości punktu A = (-4, 2) od prostych o równaniach x = 4 i y = -4 jest równa

- **A.** 14
- **B.** 12
- **C.** 10
- **D.** 8

Zadanie 19. (0-1)

Suma długości wszystkich krawędzi sześcianu jest równa 96 cm. Pole powierzchni całkowitej tego sześcianu jest równe

- **A.** 48 cm^2
- **B.** 64 cm^2 **C.** 384 cm^2
- **D.** 512 cm^2

Zadanie 20. (0-1)

Dany jest trójkat równoramienny ABC, w którym |AC| = |BC|. Kat między ramionami tego trójkata ma miare 44°. Dwusieczna kata poprowadzona z wierzchołka A przecina bok BC tego trójkata w punkcie D. Kat ADC ma miarę

- **A.** 78°
- **B.** 34°
- **C.** 68°
- **D.** 102°

Zadanie 21. (0-1)

Liczb naturalnych dwucyfrowych podzielnych przez 6 jest

- **A.** 60
- **B.** 45
- **C.** 30
- **D.** 15

Zadanie 22. (0-1)

Podstawa ostrosłupa jest kwadrat ABCD o boku długości 4. Krawędź boczna DS jest prostopadła do podstawy i ma długość 3 (zobacz rysunek).

Pole ściany BCS tego ostrosłupa jest równe

- **A.** 20
- **B.** 10
- **C.** 16
- **D.** 12

Zadanie 23. (0-1)

Dany jest sześcian ABCDEFGH. Przekątne AC i BD ściany ABCD sześcianu przecinają się w punkcie *P* (zobacz rysunek).

Tangens kata, jaki odcinek PH tworzy z płaszczyzna ABCD, jest równy

- **A.** $\frac{\sqrt{2}}{2}$
- **B.** $\frac{1}{2}$ **C.** 1 **D.** $\sqrt{2}$

Zadanie 24. (0-1)

Przekrojem osiowym walca jest kwadrat o przekątnej długości 12. Objętość tego walca jest zatem równa

- **A.** $36\pi\sqrt{2}$
- **B.** $108\pi\sqrt{2}$ **C.** 54π **D.** 108π

Zadanie 25. (0-1)

Ze zbioru kolejnych liczb naturalnych {20, 21, 22, ..., 39, 40} losujemy jedną liczbę. Prawdopodobieństwo wylosowania liczby podzielnej przez 4 jest równe

- **A.** $\frac{1}{4}$
- **B.** $\frac{2}{7}$ **C.** $\frac{6}{19}$ **D.** $\frac{3}{10}$

Zadanie 26. (0-2)

Rozwiąż nierówność x(7x+2) > 7x+2.

Zadanie 27. (0-2)

Wyznacz wszystkie liczby rzeczywiste x, które spełniają warunek: $\frac{3x^2 - 8x - 3}{x - 3} = x - 3$.

Zadanie 28. (0–2)

Dany jest trójkąt ABC. Punkt S jest środkiem boku AB tego trójkąta (zobacz rysunek). Wykaż, że odległości punktów A i B od prostej CS są równe.

Zadanie 29. (0-2)

Wykaż, że dla każdej liczby a>0 i dla każdej liczby b>0 prawdziwa jest nierówność $\frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b} \ .$

$$\frac{1}{a} + \frac{1}{b} \ge \frac{4}{a+b}$$

Zadanie 30. (0-2)

W ciągu geometrycznym przez S_n oznaczamy sumę n początkowych wyrazów tego ciągu, dla liczb naturalnych $n \ge 1$. Wiadomo, że dla pewnego ciągu geometrycznego: $S_1 = 2$ i $S_2 = 12$. Wyznacz iloraz i piąty wyraz tego ciągu.

Odpowiedź:

Zadanie 31. (0-2)

Doświadczenie losowe polega na trzykrotnym rzucie symetryczną sześcienną kostką do gry. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że otrzymamy sumę oczek równą 16.

Zadanie 32. (0-5)

Podstawą ostrosłupa *ABCDS* jest prostokąt o polu równym 432, a stosunek długości boków tego prostokąta jest równy 3: 4. Przekątne podstawy *ABCD* przecinają się w punkcie *O*. Odcinek *SO* jest wysokością ostrosłupa (zobacz rysunek). Kąt *SAO* ma miarę 60°. Oblicz objętość tego ostrosłupa.

Zadanie 33. (0–4)

Liczby rzeczywiste x i z spełniają warunek 2x+z=1. Wyznacz takie wartości x i z, dla których wyrażenie x^2+z^2+7xz przyjmuje największą wartość. Podaj tę największą wartość.

Zadanie 34. (0–4)

Dany jest trójkąt rozwartokątny ABC, w którym $\angle ACB$ ma miarę 120°. Ponadto wiadomo, że |BC| = 10 i $|AB| = 10\sqrt{7}$ (zobacz rysunek). Oblicz długość trzeciego boku trójkąta ABC.

