

Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous College Affiliated to University of Mumbai)

Academic Year: 2020-2021

OCULUS-2021 SHORT CIRCUIT EVENT

Team name : Aditya Kulkarni (Solo participation)

Submitted by : Aditya Charudatta Kulkarni

UCID : 2020200037

Class : FE Branch : EXTC

Problem Statement:

Mr. Arnab is a huge fan of mathematics, especially matrices. He believes that Upper Triangular Matrices can generate interesting results. He decides to test his theory using some electronic components. Help Arnab to design a circuit such that the final output remains high when the input co-ordinates are a part of a 4x4 upper triangular matrix.

Circuit development:

I have prepared the circuit using LTSpice package as following:

STAGE-01: (AC-DC)

Mains 230Vrms AC supply input:

9Vrms AC output after step-down transformer:

5VDC output after rectification, filter and regulation using zener diode:

Stage-01 Final output:

STAGE-02: (Clock generator)

Stage-02 Final output: (CLOCK_out)

STAGE-03: (Co-ordinate generator)

Stage-03 output: (CLOCK_out_div2, also named as mb)

Stage-03 output: (CLOCK_out_div4, also named as ma)

Stage-03 output: (CLOCK_out_div8, also named as md)

Stage-03 output: (CLOCK_out_div16, also named as mc)

Stage-03 Combined outputs: (mb, ma, md, mc as per the sequence given in problem data)

Stage-03 Combined view of 4 outputs: (as per the natural sequence)

Below is Stage-03 Combined view of 4 outputs: (as per the sequence given in problem data)

FINAL OUTPUTS

Calculations:

1. Selection of transformer:

 $N1/N2 = ^223$ such that input is 230 Vac to output as 10Vac

$$(N1/N2)^2 = L1/L2 = V1/V2 = I2/I1$$

Primary L1 is 100 mH and secondary L2 is 200uH

2. Selection of filter capacitor:

$$C = I/(2 \times f \times Vpp)$$

To get min ripple, 1000uF capacitor is selected

3. Selection of zener:

Available 5V Zener is used.

Rs =
$$(Vin - Vz) / (Iz + IL) = (12 - 5) / (100 + 50) = ^33 \text{ ohm}$$

4. Selection of a stable multivibrator timing:

T = 0.69RC

So C=10 uF and R=5.7K selected. R = 4.7K + 1K as available in component available.

 $T = \sim 40$ ms on time.

So $2T = ^80 \text{ ms}$

Thus 80 ms timing wave as per problem image is generated.

5. Selection of frequency divider stages:

Available DFF is used to create Toggle FF and 4 such stages made.

This give div_by_2, div_by_4, div_by_8, and div_by_16 waveforms

Final output 4x4 upper triangular matrix output was not created. However an equation is written as per my best understanding.

Learnings from the problem statement:

- 1. Learned to use LTSpice in detail
- 2. To design transformer
- 3. To design rectifier
- 4. To design Zener regulator
- 5. To design astable mv clock generator
- 6. To make DFF to TFF for clock division
- 7. To analyze waveforms
- 8. General interactions and auctions etc.

I thank all the organizers of short circuit theme and Oculus program.

