Cosmological Foundations in Swirl String Theory

Omar Iskandarani Independent Researcher, Groningen, The Netherlands* (Dated: September 24, 2025)

This Canon Cheat-Sheet condenses *Swirl String Theory (SST)* for cosmology: definitions, constants, boxed master equations, and notational conventions. It emphasizes dimensional consistency, known-limit checks, and minimal assumptions.

FOUNDATIONS

- Arena: Flat \mathbb{R}^3 with absolute (Chronos) time.
- Medium: Homogeneous, incompressible swirl condensate of density ρ_f ; circulation quantized in closed filaments ("swirl strings").
- Gravity: Emergent from swirl-pressure and clock-rate gradients; no curved spacetime.

SWIRL COSMOGONY (GENESIS VIA KNOTS)

- Primordial: Uniform, laminar state (topologically trivial).
- Instability: Fluctuations/reconnections nucleate closed loops (unknots).
- Knot genesis: Reconnection cascades stabilize nontrivial knots; topology protects excitation.
- Freeze-in: Energy is inherited via line-length and local topology.
- Causal asymmetry: Arrow of time measured by monotone growth of knot complexity and coherent volume fraction.
- Inflation-like era: Burst of coherence and reconnection leads to exponential growth of coherent domains.
- Post-era: Knots seed matter; coherence zones act as gravitational attractors.

COSMOGONY: GOVERNING DYNAMICS, FREEZE-OUT, AND OBSERVABLES

Primary scales at Big Condensation

Define the quantum of circulation and an initial correlation length:

$$\kappa \equiv 2\pi r_c \|\mathbf{v}_{\mathcal{O}}\|, \qquad \xi_0 \sim r_c.$$

Units and numeric check. $[\kappa] = \text{m}^2 \, \text{s}^{-1}$. With $r_c = 1.40897017 \times 10^{-15} \, \text{m}$ and $\|\mathbf{v}_{\circlearrowleft}\| = 1.09384563 \times 10^6 \, \text{m s}^{-1}$,

$$\kappa \approx 9.684 \times 10^{-9} \text{ m}^2 \text{ s}^{-1}$$
.

This ensures continuity with the core-scale swirl speed: $\kappa/(2\pi r_c) = \|\mathbf{v}_0\|$.

Analogy (fluid picture)

Kid picture: κ is how much "spin" one tiny loop carries—like a fixed twist baked into every small rubber band.

^{*} ORCID: 0009-0006-1686-3961, DOI: 10.5281/zenodo.17155748

Freeze-out of coherence (Kibble-Zurek-type scaling)

When the condensate forms under a finite quench time τ_Q , domains freeze out at a scale

$$\xi_{\rm fr} \simeq \xi_0 \left(\frac{\tau_Q}{\tau_0}\right)^{\nu/(1+\nu z)},$$
 (1)

with static exponent ν and dynamic exponent z appropriate to the SST universality class (to be measured). Dimensions. ξ_0 has units of length; the ratio $(\tau_Q/\tau_0)^{\nu/(1+\nu z)}$ is dimensionless, so $[\xi_{\rm fr}] = {\rm m}$.

Edge cases & uncertainties

Uncertainties. The exponents (ν, z) are *not* assumed from external systems; SST must calibrate them from coherence-growth data (BAO + CMB phase + low-z structure) to avoid importing priors.

Analogy (fluid picture)

Kid picture: If you cool soup too fast, many small fat-islands form; cool it slower, and you get fewer, bigger islands. ξ_{fr} is the island size at the instant the pattern "freezes."

Coherence fraction dynamics (logistic locking vs. scrambling)

Let $f(t) \in [0,1]$ be the fraction of volume in phase-locked (coherent) swirl. We model competition between locking and scrambling by

$$\frac{df}{dt} = \left(\Gamma_{\text{lock}} - \Gamma_{\text{scr}}\right) f\left(1 - f\right),\tag{2}$$

with rates Γ_{lock} , Γ_{scr} in s⁻¹. A minimal parametric form consistent with SST kinematics is

$$\Gamma_{\rm lock} \; = \; \chi \, rac{\kappa}{2\pi \, \xi^2}, \qquad \Gamma_{\rm scr} \; = \; \eta \, \Gamma_{\rm rec},$$

where $\xi(t)$ is the instantaneous correlation length, χ, η are dimensionless efficiencies, and $\Gamma_{\rm rec}$ is the reconnection rate density (research-calibrated).

Solution. For piecewise-constant $\Gamma_{\rm eff} \equiv \Gamma_{\rm lock} - \Gamma_{\rm scr}$,

$$f(t) = \frac{1}{1 + \left(\frac{1 - f_0}{f_0}\right) e^{-\Gamma_{\text{eff}}(t - t_0)}}.$$

A transient epoch with $\Gamma_{\rm eff} > 0$ is the SST analogue of "inflation-like" coherence burst (rapid ordering without metric expansion).

Algorithmic recipe

Recipe to fit f(t): (1) Choose $\xi(t)$ model (next subsection). (2) Set priors on χ, η and Γ_{rec} from simulations. (3) Fit $\Gamma_{\text{eff}}(t)$ to SN Ia $H_{\text{eff}}(z)$ + BAO AP anisotropy. (4) Cross-check with CMB acoustic phase (stage-locking imprint).

Correlation-length growth (reconnection-limited coarsening)

Coarse-grained swirl speed at scale ξ follows Biot–Savart scaling:

$$v_{\rm coarse}(\xi) \simeq \frac{\kappa}{2\pi \, \xi}.$$

A reconnection-limited coarsening law that respects dimensions is

$$\frac{d\xi}{dt} = A \frac{\kappa}{2\pi \,\xi} - B \Gamma_{\rm rec} \,\xi,\tag{3}$$

with A, B dimensionless. The first term grows domains via advective coalescence; the second shrinks them when reconnections dominate.

Limits. (i) $\Gamma_{\rm rec} \to 0$: $\xi^2(t)$ grows linearly: $\xi^2(t) = \xi_i^2 + \frac{A\kappa}{\pi}(t - t_i)$. (ii) Strong reconnections: steady state $\xi_{\star} = \sqrt{\frac{A\kappa}{2\pi B \, \Gamma_{\rm rec}}}$.

Edge cases & uncertainties

Calibration targets. CMB peak spacing $\Rightarrow \xi_{\rm fr}$; BAO scale $\Rightarrow \xi$ at $z \sim 0.5-1$; Weak-lensing two-point \Rightarrow late-time ξ anisotropy; Peculiar-velocity flows $\Rightarrow v_{\rm coarse}(\xi)$ normalization.

Analogy (fluid picture)

Kid picture: Small whirlpools merge into bigger ones unless they keep cutting each other. The first term makes bigger pools; the second keeps chopping them up.

Swirl-clock background and effective Hubble rate

SST uses the clock ratio as the distance–redshift engine:

$$1 + z = \frac{S_t^{-1}(\text{emit})}{S_t^{-1}(\text{obs})}, \qquad H_{\text{eff}}(t) \equiv -\frac{d}{dt} \ln S_t.$$

During a coherence burst ($\Gamma_{\text{eff}} > 0$) Eq. (2) pushes S_t toward uniformity, which drives a phase of $H_{\text{eff}} < 0$ mimicking accelerated expansion without metric growth (already referenced in your Λ CDM dictionary).

Topological spectrum lock-in at freeze-out

At $t_{\rm fr}$ with $\xi_{\rm fr}$ from Eq. (1), the knot density spectrum freezes. The mass law (Eq. (4)) then fixes species energy densities once $L_{\rm tot}(K)$ and (b,g,n) are set. Hopf-charge stabilization provides a topological lower bound on energy for linked sectors (research calibration of the bound's SST coefficient).

Falsifiable cosmogony signals

Predictions specific to cosmogony

- **KZ** scaling in LSS: The inferred ξ_{fr} from CMB should obey a power law in an independently estimated τ_Q proxy (duration of condensation epoch).
- Phase shift of acoustic peaks: Ordering dynamics impart a calculable phase offset in the CMB acoustic series distinct from standard Λ CDM (sign fixed by $\Gamma_{\text{eff}}(t)$).
- BAO AP anisotropy vs. environment: ξ and S_t gradients predict $\mathcal{O}(10^{-3}-10^{-2})$ directional distortions correlated with large-scale shear.
- Redshift drift: The combination $\dot{z} = H_{\text{eff},0} H_{\text{eff}}(z)/(1+z)$ deviates at $z \lesssim 1$ if f(t) is still evolving.

SWIRL CLOCK, TIME DILATION, AND REDSHIFT

Define the swirl-clock factor

$$S_t \equiv \sqrt{1 - \frac{\|\mathbf{v}_{\mathsf{O}}\|^2}{c^2}}, \qquad dt_{\mathrm{local}} = S_t \, dt_{\infty}.$$

Cosmological redshift is interpreted as a clock-ratio:

$$1+z = \frac{S_t^{-1}(\text{emit})}{S_t^{-1}(\text{obs})}$$
 (line-of-sight shear gives subleading corrections).

Analogy (fluid picture)

A clock is a leaf on water. Where the water swirls fast, the leaf wobbles and ticks slower. Light leaving the slow-water zone looks slightly "stretched" (redder).

Known-limit + numeric check. With $v = ||\mathbf{v}_{\mathcal{O}}|| = 1.09384563 \times 10^6 \text{ m s}^{-1} \text{ and } c = 2.99792458 \times 10^8 \text{ m s}^{-1}$,

$$\frac{v}{c} \approx 3.65 \times 10^{-3}, \qquad S_t = \sqrt{1 - v^2/c^2} \approx 0.9999933,$$

so local clock-slowdown at the characteristic swirl speed is small (consistent with weak-field behavior). [?]

EMERGENT GRAVITY FROM SWIRL PRESSURE

For axisymmetric swirl with azimuthal speed $v_{\theta}(r)$, steady Euler balance gives

$$\frac{1}{\rho_f} \frac{dp_{\text{swirl}}}{dr} = \frac{v_\theta^2}{r},$$

so an effective inward acceleration $g_{\rm eff}(r) = v_{\theta}^2/r$, approximating $1/r^2$ attraction when $v_{\theta} \propto r^{-1/2}$.

Analogy (fluid picture)

Fluid picture: Swirl makes a pressure "dip." Marbles (test masses) roll toward the dip; the radial balance $\rho_f^{-1} dp_{\text{swirl}}/dr = v_\theta^2/r$ is just the slope the marble feels. If $v_\theta \propto r^{-1/2}$, the inward pull behaves like $1/r^2$.

VACUUM (CORE) ENERGY DENSITY SCALE

Assuming the core carries the characteristic swirl speed $\|\mathbf{v}_{0}\| \approx v_{0}$,

$$u = \frac{1}{2} \rho_{\text{core}} \|\mathbf{v}_{\mathbf{O}}\|^2.$$

Numerical check (SI):

 $\rho_{\rm core} = 3.8934358266918687 \times 10^{18} \ {\rm kg \, m^{-3}}, \quad \|\mathbf{v_0}\| = 1.09384563 \times 10^6 \ {\rm m \, s^{-1}} \ \Rightarrow \ u \approx 2.329 \times 10^{30} \ {\rm J \, m^{-3}}.$

INVARIANT MASS LAW FOR KNOTTED EXCITATIONS (CANONICAL)

Let $L_{\text{tot}}(K)$ be a dimensionless ropelength of knot K. The dimensionally correct SST mass law used in particle fits is

$$M(K) = \left(\frac{4}{\alpha_{\rm fs}}\right) b(K)^{-3/2} \phi^{-g(K)} n(K)^{-1/\phi} \frac{u\left(\pi r_c^3 L_{\rm tot}(K)\right)}{c^2}$$
 (4)

with b (braid index proxy), g (genus proxy), n (component count), and $\phi = \exp\left(\operatorname{asinh}\left(\frac{1}{2}\right)\right)$ per the Golden policy.

Units check. $u[\operatorname{Jm}^{-3}] \cdot (\pi r_c^3 L_{\operatorname{tot}})[\operatorname{m}^3]/c^2 \to \operatorname{kg}$. Mass scale per unit L_{tot} (numerical).

$$\frac{u \pi r_c^3}{c^2} = \frac{(2.329 \times 10^{30}) [\text{J m}^{-3}] \cdot \pi (1.40897 \times 10^{-15} \text{ m})^3}{(2.9979 \times 10^8 \text{ m s}^{-1})^2} \approx 2.28 \times 10^{-31} \text{ kg}.$$

Including $4/\alpha_{\rm fs} \approx 5.48 \times 10^2$ sets the observed lepton/baryon scale once $L_{\rm tot}(e)$ is calibrated.

Analogy (fluid picture)

Topological knots are like rubber bands tied in different ways; tighter or more tangled bands store more "swirl energy," which we weigh as mass.

KNOT TOPOLOGIES FOR STANDARD PARTICLES

Designation	Representative knot	b g n
Electron e^-	Trefoil $(3_1, torus)$	3 1 1
Muon μ^-	Cinquefoil $(5_1, torus)$	$5\ 2\ 1$
Proton p	3-component chiral compound	$3 \ 2 \ 3$
Neutron n	as proton, different core strengths	$3 \ 2 \ 3$
Photon γ	Unknot (closed loop)	1 0 1

TABLE I. SST classification parameters (b, g, n) used in Eq. (4).

Proton-neutron split (internal geometry). Let $s_u \approx 2.828$, $s_d \approx 3.164$ denote geometric swirl volumes (e.g., from hyperbolic data of candidate subknots $5_2, 6_1$). With global scale $2\pi^2 \kappa_R$ (e.g., $\kappa_R \approx 2$):

$$L_{\text{tot}}^{(p)} = \lambda_b (2s_u + s_d) (2\pi^2 \kappa_R),$$

$$L_{\text{tot}}^{(n)} = \lambda_b (s_u + 2s_d) (2\pi^2 \kappa_R),$$

preserving (b, g, n) while shifting masses via internal geometry.

$\mathbf{SST} \leftrightarrow \Lambda \mathbf{CDM} \mathbf{:} \ \mathbf{MINIMAL} \ \mathbf{DICTIONARY}$

- Effective Hubble rate: $1+z=S_t^{-1}(\text{em})/S_t^{-1}(\text{obs}) \Rightarrow H_{\text{eff}}(t) \equiv \frac{d}{dt}\ln(1+z) = -\frac{d}{dt}\ln S_t$.
- **Distances:** Use $H_{\text{eff}}(z)$ in FRW distance integrals, $D_L(z) = (1+z) \int_0^z \frac{c \, dz'}{H_{\text{eff}}(z')}$, with small corrections if S_t varies along the line of sight.
- BAO/CMB: Coherence correlation length plays the role of a standard ruler; freeze-out of swirl modes maps to acoustic peaks.
- Growth: Growth rate $f\sigma_8$ encodes build-up of coherent domains under reconnection and shear of \mathbf{v}_{0} .

OBSERVATIONAL CONSEQUENCES AND FALSIFIERS

Falsifiable predictions

- SN Ia host dependence: After standardization, Hubble residuals correlate with local density (voids vs. clusters) via ΔS_t .
- Strong-lens time delays: Inferred H_0 shifts with environmental S_t ; joint modeling predicts a sign/magnitude.
- Redshift drift (Sandage test): $\dot{z} = H_{\text{eff},0} H_{\text{eff}}(z)/(1+z)$. SST curves differ if S_t evolves non-FRW-like.
- BAO AP anisotropy: Directional S_t gradients generate Alcock–Paczyński distortions at $10^{-3}-10^{-2}$.
- **GW** speed: $c_{\text{GW}} = c$ (baseline $c_{13} = 0$); persistent $c_{\text{GW}} \neq c$ falsifies this sector.

CANONICAL CONSTANTS (SI)

Quantity	Symbol	Value
Swirl core radius Effective density Core density Swirl speed (char.) Speed of light Fine structure const.	$egin{array}{c} r_c & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c} 1.40897017\times10^{-15}~\mathrm{m} \\ 7.0\times10^{-7}~\mathrm{kgm^{-3}} \\ 3.8934358266918687\times10^{18}~\mathrm{kgm^{-3}} \\ 1.09384563\times10^{6}~\mathrm{ms^{-1}} \\ 2.99792458\times10^{8}~\mathrm{ms^{-1}} \\ 7.2973525693\times10^{-3} \end{array}$

IMPLEMENTATION NOTES (DATA FITS)

- 1. Calibrate $L_{\text{tot}}(e)$ from M_e using Eq. (4).
- 2. Fix λ_b, κ_R on (e, μ, p) ; predict remaining leptons/hadrons and isotope splittings.
- 3. Infer $H_{\text{eff}}(z)$ non-parametrically from SNIa; compare with BAO ruler from coherence correlation length.
- 4. Cross-validate with time-delay lenses and CMB acoustic scale to bound line-of-sight variations in S_t .