Analysis - 퓨처스리그 영화 관객수 예측

팀 명	팀 원	학 교
우리들의 일그러진 스님	김형규 강수현, 여현웅, 한선웅	동국대학교

CONTENTS 1

팀 소개 및 역할

CONTENTS 2

프로젝트 기획

CONTENTS 3

데이터 전 처리

CONTENTS 4

학습 알고리즘

CONTENTS 5

결과 및 결론

CONTENTS 6

개선점

팀 소개 및 역할

팀 소개

- 분야 및 주제 명칭
 - ✓ Analysis 퓨처스리그(영화 관객수 예측)
- 구성원
 - ✓ 구성원 : <mark>김형규</mark>,강수현 ,여현웅, 한선웅 (from. Dongguk Al Association-DAIA)
- 구성원 별 역할
 - ✓ 강수현:시계열 데이터 set 전처리
 - ✓ 여현웅:모델개발
 - ✓ 한선웅:비시계열 데이터 set 전처리
 - ✓ 김형규 : DB 및 ppt 제작

프로젝트 기획

프로젝트 기획

너의 결혼식, 나를 차버린 스파이: 23일 물괴: 2일

너의 결혼식, 나를 차버린 스파이: 40일째 물괴: 19일째

특정 기간에 데이터를 통해 뒷부분의 그래프를 예측 할 수 있다면 총 관객수도 알 수 있지 않을까?

Time Series

Other Data etc

Deep learning

데이터 전처리

- 영화 별 일일 관객수
- 영화 별 일일 상영횟수
- D-Day

Nontime Series Data

- 개봉일
- 제작 국가
- 관람 등급
- 장르
- 개봉 전 평점
- 감독
- 배우

Feature

총 1047 편

Feature	대상 기간	수집 범위
영화별 일일 관객수		
영화별 일일 상영횟수	2015년 ~ 2018년	관객 수 10,000명 이상개봉일 ~ 종영일
D-day		

Nontime Series Data

Data Handling

Actors

주연 배우의 최근 3작의 관객 동원 수의 합

→ 7개의 Class로 나누고 Label Encoding

Nontime Series Data

Data Handling

• Random Forest의 Feature importance를 확인한 결과 감독의 관객 동원수가 관객수에 중요한 영향을 끼치는 것으로 확인되어 분석에 사용하기로 결정

Data Base

Feature	범위 조정	결측치 처리
영화별 일일 관객수	0에서 1의 값을 가지도록 스케	개봉전 22일간 또는 개봉후 40
영화별 일일 상영횟수	일링	일간 데이터가 없는 경우 0으로 대체.
D-day		(Zero padding)
director		

Data Sampling

랜덤하게 200개의 영화 Data 추출

Data imbalanced 확인

Oversampling 수행 결정

Oversampling

DeepAR: Probabilistic Forecasting with Autoregressive

Recurrent Networks

(Valentin Flunkert, David Salinas, Jan Gasthaus)

 $v_i = i$ 번째 영화에 대한 관객수 평균.

 $z_{i,t} = i$ 번째 영화 t일 차의 관객수.

 $p_i = 모든 영화 데이터셋중 i번째 영화가 선택될 확률$

$$v_i = 1 + \frac{1}{t_o} \sum_{t=1}^{t_o} z_{i,t}$$

$$p_i = \frac{v_i}{\sum v_i}$$

Probabilistic을 기반으로 Sampling 수행

Oversampling

- 관객수가 많은 영화
 - ✓ 선택될 확률 🕇
- 관객수가 낮은 영화
 - ✓ 선택될 확률 ↓
- 임의의 데이터들을 선택
 - → 값들의 평균 계산
- 그 평균을 새롭게 생성한 데이터 로 사용.

9 2018-07-04

10 2018-07-05

35 235499

23 235499

결론

	lstm	Seq2seq
	예측 관객수	예측 관객수
너의 결혼식	2,767,164	
나를 차버린 스파이	271,311	
물괴		1,234,491

개선방향

너의 결혼식	• 2015년 이전 데이터 조금 더 확보	
나를 차버린 스파이	• 2013년 이번 대에다 포함 다 목포	
물괴	• 머신러닝 기법 적용	
	• Non time series를 더 많이 적용	

상세역할

- 알고리즘 선별
 - ✓ RNN
 - ✓ LSTM
 - ✓ Random Forest (feature importance)
- 데이터 수집
 - ✓ 영화 진흥 위원회 일별 관객수, 일별 상영횟수
- 데이터 전처리
 - ✓ Zero padding + windowing, database
- Feature importance check
 - √ Time Series(D-day) + Non Time Series (director)
- PPT

참고 문헌

참고문헌 및 자료

- (1) http://www.kobis.or.kr/kobis/business/mast/mvie/searchMovieList.do
- (2) https://movie.naver.com/
- (3) Valentin Flunkert, David Salinas, Jan Gasthaus. DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks. arXiv:1704.04110, 2017

