

4. AREAS

SYNOPSIS

- 1. The area of the region bounded by the curve y = f(x), X-axis and the lines x = a, x = b is $\int_{a}^{b} f(x)dx$. (If curve does not cross x axis between x = a and x = b)
- 2. The area of the region bounded by the curve x = f(y), Y-axis and the lines y = c, y = d is $\int_{c}^{d} f(y) dy$. (If curve does not cross y-axis between y = c and y = d.)
- 3. If $f(x) > 0x \forall \in [a,c]$ and f(x) < 0, $\forall x \in [c, b]$, then the area bounded by the curve y = f(x), X-axis, the lines x = a, x = b is $\int_a^c f(x) dx \int_c^b f(x) dx$.
- 4. Let y = f(x) and y = g(x) are two curves. Then the area between the two curves and the lines x = a, x = b is $\left| \int_a^b \left(f(x) g(x) \right) dx \right|$.
- 5. Let y = f(x), y = g(x) are two curves intersect at x = c(a < c < b) then the area bounded between the given curves and x = a & x = b is $\left| \int_{a}^{c} (f(x) g(x)) dx \right| + \left| \int_{c}^{b} (f(x) g(x)) dx \right|$
- 6. The area of the region bounded by $y^2 = 4ax$ and $x^2 = 4by$ is $\frac{16ab}{3}$ sq.units.
- 7. The area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab sq. units.
- 8. The area of the circle $x^2 + y^2 = a^2$ is πa^2 sq. units.
- 9. The area of the region bounded by one arch of Sin ax or Cos ax and X-axis is $\frac{2}{a}$ sq.units.
- 10. The area of the region bounded by the curve $y = \sin ax$ or $\cos ax$ and X-axis in $[0, n\pi]$ is $\frac{2n}{a}$ sq. units.
- 11. The area of the region bounded by $y = ax^2 + bx + c$ and y = mx + k is $\frac{\Delta^{\frac{3}{2}}}{6a^2}$. Where Δ is the discriminant of $ax^2 + (b m)x + (c k)$
- 12. The area of the region bounded by $x=ay^2+by+c$ and x=my+k is $\frac{\Delta^{\frac{3}{2}}}{6a^2}$, where Δ is discriminant of $ay^2+(b-m)y+(c-k)$
- 13. The area of the region bounded by $y = ax^2 + bx + c$ and $y = px^2 + qx + r$ is $\left| \frac{\Delta^{\frac{3}{2}}}{6(a-p)^2} \right|$ where Δ is the discriminent of $(a-p)x^2 + (b-q)x + (c-r)$

OBJECTIVE MATHEMATICS II B - Part 2 LECTURE SHEET EXERCISE-I

		LALITO	IOL I	
		Determination	on of Area	
		LEVEL-I	(MAIN)	
		Single answer ty	ype questions	
1.	The area of the region b		4 and X-axis is	1.20
	1) $\frac{2}{3}$	2) $\frac{4}{3}$	3) $\frac{8}{3}$	4) $\frac{10}{3}$
2.	The area bounded by y^2	= 4x with the lines $x = 2$		
	1) $\frac{8}{3} \left(5\sqrt{5} - 2\sqrt{2} \right)$	2) $\frac{4}{3} \left(5\sqrt{5} - 2\sqrt{2} \right)$	3) $5\sqrt{5} - 2\sqrt{2}$	4) $\frac{16}{3}$
3.				corresponding rectangle
			e from the vertex then k	
	1) $\frac{3}{2}$	2) $\frac{2}{3}$	3) $\frac{4}{3}$	4) $\frac{3}{4}$
4.	The area bounded by the		$=4x-x^2-3$ is	
	1) $\frac{1}{3}$	2) $\frac{2}{3}$	3) $\frac{4}{3}$	4) $\frac{8}{3}$
5.	The area bounded by $y =$	$= x^2 + 2$, X-axis, $x = 1$ and	ad x = 2 is	
	1) $\frac{16}{3}$	2) $\frac{17}{3}$	3) $\frac{13}{3}$	4) $\frac{20}{3}$
6.	The area bounded by $y =$	$= 4 - x^2$, $y = 0$ and $y = 3$	is	
	1) $\frac{16}{3}$	2) $\frac{22}{3}$	3) $\frac{26}{3}$	4) $\frac{28}{3}$
7.	The area (in square units	s) of the region bounded	by the curves $2x = y^2 -$	1 and $x = 0$ is
	1) $\frac{1}{3}$	$2)\frac{2}{3}$	3) 1	4) 2
8.	The area bounded by y =	$= 3x$ and $y = x^2$ is		
	1) 10	2) 5	3) 4.5	4) 9
9.	If the area bounded by the	the curves $y^2 = 4ax$ and y	$= mx$ is $\frac{a^2}{3}$ then $m =$	
	1) 1	2) 2	3) 3	4) $\frac{1}{2}$
10.	The area of the region be	ounded by $y = x^2$, $y = 3x$	and $x = 1, x = 3$ is	
	$1)\frac{27}{2}$	2) 9	$3)\frac{10}{3}$	4) $\frac{20}{3}$
11.	The area of the region b			
	1) 8	2) 9	3) 10	4) 7

				The state of the s
OBJECTIV	E MATHEM	ATICS II B	- Part 2	

* AREAS

12. The area (in square units) bounded by the curves $y = \sqrt{x}$, 2y - x + 3 = 0, x-axis, and lying in the first quadrant is

1) 9

- 2) 36
- 4) $\frac{27}{4}$

13. The area enclosed between the curves $y^2 = x$ and y = |x| is

 $1)\frac{1}{2}$

- 2) $\frac{2}{3}$

14. The area of the region enclosed by the curves y = x, x = e, $y = \frac{1}{x}$ and the positive x-axis is

- 1) $\frac{3}{2}$ square units
- 2) $\frac{5}{2}$ square units 3) $\frac{1}{2}$ square units
- 4) 1 square units

)

15. The area bounded by the curves $y = x^3$, $y = x^2$ and the ordinates x = 1, x = 2 is

- 1) 17/12
- 2) 12/13
- 4) 7/2

16. The area of the region enclosed by the curves $y = x^2$ and $y=x^3$ is

1) $\frac{1}{12}$

4) 1

17. The area bounded by the curve $y = x(x-1)^2$, Y-axis and the line y = 2 is

1) $\frac{10}{3}$

- 2) $\frac{5}{3}$
- 3) $\frac{20}{2}$
- 4) $\frac{40}{3}$

18. The area of the region bounded by the curves $y = x^2$ and $y = \frac{2}{1+x^2}$ is

- 1) $\pi \frac{2}{3}$
- 2) $\pi + \frac{2}{3}$

19. If x = a(> 0) divides the area bounded by X-axis, part of the curve $y = 1 + \frac{8}{r^2}$ and the ordinates x = 2, x = 4 into equal parts then a =

1) 2

- $2)\sqrt{2}$
- 3) $\frac{1}{\sqrt{2}}$
- 4) $2\sqrt{2}$

20. The area bounded by $y = e^x$, $y = e^{-x}$ and x = 1 is

- 1) $e + \frac{1}{e} + 2$ 2) $e + \frac{1}{e} 2$
- 3) $e^{-\frac{1}{a}+2}$
- 4) $e^{-\frac{1}{a}-2}$

Numerical value type questions

21. Area of the region bounded by the curve y = (x-1)(x-2)(x-3) lying between the ordinates x = 0 and x = 3 is

22. Area of region bounded by $y = \sin^{-1}x$, $y = \cos^{-1}x$ and the x-axis is

- 23. Area bounded by parabola $x = -2y^2$, $x = 1-3y^2$ is
- 24. Area of region enclosed by the curves $y = x \log x$ and $y = 2x 2x^2$ is

25. The area of the region bounded by max $(|x|,|y|) \le 1$ and $xy \le \frac{1}{2}$ is

LEVEL-II (ADVANCED)

		Single answer t	ype questions	
1.	The area bounded by the	e two branches of curve	$(y - x)^2 = x^3$ and the stra	ight line $x = 1$ is
	a) 1/5 sq. units	b) 3/5 sq. units	c) 4/5 sq. units	d) 8/4 sq. units
2.	$y = \frac{x^2}{1+x^2}$ divides the ar	ea enclosed by $y = \frac{1}{1+x^2}$, x-axis and y-axis in th	e first quadrant in the ratio
	a) $\frac{\pi - 2}{2}$	b) $\frac{4-\pi}{4}$	c) $\frac{2\pi-4}{\pi}$	d) $\frac{\pi-1}{\pi+1}$
3.	The area bounded by y	$=2- 2-x , y=\frac{3}{ x }$ is		
	$a)\left(\frac{5-4\ln 2}{3}\right)$ sq.unit	$b) \left(\frac{2 - \ln 3}{2}\right) sq.unit$	$c) \left(\frac{4-3 \ln 3}{2}\right) sq.unit$	d) $\left(\frac{4+3\ln 3}{2}\right)$ sq.unit
4.	Area bounded by the cu	rve $y = x \sin x$ and x -axis	between $x = 0$ and $x = 3$	2π is
	a) 2π sq. unit	b) 3π sq. unit	c) 4π sq. unit	d) 5π sq. unit
5.	The area bounded by y	$= \sec^{-1} x$, $y = \csc^{-1} x$ an	d line $x - 1 = 0$ is	
	a) $\log(3 + 2\sqrt{2}) - \frac{\pi}{2}$ sq.un	nits	b) $\frac{\pi}{2} - \log(3 + 2\sqrt{2})$ sq. 1	units
	c) $\pi - \log_e 3$ sq.units		d) $\pi + \log_e 3$ sq.units	
6.	If $f(x) = \max \left\{ \sin x, \cos x \right\}$ y-axis and $x = 2\pi$ is	$\left\{x, \frac{1}{2}\right\}$, then the area of	the region bounded by t	he curves $y = f(x)$, x-axis,
	5 W 9	7.5	75	/-
	a) $\left(\frac{5\pi}{12} + 3\right)$ sq.unit	b) $\left(\frac{5\pi}{12} + \sqrt{2}\right)$ sq.unit	c) $\left(\frac{5\pi}{12} + \sqrt{3}\right)$ sq.unit	d) $\left(\frac{5\pi}{12} + \sqrt{2} + \sqrt{3}\right)$ sq.unit
7.	The area between the cu	arve $y = \cos^2 x$, x-axis and	d ordinates $x = 0$ and $x = 0$	π in the interval $(0, \pi)$ is
	a) π	b) π/4	c) $\pi/2$	d) 2π
8.	If [x] is the greatest int	eger $\leq x$, then $\int_{-2}^{2} \min \{x\}$	-[x], -x-[-x]dx =	
	a) 1	b) 2	c) 3/2	d) 0
9.	The maximum area of a and $1x \le 3$ is	rectangle whose two veri	tices lie on the x-axis and	d two on the curve $y = 3 x $

- c) 9 a) 7 b) 7/2 d) 9/2
- 10. Area common to the curves $y = x^3$ and $y = \sqrt{x}$ is
 - b) 5/4
- c) 5/12
- d) 1/2
- 11. The area between the curve y = x(x-1)(x-2) and x-axis is
 - a) 1/4
- b) 1/2
- c) 1

- d) 0
- 12. The area enclosed by $y = x^3$, its normal at (1, 1) and x-axis is equal to
 - a) 7/4

- c) 5/4
- d) 8/4

			1
OBJECTIVE	MATHEMATICS	II B - Part 2	• • • • • •

AREAS

13. If two circles each of unit radius intersect orthogonally, the common area of the circles is

a)
$$\frac{\pi}{4}$$

b)
$$\frac{\pi}{4} + 1$$

c)
$$\frac{\pi}{2} + 1$$

d)
$$\frac{\pi}{2}$$
 -1

14. If A is the area lying between the curve $y = \sin x$ and x-axis between x = 0 and $x = \pi/2$. Area of the region between the curves $y = \sin 2x$ and x-axis in the same interval is given by

15. Area bounded by the curves $y = \log_e^x$ and $y = (\log_e x)^2$ is

a)
$$e-2$$
 sq. units

d) e-1 sq. units

More than one correct answer type questions

16. Consider the curve C_1 : $y = \cos x$ and the curve C_2 : $y = \sin x$, then

a) Area of one curvilinear triangle formed by C_1 and C_2 is $2-\sqrt{2}$

b) Area enclosed by C_1 and C_2 in successive points of intersections is $2\sqrt{2}$

c) Ratio of the area enclosed by C_1 in $\left[0, \frac{\pi}{2}\right]$ divided by the curve C_2 is $1:\sqrt{2}$

d) Area bounded by one arc of C_1 is equal to one arc of C_2

17. Consider the curve |x+y-1|+|2x+y-1|=1 then

- a) Area bounded by the curve is 2sq. unit
- b) Figure formed by the given curve is a rectangle
- c) Figure formed by the given curve in I quadrant is a trapezium
- d) Area of the region formed by the given curve in the IV quadrant is 1/3

18. If f(a) be the area enclosed by the curves $xy^2 = a^2(a-x)$ and $(a-x)y^2 = a^2x$ then

a)
$$f(a) = (\pi + 2)a^2$$

b)
$$f(3) = 9(\pi - 2)$$

b)
$$f(3) = 9(\pi - 2)$$
 c) $f(5) = 25(\pi + 2)$

d) y = f(x) is a parabola whose latus rectum is approximately equal to $\frac{7}{6}$

19. Area bounded by the curve $xy^2 = a^2(a - x)$ and y-axis is $\Delta(a)$ then

a)
$$\Delta(3) = 9\pi$$

b)
$$\Delta(1)$$
: $\Delta(2) = 1:4$

c) minimum value of
$$\Delta(a)$$
 in [1, 3] is π

d) maximum value of $\Delta(a)$ does not exist

20. Let the curve is |x-2| + |y+1| = 1

- a) Area of the region is 2 sq. units
- b) Area of the region is 1 sq. units

c) Area of the region bounded by the given curve in III quadrant when the origin is translated to (2, -1) is $\frac{1}{2}$ sq. units

d) Area of the region bounded by the given curve in III quadrant when the origin is translated to (2, -1) is 0

Linked comprehension type questions

Passage - I:

Consider the areas S_0 , S_1 , S_2 ... bounded by the x-axis and half-waves of the curve $y=e^{-x}\sin x$ where $x \ge 0$.

AREAS

OBJECTIVE MATHEMATICS II B - Part 2

21. The value of S_0 is

a)
$$\frac{1}{2}(1+e^{\pi})$$
 sq.units b) $\frac{1}{2}(1+e^{-\pi})$

b)
$$\frac{1}{2}(1+e^{-\pi})$$

c)
$$\frac{1}{2}(1-e^{-\pi})$$

d)
$$\frac{1}{2}(e^{\pi}-1)$$
 sq.units

22. The sequence $S_0,\,S_1,\,S_2\,\ldots$, forms a G.P. with common ratio

a)
$$\frac{e^{\pi}}{2}$$

d)
$$\frac{e^{-\pi}}{2}$$

23. $\sum_{n=0}^{\infty} S_n$ is equal to

a)
$$\frac{1+e^{\pi}}{1-e^{-\pi}}$$

b)
$$\frac{\frac{1}{2}(1+e^{\pi})}{1-e^{-\pi}}$$
 c) $\frac{1}{2(1-e^{-\pi})}$ d) $\frac{1}{2(1+e^{-\pi})}$

c)
$$\frac{1}{2(1-e^{-\pi})}$$

d)
$$\frac{1}{2(1+e^{-\kappa})}$$

Passage - II:

Consider the two curves C_1 : $y = 1 + \cos x$ and C_2 : $y = 1 + \cos(x - \alpha)$ for $\alpha \in \left(0, \frac{\pi}{2}\right)$; where $x \in [0,\pi]$. Also the area of the figure bounded by the curves C_1 , C_2 and x = 0 is same as that of the figure bounded by C_2 , y = 1 and $x = \pi$.

24. The value of α is

a)
$$\frac{\pi}{4}$$

b)
$$\frac{\pi}{3}$$

c)
$$\frac{\pi}{6}$$

d)
$$\frac{\pi}{8}$$

25. For the values of α , area bounded by $C_1, C_2, x = 0$ and $x = \pi$ is

a) 1 sq.units

b) 2 sq.units

c) $2+\sqrt{3}$ sq.units d) $2-\sqrt{3}$ sq.units

Matrix matching type questions

26. COLUMN - I COLUMN - II

A) Area enclosed by y = [x] and $y = \{x\}$ where [.] and {.} represent greatest integer and fractional part functions

p) 32/5 sq. units

B) The area bounded by the curves $y^2=x^3$ and |y|=2x

q) 1 sq. units

C) The smaller area included between the curves $\sqrt{x} + \sqrt{y} = 1$ and |x| + |y| = 1 r) 4 sq. units

D) Area bounded by the curves $y = \left| \frac{x^2}{64} + 2 \right|$

s) 2/3 sq. units

(where [.] denotes the greatest integer function, y = x - 1 and x = 0 above the x-axis

27. Column - I gives the regions and Column - II gives the areas

COLUMN - I

COLUMN - II

a)
$$x^2 + y^2 \le 2$$
, max $\{|x|, |y|\} > 1$

b)
$$x^2 + y^2 \le 2$$
, $|x| + |y| > 1$

c) max
$$\{|x|, |y|\} < 2, ||x| - |y|| > 1$$

r)
$$2(\pi - 1)$$

d)
$$|x| + |y| < 2, ||x| - |y| > 1$$

s)
$$2(\pi - 2)$$

* AREAS

COLUMN - I 28.

COLUMN - II

- [.] represents greatest integer function
- a) Area enclosed by $[x]^2=[y]^2$ for $1 \le x \le 4$
- p) 8 sq.units

b) Area enclosed by ||x|| + ||y|| = 2

q) 6 sq.units

c) Area enclosed by [|x|][|y|] = 2

r) 4 sq.units

D) Area enclosed by $\frac{[|x|]}{[|y|]} = 2, -5 \le x \le 5$

s) 12 sq.units

Integer answer type questions

- 29. Area bounded by the curves $y^2(2a-x)=x^3$ and the line x=2a is $k\pi a^2$ then $\{k\}$ is (where $\{.\}$ denotes fractional part of x)
- 30. The area bounded by the curves $y = \ln x$, $y = \sin^4 \pi x$ and x = 0 is k, then 8k 9 is equal to
- 31. Area bounded by the curves $y = \left| \frac{x^2}{64} + 2 \right|$, y = x 1 and x = 0 above x-axis is ([.] denotes the greatest
- 32. A point P moves in xy plane in such a way that [|x|]+[|y|]=1, where [.] denotes the greatest integer function. Area of the region representing all possible positions of the point P is equal to
- 33. Area bounded by the lines y = 2 + x, y = 2 x and x = 2 is :

Area Bounded By Some Standard Curves

LEVEL-I (MAIN)

Single answer type questions

- 1. The area bounded by the curve $y^2 = 4ax$, Y-axis between y = -a and y = a is
 - 1) a^{3}

- 3) a^{2}
- 4) $\frac{a^2}{6}$
- 2. Let A_1 be the area of the parabola $y^2 = 4ax$ lying between vertex and latus rectum and A_2 be the area between latus rectum and double ordinate x = 2a. Then A_1/A_2 =
 - 1) $\frac{2\sqrt{2}-1}{7}$

- 2) $\frac{2\sqrt{2}+1}{7}$ 3) $\frac{2\sqrt{2}+1}{3}$ 4) $\frac{2\sqrt{2}-1}{9}$
- 3. The area bounded by the curve $y^2 = x 1$ and the line y = x 3 is
 - 1) $\frac{9}{2}$

- 2) $\frac{8}{2}$
- 4) $\frac{10}{3}$

- 4. The area bounded by $y = 2x x^2$ and y = -x is

- 2) 43/6
- 3) 35/6
- 4) 10/3
- 5. The area bounded by the curve $y = |4-x^2|$ and X-axis is

4) 4

Α	REAS		OBJECTIVE MAT	HEMATICS II B - Part 2
6.	The area of the region	bounded by $1-y^2 = x $	and $ x + y = 1$ is	
	1) $\frac{3}{2}$	2) $\frac{2}{3}$	3) $\frac{4}{5}$	4) 9
7.	The area bounded by the	the curves $x = y^2$ and x	$= 3-2y^2$ is	
	1) 3	2) 4	3) 1	4) 2
8.				the lines $x = 4$, $y = 4$ and the sumbered from top to bottom
	then S_1 : S_2 : S_3 is			
	1) 2:1:1	2) 1:1:1	3) 1:2:1	4) 1:2:3
9.	The area between the o	curves $y = \sqrt{x}$, $y = x^2$ is	24	77.90
	1) $\frac{1}{3}$	2) $\frac{8}{3}$	3) $\frac{1}{2}$	4) $\frac{4}{3}$
10.	The area bounded by y	$=\sqrt{a^2-x^2}, x+y=0$	and Y-axis is	
	$1) \frac{\pi a^2}{2}$	2) $\frac{\pi a^2}{4}$	3) $\frac{\pi a^2}{8}$	4) πa^2
11.	The area of the region	between the curve x^2 +	$y^2 = 4$ and $x = 0$, $x = 1$ is	
	1) $\sqrt{3} + \frac{2\pi}{3}$	2) √3	3) $\frac{2\pi}{3}$	4) 3
12.	The area of the ellipse	$4(x-1)^2 + 5(y+2)^2 = 20$	is	
	1) 10π	2) $5\sqrt{2}\pi$	3) $2\sqrt{5}\pi$	4) 6π
13.	The area between $y = s$	$\sin x$, $y = \cos x$ and Y-a	axis is (in first quadrant)	
	1) $\sqrt{2}$	2) $\sqrt{2} + 1$	3) $\sqrt{2}-1$	4) $\frac{1}{\sqrt{2}}$
14.	The line $x = \frac{\pi}{4}$ divides	the area of the region be	ounded by $y = \sin x$, $y = \cos x$	x and x -axis $\left(0 \le x \le \frac{\pi}{2}\right)$ into
	two regions of areas A	and A_2 . Then $A_1: A_2:$	=	
	1) 4:1	2) 3:1	3) 2:1	4) 1 : 1
15.	The area of one arc of	$y = \sin x + \cos x$ is		
	1) $2\sqrt{2}$	2) 2	$3)\sqrt{2}$	4) 4
16.	The area of the region	between $y = \cos x$ and	$y = \sin 2x \text{ in } 0 \le x \le \frac{\pi}{2} \text{ is}$	
	1) $\frac{1}{4}$	2) $\frac{1}{2}$	3) $\frac{3}{4}$	4) 1
17.	The area bounded by y	$y = x \sin x$, x-axis and x	$x = 0, x = 2\pi$ is	
	1) π	2) 2π	3) 3π	4) 4π
12	0	•••••ELI	TE SERIES for Sti Chait	anya Sr. ICON Students

*** AREAS

18. The area of the region bounded by the x-axis and the curves

$$y = \tan x \left(-\frac{\pi}{3} \le x \le \frac{\pi}{3} \right)$$
 and $y = \cot x \left(\frac{\pi}{6} \le x \le \frac{3\pi}{2} \right)$ is

- 1) log 2
- 2) 2log2
- 3) $\log \sqrt{2}$
- 4) $\log \left(\frac{3}{2}\right)$

19. The area bounded by by $y = \cos x$, y = 0, |x| = 1 is

- 1) 4 sin1
- 2) 3 sin1
- 3) 2 sin1

20. The area of the region enclosed between two circles $x^2 + y^2 = 1$ and $(x - 1)^2 + y^2 = 1$ is

1)
$$\frac{\pi}{2} - \frac{\sqrt{3}}{2}$$

2) $\frac{\pi}{3} + \frac{\sqrt{3}}{2}$

3) $\frac{2\pi}{3} - \frac{\sqrt{3}}{3}$

4) $\frac{\pi}{2} + \frac{\sqrt{3}}{2}$

Numerical value type questions

21. Area bounded by $f(x) = \frac{(x-1)(x+1)}{(x-2)}$, x-axis and ordinates x = 0 and x = 3/2 is

22. If the line y = mx bisects the area enclosed by the lines x = 0, y = 0, x = 3/2 and the curve $y = 1 + 4x - x^2$. Then the value of $m = \dots$.

23. Area enclosed by the curves $x^2 = y$, y = x + 2 and x-axis is

24. The area of region for which $0 < y < 3 - 2x - x^2$ and x > 0 is

LEVEL-II (ADVANCED)

Single answer type questions

1. If the line y = mx bisects the area enclosed by the curve $y = 1 + 4x - x^2$ and the lines x = 0, y = 0, $x = \frac{3}{2}$, then m =

- c) $\frac{11}{8}$
- d) $\frac{11}{6}$

2. Let $f(x) = 2\sqrt{x}$ and $g(x) = 2\sqrt{(1-x)}$ be two functions. Then the area bounded by f(x), g(x) and the x-axis is

- a) $\frac{1}{3\sqrt{2}}$ sq. unit b) $\frac{2}{3\sqrt{2}}$ sq. unit c) $\frac{1}{\sqrt{2}}$ sq. unit d) $\frac{4}{3\sqrt{2}}$ sq. unit

3. Area enclosed between the curves $|y| = 1 - x^2$ and $x^2 + y^2 = 1$ is

- a) $\frac{3\pi-8}{3}$ sq.units b) $\frac{\pi-8}{3}$ sq.units c) $\frac{2\pi-8}{3}$ sq.units d) $\frac{\pi+2}{3}$ sq.units

4. The area bounded by the curve $x = |y^2 - 1|$ and the line y = x - 5 is

- a) $\frac{73}{6}$
- b) $\frac{85}{6}$ c) $\frac{109}{6}$

5. The area enclosed by the curve $y = \sqrt{4 - x^2}$, $y \ge \sqrt{2} \sin \left(\frac{x\pi}{2\sqrt{2}} \right)$ and x-axis is divided by y-axis in the ratio

- b) $\frac{\pi^2 4}{2}$
- d) $\frac{2\pi^2}{2\pi + \pi^2 8}$

	_			٠.	
AI	DE	AC			
AI	7	MO	*	٠,	•

- 6. The area of the region of the plane bounded by $\max(|x|,|y|) \le 1$ and $xy \le \frac{1}{2}$ is
 - a) 1/2 + ln 2 sq.units
- b) 3 + ln 2 sq. units
- c) 31/4 sq. units
- d) 1+2 In 2 sq. units
- 7. The area common to the curves $y = \sqrt{9 x^2}$, $x^2 + y^2 = 6x$ with x-axis is
- a) $6\pi \frac{9\sqrt{3}}{2}$ b) $3\pi \frac{9\sqrt{3}}{4}$ c) $3\pi \frac{9\sqrt{3}}{2}$ d) $\frac{3\pi}{2} + \frac{9\sqrt{3}}{2}$
- 8. The area of the triangle formed by the positive x-axis and the normal and tangent to the circle $x^2 + y^2 = 4$ at $(1, \sqrt{3})$ is

- b) $1/\sqrt{3}$
- 0) 2 \square
- d) 1
- 9. The area bounded by the curve $y = 2\cos x$ and the x-axis from x = 0 to $x = 2\pi$ is
 - a) 2 sq.units
- b) 4 sq.units
- c) 6 sq.units
- 10. Area bounded by the curves $y = \sin x$, tangent drawn to it at x = 0 and the line $x = \pi/2$, is equal to
 - a) $\frac{\pi^2 4}{2}$ sq.units

- b) $\frac{\pi^2 8}{8}$ sq.units c) $\frac{\pi^2 2}{4}$ sq.units d) $\frac{\pi^2 2}{2}$ sq.units
- 11. The area of the region bounded by $x^2 + y^2 6x 4y + 12 < 0$, y < x and $x < \frac{5}{2}$ is

 - a) $\frac{\pi}{6} \frac{\sqrt{3} 1}{8}$ b) $\frac{\pi}{6} \frac{\sqrt{3} + 1}{8}$ c) $\frac{\pi}{6} \frac{\sqrt{3} 1}{8}$ d) $\frac{\pi}{6} + \frac{\sqrt{3} 1}{8}$
- 12. The area of the closed figure formed by $y = \frac{x^2}{2} 2x + 2$ and the tangents to it at $(1, \frac{1}{2})$ and (4, 2) is (in sq unit)
 - a) $\frac{9}{8}$

- b) $\frac{3}{8}$

- 13. The area of the region in 1st quadrent bounded by y-axis, $y = \frac{x}{4}$, $y = 1 + \sqrt{x}$ and $y = \frac{2}{\sqrt{x}}$ is (in sq. unit)

- b) $\frac{8}{2}$
- c) $\frac{11}{2}$
- d) $\frac{13}{6}$
- 14. The are enclosed by the curves $3x^2 + 5y = 32$ and y = |x-2| is
 - a) $\frac{13}{2}$
- b) $\frac{17}{2}$
- c) 23
- d) $\frac{33}{2}$
- 15. Let $f(x) = x^2$, $g(x) = \cos x$ and $\alpha, \beta(\alpha < \beta)$ be the roots of the equation $18x^2 9\pi x + \pi^2 = 0$. Then the area bounded by the curves y = (fog)(x), the ordinates $x = \alpha, x = \beta$ and x-axis is
 - a) $\frac{\pi-3}{2}$
- b) $\frac{\pi+3}{2}$
- d) $\frac{\pi}{12}$

More than one correct answer type questions

- 16. Let A₁ be the area bounded by the curves $x^2 + y^2 = 25$, $4y = 14 x^21$ and x = 0 lying in the first quadrant and A2 be the remaining region in the first quadrant then

 - a) $A_1 = 2 + \frac{25}{2} \tan^{-1} \frac{4}{3}$ b) $A_1 = 2 + \frac{25\pi}{4} \frac{25}{2} \tan^{-1} \frac{3}{4}$ c) $A_2 = 12 \frac{25}{3} \tan^{-1} \frac{4}{3}$ d) $A_2 = \frac{25}{2} \tan^{-1} \frac{3}{4} 2$

*! *! AREAS

17. Let the circle $x^2 + y^2 = 4$ divide the area bounded by the tangent and normal at $(1, \sqrt{3})$ and x-axis is A_1

a)
$$A_1 = \frac{2\pi}{3}$$

b)
$$A_{\rm I} = \frac{4\pi}{3}$$

c)
$$A_2 = 2 - \frac{2\pi}{3}$$

b)
$$A_1 = \frac{4\pi}{3}$$
 c) $A_2 = 2 - \frac{2\pi}{3}$ d) $A_2 = 2\sqrt{3} - \frac{2\pi}{3}$

18. The area enclosed between the curves, $x^2 = y$ and $y^2 = x$ is equal to

a)
$$\frac{1}{3}$$
 sq.unit

b)
$$2\int_0^1 (x-x^2) dx$$

c) area of the region
$$\{(x,y): x^2 \le y \le |x|\}$$

19. Let A(k) be the area bounded by the curves $y = x^2 - 3$ and y = kx + 2

a) The range of
$$A(k)$$
 is $\left[\frac{10\sqrt{5}}{3}, \infty\right]$

b) The range of
$$A(k)$$
 is $\left[\frac{20\sqrt{5}}{3}, \infty\right]$

c) If function $k \to A(k)$ is defined $k \in [-2, \infty]$, then A(k) is many-one function

d) The value of k for which area is minimum is 1

20. If A is the area bounded by the curves $y = \sin x$ and x-axis in the interval $\left[0, \frac{\pi}{4}\right]$, in the same interval, area between the curves $y = \cos x$ and x-axis is A_1 and area between the curves $y = \sin x$, $y = \cos x$ and y-axis is A_2 then

a)
$$A_1 + A_2 = A$$

a)
$$A_1 + A_2 = A$$
 b) $A_2 + A = A_1$

c)
$$A_2 = \sqrt{2}-1$$
 d) $A_2 = \sqrt{2}+1$

d)
$$A_2 = \sqrt{2} + 1$$

Linked comprehension type questions

Passage - I:

Let $f(x) = x^2 - 3x + 2$ be a function, $\forall x \in \mathbb{R}$.

21. The area bounded by f(x), the x-axis and y-axis is

a)
$$\frac{1}{3}$$
sq.unit

b)
$$\frac{2}{3}$$
 sq.unit

c)
$$\frac{3}{5}$$
 sq.unit

b)
$$\frac{2}{3}$$
sq.unit c) $\frac{3}{5}$ sq.unit d) $\frac{5}{6}$ sq.unit

22. The area bounded by the curve $f(1 \times 1)$ and x-axis is

a)
$$\frac{2}{5}$$
 sq.unit

b)
$$\frac{5}{2}$$
 sq.unit c) $\frac{3}{5}$ sq.unit d) $\frac{5}{3}$ sq.unit

c)
$$\frac{3}{5}$$
 sq.unit

d)
$$\frac{5}{3}$$
 sq.unit

23. The area bounded by the curve |f(|x|)| between $1 \le |x| \le 2$ and x-axis is

a)
$$\frac{1}{5}$$
 sq.unit

b)
$$\frac{1}{4}$$
 sq.unit

c)
$$\frac{1}{3}$$
 sq.unit

d)
$$\frac{1}{2}$$
 sq.unit

24. The number of solutions of |y| = f(|x|) and $x^2 + y^2 = 2$ is

b) 6

d) 5

Passage - II:

Consider the ellipse E, $\frac{x^2}{4} + y^2 = 1$. Let PM be the ordinate of P, a point on E in the first quadrant. Let Q be a point on PM such that QM is equal to the length of the subtangent at P. Let Q trace the curve C as P varies

AREAS

OBJECTIVE MATHEMATICS II B - Part 2

25. The equation of C is

a)
$$x^2 + xy = 4$$

b)
$$x^2 + y^2 = 4$$

c)
$$x^2 = 4y$$

d)
$$y^2 + xy = 4$$

26. If the curve C intersects E at the points A and B, the area of triangle OAB is

b)
$$\frac{1}{\sqrt{5}}$$

c)
$$\frac{2}{\sqrt{5}}$$

d)
$$\frac{\sqrt{5}}{2}$$

27. The area enclosed by C and E is

a)
$$\cos^{-1}\frac{2}{\sqrt{5}} + 2 \ln \frac{5}{4}$$

b)
$$\sin^{-1}\frac{2}{\sqrt{5}} + 2 \ln \frac{5}{4}$$

a)
$$\cos^{-1}\frac{2}{\sqrt{5}} + 2 \ln \frac{5}{4}$$
 b) $\sin^{-1}\frac{2}{\sqrt{5}} + 2 \ln \frac{5}{4}$ c) $\sin^{-1}\frac{2}{\sqrt{5}} - 2 \ln \frac{5}{4}$ d) $\cos^{-1}\frac{2}{\sqrt{5}} - 2 \ln \frac{5}{4}$

d)
$$\cos^{-1}\frac{2}{\sqrt{5}}$$
 - 2 $\ln\frac{5}{4}$

Matrix matching type questions

28. COLUMN - I COLUMN - II

A) Let a function is defined in [-2, 2] as

$$f(x) = \begin{cases} \{x\} & -2 \le x < -1 \\ |\operatorname{sgn} x| & -1 \le x \le 1 \\ \{-x\} & 1 < x \le 2 \end{cases}$$

Then the area bounded by the graph of f(x) and x-axis is

B) Area bounded by the min $\{|x|, |y|\} = 1$ and the max $\{|x|, |y|\} = 2$ is

q) 3

C) Area bounded by $y = \sqrt{4 - x^2}$ and its diameter y = 0 is

r) 6

D) Let 'R' be the region containg the points (x,y)on the xy-plane satisfying $2 \le |x+3y| + |x-y| \le 4$ then the area of this region is

s) 2 m

COLUMN - I 29.

COLUMN - II

A) Area bounded by $y = 4x - x^2$ with X-axis is

p) 2 sq. units

B) Area bounded by $y = x^3$ between x = 1and x = 2 with X-axis is

q) 4 sq. units

C) Area bounded by $y = 1 + \frac{8}{r^2}$ between x = 2 and x = 4, X-axis is

 $r)\frac{15}{4}$ sq. units

D) Area bounded by $y = \sin x$ between

s) 32/3 sq. units

x = 0 and $x = \pi$ with X-axis is

Integer answer type questions

30. If the area between the curves $y = x - x^2$ and y = mx is $\frac{9}{2}$, then the sum of all values of m is

31. The area bounded by the curves $y = -\sqrt{4-x^2}$, $x^2 = -\sqrt{2}y$ and x = y is ℓ then $[\ell]$ (where [.] denotes G.I.F) =

! *! AREAS

- 32. If the area included between the two parabolas $y^2 = 4a(x + a)$ and $y^2 = 4b(b x)$ is 16/3. Then the product of A.M. and the G.M. of a and b is
- 33. The area of the figure enclosed by the curve $5x^2 + 6xy + 2y^2 + 7x + 6y + 6 = 0$ is k then [k](where [.] denotes G.I.F) is equal to
- 34. Area of the region bounded by the curve $x^2 + y^2 = 2ax$ is $\frac{1}{3}K\pi a^2$ then K =

Miscellaneous Models

LEVEL-I (MAIN)

Single answer type questions

- 1. The area of the region bounded by the curve $y = (x^2 + 2)^2 + 2x$ between the ordinates x = 0, x = 2 is
 - 1) $\frac{436}{15}$
- 2) $\frac{208}{3}$
- 3) $\frac{236}{5}$
- 4) $\frac{340}{13}$
- 2. The area between the curve $xy = a^2$, x = a, x = 4a and X-axis is
 - alog2
- 2) $2a^2 \log 2$
- 3) $a^2 \log 2$
- 4) $\log a$
- 3. The area bounded by the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ and the coordinate axes is
 - $1)\frac{a^2}{\epsilon}$
- 2) $\frac{a^2}{a^2}$
- 3) $\frac{a^2}{4}$
- $4)\frac{a}{6}$

- 4. The area bounded by $y = \sin x$ in $[0, 2\pi]$
 - 1) 1

2) 2

3) 4

- 4) 3
- 5. The positive value of the parameter "a" for which the area of the figure bounded by $y = \sin ax$,

y = 0, $x = \frac{\pi}{a}$ and $x = \frac{\pi}{3a}$ is 3 is equal to

1) 1

- 2) $\frac{1}{3}$
- 3) $\frac{1}{2}$
- 4) $\frac{1}{4}$
- 6. The area bounded by y = lsinxl, X-axis and the lines $lxl = \pi$ is
 - 1) 1

- 4) 4
- 7. The area enclosed between the curvesy = $\log_{P}(x+e)$, $y = e^{-x}$ and the X-axis is

2) 1

- 4) 4
- 8. The area of the region bounded by $y = 2^x$, $y = 2x x^2$ and x = 0, x = 2 is
 - 1) $\frac{3}{\log 2} + \frac{4}{3}$
- 2) $\frac{3}{\log 2} \frac{4}{3}$ 3) $\frac{3}{\log 2}$
- 4) $3\log 2 \frac{4}{3}$
- 9. The area bounded by the curves $x^2+y^2 \le 1$ and $|x|+|y| \ge 1$ is
 - 1) 2

- 2) $\pi + 2$
- 3) $\pi 2$
- 4) π

			_			
Δ	RI	E/	S	•	•	
					- 3	•

- 10. The area of the region $\{(x,y) \mid x^2+y^2 \le 1 \le x+y\}$ is
 - 1) $\frac{\pi}{4} + \frac{1}{2}$
- 2) $\pi + 1$ 3) $\frac{\pi}{4} \frac{1}{2}$
- 4) $\frac{\pi}{4} + \frac{3}{4}$

- 11. The area of the region bounded by $a^2y^2 = x^2 (a^2-x^2)$ is
 - 1) $\frac{4a^2}{5}$
- 2) $\frac{4a}{3}$ 3) $\frac{4a^2}{3}$
- 4) $\frac{5a^2}{a}$
- 12. The area bounded by $y = f(x) = x^4 2x^3 + x^2 + 3$, X-axis and ordinates corresponding to minimum of the function f(x) is
 - 1) 10/3
- 2) 91/30
- 3) 2/3
- 4) 1/2
- 13. The slope of the tangent to a curve y = f(x) at (x, f(x)) is 2x + 1. If the curve passes through the point (1, 2) then the area of the region bounded by the curve, X-axis and the line x = 1 is
 - 1) 5/6
- 2) 6/5
- 3) 6

- 14. The area bounded by the curve y = f(x) the coordinate axes and the line x = t is given by te^t then f(x)=
 - 1) $e^{x}(x+1)$
- 2) $e^{x}(x-1)$
- 3) $x(1+e^{x})$
- 4) $x(1-e^{x})$
- 15. The area bounded by the curve $f(x) = x + \sin x$ and its inverse between the ordinates x = 0, $x = 2\pi$ is
 - 1) 2

- 2) 4
- 3) 6

4) 8

Numerical value type questions

- 16. The area bounded by the curve $y = \sin^{-1}x$ and the line x = 0, $|y| = \frac{\pi}{2}$ is
- 17. The area bounded by $y = \tan^{-1}x$, $y = \cot^{-1}x$ and y-axis in 1st quadrant is
- 18. Let S be the area bounded by the curve $y = \sin x$ ($0 \le x \le \pi$) and x-axis, and T be the area of region bounded by the curve $y = \sin x \ (0 \le x \le \pi/2)$, $y = a \cos x \ (0 \le x \le \pi/2)$ and x-axis. Where $a \in R^+$, then value of a such that $S: T = 1: \frac{1}{3}$ is.

LEVEL-II (ADVANCED)

Single answer type questions

- 1. If f(x+y) = f(x) + f(y) xy, $\forall x, y \in R$ and $\lim_{h \to 0} \frac{f(h)}{h} = 3$ then the area bounded by the curves y = f(x)and $y = x^2$ is
 - a) 1

b) 2

c) 3

- 2. The area bounded by the curves $y = \sqrt{\frac{1+\sin x}{\cos x}}$ and $y = \sqrt{\frac{1-\sin x}{\cos x}}$ between the lines x = 0, $x = \frac{\pi}{4}$ is

- a) $\int_{0}^{\sqrt{2}-1} \frac{t dt}{(1+t^2)\sqrt{1-t^2}}$ b) $\int_{0}^{\sqrt{2}-1} \frac{4t dt}{(1+t^2)\sqrt{1-t^2}}$ c) $\int_{0}^{\sqrt{2}+1} \frac{4t dt}{(1+t^2)\sqrt{1-t^2}}$ d) $\int_{0}^{\sqrt{2}+1} \frac{t dt}{(1+t^2)\sqrt{1-t^2}}$

3. Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x),

x-axis and the ordinates $x = \frac{\pi}{4}$ and $x = \beta > \frac{\pi}{4}$ is $\beta \sin \beta + \frac{\pi}{4} \cos \beta + \sqrt{2}\beta$. Then $f^{1}(\frac{\pi}{2})$ is

- a) $\left(\frac{\pi}{2} \sqrt{2} 1\right)$ b) $\left(\frac{\pi}{4} + \sqrt{2} 1\right)$ c) $-\frac{\pi}{2}$
- d) $\left(1-\frac{\pi}{4}+\sqrt{2}\right)$
- 4. Area of the region bounded by the graph $y^2 + 2xy + 40 |x| = 400$ is
- b) 400
- c) 800
- d) 1600
- 5. P is a variable point in the square formed by the lines $x = \pm 1$ and $y = \pm 1$, P moves such that its distance from the origin is less than its distance from any side of the square. The area traced by the point P is
 - a) $\frac{4}{2}(4\sqrt{2}+1)$
- b) $\frac{4}{3}(4\sqrt{2}-1)$ c) $\frac{4}{3}(4\sqrt{2}-3)$ d) $\frac{4}{3}(4\sqrt{2}-5)$
- 6. Let f be a real valued function satisfying $f\left(\frac{x}{y}\right) = f(x) f(y)$ and $\lim_{x \to 0} \frac{f(1+x)}{x} = 3$ then the area bounded by the curve y = f(x), y-axis and y = 3 is
 - a) 3e

- b) 4e
- c) 5e
- d) 6e
- 7. The area bounded by the curves $|y+x| \le 1, |y-x| \le 1$ and $2x^2+2y^2 \ge 1$ is
 - a) $\left(2+\frac{\pi}{2}\right)$
- b) $\left(2-\frac{\pi}{2}\right)$ c) $\left(4-\frac{\pi}{2}\right)$ d) $\left(4+\frac{\pi}{2}\right)$
- The area of the loop of the curve $x^2 + (y 1)y^2 = 0$ is equal to
 - a) 8/15 sq. units
- b) 2/15 sq. units
- c) 4/15 sq. units
- d) 1/15 sq. units
- 9. The A.M of the areas of three mutually exclusive regions formed by $y = \sin x$, $y = \cos x$, x = 0, $x = \frac{\pi}{2}$ and x-axis is
 - a) $\frac{\sqrt{2}}{2}$
- b) $\frac{2}{\sqrt{2}}$
- d) $\sqrt{\frac{2}{3}}$

More than one correct answer type questions

10. The value of a where (a > 2) for which the reciprocal of the area enclosed between $y = \frac{1}{r^2}$; $y = \frac{1}{4(r-1)}$; x = 2 and x = a is a itself and the value of $b \in (1,2)$, the area of the figure bounded by the lines x = b

and x = 2 is $1 - \frac{1}{6}$ are

- a) $a = 1 + e^2$
- b) $a = 1 + e^{-2}$
- d) $b = 1 + e^{-2}$
- 11. The area bounded by minimum of (lxl, lyl) = 2 and maximum of (lxl, lyl) = 4 is
 - a) 8

d) 32

12. A polynomial P is positive for x > 0 and the area of the region bounded by P(x), the x-axis and the

vertical lines x = 0 and $x = \lambda$ is $\frac{\lambda^2(\lambda + 3)}{2}$ sq. unit. Then

- a) $P(x) = x^2 + 2x$ b) $P(x) = x^2 + 2x + 1$ c) P(3) = 15
- d) area bounded by y = p(x) with the curve $x = y^2 + 2y$ is 1/3
- 13. Which of the following have the same bounded area
 - a) $f(x) = \sin x, g(x) = \sin^2 x$, where $0 \le x \le 10\pi$ b) $f(x) = \sin x, g(x) = |\sin x|$, where $0 \le x \le 20\pi$
 - c) $f(x) = |\sin x|, g(x) = \sin^3 x$ where $0 \le x \le 10\pi$ d) $f(x) = \sin x, g(x) = \sin^4 x$ where $0 \le x \le 10\pi$
- 14. Consider the curve $C: y = |x|e^{|x|}$ and lines |x| = 1, y = 0 then
 - a) Area of the region is 2 sq. unit
 - b) Area of the region is 6 sq. unit
 - c) Area bounded by C in [-1, 0] is equal to area bounded by C in [0, 1]
 - d) Area bounded by C in [-1, 0] is not equal to area bounded by C in [0, 1]
- 15. If the curve $y = ax^{1/2} + bx$ passes through the point (1, 2) and lies above the x-axis for $0 \le x \le 9$ and the area enclosed by the curve, the x-axis and the line x = 4 is 8 sq. units. Then
 - a) a = 1
- b) b = 1
- c) a = 3
- d) b = -1

Linked comprehension type questions

Passage - I:

The curve y = f(x) passes through the point (0, 1) and the curve $y = g(x) = \int_{-\infty}^{x} f(t)dt$ passes through the point $\left(0,\frac{1}{2}\right)$. The tangents drawn to the curves at the point with equal abscissa intersect on the x-axis. Then

- 16. The area bounded by the x-axis, the tangent and normal to the curve y = f(x) at the point where it cuts the y-axis is
 - a) $\frac{3}{4}$

- b) 1
- c) $\frac{5}{4}$
- d) $\frac{3}{2}$
- 17. The area bounded by the curve y = f(x) and y = x between the ordinates x = 0 an x = 1 is

- b) $\frac{e^2-1}{2}$ c) $\frac{e^2-2}{2}$
- 18. Area enclosed by the curves $y = f^{-1}(x)$, $y = g^{-1}(x)$ in between the lines y = 0, y = 2 is
 - a) 1

- b) $e \frac{1}{2}$ c) $\frac{(e^2 + 1)}{4}$
- d) $\frac{(e^4-1)}{4}$

Passage - II:

Let f(x) be a positive differentiable function defined on [0, 1] such that f(1) = 0 and for any $a \in (0, 1), \int_0^a f(x)dx - \int_a^1 f(x)dx = 2f(a) + 3a + b$, where b is a constant

*** AREAS

19. f(x) =

a)
$$\frac{2}{3}(e^{x-1}-1)$$
 b) $\frac{3}{2}(e^{x-1}-1)$ c) $\frac{2}{3}(1-e^{x-1})$

b)
$$\frac{3}{2}(e^{x-1}-1)$$

c)
$$\frac{2}{3}(1-e^{x-1})$$

d)
$$\frac{3}{2}(1-e^{x-1})$$

20. b =

a)
$$\frac{3}{2e} - 3$$

b)
$$\frac{3}{2e} - \frac{3}{2}$$

c)
$$\frac{3}{2a} + 3$$

d)
$$\frac{3}{2a} + \frac{3}{2}$$

Matrix matching type questions

21. COLUMN - I COLUMN - II

Area of the region bounded by

A)
$$y = 2x - x^2$$
 and x -axis

p)
$$\frac{1}{3}$$

B)
$$\{(x,y)/x^2 < y < |x|\}$$

$$q) \frac{1}{2}$$

C)
$$y = x$$
 and $y = x^2$ is

r)
$$\frac{2}{3}$$

D)
$$y = x|x|$$
, $x - ax$ is and $x = 1$, $y = 1$

s)
$$\frac{4}{3}$$

Integer answer type questions

22. The area of the region enclosed between the curves $x=y^2-1$ and $x=|y|\sqrt{1-y^2}$ is

23. The area of bounded by the curves $y = |\cos 3x|$ and $y = |\sin 3x|$, $0 \le x \le \pi$ is $\frac{a}{b}(\sqrt{2}-1)$. Then a-b is equal to (where g.c.d. of a, b is 1)

24. P(x,y) be a point which moves in xy-plane such that 2[y] = 3[x], -2 < x < 5, -3 < y < 7, where [.] denotes GIF. If '\u03b2' is the area of the region containing the point P(x, y) then the value of $\sqrt{\lambda\sqrt{\lambda\sqrt{\lambda......\infty}}}$ must be

25. Area enclosed by the curve $y = (x^2 + 2x) e^{-x}$ and the positive direction of x-axis is

26. If $f(x) = x^2 + 6x + 1$ and S denotes the set of points (x,y) in the plane such that f(x) + f(y) < 0 and f(x) - f(y) < 0, then area of S is $k\pi$, where k is

27. The area bounded by one arc of $y = \sin^2 3x$ and x-axis is k, then [k] ([.] denotes GFI) is

28. If A is the area enclosed by the curve [x + y] + [x-y] = 5 for x > y, $\forall x, y > 0$ then 4A is

29. Let $f(x) = x^3 + 3x + 2$ and g(x) be the inverse of f(x). The area bounded by y = g(x), x-axis and the ordinates x = -2 and x = 6 is K, then [K + 1] is ([.] denotes GIF

30. If the area of the region enclosed by the curves $y = x \log x$ and $y = 2x - 2x^2$ is K, then [K] ([.] denotes GIF) is

31. If the area enclosed by the curve $|x|+|y| \le k$ is f(k) sq unit, then the value of $\frac{f(10)}{100}$ must be

AREAS				 ∙ OB	JECTIVE	MATHEN	MATICS I	B - Part 2
	• • •	KEY SH	IEET (LI	ECTURE	SHEET) • • •		
			EXER	CISE-I				
LEVEL-I	1) 3	2) 1	3) 2	4) 3	5) 3	6) 4	7) 2	8) 3
	9) 2	10) 3	11) 2	12) 1	13) 4	14) 1	15) 1	16) 1
	17) 1	18) 1	19) 4	20) 2	21) 2.75	22) 0.414	42	23) 1.3333
	24) 0.58	33	25) 0.69	89				
LEVEL-II	1) c	2) a	3) c	4) c	5) a	6) d	7) c	8) a
	9) d	10) c	11) b	12) a	13) d	14) b	15) b	16) abcd
	17) acd	18) bd	19) abc	d20) ac	21) b	22) b	23) d	24) b
	25) b	26) A-q	B-p;C-s;	D-r	27) A-s;	B-r;C-q;[D-p	
	28) A-q	;B-s;C-q;	D-p	29) 0	30) 2	31) 4	32) 8	33) 4
			EXER	CISE-II				
LEVEL-I	1) 4	2) 2	3) 1	4) 1	5) 1	6) 2	7) 2	8) 2
	9) 1	10) 3	11) 1	12) 3	13) 3	14) 4	15) 1	16) 2
	17) 4	18) 4	19) 3	20) 3	21) 0.87	5	22) 2.16	66
	23) 0.83	33	24) 1.66	66				
LEVEL-II	1) a	2) d	3) a	4) c	5) d	6) b	7) b	8) c
	9) d	10) b	11) c	12) a	13) c	14) d	15) d	16) abd
	17) ab	18) abc	19) bc	20) bc	21) d	22) d	23) c	24) c
	25) a	26) b	27) d	28) A-q ;E	3-p;С-s;D-ı	29) A-s ;E	3-r;C-q;D-p)
	30) 2	31) 3	32) 1	33) 1	34) 3			
			EXER	CISE-III				
LEVEL-I	1) 1	2) 2	3) 1	4) 3	5) 3	6) 4	7) 1	8) 2
	9) 3	10) 3	11) 3	12) 2	13) 1	14) 1	15) 4	16) 2
	17) 0.15	05	18) 1.33	33				
LEVEL-II	1) b	2) b	3) c	4) d	5) d	6) a	7) b	8) a
	9) a	10) ab	11) b	12) acd	13) acd	14) ac	15) cd	16) c
	17) c	18) d	19) d	20) a	21) A-s ;	B-p;C-q;	D-r	22) 2
	23) 7	24) 4	25) 4	26) 8	27) 0	28) 6	29) 2	30) 0
	31) 2							
			100					

1) 1

- 2) $\frac{3}{2}$
- 3) 2
- 4) $\frac{5}{2}$
- 10. The area of the region bounded by y = [x + 2] from x = 0 to 3, X-axis is
 - 1) 8

2) 9

- 3) 10.5
- 4) 100

Numerical value type questions

- 11. The area of region included between the parabola $y = \frac{3x^2}{4}$ and the line 3x 2y + 12 = 0 is
- 12. Area is region bounded by curves $y = x^2 + 2$, y = x, x = 0 and x = 3 is
- 13. Area is region $\{(x,y)/0 \le y \le x^2 + 1, 0 \le y \le x + 1, 0 \le x \le 2\}$ is
- 14. If the area bounded by the parabola $y^2 = 4\lambda x$ and $y = \lambda x$, $\lambda > 0$ is $\frac{1}{9}$. Then $\lambda =$
- 15. If the area of the region $\{(x,y)/y^2 \le 4x, x+y \le 1x \ge 0, y \ge 0\}$ is $a\sqrt{2}+b$ then a-b=...

LEVEL-II (ADVANCED)

Single answer type questions

1.	The area bounded by the curve $y = x(x - 1)^2$, the x-axis and the ordinates of the maximum and	ıd
	minimum points of the curve is	

a) $\frac{4}{7}$

b) $\frac{4}{0}$

c) $\frac{4}{81}$

d) $\frac{2}{81}$

2. The area bounded by the curve $y^2 = (1-x^2)^2$ is

a) 3

c) $\frac{4}{3}$

d) $\frac{8}{3}$

The total area bounded by the curve $y = x^3$, y = x, y = 2x is

a) 1

c) -

The line $x = \lambda$ intersects the curve $y^2 = x$ at A and B. Let $R(\lambda)$ be the ratio of the area of triangle OAB to the area bounded by the curve and AB. Then $\lim_{\lambda \to 0} R(\lambda) =$

a) $\frac{1}{2}$

b) $\frac{2}{3}$

c) $\frac{3}{4}$

5. The area of the region whose boundaries are defined by the curves $y = 2 \cos x$, $y = 3 \tan x$ and the y-axis is

a) $1 + 2ln\left(\frac{2}{\sqrt{3}}\right)$ sq.units

b) $1 + \frac{3}{2} \ln 3 - 3 \ln 2$ sq. units

c) $1 + \frac{3}{2} \ln 3 - \ln 2$ sq. units

d) ln 3 - ln 2 sq. units

6. The area bounded by $y = \frac{1}{(2x+1)^2}$, y = 0, x = 1, x = 2 is

b) $\frac{1}{5}$ c) $\frac{1}{10}$

d) $\frac{1}{15}$

7. The area bounded by the curve $y = \frac{x}{\sqrt{2x^2 + 1}}$, y=0, x=0 and x=2

a) 1

d) $\frac{2}{3}$

8. The area bounded by $y = a \cosh\left(\frac{x}{a}\right), x = 0, y = 0, x = a$ is

a) $\frac{a^2e}{2}$

c) a2cosh1

d) a2sinh1

9. The area between x-axis and the first arc of $y = e^{-ax} \sin ax$ is

a) $\frac{1}{2a}$

b) $\frac{e^{-\pi}}{2a}$ c) $\frac{1-e^{-\pi}}{2a}$

d) $\frac{1+e^{-\pi}}{2a}$

* AREAS

10. The area bounded by y-axis and the curve $x = e^{y} \sin \pi y$, y = 0, y = 1 is

a)
$$\frac{e+1}{\pi^2+1}$$

b)
$$\frac{e-1}{\pi^2 + 1}$$

b)
$$\frac{e-1}{\pi^2 + 1}$$
 c) $\frac{(e+1)\pi}{\pi^2 + 1}$ d) $\frac{(e-1)\pi}{\pi^2 + 1}$

d)
$$\frac{(e-1)\pi}{\pi^2+1}$$

More than one correct answer type questions

11. A curve y = f(x) is defined parametrically as $x = \frac{1-t^2}{1+t^2}$, $y = \frac{2t}{1+t^2}$ then

- a) Area bounded by y = f(x) is π sq. units
- b) Area bounded by y = f(x) with normal at any point on it is $\pi/2$ sq. units
- c) Area (smaller area) bounded by y = f(x) and the lines $y = \sqrt{3}x$, y = 0 is $\frac{\pi}{3}$ sq.units
- d) Area bounded by y = f(x) and the lines $y = \sqrt{3}x$, y = 0 is $\frac{\pi}{6}$ sq. units

12. If f(a) be the area enclosed by the curves $xy^2 = a^2(a-x)$ and $(a-x)y^2 = a^2x$ then

a)
$$f(a) = (\pi + 2)a^2$$

b)
$$f(3) = 9(\pi - 2)$$

c)
$$f(5) = 25(\pi + 2)$$

d) y = f(x) is a parabola whose latus rectum is approximately equal to $\frac{8}{7}$

13. Let R be the region represented by $|x - y| + |x + y| \le 8$. Then

- a) Area bounded by $xy \ge 2$ and R is $4(7 \log_a 8)$
- b) Area bounded by $xy \ge -2$ and R is $4(7 \log_a 8)$
- c) Area of the region R is 64
- d) Area bounded by $xy \le 2$ and R is 12 (3 + $\log_a 2$)

14. Consider $f(x) = \cos^{-1}(4x^3 - 3x)$. Then

a)
$$f(x) = \pi - 3\cos^{-1} x$$
 for $\frac{1}{2} \le x \le 1$

b)
$$f(x) = 2\pi - 3\cos^{-1} x$$
 for $-\frac{1}{2} \le x < \frac{1}{2}$

c)
$$f(x) = 3\cos^{-1} x - 2\pi$$
 for $-1 \le x < -\frac{1}{2}$

d) Area enclosed by
$$y = f(x)$$
, $y = 0$, $x \ge -\frac{1}{2}$ is $\frac{3\sqrt{3}}{2}$

Linked comprehension type questions

Passage - I:

Let there are two functions defined by $f(x) = \min(|x|, |x-1|, |x+1|)$ and $g(x) = \min(e^x, e^{-x})$. α is the root of f(x) = g(x)

15. The area bounded by f(x) in [-1,1] and x-axis is

- a) 1/5 sq.unit
- b) 1/4 sq.unit
- c) 1/3 sq.unit
- d) 1/2 sq.unit

AREAS

•‡••‡• OBJECTIVE MATHEMATICS II B - Part 2

16. The area bounded by f(x), g(x) and x = 0 in first quadrant is

a)
$$e^{-\alpha} - 1$$

b)
$$2 - e^{-\alpha}$$

c)
$$1 + e^{-\alpha}$$

d)
$$e^{-1} - e^{-\alpha} - \frac{\alpha^2}{2}$$

- 17. The sum of roots of equation f(x) g(x) = 0 is
 - a) 0

- b) 200
- c) -2\alpha
- d) 400

Matrix matching type questions

COLUMN - I

COLUMN - II
p) $\frac{4}{3}$

- a) The area bounded by the curve y=2+|x|-|x+1|-|x-1| and the x-axis is
- b) The area bounded by the curves $x + 2y^2 = 0$ and $x + 3y^2 = 1$ is

q) 2

c) The area bounded by the curves $x = 1 - y^2$ and x - y + 1 = 0 is $r)\frac{10}{3}$

- and x y + 1 = 0 is
- d) The area bounded by $y = x (x-1)^2$, x=0 and y = 2 is
- $s)\frac{9}{2}$

19. COLUMN - I

COLUMN - II

A) If
$$f(x) = \begin{cases} \sqrt{\{x^2\}}, & x \notin I \\ 1, & x \in I \end{cases}$$
 and $g(x) = \{x\}^2$

p) $\frac{3}{4}$

Then area bounded by f(x), g(x) for all $x \in [0,10]$ is (where $\{.\}$ represents fractional part of x)

- B) Area of the region defined by $1 \le |x| + |y|$ and
- q) $\frac{7}{6}$

$$x^{2}-2x+1 \le 1-y^{2}$$
 is $k\pi$ where $k=$

C) Area bounded by $f(x) = \min\{x+1, \sqrt{1-x}\},$ x-axis and x = -1, x = 1 is

- r) $\frac{128}{5}$
- D) Area bounded by the curves $y = 2x \pm \sqrt{x^3}$ and x = 4 is
- s) $\frac{10}{2}$

Integer answer type questions

- 20. Area enclosed by the curve y = f(x) defined parametrically as $x = \frac{1 t^2}{1 + t^2}$, $y = \frac{2t}{1 + t^2}$ is equal to $\frac{k\pi}{5}$ sq. units then k is equal to
- 21. Area bounded by $y = \frac{1}{x^2 2x + 2}$ and x-axis is $\frac{n\pi}{2}$ then n is
- 22. The value of the parameter a such that the area bounded by $y = a^2 x^2 + ax + 1$, coordinates axes and the line x = 1 attains its least value, at a = k then 4k + 3 =

- 23. Consider the region formed by the lines x = 0, y = 0, x = 2, y = 2. Area enclosed by the curves $y = e^x$ and $y = \ln x$, within this region, is being removed. Area of the remaining region is $k \log(l/e)$ then k + l is
- 24. The area bounded by $y = \sin^{-1}x$, $y = \cos^{-1}x$ and x-axis is $\sqrt{a} \sqrt{b}$ then a-b value is

Area Bounded By Some Standurd Curves

LEVEL-I (MAIN)

Single answer type questions

1	The area	of the	ropion	hotwoon	v .	12-0	and the	curvo i	- 1	,	V avic i	c
	The area	or the	region	Detween	$\lambda - y$	12-0	and the	cuive A	- V	y ,	1-dAIS I	0

1)
$$\frac{5}{3}$$

2)
$$\frac{10}{3}$$

3)
$$\frac{8}{3}$$

4)
$$\frac{20}{3}$$

2. The area of the region bounded by $y = x^2 + 2$, y = -x, x = 0 and x = 1 is

1)
$$\frac{17}{6}$$

2)
$$\frac{17}{3}$$

3)
$$\frac{10}{3}$$

4)
$$\frac{8}{3}$$

3. The area bounded by the curve y = x |x|, X-axis and the ordinates $x = \pm 1$ is

1)
$$\frac{2}{3}$$

2)
$$\frac{1}{3}$$

3)
$$\frac{4}{3}$$

4)
$$\frac{5}{3}$$

4. The area inside the parabola $5x^2 - y = 0$ but outside the parabola $2x^2 - y + 9 = 0$ is

4)
$$6\sqrt{3}$$

5. The area of the plane region bounded by the curves $x + 2y^2 = 0$ and $x + 3y^2 = 1$ is equal to

1)
$$\frac{5}{3}$$

2)
$$\frac{1}{3}$$

$$3)\frac{2}{3}$$

4)
$$\frac{4}{3}$$

6. The area bounded by the parabolas $y^2 = 4a(x+a)$ and $y^2 = -4a(x-a)$ is

1)
$$\frac{16a^2}{3}$$

$$(2)\frac{8a^2}{3}$$

3)
$$\frac{4a^2}{3}$$

4)
$$\frac{a^2}{3}$$

7. The area bounded by the curves $y^2 = 4x$ and $x^2 = 4y$ in the plane is

$$1)\frac{8}{3}$$

$$(2)\frac{16}{3}$$

$$3)\frac{32}{3}$$

$$(4)\frac{34}{3}$$

8. The area enclosed between the curves $y = ax^2$ and $x = ay^2$ (a > 0) is 1 sq.unit. then a =

1)
$$\frac{1}{\sqrt{3}}$$

2)
$$\frac{2}{\sqrt{3}}$$

3)
$$\frac{4}{\sqrt{3}}$$

$$4)\sqrt{3}$$

9. The smaller area of the region cut off by x + y = 2 from the circle $x^2 + y^2 = 4$ is

1)
$$\pi - 2$$

2)
$$\pi - 4$$

3)
$$2\pi - 4$$

10. The area bounded by the circle $x^2 + y^2 = a^2$, X-axis and the ordinates x = a/2, x = a is

1)
$$a^2 \left(\frac{\pi}{3} - \frac{\sqrt{3}}{4} \right)$$

1)
$$a^2 \left(\frac{\pi}{3} - \frac{\sqrt{3}}{4} \right)$$
 2) $a^2 \left(\frac{\pi}{6} - \frac{\sqrt{3}}{8} \right)$ 3) $\frac{\pi a^2}{4}$

3)
$$\frac{\pi a^2}{4}$$

4)
$$\frac{\pi a^2}{8}$$

AREAS	OBJECTIVE MATHEMATICS II B - Part 2
11. The area enclosed within the ellipse $4x^2 + 9y^2 =$	= 36 is

3) 9π

4) 36π

12. AOB is the positive quadrant of the ellipse $x^2/a^2+y^2/b^2=1$, where OA=a, OB=b. The area between the arc AB and the chord AB of the ellipse is

1) $\frac{\pi ab}{2}$

 $3)\left(\frac{\pi-1}{4}\right)ab$

4) $\left(\frac{\pi-2}{4}\right)$ ab

13. The area bounded by the curves $y = \cos x$ and $y = \sin x$ between the ordinates x = 0 and $x = \frac{3\pi}{2}$ is

1) $4\sqrt{2} + 2$

2) $4\sqrt{2}-1$

3) $4\sqrt{2} + 1$

4) $4\sqrt{2} - 2$

14. The area bounded by $y = \sin x$, $y = \cos x$ between any two successive intersections is

1) 2

3) $2\sqrt{2}$

15. The ratio of the areas bounded by $y = \cos x$, $y = \cos 2x$ between x = 0, $x = \frac{\pi}{3}$ and the X-axis is

2)2:1

3) $\sqrt{3}:4$

4) $2\sqrt{3}:4-\sqrt{3}$

16. The area bounded by $y = \sin x$ and $2x = \pi y$ is

1) $\frac{\pi}{4} - 1$

2) $2 - \frac{\pi}{2}$

3) $\frac{\pi}{4}$

4) 2

17. The area of the greater region bounded by $y = \cos x$, y = x + 1 and y = 0 is

4) 3

18. The area of the smaller region bounded by $y = \cos x$, x + y = 1 and y = 0 is

2) $\frac{3}{2}$

3) 2

4) 3

19. The area between the curve $y = \cos x$ and Y-axis from y = 0 to y = 1 is

1) 1

2) 2

 $4)\pi$

20. The area bounded between the parabola $x^2 = \frac{y}{4}$ and $x^2 = 9y$, and the straight line y = 2 is

1) $20\sqrt{2}$

2) $\frac{10\sqrt{2}}{3}$

3) $\frac{20\sqrt{2}}{2}$

4) $10\sqrt{2}$

Numerical value type questions

21. The area of region $A = \left\{ (x,y) / \frac{y^2}{2} \le x \le y + 4 \right\}$ is

22. The area of region $A = \{(x, y) \in R \times R / 0 \le x \le 3, 0 \le y \le 4, y \le x^2 + 3x \}$ is

23. The area in the first quadrant bounde by $y = x^2 + 1$, the tangent to it at the point (2, 5) and the coordinate axes is

LEVEL-II (ADVANCED)

Single answer type questions

1. The area below the line y = x + 1 and bounded by the curve $x^2 + y^2 - 4x - 6y - 19 = 0$ is

a)
$$\int_{-2}^{6} (x+1+\sqrt{32-(x-2)^2}+3)dx$$

b)
$$\int_{2}^{6} (\sqrt{32-(x-2)^2} + 3(x-1)dx)$$

d)
$$\frac{32\pi}{3}$$

2. The smaller of the areas bounded by the curves $x^2 + y^2 = 4$ and $y^2 = 2(x + 2)$ is

a)
$$\frac{8}{3} + \pi$$

b)
$$\frac{16}{3} + 2\pi$$

c)
$$2\pi - \frac{16}{3}$$
 d) $\pi - \frac{8}{3}$

d)
$$\pi - \frac{8}{3}$$

3. The area of the smaller part of a disc of radius 10 cut off by a chord which subtends at an angle $\frac{\pi}{4}$ at the circumcentre is

a)
$$\frac{25}{4}(\pi + 2\sqrt{2})$$

a)
$$\frac{25}{4}(\pi + 2\sqrt{2})$$
 b) $\frac{25}{2}(\pi + 2\sqrt{2})$ c) $\frac{25}{4}(\pi - 2\sqrt{2})$ d) $\frac{25}{2}(\pi - 2\sqrt{2})$

c)
$$\frac{25}{4}(\pi - 2\sqrt{2})$$

d)
$$\frac{25}{2}(\pi - 2\sqrt{2})$$

4. The area bounded by $y = 2 - x^2$ and $y^3 = x^2$ is

a)
$$\frac{30}{17}$$

b)
$$\frac{16}{15}$$

c)
$$\frac{32}{15}$$

d)
$$\frac{16}{14}$$

5. The area bounded by $y = 2x - 2x^2$ and $y = x \ln x$ is

a)
$$\frac{1}{12}$$

b)
$$\frac{5}{12}$$

c)
$$\frac{17}{12}$$

d)
$$\frac{7}{12}$$

The area in the first quadrant bounded by the curves $x^2 = 2y$, $y^2 = 2x$ and $x^2 + y^2 = 3$ is $a + b \sin^{-1} \frac{1}{3}$, where ab =

b)
$$\frac{1}{2}$$

c)
$$\frac{1}{\sqrt{2}}$$

d)
$$\frac{1}{\sqrt{3}}$$

7. The area of the region $\{(x, y) : 0 \le y \le x^2 + 1, 0 \le y \le x + 1, 0 \le x \le 2\}$ is

a)
$$\frac{11}{6}$$

b)
$$\frac{15}{4}$$

b)
$$\frac{15}{4}$$
 c) $\frac{25}{6}$ d) $\frac{23}{6}$

d)
$$\frac{23}{6}$$

- 8. The area of the closed figure bounded by x = -1, y = 0, $y = x^2 + x + 1$ and the tangent to the curve $y = x^2 + x + 1$ at A(1, 3) is
 - a) 4/3 sq. units
- b) 7/3 sq. units
- c) 7/6 sq. units
- d) 5/2 sq. units
- 9. The area of the region in the first quadrant included between the curves $x^2 + y^2 = 16$ and $\sqrt{|x|} + \sqrt{|y|} = 2$ is

a)
$$\left(4\pi - \frac{8}{3}\right)$$
 sq.units

b)
$$\left(4\pi - \frac{4}{3}\right)$$
 sq. units

c)
$$\left(8\pi - \frac{4}{3}\right)$$
 sq.units

d)
$$8\left(\pi - \frac{1}{3}\right)$$
 sq. units

- 10. Let $f(x) = \min(x+1, \sqrt{1-x})$ for all $x \le 1$. Then the area bounded by y = f(x) and the x-axis is
 - a) $\frac{7}{8}$ sq.units
- b) $\frac{1}{6}$ sq.units c) $\frac{11}{6}$ sq.units d) $\frac{7}{6}$ sq.units
- 11. The area bounded by the curve $y^2 = 1 x$ and the lines $y = \frac{|x|}{r}$, x = -1 & $x = \frac{1}{2}$ is
 - a) $\frac{3}{\sqrt{2}} \frac{11}{6}$

- b) $3\sqrt{2} \frac{11}{4}$ c) $\frac{6}{\sqrt{2}} \frac{11}{5}$ d) $3\sqrt{2} + \frac{11}{4}$
- 12. The area bounded by the curves $y = \sqrt{5 x^2}$ and y = |x 1| is
 - a) $\frac{5\pi-1}{4}$
- b) $\frac{5\pi + 1}{4}$ c) $\frac{5\pi 2}{4}$
- d) $\frac{5\pi-3}{2}$
- 13. Area bounded by the curve $y = \max\{\sin x, \cos x\}$ and x-axis between the lines $x = \frac{\pi}{4}$ and $x = 2\pi$ is equal to
 - a) $\frac{4\sqrt{2}-1}{\sqrt{2}}$
- b) $4\sqrt{2} 1$
- c) $\frac{4\sqrt{2}-1}{2}$
- d) $\frac{4\sqrt{2}+1}{2}$

More than One correct answer Type Questions

- 14. Consider two variable parabolas $y^2 = 4ax$, $x^2 = 4ay$, $a \in [1, 2]$ and A(a) is area bounded by them, then
 - a) A(1) is maximum

b) A(2) is maximum

c) A(1) is minimum

- d) A(2) is minimum
- 15. Area bounded by the parabola $y = x^2 2x + 3$ and tangents drawn to it from the point P(1, 0) is equal to A_1 and the parabola with the chord of contact of P is A_2 then
 - a) $A_1 = 4\sqrt{2}$ sq. units

b) $A_1 = \frac{4\sqrt{2}}{2}$ sq. units

c) $A_2 = \frac{8\sqrt{2}}{2}$ sq. units

- d) $A_2 = \frac{16}{2}\sqrt{2}$ sq. units
- 16. The area of the region containing the origin which is bounded by the curves $x^2 + y^2 = 5$ and ||x| |y|| = 1 is
 - a) $10\pi + 4 20 \tan^{-1} 3$

b) $20 - 5 \tan^{-1} 2$

c) $4 + 10\pi - 20 \cot^{-1} 1/3$

- d) $4 + 20 \cot^{-1} 3$
- 17. Let A be the area bounded by the curve $x = at^2$, y = 2at and the x-axis then $A = at^2$
 - a) 296/3 for 3 < t < 4, a = 1

b) 46 for 3 < t < 4, a = 1

c) $\frac{26a^2}{3}$ for 1 < t < 3

- d) $\frac{4}{3}\sqrt{a}((9a)^{3/2} a^{3/2})$ for 1 < t < 3
- 18. If the area bounded by $y = x^2 + 2x 3$ and the y = kx + 1 is the least and is equal to A, then
 - a) $k = \frac{3}{2}$
- b) k = 2
- c) $A = \frac{32}{2}$
- d) $A = \frac{27}{3}$

19. If A is the area of the figure bounded by the curve $y = 8x^2 - x^5$, the straight lines x = 1, x = c and

a)
$$c = -1$$
 if $A = \frac{16}{3}$

b)
$$c = 0$$
 if $A = \frac{16}{3}$

c)
$$c = 3 \text{ if } A = \frac{49}{6}$$

d) c = 2 if
$$A = \frac{49}{6}$$

20. Let A_n be the area bounded by the curve $y = \tan^n x$ and the lines x = 0, y = 0 and $x = \frac{\pi}{4}$. Then

a)
$$A_n \in \left(\frac{1}{2n+2}, \frac{1}{2n-2}\right)$$

b)
$$A_n = \frac{\pi}{4} + \frac{2}{3}$$

c)
$$A_n = \frac{\pi}{4} - \frac{2}{3}$$

d)
$$A_n \in \left(\frac{1}{8}, \frac{1}{4}\right)$$

Linked comprehension type questions

Passage - I:

Let y = f(x) satisfy the relation $xy = x + y + 1, x \in R - \{1\}$ and g(x) = xf(x)

21. The range of g(x) has

a) a maximum

b) a minimum

c) both a max. and a min.

d) neither max. nor min.

22. The function y = g(x) is

a) convex in (1,∞)

b) convex in $(-\infty,0)$ only

c) convex in $(0, \infty)$

d) concave in (1,∞)

23. The area bounded by the curve y = g(x) and x-axis is

a)
$$\frac{3}{2} + \ln 4$$

b)
$$\frac{3}{2} - \ln 4$$

a)
$$\frac{3}{2} + \ln 4$$
 b) $\frac{3}{2} - \ln 4$ c) $\frac{1}{2} + \ln 4$

d) ln4 - 1

Matrix matching type questions

COLUMN - I 24.

COLUMN - II

A) Area of the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{4} = 1$$
 is

p)
$$\frac{\Pi a^2}{2}$$
 Sq. units

B) Area bounded by the curve $x^2+y^2=2ax$ is

q) $(\Pi - 2)a^2$ s.u

C) Area bounded by the curve $xy^2=a^2(a-x)$ and y - axis

r) 2a∏ S.u

D) Area bounded by $x^2+y^2 \le a^2$, $|x|+|y| \ge a$

s) Πa^2 S.u

25. Match Column I with Column II

COLUMN - I

COLUMN - II

A) Area of the region enclosed by the curve $x^2 + 4y^2 - 6x + 8y + 9 = 0$ is

p) 4π

B) Area of the region enclosed by the curve $x^2 + xy + y^2 = 1$ is q) $2\sqrt{3}\pi$

C) Area of the region inside the curves $\frac{x^2}{9} + \frac{y^2}{3} = 1$ and $\frac{x^2}{3} + \frac{y^2}{9} = 1$ is r) 2π

D) Area of the region bounded by the curve

s) $\frac{2\pi}{\sqrt{3}}$

 $y = x \sin x$ and the x-axis between the lines $x = 0, x = 2\pi$

Integer answer type questions

- **26.** The area of the ellipse $x^2 + 4y^2 6x + 8y + 9 = 0$ is " $k\pi$ " then k = 0
- 27. The area of the closed figure bounded by the curves $y = \sqrt{x}$, $y = \sqrt{4-3x}$ and y = 0 is a/b then 2a-b = 0
- 28. The area bounded by the parabola $x^2 = 4y$ and the focal chord through the point (-2,1) is a/b then a b is
- 29. Consider two curves $C_1: y^2 = 4[\sqrt{y}]x$ and $C_2: x^2 = 4[\sqrt{x}]y$, where [.] denotes the greatest integer function. The area of region enclosed by these two curves within the square formed by the lines x = 1, y = 1, x = 4, y = 4 is l then 3l 11 is
- 30. If the area bounded by the curves $x^2 = y$, $x^2 = -y$ and $y^2 = 4x 3$ is $\frac{m}{n}$, where m, n are relatively prime positive integers, then m + n is
- 31. The area bounded by the curves $y = -x^2 + 6x 5$, $y = -x^2 + 4x 3$ and the straight line y = 3x 15 is $\frac{a}{b}$ (G.C.D of a and b is 1). Then the value of a 12 b is

Miscellaneous Models

LEVEL-I (MAIN)

Single answer type questions

1. The area of the region enclosed by the curves $y = x^2$ and $y=x^3$ is

1) $\frac{1}{12}$

2) $\frac{1}{6}$

- 3) $\frac{1}{3}$
- 4) 1

	THE RESERVE OF THE PERSON NAMED IN COLUMN			The second second
BJECTIVE	E MATHEM.	ATICS II B	- Part 2	

AREAS

The area bounded by the curve $x^{2/3} + y^{2/3} = a^{2/3}$ and $\overline{OX}, \overline{OY}$ is

1)	πa^2
1)	32

2)
$$\frac{3\pi a^2}{32}$$
 3) $\frac{5\pi a^2}{32}$

3)
$$\frac{5\pi a^2}{32}$$

4)
$$\frac{3\pi a^2}{16}$$

3. The area of the region bounded by the curves $y = ex \log x$ and $y = \frac{\log x}{ex}$ is

1)
$$\frac{e}{4} - \frac{5}{4e}$$

$$(2)\frac{e}{4} + \frac{5}{4e}$$

3)
$$\frac{e}{3} - \frac{5}{4e}$$

4) 5e

The area bounded by |x| + |y| = 1 with the coordinate axes is

1)
$$\frac{1}{2}$$

3)
$$\frac{1}{4}$$

4) 2

5. The area of the region $R = \{(x, y)/x^2 \le y \le x\}$ is

$$1)\frac{1}{6}$$

2)
$$\frac{2}{3}$$

$$3)\frac{4}{3}$$

4) 2

6. If the regions A and B are given by $A = \{(x,y) \mid y>x\}$ $B = \{(x,y) \mid y<2-x^2\}$ then the area of $A \cap B$ is

1)
$$\frac{1}{3}$$

2)
$$\frac{9}{2}$$

3)
$$\frac{2}{5}$$

4) $\frac{3}{4}$

7. The area bounded by the curve $y^2(2a-x) = x^3$ and the line x = 2a is

2)
$$\frac{3\pi a^2}{2}$$

3)
$$\frac{3\pi a^2}{4}$$

The area of the region bounded by the parabola $(y-2)^2 = x - 1$, the tangent to the parabola at the point (2,3) and the x-axis is:

The area of the region bounded by the curve $y = \tan x$ tangent drawn to the curve at $x = \frac{\pi}{4}$ and the

1)
$$\log 2 - \frac{1}{4}$$

2)
$$\frac{1}{2}\log 2 - \frac{1}{4}$$

4) 4

10. The area bounded by the X-axis, the curve y = f(x) and the lines x = 1 and x = b is equal to $\sqrt{b^2 + 1} - \sqrt{2}$ for all b > 1 then f(x) is

1)
$$\sqrt{x^2 + 1}$$

2)
$$\sqrt{x+1}$$

3)
$$\frac{x}{\sqrt{x^2+1}}$$

3)
$$\frac{x}{\sqrt{x^2 + 1}}$$
 4) $\frac{x^2}{\sqrt{x^2 + 1}}$

Numerical value type questions

11. Area of region $A = \{(x,y)/0 \le x | x | +1, -1 \le x \le 1\}$ is

12. Area enclosed by the curve y = f(x) defined parametrically as $x = \frac{1+t^2}{1+t^2}$, $y = \frac{2t}{1+t^2}$ is equal to $\frac{K\pi}{5}$. Then K value = \dots .

13. Area of region defined by $1 \le |x| + |y|$ and $x^2 - 2x + 1 \le 1 - y^2$ is $K\pi = \dots$

LEVEL-II (ADVANCED)

Single answer type questions

- 1. Let f(x) be a non negative continuous function such that area bounded by the curve y = f(x), the x-axis and the ordinates x = 1 and x = b > 1 is $(b - 1) \sin(3b + 4)$ then f(0) =
 - a) 0

- c) sin 4 3cos 4
- d) $\cos 4 + 3 \sin 4$
- 2. The area bounded by the curve $y = e^{-x^2}$, y = 0 and the maximum ordinate is
 - a) $\frac{1}{2}$

- b) $\frac{1}{2\sqrt{e}}$ c) $\frac{1}{2}(1-\frac{1}{e})$ d) $\frac{1}{2}(1-\frac{1}{e})$
- 3. The area bounded by $y = \frac{\sin x}{x}$, x axis and the ordinates x = 0, $x = \frac{\pi}{4}$ is

- b) $\leq \frac{\pi}{4}$
- $c) > \frac{\pi}{4}$
- d) $< \int_{x}^{\pi/4} \frac{\tan x}{x}$
- 4. For any real number t, $x = \cosh t$, $y = \sinh t$ is a point on the hyperbola $x^2 y^2 = 1$. The area bounded by the curve and the lines joining the points t and -t to the origin is

- d) sinht
- 5. Area bounded by $y = \left[\sin^2\frac{x}{2} + \sqrt{\cos\frac{x}{2}}\right]$ and $y = \left|\sin x \frac{1}{2}\right|$. x = 0, $x = \pi$ (where [.] represents GIF is
 - a) $\frac{1}{6}[7\pi + 12(1-\sqrt{3})]$ b) $7\pi + 12(1-\sqrt{3})$ c) $\frac{\pi}{2} + 1 \sqrt{3}$ d) $\frac{\pi}{2} + 1 + \sqrt{3}$

More than one correct answer type questions

- A curve y = f(x) is defined parametrically as $x = \frac{1-t^2}{1+t^2}$, $y = \frac{2t}{1+t^2}$ then
 - a) Area bounded by y = f(x) is π sq. units
 - b) Area bounded by y = f(x) with normal at any point on it is $\pi/2$ sq. units
 - c) Area (smaller area) bounded by y = f(x) and the lines $y = \sqrt{3}x$, y = 0 is $\frac{\pi}{3}$ sq.units
 - d) Area bounded by y = f(x) and the lines $y = \sqrt{3}x$, y = 0 is $\frac{\pi}{6}$ sq. units
- 7. The area enclosed by the curves $x = a\sin^3 t$ and $x = a\sin^3 t$ $y = a\cos^3 t$ is equal to
 - a) $12a^2 \int_0^{\pi/2} \cos^4 t \sin^2 t dt$

 $b)12a\int_{0}^{\pi/2}\cos^{2}t\sin^{4}t\,dt$

c) $2\int_{a}^{a} (a^{2/3} - x^{2/3})^{3/2} dx$

d) $4\int_{0}^{a} (a^{2/3} - x^{2/3})^{3/2} dx$

OBJECTIVE MATHEMATICS II B - Part 2 *** ** AREAS

8. If $f(x) = \begin{cases} \sqrt{\{x\}}, & x \notin \mathbb{Z} \\ 1, & x \in \mathbb{Z} \end{cases}$ and $g(x) = \{x\}^2$, (where $\{.\}$ dentoes fractional part of x). Let R be the region bounded by f(x) and g(x) then

- a) Area of one leaf in R is $\frac{1}{3}$ sq.unit
- b) Area of the region R for $x \in [0,10]$ is $\frac{10}{3}$ sq.unit
- c) Area of the rectangle formed by the lines x = 0, x = 5, y = 0, y = 1 excluding R is $\frac{10}{3}$ sq.unit
- d) Area of the rectangle formed by the lines x = 0, x = 5, y = 0, y = 1 excluding R is $\frac{5}{3}$ sq.unit

Consider the curves C_1 : $y = \sin^{-1} |\sin x|$ and C_2 : $y = (\sin^{-1} |\sin x|)^2$, $0 \le x \le 2\pi$ then

- a) Area bounded by C_1 with x-axis is $\frac{\pi^2}{2}$ sq.unit
- b) Area enclosed in between C_1 and C_2 is $\left(\frac{\pi^3}{6} \frac{\pi^2}{2} + \frac{4}{3}\right)$ sq.unit
- c) The graph of C_1 and C_2 intersect on x-axis at $\frac{\pi^2}{2}$, $\frac{3\pi}{2}$
- d) The graph of C_1 and C_2 meets the y-axis at only one point

10. If Δ is the area of the triangle formed by the tangent to the curve $f(x) = x^2 + bx - b$ at the point (1,1) and the coordinate axes, lies in the first quadrent, then

a)
$$b = -3$$
 if $\Delta = 2$

b)
$$b = -2$$
 if $\Delta = 1$

c)
$$b = 1$$
 if $\Delta = 5$

b)
$$b = -2$$
 if $\Delta = 1$ c) $b = 1$ if $\Delta = 5$ d) $b = -4$ or $-\frac{5}{2}$ if $\Delta = \frac{9}{4}$

11. The ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is divided into 2 parts by the line x = 2a. The area of the smaller part is $\Delta(a,b)$. Then

a)
$$\Delta(a,b) = \left(\frac{\pi}{3} - \frac{\sqrt{3}}{4}\right)ab$$

b)
$$\Delta(a,b) = \left(\frac{\pi}{3} + \frac{\sqrt{3}}{2}\right)ab$$

c)
$$\Delta(4,3) = 4\pi - 3\sqrt{3}$$

d)
$$\Delta(3,2) = 4\pi - 3\sqrt{3}$$

12. Let A_n be the area bounded by the curve $y = \tan^n x$ and the lines x = 0, y = 0 and $x = \frac{\pi}{4}$. Then

a)
$$A_n \in \left(\frac{1}{2n+2}, \frac{1}{2n-2}\right)$$
 b) $A_n = \frac{\pi}{4} + \frac{2}{3}$ c) $A_n = \frac{\pi}{4} - \frac{2}{3}$ d) $A_n \in \left(\frac{1}{8}, \frac{1}{4}\right)$

c)
$$A_n = \frac{\pi}{4} - \frac{2}{3}$$

d)
$$A_n \in \left(\frac{1}{8}, \frac{1}{4}\right)$$

Linked comprehension type questions

Passage - I:

Consider the function f(x) such that $f(x) = x^2 + \int_0^1 (x+t)f(t)dt$

13. The minimum value of f(x) is

a)
$$\frac{-109}{3}$$

b)
$$\frac{-109}{6}$$

c)
$$\frac{-109}{12}$$

d)
$$\frac{-15}{2}$$

14. The area bounded by the x-axis, the tangent and normal at x = 0 on the curve y = f(x) is

a)
$$\frac{3757}{60}$$

b)
$$\frac{3757}{90}$$

c)
$$\frac{3757}{180}$$

d)
$$\frac{3757}{120}$$

15. The area bounded by the curve y = f(x) and the x-axis is

a)
$$\frac{341}{3}\sqrt{109}$$

b)
$$\frac{109}{18}\sqrt{\frac{109}{3}}$$
 c) $341\sqrt{\frac{109}{3}}$

c)
$$341\sqrt{\frac{109}{3}}$$

d)
$$\frac{109}{9}\sqrt{\frac{109}{3}}$$

Passage-II:

Consider the function f(x), a fourth degree polynomial such that $\lim_{x\to 1} \frac{f(x)}{(x-1)^2} = 1$, $f^I(0) = -6$, $f^{I}(2) = 6$

16. The minimum value of f(x) is

$$c) -1$$

17. The length of the subtangent of the curve y=f(x) where it cuts y-axis is

b)
$$\frac{1}{2}$$

c)
$$\frac{1}{3}$$

d)
$$\frac{1}{4}$$

18. The area bounded by the curve y = f(x) and the coordinate axes is

a)
$$\frac{3}{5}$$

b)
$$\frac{4}{18}$$

c)
$$\frac{7}{15}$$

d)
$$\frac{8}{15}$$

Matrix matching type questions

19. COLUMN - I COLUMN - II

A) Area bounded by $|x| - |y| \ge 1$ and $|x| \le 2$ is

- p) $\frac{1}{2}$
- B) If $b \in [0,3]$ then the maximum area that can be bounded by
- q) $\frac{1}{3}$

the curves y=1-|x-1| and y=|x-b| is

- C) Let $f(x) = \min{\{\sqrt{x(2-x)}, 2-x\}}$. Then area bounded by
- r) 2

$$y = f(x)$$
, x-axis is $\frac{\pi}{4} + K$, where K =

D) Area bounded by $y = \max\{|x-2|+2,3-|x-2|\}$

s) 1

and
$$y = \min\{|x-2|+2,3-|x-2|\}$$
 is

Integer answer type questions

- 20. Let O(0,0) A(2,0) and $B\left(1,\frac{1}{\sqrt{3}}\right)$ be the vertices of a triangle. Let R be the region consisting of all those points P inside $\triangle OAB$ which satisfy $d(P,OA) \le \min \{d((P,OB),d(P,AB))\}$, when 'd' denotes the distance from the point to the corresponding line. Then the area of the region R is $\sqrt{a} \sqrt{b}$ then a+b=
- 21. Let f(x) be a non-negative continuous function such that the area bounded by the curve y = f(x), x-axis and the ordinates $x = \frac{\pi}{4}$, $x = \beta > \frac{\pi}{4}$ is $\left(\beta \sin \beta + \frac{\pi}{4} \cos \beta + 2\beta\right)$ then $f(0) = \beta$
- 22. The value of the parameter a such that the area bounded by $y = a^2 x^2 + ax + 1$, coordinates axes and the line x = 1 attains its least value, at a = k then 4k + 3 =
- 23. If, $y = \frac{x^2 + 3x + 2}{x^2 3x + 2}$ then the area of the bounded region between the curve and x-axis is $a(\log b \log c) 1$ then a b + c is
- 24. The area defined by $1 \le |x-2| + |y+1| \le 2$ is
- 25. The area of the curve $xy^2 = 8 4x$ and its asymptote is $k\pi$ then the numerical value of k must be
- 26. Let $f(x) = x^3 + 3x + 2$ and g(x) be the inverse of f(x). The area bounded by y = g(x), x-axis and the ordinates x = -2 and x = 6 is K, then [K +1] is ([.] denotes GIF
- 27. The area of the region bounded by the curve $y = x^2$ and $y = \sec^{-1}[-\sin^2 x]$, where [.] denotes the greatest integer function, is $\frac{k\pi^{3/2}}{3}$ then k is

•	KEY SI	HEET (PF	RACTICE	SHEE	T) •:•		
		EXER	CISE-I				
1) 3	2) 1	3) 3	4) 4	5) 4	6) 2	7) 3	8) 3
9) 1	10) 2	11) 27	12) 10.5	13) 3.8	333	14) 24	15) 6
1) c	2) d	3) b	4) c	5) b	6) d	7) a	8) d
9) d	10) c	11) abc	12) bd	13) abo	cd 14) bcd	15) d	16) d
17) a	18) A-	q;B-p;C-s;	D-r	19) A- I	r;B-s;C-p;D)-р	20) 5
21) 2	22) 0	23) 6	24) 1				
	1) 3 9) 1 1) c 9) d 17) a	1) 3 2) 1 9) 1 10) 2 1) c 2) d 9) d 10) c 17) a 18) A-	1) 3 2) 1 3) 3 9) 1 10) 2 11) 27 1) c 2) d 3) b 9) d 10) c 11) abc 17) a 18) A-q;B-p;C-s;	EXERCISE-I 1) 3 2) 1 3) 3 4) 4 9) 1 10) 2 11) 27 12) 10.5 1) c 2) d 3) b 4) c 9) d 10) c 11) abc 12) bd 17) a 18) A-q;B-p;C-s;D-r	EXERCISE-I 1) 3 2) 1 3) 3 4) 4 5) 4 9) 1 10) 2 11) 27 12) 10.5 13) 3.8 1) c 2) d 3) b 4) c 5) b 9) d 10) c 11) abc 12) bd 13) abc 17) a 18) A-q;B-p;C-s;D-r 19) A-r	1) 3 2) 1 3) 3 4) 4 5) 4 6) 2 9) 1 10) 2 11) 27 12) 10.5 13) 3.8333 1) c 2) d 3) b 4) c 5) b 6) d 9) d 10) c 11) abc 12) bd 13) abcd 14) bcd 17) a 18) A-q;B-p;C-s;D-r 19) A-r;B-s;C-p;E	EXERCISE-I 1) 3 2) 1 3) 3 4) 4 5) 4 6) 2 7) 3 9) 1 10) 2 11) 27 12) 10.5 13) 3.8333 14) 24 1) c 2) d 3) b 4) c 5) b 6) d 7) a 9) d 10) c 11) abc 12) bd 13) abcd 14) bcd 15) d 17) a 18) A-q;B-p;C-s;D-r 19) A-r;B-s;C-p;D-p

AREAS				•••••• ОВ	JECTIVE	MATHEN	MATICS	I B - Part 2
			EXER	CISE-II				
LEVEL-I	1) 2	2) 1	3) 1	4) 2	5) 4	6) 1	7) 2	8) 1
	9) 1	10) 1	11) 2	12) 4	13) 4	14) 3	15) 4	16) 2
	17) 2	18) 1	19) 1	20) 3	21) 18	22) 7.83	3 23) 1.54	1
LEVEL-II	1) c	2) c	3) d	4) c	5) d	6) c	7) d	8) c
200	9) a	10) d	11) a	12) c	13) a	14) bc	15) bc	16) acd
	17) ad	18) bc	19) ad	20) acd	21) c	22) d	23) b	
	24) A-r ;	B-s;C-s;	D-q	25) A-r ;	B-s;C-q;I	О-р	26) 2	27) 7
	28) 5	29) 0	30) 4	31) 1				
			EXER	CISE-III				
LEVEL-I	1) 1	2) 2	3) 4	4) 1	5) 2	6) 1	7) 1	8) 4
	9) 2	10) 3	11) 2	12) 5	13) 3.33			
LEVEL-II	1) c	2) c	3) b	4) a	5) a	6) abc	7) acd	8) abc
	9) abd	10) ab	11) ac	12) acd	13) c	14) c	15) b	16) a
	17) c	18) d	19) A- q	;B-p;C-s;	D-p	20) 7	21) 2	22) 0
	23) 1	24) 6	25) 4	26) 2	27) 4			

LEVEL-I (MAIN)

Single answer type questions

- 1. The area of the parallelogram formed by the lines 4y-3x-a=0, 3y-4x+a=0, 4y-3x-3a=0, 3y-4x+2a=0 is

 1) $a^2/5$ 2) $a^2/7$ 3) $2a^2/7$ 4) $2a^2/9$
- 2. Area bounded by $y = \{x\}$, $\{.\}$ is fractional part of function and $x = \pm 1$ is in sq.units.
 - 1) 1

- 2) 2
- 3) 3

- 4) 4
- 3. The area bounded by tangent, normal and x-axis at P(2,4) to the curve $y = x^2$ is
 - 1) 34

- 2) 32
- 3) 36
- 4) 24
- 4. The area of the region between the curve $y = 4x^2$ and the line y = 6x 2 is in sq. units is
 - 1) $\frac{1}{9}$
- 2) $\frac{1}{12}$
- 3) $\frac{3}{2}$
- 4) $\frac{1}{5}$

ОВ	JECTIVE MATHEMA	TICS II B - Part 2		*** ** AREAS
5.	Area bounded by $f(x)$	$= \max(\sin x, \cos x) \ \forall \ 0$	$\leq x \leq \frac{\pi}{2}$ and the co-ordinary	ate axis is equal to
	1) $\frac{1}{\sqrt{2}}$ sq.units		3) 2sq.untis	4) 1sq.unit
6.	The area bounded by	the curve $y = c^2x^2$, y-axis	s and the lines $y = a$. $y =$	b in sq. units is
	1) $\frac{2}{3c}(b^{3/2}-a^{3/2})$	2) $\frac{3}{3c}(b^{3/2}-a^{3/2})$	3) $\frac{3}{4c}(b^{3/2}-a^{3/2})$	4) $\frac{3}{4c}(b^{3/2}+a^{3/2})$
7.	The area of the regio	n formed by the curve	$\sqrt{x} + \sqrt{y} = \sqrt{4}$ between co-	-ordinate axes
	1) $\frac{4}{3}$	2) $\frac{8}{3}$	3) $\frac{16}{3}$	4) $\frac{5}{3}$
8.	Let A be the area bou	anded by the curve y = (ta	an x) ^a and lines $x = 0$, $y =$	0 and $x = \frac{\pi}{4}$ for $n > 2$, then
	$A_n + A_{n-2} =$			4
	$1) \ \frac{1}{n+1}$	2) $\frac{1}{n-1}$	3) $\frac{2}{n+1}$	4) $\frac{2}{n-1}$
9.	The plane $\frac{x}{2} + \frac{y}{3} + \frac{z}{1}$	= 1 meet the co-ordinate	axis at the points A,B,	C respectively then the area
	bounded by the triang	gle ABC in squnits is		
	1) 6	2) $\frac{9}{2}$	3) $\frac{5}{2}$	4) $\frac{7}{2}$
10.		$y = x^4 - 2x^3 + x^2 + 3$, ax he function $y = f(x)$ is	is of abscissa and two or	dinates corresponding to two
	1)1/30	2) 1/10	3) 91//30	4) 3
11.	The area enclosed bet points of intersection		$x, y = \cos^2 x \text{ in } 0 < x < \pi \text{ a}$	nd between their consecutive
	1) 2	2) 1	3) 4	4) 3
12.	Points (0, 4) (2, 2)	and $(4, 0)$ with $g(x)$	< f(x) for $0 < x < 2$ and	$\operatorname{ind} f(x) < g(x) \text{ for } 2 < x < 4.$
	$\int\limits_0^4 f(x) - g(x) dx = 10$	and $\int_{2}^{4} (g(x) - f(x))dx = 5$	then, area between two co	urves $y=f(x)$ and $y=g(x)$ for 0
	< x < 2 is, (in sq.	units)		
	1) 5	2) 10	3) 15	4) 20
13.	Area bounded by the	curve $y = (x+1)^2$ and $f($	x) is a differential functi	on such that $f(x+1)+f(z-1) =$

13. Area bounded by the curve $y = (x+1)^2$ and f(x) is a differential function such that f(x+1)+f(z-1) = f(x+z) for all real x,z and f(0) = 0 and f'(0) = 4 is (in sq. units)

1) 32/3 2) 16/3 3) 8/3 4) 28/3

14. The triangle formed by the tangent drawn to the curve $f(x) = ax^2 + (\sin^2 \alpha)x - b$, $(b \ne 0)$ at point (1,0) and coordinate axes lies in the first quadrant. If its area is 4 then the minimum value of a is $(a + b) = (a + b) + (b \ne 0)$ at point $(a + b) = (a + b) + (b \ne 0)$ at point $(a + b) = (a + b) + (b \ne 0)$ at point $(a + b) = (a + b) + (b \ne 0)$ at point $(a + b) = (a + b) + (b \ne 0)$ at point $(a + b) = (a + b) + (b \ne 0)$ at point $(a + b) = (a + b) + (b \ne 0)$ at point $(a + b) = (a + b) + (b \ne 0)$ at point $(a + b) = (a + b) + (b \ne 0)$ at point $(a + b) = (a + b) + (b \ne 0)$ at point $(a + b) = (a + b) + (b \ne 0)$ at point $(a + b) = (a + b) + (b \ne 0)$ at point (a + b) = (a + b) + (a +

AREAS	•••••

- 15. Area bounded by $y = e^{-x}$ and $y = e^{x}$ and the directrix of the conic $y^{2} 4x 4y + 12 = 0$ is (in sq. units)
 - 1) $\frac{1}{2} \sum_{r=1}^{\infty} \frac{1}{(2r)!}$ 2) $\sum_{r=0}^{\infty} \frac{1}{(2r)!}$ 3) $\sum_{r=1}^{\infty} \frac{1}{(2r)!}$

- 4) $2\sum_{r=1}^{\infty} \frac{1}{(2r)!}$
- 16. The area enclosed by $\left[\frac{|3x+4y|}{5}\right] + \left[\frac{|4x-3y|}{5}\right] = 3$ is (where [.] denotes the G.I.F)
 - 1) 10
- 2) 12

4) 16

LEVEL-II

LECTURE SHEET (ADVANCED)

Single answer type questions

- 1. The function $f(x) = \max \{x^2, (1-x)^2, 2x(1-x) \forall 0 \le x \le 1\}$ then area of the region bounded by the curve y = f(x), x-axis and x = 0, x = 1 is equals.
 - a) 27/17
- b) 17/27
- c) 18/17
- d) 19/17
- The area bounded by the curves $y = \left[\frac{x^2}{64} + 2\right] \forall x \in (-8, 8), y = x 1 \text{ and co-ordinae axes where [.] is}$ g.i.f
 - a) 2

b) 4

c) 3

- d) 1
- 3. The aea bounded by parabola $y = (x + 1)^2$ and $y = (x 1)^2$ and the line is y = 1/4 is
 - a) 4 sq.units
- b) 1/6 sq.units
- c) 4/3 sq.units
- d) 1/3sq.units
- The area bounded by $y = x^2 y = [x + 1]$, $x \le 1$ and the y-axis is where [.] is g.i.f
 - a) $\frac{1}{2}$
- b) $\frac{2}{3}$
- c) 1

- d) $\frac{7}{2}$
- 5. If A_1 and A_2 respectively represents the area bounded by the curves $f(x,y): 4x^2 \le y \le 3x$ and $g(x, y): 4x^2 \le y \le |3x|$ the A₁: A₂ equals.
 - a) 2:1
- b) 3:1
- c) 1:2
- d) 1:3
- Maximum area of rectangle whose two vertices lies on the x-axis and two on the curve $y=3-|x|, \forall |x|<3.$

- b) 9/4
- c) 3

d) 9/2

- 7. The area bounded by the curve |x+y| + |x-y| = 1 is
- b) 1

- d) 4
- 8. The area bounded by the curve $y^2(2-x) = x^3$ and its asymptote is

- d) 3π

OBJECTIVE MATHEMATICS II B - Part 2 + ++++

·i··i· AREAS

9. The area bounded by the curves is $\sqrt{|x|} + \sqrt{|y|} = \sqrt{a}$ and $x^2 + y^2 = a^2$ (where a > 0) is

a)
$$\left(\pi - \frac{2}{3}\right)a^2$$
 sq.units b) $\left(\pi + \frac{2}{3}\right)a^2$ c) $\left(\pi + \frac{2}{3}\right)a^3$ sq.units d) $\left(\pi - \frac{2}{3}\right)a^3$ sq.units

c)
$$\left(\pi + \frac{2}{3}\right)a^3$$
 sq.units

d)
$$\left(\pi - \frac{2}{3}\right)a^3$$
 sq.units

More than one correct answer type questions

10. If the area enclosed by $y^2 = 4ax$ and line y = ax is $\frac{1}{3}$ sq. unit, then the roots of the equation

$$x^2 + 2x = a \text{ are}$$

b) 2

c) -2

d) 8

11. The value (s) of 'a' for which the area of the triangle included between the axes and any tangent to the curve is constant, is/are

a) -1/2

b) -1

c) 1/2

12. Area of the region bounded by the curve $y = 25^x + 16$ and curve y = b. $5^x + 4$ whose rangent at the point x = 1, makes an angle $tan^{-1}(40 \log 5)$ with the x-axis is (in sq. units)

a)
$$2\log_5\left(\frac{e^4}{27}\right)$$

a) $2\log_5\left(\frac{e^4}{27}\right)$ b) $4\log_5\left(\frac{e^4}{27}\right)$ c) $3\log_5\left(\frac{e^4}{27}\right)$

d) None of these

Linked comprehension type questions

Passage - I:

A continuous function f(x) satisfying $x^4 - 4x^2 < f(x) < 2x^2 - x^3$ for all $x \in [0, 2]$, such that the each bounded by y = f(x), $y = x^4 - 4x^2$, they y-axis and the line x = t(0 < t < 2) is k times the area bounded by y = f(x), $y = 2x^2 - x^3$, y-axis and the line x = t (0 < t < 2). Answer the following

13. If k = 2, then if f(x) attains point of inflection at

b) $\sqrt{2}$

c) $-\sqrt{2}$

d) None of these

14. If k = 0, then f(x) attains local maximum at

c) $-\sqrt{2}$

d) None of these

15. The value of $\int_{0}^{1} f(x) dx$ is

a)
$$\frac{2}{15(k+1)}(23-10k)$$

a) $\frac{2}{15(k+1)}(23-10k)$ b) $\frac{2}{15(k+1)}(23+10k)$ c) $\frac{2}{15(k+1)}(10k-17)$ d) $\frac{2}{15(k+1)}(10k+17)$

Passage - II:

Let f(x) be a differentiable function satisfying the condition $f\left(\frac{x}{y}\right) = \frac{f(x)}{f(y)}, y \neq 0, f(y) = 0$ for all $x, y \in R$ and f'(I) = 2. Answer the following questions.

16. The area enclosed by the curves y = f(x), $x^2 + y^2 = 2$ and x-axis, is (in sq. units)

a) π/4

b) 1/6

c) $\left(\frac{\pi}{4} - \frac{1}{6}\right)$ d) $\left(\frac{\pi}{2} - \frac{1}{3}\right)$

AF	REAS		OBJECTIVI	OBJECTIVE MATHEMATICS II B - Part			
17.	The area enclos	sed by the curves $y = f(x)$	and $y^2 = -x$, is (in sq. un	nits)			
	a) 1/3	b) -4/3	c) 3/4	d) None of these			

a) $\frac{69}{6}$ b) $\frac{9-\ln 16}{\ln 8}$ c) $\frac{1}{6}$ d) $\frac{12-\ln 256}{\ln 8}$

Matrix matching type questions

COLUMN - II
A) The area between the curves y = 2x⁴-x², the x-axis and the ordinates of two minimum of the curve is
B) The area bounded by the curve x = at², y=2at and the x-axis (1 < t < 3) is
C) The area of a circle centred at (1, 2) and passing through (4, 6) is
D) The area of the curve bounded by y = cosx, s) 25π

Integer answer type questions

20. The Area bounded by loop of $|y| = \sin x$ for $0 < x < \pi$, is _____.

y = 0 |x| = 1 is given by

- 21. If area bounded by y = f(x), y-axis and the line $2y = \pi(x+1)$ where $f(x) = \sin^{-1} x + \cos^{-1} x + \tan^{-1} x + \tan^{-1} \left(\frac{1}{x}\right)$ is $\frac{\pi}{k}$ where $k = \underline{\hspace{1cm}}$
- 22. If A(n) represents the area bounded by the curve $y = n \log x$, $n \in N$ and n > 1, the x-axis and the lines x = 1, x = e then the value of A(n) + n(A)(n-1) is kn^2 where $k = \underline{\hspace{1cm}}$
- 23. Area bounded by $y = [\cos A + \cos B + \cos C]$ and $y = \left[7\sin\frac{4}{2}\sin\frac{B}{2}\sin\frac{C}{2}\right]$ and |x-4|+|y|=2 (where [.] greatest integer function), and A, B, C are angles of a tgriangle is ______.

PRACTICE SHEET (ADVANCED)

Single answer type questions

- 1. The area of the region bounded by the curve $y = x^3$ and y = x + 6 and x = 0a) 20 b) 30 c) 10 d) 40
- 2. The area under the curve $y = 2\sqrt{x}$ included between the lines x = 0 and x = 1.
- a) $\frac{4}{3}$ b) $\frac{3}{4}$ c) $\frac{1}{3}$ d) $\frac{1}{4}$

AREAS

- Area of the region $\{(x,y): y^2 \le 6ax \text{ and } x^2 + y^2 \le 16a^2\}$ is
 - a) a2
- b) $\sqrt{3} + 4\pi$
- c) $\frac{2}{3}a^2$
- d) $\frac{4}{3}a^2(\sqrt{3}+4\pi)$

- Area of the region y=1+|x+1|, x=-3, x=3 y=0 is

- d) 2
- The area of the region bounded by the curve $y = \sqrt{16 x^2}$ and x-axis is
 - a) 8π sq.units
- b) 20π sq.units
- c) 16 n sq.units
- d) 256π sq.units
- 6. Area of the region bounded by the curves $y = \frac{16 x^2}{4}$ and $y = \sec^{-1} \left[-\sin^2 \pi \right]$, (where [.] denotes greatest integer function) is (in sq. units)
 - a) $\frac{8}{2}(4-\pi)^{\frac{3}{2}}$
- b) $2(4-\pi)^{\frac{3}{2}}$ c) $3(4-\pi)^{\frac{3}{2}}$
- d) $\frac{7}{2}(4-\pi)^{\frac{3}{4}}$
- 7. Area of the region, bounded by y = 2 + |x| |x+1| |x-1| and x-axis is (in sq. units)
 - a) $\frac{3}{2}$

c) 1

- 8. The area of the region given by max $(|x|,|y|) \le 2$ and $e^{|x|} \left(|y| + \frac{1}{2} \right)$ is
 - a) 14 + ln 2

- 9. The area bounded by $y = \cos^{-1}(\sin x)$ and $y = \sin^{-1}(\sin x)$ on the interval

- b) $\frac{\pi^2}{\epsilon}$
- c) $\frac{\pi^2}{\cdot}$
- 10. Area bounded by $y = \left[\sin^2\frac{x}{2} + \sqrt{\cos\frac{x}{2}}\right]$ and $y = \left[\sin x \frac{1}{2}\right], x = 0, x = \pi$ (where [.] represents the greatest integer function) is (in. sq. units)
 - a) $\frac{1}{6} \left(7\pi + 12(1 \sqrt{3}) \right)$ b) $7\pi + 12(1 + \sqrt{3})$ c) $\frac{\pi}{2} + 1 \sqrt{3}$ d) $\frac{\pi}{2} + 1 + \sqrt{3}$

More than one correct answer type questions

- 11. If A_1 is the area bounded by $|x a_1| + |y| = b_1$, $i \in N$ and $a_{i+1} = a_1 + \frac{3}{2}b_1$ and $b_{i+1} = \frac{bi}{2}$, $a_1 = 0$, $b_1 = 32$
- b) $\lim_{n \to \infty} \sum_{i=1}^{n} A_i = \frac{4}{3} (16)^2$ c) $\lim_{n \to \infty} \sum_{i=1}^{n} A_i = \frac{8}{3} (32)^2$ d) $A_3 = 256$
- 12. The area enclosed by the curves $x = a\sin^3 t$ and $y = \cos^3 t$ is equal to (in sq. units)
- a) $12a\int_{0}^{\frac{\pi}{2}}\cos^{4}t\sin^{2}tdt$ b) $12a\int_{0}^{\frac{\pi}{2}}\cos^{2}t\sin^{4}tdt$ c) $2\int_{0}^{a}\left(a^{\frac{2}{3}}-x^{\frac{2}{3}}\right)^{\frac{\pi}{2}}dx$ d) $4\int_{0}^{a}\left(a^{\frac{2}{3}}-x^{\frac{2}{3}}\right)^{\frac{\pi}{2}}dx$

Integer answer type questions

- 13. A point O moves in xy plane is such a way that $[1+x+y]=[x], x \in (0,2)$ and where [.] denotes greatest integer function then area of the region represented by all the points P, is equal to.
- 14. If $f(x) = \sin x, \forall \in \left[0, \frac{\pi}{2}\right]$; $f(x) + f(\pi x) = 2, \forall \in \left[\frac{\pi}{2}, \pi\right]$ and $f(x) = f(2\pi x), \forall \in (\pi, 2\pi]$ then area enclosed by the curve y = f(x) and x axis is $a\pi + b$ then find the value of $a^2 + b^2 = \dots$.
- 15. If A_n is the area bounded by the curves y = x and $y = x^n$, $n \in N \{1\}$ in the first quadrant if (A_2) (A_3) (A_4) $(A_n) = \frac{1}{(an^2 + bn) \cdot 2^{n+c}}$ then $a + b + c = \dots$
- 16. Let $A(x_1,y_1)$, $B(x_2,y_2)$, $C(x_3,y_3)$ be points of inflection of the curve $x^2 x + y 1 = 0$. Area of polygon ABC is A_x , then $[A_x]$ is equal to _____ (where [.] denote the G.I.F)

** KEY SHEET (ADDITIONAL EXERCISE) LEVEL-I (MAIN) 1)3 4) 2 5) 2 6) 1 7) 2 2) 1 3) 1 8) 2 10)3 11) 2 12)313) 1 14) 1 15) 4 16) 4 LEVEL-II LECTURE SHEET (ADVANCED) 7) c 1) b 2) b 3) d 4) b 5) c 6) b 8) 2 9) a 10) ab 12) b 18) b 11) bd 13) a 14) a 15) c 16) d 17) a 19) A-q;B-r;C-s;D-q 20) 4 21) 2 22) 1 23) 3 PRACTICE SHEET (ADVANCED) 1) c 2) a 3) d 4) b 5) a 6) a 7) b 8) c 10) a 11) ac 12) acd 13) 3 14) 4 15)016) 0

