ModelFLOWs

Artificial intelligence, machine learning and data-driven methods to model complex problems

Soledad Le Clainche

School of Aerospace Engineering
Universidad Politécnica de Madrid (UPM)
soledad.leclainche@upm.es

https://sites.google.com/view/soledadleclainche

CFD simulations & Data-driven tools: applications

Marine propulsion

Medicine & Non-Newtonian flows

Aerodynamics & Aeroelasticity

Combustion

Urban flows

Wind Energy

Artificial intelligence tools: reduced order models

Study and understand database general behaviour

Deeper understanding of physics

Reduce computational cost

Control & design optimization

Methods for data analysis

Methods for data analysis

Artificial intelligence tools

Reduced Order Models: hybrid machine learning models based on physical principles

Modal decomposition

+

Neural networks

DMD, POD, PCA, HOSVD, HODMD, etc.

Extract physical patterns

Reduce data dimensionality

Recurrent Neural Networks, Convolutional Neural Networks, Autoencoders, Transformers, PINNs, etc.

Data forecasting

Data reconstruction & repairing

etc.

Data assimilation to develop robust architectures

Combine numerical and experimental databases

ModelFLOWs - Research Group

Rodrigo Abadía-Heredia

Nourel Groun

Eneko Lazpita

Christian Amor

Ashton Ian Hetherington

Andrés Bell

Mahesh Nagargoje

Daniel Serfaty

Juan Sánchez

Eva Muñoz

Sofia Tagliaferro

Egoitz Maiora

Paula Díaz

Funded projects in ModelFLOWs

Fight climate change & advance in personalized medicine

Artificial intelligence tools & CFD simulations

MODEL-CO, ENCODING

NEMDAEA

DigitHEART, CardioAging

ModelFLOWs national & international collaborations

ModelFLOWs App – Patterns detection

Marine propulsion

Medicine

Aerodynamics

Combustion

Turbulence, Heat transfer, Flight test, Wind energy

Le Clainche, Rosti & Brandt (J. Fluid Mech. 2022)

Le Clainche, Izbassarov, Rosti, Brandt & Tammisola (J. Fluid Mech. 2020)

Méndez, Le Clainche, Moreno, Vega (Arosp. Sci. Tech. 2021)

Le Clainche, Zhan & Ferrer (Phys. Fluids 2019)

Wu et al. (Chin. J. Aero., 2019)

Méndez, Le Clainche, Vega, Moreno, Taylor (AIAA 2019)

Le Clainche, Mao & Vega (Wind Energ. 2018)

Le Clainche, Moreno, Taylor, Vega (J. Aircraft 2018)

Le Clainche, Pérez & Vega (Fluid Dyn. Res. 2018)

Le Clainche, Sastre, Vega & Velázquez (AIAA 2017)

Reactive flows

Corrochano, D'Alessio, Parente, Le Clainche (arxiv, 2022) Corrochano, Freitas, Parente, Le Clainche (ISUDEF, 2022)

ModelFLOWs App – Patterns detection

Marine propulsion

Medicine

Aerodynamics

Combustion

Urban flows

Synthetic jets

Muñoz & Le Clainche (Phys. Fluids, 2022) Le Clainche (Energies 2019) Palomo, Pérez & Le Clainche (RIENG 2019) Le Clainche, Vega & Soria (Exp. Therm. Fluid Sci. 2017)

D_p 0.5 1 1.5 2 2.5 x/D₀

Multi-phase flows
Non-newtonian flows
etc.

Medical Imaging

Groun, Villalba, Lara, Valero, Garicano & Le Clainche (Comp. Biol. Med. 2022) Vega & Le Clainche (Book - Elsevier 2020) Groun et al. (Com. Biol. Med., 2022)

Urban flows

Lazpita et al. (Phys. Fluids 2022) A. Martínez-Sánchez et al. (J. Fluid Mech., submitted)

- New algorithm fully data-driven to detect structural sensitivity -> applications in flow control
 - Corrochano & Le Clainche, Comp. & Maths. with Appl., 2022

Application to an ElastoViscoPlastic flow past a cylinder 2D
 In collaboration with S. Parvar & O. Tammisola

$$Re = 100$$

$$Wi = 1$$

$$Bn = 2$$

$$n = 0.2$$

$$\beta = 0.9$$

- Creation of a new algorithm based on HODMD (fully data-driven) for flow control
- Application to an ElastoViscoPlastic flow past a cylinder 2D

FOTO DE MODOS DEL CILINDRO DIRECTO Y ADJUNTO???

Re = 100

Wi = 1

Bn = 2

n = 0.2

 $\beta = 0.9$

Universidad Politécnica de Madrid 15 / X

- Creation of a new algorithm based on HODMD (fully data-driven) for flow control
- Application to an ElastoViscoPlastic flow past a cylinder 2D

Re = 100

Wi = 1

Bn = 2

n = 0.2

 $\beta = 0.9$

Universidad Politécnica de Madrid 16 / X

- Creation of a new algorithm based on HODMD (fully data-driven) for flow control
- Application to an ElastoViscoPlastic flow past a cylinder 2D

Universidad Politécnica de Madrid 17 / X

- Creation of a new algorithm based on HODMD (fully data-driven) for flow control
- Application to an ElastoViscoPlastic flow past a cylinder 2D

Universidad Politécnica de Madrid 18 / X

ModelFLOWs App – Patterns detection

More applications

Flow instabilitites in wall bounded turbulence

Porous wall

Canopy

Global and convective cross-flow instabilitites

Transition to turbulence in wakes

ModelFLOWs App – Reconstruction

Data repairing & enhacement of resolution

Gappy

RRMSE: 2%

ModelFLOWs App – Reconstruction

From sensors to 3D fields

Sensors in cities
3D pollution maps

ModelFLOWs App – Prediction

Speed-up numerical simulations

RRMS error ~ 2% & Speed-up >100!!

Training + validation

Prediction

ModelFLOWs App – Prediction

Speed-up numerical simulations

Reactive flows

Multiphase flows

Wind turbines

ModelFLOWs App – Prediction

Open-door measurements

Predict flutter in flight test

Automatic method (errors smaller than 5%), identify flutter modes in less than **2 minutes**!

Predict wind velocity in LiDAR experiments

Thank you for your attention!

Questions??

soledad.leclainche@upm.es

https://sites.google.com/view/soledadleclainche

