第六届中国大学生数学竞赛决赛三、四年级试卷 (数学类, 2015年3月)

考试形式: _ 闭卷 _ 考试时间: _ 180 _ 分钟 满分: _ 100 _ 分

题号	-	_	=	四四	五			总分
满分	20	15	15	20	10	10	10	100
得分								

注意: 1. 前5大题是必答题, 再从 6-11大题中任选两题, 题号要填入上面的表中.

- 2. 所有答题都须写在此试卷纸密封线右边,写在其它纸上一律无效.
- 3. 密封线左边请勿答题, 密封线外不得有姓名及相关标记.
- 4. 如答题空白不够, 可写在当页背面, 并标明题号.

ZH 41		
得分		
评阅人		
VI DOJE		

一、(本题 20 分,每小题 5 分)填空题

(1)实二次型 $2x_1x_2 - x_1x_3 + 5x_2x_3$ 的规范型为

(2) 级数 $\sum_{n=1}^{\infty} \frac{n}{3^n}$ 的和为 _____.

(3) 计算第一型曲面积分的值:

$$I = \iint_{x^2+y^2+z^2=1} (x^2 + 2y^2 + 3z^2) \, \mathrm{d}S = \dots.$$

(4) $A=(a_{ij})$ 为 n 阶实对称矩阵 (n>1), ${\rm rank}(A)=n-1$, A 的每行元素之和均为 0.0 0

得分	
评阅人	

二、(本题 15 分) 设空间中定点 P 到一定直线 l 的距离为 p. 一族球面中的每个球面都过点 P, 且截直线 l 得到的弦长都是定值 a. 求该球面族的球心的轨迹.

7F7 41	
得分	
评阅人	₩:

三、 (本题 15 分) 设 $\Gamma = \left\{ \begin{pmatrix} z_1 & z_2 \\ -\overline{z_2} & \overline{z_1} \end{pmatrix} \middle| z_1, z_2 \in \mathbb{C} \right\}$, 其中 $\mathbb C$ 表示复数域. 试证明: $\forall A \in \Gamma$, A 的Jordan标准 形 J_A 仍然属于 Γ ; 进一步还存在可逆矩阵 $P \in \Gamma$ 使得 $P^{-1}AP = J_A.$

准考证号:

得分评阅人

求满足不等式

的最大常数 α.

四、(本题 20 分)设

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

$$\sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} < +\infty$$

1. 1

18

一十八

答题时不要超过此线

中分.

五、(本题 10 分) 设 a(t),f(t) 为实连续函数, $f(t)>0,a(t)\geqslant 1,\,\forall t\in\mathbb{R}.\,\int_0^\infty f(t)dt=+\infty.$ 已知 C^2 函数 x(t) 满足

 $x''(t) + a(t)f(x(t)) \le 0, \forall t \in \mathbb{R}.$

求证: x(t) 在 $[0,+\infty)$ 有上界.

得分 评阅人

程

的非常值整函数 f(z).

六、(本题 10 分) 设 a, b 是两个不同的复数. 求满足方

$$(f'(z))^2 = (f(z) - a)(f(z) - b)$$
 (1)

38

19

1

密封线 答题时不要超过此线

得分		
评阅人		

七、(本题10分) 设f(x) 是 \mathbb{R}^1 上的 Lipschitz 函数, Lipschitz 常数为 K, 则对任意的 Lebesgue 可测集 $E \subset \mathbb{R}^1$, 均有 $m(f(E)) \leq K \cdot m(E)$, 其中 $m(\cdot)$ 表示一维 Lebesgue 测度.

× **

orgin .

体名:

得分	
评阅人	

八、(本题10分)设三维空间的曲面 S 满足:

(1) $P_0 = (0, 0, -1) \in S$; (2) 对任意 $P \in S$, $|\overrightarrow{OP}| \leq 1$, 其中 O 是原点. 证明: 曲面 S 在 P_0 的Gauss曲率 $K(P_0) \geq 1$.

答题时不要超过此线

年分:

得分	
评阅人	

九、(本题10分) 考虑求解线性方程组 $A\mathbf{x}=\mathbf{b}$ 的如下 迭代格式

$$(\alpha D - C)\mathbf{x}^{(k+1)} = ((\alpha - 1)D + C^T)\mathbf{x}^{(k)} + \mathbf{b},$$

其中 D 为实对称正定方阵,C 是满足 $C+C^T=D-A$ 的实方阵, α 为实数. 若 A 是实对称正定方阵,且 $\alpha D-C$ 可逆, $\alpha>1/2$. 证明:上述迭代格式对任何初始向量 $\mathbf{x}^{(0)}$ 收敛.

得分	
评阅人	

十、(本题10分)设 R 为[0,1] 上的连续函数环,其加法为普通的函数加法,乘法为普通的函数乘法. I 为 R 的一个极大左理想. 证明: $\forall f,g\in I,f$ 与 g 在 [0,1] 上必有公共的零点.

4. 1

....

答题时不要超过此线(

4.

	一 十一、(本题10分)设在国际市场上对我国某种出
得分	口商品每年的需求量 X (单位: 吨)是随机变量, X 服从
评阅人	[100,200] 上的均匀分布. 每出售这种商品一吨, 可以为国家
117471	挣得外汇3万元; 若销售不出而囤积于仓库, 则每吨需要花

费保养费用1万元. 求: 应组织多少货源, 才能使国家的收益最大?

第六届中国大学生数学竞赛决赛三、四年级试卷 (答案勘误)

第3页, 第13行: P-1 应为 P-1

第4页: 第五题的分值误为15分,应为10分。另外,题设中要求函数 x(t)是 C^2 的。 (考试试题中的分数和题设都是正确的).

第6页, 第-8行: 第一个 f(x) 应为 f(E)

第7页,第-11行: 所有的下标 i 均改为 k

第7页,第-2行:不妨设 E 是有限测度,从而 f' 在 E 上可积。

第10页, 第4行: y 应为 y

第10页: 十、(本题10分)设 R为[0,1]上的连续函数环,其加法为普通的函数加法,乘法为普通的函数乘法。I 为R 的一个极大左理想。证明: $\forall f,g \in I, f$ 与g 在[0,1] 上必有公共的零点。

注意到I为左理想, $f\in I,\ \overline{f}\in R,\$ 从而 $|f|^2=\overline{f}f\in I,\$ 同样 $|g|^2\in I,\$ 故 $|f|^2+|g|^2\in I,$ 进而

 $\frac{1}{|f|^2+|g|^2}(|f|^2+|g|^2)=1\in R,$

矛盾于I 为R 的一个极大左理想......10分

第六届中国大学生数学竞赛决赛三、四年级试券 (数学类, 2015年3月)

考试形式: 闭卷 考试时间: __180_ 分钟 满分: __100_ 分

题号		ニ	三	四	五			总分
满分	20	15	15	20	10	10	10	100
得分								

注意: 1. 前5大题是必答题, 再从 6-11大题中任选两题, 题号要填如上面的表中.

- 2. 所有答题都须写在此试卷纸密封线右边, 写在其它纸上一律无效.
- 3. 密封线左边请勿答题, 密封线外不得有姓名及相关标记.
- 4. 如答题空白不够, 可写在当页背面, 并标明题号.
- 一、(本题 20 分)填空题 (每小题 5 分)
- (1)实二次型 $2x_1x_2 x_1x_3 + 5x_2x_3$ 的规范型 $= \underline{z_1^2 + z_2^2 z_3^2}$.
- (3) 计算第一型曲面积分的值: $I = \iint_{x^2+x^2+x^2-1} (x^2+2y^2+3z^2) ds = \underline{8\pi}.$
- (4) $A = (a_{ij})$ 为 n 阶实对称矩阵 (n > 1), rank(A) = n 1, A 的每行元素之和均 为 0. 设 $2,3,\ldots,n$ 为 A 的全部非零特征值。用 A_{11} 表示 A 的元素 a_{11} 所对应的代 数余子式. 则有 $A_{11} = (n-1)!$.
 - (4)解: 1) 秩A = n 1 秩 $A^* = 1$ 且Ax = 0 的解空间维数为1.

$$A$$
的行和 = 0 \Rightarrow A $\begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ = 0 \Rightarrow Ax = 0 的一组基础解系为 $\begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$.

2)注意到 $AA^* = 0$, 从而 A^* 的每一列均形如 $a\begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$.又由于A为实对称矩阵,

故
$$A^*$$
也为实对称矩阵。故 $A^* = \begin{pmatrix} a & \cdots & a \\ \vdots & \vdots & \vdots \\ a & \cdots & a \end{pmatrix}$.

3)考虑特征多项式

$$f(\lambda) = |\lambda I - A| = \lambda(\lambda - 2) \cdots (\lambda - n).$$

其一次项系数为 $(-1)^{n-1}n!$. 另一方面,由 $f(\lambda) = |\lambda I - A|$ 又知,其一次项系数为 $(-1)^{n-1}(A_{11} + \cdots A_{nn})$.结果 a = (n-1)!.

二、(本题 15 分)设空间中定点 P 到一定直线 l 的距离为 p. 一族球面中的每个球面都过点 P, 且截直线 l 得到的弦长都是定值 a. 求该球面族的球心的轨迹.

解: 以 l 为 z 轴,以过点 P 且垂直于 z 轴的直线为 x 轴来建立直角坐标系。可设 P:(p,0,0), l 的参数方程 l:x=0,y=0,z=t.

设球面 C 的球心为 (x_0, y_0, z_0) , 由于 C 过点 P, 则

$$C: (x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = (p-x_0)^2 + y_0^2 + z_0^2.$$

......4分

求 l 与 C 的交点:将 l 的参数方程代入 C,

$$x_0^2 + y_0^2 + (t - z_0)^2 = (p - x_0)^2 + y_0^2 + z_0^2.$$

即

$$t^2 - 2z_0t + (2px_0 - p^2) = 0. (1)$$

由此得到两个解为

$$t_{1,2} = z_0 \pm \sqrt{z_0^2 - (2px_0 - p^2)}.$$

故弦长 $a = |t_1 - t_2| = 2\sqrt{z_0^2 - (2px_0 - p^2)}$, 从而

$$z_0^2 - 2px_0 + p^2 - \frac{a^2}{4} = 0. (2)$$

......10分

反之, 如果球面 C 的球心满足(2), 如果 C 过点 P, 此时二次方程(1)的判别式

$$\Delta = 4z_0^2 - 4(2px_0 - p^2) = a^2 \ge 0,$$

方程有两个实根

$$t_{1,2} = z_0 \pm \frac{a}{2}.$$

从而 C 和 l 相交, 而且截出来弦长为 a.

姓名:

故所求的轨迹为

$$z^2 - 2px + p^2 - \frac{a^2}{4} = 0.$$

......15分

三、证明题(15分)设 $\Gamma = \left\{ \begin{pmatrix} z_1 & z_2 \\ -\overline{z_2} & \overline{z_1} \end{pmatrix} | z_1, z_2 \in \mathbb{C} \right\}$, 其中 \mathbb{C} 表复数域。试证明: $\forall A \in \Gamma$, A的Jordan标准形 J_A 仍然属于 Γ ; 进一步还存在可逆的矩阵 $P \in \Gamma$ 使得 $P^{-1}AP = J_A$.

证明: 对
$$A = \begin{pmatrix} z_1 & z_2 \\ -\overline{z_2} & \overline{z_1} \end{pmatrix}$$
, 其特征方程为

$$0 = |\lambda I - A| = \lambda^2 - 2Rez_1\lambda + |z_1|^2 + |z_2|^2.$$

$$\Delta = 4(Rez_1)^2 - 4(|z_1|^2 + |z_2|^2) \le 0.$$

情形1. $\Delta = 0$.

此时,
$$z_2=0, z_1=Rez_1$$
,从而 $A=\begin{pmatrix}Rez_1&0\\0&Rez_1\end{pmatrix}=J_A\in\Gamma$.取 $P=I$ 即有 $P_{-1}AP=J_A$ 。

情形 $2. \Delta < 0.$

此时A 的特征值为

$$\lambda_1 = Rez_1 + i\sqrt{|z_1|^2 + |z_2|^2 - (Rez_1)^2}, \lambda_2 = Rez_1 - i\sqrt{|z_1|^2 + |z_2|^2 - (Rez_1)^2}, \lambda_2 = \overline{\lambda_1}, \lambda_1 \neq \lambda_2.$$

$$\lambda_2 = \overline{\lambda_1}, \lambda_1 \neq \lambda_2.$$
从而 $J_A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \in \Gamma.$

现取A 关于 λ_1 的一个非0特征向量 $\begin{pmatrix} x \\ y \end{pmatrix}$. 则有

$$\left(\begin{array}{cc} z_1 & z_2 \\ -\overline{z_2} & \overline{z_1} \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \lambda_1 \left(\begin{array}{c} x \\ y \end{array}\right) \Leftrightarrow \left\{\begin{array}{c} \overline{z_1x} + \overline{z_2y} = \overline{\lambda_1}\overline{x} \\ z_2\overline{x} - z_1\overline{y} = -\overline{\lambda_1}\overline{y} \end{array}\right.$$

直接检验知
$$A\begin{pmatrix} -\overline{y} \\ \overline{x} \end{pmatrix} = \overline{\lambda_1}\begin{pmatrix} -\overline{y} \\ \overline{x} \end{pmatrix}$$
,因此 $\begin{pmatrix} -\overline{y} \\ \overline{x} \end{pmatrix}$ 为 A 关于 $\overline{\lambda_1}$ 的一个非0特征

第3页(共11页)

四、(本题20分)设

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

求最大常数 α 满足

$$\sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} < +\infty.$$

$$\frac{|f(x_n) - f(y_n)|}{|x_n - y_n|^{\alpha}} = 2^{\alpha} \pi^{\alpha - 1} n^{2\alpha - 1} (1 + \frac{1}{2n})^{\alpha - 1} \to \infty.$$

下证 $\sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\frac{1}{2}}} < +\infty.$ 由于 f(x) 为偶函数,不妨设 $0 \leq x < y$. 令

$$z = \sup\{u \le y | f(u) = f(x)\},\$$

$$|f(x) - f(y)| = |f(z) - f(y)|$$

$$\leq \int_{z}^{y} |f'(t)| dt \leq |y - z|^{\frac{1}{2}} (\int_{z}^{y} f_{\xi}'(t)^{2} dt)^{\frac{1}{2}}$$

$$\leq |x - y|^{\frac{1}{2}} (\int_{z}^{y} (\sin \frac{1}{t} - \frac{1}{t} \cos \frac{1}{t})^{2} dt)^{\frac{1}{2}}$$

$$\stackrel{s=t^{-1}}{=} |x - y|^{\frac{1}{2}} (\int_{y^{-1}}^{z^{-1}} (\frac{\sin s}{s} - \cos s)^{2} ds)^{\frac{1}{2}}$$

$$\leq |x - y|^{\frac{1}{2}} (\int_{y^{-1}}^{y^{-1} + 2\pi} 4 ds)^{\frac{1}{2}} = \sqrt{8\pi} |x - y|^{\frac{1}{2}}.$$

五、(本题15分)设a(t),f(t) 为实连续函数, $\forall t\in\mathbb{R}$ 有 $f(t)>0,a(t)\geqslant 1$. $\int_0^\infty f(t)dt=+\infty.$ 已知x(t)满足

$$x''(t) + a(t)f(x(t)) \le 0, \forall t \in \mathbb{R}.$$

求证: x(t) 在 $[0,+\infty)$ 有上界.

证明:由

$$x''(t) \le -a(t)f(x(t)) < 0,$$

第 4 页(共 11 页)

姓名:

$$x'(t)f(x(t)) \le a(t)x'(t)f(x(t)) \le -x'(t)x''(t),$$

积分得

$$\int_0^t f(x(s)) \, \mathrm{d}x(s) \le \frac{x'(0)^2 - x'(t)^2}{2} \le \frac{x'(0)^2}{2}.$$

$$\int_0^{+\infty} f(x) \, \mathrm{d}x \le \frac{x'(0)^2}{2},$$

矛盾。......10分

六、(本题10分)设 a,b 是两个不同的复数. 求满足方程

$$(f'(z))^{2} = (f(z) - a)(f(z) - b)$$
(1)

的非常数整函数 f(z).

解由(1)可得

$$\left(f' - f + \frac{a+b}{2}\right)\left(f' + f - \frac{a+b}{2}\right) = -\left(\frac{a-b}{2}\right)^2.$$
 (2)

由此可知 $f' - f + \frac{a+b}{2}$ 是无零点的整函数. 可设

$$f' - f + \frac{a+b}{2} = \frac{a-b}{2}e^{\alpha},\tag{3}$$

其中 α 是一个整函数. 由 (2) 得

$$f' + f - \frac{a+b}{2} = -\frac{a-b}{2}e^{-\alpha}. (4)$$

由(3),(4)得

$$f = \frac{a+b}{2} - \frac{a-b}{4}e^{\alpha} - \frac{a-b}{4}e^{-\alpha},\tag{5}$$

第5页(共11页)

$$f' = \frac{a-b}{4}e^{\alpha} - \frac{a-b}{4}e^{-\alpha}.$$
 (6)

对 (5) 求导得

$$f' = -\frac{a-b}{4}\alpha'e^{\alpha} + \frac{a-b}{4}\alpha'e^{-\alpha}.$$
 (7)

由 (6), (7) 可得

$$(\alpha' + 1) (e^{\alpha} - 1) (e^{\alpha} + 1) = 0,$$

.....8分

因此 $e^{\alpha} - 1 = 0$ 或者 $e^{\alpha} + 1 = 0$ 或者 $\alpha' + 1 = 0$.

若 $e^{\alpha}-1=0$, 则由 (5) 得到 f=b 是一个常数. 同理, 若 $e^{\alpha}+1=0$, 则 f=a 也是一个常数. 若 $\alpha'+1=0$, 则 $\alpha(z)=-z+c$, 其中 c 是任意常数. 再由 (5) 可得

$$f(z) = \frac{a+b}{2} - \frac{a-b}{4}e^{-z+c} - \frac{a-b}{4}e^{z-c}$$
$$= \frac{a+b}{2} - \frac{a-b}{2}\operatorname{ch}(z-c)$$

......10分

七、(本题10分)设f(x) 是 \mathbb{R}^1 上的 Lipschitz 函数, Lipschitz 常数为 K, 则对任意的可测集 $E \subset \mathbb{R}^1$, 均有 $m(f(E)) \leq K \cdot m(E)$.

证明: (方法1) 1) 在题设的条件下, 对任何可测集E, 有 $m^*(f(E)) \leq K \cdot m(E)$.

- (2) 若E为开集,由开集的构造知: $E = \bigcup_{n\geqslant 1} (\alpha_n, \beta_n)$,其中 $\{(\alpha_n, \beta_n)\}$ 互不相交.由(1)得:

(3) 若E为可测,则 $\forall \epsilon > 0$, \exists 开集 $G \supset E$, 使得 $m(G - E) < \epsilon$.

第6页(共11页)

 $\mathrm{d}(2)$ 及 $f(G)\supset f(E)$ 知:

$$m^*(f(E)) \le m^*(f(G)) \le K \cdot m(G) = K \cdot m(E \cup (G - E))$$

 $\le K \cdot m(E) + K \cdot m(G - E)$
 $< K \cdot m(E) + K \cdot \epsilon.$

由 ϵ 的任意性知: $m^*(f(E)) \leq K \cdot m(E)$

2) 在题设条件下, 若E 可测,则f(E) 可测.

E 可测 $\Rightarrow \exists F_{\sigma}$ -型集 $A = \bigcup_{n=1}^{\infty} F_n$, F_n 闭集, $A \subset E$, m(E - A) = 0.

那么f(A) 是 F_{σ} —型集且 $f(A) \subset f(E)$.

由1)知: $m^*(f(E-A)) \leq K \cdot m(E-A) = 0$, 即 m(f(E-A)) = 0.

而 $f(E-A) \supset f(E) - f(A)$, 从而m(f(E) - f(A)) = 0, 故f(E) 可测

综合1) 2)可得:对任何可测集E, 有f(E)可测且 $m(f(E)) = m^*(f(E)) \leqslant K \cdot m(E)$.

(方法2) i) 若f(x) 为 \mathbb{R}^1 上的绝对连续函数, $A \subset \mathbb{R}^1$, m(A) = 0, 则 m(f(A)) = 0. $f \in AC(\mathbb{R}^1)$ ⇒ $\forall \varepsilon > 0, \exists \delta > 0$, 对任意至多可数个互不相交的开区间 $\{(a_i,b_i)\}_{i\geqslant 1}, \stackrel{\text{def}}{=} \sum_{i\geqslant 1} (b_i-a_i) < \delta \text{ ft}, \stackrel{\text{def}}{=} \sum_{i\geqslant 1} (f(b_i)-f(a_i)) < \varepsilon.$

由 m(A) = 0, 对上 $\delta > 0$, \exists 开集 $G \supset A$, $m(G) < \delta$.

 $\Leftrightarrow G = \bigcup_{i \geqslant 1} (c_i, d_i), \ m_k = \min_{x \in [c_i, d_i]} f(x) = f(\alpha_k), M_k = \max_{x \in [c_i, d_i]} f(x) = f(\beta_k).$ $\therefore \sum_{k \geqslant 1} (\beta_k - \alpha_k) \leqslant \sum_{k \geqslant 1} (d_k - c_k) < \delta, \ \therefore \sum_{k \geqslant 1} |f(\beta_k) - f(\alpha_k)| < \varepsilon,$

 $\overline{m} \ m^* f(G) = m^* \left(\bigcup_{k \ge 1} f((c_k, d_k)) \right) \leqslant \sum_{k \ge 1} |f(\beta_k) - f(\alpha_k)| < \varepsilon,$

ii) 若 f(x) 为 \mathbb{R}^1 上的绝对连续函数, A 可测, 则 f(A) 可测.

A 可测 $\Rightarrow \exists F_{\sigma}$ - 型集 $B = \bigcup_{n=1}^{\infty} F_n, F_n$ 闭, $B \subset A, m(A - B) = 0$

⇒ $f(B) = \bigcup_{n=0}^{\infty} f(F_n)$, 由 f 的连续性知 $f(F_n)$ 闭, f(B) 是 F_{σ} — 型集, $f(B) \subset f(A)$.

由 i) 知: mf(A-B)=0.

又 :: $f(A-B) \supset f(A) - f(B)$, :: m(f(A) - f(B)) = 0, 故 f(A) 可测.

iii) f 是 \mathbb{R}^1 上的 Lipschitz 函数 $\Rightarrow f(x)$ 为 \mathbb{R}^1 上的绝对连续函数 $\Rightarrow f'(x)$ 在 \mathbb{R}^1 上几乎处处存在且 $|f'(x)| \leq K$, f' 是 L-可积, 即 $\exists Z \subset \mathbb{R}^1$, m(Z) = 0, f'(x) 存在

第7页(共11页)

且 $|f'(x)| \leq K, \forall x \in E - Z$. 由 i) 知: mf(Z) = 0. 于是

$$m(f(E)) \leqslant m(f(E-Z)) + m(f(Z)) = m(f(E-Z))$$

$$\leqslant \int_{E-Z} |f'(x)| dm \leqslant \int_{E-Z} K dm \leqslant K \cdot m(E).$$

......10分

注: 上式的第二个不等式的证明.

若 f(x) 在 \mathbb{R}^1 上绝对连续, f' 在 A 上存在积分,则 $mf(A) \leqslant \int_A |f'| dm$.

证明: (1) 对任何区间 $I, mf(I) \leq \int_I |f'| dm$.

$$\Leftrightarrow \max_{x \in \overline{I}} f(x) = f(b), \min_{x \in \overline{I}} f(x) = f(a), a, b \in \overline{I},$$

则
$$mf(I) = f(b) - f(a) = |\int_{(a,b)} f'dm| \le \int_{(a,b)} |f'|dm \le \int_{I} |f'|dm$$
.

(2) f' 可积 $\Rightarrow \forall \varepsilon > 0$, $\exists \delta > 0$, $\forall e \subset E$, 若 $me < \delta$, 有 $\int_e |f'| dm < \varepsilon$. A 可测 \Rightarrow 对上 $\delta > 0$, \exists 开集 $G \supset A$, $m(G - A) < \delta$. 于是 $\int_{G - A} |f'| dm < \varepsilon$. \Diamond $G = \bigcup_{k \geqslant 1} (\alpha_k, \beta_k)$, 则

$$m(f(A)) \leq m(f(G)) \leq \sum_{k \geq 1} m(f((\alpha_k, \beta_k)))$$

$$\leq \sum_{k \geq 1} \int_{(\alpha_k, \beta_k)} |f'| dm = \int_G |f'| dm = \int_G |f'| dm - \varepsilon + \varepsilon$$

$$\leq \int_G |f'| dm - \int_{G-A} |f'| dm + \varepsilon = \int_A |f'| dm + \varepsilon$$

由 ε 的任意性得: $mf(A) \leqslant \int_A |f'| dm$.

八、(本题10分)设三维空间的曲面S满足:

 $(1)P_0 = (0,0,-1) \in S;$

(2)对任意 $P \in S$, $|\overrightarrow{OP}| \le 1$, 其中O是原点.

证明: 曲面S在 P_0 的Gauss曲率 $K(P_0) \ge 1$ 。

令
$$f(u,v) = \langle \mathbf{r}(u,v), \mathbf{r}(u,v) \rangle$$
, 则 $f(u,v)$ 在 $(0,0)$ 点取极大值1。于是

$$f_u(0,0) = 2\langle \mathbf{r}_u(0,0), \mathbf{r}(0,0) \rangle = 0, \quad f_v(0,0) = 2\langle \mathbf{r}_v(0,0), \mathbf{r}(0,0) \rangle = 0.$$

 $\Re \Re (\sharp 11 \ \text{\upshape })$

$$f_{uu}(0,0) = 2(E(0,0) + L(0,0)), \quad f_{uv}(0,0) = 0, \quad f_{vv}(0,0) = 2(G(0,0) + N(0,0))$$

根据f(u,v)在(0,0)取极大值, $f_{uu}(0) \le 0$, $f_{vv}(0,0) \le 0$ 。于是,

$$0 < E(0,0) \le -L(0,0), \quad 0 < G(0,0) \le -N(0,0)$$

从而S在Po的Gauss曲率

$$K(P_0) = \frac{L(0,0)N(0,0)}{E(0,0)G(0,0)} \ge 1.$$

.....10分

九、(本题10分)考虑求解线性方程组Ax = b的如下迭代格式

$$(\alpha D - C)\mathbf{x}^{(k+1)} = ((\alpha - 1)D + C^T)\mathbf{x}^{(k)} + \mathbf{b},$$

其中D为实对称正定方阵,C是满足 $C+C^T=D-A$ 的实方阵, α 为实数。若A是 实对称正定方阵,且 $\alpha D-C$ 可逆, $\alpha>1/2$ 。证明:上述迭代格式对任何初始向量 $\mathbf{x}^{(0)}$ 收敛。

证明: 令

$$G = (\alpha D - C)^{-1}((\alpha - 1)D + C^{T}),$$

 λ 为G的特征值, \mathbf{x} 是对应的特征向量, $\mathbf{y} = (I - G)\mathbf{x}$ 。则

$$(\alpha D - C)\mathbf{y} = (\alpha D - C)\mathbf{x} - ((\alpha - 1)D + C^{T})\mathbf{x}$$
$$= (D - C - C^{T})\mathbf{x} = A\mathbf{x}.$$

$$(\alpha D - D + C^{T})\mathbf{y} = (\alpha D - C - A)\mathbf{y} =$$

$$(\alpha D - C - A)\mathbf{x} - (\alpha D - C - A)G\mathbf{x} =$$

$$(\alpha D - C - A)\mathbf{x} - ((\alpha - 1)D + C^{T})\mathbf{x} + AG\mathbf{x}$$

$$= AG\mathbf{x} = \lambda A\mathbf{x}.$$

以上两个方程两遍分别与y做内积得

$$\alpha \langle D\mathbf{y}, \mathbf{y} \rangle - \langle C\mathbf{y}, \mathbf{y} \rangle = \langle A\mathbf{x}, \mathbf{y} \rangle.$$

第 9 页 (共 11 页)

$$\alpha \langle \mathbf{y}, D\mathbf{y} \rangle - \langle \mathbf{y}, D\mathbf{y} \rangle + \langle \mathbf{y}, C^T \mathbf{y} \rangle = \langle \mathbf{y}, \lambda A\mathbf{x} \rangle.$$

......8分

1. 1

以上两式相加得

$$(2\alpha - 1)\langle D\mathbf{y}, \mathbf{y} \rangle = \langle A\mathbf{x}, \mathbf{y} \rangle + \langle y, \lambda A\mathbf{x} \rangle$$

= $(1 - \bar{\lambda})\langle A\mathbf{x}, \mathbf{x} \rangle + \bar{\lambda}(1 - \lambda)\langle \mathbf{x}, A\mathbf{x} \rangle = (1 - |\lambda|^2)\langle A\mathbf{x}, \mathbf{x} \rangle.$

十、(本题10分)设 R为[0,1]上的连续函数环,其加法为普通的函数加法,乘法为普通的函数乘法。I 为R 的一个极大左理想。证明: $\forall f,g\in I,f$ 与g 在[0,1] 上必有公共的零点。

证明: 若f, g 在[0,1] 上无公共零点,则|f|+|g|在[0,1]上恒大于0.结果 $\frac{1}{|f|+|g|} \in R$.

注意到I为左理想,从而 $|f| + |g| \in R$, 进而

$$\frac{1}{|f| + |g|}(|f| + |g|) = 1 \in R,$$

十一、(本题10分)设在国际市场上对我国某种出口商品每年的需求量X(单位:吨)是随机变量, X服从[100,200]上的均匀分布. 每出售这种商品一吨, 可以为国家挣得外汇3万元; 若销售不出而囤积于仓库, 则每吨需要花费保养费用1万元. 求: 应组织多少货源, 才能使国家的收益最大?

解 设需要组织t吨货源预备出口,则国家收益Y(单位:万元)是随机变量X的函数Y = g(X),表达式为

$$g(X) = \begin{cases} 3t, & \exists X \ge t \text{ iff}, \\ 3X - (t - X), & \exists X < t \text{ iff}. \end{cases}$$

显然, 100 ≤ t ≤ 200. 由已知条件, 知X的概率密度函为

$$f(x) = \begin{cases} \frac{1}{100}, & \exists x \in [100, 200] \text{ pt}, \\ 0, & \exists x \in [100, 200] \text{ pt}. \end{cases}$$

$$\text{\hat{g} 10 $ \text{$\hat{g}}$ ($\text{$\text{\pm}$}$ 11 $ \text{$\text{$\bar{g}}$}$})$$

.....4分

由于Y是随机变量,因此,题中所指的国家收益最大可理解为均值最大,因而问题转化为求Y的均值,即求E[g(X)]的均值.简单计算可得

$$E[g(X)] = \int_{-\infty}^{+\infty} g(x)f(x)dx = \frac{1}{100} \int_{100}^{200} g(x)dx$$
$$= \frac{1}{100} \int_{100}^{t} [3x - (t - x)]dx + \frac{1}{100} \int_{t}^{200} 3tdx$$
$$= \frac{1}{50} \left[-t^2 + 350t - 10000 \right].$$