4. АЛГОРИТМЫ КОДИРОВАНИЯ ДАННЫХ

4.1. Задания по алгоритму кода Шеннона

- 1. Для набора из 10 первых последовательных неповторяющихся символов ФИО студента построить вручную код Шеннона. Вероятности символов оценить по всей ФИО с точностью до двух знаков после запятой. Для построенного кода Шеннона проверить выполнение неравенства Крафта, вычислить среднюю длину кодового слова и сравнить ее с энтропией. При тестировании программы можно использовать данные примеры для проверки правильности реализации алгоритмов.
- 2. Реализовать алгоритм построения побуквенного статического кода Шеннона для текста на русском языке. Для оценки вероятностей символов использовать файл не менее 1 Кбайта. Вывести на экран полученную кодовую таблицу в виде:

Код Шеннона

Символ	Вероятность	Кодовое слово	Длина кодового
	символа		слова

3. Для построенного статического кода Шеннона проверить выполнение неравенства Крафта, сравнить среднюю длину кодового слова с энтропией исходного файла, определить избыточность построенного кода Шеннона, построить таблицу вида:

Код Шеннона

Неравенство	Энтропия	Средняя длина	Избыточность
Крафта	исходного текста	кодового слова	кода Шеннона

- 4. При помощи построенного кода Шеннона закодировать русский текст из 100 символов и вывести на экран закодированную символьную последовательность. Вычислить длину закодированной последовательности, разделить на 8 и оценить коэффициент сжатия данных.
- 5*. Реализовать кодовое дерево для построенного кода Шеннона и вывести его на экран.

4.2. Задания по алгоритму кода Фано

1. Для набора из 10 первых последовательных неповторяющихся символов ФИО студента построить вручную код Фано. Вероятности символов оценить по всей ФИО с точностью до двух знаков после запятой. Для построенного кода Фано проверить выполнение неравенства Крафта, вычислить среднюю

длину кодового слова и сравнить ее с энтропией. При тестировании программы можно использовать данные примеры для проверки правильности реализации алгоритмов.

2.

4.3. Задания по алгоритму кода Хаффмана

1. Для набора из 10 первых последовательных неповторяющихся символов ФИО студента построить вручную код Хаффмана. Вероятности символов оценить по всей ФИО с точностью до двух знаков после запятой. Для построенного кода Хаффмана проверить выполнение неравенства Крафта, вычислить среднюю длину кодового слова и сравнить ее с энтропией. При тестировании программы можно использовать данные примеры для проверки правильности реализации алгоритмов.

2.

4.4. Задания по алгоритму кода Гилберта-Мура

1. Для набора из 10 первых последовательных неповторяющихся символов ФИО студента построить вручную код Гилберта-Мура. Вероятности символов оценить по всей ФИО с точностью до двух знаков после запятой. Для построенного кода Гилберта-Мура проверить выполнение неравенства Крафта, вычислить среднюю длину кодового слова и сравнить ее с энтропией. При тестировании программы можно использовать данные примеры для проверки правильности реализации алгоритмов.

2.