Note: 16.5/20 (score total: 22/26)

+11/1/40+

IPS - S7A - Jean-Matthieu Bourgcot

QCM2

TPS Quizz du 13/11/2013 Nom et prénom :

Durée : 10 minutes. Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. PDA et téléphone interdit. Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses. Des points négatifs pourront être affectés à de très mauvaises réponses.

Ne pas faire de RATURES, cocher les cases à l'encre.

Question 1 •	Classer ses	différentes	technologies	de	CAN	par	ordre	de	Temps	de	conversion
(du plus rapide a	u plus lent)	?									

flash - approximation	successiv	es - doub	le rampe -	simple	rampe
		1 11	1		

approximation successives - flash - double rampe - simple rampe

approximation successives - flash - simple rampe - double rampe

flash - approximation successives - simple rampe - double rampe

double rampe - flash - approximation successives - simple rampe

Question 2 •

On considère une résistance thermométrique Pt100 de résistance $R_C(T) = R_0(1 + \alpha T)$ où Treprésente la température en °C, $R_0=1\mathrm{k}\Omega$ la résistance à 0°C et $\alpha=3,85.10^{-3}$ °C $^{-1}$ le coefficient de température. Cette résistance est conditionnée par le montage potentiométrique suivant

1.1k Ω L'étendu de mesure est [-25°C; 60°C]. Fixer la valeur de V_G pour que le courant dans le capteur soit toujours inférieur à 5mA.

$V_G \leq 5$	V
--------------	---

$$V_G \le 11,6V$$

$$V_G \leq 12V$$

Question 3 •

Quelle est la capacité d'un condensateur plan? On note :

- ε : Permittivité du milieu entre les armatures.
- S : Surface des armatures.
- d : Distance entre les armatures.

$$C = \frac{\epsilon}{C_c}$$

$$C = \epsilon d$$

Question 4 •

Le capteur sur la photo ci-contre permet de mesurer ...

0/4

2/2

3/3

2/2

... des températures. ... des différences de potentiels.

... des potentiels.

... des résistances. ...des différences de températures.

... des courants.

	Question 5 • Pourquoi faire du sur-échantillonnage?
	Pour réduire le bruit de quantification
/2	Pour améliorer l'efficacité du filtre antirepliement.
	Pour supprimer les perturbations de mode commun.
	Question 6 • A quoi est reliée la résolution d'un potentiomètre linéaire à piste résistive ?
	La course électrique.
	La résistance maximale du potentiomètre
/1	La longueur du potentiomètre
	La taille des grains de la poudre utilisée
	Le pas de bobinage
	Question 7 •
	Des jauges extensométriques permettent de mesurer
/1	des flux lumineux des grands déplacements des déformations des courants des résistances des températures.
	Question 8 •
	Un capteur LVDT permet de mesurer :
/1	des flux lumineux des températures des courants des déplacement linéaire des déplacements angulaires
	Question 9 • Quels sont les intérêts d'un amplificateur d'instrumentation ?
	Le gain est fixé par une seule résistance.
	Les voies sont symétriques.
/3	Les impédances d'entrées sont élevés.
	Cela permet d'isoler galvaniquement la chaine d'acquisition et le procédé.
	De rejeter les perturbations de mode différentiel.
	Question 10 •
	Soit un CAN acceptant en entrée des signaux compris entre 0V et 10V, la quantification s'effectue
	sur 8bits, le temps de conversion est de $T_C = 1$ ms. Quel est le pas de quantification de ce CAN?
/1	39 mV
	Question 11 •
	On rappel que la Fonction de Transfert d'un AOP est $\frac{U_s}{\epsilon}(p) =$
	$\frac{A_0}{1+\tau_{CP}}$, avec U_s la sortie de l'AOP et $\epsilon=u_+-u$. Pour le
	$1 + \tau_C p$ montage suivant, quel(s) est(sont) le(s) pole(s) de la FT entre E
	et U_s , Que dire de la stabilité du système bouclé ?
/6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$p = (A_0 - 1)/T_C$ Le système est stable