ΘΕΜΑ 2

- **2.1.** Σώμα Σ_1 , μάζας m_1 , κινείται πάνω σε οριζόντιο, ακλόνητο, λείο δάπεδο και συγκρούεται μετωπικά με άλλο ακίνητο σώμα Σ_2 μάζας m_2 . Η κρούση είναι πλαστική, ασήμαντης χρονικής διάρκειας και το συσσωμάτωμα που δημιουργείται έχει κινητική ενέργεια ίση με το 20% της κινητικής ενέργειας που είχε το σώμα Σ_1 ακριβώς πριν την κρούση. Για τις μάζες των δύο σωμάτων ισχύει η σχέση:
- (a) $\frac{m_1}{m_2} = \frac{1}{4}$ (b) $\frac{m_2}{m_1} = \frac{1}{4}$ (v) $\frac{m_1}{m_2} = \frac{1}{5}$
- 2.1.Α. Να επιλέξετε την ορθή πρόταση.

Μονάδες 4

2.1.Β. Να αιτιολογήσετε την επιλογή σας.

Μονάδες 8

2.2. Ορισμένη ποσότητα ιδανικού μονοατομικού αερίου, βρίσκεται αρχικά σε κατάσταση θερμοδυναμικής ισορροπίας με όγκο V_1 και πίεση P_1 (κατάσταση A). Με μια αντιστρεπτή εκτόνωση το αέριο μεταβαίνει σε κατάσταση θερμοδυναμικής ισορροπίας με όγκο $V_2=2\cdot V_1$ και πίεση $P_2=\frac{P_1}{2}$ (κατάσταση Β).

Στο διάγραμμα πίεσης-όγκου αποδίδονται οι καταστάσεις ισορροπίας Α και Β του αερίου και η αντιστρεπτή μεταβολή (AB). Κατά τη διάρκεια της αντιστρεπτής μεταβολής (AB), το αέριο ανταλλάσσει θερμότητα Q με το περιβάλλον, η οποία είναι ίση με:

(a)
$$Q = P_1 \cdot V_1$$

(a)
$$Q = P_1 \cdot V_1$$
 , (b) $Q = \frac{1}{2} \cdot P_1 \cdot V_1$, (v) $Q = \frac{3}{4} \cdot P_1 \cdot V_1$

$$(\mathbf{y}) \quad Q = \frac{3}{4} \cdot P_1 \cdot V_1$$

2.2.Α. Να αιτιολογήσετε την επιλογή σας.

Μονάδες 4

2.2.Β. Να αιτιολογήσετε την επιλογή σας.

Μονάδες 9