Lecture Four

Section 4.1 – First-Order Systems

Consider a system of differential equations that can be solved for the highest-order derivatives of the dependent variables.

For instance, in the case of a system of two 2nd-order equations can be written in the form

$$\begin{cases} x_1' = f_1(t, x_1, x_2, x_1', x_2') \\ x_2' = f_2(t, x_1, x_2, x_1', x_2') \end{cases}$$

Any higher-order system can be transformed into an equivalent system of 1st-order equations. Consider a system consisting of the single nth-order equation.

$$x^{(n)} = f_2(t, x, x', ..., x^{(n-1)})$$

We introduce the dependent variables $x_1, x_2, ..., x_n$ defined as follows:

$$x_1 = x$$
, $x_2 = x'$, $x_3 = x''$, ... $x_n = x^{(n-1)}$

Note that
$$x'_1 = x', \quad x'_2 = x'' = x_3, \quad \dots$$

$$\begin{cases} x'_1 = x_2 \\ x'_2 = x_3 \\ \vdots \\ x'_{n-1} = x_n \end{cases}$$

$$x'_{n} = f_{2}(t, x_{1}, x_{2}, ..., x_{n})$$

Example

The 3rd-order equation $x''' + 3x'' + 2x' - 5x = \sin 3t$ can be written in the form

$$x''' = f(t, x, x', x'') = 5x - 2x' - 3x'' + \sin 3t$$

Let
$$x_1 = x$$
, $x_2 = x' = x'_1$, $x_3 = x'' = x'_2$

Yield the system

$$\begin{cases} x_1' = x_2 \\ x_2' = x_3 \\ x_3' = 5x_1 - 2x_2 - 3x_3 + \sin 3t \end{cases}$$

Example

Transform this system into an equivalent 1st-order system

$$\begin{cases} x'' = -3x + y \\ y'' = 2x - 2y + 20\sin 2t \end{cases}$$

Solution

Let
$$\begin{aligned} x_1 &= x & x_2 &= x' &= x'_1 \\ y_1 &= y & y_2 &= y' &= y'_1 \end{aligned}$$
 $\Rightarrow \begin{cases} x'_1 &= x_2 \\ x'_2 &= -3x_1 + y_1 \end{cases} \begin{cases} y'_1 &= y_2 \\ y'_2 &= 2x_1 - 2y_1 + 20\sin 2t \end{cases}$

Of 4 1st-order equations in the dependent variables x_1 , x_2 , y_1 , y_2

Simple 2–Dimensional Systems

The linear 2nd-order differential equation x'' + px' + qx = 0

Let
$$x' = y \implies x'' = y'$$

$$\begin{cases} x' = y \\ y' = -qx - py \end{cases}$$

Example

Solve the 2-dimensional system

$$\begin{cases} x' = -2y \\ y' = \frac{1}{2}x \end{cases}$$

Then solve using the initial values x(0) = 2, y(0) = 0

Solution

$$x'' = -2y' = -2\left(\frac{1}{2}x\right) = -x$$

$$x'' + x = 0 \implies \lambda^2 + 1 = 0 \implies \lambda_{1,2} = \pm i$$

 \therefore Have a general solution: $x(t) = A\cos t + B\sin t$

$$y(t) = -\frac{1}{2}x'(t)$$
$$= -\frac{1}{2}(-A\sin t + B\cos t)$$

Let $A = C \cos \alpha$ and $B = C \sin \alpha$

$$\begin{cases} x(t) = C\cos\alpha\cos t + C\sin\alpha\sin t = C\cos(t - \alpha) \\ y(t) = \frac{1}{2}(C\cos\alpha\sin t - C\sin\alpha\cos t) = \frac{1}{2}C\sin(t - \alpha) \end{cases}$$

$$\begin{cases} \cos(t - \alpha) = \frac{x(t)}{C} \\ \sin(t - \alpha) = \frac{2}{C}y(t) \end{cases}$$

$$\cos^{2}(t - \alpha) + \sin^{2}(t - \alpha) = 1$$

$$\frac{x^{2}}{C^{2}} + \frac{y^{2}}{(C/2)^{2}} = 1 \quad \therefore \quad Ellipse$$

$$x(0) = 2, \quad y(0) = 0$$

$$x(0) = A = 2$$

$$y(0) = -\frac{1}{2}B = 0$$

$$\begin{cases} x(t) = 2\cos t \\ y(t) = \sin t \end{cases}$$

Example

Find the general solution of the system

$$\begin{cases} x' = y \\ y' = 2x + y \end{cases}$$

Solution

$$x'' = y' = 2x + y$$

$$x'' = 2x + x'$$

$$x'' - x' - 2x = 0 \implies \lambda^2 - \lambda - 2 = 0$$

The eigenvalues are: $\lambda_1 = -1$, $\lambda_2 = 2$

Example

Solve the initial value problem

$$\begin{cases} x' = -y \\ y' = (1.01)x - (0.2)y \\ x(0) = 0, \quad y(0) = 1 \end{cases}$$

Solution

$$x'' = -y' = -1.01x + 0.2y$$

$$x'' = -y' = -1.01x - 0.2x'$$

$$x'' + 0.2x' + 1.01x = 0$$

$$\lambda^{2} + 0.2\lambda + 1.01 = 0 \implies \lambda_{1,2} = \frac{-0.2 \pm \sqrt{0.04 - 4.04}}{2} = -0.1 \pm i$$

$$x(t) = e^{-0.1t} \left(A\cos t + B\sin t \right)$$

$$x(0) = 0 \implies A = 0 \implies x(t) = Be^{-0.1t} \sin t$$

$$y(t) = -x' = -0.1Be^{-0.1t} \sin t - Be^{-0.1t} \cos t$$

$$y(0) = 1 \implies -B = 1 \quad y(t) = -\frac{1}{10}e^{-t/10} \sin t + e^{-t/10} \cos t$$

$$\therefore \text{ General solution: } \begin{cases} x(t) = -e^{-t/10} \sin t \\ y(t) = e^{-t/10} \left(\cos t - \frac{1}{10} \sin t \right) \end{cases}$$

Exercises Section 4.1 – First-Order Systems

Transform the given differential equation or system into an equivalent system of 1st-order differential equation

1.
$$x'' + 3x' + 7x = t^2$$

2.
$$x^{(4)} + 6x'' - 3x' + x = \cos 3t$$

$$3. \quad t^2 x'' + tx' + \left(t^2 - 1\right)x = 0$$

4.
$$t^3x^{(3)} - 2t^2x'' + 3tx' + 5x = \ln t$$

5.
$$x'' - 5x + 4y = 0$$
, $y'' + 4x - 5y = 0$

6.
$$x'' - 3x' + 4x - 2y = 0$$
, $y'' + 2y' - 3x + y = \cos t$

7.
$$x'' = 3x - y + 2z$$
, $y'' = x + y - 4z$, $z'' = 5x - y - z$

8.
$$x'' = (1-y)x$$
, $y'' = (1-x)y$

Find the general solution

9.
$$x' = y$$
, $y' = -x$

10.
$$x' = y$$
, $y' = -9x + 6y$

11.
$$x' = 8y$$
, $y' = -2x$

12.
$$x' = -2y$$
, $y' = 2x$; $x(0) = 1$, $y(0) = 0$

13.
$$x' = y$$
, $y' = 6x - y$; $x(0) = 1$, $y(0) = 2$

14.
$$x' = -y$$
, $y' = 13x + 4y$; $x(0) = 0$, $y(0) = 3$

Derive the equations
$$\begin{cases} m_1 x_1'' = -(k_1 + k_2)x_1 + k_2 x_2 \\ m_2 x_2'' = k_2 x_1 - (k_2 + k_3)x_2 \end{cases}$$

For the displacements (from equilibrium) of the 2 masses.

$$\begin{cases} ky_1'' = -2y_1 + y_2 \\ ky_2'' = y_1 - 2y_2 \end{cases} \quad where \ k = \frac{mL}{T}$$

16. There 100-gal fermentation vats are connected, and the mixtures in each tank are kept uniform by stirring. Denote by $x_i(t)$ the amount (in pounds) of alcohol in tank T_i at time t (i = 1, 2, 3).

Suppose that the mixture circulates between the tanks at the rate of 10 gal/min. Derive the equations

$$\begin{cases} 10x_1' = -x_1 + x_3 \\ 10x_2' = x_1 - x_2 \\ 10x_3' = x_2 - x_3 \end{cases}$$

17. Suppose that a particle with mass m and electrical charge q moves in the xy-plane under the influence of the magnetic field $\vec{B} = B\hat{k}$ (thus a uniform field parallel to the z-axis), so the force on the particle is $\vec{F} = q\vec{v} \times \vec{B}$ if its velocity is \vec{v} . Show that the equations of motion of the particle are

$$mx'' = +qBy', \quad my'' = -qBx'$$