Exercise Sheet 6: Answers COMS10018 Algorithms 2024/2025

Reminder: $\log n$ denotes the binary logarithm, i.e., $\log n = \log_2 n$.

1 Big-O Notation

Rank the following functions by order of growth: (no proof needed)

$$(\sqrt{2})^{\log n}, n^2, n!, (\log n)!, (\frac{3}{2})^n, n^3, \log^2 n, \log(n!), 2^{2^n}, n \log n$$

Hint: Stirling's approximation for the factorial function can be helpful:

$$e(\frac{n}{e})^n \le n! \le en(\frac{n}{e})^n$$

Solution.

$$O(\log^2 n) \subseteq O((\sqrt{2})^{\log n}) \subseteq O(\log(n!)) \subseteq O(n \log n) \subseteq O(n^2)$$

$$\subseteq O(n^3) \subseteq O((\log(n))!) \subseteq O((\frac{3}{2})^n) \subseteq O(n!) \subseteq O(2^{2^n})$$

2 kth Largest Element

Give an algorithm that runs in time $O(n + k \log n)$ that computes the kth largest number in an array of n distinct integers.

Hint: Think about Heapsort!

Solution. In Heapsort, we can construct the tree in time O(n). Then, we can run the first k steps of the Heapsort algorithm, which places the k largest elements at the end of the array. Each step of the sorting takes time $O(\log n)$ (which comes from the Heapify() operation). The total runtime therefore is $O(n + k \log n)$.

3 Sorting

We are given an array A with n+m elements so that the first n elements are sorted and the last m elements are unsorted.

1. What is the runtime of Insertionsort on array A?

Solution. O(m(n+m)).

2. Suppose that m = O(1). How can we sort A as efficiently as possible and what is the resulting runtime?

Solution. We can run Insertionsort on the unsorted elements. This would then take time O(n).

3. Suppose that $m = O(\sqrt{n})$. How can we sort A as efficiently as possible and what is the resulting runtime?

Solution. We can run any $O(m \log m)$ sorting algorithm in order to sort the unsorted elements first. Then, we merge the two sorted parts in time O(n+m), resulting in a sorting algorithm that runs in time $O(m \log(m) + n + m) = O(n + m \log m)$. If $m = O(\sqrt{n})$, then the final runtime is O(n).

4. What is the largest value of m so that we can obtain a runtime of O(n)? (difficult!)

Solution. According to the previous exercise, the runtime is $O(m \log(m) + n)$. We need to identify the largest value for m such that $O(m \log(m) + n) = O(n)$. This is equivalent to choosing the largest m such that $O(m \log m) = O(n)$.

First, suppose that $m = \Theta(n/\log(n))$. Then:

```
m \log m = O(n/\log(n) \cdot \log(n/\log(n)))
= O(n/\log(n) \cdot (\log(n) - \log\log(n)))
= O(n + n \log\log(n)/\log(n)) = O(n),
```

since both n and $n \log \log(n) / \log(n)$ are in O(n).

Next, suppose that $m \in O(n)$ if $m = \Theta(f(n)n/\log(n))$, for some growing (superconstant) function f. Then:

```
\begin{split} m \log m &= O(f(n)n/\log(n) \cdot \log(f(n)n/\log(n))) \\ &= O(f(n)n/\log(n) \cdot (\log(f(n)) + \log(n) - \log\log(n))) \\ &= O(f(n)\log(f(n))n/\log(n) + f(n)n - f(n)n\log\log(n)/\log(n)) \notin O(n) \;, \end{split}
```

since $f(n)n \notin O(n)$ (since f(n) is increasing with n and hence superconstant). This implies that the largest m is in $\Theta(n/\log n)$.

5. Suppose that $m = \Theta(n)$. How can we sort A as efficiently as possible and what is the resulting runtime?

Solution. We can use any $O(n \log n)$ time sorting algorithm to obtain a total runtime of $O(n \log n)$.

4 Decision Trees

1. Give a lower bound on the number of queries needed for sorting 4 elements.

Solution. At least 5 queries are needed. There are 4! = 24 possible permutations, which correspond to the leaves in a decision tree. Any binary tree with 24 leaves has a height of at least 6. A root-to-leaf path of length 6 visits at least 5 internal nodes, which correspond to the number of queries.

2. Give an optimal decision tree/guessing strategy for sorting 4 elements a, b, c, d (draw the decision tree).

Solution.

3. How many comparisons does the Insertionsort algorithm make in the worst case when sorting an array of length 4?

Solution. In the worst case it makes 6 comparisons: In the worst case *i* comparisons are needed for inserting the element A[i] into the already sorted prefix. Hence, we need 1+2+3=6 comparisons.

5 Optional and Difficult Questions

Exercises in this section are intentionally more difficult and are there to challenge yourself.

5.1 A Different Type of Sorting Algorithm

Consider the following algorithm for sorting an array A of size n:

- 1. Sort recursively the first 2/3 of A, i.e., $A[0, \ldots, 2/3n 1]$
- 2. Sort recursively the last 2/3 of A, i.e., A[n/3-1, n-1]
- 3. Sort recursively the first 2/3 of A, i.e., $A[0, \ldots, 2/3n-1]$

Answer the following questions:

- 1. Argue/prove that the algorithm really sorts A.
- 2. What is the runtime of A?