Séries numériques

Exercice 1. Etudier la convergence des séries suivantes :

1.

$$\sum_{k=1}^{+\infty} \frac{1}{2k} = \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \cdots$$

2.

$$\sum_{k=1}^{+\infty} \frac{1}{2k+1} = \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \cdots$$

Allez à : Correction exercice 1

Exercice 2. Etudier la convergence des séries suivantes :

$$S_{1} = \sum_{n=2}^{+\infty} \frac{n^{2} + 1}{n^{2}}; \qquad S_{2} = \sum_{n=1}^{+\infty} \frac{2}{\sqrt{n}}; \qquad S_{3} = \sum_{n=1}^{+\infty} \frac{(2n+1)^{4}}{(7n^{2} + 1)^{3}}$$

$$S_{4} = \sum_{n=1}^{+\infty} \left(1 - \frac{1}{n}\right)^{n}; \qquad S_{5} = \sum_{n=1}^{+\infty} \left(ne^{\frac{1}{n}} - n\right); \qquad S_{6} = \sum_{n=0}^{+\infty} \ln(1 + e^{-n})$$

Allez à : Correction exercice 2

Exercice 3. Déterminer la nature des séries dont les termes généraux sont les suivants :

1.
$$u_n = \left(\frac{n}{n+1}\right)^{n^2}$$

$$2. \quad u_n = \frac{1}{n\cos^2(n)}$$

3.
$$u_n = \frac{1}{(\ln(n))^{\ln(n)}}$$

Allez à : Correction exercice 3

Exercice 4. Déterminer la nature de la série de terme général :

$$u_n = \begin{cases} \frac{1}{n} & \text{si } n \text{ est un carr\'e} \\ \frac{1}{n^2} & \text{sinon} \end{cases}$$

Allez à : Correction exercice 4

Exercice 5. Les sommes suivantes sont-elles finies ?

$$S_1 = \sum_{n=0}^{+\infty} \frac{1}{5^n}; \quad S_2 = \sum_{n=2}^{+\infty} \left(\frac{-1}{3}\right)^n; \quad S_3 = \sum_{n=4}^{+\infty} \frac{2^n}{3^{n-2}}; \quad S_4 = \sum_{n=0}^{+\infty} \frac{\tan^n\left(\frac{\pi}{7}\right)}{3^{n+2}}; \quad S_5 = \sum_{n=0}^{+\infty} \frac{9}{(3n+1)(3n+4)}$$

Allez à : Correction exercice 5

Exercice 6. Existence et calcul de :

$$\sum_{n=2}^{+\infty} \ln\left(1 - \frac{1}{n^2}\right)$$

Allez à : Correction exercice 6

Exercice 7. Soit (u_n) une suite de réels positifs et $v_n = \frac{u_n}{1+u_n}$

Montrer que les séries $\sum u_n$ et $\sum v_n$ sont de même nature.

Allez à : Correction exercice 7

Exercice 8. Déterminer en fonction du paramètre $\alpha \in \mathbb{R}$ la nature de la série de terme général

$$u_n = \frac{\ln(n)}{n^{\alpha}}$$

Allez à : Correction exercice 8

Exercice 9. Etudier la nature de la série de terme général u_n :

1.
$$u_n = \frac{n+1}{n^3-7}$$

2.
$$u_n = \frac{n+1}{n^2-7}$$

3.
$$u_n = \frac{n+1}{n-7}$$

4.
$$u_n = \sin\left(\frac{1}{n^2}\right)$$

5.
$$u_n = \frac{1}{n^{1+\frac{1}{\sqrt{n}}}}$$

6.
$$u_n = \frac{1}{\ln(n^2 + 2)}$$

7.
$$u_n = \frac{\ln(n)}{n^{\frac{3}{2}}}$$

8.
$$u_n = \frac{n}{2^n}$$

9.
$$u_n = \frac{2^{n+3^n}}{n^2 + \ln(n) + 5^n}$$

10.
$$u_n = \frac{1}{n!}$$

11.
$$u_n = \frac{n!}{n!}$$

12.
$$u_n = \frac{4^{n+1}((n+1)!)^2}{(2n-1)!}$$

13.
$$u_n = \left(\sin\left(\frac{1}{n}\right)\right)^r$$

14.
$$u_n = \left(1 - \frac{1}{n}\right)^{n^2}$$

15.
$$u_n = \left(1 + \frac{1}{n}\right)^{n^2}$$

Allez à : Correction exercice 9

Exercice 10.

Montrer que la série de terme général $u_n = \frac{(-1)^n}{\ln(\sqrt{n}+1)}$ est semi-convergente.

Allez à : Correction exercice 10

Exercice 11. Etudier la convergence de la série numérique de terme général u_n :

2

1.
$$u_n = (-1)^n \frac{n^3}{n!}$$

2.
$$u_n = \frac{a^n}{n!}$$
, $a \in \mathbb{C}$.

3.
$$u_n = na^{n-1}$$
, $a \in \mathbb{C}$.

$$4. \quad u_n = \sin\left(\frac{n^2+1}{n}\pi\right).$$

5.
$$u_n = (-1)^n \left(\sqrt{n+1} - \sqrt{n} \right)$$

6.
$$u_n = \frac{\sin(n)}{n}$$

7.
$$u_n = n \ln \left(1 + \frac{1}{n}\right) - \cos \left(\frac{1}{\sqrt{n}}\right)$$

Allez à : Correction exercice 11

Exercice 12. Calculer

$$\sum_{n=0}^{\infty} u_n \quad \text{avec} \quad u_n = \sum_{k=0}^{n} \frac{1}{(n-k)! \, k!}$$

Allez à : Correction exercice 12

Exercice 13. Calculer

$$\sum_{n=0}^{\infty} u_n \quad \text{avec} \quad u_n = \sum_{k=0}^{n} \frac{(-1)^{n-k}}{k! \, 2^{n-k}}$$

Allez à : Correction exercice 13

Exercice 14. Etudier la nature des séries de terme général et calculer leur somme :

1.
$$u_n = \frac{1}{n(n+1)}, n \ge 1$$

2.
$$u_n = \frac{1}{n(n+1)(n+2)}, n \ge 1$$

3.
$$u_n = \frac{2n-1}{n(n^2-4)}, n \ge 3$$

4.
$$u_n = (-1)^n \ln \left(\frac{n+1}{n-1}\right), \ n \ge 2$$

5.
$$u_n = \ln\left(1 - \frac{1}{(n+2)^2}\right), \quad n \ge 1$$

Allez à : Correction exercice 14

Exercice 15.

Si $(v_n)_{n\geq 0}$ est une suite numérique tendant vers 0 et si a,b,c sont trois réels vérifiant a+b+c=0, on pose pour tout $n\geq 0$:

$$u_n = av_n + bv_{n+1} + cv_{n+2}$$

Montrer que la suite de terme général u_n converge et calculer sa somme.

Allez à : Correction exercice 15

Exercice 16. Etudier la convergence des séries de terme général :

1.
$$u_n = \sin\left(\pi \frac{n^3+1}{n^2+1}\right)$$

2.
$$u_n = \left(1 - \cos\left(\frac{\pi}{n}\right)\right) (\ln(n))^{2011}$$

$$3. \quad u_n = \int_0^{\frac{\pi}{n}} \sqrt{\sin(x)} \, dx$$

4.
$$u_n = \frac{1 + (-1)^n \sqrt{n}}{1 + n}$$

$$5. \quad u_n = \frac{1}{(\ln(n))^n}$$

6.
$$u_n = \frac{2^n}{n^2} (\sin(\alpha))^{2n}$$

Allez à : Correction exercice 16

Exercice 17.

On considère la suite numérique (u_n) définie par :

$$u_n = n! \prod_{k=1}^n \sin\left(\frac{a}{k}\right), \quad a \in \mathbb{R}^+ \setminus \pi\mathbb{N}$$

1. On suppose que $a \neq 1$. En étudiant la suite $\left(\frac{u_{n+1}}{u_n}\right)$ préciser

- a) La nature de la série $\sum u_n$.
- b) La nature de la suite (u_n) .

2.

- a) Si $a_n = \ln\left(n\sin\left(\frac{1}{n}\right)\right)$, quelle est la nature de la série $\sum a_n$?
- b) Quelle est la nature de la suite (u_n) pour a = 1.

Allez à : Correction exercice 17

Exercice 18.

On considère la suite (u_n) définie par $u_1 = 1$ et $u_{n+1} = \frac{1}{n}e^{-u_n}$ pour tout $n \ge 1$.

- 1. Nature de la série $\sum u_n$?
- 2. Nature de la série $\sum (-1)^n u_n$?

Allez à : Correction exercice 18

Exercice 19.

Montrer que la suite $u_n = \frac{e^n n!}{n^{n+\frac{1}{2}}}$ converge, on pourra d'abord montrer que la série de terme général

$$z_n = \ln\left(\frac{u_{n+1}}{u_n}\right)$$

est convergente.

Allez à : Correction exercice 19

Exercice 20.

Nature de la série de terme général (convergence et absolue convergence).

$$w_n = \sum_{k=0}^n u_k v_{n-k}$$

Οù

$$u_n = \frac{(-1)^n}{(n+1)^2}$$
 et $v_n = \frac{(-1)^n}{n+1}$

Allez à : Correction exercice 20

Exercice 21.

Montrer que les séries de terme général

$$u_n = \frac{(-1)^n}{\sqrt{n}}$$
 et $v_n = \frac{(-1)^n}{\sqrt{n}} + \frac{1}{n}$

Ne sont pas de mêmes natures et que pourtant $u_n \sim v_n$.

Allez à : Correction exercice 21

Exercice 22. On pose

$$f(n) = \int_0^1 x^n e^{-x} dx, \quad n \in \mathbb{N}$$

1. Montrer que la suite f(n) est positive et décroissante. Au moyen d'une intégration par parties donner une relation de récurrence entre f(n) et f(n-1).

Montrer par récurrence que pour tout $n \ge 0$

$$f(n) = \frac{n!}{e} \left(e - \sum_{k=0}^{n} \frac{1}{k!} \right)$$

2. Montrer que l'on a :

$$\frac{1}{e(n+1)} \le f(n) \le \frac{1}{n+1}$$

En déduire la nature des séries

$$\sum_{n=1}^{\infty} f(n); \quad \sum_{n=1}^{\infty} \frac{f(n)}{n} \quad \text{et} \quad \sum_{n=1}^{\infty} (-1)^n f(n)$$

3. Déterminer le rayon de convergence de la série entière

$$\sum_{n=1}^{\infty} f(n) x^n$$

Exercice 23. On considère la série numérique de terme général u_n pour $n \ge 1$ et $a \in \mathbb{R}$:

$$u_n = \left(n\sin\left(\frac{1}{n}\right)\right)^{n^a}$$

- 1. Montrer que si cette série est convergente pour une valeur a donnée, elle converge pour tout $b \ge a$.
- 2. Montrer que si $a \le 2$ la série est divergente.

On pourra utiliser un développement limité de $ln(u_n)$.

- 3. On pose $a = 2 + \epsilon$ avec $0 < \epsilon < 1$ Montrer que u_n est équivalent à $\exp\left(-\frac{1}{6}n^{\epsilon}\right)$. En déduire que la série est alors convergente.
- 4. Donner toutes les valeurs de *a* pour lesquelles cette série converge.

Allez à : Exercice 23

Exercice 24.

Pour $n \in \mathbb{N}$, on pose :

$$u_n = \int_0^1 \frac{x^{2n}}{1+x^2} dx$$
 et $v_n = \frac{(-1)^n}{2n+1}$

1.

- a) Calculer u_0 .
- b) Montrer que pour tout $n \in \mathbb{N}$ on a :

$$0 \le u_n \le \frac{1}{2n+1}$$

2.

a) Montrer que pour tout $n \in \mathbb{N}$ on a :

$$u_n + u_{n+1} = \frac{1}{2n+1}$$

b) En déduire que :

$$\sum_{k=0}^{n} v_k = \frac{\pi}{4} + (-1)^n u_{n+1}$$

c) Montrer que la série de terme général v_n converge et calculer sa somme.

Allez à : Exercice 24

Corrections

Correction exercice 1.

1.

Il s'agit d'une série de Riemann divergente avec $\alpha = 1 \le 1$

2.

$$\frac{1}{2k+1} \sim \frac{1}{2k}$$

Il s'agit d'une série de Riemann divergente avec $\alpha = 1 \le 1$

Allez à : Exercice 1

Correction exercice 2.

 $\frac{n^2+1}{n^2} \rightarrow 1 \neq 0$ donc la série ne converge pas

 $\frac{2}{\sqrt{n}} = \frac{2}{n^{\frac{1}{2}}}$ il s'agit du terme général d'une série de Riemann divergente avec $\alpha = \frac{1}{2} \le 1$

$$\frac{(2n+1)^4}{(7n^2+1)^3} \sim \frac{2^4}{7^3} \times \frac{1}{n^2}$$

Il s'agit du terme général d'une série de Riemann convergente avec $\alpha = 2 > 1$

$$\left(1 - \frac{1}{n}\right)^n = e^{n\ln\left(1 - \frac{1}{n}\right)} = e^{n\left(-\frac{1}{n} + o\left(\frac{1}{n}\right)\right)} = e^{-1 + o(1)} \to \frac{1}{e} \neq 0$$

La série diverge.

$$ne^{\frac{1}{n}} - n = n\left(e^{\frac{1}{n}} - 1\right) = n\left(1 + \frac{1}{n} + o\left(\frac{1}{n}\right) - 1\right) = 1 + o(1) \to 1 \neq 0$$

La série diverge.

$$\ln(1+e^{-n}) \sim e^{-n} = \left(\frac{1}{e}\right)^n$$

Il s'agit d'une suite géométrique de raison dans]-1,1[.

Allez à : Exercice 2

Correction exercice 3.

1.

$$u_n = \left(\frac{n}{n+1}\right)^{n^2} = e^{n^2 \ln\left(\frac{n}{n+1}\right)} = e^{-n^2 \ln\left(\frac{n+1}{n}\right)} = e^{-n^2 \ln\left(1 + \frac{1}{n}\right)} = e^{-n^2 \left(\frac{1}{n} - \frac{1}{n^2} + o\left(\frac{1}{n^2}\right)\right)} = e^{-n+1 + o(1)}$$

$$= e^{-n}e^{1 + o(1)} \sim e^{-n} \times e = e\left(\frac{1}{e}\right)^n$$

Il s'agit d'une suite géométrique de raison dans]-1,1[, la série converge.

2.

$$u_n = \frac{1}{n\cos^2(n)} > \frac{1}{n}$$

Il s'agit d'une série à termes positifs supérieurs à $\frac{1}{n}$, qui est le terme général d'une série de Riemann divergente avec $\alpha = 1 \le 1$. La série diverge.

3.

$$\sqrt[n]{u_n} = \frac{1}{\ln(n)} \to 0$$

D'après la règle de Cauchy, 0 < 1, la série converge.

Allez à : Exercice 3

Correction exercice 4.

$$\sum_{n=1}^{N} u_n = \sum_{n=p^2}^{N} u_n + \sum_{n\neq p^2}^{N} u_n > \sum_{n=p^2}^{N} u_n = \sum_{n=p^2}^{N} \frac{1}{p}$$

Cette dernière série diverge (Riemann avec $\alpha = 1 \le 1$ donc la série de terme général u_n diverge. Expliquons quand même un peu

$$\sum_{n=1}^{N} u_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} + \frac{1}{8^2} + \frac{1}{3} + \frac{1}{10^2} + \cdots$$

Ainsi, il est plus clair que tous les « $\frac{1}{n}$ » sont dans la série et que donc la série diverge.

Allez à : Exercice 4

Correction exercice 5.

- $\frac{1}{5^n} = \left(\frac{1}{5}\right)^n$ est le terme général d'une série géométrique de raison dans]-1,1[, la série converge.
- $\left(\frac{-1}{3}\right)^n$ est le terme général d'une série géométrique de raison dans]-1,1[, la série converge.
- $\frac{2^n}{3^{n-2}} = 4 \times \left(\frac{2}{3}\right)^n$ est le terme général d'une série géométrique de raison dans]-1,1[, la série converge.
- $\left| \frac{\tan^n \left(\frac{\pi}{7} \right)}{3^{n+2}} \right| \le \frac{1}{3^{n+2}} = \frac{1}{9} \times \left(\frac{1}{3} \right)^n$ est le terme général d'une série géométrique de raison dans]-1,1[, la série converge.
- $\frac{9}{(3n+1)(3n+4)} \sim \frac{1}{n^2}$ est le terme général d'une série d'une série de Riemann convergente avec $\alpha = 2 > 1$.

Allez à : Exercice 5

Correction exercice 6.

 $\ln\left(1-\frac{1}{n^2}\right)$ est de signe constant (négatif) et

$$\ln\left(1-\frac{1}{n^2}\right) \sim -\frac{1}{n^2}$$

Est le terme général d'une série d'une série de Riemann convergente avec $\alpha = 2 > 1$.

Allez à : Exercice 6

Correction exercice 7.

Si la série de terme général u_n converge, alors $u_n \to 0$ donc $v_n \sim u_n$ comme ce sont des séries à termes positifs, la série de terme général v_n converge, si elle diverge alors la série de terme général v_n diverge, bref, les deux séries sont de mêmes natures.

Réciproquement

$$v_n = \frac{u_n}{1 + u_n} \Leftrightarrow v_n(1 + u_n) = u_n \Leftrightarrow v_n + u_n v_n = u_n \Leftrightarrow v_n = u_n(1 - v_n) \Leftrightarrow u_n = \frac{v_n}{1 - v_n}$$

On a encore $u_n \sim v_n$ donc les série sont de mêmes natures.

Allez à : Exercice 7

Correction exercice 8.

Si $\alpha > 1$, alors on utilise la règle de Riemann avec $\beta \in]\alpha, 1[$

$$n^{\beta} \frac{\ln(n)}{n^{\alpha}} = \frac{\ln(n)}{n^{\alpha-\beta}} \to 0 < 1$$

Lorsque $n \to +\infty$. Cela montre que la série de terme général $\frac{\ln(n)}{n^{\alpha}}$ converge car $\beta < 1$

Si $\alpha < 1$, alors on utilise la règle de Riemann avec $\beta \in]1, \alpha[$

$$n^{\beta} \frac{\ln(n)}{n^{\alpha}} = n^{\alpha - \beta} \ln(n) \to +\infty$$

Lorsque $n \to +\infty$. Cela montre que la série de terme général $\frac{\ln(n)}{n^{\alpha}}$ diverge car $\beta > 1$

Lorsque $\alpha = 1$, c'est plus compliqué, les règles de Riemann ne marche pas. Il s'agit d'une série à termes positifs, on peut appliquer la comparaison à une intégrale

$$x \to \frac{1}{x \ln(x)}$$

Est intégrable car

$$\int_{2}^{X} \frac{1}{x \ln(x)} dx = [\ln(\ln(x))]_{2}^{X} = \ln(\ln(X)) - \ln(\ln(2))) \to +\infty$$

Lorsque X tend vers l'infini, ce qui montre que l'intégrale est divergente, la fonction $x \to \frac{1}{x \ln(x)}$ est clairement décroissante et tend vers 0 en l'infini, donc la série de terme général $\frac{1}{n \ln(n)}$ diverge.

Allez à : Exercice 8

Remarque:

C'est ce que l'on appelle la règle de Duhamel.

Correction exercice 9.

1. La suite (u_n) est de signe constant

$$u_n \sim \frac{1}{n^2}$$

C'est le terme général d'une série de Riemann convergente avec $\alpha = 2 > 1$

Allez à : Exercice 9

2. La suite (u_n) est de signe constant

$$u_n \sim \frac{1}{n}$$

C'est le terme général d'une série de Riemann divergente avec $\alpha = 1 \le 1$

Allez à : Exercice 9

3. $u_n \rightarrow 1 \neq 0$ la série diverge grossièrement

Allez à : Exercice 9

4. La suite (u_n) est de signe constant

$$u_n \sim \frac{1}{n^2}$$

C'est le terme général d'une série de Riemann convergente avec $\alpha = 2 > 1$

Allez à : Exercice 9

5. Méfiance

$$u_n = \frac{1}{n^{1 + \frac{1}{\sqrt{n}}}} = \frac{1}{n} n^{-\frac{1}{\sqrt{n}}} = \frac{1}{n} e^{-\frac{1}{\sqrt{n}} \ln(n)}$$

Comme

$$\lim_{n \to +\infty} \frac{\ln(n)}{\sqrt{n}} = 0$$

On a

$$\lim_{n \to +\infty} e^{-\frac{1}{\sqrt{n}}\ln(n)} = 1$$

Ce qui montre que

$$u_n \sim \frac{1}{n}$$

C'est le terme général d'une série de Riemann divergente avec $\alpha = 1 \le 1$

Allez à : Exercice 9

6. u_n est de signe constant

$$u_n = \frac{1}{\ln(n^2 + 2)} = \frac{1}{\ln\left(n^2\left(1 + \frac{2}{n^2}\right)\right)} = \frac{1}{2\ln(n) + \ln\left(1 + \frac{2}{n^2}\right)} = \frac{1}{2\ln(n) + \frac{2}{n^2} + o\left(\frac{1}{n^2}\right)}$$

$$n^{\frac{1}{2}}u_n = n^{\frac{1}{2}}\frac{1}{2\ln(n) + \frac{2}{n^2} + o\left(\frac{1}{n^2}\right)} \to +\infty$$

D'après les règles de Riemann $n^{\alpha}u_n \to +\infty$ avec $\alpha < 1$ entraine que la série de terme général u_n diverge.

Allez à : Exercice 9

7. u_n est de signe constant

$$n^{\frac{5}{4}}u_n = n^{\frac{5}{4}}\frac{\ln(n)}{n^{\frac{3}{2}}} = \frac{\ln(n)}{n^{\frac{1}{4}}} \to 0$$

D'après les règles de Riemann $n^{\alpha}u_n \to +\infty$ avec $\alpha > 1$ entraine que la série de terme général u_n converge.

Allez à : Exercice 9

8. u_n est de signe constant

$$\frac{u_{n+1}}{u_n} = \frac{\frac{n+1}{2^{n+1}}}{\frac{n}{2^n}} = \frac{n+1}{n} \times \frac{1}{2} \to \frac{1}{2} < 1$$

D'après la règle de D'Alembert la série de terme général u_n converge.

Allez à : Exercice 9

9. u_n est de signe constant

$$u_n = \frac{2^n + 3^n}{n^2 + \ln(n) + 5^n} \sim \frac{3^n}{5^n} = \left(\frac{3}{5}\right)^n$$

 $\left(\frac{3}{5}\right)^n$ est le terme général d'une série géométrique convergente, la série de terme général u_n converge.

Allez à : Exercice 9

10. u_n est de signe constant

$$\frac{u_{n+1}}{u_n} = \frac{\frac{1}{(n+1)!}}{\frac{1}{n!}} = \frac{1}{n+1} \to 0 < 0$$

D'après la Règle de D'Alembert la série de terme général u_n converge.

Allez à : Exercice 9

11. u_n est de signe constant

$$\frac{u_{n+1}}{u_n} = \frac{\frac{(n+1)^{10000}}{(n+1)!}}{\frac{n^{10000}}{n!}} = \left(\frac{n+1}{n}\right)^{10000} \frac{n!}{(n+1)!} = \left(\frac{n+1}{n}\right)^{10000} \times \frac{1}{n+1} \to 0 < 1$$

D'après la Règle de D'Alembert la série de terme général u_n converge.

Allez à : Exercice 9

12. u_n est de signe constant

$$\frac{u_{n+1}}{u_n} = \frac{\frac{4^{n+2}((n+2)!)^2}{(2n+1)!}}{\frac{4^{n+1}((n+1)!)^2}{(2n-1)!}} = \frac{4^{n+2}((n+2)!)^2(2n-1)!}{4^{n+1}((n+1)!)^2(2n+1)!} = 4\frac{((n+2)^2((n+1)!)^2(2n-1)!}{((n+1)!)^2(2n+1)2n(2n-1)!} = 4\frac{(n+2)^2}{(2n+1)2n} \sim 1$$

Cà ce n'est pas de chance, sauf si on peut montrer que la limite est 1 par valeur supérieure

$$\frac{u_{n+1}}{u_n} = 4\frac{(n+2)^2}{(2n+1)2n} = \frac{4(n^2+4n+4)}{4n^2+2n} = \frac{4n^2+16n+16}{4n^2+2n} > 1$$

Ouf! La limite est 1⁺ donc la série de terme général diverge.

Allez à : Exercice 9

13. u_n est de signe constant

$$u_n = \left(\sin\left(\frac{1}{n}\right)\right)^n = e^{n\sin\left(\frac{1}{n}\right)} = e^{n\left(\frac{1}{n} - \frac{1}{6n^3} + o\left(\frac{1}{n^3}\right)\right)} = e^{1 - \frac{1}{6n^2} + o\left(\frac{1}{n^2}\right)} \to \frac{1}{e} \neq 0$$

La série de terme général u_n diverge grossièrement

Remarque : il était inutile de faire un développement limité à l'ordre 3 de $\sin\left(\frac{1}{n}\right)$.

Allez à : Exercice 9

14. u_n est de signe constant

$$u_n = \left(1 - \frac{1}{n}\right)^{n^2} = e^{n^2 \ln\left(1 - \frac{1}{n}\right)} = e^{n^2 \left(-\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right)} = e^{-n - \frac{1}{2} + o(1)} = e^{-n} e^{-\frac{1}{2} + o(1)} \sim \frac{1}{\sqrt{e}} \left(\frac{1}{e}\right)^n$$

 $\frac{1}{\sqrt{e}} \left(\frac{1}{e}\right)^n$ est le terme général d'une suite géométrique de raison $\frac{1}{e}$ strictement inférieure à 1. La série de terme général u_n converge.

Allez à : Exercice 9

15.

$$u_n = \left(1 + \frac{1}{n}\right)^{n^2} > 1$$

Donc u_n ne peut pas tendre vers 0.

Allez à : Exercice 9

Correction exercice 10.

On pose

$$f(x) = \frac{1}{\ln(\sqrt{x} + 1)}$$
$$f'(x) = -\frac{\left(\ln(\sqrt{x} + 1)\right)'}{\left(\ln(\sqrt{x} + 1)\right)^2} = -\frac{\frac{1}{2\sqrt{x}} \times \frac{1}{\ln(\sqrt{x} + 1)}}{\left(\ln(\sqrt{x} + 1)\right)^2} < 0$$

Donc la suite de terme général $u_n = f(n)$ est décroissante, elle tend vers 0, d'après le TSSA la série converge.

$$|u_n| = \frac{1}{\ln(\sqrt{n}+1)}$$

$$n^{\frac{1}{2}}|u_n| = \frac{n^{\frac{1}{2}}}{\ln(\sqrt{n}+1)} \to +\infty$$

D'après les règles de Riemann si $n^{\alpha}|u_n| \to +\infty$ avec $\alpha > 1$ la série de terme général $|u_n|$ diverge ce qui montre que la série de terme général ne converge pas absolument. Cette série est donc semiconvergente.

Allez à : Exercice 10

Correction exercice 11.

1. On pose $v_n = |u_n| = \frac{n^3}{n!}$

$$\frac{v_{n+1}}{v_n} = \frac{\frac{(n+1)^3}{(n+1)!}}{\frac{n^3}{n!}} = \left(\frac{n+1}{n}\right)^3 \times \frac{1}{n+1} \to 0$$

D'après la règle de D'Alembert, la série de terme général v_n converge, donc la série de terme général u_n converge absolument, donc elle converge.

2. On pose $v_n = |u_n| = \frac{|a|^n}{n!}$

$$\frac{v_{n+1}}{v_n} = \frac{\frac{|a|^{n+1}}{(n+1)!}}{\frac{|a|^n}{n!}} = \frac{|a|}{n+1} \to 0$$

D'après la règle de D'Alembert, la série de terme général v_n converge, donc la série de terme général u_n converge absolument, donc elle converge.

3. On pose $v_n = |u_n| = n|a|^{n-1}$

$$\frac{v_{n+1}}{v_n} = \frac{(n+1)|a|^n}{n|a|^{n-1}} = \frac{n}{n+1}|a| \to |a|$$

Si |a| < 1

D'après la règle de D'Alembert, la série de terme général v_n converge, donc la série de terme général u_n converge absolument, donc elle converge.

Si $|a| \ge 1$, $|u_n| \to +\infty$ donc la série diverge grossièrement

4.

$$u_n = \sin\left(\frac{n^2 + 1}{n}\pi\right) = \sin\left(n\pi + \frac{\pi}{n}\right) = (-1)^n \sin\left(\frac{\pi}{n}\right)$$

Il s'agit d'une série alternée car $a_n = \sin\left(\frac{\pi}{n}\right) \ge 0$, il est à peu près évident que a_n est décroissant et tend vers 0, d'après le TSSA, la série converge.

Remarque: on pourrait montrer qu'elle semi-convergente.

5.

$$u_n = (-1)^n \left(\sqrt{n+1} - \sqrt{n} \right) = (-1)^n \frac{n+1-n}{\sqrt{n+1} - \sqrt{n}} = (-1)^n \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

 $a_n = \frac{1}{\sqrt{n+1} + \sqrt{n}}$ est positif, décroissant et tend vers 0, d'après le TSSA la série converge.

6. On pose

$$V_N = \sum_{n=0}^{N} \sin(n) = \sum_{n=0}^{N} \text{Im}(e^{in}) = \text{Im}\left(\sum_{n=0}^{N} e^{in}\right)$$

Normalement il faudrait prendre la somme à partir de n = 1car u_0 n'est pas défini, mais cela ne change rien au fond.

$$\sum_{n=0}^{N} e^{in} = \sum_{n=0}^{N} (e^{i})^{n} = \frac{1 - e^{i(N+1)}}{1 - e^{ir}} = \frac{e^{\frac{i(N+1)}{2}} \left(e^{-\frac{i(N+1)}{2}} - e^{\frac{i(N+1)}{2}} \right)}{e^{\frac{i}{2}} \left(e^{-\frac{i}{2}} - e^{\frac{i}{2}} \right)} = e^{\frac{iN}{2}} \times \frac{-2i \sin\left(\frac{N+1}{2}\right)}{-2i \sin\left(\frac{1}{2}\right)}$$
$$= e^{\frac{iN}{2}} \times \frac{\sin\left(\frac{N+1}{2}\right)}{\sin\left(\frac{1}{2}\right)}$$

Donc

$$\left| \sum_{n=0}^{N} e^{in} \right| = \left| \frac{\sin\left(\frac{N+1}{2}\right)}{\sin\left(\frac{1}{2}\right)} \right| \le \frac{1}{\sin\left(\frac{1}{2}\right)}$$

Et

$$|V_N| = \left| \operatorname{Im} \left(\sum_{n=0}^N e^{in} \right) \right| \le \left| \sum_{n=0}^N e^{in} \right| \le \frac{1}{\sin\left(\frac{1}{2}\right)}$$

Les sommes partielles sont bornées et la suite $\frac{1}{n}$ est décroissante et tend vers 0. Cela montre que la série de terme général $u_n = \frac{\sin(n)}{n}$ converge.

7. Tentons de faire un développement limité en $\frac{1}{n^{\alpha}}$ avec $\alpha > 1$ donc à l'ordre 2 ou 3/2, dans le premier terme on va perdre un ordre à cause du n devant le ln et dans la cos la variable sera $1/\sqrt{n}$

$$u_n = n \ln\left(1 + \frac{1}{n}\right) - \cos\left(\frac{1}{\sqrt{n}}\right)$$

$$= n\left(\frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} + o\left(\frac{1}{n^3}\right)\right) - \left(1 - \frac{\left(\frac{1}{\sqrt{n}}\right)^2}{2!} + \frac{\left(\frac{1}{\sqrt{n}}\right)^4}{4!} + o\left(\left(\frac{1}{\sqrt{n}}\right)^4\right)\right)$$

$$= 1 - \frac{1}{2n} + \frac{1}{3n^2} + o\left(\frac{1}{n^2}\right) - \left(1 - \frac{1}{2n} + \frac{1}{24n^2} + o\left(\frac{1}{n^2}\right)\right) = \frac{7}{24n^2} + o\left(\frac{1}{n^2}\right) \sim \frac{7}{24n^2}$$

Il s'agit du terme général d'une série de Riemann convergente avec $\alpha=2>1$ donc la série de terme général u_n converge.

Allez à : Exercice 11

Correction exercice 12.

On pose $v_n = \frac{1}{n!}$, il s'agit d'une série absolument convergente en appliquant la règle de D'Alembert

$$\frac{u_{n+1}}{u_n} = \frac{\frac{1}{(n+1)!}}{\frac{1}{n!}} = \frac{1}{n+1} \to 0 < 1$$

On peut appliquer la formule du produit de deux séries absolument convergentes

$$\left(\sum_{n=0}^{+\infty} v_n\right) \left(\sum_{n=0}^{+\infty} v_n\right) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} v_{n-k} v_k\right) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \frac{1}{(n-k)! \, k!}\right) = \sum_{n=0}^{+\infty} u_n$$

Comme on le verra dans le chapitre « séries entières »

$$\sum_{n=0}^{+\infty} v_n = \sum_{n=0}^{+\infty} \frac{1}{n!} = e$$

Ce qui montre que

$$\sum_{n=0}^{+\infty} u_n = e^2$$

Allez à : Exercice 12

Correction exercice 13.

On pose

$$a_n = \frac{1}{n!}$$
 et $b_n = \frac{(-1)^n}{2^n}$

 a_n est le terme général d'une série absolument convergente en appliquant la règle de D'Alembert

$$\frac{a_{n+1}}{a_n} = \frac{\frac{1}{(n+1)!}}{\frac{1}{n!}} = \frac{1}{n+1} \to 0 < 1$$

 $|b_n| = \frac{1}{2^n}$ est le terme général d'une série géométrique convergente avec $q = \frac{1}{2} < 1$, donc la série de terme général b_n converge absolument

On peut appliquer la formule du produit de deux séries absolument convergentes

$$\left(\sum_{n=0}^{+\infty} a_n\right) \left(\sum_{n=0}^{+\infty} b_n\right) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} b_{n-k} a_k\right) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \frac{(-1)^{n-k}}{k! \, 2^{n-k}}\right) = \sum_{n=0}^{+\infty} u_n$$

$$\sum_{n=0}^{+\infty} a_n = e$$

Comme on le verra dans le chapitre « séries entières » et

$$\sum_{n=0}^{+\infty} b_n = \sum_{n=0}^{+\infty} \left(-\frac{1}{2} \right)^n = \frac{1}{1 - \left(-\frac{1}{2} \right)} = \frac{2}{3}$$

Finalement

$$\sum_{n=0}^{\infty} u_n = \frac{2e}{3}$$

Allez à : Exercice 13

Correction exercice 14.

1. $u_n \sim \frac{1}{n^2}$ qui est une suite de Riemann convergente car $\alpha = 2 > 1$ donc la série de terme général u_n converge.

On décompose cette fraction en élément simple

$$u_n = \frac{1}{n} - \frac{1}{n+1}$$

$$\sum_{k=1}^n u_k = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) = \sum_{k=1}^n \frac{1}{k} - \sum_{k=1}^n \frac{1}{k+1} = \sum_{k=1}^n \frac{1}{k} - \sum_{k'=2}^{n+1} \frac{1}{k'}$$

En posant k' = k + 1 dans la seconde somme. $k = 1 \Rightarrow k' = 2$ et $k = n \Rightarrow k' = n + 1$

$$\sum_{k=1}^{n} u_k = \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=2}^{n+1} \frac{1}{k}$$

En changeant k' en k.

$$\sum_{k=1}^{n} u_k = 1 - \frac{1}{n+1}$$

Allez à : Exercice 14

Car tous les termes entre k = 2 et k = n se simplifient.

$$\sum_{k=1}^{+\infty} u_k = \lim_{n \to +\infty} \sum_{k=1}^{n} u_k = 1$$

2. $u_n \sim \frac{1}{n^3}$ qui est une suite de Riemann convergente car $\alpha = 3 > 1$ donc la série de terme général u_n converge.

On décompose cette fraction en élément simple

$$u_n = \frac{\frac{1}{2}}{n} - \frac{1}{n+1} + \frac{\frac{1}{2}}{n+2}$$

$$\sum_{k=1}^n u_k = \sum_{k=1}^n \left(\frac{\frac{1}{2}}{k} - \frac{1}{k+1} + \frac{\frac{1}{2}}{k+2}\right) = \frac{1}{2} \sum_{k=1}^n \frac{1}{k} - \sum_{k=1}^n \frac{1}{k+1} + \frac{1}{2} \sum_{k=1}^n \frac{1}{k+2}$$

Dans la seconde somme on pose $k'=k+1, k=1 \Rightarrow k'=2$ et $k=n \Rightarrow k'=n+1$ Dans la troisième somme on pose $k''=k+2, k=1 \Rightarrow k''=3$ et $k=n \Rightarrow k''=n+3$

$$\sum_{k=1}^{n} u_k = \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{n+1} \frac{1}{k'} + \frac{1}{2} \sum_{k=1}^{n+2} \frac{1}{k''}$$

On change k' en k et k'' en k

$$\sum_{k=1}^{n} u_k = \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=2}^{n+1} \frac{1}{k} + \frac{1}{2} \sum_{k=3}^{n+2} \frac{1}{k}$$

On va réunir les valeurs de k comprises entre k = 3 et k = n

$$\sum_{k=1}^{n} u_k = \frac{1}{2} \left(1 + \frac{1}{2} + \sum_{k=3}^{n} \frac{1}{k} \right) - \left(\frac{1}{2} + \sum_{k=3}^{n} \frac{1}{k} + \frac{1}{n+1} \right) + \frac{1}{2} \left(\sum_{k=3}^{n} \frac{1}{k} + \frac{1}{n+1} + \frac{1}{n+2} \right)$$

$$= \frac{1}{2} \left(1 + \frac{1}{2} \right) - \frac{1}{2} + \frac{1}{2} \left(\frac{1}{n+1} + \frac{1}{n+2} \right) + \frac{1}{2} \sum_{k=3}^{n} \frac{1}{k} - \sum_{k=3}^{n} \frac{1}{k} + \frac{1}{2} \sum_{k=3}^{n} \frac{1}{k}$$

Les trois dernières sommes s'annulent et il reste

$$\sum_{k=1}^{n} u_k = \frac{1}{2} \left(1 + \frac{1}{2} \right) - \frac{1}{2} + \frac{1}{2} \left(\frac{1}{n+1} + \frac{1}{n+2} \right) = \frac{1}{4} + \frac{1}{2} \left(\frac{1}{n+1} + \frac{1}{n+2} \right)$$

$$\sum_{k=1}^{+\infty} u_k = \lim_{n \to +\infty} \sum_{k=1}^{n} u_k = \frac{1}{4}$$

Allez à : Exercice 14

3. $u_n \sim \frac{1}{n^2}$ qui est une suite de Riemann convergente car $\alpha = 2 > 1$ donc la série de terme général u_n converge.

On décompose cette fraction en élément simple

$$u_n = \frac{2n-1}{n(n-2)(n+2)} = \frac{\frac{1}{4}}{n} + \frac{\frac{3}{8}}{n-2} + \frac{-\frac{5}{8}}{n+2}$$

$$\sum_{k=3}^{n} u_k = \sum_{k=3}^{n} \left(\frac{\frac{1}{4}}{k} + \frac{\frac{3}{8}}{k-2} + \frac{-\frac{5}{8}}{k+2}\right) = \frac{1}{4} \sum_{k=3}^{n} \frac{1}{k} + \frac{3}{8} \sum_{k=3}^{n} \frac{1}{k-2} - \frac{5}{8} \sum_{k=3}^{n} \frac{1}{k+2}$$

Dans la seconde somme on pose $k'=k-2, k=3 \Rightarrow k'=1$ et $k=n \Rightarrow k'=n-2$ Dans la troisième somme on pose $k''=k+2, k=3 \Rightarrow k''=5$ et $k=n \Rightarrow k''=n+2$

$$\sum_{k=1}^{n} u_k = \frac{1}{4} \sum_{k=3}^{n} \frac{1}{k} + \frac{3}{8} \sum_{k'=1}^{n-2} \frac{1}{k'} - \frac{5}{8} \sum_{k''=5}^{n+2} \frac{1}{k''}$$

On change k' en k et k'' en k

$$\sum_{k=1}^{n} u_k = \frac{1}{4} \sum_{k=3}^{n} \frac{1}{k} + \frac{3}{8} \sum_{k=1}^{n-2} \frac{1}{k} - \frac{5}{8} \sum_{k=5}^{n+2} \frac{1}{k}$$

On va réunir les valeurs de k comprises entre k = 5 et k = n - 2

$$\begin{split} \sum_{k=3}^{n} u_k &= \frac{1}{4} \left(\frac{1}{3} + \frac{1}{4} + \sum_{k=3}^{n-2} \frac{1}{k} + \frac{1}{n-1} + \frac{1}{n} \right) + \frac{3}{8} \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \sum_{k=5}^{n-2} \frac{1}{k} + \frac{1}{n+1} \right) \\ &- \frac{5}{8} \left(\sum_{k=5}^{n-2} \frac{1}{k} + \frac{1}{n-1} + \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} \right) \\ &= \frac{1}{4} \left(\frac{1}{3} + \frac{1}{4} + \frac{1}{n-1} + \frac{1}{n} \right) + \frac{3}{8} \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \right) - \frac{5}{8} \left(\frac{1}{n-1} + \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} \right) \\ &+ \frac{1}{4} \sum_{k=2}^{n-2} \frac{1}{k} + \frac{3}{8} \sum_{k=2}^{n-2} \frac{1}{k} - \frac{5}{8} \sum_{k=2}^{n-2} \frac{1}{k} \end{split}$$

Les trois dernières sommes s'annulent et il reste

$$\sum_{k=3}^{n} u_k = \frac{1}{4} \left(\frac{1}{3} + \frac{1}{4} + \frac{1}{n-1} + \frac{1}{n} \right) + \frac{3}{8} \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \right) - \frac{5}{8} \left(\frac{1}{n-1} + \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} \right)$$

$$\sum_{k=3}^{+\infty} u_k = \lim_{n \to +\infty} \sum_{k=1}^{n} u_k = \frac{1}{4} \left(\frac{1}{3} + \frac{1}{4} \right) + \frac{3}{8} \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \right) = \frac{7}{48} + \frac{25}{32} = \frac{89}{96}$$

Allez à : Exercice 14

4. Il est à peu près clair que u_n tend vers 0, c'est déjà cela, mais comment, on va faire un développement limité en $\frac{1}{n}$ de $|u_n| = \ln\left(\frac{n+1}{n-1}\right)$ (car $\frac{n+1}{n-1} > 1$), on pose $x = \frac{1}{n}$ donc $n = \frac{1}{n}$

On fait un développement limité à l'ordre 2 car la série de Riemann $\frac{1}{n}$ est divergente et que la série de Riemann $\frac{1}{n^2}$ est convergente (En général il faut aller à un ordre strictement supérieur à 1, dans les cas raisonnable).

$$|u_n| = \ln\left(\frac{\frac{1}{x} + 1}{\frac{1}{x} - 1}\right) = \ln\left(\frac{1 + x}{1 - x}\right) = \ln(1 + x) - \ln(1 - x) = x - \frac{x^2}{2} + o(x^2) - \left(-x - \frac{x^2}{2} + o(x^2)\right)$$
$$= 2x + o(x^2) = \frac{1}{n} + o\left(\frac{1}{n^2}\right) \sim \frac{1}{n}$$

Et voilà, c'est raté la série de terme général u_n ne converge pas absolument, on va essayer de montrer qu'elle converge simplement en utilisant le fait que cette série est alternée.

$$v_n = \ln\left(\frac{n+1}{n-1}\right) = f(n) \quad \text{avec} \quad f(x) = \ln\left(\frac{x+1}{x-1}\right) = \ln(x+1) - \ln(x-1), x \ge 2$$
$$f'(x) = \frac{1}{x+1} - \frac{1}{x-1} = \frac{x-1-(x+1)}{x^2-1} = -\frac{2}{x^2-1} < 0$$

De plus

$$\lim_{n\to +\infty} v_n = \lim_{n\to +\infty} \ln\left(\frac{n+1}{n-1}\right) = 0$$
 Donc la série de terme général $u_n = (-1)^n v_n$ est convergente.

$$\sum_{k=2}^{n} (-1)^k \ln\left(\frac{k+1}{k-1}\right) = \sum_{k=2}^{n} (-1)^k (\ln(k+1) - \ln(k-1))$$
$$= \sum_{k=2}^{n} (-1)^k \ln(k+1) - \sum_{k=2}^{n} (-1)^k \ln(k-1)$$

Dans la première somme on pose k' = k + 1, $k = 2 \Rightarrow k' = 3$ et $k = n \Rightarrow k' = n + 1$ Dans la seconde somme on pose $k''=k-1, k=2 \Rightarrow k'=1$ et $k=n \Rightarrow k''=n-1$

$$\sum_{k=2}^{n} (-1)^k \ln \left(\frac{k+1}{k-1} \right) = \sum_{k'=3}^{n+1} (-1)^{k'-1} \ln(k') - \sum_{k''=1}^{n-1} (-1)^{k''+1} \ln(k'')$$

On remarque que $(-1)^{k''+1} = (-1)^{k''-1}(-1)^2 = (-1)^{k''-1}$, puis on remplace k' et k'' par k dans chacune des sommes

$$\sum_{k=2}^{n} (-1)^k \ln\left(\frac{k+1}{k-1}\right) = \sum_{k=3}^{n+1} (-1)^{k-1} \ln(k) - \sum_{k=1}^{n-1} (-1)^{k-1} \ln(k)$$

$$= \sum_{k=3}^{n-1} (-1)^{k-1} \ln(k) + (-1)^{n-1} \ln(n) + (-1)^{(n+1)-1} \ln(n+1)$$

$$- \left((-1)^{1-1} \ln(1) + (-1)^{2-1} \ln(2) + \sum_{k=3}^{n-1} (-1)^{k-1} \ln(k) \right)$$

Les deux sommes se simplifient

$$\sum_{k=2}^{n} (-1)^k \ln\left(\frac{k+1}{k-1}\right) = \sum_{k=3}^{n+1} (-1)^{k-1} \ln(k) - \sum_{k=1}^{n-1} (-1)^{k-1} \ln(k)$$

$$= (-1)^{n-1} \ln(n) + (-1)^n \ln(n+1) + \ln(2) = (-1)^{n-1} (\ln(n) - \ln(n+1)) + \ln(2)$$

$$= (-1)^{n-1} \ln\left(\frac{n}{n+1}\right) + \ln(2)$$

$$\sum_{n=0}^{\infty} (-1)^n \ln\left(\frac{n+1}{n-1}\right) = \lim_{n \to +\infty} \sum_{k=2}^n (-1)^k \ln\left(\frac{k+1}{k-1}\right) = \lim_{n \to +\infty} \left((-1)^{n-1} \ln\left(\frac{n}{n+1}\right) + \ln(2)\right) = \ln(2)$$

Allez à : Exercice 14

5. $u_n = \ln\left(1 - \frac{1}{(n+2)^2}\right) \sim -\frac{1}{(n+2)^2} \sim -\frac{1}{n^2}$, il s'agit d'une suite de Riemann avec $\alpha = 2 > 1$, la série converge.

Petit calcul

$$1 - \frac{1}{(k+2)^2} = \frac{(k+2)^2 - 1}{(k+2)^2} = \frac{(k+2-1)(k+2-1)}{(k+2)^2} = \frac{(k+3)(k+1)}{(k+2)^2}$$
$$\sum_{k=1}^{n} \ln\left(1 - \frac{1}{(k+2)^2}\right) = \sum_{k=1}^{n} \ln\left(\frac{(k+3)(k+1)}{(k+2)^2}\right) = \sum_{k=1}^{n} \ln(k+3) + \sum_{k=1}^{n} \ln(k+1) - 2\sum_{k=1}^{n} \ln(k+2)$$

Dans la première somme on pose k' = k + 3, $k = 1 \Rightarrow k' = 4$, $k = n \Rightarrow k' = n + 3$

Dans la deuxième somme on pose $k''=k+1, k=1 \Rightarrow k''=2, k=n \Rightarrow k''=n+1$

Dans la troisième somme on pose k''' = k + 2, $k = 1 \Rightarrow k''' = 3$, $k = n \Rightarrow k'' = n + 2$

$$\sum_{k=1}^{n} \ln\left(1 - \frac{1}{(k+2)^2}\right) = \sum_{k'=4}^{n+3} \ln(k') + \sum_{k''=2}^{n+1} \ln(k'') - 2\sum_{k'''=3}^{n+2} \ln(k''')$$

On remplace k', k'' et k''' par k

$$\sum_{k=1}^{n} \ln\left(1 - \frac{1}{(k+2)^2}\right) = \sum_{k=4}^{n+3} \ln(k) + \sum_{k=2}^{n+1} \ln(k) - 2\sum_{k=3}^{n+2} \ln(k)$$

On va réunir les sommes entre k = 4 et k = n + 1

$$\sum_{k=1}^{n} \ln\left(1 - \frac{1}{(k+2)^2}\right)$$

$$= \left(\sum_{k=4}^{n+1} \ln(k) + \ln(n+2) + \ln(n+3)\right) + \left(\ln(2) + \ln(3) + \sum_{k=4}^{n+1} \ln(k)\right)$$

$$-2\left(\ln(3) + \sum_{k=4}^{n+1} \ln(k) + \ln(n+1)\right)$$

Les sommes de ln(k) de k = 4 à k = n + 1 s'éliminent.

$$\sum_{k=1}^{n} \ln\left(1 - \frac{1}{(k+2)^2}\right) = (\ln(n+2) + \ln(n+3)) + (\ln(2) + \ln(3)) - 2(\ln(3) + \ln(n+1))$$

$$= \ln\left(\frac{(n+2)(n+3)}{(n+1)^2}\right) + \ln(2) - \ln(3)$$

$$\lim_{n \to +\infty} \frac{(n+2)(n+3)}{(n+1)^2} = 1$$

donc

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \ln\left(1 - \frac{1}{(k+2)^2}\right) = \ln(2) - \ln(3) = \ln\left(\frac{2}{3}\right)$$

Allez à : Exercice 14

Correction exercice 15.

$$\sum_{k=0}^{n} u_k = \sum_{k=0}^{n} (av_k + bv_{k+1} + cv_{k+2}) = a\sum_{k=0}^{n} v_k + b\sum_{k=0}^{n} v_{k+1} + c\sum_{k=0}^{n} v_{k+2}$$

Dans la deuxième somme on pose $k'=k+1, k=0 \Rightarrow k'=1$ et $k=n \Rightarrow k'=n+1$ Dans la troisième somme on pose $k''=k+2, k=0 \Rightarrow k'=2$ et $k=n \Rightarrow k'=n+2$

$$\sum_{k=0}^{n} u_k = a \sum_{k=0}^{n} v_k + b \sum_{k'=1}^{n+1} v_{k'} + c \sum_{k''=2}^{n+2} v_{k''}$$

On change k' et k'' par k.

$$\sum_{k=0}^{n} u_k = a \sum_{k=0}^{n} v_k + b \sum_{k=1}^{n+1} v_k + c \sum_{k=2}^{n+2} v_k$$

On réunit les sommes entre k = 2 et k = n

$$\sum_{k=0}^{n} u_k = a \left(v_0 + v_1 + \sum_{k=2}^{n} v_k \right) + b \left(v_1 + \sum_{k=2}^{n} v_k + v_{n+1} \right) + c \left(\sum_{k=2}^{n} v_k + v_{n+1} + v_{n+2} \right)$$

$$= a(v_0 + v_1) + bv_1 + bv_{n+1} + c(v_{n+1} + v_{n+2}) + (a+b+c) \sum_{k=2}^{n} v_k$$

$$= a(v_0 + v_1) + bv_1 + bv_{n+1} + c(v_{n+1} + v_{n+2})$$

Car a + b + c = 0

La suite tend vers 0 donc

$$\lim_{n \to +\infty} \sum_{k=0}^{n} u_k = \lim_{n \to +\infty} \left(a(v_0 + v_1) + bv_1 + bv_{n+1} + c(v_{n+1} + v_{n+2}) \right) = a(v_0 + v_1) + bv_1$$

Allez à : Exercice 15

Correction exercice 16.

1. On va d'abord diviser $n^3 + 1$ par $n^2 + 1$, ce qui donne $n^3 + 1 = (n^2 + 1)n + (-n + 1)$, donc $n^3 + 1 = -n + 1$

$$\frac{n^3+1}{n^2+1} = n + \frac{-n+1}{n^2+1}$$

Et alors

$$u_n = \sin\left(\pi \frac{n^3 + 1}{n^2 + 1}\right) = \sin\left(n\pi + \frac{-n + 1}{n^2 + 1}\pi\right) = (-1)^n \sin\left(\frac{-n + 1}{n^2 + 1}\pi\right)$$

On va montrer que la série est alternée, mais comme -n+1 < 0, le sinus va être négatif aussi, on va légèrement modifier u_n

$$u_n = \sin\left(\pi \frac{n^3 + 1}{n^2 + 1}\right) = (-1)^{n+1} \sin\left(\frac{n - 1}{n^2 + 1}\pi\right)$$

Puis on va montrer que $v_n = \sin\left(\frac{n-1}{n^2+1}\pi\right)$ est décroissante et qu'elle tend vers 0

 $\frac{n-1}{n^2+1}$ tend vers 0, donc v_n tend vers $\sin(0) = 0$.

Avant de montrer que la suite est décroissante on va montrer que $\frac{n-1}{n^2+1}\pi \in \left]0,\frac{\pi}{2}\right[$

 $\frac{n-1}{n^2+1}\pi > 0$ c'est clair

$$\frac{\pi}{2} - \frac{n-1}{n^2+1}\pi = \left(\frac{1}{2} - \frac{n-1}{n^2+1}\right)\pi = \frac{n^2+1-2(n-1)\pi}{2(n^2+1)} = \frac{n^2-2n+3\pi}{2(n^2+1)} = \frac{(n-1)(n-3)\pi}{2(n^2+1)} > 0$$

Pour n > 3 (n tend vers l'infini donc on n'a pas de problème pour les petites valeurs de n)

$$v_n = \sin\left(\frac{n-1}{n^2+1}\pi\right) = f(n)$$
 avec $f(x) = \sin\left(\frac{x-1}{x^2+1}\pi\right)$

$$f'(x) = \left(\frac{x-1}{x^2+1}\pi\right)' \cos\left(\frac{x-1}{x^2+1}\pi\right) = \pi \frac{1 \times (x^2+1) - (x-1) \times 2x}{(x^2+1)^2} \cos\left(\frac{x-1}{x^2+1}\pi\right)$$
$$= \pi \frac{-x^2+2x+1}{(x^2+1)^2} \cos\left(\frac{x-1}{x^2+1}\pi\right)$$

Au moins pour x assez grand, $-x^2 + 2x + 1 < 0$ et pour x assez grand (que 3) $\frac{x-1}{x^2+1}\pi \in \left]0, \frac{\pi}{2}\right[$ donc $\cos\left(\frac{x-1}{x^2+1}\pi\right) > 0$, la fonction est décroissante donc la suite est décroissante. Finalement il s'agit d'une série alternée convergente.

2.

$$u_n = \left(1 - \cos\left(\frac{\pi}{n}\right)\right) (\ln(n))^{2011} = \left(1 - \left(1 - \frac{\left(\frac{\pi}{n}\right)^2}{2} + o\left(\frac{1}{n^2}\right)\right)\right) (\ln(n))^{2011}$$

$$= \left(\frac{\pi^2}{2n^2} + o\left(\frac{1}{n^2}\right)\right) (\ln(n))^{2011} \sim \frac{\pi^2}{2n^2} (\ln(n))^{2011}$$

$$n^{\frac{3}{2}} \frac{\pi^2}{2n^2} (\ln(n))^{2011} = \frac{\pi^2}{2n^{\frac{1}{2}}} (\ln(n))^{2011} \to 0$$

D'après la règle de Riemann la série de terme général u_n converge.

3. On rappelle que pour tout $x \ge 0$, $\sin(x) \le x$

$$0 \le u_n = \int_0^{\frac{\pi}{n}} \sqrt{\sin(x)} \, dx \le \int_0^{\frac{\pi}{n}} \sqrt{x} \, dx = \left[\frac{2}{3} x^{\frac{3}{2}} \right]_0^{\frac{\pi}{n}} = \frac{2\pi^{\frac{3}{2}}}{3} \times \frac{1}{n^{\frac{3}{2}}}$$

 $\frac{1}{\frac{3}{2}}$ est le terme général d'une série de Riemann convergente, avec $\alpha = \frac{3}{2} > 1$. Donc la série de terme général u_n converge.

4. $u_n = \frac{1 + (-1)^n \sqrt{n}}{1 + n}$ n'est pas de signe constant mais il parait délicat d'appliquer le TSSA

$$u_n = \frac{1 + (-1)^n \sqrt{n}}{1 + n} = \frac{1}{1 + n} + (-1)^n \frac{\sqrt{n}}{1 + n}$$

 $\frac{1}{n+1} \sim \frac{1}{n}$ est le terme général d'une série de Riemann avec $\alpha = 1 \le 1$, donc divergente.

Posons
$$f(x) = \frac{\sqrt{x}}{1+x}$$
, on a alors $f(n) = \frac{\sqrt{n}}{1+n}$
 $f(n) > 0$ et $\lim_{n \to +\infty} f(n) = 0$

C'est évident. Et pour tout x > 1

$$f'(x) = \frac{\frac{1}{2\sqrt{x}}(1+x) - \sqrt{x}}{(1+x)^2} = \frac{(1+x) - 2x}{2\sqrt{x}(1+x)^2} = \frac{1-x}{2\sqrt{x}(1+x)^2} < 0$$

Ce qui montre que la suite $\left(\frac{\sqrt{n}}{1+n}\right)$ est décroissante, d'après le TSSA la série de terme général $(-1)^n \frac{\sqrt{n}}{1+n}$ converge.

 u_n est la somme du terme général d'une série divergente $(\frac{1}{n+1})$ et du terme général d'une série convergente $(-1)^n \frac{\sqrt{n}}{1+n}$, donc la série de terme général u_n diverge.

5. D'après la règle de Cauchy

$$(u_n)^{\frac{1}{n}} = \left(\frac{1}{(\ln(n))^n}\right)^{\frac{1}{n}} = \frac{1}{\ln(n)} \to 0 < 1$$

Donc la série de terme général u_n converge.

6. Cela va dépendre de la valeur de α

$$(u_n)^{\frac{1}{n}} = \left(\frac{2^n}{n^2}(\sin(\alpha))^{2n}\right)^{\frac{1}{n}} = \frac{2\sin^2(\alpha)}{n^{\frac{2}{n}}}$$
$$n^{\frac{2}{n}} = e^{\frac{2}{n}\ln(n)} \to e^0 = 1$$

Donc

$$(u_n)^{\frac{1}{n}} \to 2\sin^2(\alpha)$$

D'après la règle de Cauchy

Si $2\sin^2(\alpha) < 1$, autrement dit si $\sin^2(\alpha) < \frac{1}{2}$, soit encore $-\frac{\sqrt{2}}{2} < \sin(\alpha) < \frac{\sqrt{2}}{2}$, c'est-à-dire si $\alpha \in \left] -\frac{\pi}{4} + 2k\pi, \frac{\pi}{4} + 2k\pi \right[$ avec $k \in \mathbb{Z}$ ou $\alpha \in \left] \frac{3\pi}{4} + 2k\pi, \frac{5\pi}{4} + 2k\pi \right[$ avec $k \in \mathbb{Z}$. Cela se voit assez facilement sur le cercle trigonométrique.

La série de terme général u_n converge

Si $2\sin^2(\alpha) > 1$, autrement dit si $\sin^2(\alpha) > \frac{1}{2}$, soit encore $-1 \le \sin(\alpha) < -\frac{\sqrt{2}}{2}$ ou $\frac{\sqrt{2}}{2} < \sin(\alpha) \le 1$, c'est-à-dire si $\alpha \in \left] \frac{\pi}{4} + 2k\pi, \frac{3\pi}{4} + 2k\pi \right[$ avec $k \in \mathbb{Z}$ ou $\alpha \in \left] \frac{5\pi}{4} + 2k\pi, \frac{7\pi}{4} + 2k\pi \right[$ avec $k \in \mathbb{Z}$ La série de terme général u_n diverge.

Si $2 \sin^2(\alpha) = 1$ on ne peut pas conclure avec la règle de Cauchy, mais alors

$$u_n = \frac{2^n}{n^2} (\sin(\alpha))^{2n} = \frac{(2\sin^2(\alpha))^n}{n^2} = \frac{1}{n^2}$$

Qui est le terme général d'une série de Riemann convergente avec $\alpha = 2 > 1$

Allez à : Exercice 16

Correction exercice 17.

1.

a. La suite u_n n'est pas forcément positive mais à partir d'un certain rang $0 < \frac{a}{k} < \pi$ donc les termes $\sin\left(\frac{a}{k}\right)$ sont positifs donc u_n ne change plus de signe lorsque que n augmente. Elle est de signe constant.

$$\frac{u_{n+1}}{u_n} = \frac{(n+1)! \prod_{k=1}^{n+1} \sin\left(\frac{a}{k}\right)}{n! \prod_{k=1}^{n} \sin\left(\frac{a}{k}\right)} = (n+1) \sin\left(\frac{a}{n+1}\right) \sim (n+1) \times \frac{a}{n+1} = a$$

D'après la règle de D'Alembert si a < 1 alors la série converge et si a > 1 la série diverge.

b. Si la série converge alors la suite tend vers 0.

2.

a. $\sin\left(\frac{1}{n}\right) \sim \frac{1}{n}$ donc a_n tend vers 0, on va faire un développement limité de a_n en $\frac{1}{n}$ à l'ordre 2. Attention en multipliant par n on va perdre un ordre. Remarque $\sin\left(\frac{1}{n}\right) < \frac{1}{n}$ donc $n\sin\left(\frac{1}{n}\right) < 1$ et la suite a_n est négatif (donc de signe constant).

$$a_n = \ln\left(n\sin\left(\frac{1}{n}\right)\right) = \ln\left(n\left(\frac{1}{n} - \frac{1}{6n^3} + o\left(\frac{1}{n^3}\right)\right)\right) = \ln\left(1 - \frac{1}{6n^2} + o\left(\frac{1}{n^2}\right)\right) = -\frac{1}{6n^2} + o\left(\frac{1}{n^2}\right)$$

$$\sim -\frac{1}{6n^2}$$

 $-\frac{1}{6n^2}$ est le terme général d'une série de Riemann convergente ($\alpha=2>1$). Donc la série de terme général a_n converge.

b. Pour a = 1

$$u_n = n! \prod_{k=1}^n \sin\left(\frac{1}{k}\right) = \prod_{k=1}^n k \sin\left(\frac{1}{k}\right)$$

Donc

$$\ln(u_n) = \ln\left(\prod_{k=1}^n k \sin\left(\frac{1}{k}\right)\right) = \sum_{k=1}^n \ln\left(k \sin\left(\frac{1}{k}\right)\right) = \sum_{k=1}^n a_k$$

La série de terme général a_n converge, donc la suite (u_n) converge.

Allez à : Exercice 17

Correction exercice 18.

1. Dans un premier temps remarquons que pour tout $n \ge 1$, $u_n > 0$, on en déduit que

$$0 < u_{n+1} < \frac{1}{n}$$

Cela montre que la suite (u_n) tend vers 0 mais cela ne suffit pas pour montrer que la série est convergente (si on avait pu montrer que $0 < u_{n+1} < \frac{1}{n^2}$ là cela aurait été bon).

Dans un deuxième temps on va faire un développement limité en « u_n »

$$u_{n+1} = \frac{1}{n} (1 - u_n + o(u_n)) = \frac{1}{n} - \frac{u_n}{n} + o(\frac{u_n}{n}) \sim \frac{1}{n}$$

 $\frac{1}{n}$ est le terme général d'une série de Riemann divergente donc la série de terme général u_n diverge.

2.

$$(-1)^{n+1}u_{n+1} = \frac{(-1)^{n+1}}{n} - (-1)^{n+1}\frac{u_n}{n} + o\left(\frac{u_n}{n}\right)$$

 $\frac{(-1)^{n+1}}{n}$ est une série alternée, $\frac{1}{n}$ tend vers 0 en décroissant, c'est le terme général d'une série de Riemann.

$$\left| (-1)^{n+1} \frac{u_n}{n} + o\left(\frac{u_n}{n}\right) \right| \sim \frac{u_n}{n}$$

Et $0 < \frac{u_n}{n} < \frac{1}{n(n-1)} \sim \frac{1}{n^2}$ par conséquent $(-1)^{n+1} \frac{u_n}{n} + o\left(\frac{u_n}{n}\right)$ est le terme général d'une série absolument convergente, c'est donc le terme général d'une série convergente et enfin $(-1)^{n+1}u_{n+1}$ est le terme général d'une série convergente. (il en est de même pour $(-1)^n u_n$ évidemment).

Allez à : Exercice 18

Correction exercice 19.

$$\frac{u_{n+1}}{u_n} = \frac{\frac{e^{n+1}(n+1)!}{(n+1)^{n+1+\frac{1}{2}}}}{\frac{e^n n!}{n^{n+\frac{1}{2}}}} = \frac{e^{n+1}(n+1)! n^{n+\frac{1}{2}}}{e^n n! (n+1)^{n+\frac{1}{2}}(n+1)} = \frac{e^1(n+1)n^{n+\frac{1}{2}}}{(n+1)^{n+\frac{1}{2}}(n+1)} = \frac{e^n^{n+\frac{1}{2}}}{(n+1)^{n+\frac{1}{2}}}$$

$$= e\left(\frac{n}{n+1}\right)^{n+\frac{1}{2}} = e^{\left(\frac{n+\frac{1}{2}}{n+1}\right)\ln\left(\frac{n}{n+1}\right)} = e^{\left(\frac{n+\frac{1}{2}}{n+1}\right)\ln\left(\frac{n+1}{n}\right)} = e^{-\left(\frac{n+\frac{1}{2}}{n+1}\right)\ln\left(\frac{n+1}{n}\right)}$$

Le but est de faire un développement limité de $\frac{u_{n+1}}{u_n}$ en $\frac{1}{n}$ à l'ordre 2.

$$\frac{u_{n+1}}{u_n} = ee^{-\left(n + \frac{1}{2}\right)\left(\frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} + o\left(\frac{1}{n^3}\right)\right)} = ee^{-\left(1 - \frac{1}{2n} + \frac{1}{3n^2} + \frac{1}{2n} - \frac{1}{4n^2} + o\left(\frac{1}{n}\right)\right)} = ee^{-1 + \frac{1}{2n} - \frac{1}{3n^2} - \frac{1}{2n} + \frac{1}{4n^2} + o\left(\frac{1}{n}\right)}$$

$$= e^{\frac{1}{12n^2} + o\left(\frac{1}{n}\right)} = 1 + \frac{1}{12n^2} + o\left(\frac{1}{n^2}\right)$$

Par conséquent

$$z_n = \ln\left(1 + \frac{1}{12n^2} + o\left(\frac{1}{n^2}\right)\right) = \frac{1}{12n^2} + o\left(\frac{1}{n^2}\right) \sim \frac{1}{12n^2}$$

 $\frac{1}{12n^2}$ est le terme général d'une série de Riemann convergente donc z_n est le terme général d'une série convergente.

D'autre part

$$\sum_{k=1}^{n} z_k = \sum_{k=1}^{n} \ln\left(\frac{u_{k+1}}{u_k}\right) = \sum_{k=1}^{n} (\ln(u_{k+1}) - \ln(u_k)) = \sum_{k=1}^{n} \ln(u_{k+1}) - \sum_{k=1}^{n} \ln(u_k)$$

Dans la première somme on pose $k'=k+1, k=1 \Rightarrow k'=2$ et $k=n \Rightarrow k'=n+2$

$$\sum_{k=1}^{n} z_k = \sum_{k'=2}^{n+1} \ln(u_{k'}) - \sum_{k=1}^{n} \ln(u_k)$$

On change k' en k dans la première somme et on simplifie

$$\sum_{k=1}^{n} z_k = \ln(u_{n+1}) - \ln(u_1)$$

$$\ln(u_{n+1}) = \sum_{k=1}^{n} z_k + \ln(u_1)$$

La série de terme général z_k converge donc $\ln(u_{n+1})$ converge et finalement u_{n+1} admet une limite finie.

Allez à : Exercice 19

Correction exercice 20.

Commençons par une mauvaise nouvelle, si u_n et v_n sont les termes généraux de séries absolument convergente alors w_n est le terme général de la série produit, qui est convergente et on a :

$$\sum_{n=0}^{+\infty} w_n = \sum_{n=0}^{+\infty} \sum_{k=0}^{n} u_k v_{n-k} = \left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right)$$

Seulement voilà la série de terme général v_n ne converge pas absolument alors il faut faire autrement.

$$\sum_{n=0}^{N} w_n = \sum_{n=0}^{N} \left(\sum_{k=0}^{n} u_k v_{n-k} \right) = \sum_{n=0}^{N} \left(\sum_{k=0}^{n} \frac{(-1)^k}{(k+1)^2} \frac{(-1)^{n-k}}{n-k+1} \right)$$
$$= \sum_{n=0}^{N} \left((-1)^n \sum_{k=0}^{n} \frac{1}{(k+1)^2 (n-k+1)} \right)$$

Puis on va décomposer la fraction rationnelle $\frac{1}{(k+1)^2(n-k+1)}$ en éléments simples, il existe a, b et c (ces trois constantes peuvent dépendre de n) tels que :

$$\frac{1}{(k+1)^2(n-k+1)} = \frac{a}{(k+1)^2} + \frac{b}{k+1} + \frac{c}{n-k+1}$$

Je multiplie par $(k+1)^2$, puis k=-1

$$a = \left[\frac{1}{n-k+1}\right]_{k=-1} = \frac{1}{n+2}$$

Je multiple par n - k + 1, puis k = n + 1

$$c = \left[\frac{1}{(k+1)^2}\right]_{k=n+1} = \frac{1}{(n+2)^2}$$

Je multiplie par k, puis $k \to +\infty$

$$0 = b - c \Rightarrow b = \frac{1}{(n+2)^2}$$

Finalement on a

$$\frac{1}{(k+1)^2(n-k+1)} = \frac{\frac{1}{n+2}}{(k+1)^2} + \frac{\frac{1}{(n+2)^2}}{k+1} + \frac{\frac{1}{(n+2)^2}}{n-k+1}$$

Ce que l'on remplace dans la somme partielle

$$\sum_{n=0}^{N} w_n = \sum_{n=0}^{N} \left((-1)^n \sum_{k=0}^{n} \left(\frac{\frac{1}{n+2}}{(k+1)^2} + \frac{\frac{1}{(n+2)^2}}{k+1} + \frac{\frac{1}{(n+2)^2}}{n-k+1} \right) \right)$$

$$= \sum_{n=0}^{N} \left((-1)^n \left(\frac{1}{n+2} \sum_{k=0}^{n} \frac{1}{(k+1)^2} + \frac{1}{(n+2)^2} \sum_{k=0}^{n} \frac{1}{k+1} + \frac{1}{(n+2)^2} \sum_{k=0}^{n} \frac{1}{n-k+1} \right) \right)$$

Puis on va faire le changement d'indice k' = n - k dans la somme

$$\sum_{k=0}^{n} \frac{1}{n-k+1}$$

$$k = 0 \Rightarrow k' = n \quad \text{et} \quad k = n \Rightarrow k' = 0$$

$$\sum_{k=0}^{n} \frac{1}{n-k+1} = \sum_{k'=0}^{n} \frac{1}{k'+1} = \sum_{k=0}^{n} \frac{1}{k+1}$$

Ce que l'on remplace dans la somme partielle

$$\sum_{n=0}^{N} w_n = \sum_{n=0}^{N} \left((-1)^n \left(\frac{1}{n+2} \sum_{k=0}^{n} \frac{1}{(k+1)^2} + \frac{1}{(n+2)^2} \sum_{k=0}^{n} \frac{1}{k+1} + \frac{1}{(n+2)^2} \sum_{k=0}^{n} \frac{1}{k+1} \right) \right)$$

$$= \sum_{n=0}^{N} \left((-1)^n \left(\frac{1}{n+2} \sum_{k=0}^{n} \frac{1}{(k+1)^2} + \frac{2}{(n+2)^2} \sum_{k=0}^{n} \frac{1}{k+1} \right) \right)$$

$$= \sum_{n=0}^{N} \left(\frac{(-1)^n}{n+2} \sum_{k=0}^{n} \frac{1}{(k+1)^2} \right) + 2 \sum_{n=0}^{N} \left(\frac{(-1)^n}{(n+2)^2} \sum_{k=0}^{n} \frac{1}{k+1} \right) = S_{1,N} + S_{2,N}$$

Où $w_{1,n} = \frac{(-1)^n}{n+2} \sum_{k=0}^n \frac{1}{(k+1)^2}$ est le terme général de la série S_1 et $w_{2,n} = \frac{(-1)^n}{(n+2)^2} \sum_{k=0}^n \frac{1}{k+1}$ le terme général de la série S_2 .

On rappelle un résultat « connu »,

$$\sum_{k=0}^{n} \frac{1}{k+1} \sim \ln(n)$$

Alors

$$n^{\frac{3}{2}}|w_{2,n}| = n^{\frac{3}{2}} \frac{1}{(n+2)^2} \sum_{k=0}^{n} \frac{1}{k+1} \sim \frac{\ln(n)}{\sqrt{n}} \to 0$$

D'après les règles de Riemann la série de terme général converge absolument, donc $S_{1,N}$ admet une limite finie lorsque N tend vers l'infini.

Pour la série S_1 cela va être moins simple $\sum_{k=0}^{n} \frac{1}{(k+1)^2}$ est une somme partielle qui admet une limite puisque que le terme général est équivalent à $\frac{1}{k^2}$ qui est le terme général d'une série de Riemann convergente, mais le terme $\frac{(-1)^n}{n+2}$ ne permet pas d'espérer une convergence absolue, reste la solution de montrer qu'il s'agit d'une série alternée, il faut montrer que

$$a_n = \frac{1}{n+2} \sum_{k=0}^{n} \frac{1}{(k+1)^2}$$

Tend vers 0 et est dévroissant, $a_n \to 0$ c'est évident.

$$a_{n+1} - a_n = \frac{1}{n+3} \sum_{k=0}^{n+1} \frac{1}{(k+1)^2} - \frac{1}{n+2} \sum_{k=0}^{n} \frac{1}{(k+1)^2}$$
$$= \frac{(n+2) \sum_{k=0}^{n+1} \frac{1}{(k+1)^2} - (n+3) \sum_{k=0}^{n} \frac{1}{(k+1)^2}}{(n+2)(n+3)}$$

Donc $a_{n+1} - a_n$ a le même signe que

$$(n+2)\sum_{k=0}^{n+1} \frac{1}{(k+1)^2} - (n+3)\sum_{k=0}^{n} \frac{1}{(k+1)^2}$$

$$= (n+2)\left(\sum_{k=0}^{n} \frac{1}{(k+1)^2} + \frac{1}{(n+2)^2}\right) - (n+3)\sum_{k=0}^{n} \frac{1}{(k+1)^2} = \frac{1}{n+2} - \sum_{k=0}^{n} \frac{1}{(k+1)^2}$$

Pour tout $k \in \{0, ..., n\}, k + 1 < n + 1$, donc

$$\sum_{k=0}^{n} \frac{1}{(k+1)^2} > \sum_{k=0}^{n} \frac{1}{(n+1)^2} = \frac{1}{(n+1)^2} \sum_{k=0}^{n} 1 = \frac{1}{(n+1)^2} \times (n+1) = \frac{1}{n+1}$$

Par conséquent

$$\frac{1}{n+2} - \sum_{k=0}^{n} \frac{1}{(k+1)^2} < \frac{1}{n+2} - \frac{1}{n+1} = \frac{n+1-(n+2)}{(n+2)(n+1)} = \frac{-1}{(n+2)(n+1)} < 0$$

Ce qui montre bien que $a_{n+1}-a_n<0$ c'est-à-dire que la suite est décroissante.

Par conséquent

$$w_{1,n} = \frac{(-1)^n}{n+2} \sum_{k=0}^n \frac{1}{(k+1)^2} = (-1)^n a_n$$

Est le terme général d'une série convergente et enfin la série de terme général w_n est la somme de deux série convergente, elle converge.

Allez à : Exercice 20

Correction exercice 21.

 $\frac{1}{\sqrt{n}}$ est décroissant et tend vers 0 donc la série de terme général u_n est une série convergente.

 $\frac{1}{n}$ est le terme général d'une série de Riemann divergente donc la série de terme général v_n est la somme d'une série convergente et d'une série divergente, elle diverge.

$$\frac{v_n}{u_n} = \frac{\frac{(-1)^n}{\sqrt{n}} + \frac{1}{n}}{\frac{(-1)^n}{\sqrt{n}}} = 1 + \frac{\sqrt{n}}{(-1)^n n} = 1 + \frac{(-1)^n}{\sqrt{n}} \to 1$$

Ce qui montre que ces deux suites sont équivalentes.

Remarque:

Si $u_n \sim v_n$ alors les séries de terme général u_n et de terme général v_n sont de même nature est un résultat faux, pour qu'il soit vrai, il faut que u_n et v_n soient de signes constants.

Allez à : Exercice 21

Correction exercice 22.

1. $\forall x \in [0,1], x^n e^{-x} > 0 \text{ donc } f(n) > 0$

$$\forall x \in [0,1], 0 \le x \le 1 \Rightarrow 0 \le x^{n+1} \le x^n$$

Donc

$$\int_{0}^{1} x^{n+1} e^{-x} dx \le \int_{0}^{1} x^{n} e^{-x} dx$$

Autrement dit $f(n + 1) \le f(n)$, cette suite est décroissante.

$$f(n) = \int_0^1 x^n e^{-x} dx = [-x^n e^{-x}]_0^1 - \int_0^1 nx^{n-1} (-e^{-x}) dx = -\frac{1}{e} + nf(n-1)$$

Montrons par récurrence que

$$f(n) = \frac{n!}{e} \left(e - \sum_{k=0}^{n} \frac{1}{k!} \right)$$

Pour n = 0

$$\int_0^1 x^0 e^{-x} dx = [-e^{-x}]_0^1 = -\frac{1}{e} + 1$$
$$\frac{0!}{e} \left(e - \sum_{k=0}^0 \frac{1}{k!} \right) = \frac{1}{e} (e - 1) = 1 - \frac{1}{e}$$

L'hypothèse est vérifiée au rang 0.

Supposons

$$f(n-1) = \frac{(n-1)!}{e} \left(e - \sum_{k=0}^{n-1} \frac{1}{k!} \right)$$

Alors

$$f(n) = -\frac{1}{e} + nf(n-1) = -\frac{1}{e} + n\frac{(n-1)!}{e} \left(e - \sum_{k=0}^{n-1} \frac{1}{k!} \right) = -\frac{1}{e} + \frac{n!}{e} \left(e - \sum_{k=0}^{n-1} \frac{1}{k!} \right)$$
$$= \frac{n!}{e} \times \left(-\frac{1}{n!} \right) + \frac{n!}{e} \left(e - \sum_{k=0}^{n-1} \frac{1}{k!} \right) = \frac{n!}{e} \left(e - \sum_{k=0}^{n} \frac{1}{k!} \right)$$

Ce qui achève la récurrence

2. Pour tout $x \in [0,1]$, $e^{-1} \le e^{-x} \le e^{-0}$, on en déduit que :

$$\frac{1}{e} \times x^n \le x^n e^{-x} \le x^n$$

Puis en intégrant en 0 et 1

$$\frac{1}{e} \int_0^1 x^n dx \le f(n) \le \int_0^1 x^n dx$$

Comme

$$\int_0^1 x^n dx = \left[\frac{x^{n+1}}{n+1} \right]_0^1 = \frac{1}{n+1}$$

Cela donne

$$\frac{1}{e(n+1)} \le f(n) \le \frac{1}{n+1}$$

f(n) est minorée par $\frac{1}{e(n+1)} \sim \frac{1}{en}$ qui est le terme général d'une série de Riemann divergente donc la série de terme général f(n) diverge.

$$\frac{1}{en(n+1)} \le \frac{f(n)}{n} \le \frac{1}{n(n+1)}$$

 $\frac{f(n)}{n}$ est majorée par $\frac{1}{n(n+1)} \sim \frac{1}{n^2}$ qui est le terme général d'une série de Riemann convergente donc la série de terme général $\frac{f(n)}{n}$ converge.

f(n) est positive et décroissante, la série de terme général $(-1)^n f(n)$ est une série alternée convergente.

3. Soit R le rayon de convergence de la série entière. Comme la série de terme général f(n) diverge cela signifie que 1 n'est pas dans le disque de convergence sinon

$$\sum_{n=0}^{\infty} f(n) 1^n$$

Convergerait, cela entraine que $R \ge 1$

Comme la série de terme général $(-1)^n f(n)$ converge, cela signifie que -1 est dans le disque de converge donc $R \le 1$, en effet

$$\sum_{n=0}^{\infty} f(n)(-1)^n < +\infty$$

Allez à : Exercice 22

Correction exercice 23.

1. On a $0 < \sin(u) < u$ pour u > 0 donc

$$0 < n \sin\left(\frac{1}{n}\right) < n \times \frac{1}{n} = 1$$

Par conséquent

$$\left(n\sin\left(\frac{1}{n}\right)\right)^{n^a} > \left(n\sin\left(\frac{1}{n}\right)\right)^{n^b} > 0$$

Puisque $n^b > n^a$

Cela montre que le terme général $\left(n \sin\left(\frac{1}{n}\right)\right)^{n^b}$ est majoré par le terme général d'une série convergente, cette série converge.

2.

$$\ln(u_n) = \ln\left(\left(n\,\sin\left(\frac{1}{n}\right)\right)^{n^a}\right) = n^a \ln\left(n\sin\left(\frac{1}{n}\right)\right)$$

Il faut faire le développement limité de $\sin\left(\frac{1}{n}\right)$ à un ordre suffisant parce que l'on va d'abord multiplier par n puis par n^a et à la fin on veut un développement limité à un ordre strictement supérieur à 2.

$$\ln(u_n) = n^a \ln\left(n \sin\left(\frac{1}{n}\right)\right) = n^a \ln\left(n \left(\frac{1}{n} - \frac{1}{6n^3} + o\left(\frac{1}{n^4}\right)\right)\right) = n^a \ln\left(1 - \frac{1}{6n^2} + o\left(\frac{1}{n^3}\right)\right)$$

$$= n^a \left(-\frac{1}{6n^2} + o\left(\frac{1}{n^3}\right)\right) = -\frac{1}{6n^{2-a}} + o\left(\frac{1}{n^{3-a}}\right)$$

Comme $a \le 2$, $2 - a \ge 0$, ce qui montre que $\ln(u_n)$ tend vers 0, et que donc u_n tend vers $1 \ne 0$, la série ne converge pas.

3.

$$\begin{split} \ln(u_n) &= n^{2+\epsilon} \ln\left(n \sin\left(\frac{1}{n}\right)\right) = n^{2+\epsilon} \ln\left(n \left(\frac{1}{n} - \frac{1}{6n^3} + o\left(\frac{1}{n^4}\right)\right)\right) = n^{2+\epsilon} \ln\left(1 - \frac{1}{6n^2} + o\left(\frac{1}{n^3}\right)\right) \\ &= n^{2+\epsilon} \left(-\frac{1}{6n^2} + o\left(\frac{1}{n^3}\right)\right) = -\frac{n^\epsilon}{6} + o\left(\frac{1}{n^{1-\epsilon}}\right) \\ u_n &= \exp\left(-\frac{n^\epsilon}{6} + o\left(\frac{1}{n^{1-\epsilon}}\right)\right) = \exp\left(-\frac{n^\epsilon}{6}\right) \exp\left(o\left(\frac{1}{n^{1-\epsilon}}\right)\right) \end{split}$$

 $1 - \epsilon > 0$ donc $\frac{1}{n^{1-\epsilon}} \to 0$ et alors $\exp\left(o\left(\frac{1}{n^{1-\epsilon}}\right)\right) \to 1$, ce qui montre que

$$u_n \sim \exp\left(-\frac{n^{\epsilon}}{6}\right)$$

En utilisant les règles de Riemann avec $\alpha = 2 > 1$

$$\lim_{n \to +\infty} n^2 u_n = \lim_{n \to +\infty} n^2 \exp\left(-\frac{n^{\epsilon}}{6}\right) = 0$$

Ce qui montre que la série de terme général u_n converge.

4. On vient de montrer que la série de terme général u_n était convergente si 2 < a < 3 et à la première question on a montré qui si la série convergeait pour a alors elle convergeait pour b > a, elle converge donc pour tout a > 2.

Allez à : Exercice 23

Correction exercice 24.

1.

a)

$$u_0 = \int_0^1 \frac{1}{1+x^2} dx = [\arctan(x)]_0^1 = \arctan(1) - \arctan(0) = \frac{\pi}{4}$$

b) $x^2 + 1 \ge 1$ donc

$$0 \le \frac{x^{2n}}{1+x^2} \le \frac{x^{2n}}{1} = x^{2n}$$

Puis en intégrant entre 0 et 1

$$0 \le \int_0^1 \frac{x^{2n}}{1+x^2} dx \le \int_0^1 x^{2n} dx = \left[\frac{x^{2n+1}}{2n+1}\right]_0^1 = \frac{1}{2n+1}$$

2.

a

$$u_{n+1} + u_n = \int_0^1 \frac{x^{2(n+1)}}{1+x^2} dx + \int_0^1 \frac{x^{2n}}{1+x^2} dx = \int_0^1 \frac{x^{2n+2} + x^{2n}}{1+x^2} dx = \int_0^1 \frac{(1+x^2)x^{2n}}{1+x^2} dx = \int_0^1 x^{2n} dx$$

$$= \frac{1}{2n+1}$$

b)

$$\sum_{k=0}^{n} v_k = \sum_{k=0}^{n} \frac{(-1)^k}{2k+1} = \sum_{k=0}^{n} (-1)^k (u_{k+1} + u_k) = \sum_{k=0}^{n} (-1)^k u_{k+1} + \sum_{k=0}^{n} (-1)^k u_k$$

Dans la première somme on pose $k'=k+1, k=0 \Rightarrow k'=1$ et $k=n \Rightarrow k'=n+1$

$$\sum_{k=0}^{n} v_k = \sum_{k'=1}^{n+1} (-1)^{k'-1} u_{k'} + \sum_{k=0}^{n} (-1)^k u_k$$

On remplace k' par k dans la première somme

$$\begin{split} \sum_{k=0}^{n} v_k &= \sum_{k=1}^{n+1} (-1)^{k-1} u_k + \sum_{k=0}^{n} (-1)^k u_k \\ &= (-1)^{n-1+1} u_{n+1} + \sum_{k=1}^{n} (-1)^{k-1} u_k + (-1)^0 u_0 + \sum_{k=1}^{n} (-1)^k u_k \\ &= (-1)^n u_{n+1} + u_0 + \sum_{k=1}^{n} (-1)^{k-1} u_k + \sum_{k=1}^{n} (-1)^k u_k \\ &= (-1)^n u_{n+1} + u_0 + \sum_{k=1}^{n} (-1)^{k-1} u_k - \sum_{k=1}^{n} (-1)^{k-1} u_k = (-1)^n u_{n+1} + \frac{\pi}{4} \end{split}$$

Il ne reste plus qu'à remarquer que u_n tend vers 0 pour montrer que

$$\sum_{k=0}^{\infty} v_k = \frac{\pi}{4}$$

Allez à : Exercice 24