Supervised learning

Inteligencia Artificial en los Sistemas de Control Autónomo Máster en Ciencia y Tecnología desde el Espacio

Departamento de Automática

Objectives

- 1. Extend supervised learning algorithms
- 2. Apply supervised learning to real-world problems

Bibliography

- Müller, Andreas C., Guido, Sarah. Introduction to Machine Learning with Python. O'Reilly. 2016
- Géron, Aurélien. Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow. 2nd Edition. O'Reilly. 2019

Most figures have been taken from (A. Müller) and (A. Géron)

Table of Contents

- Generalization, overfitting and underfitting
- 2. k-Nearest Neighbors
 - k-NN classification
 - kNN regression
 - Summary
- 3. Linear models
 - Ordinary least squares
 - Linear regression
 - Regularized linear models
 - Ridge regression
 - Lasso regression
 - ElasticNet
 - Regularized linear models comparison
 - Linear models for classification
 - Summary
- 4. Decision Trees
 - Building decision trees

- Controlling complexity of decision trees
- Analyzing decision trees
- Feature importance in trees
- Decision trees in regression
- Summary
- 5. Ensembles of Decision Trees
 - Ensembles
 - Random forests
 - Analyzing random forests
 - Summary: Random forest
 - Gradient boosted regression trees
 - Summary
- 6. Support Vector Machines
 - Linear SVM
 - Linear models and nonlinear features
 - The kernel trick
 - Understanding SVMs
 - Summary

Generalization, overfitting and underfitting

Generalization: accurate predictions on unseen data

- i.e. there is no overfitting neither underfitting
- Depends on model complexity and data variability

k-NN classification (I)

k-NN (k-Nearest Neighbors): Likely, the simplest learner

- Given a data point, it takes its k closests neighbors
- Same prediction than the majority of its neighbors
- k uses to be an odd number (1-NN, 3-NN, 5-NN, ...)

k-NN does not generate a model

The whole dataset must be stored

k-Nearest Neighbors

k-NN classification (II)

k determines the model complexity

- Smoother boundaries in larger k values
- Model complexity decreases with k
- If k equals the number of samples, k-NN always predicts the most frequent class

How to figure out the best k?

k-NN classification (III)

kNN regression (I)

k-NN regression

Given a data point

- I. Take the k closest data points
- 2. Predict same target value (1-NN) or averaged target value (k-NN)

Performace is measured with a regression metric, by default, R²

kNN regression (II)

k determines the boundary smoothness

- With k = 1, prediction visits all data points
- With large k values, fit is worse

k-Nearest Neighbors

Summary

Hyperparameters	Advantages	Disadvantages
k	Simple	Slow with large datasets
Distance	Baseline	Bad performance with
		hundreds or more attri-
		butes
		No model
		Dataset must be stored
		in memory

Linear model (I)

Linear model

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \dots + \beta_n \mathbf{x}_n$$

for a single feature $y = \beta_0 + \beta_1 x_1$, where

- β_0 is the intercept
- β_1 is the slope

Lineal models assume a linear relationship among variables

- This limitation can be easely overcomed
- Surprisingly good results in high dimensional spaces

Intepretable model

T:

Linear regression

Different linear models for regression

• The difference lies in how β_i parameters are learned

Ordinary Least Squares (OLS): Minimizes mean squared error

- OLS does not have any hyperparameter
- No complexity control

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (x_i - \gamma_i)^2$$

Linear regression can be used to fit non-linear models

• Just adding new attributes

Linear models

Regularized linear models

Regularization: Term that penalizes complexity

- Added to the cost function
- Lineal models remain the same
- Train to minimize cost function and coefficients
- Intercepts are not part of regularization

Three regularizations

LI (Lasso regression), L2 (Ridge regression) and ElasticNet (LI and L2)

Lasso (L1)

 $\alpha \sum_{j=1}^{n} |\beta_{j}|$

Ridge (L2)

 $\frac{\alpha}{2} \sum_{i}^{n} \beta_{j}^{2}$

ElasticNet

 $\alpha \left(r \sum_{j}^{n} |\beta_{j}| + \frac{1-r}{2} \sum_{j}^{n} \beta_{j}^{2} \right)$

Ridge regression

Ridge regression (or L2 regularization) adds a new term to cost function

$$MSE + \frac{\alpha}{2} \sum_{i=1}^{n} \beta_i^2$$

 α controls the model complexity

- If $\alpha = 0$ Ridge becomes a regular linear regression
- Optimal α depends on the problem

Ridge by default

Lasso regression (I)

Lasso regression (or L1 regularization) adds a new term to cost function

$$MSE + \alpha \frac{1}{2} \sum_{i=1}^{n} |\beta_i|$$

lpha controls the model complexity

- If $\alpha = 0$ Ridge becomes a regular linear regression
- ullet Optimal lpha depends on the problem

Some coefficiets may be exactly zero

- Implicit feature selection
- Easier interpretation
- Better with large number of attributes

Linear models

Lasso regression (II)

Dimension Reduction of Feature Space with LASSO

ElasticNet

Lasso and Ridge can be combined

$$MSE + \alpha \left(r \sum_{i=1}^{n} |\beta_i| + \frac{(1-r)}{2} \sum_{i=1}^{n} \beta_i^2 \right)$$

Two hyperparameters

- ullet lpha controls the model complexity
- r balances between L1 and L2

ElasticNet is not a neural network!

Linear models

Regularized linear models comparison

Linear models

Linear models for classification (I)

A linear regression can be used as classifier

- Just compare the prediction with a threshold (o, for instance)
 - If $\hat{y} > 0$, assign C_1 ; if $\hat{y} \leq 0$, assign C_2
- The decision boundary is a line, plane or hyperplane

A logistic regression is a generalization of a linear regression

Probabilistic binary classifier

$$\hat{p} = \sigma \left(\beta_0 + \sum_{i=1}^n \beta_i x_i \right), \hat{\gamma} = \begin{cases} C_1, & \text{if } \hat{p} < 0.5 \\ C_2, & \text{if } \hat{p} \geq 0.5 \end{cases}$$

where $\sigma(t)$ is the logistic function, defined as $\sigma(t) = \frac{1}{1+e^{-t}}$

Linear models for classification (II)

Regularization with L_I, L₂ and ElasticNet

- In Scikit-Learn, regularization strength is given by C
- C is the inverse of regularization strength
- Smaller values of C correspond to stronger regularization

Linear models

Summary

Hyperparameters	Advantages	Disadvantages
	Fast train and predict	Limited in low dimensional spaces
lpha (L1, L2, ElasticNet)	Scales well to large data- sets	Limited generalization
l1_ratio (ElasticNet)	Better in high dimensional spaces Few hyperparameters Interpretable	

Better when the number of features is large compared to the number of samples

Decision trees are a family of algorithms

- Classification, regression and anomaly detection
- They learn a tree data strucure
- Hierarchy of if/else questions (test, or node)
- Decision (terminal node or leaf)

Usually, datasets does not contain binary attributes

- Continous features
- Is feature i larger than value a?

Building decision trees (I)

Tree learning algorithm

- 1. Begin with the root node
- Searches all possible tests (according to a purity measure)
- 3. The most informative test is taken
- 4. Repeat recursively

Prediction of a new data point

- Classification: Majority class in the partition
- Regression: Average value of target values in the partition

Building decision trees (II)

Building decision trees (III)

We need a measure of 'impurity'

- Gini: $G(Q_m) = \sum_k p_{mk} (1 p_{ml})$
- Entropy: $H(Q_{pn}) = -\sum_k p_{mk} log(p_{ml})$

where p_{mk} is the propotion of class k in node $m\!\!$, and $Q_m\!\!$ the data in node m

Controlling complexity of decision trees

Trees tend to grow until all leaves are pure

- Very big trees in real problems
- Big trees use to be overfitted models

Two strategies to prevent overfitting

- Pre-prunning: Stop the creation of the tree early accorgind to some criteria
 - Maximum depth, number of leaves, minimum number of points in a node, ...
 - Implemented in Sciki-Learn
- Post-prunning: Build the tree and then remove nodes with little information

Analyzing decision trees

Decision trees are easily explained to nonexperts

- Interpretable models
- Deep trees are overwhelming
- Trick: Observe the path with most data

k-Nearest Neighbors Linear models **Decision Trees** Ensembles of Decision Trees Support Vector Machin

Decision Trees

Analyzing decision trees

Feature importace is a metric that summarizes features

- Number between o (not used at all) and I (perfect prediction)
- Feature importances sum to one
- Useful for feature selection and model interpretation

Some considerations

- It does not inform about the relationship between attribute and target
- It quantifies the importance in the tree
 - Correlated attributes may score low importance

Decision trees in regression

Decision trees are not able to extrapolate

- i. e. to predict outside of the range of the training data
- It is specially important in regression problems

Summary

Hyperparameters	Advantages		Disadvantages
max_depth	Visualization		Tend to overfit
max_leaf_nodes	Interpretable	bу	Poor generalization
	non-experts		
min_samples_leaf	Invariant to scale		
criterion	Mix of categorial	and	
	numerical data		

Ensembles

Ensembles, in ML, refers to the combination of several models

For instance, an ensemble of three classifers voting

Two common aproaches to build ensembles

- Bagging (or bootstrap) samples the dataset with replacement
 - $\bullet\;$ The ensemble make prediction by aggregating its predictors
- Boosting trains models to correct previous models

(Source)

Random forests

A tree is good doing his job, but does not generalize well

- Different trees could overfit in different ways
- Idea: Use many trees and aggregate their results

Random forest is a popular algorithm based on ensembles of trees

- Classification and regression
- Limits overfitting found in trees

It encourages tree diversity through training set and feature selection

- Selecting data: Bootstrap
- Selecting features in each test
 - It does not look for the best test.
 - It looks for the best test involving a random subset of features
 - The size of the features subset is a critical hyperparameter

Same hyperparameters than decision trees

Analyzing random forests (I)

Random forest with five trees

k-Nearest Neighbors Linear models Decision Trees Ensembles of Decision Trees Support Vector Machin

Ensembles of Decision Trees

Analyzing random forests (II)

Feature importance can be aggregated

- More informative than single trees
- The algorithm must consider many possible explanations

Analyzing random forests (III)

Random forest classifier with MNIST dataset

Summary: Random forest

Hyperparameters	Advantages	Disadvantages
Same than trees	Same than trees	Interpretation
Number of trees	High performance	High dimensional data
Number of features	Robust	Sparse data
	Widely used	Memory and CPU
	Parallelized	-

Ensembles of Decision Trees

Gradient boosted regression trees (I)

Gradient boosting trees is an esemble of trees

- Based on boosting, builds trees in a serial manner
- One tree corrects the mistakes of the previous one

A set of weak learners is used

- Shallow trees (by default, 3 in Sklearn)
- No data randomization, strong pre-pruning

A new hyperparameter: learning rate

- How strongly each tree tries to correct
- High learning rate makes stronger corrections: More complex models
- More trees also adds more complexity

State of the art results

- Widely adopted by industry
- Comparable in performance with deep neural networks

k-Nearest Neighbors Linear models Decision Trees **Ensembles of Decision Trees** Support Vector Machin

Ensembles of Decision Trees

Gradient boosted regression trees (II)

Feature importances with cancer dataset

The (XGBoost) package provides a high performance implementation of gradient boosted trees

Ensembles of Decision Trees

Summary

Hyperparameters	Advantages	Disadvantages
Same than trees	Very high performance	Slow
Number of trees	Invariant to scale	High dimensional data
Learning rate	Mix of categorial and	Tricky hyperparameter
	numerical data	tuning
		Overfitting

Linear SVM (I)

SVM, or Support Vector Machines, is a popular and flexible learning model

- Classification, regression and outlayer detection
- Linear and non-linear models
- Quite popular with small and medium datasets

Learning SVMs

- It localizes data points in the boundary of the classes
 - They are named support vectors
- 2. Determine an hyperplane that splits them maxizing margin

(Source)

Linear SVM (II)

Two big problems with hard margins

- Most datasets are not linearly separable
- Outlayers

We look for a balance between good fit and margin violations: C

- C sets the tolerance to margin violations
- Low $C \rightarrow$ Low tolerance

Linear models and nonlinear features (I)

Plain SVMs are limited in low-dimensional spaces

- Lines, planes and hyperplanes
- Adding new features is a way to overcome this limitation

 $feature_3 = feature_1^2$

Inteligencia Artificial en los Sistemas de Control Autónomo

Linear models and nonlinear features (II)

The kernel trick

Adding nonlinear attributes makes linear models much more powerful

- Which features should we add?
- How we compute interations in a 100-dimensional feature space?

Some mathematical magic: The kernel trick

- It computes data distances for expanded feature representation ...
- ... without computing the expansion!

It applies a function named kernel

- Polynomial kernel, up to a certain degree
- Radial basis function (RBF) kernel (Gaussian kernel)
- Linear kernel, no expansion is done

The kernel trick can be used in other techniques like PCA

Understanding SVMs (I)

To predict a new point, the distance to each of the support vector is computed

- Distance is measured by the Gaussian kernel
- Decision is taken based on the distance and learned importance

$$k_{\text{rbf}}(\mathbf{x}_1, \mathbf{x}_2) = \exp(-\gamma ||\mathbf{x}_1 - \mathbf{x}_2||^2)$$

where $||\cdot||$ denotes Euclidean distance and γ is an hyperparameter

- ullet γ determines how far the influence of a single point reaches
- Low γ , higher complexity

Remember, C is a regularization parameter

Understanding SVMs (II)

Understanding SVMs (III)

SVM is very sensitive to scale

• Always use standarized or normalized data

Summary

Hyperparameters	Advantages	Disadvantages
С	Powerful	Memory and CPU
γ	Low and high dimen-	Number of samples
Kernel	sional Flexible	Scaling No interpretable

