

Lineare Algebra I Wintersemester 25/26 Prof. Dr. C. Schweigert,
Dr. T. Zorman
Algebra und Zahlentheorie
Fachbereich Mathematik
Universität Hamburg

Blatt 1

Zur Abgabe am Montag, dem 20.10.25. Die Abgabe wird über moodle geschehen.

Problem 1.1 [1 + 2 Punkte]

Seien $a, b \in \mathbb{Q}$ rationale Zahlen.

- (a) Betrachten Sie die Gleichung ax = 0. Hat diese Gleichung immer mindestens eine reelle Lösung für x? Beschreiben Sie den Lösungsraum in Abhängigkeit von a.
- (b) Betrachten Sie die Gleichung ax = b. Beschreiben Sie den Raum der rationalen und der reellen Lösungen dieser Gleichung in Abhängigkeit von a und b.

(Alle Antworten müssen begründet werden.)

Problem 1.2 [3 Punkte]

Für gegebene rationale Zahlen $a_{11}, a_{12}, a_{21}, a_{22}, b_1$ und b_2 betrachten wir das System linearer Gleichungen

$$a_{11}x_1 + a_{12}x_2 = b_1$$

$$a_{21}x_1 + a_{22}x_2 = b_2$$

in den Unbekannten x_1, x_2 .

- (a) Geben Sie einen Wert für $a_{11}, a_{12}, a_{21}, a_{22}, b_1$ und b_2 an, für den keine Lösungen für x_1, x_2 in den rationalen Zahlen existieren.
- (b) Geben Sie einen Wert für $a_{11}, a_{12}, a_{21}, a_{22}, b_1$ und b_2 an, für den unendlich viele Lösungen für x_1, x_2 in den rationalen Zahlen existieren.
- (c) Geben Sie einen Wert für $a_{11}, a_{12}, a_{21}, a_{22}, b_1$ und b_2 an, für den unendlich viele rationale Lösungen für x_1, x_2 existieren, aber nicht alle $(x_1, x_2) \in \mathbb{R}^2$ Lösungen sind. Formulieren Sie eine Vermutung über die Geometrie des Lösungsraums.

(Alle Antworten müssen begründet werden.)

Problem 1.3 [4 Punkte + 4 Bonuspunkte]

Wir betrachten wie in der Präsenzübung die zwei Abbildungen

$$A \colon \mathbb{R}^2 \to \mathbb{R}^2, \quad \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 + 2x_2 \\ -x_1 - 3x_2 \end{pmatrix}, \qquad B \colon \mathbb{R}^2 \to \mathbb{R}^2, \quad \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 2x_1 + 4x_2 \\ 3x_1 + 6x_2 \end{pmatrix}.$$

- (a) Es sei $p = (1, \frac{3}{2})$ und $q = (\frac{1}{2}, \frac{1}{2})$. Welche Elemente $x \in \mathbb{R}^2$ werden von A auf q abgebildet? Welche von B?
- (b) Bilden die Abbildungen A und B die Gerade $G_{p,v}$ mit Fußpunkt p und Richtungsvektor v=(-2,1) wieder auf eine Gerade im \mathbb{R}^2 ab?

Problem 1.4 [1 + 1 + 2 Punkte]

(a) Ordnen Sie den folgenden Graphen die entsprechende Beschreibung der Gerade in Parameterund Gleichungsform zu. Die Antwort muss nicht begründet werden.

- (b) Geben Sie eine Gleichung an, die die xy-Ebene im \mathbb{R}^3 beschreibt.
- (c) Geben Sie eine Gleichung an, die die Ebene im \mathbb{R}^3 beschreibt, die die xy-Ebene senkrecht in der Winkelhalbierenden zwischen der x-Achse und y-Achse schneidet.

Jeder Zettel wird einen Umfang von ca. 20 Punkten haben. Die Verteilung der Punkte auf die einzelnen Aufgaben sagt nur bedingt etwas über den Schwierigkeitsgrad der Aufgaben aus.