Lecture T4: Computability

A Puzzle ("Post's Correspondence Problem")

Given a set of cards:

- . N card types (can use as many of each type as possible).
- . Each card has a top string and bottom string.

Example 1:

BAB	A	AB	BA	N N	-	4
A	ABA	В	В			-
	1	2	3			

Puzzle:

Is it possible to arrange cards so that top and bottom strings are the same?

Solution 1.

A Puzzle ("Post's Correspondence Problem")

Given a set of cards:

- N card types (can use as many of each type as possible).
- Each card has a top string and bottom string.

Example 1:

BAB	A	AB	BA	N	=	,
A	ABA	В	В		_	
	1	-	2			

Puzzle:

 Is it possible to arrange cards so that top and bottom strings are the same?

A Puzzle ("Post's Correspondence Problem")

Given a set of cards:

- . N card types (can use as many of each type as possible).
- . Each card has a top string and bottom string.

Example 2:

A	ABA	В	A	N =	_
BAB	В	A	В		
	1	2	3		

Puzzle:

Is it possible to arrange cards so that top and bottom strings are the same?

A Puzzle ("Post's Correspondence Problem")

Given a set of cards:

- N card types (can use as many of each type as possible).
- . Each card has a top string and bottom string.

Example 2:

Puzzle:

 Is it possible to arrange cards so that top and bottom strings are the same?

Solution 2.

CONT.

Overview

Formal language.

- . Rigorously express computational problems.
- **EX:** $L = \{ 2, 3, 5, 7, 11, 13, 17, ... \}$

Abstract machines recognize languages.

- . Ex. Is 977 prime? Is 977 in L?
- Essence of computers.

This lecture:

- . What is an "algorithm"?
- Is it possible, in principle, to write a program to solve any problem (recognize any language)?

PCP Puzzle Contest

Contest:

- . Additional restriction: string must start with 'S'.
- . Be the first to solve this puzzle!
 - extra credit for first correct solution
- Check solution by putting STRING ONLY (blanks and line breaks OK) in a file solution.txt, then type

Hopeless challenge for the bored:

 Write a program that reads a set of Post cards, and determines whether or not there is a solution.

Background

Abstract models of computation help us learn:

- . Nature of machines needed to solve problems.
- . Relationship between problems and machines.
- . Intrinsic difficulty of problems.

As we make machines more powerful, we can recognize more languages.

- . Are there languages that no machine can recognize?
- . Are there limits on the power of machines that we can imagine?

Pioneering work in the 1930's. (Princeton = center of universe)

- . Turing, Church, von Neumann, Gödel. (inspiration from Hilbert)
- Automata, languages, computability, complexity, logic, rigorous definition of "algorithm."

Undecidable Problems

Hilbert's 10th Problem.

- "Devise a process according to which it can be determined by a finite number of operations whether a given multivariate polynomial has an integral root."
- Example 1: $f(x,y,z) = 6x^3yz^2 + 3xy^2 x^3 10$

Carrier S

• Example 2: $f(x,y) = x^2 + y^2 - 3$

200

Example 3: $f(x,y,z) = x^n + y^n - z^n$

Andrew Wiles, 1995

Undecidable Problems

Hilbert's 10th Problem.

Post's Correspondence Problem.

Halting Problem.

- Write a C program that reads in another program and its inputs, and decides whether or not it goes into an infinite loop.
 - infinite loop often signifies a bug
- Program 1.
 - $-\,8\,6\,4\,2\,4\,2\,4\,2\,4\,2\,4\,2\,4\,2\,4$
 - -97531

Car S

Undecidable Problems

Hilbert's 10th Problem.

 "Devise a process according to which it can be determined by a finite number of operations whether a given multivariate polynomial has an integral root."

Problem resolved in very surprising way. (Matijasevič, 1970)

. How can we assert such a mind-boggling statement?

Undecidable Problems

Hilbert's 10th Problem.

Post's Correspondence Problem.

Halting Problem.

- Write a C program that reads in another program and its inputs, and decides whether or not it goes into an infinite loop.
 - infinite loop often signifies a bug
- . Program 2.
 - -8421
 - **7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1**

A.

hailstone.c

while (x > 1) {
 if (x % 2 == 0)
 x = x / 2;
 else
 x = 3*x + 1;
}

15

Undecidable Problems

Hilbert's 10th Problem.

Post's Correspondence Problem.

Halting Problem.

Program Equivalence.

Optimal Data Compression.

Virus Identification.

Impossible to write C program to solve any of these problem!

TM: Equal Power as TOY and C

Turing machines are equivalent in power to C programs.

. C program ⇒ TOY program (Lecture A2)

TOY program ⇒ TM

(previous slide)

. $TM \Rightarrow C program$

(TM simulator, Lecture T2)

Works for all real programming languages.

Is this assumption reasonable?

Assumption: TOY machine and C program have unbounded amount of memory. Otherwise TM is strictly more powerful.

TM: As Powerful As TOY Machine

Turing machines are strictly more powerful than FSA, PDA, LBA because of infinite tape memory.

Power = ability to recognize languages.

Turing machines are at least as powerful as a TOY machine:

- . Encode state of memory, PC, etc. onto Turing tape.
- Develop TM states for each instruction.
- . Can do because all instructions:
 - examine current state
 - make well-define changes depending on current state

Works for all real machines.

Can simulate at machine level, gate level,

Church-Turing Thesis

Church-Turing thesis (1936):

- Q. Which problems can a Turing machine solve?
- A. Any problem that any real computer can solve.

"Thesis" and not a mathematical theorem.

Implications:

Provides rigorous definition for algorithm.

Universality among computational models.

- if a problem can be solved by TM, then it can be solved on EVERY general-purpose computer.
- if a problem can't be solved by TM, then it can't be solve on

ANY physical computer

Evidence Supporting Church-Turing Thesis

Imagine TM with more power.

- . Composition of TM's, multiple heads, more tapes, 2D tapes.
- Nondeterminism.

Different ways to define "computable."

- . TM, circuits, grammar, λ -calculus, μ -recursive functions.
- Conway's game of life.

Conventional computers.

■ ENIAC, TOY, Pentium III, . . .

New speculative models of computation.

. DNA computers, quantum computers, soliton computers.

TM: A General Purpose Machine

Each TM solves one particular problem.

- . Ex: is the integer x prime?
- . Analogy: computer algorithm.
- Similar to ancient special-purpose computers (Analytic Engine) prior to von Neumann stored-program computers.

Goal: "general purpose machine" that can solve many problems.

- . Simulate the operations of any special-purpose TM.
- . Analogy: computer than can execute any algorithm.
- . How?

A More Powerful Computer

Post machine (PCP-286).

- . Input: set of Post cards.
- Output.
 - YES light if PCP is solvable for these cards
 - NO light if PCP has no solution

PCP is strictly more powerful than:

- . Turing machine.
- . TOY machine.
- . C programming language.
- iMac.
- . Any conceivable super-computer.

Why doesn't it violate Church-Turing thesis?

Representation of a Turing Machine

Special-purpose TM consists of 3 ingredients.

- . TM program.
- Initial tape contents.
- Current TM state.

Universal Turing Machine

Universal Turing Machine (UTM),

. A specific TM that simulates operations of any TM.

How to create.

- Encode 3 ingredients of TM using 3 tapes.
- . UTM simulates the TM.

Implications of Universal Turing Machine

Existence of UTM has profound implications.

- . "Invention" of general-purpose computer.
 - stimulated development of stored-program computers (von Neumann machines)
- . "Invention" of software.
- Universal framework for studying limitations of computing devices.
- . Can simulate any machine (including itself)!

Universal Turing Machine

Universal Turing Machine (UTM),

. A specific TM that simulates operations of any TM.

How to create.

- Encode 3 ingredients of TM using 3 tapes.
- UTM simulates the TM.
- Like the fetch-increment-execute cycle of TOY.

. Can reduce 3-tape TM to single tape one.

Halting Problem

Halting problem.

- Devise a TM that reads in another TM (encoded in binary) and its initial tape, and determines whether or not that TM would ever reach a yes or no state.
- Write a C program that reads in another program and its inputs, and determines whether or not it goes into an infinite loop.

Halting problem is unsolvable.

- . No TM can solve this problem.
- . Not possible to write a C program either.

We prove that the halting problem is not solvable.

. Intuition of proof: self-reference.

...

Warmup: Grelling's Paradox

Grelling's paradox:

- . Divide all adjectives into two categories:
 - autological: self-descriptive
 - heterological: not self-descriptive

autological adjectives

pentasyllabic awkwardnessful recherché

heterological adjectives

bisyllabic palindromic edible

. How do we categorize heterological?

Warmup: Grelling's Paradox

Grelling's paradox:

- . Divide all adjectives into two categories:
 - autological: self-descriptive
 - heterological: not self-descriptive

autological adjectives

pentasyllabic awkwardnessful recherché

heterological

heterological adjectives

bisyllabic palindromic edible heterological

- . How do we categorize heterological?
 - suppose it's heterological

d

Warmup: Grelling's Paradox

Grelling's paradox:

- . Divide all adjectives into two categories:
 - autological: self-descriptive
 - heterological: not self-descriptive

autological adjectives

pentasyllabic awkwardnessful recherché heterological

heterological adjectives

bisyllabic palindromic edible

- . How do we categorize heterological?
 - suppose it's autological

A.

Warmup: Grelling's Paradox

Grelling's paradox:

- . Divide all adjectives into two categories:
 - autological: self-descriptive
 - heterological: not self-descriptive

autological adjectives

pentasyllabic awkwardnessful recherché

heterological

heterological adjectives

bisyllabic palindromic edible

heterological

- . How do we categorize heterological?
 - not possible
 - we can't have words with these meanings!
 (or we can't partition adjectives into these two groups)

Halting Problem Proof

Assume the existence of Halt(f,x) that takes as input: any function f and its input x, and outputs yes if f(x) halts, and no otherwise.

- . Proof by contradiction.
- Note: Halt(f, x) always returns yes or no. (infinite loop not possible)

```
#define YES 1
#define NO 0

int Halt(char f[], char x[]) {
   if ( ??? )
      return YES;
   else
      return NO;
}
function f and its input
x encoded as strings

function f and its input
x encoded as strings

return NO;
}
```

Halting Problem Proof

Assume the existence of Halt(f,x) that takes as input: any function f and its input x, and outputs yes if f(x) halts, and no otherwise.

- Construct program Strange(f) as follows:
 - calls Halt(f. f)
 - halts if Halt(f, f) outputs no
 - goes into infinite loop if Halt(f, f) outputs yes
- . In other words:
 - if f(f) does not halt then Strange(f) halts
 - if f(f) halts then Strange(f) does not halt
- . Call Strange with ITSELF as input.
 - if Strange(Strange) does not halt then Strange(Strange) halts
 - if Strange(Strange) halts then Strange(Strange) does not halt
- Either way, a contradiction. Hence Halt(f,x) cannot exist.

Halting Problem Proof

Assume the existence of Halt(f,x) that takes as input: any function f and its input x, and outputs yes if f(x) halts, and no otherwise.

. Construct program Strange(f) as follows:

- calls Halt(f, f)
- halts if Halt(f, f) outputs no
- f is a string so legal to use for either input
- goes into infinite loop if Halt(f, f) outputs yes
- . In other words:
 - if f(f) does not halt then Strange(f) halts
 - if f(f) halts then Strange(f) does not halt

```
Strange(f)
void Strange(char f[]) {
  if (Halt(f, f) == NO)
    return;
  else
    while(1)
    ; // infinite loop
}
```

Consequences

Halting problem is "not artificial."

- . Undecidable problem reduced to simplest form to simplify proof.
- Closely related to practical problems.
 - Hilbert's 10th problem, Post's correspondence problem, program equivalence, optimal data compression

How to show new problem X is undecidable?

- . Use fact that Halting problem is undecidable.
- Design algorithm to solve Halting problem, using (alleged) algorithm for X as a subroutine.
- See Reduction in Lecture T6.

Implications

Practical:

- . Work with limitations.
- Recognize and avoid unsolvable problems.
- . Learn from structure.
 - same theory tells us about efficiency of algorithms (see T5)

Philosophical (caveat: ask a philosopher):

- We "assume" that any step-by-step reasoning will solve any technical or scientific problem.
- . "Not quite" says the halting problem.
- . Anything that is like (could be) a computer has the same flaw:

Summary

What is an algorithm?

- . Informally, step-by-step procedure for solving a problem.
- . Formally, Turing machine.

Turing's key ideas:

- . Computing is same as manipulating symbols.
 - can encode numbers as strings
- . Existence of general-purpose computer (UTM).
 - programmable machine

What is a general-purpose computer (UTM)?

- . Can be "programmed" to implement any algorithm.
- . iMac, Dell, Sun UltraSparc, TOY (assuming unlimited memory).

Is it possible, in principle, to write a program to solve any problem?

No.