Electrode potential: The potential difference that develops between metal atoms and its ions (or) non – metal molecules and the ions is called 'Electrode potential'.

- The tendency of an electrode to undergo oxidation is called oxidation potential (or) the tendency to lose electrons, is called oxidation potential.
- The tendency of an electrode to undergo reduction (or) the tendency to gain electron is called reduction potential.

Standard electrode potential : The potential exhibited by a single electrode in the solution of unit concentration of metal ion or non-metal ion at 25°C is called standard single electrode potential.

- The electrode potential measured at 25°C, 1 atm pressure become standard potentials [E°].
- For any electrode the Standard Oxidation Potential(SOP) and Standard Reduction Potential (SRP) values are equal in magnitude and opposite in sign.

Ex: 1)
$$E_{Zn/Zn^2}^0 + \rightarrow +0.76V \text{ (SOP)}$$

 $E_{Zn^{2+}/Zn}^0 \rightarrow -0.76V \text{ (SRP)}$
2) $E_{Cu^{2+}/Cu}^0 \rightarrow +0.34V \text{ (SRP)}$
 $E_{Cu/Cu^{2+}}^0 \rightarrow -0.34V \text{ (SOP)}$
3) $E_{Ag/Ag^+}^0 \rightarrow -0.8V \text{ (SOP)}$
 $E_{Ag^+/Ag}^0 \rightarrow +0.8V \text{ (SRP)}$

- Single Electrode Potentials (SEP) cannot be directly determined because only the
 potential difference between the two electrodes can be measured by using 'potential
 metre' or 'volt metre'.
- SEP's can be determined by using 'standard' or 'reference electrodes' (whose potentials are known).
- **Primary reference electrodes:** Standard Hydrogen Electrode (SHE) or Normal Hydrogen Electrode (NHE). It's $E^{\circ} = \pm 0.00V$.

Representation of SHE:

Pt,
$$H_2 / H^+$$
 $\frac{1}{2}H_2 \Longrightarrow H^+$
(g) (aq)

- A platinum foil coated with platinum black is half dipped in 1 M HCl(1mH $^+$) and H $_2$ gas is bubbled through it at 1atm. This arrangement is called as standard hydrogen electrode. The electrode whose potential has to be determined is connected with SHE.
- Since, it is difficult to maintain 1atm pressure with light gas like H₂, now SHE is replaced by other reference electrodes.

Ex. Calomel electrode
$$\rightarrow$$
 Hg/ Hg₂Cl_{2(s)}, KCl_(sat)
E° = - 0.2422 V

Calculating EMF of cell: The potential difference between the two electrodes is called 'cell FMF'.

$$E_{cell}^0 = E_{right}^0 - E_{left}^0$$

- $= E_{cathode}^{0} E_{anode}^{0}$
- = SRP of cathode SRP of anode
- = SOP of anode SOP of cathode
- = SOP of anode + SRP of cathode

Electrochemical series (or) EMF series (or) Activity series :

It is the series of electrodes arranged in the increasing water of SRP values.

Electrode system	E°(V) vs (NHE)	Electrode reaction
Li ⁺ Li	- 3.045	Li⁺ + e⁻ ⇌ Li
K ⁺ K	– 2.925	K+ + e− ⇌ K
Ca ²⁺ Ca	<i>–</i> 2.870	Ca²+ + 2e [−] ← Ca
Na ⁺ Na	– 2.714	Na⁺ + e⁻ ⇌ Na
Zn ²⁺ Zn	– 0.762	Zn²+ + 2e ⇌ Zn
Fe ²⁺ Fe	- 0.441	Fe ²⁺ + 2e [−] ➡ Fe
Cd ²⁺ Cd	– 0.403	Cd ²⁺ + 2e [−]
Co ²⁺ Co	– 0.277	Co ²⁺ + 2e [−] ← Co
Ni ²⁺ Ni	– 0.250	Ni ²⁺ + 2e [−] ⇒ Ni
Sn ²⁺ Sn	- 0.140	Sn ²⁺ + 2e [−] ⇌ Sn
Pb ²⁺ Pb	– 0.126	Pb ²⁺ + 2e [−] ⇌ Pb
H ⁺ + H ₂ Pt	± 0.00	$H^+ + e^- \rightleftharpoons 1/2 H_2$
Cu ²⁺ Cu	+ 0.337	Cu²+ + 2e [−] ⇌ Cu
Pt, O₂ / OH ⁻	+ 0.401	1/2O₂+H₂O+2e [₹] 2OH⁻
I ₂ I [−] , Pt	+ 0.536	l₂ + 2e⁻ ⇌ 2 l⁻
Fe ³⁺ Fe ²⁺ , Pt	+ 0.771	Fe³+ + e⁻ ⇌ Fe²+
Ag⁺ Ag	+ 0.799	Ag⁺ + e⁻ ⇌ Ag
Pt, Br ₂ Br ⁻	+ 1.065	Br ₂ + 2e⁻ ⇌ 2 Br⁻
Pt, Cl ₂ Cl ⁻	+ 1.360	$Cl_2 + 2e^- \rightleftharpoons 2 Cl^-$
Pt, F ₂ F ⁻	+ 2.87	F ₂ + 2e [−]

- In the above activity series from top to bottom, SRP value increases.
- SOP values decreases.
- Metallic or electro positive nature decreases.
- Non- metallic or electro negative nature increases.
- Tendency to reduce or reducing nature decreases.
- Tendency to undergo reduction increases.
- Tendency to oxidise (or) oxidising nature, increases.
- Tendency to undergo oxidation decreases.
- The ability to lose electrons decreases.

- The ability to gain electrons increases.
- Above element reduces all the elements below it.
- Below element oxidizes all the elements above it.
- Above metal displaces the below metal from the salt solution.
- Below non metal displaces the above non metal from its solution.
- Metals above hydrogen liberate H₂ gas from dil acids and water.
- Metals below hydrogen cannot liberate H₂ gas from dil acids and H₂O.
- Aqueous solution of metals above hydrogen will liberate H_2 but not metal on electrolysis. Fused or aq.solution of metal salts below hydrogen will give metal at cathode but not H_2 gas.