第八章 假设检验

第一节 假设检验的基本概念

一、假设检验的背景及提法

1. 假设检验的背景

例 1 某洗衣粉厂用自动包装机进行包装,正常情况下包装量 $X \sim N(500,9)$ (单位:克),现随机抽取 25 袋洗衣粉,测得平均重量 x=501.5 克,假定方差不变,问可否认为平均包装量 μ 仍为 500 克?

例 2 设有某车间生产的甲、乙两批同型号的产品,其次品率分别为 p_1 和 p_2 ,其中 p_1 和 p_2 均未知. 现从甲批产品中任取 36件产品,发现有 2 件次品;再从乙批产品中任取 50件产品,发现有 3 件次品,问是否有 $p_1 < p_2$?

例 3 将一枚骰子抛120次,统计出各点数出现的次数如下

点数	1	2	3	4	5	6
出现的次数	21	28	19	24	16	12

问这枚骰子的六个面是否均匀?

假设检验问题是非常丰富的. 按检验的内容, 假设检验可分为参数检验和非参数检验.

如果总体 *X* 的分布类型已知,检验只涉及到其中的某些参数,这类假设检验称为参数检验.

例 1, 例 2 为参数检验. 例 3 为非参数检验.

在参数检验问题中,又会出现单总体和多总体情形.

例 1 为单总体情形;例 2 为双总体情形.

假设检验不同于参数估计.参数估计是想了解总体 X 中未知参数 θ 的取值大约是多少,从而进行点估计等 等. 而假设检验并不想知道未知参数 θ 的取值,只是判断未知参数 θ 是否满足某种关系.

如例 1 中,检验的问题是接受 $\mu = 500$,还是 $\mu \neq 500$,如果是 $\mu \neq 500$,那么此时 μ 取值多少并不是重点关心的问题.

2. 假设的提法

称检验问题中相互对立的两个方面命题为假设或统计假设.并将其中一个命题称为原假设或零假设,记为 H_0 ;另一个命题称为备择假设,记为 H_1 . 因此检验问题常简记为 (H_0,H_1) .

注 1: 原假设中的"原"可理解为"原本有的",具有"保持不变"(带有"="," \leq "或" \geq ") 的特征.

备择假设指抛弃原假设后可供选择的假设,具有"发生变化"(含有" \neq ","<"或">")的特征.

二、假设检验的思想和方法

1. 假设检验中的反证法思想

反证法思想(注意:不是指严格的反证法):

先假定 H_0 成立,然后根据统计分析的思想和方法,进行推理和演算,如果推理和演算的结果中有"矛盾"的现象出现,就"主动地"拒绝 H_0 ,接受 H_1 ;如果其结果中没有"矛盾"的现象出现,就不能拒绝 H_0 ,因此只好"被动地"接受 H_0 ,拒绝 H_1 .

2. 假设检验的基本原理

小概率原理:在正常情况下,小概率事件在一次抽样中是几乎不可能发生的.

如果在一次抽样中,某小概率事件 A 发生了,应属于"不正常现象",即"'矛盾'的现象"出现了. 在检验问题 (H_0,H_1) 中,就会认为对总体所做的原假设 H_0 不正确,从而拒绝 H_0 ,接受 H_1 .

3. 假设检验的两类错误

根据假设检验的基本原理知道,在假定 H_0 成立的情况下,选择统计量 $g(X_1, X_2, \cdots, X_n)$,并由其分布确定一个小概率事件 A .

当经过抽样得到样本值 (x_1, x_2, \dots, x_n) 时,计算统计量 $g(X_1, X_2, \dots, X_n)$ 的观察值 $g(x_1, x_2, \dots, x_n)$,根据其结果,决定小概率事件 A 是否发生,并依此对检验问题 (H_0, H_1) 作出判断.

如果小概率事件 A 发生,则拒绝 H_0 . 因此,导致小概率事件 A 发生的 $g(X_1, X_2, \dots, X_n)$ 的全体取值范围称为 H_0 的拒绝域,记为W.

如果小概率事件 A 不发生,则接受 H_0 . 同理,导致小概率事件 A 不发生的 $g(X_1, X_2, \dots, X_n)$ 的全体取值范围称为 H_0 的接受域.

由于**样本具有随机性**(小概率事件有时也会发生),在一次抽样中, *A* 可能发生, *A* 也可能不发生. 因此, 检验结果与真实情况之间就有四种情形:

- (1) 真实情况 H_0 成立,且检验结果接受 H_0 ,拒绝 H_1 ;
- (2) 真实情况 H_0 成立,而检验结果拒绝 H_0 ,接受 H_1 ;
- (3) 真实情况 H_1 成立,而检验结果接受 H_0 ,拒绝 H_1 ;
- (4) 真实情况 H_1 成立,且检验结果拒绝 H_0 ,接受 H_1 .

其中(1)和(4)中的检验结果与真实情况完全吻合,表明理论判断正确. 但(2)和(3)中两者不一致,表明理论判断有误,这就是假设检验的两类错误.

称真实情况 H_0 成立,而检验结果拒绝 H_0 为第一类错误 或弃真错误;称真实情况 H_1 成立,而检验结果接受 H_0 为第 二类错误或存伪错误。

一大相大外门内相大•						
检验结果 真实情况	接受 H_0	接受 H_1 (拒绝 H_0)				
H_0 成立	判断正确	第一类错误 (弃真错误)				
H_1 成立 $(H_0$ 不成立 $)$	第二类错误 (存伪错误)	判断正确				

记犯第一类错误,即弃真错误的概率为 α ,犯第二类错误,即存伪错误的概率为 β .

理论上已经证明,当样本容量n 无限增大时,可以同时降低 α 和 β ,而这在实际问题中是不可能做到的. 但当样本容量n 取某固定值时, α 和 β 会出现此消彼长现象.

因此,在控制 α 和 β 时,要选择一个先后次序. 目前比较流行的做法是采用"优先固定或限制第一类错误概率 α 的原则",并在此基础上,降低犯第二类错误的概率.

在优先固定或限制第一类错误概率 α 后,可以通过构造"好的"统计量或统计方法,降低犯第二类错误的概率 β .

4. 显著性检验

根据假设检验的基本原理,先假定 H_0 成立,然后选择统计量 $g(X_1,X_2,\cdots,X_n)$,并由样本值 (x_1,x_2,\cdots,x_n) 得到统计量的值 $g(x_1,x_2,\cdots,x_n)$.

如果 $g(x_1, x_2, \dots, x_n)$ 反映了抽样结果与总体情况有显著的差异,则表明总体的状况已经发生了质的变化,这时就应该拒绝 H_0 . 而拒绝 H_0 后,就有可能犯第一类错误.

因此,统计中,称犯第一类错误的概率 α 为显著性水平.

如果假设检验问题 (H_0, H_1) 为

$$H_0$$
: $\theta = \theta_0$, H_1 : $\theta \neq \theta_0$,

就称之为双侧(边)检验.

如果假设检验问题 (H_0, H_1) 为

$$H_0$$
: $\theta \ge \theta_0$, H_1 : $\theta < \theta_0$,

或

$$H_0: \theta \leq \theta_0$$
, $H_1: \theta > \theta_0$,

就称之为单侧(边)检验.

5. 假设检验的四个步骤

第一步: 根据给定的问题,建立假设检验问题 (H_0, H_1) ;

第二步:根据假设检验问题 (H_0, H_1) 及条件,选择检验统计量 $g(X_1, X_2, \dots, X_n)$. 当 H_0 为成立时,确定该统计量 $g(X_1, X_2, \dots, X_n)$ 的分布;

第三步:根据显著性水平 α ,确定临界值和原假设 H_0 的拒绝域W;

第四步: 通过样本值 (x_1, x_2, \dots, x_n) ,计算统计量 $g(X_1, X_2, \dots, X_n)$ 的值 $g(x_1, x_2, \dots, x_n)$. 若 $g(x_1, x_2, \dots, x_n) \in W$,则拒绝 H_0 ,否则接受 H_0 .

例 4 某食品厂生产的罐头重量 $X \sim N(\mu,4)$ (单位: 克),在正常情况下, $\mu = 500$. 现任意抽取了 16 听罐头,测得其平均重量为 x = 502 克. 在显著性水平 $\alpha = 0.05$ 下,问可否认为现在仍有 $\mu = 500$?

解 (1)假设检验问题为 H_0 : $\mu = 500$, H_1 : $\mu \neq 500$.

(2)选择统计量以及分布为
$$U=rac{X-\mu}{\sigma/\sqrt{n}}^{ au H_0 成立下}rac{X-500}{\sigma/\sqrt{n}} \sim N(0,1)$$
.

(3)由于该检验为双侧检验,且 $\alpha = 0.05$,查表得临界值为

$$U_{rac{lpha}{2}}=U_{0.025}=1.96$$
和 $U_{1-rac{lpha}{2}}=U_{0.975}=-U_{0.025}=-1.96$,所以 H_{0} 的拒

绝域 $W = \{U \le -1.96$ 或 $U \ge 1.96\} = \{|U| \ge 1.96\}$.

(续解)

(4)又 $\sigma = 2$, n = 16, x = 502, 计算得统计量的观测值为

$$U_0 = \frac{502 - 500}{2/\sqrt{16}} = 4 \in W ,$$

所以拒绝 H_0 ,即不可认为现在有 $\mu = 500$.