

LAB 6 Pulse Width Modulation

MODELO

PED

Unidade Curricular					
Microprocessadores e Sistemas Embebidos					
Curso	Mecânica e Informática Industrial				
Ano letivo	2022/23	Ano curricular	2.º	Período	2.º semestre
Data	18/04/2023		•		
LAB 6 – Pulse Width Modulation					

NOTA: Todos os exercícios devem ser devidamente resolvidos e submetidos (documento PDF + código) para o repositório no GitHub.

Pulse Width Modulation

PWM (Pulse Width Modulation) é uma técnica utilizada para simular saídas analógicas usando apenas sinais digitais. O sinal digital é usado para criar uma onda quadrada (Figura 1). A frequência da onda quadrada é fixa, o que varia é o tempo que o sinal fica no nível lógico alto (5V). Esse tempo é designado duty cycle (tempo útil de trabalho).

Quando o duty cycle é 0%, o valor médio da saída é 0V. Quando o duty cycle é de 100%, o valor da saída é de 5V. No entanto, para um duty cycle de 50%, o valor médio é de 2.5V. A fórmula de conversão é dada por: $V_{out} = \left(\frac{duty\ cycle}{100}\right) \times\ Vcc.$

LAB 6 Pulse Width Modulation

MODELO

PED

Para escrever um sinal PWM (nos pinos indicados para o efeito), utiliza-se a função analogWrite(pin, value), que recebe como parâmetros o pino e o valor do duty cycle, respetivamente. O valor do duty cycle é guardado em 8 bits, pelo que a sua gama de valores se situa entre 0 (0% duty cycle) e 255 (100% duty cycle).

```
//Escreve no pino 9 um sinal PWM com 50% de duty cycle (50% de 255 = 127) analogWrite(9, 127);

//Escreve no pino 10 um sinal PWM com 25% de duty cycle (25% de 255 = 64) analogWrite(10, 64);
```

Todos os pinos no Arduino UNO marcados com o símbolo \sim (3,5,6,9,10,11) podem ser usados para controlar qualquer dispositivo através de PWM.

Com o PWM é possível, por exemplo, controlar a intensidade do brilho de um LED, ou a velocidade de um motor de corrente contínua.

Exercícios

Recorrendo ao simulador TinkerCAD (https://www.tinkercad.com/), realize os seguintes exercícios:

Nota: Para todos os exercícios deve elaborar o esquema do circuito, algoritmo, circuito e código.

Exercício 1. Aumentar a intensidade do brilho de um LED, do mínimo (0) até ao máximo (255), em 1024 ms.

Exercício 2. Aumentar a intensidade do brilho de um LED, do mínimo (0) até ao máximo (255), em 1024 ms, e posteriormente diminuir a intensidade do LED, do máximo (255) até ao mínimo (0), em 1024 ms.

Exercício 3. Controlar a intensidade do brilho de um LED com um potenciómetro.