# **V SEMESTER**

| Course Code                  | : | CSPC51                |
|------------------------------|---|-----------------------|
| Course Title                 | : | Computer Architecture |
| Number of Credits            | : | 3-1-0-4               |
| Pre-requisites (Course Code) | : | CSPC34                |
| Course Type                  | : | PC                    |

### **Course Objectives**

- To understand the concept of advanced pipelining techniques
- To understand the current state of art in memory system design
- To know the working principle of I/O devices
- To understand the memory management techniques

### **Course Contents**

#### UNIT I

Introduction - Classes of computers - Defining Computer Architecture - Trends in Technology - Trends in Power and Energy in Integrated Circuits - Trends in Cost - Dependability - Measuring - Reporting and Summarizing Performance - Quantitative Principles of Computer Design.

### **UNIT II**

Basic and Intermediate pipelining Concepts - The Major Hurdle of Pipelining - Pipeline Hazards - Pipelining Implementation - Implementation issues that makes Pipelining hard - Extending the MIPS Pipeline to Handle Multicycle Operations - The MIPS R4000 Pipeline.

### **UNIT III**

Instruction-Level Parallelism: Concepts and Challenges - Basic Compiler Techniques for Exposing ILP - Reducing Branch Costs with Prediction - Overcoming Data Hazards with Dynamic Scheduling - Dynamic Scheduling - Hardware-Based Speculation - Exploiting ILP Using Multiple Issue and Static Scheduling - Exploiting ILP - Advanced Techniques for Instruction Delivery and Speculation - Studies of the Limitations of ILP.

#### **UNIT IV**

Vector Architecture - SIMD Instruction Set Extensions for Multimedia - Graphics Processing Units - Detecting and Enhancing Loop-Level Parallelism - Centralized Shared-Memory Architectures - Performance of Shared-Memory Multiprocessors - Distributed Shared Memory - Models of Memory Consistency - Multicore Processors and their Performance.

## UNIT V

Review of Memory Hierarchy Design - Cache Performance - Basic Cache Optimizations - Virtual Memory - Protection and Examples of Virtual Memory - Advanced Optimizations of Cache Performance - Memory Technology and Optimizations - Protection: Virtual Memory and Virtual Machines - Crosscutting Issues: The Design of Memory Hierarchies - Case Studies / Lab Exercises.

### **Course Outcomes**

Upon completion of the course, the students will be able to:

- Apply performance metrics to find the performance of systems
- Identify the program block that requires parallelism for any program
- · Comprehend and differentiate various computer architectures and hardware
- Design algorithms for memory management techniques

#### **Text Books**

 David. A. Patterson, John L. Hennessy, "Computer Architecture: A Quantitative approach", Fifth Edition, Elsevier, 2012.