240 A10 NO OUTSIDE DISCUSSION; Consulted Wikipedia

The deterministic finite automaton $A = (Q, \Sigma, \delta, s, F)$,

Start

is the graph below:

Lemma2: \forall a, b \in N, (3|a AND 3|b)IMPLIES3|(a + b)

(directly from the property of exact division)

Lemma3:

x is a binary representation of natural number, so assume x has m digits, and $x = a[1]a[2] \dots a[m]$. Assume x is formed of i 1s and j 0s (i + j = m).

Let x' = a[1]a[2] ... a[m]a[m + 1], where a[m+1] is a new number that can be either 0 or 1.

If a[m+1] = 0, then $x' = 2 \times x$. (from the property of binary system)

and $x' \equiv 2x \pmod{3}$ (from the property of modulo)

Else if a[m+1] = 1, then $x' = 2 \times x + 1$. (from the property of binary

system). and $x' \equiv 2x + 1 \pmod{3}$ (from the property of modulo)

Lemma4:

For deterministic finite automaton A, q_0 accepts binary representation of either empty string or a natural number $r\equiv 0 \pmod{3}$. q_1 accepts binary representation of a natural number $r\equiv 1 \pmod{3}$. q_2 accepts binary representation of a natural number $r\equiv 2 \pmod{3}$.

Prove by induction:

Firsty, if input is an empty string, it end with q_0 , so q_0 accepts binary representation of either empty string or a natural number $r\equiv 0\ (\text{mod }3)$ is true when input is an empty string. Let $P_0=$ " For deterministic finite automaton A, q_0 accepts binary representation of a natural number $r\equiv 0\ (\text{mod }3)$." $P_1=$ " For

deterministic finite automaton A, q_1 accepts binary representation of a natural number $r \equiv 1 \pmod{3}$." $P_2 =$ " For deterministic finite automaton A, q_2 accepts binary representation of a natural number $r \equiv 2 \pmod{3}$."

Base cases:

1.If x = 0, the binary representation x = a[0] = 0.

$$2.\,\delta(q_0,0)=q_0$$

 $3. P_0$ is true.

4. If x = 1, the binary representation x = a[0] = 1.

5.
$$\delta(q_0, 1) = q_1$$

- 6. P₁ is true.
- 7. If x = 2, the binary representation x = a[0] a[1] = 10.

8.
$$\delta^*(q_0, x) = \delta(\delta(q_0, 1), 0) = \delta(q_1, 0) = q_2$$

- 9. P₂ is true.
- 10. If x = 3, the binary representation x = a[0] a[1] = 11.

11.
$$\delta^*(q_0, x) = \delta(\delta(q_0, 1), 1) = \delta(q_1, 1) = q_0$$

12. P_0 is true.

Constructor cases:

- 13. Assume for an arbitrary natural number x, The binary representation of x is: x = a[1]a[2] ... a[m]. Let y = a[1]a[2] ... a[m a[m]]
- 1]. and P_0 , P_1 and P_2 is true for y, which means:

$$\delta^*(q_0, y) = \begin{cases} q_0, & \text{if } y \equiv 0 \pmod{3} \\ q_1, & \text{if } y \equiv 1 \pmod{3} \\ q_2, & \text{if } y \equiv 2 \pmod{3} \end{cases}$$

14.
$$\delta^*(q_0, x) = \delta(\delta^*(q_0, y), a[m])$$

15. if
$$a[m]=0$$
, $x = 2 \times y$ and $x \equiv 2y \pmod{3}$ (from lemma 3)

16. if
$$\delta^*(q_0, y) = q_0$$
, then $y \equiv 0 \pmod{3}$ (from 13)

$$17.x \equiv 2y \equiv 0 \pmod{3}$$
 (from 15, 16)

18.
$$\delta(q_0,0) = q_0$$

 $19.P_0$ is true for this case. (from 17, 18)

20. if
$$\delta^*(q_0, y) = q_1$$
, then $y \equiv 1 \pmod{3}$ (from 13)

$$21.x \equiv 2y \equiv 2 \pmod{3}$$
 (from 15, 20)

22.
$$\delta(q_1,0) = q_2$$

 $23.P_2$ is true for this case. (from 21, 22)

24. if
$$\delta^*(q_0, y) = q_2$$
, then $y \equiv 2 \pmod{3}$ (from 13)

$$25.x \equiv 2y \equiv 4 \equiv 1 \pmod{3}$$
 (from 15, 24)

26.
$$\delta(q_2,0) = q_1$$

 $27.P_1$ is true for this case. (from 25, 26)

28. else if a[m]=1, $x = 2 \times y + 1$ and $x \equiv 2y + 1 \pmod{3}$ (from lemma

3)

29. if
$$\delta^*(q_0, y) = q_0$$
, then $y \equiv 0 \pmod{3}$ (from 13)

$$30.x \equiv 2y + 1 \equiv 1 \pmod{3}$$

31.
$$\delta(q_0,1) = q_1$$

 $32.P_1$ is true for this case.

33. if
$$\delta^*(q_0, y) = q_1$$
, then $y \equiv 1 \pmod{3}$

$$34.x \equiv 2y + 1 \equiv 3 \equiv 0 \pmod{3}$$

35.
$$\delta(q_1,1) = q_0$$

 $36.P_0$ is true for this case.

37. if
$$\delta^*(q_0, y) = q_2$$
, then $y \equiv 2 \pmod{3}$

$$38.x \equiv 2y + 1 \equiv 5 \equiv 2 \pmod{3}$$

39.
$$\delta(q_2,1) = q_2$$

40.P₂ is true for this case.

41. So, P_0 , P_1 and P_2 is true for y IMPLIES P_0 , P_1 and P_2 is true for x (from 13 and (19, 23, 27, 32, 36, 40))

42. By induction, P_0 , P_1 and P_2 is true for all natural numbers.

Question 1:

A is in the picture above, and since P_0 , P_1 and P_2 is correct from lemma 4, A is correct.

Question 2:

Proof:

Consider a deterministic finite automaton $B=(Q,\Sigma,\delta,s,F)$ such that $\mathcal{L}(B)=L$ and |Q|<3. Then, there exist at least two possibilities that lead to the same state. Assume the two states are q_0 and q_1 , q_0 is the initial state and one of q_0 , q_1 is final state (if they are all finial states then $\mathcal{L}(B)\neq L$ because for example, 101 is not in L.). Case 1: δ (q_0 , 0) = q_1 , then q_1 is final state because 0 is in L. Then, δ (q_0 , 1) = q_0 because 1 is not in L. So, δ *(q_0 , 10) = q_1 , but 10 is not in L, so this form of DFA B is impossible to make $\mathcal{L}(B)=L$. Case 2: δ (q_0 , 0) = q_0 , then q_0 is final state because 0 is in L. Then, δ (q_0 , 1) = q_1 because 1 is not in L. δ *(q_0 , 10) = q_1 because 10 is not in L, so we have δ (q_1 , 0) = q_1 . What's more, δ *(q_0 , 11) = q_0 because 11 is in L, so we have δ (q_1 , 1) = q_0 . Now, we have δ *(q_0 , 101) = q_0 from above analysis, but 101 is not in L, so this form of DFA B is impossible to make $\mathcal{L}(B) = L$.

Both case 1 and case 2 are impossible, which are all the possibilities exist for such B, so such B does not exist.

Question 3:

Answer: R = 0 + (1((10*1) + (01*0))*10*))

Proof, firstly, a number in binary from is either $\boldsymbol{0}$ or begin with $\boldsymbol{1}$.

When the number is 0, then it is divisible by three. So, R here is either 0 or (1((10*1)+(01*0))*10*)). $\mathcal{L}(R)=$ For the deterministic finite automaton A, $\delta(q_0,1)=q_1$. So, $\mathcal{L}(R)=L$ if and only if $\delta*(q_1,(10*1)+(01*0))*10*)=q_0$ and is all possible way from q_1 to q_0 . (from lemma4 and the from of R). Moreover, $\delta*(q_1,(10*1))$ proceeds like $q_1\rightarrow q_0\rightarrow q_1$, $\delta*(q_1,(01*0))$ proceeds like $q_1\rightarrow q_2\rightarrow q_1$, $\delta*(q_1,(10*1))$ proceeds like $q_1\rightarrow q_0$, and they are all possible way from q_1 to q_0 . So, $\delta*(q_1,(10*1)+(01*0))*10*)$) is all possible way from q_1 to q_0 . So, $\mathcal{L}(R)=L$.