SCDM Lab - 2

Faculty-in-charge: Dr. D.K. Shaw, Dr. Ashok Kumar Mehta

Data Mining Lab Assignment 1:

Data: 04/02/2022

Name- Ravi Kumar

Reg-2020pgcaca72

```
In [ ]:
```

Que 1. Load 'spambase.csv' file in jupyter notebook.

```
In [4]:
```

```
import numpy as np
import pandas as pd
```

```
In [5]:
```

```
df=pd.read_csv('spambase.csv')
```

In [6]:

df

Out[6]:

	0	0.64	0.64.1	0.1	0.32	0.2	0.3	0.4	0.5	0.6	 0.40	0.41	0.42	0.778
0	0.21	0.28	0.50	0.0	0.14	0.28	0.21	0.07	0.00	0.94	 0.000	0.132	0.0	0.372
1	0.06	0.00	0.71	0.0	1.23	0.19	0.19	0.12	0.64	0.25	 0.010	0.143	0.0	0.276
2	0.00	0.00	0.00	0.0	0.63	0.00	0.31	0.63	0.31	0.63	 0.000	0.137	0.0	0.137
3	0.00	0.00	0.00	0.0	0.63	0.00	0.31	0.63	0.31	0.63	 0.000	0.135	0.0	0.135
4	0.00	0.00	0.00	0.0	1.85	0.00	0.00	1.85	0.00	0.00	 0.000	0.223	0.0	0.000
											 			•••
4595	0.31	0.00	0.62	0.0	0.00	0.31	0.00	0.00	0.00	0.00	 0.000	0.232	0.0	0.000
4596	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	 0.000	0.000	0.0	0.353
4597	0.30	0.00	0.30	0.0	0.00	0.00	0.00	0.00	0.00	0.00	 0.102	0.718	0.0	0.000
4598	0.96	0.00	0.00	0.0	0.32	0.00	0.00	0.00	0.00	0.00	 0.000	0.057	0.0	0.000
4599	0.00	0.00	0.65	0.0	0.00	0.00	0.00	0.00	0.00	0.00	 0.000	0.000	0.0	0.125

4600 rows × 58 columns

Que 2. Print the top 5 and last 5 data of the above dataset.

```
In [33]:
```

```
print("Top 5 data of data set are Below.\n")
df.head(5)
```

Top 5 data of data set are Below.

Out[33]:

	0	0.64	0.64.1	0.1	0.32	0.2	0.3	0.4	0.5	0.6	•••	0.40	0.41	0.42	0.778	0.43
0	0.21	0.28	0.50	0.0	0.14	0.28	0.21	0.07	0.00	0.94		0.00	0.132	0.0	0.372	0.180
1	0.06	0.00	0.71	0.0	1.23	0.19	0.19	0.12	0.64	0.25		0.01	0.143	0.0	0.276	0.184
2	0.00	0.00	0.00	0.0	0.63	0.00	0.31	0.63	0.31	0.63		0.00	0.137	0.0	0.137	0.000
3	0.00	0.00	0.00	0.0	0.63	0.00	0.31	0.63	0.31	0.63		0.00	0.135	0.0	0.135	0.000
4	0.00	0.00	0.00	0.0	1.85	0.00	0.00	1.85	0.00	0.00		0.00	0.223	0.0	0.000	0.000

5 rows × 58 columns

```
In [25]:

print("\n\nLast 5 data of data set are Below. \n")
df.tail(5)
```

Last 5 data of data set are Below.

Out[25]:

	0	0.64	0.64.1	0.1	0.32	0.2	0.3	0.4	0.5	0.6	 0.40	0.41	0.42	0.778	0.43
4595	0.31	0.0	0.62	0.0	0.00	0.31	0.0	0.0	0.0	0.0	 0.000	0.232	0.0	0.000	0.0
4596	0.00	0.0	0.00	0.0	0.00	0.00	0.0	0.0	0.0	0.0	 0.000	0.000	0.0	0.353	0.0
4597	0.30	0.0	0.30	0.0	0.00	0.00	0.0	0.0	0.0	0.0	 0.102	0.718	0.0	0.000	0.0
4598	0.96	0.0	0.00	0.0	0.32	0.00	0.0	0.0	0.0	0.0	 0.000	0.057	0.0	0.000	0.0
4599	0.00	0.0	0.65	0.0	0.00	0.00	0.0	0.0	0.0	0.0	 0.000	0.000	0.0	0.125	0.0

5 rows × 58 columns

Que: 3. Print the total instances per class of the above dataset.

```
In [ ]:
```

4. Split the data part and label part of the above dataset.

```
In [11]:
df.shape
Out[11]:
(4600, 58)
In [12]:
[row,col]=df.shape
In [13]:
Data=df.iloc[0 : row , 0 : (col-1)]
Label=df.iloc[0 : row , (col-1)]
In [15]:
Data.shape
Out[15]:
(4600, 57)
In [31]:
Label.value_counts()
Out[31]:
     2788
1
     1812
Name: 1, dtype: int64
```

```
In [37]:
```

Data

Out[37]:

	0	0.64	0.64.1	0.1	0.32	0.2	0.3	0.4	0.5	0.6	 0.39	0.40	0.41	0.42	0
0	0.21	0.28	0.50	0.0	0.14	0.28	0.21	0.07	0.00	0.94	 0.0	0.000	0.132	0.0	0
1	0.06	0.00	0.71	0.0	1.23	0.19	0.19	0.12	0.64	0.25	 0.0	0.010	0.143	0.0	0
2	0.00	0.00	0.00	0.0	0.63	0.00	0.31	0.63	0.31	0.63	 0.0	0.000	0.137	0.0	0
3	0.00	0.00	0.00	0.0	0.63	0.00	0.31	0.63	0.31	0.63	 0.0	0.000	0.135	0.0	0
4	0.00	0.00	0.00	0.0	1.85	0.00	0.00	1.85	0.00	0.00	 0.0	0.000	0.223	0.0	0
4595	0.31	0.00	0.62	0.0	0.00	0.31	0.00	0.00	0.00	0.00	 0.0	0.000	0.232	0.0	0
4596	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	 0.0	0.000	0.000	0.0	0
4597	0.30	0.00	0.30	0.0	0.00	0.00	0.00	0.00	0.00	0.00	 0.0	0.102	0.718	0.0	0
4598	0.96	0.00	0.00	0.0	0.32	0.00	0.00	0.00	0.00	0.00	 0.0	0.000	0.057	0.0	0
4599	0.00	0.00	0.65	0.0	0.00	0.00	0.00	0.00	0.00	0.00	 0.0	0.000	0.000	0.0	0

4600 rows × 57 columns

◆

In [38]:

Data.describe()

Out[38]:

	0	0.64	0.64.1	0.1	0.32	0.2							
count	4600.000000	4600.000000	4600.000000	4600.000000	4600.000000	4600.000000	4600.000						
mean	0.104576	0.212922	0.280578	0.065439	0.312222	0.095922	0.114						
std	0.305387	1.290700	0.504170	1.395303	0.672586	0.273850	0.391						
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000						
25%	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000						
50%	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000						
75%	0.000000	0.000000	0.420000	0.000000	0.382500	0.000000	0.000						
max	4.540000	14.280000	5.100000	42.810000	10.000000	5.880000	7.270						
8 rows	8 rows × 57 columns												

5. Find the accuracy of this using kNN algorithm.

```
In [73]:
```

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
import numpy as np
X = Data
y = Label
# Split into training and test set
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size = 0.2)
knn = KNeighborsClassifier(n_neighbors= 4)
knn.fit(X_train, y_train)
print(knn.score(X_test, y_test))
0.8217391304347826
In [74]:
y_test.value_counts()
Out[74]:
     549
     371
1
Name: 1, dtype: int64
In [60]:
y_train.value_counts()
Out[60]:
     2245
0
1
     1435
Name: 1, dtype: int64
In [70]:
y_train.value_counts()+y_test.value_counts()
Out[70]:
     2788
     1812
Name: 1, dtype: int64
In [67]:
Label.count()
Out[67]:
```

4600

In []:			