Breve Ementa

- Técnicas de Demonstração
- Princípio da Indução
- Teoria dos Números

https://meet.google.com/maz-hqtd-snn

Demonstração Direta

- $p = \mathsf{hipótese}$
- q =tese

$$p\Rightarrow q$$

$$K \mid 2K$$

$$Q \mid 2.0=0$$

$$-1 \mid 2(-1)=-2$$

$$-2 \mid 2(-2)=14$$

$$-3 \mid 2(-3)=6$$

$$n=2k$$

Definição 2: Dizemos que um número $n \in \mathbb{Z}$ é ímpar se existir um inteiro k tal que

Exemplos:

$$n = 2k + 1 = 2(k + 1) - 1$$

$$k \mid 2k + 1 = 2k + 2 - 1 = 2k + 1$$

$$0 \mid 2 \cdot 2k + 1 = 1 = 2 \cdot 1 - 1$$

$$1 \mid 2 \cdot 2k + 1 = 3 = 2 \cdot 1 - 1$$

$$2 \mid 2 \cdot 2k + 1 = 5 = 2 \cdot 3 - 1$$

Exemplo 1: Mostre que se n é par, então n^2 também é par.

Exemplo 2 : Mostre que se n é ímpar, então n^2 também é ímpar.

$$\eta = 2k+1 - \eta \eta^2 = 2C+1$$

Exemplo 3: Seja m um inteiro qualquer. Mostre que

- a) Se m é par então m^3 é par.
- b) Se m é ímpar então m^3 é ímpar.

Exemplo 4: Prove que se m,n são impares então $m\cdot n$ também é impar

Devenos mestrar que
$$a.b+a.c+a.d=a(b+c+d)$$
 $m_1 n_1 s = a (mpares) \implies m.n_1 e (mpares) = m_1 n_2 e (mpares) = m_1 n_2 e (mpares) = m_2 e (mpa$

$$m=1$$
 = $m.n$ $\in (mpa)$
 $m+n+41$ $\in primo$ $\forall m \ge 0$
 $m + m + 41$
 m

2 $2^{2}+2+41 = 47 \in \text{primo}$ $39 \cdot 39^{2}+39+41 \in \text{primo}$ $40 \cdot 40^{2}+40+41 = 40.40+40.1+41$ = 40.(40+1)+41 = 40.41+1.41 = 41.(40+1) $= 41^{2} \text{ mão } \in \text{primo}$

Definição: Dizemos que um número $a \in \mathbb{Z}$ é um quadrado perfeito, se existir um inteiro k tal que

$$a = k^2$$

Exemplos:

$$1 = 1^2$$

$$1=1^2$$

$$4=2^2$$

$$9 = 3^{2}$$

$$9 = 3^{2}$$
 $16 = 4^{2}$
 $25 = 5^{2}$

Exemplo 7: Mostre que se a, b são quadrados perfeitos, então $a \cdot b$ também é um quadrado perfeito

De fate,
a,b são quadrades
$$\Rightarrow$$
 $a=k^2$, $\exists k \in \mathbb{Z}$
perfectos $b=l^2$, $\exists l \in \mathbb{Z}$

=) a.b é quadrado perfeito

 Use uma demonstração direta para mostrar que todo número inteiro impar é a diferença de dois quadrados.

$$1 = 1^{2} - 0^{2} = 2.0 + 1$$

$$3 = 2^{2} - 1^{2} = 2.1 + 1$$

$$5 = 3^{2} - 2^{2} = 2.2 + 1$$

$$7 = 4^{2} - 3^{2} = 2.3 + 1$$

Definição: Dizemos que um número r é racional se existiem inteiros p, q com $q \neq 0$ tais que

$$r = \frac{p}{q}$$

$$N = \left\{ 1, 2, 3, 4, 5, \dots \right\}$$

Notação:

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

Q = conjunto dos números racionais

$$= \left\{ \frac{P}{q} / p, q \in \mathbb{Z}, q \neq 0 \right\}$$

Exemplos:

Exemplo 8: Sejam r, s dois racionais quaiquer. Mostre que os números a seguir também são racionais

a)
$$r \pm s$$

$$\frac{Y}{Y} = \frac{9}{5} = \frac{9}{5} \cdot \frac{d}{C} = \frac{a \cdot d}{b \cdot C} = \frac{9}{5} \cdot \frac{d}{b \cdot C} = \frac{a \cdot d}{b \cdot C} = \frac{9}{5} \cdot \frac{d}{b \cdot C} = \frac{2}{5} \cdot \frac{d}{b \cdot C} =$$