Machine learning under physical constraints Unsupervised learning in DA

Sixin Zhang (sixin.zhang@toulouse-inp.fr)

Outline

Unsupervised learning of Linear Dynamical systems

MLE approach and EM algorithm

Outline

Unsupervised learning of Linear Dynamical systems

MLE approach and EM algorithm

A special ODS for financial time series

 Build a statistical model of financial time series to analyze stock volume changes under news impact

Model dynamics using Linear dynamical systems (Kalman Filter).

A special ODS for financial time series

- **Goal**: model daily volume dynamics x_t over t using a probabilistic model p_{θ} with $\theta = (\mu_0, \Sigma_0, A, B, C, E, F)$.
- Assume $x_0 \stackrel{\rho_{\theta}}{\sim} \mathcal{N}(\mu_0, \Sigma_0), A \in \mathbb{R}, B \in \mathbb{R}, C > 0$
- ▶ Dynamics: $x_{t+1}|x_t \stackrel{p_\theta}{\sim} \mathcal{N}(Ax_t + B, C)$

A special ODS for financial time series

▶ Model within-day volume $y_t \in \mathbb{R}^d$ for day t,

- ▶ Assume $E \in \mathbb{R}^d$, F p.d matrix, 1 vector of ones
- ▶ Observation: $y_t|x_t \stackrel{p_\theta}{\sim} \mathcal{N}(\mathbb{1}x_t + E, F)$

Problem formulation

- ► Can we estimate the densities $p_{\theta}(x_t|x_{t-1})$ and $p_{\theta}(y_t|x_t)$ for $t=1,\cdots,T$ from $y=(y_1,\cdots,y_T)$?
- **Problem**: estimate $\theta = (\mu_0, \Sigma_0, A, B, C, E, F)$ from y.
- ▶ Challenge: x_t is not observed (y_t may be impacted by news)
- Idea: Maximum likelihood estimation with EM algorithm
- Reference: Pattern Recognition and Machine Learning by Christopher M. Bishop

Outline

MLE approach and EM algorithm

MLE approach and EM algorithm

▶ Identifiability condition (to restrict *E*):

$$E \perp 1$$

Estimate heta from $y=(y_1,\cdots,y_T)$, based on MLE $\max_{ heta}\log p_{ heta}(y)$

Estimating of the latent variables $x = (x_0, \dots, x_T)$ makes the maximization of θ easier,

E step:
$$\max_{\phi} \int \log \frac{p_{\theta}(x|y)}{q_{\phi}(x|y)} q_{\phi}(x|y) dx$$
M step: $\max_{\theta} \int \log p_{\theta}(x,y) q_{\phi}(x|y) dx$

EM algorithm

Compute an optimal θ iteratively: At iteration k,

E step: optimal
$$q_{\phi}(x|y) = p_{\theta^{(k)}}(x|y),$$
 M step: $\theta^{(k+1)} \in \arg\max_{\theta} \int \log p_{\theta}(x,y) p_{\theta^{(k)}}(x|y) dx.$

► Factorization of log p makes EM simpler:

$$\log p_{\theta}(x, y) = \log p_{\theta}(x_0) + \sum_{t=0}^{T-1} \log p_{\theta}(x_{t+1}|x_t) + \sum_{t=1}^{T} \log p_{\theta}(y_t|x_t).$$

Therefore in the E step, it suffices to compute

$$p_{\theta^{(k)}}(x_t|y_1,\cdots,y_T)$$

$$p_{\theta^{(k)}}(x_t,x_{t+1}|y_1,\cdots,y_T)$$

Road-map: 3 sub-problems in M step

Decompose the M-step using factorization,

$$heta^{(k+1)} \in rg \max_{ heta} \int \log p_{ heta}(x,y) p_{ heta^{(k)}}(x|y) dx.$$

▶ **Problem 1**: estimate (μ_0, Σ_0)

$$\max_{\theta} \int \log p_{\theta}(x_0) p_{\theta^{(k)}}(x_0|y) dx_0$$

- ▶ Problem 2: estimate (A, B, C)
- ▶ Problem 3: estimate (E, F)

Problem 1: analytical formula of M step

Problem 1:
$$\ell_1(\theta) = \int \log p_{\theta}(x_0) p_{\theta^{(k)}}(x_0|y) dx_0.$$

- First solve the **E step**: compute $p_{\theta^{(k)}}(x_0|y)$.
- Assume under $p_{\theta^{(k)}}(x_0|y)$, x_0 follows $\mathcal{N}(\mu_{0|T}, \Sigma_{0|T})$
- Develop the log-likelihood,

$$-\ell_1 \propto \mathbb{E}_{\mathsf{x}_0}((\mathsf{x}_0 - \mu_0)^\intercal \Sigma_0^{-1} (\mathsf{x}_0 - \mu_0)) + \log |\Sigma_0|$$

ightharpoonup To maximize ℓ_1 , compute the critical points (exercise)

$$\frac{\partial \ell_1}{\partial \mu_0} = 0, \frac{\partial \ell_1}{\partial \Sigma_0} = 0 \quad \Rightarrow \quad \mu_0 = \mu_{0|T}, \Sigma_0 = \Sigma_{0|T}$$

E step: How to compute $\mathcal{N}(\mu_{0|T}, \Sigma_{0|T})$?

- ▶ To compute $p_{\theta^{(k)}}(x_0|y)$, we use the KF smoother.
- ▶ Backward computation: to compute recursively

$$x_{t+1}|y_1,\cdots,y_T\Rightarrow x_t|y_1,\cdots,y_T$$

- Start from $p(x_T|y)$ by KF propagation and analysis recursively.
 - Analysis step: $x_t|y_1, \cdots, y_t \stackrel{\rho_{\theta^{(k)}}}{\sim} \mathcal{N}(\mu_{t|t}, \Sigma_{t|t})$
 - ▶ Propagation step: $x_{t+1}|y_1, \cdots, y_t \stackrel{P_{\theta^{(k)}}}{\sim} \mathcal{N}(\mu_{t+1|t}, \Sigma_{t+1|t})$

Backward computation in KF smoother

Backward computation: given

$$x_{t+1}|y_1,\cdots,y_T \overset{\rho_{\theta^{(k)}}}{\sim} \mathcal{N}(\mu_{t+1|T},\Sigma_{t+1|T})$$

compute

$$x_t|y_1, \cdots, y_T \stackrel{p_{\theta^{(k)}}}{\sim} \mathcal{N}(\mu_{t|T}, \Sigma_{t|T})$$

We verify that (exercise)

$$\mu_{t|T} = \mu_{t|t} + J_t(\mu_{t+1|T} - \mu_{t+1|t})$$

$$\Sigma_{t|T} = \Sigma_{t|t} + J_t(\Sigma_{t+1|T} - \Sigma_{t+1|t})J_t^T$$
 where $J_t = \Sigma_{t|t}^\mathsf{T} A^\mathsf{T} (C + A\Sigma_{t|t}A^\mathsf{T})^{-1}$

E step: KF smoother (exercise)

ightharpoonup Verify that $p_{\theta^{(k)}}(x_t|x_{t+1},y_1,\cdots,y_T)$ follows

$$\mathcal{N}(\mu_{t|t+1|T}, \Sigma_{t|t+1|T})$$

where

$$\mu_{t|t+1|T} = \mu_{t|t} + J_t[x_{t+1} - (A\mu_{t|t} + B)]$$
$$\Sigma_{t|t+1|T} = \Sigma_{t|t} - J_t A \Sigma_{t|t}$$

▶ This implies the joint distribution $p_{\theta^{(k)}}(x_{t+1}, x_t|y)$ is

$$\mathcal{N}\left(\left(\begin{array}{c} \mu_{t+1|T} \\ \mu_{t|T} \end{array}\right), \left(\begin{array}{c} \Sigma_{t+1|T}, & (J_t \Sigma_{t+1|T})^{\mathsf{T}} \\ J_t \Sigma_{t+1|T}, & \Sigma_{t|T} \end{array}\right)\right)$$

M step: analytical formula of Problem 2

▶ Consider $\ell_2 = \sum_t \ell_{2,t}$, where

$$\ell_{2,t}(\theta) = \int \log p_{\theta}(x_{t+1}|x_t) p_{\theta^{(k)}}(x_{t+1}, x_t|y) dx_{t+1} dx_t$$

$$\propto -\mathbb{E}_{(x_{t+1}, x_t)} [(x_{t+1} - Ax_t - B)^{\mathsf{T}} C^{-1} (x_{t+1} - Ax_t - B)]$$

$$-\log |C|$$

▶ Compute critical points of ℓ_2 using matrix calculus,

$$\frac{\partial \ell_2}{\partial A} = 0, \quad \frac{\partial \ell_2}{\partial B} = 0, \quad \frac{\partial \ell_2}{\partial C} = 0$$

Exercise: find out the optimal solution.

M step: analytical formula of Problem 3

▶ Consider $\ell_3 = \sum_t \ell_{3,t}$, where

$$\ell_{3,t}(\theta) = \int \log p_{\theta}(y_t|x_t) p_{\theta^{(k)}}(x_t|y) dx_t$$

$$\propto -\mathbb{E}_{x_t}[(y_t - \mathbb{1}x_t - E)^{\mathsf{T}} F^{-1}(y_t - \mathbb{1}x_t - E)] - \log |F|$$

- ▶ Due to the constraint on E, we compute critical points of ℓ_3 using the Lagrangian method.
- Exercise: find out the optimal solution.