

Redes Neurais Artificiais

(Prof. Ivan Nunes da Silva)

EPC-3

Para a confecção de um sistema de ressonância magnética, observou-se que é de extrema importância para o bom desempenho do processador de imagens de que a variável $\{y\}$, que mede a energia absorvida do sistema, possa ser estimada a partir da medição de três outras grandezas $\{x_1, x_2, x_3\}$. Entretanto, em função da complexidade do sistema, sabe-se que este mapeamento é de difícil obtenção por técnicas convencionais, sendo que o modelo matemático disponível para representação do mesmo não fornece resultados satisfatórios.

Assim, a equipe de engenheiros e cientistas pretende utilizar uma rede perceptron multicamadas como um aproximador universal de funções, tendo-se como objetivo final de que, dado como entrada os valores de $\{x_1, x_2, x_3\}$, a mesma possa estimar (após o treinamento) o respectivo valor da variável $\{y\}$ que representa a energia absorvida. A topologia da rede perceptron constituída de duas camadas neurais está ilustrada na figura abaixo.

Utilizando o algoritmo de aprendizagem *backpropagation* (Regra Delta Generalizada) e os dados de treinamento apresentados no Anexo, sendo que as variáveis de entrada $\{x_1, x_2, x_3\}$ já estão todas normalizadas, realize as seguintes atividades:

1. Execute 5 treinamentos para a rede perceptron, inicializando-se as suas matrizes de pesos (em cada treinamento) com valores aleatórios entre 0 e 1. Se for o caso, reinicie o gerador de números aleatórios em cada treinamento, de tal forma que os elementos das matrizes de pesos iniciais não sejam os mesmos. Utilize a função de ativação logística para todos os neurônios, taxa de aprendizado η = 0.1 e precisão ε = 10⁻⁶.

2. Registre os resultados finais desses 5 treinamentos na tabela abaixo:

Treinamento	Erro Quadrático Médio	Número de Épocas
1° (T1)		
2° (T2)		
3° (T3)		
4° (T4)		
5° (T5)		

- 3. Para os dois treinamentos acima, com maiores números de épocas, trace os respectivos gráficos dos valores de erro quadrático médio (EQM) em função de cada época de treinamento. Imprima os dois gráficos numa mesma folha de modo não superpostos.
- 4. Baseado na tabela do item 2, explique de forma detalhada por que tanto o erro quadrático médio quanto o número de épocas variam de treinamento para treinamento.
- 5. Para todos os treinamentos efetuados no item 2, faça então a validação da rede aplicando o conjunto de teste fornecido na tabela abaixo. Forneça, para cada treinamento, o erro relativo médio (%) entre os valores desejados e aqueles valores fornecidos pela rede em relação a todas as amostras de teste. Obtenha também a respectiva variância.

Amostra	x_1		x_2	x_3	d	y _{rede} (T1)	y _{rede} (T2)	y _{rede} (T3)	y _{rede} (T4)	y _{rede} (T5)
1	0.0611	0.	2860	0.7464	0.4831					
2	0.5102	0.	7464	0.0860	0.5965					
3	0.0004	0.	6916	0.5006	0.5318					
4	0.9430	0.	4476	0.2648	0.6843					
5	0.1399	0.	1610	0.2477	0.2872					
6	0.6423	0.	3229	0.8567	0.7663					
7	0.6492	0.	0007	0.6422	0.5666					
8	0.1818	0.	5078	0.9046	0.6601					
9	0.7382	0.	2647	0.1916	0.5427					
10	0.3879	0.	1307	0.8656	0.5836					
11	0.1903	0.	6523	0.7820	0.6950					
12	0.8401	0.	4490	0.2719	0.6790					
13	0.0029	0.	3264	0.2476	0.2956					
14	0.7088	0.	9342	0.2763	0.7742					
15	0.1283	0.	1882	0.7253	0.4662					
16	0.8882	0.	3077	0.8931	0.8093					
17	0.2225	0.	9182	0.7820	0.7581					
18	0.1957	0.	8423	0.3085	0.5826					
19	0.9991	0.	5914	0.3933	0.7938					
20	0.2299	0.	1524	0.7353	0.5012					
Erro Relativo Médio (%)										
				Var	riância (%)					

6. Baseado nas análises da tabela acima, indique qual das configurações finais de treinamento {T1 , T2 , T3 , T4 ou T5} seria a mais adequada para o sistema de ressonância magnética, ou seja, qual delas está oferecendo a melhor generalização.

ANEXO

Amostro	v	v	v	d	Amostra	v	v	v	d	Amostro	v	r	v	d
Amostra	<i>x</i> ₁ 0.8799	0.7998	x_3 0.3972	0.8399		<i>x</i> ₁ 0.3644	0.2948	x_3 0.3937	0.5240	Amostra	x_1 0.2858	0.9688	x_3 0.2262	0.5988
1 2	0.8799	0.7998	0.3972	0.6258	71 72	0.3044	0.6326	0.3937	0.3240	141 142	0.2838	0.8993	0.2202	0.3988
3	0.6796	0.4117	0.3370	0.6622	73	0.4039	0.0645	0.4629	0.4547	143	0.7841	0.0778	0.9012	0.6832
4	0.3567	0.2967	0.6037	0.5969	74	0.7137	0.0670	0.2359	0.4602	144	0.1380	0.5881	0.2367	0.4622
5	0.3866	0.8390	0.0232	0.5316	75	0.4277	0.9555	0.0000	0.5477	145	0.6345	0.5165	0.7139	0.8191
6	0.0271	0.7788	0.7445	0.6335	76	0.0259	0.7634	0.2889	0.4738	146	0.2453	0.5888	0.1559	0.4765
7	0.8174	0.8422	0.3229	0.8068	77	0.1871	0.7682	0.9697	0.7397	147	0.1174	0.5436	0.3657	0.4953
8	0.6027	0.1468	0.3759	0.5342 0.4768	78 79	0.3216	0.5420 0.7688	0.0677 0.9523	0.4526 0.7711	148 149	0.3667	0.3228	0.6952 0.4451	0.6376 0.8426
10	0.1203	0.3200	0.4934	0.4105	80	0.2524	0.7088	0.9323	0.7711	150	0.7954	0.8346	0.4431	0.6676
11	0.6950	1.0000	0.4321	0.8404	81	0.2942	0.1625	0.2745	0.3759	151	0.1427	0.0480	0.6267	0.3780
12	0.0036	0.1940	0.3274	0.2697	82	0.8180	0.0023	0.1439	0.4018	152	0.1516	0.9824	0.0827	0.4627
13	0.2650	0.0161	0.5947	0.4125	83	0.8429	0.1704	0.5251	0.6563	153	0.4868	0.6223	0.7462	0.8116
14	0.5849	0.6019	0.4376	0.7464	84	0.9612	0.6898	0.6630	0.9128	154	0.3408	0.5115	0.0783	0.4559
15	0.0108	0.3538	0.1810	0.2800	85	0.1009	0.4190	0.0826	0.3055	155	0.8146	0.6378	0.5837	0.8628
16 17	0.9008	0.7264 0.9659	0.9184 0.3182	0.9602 0.4986	86 87	0.7071	0.7704 0.7819	0.8328	0.9298 0.5377	156 157	0.2820 0.5716	0.5409 0.2958	0.7256 0.5477	0.6939
18	0.0023	0.9639	0.6967	0.4986	88	0.3371	0.7819	0.0939	0.6663	157	0.9323	0.2938	0.3477	0.6619 0.5731
19	0.8621	0.7353	0.2742	0.7718	89	0.7318	0.1877	0.3311	0.5689	159	0.2907	0.7245	0.5165	0.6911
20	0.0682	0.9624	0.4211	0.5764	90	0.1665	0.7449	0.0997	0.4508	160	0.0068	0.0545	0.0861	0.0851
21	0.6112	0.6014	0.5254	0.7868	91	0.8762	0.2498	0.9167	0.7829	161	0.2636	0.9885	0.2175	0.5847
22	0.0030	0.7585	0.8928	0.6388	92	0.9885	0.6229	0.2085	0.7200	162	0.0350	0.3653	0.7801	0.5117
23	0.7644	0.5964	0.0407	0.6055	93	0.0461	0.7745	0.5632	0.5949	163	0.9670	0.3031	0.7127	0.7836
24	0.6441	0.2097	0.5847	0.6545	94	0.3209	0.6229	0.5233	0.6810	164	0.0000	0.7763	0.8735	0.6388
25 26	0.0803	0.3799 0.8046	0.6020	0.4991 0.6665	95 96	0.9189	0.5930 0.5515	0.7288 0.8818	0.8989	165 166	0.4395	0.0501	0.9761 0.9514	0.5712 0.6826
27	0.6937	0.3967	0.6055	0.7595	97	0.3726	0.9988	0.3814	0.7086	167	0.0173	0.9548	0.4289	0.5527
28	0.2591	0.0582	0.3978	0.3604	98	0.4211	0.2668	0.3307	0.5080	168	0.6112	0.9070	0.6286	0.8803
29	0.4241	0.1850	0.9066	0.6298	99	0.2378	0.0817	0.3574	0.3452	169	0.2010	0.9573	0.6791	0.7283
30	0.3332	0.9303	0.2475	0.6287	100	0.9893	0.7637	0.2526	0.7755	170	0.8914	0.9144	0.2641	0.7966
31	0.3625	0.1592	0.9981	0.5948	101	0.8203	0.0682	0.4260	0.5643	171	0.0061	0.0802	0.8621	0.3711
32	0.9259	0.0960	0.1645	0.4716	102 103	0.6226	0.2146	0.1021	0.4452	172 173	0.2212	0.4664	0.3821	0.5260
33	0.8606	0.6779 0.5472	0.0033	0.6242	103	0.4589	0.3147	0.2236	0.4962 0.5875	173	0.2401	0.6964	0.0751	0.4637 0.8049
35	0.0303	0.9191	0.7233	0.6491	105	0.5762	0.8292	0.4116	0.7853	175	0.2435	0.0794	0.5551	0.4223
36	0.9293	0.8319	0.9664	0.9840	106	0.9053	0.6245	0.5264	0.8506	176	0.2752	0.8414	0.2797	0.6079
37	0.7268	0.1440	0.9753	0.7096	107	0.2860	0.0793	0.0549	0.2224	177	0.7616	0.4698	0.5337	0.7809
38	0.2888	0.6593	0.4078	0.6328	108	0.9567	0.3034	0.4425	0.6993	178	0.3395	0.0022	0.0087	0.1836
39	0.5515	0.1364	0.2894	0.4745	109	0.5170	0.9266	0.1565	0.6594	179	0.7849	0.9981	0.4449	0.8641
40	0.7683 0.6462	0.0067	0.5546	0.5708	110 111	0.8149	0.0396	0.6227	0.6165 0.6171	180 181	0.8312	0.0961 0.1102	0.2129 0.6227	0.4857
42	0.3694	0.0761	0.8340	0.8933	111	0.8702	0.3334	0.3633	0.6171	182	0.9763	0.1102	0.6227	0.6667 0.7829
43	0.2706	0.3222	0.9996	0.6310	113	0.1016	0.6382	0.3173	0.4957	183	0.9295	0.3275	0.7536	0.8016
44	0.6282	0.1404	0.8474	0.6733	114	0.3890	0.2369	0.0083	0.3235	184	0.2435	0.2163	0.7625	0.5449
45	0.5861	0.6693	0.3818	0.7433	115	0.2702	0.8617	0.1218	0.5319	185	0.9281	0.8356	0.5285	0.8991
46	0.6057	0.9901	0.5141	0.8466	116	0.7473	0.6507	0.5582	0.8464	186	0.8313	0.7566	0.6192	0.9047
47	0.5915	0.5588	0.3055	0.6787	117	0.9108	0.2139	0.4641	0.6625	187	0.1712	0.0545	0.5033	0.3561
48	0.8359	0.4145	0.5016 0.8382	0.7597 0.8521	118 119	0.4343	0.6028	0.1344 0.9318	0.5546 0.8204	188 189	0.0609	0.1702 0.9408	0.4306	0.3310 0.6245
50	0.7072	0.0319	0.3812	0.8321	120	0.8657	0.4002	0.9318	0.8204	190	0.3899	0.5408	0.0309	0.6243
51	0.1185	0.5084	0.8376	0.6211	121	0.4011	0.4138	0.8715	0.7222	191	1.0000	0.1653	0.7103	0.7172
52	0.6365	0.5562	0.4965	0.7693	122	0.5949	0.2600	0.0810	0.4480	192	0.2007	0.1163	0.3431	0.3385
53	0.4145	0.5797	0.8599	0.7878	123	0.1845	0.7906	0.9725	0.7425	193	0.2306	0.0330	0.0293	0.1590
54	0.2575	0.5358	0.4028	0.5777	124	0.3438	0.6725	0.9821	0.7926	194	0.8477	0.6378	0.4623	0.8254
55 56	0.2026	0.3300	0.3054	0.4261	125	0.8398	0.1360	0.9119	0.7222	195 196	0.9677	0.7895	0.9467	0.9782
56	0.3385	0.0476 0.1726	0.5941 0.7803	0.4625 0.6015	126 127	0.2245	0.0971 0.9668	0.6136 0.8194	0.4402 0.8371	196	0.0339	0.4669 0.8988	0.1526 0.4201	0.3250 0.5404
58	0.4094	0.6181	0.7803	0.5739	128	0.9572	0.9836	0.3793	0.8556	198	0.9955	0.8897	0.4201	0.9360
59	0.1224	0.4662	0.2146	0.4007	129	0.7496	0.0410	0.1360	0.4059	199	0.7408	0.5351	0.2732	0.6949
60	0.6793	0.6774	1.0000	0.9141	130	0.9123	0.3510	0.0682	0.5455	200	0.6843	0.3737	0.1562	0.5625
61	0.8176	0.0358	0.2506	0.4707	131	0.6954	0.5500	0.6801	0.8388					
62	0.6937	0.6685	0.5075	0.8220	132	0.5252	0.6529	0.5729	0.7893					
63	0.2404	0.5411	0.8754	0.6980	133	0.3156	0.3851	0.5983	0.6161					
64	0.6553	0.2609	0.1188	0.4851	134	0.1460	0.1637	0.0249	0.1813					
65 66	0.8886	0.0288 0.5275	0.2604 0.6457	0.4802 0.7215	135 136	0.7780	0.4491 0.8647	0.4614 0.8601	0.7498 0.9176					
67	0.2108	0.4910	0.5432	0.7213	137	0.2204	0.1785	0.4607	0.4276					
68	0.8675	0.5571	0.1849	0.6805	138	0.7355	0.8264	0.7015	0.9214					
69	0.5693	0.0242	0.9293	0.6033	139	0.9931	0.6727	0.3139	0.7829					
70	0.8439	0.4631	0.6345	0.8226	140	0.9123	0.0000	0.1106	0.3944					