Variable Processor Cup Games

Alek Westover

Belmont High School

June 1, 2020

WHAT IS THE CUP GAME?

Definition

The *p-processor cup-game* on *n* cups is a multi-round game in which two players take turns emptying and removing water from the cups.

On each round

- ► The *filler* distributes *p* units of water among the cups (with at most 1 unit to any particular cup).
- ► Then the *emptier* chooses *p* cups to remove (at most) one unit of water from.

WHAT IS THE CUP GAME?

Definition

The *backlog* of the system is the amount of water in the fullest cup; The emptier aims to minimize backlog whereas the filler aims to maximize backlog.

Note: The emptier's resources must be allocated discretlely whereas the filler can continuously distribute resources.

WHY IS IT IMPORTANT?

The cup game models *work scheduling*:

- ightharpoonup The *n* cups represent tasks that must be performed.
- ► At each time step:
 - ▶ *p* new units of work come in, distributed arbitrarily among the *n* tasks (with the constraint that no task gets more than 1 unit of work)
 - ▶ *p* processors must be allocated to a subset the tasks, on which they will achieve 1 unit of progress.

The cup game is also an interesting mathematical object.

Filling strategy: distribute water equally amongst cups not yet emptied by the emptier.

Achieves backlog:

$$\frac{1}{n} + \frac{1}{n-1} + \dots + \frac{1}{2} = \Omega(\log n).$$

SINGLE-PROCESSOR UPPER BOUND

A *greedy emptier* – an emptier that always empties from the fullest cup – never lets backlog exceed $O(\log n)$.

Definitions

- ightharpoonup Let S_t denote the cup state at the start of round t
- ► Let *I*^t denote the state after the filler has added water on round *t* but before the emptier has emptied from cups
- ▶ Let $\mu_k(S_t)$ denote the average fill of the k fullest cups in S_t .

SINGLE-PROCESSOR UPPER BOUND PROOF

Proof: Inductively prove a set of invariants:

$$\mu_k(S_t) \leq \frac{1}{k+1} + \dots \frac{1}{n}.$$

Let a be the cup that the emptier empties from in state S_t .

Case 1: a is the fullest cup in S_{t+1}

$$\mu_k(S_{t+1}) \le \mu_k(S_t).$$

Case 2: a is not the fullest cup in S_{t+1}

$$\mu_k(S_{t+1}) \le \mu_{k+1}(I_t) \le \mu_{k+1}(S_{t+1}) + \frac{1}{k+1}.$$

PREVIOUS WORK ON CUP GAMES

- ▶ The Single-Processor cup game (p = 1) has been tightly analyed with *oblivious* and *adaptive* fillers (i.e. fillers that can't and can observe the emtpier's actions).
- ► The Multi-Processor cup game (p > 1) is substantially more difficult. With an adaptive filler:
 - ► Kuszmaul established upper bound of $O(\log n)$.
 - We established a matching lower bound of $\Omega(\log n)$.
- ► The multi-processor cup game with an oblivious filler has not yet been tightly analyzed.
- ► Variants where valid moves depend on a graph have been studied.
- ► Variants with resource augmentation have been studied.
- ► Variants with clairvoyance have been studied.

¹William Kuszmaul. Achieving optimal backlog in the vanilla multi-processor cup game. SIAM, 2020.

OUR VARIANT OF THE CUP GAME

We investigate a variant of the classic multi-processor cup game, the *variable-processor cup game*, in which *the resources* are variable: the filler is allowed to change *p*.

Although the modification to allow variable resources seems small, we will show that it drastically alters the outcome of the game.

AMPLIFICATION LEMMA

Lemma

Given a filling strategy for achieving backlog f(n) on n cups, we can construct a new filling strategy that achieves backlog

$$f'(n) \ge (1 - \delta) \sum_{\ell=0}^{L} f((1 - \delta)\delta^{\ell}n)$$

for any parameter δ with $0 < \delta \ll 1/2$ of our choice, where L is the largest integer such that we can achieve backlog 1 on $(1 - \delta)\delta^L$ n cups.

Remark: WLOG the number of cups in the recursive calls is an integer.

AMPLIFICATION LEMMA INTUITION

PROOF SKETCH OF AMPLIFICATION LEMMA

- ► Let *A* be the δn fullest cups and *B* be the $(1 \delta)n$ other cups.
- ▶ By repeatedly applying f to each cup in B, and transferring over the cup generated in B with backlog $f((1 \delta)n)$ to A, while maintaining the fill of cups in A, we make $\mu(A) \mu(B) \ge f((1 \delta)n)$. This is accomplished while maintaining $\mu(A \cup B)$. The mass of A is guaranteed to be obve $a\mu(A \cup B)$ by the same amount that the mass of B is guaranteed to be depressed from $b\mu(A \cup B)$, thus fraction of the difference that $\mu(A)$ gets is $|B|/|A \cup B| = (1 \delta)$. So $\mu(A)$ is at least $(1 \delta)f((1 \delta)n)$ above $\mu(A \cup B)$.
- ▶ We then recursively apply this procedure to A. Summing over $\ell = 0, 1, ..., L$ we have the desired result.

Note: we are ignoring a lot of details here, e.g. ensuring that we actually are playing a cup game on B when applying f to it.

LOWER BOUND AGAINST ADAPTIVE FILLER

Setting $\delta = O(1/n)$ – which is quite extremal – and recursively using the Amplification Lemma we prove:

Corollary

The filler can achieve backlog $\Omega(n)$ *in running-time* $2^{O(n)}$.

Using $\delta \leq O(1)$ and a somewhat similar argument we get almost as good backlog in quasi-polynomial time:

Corollary

The filler can achieve backlog $\Omega(n^{1-\epsilon})$ for constant $\epsilon > 0$ of our choice in running-time $2^{O(\log^2 n)}$.

LOWER BOUND INTUITIVELY

LOWER BOUND INTUITIVELY

UPPER BOUND AGAINST ADAPTIVE FILLER

We prove a novel set of invariants:

Theorem

A greedy emptier maintains the invariant:

$$\mu_k(S_t) \leq n - k.$$

In particular this implies that backlog is

$$O(n)$$
.

Note: this matches our lowerbound!

STRATEGY EVEN WORKS WITH OBLIVIOUS FILLER!

Using Hoeffding's Concentration Inequality², we can surprisingly prove the same lower-bound for an Oblivious filler as for an Adaptive filler, although only against *greedy-like* emptiers.

²Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, page 28, 1962.

OPEN QUESTIONS

- ► Can we extend the Oblivious lower-bound construction to work against a broader class of emptiers?
- ► Can we extend the Oblivious lower-bound construction to work against arbitrary emptiers?

ACKNOWLEDGEMENTS

- ► My mentor, William Kuszmaul!
- ► MIT PRIMES
- ► My Parents