1.	. 当 x → 0 时,下列函数中与 $\sec x$ – 1 是等价无穷小的是(C						C)
	(A)	$\tan x$;	(B) $\cos x - 1$;	(C) $\frac{x^2}{2}$;	(D)	2x.	
2.	曲结		x ² +1在点(1,2)处	:的法线方程是	<u> </u>		(A)
	(A)	$y = -\frac{1}{4}x$	$+\frac{9}{4};$	(B) $y = \frac{1}{4}$	x-4;		
	(C)	y = 4x + 2	· ;	(D) y = 4x	<i>c</i> −2·		
3.	设在	E区间[a,b]]上, $f(x) > 0$, f'	f(x) > 0, f''(x) < 0	<0 , $\diamondsuit A_1$	$= \int_a^b f(x)$	$\mathrm{d}x$,
	<i>A</i> ₂ =	= f(a)(b)	$(a-a), A_3 = \frac{1}{2}[$	f(a) + f(b)	(b-a)	,则有	(D)
((A)	$A_{1} < A_{2} < A$	l ₃ ;	(B) $A_2 < A_1$	$< A_3$;		
((C)	$A_3 < A_1 < A$	₂ ;	(D) $A_2 < A_3$	$_3 < A_1$;		
4.	设	y = f(x)	在 $x = x_0$ 的 某	邻域内具	有二阶美	连续 导数	、如果
f'	$(x_0) =$	$=0, f''(x_0)$	≠0,则该函数在	$Ex = x_0$ 处			(A)
		一定取极值 图像一定有	重; 百拐点;	(B) 一定不 (D) 图像一			
5.	已知	$\prod f'(x) = \frac{1}{x}$	$\frac{1}{(1+2\ln x)}, \ \ \exists \ f($	1)=1,则 $f(x)$)等于		(В)
((A) _]	$\ln 1 + 2 \ln x $	+1;	(B) $\frac{1}{2} \ln 1+2 $	$2\ln x +1$;		
	(C)	$\frac{1}{2}\ln\left 1+21\right $	$\ln x \Big + \frac{1}{2};$	(D) ₂	$\ln \left 1 + 2 \ln x \right $	+1.	
7.	函数	$x = \frac{x^2}{x^2 - 3}$	$\frac{-1}{3x+2}$ 的无穷间断	点为 x = <u>2</u>	_•		
8.	己知	$\iint \begin{cases} x = e^t \sin x \\ y = e^t \cos x \end{cases}$	$\int_{\partial S} \frac{dy}{dx} \bigg _{t=\frac{\pi}{4}} = $	0 .			
9.	曲线		标方程 $\rho = e^{\theta}$ 对应	$\bar{u} 0 \le \theta \le \pi$ 的一	一段弧长 s =	$= \sqrt{2}(e^{\pi} - 1)$	_ - •
10.	设	$\int_{-1}^{3} f(x) \mathrm{d}x$	$=4, \int_{-1}^{3} g(x) dx = 3,$	则 $\int_{-1}^{3} \frac{1}{5} [4f(x) -$	+3g(x)]dx =	= 5.	
11.	. 不	定积分∫(s	$\sin x - \cos x)^9 (\sin x$	$+\cos x)dx = $	$-\frac{1}{10}(\sin x -$	$\frac{(\cos x)^{10} + C_{-}}{}$	·

12. 函数
$$f(x) = 5x^2 + x - 2$$
 在 $[0,1]$ 上满足拉格朗日中值定理的点 $\xi = -\frac{1}{2}$ _____.

13. 求极限
$$\lim_{x\to 0} \frac{\ln(1+x^2)}{(\sqrt{1+x}-1)\arcsin x}$$

14. 求由方程
$$e^x - y + \frac{1}{2}\sin y = 0$$
 所确定的隐函数的一阶导数 $\frac{dy}{dx}$.

- 15. 问 a,b 为何值时,点(1,3)为曲线 $y = ax^3 + bx^2$ 的拐点?
- 16. 已知 $\frac{\sin x}{x}$ 是 f(x) 的一个原函数,求 $\int x^3 f'(x) dx$.
- 17. 求定积分 $\int_0^4 \frac{x+2}{\sqrt{2x+1}} dx$.
- 18. 由 $y = x^3, x = 2, y = 0$ 所围的图形分别绕 x 轴和 y 轴旋转一周,计算所得两个旋转体的体积。
- 19. 由 $y = x^3, x = 2, y = 0$ 所围的图形分别绕 x 轴和 y 轴旋转一周,计算所得两个旋转体的体积。

- (1) 证明函数 f(x)在 x=0 处连续;
- (2) 用导数定义说明 f'(0) 是否存在?
- (3) 求 f'(x).
- 21. 当 "奥密克戎"来袭,我们咳嗽时气管收缩以增加空气流出的速度,这是一种身体自我保护的反应。 在合理假设下,平均气流速度可以用方程 $v=c(r_0-r)r^2(cm/s)$, $\frac{r_0}{2} \le r \le r_0$ 来描述,其中 r_0 [单位:cm] 是气管在静止状态下的半径,(c是一个正常数,跟人的气管长度有关),试问咳嗽时气管半径应收缩到多少能使空气流出的速度最大?

22. 设
$$f(x)$$
 在 $[a,b]$ 上连续,且 $f(x) > 0$, $F(x) = \int_a^x f(t) dt + \int_b^x \frac{1}{f(t)} dt, x \in [a,b]$

证明: (1) $F'(x) \ge 2$;

(2) 方程 F(x) = 0 在区间 (a,b) 内有且仅有一个根。