

Linsey Roijendijk, October 25th 2011 Attention based BCIs using alpha band oscillations

Teaching goals

- Familiarizing you with alpha based BCI's regulated by attention:
 - What is "attention"?
 - Why are attention based paradigms used for BCIs?
 - What is the alpha-rhythm and how can it be modulated?
 - What are the different types of alpha based BCIs
 (alertness, spatial as well as feature attention) and how do they work?
 Which brain signatures do they use?
 - What are the open issues?

What is attention?

- "Attention acts as a means of focusing limited mental resources on the information and cognitive processes that are most salient at a given moment" (Sternberg, 1999)
- Attention selects what is being processed and what will be ignored in the brain
 - Example: this lecture!
- Attention is necessary because of limited capacity of the brain
- When an object or process is attended, processing is more efficient
- Vigilance/alertness is about the state of the brain (and not a process)

Exogenous versus endogenous attention

- Exogenous attention
 - Attention captured by salient stimuli in the environment (involuntary)
 - For example:
 - Hearing a sound in a quiet room
 - Cocktail party effect

Endogenous attention

- Voluntary direction of your attention
- For example:
 - You listening to me or paying attention to something else from your sensory inputs
- Prepare attention for an upcoming stimulus

Why use it for BCI?

- Why use it for BCI
 - Orienting your attention is a natural process
 - Covert attention:

You don't need to use your muscles for it (good for patients!)

- Processing in the brain is enhanced during attention => Change in brain activity
- Ideal situation:

Detection of where someone's attention is (spatial) and what he/she is attending to (feature)

Example of alpha attention based BCI

Types of attention

- Sensory attention
 - Visual
 - Tactile
 - Auditory
 - Olfactory (smell)
 - Gustatory (taste)
- Feature attention
 - Spatial (visual/tactile/auditory)
 - Color/shape/motion (visual)
 - Texture (tactile)
 - Pitch, rhythm, etc (auditory)

• BCI: can we distinguish different brain patterns within/over these types of attention?

Stimulus driven attention brain signals

- Event related potentials:
 - P300
 - Attention-directing anterior negativity (ADAN)
 - Contingent Negative Variation (CNV)
- Oscillations:
 - Gamma oscillations (30-150 Hz) increase in brain regions involved in
 - cognitive processing

second

Alpha (8-13 Hz)

- First reported in 1920s by Hans Berger
- Far strongest measurable electrophysiological signal in the human brain (1/f effect and good for BCI => Strong signal-to-noise)
- Strongest during rest, also called the 'idling rhythm'
 (!remember the eyes closed from the demo session)
 => Idling hypothesis: few mental operations occuring
- When you're less alert you're overall alpha level will increase!
- Occurring in the occipital and parietal cortex

Specific alpha patterns

- 2002 on: Evidence that alpha activity can actually increase with cognitive load and can be modulated by doing certain tasks!
- For example: visual covert attention to a certain hemifield gives a lateralized response (just as with imagined movement but different region)
- Inhibition hypothesis
 (Klimesch et al. (2006), Jensen and Mazaheri et al. (2010)):
 Alpha activity reflects inhibition of regions not involved in a given task, which serves to allocate/gate resources to areas actually involved!
- BCI: Inhibition of a certain part of the brain can be distinguished from inhibition in other parts!

Covert attention BCIs

- New direction for BCI!
- First article on visual covert attention BCI published in september 2005 (Kelly et al.)
- Until now there are (I think) less than 20 studies on alpha related covert attention BCIs!
 (There are many fundamental neuroscience papers)
- Required reading:
 - O. Jensen, A. Bahramisharig, R. Oostenveld, S. Klanke, A. Hadjipapas, Y.O. Okazaki, M.A.J. van Gerven, *Using brain-computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience*, Frontiers in Psychology, May 2011

Passive BCI: Alertness/Relaxation

Alpha-World of Warcraft (HMI, University of Twente)

Covert visual attention: Task

- Fixating your eyes on a certain point while paying attention to another point in your visual field
- Typical experiment paradigm: Spatial Cueing Paradigm (Posner, 1980)

(van Gerven et al., 2009) (See also article P3 lecture)

Faster reaction time when you're paying attention!

Covert visual attention: Brain signature

 Typical brain signature coming from the visual cortex during expectation of a stimulus (attention period):

- Decrease contralateral in the alpha band
- Increase ipsilateral in the alpha band (Possibly caused by distractor that needs to be supressed)

(van Gerven et al., 2009)

Covert visual attention: Analysis

- Features:
 - Lateralisation index = log(right hemisphere alpha power) / log(left hemisphere alpha power)
 - Could also do similar analysis as with imagined movement
- Classification:
 - Logistic regression

(van Gerven et al., 2009)

Covert visual attention: Variability between subjects

(Treder et al., 2011)

Covert visual attention: Other

 The left hemisphere seems to be more useful for classification

Predictor of BCI performance:
 if you have more occipital alpha (closed eyes)
 the lateralization also seems stronger! (r=0.63)
 (Relaxed eyes open for imagined movement
 correlates as well(r=0.53), Blankertz et al. 2010))

(Treder et al., 2011)

Covert visual attention: Continuous control

Attentionotopy of the brain! (Bahramisharif et al., 2010)

Covert visual attention: Continuous control classification

(Bahramisharif et al., 2010)

Tactile attention

Task: Focus your attention to one of your hands

cue	pre-stimulus	stimulus	response	feedback
→	+	All come	+	+
0.2 s	1.0 - 1.8 s	0.24 s	max 1.5 s	0.2 s
				time (s)

 During expectation of a tactile stimulus, there is a typical lateralization pattern in the somatosensory cortex (alpha band, but also beta band (14-30Hz) (van Ede et al., 2010, Jones et al., 2010)

(Haegens et al., 2011)

Tactile attention BCI

- Nothing published yet about BCI usage, but preliminary analyses show it is usable!
- Alpha reflects degree of anticipation (Haegens et al., 2011)

 However, also works without giving the tactile stimulus at the end (using auditory cue instead)!

(Covert) auditory attention

• There's a difference in alpha power when you are expecting a sound or a visual stimulus (in P3 and P4, so not lateralized!) (Fu et al., 2001)

- There also seems to be a lateralization during auditory attention (Kerlin et al., 2010, Thorpe et. al, 2011)
- Not applied in BCI yet! It is possible?

Feature attention and alpha

(Snyder et al., 2010)

Current/open issues for alpha BCIs

- As with all BCI's lots of variability between subjects/illiteracy
- None of them have been tested with patients yet!
- Artefacts could be involved with the signal (for example microsaccades)
- Lots of research still to do:
 - Can we change the task so that it gives a stronger signal?
 (for example, task difficulty, location stimulus)
 - Can we combine several attention paradigms?
 - Can we use feature (not spatial) attention?
 - Does it work with patients?

Summary

- What is "attention"?
 - Attention is everywhere, for selecting salient information!
 - Endogenous versus exogenous attention
 - Covert versus overt attention
- Why are attention based paradigms used for BCIs?
 - Natural paradigm, no muscles involved, strong signal, possible to encode in multiple directions
- What is the alpha-rhythm and how can it be modulated?
 - 8-14 Hz, alertness/covert attention

- What are the different types of alpha based BCIs and how do they work?
 Which brain signatures do they use?
 - Relaxation BCI (WOW) (alpha power in occipito/parietal cortex)
 - Covert visual attention BCI (alpha lateralization visual cortex)
 - Tactile Attention BCI (alpha lateralization sensorimotor cortex)
 - Others possibilities: auditory, feature, combined
- What are the open issues? (answered in previous slide)

References

- Review articles:
 - Required: O. Jensen, A. Bahramisharig, R. Oostenveld, S. Klanke, A. Hadjipapas, Y.O.
 Okazaki, M.A.J. van Gerven, *Using brain-computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience*, Frontiers in Psychology, May 2011.
 - Recommended: J.J. Foxe, A.C. Snyder, The role of Alpha-band brain oscillations as a sensory suppression mechanism during selective attention, Frontiers in Psychology, July 2011.
- Visual covert attention:
 - A. Bahramisharif, M.A.J. van Gerven, T. Heskes, O.Jensen, Covert attention allows for continuous control of brain-computer interfaces, European Journal of Neuroscience, 2010
 - D. Cosmelli, V. Lopez, J. Lachaux, J. Lopez-calderon, B. Renault, J. Martinerie, F. Aboitiz,
 Shifting visual attention away from fixation is specifically associated with alpha band activity over ipsilateral parietal regions, Psychophysiology, 2010
 - M. van Gerven, O. Jensen, Attention modulations of posterior alpha as a control signal for twodimensional brain-computer interfaces, Journal of Neuroscience Methods, 2009
 - M.I. Posner, *Orienting of attention*, Quarterly Journal of Experimental Pscyhology, 1980
 - M.S. Treder, A. Bahramisharif, N.M. Schmidt, M.A.J. van Gerven, B. Blankertz, *Brain-computer interfacing using modulations of alpha activity induced by covert shifts of attention*, Journal of neuroengineering and rehabilitation, May 2011.

Tactile attention:

- F. van Ede, F. de Lange, O.Jensen, E. Maris, Orienting attention to an Upcoming Tactile Event Involves A Spatially and Temporally Specific Modulation of Sensorimotor Alpha- and Beta-Band Oscillations, The Journal of Neuroscience, 2011
- S. Haegens, B.F. Handel, O. Jensen, Top-Down Controlled Alpha Band Activity in Somatosensory Areas Determines Behavioral Performance in a Discrimination Task, The Journal of Neuroscience, 2011.
- S. Jones, C.E. Kerr, Q. Wan, D.L. Pritchett, M. Hamalainen, C.I. Moore, Cued Spatial Attention Drives Functionally Relevant Modulation of the Mu Rhythm in Primary Somatosensory cortex, The Journal of Neuroscience, 2010.

Auditory attention:

- K.M. Fu, J.J. Foxe, M.M. Murray, B.A. Higgins, d.C. Javitt, C.E. Schroeder, Attention-dependent suppression of distracter visual input can be cross-modally cued as indexed by anticipator parieto-occipital alpha-band oscillations, Brain Res. Cogn. Brain Res, 2001.
- J.R. Kerlin, A.J. Shahin, L.M. Miller, Attentional gain control of ongoing cortical speech representations in a "cocktail party", Journal of Neuroscience, 2011
- S. Thorpe, M. D'Zmura, R.Srinivasan, Lateralization of frequency-specific networks for covert spatial attention to auditory stimuli, Brain Topography, 2011

Feature attention:

 A.C. Snyder, J.J. Foxe, Anticipatory attentional suppression of visual features indexed by oscillatory alpha-band power increases: a high-density electrical mapping study, Jounnal of neuroscience, 2010

