Machine Learning

A. G. Schwing & M. Telgarsky

University of Illinois at Urbana-Champaign, 2018

L2: Linear Regression

Last time: k-NN.

- Pros: simple (easy to implement and reason about).
- Cons: stores all data: curse of dimension.

This time: Linear regression ("ordinary least squares").

- Also simple!
 - Reading: K. Murphy; Machine Learning: A Probabilistic Perspective; Chapter 7.

Least squares model.

```
Predict y \in \mathbb{R} ("label", "response") from \mathbf{x} \in \mathbb{R}^d ("features", "covariate") via \mathbf{w}_1^{\top} \mathbf{x} + w_2 (where \mathbf{w}_1 \in \mathbb{R}^d and w_2 \in \mathbb{R})
```

- Learning: choose $(\mathbf{w}_1, \mathbf{w}_2)$ from data $((\mathbf{x}^{(i)}, \mathbf{y}^{(i)}))_{i=1}^N$.
- Prediction/inference: obtain x, output $w_1^{\top}x + w_2$.

Note. $y \in \mathbb{R}$ ("regression") rather than $\{-1, +1\}$ ("classification").

Example: Old faithful eruptions: duration (\mathbf{x}) vs delay (\mathbf{y}).

Example: Old faithful eruptions: duration (\mathbf{x}) vs delay (\mathbf{y}).

Which line $\mathbf{x} \mapsto \mathbf{w}_1^{\top} \mathbf{x} + \mathbf{w}_2$?

Which line $\mathbf{x} \mapsto \mathbf{w}_1^{\top} \mathbf{x} + \mathbf{w}_2$?

Example: Old faithful eruptions: duration (\mathbf{x}) vs delay (\mathbf{y}).

Which line $\mathbf{x} \mapsto \mathbf{w}_1^{\top} \mathbf{x} + \mathbf{w}_2$?

Example: Old faithful eruptions: duration (\mathbf{x}) vs delay (\mathbf{y}).

Which line $\mathbf{x} \mapsto \mathbf{w}_1^{\top} \mathbf{x} + \mathbf{w}_2$? If all $\mathbf{x}^{(i)}$ coincide:

Which line $\mathbf{x} \mapsto \mathbf{w}_1^{\top} \mathbf{x} + w_2$? If all $\mathbf{x}^{(i)}$ coincide:

$$\hat{y} = \frac{1}{N} \sum_{i=1}^{N} y^{(i)}$$

Which line $\mathbf{x} \mapsto \mathbf{w}_1^{\top} \mathbf{x} + w_2$? If all $\mathbf{x}^{(i)}$ coincide:

$$\hat{y} = \frac{1}{N} \sum_{i=1}^{N} y^{(i)}$$

Example: Old faithful eruptions: duration (\mathbf{x}) vs delay (\mathbf{y}).

Which line $\mathbf{x} \mapsto \mathbf{w}_1^{\top} \mathbf{x} + w_2$? If all $\mathbf{x}^{(i)}$ coincide:

$$\hat{y} = \frac{1}{N} \sum_{i=1}^{N} y^{(i)} = \arg\min_{y \in \mathbb{R}} \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} \left(y - y^{(i)} \right)^{2}.$$

Example: Old faithful eruptions: duration (\mathbf{x}) vs delay (\mathbf{y}).

Which line $\mathbf{x} \mapsto \mathbf{w}_1^{\top} \mathbf{x} + w_2$? If all $\mathbf{x}^{(i)}$ coincide:

$$\hat{y} = \frac{1}{N} \sum_{i=1}^{N} y^{(i)} = \arg\min_{y \in \mathbb{R}} \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} \left(y - y^{(i)} \right)^{2}.$$

Remark. Mean has issues...we'll revisit this...

Ignoring
$$x$$
: $\underset{w_2 \in \mathbb{R}}{\operatorname{arg \, min}} \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} \left(w_2 - y^{(i)} \right)^2$.

$$\underset{w_2 \in \mathbb{R}}{\text{arg min}} \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} \left(w_2 - y^{(i)} \right)^2.$$

$$\underset{\boldsymbol{w}_{1} \in \mathbb{R}^{d}, w_{2} \in \mathbb{R}}{\arg \min} \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} \left(\boldsymbol{w}_{1}^{\top} \mathbf{x}^{(i)} + w_{2} - y^{(i)} \right)^{2}.$$

Ignoring
$$x$$
: $\underset{w_2 \in \mathbb{R}}{\operatorname{arg min}} \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} \left(w_2 - y^{(i)} \right)^2$.

General form:
$$\underset{\boldsymbol{w}_1 \in \mathbb{R}^d, w_2 \in \mathbb{R}}{\arg\min} \frac{1}{N} \sum_{i=1}^N \frac{1}{2} \left(\boldsymbol{w}_1^\top \mathbf{x}^{(i)} + w_2 - y^{(i)} \right)^2.$$

Ignoring
$$x$$
: $\underset{w_2 \in \mathbb{R}}{\operatorname{arg min}} \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} \left(w_2 - y^{(i)} \right)^2$.

General form:
$$\underset{\boldsymbol{w}_1 \in \mathbb{R}^d, w_2 \in \mathbb{R}}{\arg\min} \frac{1}{N} \sum_{i=1}^N \frac{1}{2} \left(\boldsymbol{w}_1^\top \mathbf{x}^{(i)} + w_2 - y^{(i)} \right)^2.$$

Simplification:

$$\mathbf{y} := \begin{bmatrix} \mathbf{y}^{(1)} \\ \vdots \\ \mathbf{y}^{(N)} \end{bmatrix}, \qquad \mathbf{X} := \begin{bmatrix} \leftarrow \mathbf{x}^{(1)} \longrightarrow 1 \\ \vdots & \vdots \\ \leftarrow \mathbf{x}^{(N)} \longrightarrow 1 \end{bmatrix}, \qquad \mathbf{w} := \begin{bmatrix} \uparrow \\ \mathbf{w}_1 \\ \downarrow \\ \mathbf{w}_2 \end{bmatrix}.$$

Ignoring
$$x$$
: $\underset{w_2 \in \mathbb{R}}{\operatorname{arg min}} \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} \left(w_2 - y^{(i)} \right)^2$.

General form:
$$\underset{\boldsymbol{w}_1 \in \mathbb{R}^d, w_2 \in \mathbb{R}}{\operatorname{arg\,min}} \frac{1}{N} \sum_{i=1}^N \frac{1}{2} \left(\boldsymbol{w}_1^\top \mathbf{x}^{(i)} + w_2 - y^{(i)} \right)^2.$$

Simplification:
$$\underset{\mathbf{w} \in \mathbb{R}^{d+1}}{\arg\min} \frac{1}{2} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2$$
 where

$$\mathbf{y} := \begin{bmatrix} \mathbf{y}^{(1)} \\ \vdots \\ \mathbf{y}^{(N)} \end{bmatrix}, \qquad \mathbf{X} := \begin{bmatrix} \leftarrow \mathbf{x}^{(1)} \longrightarrow 1 \\ \vdots & \vdots \\ \leftarrow \mathbf{x}^{(N)} \longrightarrow 1 \end{bmatrix}, \qquad \mathbf{w} := \begin{bmatrix} \uparrow \\ \mathbf{w}_1 \\ \downarrow \\ \mathbf{w}_2 \end{bmatrix}.$$

Goal: Solve

$$\operatorname*{arg\,min}_{\boldsymbol{w}\in\mathbb{R}^{d+1}}\frac{1}{2}\|\boldsymbol{X}\boldsymbol{w}-\boldsymbol{y}\|_2^2$$

where $\mathbf{w} \in \mathbb{R}^{d+1}, \mathbf{X} \in \mathbb{R}^{N \times (d+1)}, \mathbf{y} \in \mathbb{R}^{N}$.

Goal: Solve

$$\mathop{\arg\min}_{\mathbf{w} \in \mathbb{R}^{d+1}} \frac{1}{2} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2 \qquad \text{ where } \mathbf{w} \in \mathbb{R}^{d+1}, \mathbf{X} \in \mathbb{R}^{N \times (d+1)}, \mathbf{y} \in \mathbb{R}^N.$$

Ordinary least squares (OLS) estimator:

choose
$$\hat{\boldsymbol{w}} := (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$$
.

Derivation: setting derivative to 0, optimal $\hat{\boldsymbol{w}}$ satisfies

$$\mathbf{X}^{\top}(\mathbf{X}\hat{\mathbf{w}} - \mathbf{y}) = 0$$
 and thus $\mathbf{X}^{\top}\mathbf{X}\hat{\mathbf{w}} = \mathbf{X}^{\top}\mathbf{y}$.

When it exists, we can write $\hat{\boldsymbol{w}} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$.

Non-existence of OLS solution
$$\hat{\boldsymbol{w}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$$
.

Solution #1: "Ridge regression": solve

$$\underset{\boldsymbol{w} \in \mathbb{R}^{d+1}}{\min} \frac{1}{2} \|\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \frac{\lambda}{2} \|\boldsymbol{w}\|^2,$$

giving
$$\tilde{\boldsymbol{w}} := (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$$
.

Note. In this course's homeworks and tests, you may assume $(\mathbf{X}^T\mathbf{X})^{-1}$ exists unless otherwise specificed.

Non-existence of OLS solution $\hat{\boldsymbol{w}} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{v}$.

Solution #1: "Ridge regression": solve

$$\underset{\boldsymbol{w} \in \mathbb{R}^{d+1}}{\min} \frac{1}{2} \|\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \frac{\lambda}{2} \|\boldsymbol{w}\|^2,$$

giving
$$\tilde{\boldsymbol{w}} := (\boldsymbol{X}^{\top} \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$$
.

Remark. " $+\frac{\lambda}{2} \| \mathbf{w} \|^2$ " is regularization; it affects computation and statistics.

Note. In this course's homeworks and tests, you may assume $(\mathbf{X}^T\mathbf{X})^{-1}$ exists unless otherwise specificed.

Non-existence of OLS solution
$$\hat{\boldsymbol{w}} = (\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$$
.

Solution #1: "Ridge regression": solve

$$\underset{\boldsymbol{w} \in \mathbb{R}^{d+1}}{\min} \frac{1}{2} \|\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \frac{\lambda}{2} \|\boldsymbol{w}\|^2,$$

giving
$$\tilde{\boldsymbol{w}} := (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$$
.

Note. In this course's homeworks and tests, you may assume $(\mathbf{X}^T \mathbf{X})^{-1}$ exists unless otherwise specificed.

Non-existence of OLS solution $\hat{\boldsymbol{w}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$.

Solution #1: "Ridge regression": solve

$$\underset{\boldsymbol{w} \in \mathbb{R}^{d+1}}{\min} \frac{1}{2} \|\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \frac{\lambda}{2} \|\boldsymbol{w}\|^2,$$

giving $\tilde{\boldsymbol{w}} := (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}$.

Solution #2: use the *pseudoinverse*: replace $(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{v}$ with $(\mathbf{X}^{\top}\mathbf{X})^{\dagger}\mathbf{X}^{\top}\mathbf{v} = \mathbf{X}^{\dagger}\mathbf{v}$.

Remark. This still satisfies the "derivative condition"

$$(\boldsymbol{X}^{\top}\boldsymbol{X})\hat{\boldsymbol{w}} = \boldsymbol{X}^{\top}\boldsymbol{y}$$

and therefore is optimal!

Note. In this course's homeworks and tests, you may assume $(\mathbf{X}^T\mathbf{X})^{-1}$ exists unless otherwise specificed.

Summary so far

Least squares problem

 $\arg\min_{\boldsymbol{w}\in\mathbb{R}^{d+1}}\frac{1}{2}\|\boldsymbol{X}\boldsymbol{w}-\boldsymbol{y}\|_2^2.$

OLS solution

$$(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{y}.$$

Question:

still "why this line"?

Three justifications/interpretations.

- Geometric interpretation.
- Probabilistic model.
- Loss minimization.

Geometric interpretation.

Focus on **columns** of **X**:

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} igoplus & oldsymbol{x}^{(1)} & \longrightarrow & 1 \\ & dash & & dash \\ igotlus & oldsymbol{x}^{(N)} & \longrightarrow & 1 \end{aligned} \end{bmatrix} = \begin{bmatrix} \uparrow & & & \uparrow \\ oldsymbol{z}_1 & \cdots & oldsymbol{z}_{d+1} \\ \downarrow & & & \downarrow \end{bmatrix}. \end{aligned}$$

Then residual $X\hat{w} - y$ is **orthogonal** to span $(\{z_1, \dots, z_{d+1}\})$. (... since $X^{\top}(X\hat{w} - y) = 0$.)

figure credit: daniel hsu

Probabilistic model.

Suppose "linear model with Gaussian errors": label y at point x has distribution Gaussian($\bar{w}^{\top}x, \sigma^2$):

$$p(y^{(i)}|\boldsymbol{x}^{(i)}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(y^{(i)} - \bar{\boldsymbol{w}}^{\top}\boldsymbol{x}^{(i)})^2\right)$$

Probabilistic model.

Suppose "linear model with Gaussian errors": label y at point x has distribution Gaussian($\bar{w}^{\top}x, \sigma^2$):

$$p(y^{(i)}|\boldsymbol{x}^{(i)}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(y^{(i)} - \bar{\boldsymbol{w}}^{\top}\boldsymbol{x}^{(i)})^2\right)$$

Probabilistic model.

Suppose "linear model with Gaussian errors": label y at point x has distribution Gaussian($\bar{w}^{\top}x, \sigma^2$):

$$p(y^{(i)}|\boldsymbol{x}^{(i)}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(y^{(i)} - \bar{\boldsymbol{w}}^{\top}\boldsymbol{x}^{(i)})^2\right)$$

To solve, maximize likelihood:

$$\begin{aligned} \arg\max_{\boldsymbol{w}\in\mathbb{R}^{d+1}} \prod_{i=1}^N p(y^{(i)}|\boldsymbol{x}^{(i)}) &= (\dots \text{hwk1}\dots) \\ &= \arg\min_{\boldsymbol{w}\in\mathbb{R}^{d+1}} \frac{1}{2\sigma^2} \sum_{i=1}^N \frac{1}{2} \left(\boldsymbol{w}^\top \boldsymbol{x}^{(i)} - y^{(i)}\right)^2. \end{aligned}$$

Loss minimization

The form $\|\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}\|^2$ was convenient (OLS solution $\hat{\boldsymbol{w}} = \boldsymbol{X}^{\dagger}\boldsymbol{y}$).

Loss minimization

The form $\| \boldsymbol{X} \boldsymbol{w} - \boldsymbol{y} \|^2$ was convenient (OLS solution $\hat{\boldsymbol{w}} = \boldsymbol{X}^\dagger \boldsymbol{y}$).

Again write

$$\frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (\mathbf{w}^{\top} \mathbf{x}^{(i)} - y^{(i)})^{2} = \frac{1}{N} \sum_{i=1}^{N} \ell_{ls}(y^{(i)}, \mathbf{w}^{\top} \mathbf{x}^{(i)})$$

where now $\ell_{ls}(y, \hat{y}) = \frac{1}{2}(y - \hat{y})^2$ is the *least squares loss*.

Loss minimization

The form $\|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$ was convenient (OLS solution $\hat{\mathbf{w}} = \mathbf{X}^{\dagger}\mathbf{y}$).

Again write

$$\frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (\mathbf{w}^{\top} \mathbf{x}^{(i)} - y^{(i)})^{2} = \frac{1}{N} \sum_{i=1}^{N} \ell_{ls}(y^{(i)}, \mathbf{w}^{\top} \mathbf{x}^{(i)})$$

where now $\ell_{ls}(y, \hat{y}) = \frac{1}{2}(y - \hat{y})^2$ is the *least squares loss*.

The general form

$$\arg\min_{f} \frac{1}{N} \sum_{i=1}^{N} \ell(y^{(i)}, f(\mathbf{x}^{(i)}))$$

is the standard ML idea Empirical Risk Minimization (ERM).

Three justifications/interpretations.

- Geometric interpretation.
- Probabilistic model.
- Loss minimization.

Three other questions.

- Classification vs regression.
- How to implement $X^{\dagger}y$?
- Nonlinear least squares.

Given \mathbf{x} , then $\hat{\mathbf{w}}^{\top}\mathbf{x} \in \mathbb{R}$ ("regression") Alternatively, $\operatorname{sgn}(\hat{\mathbf{w}}^{\top}\mathbf{x}) \in \{-1, +1\}$ ("classification").

Given \mathbf{x} , then $\hat{\mathbf{w}}^{\top}\mathbf{x} \in \mathbb{R}$ ("regression")

Alternatively, $sgn(\hat{\boldsymbol{w}}^{\top}\boldsymbol{x}) \in \{-1, +1\}$ ("classification").

Recall least squares loss $\ell_{ls}(y,\hat{y})=(y-\hat{y})^2/2;$ if $y\in\{-1,+1\},$

$$(y - \hat{y})^2/2 = (y^2)(1 - y\hat{y})^2/2 = (1 - y\hat{y})^2/2.$$

Seems weird if our goal is to minimize $\mathbf{1}[y \neq \hat{y}] \approx \mathbf{1}[y\hat{y} \geq 0]$?

Given \mathbf{x} , then $\hat{\mathbf{w}}^{\top}\mathbf{x} \in \mathbb{R}$ ("regression")

Alternatively, $sgn(\hat{\boldsymbol{w}}^{\top}\boldsymbol{x}) \in \{-1, +1\}$ ("classification").

Recall least squares loss $\ell_{ls}(y,\hat{y})=(y-\hat{y})^2/2;$ if $y\in\{-1,+1\},$

$$(y - \hat{y})^2/2 = (y^2)(1 - y\hat{y})^2/2 = (1 - y\hat{y})^2/2.$$

Seems weird if our goal is to minimize $\mathbf{1}[y \neq \hat{y}] \approx \mathbf{1}[y\hat{y} \geq 0]$?

Given \mathbf{x} , then $\hat{\mathbf{w}}^{\top}\mathbf{x} \in \mathbb{R}$ ("regression")

Alternatively, $sgn(\hat{\boldsymbol{w}}^{\top}\boldsymbol{x}) \in \{-1, +1\}$ ("classification").

Recall least squares loss $\ell_{ls}(y, \hat{y}) = (y - \hat{y})^2/2$; if $y \in \{-1, +1\}$,

$$(y - \hat{y})^2/2 = (y^2)(1 - y\hat{y})^2/2 = (1 - y\hat{y})^2/2.$$

Seems weird if our goal is to minimize $\mathbf{1}[y \neq \hat{y}] \approx \mathbf{1}[y\hat{y} \geq 0]$?

Note. Even in easy cases, linear classification is NP-hard!

How to solve.

Question: are $(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$ and $\mathbf{X}^{\dagger}\mathbf{y}$ in "closed form"?

How to solve.

Question: are $(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$ and $\mathbf{X}^{\dagger}\mathbf{y}$ in "closed form"? (Libraries will use iterative solvers!)

Since $\mathbf{w} \mapsto \frac{1}{2} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$ is convex, there are many "efficient" *iterative descent methods*.

Polynomial fit?

Polynomial fit? (... no thanks...)

Polynomial fit? (... no thanks...)

How to solve: replace $\mathbf{x}^{(i)}$ with *features* $\widetilde{\mathbf{x}}^{(i)} = \phi(\mathbf{x}^{(i)})$.

Summary.

Justification.

- Geometric.
- Probabilistic model.
- ERM.

Least squares problem

 $\arg\min_{\boldsymbol{w}\in\mathbb{R}^{d+1}}\frac{1}{2}\|\boldsymbol{X}\boldsymbol{w}-\boldsymbol{y}\|_2^2.$

OLS solution $(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$.

Concepts.

- Regularization.
- ERM and loss functions.
- Maximum likelihood.