The Author-Topic Model

by M Rosen-Zvi, et al. (UAI 2004)

Presented by:

Darshan Ramakant Bhat Freeze Francis Mohammed Haroon D

Overview

- Motivation
- Model Formulation
 - Topic Model (i.e LDA)
 - Author Model
 - Author Topic Model
- Parameter Estimation
 - Gibbs Sampling Algorithms
- Results and Evaluation
- Applications

Motivation

- joint author-topic modeling had received little attention.
- author modeling has tended to focus on problem of predicting an author given the document.
- modelling the interests of authors is a fundamental problem raised by a large corpus (eg: NIPS dataset).
- this paper introduced a generative model that simultaneously models the content of documents and the interests of authors.

Notations

- Vocabulary set size : V
- Total unique authors : A
- Document **d** is identified as $(\mathbf{w}_{d}, \mathbf{a}_{d})$
- N_d : number of words in Document **d**.
- \mathbf{w}_{d} : Vector of \mathbf{N}_{d} words (subset of vocabulary)

$$\mathbf{w}_{d}^{=} [\mathbf{w}_{1d} \ \mathbf{w}_{2d} \quad \dots \quad \mathbf{w}_{Nd \ d}]$$

- w_{id}: ith word in document d
- A_d: number of authors of Document d
- **a**_d: Vector of **A**_d authors (subset of authors)

$$a_d = [a_{1d} a_{2d} \dots a_{Add}]$$

• Corpus **D**: Collection **D** documents

$$\mathfrak{D} = \{ (w_1, a_1), (w_2, a_2) \dots (w_D, a_D) \}$$

Plate Notation for Graphical models

- Nodes are random variables
- Edges denote possible dependence
- Observed variables are shaded
- Plates denote replicated structure

Dirichlet distribution

• generalization of beta distribution into multiple dimensions

$$f\left(x_1,\cdots,x_K;lpha_1,\cdots,lpha_K
ight)=rac{1}{\mathrm{B}(oldsymbol{lpha})}\prod_{i=1}^K x_i^{lpha_i-1}$$

- Domain : $X = (x_1, x_2, ..., x_k)$
 - $\circ \quad x_i \in (0,1)$
 - $\circ \qquad \boldsymbol{\Sigma}_{\mathbf{k}} \; \mathbf{x}_{\mathbf{i}} = \mathbf{1}$
 - k-dimensional multinomial distributions
- "distribution over multinomial distributions"
- Parameter : $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_k)$
 - \circ $\alpha_{i} > 0$, $\forall i$
 - determines how the probability mass is distributed
 - Symmetric: $\alpha_1 = \alpha_2 =\alpha_k$
- Each sample from a dirichlet is a multinomial distribution.
 - α ↑: denser samples
 - α → : sparse samples

Fig : Domain of Dirichlet (k=3)

Fig : Symmetric Dirichlet distributions for k=3

Model Formulation

Topic Model (LDA)

Model topics as distribution over words Model documents as distribution over topics

Author Model

Model author as distribution over words

Author-Topic Model

Probabilistic model for both author and topics Model topics as distribution over words Model authors as distribution over topics

Topic Model: LDA

- Generative model
- Bag of word
- Mixed membership
- Each word in a document has a topic assignment.
- Each document is associated with a distribution over topics.
- Each topic is associated with a distribution over words.
- a: Dirichlet prior parameter on the per-document topic distributions.
- β: Dirichlet prior parameter on the per-topic word distribution.
- w : observed word in document
- z: is the topic assigned for w

Fig: LDA model

Author Model

- Simple generative model
- Each author is associated with a distribution over words.
- Each word has a author assignment.
- β: Dirichlet prior parameter on the per-author word distributions.
- w: Observed word
- x: is the author chosen for word w

Fig: Author Model

Model Formulation

Topic Model (LDA)

Model topics as distribution over words Model documents as distribution over topics

Author Model

Model author as distribution over words

Author-Topic Model

Probabilistic model for both author and topics Model topics as distribution over words Model authors as distribution over topics

Author-Topic Model

- Each topic is associated with a distribution over words.
- Each author is associated with a distribution over topics.
- Each word in a document has an author and a topic assignment.
- Topic distribution of document is a mixture of its authors topic distribution
- **a**: Dirichlet prior parameter on the per-author topic distributions.
- x: author chosen for word w
- **z**: is the topic assigned for **w** from author **x** topic distribution
- w : observed word in document

Fig: Author Topic Model plate notation

Author-Topic Model

	1	2	3	25
epilepsy	0.4	0.01	0.1	**
dynamic	0.1	0.18	0.3	*3
bayesian	0.03	0.37	0.25	
EEG	0.4	0.01	0.15	25
model	0.07	0.43	0.2	**
3.0	2000		8	*3

ϕ_T (words X topics)

	1	2	3	4
author1	0.02	0.69	0.08	
author2	0.58	0.02	0.18	
author3	0.23	0.12	0.45	
author4	0.35	0.4	0.2	42
author5	0.15	0.2	0.1	2.0
author6				

Special Cases of ATM

Topic Model (LDA):

Each document is written by a unique author

- the document determines the author.
- author assignment becomes trivial.
- author's topic distribution can be viewed as document's topic distribution.

Special Cases of ATM

Author Model:

each author writes about a unique topic

- the author determines the topic.
- topic assignment becomes trivial.
- topic's word distribution can be viewed as author's word distribution.

Variables to be inferred

LDA Topic Model

	1	2	3
epilepsy	0.4	0.01	0.1
dynamic	0.1	0.18	0.3
bayesian	0.03	0.37	0.25
EEG	0.4	0.01	0.15
model	0.07	0.43	0.2

 ϕ_T (words X topics)

7	1	2	3
1	0.6	0.1	0.3
2	0.69	0.01	0.3
3	0.1	0.89	0.01
4	0.01	0.9	0.09
5	100	- 2	1.
6	87		
7	80		
8			
9	1.3		
10	0.1	0.7	0.2

 θ_T (documents X topics)

Variables to be inferred

Author Model

	epilepsy	dynamic	bayesian	EEG	model	
author1	0.2	0.4	0.08	0.2	0.04	
author2	0.04	0.2	0.4	0.02	0.3	33
author3	0.2	0.03	0.25	0.04	0.12	
author4				***	3.0	

 ϕ_A (author X words)

Variables to be inferred

Author - Topic Model

	1	2	3	
epilepsy	0.4	0.01	0.1	1
dynamic	0.1	0.18	0.3	
bayesian	0.03	0.37	0.25	
EEG	0.4	0.01	0.15	
model	0.07	0.43	0.2	
12	¥	1200	0	

		**	
ϕ_T (words	X	topics)

	1	2	3	4
author1	0.02	0.69	0.08	
author2	0.58	0.02	0.18	ৃ
author3	0.23	0.12	0.45	
author4	0.35	0.4	0.2	
author5	0.15	0.2	0.1	1
author6	20	1		

 θ_{AT} (author X topic)

Collapsed Gibbs Sampling - LDA

- The assignment variables contain information about ϕ and Θ .
- Use this information to directly update the Topic assignment variable with the next sample. This is Collapsed Gibbs Sampling.

$$P(z_i = j | w_i = m, \mathbf{z}_{-i}, \mathbf{w}_{-i}) \propto \frac{C_{mj}^{WT} + \beta}{\sum_{m'} C_{m'j}^{WT} + V\beta} \frac{C_{dj}^{DT} + \alpha}{\sum_{j'} C_{dj'}^{DT} + T\alpha}$$

$$\phi_{mj} = \frac{C_{mj}^{WT} + \beta}{\sum_{m'} C_{m'j}^{WT} + V\beta}$$
times word 'm' assigned to doc 'j' by total #words assigned to doc 'j'
$$\theta_{dj} = \frac{C_{dj}^{DT} + \alpha}{\sum_{j'} C_{dj'}^{DT} + T\alpha}$$
times topic 'j' assigned in doc 'd' by total #words in the doc 'd'

Collapsed Gibbs Sampling - Author Model

- Need to infer Author word distribution ϕ_{Δ}
- With Collapsing Glbbs sampling, directly infer author word assignments

$$P(x_i = k | w_i = m, \mathbf{x}_{-i}, \mathbf{w}_{-i}, \mathbf{a}_d) \propto \frac{C_{mk}^{WA} + \beta}{\sum_{m'} C_{m'k}^{WA} + V\beta}$$

$$\phi_{mk} = \frac{C_{mk}^{WA} + \beta}{\sum_{m'} C_{m'k}^{WA} + V\beta}$$

#times word 'm' assigned to author 'k' by total #words assigned to author 'k'

Author Topic Model - Collapsed Gibbs Sampling

- Need to infer ϕ_{T} and Θ_{A}
- Instead through collapsed Gibbs
 Sampling directly infer
 Topic and Author
 assignments
- By finding the author topic joint distribution conditioned on all other variables

$$\begin{split} P\left(z_{i}=j,x_{i}=k|w_{i}=m,\mathbf{z}_{-i},\mathbf{x}_{-i},\mathbf{w}_{-i},\mathbf{a}_{d}\right) \propto \\ &\frac{C_{mj}^{WT}+\beta}{\sum_{m'}C_{m'j}^{WT}+V\beta} \frac{C_{kj}^{AT}+\alpha}{\sum_{j'}C_{kj'}^{AT}+T\alpha} \\ \\ \phi_{mj} &= \frac{C_{mj}^{WT}+\beta}{\sum_{m'}C_{m'j}^{WT}+V\beta} \text{ # of times word 'm' assigned to topic 'j' by total # of assignments of topic 'j'} \\ \theta_{kj} &= \frac{C_{kj}^{AT}+\alpha}{\sum_{j'}C_{kj'}^{AT}+T\alpha} \text{ # of times author 'k' assigned topic 'j' by total # of assignments of author 'k'} \end{split}$$

Example

AUTHOR	1	2	2	1	1
TOPIC	3	2	1	3	1
WORD	epilepsy	dynamic	bayesian	EEG	model

	TOPIC-1	TOPIC-2	TOPIC-3
epilepsy	1	0	35
dynamic	18	20	1
bayesian	42	15	0
EEG	0	5	20
model	10	8	1

	TOPIC-1	TOPIC-2	TOPIC-3
AUTHOR-1	20	14	2
AUTHOR-2	20	21	5
AUTHOR-3	11	8	15
AUTHOR-4	5	15	14

Example

AUTHOR	1	2	?	1	1
TOPIC	3	2	?	3	1
WORD	epilepsy	dynamic	bayesian	EEG	model

	TOPIC-1	TOPIC-2	TOPIC-3
epilepsy	1	0	35
dynamic	18	20	1
bayesian	42(41)	15	0
EEG	0	5	20
model	10	8	1

	TOPIC-1	TOPIC-2	TOPIC-3
AUTHOR-1	20	14	2
AUTHOR-2	20(19)	21	5
AUTHOR-3	11	8	15
AUTHOR-4	5	15	14

Author-Topic	How much topic 'j' likes the word 'bayesian'	How much author 'k' likes the topic
A1T1	41/97	20/36
A2T1	41/97	19/45
A1T2	15/105	14/36
A2T2		
A2T3		
A2T3		

- To draw new Author-Topic assignment (equivalently)
 - \circ Roll **K X a_d** sided die with these probabilities
 - Assign the Author-Topic tuple to the word

AUTHOR	1	2	1	1	1
TOPIC	3	2	3	3	1
WORD	epilepsy	dynamic	bayesian	EEG	model

Example (cont..)

- Update the probability (ϕ_{T} and $\Theta_{\mathsf{\Delta}}$) tables with new values
- This implies increasing the popularity of topic in author and word in topic

Sample Output (CORA dataset)

Experimental Results

- Experiment is done on two types of dataset, papers are chosen from NIPS and CiteSeer database
- Extremely common words are removed from the corpus, leading V=13,649 unique words in NIPS and V=30,799 in CiteSeer, 2037 authors in NIPS and 85,465 in CiteSeer
- NIPS contains many documents which are closely related to learning theory and machine learning
- CiteSeer contains variety of topics from User Interface to Solar astrophysics

Examples of topic author distribution

TOPIC 31		
WORD	PROB.	
SPEECH RECOGNITION	0.0497	
HMM	0.0234	
SPEAKER	0.0226	
	0.0224	
WORD	0.0166	
SYSTEM		
ACOUSTIC		
PHONEME	0.0131	
PHONEME CONTINUOUS	0.0129	
AUTHOR	PROB.	
Walbel A	0.0936	
Makhoul J De-Mori R	0.0238	
De-Mori R	0.0225	
Bourlard H Cole R	0.0216	
Cole_R	0.0200	
Rigoll G	0.0191	
Hochberg M	0.0176	
Franco H	0.0163	
Franco_H Abrash_V Movellan_J	0.0157	
Movellan J	0.0149	

TOPIC 61		TOPIC 71		
WORD	PROB.	WORD	PROB.	
BAYESIAN	0.0450	MODEL	0.4963	
GAUSSIAN	0.0364	MODELS	0.1445	
POSTERIOR	0.0355	MODELING	0.0218	
	0.0345	PARAMETERS	0.0205	
DISTRIBUTION	0.0259	BASED	0.0116	
PARAMETERS	0.0199	PROPOSED	0.0103	
EVIDENCE	0.0127	OBSERVED	0.0100	
SAMPLING	0.0117	SIMILAR	0.0083	
COVARIANCE	0.0117	ACCOUNT	0.0069	
LOG	0.0112	PARAMETER	0.0068	
AUTHOR	PROB.	AUTHOR	PROB.	
Bishop C	0.0563	Omohundro S	0.0088	
Williams C	0.0497	Zemel R	0.0084	
Barber D	0.0368	Ghahramani Z	0.0076	
MacKay D	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Jordan M	0.0075	
Tipping M	0.0216	Sejnowski_T	0.0071	
Rasmussen C		Atkeson C	0.0070	
Opper M	0.0204	Bower J	0.0066	
The second secon	0.0155	Bengio Y	0.0062	
Sollich P	0.0143	Revow M	0.0059	
Schottky B	0.0128	Williams C	0.0054	

TOPIC 10			
WORD	PROB		
SPEECH	0.1134		
RECOGNITION	0.0349		
WORD	0.0296		
SPEAKER	0.0227		
ACOUSTIC	0.0205		
RATE	0.0134		
SPOKEN	0.0132		
SOUND	0.0127		
TRAINING	0.0104		
MUSIC	0.0102		
AUTHOR	PROB		
Waibel_A	0.0156		
Gauvain_J	0.0133		
Lamel_L	0.0128		
Woodland_P	0.0124		
Ney_H	0.0080		
Hansen_J	0.0078		
Renals_S	0.0072		
Noth_E	0.0071		
Boves_L	0.0070		
Young S	0.0069		

TOPIC 209			
WORD	PROB.		
PROBABILISTIC	0.0778		
BAYESIAN	0.0671		
PROBABILITY	0.0532		
CARLO	0.0309		
MONTE	0.0308		
DISTRIBUTION	0.0257		
INFERENCE	0.0253		
PROBABILITIES	0.0253		
CONDITIONAL	0.0229		
PRIOR	0.0219		
AUTHOR	PROB.		
Friedman_N	0.0094		
Heckerman_D	0.0067		
Ghahramani_Z	0.0062		
Koller_D	0.0062		
Jordan_M	0.0059		
Neal_R	0.0058		
Raftery_A	0.0054		
Lukasiewicz_T	0.0053		
Halpern_J	0.0052		
Muller P	0.0048		

TOPIC 87	
WORD	PROB.
USER	0.2541
INTERFACE	0.1080
USERS	0.0788
INTERFACES	0.0433
GRAPHICAL	0.0392
INTERACTIVE	0.0354
INTERACTION	0.0261
VISUAL	0.0203
DISPLAY	0.0128
MANIPULATION	0.0099
AUTHOR	PROB.
Shneiderman_B	0.0060
Rauterberg_M	0.0031
Lavana_H	0.0024
Pentland_A	0.0021
Myers_B	0.0021
Minas_M	0.0021
Burnett_M	0.0021
Winiwarter_W	0.0020
Chang_S	0.0019
Korvemaker B	0.0040

TOPIC 20			
WORD	PROB		
STARS	0.0164		
OBSERVATIONS	0.0150		
SOLAR	0.0150		
MAGNETIC	0.0145		
RAY	0.0144		
EMISSION	0.0134		
GALAXIES	0.0124		
OBSERVED	0.0108		
SUBJECT	0.0101		
STAR	0.0087		
AUTHOR	PROB		
Linsky_J	0.0143		
Falcke_H	0.0131		
Mursula_K	0.0089		
Butler_R	0.0083		
Bjorkman_K	0.0078		
Knapp_G	0.0067		
Kundu_M	0.0063		
Christensen-J	0.0059		
Cranmer_S	0.0055		
Manne M	0.0050		

Evaluating the predictive power

- Predictive power of the model is measured quantitatively using perplexity.
- Perplexity is ability to predict the words on a new unseen documents
- Perplexity of set of d words in a document (w_d,a_d) is

perplexity(
$$\mathbf{w}_d | \mathbf{a}_d$$
) = exp $\left[-\frac{\ln p(\mathbf{w}_d | \mathbf{a}_d)}{N_d} \right]$

• When $p(w_d|a_d)$ is high perplexity \approx 1, otherwise it will be a high positive quantity.

Continued....

Approximate equation to calculate the joint probability

$$p(\mathbf{w}_d|a_d) = \frac{1}{S} \sum_{s=1}^{S} \prod_{m=1}^{N_d} \left[\sum_j \theta_{a_d j}^s \phi_{w_m j}^s \right]$$

Continued....

Applications

- It can be used in automatic reviewer recommendation for a paper review.
- Given an abstract of a paper and a list of the authors plus their known past collaborators, generate a list of other highly likely authors for this abstract who might serve as good reviewers.

 Authors | n | T=400 | T=200 | T=10

$$sKL(i,j) = \sum_{t=1}^{T} \left[\theta_{it} \log \frac{\theta_{it}}{\theta_{jt}} + \theta_{jt} \log \frac{\theta_{jt}}{\theta_{it}} \right].$$

Authors	n	T=400	T=200	T=100
Bartlett_P (8) Shawe-Taylor_J (8)	-	2.52	1.58	0.90
Barto_A (11) Singh_S (17)	2	3.34	2.18	1.25
Amari_S (9) Yang_H (5)	3	3.44	2.48	1.57
Singh_S (17) Sutton_R (7)	2	3.69	2.33	1.35
Moore_A (11) Sutton_R (7)	-	4.25	2.89	1.87
MEDIAN	91770	5.52	4.01	3.33
MAXIMUM	3750	16.61	14.91	13.32

Note: n is number of common papers in NIPS dataset.

References

- Rosen-Zvi, Michal, et al. "The author-topic model for authors and documents."
 Proceedings of the 20th conference on Uncertainty in artificial intelligence.

 AUAI Press, 2004.
- D. M. Blei, A. Y. Ng, and M. I. Jordan (2003). "Latent Dirichlet Allocation".
 Journal of Machine Learning Research, 3: 993–1022.
- T. L. Griffiths, and M. Steyvers (2004). "Finding scientific topics". Proceedings of the National Academy of Sciences, 101 (suppl. 1), 5228–5235.
- https://github.com/arongdari/python-topic-model
- https://www.coursera.org/learn/ml-clustering-and-retrieval/home/welcome

