LinAlgDM II. 19-20. gyakorlat: Relációk: ekvivalencia, rendezési

2024. április 25-26.

1 Elméleti összefoglaló

Definition 1. Ekvivalencia reláció

Adott H halmazon értelmezett rendezett párok halmaza (R) ekvivalencia reláció, ha teljesül rá, hogy:

- 1. Reflexív: $(a, a) \in R \quad \forall a \in H$
- 2. Szimmetrikus: $(a,b) \in R \Rightarrow (b,a) \in R \quad \forall a,b \in H$
- 3. Tranzitív: $[(a,b) \in R \land (b,c) \in R] \Rightarrow (a,c) \in R \quad \forall a,b,c \in H$

Definition 2. Rendezési reláció

Adott H halmazon értelmezett rendezett párok halmaza (R) rendezési reláció, ha teljesül rá, hogy:

- 1. Reflexív: $(a, a) \in R \quad \forall a \in H$
- 2. Antiszimmetrikus: $[(a,b) \in R \land (b,a) \in R] \Rightarrow a = b \quad \forall a,b \in H$
- 3. Tranzitív: $[(a,b) \in R \land (b,c) \in R] \Rightarrow (a,c) \in R \quad \forall a,b,c \in H$

Definition 3. Legnagyobb elem

Minden elemmel összehasonlítható, $ln \in H$, minden $h \in H$, $h6 = ln \Rightarrow h \leq ln$.

Definition 4. Legkisebb elem

Minden elemmel összehasonlítható, $lk \in H, \forall h \in H, h6 = lk \Rightarrow lk \leq h$.

Definition 5. Maximális elem

Nem biztos, hogy minden elemmel összehasonlítható, $M \in H$, ha $\neg \exists h \in H, h6 = M | M \le h$.

Definition 6. Minimális elem

Nem biztos, hogy minden elemmel összehasonlítható, $m \in H$, ha $\neg \exists h \in H, h6 = m | h \le m$.

Definition 7. Hasse-diagram

A véges rendezett halmazok ábrázolhatók gráffal, a következőképpen: ha

 $a \leq b$, akkor b-t feljebb rajzoljuk mint a-t, és összekötjük őket. Nem kötjük össze a tranziti- vitásból ill. reflexivitásból adodó párokat.

Definition 8. Felső korlát

A részben rendezett H halmaz valamely H1 részhalmazának felső korlátja f $k \in H$, ha $\forall h1 \in H1 \Rightarrow h1 \leq fk$.

Definition 9. Alsó korlát

A részben rendezett H halmaz valamely H1 részbalmazának alsó korlátja $ak \in H$, ha $\forall h1 \in H1 \Rightarrow ak \leq h1$.

H1 korlátos, ha van alsó és felső korlátja.

$\textbf{Definition 10.} \ \operatorname{Szupr\'{e}mum} \ (\operatorname{supH})$

a legkisebb felső korlát.

Definition 11. infimum (infH)

a legnagyobb alsó korlát.

2 Feladatok

Feladat 1. Milyen relációt határoz meg a rendezett párok R halmaza a $H = \{1, 2, 3\}$ alaphalmazon?

1. $R = \{(1,1), (2,2), (3,3), (1,2), (2,1), (3,2), (2,3)\}.$

Megoldás. reflexív? \checkmark szimmetrikus? \checkmark , tranzitív? Nem, mert (1,2) és $(2,3) \in R$, de tranzitivitás esetén ebből $(1,3) \in R$ következne, ami itt nem teljesül. Ezért R nem rendezési, és nem is ekvivalencia reláció.

2. $R = \{(1,1), (2,2), (3,3), (1,2), (1,3), (2,3)\}$

 $\textbf{Megoldás.} \ \textit{reflexív?} \ \checkmark \ \textit{szimmetrikus?} \ \textit{X} \ \textit{,antiszimmetrikus?} \ \checkmark \ \textit{tranzitív?} \ \checkmark \ \textit{Tehát} \ \textit{R} \ \textit{rendezési} \ \textit{reláció}.$

3. $R = \{(1,1), (2,2), (3,3), (1,2), (2,1), (3,2), (2,3), (1,3), (3,1)\}$

Megoldás. $reflexív? \checkmark szimmetrikus? \checkmark, tranzitív? \checkmark Tehát <math>R$ ekvivalenciareláció.

4. $R = \{(1,1), (3,3), (1,2), (2,1), (3,2), (2,3), (1,3), (3,1)\}$

Megoldás. reflexív? Nem reflexív, mert (2,2) nincs benne.

Feladat 2. Az egész számok halmazán tekintsük azt a relációt, ahol $(a,b) \in R$ akkor és csak akkor, ha a és b paritása megegyezik. Milyen reláció R?

Megoldás. Reflexív, mivel minden $a \in \mathbb{Z}$ szám esetén a paritása = a paritása.

Szimmetrikus, mivel ha a paritása = b paritása, akkor b paritása = a paritása is teljesül.

Tranzitív, mivel ha a paritása = b paritása és b paritása = c paritása, akkor a paritása = c paritása is teljesül. A fentiekhez hasonlóan belátható, hogy az egész számok $\mathbb Z$ halmazán tetszőleges rögzített $n \in \mathbb N$ esetén az n-nel való maradékos osztás meghatároz egy ekvivalenciarelációt, ahol azok a számok vannak egy osztályban, amelyek azonos maradékot adnak. Minden $n \in \mathbb N$ esetén a kialakult osztályok az egész számok egy partícióját alkotják.

Feladat 3. A H alaphalmaz elemei legyenek a PPKE ITK első évfolyamos hallgatói, ahol az R relációt úgy határozzuk meg, hogy $(a,b) \in R$ pontosan akkor, ha a egy csoportban van b-vel. Milyen reláció R?

Megoldás. • reflexív? Minden diák ugyanabban a csoportban van, mint önmaga. ✓

- ullet tranzitív? Ha A ugyanabba a csoportban van, mint B, és B is, mint C, akkor A is ugyanabban, mint C.
- szimmetrikus? Ha A ugyanabba a csoportban van, mint B, akkor B is mint A. \checkmark Tehát R ekvivalenciareláció. \longrightarrow a partíció osztályai a csoportok.

Feladat 4. A H alaphalmaz legyen emberek egy tetszőleges halmaza, amelyen az R relációt úgy határozzuk meg, hogy $(a,b) \in R$ pontosan akkor, ha a beszél közös nyelvet b-vel. Milyen reláció R?

Megoldás. reflexív? \checkmark szimmetrikus? \checkmark , tranzitív? X Tehát R nem ekvivalenciareláció és nem rendezési reláció. (Akkor lenne tranzitív a reláció, ha azt is megfelelő kapcsolatnak tekintenénk, ha a két ember számára létezik egy harmadik, aki vállalja a tolmács szerepét.)

Feladat 5. Az R relációt úgy definiáljuk az \mathbb{R}^3 halmazon, hogy $(\underline{a},\underline{b}) \in R$ pontosan akkor, ha $|\underline{a}| = |\underline{b}|$. Milyen reláció R?

Megoldás. reflexív? \checkmark szimmetrikus? \checkmark , tranzitív? \checkmark Tehát R ekvivalenciareláció \longrightarrow a partíció osztályai: minden $\ell \in \mathbb{R}$ esetén az ℓ hosszúságú vektorok \mathbb{R}^3 -ban.

Feladat 6. $H = \mathbb{R}^{4\times4}$ halmazon az R relációt úgy határozzuk, hogy $(A, B) \in R$ pontosan akkor, ha det(A) = det(B). Milyen reláció R?

Megoldás. $reflexív? \checkmark szimmetrikus? \checkmark , tranzitív? \checkmark Tehát <math>R$ ekvivalenciareláció.

Feladat 7. Az R relációt úgy definiáljuk a valós számok \mathbb{R} halmazán, hogy $(a,b) \in R$ pontosan akkor teljesül, ha a-b egész szám. Milyen reláció \mathbb{R} ?

Megoldás. $reflexív? \checkmark szimmetrikus? \checkmark , tranzitív? \checkmark Tehát <math>R$ ekvivalenciareláció.

Feladat 8. Az R relációt úgy adjuk meg a H halmazon, hogy $A \sim B$, ha det(A) + det(B) páros szám. Milyen reláció R, ha

- 1. $H = \mathbb{R}^{3 \times 3}$?
- 2. $H = \mathbb{Z}^{3 \times 3}$?

Megoldás. 1. Nem reflexív, mivel ha det(A) nem egész szám, akkor det(A) + det(A) nem páros. Emiatt a realáció ezen a halmazon nem ekvivalencia és nem is rendezési reláció.

2. Ha az A mátrix minden eleme egész, akkor det(A) is egész. Ebben az esetben det(A)+det(B) pontosan akkor páros, ha det(A) és det(B) paritása megegyezik. A 2. feladathoz hasonlóan belátható, hogy R ekvivalencia relációt definiál ezen a halmazon.

Feladat 9. Bizonyítsa be, hogy R akkor és csak akkor ekvivalencia
reláció H-n, ha R reflexív, és $\forall a,b,c \in H$ esetén
 $a \sim b,\ a \sim c \longrightarrow b \sim c$!

Megoldás. Ha R ekvivalencia reláció, akkor $a \sim b$ -ből a szimmetria miatt következik $b \sim a$. A tranzitivitást felhasználva $b \sim a$ és $a \sim c$ \longrightarrow $b \sim c$.

Ha egy reláció teljesíti a két megadott axiómát, akkor csak a szimmetriát illetve a tranzitivitást kell igazolni (mert a reflexivitás szerepel a két megadott között).

Szimmetria: 2. axiómában c helyére a-t írva (reflexivitás miatt ez megtehető) $a \sim b$, $a \sim a \longrightarrow b \sim a$ Tranzitivitás: $a \sim b$ -ből a szimmetria felhasználásvála következik $a \sim b$, amivel együtt $a \sim b$ és $b \sim c$ -ből a 2. tulajdonság felhasználásval következik $a \sim c$.

Feladat 10. Bontsuk fel az egyetemi tantárgyakat a szabadon választható, illetve a kötelező tárgyakra. Igaz, hogy ezek a csoportok a tárgyak egy partícióját alkotják?

Feladat 11. Osszuk fel a diákokat csoportokra aszerint, hogy melyik hónapban születtek. Igaz, hogy ezek a csoportok a diákok egy partícióját alkotják?

Megoldás. Diszjunkt halmazok ✓ Uniójuk kiadja az összes diákot? ✓ Tehát ez a felosztás egy partíció, amely megad egy ekvivalenciarelációt a diákok halmazán.

Feladat 12. A $H = \mathbb{R}^{4\times 4}$ halmazon az R relációt úgy határozzuk, hogy $(A, B) \in R$ pontosan akkor, ha $det(A) \leq det(B)$. Milyen reláció R?

Megoldás. reflexív? ✓ szimmetrikus? X, antiszimmetrikus? X, tranzitív? ✓ Tehát R nem ekvivalenciareláció és nem is rendezési reláció.

Feladat 13. Rendezési relációk a következők?

1. $H = \mathbb{R}^{n \times n}$ a négyzetes valós elemű mátrixok halmaza. $(A, B) \in R$, ha $det(A) \leq det(B)$

Megoldás. reflexív? \checkmark Hiszen det(A) = det(A), azaz a $det(A) \le det(A)$ teljesül. antiszimmetrikus? Nem, mivel két különböző mátrix determinánsa lehet egyenlő. (Ha a H halmaz csak különböző determinánsú mátrixokat tartalmazna, a tulajdonság teljesülne.) tranzitív? \checkmark Ha $(A,B) \in R \rightarrow det(A) \le det(B)$ és $(B,C) \in R \rightarrow det(B) \le det(C)$. A két egyenlőtlenségből

következik, hogy $det(A) \leq det(C)$, tehát $(A,C) \in R$ Mivel nem teljesül az egyik tulajdonság, ezért R nem rendezési reláció.

2. $H = \mathbb{R}^+$ a pozitív valós számok halmaza, $(a,b) \in R$, ha $\frac{a}{b} \leq \frac{b}{a}$

 $\textbf{Megoldás.} \ \textit{reflexív?} \checkmark \ \textit{antiszimmetrikus?} \checkmark \ \textit{tranzitív?} \checkmark \ \textit{Tehát} \ \textit{R} \ \textit{rendezési} \ \textit{reláció.} \ (\textit{Teljes rendezés})$

3. Haz $\{1,2,3\}$ halmaz hatványhalmaza. $(A,B)\in R,$ ha $A\subseteq B$

 $\textbf{Megoldás.} \ \textit{reflexív?} \checkmark \ \textit{antiszimmetrikus?} \checkmark \ \textit{tranzitív?} \checkmark \ \textit{Tehát} \ \textit{R} \ \textit{rendezési reláció.} \ (\textit{Részbenrendezés})$

4. $H = \mathbb{Z}$ az egész számok halmaza, $(a, b) \in R$, ha a < b

Megoldás. reflexív? X antiszimmetrikus? ✓ tranzitív? ✓ Tehát R nem rendezési reláció.

5. $H = \mathbb{Z}$ ahol $(a, b) \in R$, ha a osztója b-nek. (Tehát létezik $k \in \mathbb{Z}$ amelyre $b = k \cdot a$.)

Megoldás. reflexív? \checkmark antiszimmetrikus? $X(a,-a) \in R$ és $(-a,a) \in R$ teljesül, de $a \neq -a$. Tehát R nem rendezési reláció.

6. $H = \mathbb{N}$ ahol $(a, b) \in R$, ha a osztója b-nek. (Tehát létezik $k \in \mathbb{N}$ amelyre $b = k \cdot a$.)

Megoldás. reflexív? \checkmark antiszimmetrikus? \checkmark , tranzitív? \checkmark Tehát R rendezési reláció. (Részben rendezés)

Feladat 14. Hasse-diagrammal adott a következő rendezési reláció:

- 1. Határozza meg a maximális és a minimális elemeket!
- 2. Határozza meg a legnagyobb és a legkisebb elemeket!
- 3. Ez teljes- vagy részbenrendezés?
- 4. A {2,8,16} halmazon teljes- vagy részbenrendezést definiál a megadott rendezési reláció?

Megoldás. 1. maximális elem: 16, 35 minimális elem: 1

- 2. legnagyobb elem: nincs legkisebb elem: 1
- 3. Ez egy részbenrendezett halmaz, mivel pl. a 4 és az 5 nem hasonlíthatók össze.
- 4. Ez egy teljesen rendezett halmaz, mivel bármely két eleme összehasonlítható.