Ayudantía Unidad 1: Lógica (parte 1)

Teoría de la Computación 2-2025

1. Tablas de verdad

1.1. Reglas generales

- La cantidad de filas que tendrá la tabla es 2^n , siendo n el número de proposiciones simples que hay en la fórmula.
- Para establecer todas las combinaciones posibles de valores de verdad asignaremos a la primera mitad de las filas de p el valor 0, y a la otra mitad, el valor 1. Luego, a q le asignaremos 0 a la mitad de la mitad de p, luego 1 a la otra mitad de la mitad y así sucesivamente. **Ejemplo:**

$$\begin{array}{c|cc} p & q \\ \hline 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{array}$$

 Para cada fórmula, indique si corresponde a una tautología, a una contingencia o a una contradicción.

1. $\sim (p \lor \sim p) \land (q \land (\sim p \lor r))$ (Contradicción)

p	q	$\mid r \mid$	$\sim p$	$ \bigcirc \sim (p \lor \sim p) $	$\sim p \vee r$	$ \begin{array}{c c} q \land (\sim p \lor r) \\ \hline \textcircled{B} \end{array} $	\bigcirc
0	0	0	1	0	1	0	0
0	0	1	1	0	1	0	0
0	1	0	1	0	1	1	0
0	1	1	1	0	1	1	0
1	0	0	0	0	0	0	0
1	0	1	0	0	1	0	0
1	1	0	0	0	0	0	0
1	1	1	0	0	1	1	0

2. $\sim (p \land \sim q) \leftrightarrow (p \rightarrow q)$ (Tautología)

	р	q	$\sim q$	$ \bigcirc \sim (p \land \sim q) $	$ \begin{array}{ c c } p \to q \\ \hline \textcircled{B} \end{array} $	$\bigcirc A \leftrightarrow \bigcirc B$
	0	0	1	1	1	1
	0	1	0	1	1	1
•	1	0	1	0	0	1
	1	1	0	1	1	1

3. $(p \lor q) \land ((r \leftrightarrow \sim s) \rightarrow (\sim r \land p))$ (Contingencia)

	ı	ı		ı	ı	ı	ı	1	l	I
p	q	r	s	$\sim r$	$\sim s$	$ \begin{array}{c c} p \lor q \\ \hline \textcircled{A} \end{array} $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} \sim r \wedge p \\ \hline \bigcirc \end{array}$	$\textcircled{B} \rightarrow \textcircled{C}$	
						_				
0	0	0	0	1	1	0	0	0	1	0
0	0	0	1	1	0	0	1	0	0	0
0	0	1	0	0	1	0	1	0	0	0
0	0	1	1	0	0	0	0	0	1	0
0	1	0	0	1	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	0	0
0	1	1	0	0	1	1	1	0	0	0
0	1	1	1	0	0	1	0	0	1	1
1	0	0	0	1	1	1	0	1	1	1
1	0	0	1	1	0	1	1	1	1	1
1	0	1	0	0	1	1	1	0	0	0
1	0	1	1	0	0	1	0	0	1	1
1	1	0	0	1	1	1	0	1	1	1
1	1	0	1	1	0	1	1	1	1	1
1	1	1	0	0	1	1	1	0	0	0
1	1	1	1	0	0	1	0	0	1	1

2. Deducción natural

Demuestre los siguientes secuentes utilizando deducción natural. En cada paso, debe indicar exactamente cuál fue la regla utilizada y sobre qué fórmulas se aplicó.

1.
$$p \land (q \rightarrow (p \rightarrow s)), p \rightarrow (q \land r) \vdash p \rightarrow s$$

2. $p \to (q \to r \lor s), p, r \to t, s \to t, q \land m \vdash t$

3. $p \land (\sim q \rightarrow \sim p) \vdash (q \land p) \lor \sim p$ (PEP 1 2025-1)

4. $((p \land q) \rightarrow (r \land s)) \land ((r \land s) \rightarrow (p \land q)), t \land (t \rightarrow s) \vdash r \rightarrow p$ (PEP 1 2025-1)

$$(1) \quad ((p \land q) \rightarrow (r \land s)) \land ((r \land s) \rightarrow (p \land q)) \qquad \text{(premisa)}$$

$$(2) \quad t \land (t \rightarrow s) \qquad \text{(premisa)}$$

$$(3) \quad (r \land s) \rightarrow (p \land q) \qquad \qquad (EC2(1))$$

$$(4) \quad t \qquad \qquad (EC1(2))$$

$$(5) \quad t \rightarrow s \qquad \qquad (EC2(2))$$

$$(6) \quad s \qquad \qquad (EI(4,5))$$

$$(7) \quad r \qquad \qquad (supuesto)$$

$$(8) \quad r \land s \qquad \qquad (IC(7,6))$$

$$(9) \quad p \land q \qquad \qquad (EI(8,3))$$

$$(10) \quad p \qquad \qquad (EC1(9))$$

$$r \rightarrow p \qquad \qquad (II(7-10))$$