

Global United Technology Services Co., Ltd.

Report No.: GTS201807000084F01

FCC REPORT

Penclic AB Applicant:

Vendev. 90, Danderyd, Sweden, 182 32 **Address of Applicant:**

Manufacturer/Factory: Shenzhen Hangshi Technology Co., Ltd.

Address of Hangshi Technology Park, Democracy West Industry Area, Shajing Town, Bao' an District, Shenzhen, China. Manufacturer/Factory:

Equipment Under Test (EUT)

Product Name: Penclic mini keyboard K3

Model No:

FCC ID: ZRQ-K3V2

FCC CFR Title 47 Part 15 Subpart C Section 15.249 **Applicable standards:**

Date of sample receipt: July 05, 2018

Date of Test: July 15-25, 2018

July 25, 2018 Date of report issued:

PASS * Test Result:

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Lo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	July 25, 2018	Original

Prepared By:	Jamelly	Date:	June 25, 2018
	Project Engineer		
Check By:	Andy wa	Date:	June 25, 2018
	Reviewer		

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	2
3	CONTENTS	3
4	TEST SUMMARY	
	4.1 MEASUREMENT UNCERTAINTY	4
5	GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	
	5.2 TEST MODE	
	5.4 TEST FACILITY	7
	5.5 TEST LOCATION	
	5.6 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
6	TEST INSTRUMENTS LIST	9
7	TEST RESULTS AND MEASUREMENT DATA	11
	7.1 ANTENNA REQUIREMENT	11
	7.2 CONDUCTED EMISSIONS	
	7.3 RADIATED EMISSION METHOD	
	7.3.1 Field Strength of The Fundamental Signal	
	7.3.2 Spurious emissions	
	7.3.3 Bandedge emissions	
8	TEST SETUP PHOTO	27
9	EUT CONSTRUCTIONAL DETAILS	29

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Field strength of the fundamental signal	15.249 (a)	Pass
Spurious emissions	15.249 (a) (d)/15.209	Pass
Band edge	15.249 (d)/15.205	Pass
20dB Occupied Bandwidth	15.215 (c)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10: 2013 and ANSI C63.4: 2014.

4.1 Measurement Uncertainty

Test Item	Frequency Range Measurement Uncertainty		Notes		
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)		
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)		
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)		
AC Power Line Conducted Emission 0.15MHz ~ 30MHz ± 3.45dB (1)					
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5 General Information

5.1 General Description of EUT

Product Name:	Penclic mini keyboard K3
Model No.:	K3
Serial No.:	HSK300006
Test sample(s) ID:	GTS201807000084-1
Sample(s) Status	Engineer sample
Hardware:	V 1.0
Software:	V 1.0
Operation Frequency:	2405MHz~2470MHz
Channel numbers:	8
Modulation type:	GFSK
Antenna Type:	PCB antenna
Antenna gain:	-1.2dBi
Power supply:	DC 3.7V by Li-ON batteries

Operation Frequency each of channel			
Channel	Frequency	Channel	Frequency
01	2405MHz	05	2440MHz
02	2413MHz	06	2450MHz
03	2422MHz	07	2460MHz
04	2430MHz	08	2470MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2405MHz
The middle channel	2430MHz
The Highest channel	2470MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

Per-test mode.

We have verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:

Axis	Х	Y	Z
Field Strength(dBuV/m)	91.05	90.10	88.94

5.3 Description of Support Units

Manufacturer	Description	Model	Serial Number
APPLE	USB Charger	A1399	N/A

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, January 08, 2018.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Other Information Requested by the Customer

None.

5.7 Additional instructions

Software (Used for test) from client

	Special software is used.
Mode	The software provided by client to enable the EUT under transmission
ous	condition continuously at specific channel frequencies individually.

Power level setup in software			
Test Software Name	N/A		
Test Software Version	N/A		
Support Units	Description	Manufacturer	Model
(Software installation media)	N/A	N/A	N/A
Mode	Channel	Frequency (MHz)	Soft Set
GFSK	CH01	2405	TX LEVEL: Default
	CH04	2430	
	CH08	2470	

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Radi	iated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 27 2018	June. 26 2019
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 27 2018	June. 26 2019
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 27 2018	June. 26 2019
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 27 2018	June. 26 2019
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 27 2018	June. 26 2019
9	Coaxial Cable	GTS	N/A	GTS211	June. 27 2018	June. 26 2019
10	Coaxial cable	GTS	N/A	GTS210	June. 27 2018	June. 26 2019
11	Coaxial Cable	GTS	N/A	GTS212	June. 27 2018	June. 26 2019
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 27 2018	June. 26 2019
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 27 2018	June. 26 2019
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 27 2018	June. 26 2019
15	Band filter	Amindeon	82346	GTS219	June. 27 2018	June. 26 2019
16	Power Meter	Anritsu	ML2495A	GTS540	June. 27 2018	June. 26 2019
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 27 2018	June. 26 2019
18	Wideband Radio Communication Tester	I Rohde & Schwarz		GTS575	June. 27 2018	June. 26 2019
19	Splitter	Agilent	11636B	GTS237	June. 27 2018	June. 26 2019
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 27 2018	June. 26 2019

Gene	General used equipment:										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)					
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 27 2018	June. 26 2019					
2	Barometer	ChangChun	DYM3	GTS255	June. 27 2018	June. 26 2019					

Conducted Emission									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May.15 2019			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019			
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 27 2018	June. 26 2019			
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 27 2018	June. 26 2019			
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A			
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
7	Thermo meter	KTJ	TA328	GTS233	June. 27 2018	June. 26 2019			
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 27 2018	June. 26 2019			

RF C	RF Conducted Test:										
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)					
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 27 2018	June. 26 2019					
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019					
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 27 2018	June. 26 2019					
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 27 2018	June. 26 2019					
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 27 2018	June. 26 2019					
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 27 2018	June. 26 2019					
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 27 2018	June. 26 2019					
8	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 27 2018	June. 26 2019					
9	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 27 2018	June. 26 2019					

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is PCB antenna, the best case gain of the antenna is -1.2dBi.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.2 Conducted Emissions

FCC Part15 C Section 15.207								
ANSI C63.10:2013								
150KHz to 30MHz								
Class B								
RBW=9KHz, VBW=30KHz, Sweep time=auto								
	Limit (d	BuV)						
Frequency range (MHz)	Quasi-peak	Average						
0.15-0.5	66 to 56*	56 to 46*						
0.5-5	56	46						
5-30	60	50						
* Decreases with the logarithm	n of the frequency.							
Reference Plane								
AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test L/SN Line Impedence Stabilization Network Test table height=0.8m								
 The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed 								
<u>-</u>								
AC120V 60Hz								
	Class B RBW=9KHz, VBW=30KHz, SN Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * Decreases with the logarithm Reference Plane LISN AUX Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The EUT and simulators are line impedance stabilization 500hm/50uH coupling impedence Stabilization (Please refer to photographs). 3. Both sides of A.C. line are content in the impedance of the positions of equipment and according to ANSI C63.10: Refer to section 6.0 for details Refer to section 5.2 for details	Class B RBW=9KHz, VBW=30KHz, Sweep time=auto Frequency range (MHz) Quasi-peak 0.15-0.5 66 to 56* 0.5-5 5-30 * Decreases with the logarithm of the frequency. Reference Plane LISN AUX Equipment Under Test LISN Line impedance Stabilization Network Test table registration in the impedance of the measuring in the impedance stabilization network (L.I.S.N.). The 500hm/50uH coupling impedance for the measuring content of the impedance of the						

Measurement data:

Mode:Transmitting modeTest by:JasonTemp./Hum.(%H):26 ℃/56%RHProbe:Line

Mode:Transmitting modeTest by:JasonTemp./Hum.(%H):26℃/56%RHProbe:Neutral

0.668

0.720

0.720

20.90

30.70

18.90

9.64

9.64

9.64

0.03

0.03

0.03

46.00

56.00

46.00

30.57

40.37

28.57

-15.43

-15.63

-17.43

Average

Average

7.3 Radiated Emission Method

7.0	5 Natiated Emission Method									
	Test Requirement:	FCC Part15 C Section	on 15.	209						
	Test Method:	ANSI C63.10:2013								
	Test Frequency Range:	9kHz to 25GHz								
	Test site:	Measurement Distar	nce: 3	m						
	Receiver setup:	Frequency		etector	RB'	W	VBV	V	Value	
		9KHz-150KHz	Qua	asi-peak	200	Hz	600Hz		Quasi-peak	
		150KHz-30MHz	Qua	asi-peak	9KF	Ηz	30KHz		Quasi-peak	
		30MHz-1GHz Qu		asi-peak	100K	Ήz	300K	Hz	Quasi-peak	
		Ab 4011-	I	Peak	1MH	Ηz	3MH	lz	Peak	
		Above 1GHz	I	Peak		Ηz	10Hz		Average	
	Limit:	Frequency	Frequency		Limit (dBuV/		/m @3m)		Remark	
	(Field strength of the fundamental signal)	2400MHz-2483.5M		y 94.0 114.0					Average Value Peak Value	
	Limit: (Spurious Emissions)	Frequency		Limit (uV/m)		Value		ſ	Measurement Distance	
	,	0.009MHz-0.490MHz		2400/F(KHz)		QP			300m	
		0.490MHz-1.705M	lHz	24000/F(KHz)	QP			300m	
		1.705MHz-30MH	lz	30		(QΡ		30m	
		30MHz-88MHz		100		(QΡ			
		88MHz-216MHz	Z	150		C	QΡ			
		216MHz-960MH	z	200		C	QΡ		3m	
		960MHz-1GHz		500		C	QΡ		3111	
		Above 1GHz		500		Ave	erage			
		Above 1GHZ		5000)	Peak				
	Limit: (band edge)	Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.								

Test Procedure:	1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	 The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass
Test voltage:	AC120V 60Hz

Measurement data:

7.3.1 Field Strength of The Fundamental Signal

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2405.00	83.58	27.15	3.65	36.12	78.26	114.00	-35.74	Vertical
2405.00	95.08	27.15	3.65	36.12	89.76	114.00	-24.24	Horizontal
2430.00	86.88	27.22	3.66	36.19	81.57	114.00	-32.43	Vertical
2430.00	96.36	27.22	3.66	36.19	91.05	114.00	-22.95	Horizontal
2470.00	85.58	27.32	3.67	36.29	80.28	114.00	-33.72	Vertical
2470.00	95.85	27.32	3.67	36.29	90.55	114.00	-23.45	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
2405.00	81.54	27.15	3.65	36.12	76.22	94.00	-17.78	Vertical
2405.00	93.31	27.15	3.65	36.12	87.99	94.00	-6.01	Horizontal
2430.00	84.67	27.22	3.66	36.19	79.36	94.00	-14.64	Vertical
2430.00	94.51	27.22	3.66	36.19	89.20	94.00	-4.80	Horizontal
2470.00	83.44	27.32	3.67	36.29	78.14	94.00	-15.86	Vertical
2470.00	93.90	27.32	3.67	36.29	88.60	94.00	-5.40	Horizontal

7.3.2 Spurious emissions

■ 9 kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ Below 1GHz

Mode:	Transmitting mode	Test by:	Jason
Temp./Hum.(%H):	26℃/56%RH	Polarziation:	Horizontal

Freq MHz	Reading 1eve1 dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV	Limit 1eve1 dBuV/m	Over limit dB	Remark
38. 730	31.50	13.92	1.14	32. 55	14.01	40.00	-25.99	QP
194.900	34.04	10.21	2.79	32. 55	14.49	43.50	-29.01	QP
318.090	30. 11	13. 24	3.55	32. 51	14.39	46.00	-31.61	QP
406.360	31.42	14.91	4.03	32.48	17.88	46.00	-28. 12	QP
576. 110	28. 47	17. 95	4.96	32.66	18.72	46.00	-27.28	QP
732. 280	28.82	20.06	5. 58	32.74	21.72	46.00	-24.28	QP

Mode:Transmitting modeTest by:JasonTemp./Hum.(%H):26℃/56%RHPolarziation:Vertical

Freq MHz	level	Antenna factor dB/m	loss	Preamp factor dB	level dBuV	Limit level dBuV/m	Over limit dB	Remark
32. 910 161. 920		13.32 14.01	1.04 2.49	32. 53 32. 52	26. 01 14. 51	40.00 43.50	-13. 99 -28. 99	QP QP
437. 400		15. 44	4. 22	32. 50	18. 27	46.00	-27. 73	QP
562, 530	30, 55	17, 69	4.84	32, 64	20, 44	46, 00	-25.56	QP
768. 170	32.68	20.45	5.78	32.69	26. 22	46.00	-19.78	QP
919.490	28.83	21.82	6.44	32.08	25.01	46.00	-20.99	QP

■ Above 1GHz

Test channel:	Lowest channel

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4810.00	54.68	31.24	5.44	36.27	55.09	74.00	-18.91	Vertical
7215.00	42.57	35.89	6.96	34.25	51.17	74.00	-22.83	Vertical
9620.00	44.42	37.82	7.79	34.13	55.90	74.00	-18.10	Vertical
12025.00	*					74.00		Vertical
14430.00	*					74.00		Vertical
4810.00	59.73	31.24	5.44	36.27	60.14	74.00	-13.86	Horizontal
7215.00	46.54	35.89	6.96	34.25	55.14	74.00	-18.86	Horizontal
9620.00	47.64	37.82	7.79	34.13	59.12	74.00	-14.88	Horizontal
12025.00	*					74.00		Horizontal
14430.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4810.00	43.65	31.24	5.44	36.27	44.06	54.00	-9.94	Vertical
7215.00	31.28	35.89	6.96	34.25	39.88	54.00	-14.12	Vertical
9620.00	34.93	37.82	7.79	34.13	46.41	54.00	-7.59	Vertical
12025.00	*					54.00		Vertical
14430.00	*					54.00		Vertical
4810.00	50.73	31.24	5.44	36.27	51.14	54.00	-2.86	Horizontal
7215.00	34.48	35.89	6.96	34.25	43.08	54.00	-10.92	Horizontal
9620.00	36.83	37.82	7.79	34.13	48.31	54.00	-5.69	Horizontal
12025.00	*					54.00		Horizontal
14430.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Test channel: Middle								
Peak value:				<u>'</u>				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4860.00	52.86	31.36	5.42	36.25	53.39	74.00	-20.61	Vertical
7290.00	42.95	36.07	7.18	34.33	51.87	74.00	-22.13	Vertical
9720.00	42.77	38.00	7.92	34.18	54.51	74.00	-19.49	Vertical
12150.00	*					74.00		Vertical
14580.00	*					74.00		Vertical
4860.00	59.10	31.36	5.42	36.25	59.63	74.00	-14.37	Horizontal
7290.00	47.05	36.07	7.18	34.33	55.97	74.00	-18.03	Horizontal
9720.00	47.21	38.00	7.92	34.18	58.95	74.00	-15.05	Horizontal
12150.00	*					74.00		Horizontal
14580.00	*					74.00		Horizontal
Average val	ue:	•	•					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4860.00	42.84	31.36	5.42	36.25	43.37	54.00	-10.63	Vertical
7290.00	33.26	36.07	7.18	34.33	42.18	54.00	-11.82	Vertical
9720.00	32.57	38.00	7.92	34.18	44.31	54.00	-9.69	Vertical
12150.00	*					54.00		Vertical
14580.00	*					54.00		Vertical
4860.00	49.29	31.36	5.42	36.25	49.82	54.00	-4.18	Horizontal
7290.00	36.80	36.07	7.18	34.33	45.72	54.00	-8.28	Horizontal
9720.00	37.47	38.00	7.92	34.18	49.21	54.00	-4.79	Horizontal
12150.00	*					54.00		Horizontal
14580.00	*					54.00		Horizontal

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
 "*", means this data is the too weak instrument of signal is unable to test.

Test channe	annel: Highest							
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4940.00	55.37	31.56	5.37	36.22	56.08	74.00	-17.92	Vertical
7410.00	46.09	36.33	7.49	34.44	55.48	74.00	-18.52	Vertical
9880.00	44.89	38.28	8.04	34.25	56.96	74.00	-17.04	Vertical
12350.00	*					74.00		Vertical
14820.00	*					74.00		Vertical
4940.00	58.84	31.56	5.37	36.22	59.55	74.00	-14.45	Horizontal
7410.00	49.96	36.35	7.49	34.44	59.35	74.00	-14.65	Horizontal
9880.00	49.17	38.28	8.04	34.25	61.24	74.00	-12.76	Horizontal
12350.00	*					74.00		Horizontal
14820.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4940.00	45.24	31.56	5.37	36.22	45.95	54.00	-8.05	Vertical
7410.00	35.50	36.33	7.49	34.44	44.89	54.00	-9.11	Vertical
9880.00	35.03	38.28	8.04	34.25	47.10	54.00	-6.90	Vertical
12350.00	*					54.00		Vertical
14820.00	*					54.00		Vertical
4940.00	49.87	31.56	5.37	36.22	50.58	54.00	-3.42	Horizontal
7410.00	39.56	36.35	7.49	34.44	48.95	54.00	-5.05	Horizontal
9880.00	39.15	38.28	8.04	34.25	51.22	54.00	-2.78	Horizontal
12350.00	*					54.00		Horizontal
14820.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

7.3.3 Bandedge emissions

All of the restriction bands were tested, and only the data of worst case was exhibited.

Test channe	Test channel: Lowest channel							
Peak value:	Peak value:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	41.30	26.91	3.56	35.87	35.90	74.00	-38.10	Horizontal
2390.00	43.61	27.11	3.64	36.08	38.28	74.00	-35.72	Horizontal
2310.00	40.20	26.91	3.56	35.87	34.80	74.00	-39.20	Vertical
2390.00	40.70	27.11	3.64	36.08	35.37	74.00	-38.63	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	27.70	26.91	3.56	35.87	22.30	54.00	-31.70	Horizontal
2390.00	32.20	27.11	3.64	36.08	26.87	54.00	-27.13	Horizontal
2310.00	27.15	26.91	3.56	35.87	21.75	54.00	-32.25	Vertical
2390.00	28.00	27.11	3.64	36.08	22.67	54.00	-31.33	Vertical
Test channe	Test channel: Highest channel							
Peak value:								_
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	45.39	27.36	3.68	36.33	40.10	74	-33.90	Horizontal

Average value:

2500.00

2483.50

2500.00

Average value.								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	32.98	27.36	3.68	36.33	27.69	54	-26.31	Horizontal
2500.00	28.84	27.40	3.68	36.37	23.55	54	-30.45	Horizontal
2483.50	28.70	27.36	3.68	36.33	23.41	54	-30.59	Vertical
2500.00	27.92	27.40	3.68	36.37	22.63	54	-31.37	Vertical

36.37

36.33

36.37

37.02

36.57

35.72

74

74

74

-36.98

-37.43

-38.28

Horizontal

Vertical

Vertical

Remark:

3.68

3.68

3.68

42.31

41.86

41.01

27.40

27.36

27.40

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Page 25 of 32

7.4 20dB Occupy Bandwidth

Measurement Data

Test channel	20dB bandwidth(MHz)	Result
Lowest	2.558	Pass
Middle	2.556	Pass
Highest	2.562	Pass

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test plot as follows:

Lowest channel

Middle channel

Highest channel

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

-----End-----