Segundo Relatório de Lab de Circuitos II

Henrique da Silva hpsilva@proton.me

16 de fevereiro de 2023

Sumário

L	Intr	odução)	
2	Aná	nálise preliminar		
	2.1		cuito	
	2.2		xima	
			e	
		2.3.1		
		2.3.2		
		2.3.3	Analise em $200Hz$	
		2.3.4	Analise em $400Hz$	
		2.3.5	Analise em $480Hz$	
		2.3.6	Analise em $550Hz$	
		2.3.7	Analise em $1100Hz$	
		2.3.8	Analise em $2200Hz$	
		2.3.9	Analise em $5500Hz$	
			Analise em $11000Hz$	
		2.3.11	Tabela de resultados	
3	Mod	dicons	em laboratorio	
,	3.1		de componentes	
	3.2		os no osciloscopio	
	5.2	3.2.1		
			Analise em $200Hz$	
		3.2.2		
		3.2.4		
		3.2.4		
		3.2.6		
		3.2.7		
		3.2.8		
			Analise em $11000Hz$	
			Tabela de resultados	
	3.3		aração com valores teóricos .	
	3.4	Gráfico		
	-	3.4.1	Escala log-log da magnitude	
		-	$de H(jw) e f \dots \dots$	
		3.4.2		
			H(jw) e f	

1 Introdução

Neste relatório, vamos discutir a função transferência na resposta em regime permanente senoidal de um circuito.

Todos arquivos utilizados para criar este relatório, é o relatorio em si estão em: https://github.com/ Shapis/ufpe_ee/tree/main/5thsemester/ ElectromagneticMeasurements/Relatorios

2 Análise preliminar

Utilizarei o WxMaxima e LTSpice para fazer a análise teórica do circuito antes de montálo fisicamente.

Após terminar as análises compararei os resultados obtidos entre os dois para ver se os resultados são coerentes.

2.1 O Circuito

4 Conclusões

2.2 WxMaxima

Primeiro fiz manualmente a análise nodal do circuito que vamos construir, e passei ele para o domínio da frequência.

eq1:
$$0 = ((Va - Vi)/R1) + Va/R2 + (Va / (1/(s \cdot C))) + ((Va - V0) / (1/(s \cdot C)))$$

eq2: $0 = -Va / (1/(s \cdot C)) - V0 / R3$;
 $0 = C (Va - V0) s + C Va s + \frac{Va - Vi}{R1} + \frac{Va}{R2}$
 $0 = -C Va s - \frac{V0}{R3}$

Após isso resolvi para Va e V_0

results: linsolve([eq1,eq2],[Va,V0]);

$$Va = \frac{R2 Vi}{C^2 R1 R2 R3 s^2 + 2 C R1 R2 s + R2 + R1},$$

$$V0 = -\frac{C R2 R3 Vi s}{C^2 R1 R2 R3 s^2 + 2 C R1 R2 s + R2 + R1}$$

Daqui criamos nossa função transferência H.

H: at(
$$V0/Vi$$
, results);
$$-\frac{C R2 R3 s}{C^2 R1 R2 R3 s^2 + 2 C R1 R2 s + R2 + R1}$$

Após isso fiz a substituição S = iw para poder calcular a magnitude e seu ângulo de fase.

cabs(Hw);

$$\frac{|c| |R2| |R3| |w|}{\sqrt{(-c^2 R1 R2 R3 w^2 + R2 + R1)^2 + 4 c^2 R1^2 R2^2 w^2}}$$

$$- atan2 (\frac{2 C R1 R2 w}{\sqrt{(-c^2 R1 R2 R3 w^2 + R2 + R1)^2 + 4 c^2 R1^2 R2^2 w^2}}, \frac{-c^2 R1 R2 R3 w^2 + R2 + R1}{\sqrt{(-c^2 R1 R2 R3 w^2 + R2 + R1)^2 + 4 c^2 R1^2 R2^2 w^2}}) + atan2(0, w) + atan2(0, R3) + atan2(0, R2) + atan2(0, C) - \frac{\pi}{2}$$

Agora com a função Hw em mãos podemos substituir os valores dos resistores e do capacitor pelos que utilizaremos. Hw: at(Hw, [C = 10^-7 ,R1=470, R2=470, R3=47000]);

$$\begin{array}{c|c}
 & 2209 \% i w \\
\hline
1000 \left(- \frac{103823 w^{2}}{1000000000} + \frac{2209 \% i w}{50000} + 940 \right)
\end{array}$$

Como nosso objetivo é analisar a magnitude e o ângulo de fase da função transferência, podemos extrair disto a parte real e imaginária da equação acima.

```
mod: float(cabs(Hw)); arg: float(carg(Hw)); \frac{2.209 \left| w \right|}{\sqrt{(940.0 - 1.03823 \ 10^{^{-4}} \ w^2)^2 + 0.0019518724 \ w^2)^2}} - 1.0 \ atan2(\frac{0.04418 \ w}{\sqrt{(940.0 - 1.03823 \ 10^{^{-4}} \ w^2)^2 + 0.0019518724 \ w^2}}, \\ \frac{940.0 - 1.03823 \ 10^{^{-4}} \ w^2}{\sqrt{(940.0 - 1.03823 \ 10^{^{-4}} \ w^2)^2 + 0.0019518724 \ w^2}}) + atan2(0.0, w) - 1.570796326794897}
```

E Finalmente com estas funções em mãos, substitui a frequência com as frequências perdidas.

```
float(at(mod, w = 2 \cdot \pi \cdot 40));
                                    0.5947268235758381
float(at(arg, w = 2 \cdot \pi \cdot 40));
                                    -1.582691143757437
float(at(mod, w = 2 \cdot \pi \cdot 100));
                                    1.543131753306023
float(at(arg, w = 2 \cdot \pi \cdot 100));
                                    -1.601663863417098
float(at(mod, w = 2 \cdot \pi \cdot 200));
                                    3.567859702321201
float(at(arg, w = 2 \cdot \pi \cdot 200));
                                    -1.642214216696675
float(at(mod, w = 2 \cdot \pi \cdot 400));
                                    18.19564498373385
float(at(arg, w = 2 \cdot \pi \cdot 400));
                                    -1.943261736655792
float(at(mod, w = 2 \cdot \pi \cdot 480));
                                    49.97330118029696
float(at(arg, w = 2 \cdot \pi \cdot 480));
                                    -3.174273654878822
float(at(mod, w = 2 \cdot \pi \cdot 550));
                                    22.68537225346826
float(at(arg, w = 2 \cdot \pi \cdot 550));
                                    -4.241467736328001
float(at(mod, w = 2 \cdot \pi \cdot 1100)); 3.787439578929809
float(at(arg, w = 2 \cdot \pi \cdot 1100));
                                    -4.636567561550356
float(at(mod, w = 2 \cdot \pi \cdot 2200)); 1.614934630493625
float(at(arg, w = 2 \cdot \pi \cdot 2200)); -4.680084669441065
float(at(mod, w = 2 \cdot \pi \cdot 5500)); 0.6203421045354849
float(at(arg, w = 2 \cdot \pi \cdot 5500)); -4.699981819974953
float(at(mod, w = 2 \cdot \pi \cdot 11000)); 0.308421927263176
float(at(arg, w = 2 \cdot \pi \cdot 11000)); -4.706220502720951
```

Com isto temos em mãos as magnitudes e ângulos de fase da função transferência para um gama de frequências.

2.3 LTSpice

No LTSpice montaremos o circuito e mediremos novamente o ângulo de fase e sua magnitude.

2.3.1 Analise em 40Hz

$V_f =$	117.10115mV
$V_i =$	199.76772mV
Magnitude(H) =	0.586186547
Fase =	-1.68605608

2.3.2 Analise em 100Hz

$$V_f = 303.64554mV$$

 $V_i = 199.34196mV$
 $Magnitude(H) = 1.52323946$
 $Fase = -1.60226153$

2.3.3 Analise em 200Hz

$$V_f = 704.6312mV$$

 $V_i = 199.46039mV$
 $Magnitude(H) = 3.53268737$
 $Fase = -1.67119113$

2.3.4 Analise em 400Hz

$$V_f = 3.7148299V$$

 $V_i = 199.72118mV$
 $Magnitude(H) = 18.6104333$
 $Fase = -2.06820459$

2.3.5 Analise em 480Hz

$V_f =$	9.7253442V
$V_i =$	199.42436mV
Magnitude(H) =	48.7670824
Fase =	-3.13491022

2.3.6 Analise em 550Hz

$V_f =$	4.1496957V
$V_i =$	199.35122mV
Magnitude(H) =	20.8160035
Fase =	-2.01155708

2.3.7 Analise em 1100Hz

$V_f =$	724.81506mV
$V_i =$	199.55853mV
Magnitude(H) =	3.6320926
Fase =	-1.65494612

2.3.8 Analise em 2200Hz

$V_f =$	310.31854mV
$V_i =$	199.32175mV
Magnitude(H) =	1.55687244
Fase =	-4.68032157

2.3.9 Analise em 5500Hz

$V_f =$	118.93005mV
$V_i =$	199.79451mV
Magnitude(H) =	0.595261852
Fase =	1.60939706

2.3.10 Analise em 11000Hz

$V_f =$	59.198177mV
$V_i =$	199.57788mV
Magnitude(H) =	0.296616925
Fase =	-4.65829159

2.3.11 Tabela de resultados

Freq (Hz)	— H (jw) —	Fase (H)
40	0.586186547	-1.68605608
100	1.52323946	-1.60226153
200	3.53268737	-1.67119113
400	18.6104333	-2.06820459
480	48.7670824	-3.1349102
550	20.8160035	-2.01155708
1100	3.6320926	-1.65494612
2200	1.55687244	-4.68032157
5500	0.595261852	1.60939706
11000	0.296616925	-4.65829159

3 Medicoes em laboratorio

Vamos inicialmente fazer as medições dos componentes a serem usados.

3.1 Tabela de componentes

$$C_1 = 104.89nF$$

 $C_2 = 101.28nF$
 $R_1 = 465.1omega$
 $R_2 = 473.7omega$
 $R_3 = 46.25omega$

3.2 Médicos no osciloscopio

Analise em 40Hz

$$V_f = 0.565V$$
 $V_i = 0.092V$
 $Magnitude(H) = 0.473$
 $Fase = -1.5833627$

3.2.1 Analise em 100Hz

$$V_f = 1.52V$$
 $V_i = 0.09425V$
 $Magnitude(H) = 1.42575$
 $Fase = -1.57079633$

3.2.2 Analise em 200Hz

$$V_f = 3.5425V$$
 $V_i = 0.097V$
 $Magnitude(H) = 3.4455$
 $Fase = -1.55822996$

3.2.3 Analise em 400Hz

$$V_f =$$
 21.5 V
 $V_i =$ 0.106 V
 $Magnitude(H) =$ 21.394
 $Fase =$ -1.98548656

3.2.4 Analise em 480Hz

$$V_f =$$
 36.75 V
 $V_i =$ 0.1 V
 $Magnitude(H) =$ 36.65
 $Fase =$ -3.40799971

3.2.5 Analise em 550Hz

$$V_f = 16.8V$$
 $V_i = 0.082V$
 $Magnitude(H) = 16.71800$
 $Fase = 2.07345115$

3.2.6 Analise em 1100Hz

$$V_f = 3.3175V$$
 $V_i = 0.088V$
 $Magnitude(H) = 3.2295$
 $Fase = 1.58964588$

3.2.7 Analise em 2200Hz

Eu achei que tinha tirado fotos das frequências 2200Hz e 11000Hz mas não consegui achá-las na confecção do relatório.

$$V_f = 1.4675V$$
 $V_i = 0.8925V$
 $Magnitude(H) = 0.575$
 $Fase = 1.65876092$

3.2.8 Analise em 5500Hz

$$V_f = 0.7V$$
 $V_i = 0.09V$
 $Magnitude(H) = 0.61$
 $Fase = 0.552920307$

3.2.9 Analise em 11000Hz

$$V_f = 0.09V$$
 $V_i = 199.57788mV$
 $Magnitude(H) = 0.04325V$
 $Fase = 1.24407069$

3.2.10 Tabela de resultados

Freq (Hz)	— H (jw) —	Fase (H)
40	0.473	-1.5833627
100	1.42575	-1.57079633
200	3.4455	-1.55822996
400	21.394	-1.98548656
480	36.65	-3.40799971
550	16.71800	2.07345115
1100	3.6320926	1.58964588
2200	0.575	1.65876092
5500	0.61	0.552920307
11000	0.04325	1.24407069

3.3 Comparação com valores teóricos

Podemos ver que os valores de magnitude ficaram coerentes com ambas análises teóricas, e os de fases para frequências baixas também, mas tive problemas para entender o sentido do sinal da fase a medida que a frequência subia.

3.4 Gráficos

3.4.1 Escala log-log da magnitude de H(jw)

3.4.2 Escala semilog da fase de H(jw) e f

4 Conclusões

Conseguimos com sucesso fazer a análise numérica por dois meios, utilizando o LTSpice e WxMaxima, e comparamos os resultados.

Nos resultados práticos, a magnitude da função transferência foi coerente com os resultados esperados, porém a fase em frequências baixas se manteve coerente, porém em frequências altas ela se tornou inconsistente.

Creio que por erros das minhas medidas, eu não fui consistente em usar o mesmo cursor na mesma onda de entrada ou saída. A frequência de saída começou adiantada em relação a frequência de entrada, e à medida que aumentamos a frequência ela se atrasa até que é ultrapassada pela entrada.

Creio que isso faria com que a fase se inverta.

Mas em suma creio que tivemos sucesso em nos familiarizar com as ferramentas de análise de circuitos elétricos numéricos.