

ECOLE POLYTECHNIQUE DE THIES

BP A10 Thiès Sénégal www.ept.sn Téléphone : 77 021 71 32

BUREAU DES ÉLÈVES / COMMISSION PÉDAGOGIQUE / CONCOURS JUNIOR POLYTECH

Concours Junior PolytechEpreuve de Sciences physiques

Terminale S — Session 2019 — Durée: 04 heures

THEME: LA GRAVITATION UNIVERSELLE

<u>NB</u>:

- Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.
 - Tout résultat fourni dans l'énoncé peut être utilisé.
- Il ne faudra pas hésiter à formuler tout commentaire qui vous semblera pertinent, même lorsque l'énoncé ne le demande pas explicitement. Le barème tiendra compte de ces initiatives ainsi que des qualités de rédaction de la copie.
- Par convention typographique, les vecteurs sont en gras et leur norme en italique $|\mathbf{V}| = V$.

Autour de la gravitation(03pts)

La gravitation universelle est responsable de plusieurs manifestations naturelles : les marées, la chute des corps à la surface de la Terre, les orbites des planètes autour du soleil, ...

- 1) Qui est l'auteur de l'idée de gravitation ?
- 2) Enoncer à l'aide d'un schéma illustratif la loi d'interaction gravitationnelle entre deux corps ?
- 3) Tout corps massique génère un champ gravitationnel et est soumis à la fois à une force gravitationnelle.
 - a) Qu'appelle-t-on champ en physique?
 - **b**) Donner trois exemples de champ excepté le champ gravitationnel et préciser pour chaque exemple s'il s'agit d'un champ vectoriel ou d'un champ scalaire.
 - c) Donner les caractéristiques d'un champ vectoriel.
- 4) Un satellite mis en orbite gravite autour de la planète Terre sur une trajectoire circulaire.

- **a)** Préciser le référentiel d'étude du mouvement du satellite sur son orbite. Ce référentiel estil rigoureusement galiléen ? Justifier la réponse.
- **b**) Quelle propriété de la force gravitationnelle permet d'expliquer la nature circulaire de la trajectoire du satellite ?
- c) Sur la base d'analyses faites sur ses caractéristiques, justifier l'intérêt de l'emploi d'un satellite géostationnaire dans les investigations des télécommunications.
- 5) Expliciter les phénomènes d'équigravité et d'apesanteur (Zéro G). Décrire le comportement d'un système à l'état d'apesanteur.
- 6) Définir la notion de vitesse de libération.
- 7) Quels sont les deux types d'énergie que possède un satellite en mouvement sur son orbite ? Justifier l'origine de chaque type d'énergie.

PROBLÈME(17pts)

DE LA TERRE À LA LUNE

Une odyssée problématique de l'espace

Certaines affirmations des œuvres de Jules VERNE traduisent de façon romanesque des données scientifiques, ou des hypothèses d'une grande modernité. Dans cette épreuve, on s'intéresse à quelques-unes des péripéties du roman *De la Terre à la Lune* où, à l'initiative de son président BARBICAN, se forge et se réalise au sein du *Gun Club* de Baltimore le projet d'envoyer un objet sur la Lune, à l'aide d'un canon. L'épreuve comprend plusieurs parties indépendantes les unes des autres, et que l'on pourra traiter dans l'ordre de son choix. Dans ce problème, **exprimer** signifie donner **l'expression littérale** et **calculer** signifie donner la **valeur numérique**.

Dans tout le problème, on néglige la rotation propre de la Terre et celle de la Lune. La Lune est supposée suivre une orbite circulaire autour du centre de la Terre.

Principales notations et valeurs numériques (voir d'autres valeurs en fin d'énoncé)

Rayon de l'orbite de la Lune autour du centre de la Terre $d=384000 \ km$

Intensité du champ de pesanteur terrestre $g=9.81m/s^2$

Constante de gravitation $G=6,67 \times 10^{-11} \text{N.m}^2/\text{Kg}^2$

Masse de la Terre $M_T=5.97 \times 10^{24} \text{ Kg}$

Masse de la lune $m=0.0735 \times 10^{24} \text{ Kg}$ (on adoptera la valeur : $\frac{m}{M_T} = \epsilon^2 = \frac{1}{81}$)

Rayon de la Terre R_T =6378 Km

Rayon de la lune r=1736,6 Km

Dans la suite du problème, on pourra introduire les périodes de révolution $T_T(l)$ dans le champ gravitationnel de la Terre, à la distance l du centre de la Terre et $T_L(z)$ période de révolution dans le champ gravitationnel de la Lune, à la distance z du centre de la Lune.

A. Préliminaires (01pts)

1 – Exprimer g en fonction de G, M_T et R_T . Exprimer $T_T(\mathbf{d})$, période du mouvement lunaire autour de la Terre en fonction de G, M_T et d, puis en fonction de g, R_T et $\frac{R_T}{d}$. Calculer $T_T(\mathbf{d})$.

B. En négligeant la gravitation lunaire(03pts)

Dans cette partie, on néglige l'attraction lunaire. Un boulet de masse μ est envoyé de la surface terrestre vers l'espace. On note X sa distance au centre de la Terre et $v = \frac{dX}{dt}$ sa vitesse. Le boulet est lancé à la verticale ; on suppose la trajectoire rectiligne et le boulet soumis uniquement à l'attraction terrestre.

- 2 Exprimer l'énergie mécanique totale du boulet en fonction de g, X et R_T .
- 3 Exprimer et calculer en fonction de g et de R_T la vitesse de libération V_∞ , vitesse initiale minimale nécessaire pour atteindre l'infini.
- **4** Exprimer et calculer en fonction de g, R_T et D la vitesse initiale minimale V(D) nécessaire pour atteindre un point D situé à la distance D du centre de la Terre. Vérifier le résultat pour $D=R_T$ et pour D infini.
- 5 Exprimer la conservation de l'énergie mécanique du boulet avec la condition initiale $v(0) = V(\mathbf{D})$. Le résultat se lit comme une équation différentielle. Poser dans cette équation $X(t) = \mathbf{D}\sin^2[\psi(t)]$ et trouver la solution sous la forme $W = T_T(\mathbf{D})f(\psi)$. Exprimer la valeur initiale $\psi_0 = \psi(0)$ en fonction de R_T et de \mathbf{D} . Dans la suite, on utilisera la Fonction :

$$\chi(\psi)=\psi-\frac{1}{2}\sin{(2\psi)}\left[\chi\left(\psi\right)\approx\frac{2}{3}\psi^{3} \text{ pour } |\psi|\ll\pi\right]$$

- 6 Exprimer, en fonction de ψ_0 et de $T_T(\mathbf{D})$, le temps $\tau(\mathbf{D})$ mis pour atteindre le point \mathbf{D} .
- 7 La destination du boulet a beau être la surface lunaire, on lance ce dernier avec la vitesse initiale V(d), Comme si l'on voulait lui faire atteindre le centre de la Lune avec une vitesse nulle. Établir alors l'expression approchée suivante de la durée τ_1 du trajet :

$$\boldsymbol{\tau}_1 = \frac{T_T(\mathbf{d})}{4\sqrt{2}} \left[1 - \frac{4}{\pi} \left(\left(\frac{r}{d} \right)^{\frac{1}{2}} \right) - \frac{4}{3\pi} \left(\frac{R_T}{d} \right)^{\frac{3}{2}} \right]$$

Calculer τ_1 . Exprimer et calculer la vitesse du boulet au point d'impact sur la Lune.

8 – Il n'est évidemment pas question de pointer le canon vers la Lune! En s'appuyant sur la question 7, exprimer et calculer l'angle θ_1 que doit faire, au moment du tir, l'axe Terre-Lune avec la ligne de tir, supposée verticale. Jules VERNE donne $\theta_1 = 64^{\circ}$.

C. Avec la gravitation lunaire(03pts)

Fig. 1 : notations pour le système Terre-Lune

ce vrai, d'un point de vue dynamique?

Problème statique : position d'équilibre d'un point sur l'axe Terre-Lune

9-Exprimer et calculer en fonction de d, M_{T} , et de la masse m de la Lune, la position du point d'équigravité E situé sur l'axe Terre-Lune (fig.1). On note ξ sa distance au centre de la Terre. Montrer que, si le boulet atteint ce point, il atteint la Lune. BARBICANE considère que ce point est un point d'équilibre du système Terre-Lune ; est-

10- On veut une expression de la vitesse $V(\xi)$, tenant compte de l'attraction lunaire, et donc plus précise que celle que l'on obtiendrait, à la question 4, pour $D=\xi$.

BARBICANE affirme : Avant une demi-heure, je veux avoir trouvé la formule demandée ... Effectivement, il propose peu après la formule suivante, donnant la vitesse \mathbf{v} à la distance \mathbf{x} du centre de la Terre, pour une vitesse initiale \mathbf{v}_0 :

$$\frac{1}{2}\left(v^2-v_0^2\right) = gR_T \left[\frac{R_T}{x}-1+\frac{m}{\underbrace{M_T}}\left(\frac{R_T}{d-x}-\frac{R_T}{d-R_T}\right)\right].$$

Le résultat de BARBICANE est-il correct ? L'ingénieur NICHOLL l'identifie comme « l'intégrale de l'équation des forces vives ». Donner une interprétation plus moderne, indiquer l'ordre de grandeur de chacun des termes. Exprimer et calculer $V(\xi)$ nécessaire pour atteindre le point d'équigravité.

11- Le modèle de la sphère d'influence (SI) stipule que pour $R_T \le x < \xi$, seule intervient l'attraction terrestre ; au-delà, seule intervient l'attraction lunaire. La sphère centrée sur la Terre et de rayon ξ est la sphère d'influence de la Terre par rapport à la Lune. Une sonde spatiale est dans la sphère d'influence de la Terre par rapport au Soleil si la force gravitationnelle de la Terre est plus importante que celle du Soleil. Calculer le rayon de la sphère d'influence de la Terre par rapport au Soleil ; la masse du Soleil est de 2.0×10^{30} kg et la distance moyenne de la Terre au Soleil est de 1.5×10^8 km. Selon ce modèle, la Lune serait-elle un astéroïde terrestre ou solaire ?

12- On maintient cependant le modèle SI de la question 11... La vitesse initiale du boulet est maintenant $V(\xi)$. Sans faire le calcul, et en s'appuyant sur les résultats précédents, indiquer comment l'on pourrait exprimer dans ces conditions la durée τ_2 du trajet Terre-Lune. Il sera utile de considérer l'invariance des équations de la mécanique par renversement du temps, $t \to -t$.

D. Résistance de l'air(03,5pts)

Un modèle fruste

13- On néglige la pesanteur terrestre. On note Y (Y=20 km) l'épaisseur de l'atmosphère, μ ($\mu=10^4$ kg) la masse du boulet, v_0 sa vitesse initiale, V_Y sa vitesse au sommet de l'atmosphère, et R=-kvv (k=0,1 kg. m^{-1}) la force de résistance de l'air. Cette force est opposée à la vitesse et sa norme est $R=kv^2$. Exprimer et calculer le rapport $\frac{v_Y}{v_0}$.

Comparer votre résultat à celui de BARBICANE : $\frac{v_y}{v_0} = \frac{2}{3}$. Etait-il cohérent de négliger la pesanteur ?

Un modèle moins frustré

La résistance de l'air dépend de la densité de ce dernier et par la suite de l'altitude y au-dessus de la surface terrestre. Selon un modèle standard d'atmosphère, la masse volumique de l'air suit la loi $\varpi(y) = \varpi(0) \exp(-qy)$. Nous adopterons l'expression $R = Av^2 \exp(-qy)$, avec A = 0.6 kg. m^{-1} (correspondant à la masse volumique au sol de $\varpi(0) = 1.255$ kg. m^{-3}) et $q = 1.4 \times 10^{-4} m^{-1}$. Pour le calcul de V_Y , on continue de négliger la pesanteur.

- **14-** Exprimer la vitesse du boulet en fonction de y. Quelle doit être la vitesse à la sortie du canon pour que le boulet atteigne la vitesse de libération V_{∞} (cf. question 3) à la sortie de l'atmosphère terrestre?
- 15- Dans ces conditions, exprimer et estimer un ordre de grandeur de l'échauffement du boulet si un pourcentage $\eta=5\%$ du travail de la force résistante est transformé en énergie thermique. Exprimée en $J.kg^{-1}.K^{-1}$, la capacité thermique massique du boulet dépend de sa température T selon la loi $c(T)=5\times10^{-2}T$.
- 16- Une méthode de protection contre cet échauffement consiste à recouvrir le boulet d'un matériau réfractaire (« bouclier protecteur »), capable de se vaporiser en absorbant une grande quantité d'énergie : c'est le phénomène d'ablation. Justifier que, pendant le temps $\mathbf{d}t$, la variation de masse $\mathbf{d}m$ du bouclier protecteur est $\lambda \mathbf{d}m = -\eta Rv \mathbf{d}t$, où λ est la *chaleur massique d'ablation* du matériau ; typiquement, $\lambda \approx 25 \times 10^6 \text{ J.}kg^{-1}$.

Ecrire le système différentiel reliant à l'instant t et à l'altitude y, la masse m et la vitesse v du boulet.

Remarque : L'intégration du système différentiel ci-dessus, qui n'est absolument pas demandée, montre que, à la sortie de l'atmosphère, le boulet aura perdu une fraction importante de sa masse initiale, peut-être de l'ordre du tiers.

E. Canon et poudre(03pts)

Le canon (fig.2) est cylindrique à base circulaire, d'aire transverse $S=10 \ m^2$ et de longueur X. La poudre est stockée sur une longueur X_0 , sa masse volumique est $\rho=2\times10^3 \mathrm{kg.}m^{-3}$. L'explosion produit par un gaz de masse molaire $M_a=20\mathrm{g}$, à la température T. On note R la constante des gaz

parfaits, $R=8,31 \text{ J.}K^{-1}$.

Fig.2: canon, poudre et « boulet » (cf. question 21)

- 17- En admettant que la masse du gaz est égale à celle de la poudre, exprimer le nombre N de moles gazeuses en fonction de ρ , M_a , S et X_0 .
- 18- On tente l'hypothèse que le gaz est parfait et que son évolution est isotherme. Ecrire alors l'équation du mouvement du boulet (de masse μ) et exprimer la relation entre X et X_0 pour que la vitesse de sortie du boulet ait une valeur W donnée.
- 19- Quelle relation doit relier X_0 et la longueur du canon, X, pour que cette dernière soit minimale? Application numérique : $W = \frac{3}{2} V_{\infty}$, $\mu = 10^4 \text{kg}$ et T = 2000 K; calculer X et X_0 .
- **20-** Reprendre les deux questions précédentes, sous l'hypothèse d'une évolution polytropique d'un gaz parfait, où pression P et volume V sont liés par $PV^{\alpha} = C^{te}$. Pour l'application numérique, on prendra $\alpha = 2,0$. Avec un modèle légèrement différent, les résultats de BARBICANE sont X = 297m et $X_0 = 66m$.
- 21- Le boulet dans le canon est en réalité une capsule cylindro-conique à l'intérieur de laquelle trois explorateurs de l'espace et deux chiens ont pris place. Le *parcours d'accélération* est : $X_a = X X_0 \approx 230 \text{m}$.

On définit *l'accélération moyenne* comme l'accélérateur constante a qui donne à la sortie du canon la vitesse v_0 =17000 $m.s^{-1}$. Calculer a. A titre documentaire, la plus grande accélération à laquelle un être humain standard puisse résister est $a_{max}\approx 10g$; peut-on espérer des dispositifs ou des équipements permettant de survivre à l'effarante accélération a?

F. Retour sur la sphère d'influence (03,5pts)

Selon les considérations de la question 11, la Lune devrait être un satellite du Soleil. On cherche donc une meilleure partition de l'espace que celle que l'on peut déduire en s'appuyant sur le point d'équigravité.

Formulations générales

On considère (fig.3) n objets ponctuels en interaction gravitationnelle, de masses respectives m_i et de positions \mathbf{R}_i par rapport à un point d'accélération nulle dans le référentiel galiléen. L'équation du mouvement de l'objet i est $m_i \frac{d^2 R_i}{dt^2} = G \sum_{j=1, j \neq i}^{j=n} \frac{m_i m_j}{r_{ij}^3} r_{ij}$, avec $r_{ij} = R_j - R_i$; le vecteur r_{ij} pointe vers l'objet «j ». On nomme «l » l'objet de référence (par exemple la Terre) et l'on étudie le mouvement

de l'objet « i » (par exemple le boulet) autour de l'objet « l ». La trajectoire de l'objet étudié est perturbée par la présence des objets « j » (par exemple la Lune) ; il s'agit d'évaluer cette perturbation.

Fig. 3: notations

22- Le système considéré est constitué de la Terre (M_T, R_T) , de la Lune (\mathbf{m}, R_L) et du boulet $\mathrm{B}(\mu, R_B)$. En considérant les trois

équations vectorielles du mouvement, établir et commenter l'équation, donnée ci-dessous, du mouvement du boulet par rapport à la Terre (les notations sont transparentes). Cette équation montre la perturbation de la Lune, notée \mathbf{P}_L , sur une trajectoire géocentrique.

$$\frac{\mathrm{d}^{2} \mathbf{r}_{TB}}{\mathrm{d}t^{2}} + \underbrace{\frac{G(M_{T} + \mu)}{(r_{TB})^{3}} \mathbf{r}_{TB}}_{A_{T}} = \underbrace{-Gm \left(\frac{\mathbf{r}_{LB}}{(r_{LB})^{3}} + \frac{\mathbf{r}_{TL}}{(r_{TL})^{3}}\right)}_{P_{T}}$$

23- Etablir l'équation du mouvement du boulet par rapport à la Lune sous la forme :

$$\frac{\mathrm{d}^2 \mathbf{r}_{LB}}{\mathrm{d}t^2} + \mathbf{A}_{L} = \mathbf{P}_{T}$$

Fig. 4 : ρ_L (en trait plein) et ρ_T (en tireté) en fonction de u=x/d

24- Les rapports $\rho_T = \frac{P_T}{A_L}$ et $\rho_L = \frac{P_L}{A_T}$ calibrent les perturbations relatives d'un astre sur l'autre. Revenant à la situation particulière où Terre, boulet et Lune sont alignés, exprimer ρ_T et ρ_L en fonction de $u = \frac{x}{d}$ et de $\varepsilon = \sqrt{\frac{m}{M_T}}$; la figure 4 montre l'allure des résultats . Vérifier la relation $\rho_T(u, \varepsilon^2) = \rho_L(1-u, \frac{1}{\varepsilon^2})$. Que valent ces rapports au point d'équigravité ?

Critère de Lagrange pour le problème à trois corps

25- Selon LAGRANGE, la *séparatrice* (surface de part et d'autre de laquelle, pour le mouvement du mobile, on néglige l'influence de l'un des deux astres) est déterminée par l'équation $\rho_T = \rho_L$. TISSERAND a montré que la séparatrice est sphéroïdale et que, dans le cas du système Terre-Lune,

le rayon de la sphère d'influence de la Lune est : $r_I(L) = \left(\frac{m}{M_T}\right)^{\frac{2}{5}}d$. Considérant la figure 3, le résultat de TISSERAND est-il vérifié ?

Quelques données supplémentaires (à confronter, éventuellement, à vos résultats)

	V _∞ (km.s ⁻¹)	Période orbitale (jour)	Période rotation (jour)	Excentricité orbite
Terre	11,2	365, 25	1	0, 016
Lune	2,38	27, 32	27, 32	0, 055

Fin du problème

FIN DE L'EPREUVE

« Rendez les choses aussi simples que possible mais pas plus simples. » Albert Einstein.