Cálculo Lambda Tipado (2)

Objetivo de un sistema de tipos

Garantizar la ausencia de estados de error

Decimos que un término termina o que es fuertemente normalizante si no hay cadenas de reducción infinitas a partir de él.

Teorema

- Todo término bien tipado termina
- Si un término cerrado está bien tipado, entonces evalúa a un valor

Estado de error

- Estado (=término) que no es un valor pero en el que la evaluación está trabada
- Representa estado en el cual el sistema de run-time en una implementación real generaría una excepción

Ejemplos

- ▶ if x then M else N
 - ► Obs: no es cerrado
- ► true M
 - ► Obs: no es tipable

Corrección

Corrección = Progreso + Preservación

Progreso

Si M es cerrado y bien tipado entonces

- 1. M es un valor
- 2. o bien existe M' tal que $M \rightarrow M'$

La evaluación no puede trabarse para términos cerrados, bien tipados que no son valores

Preservación

Si $\Gamma \rhd M : \sigma$ y $M \to N$, entonces $\Gamma \rhd N : \sigma$

La evaluación preserva tipos

Tipos y términos de λ^{bn}

$$\sigma \ ::= \ Bool \mid \textit{Nat} \mid \sigma \rightarrow \rho$$

$$\textit{M} \ ::= \ \ldots \mid 0 \mid \textit{succ}(\textit{M}) \mid \textit{pred}(\textit{M}) \mid \textit{iszero}(\textit{M})$$

Descripción informal:

- ightharpoonup succ(M): evaluar M hasta arrojar un número e incrementarlo
- ightharpoonup pred(M): evaluar M hasta arrojar un número y decrementarlo
- iszero(M): evaluar M hasta arrojar un número, luego retornar true/false según sea cero o no

Tipado de λ^{bn}

Agregamos a los axiomas y regla de tipado de λ^b los siguientes:

$$\frac{\Gamma \rhd M : \mathit{Nat}}{\Gamma \rhd \mathit{nat}} \text{(T-Zero)}$$

$$\frac{\Gamma \rhd M : \mathit{Nat}}{\Gamma \rhd \mathit{succ}(M) : \mathit{Nat}} \text{(T-Succ)} \qquad \frac{\Gamma \rhd M : \mathit{Nat}}{\Gamma \rhd \mathit{pred}(M) : \mathit{Nat}} \text{(T-Pred)}$$

$$\frac{\Gamma \rhd M : \mathit{Nat}}{\Gamma \rhd \mathit{iszero}(M) : \mathit{Bool}} \text{(T-IsZero)}$$

Valores y evaluación en un paso de λ^{bn} (1/2)

Valores

$$V ::= \ldots \mid \underline{n} \text{ donde } \underline{n} \text{ abrevia } succ^n(0).$$

Juicio de evaluación en un paso (1/2)

$$egin{aligned} rac{M_1
ightarrow M_1'}{succ(M_1)
ightarrow succ(M_1')} & ext{(E-Succ)} \ \hline rac{M_1
ightarrow M_1'}{pred(0)
ightarrow 0} & rac{M_1
ightarrow M_1'}{pred(M_1)
ightarrow pred(M_1')} & ext{(E-PredSucc)} \end{aligned}$$

Valores y evaluación en un paso de $\lambda^{bn}(2/2)$

Juicio de evaluación en un paso (2/2)

$$rac{iszero(0)
ightarrow true}{(ext{E-IsZeroZero})}$$
 $rac{Surro(n+1)
ightarrow false}{m_1
ightarrow M_1'} ext{(E-IsZeroSucc)}$
 $rac{M_1
ightarrow M_1'}{iszero(M_1)
ightarrow iszero(M_1')} ext{(E-IsZero)}$

Además de los juicios de evaluación en un paso de $C-\lambda^b$.

Tipos y términos de $\lambda^{\dots r}$

Sea $\mathcal L$ un conjunto de etiquetas

$$\sigma ::= \ldots \mid \{I_i : \sigma_i^{i \in 1..n}\}$$

- ► {nombre : String, edad : Nat}
- ► {persona : {nombre : String, edad : Nat}, cuil : Nat}

 $\{\textit{nombre}: \textit{String}, \textit{edad}: \textit{Nat}\} \neq \{\textit{edad}: \textit{Nat}, \textit{nombre}: \textit{String}\}$

Tipos y términos de $\lambda^{\dots r}$

$$M ::= \ldots |\{I_i = M_i | i \in 1..n\}| M.I$$

Descripción informal:

- ▶ El registro $\{I_i = M_i^{i \in 1..n}\}$ evalúa a $\{I_i = V_i^{i \in 1..n}\}$ donde V_i es el valor al que evalúa M_i , $i \in 1..n$
- ▶ M.I: evaluar M hasta que arroje $\{I_i = V_i^{i \in 1..n}\}$, luego proyectar el campo correspondiente

Ejemplos

- ▶ λx : Nat. λy : Bool. $\{edad = x, esMujer = y\}$
- ▶ λp : {edad : Nat, esMujer : Bool}.p.edad
- $(\lambda p : \{edad : Nat, esMujer : Bool\}.p.edad)$ $\{edad = 20, esMujer = false\}$

Tipado de $\lambda^{\dots r}$

$$\frac{\Gamma \rhd M_i : \sigma_i \quad \text{para cada } i \in 1..n}{\Gamma \rhd \{I_i = M_i \stackrel{i \in 1..n}{\}} : \{I_i : \sigma_i \stackrel{i \in 1..n}{\}} } \text{ (T-Rcd)}$$

$$\frac{\Gamma \rhd M : \{l_i : \sigma_i \stackrel{i \in 1..n}{} \} \quad j \in 1..n}{\Gamma \rhd M.l_j : \sigma_j} \text{(T-Proj)}$$

Semántica operacional de $\lambda^{\dots r}$

Valores

$$V ::= ... | \{I_i = V_i^{i \in 1..n}\}$$

Semántica operacional de $\lambda^{\dots r}$

$$\frac{M_{j} \to M'_{j}}{\{l_{i} = V_{i}^{i \in 1...j-1}, l_{j} = M_{j}, l_{i} = M_{i}^{i \in j+1..n}\}} \to \{l_{i} = V_{i}^{i \in 1...j-1}, l_{j} = M'_{j}, l_{i} = M_{i}^{i \in j+1..n}\}$$
(E-RCD)

$$\frac{j \in 1..n}{\{l_i = V_i^{i \in 1..n}\}.l_j \to V_j}$$
(E-ProjRcd)

$$\frac{M \to M'}{M.l \to M'.l} \text{(E-Proj)}$$

Tipos y términos de λ^{bnu}

$$\sigma ::= |\mathit{Bool}| \, \mathit{Nat} \, | \, \mathit{Unit} \, | \, \sigma
ightarrow
ho$$

$$M ::= |\ldots| \, \mathit{unit}$$

Descripción informal:

- ▶ *Unit* es un tipo unitario y el único valor posible de una expresión de ese tipo es *unit*.
- ► Cumple rol similar a *void* en C o Java

Tipado de λ^{bnu}

Agregamos el axioma de tipado:

NB:

- No hay reglas de evaluación nuevas
- ▶ Extendemos el conjunto de valores V con unit

$$V ::= \ldots | unit$$

Utilidad

- Su utilidad principal es en lenguajes con efectos laterales
- ► En estos lenguajes es útil poder evaluar varias expresiones en secuencia

$$M_1$$
; $M_2 \stackrel{\text{def}}{=} (\lambda x : Unit.M_2) M_1 \quad x \notin FV(M_2)$

- La evaluación de M_1 ; M_2 consiste en primero evaluar M_1 y luego M_2
- Con la definición dada, este comportamiento se logra con las reglas de evaluación definidas previamente

Tipos y términos de $\lambda^{...let}$

$$M ::= \ldots \mid let \ x : \sigma = M \ in \ N$$

Descripción informal:

- ▶ let $x : \sigma = M$ in N: evaluar M a un valor V, ligar x a V y evaluar N
- ► Mejora la legibilidad
- La extensión con let no implica agregar nuevos tipos

Ejemplo

- ▶ let x : Nat = $\underline{2}$ in succ(x)
- ▶ pred (let x : Nat = 2 in x)
- ▶ let $f : Nat \rightarrow Nat = \lambda x : Nat.succ(n)$ in f(f0)
- ▶ let x : Nat = $\underline{2}$ in let x : Nat = $\underline{3}$ in x

Tipado de $\lambda^{\dots let}$

$$\frac{\Gamma\rhd M:\sigma_1\quad \Gamma,x:\sigma_1\rhd N:\sigma_2}{\Gamma\rhd \mathit{let}\ x:\sigma_1=M\ \mathit{in}\ N:\sigma_2}\left(\text{T-Let}\right)$$

Semántica operacional de $\lambda^{\dots let}$

$$\frac{\textit{M}_1 \rightarrow \textit{M}_1'}{\textit{let } \textit{x} : \sigma = \textit{M}_1 \textit{ in } \textit{M}_2 \rightarrow \textit{let } \textit{x} : \sigma = \textit{M}_1' \textit{ in } \textit{M}_2} \, \big(\text{E-Let} \big)$$

$$\frac{}{\textit{let } x: \sigma = \textit{V}_{1} \textit{ in } \textit{M}_{2} \rightarrow \textit{M}_{2}\{x \leftarrow \textit{V}_{1}\}} \text{(E-LetV)}$$

Referencias - Motivación

- ▶ En una expresión como *let x* : Nat = 2 *in M*
 - x es una variable declarada con valor 2.
 - El valor de x permanece inalterado a lo largo de la evaluación de M.
 - ► En este sentido x es inmutable: no existe una operación de asignación.
- En programación imperativa pasa todo lo contrario.
 - Todas las variables son mutables.
- Vamos a extender Cálculo Lambda Tipado con variables mutables.

Operaciones básicas

Alocación (Reserva de memoria)

ref M genera una referencia fresca cuyo contenido es el valor de M.

Derreferenciación (Lectura)

!x sigue la referencia x y retorna su contenido.

Asignación

x := M almacena en la referencia x el valor de M.

Ejemplos

Nota: En los ejemplos de esta clase omitiremos los tipos de las let-expresiones para facilitar la lectura.

- ▶ $let x = ref \underline{2} in !x$ evalúa a $\underline{2}$.
- ▶ let $x = ref \ \underline{2} \ in \ (\lambda_- : unit.!x) \ (x := succ(!x))$ evalúa a $\underline{3}$.
- let x = 2 in x evalúa a 2.
- \blacktriangleright *ilet* $x = ref \underline{2}$ *in* x a qué evalúa?
- ▶ let $x = ref \ \underline{2}$ in let y = x in $(\lambda_- : unit.!x) (y := succ(!y))$ evalúa a 3.
 - ▶ x e y son alias para la misma celda de memoria.

Comandos = Expresiones con efectos

- ▶ El término let $x = ref \ \underline{2} \ in \ x := succ(!x)$, ¿A qué evalúa?
- La asignación es una expresión que interesa por su efecto y no su valor.
 - No tiene interés preguntarse por el valor de una asignación.
 - ► ¡Sí tiene sentido preguntarse por el efecto!

Comando

Expresión que se evalúa para causar un efecto; definimos a *unit* como su valor.

▶ Un lenguaje funcional puro es uno en el que las expresiones son puras en el sentido de carecer de efectos.

Expresiones de tipos

Las expresiones de tipos se extienden del siguiente modo

$$\sigma ::= Bool \mid Nat \mid \sigma \rightarrow \tau \mid Unit \mid Ref \sigma$$

Descripción informal:

- Ref σ es el tipo de las referencias a valores de tipo σ .
- ▶ Ej. Ref ($Bool \rightarrow Nat$) es el tipo de las referencias a funciones de Bool en Nat.

Términos

```
\begin{array}{cccc} M & ::= & x \\ & \mid & \lambda x : \sigma.M \\ & \mid & M N \\ & \mid & unit \\ & \mid & ref & M \\ & \mid & !M \\ & \mid & M := N \\ & \mid & \dots \end{array}
```

Reglas de tipado - Preliminares

$$\frac{\Gamma \rhd M_1 : \sigma}{\Gamma \rhd ref \ M_1 : Ref \ \sigma} (\text{T-Ref})$$

$$\frac{\Gamma \rhd M_1 : Ref \ \sigma}{\Gamma \rhd ! M_1 : \sigma} (\text{T-DeRef})$$

$$\frac{\Gamma \rhd M_1 : Ref \ \sigma_1 \quad \Gamma \rhd M_2 : \sigma_1}{\Gamma \rhd M_1 := M_2 : Unit} (\text{T-Assign})$$

Motivación

Al intentar formalizar la semántica operacional surgen las preguntas:

- ¿Cuáles son los valores de tipo $Ref \sigma$?
- ¿Cómo modelar la evaluación del término ref M?

Las respuestas dependen de otra pregunta.

¿Qué es una referencia?

Rta. Es una abstracción de una porción de memoria que se encuentra en uso.

Memoria o "store"

▶ Usamos direcciones (simbólicas) o "locations" $I, I_i \in \mathcal{L}$ para representar referencias.

Memoria (o "store"): función parcial de direcciones a valores.

- ▶ Usamos letras μ, μ' para referirnos a stores.
- Notación:
 - $\mu[I \mapsto V]$ es el store resultante de pisar $\mu(I)$ con V.
 - ▶ $\mu \oplus (I \mapsto V)$ es el store extendido resultante de ampliar μ con una nueva asociación $I \mapsto V$ (asumimos $I \notin Dom(\mu)$).

Los juicios de evaluación toman la forma:

$$M \mid \mu \rightarrow M' \mid \mu'$$

Valores

Intuición:

$$\frac{\textit{I} \notin \textit{Dom}(\mu)}{\textit{ref} \; \textit{V} \mid \mu \rightarrow \textit{I} \mid \mu \oplus (\textit{I} \mapsto \textit{V})} \text{(E-ReFV)}$$

Los valores posibles ahora incluyen las direcciones.

$$V ::= unit | \lambda x : \sigma.M | I$$

Dado que los valores son un subconjunto de los términos,

- debemos ampliar los términos con direcciones;
- éstas son producto de la formalización y no se pretende que sean utilizadas por el programador.

Términos extendidos

```
| \lambda x : \sigma.M
\mid MN
  unit
 ref M
 !M
M := N
```

Juicios de tipado

$\Gamma \triangleright I$: ?

- ▶ Depende de los valores que se almacenen en la dirección 1.
- Situación parecida a las variables libres.
- ▶ Precisamos un "contexto de tipado" para direcciones:
 - $ightharpoonup \Sigma$ función parcial de direcciones en tipos.

Nuevo juicio de tipado

 $\Gamma | \Sigma \rhd M : \sigma$

Reglas de tipado - Definitivas

$$\frac{\Gamma|\Sigma \rhd M_1 : \sigma}{\Gamma|\Sigma \rhd ref \ M_1 : Ref \ \sigma} (\text{T-Ref})$$

$$\frac{\Gamma|\Sigma \rhd M_1 : Ref \ \sigma}{\Gamma|\Sigma \rhd ! M_1 : \sigma} (\text{T-DeRef})$$

$$\frac{\Gamma|\Sigma \rhd M_1 : Ref \ \sigma}{\Gamma|\Sigma \rhd M_1 : Ref \ \sigma_1 \quad \Gamma|\Sigma \rhd M_2 : \sigma_1} (\text{T-Assign})$$

$$\frac{\Gamma|\Sigma \rhd M_1 := M_2 : Unit}{\Gamma|\Sigma \rhd I : Ref \ \sigma} (\text{T-Loc})$$

Juicios de evaluación en un paso

- Retomamos la semántica operacional.
- Vamos a introducir axiomas y reglas que permiten darle significado al juicio de evaluación en un paso.

$$M \mid \mu \rightarrow M' \mid \mu'$$

 Recordar el conjunto de valores (expresiones resultantes de evaluar por completo a términos cerrados y bien tipados).

$$V ::= true \mid false \mid 0 \mid \underline{n} \mid unit \mid \lambda x : \sigma.M \mid I$$

Juicios de evaluación en un paso

$$\frac{\mathit{M}_{1} \mid \mu \rightarrow \mathit{M}_{1}' \mid \mu'}{!\mathit{M}_{1} \mid \mu \rightarrow !\mathit{M}_{1}' \mid \mu'} \text{(E-DEREF)}$$

$$\frac{\mu(l) = V}{|l| \mu \to V| \mu}$$
 (E-DerefLoc)

Juicios de evaluación en un paso

$$rac{M_1 \mid \mu o M_1' \mid \mu'}{M_1 := M_2 \mid \mu o M_1' := M_2 \mid \mu'}$$
 (E-Assign1)

$$\frac{M_2 \mid \mu \to M_2' \mid \mu'}{V := M_2 \mid \mu \to V := M_2' \mid \mu'}$$
(E-Assign2)

$$\frac{}{I := V \mid \mu \to \textit{unit} \mid \mu[I \mapsto V]} \text{(E-Assign)}$$

Juicios de evaluación en un paso

$$\frac{M_1 \mid \mu \to M_1' \mid \mu'}{\text{ref } M_1 \mid \mu \to \text{ref } M_1' \mid \mu'} \text{(E-ReF)}$$

$$\frac{I \notin Dom(\mu)}{ref \ \ V \ | \ \mu \to I \ | \ \mu \oplus (I \mapsto V)}$$
(E-RefV)

Revisitar los juicios de evaluación para los restantes términos

$$\frac{\mathit{M}_{1} \mid \mu \to \mathit{M}_{1}' \mid \mu'}{\mathit{M}_{1} \, \mathit{M}_{2} \mid \mu \to \mathit{M}_{1}' \, \mathit{M}_{2} \mid \mu'} \text{(E-App1)}$$

$$\frac{M_2 \mid \mu \to M_2' \mid \mu'}{V_1 M_2 \mid \mu \to V_1 M_2' \mid \mu'} \text{(E-APP2)}$$

$$\frac{}{(\lambda x : \sigma.M) |V| \mu \rightarrow M\{x \leftarrow V\} |\mu|}$$
(E-AppAbs)

Las de los restantes tipos (*Nat*, *Bool*,) son similares. Nota: Estas reglas no modifican el store.

La clase pasada - Corrección de sistema de tipos

Progreso

Si M es cerrado y bien tipado entonces

- 1. M es un valor
- 2. o bien existe M' tal que $M \rightarrow M'$

Preservación

Si $\Gamma \triangleright M : \sigma \vee M \rightarrow N$, entonces $\Gamma \triangleright N : \sigma$

Debemos reformular estos resultados en el marco de referencias.

Preservación - Formulación ingenua

La formulación ingenua siguiente es errónea:

$$\Gamma | \Sigma \rhd M : \sigma$$
 y $M | \mu \to M' | \mu'$ implica $\Gamma | \Sigma \rhd M' : \sigma$

- ▶ El problema: puede que la semántica no respete los tipos asumidos por el sistema de tipos para las direcciones (i.e. Σ).
- Vamos a ver un ejemplo concreto.

Preservación - Formulación ingenua

$$\Gamma|\Sigma\rhd M:\sigma\quad\text{y}\quad M\,|\,\mu\to M'\,|\,\mu'\quad\text{implica}\quad \Gamma|\Sigma\rhd M':\sigma$$

Supongamos que

- ► *M* =!/
- Γ = ∅
- \triangleright $\Sigma(I) = Nat$
- $\blacktriangleright \mu(I) = true$

Observar que

- ▶ $\Gamma | \Sigma \triangleright M : Nat y$
- $ightharpoonup M \mid \mu
 ightarrow true \mid \mu$
- ▶ pero $\Gamma | \Sigma \triangleright true : Nat no vale.$

Preservación - Formulación ingenua

$$\Gamma | \Sigma \rhd M : \sigma \quad \text{y} \quad M | \mu \to M' | \mu' \quad \text{implica} \quad \Gamma | \Sigma \rhd M' : \sigma$$

Supongamos que

- ► *M* =!/
- ► Γ = ∅
- $\triangleright \Sigma(I) = \boxed{Nat}$
- \blacktriangleright $\mu(I) = \boxed{true}$

Observar que

- ▶ $\Gamma | \Sigma \triangleright M : Nat y$
- $M \mid \mu \rightarrow true \mid \mu$
- ▶ pero $\Gamma | \Sigma \triangleright true : Nat no vale.$

Preservación - Reformulada

- Precisamos una noción de compatibilidad entre el store y el contexto de tipado para stores.
 - ▶ Debemos "tipar" los stores.
- Introducimos un nuevo "juicio de tipado":

$$\Gamma | \Sigma \rhd \mu$$

Este juicio se define del siguiente modo:

$$\Gamma | \Sigma \rhd \mu \text{ sii}$$

- 1. $Dom(\Sigma) = Dom(\mu)$ y
- 2. $\Gamma | \Sigma \rhd \mu(I) : \Sigma(I)$ para todo $I \in Dom(\mu)$.

Preservación - Reformulada

Reformulamos preservación del siguiente modo.

Si
$$\Gamma | \Sigma \rhd M : \sigma$$
 y $M | \mu \to N | \mu'$ y $\Gamma | \Sigma \rhd \mu$, entonces $\Gamma | \Sigma \rhd N : \sigma$.

- Esto es casi correcto.
- No contempla la posibilidad de que el Σ encuadrado haya crecido en dominio respecto a Σ .
 - Por posibles reservas de memoria.

Preservación - Definitiva

Si

- $ightharpoonup \Gamma | \Sigma \rhd M : \sigma$
- \blacktriangleright $M \mid \mu \rightarrow N \mid \mu'$
- $ightharpoonup \Gamma |\Sigma > \mu$

implica que existe $\Sigma' \supseteq \Sigma$ tal que

- ightharpoonup $\Gamma | \Sigma' \rhd N : \sigma$
- $\blacktriangleright \ \Gamma | \Sigma' \rhd \mu'$

Progreso - Reformulado

Si M es cerrado y bien tipado (i.e. $\emptyset | \Sigma \rhd M : \sigma$ para algún Σ, σ) entonces:

- 1. M es un valor
- 2. o bien para cualquier store μ tal que $\emptyset | \Sigma \rhd \mu$, existe M' y μ' tal que $M | \mu \to M' | \mu'$.

```
\begin{array}{l} let \ x = ref \ \underline{2} \ in \ (\lambda_{-} : Unit.!x) \ (x := succ(!x)) \ | \ \mu \\ \rightarrow \quad let \ x = l_1 \ in \ (\lambda_{-} : Unit.!x) \ (x := succ(!x)) \ | \ \mu \oplus (l_1 \mapsto \underline{2}) \\ \rightarrow \quad (\lambda_{-} : Unit.!l_1) \ (l_1 := succ(!l_1)) \ | \ \mu \oplus (l_1 \mapsto \underline{2}) \\ \rightarrow \quad (\lambda_{-} : Unit.!l_1) \ (l_1 := succ(\underline{2})) \ | \ \mu \oplus (l_1 \mapsto \underline{2}) \\ \rightarrow \quad (\lambda_{-} : Unit.!l_1) \ unit \ | \ (\mu \oplus (l_1 \mapsto \underline{2}))[l_1 \mapsto \underline{3}] \\ \rightarrow \quad !l_1 \ | \ \mu \oplus (l_1 \mapsto \underline{3}) \\ \rightarrow \quad \underline{3} \ | \ \mu \oplus (l_1 \mapsto \underline{3}) \end{array}
```

Sea

```
M = \lambda r : Ref(Unit \rightarrow Unit).
                                let f = 1r
                                 in (r := \lambda x : Unit.f x); (!r) unit
        M(ref(\lambda x : Unit.x)) \mid \mu
\rightarrow M l_1 \mid \mu \oplus (l_1 \mapsto \lambda x : Unit.x)
\rightarrow let f = !I_1 in (I_1 := \lambda x : Unit.f x); (!I_1) unit | \dots \rangle
\rightarrow let f = \lambda x: Unit.x in (I_1 := \lambda x : Unit.f x); (!I_1) unit | \dots \rangle
\rightarrow (I_1 := \lambda x : Unit.(\lambda x : Unit.x)x); (!I_1) unit | ...
\rightarrow unit; (!/1) unit \mid \mu \oplus (I_1 \mapsto \lambda x : Unit.(\lambda x : Unit.x) x)
\rightarrow (!/<sub>1</sub>) unit | \mu \oplus (I_1 \mapsto \lambda x : Unit.(\lambda x : Unit.x) x)
\rightarrow (\lambda x: Unit.(\lambda x: Unit.x) x) unit | ...
\rightarrow (\lambda x: Unit.x) unit | ...
\rightarrow unit | ...
```

Sea

$$M = \lambda r : Ref(Unit \rightarrow Unit).$$
 $let f = !r$
 $in (r := \lambda x : Unit.f x); (!r) unit$

Reemplazamos f por !r y nos queda

$$M' = \lambda r : Ref (Unit \rightarrow Unit).$$

 $(r := \lambda x : Unit.(!r) x); (!r) unit$

Vamos a evaluar este nuevo M' aplicado al mismo término que en el slide anterior y ver qué pasa...

```
M' = \lambda r : Ref (Unit \rightarrow Unit).
                      (r := \lambda x : Unit.(!r)x); (!r) unit
        M' (ref (\lambda x : Unit.x)) | \mu
\rightarrow M' l_1 \mid \mu \oplus (l_1 \mapsto \lambda x : Unit.x)
\rightarrow (I_1 := \lambda x : Unit.(!I_1)x); (!I_1) unit | ...
\rightarrow unit; (!l_1) unit \mid \mu \oplus (l_1 \mapsto \lambda x : Unit.(!l_1) x)
\rightarrow |(!l_1) unit||...
\rightarrow (\lambda x : Unit.(!l_1)x) unit | ...
\rightarrow \boxed{(!I_1) \ unit} \mid ...
```

Nota: no todo término cerrado y bien tipado termina en λ^{bnr} (λ -cálculo con booleanos, naturales y referencias).

Recursión

Ecuación recursiva

$$f = \dots f \dots f \dots$$

Términos y tipado

$$M ::= \ldots \mid \text{fix } M$$

▶ No se precisan nuevos tipos pero sí una regla de tipado.

$$\frac{\Gamma \rhd M : \sigma_1 \to \sigma_1}{\Gamma \rhd \text{fix } M : \sigma_1} \text{(T-Fix)}$$

Semántica operacional small-step

No hay valores nuevos pero sí reglas de evaluación en un paso nuevas.

$$\begin{split} \frac{\textit{M}_1 \rightarrow \textit{M}_1'}{\textit{fix} \;\; \textit{M}_1 \rightarrow \textit{fix} \;\; \textit{M}_1'} \, (\text{E-Fix}) \\ \\ \frac{}{\textit{fix} \; (\lambda \textit{x} : \sigma.\textit{M}) \rightarrow \textit{M} \{ \textit{x} \leftarrow \textit{fix} \; (\lambda \textit{x} : \sigma.\textit{M}) \}} \, (\text{E-FixBeta}) \end{split}$$

```
Sea M el término
```

```
\lambda f: Nat \rightarrow Nat.

\lambda x: Nat.

if iszero(x) then \underline{1} else x * f(pred(x))
```

en

let fact = fix M in fact $\underline{3}$

Ahora podemos definir funciones parciales:

 $fix(\lambda x : Nat.succ x)$

Sea *M* el término

```
\lambda s: Nat \rightarrow Nat \rightarrow Nat.
\lambda x: Nat.
\lambda y: Nat.
if iszero(x) then y else succ(s pred(x) y)
```

en

let suma = fix M in suma 23

Letrec

Una construcción alternativa para definir funciones recursivas es

letrec
$$f : \sigma \rightarrow \sigma = \lambda x : \sigma.M$$
 in N

Por ejemplo,

letrec fact : Nat \rightarrow Nat = λx : Nat.if iszero(x) then $\underline{1}$ else x * fact(pred(x))in fact $\underline{3}$

letrec puede escribirse en términos de fix del siguiente modo:

let
$$f = fix(\lambda f : \sigma \to \sigma.\lambda x : \sigma.M)$$
 in N