1-12-2	4.4		\Box	
试剂	示到	HH	7	:

考核对象: 10级信计、材化、食质、生技

エ.lr: ムカ.	学号	44 57
班级	子写	姓名

注意: 1. 重修必须注明(重修)

2. 试卷背面为草算区

《 大学物理 》试卷(B) 共 3 页 第 1 页

大连工业大学 2010~2011 学年 第 2 学期

10 17	-~										
题号		_	=	Щ	<u> </u>	<u> </u>	L L	1/	+	阅卷	复核
越与			1	<u> </u>	Д.		נ		\	总分	总分
得分											

说明:"阅卷总分"由阅卷人填写;"复核总分"由复核人填写,复核总分不得有改动。

得 分 物理常数: 真空介电常数 $\varepsilon_0 = 8.85 \times 10^{-12} F \cdot m^{-1}$; 真空磁导率 $4\pi \times 10^{-7} T \cdot m \cdot A^{-1}$; 真空光速 $3 \times 10^8 m \cdot s^{-1}$; 电子电量 $e = 1.6 \times 10^{-19} C$

一、选择题(每小题3分,共18分)

- 1. 在一个点电荷 Q 的电场中,一个检验电荷+q,从 A 点分别移到 B, C, D 点, B, C, D 点在+Q 为圆心的圆周上,如图 1 所示,则电场力做功是 ()
 - (A) 从 A 到 B 电场力做功最大。
- (C) 从 A 到 D 电场力做功最大。
- (B) 从 A 到 C 电场力做功最大。
- (D) 电场力做功一样大。
- 2. 下列说法正确的是()
- (A) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过
- (B) 闭合回路上各点磁感强度都为零时,回路内穿过电流代数和必定为零
- (C) 磁感强度沿闭合回路的积分为零时,回路上各点磁感强度必定为零
- (D) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零
- 3. 通过垂直于线圈平面的磁通量,其随时间变化的规律为: $\Phi = 6t^2 + 5t + 10$,式中 Φ 的单位为 mWb,试问当 t = 3.0 s 时,线圈中的感应电动势 为多少 mV ? ()
 - (A) 14
 - (B) 26
- (C) 41
- (D) 51
- 4. 一质点做简谐振动,振动方程为 $x=Acos(\omega t+\varphi)$,当时间 t=T/2 (T 为周期)时,质点的速度为()
 - (A) $-A\omega \sin\varphi$
- (B) $A\omega\sin\varphi$ (C) $-A\omega\cos\varphi$
- (D) $A\omega\cos\varphi$
- 5. 有一弹簧振子,总能量为 E,如果简谐振动的振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量变为 ()
 - (A) 2E
- (B) 4E
- (C) E/2
- (D) E/4
- 6. 一衍射光栅对某一定波长的垂直入射光在屏上只能出现0级和1级主级大,欲使屏上出现更高级次的衍射主极大,应该(
 - (A) 换一个光栅 常数较小的光栅
- (C) 将光栅向靠近屏幕的方向移动工
- (B) 换一个光栅常数较大的光栅
- (D) 将光栅向远离屏幕的方向移动

得 分

- 二、简答题(每小题3分,共6分)
- 1. 有人认为:如果某一闭合曲面S内无电荷,则该面上电场强度E处处为零.你认为这种说法是否正确?为什么?
- 2. 如果一个电子在通过空间某一区域时,电子运动的路径不发生偏转,能否说这个区域没有磁场?

试卷编号:	班级	学号	姓名				
考核对象: 10级信计、材化、食质、生技		注意: 1. 重修业	必须注明 (重修)				
		2. 试卷	背面为草算区				
	装订线						
大连工业大学 2010 ~2011 学年 第 2 学期							
《 大学物理 》试卷(B) 共 3页第2 页							
得							
分 三、填空题(每小题 3 分, 共 24 分)							
1. 有一边长为 a 的正方形平面,在其中垂线上距中心 O 点 $a/2$ 处,	有一电荷为 $m{q}$ 的正点电	荷,如图2所示,则通	过该平面的				
电场强度通量为。							
2. 一电场强度为 \mathbf{B} 的均匀电场, \mathbf{B} 的方向与 \mathbf{X} 轴正向平行如图所示,			-				
3. 一空气平行板电容器,两极板间距为 d ,电容为 C_0 ,若在两平行板中	间半行地插入一块厚质	雙为 d/3 的金属板,如图	4 所示,则其电容值变为 _				
B	图 5	×	\times \times \times				
	1/3	×	× × × v				
a = O = a/2	<u> </u>	×	×××				
图 2	图 4		图 5				
4. 如图5所示,把一半圆形闭合导线置于磁感强度为 B 的均匀磁场中,	当导线以速率v水平向	句右平动时,导线中感应	互电动势E的大小	0			
5. 两个同方向、同频率的简谐振动,其振动方程分别为 x_1 =6 \cos (5t + π /2) cm 和 x_2 =2 \cos (5t + π /2) cm ,则它们合振动的振动方程为							
6. 已知一平面简谐波的波函数为 y=Acos(at-bx) (a,b 为正值),则该波的波速为。 7. 用表点宏逊于洪仪测微小的位移 芜 λ 射光波波长 λ = 600 μm _ 当动壁反射镜移动时 _ 于洪条纹移动了 2000 条 _ 反射镜移动的距离 d=							

得 分 四、简算题(每小题6分,共12分)

λ 为入射光在真空中的波长,则两束反射光在相遇点的相位差为____。

1. 如图 7 所示球形金属腔带电量为 Q>0,内半径为 a,外半径为 b,腔内距球心 O 为 r 处有一点电荷 q,求球心的电势.

8. 如图6,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e,并且n₁<n₂>n₃,

2. 当简谐振动的位移为振幅的一半时,其动能和势能各占总能量的多少? 物体在什么位置时其动能和势能各占总能量的一半?

得 分

五、计算题(10分)

一电量为q的点电荷位于导体球壳中心,壳的内外半径分别为 R_1 、 R_2 .(1)写出电场强度的分布;(2)求球壳内一点($0 < r < R_I$)的电势.

図♀

试		

考核对象: 10级信计、材化、食质、生技

注意: 1. 重修必须注明(重修)

2. 试卷背面为草算区

大连工业大学 2010 ~2011 学年 第 2 学期

《 大学物理 》试卷(B) 共 3页第3页

得 分

六、计算题(10分)

——」 一长直导线中通有交变电流 $I=I_0\sin wt$,式中 I 表示瞬时电流, (I_0 和 ω 都是常量)在长直导线旁平行放置 N 匝矩形线圈,线圈和长

直导线在同一平面内。已知线圈长为l,宽为b(如图9所示)。 求任一瞬时线圈中的感应电动势的大小。

得 分 七、计算题(10分)

如图 10 所示,一平面简谐波在 t = 1.0 s 时刻的波形图,波的振幅为 0.20 m,周期为 4.0 s,OP=5.0m, 求:(1)坐标原点处质点的振动方程;(2)写出波函数;(3)画出 t=3s 时的波形图。

得分

八、计算题(10分)

在双缝干涉实验中,波长 λ =550 nm 的单色平行光垂直入射到缝间距 d=2×10⁴ m 的双缝上,屏到双缝的距离 D=2 m。(1)写出相邻两明纹间的距离公式 Δx ; (2) 求中央明纹两侧的两条第 10 级明纹中心的间距; (3) 用一厚度为 e=8.53×10³ nm 的薄片覆盖一缝后,这时屏上的第 9 级明纹恰好移到屏幕中央原零级明纹的位置,问薄片的折射率为多少?(1nm=10⁻⁹ m)

试卷编号:

大连工业大学 2010 ~2011 学年 第 2 学期《 大学物理 》试卷(B)标准答案共1 页第 1 页 卷面满分: 100 考核对象: 10 级信计、材化、食质、生技 命题教师: 教研室主任审核:

一、选择题(每题3分,共18分)

- 1. D 2 B 3..C 4.B 5.B 6.B
- 二、简答题(每小题3分,共6分)
- 1、答:这种说法不一定正确.S面内无电荷,只说明通过S面的电通量为零,只要S面外有电荷,则仍有电场存在,S面上的E不一定处处为零.
- 2、答:不一定。当电子运动方向与磁场平行时电子的运动路径有可能不偏转。
- 三、填空题(每题3分,共24分)

1.
$$\frac{q}{6\varepsilon_0}$$
 2. $\frac{3}{2}C_0$ 3. $\stackrel{?}{\leqslant}$ 4. $\stackrel{?}{\leqslant}$ 5. x =8cos (5t + π /2) cm 6. $\frac{a}{b}$ 7. 0.6mm 8. $4\pi n_2 e/\lambda + \pi$

四、简算题(每小题6分,共12分)

1、解:导体球内表面感应电荷-q,外表面感应电荷q;(2分)

依照分析,球心的电势为:
$$U = \frac{q}{4\pi\epsilon_0 r} - \frac{q}{4\pi\epsilon_0 a} + \frac{q+Q}{4\pi\epsilon_0 b}$$
 (4分)

2.
$$\Re: E_P = \frac{1}{2}kx^2 = \frac{1}{2}k \ (\frac{1}{2}A)^2 = \frac{1}{4}E_M, E_K = \frac{3}{4}E_M \dots (4 \%)$$

当物体的动能和势能各占总能量的一半: $\frac{1}{2}kx^2 = \frac{1}{2}(\frac{1}{2}kA^2) = \frac{1}{2}E_M$, 所以: $x = \pm \frac{\sqrt{2}}{2}A$ (2 分)

五、计算题(10分)

解:根据高斯定理 $\oint \mathbf{E} \cdot \mathbf{dS} = \frac{\sum q}{\varepsilon_0}$

$$E_1 = \frac{q}{4\pi\varepsilon_0 r^2}$$
 $0 < r < R_1 \dots 2$ 分 $E_2 = 0$ $R_1 < r < R_2 \dots 1$ 分 $r > R_2 \dots 2$ 分

$$0 < \mathbf{r} < \mathbf{R}_{I}$$
 $U = \int_{r}^{R_{I}} \frac{q}{4\pi\varepsilon_{0}r^{2}} dr + \int_{R_{2}}^{\infty} \frac{q}{4\pi\varepsilon_{0}r^{2}} dr \dots 2$

$$= \frac{q}{4\pi\varepsilon_0} (\frac{1}{r} - \frac{1}{R_1} + \frac{1}{R_2}) \quad3 \, \text{f}$$

六、计算题(10分)

解:在某一瞬时距直导线 x 处的磁感应强度为 $B = \frac{\mu_0 I}{2\pi x}$ (3分)

$$x$$
 处线圈的 dx 宽度内的磁通量为 $d\Phi = B \bullet ds = \frac{\mu_0 I}{2\pi x} ldx$ (2分)

通过一匝线圈的磁通量为
$$\Phi = \int d\Phi = \int_d^{d+b} \frac{\mu_0 I}{2\pi x} l dx = \frac{\mu_0 l I_0 \sin \omega t}{2\pi} \ln \frac{d+b}{d}$$
 (2分)

N匝线圈中产生的电动势大小为
$$\varepsilon = \left| \frac{d(N\Phi)}{dt} \right| = \frac{N\mu_0 l I_0 \omega}{2\pi} \ln(\frac{d+b}{d}) \left| \cos \omega t \right| \dots (3分)$$

七、计算题(10分)

解: (1) 如图所示为 t=0 时的波形图,可见 t=0 原点处质点在负的最大位移处,所以 $\varphi=\pi$ (2 分)

坐标原点处质点的振动方程为 $y = 0.2\cos(\frac{\pi}{2}t + \pi)$ m... (2分)

(2)
$$\lambda = 10m$$
, $u = \frac{\lambda}{T} = \frac{10}{4} = 2.5m/s$... (2 $\%$)

波函数为: $y = 0.2\cos\left[\frac{\pi}{2}(t - \frac{x}{2.5}) + \pi\right]$ m (2分)

八、计算题(10分)

解:(1)相邻两明纹间的距离为

$$\Delta x = D\lambda/d$$
 (2 β)

(2) 两侧第 10 级明纹之间的距离是 20

个明条纹间距, 所以, 有

(3) 光程差
$$\Delta = e(n-1) = k\lambda$$
 (3分)
解得

$$n = \frac{k\lambda}{e} + 1 = \frac{9 \times 550}{8.53 \times 10^3} + 1 = 1.58...$$
 (2 $\%$)