Теория Вероятностей и Статистика Сходимость по распределению

Потанин Богдан Станиславович

старший преподаватель, кандидат экономических наук

2021

Определение

• Последовательность случайных величин X_1, X_2, \cdots сходится по распределению к случайной величине X, что обозначается как $X_n \stackrel{d}{\longrightarrow} X$, если:

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x), \forall x\in\mathcal{T}$$

Где ${\mathcal T}$ обозначает множество точек, в которых функция распределения $F_X(x)$ непрерывна.

Определение

• Последовательность случайных величин X_1, X_2, \cdots сходится по распределению к случайной величине X, что обозначается как $X_n \stackrel{d}{\longrightarrow} X$, если:

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x), \forall x\in\mathcal{T}$$

Где ${\cal T}$ обозначает множество точек, в которых функция распределения $F_X(x)$ непрерывна. Примеры:

• Рассмотрим последовательность **нормальных** случайных величин X_1, X_2, \cdots со множеством индексов I и **стандартную нормальную** случайную величину X. Известно, что $X_n \sim \mathcal{N}\left(\frac{1}{n}, 1\right)$, где $n \in I$. Проверьте, сходится ли по распределению данная последовательность к X.

Определение

• Последовательность случайных величин X_1, X_2, \cdots сходится по распределению к случайной величине X, что обозначается как $X_n \stackrel{d}{\longrightarrow} X$, если:

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x), \forall x\in\mathcal{T}$$

Где ${\mathcal T}$ обозначает множество точек, в которых функция распределения $F_X(x)$ непрерывна. Примеры:

• Рассмотрим последовательность **нормальных** случайных величин X_1, X_2, \cdots со множеством индексов I и **стандартную нормальную** случайную величину X. Известно, что $X_n \sim \mathcal{N}\left(\frac{1}{n},1\right)$, где $n \in I$. Проверьте, сходится ли по распределению данная последовательность к X.

Решение: сходимость по распределению соблюдается, поскольку:

$$\lim_{n\to\infty} F_{X_n}(x) = \lim_{n\to\infty} \Phi\left(\frac{x-\frac{1}{n}}{\sqrt{1}}\right) = \Phi\left(\frac{x-0}{\sqrt{1}}\right) = \Phi(x) = F_X(x), \forall x \in \mathcal{T}$$

Определение

• Последовательность случайных величин X_1, X_2, \cdots сходится по распределению к случайной величине X, что обозначается как $X_n \xrightarrow{d} X$, если:

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x), \forall x\in\mathcal{T}$$

Где ${\cal T}$ обозначает множество точек, в которых функция распределения $F_X(x)$ непрерывна. Примеры:

• Рассмотрим последовательность **нормальных** случайных величин X_1, X_2, \cdots со множеством индексов I и **стандартную нормальную** случайную величину X. Известно, что $X_n \sim \mathcal{N}\left(\frac{1}{n},1\right)$, где $n \in I$. Проверьте, сходится ли по распределению данная последовательность к X.

Решение: сходимость по распределению соблюдается, поскольку:

$$\lim_{n\to\infty} F_{X_n}(x) = \lim_{n\to\infty} \Phi\left(\frac{x-\frac{1}{n}}{\sqrt{1}}\right) = \Phi\left(\frac{x-0}{\sqrt{1}}\right) = \Phi(x) = F_X(x), \forall x \in \mathcal{T}$$

• Рассмотрим последовательность **экспоненциальных** случайных величин X_1, X_2, \cdots со множеством индексов I и **экспоненциальную** случайную величину $X \sim EXP(1)$. Известно, что $X_n \sim EXP\left(\frac{n}{n+1}\right)$, где $n \in I$. Проверьте, сходится ли по распределению данная последовательность к X.

Определение

• Последовательность случайных величин X_1, X_2, \cdots сходится по распределению к случайной величине X, что обозначается как $X_n \stackrel{d}{\longrightarrow} X$, если:

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x), \forall x\in\mathcal{T}$$

Где ${\cal T}$ обозначает множество точек, в которых функция распределения $F_X(x)$ непрерывна. Примеры:

• Рассмотрим последовательность **нормальных** случайных величин X_1, X_2, \cdots со множеством индексов I и **стандартную нормальную** случайную величину X. Известно, что $X_n \sim \mathcal{N}\left(\frac{1}{n},1\right)$, где $n \in I$. Проверьте, сходится ли по распределению данная последовательность к X.

Решение: сходимость по распределению соблюдается, поскольку:

$$\lim_{n\to\infty} F_{X_n}(x) = \lim_{n\to\infty} \Phi\left(\frac{x-\frac{1}{n}}{\sqrt{1}}\right) = \Phi\left(\frac{x-0}{\sqrt{1}}\right) = \Phi(x) = F_X(x), \forall x \in \mathcal{T}$$

• Рассмотрим последовательность **экспоненциальных** случайных величин X_1, X_2, \cdots со множеством индексов I и **экспоненциальную** случайную величину $X \sim EXP(1)$. Известно, что $X_n \sim EXP\left(\frac{n}{n+1}\right)$, где $n \in I$. Проверьте, сходится ли по распределению данная последовательность к X. **Решение**: сходимость по распределению соблюдается, поскольку при X > 0 (при X < 0 предел очевиден):

$$\lim_{n \to \infty} F_{X_n}(x) = \lim_{n \to \infty} 1 - e^{-\frac{n}{n+1}x} = 1 - e^{-1 \times x} = 1 - e^{-x} = F_X(x), \forall x \in \mathcal{T}$$

Приблизительное распределение (практический смысл)

ullet Если распределения случайной величины X предполагается схожим с распределением Θ , то записывают $X \dot{\sim} \Theta$.

Приблизительное распределение (практический смысл)

- Если распределения случайной величины X предполагается схожим с распределением Θ , то записывают $X \dot{\sim} \Theta$.
- Если последовательность $X_1, X_2, ...$ по распределению сходится к $X \sim \Theta$, то при достаточно большом n без существенных потерь в точности можно предположить, что $X_n \dot{\sim} \Theta$. В таких случаях Θ часто именую асимптотическим распределением.

Приблизительное распределение (практический смысл)

- Если распределения случайной величины X предполагается схожим с распределением Θ , то записывают $X \dot{\sim} \Theta$.
- Если последовательность $X_1, X_2, ...$ по распределению сходится к $X \sim \Theta$, то при достаточно большом n без существенных потерь в точности можно предположить, что $X_n \dot{\sim} \Theta$. В таких случаях Θ часто именую асимптотическим распределением.

Примеры:

ullet Если $X \sim U(0,0.999)$, то полагая $\Theta = U(0,1)$ без существенной потери в точности можно предположить, что $X \dot{\sim} U(0,1)$.

Приблизительное распределение (практический смысл)

- Если распределения случайной величины X предполагается схожим с распределением Θ , то записывают $X \dot{\sim} \Theta$.
- Если последовательность $X_1, X_2, ...$ по распределению сходится к $X \sim \Theta$, то при достаточно большом n без существенных потерь в точности можно предположить, что $X_n \dot{\sim} \Theta$. В таких случаях Θ часто именую асимптотическим распределением.

- Если $X \sim U(0,0.999)$, то полагая $\Theta = U(0,1)$ без существенной потери в точности можно предположить, что $X \dot{\sim} U(0,1)$.
- Рассмотрим последовательность нормальных случйных величин $X_1, X_2, ...$, такую, что $X_n \sim \mathcal{N}\left(\frac{1}{n}, 1\right)$. Ранее было показано, что она стремится по распределению к стандартной нормальной случайной величине $X \sim \mathcal{N}(0,1)$. Тогда при n=1000 без существенной потери в точности можно предположить, что $X_{1000} \sim \mathcal{N}(0,1)$.

Приблизительное распределение (практический смысл)

- Если распределения случайной величины X предполагается схожим с распределением Θ , то записывают $X \dot{\sim} \Theta$.
- Если последовательность $X_1, X_2, ...$ по распределению сходится к $X \sim \Theta$, то при достаточно большом n без существенных потерь в точности можно предположить, что $X_n \dot{\sim} \Theta$. В таких случаях Θ часто именую асимптотическим распределением.

Примеры:

- Если $X \sim U(0,0.999)$, то полагая $\Theta = U(0,1)$ без существенной потери в точности можно предположить, что $X \dot{\sim} U(0,1)$.
- Рассмотрим последовательность нормальных случйных величин $X_1, X_2, ...$, такую, что $X_n \sim \mathcal{N}\left(\frac{1}{n}, 1\right)$. Ранее было показано, что она стремится по распределению к стандартной нормальной случайной величине $X \sim \mathcal{N}(0,1)$. Тогда при n=1000 без существенной потери в точности можно предположить, что $X_{1000} \sim \mathcal{N}(0,1)$. Оценим погрешность в вычислениях на конкретном примере:

Настоящее распределение: $P(X_{1000} < 1) = \Phi\left(1 - \frac{1}{1000}\right) \approx 0.8411027$ Асимптотическое распределение: $P(X_{1000} < 1) \approx \Phi\left(1\right) \approx 0.8413447$

Связь со сходимостью по вероятности

ullet Из сходимости по вероятности $X_n \stackrel{p}{\to} X$ следует сходимость по распределению $X_n \stackrel{d}{\to} X$.

Связь со сходимостью по вероятности

- ullet Из сходимости по вероятности $X_n \stackrel{p}{ o} X$ следует сходимость по распределению $X_n \stackrel{d}{ o} X$.
- Если X=c константа, то из сходимости по распределению $X_n \xrightarrow{d} X$ следует сходимость по вероятности $X_n \xrightarrow{p} X$.

Связь со сходимостью по вероятности

- ullet Из сходимости по вероятности $X_n \stackrel{p}{\to} X$ следует сходимость по распределению $X_n \stackrel{d}{\to} X$.
- ullet Если X=c константа, то из сходимости по распределению $X_n \xrightarrow{d} X$ следует сходимость по вероятности $X_n \xrightarrow{p} X$.

Примеры:

ullet Известно, что $X_n \stackrel{p}{ o} X$, где $X \sim Pois(5)$. Тогда верно также, что $X_n \stackrel{d}{ o} X$.

Связь со сходимостью по вероятности

- ullet Из сходимости по вероятности $X_n \stackrel{p}{ o} X$ следует сходимость по распределению $X_n \stackrel{d}{ o} X$.
- ullet Если X=c константа, то из сходимости по распределению $X_n \xrightarrow{d} X$ следует сходимость по вероятности $X_n \xrightarrow{p} X$.

- ullet Известно, что $X_n \stackrel{p}{ o} X$, где $X \sim Pois(5)$. Тогда верно также, что $X_n \stackrel{d}{ o} X$.
- ullet Известно, что $X_n \xrightarrow{d} 5$. Тогда верно также, что $X_n \xrightarrow{p} 5$.

Связь со сходимостью по вероятности

- ullet Из сходимости по вероятности $X_n \stackrel{p}{ o} X$ следует сходимость по распределению $X_n \stackrel{d}{ o} X$.
- ullet Если X=c константа, то из сходимости по распределению $X_n \xrightarrow{d} X$ следует сходимость по вероятности $X_n \xrightarrow{p} X$.

- ullet Известно, что $X_n \stackrel{p}{\to} X$, где $X \sim Pois(5)$. Тогда верно также, что $X_n \stackrel{d}{\to} X$.
- Известно, что $X_n \xrightarrow{d} 5$. Тогда верно также, что $X_n \xrightarrow{p} 5$.
- Рассмотрим последовательность **нормальных** случайных величин X_1, X_2, \cdots со множеством индексов I и **стандартную нормальную** случайную величину X. Известно, что $X_n \sim \mathcal{N}\left(\frac{1}{n},1\right)$ и $Cov(X_n,X)=0.5$, где $n \in I$. Ранее было показано, что $X_n \stackrel{d}{\longrightarrow} X$.

Связь со сходимостью по вероятности

- ullet Из сходимости по вероятности $X_n \stackrel{p}{ o} X$ следует сходимость по распределению $X_n \stackrel{d}{ o} X$.
- ullet Если X=c константа, то из сходимости по распределению $X_n \xrightarrow{d} X$ следует сходимость по вероятности $X_n \xrightarrow{p} X$.

- ullet Известно, что $X_n \stackrel{p}{\to} X$, где $X \sim Pois(5)$. Тогда верно также, что $X_n \stackrel{d}{\to} X$.
- Известно, что $X_n \xrightarrow{d} 5$. Тогда верно также, что $X_n \xrightarrow{p} 5$.
- Рассмотрим последовательность **нормальных** случайных величин X_1, X_2, \cdots со множеством индексов I и **стандартную нормальную** случайную величину X. Известно, что $X_n \sim \mathcal{N}\left(\frac{1}{n},1\right)$ и $Cov(X_n,X)=0.5$, где $n \in I$. Ранее было показано, что $X_n \xrightarrow{d} X$. Теперь покажем, что несмотря на то, что соблюдается сходимость по распределению, не будет соблюдаться сходимость по вероятности. Полагая $\varepsilon=1$ и обращая внимание на то, что $(X_n-X) \sim \mathcal{N}\left(\frac{1}{n},1\right)$ получаем:

$$\lim_{n \to \infty} P(|X_n - X| > 1) = \lim_{n \to \infty} P(X_n - X > 1) + P(X_n - X < -1)$$

Связь со сходимостью по вероятности

- ullet Из сходимости по вероятности $X_n \stackrel{p}{ o} X$ следует сходимость по распределению $X_n \stackrel{d}{ o} X$.
- ullet Если X=c константа, то из сходимости по распределению $X_n \xrightarrow{d} X$ следует сходимость по вероятности $X_n \xrightarrow{p} X$.

Примеры:

- ullet Известно, что $X_n \stackrel{p}{\to} X$, где $X \sim Pois(5)$. Тогда верно также, что $X_n \stackrel{d}{\to} X$.
- Известно, что $X_n \xrightarrow{d} 5$. Тогда верно также, что $X_n \xrightarrow{p} 5$.
- Рассмотрим последовательность **нормальных** случайных величин X_1, X_2, \cdots со множеством индексов I и **стандартную нормальную** случайную величину X. Известно, что $X_n \sim \mathcal{N}\left(\frac{1}{n},1\right)$ и $Cov(X_n,X)=0.5$, где $n \in I$. Ранее было показано, что $X_n \stackrel{d}{\to} X$. Теперь покажем, что несмотря и то, что соблюдается сходимость по расправления и было показано, что $X_n \stackrel{d}{\to} X$. Теперь покажем, что несмотря и то, что соблюдается сходимость по расправления $X_n \stackrel{d}{\to} X_n \stackrel{d$

 $n \in I$. Ранее было показано, что $X_n \stackrel{\hookrightarrow}{\to} X$. Теперь покажем, что несмотря на то, что соблюдается сходимость по распределению, не будет соблюдаться сходимость по вероятности. Полагая $\varepsilon = 1$ и обращая внимание на то, что $(X_n - X) \sim \mathcal{N}\left(\frac{1}{n}, 1\right)$ получаем:

$$\lim_{n \to \infty} P(|X_n - X| > 1) = \lim_{n \to \infty} P(X_n - X > 1) + P(X_n - X < -1)$$

$$= \lim_{n \to \infty} 2 - \Phi\left(\frac{1 - \frac{1}{n}}{\sqrt{1}}\right) - \Phi\left(\frac{1 + \frac{1}{n}}{\sqrt{1}}\right) \ge 2 - \Phi\left(\frac{1 - 1}{\sqrt{1}}\right) - \Phi\left(\frac{1 + 0}{\sqrt{1}}\right) \approx 0.66 > 0$$

Рассмотрим последовательности случайных величин $X_1, X_2, ...$ и $Y_1, Y_2, ...$ такие, что $X_n \xrightarrow{d} X$ и $Y_n \xrightarrow{d} c$, где c – константа. Тогда по **теореме Слуцкого** справедливо следующее:

•
$$X_n + Y_n \xrightarrow{d} X + c$$

Рассмотрим последовательности случайных величин $X_1, X_2, ...$ и $Y_1, Y_2, ...$ такие, что $X_n \xrightarrow{d} X$ и $Y_n \xrightarrow{d} c$, где c – константа. Тогда по **теореме Слуцкого** справедливо следующее:

- $X_n + Y_n \xrightarrow{d} X + c$
- $\bullet X_n Y_n \xrightarrow{d} cX$

Рассмотрим последовательности случайных величин $X_1, X_2, ...$ и $Y_1, Y_2, ...$ такие, что $X_n \xrightarrow{d} X$ и $Y_n \xrightarrow{d} c$, где c – константа. Тогда по **теореме Слуцкого** справедливо следующее:

- $X_n + Y_n \xrightarrow{d} X + c$
- $X_n Y_n \xrightarrow{d} cX$
- \bullet $X_n/Y_n \xrightarrow{d} X/c$, где $c \neq 0$.

Рассмотрим последовательности случайных величин $X_1, X_2, ...$ и $Y_1, Y_2, ...$ такие, что $X_n \xrightarrow{d} X$ и $Y_n \xrightarrow{d} c$, где c – константа. Тогда по **теореме Слуцкого** справедливо следующее:

- $X_n + Y_n \xrightarrow{d} X + c$
- $X_n Y_n \xrightarrow{d} cX$
- $X_n/Y_n \xrightarrow{d} X/c$, где $c \neq 0$.

Важно: поскольку из сходимости по вероятности следует сходимость по распределению, то теорема останется справедливой, если при ее формулировке все $\stackrel{d}{\to}$ заменить на $\stackrel{p}{\to}$.

Рассмотрим последовательности случайных величин $X_1, X_2, ...$ и $Y_1, Y_2, ...$ такие, что $X_n \xrightarrow{d} X$ и $Y_n \xrightarrow{d} c$, где c – константа. Тогда по **теореме Слуцкого** справедливо следующее:

- $X_n + Y_n \xrightarrow{d} X + c$
- $X_n Y_n \xrightarrow{d} cX$
- $X_n/Y_n \xrightarrow{d} X/c$, где $c \neq 0$.

Важно: поскольку из сходимости по вероятности следует сходимость по распределению, то теорема останется справедливой, если при ее формулировке все $\stackrel{d}{\to}$ заменить на $\stackrel{p}{\to}$. **Примеры:**

ullet Известно, что $X_n \stackrel{d}{ o} X$ и $Y_n \stackrel{d}{ o} 10$, где $X \sim U(0,1)$. Тогда верно также, что $X_n Y_n \stackrel{d}{ o} 10 X$, где $10 X \sim U(0,10)$.

Рассмотрим последовательности случайных величин $X_1, X_2, ...$ и $Y_1, Y_2, ...$ такие, что $X_n \xrightarrow{d} X$ и $Y_n \xrightarrow{d} c$, где c – константа. Тогда по **теореме Слуцкого** справедливо следующее:

- $X_n + Y_n \xrightarrow{d} X + c$
- $X_n Y_n \xrightarrow{d} cX$
- $X_n/Y_n \xrightarrow{d} X/c$, где $c \neq 0$.

Важно: поскольку из сходимости по вероятности следует сходимость по распределению, то теорема останется справедливой, если при ее формулировке все $\stackrel{d}{\to}$ заменить на $\stackrel{p}{\to}$. **Примеры:**

- ullet Известно, что $X_n \xrightarrow{d} X$ и $Y_n \xrightarrow{d} 10$, где $X \sim U(0,1)$. Тогда верно также, что $X_n Y_n \xrightarrow{d} 10 X$, где $10 X \sim U(0,10)$.
- ullet Известно, что $X_n \stackrel{d}{ o} 5$ и $Y_n \stackrel{p}{ o} 10$. Тогда верно также, что $X_n Y_n \stackrel{d}{ o} 50$ и $X_n Y_n \stackrel{p}{ o} 50$.

Формулировка и доказательство теоремы Пуассона

Пусть имеется последовательность X_1, X_2, \ldots биномиальных случайных величин $X_n \sim B(n, p_n)$, такая, что $\lim_{n \to \infty} np_n = \lambda$. Тогда по **теореме Пуассона** $X_n \stackrel{d}{\to} X$, где $X \sim Pois(\lambda)$.

Формулировка и доказательство теоремы Пуассона

Пусть имеется последовательность X_1, X_2, \dots биномиальных случайных величин $X_n \sim B(n, p_n)$, такая, что $\lim_{n \to \infty} np_n = \lambda$. Тогда по **теореме Пуассона** $X_n \stackrel{d}{\to} X$, где $X \sim Pois(\lambda)$.

Доказательство: сперва рассмотрим, к чему стремится функция вероятностей элементов последовательности:

$$\lim_{n\to\infty} P(X_n=x) = \lim_{n\to\infty} C_n^x p_n^x (1-p_n)^{n-x} = \lim_{n\to\infty} \frac{n!}{x!(n-x)!} \left(\frac{\lambda}{n}\right)^x \left(1-\frac{\lambda}{n}\right)^{n-x} =$$

Формулировка и доказательство теоремы Пуассона

Пусть имеется последовательность $X_1, X_2, ...$ биномиальных случайных величин $X_n \sim B(n, p_n)$, такая, что $\lim_{n \to \infty} n p_n = \lambda$. Тогда по **теореме Пуассона** $X_n \xrightarrow{d} X$, где $X \sim Pois(\lambda)$.

Доказательство: сперва рассмотрим, к чему стремится функция вероятностей элементов последовательности:

$$\lim_{n \to \infty} P(X_n = x) = \lim_{n \to \infty} C_n^x p_n^x (1 - p_n)^{n-x} = \lim_{n \to \infty} \frac{n!}{x!(n-x)!} \left(\frac{\lambda}{n}\right)^{\lambda} \left(1 - \frac{\lambda}{n}\right)^{n-x} =$$

$$= \lim_{n \to \infty} \frac{n * (n-1) * \dots * (n-x+1)}{n^x} \frac{\lambda^x}{x!} \left(1 - \frac{\lambda}{n}\right)^{n-x} =$$

Формулировка и доказательство теоремы Пуассона

Пусть имеется последовательность X_1, X_2, \dots биномиальных случайных величин $X_n \sim B(n, p_n)$, такая, что $\lim_{n \to \infty} np_n = \lambda$. Тогда по **теореме Пуассона** $X_n \stackrel{d}{\to} X$, где $X \sim Pois(\lambda)$.

Доказательство: сперва рассмотрим, к чему стремится функция вероятностей элементов последовательности:

$$\lim_{n \to \infty} P(X_n = x) = \lim_{n \to \infty} C_n^x p_n^x (1 - p_n)^{n-x} = \lim_{n \to \infty} \frac{n!}{x!(n-x)!} \left(\frac{\lambda}{n}\right)^x \left(1 - \frac{\lambda}{n}\right)^{n-x} =$$

$$= \lim_{n \to \infty} \frac{n * (n-1) * \dots * (n-x+1)}{n^x} \frac{\lambda^x}{x!} \left(1 - \frac{\lambda}{n}\right)^{n-x} =$$

$$= \lim_{n \to \infty} \underbrace{\left(\frac{n^x}{n^x} - \dots - \frac{(1+2+\dots+x-1)*n}{n^x}\right)}_{\text{стремится к } 1} * \frac{\lambda^x}{x!} * \underbrace{\left(1 + \frac{-\lambda}{n}\right)^n}_{\text{стремится к } 2} \underbrace{\left(1 + \frac{-\lambda}{n}\right)^{-x}}_{\text{стремится к } 2} = \frac{\lambda^x}{x!} e^{-\lambda} = P(X = x)$$

Формулировка и доказательство теоремы Пуассона

Пусть имеется последовательность $X_1,X_2,...$ биномиальных случайных величин $X_n\sim B(n,p_n)$, такая, что $\lim_{n\to\infty}np_n=\lambda.$ Тогда по **теореме Пуассона** $X_n\stackrel{d}{\to} X$, где $X\sim Pois(\lambda).$

Доказательство: сперва рассмотрим, к чему стремится функция вероятностей элементов последовательности:

$$\lim_{n \to \infty} P(X_n = x) = \lim_{n \to \infty} C_n^x p_n^x (1 - p_n)^{n-x} = \lim_{n \to \infty} \frac{n!}{x!(n-x)!} \left(\frac{\lambda}{n}\right)^x \left(1 - \frac{\lambda}{n}\right)^{n-x} =$$

$$= \lim_{n \to \infty} \frac{n * (n-1) * \dots * (n-x+1)}{n^x} \frac{\lambda^x}{x!} \left(1 - \frac{\lambda}{n}\right)^{n-x} =$$

$$= \lim_{n \to \infty} \underbrace{\left(\frac{n^x}{n^x} - \dots - \frac{(1+2+\dots+x-1)*n}{n^x}\right)}_{\text{стремится к 1}} * \frac{\lambda^x}{x!} * \underbrace{\left(1 + \frac{-\lambda}{n}\right)^n}_{\text{стремится к 1}} \underbrace{\left(1 + \frac{-\lambda}{n}\right)^{-x}}_{\text{стремится к 1}} = \frac{\lambda^x}{x!} e^{-\lambda} = P(X = x)$$

Пользуясь тем, что предел суммы равен сумме пределов, получаем:

$$\lim_{n\to\infty} F_{X_n}(x) = \lim_{n\to\infty} \sum_{t\in\{0,1,\dots,\lceil x\rceil\}: t\leq x} P(X_n=t) = \lim_{n\to\infty} \sum_{t\in\{0,1,\dots,\lceil x\rceil\}: t\leq x} P(X=t) = F_X(x)$$

Применение теоремы Пуассона

• Если $X \sim B(n,p)$, причем n велико, а p – мало, то без существенной потери в точности можно предположить, что $X \dot{\sim} Pois(np)$.

Применение теоремы Пуассона

- Если $X \sim B(n,p)$, причем n велико, а p мало, то без существенной потери в точности можно предположить, что $X \dot{\sim} Pois(np)$.
- Преимущество данного подхода заключается в том, что как правило функция вероятностей распределения Пуассона считается гораздо проще, чем функция вероятностей Биномиального распределения.

Применение теоремы Пуассона

- Если $X \sim B(n,p)$, причем n велико, а p мало, то без существенной потери в точности можно предположить, что $X \dot{\sim} Pois(np)$.
- Преимущество данного подхода заключается в том, что как правило функция вероятностей распределения Пуассона считается гораздо проще, чем функция вероятностей Биномиального распределения.

Примеры:

• Вероятность наступления страхового случая для каждого клиента составляет 0.01. В фирме застрахованы 1000 клиентов. Рассчитайте вероятность того, что наступит ровно два страховых случая.

Применение теоремы Пуассона

- Если $X \sim B(n,p)$, причем n велико, а p мало, то без существенной потери в точности можно предположить, что $X \sim Pois(np)$.
- Преимущество данного подхода заключается в том, что как правило функция вероятностей распределения Пуассона считается гораздо проще, чем функция вероятностей Биномиального распределения.

Примеры:

• Вероятность наступления страхового случая для каждого клиента составляет 0.01. В фирме застрахованы 1000 клиентов. Рассчитайте вероятность того, что наступит ровно два страховых случая.

Решение:

Через $X \sim B(1000, 0.01)$ обозначим число страховых случаев, которое можно аппроксимировать как $X \dot{\sim} Pois(1000 \times 0.01) = Pois(10)$. В результате получаем:

$$P(X=2) \approx \frac{10^2}{2!}e^{-10} \approx 0.00227$$

Применение теоремы Пуассона

- Если $X \sim B(n,p)$, причем n велико, а p мало, то без существенной потери в точности можно предположить, что $X \dot{\sim} Pois(np)$.
- Преимущество данного подхода заключается в том, что как правило функция вероятностей распределения Пуассона считается гораздо проще, чем функция вероятностей Биномиального распределения.

Примеры:

• Вероятность наступления страхового случая для каждого клиента составляет 0.01. В фирме застрахованы 1000 клиентов. Рассчитайте вероятность того, что наступит ровно два страховых случая.

Решение:

Через $X \sim B(1000, 0.01)$ обозначим число страховых случаев, которое можно аппроксимировать как $X \dot{\sim} Pois(1000 \times 0.01) = Pois(10)$. В результате получаем:

$$P(X=2) \approx \frac{10^2}{2!}e^{-10} \approx 0.00227$$

С использованием истинного распределения мы бы получили близкий результат:

$$P(X = 2) = C_{1000}^2 0.01^2 0.99^{9998} \approx 0.00220$$

Центральная предельная теорема

• Пусть имеется последовательность независимы, одинаково распределенных случайных величин $X_1, X_2, ...$ с конечными математическим ожиданием $E(X_i) = \mu$ и дисперсией $Var(X_i) = \sigma^2$, тогда:

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right)\xrightarrow{d}\mathcal{N}\left(0,\sigma^{2}\right)$$

Центральная предельная теорема

• Пусть имеется последовательность независимы, одинаково распределенных случайных величин $X_1, X_2, ...$ с конечными математическим ожиданием $E(X_i) = \mu$ и дисперсией $Var(X_i) = \sigma^2$, тогда:

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right)\xrightarrow{d}\mathcal{N}\left(0,\sigma^{2}\right)$$

• На практике эта теорема позволяет предположить, что при соблюдении соответствующих условий и достаточно большом n окажется точной аппроксимация $\sum\limits_{i=1}^{n} X_i \dot{\sim} \mathcal{N}\left(n\mu, n\sigma^2\right)$.

Центральная предельная теорема

• Пусть имеется последовательность независимы, одинаково распределенных случайных величин $X_1, X_2, ...$ с конечными математическим ожиданием $E(X_i) = \mu$ и дисперсией $Var(X_i) = \sigma^2$, тогда:

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right)\xrightarrow{d}\mathcal{N}\left(0,\sigma^{2}\right)$$

• На практике эта теорема позволяет предположить, что при соблюдении соответствующих условий и достаточно большом n окажется точной аппроксимация $\sum\limits_{i=1}^{n} X_i \dot{\sim} \mathcal{N}\left(n\mu, n\sigma^2\right)$.

Примеры:

ullet В аудитории 100 студентов независимо друг от друга пишут контрольную работу. Время (в часах), затрачиваемое на написание контрольной, для каждого студента является равномерной случайной величиной $X_i \sim U(1,2)$, где $i \in \{1,...,100\}$. Рассчитайте вероятность, с которой суммарное время на написание контрольной работы не превысит 152 часа.

Центральная предельная теорема

• Пусть имеется последовательность независимы, одинаково распределенных случайных величин $X_1, X_2, ...$ с конечными математическим ожиданием $E(X_i) = \mu$ и дисперсией $Var(X_i) = \sigma^2$, тогда:

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right)\xrightarrow{d}\mathcal{N}\left(0,\sigma^{2}\right)$$

• На практике эта теорема позволяет предположить, что при соблюдении соответствующих условий и достаточно большом n окажется точной аппроксимация $\sum\limits_{i=1}^{n} X_i \dot{\sim} \mathcal{N}\left(n\mu, n\sigma^2\right)$.

Примеры:

ullet В аудитории 100 студентов независимо друг от друга пишут контрольную работу. Время (в часах), затрачиваемое на написание контрольной, для каждого студента является равномерной случайной величиной $X_i \sim U(1,2)$, где $i \in \{1,...,100\}$. Рассчитайте вероятность, с которой суммарное время на написание контрольной работы не превысит 152 часа.

Решение: поскольку достаточно много n=100 студентов пишут контрольную независимо друг от друга и время на ее написание у них распределено одинаково, то можно применить ЦПТ:

$$\mu = E(X_i) = (1+2)/2 = 1.5$$
 $\sigma^2 = (2-1)^2/12 = 1/12$

Центральная предельная теорема

• Пусть имеется последовательность независимы, одинаково распределенных случайных величин $X_1, X_2, ...$ с конечными математическим ожиданием $E(X_i) = \mu$ и дисперсией $Var(X_i) = \sigma^2$, тогда:

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right)\xrightarrow{d}\mathcal{N}\left(0,\sigma^{2}\right)$$

• На практике эта теорема позволяет предположить, что при соблюдении соответствующих условий и достаточно большом n окажется точной аппроксимация $\sum\limits_{i=1}^{n} X_i \dot{\sim} \mathcal{N}\left(n\mu, n\sigma^2\right)$.

Примеры:

ullet В аудитории 100 студентов независимо друг от друга пишут контрольную работу. Время (в часах), затрачиваемое на написание контрольной, для каждого студента является равномерной случайной величиной $X_i \sim U(1,2)$, где $i \in \{1,...,100\}$. Рассчитайте вероятность, с которой суммарное время на написание контрольной работы не превысит 152 часа.

Решение: поскольку достаточно много n=100 студентов пишут контрольную независимо друг от друга и время на ее написание у них распределено одинаково, то можно применить ЦПТ:

$$\mu = E(X_i) = (1+2)/2 = 1.5$$
 $\sigma^2 = (2-1)^2/12 = 1/12$

$$\sum_{i=1}^{100} X_i \dot{\sim} \mathcal{N} (100 \times 1.5, 100 \times (1/12)) = \mathcal{N} (150, 25/3)$$

Центральная предельная теорема

• Пусть имеется последовательность независимы, одинаково распределенных случайных величин $X_1, X_2, ...$ с конечными математическим ожиданием $E(X_i) = \mu$ и дисперсией $Var(X_i) = \sigma^2$, тогда:

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right)\xrightarrow{d}\mathcal{N}\left(0,\sigma^{2}\right)$$

• На практике эта теорема позволяет предположить, что при соблюдении соответствующих условий и достаточно большом n окажется точной аппроксимация $\sum\limits_{i=1}^{n} X_i \dot{\sim} \mathcal{N}\left(n\mu, n\sigma^2\right)$.

Примеры:

ullet В аудитории 100 студентов независимо друг от друга пишут контрольную работу. Время (в часах), затрачиваемое на написание контрольной, для каждого студента является равномерной случайной величиной $X_i \sim U(1,2)$, где $i \in \{1,...,100\}$. Рассчитайте вероятность, с которой суммарное время на написание контрольной работы не превысит 152 часа.

Решение: поскольку достаточно много n=100 студентов пишут контрольную независимо друг от друга и время на ее написание у них распределено одинаково, то можно применить ЦПТ:

$$\mu = E(X_i) = (1+2)/2 = 1.5 \quad \sigma^2 = (2-1)^2/12 = 1/12$$

$$P\left(\sum_{i=1}^{100} X_i \le 152\right) \approx \Phi\left(\frac{152-150}{\sqrt{25/3}}\right) = \sum_{i=1}^{100} X_i \sim \mathcal{N}\left(100 \times 1.5, 100 \times (1/12)\right) = \mathcal{N}\left(150, 25/3\right)$$

$$= \Phi\left(0.693\right) \approx 0.7557888$$

Теорема Муавра-Лапласа

• Поскольку биномиальное распределение $X \sim B(n,p)$ можно представить как сумму независимых, одинаково распределенных бернуллиевских случайных величин $X_i \sim Ber(p)$, то вследствие ЦПТ:

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\right)\stackrel{d}{
ightarrow}\mathcal{N}\left(0,p(1-p)\right)$$

Теорема Муавра-Лапласа

• Поскольку биномиальное распределение $X \sim B(n,p)$ можно представить как сумму независимых, одинаково распределенных бернуллиевских случайных величин $X_i \sim Ber(p)$, то вследствие ЦПТ:

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\right)\stackrel{d}{
ightarrow}\mathcal{N}\left(0,p(1-p)\right)$$

ullet На практике при достаточно большом n можно допустить $X \dot{\sim} \mathcal{N} \left(np, np(1-p)
ight)$.

Теорема Муавра-Лапласа

• Поскольку биномиальное распределение $X \sim B(n,p)$ можно представить как сумму независимых, одинаково распределенных бернуллиевских случайных величин $X_i \sim Ber(p)$, то вследствие ЦПТ:

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\right)\stackrel{d}{
ightarrow}\mathcal{N}\left(0,p(1-p)\right)$$

ullet На практике при достаточно большом n можно допустить $X \dot{\sim} \mathcal{N}\left(np, np(1-p)\right)$.

Пример:

 Лаврентий подкинул правильную монетку 1000 раз. Определите вероятность, с которой у него выпало от 510 до 520 орлов включительно.

Теорема Муавра-Лапласа

• Поскольку биномиальное распределение $X \sim B(n,p)$ можно представить как сумму независимых, одинаково распределенных бернуллиевских случайных величин $X_i \sim Ber(p)$, то вследствие ЦПТ:

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\right)\stackrel{d}{\rightarrow}\mathcal{N}\left(0,p(1-p)\right)$$

ullet На практике при достаточно большом n можно допустить $X \dot{\sim} \mathcal{N}\left(np, np(1-p)\right)$.

Пример:

 Лаврентий подкинул правильную монетку 1000 раз. Определите вероятность, с которой у него выпало от 510 до 520 орлов включительно.

Решение: число выпавших орлов обозначим как $X \sim B(1000, 0.5)$, откуда по теореме Муавра-Лапласа:

$$X \sim \mathcal{N} (1000 \times 0.5, 1000 \times 0.5 \times (1 - 0.5)) = \mathcal{N} (500, 250)$$

Теорема Муавра-Лапласа

• Поскольку биномиальное распределение $X \sim B(n,p)$ можно представить как сумму независимых, одинаково распределенных бернуллиевских случайных величин $X_i \sim Ber(p)$, то вследствие ЦПТ:

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-p\right)\stackrel{d}{\rightarrow}\mathcal{N}\left(0,p(1-p)\right)$$

ullet На практике при достаточно большом n можно допустить $X \dot{\sim} \mathcal{N}\left(np, np(1-p)\right)$.

Пример:

 Лаврентий подкинул правильную монетку 1000 раз. Определите вероятность, с которой у него выпало от 510 до 520 орлов включительно.

Решение: число выпавших орлов обозначим как $X \sim B(1000, 0.5)$, откуда по теореме Муавра-Лапласа:

$$X \sim \mathcal{N} (1000 \times 0.5, 1000 \times 0.5 \times (1 - 0.5)) = \mathcal{N} (500, 250)$$

Применяя приблизительное распределение получаем:

$$P(510 \le X \le 520) \approx \Phi\left(\frac{520 - 500}{\sqrt{250}}\right) - \Phi\left(\frac{510 - 500}{\sqrt{250}}\right) \approx 0.8970484 - 0.7364554 = 0.160593$$