INF3105 – Analyse et Complexité algorithmique

Études cas : Algorithmes de tri

Florent Avellaneda

Université du Québec à Montréal (UQAM)

Automne 2021

Analyse empirique Analyse asymptotique Études cas : Algorithmes de tri Plusieurs variables

Sommaire

- Introduction
- 2 Analyse empirique
- Analyse asymptotique
- Études cas : Algorithmes de tri
- 5 Plusieurs variables

- Complexité ≠ difficulté à comprendre un algorithme.
- Complexité = quantité des ressources (temps, mémoire) requises.
- Plus un programme nécessite de ressources, plus il est complexe.
- N'est pas le suiet principal d'INF3105.
- Base nécessaire pour évaluer, comparer et choisir des structures de données.
- Cours :

Introduction •0000

- INF1120. INF1132 et INF2120 : Apercu de la complexité.
- INF3105: Rappel des notions de base + Analyse des structures fondamentales et algorithmes reliés.
- INF5130 (Algorithmique) : cours dédié au sujet.

3 / 28

Éléments à évaluer à propos des algorithmes

- Complexité temporelle : temps d'exécution.
- Complexité spatiale : quantité de mémoire.

Introduction

00000

Facteurs affectant le temps d'exécution / quantité de mémoire d'un programme

- Principal facteur :
 - La taille du problème.
 - Exemples : trier n nombres ; décompresser une image de $w \times h$ pixels ; inverser une matrice carrée de $n \times n$; etc.

Études cas : Algorithmes de tri

- Facteurs secondaires :
 - Matériel (processeur, mémoire, etc.).
 - Langage de programmation, compilateur, configuration du compilateur, etc.
 - Qualité de l'implémentation de l'algorithme à évaluer.
 - Système d'exploitation.
 - Etc.

Expression à l'aide d'une fonction

- Le temps d'exécution (la complexité temporelle) et la quantité de mémoire requise (complexité spatiale) peuvent s'exprimer à l'aide d'une fonction f ayant pour paramètres les principaux facteurs.
- Exemple : f(n) où n est la taille du problème.
- Permet d'estimer (prédire) le temps d'exécution d'un programme (algorithme) pour une entrée donnée.
- Quand on s'intéresse aux algorithmes (partie théorique) et non aux programmes (partie implémentation), on fait généralement abstraction des facteurs secondaires.
- Les facteurs secondaires deviennent pertinents quand on s'intéresse à un système précis.

Méthodes d'analyse

Introduction

00000

Comment trouver ou estimer la fonction $f(\cdots)$:

- Analyse empirique.
- Analyse asymptotique.

- Écrire un programme qui implémente un algorithme.
- Écrire des problèmes test de différentes tailles.
- Exécuter le programme sur les problèmes et mesurer le temps. Idéalement le temps CPU, mais peut être le temps réel. Exemples :
 - commande time sous Linux, Unix, etc.;
 - fonction getrusage() en C sous Linux, Unix, etc.;
 - fonction System.getCurrentTime() en Java;
 - chronomètre de votre montre (pas le meilleur choix).
- Tracer un graphique.
- **5** Extrapoler une relation $f: n \rightarrow temps$.

 Analyse empirique
 Analyse asymptotique
 Études cas : Algorithmes de tri
 Plusieurs variables

 ○●○○
 ○○○○○○○○○○
 ○○
 ○○

Analyse empirique

Analyse empirique

Avantages / Inconvénients

Avantages

- Méthode simple.
- Si les tests sont représentatifs, alors les mesures observées sont représentatives.

Inconvénients

- Généralement difficile de couvrir tous les cas possibles.
- Dans ce cas : estimations imprécises.
- Difficile de garantir le pire cas.

Neutre (parfois un avantage, parfois un inconvénient)

Considère implicitement les facteurs secondaires.

Notation grand O

- Généralement, on ne s'intéresse qu'à un ordre de grandeur.
- Notation : O(g(n)) où on remplace g(n) par une formule contenant n (ou d'autres variables).
- Formellement, O(g(n)) est un ensemble de fonctions
- $O(g(n)) = \{f(n) | \exists k, c, f(n) < c \cdot g(n), \forall n > k\}$
- Interprétation : O(q(n)) contient toutes les fonctions f(n) qui ne croissent pas asymptotiquement plus rapidement que g(n).
- Exemples :
 - $f_1(n) = n$
 - $f_2(n) = 2n + 4$
 - $f_3(n) = \frac{n}{2}$
 - $f_4(n) = n^2 + 20n + 199$
 - $f_1 \in O(n), f_2 \in O(n), f_3 \in O(n), f_4 \in O(n^2)$

Simplification en INF3105 (absence de Ω et Θ)

- INF3105 : on exprimera la complexité avec une notation simplifiée de O.
- INF5130 abordera aussi les symboles O, Ω et Θ :
 - O(g(n)): ensemble des fonctions f(n) tel que $f(n) \le c \cdot g(n)$ et ... (borne supérieure)
 - $\Omega(g(n))$: ensemble des fonctions f(n) tel que $f(n) > c \cdot g(n)$ et ... (borne inférieure)
 - $\Theta(q(n))$: ensemble des fonctions f(n) tel que $f(n) \in \mathcal{O}(q(n))$ et $f(n) \in \Omega(q(n))$

Études cas : Algorithmes de tri

Simplification d'expression en notation grand O

- Question : si f(n) = 2n, alors f(n) est-elle dans O(2n)?.
- Réponse : oui, car $f(n) \in O(2n)$. Mais, f(n) est aussi dans O(n).
- Question : O(2n) = O(n) ? Réponse : oui.
- Il est préférable d'écrire O(n) plutôt que O(2n), car il s'agit de l'expression la plus simple.
- Analogie: avec les fractions, nous écrivons rarement $\frac{2}{4}$; nous écrivons plutôt $\frac{1}{2}$, car il s'agit de l'expression la plus simple.
- Exemple :
 - $f(n) = 7n^4 + 5n^3 + 2n^2 + 9n + 19$
 - À quel ordre de grandeur appartient f(n)?
 - On garde le terme ayant le degré le plus élevé du polynome : $7n^4$.
 - On élimine la constante 7 devant n⁴.
 - Donc : $f(n) \in O(n^4)$

	Fonction	Ordre de grandeur
1	n	O(n)
2	2 <i>n</i> +3	O(n)
3	$2n^2 + 8n - 3$	$O(n^2)$
4	$\frac{1}{2}n^3 + 8n^2 + 3n + 5$	$O(n^3)$
5	$\log_2 n$	$O(\log n)$
6	log ₁₀ <i>n</i>	$O(\log n)$
7	$7n + 3\log_2 n$	O(n)
8	$7n\log_2 n + 9n$	$O(n\log n)$
9	$n^2 + 2n\log_{10}\frac{n}{2} + 3n$	$O(n^2)$
10	2^n+2n^4	$O(2^n)$
11	3 <i>n</i> !	O(n!)

Classes de complexité

Ordre	Complexité	Exemples
<i>O</i> (1)	Temps constant	Un accès aléatoire, un calcul arithmétique, etc.
$O(\log n)$	Logarithmique	Recherche dichotomique (binaire) dans un tableau trié.
<i>O</i> (<i>n</i>)	Linéaire	Itérer sur les éléments d'un tableau ou d'une liste.
$O(n\log n)$	« n log n »	Tri de fusion et de monceau. Tri rapide (excepté le pire cas).
$O(n^2)$	Quadratique	Parcours d'un tableau 2 dimensions. Tri de sélection.
$O(n^3)$	Cubique	Multiplication matricielle naïve.
$O(b^n)$	Exponentiel	Problèmes de planification. ($b > 2$)
O(n!)	Factoriel	Problèmes d'ordonnancement. Problème du voyageur de commerce.

Méthode d'analyse

 Compter (dénombrer) le nombre d'opérations en fonction de la taille du problème.

Études cas : Algorithmes de tri

- On ne fait pas de différence entre la nature des opérations, même si elles ne prennent pas le même temps en pratique.
- On fait abstraction des facteurs secondaires (CPU, type d'opérations, langage de programmation, etc.).
 - Les facteurs secondaires sont (généralement) indépendant de la taille du problème.
 - Les facteurs secondaires se résument (généralement) à une constante.
- Rappel : on s'intéresse en premier lieu à l'ordre de grandeur.

Quoi analyser?

- Cas moyen. Moyenne de toutes les entrées possibles.
- Pire cas. Pire entrée possible.
- Analyse amortie : le temps moven d'une opération répétée plusieurs fois dans le cadre d'une autre opération de plus haut niveau.

Exemple 1

```
moyenne1.cpp
int main(){
  int n;
  double somme = 0:
  cin >> n:
  for(int i=0;i< n;i++){
     double x;
     cin >> x:
     somme += x;
  cout << "moyenne : " << (somme / n);
```

Exemple 2

moyenne2.cpp

```
int main(){
  int n:
  double somme = 0:
  cin >> n:
  double* tab = new double[n];
  for(int i=0;i< n;i++)
     cin >> tab[i];
  for(int i=0;i< n;i++)
     somme += tab[i]:
  cout << "moyenne : " << (somme / n);
  delete[] tab;
```

```
int main(){
  int n:
  cin >> n;
  bool doublons = false:
  string* tab = new string[n]:
  for(int i=0;i< n;i++) cin >> tab[i];
  for(int i=0;i< n;i++)
     for(int i=0;i< n;i++)
        if(i!=i)
           doublons |= tab[i]==tab[i]; //if(tab[i]==tab[i]) doublons=true;
  delete[] tab:
```

Exemple 4

exemple4.cpp

```
int main(){
  int n:
  cin >> n:
  bool doublons = false:
  string* tab = new string[n];
  for(int i=0;i< n;i++) cin >> tab[i];
  for(int i=0:i<n && !doublons:i++)
     for(int j=i+1;j< n;j++)
        doublons |= tab[i]==tab[i]:
```

delete[] tab:

incrementer.cpp

Introduction

```
void incrementer(bool *tab, unsigned int taille) {
  unsigned int i=0;
  while( (i<taille) && (tab[i]!=0) ) {
   tab[i++] = 0:
  if( i < taille ) {
    tab[i]=1;
```

23 / 28

Tri de sélection

```
1. TRISELECTION(a[0:n-1])
2. pour i=0,\ldots,n-1
3. k \leftarrow i
4. pour j=k+1,\ldots,n-1
5. si a[j] < a[k]
6. k \leftarrow j
7. ÉCHANGER(a[i],a[k])
```

- 1. TriFusion(a[0:n-1])
- 2. si $n \le 1$ retourner
- 3. $m \leftarrow \lfloor n/2 \rfloor$

- 4. TRIFUSION(a[0:m-1])
- 5. TRIFUSION(a[m:n-1])
- 6. créer b[0: n-1]
- 7. $i \leftarrow 0$
- 9. $j \leftarrow m$
- 9. $k \leftarrow 0$
- 10. Tant que i < m et j < n
- 11. $b[k++] \leftarrow a[j] < a[i] ? a[j++] : a[i++]$
- 12. Tant que i < m
- 13. $b[k++] \leftarrow a[i++]$
- 14. Tant que j < n
- 15. $b[k++] \leftarrow a[j++]$
- 16. $a \leftarrow b$

```
int main(){
  int n=0, // n: le nombre de mots lus dans le texte en entrée
     m=0; // m: le nombre d'entrée originale := synonyme dans le dictionnaire de synonymes
  ifstream fsynonymes("synonymes.txt"): /**** Lecture d'entrées dans un dictionnaire sous forme de fichier texte ***/
  fsynonymes >> m; // nombre de synonymes dans le fichiers
  string *originaux = new string[m], *synonymes = new string[m];
  for(int i=0:i < m:i++)
     fsynonymes >> originaux[i] >> synonymes[i];
  while(cin){ /*** Lecture d'un texte depuis l'entrée standard ***/
     string mot:
     cin >> mot:
     for(int i=0:i < m:i++)
       if(mot==originaux[i]){
          mot = synonymes[i]:
          break:
     cout << mot << " ":
     n++:
  cout << endl;
```

Complexité du programme précédent?

- Quelle est la taille du problème ?
- La taille du problème peut se définir avec 2 variables :
 - m: le nombre d'entrée original := synonyme dans le dictionnaire de synonymes.
 - n : le nombre de mots lus dans le texte en entrée.
- On ne connaît pas à l'avance les valeurs de n et m.
- Possibilités :
 - a $m \approx n$.
 - m < n ou même $m \ll n$.
 - m > n ou même $m \gg n$.
- Complexité du programme précédent : O(mn).

