Digitális technika

l. Alapok, bináris számrendszer, kódok

1.1. Alapfogalmak

Digitális jel

csak diszkrét (meghatározott) értékeket vehet fel, szemben egy analóg jellel, amely bármilyen értékeket fel vehet (egy minimum és egy maximum között)

- Sok diszkrét érték is lehetne, de nehéz megvalósítani!!
- Két értékű rendszereket használunk → 0, 1
- Két értékű rendszerek leírására, tervezésére jó a logikai algebra (Boole-algebra),
 a számolás esetén pedig a 2-es számrendszer használható jól

1.1. Alapfogalmak

<u>Logikai értékek</u>

A digitális áramkörök azok logikai hálózatok → leírásukra, tervezésükre a Boole-algebra használatos.

```
Két érték van:
```

hamis -> 0

igaz -> 1

(így használjuk, bár fordítva is hozzárendelhetnénk a számokat)

A gyakorlatban a két értékhez két különböző feszültség tartomány tartozik, ezeket L és H betűkkel jelöljük (Low illetve High, alacsony és magas feszültség tartomány)

 $1 \rightarrow H$

 $0 \rightarrow L$

1.1. Alapfogalmak

<u>Logikai hálózat</u>

Több bemenettel, és akár több kimenettel rendelkező logikai áramkör (digitális áramkör)

Két típusa van:

kombinációs hálózat és sorrendi hálózat (szekvenciális)

A kimenetek csak a bemenetektől függenek. időtől független! A kimenetek nemcsak a bemenetektől függenek, hanem a hálózat állapotától is. időtől függő!

Logikai hálózatok leírása → logikai függvényekkel → 'n' számú kimenet esetén 'n' db függvény (minden kimenethez egy függvény !!)

10-es számrendszer (decimális)

```
10 db számjegy → '0' '1' '2' '3' ... '8' '9' helyi értékek → ... 10000 1000 100 10 1
```

tehát pl. a 7439 azt jelenti hogy van 7db 1000-esünk, meg 4 db 100-asunk, meg 3db 10-esünk és 9db 1-esünk

2-es számrendszer (bináris)

```
csak 2 számjegy !! \rightarrow '0' és '1' helyi értékek \rightarrow ... 256 128 64 32 16 8 4 2 1 pl. 1011_2= 1*8+0*4+1*2+1*1 = 8 + 2 + 1 = 11_{10} h.é. 2 h.é. 1 h.é.
```

pl2.
$$1101101_2 = 1*64 + 1*32 + 0*16 + 1*8 + 1*4 + 0*2 + 1*1 = 64 + 32 + 8 + 4 + 1 = 109_{10}$$

101011010₂=? → 256 128 64 32 16 8 4 2 1 melyikből mennyi van? 1*256 + 0*128 + 1*64 + 0*32 + 1*16 + 1*8 + 0*4 + 1*2 + 0*1 = $256+64+16+8+2=346_{10}$

Bit, byte

```
1db bináris számjegy (helyiérték) → bit (binary digit)
8 bit = byte 1024 bit = 1kilobit
```

<u>10-es</u> → <u>2-es</u> átalakítás

Átváltás 10 számrendszerből 2-es számrendszerbe, ha nem túl nagy szám (<1000) akkor egyszerűen összerakjuk, hogy melyik helyi értékből kell 1db és melyikből 0db

pl.
$$348_{10} = \dots 2$$
? \rightarrow 512 256 128 64 32 16 8 4 2 1 melyikből mennyi kell?

Megoldás: 0101011100₂

10-es → 2-es átalakítás másképpen

Algoritmussal:

sorozatos osztás 2-vel, és a maradékok adják a számjegyeket (az először az utolsó számjegyet kapjuk meg, majd az előtte lévőt, ... és legvégül a legelsőt)

pl.
$$25_{10} = \dots_{2}$$
? $25 \rightarrow 12 \rightarrow 6 \rightarrow 3 \rightarrow 1 \rightarrow 0$
 $1 \rightarrow 0 \rightarrow 1 \rightarrow 1$
1 helyiérték $2 \text{ h.é.} \quad 4 \text{ h.é.} \quad 8 \text{ h.é.} \quad 16 \text{ h.é.}$

eredmény: **11001**₂

16-os számrendszer (hexadecimális)

16 számjegy
$$\rightarrow$$
 '0' '1' '2' '8' '9' 'A' 'B' 'C' 'D' 'E' 'F' helyi értékek \rightarrow 256 16 1
10 11 12 13 14 pl. $3A4_{16}$ = 3*256+10*16+4*1=932 1EC₁₆ = ? \rightarrow 256 16 1 melyikből mennyi van?

hexa → bináris konverzió: számjegyenként 4 bitre!

pl.
$$2E_{16} \rightarrow 00101110_{2}$$
0010
1110

bináris → hexa konverzió: 4 bites csoportokra osztás jobbról, csoportonként hexa számjegyekké alakítás! pl. 1111010111₂ → 3D7₁₆ 3 13 7

Miért használjuk a 16-os számrendszert ? Mert nagy számokat egyszerűbb leírni így (kevesebb számjegy) mint kettes számrendszerben

1.3. Gyakorló feladatok

Végezd el a számrendszerek közötti átváltásokat!

4.
$$10110101011_2 = \dots 16$$

6.
$$5F_{16} = \dots$$

1.3. Gyakorló feladatok

Megoldások

1.
$$11001010_2 = 1*128 + 1*64 + 1*8 + 1*2 = 202$$

2.
$$106_{10} = 64 + 32 + 8 + 2 = 1101010_2$$

3.
$$101011001_2 = 256 + 64 + 16 + 8 + 1 = 345$$

4.
$$10110101011_2 = 5AB_{16}$$

5.
$$189_{10} = 11*16 + 13*1 = BD_{16}$$

6.
$$5F_{16} = 01011111_{2}$$

1.4. Bináris kódok

Kód, kódolás

- Kód: egyezményes jelrendszer

- Kódolás: információ leírása valamilyen kódban

- A kód kódszavakból áll
- lehet:
 - alfanumerikus (betűk, számok)
 - numerikus (csak számok)
- Bináris kódok: csak '0' és '1' szám

Bináris kódok

Csak '0' és '1'

Sokféle lehet!

- 'sima' bináris szám
- egyes komplemens kód
- kettes komplemens kód
- BCD kódok
- egylépéses kódok
- 1 az N-ből kódok
- hiba ellenőrző, hiba javító kódok

1.4. Bináris kódok

1 az N-ből kód

- minden kódszóban csak 1db bit 1-es értékű, a többi 0
 (vagy fordítva is lehet: csak 1db 0 minden kódszóban, a többi 1-es
- hátrány: pazarló (sok bit kell)

1 az 5-ből kód

 $0 \rightarrow 00001$

 $1 \rightarrow 00010$

 $2 \rightarrow 00100$

 $3 \rightarrow 01000$

4 → 10000

1 a 8-ból kód

 $0 \rightarrow 00000001$

 $1 \rightarrow 00000010$

2 → 00000100

 $3 \rightarrow 00001000$

 $4 \rightarrow 00010000$

5 → 00100000

 $6 \rightarrow 01000000$

7 → 10000000

1 a 10-ből kód

 $0 \rightarrow 000000001$

 $1 \rightarrow 000000010$

 $2 \rightarrow 000000100$

 $3 \rightarrow 000001000$

 $4 \rightarrow 0000010000$

5 → 0000100000

 $6 \rightarrow 0001000000$

 $7 \rightarrow 0010000000$

 $8 \rightarrow 010000000$

 $9 \rightarrow 1000000000$

1.5. BCD kódok

BCD kódok

- binárisan kódolt decimális szám
- a tízes számrendszerű számot számjegyenként kódoljuk
 4 bites csoportokban →
- 4 biten csak 10 számot (0-9) kódolunk le (6 kódszót nem használunk)
- több típusa van

Normál BCD kód

N-BCD

- normál bináris helyi értékek!
- 8-4-2-1 súlyozás
 - $0 \rightarrow 0000$
 - $1 \rightarrow 0001$
 - $2 \rightarrow 0010$

. . . .

pl. 4/	=	NBCD ?
0100	0111	\rightarrow = 01000111 _{NBCD}

pl. 2.
$$11001010011_{NBCD} = \dots ?$$

1.5. BCD kódok

Három többletes kód

Stibitz, Excess3

8-4-2-1 súlyozású BCD, De! minden decimális számhoz 3-al nagyobb bináris értéket rendel

$$0 \rightarrow 0011$$
 $1 \rightarrow 0100$
 $2 \rightarrow 0101$
 $3 \rightarrow 0110$
...

pl.
$$47_{10} = \dots Stibitz$$
 ?

 $7+3$

0111 1010 $\rightarrow = 01111010_{Stibitz}$

110	0101	0011	Stibitz = 320 ₁₀
	5-3		

4 bit

0 1	0000 0001	érvénytelen Excess3	
2	0010	kódszó	
3	0011		0
4	0100		1
5	0101	Excess3 kódszó	2
6	0110		3
7	0111		4
8	1000	KUUSZU	5
9	1001		6
10	1010		7
11	1011		8
12	1100		9
13	1101	érvénytelen	
14	1110	Excess3	
15	1111	kódszó	

1.5. BCD kódok

Aiken kód 2-4-2-1 súlyozású BCD (mintha a legelső bit is 2-es helyiértékű volna 8-as helyett)

1.6. Egylépéses kódok

Egylépéses kódok

- ciklikusan permutált kódok
- az egymást követő kódszavak csak 1 bitben térnek el egymástól

Gray kód (2 bites)

$$\begin{array}{c}
0 \rightarrow 00 \\
\underline{1 \rightarrow 01} \\
2 \rightarrow 11 \\
3 \rightarrow 10
\end{array}$$
 tükrözés

Gray kód (3 bites)

$$\begin{array}{c} 0 \to 000 \\ 1 \to 001 \\ 2 \to 011 \\ \hline 3 \to 010 \\ \hline 4 \to 110 \\ 5 \to 111 \\ 6 \to 101 \\ 7 \to 100 \\ \end{array}$$
 tükrözés

Gray kód (4 bites) $0 \rightarrow 0000$

1.6. Egylépéses kódok

Normál Gray kód

N-Gray

- BCD kód is egyben!

1.6. Egylépéses kódok

Johnson kódok

- a 0 értékű kód először jobbról feltöltődik 1-ekkel, majd a csupa
 1 bites kódszó után 0 értékekkel
- több variációja létezik, a bitszámban különböznek

4 bites Johnson kód

 $0 \rightarrow 0000$

 $1 \rightarrow 0001$

 $2 \rightarrow 0011$

 $3 \rightarrow 0111$

4 → **1111**

 $5 \rightarrow 1110$

 $6 \rightarrow 1100$

7 → 1000

5 bites Johnson kód

 $0 \rightarrow 00000$

 $1 \rightarrow 00001$

 $2 \rightarrow 00011$

 $3 \rightarrow 00111$

4 → 01111

5 → 11111

 $6 \rightarrow 11110$

 $7 \rightarrow 11100$

8 → **11000**

 $9 \rightarrow 10000$

1.7. Gyakorló feladatok

1. Végezd el az átváltásokat (10-es számrendszer és BCD kód között)!

a.
$$389_{10} = \dots NBCD$$

c.
$$100010010111_{NBCD} = \dots 1001111_{NBCD}$$

2. Milyen kódban lehetnek az alábbi számok ? (normál BCD vagy Stibitz kód ?) Add meg milyen számot kódolnak (10-es számrendszer)!

1.8. Negatív számok

Negatív számok ábrázolása

```
az előjel ábrázolására/tárolására \rightarrow plusz egy előjel bit (a legelső) előjel bit: 0 \rightarrow pozitív szám 1 \rightarrow negatív szám de ez még nem elég, a műveletvégzés így még okozhat hibákat ! pl. +2 és -2 összeadása \rightarrow 0010+1010=1100 \rightarrow -4 !!! előjel
```

A negatív számokat 2-es komplemens kódban ábrázoljuk 2-es komplemens kód: a megfelelő pozitív szám bitenkénti negáltja, majd utána a számhoz hozzáadunk még 1-et

pl. 4 bites számok (ebből az első előjel)

1.8. Negatív számok

Másik oldalról a negatív számok használata felére csökkenti a használható számtartományt!

pl. ha 8 bites számokkal dolgozunk akkor két eset lehetséges

Csak pozitív számokat használunk! tehát:

 $0 \rightarrow 0000000$

 $1 \rightarrow 00000001$

 $2 \rightarrow 00000010$

 $3 \rightarrow 00000011$

 $4 \rightarrow 00000100$

.

 $253 \rightarrow 11111101$

 $254 \rightarrow 11111110$

255 → 11111111

Pozitív és negatív számokat használunk!

Tehát:

 $0 \to 0000000$

 $1 \rightarrow 00000001$

 $2 \rightarrow 00000010$

.

 $126 \rightarrow 01111110$

 $127 \rightarrow 01111111$

-1 → **11111111**

-2 → **11111110**

 $-3 \rightarrow 11111101$

.

 $-127 \rightarrow 10000001$

 $-128 \rightarrow 10000000$