

Doğrulayıcı Faktör Analizi

Dr. Kubra Atalay Kabasakal **Bahar 2023**

-			

Veri Okuma ve Model

```
library(openxlsx)
yasamdoyum <- read.xlsx("yasamdoyum.xlsx")

model_1_v1 <-
"okul =~ NA*okul1 + okul2 + okul3
kisi =~ NA*kisi1 + kisi2
arkadas =~ NA*arkadas1 + arkadas2
aile =~ NA*aile1 + aile2 + aile3
kisi ~~ 1*kisi
arkadas ~~ 1*arkadas
aile ~~ 1*aile"</pre>
```

Ölçme Değişmezliği Modelleri

- Belirli bir özelliğin gruplar arasında karşılaştırılması yapılırken, söz konusu özelliği ölçmek üzere geliştirilen ölçme araçlarından alınan puanların karşılaştırılabilir olması için öncelikle ölçme aracının gruplar arasında ölçme değişmezliğini (measurement invariance) sağlanması gerekir.
- Ölçme değişmezliği, gizil değişkenler ve gözlenen değişkenler arasındaki ilişkinin gruplar arasında aynı olmasıdır.

Ölçme Değişmezliği Modelleri

- Ölçme değişmezliği, çoklu grup doğrulayıcı faktör analizi (ÇG-DFA) ile incelenebilir. Çoklu grup doğrulayıcı faktör analizinin temel amacı bir grup göstergenin farklı gruplarda aynı yapıyı ölçüp ölçmediğinin değerlendirilmesidir.
- Bir ölçme aracı bir grupta diğer gruba göre faklı bir özelliği ölçüyorsa, ölçme aracının yapı yanlılığına (construct bias) sahip olduğu söylenebilir.
- Yapı yanlılığı söz konusuysa, grup üyeliği DFA modelindeki göstergeler ve faktörler arasındaki ilişkilere etki eder.

Ölçme Değişmezliği Modelleri

- 1. Şekil değişmezliği (configural invariance) modeli
- 2. Zayıf değişmezlik (weak invariance) modeli
- 3. Güçlü değişmezlik (strong invariance) modeli
- 4. Katı değişmezlik (strict invariance) modeli

Şekil değişmezliği (configural /pattern invariance)

- Gruplar aynı genel faktör yapısına sahip mi?
- en az kısıtlayıcı model
- model veri ile uyumlu değilse, hiç bir temel düzeyde geçerli olmaz.

Şekil Değişmezlik

Grup 1	Grup 2
$y_{11s} = \mu_{11} + \lambda_{11} F_{1s} + e_{11s}$	$y_{12s} = \mu_{12} + \lambda_{12} F_{1s} + e_{12s}$
	$y_{22s} = \mu_{22} + \lambda_{22} F_{1s} + e_{22s}$
$y_{31s} = \mu_{31} + \lambda_{31} F_{1s} + e_{31s}$	$y_{32s} = \mu_{32} + \lambda_{32} F_{1s} + e_{32s}$
$y_{41s} = \mu_{41} + \lambda_{41} F_{2s} + e_{41s}$	$y_{42s} = \mu_{42} + \lambda_{42} F_{2s} + e_{42s}$
$y_{51s} = \mu_{51} + \lambda_{51} F_{2s} + e_{51s}$	$y_{52s} = \mu_{52} + \lambda_{52} F_{2s} + e_{52s}$
$y_{61s} = \mu_{61} + \lambda_{61} F_{6s} + e_{61s}$	$y_{62s} = \mu_{62} + \lambda_{62} F_{2s} + e_{62s}$

Alt indislerin ilki madde, ikincisi grup için kullanılmıştır.

$$sd = 54 - (12\mu - 12\sigma_e^2 - 12\lambda + 0\sigma_F^2 + 2\sigma_{F_{12}} + 0K_F) = 16$$

```
{factor kovaryansı hesaplanıyor ancak faktor ortalaması 0,
factor varyansı 1 olarak sabitlenmiştir.
}
```

- Zayıf Değişmezlik (Metric/Weak factorial invariance)
 - Gruplar aynı faktör yüklerine sahip mi?
 - her bir göstergenin yükü (standartlaştırılmış katsayısı üzerinde gruplarda eşitlik kısıtı getirilir.

- Güçlü Değişmezlik (Strong/Scalar invariance)
 - Gruplar aynı gösterge sabitlerine sahip mi?
 - eşit standartlaştırılmış kesen değere sahip mi?
- Katı Değişmezlik
 - Gruplar aynı artık varyanslara sahip mi?

Özet

Ölçme Değişmezliği Hiyerarşik Modellerinde Serbest Tahminlenen ve Sabitlenen Parametreler [Gregorich, 2006]

Model	Değişmzelik Testi	Kısıtlanan Parametre
Sekil	Madde/Faktor grupları	
Zayıf	+Faktor yukleri	Faktör varyans ve kovaryansları
Guclu	+Madde Sabitleri	Faktör ve gözlenen degisken ortalamaları
Katı	+Madde artık varyansları	Gozlenen varyans ve kovaryanslar

Özdeş faktör yapısını eş zamanlı test ediniz.

Faktör yüklerinin eşitliğini test ediniz.

```
weak <- cfa(model_1_v1, data=yasamdoyum, group = "cinsiyet",</pre>
group.equal=c("loadings"))
# bicimsel degimezlik
fitmeasures(configural, fit.measures = fit)
## chisq df pvalue rmsea srmr
                                       cfi
## 94.063 56.000 0.001 0.073 0.061 0.931
# zayıf degimezlik
fitmeasures(weak, fit.measures = fit)
  chisq
               df pvalue
                                             cfi
##
                           rmsea
                                    srmr
## 108.865 66.000
                   0.001
                           0.071
                                   0.082
                                           0.922
```

Modeller arası uyumu degerlendirme

```
library(semoutput)
sem_modelcomp(weak, configural)
```

Model Comparison

Model	df	AIC	BIC	BF	P(Model Data)	Chi Square	Chi Square Diff	df Diff	р
weak	66	6932.579	7159.22	658389088	1	108.865	NA	NA	NA
configural	56	6937.777	7199.83	0	0	94.063	14.802	10	0.139

Gösterge sabitlerinin eşitliğini test ediniz.

```
strong <- cfa(model_1_v1, data=yasamdoyum,</pre>
               group = "cinsiyet",
               group.equal=c("loadings","intercepts"))
# zayıf degimezlik
fitmeasures(weak, fit.measures = fit)
 chisq
            df pvalue
                                          cfi
                       rmsea
                               srmr
108.865 66.000
                0.001
                        0.071
                                0.082
                                        0.922
# guclu degimezlik
fitmeasures(strong, fit.measures = fit)
 chisq
            df pvalue
                                          cfi
                        rmsea
                                 srmr
114.658 72.000 0.001
                        0.068
                                0.084
                                        0.922
```

Modeller arası uyumu degerlendirme

sem_modelcomp(strong, weak)

Model Comparison

Model	df	AIC	BIC	BF	P(Model Data)	Chi Square	Chi Square Diff	df Diff	р
strong	72	6926.371	7131.765	915809.9	1	114.658	NA	NA	NA
weak	66	6932.579	7159.220	0.0	0	108.865	5.792	6	0.447

##

```
library(semTools)
measurementInvariance(model = model_1_v1,
                      data = yasamdoyum,
                      group = "cinsivet")
##
## Measurement invariance models:
##
## Model 1 : fit.configural
## Model 2 : fit.loadings
## Model 3 : fit.intercepts
## Model 4: fit.means
##
##
## Chi-Squared Difference Test
##
##
                 Df
                             BIC
                                  Chisq Chisq diff RMSEA Df diff Pr(>Chisq)
                       AIC
## fit.configural 56 6937.8 7199.8
                                  94.063
## fit.loadings 66 6932.6 7159.2 108.865 14.8020 0.06137
                                                                     0.139448
## fit.intercepts 72 6926.4 7131.8 114.658 5.7925 0.00000
                                                                     0.446837
## fit.means 76 6938.6 7129.8 134.901 20.2437 0.17847
                                                                     0.000447 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

.teşekkürler