---Paradigma: Algoritmos genéticos/evolutivos--

Tipos de Aprendizaje: paradigmas (recordatorio) Aprendizaje inductivo Aprendizaje analítico o deductivo Algoritmos genéticos Métodos conexionistas (enfoque subsimbólico) Clasificaciones del aprendizaje: Realimentación: supervisado Paradigma: Algoritmos genéticos Qué aprende: encuentra solución a un problema o función Simulan la evolución de las especies: Crear nuevas generaciones de soluciones Evolucionan mediante selección, cruce y mutaciones Las evalúa y se queda con la mejor

Algoritmos genéticos: Conceptos

- Población: Conjunto de individuos
 - estados generados aleatoriamente (N posible soluciones)
 - Cada nueva generación tiene el mismo N
 - ☐ Las operaciones se aplican a todas los individuos de la población anterior
- Codificación Individuo: (cromosoma)
 - Dígitos
 - □ Cadena de 1's y 0's
 - Letras
- Condición parada: num. generaciones, una calidad, convergencia
- Esquema: patrones de bits que permanecen en los mejores individuos
 - ☐ Ej: dígito 5 y 6 son "1".

Algoritmos genéticos: Pasos del Algoritmo

- Paso inicial : Generar aleatoriamente la población.
- Asignar calidad a cada solución de la población (f(i) ajuste)
- Crear una nueva población de N soluciones nuevas, operaciones:
 - Selección: Escoger pareja (ruleta) y decidir si emparejamiento (cruce)
 - *Cruce*: Intercambiar un conjunto de genes (*punto de cruce*)
 - C. Mutación: cambiar bits de cada cromosoma (m. rate)
 - Se hace aleatoriamente y usando una probabilidad (*ratio de mutación*)
 - Si obtienes dos veces el mismo: conservas ambas copias
 - Se repiten estos pasos hasta tener N nuevas soluciones
- 3. Comprobar que no se han alcanzado las condiciones de parada
 - Un número de generaciones máximo ó
 - b) Alcanza éxito: condición de solución óptima
- 4. Volver a 1.

OPCIONAL: 1.1 Conservar la *élite* : Ordenar la población por calidad, conservar los X mejores, y aplicar a los N - X el resto de los pasos hasta obtener N – X soluciones nuevas

Algoritmos genéticos: Selección con Ruleta

- Para escoger qué individuos se reproducen en siguiente generación
- Función de idoneidad o ajuste o "fitness" o adaptación: f(i)
 - ☐ Mide la bondad o calidad del estado o individuo (línea "adaptación")
 - Más cerca de la solución o una solución mejor
- Se usa probabilidad de ser escogido p_i = f(i) / f_{TOTAL}
- Para calcular f_{TOTAL}: es la suma de la f(i) de cada individuo (= 20 en ej.)
- ☐ Puntuación acumulada $q_0 := 0$, ... $q_i := p_1 + ... + p_i$
- □ Para cada individuo a seleccionar:
 - □ Se genera num. aleatorio 0 <= a <= 1</p>
 - \blacksquare Se selecciona el individuo (i) que cumpla $q_{i-1} < a < q_i$
- Ejemplo: a = 0.8751 selecciono x_7 , a = 0.1391 selecciono x_1

	Individuo	1	2	3	4	5	6	7	8
f(i)	Adaptación	4	1	1	2	3	2	5	2
	p_i	0.2	0.05	0.05	0.1	0.15	0.1	0.25	0.1
	q_i	0.2	0.25	0.3	0.4	0.55	0.65	0.9	1.0

f(1)=4/20

Tema 5 - 4

Algoritmos genéticos: Después de seleccionar

- Decidir si dos cromosomas seleccionados se emparejan
- □ **Pe**: Probabilidad de emparejamiento (crossover rate) :
 - ☐ Es un dato que hace de umbral: 0.7 por ejemplo
 - ☐ Se elige **a**, un num. aleatorio.
 - ☐ Si a <= Pe se emparejan y pasan a hacer cruce.
 - En caso contrario sigue con la mutación

Qué puntos de cruce

existen?: decide el dominio.

Condición: genes enteros.

- ☐ Crossover rate: Punto cruce en la cadena desde donde cambiar genes
 - ☐ Elige a valor al azar, escoge el punto de cruce según...
 - \square en qué intervalo cae: x / (num.genes 1) donde x : [1..genes]
 - □ ej.: hay 8 posibles puntos para 9 genes 1/8...8/8
 - ☐ Si a está entre 0 y 1/8 se cruza después del gen 1º
- □ Pm Ratio de mutación: a partir de este umbral el gen muta (dato,ej: 0.1)
 - Para cada cromosoma:
 - ☐ Para cada gen: se elige **a** núm. aleatorio
 - □ Si **a** < **Pm**, ese gen muta (cómo muta es un dato)
 - -> Definir cómo muta es específico del dominio del problema

Algoritmos genéticos: Ejemplo 8 reinas

- □ Población (a) : Combinaciones de 8 reinas en un tablero
 - Cada gen es una reina
 - Cada cromosoma o individuo es una combinación de 8 reinas
- ☐ Codificación Individuo: (cromosoma) Dos posibles modos
 - A) Lista de 8 dígitos con valor de 1 al 8 : (1,2,3,4,5,6,7,8)
 - Su posición en la lista es la columna
 - Su valor es la fila
 - B) Cadena de 1's y 0's . Total = 8 * 4 = 32 bits

IAIC - Curso 2010-11

Algoritmos genéticos: Ejemplo 8 reinas

- ☐ Función de idoneidad o fitness (b):
 - ☐ Número de parejas de reinas que NO se atacan (max = solución 28)
- Con esa función se determina la probabilidad de ser escogido
- Selección: (c) se selecciona una pareja
- Cruce: (d) intercambio genes en la pareja con proporción azar (0.7)
- ☐ Mutación: (e) mover una reina cualquiera a una fila cualquiera,
 - ☐ Al azar (ratio de mutación 0.1)

Algoritmos genéticos : uso y limitaciones

- Para problemas de optimización:
 - ☐ Diseño de circuitos, asignación de horarios, funciones matemáticas
- No requiren conocimiento profundo del dominio
 - Aunque mejoran rendimiento si se añade ese conocimiento:
 - Restricciones sobre el dominio para escoger cromosomas mejores:
 - En la primera generación o/y en las posteriores
- Algoritmo
 - Búsqueda en paralelo por el espacio de conceptos,
 - Donde cada línea de proceso realiza un algoritmo de escalada
- Limitaciones
 - Optimos locales: colocar individuos en distintos puntos alejados
 - Impiden localización diversificada de soluciones
 - en problemas que lo requieren

Algoritmos genéticos: demos

□ Demo: dada una superficie con círculos de distintos radios, encontrar sitio para otro circulo de radio lo más grande posible

Genes: centro y radio

Fitness: tamaño del círculo

http://www.Al-junkie.com

Dado un pequeño circuito, saber qué hacer en cada momento

☐ Un gen por cada sector, que indica qué movimiento hacer

☐ Fitness: cuánto de lejos hemos llegado

Buckland, M. "Building Better Algorithms", Al Wisdom Programming 2 (en la biblioteca; código fuente y ejecutable en el CD)

Genetic Algorithm Viewer 1.0 GAV

http://www.rennard.org/alife/english/gavgb.html

LIBRO: Algoritmos Evolutivos: Un enfoque práctico (L.Araujo, C. Cervigón, RA-MA

Tipos de aprendizaje: según el paradigma utilizado

- Aprendizaje inductivo
- Aprendizaje analítico
- Algoritmos genéticos
- Métodos conexionistas (enfoque subsimbólico)
 - Redes Neuronales

Métodos conexionistas - Redes Neuronales

- Simulan modelos biológicos de neuronas
- Procesan señales que entran (valores no codificados ni símbolos)
- Propagan salida a otras neuronas

Redes Neuronales : Componentes de Neuronas

- \Box Entradas $\mathbf{x_i}$: señales del exterior (ejemplos $\mathbf{x_p}$) o de otras neuronas
- Pesos w_i: importancia de la entradas x_i
- ☐ Umbral u: (bias,sesgo)
 - Para normalizar el valor con el que se activa la neurona
 - \blacksquare Es otra entrada $\mathbf{x}_{n+1} = 1$ con peso \mathbf{w}_{n+1} aleatorio inicial
- Objetivo : combinación "mejor" de pesos
 - Búsqueda en un espacio de pesos
 - □ Se obtiene entrenando la neurona con ejemplos (se sabe si son + o -)
 - Compromiso entre: tiempo, error y nivel de generalización
- Hablaremos del Perceptrón
 - Todas las señales de entrada y salidas son 0 ó 1
 - No hay unidades (neuronas) ocultas
 - Funciones de activación usadas :
 - escalón o escalón bipolar (esta última en transpa anterior)

Redes Neuronales : Componentes de Neuronas

- ☐ Ejemplo entrenamiento <patrón entrada, salida esperada>
 - □ Patrón de entrada $xp = \{x1, x2, ..., xn\}$
 - □ Salida esperada fd(k) (es un dato)

1 si el patrón pertenece a la clase A

-1 si es de la clase B

Función de entrada: suma ponderada de entradas de

$$\sum_{i=1}^{n} w_i x_i + w_{n+1}$$

- ☐ Función de activación **f**: (discriminante)
 - Decide cuando activar la neurona basada en la función de entrada
 - Varios tipos: escalón, sigmoides y otras
- □ Salida observada **y**: es lo que devuelve **f** : {0, 1} ó {-1, 1}
 - ☐ Función activación aplicada a la suma ponderada de entradas de xp

$$\mathbf{y} = \mathbf{f} \left(\sum_{i=1}^{n} w_i x_i + w_{n+1} \right)$$

Redes Neuronales : Funciones de Activación f(x)

☐ La x representa el valor obtenido de la función de entrada

Redes Neuronales : Regla de Aprendizaje

- ☐ Cómo se obtienen los *pesos nuevos* (Rossenblatt)
- α : tasa de aprendizaje (es dato)
 - □ [0 .. 1] Velocidad de aprendizaje,
 - Aumenta acercándose a 1
- ☐ Cálculo (k es el paso en el que se recalcula el valor)
 - \square Error = salida esperada salida observada = [fd(k) y(k)]
 - \square $w_{NUEVO} = w_{ANTIGUO} + \alpha * Error * entrada_i$
 - $w_i(k+1) = w_i(k) + \alpha(k)^* \text{ Error } x_i$
- lacktriangle También se actualiza igual el umbral $oldsymbol{u}$ (es w_{n+1} ó w_0)
 - $u(k+1) = u(k) + \alpha(k)^*$ Error

F. entrada

 $\sum_{i=1}^{n} w_i x_i + w_{n+1}$

Redes Neuronales : Algoritmo

- 1.- Inicialización de los pesos y del umbral: asignar valores aleatorios a cada pesos w_i i = 1,2,..,n y al umbral w_{n+1}
- 2.- Presentación un ejemplo con el par < Entrada, Salida esperada> $\langle xp = \{x1, x2, ..., xn\} \rangle$, fd(k) >
- 3.- Cálculo de la salida actual: (incluye w_{n+1} como otra entrada más) $y(k) = f[w^t xp],$ (f: escalón en este caso)
- 4.- Adaptación de los pesos:
 - \square Error = [fd(k) y(k)]
 - ☐ Si el error es 0 no se adaptan los pesos
- 5.- Si no hay convergencia (pesos han cambiado) volver al paso 2 (repite hasta que los pesos no cambien en ningún ejemplo

Redes Neuronales : Algoritmo , Ejemplo

Aplicar el algoritmo al siguiente ejemplo biclase (asumir $\alpha = \frac{1}{2}$)

Pesos iniciales: $w_1 = w_2 = w_3 = 0$

Vectores patrón aumentados:

$$c_1$$
: $x_1 = (0,0,1)^t$ Salida esperada $x_2 = (0,1,1)^t$ $fd_i = 1$

$$c_2$$
: $x_3 = (1,0,1)^t$ $x_4 = (1,1,1)^t$ $fd_i = -1$

Usar F. Activación Bipolar: 1 para x > 0,
-1 para el resto

Redes Neuronales : Algoritmo, Ejemplo

- **1.** Inicialización: $w^{t}(1) = (0,0,0); \quad \alpha = 0.5$
- **3.1** Patrón $\mathbf{x} = \{0,0,1\}$: $\mathbf{w}^t \mathbf{x} = O(0) + O(0) + O(1) = 0$; $\mathbf{y} = \mathbf{f}(0) = -1$, error = $(\mathbf{fdi} \mathbf{y}) = 1 + 1 = 2$
 - **4.1** Pesos modificados: $\mathbf{w}^{t}(2) = \mathbf{w}^{t}(1) + \mathbf{x} = (0,0,1)$
- **3.2** Patrón $x = \{0,1,1\}$: $w^t x = 1$; y = 1, error = (fdi y)=1 -1= 0 ⇒ **4.2** Pesos **no** modificados: $w^t(3) = w^t(2)$
- **3.3** Patrón $\mathbf{x} = \{1,0,1\}$: $\mathbf{w}^t \mathbf{x} = 1$; $\mathbf{y} = 1$, error = (fdi \mathbf{y})=-1 1= -2 **4.3** Pesos modificados: $\mathbf{w}^t(4) = \mathbf{w}^t(3)$ $\mathbf{x} = (-1,0,0)$
- **3.4** Patrón $x = \{1,1,1\}$: $w^t x = -1$; y = -1, error = (fdi y)=-1 +1= 0 **4.4** Pesos **no** modificados: $w^t(5) = w^t(4)$
- ☐ Repetir otra serie de entrenamiento con los mismos patrones:

Llegando en 10^a iteración a: $\mathbf{w}^t(10) = (-2,0,1)$

Redes Neuronales: Limitación

Función de decisión del Ejemplo:

...pero No existe recta que separe estas clases:

...necesitamos dos rectas para separar estas clases

... y cómo se consiguen? Tema 5 - 19

Redes Neuronales: Perceptrón Multicapa

Ejemplo: solución para XOR

Pesos

$$W_{11} = W_{12} = W_{21} = W_{22} = W_{31} = 1; W_{32} = -1.5$$

 $\theta_1 = 0.5; \theta_2 = 1.5; \theta_3 = 0.5$

Salidas de las neuronas

(valores umbrales = -1)

$$y_1 = f(w_{11}x_1 + w_{12}x_2 - \theta_1) = f(x_1 + x_2 - 0.5)$$

$$y_2 = f(w_{21}x_1 + w_{22}x_2 - \theta_2) = f(x_1 + x_2 - 1.5)$$

$$y_3 = f(w_{31}y_1 + w_{32}y_2 - \theta_3) = f(y_1 - 1.5 y_2 - 0.5)$$

Resultados

x_1	χ_2	v_1	V2	$v_3 = XOR$
0	0	f(-0.5) = 0	f(-1.5) = 0	f(-0.5) = 0
0	1	<i>o</i> , ,	f(-0.5) = 0	0
1	0		• ,	f(0.5) = 1
1	1	f(1.5) = 1		f(-1.0) = 0

Redes Neuronales: Applet de una Neurona

Tema 5 - 21

Redes Neuronales : Aplicaciones

- ☐ Reconoce números escritos a mano, 12 x 16 pixels = 193 entradas
- Neuronas: 8 en capa de entrada, 12 en capa oculta y 10 en la de salida

http://sund.de/netze/applets/BPN/bpn2/ochre.html

LIBRO: Redes Neuronales Artificiales (J.R.Hilera, V.J. Martínez) Ra-Ma

Uso de redes neuronales: Aplicaciones

- Muy buenos resultados en problemas en los que los datos de entrenamientos proceden de sensores complejos que contienen ruido (información de cámaras o micrófonos)
- ALVINN: sistema de conducción automático

