MPRO 2024-2025 PROJ

Buzet Quentin, Dzik Eliel

1 Modélisation statique

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} t_{ij} \cdot x_{ij}^{k}$$

s.t.

$$(1) \quad \sum_{i=1}^{n} \sum_{i=1}^{n} d_i \cdot x_{ij}^k \le D \cdot y^k \quad \forall k \in [1, n]$$

(2)
$$\sum_{k=1}^{n} \sum_{i=1}^{n} x_{ij}^{k} = 1 \quad \forall i \in [2, n]$$

(3)
$$\sum_{k=1}^{n} \sum_{i=1}^{n} x_{ij}^{k} = 1 \quad \forall j \in [2, n]$$

(4)
$$u_j^k \ge u_i^k + 1 - M(1 - x_{ij}^k) \quad \forall i, j, k \in [1, n]$$

(5)
$$\sum_{k=1}^{n} \sum_{j=2}^{n} x_{1j}^{k} = \sum_{k=1}^{n} y^{k}$$

(6)
$$\sum_{k=1}^{n} \sum_{i=2}^{n} x_{i1}^{k} = \sum_{k=1}^{n} y^{k}$$

(7)
$$y^k \in \{0, 1\}, \quad x_{ij}^k \in \{0, 1\}, \quad u_i^k \in [1, n] \quad \forall i, j, k \in [1, n]$$

Pour l'équation (4), on peut prendre M = n.

Cette modélisation comprends $O(n^3)$ variables et contraintes.

2 Modélisation robuste

$$\min_{x,y,u} \quad \max_{\delta^1,\delta^2} \sum_{k=1}^n \sum_{i=1}^n \sum_{j=1}^n (t_{ij} + \delta^1_{ij}(\hat{t}_i + \hat{t}_j) + \delta^2_{ij}(\hat{t}_i \cdot \hat{t}_j)) \cdot x^k_{ij}$$

st

$$(1) \quad \sum_{i=1}^{n} \sum_{j=1}^{n} d_i \cdot x_{ij}^k \le D \cdot y^k \quad \forall k \in [1, n]$$

(2)
$$\sum_{k=1}^{n} \sum_{j=1}^{n} x_{ij}^{k} = 1 \quad \forall i \in [2, n]$$

(3)
$$\sum_{k=1}^{n} \sum_{i=1}^{n} x_{ij}^{k} = 1 \quad \forall j \in [2, n]$$

(4)
$$u_j^k \ge u_i^k + 1 - M(1 - x_{ij}^k) \quad \forall i, j, k \in [1, n]$$

(5)
$$\sum_{k=1}^{n} \sum_{j=2}^{n} x_{1j}^{k} = \sum_{k=1}^{n} y^{k}$$

(6)
$$\sum_{k=1}^{n} \sum_{i=2}^{n} x_{i1}^{k} = \sum_{k=1}^{n} y^{k}$$

(7)
$$y^k \in \{0, 1\}, \quad x_{ij}^k \in \{0, 1\}, \quad u_i^k \in [1, n] \quad \forall i, j, k \in [1, n]$$

$$(8) \quad \sum_{i,j} \delta_{ij}^1 \le T$$

$$(9) \quad \sum_{i,j} \delta_{ij}^2 \le T^2$$

$$(10) \quad 0 \le \delta_{ij}^1 \le 1, \quad 0 \le \delta_{ij}^2 \le 2 \quad \forall i, j \in A$$

3 Résolution par plans coupants et LazyCallback

a) On introduit une nouvelle variable z.

$$\min_{x,y,u,z} z$$

s.t.

(0)
$$z \ge \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} (t_{ij} + \delta_{ij}^{1}(\hat{t}_{i} + \hat{t}_{j}) + \delta_{ij}^{2}(\hat{t}_{i} \cdot \hat{t}_{j})) \cdot x_{ij}^{k} \quad \forall i, j \in A$$

$$(1) \quad \sum_{i=1}^{n} \sum_{j=1}^{n} d_i \cdot x_{ij}^k \le D \cdot y^k \quad \forall k \in [1, n]$$

(2)
$$\sum_{k=1}^{n} \sum_{j=1}^{n} x_{ij}^{k} = 1 \quad \forall i \in [2, n]$$

(3)
$$\sum_{k=1}^{n} \sum_{i=1}^{n} x_{ij}^{k} = 1 \quad \forall j \in [2, n]$$

(4)
$$u_j^k \ge u_i^k + 1 - M(1 - x_{ij}^k) \quad \forall i, j, k \in [1, n]$$

(5)
$$\sum_{k=1}^{n} \sum_{j=2}^{n} x_{1j}^{k} = \sum_{k=1}^{n} y^{k}$$

(6)
$$\sum_{k=1}^{n} \sum_{i=2}^{n} x_{i1}^{k} = \sum_{k=1}^{n} y^{k}$$

(7)
$$y^k \in \{0,1\}, \quad x_{ij}^k \in \{0,1\}, \quad u_i^k \in [1,n] \quad \forall i,j,k \in [1,n]$$

(8)
$$\sum_{i,j} \delta_{ij}^1 \le T$$

$$(9) \quad \sum_{i,j} \delta_{ij}^2 \le T^2$$

$$(10) \quad 0 \le \delta_{ij}^1 \le 1, \quad 0 \le \delta_{ij}^2 \le 2 \quad \forall i, j \in A$$

- b) On peut choisir $U_{init}^* = \{t = (t_{ij})_{ij \in A}\} = \{(\delta^1 = 0, \delta^2 = 0)\}$, les temps des trajets sans prendre en compte les incertitudes.
- c) On résout le problème maître, cela fournit un x^*, y^*, u^* et z^* .

$$(SP_0) \max_{\delta^1, \delta^2} \sum_{k=1}^n \sum_{i=1}^n \sum_{j=1}^n (t_{ij} + \delta_{ij}^1(\hat{t}_i + \hat{t}_j) + \delta_{ij}^2(\hat{t}_i \cdot \hat{t}_j)) \cdot x_{ij}^{k*}$$

s.t.

(8)
$$\sum_{i,j} \delta_{ij}^1 \le T$$

$$(9) \quad \sum_{i,j} \delta_{ij}^2 \le T^2$$

(10)
$$0 \le \delta_{ij}^1 \le 1$$
, $0 \le \delta_{ij}^2 \le 2 \quad \forall i, j \in A$

La résolution de (SP_0) fournit δ^{1*} et δ^{2*} .

d) Le problème maître est optimal si

$$(0) z^* \ge \sum_{k=1}^n \sum_{i=1}^n \sum_{j=1}^n (t_{ij} + \delta_{ij}^{1*}(\hat{t}_i + \hat{t}_j) + \delta_{ij}^{2*}(\hat{t}_i \cdot \hat{t}_j)) \cdot x_{ij}^{k*} \forall i, j \in A$$

e) Si

$$(0) z^* \leq \sum_{k=1}^n \sum_{i=1}^n \sum_{i=1}^n (t_{ij} + \delta_{ij}^{1*}(\hat{t}_i + \hat{t}_j) + \delta_{ij}^{2*}(\hat{t}_i \cdot \hat{t}_j)) \cdot x_{ij}^{k*} \forall i, j \in A,$$

on ajoute une coupe

$$z \ge \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} (t_{ij} + \delta_{ij}^{1*}(\hat{t}_i + \hat{t}_j) + \delta_{ij}^{2*}(\hat{t}_i \cdot \hat{t}_j)) \cdot x_{ij}^k \quad \forall i, j \in A.$$

On a donc une famille de coupes, qui remplace (0):

$$z \ge \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} (t_{ij} + \delta_{ij}^{1'}(\hat{t}_i + \hat{t}_j) + \delta_{ij}^{2'}(\hat{t}_i \cdot \hat{t}_j)) \cdot x_{ij}^k \quad \forall (\delta^{1'}, \delta^{2'}) \in U^*.$$

Initialement, $U^* = U^*_{init}$, puis à chaque ajoute de coupe, on fait $U^* \leftarrow U^* \cup \{(\delta^{1*}, \delta^{2*})\}$. On écrit dont le problème maître comme :

$$(MP) \min_{x,y,u,z} z$$

s.t.

$$(0') \quad z \ge \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} (t_{ij} + \delta_{ij}^{1'}(\hat{t}_i + \hat{t}_j) + \delta_{ij}^{2'}(\hat{t}_i \cdot \hat{t}_j)) \cdot x_{ij}^k \quad \forall (\delta^{1'}, \delta^{2'}) \in U^*$$

$$(1) \quad \sum_{i=1}^{n} \sum_{j=1}^{n} d_i \cdot x_{ij}^k \le D \cdot y^k \quad \forall k \in [1, n]$$

(2)
$$\sum_{k=1}^{n} \sum_{j=1}^{n} x_{ij}^{k} = 1 \quad \forall i \in [2, n]$$

(3)
$$\sum_{k=1}^{n} \sum_{i=1}^{n} x_{ij}^{k} = 1 \quad \forall j \in [2, n]$$

(4)
$$u_j^k \ge u_i^k + 1 - M(1 - x_{ij}^k) \quad \forall i, j, k \in [1, n]$$

(5)
$$\sum_{k=1}^{n} \sum_{j=2}^{n} x_{1j}^{k} = \sum_{k=1}^{n} y^{k}$$

(6)
$$\sum_{k=1}^{n} \sum_{i=2}^{n} x_{i1}^{k} = \sum_{k=1}^{n} y^{k}$$

(7)
$$y^k \in \{0, 1\}, \quad x_{ij}^k \in \{0, 1\}, \quad u_i^k \in [1, n] \quad \forall i, j, k \in [1, n]$$

4 Résolution par dualisation

a) La fonction objectif peut se décomposer comme suit :

$$\sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} (t_{ij} + \delta_{ij}^{1}(\hat{t}_{i} + \hat{t}_{j}) + \delta_{ij}^{2}(\hat{t}_{i} \cdot \hat{t}_{j})) \cdot x_{ij}^{k} = \sum_{k=1}^{n} (\sum_{i=1}^{n} \sum_{j=1}^{n} t_{ij} \cdot x_{ij}^{k} + \sum_{i=1}^{n} \sum_{j=1}^{n} ((\hat{t}_{i} + \hat{t}_{j}) \cdot \sum_{k=1}^{n} x_{ij}^{k}) \delta_{ij}^{1} + \sum_{i=1}^{n} \sum_{j=1}^{n} ((\hat{t}_{i}\hat{t}_{j}) \cdot \sum_{k=1}^{n} x_{ij}^{k}) \delta_{ij}^{2})$$

b) Le problème interne associé aux variables δ^1, δ^2 s'écrit :

$$\max_{\delta^{1}, \delta^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} ((\hat{t}_{i} + \hat{t}_{j}) \cdot \sum_{k=1}^{n} x_{ij}^{k}) \delta_{ij}^{1} + \sum_{i=1}^{n} \sum_{j=1}^{n} ((\hat{t}_{i}\hat{t}_{j}) \cdot \sum_{k=1}^{n} x_{ij}^{k}) \delta_{ij}^{2}$$
s.t
$$(1) \quad \sum_{i,j} \delta_{ij}^{1} \leq T$$

$$(2) \quad \sum_{i,j} \delta_{ij}^{2} \leq T^{2}$$

$$(3) \quad \delta_{ij}^{1} \leq 1, \quad \delta_{ij}^{2} \leq 2 \quad \forall i, j \in A$$

c) Le dual du problème ci-dessus est :

$$\min \quad T \cdot \lambda^{1} + T^{2} \cdot \lambda + \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i,j} + 2\beta_{i,j}$$
s.t.
$$(1) \quad (\hat{t}_{i} + \hat{t}_{j}) \cdot \sum_{k=1}^{n} x_{ij}^{k} \leq \lambda^{1} + \alpha_{i,j} \quad \forall i, j \in A$$

$$(2) \quad (\hat{t}_{i} \cdot \hat{t}_{j}) \cdot \sum_{k=1}^{n} x_{ij}^{k} \leq \lambda^{2} + \beta_{i,j} \quad \forall i, j \in A$$

$$(3) \quad \lambda^{1}, \lambda^{2}, \alpha_{i,j}, \beta_{i,j} \geq 0 \quad \forall i, j \in A$$

d) On obtient le PLNE suivant :

min
$$T \cdot \lambda^1 + T^2 \cdot \lambda + \sum_{i=1}^n \sum_{j=1}^n (\alpha_{i,j} + 2\beta_{i,j} + \sum_{k=1}^n (t_{ij} \cdot x_{ij}^k))$$

s.t.

$$(1) \quad \sum_{i=1}^{n} \sum_{j=1}^{n} d_i \cdot x_{ij}^k \le D \cdot y^k \quad \forall k \in [1, n]$$

(2)
$$\sum_{k=1}^{n} \sum_{j=1}^{n} x_{ij}^{k} = 1 \quad \forall i \in [2, n]$$

(3)
$$\sum_{k=1}^{n} \sum_{i=1}^{n} x_{ij}^{k} = 1 \quad \forall j \in [2, n]$$

(4)
$$u_i^k \ge u_i^k + 1 - M(1 - x_{ij}^k) \quad \forall i, j, k \in [1, n]$$

(5)
$$\sum_{k=1}^{n} \sum_{j=2}^{n} x_{1j}^{k} = \sum_{k=1}^{n} y^{k}$$

(6)
$$\sum_{k=1}^{n} \sum_{i=2}^{n} x_{i1}^{k} = \sum_{k=1}^{n} y^{k}$$

(7)
$$y^k \in \{0, 1\}, \quad x_{ij}^k \in \{0, 1\}, \quad u_i^k \in [1, n] \quad \forall i, j, k \in [1, n]$$

(8)
$$(\hat{t}_i + \hat{t}_j) \cdot \sum_{k=1}^n x_{ij}^k \le \lambda^1 + \alpha_{i,j} \quad \forall i, j \in A$$

(9)
$$(\hat{t}_i \cdot \hat{t}_j) \cdot \sum_{k=1}^n x_{ij}^k \le \lambda^2 + \beta_{i,j} \quad \forall i, j \in A$$

(10)
$$\lambda^1, \lambda^2, \alpha_{i,j}, \beta_{i,j} \ge 0 \quad \forall i, j \in A$$

où:

 λ^1 est la variable duale de la contrainte : $\sum_{i,j} \delta^1_{ij} \leq T$

 λ^2 est la variable duale de la contrainte : $\sum_{i,j} \delta_{ij}^2 \leq T^2$

 α_{ij} est la variable duale de la contrainte : $\delta^1_{ij} \leq 1$

 β_{ij} est la variable duale de la contrainte : $\delta_{ij}^2 \leq 2$

On reste comme dans le cas statique en $O(n^3)$, bien que l'on ait ajouté des variables et des contraintes. Pour la suite, nous utiliserons les formulations du corrigé, sauf pour la formulation non-compacte.

Formulation non-compacte

min
$$T \cdot \lambda^1 + T^2 \cdot \lambda + \sum_{i=1}^n \sum_{j=1}^n (\alpha_{i,j} + 2\beta_{i,j} + \sum_{k=1}^n (t_{ij} \cdot x_{ij}^k))$$

s.t.

$$\sum_{j=1, j \neq i}^{n} x_{ij} = 1, \quad \forall i \in [2, n]$$

$$\sum_{i=1, i \neq j}^{n} x_{ij} = 1, \quad \forall j \in [2, n]$$

$$\sum_{j=2}^{n} x_{1j} = \sum_{i=2}^{n} x_{i1}$$

$$x_{ii} = 0, \quad \forall i \in [1, n]$$

$$y_{ij} \ge d_i \cdot x_{ij}, \quad \forall i, j \in [2, n], i \ne j$$

$$y_{ij} \le (C - d_i) \cdot x_{ij}, \quad \forall i, j \in [2, n], i \ne j$$

$$\sum_{j=1, j \ne i}^{n} y_{ji} = d_i + \sum_{j=1, j \ne i}^{n} y_{ij}, \quad \forall i \in [2, n]$$

$$x_{ij} \in \{0, 1\}, \quad \forall i, j \in [1, n]$$

 $x_{ij} \in \{0, 1\}, \quad \forall i, j \in [1, n]$

 $y_{ij} \ge 0, \quad \forall i, j \in [1, n]$

(Ajout dynamique des contraintes de sous-tour)

$$\sum_{i \in S, j \in S, i \neq j} x_{ij} \le |S| - 1, \quad \forall S \subset [2, n]$$

(Variables continues pour les charges transportées)

(Interdiction des sous-tours)

(8)
$$(\hat{t}_i + \hat{t}_j) \cdot \sum_{k=1}^n x_{ij}^k \le \lambda^1 + \alpha_{i,j} \quad \forall i, j \in A$$

(9)
$$(\hat{t}_i \cdot \hat{t}_j) \cdot \sum_{k=1}^n x_{ij}^k \le \lambda^2 + \beta_{i,j} \quad \forall i, j \in A$$

(10)
$$\lambda^1, \lambda^2, \alpha_{i,j}, \beta_{i,j} \ge 0 \quad \forall i, j \in A$$

Pour résoudre la formulation non-compacte, on fait de la génération de contrainte pour traiter les sous-tours.

5 Resultats

Les méthodes que nous avons présentées précedemment étaient celles que nous avions trouvées lors de la phase de recherche. Pour les résultats suivants, nous sommes repartis des formulation du corrigé.

Dans le tableau de résultats suivant, nous avons limité le temps de calcul par instance à 3mn (180 secondes). Nous avons considéré d'une part qu'il n'était pas pertinent d'afficher ainsi les résultats pour la formulation non-compacte puisque si on coupe la résolution, l'objectif n'a pas forcément de sens car il n'y a pas toutes les contraintes qui ont été ajoutées. D'autre part, nous avons calculé le prix de la robustesse uniquement pour les instances pour lesquelles le calcul s'est terminé pour le problème robuste.

Instance	PR (%)	Branch-and	-cut	Plans	coupants	Dualisation	
		Gap(%)	Time (s)	Time (s)	$\operatorname{Gap}(\%)$	Gap (%)	Time (s)
n = 5 euclidien	10.4	0	0.05	0.45	0	0	0.03
n = 5 non-euclidien	17.4	0	6.12	5.87	0	0	0.04
n = 6 euclidien	2.2	0	0.07	0.39	0	0	0.03
n = 6 non-euclidien	29.5	0	0.13	0.28	0	0	0.03
n = 7 euclidien	5.0	0	0.6	0.22	0	0	0.11
n = 7 non-euclidien	11.3	0	0.09	1.05	0	0	0.03
n = 8 euclidien	5.7	0	0.21	1.08	0	0	0.07
n = 8 non-euclidien	40.0	0	0.18	0.56	0	0	0.06
n = 9 euclidien	18.5	0	0.77	7.56	0	0	0.08
n = 9 non-euclidien	15.3	0	0.36	0.49	0	0	0.08
n = 10 euclidien	12.2	0	0.92	9.25	0	0	0.36
n = 10 non-euclidien	22.6	0	0.43	1.39	0	0	0.2
n = 11 euclidien	14.8	0	14.87	180	0	0	1.24
n = 11 non-euclidien	34.2	0	3.85	4.73	0	0	0.21
n = 12 euclidien	11.8	0	170	223.94	0	0	63.57
n = 12 non-euclidien	15	0	77.8	0.61	0	0	0.28
n = 13 euclidien	19.7	19.2	Time out	185.64	0	0	5.76
n = 13 non-euclidien	20.9	0	5.18	2.68	0	0	0.75
n = 14 euclidien	16.7	0	159.5	0.18	18.49	22.9	time out
n = 14 non-euclidien	36.9	0	1.00	205.06	0	0	13.16
n = 15 euclidien		18.7	Time out	274.82	0	0	72.6
n = 15 non-euclidien	14.7	0	4.74	0.61	0	0	0.38
n = 16 euclidien	8.2	57.3	Time out	236.43	14.92	0	31.77
n = 16 non-euclidien	133.9	18.7	Time out 0.15	0.15	0	0	146.1
n = 17 euclidien	-	27	-	180.09	36.71	39.3	time out
n = 17 non-euclidien		25.1	-	189.40	0	0	-
n = 18 euclidien		63.6			34.72	17.1	-
n = 18 non-euclidien		43.9			16.96	41.8	-
n = 19 euclidien		56.4			24.51	25.1	-
n = 19 non-euclidien		55			30.60	15.4	-
n = 20 euclidien		32.3			37.64	33.8	-
n = 20 non-euclidien		56.4			24.66	4.4	-
n = 25 euclidien		49			40.56	40.7	-
n = 25 non-euclidien		48.9			43.89	49.4	-
n = 30 euclidien		52.8			56.73	52.3	-
n = 30 non-euclidien		76.9			38.91	51.7	-
n = 35 euclidien		74.6			62.51	61.2	-
n = 35 non-euclidien		72.3			41.81	58	-
n = 40 euclidien		No value	-		39.91	38.1	-
n = 40 non-euclidien		No value			61.71	77.1	

Instance	PR (%)	Branch-	and-cut	Plans	coupants	Dualisation	
		Gap(%)	Time (s)	Time (s)	$\operatorname{Gap}(\%)$	Gap (%)	Time (s)
n = 45 euclidien		No value	Time out		61.1	57.6	-
n=45 non-euclidien					34.49	46.4	-
n = 50 euclidien					41.10	41.4	-
n = 50 non-euclidien					27.51	49.5	-
n = 55 euclidien					47.97	47.1	-
n = 55 non-euclidien					31.16	52.2	-
n = 60 euclidien					63.31	61.1	-
n = 60 non-euclidien					58.49	67.2	-
n = 65 euclidien					63.06	62	-
n = 65 non-euclidien					68.43	60.2	-
n = 70 euclidien					36.52	40.9	-
n = 70 non-euclidien					90.0	78.8	-
n = 75 euclidien					60.65	40.9	-
n = 75 non-euclidien					53.34	65.1	-
n = 80 euclidien					53.14	50.5	-
n = 80 non-euclidien					56.41	52.2	-
n = 85 euclidien					37.02	40.3	-
n = 85 non-euclidien					87.96	86.7	-
n = 90 euclidien					78.93	75.5	-
n = 90 non-euclidien					73.93	82	-
n = 95 euclidien					76.48	72.2	-
n = 95 non-euclidien					78.93	81.6	-
n = 100 euclidien					180.39	83.5	-
n = 100 non-euclidien					180.55	45.8	-

Nous pouvons observer qu'en règle général, sur les instances qui terminent, le calcul des instances euclidiennes est plus long que celui pour les instances non-euclidiennes. Cela est probablement dû aux symétries dans le premier cas : parcourir un chemin dans un sens ou l'autre est équivalent dans les instances euclidiennes. Néanmoins, il ne semble pas y avoir de tendance claire quant à la comparaison du gap entre les deux types d'instances pour la méthode par dualisation.

Un des avantages de cette dernière méthode est quelle fournit tout le temps une solution même si on l'arrête au milieu ce qui n'est pas le cas de "branch-and-cut" par exemple. Sur ce diagramme, nous pouvons clairement observer que la méthode par dualisation est la plus efficace, tandis que les cutting planes et le branch-and-cut traintent les instances plus lentement.

Dans les méthodes branch-and-cut et pans coupants, on doit résoudre le sous-problème suivant.

$$(SP_{0}) \max_{\delta^{1}, \delta^{2}} \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} (t_{ij} + \delta_{ij}^{1}(\hat{t}_{i} + \hat{t}_{j}) + \delta_{ij}^{2}(\hat{t}_{i} \cdot \hat{t}_{j})) \cdot x_{ij}^{k*}$$

$$s.t.$$

$$(8) \sum_{i,j} \delta_{ij}^{1} \leq T$$

$$(9) \sum_{i,j} \delta_{ij}^{2} \leq T^{2}$$

$$(10) \quad 0 \leq \delta_{ij}^{1} \leq 1, \quad 0 \leq \delta_{ij}^{2} \leq 2 \quad \forall i, j \in A$$

Cela peut se faire en utilisant CPLEX ou en utilisant un algorithme glouton. En effet, le sous-problème correspond à deux problèmes du sac-à-dos indépendants en variables continus. On peut donc trier les $(\hat{t}_i + \hat{t}_j)x_{ij}^{k*}$ de manière décroissante et affecter les $\delta_{i,j}^1$ successivement de telle sorte à respecter la contrainte de budget de T. On peut faire de même en triant les $\hat{t}_i\hat{t}_jx_{ij}^{k*}$ et en affectant les $\delta_{i,j}^2$ successivement de telle sorte à respecter la contrainte de budget de T^2 . Cette algorithme nécessite $O(n^2 \log n)$ opérations. On s'aperçoit dans les résultats que c'est plus lent que d'utiliser CPLEX.

FIGURE 1 – Diagramme de performances