Data Acquisition

Importing Libraries

For dealing with file, I have imorted "pandas" libray, for numbers "numpy", for visualization purposes "seaborn and matplotlib is being used

In [46]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Read Data

We use pandas.read_csv() function to read the csv file. In the bracket, we put the file path along with a quotation mark, so that pandas will read the file into a data frame from that address.

In [2]:

```
df=pd.read_csv("C:/Users/a/Downloads/dataframe_.csv")
```

In [5]:

```
df.head(10)
```

Out[5]:

	input	output
0	-122.740667	-130.572085
1	-121.531419	-129.938929
2	-134.917019	-130.141832
3	-120.605951	-125.760932
4	-129.894781	-112.785214
5	-134.366669	-116.000000
6	-115.563739	-126.267621
7	-132.080161	-132.032206
8	-133.366669	-114.000000
9	-119.524112	-94.419855

In [4]:

```
df.tail(10)
```

Out[4]:

	input	output
1687	41.117227	-107.611418
1688	26.692772	-111.741529
1689	42.929340	-93.571967
1690	24.633331	-91.000000
1691	11.632918	-72.708790
1692	25.410184	-76.380902
1693	29.537304	-82.796934
1694	31.633331	-87.000000
1695	29.091458	-104.943052
1696	17.145296	-101.726894

In [6]:

```
df.dtypes
```

Out[6]:

input float64
output float64
dtype: object

In [10]:

df.describe

Out[10]:

```
<bound method NDFrame.describe of</pre>
                                               input
                                                           output
     -122.740667 -130.572085
0
1
     -121.531419 -129.938929
2
     -134.917019 -130.141832
3
     -120.605951 -125.760932
4
     -129.894781 -112.785214
             . . .
. . .
       25.410184 -76.380902
1692
1693
       29.537304 -82.796934
1694
       31.633331 -87.000000
       29.091458 -104.943052
1695
1696
       17.145296 -101.726894
[1697 rows x 2 columns]>
```

```
In [12]:
```

```
df.info
```

Out[12]:

```
<bound method DataFrame.info of</pre>
                                            input
                                                       output
     -122.740667 -130.572085
1
     -121.531419 -129.938929
2
    -134.917019 -130.141832
3
     -120.605951 -125.760932
    -129.894781 -112.785214
1692 25.410184 -76.380902
       29.537304 -82.796934
1693
1694
       31.633331 -87.000000
       29.091458 -104.943052
1695
1696
      17.145296 -101.726894
[1697 rows x 2 columns]>
```

In [11]:

```
df.describe()
```

Out[11]:

	input	output
count	1696.000000	1696.000000
mean	1.159933	-34.088017
std	79.005970	65.771112
min	-134.962839	-132.422167
25%	-63.386506	-80.026767
50%	10.195194	-50.470981
75%	70.264109	-11.000000
max	134.605775	134.425495

Data Wrangling

Identifying and handling missing values

We are going to search for null values. Sometimes null values are represented by "?" so for searching this I have used "isin" function.

```
In [14]:
df.isin(['?']).any()
Out[14]:
input
          False
output
          False
dtype: bool
In [25]:
missing_data=df.isnull()
In [24]:
df.isnull().sum(axis=0)
Out[24]:
input
          1
output
          1
dtype: int64
```

Count missing values in each column

```
In [26]:
```

```
for column in missing_data.columns.values.tolist():
    print(column)
    print (missing_data[column].value_counts())
    print("")
input
False
         1696
True
Name: input, dtype: int64
output
False
```

1696 True

Name: output, dtype: int64

Based on the summary above, each column has 1697 rows of data, two columns containing missing data:

1. "input": 1 missing data 2. "output": 1 missing data

Dealing with missing data

- 1. drop data
 - a. drop the whole row
 - b. drop the whole column
- 2. replace data
 - a. replace it by mean

- b. replace it by frequency
- c. replace it based on other functions

Replace by mean

```
In [29]:
avg_input = df["input"].astype("float").mean(axis=0)
print("Average of input:", avg_input)
Average of input: 1.159932645006416
In [30]:
avg_output = df["output"].astype("float").mean(axis=0)
print("Average of output:", avg_output)
Average of output: -34.08801719326943
In [31]:
df['input'].replace(np.nan, avg_input, inplace=True)
df['output'].replace(np.nan, avg_output, inplace=True)
In [32]:
df.isnull().sum()
Out[32]:
input
          0
output
dtype: int64
In [33]:
norm_input= df['input']/df['input'].max()
norm_output = df['output']/df['output'].max()
In [36]:
# print(norm_input)
# print(norm_output)
       -0.971334
0
1
       -0.966624
2
       -0.968134
3
       -0.935544
       -0.839017
1692
       -0.568202
1693
       -0.615932
       -0.647199
1694
       -0.780678
1695
1696
       -0.756753
Name: output, Length: 1697, dtype: float64
```

In [39]:

df.corr()

Out[39]:

	input	output
input	1.000000	0.511776
output	0.511776	1.000000

In [41]:

```
sns.regplot(x="input", y="output", data=df)
```

Out[41]:

<AxesSubplot:xlabel='input', ylabel='output'>

This curve concludes that if input is less than zero than the output goes high but when the input is nearly equal to zero but as the input goes away from zero in positive direction the output again increases.

The group near (-100,100) are the outliers

In [43]:

df.head()

Out[43]:

	input	output
0	-122.740667	-130.572085
1	-121.531419	-129.938929
2	-134.917019	-130.141832
3	-120.605951	-125.760932
4	-129.894781	-112.785214

In [50]:

```
sns.boxplot(df['input'])
```

C:\Users\a\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWa rning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other argum ents without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[50]:

<AxesSubplot:xlabel='input'>

In [49]:

sns.boxplot(df['output'])

C:\Users\a\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWa rning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other argum ents without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[49]:

<AxesSubplot:xlabel='output'>


```
In [55]:

Z_Score = df['input'].mean() / df['input'].std()
# df['input'].mean()
# df['input'].std()
```

In [59]:

```
Z_Score
```

Out[59]:

0.014685912403244402

P Value

```
In [44]:
```

```
from scipy import stats
```

```
In [45]:
```

```
pearson_coef, p_value = stats.pearsonr(df['input'], df['output'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of P =", p
```

The Pearson Correlation Coefficient is 0.5117757004836778 with a P-value of P = 6.280078800910794e-114

Since the p-value is < 0.001, the correlation between input and output is statistically significant, although the linear relationship isn't extremely strong (~ 0.5117)

Linear Regression

```
In [47]:
```

```
from sklearn.linear_model import LinearRegression
```

```
In [48]:
```

```
lm = LinearRegression()
lm
```

Out[48]:

LinearRegression()

In [62]:

```
X = df[['input']]
Y = df['output']
```

```
In [63]:
lm.fit(X,Y)
Out[63]:
LinearRegression()
In [64]:
Yhat=lm.predict(X)
Yhat[0:5]
Out[64]:
array([-86.87518319, -86.35998977, -92.06285051, -85.96569911,
       -89.92315363])
In [65]:
lm.intercept_
Out[65]:
-34.58220008713727
In [66]:
lm.coef_
Out[66]:
array([0.42604447])
                                   Y: Response Variable
```

Linear function:

$$Yhat = a + bX$$

X: Predictor Variables

- a refers to the intercept of the regression line0, in other words: the value of Y when X is 0
- b refers to the slope of the regression line, in other words: the value with which Y changes when X increases by 1 unit

This plot will show a combination of a scattered data points (a **scatter plot**), as well as the fitted **linear regression** line going through the data. This will give us a reasonable estimate of the relationship between the two variables, the strength of the correlation, as well as the direction (positive or negative correlation).

In [67]:

```
width = 12
height = 10
plt.figure(figsize=(width, height))
sns.regplot(x="input", y="output", data=df)
plt.ylim(0,)
```

Out[67]:

(0.0, 147.76787831000001)

The difference between the observed value (y) and the predicted value (Yhat) is called the residual (e). When we look at a regression plot, the residual is the distance from the data point to the fitted regression line.

A residual plot is a graph that shows the residuals on the vertical y-axis and the independent variable on the horizontal x-axis.

We look at the spread of the residuals:

- If the points in a residual plot are **randomly spread out around the x-axis**, then a **linear model is appropriate** for the data. Why is that? Randomly spread out residuals means that the variance is constant, and thus the linear model is a good fit for this data.

In [68]:

```
width = 12
height = 10
plt.figure(figsize=(width, height))
sns.residplot(df['input'], df['output'])
plt.show()
```

C:\Users\a\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWa rning: Pass the following variables as keyword args: x, y. From version 0. 12, the only valid positional argument will be `data`, and passing other a rguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

In [69]:

```
def PlotPolly(model, independent_variable, dependent_variabble, Name):
    x_new = np.linspace(15, 55, 100)
    y_new = model(x_new)

plt.plot(independent_variable, dependent_variabble, '.', x_new, y_new, '-')
    plt.title('Polynomial Fit with Matplotlib for input-output')
    ax = plt.gca()
    ax.set_facecolor((0.898, 0.898, 0.898))
    fig = plt.gcf()
    plt.xlabel(Name)
    plt.ylabel('output')

plt.show()
    plt.close()
```

Polynomial Regression

Polynomial regression is a particular case of the general linear regression model or multiple linear regression models.

We get non-linear relationships by squaring or setting higher-order terms of the predictor variables.

There are different orders of polynomial regression:

```
In [70]:
```

```
x = df['input']
y = df['output']
```

```
In [71]:
```

```
f = np.polyfit(x, y, 3)
p = np.poly1d(f)
print(p)
```

```
3 2
6.004e-05 x + 0.006994 x - 0.1567 x - 72.82
```

In [72]:

```
PlotPolly(p, x, y, 'input')
```


In [73]:

```
np.polyfit(x, y, 3)
```

Out[73]:

array([6.00410571e-05, 6.99436862e-03, -1.56663023e-01, -7.28234061e+0 1])

R-Squared for linear

In [126]:

```
print('The R-square for linear regression is: ', lm.score(X_test, Y_test))
```

The R-square for linear regression is: 0.2645711041890637

In [81]:

```
Yhat=lm.predict(X)
print('The output of the first four predicted value is: ', Yhat[0:4])
```

The output of the first four predicted value is: [-86.87518319 -86.359989 77 -92.06285051 -85.96569911]

In [82]:

from sklearn.metrics import mean_squared_error

Mean Squared error for linear Regression

```
In [127]:

mse = mean_squared_error(df['output'], Yhat)
print('The mean square error of price and predicted value is: ', mse)

The mean square error of price and predicted value is: 3189.076841478018

In [85]:

from sklearn.metrics import r2_score
```

R-Squared value for poly

```
In [86]:

r_squared = r2_score(y, p(x))
print('The R-square value of Polynomial Regression is: ', r_squared)
The R square value is: 0.6540316130306045
```

The R-square value is: 0.6549316129206045

Mean Squared error for Polynomial Regression

```
In [87]:
mean_squared_error(df['output'], p(x))
Out[87]:
1490.9511222852
In [88]:
new_input=np.arange(1, 100, 1).reshape(-1, 1)
In [89]:
yhat=lm.predict(new_input)
yhat[0:5]
Out[89]:
array([-34.15615561, -33.73011114, -33.30406666, -32.87802219, -32.45197772])
```

```
In [90]:
```

```
plt.plot(new_input, yhat)
plt.show()
```


The model with higher R-Squared value is a better fit for the data.

The model with the smallest MSE value is a better fit for the data

Decision Trees

```
In [105]:
```

from sklearn.tree import DecisionTreeRegressor

In [111]:

```
dc=DecisionTreeRegressor()
dc
```

Out[111]:

DecisionTreeRegressor()

In [109]:

```
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X,Y)
```

In [112]:

```
dc.fit(X_train, Y_train)
```

Out[112]:

DecisionTreeRegressor()

```
In [113]:
```

```
dc.score(X_test, Y_test)
```

Out[113]:

0.7144256652803515

The testing score for Decision Trees is 71.4%

```
In [121]:
```

```
Yhat_dc=dc.predict(X)
Yhat_dc[0:5]
```

Out[121]:

```
array([-130.5720846, -129.9389289, -130.1418321, -125.7609321, -112.7852137])
```

In [122]:

```
mse_dc = mean_squared_error(df['output'], Yhat_dc)
print('The mean square error of price and predicted value is: ', mse_dc)
```

The mean square error of price and predicted value is: 373.0123870891099

Neural Network

```
In [134]:
```

```
from sklearn.neural_network import MLPRegressor
from sklearn.datasets import make_regression
```

In [135]:

```
ml=MLPRegressor()
ml
```

Out[135]:

MLPRegressor()

In [136]:

```
ml.fit(X_train,Y_train)
```

C:\Users\a\anaconda3\lib\site-packages\sklearn\neural_network_multilayer_
perceptron.py:614: ConvergenceWarning: Stochastic Optimizer: Maximum itera
tions (200) reached and the optimization hasn't converged yet.
 warnings.warn(

Out[136]:

MLPRegressor()

```
In [137]:
```

ml.score(X_test, Y_test)

Out[137]:

0.583198962850687

The testing score for Neural Network is 58.31%

For the given dataset I have used following Algorithms:

- 1. Algorithms
 - a. Linear Regression
 - b. Poly Regression
 - c. Decision Trees
 - d. Neural Network Regressor.

Among the four algorithms the Rsquared for Decision Trees is maximum with 0.71442. Higher the value best is the model

- a. Linear Regression R-Squared: 0.2645711041890637
- b. Poly Regression R-Squared: 0.6549316129206045
- c. Decision Trees R-Squared:0.7144256652803515
- d. Neural Network Regressor R-Squared:0.583198962850687.

Hence the best algorithm for given dataset is decision Trees.

localhost:8888/notebooks/Untitled Folder 1/Selvin Salve Hackathon.ipynb#