

MINISTERUL EDUCAȚIEI, CERCETĂRII, TINERETULUI ȘI SPORTULUI INSPECTORATUL ȘCOLAR JUDEȚEAN CONSTANȚA OLIMPIADA NAȚIONALĂ DE INFORMATICĂ 5 – 11 APRILIE 2010

PROBA 1

xor - Descrierea soluției

Filip Cristian Buruiană, Universitatea Politehnică București

Soluția trivială calculează răspunsul pentru fiecare submatrice în parte iterând efectiv elementele submatricei. O astfel de abordare nu se încadrează în timp și obtine 20 de puncte.

Pentru obținerea a 40 de puncte, putem realiza o preprocesare folosind sume parțiale pe matrice. Notând cu $S_{i,j}$ suma elementelor din submatricea de coordonate (0, 0, i, j), cu i și j între 2000, putem calcula răspunsul pentru fiecare query în timp constant. Astfel, răspunsul pentru submatricea de coordonate (L_1 , C_1 , L_2 , C_2) va fi $S_{L2,C2} - S_{L2,C1-1} - S_{L1-1,C2} + S_{L1-1,C1-1}$.

Soluția care obține 100 de puncte calculează suma unei submatrice în timp logaritmic în dimensiunea unei laturi. Se observă că putem calcula eficient $S_{i,j}$ fără a parcurge efectiv toată matricea. Calculăm răspunsul independent pentru fiecare bit în parte și apoi combinăm rezultatele. Astfel, pentru bitul k trebuie să determinăm câte perechi (x, y), cu x între 0 și j, au al k-lea bit diferit (fie este 0 în prima coordonată și 1 în a doua, fie invers). Dacă notăm cu NR numărul de perechi în care bitul k este diferit, atunci vom aduna la soluție $2^k * NR$. În general, trebuie să mai determinăm de câte ori apare bitul 0 pe poziția k în numerele de la 0 la i. Notând acest număr cu counti, obținem relația:

 $NR = count_i * (j-count_i) + (i-count_i) * count_i$.

Observăm că bitul k se schimbă alternativ din 2^k în 2^k atunci când parcurgem numerele naturale începând cu 0. Astfel, putem calcula count_i în O(1), folosind câteva observații matematice.