Organization and Introduction

- The Art of managing complexity
 - Abstraction: Hiding details when they are not important
 - Discipline: Intentionally restricting your design choices to that you can work more productively at higher abstraction levels
 - The three -Y's
 - * Hierarchy: A system is divided into modules of smaller complex-
 - * Modularity: Having well defined functions and interfaces
 - * Regularity: Encouraging uniformity, so modules can be easily re-used
- Bit: Binary digit

Binary Numbers

• Binary to decimal conversion

$$\begin{aligned} 10011_2 &= 2^4 \times 1 + 2^3 \times 0 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1 \\ &= 16 \times 1 + 8 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 1 \\ &= 16 + 0 + 0 + 2 + 1 = 19_{10} \end{aligned}$$

• Convert decimal to binary (roughly). Example with 47_{10} to binary

```
2^6 = 64
           is 64 < 47?
                                0
                                     do nothing
                          no
 2^5 = 32
           is 32 < 47?
                                      47 - 32 = 15
                          yes
                                1
 2^4 = 16 is 16 \le 15?
                                0
                                     do nothing
                          no
 2^3 = 8
           is 8 \le 15?
                          yes
                                1
                                       15-8=7
 2^2 = 4
           is 4 \le 7?
                                1
                                        7-4=3
                          yes
 2^1 = 2
             is 2 \le 3?
                          yes
                                1
                                        3-2=1
 2^0 = 1
           is 1 \le 1?
                                1 1-1=0; done!
                          yes
\Rightarrow 47_{10} to binary is 0101111_2
```

- Binary values and range
 - N-digit decimal number
 - * How many values: 10^N
 - * Range: $[0, 10^N 1]$
 - * Example (3-digit number): $10^3 = 1000$ possible values, range: [0, 999]
 - − N−bit binary number
 - * How many values: 2^N

- * Range: $[0, 2^N 1]$
- * Example (3-digit number): $2^3 = 8$ possible values, range: $[0,7] = [000_2 \text{ to } 111_2]$
- Hexadecimal (Base-16) Numbers

Decimal	Hexadecimal	Binary	Decimal	Hexadecimal	Binary
0	0	0000	8	8	1000
1	1	0001	9	9	1001
2	2	0010	10	A	1010
3	3	0011	11	В	1011
4	4	0100	12	$^{\mathrm{C}}$	1100
5	5	0101	13	D	1101
6	6	0110	14	${f E}$	1110
7	7	0111	15	\mathbf{F}	1111

• Bits, Bytes, Nibbles...

Where MSB=Most significant Bit and LSB=Least significant Bit

- Addition in base two works exactly the same as in base 10, using carries
- Overflow
 - Digital systems operate on a fixed number of bits
 - Addition overflows when the result is too big to fit in the available number of bits
- Signed Binary Numbers
 - Sign/Magnitude Numbers
 - * 1 sign bit, N-1 magnitude bits
 - * Sign bit is the most significant (left-most) bit
 - * Example: 4-bit sign/mag repr. of ± 6 :
 - +6 = 0110
 - -6 = 1110
 - * Range of an N-bit sign/magnitude number: $[-(2^{N-1}-1), 2^{N-1}-1]$
 - * Problems:
 - · Addition doesn't work
 - · Two representations of 0 (± 0): 1000 and 0000
 - · Introduces complexity in the processor design
 - One's Complement Numbers

* A negative number is formed by reversing the bits of the positive number (MSB still indicates the sign of the integer)

	. (,		.0./				
2^7	2^{6}	2^{5}	2^4	2^3	2^2	2^1	2^{0}		One's Cor	npl.	Unsigned	
0	0	0	0	0	0	0	0	=	0		0	
0	0	0	0	0	0	0	1	=	1		1	
0	0	0	0	0	0	1	0	=	2		2	
0	1	1	1	1	1	1	1	=	127		127	
1	0	0	0	0	0	0	0	=	-127		128	
1	0	0	0	0	0	0	1	=	-126		129	
1	1	1	1	1	1	0	1	=	-2		253	
1	1	1	1	1	1	1	0	=	-1		254	
1	1	1	1	1	1	1	1	=	-0		255	

- * Range of n-bit number: $[-2^{n-1}-1, 2^{n-1}-1]$, 8 bits: [-127, 127]
- * Addition: Done using binary addition with end-around carry. If there is a carry out of the MSB of the sum, this bit must be added to the LSB of the sum
- Two's Complement Numbers
 - * Don't have same problems as sign/magnitude numbers:
 - · addition works
 - \cdot Single representation for 0
 - * Has advantages over one's complement:
 - \cdot Has a single 0 representation
 - \cdot Eliminates the end-around carry operation required in one's complement addition.
 - * A negative number is formed by reversing the bits of the positive number (MSB still indicates the sign of the integer) and adding 1:

2^7	2^{6}	2^5	2^4	2^3	2^2	2^1	2^0		Two's Con	npl.	Unsigned
0	0	0	0	0	0	0	0	=	0		0
0	0	0	0	0	0	0	1	=	1		1
0	0	0	0	0	0	1	0	=	2		2
0	1	1	1	1	1	1	1	=	127		127
1	0	0	0	0	0	0	0	=	-128		128
1	0	0	0	0	0	0	1	=	-127		129
1	1	1	1	1	1	0	1	=	-3		253
1	1	1	1	1	1	1	0	=	-2		254
1	1	1	1	1	1	1	1	=	-1		255

- * Same as unsigned binary, but the most significant bit (MSB) has value of -2^{N-1}
 - · Most positive 4-bit number: 0111
 - · Most negative 4-bit number: 1000
- * The most significant bit still indicates the sign (1=neg., 0=pos.)
- * Range of an *N*-bit two's comp. number: $[-2^{N-1}, 2^{N-1} 1]$, 8 bits: [-128, 127]

- Increasing bit width (assume from N to M, with M > N):
 - Sign-extension
 - * Sign bit is copied into MSB
 - * Number value remains the same
 - * Give correct result for two's compl. numbers
 - * Example 1:
 - · 4-bit representation of 3 = 0011
 - \cdot 8-bit sign-extended value: $\mathbf{000000}11$
 - * Example 2:
 - · 4-bit representation of -5 = 1011
 - \cdot 8-bit sign-extended value: **11111**011
 - Zero-extension
 - * Zeros are copied into MSB
 - * Value will change for negative numbers
 - * Example 1:
 - · 4-bit value: $0011_2 = 3_{10}$
 - 8-bit zero-extended value: $00000011_2 = 3_{10}$
 - * Example 2:
 - 4-bit value: $1011_2 = -5_{10}$
 - · 8-bit zero-extended value: $\mathbf{0000}1011_2 = 11_{\mathbf{10}}$

3 Short Introduction to Electrical Engineering (EE Perspective)

- The goal of circuit design is to optimize:
 - Area: Net circuit area is proportional to the cost of the device
 - Speed/Throughput: We want circuits that work faster, or do more
 - Power/Energy
 - * Mobile devices need to work with a limited power supply
 - * High performance devices dissipate more than $100W/cm^2$
 - Design time
 - * Designers are expensive
 - * The competition will not wait for you
- (Frank's) Principles for engineering
 - Good engineers are lazy: They do not want to work unnecessarily, be creative
 - They know how to ask the question "why"?: take nothing for granted
 - Engineering is not a religion: Use what works best for you
 - Keep it simple and stupid: Engineers' job is to manage complexity

- Building blocks for microchips
 - Conductors: Metals (Aluminium, Copper)
 - Insulators: Glass (SiO₂), Air
 - Semiconductors: Silicon (Si), Germanium (Ge)
- N-type Doping: Add extra electron (negatively charged), zone becomes negatively charged
- P-type Doping: Remove electron, zone becomes positively charged
- Semiconductors:
 - You can "Engineer" its properties, i.e.
 - * Make it P type by injecting type-III elements (b, Ga, In)
 - * Make it N type by injecting elements from type-V (P, As)
 - You can combine P and N regions to each other, from a pure semiconductor
 - Allows you to make interesting electrical devices (Diodes, Transistors, Thrystors)
- pMOS is a P type transistor, nMOS an N type transistors; combined they are a CMOS
- CMOS (Properties)
 - No input current: Capacitive input, no resistive path from the input
 - No current when output is at logic levels: Little static power, current is needed only when switching
 - Electrical properties determined directly by geometry: A transistor that is 2 times larger drives twice the current
 - Very simple to manufacture: pMOS and nMOS can be manufactures on the same substrate
- CMOS Gate Structure
 - The general form used to construct any inverting logic, such as: NOT, NAND, NOR
 - * The networks may consist of transistors in series or parallel
 - * When transistors are in parallel, the network is ON if either transistor is ON
 - * When transistors are in series, the network is ON only if all transistors are ON
 - In a proper logic gate: One of the networks should be ON and the other OFF at any given time
 - Use the rule of conduction complements:
 - * When nMOS transistors are in series, the pMOS transistor must be in parallel

Maybe add a definition or a better explanation \ast When nMOS transistors are in parallel, the pMOS transistors must be in series

Add picture on slide 34, 03 - EEPerspective

- Logic Gates
 - Perform logic functions: Inversion (NOT), AND, OR, NAND, NOR, etc.
 - Single input: NOT gate, buffer
 - Two-input: AND, OR, XOR, NAND, NOR, XNOR

Buffer	AND	OR	XOR
A — Z	A D z	$\frac{A}{B}$ \sum z	А) z
A Z 0 0 1 1	A B Z 0 0 0 0 1 0 1 0 0 1 1 1	A B Z 0 0 0 0 1 1 1 0 1 1 1 1	A B Z 0 0 0 0 1 1 1 0 1 1 1 0
Inverter	NAND	NOR	XNOR
A	A Do- z	A	А —) z
A Z 0 1 1 0	A B Z 0 0 1 0 1 1 1 0 1	A B Z 0 0 1 0 1 0 1 0 0 1 1 0	A B Z 0 0 1 0 1 0 1 0 0 1 1 1

- Multiple-Input:
 - * 3, 4, or even more input AND, OR, XOR gates
 - * Compound gates
 - · AND-OR
 - · OR-AND
 - · AND-OR-INVERT
 - · OR-AND-INVERT
 - * Other cells: Multiplexers and Adders
- Logic Levels
 - Define ranges of discrete voltages to represent 1 and 0 (i.e. 0 for ground and 1 for 5V (V_{DD})) and allow for noise.
- Noise: Is anything that degrades the signal (i.e. resistance, power supply noise, etc.)
- Moore's Law
 - "Number of transistors that can be manufactured doubles roughly every 18 months." Gordon Moore, 1965
- How do we keep Moore's Law:

- Manufacturing smaller structures: some structures are already a few atoms in size
- Developing materials with better properties
- Optimizing the manufacturing steps
- New technologies
- Power consumption
 - Power = Energy consumed per unit time
 - Two types of power consumption:
 - 1. Dynamic power consumption: Power to charge transistor gate capacitances

$$P_{\rm dynamic} = \frac{1}{2}CV_{DD}^2 f$$

2. Static power consumption: Power consumed when no gates are switching, caused by the leakage current

$$P_{\text{static}} = I_{DD}V_{DD}$$

4 Combinational Circuits: Theory

- Circuit elements. A circuit consists of:
 - Inputs
 - Outputs
 - Nodes (wires): Connections between I/O and circuit elements. To count them, look at
 - * Outputs of every circuit elements
 - * Inputs to the entire circuit
 - Circuit elements
- Types of Logic Circuits
 - Combinational Logic
 - * Memoryless
 - * Outputs determined by current values of inputs
 - * In some books called Combinatorial Logic
 - Sequential Logic
 - * Has Memory
 - * Outputs determined by previous and current values of inputs
- Rules of Combinational Composition
 - Every circuit element is itself combinational
 - Every node of the circuit is either
 - * Designated as an input to the circuit
 - * Connects to exactly one output terminal of a circuit element

_	The circuit contains no cyclic paths: Every path through the circuit visits each node at most once	
_	Boolean Equations ¹	
1 m	nore in depth look, use the material from Diskrete Mathematik	