

PLANO DE MONITORAMENTO DA DINÂMICA COSTEIRA E DA RECARGA SEDIMENTAR DA RESTINGA

Obras de fixação da barra do rio Itapocu, Município Barra Velha/SC

Processo de Licenciamento Ambiental FATMA DIV/686/CRN

Prefeitura Municipal de Barra Velha

Genos Consultoria Ambiental Ltda ME

Outubro de 2017

Sumário

1	Car	racterização Geral	3
	1.1	Implantação do empreendimento	4
	1.2	Dinâmica Costeira e da Recarga Sedimentar	5
2	Obj	jetivos	8
3	Me	etodologia	9
	3.1	Definição dos perfis praias	9
	3.2	Caracterização física dos perfis praiais	10
	3.3	Caracterização granulométrica dos perfis praiais	10
	3.4	Comparação de imagens de satélite	11
	3.1	Periodicidade das campanhas	11
	3.1	1.1 Início da continuação da construção do molhe Sul	12
	3.1	1.2 Término da continuação da construção do molhe Sul	12
	3.1	1.3 Após a finalização total da obra	13
4	Ref	ferências bibliográficas	15
Δ	nexo A	A – Ficha de Caracterização – Perfil Praial	16

APRESENTAÇÃO

Em atendimento às exigências da Licença Ambiental de Instalação (LAI) 040/2008, emitida pela Fundação do Meio Ambiente – FATMA, processo DIV/686/CRN é apresentado este documento, intitulado **Plano de Monitoramento da Dinâmica Costeira e da Recarga Sedimentar da Restinga.**

O alvo do plano é a obra de abertura e fixação da barra através da construção de molhes, sob a responsabilidade da **Prefeitura Municipal de Barra Velha**, a fim de beneficiar a comunidade local, tendo como base o Estudo de Impacto Ambiental para a abertura da barra na foz do rio Itapocu, em Barra Velha/SC, elaborado em Abril de 2004.

1 CARACTERIZAÇÃO GERAL

Na região de Barra Velha e Araquari encontra-se o estuário do Rio Itapocu, que deságua na porção central de uma laguna estreita e paralela à linha de costa com cerca de 10km de extensão (Schettini & Carvalho, 1998). No local foram construídos os molhes Norte e Sul, que está parcialmente construído.

A construção desses molhes consiste em uma estrutura de pedra, sendo que uma extremidade fica em terra e a outra no mar. As principais funções destas estruturas são proteger a região da ação das ondas e estabilizar a entrada de um canal. Além disto, a fixação da foz ou barra também tem a finalidade de facilitar a drenagem hídrica de bacia hidrográfica, e estabilizar as áreas ao entorno do local (Zasso, 2007).

A construção dos molhes "se faz importante por motivos econômicos e sociais, uma vez que a foz do rio Itapocu migra ao longo do cordão arenoso (restinga) prejudicando a comunidade ribeirinha que depende da passagem por este canal para atingir o oceano e assim desenvolver suas atividades pesqueiras, as quais, juntamente com o turismo, são responsáveis em grande parte pela economia dos municípios de Barra Velha e Araquari. Quanto ao aspecto social, se faz importante pelo fato de permitir, nos períodos de altas descargas fluviais, a melhoria do escoamento d'água em direção ao mar, diminuindo a frequência de inundações nas áreas ribeirinhas, que tanta preocupação e prejuízos têm trazido aos moradores, geralmente de baixa renda" (EIA, 2004).

Este tipo de empreendimento gera forte impacto no meio ambiente, assim, o estudo e acompanhamento das variáveis ambientais com o objetivo de identificar e avaliar as condições dos recursos naturais, juntamente com informações sobre os organismos, que pode definir padrões de distribuição das espécies e suas densidades, pode-se prever situações de desequilíbrio do ecossistema. Estas informações sobre o estado do meio

ambiente são fundamentais para tomadas de decisão relacionadas ao desenvolvimento sustentável, além de auxiliar na gestão de políticas ambientais.

1.1 Implantação do empreendimento

As próximas etapas da obra contemplarão a finalização da construção do molhe Sul, que está parcialmente construído, de acordo com a geometria estabelecida em projeto elaborado pela Alleanza Projetos e Consultoria, em 2017, como mostra a Figura 1.1.

Figura 1.1 – Projeto de construção do molhe Sul (Fonte: Alleanza Projetos e Consultoria, 2017)

A obra será dividida em 2 etapas, conforme disponibilidade de recursos financeiros.

A obra será constituída ampliação do molhe sul na primeira etapa, seguindo uma geometria diferente da atual, com extensão de 90,00m e 7,00 de largura de crista, dimensionado para suportar o impacto das ondas e correntes normais de maré.

A segunda etapa da obra será destinada a conclusão do molhe sul, em mais 76,00m, totalizando a ampliação em 163,00m e o molhe resultará em uma extensão total de 416,84m.

1.2 Dinâmica Costeira e da Recarga Sedimentar

A dinâmica de transporte de sedimentos nas regiões costeiras são oriundas da influencia da astronomia (posição a lua e do sol em relação a terra), de impulsos geológicos (terremotos, deslizamentos, erupções vulcânicas, e tsunamis), da meteorologia (condições climáticas, direção dos ventos, velocidade dos ventos, precipitações, tempestades), e de interferências antrópicas.

Em condições normais, as ondas são formadas principalmente pela ação dos ventos, por características físicas das praias e pelas condições das marés. As marés por sua vez são originárias da influência da posição dos astros em condições normais.

Dada a ação das ondas ocorre a erosão e a deposição de material sedimentar, oriundo do transporte fluvial, e do revolvimento do fundo das praias. Esse transporte ocorre principalmente pela corrente de deriva, estabelecida pelo ângulo de aproximação das ondas em relação à orla, e os efeitos de refração e dobra pelos contornos submarinos.

Assim, o transporte de sedimentos na orla marítima geralmente se dá uma determinada direção, em função dos fatores citados anteriormente. Podendo alterar-se ao longo do ano, estabelecendo ou não um equilíbrio em termos de volumes transportados, que é da ordem de 1000 m³ por dia.

Em condições extremas, como da ocorrência de terremotos e tempestades, as marés e as ondas atingem altura e intensidade não comuns com baixas recorrências. Nessas

condições ocorre o transporte de sedimentos de granulometria maior, sendo possível a sua deposição em regiões nas quais as ondas em condições normais não tem possibilidade atuar.

Além disso, outros fatores podem influenciar o transporte de sedimentos na dinâmica marítima, como, por exemplo, a formação de uma corrente de retorno, a alteração dos contornos submarinos por ondas extremas e a própria inclinação da praia.

No caso das praias atingidas pela obra de abertura e fixação da barra do Rio Itapocu através da construção de molhes em Barra Velha/SC, estudos foram realizados a respeito da dinâmica do transporte sedimentar, cita-se os seguintes conforme a Tabela 1.1.

Tabela 1.1 – Estudos anteriores a respeito da dinâmica do transporte sedimentar

2004	Estudo de Impacto Ambiental da abertura da e fixação da barra do Rio
	Itapocu, realizado pela empresa Caruso Jr
2013	Relatórios de monitoramento ambiental realizados pela empresa Ethos
2017	Modelagem hidrodinâmica para otimização da foz do Rio Itapocu: análise de ondas, hidrodinâmica, transporte de sedimento e impacto costeiro, realizada pela empresa Alleanza Projetos e Consultoria

De acordo com o EIA, o transporte de sedimentos se dá principalmente de sul para norte, além disso, tal documento apresenta que há a possibilidade de redução no aporte sedimentar para a restinga ao norte, por efeito da construção dos molhes.

De acordo com o relatório de monitoramento de 2013, verificou-se o depósito de sedimentos na região interna da foz próximo ao do molhe sul, e a erosão próximo ao molhe norte. Esse estudo também evidencia o deslocamento da barra do Itapocu para a região norte, entre os anos de 1995 e 2005. Por fim, esse estudo verifica a recuperação da restinga na antiga desembocadura do Rio Itapocu.

De acordo com a modelagem hidrodinâmica de 2017, verificou-se que as ondas de maior frequência são as ondas originárias das direções leste e sudeste, sendo as ondas de direção sudeste predominantes entre março e junho e as ondas de direção leste predominantes entre julho e fevereiro.

Este estudo conclui também que, conforme a variação da direção das ondas, variará a direção predominante do transporte de sedimentos, sendo os componentes norte e sul do transporte litorâneo da mesma magnitude, de cerca de 150.000 m³ por ano. Consequentemente, o transporte anual líquido é relativamente pequeno, indicando que a linha de costa atual está perto de equilíbrio com as condições meteomarinhas prevalentes.

Com base no verificado pelos estudos anteriores, este plano de Monitoramento da Dinâmica Costeira e Recarga Sedimentar da Restinga, tem por objetivo realizar a caracterização desta dinâmica na área de interesse, buscando-se verificar a possibilidades de alterações entre o transporte de sedimentar.

2 OBJETIVOS

Para este plano, o principal objetivo é a identificação de possíveis alterações na dinâmica costeira de transporte de sedimentos por meio do estabelecimento de uma metodologia prática de aferição destes, medições em campo e a formulação de hipóteses.

São objetivos específicos do monitoramento da dinâmica costeira de sedimentos:

- estabelecer de perfis praias para a caracterização socioambiental e física;
- caracterizar granulométrica de amostras superficiais de depósitos dos perfis; e
- comparar, historicamente, alterações do perfil da orla por meio de imagens de satélite.

3 METODOLOGIA

A seguir é apresentada a metodologia de trabalho para que os objetivos deste plano sejam atingidos.

Está metodologia deve acompanhar, em escala temporal adequada, a evolução dos processos costeiros relacionados à dinâmica de deposição ou erosão da orla costeira, para tanto devem ser consideradas as alterações causadas pelo processo ambiental inerente de transporte de sedimentos e as alterações deste causadas pela implantação do empreendimento.

3.1 Definição dos perfis praias

Serão definidos dois perfis praias, um a norte e um a sul dos molhes, nos quais serão avaliadas características socioambientais e físicas. Esses perfis também serão utilizados como unidade de aferição dos demais objetivos deste plano.

- ✓ A localização de dois perfis deve ser escolhida, um ao norte e um ao sul dos molhes;
- ✓ Cada perfil deve ser identificados por meio de duas estacas de 80cm, enterradas 60cm, as estacadas devem ser sinalizadas com o objetivo de evitar acidentes e evitar o uso para fins diversos aquém à este plano;
- ✓ Todas as estacas devem ser georeferenciadas por meio de um GPS, em relação a um ponto conhecido no molhes (amarração);

Esta etapa será realizada apenas na primeira vez em que houver a definição dos perfis, sendo que as medições posteriores devem ser realizadas utilizando dos perfis definidos na primeira campanha amostral. Na eventualidade de remoção das estacas por

outrem, deve-se buscar reestabelecer os perfis pré-determinados, colocando-se novas estacadas.

3.2 Caracterização física dos perfis praiais

- ✓ Com o auxílio da ficha do Anexo A, cada perfil deve ser caracterizado, determinando, por exemplo, o comprimento de cada faixa praial (pós-praia, estirâncio e face praial), a inclinação das faixas, se há a interferência antrópica, a presença de vegetação, a presença de material poluente, a presença de dunas, de corpo de água, entre outras características;
- ✓ Construção de um croqui para cada perfil.

3.3 Caracterização granulométrica dos perfis praiais

Amostras de solo serão coletadas para caracterização granulométrica, com o objetivo de verificar se há alterações na composição granulométrica dos materiais depositados, deve ser retirada uma amostra por perfil.

- ✓ No estirâncio de cada perfil praial, deverá ser coletada pelo menos meio quilo de amostra de sedimentos superficiais, conforme a NBR NM 25/2001 e a NBR NM 248/2003, ou seja, nos primeiros cinco centímetros de sedimentos;
- ✓ A amostra deve ser acondicionada em sacos plásticos e identificada com a data e local de coleta;
- ✓ A seguir deve ser realizado o ensaio granulométrico, em laboratório, conforme a NBR NM 248/2003.

Observações: as amostras de sedimentos devem ser removidas superficialmente, pois é a parcela de sedimentos que sofre maior ação de depósito e erosão por influencia das ondas e da maré, conforme Muehe (2002). A coleta de amostra será realizada em maré baixa.

3.4 Comparação de imagens de satélite

A análise de uma séria histórica de imagens de satélite pode trazer algumas constatações importantes a respeito da dinâmica de deposição e remoção dos sedimentos dos perfis praias, bem como de outras características, como da evolução da vegetação de restinga, da ocupação humana entre outras.

- ✓ Deverão ser coletadas imagens de satélite da região;
- ✓ Organizadas por data, tais imagens serão catalogadas como maré baixa e maré alta, com base no calendário lunar;
- ✓ Uma vez catalogadas, serão identificadas as interfaces e traçadas seus limites em software adequado de desenho;
- ✓ Tais limites devem ser medidos e comparados entre si ao longo do tempo.

Observações: tal análise pode não apresentar um resultado conclusivo, uma vez que a característica da maré está sendo inferida, sendo, portanto, utilizada apenas aferimentos indiretos.

3.1 Periodicidade das campanhas

Para a realização deste Plano Ambiental, recomenda-se três etapas de atividades, relacionadas às etapas da obra previstas.

3.1.1 Início da continuação da construção do molhe Sul

Na primeira etapa do Plano Ambiental recomenda-se a realização de duas campanhas amostrais, sendo uma ao início das obras e outro após o término da primeira etapa de construção do molhe sul. Os resultados obtidos na campanha amostral serão entregues em um relatório (Tabela 3.1).

Tabela 3.1 – Cronograma das atividades

	Meses				
Etapa	1	2	3	4	5
Definição da localização dos perfis					_
Caracterização física dos perfis					
Caracterização granulométrica dos perfis					
Análise e imagens de satélite					
Entrega do relatório					

3.1.2 Término da continuação da construção do molhe Sul

Na segunda etapa do Plano Ambiental recomenda-se a realização de duas campanhas amostrais, sendo uma ao início das obras e outro após o término da segunda etapa de construção do molhe sul. Os resultados obtidos na campanha amostral serão entregues em um relatório (Tabela 3.2).

Tabela 3.2 – Cronograma das atividades

	Meses				
Etapa		2	3	4	5
Caracterização física dos perfis					
Caracterização granulométrica dos perfis					
Análise e imagens de satélite					
Entrega do relatório					

3.1.3 Após a finalização total da obra

Recomenda-se o monitoramento da recarga sedimentar, compreendendo mais 2 campanhas, tendo início após a finalização da obra (Tabela 3.3). A metodologia recomendada para essas campanhas seria a mesma descrita anteriormente.

Tabela 3.3 – Cronograma das atividades

	Ano 1 – Meses											
Etapa		2	3	4	5	6	7	8	9	10	11	12
Caracterização física dos perfis												
Caracterização granulométrica dos perfis												
Análise e imagens de satélite												
Entrega do relatório												

4 REFERÊNCIAS BIBLIOGRÁFICAS

MUEHE, Dieter. Geomorfologia costeira. In: GUERRA, Antonio José Teixeira; CUNHA, Sandra Baptista da. Geomorfologia: exercícios, técnicas e aplicações. 2. ed. Rio de Janeiro: Bertrand Brasil, 2002.

ABNT – NBR NM 25/2001 – Amostragem de agregados.

ABNT – NBR NM 248/2003 – Agregados - Determinação da composição granulométrica.

Caruso Jr, 2004 — EIA/RIMA da Abertura da e fixação da barra do Rio Itapocu, divisa dos municípios de Barra Velha e Araquari, norte do Estado de Santa Catarina.

Alleanza Projetos e Consultoria, 2017 – Otimização da foz do Rio Itapocú: análise de ondas, hidrodinâmica, transporte de sedimento e impacto costeiro

NUNES, L.S., 2011. Dinâmica costeira entre as praias de Areia Preta e do Forte, Natal/RN. 131f. Dissertação de Mestrado em Geografia, Universidade Federal do Rio Grande do Norte.

ANEXO A – FICHA DE CARACTERIZAÇÃO – PERFIL PRAIAL

ANEXO A - FICHA DE CARACTERIZAÇÃO - PERFIL PRAIAL

NOME	E DO MUNICÍPIO	PERFIL —		PESQUISADOR —				
DATA	Α ————————————————————————————————————	HORA —		MARÉ —				
Ponto	Latitude	Longitude	Cota	Precissão	Observação			
Segme	ento Comprimento	Inclinação	Faixa Praial		Observação			
PÓS-	-PRAIA —							
1. Inte	erferência antrópica: 🔘 ru	a ○ tubulação ○ co	onstrução 🔘 c	onst grande ()			
2. Veg	getação: 🔘 restinga (gramíneas 🔘 coque	eiros () árvo	res diversas ()			
3. Mat	terial poluente: O vidro	o plástico o m	etal 🔵 orgâr	nico 🔘				
4. Corp	po d'agua: 🔘 rio 🔘 r	iacho 🔘 lagoa 🔘	lago 🔘 mace	eió 🔘				
5. Dun	nas: O sim O não	6. Sedimento:	○ fino ○	médio 🔘 gr	osso			
7. Esca	arpa/Berma: altura:	inclinação:		estrutura sedime	entar: 🔘 sim 🔘 não			
ECTI	RÂNCIO —							
	erferência antrópica: es		_					
	terial poluente: O vidro rutura sedimentar: O ma							
	arcas de escorregamento	o marcas de espraiame	nto 🔘 linh	a de deixa	○ cúspides			
FACE	E PRAIAL ————							
1. Inte	erferência antrópica: 🔘 pí	er oancoradouro	0					
2. Mat	terial poluente: O vidro	o plástico () m	etal () orgâr	nico 🔘				
3. Reci	ife: () arenito () bar	reiras 🔘 coral						
4. Tipo	o de onda: 🔘 mergulhan	te () deslizante ()	frontal () as	cendente				

http://www.genos.eco.br/ Passeio dos Ipês, 320. Edifício Londres, Sala 107. São Carlos, SP. Brasil