TDNMF 算法损失函数:

$$\min_{W,H} ||Y - WH^{T}||_{F}^{2} + \lambda_{1}(||W||_{F}^{2} + ||H||_{F}^{2}) + \lambda_{2}||W - T||_{F}^{2} + \lambda_{3} \sum_{i,p=1}^{n} ||h_{i} - h_{q}||^{2} C_{ip}$$
(1)

 $s. t, W \ge 0, H \ge 0$

推导思路 1: 梯度下降法

首分	首先我们考虑无约束条件				
	$\min_{W,H} \ Y - WH^T\ _F^2 + \lambda_1 (\ W\ _F^2 + \ H\ _F^2) + \lambda_2 \ W - T\ _F^2 + \lambda_3 \sum_{i,p=1}^n \left\ h_i - h_q\right\ ^2 C_{ip}$	(2)			
	通过"梯度下降法"求次迭代更新公式:				
	$LF = \ Y - WH'\ _F^2 + \lambda_1(\ W\ _F^2 + \ H\ _F^2) + \lambda_2\ W - T\ _F^2 + \lambda_3 \sum_{i,p=1}^n \ h_i - h_q\ ^2 C_{ip}$				
	$= Tr[(Y - WH')(Y - WH')'] + \lambda_1 \{Tr(WW') + Tr(HH')\} +$				
	$\lambda_2 Tr[(W-T)(W-T)'] + \lambda_3 Tr(H^T L H)$				
	$= Tr(YY^T) - 2Tr(YHW') + Tr(WH'HW') + \lambda_1 Tr(WW') +$	(3)			
	$\lambda_1 Tr(HH') + \lambda_2 Tr(WW') - 2\lambda_2 Tr(WT') + \lambda_2 Tr(TT') + \lambda_3 Tr(H^T LH)$	(3)			
	下面开始求梯度:				
	$\frac{\partial LF}{\partial W} = -2YH + 2WH'H + 2(\lambda_1 + \lambda_2)W - 2\lambda_2T$				
	$= 2((WH'H + (\lambda_1 + \lambda_2)W) - (YH + \lambda_2T))$	(4)			
	$\frac{\partial LF}{\partial H} = 2((HW'W + \lambda_1 H + \lambda_3 DH) - (Y^TW + \lambda_3 CH))$				
	下面开始使用梯度下降法:				
	$W_{ik} \leftarrow W_{ik} - \eta \frac{\partial LF}{\partial W}$				
	$\leftarrow W_{ik} + 2\eta \left\{ \left(YH + \lambda_2 T\right)_{ik} - \left(WH^{'}H + (\lambda_1 + \lambda_2)W\right)_{ik} \right\}$	(5)			
	公式(5)是无约束情况,而我们真正需要的是有约束($W \ge 0, H \ge 0$)的情况,这里我们				
	可以令 $\eta = \frac{w_{ik}}{2\left(WH^{'}H + (\lambda_1 + \lambda_2)W\right)_{ik}}$,便可使其满足约束条件($W \ge 0, H \ge 0$)。因此,我们可				
	得:				
	$W_{ik} \leftarrow \frac{(YH + \lambda_2 T)_{ik}}{(WH'H + (\lambda_1 + \lambda_2)W)_{ik}} W_{ik}$	(7)			
	同理可得:				
	$H_{ik} \leftarrow \frac{\left(Y^{T}W + \lambda_{3}CH\right)_{ik}}{\left(HW'W + \lambda_{1}H + \lambda_{3}DH\right)_{ik}}H_{ik}$	(8)			

推导思路 2: 拉格朗日

利用 KKT 互补松弛条件实施非负约束。(1) 式的拉格朗日函数为:

$LF = \ Y - WH'\ _F^2 + \lambda_1(\ W\ _F^2 + \ H\ _F^2) + \lambda_2\ W - T\ _F^2 + \lambda_3 \sum_{i,p=1}^n \ h_i - h_q\ ^2 C_{ip}$	
$+ Tr(\Lambda_1 W') + Tr(\Lambda_2 H')$	
$= Tr[(Y - WH')(Y - WH')'] + \lambda_1 \{Tr(WW') + Tr(HH')\} +$	
$\lambda_2 Tr[(W-T)(W-T)'] + \lambda_3 Tr(H^T L H) + Tr(\Lambda_1 W') + Tr(\Lambda_2 H')$	
$= Tr(YY^{T}) - 2Tr(YHW') + Tr(WH'HW') + \lambda_{1}Tr(WW') +$	
$\lambda_1 Tr(HH') + \lambda_2 Tr(WW') - 2\lambda_2 Tr(WT') + \lambda_2 Tr(TT') + \lambda_3 Tr(H^T LH) +$	(2)
$Tr(\Lambda_1 W') + Tr(\Lambda_2 H')$	

我们由下面的 KKT 条件

$\Lambda_1 \odot W = 0$	(3)
$\Lambda_2 \odot H = 0$	(4)

接下来,我们对公式(2)求导可得:

$\frac{\partial LF}{\partial W} = -2YH + 2WH'H + 2(\lambda_1 + \lambda_2)W - 2\lambda_2T + \Lambda_1$	
$= 2((WH'H + (\lambda_1 + \lambda_2)W) - (YH + \lambda_2T)) + \Lambda_1$	(5)
同理可得:	
$\frac{\partial LF}{\partial H} = 2((HW'W + \lambda_1 H + \lambda_3 DH) - (Y^TW + \lambda_3 CH)) + \Lambda_2$	(6)
令(5)和(6)为 0,可得:	
$\Lambda_1 = -2\big((WH'H + (\lambda_1 + \lambda_2)W) - (YH + \lambda_2T)\big)$	(9)
$\Lambda_2 = -2((HW'W + \lambda_1 H + \lambda_3 DH) - (Y^TW + \lambda_3 CH))$	(10)
公式(9)(10)与(3)(4)相结合得:	
$((WH'H + (\lambda_1 + \lambda_2)W) - (YH + \lambda_2T)) \odot W = 0$	(11)
$((HW'W + \lambda_1 H + \lambda_3 DH) - (Y^TW + \lambda_3 CH)) \odot H = 0$	(12)
因此,我们可以得到更新公式:	
$W_{ik} \leftarrow \frac{(YH + \lambda_2 T)_{ik}}{(WH'H + (\lambda_1 + \lambda_2)W)_{ik}} W_{ik}$	(13)
$H_{ik} \leftarrow \frac{\left(Y^TW + \lambda_3 CH\right)_{ik}}{\left(HW'W + \lambda_1 H + \lambda_3 DH\right)_{ik}} H_{ik}$	(14)