УДК 621.65

ПОДБОР МАТЕРИАЛОВ ДЛЯ ЭЛЕКТРОЦЕНТРОБЕЖНЫХ НАСОСОВ С ЦЕЛЬЮ УМЕНЬШЕНИЯ ЭЛЕКТРОХИМИЧЕСКОГО ВЗАИМОДЕЙСТВИЯ

•••••

SELECTION OF MATERIALS FOR ELECTRIC CENTRIFUGAL PUMPS TO REDUCE ELECTROCHEMICAL INTERACTION

Баландин Лев Николаевич

кандидат технических наук, доцент, доцент кафедры «Разработка и эксплуатация нефтяных и газовых месторождений», Самарский государственный технический университет I.n.balandin@mail.ru

Баландин Игорь Львович

кандидат физико-математических наук, доцент, доцент кафедры «Разработка и эксплуатация нефтяных и газовых месторождений», Самарский государственный технический университет ilbilb68@gmail.com

Трошина Ольга Сергеевна

студент кафедры «Машины и оборудование нефтегазовых и химических производств», Самарский государственный технический университет troshina.os@inbox.ru

Аннотация. Данная статья посвящена проблеме преждевременных отказов электроцентробежных насосов и повешению эксплуатационной надежности рабочих органов и корпусов.

Ключевые слова: электроцентробежные насосы, эксплуатация, надежность, химический состав, структура материала, разность потенциалов.

Balandin Lev Nikolaevich

Candidate of Technical Sciences, Associate Professor, Associate Professor of the Department «Development and Operation oil and gas fields», Samara State Technical University I.n.balandin@mail.ru

Balandin Igor Lvovich

Candidate of Physical and Mathematical Sciences, Associate Professor, Associate Professor of the Department «Development and Operation oil and gas fields», Samara State Technical University ilbilb68@gmail.com

Troshina Olga Sergeevna

Student of the Department «Machines and equipment oil and gas and chemical industries», Samara State Technical University troshina.os@inbox.ru

Annotation. This article is devoted to the problem of premature failure of electric centrifugal pumps and hanging the operational reliability of working bodies and housings.

Keywords: electric centrifugal pumps, operation, reliability, chemical composition, material structure, potential difference.

роблема преждевременных отказов электроцентробежных насосов (ЭЦН) существует с начала образования нефтедобывающей отрасли. И хотя в настоящее время отечественным производителям насосов удалось добиться увеличения наработки на отказ путем применения более совершенных конструкторских решений и материалов, данная проблема продолжает быть актуальной.

Существует два пути повышения эксплуатационной надежности рабочих органов и корпусов ЭЦН: за счет изменения химического состава и структуры материала.

Обычно рассматривают поведение отдельных конструктивных элементов, входящих в модульсекцию погружного насоса. Этот метод является необходимым, но недостаточно полным. Это связано с тем, что ЭЦН в сборке представляет собой сложную конструкцию из множества разнородных материалов, таких как углеродистые нержавеющие стали, чугун, бронза и др., которые могут взаимодействовать в коррозионно-активной среде, образовывая гальванические пары.

В результате такого взаимодействия один элемент конструкции может становиться анодом и активно растворяться, т.е. корродировать, а другой становиться катодом и пассивироваться (рис. 1).

Интенсивность взаимодействия определяется разностью потенциалов в гальванопаре: чем она больше, тем более активно растворяется анод.

В рассматриваемой конструкции ЭЦН в качестве взаимодействующих гальванопар могут выступать следующие элементы:

- 1) корпус насоса направляющий аппарат;
- 2) подшипник вал;
- 3) направляющий аппарат вал.

Каждый элемент гальванопары может быть представлен различными материалами и в зависимости от сочетания материалов в паре полярность элементов может изменяться.

Рисунок 1 – Результаты определения величины разности потенциалов материалов деталей, входящих в модуль-секцию погружного насоса

К - катод

А - анод

серый чугун

178mV

вал 03х14Н7В

Так, в паре корпус насоса – направляющий аппарат в случае, если направляющий аппарат изготовлен из нирезиста, то анодом является корпус насоса, он и подвергается коррозионному разрушению, а если направляющий аппарат изготовлен из серого чугуна, то анодом является серый чугун.

Наиболее активную гальванопару в рассматриваемой группе будут составлять сталь 20 (корпус насоса) и серый чугун (аппарат направляющий).

Оптимальное сочетание материалов определяется по минимальной разности потенциалов в гальванопаре.

Как видно из приведенных схем гальванопар перспективными направлениями с точки зрения обеспечения минимальной разности электрохимических потенциалов является использование порошковых материалов и защиты поверхности, например азотированием.

Используя азотирование поверхности корпуса насоса из стали 45 Γ в сочетании с порошковыми материалами направляющего аппарата возможно получить гальванопару с минимальной разностью потенциалов 10–20 mV. если корпус насоса изготовлен из стали 20, а направляющий аппарат из чугуна с шаровидным графитом с азотированным поверхностным слоем, то разность потенциалов в такой паре составляет 0–1 mV

. Сочетание порошковых материалов с нержавеющими сталями также дает в рабочих парах направляющий аппарат – вал и рабочее колесо – вал минимальную разность потенциалов 20–30 mV.

Вывод. Учитывая, что центробежные насосы представляют собой сложные конструкции с множеством разнородных элементов, которые в коррозионно-активной среде могут образовывать гальванопары, подбор материалов для рабочих элементов следует производить таким образом, чтобы разность потенциалов между контактирующими элементами была минимальна.

Литература

40X13

25mV

вал 03х14Н7В

- 1. Александров В.Л. О надежности валов УЭЦН и выборе материалов для их изготовления // Нефтяное хозяйство. 2006. № 5. С. 110–112.
- 2. Виденеев В.И. Улучшение показателей работы насосных скважин при совместном проявлении механических примесей и асфальтосмолопарафинов / В.И. Виденеев, В.Г. Чистяков // Нефтяное хозяйство. 2002. № 1. С. 50–53.
- 3. Габдуллин Р.Ф. Эксплуатация скважин, оборудованных УЭЦН, в осложненных условиях // Нефтяное хозяйство. 2002. № 4. С. 62–64.
- 4. Байков И.Р. Методы анализа надежности и эффективности систем добычи и транспорта углеводородного сырья / И.Р. Байков, Е.А. Смородов, К.Р. Ахмадуллин. М.: ООО «Недра-Бизнесцентр», 2003. 275 с.
- 5. Кожин А.Г. Анализ факторов, влияющих на износ погружного электрооборудования / А.Г. Кожин, И.Г. Соловьев // Вестн. кибернетики. Тюмень : Изд-во ИПОС СО РАН, 2006. № 5. С. 3–9.

References

- 1. Alexandrov V.L. On the reliability of ESP shafts and the choice of materials for their manufacture // Oil industry. -2006. N = 5. P. 110-112.
- 2. Videneev V.I. Improving the performance of pumping wells with the joint manifestation of mechanical impurities and asphalt resins / V.I. Videneev, V.G. Chistyakov // Oil industry. − 2002. − № 1. − P. 50–53.
- 3. Gabdullin R.F. Operation of wells equipped with ESP in difficult conditions // Oil industry. $-2002. N_{\odot} 4. P. 62-64.$
- 4. Baykov I.R. Methods for analyzing the reliability and efficiency of hydrocarbon production and transportation systems / I.R. Baykov, E.A. Smorodov, K.R. Akhmadullin. M.: Nedra-Business Center LLC, 2003. 275 p.
- 5. Kozhin A.G. Analysis of factors affecting the wear of submersible electrical equipment / A.G. Kozhin, I.G. Soloviev // Tomsk State University Journal. cybernetics. Tyumen: Publishing House of IPOS SB RAS, 2006. № 5. P. 3–9.