Stability of finite difference schemes von Neumann method

Department of Mathematics IIT Guwahati

In this note we study the stability criteria for the finite difference schemes applied to diffusion equations.

Fourier series

If $f:[0,2\pi]\to\mathbb{R},$ then the Fourier series representation of f if it exist is given by

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx,$$

where $a_n=\frac{1}{\pi}\int_0^{2\pi}f(t)\cos ntdt, \quad b_n=\frac{1}{\pi}\int_0^{2\pi}f(t)\sin ntdt$ Using the Euler formula $e^{i\theta}=\cos\theta+i\sin\theta$ we can express the Fourier series of the given f in the following form

$$f(x) = \sum_{n = -\infty}^{\infty} \alpha_n e^{inx},$$

where

$$\alpha_n = \frac{a_n - ib_n}{2}, \quad n = 1, 2, \dots, .$$

$$\alpha_n = \frac{a_n + ib_n}{2}, \quad n = -1, -2, \dots, .$$

and $\alpha_0 = \frac{a_0}{2}$.

If $f:[a,b]\to\mathbb{R},$ then the Fourier series representation of f if it exist is given by

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos[2\pi n \frac{(x-a)}{(b-a)}] + b_n \sin[2\pi n \frac{(x-a)}{(b-a)}],$$

and the corresponding complex form is

$$f(x) = \sum_{n = -\infty}^{\infty} \alpha_n e^{2\pi n \frac{x - a}{b - a}},$$

If we take the domain $D=[a,b]\times [0,\infty)$ to solve the diffusion equation, we can represent the approximated solution at n th time step with N+1 spacial grid points $x_0=a,x_1,\cdots x_N=b$ as

$$u(x_i, t^n) \approx u_i^n = \sum_{m=-N/2}^{N/2} c_m^n e^{\frac{2\pi I m i}{N}},$$

For convenience we used the symbol $I=\sqrt{-1}$. Also we use the fact that the solution is periodic, i.e., $u_0^n=u_N^n$ for all n. It follows that

$$u_i^{n+1} = \sum_{m=-N/2}^{N/2} c_m^{n+1} e^{\frac{2\pi I m i}{N}}.$$

$$u_{i\pm 1}^{n+1} = \sum_{m=-N/2}^{N/2} c_m^{n+1} e^{\frac{2\pi I m(i\pm 1)}{N}}.$$

Note that the Fourier coefficients c_m^n depends on both m and n, and the exact solution of the finite difference is completely determined by these coefficients.

Remark: (Alternate formulation) The collection

$$\left\{ (1, e^{\frac{2\pi I m 2}{N}}, \cdots, e^{\frac{2\pi I m N}{N}}) \right\}_{m=-N/2}^{N/2} \tag{1}$$

forms a set of N+1 linearly independent vectors. Thus any solution vector $\boldsymbol{u}^n=(u_0^n,\cdots,u_N^n)$ can be uniquely expressed as a linear combination of elements of set (1), i.e. there exists constants c_m^n such that

$$u^n = \sum_{m=-N/2}^{N/2} c_m^n v_m; \qquad v_m = (1, e^{\frac{2\pi I m 2}{N}}, \cdots, e^{\frac{2\pi I m N}{N}})$$
 (2)

so components u_i^n of u^n can be expressed as:

$$u_i^n = \sum_{m=-N/2}^{N/2} c_m^n e^{\frac{2\pi I m i}{N}}.$$

Now consider the FTCS scheme for the diffusion equation $u_t = u_{xx}$:

$$u_i^{n+1} = u_i^n + d(u_{i+1}^n - 2u_i^n + u_{i-1}^n), \quad d = \frac{\Delta t}{\Delta x^2}.$$

Substituting the Fourier expressions we get

$$\sum_{m=-N/2}^{N/2} c_m^{n+1} e^{\frac{2\pi I m i}{N}} = \sum_{m=-N/2}^{N/2} \left(d(e^{\frac{2\pi I m}{N}} + e^{-\frac{2\pi I m}{N}} - 2) + 1 \right) c_m^n e^{\frac{2\pi I m i}{N}},$$

$$\sum_{m=-N/2}^{N/2} \left(c_m^{n+1} - c_m^n \left(d\left(e^{\frac{2\pi Im}{N}} + e^{-\frac{2\pi Im}{N}} - 2\right) + 1 \right) \right) e^{\frac{2\pi Imi}{N}} = 0,$$

Since the set $\{e^{\frac{2\pi Imi}{N}}\}_{m=-N/2}^{N/2}$ is linearly independent it follows that

$$c_m^{n+1} - c_m^n (d(e^{\frac{2\pi Im}{N}} + e^{-\frac{2\pi Im}{N}} - 2) + 1) = 0, \quad m = -N/2, \dots, N/2.$$

Note that $\cos\theta=(e^{I\theta}+e^{-I\theta})/2$, together with this and using the notation $\phi_m=\frac{2\pi m}{N}$ the last expression becomes

$$c_m^{n+1} - c_m^n (2d(\cos \phi_m - 1) + 1) = 0,$$

$$c_m^{n+1} = G_m c_m^n, \quad G_m = 2d(\cos \phi_m - 1) + 1,$$
(3)

 G_m is the **amplification factor**, which is independent of the factor n. For the solution to remain bounded we need $|G_m| \leq 1$, i.e

$$-1 \le 2d(\cos\phi_m - 1) + 1 \le 1 \implies d \le \frac{1}{1 - \cos\phi_m},$$
$$d \le \min_{\phi_m} \frac{1}{1 - \cos\phi_m} = \frac{1}{2}.$$

There for the condition for stability reduces to $\frac{\Delta t}{\Delta x^2} \leq \frac{1}{2}$.

Thus the FTCS is conditionally stable.

It is enough to consider a single Fourier term;

$$u_i^n = c_m^n e^{I\phi_m i},$$

eventually we drop the subscript m and we write

$$u_i^n = c^n e^{I\phi i},$$

From (3) we assert that $c_m^n = G_m.G_m.G_m...c_m^0$. Using a convenient choice of $c_m^0 = 1$, (any other choice except 0 would work with out effecting the result) we write $c_m^n = G_m^n$, again dropping the subscript m, we write

$$c_m^n = G^n,$$

note that here the superscript n is the power of G. Now our aim is to find the condition for which $|G| \leq 1$.

Again we consider the FTCS scheme for the diffusion equation $u_t = u_{xx}$:

$$u_i^{n+1} = u_i^n + d(u_{i+1}^n - 2u_i^n + u_{i-1}^n), \quad d = \frac{\Delta t}{\Delta x^2}.$$

Substituting $u_i^n = G^n e^{I\phi i}$ in the above expression we get

$$G^{n+1}e^{I\phi i} = G^n e^{I\phi i} + d(G^n e^{I\phi(i+1)} - 2G^n e^{I\phi i} + G^n e^{I\phi(i-1)}),$$

Dividing throughout by $G^n e^{I\phi i}$ we get

$$G = 1 + d(e^{I\phi} + e^{-I\phi} - 2),$$

= 1 + 2d(\cos \phi - 1).

Finally $|G| \le 1$ if $d \le \frac{1}{2}$.

Exercise: Compute the amplification factor G for the BTCS and Crank-Nicolson schemes applied to the diffusion equation $u_t = \alpha^2 u_{xx}$ and find the corresponding stability conditions.

Hint: The amplification factor for BTCS scheme is

$$G = \frac{1}{1 + 2d(1 - \cos\phi)}, \quad d = \frac{\alpha^2 \Delta t}{\Delta x^2}.$$

The amplification factor for Crank-Nicolson scheme is

$$G = \frac{1 - d(1 - \cos \phi)}{1 + d(1 - \cos \phi)}.$$

Alternate way:

We are now considering only one term of the Fourier expansion of the component u_i^n ,

$$u_i^n = c_m^n e^{I\phi_m i}$$

We see that $u^n_{i\pm 1}=e^{\pm I\phi_m}u^n_i$. In order to see the growth of the computed solution u^{n+1}_i we express this as

$$u_i^{n+1} = Gu_i^n$$

and we find the expression for G, the stability condition now becomes $|G|\leq 1.$ Finally we drop the index m as usual.

FTCS for diffusion equation $u_t = u_{xx}$

$$u_i^{n+1} = u_i^n + d(u_{i+1}^n - 2u_i^n + u_{i-1}^n), \quad d = \frac{\Delta t}{\Delta x^2}.$$

Substituting $u_{i\pm 1}^n=e^{\pm I\phi_m}u_i^n$ in the above scheme we get

$$\begin{split} u_i^{n+1} &= u_i^n + d(e^{I\phi}u_i^n - 2u_i^n + e^{-I\phi}u_i^n) \\ &= \Big(1 + d(e^{I\phi} + e^{-I\phi} - 2)\Big)u_i^n. \\ &= Gu_i^n, \end{split}$$

and thus the amplification factor is obtained as

$$G = \left(1 + d(e^{I\phi} + e^{-I\phi} - 2)\right),$$

$$G = 1 + 2d(\cos\phi - 1)$$