stilled orditar -> Spectral one of 3-D. Hitching system
spectul croes of Gailto-Neutrke.
Lega combe flow
OI tean combe (It you were solutions of the Confidence of variables use Rodyclas organitations to lesson por .)
(L, cLz, get enselves of objects).
Auroux, HMS for hyposoficos in (CX)" (a/Abazaro)
1205.0053 lh progress
Geometric setup: (Abouteard - A- Katzarkor)
(see also Clarke, G-k-R,)
$H = \begin{cases} f_t = \sum_{\alpha \in A} c_{\alpha} t^{\rho(\alpha)} \times^{\alpha} = 0 \end{cases} c (C^*)^{\gamma}$
$A \in \mathbb{Z}^n$ $X_{\alpha} = X_{\alpha}^{\alpha_1} - X_{\alpha}^{\alpha_n}$ (family) of hyposteries.
P: A -> 1R, + formal (+1 << 1.
(n+1)-folds, moment polytope $\Delta_y = \sum_{i=1}^{n} (x_i y_i) + \text{force } (-y_i)$ $(x_i + 1) - \text{folds}$, moment polytope $\Delta_y = \sum_{i=1}^{n} (x_i y_i) \in \mathbb{R}^n \times \mathbb{R} \eta > \psi(x_i, y_i) = \sum_{i=1}^{n} (x_i y_i) + \sum_{i=1}^{n} (x_i y_i) = \sum_{i=1}^{n} (x_i y_i) + \sum_{i=1}^{n} ($
$\alpha \in A$

 $Nd = -2^{(0,--,0,1)}$

toric monomial.

Key example: (n-1)-dimension pair of pant $H = \{x, +-+x_n + 1 = \omega\}$

(Y= C", W=-3.-2n)

Call puers of tare 200; dutues to put or pre of th Application)

(not ble no modeli: r.g. 4-puched my

It doesn't seem to camp a rullbe lagr. Tol fibratus.

 $1) F(1+) \longrightarrow F(X, W_{X, s})$ $(+ish_{s})$ $(x) \times C \text{ at } H \times O \qquad (+ish_{s})$ $(-2) \times C \text{ at } H \times O \qquad (-2)$

Wx = lift of coordinate on), s \in lift (X, 4/2Z)

changes signs .force

Wx has Mare-Bott sing-learner of entical locus crit(wx) = H. S account for tusting of normal bollés along critical locus

(see also a) $(X, W_{\times}, s) < \xrightarrow{\lambda \lambda s} (\lambda, M)$ Charleng - Lau) for sku drecter fren Le. 7 T' X° -> B Lagr. T"+1- fibration, (Y, W) s.t. Y= completed model: space of the street TV+1-objects of F(X°) supports on flores of T & in F(X, Wx, s), these objects become weekly mobilinded in the serse of FOOD W/ Mo= W. (in this case X° = X\D) D= proper transfer of (C*) *0) Two directors of HMS 1) mapper foliers citory & P (Y, W)

W(1+) = Db (Y, W) due in several rest: POL & AAERO 2011 · Ren. sitaos = (C*) 2 Bocklandt . higher diversion pairs of party for apact Foliage cetery, Shoridan D'oh(H) ~ W(Y,W).
Thereise wrapped

O file = whom = white, generic fibers are ((*)" 5. Get 3 cyladous wath of Sirch, that somehow gle together to get & pair of pats uch of byects. (tader) & is builty earchains), Wat more than part. wat OH ~ it generals cakes, bear (OH) co mil fx15-07 lt. idea that dos it at: for real position shelpton ca bild snyle lagins, but no sidea how to do Free they ()

Main results (Abortais - A) 2) Can define in this setting a fibrewise unpped Foliaya category W(Y,W) Lad hoc, usur restrictive assurptions on what abjects use allow - n hay not be general enough to get object is in fine (Est) 2-Sylvan in progress 2) Using this dollar, an construct an object Lo & TW(Y, W) (conj. it generates) but not much pt. tyis to pre it melos 3) Calculate End (Lo) @ ~ [K [x, -, x, 2] W(Y, W) is enlarged.]

A = -alg [x, -, x, 2] W(Y, W) is enlarged. $\left(\sum_{\alpha} C_{\alpha} t^{P(\alpha)} x^{\alpha} = 0\right)$ (hera, 2650)c 0764(H) ~ W(Y, w)) ~ End (0,+) 1) W(Y,W)? Also need as of corre. Object: populy enledded lagr. submanfils LCY (- Spin str. -) s.t. W(L)ct · Pt flow on K lift pt(L) using paullel transport.

by parallel tourput, Lagin.

Ot = flow of a Hamiltonian

the flow of a Hamiltonian H=Y -> IR

Not under paulle though, as fibrewise proper wrapping (so actually commutes a/ Pt).

(toric cax: for, of moment map croads.)

1t = def pt 1

Technical conditions: • Y L, L', for an open danse set of tis,

obtained a het, d(Lt, L') > c> Q (not uniform in t).

Copit. sheet;

(-> ensures conjections for

· For $0 < t - t \leq \varepsilon$, L t vs. L t

the first to the f

therty as to so

(makes they, luste linear wayping)

of doesn't bow holon, dusces.

*Arecho (at: objects (L, K)

hom((L, k), (L, k')) = (F(L, k)) if $k \ge k'$ $k \ge k$ O otherwise.

Localize wirti "id" (L,k+1) -> (L,k). 2) Lo. Vole: Y_{1R70} W R_{<0}, P.g. J -2.2, zz = W. 50 de de tuke (R+) " c W - (-1). & parallel forsport to smething going avoid singular fibre, Facts: a well-chosen fibrewer wappis It keeps this away from Lo 4 t & 2 t Z. (using paylle) trusport in toric rese) 3) Calculate End (La) ine- CF(Lo, Lo) for t >>0 e:g. w'(-1) when = 0. plantast gross detructede,

Over p, get also

(truncted) IK [xt - - xt] Ih

leg - 1.

Discential is O on each block, sut

(1015-ten curb sectors.

Need to analyze # of section:

Calculatur uses Sendel TQFT

+ Victoria J. Pascaloff's - flustr_

Decorate + stay processives

pair of pats (1) -to = 2n)

o the 4(h) = [= 1+x,+-+x,] e

exactly define eggs the

linea over $|K[x, \pm 1]|$ $p_{not-c} + q^2(e_e) = e$. $e \cdot h = h$ $h \cdot e = h$ $h \cdot e = h$ $h \cdot h = 0$ for degree read-1.

50, 1+P*= (K[x,=] -]e/(1+x,+-+x,n).

Ingeren (case) Gw theory of fore C-Y coming as corrections

one fam. In it has sections for each this divisor in Y.

But there can be verdresses coming from

can the formulas for this,

is then-less, ---