Spirit Level Reaction Time

Tester

Group 52

Asmita Limaye	2018B5A70881G
Athreya Krishnan	2018B4A70809G
S. K. Anusri	2018B5A70876G
Prabodh Kant Rai	2018B3A70748G
Saurav Shukla	2018B5AA0653G
Varun Singh	2018B5A70869G

Date: 18.04.2021

Contents

User Requirements & Technical Specifications	2
Assumptions & Justifications	2
Justification	2
Assumptions	2
Components used with justification wherever required	3
Address Map	4
Memory Map	4
I/O Map	4
Design	5
Flow Chart	6
Variations in Proteus Implementation with Justification	9
Firmware	10
List of Attachments	11

User Requirements & Technical Specifications

Design a system that tests the reaction time of a person and displays a sobriety rating (1 to 5) on a 7 segment display.

The Technical Specifications are as follows

- 2 pushbuttons, START and STOP, used for user input
- START initiates testing with a random delay of [4, 8]s
- 9 LEDs light up successively at 50ms intervals after the random delay
- LEDs on/off configuration frozen if user presses STOP in < 8*50ms = 0.4s
- After 0.4s or a timely STOP press, reaction time is rated on a scale of 1 to 5.

Assumptions & Justifications

Justification

- 1. We check the STOP button throughout the random [4,8]s wait because a split-second check just before lighting the bottom LED excuses a user who's cheating by periodically tapping the STOP button.
- 2. Since we need only one interrupt, we use NMI directly to the microprocessor instead of an 8259.
- 3. After the sobriety rating is displayed, pressing the START button resets the system for a fresh reaction time test.

Assumptions

- 1. A user who presses STOP at any point before the first LED is lit up is cheating, not only just before the first LED is lit.
- 2. Button input level stabilises in <20ms.
- 3. The rating system we have decided to use for the display is as follows:

Number of LEDs lit(n)	Sobriety Score
1<=n<3	5
3<=n<5	4
5<=n<7	3
7<=n<9	2
n=9	1

Components used with justification wherever required

Qty	Component	Justification / Notes	
1	8086	5 MHz minimum mode	
1	8284	With a 15 MHz crystal oscillator for generating 5 MHz clock	
1	LTS-4301 JR	Common Cathode 7 segment display (RED - 639 nm)	
9	LEDs	Red	
4	2716	Smallest ROM chip available is 2K and as we need to have even and odd bank and ROM is required at reset address which is at $FFFFO_H$ and 00000_H - where there is the IVT	
2	6116	Smallest RAM chip available is 2 K and we need odd and even bank. We need RAM for stack and temporary storage of data	
1	8253 / 8254	50 ms RTI and random number generation	
1	8255	Interfacing 9 LEDs and 2 pushbuttons	
2	TL3300 Series Tact Switch	Top actuated SPST-NO (Off-Mom) pushbuttons for START and STOP. Contact rating: 50 mA / 120 VDC	
1	74LS139	Dual 2x4 decoder for memory & I/O mapping	
3	74LS373	Tri-state Octal D-latches for demultiplexing AD0 - AD19 and latching A0 - A19	
3	74LS245	Tri-state Octal Bus Transceivers for 16-bit data bus	
1	74LS244	For buffering RD', WR', M/IO'	
1	74LS760	Driving 7 segment display	
	Logic Gates	For control signals wherever needed	
	Resistors	For limiting currents and as pull-ups for active-low pushbuttons	

Address Map Memory Map

Memory	Start Address	End Address	A14	A12
			0	0
ROM 1	$00000_{ m H}$	00 FFF $_{ m H}$	0	0
RAM 1	01000_{H}	01FFF _H	0	1
ROM 2	$FF000_{H}$	FFFFF _H	1	1

I/O Map

IO	Start Address	End Address	A3
8255	00_{H}	06 _H	0
8253	08 _H	0E _H	1

Design

Complete design shown with proper labelling (design attached)

Variations in Proteus Implementation with Justification

- 1. Memory chips excluded. Proteus simulates internal memory for 8086.
- 2. Using low clock frequency -- CLK = 2.4 MHz instead of 5 MHz because cascading counters to divide frequency makes simulation too slow to demonstrate.
- 3. Clock frequency passed in as a simulator parameter to 8086/8253 for smooth simulation.
- 4. Using 8253 as 8254 not available in Proteus.
- 5. Used digital modeling primitive for 7 segment display which doesn't need 74LS760 as buffer.
- 6. Using RD'/WR' signals directly instead of IOR'/IOW'/MEMR'/MEMW'.

Firmware

Implemented using emu8086 attached. (g52_PROTEUS.asm)

List of Attachments

- 1. Complete Hardware Real World Design design.pdf
- 2. Manuals
 - a. TL3300 pushbutton
 - b. S4301 JR 7 segment display
 - c. 74LS760 Octal buffer and line driver
 - d. 74LS139 Dual 2x4 Decoder
- 3. Proteus File g52.dsn
- 4. EMU8086 ASM File g52_PROTEUS.asm
- 5. On paper ASM File g52_PAPER.asm
- 6. Binary File after assembly g52.bin