Ch 18 Notes

John Yang

December 19, 2021

Contents

18	Second-Order Differential Equations	1
	18.1 Second-Order Linear Equations	1
	18.2 Nonhomogeneous Linear Equations	6
	18.3 Applications of Second-Order Differential Equations	
	18.4 Series Solutions	•

18 Second-Order Differential Equations

18.1 Second-Order Linear Equations

• A second-order linear differential equation has the form

$$P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x)y = G(x)$$

where P, Q, R, and G are continuous function.

• Homogeneous linear equations are where G(x) = 0:

$$P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x)y = 0$$

The equation is nonhomogeneous if $G(x) \neq 0$ for some x.

• Theorem: If $y_1(x)$ and $y_2(x)$ are both solutions of the linear homogeneous equation $P(x)\frac{d^2y}{dx^2}+Q(x)\frac{dy}{dx}+R(x)y=0$ and c_1 and c_2 are constants, then the function

$$y(x) = c_1 y_1(x) + c_2 y_2(x)$$

is also a solution of the equation.

• Theorem: if y_1 and y_2 are linearly independent solutions of a second-order linear homogeneous equation, and P(x) is never 0, then the general solution is given by

$$y(x) = c_1 y_1(x) + c_2 y_2(x)$$

where c_1 and c_2 are arbitrary constants.

- Two equations are linearly independent if neither is a constant multiple of the other.
- It is difficult to find solutions to most second-order diff eqs, but it is always possible to do so when

$$ay'' + by' + cy = 0$$

• Consider the equation

$$ar^2 + br + c = 0$$

which is called the auxiliary equation or characteristic equation of the diff eq ay'' + by' + cy = 0. The roots can be found using the quadratic formula:

$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 $r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

- Based on the discriminant $b^2 4ac$, there are three cases:
 - Case 1: $b^2 4ac > 0$. If the roots r_1 and r_2 of the auxiliary equation $ar^2 + br + c = 0$ are real and unequal, then the general solution of ay'' + by' + cy = 0 is

$$y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$$

- Case 2: $b^2 - 4ac = 0$. If the auxiliary equation $ar^2 + br + c = 0$ only has one real root r, then the general solution of ay'' + by' + cy = 0 is

$$y = c_1 e^{rx} + c_2 x e^{rx}$$

- Case 3: $b^2 - 4ac < 0$. If the roots of the auxiliary equation $ar^2 + br + c = 0$ are the complex numbers $r_1 = \alpha + i\beta$, $r_2 = \alpha - i\beta$, then the general solution of ay'' + by' + cy = 0 is

$$y = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x)$$

18.2 Nonhomogeneous Linear Equations

• Nonhomogeneous equations take the form

$$ay'' + by' + cy = G(x)$$

where a, b, and c are constants and G is a continuous function. The equation

$$ay'' + by' + cy = 0$$

is called the complimentary equation.

• Theorem: The general solution of the nonhomogeneous diff eq ay'' + by' + cy = G(x) can be written as

$$y(x) = y_p(x) + y_c(x)$$

where y_p is a particular solution of the nonhomogeneous equation and y_c is the general solution of the complimentary equation.

- The method of undetermined coefficients:
 - If $G(x) = e^{kx}P(x)$ where P is a polynomial of degree n, then try $y_p(x) = e^{kx}Q(x)$, where Q(x) is an nth degree polynomial (whose coefficients are determined by substituting in the differential equation).
 - If $G(x) = e^{kx} P(x) \cos mx$ or $G(x) = e^{kx} P(x) \sin mx$, where P is an nth degree ploynomial, then try

$$y_p(x) = e^{kx}Q(x)\cos mx + e^{kx}R(x)\sin mx$$

where Q and R are nth degree polynomials.

- Modification: If any term of y_p is a solution of the complimentary equation, multiply y_p by x (or by x^2 if necessary).

18.3 Applications of Second-Order Differential Equations

• Vibrating springs and Hooke's law:

$$m\frac{d^2x}{dt^2} = -kx$$

The general solution is $x(t) = c_1 \cos \omega t + c_2 \cos \omega t = A \cos(\omega t + \delta)$ where

$$\omega=\sqrt{\frac{k}{m}} \qquad \text{(frequency)}$$

$$A=\sqrt{c_1^2+c_2^2} \qquad \text{(amplitude)}$$

$$\cos\delta=\frac{c_1}{A} \qquad \sin\delta=-\frac{c_2}{A} \qquad \text{(phase angle)}$$

• Damped vibrations:

$$m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = 0$$

• Forced vibrations:

$$m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = F(t)$$

where F(t) is an external force.

• LRC circuits:

$$L\frac{d^2Q}{dt^2} + R\frac{dQ}{dt} + \frac{1}{C}Q = V(t)$$

18.4 Series Solutions

• Many diff eqs can't be solved explicitly, but we can use the power series

$$y = f(x) = \sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

• Substitute this expression into the diff eq and determine the value of the coefficients.