خلاصه جلسه هفته ۲-۶ اصلاح ایرادهای نگارشی سارا آذرنوش

### کاربرد شباهت بین دو رشته

#### ۱.۱ تصحیح املاء

پیدا کردن کلمه مناسب نوشتاری با درست ترین فاصله نگارشی

## ۲. بیوانفورماتیک: مقایسه رشته های زیستی

پیدا کردن شباهت دو موجود با محاسبه فاصله ی دو ژنوم

### ۳.۱ ارزیابی ترجمه ماشینی یا تشخیص گفتار

پیدا کردن شباهت و تفاوت دو جمله تولید شده با ماشین و تولید شده از مرجع

## ۲ فاصله ویرایشی

فاصله كمينه ويرايشي بين دو رشته كه با كمترين تعداد عملگرهاي زير براي تبديل به رشته ديگر انجام ميشود.

- اضافه شدن: حرفی در رشته نباشد که در رشته دیگر باشد.
- حذف شدن : حرفی در رشته باشد که در رشته دیگر نباشد.
  - تغییر حرف: ۲ حرف متفاوت باشند.

#### ۱.۲ پیدا کردن فاصله کمینه ویرایشی

- شروع: رشته اوليه => X به طول n
  - عملگرها: تولید، حذف، تبدیل
- $\mathbf{m}$  هدف: رشته ثانویه =>  $\mathbf{Y}$  به طول
- D(i,j) <=تابع هدف: کمینه کردن هزینهها

## ۲.۲ الگوریتم یافتن فاصله مینمم ویرایشی

۲ رشته ی مورد نظر را در پایین و چپ جدول وارد میکنیم و از ۱ تا طول رشته مقادیر اولیه میدهیم. از پایین چپ جدول شروع کرده خانه های بالا و راست را ۱+ مقداردهی میکنیم. خانه بالا راست را اگر هر دو حرف سطر و ستون آن یکی بودند ۰+ و در غیر اینصورت ۲+ میدهیم. راست بالاترین خانه کمترین فاصله ویرایشی و مسیر طی شده کمترین مسیر است.

Initialization:  $D(i,\!0)=i$ 

D(0.i) =

D(0,j) = j

Recurrence Relation:  $\label{eq:recurrence} For \ each \ \ i=1 \ \ to \ \ M$ 

For each 
$$j = 1$$
 to N 
$$\begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \end{cases}$$
 
$$D(i,j-1) + \begin{cases} 2; & \text{if } X(i)! = Y(j) \\ 0; & \text{if } X(i) = Y(j) \end{cases}$$
 Termination:

D(N,M) is distance

## ٣.٢ عملكرد الگوريتم

زمان: (O(nm حافظه: (O(nm

ردیابی: O(n+m)

# ۴.۲ مثال

فاصله ویرایشی دو کلمهی intention و execution را محاسبه میکنیم. مشابه الگوریتم گفته شده عمل میکنیم و مقداردهی میکنیم.

\_\_\_\_\_

| O 8<br>I 7 |   | _                       |                 |        |                      |             |          |                       |        |   |  |  |
|------------|---|-------------------------|-----------------|--------|----------------------|-------------|----------|-----------------------|--------|---|--|--|
|            |   | _                       |                 |        | 1                    | I           |          |                       | I      |   |  |  |
| т с        |   |                         |                 |        |                      |             |          |                       |        |   |  |  |
| T 6        |   | – D( <i>I</i> ,         | <i>)</i> ) = mi | n   D( | i,]-1) +<br>i-1.i-1) | · 1<br>+ 〔2 | : if S.( | i) ≠ S <sub>2</sub> ( | <br>i) |   |  |  |
| N 5        |   | 0; if $S_1(i) = S_2(j)$ |                 |        |                      |             |          |                       |        |   |  |  |
| E 4        |   |                         | ,               |        |                      | `           |          |                       |        |   |  |  |
| T 3        |   |                         |                 |        |                      |             |          |                       |        |   |  |  |
| N 2        |   |                         |                 |        |                      |             |          |                       |        |   |  |  |
| I 1        |   |                         |                 |        |                      |             |          |                       |        |   |  |  |
| # 0        | 1 |                         | 2               | 3      | 4                    | 5           | 6        | 7                     | 8      | 9 |  |  |
| #          | Е |                         | Χ               | Е      | С                    | U           | Т        | I                     | 0      | N |  |  |

با توجه به حروف كلمه از پايين چپ پايين به بالا راست حركت ميكنيم. بالا راستترين خانه جواب است.

| N | 9 | 8 | 9 | 10 | 11 | 12 | 11 | 10 | 9  | 8  |
|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 8 | 7 | 8 | 9  | 10 | 11 | 10 | 9  | 8  | 9  |
| I | 7 | 6 | 7 | 8  | 9  | 10 | 9  | 8  | 9  | 10 |
| Т | 6 | 5 | 6 | 7  | 8  | 9  | 8  | 9  | 10 | 11 |
| N | 5 | 4 | 5 | 6  | 7  | 8  | 9  | 10 | 11 | 10 |
| Е | 4 | 3 | 4 | 5  | 6  | 7  | 8  | 9  | 10 | 9  |
| Т | 3 | 4 | 5 | 6  | 7  | 8  | 7  | 8  | 9  | 8  |
| N | 2 | 3 | 4 | 5  | 6  | 7  | 8  | 7  | 8  | 7  |
| I | 1 | 2 | 3 | 4  | 5  | 6  | 7  | 6  | 7  | 8  |
| # | 0 | 1 | 2 | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
|   | # | E | X | E  | С  | U  | Т  | I  | О  | N  |

### ۵. میزان اشتباه جایگزین شدن حروف

• محل قرارگیری حروف در کیبورد

هزینه حروف نزدیک را کمتر قرار میدهیم.

• شكل و تلفظ حروف

هزينه حروف هم آوا و يا نوشتار مشابه را كمتر قرار ميدهيم.

### ۶.۲ محاسبه فاصله كمينه وزندار

با توجه به ارزشی که به هر عملگر داده میشود مقدار بدست می آید.

Initialization:

$$D(0,0) = 0$$

$$D(i,0) = D(i-1,0) + del[x(i)]; 1 < i <= N$$

$$D(0,j) = D(0,j\text{-}1) + ins[y(j)]; \, 1 < j <= M$$

 ${\bf Recurrence} \ {\bf Relation};$ 

$$D(i\text{-}1,j)\,+\,\mathrm{del}[x(i)]$$

$$D(i,j) = \min D(i,j-1) + ins[y(j)]$$

$$D(i\text{-}1,j\text{-}1) \,+\, sub[x(i),y(j)]$$

Termination:

 $\mathcal{D}(\mathcal{N},\mathcal{M})$  is distance

# ۳ زبانهاي منظم

یک زبان منظم است اگر و فقط اگر توسط یک DFA یا NFA پذیرفته شود.  ${\bf L}$ 

است که: ( $Q,\sigma,\delta,q\circ,F$ ) تایی شامل  $Q,\sigma,\delta,q\circ,F$  است که automaton finite deterministic

- مجموعهای محدود از حالات Q
- $\sigma$  مجموعهای محدود از نمادهای ورودی به نام الفبای
  - $\delta:Q*\sigma=>Q$ یک تابع انتقال
    - حالت اوليه يا شروع
  - مجموعهای از حالات پذیرفته شده

# ۱.۳ عملگرهای یک زبان منظم

Union  $\bullet$ 

 $L \cup M$ 



Dot ●

 $M \bullet L$ 

Star ●

 $L_1=L$  و  $L_\circ=\epsilon$  بسته شدن یک زبان،  $L_\circ$  به صورت  $L_\circ\cup L_1\cup L_2\cup L_3\cup L_4\cup L_5$  و و



### ۲.۳ گرامر زبان منظم

خطی از راست است که نحوهی تولید و شکل رشته را مشخص میکند.

خطى: سمت چپ فلش تنها یک نانترمینال داریم.

خطی از راست: ترمینالها سمت چپ نانترمینالها قرار میگیرند.

