

KRAVSPECIFIKATION

Victor Tranell
Version 1.0

Status

Granskad	
Godkänd	

M/S Sea++

Projektgrupp 2, HT15 Linköpings tekniska högskola, ISY

Namn	Ansvar	Telefon	E-post
Anton Rooth		070 369 01 40	antro937@student.liu.se
Erik Rönmark		076 818 78 26	eriro331@student.liu.se
Michael Sörsäter	Dokumentansvarig (DOK)	076 142 70 99	micso554@student.liu.se
Mikael Ångman		073 843 15 00	mikan972@student.liu.se
Peter Tullstedt		073 714 45 66	pettu298@student.liu.se
Victor Tranell	Projektledare (PL)	073 680 71 09	victr593@student.liu.se

E-postlista för hela gruppen: tsea29.grupp2@gmail.com **Hemsida:** https://github.com/nullacid/grupp2robot

Kund: Institutionen för systemteknik, Linköpings Universitet, 581 83 LINKÖPING, kundtelefon 013-28 10 00, fax: 013-13 92 82

Kontaktperson hos kund: Tomas Svensson, 013-28 13 68, tomas.svensson@liu.se

Kursansvarig: Tomas Svensson, B-huset, rum 3B:528, 013-28 13 68, tomas@isy.liu.se **Handledare**:

Innehållsförteckning

1	In	ledning	. 1
	1.1	Parter	. 1
	1.2	Syfte och Mål	. 1
	1.3	Användning	. 1
	1.4	Bakgrundsinformation	. 1
	1.5	Definitioner	. 1
2	Ö	versikt av systemet	. 2
	2.1	Grov beskrivning av produkten	. 2
	2.2	Produktkomponenter	. 3
	2.3	Beroenden till andra system	3
	2.4	Ingående delsystem	. 3
	2.5	Avgränsningar	. 3
	2.6	Designfilosofi	. 3
	2.7	Generella krav på hela systemet	. 3
3	Se	ensormodul: Mimers brunn	5
	3.1	Inledande beskrivning av Sensormodulen	. 5
	3.2	Gränssnitt	5
	3.3	Designkrav	. 5
		Funktionella krav för sensormodulen	
4	St	yrmodul: Bjarne	. 7
	4.1	Inledande beskrivning av styrmodul	. 7
	4.2	Gränssnitt	. 7
	4.3	Funktionella krav för styrmodul	. 8
5	K	ommunikationsmodul: Harald Blåtand	9
	5.1	Inledande beskrivning av kommunikationsmodul	9
	5.2	Gränssnitt	9
	5.3	Funktionella krav på kommunikationsmodul	
6	Aı	nvändargränssnitt	l 1
	61	Inledande beskrivning av användargränssnitt	1 1

6.2 Gränssnitt	11
6.3 Funktionella krav på användargränssnitt	11
7 Prestandakrav	12
8 Krav på vidareutveckling	13
9 Ekonomi	14
10 Leverans och delleverans	15
11 Dokumentation	16
11.1 Krav på Dokumentation	16
Referenser	17
Appendix A - Tävlingsspecifikation	18

tsea29.grupp2@gmail.com

Dokumenthistorik

Version	Datum	Utförda förändringar	Utförda av	Granskad
0.1	2015-09-08	Första utkastet	Victor Tranell	2015-09-08
0.2	2015-09-10	Formalia förändringar	Victor Tranell	2015-09-10
1.0	2015-09-10	Första versionen	Victor Tranell	2015-09-10

1 Inledning

Det här dokumentet innehåller en kravspecifikation till Kartroboten M/S Sea++. Den har till uppgift, efter beställarens önskemål, att kartlägga en bana uppbygd av pappskivor. Kartdatan ska skickas till en dator, trådlöst och i realtid, där den visualiseras. En tävling enligt reglerna i appendix A kommer att utspela sig där denna och andra kartrobotar deltar.

I detta dokument beskrivs alla krav med en tabellrad enligt figur 1. Kravnumren är löpande genom hela dokumentet. Den andra kolumnen anger om kravet är ett originalkrav eller om kravet har reviderats. Vid en revidering finns en hänvisning till beslut. I den tredje kolumnen finns själva formuleringen av kravtexten. I den fjärde och sista kolumnen finns kravets prioritet angiven. Krav med prioritet 1 är krav vi ska genomföra för att projektet ska bli godkänt enligt kursmålen, krav med prioritet 2 är krav vi ska göra om vi har tid och har utfört alla krav med prioritet 1 och krav med prioritet 3 är idéer på framtida utökningar och ska endast göras om alla krav av prioritering 1 och 2 är färdigställda.

Tabell 1:Exempel på tabell.

Krav nr x Förändring Kravtext för krav nr X Prioritet

1.1 Parter

Kunden av projektet är Tomas Svensson. Leverantör är projektgrupp nr 2.

1.2 Syfte och Mål

Målet med projektet är att konstruera ett system som autonomt ska kunna kartlägga ett rum och måla upp en grafisk avbild av det på en skärm.

1.3 Användning

Systemet ska sättas vid en startposition, enligt fördefinierade banregler. När systemet sedan slås på åker roboten runt och kartlägger rummet helt autonomt. Informationen om hur rummet ser ut samt sensordata skickas sedan en dator där vår mjukvara målar upp rummet.

1.4 Bakgrundsinformation

Detta projekt ingår i kursen TSEA29-Konstruktion med mikrodatorer vid Linköpings Universitet. Vår examinator agerar beställare och har givit oss ett projektdirektiv utifrån vilken vi ska konstruera en robot för att autonomt kartlägga ett rum.

1.5 Definitioner

Systemet har givits namnet "M/S Sea++"
Styrenheten har givits namnet "Bjarne"
Kommunikationsenheten har givits namnet "Harald Blåtand"
Sensorenheten har givits namnet "Mimers brunn"

2 Översikt av systemet

Systemet är uppbyggd av tre moduler. Kommunikationsmodul, styrmodul samt sensormodul. Sensormodulen skickar sensordata till styrmodulen som tar emot och sänder data till kommunikationsmodulen. Kommunikationsmodulen sänder och tar emot data med den bärbara datorn. Den bärbara datorn sänder data till projektorn. Se Figur 2.

Figur 1. Beskrivande bild över de olika modulerna samt hur de kommunicerar med varandra.

2.1 Grov beskrivning av produkten

Systemet representerar en robot som autonomt ska kunna kartlägga ett okänt rum. Ett manuellt läge skall finnas där robotens alla rörelser skall kunna styras av användaren. Systemet har även en startknapp för att påbörja den autonoma kartläggningen.

2.2 Produktkomponenter

Produkten ska bestå av följande komponenter:

- Kartläggningssystemet
- Dator för visualisering
- Programvaror för styrning av systemet och visualisering

2.3 Beroenden till andra system

En extern dator behövs för att visualisera den insamlade kartdatan.

2.4 Ingående delsystem

Produkten ska bestå av följande delsystem:

- Styrmodul "Bjarne"
- Kommunikationsmodul "Harald Blåtand"
- Sensormodul "Mimers brunn"
- Dator för visualisering

2.5 Avgränsningar

Roboten skall kunna köras på banor enligt de specificerade banreglerna.

2.6 Designfilosofi

Funktionalitet och driftsäkerhet av systemet prioriteras högst, dvs att roboten ska fungera utan problem.

2.7 Generella krav på hela systemet

Krav	Förändring	Beskrivning	Prioritet
1.	Original	Systemet ska vara modulärt uppbyggt.	1
2.	Original	Varje modul ska innehålla en dator.	1
3.	Original	Modulerna är minst 3 (tre) till antalet.	1
4.	Original	Systemet ska kommunicera med en dator via Bluetooth™.	1
5.	Original	Systemet ska innehålla en styrmodul.	1
6.	Original	Systemet ska innehålla en kommunikationsmodul.	1
7.	Original	Systemet ska innehålla en sensormodul.	1
8.	Original	Systemet ska följa specifikationer för robotkonstruktion som	1
		presenteras i appendix A.	
9.	Original	Systemet ska kunna navigera och kartlägga en bana som	1

		specificeras i appendix A.	
10.	Original	Roboten ska ha en startknapp för att starta det autonoma läget.	1
11.	Original	Roboten ska ha en brytare för att ändra mellan autonomt och manuellt läge.	1
12.	Original	Systemet ska kunna spela upp ljud via en egen modul.	2
13.	Original	Systemet ska lagra en backup av kartan. Backupen ska kunna extraheras manuellt.	3
14.	Original	Systemet ska vara flamsäkert.	3
15.	Original	Gränssnitten ska vara väl definierade, så att modulerna lätt kan bytas ut.	1
16.	Original	Systemets ska kunna kontrolleras, genom att användaren skickar kommandon via en extern dator, i följande riktningar: fram, fram vänster, fram höger, back, stopp, rotera vänster och rotera höger.	1
17.	Original	Projektet ska utföras enligt LIPS-modellen.	1

3 Sensormodul: Mimers brunn

Sensorenheten (processor) tar in sensordata från de sensorer som används och formaterar dem till användbar data som sedan skickas vidare till styrmodulen vilket visas i figur 2.

Figur 2. Bild av Sensormodulen.

3.1 Inledande beskrivning av Sensormodulen

Krav	Förändring	Beskrivning	Prioritet
18.	Original	Sensorenheten ska agera gränssnitt mellan systemets sensorer och övriga systemet.	1
19.	Original	Sensorenheten ska formatera sensordata på ett lämpligt sätt för att skicka till styrenheten.	1

3.2 Gränssnitt

Krav	Förändring	Beskrivning	Prioritet
20.	Original	Sensorenheten ska endast kommunicera med styrenheten samt systemets sensorer.	1

3.3 Designkrav

Krav	Förändring	Beskrivning	Prioritet
21.	Original	Sensormodulen ska innehålla en dator.	1
22.	Original	Sensormodulen ska innehålla sensorer.	1

3.4 Funktionella krav för sensormodulen

Krav	Förändring	Beskrivning	Prioritet
23.	Original	Sensordatan ska filtreras och formateras i sensorenheten.	1
24.	Original	Sensordatan ska skickas till styrmodulen.	1
25.	Original	Sensormodulen ska mäta avstånd till väggar.	1
26.	Original	Sensormodulen ska mäta hur långt systemet har åkt.	1

4 Styrmodul: Bjarne

Styrmodulen tar in formaterat sensordata från sensormodulen. I figur 3 visas styrenheten som skickar vidare sensordatan till kommunikationsmodulen så att användaren ska se datan som används. I autonomt läge så bestämmer styrenheten hur roboten ska röra på sig, annars kan den ta in kommandon från kommunikationsmodulen. I kartminnet finns all sparad information om läget och området runt roboten.

Figur 3. Denna bild visar styrmodulen.

4.1 Inledande beskrivning av styrmodul

Styrmodulen ska agera som den centrala beslutsfattaren i systemet. Den ska motta sensordata från sensormodulen och styra kartläggningen utifrån detta. Styrmodulen ska även skicka kart- och sensordata till kommunikationsmodulen. Om systemet ej är i autonomt läge ska styrmodulen styra systemet utifrån mottagna kommandon från kommunikationsenheten.

4.2 Gränssnitt

Krav	Förändring	Styrmodulen ska ta emot och tolka styrkommanden från	
27.	Original		
28.	Original	Styrmodulen ska ta emot och tolka sensordata från sensormodulen.	1
29.	Styrmodulen ska skicka vidare sensordata till		1

4.3 Funktionella krav för styrmodul

Krav	Förändring	Beskrivning	
30.	Original	Styrmodulen ska styra hjulen utifrån sensordata och läge, för att autonomt kunna navigera och kartlägga labyrinten.	1
31.	Original	Styrmodulen ska reglera hjulens hastighet.	1

5 Kommunikationsmodul: Harald Blåtand

Kommunikationsmodulen har bluetooth-kommunikation med den externa datorn vilket visas i figur 4. Den skickar all data från roboten (sensordata, styrdata, karta) och tar in styrkommandon när roboten inte är i autonomt läge. Kommunikationsmodulen passerar vidare informationen på ett formaterat sätt till styrmodulen.

Figur 4. Bild av kommunikationsmodulen.

5.1 Inledande beskrivning av kommunikationsmodul

Krav	Förändring	Beskrivning	Prioritet
32.	Original	Kommunikationsmodulen ska agera gränssnitt mellan den externa datorn och Styrmodulen.	1
33.	Original	Styrmodulen skickar vidare sensordata som via kommunikationsmodulen skickas till den externa datorn.	1

5.2 Gränssnitt

Krav	Förändring	Beskrivning	
34.	Original	Kommunikationsmodulen ska använda gränssnittet Bluetooth för att kommunicera med datorn.	1

5.3 Funktionella krav på kommunikationsmodul

Krav	Förändring	Beskrivning	
35.	Original	Kommunikationsmodulen ska skicka kart-, styr- och sensordata till användargränssnittet.	
36.	Original	Kommunikationsmodulen ska skicka styrdata till styrmodulen.	
37.	Original Kommunikationsmodulen ska ta emot styrkommandon från den externa datorn.		1

6 Användargränssnitt

6.1 Inledande beskrivning av användargränssnitt

Användargränssnittet ska presentera all information om systemet (sensordata, styrdata, karta) på ett läsligt sätt. Användaren ska också kunna ge roboten styrkommandon.

6.2 Gränssnitt

Krav	Förändring	Beskrivning	Prioritet
38.	Original	Datorn ska presentera den uppritade kartan på en projektor.	1
39.	Original	Den externa datorn tar upp information från kommunikationsmodulen som sedan visas upp av användargränssnittet.	1
40.	Original	Den av datorn presenterade kartan ska visas i 3D	2

6.3 Funktionella krav på användargränssnitt

Krav	Förändring Beskrivning		Prioritet
41.	Original	Den av systemet insamlade datan ska läsligt visualiseras på datorn i realtid.	1
42.	42. Original Datorn ska kunna skicka följande kommandon: Fram, fram vänster, fram höger, back, stopp, rotera vänster, rotera höger.		1

7 Prestandakrav

Krav	Förändring	Beskrivning	Prioritet
43.	Original	Systemet ska i sitt autonoma läge ej stå stilla längre än 3 sekunder.	2

8 Krav på vidareutveckling

Krav	Förändring	Beskrivning	Prioritet
44.	Original	Systemet ska kunna styras och visa data via en mobilapplikation för operativsystemet Android.	
45.	Original	Systemet ska kunna sända och ta emot data via WiFi.	3
46.	Original	Systemets ska kunna fjärrstyras över internet.	3

13

9 Ekonomi

K	rav	Förändring	Beskrivning	Prioritet
47	7.	Original	Maximalt 960 arbetstimmar ska utnyttjas efter beslutspunkt 2.	1

10 Leverans och delleverans

Tabell 2: Tabell innehållande de leveranser och deadlines som ska följas.

Krav	Förändring	Beskrivning		
48.	Original	Kravspecifikationen ska vara godkänd senast den 2015-09-15	1	
49.	Original	Första versionen av projektplan, tidplan och systemskiss ska vara inlämnade till beställaren senast 2015-09-25	1	
50.	Original	Slutgiltiga versionen av projektplan, tidplan och systemskiss ska senast vara godkänd 2015-10-01	1	
51.	Original	Tidrapport 1 ska vara inlämnad senast 2015-11-02	1	
52.	Original	Första versionen av designspecifikationen ska vara inlämnad senast 2015-11-03	1	
53.	Original	Slutgiltiga versionen av designspecifikationen ska vara godkänd senast 2015-11-06	1	
54.	Original	Tidrapport 2 ska vara inlämnad senast 2015-11-09	1	
55.	Original	Tidrapport 3 ska vara inlämnad senast 2015-11-16	1	
56.	Original	Tidrapport 4 ska vara inlämnad senast 2015-11-23	1	
57.	Original	Tidrapport 5 ska vara inlämnad senast 2015-11-30	1	
58.	Original	Tidrapport 6 ska vara inlämnad senast 2015-12-07	015-12-07	
59.	Original	Tidrapport 7 ska vara inlämnad senast 2015-12-14	1	
60.	Original	Efterstudien ska vara inlämnad senast 2015-12-18		
61.	Original	Utrustning ska lämnas tillbaka senast 2015-12-22	1	
62.	Original	Roboten ska levereras och redovisas senast vecka 51	1	

Projektgrupp 2

11 Dokumentation

Tabell 3: Dokumentation

Dokument	Språk	Syfte	Målgrupp	Format
Teknisk dokumentation	Svenska	Förklara hur systemet är konstruerat	Tekniskt ansvarig	PDF
Användarhandledning	Svenska	Beskriva för användaren hur produkten är tänk att användas	Användare	PDF

11.1 Krav på Dokumentation

Krav	Förändring	Beskrivning	Prioritet
63.	Original	All dokumentation ska följa LIPS-standarden	1
64.	Original	Tre arbetsdagar före redovisning ska Teknisk dokumentation och användarhandledningen lämnas in	1

Referenser

Publicerade källor

Svensson, Tomas och Krysander Christan. 2011. *Projektmodellen LIPS*. Upplaga 1:2. Lund: Studentlitteratur AB.

Appendix A - Tävlingsspecifikation

Dokumenthistorik

Version	Datum	Utförda förändringar
0.1	2015-09-04	Första versionen
0.2	2015-09-07	Ändringar baserade på andra gruppers åsikter

1.1 Banspecifikation

Krav	Förändring	Beskrivning	Prioritet
1.	Original	Banan är uppbyggd av kartongväggar inom ett område, som är max 6x6 m.	1
2.	Original	Banan skall vara sluten dvs. inga öppningar som gör att roboten kan lämna banområdet får finnas.	1
3.	Ändrad 2015-09-07	Banan skall ha en bestämd startposition som är maximalt 20 cm från en yttervägg.	1
4.	Original	Kartongväggarna är multipler av 40 cm.	1
5.	Original	Alla hörn är multipler av 90 grader.	1
6.	Original	Alla väggar måste vara vinkelräta eller parallella mot varandra med ett avstånd som är multipler av 40 cm med andra parallella väggar.	1
7.	Ändrad 2015-09-07	Det skall ej vara möjligt att kartlägga kartongvärlden genom att endast följa en vägg, utan minst en så kallad köksö kan förekomma. Den sida på köksön som är närmast ytterväggen har ett avstånd till den närmaste parallella ytterväggen på maximalt 80 cm. Avståndet till väggarna ska dessutom vara multipler av 40 cm.	1
8.	Original	Banan skall ej ha tunna väggar, se Figur 1.	1

9.	Original	Inga hinder skall vara placerade på banan.	1
10.	Original	Banan ska vara plan.	1

Figur 1 - Exempel på banor

1.2 Robotspecifikation

Krav	Förändring	Beskrivning	Prioritet
11.	Original	Om en grupp beställer en komponent så måste det vid beställningstillfället berätta för de andra grupperna.	1
12.	Ändrad 2015-09-07	Roboten får ej vara större än 40x40x40 cm.	1
13.	Original	Under tävlingen ska roboten vara autonom det vill säga ej motta kommandon från datorn.	1
14.	Original	Under tävlingen ska roboten sända sensor- och positionsdata till en dator.	1

15.	Original	Under tävlingen ska roboten kartlägga banan samt sända den insamlade datan till en extern dator som, via projektor, visualiserar banan utifrån robotens kartläggning och visar denna för en publik.	1	
-----	----------	---	---	--

1.3 Tävlingsregler

Krav	Förändring	Beskrivning	Prioritet
16.	Original	Genomförandet av tävlingen ska ske autonomt.	1
17.	Original	Vinnaren av tävlingen är den som ritar ut en korrekt ritning av banan och sedan återvänder till startpositionen på kortast tid.	1
18.	Ändrad 2015-09-07	Alla tävlande ska starta från samma position på banan, maximalt 20 cm från en yttervägg. Vilken riktning roboten är vänd åt får grupperna själva välja.	1
19.	Ändrad 2015-09-07	Om roboten kör in i en vägg så att banstrukturen ändras så måste gruppen starta om. Om detta händer mer än en gång så blir roboten diskvalificerad från tävlingen.	1