Seminar 6

- A1. Ein Dartspieler zielt auf eine rote Scheibe ("Bullseye"), deren Mittelpunkt in der Mitte der Zielscheibe ist und die einen Durchmesser von 1 cm hat. Bei einem Wurf ist der Abstand zwischen dem Mittelpunkt der Scheibe und dem Punkt, den der Wurfpfeil des Spielers trifft, gleichverteilt auf dem Intervall [a, b], wobei $0 \le a < b$, mit einem Erwartungswert von $\frac{3}{2}$ cm und einer Standardabweichung von $\frac{\sqrt{3}}{2}$ cm. Die Würfe des Spielers sind unabhängig. Man bestimme: a) die Wahrscheinlichkeit, dass der Spieler die rote Scheibe trifft;
- b) die Wahrscheinlichkeit, dass der Spieler in 10 Würfen genau dreimal die rote Scheibe trifft.

Die Dichtefunktion der Unif[a,b] Verteilung ist $f: \mathbb{R} \to \mathbb{R}$ definiert durch $f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & x \notin [a,b] \end{cases}$.

A2. Seien $X_n \sim Unif[1,3]$ unabhängige Zufallsgrößen. Zu welche Werte konvergieren fast sicher die Folgen:

$$\mathbf{a)} \ Z_n = \sqrt[n]{\prod_{i=1}^n X_i}, \ n \in \mathbb{N}^*;$$

b)
$$U_n = \frac{1}{n} \sum_{i=1}^n X_i^3, \ n \in \mathbb{N}^*$$
?

A3. Seien $X_1,...,X_n,...$ Stichprobenvariablen für das Merkmal X und sei E(X)=m (bekannt) und $\sigma^2=V(X)$ unbekannter Parameter. Ist die Schätzfunktion

$$\hat{g} = \hat{g}(X_1, ..., X_n) = \frac{1}{n} \sum_{i=1}^n (X_i - m)^2, \ n \in \mathbb{N}^*,$$

erwartungstreu und konsistent für den unbekannten Parameter σ^2 ?

A4. Sei X die Zufallsgröße welche die Anzahl der Kunden, die in einen bestimmten Laden zwischen 9:00 und 10:00 Uhr eintreten, welche Poisson verteilt ist, mit unbekanntem Parameter λ , d.h.

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda} \quad k \in \{0, 1, 2, 3, \dots\}.$$

Anhand der Informationen die 10 Tage gesammelt wurden, erhielt man die statistischen Daten für X: 9, 7, 10, 15, 10, 13, 12, 7, 5, 12. Man schätze den unbekannten Parameter $\lambda > 0$ anhand der Maximum-Likelihood-Methode. Man gebe die Schätzfunktion an und berechne den Schätzwert. Ist die Schätzfunktion erwartungstreu bezüglich dem unbekannten Parameter λ ?

A5. Die Wartezeit in einem Restaurant ist exponentialverteilt $Exp(\lambda)$. Es liegt folgende Stichprobe von 10 unabhängig voneinander beobachteten Wartezeiten (in Minuten) vor: $x_1 = 6.2, x_2 = 1.8, x_3 = 1.5, x_4 = 14.9, x_5 = 4.3, x_6 = 4.8, x_7 = 2.4, x_8 = 5.4, x_9 = 5.4$ $5.5, x_{10} = 3.2$. Man schätze den unbekannten Parameter λ der Exponentialverteilung mit Hilfe der Momentenmethode. Hinweis: die Dichtefunktion der Exponentialverteilung $Exp(\lambda)$ ist

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & : x > 0\\ 0 & : x \le 0. \end{cases}$$