WAILABLE COPY

Immunogenicity of HIV-and HCV-derived minigenes in HLA transgenic animals.

ide of CTL responses are shown as follows: + up to 2 LU (Lytic Units) or 10 SV (Secretory Units); ++ up to 200 LU or 100 SU; +++ up to 200 LU 0 Su; ++++more than 2009 LU or 1000 SU. Magnitude represents number of independent cultures yielding positive responses.

•	Tel. No.: 202-371 For: Optimized N	-2600 Iulti-Epitope Constru	sets and I less The	menf
		S S S S S S S S S S S S S S S S S S S	and the Coco i in	25
rejú/J		- A		NS4 812
(§)		25/125	- 9/	1777
> 4	⊥ .∞	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	⁺ 0	1131
En 134	++ 5/8	## m	1/6 0/6	22
		A3 (28)	⁺ 2/6	₹ <u></u>
77777	6	151/E A3	+	NS5 2611
	0/19	₹ ₹ ₹₹		8.5
		₩		W///
		\$4 \$4		8.5
////	₩.		့်ဝ	<u> & </u>
Gag 271	++ 4/13	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1/6	m ∞
7/3/		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	+ 4/6	NS1/E 2 728
<u> </u>	· 	8//4	•	16 N
Nef 221	++ 9/11			<u> </u>
		\$200 E	++ 5/6	S1/E
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		A 100 N		1/2/
				77.27
		<i> </i>		N. 1863.
		2 2		NS4 590
		2	2	<u> </u>
Pol 498	+++ 8/19	128 AZ	0/12	NS4 1851
7////	+2			
//%/		2 X		4 8
		16 A2		NS4 1769
		5 A2		17/1 NS4 1769
			+2	CORE 35
		SS A2	+/9	8,7
Vpr 62	++ 10/14	NSS NS4 CORE 2611 1769 35 A2 A2 A2	±/17	3,,,,
× ////	-	NS5 2611	_ /12	N. 65
\ \		# 50 2	2 0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		NS4 1851	0/12 0/12 2/12 6/12	(,2 ,2)
		NS4 NS4 NS5 NS4 CORE 1590 1851 2611 1769 35 A2 A2 A2 A2 A2	++ 5/12	7
Pol 774	++ - 7/13 0/8	132 A2	+++ ++ 2/12 5/12	
Pol 1	+ 5	NS4 CORE 1812 132 A2 A2	2 2,	CORE PAY
₹	+//	NS4 1812 A2	1/12	85
	ognitude equency		ignitude equency	
	agni equ(ignit eque	

Sheet 1.of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003

Inventors: SETTE et al. Tel. No.: 202-371-2600

1/90

1/A1, A24, B7

Ø

ignitude +++ squency 17/18

Sheet 2 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be

assigned
Inventors: SETTE et al.

-44

Synthetic polypeptides encoding HIV-derived HTL epitopes

Tel. No.: 202-371-2600 For: Optimized Multi-Epitope Constructs and Uses Thereof

2/90 HIV pol 303 **GPGPG** HIV pol 335 303 GPGPG HIV pol 711 HIV gag 171 HIV pol 335 HIV pol S HIV gag 171 **GPGPG** HIV pol 711 unctional peptides* pacer optimized **III.** polyepitope

ction peptides comprise either 10 amino acids from the N—terminal epitope and 5 amino acids from the erminal epitope or 5 amino acids from the N—terminal epitope and 10 amino acids from the C—terminal epitope.

3/90

FIG.2B

Sheet 4 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

N-FI	A*0201	A*0201 A*0201 A*1101	A*1101	A*1101	A*0201	A*1101 A*0201 A*1101		A*1101	B*0701 A*1101 A*0201 A*1101	A*1101
ignal	gnal Pol 448 Pol 774 Pol 347	Pol 774	Pol 347	Pol 98	Vpr 62	Pol 930	Pol 893	Env 61	Pol 893 Env 61 Pol 498	Pol 929
	09	62	10	28	19	20	458	27	192	∞
	A*1101	A*1101 B*0701	A*1101	A*0201	A*0201 A*1101	A*0201	A*1101	l .	A*0201 B*0701	A*0201
	-Pol 931	Pol 931 Env 250	t .	Nef 221	Nef 100	Nef 221 Nef 100 Gag 271 Env 46 Gag 386 Env 259 Env 134	Env 46	Gag 386	Env 259	Env 134
	3	100	28	36	6	167	3	29	423	102
					FIG	FIG.3A				

- 41

Sheet 5 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Ontimined Multi-Faitons Constructs and Lines The

. AT

Tel. N For: (Optimiz		oitope Co	onstruct	s and Uses The	reof	
	رد 	/90	A*0201	env 335	2	A*0201	env 335
A*0201	env 335	5	A*1101 A*0201	pol 665	11	A*1101	pol 665
A*0201 A*1101 A*1101 A*0201	pol 665	11	A*1101	core 141	4	A*1101	env 183 core 141 pol 665
A*1101	env 183 core 141 pol 665	4	A*0201 A*0201 A*1101	env 183 core 141	10	A*0201	env 183
A*0201	env 183	10	A*0201	pol 455	76	A*0201	pol 455
A*0201 A*0201	pol 455	9/	A*0201	pol 551	5	A*0201	pol 551
A*0201	pol 551	2	A*0201	pol 562	ω	A*0201	pol 562
A*0201	pol 562	80	A*0201 A*1101	pol 629	353		C1
A*0201 A*0201	core 18	2 F	A*0201	core 18	2 K	A*0201	core 18
	pol 149 PADRE® core 18 pol 562			pol 149 PADRE® core 18 pol 629			pol 149 PADRE® core 18
A*1101	pol 149	14	A*1101	pol 149	14	A*1101	pol 149
-	nal		.5	Inal		. .	Inal

-specific multiepitope constructs

 $C_1 = \text{either W, Y, L, K, R, C, N or G}$

Tel. No.: 202-371-2600

FIG.4A

Sheet 7 of 90

-41

Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be

assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

7/90

Sheet 8 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

-41

Sheet 9 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses
Thereof

9/90

FIG.7

Sheet 11 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be

- 40 }

assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

11/90

			 •		
		1			
	A*0201	386	7	2 N	
	Ä	K env 259 K PADRE KA nef 94 GAA env 134 GAAA gag 386	B*0702	893 K gag 237 N env 47 KAAA pol 929 NAAA gag 545 N	
	10	34 GA	1	NAAA	
	A*0201	env 1	A*1101	929	
	21	t GAA	A*1	₩ pol	
	B*0702	nef 94	10	47 KA	
		E KA	A*1101	env	
		PADR	702	237 N	•
	702	259 K	B*0702	gag	
	B*0702	(env	702	893 K	
	B*0702		B*0702	Pol	
	B*0	A env	A*1101	, 61 ×	
	01	98 NA	A*1	K	
	A*0201	pol 4	A*1101	347	
	-	gnal pol 448 GAA pol 498 NAA env 250	Ą	pol 722 GAAA pol 347 K env 61 K Pol	
HIV-1090	A*0201	pol 44	01	722 G	
. HI≷		gnal	A*1101	lod	_

B*0702

A*1101

A*1101

A*0201

75

<u>ĕ</u>

86

<u>8</u>

<u>≸</u>

971

<u>@</u>

₹

62

Vpr Z

nef

Sheet 12 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003

Dixt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al.

Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses

Thereof

12/90

-41

				KA			
		GA	5	47		;	
	A*1101	929	A*1101	env			
	A*1	100		포			
	. ~	3A p	702	250			
	1	34 (B*0702	env		5	17.
	A*0201	env 134 GA pol 929 GA	•	GAAA nef 221 NA gag 386 N vpr 62 NAAA env 250 K env 47 KAA		A*0201	gag 237 NAAA gag 545 NAAA env 61 N pol 448 NAAA nef 94 N gag 271
		ı	5	- 62			Z
	_	7	A*0201	يط پو		B*0702	94
	A*1101	34		z		*	ne
	A *	pol	10	386			₩
)2)5 K	A*0201	go		=	48
	B*0702	7 %		_ _	1	A*0201	4
	æ	\ \ \		Z		*	
		М Т	A*0201	22		_	Z
		98 K PADRE K rev 75 K pol 347	A*0	nef		A*1101	. 61
		×		¥		~	<u>6</u>
	0	98					₹
	A*11(<u>8</u>	A*0201	498		7	7
		≸	A*0	<u>o</u>		B*0702	Ω.
	=	-		₹		*	ğ
•	A*1101	97	22	93			≸
	¥	8	B*0702	∞ ∽			$\frac{z}{z}$
		≸	8	<u> </u>		702	23
	22	29		<u>₹</u>		B*0702	gag
•	B*0702	nal env 259 KAA poi 971 KAA pol	A*1101	pol 722 NA pol 893 KA pol 498		·	Ť
<u>-</u>	8	E E	A*1	<u>8</u>			
ĭ		2	•	\Box	•		

Sheet 13 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al.

Tel. No.: 202-371-2600 For: Optimized Multi-Epitope Constructs and Uses Thereof 13/90 HAT **≸** ❷. \mathbf{Y} PADRE Z 186 FIG.9C KA Pol 368 B*0702 A*0101 **Env 671 ≸** A*2402 <u>S</u> 879 317 A*0201 ¥¥ N A*0101 MAM , Gag NAA Pol 259 B*0702 498 A*0201 295 A*0101 × KAAA Env 545 B*0702 <u>_</u> 132 A*1101 A*0201 <u>P</u> Gag ₹ 8 <u>8</u> 100 GAAA ¥ N N ¥ 163 | CAAA | Pol 684 A*0101 651 Z A*0201 681 A*2402 A*0201 221 Eo Pol 772 En< A*0201 Set Nef ฐ <u>₩</u> Vpr 46 KAA Z 893 B*0702 고 237 A*0201 B*0702 94 29 A*0201 A*2402 B*0702 <u>8</u> <u>2</u> <u>V</u> Gag Nef ≸ Z <u>₹</u> ₩3 × ≶ 386 75 B*0702 250 A*0201 B*0702 971 A*1101 448 47 Re∨ Gag A*1101 A*0201 Ę Env <u>ه</u> ≸ <u>_</u> **₹** ₹ ≶ Z <u>ક</u> 244 A*2402 533 14 Env 163 722 A*2402 A*1101 A*2402 A*0201 162 A*1101 Vpr <u>P</u> <u>_</u> <u>8</u> (Gag 오 ₹ ¥ ¥ 530 A*2402 86 A*1101 NAA Pol 774 Z 347 A*1101 A*0201 271 A*0201 61 A*1101 <u>Po</u> <u>P</u> Po Eo **₹** ≸ ¥ Z Z A*2402 597 183 929 A*0201 25 62 A*0201 A*2402 134 A*1101 A*0201 Po En Ž ᇟ En< 2

Sheet 14 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003

Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al.

Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof 14/90 .44} 104 102 FIG.10 Network

Sheet 15 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses

,,,	Оринш
	Thereof

	Thereof			15/90
Sequence	Length	Code	. 200	15/90
VLAEAMSQV	9	A		
ILKEPVHGV	9	В		
TLNFPISPI	9	C		
SLLNATDIAV	10	D	•	
QMAVF I HNFK	10	E		
VTVYYGVPVWK	11	F	202	
FPVRPQVPL	9 .	G		
YPLASLRSLF	10	Н	,	
VIYQYMDDLY	10	I		
IYQEPFKNL	9	J		
IWGCSGKL I	9	K	J	
AA	C+1 ranking	N-1 ranking		
K	2.20	0.64)	
С	2.00	1.00		
N	2.00	0.00		
G	1.80	1.33		
T	1.50	0.00		
Α	1.33	1.21		
F	1.33	1.00		
S	1.33	0.00	- 204	
W	1.20	0.00	204	
Q	1.20	0.00		
R	1.17	1.57		
М	1.00	0.00		
Υ	1.00	0.75		
I	0.86	0.50		
L ·	0.75	2.20		
V	0.00	1.19		
D	0.00	0.00		
H	0.00	0.00		
E	0.00	0.00		
Р	0.00	0.00	ノ	

Motif Specification

XXXX(FY)XX(LIMV) XXXX(FY)XXX(LIMV) XXXXNXXX(LIMV) XXXXNXXXX(LIMV) 206 X(LM)XXXXXXV X(LM)XXXXXXXV X(LMVT)XXXXXX(KRY) X(LMVT)XXXXXXX(KRY)

Sheet 16 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No. 2003 271, 2600

Tel. No.: 202-371-2600 For: Optimized Multi-Epitope Constructs and Uses Thereof

16/90

· 44}

MaxInsertions={enter value here} 208

OutputToScreen=yes/no 210

OutputToFile=yes/no 212

MinimumAccepted={enter value here} 214

MaxDuplicateFunctionValues={enter value here} 216

MaxSearchTime (min.)={enter value here} 218

Exhaustive=yes/no 220

NumStochasticProbes={enter value here} 222

MaxHitsPerProbe={enter value here} 224

FIG.11B

RandomProbeStart=yes/no 226

Sheet 17 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al. Tel. No.: 202-371-2600 For: Optimized Multi-Epitope Constructs and Uses Thereof 17/90 Start 301 -41 Receive Input Data and Parameters 303 Generate List of All Epitope Pairs 305 For Each Epitope Pair, Determine Set of Insertions That Provides A Maximum Function Value -307 Generate List of Optimal Insertions For Each Epitope Pair 309 Exhaustive **Stochastic Exhaustive** or Stochastic? 321 311 **Evaluate** Initiate New Every Permutation Search Probe 313 t ≥ MaxSearchTime -317 315 **Continue Evaluating** N Permutation(s) In # Hits ≥ MaxHits? **Current Probe** 323 319 Output Best Set N #Probes ≥ Y of Optimum MaxNumProbes? **Permutations**

Sheet 18 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003

Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses

Thereof

Junctional Analyzer run on Saturday, February 26, 2000 09:06:23 pm. 18/90 The following non-zero AA weights will be used.

AA	N-1 ranking	C+1 rank	cing
A	1.21	1.33	
С	1.00	2.00	
F	1.00	1.33	
G	1.33	1.80	
Ī	0.50	0.86	
K	0.64	2.20	
L	2.20	0.75	
М	0.00	1.00	204
N	0.00	2.00	
Q	0.00	1.20	
R .	1.57	1.17	
S	0.00	1.33	
T	0.00	1.50	
٧	1.19	0.00	
W	0.00	1.20	
Y	0.75	1.00	ノ

The following 10 motif specifications will be used to search for junctionals.

Count Motif Specification

Code	Peptide	Length	
A	VLAEAMSQV	9 ~	`
В	ILKEPVHGV	9	
С	TLNFPISPI	9	
D	SLLNATDIAV	10	
Ε	QMAVF I HNFK	10	
F	VTVYYGVPVWK	11	202
G	FPVRPQVPL	9	
Н	YPLASLRSLF	10	}
I	VIYQYMDDLY	10	1
J	IYQEPFKNL	9	
K	IWGCSGKL I	9	

Sheet 19 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

19/90

OutputToScreen = No

OutputToFile = Yes

MinimumValueAccepted = 0

MaxDuplicateFunctionValues = 50

SearchTime = 5

NumStochosticProbes = 10

MaxHitsPerProbe = 25

RandomProbeStart = Yes

Col. 1 Code 1	Col. 2	Col. 3	Col. 4	Col. 5	Col. 6 Code 2	Col. 7	Col. 8	Col. 9 C+N	Col. 10	Col. 11 MaxFunc.
A A A A A A A A A B B B B B B B B B B B	000000000000000000000000000000000000000	A A A A A A A A A A A A A A A A A A A	A A A A A	LLLLRRR GRGRRRGRRGGGRRLRRRRRRR	BCDEFGH-JKACDEFGH-JKABDEFGH-JK	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	2.20 2.20 2.20 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	4.40 4.40 4.40 3.14 3.14 3.14 2.66 3.14 2.66 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14	00002101000000110101001111110100	8.80 8.80 8.80 1.57 3.128 5.232 6.28 6.28 6.28 6.28 6.28 6.28 6.28 6.2

FIG.13B

Sheet 20 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be

assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

Code 1	11	12	13	14	Code 2	С	N	C+N	J	MaxFunc
DDDDDDDDDDWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	, ההההפהההההההההההההאאאאאאאאאההההההההההה	A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	. A AAAA A AAAA AA AA AA AA	LILL RGIGRILIERRAREGGGGGGGGGRRRRRLGGRRGGGGGGGGGGGGGGG	ABCEFGH-JKABCDFGH-JKABCDEGH-JKABCDEFH-JKABCDEFG-JK	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	2.20 2.20 2.20 2.20 1.57 1.52 1.57 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.2	4.40 4.40 4.40 4.40 4.40 4.40 4.40 4.40	00000001000000000000110001111012112402100100011110	8.80 8.80 8.80 8.80 8.80 8.80 8.80 8.80

Sheet 21 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses
Thereof

21/90

21/90

.44

Code 1	11	12	13	14	Code 2	С	N	C+N	J	MaxFunc
	KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	GGGGGGRGGGRRRRRRRRRRRLLLLLR RLR	ABCDEFGHJKABCDEFGH-KABCDEFGH-J	2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20	1.33 1.33 1.33 1.33 1.33 1.33 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	2.93 2.93 2.93 2.93 2.93 2.93 2.93 2.93	010001100121010000010010	5255552355256365491 52688535523563636363699999334646 6368688885991491 5268888885991491 52688888885991491

Junctional Analyzer took 142.77 seconds.

FIG.13D

in IFA CTL responses induced by EP HIV-1090 relative to individual peptides

-41

Sheet 22 of 90

assigned

Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be Sheet 23 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

23/90

FIG.14B-1

Sheet 24 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be

assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses

Thereof

- 41

24/90

FIG. 14B-3

Sheet 25 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be

assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

25/90

-41

60mer polypeptide (- GPGPG spacers)
75mer polypeptide (+ GPGPG spacer)

FIG.15

Sheet 26 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

assigned Inventors: SETTE et al. Tel. No.: 202-371-2600

41

For: Optimized Multi-Epitope Constructs and Uses Thereof

26/90

Sheet 27 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses
Thereof

-41

27/90

Pol 303	
೧೯೧೯೧	
Pol 989	
೧೯೧೯೧	
Pol 619	
೧೯೧೯೧	
Pol 758	
೧೯೧೯೧	
Pol 674	
೧೯೧೯೧	
Pol 335	
೧೯೧೯೧	
Pol 915	
೧೯೧೯೧	
Pol 874	
೧೯೧೯೧	
Env 566	
೧೯೧೯೧	
Gag 171	
೧೯೧೯೧	
298, 298,	
2000	
Env 729	
2000	
λ 2.ε.	
೧೯೧೯೧	
Pol 596	
೧೯೧೯೧	
Pol 956	
೧೯೧೯೧	

303 303 ೧೯೧೯೧

೧೯೧೯೧

₹

ı	PAORE
ļ	203 303 G P G
	<u> </u>
	Pol 989
	೦೭೦೭೦
	Pol 619
	೧೯೧೯೧
	Pol 758
	രമരമര
	Pol 674
	റെവാ
	Pol 335
	റെറെ
	Pol 915
	ပရပရပ
	Pol 874
	റെറെ
	Env 566
	റെവാ
	3ag 171
Į	
	೧೯೧೯೧
	Gog P C 294/ G 298 P G
	C Gog P C 294/ C C C C C C C C C C C C C C C C C C C
	Env
	C Gog P C 294/ C C C C C C C C C C C C C C C C C C C
	Vpu P Env P Gog P 31 P 729 P 298 P C C C C C C C C C C C C C C C C C C
	C Env C Cog P C Cog P C C C C C C C C C C C C C C C C C C
	Pol P Vpu P Env P C 294/ C 596 P C 31 P C 298 P C C C C C C C C C C C C C C C C C C
	G Pol P Vpu P Env P C94/ C C9 P C C9 P C C9 P C C94/ C C96 P C C94/ C C99/ C C C99/ C C C99/ C C C99/ C C C C
	Pol P Pol P Vpu P Env P C 294/ C 2956 P C 596 P C C C C C C C C C C C C C C C C C C
	G Pol P Vpu P Env P C94/ C C9 P C C9 P C C9 P C C94/ C C96 P C C94/ C C99/ C C C99/ C C C99/ C C C99/ C C C C

Sheet 28 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

28/90

·ar

EP-HIV-1090

MGMQVQIQSLFLLLLWVPGSRGKLVGKLNWAGAAILKEPVHGVNAACPKVSFEPIKIPIHYCAPAKAKFVAAW TLKAAAKAFPVRPQVPLGAAKLTPLCVTLGAAAVLAEAMSQVKVYLAWVPAHKGAAAAIFQSSMTKKTTLFCA SDAKNIPYNPQSQGVVKHPVHAGPIANVTVYYGVPVWKKAAAQMAVFIHNFKNAAAYPLASLRSLFNLTFGWC FKLNRILQQLLFINAKIONFRVYYRKAAVTIKIGGQLKKVPLQLPPLKAMTNNPPIPV

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCTGTGGGTGCCCGGATCCAGAGGAAAGCTGG
TGGGCAAACTCAACTGGGCCGGAGCTGCAATCCTGAAGGAGCCCGTCCACGGGGTGAATGCCGCTTGCCCTAA
AGTCAGCTTCGAACCAATTAAGATCCCCATTCATTACTGTGCACCTGCCAAAGCTAAGTTTGTGGCCGCTTGG
ACCCTCAAGGCCGCTGCAAAAGCCTTCCCAGTGAGGCCCCAGGTGCCTCTGGGCGCCCGCTAAACTCACACCAC
TGTGCGTCACTCTGGGAGCCGCTGCAGTGCTGGCAGAGGCCATGTCCCAAGTGAAGGTGTATCTGGCTTGGGT
GCCCGCCCACAAGGGGGCCGCTGCAGCCATCTTTCAGTCTAGCATGACCAAGAAAAACAACTCTGTTCTGTGCC
TCCGACGCTAAGAACATCCCTTATAATCCACAGTCTCAGGGCGTGGTCAAGCATCCCGTGCACGCCGGACCTA
TTGCTAACGTGACCGTGTACTATGGGGTCCCAGTGTGGAAGAAAAGCCGCTGCACAGATGGCCGTGTTTATTCA
CAATTTCAAAAACGCCGCTGCATACCCCCTCGCCAGCCTGAGATCCCTCTTCAACCTGACATTCCGCTGGTGC
TTTAAGCTGAACCGGATCCTGCAGCAACTGCTCTTTATCAATGCTAAAATCCAGAACTTCCGCGTCTACTATA
GGAAGGCTGCAGTGACTATCAAAATTGGCGGACAACTGAAGAAAGTGCCTCTCCCAGCTGCCCCCTCTCCAAGGC
AATGACCAACAATCCCCCTATCCCAGTCTGA

HIV-CPT

MGMQVQIQSLFLLLWVPGSRGIPIHYCAPAKAAKIQNFRVYYRKAAVTIKIGGQLKKAKFVAAWTLKAAAKV PLQLPPLKAIFQSSMTKKLTPLCVTLGAQMAVFIHNFKGAKVYLAWVPAHKNAIPYNPQSQGVVKAILKEPVH GVGAAALTFGWCFKLNAVLAEAMSQVNRILQQLLFINAAACPKVSFEPIKVTVYYGVPVWKKAAHPVHAGPIA NAAAYPLASLRSLFNAAATTLFCASDAKNKLVGKLNWANAAAFPVRPQVPLNMTNNPPIPV

Sheet 29 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

29/90

HIV-FT

MQVQIQSLFLLLLWVPGSRGKLVGKLNWAMASDFNLPPVAIFQSSMTKVTIKIGGQLKRILQQLLFIMAVFIH NFKIPYNPQSQGVVTTLFCASDAKILKEPVHGVQMAVFIHNFKGAAVFIHNFKRCPKVSFEPIKIQNFRVYYR LTFGWCFKLQVPLRPMTYKMTNNPPIPVTVYYGVPVWKVLAEAMSQVIPIHYCAPAKLTPLCVTL

ATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCTGTGGGTGCCCGGATCCAGAGGAAAGCTGGTGGGGA
AGCTGAACTGGGCCATGGCCAGCGATTTCAACCTGCCCCCCGTGGCCATCTTCCAGAGCAGCATGACCAAGGT
GACCATCAAGATCGGGGGGCAGCTGAAGAGGGATCCTGCAGCAGCTGCTGTTCATCATGGCCGTGTTCATCCAC
AACTTCAAGATCCCCTACAACCCCCAGAGCCAGGGGGTGTGACCACCCCTGTTCTGCGCCAGCGATGCCAAGA
TCCTGAAGGAGCCCGTGCACGGGGTGCAGATGGCCGTGTTCATCCACAACTTCAAGGGCGCCGCCGTGTTCAT
CCACAACTTCAAGAGGTGCCCCAAGGTGAGCTTCGAGCCCATCAAGATCCAGAACTTCAGGGTGTACTACAGG
CTGACCTTCGGGTTGCTTCAAGCTGCAGGTGCCCCTGAGGCCCATGACCTACAAGATGACCAACAACCCCC
CCATCCCCGTGACCGTGTACTACGGGGTGCCCCGTGTGGAAGGTGCTGGCCGAGGCCATGAGCCAGGTGATCCC
CATCCACTACTGCGCCCCCCCCCAAGCTGACCCCCCTTGTGCAGCCCTG

FIG. 18B

Sheet 30 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses
Thereof

30/90

HIV-TC

MGMQVQIQSLFLLLLWVPGSRGYWQATWIPEWKAIFQSSMTKKVYLAWVPAHKNAACPKVSFEPIKHPVHAGP IANLTFGWCFKLNKMIGGIGGFIKFRDYVDRFYKAAARILQQLLFINTTLFCASDAKNQMVHQAISPRGAKLV GKLNWAGAAAIYETYGDTWKAAQVPLRPMTYKGAAAVTVLDVGDAYNAAARYLKDQQLLNTLNFPISPINMTN NPPIPVNAPYNTPVFAIKAAAVPLQLPPLKAAIPYNPQSQGVVKALLQLTVWGIGAAILKEPVHGVNAAAFPI SPIETVKVWKEATTTLFKAAAVTIKIGGQLKKIYQEPFKNLKAAAVLAEAMSQVNLVGPTPVNIGAAAEVNIV TDSQYKAAAIPIHYCAPAKAVIYQYMDDLYKAAAQMAVFIHNFKNAATYQIYQEPFKPYNEWTLELKAKIQNF RVYYRKAFPVRPQVPLGAAAIWGCSGKLIKVMIVWQVDRNAAKAACWWAGIKAKFVAAWTLKAAAKLTPLCVT LNAAMASDFNLPPVKSLLNATDIAVNVTVYYGVPVWKKAAAAIIRILQQLKRAMASDFNLNAAAYPLASLRSL F

ATGGGGATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCCTGTGGGTGCCCGGATCTAGAGGATACTGGC AAGCTACTTGGATTCCAGAATGGAAAGCTATCTTTCAATCCTCAATGACGAAGAAGGTATACCTGGCATGGGT CCCAGCACACAAGAACGCCGCTTGCCCAAAGGTGTCCTTTGAACCCCATTAAACACCCAGTGCACGCAGGGCCA ATAGCGAATTTGACATTCGGGTGGTGCTTCAAACTAAACAAAATGATCGGCGGCATTGGAGGCTTTATCAAGT TTAGAGATTACGTGGACCGATTCTATAAAGCCGCTGCCCGTATACTCCAGCAGCTACTATTCATCAACACCAC TCTCTTCTGCGCTTCAGACGCTAAGAACCAAATGGTACACCAAGCCATAAGCCCTAGAGGAGCCAAGCTCGTA GGGAAATTAAATTGGGCGGGTGCAGCAGCAATCTACGAGACTTACGGCGATACCTGGAAAGCAGCCCAGGTTC CGTTACGCCCAATGACCTATAAAGGCGCAGCAGCAGTAACAGTTCTAGATGTAGGAGACGCTTACAACGCTGC CGCAAGATACCTAAAAGATCAGCAGTTACTCAACACACTAAATTTCCCAATTAGCCCGATAAACATGACAAAT AACCCACCAATTCCCGTCAATGCTCCCTACAACACTCCAGTATTCGCAATCAAAGCCGCTGCTGTCCCCCTGC AGCTCCCTCCTGAAAGCTGCGATACCTTACAACCCACAGAGCCAAGGTGTTGTCAAAGCACTGCTTCAGCT AACAGTTTGGGGAATTGGTGCTGCAATTCTAAAAGAGCCAGTTCATGGGGTTAACGCCGCCGCCTTCCCAATC AGTCCTATTGAGACTGTGAAAGTATGGAAAGAAGCCACACCACACTTTTTAAGGCAGCCGCAGTTACAATTA AAATAGGGGGCCAACTTAAGAAAATATACCAGGAACCTTTCAAGAATCTCAAAGCCGCTGCAGTGCTCGCCGA GGCTATGTCACAGGTGAATTTGGTCGGACCAACACCCGTAAACATCGGAGCCGCAGCCGAAGTGAACATAGTC ACCGACTCACAGTACAAAGCCGCTGCAATACCCATACATTATTGTGCTCCCGCAAAGGCCGTGATCTATCAAT ATATGGACGACCTGTATAAGGCCGCCGCGCGCAGATGGCAGTCTTTATCCACAACTTTAAAAAACGCAGCTACTTA TCAGATCTACCAGGAACCATTCAAACCGTACAATGAGTGGACCTTGGAACTAAAGGCCAAAATTCAGAACTTC AGGGTATATTATAGAAAAGCATTTCCAGTGAGGCCCCAGGTGCCTCTGGGTGCCGCAGCAATATGGGGATGTT CTGGAAAACTGATCAAGGTGATGATTGTATGGCAAGTGGACAGAAATGCAGCTAAGGCAGCCTGTTGGTGGGC CTTAATGCAGCCATGGCCTCTGATTTCAACCTTCCCCCTGTAAAATCCCTGCTTAATGCGACAGATATCGCAG TCAACGTAACAGTATATTATGGCGTGCCAGTCTGGAAAAAAGCCGCCGCGGCCATAATTCGGATACTGCAGCA GCTGAAAAGAGCTATGGCGAGTGACTTCAACCTGAATGCGGCCGCCTACCCCTTGGCATCGTTAAGGTCACTA TTTTGA

Sheet 31 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned Inventors: SETTE et al.

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

31/90

-44} UCV

HCV.1

MGMQVQIQSLFLLLLWVPGSRGLLFNILGGWVDLMGYIPLVYLVAYQATVILAGYGAGVRLIVFPDLGVHMWNFISGI YLLPRRGPRLYLVTRHADVVLVGGVLAALLFLLLADAFLLLADARVWMNRLIAFACTCGSSDLYLSAFSLHSYGVAGA LVAFKLPGCSFSIFKTSERSQPRLIFCHSKKKFWAKHMWNFIPFYGKAIRMYVGGVEHRQLFTFSPRRRLGVRATRKV GIYLLPNRAKFVAAWTLKAAA*

HCV.2

MGMQVQIQSLFLLLWVPGSRGDLMGYIPLVAKFVAAWTLKAAALLFLLLADALIFCHSKKKQLFTFSPRRYLVTRHA DVYLLPRRGPRLCTCGSSDLYHMWNFISGIFWAKHMWNFAKFVAAWTLKAAAILAGYGAGVYLVAYQATVGVAGALVA FKIPFYGKAIRMYVGGVEHRVLVGGVLAAFLLLADARVLPGCSFSIFAKFVAAWTLKAAAKTSERSQPRRLGVRATRK RLIVFPDLGVWMNRLIAFALSAFSLHSYLLFNILGGWVVGIYLLPNR*

HCV.3s1

MGMQVQIQSLFLLLLWVPGSRGYLVAYQATVAKFVAAWTLKAAALLFLLLADALIFCHSKKKYLVTRHADVLGFGAYM SKCTCGSSDLYHMWNFISGIFWAKHMWNF*

GAATTCGCCGCCACCATGGGAATGCAGGTGCAGATCCAAAGCCTGTTTCTGCTCCTCCTGTGGGTGCCCGGATCCAGA
GGATACCTCGTCGCCTACCAGGCCACTGTGGCTAAATTCGTGGCAGCCTGGACACTGAAAGCTGCAGCTCTGCTCTTC
CTGCTCCTGGCCGATGCACTCATCTTCTGCCATTCCAAGAAAAAGTATCTGGTCACCAGACATGCTGACGTGCTGGGG
TTTGGCGCCTACATGAGCAAGTGCACCTGTGGCAGCTCCGACCTGTATCACATGTGGAACTTTATTTCTGGAATCTTT
TGGGCCAAGCACATGTGGAATTTCTGAAAGCTT

Sheet 32 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

32/90

1.44

HCV.3s2

MGMQVQIQSLFLLLWVPGSRGVLVGGVLAAAKFVAAWTLKAAAFLLLADARVLSAFSLHSYILAGYGAGVWM NRLIAFAIPFYGKAIVAGALVAFKVGIYLLPNR*

HCV.3s2(-3)

MGMQVQIQSLFLLLLWVPGSRGVLVGGVLAAAKFVAAWTLKAAAFLLLADARVLSAFSLHSYILAGYGAGVWM NRLIAFA*

GAATTCGCCGCCACCATGGGAATGCAGGTGCAGATCCAAAGCCTGTTTCTGCTCCTCTGTGGGTGCCCGGAT CCAGAGGAGTCCTGGTGGGCGGCGTCCTGGCCGCTGCTAAGTTTGTCGCTGCTTGGACACTGAAGGCAGCCGC TTTCCTGCTCCTGGCAGACGCCAGGGTGCTGTCTGCCTTCAGCCTCCACTCCTACATCCTCGCAGGGTATGGC GCAGGCGTGTGGATGAATCGGCTGATCGCCTTTGCCTGAGGATCC

HCV.3s3

MGMQVQIQSLFLLLLWVPGSRGDLMGYIPLVAKFVAAWTLKAAARLGVRATRKLLFNILGGWVRMYVGGVEHR RLIVFPDLGVGVAGALVAFKLPGCSFSIFKTSERSOPROLFTFSPRRYLLPRRGPRL

HCV.PC3

MGMQVQIQSLFLLLLWVPGSRGLLFNILGGWVKAKFVAAWTLKAAALADGGCSGGAYRLIVFPDLGVKFWAKH MWNFIGVAGALVAFKKOLFTFSPRR*

Sheet 33 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003

Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al.

Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses

Thereof

33/90

-41

HCV.PC4

MGMQVQIQSLFLLLLWVPGSRGRLGVRATRKKAKFVAAWTLKAAAKTSERSQPRNLPGCSFSIFNDLMGYIPL VKYLLPRRGPRLNTLCGFADLMGYRMYVGGVEHR*

HCV.2431(1P)

MGMQVQIQSLFLLLLWVPGSRGVLVGGVLAAAFLLLADARVLSAFSLHSYILAGYGAGVWMNRLIAFAGAAAR LGVRATRKKAAAKTSERSQPRNLPGCSFSIFNDLMGYIPLVKYLLPRRGPRLNTLCGFADLMGYRMYVGGVEH RKLLFNILGGWVKAAALADGGCSGGAYRLIVFPDLGVKFWAKHMWNFIGVAGALVAFKKQLFTFSPRRNGYLV AYQATVAAALLFLLLADALIFCHSKKKYLVTRHADVLGFGAYMSKCTCGSSDLYHMWNFISGIFWAKHMWNFK AAAAKFVAAWTLKAAA

Sheet 34 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

34/90

HCV.4312(1P)

MGMQVQIQSLFLLLLWVPGSRGRLGVRATRKKAAAKTSERSQPRNLPGCSFSIFNDLMGYIPLVKYLLPRRGPRLNTLC GFADLMGYRMYVGGVEHRKLLFNILGGWVKAAALADGGCSGGAYRLIVFPDLGVKFWAKHMWNFIGVAGALVAFKKQLF TFSPRRNGYLVAYQATVAAALLFLLLADALIFCHSKKKYLVTRHADVLGFGAYMSKCTCGSSDLYHMWNFISGIFWAKH MWNFKKAAAVLVGGVLAAAFLLLADARVLSAFSLHSYILAGYGAGVWMNRLIAFANAAAKFVAAWTLKAAA*

AOSI.K

MGMQVQIQSLFLLLLWVPGSRGHTLWKAGILYKAKFVAAWTLKAAAFLPSDFFPSVKFLLSLGIHLYMDDVVLGVGLSR YVARLFLLTRILTISTLPETTVVRRQAFTFSPTYKWLSLLVPFV

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCCTGTGGGTGCCCGGGTCCAGAGGACACACCCTGTGGA
AGGCCGGAATCCTGTATAAGGCCAAGTTCGTGGCTGCCTGGACCCTGAAGGCTGCCGCTTTCCTGCCTAGCGATTTCTT
TCCTAGCGTGAAGTTCCTGCTGTCCCTGGGAATCCACCTGTATATGGATGACGTGGTGCTGGGAGTGGGACTGTCCAGG
TACGTGGCTAGGCTGTTCCTGCTGACCAGAATCCTGACCATCTCCACCCTGCCAGAGACCACCGTGGTGAGGAGGCAGG
CCTTCACCTTTAGCCCTACCTATAAGTGGCTGAGCCTGCTGGTGCCCTTTTGTGTGA

HBV.1

MGMQVQIQSLFLLLLWVPGSRGHTLWKAGILYKAKFVAAWTLKAAAFLPSDFFPSVFLLSLGIHLYMDDVVLGVGLSRY VARLFLLTRILTISTLPETTVVRRQAFTFSPTYKWLSLLVPFVIPIPSSWAFTPARVTGGVFKVGNFTGLYLPSDFFPS VTLWKAGILYKNVSIPWTHKLVVDFSQFSRSAICSVVRRALMPLYACI

Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

35/90

-41

HBV.2

MGMQVQIQSLFLLLLWVPGSRGHTLWKAGILYKAKFVAAWTLKAAAFLPSDFFPSVNFLLSLGIHLYMDDVVLGVGLSR YVARLFLLTRILTISTLPETTVVRRQAFTFSPTYKGAAAWLSLLVPFVNIPIPSSWAFKTPARVTGGVFKVGNFTGLYN LPSDFFPSVKTLWKAGILYKNVSIPWTHKGAALVVDFSQFSRNSAICSVVRRALMPLYACI

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCCTGTGGGTGCCCGGGTCCAGAGGACACACCCTGTGGA AGGCCGGAATCCTGTATAAGGCCAAGTTCGTGGCTGCCTGGACCCTGAAGGCTGCCGCTTTCCTGCCTAGCGATTTCTT TCCTAGCGTGAACTTCCTGCTGTCCCTGGGAATCCACCTGTATATGGATGACGTGGTGCTGGGAGTGGGACTGTCCAGG TACGTGGCTAGGCTGTTCCTGCTGACCAGAATCCTGACCATCTCCACCCTGCCAGAGACCACCGTGGTGAGGAGGCAGG CCTTCACCTTTAGCCCTACCTATAAGGGAGCCGCTGCCTGGCTGAGCCTGCTGGTGCCCTTTGTGAATATCCCTATCCC TAGCTCCTGGGCTTTCAAGACCCCAGCCAGGGTGACCGGAGGAGTGTTTAAGGTGGGAAACTTCACCGGCCTGTATAAC CTGCCCAGCGATTTCTTTCCTAGCGTGAAGACCCTGTGGAAGGCCGGAATCCTGTACAAGAATGTGTCCATCCCTTGGA CCCACAGGGAGCCGCTCTGGTGGTGGACTTTTCCCAGTTCAGCAGAAATTCCGCTATCTGCTCCGTGGTGAGGAGAGC TCTGATGCCACTGTATGCCTGTATCTGA

PfCTL.1

MQVQIQSLFLLLLWVPGSRGILSVSSFLFVNAAAQTNFKSLLRNLPSENERGYKAAALLACAGLAYKKAAAAKFVAAWT LKAAAKAFMKAVCVEVNAAASFLFVEALFNATPYAGEPAPFKAAAKYKLATSVLKAGVSENIFLKNAAAYFILVNLLIK **AGLLGVVSTV**

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCCTGTGGGTGCCCGGATCCAGAGGAATCCTGAGCGTGT CCTCTTTCCTGTTTGTCAACGCCGCTGCACAGACCAATTTCAAGAGCCTCCTGAGGAACCTCCCCTCCGAGAACGAAAG AGGCTACAAAGCCGCTGCACTGCTCGCCTGCGCTGGACTGGCCTATAAGAAAGCCGCTGCAGCCAAGTTCGTGGCCGCT TGGAGGCCCTCTTTAACGCTACTCCTTACGCAGGGGAACCAGCCCCCTTCAAGGCCGCTGCAAAATATAAGCTGGCAAC CAGCGTGCTGAAGGCTGCCGTGTCCGAGAATATTTTTCTGAAAAACGCCGCTGCATACTTCATCCTGGTGAATCTGCTC ATTAAGGCCGGACTCCTGGGGGTGGTCTCTACAGTGTGA

PfCTL.2

MQVQIQSLFLLLLWVPGSRGFVEALFQEYNAAAKYLVIVFLINALACAGLAYKKFYFILVNLLKAALFFIIFNKNAAAK FVAAWTLKAAAKFILVNLLIFHNFQDEENIGIYKLPYGRTNLKAAAVLLGGVGLVLNFLIFFDLFLVKAVLAGLLGVV

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCCTGTGGGTGCCCGGATCCAGAGGATTCGTGGAGGCCC TGTTTCAGGAATACAACGCCGCTGCAAAGTATCTCGTCATCGTGTTCCTGATCAATGCTCTGGCATGCGCCGGCCTCGC TTACAAAAAGTTTTACTTCATTCTGGTCAACCTGCTCAAGGCCGCTCTGTTCTTTATCATTTTCAATAAAAACGCCGCA GCTAAGTTTGTGGCCGCATGGACCCTGAAGGCCGCTGCAAAATTCATCCTCGTGAATCTGCTCATTTTTCACAACTTCC AAGACGAGGAAAATATCGGAATTTATAAGCTGCCCTACGGGAGGACAAACCTGAAAGCCGCTGCAGTCCTGCTCGGCGG GTGTGA

Sheet 36 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned Inventors: SETTE et al.

Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses

Thereof 36/91

.44

PfCTL.3

MQVQIQSLFLLLLWVPGSRGVFLIFFDLFLNAAAPSDGKCNLYKAAAVTCGNGIQVRKLFHIFDGDNEIKAHVLSHNSY EKNYYGKQENWYSLKKILSVFFLANAAAKFIKSLFHIFKAAALYISFYFIKAKFVAAWTLKAAAKAAAYYIPHQSSLKA AAGLIMVLSFI

PfCTL/HTL(N)

MQVQIQSLFLLLLWVPGSRGSSVFNVVNSSIGLIMVLSFLGPGPGLYISFYFILVNLLIFHINGKIIKNSEGPGPGPDS IQDSLKESRKLSGPGPGVLAGLLGVVSTVLLGGVGLVLGPGPGLPSENERGYYIPHQSSLGPGPGQTNFKSLLRNLGVS ENIFLKGPGPGFQDEENIGIYGPGPGKYLVIVFLIFFDLFLVGPGPGKFIKSLFHIFDGDNEIGPGPGKSKYKLATSVL AGLLGPGPGLPYGKTNLGPGPGRHNWVNHAVPLAMKLIGPGPGMRKLAILSVSSFLFVEALFQEYGPGPGVTCGNGIQV RGPGPGMNYYGKQENWYSLKKGPGPGPSDGKCNLYADSAWENVKNVIGPFMKAVCVEVGPGPGKILSVFFLALFFIIFN KGPGPGHVLSHNSYEKGPGPGKYKIAGGIAGGLALLACAGLAYKFVVPGAATPYAGEPAPF

ATGGGAATGCAGGTGCAGAGCCTGTTTCTGCTCCTCCTGTGGGTGCCCGGATCCAGAGGAAGTAGTGTTCACATGTTGTGAACTCATCAATTGGTCTGATCATGGTGCTGAGCTTTCTCG

GGCCAGGGCCAGGATTATATATTTCTTTCTACTTCATCCTTGTCAACCTGTTAATATTCCACATTAACGGCAAAATAAT AAAGAACAGTGAAGGCCCTGGGCCTGGCCTGACTCGATCCAGGATTCTCTAAAAGAATCGAGGAAGCTCTCCGGACCA GGCCCTGGTGTACTCGCCGGGTTGCTGGGAGTAGTTAGCACAGTGCTGTTAGGAGGCGTCGGCCTCGTCTTAGGACCTG GACCAGGTCTGCCGTCCGAAAACGAAAGAGGATACTACATACCTCACCAGAGCAGCCTCGGCCCAGGCCCCGGACAAAC CAATTTCAAATCCCTCTTGCGAAATCTAGGAGTGAGCGAGAACATATTTCTTAAAGGACCCGGTCCCGGCTTTCAGGAC TGGTGGGCCCAGGTCCCGGAAAGTTCATTAAATCACTCTTCCACATTTTTGACGGAGATAACGAGATAGGACCCGGTCC ACAAATCTTGGCCCCGGTCCAGGACGGCACAACTGGGTGAATCATGCGGTTCCATTGGCCATGAAACTAATCGGGCCCG GTCCAGGCATGCGCAAACTTGCAATTCTAAGCGTAAGTTCATTTCTGTTCGTAGAGGCACTGTTTCAAGAATATGGCCC AGGACCTGGCGTCACATGTGGGAATGGGATCCAGGTGAGAGGACCGGGACCTGGTATGAACTATTACGGTAAACAGGAA AATTGGTACTCCCTGAAAAAGGGTCCAGGCCCCGGCCCCTCAGATGGTAAGTGCAACCTGTATGCTGACTCAGCATGGG AGAACGTAAAAAATGTAATAGGCCCATTCATGAAGGCAGTTTGTGTCGAAGTCGGACCAGGCCCAGGAAAAATACTTTC TGTCTTCTTCCTAGCTCTTCTTCATCATCTTCAACAAGGGACCAGGGCCAGGTCACGTGTTATCCCATAACTCTTAT GAAAAAGGGCCAGGACCTGGGAAATACAAAATCGCAGGAGGGATCGCCGGCGGGCTAGCGCTCCTTGCCTGCGCAGGCT TGGCTTACAAATTCGTTGTACCAGGAGCTGCAACACCCTATGCAGGAGAACCTGCCCCATTTTGAAGATCTGC

Sheet 37 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

37/90

Pf33

MGMQVQIQSLFLLLWVPGSRGFMKAVCVEVNVTCGNGIQVRKGLIMVLSFLNAALFHIFDGDNEIKAALLACAGLAYK KSFLFVEALFNAAPSDGKCNLYKAAQTNFKSLLRNLPSENERGYKAAGVSENIFLKNAAAYFILVNLLIKAAAILSVSS FLFVNTPYAGEPAPFKAAAKYKLATSVLKAAVFLIFFDLFLNYYIPHQSSLKAAGLLGNVSTVGAVLLGGVGLVLNLAC AGLAYKKAKFIKSLFHIFKAAFYFILVNLLKAFLIFFDLFLVKALFFIIFNKNYYGKQENWYSLKFVEALFQEYNAAAK FVAAWTLKAAAKILSVFFLANAVLAGLLGNVNFQDEENIGIYKAAALYISFYFIKAFILVNLLIFHNAALPYGRTNLKA AHVLSHNSYEKNAAAKYLVIVFLI

GCCGCCACCATGGGAATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCCTGTGGGTGCCCGGATCCAGAGGATTTA TGAAAGCTGTCTGTGTAGAGGTGAATGTAACATGCGGTAACGGAATTCAGGTGAGAAAAGGGACTCATCATGGTACTCAG CTTTCTGAACGCAGCCCTGTTCCACATCTTTGACGGAGACAATGAAATCAAAGCCGCATTGCTCGCCTGTGCCGGACTA GCCTATAAAAAGAGTTTCCTTTTCGTTGAAGCACTATTTAACGCAGCACCCAGTGACGGTAAATGCAACCTATATAAAG CAGCTCAGACTAATTTCAAAAGCCTGTTAAGAAATCTGCCCTCAGAGAATGAAAGGGGGTTACAAAGCCGCCGGCGTGTC CGAGAATATTTTCCTGAAGAACGCCGCTGCTTATTTTATACTCGTGAATCTACTCATAAAGGCAGCCGCAATCCTTTCA GTGTCCAGCTTTCTGTTTGTTAACACACCATATGCGGGCGAGCCGGCTCCTTTCAAGGCTGCAGCAAAATACAAGCTTG CCACATCAGTATTGAAAGCAGCTGTGTTTTTGATATTCTTTGATCTTTTTTTAAACTACTACATACCTCATCAGTCTAG TCTTAAAGCAGCCGGGCTACTGGGGAACGTCTCTACTGTGGGGGCCGTCTTACTTGGAGGAGTTGGCCTCGTGTTGAAC CTCGCGTGCGCAGGTCTGGCCTACAAAAAAGCGAAATTCATCAAGTCTCTGTTCCACATTTTTAAAGCCGCATTCTATT TCATACTAGTGAACCTTCTCAAAGCTTTCCTGATCTTCTTCGATCTATTCCTCGTAAAAGCGCTATTCTTCATTATCTT TAGCAGGACTTCTAGGCAACGTGAACTTTCAAGACGAAGAGAATATAGGCATCTACAAAGCCGCAGCACTGTACATTTC ATTCTACTTCATCAAGGCCTTCATACTGGTCAACCTTCTGATATTTCATAATGCAGCACTGCCATATGGGAGAACCAAC TTGAAAGCGGCCCACGTGTTGAGCCACACTCCTACGAGAAGAACGCCGCCGCGAAATATCTCGTCATTGTCTTCCTGA TTTGA

TB.1

MQVQIQSLFLLLWVPGSRGRMSRVTTFTVKALVLLMLPVVNLMIGTAAAVVKALVLLMLPVGAGLMTAVYLVGAAAMA LLRLPVKRMFAANLGVNSLYFGGICVGRLPLVLPAVNAAAAKFVAAWTLKAAAKAAARLMIGTAAAGFVVALIPLVNAM TYAAPLFVGAAAAMALLRLPLV

Sheet 38 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

38/90

BCL A2 #90

-41

MQVQIQSLFLLLLWVPGSRGIMIGHLVGVNRLLQETELVNAKVAEIVHFLNAKVFGSLAFVNAYLSGANLNVG AAYLQLVFGIEVNAAAKFVAAWTLKAAAKAAAVVLGVVFGINSMPPPGTRVNAAAATVGIMIGVNAKLCPVQL WV

ATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCCTGTGGGTGCCCGGGTCCAGAGGAATTATGATCGGCC
ATCTGGTGGGCGTCAACAGACTGCTGCAGGAAACCGAGCTGGTGAATGCCAAAGGTGGCCGAAATTGTGCACTT
TCTCAACGCAAAGGTGTTTGGTTCCCTGGCTTTTGTCAATGCCTATCTGAGCGGCGCCTAACCTCAACGTCGGA
GCCGCCTACCTCCAGCTGGTCTTCGGCATCGAGGTCAACGCTGCTGCAAAATTCGTGGCAGCTTGGACCCTCA
AGGCTGCAGCAAAGGCTGCCGCCGTCGTGCTCGGAGTGTTCGGGATCAACTCTATGCCACCTCCCGGGAC
TAGGGTCAATGCTGCCGCCGCAACAGTGGGAATCATGATTGGGGTGAATGCCAAACTGTGCCCAGTGCAACTG
TGGGTGTGA

BCL A2 #88

MQVQIQSLFLLLLWVPGSRGVVLGVVFGINAAAAKFVAAWTLKAAAKVAEIVHFLNAYLSGANLNVGAAYLQL VFGIEVNIMIGHLVGVNRLLQETELVNAKVFGSLAFVNAKLCPVQLWVNAAAATVGIMIGVNSMPPPGTRV

ATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCCTGTGGGTGCCCGGGTCCAGAGGAGTCGTGCTGGGAG
TCGTCTTCGGCATTAATGCCGCCGCTGCAAAGTTCGTGGCTGCCTGGACCCTGAAGGCCGCAGCTAAAGTGGC
AGAGATCGTGCACTTTCTGAACGCCTACCTGAGCGGAGCAAATCTGAACGTCGGCGCTGCCTATCTGCAGCTC
GTGTTTGGAATTGAAGTGAACATCATGATTGGACATCTGGTGGGCGTGAACAGGCTGCTCCAGGAAACTGAGC
TGGTCAACGCTAAAGTGTTCGGGTCTCTCGCCTTTGTGAACGCTAAGCTCTGCCCCGTCCAACTCTGGGTCAA
TGCCGCAGCCGCTACAGTGGGGATCATGATCGGCGTGAACTCCATGCCTCCACCAGGGACCAGAGTGTGA

BCL A2 #63

MQVQIQSLFLLLLWVPGSRGKLCPVQLWVNAAAATVGIMIGVNIMIGHLVGVNRLLQETELVNAKVAEIVHFL NAKVFGSLAFVNAYLSGANLNVGAAYLQLVFGIEVNAAAKFVAAWTLKAAAKAAAVVLGVVFGINSMPPPGTR V

ATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCCTGTGGGTGCCCGGGTCCAGAGGAAAGCTCTGCCCCG
TGCAACTGTGGGTCAACGCCGCCGCCGCAACCGTCGGCATTATGATCGGGGTGAACATCATGATCGGACACCT
GGTCGGCGTGAACAGGCTGCTGCAGGAGACAGAACTGGTCAATGCCAAGGTGGCTGAAATTGTCCATTTCCTG
AATGCCAAAGTGTTCGGCTCTCTCGCTTTCGTGAACGCTTATCTGAGCGGAGCTAACCTCAACGTGGGGGCCG
CATACCTCCAGCTCGTCTTTGGGATTGAGGTGAATGCCGCAGCTAAATTTGTCGCTGCCTGGACCCTGAAGGC
AGCAGCCAAGGCTGCCGCAGTGGTGCTGGGAGTGGTTTTGGAATCAATTCCATGCCTCCACCAGGCACTAGA
GTGTGAGGATCC

Sheet 39 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003

Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.

Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses

Thereof

39/90

.44

Prostate 1

LTFFWLDRSVKAAAVLVHPQWVLTVKAAALLQERGVAYIKAALLLSIALSVNPLVCNGVLQGVKAAIMYSAHD TTVKAAAFLTPKKLQCVNAMMNDQLMFLNAGLPSIPVHPVKAAALGTTCYVGAAILLWQPIPVNFLRPRSLQC VKAFLTLSVTWIGVNALLYSLVHNLGAATLMSAMTNL

HIV-1043

MEKVYLAWVPAHKGIGGGPGPGQKQITKIQNFRVYYRGPGPGWEFVNTPPLVKLWYQGPGPGYRKILRQRKID RLIDGPGPGQHLLQLTVWGIKQLQGPGPGGEIYKRWIILGLNKIVRMYGPGPGQGQMVHQAISPRTLNGPGPGIKQFINMWQEVGKAMYGPGPGWAGIKQEFGIPYNPQGPGPGKTAVQMAVFIHNFKRGPGPGSPAIFQSSMTKILEPGPGPGEVNIVTDSQYALGIIGPGPGHSNWRAMASDFNLPPGPGPGAETFYVDGAANRETKGPGPGGAVVIQDNSDIKVVPGPGPGFRKYTAFTIPSINNE

Sheet 40 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

40/90

.41

HIV-1043 PADRE

MEKVYLAWVPAHKGIGGGPGPGQKQITKIQNFRVYYRGPGPGWEFVNTPPLVKLWYQGPGPGYRKILRQRKID RLIDGPGPGQHLLQLTVWGIKQLQGPGPGGEIYKRWIILGLNKIVRMYGPGPGQGQMVHQAISPRTLNGPGPG IKQFINMWQEVGKAMYGPGPGWAGIKQEFGIPYNPQGPGPGKTAVQMAVFIHNFKRGPGPGSPAIFQSSMTKI LEPGPGPGEVNIVTDSQYALGIIGPGPGHSNWRAMASDFNLPPGPGPGAETFYVDGAANRETKGPGPGGAVVI QDNSDIKVVPGPGPGFRKYTAFTIPSINNEGPGPGAKFVAAWTLKAAA

HIV 75mer

EKVYLAWVPAHKGIGGPGPGQGQMVHQAISPRTLNGPGPGSPAIFQSSMTKILEPGPGPGFRKYTAFTIPSIN NE

GAGAAGGTGTACCTGGCCTGGGTGCCCACAAGGGAATCGGAGGACCTGGCCCTGGACAGGGACAGATGG TGCACCAGGCCATCAGCCCTAGGACCCTGAACGGACCTGGACCTGGAAGCCCTGCCATCTTCCAGAGCAGCAT GACCAAGATCCTGGAGCCCGGACCTGGACCTGGATTCAGGAAGTACACCGCCTTCACCATCCCCAGCATCAAC AACGAGTGA

FIG.18M

Sheet 41 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

41/90

PfHTL

.44

MQVQIQSLFLLLLWVPGSRGRHNWVNHAVPLAMKLIGPGPGKCNLYADSAWENVKNGPGPGKSKYKLATSVL AGLLGPGPGQTNFKSLLRNLGVSEGPGPGSSVFNVVNSSIGLIMGPGPGVKNVIGPFMKAVCVEGPGPGMNY YGKQENWYSLKKGPGPGGLAYKFVVPGAATPYGPGPGPDSIQDSLKESRKLNGPGPGLLIFHINGKIIKNSE GPGPGAGLLGNVSTVLLGGVGPGPGKYKIAGGIAGGLALLGPGPGMRKLAILSVSSFLFV

FIG. 18N

Sheet 42 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses
Thereof

Protein	Sequence	Restriction
HIV gag 386	VLAEAMSOV	HLA-A2
HIV gag 271	MTNNPPIPV	HLA-A2
HIV pol 774	MASDFNLPPV	HLA-A2
HIV pol 448	KLVGKLNWA	HLA-A2
HIV pol 163	LVGPTPVNI	HLA-A2
HIV pol 498	ILKEPVHGV	HLA-A2
HIV pol 879	KAACWWAGI	HLA-A2
HIV pol 132	KMIGGIGGFI	HLA-A2
HIV pol 772	RAMASDFNL	HLA-A2
HIV pol 183	TLNFPISPI	HLA-A2
HIV env 134	KLTPLCVTL	HLA-A2
HIV env 651	LLQLTVWGI	HLA-A2
HIV env 163	SLLNATDIAV	HLA-A2
HIV nef 221	LTFGWCFKL	HLA-A2
HIV vpr 59	AIIRILQQL	HLA-A2
HIV vpr 62	RILQQLLFI	HLA-A2
HIV pol 929	QMAVFIHNFK	HLA-A3
HIV pol 722	KVYLAWVPAHK	HLA-A3
HIV pol 971	KIQNFRVYYR	HLA-A3
HIV pol 347	AIFQSSMTK	HLA-A3
HIV pol 98	VTIKIGGQLK	HLA-A3
HIV env 61	TTLFCASDAK	HLA-A3
HIV env 47	VTVYYGVPVWK	HLA-A3
HIV nef 100	QVPLRPMTYK	HLA-A3
HIV vif 7	VMIVWQVDR	HLA-A3
HIV gag 162	QMVHQAISPR	HLA-A3
HIV gag 545	YPLASLRSLF	HLA-B7
HIV gag 237	HPVHAGPIA	HLA-B7
HIV pol 186	FPISPIETV	HLA-B7
HIV pol 893	IPYNPQSQGVV	HLA-B7
HIV env 259	IPIHYCAPA	HLA-B7
HIV env 250	CPKVSFEPI	HLA-B7
HIV nef 94	FPVRPQVPL	HLA-B7
HIV rev 75	VPLQLPPL	HLA-B7
HIV pol 684	EVNIVTDSQY	HLA-A1
HIV gag 317	FRDYVDRFY	HLA-A1
HIV pol 368	VIYQYMDDLY	HLA-A1
HIV pol 295	VTVLDVGDAY	HLA-A1
HIV pol 533	IYQEPFKNL	HLA-A24
HIV pol 244	PYNTPVFAI	HLA-A24
HIV pol 530	TYQIYQEPF	HLA-A24
HIV pol 597	YWQATWIPEW	HLA-A24
HIV env 681	IWGCSGKLI	HLA-A24
HIV env 671	RYLKDQQLL	HLA-A24

FIG.19A

Sheet 43 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

		**
Protein	Sequence	Restriction
HIV env 55	VWKEATTTLF	HLA-A24
HIV vpr 46	IYETYGDTW	HLA-A24
HIV vpr 14	PYNEWTLEL	HLA-A24
HIV gag 298	KRWIILGLNKIVRMY	HLA-DR
HIV pol 596	WEFVNTPPLVKLWYQ	HLA-DR
HIV pol 956	QKQITKIQNFRVYYR	HLA-DR
HIV pol 712	KVYLAWVPAHKGIGG	HLA-DR
HIV gag 294	GEIYKRWIILGLNKI	HLA-DR
HIV pol 711	EKVYLAWVPAHKGIG	HLA'-DR
HIV env 729	QHLLQLTVWGIKQLQ	HLA-DR
HIV gag 171	QGQMVHQAISPRTLN	HLA-DR
HIV pol 335	SPAIFQSSMTKILEP	HLA-DR
HIV env 566	IKQFINMWQEVGKAMY	HLA-DR
HIV pol 303	FRKYTAFTIPSINNE	HLA-DR
HIV pol 758	HSNWRAMASDFNLPP	HLA-DR
HIV pol 915	KTAVQMAVFIHNFKR	HLA-DR
HIV vpu 31	YRKILRORKIDRLID	HLA-DR3
HIV pol 874	WAGIKQEFGIPYNPQ	HLA-DR3
HIV pol 674	EVNIVTDSQYALGII	HLA-DR3
HIV pol 619	AETFYVDGAANRETK	HLA-DR3
HIV pol 989	GAVVIQDNSDIKVVP	HLA-DR3
HCV NS4 1812	LLFNILGGWV	HLA-A2
HCV NS1/E2 728	FLLLADARV	HLA-A2
HCV NS4 1590	YLVAYQATV	HLA-A2
HCV NS5 2611	RLIVFPDLGV	HLA-A2
HCV CORE 132	DLMGYIPLV	HLA-A2
HCV NS4 1920	WMNRLIAFA	HLA-A2
HCV NS4 1666	VLVGGVLAA	HLA-A2
HCV NS4 1769	HMWNFISGI	HLA-A2
HCV NS4 1851	ILAGYGAGV	HLA-A2
HCV CORE 35	YLLPRRGPRL	HLA-A2
HCV NS1/E2 726	LLFLLLADA	HLA-A2
HCV LORF 1131	YLVTRHADV	HLA-A2
HCV CORE 51	KTSERSQPR	HLA-A3
HCV CORE 43	RLGVRATRK	HLA-A3
HCV ENV1 290	QLFTFSPRR	HLA-A3
HCV NS1/E2 632	RMYVGGVEHR	HLA-A3
HCV NS3 1396	LIFCHSKKK	HLA-A3
HCV NS4 1863	GVAGALVAFK	HLA-A3
HCV NS4 1864	VAGALVAFK	HLA-A3
HCV NS3 1262	LGFGAYMSK	HLA-A3
HCV Core 169	LPGCSFSIF	HLA-B7
HCV NS5 2922	LSAFSLHSY	HLA-A1
HCV NS3 1128	CTCGSSDLY	HLA-A1
HCV NS5 2180	LTDPSHITA	HLA-A1

-41

Sheet 44 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

Protein	Sequence	Restriction
HCV Core 126	LTCGFADLMGY	HLA-A1
HCV NS3 1305	LADGGCSGGAY	HLA-A1
HCV NS4 1765	FWAKHMWNF	HLA-A24
HCV NS5 2875	RMILMTHFF	HLA-A24
HCV NS5 2639	VMGSSYGF	HLA-A24
HCV NS4 1765	FWAKHMWNFI	HLA-A24
P. falciparum SSP2-230	FMKAVCVEV	HLA-A2
P. falciparum EXP1-83	GLLGVVSTV	HLA-A2
P. falciparum CSP-7	ILSVSSFLFV	HLA-A2
P. falciparum LSA1-94	QTNFKSLLR	HLA-A3
P. falciparum LSA1-105	GVSENIFLK	HLA-A3
P. falciparum SSP2-522	LLACAGLAYK	HLA-A3
P. falciparum SSP2-539	TPYAGEPAPF	HLA-B7
P. falciparum LSA1-1663	LPSENERGY	HLA-A1
P. falciparum EXP1-73	KYKLATSVL	HLA-A24
P. falciparum CSP-12	SFLFVEALF	HLA-A24
P. falciparum LSA1-10	YFILVNLLI	HLA-A24
P. falciparum SSP2-14	FLIFFDLFLV	HLA-A2
P. falciparum EXP1-80	VLAGLLGVV	HLA-A2
P. falciparum EXP1-91	VLLGGVGLVL	HLA-A2
P. falciparum SSP2-523	LACAGLAYK	HLA-A3
P. falciparum EXP1-10	ALFFIIFNK	HLA-A3
P. falciparum LSA1-11	FILVNLLIFH	HLA-A3
P. falciparum SSP2-126	LPYGRTNL	HLA-B7
P. falciparum CSP-15	FVEALFQEY	HLA-A1
P. falciparum LSA1-1794	FQDEENIGIY	HLA-A1
P. falciparum LSA1-9	FYFILVNLL	HLA-A24
P. falciparum SSP2-8	KYLVIVFLI	HLA-A24
P. falciparum CSP-394	GLIMVLSFL	HLA-A2
P. falciparum EXP1-2	KILSVFFLA	HLA-A2
P. falciparum CSP-344	VTCGNGIQVR	HLA-A3
P. falciparum LSA1-59	HVLSHNSYEK	HLA-A3
P. falciparum SSP2-207	PSDGKCNLY	HLA-A1
P. falciparum LSA1-1671	YYIPHQSSL	HLA-A24
P. falciparum LSA1-1876	KFIKSLFHIF	HLA-A24
P. falciparum SSP2-13	VFLIFFDLFL	HLA-A24
P. falciparum LSA1-1881	LFHIFDGDNEI	HLA-A24
P. falciparum CSP-55	YYGKQENWYSL	HLA-A24
P. falciparum LSA1-5	LYISFYFI	HLA-A24
P. falciparum CSP-2	MRKLAILSVSSFLFV	HLA-DR
P. falciparum CSP-53	MNYYGKQENWYSLKK	HLA-DR
P. falciparum CSP-375	SSVFNVVNSSIGLIM	HLA-DR
P. falciparum SSP2-61	RHNWVNHAVPLAMKLI	HLA-DR
P. falciparum SSP2-165	PDSIQDSLKESRKLN	HLA-DR3
P. falciparum SSP2-211	KCNLYADSAWENVKN	HLA-DR3

Sheet 45 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003

Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al.

Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses

Thereof

-41

		,
Protein	Seguence	Restriction
P. falciparum SSP2-223		
P. falciparum SSP2-509	KYKIAGGIAGGLALL	
P. falciparum SSP2-527	GLAYKFVVPGAATPY	HLA-DR
P. falciparum EXP1-71	KSKYKLATSVLAGLL	HLA-DR
P. falciparum EXP1-82	AGLLGNVSTVLLGGV	HLA-DR
P. falciparum EXP1-82 P. falciparum LSA1-16	LLIFHINGKIIKNSE	HLA-DR
	QTNFKSLLRNLGVSE	HLA-DR
HBV core 18	FLPSDFFPSV	HLA-A2
HBV env 183	FLLTRILTI	HLA-A2
HBV env 335	WLSLLVPFV	HLA-A2
HBV pol 455	GLSRYVARL	HLA-A2
HBV pol 538	YMDDVVLGV	
HBV pol 773	ILRGTSFVYV	HLA-A2
HBV pol 562	FLLSLGIHL	HLA-A2
HBV pol 642		HLA-A2
HBV core 141	GLSPTVWLSV STLPETTVVRR	HLA-A3
	HTLWKAGILYK	
HBV pol 150	TLWKAGILYK	HLA-A3
HBV pol 388	LVVDFSQFSR	HLA-A3
•	NVSIPWTHK	HLA-A3
HBV pol 531	SAICSVVRR	HLA-A3
HBV po1 629	SAICSVVRR KVGNFTGLY	HLA-A3/A1
HBV pol 665		HLA-A3
HBV core 19	LPSDFFPSV	HLA-B7
	IPIPSSWAF	HLA-B7
HBV pol 354	TPARVTGGVF	HLA-B7
ТВ	RMSRVTTFTV	HLA-A2
ТВ	ALVLLMLPVV	HLA-A2
ТВ	LMIGTAAAVV	HLA-A2
TB	ALVLLMLPV	HLA-A2
TB	GLMTAVYLV	HLA-A2
TB	MALLRLPV	HLA-A2
TB	RMFAANLGV	HLA-A2
TB	SLYFGGICV	HLA-A2
TB	RLPLVLPAV	HLA-A2
TB .	RLMIGTAAA	HLA·A2
TB	FVVALIPLV	HLA-A2
TB	MTYAAPLFV	HLA·A2
TB	AMALLRLPLV	HLA-A2
p53 139	KLCPVQLWV	HLA-A2
CEA 687	ATVGIMIGV	HLA-A2
CEA 691	IMIGHLVGV	HLA-A2
Her2/neu 689	RLLQETELV	HLA-A2
MAGE3 112	KUAEIVHFL	HLA-A2 HLA-A2
INGLU IIZ	VAWETAULF	TLA-AZ

Sheet 46 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

46/90

Protein	Sequence	Restriction	
			_
Her2/neu 665	VVLGVVFGI	HLA-A2	
p <u>5</u> 3 149	SMPPPGTRV	HLA-A2	
PAP.21.T2	LTFFWLDRSV	HLA-A2	
PAP.112	TLMSAMTNL	HLA-A2	
PAP.284	IMYSAHDTTV	HLA-A2	
PSM.288.V10	GLPSIPVHPV	HLA-A2	
PSM.441	LLQERGVAYI	HLA-A2	
PSM.469L2	LLYSLVHNL	HLA-A2	
PSM.663	MMNDQLMFL	HLA-A2	
PSA.3.V11	FLTLSVTWIGV	HLA-A2	
PSA.143.V8	ALGTTCYV	HLA-A2	
PSA.161	FLTPKKLQCV	HLA-A2	
HuK2.4.L2	LLLSIALSV	HLA-A2	
HuK2.53.V11	VLVHPQWVLTV	HLA-A2	
HuK2.165	FLRPRSLQCV	HLA-A2	
HuK2.216.V11	PLVCNGVLQGV	HLA-A2	

FIG.19E

ar i

Sheet 47 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be

assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

47/90

.40}

ID#	Epitope	Sequence	Conservation	HLA restriction	Prototype Binding	xrn 1
924.07 777.03	core 18 env 183	FLPSDFFPSV FLLTRILTI	45 80	A2 A2	3.5 9.8	5
1013.01	env 183 env 335	WLSLLVPFV	100	A2	5.4	4
1168.02	pol 455	GLSRYVARL	55	ÃŽ	55.9	3
1090.77	pol 538	YMDDVVLGV	90	A2/A1	6.4	4 3 5 3 4
927.11	pol 562	FLLSLGIHL	95	Á2	7.8	3
927.15	pol 642	ALMPLYACI	95	A2	12.9	4
1083.01	core 141	STLPETTVVRR	95	A3/A11	735/4.5	4
1147.16	pol 149	HTLWKAGILYK	100	A3/A1	15.4/15.6	5 2 3 3 3
1069.15	pol 150	TLWKAGILYK	100	A3/A11	2.1/33	2
1069.20	pol 388	LVVDFSQFSR	100	A3/A11	6875/17	3
1069.16	pol 47	NVSIPWTHK	100	A3/A11	174/117	3
1090.11	pol 531	SAICSVVRR	95	A3/A11	2189/29	3
1142.05	pol 629	KVGNF TGLY	95	A3/A1	58/365	2
1090.10	pol 665	QAFTFSPTYK	95	A3/A11	249/8	. 3
988.05	core 19	LPSDFFPSV	45	B7	3026.8	4
1145.04	env 313	IPIPSSWAF	100	B7	42.3	4
1147.04	pol 354	TPARVTGGVF	90	B7	13.2	2
1147.02	pol 429	HPAAMPHLL	100	B7	56.6	4
1039.06	env 359	WMMWYWGPSLY	85	A1	16.3	3
1448.01	core 419	DLLDTASALY	75	A1	2.3	3
1373.88	core 137	LTFGRETVLEY	75	A1	80.0	3 3 3 3
1090.07	pol 415	LSLDVSAAFY	95	A1	6.0	3
20.0271	pol 392	SWPKFAVPNL	95	A24	2.1	2
1373.56	env 332	RFSWLSLLVPF	100	A24	12.0	2
1373.07	core 117	EYLVSFGW	90	A24	16.0	2 3
1069.23	pol 745	KYTSFPWLL	· 85	A24	1.0	3

¹ XRN = Cross binding, number of HLA types in the supertype panel of 5 for which significant binding as detected

Sheet 48 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses
Thereof

-41

				40
٠	ol 42	A 2	Pol 642	82
	e Pol Core Pol 7 415 117 642	A24 #	Env F 332 6	A24 /
	ol Co			A1 A
	ore P 4	1 A1	Core Env 137 359	
sado	Pol Core 392 137	4 A1	ol Co	24 A1
A1 & A24 epitopes	v P.	A24 A24	re Pol 9 392	A1 A24
k A24	Core Env 419 332	A1 A2	Pol core 429 419	
A1 &	Co			4 87
	Pol 429	87	Pol 745	A24
	Pol 745	A24	Pol 415	A24 A1
	Pol Env 531 359	A1	Core 117	A24
	Pol 531	ξĄ		
	Pol 388	ΥŞ		
	Pol 4	ξĄ		
	P3	A3		
	Core 19	87		
	Pol Core Pol 629 19 150	A3		
	354 354	87		
	Env 313	87		
ene	Env Env 335 313	A 2		
18V2 EpiGene	Pol 665	ξĄ		
HBV2	Core 141	ξĄ		
	Env 183	A2		
	Pol Env (A2		
	Pol 538	A 2		
	Pol 562	A 2		
	Core 18	Y 2		
	PADRE			
	Pol 149	Α3		
	signal			

Sheet 50 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned Inventors: SETTE et al.

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

50/90

HBV-2

.44

MGMQVQIQSLFLLLLWVPGSRGHTLWKAGILYKAKFVAAWTLKAAAFLPSDFFPSVNFLLSLGIHLYMDDVVLGVGLS RYVARLFLLTRILTISTLPETTVVRRQAFTFSPTYKGAAAWLSLLVPFVNIPIPSSWAFKTPARVTGGVFKVGNFTGL YNLPSDFFPSVKTLWKAGILYKNVSIPWTHKGAALVVDFSOFSRNSAICSVVRRALMPLYACI

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCCTGTGGGTGCCCGGGTCCAGAGGACACACCCTGTGG
AAGGCCGGAATCCTGTATAAGGCCAAGTTCGTGGCTGCCTGGACCCTGAAGGCTGCCGCTTTCCTGCCTAGCGATTTC
TTTCCTAGCGTGAACTTCCTGCTGTCCCTGGGAATCCACCCTGTATATGGATGACGTGGTGCTGGGAGTGGGACTGTCC
AGGTACGTGGCTAGGCTGTTCCTGCTGACCAGAATCCTGACCATCTCCACCCTGCCAGAGACCACCGTGGTGAGGAGG
CAGGCCTTCACCTTTAGCCCTACCTATAAGGGAGCCGCTGCCTGGCTGAGCCTGCTGGTGCCCTTTGTGAATATCCCT
ATCCCTAGCTCCTGGGCTTTCAAGACCCCAGCCAGGGTGACCGGAGGAGTGTTTAAGGTGGGAAACTTCACCGGCCTG
TATAACCTGCCCAGCGATTTCTTTCCTAGCGTGAAGACCCTGTGGAAGGCCGGAATCCTGTACAAGAATGTGTCCATC
CCTTGGACCCACAAGGGAGCCGCTCTGGTGGTAGCACTTTTCCCAGTTCAGCAGAAATTCCGCTATCTGCTCCGTGGTG
AGGAGAGCTCTGATGCCACTGTATGCCTGTATCTGA

FIG.20D

HBV-2A

MGMQVQIQSLFLLLWVPGSRGHTLWKAGILYKAKFVAAWTLKAAAFLPSDFFPSVNFLLSLGIHLYMDDVVLGVGLS RYVARLFLLTRILTISTLPETTVVRRQAFTFSPTYKGAAAWLSLLVPFVNIPIPSSWAFKTPARVTGGVFKVGNFTGL YNLPSDFFPSVKTLWKAGILYKNVSIPWTHKGAALVVDFSQFSRNSAICSVVRRKAWMMWYWGPSLYKKYTSFPWLLN AHPAAMPHLLKAAADLLDTASALYNAAARFSWLSLLVPFNAASWPKFAVPNLKLTFGRETVLEYKALSLDVSAAFYGA AEYLVSFGVWGAALMPLYACI

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCCTGTGGGTGCCGGGTCCAGAGGACACACCCTGTGG
AAGGCCGGAATCCTGTATAAGGCCAAGTTCGTGGCTGCCTGGACCCTGAAGGCTGCCGCTTTCCTGCCTAGCGATTTC
TTTCCTAGCGTGAACTTCCTGCTGTCCCTGGGAATCCACCTGTATATGGATGACGTGGTGCTGGGAGTGGGACTGTCC
AGGTACGTGGCTAGGCTGTTCCTGCTGACCAGAATCCTGACCATCTCCACCCTGCCAGAGACCACCGTGGTGAGGAGG
CAGGCCTTCACCTTTAGCCCTACCTATAAGGGAGCCGCTGCCTGGCTGAGCCTGCTGGTGCCCTTTTTTTGTGAATATCCCT
ATCCCTAGCTCCTGGGCTTTCAAGACCCCAGCCAGGGTGACCGGAGGAGTGTTTAAGGTGGGAAACTTCACCGGCCTG
TATAACCTGCCCAGCGATTTCTTTCCTAGCGTGAAGACCCTGTGGAAGGCCGGAATCCTGTACAAGAATGTGTCCATC
CCTTGGACCCACAAGGGAGCCGCTCTGGTGGTGGACCTTTTCCCAGTTCAGCAGAAAATAGCGCCATCTGTTCGGTCGTG
AGAAGGAAAGCCTGGATGATGTGGTACTGGGGTCCTAGTCTGTATAAGAAGTACACCTCATTCCCATGGCTCTTGAAT
GCCCATCCCGCTGCAATGCCACACCTGCTTAAAGCTGCGGCGGATCTCCTGGCCCAAAATTTGCCGTTCCGAACCTG
AAGCTCACTTTTTGGAAGAGAGAACAGTACTTGAATACAAAGCACTAAGCCTTGACGTGCCAACTTTTTGA
GCAGCAAAATTCTCTTTTTGGGGTCTTGAATACAAAGCACCTAAGCCTTGACGTTCCAGCCTTCTTCACGGAGCA
GCAGAATATCTAGTATCTTTTTGGGGTCTTGGGGCCCAGCCCTCATGCCTCTATACGCCTTCCAACCCTGCATTTTGA

Sheet 51 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003

Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al.

Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses

Thereof

51/90

HBV-2B

MGMQVQIQSLFLLLLWVPGSRGHTLWKAGILYKAKFVAAWTLKAAAFLPSDFFPSVNFLLSLGIHLYMDDVVL GVGLSRYVARLFLLTRILTISTLPETTVVRRQAFTFSPTYKGAAAWLSLLVPFVNIPIPSSWAFKTPARVTGG VFKVGNFTGLYNLPSDFFPSVKTLWKAGILYKNVSIPWTHKGAALVVDFSQFSRNSAICSVVRRKEYLVSFGV WGLSLDVSAAFYNAAAKYTSFPWLLNAHPAAMPHLLKAAADLLDTASALYNSWPKFAVPNLKLTFGRETVLEY KAAWMMWYWGPSLYKAAARFSWLSLLVPFGAAALMPLYACI

FIG.20F

Sheet 52 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be

assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

				_			-							i			į				
XRN	5	4	4	~	S	4	2	~	~	4	7	4	2	3.	~	~	3	2	7	7	3
Prototype Binding	3.5	9.8	5.4	7.8	6.4	735/4.5	15.4/15.6	2189/29	249/8	42.3	13.2	56.6	58.5	16.3	2.3	80.0	6.0	2.1	12.0	16.0	1.0
HLA restriction	A2	A 2	A 2	A2	A2/A1	A3/A11	A3/A1	A3/A11	A3/A11	<u> </u>	87	87	87	A1	A1	A1	A1	A24	A24	A24	A24
Conservation	45	80	100	95	90	95	100	95	95	100	06	100	95	85	75	75	95	95	100	06	85
Sequence	FLPSDFFPSV	FLLTRILTI	WLSLLVPFV	FLLSLGIAL	YMDDVVLGV	STLPETTWRR	HTLWKAG1LYK	SAICSWVRR	QAFTFSPTYK	IPIPSSWAF	TPARVTGGVF	HPAAMPHLL	FPHCLAFSYM	WMAWYWGPSLY	DLLDTASALY	LTFGRETVLEY	LSLDVSAAFY	SWPKFAVPNL	RFSWLSLLVPF	EYLVSFGVW	KYTSFPWLL
Epitope	core 18	env 183	env 335	pol 562	pol 538	core 141	pol 149	pol 531	pol 665	env 313	pol 354	pol 429	pol 530	env 359	core 419	core 137	pol 415	pol 392	env 332	core 117	pol 745
#QI	924.07	777.03	1013.01	927.11	1090.77	1083.01	1147.16	1090.11	1090.10	1145.04	1147.04	1147.02	1147.05	1039.06	1448.01	1373.88	1090.07	20.0271	1373.56	1373.07	1069.23

-41

Sheet 53 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be

assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

53/	90
-----	----

nized	Multi —	-Epitope Co	onstru	cts an	d Uses Thereof
Pol	665	£	Pol	745	A24
Core	137	A1	Pol	415	A1
Core	18	A 2	@	PADRE	
		A 2	Env	335	
En S	313	87	Core	141	A3
Pol	295	A 2	Pol	429	87
Pol	531	Α3	Core	137	¥1
Env	359	A1	lod	562	V 3
Юd	530	B7	lod	354	87
Core	419	A1	Env	359	A1
Роſ	538	A 2	Env	313	87
Core	117	A24	Env	183	V 3
Pol	354	87		531	
	332	A24	ē	665	S.
Pol	745	A24	Po	392	A24
Pol	415	A1	En	332	A24
Env	183	A2	Pol	530	87
	149	A3	Core	18	¥2
Pol	429	87	Pol	149	&
Core	141 429	£A	Core	117 419 149	A1
\mathfrak{B}	PADRE		Core	117	A24
Pol	392	A24	Pol	538	A 2
lonois	nific		امنونو	Dilligie	

Sheet 54 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses
Thereof

Sheet 55 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

55/90

HBV - 21A

MGMQVQIQSLFLLLWVPGSRGSWPKFAVPNLKAAAAKFVAAWTLKAAAKSTLPETTVVRRKHPAAMPHLLKAAAHTL WKAGILYKKAFLLTRILTIGALSLDVSAAFYNAAAKYTSFPWLLNAAARFSWLSLLVPFNAATPARVTGGVFKAAEYL VSFGVWGAAAYMDDVVLGVNDLLDTASALYNAAAFPHCLAFSYMKAAAWMMWYWGPSLYKAASAICSVVRRKNFLLSL GIHLNIPIPSSWAFKAAWLSLLVPFVNAFLPSDFFPSVKLTFGRETVLEYKOAFTFSPTYK

ATGGGAATGCAGATCCAGAGCCTGTTTCTGCTCCTCTGTGGGTGCCCGGGTCCAGAGGATCTTGGCCTAAA
TTCGCAGTGCCAAACCTTAAAGCCGCGGCTGCTAAGTTCGTAGCTGCCTGGACACTAAAGGCCGCCGCTAAGAGCACA
CTGCCAGAGACCACCGTGGTCCGGCGAAAGCATCCAGCCGCAATGCCCCACTTTGCTCAAAGCAGCCGCCCACACTCTT
TGGAAGGCTGGGATATTGTACAAGAAAGCCTTCCTTCTGACCAGGATATTAACTATCGGAGCTCTGTCACTCGACGTT
TCTGCTGCCTTCTACAACGCGGCGGCAAAATACACTAGCTTTCCATGGCTACTCAACGCAGCCGCCAGATTTTCTTGG
CTATCACTACTGGTGCCATTTAATGCAGCAACACCTGCTAGAGTGACTGGCGGCGTCTTTAAAGCAGCCGAGATACTTG
GTGAGCTTTGGCGTCTGGGGTGCAGCGGCATATATGGATGATGTTAGTGTTAGGGGTGAACGACCTCCTGGACACAGCC
AGTGCGCTGTACAATGCAGCTGCATTCCCGCATTGCCTAGCCTTCAGTTATATGAAAGCAGCAGCCTGGATGATGTGG
TACTGGGGACCGTCCCTTTATAAAGCAGCTTCAGCAATCTGTTCCGTTTGTGAGGAGAAAAAAACTTTTTACTCTCCCTC
GGTATTCACCTGAACATTCCCCATCCCTTCCTCATGGGCATTCAAAGCCGCTTGGCTGAGTCTACTCGTACCTTTCGTT
AATGCATTTCTGCCCAGCGACTTTTTCCCCTCGGTAAAAACTGACATTCGGACGCGAAACAGTCCTTGAATATAAGCAG
GCCTTCACGTTCTCACCAACCTATAAATGA

FIG.21D

HBV-21B

MGMQVQIQSLFLLLLWVPGSRGYMDDVVLGVNAAAEYLVSFGVWNDLLDTASALYGAAHTLWKAGILYKKAFLPSDFF PSVKAFPHCLAFSYMKAARFSWLSLLVPFNAASWPKFAVPNLKAAAQAFTFSPTYKNAAASAICSVVRRKAFLLTRIL TINIPIPSSWAFKAAWMMWYWGPSLYKAAATPARVTGGVFKAANFLLSLGIHLNLTFGRETVLEYKHPAAMPHLLKAA STLPETTVVRRKWLSLLVPFVNAAAAKFVAAWTLKAAAKLSLDVSAAFYNAAAKYTSFPWLL

Sheet 56 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

-41

ID#	Epitope	Sequence	Conservation	HLA restriction	Prototype Binding	XRN
924.07	core 18	FLPSDFFPSV	45	A2	3.5	5
777.03	env 183	FLLTRILTI	80	A2	9.8	4
1013.01	env 335	WLSLLVPFV	100	A2	5.4	4
1168.02	pol 455	GLSRYVARL	55	A2	55.9	3 5 3
1090.77	pol 538	YMDDVVLGV	90	A2/A1	6.4 7.8) 7
927.11	pol 562	FLLSLGIHL	95	Á2		
1083.01	core 141	STLPETTVVRR	95	A3/A11	735/4.5	4
1147.16	pol 149	HTLWKAGILYK	100	A3/A1	15.4/15.6	5
1069.20	pol 388	LVVDFSQFSR	100	A3/A11	6875/17	5 3 3
1069.16	pol 47	NVSIPWTHK	100	A3/A11	174/117	2
1090.11	pol 531	SAICSVVRR	95	A3/A11	2189/29	3
1090.10	pol 665	QAFTFSPTYK	95	A3/A11	249/8	3_
988.05	core 19	LPSDFFPSV	45	B7	3026.8	4
1145.04	env 313	IPIPSSWAF_	100	<u>B7</u>	42.3	4
1147.04	pol 354	TPARVTGGVF	90	B7	13.2	2
1147.02	pol 429	HPAAMPHLL	100	B7	56.6	4 5
1147.05	pol 530	FPHCLAFSYM	95 05	B7 B7	58.5	ე 7
1359.01	pol 640	YPALMPLYACI	95		1 <u>393.4</u> 16.3	3
1039.06	env 359	WMMWYWGPSLY DLLDTASALY	85 75	A1 A1	2.3	ა შ
1448.01 1373.88	core 419 core 137	LTFGRETVLEY	75 75	A1	80.0	3
1373.00	core 137	ASFCGSPY	100	A1	247.0	3
1090.07	pol 100	LSLDVSAAFY	95	A1	6.0	3 3 3 3
1069.08	env 249	ILLLCLIFLL	100	ÂÌ	192.0	1
20.0269	env 236	RWMCLRRF I I	95	A24	11.0	
20.0203	pol 392	SWPKFAVPNL	95	A24 A24	2.1	3 2 2
1373.56	env 332	RFSWLSLLVPF	100	A24	12.0	2
1373.38	core 101	LWFHISCLTF	85	A24	6.7	
1373.07	core 117	EYLVSFGVW	90	A24	16.0	. 3 2 3
1069.23	pol 745	KYTSFPWLL	85	A24	1.0	3

FIG.22A

Sheet 57 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses

≥6	_	354 354	≈ا	57/90
	 	<u> </u>	8	
PADRE		2 Core	A24	
S.2	\$	Pol 538	8	
Env 335	₹	Pol 166	FA.	
Pol 354	83	£7 236	7 A24 /	
En 332	A24 A24	Pol 429	83	
Env 236	A24	Core	æ	
Pol 388	ξĄ	Pol 455	V 2	
Pol 538	A 2	Pol 47	A3	
e Core Core Pol 7 137 19 538	87	AORE (
Core 137	A1	Pol 415	A1	
ĬŽ	A24	Pol 531	A3	
Core Pol (87	Pol 392	A24	
Core 18	Y 2	Core 419	A1	$\mathbf{\Omega}$
Pol 745	, A24 /	Core Co 18 41	A 2	i.22B
Pol 455	A 2	Core 19	87	
Pol 166	A1	Core 117	A24 B7	FIG
Pol 429	87	Env 313	87	Ш
Pol 640	87	Env Env 335 183	A 2	
Env 249	A1	Env 335	Y 2	
Core 101	A24	Pol 640	87	
Env 313	87	Env 359	A1	
Pol 562	A 2	Pol 149	Υ	
Pol 47	A3 A3	Env 249	A1	
Pol 665	A3	Pol Pol Env Pol Env Pol 530 388 249 149 359 640	æ	
Pol Core Pol Pol Env Core Env Po 149 419 665 47 562 313 101 249 64	A1	Pol 530	87	
149 149	ξ λ	Pol Pol Env 562 745 332	A2 A24 A24	
392	A24	Pol 745	A24	
₹ 28	Y 2	Pol 562	\$	
signal		signal		

.44

Sheet 58 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned Inventors: SETTE et al. Tel. No.: 202-371-2600

.44

For: Optimized Multi-Epitope Constructs and Uses Thereof 58/90

Sheet 59 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned Inventors: SETTE et al.

Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

59/90

HBV - 30B

MGMQVQIQSLFLLLLWVPGSRGFLLTRILTINAAASWPKFAVPNLKAAAHTLWKAGILYKKADLLDTASALYNQAFTFS PTYKGAAANVSIPWTHKGAAAFLLSLGIHLNIPIPSSWAFKAAALWFHISCLTFKAAAILLLCLIFLLNAAAYPALMPL YACINAHPAAMPHLLKAAASFCGSPYKAAGLSRYVARLNKYTSFPWLLNFLPSDFFPSVKAFPHCLAFSYMKAEYLVSF GVWNAALTFGRETVLEYKAAALPSDFFPSVKAYMDDVVLGVNLVVDFSQFSRNAAARWMCLRRFIINAARFSWLSLLVPFNAATPARVTGGVFKAAWLSLLVPFVNSAICSVVRRKAKFVAAWTLKAAAKWMMWYWGPSLYKAASTLPETTVVRRKLS LDVSAAFY

ATGGGAATGCAGGTCCAGATACAGAGCTTGTTCCTCCTCCTGCTTTGGGTCCCCGGATCAAGGGGTTTCCTCCTAACCC GAAAGCAGGGATACTGTACAAGAAAGCCGATCTGCTAGACACAGCGTCTGCGTTGTACAACCAGGCTTTTACTTTCTCT CCTACATATAAAGGCGCAGCTGCAAACGTGAGTATCCCTTGGACGCACAAAGGAGCCGCTGCCAACTTCTTACTGTCCC TGGGCATCCATCTAAATATCCCTATTCCTTCATCCTGGGCATTTAAAGCAGCCGCCTTATGGTTCCACATAAGTTGTCT GACCTTCAAAGCCGCAGCAATCCTGCTCCTTTGCCTCATTTTCTTACTAAACGCCGCTGCCTATCCAGCTCTTATGCCA TTGTACGCATGTATCAACGCCCACCCCGCAGCAATGCCCCACCTCCTTAAAGCTGCCGCCAGTTTCTGCGGTTCTCCTT ATAAAGCAGCAGGGCTGTCCAGATACGTAGCTAGGCTAAACAAGTATACCAGCTTCCCCTGGTTACTTAATTTCCTGCC GTCAGATTTCTTTCCATCAGTTAAGGCCTTCCCTCATTGTCTGGCCTTTAGCTACATGAAGGCTGAATATTTGGTATCC TTCGGCGTGTGGAATGCGGCACTGACATTTGGAAGGGAGACAGTGCTCGAGTACAAAGCCGCCGCACTACCCTCGGACT TCTTCCCATCGGTCAAAGCTTACATGGACGATGTAGTCCTCGGCGTTAACTTAGTAGTAGTGGACTTTTCTCAATTTTCCAG AAACGCAGCGGCCAGATGGATGTCCCTTCGGCGTTTTATAATAAACGCCGCTCGATTCAGCTGGCTATCACTCCTAGTT CCATTTAATGCAGCTACACCCGCACGGGTGACAGGTGGAGTTTTCAAGGCAGCGTGGCTTTCACTGCTTGTGCCATTTG TGAACTCAGCTATTTGCTCAGTAGTGAGAAGGAAGGCAAAATTCGTCGCTGCCTGGACTCTCAAAGCTGCCGCAAAGTG GATGATGTGGTATTGGGGACCGAGCTTGTACAAAGCGGCCTCTACTCTGCCAGAAACTACCGTAGTGAGAAGAAAACTG AGCCTGGACGTCAGCGCGGCATTCTACTGA

FIG.22D

HBV-30C

MGMQVQIQSLFLLLWVPGSRGFLLSLGIHLNAAAKYTSFPWLLNAAARFSWLSLLVPFNAAFPHCLAFSYMKAALVVD FSQFSRGAILLLCLIFLLNAAAHTLWKAGILYKKAWMMWYWGPSLYKAYPALMPLYACIGAAAWLSLLVPFVNFLLTRI LTINIPIPSSWAFKAAAEYLVSFGVWNLPSDFFPSVKFLPSDFFPSVKDLLDTASALYNSWPKFAVPNLKAAASAICSV VRRKLSLDVSAAFYNAAAKFVAAWTLKAAAKAANVSIPWTHKGAAGLSRYVARLNAAASTLPETTVVRRKHPAAMPHLL KAAARWMCLRRFIINASFCGSPYKAAYMDDVVLGVNALWFHISCLTFKAAATPARVTGGVFKAAALTFGRETVLEYKQA FTFSPTYK

ATGGGAATGCAGGTGCAAATACAGTCTCTCTTCCTTTTGCTTCTCTGGGTTCCAGGATCACGGGGCTTCTTGCTTAGCT TGGGCATCCACCTAAATGCTGCTGCAAAATACACATCTTTTCCTTGGCTCCTTAATGCCGCCGCTAGGTTTTCATGGCT GAGTCTGCTAGTACCTTTCAATGCGGCTTTCCCACATTGCCTAGCTTTTAGCTATATGAAAGCTGCTTTAGTCGTGGAC TTTTCACAGTTTAGCAGAGGAGCAATCCTGCTGCTATGTCTGATATTCCTTCTAAACGCAGCAGCCCACACACTCTGGA AAGCTGGTATCCTTTACAAGAAAGCCTGGATGATGTGGTATTGGGGACCCAGCCTCTACAAAGCATACCCTGCCCTGAT GCCACTATACGCATGCATTGGCGCGGCAGCCTGGTTATCCCTTTTAGTACCGTTTGTCAACTTTCTATTAACCAGAATC CTGACGATTAATATTCCGATCCCAAGTTCCTGGGCATTCAAAGCAGCCGCGGAGTATCTGGTTTCATTTGGCGTATGGA CGCGAGCGCTCTGTACAACTCGTGGCCAAAATTCGCAGTTCCAAACCTAAAAGCCGCCGCCAGTGCCATTTGTTCCGTG GTAAGGAGAAAATTATCACTCGACGTGTCCGCAGCATTTTATAACGCTGCTGCAAAGTTTGTCGCAGCATGGACATTGA AGGCTGCAGCGAAAGCAGCAAATGTATCAATACCCTGGACCCACAAGGGTGCAGCCGGGCTGTCTAGGTATGTGGCGAG GCTAAACGCCGCCGCCTCAACACTGCCTGAGACTACTGTCGTGAGACGCAAACACCCTGCCGCAATGCCCCACCTGCTG ACATGGACGATGTGGTCCTCGGAGTGAATGCCCTCTGGTTCCATATCAGCTGCCTGACATTCAAGGCAGCCGCCACCCC TTCACATTCTCCCCAACATACAAGTGA

Sheet 60 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses
Thereof
60/90

.40}

B7 A2 A1 HBV-30C core 419 core 19 K core 18 K HBV-30CL core 19 core 18 K AAA K AAA core 419 **B7 A2 A2** env 183 HBV-30C env 335 N N env 313 HBV-30CL env 335 env 183 N NAAA env 313

FIG.23A

.41

Sheet 61 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be

assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

Sheet 62 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

62/90

HBV-CL

- 44

MQVQIQSLFLLLLWVPGSRGFLLSLGIHLNAAAKYTSFPWLLNAAARFSWLSLLVPFNAAFPHCLAFSYMKA ALVVDFSQFSRGAILLLCLIFLLNAAAHTLWKAGILYKKAWMMWYWGPSLYKAYPALMPLYACIGAAAWLSL LVPFVNFLLTRILTINAAAIPIPSSWAFKAAAEYLVSFGVWNLPSDFFPSVKAAAFLPSDFFPSVKAAADLL DTASALYNSWPKFAVPNLKAAASAICSVVRRKLSLDVSAAFYNAAAKFVAAWTLKAAAKAANVSIPWTHKGA AGLSRYVARLNAAASTLPETTVVRRKHPAAMPHLLKAAARWMCLRRFIINASFCGSPYKAAYMDDVVLGVNA LWFHISCLTFKAAATPARVTGGVFKAAALTFGRETVLEYKQAFTFSPTYK

ATGGGAATGCAGGTGCAAATACAGTCTCTCTTTCCTTTTGCTTCTTGGGTTCCAGGATCACGGGGCTTCTTG CTTAGCTTGGGCATCCACCTAAATGCTGCTGCAAAATACACATCTTTTCCTTGGCTCCTTAATGCCGCCGCT AGGTTTTCATGGCTGAGTCTGCTAGTACCTTTCAATGCGGCTTTCCCACATTGCCTAGCTTTTAGCTATATG AAAGCTGCTTTAGTCGTGGACTTTTCACAGTTTAGCAGAGGAGCAATCCTGCTGCTATGTCTGATATTCCTT CTAAACGCAGCCCACACACTCTGGAAAGCTGGTATCCTTTACAAGAAAGCCTGGATGATGTGGTATTGG TCCCTTTTAGTACCGTTTGTCAACTTTCTATTAACCAGAATCCTGACGATTAATGCTGCCGCCATTCCGATC CCAAGTTCCTGGGCATTCAAAGCAGCCGCGGAGTATCTGGTTTCATTTGGCGTATGGAACCTGCCAAGCGAC CTCCTTGATACCGCGAGCGCTCTGTACAACTCGTGGCCAAAATTCGCAGTTCCAAACCTAAAAGCCGCCGCC AGTGCCATTTGTTCCGTGGTAAGGAGAAAATTATCACTCGACGTGTCCGCAGCATTTTATAACGCTGCTGCA AAGTTTGTCGCAGCATGGACATTGAAGGCTGCAGCGAAAGCAGCAAATGTATCAATACCCTGGACCCACAAG GGTGCAGCCGGGCTGTCTAGGTATGTGGCGAGGCTAAACGCCGCCGCCTCAACACTGCCTGAGACTACTGTC TTCATAATAAACGCTTCTTTCTGTGGGTCACCCTACAAAGCCGCTTACATGGACGATGTGGTCCTCGGAGTG AATGCCCTCTGGTTCCATATCAGCTGCCTGACATTCAAGGCAGCCGCCACCCCCGCTCGTGTGACAGGAGGT GTCTTCAAAGCCGCGCACTGACTTTCGGTCGGGAAACTGTATTGGAATATAAGCAGGCCTTCACATTCTCC CCAACATACAAGTGA

FIG.23C

63/90

Sheet 63 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses
Thereof

. 44

	# DR						ILA-DR Binc	HLA-DR Binding Capacity (IC50 nM)	(IC50 nM)						
Epitope	Bound	DRB1*0101	DRB1*1501	DRB1*0301 DRB1*0401	l	DRB1*0405	DRB1*1101	DR81*1201	DRB1*1302	DRB1*0701	DRB1*0802	DRB1*0901	DRB5*0101	DRB3*0101	DRB4*0101
pol 412	10	2.0	21	1	10.0	47	303	397	143	173	598	791	1067	1837	4179
pol 664	=	0	41	ı	88	18	83	1	190	9	416	142	144	4848	322
env 180	2	_	217	1	6	258	9	4229	6	œ	189	92	1158	4374	969
pol 774	6	5	748	i	119	94	443	1	ı	94	818	220	400	ı	ı
core 120	∞	27	43	1	28	220	=	817	565	78	9/	1773	7	6454	395
pol 145	2	1	4.0		1727	1499	42	149	99/	61	36	133	35	ı	782
env 339	6	408	14	ı	315	78	54	452	2330	2744	09	31	1516	1661	22
pol 501	∞	248	558	ı	11	244	492	9462	ı	Ι.	800	1551	260	ı	102
pol 523	7	77	329	ı	260	246	1749	ı	29	328	940	1373	4764	ı	1347
pol 618	9	3.0	4370	ı	40	34	1617	ı	821	62	872	5175	1246	1	3060
797 lod	∞	22	386	ì	996	1634	1520	807	143	44	214	299	3276	ı	6553
core 50	7	810	8.0	 	326	1 1	458	1	1	9/9	210	952	124	575	48
pol 694	7	7470	2009	<i>L</i> 9	490	1203	 	1	2022	1	ı	1	ı	1808	1044
pol 385	~	7372	1368	36	208	251	ı	ı	946	ı	1	1 .	ı	2525	8711
96 lod	_	8415	4153	43	3916	1908	9999	ı	4461	1	5354	1	4330	1	8121
pol 420	*	38	3089	62	168	17	4923	1859	36	5063	1065	7126	ı	2	7

Sheet 64 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be

assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

-40}

Sheet 65 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060,0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

65/90

HBV-HTL

MGTSFVYVPSALNPADGPGPGLCQVFADATPTGWGLGPGPGRHYLHTLWKAGILYKGPGPGPHHTALRQAILC WGELMTLAGPGPGESRLVVDFSQFSRGNGPGPGPFLLAQFTSAICSVVGPGPGLVPFVQWFVGLSPTVGPGPG LHLYSHPIILGFRKIGPGPGSSNLSWLSLDVSAAFGPGPGLQSLTNLLSSNLSWLGPGPGAGFFLLTRILTIP QSGPGPGVSFGVWIRTPPAYRPPNAPIGPGPGVGPLTVNEKRRLKLIGPGPGKQCFRKLPVNRPIDWGPGPGA ANWILRGTSFVYVPGPGPGKQAFTFSPTYKAFLCGPGPGAKFVAAWTLKAAA

FIG.24C

44

Sheet 66 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

FIG.25B

Sheet 68 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

.44

For: Optimized Multi-Epitope Constructs and Uses Thereof

FIG.26A

FIG.26B

Sheet 69 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003

Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al.

Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses

Thereof

	_	<u></u>	
Env 332 Pol 530 Pol 388 Env 249 Pol 149 Env 359 Pol 640	87	415	7
, 359	A1	Env 335 Env 183 Env 313 Core 117 Core 19 Core 18 Core 419 Pol 392 Pol 531 Pol 415	¥
<u></u>		1 53	S
149	₽.	2 Po	· ~
Po		39,	A24
249	_	9 Po	
En	A1	e 41	=
388	_	Š	A .
Pol	A3	18	2
530		Son	A
Pol	87	19	7
332]	S	B7
En	A24	117	4
	1	Core	A24
Pol	A24	313	1_
signal Pol 562 Pol 745	1	En	B7
² 0 5	\$	183	1
<u></u>		En	\$
sign		335	1
		En	8

(-		-		-				
PADRE Pol. 47 Pol 455 Core 141 Pol	Pol . 47	<u>o</u>	455	Core	141		429 Env	Env	236	<u>Po</u>	166	Pol 5	538 (538 Core 101 Pol 354 Core 137 Pol	101	² ol 3	54 C	ore	137		665
	A3	A 2		£3		87		A24		A		82		A24		87		¥.		S	1
							正	G.	FIG.27A	4											

Sheet 70 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

-41

rir kesbouse (on)

Sheet 71 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be

assigned Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

Sheet 73 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600

-41

For: Optimized Multi-Epitope Constructs and Uses Thereof

Sheet 74 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be

At 1

assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

Sheet 75 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned Inventors: SETTE et al. Tel. No.: 202-371-2600 For: Optimized Multi-Epitope Constructs and Uses
Thereof 75/90 5835: 50µg 3697: 50µg 5835: 5µg <u>8</u> 538 <u>8</u> pol 455 183 env core 100

CTL Response (SFC/10 CD8 cells)

44

Sheet 76 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060,0200003/HCC/PAC; Group Unit: To be assigned Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof
76/90

· At

Sheet 77 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003

Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al.

Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

44

IG.32B

Sheet 78 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned Inventors: SETTE et al. Tel. No.: 202-371-2600 For: Optimized Multi-Epitope Constructs and Uses
Thereof 78/90 Mouse Mouse Mouse Mouse Mouse Mouse FIG.33A Peptide Pol455 • 1000007 Single Immunization **(**

-41

Sheet 79 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

79/90

· ac}

Sheet 80 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses Thereof

.41

80/90

Composition of HBV polyepitope vaccine

		7	$/\!\!/$				
		64,					
		<u>-</u>	$\langle \rangle \rangle$				
		۸	777	_			
		₹					
		2	Ħ				
		ᇍ		S	1 :		
z				-			
		88					
		~					
•		2					
CAA							
_		47					
		ᅙ		_			
		-		_	ļ		
		8			ŀ		
					ŀ		SS
		즲	\equiv	—			ğ
$\boldsymbol{\prec}$			77				انجا
		<u></u>					eb
		<u>မ</u>	Y//				ا مه ا
_		8		_			اکھا
_		Ø.					ן דֶּגַ
		22					<u></u>
		ᅙ		_		•	Su
	 	-3-		_		 	HLA-B7 supertype epitopes
	1	72					മ
		~>	Y //				A-
		8	V//	-	ĺ		글
¥	_	83 core 141 pol 665 env 335 env 313 pol 354 pol 629 core 19 pol 150 pol 47 pol 388 pol 531 pol 642	1	-		<u> </u>	7
		<u> </u>	V/λ				V //
			V/λ			1	V//
		5	V//	_			Y //
Z			K		ļ	 	
	1	8					
		-			1		
\$		2		=			
CAAA			Ħ				
ن	ľ	8	F				
		<u></u>	F				ا یں ا
	L	لح		0	<u> </u>	L	၂ မွ
	l	-					HLA-A3 supertype epitopes
		7			1		ایق ا
		9	\equiv				ا تو ا
		ខ		S			8
	T		177				احَجا
		8	W			1	ĕ
		,				}	닭
		5	W	۰.	1	1	၂ တ
	l	2	[77]				3
		5	W				エ
		5	111		1	1	≦
	<u> </u>	م	77	ပ	<u> </u>	ļ	뜨
		æ,			1		
		ابري					
		宫	111	_			
	├	_	111				
	l	<u>X</u>			1		
		اير			1		
	1	ľg		ш.			
_		œ	[77]				
			W				န
		8					g
		ر ت	لككا	<u> </u>	<u> </u>		∺≓
	1	١			. :		
	l	¥		.			ا به ا
		₹.	[:.:·				S
				⋖			😾
		\$					ᆲ
		<u> </u>					୷୷
		75					الما
	l	(
		۵	<i></i>	<u> </u>			×∣
		and pol 149 PADRE core 18 pol 562 pol 538 pol 455 env		<u> </u>			ILA-A2 supertype epitopes

Sheet 82 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

assigned Inventors: SETTE et al. Tel. No.: 202-371-2600

.41

For: Optimized Multi-Epitope Constructs and Uses Thereof

82/90

Detection of HBV AOSIb (un-optimized epitope string)

Sheet 84 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be

assigned

Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

-44

84/90

and the control of th

Sheet 85 of 90

Appl. No. 10/677,754; Filed: Oct 3, 2003

Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

Inventors: SETTE et al.

Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

-41

1

Sheet 86 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

assigned Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

FIG.36

Sheet 87 of 90 Appl. No. 10/677,754; Filed: Oct 3, 2003 Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be

assigned
Inventors: SETTE et al.
Tel. No.: 202-371-2600
For: Optimized Multi-Epitope Constructs and Uses
Thereof

.41

87/90

Contacting a reference page to the contact of the c

Sheet 88 of 90
Appl. No. 10/677,754; Filed: Oct 3, 2003
Dkt No. 2060.0200003/HCC/PAC; Group Unit: To be assigned

assigned Inventors: SETTE et al. Tel. No.: 202-371-2600

For: Optimized Multi-Epitope Constructs and Uses Thereof

88/90

HIA 2 x PVP Immunization CT Pre-treatme Supertype Epitope Freq. GeoMean X/÷ Freq. GeoMean core 18 12/12 199.3 2.1 4/4 288.9 env 183 12/12 171.2 2.8 4/4 401.2 env 355 12/12 170.4 1.8 4/4 401.2 pol 538 12/12 120.4 1.8 4/4 411.3 pol 552 12/12 16.9 3.2 4/4 188.1 pol 558 12/12 16.9 3.2 4/4 188.1 pol 566 12/12 16.6 94.4 1.4 11.3 HLA-A2 pol 47 0/6 94.4 1.4 188.1 HLA-A3 pol 655 0/6 10.1 2.2 4/4 148.1 Pol 149 6/6 10.3 2.2 1/1 35.3 Pol 149 6/6 10.1 2.3 12/12 167.6 pol 332<					CTL response	use (SU)		
Epitope Freq. GeoMean X/÷ Freq. core 18 12/12 199.3 2.1 4/4 env 183 12/12 199.3 2.1 4/4 env 183 12/12 171.2 2.8 4/4 pol 455 12/12 170.4 1.8 4/4 pol 552 12/12 160.4 1.8 4/4 pol 553 12/12 160.4 1.8 4/4 pol 554 12/12 266.2 2 4/4 pol 555 5/6 10.1 2.3 12/12 pol 149 6/6 10.3 2.2 4/4 pol 149 6/6 10.3 2.2 4/4 pol 149 6/6 10.1 2.3 12/12 pol 47 0/6 10.1 2.3 12/12 pol 38 0/6 1.6 2.3 12/12 pol 44 1.6 2.2 2/11 pol 39 5/6 1.6 1.3	₽		2 ×	Immun	ation	CT	Pre-treatme	ment
core 18	Supertype	Epitope	Freq.		_ * <u></u>	Freq.	GeoMean	* <u></u>
env 183 12/12 171.2 2.8 4/4 pol 455 12/12 86.4 2.3 4/4 pol 538 12/12 120.4 1.8 4/4 pol 538 12/12 120.4 1.8 4/4 pol 562 12/12 266.2 2 4/4 pol 149 6/6 103 2.2 12/12 pol 149 6/6 103 2.2 12/12 pol 149 6/6 10.1 2.3 12/12 pol 38 0/6 10.1 2.3 12/12 pol 38 0/6 10.1 2.3 12/12 pol 38 0/6 1.6 3.9 2/12 env 332 2/6 16.7 1.1 3/12 core 101 3/6 34.4 1.9 2/11 pol 745 2/6 51.2 1.3 1/11 pol 745 2/6 51.2 1.3 1/11 pol 530 6/6 292.4 3.1 3/6 pol 530 6/6 0 0 6/6 pol 354 0/6 12 2.5 2/7 env 313 0/6 0 0 4/6 pol 354 0/6 137 1.1 1/6		core 18	12/12	199.3	2.1	4/4	288.9	1.3
env 335		env 183	12/12	171.2	2.8	4/4	401.2	1.4
pol 455 12/12 120.4 1.8 4/4 pol 538 12/12 120.4 1.8 4/4 pol 562 12/12 266.2 2 4/4 core 141 6/6 94.4 1.4 12/12 pol 149 6/6 103 2.2 12/12 pol 149 6/6 10.1 2.3 12/12 pol 55 5/6 10.1 2.3 12/12 pol 53	C 4 4 1	env 335	12/12	86.4	2.3	4/4	153.6	1.7
pol 538 12/12 149.9 3.2 4/4 pol 562 12/12 266.2 2 4/4 core 141 6/6 94.4 1.4 12/12 pol 149 6/6 10.3 2.2 12/12 pol 388 0/6 10.1 2.3 12/12 pol 388 0/6 10.1 2.3 12/12 pol 47 0/6 3.9 2/12 env 236 1/6 22.6 2/11 core 101 1/6 37 1.1 3/11 pol 745 2/6 51.2 1.3 1/11 pol 745 2/6 51.2 1.3 1/11 pol 530 6/6 292.4 3.1 3/6 pol 640 4/6 76.5 1.7 5/7 pol 534 0/6 0 0 6/6 pol 354 0/6 137 1.1 1/6 pol 537 2/7 pol 540 4/6 76.5 1.7 5/7 pol 540 2/6 137 1.1 1/6	nLA-AZ	pol 455	12/12	120.4	8 .	4/4	411.3	1.8 8.1
core 141 core 141 bol 562 12/12 266.2 2 4/4 core 141 6/6 94.4 1.4 12/12 12/12 12/12 pol 149 6/6 10.3 2.2 12/12 13/11 1/11		pol 538	12/12	149.9	3.2	4/4	148.1	2.2
core 141 6/6 94.4 1.4 12/12 pol 149 6/6 103 2.2 12/12 pol 388 0/6 10.1 2.3 12/12 pol 388 0/6 3.9 2/12 pol 531 1/6 22.6 2/12 pol 392 5/6 78.1 1.5 10/11 pol 392 5/6 78.1 1.5 10/11 pol 392 2/6 16.7 1.1 3/11 pol 745 2/6 51.2 1.3 1/11 pol 530 6/6 292.4 3.1 3/6 pol 640 4/6 76.5 1.7 5/7 pol 549 2/6 13.7 1.1 1/6 pol 429 2/6 13.7 1.1 1/6		pol 562	12/12	266.2	2	4/4	353.3	1.5
pol 149 6/6 103 2.2 12/12 pol 388 0/6 10.1 2.3 12/12 pol 388 0/6 22.6 2/12 pol 47 0/6 3.9 2/12 env 236 1/6 22.6 2/12 pol 392 2/6 16.7 1.1 3/11 core 101 1/6 37 0/11 pol 745 2/6 51.2 1.3 1/11 pol 530 6/6 292.4 3.1 3/6 pol 640 4/6 76.5 1.7 5/7 env 313 0/6 0 0 6/6 pol 429 2/6 13.7 1.1 1/6		core 141	9/9	94.4	4.	12/12	167.6	1.4
pol 655 5/6 10.1 2.3 12/12 pol 388 0/6 3.9 0/12 pol 47 0/6 3.9 2/12 env 236 1/6 22.6 22.6 2/11 core 101 1/6 37 1.1 3/11 pol 745 2/6 16.7 1.1 3/11 pol 745 2/6 51.2 1.3 1/11 pol 640 4/6 76.5 1.7 5/7 env 313 0/6 0 0 6/6 pol 354 0/6 13.7 1.1 1/6 pol 354 0/6 0 0 0 4/6 pol 354 2/6 13.7 1.1 1/6		pol 149	9/9	103	2.2	12/12	386.7	1.5
pol 388 0/6	HLA-A3	pol 655	2/6	10.1	2.3	12/12	108	3.6
pol 47 pol 47 pol 531 $1/6$ 3.9 $2/12$ $2/12$ $1/6$ 3.9 $1/6$ 3.9 $2/11$ pol 392 $2/6$ $1/6$ $3/8$ 1.1 $1/6$ $3/7$ pol 745 $2/6$ $1/6$ $3/8$ $1/1$ $1/1$ $3/6$ $3/8$ $1/1$ $1/1$ pol 530 $1/6$		pol 388	9/0			0/12		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		pol 47	9/0			3/12	3.2	=
env 236 1/6 22.6	 	pol 531	1/6	3.9		2/12	5.5	
pol 392 5/6 78.1 1.5 10/11 core 101 1/6 37 0/11 core 117 3/6 34.4 1.9 2/11 pol 745 2/6 51.2 1.3 1/11 pol 530 6/6 292.4 3.1 3/6 pol 640 4/6 76.5 1.7 5/7 core 19 3/6 12 2.5 2/7 env 313 0/6 0 0 6/6 pol 429 2/6 13.7 1.1 1/6		env 236	1/6		 	2/11	23.4	1.2
t env 332 2/6 16.7 1.1 3/11 core 101 1/6 37 0/11 core 117 3/6 34.4 1.9 2/11 pol 745 2/6 51.2 1.3 1/11 pol 530 6/6 292.4 3.1 3/6 pol 640 4/6 76.5 1.7 5/7 core 19 3/6 12 2.5 2/7 env 313 0/6 0 0 6/6 pol 354 0/6 13.7 1.1 1/6		pol 392	2/6	78.1	1.5	10/11	54.8	2.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HI A-A24	env 332	7/6	16.7	1.1	3/11	25.6	1.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		core 101	9/1	37		0/11		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		core 117	3/6	34.4	1.9	2/11	27.4	~
pol 530 6/6 292.4 3.1 3/6 pol 640 4/6 76.5 1.7 5/7 core 19 3/6 12 2.5 2/7 env 313 0/6 0 0 6/6 pol 354 0/6 13.7 1.1 1/6	 	pol 745	2/6	51.2	1.3	1/11	32.6	
pol 640 4/6 76.5 1.7 5/7 core 19 3/6 12 2.5 2/7 env 313 0/6 0 0 6/6 pol 354 0/6 0 0 0 4/6 pol 429 2/6 13.7 1.1 1/6		pol 530	9/9	292.4	3.1	3/6	$\frac{1}{11}$	
core 19 3/6 12 2.5 2/7 env 313 0/6 0 0 6/6 pol 354 0/6 0 0 4/6 pol 429 2/6 13.7 1.1 1/6		pol 640	4/6	76.5	1.7	2/1	104.6	. .
env 313 0/6 0 0 6/6 pol 354 0/6 0 0 4/6 pol 429 2/6 13.7 1.1 1/6	HI A-R7	core 19	3/6	12	2.5	2/7	8.8	1.6
0/6 0 0 4/6 2/6 13.7 1.1 1/6		env 313	9/0	0	0	9/9	323.1	2.9
2/6 13.7 1.1 1/6		pol 354	9/0	0	0	4/6	351.5	3.2
_		pol 429	2/6	13.7	=	1/6	1.4	

413

GCR-3697 Immunogenicity Data

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
☑ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
П отнер.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.