As estacas dissipam a carga proveniente da estrutura por mejo de resistência lateral e resistência de ponta (R total = R ponta + R lateral).

Também existem limitações de resistência das estacas no que se refere à estrutura que as compõe (concreto simples, armado ou aço).

Pode-se estimar a capacidade de carga de uma estaca por meio de correlações de ensaios executados no campo tipo SPT e CPT.

A grande maioria dos métodos utiliza a seguinte fórmula básica para o cálculo da carga de ruptura da estaca:

$$R_1 = r_1 \cdot U_1 \cdot L$$

$$R_2 = R_1 + R_2$$

$$R_3 = r_3 \cdot A_3$$

Onde:

- R_r resistência total (kg ou tf ou kN).
- (,- resistência lateral (kg ou tf ou kN).
- resistência de ponta (kg ou tf ou kN).
- r_i resistência unitária lateral ou aderência lateral ou atrito lateral, a ser calculada empiricamente (kg/cm² ou tf/m² ou kN/m²).
- J. perímetro lateral da estaca (cm ou m).
- profundidade da estaca (cm ou m).
- r . resistência unitária de ponta ou tensão de ponta
- (a ser calculada empiricamente) (kg/cm² ou tf/m² ou kN/m²).
- A_o área da ponta da estaca (cm² ou m²).

Nota-se que os métodos sempre estão visando estimar a resistência unitária lateral (r_{\parallel}) e a resistência unitária de ponta (r_{\parallel}) , posto que os demais itens são características geométricas da estaca.

2.1. Método de Decourt e Quaresma

O método proposto pelos engs. Luciano Decourt e Arthur Quaresma estima a resistência unitária lateral ($r_{\rm j}$) e resistência unitária de ponta ($r_{\rm p}$), tomando-se por base o resultado do ensaio de SPT.

$$r_1 = \left(\frac{\text{SPT}_{\text{medio}1}}{3} + 1\right) \cdot 10 \text{ (kN/m}^2)$$

$$\Gamma_p = SPT_{medio p}$$
. K

fundações e contenções de edifícios • ivan joppert jr. •

Onde:

SPT medio - média aritmética dos SPT's que envolvem o fuste das estaca,

desprezando-se o SPT da ponta e o anterior (utilizar SPT mínimo = 3)

SPT médio p - média aritmética entre os SPT's da ponta, o anterior e o posterior.

coeficiente que depende do solo

O método também prevê fatores de correção minorando a resistência lateral e de ponta das estacas, levando-se em consideração o procedimento executivo de cada estaca:

Tabela nº 19 - Coeficiente "K"

K (kN/m²)	120	200	250	400
Solo	Argiloso	Silte argiloso	Silte argiloso	Areia

$$R_{I} = \Sigma i \cdot (r_{II} \cdot U \cdot \Delta L_{I} \cdot \beta)$$

$$R_p = r_p \cdot A_p \cdot \alpha$$

$$R_t = R_1 + R_p$$

Tabela nº 20 - Fatores B (para correção da resistência lateral)

Solo	Estacas cravadas	Escavadas em geral	Escavada com lama bentonítica	Hélice	Raiz
Argila	1,0	0,80	06'0	1,00	1,50
Solo Intermediario	1,0	0,65	0,75	1,00	1,50
Areias	1,0	0,50	09'0	1.00	1,50

Tabela nº 21 - Fatores O. (para correção da resistência de ponta)

Solo	Estacas cravadas	Escavadas E em geral	Escavada com lama bentonítica	Hélice contínua	Raiz
Argila	1,0	0,85	0,85	0,30	0,85
Solo intermediário	1,0	09'0	09'0	0,30	09'0
Areias	1,0	0,50	0,50	0,30	0,50

Para terrenos com várias camadas de solo, a resistência total lateral (R₁) será a somatória das resistências laterais parciais de cada solo. Para a obtenção da carga admissível das estacas, devem-se aplicar os seguintes fatores de segurança:

$$R_{adm} = \frac{R_t}{2,00}$$
 ou $R_{adm} = \frac{R_1}{1,30} + \frac{R}{4}$

125

126

2.2. Método de Aoki e Velloso

O método, proposto pelos eng. Nelson Aoki e Dirceu Velloso, estima a resistência unitária lateral ($r_{
m j}$ e a resistência unitária de ponta ($r_{
m p}$), tomando-se por base o resultado do ensaio de CPT (deep souding).

$$\Gamma_1 = \frac{q_c \cdot \alpha}{F2}$$
 $\Gamma_p = \frac{q_c}{F2}$

Onde:

resultado médio da resistência de ponta do cone no ensaio de

CPT da camada de solo em análise;

fator de correlação da resistência de ponta e resistência lateral do

cone no ensaio de CPT (depende do tipo de solo); coeficientes que dependem do tipo de estaca. F1 e F2 -

Tabela nº 22 - Fatores F1 e F2

Estaca	F1	F2
Pré-moldada	1,75	3.50
Escavada	3,00	9 00 9
Franki	2,50	5.00

$$R_{_{I}}=\Sigma i\;.\;(r_{_{LI}}\;.\;U\;.\;\Delta L_{_{I}})$$

$$R_p = r_p \cdot A_p$$

$$R_t = R_t + R_p$$

Para a obtenção da carga admissível das estacas, deve-se aplicar o seguinte fator de

segurança:

O método também estima os resultados de resistência de ponta do cone no ensaio de CPT, utilizando-se a correlação e a tabela abaixo:

$$q_c = K \cdot (SPT)$$

8		
Solo	K (kN/m²)	α(%)
areia	1000	1.4
areia siltosa	800	2,0
areia silto-argilosa	700	2,4
areia argilosa	009	3,0
areia argilo-siltosa	200	2.8
silte	400	3.0
silte arenoso	550	2,2
silte arenoso argiloso	450	2,8
silte argiloso	230	3,4
silte argilo-arenoso	250	3,0
argila	200	0'9
argila arenosa	350	2,4
argila areno-siltosa	300	2,8
argila siltosa	220	4,0
araila silto-arenosa	330	0 0

Quando se utiliza o ensaio de SPT para o cálculo de $R_{\rm l}$ e $R_{\rm b}$ obtém-se:

$$\begin{split} R_{I} &= \Sigma \; (SPT_{medio\,I} \cdot K_{I} \cdot \alpha_{c} \cdot \Delta L_{I} \cdot U) \; \div \; F2 \\ R_{p} &= (SPT_{poins} \cdot K \cdot A_{p}) \; \div \; F1 \end{split}$$

$$R_t = R_l + R_p$$

Onde:

 $\mathsf{SPT}_\mathsf{médio}$ - média aritmética de $\mathsf{SPT}'s$ da camada em análise;

SPT - SPT da ponta da estaca.

Para a obtenção da carga admissível das estacas, deve-se aplicar o seguinte fator de segurança:

$$adm = \frac{R_t}{2,00}$$