

Early Detection of Psychotic Disorders: the Role of Emotions

Summer School on Digital Humanities
September 13TH TO September 14TH, UNAM, Mexico

Motasem Alrahabi, ObTIC

Presentation

- 2010 : PhD in Linguistic Engineering from Sorbonne University, Paris.
- 2010 2018 : ICTE Lecturer Sorbonne University UAE.
- 2018 today: Research Engineer in Digital Humanities ObTIC, Sorbonne Univ., Paris.
 - AI, NLP, Semantic and Discursive Analysis, Digital Publishing, ICT for Education.

L'Observatoire des textes, des idées et des corpus (ObTIC)

- <u>ObTIC</u> (former LabEx <u>OBVIL</u>) is a project team dedicated to Digital Humanities at Sorbonne University.
- Collaboration with the <u>SCAI</u> (Sorbonne Center for Artificial Intelligence) and the <u>Datalab</u> (National Library of France).
- ObTIC draws on the expertise acquired in:
 - Production and digital edition of data (see <u>OBVIL Library</u>).
 - O Design and experimentation of text mining tools (TAL, AI, corpus analysis, textometry, etc.) for the

et sémantique

Digital Publishing and Databases

- Automatic File Conversion Tool (Teinte)
- **OBVIL Digital Library**
- Valentin Haüy Digital Library (AVH)
- Sound heritage of poetry (ASP)
- Registers of the French Comedy (RCF-19)
- Revolutionary Opéra-comique Database (OCD)

UNIVERSITÉ D'ÉTÉ | BILICENCE "LETTRES - INFORMATIQUE" | ATELIERS

Text Exploration and Mining

- Obvie: Corpus Linguistic Analysis
- Elicom: Explore correspondence and letters
- Ariane: Semantic analysis of texts
- Tanagra: Mapping place names in texts
- Summarizer: Summarizing scientific articles
- Pandore: The toolbox for digital humanities

APAISE Project

Context

- Project <u>APAISE</u>: Apprentissage Profond pour l'Analyse Informatisée de la Subjectivité et des Émotions dans les troubles psychotiques émergents.
 - Deep Learning for Computational Analysis of Subjectivity and Emotions in Emerging Psychotic Disorders
- Funding: Fondation de France (Psychiatric Disease Research <u>program</u>)
 - Start: September 2023
- Involved teams:
 - ObTIC Sorbonne University: Motasem Alrahabi, Jean Marie Tshimula (soon)
 - INSERM: Marie-Odile Krebs, Julien Descles, Valeria Lucarini
 - Brest University Hospital Centre: Michel Walter, Christophe Lemey, Deok-Hee Kim-Dufor
- Goals:
 - Early detection of psychotic disorders: the role of emotions (and the retelling of memories).
 - Better management of patients at risk and slowing down their evolution towards chronicity.

State of the Art

- There are numerous NLP studies that analyse language in the emerging psychotics disorders.
- Identify discriminating anomalies to predict the evolution of patients with differents methods, on different levels: prosody, syntax, semantics, vocabulary, discourse, dialogue...
- Clinical evolution of psychosis: 3 phases
 - At-risk, Not-at-risk, Psychotic "<u>CAARMS</u>" score [Yung et al., 2005]
- Challenge: reduce the prodromal phase (at-risk) before the chronic phase.
 - → [Magaud et al., 2010], [Tanguy et al., 2011], [Register-Brown, Hong LE 2014], [Bedi et al. 2015], [Bazziconi, 2018], [Ratana et al., 2019], [Lucarini et al., 2023]...

Working Hypothesis

- Clinical studies: the subjective dimension of language expression (emotions, sentiments, perceptions...) could reflect in the patient's speech a disturbed relationship to the world and to themself.
- Few academic works in this field [Tshimula et al., 2022], [Saffar, 2023].
- Hypothesis: the analysis of subjective modalities could play an important role in the early detection of psychosis (during the prodromal phase).
 - → Classification problem: given a labeled text as input, what would its class belong to?

1	At-risk (A)
2	Not-at-risk (N)
3	Psychotic (P)
4	Control (C)

Data Preprocessing

Data

- Our corpus consists of rare psychiatric interviews:
 - Open dialogues between psychiatrists and patients (15 to 30 years old).
- About 250 audio interviews (differents patients).
 - Currently: 134 interviews (≈ 1 million tokens).
- Patient speech is characterised by:
 - Verbal pauses and disfluencies, hesitations, silences...
 - Disorganised speech (tangential and incoherent), broken syntax...
 - Low lexical density, short sentences...
 - Particular use of personal pronouns (moi, je, me, mon, ma, mes)
 - Emotions: stress, anger, violence, euphoria, joy, suffering...

1	At-risk (A)	65 texts
2	Not-at-risk (N)	17 texts
3	Psychotic (P)	19 texts
4	Control (C)	33 texts

Data Preprocessing

- We conducted a series of preprocessing on the data:
 - Manual transcription of audio files into text format.
 - Anonymisation: identification of named entities with SpaCy, then manual correction.
 - Oral errors are not corrected: unfinished words, morpho-syntax errors, conjugations...
 - Keep verbal disfluencies and hesitations: ah, euh, hum, hmm, hein, ben, bah, pfff...

Data labeling

- Only for patients' speech
- Applied features for each patient (text level analysis):
 - Label #1 → Average of sentence length
 - Label #2 → Average of the personal pronouns
 - Label #3 → Average of the verbal disfluencies
 - Label #4 → Lexical density of vocabulary
 - \circ Label #5 \rightarrow Subjective modalities: emotions, sentiments, opinions...

Subjective Modalities

- Allows us to capture subjective content:
 - Polarity: positive, negative, neutral or mixed.
 - Source and target.
 - Intensity (normal, strong, etc.).
 - Aspects of the analyzed object.
 - → [Turney, 2002]; [Wiebe et al., 2005]; [Pang and Lee, 2008] [Balahur et al., 2011]; [Zhang and Bing 2017]...

- Need for more fine-grained classification:
 - o GoEmotions: 27 labels for emotions in English [Demszky et al., 2020].

- Examples from the dataset (approximate translation):
 - One time I took my Swiss army knife and went for a walk and I, I just wanted to shove it down my throat.
 - Une fois j'avais pris mon couteau suisse et j'étais parti me promener et je, je voulais juste me le planter dans la gorge. [Violence, Patient 2]
 - I couldn't tell the difference between, between if I was in a dream or if I was in reality.
 - J'arrivais plus à faire la différence entre, entre si j'étais dans un rêve ou si j'étais dans la réalité.
 [Hallucination, Patient 15]
 - I just want to drink, until, finally, [I lose reason], because I have, I am in control of myself all the time.
 - J'ai juste envie de boire, jusqu'à, enfin, la déraison, enfin parce que j'ai, je suis tout le temps dans le contrôle de moi-même. [Addiction, Patient 401]
 - Each time I thought I had zeros [in exams], I realized that in fact uh they were just kidding me.
 - A chaque fois je pensais avoir des zéros, je me rendais compte qu'en fait euh on se foutait juste de ma gueule [Mockery, Patient 1101]

- Linguistic Ontology [Alrahabi, 2016, 2021]
 - ≈ 3500 observable markers (patterns)
 - Lexical categories: verbs, adjectives, adverbs, phrases...
- Fine-grained annotations:
 - Classified first as positive, negative or neutral.
 - Grouped into 82 sub-categories: anxiety, stress, anger, violence, joy, suffering...
 - Adaptation to the current project: set up new categories, 0 consider oral speech, existing oral pronunciation errors...

- Lexicon-based annotation tool (<u>Textolab</u>):
 - 28770 annotations / 134 texts / 1,050,144 words.

Annotation results can be consulted via a web interface (<u>Ariane</u>)

Supervised Classification

Data Representation (Embeddings)

- Vector representation: Camembert LM (https://huggingface.co/camembert-base)
- Embeddings are created using the "CamembertTokenizer" (based on "WordPiece").
- Embeddings are associated with features:
 - 4 linguistic labels
 - 82 emotion labels
 - \rightarrow Dimensions: 768 + 86 = 854
- Embeddings visualized with PCA:
 - No underlying clusters.

Supervised classification

Use of traditional machine learning algorithms (no enough data for Deep Learning)

Evaluation of classification models

LazyPredict library (https://pypi.org/project/lazypredict/)

# -	Model	- Accuracy -	F1 Score	Time -
1	LGBMClassifier	0,78	0,77	1,01
2	XGBClassifier	0,78	0,75	1,08
3	ExtraTreesClassifier	0,78	0,75	0,19
4	LinearDiscriminantAnalysis	0,78	0,78	0,16
5	RandomForestClassifier	0,78	0,73	0,34
6	Perceptron	0,74	0,76	0,05
7	CalibratedClassifierCV	0,74	0,7	0,39
8	RidgeClassifierCV	0,74	0,76	0,13
9	LogisticRegression	0,74	0,76	0,17
10	SVC	0,74	0,66	0,04

Evaluation of the best classification models

- Perform a cross-validation in terms of accuracy:
 - assessing model performance
 - tuning hyperparameters
 - ensuring generalization to new data
 - o etc.

Model	F1	F2	F3	F4	F5	Mean Score
LGBMClassifier	0,78	0,74	0,81	0,70	0,69	0,75
ExtraTreesClassifier	0,74	0,78	0,78	0,74	0,69	0,75
LinearDiscriminantAnalysis	0,63	0,74	0,78	0,74	0,58	0,69

Evaluation of the best classification models

- Precision, recall and f-score:
 - evaluate the performance of classification models (quality, completeness and overall performance)
 - o offer interpretable measures of a model's performance
 - aid in choosing the most appropriate machine learning algorithm for a given problem
 - o etc.

Model	Precision	Recall	F1-Score
LGBMClassifier	0,81	0,71	0,74
ExtraTreesClassifier	0,77	0,71	0,73
LinearDiscriminantAnalysis	0,77	0,8	0,78

Evaluation of the best classification models

Confusion Matrix:

 offers a general overview of the performance of a classification model by summarizing the counts of true positive, true negative, false positive, and false negative predictions

LGBMClassifier ExtraTreesClassifier LDA 25

Analysing the importance of labels (features)

Conclusion

Synthesis: Hybrid Approach

Preliminary Results and Perspectives

- Recruitment of a postdoctoral fellow (oct. 2023).
- Use data sampling or sliding window techniques.
- Create a multi-label emotion model [Tao et al. 2020], [Demszky et al., 2020].
- Cross with other information:
 - Prosodic analysis: measurement of silence and intonation, in progress with INSERM [Lucarini et al., 2023].
 - Metadata: gender, age, clinical observations (risk of psychosis, consumption of products, etc.).

Thank you for your attention!

Bibliographic references

- Alexandre D, Alrahabi M, Gay F., Riguet M. "Le médical et le social: analyse sémantique des rapports de l'immersion d'étudiants de médecine dans le Samu social", in Humanités Numériques Littéraires, sous la dir. de Didier Alexandre, Paris, Classiques Garnier, 2021
- Alrahabi M, Ariane: dispositif de fouille et de lecture synthétique de textes, Actes de DigitAl Humanities and cuLtural herltAge: data and knowledge management and analysis, Jan 2021, Montpellier, France.
- Bedi G, Carrillo F, Cecchi GA, Slezak DF, Sigman M, Mota NB, Ribeiro S, Javitt DC, Copelli M, Corcoran CM. Automated analysis of free speech predicts psychosis onset in high-risk youths. NPJ Schizophr. 2015.
- Bazziconi P-F, 2018, thèse de doctorat de médecine DOI: 10.13140/RG.2.2.16573.82400, Advisor: Christophe Lemey; Michel Walter
- Bazziconi P-F, Bleton L, et al.. L'Information Psychiatrique, 2019/2 (95), 89-94.
- Demszky, Dorottya & Movshovitz-Attias, Dana & Ko, Jeongwoo & Cowen, Alan & Nemade, Gaurav & Ravi, Sujith. (2020). GoEmotions: A Dataset of Fine-Grained Emotions. 4040-4054. 10.18653/v1/2020.acl-main.372.
- Lucarini et al. 2021. "Conversational metrics, psychopathological dimensions and self-disturbances in patients with schizophrenia"
 European Archives of Psychiatry and Clinical Neuroscience.
- Register-Brown K, Hong LE. Schizophrenia research. 2014 Dec; 160(1-3):20-6.
- Tao, J., Fang, X. Toward multi-label sentiment analysis: a transfer learning based approach. J Big Data 7, 1 (2020).
- Yung AR, Yuen HP, McGorry PD, Phillips LJ, Kelly D, Dell'Olio M, Francey SM, Cosgrave EM, Killackey E, Stanford C, Godfrey K, Buckby J.
 Mapping the onset of psychosis: the Comprehensive Assessment of At-Risk Mental States. Aust N Z J Psychiatry. 2005