# Véges automaták változatai és ezek ekvivalenciája

# Balla Tamás Zsolt

## 2020 május

#### Abstract

Ebben az esszében megismerhetjük, hogy mik azok a determinisztikus és nemdeterminisztikus véges automaták, hogyan adhatjuk meg őket, és bebizonyítjuk, hogy ezeknek a felismerőképessége megegyezik.

# 1 Véges determinisztikus automaták

#### 1.1 Bevezetés

Az  $M=(Q,\Sigma,\delta,q0,F)$  rendszert determinisztikus automatának nevezzük, ahol:

- $\bullet~Q\colon$ egy nem üres halmaz, az állapotok halmaza
- Σ: egy ábécé, az input ábécé
- $\bullet$   $\delta \colon Q \times \Sigma \to Q \colon$ egy leképezés, az átmenetfüggvény
- $q_0 \in Q$ : a kezdőállapot
- $F \subseteq Q$ : a végállapotok halmaza

Az automatákat általában irányított gráfként ábrázoljuk. Ennek a gráfnak a csúcsai lesznek az állapotok, a gráf élei pedig az átmenetek. Ha  $\delta(q,a)=p$  egy átmenet, akkor ez azt jelenti, hogy a q állapotból egy a input szimbólum hatására a p állapotba jutunk. A kezdőállapotot egy, az állapotra mutató nyíllal jelöljük, a végállapotokat pedig dupla körvonallal. A kezdőállapot is lehet végállapot.

Figure 1: Egyszerű példa véges determinisztikus automatára



Az automatákat megadhatjuk táblázatos formában is, ilyenkor a kezdőállapotot a táblázat első sorába írjuk, a végállapotokat pedig megjelöljük. A táblázat oszlopaiban az input ábécé betűit adjuk meg, a táblázat belsejében pedig hogy a sorban lévő állapotból az oszlopban lévő input hatására melyik állapotba jutunk.

| δ      | a     | b     |
|--------|-------|-------|
| $*q_0$ | $q_1$ | $q_2$ |
| $q_1$  | $q_0$ | $q_2$ |
| $q_2$  | $q_0$ | $q_1$ |

## 1.2 Felismert nyelv

Az M konfiguráció<br/>ionak halmaza:  $C=Q\times \Sigma$ . A  $(q,a_1,a_2,...,a_n)$  konfiguráció azt jelenti, hogy az M automata a q álla<br/>potban van, és az  $a_1,a_2,...,a_n$  szót kapja inputként.

Ha (q,w) és  $(q',w')\in C$ , akkor a  $(q,w)\vdash_M (q',w')$  átmeneti reláció azt jelenti, hogy a q állapotban vagyunk, és ide egy w szó hatására jutottunk, és a w szó első betűjét "elfogyasztva" juthatunk egy lépésben a q' állapotba (tehát akkor w=aw' valamely  $a\in \Sigma$ -ra). Ezt több lépésre is értelmezhetjük, ennek a jelölései:

- $(q, w) \vdash_M (q', w')$ , egy lépés
- $(q, w) \vdash_M (q', w'), n \ge 0$  lépés
- $(q, w) \vdash_{M}^{+} (q', w')$ , legalább egy lépés
- $(q, w) \vdash_M^* (q', w')$ , valamennyi (akár 0) lépés

Az  $M = (Q, \Sigma, \delta, q0, F)$  automata által felismert nyelven a

$$L(M) = \{ w \in \Sigma^* \mid (q_0, w) \vdash_M^* (q, \epsilon) \text{ \'es } q \in F \}$$

nyelvet értjük, azaz  $q_0$ -ból valahány lépésben a w input szó hatására a q állapotba jutunk, és q végállapot.

Az alábbi automata azt a nyelvet ismeri fel, ahol a szavakban van legalább egy a betű.

Figure 2: Példa



# 2 Véges nemdeterminisztikus automaták

### 2.1 Bevezetés

A nemdeterminisztikus automák a determinisztikus automaták általánosításai. A  $M=(Q,\Sigma,\delta,q0,F)$  rendszert nemdeterminisztikus automatának nevezzük, ahol

- Q: egy nem üres halmaz, az állapotok halmaza
- $\bullet$   $\Sigma$ : egy ábécé, az input ábécé
- $\delta \colon \, Q \times \Sigma \to P(Q),$ egy leképezés, az átmenetfüggvény
- $q_0 \in Q$ : a kezdőállapot
- $\bullet \ F \subseteq Q$ : a végállapotok halmaza

Egy input szimbólum hatására az automata egy állapotból több állapotba is mehet, és nem is muszáj megadni minden input szimbólumra, hogy melyik állapotba kerüljön az automata a szimbólum hatására ( $\delta(q,a)=\varnothing$ ). Az általánosítás nem növeli meg a felismerő kapacitást, ezt majd később látjuk.

Figure 3: Példa nemdeterminisztikus automatára



# 2.2 Felismert nyelv

Az átmeneti reláció és a felismert nyelv nemdeterminisztikus automatákra:

(q,w) és  $(q',w') \in C$  esetén  $(q,w) \vdash_M (q',w')$  azt jelenti, hogy q-ból q'-be jutunk valamilyen a input szimbólum hatására, ahol  $q' \in \delta(q,a)$ , tehát a q' eleme a q állapotból az a szimbólum hatására elérhető állapotok halmazának.

Az automata által felismert nyelven pedig a

$$L(M) = \{ w \in \Sigma^* \mid (q_0, w) \vdash_M^* (q, \epsilon) \text{ valamely } q \in F \}$$
-re

nyelvet értjük. Tehát  $q_0$ -ból w hatására elérhető legalább egy végállapot, de lehet, hogy emellett nem végállapotok is elérhetőek.

# 3 Nemdeterminisztikus $\epsilon$ -automata

#### 3.1 Definíció

A nemdeterminisztikus automata  $\epsilon$ -átmenettel, vagy röviden nemdeterminisztikus  $\epsilon$ -automata a nemdeterminisztikus automaták általánosítása.

A  $M=(Q,\Sigma,\delta,q0,F)$ rendszert nemdeterminisztikus  $\epsilon\text{-automatának}$ nevezzük, ahol:

• Q: egy nem üres halmaz, az állapotok halmaza

- $\bullet~\Sigma$ : egy ábécé, az input ábécé
- $\delta \colon \, Q \times (\Sigma \cup \{\epsilon\}) \to P(Q),$ egy leképezés, az átmenetfüggvény
- $\bullet \ q_0 \in Q$ : a kezdőállapot
- $F \subseteq Q$ : a végállapotok halmaza

Az  $\epsilon$ -átmenet azt jelenti, hogy az egyik állapotból a másikba tartó ilyen átmenet "nem fogyasztja" az inputot. Használata néha kényelmesebb lehet, de nem növeli meg a felismerő kapacitást.

Figure 4: Példa nemdeterminisztikus  $\epsilon$ -automatára



### 3.2 Felismert nyelv

Az átmeneti reláció és a felismert nyelv nemdeterminisztikus automatákra:

(q,w) és  $(q',w') \in C$  esetén  $(q,w) \vdash_M (q',w')$  azt jelenti, hogy q-ból q'-be jutunk valamilyen  $a \in (\Sigma \cup \{\epsilon\})$  input szimbólum hatására, ahol  $q' \in \delta(q,a)$ , tehát ugyanaz mint a nemdeterminisztikus esetben, csak megengedjük az  $\epsilon$  átmeneteket is.

# 4 Ekvivalencia

# 4.1 A nemdeterminisztikus és a nemdeterminisztikus $\epsilon$ átmenetes automaták ekvivalenciája

#### 4.1.1 Tétel

Egy nyelv akkor és csak akkor ismerhető fel nemdeterminisztikus  $\epsilon$ -automatával, ha felismerhető nemdeterminisztikus automatával.

#### 4.1.2 Bizonyítás

- Ha egy nyelv felismerhető nemdeterminisztikus automatával, akkor felismerhető nemdeterminisztikus  $\epsilon$ -automatával is.
- Legyen  $M = (Q, \Sigma, \delta, q0, F)$  egy nemdeterminisztikus  $\epsilon$ -automata. Megadunk egy olyan  $M' = (Q, \Sigma, \delta', q0, F')$  nemdeterminisztikus automatát, amelyre L(M) = L(M').

Az első állítás magától adódik, így a másodikat bizonyítjuk. M' megadásához ki kell számolni az állapotok  $\epsilon$ -lezárását M-ben. Egy  $q \in Q$  állapot epszilon lezárása azon állapotokból áll, amik elérhetőek q-ból  $\epsilon$  átmenetekkel. A  $\{q\}$  halmazból kiindulva hozzávesszük a halmazhoz azokat az állapotokat, amelyek elérhetőek q-ból egy  $\epsilon$ -átmenettel, majd ezt addig folytatjuk, amíg a halmaz bővül. Tehát M' a q állapotból az a input hatására azon állapotokba megy át, amelyekbe valamennyi  $\epsilon$  átmenettel, majd egy a átmenettel jutott. M' végállapotai pedig azok az állapotok lesznek, amelyekbe M valamennyi  $\epsilon$  átmenettel egy F állapotba jut. A valamennyi mindkét esetben lehet nulla is. Ezért L(M') = L(M).

# 4.2 A determinisztikus és a nemdeterminisztikus automaták ekvivalenciája

#### 4.2.1 Tétel

Egy nyelv akkor és csak akkor ismerhető fel nemdeterminisztikus automatával, ha felismerhető determinisztikus automatával.

#### 4.2.2 Bizonyítás

- Ha egy nyelv felismerhető determinisztikus automatával, akkor felismerhető nemdeterminisztikus automatával is.
- Legyen  $M = (Q, \Sigma, \delta, q0, F)$  egy nemdeterminisztikus automata. Megadunk egy  $M = (Q', \Sigma, \delta', q0', F')$  determinisztikus automatát, amelyre L(M') = L(M).

Az első állítás most is könnyen látható, így megint a másodikat bizonyítjuk. Legyen  $M=(Q',\Sigma,\delta',q0',F')$ , ahol:

- $Q': P(Q) (= \{S | S \subseteq Q\})$ , azaz Q részhalmazaiból képzünk állapotokat
- $\bullet$   $q_0':\{q_0\},$ azaz az új kezdőállapot az eredeti kezdőállapot<br/>ot tartalmazó egyelemű halmaz
- $F': \{S \subseteq Q | S \cap F \neq \emptyset\}$ , azaz minden olyan részhalmaz, ami legalább egy eredeti végállapotot tartalmaz
- $\delta': Q' \times \Sigma \to Q'$ , az a leképezés, amelyre tetszőleges  $S \in Q'$  és  $a \in \Sigma$  esetén, S-ből a hatására elérhető halmazokat összeuniózzuk, és ez az új halmaz lesz az átmenet végpontja. Ez a hatványhalmaz konstrukció.

Az L(M') = L(M) bizonyítása pedig, minden  $w \in \Sigma^*$ -ra és  $S \subseteq Q$ -ra a  $(\{q_0\}, w)$  konfigurációból hatására úgy juthatunk el az  $(S, \epsilon)$  konfigurációba, ha S az a halmaz, amiben azok az eredeti q állapotok vannak, amikbe az M a w szó hatására jutott. A felismert nyelv pedig ezek alapján mindenképpen ugyanaz lesz, mivel mindkét automata akkor ismeri fel w-t, ha S-ben van legalább egy végállapot.

Forrás: Előadásjegyzet