

₀₎ DE 3544338 A1

(a) Int. Cl. 4: C 07 K 5/04 C 07 K 1/02

C 07 K 1/02 A 61 K 37/64 A 61 K 45/05

DEUTSCHES PATENTAMT

7) Aktenzeichen
 7) Aktenzeichen
 7) Anmeldetag:
 8) Offenlegungsteg:
 12. 85
 19. 6. 87

The Control of the Co

(7) Anmelder:

Hoechst AG, 6230 Frankfurt, DE

@ Erfinder:

Teetz, Volker, Dr., 6238 Hofheim, DE; Henke, Stephan, Dr., 6232 Bad Soden, DE; Brocks, Dietrich, Dr., 6200 Wiesbaden, DE; Hanauske-Abel, Hartmut, Dr., 6501 Dexheim, DE; Günzler, Volkmar, Dr., 3550 Marburg, DE

Peptid-Derivate mit inhibitorischer Wirkung auf hydroxylierende Enzyme, Verfahren zu ihrer Herstellung, diese enthaltende Mittel und ihre Verwendung

Die Erfindung betrifft Peptid-Derivate der Formel

in welcher

für einen Acylrest steht, B für den Rest eines Dipeptids aus einer N*-acylierten basischen a-Aminosäure und einer weiteren a-Aminosäure bedeutet und W für Hydroxy oder gebenenfalls substituiertes Amino steht, Verfahren zu ihrer Herstellung, diese enthaltende Mittel und ihre Verwendung.

Patentansprüche

1. Verbindung der Formel 1

.: .

 $R^3 = (C_1 - C_6)$ -Alkyl, das gegebenenfalls durch Carboxy, Amino, Hydroxy oder (C₁ - C₄)-Alkoxy monosubstituiert ist:

(C3-C6)-Cycloalkyl;

 (C_3-C_6) -Cycloalkyl- (C_1-C_5) -alkyl;

(C₆-C₁₀) Aryl oder (C₆-C₁₀)-Aryl)-(C₁-C₅) alkyl, die beide im Arylteil gegebenenfalls durch einen oder zwei gleiche oder verschiedene Reste aus der Reihe Carboxy, Amino, Hydroxy, (C1-C1)-Alkoxy oder Halogen substituiert sind;

(C3-C9)-Heteroaryl oder

 (C_3-C_6) -Heteroaryl- (C_1-C_5) -alkyl bedeutet;

A = für -O-, -NH - oder eine direkte Bindung steht;

B = einen Rest der Formel IIIa oder IIIb bedeutet;

WOTIN

1:-

-41

X für einen Rest von Prolin oder 4-Thiaprolin oder einen Rest der Formel IV steht,

in der R4 Wasserstoff oder (C1-C4)-Alkyl, das gegebenenfalls durch Hydroxy, Carboxy, Carbamoyl, Methylthio, Phenyl, 4-Hydroxyphenyl, 4-Imidazolyl oder 3-Indolyl monosubstituiert ist, bedeuten;

m für 2, 3 oder 4; n für 0 oder 1 und

Ar für Mono-, Di- oder Tribydroxyphenyl stehen und

W Hydroxy oder ein Rest der Formel V bedeutet,

$$-N = \begin{pmatrix} R^1 \\ R^2 \end{pmatrix}$$

worin

 R^1 Wasserstoff, $(C_1 - C_6)$ -Alkyl oder $(C_3 - C_6)$ -Cycloalkyl und

R² Wasserstoff, (C₁-C₆)-Alkyl oder (C₃-C₆)-Cycloalkyl bedeuten oder

R1 und R2 zusammen für -[CH2], - oder -[CH2], - stehen, wobei eine [CH2]-Gruppe durch -O - oder -S- ersetzt sein kann,

sowie deren physiologisch verträglichen Salze:

2. Verbindung gemäß Anspruch 1, in welcher X einen Rest von Prolin oder 4-Thiaprofin oder einen Rest der

Formel IV bedeutet, worin R⁴ für Wasserstoff, Methyl, Hydroxymethyl, 1-Hydroxyethyl, Isobutyl, sec. Butyl, Carboxymethyl, 2-Carboxyethyl, Carboxymethyl, 2-Carboxyethyl, 2-Methylthioethyl, Phenylmethyl, (4-Hydroxyphenyl)-methyl, 4-Imidazolylmethyl oder 3-Indolylmethyl steht.

3. Verbindung gemäß Anspruch 1 oder 2, in welcher X für Gly, Pro, 4-Thia-Pro, His, Glu oder Leu steht.

- 4. Verbindung gemäß einem der Ansprüche 1 bis 3, in welcher R³ für gegebenenfalls substituiertes (C₁—C₈)-Alkyl, Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclopentyl, Cyclopropylmethyl, Cyclobutylmethyl, Cyclopentylmethyl, Cyclopentylmethyl, Gyclopentylmethyl, Gyclopentylmethyl, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Benzyl, gegebenenfalls substituiertes Phenethyl, einen Heteroaryl-Rest aus der Reihe 2-, 3- oder 4-Pyridyl, 2- oder 3-Pyrrolyl, 2- oder 3-Thienyl, 4-Imidazolyl oder 1-, 3- oder 4-Isochinoyl oder einen solchen, über —CH₂— oder —CH₂— gebundenen Heteroaryl-Rest steht.
- 5. Verbindung gemäß einem der Ansprüche 1 bis 4, in welcher R³ für (C₁—C₆)-Alkyl, durch Amino, Hydroxy, Carboxy, Methoxy oder Ethoxy monosubstituiertes (C₁—C₆)-Alkyl, Cyclopentyl, Cyclohexyl, Phenyl oder Mono- oder Dihalogenphenyl steht.

6. Verbindung gemäß einem der Ansprüche 1 bis 5, in welcher in Position 2 und/oder 3 des Restes Ar eine Hydroxyl-Gruppe steht.

Verbindung gemäß einem der Ansprüche 1 bis 5, in welcher Ar für 2-Hydroxyphenyl, 3-Hydroxyphenyl, 4-Hydroxyphenyl, 2,3-Dihydroxyphenyl, 3,4-Dihydroxyphenyl oder 3,4,5-Trihydroxyphenyl steht.

1;

40

8. Verbindung gemäß einem der Ansprüche 1 bis 7, in welcher W für Hydroxy, Amino, (C₁—C₆)-Alkylamino, Cyclohexylamino, Dimethylamino, Diethylamino, Ethylmethylamino, 1-Piperidyl oder 1-Pyrrolidyl steht.

9. Verfahren zur Herstellung einer Verbindung der Formel I gemäß einem der Ansprüche 1—8, dadurch gekennzeichnet, daß man die Verbindung durch Fragmentkondensation aufbaut, gegebenenfalls temporär eingeführte Schutzgruppen abspaltet und die so erhaltene Verbindung der Formel I gegebenenfalls in ihr physiologisch verträgliches Salz überführt.

10. Pharmazeutische Zubereitung enthaltend eine Verbindung gemäß einem der Ansprüche 1 – 8 und einen physiologisch unbedenklichen Träger.

11. Verwendung einer Verbindung gemäß einem der Ansprüche 1-8 zur Hemmung hydroxylierender Enzyme.

12. Verwendung einer Verbindung gemäß einem der Ansprüche 1-8 als Heilmittel.

Beschreibung

Aus dem US-Patent 44 57 936 sind Hydroxylphenylthiazol-, -thiazolin- und -thiazolidin-carbonsäuren und ihre Verwendung als Inhibitoren der Prolin- und Lysinhydoxylase bekannt.

Es wurde gefunden, daß bestimmte Peptid-Derviate von α, ω-Diaminoalkancarbonsäuren mit hydroxysubstituierten Phenylacyl in der N∞-Position hochwirksame Inhibitoren hydroxylierender Enzyme sind.

Die Erfindung betrifft daher Verbindungen der Formel I

$$\begin{array}{c}
O \\
\parallel \\
R^3 - A - C - B - Gly - W
\end{array}$$
(1)

in welcher

 $R^3 = (C_1 - C_6)$ -Alkyl, das gegebenenfalls durch Carboxy, Amino, Hydroxy oder $(C_1 - C_6)$ -Alkoxy monosubstituiert ist;

(C₁-C₀)-Cycloalkyl;

 (C_1-C_5) -Cycloalkyl- (C_1-C_5) -alkyl;

 (C_6-C_{10}) -Aryl oder (C_6-C_{10}) -Aryl- (C_1-C_5) -alkyl, die beide im Arylteil gegebenenfalls durch einen oder zwei gleiche oder verschiedene Reste aus der Reihe Carboxy, Amino, Hydroxy, (C_1-C_4) -Alkoxy oder Halogen substituiert sind;

(C₁---C₉)-Heteroaryl oder

(C₃-C₆)-Heteroaryl-(C₁-C₅)-alkyl bedeutet;

A = für -O-, -NH- oder eine direkte Bindung steht;

B - einen Rest der Formel Illa oder Illb bedeutet;

worin

X für einen Rest von Prolin oder 4-Thiaprolin oder einen Rest der Formel IV steht,

in der R⁴ Wasserstoff oder (C₁—C₄)-Alkyl, das gegebenenfalls durch Hydroxy, Carboxy, Carbamoyl, Methylthio, Phenyl, 4-Hydroxyphenyl, 4-Imidazolyl oder 3-Indolyl monosubstituiert ist, bedeuten;

m für 2,3 oder 4; n für 0 oder 1 und

Ar für Mono-, Di- oder Trihydroxyphenyl stehen und W Hydroxy oder ein Rest der Formel V bedeutet,

$$-N = R^{1}$$

$$R^{2}$$

worin

 R^1 Wasserstoff, (C_1-C_6) -Alkyl oder (C_3-C_6) -Cycloalkyl und

R2 Wasserstoff, (C1-C6)-Alkyl oder (C1-C6)-Cycloalkyl bedeuten oder

R' und R' zusammen für -[CH₂]+ oder -[CH₂]s - stehen, wobei eine [CH₂]-Gruppe durch -O - oder -S - ersetzt sein kann,

sowie deren physiologisch verträglichen Salze.

Alkyl kann geradkettig oder verzweigt sein. Cycloalkyl kann wie z. B. in 4-Methylcyclohexyl (eine) Alkylseitenkette(n) tragen.

Unter Aryl wird beispielsweise Phenyl oder Naphthyl, vorzugsweise aber Phenyl verstanden.

Ein Heteroaryl-Rest im Sinne der vorliegenden Erfindung ist der Rest eines monocyclischen oder bicyclischen (C₃-C₆)-Heteraromaten, der im Ringsystem ein oder zwei N-Atome und/oder ein S- oder ein O-Atom enthält. Zum Begriff "Heteroaromat" siehe Garratt, Vollhardt, Aromatizität, Stuttgart 1973, Seiten 131-153. Beispiele geeigneter Heteroaryl-Reste sind die Reste von Thiophen, Furan, Benzothiophen, Benzofuran, Pyrrol, Imidazol, Pyrazol, Pyridin, Pyrazin, Pyrimidin, Pyridazin, Indol, Chinolin, Isochinolin, Oxazol, Isoxazol, Thiazol und Isothiazol.

Chiralitätszentren können, wenn nicht anders angegeben, sowohl in der R- als auch in der S-Konfiguration

vorliegen.

R³ steht vorzugsweise für gegebenenfalls substituiertes (C_1-C_6) -Alkyl, Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclopentyl, Cyclopentyl, Cyclopentyl, Cyclopentyl, Cyclopentyl, Cyclopentyl, Cyclopentyl, Cyclopentyl, Gyclopentyl, Cyclopentyl, Cyclopen

B ist der Rest eines Dipeptids, das aus einer basischen R- oder S-konfigurierten Aminosaure wie α, γ-Diaminobuttersäure, Ornithin oder Lysin besteht, welche entweder über die α-Amino- oder die Carboxygruppe mit dem Rest X über eine Peptidbindung verknüpft ist, und deren α-Aminogruppe mit substituiertem Benzoyl oder Phenylacetyl durch Amidbindung verbunden ist und durch die oben genannten Teilformeln IIIa und IIIb

wiedergegeben wird.

X bedeutet vorzugsweise einen Rest von Profin oder 4-Thiaprolin oder einen Rest der Formel IV, worin R⁴ für Wasserstoff, Methyl, Hydroxymethyl, 1-Hydroxyethyl, Isopropyl, Isobutyl, sec. Butyl, Carboxymethyl, 2-Carboxylethyl, Carboxymethyl, 2-Carboxylethyl, 2-Methylthioethyl, Phenylmethyl, (4-Hydroxyphenyl)methyl, 4-Imidazolylmethyl oder 3-Indolylmethyl steht, und liegt vorzugsweise in der S-Konfiguration vor. Insbesondere bedeutet X den Rest des 4-Thiaprolins oder den Rest einer natürfich vorkommenden a-Aminosäure (siehe Schröder, Lübke, The Peptides, Volume I, New York 1965, Seiten 20 137—270), wie Gly, Pro, His, Glu oder Leu.

Der Rest Ar trägt vorzugsweise in 2- und/oder in 3-Position eine Hydroxygruppe. Geeignete Reste Ar sind beispielsweise 2-Hydroxyphenyl, 3-Hydroxyphenyl, 4-Hydroxyphenyl, 2,3-Dihydroxyphenyl, 3,4-Dihydroxyphenyl, oder 3,4,5-Trihydroxyphenyl.

Der C-terminale Rest W weist vorzugsweise die Bedeutungen Hydroxy, Amino, (C₁—C₆)-Alkylamino, Cyclo-hexylamino, Dimethylamino, Diethylamino, Ethylmethylamino, 1-Piperidyl oder 1-Pyrrolidyl auf.

Als Salze kommen insbesondere Alkali- und Erdalkalisalze, Salze mit physiologisch verträglichen Aminen und Salze mit anorganischen oder organischen Säuren wie beispielsweise Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Maleinsäure oder Fumarsäure in Betracht.

Die Erfindung betrifft auch ein Verfahren zur Herstellung von Verbindungen der Formel I, das dadurch gekennzeichnet ist, daß mun die Verbindungen in an sich bekannter Weise durch Kondensation der Fragmente

aufbaut, gegebenenfalls temporär eingeführte Schutzgruppen abspaltet und die so erhaltenen Verbindungen der Formel I gegebenenfalls in ihre physiologisch verträglichen Salze überführt. Unter Fragmenten im obigen Sinne werden Aminosäuren oder deren Derivate sowie mehrere Aminosäuren enthaltende Segmente (wie z. B. R'-A-CO-B-OH) verstanden.

Die Kondensation kann beispielsweise dadurch erfolgen, daß man ein Fragment einer Verbindung der Formel I mit einer endständigen Carboxylgruppe oder einem reaktivem Säurederivat mit einem entsprechendem anderen Fragment, welches eine freie Aminogruppe enthält, wobei eventueil vorhandene weitere funktionelle Gruppen gegebenenfalls geschützt sein können, unter Bildung einer Amidbindung kondensiert. Methoden, die zur Herstellung einr Amidbindung geeignet sind werden in Houben-Weyl, Methoden der organischen Chemie, Band 15/2 beschrieben. Vorzugsweise werden die folgenden Methoden herangezogen: Aktivestermethode mit N-Hydroxysuccinimid als Esterkomponente, Kupplung mid DCC/HOBt und Kupplung mit Propanphosphonsäureanhydrid.

Zum temporären Schutz weiterer funktioneller Gruppen sind Schutzgruppen geeignet, die unter Bedingungen abspaltbar sind, unter denen die Reste Ar—[CH₂]₂—CO— und R³—A—CO— am Molekül bleiben. Schutzgruppen in der Peptidsynthese sind beispielsweise beschrieben im Kontakte Merck 3/79, Seiten 14—22 und 1/80, Saiten 23—25

Da die erfindungsgemäßen Verbindungen der Formel I enzymatisch katalysierte Hydroxylierungsreaktionen hemmen, sind sie geeignet, die Reifung von Proteinen zu verhindern, die erst in hydroxylierter Form funktionell aktiv sind und können daher als Fibrosuppressiva, Immunsuppressiva oder Cytostatika eingesetzt werden. Charakteristikum verschiedener Proteine wie z. B. der Kollagene oder Clq ist es, daß sie in funktionell aktiver Form Aminosäuren enthalten, die posttranslational hydroxyliert werden. Wird diese Hydroxylierung durch Hemmung der diese Reaktion katalysierenden Hydroxylasen wie 4-Prolylhydroxylase, 3-Prolylhydroxylase, Lysylhydroxylase oder Desoxyhypusinhydroxylase unterbunden, so können diese Proteine ihre pysiologische Funktion nicht mehr wahrnehmen.

Die Hemmwirkung der erfindungsgemäßen Substanzen beispielsweise auf die Kollagen-Biosynthese kann in einem Enzymtest analog der Methode von B. Peterkovsky und R. Di Blasio Anal. Biochem. 66, 279—286 (1975) getestet werden. Dabei wird unterhydroxyliertes Kollagen in Gegenwart von Eisen(II)-Ionen, α-Ketoglutarat und Ascorbat enzymatisch hydroxyliert. Als Enzyme können 4-Prolythydroxylase, 3-Prolythydroxylase oder Lysythydroxylase in einem zellfreien Testmedium eingesetzt werden. Die Hemmwirkung kann auch in der Zelloder Gewebestruktur gemessen werden und wird als 50%ige Hemmung der Enzym-Reaktion (IC₂₀) angegeben.

In Tabelle I sind die IC50-Werte einiger der erfindungsgemäßen Verbindungen aufgeführt.

Tabelle I

Verbindung	Prolythydroxytase IC ₅₀ [10 ⁻⁶ mol/l]	Lysythydroxylase IC ₅₀ [10 ⁻⁸ mol/l]
Ac-Orn(2,3-Dihydroxybenzoyl)-Pro-Gly-OH	38	7
Ac-Orn(3,4-Dihydroxybenzoyl)-Pro-Gly-OH	72	7
Ac-Orn(3,4,5-Trihydroxybenzoyl)-Pro-Gly-OH	29	. 8
Ac-Orn(3,4-Dihydroxyphenylacetyl)-Pro-Gly-OH	140	37
Ac-Pro-Orn(3,4-Dihydroxybenzoyl)-Gly-OH	50	39
Ac-Pro-Orn(3,4,5-Trihydroxybenzoyl)-Gly-OH	17	26
Ac-Pro-Orn(3,4-Dihydroxyphenylacetyl)-Gly-OH	155	70

Die Erfindung betrifft daher weiterhin die Verwendung von Verbindungen der Formel 1 zur Hemmung hydroxylierender Enzyme, die Verwendung dieser Verbindungen als Fibrosuppesiva, Immunsuppresiva oder Cytostatika sowie pharmazeutische Mittel, die eine wirksame Menge dieser Verbindungen und einen physiologisch unbedenklichen Träger enthalten. Die Anwendung kann intranasal, intravenös, subcutan oder peroral erfolgen. Die Dosierung des Wirkstoffes hängt von der Warmblüter-Spezis, dem Körpergewicht, Alter und von der Applikationsart ab.

Die pharmazeutischen Präparate der vorliegenden Erfindung werden in an sich bekannten Lösungs-, Misch-, Granulier- oder Dragierverfahren hergestellt.

Für eine orale Anwendungsform werden die aktiven Verbindungen mit den dafür üblichen Zusatzstoffen wie Trägerstoffen, Stabilisatoren oder inerten Verdünnungsmitteln vermischt und durch übliche Methoden in geeignete Darreichungsform gebracht, wie Tabletten, Dragee, Steckkapseln, wäßrige, alkoholische oder ölige Suspensionen oder wäßrige, alkoholische oder ölige Lösungen. Als inerte Träger kommen z. B. Gummi arabicum, Magnesiumcarbonat, Kaliumphosphat, Milchzucker, Glucose oder Stärke, insbesondere Maisstärke in Betracht. Dabei kann die Zubereitung sowohl als Trocken- als auch als Feuchtgranulat erfolgen. Als ölige Trägerstoffe oder Lösungsmittel kommen beispielsweise pflanzliche oder tierische Öle in Betracht, wie Sonnenblumenöl oder Lebertan.

Zur subcutanen oder intravenösen Applikation werden die aktiven Verbindungen oder deren physiologisch verträglichen Salze, gewünschtenfalls mit den dafür üblichen Substanzen wie Lösungsvermittler oder weiteren Hilfsstoffen in Lösung, Suspension oder Emulsion gebracht. Dazu kommen z. B. in Frage: Wasser, Propandiol

oder Glycerin, daneben auch Zuckerlösungen wie Glucose- oder Mannitiösungen oder auch eine Mischung aus den genannten Lösungsmitteln.

Die solgenden Beispiele dienen zur Illustration der vorliegenden Erfindung, ohne daß diese darauf beschränkt

wâre.

Verzeichnis der verwendeten Abkürzungen:

AA	Aminosāureanalyse
Ac	Acetyl
Вос	tertButoxycarbonyl
DC	Dunnschichtchromatographie
DCC	Dicyclohexylcarbodiimid
DCH	Dicyclohexylharnstoff
DMF	Dimethylformamid
DMSO	Dimethylsulfoxid
EE	Essigsäureethylester
FAB	Fast atom bombardment
Fmoc	9-Fluorenylmethyloxycarbonyl
HOBi	I-Hydroxybenzotriazol
M	Molekularpeak
MeOH	Methanol
MS	Massenspektrum
NEM	N-Ethylmorpholin
Schmp.	Schmelzpunkt
THE	Tetrahydrofuran
Z .	Benzyloxycarbonyl

Die sonstigen für Aminosäuren und Schutzgruppen verwendeten Abkürzungen entsprechen dem in der Peptidehemie üblichen Buchstaben-Code, wie er z. B. in Europ. J. Biochem. 138, 9-37 (1984) beschrieben ist. Falls nicht ausdrücklich anders angegeben, handelt es sich immer um Aminosäuren der L-Konfiguration.

Chromatographie-Laufmittelsysteme:

1) CHCl:/MeOH	9:1
2) CHCI/MeOH	8:3
3) CHCl ₂ /MeOH/CH ₃ COOH/H ₂ O	20:15:2:2
4) CHCl ₃ /MeOH/CH ₃ COOH	50:10:5

Beispiel 1

Ac-Orn(2,3-Dihydroxybenzoyl)-Pro-Gly-OH

500 mg Ac-Orn-Pro-Gly-OBzl, 314 mg 2,3-Dibenzyloxybenzoesäure, 127 mg HOBt und 0,12 ml NEM werden in 20 ml DMF gelöst. Nach Zugabe von 194 mg DCC läßt man 18 Stunden bei Raumtemperatur reagieren. Das Lösungsmittel wird im Vakuum eingedampft, der Rückstand in EE gelöst und DCH abfiltriert. Einengen im Vakuum und Chromatographie des Rückstandes an Kieselgel (System 1) liefert 600 mg Ac-Orn (2,3-Dibenzyloxybenzoyl)-Pro-Gyl-OBzl als farbloses Öl, das direkt der weiteren Reaktionsfolge unterworfen wird. Hierzu werden 600 mg des Produktes in 5 ml Methanol gelöst und nach Zugabe von Pd/C bei Raumtemperatur hydriert. Man filtriert nach 2 Stunden vom Katalysator ab, engt im Vakuum ein und chromatographiert an Kieselgel (System 3).

Es verbleiben 164 mg Ac-Orn(2,3-Dihydroxybenzoyl)-Pro-Gly-Or. R₁(System 3) = 0.5; MS (FAB): 465 (M+1).

Das Ausgangsmaterial wird nach folgenden Arbeitsvorschriften hergestellt:

a) Ac-Orn-Pro-Gly-OBzi

2.0 g Ac-Orn(Boc)-Pro-Gly-OBzl werden in 5 ml Trifluoressigsäure gelöst und 1 Stunde bei Raumtemperatur gerührt. Nach Eindampfen im Hochvakuum verbleiben 2,1 g des Trifluoracetats von Ac-Orn-Pro-Gly-OBzl. R_{ℓ} (System 2) = 0,3; MS (FAB):419 (M+1).

b) Ac-Orn(Boc)-Pro-Gly-OBzl

Man löst 6,4 g H-Pro-Gly-OBzl, 4,6 g Ac-Orn(Boc)-OH, 3,0 ml NEM und 3,1 g HOBt in 30 ml EE und versetzt anschließend mit 4,8 g DCC in 10 ml EE. Nach 24 Stunden Rühren bei Raumtemperatur wird abfiltriert und eingedampft. Durch Chromatographie des Rückstands in Kieselgel (System 1) isoliert man 4,7 g (Ausbeute: 41%) der Zielverbindung als farbloses Pulver. R₁ (System 1) = 0,3; MS (FAB): 519 (M + 1).

c) H-Pro-Gly-OBzl

5.0 g Boc-Pro-OH, 7.4 g H-Gly-OBzl, 3.0 ml NEM und 3.1 g HOBt werden in 50 ml EE unter Zusatz von 5 ml DMF gelöst. Man versetzt mit 4.8 g DCC und läßt 48 Stunden bei Raumtemperatur rühren. Nach Einengen im Vakuum wird der Rückstand in 50 ml EE gelöst, 2 mal mit 30 ml wäßriger Citronensäurelösung und 2 mal mit ges. wäßriger Natriumhydrogencarbonatiösung ausgeschüttelt, die organische Phase über Natriumsulfat getrocknet, filtriert und eingedampft. Man löst den Rückstand in 10 ml Trifluoressigsäure, läßt 1 Stunde bei Raumtemperatur reagieren und engt im Vakuum ein. Der Rückstand kristallisiert aus EE/Pentan.

Man erhålt 6,6 g (Ausbeute: 61%) H-Pro-Gly-OBzi-Trifluoracetat. MS (FAB): 263 (M+1); R₁ (System 4) = 0,29. d) Ac-Orn(Boc)-OH

9,3 g H-Orn(Boc-)OH, 5,0 g des N-Hydroxysuccinimidesters der Essigsäure und 4,1 ml NEM in 50 ml DMF und 10 ml H₂O läßt man 3 Tage bei Raumtemperatur reagieren. Man dampft das Lösungsmittel im Vakuum ein und chromatographiert den Rückstand an Kieselgel (System 4). 9,6 g Ac-Orn(Boc)-OH (Ausbeute: 88%) kristallisieren leicht aus EE/Diethylether. MS (FAB): 275 (M+1).

e) 2,3-Dibenzyloxybenzoesäure

19,8 g 2,3-Dibenzoyloxybenzaldehyd werden in 100 ml Aceton gelöst. Unter kräftigem Rühren und Erwärmen auf 40°C gibt man eine Lösung aus 4,0 g KMnO₄ in 90 ml H₂O innerhalb 45 min zu, wobei der ausgefallene Benzaldehyd unter Zusatz von insgesamt 150 ml Aceton wieder gelöst wird. Nach vollständiger Zugabe der KMnO₄-Lösung wird eine Stunde unter Rückfluß gekocht. Die heiße Lösung wird anschließend führiert und der Niederschlag mit heißem Wasser gewaschen. Beim Ansäuren der kalten, wäßrigen Lösung mit verd. HCl kristallisiert die Carbonsäure in feinen weißen Nadeln aus. Man erhält 18,0 g der Zielverbindung (Ausbeute 92%), MS: 334 (M+); Schmp.: 185—187°C.

f) 2,3-Dibenzyloxybenzaldehyd

13,8 g 2,3-Dihydroxybenzaldehyd, 30,4 g Benzylchlorid und 17,3 g pulverisiertes wasserfreies Kaliumcarbonat in 160 ml wasserfreiem Ethanol werden unter Feuchtigkeitsausschluß 6 Stunden unter Rückfluß gekocht. Man filtriert die Reaktionslösung, wäscht mit Ethanol und dampft im Vakuum ein. Beim Digerieren des Rückstandes mit Disopropylether kristallisiert die bekannte Zielverbindung in weißen Nadeln (Schmp. 89—91°C) aus.

. ;

:;

:.:

4 ;

Analog der in Beispiel 1 beschriebenen Verfahrensweise werden die Verbindungen der Beispiele 2-18 aus Ac-Orn-OH, Ac-Lys-OH oder Ac-Dab-OH durch Umsetzung mit H-Pro-Gly-OBzl oder H-His-Gly-OBzl und

den entsprechenden Benzoesäure- oder Phenylessigsäurederivaten hergestellt.

Beispiel Nr.	Verbindung
2	Ac-Orn(2-Hydroxybenzoyl)-Pro-Gly-OH
3	Ac-Orn(3-Hydroxybenzoyi)-Pro-Gly-OH
4	Ac-Orn(3,4-Dihydroxybenzoyl)-Pro-Gly-OH
5	Ac-Orn(3,4,5-Trihydroxybenzoyl)-Pro-Gly-OH
6	Ac-Orn(2,3-Dihydroxyphenylacetyl)-Pro-Gly-OH
7	Ac-Orn(3,4-Dihydroxyphenylacetyl)-Pro-Gly-OH
8	Ac-Orn(2,3-Dihydroxybenzoyl)-His-Gly-OH
9	Ac-Orn(3,4-Dihydroxybenzoyl)-His-Gly-OH
10	Ac-Orn(3,4-Dihydroxyphenylacetyl)-His-Gly-OH
11	Ac-Lys(3,4-Dihydroxybenzoyl)-Pro-Gly-OH
12	Ac-Lys(3,4-Dihydroxyphenylacetyl)-Pro-Gly-OH
13	Ac-Ly(3,4-Dihydroxybenzoyl)-His-Gly-OH
14	Ac-Lys(3,4-Dihydroxyphenylacetyl)-His-Gly-OH
15	Ac-Dab(3,4-Dihydroxybenzoyi)-Pro-Gly-OH
16	Ac-Dab(3,4-Dihydroxyphenylacetyl)-Pro-Gly-OH
17	Ac-Dab(3,4-Dihydroxybenzoyl)-His-Gly-OH
18	Ac-Dab(3,4-Dihydroxyphenylacetyl)-His-Gly-OH

Um die Strukturen der so hergestellten Peptide zu bestätigen, wurden verschiedenartige analytische und spektroskopische Methoden angewandt. Einige Ergebnisse sind in Tabelle 2 zusammengefaßt.

Tabelle 2

Berspiel Nr.	MS (FAB)	DC(R _i)	'H-NMR"	Soustiges	· s t
2	449 (M+1)	0,60 (Syst. 2)	+	• •	
3	449 (M+1)	0.58 (Syst. 2)	+	AA	
4	465 (M+1)	0.48 (Syst. 2)	+		
5	481 (M+1)	0.50 (Syst. 3)	+)
6	479 (M+1)	0,55 (Syst. 2)	+		
7	479 (M+1)	0,69 (Syst. 3)	+		
8	505 (M+1)	0,26 (Syst. 2)	+	AA	m
9	505 (M+1)	0,45 (Syst. 2)	+	C.H.N-Analyse	
10	519 (M+1)	0,35 (Syst. 2)	+ ·	C.H.N-Analyse	
11	479 (M+1)	0,50 (Syst. 2)	+		
12	493 (M+1)	0,50 (Syst. 2)	+		•. :
13	519 (M+1)	0,32 (Syst. 2)	+	AA	
14	533 (M+1)	0,35 (Syst. 2)	+		

Fortsetzung Tabelle 2

INt. MS (FAB)	DC (R _i)	¹ H-NMR ²³	Sonstiges
451 (M+1)	0,38 (Syst. 2)	+	
465 (M+1).	0,40 (Syst. 2)	+	
491 (M+1)	0,18 (Syst. 2)	+	
505 (M+1)	0,25 (Syst. 2)	+	
	451 (M+1) 465 (M+1) 491 (M+1)	451 (M+1) 0.38 (Syst. 2) 465 (M+1) 0.40 (Syst. 2) 491 (M+1) 0.18 (Syst. 2)	451 (M+1) 0.38 (Syst. 2) + 465 (M+1) 0.40 (Syst. 2) + 491 (M+1) 0.18 (Syst. 2) +

a) gemessen bei 60 bzw. 270 MHz;

Beispiel 19

Ac-Pro-Orn(3,4-Dihydroxybenzoyl)-Gly-OH

0,33 g 3,4-Dibenzyloxybenzoesäure, 0,14 g HOBt und 0,45 g Ac-Pro-Orn-Gly-OBzi werden in 5 ml DMF gelöst. Anschließend kühlt man auf —10°C und versetzt mit 0,23 g DCC in 1 ml DMF und 0,13 ml NBM. Man hält das Reaktionsgemisch 1 Stunde bei —10°C und rührt dann 24 Stunden bei Raumtemperatur. Nach dem Abfiltrieren des Dicyclohexylharnstoffs wird im Vakuum eingedampft und der Rückstand an Kieseigel chromatographiert (System 1). Man erhält 0,24 g (Ausbeute: 31%) Ac-Pro-Orn(3,4-Dibenzyloxybenzoyl)-Gly-OBzl als amorphen Feststoff, der direkt weiterverarbeitet wird. Hierzu löst man das Produkt in 10 ml Methanol und versetzt mit wenig Pd/C. Es wird bis zur vollständigen hydrolytischen Spaltung bei Raumtemperatur H₂ eingeleitet (DC-Kontrolle), dann filtriert und das Lösungsmittel im Vakuum eingeengt. Es verbleiben 150 mg der Zielverbindung. R₁(System 3) = 0,36; MS (FAB): 465 (M+1).

Das Ausgangsmaterial wird nach folgenden Arbeitsvorschriften hergestellt:

a) Ac-Pro-Orn-Gly-OBzi

1,0 g Ac-Pro-Orn(Boc)-Gly-OBzl werden in 5 ml Trifluoressigsäure gelöst und 1 Stunde bei Raumtemperatur gerührt. Nach Eindampfen im Hochvakuum verbleiben 1,0 g des Trifluoracetats von Ac-Pro-Orn-Gly-OBzl. R_I (System 2) = 0,6; MS (FAB): 419 (M+1).

b) Ac-Pro-Orn(Boc)-Gly-OBzi

5,6 g Ac-Pro-Orn(Boc)-OH, 5,0 g des Tosylats von H-Gly-OBzl und 2,0 g HOBt werden in 50 ml DMF gelöst, auf 0°C gekühlt und mit 1,9 ml NEM und 3,4 g DCC in 5 ml DMF versetzt. Man rührt eine Stunde bei 0°C und über Nacht bei Raumtemperatur. Nach dem Abfiltrieren des Harnstoffs wird das Lösungsmittel im Vakuum eingedampft und der Rückstand an Kieselgel chromatographiert (System 4). Es verbleiben 6,1 g (Ausbeute: 79%) Ac-Pro-Orn(Boc)-Gly-OBzl als Öl. R_f (System 4) = 0,75; MS (FAB): 519 (M+1).

c) Ac-Pro-Orn(Boc)-OH

5.5 g H-Orn(Boc)-OH und 6.0 g Ac-Pro-OSU werden in 50 ml DMF gelöst und nach Zugabe von 3 ml NEM 24 Stunden bei Raumtemperatur gerührt. Nach dem Abdestillieren des Lösungsmittels im Vakuum nimmt man den Rückstand in 30 ml n-Butanol auf, wäscht 2 mal mit ges. wäßriger Kaliumhydrogensulfatlösung und anschließend mit ges. wäßriger Natriumchloridlösung. Man engt im Vakuum ein und fällt Ac-Pro-Orn(Boc)-OH durch Digerieren mit Diethylether. R_I (System 3) = 0.24; MS (FAB): 372 (M+1)

d) Ac-Pro-OSU

Die Lösung von 39,3 g Ac-Pro-OH und 28,7 g N-Hydroxysuccinimid in 200 ml Dioxan wird auf —5° gekühlt und mit einer vorgekühlten Lösung von 51,6 g DCC in 100 ml Dioxan versetzt. Man rührt 1 Stunde bei 0°C, eine weitere Stunde bei Raumtemperatur und filtriert dann vom ausgefallenen DCH ab, der gründlich mit 2 mal 50 ml Dioxan gewaschen wird. Nach dem Abziehen des Lösungsmittels im Vakuum wird der Rückstand in 30 ml Isopropanol aufgenommen und das Produkt durch Zusatz von Petrolether über Nacht ausgefällt. Man erhält 33,0 g (Ausbeute: 50%) fein kristallines Ac-Pro-OSU.

MS (FAB): 255 (M+1); Schmp. 100-105°C.

Analog der im Beispiel 19 beschriebenen Verfahrensweise werden die Verbindungen der Beispiele 20-43 aus Ac-Pro-OH, Ac-Gly-OH, Ac-Glu-OH oder Ac-His-OH durch Umsetzung mit Ornithin, a, y-Diaminobuttersäure oder Lysin, sowie Glycin und den entsprechenden Benzoesäure- oder Phenylessigsäurederivaten dargestellt.

Beispiel Nr.	Verbindung
20	Ac-Pro-Om(2-Hydroxybenzoyl)-Gly-OH
21	Ac-Pro-Orn(3-Hydroxybenzoyl)-Gly-OH
22	Ac-Pro-Orn(2,3-Dihydroxybenzoyl)-Gly-OH
23	Ac-Pro-Orn(3,4,5-Trihydroxybenzoyl)-Gly-OH
24	Ac-Pro-Orn(2,3-Dihydroxyphenylacetyl)-Gly-OH
25	Ac-Pro-Orn(3.4-Dihydroxyphenylacetyl)-Gly-OH
26	Ac-Pro-Dab(3.4-Dihydroxybenzoyl)-Gly-OH
27	Ac-Pro-Dab(3,4-Dihydroxyphenylacetyl)-Gly-OH
28	Ac-Pro-Lys(3,4-Dihydroxybenzoyl)-Gly-OH
2 9	Ac-Pro-Lys(3,4-Dihydroxyphenylacetyl)-Gly-OH
30	Ac-Gly-Orn(3,4-Dihydroxybenzoyl)-Gly-OH

[&]quot;+" hedentet: in Einklang mit der angegebenen Struktur.

Beispiel Nr.	Verbindung
31	Ac-Gly-Orn(3,4-Dihydroxyphenylacetyl)-Gly-OH
32	Ac-Gly-Dab(3A-Dihydroxybenzoyl)-Gly-OH
33	Ac-Gly-Dab(3,4-Dihydroxyphenylacetyl)-Gly-OH
34	Ac-Gly-Lys(3,4-Dihydroxybenzoyl)-Gly-OH
35	Ac-Gly-Lys(3,4-Dihydroxyphenylacetyl)-Gly-OH
36	Ac-Glu-Orn(3,4-Dihydroxybenzoyl)-Gly-OH
37	Ac-Glu-Orn(3,4-Dihydroxyphenylacetyi)-Gly-OH
38	Ac-His-Orn(3,4-Dihydroxybenzoyl)-Gly-OH
39	Ac-His-Orn(3,4-Dihydroxyphenylacetyl)-Gly-OH
40	Ac-His-Dab(3,4-Dihydroxybenzoyl)-Gly-OH
41	Ac-His-Dab(3A-Dihydroxyphenylacetyl)-Gly-OH
42	Ac-His-Lys(3,4-Dihydroxybenzoyl)-Gly-OH
43	Ac-His-Lys(3,4-Dihydroxyphenylacetyl)-Gly-OH

Zur Bestätigung der Struktur der so hergestellten Peptide wurden verschiedenartige analytische und spektroskopische Methoden angewandt. Einige Ergebnisse sind in Tabelle 3 zusammengefaßt.

: 5

Tabelle 3

Beispiel Nr.	MS (FAB)	DC (R _t)	'H-NMR*	Sonstiges	
20	449 (M+1)	0,65 (Syst. 2)	+	AA	
21	449 (M+1)	0,48 (Syst. 2)	. +	AA	
22	465 (M+1)	0,45 (Syst. 3)	+	•	
23	481 (M+1)	0.31 (Syst. 3)	+		
24	479 (M+1)	0,40 (Syst. 3)	+		
25	479 (M+1)	0,42 (Syst. 3)	+		
26	451 (M+1)	0,21 (Syst. 3)	+		
27	465 (M+1)	0,30 (Syst. 3)	+	AA	
28	479 (M+1)	0,24 (Syst. 2)	+		
29	493 (M+1)	0,25 (Syst. 2)	+	C,H,N-Analyse	
30	425 (M+1)	0,40 (Syst. 3)	+ .		
31	439 (M+1)	0,38 (Syst. 3)	+		
32	411 (M+1)	0,28 (Syst. 3)	+		
33	425 (M+1)	0,30 (Syst. 3)	+		
34	439 (M+1).	0,15 (Syst. 4)	+		
35	453 (M+1)	0,25 (Syst. 4)	+		
Mi	497 (M+1)	0,19 (Syst. 3)	ŀ	C.H.N-Analyse	
37	511 (M+1)	0,25 (Syst. 3)	+		
38	505 (M+1)	0,20 (Syst. 2)	+		
39	519 (M+1)	0,24 (Syst. 2)	+		
40	491 (M+1)	0,16 (Syst. 2)	+		
41	505 (M+1)	0.16 (Syst. 2)	+		
42	519 (M+1)	0,30 (Syst. 2)	+ .		
43	533 (M+1)	0.31 (Syst. 2)	+	•	

a) gemessen bei 60 bzw. 270 MH2; "+" bedeutet: in Einklang mit der angegebenen Struktur.

– Leerseite –