NLN HackLab

https://github.com/RobBothof/nln-hacklab-classes

- Midi fundamentals
- Building a basic midi controller: (1 button 1 fader/knob)
 - Controller overview
 - Building hardware / Soldering
 - Programming the midi device
 - Connecting to the 'puredata' software and making some noise

(Musical Instrument Digital Interface)

A Digital Protocol and Technical Standard to communicate between 'audio related' devices and/or software programs. Developed around 1981/1982 through a collaborative effort of synthesizer manufacturers.

MIDI can not be used to send audio!

It consists only of control instructions.

MIDI Controller

MIDI

(instructions)

Computer

Speaker / Amplifier

Creates audible sound from audio signal

AUDIO

Sends what notes to play.

Generates audio with software based on received Midi notes from controller.

Sends what notes to play and what tonal setting to change.

Generates audio with hardware based on received Midi notes from computer.

Creates audible sound from audio signal

MIDI Controller

Tells the computer what clips to play / effects to use.

Computer (running VJ software)

Generates video with software based on received Midi instructions from controller

Projector

Creates Image / Video Installation

MIDI Advantages

- Wide support in Music instruments, controllers, software programs (even web browsers)
- Simple serial protocol (doesn't use much data)
- Connect via usb, or 5pin cable between other devices
- Don't need to install drivers, support is build in OS.
- Can also be stored as a midi-file. Which can contain an entire orchestral score digitally.

One of the easiest ways to interface with other devices. Allows us to control computers in a different (more playful) way and approach devices as real instruments.

MIDI Disadvantages

- Low resolution (7 bits) means values go from 0 127 steps
- Could be faster (especially using usb)
- Predefined controls signals can be too limited to fully express the characteristics of a sound.

Essential Instructions (MIDI Messages)

M.I.D.I.

Note On, Note Off messages

[Note inter] (Willett key of the plant keyboard pitch to - 04)	[Note Pitch]	(which key on the piano keyboard - pitch 60 = C4)	0 - 127
--	----------------	---	---------

[Note velocity] (strength or force for that note)

[Midi Channel] (Channel is used to talk to multiple instruments 0 - 16

(Channel is used to talk to multiple instruments

Control Change messages

[Control Function]

(e.g. 7 = change volume, 10 panning left/right)

[Control Value] (amount for this function e.g. set volume to 80)

[Midi Channel]

Others MIDI messages

- Program Change, pitch bend, aftertouch (key pressure)
- Clock, Transport (play, start, pause etc)
- Sysex raw data (e.g. used to transfer user presets etc)

0 - 127 (Note off = 0)

0 - 127

0 - 127

0 - 16

MIDI Messages

Unless we want to control a specific instrument (e.g. a Moog synthesizer, or Drum machine in Software program like Ableton) We can freely use these Note and Control Messages ourselves as we see fit within our own designs, and most software allows us to Map Note and Control Messages to various functions.

Although it is originally designed to control the synthesizer instrument, the protocol is often [hacked] to serve other purposes because of its wide support in hardware and software.

For example

- A Note-On is used to trigger a videoclip in a VJ program.
- Control Messages can be assigned to mix two tracks in a DJ program.
- A Note-On / Note-Off is often accepted in return by midi controllers to turn lights of buttons on and off.

Official Manufacturers of Instruments and devices (should) publish their implementation as their 'Midi Specification' which you can you look up if you want to control a specific instrument (but they do not always give you all of the specs).

[DEMO TIME]

Building the super basic midi controller

1 button and 1 fader (or rotary potmeter)

As a starting point for your own designs.

			V					
UARTO TX - I2CO SDA - SPIO RX	GP0 - 1	1			40 VBUS			
UARTO RX - I2CO SCL - SPIO CSn -	GP1 - 2	2		39	39 VSYS			
	GND 3	LED LED	USB		38 GND	l		
I2C1 SDA - SPI0 SCK	GP2 - 4				37 3V3_EN			
I2C1 SCL SPI0 TX	GP3 - 5	OOTSEL			36 3V3(OUT)			
UART1 TX - I2C0 SDA - SPI0 RX	GP4 6			Œ	35	ADC_VREF		
UART1 RX - I2C0 SCL - SPI0 CSn	GP5 - 7			I '' 🕳	34 GP28	ADC2		
	GND 8				33 GND	AGND		
I2C1 SDA - SPI0 SCK	GP6 - 9			<u> </u>	32 GP27	ADC1	I2C1 SCL	
I2C1 SCL SPI0 TX	GP7 -10	020	38		31 GP26	ADC0	I2C1 SDA	
UART1 TX - I2C0 SDA - SPI1 RX	GP8 -11	- 2	RP2-00 20/21	•" C	30 RUN			
UART1 RX - I2C0 SCL - SPI1 CSn	GP9 - 12		P64M15.00 TTT	•	29 GP22			
	GND 18	<u> </u>		0 6	28 GND			
I2C1 SDA SPI1 SCK	GP10 -14		— :	•	27 GP21		I2C0 SCL	
I2C1 SCL SPI1 TX	GP11 -15				26 GP20		I2C0 SDA	
UARTO TX - I2CO SDA - SPI1 RX	GP12 -16	erry			25 GP19	SPI0 TX	I2C1 SCL	
UARTO RX - I2CO SCL - SPI1 CSn	GP13 - 17			•	24 GP18	SPI0 SCK	I2C1 SDA	
	GND -18	a s	W		23 GND			
I2C1 SDA - SPI1 SCK	GP14 -19	- °	DEBUG	_	22 GP17	SPI0 CSn	I2C0 SCL	UARTO RX
I2C1 SCL - SPI1 TX	GP15 -20	 		<u> </u>	21 GP16	SPI0 RX	I2C0 SDA	UARTO TX

Building basic midi controller

Potmeter overview

The Fader works exactly the same, different style / housing.

Potmeter: output is the middle pin (pin 2)

Fader: output position can vary between designs.

(usually labeled: pin 2)

ADC = Analog to Digital Converter ADC can read a voltage between 0 and 3.3volt **36** 3V3(OUT) 3.3vADC_VREF ADC2 0v digital input **AGND** ADC1 10 ADC0 analog input

[Coding Time]

Testing the hardware.

Install circuitpython library:

https://circuitpython.org/libraries or
https://github.com/adafruit/Adafruit_CircuitPython_Bundle

Copy the adafruit_midi folder to lib/ on the pico

[Testing]

Pure Data

https://puredata.info/downloads