Name:	Sign:
P525/1	
CHEMISTRY	
(Theory)	
Paper 1	
July 2024	
UGANDA ADVANCED CERTIFICATE OF I	EDUCATION
S.5 MID TERM CHEMISTRY	
Paper 1	
2hours 45minutes	
Instructions to Candidates:	_
Answer ALL Questions in Section A and any Six Questions Questions Must Be Answered in the spaces provided.	s in Section B . All
SECTION A (46 Marks)	
1 . a. $^{239}_{94}Pu + ^{4}_{2}He \rightarrow \dots + 2^{1}_{0}n$	[01 mark]
b. $^{250}_{98}Cf + \dots \longrightarrow ^{257}_{103}Lw + 4^{1}_{0}n$	[01 mark]
c. $^{214}_{83}Bi \rightarrow ^{206}_{82}Pb + \dots + 2^{4}_{2}He$	[01 mark]
d. 5.00g of thorium was left to decay. Calculate the more remained after 2.500 \times 10 10 years. (the half-life of thor	
••••••	•••••••••••••••••••••••••••••••••••••••
••••••	
••••••	•••••••••••
•••••••	•••••

2.		ate what would be observed and write equation for the reaction that would Ke place when;
	a. a solution of potassium carbonate is added to aqueous aluminium nitrat $[02\frac{1}{2} \text{ marks}]$	
		observations:
		equation:
	b.	a mixture of acidified potassium manganate(VII) is added to hot ethane-1,2-dioic acid. [02 $\frac{1}{2}$ marks]
		observations:
		equation:
3.		hydrocarbon ${f Q}$, with molecular formula ${\cal C}_x{\sf H}_y$ reacts with oxygen according to e following equation.
		$C_xH_y + \frac{4x+y}{4}O_2 \longrightarrow xCO_2 + \frac{y}{2}H_2O$
	bu	hen 20cm^3 of $\mathbf Q$ was exploded in 200cm^3 of an excess amount of oxygen, it rnt completely with a sooty flame. The volume of the residual gas after cooling room temperature was 160cm^3 . When aqueous potassium hydroxide was added,

the gas that finally remained was $30 \, \text{cm}^3$.

a.	Dete	[02½ marks]	
	••••••		
	••••••		
	•••••		
	••••••		
	••••••		
b.		n ${f Q}$ was treated with bromine in the presence ride, the bromine was decolorized.	e of anhydrous iron(III)
	i.	Identify Q .	[01 mark]
	ii.	Write the mechanism for the reaction that too and compound Q .	ok place between bromine [03½ marks]
	••••••		
	•••••		

4. The energy changes that takes place during the formation of barium chloride are shown in the table below:

Process:			ΔH ^θ /Kj mol ⁻¹
Ba(s)	A	Ba(g)	+176.00
Ba(g)	B	Ba ²⁺ (g)	+1480.00
Cl ₂ (g)	C	2Cl(g)	+242.00
Cl(g) + e-	D	Cl⁻(g)	-364.00
Ba ²⁺ (g) + 2Cl ⁻ (g)	E	BaCl₂(s)	-2018.00

a.	Name the energy changes for reaction processes:	[02½ marks]
	A:	
	B:	
	<i>c</i> :	
	D:	
	E:	
b.	Calculate the standard enthalpy of formation of barium chloride	

5.	droxide and: -		
	a.	Aluminium oxide.	[01½ marks]
	b.	Beryllium oxide.	[01½ marks]
	c.	Tin(II) oxide.	[01½ marks]
6.	a.	Define the term freezing point constant of a substance.	[01½ marks]
	b.	A solution containing 1.54g of naphthalene, $C_{10}H_8$ in 18.0g	of camphor
		freezes at 148.3°C. Calculate the freezing point constant camphor is 175°C)	

7 .	heated to form compound T.			
	α.	Write the equation and suggest a mechanism for the reaction between 2-bromobutane and ethoxide ion. [$02\frac{1}{2}$ marks]		
	b.	The compound T formed in(a) can be synthesized from an alcohol. Write the equation and include a mechanism for the reaction leading to the formation of T from an alcohol. [02 $\frac{1}{2}$ marks]		
8.	so ioc th	89g of a copper ore was leached with dilute sulphuric acid and the resultan lution diluted to 250cm³. To 30cm³ of this solution was added 10% potassiundide solution. The liberated iodine required 23.5cm³ of 0.05M sodiun iosulphate solution for complete reaction. Calculate the percentage of coppethe ore. The reactions taking place are: -		
		$2Cu^{2+}(aq) + 4I^{-} \rightarrow Cu_{2}I_{2}(s) + I_{2}(aq)$ $I_{2}(aq) + 2S_{2}O_{3}^{2-}(aq) \rightarrow 2I^{-}(aq) + S_{4}O_{6}^{2-}(aq)$		

••••••		•••••••••••	
•••••			
•••••			
•••••			
••••			
••••••			
	مام و ماه و مدود با المدود و مدود بالمدود و ماد		a To anala ana
	the structure and name the sha the oxidation state of the chlor	=	s. In each case, 04½ marks]
Siule	THE UNIQUION STATE OF THE CHION	me arom.	
Anion	Structure	Shape	Oxidation state
			of chlorine
ClO ₂ -			
CIO2			
ClO ₃ -			
C1O3			
ClO ₄ -			
C104			

SECTION B (54 Marks)

Attempt ANY SIX Questions from this Section. Additional Questions Shall not be marked.

	omplete the fol echanism for t	llowing equations of react he reaction.	ions and in each case ou	tline a
a)	CH ₃ CHO + Nal	- 150₃ 		[03 marks]
	Mechanism:			
b)	CH₃CH=CH₂	Conc. H ₂ SO ₄ /H ₂ O		[03 marks]
	Mechanism:			
c)	(CH ₃) ₃ CBr	C2H5O:Na+/C2H5OH		[03 marks]
	Mechanism:			

. Define the term Standard enthalpy of forma	tion. [01 mark]
Some thermochemical data for calcium, calcium	n chloride and chlorine are
enthalpy of formation of calcium chloride	-763 kJmol ⁻¹ .
Enthalpy of atomization of chloride.	+121 kJmol ⁻¹ .
Enthalpy of atomization of calcium	+193 kJmol ⁻¹ .
First ionization energy of calcium	+590 kJmol ⁻¹ .
Second ionization energy of calcium.	+1145 kJmol ⁻¹ .
Electron affinity for chlorine.	-348 kJmol ⁻¹ .
	•••••••••••••••••••••••••••••••••••••••

i. C alculate the lattice energy of calcium chlo	ride. [01½ ma
ii. C alculate the lattice energy of calcium chlo	ride. [01½ ma

C.	Calculate the enthalpy of solution of calcium chloride. [$02\frac{1}{2}$ marks [Enthalpy of hydration of Ca^{2+} and Cl^{-} are -1689 and -383.7 kJmol ⁻¹ respectively]		
d.	Comment on the solubility of calcium chloride.	[01 mark]	
	Vrite a mechanism to show how each of the following conversion c ffected.	an be	
a)	to SO ₃ H	[03 marks]	
b)	OH (CH ₃) ₂ C=CHCH ₃ to (CH ₃) ₂ CCH ₂ CH ₃	[02½ marks]	

c)	CH ₃ C	ECH	to	CH₃COCH₃	[03½ marks]
13.	Beryl	lium and mag	nesium	are elements in group (II) of the Periodic Table.
a)	Expla	in the follow	ing:		
	i.	The first ic		n energy of beryllium is	higher than that of [02 marks]
	ii.	The polariz	ing pow	er of magnesium ions is	lower than that of beryllium [01 mark]
b)	•	lium reacts v	vith aqu	leous sodium hydroxide	solution. Write equation for [01½ marks]

i.	Water.	[O2 marks
ii.	Sodium hydroxide.	[02 <u>1</u> marl
	ssium manganate(VII) is not used a primary has to be standardized.	v standard in volumetric analy:
a. E×	xplain why potassium manganate(VII) is not	used as a primary standard. [01 mark]
 o. E×	xplain why potassium manganate(VII) is not	[01 mark]

c.	Ac	idified potassium manganate(VII) reacts with ethane-1,2-dio	ic acid.
	i.	the half -reaction equations for the reaction.	[02 mark]
	ii.	the overall equation for the reaction.	[01½ mark]
d.	of	.00cm ³ of a 0.01M manganate(VII) ion solution required exact a solution containing 5.10g per liter of an ethanedioate, (COC termine the atomic mass of element X.	•
	•••••		
15.		ring the extraction of aluminum from bauxite, Al₂O3.2H₂O , t st purified.	he ore is
a)) Na	me two major impurities in the ore.	[01 mark]

Write equations to show how the ore is purified.	[06 marks]
Describe briefly how aluminium can be obtained after the ore	e has been
purified.	[02 marks]
irs of compounds/ ions. In each case state what would be obs	erved if each
CH3CH2C=CH and CH3CH2CH=CH2	[03 marks]
Reagent:	
Observation:	
	Write equations to show how the ore is purified. Describe briefly how aluminium can be obtained after the ore purified. ame a reagent that can be used to distinguish between each orairs of compounds/ ions. In each case state what would be obseember of the pair is treated with the reagent you have named CH3CH2CECH and CH3CH2CH=CH2 Reagent:

b) <((Cl and CH3CH2CH2Cl.	[03 marks]
i.	Reagent:	
	Observation:	
c) Ca	²⁺ and Ba ²⁺	[03 marks]
ii.	Reagent:	
iii.	Observation:	
oxy	compound W contains 37.3% manganese, 19.1% nitrogen, the iggen. Calculate the empirical formula of compound W . in=54.9, N=14, O=16]	rest being [02½ marks]

	g of compound $oldsymbol{W}$ in 1000g of water lowered the freezing .127°C. Determine the molecular formula of $oldsymbol{W}$.	[02 marks]
follo	wed by a little lead(IV) oxide and the mixture boiled, a po	
i.	formula and name of \mathbf{W} .	[01 mark]
	formula:	
	Name:	
\ \ \ \ \ \	N he	

e. A few drops of aqueous sodium carbonate was added to a solution of			olution of W .
	i.	State was observed.	[01 mark]
	ii.	$oldsymbol{W}$ rite an equation for the reaction that took place.	[01½ marks]
		END	