Optimal feedback control as a theory of motor coordination

E. Todorov and M.I. Jordan Nature Neuroscience 2002

1. Physiology

Increase of spike count variability with mean in motor cortex neurons

Zacksenhouse, 2007

Mean

Standard deviation of muscle force grows linearly with its mean Schmidt, 1979

- 1. Physiology of motor neuronal firing: Clamann, 1969
- 2. Behavior: Fitts, 1954

Fitts' Law for performance:

$$I_p = -\frac{1}{t} \log_2 \frac{W_e}{2A}$$
 bits/sec.

- 1. Physiology of motor neuronal firing: Clamann, 1969
- 2. Behavior: Fitts, 1954
- 3. Behavior: Harris and Wolpert, 1998
 Predicts average eye and hand trajectories in goal-reaching tasks:

- 1. Physiology of motor neuronal firing: Clamann, 1969
- 2. Behavior: Fitts, 1954
- 3. Behavior: Harris and Wolpert, 1998
 Predicts average eye and hand trajectories in goal-reaching tasks:

How to better capture movement variability? How to rule out alternative models for motor control?

Two strategies for motor control

Impose a pre-planned trajectory

Just try to fulfill a goal

functional cost

Optimal feedback control for motor control

Hypothesis:

movement trajectory is mostly a consequence of optimal steering of effector towards target, rather than being pre-planned

Task selection Noise prop. signal **Maximize performance index** Optimal Motor Motor feedback Movement plant Minimize effort penalty output control law System state (positions, **Optimal** velocities, Sensory state forces) feedback estimator **Delayed** Noise

Linear-quadratic-Gaussian control and redundancy exploitation

One-step dynamics: $x_i^{final} = ax_i + u_i(1 + \sigma \varepsilon_i); i \in \{1,2\}$ Control signal Independent noise, variance 1

Linear—quadratic—Gaussian control and redundancy exploitation

 $x_i^{final} = ax_i + u_i(1 + \sigma \varepsilon_i); i \in \{1,2\}$ Control signal Independent noise, One-step dynamics:

Control signal variance 1

Target sum $E_{\varepsilon}(x_1^{final} + x_2^{final} - X^*)^2 + r(u_1^2 + u_2^2)$ **Cost function:**

Linear-quadratic-Gaussian control and redundancy exploitation

 $x_i^{final} = ax_i + u_i(1 + \sigma \varepsilon_i); i \in \{1,2\}$ Control signal Independent noise, One-step dynamics:

Control signal variance 1

Target sum $E_{E}(x_{1}^{final} + x_{2}^{final} - X^{*})^{2} + r(u_{1}^{2} + u_{2}^{2})$ Cost function:

minimize $(r + \sigma^2)(u_1^2 + u_2^2)$ subject to $u_1 + u_2 = -Err$ Optimal control:

Err $\triangleq a(x_1 + x_2) - X^*$ is the expected task error if $u_1 = u_2 = 0$

Linear—quadratic—Gaussian control and redundancy exploitation

 $x_i^{final} = ax_i + u_i(1 + \sigma \varepsilon_i); i \in \{1,2\}$ Control signal Independent noise, One-step dynamics: variance 1

Target sum $E_{\epsilon}(x_1^{final} + x_2^{final} - X^*)^2 + r(u_1^2 + u_2^2)$ Cost function:

minimize $(r + \sigma^2)(u_1^2 + u_2^2)$ subject to $u_1 + u_2 = -Err$ Optimal control:

Err $\triangleq a(x_1 + x_2) - X^*$ is the expected task error if $u_1 = u_2 = 0$

Optimal feedback control law: $u_1 = u_2 = -Err/2$

$$u_1 = u_2 = -Err/2$$

- \rightarrow depends on the sum $x_1 + x_2$, not the individual values x_1 and x_2
- \rightarrow creates variability along task-irrelevant direction $x_1 x_2$ (no control in this direction)

Linear—quadratic—Gaussian control and redundancy exploitation

One-step dynamics:
$$x_i^{final} = ax_i + u_i(1 + \sigma \varepsilon_i); i \in \{1,2\}$$
Control signal Independent noise,

variance 1

Target sum $E_{\epsilon}(x_1^{final} + x_2^{final} - X^*)^2 + r(u_1^2 + u_2^2)$ Cost function:

Optimal control: minimize
$$(r + \sigma^2)(u_1^2 + u_2^2)$$
 subject to $u_1 + u_2 = -Err$

Err $\triangleq a(x_1 + x_2) - X^*$ is the expected task error if $u_1 = u_2 = 0$

Optimal feedback control law: $u_1 = u_2 = -Err/2$

$$u_1 = u_2 = -Err/2$$

- \rightarrow depends on the sum $x_1 + x_2$, not the individual values x_1 and x_2
- \rightarrow creates variability along task-irrelevant direction $x_1 x_2$ (no control in this direction)

Suboptimal average law: $x_1^{final} = x_2^{final} = X^*/2 \longrightarrow u_i = X^*/2 - ax_i; i \in \{1,2\}$

→ no correlations along task-irrelevant directions allowed because no redundancy

Linear—quadratic—Gaussian control and redundancy exploitation

Optimal control: takes advantage of redundancy

Suboptimal control: eliminates redundancy

Smaller, synergistic and coupled control signals

« Principle of minimal intervention»

Data: 3 fingers grasp (Cole and Abbs J. Neurophysiol. 1986)

Data: 3 fingers grasp (Cole and Abbs J. Neurophysiol. 1986)

Thumb position (deg.)

Consequences of optimal control for hitting a ball towards a target (releasing in a certain area)

Emergent properties of optimal feedback control: different roles assigned to different effectors

Emergent properties of optimal feedback control: different roles assigned to different effectors

Multijoint « arm » model:

Hit four targets at particular times:

X₂ is used for variability correction in synergy with 'mean' actuators

Emergent properties of optimal feedback control: different roles assigned to different effectors

Multijoint « arm » model:

Hit four targets at particular times:

X₂ is used for variability correction in synergy with 'mean' actuators

Track sinusoid with noise injection:

Synergies
depend on
context:
worse coupling
around 2.8Hz

Conclusions

- In a wide range of tasks, very good match between data and optimal (noisy) feedback control with multiplicative motor noise
- Mainly focuses on tasks with clear visual targets to reach: different from speech production, acrobatics, dancing, when active sensing is required (Yeo et al., 2016)
- Mathematical approach only applicable to systems with fully explicit linear dynamics (e.g. point masses in simple motion)