Real Analysis 1

Forrest Kennedy

March 5, 2025

Contents

1 Basic Topology of \mathbb{R}

1

Lecture 27: 03-05-25

Tuesday 05 March 2025

1 Basic Topology of \mathbb{R}

Definition 1. Given $a \in \mathbb{R}$ and $\varepsilon > 0$, the ε -neighborhood of a is the set $V_{\varepsilon}(a)$ defined as

$$V_{\varepsilon}(a) = \{ x \in \mathbb{R} : |x - a| < \varepsilon \} \tag{1}$$

i.e. $V_{\varepsilon}(a) = (a - \varepsilon, a + \varepsilon)$.

Definition 2. A set $O \subset \mathbb{R}$ us called **open** if for every $a \in O$, there exists $\varepsilon > 0$ such that $V_{\varepsilon}(a) \subset O$

Example. (0,1) is an open set

[0,1] is not an open set.

 \mathbb{R} is an open set

 $(0,1) \cup (3,4)$ is an open set

Note. the union of open sets is open

Theorem 1. We have

- 1) The union of an arbitrary collection of open sets is open.
- 2) The intersection of a finite collection of open sets is open.
- Proof. 1) Let $\{O_{\lambda}: \lambda \in \Lambda\}$ be a collection of open sets. If $a \in \cup_{\lambda \in \Lambda} O_{\lambda}$, $\exists \alpha \in \Lambda$ such that $a \in O_{\alpha}$. Therefore as O_{α} is open, $\exists \varepsilon > 0$ such that $V_{\varepsilon}(a) \subset O_{\alpha}$. Therefore $V_{\varepsilon}(a) \subset \cup_{x \in \Lambda} O_{\lambda}$. Hence $\cup_{\lambda \in \Lambda} O_{\lambda}$ is open.

2) Let $\{O_1,O_2,O_3,\ldots,O_N\}$ be an open set. Let $a\in \cap_{i=1}^N O_i$. Therefore $a\in O_i$ for each $1\leq i\leq N$. Then $\exists \varepsilon_i>0$ such that $V_{\varepsilon_i}(a)\subset O_i$. Let $\varepsilon=\min\{\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_N\}>0$. Therefore $V_{\varepsilon}(a)\subset O_i$ for all $1\leq i\leq N$. Therefore $V_{\varepsilon}(a)\subset \cap_{i=1}^N O_i$

Definition 3. Let $A \subset \mathbb{R}$. A point $x \in \mathbb{R}$ is called a **limit point of the set** A, if every ε -neighborhood, $V_{\varepsilon}(a)$ of x intersects the set A at some point other than x.

Note. Limit points are also called "cluster points" or "accumulation points" of a set.

Example. $A = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$

x=1 is not a limit point because I can take an ε small enough to contain no elements in A.

x = 0 is a limit point of A

A = (0, 1)

Then if $0 \le x \le 1$ then x is a limit point.

Example. \mathbb{Q} . Every $x \in \mathbb{R}$ is a limit point of \mathbb{Q} .

Theorem 2. Let $A \subset \mathbb{R}$. A point $x \in \mathbb{R}$ is a limit point of A if and only if there exists a sequence (a_n) such that $a_n \in A$ and $a_n \neq x \ \forall n \in \mathbb{N}$ and $\lim a_n = x$

• (\Rightarrow) Let x be a limit point of A. Consider the set $V_{\frac{1}{n}}(x)$. There exists $a_n \in V_{\frac{1}{n}}(x) \cap A$ such that $a_n \neq x$. Consider (a_n) . $|a_n - x| < \frac{1}{n}$, $a_n \in A$, $a_n \neq x \ \forall n \in \mathbb{N}$. Given some $\varepsilon > 0$, let $N \in \mathbb{N}$ such that $\frac{1}{N} < \varepsilon \Rightarrow \forall n \geq N$, $|a_n - x| < \varepsilon$