Описание протокола обмена измерителей угла наклона ИН-Д2, ИН-Д3, ИН-Д3Т, ИН-Д7, BIN-D3 МПГТ 402111.03.00.00

Москва 2019

СОДЕРЖАНИЕ

1	Общие положения				
2	Физиче	еский уровень	4		
3	Трансг	ортный уровень	4		
4	Структ	ура пакета	5		
	4.1	Единая структура запроса и ответа	5		
5	Описан	ние пакетов	5		
	5.1	Запрос показаний измерителя	5		
	5.2	Запрос версии измерителя	7		
	5.3	Запрос скорости обмена данными	8		
	5.4	Установка скорости обмена данными	9		
	5.5	Запрос имени измерителя	. 10		
	5.6	Установка имени измерителя	. 11		
	5.7	Запрос смещения нуля	. 12		
	5.8	Установка смещения нуля	. 13		
	5.9	Установка адреса измерителя	. 14		
	5.10	Запрос номера редакции ПО измерителя	. 15		
	5.11	Запрос заводского номера измерителя	. 16		
	5.12	Запрос количества тактов усреднения	. 16		
	5.13	Установка количества тактов усреднения	. 17		
	5.14	Запрос периода усреднения	. 18		
	5.15	Установка периода усреднения	. 19		
6	Описан	ние пакетов устаревших версий	. 20		
	6.1	Запрос в протоколе 2.10	. 20		
	6.2	Ответ в протоколе 2.10	. 20		
	6.3	Запрос показаний измерителя в протоколе 2.10	. 20		
	6.4	Пинг измерителя в протоколе 2.10	. 21		
ПЕ	РИЛОЖ	ЕНИЕ 1	. 22		
П	ыл⊔Ож	EHME 2	23		

1 Общие положения

В настоящем документе описан протокол информационного обмена с наклономером ИН-ДЗ (далее по тексту - *измеритель*). При изучении настоящего документа следует руководствоваться описанием работы измерителя в соответствии с документом «Измерители угла наклона двухкоординатные ИН-ДЗ. Руководство по эксплуатации».

Далее будет приведено описание команд, их назначение, и формат ответа измерителя. В процессе изложения материала будут использоваться следующие термины, определения и сокращения:

ПК– персональный компьютер (или другое устройство, ведущее обмен с измерителем).

Измеритель – измеритель угла наклона ИН-Д3.

ПО – программное обеспечение.

2 Физический уровень

Обмен данными с измерителем на физическом уровне происходит по интерфейсу RS-485. Возможно использование как полнодуплексного, так и полудуплексного режима подключения измерителей к сети.

ПРИМЕЧАНИЕ: При подключении измерителя к ПК следует руководствоваться таблицей с назначением контактов, приведенной в руководстве по эксплуатации на измеритель, а также всеми рекомендациями по подключению применяемого преобразователя интерфейса (USB-RS485) в части рекомендованной максимальной длины линии, подключения подтягивающих и терминальных резисторов.

3 Транспортный уровень

- 3.1 Измерителями могут поддерживаться протоколы различных версий в зависимости от варианта исполнения. В настоящем документе приведены данные по тем типам пакетов, которые поддерживаются всеми вариантами исполнения измерителя.
- 3.2 Обмен данными между ПК и измерителем организован в виде обмена пакетами запрос-ответ. Инициатором обмена всегда является ПК (или другое устройство, ведущее обмен с измерителем). Измеритель отправляет пакет с ответом только после получения запроса от ПК.
- 3.3 Структура пакета с запросом и ответом совпадают для базового набора, поддерживаемого всеми вариантами исполнения измерителей.
- 3.4 Все данные передаются в порядке little-endian (от младшего к старшему).
- 3.5 В качестве разделителя пакетов при передаче пакетов используется специальный байт 0x7E, по которому можно определить начало и окончание пакета. В пакете байт с таким значением встречаться не должен. Для этого используется так называемый escape-байт 0x7D, который предназначен для кодирования байта 0x7E. Все байты 0x7D и 0x7E, которые встречаются в пакете, заменяются escape-байтом 0x7D, за которым следует исходный байт, но с инвертированным 5-м битом. То есть байт 0x7D кодируется последовательностью 0x7D5D, а байт 0x7E последовательностью 0x7D5E. Разделение потока данных на пакеты с примером использования ESCAPE-байта приведено на рисунке 1.

Рисунок 1 – Разделение потока данных на пакеты

ВНИМАНИЕ! Гарантированность доставки пакета данным протоколом не обеспечивается, что необходимо учитывать при создании алгоритма опроса измерителей. Рекомендуемый вариант построения алгоритма обмена на стороне контроллера приведен в Приложении 1.

4 Структура пакета

4.1 Единая структура запроса и ответа

4.1.1 Структура пакета, единая для запроса и ответа, приведена на рисунке 2.

Идентификатор протокола пакета (ProtocolID) (PacketID)	Адрес из- мерителя (Address)	Данные (Data)	Контрольная сумма (CheckSum)
--	------------------------------------	------------------	------------------------------------

Рисунок 2 – Единая структура пакета

- 4.1.2 *Идентификатор протокола* (1 байт) определяет версию протокола и набор пакетов, поддерживаемых измерителем. Для основных пакетов данный байт равен **0х9В**. Для дополнительных пакетов **0х9С**.
- 4.1.3 *Идентификатор пакета* (1 байт) определяет тип запроса и структуру данных пакета (Data).
- 4.1.4 *Адрес измерителя* (1 байт) адрес измерителя, которому отправлен запрос или от которого отправлен ответ. Может принимать значения в диапазоне 1 254.
- 4.1.5 Размер и структура поля данных зависит от типа протокола и типа запроса. Для некоторых пакетов поле данных может отсутствовать.
- 4.1.6 Контрольная сумма (1 байт) равна сумме по модулю 2 всех байт пакета. **Еscape-последовательности декодированы и в расчете контрольной суммы участия не принимают.** Таким образом, контрольная сумма рассчитывается по формуле 1:

CheckSum = ProtocolID \oplus PacketID \oplus Address $\oplus \sum$ Data_i (1)

5 Описание пакетов

5.1 Запрос показаний измерителя

- 5.1.1 Данный пакет является основным, применяемым при чтении данных углов наклона по осям X и Y. Данный пакет также может применяться при поиске устройств на линии RS-485 (сканировании) путем последовательной отправки запроса с перебором адресов в диапазоне 1 254.
- 5.1.2 Структура пакета запроса приведена в таблице 1.
- 5.1.3 Структура пакета ответа измерителя при запросе показаний приведена в таблице 2.
- 5.1.3 Подсчет контрольной суммы при передаче осуществляется до перекодирования ESCAPE-последовательностей, при приеме проверка контрольной суммы осуществляется после восстановления ESCAPE-последовательностей согласно 3.5.

ВНИМАНИЕ! В приведенных таблицах даны примеры, не требующие замены ESCAPE-последовательностей. В случае, если передаваемая последовательность данных содержит символы 0x7E или 0x7D, перед отправкой пакета данных следует провести замену ESCAPE-последовательностей согласно 3.5. В случае, если символы 0x7E или 0x7D содержатся в принятом пакете, перед проверкой контрольной суммы необходимо выполнить обратную замену согласно 3.5.

ВНИМАНИЕ! При отправке пакета в канал необходимо выполнить замену ESCAPEпоследовательностей согласно 3.5, в начало и конец пакета добавить символ-разделитель 0x7E.

Таблица 1 – Структура поля данных запроса показаний измерителя

		Допустимые значе-		
Байт	Назначение поля	ния	Примечание	Пример
	Идентификатор прото-		Основной прото-	
1	кола	0x9B	кол обмена	0x9B
			Запрос показаний	
2	Тип запроса	0x01	измерителя	0x01
3	Адрес измерителя	1 – 254		0x01
4	Контрольная сумма		см (1)	0x9B

ПРИМЕЧАНИЕ: Для приведенного примера в канал отправляется последовательность {0x7E 0x9B 0x01 0x01 0x9B 0x7E}.

Таблица 2 – Структура поля данных ответа показаний измерителя

		Допустимые		
Байт	Назначение поля	значения	Примечание	Пример
	Идентификатор прото-			
1	кола	0x9B	Основной протокол обмена	0x9B
2	Тип запроса	0x01	Запрос показаний измерителя	0X01
3	Адрес измерителя	1 - 254		0X01
4	Данные D0.0 - D0.7		Дробная часть угла по оси Ү	0x6A
5	Данные D1.0 - D1.7		Целая часть угла по оси Ү	0x77
6	Данные D2.0 - D2.5		Целая часть угла по оси Ү	0x80
	Данные D2.6		Размерность угла по оси Y (0 - угловые секунды, 1 - угловые минуты) Знак угла по оси Y (0 - положитель-	
	Данные D2.7		ный, 1 - отрицательный)	
7	Данные D3.0 - D3.7		Дробная часть угла по оси X	0x38
8	Данные D4.0 - D4.7		Целая часть угла по оси X	0xC2
9	Данные D5.0 - D5.5		Целая часть угла по оси X	0x00
	Данные D5.6		Размерность угла по оси X (0 - угло- вые секунды, 1 - угловые минуты)	
	Данные D5.7		Знак угла по оси X (0 - положительный, 1 - отрицательный)	
10	Контрольная сумма			0xFC

ПРИМЕЧАНИЕ: Для приведенного примера в канал отправляется последовательность {0x7E 0x9B 0x01 0x01 0x6A 0x77 0x80 0x38 0xC2 0x00 0xFC 0x7E}.

ПРИМЕЧАНИЕ: Дробная часть значений углов передается в 256 долях.

Пояснение к приведенному примеру:

Дробная часть угла по оси Y: D0 = 0x6A=106; 106/256=0,414

Целая часть угла по оси Y: D2.5 - D2.0 D1.7-D1.0 = (0x80&0x3F) << 8 + 0x77 = 0x77 = 119

 Размерность по оси Y:
 D2.6
 = 0 (угловые секунды)

 Знак угла по оси Y:
 D2.7
 = 1 (отрицательный)

Значение угла по оси Y = (119+0,414)*-1=-119,414"

Дробная часть угла по оси X: D3 = 0x38=106; 56/256=0,219

Целая часть угла по оси X: D5.5-D5.0 D4.7-D4.0 = (0x00&0x3F) << 8 + 0xC2=0xC2=194

 Размерность по оси X:
 D5.6
 = 0 (угловые секунды)

 Знак угла по оси X:
 D5.7
 = 0 (положительный)

Значение угла по оси X = (194+0,219)*+1=+194,219"

5.2 Запрос версии измерителя

5.2.1 Пакет позволяет прочитать текущую версию измерителя угла наклона.

В случае, если повреждена память измерителя, будет отправлен пакет об ошибке, содержащий соответствующий код ошибки. Значение по умолчанию: «v2.11».

- 5.2.2 Структура пакета запроса приведена в таблице 3.
- 5.2.3 Структура пакета ответа измерителя при запросе версии измерителя приведена в таблицах 4 и 5.

Таблица 3 – Структура поля данных запроса версии измерителя

Байт	Назначение поля	Допустимые значения	Примечание	Пример
1	Идентификатор про- токола	0x9B	Основной протокол обмена	0x9B
2	Тип запроса	0x0E	Запрос версии измерителя	0X0E
3	Адрес измерителя	1 - 254	' '	0X01
4	Контрольная сумма			0x94

Таблица 4 – Структура поля данных ответа версии измерителя

Байт	Назначение поля	Допустимые значения	Примечание	Пример
	Идентификатор про-			
1	токола	0x9B	Основной протокол обмена	0x9B
2	Тип запроса	0x0E	Запрос версии измерителя	0x0E
3	Адрес измерителя	1 - 254		0x01
4	D0		Данные версии изм.	0x76
5	D1		Данные версии изм.	0x32
6	D2		Данные версии изм.	0x2E
7	D3		Данные версии изм.	0x31
8	D4		Данные версии изм.	0x31
9	Контрольная сумма		Данные версии изм.	0xFE

Таблица 5 – Структура поля данных ответа версии измерителя при ошибке

Байт	Назначение поля	Допустимые зна- чения	Примечание	Пример
	Идентификатор			
1	протокола	0x9B	Основной протокол обмена	0x9B
2	Тип запроса	0xFF	Запрос версии измерителя	0xFF
	Адрес измери-			
3	теля	1 - 254		0x01
4	D0	0x10	Данные версии изм.	0x10
	Контрольная			
9	сумма		Данные версии изм.	0x75

5.3 Запрос скорости обмена данными

- 5.3.1 Пакет позволяет прочитать текущую скорость обмена данными. Здесь и далее описаны пакеты **дополнительного** протокола обмена, также единого для всех вариантов исполнения измерителя.
- 5.3.2 Структура пакета запроса приведена в таблице 6.
- 5.3.3 Структура пакета ответа измерителя при запросе скорости приведена в таблице 7.

Таблица 6 – Структура поля данных запроса скорости обмена

Байт	Назначение поля	Допустимые зна- чения	Примечание	Пример
1	Идентификатор протокола	0x9C	Дополнительный протокол обмена	0x9C
2	Тип запроса	0x01	Запрос скорости обмена	0x01
3	Адрес измери- теля	1 - 254		0x01
4	Контрольная сумма			0x9C

ПРИМЕЧАНИЕ: Для пакетов дополнительного протокола обмена применяется идентификатор протокола 0x9C.

Таблица 7 – Структура поля данных ответа на запрос скорости обмена

Байт	Назначение поля	Допустимые зна- чения	Примечание	Пример
	Идентификатор		Дополнительный протокол	
1	протокола	0x9C	обмена	0x9B
2	Тип запроса	0x01	Запрос скорости обмена	0x01
3	Адрес измери- теля	1 - 254		0x01
4	D0	0x01 - 1200 0x02 - 2400 0x03 - 4800 0x04 - 9600 0x05 - 19200 0x06 - 38400 0x07 - 57600 0x08 - 115200	Данные скорости обмена	0х04 (в измерителе установлена скорость обмена 9600)
	Контрольная			
9	сумма			0x98

5.4 Установка скорости обмена данными

- 5.4.1 Пакет позволяет установить текущую скорость обмена данными.
- 5.4.2 Структура пакета запроса приведена в таблице 8.
- 5.4.3 Структура пакета ответа измерителя при запросе скорости обмена приведена в таблице 9.

Таблица 8 – Структура поля данных пакета установки скорости обмена

Байт	Назначение поля	Допустимые зна- чения	Примечание	Пример
	Идентификатор		Дополнительный протокол	
1	протокола	0x9C	обмена	0x9C
2	Тип запроса	0x02	Установка скорости обмена	0x02
	Адрес измери-			
3	теля	1 - 254		0x01
		0x01 - 1200 0x02 - 2400 0x03 - 4800 0x04 - 9600 0x05 - 19200 0x06 - 38400 0x07 - 57600	Заданное значение скоро-	
4	D0	0x08 - 115200	сти обмена	0x01

	Контрольная			l
5	сумма		0x9E	l

Таблица 9 – Структура поля данных подтверждения установки скорости обмена

Байт	Назначение поля	Допустимые зна- чения	Примечание	Пример
	Идентификатор		Дополнительный протокол	
1	протокола	0x9C	обмена	0x9C
2	Тип запроса	0x02	Установка скорости обмена	0x02
	Адрес измери-			
3	теля	1 - 254		0x01
	Контрольная			
4	сумма			0x9F

ВНИМАНИЕ! Новое значение скорости будет сохранено в энергонезависимой памяти измерителя. Новое (сохраненное) значение скорости будет выбрано после сброса микроконтроллера измерителя (включения питания).

5.5 Запрос имени измерителя

- 5.5.1 Пакет используется для чтения имени измерителя. Имя передается в виде строки ASCII символов. Максимальный размер строки 16 байт. Значение по умолчанию: «NO NAME».
- 5.5.2 Структура пакета запроса приведена в таблице 10.
- 5.5.3 Структура пакета ответа измерителя при запросе имени приведена в таблице 11. В приведенном примере показан ответ имени измерителя «NO NAME».

Таблица 10 – Структура поля данных запроса имени измерителя

Байт	Назначение поля	Допустимые зна- чения	Примечание	Пример
	Идентификатор		Дополнительный протокол	
1	протокола	0x9C	обмена	0x9C
2	Тип запроса	0x03	Запрос имени измерителя	0x03
	Адрес измери-			
3	теля	1 - 254		0x01
	Контрольная			
4	сумма			0x9E

Таблица 11 – Структура поля данных ответа на запрос имени измерителя

Байт	Назначение поля	Допустимые зна- чения	Примечание	Пример
1	Идентификатор протокола	0x9C	Дополнительный протокол обмена	0x9C
2	Тип запроса	0x03	Запрос имени измерителя	0x03
3	Адрес измери- теля	1 - 254		0x01
4	D0	ASCII	Первый символ имени	0x4E
		ASCII		0x4F,0x20, 0x4E,0x41, 0x4D
4+N	DN (N<=16)	ASCII	Последний символ имени	0x45
4+N+1	Контрольная сумма			0xB8

5.6 Установка имени измерителя

- 5.6.1 Пакет используется для установки нового имени измерителя. Имя передается в виде строки ASCII символов. Максимальный размер строки 16 байт.
- 5.6.2 Структура пакета запроса приведена в таблице 12. В приведенном примере устанавливается новое имя «PYLON WEST».
- 5.6.3 Структура пакета ответа измерителя при установке нового имени приведена в таблице 13.

Таблица 12 – Структура поля данных ответа на запрос имени измерителя

Байт	Назначение поля	Допустимые зна- чения	Примечание	Пример
1	Идентификатор протокола	0x9C	Дополнительный протокол обмена	0x9C
2	Тип запроса	0x04	Установка имени измерителя	0x04
3	Адрес измери- теля	1 - 254	Тели	0x01
4	D0	ASCII	Первый символ имени	0x50

				0x59 0x4C 0x4F
				0x4E 0x20 0x57
		ASCII		0x45 0x53
4+N	DN (N<=16)	ASCII	Последний символ имени	0x54
	Контрольная			
4+N+1	сумма			0xE8

Таблица 13 – Структура поля данных ответа на запрос установки имени измерителя

Байт	Назначение поля	Допустимые зна- чения	Примечание	Пример
1	Идентификатор протокола	0x9C	Дополнительный протокол обмена	0x9C
2	Тип запроса	0x04	Установка имени измери- теля	0x04
3	Адрес измери- теля	1 - 254		0x01
4	Контрольная сумма			0x99

5.7 Запрос смещения нуля

- 5.7.1 Пакет используется для чтения установленного смещения нуля показаний измерителя по оси Y и X.
- 5.7.2 Структура пакета запроса приведена в таблице 14.
- 5.7.3 Структура пакета ответа измерителя при запросе смещения нуля приведена в таблице 15.

Таблица 14 – Структура поля данных запроса смещения нуля

Байт	Назначение поля	Допустимые зна- чения	Примечание	Пример
1	Идентификатор протокола	0x9C	Дополнительный протокол обмена	0x9C
2	Тип запроса	0x05	Запрос смещения нуля	0x05
3	Адрес измери- теля	1 - 254		0x01
4	Контрольная сумма			0x98

Таблица 15 – Структура поля данных ответа на запрос смещения нуля

		Допустимые значе-		
Байт	Назначение поля	ния	Примечание	Пример
	Идентификатор		Дополнительный прото-	
1	протокола	0x9C	кол обмена	0x9C
2	Тип запроса	0x05	Запрос смещения нуля	0x05
	Адрес измери-			
3	теля	1 - 254		0x01

	Данные D0.0 -	Дробная часть угла по оси	
4	D0.7	Y	0x80
	Данные D1.0 -		
5	D1.7	Целая часть угла по оси Ү	0x0A
	Данные D2.0 -		
6	D2.5	Целая часть угла по оси Ү	0x80
		Размерность угла по оси Ү	
		(0 - угловые секунды, 1 -	
	Данные D2.6	угловые минуты)	
		Знак угла по оси Ү (0 - по-	
		ложительный, 1 -	
	Данные D2.7	отрицательный)	
	Данные D3.0 -	Дробная часть угла по оси	
7	D3.7	X	0x20
	Данные D4.0 -		
8	D4.7	Целая часть угла по оси X	0x05
	Данные D5.0 -		
9	D5.5	Целая часть угла по оси X	0x00
		Размерность угла по оси X	
		(0 - угловые секунды, 1 -	
	Данные D5.6	угловые минуты)	
		Знак угла по оси Х (0 - по-	
		ложительный, 1 -	
	Данные D5.7	отрицательный)	
	Контрольная		
10	сумма		0xB7

ПРИМЕЧАНИЕ: Формат представления данных в ответе на запрос смещения нуля аналогичен 5.1

5.8 Установка смещения нуля

- 5.8.1 Пакет используется для установки нового значения смещения нуля показаний измерителя по оси Y и X.
- 5.8.2 Структура пакета запроса приведена в таблице 16.
- 5.8.3 Структура пакета ответа измерителя при установке нового значения смещения нуля приведена в таблице 17.

Таблица 16 – Структура поля данных запроса установки смещения нуля

Байт	Назначение поля	Допустимые значения	Примечание	Пример
	Идентификатор прото-			
1	кола	0x9C	Дополнительный протокол обмена	0x9C
2	Тип запроса	0x06	Установка смещения нуля	0x06
3	Адрес измерителя	1 - 254		0x01
4	Данные D0.0 - D0.7		Дробная часть угла по оси Ү	0x40
5	Данные D1.0 - D1.7		Целая часть угла по оси Ү	0x04
6	Данные D2.0 - D2.5		Целая часть угла по оси Ү	0x00

	Данные D2.6	Размерность угла по оси Y (0 - угло- вые секунды, 1 - угловые минуты)	
	Данные D2.7	Знак угла по оси Y (0 - положитель- ный, 1 - отрицательный)	
7	Данные D3.0 - D3.7	Дробная часть угла по оси Х	0x00
8	Данные D4.0 - D4.7	Целая часть угла по оси X	0x03
9	Данные D5.0 - D5.5	Целая часть угла по оси X	0x00
	Данные D5.6	Размерность угла по оси X (0 - угло- вые секунды, 1 - угловые минуты)	
	Данные D5.7	Знак угла по оси X (0 - положитель- ный, 1 - отрицательный)	
10	Контрольная сумма		0xDC

ПРИМЕЧАНИЕ: Формат представления данных в запросе установки смещения нуля аналогичен 5.1

Таблица 17 – Структура поля данных ответа на установку смещения нуля

Байт	Назначение поля	Допустимые зна- чения	Примечание	Пример
1	Идентификатор протокола	0x9C	Дополнительный протокол обмена	0x9C
2	Тип запроса	0x06	Установка смещения нуля	0x06
3	Адрес измери- теля	1 - 254		0x01
4	Контрольная сумма			0x9B

5.9 Установка адреса измерителя

- 5.9.1 Пакет используется для установки нового значения адреса измерителя.
- 5.9.2 Структура пакета запроса приведена в таблице 18.
- 5.9.3 Структура пакета ответа на запрос нового адреса приведена в таблице 19.

Таблица 18 – Структура поля данных запроса установки адреса

Байт	Назначение поля	Допустимые зна- чения	Примечание	Пример
	Идентификатор		Дополнительный протокол	
1	протокола	0x9C	обмена	0x9C
			Установка адреса измери-	
2	Тип запроса	0x09	теля	0x09
	Адрес измери-			
3	теля	1 - 254		0x01

4	D0	1 – 254	Новое значение адреса	0x02
5	Контрольная сумма			0x96

Таблица 19 – Структура поля данных запроса установки адреса

Байт	Назначение поля	Допустимые зна- чения	Примечание	Пример
1	Идентификатор протокола	0x9C	Дополнительный протокол обмена	0x9C
2	Тип запроса	0x09	Установка адреса измери- теля	0x09
3	Адрес измери- теля	1 - 254	Новый адрес измерителя	0x02
5	Контрольная сумма			0x97

5.10 Запрос номера редакции ПО измерителя

- 5.10.1 Пакет используется для запроса номера редакции встроенного ПО измерителя.
- 5.10.2 Структура пакета запроса приведена в таблице 20.
- 5.10.3 Структура пакета ответа измерителя на запрос номера редакции ПО приведена в таблице 21. В приведенном примере номер редакции ПО равен 199.

Таблица 20 – Структура поля данных запроса номера редакции ПО

Байт	Назначение поля	Допустимые зна- чения	Примечание	Пример
1	Идентификатор протокола	0x9C	Дополнительный протокол обмена	0x9C
2	Тип запроса	0x0A	Запрос номера редакции ПО	0x0A
3	Адрес измери- теля	1 - 254		0x01
4	Контрольная сумма			0x97

Таблица 21 – Структура поля данных ответа на запрос номера редакции ПО

Байт	Назначение поля	Допустимые зна- чения	Примечание	Пример
	Идентификатор		Дополнительный протокол	
1	протокола	0x9C	обмена	0x9C
			Запрос номера редакции	
2	Тип запроса	0x0A	ПО	0x0A
	Адрес измери-			
3	теля	1 - 254		0x01

4	D0	Младший байт номера ре- дакции ПО	0xC7
5	D1	Старший байт номера редакции ПО	0x00
6	Контрольная сумма		0x50

5.11 Запрос заводского номера измерителя

- 5.11.1 Пакет используется для запроса заводского номера измерителя.
- 5.11.2 Структура пакета запроса приведена в таблице 22.
- 5.11.3 Структура пакета ответа измерителя на запрос заводского номера приведена в таблице 23. В приведенном примере заводской номер равен 1887.

Таблица 22 – Структура поля данных запроса заводского номера

Байт	Назначение поля	Допустимые зна- чения	Примечание	Пример
	Идентификатор		Дополнительный протокол	
1	протокола	0x9C	обмена	0x9C
2	Тип запроса	0x0B	Запрос заводского номера	0x0B
	Адрес измери-			
3	теля	1 - 254		0x01
	Контрольная			
4	сумма			0x96

Таблица 23 – Структура поля данных ответа на запрос заводского номера

	Назначение	Допустимые зна-		
Байт	поля	чения	Примечание	Пример
	Идентификатор		Дополнительный протокол	
1	протокола	0x9C	обмена	0x9C
2	Тип запроса	0x0B	Запрос заводского номера	0x0B
	Адрес измери-			
3	теля	1 - 254		0x01
4	D0		Байт 0 заводского номера	0x5F
5	D1		Байт 1 заводского номера	0x07
6	D2		Байт 2 заводского номера	0x00
7	D3		Байт 3 заводского номера	0x00
	Контрольная			
8	сумма			0xCE

5.12 Запрос количества тактов усреднения

- 5.12.1 Пакет используется для запроса количества тактов усреднения.
- 5.12.2 Структура пакета запроса приведена в таблице 24.

5.12.3 Структура пакета – ответа измерителя на запрос количества тактов усреднения приведена в таблице 25.

Таблица 24 – Структура поля данных запроса количества тактов усреднения

Байт	Назначение поля	Допустимые зна- чения	Примечание	Пример
1	Идентификатор протокола	0x9C	Дополнительный протокол обмена	0x9C
2	Тип запроса	0x0C	Запрос количества тактов усреднения	0x0C
3	Адрес измери- теля	1 - 254		0x01
4	Контрольная сумма			0x91

Таблица 25 – Структура поля данных ответа на запрос количества тактов усреднения

Байт	Назначение поля	Допустимые зна- чения	Примечание	Пример
	Идентификатор		Дополнительный протокол	
1	протокола	0x9C	обмена	0x9C
			Запрос количества тактов	
2	Тип запроса	0x0C	усреднения	0x0C
	Адрес измери-			
3	теля	1 - 254		0x01
		0x00 - 1		
		0x01 – 2		
		0x02 - 4		
		0x03 – 8		
		0x04 - 16	Данные по количеству так-	
4	D0	0x05 - 32	тов усреднения	0x05
	Контрольная			
8	сумма			0x94

5.13Установка количества тактов усреднения

- 5.13.1 Пакет используется для установки нового значения количества тактов усреднения.
- 5.13.2 Структура пакета запроса приведена в таблице 26.
- 5.13.3 Структура пакета ответа измерителя на запрос количества тактов усреднения приведена в таблице 27.

Таблица 26 – Структура поля данных запроса установки количества тактов усреднения

Байт	Назначение поля	Допустимые зна- чения	Примечание	Пример
1	Идентификатор протокола	0x9C	Дополнительный протокол обмена	0x9C

			Установка количества так-	
2	Тип запроса	0x0D	тов усреднения	0x0D
	Адрес измери-			
3	теля	1 - 254		0x01
		0x00 - 1		
		0x01 - 2		
		0x02 - 4		
		0x03 - 8		
		0x04 - 16	Данные по количеству так-	
	D0	0x05 - 32	тов усреднения	0x01
	Контрольная			
4	сумма			0x91

Таблица 27 – Структура поля данных ответа на установку количества тактов усреднения

Байт	Назначение поля	Допустимые зна- чения	Примечание	Пример
1	Идентификатор протокола	0x9C	Дополнительный протокол обмена	0x9C
2	Тип запроса	0x0D	Установка количества так- тов усреднения	0x0D
3	Адрес измери- теля	1 - 254		0x01
8	Контрольная сумма			0x90

5.14 Запрос периода усреднения

- 5.14.1 Пакет используется для запроса периода усреднения.
- 5.14.2 Структура пакета запроса приведена в таблице 28.
- 5.14.3 Структура пакета ответа измерителя на запрос периода усреднения приведена в таблице 29.

Таблица 28 – Структура поля данных запроса периода усреднения

Байт	Назначение поля	Допустимые зна- чения	Примечание	Пример
1	Идентификатор протокола	0x9C	Дополнительный протокол обмена	0x9C
2	Тип запроса	0x0E	Запрос периода усредне- ния	0x0E
3	Адрес измери- теля	1 - 254		0x01
4	Контрольная сумма			0x93

Таблица 29 – Структура поля данных ответа на запрос периода усреднения

Байт	Назначение поля	Допустимые зна- чения	Примечание	Пример
1	Идентификатор протокола	0x9C	Дополнительный протокол обмена	0x9C

2	Тип запроса	0x0E	Запрос периода усредне-	0x0E
_	Адрес измери-			
3	теля	1 - 254		0x01
		0x00 - 10 mc		
		0x01 - 20 mc		
		0x02 - 50 mc	Данные по периоду усред-	
4	D0	0x03 - 100 mc	нения	0x02
	Контрольная			
8	сумма			0x91

5.15 Установка периода усреднения

- 5.15.1 Пакет используется для установки нового значения периода усреднения.
- 5.15.2 Структура пакета запроса приведена в таблице 30.
- 5.15.3 Структура пакета ответа измерителя на установку периода усреднения приведена в таблице 31.

Таблица 30 – Структура поля данных запроса на установку периода усреднения

Байт	Назначение поля	Допустимые зна- чения	Примечание	Пример
1	Идентификатор протокола	0x9C	Дополнительный протокол обмена	0x9C
2	Тип запроса	0x0F	Установка периода усред- нения	0x0F
3	Адрес измери- теля	1 - 254		0x01
	D0	0x00 - 10 mc $0x01 - 20 mc$ $0x02 - 50 mc$ $0x03 - 100 mc$	Данные по периоду усред- нения	0x00
4	Контрольная сумма			0x92

Таблица 31 – Структура поля данных ответа на установку периода усреднения

Байт	Назначение поля	Допустимые зна- чения	Примечание	Пример
1	Идентификатор протокола	0x9C	Дополнительный протокол обмена	0x9C
2	Тип запроса	0x0F	Установка периода усред- нения	0x0F
3	Адрес измери- теля	1 - 254		0x01
4	Контрольная сумма			0x92

6 Описание пакетов устаревших версий

Измерители ИН-Д3 ранних версий могут работать с протоколами предыдущих версий (2.10). В случае, если не удается опросить данные измерителя отправкой пакетов, приведенных в разделе 5, следует пользоваться протоколом, приведенным в настоящем разделе.

6.1 Запрос в протоколе 2.10

Структура пакета запроса для протокола 2.10 приведена на рисунке 3.

Идентифика-	Идентифика-	Адрес из-	Контроль-
тор протокола	тор пакета	мерителя	ная сумма
(ProtocolID)	(PacketID)	(Address)	(CheckSum)

Рисунок 3

Идентификатор протокола (1 байт) определяет версию протокола и набор пакетов, поддерживаемых измерителем.

Идентификатор пакета (1 байт) определяет тип запроса и структуру данных в ответе.

Адрес измерителя (1 байт) – адрес измерителя, которому отправлен запрос.

Контрольная сумма (1 байт) равна дополнению суммы всех байт пакета до значения 0x100. В расчет контрольной суммы не входит идентификатор протокола и не учитывается бит переноса. Таким образом, контрольная сумма рассчитывается по формуле 2:

$$CheckSum = 0x100 - [(PacketID + Address) AND 0xFF]$$
 (2)

6.2 Ответ в протоколе 2.10

Ответный пакет представляет собой лишь поле с данными и контрольную сумму. То есть в ответном пакете отсутствуют идентификатор протокола, идентификатор пакета и адрес измерителя. Контрольная сумма добавляется только, если размер поля данных более одного байта. Контрольная сумма вычисляется аналогично контрольной сумме в пакете с запросом по формуле 2. ??

Размер и структура данных зависит от идентификатора пакета с запросом.

ВНИМАНИЕ! Организация транспортного уровня для протокола 2.10 полностью аналогична методике, описанной в разделе 3.

6.3 Запрос показаний измерителя в протоколе 2.10

Структура запроса показаний измерителя в протоколе 2.10 приведена в таблице 32.

Таблица 32 – Структура поля данных запроса показаний измерителя

Байт	Назначение поля	Допустимые зна- чения	Примечание	Пример
	Идентификатор		Пакеты протокола вер-	
1	протокола	0x9A	сии 2.10	0x9A
			Запрос показаний измери-	
2	Тип запроса	0x01	теля	0x01

	Адрес измери-		
3	теля	1 - 254	0x01
4	Контрольная		055
4	сумма		0xFE

Ответ измерителя содержит поле данных, структура которого полностью аналогична приведенной в 5.1.

6.4 Пинг измерителя в протоколе 2.10

Данный тип пакета используется для проверки подключен ли измеритель с заданным адресом к измерительной линии. Структура пакета запроса приведена в таблице 33.

Таблица 33 – Структура поля данных пинга измерителя

Байт	Назначение поля	Допустимые зна- чения	Примечание	Пример
	Идентификатор		Пакеты протокола вер-	
1	протокола	0x9A	сии 2.10	0x9A
			Пакет позволяет опреде-	
			лить подключен ли	
			измеритель с данным адре-	
			сом в систему. В случае	
			если измеритель не под-	
			ключен, то ответа	
2	Тип запроса	0x03	последует.	0x03
	Адрес измери-			
3	теля	1 - 254		0x01
	Контрольная			
4	сумма			0xFC

Если измеритель с заданным адресом подключен к линии, датчик отправит ответ с одним байтом 0x35 в поле данных. В противном случае, ответа датчика не последует.

ПРИЛОЖЕНИЕ 1

На рисунке 1.1 приведена блок-схема возможного алгоритма приема пакетов ПК или сторонним контроллером

Рисунок 1.1 – Блок-схема алгоритма приема пакетов ПК или сторонним контроллером при обмене данными с измерителем.

ПРИЛОЖЕНИЕ 2

Изменения порядка настройки параметров датчиков

Для предотвращения случайного изменения настроек датчика при сильных помехах на линии в следствие приема ложной команды в прошивках версий 4.0X-4.2X и 5.0X-5.2X изменение всех настроек датчика (адрес, скорость обмена, смещение нуля и т.п.) производится с помощью последовательности двух команд.

Первая команда выполняется в соответствии с протоколом 2.11 (пункты 5.4, 5.6, 5.8, 5.9) и изменяет текущие настройки датчика только в оперативной памяти. Такие настройки будут сброшены до записанных в энергонезависимую память при выключении/включении питания.

Для записи всех настроек из оперативной памяти в энергонезависимую необходимо выполнить следующую команду, закодированную в ESCAPE-последовательность (пункт 3.5):

- 1 байт 0x9D
- 2 байт 0х04
- 3 байт текущий адрес датчика в оперативной памяти
- 4 байт сумма по модулю 2 первых 3-х байт и 0х5А