• Voltage Divider (or 4-Resistor) Bias:

- > The best: Extremely robust and versatile
- If properly designed, almostβ independent
- \triangleright If $I_1 \ge 10I_B$, $I_1 \approx I_2$

$$\Rightarrow V_{B} \simeq \frac{R_{2}}{R_{1} + R_{2}} V_{CC}$$

$$\Rightarrow$$
 $V_{E} = V_{B} - V_{BE}$ and $I_{C} \simeq I_{E} = V_{E} / R_{E}$

- *Example*: Let $V_{CC} = 5$ V, $R_1 = 40$ k Ω , $R_2 = 10$ k Ω , $R_C = 2$ k Ω , and $R_E = 300$ Ω
 - \triangleright *Quick estimate*: Assume $\beta \ge 100$
 - \Rightarrow V_B = 1V, V_E = 0.3 V, I_C \approx I_E = 1 mA, V_{CE} = 2.7 V, and P_D = 5.5 mW
 - ⇒ Done! Piece of cake, isn't it?
 - $ightharpoonup I_1 = 100 \ \mu A$ and $I_B \le 10 \ \mu A$ (for $\beta \ge 100$): Assumption of $I_1 \ge 10I_B$ validated
 - \triangleright Actually, as I_1 and β go down, this analysis becomes more and more inaccurate!

• Exact Analysis:

- > Sufficiently more complicated
- > Open the base lead and
 Thevenize the left branch

$$\Rightarrow V_{B} = \frac{R_{2}}{R_{1} + R_{2}} V_{CC} = 1 V$$

$$R_{B} = R_{1} || R_{2} = 8 k\Omega$$

ightharpoonup Also, $V_B = I_B R_B + V_{BE} + I_E R_E$ $V_B - V_B$

$$\Rightarrow I_{B} = \frac{V_{B} - V_{BE}}{R_{B} + (\beta + 1)R_{E}}$$

• Gives:

- $ightharpoonup I_B = 7.83 \, \mu A$, $I_C = 0.78 \, mA$, and $V_{CE} = 3.2 \, V$ for $β = 100 \, ($ *quite off from quick estimate*!)
- $ightharpoonup I_B = 3.6 \ \mu A, I_C = 0.9 \ mA, and V_{CE} = 2.93 \ V \ for$ $<math>\beta = 250 \ (within \ \pm 10\% \ error \ band)$
- Thus, as $\beta \uparrow$, accuracy of quick estimate \uparrow
- Also, as $R_B \checkmark$, accuracy \uparrow
- R_B should not be too small, since P_D ?
- Thus, there are *various design constraints*

Discrete Stage Biasing: MOSFET

- Almost universally biased using 4-Resistor Bias
- Significantly more complicated than BJT biasing, since there is no quick estimate
- Also, body effect and CLM complicate matters

• No $I_G \Rightarrow R_1$ - R_2 combination provides a perfect voltage division

$$\Rightarrow V_{G} = \frac{R_{2}}{R_{1} + R_{2}} V_{DD}$$

•
$$V_S = I_D R_S$$
 and $V_D = V_{DD} - I_D R_D$

$$\Rightarrow I_{D} = \frac{k_{N}}{2} \left(V_{G} - I_{D} R_{S} - V_{TN} \right)^{2} \times \left(1 + \lambda \left[V_{DD} - I_{D} \left(R_{S} + R_{D} \right) \right] \right)$$