RandLib documentation

Aleksandr Samarin

November 8, 2018

Contents

Part I

General information

1 Calculation of sample moments

We use extension of Welford's method from Knuth. For every n-th element x we have

$$\delta = x - m_1,$$

$$m'_1 = m_1 + \frac{\delta}{n},$$

$$m'_2 = m_2 + \delta^2 \frac{n-1}{n},$$

$$m'_3 = m_3 + \delta^3 \frac{(n-1)(n-2)}{n^2} - 3\delta \frac{m_2}{n},$$

$$m'_4 = m_4 + \delta^4 \frac{(n-1)(n^2 - 3n + 3)}{n^3} + 6\delta^2 \frac{m_2}{n^2} - 4\delta \frac{m_3}{n}.$$

Then m_1' , $\frac{m_2}{n}$, Skew $(X) = \frac{\sqrt{n}m_3'}{m_2'^{3/2}}$ and $\operatorname{Kurt}(X) = \frac{nm_4'}{m_2'^2}$ (we return excess kurtosis).

Part II

Continuous univariate distributions

2 Beta distribution

Search of the median. In general, the value of median is unkwnown and searched numerically with initial value:

$$m \approx a + (b-a) \frac{\alpha - \frac{1}{3}}{\alpha + \beta - \frac{2}{3}}$$

for $\alpha, \beta \geq 1$. However, there are analytical solutions for some particular values:

- $m = \frac{a+b}{2}$, for $\alpha = \beta$,
- $m = a + (b a)(1 2^{-\frac{1}{\beta}})$, for $\alpha = 1$,
- $m = a + (b a)2^{-\frac{1}{\alpha}}$, for $\beta = 1$.

Calculation of characteristic function. For $\alpha, \beta \geq 1$ we use numerical integration by definition

$$\phi(t) = \int_{a}^{b} \cos(tx) f(x) dx + i \int_{a}^{b} \sin(tx) f(x) dx.$$

For shape parameters < 1, f(x) has singularity points at 0 or 1 or both of them, and numerical integration is impossible. Then we use the following technique: firstly, we can show that

$$\phi(t|a,b) = \mathbb{E}[e^{it(a+(b-a)X)}] = e^{ita}\phi(z|0,1)$$

with z = (b - a)t. Hence, w.l.o.g. we can consider standard case a = 0, b = 1. Then

$$\Re(\phi(z)) = \frac{1}{B(\alpha, \beta)} \int_0^1 \cos(zx) x^{\alpha - 1} (1 - x)^{\beta - 1} dx$$

$$= \frac{1}{B(\alpha, \beta)} \int_0^1 (\cos(zx) - 1) x^{\alpha - 1} (1 - x)^{\beta - 1} dx + 1$$

$$= \frac{1}{B(\alpha, \beta)} \int_0^1 \frac{(\cos(zx) - 1) x^{\alpha - 1} - (\cos(z) - 1)}{(1 - x)^{1 - \beta}} dx + 1 + \frac{\cos(z) - 1}{bB(\alpha, \beta)}.$$

The integrand now doesn't have any singularities, neither for $\alpha < 1$, nor for $\beta < 1$. Analogously we transform the imaginary part:

$$\begin{split} \Im(\phi(z)) &= \frac{1}{B(\alpha,\beta)} \int_0^1 \sin(zx) x^{\alpha-1} (1-x)^{\beta-1} dx \\ &= \frac{1}{B(\alpha,\beta)} \int_0^1 \frac{\sin(zx) x^{\alpha-1} - \sin(z)}{(1-x)^{1-\beta}} dx + \frac{\sin(z)}{bB(\alpha,\beta)}. \end{split}$$

Estimation of shapes with known support. Assume that a = 0, b = 1 and we have a sample $X = (X_1, \ldots, X_n)$. Then a log-likelihood function is

$$\ln \mathcal{L}(\alpha, \beta | X) = \sum_{i=1}^{n} \ln f(X_i; \alpha, \beta)$$

$$= (\alpha - 1) \sum_{i=1}^{n} \ln X_i + (\beta - 1) \sum_{i=1}^{n} \ln(1 - X_i) - n \ln B(\alpha, \beta).$$
(1)

Differentiating with respect to the shapes, we obtain

$$\frac{\partial \ln \mathcal{L}(\alpha, \beta | X)}{\partial \alpha} = \sum_{i=1}^{n} \ln X_i + n(\psi(\alpha + \beta) - \psi(\alpha)),$$

$$\frac{\partial \ln \mathcal{L}(\alpha, \beta | X)}{\partial \beta} = \sum_{i=1}^{n} \ln(1 - X_i) + n(\psi(\alpha + \beta) - \psi(\beta)).$$

Differentiating again we get the Hessian matrix:

$$H(\ln \mathcal{L}(\alpha, \beta | X)) = n \cdot \begin{pmatrix} \psi_1(\alpha + \beta) - \psi_1(\alpha) & \psi_1(\alpha + \beta) \\ & & \\ \psi_1(\alpha + \beta) & \psi_1(\alpha + \beta) - \psi_1(\beta) \end{pmatrix}.$$

Then we can find the estimators numerically, using Newton's procedure. The initial values of estimators are found via method of moments:

$$\hat{\alpha}_0 = \overline{X}_n \left(\frac{\overline{X}_n (1 - \overline{X}_n)}{\hat{s}_n^2} - 1 \right),$$

$$\hat{\beta}_0 = (1 - \overline{X}_n) \left(\frac{\overline{X}_n (1 - \overline{X}_n)}{\hat{s}_n^2} - 1 \right).$$

These values are applicable only if $\hat{s}_n^2 < \overline{X}_n(1 - \overline{X}_n)$. If this condition is not satisfied, we set $\hat{\alpha}_0 = \hat{\beta}_0 = 0.001$.

In the general case, when $a \neq 0$ or $b \neq 1$, we use the following transformation:

$$Y_i = \frac{X_i - a}{b - a}$$

and estimate parameters, using sample Y.

Exponential family parameterization. Logarithm of probabilty density function:

$$\log f(x) = (\alpha - 1)\log y + (\beta - 1)\log(1 - y) - \log(b - a) - \log B(\alpha, \beta)$$

with $y = \frac{x-a}{b-a}$. Therefore beta distribution with fixed a and b belongs to two-parameterized exponential family with sufficient statistics $T(x) = (\log y, \log(1-y))^T$, natural parameters $\theta = (\alpha - 1, \beta - 1)$, log-normalizer $F(\theta) = \log(b-a) + \log B(\theta_1 + 1, \theta_2 + 1)$ and carrier measure k(x) = 0. Gradient of log-normalizer: $\nabla F(\theta) = (\psi(\theta_1 + 1) - \psi(\theta_1 + \theta_2 + 2), \psi(\theta_2 + 1) - \psi(\theta_1 + \theta_2 + 2))^T$. Adjusted cross-entropy is

$$\begin{split} H_F(\theta_p \| \theta_q) &= F(\theta_q) - \langle \theta_q, \nabla F(\theta_p) \rangle \\ &= \log(b-a) + \log B(\theta_{q_1} + 1, \theta_{p_2} + 1) \\ &- \theta_{q_1}(\psi(\theta_{p_1} + 1) - \psi(\theta_{p_1} + \theta_{p_2} + 2)) - \theta_{q_2}(\psi(\theta_{p_2} + 1) - \psi(\theta_{p_1} + \theta_{p_2} + 2)) \end{split}$$

Adjusted entropy is

$$H_F(\theta) = \log(b-a) + \log B(\alpha, \beta) - (\alpha - 1)\psi(\alpha) - (\beta - 1)\psi(\beta) + (\alpha + \beta - 2)\psi(\alpha + \beta).$$

And Kullback-Leibler divergence:

$$KL(p||q) = H_F(\theta_p||\theta_q) - H_F(\theta_p)$$

$$= \log \frac{B(\alpha_q, \beta_q)}{B(\alpha_p, \beta_p)} - (\alpha_q - \alpha_p)\psi(\alpha_p) - (\beta_q - \beta_p)\psi(\beta_p) + (\alpha_q - \alpha_p + \beta_q - \beta_p)\psi(\alpha_p + \beta_p).$$

2.1 Arcsine distribution

Notation:

$$X \sim \operatorname{Arcsine}(\alpha)$$
.

Relation to Beta distribution:

$$X \sim \mathcal{B}(1-\alpha, \alpha, a, b).$$

Estimation of shape. For Arcsine distribution log-likelihood function (1) turns into

$$\ln \mathcal{L}(\alpha|X) = -\alpha \sum_{i=1}^{n} \ln X_i + (\alpha - 1) \sum_{i=1}^{n} \ln(1 - X_i) - n \ln B(1 - \alpha, \alpha).$$

Taking the derivative with respect to α we get

$$\frac{\partial \ln \mathcal{L}(\alpha|X)}{\partial \alpha} = \sum_{i=1}^{n} \ln \frac{1 - X_i}{X_i} + n\pi \cot(\pi \alpha).$$

Therefore, maximum-likelihood function is

$$\hat{\alpha} = -\frac{1}{\pi} \arctan\left(\frac{n\pi}{\sum_{i=1}^{n} \ln \frac{1-X_i}{X_i}}\right).$$

If $\hat{\alpha}$ is negative, we add 1, because $\frac{\text{atan}}{\pi} \in (-0.5, 0.5)$, while $\alpha \in (0, 1)$.

2.2 Balding-Nichols distribution

Notation:

$$X \sim \text{Balding-Nichols}(p, F)$$

with $p, F \in (0, 1)$. Relation to Beta distribution:

$$X \sim \mathcal{B}(pF', (1-p)F')$$

with
$$F' = (1 - F)/F$$
.

2.3 Uniform distribution

Relation to Beta distribution:

$$X \sim \mathcal{B}(1, 1, a, b).$$

Estimation of support.

Frequentist inference. Likelihood function is

$$\mathcal{L}(a,b|X) = \frac{1}{(b-a)^n} \mathbf{1}_{\{X_i \in [a,b] \ \forall i=1,\dots,n\}}.$$

Therefore, $\mathcal{L}(a,b|X)$ is the largest for $\hat{b}=X_{(n)}$ and $\hat{a}=X_{(1)}$. However, using the fact that $X_{(k)}\sim B(k,n+1-k,a,b)$, these are biased estimators:

$$\mathbb{E}[X_{(1)}] = \frac{an+b}{n+1} \quad \text{and} \quad \mathbb{E}[X_{(n)}] = \frac{a+bn}{n+1}.$$

To get unbiased estimators we make the transformations:

$$\tilde{a} = \frac{nX_{(1)} - X_{(n)}}{n-1}$$
 and $\tilde{b} = \frac{nX_{(n)} - X_{(1)}}{n-1}$.

Then we get

$$\mathbb{E}[\tilde{a}] = \frac{n\mathbb{E}[X_{(1)}] - \mathbb{E}[X_{(n)}]}{n-1} = \frac{n(an+b) - (a+bn)}{n^2 - 1} = a.$$

Analogously, $\mathbb{E}[\tilde{b}] = b$.

Bayesian inference. Let us say, we try to estimate $\theta = b - a$ with known a. We set the prior distribution $\theta \sim \operatorname{Pareto}(\alpha, \sigma)$:

$$h(\theta|\alpha,\sigma) = \frac{\alpha\sigma^{\alpha}}{\theta^{\alpha+1}} \mathbf{1}_{\{\theta \ge \sigma\}}.$$

The density of posterior distribution is

$$f(\theta|X) \propto \frac{\alpha \sigma^{\alpha}}{\theta^{\alpha+n+1}} \mathbf{1}_{\{\theta \geq \max(\sigma, X_{(n)} - a)\}} \sim \operatorname{Pareto}(\alpha + n, \max(\sigma, X_{(n)} - a)).$$

Hence, Bayesian estimator is

$$\mathbb{E}[\theta|X] = \frac{\alpha + n}{\alpha + n - 1} \max(\sigma, X_{(n)} - a)$$

and MAP estimator is

$$\theta_{MAP} = \max(\sigma, X_{(n)} - a).$$

3 Beta-prime distribution

Relation to other distributions:

$$\frac{X}{1+X} \sim \mathcal{B}(\alpha, \beta),$$

$$\frac{\beta}{\alpha}X \sim F(2\alpha, 2\beta).$$

Search of the median. For $\alpha = \beta$ we have m = 1. Otherwise, we use the relation $m = \frac{m'}{1-m'}$, where m' is the median of beta-distribution $\mathcal{B}(\alpha, \beta)$.

Calculation of characteristic function. For $\alpha \geq 1$ one can use numerical integration from section For $\alpha < 1$ we have $\lim_{x\to 0} f(x) \to \infty$ and $\int_0^\infty \cos(tx) f(x) dx$ is impossible to compute directly. Then we split the integral:

$$\int_0^\infty \cos(tx)f(x)dx = \int_0^\infty (\cos(tx) - 1)f(x)dx + 1.$$

The limit of the integrand for $x \to 0$ is 0 now, regardless of the value of the shape α .

Estimation of shapes. Using relationship with Beta distribution we transform the sample:

$$Y_i = \frac{X_i}{1 + X_i}, \quad 1 \le i \le N,$$

and run estimation for beta-distributed Y.

4 Exponentially-modified Gaussian distribution

Relation to other distribution: if $X \sim \mathcal{N}(\mu, \sigma^2)$ and $Y \sim \text{Exp}(\lambda)$, then $X + Y \sim \text{EMG}(\mu, \sigma, \lambda)$.

5 F-distribution

Notation	$X \sim \mathrm{F}(d_1, d_2)$			
Parameters	$d_1, d_2 > 0$			
Domain	$x \in \mathbb{R}^+$			
f(x)	$\frac{\sqrt{\frac{(d_1x)^{d_1}d_2^{d_2}}{(d_1x+d_2)^{d_1+d_2}}}}{xB\left(\frac{d_1}{2},\frac{d_2}{2}\right)}$			
F(x)	$I_{\frac{d_1x}{d_1x+d_2}}\left(\frac{d_1}{2},\frac{d_2}{2}\right)$			
$\mathbb{E}[X]$	$\frac{d_2}{d_2 - 2} \text{ for } d_2 > 2$			
Var(X)	$\frac{2d_2^2(d_1+d_2-2)}{d_1(d_2-2)^2(d_2-4)} \text{ for } d_2 > 4$			
Median	Searched numerically			
Mode	$\max\left(\frac{d_2(d_1-2)}{d_1(d_1+2)}, 0\right)$			
$\phi(t)$	Calculated numerically			

Relation to other distributions:

$$\frac{d_1 X}{d_2 + d_1 X} \sim \mathcal{B}\left(\frac{d_1}{2}, \frac{d_2}{2}\right),$$
$$\frac{d_1}{d_2} X \sim \mathcal{B}'\left(\frac{d_1}{2}, \frac{d_2}{2}\right).$$

6 Gamma distribution

More properties.

- $\mathbb{E}[\ln X] = \psi(\alpha) \ln(\beta)$, $\operatorname{Var}(\ln X) = \psi^{(1)}(\alpha)$.
- $\mathbb{E}\left[\frac{1}{X}\right] = \frac{\beta}{\alpha 1}$.
- Let $X_i \sim \Gamma(\alpha_i, \beta)$ for i = 1, ..., n. Then

$$\sum_{i=1}^{n} X_i \sim \Gamma\left(\sum_{i=1}^{n} \alpha_i, \beta\right).$$

Estimation of parameters.

Frequentist inference. Log-likelihood function:

$$\ln \mathcal{L}(\alpha, \beta | X) = n\alpha \ln \beta - n \ln \Gamma(\alpha) + (\alpha - 1) \sum_{i=1}^{n} \ln X_i - \beta \sum_{i=1}^{n} X_i.$$

Derivatives:

$$\frac{\partial \ln \mathcal{L}(\alpha, \beta | X)}{\partial \alpha} = n \ln \beta - n \psi(\alpha) + \sum_{i=1}^{n} \ln X_i,$$

$$\frac{\partial \ln \mathcal{L}(\alpha, \beta | X)}{\partial \beta} = \frac{n\alpha}{\beta} - \sum_{i=1}^{n} X_{i}.$$

While the solution for the second equation is analytic:

$$\hat{\beta} = \frac{\alpha}{\overline{X}_n},$$

the first equation is solved numerically, using second derivative:

$$\frac{\partial^2 \ln \mathcal{L}(\alpha, \beta | X)}{\partial \alpha^2} = -n\psi_1(\alpha),$$

or if β is unknown:

$$\frac{\partial^2 \ln \mathcal{L}(\alpha, \beta | X)}{\partial \alpha^2} = -n\psi_1(\alpha) + \frac{n}{\alpha},$$

Moreover, the maximum-likelihood estimation of rate β is biased:

$$\mathbb{E}[\hat{\beta}] = \mathbb{E}\left[\frac{\alpha n}{\sum_{i=1}^{n} X_i}\right]$$
$$= \frac{\alpha n \beta}{\alpha n - 1}.$$

Unbiased estimator will be

$$\tilde{\beta} = \frac{\alpha}{\overline{X}_n} \left(1 - \frac{1}{n} \right).$$

Bayesian inference. We suppose that prior distribution of rate β is $\Gamma(\kappa, \gamma)$:

$$h(\beta) = \frac{\gamma^{\kappa}}{\Gamma(\kappa)} \beta^{\kappa - 1} e^{-\gamma \beta}.$$

Then

$$f(\beta|X) \propto \beta^{\alpha n} e^{-\beta \sum_{i=1}^{n} X_i} \cdot \beta^{\kappa-1} e^{-\gamma \beta} \sim \Gamma\left(\alpha n + \kappa, \gamma + \sum_{i=1}^{n} X_i\right).$$

Therefore, Bayesian estimator is

$$\mathbb{E}[\beta|X] = \frac{\alpha n + \kappa}{\gamma + \sum_{i=1}^{n} X_i},$$

and MAP estimator is

$$\beta_{MAP} = \frac{\alpha n + \kappa - 1}{\gamma + \sum_{i=1}^{n} X_i}.$$

Exponential family parameterization Logarithm of probability mass function:

$$\log \mathbb{P}(X = x) = \alpha \log \beta - \log \Gamma(\alpha) + (\alpha - 1) \log x - \beta x.$$

Therefore, sufficient statistics $T(x) = (\log x, x)^T$, natural parameters $\theta = (\alpha - 1, -\beta)$, lognormalizer $F(\theta) = \log \Gamma(\theta_1 + 1) - (\theta_1 + 1) \log(-\theta_2)$, carrier measure k(x) = 0. Gradient of log-normalizer is $\nabla F(\theta) = (\psi(\theta_1 + 1) - \log(-\theta_2), -\frac{\theta_1 + 1}{\theta_2})^T$ We conclude that adjusted cross-entropy is

$$\begin{split} H_F(\theta_p \| \theta_q) &= F(\theta_q) - \langle \theta_q, \nabla F(\theta_p) \rangle \\ &= \log \Gamma(\theta_{q_1} + 1) - (\theta_{q_1} + 1) \log(-\theta_{q_2}) - \theta_{q_1}(\psi(\theta_{p_1} + 1) - \log(-\theta_{p_2})) + \frac{\theta_{q_2}(\theta_{p_1} + 1)}{\theta_{p_2}}. \end{split}$$

Adjusted entropy is

$$H_F(\theta) = \log \Gamma(\theta_1 + 1) - \log(-\theta_2) - \theta_1 \psi(\theta_1 + 1) + \theta_1 + 1$$

= \log \Gamma(\alpha) - \log \beta - (\alpha - 1) \cdot \psi(\alpha) + \alpha.

And Kullback-Leibler divergence:

$$KL(p||q) = H_F(\theta_p||\theta_q) - H_F(\theta_p)$$

$$= \log \frac{\Gamma(\alpha_q)}{\Gamma(\alpha_p)} + \alpha_q \log \frac{\beta_p}{\beta_q} + (\alpha_p - \alpha_q)\psi(\alpha_p) + \alpha_p \left(\frac{\beta_q}{\beta_p} - 1\right)$$

6.1 Chi-squared distribution

Notation:

$$X \sim \chi_k^2$$
.

Relation to Gamma distribution:

$$X \sim \Gamma\left(\frac{k}{2}, \frac{1}{2}\right).$$

Kullback-Leibler divergence:

$$KL(p||q) = \log \frac{\Gamma(k_q/2)}{\Gamma(k_p/2)} + \frac{1}{2}(k_p - k_q)\psi(k_p/2).$$

Relation to other distributions: if $X_1, \ldots, X_k \sim \mathcal{N}(0,1)$, then $\sum_{i=1}^k X_i^2 \sim \chi_k^2$

6.2 Erlang distribution

Notation:

$$X \sim \text{Erlang}(k, \beta)$$
.

The only difference between Gamma and Erlang distributions is that latter takes an integer number k as a shape parameter. Relation to other distributions: if $X \sim \text{Erlang}(k, \beta)$ and $Y \sim \text{Po}(\beta x)$, then

$$\mathbb{P}(X < x) = P(k, \beta x) = \mathbb{P}(Y > k).$$

6.3 Exponential distribution

Relation to Gamma distribution:

$$X \sim \Gamma(1, \lambda)$$
.

Hence, estimation of parameter λ is the particular case of estimation of rate β for Gamma distribution.

Adjusted cross-entropy:

$$H_F(\lambda_q || \lambda_p) = \frac{\lambda_q}{\lambda_p} - \log \lambda_q.$$

Thus adjusted entropy is

$$H_F(\lambda) = 1 - \log \lambda$$

and Kullback-Leibler divergence:

$$\mathrm{KL}(p||q) = \log \frac{\lambda_p}{\lambda_q} + \frac{\lambda_q}{\lambda_p} - 1.$$

7 Geometric Stable distribution

7.1 Asymmetric Laplace distribution

7.2 Laplace distribution

8 Kolmogorov-Smirnov distribution

9 Logistic distribution

10 Log-normal distribution

11 Marchenko-Pastur distribution

Calculation of characteristic function. For $\lambda > 1$ we use numerical integration by definition

$$\phi(t) = \int_{\sigma^2 a}^{\sigma^2 b} \cos(tx) f(x) dx + i \int_{\sigma^2 a}^{\sigma^2 b} \sin(tx) f(x) dx.$$

For $\lambda = 1$ we split the integrand for real part by $(\cos(tx) - 1)f(x)$ and f(x):

$$\Re(\phi(t)) = \int_{\sigma^2 a}^{\sigma^2 b} (\cos(tx) - 1) f(x) dx + 1.$$

And for $\lambda < 1$ we calculate integral at point 0 separately:

$$\phi(t) = \int_{\{0\} \cup [\sigma^2 a, \sigma^2 b]} \cos(tx) f(x) dx + i \int_{\{0\} \cup [\sigma^2 a, \sigma^2 b]} \sin(tx) f(x) dx$$
$$= 1 - \frac{1}{\lambda} + \int_{\sigma^2 a}^{\sigma^2 b} \cos(tx) f(x) dx + i \int_{\sigma^2 a}^{\sigma^2 b} \sin(tx) f(x) dx.$$

12 Nakagami distribution

Calculation of characteristic function. For $\mu < 1 \lim_{x\to 0} f(x) \to \infty$. Then we use the following transformation for real part of characteristic function:

$$\Re(\phi(t)) = \int_0^\infty \cos(tx) f(x) dx$$
$$= \int_0^\infty (\cos(tx) - 1) f(x) + 1$$

Relation to other distributions: if $Y \sim \Gamma(\mu, \mu/\omega)$, then

$$X \sim \text{Nakagami}(\mu, \omega)$$
.

12.1 Chi distribution

Notation:

$$X \sim \chi_k$$

Relation to Nakagami distribution:

$$X \sim \text{Nakagami}(k/2, k)$$
.

1	2	.2	Mayw	-11_∓	Bolzman	n dist	ributio	m
			IVIAX W		3012111411	11 (1151		,,,

Notation:

$$X \sim \mathrm{MB}(\sigma)$$

Relation to Nakagami distribution:

$$X \sim \text{Nakagami}\left(3/2, \sigma^2\right)$$
.

12.3 Rayleigh distribution

Notation:

$$X \sim \text{Rayleigh}(\sigma)$$

Relation to Nakagami distribution:

$$X \sim \text{Nakagami}(1, 2\sigma^2).$$

Estimation of scale. ...

13 Noncentral Chi-Squared distribution

Relation to other distributions:

• Let X_1, \ldots, X_k be independent with $X_i \sim \mathcal{N}(\mu_i, 1), i = 1, \ldots, k$. Then

$$\sum_{i=1}^{k} X_i^2 \sim \chi_k'^2 \Big(\sum_{i=1}^{k} \mu_i^2 \Big).$$

- If $\lambda = 0$, then $X \sim \chi_k^2$.
- If $J \sim \text{Po}(\lambda)$, then $\chi^2_{k+2J} \sim \chi'^2_k(\lambda)$.

14 Pareto distribution

Estimation of parameters.

Frequentist inference. Log-likelihood function is

$$\ln \mathcal{L}(\alpha, \sigma | X) = n \ln \alpha + n\alpha \ln \sigma - (\alpha + 1) \sum_{i=1}^{n} \ln X_i.$$

We assume that $\sigma \leq X_{(1)}$, otherwise sample X couldn't have been generated from such distribution. It is obvious, that $\ln \mathcal{L}(\alpha, \sigma | X)$ is an increasing function in terms of σ , therefore $\hat{\sigma} = X_{(1)}$ is an optimal estimator. Let's take derivative with respect to α :

$$\frac{\partial \ln \mathcal{L}(\alpha, \sigma | X)}{\partial \alpha} = \frac{n}{\alpha} + n \ln \sigma - \sum_{i=1}^{n} \ln X_i.$$

From this we conclude that the maximum-likelihood estimator of shape is

$$\hat{\alpha} = \frac{1}{\frac{1}{n} \left(\sum_{i=1}^{n} \ln X_i \right) - \ln \hat{\sigma}}.$$

It is known that $\hat{\sigma} \sim \operatorname{Pareto}(n\alpha, \sigma)$ and $\hat{\alpha} \sim \operatorname{Inv-}\Gamma(n-1, n\alpha)$ and they are independent. Then

$$\mathbb{E}[\hat{\sigma}] = \frac{\sigma}{1 - \frac{1}{n\alpha}}$$

and

$$\mathbb{E}[\hat{\alpha}] = \frac{n\alpha}{n-2}.$$

Therefore, in order to get unbiased estimators we need to make the following transformations:

$$\tilde{\alpha} = \frac{n-2}{n}\hat{\alpha}$$
 and $\tilde{\sigma} = \hat{\sigma}\left(1 - \frac{1}{(n-1)\hat{\alpha}}\right)$.

Note that if we estimate parameters separately, then $\hat{\alpha} \sim \text{Inv-}\Gamma(n, n\alpha)$ and transformations are different.

Bayesian inference. We now assume that σ is known and prior distribution of α is $\Gamma(\kappa, \beta)$:

$$h(\alpha) = \frac{\beta^{\kappa}}{\Gamma(\kappa)} \alpha^{\kappa - 1} e^{-\beta \alpha}.$$

The density of posterior distribution is

$$f(\alpha|X) \propto \prod_{i=1}^{n} \frac{\sigma^{\alpha}}{X_{i}^{\alpha-1}} \cdot \alpha^{\kappa+n-1} e^{-\beta\alpha} \propto \alpha^{\kappa+n-1} e^{-(\beta+\sum_{i=1}^{n} \ln(X_{i}/\sigma))\alpha}.$$

Therefore, $\alpha | X \sim \Gamma(\kappa + n, \beta + \sum_{i=1}^{n} \ln(X_i/\sigma))$ and Bayesian estimator is

$$\mathbb{E}[\alpha|X] = \frac{\kappa + n}{\beta + \sum_{i=1}^{n} \ln(X_i/\sigma)}.$$

MAP estimator is

$$\alpha_{MAP} = \frac{\kappa + n - 1}{\beta + \sum_{i=1}^{n} \ln(X_i/\sigma)}.$$

Note on fitting scale with Bayes: let it be vice versa, α is known while σ is not. Then we say that a priori $\sigma \sim \operatorname{Pareto}(\kappa, \theta)$:

$$h(\sigma) = \frac{\kappa \theta^{\kappa}}{\sigma^{\kappa+1}}.$$

Then posterior distribution is:

$$f(\sigma|X) \propto \prod_{i=1}^{n} \frac{1}{X_i^{\alpha-1}} \cdot \sigma^{\alpha n - \kappa - 1} \mathbf{1}_{\{\theta < \sigma < X_{(1)}\}} \sim \text{Bounded-Pareto}(\kappa - \alpha n, \theta, X_{(1)}).$$

This imposes the following additional constraints on the prior hyperparameters: $\kappa > \alpha n$ and $\theta < X_{(1)}$. Bayesian estimator:

$$\mathbb{E}[\sigma|X] = \frac{\theta^{\alpha'}}{1 - \left(\frac{\theta}{X_{(1)}}\right)^{\alpha'}} \cdot \left(\frac{\alpha'}{\alpha' - 1}\right) \cdot \left(\frac{1}{\theta^{\alpha'}} - \frac{1}{X_{(1)}^{\alpha'}}\right)$$

with $\alpha' = \kappa - \alpha n$. MAP estimator is just

$$\sigma_{MAP} = \theta.$$

However, Bounded-Pareto distribution is not yet supported in RandLib.

15 Planck distribution

Calculation of cumulative distribution function. For $a \ge 1$ F(x) can be calculated by straightforward numerical integration:

$$F(x) = \frac{b^{a+1}}{\Gamma(a+1)\zeta(a+1)} \int_0^x \frac{t^a}{e^{bt} - 1} dt.$$

Note that for $\alpha < 1$ integrand has a singularity point at t = 0. In such case we define

$$h(t) = \frac{b^{a+2}t^{a+1}}{\Gamma(a+1)\zeta(a+1)} \cdot \left(\frac{1}{e^{bt} - 1} - \frac{1}{bt}\right)$$

and then

$$F(x) = \int_0^x h(t)dt + \frac{(bx)^a}{a\Gamma(a+1)\zeta(a+1)}.$$

Calculation of characteristic function. The idea of calculations for a < 1 is near the same. We split the real part of $\phi(t)$ into 3 different integrals:

$$\Re(\phi(t)) = \int_0^1 \cos(tx)h(x)dx + \int_1^\infty \cos(tx)f(x)dx + \frac{b^a}{a\Gamma(a+1)\zeta(a+1)} \bigg(\cos(t) + t\int_0^1 \sin(tx)x^a dx\bigg).$$

All the indegrands now have no singularity points.

16 Stable distribution

Calculation of p.d.f.

Calculation of c.d.f.

16.1 Cauchy distribution

Relation to Stable distribution:

$$X \sim S_1(0, \gamma, \mu)$$

16.2 Levy distribution

Relation to Stable distribution:

$$X \sim S_{\frac{1}{2}}(1,\gamma,\mu)$$

16.3 Normal distribution

Relation to Stable distribution:

$$X \sim S_2(\cdot, \sigma^2/2, \mu)$$

Estimation of parameters

Frequentist inference. Maximum-likelihood estimators for Normal distribution are very well-known:

$$\hat{\mu} = \overline{X}_n$$
 and $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$.

However, for unknown μ the value of $\hat{\sigma^2} \sim \frac{\sigma^2}{n} \chi_{n-1}^2$. Therefore, unbiased estimator in this case would be

$$\widetilde{\sigma^2} = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

Moreover, if one is interested in estimating scale σ with known μ , then maximum likelihood estimator is

$$\hat{\sigma} = \sqrt{\hat{\sigma^2}} \sim \frac{\sigma}{\sqrt{n}} \chi_n$$

and

$$\mathbb{E}[\hat{\sigma}] = \frac{\sigma}{\sqrt{n}} \sqrt{2} \frac{\Gamma((n+1)/2)}{\Gamma(n/2)}.$$

Then unbiased estimator is

$$\widetilde{\sigma} = \hat{\sigma} \sqrt{\frac{n}{2}} \frac{\Gamma(n/2)}{\Gamma((n+1)/2)}$$

Bayesian inference. ...

16.4 Holtsmark distribution

Relation to Stable distribution:

$$X \sim S_{\frac{3}{2}}(0,\gamma,\mu)$$

16.5 Landau distribution

Relation to Stable distribution:

$$X \sim S_1(1, \gamma, \mu)$$

17 Student's t-distribution

Relation to other distributions:

- If $X \sim t(\nu)$, then $\mu + \sigma X \sim t(\nu, \mu, \sigma)$.
- If $X \sim t(1, \mu, \sigma)$, then $X \sim \text{Cauchy}(\mu, \sigma)$.
- If $X \sim \mathcal{N}(0,1)$ and $Y \sim \text{Nakagami}\left(\frac{\nu}{2},1\right)$, then $\frac{X}{Y} \sim t(\nu)$.
- If $X \sim t(\nu)$, then $X^2 \sim F(1, \nu)$.

18 Weibull distribution

Estimation of scale

Frequentist inference. Log-likelihood function:

$$\ln \mathcal{L}(\lambda, k|X) = n(\ln k - \ln \lambda) + (k-1)\sum_{i=1}^{n} (\ln X_i - \ln \lambda) - \frac{1}{\lambda^k}\sum_{i=1}^{n} X_i^k.$$

The derivative with respect to scale:

$$\frac{\partial \ln \mathcal{L}(\lambda, k|X)}{\partial \lambda} = -\frac{nk}{\lambda} + \frac{k}{\lambda^{k+1}} \sum_{i=1}^{n} X_i^k = 0.$$

Therefore, maximum-likelihood estimation for λ is

$$\hat{\lambda} = \left(\frac{1}{n} \sum_{i=1}^{n} X_i^k\right)^{\frac{1}{k}}.$$

Bayesian inference. Assume k is known. Instead of estimating λ we give an estimation for λ^k . Let's say that prior distribution of λ^k is Inv- $\Gamma(\alpha, \beta)$:

$$h(\lambda^k) = \frac{\beta^\alpha}{\Gamma(\alpha)} \lambda^{-k(\alpha+1)} e^{-\beta/\lambda^k}.$$

Posterior distribution then:

$$f(\lambda^k|X) \propto \lambda^{-k(\alpha+1+n)} e^{-\frac{1}{\lambda^k}(\beta+\sum_{i=1}^n X_i^k)} \sim \text{Inv-}\Gamma\left(\alpha+n,\beta+\sum_{i=1}^n X_i^k\right).$$

Bayesian estimator:

$$\mathbb{E}[\lambda^k|X] = \frac{\beta + \sum_{i=1}^n X_i^k}{\alpha + n - 1},$$

MAP estimator:

$$\lambda_{MAP}^k = \frac{\beta + \sum_{i=1}^n X_i^k}{\alpha + n + 1}.$$

Part III Discrete univariate distributions

19 Beta-binomial distribution

Relation to other distributions: if $p \sim \mathcal{B}(\alpha, \beta)$, then $Bin(n, p) \sim BB(n, \alpha, \beta)$.

20 Binomial distribution

Estimation of probability p with known number n.

Frequentist inference. Log-likelihood function:

$$\ln \mathcal{L}(p|X) \propto \sum_{i=1}^{k} \left(X_i \log p + (n - X_i) \log(1 - p) \right)$$

The derivative with respect to p is:

$$\frac{\partial \ln \mathcal{L}(p|X)}{\partial p} = \frac{\sum_{i=1}^{k} X_i}{p} - \frac{nk - \sum_{i=1}^{k} X_i}{1 - p}.$$

Therefore we reach the maximum value of log-likelihood if

$$p = \frac{\overline{X}_k}{n}.$$

Bayesian inference. We set prior Beta distribution $\mathcal{B}(\alpha, \beta)$:

$$h(p) = \frac{p^{\alpha - 1}(1 - p)^{\beta - 1}}{B(\alpha, \beta)}.$$

Then posterior is

$$f(p|X) \propto p^{\alpha - 1 + \sum_{i=1}^{k} X_i} (1-p)^{\beta - 1 + \sum_{i=1}^{k} (n - X_i)} \sim \mathcal{B}\left(\alpha + \sum_{i=1}^{k} X_i, \beta + nk - \sum_{i=1}^{k} X_i\right).$$

Thus Bayesian estimator is

$$\mathbb{E}[p|X] = \frac{\alpha + \sum_{i=1}^{k} X_i}{\alpha + \beta + nk}$$

and MAP estimator is

$$p_{MAP} = \frac{\alpha + \sum_{i=1}^{k} X_i - 1}{\alpha + \beta + nk - 2}.$$

Also, Minimax estimator is equal to Bayes estimator if $\alpha = \beta = \frac{1}{2}\sqrt{n}$.

Exponential family parameterization. Logarithm of probabilty mass function:

$$\log \mathbb{P}(X = x) = \log(n!) - \log(x!(n-x)!) + x \log \frac{p}{1-p} + n \log(1-p).$$

Therefore binomial distribution with fixed n belongs to one-parameterized exponential family with sufficient statistics T(x) = x, natural parameter $\theta = \log \frac{p}{1-p}$, log-normalizer $F(\theta) = n \log(1 + \exp \theta) - \log(n!)$ and carrier measure $k(x) = -\log(x!(n-x)!)$. Gradient of log-normalizer: $\nabla F(\theta) = n \frac{\exp(\theta)}{1 + \exp(\theta)}$. Adjusted cross-entropy is

$$H_F(\theta_1 || \theta_2) = F(\theta_2) - \langle \theta_2, \nabla F(\theta_1) \rangle$$

= $n \log(1 + \exp \theta_2) - \log(n!) - \theta_2 n \frac{\exp(\theta_1)}{1 + \exp(\theta_1)}$.

Adjusted entropy is

$$H_F(\theta) = n \log(1 + \exp \theta) - \log(n!) - \theta n \frac{\exp(\theta)}{1 + \exp(\theta)}$$

= $-n[(1 - p) \log(1 - p) + p \log p] - \log(n!).$

And Kullback-Leibler divergence:

$$KL(p_1||p_2) = H_F(\theta_1||\theta_2) - H_F(\theta_1)$$

$$= n \log \frac{1 + \exp \theta_2}{1 + \exp \theta_1} - n(\theta_2 - \theta_1) \frac{\exp(\theta_1)}{1 + \exp(\theta_1)}$$

$$= n(1 - p_1) \log \frac{1 - p_1}{1 - p_2} + np_1 \log \frac{p_1}{p_2}.$$

20.1 Bernoulli

Notation:

$$X \sim \text{Bernoulli}(p)$$
.

Relation to Binomial distribution:

$$X \sim \text{Bin}(1, p)$$
.

21 Hypergeometric distribution

Estimation of number of target members of population K.

Bayesian inference. Let prior distribution of K be Beta-Binomial distribution $BB(N, \alpha, \beta)$:

$$h(K) = \binom{N}{K} \frac{B(K + \alpha, N - K + \beta)}{B(\alpha, \beta)}.$$

Then for one sample X:

$$K - X \sim BB(N - n, \alpha + X, \beta + nk - X)$$

and therefore

$$\mathbb{E}[K|X] = X + (N - n)\frac{\alpha}{\alpha + \beta}.$$

However, RandLib doesn't support Bayesian fitting for Hypergeometric distribution yet.

22 Logarithmic distribution

23 Negative-Binomial (Polya) distribution

Relation to other distributions: if $\lambda \sim \text{Gamma}\left(r, \frac{p}{1-p}\right)$, then $\text{Po}(\lambda) \sim \text{NB}(r, p)$.

23.1 Geometric distribution

Notation:

$$X \sim \text{Geometric}(p)$$
.

Relation to Negative-Binomial distribution:

$$X \sim NB(1, p)$$
.

23.2 Pascal distribution

Notation:

$$X \sim \operatorname{Pascal}(r, p)$$
.

The only difference with Negative-Binomial distribution is that for Pascal distribution shape r is an integer.

24 Poisson distribution

Estimation of rate.

Frequentist inference. Log-likelihood function:

$$\ln \mathcal{L}(\lambda|X) \propto -\lambda n + \sum_{i=1}^{n} X_i \log \lambda.$$

Setting the derivative w.r.t. rate to 0 we get the optimal value:

$$\lambda = \overline{X}_n$$
.

Bayesian inference. Let set prior distribution of $\lambda \sim \Gamma(\alpha, \beta)$:

$$h(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha - 1} e^{-\beta \lambda}.$$

Posterior distribution:

$$f(\lambda|X) \propto e^{-\lambda(\beta+n)} \lambda^{\alpha-1+\sum_{i=1}^{n} X_i} \sim \Gamma(\alpha + \sum_{i=1}^{n} X_i, \beta+n).$$

Therefore, Bayesian estimator:

$$\mathbb{E}[\lambda|X] = \frac{\alpha + \sum_{i=1}^{n} X_i}{\beta + n}.$$

And MAP estimator:

$$\lambda_{MAP} = \max\left(\frac{\alpha + \sum_{i=1}^{n} X_i - 1}{\beta + n}, 0\right).$$

Exponential family parameterization Logarithm of probability mass function:

$$\log \mathbb{P}(X = x) = x \log \lambda - \lambda - \log(x!).$$

Therefore, sufficient statistics T(x) = x, natural parameter $\theta = \log \lambda$, log-normalizer $F(\theta) = \exp(\theta)$, carrier measure $k(x) = \log(x!)$. We conclude that adjusted cross-entropy is

$$H_F(\theta_p || \theta_q) = F(\theta_q) - \langle \theta_q, \nabla F(\theta_p) \rangle$$

= $\exp(\theta_q) - \theta_q \exp(\theta_p)$.

Adjusted entropy is

$$H_F(\theta) = \exp(\theta)(1 - \theta) = \lambda(1 - \log \lambda).$$

And Kullback-Leibler divergence:

$$\begin{aligned} \mathrm{KL}(p\|q) &= H_F(\theta_p\|\theta_q) - H_F(\theta_p) \\ &= \lambda_q - \lambda_p \bigg(1 + \log \bigg(\frac{\lambda_p}{\lambda_q} \bigg) \bigg). \end{aligned}$$

25 Skellam distribution

Relation to other distributions: if $Y \sim \text{Po}(\mu_1)$ and $Z \sim \text{Po}(\mu_2)$, then $Y - Z \sim \text{Skellam}(\mu_1, \mu_2)$.

26 Uniform discrete distribution

Relation to other distributions: if $X \sim BB(n, 1, 1)$, then $X \sim \mathcal{U}\{0, \dots, n\}$.

27 Yule distribution

Relation to other distributions: if $X \sim \operatorname{Pareto}(\alpha, 1)$, then $\operatorname{Geometric}(1/X) \sim \operatorname{Yule}(\alpha)$.

28 Zeta distribution

Notation	$X \sim \mathrm{Zeta}(s)$
Parameters	s > 1
Domain	$k \in \mathbb{N}$
$\mathbb{P}(X=k)$	$\frac{1}{\zeta(s)k^s}$
$\boxed{ \mathbb{P}(X \le k) }$	$\frac{H(s,k)}{\zeta(s)}$
$\mathbb{E}[X]$	$\frac{\zeta(s-1)}{\zeta(s)}, s > 2$ ∞ , otherwise
Var(X)	$\frac{\zeta(s-2)}{\zeta(s)} - (\mathbb{E}[X])^2, \ \rho > 3$ ∞ , otherwise
Median	Searched numerically
Mode	1
$\phi(t)$	Calculated numerically

29 Zipf distribution

Part IV Bivariate distributions

- 30 Bivariate Normal distribution
- 31 Normal-Inverse-Gamma distribution
- 32 Trinomial distribution

Part V Circular distributions

- 33 von Mises distribution
- 34 Wrapped Exponential distribution

Part VI Singular distributions

35 Cantor distribution