YAPAY ZEKA KISIM - II

BÖLÜM I

ARAMA ile PROBLEM ÇÖZME (Solving Problems by Searching)

3. Uninformed Search (Bilgiye Dayanmayan Arama)

Arama Yöntemleri

- Uninformed Search
- Informed Search

Problemlerin Çözümünde Aramanın Önemi

Bir problemde hedef belirtilir.

Hedefe ulaşmak için arama yapılır.

Terminoloji

Initial State Goal Test

Successor Function Path Cost

State Space Solution

Path

Örnek Problem 1) **8-puzzle** Problemi Başlangıç, Bitiş Durumu, Durum Uzayı

Durum Uzayı (State Space) Boyutu : 9!/2 = 181440 8-puzzle için 181440, 15-puzzle=?, 24-puzzle=?

8	2	
3	4	7
5	1	6

Initial state

1	2	3
4	5	6
7	8	

Goal state

8-puzzle: Kurallar ve Olası Hareketler

Örnek Problem 2) 8-queens Problemi

648 farklı durum var.

1. Yöntem

- Durumlar (States) : 8 vezirin oyun tahtasına herhangi bir şekilde yerleştirilmesi.
- İlk Durum (Initial State) : Tahtada vezir olmadığı durum.
- Sonraki Fonksiyonu (Successor function): Veziri herhangi bir kareye ekle.
- Hedef Durum (Goal State) : 8 vezirin, tahtaya birbirini alamayacak şekilde yerleştirilmesi

8-queens Problemi

2067 farklı durum var.

2. Yöntem

- Durumlar : k=1..8, k vezirin, olabilen en sol sütuna, birbirini alamayacak şekilde yerleştirilmesi.
- İlk Durum : Tahtada vezir olmadığı durum.
- Sonraki Fonksiyonu : Bir vezirin, boş olan en soldaki sütundaki bir kareye, diğer vezirler tarafından alınamayacak şekilde yerleştirilmesi.
- Hedef Durum : 8 vezirin tahtada olması.

Arama Problemleri

- Bir veya daha fazla başlangıç durumu.
- Bir veya daha fazla bitiş durumu (çözüm).
- Çözüm, yol veya hedef düğümdür :
 - 8-puzzle'da yol.
 - 8-queen'de hedef düğüm.

Gerçek Hayat Problemleri:

Robot Navigation, Route Finding, ...

Önemli Parametreler

- Durum uzayındaki durum sayısı.
- Durumları tutmak için gereken bellek miktarı.

Sonraki Ders

Arama Yöntemleri

- Blind Strategies (Bilgiye dayanmayan arama)
- Heuristic Strategies (Sezgisel arama)

Arama Yöntemleri (Search Strategies)

Her aşamada hangi düğümün açılacağını belirler.

- Un-informed (Blind) Strategies : Durum bilgisinden yararlanmaz.
- Informed (Heuristic) Strategies: Durum bilgisinden yararlanır. Daha umut verici hareketi tercih eder.

Sezgisel Yöntemlerin Avantajı

1	2	3
4	5	6
7	8	

Goal state

8-puzzle Probleminin Arama Ağacı

Search Nodes ≠ States

Durum Uzayı sonlu olsa bile Arama Ağacı sonsuz olabilir.

	8	2
3	4	7
5	1	6

8	4	2
3		7
5	1	6

15.02.2011 Doç. Dr. Aybars UĞUR

Sezgisel Olmayan Arama Yöntemleri

- Breadth-First
 - Bidirectional
- Depth-First
 - Depth-limited
 - Iterative deepening
- Uniform-Cost

Önce Genişliğine Arama BFS (Breadth-First Search)

- Düğümleri, kuyruğun sonuna ekler.
- i. Düzeydeki tüm düğümler, (i+1). Düzeydeki tüm düğümlerden önce açılır. BFS, hedefe ulaştıran en kısa yolu bulmayı garantiler.

Çift Yönlü Arama Bidirectional (BF) Search

Önce Derinliğine Arama DFS (Depth-First Search)

Derinlik Sınırlandırmalı Arama Depth-Limited Search

k derinliğinde kesilen (cutoff) DFS'dir.

k, altındaki düğümlerin açılamayacağı maximum derinliktir.

Üç olası sonuç vardır:

- Çözüme ulaşılır (Solution)
- Çözüme ulaşılamaz (Failure)
- Cutoff (derinlik sınırları içinde sonuca ulaşılamaz)

Yineli Derinleştirmeli Arama Iterative Deepening Search

- For k=0,1,2,...:
 - K derinlik sınırı ile DFS yöntemini uygula

DFS ve BFS yöntemlerinin iyi yönlerini birleştirir.

Sezgisel Olmayan Arama Yöntemleri Karşılaştırma

- BFS, tamdır, optimaldir ancak yer karmaşıklığı yüksektir.
- DFS, yer karmaşıklığı etkindir, ancak tam da değildir, optimal de değildir.
- Yineli derinleştirme, asimptotik olarak optimaldir.

Uniform Cost Search

- BFS'nin benzeridir.
- Basit kuyruk yerine öncelik kuyruğu kullanır.
- Düğümler, (o ana kadar gelenler içerisinde) artan sırada kuyruğa yerleştirilirler.
- Optimal çözümü bulmayı garantiler.

Uniform Cost Search Örneği

Ders Kitabından Okunması Gerekenler

- Tekrarlı Durumların Önlenmesi
- CSP (Constraint Satisfaction Search)

BÖLÜM II

SEZGİSEL ARAMA ve DOLAŞMA (Informed Search and Exploration)

Heuristic Search (Sezgisel Arama)

- Önceki arama yöntemlerinde düğümlerin açılmasında kullanılan yöntem, başlangıç düğümünden uzaklık bilgisine dayanıyordu.
- Birçok problemde de bilinen budur!
- Hedeften uzaklık tahminlenirse ne olur?
- Hedef biliniyorsa, bu arama olmaz. Sadece gereken düğümler açılır.
- Ama gerçek uzaklık tam olarak bilinmese de tahminlenebilir. Bu tahmine, Heuristic (Sezgi) yani h(n) denilir.

Örnek: Rota Planlama

- Bir karayolu sisteminde, bir noktadan diğer noktaya düz hat uzaklığı, uygun bir sezgi ölçüsüdür.
- Her zaman doğru mudur?
- Hayır. Bazı yollar dolambaçlıdır.

Sezgisel Arama Yöntemleri

- Best-First Search
- A* Search
- IDA* (Iterative Deepening A*) Search
- SMA* (Simplified Memory-Bounded A*) Search

Best-First Search

- Herhangi bir anda, sezgiye göre en umut verici düğüm açılır.
- Aşağı yukarı uniform-cost search'ün tersidir.
- DFS'ye benzer, ancak sezgi içerir.
- Sezgi, her zaman 0 ise, BFS'ye döner.
- Best-first Search, bir Greedy Yöntemidir.
- Greedy Yöntemleri, uzun vadeli sonuçları önemsemeden, kısa vadeli avantajları en iyi duruma getirir.

Greedy Yöntemleri

- Tam değildir
- Optimal değildir.
- Zaman ve Yer Karmaşıklıkları kötüdür (üstel)

Doç. Dr. Aybars UĞUR

A* Search

- Best-first Search'ün en büyük dezavantajı, uzak görüşlü olmamasıdır.
- g : şu anki duruma kadar maliyet (c) fonksiyonu
- h : uygun sezgi fonksiyonu olsun.
- Uygun olması, iyimser olması yani hedefe götüren maliyeti hiçbir zaman gerçek değerinden daha fazla tahminlememesi demektir.
- Best-first search, greedy yerine f=g+h kullanılarak yapıldığında, A*'a ulaşılır.

Romanya Haritası

Romanya Haritası (Yol Uzaklıkları ile)

Example: Romanian navigation

Straight-line distance	е
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Doç. Dr. Aybars UĞUR

A* Aramasının Aşamaları

Example: Behavior of A^* search

A* Aramasının Özellikleri

- Tamdır. Sonuçta, çözüm varsa bulunur. Kökten başlanarak gidilen herhangi bir yolda f tahmini her zaman artar (h, monoton olsa bile). Zaman karmaşıklığı Optimaldir.
- Zaman ve Yer karmaşıklıkları kötü olsa da iyi bir sezgi ile, düzelecektir.

Non-monotone Heuristics

• Bazı sezgilerde f, yol boyunca düşebilir. n', n den sonraki düğüm olmak üzere :

• f(n)=9 'un anlamı, n aracılığı ile gidilebilen yolun maliyeti >=9, ve n' için de. Basit bir değişiklikle, bu durumun önüne geçilerek, F'in yol boyunca azalmaması sağlanır.

f(n')=g(n')+h(n') yerine f(n')=max(g(n')+h(n'),f(n)) kullanılır

Example of admissible heuristics: 8-puzzle

Two possible heuristics:

 $h_1(n)$ = number of misplaced tiles = 7

 $h_2(n)$ = total Manhattan distance (i.e., no. of squares from desired location of each tile) = 2+3+3+2+4+2+0+2 = 18

Intuitively, h_2 seems better: it varies more across the state space, and its estimate is closer to the true cost.

IDA* (Iterative-Deepening A*)

- DFS'ye dayanır. Bir düğümün çocuklarının açılma önceliğini belirlemede f değerinden yararlanır.
- f değeri sınırı vardır (derinlik limiti yerine)
- IDA*, A* ile aynı özellikleri taşır ama daha az bellek kullanır.

Özet

- Sezgisel arama yöntemleri, problem hakkındaki bilgiden yararlanırlar.
- Sezgi (Heuristic), hedefe ulaşmak için kalan maliyetin tahminidir.
- İyi bir sezgi, arama süresini, üstelden doğrusala indirir.
- Best-first Search tam da, optimal de değildir.
- A*, AI'da anahtar teknolojidir. f=g+h,
- (g, harcanan miktar ve h, hedefe ulaşmada harcanması beklenen miktar)

Diğer Arama Teknikleri

- Gerçek-zamanlı Arama
- Optimizasyon Problemlerinde Arama
- CSP'de Arama

Gerçek Zamanlı Arama

- Dinamik ortamlarda, arama bitmeden eylemde bulunmak gerekir.
- Hedefe götüren tam yolu aramak yerine, anlık en iyi yolda hareket etmek gerekir.
- Real-time A*, Korf's Solution? Proposed by Korf in 1990.

Optimizasyon Problemleri

- Traveling Salesman Problem
- Optimizasyon Problemlerinde Arama
 - Constructive Methods
 - Iterative Improvement/Repair Methods

Yineli Geliştirme Algoritmaları (Iterative Improvement Algorithms)

- Hill Climbing veya Gradient Descent (İrtifa Yokuşu)
- Simulated Annealing

Hill Climbing

- Yoğun bir siste, Everest Dağına tırmanmaya benzer. Sadece etkin durumun bilgisini tutar.
- Ana düşünce : Her zaman, şimdiki değerlendirmeyi en fazla geliştiren yönde adım at.
- Best-first Search'e benzemektedir.

Öğrenme algoritmalarında popülerdir.

Hill Climbing: Problemleri

- Yaylada şaşabilir.
- Sıralı tepelerde şaşabilir.

Hızlı Çözüm Random Restart

Hill Climbing: Problemleri

Hill-climbing search: 8-queens problem A local minimum with h = 1

Simulated Annealing

- Ana fikir : Yerel Maksimum'dan kaçmak için, istenmeyen hareketlere izin vermesidir. Yavaş yavaş boyutu ve frekansı azaltılır.
- Random hareket olasılığını kontrol eden T (Temperature) parametresi yeterince yavaş azaltılırsa, en iyi çözüme ulaşılması garantilenir.

BÖLÜM III

KISIT SAĞLAMA PROBLEMLERİ (Constraint Satisfaction Problems)

CSP (Constraint Satisfaction Problems) Uygulamaları

- Gerçek CSP'ler
 - Zaman Çizelgesi Problemleri
 - Donanım Konfigürasyonu
 - Nakliye Planlama
 - Fabrika Planlama
 - Kat Planlama

Min-conflicts Heuristic

Hill Climbing ve Simulated Annealing, tüm durumlarla çalışır. CSP'lere uygulamada, çiğnenen kısıtlamaların sayısı ile Hill Climbing uygun olabilir.

BÖLÜM IV

RAKİPLİ ORTAMLARDA ARAMA
(ADVERSARIAL SEARCH)
veya
OYUN OYNAMA
(GAME PLAYING)

5. Game Playing(Oyun Oynama)

- AI'ın en eski ve iyi çalışılmış alanlarındandır.
- Nedenleri
 - İnsanlar oyun oynamaktan hoşlanır.
 - Zeka göstergesi kabul edilir.
 - Ortamın net bir tanımı vardır.
 - Sonuçları kolay görülür.
- Oyun Türleri (Satranç, Dama, Tavla, Briç, ...)
 - Perfect vs Imperfect Info (ChessxBridge Hidden Cards)
 - Deterministic vs Stochastic (ChessxBackgammon) ?

Arama Problemi Olarak Oyun Oynama

- Tahtanın Durumu
- Geçerli Hareketler
- Uç Durumlar
- Strateji

Rakibin Durumu da düşünülmeli!

 Oyuncunun hareketlerini en iyiye, rakibin hareketlerini en kötüye getiren durumlar.

Example: Tic-Tac-Toe

Minimax Search

- Uç durumlara ulaşılana kadar tüm arama ağacı açılır.
- Yapraklardan şimdiki duruma doğru geriye dönülür.
- Her min. Düğümünde, çocuk düğümlerin en kötüsü, max düğümün de en iyisi tutulur.
- Oyun ağacı sonlu ise tamdır. Satranç?

Minimax Search

Kaynak Kısıtlamaları ile Başa Çıkmak

- Hareket için 100 saniyeniz varsa ve saniyede 10⁴ düğüm dolaşabiliyorsanız, hareket etmeden önce 10⁶ düğüm dolaşabilirsiniz.
- Standart Yaklaşım
 - Cutoff Test (derinlik sınırlandırmasına dayalı)
 - Evaluation Function (düğümler için, aramanın kesileceği)

Alpha-Beta Algorithm

- Minimax'a benzer.
- Farklı olarak, arama ağacının sonuçla ilgili olmayan dallarını budar.
- Tüm oyun ağacını açmak (alpha-beta dahil) pek önerilmez. Bir noktada kesilip, ona göre değerlendirilmelidir.
- Şans oyunları da, minimax algoritmasına ek yapılarak gerçekleştirilir.

Alpha Beta Pruning (Budama)

- Deterministic, Perfect Information Oyunlar için kullanılan standart bir yöntemdir.
- Düşünce Alpha Pruning'e benzer : Bir yol, şimdiki durumdan daha kötüyse elenir.
- Minimax'a da benzer ancak, oyuncunun ve rakibin en iyi yaprak değerinin izini tutar. Örnek :

Doç. Dr. Aybars UĞUR

Alpha Beta Pruning (Budama)

Alpha-Beta Algorithm

Instead of MinimaxValue, now we have MaxValue and MinValue double MaxValue(s, α , β)

- 1. if cutoff(s) return evaluation(s)
- 2. for each $s' \in Successors(s)$
 - (a) $\alpha \leftarrow Max(\alpha, MinValue(s', \alpha, \beta))$
 - (b) if $\alpha \ge \beta$ return β
- 3. return α

double MinValue(s, α , β)

- 1. if cutoff(s) return evaluation(s)
- 2. for each $s' \in Successors(s)$
 - (a) $\beta \leftarrow Min(\beta, MaxValue(s', \alpha, \beta))$
 - (b) if $\alpha \ge \beta$ return α
- return β

Alfa Beta Budama'nın Özellikleri

- Budama, sonucu değiştirmez.
- Arama derinliğini, aynı kaynaklarla iki katına çıkarır.
- Satranç gibi oyunlarda,
 - Novice Player (Acemi Oyuncu)
 - Expert Player (Uzman Oyuncu)

farkını belirler.

Özet

- Oyunlar eğlencelidir ve zaman alıcıdır.
- AI'ın birçok önemli yönünü ortaya koyar.
- Mükemmel duruma ulaşılamaz ⇒ Yaklaşım
- Grand Prix, otomobil tasarımı için ne ise, Oyunlar da AI için odur.