In [26]: In [27]:	<pre>#unsupervised learning technique, called #input: unlabelled customer data #output: assign each data point to cluste import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from kneed import KneeLocator from sklearn.datasets import make_blobs from sklearn.cluster import KMeans from sklearn.metrics import silhouette_so from sklearn.preprocessing import Standar from sklearn.decomposition import PCA from mpl_toolkits.mplot3d import Axes3D #reading the data frame df_initial_mall_data = pd.read_csv('Mall_ #taking a look at the data frame df_initial_mall_data</pre>	core rdScaler			
Out[28]:	CustomerID Gender Age Annual Income (k\$) 0 1 Male 19 15 1 2 Male 21 15 2 3 Female 20 16 3 4 Female 23 16 4 5 Female 31 17	39 81 6 77 40			
In [29]:	195 196 Female 35 120 196 197 Female 45 126 197 198 Male 32 126 198 199 Male 32 137 199 200 Male 30 137 200 rows × 5 columns	28 74 7 18 83			
Out[29]:	df_initial_mall_data.head() CustomerID Gender Age Annual Income (k\$) S 0 1 Male 19 15 1 2 Male 21 15 2 3 Female 20 16 3 4 Female 23 16 4 5 Female 31 17	Spending Score (1-100) 39 81 6 77 40			
<pre>In [30]: In [31]: Out[31]:</pre>	<pre>#removing CustomerID as it doesn't provid df_initial_mall_data.drop('CustomerID', a) df_initial_mall_data Gender Age Annual Income (k\$) Spending Sc 0 Male 19 15 1 Male 21 15 2 Female 20 16</pre>	axis = 1, inplace = True)	ster information		
	3 Female 23 16 4 Female 31 17 195 Female 35 120 196 Female 45 126 197 Male 32 126 198 Male 32 137 199 Male 30 137	77 40 79 28 74 18			
In [32]:	<pre>#standardizing all variables in the datas col_names = ['Annual Income (k\$)', 'Age', features = df_initial_mall_data[col_names scaler = StandardScaler().fit(features.va features = scaler.transform(features.valu scaled_features = pd.DataFrame(features, scaled_features</pre>	<pre>, 'Spending Score (1-100) s] alues) ues) columns = col_names)</pre>		ze these variables to follow a	normal distribution (
Out[32]:	0 -1.738999 -1.424569 -0. 1 -1.738999 -1.281035 1. 2 -1.700830 -1.352802 -1. 3 -1.700830 -1.137502 1. 4 -1.662660 -0.563369 -0.				
In []:	197 2.497807 -0.491602 0. 198 2.917671 -0.491602 -1. 199 2.917671 -0.635135 1. 200 rows × 3 columns	.861839 .923953 .250054 .273347			
<pre>In [33]: Out[33]:</pre>		gender) _mall_data, prefix = None	<pre>prefix_sep = '_', dummy_na =</pre>		
	2 -1.700830 -1.352802 -1. 3 -1.700830 -1.137502 1. 4 -1.662660 -0.563369 -0. 195 2.268791 -0.276302 1. 196 2.497807 0.441365 -0.	.195704 0 .715913 1 .040418 1 .395980 1118061 1 .861839 1			
In [34]: Out[34]:	198				
In [35]:	1 -1.738999 -1.281035 1.19 2 -1.700830 -1.352802 -1.71 3 -1.700830 -1.137502 1.04				
	<pre>for cluster in range(1,10): kmeans = KMeans(n_clusters = cluster, kmeans.fit(df_new_mall_data) SSE.append(kmeans.inertia_) #Converting the results into a dataframe frame = pd.DataFrame({'Cluster':range(1,2) plt.figure(figsize=(12,6)) plt.plot(frame['Cluster'], frame['SSE'], plt.xlabel('Number of clusters') plt.ylabel('Inertia')</pre>	and plotting them 10), 'SSE':SSE})			
Out[35]:	Text(0, 0.5, 'Inertia')				
	300 -	5 6 Number of clusters	7 8 9		
	<pre>#Based on the elbow plot above, we can se #A silhouette coefficient, or a silhouett #It also measures the distance between an #A silhouette score closer to +1 indicate # First, building a model with 4 clusters kmeans = KMeans(n_clusters = 4, init = 'k kmeans.fit(df_new_mall_data) # Now, printing the silhouette score of the</pre>	te score is a metric used n object and the data pos es good clustering perfor s k-means++')	to evaluate the quality of clu its in the nearest cluster. The	higher this distance, the bett	ter.
In [38]:	<pre>print(silhouette_score(df_new_mall_data, 0.35027020434653977 #Silhouette score of this model is about #But before doing that, visualizing the continuous clusters = kmeans.fit_predict(df_initial_df_new_mall_data["label"] = clusters fig = plt.figure(figsize=(21,21)) ax = fig.add_subplot(111, projection='3dd')</pre>	<pre>kmeans.labels_, metric = 0.35, which isn't a bad clusters we just built to _mall_data.iloc[:,1:]) ')</pre>	nodel, but we can do better and get an idea of how well the mo	del is doing.	
	<pre>ax.scatter(df_new_mall_data.Age[df_new_ma ax.scatter(df_new_mall_data.Age[df_new_ma ax.scatter(df_new_mall_data.Age[df_new_ma ax.scatter(df_new_mall_data.Age[df_new_ma ax.view_init(10, 200) plt.show()</pre>	all_data.label == 1], df_ all_data.label == 2], df_	new_mall_data["Annual Income (k new_mall_data["Annual Income (k	<pre>\$)"][df_new_mall_data.label == \$)"][df_new_mall_data.label ==</pre>	1], df_new_mall_data 2], df_new_mall_data
	15				
	0.0				
	-1.5			0.5	2.0 1.5
	3 2	1	0 -1	-1.0 -1.5	
In [39]:	<pre>pca = PCA(n_components=4) principalComponents = pca.fit_transform(components = range(pca.n_components_) plt.bar(features, pca.explained_variance_plt.xlabel('PCA features') plt.ylabel('variance %') plt.xticks(features)</pre>				
	PCA_components = pd.DataFrame(principalCo	omponents)			
In [40]:	0.10 - 0.05 - 0.00	3			
	<pre>model = KMeans(n_clusters=k) model.fit(PCA_components.iloc[:,:2]) inertias.append(model.inertia_) plt.plot(ks, inertias, '-o', color='black plt.xlabel('number of clusters, k') plt.ylabel('inertia') plt.xticks(ks) plt.show()</pre>				
	400 - 100 -	8 9			
In [41]: In [42]:	<pre>number of clusters, k model = KMeans(n_clusters=4) model.fit(PCA_components.iloc[:,:2]) # silhouette score print(silhouette_score(PCA_components.ilo 0.519272987185085 model = KMeans(n_clusters=4)</pre>	oc[:,:2], model.labels_,	netric='euclidean'))		
	<pre>clusters = model.fit_predict(PCA_componer df_new_mall_data["label"] = clusters fig = plt.figure(figsize=(15,40)) ax = fig.add_subplot(111, projection='3d' ax.scatter(df_new_mall_data.Age[df_ne</pre>	') all_data.label == 0], df_ all_data.label == 1], df_ all_data.label == 2], df_	new_mall_data["Annual Income (k new_mall_data["Annual Income (k	<pre>\$)"][df_new_mall_data.label == \$)"][df_new_mall_data.label ==</pre>	1], df_new_mall_data 2], df_new_mall_data
	plt.show()				
	20				
	0.5				
	-1.5 -2.0 3 2 1	0 -1	-0.5 -1.0 -1.5	2.0	
In [43]:	<pre>df = pd.read_csv('Mall_Customers.csv') df = df.drop(['CustomerID'],axis=1) # map back clusters to dataframe pred = model.predict(PCA_components.iloc)</pre>	[:,:2])			
Out[43]:	<pre>frame = pd.DataFrame(df) frame['cluster'] = pred frame.head() Gender Age Annual Income (k\$) Spending Scor 0 Male 19 15 1 Male 21 15 2 Female 20 16 3 Female 23 16 4 Female 31 17</pre>	re (1-100) cluster 39 2 81 2 6 3 77 2 40 3			
In [44]: Out[44]:	<pre>avg_df = df.groupby(['cluster'], as_index avg_df</pre>	x =False).mean()			
In [45]: Out[45]:	<pre>sns.barplot(x='cluster', y='Age', data=avg_ <axessubplot:xlabel='cluster', -="" -<="" 40="" 50="" th="" ylabel="Age"><th>_df)</th><th></th><th></th><th></th></axessubplot:xlabel='cluster',></pre>	_df)			
In [46]:	sns.barplot(x='cluster', y='Spending Score	3 e (1-100)',data=avg_df)			
Out[46]:	80 - 70 - 600 - 50 - 600	pending Score (1-100)'>			
In [47]: Out[47]:	sns.barplot(x='cluster', y='Annual Income				
	80 - 40 - 060 - 20 - 20 - 20 - 20 - 20 - 20 -				
In [48]: Out[48]:	<pre>df2 = pd.DataFrame(df.groupby(['cluster', df2.head()</pre> Gender cluster Gender 0 Female 21	,'Gender'])['Gender'].cou	nt())		
In [49]:	Male 18 1 Female 46 Male 42 2 Female 14 #Cluster 0: The frugal spender #Cluster 1: Almost retired #Cluster 2: The careless buyer				
In []: In []:	#Cluster 3: Highly affluent individuals				