- Desenvolva autômatos finitos determinísticos (AFD) que reconheçam as seguintes linguagens, sobre Σ = { a, b }. Deve-se ainda apresentar a tabela e diagrama de transição. (Obs: Usar software simulador de autômatos disponível no Classroom)
 - a. L1 = { w | w possui aa ou bb como subpalavra };
 - b. L2 = Ø;
 - c. L3 = Σ^* ;
 - d. Qual a diferença entre os itens b e c?
 - e. L4 = { w | w possui um número par de a e um número par de b };
 - f. L5 = { w | w possui aaa como subpalavra };
 - g. L6 = { w | o sufixo de w é aa};
- a. L1 = { w | w possui aa ou bb como subpalavra };

Estados\símbolos	а	b
q1(inicial)	q3	q2
q2	q4	q5
q3	q5	q4
q4	q5	q5
q5(final)	q5	q5

Estados\símbolos	а	b
q1(inicial)	q1	q1

c. L3 =
$$\Sigma^*$$
;

Estados\símbolos	а	b
q1(inicial,final)	q1	q1

d. Qual a diferença entre os itens b e c?

L2 = Ø => A linguagem não aceita nenhum símbolo, que não o vazio;

L3 = Σ^* => A linguagem aceita toda combinação com o alfabeto, incluindo o vazio

e. L4 = { w | w possui um número par de a e um número par de b };

Estados\símbolos	а	b
q1(inicial)	q3	q2
q2	q4	q5
q 3	q5	q4
q4(final)	q5	q5

f. L5 = { w | w possui aaa como subpalavra };

Estados\símbolos	а	b
q1(inicial)	q2	q3
q2	q3	q1
q3(final)	q3	q3

g. L6 = { w | o sufixo de w é aa};

Estados\símbolos	а	b
q1(inicial)	q2	q1
q2(final)	q2	q1

