- ciivations 43

both symmetric and skew symmetric. A differential s-form is a skew-symmetric covariant tensor field of type (0, s). For the calculus of differential forms, see, for example, [BG].

10. Lemma. Let μ be an n-form. If $V_i = \sum_{j=1}^n A_{ij} W_j$ for $1 \le i \le n$, then $\mu(V_1, \ldots, V_n) = (\det A)\mu(W_1, \ldots, W_n)$.

The proof is a standard combinatorial argument.

TENSOR DERIVATIONS

Previous sections have dealt with tensor algebra; we now consider some tensor calculus.

11. **Definition.** A tensor derivation \mathcal{D} on a smooth manifold M is a set of R-linear functions

$$\mathcal{D} = \mathcal{D}_s^r : \mathfrak{T}_s^r(M) \to \mathfrak{T}_s^r(M) \qquad (r \ge 0, s \ge 0)$$

such that for any tensors A and B:

- (1) $\mathscr{D}(A \otimes B) = \mathscr{D}A \otimes B + A \otimes \mathscr{D}B$,
- (2) $\mathcal{D}(CA) = C(\mathcal{D}A)$ for any contraction C.

Thus \mathscr{D} is R-linear, preserves tensor type, obeys the usual Leibnizian product rule, and commutes with all contractions. For a function $f \in \mathscr{F}(M)$ recall that $fA = f \otimes A$; hence $\mathscr{D}(fA) = (\mathscr{D}f)A + f\mathscr{D}A$.

In the special case t = s = 0, \mathcal{D}_0^0 is a derivation on $\mathfrak{T}_0^0(M) = \mathfrak{F}(M)$ so, as discussed in Chapter 1, there is a unique vector field $V \in \mathfrak{X}(M)$ such that

$$\mathscr{D}f = Vf$$
 for all $f \in \mathfrak{F}(M)$.

Since tensor derivations are generally not $\mathfrak{F}(M)$ -linear the value of $\mathfrak{D}A$ at a point $p \in M$ cannot usually be found from A_p alone. However it can be found from the values of A on any arbitrarily small neighborhood of p. This local character of tensor derivations can be expressed as follows.

12. Proposition. If \mathcal{D} is a tensor derivation on M and \mathcal{U} is an open set of M, then there is a unique tensor derivation $\mathcal{D}_{\mathcal{U}}$ on \mathcal{U} such that

$$\mathcal{D}_{\mathcal{U}}(A|\mathcal{U}) = (\mathcal{D}A)|\mathcal{U}$$
 for all tensors A on M .

 $(\mathcal{D}_{\mathcal{U}})$ is called the *restriction* of \mathcal{D} to \mathcal{U} , and henceforth we omit the subscript \mathcal{U} .)

Scheme of Proof. Let $B \in \mathfrak{T}_s^r(\mathcal{U})$. If $p \in \mathcal{U}$ let f be a bump function at g. Thus $f \in \mathfrak{T}_s^r(M)$. Define with support in \mathscr{U} . Thus $fB \in \mathfrak{T}_{s}^{r}(M)$. Define

$$(\mathscr{D}_{\Psi}B)_{p}=\mathscr{D}(fB)_{p}.$$

Then show: (1) This definition is independent of the choice of bump function.

Then show: (1) This definition is independent of the choice of bump function. Then show: (1) This definition is the state of \mathcal{U} . (3) $\mathcal{D}_{\mathcal{U}}$ is a tensor derivation on \mathcal{U} . (2) $\mathcal{D}_{\mathcal{U}}B$ is a smooth tensor field on \mathcal{U} . (5) $\mathcal{D}_{\mathcal{U}}$ is unique. (4) \mathcal{D}_{q} has the stated restriction property. (5) \mathcal{D}_{q} is unique.

The Leibnizian formula $\mathcal{D}(A \otimes B) = \mathcal{D}A \otimes B + A \otimes \mathcal{D}B$ can be recastas follows.

13. Proposition (The Product Rule). Let 2 be a tensor derivation on M. If $A \in \mathfrak{T}_s^r(M)$ then

$$\mathcal{D}[A(\theta^{1},\ldots,\theta^{r},X_{1},\ldots,X_{s})] = (\mathcal{D}A)(\theta^{1},\ldots,\theta^{r},X_{1},\ldots,X_{s})$$

$$+ \sum_{i=1}^{r} A(\theta^{1},\ldots,\mathcal{D}\theta^{i},\ldots,\theta^{r},X_{1},\ldots,X_{s})$$

$$+ \sum_{j=1}^{s} A(\theta^{1},\ldots,\theta^{r},X_{1},\ldots,\mathcal{D}X_{j},\ldots,X_{s}).$$

(The placement of parentheses is crucial here: on the left-hand side 2 is applied to a function, on the right-hand side to the tensor A, to one-forms, and to vector fields.)

Proof. For simplicity let r = s = 1. We assert that

$$A(\theta, X) = \overline{C}(A \otimes \theta \otimes X),$$

where \bar{C} is a composition of two contractions. In fact, relative to a coordinate system $A \otimes \theta \otimes X$ has components $A_i^i \theta_k X^i$, while $A(\theta, X) = \sum A_i^i \theta_i X^i$. Thus

$$\mathcal{D}(A(\theta, X)) = \mathcal{D} \, \overline{C}(A \otimes \theta \otimes X) = \overline{C} \, \mathcal{D}(A \otimes \theta \otimes X)$$

$$= \overline{C}(\mathcal{D}A \otimes \theta \otimes X) + \overline{C}(A \otimes \mathcal{D}\theta \otimes X) + \overline{C}(A \otimes \theta \otimes \mathcal{D}X)$$

$$= (\mathcal{D}A)(\theta, X) + A(\mathcal{D}\theta, X) + A(\theta, \mathcal{D}X).$$

For a (1, s) tensor expressed as an $\mathfrak{F}(M)$ -multilinear function $A: \mathfrak{X}(M)^s \to \mathfrak{X}(M)$ the tensor derivation obeys the same formal product rule, namely.

$$\mathscr{D}(A(X_1,\ldots,X_s))=(\mathscr{D}A)(X_1,\ldots,X_s)+\sum_{i=1}^s A(X_1,\ldots,\mathscr{D}X_i,\ldots,X_s).$$

Both these versions of the product rule will frequently be solved for the term involving $\mathcal{D}A$. This gives a formula for \mathcal{D} of an arbitrary tensor in terms

of 2 applied solely to functions, vector fields, and one-forms. But for a oneform

$$(\mathcal{D}\theta)(X) = \mathcal{D}(\theta X) - \theta(\mathcal{D}X).$$

Thus functions and vector fields suffice.

14. Corollary. If tensor derivations \mathcal{D}_1 and \mathcal{D}_2 agree on functions $\mathfrak{F}(M)$ and vector fields $\mathfrak{X}(M)$, then $\mathfrak{D}_1 = \mathfrak{D}_2$.

Furthermore, from suitable data on $\mathfrak{F}(M)$ and $\mathfrak{X}(M)$ we can construct a tensor derivation.

15. Theorem. Given a vector field $V \in \mathfrak{X}(M)$ and an R-linear function $\delta \colon \mathfrak{X}(M) \to \mathfrak{X}(M)$ such that

$$\delta(fX) = Vf X + f \delta(X)$$
 for all $f \in \mathfrak{F}(M)$, $X \in \mathfrak{X}(M)$,

there exists a unique tensor derivation \mathcal{D} on M such that $\mathcal{D}_0^0 = V : \mathfrak{F}(M) \to \mathbb{R}$ $\mathfrak{F}(M)$ and $\mathfrak{D}_0^1 = \delta$.

Proof. \mathcal{D}_0^0 and \mathcal{D}_0^1 are given. The formula preceding Corollary 14 shows that \mathcal{D} on a one-form θ must be defined by

$$(\mathcal{D}\theta)(X) = V(\theta X) - \theta(\delta X)$$
 for all $X \in \mathfrak{X}(M)$.

Using the formula given for δ it is easy to check that $\mathfrak{D}\theta$ is $\mathfrak{F}(M)$ -linear. hence is a one-form, and that $\mathcal{D} = \mathcal{D}_1^0: \mathfrak{X}^*(M) \to \mathfrak{X}^*(M)$ is **R**-linear.

By the product rule (13), \mathcal{D} on an (r, s) tensor A with $r + s \ge 2$ must be defined by

$$(\mathcal{D}A)(\theta^1,\ldots,\theta^r,X_1,\ldots,X_s) = V(A(\theta^1,\ldots,\theta^r,X_1,\ldots,X_s))$$

$$-\sum_{i=1}^r A(\theta^1,\ldots,\mathcal{D}\theta^i,\ldots,\theta^r,X_1,\ldots,X_s)$$

$$-\sum_{j=1}^s A(\theta^1,\ldots,\theta^r,X_1,\ldots,\delta X_j,\ldots,X_s).$$

(On the right-hand side, D of a one-form is defined as above.)

Again it is easy to verify that $\mathcal{D}A$ is $\mathfrak{F}(M)$ -multilinear hence is an (r, s)tensor, and that $\mathcal{D}: \mathfrak{T}_s^r(M) \to \mathfrak{T}_s^r(M)$ is R-linear. Furthermore, a direct computation shows that $\mathcal{D}(A \otimes B) = \mathcal{D}A \otimes B + A \otimes \mathcal{D}B$. (Take A and B of type (1, 1) to see how this works.)

To prove that 20 commutes with contraction, consider first the case $C:\mathfrak{T}_1^1(M)\to\mathfrak{F}(M)$. That $\mathscr{D}C=C\mathscr{D}$ on tensor products $\theta\otimes X$ is immediate from the definition of \mathcal{D} on one-forms. Hence $\mathcal{D}C = C\mathcal{D}$ on sums of terms of מוטטווטן ב ווייי

the form $\theta \otimes X$. Since \mathcal{D} is local and C pointwise it suffices to prove $\mathcal{D}C = C_{\mathcal{D}}$ the form $\theta \otimes X$. Since \mathcal{D} is local and \mathcal{C} points on coordinate neighborhoods. But there Lemma 5 shows that every (1, 1)tensor can be written as such a sum.

The extension to arbitrary contractions is an exercise in parentheses,

Taking $A \in \mathfrak{T}_2^1(M)$ for example,

$$(\mathcal{D}C_2^1A)(X) = \mathcal{D}((C_2^1A)(X)) - (C_2^1A)(\mathcal{D}X)$$

$$= \mathcal{D}(C\{A(\cdot, X, \cdot)\}) - C\{A(\cdot, \mathcal{D}X, \cdot)\}$$

$$= C\{\mathcal{D}(A(\cdot, X, \cdot)) - A(\cdot, \mathcal{D}X, \cdot)\}$$

$$= C\{(\mathcal{D}A)(\cdot, X, \cdot)\} = (C_2^1\mathcal{D}A)(X).$$

Hence $\mathcal{D}C_2^1A = C_2^1\mathcal{D}A$.

Here is an application of the theorem.

If $V \in \mathfrak{X}(M)$ the tensor derivation L_V such that 16. Definition.

$$L_V(f) = Vf$$
 for all $f \in \mathfrak{T}(M)$,
 $L_V(X) = [V, X]$ for all $X \in \mathfrak{X}(M)$

is called the Lie derivative relative to V.

The definition is valid since L_v on vector fields satisfies the hypothesis on δ in the theorem:

$$L_{\nu}(fX) = [V, fX] = VfX + f[V, X] = VfX + fL_{\nu}X.$$

SYMMETRIC BILINEAR FORMS

Semi-Riemannian geometry involves a particular kind of (0, 2) tensor on tangent spaces. To study these in general, let V be a real vector space (finitedimensional where the context so indicates). A bilinear form on V is an **R**-bilinear function $b: V \times V \to \mathbf{R}$, and we consider only the symmetric case: b(v, w) = b(w, v) for all v, w.

- 17. **Definition.** A symmetric bilinear form b on V is
- positive [negative] definite provided $v \neq 0$ implies b(v, v) > 0 [<0], (1)
- positive [negative] semidefinite provided $b(v, v) \ge 0$ [≤ 0] for all (2) $v \in V$.
 - nondegenerate provided b(v, w) = 0 for all $w \in V$ implies v = 0. (3)

Also b is definite [semidefinite] provided either alternative in (1) [(2)]holds. If b is definite then it is obviously both semidefinite and nondegenerate; the converse follows from Exercise 12.