A. POLARITY

- Part of the molecule has a slight positive charge and part of the molecule has a slight negative charge.
- This means it is polar.

Electrons are more attracted to oxygen than to hydrogen

oxygen atom has a slight **negative** charge

hydrogen atoms have a slight **positive** charge

Water molecules have two poles, so they are dipolar.

B. HYDROGEN BONDING δ^{-} δ^{+} δ^{+} δ^{-} δ^{+} δ^{-} δ^{+} δ^{+} δ^{+}

- You are **expected** to be able to **draw** three water molecules forming **hydrogen bonds**.
- A water molecule is polar.
- The slightly positive (hydrogen) pole is attracted to negative ions (e.g. Cl⁻)
- The slightly negative (oxygen) pole is attracted to positive ions (e.g. Na⁺)
- Water forms **hydrogen bonds** with **polar** substances such as **glucose**.

HIGH SPECIFIC HEAT CAPACITY

It takes a lot of heat energy to break hydrogen bonds and change its temperature

(So) plays a role in **homeostasis** / keeping **habitat** temperatures **stable**

HIGH HEAT OF VAPORISATION

It takes a lot of heat energy to break hydrogen bonds and turn water into a gas

(So) plays a role **sweating** / as a **coolant**

GREATEST DENSITY AT 4°C

Allows ice to form on water surfaces

(So) fish/living organisms below are insulated

COHESION

Water molecules **stick together** by hydrogen bonds

(So) continuous water column/transpiration stream can be pulled up the xylem under tension

C. IMPORTANCE OF WATER TO ORGANISMS

ADHESION

Water molecules are attracted to other polar molecules e.g. cellulose cell walls

(So) capillary action helps water to rise in the xylem

SOLVENT

Water can **attract** and **dissolve polar** molecules.

(So) a transport medium in blood/xylem

SURFACE TENSION

Cohesion between water molecules creates surface tension

(So) organisms can live on water surfaces

MEDIUM FOR REACTIONS

Chemical reactions happen dissolved in water

Needed for hydrolysis and photosynthesis

D. COMPARING THE THERMAL PROPERTIES OF WATER AND METHANE

- Water (H₂O) and methane (CH₄) have a similar molecular mass.
- Methane has weaker intermolecular forces and no hydrogen bonds.
- For **all** properties in the table, water has **higher** values than methane.

Property	Water	Methane	Main Idea
Specific heat capacity / per g per °C	4.2	2.2	Hydrogen bonds
Heat of vaporisation /J per g	2257	760	between water molecules restrict movement A lot of heat energy is needed to break these
Boiling point / °C	100	-160	hydrogen bonds to turn:water into a gasice into water
Melting point / °C	0	-182	

