Rules for sketching Bode plots

Factor	Magnitude, M^{dB}	Phase, ϕ^{deg}	Sketch
$\frac{K}{s^n}$	• straight line • $M^{dB} _{\omega=1}=K^{dB}$ • $\omega _{M^{dB}=0}=K^{1/n}$ • slope: $-20n~\mathrm{dB/dec}$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$T \cdot s + 1$	 Low frequency asymptote at 0dB High frequency asymptote: slope = 20dB/dec Corner frequency ω_c = ½ 	 arctangent φ ∈ (0, 90°) inflection (ω_c, 45°) 	0 0 $\omega_{c} = \frac{1}{T}$ 0 0 0 0 0 0 0 0 0 0
$\frac{1}{T \cdot s + 1}$	 Low frequency asymptote at 0dB High frequency asymptote: slope = -20dB/dec Corner frequency ω_c = ½ 	 arctangent φ ∈ (0, -90°) inflection (ω_c, -45°) 	M^{dB} 0 $\omega_{C} = \frac{1}{T}$ $\omega_{rad/sec}$ $\omega_{C} = \frac{1}{T}$ $\omega_{rad/sec}$ $\omega_{C} = \frac{1}{T}$ $\omega_{rad/sec}$ $\omega_{C} = \frac{1}{T}$ $\omega_{rad/sec}$ $\omega_{C} = \frac{1}{T}$ $\omega_{C} = \frac{1}{$
$\frac{1}{\omega_n^2} s^2 + \frac{2\zeta}{\omega_n} s + 1$	 Low frequency asymptote at 0dB High frequency asymptote: slope = 40dB/dec Corner frequency ω_c = ω_n 	 arctangent φ ∈ (0, 180°) inflection (ω_c, 90°) 	M^{dB} $A0dB/dec$ O
$\frac{1}{\frac{1}{\omega_n^2}s^2 + \frac{2\zeta}{\omega_n}s + 1}$	 Low frequency asymptote at 0dB High frequency asymptote: slope = -40dB/dec Corner frequency ω_c = ω_n 	• arctangent	M^{dB} 0 0 0 0 0 0 0