Local Fields

Lectured by Dr Rong Zhou Typed by David Kurniadi Angdinata

Michaelmas 2020

Syllabus

Local Fields Contents

Contents

1	Basic theory		
	1.1	Absolute values	3
	1.2	Valuation rings	5
	1.3	The p-adic numbers	8
2	Cor	mplete valued fields	10
	2.1	Hensel's lemma	10
	2.2	Teichmüller lifts	11
	2.3	Extensions of complete valued fields	13
3	Loc	eal fields	16
	3.1	Non-archimedean local fields	16
	3.2	Witt vectors*	17
	3.3	Classification of local fields	20
	3.4	Global fields	22
4	Dec	dekind domains	23
	4.1	Dedekind domains and DVRs	23
	4.2	Extensions of Dedekind domains	
	4.3	Completions of number fields	26
	4.4	Decomposition groups	
5	Rar	mification theory	30
	5.1	Unramified and totally ramified extensions	30
	5.2	Structure of units	
	5.3	Higher ramification groups	
	5 4	Upper numbering of ramification groups	

1 Basic theory

How can we find solutions to Diophantine equations? Let $f(X_1, \ldots, X_r) \in \mathbb{Z}[X_1, \ldots, X_r]$ be a polynomial with integer coefficients. What are integer or rational solutions to $f(X_1, \ldots, X_r) = 0$? Finding solutions to Diophantine equations in general is a very difficult problem. Consider a related but much simpler problem of solving the congruences

Lecture 1 Friday 09/10/20

$$f(X_1, \dots, X_r) \equiv 0 \mod p, \qquad \dots, \qquad f(X_1, \dots, X_r) \equiv 0 \mod p^n, \qquad \dots$$

Now this is just a finite computation, since modulo primes there are only finitely many choices for solutions, so this is a much easier problem. Local fields give a way to package all this information together.

1.1 Absolute values

Definition 1.1.1. Let K be a field. An absolute value on K is a function $|\cdot|: K \to \mathbb{R}_{>0}$ such that

- 1. |x| = 0 if and only if x = 0,
- 2. |xy| = |x||y| for all $x, y \in K$, and
- 3. the triangle inequality $|x+y| \le |x| + |y|$ for all $x, y \in K$.

We say $(K,|\cdot|)$ is a valued field.

Example.

- Let $K = \mathbb{R}, \mathbb{C}$ with the usual absolute value. Write $|\cdot|_{\infty}$ for this absolute value.
- Let K be any field. The **trivial absolute value** on K is defined by

$$|x| = \begin{cases} 0 & x = 0 \\ 1 & x \neq 0 \end{cases}.$$

Ignore this case in this course.

• Let $K = \mathbb{Q}$ and p a prime. For $0 \neq x \in \mathbb{Q}$, write $x = p^n(a/b)$, where $a, b \in \mathbb{Z}$ such that (a, p) = 1 and (b, p) = 1. The **p-adic absolute value** is defined to be

$$|x|_p = \begin{cases} 0 & x = 0\\ p^{-n} & x = p^n \frac{a}{b} \end{cases}.$$

Axiom 1 is clear. Write $y = p^m(c/d)$. Axiom 2 is

$$|xy|_p = \left| p^{m+n} \frac{ac}{bd} \right|_p = p^{-m-n} = |x|_p |y|_p.$$

Without loss of generality $m \geq n$. Axiom 3 is

$$\left|x+y\right|_{p} = \left|p^{n} \frac{ad+p^{m-n}bc}{bd}\right|_{p} = \left|p^{n}\right|_{p} \left|\frac{ad+p^{m-n}bc}{bd}\right|_{p} \le p^{-n} = \max\left(\left|x\right|_{p},\left|y\right|_{p}\right).$$

An absolute value on K induces a metric d(x,y) = |x-y| on K, hence induces a topology on K.

Exercise. + and \cdot are continuous.

Definition 1.1.2. Let $|\cdot|$ and $|\cdot|'$ be absolute values on a field K. We say $|\cdot|$ and $|\cdot|'$ are **equivalent** if they induce the same topology. An equivalence class of absolute values is called a **place**.

Proposition 1.1.3. Let $|\cdot|$ and $|\cdot|'$ be non-trivial absolute values on K. The following are equivalent.

- 1. $|\cdot|$ and $|\cdot|'$ are equivalent.
- 2. |x| < 1 if and only if |x|' < 1 for all $x \in K$.
- 3. There exists $c \in \mathbb{R}_{>0}$ such that $|x|^c = |x|'$ for all $x \in K$.

Proof.

- 1 \implies 2. |x| < 1 if and only if $x^n \to 0$ with respect to $|\cdot|$, if and only if $x^n \to 0$ with respect to $|\cdot|'$, if and only if |x|' < 1.
- $2 \implies 3$. Let $a \in K^{\times}$ such that |a| < 1, which exists since $|\cdot|$ is non-trivial. We need to show that

$$\frac{\log|x|}{\log|a|} = \frac{\log|x|'}{\log|a|'}, \qquad x \in K^{\times}.$$

Assume $\log |x|/\log |a| < \log |x|'/\log |a|'$. Choose $m, n \in \mathbb{Z}$ such that

$$\frac{\log|x|}{\log|a|} < \frac{m}{n} < \frac{\log|x|'}{\log|a|'}.$$

Then we have $n \log |x| < m \log |a|$ and $n \log |x|' > m \log |a|'$, so $|x^n/a^m| < 1$ and $|x^n/a^m|' > 1$, a contradiction. Similarly for $\log |x|/\log |a| > \log |x|'/\log |a|'$.

 $3 \implies 1$. Clear.

This course is mainly interested in the following types of absolute values.

Definition 1.1.4. An absolute value $|\cdot|$ on K is said to be **non-archimedean** if it satisfies the **ultrametric** inequality

$$|x+y| \le \max(|x|,|y|).$$

If $|\cdot|$ is not non-archimedean, then it is **archimedean**.

Example.

- $|\cdot|_{\infty}$ on \mathbb{R} is archimedean.
- $|\cdot|_n$ is a non-archimedean absolute value on \mathbb{Q} .

Lemma 1.1.5 (All triangles are isosceles). Let $(K, |\cdot|)$ be a non-archimedean valued field and $x, y \in K$. If |x| < |y|, then |x - y| = |y|.

Fact.

- |1| = |-1| = 1.
- |-y| = |y|.

Proof. $|x - y| \le \max(|x|, |y|) = |y|$, and $|y| \le \max(|x|, |x - y|)$, so $|y| \le |x - y|$.

Convergence is easier for non-archimedean $|\cdot|$.

Proposition 1.1.6. Let $(K,|\cdot|)$ be non-archimedean and $(x_n)_{n=1}^{\infty}$ a sequence in K. If $|x_n - x_{n+1}| \to 0$, then $(x_n)_{n=1}^{\infty}$ is Cauchy. In particular, if K is in addition complete, then $(x_n)_{n=1}^{\infty}$ converges.

Proof. For $\epsilon > 0$, choose N such that $|x_n - x_{n+1}| < \epsilon$ for all n > N. Then for N < n < m,

$$|x_n - x_m| = |(x_n - x_{n+1}) + \dots + (x_{m-1} - x_m)| < \epsilon,$$

so $(x_n)_{n=1}^{\infty}$ is Cauchy.

Example. Let p = 5. Construct a sequence $(x_n)_{n=1}^{\infty}$ such that

- 1. $x_n^2 + 1 \equiv 0 \mod 5^n$, and
- $2. \ x_n \equiv x_{n+1} \mod 5^n,$

as follows. Take $x_1 = 2$. Suppose have constructed x_n . Let $x_n^2 + 1 = a5^n$ and set $x_{n+1} = x_n + b5^n$. Then

$$x_{n+1}^2 + 1 = x_n^2 + 2bx_n5^n + b^25^{2n} + 1 = a5^n + 2x_nb5^n + b^25^{2n} \equiv (a + 2x_nb)5^n \mod 5^{n+1}.$$

We choose b such that $a+2x_nb\equiv 0 \mod 5$. Then we have $x_{n+1}^2+1\equiv 0 \mod 5^{n+1}$ as desired. By 2, $(x_n)_{n=1}^{\infty}$ is Cauchy. Suppose $x_n\to L\in\mathbb{Q}$. Then $x_n^2\to L^2$. But by 1, $x_n^2\to -1$, so $L^2=-1$, a contradiction. Thus $(\mathbb{Q},|\cdot|_5)$ is not complete.

Definition 1.1.7. The *p*-adic numbers \mathbb{Q}_p is the completion of \mathbb{Q} with respect to $|\cdot|_p$.

Remark. By analogy, \mathbb{R} is the completion of \mathbb{Q} with respect to $|\cdot|_{\infty}$.

Let K be a non-archimedean valued field. For $x \in K$ and $r \in \mathbb{R}_{>0}$, define

$$B(x,r) = \{y \in K \mid |x - y| < r\}, \qquad \overline{B}(x,r) = \{y \in K \mid |x - y| \le r\}.$$

Lemma 1.1.8. Let $(K,|\cdot|)$ be non-archimedean.

- 1. If $z \in B(x,r)$, then B(z,r) = B(x,r), so open balls do not have centres.
- 2. If $z \in \overline{B}(x,r)$, then $\overline{B}(z,r) = \overline{B}(x,r)$.
- 3. B(x,r) is closed.
- 4. $\overline{B}(x,r)$ is open.

Proof.

- 1. Let $y \in B(x,r)$. Then |x-y| < r, so $|z-y| = |(z-x) + (x-y)| \le \max (|z-x|, |x-y|) < r$. Thus $B(x,r) \subseteq B(z,r)$. The reverse inclusion follows by symmetry.
- 2. Same as 1.
- 3. Let $y \notin B(x,r)$. If $z \in B(x,r) \cap B(y,r)$, then B(x,r) = B(z,r) = B(y,r), so $y \in B(x,r)$, a contradiction. Thus $B(x,r) \cap B(y,r) = \emptyset$.
- 4. If $z \in \overline{B}(x,r)$, then $B(z,r) \subseteq \overline{B}(z,r) = \overline{B}(x,r)$, by 2.

1.2 Valuation rings

Definition 1.2.1. Let K be a field. A valuation on K is a function $v: K^{\times} \to \mathbb{R}$ such that

- v(xy) = v(x) + v(y), and
- $v(x+y) \ge \min(v(x), v(y))$.

Fix $0 < \alpha < 1$. If v is a valuation on K, then

$$|x| = \begin{cases} \alpha^{v(x)} & x \neq 0\\ 0 & x = 0 \end{cases}$$

determines a non-archimedean absolute value. Conversely, a non-archimedean absolute value determines a valuation $v\left(x\right)=\log_{a}\left|x\right|$.

Remark.

- We ignore the trivial valuation v(x) = 0 for all $x \in K^{\times}$, which corresponds to the trivial absolute value.
- Say v_1 and v_2 are equivalent if there exists $c \in \mathbb{R}_{>0}$ such that $v_1(x) = cv_2(x)$ for all $x \in K^{\times}$.

Lecture 2 Monday 12/10/20

Example.

- If $K = \mathbb{Q}$, then $v_p(x) = -\log_p |x|_p$ is the *p*-adic valuation.
- If k is a field and $K = k(t) = \operatorname{Frac} k[t]$ is the **rational function field**, then

$$\mathbf{v}\left(t^{n}\frac{f\left(t\right)}{g\left(t\right)}\right)=n,\qquad f,g\in k\left[t\right],\qquad f\left(0\right),g\left(0\right)\neq0$$

is the t-adic valuation.

• If $K = k(t) = \operatorname{Frac} k[t] = \left\{ \sum_{i=n}^{\infty} a_i t^i \mid a_i \in k, \ n \in \mathbb{Z} \right\}$ is the field of formal Laurent series over k, then

$$\mathbf{v}\left(\sum_{i} a_{i} t^{i}\right) = \min\left\{i \mid a_{i} \neq 0\right\}$$

is the t-adic valuation on K.

Definition 1.2.2. Let $(K,|\cdot|)$ be a non-archimedean valued field. The **valuation ring** of K is defined to be $\mathcal{O}_K = \overline{\mathrm{B}}(0,1) = \{x \in K \mid |x| \leq 1\} = \{x \in K^\times \mid v(x) \geq 0\} \cup \{0\}.$

Proposition 1.2.3.

- 1. \mathcal{O}_K is an open subring of K.
- 2. The subsets $\{x \in K \mid |x| \le r\}$ and $\{x \in K \mid |x| < r\}$ for $r \le 1$ are open ideals in \mathcal{O}_K .
- 3. $\mathcal{O}_K^{\times} = \{x \in K \mid |x| = 1\}.$

Proof.

- 1. By last lecture, |1| = 1, so $1 \in \mathcal{O}_K$. Since |0| = 0, $0 \in \mathcal{O}_K$. Since |-1| = 1, |-x| = |x|. Thus if $x \in \mathcal{O}_K$, then $-x \in \mathcal{O}_K$. If $x, y \in \mathcal{O}_K$, then $|x + y| \le \max(|x|, |y|) \le 1$, so $x + y \in \mathcal{O}_K$. If $x, y \in \mathcal{O}_K$, then $|xy| = |x||y| \le 1$, so $xy \in \mathcal{O}_K$. Thus \mathcal{O}_K is a ring. Since $\mathcal{O}_K = \overline{B}(0, 1)$ it is open.
- 2. Similar to 1.
- 3. Note that $|x| \left| x^{-1} \right| = \left| xx^{-1} \right| = 1$. Thus |x| = 1 if and only if $\left| x^{-1} \right| = 1$, if and only if $x, x^{-1} \in \mathcal{O}_K$, if and only if $x \in \mathcal{O}_K^{\times}$.

Notation.

- $\mathfrak{m} = \{x \in \mathcal{O}_K \mid |x| < 1\}$ is a maximal ideal of \mathcal{O}_K .
- $k = \mathcal{O}_K/\mathfrak{m}$ is the **residue field**.

A ring is **local** if it has a unique maximal ideal.

Exercise. R is local if and only if $R \setminus R^{\times}$ is an ideal.

Corollary 1.2.4. \mathcal{O}_K is a local ring with unique maximal ideal \mathfrak{m} .

Example.

- If K = k(t), then $\mathcal{O}_K = k[t]$, $\mathfrak{m} = \langle t \rangle$, and the residue field is k.
- If $K = \mathbb{Q}$ with $|\cdot|_p$, then $\mathcal{O}_K = \mathbb{Z}_{(\langle p \rangle)}$, $\mathfrak{m} = p\mathbb{Z}_{(\langle p \rangle)}$, and $k = \mathbb{F}_p$.

Definition 1.2.5. Let $v: K^{\times} \to \mathbb{R}$ be a valuation. If $v(K^{\times}) \cong \mathbb{Z}$, we say v is a **discrete valuation**, and K is said to be a **discretely valued field**. An element $\pi \in \mathcal{O}_K$ is a **uniformiser** if $v(\pi) > 0$ and $v(\pi)$ generates $v(K^{\times})$.

Example.

- $K = \mathbb{Q}$ with the *p*-adic valuation.
- K = k(t) with the t-adic valuation.

Remark. If v is a discrete valuation, we can replace it with an equivalent one such that $v(K^{\times}) = \mathbb{Z} \subseteq \mathbb{R}$. Such v are called **normalised valuations**. Then $v(\pi) = 1$ for π a uniformiser.

Lemma 1.2.6. Let v be a valuation on K. The following are equivalent.

- 1. v is discrete.
- 2. \mathcal{O}_K is a PID.
- 3. \mathcal{O}_K is Noetherian.
- 4. m is principal.

Proof.

- 1 \Longrightarrow 2. Let $I \subseteq \mathcal{O}_K$ be a non-zero ideal. Let $x \in I$ such that $v(x) = \min\{v(a) \mid a \in I\}$ which exists since v is discrete. Then $x\mathcal{O}_K = \{a \in \mathcal{O}_K \mid v(a) \geq v(x)\} \subseteq I$, and hence $x\mathcal{O}_K = I$ by definition of x.
- $2 \implies 3$. Clear.
- $3 \implies 4$. Write $\mathfrak{m} = \mathcal{O}_K x_1 + \cdots + \mathcal{O}_K x_n$. Without loss of generality $v(x_1) \le \cdots \le v(x_n)$. Then $\mathfrak{m} = \mathcal{O}_K x_1$.
- 4 \Longrightarrow 1. Let $\mathfrak{m} = \mathcal{O}_K \pi$ for some $\pi \in \mathcal{O}_K$ and let $c = v(\pi)$. Then if v(x) > 0, then $x \in \mathfrak{m}$ and hence $v(x) \ge c$. Thus $v(K^{\times}) \cap (0, c) = \emptyset$. Since $v(K^{\times})$ is a subgroup of $(\mathbb{R}, +)$, we have $v(K^{\times}) = c\mathbb{Z}$.

Lemma 1.2.7. Let v be a discrete valuation on K and $\pi \in \mathcal{O}_K$ a uniformiser. For all $x \in K^\times$, there exist $n \in \mathbb{Z}$ and $u \in \mathcal{O}_K^\times$ such that $x = \pi^n u$. In particular $K = \mathcal{O}_K[1/x]$ for any $x \in \mathfrak{m}$ and hence $K = \operatorname{Frac} \mathcal{O}_K$.

Proof. For $x \in K^{\times}$, let n such that $v(x) = nv(\pi) = v(\pi^n)$, then $v(x\pi^{-n}) = 0$, so $u = x\pi^{-n} \in \mathcal{O}_K^{\times}$.

Definition 1.2.8. A ring R is called a **discrete valuation ring (DVR)** if it is a PID with exactly one non-zero prime ideal, necessarily maximal.

Lemma 1.2.9.

- 1. Let v be a discrete valuation on K. Then \mathcal{O}_K is a DVR.
- 2. Let R be a DVR. Then there exists a valuation v on $K = \operatorname{Frac} R$ such that $R = \mathcal{O}_K$.

Proof.

- 1. \mathcal{O}_K is a PID by Lemma 1.2.6. Let $0 \neq I \subseteq \mathcal{O}_K$ be an ideal, then $I = \langle x \rangle$. If $x = \pi^n u$ for π a uniformiser, then $\langle x \rangle$ is prime if and only if n = 1 and $I = \langle \pi \rangle = \mathfrak{m}$.
- 2. Let R be a DVR with maximal ideal \mathfrak{m} . Then $\mathfrak{m} = \langle \pi \rangle$ for some $\pi \in R$. By unique factorisation of PIDs, we may write any $x \in R \setminus \{0\}$ uniquely as $\pi^n u$ for $n \geq 0$ and $u \in R^{\times}$. Then any $y \in K \setminus \{0\}$ can be written uniquely as $\pi^m u$ for $u \in R^{\times}$ and $m \in \mathbb{Z}$. Define $v(\pi^m u) = m$. It is easy to check v is a valuation and $\mathcal{O}_K = R$.

Example.

- $\mathbb{Z}_{(\langle p \rangle)}$ is a DVR, the valuation ring of $|\cdot|_p$ on \mathbb{Q} .
- The ring of formal power series $k[[t]] = \left\{ \sum_{n \geq 0} a_n t^n \mid a_n \in k \right\}$ is a DVR, the valuation ring for the t-adic absolute value on k(t).
- Non-example. If K = k(t) is the rational function field and $K' = K(t^{1/2}, t^{1/4}, ...)$, then the t-adic valuation extends to K', and $v(t^{1/2^n}) = 1/2^n$ is not discrete.

1.3 The p-adic numbers

Recall that \mathbb{Q}_p is defined to be the completion of \mathbb{Q} with respect to the metric induced by $|\cdot|_p$. By example sheet 1, \mathbb{Q}_p is a field, $|\cdot|_p$ extends to \mathbb{Q}_p , and the associated valuation is discrete, so \mathbb{Q}_p is a discretely valued field.

Lecture 3 Wednesday 14/10/20

Definition 1.3.1. The ring of p-adic integers \mathbb{Z}_p is the valuation ring

$$\mathbb{Z}_p = \left\{ x \in \mathbb{Q}_p \ \middle| \ |x|_p \le 1 \right\}.$$

Fact.

- \mathbb{Z}_p is a DVR with maximal ideal $p\mathbb{Z}_p$.
- The non-zero ideals in \mathbb{Z}_p are $p^n\mathbb{Z}_p$ for $n \in \mathbb{N}$.

Proposition 1.3.2. \mathbb{Z}_p is the closure of \mathbb{Z} inside \mathbb{Q}_p . In particular \mathbb{Z}_p is the completion of \mathbb{Z} with respect to $|\cdot|_p$.

Proof. Need to show \mathbb{Z} is dense in \mathbb{Z}_p . Since \mathbb{Q} is dense in \mathbb{Q}_p and $\mathbb{Z}_p \subseteq \mathbb{Q}_p$ is open, $\mathbb{Z}_p \cap \mathbb{Q}$ is dense in \mathbb{Z}_p . Then

$$\mathbb{Z}_p \cap \mathbb{Q} = \left\{ x \in \mathbb{Q} \mid |x|_p \le 1 \right\} = \left\{ \frac{a}{b} \in \mathbb{Q} \mid p \nmid b \right\} = \mathbb{Z}_{(\langle p \rangle)},$$

the localisation at $\langle p \rangle$. Thus it suffices to show \mathbb{Z} is dense in $\mathbb{Z}_{(\langle p \rangle)}$. Let $a/b \in \mathbb{Z}_{(\langle p \rangle)}$ for $a, b \in \mathbb{Z}$ and $p \nmid b$. For $n \in \mathbb{N}$, choose $y_n \in \mathbb{Z}$ such that $by_n \equiv a \mod p^n$. Then $y_n \to a/b$ as $n \to \infty$. In particular, \mathbb{Z} is dense in \mathbb{Z}_p , which is complete.

Let $(A_n)_{n=1}^{\infty}$ be a sequence of sets or groups or rings together with homomorphisms $\phi_n: A_{n+1} \to A_n$, the **transition maps**. The **inverse limit** of $(A_n)_{n=1}^{\infty}$ is the set or group or ring

$$\varprojlim_{n} A_{n} = \left\{ (a_{n})_{n=1}^{\infty} \in \prod_{n=1}^{\infty} A_{n} \mid \phi_{n} (a_{n+1}) = a_{n} \right\},$$

so

$$\begin{array}{cccc} A_{n+1} & \xrightarrow{\phi_n} & A_n & \xrightarrow{\phi_{n-1}} & A_{n-1} \\ a_{n+1} & \longmapsto & a_n & \longmapsto & a_{n-1} \end{array}.$$

Fact. If A_n is a group or ring, then $\varprojlim_n A_n$ is a group or ring.

Let $\theta_m: \varprojlim_n A_n \to A_m$ denote the natural projection. The inverse limit satisfies the following universal property.

Proposition 1.3.3. Let $((A_n)_{n=1}^{\infty}, (\phi_n)_{n=1}^{\infty})$ as above. Then for any set or group or ring B together with homomorphisms $\psi_n : B \to A_n$ such that

$$B \xrightarrow{\psi_{n+1}} A_{n+1}$$

$$\downarrow^{\phi_n}$$

$$A_n$$

commutes for all n, there is a unique homomorphism $\psi: B \to \varprojlim_n A_n$ such that $\theta_n \circ \psi = \psi_n$.

Proof. Define

$$\psi : B \longrightarrow \prod_{n=1}^{\infty} A_n$$

$$b \longmapsto \prod_{n=1}^{\infty} \psi_n(b)$$

Then $\psi_n = \phi_n \circ \psi_{n+1}$ implies that $\psi(b) \in \varprojlim_n A_n$. The map is clearly unique, determined by $\psi_n = \phi_n \circ \psi_{n+1}$, and is a homomorphism of rings.

Definition 1.3.4. Let R be a ring and $I \subseteq R$ an ideal. The I-adic completion of R is the ring

$$\widehat{R} = \varprojlim_{n} R/I^{n},$$

where $\phi_n: R/I^{n+1} \to R/I^n$ is the natural projection. Note there is a natural map $\iota: R \to \widehat{R}$ by the universal property. We say that R is I-adically complete if ι is an isomorphism.

Fact. $\ker \left(\iota: R \to \widehat{R}\right) = \bigcap_{n=1}^{\infty} I^n$.

Let $(K,|\cdot|)$ be a non-archimedean valued field and $\pi \in \mathcal{O}_K$ such that $|\pi| < 1$.

Proposition 1.3.5. Assume K is complete.

- 1. Then $\mathcal{O}_K \cong \varprojlim_n \mathcal{O}_K/\pi^n \mathcal{O}_K$, so \mathcal{O}_K is π -adically complete.
- 2. If in addition K is discretely valued and π is a uniformiser, then every $x \in \mathcal{O}_K$ can be written uniquely as $x = \sum_{i=0}^{\infty} a_i \pi^i$ for $a_i \in A$, where A is a set of coset representatives for $k = \mathcal{O}_K/\pi\mathcal{O}_K$. Moreover, any series $\sum_{i=0}^{\infty} a_i \pi^i$ converges to an element in \mathcal{O}_K .

Proof.

- 1. Let $\iota: \mathcal{O}_K \to \varprojlim_n \mathcal{O}_K/\pi^n \mathcal{O}_K$. Since $\bigcap_{n=1}^\infty \pi^n \mathcal{O}_K = \{0\}$, ι is injective. Let $(x_n)_{n=1}^\infty \in \varprojlim_n \mathcal{O}_K/\pi^n \mathcal{O}_K$ and for each n, choose $y_n \in \mathcal{O}_K$ a lift of $x_n \in \mathcal{O}_K/\pi^n \mathcal{O}_K$. Let v be the valuation on K normalised such that $v(\pi) = 1$, then $v(y_n y_{n+1}) \geq n$, since $y_n y_{n+1} \in \pi^n \mathcal{O}_K$, so $(y_n)_{n=1}^\infty$ is a Cauchy sequence in \mathcal{O}_K . But \mathcal{O}_K is complete, since $\mathcal{O}_K \subseteq K$ is closed, so $y_n \to y$, and y maps to $(x_n)_{n=1}^\infty$. Thus ι is surjective.
- 2. Let $x \in \mathcal{O}_K$. Choose a_i inductively. Choose $a_0 \in A$ such that $a_0 \equiv x \mod \pi$. Suppose have chosen a_0, \ldots, a_k such that $\sum_{i=0}^k a_i \pi^i \equiv x \mod \pi^{k+1}$. Then $\sum_{i=0}^k a_i \pi^i x = c \pi^{k+1}$ for $c \in \mathcal{O}_K$. Choose $a_{k+1} \equiv -c \mod \pi$. Then $\sum_{i=0}^{k+1} a_i \pi^i \equiv x \mod \pi^{k+2}$, so $\sum_{i=0}^{\infty} a_i \pi^i = x$. For uniqueness, assume $\sum_{i=0}^{\infty} a_i \pi^i = \sum_{i=0}^{\infty} b_i \pi^i \in \mathcal{O}_K$. Then let n be minimal such that $a_n \neq b_n$. Then $\sum_{i=0}^{\infty} a_i \pi^i \not\equiv \sum_{i=0}^{\infty} b_i \pi^i \mod \pi^{n+1}$, a contradiction.

A warning is if $(K,|\cdot|)$ is not discretely valued, \mathcal{O}_K is not necessarily \mathfrak{m} -adically complete.

Corollary 1.3.6. If K is as in Proposition 1.3.5.2, then every $x \in K$ can be written uniquely as $\sum_{i=n}^{\infty} a_i \pi^i$ for $a_i \in A$. Conversely any such expression defines an element of K.

Proof. Use
$$K = \mathcal{O}_K[1/\pi]$$
.

Corollary 1.3.7.

- 1. $\mathbb{Z}_p \cong \varprojlim_n \mathbb{Z}/p^n\mathbb{Z}$.
- 2. Every element of \mathbb{Q}_p can be written uniquely as $\sum_{i=n}^{\infty} a_i p^i$ for $a_i \in \{0, \dots, p-1\}$.

Proof.

- 1. By Proposition 1.3.5, it suffices to show that $\mathbb{Z}_p/p^n\mathbb{Z}_p\cong \mathbb{Z}/p^n\mathbb{Z}$. Let $f_n:\mathbb{Z}\to\mathbb{Z}_p/p^n\mathbb{Z}_p$ be the natural map. We have $\ker f_n=\left\{x\in\mathbb{Z}\;\middle|\;|x|_p\leq p^{-n}\right\}=p^n\mathbb{Z}$, so $\mathbb{Z}/p^n\mathbb{Z}\to\mathbb{Z}_p/p^n\mathbb{Z}_p$ is injective. Let $\overline{c}\in\mathbb{Z}_p/p^n\mathbb{Z}_p$, and $c\in\mathbb{Z}_p$ a lift. Since \mathbb{Z} is dense in \mathbb{Z}_p , can choose $x\in\mathbb{Z}$ such that $x\in c+p^n\mathbb{Z}_p$, which is open in \mathbb{Z}_p , so $f_n(x)=\overline{c}$. Thus $\mathbb{Z}/p^n\mathbb{Z}\to\mathbb{Z}_p/p^n\mathbb{Z}_p$ is surjective.
- 2. Follows from Corollary 1.3.6 noting that $\mathbb{Z}_p/p\mathbb{Z}_p \cong \mathbb{F}_p$.

Example.

- $1/(1-p) = 1 + p + \cdots \in \mathbb{Q}_n$.
- Let K = k((t)) with the t-adic valuation. Then $\mathcal{O}_K = k[[t]] = \varprojlim_n k[[t]] / \langle t^n \rangle$. Moreover \mathcal{O}_K is the t-adic completion of k[t].

2 Complete valued fields

2.1 Hensel's lemma

Lecture 4 Friday 16/10/20

For complete valued fields, there is a nice way to produce solutions in \mathcal{O}_K to certain equations from solutions modulo \mathfrak{m} .

Theorem 2.1.1 (Hensel's lemma version 1). Let $(K,|\cdot|)$ be a complete discretely valued field. Let $f(X) \in \mathcal{O}_K[X]$ and assume there exists $a \in \mathcal{O}_K$ such that $|f(a)| < |f'(a)|^2$, where f'(a) is the **formal derivative** such that if $f(X) = X^n$ then $f'(X) = nX^{n-1}$. Then there exists a unique $x \in \mathcal{O}_K$ such that f(x) = 0 and |x - a| < |f'(a)|.

Proof. Let $\pi \in \mathcal{O}_K$ be a uniformiser and let r = v(f'(a)). We construct a sequence $(x_n)_{n=1}^{\infty}$ in \mathcal{O}_K such that

- 1. $f(x_n) \equiv 0 \mod \pi^{n+2r}$, and
- 2. $x_{n+1} \equiv x_n \mod \pi^{n+r}$.

Take $x_1 = a$, then $f(x_1) \equiv 0 \mod \pi^{1+2r}$. Suppose have constructed x_1, \ldots, x_n satisfying 1 and 2. Define

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

- 2. Since $x_n \equiv x_1 \mod \pi^{1+r}$, $v(f'(x_n)) = r$ and hence $f(x_n)/f'(x_n) \equiv 0 \mod \pi^{n+r}$ by 1. It follows that $x_{n+1} \equiv x_n \mod \pi^{n+r}$ so 2 holds.
- 1. Note that for X and Y indeterminates,

$$f(X+Y) = f_0(X) + f_1(X)Y + \dots, \qquad f_i(X) \in \mathcal{O}_K[X], \qquad f_0(X) = f(X), \qquad f_1(X) = f'(X).$$

Thus

$$f(x_{n+1}) = f(x_n) + f'(x_n) c + \dots, \qquad c = -\frac{f(x_n)}{f'(x_n)}.$$

Since $c \equiv 0 \mod \pi^{n+r}$ and $v\left(f_i\left(x_n\right)\right) \geq 0$, we have $f\left(x_{n+1}\right) \equiv f\left(x_n\right) + f'\left(x_n\right)c \equiv 0 \mod \pi^{n+2r+1}$, so 1 holds.

This gives the construction of $(x_n)_{n=1}^{\infty}$.

- By property 2, $(x_n)_{n=1}^{\infty}$ is Cauchy, so let $x \in \mathcal{O}_K$ such that $x_n \to x$. Then $f(x) = \lim_{n \to \infty} f(x_n) = 0$ by 1. Moreover 2 implies $a = x_1 \equiv x_n \mod \pi^{1+r}$ for all n, so $a \equiv x \mod \pi^{1+r}$, so |x a| < |f'(a)|. This proves existence.
- For uniqueness, suppose x' also satisfies f(x') = 0 and |x' a| < |f'(a)|. Set $\delta = x' x \neq 0$. Then |x' a| < |f'(a)|, |x a| < |f'(a)|, and the ultrametric inequality implies $|\delta| = |x x'| < |f'(a)| = |f'(x)|$. But

$$0 = f(x') = f(x + \delta) = f(x) + f'(x) \delta + \underbrace{\dots}_{|\cdot| \le |\delta|^2},$$

where f(x) = 0. Hence $|f'(x)\delta| \le |\delta|^2$, so $|f'(x)| \le |\delta|$, a contradiction.

Corollary 2.1.2. Let $(K,|\cdot|)$ be a complete discretely valued field. Let $f(X) \in \mathcal{O}_K[X]$ and $\overline{c} \in k = \mathcal{O}_K/\mathfrak{m}$ a simple root of $\overline{f}(X) = f(X) \mod \mathfrak{m} \in k[X]$. Then there exists a unique $x \in \mathcal{O}_K$ such that f(x) = 0 and $x \equiv \overline{c} \mod \mathfrak{m}$.

Proof. Apply Theorem 2.1.1 to a lift $c \in \mathcal{O}_K$ of \overline{c} . Then $|f(c)| < |f'(c)|^2 = 1$ since \overline{c} is a simple root. \Box

Example. $f(X) = X^2 - 2$ has a simple root modulo seven. Thus $\sqrt{2} \in \mathbb{Z}_7 \subseteq \mathbb{Q}_7$.

Corollary 2.1.3.

$$\mathbb{Q}_p^{\times} / \left(\mathbb{Q}_p^{\times} \right)^2 \cong \begin{cases} \left(\mathbb{Z} / 2 \mathbb{Z} \right)^2 & p > 2 \\ \left(\mathbb{Z} / 2 \mathbb{Z} \right)^3 & p = 2 \end{cases}.$$

Proof.

- p > 2. Let $b \in \mathbb{Z}_p^{\times}$. Applying Corollary 2.1.2 to $f(X) = X^2 b$, we find that $b \in (\mathbb{Z}_p^{\times})^2$ if and only if $b \in (\mathbb{F}_p^{\times})^2$. Thus $\mathbb{Z}_p^{\times} / (\mathbb{Z}_p^{\times})^2 \cong \mathbb{F}_p^{\times} / (\mathbb{F}_p^{\times})^2 \cong \mathbb{Z}/2\mathbb{Z}$ since $\mathbb{F}_p^{\times} \cong \mathbb{Z}/(p-1)\mathbb{Z}$. We have an isomorphism $\mathbb{Q}_p^{\times} \cong \mathbb{Z}_p^{\times} \times \mathbb{Z}$ given by $(u, n) \mapsto up^n$. Thus $\mathbb{Q}_p^{\times} / (\mathbb{Q}_p^{\times})^2 \cong (\mathbb{Z}/2\mathbb{Z})^2$.
- p=2. Let $b\in\mathbb{Z}_2^{\times}$. Consider $f(X)=X^2-b$. Then $f'(X)=2X\equiv 0 \mod 2$. Let $b\equiv 1 \mod 8$. Then $|f(1)|_2\leq 2^{-3}<|f'(1)|_2^2=2^{-2}$. By Hensel's lemma, f(X) has a root in \mathbb{Z}_2 , so $b\in\left(\mathbb{Z}_2^{\times}\right)^2$ if and only if $b\equiv 1 \mod 8$. Thus $\mathbb{Z}_2^{\times}/\left(\mathbb{Z}_2^{\times}\right)^2\cong (\mathbb{Z}/8\mathbb{Z})^{\times}\cong (\mathbb{Z}/2\mathbb{Z})^2$. Again using $\mathbb{Q}_2^{\times}\cong \mathbb{Z}_2^{\times}\times \mathbb{Z}$, we find that $\mathbb{Q}_2^{\times}/\left(\mathbb{Q}_2^{\times}\right)^2\cong (\mathbb{Z}/2\mathbb{Z})^3$.

Remark. The proof of Hensel's lemma uses the iteration $x_{n+1} = x_n - f(x_n)/f'(x_n)$, the non-archimedean analogue of the Newton-Raphson method.

For later applications, we need the following version of Hensel's lemma.

Theorem 2.1.4 (Hensel's lemma version 2). Let $(K,|\cdot|)$ be a complete discretely valued field and $f(X) \in \mathcal{O}_K[X]$. Suppose $\overline{f}(X) = f(X) \mod \mathfrak{m} \in k[X]$ factorises as $\overline{f}(X) = \overline{g}(X)\overline{h}(X)$ in k[X], with $\overline{g}(X)$ and $\overline{h}(X)$ coprime. Then there is a factorisation f(X) = g(X)h(X) in $\mathcal{O}_K[X]$, with $\overline{g}(X) = g(X) \mod \mathfrak{m}$, $\overline{h}(X) = h(X) \mod \mathfrak{m}$, and $\deg \overline{g} = \deg g$.

Proof. Example sheet 1.

Corollary 2.1.5. Let $f(X) = a_n X^n + \cdots + a_0 \in K[X]$ with $a_0, a_n \neq 0$. If f(X) is irreducible, then $|a_i| \leq \max(|a_0|, |a_n|)$ for all i.

Proof. Upon scaling, we may assume $f(X) \in \mathcal{O}_K[X]$ with $\max_i (|a_i|) = 1$. Thus we need to show that $\max_i (|a_0|, |a_n|) = 1$. If not, let r be minimal such that $|a_r| = 1$, then 0 < r < n. Thus we have $\overline{f}(X) = X^r(a_r + \cdots + a_n X^{n-r}) \mod \mathfrak{m}$. Then Theorem 2.1.4 implies f(X) = g(X)h(X) and $0 < \deg g < n$. \square

2.2 Teichmüller lifts

Lecture 5 , Monday t 19/10/20

Recall that in lecture 3 every element of $x \in \mathbb{Q}_p$ can be written as $x = \sum_{i=n}^{\infty} a_i p^i$ for $a_i \in A = \{0, \dots, p-1\}$, but $\mathbb{F}_p \to A \subseteq \mathbb{Z}_p$ does not respect any algebraic structure. It turns out there is a natural choice of coset representatives in many cases which does respect some algebraic structure.

Definition 2.2.1. A ring R of characteristic p is a **perfect ring** if the Frobenius $x \mapsto x^p$ is an automorphism of R. A field of characteristic p is a **perfect field** if it is perfect as a ring.

Remark. Since ch R = p, $(x + y)^p = x^p + y^p$, so Frobenius is a ring homomorphism.

Example.

- \mathbb{F}_{p^n} and $\overline{\mathbb{F}_p}$ are perfect fields.
- $\mathbb{F}_p[t]$ is not perfect, since $t \notin \text{im Frob.}$
- $\mathbb{F}_p(t^{1/p^{\infty}}) = \mathbb{F}_p(t, t^{1/p}, ...)$ is a perfect field, the **perfection** of $\mathbb{F}_p(t)$. The t-adic absolute value extends to $\mathbb{F}_p(t^{1/p^{\infty}})$, and the completion of $\mathbb{F}_p(t^{1/p^{\infty}})$ is a **perfectoid field**.

Fact. A field k is perfect if and only if any finite extension of k is separable.

Theorem 2.2.2. Let $(K,|\cdot|)$ be a complete discretely valued field such that $k = \mathcal{O}_K/\mathfrak{m}$ is a perfect field of characteristic p. Then there exists a unique map $[\cdot]: k \to \mathcal{O}_K$ such that

- 1. $a \equiv [a] \mod \mathfrak{m}$ for all $a \in k$, and
- 2. $[ab] \equiv [a][b] \mod \mathfrak{m}$ for all $a, b \in k$.

Moreover if $\operatorname{ch} \mathcal{O}_K = p$, then $[\cdot]$ is a ring homomorphism.

Definition 2.2.3. The element $[a] \in \mathcal{O}_K$ constructed in Theorem 2.2.2 is called the **Teichmüller lift** of a.

The following is the idea of the proof. Let $\alpha \in \mathcal{O}_K$ be any lift of $a \in k$. Then α is well-defined up to $\pi \mathcal{O}_K$. Let $\beta \in \mathcal{O}_K$ be a lift of $a^{1/p}$. We claim that β is a better lift. Why? Let $\beta' \in \mathcal{O}_K$ be another lift of $a^{1/p}$, then $\beta = \beta' + \pi u$ for $u \in \mathcal{O}_K$, so

$$\beta^{p} = \left(\beta' + \pi u\right)^{p} = \beta'^{p} + \underbrace{\sum_{i=1}^{p} \binom{p}{i} \beta'^{p-i} \left(\pi u\right)^{i}}_{\in \pi^{2} \mathcal{O}_{K}},$$

using $p \in \langle \pi \rangle$, so β^p is well-defined up to $\pi^2 \mathcal{O}_K$. Repeat this process to get better and better lifts.

Lemma 2.2.4. Let $(K,|\cdot|)$ be as in Theorem 2.2.2, and fix $\pi \in \mathcal{O}_K$ a uniformiser. Let $x, y \in \mathcal{O}_K$ such that $x \equiv y \mod \pi^k$ for $k \geq 1$. Then $x^p \equiv y^p \mod \pi^{k+1}$.

Proof. Let $x = y + u\pi^k$ for $u \in \mathcal{O}_K$. Then

$$x^{p} = \sum_{i=0}^{p} {p \choose i} (u\pi^{k})^{i} y^{p-i} = y^{p} + pu\pi^{k} y^{p-1} + \sum_{i=2}^{p} {p \choose i} (u\pi^{k})^{i} y^{p-i}.$$

Since $\mathcal{O}_K/\pi\mathcal{O}_K$ has characteristic p, we have $p \in \langle \pi \rangle$. Thus $pu\pi^k y^{p-1} \in \pi^{k+1}\mathcal{O}_K$. For $i \geq 2$, $\left(u\pi^k\right)^i \in \pi^{k+1}\mathcal{O}_K$, so $x^p \equiv y^p \mod \pi^{k+1}$.

Proof of Theorem 2.2.2. Let $a \in k$. For each $i \geq 0$ we choose a lift $y_i \in \mathcal{O}_K$ of a^{1/p^i} , and we define

$$x_i = y_i^{p^i}$$
.

Then $x_i \equiv y_i^{p^i} \equiv \left(a^{1/p^i}\right)^{p^i} \equiv a \mod \pi$. We claim that $(x_i)_{i=1}^{\infty}$ is a Cauchy sequence, and its limit $x_i \to x$ is independent of the choice of y_i .

- By construction $y_i \equiv y_{i+1}^p \mod \pi$. By Lemma 2.2.4 and induction on k, we have $y_i^{p^k} \equiv y_{i+1}^{p^{k+1}} \mod \pi^{k+1}$, and hence $x_i \equiv x_{i+1} \mod \pi^{i+1}$, by taking k = i, so $|x_i x_{i+1}| \to 0$. Then $(x_i)_{i=1}^{\infty}$ is Cauchy, so $x_i \to x \in \mathcal{O}_K$.
- Suppose $(x_i')_{i=1}^{\infty}$ arises from another choice of y_i' lifting a^{1/p^i} . Then x_i' is Cauchy, and $x_i' \to x' \in \mathcal{O}_K$.

$$x_i'' = \begin{cases} x_i & i \text{ even} \\ x_i' & i \text{ odd} \end{cases}.$$

Then x_i'' arises from lifting

$$y_i'' = \begin{cases} y_i & i \text{ even} \\ y_i' & i \text{ odd} \end{cases}.$$

Then $(x_i'')_{i=1}^{\infty}$ is Cauchy and $x_i'' \to x$ and $x_i'' \to x'$, so x = x', hence x is independent of y_i . We define [a] = x.

- 1. $x \equiv a \mod \pi$, so 1 is satisfied.
- 2. We let $b \in k$ and we choose $u_i \in \mathcal{O}_K$ a lift of b^{1/p^i} , and let $z_i = u_i^{p^i}$. Then $\lim_{i \to \infty} z_i = [b]$. Now $u_i y_i$ is a lift of $(ab)^{1/p^i}$, hence

$$[ab] = \lim_{i \to \infty} x_i z_i = \lim_{i \to \infty} x_i \lim_{i \to \infty} z_i = [a] [b],$$

so 2 is satisfied.

If ch $\mathcal{O}_K = p$, then $y_i + u_i$ is a lift of $a^{1/p^i} + b^{1/p^i} = (a+b)^{1/p^i}$. Then

$$[a+b] = \lim_{i \to \infty} (y_i + u_i)^{p^i} = \lim_{i \to \infty} (y_i^{p^i} + u_i^{p^i}) = \lim_{i \to \infty} (x_i + z_i) = [a] + [b].$$

It is easy to check that [0] = 0 and [1] = 1, so $[\cdot]$ is a ring homomorphism. For uniqueness, let $\phi : k \to \mathcal{O}_K$ be another such map. Then for $a \in k$, $\phi\left(a^{1/p^i}\right)$ is a lift of a^{1/p^i} , it follows that

$$[a] = \lim_{i \to \infty} \phi\left(a^{1/p^i}\right)^{p^i} = \lim_{i \to \infty} \phi\left(a\right) = \phi\left(a\right).$$

Example 2.2.5. Let $K = \mathbb{Q}_p$, and let $[\cdot] : \mathbb{F}_p \to \mathbb{Z}_p$. If $a \in \mathbb{F}_p^{\times}$, then $[a]^{p-1} = [a^{p-1}] = [1] = 1$, so [a] is a (p-1)-th root of unity.

More generally is the following.

Lemma 2.2.6. Let $(K,|\cdot|)$ be a complete discretely valued field. If $k = \mathcal{O}_K/\mathfrak{m} \subseteq \overline{\mathbb{F}_p}$, then $[a] \in \mathcal{O}_K^{\times}$ is a root of unity.

Proof. If $a \in k$, then $a \in \mathbb{F}_{p^n}$ for some n, so $[a]^{p^n-1} = [a^{p^n-1}] = [1] = 1$.

Theorem 2.2.7. Let $(K,|\cdot|)$ be a complete discretely valued field such that k is perfect with $\operatorname{ch} k = p > 0$. Then $K \cong k$ ((t)).

Proof. Since $K = \operatorname{Frac} \mathcal{O}_K$, it suffices to show $\mathcal{O}_K \cong k[[t]]$. Fix $\pi \in \mathcal{O}_K$ a uniformiser, let $[\cdot]: k \to \mathcal{O}_K$ be the Teichmüller map, and define

$$\phi : k[[t]] \longrightarrow \mathcal{O}_K$$

$$\sum_{i=0}^{\infty} a_i t^i \longmapsto \sum_{i=0}^{\infty} [a_i] \pi^i$$

Then ϕ is a ring homomorphism since $[\cdot]$ is a ring homomorphism and it is a bijection by Proposition 1.3.5.2.

2.3 Extensions of complete valued fields

Theorem 2.3.1. Let $(K,|\cdot|)$ be a complete non-archimedean discretely valued field and L/K a finite extension of degree n.

Lecture 6 Wednesday 21/10/20

1. $|\cdot|$ extends uniquely to an absolute value $|\cdot|_L$ on L defined by

$$|y|_L = \left| \mathcal{N}_{L/K} (y) \right|^{\frac{1}{n}}, \quad y \in L.$$

2. L is complete with respect to $|\cdot|_L$.

Recall that if L/K is finite,

$$\begin{array}{cccc} \mathbf{N}_{L/K} & : & L & \longrightarrow & K \\ & y & \longmapsto & \det_K \left(\cdot y \right) \end{array},$$

where $y: L \to L$ is the K-linear map induced by multiplication by y.

Fact.

- $N_{L/K}(xy) = N_{L/K}(x) N_{L/K}(y)$.
- Let $X^n + a_{n-1}X^{n-1} + \cdots + a_0 \in K[X]$ be the minimal polynomial of $y \in L$. Then $N_{L/K}(y) = \pm a_0^m$ for $m \ge 1$.

Definition 2.3.2. Let $(K,|\cdot|)$ be a non-archimedean valued field and V a vector space over K. A **norm** on V is a function $\|\cdot\|:V\to\mathbb{R}_{\geq 0}$ satisfying

- ||x|| = 0 if and only if x = 0,
- $\|\lambda x\| = |\lambda| \|x\|$ for all $\lambda \in K$ and $x \in V$, and
- $||x + y|| \le \max(||x||, ||y||)$ for all $x, y \in V$.

Example. If V is finite dimensional and e_1, \ldots, e_n is a basis of V, the **sup norm** on V is defined by

$$||x||_{\sup} = \max_{i} |x_{i}|, \qquad x = \sum_{i=1}^{n} x_{i} e_{i}.$$

Exercise. $\|\cdot\|_{\sup}$ is a norm.

Definition 2.3.3. Two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on V are equivalent if there exists C, D > 0 such that

$$C\|x\|_1 \le \|x\|_2 \le D\|x\|_1\,, \qquad x \in V.$$

Fact. A norm defines a topology on V, and equivalent norms induce the same topology.

Proposition 2.3.4. Let $(K,|\cdot|)$ be complete non-archimedean and V a finite dimensional vector space over K. Then V is complete with respect to $\|\cdot\|_{\text{Sup}}$.

Proof. Let $(v_i)_{i=1}^{\infty}$ be a Cauchy sequence in V and e_1, \ldots, e_n a basis for V. Write $v_i = \sum_{j=1}^n x_j^i e_j$. Then $(x_j^i)_{i=0}^{\infty}$ is a Cauchy sequence in K. Let $x_j^i \to x_j \in K$, then $v_i \to v = \sum_{j=1}^n x_j e_j$.

Theorem 2.3.5. Let $(K, |\cdot|)$ be complete non-archimedean and V a finite dimensional vector space over K. Then any two norms on V are equivalent. In particular V is complete with respect to any norm.

Proof. Since equivalence defines an equivalence relation on the set of norms, it suffices to show any norm $\|\cdot\|$ is equivalent to $\|\cdot\|_{\sup}$. Let e_1, \ldots, e_n be a basis for V, and set $D = \max_i \|e_i\|$. Then for $x = \sum_{i=1}^n x_i e_i$, we have

$$||x|| \le \max_{i} ||x_i e_i|| = \max_{i} |x_i| ||e_i|| \le D \max_{i} |x_i| = D ||x||_{\sup}.$$

To find C such that $C\|\cdot\|_{\sup} \leq \|\cdot\|$, we induct on $n = \dim V$.

$$n = 1$$
. $||x|| = ||x_1e_1|| = |x_1|||e_1||$ so take $C = ||e_1||$, since $|x_1| = ||x||_{\sup}$.

n > 1. Set $V_i = \langle e_1, \dots, e_{i-1}, e_{i+1}, \dots, e_n \rangle$. By induction, V_i is complete with respect to $\|\cdot\|$, hence closed. Then $e_i + V_i$ is closed for all i, and hence $S = \bigcup_{i=1}^n (e_i + V_i)$ is a closed subset not containing zero. Thus there exists C > 0 such that $B(0,C) \cap S = \emptyset$ where $B(0,C) = \{x \in V \mid ||x|| < C\}$. Let $x = \sum_{i=1}^n x_i e_i$ and suppose $|x_j| = \max_i |x_i|$. Then $||x||_{\sup} = |x_j|$, and $(1/x_j) x \in S$. Thus $||(1/x_j) x|| \ge C$, so $||x|| \ge C||x_j|| = C||x||_{\sup}$.

The completeness of V follows since V is complete with respect to $\|\cdot\|_{\text{sup}}$.

Definition 2.3.6. Let $R \subseteq S$ be rings.

- We say $s \in S$ is **integral** over R if there exists a monic polynomial $f(X) \in R[X]$ such that f(s) = 0.
- The integral closure $R^{\operatorname{Int} S}$ of R inside S is defined to be

$$R^{\operatorname{Int} S} = \{ s \in S \mid s \text{ is integral over } R \}.$$

• We say R is integrally closed in S if $R^{\text{Int } S} = R$.

Proposition 2.3.7. $R^{\text{Int }S}$ is a subring of S. Moreover $R^{\text{Int }S}$ is integrally closed in S.

Lemma 2.3.8. Let $(K,|\cdot|)$ be a non-archimedean valued field. Then \mathcal{O}_K is integrally closed in K.

Proof. Let $x \in K$ be integral over \mathcal{O}_K , and without loss of generality $x \neq 0$. Let $f(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_0 \in \mathcal{O}_K[X]$ such that f(x) = 0. Then $x = -a_{n-1} - \cdots - a_0/x^{n-1}$. If |x| > 1, we have $\left| -a_{n-1} - \cdots - a_0/x^{n-1} \right| \leq 1$, a contradiction. Thus $|x| \leq 1$, so $x \in \mathcal{O}_K$.

Proof of Theorem 2.3.1.

- 1. We show $|\cdot|_L = |N_{L/K}(\cdot)|$ satisfies the three axioms in the definition of absolute values.
 - 1. $|y|_{L} = 0$ if and only if $|N_{L/K}(y)| = 0$, if and only if $N_{L/K}(y) = 0$, if and only if y = 0, by property of $N_{L/K}$.
 - $2. |y_1 y_2|_L = |\mathcal{N}_{L/K}(y_1 y_2)| = |\mathcal{N}_{L/K}(y_1) \mathcal{N}_{L/K}(y_2)| = |\mathcal{N}_{L/K}(y_1)| |\mathcal{N}_{L/K}(y_2)| = |y_1|_L |y_2|_L.$
 - 3. Set $\mathcal{O}_L = \{y \in L \mid |y|_L \leq 1\}$. Claim that \mathcal{O}_L is the integral closure of \mathcal{O}_K inside L.
 - Let $0 \neq y \in \mathcal{O}_L$ and let $f(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_0 \in K[X]$ be the minimal polynomial of y. By property of $N_{L/K}$, there exists $m \geq 1$ such that $N_{L/K}(y) = \pm a_0^m$. By Corollary 2.1.5, we have $|a_i| \leq \max\left(\left|N_{L/K}(y)\right|^{1/m}, 1\right) = 1$, since $\left|N_{L/K}(y)\right| \leq 1$. Thus $a_i \in \mathcal{O}_K$ for all i, so $f \in \mathcal{O}_K[X]$, so $g \in \mathcal{O}_K[X]$ is integral over \mathcal{O}_K .
 - Conversely let $y \in L$ be integral over \mathcal{O}_K . Again by property of $N_{L/K}$, we have

$$N_{L/K}(y) = \left(\prod_{\sigma: L \to \overline{K}} \sigma(y)\right)^d, \quad d \ge 1,$$

where \overline{K} is an algebraic closure of K and σ runs over K-algebra homomorphisms. For all such $\sigma: L \to \overline{K}$, $\sigma(y)$ is integral over \mathcal{O}_K . Thus $\mathrm{N}_{L/K}(y) \in K$ is integral over \mathcal{O}_K . By Lemma 2.3.8, $\mathrm{N}_{L/K}(y) \in \mathcal{O}_K$, so $|\mathrm{N}_{L/K}(y)| \leq 1$, so $y \in \mathcal{O}_L$.

Thus $\mathcal{O}_K^{\operatorname{Int} L} = \mathcal{O}_L$ and proves the claim. Now we prove 3. Let $x,y \in L$. Without loss of generality assume $|x|_L \leq |y|_L$, then $|x/y|_L \leq 1$, so $x/y \in \mathcal{O}_L$. Since $1 \in \mathcal{O}_L = \mathcal{O}_K^{\operatorname{Int} L}$, we have $1 + x/y \in \mathcal{O}_L$ and hence $|1 + x/y|_L \leq 1$, so $|x + y|_L \leq |y|_L = \max (|y|_L, |x|_L)$. Thus 3 is satisfied. If $|\cdot|_L'$ is another absolute value on L extending $|\cdot|$, then note that $|\cdot|_L$ and $|\cdot|_L'$ are norms on L. By Theorem 2.3.5, $|\cdot|_L'$ and $|\cdot|_L$ induce the same topology on L, so $|\cdot|_L' = |\cdot|_L^c$ for some c > 0. Since $|\cdot|_L'$ extends $|\cdot|$, we have c = 1.

2. Since $|\cdot|_L$ defines a norm on K, Theorem 2.3.5 implies L is complete with respect to $|\cdot|_L$.

Lecture 7 Friday 23/10/20

Corollary 2.3.9. Let $(K,|\cdot|)$ be a complete non-archimedean discretely valued field and L/K a finite extension. Then

- 1. L is discretely valued with respect to $|\cdot|_L$, and
- 2. \mathcal{O}_L is the integral closure of \mathcal{O}_K in L.

Proof.

- 1. Let v be a valuation on K, and let v_L be a valuation on L such that v_L extends v. If $y \in L^{\times}$, then $|y|_L = \left| \mathcal{N}_{L/K} \left(y \right) \right|^{1/n}$ for n = [L:K], so $v_L \left(y \right) = (1/n) \, v \left(\mathcal{N}_{L/K} \left(y \right) \right)$. Thus $v_L \left(L^{\times} \right) \subseteq (1/n) \, v \left(K^{\times} \right)$, so v_L is discrete.
- 2. Proved in in the last lecture.

Corollary 2.3.10. Let $(K,|\cdot|)$ be a complete non-archimedean discretely valued field and \overline{K}/K an algebraic closure. Then $|\cdot|$ extends to a unique absolute value $|\cdot|_{\overline{K}}$ on \overline{K} .

Proof. If $x \in \overline{K}$, then $x \in L$ for some L/K finite. Define $|x|_{\overline{K}} = |x|_L$. Well-defined, that is independent of L, by the uniqueness in Theorem 2.3.1. The axioms for $|\cdot|_{\overline{K}}$ to be an absolute value can be checked over finite extensions. Uniqueness is clear.

Remark. $|\cdot|_{\overline{K}}$ on \overline{K} is never discrete. For example, if $K = \mathbb{Q}_p$, then $\sqrt[n]{p} \in \overline{\mathbb{Q}_p}$ for all $n \in \mathbb{N}_{>0}$, so $\operatorname{v}_p\left(\sqrt[n]{p}\right) = (1/n)\operatorname{v}_p(p) = 1/n$. Then $\overline{\mathbb{Q}_p}$ is not complete with respect to $|\cdot|_{\overline{\mathbb{Q}_p}}$. By example sheet 2, if \mathbb{C}_p is the completion of $\overline{\mathbb{Q}_p}$ with respect to $|\cdot|_{\overline{\mathbb{Q}_p}}$, then \mathbb{C}_p is algebraically closed.

3 Local fields

Definition 3.0.1. Let $(K,|\cdot|)$ be a valued field. Then K is a **local field** if it is complete and locally compact. **Example.** \mathbb{R} and \mathbb{C} are local fields.

3.1 Non-archimedean local fields

Proposition 3.1.1. Let $(K, |\cdot|)$ be a non-archimedean complete valued field. The following are equivalent.

- 1. K is locally compact.
- 2. \mathcal{O}_K is compact.
- 3. v is discrete and $k = \mathcal{O}_K/\mathfrak{m}$ is finite.

Proof.

- 1 \Longrightarrow 2. Let $U \ni 0$ be a compact neighbourhood of zero. Then there exists $x \in \mathcal{O}_K$ such that $x\mathcal{O}_K \subseteq U$. Since $x\mathcal{O}_K$ is closed, $x\mathcal{O}_K$ is compact, so \mathcal{O}_K is compact, since $x^{-1} : x\mathcal{O}_K \to \mathcal{O}_K$ is homeomorphism.
- $2 \implies 1$. If \mathcal{O}_K is compact, then $a + \mathcal{O}_K$ compact for all $a \in K$, so K is locally compact.
- $2 \implies 3$. Let $x \in \mathfrak{m}$, and $A_x \subseteq \mathcal{O}_K$ be a set of coset representatives for $\mathcal{O}_K/x\mathcal{O}_K$. Then

$$\mathcal{O}_K = \bigcup_{y \in A_x} (y + x \mathcal{O}_K)$$

is a disjoint open cover, so A_x is finite by compactness of \mathcal{O}_K , so $\mathcal{O}_K/x\mathcal{O}_K$ is finite, so $\mathcal{O}_K/\mathfrak{m}$ is finite. Suppose v is not discrete. Let $x=x_1,x_2,\ldots$ such that $v(x_1)>v(x_2)>\cdots>0$. Then $x_1\mathcal{O}_K\subsetneq x_2\mathcal{O}_K\subsetneq\cdots\subsetneq\mathcal{O}_K$. But $\mathcal{O}_K/x\mathcal{O}_K$ is finite so can only have finitely many subgroups, a contradiction.

- 3 \Longrightarrow 2. Since \mathcal{O}_K is a metric space, it suffices to show \mathcal{O}_K is sequentially compact. Let $(x_n)_{n=1}^{\infty}$ be a sequence in \mathcal{O}_K and fix $\pi \in \mathcal{O}_K$ a uniformiser in \mathcal{O}_K . Since $\pi^i \mathcal{O}_K / \pi^{i+1} \mathcal{O}_K \cong k$, $\mathcal{O}_K / \pi^i \mathcal{O}_K$ is finite for all i, since $\mathcal{O}_K \supseteq \cdots \supseteq \pi^i \mathcal{O}_K$. Since $\mathcal{O}_K / \pi \mathcal{O}_K$ is finite, there exists $a_1 \in \mathcal{O}_K / \pi \mathcal{O}_K$ and a subsequence $(x_{1,n})_{n=1}^{\infty}$ such that $x_{1,n} \equiv a_1 \mod \pi$. We define $y_1 = x_{1,1}$. Since $\mathcal{O}_K / \pi^2 \mathcal{O}_K$ is finite, there exists $a_2 \in \mathcal{O}_K / \pi^2 \mathcal{O}_K$ and a subsequence $(x_{2,n})_{n=1}^{\infty}$ of $(x_{1,n})_{n=1}^{\infty}$ such that $x_{2,n} \equiv a_2 \mod \pi^2$. Define $y_2 = x_{2,2}$. Continuing in this fashion, we obtain sequences $(x_{i,n})_{n=1}^{\infty}$ for $i = 1, 2, \ldots$ such that
 - $(x_{i+1,n})_{n=1}^{\infty}$ is a subsequence of $(x_{i,n})_{n=1}^{\infty}$, and
 - for any i, there exists $a_i \in \mathcal{O}_K/\pi^i\mathcal{O}_K$ such that $x_{i,n} \equiv a_i \mod \pi^i$ for all n.

Then necessarily $a_i \equiv a_{i+1} \mod \pi^i$ for all i. Now choose $y_i = x_{ii}$. This defines a subsequence $(y_n)_{n=1}^{\infty}$. Moreover $y_i \equiv a_i \equiv a_{i+1} \equiv y_{i+1} \mod \pi^i$. Thus y_i is Cauchy, hence converges by completeness.

Example.

- \mathbb{Q}_p is a local field.
- $\mathbb{F}_p((t))$ is a local field.

Let $(A_n)_{n=1}^{\infty}$ be a sequence of sets or groups or rings and $\phi_n: A_{n+1} \to A_n$ homomorphisms.

Definition 3.1.2. Assume A_n is finite. The **profinite topology** on $A = \varprojlim_n A_n$ is the weakest topology on A such that $A \to A_n$ is continuous for all n, where A_n are equipped with the discrete topology.

Fact. $A = \varprojlim_n A_n$ with profinite topology is compact, totally disconnected, and Hausdorff.

Proposition 3.1.3. Let K be a local field. Under the isomorphism $\mathcal{O}_K \cong \varprojlim_n \mathcal{O}_K / \pi^n \mathcal{O}_K$ for $\pi \in \mathcal{O}_K$ a uniformiser, the topology on \mathcal{O}_K coincides with the profinite topology.

Proof. One checks that the sets

$$B = \{ a + \pi^n \mathcal{O}_K \mid n \in \mathbb{N}_{>1}, \ a \in A_{\pi^n} \},\,$$

where A_{π^n} is a set of coset representatives for $\mathcal{O}_K/\pi^n\mathcal{O}_K$, is a basis of open sets in both topologies. For $|\cdot|$, this is clear. For the profinite topology, $\mathcal{O}_K \to \mathcal{O}_K/\pi^n\mathcal{O}_K$ is continuous if and only if $a + \pi^n\mathcal{O}_K$ is open for all $a \in A_{\pi^n}$. Thus B is a basis for the profinite topology.

Remark. This gives another proof that \mathcal{O}_K is compact.

Lecture 8
Monday
26/10/20
Let
ists

Lemma 3.1.4. Let K be a non-archimedean local field and L/K a finite extension. Then L is a local field. Proof. By Theorem 2.3.1, L is complete and discretely valued. It suffices to show $k_L = \mathcal{O}_L/\mathfrak{m}_L$ is finite. Let $\alpha_1, \ldots, \alpha_n$ be a basis for L as a K-vector space. The sup norm $\|\cdot\|_{\sup}$ is equivalent to $\|\cdot\|_L$ implies there exists r > 0 such that $\mathcal{O}_L \subseteq \left\{x \in L \mid \|x\|_{\sup} \le r\right\}$. Take $a \in K$ such that $|a| \ge r$, then $\mathcal{O}_L \subseteq \bigoplus_{i=1}^n a\alpha_i\mathcal{O}_K$, so \mathcal{O}_L is finitely generated as a module over \mathcal{O}_K . Thus k_L is finitely generated over k.

Theorem 3.1.5. Let K be a local field. Then either

- $K \cong \mathbb{R}$ or $K \cong \mathbb{C}$,
- K is a finite extension of \mathbb{Q}_p , or
- $K \cong \mathbb{F}_{p^n}((t))$ for p prime and $n \geq 1$.

Definition 3.1.6. A discretely valued field $(K,|\cdot|)$ has **equal characteristic** if $\operatorname{ch} K = \operatorname{ch} k$. Otherwise it has **mixed characteristic**.

Example. ch $\mathbb{Q}_p = 0$ and ch $\mathbb{F}_p = p$, so \mathbb{Q}_p has mixed characteristic.

Note that if K is a non-archimedean local field, $\operatorname{ch} k = p > 0$ and hence K has equal characteristic if $\operatorname{ch} K = p$, or mixed characteristic if $\operatorname{ch} K = 0$.

Theorem 3.1.7. Let K be a non-archimedean local field of equal characteristic p > 0. Then $K \cong \mathbb{F}_{p^n}((t))$ for some $n \ge 1$.

Proof. K is complete discretely valued and ch K > 0. Moreover $k \cong \mathbb{F}_{p^n}$ is finite, hence perfect. By Theorem 2.2.7, $K \cong \mathbb{F}_{p^n}((t))$.

3.2 Witt vectors*

For motivation, consider \mathbb{Z}_p . Let $x = \sum_{i=0}^{\infty} [x_i] p^i \in \mathbb{Z}_p$ and $y = \sum_{i=0}^{\infty} [y_i] p^i \in \mathbb{Z}_p$ for $x_i, y_i \in \mathbb{F}_p$. Suppose $x + y = s = \sum_{i=0}^{\infty} [s_i] p^i$. Can we write s_i in terms of x_j and y_j ? Reducing modulo p we obtain

$$x_0 + y_0 = s_0 \in \mathbb{F}_p$$

so s_0 is determined by x_0 and y_0 . What about s_1 ? Reducing modulo p^2 , $[x_0] + [y_0] + p[x_1] + p[y_1] \equiv [s_0] + p[s_1] \mod p^2$, so

$$p[s_1] \equiv [x_0] + [y_0] - [s_0] + p[x_1] + p[y_1] \mod p^2$$

and $[x_0] + [y_0] - [s_0] \in p\mathbb{Z}_p$. So we need $[x_0] + [y_0] - [s_0]$ modulo p^2 . Note $\left[x_0^{1/p}\right] + \left[y_0^{1/p}\right] \equiv \left[s_0^{1/p}\right] \mod p$, so by Lemma 2.2.4

$$[s_0] \equiv \left(\left[x_0^{\frac{1}{p}} \right] + \left[y_0^{\frac{1}{p}} \right] \right)^p \equiv [x_0] + [y_0] + \sum_{d=1}^{p-1} {p \choose d} \left[x_0^{\frac{d}{p}} \right] \left[y_0^{\frac{p-d}{p}} \right] \mod p^2.$$

Thus

$$s_1 = x_1 + y_1 - \sum_{d=1}^{p-1} \frac{1}{p} \binom{p}{d} \left[x_0^{\frac{d}{p}} \right] \left[y_0^{\frac{p-d}{p}} \right].$$

Can find similar expressions for s_2, s_3, \ldots Witt noticed the general pattern.

Definition 3.2.1. The *n*-th Witt polynomial w_n is defined by

$$w_n(X_0,...,X_n) = \sum_{i=0}^n p^i X_i^{p^{n-i}} \in \mathbb{Z}[X_0,...,X_n].$$

Define $S_n \in \mathbb{Q}\left[X_0, Y_0, \dots, X_n, Y_n\right]$ inductively by the equation

$$w_n(S_0,...,S_n) = w_n(X_0,...,X_n) + w_n(Y_0,...,Y_n),$$

where the only term containing S_n is p^nS_n .

Fact (Witt). $S_n \in \mathbb{Z}[X_0, Y_0, \dots, X_n, Y_n]$.

Example. $S_0 = X_0 + Y_0$ and

$$S_1 = X_1 + Y_1 + \sum_{d=1}^{p-1} \frac{1}{p} {p \choose d} X_0^d Y_0^{p-d}.$$

Theorem 3.2.2. Suppose that

$$\sum_{i=0}^{\infty} [x_i] p^i + \sum_{i=0}^{\infty} [y_i] p^i = \sum_{i=0}^{\infty} [s_i] p^i \in \mathbb{Z}_p.$$

Then we have

$$s_n = S_n \left(x_0^{\frac{1}{p^n}}, y_0^{\frac{1}{p^n}}, \dots, x_n, y_n \right).$$

Proof. Example sheet 2. A hint is Lemma 2.2.4.

Similarly, defines $Z_n \in \mathbb{Q}[X_0, Y_0, \dots, X_n, Y_n]$ by

$$w_n (Z_0, ..., Z_n) = w_n (X_0, ..., X_n) w_n (Y_0, ..., Y_n),$$

Fact (Witt). $Z_n \in \mathbb{Z}[X_0, Y_0, \dots, X_n, Y_n].$

We have

$$\sum_{i=0}^{\infty} [x_i] p^i \sum_{i=0}^{\infty} [y_i] p^i = \sum_{i=0}^{\infty} [z_i] p^i,$$

where

$$z_n = \mathbf{Z}_n \left(x_0^{\frac{1}{p^n}}, y_0^{\frac{1}{p^n}}, \dots, x_n, y_n \right).$$

The conclusion is that the ring structure on \mathbb{Z}_p can be reconstructed from the arithmetic of \mathbb{F}_p .

Definition 3.2.3. A ring A is a **strict** p-**ring** if it is p-adically complete, p is not a zero divisor in A, and A/pA is a perfect ring of characteristic p.

Theorem 3.2.4 (Existence of Witt vectors). Let R be a perfect ring of characteristic p.

- 1. There exists a strict p-ring W(R), called the **Witt vectors** of R, such that W(R)/pW(R) \cong R which is unique up to isomorphism.
- 2. If R' is another perfect ring and $f: R \to R'$ is a ring homomorphism. Then there exists a unique ring homomorphism $F: W(R) \to W(R')$ such that the diagram

$$\begin{array}{ccc}
W(R) & \xrightarrow{F} & W(R') \\
\downarrow & & \downarrow \\
R & \xrightarrow{f} & R'
\end{array}$$

commutes, so W(R) is the mixed characteristic analogue of R[[t]].

Proof. See Rabinoff's The theory of Witt vectors.

1. Define

$$W(R) = \left\{ (a_n)_{n=0}^{\infty} \mid a_n \in R \right\}.$$

Define addition and multiplication by $(a_n)_{n=0}^{\infty} + (b_n)_{n=0}^{\infty} = (s_n)_{n=0}^{\infty}$ and $(a_n)_{n=0}^{\infty} (b_n)_{n=0}^{\infty} = (z_n)_{n=0}^{\infty}$ where

$$s_n = S_n(a_0, b_0, \dots, a_n, b_n), \qquad z_n = Z_n(a_0, b_0, \dots, a_n, b_n).$$

Check this defines a ring structure. For $a = (a_0, a_1, \dots) \in W(R)$, we compute

$$pa = (0, a_0^p, a_1^p, \dots),$$

so p is not a zero divisor. Moreover

$$W(R)/p^{i}W(R) = \{(a_{n})_{n=0}^{i-1} \mid a_{n} \in R\}.$$

Compute explicitly

$$W(R) \cong \underset{i}{\varprojlim} W(R) / p^{i}W(R)$$
.

2. For $f: R \to R'$, define

$$F : W(R) \longrightarrow W(R') (a_0, a_1, ...) \longmapsto (f(a_0), f(a_1), ...)$$

Remark. If $R = \mathbb{F}_p$, then $W(\mathbb{F}_p) \cong \mathbb{Z}_p$. The isomorphism is given by

$$(a_0, a_1, \dots) \mapsto \sum_{i=0}^{\infty} \left[a_i^{\frac{1}{p^i}} \right] p^i.$$

Proposition 3.2.5. Let $(K,|\cdot|)$ be a complete discretely valued field such that $p \in \mathcal{O}_K$ is a uniformiser and $k = \mathcal{O}_K/\mathfrak{m}$ is perfect. Then $\mathcal{O}_K \cong W(k)$.

Proof. By uniqueness of W (k), it suffices to check that \mathcal{O}_K is a strict p-ring. This is clear from properties of \mathcal{O}_K .

Remark. Let k be a perfect field. If $K = \operatorname{Frac} W(k)$, then K is a complete discretely valued field with $\mathcal{O}_K \cong W(k)$ and $p = \operatorname{ch} k \in \mathcal{O}_K$ is a uniformiser.

Proposition 3.2.6. Let $(K,|\cdot|)$ be a complete discretely valued field with $k = \mathcal{O}_K/\mathfrak{m}$ perfect of characteristic p, then \mathcal{O}_K is finite over W(k).

Proof. Consider the subset $R \subseteq \mathcal{O}_K$ defined by

$$R = \left\{ \sum_{i=0}^{\infty} \left[a_i \right] p^i \mid a_i \in k \right\}.$$

Calculating as in the example of \mathbb{Z}_p shows that $R \cong W(k)$. Let π be a uniformiser in \mathcal{O}_K and let $e \in \mathbb{N}$ such that $ev(\pi) = v(p)$. Let

$$M = \bigoplus_{i=0}^{e-1} \pi^i R \subseteq \mathcal{O}_K,$$

an R-submodule. Since $\sum_{n=0}^{\infty} [x_n] \pi^n \equiv \sum_{n=0}^{e-1} [x_n] \pi^n \mod p$, M generates $\mathcal{O}_K/p\mathcal{O}_K$ as an R-module, so $\mathcal{O}_K = M + p\mathcal{O}_K$. Iterating, $\mathcal{O}_K = M + \cdots + p^{m-1}M + p^m\mathcal{O}_K = M + p^m\mathcal{O}_K$, so $M \to \mathcal{O}_K/p^m\mathcal{O}_K$ is surjective for all m. Then since $M \cong \varprojlim_n M/p^nM$, we have $M \to \mathcal{O}_K \cong \varprojlim_n \mathcal{O}_K/p^n\mathcal{O}_K$ is surjective. Thus $M = \mathcal{O}_K$.

Lecture 9 Wednesday 28/10/20

Theorem 3.2.7. Let K be a non-archimedean local field of mixed characteristic. Then K is a finite extension of \mathbb{Q}_p .

Proof. Let $k = \mathbb{F}_{p^n}$ for some prime p. Then by Proposition 3.2.6, K is a finite extension of Frac W (\mathbb{F}_{p^n}) . It suffices to show that W (\mathbb{F}_{p^n}) is finite over \mathbb{Z}_p . Let $e_1, \ldots, e_n \in \mathbb{F}_{p^n}$ be a basis of \mathbb{F}_{p^n} as an \mathbb{F}_p -vector space, and we write

$$M = \bigoplus_{i=1}^{n} W(\mathbb{F}_{p}) [e_{i}] \subseteq W(\mathbb{F}_{p^{n}}),$$

a W (\mathbb{F}_p) -submodule. For $x = \sum_{i=0}^{\infty} [x_i] p^i \in W(\mathbb{F}_{p^n})$, let $x_0 = \sum_{i=1}^n \lambda_i e_i$ for $\lambda_i \in \mathbb{F}_p$. Then $x - \sum_{i=1}^n [\lambda_i] [e_i] \in pW(\mathbb{F}_{p^n})$, since $[\lambda_i] \in W(\mathbb{F}_p)$ by commutativity of

$$\mathbb{F}_{p} \xrightarrow{[\cdot]} W(\mathbb{F}_{p})
\downarrow \qquad \downarrow \qquad ,
\mathbb{F}_{p^{n}} \xrightarrow{[\cdot]} W(\mathbb{F}_{p^{n}})$$

so W $(\mathbb{F}_{p^n}) = M + pW(\mathbb{F}_{p^n})$. Arguing as in Proposition 3.2.6 shows $M = W(\mathbb{F}_{p^n})$.

3.3 Classification of local fields

We consider the archimedean case.

Lemma 3.3.1. An absolute value $|\cdot|$ on a field is non-archimedean if and only if |n| is bounded for all $n \in \mathbb{Z}$. *Proof.*

- \implies Since |-1|=1, |-n|=|n|, thus it suffices to show that |n| is bounded for $n\geq 1$. Then $|n|=|1+\cdots+1|\leq 1$.
- \iff Suppose $|n| \leq B$ for all $n \in \mathbb{Z}$. Let $x, y \in K$ with $|x| \leq |y|$. Then we have

$$|x+y|^m = \left|\sum_{i=0}^m {m \choose i} x^i y^{m-i} \right| \le \sum_{i=0}^m \left| {m \choose i} x^i y^{m-i} \right| \le |y|^m (m+1) B.$$

Taking m-th roots gives

$$|x+y| \le |y| |(m+1) B|^{\frac{1}{m}},$$

 $\operatorname{and}\left|\left(m+1\right)B\right|^{1/m}\to 1 \text{ as } m\to\infty. \text{ Thus } |x+y|\leq |y|=\max\left(|x|\,,|y|\right).$

Corollary 3.3.2. If $(K,|\cdot|)$ is a valued field with $\operatorname{ch} K > 0$, then K is non-archimedean.

Theorem 3.3.3 (Ostrowski's theorem). Any non-trivial absolute value on \mathbb{Q} is equivalent to either the usual absolute value $|\cdot|_{\infty}$ or the p-adic absolute value $|\cdot|_{n}$ for some prime p.

Proof.

Case 1. $|\cdot|$ is archimedean. We fix b > 1 an integer such that |b| > 1, which exists by Lemma 3.3.1. Let a > 1 be an integer and write b^n in base a, so $b^n = c_m a^m + \cdots + c_0$ for $0 \le c_i < a$. Let $B = \max_{0 \le c < a} |c|$, then we have $|b^n| \le (m+1) B \max(|a|^m, 1)$, so

$$|b| \le ((n \log_a b + 1) B)^{\frac{1}{n}} \max(|a|^{\log_a b}, 1),$$

and $\left(\left(n\log_a b+1\right)B\right)^{1/n}\to 1$ as $n\to\infty$, so $|b|\le \max\left(\left|a\right|^{\log_a b},1\right)$. Then |a|>1 and

$$|b| \le |a|^{\log_a b} \,. \tag{1}$$

Switching the roles of a and b, we obtain

$$|a| \le |b|^{\log_b a} \,. \tag{2}$$

By (1) and (2),

$$\frac{\log|a|}{\log a} = \frac{\log|b|}{\log b} = \lambda \in \mathbb{R}_{>0},$$

using $\log_a b = \log b / \log a$, so $|a| = a^{\lambda}$ for all $a \in \mathbb{Z}$ such that a > 1, so $|x| = |x|_{\infty}^{\lambda}$ for all $x \in \mathbb{Q}$. Hence $|\cdot|$ is equivalent to $|\cdot|_{\infty}$.

Case 2. $|\cdot|$ is non-archimedean. As in Lemma 3.3.1, we have $|n| \leq 1$ for all $n \in \mathbb{Z}$. Since $|\cdot|$ is non-trivial, there exists $n \in \mathbb{Z}_{>1}$ such that |n| < 1. Write $n = p_1^{e_1} \dots p_r^{e_r}$, a decomposition into prime factors. Then |p| < 1 for some $p \in \{p_1, \dots, p_r\}$. Suppose |q| < 1 for some prime q such that $q \neq p$. Write 1 = rp + sq for $r, s \in \mathbb{Z}$. Then $1 = |rp + sq| \leq \max (|rp|, |sq|) < 1$, a contradiction. Thus $|p| = \alpha < 1$ and |q| = 1 for all primes $q \neq p$, so $|\cdot|$ is equivalent to $|\cdot|_p$.

Theorem 3.3.4. Let $(K, |\cdot|)$ be an archimedean local field. Then $K = \mathbb{R}$ or $K = \mathbb{C}$ and $|\cdot|$ is equivalent to the usual absolute value $|\cdot|_{\infty}$.

Proof. If $\operatorname{ch} K > 0$, then K is non-archimedean by Corollary 3.3.2. Therefore $\operatorname{ch} K = 0$, and hence $\mathbb{Q} \subseteq K$. Since $|\cdot|$ is archimedean, $|\cdot||_{\mathbb{Q}}$ is equivalent to $|\cdot|_{\infty}$ by Ostrowski. Therefore, since K is complete, we have $\mathbb{R} \subseteq K$.

• We first consider the case $\mathbb{C} \subseteq K$. Then by uniqueness of extensions of absolute values, $|\cdot||_{\mathbb{C}}$ is equivalent to $|\cdot|_{\infty}$. Suppose $\alpha \in K \setminus \mathbb{C}$. Then $f(X) = |X - \alpha|$ is a continuous function on \mathbb{C} , hence attains a lower bound at $b \in \mathbb{C}$ say, since $\mathbb{C} \subseteq K$ is closed. Set $\beta = \alpha - b$ and we let $c \in \mathbb{C}$ such that $0 < |c| < |\beta|$. We have $|\beta - a| \ge |\beta|$ for all $a \in \mathbb{C}$. Hence

$$\frac{|\beta - c|}{|\beta|} \le \frac{|\beta - c|}{|\beta|} \prod_{\substack{\zeta^n = 1, \ \zeta \neq 1}} \frac{|\beta - \zeta c|}{|\beta|} = \frac{|\beta^n - c^n|}{|\beta|^n} = \left|1 - \left(\frac{c}{\beta}\right)^n\right| \to 1,$$

as $n \to \infty$, since $|c/\beta| < 1$ implies that $(c/\beta)^n \to 0$. Then $|\beta - c| \le |\beta|$, so $|\beta - c| = |\beta|$. Replacing β by $\beta - c$ and iterating, we obtain $|\beta - mc| = |\beta|$ for all $m \in \mathbb{N}$, so

$$|m||c| = |mc| < |\beta - mc| + |\beta| = 2|\beta|$$
.

This contradicts Lemma 3.3.1, hence $K = \mathbb{C}$.

• Now suppose K does not contain \mathbb{C} . Define L = K(i) where $i^2 = -1$. Can extend $|\cdot|$ to an absolute value $|\cdot|_L$ on L given by

$$|a+ib|_L = \sqrt{{|a|}^2+{|b|}^2}, \qquad a,b \in K.$$

Applying the above argument gives $K(i) = L = \mathbb{C}$, hence $K = \mathbb{R}$.

Proof of Theorem 3.1.5.

- $|\cdot|$ archimedean is Theorem 3.3.4.
- $|\cdot|$ non-archimedean and ch K=0 is Theorem 3.2.7.
- $|\cdot|$ non-archimedean and ch K > 0 is Theorem 3.1.7.

3.4 Global fields

Definition 3.4.1. A **global field** is a field which is either

Lecture 10 Friday 30/10/20

- an algebraic number field, or
- a global function field, the rational function field of an algebraic curve over a finite field, or equivalently a finite extension of $\mathbb{F}_p(t)$.

We mainly focus on the number field. We show that local fields are completions of global fields.

Lemma 3.4.2. Let $(K, |\cdot|)$ be a complete discretely valued field and L/K a Galois extension and $|\cdot|_L$ the unique extension of $|\cdot|$ to L. Then for $x \in L$ and $\sigma \in \operatorname{Gal}(L/K)$, we have $|\sigma(x)|_L = |x|_L$.

Proof. Since $x \mapsto |\sigma(x)|_L$ is also another absolute value on L extending $|\cdot|$ on K, Lemma 3.4.2 follows from uniqueness of $|\cdot|_L$.

Lemma 3.4.3 (Krasner's lemma). Let $(K,|\cdot|)$ a complete discretely valued field. Let $f(X) \in K[X]$ be a separable irreducible polynomial with roots $\alpha_1, \ldots, \alpha_n \in \overline{K}$, the separable closure of K. Suppose $\beta \in \overline{K}$ with $|\beta - \alpha_1| < |\beta - \alpha_i|$ for $i = 2, \ldots, n$. Then $\alpha_1 \in K(\beta)$.

Proof. Let $L = K(\beta)$ and $L' = L(\alpha_1, ..., \alpha_n)$. Then L'/L is a Galois extension. Let $\sigma \in \text{Gal}(L'/L)$. We have $|\beta - \sigma(\alpha_1)| = |\sigma(\beta - \alpha_1)| = |\beta - \alpha_1|$, by Lemma 3.4.2. Thus $\sigma(\alpha_1) = \alpha_1$, so $\alpha_1 \in K(\beta)$.

Proposition 3.4.4 (Nearby polynomials define the same extension). Let $(K,|\cdot|)$ be a complete discretely valued field and $f(X) = \sum_{i=0}^{n} a_i X^i \in \mathcal{O}_K[X]$ be a separable irreducible monic polynomial. Let $\alpha \in \overline{K}$ be a root of f. Then there exists $\epsilon > 0$ such that for any $g(X) = \sum_{i=0}^{n} b_i X^i \in \mathcal{O}_K[X]$ monic with $|a_i - b_i| < \epsilon$, there exists a root β of g(X) such that $K(\alpha) = K(\beta)$.

Proof. Let $\alpha = \alpha_1, \ldots, \alpha_n \in \overline{K}$ be the roots of f which are necessarily distinct. Then $f'(\alpha) \neq 0$. We choose ϵ sufficiently small such that $|g(\alpha_1)| < |f'(\alpha_1)|^2$ and $|f'(\alpha_1) - g'(\alpha_1)| < |f'(\alpha_1)|$. Then we have $|g(\alpha_1)| < |f'(\alpha_1)|^2 = |g'(\alpha_1)|^2$. By Hensel's lemma applied to the field $K(\alpha_1)$, there exists $\beta \in K(\alpha_1)$ such that $g(\beta) = 0$ and $|\beta - \alpha_1| < |g'(\alpha_1)|$. Then

$$|g'(\alpha_1)| = |f'(\alpha_1)| = \prod_{i=2}^{n} |\alpha_1 - \alpha_i| \le |\alpha_1 - \alpha_i|, \quad i = 2, ..., n,$$

using $|\alpha_1 - \alpha_i| \le 1$. Since $|\beta - \alpha_1| < |g'(\alpha_1)| = |f'(\alpha_1)| \le |\alpha_1 - \alpha_i| = |\beta - \alpha_i|$ for i = 2, ..., n, by Krasner's lemma, $\alpha \in K(\beta)$, so $K(\alpha) = K(\beta)$.

Theorem 3.4.5. Let K be a local field, then K is the completion of a global field.

Proof.

- Case 1. $|\cdot|$ is archimedean. Then \mathbb{R} is the completion of \mathbb{Q} with respect to $|\cdot|_{\infty}$ and \mathbb{C} is the completion of $\mathbb{Q}(i)$ with respect to $|\cdot|_{\infty}$.
- Case 2. $|\cdot|$ is non-archimedean of equal characteristic. Then $K \cong \mathbb{F}_q((t))$, so K is the completion of $\mathbb{F}_q(t)$ with respect to the t-adic absolute value.
- Case 3. $|\cdot|$ is non-archimedean of mixed characteristic. Then $K \cong \mathbb{Q}_p(\alpha)$ for α a root of a monic irreducible polynomial $f(X) \in \mathbb{Z}_p[X]$. Since \mathbb{Z} is dense in \mathbb{Z}_p , we choose $g(X) \in \mathbb{Z}[X]$ as in Proposition 3.4.4. Then $K = \mathbb{Q}_p(\beta)$ for β a root of g(X). Since $\beta \in \overline{\mathbb{Q}}$, we have $\mathbb{Q}(\beta) \subseteq \mathbb{Q}_p(\beta) = K$, so K is the completion of $\mathbb{Q}(\beta)$.

4 Dedekind domains

The global analogue of a DVR is a Dedekind domain.

4.1 Dedekind domains and DVRs

Definition 4.1.1. A **Dedekind domain** is a ring R such that

- R is a Noetherian integral domain,
- R is integrally closed in Frac R, and
- every non-zero prime ideal is maximal.

Example.

- The ring of integers in a number field is a Dedekind domain.
- Any PID, hence DVR, is a Dedekind domain.

Theorem 4.1.2. A ring R is a DVR if and only if R is a Dedekind domain with exactly one non-zero prime ideal.

Lemma 4.1.3. Let R be a Noetherian ring and $I \subseteq R$ a non-zero ideal. Then there exist non-zero prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_r \subseteq R$ such that $\mathfrak{p}_1, \ldots, \mathfrak{p}_r \subseteq I$.

Proof. Suppose not. Since R is Noetherian, we may choose I maximal without this property. Then I is not prime, so there exists $x, y \in R \setminus I$ such that $xy \in I$. Let $I_1 = I + \langle x \rangle$ and $I_2 = I + \langle y \rangle$. Then by maximality of I, there exists $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ and $\mathfrak{q}_1, \ldots, \mathfrak{q}_s$ prime ideals such that $\mathfrak{p}_1 \ldots \mathfrak{p}_r \subseteq I_1$ and $\mathfrak{q}_1 \ldots \mathfrak{q}_s \subseteq I_2$, so $\mathfrak{p}_1 \ldots \mathfrak{p}_r \mathfrak{q}_1 \ldots \mathfrak{q}_s \subseteq I_1 I_2 \subseteq I$, a contradiction.

Lemma 4.1.4. Let R be an integral domain which is integrally closed in $K = \operatorname{Frac} R$. Let $I \subseteq R$ be a non-zero finitely generated ideal and $x \in K$. Then if $xI \subseteq I$, we have $x \in R$.

Proof. Let $I = \langle c_1, \ldots, c_n \rangle$. We write $xc_i = \sum_{i=1}^n a_{ij}c_i$ for some $a_{ij} \in R$. Let A be the matrix $A = (a_{ij})_{1 \leq i,j \leq n}$ and set $B = xI_n - A \in \operatorname{Mat}_{n \times n} K$. Then $B(c_1 \ldots c_n)^{\mathsf{T}} = 0$ in K^n . Multiplying by the adjugate matrix for B, $(\det B)I_n(c_1 \ldots c_n)^{\mathsf{T}} = 0$, so $\det B = 0$. But $\det B$ is a monic polynomial in x with coefficients in R. Thus x is integral over R, so $x \in R$.

Proof of Theorem 4.1.2.

- \implies Clear.
- \iff We need to show R is a PID. The assumption implies R is a local ring with unique maximal ideal \mathfrak{m} .
 - Step 1. \mathfrak{m} is principal. Let $0 \neq x \in \mathfrak{m}$. By Lemma 4.1.3, $\langle x \rangle \supseteq \mathfrak{m}^n$ for some $n \geq 1$. Let n be minimal such that $\langle x \rangle \supseteq \mathfrak{m}^n$, then we may choose $y \in \mathfrak{m}^{n-1} \setminus \langle x \rangle$. Set $\pi = x/y$. Then we have $y\mathfrak{m} \subseteq \mathfrak{m}^n \subseteq \langle x \rangle$, so $\pi^{-1}\mathfrak{m} \subseteq R$. If $\pi^{-1}\mathfrak{m} \subseteq \mathfrak{m}$, then $\pi^{-1} \in R$ by Lemma 4.1.4 and $y \in \langle x \rangle$, a contradiction. Hence $\pi^{-1}\mathfrak{m} = R$, so $\mathfrak{m} = \pi R$ is principal.
 - Step 2. R is a PID. Let $I \subseteq R$ be a non-zero ideal. Consider the sequence of ideals $I \subseteq \pi^{-1}I \subseteq \ldots$ in K. Then $\pi^{-k}I \neq \pi^{-(k+1)}I$ for all k by Lemma 4.1.4. Therefore since R is Noetherian, we may choose n maximal such that $\pi^{-n}I \subseteq R$. If $\pi^{-n}I \subseteq \mathfrak{m} = \langle \pi \rangle$, then $\pi^{-(n+1)}I \subseteq R$, a contradiction. Thus $\pi^{-n}I = R$, so $I = \langle \pi^n \rangle$.

Let R be an integral domain and $S \subseteq R$ a multiplicatively closed subset, so if $x, y \in S$ then $xy \in S$. The **localisation** $S^{-1}R$ of R with respect to S is the ring

$$S^{-1}R = \left\{ \frac{r}{s} \mid r \in R, \ s \in S \right\} \subseteq \operatorname{Frac} R.$$

If \mathfrak{p} is a prime ideal in R, we write $R_{(\mathfrak{p})}$ for the localisation with respect to $S = R \setminus \mathfrak{p}$.

Lecture 11 Monday 02/11/20

Example.

- If $\mathfrak{p} = 0$, then $R_{(\mathfrak{p})} = \operatorname{Frac} R$.
- If $R = \mathbb{Z}$, then $\mathbb{Z}_{(\langle p \rangle)} = \{a/p^n \mid a \in \mathbb{Z}, \ n \in \mathbb{Z}_{\geq 0}\}.$

Fact.

- If R is Noetherian, then $S^{-1}R$ is Noetherian.
- There exists a bijection

$$\{ \text{ prime ideals } \mathfrak{p} S^{-1} R \subseteq S^{-1} R \} \qquad \Longleftrightarrow \qquad \{ \text{ prime ideals } \mathfrak{p} \subseteq R \text{ such that } \mathfrak{p} \cap S = \emptyset \}.$$

Corollary 4.1.5. Let R be a Dedekind domain and $\mathfrak{p} \subseteq R$ a non-zero prime ideal. Then $R_{(\mathfrak{p})}$ is a DVR.

Proof. By properties of localisation, $R_{(\mathfrak{p})}$ is a Noetherian integral domain with a unique non-zero prime ideal $\mathfrak{p}R_{(\mathfrak{p})}$. It suffices to show that $R_{(\mathfrak{p})}$ is integrally closed in Frac $R_{(\mathfrak{p})} = \operatorname{Frac} R$, since then $R_{(\mathfrak{p})}$ is Dedekind, so by Theorem 4.1.2, $R_{(\mathfrak{p})}$ is a DVR. Let $x \in \operatorname{Frac} R$ be integral over $R_{(\mathfrak{p})}$. Multiplying by denominators of a monic polynomial satisfied by x, we obtain $sx^n + a_{n-1}x^{n-1} + \cdots + a_0 = 0$ for $a_i \in R$ and $s \in S$. By multiplying by s^{n-1} , xs is integral over R. Thus $xs \in R$, so $x \in R_{(\mathfrak{p})}$.

Definition 4.1.6. If R is a Dedekind domain and $\mathfrak{p} \subseteq R$ a non-zero prime ideal, we write $v_{\mathfrak{p}}$ for the normalised valuation on Frac $R = \operatorname{Frac} R_{(\mathfrak{p})}$ corresponding to the DVR $R_{(\mathfrak{p})}$.

Example. If $R = \mathbb{Z}$ and $\mathfrak{p} = \langle p \rangle$, then $v_{\mathfrak{p}}$ is the *p*-adic valuation.

Theorem 4.1.7. Let R be a Dedekind domain. Then every non-zero ideal $I \subseteq R$ can be written uniquely as a product of prime ideals, $I = \mathfrak{p}_1^{e_1} \dots \mathfrak{p}_r^{e_r}$ for \mathfrak{p}_i distinct.

Remark. This is clear for PIDs, since PID implies UFD.

Proof. We quote the following properties of localisation.

- 1. If $I \subseteq J$ then $IR_{(\mathfrak{p})} \subseteq JR_{(\mathfrak{p})}$.
- 2. I = J if and only if $IR_{(\mathfrak{p})} = JR_{(\mathfrak{p})}$, for all \mathfrak{p} prime ideals.

Let $I \subseteq R$ be a non-zero ideal. Then by Lemma 4.1.3, there are prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ such that $\mathfrak{p}_1^{\beta_1} \ldots \mathfrak{p}_r^{\beta_r} \subseteq I$, where $\beta_i > 0$. Then

$$IR_{(\mathfrak{p})} = \begin{cases} R_{(\mathfrak{p})} & \mathfrak{p} \notin \{\mathfrak{p}_1, \dots, \mathfrak{p}_r\} \\ \mathfrak{p}^{\alpha_i} R_{(\mathfrak{p})} & \mathfrak{p} = \mathfrak{p}_i \end{cases}.$$

Here, $0 < \alpha_i \le \beta_i$, and the second case follows from Corollary 4.1.5. Thus $I = \mathfrak{p}_1^{\alpha_1} \dots \mathfrak{p}_r^{\alpha_r}$ by property 2. For uniqueness, if $I = \mathfrak{p}_1^{\alpha_1} \dots \mathfrak{p}_r^{\alpha_r} = \mathfrak{p}_1^{\gamma_1} \dots \mathfrak{p}_r^{\gamma_r}$ then $\mathfrak{p}_i^{\alpha_i} R_{(\mathfrak{p}_i)} = \mathfrak{p}_i^{\gamma_i} R_{(\mathfrak{p}_i)}$, so $\alpha_i = \gamma_i$ by unique factorisation in DVRs.

4.2 Extensions of Dedekind domains

Let L/K be a finite extension. For $x \in L$ we write $\operatorname{Tr}_{L/K} x \in K$ for the trace of the K-linear map

$$\begin{array}{ccc} L & \longrightarrow & L \\ y & \longmapsto & xy \end{array}.$$

If L/K is separable such that [L:K]=n and $\sigma_1,\ldots,\sigma_n:L\to\overline{K}$ denote the embeddings of L into a separable closure \overline{K} , then

$$\operatorname{Tr}_{L/K} x = \sum_{i=1}^{n} \sigma_{i}(x).$$

Lemma 4.2.1. Let L/K be a finite separable extension of fields. Then the symmetric bilinear pairing

$$\begin{array}{cccc} (,) & : & L \times L & \longrightarrow & K \\ & (x,y) & \longmapsto & \operatorname{Tr}_{L/K} xy \end{array}$$

is non-degenerate.

Proof. By the primitive element theorem, $L = K(\alpha)$ for some $\alpha \in L$. We consider the matrix A for (,) in the K-basis for L given by $1, \ldots, \alpha^{n-1}$. Then $A_{ij} = \operatorname{Tr}_{L/K} \alpha^{i+j} = [BB^{\mathsf{T}}]_{ij}$ where B is the $n \times n$ matrix with

$$B = \begin{pmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ \sigma_1 \left(\alpha^{n-1} \right) & \dots & \sigma_n \left(\alpha^{n-1} \right) \end{pmatrix},$$

so the Vandermonde determinant is

$$\det A = (\det B)^{2} = \left[\prod_{1 \leq i < j \leq n} \left(\sigma_{i} \left(\alpha \right) - \sigma_{j} \left(\alpha \right) \right) \right]^{2} \neq 0,$$

since $\sigma_i(\alpha) \neq \sigma_j(\alpha)$ for $i \neq j$.

Remark. In fact a finite extension of fields L/K is separable if and only if the trace form is non-degenerate.

Theorem 4.2.2. Let \mathcal{O}_K be a Dedekind domain and L a finite separable extension of $K = \operatorname{Frac} \mathcal{O}_K$. Then the integral closure \mathcal{O}_L of \mathcal{O}_K in L is a Dedekind domain.

Proof. Since $\mathcal{O}_L \subseteq L$, it is an integral domain. We need to show the following.

- \mathcal{O}_L is Noetherian. Let $e_1, \ldots, e_n \in L$ be a K-basis for L. Upon scaling by K, we may assume $e_i \in \mathcal{O}_L$, for all i. Let $f_i \in L$ be the dual basis with respect to the trace form (,). Let $x \in \mathcal{O}_L$ and write $x = \sum_{i=1}^n \lambda_i f_i$ for $\lambda_i \in K$. Then $\lambda_i = \operatorname{Tr}_{L/K} x e_i \in \mathcal{O}_K$, since for any $z \in \mathcal{O}_L$, $\operatorname{Tr}_{L/K} z$ is a sum of elements which are integral over \mathcal{O}_K , so $\operatorname{Tr}_{L/K} z$ is integral over \mathcal{O}_K , so $\operatorname{Tr}_{L/K} z \in \mathcal{O}_K$. Thus $\mathcal{O}_L \subseteq \mathcal{O}_K f_1 + \cdots + \mathcal{O}_K f_n$. Since \mathcal{O}_K is Noetherian, \mathcal{O}_L is finitely generated as an \mathcal{O}_K -module, hence \mathcal{O}_L is Noetherian.
- \mathcal{O}_L is integrally closed in L. Example sheet 2.
- Every non-zero prime ideal \mathfrak{P} in \mathcal{O}_L is maximal. Let \mathfrak{P} be a non-zero prime ideal of \mathcal{O}_L , and define $\mathfrak{p} = \mathfrak{P} \cap \mathcal{O}_K$ a prime ideal of \mathcal{O}_K . Let $x \in \mathfrak{P}$, then x satisfies an equation $x^n + a_{n-1}x^{n-1} + \cdots + a_0 = 0$ for $a_i \in \mathcal{O}_K$ with $a_0 \neq 0$. Then $a_0 \in \mathfrak{P} \cap \mathcal{O}_K$ is a non-zero element of \mathfrak{p} , so \mathfrak{p} is non-zero, so \mathfrak{p} is maximal. We have $\mathcal{O}_K/\mathfrak{p} \hookrightarrow \mathcal{O}_L/\mathfrak{P}$, and $\mathcal{O}_L/\mathfrak{P}$ is a finite dimensional vector space over $\mathcal{O}_K/\mathfrak{p}$. Since $\mathcal{O}_L/\mathfrak{P}$ is an integral domain, it is a field, using the rank-nullity theorem applied to the map $y \mapsto zy$.

Remark. Theorem 4.2.2 in fact holds without the assumption that L/K is separable.

Corollary 4.2.3. The ring of integers inside a number field is a Dedekind domain.

By convention, if \mathcal{O}_K is the ring of integers of a number field and $\mathfrak{p} \subseteq \mathcal{O}_K$ is a non-zero prime ideal, we normalise $|\cdot|_{\mathfrak{p}}$, the absolute value associated to $v_{\mathfrak{p}}$, by

$$|x|_{\mathfrak{p}} = \mathrm{N}_{\mathfrak{p}}^{-\mathrm{v}_{\mathfrak{p}}(x)}, \qquad \mathrm{N}_{\mathfrak{p}} = \# \left(\mathcal{O}_K / \mathfrak{p} \right).$$

Lemma 4.2.4. Let \mathcal{O}_K be a Dedekind domain. Let $0 \neq x \in \mathcal{O}_K$. Then

$$\langle x \rangle = \prod_{\mathfrak{p} \neq 0} \prod_{prime \ ideals} \mathfrak{p}^{\mathbf{v}_{\mathfrak{p}}(x)}.$$

Note product is finite.

Proof. $x\mathcal{O}_{K,(\mathfrak{p})} = (\mathfrak{p}\mathcal{O}_{K,(\mathfrak{p})})^{v_{\mathfrak{p}}(x)}$ by definition of $v_{\mathfrak{p}}(x)$. Lemma 4.2.4 follows from properties of localisation, where I = J if and only if $I\mathcal{O}_{K,(\mathfrak{p})} = J\mathcal{O}_{K,(\mathfrak{p})}$ for all prime ideals \mathfrak{p} .

Lecture 12 Wednesday 04/11/20

Notation. Let \mathcal{O}_K be a Dedekind domain, let L/K be a finite separable extension, and let $\mathfrak{P} \subseteq \mathcal{O}_L$ and $\mathfrak{p} \subseteq \mathcal{O}_K$ be non-zero prime ideals. We write $\mathfrak{P} \mid \mathfrak{p}$ if

$$\mathfrak{p}\mathcal{O}_L = \mathfrak{P}_1^{e_1} \dots \mathfrak{P}_r^{e_r}, \qquad \mathfrak{P} \in {\{\mathfrak{P}_1, \dots, \mathfrak{P}_r\}}, \qquad e_i > 0.$$

Theorem 4.2.5. Let \mathcal{O}_K be a Dedekind domain and L a finite separable extension of $K = \operatorname{Frac} \mathcal{O}_K$. For \mathfrak{p} a non-zero prime ideal of \mathcal{O}_K , we write $\mathfrak{p}\mathcal{O}_L = \mathfrak{P}_1^{e_1} \dots \mathfrak{P}_r^{e_r}$ for $e_i > 0$. Then the absolute values on L extending $|\cdot|_{\mathfrak{p}}$, up to equivalence, are precisely $|\cdot|_{\mathfrak{P}_1}, \dots, |\cdot|_{\mathfrak{P}_r}$.

Proof. By Lemma 4.2.4, for any $x \in \mathcal{O}_K$ and $i = 1, \ldots, r$, we have $\mathrm{v}_{\mathfrak{P}_i}(x) = e_i \mathrm{v}_{\mathfrak{p}}(x)$. Hence up to equivalence, $|\cdot|_{\mathfrak{P}_i}$ extends $|\cdot|_{\mathfrak{p}}$. Now suppose $|\cdot|$ is an absolute value on L extending $|\cdot|_{\mathfrak{p}}$. Then $|\cdot|$ is bounded on \mathbb{Z} , hence $|\cdot|$ is non-archimedean. Let $R = \{x \in L \mid |x| \leq 1\} \subseteq L$ be the valuation ring for L with respect to $|\cdot|$. Then $\mathcal{O}_K \subseteq R$, and since R is integrally closed in L, by lecture 6, we have $\mathcal{O}_L \subseteq R$. Set

$$\mathfrak{P} = \{ x \in \mathcal{O}_L \mid |x| < 1 \}. \tag{3}$$

It is easy to check \mathfrak{P} is a non-zero prime ideal. For example,

- if $x, y \in \mathfrak{P}$ then $x + y \in \mathfrak{P}$ by (3),
- if $r \in \mathcal{O}_L$ and $x \in \mathfrak{P}$ then $rx \in \mathfrak{P}$ by $\mathcal{O}_L \subseteq R$ and (3),
- if $x, y \in \mathcal{O}_L$ and $xy \in \mathfrak{P}$ then $x \in \mathfrak{P}$ or $y \in \mathfrak{P}$ by (3), and
- $\mathfrak{p} \subseteq \mathfrak{P}$, hence \mathfrak{P} is non-zero.

Then $\mathcal{O}_{L,(\mathfrak{P})} \subseteq R$, since if $s \in \mathcal{O}_L \setminus \mathfrak{P}$ then |s| = 1. But $\mathcal{O}_{L,(\mathfrak{P})}$ is a DVR, hence a maximal subring of L, so $\mathcal{O}_{L,(\mathfrak{P})} = R$. Hence $|\cdot|$ is equivalent to $|\cdot|_{\mathfrak{P}}$. Since $|\cdot|$ extends $|\cdot|_{\mathfrak{p}}$, $\mathfrak{P} \cap \mathcal{O}_K = \mathfrak{p}$. Thus $\mathfrak{P}_1^{e_1} \dots \mathfrak{P}_r^{e_r} \subseteq \mathfrak{P}$, so $\mathfrak{P} = \mathfrak{P}_i$ for some i.

Let K be a number field. If $\sigma: K \to \mathbb{R}, \mathbb{C}$ is a real or complex embedding, then $x \mapsto |\sigma(x)|_{\infty}$ defines an absolute value on K, by example sheet 2, denoted by $|\cdot|_{\sigma}$.

Corollary 4.2.6. Let K be a number field with ring of integers \mathcal{O}_K . Then any absolute value on K is either

- $|\cdot|_n$ for some non-zero prime ideal of \mathcal{O}_K , or
- $|\cdot|_{\sigma}$ for some $\sigma: K \to \mathbb{R}, \mathbb{C}$.

Proof.

Case 1. $|\cdot|$ is non-archimedean. Then $|\cdot||_{\mathbb{Q}}$ is equivalent to $|\cdot|_p$ for some prime p by Ostrowski's theorem. Theorem 4.2.5 implies $|\cdot|$ is equivalent to $|\cdot|_{\mathfrak{p}}$ for \mathfrak{p} a prime ideal of \mathcal{O}_K dividing $\langle p \rangle$.

Case 2. $|\cdot|$ is archimedean. Example sheet.

4.3 Completions of number fields

Now let L/K be an extension of number fields with rings of integers \mathcal{O}_K and \mathcal{O}_L respectively. Let $\mathfrak{p} \subseteq \mathcal{O}_K$ and $\mathfrak{P} \subseteq \mathcal{O}_L$ be non-zero prime ideals such that \mathfrak{P} divides \mathfrak{p} . We write $K_{\mathfrak{p}}$ and $L_{\mathfrak{P}}$ for the completion of K and L with respect to $|\cdot|_{\mathfrak{p}}$ and $|\cdot|_{\mathfrak{P}}$ respectively.

Lemma 4.3.1.

- The natural map $L \otimes_K K_{\mathfrak{p}} \to L_{\mathfrak{P}}$ is surjective.
- $[L_{\mathfrak{P}}:K_{\mathfrak{p}}] \leq [L:K].$

Proof. Let $M = LK_{\mathfrak{p}} \subseteq L_{\mathfrak{P}}$. Then M is a finite extension of $K_{\mathfrak{p}}$ and $[M:K_{\mathfrak{p}}] \leq [L:K]$. Moreover M is complete and since $L \subseteq M \subseteq L_{\mathfrak{P}}$, we have $L_{\mathfrak{P}} = M$.

Lemma 4.3.2 (Chinese remainder theorem). Let R be a ring. Let $I_1, \ldots, I_n \subseteq R$ be ideals such that $I_i + I_j = R$ for all $i \neq j$. Then

- $\bigcap_{i=1}^{n} I_i = \prod_{i=1}^{n} I_i = I$, and
- $R/I \cong \prod_{i=1}^n R/I_i$.

Proof. Example sheet 2.

Theorem 4.3.3.

$$L\otimes_K K_{\mathfrak{p}}\cong\prod_{\mathfrak{P}\mid\mathfrak{p}}L_{\mathfrak{P}}.$$

Proof. Write $L = K(\alpha)$, by separability, and let $f(X) \in K[X]$ be the minimal polynomial of α . Let $f(X) = f_1(X) \dots f_r(X)$ in $K_{\mathfrak{p}}[X]$ where $f_i(X) \in K_{\mathfrak{p}}[X]$ are distinct irreducible. Then $L \cong K[X] / \langle f(X) \rangle$, and hence by CRT,

$$L \otimes_{K} K_{\mathfrak{p}} \cong K_{\mathfrak{p}}\left[X\right] / \left\langle f\left(X\right)\right\rangle \cong \prod_{i=1}^{r} K_{\mathfrak{p}}\left[X\right] / \left\langle f_{i}\left(X\right)\right\rangle.$$

Set $L_i = K_{\mathfrak{p}}[X] / \langle f_i(X) \rangle$, a finite extension of $K_{\mathfrak{p}}$. Then L_i contains both L and $K_{\mathfrak{p}}$, using the map of fields $K[X] / \langle f(X) \rangle \hookrightarrow K_{\mathfrak{p}}[X] / \langle f_i(X) \rangle$ is injective. Moreover L is dense inside L_i . Indeed since K is dense in $K_{\mathfrak{p}}$, can approximate coefficients of an element of $K_{\mathfrak{p}}[X] / \langle f_i(X) \rangle$ with an element of $K[X] / \langle f(X) \rangle$. Then Theorem 4.3.3 follows from the following three claims.

- $L_i \cong L_{\mathfrak{P}}$ for a prime \mathfrak{P} of \mathcal{O}_L dividing \mathfrak{p} . Since $[L_i : K_{\mathfrak{p}}] < \infty$, there is a unique absolute value $|\cdot|$ on L_i extending $|\cdot|_{\mathfrak{p}}$. By Theorem 4.2.5, $|\cdot||_L$ is equivalent to $|\cdot|_{\mathfrak{P}}$ for some $\mathfrak{P} \mid \mathfrak{p}$. Since L is dense in L_i and L_i is complete, we have $L_i \cong L_{\mathfrak{P}}$.
- Each \mathfrak{P} appears at most once. Suppose $\phi: L_i \cong L_j$ is an isomorphism preserving L and $K_{\mathfrak{p}}$, then $\phi: K_{\mathfrak{p}}[X] / \langle f_i(X) \rangle \xrightarrow{\sim} K_{\mathfrak{p}}[X] / \langle f_j(X) \rangle$ takes X to X. Hence $f_i(X) = f_j(X)$, so i = j.
- Each \mathfrak{P} appears at least once. By Lemma 4.3.1, the natural map $\pi_{\mathfrak{P}}: L \otimes_K K_{\mathfrak{p}} \to L_{\mathfrak{P}}$ is surjective for any $\mathfrak{P} \mid \mathfrak{p}$. Since $L_{\mathfrak{P}}$ is a field, $\pi_{\mathfrak{P}}$ factors through L_i for some i, and hence $L_i \cong L_{\mathfrak{P}}$ by surjectivity of $\pi_{\mathfrak{P}}$.

Example. Let $K = \mathbb{Q}$, let $L = \mathbb{Q}(i)$, and let $f(X) = X^2 + 1$. By Hensel, $\sqrt{-1} \in \mathbb{Q}_5$. Thus $\langle 5 \rangle$ splits in $\mathbb{Q}(i)$, that is $5\mathcal{O}_L = \mathfrak{p}_1\mathfrak{p}_2$.

Corollary 4.3.4. For $x \in L$,

$$\mathrm{N}_{L/K}\left(x\right)=\prod_{\mathfrak{P}\mid\mathfrak{p}}\mathrm{N}_{L_{\mathfrak{P}}/K_{\mathfrak{p}}}\left(x\right).$$

Proof. Let $\mathfrak{p}\mathcal{O}_L = \mathfrak{P}_1^{e_1} \dots \mathfrak{P}_r^{e_r}$. Let $\mathcal{B}_1, \dots, \mathcal{B}_r$ be bases for $L_{\mathfrak{P}_1}, \dots, L_{\mathfrak{P}_r}$ as $K_{\mathfrak{p}}$ -vector spaces. Then $\mathcal{B} = \bigcup_{i=1}^r \mathcal{B}_i$ is a basis for $L \otimes_K K_{\mathfrak{p}}$ over $K_{\mathfrak{p}}$. Let $[\cdot x]_{\mathcal{B}}$ and $[\cdot x]_{\mathcal{B}_i}$ denote the matrices for $\cdot x : L \otimes_K K_{\mathfrak{p}} \to L \otimes_K K_{\mathfrak{p}}$ and $\cdot x : L_{\mathfrak{P}_i} \to L_{\mathfrak{P}_i}$ with respect to the bases \mathcal{B} and \mathcal{B}_i respectively. Then

$$[\cdot x]_{\mathcal{B}} = \begin{pmatrix} [\cdot x]_{\mathcal{B}_1} & 0 \\ & \ddots & \\ 0 & [\cdot x]_{\mathcal{B}_r} \end{pmatrix},$$

so

$$\mathrm{N}_{L/K}\left(x\right) = \det\left[\cdot x\right]_{\mathcal{B}} = \prod_{i=1}^{r} \det\left[\cdot x\right]_{\mathcal{B}_{i}} = \prod_{i=1}^{r} \mathrm{N}_{L_{\mathfrak{P}_{i}}/K_{\mathfrak{p}}}\left(x\right).$$

4.4 Decomposition groups

Let \mathcal{O}_K be a Dedekind domain, L a finite separable extension of $K = \operatorname{Frac} \mathcal{O}_K$, and \mathcal{O}_L the integral closure of \mathcal{O}_K in L. By lecture 11, if $0 \neq \mathfrak{p} \subseteq \mathcal{O}_K$ is a prime ideal, then $\mathfrak{p}\mathcal{O}_L = \mathfrak{P}_1^{e_1} \dots \mathfrak{P}_r^{e_r}$ where \mathfrak{P}_i are distinct prime ideals of \mathcal{O}_L . Note that for any $i, \mathfrak{p} \subseteq \mathcal{O}_K \cap \mathfrak{P}_i \subseteq \mathcal{O}_K$, hence $\mathfrak{p} = \mathcal{O}_K \cap \mathfrak{P}_i$.

Lecture 13 Friday 06/11/20

Definition 4.4.1. e_i is the ramification index of \mathfrak{P}_i over \mathfrak{p} . We say \mathfrak{p} ramifies in L if some $e_i > 1$.

Example. Let $\mathcal{O}_K = \mathbb{C}[t]$, let $\mathcal{O}_L = \mathbb{C}[T]$, and let

$$\begin{array}{ccc} \mathcal{O}_K & \longrightarrow & \mathcal{O}_L \\ t & \longmapsto & T^n \end{array}.$$

We have $t\mathcal{O}_L = T^n\mathcal{O}_L$, so the ramification index of $\langle T \rangle$ over $\langle t \rangle$ is n. Corresponds geometrically to the degree n covering of Riemann surfaces

$$\begin{array}{ccc} \mathbb{C} & \longrightarrow & \mathbb{C} \\ x & \longmapsto & x^n \end{array}$$

having a ramification at zero with ramification index n.

Definition 4.4.2. $f_i = [\mathcal{O}_L/\mathfrak{P}_i : \mathcal{O}_K/\mathfrak{p}]$ is the **residue class degree** of \mathfrak{P}_i over \mathfrak{p} .

Theorem 4.4.3.

$$\sum_{i=1}^{r} e_i f_i = [L : K] .$$

Proof. Let $S = \mathcal{O}_K \setminus \mathfrak{p}$. We have the following whose proofs are left as an exercise.

- 1. $S^{-1}\mathcal{O}_L$ is the integral closure of $S^{-1}\mathcal{O}_K$ in L.
- 2. $S^{-1}\mathfrak{p}S^{-1}\mathcal{O}_L \cong S^{-1}\mathfrak{P}_1^{e_1}\dots\mathfrak{P}_r^{e_r}$.
- 3. $S^{-1}\mathcal{O}_L/S^{-1}\mathfrak{P}_i \cong \mathcal{O}_L/\mathfrak{P}_i$ and $S^{-1}\mathcal{O}_K/S^{-1}\mathfrak{p} \cong \mathcal{O}_K/\mathfrak{p}$.

In particular, 2 and 3 imply e_i and f_i do not change when we replace \mathcal{O}_K and \mathcal{O}_L by $S^{-1}\mathcal{O}_K$ and $S^{-1}\mathcal{O}_L$. Thus we may assume that \mathcal{O}_K is a DVR, and hence a PID. By CRT, we have

$$\mathcal{O}_L/\mathfrak{p}\mathcal{O}_L \cong \prod_{i=1}^r \mathcal{O}_L/\mathfrak{P}_i^{e_i}.$$
 (4)

Note that $\mathcal{O}_L/\mathfrak{p}\mathcal{O}_L$ is a $k = \mathcal{O}_K/\mathfrak{p}$ -module, that is a k-vector space. We count dimensions of both sides in (4). For each i, we have a decreasing sequence of k-subspaces

$$0 \subseteq \mathfrak{P}_i^{e_i-1}/\mathfrak{P}_i^{e_i} \subseteq \cdots \subseteq \mathfrak{P}_i/\mathfrak{P}_i^{e_i} \subseteq \mathcal{O}_L/\mathfrak{P}_i^{e_i}.$$

Thus $\dim_k \mathcal{O}_L/\mathfrak{P}_i^{e_i} = \sum_{j=0}^{e_i-1} \dim_k \mathfrak{P}_i^j/\mathfrak{P}_i^{j+1}$. Note that $\mathfrak{P}_i^j/\mathfrak{P}_i^{j+1}$ is an $\mathcal{O}_L/\mathfrak{P}_i$ -module and $x \in \mathfrak{P}_i^j \setminus \mathfrak{P}_i^{j+1}$ is a generator. For example, can prove this after localising at \mathfrak{P}_i . Then $\dim_k \mathfrak{P}_i^j/\mathfrak{P}_i^{j+1} = f_i$ and we have $\dim_k \mathcal{O}_L/\mathfrak{P}_i^{e_i} = e_i f_i$. Recall that \mathcal{O}_K is a DVR. By the structure theorem for modules over PIDs, \mathcal{O}_L is a free module over \mathcal{O}_K of rank n = [L:K]. Thus $\mathcal{O}_L/\mathfrak{p}\mathcal{O}_L \cong (\mathcal{O}_K/\mathfrak{p})^n$ as \mathcal{O}_K -modules and hence $\dim_k \mathcal{O}_L/\mathfrak{p}\mathcal{O}_L = n$.

Theorem 4.4.3 is the algebraic analogue of the fact that for a degree n covering $X \to Y$ of compact Riemann surfaces, and $y \in Y$ we have

$$n = \sum_{x \in f^{-1}(y)} \mathbf{e}_x,$$

where e_x is the ramification index of x. Now assume L/K is Galois. Then for any $\sigma \in \text{Gal}(L/K)$, $\sigma(\mathfrak{P}_i) \cap \mathcal{O}_K = \mathfrak{p}$ and hence $\sigma(\mathfrak{P}_i) \in {\mathfrak{P}_1, \ldots, \mathfrak{P}_r}$, so Gal(L/K) acts on ${\mathfrak{P}_1, \ldots, \mathfrak{P}_r}$.

Proposition 4.4.4. The action of Gal(L/K) on $\{\mathfrak{P}_1,\ldots,\mathfrak{P}_r\}$ is transitive.

Proof. Suppose not, so that there exist $i \neq j$ such that $\sigma(\mathfrak{P}_i) \neq \mathfrak{P}_j$ for all $\sigma \in \operatorname{Gal}(L/K)$. By CRT, we may choose $x \in \mathcal{O}_L$ such that $x \equiv 0 \mod \mathfrak{P}_i$ and $x \equiv 1 \mod \sigma(\mathfrak{P}_j)$ for all $\sigma \in \operatorname{Gal}(L/K)$. Then

$$N_{L/K}(x) = \prod_{\sigma \in Gal(L/K)} \sigma(x) \in \mathcal{O}_K \cap \mathfrak{P}_i = \mathfrak{p} \subseteq \mathfrak{P}_j.$$

Since \mathfrak{P}_j is prime, there exists $\tau \in \operatorname{Gal}(L/K)$ such that $\tau(x) \in \mathfrak{P}_j$, so $x \in \tau^{-1}(\mathfrak{P}_j)$, that is $x \equiv 0 \mod \tau^{-1}(\mathfrak{P}_i)$, a contradiction.

Corollary 4.4.5. Suppose L/K is Galois. Then $e_1 = \cdots = e_r = e$ and $f_1 = \cdots = f_r = f$, and we have n = efr.

Proof. For any $\sigma \in \operatorname{Gal}(L/K)$ we have

- $\mathfrak{p} = \sigma(\mathfrak{p}) = \sigma(\mathfrak{P}_1)^{e_1} \dots \sigma(\mathfrak{P}_r)^{e_r}$, so $e_1 = \dots = e_r$, and
- $\mathcal{O}_L/\mathfrak{P}_i = \mathcal{O}_L/\sigma(\mathfrak{P}_i)$, so $f_1 = \cdots = f_r$.

Let L/K be complete discretely valued fields with normalised valuations v_L and v_K and uniformisers π_L and π_K . The **ramification index** is $e = e_{L/K} = v_L(\pi_K)$, that is $\pi_L^e \mathcal{O}_L = \pi_K \mathcal{O}_L$. The **residue class degree** is $f = f_{L/K} = [k_L : k]$.

Corollary 4.4.6. Suppose either

- 1. L/K is finite separable, or
- 2. f is finite.

Then [L:K] = ef.

Proof.

- 1. Theorem 4.4.3.
- 2. Can apply the same proof as in Theorem 4.4.3 if we know \mathcal{O}_L is finitely generated as an \mathcal{O}_K -module. As before, $\dim_k \mathcal{O}_L/\pi_K \mathcal{O}_L = \text{ef} < \infty$. Let $x_1, \ldots, x_m \in \mathcal{O}_L$ be a set of coset representatives for a k-basis for $\mathcal{O}_L/\pi_K \mathcal{O}_L$. For $y \in \mathcal{O}_L$, can write

$$y = \sum_{i=0}^{\infty} \left(\sum_{j=1}^{m} a_{ij} x_j \right) \pi_K^i = \sum_{j=1}^{m} \left(\sum_{i=0}^{\infty} a_{ij} \pi_K^i \right) x_j, \qquad a_{ij} \in \mathcal{O}_K,$$

by Proposition 1.3.5, so \mathcal{O}_L is finitely generated over \mathcal{O}_K .

Let \mathcal{O}_K be a Dedekind domain, L a finite separable extension of $K = \operatorname{Frac} \mathcal{O}_K$, and \mathcal{O}_L the integral closure of \mathcal{O}_K in L.

Definition 4.4.7. Let L/K be finite Galois. The **decomposition group** at a prime \mathfrak{P} of \mathcal{O}_L is the subgroup of $\operatorname{Gal}(L/K)$ defined by

$$G_{\mathfrak{P}} = \{ \sigma \in \operatorname{Gal}(L/K) \mid \sigma(\mathfrak{P}) = \mathfrak{P} \}.$$

Proposition 4.4.4 shows that for any \mathfrak{P} and \mathfrak{P}' dividing \mathfrak{p} , $G_{\mathfrak{P}}$ and $G_{\mathfrak{P}'}$ are conjugate and $G_{\mathfrak{P}}$ has size ef. Recall we write $L_{\mathfrak{P}}$ and $K_{\mathfrak{p}}$ for the completions of L and K with respect to $|\cdot|_{\mathfrak{P}}$ and $|\cdot|_{\mathfrak{p}}$ respectively.

Proposition 4.4.8. Suppose L/K is finite Galois and \mathfrak{P} is a prime ideal of L dividing \mathfrak{p} . Then

- 1. $L_{\mathfrak{P}}/K_{\mathfrak{p}}$ is Galois, and
- 2. there is a natural map res: $Gal(L_{\mathfrak{P}}/K_{\mathfrak{p}}) \to Gal(L/K)$ which is injective and has image $G_{\mathfrak{P}}$.

Proof.

- 1. Since L/K is Galois, L is the splitting field of a separable polynomial $f(X) \in K[X]$. Then $L_{\mathfrak{P}}$ is the splitting field of f considered as an element of $K_{\mathfrak{p}}[X]$, so $L_{\mathfrak{P}}/K_{\mathfrak{p}}$ is Galois.
- 2. Let $\sigma \in \operatorname{Gal}(L_{\mathfrak{P}}/K_{\mathfrak{p}})$, then $\sigma(L) = L$ since L/K is normal, hence we have a map res: $\operatorname{Gal}(L_{\mathfrak{P}}/K_{\mathfrak{p}}) \to \operatorname{Gal}(L/K)$. Since L is dense in $L_{\mathfrak{P}}$, res is injective. By Lemma 3.4.2 $|\sigma(x)|_{\mathfrak{P}} = |x|_{\mathfrak{P}}$ for all $\sigma \in \operatorname{Gal}(L_{\mathfrak{P}}/K_{\mathfrak{p}})$ and $x \in L_{\mathfrak{P}}$. Then $\sigma(\mathfrak{P}) = \mathfrak{P}$ for all $\sigma \in \operatorname{Gal}(L_{\mathfrak{P}}/K_{\mathfrak{p}})$, so res $\sigma \in G_{\mathfrak{P}}$ for all $\sigma \in \operatorname{Gal}(L_{\mathfrak{P}}/K_{\mathfrak{p}})$. To show surjectivity it suffices to show that $[L_{\mathfrak{P}}:K_{\mathfrak{p}}] = \operatorname{ef} = |G_{\mathfrak{P}}|$. We have already seen $|G_{\mathfrak{P}}| = \operatorname{ef}$. We can apply Corollary 4.4.6 to $L_{\mathfrak{P}}/K_{\mathfrak{p}}$ noting that \mathfrak{p} and \mathfrak{p} do not change when we take completions.

5 Ramification theory

5.1 Unramified and totally ramified extensions

Let K be a non-archimedean local field and L a finite separable extension of K. Then L is a local field. Then

Lecture 14 Monday 09/11/20

$$[L:K] = \mathbf{e}_{L/K} \mathbf{f}_{L/K}. \tag{5}$$

Lemma 5.1.1. Let M/L/K be finite separable extensions of local fields. Then

- 1. $e_{M/K} = e_{M/L}e_{L/K}$, and
- 2. $f_{M/K} = f_{M/L} f_{L/K}$.

Proof.

- 2. $f_{M/K} = [k_M : k] = [k_M : k_L] [k_L : k] = f_{M/L} f_{L/K}$.
- 1. 2 and (5).

Definition 5.1.2. The extension L/K is said to be

- unramified if $e_{L/K} = 1$, if and only if $f_{L/K} = [L : K]$,
- ramified if $e_{L/K} > 1$, if and only if $f_{L/K} < [L:K]$, and
- totally ramified if $e_{L/K} = [L:K]$, if and only if $f_{L/K} = 1$.

Theorem 5.1.3. Let L/K be a finite separable extension of local fields, then there exists a field K_0 such that $K \subseteq K_0 \subseteq L$ and such that

- K_0/K is unramified, and
- L/K_0 is totally ramified.

Moreover $[K_0:K] = f_{L/K}$ and $[L:K_0] = e_{L/K}$, and K_0/K is Galois.

Proof. Let $k = \mathbb{F}_q$, so that $k_L = \mathbb{F}_{q^f}$ for $f = f_{L/K}$. Set $m = q^f - 1$. Let $[\cdot] : \mathbb{F}_{q^f}^{\times} \to L^{\times}$ be the Teichmüller map for L and let $\zeta_m = [a]$ where a is a generator of $\mathbb{F}_{q^f}^{\times}$. Then ζ_m is a primitive m-th root of unity, by lecture 5. We set

$$K_0 = K(\zeta_m) \subseteq L$$
.

Then K_0 is the splitting field of the separable polynomial $f(X) = X^m - 1 \in K[X]$, hence K_0/K is Galois. Since $|\zeta_m| = 1$, we have $\zeta_m \in \mathcal{O}_{K_0}^{\times}$. It follows that $k_0 = \mathcal{O}_{K_0}/\mathfrak{m}_0$ contains a primitive m-th root of unity, so $k_0 = \mathbb{F}_{q^f} \cong k_L$. Now $\operatorname{Gal}(K_0/K)$ preserves \mathcal{O}_{K_0} and \mathfrak{m}_0 , using $|x| = |\sigma(x)|$ for all $x \in K_0$ and $\sigma \in \operatorname{Gal}(K_0/K)$. Thus there is a natural map res : $\operatorname{Gal}(K_0/K) \to \operatorname{Gal}(k_0/k)$. For $\sigma \in \operatorname{Gal}(K_0/K)$ we have $\sigma(\zeta_m) = \zeta_m$ if $\sigma(\zeta_m) \equiv \zeta_m \mod \mathfrak{m}_0$. This follows from the fact that $\sigma(\zeta_m) = [(\operatorname{res}\sigma)(\zeta_m \mod \mathfrak{m}_0)]$. Thus res is injective. It follows that $|\operatorname{Gal}(K_0/K)| \leq |\operatorname{Gal}(k_0/k)| = f = f_{L/K}$, so $[K_0 : K] = f_{L/K}$ and res is an isomorphism. Thus K_0/K is unramified. Since $k_0 \cong k_L$, $f_{L/K_0} = 1$ and hence L/K_0 is totally ramified. \square

We obtain the following description of unramified extensions.

Theorem 5.1.4. Let K be a non-archimedean local field with $k \cong \mathbb{F}_q$. For any $n \geq 1$, there is a unique unramified extension L/K of degree n. Moreover L/K is Galois and the natural map $\operatorname{Gal}(L/K) \to \operatorname{Gal}(k_L/k)$ is an isomorphism. In particular $\operatorname{Gal}(L/K)$ is cyclic group generated by an element $\operatorname{Frob}_{L/K}$ such that

$$\operatorname{Frob}_{L/K}(x) \equiv x^q \mod \mathfrak{m}_L, \qquad x \in \mathcal{O}_L.$$

Proof. For $n \geq 1$, we take $L = K(\zeta_m)$ where $m = q^n - 1$ and $\zeta_m \in \overline{K}^{\times}$ is a primitive m-th root of unity. Then as in the proof of Theorem 5.1.3, $\operatorname{Gal}(L/K) \xrightarrow{\sim} \operatorname{Gal}(k_L/k) \cong \operatorname{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q)$ and is cyclic and generated by a lift of $x \mapsto x^q$. Uniqueness is clear since for L/K degree n unramified, we have $\zeta_m \in L$ and hence $L = K(\zeta_m)$ by degree reasons.

Corollary 5.1.5. Let K be a non-archimedean local field, and let L/K be finite Galois. Then the natural map res : $Gal(L/K) \to Gal(k_L/k)$ is surjective.

Proof. With the notation of Theorem 5.1.3 the map res factors as

$$\operatorname{Gal}(L/K) \twoheadrightarrow \operatorname{Gal}(K_0/K) \xrightarrow{\sim} \operatorname{Gal}(k_L/k)$$
.

Definition 5.1.6. Let L/K be a finite Galois extension of local fields. The **inertia subgroup** $I_{L/K} \subseteq Gal(L/K)$ is defined to be the kernel of the surjective map $Gal(L/K) \twoheadrightarrow Gal(k_L/k)$.

Since $e_{L/K}f_{L/K} = [L:K]$, we have $|I_{L/K}| = e_{L/K}$. There is an exact sequence

$$0 \to \mathrm{I}_{L/K} \xrightarrow{\iota} \mathrm{Gal}\left(L/K\right) \xrightarrow{\rho} \mathrm{Gal}\left(k_L/k\right) \to 0.$$

By exactness, $I_{L/K} = \ker \rho$ and $\operatorname{Gal}(k_L/k) = \operatorname{coker} \iota$. Then $I_{L/K} = \operatorname{Gal}(L/K_0)$, where L/K_0 is totally ramified.

Definition 5.1.7. Let K be a non-archimedean local field, with normalised valuation v. Let $f(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_0 \in \mathcal{O}_K[X]$. We say f(X) is **Eisenstein** if $v(a_i) \geq 1$ for all i and $v(a_0) = 1$.

Fact. If f(X) is Eisenstein, then f(X) is irreducible.

Theorem 5.1.8.

1. If L/K is a finite totally ramified extension of non-archimedean local fields, then the minimal polynomial of $\pi_L \in \mathcal{O}_L$ is an Eisenstein polynomial and $\mathcal{O}_L = \mathcal{O}_K [\pi_L]$, so $L = K (\pi_L)$.

2. Conversely, if $f(X) \in \mathcal{O}_K[X]$ is Eisenstein and α is a root of f, then $L = K(\alpha)/K$ is totally ramified. Proof.

1. Let \mathbf{v}_L be the normalised valuation for L and set $\mathbf{e} = [L:K]$. Let $f(X) = X^m + a_{m-1}X^{m-1} + \cdots + a_0 \in \mathcal{O}_K[X]$ be the minimal polynomial for π_L , which is monic since \mathcal{O}_L is integral over \mathcal{O}_K . Then $m \leq \mathbf{e}$. Since $\mathbf{v}_L(K^\times) = \mathbf{e}\mathbb{Z}$, we have $\mathbf{v}_L\left(a_i\pi_L^i\right) \equiv i \mod \mathbf{e}$ for i < m, so that these terms all have different residues modulo \mathbf{e} . We have $\pi_L^m = -\sum_{i=0}^{m-1} a_i\pi_L^i$ hence

$$m = \mathbf{v}_L\left(\pi_L^m\right) = \min_{0 \le i \le m-1} \left(i + \operatorname{ev}_K\left(a_i\right)\right),\,$$

so $v_K(a_i) \ge 1$ for all i, m = e, and $v_K(a_0) = 1$. Thus f(X) is Eisenstein, and $L = K(\pi_L)$. For $y \in L$, we write $y = \sum_{i=0}^{e-1} \pi_L^i b_i$ for $b_i \in K$. Then

$$\mathbf{v}_{L}\left(y\right) = \min_{0 \leq i \leq m-1} \left(i + \operatorname{ev}_{K}\left(b_{i}\right)\right).$$

Thus $y \in \mathcal{O}_L$ if and only if $v_L(y) \ge 0$, if and only if $v_K(b_i) \ge 0$ for all i, if and only if $y \in \mathcal{O}_K[\pi_L]$.

2. Let $f(X) = X^n + a_{n-1}X^{n-1} + \dots + a_0$ be Eisenstein and let $e = e_{L/K}$. Thus $v_L(a_i) \ge e$ and $v_L(a_0) = e$. If $v_L(\alpha) \le 0$ we have $v_L(\alpha^n) < v_L\left(\sum_{i=0}^{n-1} a_i \alpha^i\right)$ hence $v_L(\alpha) > 0$. For $i \ne 0$, $v_L\left(a_i \alpha^i\right) > e = v_L(a_0)$. It follows that $v_L\left(-\sum_{i=0}^{n-1} a_i \alpha^i\right) = e$ and hence $v_L(\alpha^n) = e$, so $nv_L(\alpha) = e$. But $n = [L:K] \ge e$, so n = e and L is totally ramified.

5.2 Structure of units

Let $[K : \mathbb{Q}_p] < \infty$, with normalised valuation v_K and uniformiser π , and let $e = e_{K/\mathbb{Q}_p}$, the **absolute** ramification index.

Lecture 15 Wednesday 11/11/20

Proposition 5.2.1. *If* r > e/(p-1), then the series

$$\exp x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

converges on $\pi^r \mathcal{O}_K$ and exp determines an isomorphism $(\pi^r \mathcal{O}_K, +) \xrightarrow{\sim} (1 + \pi^r \mathcal{O}_K, \times)$.

Proof. By example sheet 1,

$$\mathbf{v}_{K}\left(n!\right) = \mathbf{ev}_{p}\left(n!\right) = \mathbf{e}\left(\frac{n - \mathbf{s}_{p}\left(n\right)}{p - 1}\right) \le \mathbf{e}\left(\frac{n - 1}{p - 1}\right).$$

For $x \in \pi^r \mathcal{O}_K$, we have for $n \geq 1$,

$$v_K\left(\frac{x^n}{n!}\right) \ge nr - e\left(\frac{n-1}{p-1}\right) = r + (n-1)\left(r - \frac{e}{p-1}\right) \to \infty,$$

as $n \to \infty$. Thus $\exp x$ converges. Since $\operatorname{v}_K(x^n/n!) \ge r$ for $n \ge 1$, $\exp x \in 1 + \pi^r \mathcal{O}_K$. Similarly consider

$$\log : 1 + \pi^r \mathcal{O}_K \longrightarrow \pi^r \mathcal{O}_K$$

$$1 + x \longmapsto \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n .$$

Can check convergence as before. Recall properties of power series

$$\exp(X + Y) = \exp X \exp Y$$
, $\exp \log X = X$, $\log \exp X = X$.

Thus exp: $(\pi^r \mathcal{O}_K, +) \to (1 + \pi^r \mathcal{O}_K, \times)$ is an isomorphism of groups.

Now let K be a non-archimedean local field. We define a filtration on \mathcal{O}_K^{\times} . Write $U_K = \mathcal{O}_K^{\times}$.

Definition 5.2.2. For $s \in \mathbb{Z}_{\geq 1}$, the s-th unit group $U_K^{(s)}$ is defined by

$$U_K^{(s)} = (1 + \pi^s \mathcal{O}_K, \times).$$

We set $U_K^{(0)} = U_K$. Then we have

$$\cdots \subseteq U_K^{(s)} \subseteq \cdots \subseteq U_K^{(1)} \subseteq U_K^{(0)} = U_K.$$

Proposition 5.2.3. We have

1.
$$U_K^{(0)}/U_K^{(1)} \cong (k^{\times}, \times)$$
 for $k = \mathcal{O}_K/\pi\mathcal{O}_K$, and

2.
$$U_K^{(s)}/U_K^{(s+1)} \cong (k,+) \text{ for } s \geq 1.$$

Proof.

- 1. Reduction modulo π gives a natural surjection $\mathcal{O}_K^{\times} \to k^{\times}$. The kernel is $1 + \pi \mathcal{O}_K = U_K^{(1)}$.
- 2. Define

$$f : U_K^{(s)} \longrightarrow k$$
$$1 + \pi^s x \longmapsto x \mod \pi$$

Then $(1 + \pi^s x)(1 + \pi^s y) = (1 + \pi^s(x + y + \pi^s xy))$ and $x + y + \pi^s xy \equiv x + y \mod \pi$, hence f is a group homomorphism. It is easy to see f is surjective and $\ker f = \operatorname{U}_K^{(s+1)}$.

Corollary 5.2.4. Let $[K:\mathbb{Q}_p]<\infty$. Then \mathcal{O}_K^{\times} has a subgroup of finite index isomorphic to $(\mathcal{O}_K,+)$.

Proof. If
$$r > e/(p-1)$$
, then $(\mathcal{O}_K, +) \cong U_K^{(r)}$, so $U_K^{(r)} \subseteq U_K$ is finite index by Proposition 5.2.3.

Example. If \mathbb{Z}_p for p > 2, then e = 1 and can take r = 1. Then there is an isomorphism

$$\mathbb{Z}_{p}^{\times} \longrightarrow (\mathbb{Z}/p\mathbb{Z})^{\times} \times (1 + p\mathbb{Z}_{p}) \cong \mathbb{Z}/(p - 1)\mathbb{Z} \times \mathbb{Z}_{p}$$
$$x \longmapsto \left(x \mod p, \frac{x}{[x \mod p]}\right)$$

If p = 2, take r = 2. Then

$$\mathbb{Z}_2^{\times} \xrightarrow{\sim} (\mathbb{Z}/4\mathbb{Z})^{\times} \times (1 + 4\mathbb{Z}_2) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}_2.$$

Get another proof that

$$\mathbb{Z}_p^{\times} / \left(\mathbb{Z}_p^{\times} \right)^2 \cong \begin{cases} \mathbb{Z} / 2\mathbb{Z} & p > 2 \\ \left(\mathbb{Z} / 2\mathbb{Z} \right)^2 & p = 2 \end{cases}.$$

5.3 Higher ramification groups

Let L/K be a finite Galois extension of local fields. We define an analogous filtration of Gal(L/K).

Definition 5.3.1. Let v_L be the normalised valuation on L. For $s \in \mathbb{R}_{\geq -1}$, we define the s-th ramification group by

$$G_s(L/K) = \{ \sigma \in Gal(L/K) \mid \forall x \in \mathcal{O}_L, \ v_L(\sigma(x) - x) \ge s + 1 \}.$$

Example. $G_{-1}(L/K) = Gal(L/K)$. If π_L is a uniformiser in L, then

$$G_0(L/K) = \{ \sigma \in Gal(L/K) \mid \forall x \in \mathcal{O}_L, \ \sigma(x) \equiv x \mod \pi_L \} = \ker (Gal(L/K) \twoheadrightarrow Gal(k_L/k)) = I_{L/K}.$$

Note that for $s \in \mathbb{Z}_{>0}$

$$G_s(L/K) = \ker \left(\operatorname{Gal}(L/K) \to \operatorname{Aut} \left(\mathcal{O}_L / \pi_L^{s+1} \mathcal{O}_L \right) \right),$$

hence $G_s(L/K)$ is normal in G. We have for $s \in \mathbb{Z}_{>-1}$

$$\cdots \subseteq G_s \subseteq \cdots \subseteq G_0 \subseteq G_{-1} = Gal(L/K).$$

Remark. G_s only changes at the integers. The definition for $s \in \mathbb{R}_{>-1}$ will be used later.

Theorem 5.3.2.

1. Let $\pi_L \in \mathcal{O}_L$ be a uniformiser. For $s \geq 0$,

$$G_s = \{ \sigma \in G_0 \mid v_L(\sigma(\pi_L) - \pi_L) \ge s + 1 \}.$$

- 2. $\bigcap_{n=0}^{\infty} G_n = \{1\}.$
- 3. Let $s \in \mathbb{Z}_{\geq 0}$. There is an injective group homomorphism $G_s/G_{s+1} \hookrightarrow U_L^{(s)}/U_L^{(s+1)}$ induced by the map $\sigma \mapsto \sigma(\pi_L)/\pi_L$. This map is independent of the choice of π_L .

Proof. Let $K_0 \subseteq L$ be the maximal unramified extension of K contained in L. Upon replacing K by K_0 , we may assume L/K is totally ramified.

1. By Theorem 5.1.8, $\mathcal{O}_L = \mathcal{O}_K[\pi_L]$. Suppose $v_L(\sigma(\pi_L) - \pi_L) \ge s + 1$. Let $x \in \mathcal{O}_L$, then $x = f(\pi_L)$ for $f(X) \in \mathcal{O}_K[X]$. Then

$$\sigma(x) - x = \sigma(f(\pi_L)) - f(\pi_L) = f(\sigma(\pi_L)) - f(\pi_L) = (\sigma(\pi_L) - \pi_L) g(\pi_L),$$

where $g(X) \in \mathcal{O}_K[X]$, using $X^n - Y^n = (X - Y)(X^{n-1} + \dots + Y^{n-1})$. Thus $v_L(\sigma(x) - x) = v_L(\sigma(\pi_L) - \pi_L) + v_L(g(\pi_L)) \ge s + 1$.

2. Suppose $\sigma \in \operatorname{Gal}(L/K)$ such that $\sigma \neq \operatorname{id}$. Then $\sigma(\pi_L) \neq \pi_L$ because $L = K(\pi_L)$, and hence $\operatorname{v}_L(\sigma(\pi_L) - \pi_L) < \infty$. Thus $\sigma \notin \operatorname{G}_s$ for $s \gg 0$.

3. Note that for $\sigma \in G_s$ and $s \in \mathbb{Z}_{\geq 0}$, $\sigma(\pi_L) \in \pi_L + \pi_L^{s+1}\mathcal{O}_L$, so $\sigma(\pi_L) / \pi_L \in 1 + \pi_L^s \mathcal{O}_L$. We claim

$$\begin{array}{cccc} \phi & : & \mathbf{G}_s & \longrightarrow & \mathbf{U}_L^{(s)}/\mathbf{U}_L^{(s+1)} \\ & \sigma & \longmapsto & \frac{\sigma\left(\pi_L\right)}{\pi_L} \end{array}$$

is a group homomorphism with kernel G_{s+1} . For $\sigma, \tau \in G_s$, let $\tau(\pi_L) = u\pi_L$ for $u \in \mathcal{O}_L^{\times}$. Then

$$\frac{\sigma\left(\tau\left(\pi_{L}\right)\right)}{\pi_{L}} = \frac{\sigma\left(\tau\left(\pi_{L}\right)\right)}{\tau\left(\pi_{L}\right)} \cdot \frac{\tau\left(\pi_{L}\right)}{\pi_{L}} = \frac{\sigma\left(u\right)}{u} \cdot \frac{\sigma\left(\pi_{L}\right)}{\pi_{L}} \cdot \frac{\tau\left(\pi_{L}\right)}{\pi_{L}}.$$

But $\sigma(u) \in u + \pi_L^{s+1} \mathcal{O}_L$ since $\sigma \in G_s$ thus $\sigma(u) / u \in U_L^{(s+1)}$ and hence

$$\frac{\sigma\left(\tau\left(\pi_{L}\right)\right)}{\pi_{L}} \equiv \frac{\sigma\left(\pi_{L}\right)}{\pi_{L}} \cdot \frac{\tau\left(\pi_{L}\right)}{\pi_{L}} \mod \mathbf{U}_{L}^{(s+1)},$$

so ϕ is a group homomorphism. Moreover

$$\ker \phi = \left\{ \sigma \in \mathcal{G}_s \mid \sigma\left(\pi_L\right) \equiv \pi_L \mod \pi_L^{s+2} \right\} = \mathcal{G}_{s+1}.$$

If $\pi'_L = a\pi_L$ is another uniformiser for $a \in U_L$, then

$$\frac{\sigma\left(\pi_{L}^{\prime}\right)}{\pi_{L}^{\prime}} = \frac{\sigma\left(a\right)}{a} \cdot \frac{\sigma\left(\pi_{L}\right)}{\pi_{L}} \equiv \frac{\sigma\left(\pi_{L}\right)}{\pi_{L}} \mod \mathbf{U}_{L}^{(s+1)}.$$

Lecture 16 Friday 13/11/20

Corollary 5.3.3. Let L/K be a finite Galois extension of non-archimedean local fields. Then Gal(L/K) is solvable.

Proof. By Proposition 5.2.3, Theorem 5.3.2, and Theorem 5.1.4, for $s \in \mathbb{Z}_{\geq 1}$

$$G_s/G_{s+1} \hookrightarrow \begin{cases} \operatorname{Gal}(k_L/k) & s = -1 \\ (k_L^{\times}, \times) & s = 0 \\ (k_L, +) & s \ge 1 \end{cases}.$$

Thus G_s/G_{s+1} is abelian for $s \ge -1$. Conclude using Theorem 5.3.2.2.

Let ch k = p. Then $|G_0/G_1|$ is coprime to p and $|G_1| = p^n$ for some $n \ge 0$. Thus G_1 is the unique, since normal, Sylow p-subgroup of $G_0 = I_{L/K}$.

Definition 5.3.4. The group G_1 is called the **wild inertia group** and G_0/G_1 is the **tame quotient**. Say L/K, not necessarily Galois, is **tamely ramified** if $\operatorname{ch} k = p \nmid \operatorname{e}_{L/K}$, which is if and only if $G_1 = \{1\}$ if L/K is Galois. Otherwise it is **wildly ramified**. Thus

Example. Let $K = \mathbb{Q}_p$. Let ζ_{p^n} be a primitive p^n -th root of unity, and let $L = \mathbb{Q}_p(\zeta_{p^n})$. Then the p^n -th cyclotomic polynomial

$$\Phi_{p^n}(X) = X^{p^{n-1}(p-1)} + \dots + 1$$

is the minimal polynomial of ζ_{p^n} . By example sheet 3,

- $\Phi_{p^n}(X)$ is irreducible,
- L/\mathbb{Q}_p is Galois and totally ramified of degree $p^{n-1}(p-1)$, and
- $\pi = \zeta_{p^n} 1$ is a uniformiser of \mathcal{O}_L , and hence $\mathcal{O}_L = \mathbb{Z}_p \left[\zeta_{p^n} 1 \right] = \mathbb{Z}_p \left[\zeta_{p^n} \right]$.

We have an isomorphism of abelian groups

$$(\mathbb{Z}/p^n\mathbb{Z})^{\times} \longrightarrow \operatorname{Gal}(L/\mathbb{Q}_p)$$

$$m \longmapsto \sigma_m : \zeta_{p^n} \mapsto \zeta_{p^n}^m$$

Thus $\sigma_m(\pi) - \pi = \zeta_{p^n}^m - \zeta_{p^n} = (\zeta_{p^n}^{m-1} - 1)\zeta_{p^n}$. Let k be maximal such that $p^k \mid m-1$. Then $\zeta_{p^n}^{m-1}$ is a primitive p^{n-k} -th root of unity, and hence $\zeta_{p^n}^{m-1} - 1$ is a uniformiser π' in $L' = \mathbb{Q}_p(\zeta_{p^n}^{m-1})$. Thus

$$\mathbf{v}_{L}\left(\sigma_{m}\left(\pi\right)-\pi\right)=\mathbf{v}_{L}\left(\pi'\right)=\mathbf{e}_{L/L'}=\frac{\mathbf{e}_{L/\mathbb{Q}_{p}}}{\mathbf{e}_{L'/\mathbb{Q}_{p}}}=\frac{\left[L:\mathbb{Q}_{p}\right]}{\left[L':\mathbb{Q}_{p}\right]}=\frac{p^{n-1}\left(p-1\right)}{p^{n-k-1}\left(p-1\right)}=p^{k}.$$

By Theorem 5.3.2.1, $\sigma_m \in G_i$ if and only if $p^k \geq i + 1$. Thus

$$G_{i} \cong \begin{cases} (\mathbb{Z}/p^{n}\mathbb{Z})^{\times} & i \leq 0\\ (1+p^{k}\mathbb{Z})/p^{n}\mathbb{Z} & p^{k-1}-1 < i \leq p^{k}-1, \ 1 \leq k \leq n-1, \\ \{1\} & p^{n-1}-1 < i \end{cases}$$

which is reminiscent of $\mathbf{U}_{\mathbb{Q}_p}^{(k)}$.

5.4 Upper numbering of ramification groups

G_s behaves well with respect to taking subgroups.

Proposition 5.4.1. Let L/F/K be finite extensions of non-archimedean local fields, and let L/K be Galois. Then for $s \in \mathbb{R}_{\geq -1}$,

$$G_s(L/F) = G_s(L/K) \cap Gal(L/F)$$
.

Proof.
$$G_s(L/F) = \{ \sigma \in Gal(L/F) \mid \forall x \in \mathcal{O}_L, \ v_L(\sigma(x) - x) \geq s + 1 \} = Gal(L/F) \cap G_s(L/K).$$

However G_s behaves badly with respect to taking quotients. Fix this by renumbering. Let L/K be finite Galois. Define a function by

$$\phi = \phi_{L/K} : \mathbb{R}_{\geq -1} \longrightarrow \mathbb{R}$$

$$s \longmapsto \int_0^s \frac{1}{[G_0 : G_t]} dt$$

By convention, if $t \in [-1, 0)$, then

$$\frac{1}{\left[G_0:G_t\right]} = \left[G_t:G_0\right].$$

We have for $m \leq s < m+1$ for $m \in \mathbb{Z}_{\geq -1}$,

$$\phi(s) = \begin{cases} s & m = -1\\ \frac{1}{|G_0|} (|G_1| + \dots + |G_m| + (s - m)|G_{m+1}|) & m \ge 0 \end{cases}.$$

Thus

- ϕ is continuous and piecewise linear, and
- ϕ is strictly increasing.

Notation. Let L/F/K be finite extensions of non-archimedean local fields with L/K and F/K Galois, and let G = Gal(L/K) and H = Gal(L/F), so G/H = Gal(F/K). If $s \in \mathbb{R}_{\geq -1}$, then G_s , H_s , and $(G/H)_s$ are the s-th higher ramification groups for G, H, and G/H respectively.

Theorem 5.4.2 (Herbrand's theorem). Let L/F/K as above. Then for $s \in \mathbb{R}_{>-1}$ we have

$$G_sH/H = (G/H)_{\phi_{L/F}(s)}$$
.

As $\phi_{L/K}$ is continuous and strictly increasing, we may define $\psi_{L/K} = \phi_{L/K}^{-1}$.

Definition 5.4.3. Let L/K be finite Galois. The **higher ramification groups in upper numbering** is defined by

$$G^{s}(L/K) = G_{\psi_{L/K}(s)}(L/K)$$
.

Can rephrase Theorem 5.4.2 as follows.

Lemma 5.4.4. Let L/F/K as above.

- 1. $\phi_{L/K} = \phi_{F/K} \circ \phi_{L/F}$.
- 2. $\psi_{L/K} = \psi_{L/F} \circ \psi_{F/K}$.

Proof. Since $\psi = \phi^{-1}$, it suffices to prove 1. Then $\phi_{L/K}$ and $\phi_{F/K} \circ \phi_{L/F}$ are continuous and piecewise linear and $\phi_{L/K}(0) = (\phi_{F/K} \circ \phi_{L/F})(0) = 0$. Thus it suffices to show derivatives are equal. Let $r = \phi_{L/F}(s)$. By the fundamental theorem of calculus,

$$\left(\phi_{F/K} \circ \phi_{L/F}\right)'(s) = \phi'_{L/F}\left(s\right) \phi'_{F/K}\left(r\right) = \frac{|\mathcal{H}_{s}|}{|\mathcal{H}_{0}|} \cdot \frac{|(\mathcal{G}/\mathcal{H})_{r}|}{|(\mathcal{G}/\mathcal{H})_{0}|} = \frac{|\mathcal{H}_{s}|}{e_{L/F}} \cdot \frac{|(\mathcal{G}/\mathcal{H})_{r}|}{e_{F/K}}.$$

Theorem 5.4.2 implies $(G/H)_r = G_sH/H = G_s/(G_s \cap H) = G_s/H_s$, by Proposition 5.4.1. Thus

$$\phi_{L/K}'\left(s\right) = \frac{|\mathcal{G}_s|}{|\mathcal{G}_0|} = \frac{|\mathcal{H}_s||(\mathcal{G}/\mathcal{H})_r|}{\mathbf{e}_{L/K}} = \frac{|\mathcal{H}_s|}{\mathbf{e}_{L/F}} \cdot \frac{|(\mathcal{G}/\mathcal{H})_r|}{\mathbf{e}_{F/K}}.$$

Corollary 5.4.5. For $t \in (-1, \infty]$

$$G^tH/H = (G/H)^t$$
.

Proof. Let $r = \psi_{F/K}(t)$. Then by Theorem 5.4.2,

$$(G/H)^t = (G/H)_r = G_{\psi_{L/F}(r)}H/H = G^tH/H,$$

since $G_{\psi_{L/F}(r)} = G_{\psi_{L/K}(t)} = G^t$, by Lemma 5.4.4.