Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Level Examination June 2013

Physics A

PHYA5/2A

Unit 5A Astrophysics Section B

Thursday 20 June 2013 9.00 am to 10.45 am

For this paper you must have:

- a calculator
- a ruler
- a Data and Formulae Booklet (enclosed).

Time allowed

• The total time for both sections of this paper is 1 hour 45 minutes. You are advised to spend approximately 50 minutes on this section.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this section is 35.
- You are expected to use a calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.
- You will be marked on your ability to:
 - use good English
 - organise information clearly
 - use specialist vocabulary where appropriate.

For Examiner's Use

Examiner's Initials

Mark

Question

2

3

4

TOTAL

Section B

The maximum mark for this section is 35. You are advised to spend approximately 50 minutes on this section.

1 (a) Draw a ray diagram to show how a converging lens can be used to form a diminished image of a real object. Label the object, image and principal foci of the lens on your diagram.

(3 marks)

1 (b) A student experimented with a converging lens whose focal length was known to be approximately 50 cm. She placed an object and screen a fixed distance of 200 cm apart. With the lens 128 cm from the object, she observed a sharp image on the screen.

Calculate the focal length of the lens.

focal lengthcm (2 marks)

(c) The lens was used as one of the components of a simple refracting astronomical telescope. State whether the lens formed the eyepiece or objective, giving reasons for your answer.	
(2 mark	 s)
V - SHOW	/

_

Turn over for the next question

Turn over ▶

Sketch, on the axes, the variation in intensity of the diffraction pattern produced when light from a point object passes through a circular aperture.				
intensity				
0	angle			
	(2 marks)			
	rence to the diffraction			
	(2 marks)			
	The <i>Rayleigh criterion</i> is used to determine the smallest angula point objects which can be resolved by a telescope. With refer patterns formed, explain what is meant by the Rayleigh criterion			

2	(b)	The supermassive black hole at the centre of the Milky Way galaxy has a mass equal to 4.1 million solar masses. Calculate the Schwarzschild radius, $R_{\rm s}$, for this black hole. Give your answer to an appropriate number of significant figures.
		$R_{\rm s}$ m (3 marks)
2	(c)	Astronomers investigating the supermassive black hole at the centre of the Milky Way galaxy detect radio waves at a frequency of 230 GHz. By correlating the information from several radio telescopes, they can obtain images with the same resolution as a single radio telescope with a diameter of 5000 km.
2	(c) (i)	Calculate the minimum angular separation which could be resolved by a radio telescope of diameter 5000 km detecting waves of frequency 230 GHz.
		angular separationrad
		(2 marks)
2	(c) (ii)	The centre of the Milky Way galaxy is 25 000 light years from the Earth.
		Show that the limit of the resolution of the telescope is approximately five times the angle subtended by the Schwarzschild radius of the black hole at this distance.

(2 marks)

11

Turn over ▶

The quality of ye	our written communi	ication will be ass	essed in this question.	
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••

6

4 (a) The table summarises some of the properties of two stars in the constellation of Ursa Minor.

name	apparent magnitude	radius of star radius of the Sun	spectral class
Polaris	2.0	50	F
Kocab	2.0	50	K

4 (a) (i)	Using these data, describe and explain one similarity and one difference in the appearance of the two stars as seen with the unaided eye by an observer on the Earth.
	similarity
	difference
	(2 marks)
4 (a) (ii)	Deduce which of the two stars is further from the Earth.
	(3 marks)

Question 4 continues on the next page

Turn over ▶

4 (b)	Ursa Minor also contains the galaxy NGC 6251. Measurements indicate that the light from the galaxy has a red shift, z , of 0.025 and that the galaxy is 340 million light years from Earth.	
4 (b) (i)	Use these data to calculate a value for the Hubble constant.	
	value km s ⁻¹ Mpc ⁻¹ (3 marks)	
4 (b) (ii)	Use your answer to part (b)(i) to estimate a value for the age of the Universe. State an appropriate unit for your answer.	
	age unit	
	END OF QUESTIONS	

Copyright © 2013 AQA and its licensors. All rights reserved.

