Molecular Simulation with OpenMM Zephyr

February 2010 Christopher Bruns

What is OpenMM Zephyr?

- Graphical user interface for running GPU accelerated molecular dynamics simulations
- Automates running of gromacs programs
 - http://www.gromacs.org/
- Discoverable interface
- Showcases OpenMM library

Zephyr Resources

Getting Zephyr and VMD

Zephyr

https://simtk.org/home/zephyr Downloads => (installer) Get User Guide also

VMD

http://www.ks.uiuc.edu/Research/vm

Install in a Folder with no space characters (Windows)

- Install in "C:\Zephyr"
- NOT "Program Files"
- NOT "My Documents"
- Issue with this version of gromacs
- No spaces in the entire path

Overview of exercises

- OBe sure to get handout with just the exercise, to help you work at your own pace.
 - Dinucleotide (adenylyladenylate) 2 residues
 - O change viscosity
 - Oreplay simulation in VMD
 - Tetraloop (GCAA) 12 residues
 - Oattempt GPU acceleration
 - Owrite trajectory in PDB format using VMD
 - Unfold an alpha helix
 - O modify temperature
 - double helix (255d)
 - O From PDB web site

Zephyr is a GUI layer on OpenMM, Gromacs, and VMD

Introductory Demonstration

Simulation parameters

Implicit solvent only – unlike standard

Grom (Idle) OpenMM Zephyr : alanylalanine_capped.pdb Molecules Parameters (Idle) VMD console About Prepare simulation Minimize energy first? How long to simulate 50000 v steps 0.002 v ps/step ☑ Minimize 100.0 v ps Force field Temperature 22.00 V °C 295.15 × K 71.6 × °F room 🕶 Amber96 Simulation hardware Solvent viscosity (collision interval) CPU OpenMM ref. 0.01099 v ps accurate water Output frequency Live viewing in VMD ☐ View simulation live in VMD 0.4 v ps 200 v steps every < Back Advanced Parameters... Simulate

Exercises: RNA Dinucleotide

- Launch Zephyr and simulate adenylyladenylate.pdb for 40 picoseconds. Does it run to completion?
- 2. Raise solvent collision interval from 0.01099 to 1.0 ps. Simulate again. Does the simulation look any different?
- 3. Replay the trajectory in VMD. Vary the speed of the playback.
- 4. Restore the solvent collision interval to 0.01099 ps.

RNA Dinucleotide

- Increased collision interval means lower viscosity.
- O Lower viscosity permits faster exploration of conformational space.
- VMD provides a rich environment for exploring molecular simulations.

Exercises - VMD

OLoad a Zephyr trajectory from your simulations directory into VMD

- VMDMain->File->New Molecule
 - 1. select Determine file type: Gromacs GRO
 - 2. click Browse-><whatever>.em.gro
 - 3. click Load
 - 4. select Determine file type: Gromacs TRR trajectory
 - 5. click Browse-><whatever>.md.trr
 - 6. click Load (again)

OSave trajectory in PDB format from VMD

- Select trajectory in VMD Main window
- File->Save Coordinates->pdb, all->Save "my_trajectory.pdb"

Zephyr Design Principles

1. Discoverability

- Not a black box
- Learn molecular dynamics by investigating simulation interface

2. Convention

 Harvest best practices of experts for default work flow

3. Feedback

- Reveal when things go wrong
- Reveal when things go right

Either:

A: Run these gromacs B: Click "Simulate" programs button in Zephyr

Exercises: Tetraloop hairpin

- 1. Begin simulating gcaa.pdb using default parameters. How long would it take to complete? Press "Cancel" to halt the simulation. (On Mac you may need to close VMD and/or Zephyr to halt)
- 2. Set "Simulation Hardware" to "GPU Nvidia". Simulate again. What happens?
- 3. If GPU acceleration is unavailable:
 - 1. Restore hardware to "CPU OpenMM ref."

2. Reload adenylyladenylate.pdb

Read the blue lines to learn to run Gromacs-OpenMM on the command line

5 95% OpenMM Zephyr: alanylalanine_capped.pdb

see also zephyr.log file

Zephyr Capabilities

- OS: Windows (XP or Vista), Mac, Linux
- 32 bit
- Implicit solvent only
- Amber96 force field only
- Standard protein/RNA/DNA molecules only
 - No ATP, heme, flavins, etc.
- For GPU accelerated dynamics:
 - you must have supported GPU and drivers

Time Scales in Molecular Mechanics

femtosecond	10 ⁻¹⁵ second	bond vibration
picosecond	10 ⁻¹² second	side chain motion
nanosecond	10 ⁻⁹ second	protein/RNA tumbling
microsecond	10 ⁻⁶ second	helix/coil transition
	10 ⁻⁴ second	RNA duplex formation
millisecond	10 ⁻³ second	protein/RNA folding
second	10 ⁰ second	protein synthesis

Exercise: Unfolding an alpha helix

- 1. Simulate polyala10helix.pdb for 40 ps at 1000C.
- 2. Select in VMD Main window. Then Set VMD->Graphics->Representation to "NewCartoon"
- 3. Simulate same structure again for 60 ps at 300K. View as New Cartoon again. What is different?

Unfolding an alpha helix

O You will be unable to fold a protein in the lab time available, but you might be able to unfold something.

Pushing the envelope: Temperature

- 1. Increase temperature to 6000 kelvin, the temperature of the sun. Simulate. What happens; and why?
- 2. Cancel and restart with simulation step size set to 0.0005 ps. Is this what would really happen on the sun? (On Mac you may need to close VMD and/or Zephyr to halt)
- 3. Restore temperature and step size to 300K and 0.002ps

Temperature

- O Temperature of 6000 degrees requires a smaller step size for stable integration. "Blowing up" reveals numerical sensitivity of the integration algorithm, not physics.
- O Molecular dynamics does not handle breaking or forming covalent bonds. i.e. no chemistry. Chemistry might really happen at sun temperature.

Tips for fast simulation

- OIncrease step interval for VMD and trajectory output. (Is it slower or faster?)
- OUse GPU acceleration
- OIncrease solvent collision interval to 1 (lower viscosity)

PDB: The Protein Data Bank

- Ohttp://www.rcsb.org/pdb/
- ORepository of DNA, RNA, and protein atomic structures
- OContains experimental results, not perfect models
- OEntries identified by 4 character ID, e.g. "1MRP", "1GRZ"
- OUse "advanced search" at PDB web site to find structures.

Exercises

- ODownload structure 255d from the Protein Data Bank. Try simulating in Zephyr.
 - Be aware that most other PDB structures won't work without modification.

Submit feature requests and bug reports

Where to go from here

- ORunning OpenMM gromacs from the command line
 - see chapter 5 of the Zephyr Users Guide
- OPyopenmm: Python bindings for the OpenMM API
 - https://simtk.org/home/pyopenmm

Zephyr Community Resources

- OSign up for "OpenMM Zephyr News" mailing list
 - https://simtk.org/mail/?group_id=352
- OOpenMM Zephyr forums
 - https://simtk.org/forum/?group_id=352

