Static-24

Title

Hemispherical shell under concentrated loads

Description

Determine the displacements of a hemispherical shell subjected to concentrated tensile and compressive loads in two orthogonal radial directions.

Only a quarter model may be analyzed due to symmetry.

Structural geometry and analysis model (Quarter model)

MODEL

Analysis Type

3-D static analysis

Unit System

in, lbf

Dimension

Radius 10.0 in

Element

Plate element (Thick type)

Material

Modulus of elasticity $E = 6.825 \times 10^7 \text{ psi}$ Poisson's ratio v = 0.3

Element Property

Element size: A quarter model is divided into 8 equal spaces in both directions

along the surface

Thickness t = 0.04 in

Boundary Condition

Nodes $1 \sim 9$; Constrain Dy, Rx and Rz. (Symmetric about X-Z plane) Nodes $73 \sim 81$; Constrain Dx, Ry and Rz. (Symmetric about Y-Z plane)

Node 37 ;Constrain Dz. (To prevent the rigid body motion in the Z direction)

Load Case

A concentrated load, 1.0 lbf is applied to the node 1 in the X direction.

A concentrated load, 1.0 lbf is applied to the node 73 in the -Y direction.

Results

X-displacements of the structure (Node 1)

Comparison of Results

Unit: in

Node -	X-displacement (δ_x)	
	Ref. 1	MIDAS/Civil
1	0.0940	0.0948

Reference

MacNeal, R. H. and Harder, R. C., "Proposed Standard Set of Problems to Test Finite Element Accuracy", Finite Elements in Analysis and Design 1, 1985, pp. 3-20, North-Holland.