# 11 Équations différentielles linéaires d'ordre 1

| 0  | Notion d'équation différentielle.                                                              | 1 |
|----|------------------------------------------------------------------------------------------------|---|
| 1  | Ensemble des solutions d'une ED linéaire d'ordre 1.                                            | 3 |
| 2  | Résolution de l'équation homogène.                                                             | 3 |
| 3  | Équation générale : obtenir une solution particulière.         3.1 Trouver une solution à vue. |   |
| 4  | Synthèse.                                                                                      | 5 |
| Ex | kercices                                                                                       | 6 |

Dans ce cours,  $\mathbb{K}$  désignera  $\mathbb{R}$  ou  $\mathbb{C}$  et I un intervalle de  $\mathbb{R}$ .

### 0 Notion d'équation différentielle.



En physique, en chimie, en économie... on étudie parfois l'évolution, au sein d'un système, d'une quantité d'intérêt Q, dépendant d'un paramètre t (par exemple le temps). On va donc être amené à s'interroger sur la fonction  $Q: t \mapsto Q(t)$ . Les contraintes s'exerçant sur le système sont traduites à travers des équations, qui peuvent faire intervenir Q mais aussi ses dérivées successives.

Considérons trois exemples issus de la physique.

1 MP2I PV

#### Exemple 1. Circuit RC série.

Soient une résistance R et un condensateur de capacité C branchés en série à un générateur de tension sinusoïdal imposant à ses bornes une tension  $E(t) = E_m \cos(\omega t)$ . On étudie la tension u aux bornes du condensateur. Si on note i le courant traversant le circuit, la loi des mailles amène E = u + Ri. Or, on a  $i = C\frac{\mathrm{d}u}{\mathrm{d}t}$ . D'où, pour  $t \geq 0$ ,

$$RC\frac{\mathrm{d}u}{\mathrm{d}t}(t) + u(t) = E_m \cos(\omega t) \tag{1}$$

#### Exemple 2. Masse attachée à un ressort.

Soit une masse m, attachée à un ressort ayant un coefficient de rappel k. La masse se déplace sur une surface plane, avec un coefficient de frottement fluide  $\lambda$ . On étudie la position x de la masse au cours du temps. Notons  $\overrightarrow{a}$  son accélération. Le principe fondamental de la dynamique donne

$$m \overrightarrow{a} = \overrightarrow{P} + \overrightarrow{N} + \overrightarrow{F}_{rappel} + \overrightarrow{F}_{frott}.$$

En dehors du poids  $\overrightarrow{P}$  et de la réaction normale du support  $\overrightarrow{N}$ , la masse est soumise à la force de rappel  $\overrightarrow{F}_{rappel} = -kx(t)\overrightarrow{u_x}$ , et à une force de frottement fluide  $\overrightarrow{F}_{frott} = -\lambda \overrightarrow{v} = -\lambda \frac{\mathrm{d}x}{\mathrm{d}t}\overrightarrow{u_x}$ . Son accélération est  $\overrightarrow{d} = \frac{\mathrm{d}^2x}{\mathrm{d}t^2}\overrightarrow{u_x}$ . Ainsi, en projetant l'égalité vectorielle sur  $\overrightarrow{e_1}$ , on obtient pour tout  $t \geq 0$ :

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2}(t) + \lambda \frac{\mathrm{d}x}{\mathrm{d}t}(t) + kx(t) = 0.$$
 (2)

#### **Exemple 3**. Pendule simple, sans frottement.

Une masse attachée à un fil non élastique, et non pesant, de longueur  $\ell$ . La force de tension  $\overrightarrow{T}$ , orthogonale au vecteur vitesse, ne travaille pas, contrairement au poids  $\overrightarrow{P}$ . On étudie l'angle  $\theta(t)$  entre la position à l'instant t et celle de repos. En dérivant une expression de l'énergie mécanique, constante ici, on peut obtenir la relation suivante, pour  $t \geq 0$ .

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2}(t) + \frac{g}{\ell} \sin\left(\theta(t)\right) = 0,\tag{3}$$

où g est l'accélération de la pesanteur.

Les relations (1), (2) et (3) sont des **équations différentielles**. Le plus haut degré de dérivation mis en jeu dans l'équation est appelé **ordre** de l'équation. L'équation (1) est d'ordre 1 car seule la première dérivée y figure. Les équations (2) et (3) sont, elles, d'ordre 2.

On dit d'une équation différentielle qu'elle est linéaire si elle se présente sous la forme

$$\sum_{k=0}^{n} a_k y^{(k)} = b,$$

où  $a_0, a_1, \ldots, a_n$  et b sont des fonctions. Les équations (1) et (2) sont linéaires, ce qui n'est pas le cas pour (3) à cause du sinus.

La forme générale d'une équation différentielle linéaire d'ordre 1 est donc

$$a_1(t)y'(t) + a_0(t)y(t) = b(t).$$

Quitte à diviser par  $a_1$  et résoudre l'équation sur des intervalles où elle ne s'annule pas, on peut se ramener à une équation pour laquelle la fonction devant y' est constante égale à 1. C'est ainsi que dans ce cours on résoudra les équations de la forme

$$y'(t) + a(t)y(t) = b(t),$$

où a et b sont des fonctions continues sur un intervalle de  $\mathbb{R}$ . On se restreint donc à l'étude de (certaines) équations différentielles linéaires d'ordre 1.

#### Ensemble des solutions d'une ED linéaire d'ordre 1. 1

#### Définition 1.

Soient  $a, b: I \to \mathbb{K}$  deux applications continues sur I. On considère l'équation différentielle

$$y' + a(x)y = b(x) (E)$$

- On dit que  $y: I \to \mathbb{K}$  est solution de (E) sur I si elle est dérivable sur I et si elle est telle que  $\forall x \in I \ y'(x) + a(x)y(x) = b(x)$ .
- La fonction b est souvent appelée second membre de l'équation.
- L'équation homogène associée à (E) (ou équation "sans second membre") est

$$y' + a(x)y = 0 (E_0)$$

Ci-dessous, S et  $S_0$  désignent respectivement les ensembles de solutions de (E) et  $(E_0)$ .

### **Proposition 2** (Lien entre S et $S_0$ ).

Si S est non vide, alors, en considérant  $z_p \in S$  (une « solution particulière » de l'équation), on a

$$S = \{z_p + y, \quad y \in S_0\}.$$

Pour connaître toutes les solutions de (E), il suffit donc de

- connaître toutes les solutions de  $(E_0)$  $\longrightarrow$  partie 2 du cours.

#### $\bullet$ connaître une solution de (E)partie 3 du cours.

#### 2 Résolution de l'équation homogène.

On va donner toutes les solutions de

$$y' + a(x)y = 0 \qquad (E_0)$$

Cas particulier (Terminale) : le cas où a est une fonction constante (égale à  $a \in \mathbb{K}$ ). On a vu que les solutions de y' + ay = 0 sont les fonctions de la forme  $x \mapsto \lambda e^{-ax}$ , où  $\lambda$  est une constante quelconque de  $\mathbb{K}$ .

Ci-dessous, on traite le cas général pour une fonction  $a: I \to \mathbb{K}$ .

#### Théorème 3.

Soit  $(E_0)$  l'équation y' + a(x)y = 0, où  $a: I \to \mathbb{K}$  est une fonction continue sur l'intervalle I. Soit A une primitive de a sur I. L'ensemble  $S_0$  des solutions de  $(E_0)$  sur I est

$$S_0 = \left\{ x \mapsto \lambda e^{-A(x)} \mid \lambda \in \mathbb{K} \right\}.$$

On dit aussi que  $x \mapsto \lambda e^{-A(x)}$ , où  $\lambda \in \mathbb{K}$ , est la solution générale de  $(E_0)$ .

### Exemple 4.

Résoudre sur ]0,1[ l'équation t(1-t)y' + y = 0.

### Lemme 5 (Une remarque intéressante).

Si a est continue sur I, la seule solution de y' + a(x)y = 0 qui s'annule sur I, c'est la fonction nulle.

# 3 Équation générale : obtenir une solution particulière.

Il s'agit ici de trouver une solution de l'équation

$$y' + a(x)y = b(x) (E)$$

#### 3.1 Trouver une solution à vue.

Lorsque a et b sont des <u>fonctions constantes</u> (a non nulle), notre équation a une solution constante. On a déjà croisé ce genre de situation en physique en regardant un circuit RC soumis à un échelon de tension.

Plus précisément,

L'équation 
$$y' + ay = b$$
 a pour solution particulière la fonction constante  $z_p : x \mapsto \frac{b}{a}$ .

Plus généralement, lorsque b sera une fonction polynomiale de degré n, on pourra chercher une solution polynomiale de degré n.

### Exemple 6.

Deviner une solution pour les équations ci-dessous

(1) 
$$y' + 2y = 1$$
 (2)  $y' + 2y = e^x$  (3)  $y' + y = x$ .

### 3.2 Principe de superposition.

Pratique lorsque le second membre se présente comme somme de deux fonctions.

### Proposition 7 (Principe de superposition).

Soient  $a, b_1, b_2$  trois fonctions continues sur I. Si

- $y_1$  est solution sur I de  $y' + a(x)y = b_1(x)$   $(E_1)$ ,
- $y_2$  est solution sur I de  $y' + a(x)y = b_2(x)$   $(E_2)$ ,

alors  $y_1 + y_2$  est solution sur I de l'équation  $y' + a(x)y = b_1(x) + b_2(x)$  (E<sub>3</sub>).

#### Exemple 8.

Trouver une solution de l'équation  $y' + 2y = 1 + e^x$ .

#### 3.3 Méthode générale : variation de la constante.

Proposition 9 (Variation de la constante).

Si a et b sont continues sur I, l'équation y' + a(x)y = b(x) possède une solution z de la forme  $z = \lambda u$  où u est une solution non nulle de l'équation homogène, et  $\lambda$  une fonction dérivable sur I.

Preuve. (a valeur de méthode en pratique).

On cherche une solution de (E) de la forme  $z: x \mapsto \lambda(x)u(x)$ , où u est une solution (non nulle) de l'équation homogène  $(E_0)$  et  $\lambda$  une fonction dérivable sur I à choisir.

La fonction z étant dérivable sur I comme produit, on a

$$z' + az = (\lambda u)' + a(\lambda u)$$

$$= \lambda' u + \lambda u' + \lambda au$$

$$= \lambda' u + \underbrace{\lambda (u' + au)}_{=0},$$

où on a utilisé à la dernière ligne que u est solution de  $(E_0)$ . Ainsi,

$$z$$
 est solution de  $(E)$   $\iff$   $z' + az = b$  sur  $I$   $\Leftrightarrow$   $\lambda' u = b$  sur  $I$ .

Nous avons vu plus haut que, puisque u est une solution de  $(E_0)$  qui n'est pas la fonction nulle, elle ne s'annule nulle part sur I. On peut donc écrire

z est solution de 
$$(E) \iff \lambda' = b/u \text{ sur } I.$$

Notre fonction z sera donc solution si et seulement si  $\lambda$  est choisie parmi les primitives de b/u.

Exemple 10.

Résolution de  $x^4y' + 3x^3y = 1$  sur  $\mathbb{R}_+^*$ .

# 4 Synthèse.

Théorème 11 (de synthèse).

Soient  $a: I \to \mathbb{K}$  et  $b: I \to \mathbb{K}$  deux fonctions continues. L'équation

$$y' + a(x)y = b(x) \quad (E)$$

a des solutions. Si  $z_p$  est une telle solution (« particulière ») et A une primitive de a sur I, alors l'ensemble des solutions de (E) est

$$S = \left\{ x \mapsto z_p(x) + \lambda e^{-A(x)}, \lambda \in \mathbb{K} \right\}.$$

#### Définition 12.

Soient  $x_0 \in I$  et  $y_0 \in \mathbb{R}$ . On appelle **problème de Cauchy** la donnée d'une équation différentielle et d'une condition initiale (valeur imposée en un point)

$$\begin{cases} y' + a(x)y = b(x) \\ y(x_0) = y_0 \end{cases}.$$

### Théorème 13 (de Cauchy-Lipschitz, cas linéaire).

Soient  $a, b: I \to \mathbb{K}$  continues,  $x_0 \in I$  et  $y_0 \in \mathbb{K}$ .

Le problème de Cauchy  $\begin{cases} y' + a(x)y = b(x) \\ y(x_0) = y_0 \end{cases}$  admet une unique solution sur I.

**Preuve.** D'après le théorème précédent, l'équation différentielle admet des solutions. On en fixe une que l'on note  $z_p$ . Si A une primitive fixée de a sur I, alors les solutions sont les fonctions de la forme

$$y: x \mapsto z_p(x) + \lambda e^{-A(x)}$$

Parmi ces fonctions, on veut distinguer celles qui satisfont la condition initiale. On écrit donc

$$y(x_0) = y_0 \Longleftrightarrow z_p(x_0) + \lambda e^{-A(x_0)} = y_0$$
$$\Longleftrightarrow \lambda = e^{A(x_0)} \left( y_0 - z_p(x_0) \right).$$

Il existe donc une unique valeur pour  $\lambda$  pour laquelle  $y(x_0)=y_0$ ; notons-la  $\lambda_0$ . Le problème de Cauchy possède une unique solution : la fonction  $y=z_p+\lambda_0e^{-A}$ .

#### Exercices

### 11.1 [♦♦♦] Résoudre les équations différentielles ci-dessous

1. 
$$y' - 2y = 2 \operatorname{sur} \mathbb{R}$$
 2.  $(x^2 + 1)y' + xy = x$  3.  $y' + \tan(x)y = \sin(2x) \operatorname{sur} \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$   
4.  $y' - \ln(x)y = x^x \operatorname{sur} \mathbb{R}_+^*$  5.  $(1 - x)y' - y = \frac{1}{1 - x} \operatorname{sur} \left[ -\infty, 1 \right[$ 

**11.2** 
$$[\phi \diamondsuit \diamondsuit]$$
 Résoudre sur  $\mathbb{R}_+^*$  le problème de Cauchy 
$$\begin{cases} y' - \frac{2}{x}y &= x^2 \cos x \\ y(\pi) &= 0 \end{cases}$$

# 

$$\forall x \in \mathbb{R} \quad f'(x) + f(x) = \int_0^1 f(t) dt.$$

11.4 
$$[ \blacklozenge \blacklozenge \blacklozenge ]$$
 [« Recollement »]

Soit l'équation différentielle  $x^2y' - y = 0$ .

- 1. Résoudre sur  $\mathbb{R}_+^*$  et sur  $\mathbb{R}_-^*$ .
- 2. Trouver toutes les solutions définies sur  $\mathbb{R}$ .