

Modul: Grundlagen der Analysis

	·				
Modulkürzel (Eventoname)	ANA-G	I.BA_ANA-G.24			
Gültigkeit & Status/Version	Gültig seit: H24	Valid 1.2 , 17.04.2024			
ECTS-Credits	3				
Durchführung	Wöchentlich; Herbst- & Frühlingssemester				
Unterrichtssprache	Deutsch				
Modulangebot	Dept.	Studiengang	Modultyp	Pflicht/Wahl	Major/Minor
Modultyp: K: Kernmodul P: Projektmodul	I	Artificial Intelligence & Machine Learning	K	Pflicht	-
E: Erweiterungsmodul M: Major-/Minormodul Z: Zusatzmodul	I	Informatik	K	Pflicht	-
Z. Zusatzmodui	I	Information & Cyber Security	K	Pflicht	-

Modulverantwortliche/r	Wirth Joachim, joachim.wirth@hslu.ch					
Verantwortlicher Studiengang & -leiter	Informatik: Egli Frederick, frederick.egli@hslu.ch					
Zwingende Modulvoraussetzungen	_					
Hinweise zu den Modulvoraussetzungen						
Zulassungsbedingungen für Modulendprüfung	75% der Übungsaufgaben termingerecht und hinsichtlich Qualität zufriedenstellend gelöst.					
Form der Modulendprüfung bzw. des Kompetenznachweises	Schriftliche Prüfung 1.5h, während Prüfungssession					
Arbeitsaufwand (in h) (Total = Anz. Credits x 30h)	Geführtes Studium	20	Begleitetes Selbststudium	10	Individuelles Selbststudium (inkl. Prüfungsvorbereitung)	60

Abschlusskompetenzen	operationalisierte Lernziele bezüglich
Fachkompetenzen	 Die Studierenden können Grenzwerte von Funktionen berechnen und beurteilen, ob eine Funktion stetig ist. Die Studierenden können Funktionen ableiten und diese Kenntnis anwenden, um z. B. Optimierungsprobleme zu lösen oder Graphen von Funktionen zu diskutieren. Die Studierenden können bestimmte Integrale berechnen und verstehen den Zusammenhang zwischen Differential- und Integralrechnung. Sie können Stammfunktionen berechnen.

Methodenkompetenzen	 Analytisches, exaktes, wissenschaftliches Vorgehen. Abstraktes Denken und Handeln. 	
Personalkompetenz (Sozial- & Selbstkompetenz)	Systematisches Vorgehen, rationales Verhalten und konstruktives Hinterfragen.	
Literatur / Lehrmittel, Materialien	 Folien Literaturhinweise Übungsaufgaben Python-Notebooks Maxima-Scripts 	
Ergänzende und vertiefende Module	Diskrete Mathematik (DMATH-ALGO und DMATH-KRYPTO) Informatik-Mathematik (IMATH) Lineare Algebra (LIAL) Applied Statistics for Data Science (ASTAT)	
Bemerkungen		
Modulkurzbeschrieb	Grundlagen der Differential- und Integralrechnung: Stetigkeit, Grenzwert, Konvergenz, Differentialquotient, Integral. Ableitungs- und Integrationsregeln: Produkt-, Quotienten- und Kettenregel, Integration durch Substitution, partielle Integration. Anwendungen auf Graphen von Funktionen (Monotonie, Null-/Extremstellen, Wendepunkte, Krümmung) und in Optimierungsproblemen. Integration/Differentiation mit Software.	
Module Name & Description	Basics of Calculus Basics of Calculus: Continuity, Limits, Convergence, Differential Quotient, Derivative, Integral, Product Rule, Quotient Rule, Chain Rule, Integration by Substitution, Integration by Parts, Applications to Graphs of Functions: Monotonous Functions, Zeros, Maxima and Minima, Inflection Points, Curvature. Optimisation Problems. Numerical Differentiation and Integration using Software.	

Agenda Grundlagen der Analysis (ANA-G)

SW 1	SW 2	SW 3	SW 4
Funktionen und Grundaufgaben der Analysis Einführung Funktionen - Lineare Funktionen - Quadratische Funktionen - Potenzfunktionen - Ausgewählte Beispiele rationaler Funktionen - Exponentialfunktion und Logarithmus Grundaufgaben der Analysis - Ableitung (Tangentensteigung in einem Punkt) - Bestimmtes Integral (Fläche unter einer Funktion zwischen zwei Grenzen)	Stetigkeit, Sekanten und Tangenten - Differenzenquotient (Sekantensteigung) - Differentialquotient (Tangentensteigung) - auf der Basis einfacher Funktionen - Grenzwert - Stetigkeit - Gleichungen von Sekanten und Tangenten	Ableitungsregeln - Ableitung von Summen und Differenzen - Ableitung von Produkten und Quotienten - Ableitung verketteter Funktionen	Monotonie und Extrema - Monotonie und Ableitung - Kritische Punkte - Zweite Ableitung: Krümmungsverhalten - Minima und Maxima
SW 5	SW 6	SW 7	SW 8
Numerische Mathematik 1 Nullstellenbestimmung - Bisektion - Newton-Verfahren Numerisch Differenzieren - Vorwärts-, Rückwärts- und zentrale Differenzen - Fehlerordnung	Höhere Ableitungen Kurvendiskussion - Wendepunkte - Asymptoten Taylor/MacLaurin-Polynome	Optimierung Extremwertbestimmung anhand von Anwendungsbeispielen	Bestimmtes Integral - Zerlegung des Integrationsintervalls in äquidistante Teilintervalle - Faulhabersche Formeln - Bestimmte Integrale von Potenzfunktionen
SW 9 Unbestimmte Integrale	SW 10 Integrationsregeln 1	SW 11 Integrationsregeln 2	SW 12 Volumina und Oberflächen
 Vom bestimmten Integral zur Stammfunktion Hauptsatz der Differential- und Integralrechnung Berechnung bestimmter Integrale mit dem Hauptsatz 	Substitution	Partielle Integration	- Rotationskörper - Volumen eines Rotationskörpers - Mantelfläche eines Rotationskörpers
SW 13	SW 14		
Numerische Mathematik 2 Numerische Integration - Trapezregel - Simpsonregel - Newton-Cotes-Formeln - Monte-Carlo-Simulation	Reserve / Prüfungsvorbereitung		