Final Examination "Course 1-02-322: Database Systems" Exam A Answers

Kinneret College School of Engineering February 1, 2010 9:00am-12:00pm

- Answer the following questions in English or Hebrew.
- You may bring two pages of notes to the exam with notes on both sides.
- The number of points for each question is listed next to each one to indicate its weight.
- \bullet There are a total of 70 points on the test. You must answer all of the questions.
- Write all of your answers in the test booklet which you received.
- Marks made on the test sheets will not be counted or graded.
- You must return the test questions sheet at the end of the exam.

1 Short Answers (9 points / 3 points each)

Briefly explain the following terms as they relate to databases:

- 1. Isolation
 - The guarantee that any transaction executing will not be aware of any other transactions executing concurrently.
- 2. Durability
 - The guarantee that any transaction which has committed will not be lost
- 3. Candidate Key
 - A column or set of columns which uniquely identifies each row in every valid instance of the relation

2 Transactions (12 points / 3 points each)

Consider the following schedule S1:

T1	T2
- (.)	W(A)
R(A)	
R(B)	
	R(B)
W(D)	, ,
` '	W(D)
W(D)	
Commit	
	Commit

Answer the following questions about S1:

- (a) Is S1 (view) serializable? If yes, what serial schedule is it the same as? If not, explain why and list all conflicts.
 - It is serializable to T2;T1
- (b) Is S1 permitted by Strict 2PL? If not, explain why and list all conflicts.
 - It is forbidden. T1 reads A while T2 has an exclusive lock on it. T2 writes D when T1 has an exclusive lock on it.
- (c) Does S1 avoid cascading aborts? Why?
 - No, after T1 reads A, T1 would need to be aborted if T2 would abort.
- (d) Is S1 recoverable? Why?
 - No, If T2 would abort after T1 has committed, we could not recover.

3 Entity Relationship Diagrams (6 points)

Indicate which Entity Relationship Diagram (if any) $\underline{\mathbf{exactly}}$ matches the description below (no extra constraints, no missing constraints).

Football teams have a name, a city, and one or more owners. Every owner (in the database) (identified by name) owns exactly one football team. Two football teams play games against each other in stadiums (identified by name) on particular dates. Teams may play zero or more games. Stadiums have zero or more games.

(e) None of the above.

(d)

• Correct.

4 Relational Algebra (14 points)

Consider the following relational schema:

```
Teams (tname:CHAR(20), city:CHAR(20), averagePoints:real)
Players (tname:CHAR(20), pname:CHAR(20), age:int)
Games (tname:CHAR(20), gameDate:datetime, stadium:string, score:int)
```

Write Relational Algebra expressions to evaluate the following queries:

(a) (4 points) Show the *pnames* of all players who are on a team from the city 'Tiberias'

$$\pi_{pname}(\sigma_{(city=`Tiberias')}(Teams) \bowtie Players)$$

(b) (4 points) Show the *tname* and *city* of each team which has played zero games.

$$\pi_{(tname,city)}(Teams \bowtie (\pi_{tname}(Teams) - \pi_{tname}(Games)))$$

(c) (6 points) Show the *tname* and *city* of each team which has not lost or tied any games (*i.e.* its score is higher than the other team in every game it has played, if it has played any games).

$$\rho(G1(1 \rightarrow tname1, 4 \rightarrow score1), Games)$$

$$\rho(G2(1 \rightarrow tname2, 4 \rightarrow score2), Games)$$

$$\rho(Loser(tname1 \rightarrow tname), \pi_{tname1}(\sigma_{(score1 < score2)}(G1 \bowtie G2)))$$

$$\pi_{(tname, city)}(Teams \bowtie (\pi_{tname}(Teams) - \pi_{tname}(Loser)))$$

Note: Many students wrote the following **wrong** formulation:

$$\begin{split} \rho(G1(1 \rightarrow tname1, 4 \rightarrow score1), Games) \\ \rho(G2(1 \rightarrow tname2, 4 \rightarrow score2), Games) \\ \rho(Temp(tname1 \rightarrow tname), \pi_{tname1}(\sigma_{(tname1 <> tname2 \land score1 > score2)}(G1 \bowtie G2))) \\ \pi_{(tname, city)}(Teams \bowtie Temp) \end{split}$$

This is **wrong** because Temp will contain any team which won **at least one game**, not the requested query - a team which has never lost or tied a game.

5 SQL Queries (20 points)

Consider the following relational schema:

```
\label{eq:charge} \begin{split} & \operatorname{Teams} \ (\underline{\operatorname{tname:CHAR}(20)}, \ \operatorname{city:CHAR}(20), \ \operatorname{averagePoints:real}) \\ & \operatorname{Players} \ (\underline{\operatorname{tname:CHAR}(20)}, \ \operatorname{pname:CHAR}(20), \ \operatorname{age:int}) \\ & \operatorname{Games} \ (\underline{\operatorname{tname:CHAR}(20)}, \ \operatorname{gameDate:datetime}, \ \operatorname{stadium:CHAR}(20), \ \operatorname{score:int}) \end{split}
```

Write SQL expressions for the following queries. Ensure that there are no duplicates in any results:

- (a) (4 points) Show the *pnames* of all players who are on a team from the city 'Tiberias'

 SELECT DISTINCT P.pname FROM Players P, Teams T WHERE P.tname = T.tname AND t.city = 'Tiberias'
- (b) (6 points) Show the tname and city of each team which has played zero games.

SELECT DISTINCT T.tname, T.city FROM Teams T WHERE T.tname NOT IN (SELECT G.tname FROM Games G)

(c) (6 points) Show the *tname* and *city* of each team which has not lost or tied any games (*i.e.* its score is higher than the other team in every game it has played, if it has played any games).

```
SELECT DISTINCT T1.tname, T1.city
FROM Teams T1
WHERE NOT EXISTS
(SELECT *
FROM Games G1, Games G2
WHERE G1.tname = T1.tname
AND G1.gameDate = G2.gameDate
AND G1.stadium = G2.stadium
AND G1.score <= G2.score)
```

Note: Many students provided the following <u>wrong</u> answer which parallels the wrong answer for the Relational Algebra query above. For example:

```
SELECT DISTINCT T1.tname, T1.city
FROM Teams T1, Games G1, Games G2
WHERE T1.tname = G1.tname
AND T1.tname <> G2.tname
AND G1.gameDate = G2.gameDate
AND G1.score > G2.score
```

As in the relational algebra question, the above query just returns teams which have won at least one game, not what the question asked for.

(d) (4 points) For each *gameDate*, show the *date* and the highest *score* of all games played on that date, and the number of *teams* which played on that data.

SELECT DISTINCT G.date, MAX(score), count(tname) FROM Games G GROUP BY G.date

6 Triggers (9 points / 3 points each)

Consider the following relational schema:

$$\label{eq:char} \begin{split} & \operatorname{Teams} \; (\underline{\operatorname{tname:CHAR}}(20), \; \operatorname{city:CHAR}(20), \; \operatorname{averagePoints:real}) \\ & \operatorname{Players} \; (\underline{\operatorname{tname:CHAR}}(20), \; \operatorname{pname:CHAR}(20), \; \operatorname{age:int}) \\ & \operatorname{Games} \; (\operatorname{tname:CHAR}(20), \; \operatorname{gameDate:datetime}, \; \operatorname{stadium:CHAR}(20), \; \operatorname{score:int}) \end{split}$$

Consider the following trigger written in MS SQL Server 2005 syntax:

CREATE TRIGGER t1 ON Games AFTER INSERT, UPDATE AS

DECLARE @var1 CHAR(20)

DECLARE @var2 REAL

SELECT @var1 = (SELECT DISTINCT tname FROM inserted I)

SELECT @var2 = (SELECT AVG(score) FROM Games G WHERE G.tname = @var1)

UPDATE Teams SET averagePoints = @var2 WHERE tname = @var1

Assume the tables Teams and Games have been initialized as follows:

ſ	tname	city		$_{ m tname}$	gameDate	stadium	score	
			averagePoints]]	team1	2010-01-01	Beit Bendel	20
Teams:	team1 team2	Tiberias Bet Shean	20	Games:	team2	2010-01-01	Beit Bendel	21
	* * * * * * * * * * * * * * * * * * * *				team1	2010-02-02	Hula	20
L	team3	Tzefat	20		team3	2010-02-02	Hula	20

For each of the following commands, indicate what the resulting state of the Teams and Games tables will be. Consider each command separately, without respect to the previous commands:

6.1 UPDATE Games SET score = 30 WHERE tname = 'team2'

tname city averagePoints tname gameDate stadium score	
team1 2010-01-01 Beit Bendel 20	
team1 Tiberias 20	Correct
team2 Bet Shean 30	2011000
team3 Tzetat 20	
team3 2010-02-02 Hula 20	
tname gameDate stadium score	
tname city averagePoints	
team1 Tiberias 20 team1 2010-01-01 Beit Bendel 20	
B. Teams:	
team2 Bet Shean 21 team1 2010-02-02 Hula 20	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
tname city averagePoints tname gameDate stadium score	
team1 2010-01-01 Beit Bende 20	
C. Teams: team1 Tiberias 20 Games: team2 2010-01-01 Beit Bendel 30	
team2 Bet Shean 25 team1 2010-02-02 Hula 20	
team3 Tzetat 20	
team3 2010-02-02 Hula 20	

D. The command will cause an error and the tables will be unchanged.

6.2 DELETE FROM Games WHERE stadium = 'Beit Bendel'

	tname	city	averagePoints] [tname	gameDate	stadium	score	
A. Teams:	team1	Tiberias	20	Q[
	team2	Bet Shean	21	Games:	team1	2010-02-02	Hula	20	Correct
	team3	Tzefat	20		team3	2010-02-02	Hula	20	
			-	J					
	tname	city	averagePoints]	4		1:		
	team1	Tiberias	20	Games:	tname	gameDate	stadium	scor	<u>e</u>
B. Teams:	team2	Bet Shean	0		team1	2010-02-02	Hula	20	
					team3	2010-02-02	Hula	20	\neg
	team3	Tzefat	20			1		1	
	tname	city	averagePoints]	tname	gameDate	stadium		score
C. Teams:		v	Ŭ	Games:	team1	2010-01-01	Beit Bendel		20
	team1	Tiberias	20		team2	2010-01-01	Beit Bendel		21
	team2	Bet Shean	0		team1	2010-02-02	Hula		20
	team3	Tzefat	20		team3	2010-02-02	Hula		20
		•	•	-	teams	2010-02-02	Huia		20

D. The command will cause an error and the tables will be unchanged.

6.3 UPDATE Games SET score = score + 1 WHERE stadium = 'Hula'

A. Teams:	tname	city	averagePoints		$_{\mathrm{tname}}$	gameDate	stadium	score	
	إ		·	· ·]	team1	2010-01-01	Beit Bendel	20
	ns.	team1	Tiberias	20	Games:	team2	2010-01-01	Beit Bendel	21
		team2	Bet Shean	21	Gaines.				
	Ì	team3	Tzefat	20		team1	2010-02-02	Hula	21
	L				_	team3	2010-02-02	Hula	21
	ſ	tname	city	averagePoints	Games:	$_{ m tname}$	gameDate	stadium	score
	Ĺ		-	· ·		team1	2010-01-01	Beit Bendel	20
B. Teams:	$_{ m ms:}$	team1	Tiberias	20.5		team2	2010-01-01	Beit Bendel	21
		team2	Bet Shean	21		team1	2010-02-02	Hula	21
		team3	Tzefat	21					
					-	team3	2010-02-02	Hula	21
							ъ.	. 1.	
C. Teams:	Γ	tname	city	averagePoints]	tname	gameDate	stadium	score
			v	Ü]	team1	2010-01-01	Beit Bendel	20
	ns:	team1	Tiberias	20.5	Games:	team2	2010-01-01	Beit Bendel	21
		team2	Bet Shean	21		team1	2010-02-02	Hula	21
		team3	Tzefat	21			2010-02-02	Hula	21
						team3	2010-02-02	пша	21

D. The command will cause an error and the tables will be unchanged. $\underline{\mathbf{Correct}}$