

DUBLIN CITY UNIVERSITY

SEMESTER 1 EXAMINATIONS 2016/2017

MODULE:	CA4010 - Data Warehousing and Data Mining
PROGRAMME(S):
	CASE - BSc in Computer Applications (Sft.Eng.) ECSAO - Study Abroad (Engineering and Computing) ECSA - Study Abroad (Engineering and Computing)
YEAR OF STUD	Y: 4,O,X
EXAMINERS:	Mark Roantree (Ph:5636) Dr. Ian Pitt
TIME ALLOWED	: 3 hours
INSTRUCTIONS	Answer 4 questions. All questions carry equal marks.
PLEASE DO	NOT TURN OVER THIS PAGE UNTIL INSTRUCTED TO DO SO
Please note that v	nmable or text storing calculators is expressly forbidden. where a candidate answers more than the required number of questions, mark all questions attempted and then select the highest scoring ones.
Requirements for t	his paper (Please mark (X) as appropriate)
Log Ta Graph Diction	bles Thermodynamic Tables Paper Actuarial Tables

QUESTION 1 [Total marks: 25]

Data Warehousing

1(a) [8 Marks]

Discuss the differences between traditional databases and OLAP-oriented data warehouse systems under the following headings:

- i) user types
- ii) database design
- iii) data
- iv) summarisation

In each case, use a real world example of both types of data management systems.

1(b) [7 Marks]

Provide an illustration of an ETL architecture. Ensure you have a description and goal of each layer (or component), and describe what takes place.

1(c) [10 Marks]

- i) Explain the difference between an *independent* data mart and a *dependent* data mart? Give an example of each from the real world.
- ii) Explain the design concept that is used to manage and control the development of multiple data marts by (possibly separate) teams.
- iii) Draw a sample Bus Architecture. Use the organisation/company of your choice and list 4 requirements and show how they appear in the bus architecture and how their overlap is represented.

[End Question 1]

QUESTION 2 [Total marks: 25]

Classification

The golf dataset (overleaf) represents whether or not a golfer will decide to play golf, depending on the attributes provided. You are required to use *Information Gain* to determine the *first* attribute on which to branch.

2(a) [17 Marks]

- i) Calculate Entropy for the entire dataset.
- ii) Calculate the expected entropy for every attribute, for the first attribute selection.
- iii) Show which attribute is selected.
- iii) Describe the process for managing continuous variables

2(b) [8 Marks]

i) Why was the *Gain Ratio* approach adopted? In your answer explain how it differs from *Information Gain*.

Outlook	Temp	Humidity	Windy	Class	
	(°F)	(%)			
sunny	75	70	true	play	
sunny	80	90	true	don't play	Classes
sunny	85	85	false	don't play	play, don't play
sunny	72	95	false	don't play	Outlook
sunny	69	70	false	play	sunny, overcast, rain
overcast	72	90	true	play	Temperature
overcast	83	78	false	play	numerical value
overcast	64	65	true	play	Humidity
overcast	81	75	false	play	numerical value
rain	71	80	true	don't play	Windy
rain	65	70	true	don't play	true, false
rain	75	80	false	play	
rain	68	80	false	play	
rain	70	96	false	play	

- ii) Explain the SplitInfo concept, in terms of its approach.
- iii) Write and explain the Gain Ratio function
- iv) What is the difference between decision trees created by Gain Ratio and those created using the *Gini index*?

[End Question 2]

QUESTION 3 [Total marks: 25]

Association Rule Mining

T001	A,C,H
T004	A,B,E,F,H
T005	A,B,C,D
T008	A,B,C,E

The above table shows 4 transactions, each with a set of items in a shopping basket. Assume that minimum support, minsup = 50% and minimum confidence, minconf = 60%.

3(a) [6 Marks]

List all frequent itemsets together with their support.

3(b) [9 Marks]

- i) List those itemsets from part a) that are closed.
- ii) List those itemsets that are maximal.
- iii) For all frequent itemsets of maximal length, list all corresponding association rules (ie. including subsets) satisfying the requirements for minimum support *and* minimum confidence together with their confidence.

In other words, list each rule and confidence measure.

Compute *lift* for every association rule from b)iii).

[End Question 3]

QUESTION 4 [Total marks: 25]

Clustering

4(a) [4 Marks]

For interval scaled variables, what function is used to standardise measurement units? Write the function (2 steps) and explain how it works.

- i) How can we calculate a *dissimilarity matrix* for binary variables? Explain your answer through the use of the *contingency table*.
- ii) Write and explain the formula for *symmetric dissimilarity*. Provide an example of where this function might be used.
- iii) Write the function for asymmetric dissimilarity. Why might we use the asymmetric dissimilarity function? Provide an example in your answer.

i) Describe the 4 cases for object reassignment in the k-medoids algorithm (4 marks).

ii) Cluster the following objects:

A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9), using the k-medoids algorithm (9 marks).

[End Question 4]

QUESTION 5 [Total marks: 25]

Cube Computation

Assume a case study for a university where there are dimensions:

Student (student demographics such as address, age, gender), **Course** (you choose the attributes for drill down, and **Date**.

5(a) [5 Marks]

Draw the lattice for student grades which clearly shows every dimension and level.

5(b) [4 Marks]

Using your illustration in part (a):

- i) Provide an example of a base cell.
- ii) Provide an example of an aggregate cell.
- iii) Explain the terms *ancestor* and *descendant*. Provide an example of each, again using the university case study.

5(c) [6 Marks]

- i) What is meant by an *Iceberg* Cube? Provide an example of an iceberg cube using the university case study
- ii) What is meant by an *Iceberg condition*? Provide an example.

5(d) [10 Marks]

Define the BUC Algorithm for Cube Computation. In your answer:

- i) State the input parameters and why they are required.
- ii) Describe the output.
- iii) List the (pseudo)code for the algorithm.

[End Question 5]

[END OF EXAM]