CSCI4333 Database Design & Implement

Lecture Twenty-three: Normalization

Instructor: Dr. Yifeng Gao

DELETE/UPDATE

• UPDATE Sailors SET rating = 3 WHERE Sid = 11;

• DELETE FROM Sailors WHERE Sid = 11;

Normalization

- Consider relation obtained
 - Hourly_Emps(<u>ssn</u>, name, lot, rating, hrly_wage, hrs_worked)
 - call it SNLRHW
- What if we know rating (R) determines hrly_wage (W)?

S	N	L	R	W	Н
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

the existence of *integrity* constraints (e.g., $R \rightarrow W$).

functional dependencies

Redundancy

- When part of data can be **derived** from other parts, we say *redundancy* exists.
- Can you guess the value "?"

S	N	L	R	W	Н
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	?	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

What's the problem, again

- <u>Update anomaly</u>: Can we change W in just the 1st tuple of SNLRWH?
- <u>Insertion anomaly</u>: What if we want to insert an employee and don't know the hourly wage for his rating?
- <u>Deletion anomaly</u>: If we delete all employees with rating 5, we lose the information about the wage for rating 5!

What do we do? Decomposition

S	N	L	R	W	Н
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

S	N	L	R	Н
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

R	W
8	10
5	7

What do we do?

- When redundancy exists, refinement is needed.
 - Main refinement technique: <u>decomposition</u> (replacing ABCD with, say, AB and BCD, or ACD and ABD).
- Decomposition should be used judiciously:
 - Is there reason to decompose a relation?
 - What problems (if any) does the decomposition cause?

Recall Couple of Notations

	K	R					
	S	N	L	R	W	Н	
\	123-22-3666	Attishoo	48	8	10	40	ILE
•	231-31-5368	Smiley	22	8	10	30	
	131-24-3650	Smethurst	35	5	7	30	
	434-26-3751	Guldu	35	5	7	32	
	612-67-4134	Madayan	35	8	10	40	

- A <u>functional dependency</u> (FD) has the form: $X \rightarrow Y$ where X and Y are two *sets* of attributes.
 - Examples: rating→hrly_wage, AB →C
- Convention: X, Y, Z etc denote sets of attributes, and A, B, C, etc denote attributes.
- The FD $X \rightarrow Y$ is satisfied by a relation instance r if:
 - for each pair of tuples t1 and t2 in r: t1.X = t2.X implies t1.Y = t2.Y
 - i.e., given any two tuples in r, if the X values agree, then the Y values must also agree. (X and Y are sets of attributes.)

Violation of FD by a relation

- The FD $X \rightarrow Y$ is NOT satisfied by a relation instance r if:
 - There exists a pair of tuples t1 and t2 in r such that

$$t1.X = t2.X$$
 but $t1.Y \neq t2.Y$

– i.e., we can find two tuples in *r*, such that X values agree, but Y values don't.

• *The FD holds* over relation name R if, for every *allowable* instance r of R, r satisfies the FD.

• *The FD DO NOT holds* over relation name R if, for there exists an *allowable* instance r of R, r does not satisfy the FD.

A	В	С
1	1	2
1	1	3
2	1	3
2	1	2

How many *possible* FDs totally on this relation instance?

FDs with A as the left side:	Satisfied by the relation instance?
$A \rightarrow A$	yes
$A \rightarrow B$	yes
$A \rightarrow C$	No
$A \rightarrow AB$	yes
$A \rightarrow AC$	No
A→BC	No
A→ABC	No ₁₂

Some other FDs

A	В	С
1	1	2
1	1	3
2	1	3
2	1	2

FD	Satisfied by the relation instance?
C→B	yes
C→AB	No
В→С	No
$B \rightarrow B$	Yes
AC →B	Yes [note!]
•••	• • •

14

Example: Constraints on Entity Set

- Consider relation obtained from Hourly_Emps:
 - Hourly_Emps (<u>ssn</u>, name, lot, rating, hrly_wage, hrs_worked)
- <u>Notation</u>: We will denote this relation schema by listing the attributes: <u>SNLRWH</u>
 - This is really the *set* of attributes {S,N,L,R,W,H}.
 - Sometimes, we will refer to all attributes of a relation by using the relation name. (e.g., Hourly Emps for SNLRWH)
- Some FDs on Hourly_Emps:
 - ssn is the key: $S \rightarrow SNLRWH$
 - rating determines hrly wage: $R \rightarrow W$

- An FD, as an integrity constraint, is a statement about *all* allowable relation instances.
 - Must be identified based on semantics of application.
 - Given some instance r1 of R, we can check if it violates
 some FD f or not
 - But we cannot tell if f holds over R by looking at an instance!
 - Cannot prove non-existence (of violation) out of ignorance
 - This is the same for all integrity constraints!

Reasoning About FDs

- Given some FDs, we can usually infer additional FDs:
 - $-ssn \rightarrow did$, $did \rightarrow lot$ implies $ssn \rightarrow lot$
 - $-A \rightarrow BC \text{ implies } A \rightarrow B$
- An FD f is <u>logically implied by</u> a set of FDs F if f holds whenever all FDs in F hold.
 - F^+ = *closure of F* is the set of all FDs that are implied by F.