PHY 111

ASSIGNMENT 03

Name: Shihab Muhtasim

sec: 17

ID: 21301610

Ans to the or no 1(a)

Griven,
Mass of the first ice sled, $m_A = 22.7 \, \text{kg}$ Mass of the second ice sled, $m_B = 22.7 \, \text{kg}$ Mass of the cat, $m_C = 3.63 \, \text{kg}$

The cat makes two jumps which causes total four relocity to the sleds. We have to determine the final velocities.

Velocity of first sled with vai = 0 after the first sump,

 $m_{A} V_{Ai} + m_{C} V_{Ci} = m_{A} V_{Af} + m_{C} V_{Cf} [F_{ext} = 0]$ $m_{A} \cdot 0 + m_{C} \cdot 0 = 22.7 \cdot V_{Af} + 3.63 \times 3.05$ $V_{Af} = -\frac{3.63 \times 3.05}{22.7}$

> Vat = 0.487 m/s; considering negative ... Vat = -0.487 m/s; side. When cat lands on the second sled, common relocity of cut and sled, V_{6} maker so.

may V_{6} ; + mc V_{6} ; = $(m_{6} + m_{6})$ V_{6} V_{6} ; V_{6} ; V

After that when eat makes it's second jump, initial velocity of second soled = V_b' initial velocity of second soled = V_b' ($m_b + m_c$) $V_b' = m_b V_b + m_c (-V_c +)$ $\Rightarrow V_b + = \frac{m_b + m_c}{m_b} V_b' + m_c V_c + \frac{m_b}{m_b}$ $\Rightarrow V_b + = \frac{(22.7 + 3.63) \cdot 0.42 + 3.63 \times 3.05}{22.7}$ $\Rightarrow V_b + = \frac{22.1301}{22.7} = 0.975 \text{ m/s}$

Finally, after landing on the first sted, eat and the first sted will have a common relocity = VA' The inital relocity will be same as

the final velocity after first Jump. Va'i = VAt

ma Vai + mc (-vci) = (ma+mc) Va'

$$= \frac{m_A V_{Ai} - m_C V_{Ci}}{(m_A + m_C)}$$

$$VA' = \frac{(-22.7 \times 0.487) - (3.63 \times 3.05)}{(22.7 + 3.63)}$$

$$=\frac{22\cdot 1264}{26\cdot 33}$$

: Final speed of first sled Son = = 0.84 m/s Final speed of second sted Stat = 0.975 m/s

Ans to the or no 1 (b)

We know,

Impulse,] = $\Delta \vec{P}$ = $m V_f - m V_i$

Given, mans of cat, mac = 3.63 mg we get from (a) that, Final velocity, $v_t = 0.42 \text{ m/s}$

 $\frac{7}{1} = meVf - meVi$ = meVf - Vi)
= $3.63 \times (0.42 - 3.035)$ = $3.63 \times ((-2.63))$ = $-9.547 \times gms^{-1}$

: The impulse on cat, $\vec{I} = -9.547$ ly ms

Ans to the or no 1 (c)

We know,

Average force, Farg =
$$\frac{7}{\Delta t}$$

We get
$$f(nom(b))$$
 -
The impulse, $\vec{J} = -9.547$

$$Favg = \frac{-9.547}{12 \times 10^{-3}}$$

$$= -795.58 \text{ N}$$

The average force on the second sted by cat while landing is - 795.58 N

Ans to the or no 2 (a)

Oriven, Mass of the man, m; = 67 kg Mass of the boat, m2 = 179 kg Length of boat, L = 2-5 m

We know, $x_{com} = \frac{1}{m_1+m_2} (m_1x_1+m_2x_2)$

front end back end

(i) When origin is on the man's original 10 cation, $\chi_1 = 0^m$ $\chi_2 = -\frac{2.5}{2} = -1.25 m$

center of max, $\chi_{com} = \frac{(67\times0)+179}{67+179}$ = - 223.75 = -0.91 m

.. Xcom =-0.91 m

(ii) When origin is on the back end,

$$\chi_1 = 2.5 \text{ m}$$
 $\chi_2 = 2.5/2 = 1.25 \text{ m}$

: Center of mass, Xcom = (67x2.5)+(179 x1.25)

· Center of man, x com = 1:59 m

Ans to the or no 2 (b)

Here, the man walks from the front to the back of the boat. front

back When the man is in the front end, $X com = (67 \times 2.5) + (179 \times 1.25)$

1.59 m

When the man is in the back end, χ' com = $(67 \times 0) + (179 \times 1.25)$

= 0.91 m

67 +179

Since Fext = 0, to keep the momentum same the displacement = Axcom = (1.59 - 0.91) m

= 6.8 m

. The displacement of the boat will be 6.8 m to the front side.

Ans to the or no 2 (c)

Ociven, Masses of the men, $m_1 = m_2 = 62 \text{ lig}$ Mass of boat, $m_b = 179 \text{ lig}$ initial velocity of moving boat, u = 1.5 m/svelocity of the man, $v_1 = 3 \text{ m/s}$ velocity of his friend, $v_2 = 4 \text{ m/s}$

From conservation of momentum,

 $(m_1 + m_2 + m_b)u = m_1 V_1 - m_2 V_2 + m_b V_b$ =) $(62+62+179)1.5 = (67 \times 3) - (67 \times 4) + 179 \times V_b$ => $(69.5 = -67 + 179) V_b$ =>(536.5) = 536.5

The speed of the boat after sumb SVb = 2.99