The group G is isomorphic to the group labelled by [60, 5] in the Small Groups library. Ordinary character table of $G \cong A5$:

	1a	2a	3a	5a	5b
χ_1	1	1	1	1	1
χ_2	3	-1	0	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$
χ_3	3	-1	0	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$
χ_4	4	0	1	-1	-1
χ_5	5	1	-1	0	0

Trivial source character table of $G \cong A5$ at p = 3:

Normalisers N_i	N_1				N_2	
p-subgroups of G up to conjugacy in G	P_1				P_2	
Representatives $n_j \in N_i$	1a	2a	5a	5b	1a	2a
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5$	6	2	1	1	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5$	9	1	-1	-1	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5$	3	-1	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5$	3	-1	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5$	1	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5$	4	0	-1	-1	1	-1

$$P_1 = Group([()]) \cong 1$$

$$P_2 = Group([(3, 5, 4)]) \cong C3$$

$$N_1 = AlternatingGroup([1..5]) \cong A5$$

 $N_2 = Group([(3,5,4),(1,2)(4,5)]) \cong S3$