Einführung in die Komplexe Analysis Blatt 4

Jendrik Stelzner

5. Mai 2014

Aufgabe 1

1.

Es seien $z_1,z_2,z_3,z_4\in\mathbb{C}$ paarweise verschieden, beliebig aber fest, sowie $\lambda:=\mathrm{DV}(z_1,z_2,z_3,z_4)$. Für die Transpositionen $(1\ 2)\in S_4$ ist offenbar

$$\mathrm{DV}(z_2,z_1,z_3,z_4) = \frac{1}{\mathrm{DV}(z_1,z_2,z_3,z_4)} = \frac{1}{\lambda}.$$

Durch ekelhaftes Herumrechnen, auf das ich keine Lust hatte, sollte sich ergeben, dass die Translationen (1;3) und (1;4) die Ausdrücke der Form

$$1 - \lambda$$
 und $\frac{\lambda}{1 - \lambda}$

ergeben. Da diese drei Transpositionen die S_4 erzeugen, folgt die zu zeigende Aussage dann direkt, da die gegebenen 6 möglichen Werte unter diesen Operationen abgeschlossen sind.

3.

Es genügt die Aussage für Elementarmatrizen nachzurechnen, da die $\operatorname{GL}_2(\mathbb{C})$ von diesen erzeugt wird, und die Abbildung $\operatorname{GL}_2(\mathbb{C}) \to \{\operatorname{M\"obustransformationen}\}, A \mapsto g_A$ bekanntermaßen ein Gruppenhomomorphismus ist.

Für die Matrix

$$I = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ mit } g_I(z) = \frac{1}{z}$$

ist, sofern $z_1, z_2, z_3, z_4 \neq 0$,

$$\begin{aligned} & \mathrm{DV}(g_I(z_1), g_I(z_2), g_I(z_3), g_I(z_4)) \\ &= \frac{\left(\frac{1}{z_1} - \frac{1}{z_3}\right)\left(\frac{1}{z_2} - \frac{1}{z_4}\right)}{\left(\frac{1}{z_2} - \frac{1}{z_3}\right)\left(\frac{1}{z_1} - \frac{1}{z_4}\right)} = \frac{\frac{z_3 - z_1}{z_1 z_3} \cdot \frac{z_4 - z_2}{z_2 z_4}}{\frac{z_3 - z_2}{z_2 z_3} \cdot \frac{z_4 - z_1}{z_1 z_4}} \\ &= \frac{z_2 z_3 z_1 z_4}{z_1 z_3 z_2 z_4} \frac{(z_3 - z_1)(z_4 - z_2)}{(z_3 - z_2)(z_4 - z_1)} = \frac{(z_1 - z_3)(z_2 - z_4)}{(z_2 - z_3)(z_1 - z_4)} \\ &= \mathrm{DV}(z_1, z_2, z_3, z_4). \end{aligned}$$

Für die Elementarmatrizen der Form

$$S_a = \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \text{ mit } a \in \mathbb{C}^\times \text{ und } g_{S_a}(z) = az$$

und die Elementarmatrizen

$$T_b = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} ext{ mit } b \in \mathbb{C} ext{ und } g_{T_b}(z) = z + b$$

ist die Invarianz offensichtlich.

4.

Für die Matrix

$$A := \begin{pmatrix} z_2 - z_4 & -z_3(z_2 - z_4) \\ z_2 - z_3 & -z_4(z_2 - z_3) \end{pmatrix} \in \mathbb{C}^{2 \times 2}$$

ist $A \in GL_2(\mathbb{C})$, denn z_2, z_3 und z_4 sind paarweise verschieden, und somit

$$\det(A) = -z_4(z_2 - z_4)(z_2 - z_3) + z_3(z_2 - z_4)(z_2 - z_3)$$

= $(z_3 - z_4)(z_2 - z_4)(z_2 - z_3) \neq 0$.

Daher ist für alle $z \in \mathbb{C} \setminus \{z_2, z_3, z_4\}$

$$\mathrm{DV}(z,z_2,z_3,z_4) = \frac{(z-z_3)(z_2-z_4)}{(z_2-z_3)(z-z_4)} = \frac{(z_2-z_4)z-z_3(z_2-z_4)}{(z_2-z_3)z-z_4(z_2-z_3)} = g_A(z).$$

Das zeigt, dass $\mathrm{DV}(z,z_2,z_3,z_4)$ eine Möbiustransformation ist.

Es ist direkt klar, dass

$$DV(z_2, z_2, z_3, z_4) = 1$$
 und $DV(z_3, z_2, z_3, z_4) = 0$.

An der Stelle $z=z_4$ ist $\mathrm{DV}(z,z_2,z_3,z_4)$ zwar streng genommen nicht definiert, es lässt sich aber g_A eindeutig zu einem Homöomorphismus $\tilde{g}_A:\hat{\mathbb{C}}\to\hat{\mathbb{C}}$ fortsetzen. Es gilt $\tilde{g}_A(z_4)=\infty$, denn für eine Folge (z_n) auf $\hat{\mathbb{C}}\setminus\{z_4\}$ mit $z_n\to z_4$ für $n\to\infty$, und o.B.d.A. $z_n\neq\infty$ für alle $n\in\mathbb{N}$, gilt

$$\tilde{g}_A(z_n) = g_A(z_n) = \frac{z_2 - z_4}{z_2 - z_3} \cdot \frac{z_n - z_3}{z_n - z_4} = \frac{z_2 - z_4}{z_2 - z_3} \cdot \left(1 + \frac{z_4 - z_3}{z_n - z_4}\right),$$

also $|\tilde{g}_A(z_n)| \to \infty$ in \mathbb{R} für $n \to \infty$, und damit $\tilde{g}_A(z_n) \to \infty$ in $\hat{\mathbb{C}}$ für $n \to \infty$. Da \tilde{g}_A folgenstetig ist, folgt, dass $\tilde{g}_A(z_4) = \infty$.

Aufgabe 2

Schreiben wir $f_1(x+iy):=\Re(x+iy)=x$ als $f_1=u_1+iv_1$, so ist f_1 offenbar glatt mit

$$(u_1)_x = 1 \text{ und } (v_1)_y = 0.$$

Daher sind die Cauchy-Riemannschen Differentialgleichungen nirgends erfüllt, f_1 also nirgends komplex differenzierbar.

Die Abbildung $f_2(z) := \cos(z^2)$ ist nach der Kettenregel auf ganz $\mathbb C$ komplex differenzierbar: Denn $z \mapsto z^2$ ist als Polynom auf ganz $\mathbb C$ differenzierbar, und cos ist wegen $\cos(z) = (e^{iz} + e^{-iz})/2$ nach Aufgabe 4 auf ganz $\mathbb C$ komplex differenzierbar.

Die Abbildung $f_3(x+iy):=|x+iy|^2=x^2+y^2$ ist offenbar glatt, und mit $f_3=u_3+iv_3$ ist für alle $x+iy\in\mathbb{C}$

$$(u_3)_x(x+iy) = 2x$$
 und $(v_3)_y(x+iy) = 0$ sowie $(u_3)_y(x+iy) = 2y$ und $(v_3)_x(x+iy) = 0$.

Daher ist f_3 nach den Cauchy-Riamannschen Differentialgleichungen nur an 0 komplex differenzierbar.

Für die glatte Funktion $f_4(x+iy) := xy - 2ixy$ mit $f_4 = u_4 + iv_4$ ist

$$(u_4)_x(x+iy) = y \text{ und } (v_4)_y(x+iy) = -2x \text{ sowie}$$

 $(u_4)_y(x+iy) = x \text{ und } (v_4)_x(x+iy) = -2y$

für alle $x+iy\in\mathbb{C}$. f_4 ist nur an 0 komplex differenzierbar, da f_4 offenbar nur dort die Cauchy-Riemannschen Differentialgleichungen erfüllt.

Für
$$f_5(x+iy) := \exp(\Re(x+iy)) = \exp(x)$$
 ist mit $f_5 = u_5 + iv_5$

$$(u_5)_x(x+iy) = \exp(x)$$
 und $(v_5)_y(x+iy) = 0$ für alle $x+iy \in \mathbb{C}$.

Da $\exp(x) \neq 0$ für alle $x \in \mathbb{R}$ ist daher f_5 nach den Cauchy-Riemannschen Differentialgleichungen nirgends komplex differenzierbar.

Aufgabe 3

2.

Da f auf U holomorph ist, ist nach den Cauchy-Riemannschen Differentialgleichungen $(\Re(f))_x=(\Im(f))_y$ und $(\Re(f))_y=-(\Im(f))_x$ auf U. Nimmt f nur reelle Werte an, so ist $\Im(f)=0$ und daher

$$(\Re(f))_x = (\Im(f))_y = 0 \text{ und } (\Re(f))_y = -(\Im(f))_x = 0 \text{ auf } U.$$

Sehen wir $U \subseteq \mathbb{R}^2$, so ist daher $\nabla \Re(f) = 0$ auf U. Da U wegzusammenhängend ist, ist damit $\Re(f)$ konstant auf U. Da $\Im(f) = 0$ ist deshalb f konstant auf U.

1.

Da f und g holomorph auf U sind, ist auch i(f-g) holomorph auf U. Da

$$\Im(i(f-g)) = \Re(f-g) = \Re(f) - \Re(g) = 0$$

nimm
ti(f-g) auf U nur reelle Werte an. Nach Aufgabenteil 2 ist i(f-g) daher konstant auf U. Also ist auch $\Im(f-g)=-\Re(i(f-g))$ konstant auf U.

3.

Wir schreiben f=u+iv. Wir zeigen per Induktion über den Totalgrad deg u, dass f bereits ein komplexes Polynom ist.

Ist deg u=0, so ist u konstant. Nach Aufgabenteil 1 ist daher auch v konstant. Daher ist f=u+iv ein konstantes komplexes Polynom.

Sei nun $n:=\deg u$ mit $n\geq 1$ und es gelte die Aussage für $0,1,\ldots,n-1$. Da f=u+iv auf U holomorph ist, ist es auch $f'=u_x+iv_x$. Da u ein Polynom in x und y ist, ist es auch u_x . Da $\deg f'<\deg f=n$ ist nach Induktionsvoraussetzung f' ein komplexes Polynom, d.h. es ist $f'(z)=\sum_{k\geq 0}a_kz^k$ für alle $z\in U$ mit $a_k\in\mathbb{C}$ für alle $k\in\mathbb{N}$ und $a_k=0$ für fast alle $k\in\mathbb{N}$. Für das komplexe Polynom $F:U\to\mathbb{C}$ mit

$$F(z) := \sum_{k \geq 0} \frac{a_k}{k+1} z^{k+1} \text{ für alle } z \in U$$

ist F'=f' auf U. Da U zusammenhängend ist daher F-f konstant auf U. Also ist f ein komplexes Polynom.

Aufgabe 4

1.

Für alle $z = x + iy \in \mathbb{C}$ ist

$$\exp(z) = \exp(x + iy) = \exp(x) \exp(iy)$$
$$= \exp(x)(\cos(y) + i\sin(y))$$
$$= \exp(x)\cos(y) + i\exp(x)\sin(y).$$

Es ist daher klar, dass exp, aufgefasst als Funktion $\mathbb{R}^2 \to \mathbb{R}^2$, glatt ist. Da

$$(\Re(\exp))_x(x+iy) = \exp(x)\cos(y) = (\Im(\exp))_y(x+iy) \text{ und}$$
$$(\Re(\exp))_y(x+iy) = -\exp(x)\sin(y) = -(\Im(\exp))_x(x+iy).$$

erfüllt exp die Cauchy-Riemannschen Differentialgleichungen auf ganz $\mathbb C$. Also ist exp auf $\mathbb C$ komplex differenzierbar mit

$$\exp'(x+iy) = (\Re(\exp))_x(x+iy) + i(\Im(\exp))_x(x+iy)$$
$$= \exp(x)\cos(y) + i\exp(x)\sin(y) = \exp(x+iy).$$

Wir bemerken, dass log: $\mathbb{C}^- \to \mathbb{R} \times (-\pi,\pi)$ stetig ist: Für offene Intervalle $(a,b)\subseteq \mathbb{R}$ und $(c,d)\subseteq (-\pi,\pi)$ ist

$$\begin{split} & \log^{-1}((a,b)\times(c,d)) \\ &= \exp((a,b)\times(c,d)) \\ &= \{z \in \mathbb{C}^- : \exp(a) < |z| < \exp(b) \text{ und } c < \arg(z) < d\} \\ &= |\cdot|^{-1}((\exp(a), \exp(b))) \cap \arg^{-1}((c,d)) \end{split}$$

wegen der Stetigkeit von arg : $\mathbb{C}^- \to (-\pi,\pi)$ und $|\cdot|:\mathbb{C} \to \mathbb{R}_{\geq 0}$ offen. Da die Produktmengen von offene Intervallen der obigen Form eine topologische Basis von $\mathbb{R} \times (-\pi,\pi)$ bilden, zeigt dies die Stetigkeit.

Wir zeigen, dass log für alle $z\in\mathbb{C}^-$ komplex differenzierbar an z ist, und dass $\log'(z)=1/z$. Es sei (z_n) eine Folge auf \mathbb{C}^- mit $z_n\neq z$ für alle n und $z_n\to z$ für

 $n \to \infty$. Wir setzen $w_n := \log(z_n)$ für alle n und $w := \log(z)$. Wegen der Stetigkeit von log ist $w_n \to w$ für $n \to \infty$. Daher ist

$$\lim_{n \to \infty} \frac{\log(z_n) - \log(z)}{z_n - z} = \lim_{n \to \infty} \frac{w_n - w}{\exp(w_n) - \exp(w)} = \lim_{n \to \infty} \frac{1}{\frac{\exp(w_n) - \exp(w)}{w_n - w}}$$
$$= \frac{1}{\exp'(w)} = \frac{1}{\exp(w)} = \frac{1}{z}.$$

Aus der Beliebigkeit der Folge (z_n) folgt die Behauptung.

2.

Für $z \in \mathbb{C}^-$ lässt sich der Ausdruck z^n mit $n \in \mathbb{Z}$ sowohl als

$$z^n := \begin{cases} \prod_{i=1}^n z & \text{falls } n > 0, \\ 1 & \text{falls } n = 0, \\ 1/z^{-n} & \text{falls } n < 0, \end{cases}$$

als auch als $\exp(n\log(z))$ verstehen. Diese beiden Bedeutungen sind infsofern konsistent zueinander, dass $\exp(n\log(z)) = z^n$ für all $n \in \mathbb{Z}$: Es ist klar, dass

$$\exp(0 \cdot \log(z)) = 1$$

und

$$\exp(1 \cdot \log(z)) = z,$$

und daher auch

$$\exp(-1 \cdot \log(z)) \cdot z = \exp(-1 \cdot \log(z)) \cdot \exp(\log(z)) = \exp(0) = 1,$$

also $\exp(-1\cdot \log(z))=1/z=z^{-1}.$ Für alle anderen $n\in\mathbb{Z}$ ergibt sich die Aussage induktiv aus diesen Fällen.

Da exp auf $\mathbb C$ und log auf $\mathbb C^-$ komplex differenzierbar ist, ergibt sich aus der Kettenregel, dass für alle $s\in\mathbb C$ auch

$$f_s: \mathbb{C}^- \to \mathbb{C} \text{ mit } f_s(z) = z^s = \exp(s \log(z))$$

komplex differenzierbar auf \mathbb{C}^- ist, und

$$f_s'(z) = \exp(s\log(z)) \cdot s \cdot \frac{1}{z} = s \cdot z^{s-1}.$$