전기기기 프로젝트

학번 : 2019440102 이름 : 이진우

제출일: 4월 19일 수업시간 전까지

제출방법: zmalqpwd1@uos.ac.kr로 Matlab 파일 및 보고서 제출

총 : 100점

(그림 2.59: B=0.1)

1.

직류전동기를 Simulink로 구현하고 그림 2.61과 같이 전기자 전압을 인가한 경우 속도 특성을 보여라. (10점)

직류 전동기 모델

 $V_a = 70 \cdot u(t)$

2. 직류전동기에 전류 제어기를 추가하고 그림 2.63과 같은 전류 제어 성능을 보여라. (10점)

전류 제어기

그림 (a)와 비슷하게

 $\omega_{cc}=2500~\mathrm{Hz}$ 로 맞춰 성능을 비슷하게 만들었다.

그림 (b)와 비슷하게

 $\omega_{cc}=5000~{
m Hz}$ 로 맞춰 성능을 비슷하게 만들었다.

3. 직류전동기에 속도 제어기를 추가하고 그림 2.65과 같은 속도 제어 특성을 보여라. (10점)

속도 제어기

이 문제를 풀때는 대수루프 관련 오류때문에 모델 하나에 모든 시스템을 넣어 새로 만들었습니다. 또한, 모터의 마찰계수가 0.1일 때 레퍼런스 속도를 따라가지 못하여 원래 교안대로 마찰계수를 0으로 설정하여 실험하였습니다. 또한, 속도가 일정할 때 토크가 0으로 간다는 것은 마찰력이 0이여야만 가능하기도 합니다.

그림 (a)와 비슷하게

 $\omega_{cs}=250~{\rm Hz}$ 로 맞춰 성능을 비슷하게 만들었다.

그림 (b)와 비슷하게

 $\omega_{cs}=500~{
m Hz}$ 로 맞춰 성능을 비슷하게 만들었다.

4. 직류전동기에 초퍼 구동 시스템을 추가하고 그림 2.68과 같은 속도, 토크, 전류 특성을 보여라. (10점)

Chopper

속도, 토크, 전류 특성

5.

0.05초에 전동기의 속도지령을 1000 RPM으로 주고 0.5초에 전동기에 부하토크가 -10만큼 step으로 걸리게 되었을 때, 속도, 토크, 전류의 그래프를 보이고, 각 구간별로 4상한 운전모드 중 어떤 운전모드인지 설명하여라. (20점)

4상한 운전모드

4상한 운전모드는 모터의 회전 방향과 토크의 방향으로 정의되는 모드입니다. 그 구분은 다음 표와 같습니다.

종류	회전 방향	토크 방향
Forward Motoring	+	+
Forward Braking	+	-
Reverse Motoring	-	-
Reverse Breaking	-	+

구분하기

위 사진을 보면 목표 속도가 정해진 이후 속도는 항상 방향이 같습니다. 따라서 토크의 부호만 고려해, 다음과 같이 4가지 구간으로 나누어 생각할 수 있습니다.

구간 번호	시간	토크 부호
1	0.05초 ~ 0.075초	+
2	0.075초 ~ 0.1초	-
3	0.1초 ~ 0.5초	0
4	0.5초 ~ 1초	-

- 1. 구간 1은 회전 방향도 + 이며, 토크도 가속을 위해 같은 방향으로 작용하므로 Forward Motoring mode입니다.
- 2. 구간 2는 회전 방향은 + 이지만 목표속도보다 현재 속도가 빨라 감속을 해야하는 상황입니다. 따라서 토크는 반대방향으로 작용하는 것을 표에서 볼 수 있습니다. 그러므로, Forward Breaking mode입니다.
- 3. 구간 3은 회전 방향은 +, 토크는 평균적으로 0이므로 어느 mode도 아닙니다.
- 4. 구간 4는 회전 방향은 +, 토크의 방향은 이므로 Forward Breaking mode 입니다.

6.

시뮬레이션의 sampling time이 1e-5s (고정 스텝)일 때, 전류 제어기의 대역폭을 각각 100 Hz, 1 kHz, 10 kHz로 설계하고 5번 문제와 같은 지령, 부하 조건에서 전류의 과도응답 특성을 비교하여라. (20점)

과도응답 특성

1. 오버슈트(Overshoot)

$$overshoot(\%) = \frac{maximum\ value\ -\ final\ value}{final\ value} \times 100$$

- 2. 지연시간(T_d): 정상값의 50%에 도달하는데 걸리는 시간
- 3. 상승시간(T_r): 정상값의 0% 에서 100%에 도달하는 시간 (underdamped system)
- 4. 정착시간(T_s): 허용 오차 범위 안에 들어오는 시간 ($\pm 2\%$)

비교

특성을 보기 위해 확대한 사진들을 모았습니다.

 $\bullet \ \ \omega_{cc} = 100 \ \mathsf{Hz}$

ω_{cc}	Overshoot	지연시간	상승시간	정착시간
100Hz	8%	7ms	15ms	52ms
1kHz	2.8%	1.2ms	5ms	5ms
10kHz	1.2%	0.1ms	0.9ms	1ms

측정 전류의 값이 chopper에 의해 많이 튀어 정확한 값의 측정이 불가능했습니다. 따라서 평균 전류를 추정하여 위와 같이 정리하였습니다. 기본적으로 ω_{cc} 값이 크면 클수록 모든 과도응답 특성들이 좋은 것을 관측할 수 있었습니다.

7.

시뮬레이션의 sampling time이 1e-5s (고정 스텝)이고, 전류 제어기의 대역폭이 1 kHz 일 때, 속도 제어기의 대역폭을 각각 10 Hz, 100 Hz, 1 kHz로 설계하고 5번 문제와 같은 지령, 부하 조건에서 속도의 과도응답 특성을 비교하여라. (20점)

비교

ullet $\omega_{cs}=10~{
m Hz}$

ullet $\omega_{cs}=100~{
m Hz}$

ullet $\omega_{cs}=1~\mathrm{kHz}$

ω_{cs}	Overshoot	지연시간	상승시간	정착시간
10Hz	6.1%	28.5ms	117.4ms	2s
100Hz	5.5%	12.9ms	28ms	80ms
1kHz	1.5%	12.9ms	26.3ms	25.7ms

 ω_{cs} 가 증가하면 증가할수록 과도응답 특성들의 크기는 작아집니다.

특히나, 100Hz -> 1kHz로 커졌을 때 약간의 이변이 있습니다. 지연 시간과 상승 시간의 차이는 거의 없었지만, overshoot이 2% 미만으로 생겨 정착시간이 상승시간보다 짧은 것을 알 수 있습니다.