Ref.	ML	Application	Dataset	Features	Output	Evaluation	
	Technique	(approach)	(availability)			Settings	Results ^{ab}
Khan et al. [235, 236]	ANFIS	Impact of network and application-level QoS on MPEG4 video streaming over wireless mobile networks (NR regression)	Simulations with Evalvid and $ns - 2$. MPEG4 video source. 3 video types. variable network conditions. mobile video streaming client.	Video type Application-related: frame rate, send bitrate network-level: link bandwidth, packet error rate	MOS	Number of features= 5 5-layer ANFIS-NN: fuzzy layer, product layer, normalized layer, defuzzy layer, total output layer	For slight/gentle/rapid motion video type:
Machado et al. [287]	NN-dTW	Impact of QoS and video features over QoE (FR/NR regression)	Simulations on Evalvid integrated to NS – 2 3 video types (slight, gentle, rapid motion) 565 data points • MOS, PSNR, SSIM and VQM generated by Evalvid and the VQMT tool	Delay, jitter, total/I/PB frame loss · not clear if type of video is considered	A model is created for each output . MOS . PSNR . SSIM . VQM	Number of features= 6 ~ 7 (-,10,1) MOS-MLP (-,10,1) PSN-MLP (-,12,24,1) SSIM-MLP (-,10,1) VQM-MLP	MOS-MLP · MSE≈ 0.01 PSNR-MLP · MSE≈ 0.14 SSIM-MLP · MSE≈ 0.01 VQM-MLPMSE · MSE≈ 0.3 (on normalized data)
Mushtaq et al. [328]	DT, RF, NB, SVM, A-NN, and NN	Impact of QoS, video features and viewer features over QoE (NR classification)	Collected from streaming videos over QoS-controlled emulated network, and MOS collected from a panel of viewers	network-level: delay, jitter, packet loss, etc. application-related: resolution type of video: motion complexity viewer-related: gender, interest, etc.	WOS	Number of features = 9 k -NN (k = 4) Other settings (W/A)	RF · MAE= 0.136 · TP= 74.8% DT · MAE= 0.126 · TP= 74% NB · MAE≈ 0.23 · TP≈ 57% SVM · MAE= 0.26 · TP≈ 61% 4-NN · MAE≈ 0.2 · TP= 49% NN · MAE≈ 0.18 · TP= 49% NN · MAE≈ 0.18 · TP= 49% NN · MAE≈ 0.18 · TP= 49% NN

Table 19 Sumi	Table 19 Summary of supervised ML-based QoS/QoE corr	based QoS/QoE correla	elation models (Continued)				
Ref.	ML	Application	Dataset	Features	Output	Evaluation	
	Technique	(approach)	(availability)			Settings	Results ^{ab}
MLQoe [89]	SVB, MLP-NN, DT, and GNB	modular user-centric correlation of QoE and network QoS metrics for Volp services (NR regression)	3 datasets of VolP sessions under different network conditions generated with OMNET++: during handover (dataset 1), in a network with heavy UDP traffic (dataset 2), in a network with heavy TCP traffic (dataset 3) QoE assessed with user-generated MOS and programgenerated PESQ and E-model QoE	network-related: delay, jitter, packet loss, etc.	WOS	Number of features= 10 MLP-NN (10, 2 ~ 5, 1) Gaussian, linear, and polynomial kernel SVR	SVR
Dermibilek et al. [114]	RF, BG, and DNN	Correlation of QoE and network and application QoS metrics for video streaming services (NR regression)	in NRS dataset, including user-generated MOS on audiovisual sequences encoded and transmitted with various parameters, and other pub (public [112])	network-related: delay, jitter, packet loss, etc. application- related: video frame rates, quantization parameters, filters, etc.	MOS	Number of features: RF1, BG1 = 34 RF2, BG2 = 5 ONN21, DNN22 = 5 RF, BG tree size= 200 Number of hidden layers: ONN21 = 1 DNN22 Lidden = 20	RF1 • RMSE= 0.340 • PCC= 0.930 RF2 • RMSE= 0.340 • PCC= 0.930 BG1 • RMSE= 0.345 • PCC= 0.928 BG2 • RMSE= 0.355 • PCC= 0.925 DNN ₂₁ • RMSE= 0.403 • PCC= 0.925 DNN ₂₁ • RMSE= 0.437 • PCC= 0.894 (on normalized

^a Average values. Results vary according to experimental settings

^b Accuracy metrics: mean square error (MSE), mean absolute error (MAE), root MSE (RMSE), correlation coefficient (R), Pearson correlation coefficient (PCC)

Table 20 Sum	mary of ML-based Q	Table 20 Summary of ML-based QoS/QoE prediction models for HAS and DASH	s for HAS and DASH				
Ref.	ML Technique	Application	+0	Features	Output	Evaluation	
	(training)	(approach)	Dalasel (availability)			Settings	Results ^{ab}
CS2P [432]	Supervised: HMM (offline)	Throughput prediction for midstream bitrate adaptation in HAS clients to improve the QoE for video streaming (regression)	iQJYI dataset consisting of 20 million sessions covering ·3 million unique clients IPs and ·18 server IPs ·87 ISPs	Throughput samples	Throughput 1 ~ 10 periods ahead	HMM model per cluster of similar sessions: Number of states= 6 · Number of sates= 10 · samples= 100 SVM, GBR single model for all sessions: · Number of features=6	MAE= 7% (on normalized data). up to 50% more accurate than SVR, GBR and HMM with no clustering 3.2% improvement on overall QoE 10.9% improved bitrate over MPC
Claeys et al. [102]	Reinforcement learning: Q- Learning (online)	Video quality adaptation in a HAS client to maximize QoE under varying network conditions (rule extraction)	ns-3 simulation based on TCP streaming sessions in Norway's Telenor 3G/HSDPA mobile wireless network dataset. (public [384])	State: - client buffer filling level - client throughput level Reward: QoE as function of - targeted quality level - span between current and targeted video quality level - rebuffering level	Finite action set of N = 7 possible video quality levels (sotmax selection)	Improvement compared to Microsoft MSs. 9.12% higher estimated MOS ·16.65% lower standard deviation	$S = (N+1)^{\frac{B_{mox}}{T_{seg}+1}}$ $A = N$

^a Average values. Results vany according to experimental settings ^b Evaluation metrics: mean absolute error (MAB): S: number of state variables; A: number of possible actions per state