ENERGY DENSITIES (reflective zBCs) E_{total} 0.5 $E_{\rm kin,\,x}=(1/2)\rho u_x^2$ energy density $(\rho_0c_{s0}^2)$ --- $E_{\text{kin, pert, y}} = (1/2)\rho(u_y - u_{y0})^2$ $E_{\text{kin, z}} = (1/2)\rho u_z^2$ 0.4 --- $E_{\text{kin, pert, z}} = (1/2)\rho(u_z - \langle u_z \rangle_{xy})^2$ --- $E_{\text{Helm}} = c_s^2 \rho \ln \rho$ 0.3 0.2 0.1 0.0 9.6 9.4 10.0 9.8 orbits