Inference as benchmark

Inference

- Language model and embedding evaluation is a difficult task
- How can we measure our progress?
- How can we measure that the embeddings reflect an "understanding" of the language

Stanford Natural Language Inference (SNLI) corpus

A large annotated corpus for learning natural language inference

Samuel R. Bowman*†

sbowman@stanford.edu

Christopher Potts*

cgpotts@stanford.edu

Gabor Angeli†‡

angeli@stanford.edu

Christopher D. Manning*†‡

manning@stanford.edu

*Stanford Linguistics †Stanford NLP Group ‡Stanford Computer Science

https://nlp.stanford.edu/pubs/snli_paper.pdf

SNLI

Neutral airplane.

A person on a horse jumps over a broken down

A person is training his horse for a competition.

Contradiction airplane.

A person on a horse jumps over a broken down

A person is at a diner, ordering an omelette.

Entailment airplane.

A person on a horse jumps over a broken down

A person is outdoors, on a horse.

SNLI

Figure 2: The distribution of sentence length.

Data set sizes:	
Training pairs	550,152
Development pairs	10,000
Test pairs	10,000
Sentence length:	
Premise mean token count	14.1
Hypothesis mean token count	8.3
Parser output:	
Premise 'S'-rooted parses	74.0%
Hypothesis 'S'-rooted parses	88.9%
Distinct words (ignoring case)	37,026

Table 2: Key statistics for the raw sentence pairs in SNLI. Since the two halves of each pair were collected separately, we report some statistics for both.

MultiNLI + XNLI

MultiNLI

- https://www.nyu.edu/projects/bowman/multinli/
- Modelled after SNLI, but more domains

XNLI

- http://www.nyu.edu/projects/bowman/xnli/
- Multilingual addition to MultiNLI

MultiNLI

	#Examples		#Wds. 'S' par		rses		Model Acc.		
Genre	Train	Dev.	Test	Prem.	Prem.	Hyp.	Agrmt.	ESIM	CBOW
SNLI	550,152	10,000	10,000	14.1	74%	88%	89.0%	86.7%	80.6 %
FICTION	77,348	2,000	2,000	14.4	94%	97%	89.4%	73.0%	67.5%
GOVERNMENT	77,350	2,000	2,000	24.4	90%	97%	87.4%	74.8%	67.5%
SLATE	77,306	2,000	2,000	21.4	94%	98%	87.1%	67.9%	60.6%
TELEPHONE	83,348	2,000	2,000	25.9	71%	97%	88.3%	72.2%	63.7%
TRAVEL	77,350	2,000	2,000	24.9	97%	98%	89.9%	73.7%	64.6%
9/11	0	2,000	2,000	20.6	98%	99%	90.1%	71.9%	63.2%
FACE-TO-FACE	0	2,000	2,000	18.1	91%	96%	89.5%	71.2%	66.3%
LETTERS	0	2,000	2,000	20.0	95%	98%	90.1%	74.7%	68.3%
OUP	0	2,000	2,000	25.7	96%	98%	88.1%	71.7%	62.8%
VERBATIM	0	2,000	2,000	28.3	93%	97%	87.3%	71.9%	62.7%
MultiNLI Overall	392,702	20,000	20,000	22.3	91%	98%	88.7%	72.2%	64.7%

Table 3: Key statistics for the corpus by genre. The first five genres represent the *matched* section of the development and test sets, and the remaining five represent the *mismatched* section. The first three statistics provide the number of examples in each genre. #Wds. Prem. is the mean token count among premise sentences. 'S' parses is the percentage of sentences for which the Stanford Parser produced a parse rooted with an 'S' (sentence) node. Agrmt. is the percent of individual labels that match the gold label in validated examples. Model Acc. gives the test accuracy for ESIM and CBOW models (trained on either SNLI or MultiNLI), as described in Section 3.

XNLI

- Additional development and test sets for MultiNLI
- ❖ 750 pairs x 10 genres x 15 languages = 112,500 annotated pairs
- English, French, Spanish, German, Greek, Bulgarian, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, Hindi, Swahili and Urdu
- ❖ XLM sota (Lample & Conneau 2019) as of Jan. 2019
- One of the evaluation datasets used in the cross-lingual transferability of monolingual representations paper (Artetxe et al.,

Summary

SNLI (S for Stanford)	550k training + 10k dev + 10k test = 570k (pairs)
MNLI (M for multi-genre)	390k training + 20k dev + 20k test = 430k (pairs)
XNLI (X for cross-lingual)	750 pairs x 10 genres x 15 languages = 112,500 annotated pairs
ANLI (A for adversarial)	163k training + 2k dev + 2k test = 167k (pairs)

Annotation artifacts

Premise	A woman selling bamboo sticks talking to two men on a loading dock.	
Entailment	There are at least three people on a loading dock.	
Neutral	A woman is selling bamboo sticks to help provide for her family.	
Contradiction	A woman is not taking money for any of her sticks.	

Table 1: An instance from SNLI that illustrates the artifacts that arise from the annotation protocol. A common strategy for generating entailed hypotheses is to remove gender or number information. Neutral hypotheses are often constructed by adding a purpose clause. Negations are often introduced to generate contradictions.

Heuristic Analysis for NLI Systems (HANS)

Heuristic	Definition	Example
Lexical overlap	Assume that a premise entails all hypotheses constructed from words in the premise	The doctor was paid by the actor. The doctor paid the actor. WRONG
Subsequence	Assume that a premise entails all of its contiguous subsequences.	The doctor near the actor danced . The actor danced. WRONG
Constituent	Assume that a premise entails all complete subtrees in its parse tree.	If the artist slept , the actor ran. The artist slept. WRONG

Table 1: The heuristics targeted by the HANS dataset, along with examples of incorrect entailment predictions that these heuristics would lead to.

HANS

- Statistical NLI models may adopt three fallible syntactic heuristics
 - the lexical overlap heuristic
 - > the subsequence heuristic
 - > the constituent heuristic
- Models trained on MNLI, including BERT, a state-of-the-art model, perform very poorly on HANS, suggesting that they have indeed adopted these heuristics
- Augmenting a model's training set with HANS helps

GLUE and SuperGLUE

- Multi-task benchmark for development and testing of deep language models
- https://gluebenchmark.com/
- Tasks section lists the tasks forming the benchmarks

Recap

- Inference-type data is a good performance benchmark in theory
- Producing good datasets of this kind is surprisingly difficult
- The models can learn based on surface cues rather than actual meaning
- Composite scores like GLUE measuring across a number of tasks are the present standard
- Ongoing research, fast-moving target