GRADO EN INGENIERIA INFORMATICA

FÍSICA HOJA 4

Ley de Gauss.

- **1.** Un campo eléctrico vale $\vec{E}=300\ \vec{\iota}\ [\text{N/C}]$ para x>0 y $\vec{E}=-300\ \vec{\iota}\ [\text{N/C}]$ para x<0. Un cilindro de 20 cm de longitud y 4 cm de radio tiene su centro en el origen y su eje está situado a lo largo del eje X, de tal modo que una de las bases está en x = +10 cm y la otra base está en x = -10 cm.
- a) Calcular matemáticamente el flujo a través de cada una de las bases.
- b) Calcular el flujo a través de la superficie lateral.
- c) Calcular el flujo a través de la superficie cilíndrica. ¿Cuál es la carga neta encerrada por la superficie cilíndrica?
- **2.** Calcular el flujo del campo eléctrico producido por un ión positivo de gadolinio Gd⁺ a través de una de las caras de una superficie cúbica centrada en él de 1 m de lado.
- **3.** Una esfera sólida de radio R_1 con su centro sobre el eje X en $x=R_1$, tiene distribuida en su volumen y de manera uniforme una carga, de tal manera que la densidad en volumen es ρ_0 . Una corteza esférica concéntrica con la esfera tiene un radio $R_2=2R_1$ y una densidad de carga superficial uniforme σ_0 . Calcular el campo eléctrico en los puntos $(R_1/2, 0, 0)$, $(5R_1/2, 0, 0)$ y $(2R_2, R_2, 0)$
- **4.** Se distribuye carga de manera uniforme en el interior de una esfera hueca de radios R_1 = 2 cm y R_2 = 4 cm, de tal manera que la densidad volumétrica de carga es $\rho = -3 \times 10^{-6}$ C/m³. Además, se coloca una carga puntual q = 4 μ C en el punto (0,6,0).
- a) Calcular la carga almacenada en la esfera hueca
- b) Calcular la fuerza eléctrica que experimentaría un electrón colocado en el punto (0,-3,1)

c) Calcular la fuerza eléctrica que experimentaría un electrón colocado en el punto (0,0,0)

Nota: Todas las coordenadas están expresadas en cm.

5. Una carga lineal infinita de densidad lineal uniforme $\lambda = -1.5 \mu C/m$ es paralela al eje Y en x = -2 m, z = 0 m. Una carga puntual de 1.3 μC está en el punto (1,2,0). Calcular el campo eléctrico en el punto (2, 1.5, 0). (Todas las coordenadas están expresadas en metros) .

GRADO EN INGENIERIA INFORMATICA

FÍSICA HOJA 4

Ley de Gauss.

- **6.** Una corteza cilíndrica infinitamente larga, coaxial con el eje Y, tiene un radio de 15 cm. La densidad superficial de carga de dicha corteza es $\sigma_1 = 6 \,\mu\text{C m}^{-2}$.
- a) Calcular la expresión del campo eléctrico en todas las regiones del espacio
- b) Calcular la fuerza que experimenta un electrón localizado en el punto (20, 10, 0)

NOTA: Las coordenadas vienen expresadas en cm.

7. Se disponen dos líneas de carga infinitas, paralelas, cargadas con densidades lineales de carga λ iguales (λ >0), perpendiculares al plano XY, y localizadas en x= a y x = -a, tal y como indica la figura. Calcular la expresión genérica del campo eléctrico para un punto cualquiera del eje Y que verifique y>0.

DATOS:
$$\lambda$$
 = 2.5 × 10⁻⁶ C/m; a = 0.5 m; y₀ = 1.5 m

8. Tres láminas infinitas paralelas entre sí tienen distribuciones superficiales de carga $+\sigma$, $+\sigma$ y $-\sigma$, respectivamente. Hallar la magnitud y dirección del campo eléctrico en cada una de las cuatro regiones indicadas.

FÍSICA HOJA 4

Ley de Gauss.

SOLUCIONES

1. a) $\Phi(x = +10 \ cm) = 1.51 \ Nm^2 C^{-1}$ $\Phi(x = -10 \ cm) = 1.51 \ Nm^2 C^{-1}$

b) $\Phi = 0$

c) $\Phi_{\text{tot}} = 3.02 \, Nm^2 C^{-1}$ $Q_{neta} = 2.67 \times 10^{-11} \, C$

2. $\Phi = 3.02 \times 10^{-9} Nm^2C^{-1}$

3.

PUNTO	Е
(R ₁ /2, 0, 0)	$\frac{\rho_0R_1}{6\epsilon_0}$
(5R ₁ /2 , 0, 0)	$\frac{4\rho_0 R_1}{27\epsilon_0}$
(4R ₁ , 2R ₁ , 0)	$\frac{1}{13\varepsilon_0} \left[\frac{\rho_0 R_1}{3} + 4\sigma_0 \right]$

4. a) $Q_{esf} = -7.04 \times 10^{-10} \text{ C}$

b) $\vec{F} = 6.98 \times 10^{-13} \, \vec{j} - 7.71 \times 10^{-14} \, \vec{k}$ [N]

c) $\vec{F} = 1.6 \times 10^{-12} \vec{j}$ [N]

5. $\vec{E} = 1.7 \times 10^3 \vec{i} - 4.2 \times 10^3 \vec{j}$ N/C

6. a) $\vec{E}(r) = \frac{\sigma_1 R_1}{\varepsilon_0 r} \vec{u}_r$ (r > R) $\vec{E}(r) = 0$ (r < R)

b) $\vec{F} = -8.14 \times 10^{-14} \,\vec{\iota}$ (N)

7. $\vec{E}(y) = \frac{\lambda y}{\pi \, \varepsilon_0 \, (a^2 + y^2)} \, \vec{J}$

8. (Eje Y: dirección normal a las placas; sentido positivo: de región I a región IV)

 $\vec{E}_I = -\frac{\sigma}{2\varepsilon_0}\vec{J}\;;\;\; \vec{E}_{II} = \frac{\sigma}{2\varepsilon_0}\vec{J}\;;\;\; \vec{E}_{III} = \frac{3\sigma}{2\varepsilon_0}\vec{J}\;;\;\; \vec{E}_{IV} = \frac{\sigma}{2\varepsilon_0}\vec{J}$