

one skilled in the art, the markers may be readily determined. Thus, the foregoing embodiments are not to be construed as limiting the scope of this invention.

What is claimed is:

1. A method to determine an individual's propensity to a food allergy comprising determining at least one of I75V, E400A, C431R, or Q576R in IL-4Ra from at least one cell in the individual wherein a single nucleotide polymorphism indicates the individual's increased propensity to a food allergen.
2. A method to determine an individual's propensity to a food allergy comprising determining at least one of IL-4Ra, IL-13, or a CD 14 promoter from at least one cell in the individual wherein an excess of two-locus VV (I75V at IL-4Ra) – QR (R130Q at IL-13) and QR (R130Q at IL-13) – TT (at CD14 – 159 C → T) indicates the individual's increased propensity to a food allergen.
3. A method to determine an individual's propensity to a food allergy comprising determining the presence of an allele combination comprising V75IL-4Ra / Q130IL-13 / T159C → TCD14 in at least one cell in the individual wherein an increase of the allele combination over a control indicates the individual's increased propensity to a food allergen.
4. The method of claim 3 further determining the individual's propensity to eczema.
5. The method of claim 3 wherein the individual is an infant.
6. A method of determining an individual's propensity to a food allergy comprising analyzing at least one cell from the individual to determine a TT (CD14 – 159 C → T) genotype, and determining an increased propensity to a food allergy if the TT (CD14 – 159 C → T) genotype differs from a control.
7. The method of claim 6 determined in a regulatory or functional gene for at least one of IL-4Ra, IL-13, or CD14.

8. A method of determining an individual's propensity to a food allergy comprising determining in at least one cell of the individual a single nucleotide polymorphism (SNP) marker in at least one of I75V IL-4Ra, E400A IL-4Ra, C431R IL-4Ra, Q576R IL-4Ra, R130Q IL-13, or –159 C→T CD 14 compared to a control wherein the SNP marker indicates an increased propensity to a food allergy.
- 5
9. A method of determining an individual's propensity to a food allergy comprising determining in at least one cell of the individual a single nucleotide polymorphism (SNP) marker in –159 C→T CD 14 compared to a control wherein the SNP marker indicates an increased propensity to a food allergy.
10. The method of claim 9 wherein the SNP is in a TT allele.
11. The method of claim 9 wherein the individual is an infant.
12. The method of claim 9 further indicating the individual's propensity to eczema.
13. A method of enhancing determination of an individual's propensity to a food allergy comprising analyzing at least one cell of the individual for a variant in at least a two-locus analysis to enhance association between the genotype in the individual and the phenotype of a food allergy in the individual.
14. The method of claim 13 determining a three-locus analysis.
15. The method of claim 13 wherein at least one loci is in an atopy-associated genetic variant.
16. The method of claim 13 wherein a variant in at least two of CD 14, IL-4Ra, or IL-13 genes is analyzed.

17. The method of claim 13 wherein a variant in at least two of I75V IL-4Ra, E400A IL-4Ra, C431R IL-4Ra, Q576R IL-4Ra, R130Q IL-13, or -159 C→T CD 14 is analyzed.

18. The method of claim 13 wherein a variant is in a V75 allele of IL-4Ra, Q130 IL-13, and a T allele of -159 C→T CD14.

19. A genetic marker for a food allergy comprising a single nucleotide polymorphism (SNP) in at least two of a V75 allele of a IL-4Ra gene, a Q130 allele of a IL-13 gene, and a T allele of a CD14 promoter.

20. The marker of claim 19 wherein the SNP in the T allele of the CD14 promoter is -159 C→T .

21. A genetic marker for a food allergy consisting essentially of a -159 C→T polymorphism in a CD14 promoter.