#### What you need to know:

## Wave Model:

Wave properties needed to explain:

- refraction
- diffraction
- interference

#### Particle Model:

Modern Physics: Particle properties needed to explain

- Photoelectric effect
- · Compton effect

## **Dispersion:**

Colour related to wavelength,  $\lambda$ . Refractive index, n = c/v, depends on  $\lambda$ 

eg glass

 $n_{red} = 1.520$ 

 $n_{violet} = 1.538$ 

⇒ red light refracted less ⇒ Dispersion

# Dispersion

- ·Limits speed of optical fibre communications
- •Chromatic aberration: position of focus depends on wavelength
- Colours from prisms
- Rainbows

### Interference:

Interference patterns of double slits and diffraction gratings: (constructive:  $dsin\theta = m \lambda$ ),

Single slits and circular apertures: (Nodes a sin  $\theta = p \lambda$ , p = 1, 2, 3 ...)

Interferometers: Distance moved is N  $\lambda/2$ , N = number of fringes counted.

Diffraction crossover:

$$\Rightarrow D_c = \sqrt{2.44 \, \lambda L}$$

## For the Exam:

- You may be asked to find the fringe spacing for single or double slits or diffraction gratings.
- You may be asked to explain how a Michelson interferometer works.

## **Training:**

Homework Problems and Problem Class Sheets.

And then try an exam question:

# Question 10 (parts b and c)

[3+2+2 marks]

(b) In the centre of the shadow of a disk or sphere there is a small bright spot, called the Poisson spot, as shown in the figure below. Briefly explain how this bright spot arises.



- (c) Two sources of light illuminate a double slit simultaneously. One has wavelength 580 nm and the second has an unknown wavelength. The m = 5 bright fringe of the unknown wavelength overlaps the m = 4 bright fringe of the light of 580 nm wavelength.
  - (i) Find the unknown wavelength.
  - (ii) For the 580 nm light, if the m = 4 bright fringes is 0.5 cm from the central maximum on a screen that is 2.0 m from the slits, what is the slit spacing?

## Optics Formulae from exam paper:

| $d\sin\theta = m\lambda$                                  | $\Delta\theta = \frac{1.22}{D}\lambda$     | $\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)\dot{\overline{f}}$ |
|-----------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------|
| $n = \frac{c}{v},  n_i \sin \theta_i = n_f \sin \theta_f$ | $\frac{1}{f} = \frac{1}{s} + \frac{1}{s'}$ | $m = -\frac{s'}{s}$                                                               |
| $f_{\#} = \frac{f}{D}$                                    | $P = \frac{1}{f}$                          | $NA = n \sin \theta$                                                              |

Answers to exam question:

(b) (i) 464 nm, (ii) 0.9 mm