P 沟道增强型功率 MOSFET

CN2305

概述:

CN2305采用先进工艺,提供较低的导通电阻,低栅极电荷和低工作电压,栅极电压可低至2.5V。CN2305适合用于电池保护,或PWM开关中的应用。

管脚排列:

应用:

- 电池保护
- 负载开关
- 电源管理

特点:

- $V_{DS} = -20V$, $I_D = -4.1A$ $R_{DS(ON)} < 75m\Omega$ @ $V_{GS} = -2.5V$ $R_{DS(ON)} < 52m\Omega$ @ $V_{GS} = -4.5V$
- 较高的功率和电流处理能力
- 3 管脚 SOT23 封装
- 产品无铅,满足 rohs,不含卤素

电路示意图:

顶视图:

订货信息

产品型号	打印标记	封装	工作环境温度
CN2305	2305	SOT-23	-40°C to 85°C

极限参数(T_A=25℃,除非另有说明)

参数		符号	极限参数	单位	
漏极-源极电压		$V_{ m DS}$	-20	伏	
栅极-源极电压	V_{GS}	±12	伏		
	T _C =25°C		-4.1	安	
漏极连续电流	$T_C = 70^{\circ}C$	Ţ	-3.2		
/ / / / / / / / / / / / / / / / / / /	T _A =25 °C	I_{D}	-3		
	T _A =70°C		-2.3		
漏极脉冲电流 (注 1)		I_{DM}	-15	安	
最大散热功率		P_{D}	1.2	瓦	
工作结温和存储温度范围		T_{J} , T_{STG}	-55 to 150	摄氏度	

热特性

热阻,结到环境 (注 2)	$R_{ heta JA}$	100	°C/W	
---------------	----------------	-----	------	--

电气参数 (T_A=25℃,除非另有说明)

参数	符号	测试条件	最小	典型	最大	单位
关断特性						
漏极-源极击穿电压	$\mathrm{B}_{\mathrm{VDSS}}$	$V_{GS}=0V I_{D}=250 \mu A$	-20	ı	-	伏
漏极漏电流	I_{DSS}	V_{DS} =-20V, V_{GS} =0V	1	ı	-1	微安
栅极漏电流	I_{GSS}	$V_{GS}=\pm 10V$, $V_{DS}=0V$	-	-	±100	纳安
导通特性 (注 3)						
栅极阈值电压	$V_{GS(th)}$	VDS=VGS, ID=-250μA	-0.45	-0.7	-1	伏
漏极-源极导通阻抗	P	VGS=-4.5V, ID=-4.1A	-	45	52	毫欧
州权 你仅可起仇	$R_{DS(ON)}$	V_{GS} =-2.5V, I_{D} =-3A	1	60	75	毫欧
正向跨导	g_{FS}	VDS=-5V, ID=-4.1A	1	8.5	-	A/V
动态特性 (注 4)						
输入电容	$C_{I}ss$	VDS=-4V, VGS=0V,	-	740	-	皮法
输出电容	Coss	F=1.0MHz	-	290	-	皮法
反向传输电容	Crss	T-1.0WIIIZ	-	190	-	皮法
开 关特性 (注 4)						
导通延时	td(on)	V_{DD} =-4V, I_{D} =-3.3A,	-	12	-	纳秒
导通上升时间	tr	V_{DD} -4V, I_{D} -5.3A, R_{L} =1.2 Ω , V_{GEN} =-4.5V,	-	35	-	纳秒
关断延时	td(off)	$R_{c}=1.232$, $V_{GEN}=4.3V$, $R_{g}=1\Omega$	1	30	-	纳秒
关断下降时间	tf	1 Kg-132	1	10	-	纳秒
栅极总电荷	Qg	V_{DS} =-4V, I_{D} =-4.1A,	1	7.8	-	纳库
栅极-源极电荷	Qgs	V_{DS} 4V, I_{D} 4.1A, V_{GS} =-4.5V	1	1.2	-	纳库
栅极−漏极电荷	Qgd	v _{GS} 4.3 v	-	1.6	-	纳库
漏极—源极二极管特性						
二极管正向压降 (注3)	V_{SD}	$V_{GS}=0V$, $I_S=1.6A$	-		-1.2	伏
二极管正向电流(注2)	I_{S}		-	-	1.6	安

- 注1: 重复额定值: 脉冲宽度受限于最高结温。
- 注 2: $R_{\theta JA}$ 是 25 度室内环境,CN2302 被焊接在 1 平方英尺的 FR4 板上,铜皮质量 2 盎司,t \leq 10 秒。 对于客户的实际应用, $R_{\theta JA}$ 的值取决于用户电路板的设计。
- 注 3: 脉冲测试: 脉冲宽度≤300 μ s, 占空比≤2%。
- 注 4: 设计保证, 批量生产时不测试。

典型电气和热特性

图 14 Normalized Maximum Transient Thermal Impedance

封装信息

Cumbal	Dimensions In Millimeters		Dimensions In Inches			
Symbol	Min.	Max.	Min.	Max.		
Α	0.900	1.150	0.035	0.045		
A1	0.000	0.100	0.000	0.004		
A2	0.900	1.050	0.035	0.041		
b	0.300	0.500	0.012	0.020		
С	0.080	0.150	0.003	0.006		
D	2.800	3.000	0.110	0.118		
E	1.200	1.400	0.047	0.055		
E1	2.250	2.550	0.089	0.100		
е	0.950	TYP. 0.037 TYP.		0.950 TYP.		TYP.
e1	1.800	2.000	0.071	0.079		
L	0.550 REF. (0.022	REF.		
L1	0.300	0.500	0.012	0.020		
θ	0°	8°	0°	8°		

本文中所描述的电路仅供参考,上海如韵电子有限公司对使用本文中所描述的电路不承担任何责任。 上海如韵电子有限公司保留对器件的设计或者器件的技术规格书随时做出修改而不特别通知的权利。