数学建模-作业4

- 1. SIR 模型可写作 $\frac{di}{dt} = \mu i (\sigma s 1)$, $\frac{ds}{dt} = -\lambda si$.由后一方程知 $\frac{ds}{dt} < 0$, s(t) 单调减少.
 - (a) 若 $s_0 > \frac{1}{\sigma}$, 当 $\frac{1}{\sigma} < s < s_0$ 时, $\frac{\mathrm{d}i}{\mathrm{d}t} > 0$, i(t) 增加;当 $s = \frac{1}{\sigma}$ 时, $\frac{\mathrm{d}i}{\mathrm{d}t} = 0$ 达到最大值 i_m ;当 $s < \frac{1}{\sigma}$ 时, $\frac{\mathrm{d}i}{\mathrm{d}t} < 0$, i(t) 减少且 $i_m = 0$.
 - (b) 若 $s_0 < 1\frac{1}{\sigma}$, $\frac{\mathrm{d}i}{\mathrm{d}t} < 0$, $\mathrm{i}(t)$ 单调递减至0.
- 2. 在图 12 坐标下铅球运动方程为

$$\ddot{x} = 0, \quad \ddot{y} = -g, \quad x(0) = 0, \quad y(0) = h$$
$$\dot{x}(0) = v \cos \alpha, \quad \dot{y}(0) = v \sin \alpha$$

解出 x(t), y(t) 后,可以求得铅球掷远为

$$R = \frac{v^2}{g} \sin \alpha \cos \alpha + \left(\frac{v^2}{g^2} \sin^2 \alpha + \frac{2h}{g}\right)^{1/2} v \cos \alpha$$

这个关系还可以表为 $R^2g = 2v^2\cos^2\alpha(h + R\tan\alpha)$.

由此计算
$$\frac{dR}{d\alpha}\Big|_{\alpha^*} = 0$$
,得最佳出手角度 $\alpha^* = \sin^{-1} \frac{v}{\sqrt{2(v^2 + gh)}}$,最佳成绩 $R^* = \frac{v}{g}\sqrt{v^2 + 2gh}$.设 $h = 1.5m, v = 10 \ m/s$,则 $\alpha^* \approx 41.4^\circ, R^* = 11.4 \ m$.

3. 设 $f(p, v, s, \rho) = 0$ 量纲表达式: $[p] = L^2 M T^{-3}$, $[v] = L T^{-1}$, $[s] = L^2$, $[\rho] = L^{-3}M$,解得 $F(\pi) = 0$, $\pi = p^{-1}v^3s\rho$,故 $p = \lambda v^3s\rho$.

4. 代码如下:

```
x = [464,788,229,13,127,13

499,8605,1444,403,557,1223

5,9,3,20,23,124

62,527,128,163,67,146

79,749,140,43,130,273

146,1285,272,225,219,542];

x_all = [2918,16814,2875,1570,2341,5414];

a=x./x_all;

y = [1500;4200;3000;500;950;3000];

w=eye(6)-a;

q1=w\y

q2=w^-1
```