LOJİK-MANTIK KAPILAR (Logic gate)

Sayısal(Dijital) İşaret

- Yalnızca iki değer alabilen(var- yok,açık-kapalı) büyüklere denir.
- (0' ve '1' gibi iki değerle ifade edilir.
- OV-1V arası 'O' olarak kabul edilir.
- 2V-5V arası '1' olarak kabul edilir.

Sayısal Entegreler

- Temel lojik elemanların birleştirilerek tek bir kılıf haline getirilmesi ile meydana gelen elektronik devre elemanlarıdır.
- Sayısal entegreyi meydana getiren temel elemanlar.
 - Direnç
 - Diyot
 - Transistör
 - □ FET
 - Mosfet

- Lojik kapılar, sayısal devrelerin tasarımında kullanılan temel devre elemanlarıdır.
- Lojik kapılarda bir çıkış vardır.
- Giriş sayısı ise birden fazla olabilir. Çıkış değeri giriş değerlerine bağlı olarak lojik 1 ya da lojik 0 olabilir.
- Lojik kapılarda giriş ve çıkış değerlerini gösteren tablolara ise doğruluk tabloları denir.

Kapı Devreleri

- Girişindeki sayısal değerlerin durumlarına göre farklı çıkışlar üreten elektronik devrelerdir.
- Transistör ve temel elektronik elemanların birleşiminden meydana gelir.
- Temel lojik kapılar
 - □ VE
 - VEYA
 - DEĞİL
 - UEDEĞİL
 - □ VEYADEĞİL
 - □ ÖZELVEYA
 - □ ÖZELVEYADEĞİL

Tampon(buffer)

VE (AND) KAPISI

- VE kapısını çarpma işlemine benzetebiliriz.
- Çarpanlardan biri 0 olunca sonuç 0 olur, her iki çarpan 1 olursa sonuç

1 olur.

• X = A.B. dir.

5V 0 0 0	
Elektrik Devre Eşdeğeri	

A	В	Q
0	0	0
0	1	0
1	0	0
1	1	1
Doğruluk tahlosu		

Dogruluk tabiosu

Entegrenin iç yapısı

VE Kapısının Diyot Eşdeğeri

A anahtarını kapatsak da B anahtarı açık ise devreden akım geçmez.

Dolayısıyla lamba yanmaz. B anahtarı kapalı, A anahtarı açık olursa devreden yine akım geçmez ve lamba yanmaz.

Lamban ın yanması için her iki anahtarın da kapalı olması gerekir.

A	В	Q
0	0	0
0	1	0
1	0	0
1	1	1

VE Deneyi(4081 entegresi ile)

VEYA (OR) Kapısı

- En az iki girişi ve bir tek çıkışı olan mantık kapısıdır.
- Girişlerden birinin 1 olması çıkışın 1 olması için yeterlidir.
- Çıkışın 0 olması için tüm girişlerin 0 olması gerekmektedir.
- Toplama işlemine benzer. Sonucun 0 olması için tüm girişlerin 0

olması gerekir.

A	В	Q
0	0	0
0	1	1
1	0	1
1	1	1

Doğruluk tablosu

VEYA (OR) Entegresi

Entegrenin iç yapısı

VEYA Kapısının Diyot Eşdeğeri

- Bu kapı elektrik devrelerinde paralel bağlı anahtarları veya hatları temsil eder.
- Paralel bağlı hatlardan biri kesik olursa akım diğer hat üzerinden yoluna devam eder. Tümü kesik olursa akım akmaz, devre açık devre olur.
- Anahtarların açık olduğu durum Lojik 0, anahtarların kapalı olduğu durum Lojik 1 olarak kabul edilir.
- Her iki anahtar da açık (Lojik 0) konumunda olursa devre açık devre durumunda olur.
- Anahtarlardan biri kapalı (Lojik 1) konumunda olursa akım o kol üzerinden akar ve lamba yanar.

VEYA Deneyi(7432 entegresi ile)

en az bir giriş 1 ise çıkış 1 olur.

DEĞİL (NOT) Kapısı

Sembolü

Bir giriş, bir çıkış ucuna sahiptir. Giriş 1 ise çıkış 0, giriş 0 ise çıkış 1 dir.

A	Q
0	1
1	0

Doğruluk tablosu

Entegrenin iç yapısı

DEĞİL Deneyi(7404 entegresi ile)

VEDEĞİL(NAND) Kapısı

- •Çıkışı terslenmiş VE kapısıdır.
- •Eğer tüm girişler 1 olursa çıkış 0 olur. Diğer tüm durumlarda çıkışlar 1 olur.

Devrenin giriş uçlarının her ikisinin de 1 olması durumunda çıkış 0,

diğer durumlarda 1 olmaktadır.

Α	В	Q
0	0	1
0	1	1
1	0	1
1	1	0

Doğruluk tablosu

VEDEĞİL Deneyi(7400 entegresi ile)

Entegrenin iç yapısı

VEYADEĞİL(NOR) Kapısı

Sembolü

A	В	Q
0	0	1
0	1	0
1	0	0
1	1	0

Doğruluk tablosu

- •Terslenmiş VEYA kapısıdır.
- •Eğer tüm girişleri 0 olursa çıkışı 1 olur. Diğer tüm durumlarda 0 olur.

- Bu kapı VEYA kapısının tersidir. VEYA doğruluk tablosunda 1 olanları 0, 0 olanı 1 yaparsak VEYA DEĞİL kapısının doğruluk tablosunu elde etmiş oluruz.
- Bu tabloya göre çıkışın 1 olması ancak her iki girişin 0 olması ile mümkündür.

VEYADEĞİL(NOR) Kapısı

ÖZELVEYA(EXOR) Kapısı

Sembolü

Q=A⊕B _

•Girişleri aynıysa çıkış 0 girişleri farklıysa çıkış 1 olur.

•1 bitlik toplama işleminin **toplam** kısmını üretir. Bir bakıma **eldesiz toplama** yapan kapıdır.

A	В	Q
0	0	0
0	1	1
1	0	1
1	1	0

Doğruluk tablosu

- Bu kapının en az iki girişi ve 1 çıkışı vardır.
- Bu kapının çıkışından 1 elde etmenin yolu girişlerden birinin 0, diğerinin 1 olması ile mümkündür.
- Her iki girişin 1 veya her iki girişin 0 olması durumunda çıkış 0 olmaktadır.

ÖZELVEYA Deneyi(7486 entegresi ile)

Entegrenin iç yapısı

ÖZELVEYADEĞİL(EXNOR) Kapısı

Sembolü

- •Çıkışı terslenmiş ÖZEL VEYA kapısıdır.
- •Girişleri aynıysa çıkış 1 girişleri farklıysa çıkış 0 olur. Elektrik Devre Eşdeğeri
- •Girişlerin <mark>eşitliğini</mark> algılayan

bir yarım karşılaştırıcı kapısıdır.

A	В	Q
0	0	1
0	1	0
1	0	0
1	1	1

Doğruluk tablosu

Bu kapı ÖZEL VEYA kapısının tersidir.

Her iki giriş te 1 veya 0 olursa çıkışı 1 olmaktadır.

Diğer durumlarda çıkışı 0 olmaktadır

ıpısı

7-Segment Display

- 8 adet LED diyot'un birleşiminden meydana gelmiştir.
- İki farklı çeşidi vardır.
 - Ortak Anotlu
 - Ortak Katotlu

Kapılar İle Devre Tasarımı

• Devrenin giriş durumlarının formülü nedir?

Çözüm

$$Z = (A'.B) + (A.B')$$

Soru

Cevap

Örnek: Aşağıdaki verilen sayısal devrenin çıkışına ait Boolean ifadesini bulunuz.

• D = B+AC ifadesini lojik kapıları kullanarak çiziniz.

D= ((AB)+B).A ifadesini lojik kapıları kullanarak çiziniz.

Örnek :D = \overline{B} .(C+ \overline{B})+ \overline{A} .C ifadesinin kapılarla devresini çiziniz.

Q = A.B + B.C.D ifadesinin lojik diyagramını çiziniz.

111

Q=(A+B).(C+D)+A.B ifadesinin lojik diyagramını çiziniz.

Örnek: Y = A + B.C denkleminin lojik kapılı devresini çiziniz.

Çözüm:

Örnek: Y = [(A + B).C] + Ddenkleminin lojik kapılı devresini çiziniz.

Çözüm:

Örnek: $Y = (A.B) + C + (\overline{A}.\overline{B})$ denkleminin lojik kapılı devresini çiziniz.

Çözüm:

Örnek: $Y = (\overline{A} + \overline{B}).\overline{C} \oplus (B+C).A$ denkleminin lojik kapılı devresini çiziniz. Çözüm:

Örnek: Y = A.B + B.C denkleminin lojik kapılı devresini çiziniz. Çözüm:

Örnek: Y = A.B.C.(A + D)
denkleminin lojik kapılı devresini çiziniz.
Çözüm:

Örnek: Y = A. B denkleminin lojik kapılı devresini çiziniz.

Çözüm:

Örnek: Y = (AB).(B+C) denkleminin lojik kapılı devresini çiziniz. Çözüm:

Örnek: Verilen lojik devrenin boolean ifadesini yazınız.

Çözüm: Y = [(A + B).C] + (D)

Örnek: Verilen lojik devrenin boolean ifadesini yazınız.

Çözüm: $Y = B.C + \overline{B}.\overline{C} + A$

Örnek: Verilen lojik devrenin boolean ifadesini yazınız.

Çözüm: Y = A.B + B.C

Örnek: Verilen lojik devrenin boolean ifadesini yazınız.

Çözüm: $Y = (A+B).(C+D).\overline{E}$

Örnek: Verilen lojik devrenin boolean ifadesini yazınız.

Çözüm: $Y = (A+B) + (\overline{A+B).C}$

Örnek: Verilen lojik devrenin boolean ifadesini yazınız.

Çözüm: Y = [(A+B)+(B+C)] + (C+D)

Örnek: Verilen lojik devrenin boolean ifadesini yazınız.

Çözüm: $Y = [(A.B).\overline{B}] \cdot [(A.C).C]$

Örnek: Verilen lojik devrenin boolean ifadesini yazınız.

Çözüm: $Y = (A.B) + (\overline{A}.\overline{B}) + B.\overline{A} + B.A$

Dijital sinyallerin kapılara uygulanması : Ve(And)

Çözüm:

a- kapısının doğruluk tablosu yardımı ile çıkış;

Kaynakça

- http://www.sanatsalbilgi.com/DOKUMANLAR/18/mantik-kapilari-1263.html
- https://www.doorsteptutor.com/Exams/GATE/Physics/Questions/Topic-Electronics-8/Subtopic-Basic-Digital-Logic-Circuits-10/Part-1.html
- http://web.hitit.edu.tr/dersnotlari/hilmiyanmaz 20.03.2018 8I5U.pd
 f
- https://www.mertmekatronik.com/mantik-kapilarilogic-gate