STOR 635 HW 6

BY AMEER QAQISH

February 21, 2022

1 Solutions

1. Let $X_n = \sum_{i=1}^n \xi_i$ for $n \ge 1$ and $X_0 = 0$, where $\{\xi_i\}$ are iid random variables with $P(\xi_i = 1) = P(\xi_i = -1) = 1/2$. The sequence $\{X_n\}$ is called a symmetric random walk. Let $|X_n| = M_n + A_n$ be the Doob decomposition of $\{|X_n|\}$. Show that $A_n = \#\{i \le n-1: |X_i| = 0\}$. $\{A_n\}$ is referred to as the local time of $\{X_n\}$ at 0.

Proof. For $n \in \mathbb{N}_0$, let $\mathcal{F}_n = \sigma(X_1, \dots, X_n) = \sigma(\xi_1, \dots, \xi_n)$. We have

$$A_n = \sum_{i=1}^n (E(|X_i| | \mathcal{F}_{i-1}) - |X_{i-1}|).$$

Note that

$$|X_i| = \begin{cases} |X_{i-1}| + \xi_i & \text{if } X_{i-1} > 0\\ |X_{i-1}| - \xi_i & \text{if } X_{i-1} < 0.\\ 1 & \text{if } X_{i-1} = 0 \end{cases}$$

Thus

$$E(|X_{i}| | \mathcal{F}_{i-1}) = E((|X_{i-1}| + \xi_{i}) 1_{\{X_{i-1} > 0\}} + (|X_{i-1}| - \xi_{i}) 1_{\{X_{i-1} < 0\}} + 1_{\{X_{i-1} = 0\}} | \mathcal{F}_{i-1})$$

$$= 1_{\{X_{i-1} > 0\}} (|X_{i-1}| + E(\xi_{i})) + 1_{\{X_{i-1} < 0\}} (|X_{i-1}| - E(\xi_{i})) + 1_{\{X_{i-1} = 0\}}$$

$$= \begin{cases} |X_{i-1}| & \text{if } X_{i-1} \neq 0 \\ 1 & \text{if } X_{i-1} = 0 \end{cases}.$$

Thus

$$A_n = \sum_{i=1}^n 1_{\{X_{i-1}=0\}} = \#\{i \in \{0, \dots, n-1\} : X_i = 0\}.$$

- **2.** Suppose X_n^1 and X_n^2 are supermartingales with respect to \mathcal{F}_n and N is a finite stopping time such that $X_N^1 \geq X_N^2$ a.s. Then
 - (i) $Y_n = X_n^1 1_{\{N>n\}} + X_n^2 1_{\{N\leq n\}}$ is a supermartingale.
 - (ii) $Z_n = X_n^1 1_{\{N \ge n\}} + X_n^2 1_{\{N < n\}}$ is a supermartingale.

Proof. (i) Let $n \in \mathbb{N}$ be arbitrary. Clearly Y_n is \mathcal{F}_n -measurable and since $|Y_n| \le |X_n^1| + |X_n^2|$, Y_n is integrable. We have

$$Y_n - Y_{n-1} = \begin{cases} X_n^1 - X_{n-1}^1 & \text{if } n \le N - 1 \\ X_n^2 - X_{n-1}^1 & \text{if } n = N \\ X_n^2 - X_{n-1}^2 & \text{if } n \ge N + 1 \end{cases} = \begin{cases} X_n^1 - X_{n-1}^1 & \text{if } N \ge n + 1 \\ X_n^2 - X_{n-1}^1 & \text{if } N = n \\ X_n^2 - X_{n-1}^2 & \text{if } N \le n - 1 \end{cases}.$$

1

Section 1

Adding and subtracting $(X_n^1 - X_{n-1}^1) 1_{\{N=n\}}$ to the above equation yields

$$Y_n - Y_{n-1} = \left(X_n^1 - X_{n-1}^1\right) \mathbf{1}_{\{N \geq n\}} + \left(X_n^2 - X_n^1\right) \mathbf{1}_{\{N = n\}} + \left(X_n^2 - X_{n-1}^2\right) \mathbf{1}_{\{N \leq n-1\}}.$$

Since $\{N \geq n\} \in \mathcal{F}_{n-1}$ and X^1 is a supermartingale,

$$E((X_n^1 - X_{n-1}^1) 1_{\{N \ge n\}} | \mathcal{F}_{n-1}) = E(X_n^1 - X_{n-1}^1 | \mathcal{F}_{n-1}) 1_{\{N \ge n\}} \le 0.$$

Similarly, since $\{N \leq n-1\} \in \mathcal{F}_{n-1}$,

$$E((X_n^2 - X_{n-1}^2) \, 1_{\{N \le n-1\}}) \le 0.$$

The assumption $X_N^1 \ge X_N^2$ yields $(X_n^2 - X_n^1) \, 1_{\{N=n\}} = (X_N^2 - X_N^1) \, 1_{\{N=n\}} \le 0$. Thus $E((X_n^2 - X_n^1) \, 1_{\{N=n\}} \mid \mathcal{F}_{n-1}) \le 0$. Thus $E(Y_n - Y_{n-1} \mid \mathcal{F}_{n-1}) \le 0 + 0 + 0 = 0$. Thus Y is a supermartingale.

(ii) Let $n \in \mathbb{N}$ be arbitrary. Clearly Z_n is \mathcal{F}_n -measurable and integrable. We have

$$Z_n - Z_{n-1} = \begin{cases} X_n^1 - X_{n-1}^1 & \text{if } n \le N \\ X_n^2 - X_{n-1}^1 & \text{if } n = N+1 \\ X_n^2 - X_{n-1}^2 & \text{if } n \ge N+2 \end{cases} = \begin{cases} X_n^1 - X_{n-1}^1 & \text{if } N \ge n \\ X_n^2 - X_{n-1}^1 & \text{if } N = n-1 \\ X_n^2 - X_{n-1}^2 & \text{if } N \le n-2 \end{cases}.$$

Since $\{N \ge n\} \in \mathcal{F}_{n-1}$ and X^1 is a supermartingale, $E((X_n^1 - X_{n-1}^1) 1_{\{N \ge n\}} | \mathcal{F}_{n-1}) \le 0$. Since $\{N \le n-2\} \in \mathcal{F}_{n-1}$ and X^2 is a supermartingale, $E((X_n^2 - X_{n-1}^2) 1_{\{N \le n-2\}} | \mathcal{F}_{n-1}) \le 0$. We have

$$X_n^2 - X_{n-1}^1 = X_n^2 - X_{n-1}^2 + X_{n-1}^2 - X_{n-1}^1. \label{eq:constraint}$$

Thus

$$E((X_n^2 - X_{n-1}^1) \ 1_{\{N=n-1\}} \ | \ \mathcal{F}_{n-1}) = E(X_n^2 - X_{n-1}^2 \ | \ \mathcal{F}_{n-1}) \ 1_{\{N=n-1\}} + E((X_N^2 - X_n^1) \ 1_{\{N=n-1\}} \ | \ \mathcal{F}_{n-1}) \le 0 + 0.$$

Thus
$$E(Z_n - Z_{n-1} | \mathcal{F}_{n-1}) \le 0 + 0 + 0 = 0$$
. Thus Z is a supermartingale.

3. Let $X_n = \sum_{i=1}^n \xi_i$ for $n \ge 1$ and $X_0 = 0$, where $\{\xi_i\}$ are iid random variables with $P(\xi_i = 1) = P(\xi_i = -1) = 1/2$. The sequence $\{X_n\}$ is called a symmetric random walk. Fix a < 0, b > 0 and define stopping times

$$\tau_a \doteq \inf\{n: X_n = a\}, \quad \tau_b \doteq \inf\{n: X_n = b\}, \quad \tau_{a,b} = \tau_a \wedge \tau_b.$$

Compute $E(\tau_{a,b})$ by completing the following steps.

- (a) Show that $\tau_a < \infty$ a.s. and $\tau_b < \infty$ a.s.
- (b) Show $X_{n \wedge \tau_{a,b}} \to X_{\tau_{a,b}}$ in L^1 .
- (c) Using optional sampling theorem show that $P(\tau_{a,b} = \tau_a) = \frac{b}{b-a}$.
- (d) Show that $Y_n \doteq X_n^2 n$ is a martingale.

Solutions 3

(e) Use the last two parts and optional sampling theorem to show $E(\tau_{a,b}) = |a| b$.

Proof. (a) For $k \in \mathbb{Z}$, let $f(k) = P(\tau_k < \infty)$. It suffices to show that f(k) = 1 for all $k \in \mathbb{Z}$. Since $\tau_0 = 0$, f(0) = 1. Let $k \ge 1$ be arbitrary. We have

$$f(k) = P(\tau_k < \infty)$$

= $P(\xi_1 = 1) P(\tau_k < \infty \mid \xi_1 = 1) + P(\xi_1 = -1) P(\tau_k < \infty \mid \xi_1 = -1).$

Note that

$$P(\tau_{k} < \infty \mid \xi_{1} = 1) = P(\xi_{1} + \dots + \xi_{n} = k \text{ for some } n \in \mathbb{N}_{0} \mid \xi_{1} = 1)$$

$$= P(\xi_{1} + \dots + \xi_{n} = k \text{ for some } n \in \mathbb{N} \mid \xi_{1} = 1)$$

$$= P(\xi_{2} + \dots + \xi_{n} = k - 1 \text{ for some } n \in \mathbb{N} \mid \xi_{1} = 1)$$

$$= P(\xi_{2} + \dots + \xi_{n} = k - 1 \text{ for some } n \in \mathbb{N})$$

$$= P(\xi_{1} + \dots + \xi_{n-1} = k - 1 \text{ for some } n \in \mathbb{N})$$

$$= P(\xi_{1} + \dots + \xi_{n} = k - 1 \text{ for some } n \in \mathbb{N}_{0})$$

$$= P(\xi_{1} + \dots + \xi_{n} = k - 1 \text{ for some } n \in \mathbb{N}_{0})$$

$$= P(\xi_{1} + \dots + \xi_{n} = k - 1 \text{ for some } n \in \mathbb{N}_{0})$$

$$= P(\xi_{1} + \dots + \xi_{n} = k - 1 \text{ for some } n \in \mathbb{N}_{0})$$

$$= P(\xi_{1} + \dots + \xi_{n} = k - 1 \text{ for some } n \in \mathbb{N}_{0})$$

$$= P(\xi_{1} + \dots + \xi_{n} = k - 1 \text{ for some } n \in \mathbb{N}_{0})$$

To get the 5th equality, we used the fact that $(\xi_1, \xi_2, ...)$ has the same distribution as $(\xi_2, \xi_3,...)$. A similar computation shows that $P(\tau_k < \infty \mid \xi_1 = -1) = f(k+1)$. Hence

$$f(k) = \frac{1}{2} f(k-1) + \frac{1}{2} f(k+1).$$

This is a linear recurrence relation with characteristic polynomial $\frac{1}{2}r^2 - r + \frac{1}{2} = \frac{1}{2}(r-1)^2$. By the theorem for solutions of linear recurrences, there exist $C_1, C_2 \in \mathbb{R}$ such that for all $k \in \mathbb{N}_0$, $f(k) = C_1 k + C_2$. Since $f(k) \in [0, 1]$ for all $k \in \mathbb{N}_0$, it follows that $C_1 = 0$. Since f(0) = 1, $C_2 = 1$. Thus f(k) = 1 for all $k \in \mathbb{N}_0$. By symmetry, f(k) = 1 for all $k \in -\mathbb{N}_0$. Hence f(k) = 1 for all $k \in \mathbb{Z}$.

- (b) For every $\omega \in \Omega$ for which $\tau_{a,b}(\omega) < \infty$, we have $\tau_{a,b}(\omega) \wedge n = \tau_{a,b}(\omega)$ for n large, and hence $X_{\tau_{a,b} \wedge n}(\omega) = X_{\tau_{a,b}}(\omega)$ for n large. Thus $X_{\tau_{a,b} \wedge n} \to X_{\tau_{a,b}}$ a.s. Since $|X_{\tau_{a,b} \wedge n}| \leq \max(|a|, b) < \infty$ for all n, it follows by the dominated convergence theorem that $X_{\tau_{a,b} \wedge n} \to X_{\tau_{a,b}}$ in L^1 .
- (c) By the optional sampling theorem, $(X_{\tau_{a,b}\wedge n})_{n\in\mathbb{N}_0}$ is an \mathcal{F}_n -martingale, where $\mathcal{F}_n = \sigma(\xi_1, \ldots, \xi_n)$. Thus for each $n \in \mathbb{N}_0$,

$$E(X_{\tau_{a,b} \wedge n}) = E(X_{\tau_{a,b} \wedge 0}) = E(X_0) = 0.$$

Since $X_{\tau_{a,b}\wedge n} \to X_{\tau_{a,b}}$ in L^1 , $E(X_{\tau_{a,b}}) = \lim_{n\to\infty} E(X_{\tau_{a,b}\wedge n}) = 0$. Thus

$$E(X_{\tau_{a,b}}) = a P(\tau_{a,b} = \tau_a) + b P(\tau_{a,b} = \tau_b) = 0.$$

Using
$$P(\tau_{a,b} = \tau_b) = 1 - P(\tau_{a,b} = \tau_a)$$
 yields $P(\tau_{a,b} = \tau_a) = \frac{b}{b-a}$.

4 Section 1

(d) Note that $|X_n| \le n$, so $X_n \in L^{\infty}$. Thus $X_n \in L^2$. Let $X_n^2 = M_n + A_n$ be the Doob decomposition of (X_n^2) . Using $E(X_i \mid \mathcal{F}_{i-1}) = X_{i-1}$, we have

$$A_{n} = \sum_{i=1}^{n} (E(X_{i}^{2} | \mathcal{F}_{i-1}) - X_{i-1}^{2})$$

$$= \sum_{i=1}^{n} Var(X_{i} | \mathcal{F}_{i-1})$$

$$= \sum_{i=1}^{n} E((X_{i} - X_{i-1})^{2} | \mathcal{F}_{i-1})$$

$$= \sum_{i=1}^{n} E(\xi_{i}^{2} | \mathcal{F}_{i-1})$$

$$= \sum_{i=1}^{n} 1$$

$$= n.$$

Thus $M_n = X_n^2 - n$ is a martingale.

(e) By part (d) and the optional stopping theorem, $(X_{\tau_a,b}^2 \wedge n - (\tau_{a,b} \wedge n))_{n \in \mathbb{N}_0}$ is a martingale. Thus $E(X_{\tau_a,b}^2 \wedge n - (\tau_{a,b} \wedge n)) = E(X_0^2) = 0$ for all $n \in \mathbb{N}_0$. Thus $E(\tau_{a,b} \wedge n) = E(X_{\tau_a,b}^2 \wedge n)$ for all $n \in \mathbb{N}_0$. By the monotone convergence theorem, $E(\tau_{a,b} \wedge n) \nearrow E(\tau_{a,b})$. Since $|X_{\tau_a,b} \wedge n| \le \max(|a|,b) < \infty$ for all n, it follows by the dominated convergence theorem that $X_{\tau_a,b} \wedge n \to X_{\tau_a,b}$ in L^2 . Thus $E(X_{\tau_a,b}^2 \wedge n) \to E(X_{\tau_a,b}^2)$. Thus taking $n \to \infty$ in the equation $E(\tau_{a,b} \wedge n) = E(X_{\tau_a,b}^2 \wedge n)$ yields $E(\tau_{a,b}) = E(X_{\tau_a,b}^2)$. Thus

$$E(\tau_{a,b}) = E(X_{\tau_{a,b}}^2)$$

$$= a^2 P(\tau_{a,b} = \tau_a) + b^2 P(\tau_{a,b} = \tau_b)$$

$$= a^2 \frac{b}{b-a} + b^2 \frac{-a}{b-a}$$

$$= -ab$$

$$= |a| b.$$

4. Let $\{X_n\}_{n\geq 0}$ be a submartingale with $\sup X_n < \infty$ a.s. Let $\xi_n = X_n - X_{n-1}$ and suppose $E(\sup_n \xi_n^+) < \infty$. Show that X_n converges a.s.

Proof. For each $k \ge 0$, let $N_k = \inf\{n \in \mathbb{N}_0 : X_n > k\}$. Let $k \ge 0$ be arbitrary. Note that N_k is a stopping time. By the optional stopping theorem, $(X_{N_k \wedge n})_{n \in \mathbb{N}_0}$ is a submartingale with respect to the same filtration as $(X_n)_{n \in \mathbb{N}_0}$. Let $n \in \mathbb{N}_0$ be arbitrary. On the set $\{n < N_k\}$, we have

$$X_{N_k \wedge n}^+ = X_n^+ \le k^+ = k.$$

On the set $\{n \ge N_k\}$, we have

$$X_{N_k \wedge n} = X_{N_k} = X_{N_k-1} + \xi_{N_k} \le k + \xi_{N_k}$$

Solutions 5

and hence

$$X_{N_k \wedge n}^+ \le k + \xi_{N_k}^+ \le k + \sup_m \xi_m^+.$$

Thus $X_{N_k \wedge n} \leq k + \sup_m \xi_m^+$ a.s. Thus $E(X_{N_k \wedge n}^+) \leq k + E(\sup_m \xi_m^+)$. Thus $\sup_n E(X_{N_k \wedge n}^+) \leq k + E(\sup_m \xi_m^+) < \infty$. By the martingale convergence theorem, there is a random variable $X_{\infty}^{N_k}$ such that $X_{N_k \wedge n} \to X_{\infty}^{N_k}$ a.s.

is a random variable $X_{\infty}^{N_k}$ such that $X_{N_k \wedge n} \to X_{\infty}^{N_k}$ a.s. For every $k \geq 0$, note that on the set $\{N_k = \infty\}$, $X_n = X_{N_k \wedge n} \to X_{\infty}^{N_k}$ a.s. Thus $X_n(\omega)$ converges for almost every $\omega \in \bigcup_{k=1}^{\infty} \{N_k = \infty\}$. Note that $\bigcup_{k=1}^{\infty} \{N_k = \infty\} = \bigcup_{k=1}^{\infty} \{X_n \leq k \text{ for all } n \in \mathbb{N}_0\} = \{\sup_{k=1}^{\infty} \{X_n \leq \infty\}$. By assumption, $P(\sup_{k=1}^{\infty} X_n < \infty) = 1$. Thus X_n converges a.s.