

Universidade Estadual de Campinas

Paracuru, Eusébio e Pão de Queijo. A vida é boa

Cirilo Max, Igor Brito, Pedro Mesquita

Contest (1)

hash.sh

Hashes a file, ignoring all whitespace and comments. Use for # verifying that code was correctly typed.

cpp -dD -P -fpreprocessed | tr -d '[:space:]' | md5sum |cut -c-6

Description: RANDOM

mt19937 rng(chrono::steady_clock::now().time_since_epoch().

Mathematics (2)

2.1 Equations

$$ax^{2} + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

The extremum is given by x = -b/2a.

$$ax + by = e$$

$$cx + dy = f$$

$$\Rightarrow x = \frac{ed - bf}{ad - bc}$$

$$y = \frac{af - ec}{ad - bc}$$

In general, given an equation Ax = b, the solution to a variable x_i is given by

$$x_i = \frac{\det A_i'}{\det A}$$

where A'_i is A with the *i*'th column replaced by b.

Recurrences

If $a_n = c_1 a_{n-1} + \cdots + c_k a_{n-k}$, and r_1, \dots, r_k are distinct roots of $x^k - c_1 x^{k-1} - \cdots - c_k$, there are d_1, \ldots, d_k s.t.

$$a_n = d_1 r_1^n + \dots + d_k r_k^n.$$

Non-distinct roots r become polynomial factors, e.g. $a_n = (d_1 n + d_2) r^n.$

Trigonometry

$$\sin(v + w) = \sin v \cos w + \cos v \sin w$$
$$\cos(v + w) = \cos v \cos w - \sin v \sin w$$

$$\tan(v+w) = \frac{\tan v + \tan w}{1 - \tan v \tan w}$$
$$\sin v + \sin w = 2\sin\frac{v+w}{2}\cos\frac{v-w}{2}$$
$$\cos v + \cos w = 2\cos\frac{v+w}{2}\cos\frac{v-w}{2}$$

$(V+W)\tan(v-w)/2 = (V-W)\tan(v+w)/2$

where V, W are lengths of sides opposite angles v, w.

$$a\cos x + b\sin x = r\cos(x - \phi)$$

$$a\sin x + b\cos x = r\sin(x + \phi)$$

where $r = \sqrt{a^2 + b^2}$, $\phi = \operatorname{atan2}(b, a)$.

2.4 Geometry

2.4.1 Triangles

Side lengths: a, b, c

Semiperimeter: $p = \frac{a+b+c}{2}$

Area: $A = \sqrt{p(p-a)(p-b)(p-c)}$

Circumradius: $R = \frac{abc}{4A}$

Inradius: $r = \frac{A}{}$

Length of median (divides triangle into two equal-area triangles): $m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$

Length of bisector (divides angles in two):

$$s_a = \sqrt{bc \left[1 - \left(\frac{a}{b+c}\right)^2\right]}$$

Law of sines: $\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c} = \frac{1}{2R}$ Law of cosines: $a^2 = b^2 + c^2 - 2bc \cos \alpha$

Law of tangents: $\frac{a+b}{a-b} = \frac{\tan \frac{\alpha+\beta}{2}}{\tan \frac{\alpha-\beta}{2}}$

2.4.2 Quadrilaterals

With side lengths a,b,c,d, diagonals e,f, diagonals angle θ , area A and magic flux $F = b^2 + d^2 - a^2 - c^2$:

$$4A = 2ef \cdot \sin \theta = F \tan \theta = \sqrt{4e^2 f^2 - F^2}$$

For cyclic quadrilaterals the sum of opposite angles is 180°, ef = ac + bd, and $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}$.

2.4.3 Spherical coordinates

$$\begin{aligned} x &= r \sin \theta \cos \phi & r &= \sqrt{x^2 + y^2 + z^2} \\ y &= r \sin \theta \sin \phi & \theta &= \arccos(z/\sqrt{x^2 + y^2 + z^2}) \\ z &= r \cos \theta & \phi &= \operatorname{atan2}(y, x) \end{aligned}$$

2.5 Derivatives/Integrals

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}} \qquad \frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\tan x = 1 + \tan^2 x \qquad \frac{d}{dx}\arctan x = \frac{1}{1+x^2}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \qquad \int x\sin ax = \frac{\sin ax - ax\cos ax}{a^2}$$

$$\int e^{-x^2} = \frac{\sqrt{\pi}}{2}\operatorname{erf}(x) \qquad \int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax-1)$$

Integration by parts:

$$\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

2.6 Sums

$$c^{a} + c^{a+1} + \dots + c^{b} = \frac{c^{b+1} - c^{a}}{c-1}, c \neq 1$$

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

2.7Series

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{2x^3}{32} - \frac{5x^4}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots, (-\infty < x < \infty)$$

OrderStatisticTree HashMap SegmentTree

2.8 Probability theory

Let X be a discrete random variable with probability $p_X(x)$ of assuming the value x. It will then have an expected value (mean) $\mu = \mathbb{E}(X) = \sum_x x p_X(x)$ and variance $\sigma^2 = V(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \sum_x (x - \mathbb{E}(X))^2 p_X(x)$ where σ is the standard deviation. If X is instead continuous it will have a probability density function $f_X(x)$ and the sums above will instead be integrals with $p_X(x)$ replaced by $f_X(x)$.

Expectation is linear:

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$

For independent X and Y,

$$V(aX + bY) = a^2V(X) + b^2V(Y).$$

2.8.1 Discrete distributions Binomial distribution

The number of successes in n independent yes/no experiments, each which yields success with probability p is $Bin(n, p), n = 1, 2, ..., 0 \le p \le 1$.

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mu = np, \, \sigma^2 = np(1-p)$$

Bin(n, p) is approximately Po(np) for small p.

First success distribution

The number of trials needed to get the first success in independent yes/no experiments, each which yields success with probability p is Fs(p), $0 \le p \le 1$.

$$p(k) = p(1-p)^{k-1}, k = 1, 2, \dots$$

$$\mu = \frac{1}{p}, \, \sigma^2 = \frac{1-p}{p^2}$$

Poisson distribution

The number of events occurring in a fixed period of time t if these events occur with a known average rate κ and independently of the time since the last event is $Po(\lambda)$, $\lambda = t\kappa$.

$$p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2, \dots$$

$$\mu = \lambda, \, \sigma^2 = \lambda$$

2.8.2 Continuous distributions Uniform distribution

If the probability density function is constant between a and b and 0 elsewhere it is $U(a,b),\ a < b$.

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$

$$\mu = \frac{a+b}{2}, \, \sigma^2 = \frac{(b-a)^2}{12}$$

Exponential distribution

The time between events in a Poisson process is $\text{Exp}(\lambda)$, $\lambda > 0$.

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$
$$\mu = \frac{1}{\lambda}, \sigma^2 = \frac{1}{\lambda^2}$$

Normal distribution

Most real random values with mean μ and variance σ^2 are well described by $\mathcal{N}(\mu, \sigma^2)$, $\sigma > 0$.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ then

$$aX_1 + bX_2 + c \sim \mathcal{N}(\mu_1 + \mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)$$

2.9 Markov chains

A Markov chain is a discrete random process with the property that the next state depends only on the current state. Let X_1, X_2, \ldots be a sequence of random variables generated by the Markov process. Then there is a transition matrix $\mathbf{P} = (p_{ij})$, with $p_{ij} = \Pr(X_n = i | X_{n-1} = j)$, and $\mathbf{p}^{(n)} = \mathbf{P}^n \mathbf{p}^{(0)}$ is the probability distribution for X_n (i.e., $p_i^{(n)} = \Pr(X_n = i)$), where $\mathbf{p}^{(0)}$ is the initial distribution.

 π is a stationary distribution if $\pi = \pi \mathbf{P}$. If the Markov chain is irreducible (it is possible to get to any state from any state), then $\pi_i = \frac{1}{\mathbb{E}(T_i)}$ where $\mathbb{E}(T_i)$ is the expected time between two visits in state i. π_j/π_i is the expected number of visits in state j between two visits in state i.

For a connected, undirected and non-bipartite graph, where the transition probability is uniform among all neighbors, π_i is proportional to node i's degree.

A Markov chain is *ergodic* if the asymptotic distribution is independent of the initial distribution. A finite Markov chain is ergodic iff it is irreducible and *aperiodic* (i.e., the gcd of cycle lengths is 1). $\lim_{k\to\infty} \mathbf{P}^k = \mathbf{1}\pi$.

A Markov chain is an A-chain if the states can be partitioned into two sets \mathbf{A} and \mathbf{G} , such that all states in \mathbf{A} are absorbing $(p_{ii}=1)$, and all states in \mathbf{G} leads to an absorbing state in \mathbf{A} . The probability for absorption in state $i \in \mathbf{A}$, when the initial state is j, is $a_{ij} = p_{ij} + \sum_{k \in \mathbf{G}} a_{ik}p_{kj}$. The expected time until absorption, when the initial state is i, is $t_i = 1 + \sum_{k \in \mathbf{G}} p_{ki}t_k$.

Data structures (3)

OrderStatisticTree.h

Description: A set (not multiset!) with support for finding the n'th element, and finding the index of an element. To get a map, change null-type. **Time:** $\mathcal{O}(\log N)$

HashMap.h

Description: Hash map with mostly the same API as unordered_map, but ~3x faster. Uses 1.5x memory. Initial capacity must be a power of 2 (if provided).

```
#include <bits/extc++.h>
// To use most bits rather than just the lowest ones:
struct chash { // large odd number for C
   const uint64_t C = l1(4e18 * acos(0)) | 71;
   ll operator()(l1 x) const { return __builtin_bswap64(x*C); }
};
__gnu_pbds::gp_hash_table<ll,int,chash> h({},{},{},{},{},{1<<16});</pre>
```

SegmentTree.h

Description: Zero-indexed max-tree. Bounds are inclusive to the left and exclusive to the right. Can be changed by modifying T, f and unit.

 $\frac{\textbf{Time: }\mathcal{O}\left(\log N\right)}{\textbf{struct Tree }} \label{eq:times}$

```
struct Tree {
    typedef int T;
    static constexpr T unit = INT_MIN;
    T f(T a, T b) { return max(a, b); } // (any associative fn)
    vector<T> s; int n;
    Tree(int n = 0, T def = unit) : s(2*n, def), n(n) {}
    void update(int pos, T val) {
        for (s[pos += n] = val; pos /= 2;)
            s[pos] = f(s[pos * 2], s[pos * 2 + 1]);
    }
    T query(int b, int e) { // query [b, e)
        T ra = unit, rb = unit;
    for (b += n, e += n; b < e; b /= 2, e /= 2) {
        if (b % 2) ra = f(ra, s[b++]);
        if (e % 2) rb = f(s[--e], rb);
    }
}</pre>
```

```
return f(ra, rb);
};
```

LineContainer.h

Description: Container where you can add lines of the form kx+m, and query maximum values at points x. Useful for dynamic programming ("con-

Time: $\mathcal{O}(\log N)$

```
8ec1c7, 30 lines
struct Line {
  mutable 11 k, m, p;
 bool operator<(const Line& o) const { return k < o.k; }</pre>
 bool operator<(11 x) const { return p < x; }</pre>
struct LineContainer : multiset<Line, less<>>> {
  // (for doubles, use inf = 1/.0, div(a,b) = a/b)
  static const ll inf = LLONG_MAX;
  ll div(ll a, ll b) { // floored division
    return a / b - ((a ^ b) < 0 && a % b); }
  bool isect(iterator x, iterator y) {
    if (y == end()) return x \rightarrow p = inf, 0;
    if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
   else x->p = div(y->m - x->m, x->k - y->k);
    return x->p >= y->p;
  void add(ll k, ll m) {
    auto z = insert(\{k, m, 0\}), y = z++, x = y;
    while (isect(y, z)) z = erase(z);
    if (x != begin() \&\& isect(--x, y)) isect(x, y = erase(y));
    while ((y = x) != begin() && (--x)->p >= y->p)
      isect(x, erase(y));
  ll query(ll x) {
   assert(!emptv());
    auto 1 = *lower bound(x);
    return 1.k * x + 1.m;
};
```

Description: A short self-balancing tree. It acts as a sequential container with log-time splits/joins, and is easy to augment with additional data.

```
Time: \mathcal{O}(\log N)
                                                      1754b4, 53 lines
struct Node {
  Node *1 = 0, *r = 0;
  int val, y, c = 1;
 Node(int val) : val(val), y(rand()) {}
  void recalc();
int cnt(Node* n) { return n ? n->c : 0; }
void Node::recalc() { c = cnt(1) + cnt(r) + 1; }
template < class F > void each (Node * n, F f) {
 if (n) { each(n->1, f); f(n->val); each(n->r, f); }
pair<Node*, Node*> split(Node* n, int k) {
  if (!n) return {};
  if (cnt(n->1) >= k) { // "n->val>= k" for lower_bound(k)}
    auto [L,R] = split(n->1, k);
   n->1 = R;
   n->recalc();
    return {L, n};
    auto [L,R] = split(n->r,k - cnt(n->1) - 1); // and just "k"
```

```
n->r = L;
   n->recalc();
   return {n, R};
Node* merge(Node* 1, Node* r) {
 if (!1) return r;
 if (!r) return 1;
 if (1->y > r->y) {
   1->r = merge(1->r, r);
   return 1->recalc(), 1;
 } else {
   r->1 = merge(1, r->1);
    return r->recalc(), r;
Node* ins(Node* t, Node* n, int pos) {
 auto [l,r] = split(t, pos);
 return merge(merge(l, n), r);
// Example application: move the range (l, r) to index k
void move(Node*& t, int 1, int r, int k) {
 Node *a, *b, *c;
 tie(a,b) = split(t, 1); tie(b,c) = split(b, r - 1);
 if (k \le 1) t = merge(ins(a, b, k), c);
 else t = merge(a, ins(c, b, k - r));
```

FenwickTree2d.h

Description: Computes sums a[i,j] for all i<I, j<J, and increases single elements a[i,j]. Requires that the elements to be updated are known in advance (call fakeUpdate() before init()).

Time: $\mathcal{O}(\log^2 N)$. (Use persistent segment trees for $\mathcal{O}(\log N)$.) "FenwickTree.h" 157f07, 22 lines

```
struct FT2 {
 vector<vi> ys; vector<FT> ft;
 FT2(int limx) : vs(limx) {}
 void fakeUpdate(int x, int y) {
    for (; x < sz(ys); x \mid = x + 1) ys[x].push_back(y);
 void init() {
    for (vi& v : ys) sort(all(v)), ft.emplace_back(sz(v));
 int ind(int x, int y) {
   return (int) (lower_bound(all(ys[x]), y) - ys[x].begin()); }
 void update(int x, int y, ll dif) {
   for (; x < sz(ys); x | = x + 1)
      ft[x].update(ind(x, y), dif);
 11 query(int x, int y) {
   11 sum = 0;
   for (; x; x &= x - 1)
     sum += ft[x-1].query(ind(x-1, y));
    return sum;
```

MoQueries.h

Description: Answer interval or tree path queries by finding an approximate TSP through the queries, and moving from one query to the next by adding/removing points at the ends. If values are on tree edges, change step to add/remove the edge (a, c) and remove the initial add call (but keep in). Time: $\mathcal{O}\left(N\sqrt{Q}\right)$ a12ef4, 49 lines

```
void add(int ind, int end) { ... } // add a[ind] (end = 0 or 1)
void del(int ind, int end) { ... } // remove a[ind]
```

```
int calc() { ... } // compute current answer
vi mo(vector<pii> 0) {
 int L = 0, R = 0, blk = 350; // \sim N/sqrt(Q)
 vi s(sz(Q)), res = s;
#define K(x) pii(x.first/blk, x.second ^ -(x.first/blk & 1))
 iota(all(s), 0);
  sort(all(s), [\&](int s, int t){ return K(Q[s]) < K(Q[t]); });
  for (int qi : s) {
    pii q = Q[qi];
    while (L > q.first) add(--L, 0);
    while (R < q.second) add(R++, 1);</pre>
    while (L < q.first) del(L++, 0);
    while (R > q.second) del(--R, 1);
    res[qi] = calc();
 return res;
vi moTree(vector<array<int, 2>> Q, vector<vi>& ed, int root=0){
 int N = sz(ed), pos[2] = {}, blk = 350; // \sim N/sqrt(Q)
 vi s(sz(Q)), res = s, I(N), L(N), R(N), in(N), par(N);
  add(0, 0), in[0] = 1;
  auto dfs = [&](int x, int p, int dep, auto& f) -> void {
    par[x] = p;
    L[x] = N;
    if (dep) I[x] = N++;
    for (int y : ed[x]) if (y != p) f(y, x, !dep, f);
    if (!dep) I[x] = N++;
    R[x] = N;
  dfs(root, -1, 0, dfs);
#define K(x) pii(I[x[0]] / blk, I[x[1]] ^ -(I[x[0]] / blk & 1))
  iota(all(s), 0);
  sort(all(s), [\&](int s, int t){ return K(Q[s]) < K(Q[t]); });
  for (int qi : s) rep(end, 0, 2) {
    int &a = pos[end], b = Q[qi][end], i = 0;
#define step(c) { if (in[c]) { del(a, end); in[a] = 0; } \
                  else { add(c, end); in[c] = 1; } a = c; }
    while (!(L[b] <= L[a] && R[a] <= R[b]))</pre>
     I[i++] = b, b = par[b];
    while (a != b) step(par[a]);
    while (i--) step(I[i]);
    if (end) res[gi] = calc();
 return res;
```

lichaoTree.h

Description: li-chao tree. You can insert lines like ax + b on an interval [i, j], and then query the maximum point in any line at position x

Time: $\mathcal{O}(Q * log(M))$, where M is the length of the range where the lines are active.

```
11 eval(pair<int, int> f, int x) { return f.first * 1LL * x + f
     .second; }
struct no {
  int bg, nd, md;
  no *1, *r;
  pii best;
  no(int bgg, int ndd) : bg(bgg), nd(ndd), md((bg + nd) >> 1),
       best(-1e11, -1e18){
    if(bg != nd) l = new no(bg, md), r = new no(md + 1, nd);
  void upd(int a, int b, pii val) {
    if(b < bg || nd < a) return;</pre>
    if(a <= bg && nd <= b)
      bool lef = eval(val, bg) > eval(best, bg);
```

31d45b, 14 lines

```
bool mid = eval(val, md) > eval(best, md);
      if (mid) swap (val, best);
      if (bq == nd) return;
      if(lef != mid) l->upd(a, b, val);
      else r->upd(a, b, val);
      return:
    1->upd(a, b, val); r->upd(a, b, val);
  ll get(int pos) {
    if(bg == nd) return eval(best, pos);
   11 ret = eval(best, pos);
    return max(ret, (pos <= md ? 1 : r)->get(pos));
};
```

Numerical (4)

4.1 Polynomials and recurrences

Polynomial.h

```
c9b7b0, 1<u>7 lines</u>
struct Poly {
  vector<double> a;
  double operator()(double x) const {
    double val = 0;
    for (int i = sz(a); i--;) (val *= x) += a[i];
    return val;
  void diff() {
    rep(i, 1, sz(a)) a[i-1] = i*a[i];
    a.pop_back();
  void divroot(double x0) {
    double b = a.back(), c; a.back() = 0;
    for(int i=sz(a)-1; i--;) c = a[i], a[i] = a[i+1]*x0+b, b=c;
    a.pop_back();
};
PolyRoots.h
Description: Finds the real roots to a polynomial.
Usage: polyRoots (\{\{2, -3, 1\}\}, -1e9, 1e9\} // solve x^2-3x+2=0
Time: \mathcal{O}\left(n^2\log(1/\epsilon)\right)
"Polynomial.h"
                                                        b00bfe, 23 lines
vector<double> polyRoots(Poly p, double xmin, double xmax) {
  if (sz(p.a) == 2) { return {-p.a[0]/p.a[1]}; }
  vector<double> ret;
  Poly der = p;
  der.diff():
  auto dr = polyRoots(der, xmin, xmax);
  dr.push_back(xmin-1);
  dr.push_back(xmax+1);
  sort(all(dr));
  rep(i, 0, sz(dr) - 1) {
    double l = dr[i], h = dr[i+1];
    bool sign = p(1) > 0;
    if (sign ^{\circ} (p(h) > 0)) {
      rep(it, 0, 60) { // while (h - l > 1e-8)
        double m = (1 + h) / 2, f = p(m);
        if ((f \le 0) ^ sign) 1 = m;
        else h = m;
      ret.push_back((1 + h) / 2);
  return ret;
```

```
PolyInterpolate.h
```

Description: Given n points (x[i], y[i]), computes an n-1-degree polynomial p that passes through them: $p(x) = a[0] * x^0 + ... + a[n-1] * x^{n-1}$. For numerical precision, pick $x[k] = c * \cos(k/(n-1) * \pi), k = 0 \dots n-1.$ Time: $\mathcal{O}(n^2)$ 08bf48, 13 lines

```
typedef vector<double> vd;
vd interpolate(vd x, vd y, int n) {
 vd res(n), temp(n);
 rep(k, 0, n-1) rep(i, k+1, n)
   y[i] = (y[i] - y[k]) / (x[i] - x[k]);
 double last = 0; temp[0] = 1;
 rep(k, 0, n) rep(i, 0, n) {
   res[i] += y[k] * temp[i];
   swap(last, temp[i]);
   temp[i] -= last * x[k];
 return res;
```

BerlekampMassev.h

"../number-theory/ModPow.h"

Description: Recovers any n-order linear recurrence relation from the first 2n terms of the recurrence. Useful for guessing linear recurrences after bruteforcing the first terms. Should work on any field, but numerical stability for floats is not guaranteed. Output will have size $\leq n$.

```
Usage: berlekampMassey({0, 1, 1, 3, 5, 11}) // {1, 2}
Time: \mathcal{O}(N^2)
```

vector<ll> berlekampMassey(vector<ll> s) { **int** n = sz(s), L = 0, m = 0; vector<ll> C(n), B(n), T; C[0] = B[0] = 1;11 b = 1; $rep(i, 0, n) \{ ++m;$ ll d = s[i] % mod;rep(j, 1, L+1) d = (d + C[j] * s[i - j]) % mod;if (!d) continue;

```
T = C; 11 coef = d * modpow(b, mod-2) % mod;
 rep(j,m,n) C[j] = (C[j] - coef * B[j - m]) % mod;
 if (2 * L > i) continue;
 L = i + 1 - L; B = T; b = d; m = 0;
C.resize(L + 1); C.erase(C.begin());
for (11& x : C) x = (mod - x) % mod;
return C;
```

LinearRecurrence.h

Description: Generates the k'th term of an n-order linear recurrence $S[i] = \sum_{j} S[i-j-1]tr[j]$, given $S[0... \ge n-1]$ and tr[0...n-1]. Faster than matrix multiplication. Useful together with Berlekamp-Massey. Usage: linearRec({0, 1}, {1, 1}, k) // k'th Fibonacci number

```
Time: \mathcal{O}\left(n^2 \log k\right)
                                                                                                         f4e444, 26 lines
```

```
typedef vector<11> Poly;
11 linearRec(Poly S, Poly tr, 11 k) {
 int n = sz(tr);
 auto combine = [&] (Poly a, Poly b) {
   Poly res(n \star 2 + 1);
   rep(i, 0, n+1) rep(j, 0, n+1)
     res[i + j] = (res[i + j] + a[i] * b[j]) % mod;
   for (int i = 2 * n; i > n; --i) rep(j, 0, n)
     res[i - 1 - j] = (res[i - 1 - j] + res[i] * tr[j]) % mod;
    res.resize(n + 1);
    return res;
```

```
Poly pol(n + 1), e(pol);
pol[0] = e[1] = 1;
for (++k; k; k /= 2) {
  if (k % 2) pol = combine(pol, e);
  e = combine(e, e);
11 \text{ res} = 0;
rep(i, 0, n) res = (res + pol[i + 1] * S[i]) % mod;
return res;
```

4.2 Optimization

GoldenSectionSearch.h

Description: Finds the argument minimizing the function f in the interval [a,b] assuming f is unimodal on the interval, i.e. has only one local minimum and no local maximum. The maximum error in the result is eps. Works equally well for maximization with a small change in the code. See Ternary-Search.h in the Various chapter for a discrete version.

```
Usage: double func(double x) { return 4+x+.3*x*x; }
double xmin = qss(-1000, 1000, func);
Time: \mathcal{O}(\log((b-a)/\epsilon))
```

```
double gss(double a, double b, double (*f)(double)) {
 double r = (sgrt(5)-1)/2, eps = 1e-7;
 double x1 = b - r*(b-a), x2 = a + r*(b-a);
 double f1 = f(x1), f2 = f(x2);
 while (b-a > eps)
   if (f1 < f2) { //change to > to find maximum
     b = x2; x2 = x1; f2 = f1;
     x1 = b - r*(b-a); f1 = f(x1);
     a = x1; x1 = x2; f1 = f2;
     x2 = a + r*(b-a); f2 = f(x2);
 return a;
```

HillClimbing.h

96548b, 20 lines

Description: Poor man's optimization for unimodal functions_{Secent, 14 lines}

```
typedef array<double, 2> P;
template < class F > pair < double, P > hillClimb(P start, F f) {
 pair<double, P> cur(f(start), start);
  for (double jmp = 1e9; jmp > 1e-20; jmp /= 2) {
    rep(j, 0, 100) rep(dx, -1, 2) rep(dy, -1, 2) {
      P p = cur.second;
      p[0] += dx * jmp;
      p[1] += dy * jmp;
      cur = min(cur, make_pair(f(p), p));
  return cur;
```

Integrate.h

Description: Simple integration of a function over an interval using Simpson's rule. The error should be proportional to h^4 , although in practice you will want to verify that the result is stable to desired precision when epsilon

```
template<class F>
double quad(double a, double b, F f, const int n = 1000) {
 double h = (b - a) / 2 / n, v = f(a) + f(b);
 rep(i,1,n*2)
   v += f(a + i*h) * (i&1 ? 4 : 2);
```

```
return v * h / 3;
IntegrateAdaptive.h
Description: Fast integration using an adaptive Simpson's rule.
Usage: double sphereVolume = quad(-1, 1, [](double x) \{
return quad(-1, 1, [&] (double y)
return quad(-1, 1, [&] (double z)
return x*x + y*y + z*z < 1; {);});});
                                                       92dd79, 15 lines
typedef double d;
#define S(a,b) (f(a) + 4*f((a+b) / 2) + f(b)) * (b-a) / 6
template <class F>
d rec(F& f, d a, d b, d eps, d S) {
  dc = (a + b) / 2;
  d S1 = S(a, c), S2 = S(c, b), T = S1 + S2;
  if (abs(T - S) <= 15 * eps || b - a < 1e-10)
   return T + (T - S) / 15;
  return rec(f, a, c, eps / 2, S1) + rec(f, c, b, eps / 2, S2);
template < class F>
d \, quad(d \, a, \, d \, b, \, F \, f, \, d \, eps = 1e-8) \, \{
 return rec(f, a, b, eps, S(a, b));
```

Simplex.h

Description: Solves a general linear maximization problem: maximize c^Tx subject to $Ax \leq b$, $x \geq 0$. Returns -inf if there is no solution, inf if there are arbitrarily good solutions, or the maximum value of c^Tx otherwise. The input vector is set to an optimal x (or in the unbounded case, an arbitrary solution fulfilling the constraints). Numerical stability is not guaranteed. For better performance, define variables such that x = 0 is viable.

```
Usage: vvd A = {{1,-1}, {-1,1}, {-1,-2}};
vd b = {1,1,-4}, c = {-1,-1}, x;
T val = LPSolver(A, b, c).solve(x);
Time: C(NM * \#rivute) where a pivot may be
```

Time: $\mathcal{O}(NM*\#pivots)$, where a pivot may be e.g. an edge relaxation. $\mathcal{O}(2^n)$ in the general case.

```
aa853<u>0, 68 lines</u>
typedef double T; // long double, Rational, double + mod<P>...
typedef vector<T> vd;
typedef vector<vd> vvd;
const T eps = 1e-8, inf = 1/.0;
#define MP make pair
#define ltj(X) if(s == -1 || MP(X[j],N[j]) < MP(X[s],N[s])) s=j
struct LPSolver {
 int m, n;
 vi N, B;
  vvd D:
  LPSolver (const vvd& A, const vd& b, const vd& c) :
   m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2), vd(n+2)) {
      rep(i, 0, m) rep(j, 0, n) D[i][j] = A[i][j];
      rep(i,0,m) { B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i];}
      rep(j,0,n) \{ N[j] = j; D[m][j] = -c[j]; \}
     N[n] = -1; D[m+1][n] = 1;
  void pivot(int r, int s) {
   T * a = D[r].data(), inv = 1 / a[s];
    rep(i, 0, m+2) if (i != r \&\& abs(D[i][s]) > eps) {
     T *b = D[i].data(), inv2 = b[s] * inv;
      rep(j, 0, n+2) b[j] -= a[j] * inv2;
     b[s] = a[s] * inv2;
    rep(j,0,n+2) if (j != s) D[r][j] *= inv;
    rep(i, 0, m+2) if (i != r) D[i][s] *= -inv;
```

```
D[r][s] = inv;
  swap(B[r], N[s]);
bool simplex(int phase) {
  int x = m + phase - 1;
  for (;;) {
    int s = -1:
    rep(j,0,n+1) if (N[j] != -phase) ltj(D[x]);
    if (D[x][s] >= -eps) return true;
    rep(i,0,m) {
      if (D[i][s] <= eps) continue;</pre>
      if (r == -1 \mid | MP(D[i][n+1] / D[i][s], B[i])
                    < MP(D[r][n+1] / D[r][s], B[r])) r = i;
    if (r == -1) return false;
    pivot(r, s);
T solve(vd &x) {
  int r = 0;
  rep(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
  if (D[r][n+1] < -eps) {</pre>
    pivot(r, n);
    if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;</pre>
    rep(i, 0, m) if (B[i] == -1) {
      int s = 0;
      rep(j,1,n+1) ltj(D[i]);
      pivot(i, s);
  bool ok = simplex(1); x = vd(n);
  rep(i,0,m) if (B[i] < n) x[B[i]] = D[i][n+1];
  return ok ? D[m][n+1] : inf;
```

4.3 Matrices

Determinant.h

Description: Calculates determinant of a matrix. Destroys the matrix. **Time:** $\mathcal{O}\left(N^3\right)$

```
double det(vector<vector<double>>& a) {
  int n = sz(a); double res = 1;
  rep(i,0,n) {
    int b = i;
    rep(j,i+1,n) if (fabs(a[j][i]) > fabs(a[b][i])) b = j;
    if (i != b) swap(a[i], a[b]), res *= -1;
    res *= a[i][i];
    if (res == 0) return 0;
    rep(j,i+1,n) {
        double v = a[j][i] / a[i][i];
        if (v != 0) rep(k,i+1,n) a[j][k] -= v * a[i][k];
    }
}
return res;
```

IntDeterminant.h

Description: Calculates determinant using modular arithmetics. Modulos can also be removed to get a pure-integer version.

```
Time: \mathcal{O}\left(N^3\right) 3313dc, 18 lines const 11 mod = 12345;
11 det(vector<vector<11>>& a) {
int n = sz(a); 11 ans = 1;
rep(i,0,n) {
```

```
rep(j,i+1,n) {
    while (a[j][i] != 0) { // gcd step
        ll t = a[i][i] / a[j][i];
        if (t) rep(k,i,n)
            a[i][k] = (a[i][k] - a[j][k] * t) % mod;
        swap(a[i], a[j]);
        ans *= -1;
        }
        ans = ans * a[i][i] % mod;
        if (!ans) return 0;
}
return (ans + mod) % mod;
```

SolveLinear.h

Description: Solves A*x=b. If there are multiple solutions, an arbitrary one is returned. Returns rank, or -1 if no solutions. Data in A and b is lost. **Time:** $\mathcal{O}\left(n^2m\right)$

```
typedef vector<double> vd;
const double eps = 1e-12;
int solveLinear(vector<vd>& A, vd& b, vd& x) {
 int n = sz(A), m = sz(x), rank = 0, br, bc;
 if (n) assert(sz(A[0]) == m);
 vi col(m); iota(all(col), 0);
 rep(i,0,n) {
    double v, bv = 0;
    rep(r,i,n) rep(c,i,m)
     if ((v = fabs(A[r][c])) > bv)
       br = r, bc = c, bv = v;
    if (bv <= eps) {
      rep(j,i,n) if (fabs(b[j]) > eps) return -1;
    swap(A[i], A[br]);
    swap(b[i], b[br]);
    swap(col[i], col[bc]);
    rep(j,0,n) swap(A[j][i], A[j][bc]);
   bv = 1/A[i][i];
    rep(j,i+1,n) {
      double fac = A[i][i] * bv;
     b[j] -= fac * b[i];
      rep(k,i+1,m) A[j][k] -= fac*A[i][k];
   rank++;
 x.assign(m, 0);
 for (int i = rank; i--;) {
   b[i] /= A[i][i];
   x[col[i]] = b[i];
   rep(j, 0, i) b[j] -= A[j][i] * b[i];
 return rank; // (multiple solutions if rank < m)
```

SolveLinear2.h

Description: To get all uniquely determined values of x back from Solve-Linear, make the following changes:

00ced6, 35 lines

```
fail:; }
```

SolveLinearBinarv.h

Description: Solves Ax = b over \mathbb{F}_2 . If there are multiple solutions, one is returned arbitrarily. Returns rank, or -1 if no solutions. Destroys A and b. Time: $\mathcal{O}\left(n^2m\right)$

fa2d7a, 34 lines typedef bitset<1000> bs;

```
int solveLinear(vector<bs>& A, vi& b, bs& x, int m) {
 int n = sz(A), rank = 0, br;
  assert(m \le sz(x));
  vi col(m); iota(all(col), 0);
 rep(i,0,n) {
   for (br=i; br<n; ++br) if (A[br].any()) break;</pre>
   if (br == n) {
     rep(j,i,n) if(b[j]) return -1;
     break;
    int bc = (int)A[br]._Find_next(i-1);
    swap(A[i], A[br]);
    swap(b[i], b[br]);
    swap(col[i], col[bc]);
    rep(j,0,n) if (A[j][i] != A[j][bc]) {
     A[j].flip(i); A[j].flip(bc);
    rep(j,i+1,n) if (A[j][i]) {
     b[j] ^= b[i];
     A[j] ^= A[i];
   rank++;
  x = bs();
  for (int i = rank; i--;) {
   if (!b[i]) continue;
   x[col[i]] = 1;
   rep(j,0,i) b[j] ^= A[j][i];
  return rank; // (multiple solutions if rank < m)</pre>
```

MatrixInverse.h

Description: Invert matrix A. Returns rank: result is stored in A unless singular (rank < n). Can easily be extended to prime moduli; for prime powers, repeatedly set $A^{-1} = A^{-1}(2I - AA^{-1}) \pmod{p^k}$ where A^{-1} starts as the inverse of A mod p, and k is doubled in each step.

```
ebfff6, 35 lines
int matInv(vector<vector<double>>& A) {
 int n = sz(A); vi col(n);
  vector<vector<double>> tmp(n, vector<double>(n));
  rep(i, 0, n) tmp[i][i] = 1, col[i] = i;
  rep(i,0,n) {
   int r = i, c = i;
    rep(j,i,n) rep(k,i,n)
```

```
Time: \mathcal{O}\left(n^3\right)
      if (fabs(A[j][k]) > fabs(A[r][c]))
        r = i, c = k;
    if (fabs(A[r][c]) < 1e-12) return i;</pre>
    A[i].swap(A[r]); tmp[i].swap(tmp[r]);
    rep(j,0,n)
     swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c]);
    swap(col[i], col[c]);
    double v = A[i][i];
    rep(j,i+1,n) {
      double f = A[j][i] / v;
      A[j][i] = 0;
      rep(k,i+1,n) A[j][k] = f*A[i][k];
```

```
rep(k,0,n) tmp[j][k] -= f*tmp[i][k];
  rep(j,i+1,n) A[i][j] /= v;
  rep(j,0,n) tmp[i][j] /= v;
 A[i][i] = 1;
for (int i = n-1; i > 0; --i) rep(j, 0, i) {
  double v = A[j][i];
  rep(k,0,n) tmp[j][k] -= v*tmp[i][k];
rep(i,0,n) rep(j,0,n) A[col[i]][col[j]] = tmp[i][j];
return n;
```

Tridiagonal.h

Description: x = tridiagonal(d, p, q, b) solves the equation system

```
d_0
                                                          x_0
                 0
             q_0
                                                          x_1
                                              0
                                                          x_2
b_3
       =
                                                          x_3
              0 \qquad 0 \qquad \cdots \qquad q_{n-3} \qquad d_{n-2} \qquad p_{n-2}
                  0 ...
```

This is useful for solving problems on the type

```
a_i = b_i a_{i-1} + c_i a_{i+1} + d_i, 1 \le i \le n,
```

where a_0, a_{n+1}, b_i, c_i and d_i are known. a can then be obtained from

```
\{a_i\} = tridiagonal(\{1, -1, -1, ..., -1, 1\}, \{0, c_1, c_2, ..., c_n\},
                        {b_1, b_2, \ldots, b_n, 0}, {a_0, d_1, d_2, \ldots, d_n, a_{n+1}}.
```

Fails if the solution is not unique.

If $|d_i| > |p_i| + |q_{i-1}|$ for all i, or $|d_i| > |p_{i-1}| + |q_i|$, or the matrix is positive definite, the algorithm is numerically stable and neither tr nor the check for diag[i] == 0 is needed.

```
Time: \mathcal{O}(N)
                                                                                    8f9fa8, 26 lines
```

```
typedef double T:
vector<T> tridiagonal(vector<T> diag, const vector<T>& super,
    const vector<T>& sub, vector<T> b) {
 int n = sz(b); vi tr(n);
 rep(i, 0, n-1) {
    if (abs(diag[i]) < 1e-9 * abs(super[i])) { // diag[i] == 0
     b[i+1] -= b[i] * diag[i+1] / super[i];
     if (i+2 < n) b[i+2] -= b[i] * sub[i+1] / super[i];</pre>
     diag[i+1] = sub[i]; tr[++i] = 1;
     diag[i+1] -= super[i]*sub[i]/diag[i];
     b[i+1] -= b[i] * sub[i] / diag[i];
 for (int i = n; i--;) {
   if (tr[i]) {
     swap(b[i], b[i-1]);
     diag[i-1] = diag[i];
     b[i] /= super[i-1];
   } else {
     b[i] /= diag[i];
     if (i) b[i-1] -= b[i]*super[i-1];
 return b;
```

4.4 Fourier transforms

FastFourierTransform.h

Description: fft(a) computes $\hat{f}(k) = \sum_{x} a[x] \exp(2\pi i \cdot kx/N)$ for all k. N must be a power of 2. Useful for convolution: conv(a, b) = c, where $c[x] = \sum a[i]b[x-i]$. For convolution of complex numbers or more than two vectors: FFT, multiply pointwise, divide by n, reverse(start+1, end), FFT back. Rounding is safe if $(\sum a_i^2 + \sum b_i^2) \log_2 N < 9 \cdot 10^{14}$ (in practice 10^{16}); higher for random inputs). Otherwise, use NTT/FFTMod. **Time:** $\mathcal{O}(N \log N)$ with N = |A| + |B| (~1s for $N = 2^{22}$)

```
typedef complex<double> C;
typedef vector<double> vd;
void fft(vector<C>& a) {
 int n = sz(a), L = 31 - builtin clz(n);
 static vector<complex<long double>> R(2, 1);
 static vector<C> rt(2, 1); // (^ 10% faster if double)
 for (static int k = 2; k < n; k *= 2) {
   R.resize(n); rt.resize(n);
   auto x = polar(1.0L, acos(-1.0L) / k);
   rep(i,k,2*k) rt[i] = R[i] = i&1 ? R[i/2] * x : R[i/2];
 vi rev(n);
 rep(i,0,n) rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
 rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
 for (int k = 1; k < n; k *= 2)
   for (int i = 0; i < n; i += 2 * k) rep(j, 0, k) {
     Cz = rt[j+k] * a[i+j+k]; // (25\% faster if hand-rolled)
     a[i + j + k] = a[i + j] - z;
     a[i + j] += z;
vd conv(const vd& a, const vd& b) {
 if (a.empty() || b.empty()) return {};
 vd res(sz(a) + sz(b) - 1);
 int L = 32 - __builtin_clz(sz(res)), n = 1 << L;</pre>
 vector<C> in(n), out(n);
 copy(all(a), begin(in));
 rep(i,0,sz(b)) in[i].imag(b[i]);
  fft(in);
 for (C& x : in) x *= x;
 rep(i, 0, n) out[i] = in[-i & (n - 1)] - conj(in[i]);
  rep(i, 0, sz(res)) res[i] = imag(out[i]) / (4 * n);
 return res;
```

FastFourierTransformMod.h

Description: Higher precision FFT, can be used for convolutions modulo arbitrary integers as long as $N \log_2 N \cdot \text{mod} < 8.6 \cdot 10^{14}$ (in practice 10^{16} or higher). Inputs must be in [0, mod).

Time: $\mathcal{O}(N \log N)$, where N = |A| + |B| (twice as slow as NTT or FFT) "FastFourierTransform.h" b82773, 22 lines

```
typedef vector<11> v1;
template<int M> vl convMod(const vl &a, const vl &b) {
 if (a.empty() || b.empty()) return {};
 vl res(sz(a) + sz(b) - 1);
 int B=32-__builtin_clz(sz(res)), n=1<<B, cut=int(sqrt(M));</pre>
 vector<C> L(n), R(n), outs(n), outl(n);
  rep(i,0,sz(a)) L[i] = C((int)a[i] / cut, (int)a[i] % cut);
  rep(i, 0, sz(b)) R[i] = C((int)b[i] / cut, (int)b[i] % cut);
 fft(L), fft(R);
 rep(i,0,n) {
   int j = -i \& (n - 1);
   outl[j] = (L[i] + conj(L[j])) * R[i] / (2.0 * n);
    outs[j] = (L[i] - conj(L[j])) * R[i] / (2.0 * n) / 1i;
 fft (outl), fft (outs);
 rep(i,0,sz(res)) {
```

19a793, 24 lines

60dcd1, 12 lines

```
ll av = ll(real(outl[i])+.5), cv = ll(imag(outs[i])+.5);
  11 \text{ bv} = 11(\text{imag}(\text{outl}[i]) + .5) + 11(\text{real}(\text{outs}[i]) + .5);
  res[i] = ((av % M * cut + bv) % M * cut + cv) % M;
return res;
```

NumberTheoreticTransform.h

Description: ntt(a) computes $\hat{f}(k) = \sum_{x} a[x]g^{xk}$ for all k, where $g = \sum_{x} a[x]g^{xk}$ $root^{(mod-1)/N}$. N must be a power of 2. Useful for convolution modulo specific nice primes of the form $2^a b + 1$, where the convolution result has size at most 2^a . For arbitrary modulo, see FFTMod. conv(a, b) = c, where $c[x] = \sum a[i]b[x-i]$. For manual convolution: NTT the inputs, multiply pointwise, divide by n, reverse(start+1, end), NTT back. Inputs must be in

```
[0, mod).
Time: \mathcal{O}(N \log N)
                                                                          ced03d, 35 lines
"../number-theory/ModPow.h"
```

```
const 11 mod = (119 << 23) + 1, root = 62; // = 998244353
// For p < 2^30 there is also e.g. 5 << 25, 7 << 26, 479 << 21
// and 483 \ll 21 (same root). The last two are > 10^9.
typedef vector<11> v1;
void ntt(vl &a) {
  int n = sz(a), L = 31 - __builtin_clz(n);
  static v1 rt(2, 1);
  for (static int k = 2, s = 2; k < n; k *= 2, s++) {
   rt.resize(n);
   ll z[] = \{1, modpow(root, mod >> s)\};
   rep(i,k,2*k) rt[i] = rt[i / 2] * z[i & 1] % mod;
  vi rev(n);
  rep(i,0,n) \ rev[i] = (rev[i / 2] | (i \& 1) << L) / 2;
  rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
  for (int k = 1; k < n; k *= 2)
    for (int i = 0; i < n; i += 2 * k) rep(j,0,k) {
     11 z = rt[j + k] * a[i + j + k] % mod, &ai = a[i + j];
     a[i + j + k] = ai - z + (z > ai ? mod : 0);
     ai += (ai + z >= mod ? z - mod : z);
vl conv(const vl &a, const vl &b) {
 if (a.empty() || b.empty()) return {};
  int s = sz(a) + sz(b) - 1, B = 32 - _builtin_clz(s),
     n = 1 << B;
  int inv = modpow(n, mod - 2);
  vl L(a), R(b), out(n);
  L.resize(n), R.resize(n);
  ntt(L), ntt(R);
  rep(i,0,n)
   out[-i \& (n - 1)] = (l1)L[i] * R[i] % mod * inv % mod;
  return {out.begin(), out.begin() + s};
```

FastSubsetTransform.h

Description: Transform to a basis with fast convolutions of the form $c[z] = \sum_{z = x \oplus y} a[x] \cdot b[y], \text{ where } \oplus \text{ is one of AND, OR, XOR. The size}$ of a must be a power of two.

Time: $\mathcal{O}(N \log N)$

464cf3, 16 lines

```
void FST(vi& a, bool inv) {
  for (int n = sz(a), step = 1; step < n; step *= 2) {
    for (int i = 0; i < n; i += 2 * step) rep(j,i,i+step) {</pre>
      int &u = a[j], &v = a[j + step]; tie(u, v) =
        inv ? pii(v - u, u) : pii(v, u + v); // AND
       inv ? pii(v, u - v) : pii(u + v, u); // OR
                                             // XOR
       pii(u + v, u - v);
```

```
if (inv) for (int& x : a) x /= sz(a); // XOR only
vi conv(vi a, vi b) {
 FST(a, 0); FST(b, 0);
  rep(i, 0, sz(a)) a[i] *= b[i];
 FST(a, 1); return a;
```

Number theory (5)

5.1 Modular arithmetic

ModLog.h

Description: Returns the smallest x > 0 s.t. $a^x = b \pmod{m}$, or -1 if no such x exists. modLog(a,1,m) can be used to calculate the order of a. Time: $\mathcal{O}(\sqrt{m})$

```
11 modLog(ll a, ll b, ll m) {
 unordered_map<11, 11> A;
 while (j \le n \& \& (e = f = e * a % m) != b % m)
  A[e * b % m] = j++;
 if (e == b % m) return j;
 if (__gcd(m, e) == __gcd(m, b))
   rep(i, 2, n+2) if (A.count(e = e * f % m))
    return n * i - A[e];
 return -1;
```

ModSum.h

Description: Sums of mod'ed arithmetic progressions.

modsum(to, c, k, m) = $\sum_{i=0}^{\text{to}-1} (ki+c)\%m$. divsum is similar but for floored division.

Time: $\log(m)$, with a large constant.

```
typedef unsigned long long ull;
ull sumsq(ull to) { return to / 2 * ((to-1) | 1); }
ull divsum(ull to, ull c, ull k, ull m) {
 ull res = k / m * sumsq(to) + c / m * to;
 k %= m; c %= m;
 if (!k) return res;
 ull to2 = (to * k + c) / m;
 return res + (to - 1) * to2 - divsum(to2, m-1 - c, m, k);
11 modsum(ull to, 11 c, 11 k, 11 m) {
 c = ((c % m) + m) % m;
 k = ((k % m) + m) % m;
 return to * c + k * sumsq(to) - m * divsum(to, c, k, m);
```

ModMulLL.h

Description: Calculate $a \cdot b \mod c$ (or $a^b \mod c$) for $0 \le a, b \le c \le 7.2 \cdot 10^{18}$. **Time:** $\mathcal{O}(1)$ for modmul, $\mathcal{O}(\log b)$ for modpow bbbd8f, 11 lines

```
typedef unsigned long long ull;
ull modmul(ull a, ull b, ull M) {
 ll ret = a * b - M * ull(1.L / M * a * b);
 return ret + M * (ret < 0) - M * (ret >= (11)M);
ull modpow(ull b, ull e, ull mod) {
 ull ans = 1;
 for (; e; b = modmul(b, b, mod), e /= 2)
   if (e & 1) ans = modmul(ans, b, mod);
 return ans:
```

ModSgrt.h

Description: Tonelli-Shanks algorithm for modular square roots. Finds x s.t. $x^2 = a \pmod{p}$ (-x gives the other solution).

Time: $\mathcal{O}(\log^2 p)$ worst case, $\mathcal{O}(\log p)$ for most p"ModPow.h"

```
ll sgrt(ll a, ll p) {
 a %= p; if (a < 0) a += p;
  if (a == 0) return 0;
  assert (modpow(a, (p-1)/2, p) == 1); // else no solution
  if (p % 4 == 3) return modpow(a, (p+1)/4, p);
  // a^{(n+3)/8} \text{ or } 2^{(n+3)/8} * 2^{(n-1)/4} \text{ works if } p \% 8 == 5
  11 s = p - 1, n = 2;
  int r = 0, m;
  while (s % 2 == 0)
   ++r, s /= 2;
  while (modpow(n, (p-1) / 2, p) != p-1) ++n;
  11 x = modpow(a, (s + 1) / 2, p);
  ll b = modpow(a, s, p), g = modpow(n, s, p);
  for (;; r = m) {
    11 t = b;
    for (m = 0; m < r && t != 1; ++m)
     t = t * t % p;
    if (m == 0) return x;
    11 \text{ gs} = \text{modpow}(g, 1LL << (r - m - 1), p);
    q = qs * qs % p;
    x = x * qs % p;
    b = b * q % p;
```

5.2 Primality

FastEratosthenes.h

Description: Prime sieve for generating all primes smaller than LIM. Time: LIM=1e9 ≈ 1.5 s

```
6b2912, 20 lines
const int LIM = 1e6;
bitset<LIM> isPrime:
vi eratosthenes() {
  const int S = (int)round(sqrt(LIM)), R = LIM / 2;
  vi pr = \{2\}, sieve(S+1); pr.reserve(int(LIM/log(LIM)*1.1));
  vector<pii> cp;
  for (int i = 3; i <= S; i += 2) if (!sieve[i]) {</pre>
    cp.push_back(\{i, i * i / 2\});
    for (int j = i * i; j <= S; j += 2 * i) sieve[j] = 1;</pre>
  for (int L = 1; L <= R; L += S) {
    array<bool, S> block{};
    for (auto &[p, idx] : cp)
      for (int i=idx; i < S+L; idx = (i+=p)) block[i-L] = 1;</pre>
    rep(i, 0, min(S, R - L))
      if (!block[i]) pr.push_back((L + i) * 2 + 1);
  for (int i : pr) isPrime[i] = 1;
  return pr;
```

MillerRabin.h

"ModMulLL.h"

Description: Deterministic Miller-Rabin primality test. Guaranteed to work for numbers up to $7 \cdot 10^{18}$; for larger numbers, use Python and extend A randomly.

Time: 7 times the complexity of $a^b \mod c$.

```
bool isPrime(ull n) {
 if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;</pre>
 ull A[] = \{2, 325, 9375, 28178, 450775, 9780504, 1795265022\},
      s = \underline{\quad} builtin_ctzll(n-1), d = n >> s;
 for (ull a : A) { // ^ count trailing zeroes
    ull p = modpow(a%n, d, n), i = s;
```

```
while (p != 1 && p != n - 1 && a % n && i--)
    p = modmul(p, p, n);
    if (p != n-1 && i != s) return 0;
}
return 1;
}
```

Factor.h

Description: Pollard-rho randomized factorization algorithm. Returns prime factors of a number, in arbitrary order (e.g. 2299 -> {11, 19, 11}).

Time: $\mathcal{O}\left(n^{1/4}\right)$, less for numbers with small factors.

```
"ModMulLL.h", "MillerRabin.h"
                                                     d8d98d, 18 lines
ull pollard(ull n) {
 ull x = 0, y = 0, t = 30, prd = 2, i = 1, q;
  auto f = [\&] (ull x) { return modmul(x, x, n) + i; };
  while (t++ % 40 || __gcd(prd, n) == 1) {
   if (x == y) x = ++i, y = f(x);
   if ((q = modmul(prd, max(x,y) - min(x,y), n))) prd = q;
   x = f(x), y = f(f(y));
 return __gcd(prd, n);
vector<ull> factor(ull n) {
 if (n == 1) return {};
  if (isPrime(n)) return {n};
  ull x = pollard(n);
  auto 1 = factor(x), r = factor(n / x);
 l.insert(l.end(), all(r));
  return 1;
```

5.3 Divisibility

euclid.h

Description: Finds two integers x and y, such that $ax + by = \gcd(a, b)$. If you just need gcd, use the built in $_\gcd$ instead. If a and b are coprime, then x is the inverse of $a \pmod{b}$.

se of $a \pmod{\theta}$. 33ba8f, 5 lines

```
11 euclid(11 a, 11 b, 11 &x, 11 &y) {
   if (!b) return x = 1, y = 0, a;
   11 d = euclid(b, a % b, y, x);
   return y -= a/b * x, d;
}
```

CRT.h

Description: Chinese Remainder Theorem.

crt (a, m, b, n) computes x such that $x\equiv a\pmod m$, $x\equiv b\pmod n$. If |a|< m and |b|< n, x will obey $0\le x< \mathrm{lcm}(m,n)$. Assumes $mn<2^{62}$. Time: $\log(n)$

5.3.1 Bézout's identity

For $a \neq b \neq 0$, then d = gcd(a, b) is the smallest positive integer for which there are integer solutions to

ax + by = d

If (x, y) is one solution, then all solutions are given by

$$\left(x + \frac{kb}{\gcd(a,b)}, y - \frac{ka}{\gcd(a,b)}\right), \quad k \in \mathbb{Z}$$

5.4 Fractions

ContinuedFractions.h

Description: Given N and a real number $x \ge 0$, finds the closest rational approximation p/q with $p, q \le N$. It will obey $|p/q - x| \le 1/qN$.

For consecutive convergents, $p_{k+1}q_k - q_{k+1}p_k = (-1)^k$. $(p_k/q_k$ alternates between > x and < x.) If x is rational, y eventually becomes ∞ ; if x is the root of a degree 2 polynomial the a's eventually become cyclic.

Time: $\mathcal{O}(\log N)$ dd6c5e, 21 lines

```
typedef double d; // for N ~ 1e7; long double for N ~ 1e9
pair<11, 11> approximate(d x, 11 N) {
    11 LP = 0, LQ = 1, P = 1, Q = 0, inf = LLONG_MAX; d y = x;
    for (;;) {
        11 lim = min(P ? (N-LP) / P : inf, Q ? (N-LQ) / Q : inf),
            a = (11) floor(y), b = min(a, lim),
            NP = b*P + LP, NQ = b*Q + LQ;
        if (a > b) {
            // If b > a/2, we have a semi—convergent that gives us a
            // better approximation; if b = a/2, we *may* have one.
            // Return {P, Q} here for a more canonical approximation.
            return (abs(x - (d)NP / (d)NQ) < abs(x - (d)P / (d)Q)) ?
            make_pair(NP, NQ) : make_pair(P, Q);
        }
        if (abs(y = 1/(y - (d)a)) > 3*N) {
            return {NP, NQ};
        }
        LP = P; P = NP;
        LQ = Q; Q = NQ;
    }
}
```

FracBinarySearch.h

struct Frac { ll p, q; };

Description: Given f and N, finds the smallest fraction $p/q \in [0,1]$ such that f(p/q) is true, and $p, q \leq N$. You may want to throw an exception from f if it finds an exact solution, in which case N can be removed.

Usage: fracBS([] (Frac f) { return f.p>=3*f.q; }, 10); // $\{1,3\}$ Time: $\mathcal{O}(\log(N))$

```
template<class F>
Frac fracBS(F f, 11 N) {
 bool dir = 1, A = 1, B = 1;
 Frac lo{0, 1}, hi{1, 1}; // Set hi to 1/0 to search (0, N)
 if (f(lo)) return lo;
 assert(f(hi));
  while (A || B) {
   11 adv = 0, step = 1; // move hi if dir, else lo
    for (int si = 0; step; (step *= 2) >>= si) {
     adv += step;
     Frac mid{lo.p * adv + hi.p, lo.g * adv + hi.g};
     if (abs(mid.p) > N || mid.q > N || dir == !f(mid)) {
       adv -= step; si = 2;
   hi.p += lo.p * adv;
   hi.q += lo.q * adv;
    dir = !dir;
   swap(lo, hi);
   A = B; B = !!adv;
 return dir ? hi : lo;
```

5.5 Pythagorean Triples

The Pythagorean triples are uniquely generated by

$$a = k \cdot (m^2 - n^2), \ b = k \cdot (2mn), \ c = k \cdot (m^2 + n^2),$$

with m > n > 0, k > 0, $m \perp n$, and either m or n even.

5.6 Primes

p=962592769 is such that $2^{21}\mid p-1,$ which may be useful. For hashing use 970592641 (31-bit number), 31443539979727 (45-bit), 3006703054056749 (52-bit). There are 78498 primes less than 1 000 000.

Primitive roots exist modulo any prime power p^a , except for p=2, a>2, and there are $\phi(\phi(p^a))$ many. For p=2, a>2, the group $\mathbb{Z}_{2^a}^{\times}$ is instead isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_{2^{a-2}}$.

5.7 Estimates

$$\sum_{d|n} d = O(n \log \log n).$$

The number of divisors of n is at most around 100 for n < 5e4, 500 for n < 1e7, 2000 for n < 1e10, 200 000 for n < 1e19.

5.8 Mobius Function

$$\mu(n) = \begin{cases} 0 & n \text{ is not square free} \\ 1 & n \text{ has even number of prime factors} \\ -1 & n \text{ has odd number of prime factors} \end{cases}$$

Mobius Inversion:

$$g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu(d)g(n/d)$$

Other useful formulas/forms:

$$\sum_{d|n} \mu(d) = [n = 1] \text{ (very useful)}$$

$$g(n) = \sum_{n|d} f(d) \Leftrightarrow f(n) = \sum_{n|d} \mu(d/n)g(d)$$

$$g(n) = \sum_{1 \le m \le n} f(\left|\frac{n}{m}\right|) \Leftrightarrow f(n) = \sum_{1 \le m \le n} \mu(m)g(\left|\frac{n}{m}\right|)$$

5.9 Pisano period

 $\pi(n)$ is the size of the period of fibonacci numbers when taken modulo n

$$\pi(a \times b) = lcm(\pi(a), \pi(b))$$
 if $gcd(a, b) = 1$
for p prime, $\pi(p^k)$ divides $p^{k-1} \times \pi(p)$

Combinatorial (6)

6.1 Permutations

6.1.1 Factorial

IntPerm.h

Description: Permutation -> integer conversion. (Not order preserving.) Integer -> permutation can use a lookup table.

Time: $\mathcal{O}\left(n\right)$ 044568, 6 lines

6.1.2 Cycles

Let $g_S(n)$ be the number of *n*-permutations whose cycle lengths all belong to the set S. Then

$$\sum_{n=0}^{\infty} g_S(n) \frac{x^n}{n!} = \exp\left(\sum_{n \in S} \frac{x^n}{n}\right)$$

6.1.3 Derangements

Permutations of a set such that none of the elements appear in their original position.

$$D(n) = (n-1)(D(n-1) + D(n-2)) = nD(n-1) + (-1)^n = \left\lfloor \frac{n!}{e} \right\rfloor$$

6.1.4 Burnside's lemma

Given a group G of symmetries and a set X, the number of elements of X up to symmetry equals

$$\frac{1}{|G|} \sum_{g \in G} |X^g|,$$

where X^g are the elements fixed by g (g.x = x).

If f(n) counts "configurations" (of some sort) of length n, we can ignore rotational symmetry using $G = \mathbb{Z}_n$ to get

$$g(n) = \frac{1}{n} \sum_{k=0}^{n-1} f(\gcd(n,k)) = \frac{1}{n} \sum_{k|n} f(k)\phi(n/k).$$

6.2 Partitions and subsets

6.2.1 Partition function

Number of ways of writing n as a sum of positive integers, disregarding the order of the summands.

$$p(0) = 1, \ p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k+1} p(n - k(3k - 1)/2)$$
$$p(n) \sim 0.145/n \cdot \exp(2.56\sqrt{n})$$
$$\frac{n}{p(n)} \begin{vmatrix} 0.1 & 2.3 & 4.5 & 6.7 & 8.9 & 20.50 & 100\\ 1 & 1 & 2.3 & 5.7 & 11.15 & 22.30 & 627 & \sim 2e5 & \sim 2e8 \end{vmatrix}$$

6.2.2 Lucas' Theorem

Let n, m be non-negative integers and p a prime. Write $n=n_kp^k+\ldots+n_1p+n_0$ and $m=m_kp^k+\ldots+m_1p+m_0$. Then $\binom{n}{m}\equiv\prod_{i=0}^k\binom{n_i}{m_i}\pmod{p}$.

6.2.3 Binomials

multinomial.h

6.3 General purpose numbers

6.3.1 Bernoulli numbers

EGF of Bernoulli numbers is $B(t) = \frac{t}{e^t - 1}$ (FFT-able). $B[0, \ldots] = [1, -\frac{1}{2}, \frac{1}{6}, 0, -\frac{1}{30}, 0, \frac{1}{42}, \ldots]$

Sums of powers:

$$\sum_{i=1}^{n} n^{m} = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_{k} \cdot (n+1)^{m+1-k}$$

Euler-Maclaurin formula for infinite sums:

$$\sum_{i=m}^{\infty} f(i) = \int_{m}^{\infty} f(x)dx - \sum_{k=1}^{\infty} \frac{B_{k}}{k!} f^{(k-1)}(m)$$

$$\approx \int_{m}^{\infty} f(x)dx + \frac{f(m)}{2} - \frac{f'(m)}{12} + \frac{f'''(m)}{720} + O(f^{(5)}(m))$$

6.3.2 Stirling numbers of the first kind

Number of permutations on n items with k cycles.

$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k), \ c(0,0) = 1$$
$$\sum_{k=0}^{n} c(n,k)x^{k} = x(x+1)\dots(x+n-1)$$

c(8,k) = 8, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1 $c(n,2) = 0, 0, 1, 3, 11, 50, 274, 1764, 13068, 109584, \dots$

6.3.3 Eulerian numbers

Number of permutations $\pi \in S_n$ in which exactly k elements are greater than the previous element. k j:s s.t. $\pi(j) > \pi(j+1)$, k+1 j:s s.t. $\pi(j) > j$, k j:s s.t. $\pi(j) > j$.

$$E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)$$

$$E(n,0) = E(n,n-1) = 1$$

$$E(n,k) = \sum_{j=0}^{k} (-1)^{j} \binom{n+1}{j} (k+1-j)^{n}$$

6.3.4 Stirling numbers of the second kind

Partitions of n distinct elements into exactly k groups.

$$S(n,k) = S(n-1,k-1) + kS(n-1,k)$$

$$S(n,1) = S(n,n) = 1$$

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^{n}$$

6.3.5 Bell numbers

Total number of partitions of n distinct elements. B(n) = 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, For <math>p prime,

$$B(p^m + n) \equiv mB(n) + B(n+1) \pmod{p}$$

6.3.6 Labeled unrooted trees

```
# on n vertices: n^{n-2}
# on k existing trees of size n_i: n_1 n_2 \cdots n_k n^{k-2}
# with degrees d_i: (n-2)!/((d_1-1)!\cdots(d_n-1)!)
```

6.3.7 Catalan numbers

$$C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1} = \frac{(2n)!}{(n+1)!n!}$$

$$C_0 = 1, \ C_{n+1} = \frac{2(2n+1)}{n+2} C_n, \ C_{n+1} = \sum_{n=1}^{\infty} C_n C_{n-n}$$

 $C_n = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \dots$

- sub-diagonal monotone paths in an $n \times n$ grid.
- \bullet strings with n pairs of parenthesis, correctly nested.
- binary trees with with n+1 leaves (0 or 2 children).
- ordered trees with n+1 vertices.
- ways a convex polygon with n+2 sides can be cut into triangles by connecting vertices with straight lines.
- \bullet permutations of [n] with no 3-term increasing subseq.

$\underline{\text{Graph}}$ (7)

7.1 Fundamentals

BellmanFord.h

Description: Calculates shortest paths from s in a graph that might have negative edge weights. Unreachable nodes get dist = inf; nodes reachable through negative-weight cycles get dist = -inf. Assumes $V^2 \max |w_i| < -2^{63}$. **Time:** $\mathcal{O}(VE)$

```
const 11 inf = LLONG MAX;
struct Ed { int a, b, w, s() { return a < b ? a : -a; }};
struct Node { ll dist = inf; int prev = -1; };
void bellmanFord(vector<Node>& nodes, vector<Ed>& eds, int s) {
 nodes[s].dist = 0;
  sort(all(eds), [](Ed a, Ed b) { return a.s() < b.s(); });</pre>
  int lim = sz(nodes) / 2 + 2; // /3+100 with shuffled vertices
  rep(i,0,lim) for (Ed ed : eds) {
    Node cur = nodes[ed.a], &dest = nodes[ed.b];
    if (abs(cur.dist) == inf) continue;
    11 d = cur.dist + ed.w;
    if (d < dest.dist) {</pre>
      dest.prev = ed.a;
      dest.dist = (i < lim-1 ? d : -inf);
 rep(i,0,lim) for (Ed e : eds) {
    if (nodes[e.a].dist == -inf)
      nodes[e.b].dist = -inf;
```

PushRelabel MinCostMaxFlow EdmondsKarp Dinic

7.2 Network flow

PushRelabel.h

Description: Push-relabel using the highest label selection rule and the gap heuristic. Quite fast in practice. To obtain the actual flow, look at positive values only.

```
Time: \mathcal{O}\left(V^2\sqrt{E}\right)
```

0ae1d4, 48 lines

```
struct PushRelabel {
  struct Edge {
   int dest, back;
   11 f, c;
  vector<vector<Edge>> g;
  vector<11> ec:
  vector<Edge*> cur;
  vector<vi> hs; vi H;
  PushRelabel(int n) : g(n), ec(n), cur(n), hs(2*n), H(n) {}
  void addEdge(int s, int t, ll cap, ll rcap=0) {
   if (s == t) return;
   g[s].push_back({t, sz(g[t]), 0, cap});
   g[t].push_back({s, sz(g[s])-1, 0, rcap});
  void addFlow(Edge& e, ll f) {
   Edge &back = g[e.dest][e.back];
   if (!ec[e.dest] && f) hs[H[e.dest]].push back(e.dest);
   e.f += f; e.c -= f; ec[e.dest] += f;
   back.f -= f; back.c += f; ec[back.dest] -= f;
  11 calc(int s, int t) {
   int v = sz(q); H[s] = v; ec[t] = 1;
   vi co(2*v); co[0] = v-1;
   rep(i, 0, v) cur[i] = g[i].data();
   for (Edge& e : g[s]) addFlow(e, e.c);
    for (int hi = 0;;) {
     while (hs[hi].empty()) if (!hi--) return -ec[s];
     int u = hs[hi].back(); hs[hi].pop_back();
     while (ec[u] > 0) // discharge u
       if (cur[u] == g[u].data() + sz(g[u])) {
         H[u] = 1e9;
          for (Edge& e : g[u]) if (e.c && H[u] > H[e.dest]+1)
           H[u] = H[e.dest]+1, cur[u] = &e;
          if (++co[H[u]], !--co[hi] && hi < v)</pre>
            rep(i, 0, v) if (hi < H[i] && H[i] < v)
              --co[H[i]], H[i] = v + 1;
         hi = H[u];
        } else if (cur[u]->c && H[u] == H[cur[u]->dest]+1)
         addFlow(*cur[u], min(ec[u], cur[u]->c));
        else ++cur[u];
 bool leftOfMinCut(int a) { return H[a] >= sz(g); }
```

MinCostMaxFlow.h

Description: Min-cost max-flow. If costs can be negative, call setpi before maxflow, but note that negative cost cycles are not supported. To obtain the actual flow, look at positive values only.

Time: $\mathcal{O}(FE\log(V))$ where F is max flow. $\mathcal{O}(VE)$ for setpi. _{58385b, 79 lines}

```
#include <bits/extc++.h>
const 11 INF = numeric_limits<11>::max() / 4;
struct MCMF {
   struct edge {
    int from, to, rev;
}
```

```
11 cap, cost, flow;
};
int N;
vector<vector<edge>> ed;
vector<ll> dist, pi;
vector<edge*> par;
MCMF(int N) : N(N), ed(N), seen(N), dist(N), pi(N), par(N) {}
void addEdge(int from, int to, ll cap, ll cost) {
  if (from == to) return;
  ed[from].push_back(edge{ from,to,sz(ed[to]),cap,cost,0 });
  ed[to].push_back(edge{ to,from,sz(ed[from])-1,0,-cost,0 });
void path(int s) {
  fill(all(seen), 0);
  fill(all(dist), INF);
  dist[s] = 0; ll di;
  __gnu_pbds::priority_queue<pair<11, int>> q;
  vector<decltype(g)::point iterator> its(N);
  q.push({ 0, s });
  while (!q.empty()) {
   s = q.top().second; q.pop();
    seen[s] = 1; di = dist[s] + pi[s];
    for (edge& e : ed[s]) if (!seen[e.to]) {
     11 val = di - pi[e.to] + e.cost;
      if (e.cap - e.flow > 0 && val < dist[e.to]) {</pre>
        dist[e.to] = val;
        par[e.to] = &e;
        if (its[e.to] == q.end())
          its[e.to] = q.push({ -dist[e.to], e.to });
          q.modify(its[e.to], { -dist[e.to], e.to });
  rep(i, 0, N) pi[i] = min(pi[i] + dist[i], INF);
pair<11, 11> maxflow(int s, int t) {
  11 totflow = 0, totcost = 0;
  while (path(s), seen[t]) {
    for (edge* x = par[t]; x; x = par[x->from])
      fl = min(fl, x->cap - x->flow);
    totflow += fl;
    for (edge* x = par[t]; x; x = par[x->from]) {
     x \rightarrow flow += fl;
      ed[x->to][x->rev].flow -= fl;
  rep(i,0,N) for(edge& e : ed[i]) totcost += e.cost * e.flow;
  return {totflow, totcost/2};
// If some costs can be negative, call this before maxflow:
void setpi(int s) { // (otherwise, leave this out)
  fill(all(pi), INF); pi[s] = 0;
  int it = N, ch = 1; 11 v;
  while (ch-- && it--)
    rep(i,0,N) if (pi[i] != INF)
      for (edge& e : ed[i]) if (e.cap)
        if ((v = pi[i] + e.cost) < pi[e.to])</pre>
          pi[e.to] = v, ch = 1;
```

```
assert(it >= 0); // negative cost cycle
}
};
```

EdmondsKarp.h

Description: Flow algorithm with guaranteed complexity $O(VE^2)$. To get edge flow values, compare capacities before and after, and take the positive values only.

```
template < class T > T edmonds Karp (vector < unordered_map < int, T >> &
    graph, int source, int sink) {
  assert (source != sink);
  T flow = 0:
  vi par(sz(graph)), q = par;
  for (;;) {
    fill(all(par), -1);
    par[source] = 0;
    int ptr = 1;
    q[0] = source;
    rep(i,0,ptr) {
      int x = q[i];
      for (auto e : graph[x]) {
        if (par[e.first] == -1 && e.second > 0) {
          par[e.first] = x;
          q[ptr++] = e.first;
          if (e.first == sink) goto out;
    return flow;
    T inc = numeric_limits<T>::max();
    for (int y = sink; y != source; y = par[y])
      inc = min(inc, graph[par[v]][v]);
    flow += inc;
    for (int y = sink; y != source; y = par[y]) {
      int p = par[y];
      if ((graph[p][y] -= inc) <= 0) graph[p].erase(y);</pre>
      graph[y][p] += inc;
```

Dinic.h

Description: Flow algorithm with complexity $O(VE \log U)$ where $U = \max |\text{cap}|$. $O(\min(E^{1/2}, V^{2/3})E)$ if U = 1; $O(\sqrt{V}E)$ for bipartite matching.

```
struct Dinic {
  struct Edge {
    int to, rev;
    11 c, oc;
    ll flow() { return max(oc - c, OLL); } // if you need flows
 vi lvl, ptr, q;
  vector<vector<Edge>> adj;
  Dinic(int n) : lvl(n), ptr(n), q(n), adj(n) {}
  void addEdge(int a, int b, ll c, ll rcap = 0) {
    adj[a].push_back({b, sz(adj[b]), c, c});
    adj[b].push_back({a, sz(adj[a]) - 1, rcap, rcap});
 11 dfs(int v, int t, ll f) {
    if (v == t || !f) return f;
    for (int& i = ptr[v]; i < sz(adj[v]); i++) {</pre>
      Edge& e = adj[v][i];
      if (lvl[e.to] == lvl[v] + 1)
```

```
if (ll p = dfs(e.to, t, min(f, e.c))) {
        e.c -= p, adj[e.to][e.rev].c += p;
        return p;
  return 0;
11 calc(int s, int t) {
  11 \text{ flow} = 0; q[0] = s;
  rep(L,0,31) do { // 'int L=30' maybe faster for random data
   lvl = ptr = vi(sz(q));
    int qi = 0, qe = lvl[s] = 1;
    while (qi < qe && !lvl[t]) {
     int v = q[qi++];
      for (Edge e : adj[v])
        if (!lvl[e.to] && e.c >> (30 - L))
          q[qe++] = e.to, lvl[e.to] = lvl[v] + 1;
    while (ll p = dfs(s, t, LLONG_MAX)) flow += p;
  } while (lvl[t]);
  return flow;
bool leftOfMinCut(int a) { return lvl[a] != 0; }
```

MinCut.h

Description: After running max-flow, the left side of a min-cut from s to tis given by all vertices reachable from s, only traversing edges with positive residual capacity.

GlobalMinCut.h

Description: Find a global minimum cut in an undirected graph, as represented by an adjacency matrix.

Time: $\mathcal{O}(V^3)$

8b0e19, 21 lines

```
pair<int, vi> globalMinCut(vector<vi> mat) {
  pair<int, vi> best = {INT_MAX, {}};
  int n = sz(mat);
  vector<vi> co(n);
  rep(i, 0, n) co[i] = {i};
  rep(ph,1,n) {
   vi w = mat[0];
   size t s = 0, t = 0;
    rep(it,0,n-ph) { // O(V^2) \rightarrow O(E log V) with prio. queue}
     w[t] = INT_MIN;
     s = t, t = max_element(all(w)) - w.begin();
     rep(i, 0, n) w[i] += mat[t][i];
   best = min(best, \{w[t] - mat[t][t], co[t]\});
   co[s].insert(co[s].end(), all(co[t]));
   rep(i,0,n) mat[s][i] += mat[t][i];
   rep(i, 0, n) mat[i][s] = mat[s][i];
   mat[0][t] = INT_MIN;
 return best;
```

Gomory Hu.h.

Description: Given a list of edges representing an undirected flow graph, returns edges of the Gomory-Hu tree. The max flow between any pair of vertices is given by minimum edge weight along the Gomory-Hu tree path. **Time:** $\mathcal{O}(V)$ Flow Computations

"PushRelabel.h"

0418b3, 13 lines

```
typedef array<11, 3> Edge;
vector<Edge> gomoryHu(int N, vector<Edge> ed) {
 vector<Edge> tree;
  vi par(N);
```

```
rep(i,1,N) {
  PushRelabel D(N); // Dinic also works
  for (Edge t : ed) D.addEdge(t[0], t[1], t[2], t[2]);
  tree.push_back({i, par[i], D.calc(i, par[i])});
  rep(j,i+1,N)
    if (par[j] == par[i] && D.leftOfMinCut(j)) par[j] = i;
return tree:
```

7.3 Matching

hopcroftKarp.h

Description: Fast bipartite matching algorithm. Graph g should be a list of neighbors of the left partition, and btoa should be a vector full of -1's of the same size as the right partition. Returns the size of the matching. btoa[i]will be the match for vertex i on the right side, or -1 if it's not matched.

```
Usage: vi btoa(m, -1); hopcroftKarp(q, btoa);
Time: \mathcal{O}\left(\sqrt{V}E\right)
                                                      f612e4, 42 lines
bool dfs(int a, int L, vector<vi>& g, vi& btoa, vi& A, vi& B) {
 if (A[a] != L) return 0;
 A[a] = -1;
 for (int b : g[a]) if (B[b] == L + 1) {
   B[b] = 0;
    if (btoa[b] == -1 \mid | dfs(btoa[b], L + 1, q, btoa, A, B))
      return btoa[b] = a, 1;
 return 0;
int hopcroftKarp(vector<vi>& g, vi& btoa) {
 int res = 0:
 vi A(g.size()), B(btoa.size()), cur, next;
 for (;;) {
   fill(all(A), 0);
   fill(all(B), 0);
    cur.clear();
   for (int a : btoa) if (a !=-1) A[a] = -1;
    rep(a, 0, sz(g)) if(A[a] == 0) cur.push_back(a);
    for (int lay = 1;; lay++) {
     bool islast = 0;
      next.clear();
      for (int a : cur) for (int b : q[a]) {
       if (btoa[b] == -1) {
          B[b] = lay;
          islast = 1;
        else if (btoa[b] != a && !B[b]) {
          B[b] = lay;
          next.push_back(btoa[b]);
      if (islast) break;
     if (next.empty()) return res;
      for (int a : next) A[a] = lay;
      cur.swap(next);
   rep(a, 0, sz(g))
      res += dfs(a, 0, q, btoa, A, B);
```

DFSMatching.h

Description: Simple bipartite matching algorithm. Graph g should be a list of neighbors of the left partition, and btoa should be a vector full of -1's of the same size as the right partition. Returns the size of the matching. btoa[i]will be the match for vertex i on the right side, or -1 if it's not matched. Usage: vi btoa(m, -1); dfsMatching(g, btoa);

```
522b98, 22 lines
bool find(int j, vector<vi>& q, vi& btoa, vi& vis) {
 if (btoa[j] == -1) return 1;
 vis[j] = 1; int di = btoa[j];
  for (int e : g[di])
    if (!vis[e] && find(e, q, btoa, vis)) {
     btoa[e] = di;
      return 1;
 return 0;
int dfsMatching(vector<vi>& q, vi& btoa) {
  rep(i,0,sz(q)) {
    vis.assign(sz(btoa), 0);
    for (int i : q[i])
      if (find(j, q, btoa, vis)) {
        btoa[i] = i;
        break;
  return sz(btoa) - (int)count(all(btoa), -1);
```

MinimumVertexCover.h

Description: Finds a minimum vertex cover in a bipartite graph. The size is the same as the size of a maximum matching, and the complement is a maximum independent set.

```
"DFSMatching.h"
                                                     da4196, 20 lines
vi cover(vector<vi>& g, int n, int m) {
 vi match(m, -1);
 int res = dfsMatching(g, match);
 vector<bool> lfound(n, true), seen(m);
  for (int it : match) if (it != -1) lfound[it] = false;
 vi q, cover;
  rep(i,0,n) if (lfound[i]) q.push_back(i);
  while (!q.empty()) {
   int i = q.back(); q.pop_back();
   lfound[i] = 1;
    for (int e : g[i]) if (!seen[e] && match[e] != -1) {
      seen[e] = true;
      g.push back(match[e]);
 rep(i,0,n) if (!lfound[i]) cover.push_back(i);
 rep(i,0,m) if (seen[i]) cover.push_back(n+i);
 assert(sz(cover) == res);
 return cover;
```

WeightedMatching.h

Description: Given a weighted bipartite graph, matches every node on the left with a node on the right such that no nodes are in two matchings and the sum of the edge weights is minimal. Takes cost[N][M], where cost[i][j] = costfor L[i] to be matched with R[j] and returns (min cost, match), where L[i] is matched with R[match[i]]. Negate costs for max cost. Requires $N \leq M$. Time: $\mathcal{O}(N^2M)$

```
1e0fe9, 31 lines
pair<int, vi> hungarian(const vector<vi> &a) {
 if (a.empty()) return {0, {}};
 int n = sz(a) + 1, m = sz(a[0]) + 1;
 vi u(n), v(m), p(m), ans(n-1);
  rep(i,1,n) {
    p[0] = i;
    int j0 = 0; // add "dummy" worker 0
    vi dist(m, INT_MAX), pre(m, -1);
    vector<bool> done(m + 1);
    do { // dijkstra
```

```
done[j0] = true;
    int i0 = p[j0], j1, delta = INT_MAX;
    rep(j,1,m) if (!done[j]) {
      auto cur = a[i0 - 1][j - 1] - u[i0] - v[j];
     if (cur < dist[j]) dist[j] = cur, pre[j] = j0;
     if (dist[j] < delta) delta = dist[j], j1 = j;</pre>
    rep(j,0,m) {
     if (done[j]) u[p[j]] += delta, v[j] -= delta;
      else dist[j] -= delta;
    j0 = j1;
  } while (p[j0]);
  while (j0) { // update alternating path
   int j1 = pre[j0];
   p[j0] = p[j1], j0 = j1;
rep(j,1,m) if (p[j]) ans[p[j] - 1] = j - 1;
return {-v[0], ans}; // min cost
```

GeneralMatching.h

Description: Matching for general graphs. Fails with probability N/mod. **Time:** $\mathcal{O}\left(N^3\right)$

```
"../numerical/MatrixInverse-mod.h"
vector<pii> generalMatching(int N, vector<pii>& ed) {
  vector<vector<ll>> mat(N, vector<ll>(N)), A;
  for (pii pa : ed) {
   int a = pa.first, b = pa.second, r = rand() % mod;
   mat[a][b] = r, mat[b][a] = (mod - r) % mod;
  int r = matInv(A = mat), M = 2*N - r, fi, f;
  assert (r % 2 == 0);
  if (M != N) do {
   mat.resize(M, vector<ll>(M));
   rep(i,0,N) {
     mat[i].resize(M);
     rep(j,N,M) {
       int r = rand() % mod;
       mat[i][j] = r, mat[j][i] = (mod - r) % mod;
  } while (matInv(A = mat) != M);
  vi has(M, 1); vector<pii> ret;
  rep(it, 0, M/2) {
   rep(i,0,M) if (has[i])
     rep(j,i+1,M) if (A[i][j] && mat[i][j]) {
       fi = i; fj = j; goto done;
    } assert(0); done:
   if (fj < N) ret.emplace_back(fi, fj);</pre>
   has[fi] = has[fj] = 0;
    rep(sw,0,2) {
     ll \ a = modpow(A[fi][fj], mod-2);
     rep(i,0,M) if (has[i] && A[i][fj]) {
       ll b = A[i][fj] * a % mod;
        rep(j, 0, M) A[i][j] = (A[i][j] - A[fi][j] * b) % mod;
     swap(fi,fj);
 return ret:
```

7.4 DFS algorithms

BiconnectedComponents.h

for each edge (a,b) {

Description: Finds all biconnected components in an undirected graph, and runs a callback for the edges in each. In a biconnected component there are at least two distinct paths between any two nodes. Note that a node can be in several components. An edge which is not in a component is a bridge, i.e., not part of any cycle. **Usage:** int eid = 0; ed.resize(N);

```
ed[a].emplace_back(b, eid);
ed[b].emplace_back(a, eid++); }
bicomps([&](const vi& edgelist) {...});
Time: \mathcal{O}\left(E+V\right)
                                                        c6b7c7, 32 lines
vi num, st;
vector<vector<pii>> ed;
int Time;
template<class F>
int dfs(int at, int par, F& f) {
  int me = num[at] = ++Time, top = me;
  for (auto [y, e] : ed[at]) if (e != par) {
    if (num[y]) {
      top = min(top, num[y]);
      if (num[y] < me)
        st.push_back(e);
    } else {
```

int si = sz(st);
int up = dfs(y, e, f);
top = min(top, up);
if (up == me) {
 st.push_back(e);
 f(vi(st.begin() + si, st.end()));
 st.resize(si);
}
else if (up < me) st.push_back(e);
else { /* e is a bridge */ }</pre>

template<class F>
void bicomps(F f) {
 num.assign(sz(ed), 0);
 rep(i,0,sz(ed)) if (!num[i]) dfs(i, -1, f);
}

2sat.h

return top;

Description: Calculates a valid assignment to boolean variables a, b, c,... to a 2-SAT problem, so that an expression of the type (a||b)&&(!a||c)&&(d||!b)&&... becomes true, or reports that it is unsatisfiable. Negated variables are represented by bit-inversions $(\sim x)$.

Usage: TwoSat ts(number of boolean variables); ts.either(0, \sim 3); // Var 0 is true or var 3 is false ts.setValue(2); // Var 2 is true ts.atMostOne($\{0, \sim 1, 2\}$); // <= 1 of vars 0, \sim 1 and 2 are true ts.solve(); // Returns true iff it is solvable ts.values[0..N-1] holds the assigned values to the vars

Time: $\mathcal{O}\left(N+E\right)$, where N is the number of boolean variables, and E is the number of clauses.

```
struct TwoSat {
   int N;
   vector<vi> gr;
   vi values; // 0 = false, 1 = true

TwoSat(int n = 0) : N(n), gr(2*n) {}
  int addVar() { // (optional)
```

```
gr.emplace_back();
    return N++;
  void either(int f, int j) {
    f = \max(2*f, -1-2*f);
    j = \max(2*j, -1-2*j);
    gr[f].push_back(j^1);
    gr[j].push_back(f^1);
  void setValue(int x) { either(x, x); }
  void atMostOne(const vi& li) { // (optional)
    if (sz(li) <= 1) return;</pre>
    int cur = ~li[0];
    rep(i,2,sz(li)) {
      int next = addVar();
      either(cur, ~li[i]);
      either(cur, next);
      either(~li[i], next);
      cur = ~next;
    either(cur, ~li[1]);
  vi val, comp, z; int time = 0;
  int dfs(int i) {
    int low = val[i] = ++time, x; z.push_back(i);
    for(int e : qr[i]) if (!comp[e])
     low = min(low, val[e] ?: dfs(e));
    if (low == val[i]) do {
     x = z.back(); z.pop_back();
      comp[x] = low;
      if (values[x>>1] == -1)
        values[x>>1] = x&1;
    } while (x != i);
    return val[i] = low;
  bool solve() {
    values.assign(N, -1);
    val.assign(2*N, 0); comp = val;
    rep(i,0,2*N) if (!comp[i]) dfs(i);
    rep(i,0,N) if (comp[2*i] == comp[2*i+1]) return 0;
    return 1;
};
```

gr.emplace back();

EulerWalk.h

Description: Eulerian undirected/directed path/cycle algorithm. Input should be a vector of (dest, global edge index), where for undirected graphs, forward/backward edges have the same index. Returns a list of nodes in the Eulerian path/cycle with src at both start and end, or empty list if no cycle/path exists. To get edge indices back, add .second to s and ret. **Time:** $\mathcal{O}(V + E)$

```
vi eulerWalk(vector<vector<pii>>>& gr, int nedges, int src=0) {
   int n = sz(gr);
   vi D(n), its(n), eu(nedges), ret, s = {src};
   D[src]++; // to allow Euler paths, not just cycles
   while (!s.empty()) {
    int x = s.back(), y, e, &it = its[x], end = sz(gr[x]);
    if (it == end) { ret.push_back(x); s.pop_back(); continue; }
        tie(y, e) = gr[x][it++];
        if (!eu[e]) {
        D[x]--, D[y]++;
        eu[e] = 1; s.push_back(y);
    }
```

```
for (int x : D) if (x < 0 \mid \mid sz(ret) != nedges+1) return \{\};
  return {ret.rbegin(), ret.rend()};
 * Recursive euler walk
 * procedure FindEulerPath(V)
 * 1. iterate through all the edges outgoing from vertex V;
 * remove this edge from the graph,
 * and call FindEulerPath from the second end of this edge;
 * 2. add vertex V to the answer.
onlineBridge.h
Description: Find bridges online, after each edge addition
Time: \mathcal{O}(n \log n + m \log n)
                                                      92d54e, 79 lines
vi par, _2ecc, _cc, _cc_sz, last_visit;
int bridges, lca it;
void init(int n) {
   par.resize(n);
    _2ecc.resize(n); _cc.resize(n); _cc_sz.resize(n);
    lca_it = bridges = 0;
    last visit.assign(n, 0);
    rep(i, 0, n) {
        _2ecc[i] = _cc[i] = i;
        cc sz[i] = 1;
        par[i] = -1;
int find 2ecc(int v) {
    if ( \lor == -1 ) return -1;
    return _2ecc[v] == v ? v : _2ecc[v] = find_2ecc(_2ecc[v]);
int find cc(int v) {
    v = find 2ecc(v):
    return _cc[v] == v ? v : _cc[v] = find_cc(_cc[v]);
void make_root(int v) {
    int root = v;
    int child = -1;
    while (v != -1) {
        int p = find_2ecc(par[v]);
        par[v] = child;
        _{cc[v]} = root;
        child = v;
        v = p;
    _cc_sz[root] = _cc_sz[child];
void merge_path (int a, int b) {
    ++lca it:
    vi path_a, path_b;
    int lca = -1;
    while (lca == -1) {
        if (a !=-1) {
            a = find_2ecc(a);
            path_a.push_back(a);
            if (last_visit[a] == lca_it) { lca = a; break; }
            last visit[a] = lca it;
            a = par[a];
        if (b !=-1) {
            b = find_2ecc(b);
            path b.push back(b);
            if (last_visit[b] == lca_it) { lca = b; break; }
            last_visit[b] = lca_it;
            b = par[b];
```

```
for (int v : path_a) {
        _2ecc[v] = 1ca;
        if (v == lca) break;
        --bridges;
    for (int v : path_b) {
        _2ecc[v] = lca;
        if (v == lca) break;
        --bridges;
void add_edge(int a, int b) {
    a = find_2ecc(a); b = find_2ecc(b);
    if (a == b) return;
    int ca = find_cc(a);
    int cb = find_cc(b);
    if (ca != cb) {
        ++bridges;
        if (_cc_sz[ca] > _cc_sz[cb]) swap(a, b), swap(ca, cb);
        make_root(a);
        par[a] = \_cc[a] = b;
        _cc_sz[cb] += _cc_sz[a];
        return;
    merge_path(a, b);
```

blockCutTree.h

Description: Cria a block-cut tree, uma arvore com os blocos e os pontos de articulação Blocos são componentes 2-vertice-conexos maximais Uma 2coloracao da arvore eh tal que uma cor sao os blocos, e a outra cor sao os pontos de art. art[i] responde se i eh ponto de articulação Funciona pra grafo nao conexo, e ja limpa tudo

Time: $\mathcal{O}(N+M)$

```
1d853b, 39 lines
const int MAX = 100100;
vi q[MAX];
stack<int> s:
int id[MAX], art[MAX], pos[MAX];
vector<vi> blocks, tree;
int dfs(int i, int &t, int p = -1) {
 int lo = id[i] = t++;
 s.push(i);
  for (int j : g[i]) if (j != p) {
    if (id[j] == -1) {
      int val = dfs(j, t, i);
      lo = min(lo, val);
      if (val >= id[i]) {
        art[i]++;
        blocks.emplace_back(1, i);
        while (blocks.back().back() != j)
          blocks.back().push_back(s.top()), s.pop();
      // if (val > id[i]) aresta i-j eh ponte
    } else lo = min(lo, id[j]);
  if (p == -1 and art[i]) art[i]--;
 return lo;
void build(int n) {
  rep(i, 0, n) id[i] = -1, art[i] = 0;
  blocks.clear(), tree.clear();
  while (s.size()) s.pop();
  rep(i, 0, n) if (id[i] == -1) dfs(i, t, -1);
  tree.resize(blocks.size()); // no maximo 2*n
 rep(i, 0, n) if (art[i])
    pos[i] = tree.size(), tree.emplace_back();
  rep(i, 0, sz(blocks)) for (int j : blocks[i]) {
```

```
int& u = pos[i];
if (!art[j]) u = i;
else tree[i].push_back(u), tree[u].push_back(i);
```

Coloring 7.5

EdgeColoring.h

Description: Given a simple, undirected graph with max degree D, computes a (D+1)-coloring of the edges such that no neighboring edges share a color. (D-coloring is NP-hard, but can be done for bipartite graphs by repeated matchings of max-degree nodes.)

```
Time: \mathcal{O}(NM)
```

e210e2, 31 lines

```
vi edgeColoring(int N, vector<pii> eds) {
 vi cc(N + 1), ret(sz(eds)), fan(N), free(N), loc;
 for (pii e : eds) ++cc[e.first], ++cc[e.second];
 int u, v, ncols = *max_element(all(cc)) + 1;
 vector<vi> adj(N, vi(ncols, -1));
 for (pii e : eds) {
   tie(u, v) = e;
   fan[0] = v;
    loc.assign(ncols, 0);
    int at = u, end = u, d, c = free[u], ind = 0, i = 0;
    while (d = free[v], !loc[d] && (v = adj[u][d]) != -1)
     loc[d] = ++ind, cc[ind] = d, fan[ind] = v;
    cc[loc[d]] = c;
    for (int cd = d; at != -1; cd ^= c ^ d, at = adj[at][cd])
      swap(adj[at][cd], adj[end = at][cd ^ c ^ d]);
    while (adj[fan[i]][d] != -1) {
     int left = fan[i], right = fan[++i], e = cc[i];
     adj[u][e] = left;
     adi[left][e] = u;
      adi[right][e] = -1;
      free[right] = e;
    adi[u][d] = fan[i];
    adj[fan[i]][d] = u;
    for (int y : {fan[0], u, end})
      for (int& z = free[y] = 0; adj[y][z] != -1; z++);
 rep(i, 0, sz(eds))
   for (tie(u, v) = eds[i]; adj[u][ret[i]] != v;) ++ret[i];
 return ret;
```

7.6 Heuristics

MaximalCliques.h

Description: Runs a callback for all maximal cliques in a graph (given as a symmetric bitset matrix; self-edges not allowed). Callback is given a bitset representing the maximal clique.

```
Time: \mathcal{O}\left(3^{n/3}\right), much faster for sparse graphs
```

```
b0d5b1, 12 lines
```

```
typedef bitset<128> B;
template<class F>
void cliques(vector<B>& eds, F f, B P = \simB(), B X={}, B R={}) {
 if (!P.any()) { if (!X.any()) f(R); return; }
 auto q = (P | X)._Find_first();
 auto cands = P & ~eds[q];
 rep(i,0,sz(eds)) if (cands[i]) {
    R[i] = 1;
    cliques (eds, f, P & eds[i], X & eds[i], R);
    R[i] = P[i] = 0; X[i] = 1;
```

MaximumClique.h

Description: Quickly finds a maximum clique of a graph (given as symmetric bitset matrix; self-edges not allowed). Can be used to find a maximum independent set by finding a clique of the complement graph.

Time: Runs in about 1s for n=155 and worst case random graphs (p=.90). Runs faster for sparse graphs.

```
typedef vector<bitset<200>> vb;
struct Maxclique {
  double limit=0.025, pk=0;
  struct Vertex { int i, d=0; };
  typedef vector<Vertex> vv;
  vv V;
  vector<vi> C;
  vi qmax, q, S, old;
  void init(vv& r) {
    for (auto& v : r) v.d = 0;
    for (auto& v : r) for (auto j : r) v.d += e[v.i][j.i];
    sort(all(r), [](auto a, auto b) { return a.d > b.d; });
    int mxD = r[0].d;
    rep(i, 0, sz(r)) r[i].d = min(i, mxD) + 1;
  void expand(vv& R, int lev = 1) {
    S[lev] += S[lev - 1] - old[lev];
    old[lev] = S[lev - 1];
    while (sz(R)) {
     if (sz(q) + R.back().d <= sz(qmax)) return;</pre>
     q.push_back(R.back().i);
     3737 T:
      for(auto v:R) if (e[R.back().i][v.i]) T.push_back({v.i});
      if (sz(T)) {
       if (S[lev]++ / ++pk < limit) init(T);</pre>
       int \dot{\eta} = 0, mxk = 1, mnk = max(sz(qmax) - sz(q) + 1, 1);
        C[1].clear(), C[2].clear();
        for (auto v : T) {
          int k = 1:
          auto f = [&](int i) { return e[v.i][i]; };
          while (any_of(all(C[k]), f)) k++;
          if (k > mxk) mxk = k, C[mxk + 1].clear();
          if (k < mnk) T[j++].i = v.i;
          C[k].push_back(v.i);
        if (j > 0) T[j - 1].d = 0;
        rep(k, mnk, mxk + 1) for (int i : C[k])
          T[j].i = i, T[j++].d = k;
        expand(T, lev + 1);
      } else if (sz(q) > sz(qmax)) qmax = q;
      q.pop_back(), R.pop_back();
  vi maxClique() { init(V), expand(V); return qmax; }
  Maxclique(vb conn) : e(conn), C(sz(e)+1), S(sz(C)), old(S) {
    rep(i,0,sz(e)) V.push_back({i});
};
```

MaximumIndependentSet.h

Description: To obtain a maximum independent set of a graph, find a max clique of the complement. If the graph is bipartite, see MinimumVertex-Cover.

7.7 Trees

CompressTree.h

Description: Given a rooted tree and a subset S of nodes, compute the minimal subtree that contains all the nodes by adding all (at most |S|-1) pairwise LCA's and compressing edges. Returns a list of (par, orig_index) representing a tree rooted at 0. The root points to itself.

```
Time: \mathcal{O}(|S| \log |S|)
"LCA.h"
                                                        9775a<u>0</u>, <u>21 lines</u>
typedef vector<pair<int, int>> vpi;
vpi compressTree(LCA& lca, const vi& subset) {
 static vi rev; rev.resize(sz(lca.time));
 vi li = subset, &T = lca.time;
 auto cmp = [&](int a, int b) { return T[a] < T[b]; };</pre>
 sort(all(li), cmp);
 int m = sz(li)-1;
 rep(i,0,m) {
    int a = li[i], b = li[i+1];
    li.push_back(lca.lca(a, b));
 sort(all(li), cmp);
 li.erase(unique(all(li)), li.end());
 rep(i, 0, sz(li)) rev[li[i]] = i;
 vpi ret = {pii(0, li[0])};
 rep(i, 0, sz(li) -1) {
    int a = li[i], b = li[i+1];
    ret.emplace_back(rev[lca.lca(a, b)], b);
 return ret;
```

HLD.h

Description: Decomposes a tree into vertex disjoint heavy paths and light edges such that the path from any leaf to the root contains at most log(n) light edges. Code does additive modifications and max queries, but can support commutative segtree modifications/queries on paths and subtrees. Takes as input the full adjacency list. VALS_EDGES being true means that values are stored in the edges, as opposed to the nodes. All values initialized to the segtree default. Root must be 0.

Time: $\mathcal{O}\left((\log N)^2\right)$

```
"../data-structures/LazySegmentTree.h"
                                                     9547af, 46 lines
template <bool VALS_EDGES> struct HLD {
 int N, tim = 0;
 vector<vi> adj;
 vi par, siz, rt, pos;
 Node *tree;
 HLD(vector<vi> adj_)
   : N(sz(adj_)), adj(adj_), par(N, -1), siz(N, 1),
     rt(N),pos(N),tree(new Node(0, N)) { dfsSz(0); dfsHld(0); }
 void dfsSz(int v) {
    for (int& u : adj[v]) {
     adj[u].erase(find(all(adj[u]), v));
     par[u] = v;
     dfsSz(u);
     siz[v] += siz[u];
     if (siz[u] > siz[adj[v][0]]) swap(u, adj[v][0]);
 void dfsHld(int v) {
   pos[v] = tim++;
   for (int u : adj[v]) {
     rt[u] = (u == adj[v][0] ? rt[v] : u);
     dfsHld(u);
 template <class B> void process(int u, int v, B op) {
    for (;; v = par[rt[v]]) {
     if (pos[u] > pos[v]) swap(u, v);
     if (rt[u] == rt[v]) break;
     op(pos[rt[v]], pos[v] + 1);
    op(pos[u] + VALS_EDGES, pos[v] + 1);
 void modifyPath(int u, int v, int val) {
   process(u, v, [&](int 1, int r) { tree->add(1, r, val); });
```

```
int queryPath(int u, int v) { // Modify depending on problem
    int res = -1e9;
   process(u, v, [&](int l, int r) {
       res = max(res, tree->query(1, r));
   return res;
 int querySubtree(int v) { // modifySubtree is similar
   return tree->query(pos[v] + VALS_EDGES, pos[v] + siz[v]);
};
```

LinkCutTree.h

Description: Represents a forest of unrooted trees. You can add and remove edges (as long as the result is still a forest), and check whether two nodes are in the same tree.

Time: All operations take amortized $\mathcal{O}(\log N)$.

0fb462, 90 lines

```
struct Node { // Splay tree. Root's pp contains tree's parent.
 Node *p = 0, *pp = 0, *c[2];
 bool flip = 0;
 Node() { c[0] = c[1] = 0; fix(); }
  void fix() {
    if (c[0]) c[0]->p = this;
    if (c[1]) c[1]->p = this;
    // (+ update sum of subtree elements etc. if wanted)
  void pushFlip() {
    if (!flip) return;
    flip = 0; swap(c[0], c[1]);
    if (c[0]) c[0]->flip ^= 1;
    if (c[1]) c[1]->flip ^= 1;
  int up() { return p ? p->c[1] == this : -1; }
  void rot(int i, int b) {
    int h = i ^ b;
    Node *x = c[i], *y = b == 2 ? x : x -> c[h], *z = b ? y : x;
    if ((y->p = p)) p->c[up()] = y;
    c[i] = z -> c[i ^ 1];
    if (b < 2) {
      x->c[h] = y->c[h ^ 1];
      y -> c[h ^1] = x;
    z \rightarrow c[i ^1] = this;
    fix(); x->fix(); y->fix();
    if (p) p->fix();
    swap(pp, y->pp);
 void splay() {
    for (pushFlip(); p; ) {
      if (p->p) p->p->pushFlip();
      p->pushFlip(); pushFlip();
      int c1 = up(), c2 = p->up();
      if (c2 == -1) p->rot(c1, 2);
      else p->p->rot(c2, c1 != c2);
 Node* first() {
    pushFlip();
    return c[0] ? c[0]->first() : (splay(), this);
};
struct LinkCut {
 vector<Node> node;
 LinkCut(int N) : node(N) {}
 void link(int u, int v) { // add an edge (u, v)
```

DirectedMST DominatorTree XorMst

```
assert(!connected(u, v));
   makeRoot(&node[u]);
   node[u].pp = &node[v];
  void cut (int u, int v) { // remove \ an \ edge \ (u, \ v)
   Node *x = &node[u], *top = &node[v];
   makeRoot(top); x->splay();
    assert(top == (x->pp ?: x->c[0]));
   if (x->pp) x->pp = 0;
   else {
     x->c[0] = top->p = 0;
     x \rightarrow fix();
  bool connected(int u, int v) { // are u, v in the same tree?
   Node* nu = access(&node[u])->first();
    return nu == access(&node[v])->first();
  void makeRoot(Node* u) {
   access(u);
   u->splay();
   if(u->c[0]) {
     u - c[0] - p = 0;
     u - c[0] - flip ^= 1;
     u - c[0] - pp = u;
     u - > c[0] = 0;
      u->fix();
  Node* access(Node* u) {
    u->splay();
    while (Node* pp = u->pp) {
     pp->splay(); u->pp = 0;
     if (pp->c[1]) {
       pp - c[1] - p = 0; pp - c[1] - pp = pp; 
     pp - c[1] = u; pp - fix(); u = pp;
   return u;
};
```

DirectedMST.h

Description: Finds a minimum spanning tree/arborescence of a directed graph, given a root node. If no MST exists, returns -1.

Time: $\mathcal{O}(E \log V)$

```
"../data-structures/UnionFindRollback.h"
                                                      39e620, 60 lines
struct Edge { int a, b; ll w; };
struct Node {
  Edge key;
  Node *1, *r;
  11 delta:
  void prop() {
   key.w += delta;
   if (1) 1->delta += delta;
   if (r) r->delta += delta;
   delta = 0;
  Edge top() { prop(); return key; }
Node *merge(Node *a, Node *b) {
  if (!a || !b) return a ?: b;
  a->prop(), b->prop();
  if (a->key.w > b->key.w) swap(a, b);
  swap(a->1, (a->r = merge(b, a->r)));
  return a:
void pop(Node*\& a) { a->prop(); a = merge(a->1, a->r); }
pair<ll, vi> dmst(int n, int r, vector<Edge>& g) {
```

```
RollbackUF uf(n);
vector<Node*> heap(n);
for (Edge e : q) heap[e.b] = merge(heap[e.b], new Node{e});
11 res = 0:
vi seen(n, -1), path(n), par(n);
seen[r] = r;
vector<Edge> Q(n), in(n, \{-1,-1\}), comp;
deque<tuple<int, int, vector<Edge>>> cycs;
rep(s,0,n) {
  int u = s, qi = 0, w;
  while (seen[u] < 0) {</pre>
    if (!heap[u]) return {-1,{}};
    Edge e = heap[u]->top();
    heap[u]->delta -= e.w, pop(heap[u]);
    Q[qi] = e, path[qi++] = u, seen[u] = s;
    res += e.w, u = uf.find(e.a);
    if (seen[u] == s) {
      Node \star cyc = 0;
      int end = qi, time = uf.time();
      do cyc = merge(cyc, heap[w = path[--qi]]);
      while (uf.join(u, w));
      u = uf.find(u), heap[u] = cyc, seen[u] = -1;
      cycs.push_front({u, time, {&Q[qi], &Q[end]}});
  rep(i, 0, qi) in[uf.find(Q[i].b)] = Q[i];
for (auto& [u,t,comp] : cycs) { // restore sol (optional)
  uf.rollback(t);
  Edge inEdge = in[u];
  for (auto& e : comp) in[uf.find(e.b)] = e;
  in[uf.find(inEdge.b)] = inEdge;
rep(i,0,n) par[i] = in[i].a;
return {res, par};
```

DominatorTree.h

Description: Acha a dominator tree com raiz em Root, um nó tem na subarvore todos Os caras tal que só dá pra chegar da raiz pra eles passando por mim O mais importante é que a arvore é montada :)

```
Usage: * !!! 1-index
* Dominator::addEdge(a,b);
* Dominator::get(n,root);
* DFS:
* for(auto to : Dominator::tree[v])//....
* Status: Tested on codeforces and cses critical cities -
https://cses.fi/paste/bd9ebff02db7215412f6fd/
* Tested on https://judge.yosupo.jp/
* Tested on NEERC 14-15 L
                                                     b06518, 59 lines
```

// From https://codeforces.com/group/W2YvE0cOoh/contest/284785/

```
problem/E
const int N = ; // maxN
namespace Dominator{
 vi g[N], tree[N], rg[N], bucket[N];
  int sdom[N],par[N],dom[N],dsu[N],label[N];
  int arr[N], rev[N], T=0; //1-Based directed graph input
  int Find(int u,int x=0){
    if (u==dsu[u]) return x?-1:u;
    int v = Find(dsu[u],x+1);
    if (v<0) return u;</pre>
    if(sdom[label[dsu[u]]]<sdom[label[u]])</pre>
      label[u] = label[dsu[u]];
    dsu[u] = v;
    return x?v:label[u];
```

```
void Union(int u,int v){ //Add an edge u\Longrightarrowv
  dsu[v]=u; //yup, its correct:)
void dfs0(int u){
  T++; arr[u]=T; rev[T]=u;
  label[T]=T; sdom[T]=T; dsu[T]=T;
  for(int i=0;i<sz(g[u]);i++){</pre>
    int w = g[u][i];
    if(!arr[w])dfs0(w),par[arr[w]]=arr[u];
    rg[arr[w]].pb(arr[u]);
void reset(int n){
  for (int i=1; i<=n; i++) {</pre>
    g[i].clear();rg[i].clear();tree[i].clear();bucket[i].
     arr[i]=0;
  T=0;
void addEdge(int u,int v) {
  g[u].pb(v);
//Build Dominator tree(in main)
void get(int n,int root){
  dfs0(root);n=T;
  for(int i=n;i>=1;i--) {
    for (int j=0; j<sz(rg[i]); j++)</pre>
      sdom[i] = min(sdom[i], sdom[Find(rq[i][j])]);
    if(i>1)bucket[sdom[i]].pb(i);
    for(int j=0; j<sz(bucket[i]); j++) {</pre>
      int w = bucket[i][j],v = Find(w);
      if (sdom[v] == sdom[w]) dom[w] = sdom[w];
      else dom[w] = v;
    } if(i>1) Union(par[i],i);
  for(int i=2;i<=n;i++) {</pre>
    if (dom[i]!=sdom[i])dom[i]=dom[dom[i]];
    tree[rev[i]].pb(rev[dom[i]]);
    tree[rev[dom[i]]].pb(rev[i]);
} //done :)
```

XorMst.h

Description: Given an undirected graph, where each vertex is assigned a number a_i and the weight of an edge (i, j) is $a_i x o r a_j$, compute the MST of this graph. Can also be solved using boruvka algorithm.

```
Time: \mathcal{O}\left(N\log^2 a_i\right)
```

```
1929c8, 58 lines
const int MAXN = 200200;
int n, a[MAXN], sa[MAXN], color[MAXN], trieSz;
int trieC[MAXN*31][2], trieCnt[MAXN*31], trieVal[MAXN*31];
vi adj[MAXN];
void paint(int v) {
  for(int u : adj[v])
    if(!color[u]) {
      color[u] = color[v] ^ 3;
      paint(u);
void insert(int key, int val) {
  int n = 0;
  for(int bit = 30; bit >= 0; --bit) {
    trieCnt[n]++;
    if(bit == 0) return void(trieVal[n] = val);
    int b = (key >> (bit - 1)) & 1;
    if(!trieC[n][b]) trieC[n][b] = ++trieSz;
```

```
n = trieC[n][b];
void erase(int key) {
 int n = 0;
  for(int bit = 30; bit >= 0; --bit) {
   trieCnt[n]--;
   if(bit == 0) return;
   n = trieC[n][(key >> (bit - 1)) & 1];
int get(int key) {
 int n = 0;
  for(int bit = 30; bit >= 0; --bit) {
   if(bit == 0) return trieVal[n];
   int b = (key >> (bit - 1)) & 1;
   if(trieC[n][b] && trieCnt[trieC[n][b]]) n=trieC[n][b];
   else n = trieC[n][!b];
  } return -1;
11 solve(int 1, int r, int bit = 29) {
 if(bit == -1 || 1 >= r) return 0;
  int m = 1 - 1;
  while(m <= r && ((a[sa[m + 1]] >> bit) & 1) == 0) m++;
  ll ret=solve(l, min(r, m), bit-1) + solve(m+1, r, bit-1);
  if(1 <= m && m + 1 <= r) {
    rep(i, 1, m + 1) insert(a[sa[i]], sa[i]);
   tuple<int, int, int> mn((1 << 30), 0, 0);
    rep(i, m + 1, r + 1) {
     int k = get(a[sa[i]]);
     mn = min(mn, make_tuple(a[k]^a[sa[i]], k, sa[i]));
   rep(i, l, m + 1) erase(a[sa[i]]);
   auto[x, y, z] = mn;
    ret += x:
   adj[y].push_back(z);
    adj[z].push_back(y);
  return ret;
```

7.8 Math

7.8.1 Number of Spanning Trees

Create an $N \times N$ matrix mat, and for each edge $a \to b \in G$, do mat[a][b]--, mat[b][b]++ (and mat[b][a]--, mat[a][a]++ if G is undirected). Remove the ith row and column and the determinant; this yields the number of the column and the determinant; this yields the number of the column and the determinant of the column and the determinant is undirected, remove any interpretable with node degrees $d_1 \ge \cdots \ge d_n$ exists iff $d_1 + \cdots + d_n$ is even and for every $k = 1 \dots n$,

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k).$$

Geometry (8)

8.1 Geometric primitives

Point.h

Description: Class to handle points in the plane. T can be e.g. double or long long. (Avoid int.)

```
template <class T> int sqn(T x) \{ return (x > 0) - (x < 0); \}
template<class T>
struct Point {
 typedef Point P;
  T x, y;
  explicit Point (T x=0, T y=0) : x(x), y(y) {}
 bool operator<(P p) const { return tie(x,y) < tie(p.x,p.y); }</pre>
 bool operator==(P p) const { return tie(x,y)==tie(p.x,p.y); }
  P operator+(P p) const { return P(x+p.x, y+p.y); }
  P operator-(P p) const { return P(x-p.x, y-p.y); }
  P operator*(T d) const { return P(x*d, y*d); }
  P operator/(T d) const { return P(x/d, y/d); }
 T dot(P p) const { return x*p.x + y*p.y; }
 T cross(P p) const { return x*p.y - y*p.x; }
 T cross(P a, P b) const { return (a-*this).cross(b-*this); }
  T dist2() const { return x*x + y*y; }
  double dist() const { return sqrt((double)dist2()); }
  // angle to x-axis in interval [-pi, pi]
  double angle() const { return atan2(y, x); }
  P unit() const { return *this/dist(); } // makes dist()=1
  P perp() const { return P(-y, x); } // rotates +90 degrees
 P normal() const { return perp().unit(); }
  // returns point rotated 'a' radians ccw around the origin
 P rotate (double a) const {
    return P(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a)); }
  friend ostream& operator<<(ostream& os, P p) {</pre>
    return os << "(" << p.x << "," << p.y << ")"; }
```

lineDistance.h

Description:

Returns the signed distance between point p and the line containing points a and b. Positive value on left side and negative on right as seen from a towards b. a==b gives nan. P is supposed to be Point<T> or Point3D<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long. Using Point3D will always give a non-negative distance. For Point3D, call .dist on the result of the cross product.

"Point.h" f6bf6b, 4 lines
template<class P>
double lineDist(const P& a, const P& b, const P& p) {
 return (double) (b-a).cross(p-a)/(b-a).dist();
}

SegmentDistance.h

Description:

Returns the shortest distance between point p and the line segment from point sto e.

Usage: Point < double > a, b(2,2), p(1,1);
bool onSegment = segDist(a,b,p) < 1e-10;</pre>

SegmentIntersection.h

Description:

If a unique intersection point between the line segments going from s1 to e1 and from s2 to e2 exists then it is returned. If no intersection point exists an empty vector is returned. If infinitely many exist a vector with 2 elements is returned, containing the endpoints of the common line segment. The wrong position will be returned if P is Point<|| and the intersection point does not have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow if using int or long long.

Usage: vector<| > inter = segInter(s1,e1,s2,e2);

```
e2
s1 r1 s2
```

lineIntersection.h

Description:

If a unique intersection point of the lines going through \$1,e1\$ and \$2,e2\$ exists \$1, point} is returned. If no intersection point exists \$0, (0,0)\$ is returned and if infinitely many exists \$-1, (0,0)\$ is returned. The wrong position will be returned if P is Point < ||> and the intersection point does not have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow if using int or ||.

```
template<class P>
pair<int, P> lineInter(P s1, P e1, P s2, P e2) {
   auto d = (e1 - s1).cross(e2 - s2);
   if (d == 0) // if parallel
      return {-(s1.cross(e1, s2) == 0), P(0, 0)};
   auto p = s2.cross(e1, e2), q = s2.cross(e2, s1);
   return {1, (s1 * p + e1 * q) / d};
}
```

sideOf.h

Description: Returns where p is as seen from s towards e. $1/0/-1 \Leftrightarrow \text{left/on line/right}$. If the optional argument eps is given 0 is returned if p is within distance eps from the line. P is supposed to be PointT where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long.

Description: Returns true iff p lies on the line segment from s to e. Use (segDist(s,e,p) <=epsilon) instead when using Point < double >.

"Point.h" c597e8, 3 lines template < class P > bool on Segment (P s, P e, P p) { return p.cross(s, e) == 0 && (s - p).dot(e - p) <= 0;

linearTransformation.h Description:

Apply the linear transformation (translation, rotation and scaling) which takes line p0-p1 to line q0-q1 to point r. "Point.h" 03a306, 6 lines

typedef Point<double> P; P linearTransformation (const P& p0, const P& p1, const P& q0, const P& q1, const P& r) { P dp = p1-p0, dq = q1-q0, num(dp.cross(dq), dp.dot(dq)); return q0 + P((r-p0).cross(num), (r-p0).dot(num))/dp.dist2();

Angle.h

Description: A class for ordering angles (as represented by int points and a number of rotations around the origin). Useful for rotational sweeping. Sometimes also represents points or vectors.

Usage: vector $\langle Angle \rangle$ v = $\{w[0], w[0].t360()...\}$; // sorted int j = 0; rep(i,0,n) { while (v[j] < v[i].t180()) ++j; } // sweeps j such that (j-i) represents the number of positively oriented triangles with vertices at 0 and i 0f0602, 35 lines

```
struct Angle {
  int x, y;
  Angle(int x, int y, int t=0) : x(x), y(y), t(t) {}
  Angle operator-(Angle b) const { return {x-b.x, y-b.y, t}; }
  int half() const {
   assert(x || y);
    return v < 0 || (v == 0 && x < 0);
  Angle t90() const { return \{-y, x, t + (half() \&\& x >= 0)\}; \}
  Angle t180() const { return {-x, -y, t + half()}; }
  Angle t360() const { return {x, y, t + 1}; }
bool operator<(Angle a, Angle b) {</pre>
  // add a. dist2() and b. dist2() to also compare distances
  return make_tuple(a.t, a.half(), a.y * (ll)b.x) <
         make_tuple(b.t, b.half(), a.x * (ll)b.y);
// Given two points, this calculates the smallest angle between
// them, i.e., the angle that covers the defined line segment.
pair<Angle, Angle> segmentAngles(Angle a, Angle b) {
  if (b < a) swap(a, b);
  return (b < a.t180() ?
          make_pair(a, b) : make_pair(b, a.t360()));
Angle operator+(Angle a, Angle b) { // point \ a + vector \ b
  Angle r(a.x + b.x, a.y + b.y, a.t);
  if (a.t180() < r) r.t--;
  return r.t180() < a ? r.t360() : r;</pre>
Angle angleDiff(Angle a, Angle b) { // angle b - angle a}
 int tu = b.t - a.t; a.t = b.t;
  return {a.x*b.x + a.y*b.y, a.x*b.y - a.y*b.x, tu - (b < a)};
```

Circles

"Point.h"

CircleIntersection.h

Description: Computes the pair of points at which two circles intersect. Returns false in case of no intersection.

```
84d6d3, 11 lines
typedef Point < double > P;
bool circleInter(P a, P b, double r1, double r2, pair < P, P >* out) {
  if (a == b) { assert(r1 != r2); return false; }
  P \text{ vec} = b - a;
  double d2 = vec.dist2(), sum = r1+r2, dif = r1-r2,
          p = (d2 + r1*r1 - r2*r2)/(d2*2), h2 = r1*r1 - p*p*d2;
  if (sum*sum < d2 || dif*dif > d2) return false;
  P mid = a + \text{vec*p}, per = \text{vec.perp}() * \text{sqrt}(\text{fmax}(0, h2) / d2);
  *out = {mid + per, mid - per};
  return true;
```

CircleTangents.h

Description: Finds the external tangents of two circles, or internal if r2 is negated. Can return 0. 1. or 2 tangents - 0 if one circle contains the other (or overlaps it, in the internal case, or if the circles are the same); 1 if the circles are tangent to each other (in which case .first = .second and the tangent line is perpendicular to the line between the centers). .first and .second give the tangency points at circle 1 and 2 respectively. To find the tangents of a circle with a point set r2 to 0.

"Point.h" b0153d, 13 lines template<class P> vector<pair<P, P>> tangents(P c1, double r1, P c2, double r2) { P d = c2 - c1;**double** dr = r1 - r2, d2 = d.dist2(), h2 = d2 - dr * dr; if (d2 == 0 || h2 < 0) return {};</pre> vector<pair<P, P>> out; for (double sign : {-1, 1}) { P v = (d * dr + d.perp() * sqrt(h2) * sign) / d2;out.push_back($\{c1 + v * r1, c2 + v * r2\}$); **if** (h2 == 0) out.pop back(); return out;

CirclePolygonIntersection.h

Description: Returns the area of the intersection of a circle with a ccw polygon.

Time: $\mathcal{O}(n)$

```
19add1, 19 lines
"../../content/geometry/Point.h"
typedef Point < double > P;
#define arg(p, q) atan2(p.cross(q), p.dot(q))
double circlePoly(P c, double r, vector<P> ps) {
  auto tri = [&] (P p, P q) {
    auto r2 = r * r / 2;
   P d = q - p;
    auto a = d.dot(p)/d.dist2(), b = (p.dist2()-r*r)/d.dist2();
    auto det = a * a - b;
    if (det <= 0) return arg(p, q) * r2;</pre>
    auto s = max(0., -a-sqrt(det)), t = min(1., -a+sqrt(det));
    if (t < 0 || 1 <= s) return arg(p, q) * r2;</pre>
   Pu = p + d * s, v = q + d * (t-1);
    return arg(p,u) * r2 + u.cross(v)/2 + arg(v,q) * r2;
  auto sum = 0.0;
  rep(i, 0, sz(ps))
   sum += tri(ps[i] - c, ps[(i + 1) % sz(ps)] - c);
 return sum;
```

circumcircle.h

Description:

The circumcirle of a triangle is the circle intersecting all three vertices. ccRadius returns the radius of the circle going through points A, B and C and ccCenter returns the center of the same circle.


```
"Point.h"
typedef Point<double> P;
double ccRadius (const P& A, const P& B, const P& C) {
  return (B-A).dist()*(C-B).dist()*(A-C).dist()/
      abs((B-A).cross(C-A))/2;
P ccCenter (const P& A, const P& B, const P& C) {
  P b = C-A, c = B-A;
  return A + (b*c.dist2()-c*b.dist2()).perp()/b.cross(c)/2;
```

MinimumEnclosingCircle.h

Description: Computes the minimum circle that encloses a set of points. Time: expected $\mathcal{O}(n)$

"circumcircle.h" 09dd0a 17 lines pair<P, double> mec(vector<P> ps) { shuffle(all(ps), mt19937(time(0))); $P \circ = ps[0];$ **double** r = 0, EPS = 1 + 1e-8; rep(i, 0, sz(ps)) if ((o - ps[i]).dist() > r * EPS) { o = ps[i], r = 0;rep(j, 0, i) **if** ((o - ps[j]).dist() > r * EPS) { o = (ps[i] + ps[j]) / 2;r = (o - ps[i]).dist();rep(k, 0, j) if ((o - ps[k]).dist() > r * EPS) { o = ccCenter(ps[i], ps[j], ps[k]); r = (o - ps[i]).dist();return {o, r};

8.3 Polygons

InsidePolygon.h

Description: Returns true if p lies within the polygon. If strict is true, it returns false for points on the boundary. The algorithm uses products in intermediate steps so watch out for overflow.

```
Usage: vector\langle P \rangle v = \{P\{4,4\}, P\{1,2\}, P\{2,1\}\};
bool in = inPolygon(v, P\{3, 3\}, false);
Time: \mathcal{O}(n)
"Point.h", "OnSegment.h", "SegmentDistance.h"
```

```
template<class P>
bool inPolygon(vector<P> &p, P a, bool strict = true) {
 int cnt = 0, n = sz(p);
  rep(i,0,n) {
    P q = p[(i + 1) % n];
    if (onSegment(p[i], q, a)) return !strict;
    //or: if (segDist(p[i], q, a) \le eps) return !strict;
    cnt ^= ((a.y<p[i].y) - (a.y<q.y)) * a.cross(p[i], q) > 0;
 return cnt;
```

PolygonCenter.h

Description: Returns the center of mass for a polygon. Time: $\mathcal{O}(n)$

P polygonCenter(const vector<P>& v) {

```
"Point.h"
                                                              9706dc, 9 lines
typedef Point<double> P;
```

```
P res(0, 0); double A = 0;
for (int i = 0, j = sz(v) - 1; i < sz(v); j = i++) {
 res = res + (v[i] + v[j]) * v[j].cross(v[i]);
 A += v[j].cross(v[i]);
return res / A / 3;
```

PolygonCut.h Description:

Returns a vector with the vertices of a polygon with everything to the left of the line going from s to e cut away.

d07181, 13 lines

```
typedef Point < double > P;
vector<P> polygonCut (const vector<P>& poly, P s, P e) {
  vector<P> res:
  rep(i, 0, sz(poly)) {
   P cur = poly[i], prev = i ? poly[i-1] : poly.back();
    auto a = s.cross(e, cur), b = s.cross(e, prev);
    if ((a < 0) != (b < 0))
     res.push_back(cur + (prev - cur) * (a / (a - b)));
    if (a < 0)
      res.push_back(cur);
  return res:
```

PolygonUnion.h

return ret / 2;

Description: Calculates the area of the union of n polygons (not necessarily convex). The points within each polygon must be given in CCW order. (Epsilon checks may optionally be added to sideOf/sgn, but shouldn't be

Time: $\mathcal{O}(N^2)$, where N is the total number of points

```
"Point.h", "sideOf.h"
                                                      3931c6, 33 lines
typedef Point <double > P;
double rat(P a, P b) { return sgn(b.x) ? a.x/b.x : a.y/b.y; }
double polyUnion(vector<vector<P>>& poly) {
  double ret = 0;
  rep(i, 0, sz(poly)) rep(v, 0, sz(poly[i])) {
   P A = poly[i][v], B = poly[i][(v + 1) % sz(poly[i])];
   vector<pair<double, int>> segs = {{0, 0}, {1, 0}};
   rep(j,0,sz(poly)) if (i != j) {
      rep(u,0,sz(poly[j])) {
       int sc = sideOf(A, B, C), sd = sideOf(A, B, D);
       if (sc != sd) {
```

```
P C = poly[j][u], D = poly[j][(u + 1) % sz(poly[j])];
      double sa = C.cross(D, A), sb = C.cross(D, B);
      if (\min(sc, sd) < 0)
        segs.emplace_back(sa / (sa - sb), sqn(sc - sd));
    } else if (!sc && !sd && j<i && sgn((B-A).dot(D-C))>0){
      segs.emplace_back(rat(C - A, B - A), 1);
      segs.emplace_back(rat(D - A, B - A), -1);
sort (all (segs));
for (auto& s : seqs) s.first = min(max(s.first, 0.0), 1.0);
double sum = 0;
int cnt = segs[0].second;
rep(j, 1, sz(segs)) {
 if (!cnt) sum += segs[j].first - segs[j - 1].first;
 cnt += segs[j].second;
ret += A.cross(B) * sum;
```

ConvexHull.h

Description:

Returns a vector of the points of the convex hull in counterclockwise order. Points on the edge of the hull between two other points are not considered part of the hull. Time: $\mathcal{O}(n \log n)$

"Point.h" 310954, 13 lines

```
typedef Point<ll> P;
vector<P> convexHull(vector<P> pts) {
 if (sz(pts) <= 1) return pts;</pre>
 sort(all(pts));
 vector<P> h(sz(pts)+1);
 int s = 0, t = 0;
 for (int it = 2; it--; s = --t, reverse(all(pts)))
   for (P p : pts) {
     while (t >= s + 2 \&\& h[t-2].cross(h[t-1], p) <= 0) t--;
 return {h.begin(), h.begin() + t - (t == 2 && h[0] == h[1])};
```

HullDiameter.h

Description: Returns the two points with max distance on a convex hull (ccw, no duplicate/collinear points).

Time: $\mathcal{O}(n)$

```
"Point.h"
                                                       c571b8, 12 lines
typedef Point<11> P;
array<P, 2> hullDiameter(vector<P> S) {
 int n = sz(S), j = n < 2 ? 0 : 1;
 pair<11, array<P, 2>> res({0, {S[0], S[0]}});
 rep(i,0,i)
    for (;; j = (j + 1) % n) {
      res = \max(\text{res}, \{(S[i] - S[j]).dist2(), \{S[i], S[j]\}\});
      if ((S[(j+1) % n] - S[j]).cross(S[i+1] - S[i]) >= 0)
        break;
 return res.second;
```

PointInsideHull.h

"Point.h", "sideOf.h", "OnSegment.h"

Description: Determine whether a point t lies inside a convex hull (CCW order, with no collinear points). Returns true if point lies within the hull. If strict is true, points on the boundary aren't included.

Time: $\mathcal{O}(\log N)$

```
typedef Point<ll> P:
bool inHull(const vector<P>& 1, P p, bool strict = true) {
  int a = 1, b = sz(1) - 1, r = !strict;
  if (sz(1) < 3) return r && onSegment(1[0], 1.back(), p);</pre>
```

```
if (sideOf(1[0], 1[a], 1[b]) > 0) swap(a, b);
if (sideOf(1[0], 1[a], p) >= r || sideOf(1[0], 1[b], p) <= -r)</pre>
  return false;
while (abs(a - b) > 1) {
  int c = (a + b) / 2;
  (sideOf(1[0], 1[c], p) > 0 ? b : a) = c;
return sgn(l[a].cross(l[b], p)) < r;</pre>
```

LineHullIntersection.h

Description: Line-convex polygon intersection. The polygon must be ccw and have no collinear points. lineHull(line, poly) returns a pair describing the intersection of a line with the polygon: \bullet (-1, -1) if no collision, \bullet (i, -1)if touching the corner i, \bullet (i, i) if along side (i, i + 1), \bullet (i, j) if crossing sides (i, i+1) and (j, j+1). In the last case, if a corner i is crossed, this is treated as happening on side (i, i + 1). The points are returned in the same order as the line hits the polygon. extrVertex returns the point of a hull with the max projection onto a line.

```
Time: \mathcal{O}(\log n)
"Point.h"
```

```
#define cmp(i,j) sgn(dir.perp().cross(poly[(i)%n]-poly[(j)%n]))
              #define extr(i) cmp(i + 1, i) >= 0 && cmp(i, i - 1 + n) < 0
              template <class P> int extrVertex(vector<P>& poly, P dir) {
                int n = sz(poly), lo = 0, hi = n;
                if (extr(0)) return 0;
                while (lo + 1 < hi) {
                  int m = (lo + hi) / 2;
                  if (extr(m)) return m;
                  int 1s = cmp(1o + 1, 1o), ms = cmp(m + 1, m);
                  (ls < ms \mid | (ls == ms \&\& ls == cmp(lo, m)) ? hi : lo) = m;
                return lo;
              #define cmpL(i) sqn(a.cross(poly[i], b))
              template <class P>
              array<int, 2> lineHull(P a, P b, vector<P>& poly) {
                int endA = extrVertex(poly, (a - b).perp());
                int endB = extrVertex(poly, (b - a).perp());
                if (cmpL(endA) < 0 \mid \mid cmpL(endB) > 0)
                  return {-1, -1};
                array<int, 2> res;
                rep(i, 0, 2) {
                  int lo = endB, hi = endA, n = sz(poly);
                  while ((lo + 1) % n != hi) {
                    int m = ((lo + hi + (lo < hi ? 0 : n)) / 2) % n;
                    (cmpL(m) == cmpL(endB) ? lo : hi) = m;
                  res[i] = (lo + !cmpL(hi)) % n;
                  swap (endA, endB);
                if (res[0] == res[1]) return {res[0], -1};
                if (!cmpL(res[0]) && !cmpL(res[1]))
                  switch ((res[0] - res[1] + sz(poly) + 1) % sz(poly)) {
                    case 0: return {res[0], res[0]};
                    case 2: return {res[1], res[1]};
                return res;
71446b, 14 lines
```

minkowski.h

Description: minkowski sum

447935, 44 lines

```
struct pt{
    long long x, y;
    pt operator + (const pt & p) const {
        return pt{x + p.x, y + p.y};
    pt operator - (const pt & p) const {
        return pt{x - p.x, y - p.y};
    long long cross(const pt & p) const {
        return x * p.y - y * p.x;
void reorder_polygon(vector<pt> & P) {
    size t pos = 0;
```

return (ps[i]-ps[j]).x < (ps[j]-ps[i]).y;});

map<int, int> sweep;

```
for(size_t i = 1; i < P.size(); i++){</pre>
       if(P[i].y < P[pos].y || (P[i].y == P[pos].y && P[i].x <</pre>
             P[posl.x))
            pos = i;
    rotate(P.begin(), P.begin() + pos, P.end());
vector<pt> minkowski(vector<pt> P, vector<pt> Q) {
    // the first vertex must be the lowest
    reorder_polygon(P);
    reorder_polygon(Q);
    // we must ensure cyclic indexing
   P.push_back(P[0]);
   P.push_back(P[1]);
   Q.push_back(Q[0]);
   Q.push_back(Q[1]);
    // main part
   vector<pt> result;
   size_t i = 0, j = 0;
   while(i < P.size() - 2 || j < Q.size() - 2) {
       result.push_back(P[i] + Q[j]);
       auto cross = (P[i + 1] - P[i]).cross(O[i + 1] - O[i]);
       if(cross >= 0 && i < P.size() - 2)
       if(cross <= 0 && j < Q.size() - 2)
            ++j;
    return result;
```

8.4 Misc. Point Set Problems

ClosestPair.h

Description: Finds the closest pair of points.

```
Time: O(n \log n)
```

ac41a6, 17 lines

```
typedef Point<ll> P;
pair<P, P> closest(vector<P> v) {
   assert(sz(v) > 1);
   set<P> S;
   sort(all(v), [](P a, P b) { return a.y < b.y; });
   pair<ll, pair<P, P>> ret{LLONG_MAX, {P(), P()}};
   int j = 0;
   for (P p : v) {
      P d{1 + (l1) sqrt(ret.first), 0};
      while (v[j].y <= p.y - d.x) S.erase(v[j++]);
      auto lo = S.lower_bound(p - d), hi = S.upper_bound(p + d);
      for (; lo != hi; ++lo)
            ret = min(ret, {(*lo - p).dist2(), {*lo, p}});
            S.insert(p);
      }
      return ret.second;
}</pre>
```

ManhattanMST.h

Description: Given N points, returns up to 4*N edges, which are guaranteed to contain a minimum spanning tree for the graph with edge weights $\mathbf{w}(\mathbf{p}, \mathbf{q}) = -\mathbf{p}.\mathbf{x} - \mathbf{q}.\mathbf{x} - + -\mathbf{p}.\mathbf{y} - \mathbf{q}.\mathbf{y} -$. Edges are in the form (distance, src, dst). Use a standard MST algorithm on the result to find the final MST. **Time:** $\mathcal{O}(N \log N)$

```
"Point.h" df6f59, 23 lines
```

```
typedef Point<int> P;
vector<array<int, 3>> manhattanMST(vector<P> ps) {
  vi id(sz(ps));
  iota(all(id), 0);
  vector<array<int, 3>> edges;
  rep(k,0,4) {
    sort(all(id), [&](int i, int j) {
```

```
for (int i : id) {
      for (auto it = sweep.lower_bound(-ps[i].y);
                it != sweep.end(); sweep.erase(it++)) {
        int j = it->second;
        P d = ps[i] - ps[j];
        if (d.y > d.x) break;
        edges.push_back(\{d.y + d.x, i, j\});
      sweep[-ps[i].y] = i;
    for (P& p : ps) if (k & 1) p.x = -p.x; else swap(p.x, p.y);
  return edges;
kdTree.h
Description: KD-tree (2d, can be extended to 3d)
                                                     bac5b0, 63 lines
typedef long long T;
typedef Point<T> P;
const T INF = numeric limits<T>::max();
bool on_x(const P& a, const P& b) { return a.x < b.x; }</pre>
bool on_y(const P& a, const P& b) { return a.y < b.y; }</pre>
struct Node {
 P pt; // if this is a leaf, the single point in it
 T x0 = INF, x1 = -INF, y0 = INF, y1 = -INF; // bounds
 Node *first = 0, *second = 0;
 T distance (const P& p) { // min squared distance to a point
    T x = (p.x < x0 ? x0 : p.x > x1 ? x1 : p.x);
    T y = (p.y < y0 ? y0 : p.y > y1 ? y1 : p.y);
    return (P(x,y) - p).dist2();
  Node (vector<P>&& vp) : pt(vp[0]) {
    for (P p : vp) {
      x0 = min(x0, p.x); x1 = max(x1, p.x);
      y0 = min(y0, p.y); y1 = max(y1, p.y);
    if (vp.size() > 1) {
      // split on x if width >= height (not ideal...)
      sort(all(vp), x1 - x0 >= y1 - y0 ? on_x : on_y);
      // divide by taking half the array for each child (not
      // best performance with many duplicates in the middle)
      int half = sz(vp)/2;
      first = new Node({vp.begin(), vp.begin() + half});
      second = new Node({vp.begin() + half, vp.end()});
};
struct KDTree {
  Node* root;
  KDTree(const vector<P>& vp) : root(new Node({all(vp)})) {}
  pair<T, P> search(Node *node, const P& p) {
    if (!node->first) {
      // uncomment if we should not find the point itself:
      // if (p = node \rightarrow pt) return {INF, P()};
      return make_pair((p - node->pt).dist2(), node->pt);
    Node *f = node->first, *s = node->second;
    T bfirst = f->distance(p), bsec = s->distance(p);
    if (bfirst > bsec) swap(bsec, bfirst), swap(f, s);
```

```
// search closest side first, other side if needed
auto best = search(f, p);
if (bsec < best.first)
  best = min(best, search(s, p));
return best;
}

// find nearest point to a point, and its squared distance
// (requires an arbitrary operator< for Point)
pair<T, P> nearest (const P& p) {
  return search(root, p);
};
```

DelaunayTriangulation.h

Description: Computes the Delaunay triangulation of a set of points. Each circumcircle contains none of the input points. If any three points are collinear or any four are on the same circle, behavior is undefined. **Time:** $\mathcal{O}(n^2)$

FastDelaunav.h

Description: Fast Delaunay triangulation. Each circumcircle contains none of the input points. There must be no duplicate points. If all points are on a line, no triangles will be returned. Should work for doubles as well, though there may be precision issues in 'circ'. Returns triangles in order $\{t[0][0], t[0][1], t[0][2], t[1][0], \ldots\}$, all counter-clockwise.

```
Time: \mathcal{O}(n \log n)
```

```
"Point.h"
                                                         eefdf5, 88 lines
typedef Point<ll> P;
typedef struct Quad* Q;
typedef __int128_t lll; // (can be ll if coords are < 2e4)
P arb(LLONG_MAX, LLONG_MAX); // not equal to any other point
struct Quad {
  Q rot, o; P p = arb; bool mark;
  P& F() { return r()->p; }
  Q& r() { return rot->rot; }
  Q prev() { return rot->o->rot; }
  Q next() { return r()->prev(); }
bool circ(P p, P a, P b, P c) { // is p in the circumcircle?
  111 p2 = p.dist2(), A = a.dist2()-p2,
      B = b.dist2()-p2, C = c.dist2()-p2;
  return p.cross(a,b) \starC + p.cross(b,c) \starA + p.cross(c,a) \starB > 0;
Q makeEdge(P orig, P dest) {
  Q r = H ? H : new Quad{new Quad{new Quad{new Quad{0}}}};
  H = r -> 0; r -> r() -> r() = r;
  rep(i,0,4) r = r \rightarrow rot, r \rightarrow p = arb, r \rightarrow o = i \& 1 ? r : r \rightarrow r();
  r->p = orig; r->F() = dest;
  return r;
void splice(Q a, Q b) {
  swap(a->o->rot->o, b->o->rot->o); swap(a->o, b->o);
```

halfPlaneIntersection planar

// Every HP allows the region to the LEFT of its line.

bool out (const P& r) { return pq.cross(r - p) < -eps; }

// 'pq' is the direction vector of the line.

HP(const P& a, const P& b): p(a), pq(b - a) {

// Check if point 'r' is outside this HP.

angle = atan21(pq.y, pq.x);

// Comparator for sorting

P p, pq;

HP() {}

planar.h

in clockwise order.

Time: O(nlogn)

struct Point {

int64_t x, y;

dbl angle;

```
Q connect(Q a, Q b) {
  Q = makeEdge(a->F(), b->p);
  splice(q, a->next());
  splice(q->r(), b);
  return q;
pair<0.0> rec(const vector<P>& s) {
  if (sz(s) \le 3) {
    Q = \text{makeEdge}(s[0], s[1]), b = \text{makeEdge}(s[1], s.back());
    if (sz(s) == 2) return { a, a->r() };
    splice(a->r(), b);
    auto side = s[0].cross(s[1], s[2]);
   0 c = side ? connect(b, a) : 0;
    return {side < 0 ? c->r() : a, side < 0 ? c : b->r() };
#define H(e) e->F(), e->p
#define valid(e) (e->F().cross(H(base)) > 0)
 Q A, B, ra, rb;
  int half = sz(s) / 2;
  tie(ra, A) = rec({all(s) - half});
  tie(B, rb) = rec({sz(s) - half + all(s)});
  while ((B->p.cross(H(A)) < 0 && (A = A->next()))
         (A->p.cross(H(B)) > 0 && (B = B->r()->o));
  Q base = connect(B->r(), A);
  if (A->p == ra->p) ra = base->r();
  if (B->p == rb->p) rb = base;
#define DEL(e, init, dir) Q e = init->dir; if (valid(e)) \
    while (circ(e->dir->F(), H(base), e->F())) { \
     0 t = e->dir; \
     splice(e, e->prev()); \
      splice(e->r(), e->r()->prev()); \
      e->o = H; H = e; e = t; \
  for (;;) {
   DEL(LC, base->r(), o); DEL(RC, base, prev());
    if (!valid(LC) && !valid(RC)) break;
   if (!valid(LC) || (valid(RC) && circ(H(RC), H(LC))))
     base = connect(RC, base->r());
    else
     base = connect(base->r(), LC->r());
  return { ra, rb };
vector<P> triangulate(vector<P> pts) {
  sort(all(pts)); assert(unique(all(pts)) == pts.end());
  if (sz(pts) < 2) return {};
  Q e = rec(pts).first;
  vector<0> q = {e};
  int qi = 0;
  while (e->o->F(), cross(e->F(), e->p) < 0) e = e->o;
#define ADD { Q c = e; do { c->mark = 1; pts.push_back(c->p); \
  q.push_back(c->r()); c = c->next(); } while (c != e); }
  ADD; pts.clear();
  while (qi < sz(q)) if (!(e = q[qi++])->mark) ADD;
  return pts:
```

halfPlaneIntersection.h

Description: Half-plane intersection

"Point.h" 79a570, 63 lines
typedef long double dbl;
typedef Point<dbl> P;
const dbl eps = 1e-9, inf = 1e9;
struct HP {
 // 'p' is a passing point of the line

```
bool operator<(const HP& e) const {return angle<e.angle;}</pre>
    // Intersection point of the lines of two half-planes.
    // It is assumed they're never parallel.
    friend P inter(const HP& s, const HP& t) {
        dbl alpha = (t.p-s.p).cross(t.pq)/s.pq.cross(t.pq);
        return s.p + (s.pq * alpha);
};
vector<P> hp_intersect(vector<HP>& H) {
   P box[4] = { // Bounding box in CCW order
       P(inf, inf), P(-inf, inf), P(-inf, -inf), P(inf, -inf)
   };
    rep(i, 0, 4) {
       HP aux(box[i], box[(i+1) % 4]);
       H.push_back(aux);
    sort(all(H));
    deque<HP> dq;
   int len = 0;
    rep(i, 0, sz(H)) {
        while (len>1 && H[i].out(inter(dq[len-1],dq[len-2]))) {
           dq.pop_back(); --len;
       while (len > 1 && H[i].out(inter(dq[0], dq[1]))) {
            dq.pop_front(); --len;
       if (len>0 && fabsl(H[i].pq.cross(dq[len-1].pq)) < eps) {</pre>
            if (H[i].pq.dot(dq[len-1].pq) < 0.0)
                return vector<P>();
            if (H[i].out(dq[len-1].p)) {
                dg.pop back(); --len;
            } else continue;
        dg.push_back(H[i]); ++len;
    while (len > 2 && dg[0].out(inter(dg[len-1], dg[len-2]))){
        dq.pop_back(); --len;
    while (len > 2 && dq[len-1].out(inter(dq[0], dq[1]))) {
        dq.pop_front(); --len;
    if (len < 3) return vector<P>();
    vector<P> ret(len);
    rep(i, 0, len - 1) ret[i] = inter(dq[i], dq[i+1]);
    ret.back() = inter(dq[len-1], dq[0]);
    return ret:
```

Description: Given a set of points and line segments between these points,

compute the graph composed of the faces of this embedding. This implemen-

tation returns a vector of vertices for each face, outer face goes first. Inner

faces are returned in counter-clockwise orders and the outer face is returned

8cf079, 80 lines

```
Point(int64_t x_, int64_t y_): x(x_), y(y_) \{ \}
    Point operator - (const Point & p) const {
        return Point(x - p.x, y - p.y);
    int64 t cross (const Point & p) const {
        return x * p.y - y * p.x;
    int64_t cross (const Point & p, const Point & q) const {
        return (p - *this).cross(q - *this);
    int half () const {
        return int (y < 0 | | (y == 0 \&\& x < 0));
};
std::vector<std::vector<size_t>> find_faces(std::vector<Point>
     vertices, std::vector<std::vector<size t>> adj) {
    size t n = vertices.size();
    std::vector<std::vector<char>> used(n);
    for (size_t i = 0; i < n; i++) {</pre>
        used[i].resize(adj[i].size());
        used[i].assign(adj[i].size(), 0);
        auto compare = [&](size t l, size t r) {
            Point pl = vertices[1] - vertices[i];
            Point pr = vertices[r] - vertices[i];
            if (pl.half() != pr.half())
                 return pl.half() < pr.half();</pre>
            return pl.cross(pr) > 0;
        };
        std::sort(adj[i].begin(), adj[i].end(), compare);
    std::vector<std::vector<size_t>> faces;
    for (size_t i = 0; i < n; i++) {</pre>
        for (size t edge id = 0; edge id < adj[i].size();</pre>
             edge id++) {
            if (used[i][edge_id]) {
                 continue;
            std::vector<size t> face;
            size t v = i;
            size_t e = edge_id;
            while (!used[v][e]) {
                used[v][e] = true;
                 face.push back(v);
                size t u = adi[v][e];
                size_t e1 = std::lower_bound(adj[u].begin(),
                     adj[u].end(), v, [&](size t l, size t r) {
                     Point pl = vertices[l] - vertices[u];
                     Point pr = vertices[r] - vertices[u];
                    if (pl.half() != pr.half())
                         return pl.half() < pr.half();</pre>
                    return pl.cross(pr) > 0;
                }) - adj[u].begin() + 1;
                if (e1 == adj[u].size()) {
                     e1 = 0;
                v = u;
                e = e1:
            std::reverse(face.begin(), face.end());
            Point p1 = vertices[face[0]];
            _{\rm int128 \ sum = 0;}
            for (int j = 0; j < face.size(); ++j) {</pre>
                Point p2 = vertices[face[j]];
```

```
Point p3 = vertices[face[(j + 1) % face.size()
                ]];
            sum += (p2 - p1).cross(p3 - p2);
        if (sum <= 0) {
            faces.insert(faces.begin(), face);
        } else {
            faces.emplace_back(face);
return faces;
```

3D8.5

PolyhedronVolume.h

Description: Magic formula for the volume of a polyhedron. Faces should point outwards.

```
template<class V, class L>
double signedPolyVolume(const V& p, const L& trilist) {
  double v = 0:
  for (auto i : trilist) v += p[i.a].cross(p[i.b]).dot(p[i.c]);
  return v / 6;
```

Point3D.h

Description: Class to handle points in 3D space. T can be e.g. double or long long.

```
template<class T> struct Point3D {
  typedef Point3D P;
  typedef const P& R;
  T x, v, z;
  explicit Point3D(T x=0, T y=0, T z=0) : x(x), y(y), z(z) {}
  bool operator<(R p) const {</pre>
   return tie(x, y, z) < tie(p.x, p.y, p.z); }
  bool operator==(R p) const {
    return tie(x, y, z) == tie(p.x, p.y, p.z); }
  P operator+(R p) const { return P(x+p.x, y+p.y, z+p.z); }
  P operator-(R p) const { return P(x-p.x, y-p.y, z-p.z); }
  P operator*(T d) const { return P(x*d, y*d, z*d); }
  P operator/(T d) const { return P(x/d, v/d, z/d); }
  T dot(R p) const { return x*p.x + y*p.y + z*p.z; }
  P cross(R p) const {
    return P(y*p.z - z*p.y, z*p.x - x*p.z, x*p.y - y*p.x);
  T dist2() const { return x*x + y*y + z*z; }
  double dist() const { return sqrt((double)dist2()); }
  //Azimuthal angle (longitude) to x-axis in interval [-pi, pi]
  double phi() const { return atan2(v, x); }
  //Zenith angle (latitude) to the z-axis in interval [0, pi]
  double theta() const { return atan2(sgrt(x*x+y*y),z); }
  P unit() const { return *this/(T)dist(); } //makes dist()=1
  //returns unit vector normal to *this and p
  P normal(P p) const { return cross(p).unit(); }
  //returns point rotated 'angle' radians ccw around axis
  P rotate (double angle, P axis) const {
   double s = sin(angle), c = cos(angle); P u = axis.unit();
    return u*dot(u)*(1-c) + (*this)*c - cross(u)*s;
};
```

Description: Computes all faces of the 3-dimension hull of a point set. *No four points must be coplanar*, or else random results will be returned. All faces will point outwards.

```
Time: \mathcal{O}(n^2)
```

"Point3D.h" 5b45fc, 49 lines

```
typedef Point3D<double> P3;
struct PR {
 void ins(int x) { (a == -1 ? a : b) = x; }
 void rem(int x) { (a == x ? a : b) = -1; }
 int cnt() { return (a !=-1) + (b !=-1); }
 int a, b;
struct F { P3 q; int a, b, c; };
vector<F> hull3d(const vector<P3>& A) {
 assert(sz(A) >= 4);
 vector\langle PR \rangle = E(sz(A), vector \langle PR \rangle (sz(A), \{-1, -1\}));
#define E(x,y) E[f.x][f.y]
  vector<F> FS;
 auto mf = [&](int i, int j, int k, int l) {
   P3 q = (A[j] - A[i]).cross((A[k] - A[i]));
    if (q.dot(A[1]) > q.dot(A[i]))
     q = q * -1;
    F f{q, i, j, k};
    E(a,b).ins(k); E(a,c).ins(j); E(b,c).ins(i);
    FS.push_back(f);
  rep(i,0,4) rep(j,i+1,4) rep(k,j+1,4)
   mf(i, j, k, 6 - i - j - k);
  rep(i,4,sz(A)) {
    rep(j,0,sz(FS)) {
     F f = FS[j];
      if(f.q.dot(A[i]) > f.q.dot(A[f.a])) {
       E(a,b).rem(f.c);
       E(a,c).rem(f.b);
       E(b,c).rem(f.a);
        swap(FS[j--], FS.back());
       FS.pop_back();
    int nw = sz(FS);
    rep(j,0,nw) {
     F f = FS[j];
#define C(a, b, c) if (E(a,b).cnt() != 2) mf(f.a, f.b, i, f.c);
     C(a, b, c); C(a, c, b); C(b, c, a);
  for (F& it : FS) if ((A[it.b] - A[it.a]).cross(
   A[it.c] - A[it.a]).dot(it.g) <= 0) swap(it.c, it.b);
  return FS;
```

sphericalDistance.h

Description: Returns the shortest distance on the sphere with radius radius between the points with azimuthal angles (longitude) f1 (ϕ_1) and f2 (ϕ_2) from x axis and zenith angles (latitude) t1 (θ_1) and t2 (θ_2) from z axis (0 = north pole). All angles measured in radians. The algorithm starts by converting the spherical coordinates to cartesian coordinates so if that is what you have you can use only the two last rows. dx*radius is then the difference between the two points in the x direction and d*radius is the total distance between the points. 611f07, 8 lines

```
double sphericalDistance(double f1, double t1,
    double f2, double t2, double radius) {
 double dx = \sin(t2) \cdot \cos(f2) - \sin(t1) \cdot \cos(f1);
 double dy = \sin(t2) * \sin(f2) - \sin(t1) * \sin(f1);
 double dz = cos(t2) - cos(t1);
 double d = sqrt(dx*dx + dy*dy + dz*dz);
 return radius*2*asin(d/2);
```

Strings (9)

KMP.h

Description: pi[x] computes the length of the longest prefix of s that ends at x, other than s[0...x] itself (abacaba -> 0010123). Can be used to find all occurrences of a string. Time: $\mathcal{O}(n)$

```
d4375c, 16 lines
vi pi(const string& s) {
 vi p(sz(s));
 rep(i,1,sz(s)) {
   int g = p[i-1];
    while (q \&\& s[i] != s[q]) q = p[q-1];
    p[i] = g + (s[i] == s[g]);
 return p;
vi match (const string& s, const string& pat) {
 vi p = pi(pat + ' \setminus 0' + s), res;
 rep(i,sz(p)-sz(s),sz(p))
   if (p[i] == sz(pat)) res.push_back(i - 2 * sz(pat));
  return res;
```

Zfunc.h

Description: z[i] computes the length of the longest common prefix of s[i:] and s, except z[0] = 0. (abacaba -> 0010301) Time: $\mathcal{O}(n)$

ee09e2, 12 lines vi Z(const string& S) { vi z(sz(S));int 1 = -1, r = -1; rep(i,1,sz(S)) { z[i] = i >= r ? 0 : min(r - i, z[i - 1]);while (i + z[i] < sz(S) && S[i + z[i]] == S[z[i]])z[i]++; **if** (i + z[i] > r)1 = i, r = i + z[i];return z;

Description: For each position in a string, computes p[0][i] = half length of longest even palindrome around pos i, p[1][i] = longest odd (half rounded down). Time: $\mathcal{O}(N)$

e7ad79, 13 lines array<vi, 2> manacher(const string& s) { int n = sz(s); $arrav < vi, 2 > p = {vi(n+1), vi(n)};$

```
rep(z, 0, 2) for (int i=0, l=0, r=0; i < n; i++) {
  int t = r-i+!z;
  if (i<r) p[z][i] = min(t, p[z][l+t]);</pre>
  int L = i - p[z][i], R = i + p[z][i] - !z;
  while (L>=1 && R+1<n && s[L-1] == s[R+1])
    p[z][i]++, L--, R++;
  if (R>r) l=L, r=R;
return p;
```

MinRotation.h

Description: Finds the lexicographically smallest rotation of a string. Usage: rotate(v.begin(), v.begin()+minRotation(v), v.end()); Time: $\mathcal{O}(N)$ d07a42, 8 lines

```
int minRotation(string s) {
```

SuffixArray SuffixTree Hashing AhoCorasick

```
int a=0, N=sz(s); s += s;
rep(b, 0, N) rep(k, 0, N) {
 if (a+k == b \mid | s[a+k] < s[b+k]) \{b += max(0, k-1); break; \}
 if (s[a+k] > s[b+k]) { a = b; break; }
return a;
```

Suffix Array.h

Description: Builds suffix array for a string. sa[i] is the starting index of the suffix which is i'th in the sorted suffix array. The returned vector is of size n+1, and sa[0] = n. The lcp array contains longest common prefixes for neighbouring strings in the suffix array: lcp[i] = lcp(sa[i], sa[i-1]), lcp[0] = 0. The input string must not contain any nul chars. Time: $\mathcal{O}(n \log n)$

```
635552, 22 lines
struct SuffixArray {
  vi sa, lcp;
  SuffixArray(string s, int lim=256) { // or vector<int>
    s.push_back(0); int n = sz(s), k = 0, a, b;
    vi x(all(s)), y(n), ws(max(n, lim));
    sa = lcp = y, iota(all(sa), 0);
    for (int j = 0, p = 0; p < n; j = max(1, j * 2), lim = p) {
     p = j, iota(all(y), n - j);
      rep(i,0,n) if (sa[i] >= j) y[p++] = sa[i] - j;
      fill(all(ws), 0);
      rep(i, 0, n) ws[x[i]] ++;
      rep(i, 1, lim) ws[i] += ws[i - 1];
      for (int i = n; i--;) sa[--ws[x[y[i]]]] = y[i];
      swap(x, y), p = 1, x[sa[0]] = 0;
     rep(i,1,n) = sa[i-1], b = sa[i], x[b] =
        (y[a] == y[b] \&\& y[a + j] == y[b + j]) ? p - 1 : p++;
    for (int i = 0, j; i < n - 1; lcp[x[i++]] = k)
     for (k \& \& k--, j = sa[x[i] - 1];
          s[i + k] == s[j + k]; k++);
};
```

SuffixTree.h

Description: Ukkonen's algorithm for online suffix tree construction. Each node contains indices [l, r) into the string, and a list of child nodes. Suffixes are given by traversals of this tree, joining [l, r) substrings. The root is 0 (has l = -1, r = 0), non-existent children are -1. To get a complete tree, append a dummy symbol – otherwise it may contain an incomplete path (still useful for substring matching, though).

Time: $\mathcal{O}(26N)$

struct HashInterval {

rep(i, 0, sz(str))

vector<H> ha, pw;

pw[0] = 1;

H h = 0, pw = 1;

rep(i,0,length)

};

```
aae0b8, 50 lines
struct SuffixTree {
  enum { N = 200010, ALPHA = 26 }; // N \sim 2*maxlen+10
 int toi(char c) { return c - 'a'; }
 string a; //v = cur \ node, q = cur \ position
 int t[N][ALPHA],1[N],r[N],p[N],s[N],v=0,q=0,m=2;
  void ukkadd(int i, int c) { suff:
   if (r[v] <=q) {
     if (t[v][c]==-1) { t[v][c]=m; l[m]=i;
       p[m++]=v; v=s[v]; q=r[v]; goto suff; }
     v=t[v][c]; q=l[v];
   if (q==-1 || c==toi(a[q])) q++; else {
     l[m+1]=i; p[m+1]=m; l[m]=l[v]; r[m]=q;
     p[m]=p[v]; t[m][c]=m+1; t[m][toi(a[q])]=v;
     l[v]=q; p[v]=m; t[p[m]][toi(a[l[m]])]=m;
     v=s[p[m]]; q=l[m];
     while (q<r[m]) { v=t[v][toi(a[q])]; q+=r[v]-l[v]; }</pre>
     if (q==r[m]) s[m]=v; else s[m]=m+2;
     q=r[v]-(q-r[m]); m+=2; qoto suff;
```

```
SuffixTree(string a) : a(a) {
    fill(r,r+N,sz(a));
    memset(s, 0, sizeof s);
   memset(t, -1, sizeof t);
    fill(t[1],t[1]+ALPHA,0);
    s[0] = 1; 1[0] = 1[1] = -1; r[0] = r[1] = p[0] = p[1] = 0;
    rep(i,0,sz(a)) ukkadd(i, toi(a[i]));
  // example: find longest common substring (uses ALPHA = 28)
  int lcs(int node, int i1, int i2, int olen) {
    if (1[node] <= i1 && i1 < r[node]) return 1;</pre>
    if (1[node] <= i2 && i2 < r[node]) return 2;</pre>
    int mask = 0, len = node ? olen + (r[node] - 1[node]) : 0;
    rep(c, 0, ALPHA) if (t[node][c] != -1)
     mask |= lcs(t[node][c], i1, i2, len);
    if (mask == 3)
     best = max(best, {len, r[node] - len});
    return mask;
  static pii LCS(string s, string t) {
    SuffixTree st(s + (char) ('z' + 1) + t + (char) ('z' + 2));
    st.lcs(0, sz(s), sz(s) + 1 + sz(t), 0);
    return st.best;
};
Hashing.h
Description: Self-explanatory methods for string hashing.
// Arithmetic mod 2^64-1. 2x slower than mod 2^64 and more
// code, but works on evil test data (e.g. Thue-Morse, where
// ABBA... and BAAB... of length 2^10 hash the same mod 2^64).
// "typedef ull H;" instead if you think test data is random,
// or work mod 10^9+7 if the Birthday paradox is not a problem.
typedef uint64 t ull;
struct H {
  ull x; H(ull x=0) : x(x) \{ \}
 H operator+(H o) { return x + o.x + (x + o.x < x); }
  H operator-(H o) { return *this + ~o.x; }
 H operator*(H o) { auto m = (__uint128_t)x * o.x;
    return H((ull)m) + (ull)(m >> 64); }
  ull get() const { return x + !~x; }
  bool operator==(H o) const { return get() == o.get(); }
 bool operator<(H o) const { return get() < o.get(); }</pre>
static const H C = (11)1e11+3; // (order \sim 3e9; random \ also \ ok)
```

HashInterval(string& str) : ha(sz(str)+1), pw(ha) {

ha[i+1] = ha[i] * C + str[i],

return ha[b] - ha[a] * pw[b - a];

if (sz(str) < length) return {};</pre>

h = h * C + str[i], pw = pw * C;

H hashInterval(int a, int b) { // hash [a, b)

vector<H> getHashes(string& str, int length) {

pw[i+1] = pw[i] * C;

```
vector<H> ret = {h};
  rep(i,length,sz(str)) {
    ret.push back(h = h * C + str[i] - pw * str[i-length]);
  return ret;
H hashString(string& s){H h{}; for(char c:s) h=h*C+c; return h;}
AhoCorasick.h
Description: Aho-Corasick automaton, used for multiple pattern matching.
Initialize with AhoCorasick ac(patterns); the automaton start node will be
at index 0. find(word) returns for each position the index of the longest word
that ends there, or -1 if none. findAll(-, word) finds all words (up to N\sqrt{N}
many if no duplicate patterns) that start at each position (shortest first).
Duplicate patterns are allowed; empty patterns are not. To find the longest
words that start at each position, reverse all input. For large alphabets, split
each symbol into chunks, with sentinel bits for symbol boundaries.
Time: construction takes \mathcal{O}(26N), where N = \text{sum of length of patterns}.
find(x) is \mathcal{O}(N), where N = length of x. findAll is \mathcal{O}(NM).
struct AhoCorasick {
  enum {alpha = 26, first = 'A'}; // change this!
  struct Node {
    // (nmatches is optional)
    int back, next[alpha], start = -1, end = -1, nmatches = 0;
    Node(int v) { memset(next, v, sizeof(next)); }
  vector<Node> N;
  vi backp;
  void insert(string& s, int j) {
    assert(!s.empty());
    int n = 0;
    for (char c : s) {
      int& m = N[n].next[c - first];
      if (m == -1) { n = m = sz(N); N.emplace_back(-1); }
      else n = m;
    if (N[n].end == -1) N[n].start = j;
    backp.push_back(N[n].end);
    N[n].end = j;
    N[n].nmatches++;
  AhoCorasick(vector<string>& pat) : N(1, -1) {
    rep(i,0,sz(pat)) insert(pat[i], i);
    N[0].back = sz(N);
    N.emplace_back(0);
    queue<int> q;
    for (q.push(0); !q.empty(); q.pop()) {
      int n = q.front(), prev = N[n].back;
      rep(i,0,alpha) {
        int &ed = N[n].next[i], y = N[prev].next[i];
        if (ed == -1) ed = y;
        else {
          N[ed].back = y;
           (N[ed].end == -1 ? N[ed].end : backp[N[ed].start])
            = N[y].end;
          N[ed].nmatches += N[v].nmatches;
          q.push(ed);
  vi find(string word) {
```

int n = 0;

vi res; // ll count = 0;

n = N[n].next[c - first];

for (char c : word) {

```
res.push_back(N[n].end);
      // count += N/n]. nmatches:
   return res;
  vector<vi> findAll(vector<string>& pat, string word) {
    vi r = find(word);
    vector<vi> res(sz(word));
    rep(i,0,sz(word)) {
     int ind = r[i];
     while (ind !=-1) {
       res[i - sz(pat[ind]) + 1].push_back(ind);
       ind = backp[ind];
    return res;
};
```

SuffixAutomaton.h

c57d74, 57 lines

```
Description: suffix automaton
struct suffix automaton{
  enum{alpha = 26 , first = 'a'};
  struct node{
   int len, link;
   vi next;
   node(int x , int y , int v) {
     len = x , link = y;
     next = vi(alpha);
     rep(i, 0, alpha) next[i] = v;
  ll substrings = 0; int last = 0;
  vector<node> st:
  suffix_automaton(int v = 0) \{st.push_back(node(0,-1,0));\}
  void extend(char c) {
   c -= first;
   int cur = sz(st) , p,q;
   st.push_back(node(st[last].len + 1,-1,0));
     for (p=last; p!=-1 && !st[p].next[c]; p=st[p].link) st[p
          ].next[c] = cur;
   if(p == -1) st[cur].link = 0 , substrings += st[cur].len;
    else{
     q = st[p].next[c];
     if(st[p].len + 1 == st[q].len){
       st[cur].link = q;
       substrings += st[cur].len - st[q].len;
     else{
       int clone = sz(st);
       st.push_back(node(st[p].len+1,st[q].link,0));
       st.back().next = st[q].next;
              substrings += st[clone].len - st[st[clone].link].
              for (; p!=-1 && st[p].next[c]==q; p=st[p].link)
                  st[p].next[c] = clone;
              substrings -= st[q].len - st[st[q].link].len;
             st[q].link = st[cur].link = clone;
              substrings += st[q].len - st[st[q].link].len + st
                   [cur].len - st[st[cur].link].len;
    last = cur;
  vi terminal(){
   int p = last; vi t;
   while(p >= 0){
```

```
t.push\_back(p), p = st[p].link;
   return t;
 bool find(const string &s) {
   int p = 0;
   rep(j, 0, sz(s)){
     if(!st[p].next[s[j]-first]) return false;
     p = st[p].next[s[j]-first];
   return true;
};
```

Various (10)

10.1 Intervals

IntervalContainer.h

Description: Add and remove intervals from a set of disjoint intervals. Will merge the added interval with any overlapping intervals in the set when adding. Intervals are [inclusive, exclusive).

```
Time: \mathcal{O}(\log N)
set<pii>::iterator addInterval(set<pii>& is, int L, int R) {
  if (L == R) return is.end();
  auto it = is.lower bound({L, R}), before = it;
  while (it != is.end() && it->first <= R) {
   R = max(R, it->second);
   before = it = is.erase(it);
  if (it != is.begin() && (--it)->second >= L) {
   L = min(L, it->first);
   R = max(R, it->second);
    is.erase(it);
 return is.insert(before, {L,R});
void removeInterval(set<pii>& is, int L, int R) {
  if (L == R) return;
  auto it = addInterval(is, L, R);
  auto r2 = it->second;
  if (it->first == L) is.erase(it);
 else (int&)it->second = L;
 if (R != r2) is.emplace(R, r2);
```

IntervalCover.h

Description: Compute indices of smallest set of intervals covering another interval. Intervals should be [inclusive, exclusive). To support [inclusive, inclusive], change (A) to add | | R.empty(). Returns empty set on failure (or if G is empty).

Time: $\mathcal{O}(N \log N)$ 9e9d8d, 19 lines

```
template < class T>
vi cover(pair<T, T> G, vector<pair<T, T>> I) {
 vi S(sz(I)), R;
 iota(all(S), 0);
 sort(all(S), [&](int a, int b) { return I[a] < I[b]; });</pre>
 T cur = G.first;
 int at = 0;
 while (cur < G.second) { // (A)
   pair<T, int> mx = make_pair(cur, -1);
   while (at < sz(I) && I[S[at]].first <= cur) {
     mx = max(mx, make_pair(I[S[at]].second, S[at]));
```

```
if (mx.second == -1) return {};
  cur = mx.first;
  R.push back (mx.second);
return R;
```

ConstantIntervals.h

Description: Split a monotone function on [from, to) into a minimal set of half-open intervals on which it has the same value. Runs a callback g for each such interval.

```
Usage: constantIntervals(0, sz(v), [&](int x){return v[x];},
[\&] (int lo, int hi, T val)\{\ldots\});
Time: \mathcal{O}\left(k\log\frac{n}{k}\right)
```

```
template<class F, class G, class T>
void rec(int from, int to, F& f, G& g, int& i, T& p, T q) {
 if (p == q) return;
 if (from == to) {
    g(i, to, p);
    i = to; p = q;
  } else {
    int mid = (from + to) >> 1;
    rec(from, mid, f, g, i, p, f(mid));
    rec(mid+1, to, f, g, i, p, q);
template<class F, class G>
void constantIntervals(int from, int to, F f, G q) {
 if (to <= from) return;</pre>
 int i = from; auto p = f(i), q = f(to-1);
 rec(from, to-1, f, q, i, p, q);
 g(i, to, q);
```

10.2 Misc. algorithms

TernarySearch.h

Description: Find the smallest i in [a,b] that maximizes f(i), assuming that $f(a) < \ldots < f(i) \ge \cdots \ge f(b)$. To reverse which of the sides allows non-strict inequalities, change the < marked with (A) to <=, and reverse the loop at (B). To minimize f, change it to >, also at (B).

```
Usage: int ind = ternSearch(0, n-1, [&] (int i) {return a[i]; });
Time: \mathcal{O}(\log(b-a))
```

```
template<class F>
int ternSearch(int a, int b, F f) {
 assert(a <= b);
 while (b - a >= 5) {
   int mid = (a + b) / 2;
   if (f(mid) < f(mid+1)) a = mid; // (A)
   else b = mid+1;
 rep(i,a+1,b+1) if (f(a) < f(i)) a = i; // (B)
 return a:
```

LIS.h

Description: Compute indices for the longest increasing subsequence. Time: $\mathcal{O}(N \log N)$ 2932a0, 17 lines

```
template<class I> vi lis(const vector<I>& S) {
 if (S.empty()) return {};
 vi prev(sz(S));
 typedef pair<I, int> p;
 vector res;
 rep(i, 0, sz(S)) {
    // change 0 \Rightarrow i for longest non-decreasing subsequence
    auto it = lower_bound(all(res), p{S[i], 0});
   if (it == res.end()) res.emplace_back(), it = res.end()-1;
```

FastKnapsack Matroid ParallelBinarySearch

```
*it = {S[i], i};
prev[i] = it == res.begin() ? 0 : (it-1)->second;
}
int L = sz(res), cur = res.back().second;
vi ans(L);
while (L--) ans[L] = cur, cur = prev[cur];
return ans;
```

FastKnapsack.h

Description: Given N non-negative integer weights w and a non-negative target t, computes the maximum $S \le t$ such that S is the sum of some subset of the weights.

Time: $\mathcal{O}(N \max(w_i))$ b20ccc, 16 lines

```
int knapsack(vi w, int t) {
   int a = 0, b = 0, x;
   while (b < sz(w) && a + w[b] <= t) a += w[b++];
   if (b == sz(w)) return a;
   int m = *max_element(all(w));
   vi u, v(2*m, -1);
   v[a+m-t] = b;
   rep(i,b,sz(w)) {
      u = v;
      rep(x,0,m) v[x+w[i]] = max(v[x+w[i]], u[x]);
      for (x = 2*m; --x > m;) rep(j, max(0,u[x]), v[x])
       v[x-w[j]] = max(v[x-w[j]], j);
   }
   for (a = t; v[a+m-t] < 0; a--);
   return a;
}</pre>
```

Matroid.h

Description: Given two matroids, finds the largest possible set that is considered independent by both matroids. You can think of matroids as a linear independence in vector spaces.

Time: $\mathcal{O}\left(N^2*R*(C1+C2)\right)$, N = size of ground set,R = rank of intersection, C1 e C2 custos dos oráculos (abaixo C1 == 1 , C2 = $\frac{62}{53647b}$, $\frac{135}{135}$ lines

```
struct Matroid{
  const int n:
  Matroid(int n):n(n){}
  virtual bool oracle(int x) const = 0; // inserir indice X
  virtual bool oracle(int x,int y) const = 0; // (insere,remove
  virtual void insert(int x) = 0;
  virtual void prepare(const vector<bool>&A) = 0;
struct ColorFullMatroid : public Matroid{
  vi cor.cnt:
  ColorFullMatroid(const vi& cores): Matroid(sz(cores)), cor(
       cores), cnt (vi(n,0)) {}
  bool oracle(int x)const override{
    return !cnt[cor[x]];
  bool oracle(int x, int y) const override{
   return !cnt[cor[x]] || cor[x] == cor[y];
  void insert(int x) override{
   cnt[cor[x]]++;
  void prepare(const vector<bool>&A) {
    fill(all(cnt),0);
    rep(i,0,n) if (A[i]) insert(i);
const int MAXL = 62; // se maior usar bitset
struct gaussXOR{
    11 basis[MAXL];
```

```
gaussXOR(){
       rep(i,0,MAXL)basis[i]=0;
   bool can(ll x) const{
       for (int i = MAXL-1; i>=0; i--) {
        x = min(x, x^basis[i]);
       return x==0;
   void insert(ll val){
     for(int i=MAXL-1;i>=0;i--) {
       if(!(val&(1LL<<i)))continue;</pre>
       if(!basis[i]){
            basis[i] = val;
            return;
          val^=basis[i];
};
struct LinearMatroid : public Matroid {
 gaussXOR base,base_sem[MAXL];
 vector<ll> val;
 vi id;
 LinearMatroid(vector<ll>& v):Matroid(sz(v)),val(v),id(vi(n
 bool oracle(int x)const override{
   return !base.can(val[x]);
 bool oracle(int x, int y) const override{
   return !base_sem[id[y]].can(val[x]);
 void insert(int x)override{
   base.insert(val[x]);
 void prepare(const vector<bool>&A) override{
   base = gaussXOR();
    rep(i,0,MAXL)base_sem[i] = gaussXOR();
   fill (all (id), -1);
   int cur=0;
    rep(i,0,n){
     if(A[i]){
       base.insert(val[i]);
       id[i] = cur++;
        rep(j,0,n)if(i!=j and A[j])base_sem[id[i]].insert(val[j
vector<bool> matroidInsersection(Matroid& M1, Matroid& M2) { // 0
 int n = M1.n;
 assert (M1.n == M2.n);
 vector<bool> A(n,0),B(n,0);
 while(1){
   M1.prepare(A);
   M2.prepare(A);
   vi pai(n,0);
   vi S[2];
   rep(i,0,n){
     if(M1.oracle(i) and M2.oracle(i)){
       A[i] = 1;
```

M1.prepare(A);

```
M2.prepare(A);
      S[A[i]].pb(i);
    queue<int> q;
    trav(i,S[0]) if (M1.oracle(i)) {
      pai[i] = -1;
      q.push(i);
    int lst = -1;
    while(!q.empty()){
      int cur = q.front();
      q.pop();
      if (A[cur]) {
        trav(to,S[0])if(!pai[to] and M1.oracle(to,cur)){
          pai[to] = cur;
          q.push(to);
      }else{
        if (M2.oracle(cur)) {
          lst = cur;
          break;
        trav(to, S[1])if(!pai[to] and M2.oracle(cur, to)) {
          pai[to] = cur;
          q.push(to);
    if(lst ==- 1)break;
    for(int v =lst; v!=-1; v=pai[v])A[v] = !A[v];
 return A;
ColorFullMatroid M1(cor);
LinearMatroid M2(val);
auto A = matroidInsersection(M1, M2);
```

ParallelBinarySearch.h

Description: (Meteors) There are N member states and M sectors. Each sector is owned by a member state. There are Q queries, each of which denote the amount of meteor shower in a [L,R] range of sectors on that day. The ith member state wants to collect readq[i] meteors over all its sectors. For every member state, what is the minimum number of days it would have to wait to collect atleast the required amount of meteors.

Time: $\mathcal{O}\left(Q \times log(Q) \times log(M)\right)$ 292238, 51 lines

KnuthDP DivideAndConquerDP FastMod FastInput

```
int md = (bg + nd) >> 1;
  vector<int> cl, cr;
  while(last != md) {
   if(last > md) {
      apply(last, -1); last--;
    } else {
     last++; apply(last, 1);
  for(int x : cands) {
   11 cur = 0;
    for(int y : c[x]) {
     cur += get(y);
     if(cur >= p[x])
       break;
    (cur >= p[x] ? cl : cr).push_back(x);
  solve(cl, bg, md, last); solve(cr, md + 1, nd, last);
// for all logQ steps:
       clear range tree and linked list check
       for all member states i:
           if \ L[i] != R[i]:
               mid = (L[i] + R[i]) / 2
               insert i in check[mid]
       for all queries q:
           apply(q)
          for all member states m in check[q]:
               if m has requirements fulfilled:
                   R/m/=q
               else:
                   L[m] = q + 1
```

10.2.1 Monotonic Nim: Non-decreasing

If n is odd, compute xor of $(a_{2i+1} - a_{2i})$, else prepend 0 to the beginning and repeat.

10.2.2 Warnsdorf's rule

Always move the knight to an adjacent square with minimal degree

10.3 Dynamic programming

KnuthDP.h

Description: When doing DP on intervals: $a[i][j] = \min_{i < k < j} (a[i][k] + a[i][k])$ a[k][j] + f(i,j), where the (minimal) optimal k increases with both i and j, one can solve intervals in increasing order of length, and search k = p[i][j] for a[i][j] only between p[i][j-1] and p[i+1][j]. This is known as Knuth DP. Sufficient criteria for this are if $f(b,c) \leq f(a,d)$ and $f(a,c) + f(b,d) \le f(a,d) + f(b,c)$ for all $a \le b \le c \le d$. Consider also: LineContainer (ch. Data structures), monotone queues, ternary search. Time: $\mathcal{O}\left(N^2\right)$

DivideAndConquerDP.h

Description: Given $a[i] = \min_{lo(i) \leq k < hi(i)} (f(i, k))$ where the (minimal) optimal k increases with i, computes $\bar{a}[i]$ for i = L..R - 1.

Time: $\mathcal{O}\left(\left(N+(hi-lo)\right)\log N\right)$

d38d2b, 18 lines

struct DP { // Modify at will: int lo(int ind) { return 0; } int hi(int ind) { return ind; } 11 f(int ind, int k) { return dp[ind][k]; } void store(int ind, int k, ll v) { res[ind] = pii(k, v); } void rec(int L, int R, int LO, int HI) {

```
if (L >= R) return;
  int mid = (L + R) >> 1;
  pair<11, int> best(LLONG_MAX, LO);
  rep(k, max(LO,lo(mid)), min(HI,hi(mid)))
   best = min(best, make_pair(f(mid, k), k));
  store(mid, best.second, best.first);
  rec(L, mid, LO, best.second+1);
  rec(mid+1, R, best.second, HI);
void solve(int L, int R) { rec(L, R, INT_MIN, INT_MAX); }
```

Debugging tricks 10.4

- signal(SIGSEGV, [](int) { _Exit(0); }); converts segfaults into Wrong Answers. Similarly one can catch SIGABRT (assertion failures) and SIGFPE (zero divisions). _GLIBCXX_DEBUG failures generate SIGABRT (or SIGSEGV on gcc 5.4.0 apparently).
- feenableexcept (29); kills the program on NaNs (1), 0-divs (4), infinities (8) and denormals (16).

Optimization tricks 10.5

__builtin_ia32_ldmxcsr(40896); disables denormals (which make floats 20x slower near their minimum value).

10.5.1 Bit backs

- x & -x is the least bit in x.
- for (int x = m; x;) { --x &= m; ... } loops over all subset masks of m (except m itself).
- c = x&-x, r = x+c; $(((r^x) >> 2)/c) | r$ is the next number after x with the same number of bits set.
- rep(b, 0, K) rep(i, 0, (1 << K)) if $(i \& 1 << b) D[i] += D[i^(1 << b)];$ computes all sums of subsets.

10.5.2 Pragmas

- #pragma GCC optimize ("Ofast") will make GCC auto-vectorize loops and optimizes floating points better.
- #pragma GCC target ("avx2") can double performance of vectorized code, but causes crashes on old machines.
- #pragma GCC optimize ("trapv") kills the program on integer overflows (but is really slow).

FastMod.h

Description: Compute a%b about 5 times faster than usual, where b is constant but not known at compile time. Returns a value congruent to a \pmod{b} in the range [0, 2b). 751a02, 8 lines

```
typedef unsigned long long ull;
struct FastMod {
 ull b, m;
 FastMod(ull b) : b(b), m(-1ULL / b) {}
 ull reduce(ull a) { // a \% b + (0 \text{ or } b)
    return a - (ull) ((__uint128_t(m) * a) >> 64) * b;
```

```
FastInput.h
Description: Read an integer from stdin. Usage requires your program to
pipe in input from file.
Usage: ./a.out < input.txt</pre>
```

};

```
Time: About 5x as fast as cin/scanf.
                                                      7b3c70, 17 lines
inline char gc() { // like getchar()
  static char buf[1 << 16];</pre>
 static size_t bc, be;
 if (bc >= be) {
   buf[0] = 0, bc = 0;
   be = fread(buf, 1, sizeof(buf), stdin);
 return buf[bc++]; // returns 0 on EOF
int readInt() {
 int a, c;
  while ((a = gc()) < 40);
 if (a == '-') return -readInt();
 while ((c = qc()) >= 48) a = a * 10 + c - 480;
 return a - 48;
```