

Peter M. Kruse and Kiran Lakhotia

Multi Objective Algorithms for Automated Generation of Combinatorial Test Cases with the Classification Tree Method

2011-09-08 | PK

Multi Objective Algorithms

- Algorithms in Multi Objective Problems (MOP)
 - · optimize >2 conflicting constraints
 - · do not usually have a single solution
 - · Pareto optimal solutions
- Pareto front and Pareto optimal set

No details needed on day #3 of SSBSE Pareto Opti (P*) يز

· Sul

σινe Genetic Algorithms

- ondominated Sorting Genetic Algorithm
- Strength Pareto Evolutionary Algorithm

Combinatorial Test Cases

Combinatorial Interaction Testing (CIT) is a black box system testing technique that samples inputs, configurations and parameters and combines them in a systematic fashion.

Creating functional tests derived from software's specifications

Thomas J. Ostrand and Marc J. Balcer. The Category-Partition Method for specifying and generating functional tests, 1988

Coverage Criterion: Minimum, Maximum, Pairwise, N-Wise

Pairwise NP Complete

Yu Lei, Kuo-Chung Tai. In-parameter-order: a test generation strategy for pairwise testing, 1998

N-wise NP Complete

Alan W. Williams and Robert L. Probert. A measure for component interaction test coverage, 2001

Constraints

Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Interaction testing of highly-configurable systems in the presence of constraints, 2007

Classification Tree Method

Classification Tree Method

Matthias Grochtmann and Klaus Grimm. Classification trees for partition testing, 1993

Classification Tree Editor

Eckard Lehmann and Joachim Wegener. Test case design by means of the CTE XL, 2000

Prioritized Test Case Generation using CTE

Peter M. Kruse and Magdalena Luniak. Automated test case generation using classification trees, 2010

Proposal

Use of Multi-Objective Algorithms for Automated ...

- · ... Conventional Generation
- ... Prioritized Generation
- ... Test Sequence Generation

5

Conventional Generation

- Old CTE XL 1.x
 - Non-deterministic Approach inspired by AETG
- CTE XL Pro 2.x
 - · Deterministic Approach using BDDs
- Seeding, Constraints, Mixed-Strength, Parameter Hierarchies
- Optimization Target:
 - Constraints
 - Coverage
 - Minimization of test suite size

· Benchmarks / Related work

Yu Lei, Kuo-Chung Tai. In-parameter-order: a test generation strategy for pairwise testing, 1998

Jazek Czerwonka. Pairwise testing in real world, practical extensions to test case generators, 2006

James D. McCaffrey. Generation of pairwise test sets using a simulated bee colony algorithm, 2009

Conventional Generation

- Old CTE XL 1.x
 - Non-deterministic Approach inspired by AETG
- CTE XL Pro 2.x
 - · Deterministic Approach using BDDs
- Seeding, Constraints, Mixed-Strength, Parameter Hierarchies
- · Optimization Target:
 - Constraints
 - Coverage
 - · Minimization of test suite size

· Benchmarks / Related work

Test	AETG	IPO	TConfig	CTS	Jenny	DDA	AllPairs	PICT	ACTS	FoCuS
Space	[10]	[28]	[30]	[17]	[18]	[7]	[1]	[9]	[25]	
3^{4}	9	9	9	9	11	?	9	9	12	10
3^{13}	15	17	15	15	18	18	17	18	21	20
$4^{15}3^{17}2^{29}$	41	34	40	39	38	35	34	37	33	37
$4^{1}3^{39}2^{35}$	28	26	30	29	28	27	26	27	28	30
2^{100}	10	15	14	10	16	15	14	15	16	15
10^{20}	180	212	231	210	193	201	197	210	215	259

Table 3: Comparing CTD results with known CTD algorithms on standard test spaces

Conventional Generation

- Old CTE XL 1.x
 - · Non-deterministic Approach inspired by AETG
- CTE XL Pro 2.x
 - Deterministic Approach using BDDs
- Seeding, Constraints, Mixed-Strength, Parameter Hierarchies
- Optimization Target:
 - Constraints
 - Coverage
 - · Minimization of test suite size

Benchmarks / Related work

Yu Lei, Kuo-Chung Tai. In-parameter-order: a test generation strategy for pairwise testing, 1998
Jazek Czerwonka. Pairwise testing in real world, practical extensions to test case generators, 200
James D. McCaffrey. Generation of pairwise test sets using a simulated bee colony algorithm, 20
Brady J. Garvin, Myra B. Cohen, and Matthew B. Dwyer. An improved meta-heuristic search for constrained interaction testing. SSBSE, 2009

TABLE 23. Benchmark examples

Name	Model	Constraints
SPIN-S	$2^{13}4^{5}$	213
SPIN-V	$2^{42}3^24^{11}$	$2^{47}3^2$
GCC	$2^{189}3^{10}$	$2^{37}3^3$
Apache	$2^{158}3^84^45^16^1\\$	$2^3 3^1 4^2 5^1$
Bugzilla	$2^{49}3^14^2$	2431
1	$2^{86} 3^3 4^1 5^5 6^2$	$2^{20}3^34^1$
2	$2^{86} 3^3 4^3 5^1 6^1$	$2^{19}3^3$
3	$2^{27}4^2$	2^93^1
4	$2^{51}3^{4}4^{2}5^{1}$	$2^{15}3^2$
5	$2^{155}3^{7}4^{3}5^{5}6^{4}$	$2^{32}3^{6}4^{1}$
6	$2^{73}4^36^1$	$2^{26}3^4$
7	$2^{29}3^1$	$2^{13}3^2$
8	$2^{109}3^24^25^36^3$	$2^{32}3^44^1$
9	$2^{57}3^14^15^16^1\\$	$2^{30}3^{7}$
10	$2^{130}3^{6}4^{5}5^{2}6^{4}$	$2^{40}3^{7}$
11	$2^{84}3^{4}4^{2}5^{2}6^{4} \\$	$2^{28}3^4$
12	$2^{136}3^44^35^16^3\\$	$2^{23}3^4$
13	$2^{124}3^44^15^26^2$	$2^{22}3^4$
14	$2^{81}3^{5}4^{3}6^{3} \\$	$2^{13}3^{2}$
15	$2^{50}3^{4}4^{1}5^{2}6^{1}$	$2^{20}3^2$
16	$2^{81}3^34^26^1$	$2^{30}3^4$
17	$2^{128}3^34^25^16^3\\$	$2^{25}3^4$
18	$2^{127}3^24^45^66^2$	$2^{23}3^{4}4^{1}$
19	$2^{172}3^{9}4^{9}5^{3}6^{4}$	$2^{38}3^5$
20	$2^{138}3^44^55^46^7$	$2^{42}3^{6}$
21	$2^{76}3^34^25^16^3\\$	$2^{40}3^{6}$
22	$2^{72}3^44^16^2$	$2^{20}3^2$
23	2253161	21332
24	$2^{110}3^25^36^4$	$2^{25}3^4$
25	$2^{118}3^{6}4^{2}5^{2}6^{6}$	$2^{23}3^34^1$
26	$2^{87}3^14^35^4$	$2^{28}3^4$
27	$2^{55}3^24^25^16^2$	$2^{17}3^3$
28	$2^{167}3^{16}4^25^36^6$	$2^{31}3^{6}$
29	$2^{134}3^{7}5^{3}$	$2^{19}3^3$
30	$2^{73}3^34^3$	$2^{31}3^4$

Prioritized Generation

- Old CTE XL 1.x
 - Not Available
- CTE XL Pro 2.x
 - Deterministic Approach, Greedy Algorithm
- · Prioritization vs. Weight
- Constraints
- **Optimization Target:**
 - Constraints
 - Coverage
 - Prioritization of test suite (by importance of test cases)
 - Minimization of test suite size

Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. Test case prioritization: A family of empirical studies, 2002

Renée C. Bryce and Charles J. Colbourn: Prioritized interaction testing for pair-wise coverage with seeding and constraints, 2006

Table 10 Sizes of biased covering arrays with different weight distributions						
Weighting	Equal	$\frac{1}{v_{\text{max}}}^2$	50 Split	Random		
3 ⁴	9	13	9	13		
10^{20}	206	314	225	223		
3 ¹⁰⁰	32	38	31	32		
$10^{1}9^{1}8^{1}7^{1}6^{1}5^{1}4^{1}3^{1}2^{1}$	94	125	98	101		
$8^27^26^22^4$	70	98	77	81		
$15^{1}10^{5}5^{1}4$	175	238	185	188		
350250	28	35	28	28		

Test Sequence Generation

- Old CTE XL 1.x
 - Not Available
- CTE XL Pro 2.x
 - Internal Prototype Implementation

Dynamic Constraints

- Constraints
- Coverage
- Minimization of test suite size

· Benchmarks / Related work

Hasan Ural. Formal methods for test sequence generation, 1992

D. Richard Kuhn, Raghu N. Kacker, and Yu Lei. Practical combinatorial testing. Technical report, 2010

Jungsup Oh, Mark Harman, Shin Yoo. Transition Coverage Testing for Simulink/Stateflow Models Using Messy Genetic Algorithms, GECCO 2011

Lefticaru et al., Windisch/Lindlar, Zhan and Clark, ...

Test Sequence Generation

- Old CTE XL 1.x
 - Not Available
- CTE XL Pro 2.x
 - · Internal Prototype Implementation
- · Constraints
 - · Dynamic Constraints
- · Optimization Target:
 - Constraints
 - Coverage
 - · Minimization of test suite size

• Benchmarks / Related work

Hasan Ural. Formal methods for test sequence genera D. Richard Kuhn, Raghu N. Kacker, and Yu Lei. Practi Jungsup Oh, Mark Harman, Shin Yoo. Transition Cove Algorithms, GECCO 2011

Lefticaru et al., Windisch/Lindlar, Zhan and Clark, ...

Hierarchical Concurrent Chinese Postman Problem, anyone?

etic

Summery

We plan to use Multi-Objective Algorithms for Automated ...

- · ... Conventional Generation
- ... Prioritized Generation
- ... Test Sequence Generation
- Stay tuned for benchmark results ...