

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C12N 15/12, 15/63, C12P 21/00 C07K 13/00

A1

(11) International Publication Number:

WO 92/19734

(43) International Publication Date:

12 November 1992 (12.11.92)

(21) International Application Number:

PCT/US92/03651

(22) International Filing Date:

1 May 1992 (01.05.92)

(30) Priority data:

695,189 791,923 3 May 1991 (03.05.91) US 14 November 1991 (14.11.91) US

(71) Applicants: YALE UNIVERSITY [US/US]; 216 Prospect Street, New Haven, CT 06511 (US). INDIANA UNI-VERSITY FOUNDATION [US/US]; Showalter House, P.O. Box 500, Bloomington, IN 47402 (US).

(72) Inventors: ARTAVANIS-TSAKONAS, Spyridon; 192 Ridgewood Avenue, Hamden, CT 06517 (US). MUSKA-VITCH, Marc, Alan, Telander; 1308 Elliston Drive, Bloomington, IN 47401 (US). FEHON, Richard, Grant; REBAY, Ilaria; BLAUMUELLER, Christine, Marie; Dept. of Biology-KBT, Yale University, 219 Prospect Street, New Haven, CT 06511 (US). SHEPARD, Scott, Brockewell; 50, Cutler Lane, Chestnut Hill, MA 02167 (US). (74) Agent: MISROCK, S., Leslie; Pennie & Edmonds, 1155 Avenue of the Americas, New York, NY 10036 (US).

(81) Designated States: AT (European patent), AU, BE (European patent), BR, CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FI, FR (European patent), GB (European patent), IT (European patent), JP, KR, LU (European patent), MC (European patent), NL (European patent), NO, SE (European patent).

Published

With international search report.

(54) Title: BINDING DOMAINS IN NOTCH AND DELTA PROTEINS

(57) Abstract

The present invention relates to nucleotide sequences of the human Notch and Delta genes, and amino acid sequences of their encoded proteins, as well as fragments thereof containing an antigenic determinant or which are functionally active. The invention is also directed to fragments (termed herein "adhesive fragments"), and the sequences thereof, of the proteins ("toporythmic proteins") encoded by toporythmic genes which mediate homotypic or heterotypic binding to toporythmic proteins. Toporythmic genes, as used herein, refers to the genes Notch, Delta and Serrate, as well as other members of the Delta/Serrate family which may be identified, e.g., by the methods described herein. Antibodies to human Notch and to adhesive fragments are additionally provided.

site at the 5' end, and proceeding in the 5' to 3' direction. Figure 21B: The DNA sequence (SEQ ID NO:21) of a portion of the human Notch insert is shown, starting near the 3' end, and proceeding in the 3' to 5' direction. The sequences shown are tentative, subject to confirmation by determination of overlapping sequences.

Figure 22. Nucleotide Sequences of Human Notch Contained in Plasmid cDNA Clone hN5k. The DNA sequence (SEQ ID NO:22) of a portion of 10 the human Notch insert is shown, starting at the EcoRI site at the 5' end, and proceeding in the 5' to 3' direction. Figure 22B: The DNA sequence (SEQ ID NO:23) of a portion of the human Notch insert is 15 shown, starting near the 3' end, and proceeding in the 3' to 5' direction. Figure 22C: The DNA sequence (SEQ ID NO:24) of a portion of the human Notch insert is shown, starting 3' of the sequence shown in Figure 22A, and proceeding in the 5' to 3' direction. 20 22D: The DNA sequence (SEQ ID NO:25) of a portion of the human Notch insert is shown, starting 5' of the sequence shown in Figure 22B, and proceeding in the 3' to 5' direction. The sequences shown are tentative, subject to confirmation by determination of 25 overlapping sequences.

Figure 23. DNA (SEQ ID NO:31) and Amino Acid (SEQ ID NO:34) Sequences of Human Notch Contained in Plasmid cDNA Clone hN3k.

Figure 24. DNA (SEQ ID NO:33) and Amino

30 Acid (SEQ ID NO:34) Sequences of Human Notch Contained in Plasmid cDNA Clone hN5k.

Figure 25. Comparison of hN5k With Other Notch Homologs. Figure 25A. Schematic representation of <u>Drosophila</u> Notch. Indicated are the signal

35 sequence (signal), the 36 EGF-like repeats, the three

Notch/lin-12 repeats, the transmembrane domain (TM), the six CDC10 repeats, the OPA repeat, and the PEST (proline, glutamic acid, serine, threonine)-rich region. Figure 25B. Alignment of the deduced amino 5 acid sequence of hN5k with sequences of other Notch homologs. Amino acids are numbered on the left side. The cdc10 and PEST-rich regions are both boxed, and individual cdc10 repeats are marked. Amino acids which are identical in three or more sequences are 10 highlighted. The primers used to clone hN5k are indicated below the sequences from which they were designed. The nuclear localization sequence (NLS), casein kinase II (CKII), and cdc2 kinase (cdc2) sites of the putative CcN motif of the vertebrate Notch 15 homologs are boxed. The possible bipartite nuclear targeting sequence (BNTS) and proximal phosphorylation sites of <u>Drosophila</u> Notch are also boxed.

5. DETAILED DESCRIPTION OF THE INVENTION

sequences of the human Notch and Delta genes, and amino acid sequences of their encoded proteins. The invention further relates to fragments (termed herein "adhesive fragments") of the proteins encoded by toporythmic genes which mediate homotypic or heterotypic binding to toporythmic proteins or adhesive fragments thereof. Toporythmic genes, as used herein, shall mean the genes Notch, Delta, and Serrate, as well as other members of the Delta/Serrate family which may be identified, e.g. by the methods described in Section 5.3, infra.

The nucleic acid and amino acid sequences and antibodies thereto of the invention can be used for the detection and quantitation of mRNA for human Notch and Delta and adhesive molecules, to study

15

20

expression thereof, to produce human Notch and Delta and adhesive sequences, in the study and manipulation of differentiation processes.

For clarity of disclosure, and not by way of limitation, the detailed description of the invention will be divided into the following sub-sections:

- (i) Identification of and the sequences of toporythmic protein domains that mediate binding to toporythmic protein domains;
- (ii) The cloning and sequencing of human Notch and Delta;
- (iii) Identification of additional members
 of the <u>Delta/Serrate</u> family;
- (iv) The expression of toporythmic genes;
 - (v) Identification and purification of the expressed gene product; and
- (vi) Generation of antibodies to toporythmic proteins and adhesive sequences thereof.
- 5.1. IDENTIFICATION OF AND THE SEQUENCES OF TOPORYTHMIC PROTEIN DOMAINS THAT MEDIATE BINDING TO TOPORYTHMIC PROTEIN DOMAINS

25 The invention provides for toporythmic protein fragments, and analogs or derivatives thereof, which mediate homotypic or heterotypic binding (and thus are termed herein "adhesive"), and nucleic acid sequences relating to the foregoing.

In a specific embodiment, the adhesive

fragment of Notch is that comprising the portion of
Notch most homologous to ELR 11 and 12, i.e., amino
acid numbers 447 through 527 (SEQ ID NO:1) of the

Drosophila Notch sequence (see Figure 8). In another
specific embodiment, the adhesive fragment of Delta
mediating homotypic binding is that comprising the

Thr Gln Gln V 930		Gln Asn Leu 935	Gln Met Gln 940	Gln Gln Asn	Leu
Gln Pro Ala A 945	Asn Ile Gln (950	Gln Gln Gln	Ser Leu Gln 955	Pro Pro Pro	Pro 960
Pro Pro Gln P	Pro His Leu (965	Gly Val Ser	Ser Ala Ala 970	Ser Gly His 975	Leu
Gly Arg Ser P	Phe Leu Ser (980	Gly Glu Pro 985	Ser Gln Ala	Asp Val Gln 990	Pro
Leu Gly Pro S 995	Ser Ser Leu l	Ala Val His 1000	Thr Ile Leu	Pro Gln Glu 1005	Ser
Pro Ala Leu P 1010		Leu Pro Ser 1015	Ser Leu Val 1020		Thr
Ala Ala Gln P 1025	he Leu Thr I 1030	Pro Pro Ser	Gln His Ser 1035		Pro 1040
Val Asp Asn T	Chr Pro Ser F 1045	lis Gln Leu	Gln Val Pro 1050	Val Pro Val 1055	
Val Met Ile A	arg Ser Ser A 1060	Asp Pro Ser 1065		Ser Ile Leu 1070	Ile
Glu Ala Pro A 1075	sp Ser Trp				
(2) INFORMATI	ON FOR SEQ 1	D NO:33:			
(A)	ENCE CHARACT	8 base pair	s		
(C)	TYPE: nucle STRANDEDNES TOPOLOGY: u	S: double			
(ii) MOLE	CULE TYPE: c	DNA			
(ix) FEAT	URE:		-		
(A)	NAME/KEY: 0 LOCATION: 2				
(xi) SEQU	ENCE DESCRIF	TION: SEQ I	D NO:33:		
G GAG GTG GAT Glu Val Asp 1			C CGT GGC CC 1 Arg Gly Pro 10		s
ACC CCA TTG A'Thr Pro Leu Mo					
GAT GAA GAT GAA GAA GAA GAA GAA GAA GAA					
TTG GTC TAC Co Leu Val Tyr G: 50					
GAG ATG GCC C Glu Met Ala Le 65	eu His Leu A				

AAG CGT CTC CTG GAT GCA GGT GCA GAT GCC AAT GCC CAG GAC AAC ATG Lys Arg Leu Leu Asp Ala Gly Ala Asp Ala Asn Ala Gln Asp Asn Met

80)				85	i				90)				95	
GGC Gly	CGC Arg	TGT Cyt	CCA Pro	CTC Lev 100	His	GCT Ala	GCA Ala	GTC Val	GCA Ala 105	Ala	GAT Asp	GCC Ala	CAA Gln	GG1 Gly 110	GTC Val	334
TTC Phe	CAG Gln	ATI	CTG Leu 115	Ile	CGC Arg	AAC Asn	CGA Arg	GTA Val 120	. Thr	GAT Asp	CTA Leu	GAT Asp	GCC Ala 125	Arg	ATG Met	382
AAT Asn	GAT	GGI Gly 130	Thr	ACA Thr	CCC Pro	CTG Leu	ATC Ile 135	Leu	GCT Ala	GCC Ala	CGC Arg	CTG Leu 140	Ala	GTG Val	GAG Glu	430
GGA Gly	ATG Met 145	Val	GCA Ala	GAA Glu	CTG Leu	ATC Ile 150	AAC Asn	TGC	CAA Gln	GCG Ala	GAT Asp 155	Val	AAT Asn	GCA Ala	GTG Val	478
GAT Asp 160	GAC Asp	CAT His	GGA Gly	AAA Lys	TCT Ser 165	GCT Ala	CTT Leu	CAC His	TGG Trp	GCA Ala 170	Ala	GCT Ala	GTC Val	AAT Asn	AAT Asn 175	526
GTG Val	GAG Glu	GCA Ala	ACT Thr	CTT Leu 180	TTG Leu	TTG Leu	TTG Leu	AAA Lys	AAT Asn 185	GGG Gly	GCC Ala	AAC Asn	CGA Arg	GAC Asp 190	ATG Met	574
CAG Gln	GAC Asp	AAC Asn	AAG Lys 195	GAA Glu	GAG Glu	ACA Thr	CCT Pro	CTG Leu 200	TTT Phe	CTT Leu	GCT Ala	GCC Ala	CGG Arg 205	GAG Glu	GCG	622
AGC Ser	TAT Tyr	GAA Glu 210	GCA Ala	GCC Ala	AAG Lys	ATC Ile	CTG Leu 215	TTA Leu	GAC Asp	CAT His	TTT Phe	GCC Ala 220	AAT Asn	CGA Arg	GAC Asp	670
ATC Ile	ACA Thr 225	GAC Asp	CAT His	ATG Met	GAT Asp	CGT Arg 230	CTT Leu	CCC Pro	CGG Arg	GAT Asp	GTG Val 235	GCT Ala	CGG Arg	GAT Asp	CGC Arg	718
ATG Met 240	CAC His	CAT His	GAC Asp	ATT Ile	GTG Val 245	CGC Arg	CTT Leu	CTG Leu	GAT Asp	GAA Glu 250	TAC Tyr	AAT Asn	GTG Val	ACC Thr	CCA Pro 255	766
			GGC Gly													814
			AGA Arg 275			_	_	_	_			_			_	862
AAG Lys	TCT Ser	AGA Arg 290	CGG Arg	CCC Pro	AGT Ser	Ala	AAG Lys 295	AGT Ser	ACC Thr	ATG Met	CCT Pro	ACT Thr 300	AGC Ser	CTC Leu	CCT Pro	910
AAC Asn					Ala					Gly						958
TCT Ser 320									Glu							1006
CCT Pro			Ser										Asp			1054
TCC Ser							Pro					Ala				1102

CC1 Pro	ATG Met	Leu 370	Ala	ACT Thr	GCC Ala	GCC Ala	CCT Pro 375	Pro	GCC Ala	CCA Pro	GTC Val	CAT His 380	Ala	CAG Glr	CAT His	1150
		Ser					His					Leu			GGG Gly	1198
	Ser	-				Ser					Leu				CAC His 415	1246
					Ser										CAT	1294
				Pro										Asn	GAG Glu	1342
			Asn			TTT Phe									GGC Gly	1390
						CCC Pro 470										1438
						CCC Pro										1486
					_	GCC Ala	_									1534
						GTT Val										1582
						TTG Leu										1630
						CAG Gln 550										1678
						GTG Val										1726
						AAT Asn										1774
						CAT His										1822
						TCA Ser										1870
						ACC Thr 630										. 1918
						TCT Ser										1966

645 650 655 640 TAT GCG TGAGAGAGTC CACCTCCAGT GTAGAGACAT AACTGACTTT TGTAAATGCT 2022 Tyr Ala GCTGAGGAAC AAATGAAGGT CATCCGGGAG AGAAATGAAG AAATCTCTGG AGCCAGCTTC 2082 TAGAGGTAGG AAAGAGAAGA TGTTCTTATT CAGATAATGC AAGAGAAGCA ATTCGTCAGT 2142 2202 TTCACTGGGT ATCTGCAAGG CTTATTGATT ATTCTAATCT AATAAGACAA GTTTGTGGAA 2262 ATGCARGATG AATACAAGCC TTGGGTCCAT GTTTACTCTC TTCTATTTGG AGAATAAGAT GGATGCTTAT TGAAGCCCAG ACATTCTTGC AGCTTGGACT GCATTTTAAG CCCTGCAGGC 2322 TTCTGCCATA TCCATGAGAA GATTCTACAC TAGCGTCCTG TTGGGAATTA TGCCCTGGAA 2382 TTCTGCCTGA ATTGACCTAC GCATCTCCTC CTCCTTGGAC ATTCTTTTGT CTTCATTTGG 2442 TGCTTTTGGT TTTGCACCTC TCCGTGATTG TAGCCCTACC AGCATGTTAT AGGGCAAGAC 2502 CTTTGTGCTT TTGATCATTC TGGCCCATGA AAGCAACTTT GGTCTCCTTT CCCCTCCTGT 2562 CTTCCCGGTA TCCCTTGGAG TCTCACAAGG TTTACTTTGG TATGGTTCTC AGCACAAACC 2622 TTTCAAGTAT GTTGTTTCTT TGGAAAATGG ACATACTGTA TTGTGTTCTC CTGCATATAT 2682 CATTCCTGGA GAGAGAGGG GAGAAGAATA CTTTTCTTCA ACAAATTTTG GGGGCAGGAG 2742 ATCCCTTCAA GAGGCTGCAC CTTAATTTTT CTTGTCTGTG TGCAGGTCTT CATATAAACT 2802 TTACCAGGAA GAAGGGTGTG AGTTTGTTGT TTTTCTGTGT ATGGGCCTGG TCAGTGTAAA 2862 2922 GTTTTATCCT TGATAGTCTA GTTACTATGA CCCTCCCCAC TTTTTTAAAA CCAGAAAAAG GTTTGGAATG TTGGAATGAC CAAGAGACAA GTTAACTCGT GCAAGAGCCA GTTACCCACC 2982 CACAGGTCCC CCTACTTCCT GCCAAGCATT CCATTGACTG CCTGTATGGA ACACATTTGT 3042 CCCAGATCTG AGCATTCTAG GCCTGTTTCA CTCACTCACC CAGCATATGA AACTAGTCTT 3102 AACTGTTGAG CCTTTCCTTT CATATCCACA GAAGACACTG TCTCAAATGT TGTACCCTTG 3162 CCATTTAGGA CTGAACTTTC CTTAGCCCAA GGGACCCAGT GACAGTTGTC TTCCGTTTGT 3222 CAGATGATCA GTCTCTACTG ATTATCTTGC TGCTTAAAGG CCTGCTCACC AATCTTTCTT 3282 TCACACCGTG TGGTCCGTGT TACTGGTATA CCCAGTATGT TCTCACTGAA GACATGGACT 3342 TTATATGTTC AAGTGCAGGA ATTGGAAAGT TGGACTTGTT TTCTATGATC CAAAACAGCC 3402 CTATAGAAG GTTGGAAAAG GAGGAACTAT ATAGCAGCCT TTGCTATTTT CTGCTACCAT 3462 TTCTTTTCCT CTGAAGCGGC CATGACATTC CCTTTGGCAA CTAACGTAGA AACTCAACAG 3522 AACATTTTCC TTTCCTAGAG TCACCTTTTA GATGATAATG GACAACTATA GACTTGCTCA 3582 TTGTTCAGAC TGATTGCCCC TCACCTGAAT CCACTCTCTG TATTCATGCT CTTGGCAATT 3642 TCTTTGACTT TCTTTTAAGG GCAGAAGCAT TTTAGTTAAT TGTAGATAAA GAATAGTTTT 3702 CTTCCTCTTC TCCTTGGGCC AGTTAATAAT TGGTCCATGG CTACACTGCA ACTTCCGTCC 3762 AGTGCTGTGA TGCCCATGAC ACCTGCAAAA TAAGTTCTGC CTGGGCATTT TGTAGATATT · 3822 AACAGGTGAA TTCCCGACTC TTTTGGTTTG AATGACAGTT CTCATTCCTT CTATGGCTGC 3882 AAGTATGCAT CAGTGCTTCC CACTTACCTG ATTTGTCTGT CGGTGGCCCC ATATGGAAAC 3942

CCTGCGTGTC	TGTTGGCATA	ATAGTTTACA	AATGGTTTTT	TCAGTCCTAT	CCAAATTTAT	4002
TGAACCAACA	AAAATAATTA	CTTCTGCCCT	GAGATAAGCA	GATTAAGTTT	GTTCATTCTC	4062
TGCTTTATTC	TCTCCATGTG	GCAACATTCT	GTCAGCCTCT	TTCATAGTGT	GCAAACATTT	4122
TATCATTCTA	AATGGTGACT	CTCTGCCCTT	GGACCCATTT	ATTATTCACA	GATGGGGAGA	4182
ACCTATCTGC	ATGGACCCTC	ACCATCCTCT	GTGCAGCACA	CACAGTGCAG	GGAGCCAGTG	4242
GCGATGGCGA	TGACTTTCTT	CCCCTG				4268

(2) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 657 amino acids

 - (B) TYPE: amino acid
 (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: protein

	(:	xi)	SEQUI	ENCE	DES	CRIP'	rion:	: SE	Q ID	NO:	34:				
Glu 1	Val	Asp	Val	Leu 5	Asp	Val	Asn	Val	Arg 10	Gly	Pro	Asp	Gly	Cys 15	Thr
Pro	Leu	Met	Leu 20	Ala	Ser	Leu	Arg	Gly 25	Gly	Ser	Ser	Asp	Leu 30	Ser	Asp
Glu	Asp	Glu 35	Asp	Ala	Glu	Asp	Ser 40	Ser	Ala	Asn	Ile	Ile 45	Thr	Asp	Leu
Val	Tyr 50	Gln	Gly	Ala	Ser	Leu 55	Gln	Ala	Gln	Thr	Asp 60	Arg	Thr	Gly	Glu
Met 65	Ala	Leu	His	Leu	Ala 70	Ala	Arg	Tyr	Ser	Arg 75	Ala	Asp	Ala	Ala	Lys 80
Arg	Leu	Leu	Asp	Ala 85	Gly	Ala	Asp	Ala	Asn 90	Ala	Gln	Asp	Asn	Met 95	Gly
Arg	Сув	Pro	Leu 100	His	Ala	Ala	Val	Ala 105	Ala	yab	Ala	Gln	Gly 110	Val	Phe
Gln	Ile	Leu 115	Ile	Arg	Asn	Arg	Val 120	Thr	Asp	Leu	Asp	Ala 125	Arg	Met	Asn
Asp	Gly 130	Thr	Thr	Pro	Leu	Ile 135	Leu	Ala	Ala	Arg	Leu 140	Ala	Val	Glu	Gly
Met 145	Val	Ala	Glu	Leu	Ile 150	Asn	Cys	Gln	Ala	Asp 155	Val	Asn	Ala	Val	Asp 160
Asp	His	Gly	Lys	Ser 165	Ala	Leu	His	Trp	Ala 170	Ala	Ala	Val	Asn	Asn 175	Val
Glu	Ala	Thr	Leu 180	Leu	Leu	Leu	Lys	Asn 185	Gly	Ala	Asn	Arg	Asp 190	Met	Gln
Asp	Asn	Lys 195	Glu	Glu	Thr	Pro	Leu 200	Phe	Leu	Ala	Ala	Arg 205	Glu	Gly	Ser
Tyr	Glu 210	Ala	Ala	Lys	Ile	Leu 215	Leu	Asp	His	Phe	Ala 220	Asn	Arg	Asp	Ile
Thr 225	Asp	His	Met	Asp	Arg 230	Leu	Pro	Arg	yab	Val 235	Ala	Arg	Asp	Arg	Met 240
His	His	Asp	Ile	Val	Arg	Leu	Leu	Asp	Glu	Tyr	Asn	Val	Thr	Pro	Ser

- 150 -

					24	5				25	50				25	5
Pı	:0 P:	ro	Gly	Th: 26		l Le	u Th	r Se	r Al 26		u Se	er Pr	o Va	1 I1 27		s Gly
Pr	0 A		Arg 275		r Ph	e Le	u Se	r Le 28		s Hi	s Th	r Pr	o Me 28	_	y Ly	s Lys
Se		g 2	Arg	Pro	o Se	r Al	a Ly 29		r Th	r Me	t Pr	o Th 30		r Le	u Pr	o Asn
Le 30		la 1	Lys	Glu	ı Ala	a Ly:		p Al	a Ly	s Gl	y Se 31		g Ar	g Ly:	s Ly	s Ser 320
Le	u Se	er (3lu	Lys	32!		n Le	u Se:	r Gl	u Se 33		r Va	l Th	r Le	33!	r Pro
Va	l As	p s	Ser	Leu 340		ı Sei	r Pro	o Hi	34!	_	r Va	l Se	c Asj	Th:		ser Ser
Se	r Pr		let 355	Ile	Thr	Ser	Pro	Gl ₃ 360		e Le	u Gl	n Ala	365) Ası	n Pro
Me	t Le 37		la	Thr	Ala	Ala	375		Ala	a Pro	Va.	l His 380		Glr	His	Ala
Le:		r P	he	Ser	Asn	Leu 390		Glu	Met	Glr	399		Ala	His	Gly	Ala 400
Sei	Th	r V	al	Leu	Pro 405		Val	. Ser	Gln	Le 0		ı Ser	His	His	His 415	Ile
Va]	. Se:	r P	ro	Gly 420	Ser	Gly	Ser	Ala	Gly 425		Lev	. Ser	Arg	Leu 430		Pro
Val	. Pro		al 35	Pro	Ala	Asp	Trp	Met 440		Arg	Met	Glu	Val 445	Asn	Glu	Thr
Gln	1 Ty:		sn	Glu	Met	Phe	Gly 455		Val	Leu	Ala	Pro 460	Ala	Glu	Gly	Thr
His 465		G.	ly	Ile	Ala	Pro 470	Gln	Ser	Arg	Pro	Pro 475	Glu	Gly	Lys	His	Ile 480
Thr	The	P	ro .	Arg	Glu 485	Pro	Leu	Pro	Pro	Ile 490	Val	Thr	Phe	Gln	Leu 495	Ile
Pro	Lys	G)		Ser 500	Ile	Ala	Gln	Pro	Ala 505	Gly	Ala	Pro	Gln	Pro 510	Gln	Ser
Thr	Cys	51		Pro	Ala	Val	Ala	Gly 520	Pro	Leu	Pro	Thr	Met 525	Tyr	Gln	Ile
Pro	Glu 530		et 1	Ala	Arg	Leu	Pro 535	Ser	Val	Ala	Phe	Pro 540	Thr	Ala	Met	Met
Pro 545	Gln	G1	n l	Asp	Gly	Gln 550	Val	Ala	Gln	Thr	Ile 555	Leu	Pro	Ala	Tyr	His 560
Pro	Phe	Pr	:o <i>I</i>		Ser 565	Val	Gly	Lys	Tyr	Pro 570	Thr	Pro	Pro	Ser	Gln 575	His
Ser	Tyr	Al		er 80	Ser	Asn	Ala	Ala	Glu 585	Arg	Thr	Pro	Ser	His 590	Ser	Gly
His	Leu	G1 59		ly (Glu	His	Pro	Tyr 600	Leu	Thr	Pro	Ser	Pro 605	Glu	Ser	Pro
Asp	Gln 610	Tr	p S	er :	Ser		Ser 615	Pro	His	Ser	Ala	Ser 620	Asp	Trp	Ser	Asp

Val Thr Thr Ser Pro Thr Pro Gly Gly Ala Gly Gly Gln Arg Gly

Pro Gly Thr His Met Ser Glu Pro Pro His Asn Asn Met Gln Val Tyr

Ala

(2) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 654 amino acids (B) TYPE: amino acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown.
- (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

Thr Pro Pro Gln Gly Glu Ile Glu Ala Asp Cys Met Asp Val Asn Val

Arg Gly Pro Asp Gly Phe Thr Pro Leu Met Ile Ala Ser Cys Ser Gly

Gly Gly Leu Glu Thr Gly Asn Ser Glu Glu Glu Glu Asp Ala Ser Ala

Asn Met Ile Ser Asp Phe Ile Gly Gln Gly Ala Gln Leu His Asn Gln

Thr Asp Arg Thr Gly Glu Thr Ala Leu His Leu Ala Ala Arg Tyr Ala

Arg Ala Asp Ala Ala Lys Arg Leu Leu Glu Ser Ser Ala Asp Ala Asn

Val Gln Asp Asn Met Gly Arg Thr Pro Leu His Ala Ala Val Ala Ala

Asp Ala Gln Gly Val Phe Gln Ile Leu Ile Arg Asn Arg Ala Thr Asp

Leu Asp Ala Arg Met Phe Asp Gly Thr Thr Pro Leu Ile Leu Ala Ala

Arg Leu Ala Val Glu Gly Met Val Glu Glu Leu Ile Asn Ala His Ala

Asp Val Asn Ala Val Asp Glu Phe Gly Lys Ser Ala Leu His Trp Ala

Ala Ala Val Asn Asn Val Asp Ala Ala Ala Val Leu Leu Lys Asn Ser 185

Ala Asn Lys Asp Met Gln Asn Asn Lys Glu Glu Thr Ser Leu Phe Leu

Ala Ala Arg Glu Gly Ser Tyr Glu Thr Ala Lys Val Leu Leu Asp His

Tyr Ala Asn Arg Asp Ile Thr Asp His Met Asp Arg Leu Pro Arg Asp 235 230

WHAT IS CLAIMED IS:

1. A substantially purified human Notch protein.

5

2. A substantially purified protein comprising an amino acid sequence encoded by the DNA sequence depicted in Figure 19A (SEQ ID NO:13), 19B (SEQ ID NO:14) or 19C (SEQ ID NO:15).

10

15

- 3. A substantially purified protein comprising an amino acid sequence encoded by the DNA sequence depicted in Figure 20A (SEQ ID NO:16), 20B (SEQ ID NO:17), 20C (SEQ ID NO:18), or 20D (SEQ ID NO:19).
- 4. A substantially purified protein comprising an amino acid sequence encoded by the DNA sequence depicted in Figure 21A (SEQ ID NO:20), or 21B (SEQ ID NO:21).
- A substantially purified protein comprising an amino acid sequence encoded by the DNA sequence depicted in Figure 22A (SEQ ID NO:22), 22B
 (SEQ ID NO:23), 22C (SEQ ID NO:24), or 22D (SEQ ID NO:25).
- 6. A substantially purified protein comprising an amino acid sequence encoded by the DNA sequence depicted in Figure 19A (SEQ ID NO:13), 19B (SEQ ID NO:14), 19C (SEQ ID NO:15), 20A (SEQ ID NO:16), 20B (SEQ ID NO:17), 20C (SEQ ID NO:18), 20D (SEQ ID NO:19), 21A (SEQ ID NO:20), 21B (SEQ ID NO:21), 22A (SEQ ID NO:22), 22B (SEQ ID NO:23), 22C

(SEQ ID NO:24), or 22D (SEQ ID NO:25), which is able to be bound by an antibody to a human Notch protein.

- 7. A substantially purified protein

 5 comprising a Notch amino acid sequence encoded by the DNA sequence depicted in Figure 19A (SEQ ID NO:13), 19B (SEQ ID NO:14), 19C (SEQ ID NO:15), 20A (SEQ ID NO:16), 20B (SEQ ID NO:17), 20C (SEQ ID NO:18), 20D (SEQ ID NO:19), 21A (SEQ ID NO:20), 21B (SEQ ID NO:21), 22A (SEQ ID NO:22), 22B (SEQ ID NO:23), 22C (SEQ ID NO:24), or 22D (SEQ ID NO:25) which displays one or more functional activities associated with a
- 8. A substantially purified protein comprising: a fragment of a human Notch protein consisting of at least 77 amino acids.

full-length Notch protein.

- 9. A substantially purified protein
 20 comprising: a fragment of a human Notch protein consisting essentially of the extracellular domain of the protein.
- 10. A substantially purified protein 25 comprising: a fragment of a human Notch protein consisting essentially of the intracellular domain of the protein.
- 11. A substantially purified protein 30 comprising: a fragment of a human Notch protein consisting essentially of the extracellular and transmembrane domains of the protein.
- 12. A substantially purified protein35 comprising: a fragment of a human Notch protein

consisting essentially of the intracellular domain of the protein, as encoded by a portion of plasmid hN3k as deposited with the ATCC and assigned accession number 68609, or as encoded by a portion of plasmid hN5k as deposited with the ATCC and assigned accession number 68611.

- 13. A substantially purified protein comprising: a fragment of a human Notch protein10 consisting essentially of the region containing the cdc10 repeats of the protein.
- 14. A substantially purified protein comprising: a fragment of a human Notch protein

 15 consisting essentially of the region containing the cdc10 repeats, as encoded by a portion of plasmid hN3k as deposited with the ATCC and assigned accession number 68611, or as encoded by a portion of plasmid hN5k as deposited with the ATCC and assigned accession number 68611.
 - 15. A substantially purified protein comprising a region of a human Notch protein containing the EGF homologous repeats of the protein.

- 16. A substantially purified protein comprising a region of a human Notch protein containing the Notch/lin-12 repeats of the protein.
- 17. A substantially purified fragment of a human Notch protein substantially lacking the EGF-homologous repeats of the protein, which fragment is able to be bound by an antibody to a Notch protein.

18. A substantially purified fragment of a human Notch protein lacking a portion of the EGF-homologous repeats of the protein, which fragment is able to be bound by an antibody to a Notch protein.

5

- 19. A substantially purified protein comprising an amino acid sequence encoded by at least 121 nucleotides of the human cDNA sequence contained in plasmid hN3k as deposited with the ATCC and assigned accession number 68609.
- 20. A substantially purified protein comprising an amino acid sequence encoded by at least 121 nucleotides of the human cDNA sequence contained in plasmid hN4k as deposited with the ATCC and assigned accession number 68610.
- 21. A substantially purified protein comprising an amino acid sequence encoded by at least20 121 nucleotides of the human cDNA sequence contained in plasmid hN5k as deposited with the ATCC and assigned accession number 68611.
- 22. A substantially purified fragment of a 25 human Notch protein consisting essentially of the intracellular domain of the protein.
- 23. A substantially purified fragment of a human Notch protein consisting essentially of the30 extracellular domain of the protein.
 - 24. A substantially purified fragment of a human Notch protein consisting essentially of the extracellular and transmembrane domains of the protein.

- 25. A chimeric protein comprising the fragment of claim 8 joined to a heterologous protein sequence.
- 5 26. A chimeric protein comprising the fragment of claim 9 joined to a heterologous protein sequence.
- 27. A substantially purified protein10 comprising a functionally active portion of a humanNotch protein.
- 28. A substantially purified protein comprising a functionally active portion of the Notch

 15 protein sequence encoded by the human cDNA sequence contained in plasmid hN3k as deposited with the ATCC and assigned accession number 68609, or encoded by the human cDNA sequence contained in plasmid hN5k as deposited with the ATCC and assigned accession number 68611.
- 29. A substantially purified protein comprising a functionally active portion of the Notch protein sequence encoded by the human cDNA sequence
 25 contained in plasmid hN4k as deposited with the ATCC and assigned accession number 68610.
- 30. A substantially purified protein comprising the amino acid sequence depicted in Figure 30 23.
 - 31. A substantially purified protein comprising the amino acid sequence depicted in Figure 24.

- 32. A substantially purified protein comprising the Notch amino acid sequence encoded by the human Notch DNA sequence contained in plasmid hN3k as deposited with the ATCC and assigned accession number 68609.
- 33. A substantially purified protein comprising the Notch amino acid sequence encoded by the human Notch DNA sequence contained in plasmid hN5k as deposited with the ATCC and assigned accession number 68611.
- 34. A fragment of the protein of claim 30 which is characterized by the ability in vitro, when expressed on the surface of a first cell, to bind to a Delta protein expressed on the surface of a second cell.
- 35. A fragment of the protein of claim 31
 20 which is characterized by the ability in vitro, when expressed on the surface of a first cell, to bind to a Delta protein expressed on the surface of a second cell.
- 25
 36. A substantially purified protein comprising the portion of a human Notch protein with the greatest homology to the epidermal growth factor-like repeats 11 and 12 of the <u>Drosophila</u> Notch sequence as shown in Figure 8 (SEQ ID NO:1).
- 37. A derivative or analog of the protein of claim 1, which is characterized by the ability in vitro, when expressed on the surface of a first cell, to bind to a Delta protein expressed on the surface of a second cell.

- 38. A chimeric protein comprising the protein of claim 1 joined to a heterologous protein sequence.
- 5 39. A chimeric protein comprising the protein of claim 6 joined to a heterologous protein sequence.
- 40. A chimeric protein comprising the

 10 protein of claim 7 joined to a heterologous protein sequence.
- Al. A substantially purified fragment of a Notch protein, which is characterized by the ability

 in vitro, when expressed on the surface of a first cell, to bind to a Delta protein expressed on the surface of a second cell.
- 42. The fragment of claim 41 consisting 20 essentially of the portion of the Notch protein with the greatest homology to the epidermal growth factorlike repeats 11 and 12 of the <u>Drosophila</u> Notch protein.
- 25 43. The fragment of claim 41 in which the Notch protein is a <u>Drosophila</u> Notch protein.
 - 44. The fragment of claim 41 in which the Notch protein is a Xenopus Notch protein.
 - 45. The fragment of claim 41 in which the Notch protein is a human Notch protein.

- 46. A chimeric protein comprising the fragment of claim 45 joined to a heterologous protein sequence.
- 5 47. A substantially purified fragment of a Drosophila Notch protein consisting essentially of the epidermal growth factor-like repeats 11 and 12 of the protein.
- 10 48. A chimeric protein comprising the fragment of claim 41 or 47 joined to a heterologous protein sequence.
- 49. A substantially purified fragment of a

 15 Delta protein, which is characterized by the ability

 in vitro, when expressed on the surface of a first

 cell, to bind to a Notch protein expressed on the

 surface of a second cell.
- 50. The fragment of claim 49 which is the portion of the Delta protein with the greatest homology to amino acid numbers 1-230 as depicted in Figure 13 (SEQ ID NO:6).
- 51. A chimeric protein comprising the fragment of claim 49 joined to a heterologous protein sequence.
- 52. A substantially purified fragment of a

 30 Delta protein, which is characterized by the ability
 in vitro, when expressed on the surface of a first
 cell, to bind to a second Delta protein or fragment
 expressed on the surface of a second cell.

53. The fragment of claim 52 which is the portion of the Delta protein with the greatest homology to about amino acid numbers 32-230 as depicted in Figure 13 (SEQ ID NO:6).

5

- 54. A chimeric protein comprising the fragment of claim 52 joined to a heterologous protein sequence.
- 55. A substantially purified fragment of a Serrate protein, which is characterized by the ability in vitro, when expressed on the surface of a first cell, to bind to a Notch protein expressed on the surface of a second cell.

15

20

- 56. A substantially purified fragment of a Serrate protein which is the portion of the Serrate protein with the greatest homology to the amino acid sequence as depicted in Figure 15 (SEQ ID NO:9) from about amino acid numbers 85-283.
- 57. A chimeric protein comprising the fragment of claim 56 joined to a heterologous protein sequence.

25

- 58. A derivative or analog of the fragment of claim 41 which is characterized by the ability in vitro, when expressed on the surface of a first cell, to bind to a Delta protein expressed on the surface of a second cell.
- 59. A derivative or analog of the fragment of claim 49, which is characterized by the ability <u>in vitro</u>, when expressed on the surface of a first cell,

to bind to a Notch protein expressed on the surface of a second cell.

- 60. A derivative or analog of the fragment of claim 52, which is characterized by the ability in vitro, when expressed on the surface of a first cell, to bind to a second Delta protein expressed on the surface of a second cell.
- of claim 55, which is characterized by the ability in vitro, when expressed on the surface of a first cell, to bind to a second protein expressed on the surface of a second cell, which second protein is selected from the group consisting of a Notch protein, a Delta protein, and a second Serrate protein.
- 62. A substantially purified fragment of a human Notch protein consisting of at least 40 amino 20 acids.
 - 63. A substantially purified nucleic acid encoding a human Notch protein.
- 25 64. A substantially purified nucleic acid comprising a cDNA sequence encoding a human Notch protein.
- 65. A substantially purified nucleic acid
 30 comprising a nucleotide sequence complementary to and
 capable of hybridizing to the cDNA sequence of claim
 64.

- 66. A substantially purified cDNA sequence encoding a functionally active portion of a human Notch protein.
- 5 67. A substantially purified nucleic acid comprising a nucleotide sequence complementary to and capable of hybridizing to the cDNA sequence of claim 66.
- 68. A substantially purified cDNA molecule comprising the DNA sequence depicted in Figure 19A (SEQ ID NO:13), 19B (SEQ ID NO:14), 19C (SEQ ID NO:15), 20A (SEQ ID NO:16), 20B (SEQ ID NO:17), 20C (SEQ ID NO:18), 20D (SEQ ID NO:19), 21A (SEQ ID NO:20), 21B (SEQ ID NO:21), 22A (SEQ ID NO:22), 22B (SEQ ID NO:23), 22C (SEQ ID NO:24), or 22D (SEQ ID NO:25).
- 69. The nucleic acid of claim 63 in which
 the Notch protein comprises an amino acid sequence
 encoded by the DNA sequence depicted in Figure 19A
 (SEQ ID NO:13), 19B (SEQ ID NO:14), 19C (SEQ ID
 NO:15), 20A (SEQ ID NO:16), 20B (SEQ ID NO:17), 20C
 (SEQ ID NO:18), 20D (SEQ ID NO:19), 21A (SEQ ID
 NO:20), 21B (SEQ ID NO:21), 22A (SEQ ID NO:22), 22B
 (SEQ ID NO:23), 22C (SEQ ID NO:24), or 22D (SEQ ID
 NO:25).
- 70. A substantially purified nucleic acid
 30 comprising a DNA sequence encoding at least a 77 amino acid portion of a human Notch protein, which portion has the greatest homology to the epidermal growth factor-like repeats 11 and 12 of the <u>Drosophila</u> Notch sequence as shown in Figure 8 (SEQ ID NO:1).

71. A substantially purified nucleic acid comprising the human Notch cDNA contained in plasmid hN4k, as deposited with the ATCC and assigned accession number 68610.

5

72. A substantially purified nucleic acid comprising the human Notch cDNA contained in plasmid hN3k, as deposited with the ATCC and assigned accession number 68609.

10

73. A substantially purified nucleic acid comprising the human Notch cDNA contained in plasmid hN5k, as deposited with the ATCC and assigned accession number 68611.

15

- 74. A substantially purified nucleic acid comprising the DNA coding sequence depicted in Figure 23.
- 75. A substantially purified nucleic acid comprising the DNA coding sequence depicted in Figure 24.
- 76. A substantially purified nucleic acid comprising a cDNA sequence encoding the extracellular domain of a human Notch protein.
- 77. A substantially purified nucleic acid comprising a cDNA sequence encoding the intracellular 30 domain of a human Notch protein.
 - 78. A substantially purified nucleic acid comprising a cDNA sequence encoding the extracellular and transmembrane domains of a human Notch protein.

- 79. A substantially purified nucleic acid comprising a cDNA sequence encoding the EGF-homologous repeats of a human Notch protein.
- 5 80. A substantially purified nucleic acid comprising a cDNA sequence encoding the Notch/lin-12 repeats of a human Notch protein.
- 81. A substantially purified cDNA molecule

 10 encoding a fragment of a human Notch protein of at
 least 77 amino acids.
- 82. A substantially purified cDNA molecule encoding a fragment of a human Notch protein of at least 40 amino acids.
 - 83. A substantially purified nucleic acid encoding the amino acid sequence depicted in Figure 23.

- 84. A substantially purified nucleic acid encoding the amino acid sequence depicted in Figure 24.
- 25 85. A substantially purified nucleic acid encoding the protein of claim 36.
 - 86. A substantially purified nucleic acid encoding the fragment of claim 41.

- 87. A substantially purified nucleic acid encoding the fragment of claim 45.
- 88. A substantially purified nucleic acid so encoding the fragment of claim 47.

- 89. A substantially purified nucleic acid encoding the fragment of claim 49.
- 90. A substantially purified nucleic acid encoding the fragment of claim 52.
 - 91. A substantially purified nucleic acid encoding the fragment of claim 55.
- 92. A nucleic acid encoding the chimeric protein of claim 48.
 - 93. A nucleic acid encoding the chimeric protein of claim 51.
 - 94. A nucleic acid encoding the chimeric protein of claim 54.
- 95. A nucleic acid vector comprising the 20 nucleic acid of claim 63.
 - 96. A nucleic acid vector comprising the cDNA molecule of claim 66.
- 97. A nucleic acid vector comprising the nucleic acid of claim 85.
 - 98. A nucleic acid vector comprising the nucleic acid of claim 86.
 - 99. A nucleic acid vector comprising the nucleic acid of claim 87.
- 100. A nucleic acid vector comprising the 35 nucleic acid of claim 88.

- 101. A nucleic acid vector comprising the nucleic acid of claim 89.
- 5 102. A nucleic acid vector comprising the nucleic acid of claim 91.
 - 103. A recombinant cell containing the nucleic acid vector of claim 95.

- 104. A recombinant cell containing the nucleic acid vector of claim 96.
- 105. A recombinant cell containing the 15 nucleic acid vector of claim 97.
 - 106. A recombinant cell containing the nucleic acid vector of claim 98.
- 20 107. A recombinant cell containing the nucleic acid vector of claim 99.
 - 108. A recombinant cell containing the nucleic acid vector of claim 100.

25

- 109. A recombinant cell containing the nucleic acid vector of claim 101.
- 110. A recombinant cell containing the 30 nucleic acid vector of claim 102.
 - 111. A method for producing a human Notch protein comprising growing the recombinant cell of claim 103, such that the human Notch protein is

expressed by the cell; and isolating the expressed human Notch protein.

- 112. A method for producing a portion of a human Notch protein comprising growing the recombinant cell of claim 104, such that the portion of human Notch is expressed by the cell; and isolating the expressed human Notch portion.
- 10 113. A method for producing a protein comprising growing the recombinant cell of claim 105 such that the protein is expressed by the cell; and isolating the expressed protein.
- Notch protein comprising growing the recombinant cell of claim 106 such that the fragment is expressed by the cell; and isolating the expressed fragment of a Notch protein.
- 115. A method for producing a fragment of a human Notch protein comprising growing the recombinant cell of claim 107 such that the fragment is expressed by the cell; and isolating the expressed fragment of a human Notch protein.
- 116. A method for producing a fragment of a Drosophila Notch protein comprising growing the recombinant cell of claim 108 such that the fragment 30 is expressed by the cell; and isolating the expressed fragment of a Drosophila Notch protein.
- 117. A method for producing a fragment of a Delta protein comprising growing the recombinant cell of claim 109 such that the fragment is expressed by

the cell; and isolating the expressed fragment of a Delta protein.

- 174 -

- 118. A method for producing a fragment of a 5 Serrate protein comprising growing the recombinant cell of claim 110 such that the fragment is expressed by the cell; and isolating the expressed fragment of a Serrate protein.
- 10 119. An antibody which binds to a human Notch protein and which does not bind to a <u>Drosophila</u> Notch protein.
- 120. An antibody which binds to the 15 fragment of claim 41.
 - 121. An antibody which binds to the fragment of claim 49.
- 20 122. An antibody which binds to the fragment of claim 52.
 - 123. An antibody which binds to the fragment of claim 55.
 - 124. A fragment or derivative of the antibody of claim 119 containing the idiotype of the antibody.
- 125. A fragment or derivative of the antibody of claim 120 containing the idiotype of the antibody.
- 126. An antibody which binds to the Notch
 35 protein sequence encoded by plasmid hN3k, as deposited

with the ATCC and assigned accession number 68609, or to the Notch protein sequence encoded by plasmid hN5k, as deposited with the ATCC and assigned accession number 68611, and which does not bind to a <u>Drosophila</u>

5 Notch protein.

- 127. A substantially purified nucleic acid which encodes a protein or peptide which comprises (a) a first amino acid sequence homologous to both a
 10 Serrate protein and a Delta protein; and (b) a second amino acid sequence which is not homologous to either a Serrate protein or a Delta protein.
- 128. A substantially purified fragment of a

 15 Notch protein, which is characterized by the ability

 in vitro, when expressed on the surface of a first

 cell, to bind to a Serrate protein expressed on the

 surface of a second cell.
- 20 129. A substantially purified fragment of a Serrate protein which is the portion of the Serrate protein with the greatest homology to the amino acid sequence as depicted in Figure 15 (SEQ ID NO:9) from about amino acid numbers 79-282.
- derivative of a Delta protein, which is characterized by (a) the ability in vitro, when expressed on the surface of a first cell to bind to a second Delta protein or fragment or derivative expressed on the surface of a second cell; and (b) the inability, in vitro, when expressed on the surface of a third cell, to bind to a Notch protein expressed on the surface of a fourth cell.

cell expressing a Notch protein comprising exposing a Notch-expressing cell to a molecule such that the molecule is delivered into the cell, in which the molecule comprises a Delta protein or Delta fragment or derivative bound to an agent, in which the Delta protein, fragment, or derivative is characterized by the ability, in vitro, when expressed on the surface of a first cell, to bind to a Notch protein expressed on the surface of the surface of a second cell.

132. An isolated nucleic acid comprising at least 25 nucleotides of the DNA coding sequence depicted in Figure 23 or 24.

15

20

25

30

52/61

		GAI (Asp \				al A				46
		a ATO u Met		Ala						94
		GAA Glu 35	Asp							142
		CAG Gln								190
	Ala	CTG Leu								238
Arg		CTG Leu								286
		CCA Pro								334
		CTG Leu 115								382
		ACT Thr								430

FIG.24A

SUBSTITUTE SHEET

53/61

	Val							GAT Asp 155	Val		Val	478
_								GCT Ala				526
							Gly	GCC Ala				574
			Glu					GCT Ala	Ala			622
								TTT Phe				670
								GTG Val 235				718
								TAC Tyr				766
		Gly						TCA Ser				814
	Asn		Ser	Phe	Ser	Lys		ACC Thr				862

FIG.24B

SUBSTITUTE SHEET

					/61				
						ATG Met			910
•						GGT Gly			958
						AGT Ser 330			 1006
						TAT Tyr			1054
						TTA Leu			1102
						CCA Pro			 1150
						CAG Gln			1198
						TTG Leu 410			 1246
						AGC Ser			1294
						CGC Arg			 1342

FIG.24C SUBSTITUTE SHEET

55/61

			TTT Phe					GGC Gly	1390
			CCC Pro 470						1438
			CCC Pro						1486
			GCC Ala						1534
			GTT Val						1582
			TTG Leu					ATG Met	1630
			CAG Gln 550					TAT Tyr	1678
			GTG Val						1726
			AAT Asn						1774
			CAT His						1822

FIG.24D

56/61 CCT GAC CAG TGG TCA AGT TCA TCA CCC CAC TCT GCT TCT GAC TGG TCA 1870 Pro Asp Gln Trp Ser Ser Ser Pro His Ser Ala Ser Asp Trp Ser 615 610 1918 GAT GTG ACC ACC AGC CCT ACC CCT GGG GGT GCT GGA GGA GGT CAG CGG Asp Val Thr Thr Ser Pro Thr Pro Gly Gly Ala Gly Gly Gly Gln Arg 625 GGA CCT GGG ACA CAC ATG TCT GAG CCA CCA CAC AAC AAC ATG CAG GTT 1966 Gly Pro Gly Thr His Met Ser Glu Pro Pro His Asn Asn Met Gln Val 640 650 655 5055 TAT GCG TGAGAGAGTC CACCTCCAGT GTAGAGACAT AACTGACTTT TGTAAATGCT Tyr Ala 2082 GCTGAGGAAC AAATGAAGGT CATCCGGGAG AGAAATGAAG AAATCTCTGG AGCCAGCTTC TAGAGGTAGG AAAGAGAAGA TGTTCTTATT CAGATAATGC AAGAGAAGCA ATTCGTCAGT 2142 TTCACTGGGT ATCTGCAAGG CTTATTGATT ATTCTAATCT AATAAGACAA GTTTGTGGAA 2202 ATGCAAGATG AATACAAGCC TTGGGTCCAT GTTTACTCTC TTCTATTTGG AGAATAAGAT 5565 GGATGCTTAT TGAAGCCCAG ACATTCTTGC AGCTTGGACT GCATTTTAAG CCCTGCAGGC 2322 TTCTGCCATA TCCATGAGAA GATTCTACAC TAGCGTCCTG TTGGGAATTA TGCCCTGGAA 5385 TTCTGCCTGA ATTGACCTAC GCATCTCCTC CTCCTTGGAC ATTCTTTTGT CTTCATTTGG 2442 TGCTTTTGGT TTTGCACCTC TCCGTGATTG TAGCCCTACC AGCATGTTAT AGGGCAAGAC 2502 CTITGTGCTT TTGATCATTC TGGCCCATGA AAGCAACTTT GGTCTCCTTT CCCCTCCTGT 2562 CTTCCCGGTA TCCCTTGGAG TCTCACAAGG TTTACTTTGG TATGGTTCTC AGCACAAACC 2622 TTTCAAGTAT GTTGTTTCTT TGGAAAATGG ACATACTGTA TTGTGTTCTC CTGCATATAT 2682 CATTCCTGGA GAGAGAAGGG GAGAAGAATA CTTTTCTTCA ACAAATTTTG GGGGCAGGAG 2742 ATCCCTTCAA GAGGCTGCAC CTTAATTTTT CTTGTCTGTG TGCAGGTCTT CATATAAACT 2802

FIG.24E

57/61

TIALLAGUAA GAAGGUIGIG AGIIIGIIGI IIIILIGIGI AIGGEETIG IEAGIGIAAA	2866
GTTTTATCCT TGATAGTCTA GTTACTATGA CCCTCCCCAC TTTTTTAAAA CCAGAAAAAC	i 2922
GTTTGGAATG TTGGAATGAC CAAGAGACAA GTTAACTCGT GCAAGAGCCA GTTACCCACC	2982
CACAGGTCCC CCTACTTCCT GCCAAGCATT CCATTGACTG CCTGTATGGA ACACATTTGT	3042
CCCAGATCTG AGCATTCTAG GCCTGTTTCA CTCACTCACC CAGCATATGA AACTAGTCTT	31 02
AACTGTTGAG CCTTTCCTTT CATATCCACA GAAGACACTG TCTCAAATGT TGTACCCTTG	3162
CCATTTAGGA CTGAACTTTC CTTAGCCCAA GGGACCCAGT GACAGTTGTC TTCCGTTTGT	3555
CAGATGATCA GTCTCTACTG ATTATCTTGC TGCTTAAAGG CCTGCTCACC AATCTTTCTT	3282
TCACACCGTG TGGTCCGTGT TACTGGTATA CCCAGTATGT TCTCACTGAA GACATGGACT	3342
TTATATGTTC AAGTGCAGGA ATTGGAAAGT TGGACTTGTT TTCTATGATC CAAAACAGCC	3402
CTATAAGAAG GTTGGAAAAG GAGGAACTAT ATAGCAGCCT TTGCTATTTT CTGCTACCAT	3462
TTCTTTTCCT CTGAAGCGGC CATGACATTC CCTTTGGCAA CTAACGTAGA AACTCAACAG	3522

FIG.24F

SUBSTITUTE SHEET

58/61

AACATTITCC TITCCIAGAG TCACCITTA GATGATAATG GACAACTATA GALTIGCICA	3280
TTGTTCAGAC TGATTGCCCC TCACCTGAAT CCACTCTCTG TATTCATGCT CTTGGCAATT	3642
TCTTTGACTT TCTTTTAAGG GCAGAAGCAT TTTAGTTAAT TGTAGATAAA GAATAGTTTT	3702
CTTCCTCTTC TCCTTGGGCC AGTTAATAAT TGGTCCATGG CTACACTGCA ACTTCCGTCC	3762
AGTGCTGTGA TGCCCATGAC ACCTGCAAAA TAAGTTCTGC CTGGGCATTT TGTAGATATT	3822
AACAGGTGAA TTCCCGACTC TTTTGGTTTG AATGACAGTT CTCATTCCTT CTATGGCTGC	3882
AAGTATGCAT CAGTGCTTCC CACTTACCTG ATTTGTCTGT CGGTGGCCCC ATATGGAAAC	3942
CCTGCGTGTC TGTTGGCATA ATAGTTTACA AATGGTTTTT TCAGTCCTAT CCAAATTTAT	4002
TGAACCAACA AAAATAATTA CTTCTGCCCT GAGATAAGCA GATTAAGTTT GTTCATTCTC	4062
TGCTTTATTC TCTCCATGTG GCAACATTCT GTCAGCCTCT TTCATAGTGT GCAAACATTT	4122
TATCATTCTA AATGGTGACT CTCTGCCCTT GGACCCATTT ATTATTCACA GATGGGGAGA	4182
ACCTATCTGC ATGGACCCTC ACCATCCTCT GTGCAGCACA CACAGTGCAG GGAGCCAGTG	4242
GCGATGGCGA TGACTTTCTT CCCCTG	4268

FIG.24G

SUBSTITUTE SHEET

