

Probabilistic Data Association for Semantic SLAM

Damian Bogunowicz

Robotics, Cognition Intelligence

Technical University of Munich

Munich, 17. January 2018

Probabilistic Data Association for Semantic SLAM

Authors: Sean L.Bowman, Nikolay Atanasov, Kostas Daniilidis, George J. Pappas

ICRA 2017 best conference paper!

Further reading:

A Unifying View of Geometry, Semantics, and Data Association in SLAM (2018)

Outline

- SLAM: A short recap
- Data association fundamental problem
- Semantic SLAM
- Experiments
- Personal remarks
- Conclusions

SLAM: A short recap

Build the map of the unknown environment, even though we do not know our current position

SLAM: A short recap

Estimate:

X – sequence of poses

 \mathcal{L} – static landmark positions

SLAM: A short recap

First step: find the best data association given current measurements and some prior estimates of pose and landmarks

$$\mathcal{D}^{i+1} = arg \max_{\mathcal{D}} p(\mathcal{D}|\ \mathcal{X}^{i},\ \mathcal{L}^{i},\ \mathcal{Z})$$

Second step: for the current measurements estimate the most likely landmark and sensor states

$$\mathcal{X}^{i+1}, \mathcal{L}^{i+1} = arg \max_{\mathcal{X}, \mathcal{L}} p(\mathcal{Z} | \mathcal{X}, \mathcal{L}, \mathcal{D}^{i+1})$$

Data association – fundamental problem

Data association - association between the landmarks and sensor measurements

Data association – fundamental problem

Problem: Incorrectly chosen data association has detrimental effect on estimation performance!

Data association – a simple idea...

Before:

$$\mathcal{X}^{i+1}, \mathcal{L}^{i+1} = arg \max_{\mathcal{X}, \mathcal{L}} p(\mathcal{Z} | \mathcal{X}, \mathcal{L}, \mathcal{D}^{i+1})$$

 \mathcal{D}^{i+1} as the mode of $p(\mathcal{D}|\mathcal{X}^i, \mathcal{L}^i, \mathcal{Z})$ - hard decision

Is my measurement related to this landmark?

Now:

$$\mathcal{X}^{i+1}, \mathcal{L}^{i+1} = arg \max_{\mathcal{X}, \mathcal{L}} \mathbb{E}_{\mathcal{D}}[\log p(\mathcal{Z}|\mathcal{X}, \mathcal{L}, \mathcal{D})|\mathcal{X}^{i}, \mathcal{L}^{i}, \mathcal{Z}]$$

$$\mathcal{X}^{i+1}$$
, $\mathcal{L}^{i+1} = arg \max_{\mathcal{X}, \mathcal{L}} \sum_{k=1}^{K} \sum_{j=1}^{M} w_{kj}^{i} \log p(\mathbf{z}_{k} | \mathbf{x}_{\alpha_{k}}, l_{j})$

Consider entire density of \mathcal{D} – distribution of belief in landmark, given the pose.

How sure am I that my measurement is related to that landmark?

Semantic SLAM - landmarks

Before: a landmark is being described using simple, low-level features.

Now: each landmark is described by its state, which constists of its position and class label.

Position $l^p \in \mathbb{R}^3$

Class label l^c , where $\mathbb{C} = \{1, ..., C\}$

Semantic SLAM - observations

Inertial
Information
(IMU + monocular camera)

- Keyframes
- Sensor state (6-D Pose, velocity, IMU bias values)

Geometric Information (Keyframes)

ORB features

Semantic Information (Keyframes)

 Object detections (DPM) from every keyframe image.

Semantic SLAM - measurements

Object detection $s_k = (s_k^c, s_k^s, s_k^b)$

 s_k^c - detected class s_k^s - detection confidence s_k^b - bounding box

Example keyframe image overlaid with ORB features and object detections

Semantic SLAM – EM algorithm

EM – Expectation maximization

"E" step

Estimate the data association **distribution** (not likelihood) $p(\mathcal{D}|\mathcal{X}^i, \mathcal{L}^i, \mathcal{Z})$ in form of the weights w_{ki}^i

"M" step

Maximize the expected measurement log likelihood over the previously computed distribution.

Semantic SLAM – Expectation step

sum over all classes and all data associations normalization over classes and data associations in given timestep

Semantic SLAM - Maximization st

by choosing them such, that we maximize update sequence of poses update position of landmarks

hat we aximize of poses
$$\chi^{i+1}$$
 $l_{1:M}^{p,(i+1)} =$

$$= \underset{\mathcal{X}, l_{1:M}^p}{\operatorname{max}} \sum_{S_k \in S_t} \sum_{t=1}^{n} \sum_{j=1}^{n} w_{kj}^{t,(i)} \log p(\mathbf{s}_k | \mathbf{x}_t, l_j) + \log p(\mathcal{Y} | \mathcal{X}) - \log p(\mathcal{I} | \mathcal{X})$$

sum over semantic measurements, timesteps and landmarks

probability of the current semantic measurement probability of the current geometric measurement probability of the current inerial measurement

Semantic SLAM – maximization step (semantic factors)

Semantic SLAM – maximization step (geometric factors)

$$\arg\max_{\mathcal{X}, l_{1:M}^p} \sum_{s_k \in S_t} \sum_{t=1}^T \sum_{j=1}^M w_{kj}^{t,(i)} \log p(\mathbf{s}_k | \mathbf{x}_t, l_j) + \log p(\mathcal{Y} | \mathcal{X}) + \log p(\mathcal{I} | \mathcal{X})$$

sum over observed geometric landmarks

$$\sum_{i=1}^{N_{y}} \sum_{k:B_{k}^{y}=i} h_{\pi}\left(x_{\alpha_{k}^{y}}, \rho_{i}\right) - y_{k} \Big|_{R_{y}}^{2} \text{ covarian}$$

sum over measurements

3D position of ORB features corresponding to the landmark that generated the measurement

covariance

geometric

Semantic SLAM – maximization step (inertial factors)

rotation, velocity
and position
differences
between
consecutive
keyframes

$$-\left\| \boldsymbol{r}_{g_{ij}} \right\|_{\Sigma_{i}}^{2}$$
 noise covariance

Experiments— key points

- Real-time computation
- Naive selection of keyframes
- Algorithm tested in three experiments
- Interesting initialization of new landmarks

Experiment 1: 175m run around the office floor

Experiment 2: 625m run around two different offices

Experiment 2: 625m run around two different office floor

Experiment 3: KITTI outdoor dataset (sequences 05 and 06)

Personal remarks

Very thorough (sometimes hairy) mathematical description!

Experiments could have been documented better

No code available online.

Simple (albeit brilliant) idea

Conclusion

Semantic features improve localization performance and ability to close loops

Room for improvement!

Estimate full pose of the semantic objects

Consider systems with multiple sensors and non-stationary objects

