ARHITECTURA SISTEMELOR DE CALCUL

UB, FMI, CTI, ANUL III, 2022-2023

PORTI CUANTICE

- Actioneaza in mod similar
 portile clasice manipuleaza cativa biti in acelasi timp,
 portile cuantice manipuleaza cativa qubiti in acelasi timp
 - Uzual sunt reprezentate prin matrici unitare
- Reprezentarea circuitistica

Firele descriu qubiți

casetele și simbolurile diferite descriu operații asupra qubiților

... moștenirea calculului clasic – este mai bine să ne gândim la qubiți ca la particule și la porți ca la procese fizice aplicate acelor particule

Porti cuantice

$$|\Psi(t)\rangle = U |\Psi(0)\rangle U U^* = 1$$

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{vmatrix} X|0\rangle = |1\rangle \\ X|1\rangle = |0\rangle$$

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{vmatrix} Z|0\rangle = |0\rangle \\ Z|1\rangle = -|1\rangle$$

Hadamard=
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

 $H|0\rangle = |+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$
 $H|1\rangle = |-\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$

POARTA PAULI-X

Actioneaza asupra unui singur qubit

Notation Dirac

$$|0\rangle \rightarrow |1\rangle, \quad |1\rangle \rightarrow |0\rangle$$

Reprezentarea Matriceala

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Reprezentarea Circuitistica

Actionand asupra starilor pure devine o poarta NOT clasica

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \qquad X \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \cdot 1 + 1 \cdot 0 \\ 1 \cdot 1 + 0 \cdot 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = |1\rangle$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \qquad X \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \cdot 0 + 1 \cdot 1 \\ 1 \cdot 0 + 0 \cdot 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = |0\rangle$$

Notatia Dirac ...

$$X|0\rangle = |1\rangle$$

$$X|1\rangle = |0\rangle$$
 ...este evident mai convenabila pentru calcul

POARTA PAULI-X

Actionand asupra unei stari generale a qubitului

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

$$X|\psi\rangle = \alpha|1\rangle + \beta|0\rangle = \beta|0\rangle + \alpha|1\rangle$$

Este propriul său invers

$$XX = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

Actioneaza asupra unui singur qubit

Notatia Dirac M $|0\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ $|1\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$ Stare mixta

Stare pura

Matricea Unitara

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Reprezentarea Circuitistica

... evident, nici un echivalent clasic

Una dintre cele mai importante porți pentru calculul cuantic

Un exemplu interesant

$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

$$H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$$
Acționând asupra stărilor pure.

$$|\alpha_0|^2 = \frac{1}{2} \quad |\alpha_1|^2 = \frac{1}{2}$$

...oferă o suprapunere echilibrată...

... ambele stări, dacă sunt măsurate, dau fie 0, fie 1 cu probabilitate egală

Aplicând o altă poartă Hadamard

la primul rezultat

$$H\left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle\right) = \frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) + \frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

$$H\left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle\right) = |0\rangle$$

iar la al doilea rezultat

$$H\left(\frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle\right) = \frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) - \frac{1}{\sqrt{2}}\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

$$H\left(\frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle\right) = |1\rangle$$

Ambele stări dau probabilități egale atunci când sunt măsurate...

...dar când se aplică transformarea Hadamard, aceasta produce două stări diferite

Exemplul oferă un răspuns la întrebarea: de ce starea sistemului trebuie specificată cu amplitudini complexe și nu poate fi specificată doar cu probabilități

POARTA PAULI-Y

Actioneaza asupra unui singur qubit

Notatia Dirac

Reprezentarea Circuitistica

$$|0\rangle \rightarrow i|1\rangle$$
, $|1\rangle \rightarrow -i|0\rangle$

$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

...o altă poartă fără echivalent clasic

POARTA CNOT

- Poarta NU Controlata
- Acționează asupra doi qubiți

Reprezentarea Matriceala

$$CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Reprezentarea Circuitistica

Funcționarea clasică a porții

POARTA CNOT

Exemplu de acționare la o suprapunere de stari

$$|\Phi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$|00\rangle \rightarrow |00\rangle, \quad |01\rangle \rightarrow |01\rangle, \quad |10\rangle \rightarrow |11\rangle, \quad |11\rangle \rightarrow |10\rangle$$

$$\downarrow$$

$$CNOT|\Phi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle)$$

POARTA TOFFOLI

- Numit și **NU controlat controlat**
- Acționează pe trei qubiți

Reprezentarea Matriceala

Funcționarea clasică a porții

Reprezentarea Circuitistica

Folosit pentru a pune qubiți în superpozitie.

Nota: Două porți Hadamard utilizate succesiv pot fi folosite ca poartă **NOT**

NOT CONTROLAT CN

Dacă bitul de pe linia de control este 1, inverseaza bitul de pe linia ţintă.

	Ir	put	Output		
	A	В	A'	B'	
	0	0	0	0	
I	0	1	1	1	
I	1	0	1	0	
	1	1	0	1	

Note: Poarta CN are un comportament similar cu poarta XOR cu unele informații suplimentare pentru a o face reversibilă.

EXAMPLE OPERATION - MULTIPLICATION BY 2

 Putem construi un circuit logic reversibil pentru a calcula înmulțirea cu 2 folosind porți CN aranjate în felul următor:

Ir	put	Output		
Carry	Ones	Carry	Ones	
Bit	Bit	Bit	Bit	
0	0	0	0	
0	1	1	0	

CONTROLLED CONTROLLED NOT (CCN)

Dacă biții de pe ambele linii de control sunt 1, atunci bitul țintă este inversat.

Input			Output		
A	В	C	A'	В'	C'
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	1	1	1
1	0	0	1	0	0
1	0	1	1	0	1
1	1	0	1	1	0
1	1	1	0	1	1

A UNIVERSAL QUANTUM COMPUTER

 Poarta CCN s-a dovedit a fi o poartă logică reversibilă universală, deoarece poate fi folosită ca poartă NAND.

Input			Output		
A	В	C	A'	В'	C'
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	1	1	1
1	0	0	1	0	0
1	0	1	1	0	1
1	1	0	1	1	0
1	1	1	0	1	1

Output

Când intrarea noastră țintă este 1, ieșirea noastră țintă este rezultatul unui NAND aupra B și C.

