

DEPARTAMENTO DE CIÊNCIA DE COMPUTADORES

FACULDADE DE CIÊNCIAS DA UNIVERSIDADE DO PORTO

O Jogo da Vida

Desafio

Coloque células dentro do quadrado central de forma a que a colónia cresça e capture os oito corações no exterior. Dispõe apenas de 100 gerações e ganha mais pontos quantos mais corações apanhar e quanto menos gerações necessitar.

Regras

O *Jogo da Vida* é um "autómato celular" inventado em 1970 pelo matemático britânico John H. Conway. A inspiração para o jogo partiu do desafio de construir um mecanismo simples capaz de auto-reproduzir.

O jogo desenrola-se numa grelha quadriculada infinita; cada posição tem oito vizinhos (nas direções N, S, E, O, NE, NO, SE, SO) e pode conter uma célula ou estar vazia. A evolução da colónia de células de uma geração para a seguinte é determinada por quatro regras simples:

- 1. Uma célula com menos de 2 células vizinhas morre (de isolamento);
- 2. Uma célula com mais de 3 células vizinhas morre (de sobrepopulação);
- 3. Uma célula com 2 ou 3 células vizinhas sobrevive para a próxima geração;
- 4. Nasce uma nova célula numa posição vazia com exactamente 3 células vizinhas.

O jogador escolhe apenas o número e posição inicial das células; a evolução da colónia é completamente determinada pelas regras acima e podemos observar essa evolução usando o computador.

Padrões emergentes

Embora as regras do Jogo da Vida sejam simples, a evolução de uma colónia pode exibir comportamentos emergentes complexos: pode acontecer que todas as células desapareçam ao fim de algumas gerações; também é possível que estabilizem em configurações fixas (designadas *naturezas mortas*) ou periódicas (*osciladores*); finalmente é possível que a colónia (ou parte dela) se auto-reproduza e se desloque sobre a grelha (configurações designadas *naves espaciais*). Foram descobertos e catalogados centenas de padrões de células com estes comportamentos; eis alguns exemplos.

Naturezas mortas

Osciladores

Naves espaciais

DEPARTAMENTO DE CIÊNCIA DE COMPUTADORES

FACULDADE DE CIÊNCIAS DA UNIVERSIDADE DO PORTO

O Jogo da Vida e computação

O Jogo da Vida pode facilmente ser simulado em <a href="http://en.wikipedia.org/wiki/Conway's Game of of the control of the co praticamente qualquer computador e a sua implementação é muita vezes usada como um exercício em cursos de introdução à programação. Existem também centenas de implementações completas disponíveis gratuitamente com diferentes facilidades para editar e visualizar a evolução da colónia de células.

Dada a simplicidade das regras talvez seja surpreendente saber que também é possível simular dentro do Jogo da Vida o comportamento de circuitos digitais como portas lógicas (AND, OR, NOT) e contadores. De facto, é possível demonstrar matematicamente que qualquer processo computacional pode ser codificado no Jogo da Vida (embora possivelmente necessitando de um número muito grande de células e de gerações)—ou seja, o Jogo da Vida é um modelo universal de computação.

Como resolver o desafio

A sua configuração inicial de células constui um programa; tal como na conceção de programas para computadores reais, é pouco provável que atinja todos os objetivos colocando as células à sorte. Em vez disso, é melhor compor a configuração inicial usando combinações de padrões simples (por exemplo, vários gliders). Comece por experimentar colocar um glider de forma a que atinja apenas um coração; acrescente outros gliders sucessivamente. Tenha atenção que se podem dar interações indesejadas se os padrões colidirem uns com os outros.

Mais informação

Life

Departamento de Ciência de Computadores Faculdade de Ciências da Universidade do Porto http://www.dcc.fc.up.pt/

Março de 2011