COALITION-PROOF DISCLOSURE

Germán Gieczewski

Maria "Masha" Titova

Princeton University

VANDERBILT UNIVERSITY

QMUL-CITY WORKSHOP IN ECONOMIC THEORY | JUNE 2024

Introduction: Verifiable Disclosure

two players: sender (S, she/her) and receiver (R, he/him)

message mapping $M:\Theta\to 2^{\mathcal{M}}\setminus\varnothing$

 \blacktriangleright \mathcal{M} is some "grand" message space

our substantive assumption: sender's preferences are type-independent

Existing Models of Verifiable Disclosure

- ▶ persuasion games (Milgrom, 1981; Grossman, 1981)
 - $\diamond M(\theta)$ is all subsets of Θ that contain θ
- ▶ Dye, 1985 evidence

$$\diamond \ \Theta = \{\varnothing, \theta_1, \dots, \theta_N\} \text{ and } M(\theta) = \{\varnothing, \theta\}$$

- ▶ evidence as partial order on the set of types (Hart, Kremer & Perry, 2017; Ben-Porath, Dekel & Lipman, 2019)
- ▶ cheap talk (Crawford & Sobel, 1982)
 - $\diamond M(\theta) = \mathcal{M} \text{ for all } \theta \in \Theta$

issue: multiplicity of equilibria → literature focuses on receiver-optimal equilibrium (see also Glazer & Rubinstein 2004, 2006; Sher, 2011; Rappoport, 2022)

What We Do

We show that all PBE strategies belong to a particular class

▶ partitions into coalitions

We focus on **coalition-proof** equilibria

- ▶ rule out blocking coalitions of senders
 - statements made by subsets of sender types which, if credible, lead to a strictly higher than equilibrium payoff for those types
 - related to neologism proofness (Farrell, 1986) and announcement proofness (Matthews, Okuno-Fujiwara & Postlewaite, 1991) for cheap talk games

OUR CONTRIBUTIONS

Coalition-Proof Equilibria:

- ▶ algorithmic characterization
- ▶ theorems for existence
- ▶ geometric characterization (for rich enough message space)
 - inspired by and comparable to concave closure (Kamenica & Gentzkow, 2011) and quasiconcave envelope (Lipnowski & Ravid, 2020)
 - ♦ it's a tent 👗

ASSUMPTIONS

[A1] — finite type space
$$\Theta := \{\theta_1, \dots, \theta_n\}$$

[A2] — common prior
$$\mu^0 := (\mu_1^0, \dots, \mu_n^0) \in \Delta\Theta$$

Belief-Based Approach: given R's posterior belief $\mu \in \Delta\Theta$,

- $> v(\mu) := u_S(a^*(\mu))$ is Sender's payoff
 - \diamond [A3] $v(\mu)$ is upper semicontinuous

NOTATION

• $M^{-1}(X)$ is set of types with access to at least one message in $X \subseteq \mathcal{M}$

$$M^{-1}(X) := \{ \theta \in \Theta \mid M(\theta) \cap X \neq \emptyset \}$$

• $\mu_C^0 \in \Delta\Theta$ is prior belief conditional $\theta \in C \subseteq \Theta$ and no other information

$$\mu_C^0(\theta) = \frac{\mu^0(\theta)}{\sum_{\theta' \in C} \mu^0(\theta')} \cdot \mathbb{1}(\theta \in C)$$

• a **restricted game** with non-empty type space $C \subseteq \Theta$ has prior μ_C^0 and message mapping $M|_C$

PARTITION INTO COALITIONS

We focus on a particular class of **partition** strategies

- ▶ they partition type space Θ into **coalitions**
- ▶ within a coalition, types send the same messages and attain the same payoff

COALITION

Definition: A coalition is a quadruple (C, X, σ, w) , where

- 1. $C \subseteq \Theta$ is a non-empty set of types
- 2. $X \subseteq \mathcal{M}$ is a set of messages such that $M^{-1}(X) = C$
- 3. $\sigma: C \to \Delta \mathcal{M}$ such that supp $\sigma(\cdot \mid \theta) \subseteq X \cap M(\theta)$ and $\bigcup_{\theta \in \Theta} \text{supp } \sigma(\cdot \mid \theta) = X$ is sender's strategy for types in C
 - ▶ all types in C only send messages from X and all $m \in X$ are "on path"
 - \blacktriangleright does not specify what types outside C do but they do not have access to messages in X
- 4. $w := v(\mu(\cdot \mid m))$ for all $m \in X$ is Sender's payoff when $\theta \in C$
 - $\blacktriangleright \mu(\cdot \mid m)$ is Receiver's posterior "on path" (calculated via Bayes rule)
 - ▶ Sender's payoff is the same for all $m \in X$ and $\theta \in C$

COALITIONS: EXAMPLE

 $heta_1$ does not have evidence, $M(heta_1) = \varnothing$ $heta_2$ has evidence, $M(heta_2) = \{\varnothing, \boldsymbol{e}\}$

$C = M^{-1}(X)$		σ such that all $\theta \in C$ get w	
\boldsymbol{C} (types)	$m{X}$ (messages)	σ (strategy)	$m{w}$ (payoff)
$\{ heta_2\}$	$\{e\}$	$\sigma(\boldsymbol{e} \mid \theta_2) = 1$	$v(\mu^0_{\{\theta_2\}})$
$\{ heta_1, heta_2\}$	{∅}	$\sigma(\varnothing \mid \theta_1, \theta_2) = 1$	$v(\mu^0)$
$\{ heta_1, heta_2\}$	$\{\varnothing, oldsymbol{e}\}$	$\sigma(\varnothing \mid \theta_1) = 1$ $\sigma(\varnothing \mid \theta_2) = \alpha$	$v(\mu(\cdot \mid \varnothing)) = v(\mu(\cdot \mid \mathbf{e}))$

PARTITION

Definition: A collection $\{(C_t, X_t, \sigma_t, w_t)\}_{t=1}^T$ is a **partition** if it can be obtained from the following algorithm:

Algorithm 1: Partition Algorithm

```
Let t := 1 and \Theta_1 := \Theta

while \Theta_t \neq \varnothing

| let (C_t, X_t, \sigma_t, w_t) be a coalition in restricted game with type space \Theta_t

let \Theta_{t+1} := \Theta_t \setminus C_t and t := t+1
```

end

- ▶ algorithm terminates in $T \leq |\Theta|$ steps since each C_t is non-empty
- we say that σ such that $\sigma|_{C_t} = \sigma_t$ for each t is the <u>partition strategy</u> associated with $\{(C_t, X_t, \sigma_t, w_t)\}_{t=1}^T$

PARTITION: EXAMPLE

$$\Theta = \{\theta_1, \theta_2\} \qquad M(\theta_1) = \{\varnothing\} \quad M(\theta_2) = \{\varnothing, \boldsymbol{e}\} \qquad \mu = Pr(\theta = \theta_2)$$

PBE STRATEGY

<u>Definition</u>: a Sender's strategy $\sigma: \Theta \to \Delta \mathcal{M}$ is a <u>PBE strategy</u> if there exists a Receiver's belief system $\mu: \mathcal{M} \to \Delta \Theta$ such that

- $\blacktriangleright \ \forall \theta \in \Theta, \, \sigma(\cdot \mid \theta) \text{ is supported on } \arg \max_{m \in M(\theta)} v(\mu(\cdot \mid m))$
- $\triangleright \mu$ is obtained from μ^0 , given m, using Bayes' rule, for all m used with positive probability on equilibrium path

PBE CHARACTERIZATION

Proposition 1

 σ is PBE strategy $\iff \sigma$ is associated with partition $\{(C_t, X_t, \sigma_t, w_t)\}_{t=1}^T$ such that $w_1 > \ldots > w_T$ and

$$(\mathbf{IR}) \ w_t \ge \underline{v}(\theta) := \max_{m \in M(\theta)} \min_{\mu(\cdot|m) \text{ feasible}} v(\mu(\cdot|m)) \quad \text{for all } t \text{ and } \theta \in C_t$$

Coalition Proofness

<u>Definition</u>: Let σ be a strategy associated with partition $\{(C_t, X_t, \sigma_t, w_t)\}_{t=1}^T$

- $(\widetilde{C}, \widetilde{X}, \widetilde{\sigma}, \widetilde{w})$ is a <u>blocking coalition</u> of σ if it is a coalition of the restricted game with type space $\bigcup_{t:w_{\bullet}<\widetilde{w}} C_{t}$
- \triangleright σ is coalition-proof if there are no blocking coalitions

coalition-proof strategies rule out coalitional deviations

- ▶ types in \widetilde{C} announce that they switch to strategy $\widetilde{\sigma}:\widetilde{C}\to\Delta\widetilde{X}$
- ightharpoonup if R believes this announcement, types in \widetilde{C} receive \widetilde{w}
- ▶ types in \widetilde{C} must be exactly those who have access to at least one message in \widetilde{X} and benefit from the deviation

GREEDY PARTITION

Algorithm 2: Greedy Partition Algorithm

Let t := 1 and $\Theta_1 := \Theta$

while $\Theta_t \neq \emptyset$

let W_t be the set of payoffs attainable by coalitions of the restricted game with type space Θ_t ;

let $(C_t, X_t, \sigma_t, w_t)$ be a coalition s.t. $w_t = \max(W_t \cap [\max_{\theta \in \Theta_t} \underline{v}(\theta), w_{t-1}]);$

let $\Theta_{t+1} := \Theta_t \setminus C_t$ and t := t+1;

end

COALITION-PROOF PBE STRATEGIES

Proposition 2

 $\{(C_t, X_t, \sigma_t, w_t)\}_{t=1}^T$ is a greedy partition \iff the associated strategy is **PBE** and coalition-proof.

I. Quasiconcave v and Complete M

<u>Definition</u>: Message mapping M is <u>complete</u> if for any two messages $m, m' \in M$, there exists $m'' \in M$ such that

$$M^{-1}(\{m''\}) = M^{-1}(\{m\}) \cup M^{-1}(\{m'\})$$

- ▶ if there is a way to say "my type is in A" (message m)
- ▶ and a way to say "my type is in B" (m')
- ▶ then there is a way to say "my type is in A or B" (m'')

I: Quasiconcave v and Complete M

Theorem 1

If \underline{v} is quasiconcave and \underline{M} is complete, then there exists a coalition-proof PBE. If, in addition,

- ightharpoonup v is strictly quasiconcave, then Greedy Algorithm always terminates
- ▶ v is generic (such that $v(\mu_C^0) = v(\mu_{C'}^0)$ only if C = C'), then all coalition-proof PBE are payoff-equivalent

proof sketch:

▶ show (by contradiction) that at each step of Greedy Algorithm, $\max W_t \leq w_{t-1}$ — otherwise, there exists a coalition of types in $C_{t-1} \cup C_t$ that pays more than w_{t-1}

II. Betweenness of v

v satisfies betweenness if it is both quasiconcave and quasiconvex

Theorem 2

If v satisfies <u>betweenness</u>, then there exists a coalition-proof PBE. If, in addition,

- ightharpoonup v satisfies strict betweenness, then Greedy Algorithm always terminates
- ▶ v is generic (such that $v(\mu_C^0) = v(\mu_{C'}^0)$ only if C = C'), then all coalition-proof PBE are payoff-equivalent

III: ADDING CHEAP TALK

Definition: Message mapping M satisfies cheap talk property if for each message $m \in \mathcal{M}$ there are at least n messages $m' \in \mathcal{M}$ (including m) such that $M^{-1}(\{m'\}) = M^{-1}(\{m\})$.

- ▶ any message mapping can be augmented with a second dimension so that Sender has access to verifiable information and cheap talk
- \blacktriangleright employ Lipnowski & Ravid (2020) cheap talk quasiconcavifies v

Theorem 3

If \underline{M} is complete and satisfies $\underline{\text{cheap talk}}$ property, then there exists a coalition-proof PBE.

GEOMETRIC CHARACTERIZATION: RICH MESSAGE SPACE

RICH MESSAGE SPACE

<u>Motivation</u>: let us find the "most" coalition-proof partition when message space is maximally rich

▶ for each vector of probabilities (p_1, \ldots, p_n) , there is a message m only accessible to fractions p_1, \ldots, p_n of type $\theta_1, \ldots, \theta_n$ respectively

Result: a geometric characterization (tent) of coalition-proof PBE

▶ comparable to *concave closure* (Kamenica & Gentzkow, 2011) and *quasiconcave envelope* (Lipnowski & Ravid, 2020)

RICH MESSAGE SPACE: COALITION-PROOF PBE

Let
$$\mu^{*1} = \underset{\mu \in \Delta \Theta}{\operatorname{arg}} \max_{\mu \in \Delta \Theta} v(\mu)$$
 (assumed unique)

- \triangleright payoff $v(\mu^{*1})$ must be attained in first coalition
- \triangleright some type θ_i attains it with probability 1

Let μ^{*2} be the argmax (assumed unique) of $v(\mu)$ s.t. $\mu(\theta_i) = 0$

- ▶ payoff $v(\mu^{*2})$ is attained in second coalition
- \triangleright some type θ_j attains it with probability 1

and so on

TENT: TWO TYPES

in coalition-proof PBE for this v, Sender does as well as under Bayesian Persuasion and better than under Cheap Talk

TENT: TWO TYPES

in coalition-proof PBE for this v, Sender does worse than under Cheap Talk and BP

TENT: THREE TYPES

Conclusion

We show that all PBE strategies in verifiable disclosure games belong to a certain class

▶ partitions into coalitions

We focus on coalition-proof PBEs

- ▶ algorithmic characterization
- ▶ theorems for existence
- ▶ geometric characterization when message space is rich

Thank You!