Die 2. Fundamentalform ScR³ orientierbare regulaire Fläcke mit glattem Einheitsnormalenfeld N.

Gaurs-Abb.: N: S-> 52

Interesse: Anderung des Normalenvellors bei infinitiseinaler Anderung der Position auf S. (Tur Vrummings notwendig!)

Sei $p \in S$. $d_p N : T_p S \rightarrow T_{N(p)} S^2$ (Differential)

mit $d_p N(X) = \frac{d}{dt} (N \circ c)|_{t=0}$, wobsei

c glothe parametrisierte Kurve: $c : (-\varepsilon, \varepsilon) \rightarrow S$, c(0) = p, c(0) = X

 $\frac{T_{N(P)}S^{2}=N(P)^{\perp}=T_{P}S}{=}$

Def: (Weingarten-Abbildung)

Sei SCR3 regulare Flacle mit Orientverning gegeben durch d. Einheitsnormalenfeld N.

Wp: Tp S -> Tp S (Endomorphismus) $\omega_p(X) = -d_p N(X)$

Bsp.: (x-y-Ebene)

 $S = \{(x, y, 0)^T | x, y \in \mathbb{R}^{3} \Rightarrow N(x, y, z) = (0, 0, 1)^T$

Formal: $W_p(X) = -\frac{d}{dt}(N \circ c)|_{t=0} = -\frac{d}{ott}N = -\frac{d}{dt}\begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0$

Bsp: (Einheitssphörre)

$$S = S^{2} \Rightarrow N(p) = p \quad (\overline{auseres} \quad \overline{Einheitsmormolenfull})$$

$$W_{p}(X) = -\frac{d}{dt} (N \circ c)|_{t=0} = -\frac{d}{dt} N(c(t))|_{t=0} =$$

$$= -\frac{d}{dt} c(t)|_{t=0} = -c(t)|_{t=0} = -c(0) =$$

$$= -X$$

$$\Rightarrow W_{p} = -1d = -1 \quad (\overline{Einheitsmatrie})$$

sp: (Zylinder)

Bsp.:
$$(2ylinder)$$

$$S = S^{1} \times \mathbb{R} \Rightarrow N(x, y, z) = (x, y, 0)^{T}$$

$$y = (x, y, 0)^{T}$$

$$y = (x, y, 0)^{T}$$

$$y = (x, y, 0)^{T}$$

$$T_{p}S = \left[\begin{pmatrix} x \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 9 \end{pmatrix} \right]$$

$$W_{p} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = -\frac{d}{dt} N \circ C \mid_{t=0} = -\frac{d}{dt} N \begin{pmatrix} x \\ y \\ 2+t \end{pmatrix} \mid_{t=0} =$$

$$C(t) = \begin{pmatrix} x \\ y \\ 2+t \end{pmatrix}, \quad C(0) = \begin{pmatrix} x \\ y \\ 2 \end{pmatrix}, \quad C(0) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$=-\frac{d}{dt}\left(\frac{-\gamma}{\delta}\right)_{t=0}=\left(\frac{0}{\delta}\right)$$

$$\begin{aligned}
& \mathcal{W}_{p} \begin{pmatrix} -y \\ z \end{pmatrix} = -\frac{d}{dt} \, \mathcal{N} \begin{pmatrix} \cos(t+t_{0}) \\ \sin(t+t_{0}) \\ +\omega \end{pmatrix} = \\
& \mathcal{W}_{p} \begin{pmatrix} -y \\ z \end{pmatrix} = -\frac{d}{dt} \, \mathcal{N} \begin{pmatrix} \cos(t+t_{0}) \\ \sin(t+t_{0}) \\ +\omega \end{pmatrix} \begin{pmatrix} \cos(t_{0}) \\ \sin(t+t_{0}) \\ -\omega \end{pmatrix} \begin{pmatrix} \cos(t+t_{0}) \\ \cos(t+t_{0}) \\ -\omega \end{pmatrix} \begin{pmatrix} \cos(t+t_{0}) \\ \cos(t+t_{0}) \\ -\omega \end{pmatrix} \begin{pmatrix} -y \\ z \end{pmatrix}$$

Satz von Meusnier S = R³ eine orientierbare regulière Thacks mit Einheitmormalenfeld N und 2 Tund form II. Sei $p \in S$, $C: (-\varepsilon, \varepsilon) \rightarrow S$ eine nach BL param. Curve mit c(0) = p. Dans gill fior die Mormalerummung Know von C: $\mathcal{K}_{nor} = II(\dot{c}(0),\dot{c}(0))$ Insbes. haben alle YBL param. Kunen is 5 durch p mis demselben Tangentialvellor dieselle Mormolkrummuy. Beweis: c verlauft in S => (N(c(+)), c(+)) =0 Hte(-E,E) $O = \frac{d}{dt} \left\langle N(c(t)), c(t) \right\rangle |_{t=0}$ = { dp N(c(0)), c(0)) + (N(p), c(0)) = {- Wp (c(0)), c(0)} + Knor = - II (c(0), c(0)) + Wnov (=) II(c(0), c(0)) = 26non

q. e. d.

 $S \subset \mathbb{R}^3$ orientierbare regulare Flache, N Einheitmorm. fild $p \in S$, $X \in T_p S$ mid Large 1, V Umg von p in \mathbb{R}^3

Nach Salt o. Meusnier bann man zur Berechnung der Normalbrummung $\Pi(X,X)$ die nach DL parem. Nurve c verwenden, die $S \cap E \cap V$ Benbreibl.

 \Rightarrow c hans als elsere Unive aufgefast werden mit Warrennormalenvektor $n(o) = \pm N(P)$

=> $II(X,X) = \pm \mathcal{U}(0) = \mathcal{U}_{non}$ (\mathcal{U}_{non} (\mathcal{U}_{non}) \mathcal{U}_{non} \mathcal{U}_{non}

Weis:
$$c(t) = \left(\cos\left(t + t_o\right)\right)$$

 $\dot{c}(t) = \left(-\cos\left(t + t_o\right)\right)$
 $\dot{c}(t) = \mathcal{C}(0) \cdot n(t)$
 $\dot{c}(t) = \mathcal{C}(0) \cdot n(t)$
 $\dot{c}(t) = \cos\left(t + t_o\right)$
 $\dot{c}(t) = \cos\left(t + t_o\right)$

$$W_{\rho}: T_{\rho}S \rightarrow T_{\rho}S$$
 selbstadj $\Rightarrow \exists X_{n_{1}}X_{2}: X_{n_{1}}X_{2}$ bilden

ONB von $T_{\rho}S$ aus $EV_{\alpha}W_{\rho}$.

=) $W_{\rho}(X_{i}) = \chi_{i} \cdot \chi_{i}$, $i = 1,2$