Examen final de SIN: Test del bloque 2 (1,75 puntos)

ETSINF, Universitat Politècnica de València, 16 de enero de 2024

Grupo, apellidos y nombre: 1,

Marca cada recuadro con una única opción. Puntuación: $\max(0, (\text{aciertos} - \text{errores}/3) \cdot 1, 75/9)$.

En un problema de razonamiento probabilístico correspondiente a diagnóstico de gripe, las variables aleatorias de interés son: Gripe (G):{positivo (POS), negativo (NEG)}; Ventilación (V):{alta (ALT), baja (BAJ)}; Actividad (A):{silencio (SIL), hablando (HAB), ejercicio (EJE)}. La probabilidad conjunta de las tres variables viene dada en la tabla siguiente:

		ALT			BAJ	
P(g, v, a)	SIL	HAB	EJE	SIL	HAB	EJE
POS	0.01	0.01	0.02	0.01	0.03	0.05
$\overline{\text{NEG}}$	0.29	0.20	0.10	0.14	0.09	0.05

La probabilidad condicional $P(G = POS \mid V = ALT, A = SIL)$ es:

- A) $P \le 0.25$
- B) $0.25 < P \le 0.50$
- C) $0.50 < P \le 0.75$
- D) $0.75 < P \le 1.0$

2 \square Sea \mathbf{x} un objeto a clasificar en una clase de C posibles. Indica cuál de los siguientes clasificadores no es de error mínimo (o escoge la última opción si los tres son de error mínimo):

A)
$$c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{arg \, min}} - \log p(c \mid \mathbf{x})$$

B)
$$c(\mathbf{x}) = \underset{c=1}{\operatorname{arg\,max}} e^{p(c|\mathbf{x})}$$

C)
$$c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{arg max}} e^{p(\mathbf{x},c)} - e^{p(\mathbf{x})}$$

D) Los tres clasificadores anteriores son de error mínimo.

Sea un problema de clasificación en tres clases para datos del tipo $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, con las distribuciones de probabilidad de la tabla. Indica en qué intervalo se halla el error del clasificador $c(\mathbf{x})$ dado en la tabla, ε :

A)
$$\varepsilon < 0.25$$
.

B)
$$0.25 \le \varepsilon < 0.50$$
.

C)
$$0.50 \le \varepsilon < 0.75$$
.

D)
$$0.75 \leq \varepsilon$$
.

\mathbf{x}	$P(c \mid \mathbf{x})$		
$x_1 x_2$	$c=1 \ c=2 \ c=3$	$P(\mathbf{x})$	$c(\mathbf{x})$
0 0	0.5 0.4 0.1	0.2	2
0 1	0.1 0.8 0.1	0.2	3
1 0	0.3 0.6 0.1	0.2	2
1 1	0.5 0.4 0.1	0.4	3

- 4 Supóngase que estamos aplicando el algoritmo Perceptrón, con factor de aprendizaje $\alpha=1$ y margen b=0.1, a un conjunto de 3 muestras bidimensionales de aprendizaje para un problema de 2 clases. Tras procesar las primeras 2 muestras se han obtenido los vectores de pesos $\mathbf{w}_1=(0,0,-2)^t$, $\mathbf{w}_2=(0,0,2)^t$. A continuación, se procesa la última muestra (\mathbf{x}_3,c_3) y se obtienen los vectores de pesos $\mathbf{w}_1=(1,1,-1)^t$, $\mathbf{w}_2=(-1,-1,1)^t$, ¿cuál de las siguientes es esa última muestra?
 - A) $((2,3)^t,1)$
 - B) $((1,1)^t,1)$
 - C) $((2,1)^t,2)$
 - D) $((2,5)^t,2)$
- 5 Dado el clasificador en 2 clases definido por sus vectores de pesos $\mathbf{w}_1 = (-1, 3, 1, -3)^t$, $\mathbf{w}_2 = (-3, -2, 2, 2)^t$ en notación homogénea, ¿cuál de los siguientes conjuntos de vectores **no** define un clasificador equivalente al dado?
 - A) $\mathbf{w}_1 = (0, 3, 1, -3)^t, \, \mathbf{w}_2 = (-2, -2, 2, 2)^t$
 - B) $\mathbf{w}_1 = (-2, 9, 3, -9)^t, \mathbf{w}_2 = (-8, -6, 6, 6)^t$
 - C) $\mathbf{w}_1 = (-3, 9, 3, -9)^t, \mathbf{w}_2 = (-9, -6, 6, 6)^t$
 - D) $\mathbf{w}_1 = (2, -6, -2, 6)^t, \mathbf{w}_2 = (6, 4, -4, -4)^t$
- 6 Indica cuál de las siguientes afirmaciones sobre regresión logística es *incorrecta* (o escoge la última opción si las tres primeras son correctas):
 - A) Regresión logística es un modelo probabilístico de clasificación basado en la función softmax
 - B) Al tratarse de un modelo probabilístico de clasificación, regresión logística permite aplicar reglas de decisión más generales que la MAP (decidirse por la clase de máxima probabilidad a posteriori)
 - C) Al tratarse de un modelo probabilístico de clasificación, regresión logística permite plantear su aprendizaje probabilísticamente, con criterios estándar como máxima verosimilitud
 - D) Las tres afirmaciones anteriores son correctas

7 Dado el conjunto de muestras de 2 clases (o y •) de la figura de la derecha, ¿cuál de los siguientes árboles de clasificación es coherente con la partición representada?

- Supóngase que estamos aplicando el algoritmo de aprendizaje de árboles de clasificación para un problema de 3 clases, c=1,2,3. El algoritmo ha alcanzado un nodo t que ha sido dividido en un nodo izquierdo con 2 muestras de la clase 1, 0 muestras de la clase 2 y 3 muestras de la clase 3; y un nodo derecho con 0 muestras de la clase 1, 1 muestra de la clase 2 y 0 muestras de la clase 3. ¿Qué decremento de impureza se ha conseguido con esta partición?
 - A) $0.00 \le \Delta \mathcal{I} < 0.25$.
 - B) $0.25 \le \Delta \mathcal{I} < 0.50$.
 - C) $0.50 \le \Delta \mathcal{I} < 0.75$.
 - D) $0.75 \leq \Delta \mathcal{I}$.
- 9 Se tiene una partición de un conjunto de datos 3-dimensionales en un número de clústers dado, $C \geq 2$. Considérese la transferencia del dato $\mathbf{x} = (4,3,5)^t$ de un clúster i a otro $j, j \neq i$. Se sabe que el clúster i contiene 4 datos (contando \mathbf{x}) y el j 3. Asimismo, se sabe que la media del clúster i es $\mathbf{m}_i = (3,8,8)^t$ y la del j $\mathbf{m}_j = (10,9,10)^t$. Si se realiza dicha transferencia, se producirá un incremento de la suma de errores cuadráticos, ΔJ , tal que:
 - A) $\Delta J < -70$
 - B) $-70 \le \Delta J < -30$
 - C) $-30 \le \Delta J < 0$
 - D) $\Delta J \ge 0$

Examen final de SIN: Problema del bloque 2 (2 puntos)

ETSINF, Universitat Politècnica de València, 16 de enero de 2024

Grupo, apellidos y nombre: 1,

Problema sobre regresión logística

La siguiente tabla presenta un conjunto de 2 muestras de entrenamiento de 2 dimensiones procedentes de 2 clases:

n	x_{n1}	x_{n2}	c_n
1	1	1	2
2	0	1	1

Adicionalmente, la siguiente tabla representa una matriz de pesos iniciales con los pesos de cada clase dispuestos por columnas:

\mathbf{w}_1	\mathbf{w}_2
0.	0.
-0.25	0.25
0.	0.

Se pide:

- 1. (0.5 puntos) Calcula el vector de logits asociado a cada muestra de entrenamiento.
- 2. (0.25 puntos) Aplica la función softmax al vector de logits de cada muestra de entrenamiento.
- 3. (0.25 puntos) Clasifica todas las muestras de entrenamiento. En caso de empate, elige cualquier clase.
- 4. (0.5 puntos) Calcula el gradiente de la función NLL en el punto de la matriz de pesos iniciales.
- 5. (0.5 puntos) Actualiza la matriz de pesos iniciales aplicando descenso por gradiente con factor de aprendizaje $\eta=1.0$.