EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

09203806

PUBLICATION DATE

05-08-97

APPLICATION DATE

29-01-96

APPLICATION NUMBER

08012576

APPLICANT: MITSUBISHI CHEM CORP;

INVENTOR: TAKASAKI RYUICHIRO;

INT.CL.

: G02B 5/20 C09D133/02 C09K 3/00 G02F 1/1335 G03F 7/004 G03F 7/028 G03F

7/039

TITLE

NEGATIVE TYPE PHOTOSENSITIVE COMPOSITION FOR COLOR FILTER

ABSTRACT :

PROBLEM TO BE SOLVED: To provide a negative type photosensitive compsn. for color filter which is not affected by oxygen at the time of exposure, has high sensitivity and excellent chemical resistance and makes image formation possible even at a high pigment concn. by incorporating an acrylic resin having a carboxyl group, a photo-acid generating agent, a crosslinking agent having a curing effect by the effect of an acid and pigments.

SOLUTION: This compsn. contains the acrylic resin having the carboxyl group, the photo-acid generating agent, the crosslinking agent having the curing effect by the effect of the acid, the pigments and a solvent. A copolymer of a monomer having the carboxyl group, such as (meth)acrylic acid and meleic (anhydride) and a comonomer copolmeriable therewith is used as the acrylic resin having the carboxyl group. The photo-acid generating agent is a compd. to generate the acid by UV light and includes an org. halogen compd., onium salt, etc. The crosslinking agent having the curing effect by the effect of the acid includes the compds. acted with melamine, benzoguanamine, etc. The pigments include org. pigments, such as barium sulfate and sulfate, etc.

COPYRIGHT: (C)1997,JPO

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-203806

(43)公開日 平成9年(1997)8月5日

(F1) 7 . (7) 6		28m/27 E	台市地田3 4日	FI					技術表示簡別
(51) Int.Cl. ⁶		識別記号	庁内整理番号		_	m /eo		101	汉内汉八八国门
G 0 2 B	5/20	101		G 0 2 1		5/20			
C09D1	33/02	PGG		C 0 9 1				PGG	
C 0 9 K	3/00			C 0 9 1	K	3/00		K	
G02F	1/1335	505		G 0 2	F	1/1335		505	
G03F	7/004	503		G 0 3	F	7/004		503	
			審查請求	未請求	來	項の数 7	OL	(全 16 頁)	最終頁に続く
(21) 出願番号	}	特願平8-12576		(71)出	顧人		5968 公学株式	Δ 2 L	
									C1 F 44 O E
(22)出顧日		平成8年(1996)1	月29日	(700) 700	ماد جدد			区丸の内二丁	日3倍2万
				(72)発	男者		• •	f do aldo amo mile l .	market and the
								市青菜区鴨志 会社横浜総合	
				(72)発	明者	高橋	龍		
				(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7. H				田町1000番地
								会社横浜総合	
				(7.1) (1)	.			川中城市	פוועשכוש
				(14)10	理人	、升程工	. X1	/ii 1982 Fij	

(54) 【発明の名称】 カラーフィルター用ネガ型感光性組成物

(57)【要約】

【課題】 露光に対して高感度で重合性に優れ、高濃度 顔料においても硬化し、かつ耐薬品性に優れたカラーフ ィルター用ネガ型感光性組成物。

【解決手段】 a) カルボキシル基を含有するアクリル 樹脂、b)光酸発生剤、c)酸の作用により硬化作用を 有する架橋剤、d)顔料及びe)溶剤を含有するカラー フィルター用ネガ型感光性組成物。

【特許請求の範囲】

【請求項1】 a)カルボキシル基を含有するアクリル樹脂、b)光酸発生剤、c)酸の作用により硬化作用を有する架橋剤、d)顔料及びe)溶剤を含有することを特徴とするカラーフィルター用ネガ型感光性組成物。

【請求項2】 a)アクリル樹脂が少なくともスチレンおよび(メタ)アクリル酸をその構成成分とする請求項1記載のカラーフィルター用ネガ型感光性組成物。

【請求項3】 b)光酸発生剤がハロメチル化トリアジンまたはハロメチル化オキサジアゾール化合物である請求項1記載のカラーフィルター用ネガ型感光性組成物。

【請求項4】 c)架橋剤がメラミン樹脂または尿素樹脂である請求項1記載のカラーフィルター用ネガ型感光性組成物。

【請求項5】 d) 顔料がアントラキノン、フタロシアニン、ジオキサジンまたはカーボンブラックである請求項1記載のカラーフィルター用ネガ型感光性組成物。

【請求項6】 全固形分中の顔料濃度が25~60%である請求項1記載のカラーフィルター用ネガ型感光性組成物。

【請求項7】 a) アクリル樹脂が樹脂側鎖にエチレン 性2重結合を有する請求項1記載のカラーフィルター用 ネガ型感光性組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、液晶の表示装置または固体撮像素子と組み合わせて用いるカラーフィルターの製造に好適なネガ型感光性組成物である。赤、青、緑の着色パターンおよびブラックマトリックスとなる黒色パターン形成に好適に使用できる。

[0002]

【従来の技術】カラーフィルターは染色法、印刷法、電着法、顔料分散法などによりガラス等の透明基板上に赤、緑、青、などの画素を形成したものが用いられている。また、カラーフィルターのコントラストを向上させるために、着色画像の間にブラックマトリックスと呼ばれる黒色パターンを配置する場合もある。染色法によるカラーフィルターはゼラチンやポリビニルアルコールなどに感光剤として重クロム酸塩を混合した感光性樹脂により画像を形成した後、染色して製造される。多色を同一基板に形成するためには、防染工程が必須であり、工程が複雑になる問題点がある。また、染料を使用しているため耐候性に劣る。感光剤として用いる重クロム酸は公害防止の観点からも問題である。

【0003】印刷法によるカラーフィルターはスクリーン印刷またはフレキソ印刷などの方法で、熱硬化または光硬化インキをガラス基板に転写させる。画像形成、染色が不要であるため工程が簡略である反面、高精細な画像が得られず、インキの平滑性にも問題がある。電着法によるカラーフィルターは、顔料または染料を含んだ浴

に電極をもうけたガラス基板を浸し電気泳動により色相を付着させるものである。平滑性に優れるが、あらかじめ、ガラス基板に電極が必要なため、複雑なパターンを 形成させるのが困難である。

【0004】顔料分散法は光硬化性樹脂に顔料を分散さ せた着色感光性組成物により画像を形成する。高耐熱 性、染色がいらないなどの利点があり、また、高精度な 画像形成が可能なため現在カラーフィルター製造の主流 となっている。しかし、高濃度で顔料を分散させた着色 感光性組成物を使用するため光硬化性に劣り感度が低 く、また、耐薬品性も低いため作業性において大きな問 題点を有している。ブラックマトリックスはガラス基板 全体にクロムを蒸着し、エッティング処理により形成す るのが一般的である。この方法は、クロムを使用してい るため、高コスト、高反射率であり、廃液処理にも問題 を有している。このため、黒色顔料を有した感光性組成 物でブラックマトリックスを形成する方法が検討されて きているが、着色感光性組成物の場合以上に感度低下が 大きく、高濃度に顔料を添加すると画像形成ができなく なる問題を有している。従って、黒色レジストで形成す るブラックマトリックスは、顔料濃度を低濃度に抑制し なければならず、コントラストが低下する問題点を有し ていた。

[0005]

【発明が解決しようとする課題】従来、赤、青、緑、黒等の顔料を分散させた着色感光性組成物でパターン形成を行う場合、顔料により強い光吸収が起こる上に酸素による硬化阻害もうけるため著しく感度が低く、硬化が困難であった。このため、画像を形成するためには長い露光時間が必要であり作業効率が著しく悪く、また、酸素による硬化阻害を防ぐためには感光性組成物膜上にさらに酸素遮断の保護膜を形成する必要があり一層プロセスを複雑にする要因となっていた。

【0006】さらに、このようにして形成された画像は 光硬化が十分でないため、耐熱性、耐薬品性に劣り、液 晶の配向膜となるポリイミド膜を形成する際には着色画 像の保護を必要としていた。また、ブラックマトリック ス形成の場合には以上の問題点が、さらに、深刻となる ため顔料濃度を抑制する必要性が生じ、コントラストを 十分確保できない問題点を有していた。本発明の目的は 上記にあげた従来の着色感光性樹脂の問題点を解決し、 高感度、耐薬品性に優れたカラーフィルター用ネガ型感 光性組成物を提供することにある。

[0007]

【課題を解決するための手段】本発明者らは鋭意研究を進めた結果、a)カルボキシル基を含有するアクリル樹脂、b)光酸発生剤、c)酸の作用により硬化作用を有する架橋剤及びd)顔料を含有するカラーフィルター用ネガ型感光性組成物が高感度であり、かつ、耐薬品性にも優れることを見い出し本発明を完成するに至った。

[8000]

【発明の実施の形態】本発明に用いられる、a)カルボ キシル基を含有するアクリル樹脂は、具体的には、(メ タ)アクリル酸、(無水)マレイン酸、クロトン酸、イ タコン酸、フマル酸、などのカルボキシル基を有するモ ノマーとこれ等と共重合可能なコモノマーとの共重合体 が用いられる。カルボキシ基を有するモノマーと反応性 のコモノマーとしては、一般にビニルモノマー等の炭素 ・炭素二重結合を有するモノマーが使用でき、具体的に は、スチレン、α-メチルスチレン、(メタ)アクリル 酸メチル、(メタ) アクリル酸エチル、(メタ) アクリ ル酸プロピル、(メタ)アクリル酸イソプロピル、(メ タ) アクリル酸ブチル、酢酸ビニル、アクリロニトリ ル、(メタ)アクリルアミド、グリシジル(メタ)アク リレート、アリルグリシジルエーテル、エチルアクリル 酸グリシジル、クロトニルグリシジルエーテル、クロト ン酸グリシジルエーテル、(メタ)アクリル酸クロライ ド、ベンジル (メタ) アクリレート、ヒドロキシエチル (メタ) アクリレート、N-メチロールアクリルアミ ド、N, N-ジメチルアクリルアミド、N-メタクリロ イルモルホリン、N, N-ジメチルアミノエチル(メ タ) アクリレート、N, N-ジメチルアミノエチルアク リルアミド、などのコモノマーを共重合させたバインダ ーポリマーが挙げられる。

【0009】なお、カルボキシル基を有するモノマーとして(メタ)アクリル酸以外のモノマーを選択した場合、そのコモノマーとしては、(メタ)アクリル酸エステル、(メタ)アクリル酸アミド、等の(メタ)アクリル酸誘導体あるいはこれと他のコモノマー混合物が用いられる。得られたアクリル樹脂中の構成比としては、(メタ)アクリル酸とその誘導体の合計量が5~80モ

(メタ) アクリル酸とその誘導体の合計量が5~80モル%、好ましくは10~75モル%とすることが望ましい。特に、(メタ) アクリル酸およびスチレンから実質的になるバインダーポリマーが好ましい。

【0010】また、これらの樹脂側鎖にエチレン性2重結合を付加させることもできる。エチレン性2重結合を導入する合成手段として、例えば、特公50-34443などに記載の方法等が挙げられる。具体的には、アクリル樹脂に含有されるグリシジル基、カルボキシル基あるいは水酸基にグリシジル基、エポキシシクロヘキシル基および(メタ)アクリロイル基を併せ持つ化合物やアクリル酸クロライドなどを反応させる方法が挙げられる。例えば、(メタ)アクリル酸グリシジル、アリルグリシジルエーテル、αーエチルアクリル酸グリシジル、クロトニルグリシジルエーテル、

(イソ)クロトン酸グリシジルエーテル、(3,4-エボキシシクロヘキシル)メチル(メタ)アクリレート、(メタ)アクリル酸クロライド、(メタ)アリルクロライドなどの化合物を使用し、カルボキシル基や水酸基を有する樹脂に反応させることにより側鎖に重合基を有する樹脂を得ることができる。エチレン性2重結合は、アクリル樹脂の骨格を形成するモノマー100分子当り2~50個、好ましくは3~45個、特に好ましくは4~40個を有することが望ましい。

【0011】こうして得られたアクリル樹脂のGPCで 測定した重量分子量の好ましい範囲は1000~10000である。重量平均分子量が1000以下であると 均一な塗膜をえるのが難しく、また、100000を超えると現像性が低下する傾向がある。また、カルボキシル基の好ましい含有量の範囲は酸価で5~200、更に 好ましくは10~180である。酸価が5以下であると アルカリ現像液に不溶となり、また、200を超えると 密度が低下することがある。本発明b)光酸発生剤は、紫外光により酸を発生させる化合物であり、有機ハロゲン化合物、オニウム塩、スルホン酸エステル等が挙げられる。これらのなかでは有機ハロゲン化合物が好ましく、特に、ハロメチル化トリアジン、ハロメチル化オキサジアゾール化合物が好ましい。具体的にはハロメチル化トリアジン化合物は一般式(1)で示される。

[0012]

【化1】

$$Y = N = N$$

$$R^{2}$$
(1)

【0013】(式中 R^1 及び R^2 は、ハロメチル基であり、Yは炭素数5以上の有機基である。)

ハロメチル基としては、例えばトリクロロメチル基、トリブロモメチル基、ジクロロメチル基、ジブロモメチル基などがあり、炭素数5以上の有機基としては、例えば置換基を有していてもよい、フェニル基、ナフチル基、スチリル基、スチリルフェニル基、フリルビニル基、四級化アミノエチルアミノ基などがある。ハロメチル化トリアジン化合物の具体例としては、以下の式(2)~(23)で示される化合物がある。

[0014]

【化2】

$$CH = CH - N - CCl_3$$

$$CCl_3$$

$$CCl_3$$

$$CH_30 \longrightarrow N \longrightarrow N$$

$$CC1_3$$

$$CC1_3$$

$$H_3C - CH = CH - N - CC1_3$$

$$CC1_3$$

$$CC1_3$$

$$CH_30 \longrightarrow CH = CH \longrightarrow N \longrightarrow CC1_3$$

$$CC1_3$$

$$CC1_3$$

[0015]

$$CH_30 \longrightarrow N \longrightarrow VCCI_3$$

$$CH = CH - N - CC1_3$$

$$CH = CH - CC1_3$$

$$CC1_3$$

$$CCI_3$$

$$CCI_3$$

$$CCI_3$$

$$CH_{3}SO_{4}^{-}(Me)_{3} \stackrel{+}{N}CH_{2}CH_{2}NH \stackrel{N}{\longrightarrow} N$$

$$CCl_{3}$$

$$CCl_{3}$$

[0016]

【化4】

$$CH_3O \longrightarrow CH = CH \longrightarrow N \longrightarrow CCl_3$$

$$CCl_3$$

$$CCl_3$$

$$CCl_3$$

$$HO \longrightarrow CH = CH \longrightarrow N \longrightarrow CC1^{3}$$

$$CC1^{3}$$

$$CC1^{3}$$

$$HO \longrightarrow CH = CH \longrightarrow N \longrightarrow CC1_3$$

$$CC1_3$$

$$CC1_3$$

$$HO \longrightarrow CH = CH \longrightarrow N \longrightarrow CCI_3$$

$$CCI_3$$

$$CCI_3$$

【0017】 【化5】

$$H0 \longrightarrow N \longrightarrow N$$

$$CC1_{3}$$

$$CC1_{3}$$

$$CH = CH - N - CC1_3$$

$$CC1_3$$

$$CC1_3$$

[0018] 【化6]

$$C1 \xrightarrow{N} N \xrightarrow{CC1_3} (18)$$

$$\begin{array}{c} \text{CH}_3\text{O} \\ \text{CH}_3\text{O} \\ \text{CH}_3\text{O} \end{array} \begin{array}{c} \text{CC1}_3 \\ \text{N} \\ \text{CC1}_3 \end{array} \tag{20}$$

$$CH_3S - CH = CH - N - CC1_3$$

$$CC1_3$$

$$CC1_3$$

[0019] $\begin{array}{c} \text{CH}_3\text{O} & \text{CH}=\text{CH} & \text{N} \\ \text{N} & \text{N} \end{array}$

アジン化合物の中でも好ましいものは、以下の一般式 (24)~(26)で示される化合物である。

【0022】式中R1 及びR2 は、ハロメチル基であ

り、Rはそれぞれ独立して炭素数1~4のアルキル基ま

たは炭素数 $1\sim4$ のアルコキシ基であり、nは $0\sim3$ の整数である。

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

【0024】式中R¹ 及びR² は、ハロメチル基であり、Rはそれぞれ独立して炭素数1~4のアルキル基または炭素数1~4のアルコキシ基であり、nは0~3の整数である。

[0025]

【化10】

$$\begin{array}{c} R_{n} \\ \downarrow \\ 0 \end{array}$$
 CH=CH $\begin{array}{c} N \\ \downarrow \\ N \\ \end{array}$ (26)

$$Z \xrightarrow{N-N} R^3$$

【0028】式中R³ は、ハロメチル基であり、乙は置換基を有していてもよいベンゾフリル基またはベンゾフリルビニル基である。ハロメチル化オキサジアゾール化合物の具体例としては、以下の式(28)~(45)で

【0023】 【化9】

(25)

【0026】式中 R^1 及び R^2 は、ハロメチル基であり、Rはそれぞれ独立して炭素数 $1\sim 4$ のアルキル基であり、nは $0\sim 1$ の整数である。一般式(24) \sim (26)で示される化合物の中でも好ましいものは、 R^1 及び R^2 がトリクロロメチル基であり、Rの炭素数が $1\sim 2$ であり、一般式(24)、(25)ではnが $0\sim 2$ の整数であり、一般式(26)は $0\sim 1$ の整数である化合物である。ハロメチル化オキサジアゾール化合物は、一般式(27)で示される。

【0027】 【化11】

(27)

示される化合物がある。

[0029]

【化12】

$$CH_{\circ}O \longrightarrow CH = CH \longrightarrow CC1_3$$
 (30)

$$CH_3O \longrightarrow CH = CH \longrightarrow N-N$$

$$CC1_3 \qquad (31)$$

$$CH_{2}O$$

$$CH = CH$$

$$O$$

$$CH = CH$$

$$O$$

$$CC1_{3}$$

$$CC1_{3}$$

[0030] 【化13】

$$CH = CH - CH^{0} - CCI^{3}$$
(33)

$$\begin{array}{c|c} NO_2 & & & \\ \hline & & \\ & & \\ \hline & & \\ & & \\ \end{array}$$
 CC1₃ (34)

$$CH = CH - CBr_3$$
 (35)

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

$$CH = CH$$

$$CHBr2$$

$$(3.7)$$

【0031】

$$CH = CH - CC1^{3}$$
(38)

$$(3 9)$$

$$C1 \longrightarrow CH = CH \longrightarrow CC1_3$$

【0033】一般式(27)で示されるハロメチル化オ 【0034】 キサジアゾール化合物の中でも好ましいのは、以下の一 【化16】 般式(46)で示される化合物である。

$$R_{n} \xrightarrow{\qquad \qquad \qquad \qquad } R^{3}$$

【0035】式中、R³ はハロメチル基であり、Rはそれぞれ独立して炭素数1~4のアルキル基または炭素数1~4のアルコキシ基であり、nは0~2の整数である。さらに好ましいのは、R³ がトリクロロメチル基であり、Rがそれぞれ独立して炭素数1~2のアルキル基またはアルコキシ基であり、nが0~1の整数である化合物である。本発明c)酸の作用により硬化作用を有する架橋剤としてはメラミン、ベンゾグアナミン、グリコールウリル又は尿素にホルムアルデヒドを作用させた化合物またはそれらのアルキル変性化合物、エポキシ化合物、レゾール化合物等が挙げられる。

【0036】具体的には、三井サイアナミド社のサイメ ル (登録商標) 300、301、303、350、73 6,738,370,771,325,327,70 3、701、266、267、285、232、23 5, 238, 1141, 272, 254, 202, 11 56、1158を、メラミンにホルムアルデヒドを作用 させた化合物またはそのアルキル変性物の例である。サ イメル (登録商標) 1123、1125、1128は、 ベンゾグアナミンにホルムアルデヒドを作用させた化合 物またはそのアルキル変性物の例である。サイメル(登 録商標) 1170、1171、1174、1172はグ リコールウリルにホルムアルデヒドを作用させた化合物 またはそのアルキル変性物の例である。尿素にホルムア ルデヒドを作用させた化合物またはそのアルキル変性物 の例として三井サイアナミド社のUFR(登録商標)6 5、300を挙げることができる。

【0037】エポキシ化合物の例として、ノボラックエ ポキシ樹脂(東都化成社製VDPN-638、701、 702、703、704等)、アミンエポキシ樹脂(東 都化成社製YH-434等)、ビスフェノールAエポキ シ樹脂、ソルビトール (ポリ) グリシジルエーテル、 (ポリ) グリセロール (ポリ) グリシジルエーテル、ペ ンタエリスリトール (ポリ) グリシジルエーテル、トリ グリシジルトリスヒドロキシエチルイソシアヌレート、 アリルグリシジルエーテル、エチルヘキシルグリシジル エーテル、フェニルグリシジルエーテル、フェノールグ リシジルエーテル、ラウリルアルコールグリシジルエー テル、アジピン酸グリシジルエーテル、フタル酸グリシ ジルエーテル、ジブロモフェニルグリシジルエーテル、 ジブロモネオペンチルグリコールジグリシジルエーテ ル、グリシジルフタルイミド、(ポリ)エチレングリコ ールグリシジルエーテル、ポリプロピレングリコールジ グリシジルエーテル、ネオペンチルグリコールジグリシ ジルエーテル、グリセリンポリグリシジルエーテル、ト リメチロールプロパンポリグリシジルエーテル、ブチル グリシジルエーテル等を挙げることができる。

【0038】この中で特に好ましい化合物として、分子中に $-N(CH_2OR)_2$ 基を有する化合物(式中、Rは水素原子またはアルキル基を示す)が挙げられる。詳

しくは、尿素あるいはメラミンにホルムアルデヒドを作用させた化合物またはそのアルキル変性物が特に好ましい。レゾール化合物の例として、群栄化学社製のPP-3000s、PP-3000A、RP-2978、SP-1974、SP-1975、SP-1976、SP-1977、RP-3973等が挙げられる。

【0039】本発明d)顔料としては、硫酸バリウム、硫酸鉛、酸化チタン、黄色鉛、ベンガラ、酸化クロム、カーボンブラック、などの無機顔料、アントラキノン系顔料、ペリレン系顔料、ジスアゾ顔料、フタロシアニン顔料、イソインドリン顔料、ジオキサジン顔料、キナクリドン顔料、ペリノン系顔料、トリフェニルメタン系顔料、チオインジゴ顔料などの有機顔料などが挙げられる。これらを単独または混合してもちいることができる。これ等顔料の中ではアントラキノン、フタロシアニン、ジオキサジン、カーボンブラックが特に好ましい。【0040】具体的にカラーインデックス(C. I)ナンバーでしめす。

C. I. 赤; 9、97、122、123、149、16 8、177、180、192、215、216、21 7、220、223、224、226、227、22 8、240

C. I. 青; 15、15; 6、22、60、64

C. I. 緑;7、36

C. I. 黒;7

C. I. 黄色; 20、24、86、93、109、11 0、117、125、137、138、147、14 8、153、154、166、168 C. I. オレンジ; 36、43、51、55、59、6

 $(0, 1, \pi \nu \nu \nu; 36, 43, 51, 55, 59, 6)$

C. I. バイオレット; 19、23、29、30、37、40、50

C. I. 茶; 23、25、26

【0041】これら顔料の平均粒径は0.005~3μ mの範囲にあるのが好ましい。より好ましくは0.01~1μmである。平均粒径がこれ以下であるとチクソトロピーがでやすく良好な塗布性が得られず、また、これ以上であると塗膜の透明性に欠けるようになる。このような粒径にするためには、ボールミル、サンドミル、ビーズミル、3本ロール、ペイントシェーカー、超音波などの分散処理が有効である。

【0042】本発明e)の溶剤としては具体的に、ジイソプロピルエーテル、ミネラルスピリット、ローペンタン、アミルエーテル、エチルカプリレート、ローヘキサン、ジエチルエーテル、イソプレン、エチルイソブチルエーテル、ブチルステアレート、ローオクタン、バルソル#2、アプコ#18ソルベント、ジイソブチレン、アミルアセテート、ブチルブチレート、アプコシンナー、ブチルエーテル、ジイソブチルケトン、メチルシクロヘキセン、メチルノニルケトン、プロピルエーテル、ドデ

カン、Socal solvent NolおよびNo 2、アミルホルメート、ジヘキシルエーテル、ジイソプ ロピルケトン、ソルベッソ#150、(n, sec, t) - 酢酸ブチル、ヘキセン、シェル TS28 ソル ベント、ブチルクロライド、エチルアミルケトン、エチ ルベンゾネート、アミルクロライド、エチレングリコー ルジエチルエーテル、エチルオルソホルメート、メトキ シメチルペンタノン、メチルブチルケトン、メチルヘキ シルケトン、メチルイソブチレート、ベンゾニトリル、 エチルプロピオネート、メチルセロソルブアセテート、 メチルイソアミルケトン、メチルイソブチルケトン、プ ロピルアセテート、アミルアセテート、アミルホルメー ト、ビシクロヘキシル、ジエチレングリコールモノエチ ルエーテルアセテート、ジペンテン、メトキシメチルペ ンタノール、メチルアミルケトン、メチルイソプロピル ケトン、プロピルプロピオネート、プロピレングリコー ルー t ーブチルエーテル、メチルエチルケトン、メチル セロソルブ、エチルセロソルブ、エチルセロソルブアセ テート、カルビトール、シクロヘキサノン、酢酸エチ ル、プロピレングリコール、プロピレングリコールモノ メチルエーテル、プロピレングリコールモノメチルエー テルアセテート、プロピレングリコールモノエチルエー テル、プロピレングリコールモノエチルエーテルアセテ ート、ジプロピレングリコールモノエチルエーテル、ジ プロピレングリコールモノメチルエーテル、プロピレン グリコールモノエチルエーテルアセテート、ジプロピレ ングリコールモノメチルエーテルアセテート、3-メト キシプロピオン酸、3-エトキシプロピオン酸、3-エ トキシプロピオン酸メチルエチル、3-メトキシプロピ オン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸プロ ピル、3-メトキシプロピオン酸ブチル、ジグライム、 ジプロピレングリコールモノメチルエーテル、エチレン グリコールアセテート、エチルカルビトール、ブチルカ ルビトール、エチレングリコールモノブチルエーテル、 プロピレングリコールーtーブチルエーテル、3-メチ ルー3-メトキシブタノール、トリプロピレングリコー ルメチルエーテル、3-メチル-3-メトキシブチルア セテートなどの有機溶剤が挙げられる。溶剤は沸点が1 00℃から200℃の範囲のものを選択するのが好まし い。より好ましくは120℃~170℃の沸点をもつも のである。これらの溶剤は単独もしくは混合して使用さ

【0043】本発明はa)アクリル樹脂100重量部に対しb)光酸発生剤は0.05重量部~30重量部、好ましくは0.1重量部~20重量部、更に好ましくは0.15重量部~15重量部、c)酸の作用により硬化する架橋剤は5~200重量部、好ましくは10重量部~170重量部、更に好ましくは15重量部~150重量部、d)顔料は10重量部~500重量部、好ましく

は15重量部~450重量部、e)溶剤は200~50 00重量部、好ましくは250重量部~4500重量部 の範囲で含有される。

【0044】b)光重合開始剤の添加量が上記範囲以下であると十分な感度がえられず、また、上記範囲を超えると、ときに光酸発生剤が析出することがある。c)酸の作用により硬化する架橋剤が上記範囲以下であると像露光された画線部の架橋密度が十分でなくなり良好な画像が得られにくく、また、上記範囲を超えると乾燥後の感光性組成物膜のベタつきが大きくなり作業性に劣るようになる。d)顔料の添加量が上記範囲以下であるとカラーフィルター作成に必要な色濃度が出しにくくなり、また、上記範囲を超えると顔料による光吸収が強くなりすぎ、内部光硬化が起こらなくなり画像がでなくなる。e)溶剤の添加量が上記範囲以下であると塗布むらがでやすく関厚の均一性に欠け、上記範囲を超えると十分な膜厚を得ることができず、また、ピンホールなどの塗布欠陥がでやすくなる。

【0045】本発明にはこれら、必須成分以外に増感 剤、顔料分散助剤、塗布性改良剤、現像改良剤、重合禁 止剤、可塑剤、難燃剤、などを好適に添加することがで きる。これらは単独もしくは数種併用することも可能で ある。本発明の組成物はスピンコーター、ロールコータ ー、カーテンコーター、スクリーン印刷などの公知の方 法でガラス基板に塗布される。塗布膜厚は0.3μm~ 10μmが好ましい。塗布膜を乾燥させるためにコンベ クションオーブンまたはホットプレートが使用される。 乾燥温度は50℃~150℃、乾燥時間は30秒~60 分が好適である。露光は高圧水銀灯が一般的に用いら れ、マスクを通して露光し、ポストイクポージャーベー ク(PEB)を行うことにより感光性組成物膜に潜像が 形成される。PEBには乾燥と同様にコンベクションオ ーブンまたはホットプレートが使用され、PEB温度は 60~150℃、PEB時間は30秒~30分が好適で ある。その後、未露光部分を溶解させる溶剤で現像する ことにより画像が形成される。現像液はアセトン、トル エン、MEKなどの有機溶剤も使用可能であるが、環境 問題からアルカリ現像液の方が好ましい。一例をあげる ならば水酸化ナトリウム水溶液、水酸化カリウム水溶 液、炭酸ナトリウム水溶液、炭酸カリウム、アンモニア 水、テトラメチルアンモニウムハイドロオキサイド水溶 液、などが用いられる。現像方法としては、特に制限は なく、パドル法、ディッピング法、スプレー法など公知 の方法でおこなうことができる。またプリウエットを採 用してもよい。画像形成後現像液の乾燥、感光性組成物 膜の硬化を高める目的でポストベーク、後光硬化などを 採用してもよい。

[0046]

【実施例】次に、実施例を用いて具体的に説明するが、 本発明はその要旨を超えない限り以下の実施例に限定さ れるものではない。

合成例-1

酸価200、分子量5000のスチレン・アクリル酸樹 脂20g、p-メトキシフェノール0.2g、ドデシル トリメチルアンモニウムクロリド0.2g、プロピレン グリコールモノメチルエーテルアセテート40gをフラ スコに仕込み(3,4エポキシシクロヘキシル)メチル アクリレート7.6gを滴下し100℃の温度で30時 間反応させた。反応液を水に再沈殿、乾燥させて樹脂を 得た。KOHによる中和滴定をおこなったところ樹脂の 酸価は80であった。

【0047】感光性組成物の調合

a) 樹脂10g、b) 光酸発生剤0.10g、c) 架橋 剤5g、d) 顔料10g、e) 溶剤75gの割合で表-1の組成で感光性組成物液を調合した。

感光性組成物膜の評価

スピンコーターにてガラス基板に塗布し、ホットプレー トで80℃で1分間乾燥した。膜厚は1µであった。こ のサンプルをマスクを通して高圧水銀燈で像露光した 後、ホットプレートで100℃、1分間PEBを行っ た。0.1%水酸化ナトリウム水溶液に現像温度25℃ で1分間浸漬して感光性組成物パターンを得た。感光性 組成物パターンがマスクの画像寸法とおりに仕上がる露 光量をもって感光性組成物の感度とした。また、耐薬品 試験は現像されたサンプルをさらに200℃で30分間 コンベクションオーブンで熱硬化させたあとNーメチル ピロリドンに室温で30分間浸漬させ、感光性組成物膜 の状態を目視観察して判定した。

〇:変化が認められなかった。 △:一部にはがれが認められた。 [0048]

【表1】

表-1

	ZX 1			
樹脂	光散発生剤	架構制	超料	溶剤
合成例-1	式(5)	MX-101.***	赤 177	PGMEA
合成例-1	式(5)	WX-101	級 7	PCMEA
合成例-1	式(5)	MX-101	青 15.3	PGMEA
合成例-1	式(5)	MX-101	カーギンブラック	PGMBA
合成例-1	式 (4)	WX-101	赤 177	PGMEA
合成例-1	式(4)	MX-101	禄 7	PCMEA
合成例-1	式(4)	MX-101	育 15.3	PGMEA
合成例-1	式(4)	WX-101	カーギンプラック	PGMEA
合成例-1	式(30)	MX-101	赤 177	PGMEA
合成例-1	式 (30)	MX-101	緑 7	PGMEA
合成例-1	式(30)	MX-101	青 15.3	PGMEA
合成例-1	式(30)	MX-101	カーボンブラック	PGMEA
合成例一】	式 (5)	UPR-65***	赤 177	PGMEA
合成例-1	式(5)	UPR-65	級 7	PGMEA
合成例-1	式 (5)	UFR-65	青 15.3	PGMEA
合成例-1	式(5)	UFR-65	キーボソブラック	PGMEA
/ギラック 樹脂・	式(5)	MX-101	赤 177	PGNEA
/ギラック 樹脂	式(5)	MX-101	悬 7	PGNEA
/ギラック 樹脂	式 (5)	MX-101	青 15.3	PGMEA
/\$519 樹脂	式(5)	NX-101	カーボンブラック	PGNEA
合成例-1	式 (5)	PETA**	赤 177	PGNEA
合成例-1	式(5)	PETA	縁 7	PCMEA
合成例-1	式 (5)	PETA	青 15.3	PGMEA
合成例-]	式(5)	PETA	カーをソプラック	PGMEA
	合合合合合合合合合合合合合合合合合合合合合合合合合合合合合合合合合合合合	樹脂 光酸発生剂 合成例-1 式(5) 合成例-1 式(5) 合成例-1 式(5) 合成例-1 式(5) 合成例-1 式(4) 合成例-1 式(4) 合成例-1 式(4) 合成例-1 式(30) 合成例-1 式(30) 合成例-1 式(30) 合成例-1 式(30) 合成例-1 式(5) /#711 樹脂 式(5) /#711 樹脂 式(5) /#711 樹脂 式(5) /#711 樹脂 式(5) /#711 樹脂 式(5) 合成例-1 式(5)	樹脂 光酸発生剤 架 橋 剤 合成例-1 式(5) MX-101**** 合成例-1 式(5) MX-101 合成例-1 式(5) MX-101 合成例-1 式(5) MX-101 合成例-1 式(4) MX-101 合成例-1 式(4) MX-101 合成例-1 式(4) MX-101 合成例-1 式(4) MX-101 合成例-1 式(30) MX-101 合成例-1 式(5) UPR-65 合成例-1 式(5) UPR-65 合成例-1 式(5) UPR-65 (表列) 式(5) MX-101 (表ラック 樹脂 式(5) MX-101 (まラック 樹脂 式(5) PETA 合成例-1 式(5) PETA	相 脂 光酸発生剤 架 構 剤 類 料 合成例-1 式(5) MX-101*** 赤 177 合成例-1 式(5) MX-101

ノボラック樹脂 mークレゾールノボラック樹脂 Mw=5000 PETA ペンタエリスリトールトリアクリレート MX-101 メラミン樹脂(三和ケミカル社製) UFR-65 尿素樹脂(三井サイアナミド社製)

【表2】

表 - 2

No.	感度 (mj/cm ^t)	耐薬品性
実施例-1	100	0
	150	0
実施例-2	ļ	1
実施例 - 3	100	0
実施例-4	300	0
実施例-5	100	0
実施例-6	150	0
実施例-7	100	0
実施例-8	300	0
実施例-9	100	0
実施例-10	150	0
実施例-11	100	0
実施例-12	3 0 0	0
実施例-13	1 2 0	0
実施例-14	170	0
実施例-15	1 2 0	0
実施例-16	3 2 0	0
比較例-1	習像形成不可	
比較例-2	首像形成不可	
比較例-3	画像形成不可	
比較例-4	画像形成不可	
比較例 - 5	2000	Δ
比較例-6	2500	Δ
比較例-7	2000	Δ
比較例-8	4000	Δ

[0050]

【発明の効果】表-2の実施例の如く、本発明の感光性 組成物は露光時に酸素の影響を受けず高感度で、耐薬品性に優れ、高顔料濃度であっても画像形成が可能であ る。本発明の感光性組成物は赤、青、緑の着色画像ばか りでなく、ブラックマトリックスとなる黒色パターンも 形成できる。従って、本発明の感光性組成物を用いるこ とにより、高精度、高品位、低コストで液晶ディスプレ ー用カラーフィルターを製造することができる。

フロントページの続き

(51) Int.Cl.⁶

識別記号 庁内整理番号

FI

技術表示箇所

G O 3 F 7/028 7/039 G O 3 F 7/028 7/039