Area Lights

Production Computer Graphics
Eric Shaffer

Objectives

- Understand how area lights are modeled and rendered
- Understand the idea of an environmental light
- Be able to implement both

What is an area light?

- An area light has a finite area
 - In addition to position, orientation, color, and luminance
- Adding area lights greatly increases the realism in a lit scene
 - You get soft shadows as opposed to just hard-edged shadows
- Area lights require more sampling per pixel
 - Longer render times

Implementing Area Lights

- Area lights can have different geometries
 - Circle, rectangle, sphere, etc.
- RTftGU implements an emissive material class
 - Any geometric object can then be made into a light
- Need to estimate the incident radiance from the light on a point p
- Three possible techniques
 - Shoot shadow rays to points sampled on the light surface
 - Shoot shadow rays in the solid angle subtended at p by the light object
 - Shoot rays by sampling the BRDF at the point p

Sampling the Light Surface

- To determine incident radiance at a hit point p
 - Generate shadow rays
 - Originating p
 - Directed to a sample point s_i on the surface of the light
- Example: a hemispherical light surrounding p

- The light must be able to provide
 - Uniformly sampled points s_i
 - The normal at the point s_i
 - For what geometries would this be easy? Which would be hard?

Sampling the BRDF

- To determine incident radiance at a hit point p
 - Generate rays
 - Originating p
 - Directions distributed according to the BRDF
 - i.e. sample hemisphere around **p** possibly non-uniformly
- Example: (a) is uniform and undersamples, (b) samples BRDF

Importance Sampling Revisited

- There are situations in which sampling the BRDF is less efficient
 - Choosing the most efficient sampling method for a situation is an application of importance sampling

What to do?

- RTftGU chooses to
 - Sample the light for rectangular, circular, and spherical lights
 - Sample the entire hemisphere for environment light
- We also need to be able to render the light itself

Estimating Direct Illumination

- We need to compute exitant radiance at point p'
- For direct illumination, we gather only illumination from lights
 - We neglect indirect light reflected off other surfces
- Using the area form of the rendering equation:

$$L_r(p, W_o) = \bigcup_{A_{lights}} f_r(p, W_i, W_o) L_e(p', -w_i) V(p, p') G(p, p') dA^{(1)}$$

• For a single area light the Monte Carlo estimator for the integral is

$$\left\langle L_r(p, \mathcal{W}_o) \right\rangle = \frac{1}{n} \mathop{\text{a}}^n_{j=1} \frac{f_r(p, \mathcal{W}_i, \mathcal{W}_o) L_e(p', -w_i) V(p, p') G(p, p')}{p(p_j^{\mathbb{C}})}$$

Estimating Direct Illumination

$$\left\langle L_r(p, W_o) \right\rangle = \frac{1}{n} \mathop{\text{a}}^n_{j=1} \frac{f_r(p, W_i, W_o) L_e(p', -w_i) V(p, p') G(p, p')}{p(p_i^{\complement})}$$

- We have n sample points
- p() is the probability distribution function over the light surface
- p() can be hard to determine in general
- In practice use uniform distribution $p(p_j^{\mathbb{C}}) = \frac{1}{A_j}$

• Recall
$$G(p, p') = \frac{\cos q_i \cos q'}{\|p' - p\|^2}$$

Sources of Noise with Area Lights

- Penumbra can be noisy
 - Why?
 - If a hit point is in a penumbra, requires a large number of samples to resolve correctly
- If the area light is large, the estimator can exhibit a lot of variation
 - So it will take a lot of samples to converge
 - Why? It has to do with $G(p, p') = \frac{\cos q_i \cos q'}{\|p' p\|^2}$

Example

(a) 1 ray per pixel

(b) 100 rays per pixel

Example

(a) Disc Light

(b) Spherical Light

Why is the Spherical Light Noisy?

- Both lights use 100 rays per pixel
- The spherical light uniformly samples the surface

$$p = \frac{1}{4\rho r^2}$$

- The cos term in G() varies significantly
- Note that the shadow shapes are relatively insensitive to light geometry

Overflow

- The area light touches the plane
- Note that overflow occurs around the light....
 - Why?
- Can fix this in several ways
 - Keep lights away from objects
 - Use a PDF that includes a 1/d² term
 - Use the hemisphere rather than area form of the rendering equation

Environment Light

- An Environment Light
 - Is an infinitely large spherical (or hemispherical) light
 - Surrounds the scene
 - Emissive material with possibly spatially varying color
- Shoot shadow rays using cosine distribution
 - Use hemisphere form of the rendering equation
- Monte Carlo Estimator is $\langle L_r(p, W_o) \rangle = \frac{1}{n} \mathring{a}_{j=1}^n \frac{f_r(p, W_{i,j}, W_o) L_i(p, -w_{i,j}) \cos q_{i,j}}{p(W_{i,j})}$

$$p = \cos\frac{q_i}{\mathcal{D}}$$

Example

Environment lights simulate outdoor lighting conditions

- Here we have
 - yellow environment light
 - orange directional light
 - ambient occlusion

