Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа Р3114

Студент <u>Нуруллаев Даниил</u>

<u>Романович</u>

Преподаватель Коробков М.П

К работе допущен_____

Работа выполнена<u>11.11.2020</u>

Отчет принят _____

Отчет по лабораторной #3

Цель работы.

Исследование упругого и неупругого центрального соударения тел на примере соударения тележек, движущихся с малым трением.

Рабочие формулы и исходные данные.

Для первого графика

$$X_i = \frac{2m_1}{m_1 + m_2}$$
 и $Y_i = \frac{v_2}{v_{10}} = \frac{t_1}{t_2}$

Для второго графика

$$X_i = \frac{v}{m_1 + m_2}$$
 и $Y_i = \frac{v}{v_{10}} = \frac{t_1}{t_2}$

Экспериментальное значение относительного изменения полной энергии

$$\delta W_i^{(9)} = \frac{\Delta W}{W_0} = 1 - \frac{(m_1 + m_2)}{m_1} \frac{v^2}{v_{10}^2} = 1 - \frac{m_1 + m_2}{m_1} \left(\frac{t_1}{t_2}\right)^2.$$

Теоретическая величина относительной потери энергии

$$\delta W_i^{(\mathrm{T})} = \frac{m_2}{m_1 + m_2}.$$

Описание установки

- 1. Рельс, на котором создается воздушная подушка (длина 180 см)
- 2. Генератор воздушного потока
- 3. Рамки с фотоэлементами (оптические ворота)
- 4. Дополнительные грузы
- 5. Сталкивающиеся тележки с собственной массой 200 г, каждая из которых снабжена флажком шириной 25 мм.
- 6. Цифровой счетчик (1 единица = 10 мс)
- 7. Пусковой механизм

Результаты прямых измерений и их обработки

Измерение промежутков времени в миллисекундах

Таблица 1.1:

			m1(r)							
		200	220	240	260	280	300			
	200	21	22	22	27	30	32			
	200	21	21	20	24	26	27			
	220	21	23	23	26	30	33			
	220	22	23	22	24	27	28			
Ī	240	21	24	24	25	28	30			
m2(r)	240	23	25	24	24	26	27			
m2(г)	260	21	20	25	24	27	33			
	200	24	22	26	24	26	31			
	280	20	23	23	27	28	28			
	200	24	26	25	28	28	27			
	300	21	24	23	27	31	27			
	300	26	28	26	29	32	27			

Таблица 1.2:

			m1(r)								
		200	220	240	260	280	300				
	200	21	20	25	24	26	30				
	200	42	38	45	43	45	50				
	220	18	23	22	27	31	27				
	220	38	46	43	50	55	47				
	·	22	23	23	27	30	28				
m 2/s\		48	49	46	52	55	50				
m2(г)		18	22	24	27	26	30				
	260	42	49	51	54	50	56				
	280	18	20	24	26	31	32				
		43	46	53	54	61	62				
		18	22	25	25	31	32				
	300	45	53	57	54	63	65				

Расчет результатов косвенных измерений (таблицы, примеры расчетов).

По данным Таблицы 1.1 для упругих столкновений для каждой ее ячейки рассчитываю величины, после чего делаю интерполяцию ,строю график и нахожу погрешность.

Xi = 2m1/(m1+m2); Yi = v2/v10 = t1/t2

			m1(r)							
		200	220	240	260	280	300			
77.2(4)	200	1	1,04762	1,09091	1,13043	1,16667	1,2	-X		
	200	1	1,04762	1,1	1,125	1,15385	1,18519	-Y		
	220	0,95238	1	1,04348	1,08333	1,12	1,15385	-X		
	220	0,95455	1	1,04545	1,08333	1,11111	1,17857	-Y		
	240	0,90909	0,95652	1	1,04	1,07692	1,11111	-X		
		0,91304	0,96	1	1,04167	1,07692	1,11111	-Y		
m2(г)	260	0,86957	0,91667	0,96	1	1,03704	1,07143	-X		
	200	0,875	0,90909	0,96154	1	1,03846	1,06452	-Y		
	280	0,83333	0,88	0,92308	0,96296	1	1,03448	-X		
	200	0,83333	0,88462	0,92	0,96429	1	1,03704	-Y		
	300	0,8	0,84615	0,88889	0,92857	0,96552	1	-X		
	300	0,80769	0,85714	0,88462	0,93103	0,96875	1	-Y		
								_		

f(x)=(0.3775*x+0.0211)/0.4– полученная функция ,коэффициент a=0.94375

$$\sigma_{\text{}} = \sqrt{\frac{\sum \(a - \langle a \rangle\)^2}{n\(n-1\)}} = 0.020623$$

Для n=6 и α =0,95 коэффициент стьюдента t(0,95;6)=2,57

 $\Delta a = t^*\sigma_{\text{\tiny cas}} = 2,57*0,020623 = 0,053$ -погрешность

X1 Y1	X2 Y2	a	a- <a>	(a- <a>)^2
1	1,04762			
1	1,04762	1	0,008883092	7,89093E-05
0,95238	1,04348			
0,95455	1,04545	0,99793	0,006816976	4,64712E-05
0,8	1,11111			
0,80769	1,11111	0,97527	-0,015842183	0,000250975
0,86957	1,07143			
0,875	1,06452	0,93883	-0,052283161	0,002733529
0,8	1,2			
0,80769	1,18519	0,94375	-0,047366908	0,002243624
1	0,91667			
1	0,90909	1,09091	0,099792183	0,00995848
	<a>=	0,99112	сумм(а- <a>)^2=	0,015311988
	σ <a>=	0,05052		

По данным Таблицы 1.2 для неупругих столкновений для всех ее ячеек рассчитываю величины, после чего делаю интерполяцию, строю график и нахожу погрешность.

$$Xi = m1/(m1+m2)$$
; $Yi = v/v10 = t1/t2$

	1							
				m1	L(r)			
		200	220	240	260	280	300	
	200	0,5	0,52381	0,54545	0,56522	0,58333	0,6	-X
	200	0,5	0,52632	0,55556	0,55814	0,57778	0,6	-Y
	220	0,47619	0,5	0,52174	0,54167	0,56	0,57692	-X
	220	0,47368	0,5	0,51163	0,54	0,56364	0,57447	-Y
Γ	240	0,45455	0,47826	0,5	0,52	0,53846	0,55556	-X
m 2/s\		0,45833	0,46939	0,5	0,51923	0,54545	0,56	-Y
m2(г)	260	0,43478	0,45833	0,48	0,5	0,51852	0,53571	-X
	200	0,42857	0,44898	0,47059	0,5	0,52	0,53571	-Y
	280	0,41667	0,44	0,46154	0,48148	0,5	0,51724	-X
	280	0,4186	0,43478	0,45283	0,48148	0,5082	0,51613	-Y
	300	0,4	0,42308	0,44444	0,46429	0,48276	0,5	-X
	300	0,4	0,41509	0,4386	0,46296	0,49206	0,49231	-Y

Y=x- Полученная функция ,коэффициент a=1

$$\sigma_{} = \sqrt{\frac{\sum \(a - < a >\)^2}{n\(n-1\)}}$$
= 0,0223853

Для n=6 и α =0,95 коэффициент стьюдента t(0,95;6)=2,57

 $\Delta a = t^*\sigma_{\scriptscriptstyle \mbox{\tiny a}>} = 2,57^*$ 0,0223853=0,05741-погрешность

X1 Y1	X2 Y2	a	a- <a>	(a- <a>)^2
0,4	0,6			
0,4	0,6	1	-0,003741199	1,39966E-05
0,5	0,58333			
0,5	0,57778	0,93333	-0,070407866	0,004957268
0,4	0,48276			
0,4	0,49206	1,11243	0,108692663	0,011814095
0,45455	0,55556			
0,45833	0,56	1,0065	0,002758801	7,61098E-06
0,47619	0,57692			
0,47368	0,57447	1,00051	-0,00323219	1,0447E-05
0,41667	0,51724			
0,4186	0,51613	0,96967	-0,03407021	0,001160779
	<a>=	1,00374	сумм(а- <a>)^2=	0,017964196
	σ <a>=	0,05472		
	σ <a>=	0,05472		

Строю график зависимости $\delta W(\mathfrak{I})$ i от величины $\delta W(\mathtt{T})$

Экспериментальное										
значение относительного изменения полной энергии										
			m1(r)							
		200	220	240	260	280	300			
	200	0,5	0,47117	0,43416	0,44885	0,42772	0,4			
	220	0,52881	0,5	0,49829	0,46166	0,4327	0,42798			
m 3/s)	240	0,53785	0,53932	0,5	0,48154	0,44746	0,43552			
m2(r)	260	0,57755	0,56018	0,53864	0,5	0,47851	0,46429			
	280	0,57945	0,57037	0,55571	0,51852	0,48347	0,48498			
	300	0,6	0,59274	0,56717	0,53836	0,49845	0,51527			

Теоретическая											
величина относительной потери энергии											
		m1(r)									
		200	220	240	260	280	300				
	200	0,5	0,47619	0,45455	0,43478	0,41667	0,4				
	220	0,52381	0,5	0,47826	0,45833	0,44	0,42308				
m2(г)	240	0,54545	0,52174	0,5	0,48	0,46154	0,44444				
- 1112(1)	260	0,56522	0,54167	0,52	0,5	0,48148	0,46429				
	280	0,58333	0,56	0,53846	0,51852	0,5	0,48276				
	300	0,6	0,57692	0,55556	0,53571	0,51724	0,5				

Функция зависимости : $\mathbf{y} = \mathbf{x}$

Выводы и анализ результатов работы.

Проведя множественные измерения с использованием различных весов , для исследуемых кареток, я на своем опыте убедился в работе законов сохранения .Убедился в том что главное для выполнения законов сохранения это то что наша система замкнута. Погрешность не большая но присутствует ввиду того что всегда есть что-то что даже при одинаковых массах и времени может помешать нашим замерам.