

SAE 401

Expliquer ou prédire l'âge de décès à partir de plusieurs facteurs

27/03/2025

SOMMAIRE

- Présentation des données
- Méthodes utilisées
- * Résultats
- Cas concret

PROBLÉMATIQUE

Dans quelle mesure les facteurs socio-démographiques, les habitudes de vie et les antécédents médicaux influencent-ils l'âge de décès des individus ?

PRÉSENTATION DES DONNÉES

Description des sources de données

PRÉSENTATION DES DONNÉES

Prétraitements et nettoyage des données

Échantillon

1 000 individus

Changements de labels Conversion du poids et l'âge

nouvelle variable

variable d'intérêt

Statistiques Valeurs

Moyenne 60.63500

Variance 401.46724

Écart-type 20.03665

Minimum 25.00000

Maximum 99.00000

premier Quartiles 44.00000

Médiane 62.00000

Troisième quartile 77.00000

Analyse de la variable de l'âge

Histogramme de la répartition de l'âge

Choix de la méthode

Méthodes différentes :

Méthode ascendante descendante

- Combine 2 méthodes et ajoute ou enlève des variables à chaque itération
- 16 variables explicatives

Méthode exhaustive

- Test toutes les combinaisons possibles de variables explicatives
- 14 variables explicatives

Validité du modèle ascendant descendant

Absence de multicolinéarité (VIF)

=> Toutes les variables ont un VIF < 2

	GVIF	Df	GVIF^(1/(2*Df))
addiction	1.213637	1	1.101652
cholesterol	1.576593	1	1.255625
num_meds	1.580694	1	1.257257
hds	1.345669	1	1.160030
drinks_aweek	1.352783	1	1.163092
immune_defic	1.027045	1	1.013432
opioids	1.093431	1	1.045672
sex	1.428611	1	1.195245
major_surgery_num	1.699354	1	1.303593
family_cancer	1.014802	1	1.007374
diabetes	1.027652	1	1.013732
other_drugs	1.028665	1	1.014231
smoker	1.057398	1	1.028299
ls_danger_label	1.179559	2	1.042149
family_heart_disease	1.032985	1	1.016359
family_cholesterol	1.009117	1	1.004548
occup_danger_label	1.176245	2	1.041417
sys_bp	1.351846	1	1.162689

MÉTHODOLOGIE

Validité du modèle ascendant descendant

MÉTHODOLOGIE

Validité du modèle ascendant descendant

Validité du modèle ascendant descendant

Erreurs de même variance

studentized Breusch-Pagan test

data: modele_asc_desc

BP = 16.593, df = 20, p-value = 0.6793

Validité du modèle ascendant descendant

Erreurs indépendantes

Durbin-Watson test

data: modele_asc_desc

DW = 2.0749, p-value = 0.8819

alternative hypothesis: true autocorrelation is greater than 0

DW proche de 2 : Pas d'autocorrélation des erreurs

DW < 2 : Autocorrélation positive des erreurs

DW > 2 : Autocorrélation négative des erreurs

MÉTHODOLOGIE

Qualité du modèle

- Pour vérifier la qualité des prédictions du modèle on fait une validation croisée
- On a un RMSE inferieur à l'écart type de l'âge

RÉSULTATS

Modèle final de prédiction de l'âge de décès

Ce modèle explique environ 60% de la variance de l'Âge de décès

$$age_{i} = \beta^{0} + \beta^{1} \cdot num_{meds_{i}} + \beta^{2} \cdot cholesterol_{i} + \beta^{3} \cdot drinks_{aweek_{i}} + \beta^{4} \cdot immune_{deficy_{i}} + \beta^{5} \cdot opioids_{i} + \beta^{6} \cdot addiction_{i} + \beta^{7} \cdot hds_{i} \\ + \beta^{8} \cdot sex_{i} + \beta^{9} \cdot major_{surgery_{num_{i}}} + \beta^{10} \cdot family_{cancer_{i}} + \beta^{11} \cdot diabetes_{i} + \beta^{12} \cdot other_{drugs_{i}} + \beta^{13} \cdot smoking_{i} \\ + \beta^{14} \cdot ls_{danger_{label_{faible_{i}}}} + \beta^{15} \cdot ls_{danger_{label_{moyen_{i}}}} + \beta^{16} \cdot family_{heart_{disease_{i}}} + \beta^{17} \cdot family_{cholesterol_{i}} \\ + \beta_{18} \cdot occup_danger_label_faible_i + \beta_{19} \cdot occup_danger_label_moyen_i + \beta_{20} \cdot sys_bp_i + \varepsilon_i$$

Individus leviers

 Les individus au dessus du deuxième seuil doivent faire l'objet de surveillance (biais)

RÉSULTATS

Individus atypiques

- Identification des individus mal expliqués par notre modèle
- Moins de 5% d'individus atypiques au total

Estimation de l'âge de décès de

Marilyn Monroe

- Âge de décès : 36 ans (overdose de médicaments)
- Âge de décès prédit : avant 39 ans
- Intervalle de confiance : [13 .48 ; 65.710]

MERCI DE VOTRE ÉCOUTE!