

Facultad de Energía,

las Industrias y los Recursos Naturales No Renovables

CARRERA DE INGENIERÍA EN SISTEMAS

"Revisión Sistemática de Literatura: Estado actual de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador"

TESIS DE GRADO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO EN SISTEMAS

Autor:

• Miguel Antonio Cabrera Sarango

Director y Tutor académico:

• Ing. Luis Antonio Chamba Eras Mg. Sc. PhD.

Loja – Ecuador

2020

Certificación

Ing. Luis Antonio Chamba Eras Mg. Sc. PhD

DOCENTE DE LA CARRERA DE INGENIERÍA EN SISTEMAS

CERTIFICA:

Haber asesorado y revisado detenida y minuciosamente durante todo su desarrollo, el

Trabajo de Titulación, titulado "REVISIÓN SISTEMÁTICA DE LITERATURA: ESTADO

ACTUAL DE LA INTELIGENCIA ARTIFICIAL EN LAS INSTITUCIONES DE

EDUCACIÓN SUPERIOR DEL ECUADOR", realizado por el Sr. Miguel Antonio

Cabrera Sarango; cumple con los requisitos establecidos por las normativas para la

graduación en la Universidad Nacional de Loja, tanto en aspecto de forma como de

contenido.

Por todo lo dicho, autorizo proseguir con los trámites legales pertinentes para su

presentación y defensa.

Loja, 12 de marzo de 2020

Ing. Luis

ntenio Chamba Eras Mg. Sc. PhD

Director del Trabajo de Titulación

Ш

Autoría

Yo, Miguel Antonio Cabrera Sarango declaro ser autor del presente Trabajo de

Titulación, y eximo expresamente a la Universidad Nacional de Loja y a sus

representantes jurídicos de posibles reclamos o acciones legales por el contenido de

esta.

Adicionalmente acepto y autorizo a la Universidad Nacional de Loja, la publicación de

mi Trabajo de Titulación en el Repositorio Institucional-Biblioteca Virtual.

Firma:

Cédula: 1104453319

Fecha: 22 de julio de 2020

Ш

CARTA DE AUTORIZACIÓN POR PARTE DEL AUTOR, PARA LA CONSULTA, REPRODUCCIÓN PARCIAL O TOTAL, Y PUBLICACIÓN ELECTRÓNICA DEL TEXTO COMPLETO.

Yo, Miguel Antonio Cabrera Sarango declaro ser autor del Trabajo de Titulación que versa: REVISIÓN SISTEMÁTICA DE LITERATURA: ESTADO ACTUAL DE LA INTELIGENCIA ARTIFICIAL EN LAS INSTITUCIONES DE EDUCACIÓN SUPERIOR DEL ECUADOR, como requisito para optar al grado de: INGENIERO EN SISTEMAS; autorizo al Sistema Bibliotecario de la Universidad Nacional de Loja para que, con fines académicos, muestre al mundo la producción intelectual de la Universidad a través de la visibilidad de su contenido de la siguiente manera en el Repositorio Digital Institucional:

Los usuarios pueden consultar el contenido de este trabajo en el (RDI), en las redes de información del país y del exterior, con los cuales tenga convenio la Universidad.

La Universidad Nacional de Loja, no se responsabiliza por el plagio o copia de la tesis que realice un tercero.

Para constancia de esta autorización, en la ciudad de Loja, a los 22 días del mes de julio

del 2020.

Autor: Miguel Antonio Cabrera Sarango.

Cédula: 1104453319

Dirección: Loja (Calle Diego Portales Nro. 815-36).

Correo Electrónico: miguelcabr.ec@gmail.com

Celular: 09 69691311

DATOS COMPLEMENTARIOS

Director de tesis

: Ing. Luis Antonio Chamba Eras Mg. Sc. PhD.

Tribunal de grado: Ing. Mario Enrique Cueva Hurtado Mg. Sc.

Ing. Óscar Miguel Cumbicus Pineda Mg. Sc.

Ing. Ruperto Alexander López Lapo Mg. Sc.

DEDICATORIA

El presente Trabajo de Titulación es dedicado con todo mi amor, cariño y respeto a mis padres quienes me brindaron su amor, educación, apoyo y consejos. De manera especial a mi papá Segundo Antonio Cabrera, por su ternura, sabiduría serena y sobre todo por su apoyo incondicional en las buenas y malas circunstancias de la vida.

Miguel A Cabrera. S

AGRADECIMIENTO

Recuerdo que, de niño, mis padres Maura y Antonio, me enseñaron a sentir la calma de la naturaleza en cada atardecer en nuestra casa de campo. Justo en los segundos que dura esa caída de sol sobre el horizonte al oeste de mi ciudad sucede el milagro. Los animales (perros, gatos, aves de corral) que hasta ese momento estaban precipitados, de golpe dejan de estarlo; y cada uno se retira a descansar a su nidal o se reúnen según sea el caso y la especie. Son apenas esos contados segundos que se pasa de la algarabía a un enriquecedor silencio. Puedo asegurar que ese silencio impactante es el testigo cortés de aquel milagro llamado "atardecer". Comparto este sigilo, por el cariño que he cultivado hacia la educación. También, porque existe momentos en la vida en que vale la pena detenerse para hacer silencio, serenarse, y agradecer a Dios.

Esta investigación ha sido posible gracias a la dadivosidad, afán y cariño de varias personas. La enumeración es larga y escoger nombres para galardonar puede que sea injusto, sin embargo, quiero agradecer con mucho aprecio y respeto a las siguientes personas:

A mis compañeros de estudio.

Gabriela Narváez, Fabricio Sisalima, Katherine Estefanía, Elvis Cristofer, Jefferson Medina, Jorlan Israel, Álex Rubén, Hoover Escobar, Andrés Darío, Nelson Roger, Jonathan Iván, Nayo Francisco, André Montoya, Pablo Sarango y Karla Correa.

A mis mejores amigos de la vida.

Ronald Cristopher Anchundia, Mónica Nicole Coronel y Dennys Andrés Camacho gracias por estar ahí y entregar toda esa felicidad que comparten al mundo.

Finalmente, a la Universidad Nacional de Loja por los conocimientos impartidos en el transcurso de la carrera de Ingeniería en Sistemas, a sus administrativos y demás personal que han sido parte de mi estadía en esta prestigiosa Institución. A mis profesores Álex Padilla, René Guamán, Roberth Figueroa, Mario Cueva, Boris Díaz, Hernán Torres, Oscar Cumbicus, Valeria Herrera y en especial al profesor Luis Chamba Eras quien ha estado como guía y consejero oportuno, para lograr el objetivo principal, culminar el trabajo de titulación de grado. Gracias a todos, por los consejos y toda la paciencia, sigan apoyando a los próximos que vengan y confiando en ellos.

Miguel A Cabrera. S

Índice de Contenidos

Certificación.		II
Autoría		
CARTA DE AUTO	DRIZACIÓN POR PARTE DEL AUTOR, PARA LA CONSULTA, REPRODUCCIÓN PARC	IAL O
TOTAL, Y PUBLIC	CACIÓN ELECTRÓNICA DEL TEXTO COMPLETO	IV
DEDICATORIA	4	<i>V</i>
AGRADECIMI	'ENTO	VI
Índice de Con	itenidos	VII
1. Título	·	1
2. Resur	men	2
SUMMAR	Y	3
3. INTRO	ODUCCIÓN	4
4. REVIS	SIÓN DE LITERATURA	8
4.1. Revisio	ón Sistemática de la Literatura	8
4.1.1.	Reseña histórica de la Revisión Sistemática de la Literatura	8
4.1.2.	Conceptos preliminares de la Revisión Sistemática de la Literatura	
4.2. La Inte	eligencia Artificial	12
4.2.1.	Campos de aplicación de la Inteligencia Artificial	14
4.2.2.	La Industria 4.0	15
4.3. Intelig	encia Artificial en Instituciones de Educación Superior	20
4.3.1.	Países líderes en investigación de Inteligencia Artificial en el mundo	20
4.3.2.	Países líderes en investigación de Inteligencia Artificial en Latino América	23
4.3.3.	Instituciones de Educación Superior en Ecuador	25
4.3.4.	Trabajos relacionados en el campo de la Inteligencia Artificial en el mundo	27
4.4. Trabaj	os relacionados de Inteligencia Artificial en las Instituciones de Educación Superi	or del
Ecuador		30
5. MATE	RIALES Y MÉTODOS	36
	xto	
	50	
5.3 Recurs		37

	5.4. Participantes	40
6.	RESULTADOS4	ļ 1
	6.1. OBJETIVO I: Identificación de una metodología de Revisión Sistemática de Literatura, para su	
	uso en el campo de la ingeniería	41
	6.1.1. Métricas para la revisión y selección de la metodología de Revisión Sistemática de la	3
	Literatura 41	
	6.1.2. Búsqueda de información relacionada con la metodología de Revisión Sistemática d	e
	la Literatura para la Ingeniería	43
	6.1.2.1. Información relacionada en el campo de la Ingeniería: Lineamientos para revisiones	
	sistemáticas en Ingeniería de Software (LRSIS)-Universidad de Kéele.	43
	6.1.2.2. Información relacionada en el campo de la Ingeniería: Enfoque para revisiones	
	sistemáticas en Ingeniería de Software Universidad Federal de Río de Janeiro	43
	6.1.2.3. Información relacionada en el campo de la Ingeniería: Metodología para la revisión	
	sistemática de la literatura aplicada a la Ingeniería y la educación	44
	6.1.2.4. Información relacionada en el campo de la Ingeniería: Tendencias de Realidad	
	Aumentada en la Educación: Una revisión sistemática de la investigación y las aplicaciones	44
	6.1.2.5. Información relacionada en el campo de la Ingeniería: Revisión Sistemática y Mapeo. 🕡	45
	6.1.3. Analizar las metodologías de Revisión Sistemática de la Literatura seleccionadas en	
	base a métricas planteadas	45
	6.1.3.1. Lineamientos para revisiones sistemáticas en Ingeniería de Software (LRSIS)-Universida	эd
	de Kéele	45
	6.1.3.2. Enfoque para revisiones sistemáticas en Ingeniería de Software-Universidad Federal de	
	Río de Janeiro.	46
	6.1.3.3. Metodología para la revisión sistemática de la literatura aplicada a la Ingeniería y la	
	educación	47
	6.1.3.4. Tendencias de Realidad Aumentada en la Educación: Una revisión sistemática de la	
	investigación y las aplicaciones.	48
	6.1.3.5. Estudios de Mapeo sistemático en Ingeniería de Software.	48
	6.1.4. Elaborar una tabla comparativa de metodologías de Revisión Sistemática de la	
	Literatura relacionados con el campo de la ingeniería	
	6.1.5. La mejor Revisión Sistemática de la Literatura para la Inteligencia Artificial	64
	6.1.6. Diseñar y documentar la metodología de Revisión Sistemática de la Literatura para e	
	uso en el campo de la Inteligencia Artificial	64
	6.2. OBJETIVO II: Ejecución de Revisión Sistemática de literatura con la metodología seleccionada.	
		67
	6.2.1 Etana I: Planificación	67

	6.2.2.	Etapa II: Ejecución de la Revisión Sistemática de la Literatura	78
	6.2.3.	Etapa III: Informe	201
7.	DISCU	JSIÓN	208
7	7.1. Desarr	ollo de la propuesta alternativa	208
	7.1.1.	Identificar una metodología de revisión sistemática de literatura, para su uso e	n el
	campo d	e Ciencias de la Computación	208
	7.1.2.	Ejecutar la Revisión Sistemática de Literatura con la metodología seleccionada.	209
7	7.2. Valora	ción técnica económica ambiental	211
	7.2.1.	Valoración Técnica	211
	7.2.2.	Valoración Económica	213
	7.2.3.	Valoración Ambiental	215
8.	CONC	LUSIONES	216
9.	RECO	MENDACIONES	217
9	9.1. Trabajo	os Futuros	219
10	. BIBLIC	OGRAFÍA	220
11.	. ANEX	os	240
A	ANEXO 1: D	OCUMENTACIÓN DE LA REVISIÓN SISTEMÁTICA DE LITERATURA PARA EL USO EN	I EL
C	CAMPO DE	CIENCIAS DE LA COMPUTACIÓN	240
A	ANEXO 2: F	ORMULARIOS DE EXTRACCIÓN DE DATOS	249
A	ANEXO 3: P	ROYECTO DE TRABAJO DE TITULACIÓN	392

Índice de Figuras

Figura 1. Contribuciones al desarrollar una SLR (Tomado de [7], [8], [9], [10]) 9
Figura 2. Historia de la Inteligencia Artificial (IA) (Tomada de [23])13
Figura 3. Aplicaciones de la Inteligencia Artificial (IA) (Tomada de [23])13
Figura 4. Hype Cicle para Inteligencia Artificial, 2019 (Gartner) (Tomado de [30]) 18
Figura 5. El proceso del Mapeo Sistemático (Tomada de [66])
Figura 6. Mentefacto conceptual "Artificial Intelligence" (Fuente propia)73
Figura 7. Procedimiento de búsqueda sistemática, SLR (tomada de [55])78
Figura 8. Estudios seleccionados en SLR almacenados en Mendeley (Fuente propia).
Figura 9. Diagrama de flujo para el proceso de selección de estudios primarios (Fuente propia)84
Figura 10. Estudios primarios seleccionados en cada Base de Datos científica (Fuente propia)
Figura 11. Síntesis del proceso de selección de estudios primarios (EP) (Fuente propia).
Figura 12. Tabla periódica de los indicadores cienciométricos (Tomado de [73]) 96
Figura 13. Cantidad de documentos publicados en Ecuador 2010-201898
Figura 14. Scimago Journal & Country Rank (Fuente propia)99
Figura 15. Journals Ranking, línea de investigación "Artificial Intelligence" (Tomada de
Scimago Journal & Country Rank)100
Figura 16. Resultados de estudios seleccionados por áreas de la IA (Fuente propia).
Figura 17. Esquema de áreas priorizadas de acuerdo con el MINTEL y SENESCYT (Fuente propia)111
Figura 18. Esquema de IA vinculada con áreas y líneas de investigación priorizadas del
MINTEL y SENESCYT (Fuente propia)112
Figura 19. Perfil en Google Académico, investigador Miguel Cabrera. S (Fuente propia).
Figura 20. Alertas de nuevas publicaciones de investigadores de IES de Ecuador (Fuente propia)115
Figura 21. Top 10 investigadores en el campo de la IA en las IES del Ecuador (Fuente propia)
Figura 22. Relación entre los investigadores (co-autoría) de las IES (Fuente propia).

Figura 23. Palabras claves en los estudios seleccionados en la presente SLR (Fuente
propia)126
Figura 24. Producción científica identificada de acuerdo con el número de estudios
publicados en las IES de Ecuador (Fuente propia)
Figura 25. Producción científica identificada de acuerdo con el índice H en las
publicaciones de las IES de Ecuador (Fuente propia)
Figura 26. Distribución geográfica y cantidad de artículos publicados entre IES del
Ecuador y el Mundo (Fuente propia)
Figura 27. Número de estudios primarios seleccionados en la SLR (Fuente propia). 198
Figura 28. Número de estudios primarios en bases de datos académicas (Fuente
propia)199
Figura 29. Resultados de SJR en Ecuador y resultados SLR IES del Ecuador (Fuente
propia)
Figura 30. Mentefacto conceptual243

Índice de Tablas

TABLA I. PAÍSES LÍDERES MUNDIAL EN INVESTIGACIÓN DE IA	21
TABLA II. CLASIFICACIÓN DE IES CON MAYOR FACTOR IMPACTO	21
TABLA III. COMPARATIVA ENTRE LOS INDICADORES BIBLIOMÉTRICOS	FI Y
NÚMERO DE CITAS	22
TABLA IV . PAÍSES DE LATINO AMÉRICA CON MEJORES POLÍTICA	S Y
ESTRATEGIAS DE (IA)	24
TABLA V. PAÍSES LIDERES EN IA EN LATINO AMÉRICA	24
TABLA VI. IES DEL ECUADOR EN CATEGORÍA A, B y C	26
TABLA VII. SLRs RELACIONADAS EN EL CAMPO DE LA (IA)	28
TABLA VIII. COMPARACIÓN ENTRE METODOLOGÍAS DE SLR EN EL CAMPO	
LA INGENIERÍA	51
TABLA IX. REVISIÓN SISTEMÁTICA DE LA LITERATURA PARA CIENCIAS D	E LA
COMPUTACIÓN ESPECIFICAMENTE (IA)	65
TABLA X. PUNTOS DE PUESTA EN SERVICIO DE UNA REVISIÓN	68
TABLA XI. BASES DE DATOS ACADÉMICAS	75
TABLA XII. TÉRMINOS USADOS EN SLR CON THESAURUS IEEE	79
TABLA XIII. TIPOS DE OPERADORES	80
TABLA XIV. CLASIFICACIÓN DE LOS ARTÍCULOS RESULTANTES	85
TABLA XV. SINTÁXIS DE BÚSQUEDA INICIAL PARA ESTUDIOS DE ARTIFI	CIAL
INTELLIGENCE EN IES EN ECUADOR	88
TABLA XVI. LISTA DE VERIFICACIÓN DE EVALUACIÓN DE CALIDAD	92
TABLA XVII. FORMULARIO PARA EXTRACCIÓN DE DATOS	93
TABLA XVIII. INDICADOR BIBLIOMÉTRICO SCIMAGO JOURNAL AND COUN	ITRY
RANK	97
TABLA XIX. CANTIDAD DE DOCUMENTOS PUBLICADOS EN ECUADOR 2010-	
	98
TABLA XX. LISTADO DE REVISTAS EN EL SJR	101
TABLA XXI. LISTADO DE LAS CATEGORÍAS POR CADA UNA DE LAS REVIS	STAS
DE LA LÍNEA DE INVESTIGACIÓN	102
TABLA XXII. ÁREAS DE LA INTELIGENCIA ARTIFICIAL EN LAS IES DEL ECUA	DOR
	106
TABLA XXIII. ESTUDIOS SELECCIONADOS POR CADA ÁREA DE LA IA	107

TABLA XXIV. "INTELIGENCIA ARTIFICIAL" VINCULADA CON LAS AREAS Y LIN	1EAS
DE INVESTIGACIÓN PRIORIZADAS DEL MINTEL Y SENESCYT	113
TABLA XXV. RANKING DE INVESTIGADORES DE LAS IES DE ECUADOR	116
TABLA XXVI. TOP 10 INVESTIGADORES CON MAYOR PRODUCCIÓN CIENTÍ	FICA
EN EL CAMPO DE LA IA EN LAS IES DE ECUADOR	122
TABLA XXVII . PRODUCCIÓN CIENTÍFICA IDENTIFICADA DE ACUERDO CO	N EL
NÚMERO DE ESTUDIOS PUBLICADOS EN LAS IES DE ECUADOR	127
TABLA XXVIII . PRODUCCIÓN CIENTÍFICA IDENTIFICADA DE ACUERDO CO	N EL
ÍNDICE H EN LAS PUBLICACIONES DE LAS IES DE ECUADOR	129
TABLA XXIX. ÁREAS DE LA IA DONDE LAS IES DE ECUADOR APORTAN M	ÁS A
LA PRODUCCIÓN CIENTÍFICA	131
TABLA XXX. MATRIZ DE INCIDENCIA CON FACTOR DE CERCANÍA ÁM	BITO
NACIONAL	134
TABLA XXXI. MATRIZ DE INCIDENCIA CON FACTOR DE CERCANÍA ÁM	
INTERNACIONAL	136
TABLA XXXII. GRUPOS DE INVESTIGACIÓN DE IES DE ECUADOR	144
TABLA XXXIII. BASES DE DATOS CIENTÍFICAS DONDE PUBL	
INVESTIGADORES DE LAS IES DE ECUADOR	
TABLA XXXIV. INFORME TÉCNICO	202
TABLA XXXV. VALORACIÓN ECONÓMICA TALENTO HUMANO	213
TABLA XXXVI. VALORACIÓN ECONÓMICA RECURSOS DE HARDWAF	
SOFTWARE	
TABLA XXXVII. VALORACIÓN ECONÓMICA SERVICIOS	214
TABLA XXXVIII. VALORACIÓN ECONÓMICA MATERIALES DE OFICINA	214
TABLA XXXIX. PRESUPUESTO TOTAL	
TABLA XL. RESULTADO DEL ARTÍCULO EP01	
TABLA XLI. RESULTADO DEL ARTÍCULO EP02	
TABLA XLII. RESULTADO DEL ARTÍCULO EP03	
TABLA XLIII. RESULTADO DEL ARTÍCULO EP04	
TABLA XLIV. RESULTADO DEL ARTÍCULO EP05	
TABLA XLV. RESULTADO DEL ARTÍCULO EP06	
TABLA XLVI. RESULTADO DEL ARTÍCULO EP07	
TABLA XLVII. RESULTADO DEL ARTÍCULO EP08	
TABLA XLVIII. RESULTADO DEL ARTÍCULO EP09	
TABLA XLIX. RESULTADO DEL ARTÍCULO EP10	256

TABLA L. RESULTADO DEL ARTÍCULO EP11	257
TABLA LI. RESULTADO DEL ARTÍCULO EP12	257
TABLA LII. RESULTADO DEL ARTÍCULO EP13	258
TABLA LIII. RESULTADO DEL ARTÍCULO EP14	259
TABLA LIV. RESULTADO DEL ARTÍCULO EP15	260
TABLA LV. RESULTADO DEL ARTÍCULO EP16	261
TABLA LVI. RESULTADO DEL ARTÍCULO EP17	261
TABLA LVII. RESULTADO DEL ARTÍCULO EP18	262
TABLA LVIII. RESULTADO DEL ARTÍCULO EP19	263
TABLA LIX. RESULTADO DEL ARTÍCULO EP20	264
TABLA LX. RESULTADO DEL ARTÍCULO EP21	265
TABLA LXI. RESULTADO DEL ARTÍCULO EP22	266
TABLA LXII. RESULTADO DEL ARTÍCULO EP23	267
TABLA LXIII. RESULTADO DEL ARTÍCULO EP24	268
TABLA LXIV. RESULTADO DEL ARTÍCULO EP25	268
TABLA LXV. RESULTADO DEL ARTÍCULO EP26	270
TABLA LXVI. RESULTADO DEL ARTÍCULO EP27	270
TABLA LXVII. RESULTADO DEL ARTÍCULO EP28	271
TABLA LXVIII. RESULTADO DEL ARTÍCULO EP29	272
TABLA LXIX. RESULTADO DEL ARTÍCULO EP30	273
TABLA LXX. RESULTADO DEL ARTÍCULO EP31	274
TABLA LXXI. RESULTADO DEL ARTÍCULO EP32	274
TABLA LXXII. RESULTADO DEL ARTÍCULO EP33	275
TABLA LXXIII. RESULTADO DEL ARTÍCULO EP34	276
TABLA LXXIV. RESULTADO DEL ARTÍCULO EP35	277
TABLA LXXV. RESULTADO DEL ARTÍCULO EP36	278
TABLA LXXVI. RESULTADO DEL ARTÍCULO EP37	279
TABLA LXXVII. RESULTADO DEL ARTÍCULO EP38	280
TABLA LXXVIII. RESULTADO DEL ARTÍCULO EP39	280
TABLA LXXIX. RESULTADO DEL ARTÍCULO EP40	281
TABLA LXXX. RESULTADO DEL ARTÍCULO EP41	282
TABLA LXXXI. RESULTADO DEL ARTÍCULO EP42	283
TABLA LXXXII. RESULTADO DEL ARTÍCULO EP43	284
TABLA LXXXIII. RESULTADO DEL ARTÍCULO EP44	285
TABLA LXXXIV RESULTADO DEL ARTÍCULO EP45	286

TABLA LXXXV. RESULTADO DEL ARTICULO EP46	287
TABLA LXXXVI. RESULTADO DEL ARTÍCULO EP47	288
TABLA LXXXVII. RESULTADO DEL ARTÍCULO EP48	288
TABLA LXXXVIII. RESULTADO DEL ARTÍCULO EP49	289
TABLA LXXXIX. RESULTADO DEL ARTÍCULO EP50	290
TABLA XC. RESULTADO DEL ARTÍCULO EP51	291
TABLA XCI. RESULTADO DEL ARTÍCULO EP52	292
TABLA XCII. RESULTADO DEL ARTÍCULO EP53	292
TABLA XCIII. RESULTADO DEL ARTÍCULO EP54	293
TABLA XCIV. RESULTADO DEL ARTÍCULO EP55	294
TABLA XCV. RESULTADO DEL ARTÍCULO EP56	295
TABLA XCVI. RESULTADO DEL ARTÍCULO EP57	296
TABLA XCVII. RESULTADO DEL ARTÍCULO EP58	296
TABLA XCVIII. RESULTADO DEL ARTÍCULO EP59	297
Tabla XCIX. RESULTADO DEL ARTÍCULO EP60	298
TABLA C. RESULTADO DEL ARTÍCULO EP61	298
TABLA CI. RESULTADO DEL ARTÍCULO EP62	299
TABLA CII. RESULTADO DEL ARTÍCULO EP63	300
TABLA CIII. RESULTADO DEL ARTÍCULO EP64	301
TABLA CIV. RESULTADO DEL ARTÍCULO EP65	302
TABLA CV. RESULTADO DEL ARTÍCULO EP66	303
TABLA CVI. RESULTADO DEL ARTÍCULO EP67	303
TABLA CVII. RESULTADO DEL ARTÍCULO EP68	
TABLA CVIII. RESULTADO DEL ARTÍCULO EP69	305
Tabla CIX. RESULTADO DEL ARTÍCULO EP70	
TABLA CX. RESULTADO DEL ARTÍCULO EP71	307
TABLA CXI. RESULTADO DEL ARTÍCULO EP72	308
Tabla CXII. RESULTADO DEL ARTÍCULO EP73	309
TABLA CXIII. RESULTADO DEL ARTÍCULO EP74	309
TABLA CXIV. RESULTADO DEL ARTÍCULO EP75	310
TABLA CXV. RESULTADO DEL ARTÍCULO EP76	311
TABLA CXVI. RESULTADO DEL ARTÍCULO EP77	311
TABLA CXVII. RESULTADO DEL ARTÍCULO EP78	312
TABLA CXVIII. RESULTADO DEL ARTÍCULO EP79	313
TABLA CXIX. RESULTADO DEL ARTÍCULO EP80	314

Tabla CXX. RESULTADO DEL ARTÍCULO EP81	314
TABLA CXXI. RESULTADO DEL ARTÍCULO EP82	315
TABLA CXXII. RESULTADO DEL ARTÍCULO EP83	316
TABLA CXXIII. RESULTADO DEL ARTÍCULO EP84	316
TABLA CXXIV. RESULTADO DEL ARTÍCULO EP85	317
TABLA CXXV. RESULTADO DEL ARTÍCULO EP86	318
TABLA CXXVI. RESULTADO DEL ARTÍCULO EP87	318
TABLA CXXVII. RESULTADO DEL ARTÍCULO EP88	319
TABLA CXXVIII. RESULTADO DEL ARTÍCULO EP89	320
TABLA CXXIX. RESULTADO DEL ARTÍCULO EP90	320
TABLA CXXX. RESULTADO DEL ARTÍCULO EP91	321
TABLA CXXXI. RESULTADO DEL ARTÍCULO EP92	322
TABLA CXXXII. RESULTADO DEL ARTÍCULO EP93	323
TABLA CXXXIII. RESULTADO DEL ARTÍCULO EP94	323
TABLA CXXXIV. RESULTADO DEL ARTÍCULO EP95	324
TABLA CXXXV. RESULTADO DEL ARTÍCULO EP96	325
TABLA CXXXVI. RESULTADO DEL ARTÍCULO EP97	326
TABLA CXXXVII. RESULTADO DEL ARTÍCULO EP98	326
TABLA CXXXVIII. RESULTADO DEL ARTÍCULO EP99	327
TABLA CXXXIX. RESULTADO DEL ARTÍCULO EP100	328
TABLA CXL. RESULTADO DEL ARTÍCULO EP101	329
TABLA CXLI. RESULTADO DEL ARTÍCULO EP102	330
TABLA CXLII. RESULTADO DEL ARTÍCULO EP103	330
TABLA CXLIII. RESULTADO DEL ARTÍCULO EP104	331
TABLA CXLIV. RESULTADO DEL ARTÍCULO EP105	332
TABLA CXLV. RESULTADO DEL ARTÍCULO EP106	332
TABLA CXLVI. RESULTADO DEL ARTÍCULO EP107	333
TABLA CXLVII. RESULTADO DEL ARTÍCULO EP108	334
TABLA CXLVIII. RESULTADO DEL ARTÍCULO EP109	334
TABLA CXLIX. RESULTADO DEL ARTÍCULO EP110	335
TABLA CL. RESULTADO DEL ARTÍCULO EP111	336
TABLA CLI. RESULTADO DEL ARTÍCULO EP112	337
TABLA CLII. RESULTADO DEL ARTÍCULO EP113	337
TABLA CLIII. RESULTADO DEL ARTÍCULO EP114	338
TABLA CLIV. RESULTADO DEL ARTÍCULO EP115	339

TABLA CLV. RESULTADO DEL ARTÍCULO EP116	. 340
TABLA CLVI. RESULTADO DEL ARTÍCULO EP117	. 340
TABLA CLVII. RESULTADO DEL ARTÍCULO EP118	. 341
TABLA CLVIII. RESULTADO DEL ARTÍCULO EP119	. 342
TABLA CLIX. RESULTADO DEL ARTÍCULO EP120	. 343
TABLA CLX. RESULTADO DEL ARTÍCULO EP121	. 343
TABLA CLXI. RESULTADO DEL ARTÍCULO EP122	. 344
TABLA CLXII. RESULTADO DEL ARTÍCULO EP123	. 345
TABLA CLXIII. RESULTADO DEL ARTÍCULO EP124	. 346
TABLA CLXIV. RESULTADO DEL ARTÍCULO EP125	. 346
TABLA CLXV. RESULTADO DEL ARTÍCULO EP126	. 347
TABLA CLXVI. RESULTADO DEL ARTÍCULO EP127	. 348
TABLA CLXVII. RESULTADO DEL ARTÍCULO EP128	. 349
TABLA CLXVIII. RESULTADO DEL ARTÍCULO EP129	. 349
TABLA CLXIX. RESULTADO DEL ARTÍCULO EP130	. 350
TABLA CLXX. RESULTADO DEL ARTÍCULO EP131	. 351
TABLA CLXXI. RESULTADO DEL ARTÍCULO EP132	. 352
TABLA CLXXII. RESULTADO DEL ARTÍCULO EP133	. 352
TABLA CLXXIII. RESULTADO DEL ARTÍCULO EP134	. 353
TABLA CLXXIV. RESULTADO DEL ARTÍCULO EP135	. 354
TABLA CLXXV. RESULTADO DEL ARTÍCULO EP136	. 355
TABLA CLXXVI. RESULTADO DEL ARTÍCULO EP137	. 355
TABLA CLXXVII. RESULTADO DEL ARTÍCULO EP138	. 356
TABLA CLXXVIII. RESULTADO DEL ARTÍCULO EP139	. 357
TABLA CLXXIX. RESULTADO DEL ARTÍCULO EP140	
TABLA CLXXX. RESULTADO DEL ARTÍCULO EP141	. 358
TABLA CLXXXI. RESULTADO DEL ARTÍCULO EP142	. 359
TABLA CLXXXII. RESULTADO DEL ARTÍCULO EP143	. 359
TABLA CLXXXIII. RESULTADO DEL ARTÍCULO EP144	. 360
TABLA CLXXXIV. RESULTADO DEL ARTÍCULO EP145	. 361
TABLA CLXXXV. RESULTADO DEL ARTÍCULO EP146	. 362
TABLA CLXXXVI. RESULTADO DEL ARTÍCULO EP147	. 362
TABLA CLXXXVII. RESULTADO DEL ARTÍCULO EP148	. 363
TABLA CLXXXVIII. RESULTADO DEL ARTÍCULO EP149	. 364
TABLA CLXXXIX RESULTADO DEL ARTÍCULO EP150	364

TABLA CXC. RESULTADO DEL ARTÍCULO EP1513	65
TABLA CXCI. RESULTADO DEL ARTÍCULO EP1523	66
TABLA CXCII. RESULTADO DEL ARTÍCULO EP1533	66
TABLA CXCIII. RESULTADO DEL ARTÍCULO EP1543	67
TABLA CXCIV. RESULTADO DEL ARTÍCULO EP1553	67
TABLA CXCV. RESULTADO DEL ARTÍCULO EP1563	68
TABLA CXCVI. RESULTADO DEL ARTÍCULO EP1573	69
TABLA CXCVII. RESULTADO DEL ARTÍCULO EP1583	70
TABLA CXCVIII. RESULTADO DEL ARTÍCULO EP1593	70
TABLA CXCIX. RESULTADO DEL ARTÍCULO EP1603	71
TABLA CC. RESULTADO DEL ARTÍCULO EP1613	72
TABLA CCI. RESULTADO DEL ARTÍCULO EP1623	72
TABLA CCII. RESULTADO DEL ARTÍCULO EP1633	73
TABLA CCIII. RESULTADO DEL ARTÍCULO EP1643	74
TABLA CCIV. RESULTADO DEL ARTÍCULO EP1653	74
TABLA CCV. RESULTADO DEL ARTÍCULO EP1663	75
TABLA CCVI. RESULTADO DEL ARTÍCULO EP1673	76
TABLA CCVII. RESULTADO DEL ARTÍCULO EP1683	76
TABLA CCVIII. RESULTADO DEL ARTÍCULO EP1693	77
TABLA CCIX. RESULTADO DEL ARTÍCULO EP1703	77
TABLA CCX. RESULTADO DEL ARTÍCULO EP1713	
TABLA CCXI. RESULTADO DEL ARTÍCULO EP1723	79
TABLA CCXII. RESULTADO DEL ARTÍCULO EP1733	79
TABLA CCXIII. RESULTADO DEL ARTÍCULO EP1743	80
TABLA CCXIV. RESULTADO DEL ARTÍCULO EP1753	81
TABLA CCXV. RESULTADO DEL ARTÍCULO EP1763	81
TABLA CCXVI. RESULTADO DEL ARTÍCULO EP1773	82
TABLA CCXVII. RESULTADO DEL ARTÍCULO EP1783	83
TABLA CCXVIII. RESULTADO DEL ARTÍCULO EP1793	83
TABLA CCXIX. RESULTADO DEL ARTÍCULO EP1803	84
TABLA CCXX. RESULTADO DEL ARTÍCULO EP1813	85
TABLA CCXXI. RESULTADO DEL ARTÍCULO EP1823	85
TABLA CCXXII. RESULTADO DEL ARTÍCULO EP1833	86
TABLA CCXXIII. RESULTADO DEL ARTÍCULO EP1843	87
TABLA CCXXIV RESULTADO DEL ARTÍCULO EP185	87

TABLA CCXXV. RESULTADO DEL ARTICULO EP186	388
TABLA CCXXVI. RESULTADO DEL ARTÍCULO EP187	389
TABLA CCXXVII. RESULTADO DEL ARTÍCULO EP188	390
TABLA CCXXVIII. RESULTADO DEL ARTÍCULO EP189	390
TABLA CCXXIX. RESULTADO DEL ARTÍCULO EP190	391
TABLA CCXXX RESULTADO DEL ARTÍCULO EP191	392

1. Título

"Revisión Sistemática de Literatura: Estado actual de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador"

2. Resumen

Durante los últimos años en las Instituciones de Educación Superior (IES) del Ecuador ha aumentado el uso de la Inteligencia Artificial (IA, por sus siglas); ha pasado de ser una tecnología cuyo concepto se pensaba ficticio o muy alejado, a la existencia y disponibilidad de varias aplicaciones en distintos ámbitos. El objetivo del presente Trabajo de Titulación (TT, por sus siglas) es desarrollar una Revisión Sistemática de Literatura sobre el estado actual de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador; con este fin la pregunta de investigación es: ¿Cuál es la situación actual de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador? El presente TT se ejecutó en dos fases, en la primera, por medio de una búsqueda de Revisiones Sistemáticas de Literatura (SLR) en el campo de la ingeniería, se identificó las mejores metodologías de SLR, para servir de base en el diseño y desarrollo de una propuesta de metodología de SLR para su uso en el campo de Ciencias de la Computación específicamente en la IA. Como segunda fase, se desarrolló el proceso de SLR diseñada en la fase anterior; se definió tres etapas y se estableció lineamientos para cada una de ellas. Este proceso de SLR se caracteriza por: 1) Planificación, 2) Ejecución, 3) Informe. Se realizó las búsquedas en Google Scholar, ACM, IEEE, Science Direct y Scopus desde el 2010 hasta Julio del 2019. Se identificaron 4.598 estudios, de los que se seleccionó 191 estudios válidos. En la SLR se obtuvo como resultado que, las áreas con mayor producción científica vinculada a la IA son: "Machine learning" (20.94 %), "Artificial Neural Network" (16.75 %), "Data Mining" (11.51 %), y "Big Data" (9.94 %). Mientras que las áreas con menor producción científica son "Robotics" (4.18 %), "Human Computer Iteration" (3.14 %), "Natural Language Processing" (2.61 %), "Genetic Algorithms" (2.09 %) y "Experts System" (1.57 %). Además, se utilizó el software VOSviewer para visualizar dos redes bibliométricas (coautoría y co-relación), permitiendo identificar la co-autoria y el impacto de las áreas de la IA entre investigadores del Ecuador y del mundo. También, se observó 48 grupos de investigación en el campo de la IA, 113 IES en 32 países vinculados con investigadores ecuatorianos. Concluyendo que en Ecuador se encontró evidencia empírica para identificar la situación actual de la IA; indicando que existen 32 IES del Ecuador que realizan publicaciones vinculadas al campo de IA, y dichos investigadores han incrementado año a año su producción científica especialmente desde el 2017.

SUMMARY

During the last years in the Higher Education Institutions (IES) of Ecuador the use of Artificial Intelligence (AI) has increased; in the past the technology was thought fictitious or very remote to the existence and availability of various applications in different fields. The objective of this Thesis (T) is to develop a Systematic Literature Review about current state of Artificial Intelligence in Higher Education Institutions of Ecuador; to this aim, the research question is: What is the current situation of Artificial Intelligence in Higher Education Institutions in Ecuador? This T was executed in two phases, the first phase through a search for Systematic Literature Reviews (SLR) in the field of engineering, to serve as a basis for the designed and development of a proposal of SLR methodology for using in the field of Computer Science specifically in Al. As a second phase, it developed the SLR process designed in the previous phase; three stages were defined and guidelines were established for each of them. This SLR process is characterized by: 1) Planning, 2) Execution, 3) Report. Searches were performed on Google Scholar, ACM, IEEE, Science Direct and Scopus from 2010 to July 2019. About 4,598 studies were identified, of which 191 valid studies were selected. In the SLR obtained as a result, that the areas with the highest scientific production related to AI are: "Machine learning" (20.94%), "Artificial Neural Network" (16.75%), "Data Mining" (11.51%), and Big Data (9.94%). While the areas with the lowest scientific production are "Robotics" (4.18%), "Human Computer Iteration" (3.14%), "Natural Language Processing" (2.61%), "Genetic Algorithms" (2.09%) and "Experts System" (1.57%). In addition, VOSviewer software was used to visualize two bibliometric networks (coauthorship and co-relationship), it allowed to identify the co-authorship and the impact of Al areas among researchers from Ecuador and the world. Also, it observed to 48 research groups in the field of AI, 113 IES in 32 countries linked to Ecuadorian researchers. In conclusion, in Ecuador the empirical evidence was found to identify the current situation of AI; indicating there are 32 IES in Ecuador that carry out publications related to the Al field, and these researchers have increased their scientific production year by year, especially since 2017.

3. INTRODUCCIÓN

La publicación del artículo de Alan Turing en Mind II, revista británica de psicología y filosofía, es considerada el momento inaugural de la Inteligencia Artificial (IA) como disciplina científica [1]. Sin embargo, fue en 1956 que la disciplina se autonomiza dentro de las ciencias de la computación en el marco de la primera Conferencia de IA, celebrada en Dartmouth. Hay coincidencia en la bibliografía en que la mencionada conferencia implica la presentación y aceptación institucional del concepto IA, el cual fue acuñado por John McCarthy, informático de la Universidad de Dartmouth y creador de uno de los primeros lenguajes de programación asociados al desarrollo de IA, el LISP (List Processing); definiéndola como "la ciencia e ingeniería de hacer máquinas inteligentes, especialmente programas de computación inteligentes" [2].

La aplicación de la IA en distintos campos como: en la medicina incluye la interpretación de imágenes médicas, diagnóstico, sistemas expertos para ayudar a los médicos, la monitorización y control en las unidades de cuidados intensivos, diseño de prótesis, diseño de fármacos, sistemas tutores inteligentes para diversos aspectos de la medicina. En la ingeniería: diagnóstico de fallos, sistemas inteligentes de control, sistemas inteligentes de fabricación, ayuda inteligente al diseño, sistemas integrados de ventas, diseño, producción, mantenimiento. En la ingeniería de software incluye síntesis de programas, verificación, depuración, prueba y monitorización de software. En las matemáticas: diseño de herramientas para ayudar con distintas clases de funciones matemáticas, ahora tan utilizadas que ya no se reconocen como productos de la IA. En la biología: hay muchos problemas complicados en biología donde se están desarrollando sistemas informáticos más o menos inteligentes, por ejemplo, análisis de ADN, predicción de la estructura de plegado de moléculas complejas, la predicción, la elaboración de modelos de procesos biológicos, evolución, desarrollo de embriones, comportamientos de los distintos organismos. En la arquitectura, el diseño urbano, la gestión del tráfico: herramientas para ayudar a resolver problemas de diseño que presentan múltiples restricciones, ayudar a predecir el comportamiento de las personas en los nuevos entornos, herramientas para analizar los patrones de los fenómenos observados¹. En la educación ha estado en el centro de las investigaciones académicas por más de treinta años. En esta línea se ha investigado, explorado el proceso de aprendizaje donde quiera que el mismo ocurre, ya sea en aulas tradicionales o en los

¹ Véase: https://www.cs.bham.ac.uk/research/projects/cogaff/misc/courses/IA-overview.html

puestos de trabajo con el fin de dar soporte tanto a la educación formal como a la educación a lo largo de toda la vida. Esto ha provocado el acercamiento de la IA (interdisciplinaria de por sí) y las ciencias cognitivas (educación, psicología, neuro ciencias, lingüística, sociología y antropología) para promover el desarrollo de entornos de aprendizaje adaptativos y otras herramientas de IA en la educación (IAEd) flexibles, inclusivos, personalizados, motivadores o "enganchadores" y efectivos [3]. El fin último de la IA en la educación es definido por Pearson y el University College of Londres como: "la consecución de un entendimiento más profundo y exacto de cómo ocurre el proceso de aprendizaje en los estudiantes" [4].

En Ecuador, no existe una Asociación de IA que vincule el estado del arte de la investigación y los desarrollos en el área de IA con las Instituciones de Educación Superior (IES). Resulta oportuno indicar, que existen capítulos técnicos de IEEE Sección Ecuador, es la comunidad más activa en el área de tecnología en el Ecuador, con más de 1000 miembros a nivel nacional distribuidos en capítulos técnicos y ramas estudiantiles en 22 IES del País².

En efecto, el capítulo técnico que mejor se vincula en el área de Inteligencia Artificial (IA) es, el Capítulo de Inteligencia Computacional (CIS) de la Sección IEEE Ecuador, y que se encuentra dentro de las líneas de trabajo del IEEE ETCM 2019. El CIS, ofrece la oportunidad de discutir el estado del arte de la investigación y los desarrollos en Inteligencia Computacional (Redes Neuronales, Lógica Difusa y Computación Evolutiva), así como compartir el conocimiento sobre Inteligencia Computacional mediante la presentación de algoritmos, modelos matemáticos y su aplicación en diferentes áreas, tales como reconocimiento de patrones, minería de datos, astronomía, ciencia e ingeniería biomédica, procesamiento de señales, inteligencia de negocios, entre otras.

Es evidente entonces, explorar estos capítulos técnicos para identificar lo que realizan los miembros de estos capítulos y la producción científica realizada por los investigadores referentes, que publican con temas de IA. Según se ha visto a nivel de IES en Ecuador, algunos grupos de investigación e investigadores por propia iniciativa han explorado, descubriendo y trabajando en distintas áreas de investigación para relacionarlos con trabajos de IA. Lo anterior es reforzado por el impacto prometedor de la IA en un futuro cercano en las IES.

_

² Véase: https://site.ieee.org/ecuador/

En los marcos de las observaciones anteriores, se considera importante desarrollar una Revisión Sistemática de la Literatura (SLR) sobre el estado actual de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador, y con ello abordar la siguiente pregunta de investigación "¿Cuál es la situación actual de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador?".

La elaboración del presente TT tiene como objetivo principal desarrollar una Revisión Sistemática de Literatura sobre el estado actual de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador.

Para alcanzar el objetivo principal del TT se definió los siguientes objetivos específicos: a) Identificar una metodología de revisión sistemática de literatura, para su uso en el campo de la Ingeniería. b) Ejecutar la revisión sistemática de literatura con la metodología seleccionada.

En el contexto del presente TT, se realizó una Revisión Sistemática de la Literatura (SLR) con el fin de examinar la situación actual de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador; apoyado por medio de las siguientes preguntas de investigación: a) ¿Cuáles son las áreas de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador? b) ¿Cuáles son las líneas de investigación, en las áreas de Inteligencia Artificial de las Instituciones de Educación Superior del Ecuador? c) ¿Qué investigadores desarrollan publicaciones científicas en áreas de Inteligencia Artificial en Instituciones de Educación Superior del Ecuador? Y d) ¿En qué bases de datos de contenido científico, los investigadores realizan publicaciones sobre Inteligencia Artificial en Instituciones de Educación Superior del Ecuador?

A continuación, se describe de manera general las secciones del presente TT. En la sección de Revisión de la literatura se elaboró cuatro subsecciones acerca del objeto de estudio. En la subsección 4.1.1 se indica la reseña histórica acerca de la Revisión Sistemática de la Literatura (SLR), en la subsección 4.1.2 se indica los conceptos preliminares, características, campos de aplicación y una descripción general acerca de una SLR. En la sección 4.2. se indica un breve génesis y algunos conceptos de la Inteligencia Artificial (IA). En subsección 4.2.1 se indica los campos de aplicación de la IA. En la subsección 4.2.2 se indica la conceptualización y los pilares tecnológicos de la Industria 4.0. En la subsección 4.2.2.1 se relaciona los programas basados en IA con la Industria 4.0 contrastándolos con los múltiples retos en las Universidades. En la subsección 4.2.2.2 se analiza un conjunto de tendencias y tecnologías emergentes donde la IA es base esencial para permitir que algunas organizaciones aprovechen los

ecosistemas digitales emergentes. En la subsección 4.3.1 se identifica a los países líderes en investigación de IA en el mundo. En la subsección 4.3.2 se identifica a los países líderes en investigación de IA en Latino América. En la subsección 4.3.3 se identifica a las Instituciones de Educación Superior (IES) en Ecuador. En la subsección 4.3.4 se indica los trabajos relacionados en el campo de la IA con el mundo. Finalmente, en la sección 4.4 se identifica los trabajos relacionados de IA en las IES de Ecuador las cuales ayudaron a sustentar la base teórica del TT. La sección de Metodología permitió detallar los recursos académicos y científicos desarrollados en el presente TT. Para el cumplimiento del primer objetivo, se realizó una búsqueda exploratoria sobre metodologías de Revisión Sistemática de la Literatura en el campo de la ingeniería. Para el cumplimiento del segundo objetivo, se diseñó y ejecutó la metodología de SLR para su uso en el campo de Ciencias de la Computación.

De acuerdo con los lineamientos establecidos por la Universidad Nacional de Loja el Trabajo de Titulación se encuentra estructurado de la siguiente manera:

La sección Resumen, aquí se explica una breve síntesis de lo que se aborda en el TT, en la sección Introducción se especifica la importancia del tema, el aporte y la estructura del TT, en la sección Revisión de Literaria abarca los fundamentos teóricos para el desarrollo y ejecución de los objetivos del TT, en la sección de Materiales y Métodos se especifica el contexto, proceso, recursos y participantes del TT, en la sección Resultados, se presenta la evidencia obtenida en la ejecución del TT, en la sección Discusión se interpreta el significado de los resultados obtenidos, se compara con los trabajos relacionados, también se evidencia el aporte de la investigación y se detalla las limitaciones de la misma; en la sección de Conclusiones se describe los resultados destacados o sobresalientes obtenidos. Finalmente, la sección de Recomendaciones se establece los aportes más importantes, que se consideran para trabajos futuros procedentes del presente TT.

4. REVISIÓN DE LITERATURA

En la siguiente sección se presenta la base teórica que sustentó al presente TT, la primera sección muestra la reseña histórica acerca de la Revisión Sistemática de la Literatura (SLR) indicando también los conceptos preliminares, características, campos de aplicación y una descripción general acerca de una SLR. La segunda sección, indica un breve génesis y los campos de aplicación acerca de la Inteligencia Artificial (IA), también se indicó las tecnologías emergentes dentro de la Industria 4.0 contrastándolo con los múltiples retos en las Universidades. La tercera sección muestra la vinculación directa de la IA en las Instituciones de Educación Superior (IES) del mundo y de Ecuador. Finalmente, la cuarta sección indica los trabajos relacionados en áreas de la IA en las IES de Ecuador.

4.1. Revisión Sistemática de la Literatura.

4.1.1. Reseña histórica de la Revisión Sistemática de la Literatura

Hace más de una década, varios autores consideraron que los artículos científicos son el producto de la investigación, considerados como la mejor evidencia disponible para responder una pregunta de investigación. Estos, en numerosas ocasiones, tenían una respuesta no acorde con otros estudios de similares características, de tal manera que el lector quedaba con dudas acerca de cómo podría utilizarlos en su práctica profesional [5], [6]. Posteriormente se inició la recopilación de información a través de un tipo de estudio analítico denominado SRL, que comprende la evaluación exhaustiva, sistemática y explícita de la literatura a partir de una pregunta clara de investigación, una metodología, un análisis crítico de acuerdo con diferentes herramientas y un resumen cualitativo de la evidencia.

Cuando se encuentran datos, claros y homogéneos es posible la realización del análisis estadístico denominado meta análisis [5], [7]. La evaluación crítica y la síntesis sistemática de hallazgos de la investigación emergieron en 1975 bajo el término "meta análisis". La frase fue acuñada por Gene V Glass [8], que condujo síntesis en diversas áreas de la psicoterapia y tamaño de las clases. En un inicio, este tipo de revisiones (intervenciones médicas y sociales basadas en evidencia) fueron empleadas en políticas públicas e intervenciones sociales. Significa entonces, que las SLR no tardaron en ser aplicadas a la medicina y la salud. A finales de la década de 1970 y principios de la del 1980, un grupo de investigadores de servicios de salud en Oxford preparó el

terreno para la medicina basada en la evidencia al iniciar un programa de revisiones sistemáticas sobre la eficacia de las intervenciones de atención de salud. La colaboración Cochrane [9] abrió su centro en Oxford en 1992 y ahora es una red internacional de investigadores, académicos, profesionales y usuarios comprometidos con los principios de la gestión de los conocimientos de salud, de manera que esta sea de calidad asegurada, accesible y acumulativa. No tardó en reconocerse la necesidad de revisiones que vayan más allá del campo de la salud. Fue así que surgió una organización hermana de Cochrane: la Colaboración Campbell [10]. La Colaboración Campbell, adaptó la metodología Cochrane para llevar la misma calidad de las revisiones sistemáticas a otras áreas de las políticas públicas³.

4.1.2. Conceptos preliminares de la Revisión Sistemática de la Literatura

Una Revisión Sistemática de la Literatura (SLR) es un componente fundamental del método científico. A continuación, la Figura 1 indica las contribuciones que se realizan a través del desarrollo de una SLR.

Figura 1. Contribuciones al desarrollar una SLR (Tomado de [7], [8], [9], [10]).

Una SLR, surge originalmente a partir del concepto de evidence based medicine (EBM por sus siglas en inglés), que se refiere al hecho de que el individuo en su práctica profesional debe tomar decisiones soportadas en su experiencia, juicio profesional y en

_

³ Véase: https://eppi.ioe.ac.uk/cms.

la evidencia objetiva más rigurosa que está disponible [11]; de ahí que el énfasis de la actividad investigativa este orientada a demostrar objetiva y transparentemente qué es lo que realmente funciona y que el énfasis de la práctica profesional este orientado a usar dicha información para tomar mejores decisiones. La EBM nace como respuesta a que la mayoría de estudios primarios en medicina y ciencias de la salud carecían de un rigor apropiado, o presentaban resultados contradictorios; y a la dificultad de poder sintetizar adecuadamente grandes volúmenes de evidencia cuestionable [12]; en consecuencia, muchas revisiones de literatura presentaban conclusiones deficientes, inapropiadas o sesgadas [13]. Estas situaciones causaron que la evidencia tomara un rol central en la investigación y el ejercicio profesional [13]. El concepto de EBM fue posteriormente extendido en UK (y otros países), desde la década de los 80s, a la política pública y la práctica profesional (evidence-based policy and practice EBPP) pero particularmente se difundió en las ciencias sociales, la educación y la justicia criminal [12]; como consecuencia, se desarrollaron muchas quías y manuales de buenas prácticas [13]. Tanto el concepto y práctica de la EBM como de la EBPP implican la realización de estudios primarios que provean evidencias con altos estándares de rigurosidad, transparencia, calidad y objetividad; recursos para almacenar y hacer disponible la evidencia recolectada a la comunidad científica y profesional; y mecanismos para su análisis.

En este contexto, una SLR entra a jugar un papel fundamental como un mecanismo para recolectar, organizar, evaluar y sintetizar toda la evidencia disponible respecto a un fenómeno de interés, ya sea para mejorar la práctica actual (mostrar que es lo que realmente funciona) o para sugerir nuevas direcciones de investigación. Para ello, la revisión de literatura debe cumplir con los mismos estándares de calidad con que se realizan los estudios primarios de la más alta calidad. Es así como emerge la metodología de SLR en respuesta a dicha necesidad. Ya que la EBM se sustenta fundamentalmente en estudios cuantitativos y métodos estadísticos de análisis, el desarrollo de guías para realizar SLR ha estado fundamentalmente orientado hacia estos fines, y particularmente a la utilización del meta análisis, que es un procedimiento estadístico para la agregación de los resultados cuantitativos provenientes de varios estudios empíricos, con el fin de inferir estadísticamente resultados más confiables de los que se pueden obtener por la realización de estudios individuales [12], [14].

Claramente el concepto de la EBPP puede ser aplicado en todas las disciplinas profesionales, pero particularmente la ingeniería puede obtener grandes beneficios; esto es especialmente importante en aquellas áreas de rápido desarrollo, tales como

computación, la energía y la electrónica, en las cuales los desarrollos conceptuales pueden provenir de forma independiente desde diferentes áreas; esto puede dificultar la búsqueda y recopilación de evidencias. Así mismo, las revisiones de literatura en la ingeniería son tradicionalmente narrativas —excepto en la ingeniería de software y la política energética— y adolecen de todas las limitantes que ya se han discutido. Dados los beneficios de la EBPP, no resulta extraño que dichas prácticas se hayan extendido a otras disciplinas. Según Tranfield [13], propone el uso de la metodología de SLR en el área de la gestión, discute sus beneficios, y como las diferencias entre dicha área y la medicina pueden afectar el proceso para realizar SLR. Kitchenham y Chárter [14], prepararon unos lineamientos con base en las guías existentes para el desarrollo de SLR en medicina y ciencias sociales, y particularmente en los preparados por el Centre for Reviews and Dissemination (CRD) [15], para que fueran usados por investigadores, profesionales y estudiantes de postgrado en el área de la ingeniería de software en la preparación de revisiones de literatura rigurosas. Mientras que en las ciencias de la vida y la salud existen abundantes estudios que usan la metodología de SLR, existen muy pocos ejemplos en ingeniería -excepto en el campo de la ingeniería de software-. La metodología de SLR ha sido usada para: analizar las herramientas para medir desempeño de construcciones en Nigeria [16]; analizar los problemas de adopción y difusión en sistemas de información, tecnologías de la información y tecnologías de la comunicación [17]; para analizar los métodos de ensamble de redes neuronales artificiales en el pronóstico de series de tiempo económicas o financieras [18].

En general, las ingenierías modernas son disciplinas jóvenes en comparación con la medicina, y al igual a como ocurre en la gestión [13], los estudios en estas áreas difícilmente comparten los mismos objetivos o investigan los mismos interrogantes. Es así como para cada tópico particular existe un número relativamente bajo de estudios, posiblemente realizados desde diferentes ópticas; pero más aún, en el caso de estudios cuantitativos, difícilmente se usan los mismos datos experimentales, de tal forma que se hace imposible la agregación de estudios para aumentar la confiabilidad de los resultados. Existen contadas excepciones, en las que se ha recopilado y puesto a disposición de la comunidad científica bases de datos de problemas con el fin de que los resultados de diferentes investigaciones sean comparables; un ejemplo es el UCI Machine Learning Repository en el que se pone a disposición de la comunidad más de 280 conjuntos de datos para la experimentación con técnicas de aprendizaje de máquinas; sin embargo, los investigadores no tienen la obligación de usar estos conjuntos de datos. Sin embargo, y a diferencia de muchas de las guías existentes, los

lineamientos de Kitchenham y Charters [14], y de Tranfield et al [13], no enfatizan el meta-análisis como una herramienta fundamental debido a que existe poca evidencia empírica cuantitativa en comparación con otras áreas de investigación [14].

4.2. La Inteligencia Artificial

Uno de los sueños más anhelados por la ciencia, es el de lograr máquinas o robots inteligentes. Ramón Llull, por ejemplo, expresó en su Ars Magna, la idea de que el razonamiento podría implementarse de manera artificial en una máquina [19]. Más tarde Alan Turing se aventuró a manifestarse acerca de cuándo podría decirse que se habían construido máquinas que, efectivamente, pensaban. En 1950 Turing publica en la revista Mind su artículo "Computing Machinery and Intelligence", que fue el principio de una de las áreas de la informática que hoy conocemos como IA. El artículo empezaba diciendo: "Me propongo examinar la cuestión: ¿Pueden pensar las máquinas?" [20]. Turing propuso a la comunidad científica la teoría de que algún día las máquinas podrían imitar la inteligencia humana y que la misma sea indistinguible por el hombre [21]. Desde la década de 1950, el punto de referencia para la IA ha sido el test de Turing, que requiere que un ser humano sea incapaz de distinguir una máquina de otro humano en conversaciones y situaciones del mundo real.

Fue John McCarthy la persona que en 1955 acuñó el término IA para englobar todas las actividades encaminadas a la construcción de sistemas inteligentes, aunque él mismo ha opinado que sería mejor utilizar el término Inteligencia Mecánica debido a la mala interpretación que puede hacerse de su significado: opina McCarthy que la finalidad de la IA es resolver problemas que requieren inteligencia, pero sin obligación de utilizar los mismos mecanismos [22]. A partir de la reunión denominada "Darmouth Summer Research Project on Artificial Intelligence", que McCarthy convocó en 1956 en el "Darmouth College", se configura la IA como una rama de las Ciencias de la Computación, agrupando un buen número de áreas de la IA: robótica, procesamiento de lenguaje natural, visión artificial, aprendizaje supervisado, programación automática, razonamiento, planificación, resolución de problemas. En la Figura 2, se observa claramente el desarrollo continuo de más de 50 años acerca de la IA; que más bien es una pretensión a futuro. Hasta la fecha se han desarrollado varias aplicaciones que utilizan algunos de los métodos o algoritmos diseñados y desarrollados en el área de la IA (véase Figura 3).

Figura 2. Historia de la Inteligencia Artificial (IA) (Tomada de [23])

Figura 3. Aplicaciones de la Inteligencia Artificial (IA) (Tomada de [23])

En la literatura, puede encontrarse una gran variedad de definiciones sobre IA, a continuación, algunas de ellas:

- "Inteligencia Artificial (IA) Sistemas computacionales que han sido diseñados para interactuar con el mundo que le rodea a través de capacidades (por ej. percepción visual, reconocimiento de voz, etc.) y comportamientos inteligentes (procesamiento y selección de información disponible, toma de decisiones para alcanzar determinado objetivo), que podríamos pensar son esencialmente humanas" [4].
- "La IA hace referencia a diversas tecnologías que se pueden combinar de distintas formas para sentir, comprender y actuar. Estas tres competencias se basan en la capacidad de aprendizaje a partir de la experiencia y adaptación" [24].
- "Hacer que una máquina se comporte como lo haría un ser humano, de tal manera que se lo podría llamar inteligente" [25].

La definición de IA ha ido variando a lo largo de los años, en la medida en que las tecnologías incluidas han ido "saliendo" o se han "independizado". Otro elemento que incide en la dificultad en llegar a una definición reconocida de IA es su carácter interdisciplinario. Antropólogos, biólogos, científicos de la computación, lingüistas, filósofos, neuro científicos, etc. Contribuyen al campo de la IA aportando cada uno desde su mirada, terminología y perspectiva [26].

4.2.1. Campos de aplicación de la Inteligencia Artificial.

A continuación, se cita algunos campos de aplicación de la IA:

La IA en la medicina, que incluye la interpretación de imágenes médicas, diagnóstico, sistemas expertos para ayudar a los médicos, la monitorización y control en las unidades de cuidados intensivos, diseño de prótesis, diseño de fármacos, sistemas tutores inteligentes para diversos aspectos de la medicina. La IA en aspectos de la ingeniería: diagnóstico de fallos, sistemas inteligentes de control, sistemas inteligentes de fabricación, ayuda inteligente al diseño, sistemas integrados de ventas, diseño, producción, mantenimiento, herramientas de configuración expertas (por ejemplo, garantizando que el personal de ventas no venda un sistema que no funciona). La IA en la ingeniería de software incluye síntesis de programas, verificación, depuración, prueba y monitorización de software. La IA en las matemáticas: diseño de herramientas para ayudar con distintas clases de funciones matemáticas, ahora tan utilizadas que ya no

se reconocen como productos de la IA. La IA en la biología: hay muchos problemas complicados en biología donde se están desarrollando sistemas informáticos más o menos inteligentes, por ejemplo, análisis de ADN, predicción de la estructura de plegado de moléculas complejas, la predicción, la elaboración de modelos de procesos biológicos, evolución, desarrollo de embriones, comportamientos de los distintos organismos. La IA en la arquitectura, el diseño urbano, la gestión del tráfico: herramientas para ayudar a resolver problemas de diseño que presentan múltiples restricciones, ayudar a predecir el comportamiento de las personas en los nuevos entornos, herramientas para analizar los patrones de los fenómenos observados. La IA en la educación: incluye diversos tipos de sistemas tutores inteligentes y sistemas de gestión de estudiantes. Aplicaciones particulares incluyen diagnóstico de lagunas en los conocimientos del estudiante, diversos tipos de tutores de ejercicios y prácticas, marcado automático de ejercicios de programación, entre otros⁴.

4.2.2. La Industria 4.0

El término de Industria 4.0 es la representación de lo llamado la cuarta revolución industrial de la fabricación, una transformación digital del sector industrial con automatización, intercambio de datos, la subida a la nube de datos, los robots, el Big Data, la IA, el IoT y técnicas tecnológicas para lograr objetivos industriales y de fabricación inteligente interactuando con personas, nuevas tecnologías e innovación. Sin ir más lejos, el concepto de Industria 4.0 es la introducción de las tecnologías digitales en los procesos de fabricación [27].

Pilares tecnológicos de la Industria 4.0 [28]:

- Internet of Things (IoT): no solo los ordenadores están conectados a la red, sino que máquinas, dispositivos y objetos cotidianos nos ofrecen información y datos relevantes para un análisis posterior.
- Robótica avanzada y la IA: máquinas creadas con el propósito de automatizar tareas, toma de decisiones e incluso aprendizaje, intentando emular el pensamiento lógico del ser humano.
- Sistemas para la integración vertical y horizontal: seleccionando cada empresa una implementación interna de un servicio o proceso (vertical) o integrándose en mecanismos de cooperación u outsourcing (horizontal).

⁴ Véase: https://www.cs.bham.ac.uk/research/projects/cogaff/misc/courses/IA-overview.html

- Comunicación M2M (Machine to Machine): gracias a diversas tecnologías, las máquinas se comunican intercambiando información y pudiendo realizar acciones eficientes sin la intervención humana.
- Big Data: es el análisis masivo de datos, los cuales pueden ser procesados y almacenados para incógnitas y cuestiones que anteriormente no hubiera sido posible resolver en la empresa.
- Hiperconectividad: como modelo de sociedad conectada permanentemente a la información a través de diferentes dispositivos modificando la forma tradicional de relacionarnos con todo lo que nos rodea.
- Cloud Computing: un nuevo paradigma que consiste en un nuevo modelo de implementación de servicios de las TIC conectados a través de Internet.
- Ciberseguridad: Es la práctica de proteger los sistemas informáticos de las empresas de ataques malintencionados que pudieran poner en riesgo la adecuada actividad de dichos sistemas, utilizándolos o perturbando su funcionamiento.
- Fabricación digital (Impresión 3D/4D): cuando desde la impresión 3D (altura, anchura y profundidad) y capa a capa, pasa a transformarse en objetos inteligentes capaces de adaptarse e interactuar con el entorno o la demanda.
- Realidad virtual y aumentada: VR es una tecnología que nos permite sustituir nuestro entorno nos traslada a un mundo digital mediante unas gafas con una pantalla en cada ojo. En la realidad aumentada no obturamos nuestra vista, sino que incrementamos la información añadiendo conocimiento relevante, además de recibirla en tiempo real.

4.2.2.1. La Industria 4.0 y la Universidad.

Uno de los retos más importantes en esta revolución denominada Industria 4.0 está relacionado con el uso de programas basados en la IA; la mayoría de las veces estos parten de identificar nuestros patrones de comportamiento y pueden llegar a acumular un gran conocimiento sobre cada uno de nosotros. El potencial de la IA hace que pueda ser usada para moldear nuestros comportamientos e incidir en las relaciones sociales y las formas de organización. El Foro Económico Mundial reflexiona sobre el futuro de los empleos, las Naciones Unidas se plantea la necesidad de incrementar el capital de conocimiento de las naciones. En una sociedad en donde el cambio es la constante y los oficios y las profesiones se deben reinventar cada día, aparecen una serie de retos para la universidad. Muchos expertos en pedagogía indican que, en este nuevo

contexto, la enseñanza debería dedicarse a desarrollar en los alumnos principalmente el pensamiento crítico, la capacidad de comunicación, el trabajo colaborativo y la creatividad; que, en lugar de desarrollar habilidades específicas, la universidad debe instruir en habilidades de uso general para la vida y sobre todo en la capacidad de adaptarse al cambio y a aprender nuevas cosas. Otra área fundamental para todas las profesiones son las competencias digitales, pues su adecuado uso las hace mucho más productivas; se sugiere entonces que todos los profesionales deberían tener capacidades para usarlas en sus labores como herramientas en el análisis y gestión de la información que manejan: La medicina en los diagnósticos clínicos, el derecho como apoyo análisis jurídicos, las ciencias sociales en al análisis del comportamiento humano, etcétera. Un dato curioso, es que países como Japón e Inglaterra ya se enseña algoritmia y programación a todos los estudiantes de secundaria. La universidad, debe trabajar con el desarrollo de nuevos escenarios y prácticas; escenarios en donde los alumnos de todas las profesiones adquieran competencias digitales avanzadas; tomen muchos de sus cursos de las plataformas internacionales más reconocidas y las horas de clase las dediquen a la discusión de los problemas de su campo de conocimiento, al trabajo interdisciplinario y en equipo, en donde se potencien las capacidades para imaginar nuevas soluciones y se incentiva el emprendimiento. En este nuevo marco, el profesor deja de ser el transmisor o quien todo lo sabe y asume un papel de asesor y coautor de las soluciones; su labor como "transmisor" de información pierde relevancia y su nuevo rol estará en formar habilidades en el alumno para discernir lo que es importante y válido en este mar de información no siempre confiable. Un último rol de la universidad tiene que ver con la formación continua y cómo lograr que el gran número de profesionales que pierden vigencia se reinventen y puedan de esta manera insertarse en las nuevas dinámicas productivas que la revolución industrial está generando [29].

4.2.2.2. Tecnologías Emergentes

El Informe "Hype Cycle for Artificial Intelligence" (Gartner, 2019) analiza el flujo de innovaciones y tendencias en el sector de la Inteligencia Artificial (IA) y examina los planes en relación a ella. Aunque el informe presenta muchas nuevas tecnologías y aplicaciones, pocas tienen un valor o propósito que se pueda comprender en su totalidad y aún menos están siendo adoptadas de forma importante. Las más destacadas tienen que ver con inteligencia aumentada, chatbots, machine learning, gobernanza de la IA y aplicaciones inteligentes [30].

_

⁵ Véase: https://elderecho.com/informe-hype-cycle-for-emerging-technologies-2019-gartner

Figura 4. Hype Cicle para Inteligencia Artificial, 2019 (Gartner) (Tomado de [30]).

Con referencia a lo anterior, el Hype Cycle se enfoca específicamente en el conjunto de tecnologías que prometen ofrecer un alto grado de ventaja competitiva en los próximos cinco a 10 años (véase Figura 4). Resulta oportuno mencionar que el Hype Cicle para Tecnologías Emergentes es único entre la mayoría de los Gartner Hype Cycles porque reúne información de más de 2,000 tecnologías en un conjunto resumido de 29 tecnologías y tendencias emergentes, a continuación se muestra cinco tendencias tecnológicas emergentes; donde la IA es base fundamental para permitir que las organizaciones aprovechen los ecosistemas digitales emergentes [31]:

- Sensibilidad y movilidad: al combinar tecnologías de sensores con IA, las máquinas están adquiriendo una mejor comprensión del mundo que las rodea, permitiendo la movilidad y la manipulación de objetos. Las tecnologías de detección son un componente central de Internet de las cosas (IoT) y la gran cantidad de datos recopilados. La utilización de la IA permite obtener muchos tipos de información que se pueden aplicar a muchos escenarios. Por ejemplo, durante la próxima década, la nube AR creará un mapa 3D del mundo, permitiendo nuevos modelos de interacción y, a su vez, nuevos modelos de negocios que monetizarán el espacio físico.
- Humano Aumentado: las tecnologías emergentes enfocadas en extender a los humanos incluyen biochips, personificación, inteligencia aumentada, IA de emociones, espacios de trabajo inmersivos y biotecnología (tejido cultivado o artificial). Un ejemplo de esto es la capacidad de proporcionar capacidades sobrehumanas, como la creación de prótesis de extremidades con características que pueden superar el rendimiento humano natural más alto.
- Computación y comunicaciones posclásicas: las próximas generaciones de estas tecnologías adoptan arquitecturas completamente nuevas. Esta categoría incluye no solo enfoques completamente nuevos, sino también mejoras incrementales que tienen impactos potencialmente dramáticos. Por ejemplo, los satélites de órbita terrestre baja (LEO) pueden proporcionar conectividad a Internet de baja latencia a nivel mundial. Las empresas deben evaluar tecnologías como 5G, memoria de próxima generación, sistemas LEO e impresión 3D a nanoescala.
- Ecosistemas Digitales: los ecosistemas digitales aprovechan un grupo interdependiente de actores (empresas, personas y cosas) que comparten plataformas digitales para lograr un propósito mutuamente beneficioso. Las tecnologías críticas a considerar incluyen: digital Ops, gráficos de conocimiento,

- Datos Sintéticos, Web Descentralizada y Organizaciones Autónomas Descentralizadas.
- IA avanzada y análisis: la analítica avanzada comprende el examen autónomo o semiautónomo de datos o contenido utilizando técnicas y herramientas sofisticadas, generalmente más allá de las de la inteligencia empresarial (BI) tradicional. "La adopción de IA de borde está aumentando para aplicaciones sensibles a la latencia (por ejemplo, navegación autónoma), sujetas a interrupciones de la red (por ejemplo, monitoreo remoto, procesamiento de lenguaje natural [PNL], reconocimiento facial) y / o uso intensivo de datos (por ejemplo, análisis de video)", dijo el Sr. Burke. Cabe agregar, las tecnologías a seguir incluyen aprendizaje automático adaptativo (ML), plataforma de IA como servicio (PaaS), aprendizaje de transferencia, redes de confrontación generativas y análisis de gráficos.

Finalmente, este año, Gartner reorientó el Hype Cycle para que las tecnologías emergentes cambien hacia la introducción de nuevas tecnologías que no se han destacado previamente en las iteraciones anteriores de este Hype Cycle. Si bien esto requiere retirar la mayoría de las tecnologías que se destacaron en la versión⁶ 2018, no significa que esas tecnologías hayan dejado de ser importantes.

4.3. Inteligencia Artificial en Instituciones de Educación Superior.

4.3.1. Países líderes en investigación de Inteligencia Artificial en el mundo.

Un análisis de datos de Scopus Editor Elsevier llevado a cabo por el Times Higher Education⁷, muestra en términos de volúmenes de publicaciones sobre IA, a China como el líder mundial con más de 41.000 publicaciones, en segundo lugar, se encuentra Estados Unidos con casi 25.500 publicaciones, seguido por Japón con 11.700 y el Reino Unido con 10.100 artículos, publicados entre 2011 y 2015. Sin embargo, en términos de impacto de citas en el campo de la IA y las Industrias, el líder mundial es Suiza, con un impacto del 2.71, seguido por Singapur (2.24) y Hong Kong (2.00) (véase Tabla I).

⁶ Véase: https://www.gartner.com/en/newsroom/press-releases/2018-08-20-gartner-identifies-five-emerging-technology-trends-that-will-blur-the-lines-between-human-and-machine

 $[\]label{thm:condition} \mbox{7 V\'ease: https://www.timeshighereducation.com/data-bites/which-countries-and-universities-are-leading-IA-research} \mbox{2 V\'ease: https://www.timeshighereducation.com/data-bites/which-countries-are-leading-IA-research} \mbox{2 V\'ease: https://www.timeshighereducation.com/data-bites/which-countries-are-leading-IA-resear$

TABLA I.
PAÍSES LÍDERES MUNDIAL EN INVESTIGACIÓN DE IA

País/Región	Publicaciones	Impacto de citas en el campo de IA
Suiza	1685	2,71
Singapur	2432	2,24
Hong Kong	2205	2
Estados Unidos	25471	1,79
Italia	6221	1,74
Países Bajos	2458	1,71
Australia	5227	1,69
Alemania	7957	1,66
Bélgica	1537	1,64
Reino Unido	10120	1,63

Sobre la base de las consideraciones anteriores, se muestra que solo una Institución de Educación Superior (IES) en China (Instituto de Automatización Academia de Ciencias de China), obtuvo un impacto en las citas por encima del promedio mundial de 2. Hecha la observación anterior, la lista de IES clasificada por factor de impacto está encabezada por el Instituto de Tecnologías de Massachusetts (Estados Unidos), con un factor de impacto de 3.57 (véase Tabla II).

TABLA II.

CLASIFICACIÓN DE IES CON MAYOR FACTOR IMPACTO

Institución	País/Región	Publicaciones	Impacto
Instituto de Tecnología de Massachusetts	Estados Unidos	1197	3,57
Universidad de Carnegie mellon	Estados Unidos	1311	2,53
Universidad Tecnológica de Nanyang	Singapur	1197	2,51
Universidad de granada	España	587	2,46
Universidad del Sur de California	Estados Unidos	627	2,35
Universidad técnica de Munich	Alemania	656	2,27
Instituto de Automatización, Academia China de Ciencias	China	588	2,26
Universidad Politécnica de Hong Kong	Hong Kong	602	2,2
Universidad Nacional de Singapur	Singapur	807	2,14
Universidad China de Hong Kong	Hong Kong	530	2,09

4.3.1.1. Indicadores bibliométricos Factor de Impacto y Número de Publicaciones.

El factor de impacto⁸ (FI) en una revista se puede definir como la media de veces que en un año determinado se citó los artículos científicos publicados por la revista en los dos años anteriores. Además, la forma de calcular el FI es:

Factor de impacto 2020 =
$$\frac{\text{a los artículos publicados en 2018 y 2019}}{\text{Total artículos publicados en 2018 + 2019}}$$

Por su parte, tanto las IES como los organismos de financiación de la ciencia están interesados en el FI de las revistas en las que publican sus investigadores. El JCR (Journal Citation report) utiliza las citas recogidas en la Web of Science (WOS), una de las principales bases de datos multidisciplinares a nivel mundial. De igual manera, el SJR SCimago Journal & Country Rank, utiliza las citas recogidas en Scopus, la otra gran base de datos multidisciplinar [32].

A continuación, se observa una comparativa entre los indicadores bibliométricos FI y el indicador número de citas (véase Tabla III).

TABLA III.

COMPARATIVA ENTRE LOS INDICADORES BIBLIOMÉTRICOS FI Y NÚMERO DE

CITAS

	Factor de impacto	Número de citas
Nivel de la métrica	Revista.	Autor
Transparencia del	Metodología del artículo	Metodología del artículo
cálculo	publicada en una revista.	publicada en una revista.
Nivel de respuesta	Publicación periódica	Recoge el número de
	anual, basada en datos de	veces que se han citado
	dos años atrás.	todas las publicaciones.
Beneficios para el autor	Muy útil, siendo	Útil, porque refleja la
cuando seleccione la	reconocido por	utilización de un trabajo o
revista para publicar	Universidades y	publicación científica.

⁸ Véase: https://www.elsevier.com/es-es/connect/ciencia/revistas-cientificas-factor-impacto

	Organizaciones	
	patrocinadoras.	
Manipulación por	Muy limitado, ya que los	Teóricamente
autores	criterios de inclusión de	manipulable, pero conlleva
	una revista son estrictos.	mucho trabajo.
Credibilidad científica	Es media, ya que la	También es media, ya que
	metodología del artículo es	el número de citas de una
	reproducible, pero con	publicación incide
	tiempo limitado,	directamente con el FI de
	documentos importantes	la revista donde fue
	no van a contribuir al FI	publicado el artículo.
Credibilidad académica	Es Alta, ya que muchas de	De media a alta, ya que en
	las decisiones en la	la academia se está
	academia a la hora de	comenzando a usar
	publicar se basan en este	algunas áreas para tomar
	índice bibliométrico.	decisiones para la
		progresión de un tema en
		particular.

Significa entonces, que la cantidad de artículos producidos no siempre conlleva a una mayor calidad además de no reflejar el factor de impacto real en la producción científica. Significa entonces, que se debe incitar a los investigadores a publicar en revistas bien posicionadas; para ello el impacto de sus publicaciones debe ser relevante. En consecuencia, el indicador FI es más sobresaliente al momento de realizar una publicación científica.

4.3.2. Países líderes en investigación de Inteligencia Artificial en Latino América.

La organización Oxford Insights International Development Research Centre⁹ (IDRC), evaluó 194 países usando cuatro métricas: gobernanza, infraestructura y datos, habilidades y educación, y servicios públicos y gubernamentales. El reporte indica que en Latino América los países de Uruguay y México son los únicos que están desarrollando políticas y estrategias de Inteligencia Artificial (IA) (véase Tabla IV).

⁹ Véase: https://www.oxfordinsights.com/ai-readiness2019

TABLA IV .

PAÍSES DE LATINO AMÉRICA CON MEJORES POLÍTICAS Y ESTRATEGIAS DE (IA)

País	Score
México	6,664
Uruguay	6,522
Chile	6,190
Brasil	6,157
Colombia	5,945
Argentina	5,684
Perú	5,076
Ecuador	4,646
Bolivia	4,399
Paraguay	3,873
Venezuela	2,476

El propósito de evaluar y calificar la preparación de los gobiernos con los demás sectores como la educación, es para alentar a dichos gobiernos a mejorar el desarrollo de la IA a través de la vinculación de las IES.

Aunque gran parte de investigación y desarrollo en el campo de la IA está ocurriendo al norte del mundo; no se puede negar el gran potencial de la IA en investigación y desarrollo particularmente para América Latina. A continuación, se indica la vinculación directa entre Empresas e IES de Latino América (véase Tabla V).

TABLA V.
PAÍSES LIDERES EN IA EN LATINO AMÉRICA

País/Región	Institución	IES	Empresas/Instituciones vinculadas
Brasil	Instituto Avanzado para la Inteligencia Artificial ¹⁰ (AI2).	Universidad de São Paulo (USP). Universidad Estatal Campinas (Unicamp). Universidad Estatal Paulista (UNESP). Universidad Federal do ABC (UFABC). Universidad Federal de São Paulo (Unifesp).	Intel. Petrobras. IBM [33].

¹⁰ Véase: https://advancedinstitute.IA/

		Universidad Tecnológica de Paraná (UTFPR). Laboratorio Nacional de Ciencia Computación (LNCC). Instituto Tecnológico de Aeronáutica (ITA). Escola Superior de Engenharia e Gestão. Centro Universitario FEI. Instituto Mauá de Tecnología. Universidad Presbiteriana Mackenzie.	
Argentina	Instituto Patagónico	Universidad Nacional de Córdoba	Fundación Mundo Sano [34].
Perú	Universidad Nacional Mayor de San Marcos (UNMSM) ¹¹ .	Universidad Nacional de Ingenierías. Universidad Nacional de San Agustín. Universidad Tecnológica del Perú.	Huawei en Shenzhen (China). Red de Gobierno Digital de América Latina y El Caribe [35].
Nicaragua	Centro Humbolt ¹²	Universidad de Managua. Universidad Nacional Autónoma de Nicaragua (UNAN-FAREM). Universidad Centroamericana (UCA).	Energía Sostenible para todos (SE4ALL) de Naciones Unidas

Cabe agregar, que existen IES que no se vinculan directamente con Empresas sin embargo existen IES como la Universidad de Columbia en Puerto Rico, está usando IA para medir la salud de los bosques dañados por tormentas y huracanes, y evaluar cuánto tiempo tardan en recuperarse. En México, por su parte, el Centro Intercultural para el Estudio de los Desiertos y Océanos se apoya en un modelo de IA para analizar los efectos de los medios de comunicación en la percepción pública sobre el cambio climático y, con ello, pretende ayudar a los gobiernos a crear estrategias de adaptación [33].

4.3.3. Instituciones de Educación Superior en Ecuador.

En Ecuador el Consejo de Aseguramiento de la Calidad de la Educación Superior CACES¹³ (antiguo CEAACES), es el organismo público técnico, con personería jurídica y patrimonio propio, con independencia administrativa, financiera y operativa que tiene a su cargo la regulación, planificación y coordinación del sistema de aseguramiento de la calidad de la Educación Superior. Resulta oportuno indicar que el CACES hizo público los resultados de la evaluación de las Instituciones de Educación Superior (IES)

¹¹ Véase: http://unmsm.edu.pe/noticias/ver/Estudiantes-de-San-Marcos-ganan-concurso-mundial-de-inteligencia-artificial-en-China

¹² Véase: https://humboldt.org.ni/

¹³ Véase: https://www.caces.gob.ec/web/ceaaces/quienes-somos

indicando un listado de 47 IES en el año 2016¹⁴. En relación con este último, en la Tabla VI, se muestra la clasificación de las IES del Ecuador en tres categorías A, B y C con su página Web correspondiente.

TABLA VI.
IES DEL ECUADOR EN CATEGORÍA A, B y C

Núm.	Categoría A	Página Web
1	Escuela Politécnica Nacional (EPN)	http://www.epn.edu.ec/
2	Escuela Superior Politécnica del Litoral (ESPOL)	http://www.espol.edu.ec/
3	Universidad San Francisco de Quito	http://www.usfq.edu.ec/P
4	Universidad de Cuenca	http://www.ucuenca.edu.
5	Universidad de las Fuerzas Armadas (ESPE)	http://www.espe.edu.ec/p
6	Universidad de Especialidades Espíritu Santo	http://uees.me/
7	Facultad Latinoamericana de Ciencias Sociales	https://www.flacso.edu.e
8	Universidad Andina Simón Bolívar	http://www.uasb.edu.ec
	Categoría B	
9	Escuela Superior Politécnica de Chimborazo	https://www.espoch.edu.e
10	Pontificia Universidad Católica del Ecuador	http://www.puce.edu.ec/p
11	Universidad Casa Grande	http://www.casagrande.e
12	Universidad Católica de Santiago de Guayaquil	http://www2.ucsg.edu.ec/
13	Universidad Central del Ecuador	http://www.uce.edu.ec/
14	Universidad del Azuay	http://www.uazuay.edu.e
15	Universidad Estatal de Milagro	http://www.unemi.edu.ec
16	Universidad Nacional de Loja (UNL)	http://unl.edu.ec
17	Universidad Particular Internacional SEK	https://www.uisek.edu.ec
18	Universidad Politécnica Salesiana	http://www.ups.edu.ec/
19	Universidad Técnica de Ambato	http://www.uta.edu.ec/v3.
20	Universidad Técnica del Norte	http://www.utn.edu.ec/we
21	Universidad Técnica Estatal de Quevedo	http://www.uteq.edu.ec/
22	Universidad Técnica Particular de Loja (UTPL)	http://www.utpl.edu.ec/
23	Universidad Tecnológica Empresarial de Guayaquil	http://www.uteg.edu.ec/
24	Universidad Tecnológica Equinoccial	http://www.ute.edu.ec/in
25	Universidad Tecnológica Indoamérica	http://www.uti.edu.ec/
26	Universidad de los Hemisferios	https://www.uhemisferios
27	Universidad Estatal Amazónica	http://www.uea.edu.ec/
28	Universidad Politécnica del Carchi	http://www.upec.edu.ec/
29	Universidad Iberoamericana	http://www.unibe.edu.ec/
30	Universidad Técnica de Manabí	http://www.utm.edu.ec/
31	Universidad de las Américas	http://www.udla.edu.ec/
32	Universidad Internacional del Ecuador	http://uide.edu.ec/
33	Instituto de Altos Estudios Nacionales	http://www.iaen.edu.ec
	Categoría C	
34	Escuela Superior Politécnica Agropecuaria de Manabí	http://espam.edu.ec
35	Universidad de Especialidades Turísticas	http://www.udet.edu.ec/i
36	Universidad del Pacífico Escuela de Negocios	http://upacifico.edu.ec/we
37	Universidad Estatal de Bolívar	http://www.ueb.edu.ec
38	Universidad Laica Vicente Rocafuerte de Guayaquil	http://www.ulvr.edu.ec

_

¹⁴ https://www.caces.gob.ec/documents/20143/142848/CATEGORÍA+VIGENTE+DE+UNIVERSIDADES+Y+ESCUELAS+POLITÉCNICAS.pdf/2d63d320-c93ee86e-d02f-ce03acdfb820

39	Universidad Metropolitana	http://umet.edu.ec
40	Universidad Nacional del Chimborazo	http://www.unach.edu.ec
41	Universidad Regional Autónoma de los Andes	http://www.uniandes.edu.
42	Universidad Técnica de Babahoyo	http://www.utb.edu.ec
43	Universidad Tecnológica Israel	http://uisrael.edu.ec
44	Universidad Estatal Península de Santa Elena	http://www.upse.edu.ec
45	Universidad Particular San Gregorio de Portoviejo	http://www.sangregorio.e
46	Universidad Tecnológica ECOTEC	http://www.ecotec.edu.ec
47	Universidad Técnica de Cotopaxi	http://www.utc.edu.ec/

4.3.4. Trabajos relacionados en el campo de la Inteligencia Artificial en el mundo.

Después de lo anterior expuesto a continuación, en la Tabla VII se sintetiza algunas SLRs vinculadas al desarrollo de producción científica en el campo de la IA; en los países de EE. UU, Canadá, China, Reino Unido, España, Bélgica y Ecuador. Cabe agregar, que dichas SLRs son trabajos relacionados específicamente en el campo de la IA, y que dos revistas donde fueron publicadas no tienen factor de impacto.

Sobre la base de las consideraciones anteriores, no se encuentra evidencia que indique que dichas SLRs hayan desarrollado propuestas sobre el tema de situación actual de la IA en IES en una región o país específico y mucho menos en Ecuador. Cabe agregar, que en Ecuador se encontró una SLR [36] que analizó e identificó la literatura sobre técnicas de minería de datos aplicadas a las bibliotecas académicas. También, se observó un estudio [26] que analiza la IA en la educación superior, exponiendo los principales avances y perspectivas de la IA en la educación superior.

TABLA VII. SLRs RELACIONADAS EN EL CAMPO DE LA (IA)

Revista / Congreso	IES	Fecha	Nombre Estudio	Cite Score	Factor de impacto
Burns journal of the international society for burn injuries	U.S. Army Institute of Surgical Research, Fort Sam Houston, TX, United States	diciembre de 2015	Machine learning in burn care and research: A systematic review of the literature	1.68	2.247
Journal of Affective Disorders	Institute of Medical Science, University of Toronto, Toronto, Canada Department of Neuropsychology, University of Hong Kong, Hong Kong Department of Affective Disorders, Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.	diciembre 2018	Applications of machine learning algorithms to predict therapeutic outcomes in depression: a meta-analysis and systematic review	4.2	4.084
The Lancet Digital Health	University de Birmingham, Birmingham, Reino Unido. UK Department de Retina, Moorfield's Fundación NHS de Eye Hospital Trust, London, UK Eye Clinic, Cantonal Hospital of Lucerne, Lucerne, Switzerland University Eye Hospital, Ludwig Maximilian University of Munich, Munich, Germany	octubre de 2016, Volume 1, Número 6	A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis	Sin información	Sin información
Value in Health	Amaris, Barcelona, España Amaris, London, UK	September 2018, Volume 21, Supplement 2	Applications of Artificial Intelligence Technologies in Healthcare: A Systematic Literature Review	3.46	5.037

The Journal of Academic Librarianship	Department of Computer Science, University of Cuenca, 12 de Abril Av., ECU-010150 Cuenca, Ecuador Centre for Industrial Management Traffic & Infrastructure, KU Leuven, Celestijnenlaan 300, Box 2422, BE-3001 Leuven, Belgium Department of Electrical Engineering ESAT/Stadiums, KU Leuven, Kasteelpark Arenberg 10, Box 2440, BE-3001 Leuven, Belgium	julio de 2015, Volumen 41, Número 4	Literature Review of Data Mining Applications in Academic Libraries	2.1	1.608
INNOVA Research Journal	Universidad Tecnológica Ecotec, Ecuador Universidad de Especialidades Espíritu Santo, Ecuador	Agosto, 2017 Vol. 2, No.8.1 pp. 412-422	La inteligencia artificial en la educación superior. Oportunidades y amenazas	Sin información	Sin información

4.4. Trabajos relacionados de Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador.

La Universidad de las Fuerzas Armadas (ESPE), cuenta con el Grupo de Investigación de Ciberseguridad e Inteligencia Artificial¹⁵, bajo la responsabilidad del Asesor Coordinador Ing. Sang Guun Yoo, PhD. El objetivo del Grupo de investigación es crear nuevos conocimientos y tecnologías que permita mejorar la calidad de vida de los seres humanos a través de la convergencia de tres diferentes áreas de conocimiento de la TIC que son el ciberseguridad, cosas inteligentes e inteligencia artificial, mediante aplicación sinérgica de la de las áreas antes mencionadas en las industrias tradicionales y nuevas tecnologías emergentes como la Industria 4.0, Domótica, Ciudades Inteligentes, Tecnología Cognitiva e Internet de las Cosas (IoT). La Institución también cuenta con la línea de Investigación Automatización y Control¹⁶, donde se encuentran trabajos desarrollados y publicados; en áreas de la IA. Cabe agregar, que también cuenta con el Grupo de Investigación de Sistemas Distribuidos, Ciberseguridad y Contenidos¹⁷, bajo la responsabilidad del Coordinador Ing. Walter Marcelo Fuertes Díaz, PhD. El Grupo de Investigación aborda con profundidad y rigurosidad científica temas relacionados con plataformas y tecnologías de Virtualización, Web Semántica, análisis y propuesta de solución a los problemas que se generan por la desconexión de dispositivos móviles en redes Wi-fi en aplicaciones de videostreaming y aporta con propuestas para la creación de un clúster para la ESPE. Donde se desarrolla una importante cantidad de producción científica18 a fines al área de la IA.

La Universidad Politécnica Salesiana (UPS), presentó los resultados del Grupo de Investigación en Inteligencia Artificial y Tecnologías de Asistencia GI-IATa, proyectos enfocados a mejorar la calidad de vida de las personas con habilidades diferentes, se presentaron proyectos como [37]:

- Sistema de inteligencia de soporte a la terapia de lenguaje.
- Primer observatorio de accesibilidad Web-Ecuador.
- Sistema ecuatoriano para el desarrollo de algoritmos de detección de plagio académico.

¹⁵ Véase: https://investigacion.espe.edu.ec/grupos/

¹⁶ Véase: https://cicte.espe.edu.ec/automatizacion-y-control/

¹⁷ Véase: http://rackly.espe.edu.ec/rackly/?page_id=961

¹⁸ Véase: http://rackly.espe.edu.ec/rackly/?page_id=1130

 Proyecto Buenas prácticas de las tecnologías aplicadas en el aprendizaje de niños con discapacidad auditiva.

La Universidad Técnica Particular de Loja (UTPL), tiene áreas de investigación que están integradas por departamentos responsables de la generación, transmisión y aplicación de conocimientos de una disciplina científica. Dentro del Departamento de Ciencias de la Computación y Electrónica, bajo responsabilidad de Armando Augusto Cabrera Silva Mg. Sc19, se encuentran grupos de investigación como: Interacción Persona Computador para atención a las personas con discapacidades (i+IPC), dicho grupo investiga en tecnologías para establecer ambientes de clase inteligentes, reconocimiento de emociones, chat de respuesta automática, personalización de recursos didácticos, y plataformas de interacción natural en 2D y 3D, como áreas emergentes para la educación²⁰. La investigación del grupo de Sistemas Basados en el Conocimiento²¹ (Knowledge-Based Systems, KBS) está enfocada en sistemas simbióticos hombre-máquina que usan técnicas, métodos y algoritmos basados en conocimiento (knowledge-based, KB) con el propósito de soportar la toma de decisiones, el aprendizaje y acciones humanas; se enfatiza la importancia práctica de estos sistemas KB; su desarrollo y uso; se cubre la implementación de tales sistemas KB: diseño, modelos y métodos, herramientas de software, mecanismos de apoyo a la toma de decisiones, interacciones de los usuarios, cuestiones de organización, adquisición representación del conocimiento, sistemas recomendadores. interoperabilidad e integración de datos, arquitectura de sistemas, y gestión de conocimiento; los principales temas a investigar son técnicas y metodologías de Big Data, Smart Data, Minería de datos y razonamiento. Sistemas de inteligencia artificial y computacional y procesos de información inciertos. Sistemas basados en aprendizaje automático (machine-learning). Tecnologías de la Web Semántica & Linked Open Data, entre otros. Otro Grupo de investigación muy importante es Control, Automation and Intelligent Systems²². El objetivo del Grupo es contribuir al conocimiento científico, innovación y transferencia de tecnología en el campo de los sistemas de control, automatización e inteligencia artificial; y sus aplicaciones en la industria, energía, medio ambiente, agricultura y agua; la infraestructura con la que cuenta el Grupo para la

¹⁹ Véase

https://www.utpl.edu.ec/directorio/index.php?ban=2&id_citte=1&id_dep=118&nom_dep=DEPARTAMENTO%20DE%20CIENCIAS%20DE%20LA%20COMPUT ACION%20Y%20ELECTRONICA

²⁰ Véase: https://culturacientifica.utpl.edu.ec/2018/05/inteligencia-artificial-al-servicio-del-aprendizaje/

²¹ Véase: https://investigacion.utpl.edu.ec/grupos/kbs/about

²² Véase: https://investigacion.utpl.edu.ec/grupos/consys/about

ejecución de sus proyectos de I+D+i, son los laboratorios de innovación y prototipado de: Electrónica y Robótica Aplicada; Ingeniería Industrial, y; Telecomunicaciones. En ese mismo sentido, la institución cuenta con el Laboratorio de Inteligencia Artificial²³ (LabIA), siendo este un espacio de trabajo interdisciplinario donde se combina proyectos de computación afectiva, visión artificial, procesamiento de lenguaje natural, minería de texto e interacción humano computador. Este innovador espacio está destinado para que estudiantes de la titulación de Ciencias de la Computación y Electrónica desarrollen sus habilidades y sus conocimientos trasciendan de la teoría a la práctica. A través del Laboratorio de Inteligencia Artificial, dichos estudiantes y docentes desarrollan algoritmos avanzados para ampliar capacidades en Machine Learning y razonamiento. Por otro lado, la Universidad de Cuenca tiene el Departamento de Ciencias de la Computación²⁴ (DCC) es una Unidad Académica, parte de la Facultad de Ingeniería, dedicada a la investigación que articula a académicos, centros de investigación y comunidades científicas. Con el propósito de dar cumplimiento a su misión, a nivel operativo el Departamento de Ciencias de la Computación ha organizado la actividad científica en varias disciplinas a través de algunos grupos de investigación, como Gestión del Conocimiento²⁵, bajo la responsabilidad de la Directora de Grupo Ing. Lorena Catalina Sigüenza Guzmán, PhD. Donde se analizan e implementan mecanismos de representación de la información que sean entendidos por usuarios y máquinas. Se contempla la gestión y representación de grandes volúmenes de información para la toma de decisiones. Además, el objetivo de esta línea (Semántica) es buscar mecanismos adecuados para la integración de información en ambientes heterogéneos y distribuidos.

La Escuela Superior Politécnica del Litoral (ESPOL), cuenta con dos grupos de investigación que desarrollan trabajos relacionados al campo de la IA; siendo el primero el grupo de Big Data²⁶, bajo la responsabilidad de la coordinadora de grupo Cristina Abad Robalino, PhD. El objetivo del grupo es aportar de manera significativa en los campos de educación e investigación en el área del procesamiento y análisis masivo de datos, mejorar los mecanismos de procesamiento masivo de datos, incluyendo los desafíos que surgen al modelar, evaluar, analizar, utilizar y construir estos sistemas. El trabajo del grupo combina experiencia en las áreas de: Análisis de datos de redes sociales, sistemas distribuidos, análisis semántico, modelamiento estocástico, manejo

²³ Véase: https://investigacion.utpl.edu.ec/es/laboratorio-de-inteligencia-artificial

²⁴ Véase: https://www.ucuenca.edu.ec/dcc

²⁵ Véase: https://www.ucuenca.edu.ec/dcc/grupos-o-centros-de-investigacion-dcc

²⁶ Véase: http://www.espol.edu.ec/es/ingestigacion/grupos-de-investigacion/big-data

de datos espaciales, procesamiento de datos, búsquedas de patrones, minería de datos, extracción de datos libres, sistemas computacionales y redes de datos. El segundo grupo de investigación se denomina Inteligencia Artificial²⁷, bajo la responsabilidad de la coordinadora Ana Teresa Tapia Rosero, PhD. El objetivo del grupo es promover el desarrollo de proyectos de investigación en IA que permitan fortalecer los fundamentos teóricos/prácticos e incentivar el desarrollo de tecnologías con potencial de innovación, en temas relacionados a arquitecturas cognitivas, aprendizaje automatizado de las máquinas, manejo de la incertidumbre y los modelos de computación genética que algunas de las características del "Comportamiento inteligente" en los procesos de toma de decisiones, reconocimiento de patrones y comportamiento de comunidades que priman en el desarrollo humano. Por otro lado, la institución cuenta con centros de investigación vinculados con facultades; destacándose el Centro de visión y robótica²⁸, bajo la responsabilidad del Director Ing. Daniel Ochoa PhD. D. Dicho Centro se enfoca en I+D y servicios de consultoría en varios campos relacionados con Ciencias de la Computación y Automatización. La principal característica del CVR es su naturaleza multidisciplinaria y aplicada. Los proyectos actuales cubren una amplia gama de campos y aplicaciones: biotecnología, monitoreo ambiental, movilidad de personas, computación de alto rendimiento y automatización industrial. Dos grupos de investigación comparten la infraestructura y los recursos del centro: GIACI (Automatización y control) y BIGDATA (Procesamiento de datos). Finalmente, la institución cuenta con la Revista Tecnológica ESPOL – RTE, está indica un estudio sobre IA, el cual se denomina: Estimulación de sensopercepciones: Un enfoque educativo basado en inteligencia artificial. En este estudio se presenta la primera etapa de un ecosistema de estimulación de sensopercepciones que se fundamenta en tres módulos independientes y que emplea redes neuronales para estimar el porcentaje de trabajo que se debe realizar con el paciente (niños, jóvenes o adultos) en cada uno de ellos. A fin de iniciar el proceso de validación del modelo se empleó un corpus de 60 casos reales para entrenar la red neuronal. Los resultados iniciales obtenidos son prometedores y permiten establecer los aspectos a mejorar para la implementación del módulo inteligente [38].

En ese mismo sentido, desde el año 2014 la Escuela Politécnica Nacional (EPN) ha realizado trabajos muy importantes en IA, se inauguró con éxito el Congreso De Inteligencia Artificial 2014²⁹ (CODIA 2014), este evento contó con la organización de la

-

²⁷ Véase: http://www.espol.edu.ec/es/ingestigacion/grupos-de-investigacion/inteligencia-artificial

²⁸ Véase: http://www.espol.edu.ec/es/investigacion/unidades-de-investigacion/centros

²⁹ Véase: https://www.epn.edu.ec/congreso-de-inteligencia-artificial/

Rama Estudiantil del Institute of Electrical and Electronics Engineers de la Escuela Politécnica Nacional (IEEE-EPN) y el capítulo técnico de Robotics and Automation Society (RAS); en colaboración con el Departamento de Automatización y Control Industrial (DACI), la Red Ecuatoriana De Universidades y Escuelas Politécnicas para Investigación y Postgrado (REDU), la Unidad de Apoyo al Politécnico Emprendedor (UAPE), y la Agencia Metropolitana de Promoción Económica (CONQUITO). Desde esa fecha hasta la actualidad, en la EPN se ha realizado: Presentación del Libro Inteligencia Artificial. Autor: Dr. Hugo A. Banda Gamboa [39], Conferencias de IA aplicada a procesos, seminarios sobre IA.

En la actualidad, se observó algunos trabajos relacionados desarrolladas en el campo del aprendizaje supervisado (Supervised Learning), siendo este uno de los principales algoritmos del Machine Learning. Por ejemplo, investigadores de la UPS presentaron dos algoritmos para la agrupación semisupervisada, siendo el primer algoritmo CSCLC basado en técnicas de optimización, mientras que el segundo algoritmo K-MedoidsSC es una variación del algoritmo K-Medoids que se usó para considerar las restricciones de tamaño en los clústeres [40]. Asimismo, en [41] se propone un nuevo algoritmo llamado ACARS para la agrupación de atributos basado en una estrategia no supervisada. El algoritmo se basa en las ideas principales de la clasificación basada en la distancia y la agrupación basada en prototipos. De igual manera, en [42] se desarrolló la propuesta de redes neurales profundas (DNN), que utilizan tres clasificadores, siendo el primero las Máquinas Deep Boltzmann (DBM), el segundo las redes de creencias profundas (DBN) y el tercero el autoencoders apilados (SAE), para el diagnóstico de fallas de rodamiento. Igualmente en [43] se propuso un nuevo método de extracción automática de características para evaluar la gravedad de los fallos. Consiste en un proceso de extracción de patrones siguiendo un enfoque no supervisado desde una representación en el dominio de la frecuencia temporal del tiempo, este nuevo método se valida utilizando un conjunto de datos con diferentes condiciones de gravedad en el modo de fallo en una caja de engranajes helicoidal.

De manera semejante, en la Universidad Técnica de Machala se observó la propuesta de aplicación de técnicas de selección de características y la determinación de la configuración óptima de los parámetros de un modelo de calibración quimiométrica basado en la regresión vectorial de soporte, una técnica comúnmente utilizada en el aprendizaje automático. En comparación con los modelos publicados, los modelos

propuestos aquí estimaron mejor las no linealidades causadas por la combinación de los espectros NIR de múltiples etapas del proceso de fabricación de la caña de azúcar [44].

De la misma manera, en la EPN se observó la vinculación directa con la Universidad de las Américas y otras IES internacionales para proponer un modelo que predice, con precisión, un rango de disposición a pagar a partir de evaluaciones subjetivas del ruido, un nivel de exposición al ruido modelado y condiciones demográficas y socioeconómicas [45]. De igual forma, se observó que la Universidad Técnica de Manabí se vincula directamente con la Universidad Yachay Tech y otras IES internacionales para proponer un enfoque de aprendizaje no supervisado, y categorizar automáticamente los posibles mensajes de suicidio en medios de comunicación social. Usando las similitudes semánticas de estos textos en conjunto con los algoritmos de agrupación permitidos llevados a cabo la agrupación de los mensajes en diversas categorías [46].

5. MATERIALES Y MÉTODOS

De acuerdo con el Reglamento de Régimen Académico que rige a las Instituciones de Educación Superior de Ecuador, RPC-SO-08-No. III-2019, en el artículo 32, se define que la aprobación de la unidad de integración curricular de tercer nivel se realizará mediante el desarrollo de un trabajo de integración curricular antes llamado Trabajo de Titulación (TT) y en su artículo 72, se define también, que la investigación a nivel de grado es de carácter exploratorio y descriptivo, constituyéndose de esta manera en una propuesta innovadora, que como mínimo contiene una investigación diagnóstica y exploratoria [47]. De manera exploratoria, se desarrolló una Revisión Sistemática de la Literatura (SLR) que permite identificar el estado actual de la Inteligencia Artificial (IA) en las Instituciones de Educación Superior (IES) del Ecuador y que permite vincular la IA en las IES de Ecuador; identificando grupos de investigación, áreas más investigadas de la IA; brindando un aporte bibliográfico significativo a los lectores en general. En cuanto al ámbito descriptivo, se presenta el estado actual de las áreas con mayor y menor producción de la IA, los investigadores que realizan publicaciones en áreas de la IA, los grupos de investigación, las líneas de investigación, el ranking de investigadores. Esta sección explica los materiales y métodos utilizados durante el desarrollo del presente TT. En el apartado 5.1 se explica el contexto en donde se llevó a cabo el presente TT; en la sección 5.2 se indica el proceso para cumplir con cada objetivo, indicando cada una de sus tareas; la sección 5.3 presenta los recursos utilizados; finalmente en la sección 5.4 se detallan los participantes del TT.

5.1. Contexto

El presente TT es de carácter investigativo se realizó en la Carrera de Ingeniería en Sistemas en la Facultad de la Energía los Recursos Naturales No Renovables de la Universidad Nacional de Loja. Los escenarios de experimentación y la selección de bases de datos académicas (SCOPUS, ACM, IEEE, Google Scholar) para la búsqueda de artículos académicos y la documentación.

5.2. Proceso

Para alcanzar el objetivo general del presente TT, se utilizó el siguiente proceso:

- Identificación de una metodología de Revisión Sistemática de Literatura, para su uso en el campo de la ingeniería.
 - 1.1. Métricas para la revisión y selección de la metodología de SLR (véase sección Resultados, apartado 6.1.1).
 - 1.2. Búsqueda de información relacionada con la metodología de SLR (véase sección Resultados, apartado 6.1.2).
 - 1.3. Analizar las metodologías de SLR seleccionadas en base a métricas planteadas (véase sección Resultados, apartado 6.1.3).
 - 1.4. Elaborar una tabla comparativa de metodologías de SLR relacionados en el campo de la Ingeniería (véase Resultados, apartado 6.1.4).
 - 1.5. Metodología de SLR para el uso en el campo de Ciencias de la Computación; utilizada en el presente trabajo de titulación. (véase Anexo 1).

2. Ejecución la Revisión Sistemática de Literatura con la metodología seleccionada

- 2.1. Etapa 1: Planificación. (véase sección Resultados, apartado 6.2.1).
- 2.2. Etapa 2: Ejecución. (véase sección Resultados, apartado 6.2.2).
- 2.3. Etapa 3: Informe. (véase sección Resultados, apartado 6.3.1)

5.3. Recursos

Para abordar las preguntas de investigación, se utilizó los siguientes recursos.

1. Recursos Científicos.

- 1.1. Búsqueda exploratoria: esta técnica ayudó a incursionar o indagar sobre las SLR en el campo de Ciencias de la Computación, y en algunas ocasiones totalmente desconocido, por tal motivo se realizó esta clase de investigación para cubrir un terreno amplio en cuanto a argumentos sólidos [48].
- 1.2. Estudio del estado del arte: esta técnica ayudó a buscar información bibliográfica existente, y así se levantó información útil acerca de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador [49].
- **1.3.** Investigación Bibliográfica: con esta técnica se sustentó la base teórica de la realización del TT, mediante consultas a: fuentes bibliográficas confiables,

- textos, revistas indexadas, artículos, casos de éxito, apuntes, documentos varios, entre otros [50].
- 1.4. Observación Activa: esta técnica ayudó a obtener datos reales, con el motivo de conseguir la documentación [51], que sea sustento para una mejor comprensión de la SLR.
- **1.5.** Metodología de Revisión Sistemática (véase **Anexo 2**).
- 1.6. Método científico: la utilización del método científico fue la base fundamental para el desarrollo del presente TT. Dando inicio, en el momento que se planteó la Propuesta de Trabajo de Titulación (PTT), hasta la culminación del presente TT. Esto se evidencia a través del desarrollo de las actividades realizadas por cada uno de los objetivos planteados (véase sección Materiales y Métodos, apartado 5.2); y los resultados obtenidos en cada una de sus fases (véase sección Resultados, Etapa I, II, y III), conjuntamente con la discusión (véase sección Discusión) y las conclusiones del TT (véase sección Conclusiones). Según la literatura el método científico³⁰, consta de 6 pasos:
 - Observación: Definición y planteamiento del problema.
 El presente paso, inició con la idea de un PTT; por parte del estudiante investigador. Se determinó la situación problemática y el problema de investigación; con el enunciado de una pregunta de investigación (véase Anexo 4, sección A, Situación Problemática y sección B, Problema de Investigación).

Investigación:

En el presente paso, se reunió la información que ayudó a responder a la pregunta de investigación. Es muy importante para esta SLR, que la información obtenida sea objetiva y de fuentes fiables (véase: sección **Etapa II, apartado 2.2 y 2.3**).

Hipótesis: Formulación de la Hipótesis.

La formulación de la hipótesis en el presente paso se estableció en base a un conocimiento previo para la realización del PTT (véase **Anexo 3**, **sección Justificación**), para dar respuesta a dicha hipótesis se estableció objetivos y alcance del PTT (véase **Anexo 3**, **sección D y E**).

Experimentación: Comprobación de la Hipótesis.

³⁰ Véase: https://www.ejemplos.co/que-es-el-metodo-cientifico-y-cuales-son-sus-pasos/

A continuación, se estableció los objetivos o fases como se las denomina en el presente TT; para dar respuesta a la hipótesis formulada. En el presente TT se estableció dos fases:

- En la fase uno, se observó información pertinente sobre cinco metodologías de SLR en el campo de la ingeniería; lo cual permitió diseñar, documentar y desarrollar una metodología de SLR para su uso en el campo de Ciencias de la Computación (véase sección Resultados, apartado Fase I).
- En la fase dos, se ejecutó la metodología de SLR (véase sección Resultados, apartado Fase II).

Análisis de datos:

En el presente paso, se muestran los resultados del presente TT, y se decidió las próximas acciones a realizar como (véase sección Resultados, apartado 2.4 Evaluación de la calidad de los estudios, 2.5 Extracción de datos).

Tesis o teoría: Comprobación.

En el presente paso, la comprobación de la hipótesis se estableció en cada una de las fases desarrolladas. En la fase uno, se identificó cinco metodologías de SLR en el campo de Ciencias de la Computación; sirviendo de base para el diseño y desarrollo de la metodología de SLR (véase sección **Conclusiones**).

En la fase dos, se muestra las actividades a desarrollar en la SLR; en tres etapas principales (véase sección **Resultados**).

2. Recursos Técnicos:

- 1.1. Gestores bibliográficos: el gestor utilizado para el desarrollo del presente TT desde su inicio fue Mendeley³¹.
- **1.2.** Repositorio The Open Science Framework (OSF)³², esta herramienta proporciono el flujo de trabajo directo. La captura de diferentes aspectos y productos del ciclo de vida de la SLR, incluyendo el desarrollo de la idea del PTT en el noveno ciclo, hasta el diseño y desarrollo del TT en décimo ciclo.

³¹ Véase: https://www.mendeley.com/library/

³² Véase: https://osf.io/m2t78/

También, para el almacenamiento y análisis de los estudios seleccionados, la escritura y publicación de informes o documentos pertinentes en esta SLR.

5.4. Participantes

El presente TT de carácter investigativo fue desarrollado por los siguientes participantes:

- Miguel Antonio Cabrera Sarango, como estudiante investigador principal del presente TT. Sus actividades dieron inicio desde el planteamiento del tema del PTT, hasta el desarrollo y finalización de los objetivos planteados en el presente TT (véase sección Materiales y Métodos, apartado Proceso y Recursos).
- El Ing. Luis Antonio Chamba Eras Mg. Sc. PhD. Como Tutor académico y director del TT, supervisó los avances académicos y técnicos desarrollados por el estudiante investigador en el presente TT.

6. RESULTADOS

Para el desarrollo de la presenta Revisión Sistemática de la Literatura (SLR), se planteó dos objetivos las mismos cuentan con actividades y tareas que se realizó durante el proceso del presente TT. El resultado del primer objetivo es la identificación de metodologías de SLR en el campo de Ciencias de la Computación, para ello existe un proceso, en el cual se buscó metodologías de SLR específicamente en el área de Ciencias de la Computación; explorando e indagando estas metodologías se encontró fortalezas, debilidades, diferencias entre ellas; a continuación, se diseñó y documentó una metodología de SRL con base en las cinco metodologías seleccionadas anteriormente. El resultado de la segunda fase fue la ejecución de la metodología de SLR en el campo de Ciencias de la Computación.

6.1. OBJETIVO I: Identificación de una metodología de Revisión Sistemática de Literatura, para su uso en el campo de la ingeniería.

6.1.1. Métricas para la revisión y selección de la metodología de Revisión Sistemática de la Literatura

Es importante destacar las distintas metodologías de SLR que permitan realizar procesos de investigación de manera objetiva. La propuesta pionera en el área de la ingeniería es la presentada por la profesora Bárbara Kitchenham [52] que ha sido aplicada, con pocas modificaciones, en todos los procedimientos de SLR identificados en la literatura. Según se ha citado, esta propuesta recibe una influencia directa de los procedimientos de SLR utilizados en la medicina, especialmente el propuesto por [6]. Las métricas propuestas en el procedimiento de Bárbara Kitchenham son las siguientes:

Planificación de la revisión

Su objetivo es determinar si hay una verdadera necesidad de la revisión y desarrollar un plan para ejecutar la misma. Esta fase se divide en dos actividades:

1.1. Identificación de la necesidad de la revisión: su objetivo es evitar la duplicidad para que cada nueva revisión sea original. Si existen revisiones previas debería evaluarse su calidad con base en su objetivo, fuentes de búsqueda, criterios de inclusión/exclusión, criterios de evaluación de la calidad, métodos de extracción y síntesis de datos.

1.2. Desarrollo de un protocolo de revisión: este protocolo especifica los métodos a ser utilizados en la SLR. Se pretende evitar los sesgos producidos por cambios en la pregunta de investigación o por una selección subjetiva de los estudios primarios. Este protocolo contiene: los antecedentes de la revisión, las preguntas de investigación, la estrategia de búsqueda, los criterios y procedimientos para la selección de estudios y para la evaluación de su calidad, la estrategia de extracción de datos y los métodos para su síntesis.

Realización de la revisión

Esta fase presenta actividades muy similares a las propuestas por [6] y [9]. Consta de las siguientes actividades:

- 2.1. Identificación de la investigación: consiste en la identificación de estudios primarios relevantes a través de una estrategia de búsqueda que debe ser exhaustiva y libre de sesgo.
- 2.2. Selección de los estudios primarios: consiste en determinar la relevancia de cada estudio identificado, respecto a la pregunta de investigación planteada. Esta tarea se realiza con base en los criterios de inclusión/exclusión establecidos en el protocolo de revisión.
- 2.3. Evaluación de la calidad de los estudios: su propósito es obtener información adicional acerca de los estudios seleccionados para refinar los criterios de inclusión/exclusión. En este contexto, la calidad es definida en relación con la manera en que cada estudio reduce la probabilidad de sesgos y maximiza la validez interna y externa de sus resultados. Para [52] la evaluación de la calidad se enfoca en asignar un peso a cada estudio y establecer si las diferencias en cuanto a la calidad de un estudio respecto a otro pueden explicar resultados diferentes entre ellos.
- **2.4.** Extracción de datos y monitoreo: el objetivo es diseñar formularios para realizar la recolección de datos a partir de los estudios primarios de manera precisa y libre de sesgo.
- 2.5. Síntesis de datos: el propósito es resumir y agregar los datos que han sido extraídos de los estudios primarios seleccionados. Puede realizarse a través de la tabulación o descripción de las características de los estudios y sus resultados (síntesis no-cuantitativa) o de una síntesis cuantitativa a través de la aplicación de técnicas estadísticas.

Reporte de la revisión:

Como última fase de la SLR, se debe generar un reporte que permita a los investigadores y profesionales entender las implicaciones de los resultados de la SLR, al mismo tiempo que pueda valorar su validez. Para ello la profesora Bárbara Kitchenham [52] sugiere comunicar los resultados a través de diferentes medios: reportes técnicos, una sección en una tesis doctoral, artículos técnicos en revistas y conferencias, artículos no técnicos en revistas para profesionales, en notas de prensa, y en páginas Web. Las métricas o directrices del procedimiento proponen una estructura guiada por el protocolo de investigación donde se documenta información resumida de los componentes del protocolo y una discusión breve de resultados y conclusiones.

6.1.2. Búsqueda de información relacionada con la metodología de Revisión Sistemática de la Literatura para la Ingeniería.

En los marcos de las observaciones anteriores, durante la búsqueda de información se encontraron algunos trabajos en esta área, que establece propuestas para la conducción de la SLR. A continuación, se muestra las SLR más destacadas y aplicadas en el campo de Ciencias de la Computación.

6.1.2.1. Información relacionada en el campo de la Ingeniería: Lineamientos para revisiones sistemáticas en Ingeniería de Software (LRSIS)-Universidad de Kéele.

Según la literatura [53], la propuesta presentada por [52] estableció el primer acercamiento de Lineamientos Metodológicos para conducir una SLR en IS (LRSIS). Se observó que presenta un grado distinto e importante de adecuación de las prácticas utilizadas en Medicina, considerando las diferencias entre esa área de las ciencias y la IS.

6.1.2.2. Información relacionada en el campo de la Ingeniería: Enfoque para revisiones sistemáticas en Ingeniería de Software Universidad Federal de Río de Janeiro.

El trabajo realizado en la Universidad Federal de Río de Janeiro (UFRJ) por [54] propuso una metodología inspirada en B. Kitchenham [52], pero enfocada en mejorar los aspectos referentes al protocolo de revisión. La metodología UFRJ propone dos hitos en los cuales se evalúan los resultados obtenidos para decidir la continuidad del proceso

o una próxima iteración. De la misma manera, propone que algunas de las fases (por ejemplo la definición de los criterios de inclusión/exclusión, la extracción de datos, y la síntesis de datos) sean iterativas; esto quiere decir que las actividades son iniciadas durante el desarrollo del protocolo y revisadas mientras se conduce la SLR [53].

6.1.2.3. Información relacionada en el campo de la Ingeniería: Metodología para la revisión sistemática de la literatura aplicada a la Ingeniería y la educación.

Según la literatura [55], una SLR científica en un área específica es importante para identificar preguntas de investigación, así como para justificar la investigación futura en dicha área. Este proceso es complejo para los principiantes en la investigación científica, especialmente si no han desarrollado habilidades para buscar y filtrar información, y no saben qué bases de datos de alto nivel son relevantes en su campo de estudio. El método propuesto lleva al investigador de "Mi" a "El" estado actual del problema; se propone una adaptación del método por B. Kitchenham y Bacca, que divide el proceso en tres partes: planificación, realización e información de los resultados. Del enfoque del problema de investigación en la fase preliminar se extraen preguntas de investigación (recomendadas entre 3 y 5) y se desarrolla el "mentecato conceptual"; esta última da originalidad al método y facilita el desarrollo del tesauro para búsquedas y criterios de inclusión y exclusión.

6.1.2.4. Información relacionada en el campo de la Ingeniería: Tendencias de Realidad Aumentada en la Educación: Una revisión sistemática de la investigación y las aplicaciones.

En el campo de la Ingeniería, una de las tendencias sobresalientes actualmente es la realidad aumentada (RA), según la literatura [56], existe un gran volumen de estudios publicados que reportan ventajas, limitaciones, desafíos de efectividad, de la RA en la educación. Para esta revisión, se consideraron las guías propuestas por [52] y adaptadas a esta revisión de la literatura: Planificación, ejecución de la revisión, e informar sobre la revisión. Esta revisión también considera categorías para analizar el estado y las tendencias actuales de la RA, tales como los usos de la RA en los entornos educativos, así como sus ventajas, limitaciones, efectividad, la disponibilidad de adaptación y la disponibilidad de recursos para la educación, procesos de

personalización en las aplicaciones educativas de la RA, así como el uso de la RA para atender las necesidades especiales de los estudiantes en diversos contextos.

6.1.2.5. Información relacionada en el campo de la Ingeniería: Revisión Sistemática y Mapeo.

Según la literatura [57], Bárbara Kitchenham hizo hincapié en que un enfoque de la IS basado en la evidencia (EBSE) destaca la necesidad de encontrar y agregar evidencia sobre un tema específico utilizando estudios secundarios tales como SLR y estudios de mapeo como marco metodológico para identificar y agregar evidencia. En este contexto, el propósito principal de una SLR es identificar, evaluar e interpretar los estudios disponibles en la literatura considerando las preguntas de investigación. A través de una revisión sistemática, es posible recopilar evidencia para identificar vacíos y oportunidades de investigación en el área objetivo [58]. El mapeo sistemático es una forma de revisión sistemática de la literatura que tiene como objetivo proporcionar una visión general mediante la identificación y categorización de la investigación disponible sobre un tema amplio basado en las directrices propuestas por B. Kitchenham [58].

6.1.3. Analizar las metodologías de Revisión Sistemática de la Literatura seleccionadas en base a métricas planteadas.

6.1.3.1. Lineamientos para revisiones sistemáticas en Ingeniería de Software (LRSIS)-Universidad de Kéele.

Al analizar en profundidad la propuesta presentada por estos autores [53], donde su versión más reciente fue desarrollada en [59], se observó una marcada influencia de metodologías propuestas en el área de Medicina, aunque también se observó una influencia directa de los métodos sugeridos por la Cochrane Collaboration. Según la literatura [59] los autores establecen tres etapas en base a las métricas establecidas, estas son:

- 1. Planificación de la revisión
- 2. Conducción de la revisión y,
- 3. Reporte de los resultados de la revisión.

En la etapa I, se identifica el problema y define el protocolo de revisión, en la cual establece los métodos a utilizar durante la etapa II de Conducción. La etapa II incluye

todas las actividades necesarias para localizar la evidencia primaria, realizar la evaluación critica de la misma, extraer los datos y realizar la síntesis de estos. La última etapa tiene por objetivo documentar los resultados de la revisión. Más adelante se podrá observar la coincidencia de tales etapas y actividades con las etapas y actividades tradicionales en Medicina y otras ciencias, siendo de especial mención el uso del protocolo de revisión.

6.1.3.2. Enfoque para revisiones sistemáticas en Ingeniería de Software-Universidad Federal de Río de Janeiro.

La metodología UFRJ basada en el trabajo realizado por [54], comienza con:

- La planificación de la revisión, donde se genera y debe ser aprobado tal protocolo.
- Posteriormente, se ejecuta la revisión (lo cual incluye la búsqueda, selección y evaluación de estudios, así como la extracción de los datos) y,
- 3. finalmente, se analizan los datos obtenidos a través de métodos de metaanálisis.

De manera concurrente, durante todo el proceso, los resultados que se obtienen son "empaquetados" en una base de datos. En su trabajo [54], además decreta algunas diferencias entre las SLR de estudios en Medicina y en IS. En primer lugar, los autores consideran que es imposible el enmascaramiento (blinding) en los estudios en IS, debido a que los métodos y técnicas utilizadas en esta área incluyen tareas con alta participación humana y requieren de profesionales experimentados que estén conscientes de las técnicas y métodos que están siendo aplicados. Por otra parte, afirmaron que el efecto de una técnica difícilmente puede ser aislado, debido a que la mayoría de los métodos y técnicas afectan una parte completa del ciclo de vida. De tal manera, las técnicas estudiadas interactúan con muchas otras técnicas y procedimientos. En general, establecen que es difícil determinar un enlace causal-lineal entre una técnica particular y un resultado esperado de un proyecto.

Por último, se plantea el hecho de que la evidencia disponible no se encuentra centralizada, como ocurre en Medicina. Al mismo tiempo, la evidencia disponible es fragmentada y limitada, no se encuentra apropiadamente integrada, y no está estandarizada. El principal aporte de este trabajo es que propone una plantilla para el desarrollo del protocolo de revisión, el cual establece la información que debe ser proporcionada en una fase temprana del proceso (formulación de la pregunta, selección

de fuentes, selección de estudios, extracción de información, y resumen de resultados) [53].

6.1.3.3. Metodología para la revisión sistemática de la literatura aplicada a la Ingeniería y la educación.

El método utilizado en la literatura [55], para una SLR realizado por Bárbara Kitchenham [52], [60], [61], luego adaptado por Bacca [62], que divide el proceso en tres fases principales: planificación, realización de la revisión e informe de la revisión. Añadió un proceso preliminar de análisis conceptual, que se desarrolla a partir de una aproximación temprana a la problemática general de la investigación; este análisis conceptual se realiza a partir de la propuesta de la mente conceptual, diseñada por De Zubiría [63], o del análisis y comprensión de un campo específico de estudio, a partir de un modelo gráfico; este recurso guiará todo el proceso de organización de la búsqueda y la discriminación a partir de los criterios de inclusión y exclusión. Con los cambios previamente discutidos, el procedimiento para la revisión sistemática tiene las siguientes etapas:

- 1. Planificación.
- 2. Realización de la revisión.
- 3. Presentación de informes sobre el examen.

El investigador parte de un estado temprano de conocimiento "personal/individual" del problema como "MI estado actual del problema" y, al final de todo el proceso, pasa a un estado universal: "El estado actual del problema". Además del conocimiento sobre el problema y el área de conocimiento para el cual se llevará a cabo la revisión de la literatura, el investigador debe al menos escribir las preguntas de la investigación y dibujar el concepto de mentefacto. A partir de esta base de conocimiento previa, se realiza la primera búsqueda sistemática S(), para determinar la existencia de revisiones sistemáticas realizadas sobre el tema en particular. Sólo, si el procedimiento de búsqueda sistemática S() requiere varias subetapas, se parte de un conjunto de palabras de búsqueda, obtenidas a partir del tesauro conceptual y científico de mentefacto, una estructura semántica de búsqueda, un guion de búsqueda adaptado a cada base de datos, un proceso específico de selección de estudios, y una lista con los resultados de la búsqueda como variable resultante de este procedimiento [64].

6.1.3.4. Tendencias de Realidad Aumentada en la Educación: Una revisión sistemática de la investigación y las aplicaciones.

El método utilizado para esta revisión según [56] se consideró las guías propuestas por Bárbara Kitchenham [52] y adaptadas a esta SLR:

- 1. Planificación
 - a. Selección de revistas
 - b. Definición de los criterios de inclusión y exclusión de los estudios
 - c. Categorías de definición para el análisis
- 2. Ejecución la revisión
 - a. Selección de estudios
 - b. Extracción de datos (se aplicó el método de análisis de contenido)
 - c. Síntesis de datos
 - d. Codificación de datos
- 3. Informar sobre la revisión

En el paso 1a, se observa la selección de las revistas más relevantes para la revisión sistemática de forma consistente. Para mantener el proceso metodológicamente fuerte y científicamente consistente, en esta investigación se ha definido un método para la selección de revistas. En el paso 1b, teniendo en cuenta las preguntas de la investigación, se consideraron criterios generales que definen el marco temporal del estudio y el tipo de estudios que son relevantes. En el paso 1c, se define un grupo de categorías de análisis con sus correspondientes subcategorías de acuerdo con cada pregunta de investigación. Las categorías ayudan a agrupar los estudios según sus características compartidas, la lista de categorías para el análisis clasificadas por preguntas de investigación (RQ). En el paso 2a se realizaron búsquedas manuales en las revistas seleccionadas y se aplicaron los criterios de inclusión y exclusión para seleccionar los estudios para la revisión. En los pasos 2b y 2c se llevaron a cabo mediante la lectura completa de los documentos y el proceso de codificación de los datos se realizó teniendo en cuenta las categorías definidas en el paso 1c. Con respecto al paso tres, se incluye el análisis de los resultados, la discusión de los hallazgos, tendencias y conclusiones de la revisión.

6.1.3.5. Estudios de Mapeo sistemático en Ingeniería de Software.

Un estudio de mapeo sistemático tiene como objetivo evaluar e interpretar todo el conocimiento disponible relevante para una pregunta o tema de investigación en

particular utilizando un método riguroso, auditable y reproducible [65], [66]. Además, su objetivo es sintetizar y divulgar los resultados de la investigación, identificar las partes faltantes o incompletas de la investigación y determinar la necesidad de una revisión sistemática completa [65], [66]. En la literatura [67], se desarrolló un estudio de mapeo sistemático mismo que sigue las directrices proporcionadas por [66], [14]. A continuación, se detalla el proceso que usó la literatura [66] para el desarrollo del Mapeo Sistemático:

Figura 5. El proceso del Mapeo Sistemático (Tomada de [66])

Los pasos principales del estudio de Mapeo Sistemático son la definición de las preguntas de investigación, llevar a cabo la búsqueda de artículos relevantes, la selección de artículos, la redacción de resúmenes y datos extracción y cartografía (véase Figura 5) cada paso del proceso tiene un resultado, el resultado final del proceso siendo el mapa sistemático. El estudio de Mapeo Sistemático, desarrollado en la literatura [57], se organizó sobre la base de las principales actividades propuestas por Bárbara Kitchenham [68]:

- 1. Planificación
- 2. Realización, y
- 3. presentación de informes del estudio.

En la actividad de planificación se identifica los objetivos y define un protocolo. En el protocolo se especifica el método que se utilizará en la SLR y el mapeo para reducir el sesgo de los investigadores [69]. Además, la SLR y el Mapeo deben ser reproducibles y el protocolo tiene un papel importante que cumplir en este requisito. Basándose en las preguntas de la investigación, se toma en cuenta la estructuración de las preguntas de investigación en términos de PICOC [13]. (Población, Intervención, Comparación, Resultado y Contexto) para identificar las palabras clave, identificación de sinónimos

para cada una de las palabras clave, y construir la cadena de búsqueda basada en la combinación de los términos clave y sus sinónimos, utilizando los operadores OR y AND.

6.1.4. Elaborar una tabla comparativa de metodologías de Revisión Sistemática de la Literatura relacionados con el campo de la ingeniería.

En esta subsección, se realizó la comparación entre cinco metodologías de SLR relacionadas en el campo de la ingeniería (véase Tabla VIII).

En lo que respecta a las actividades para desarrollar la propuesta de metodología de SLR para la Inteligencia Artificial (IA); considerando que las actividades mencionadas son las que recurrentemente aparecen en las metodologías que han sido analizadas, se consideró las características particulares de la IA en el ámbito de la educación superior en Ecuador.

Debido a aquello, se propuso un proceso de SLR que cumpla con las siguientes características:

- Sistemático: el proceso deberá determinar un conjunto de actividades y pasos a seguir para alcanzar el objetivo principal del TT.
- Documentado: también, deberá generar información suficiente a manera de informe de la SLR desarrollada. Lo que accederá tomar decisiones en relación a mejoras del protocolo, criterios de inclusión/exclusión, script de búsqueda, fecha de corte de las búsquedas, etcétera.
- Transparente: asimismo, deberá presentar información detallada que permita su ejecución tanto por revisores experimentados como por revisores principiantes.
- Eficiente: adicionalmente, deberá desarrollar script de búsquedas que permitan obtener mejores resultados con el menor esfuerzo posible.

TABLA VIII.

COMPARACIÓN ENTRE METODOLOGÍAS DE SLR EN EL CAMPO DE LA INGENIERÍA

SLR (LRSIS) Universidad de Kéele. (SLR 1)	SRL (UFRJ) Universidad Federal de Río de Janeiro. (SLR 2)	SRL (MAEE) Aplicada a la Ingeniería y la educación. (SLR 3)	SRL (ARTE) Tendencias de Realidad Aumentada en la Educación (SLR 4)	SRL (SRMPIS) Estudios de Mapeo Sistemático para IS. (SLR 5)
1. Planificación. 1.1. Identificación de la necesidad de una revisión. 1.2. Puesta en servicio de una revisión. 1.3. Especificar la(s) pregunta(s) de investigación 1.3.1. Tipos de preguntas 1.3.2. Estructura de preguntas 1.4. Desarrollar un protocolo de revisión. Componentes:	 Revisar la planificación Formulación de preguntas. Enfoque de la pregunta. Calidad y amplitud de la pregunta. Problema. Pregunta. Palabras clave y sinónimos. Intervención. Control. Medida de Resultado. 	1. Planificación. 1.1. Determinación de la necesidad de la revisión 1.1.1. Estado actual de la investigación del problema 1.1.2. Preguntas de investigación 1.1.3. "Mentefacto Conceptual" 1.1.4. Revisiones sistemáticas relacionadas. 1.2. Desarrollo de un protocolo de revisión. 1.2.1. Definición de los criterios de inclusión y	1. Planificación. 1.1. Selección de revistas. 1.2. Definición de los criterios de inclusión y exclusión de los estudios. 1.2.1. Criterios Generales. 1.2.2. Criterios específicos. 1.3. Categorías de definición para el análisis y la codificación de datos.	1. Definición de las preguntas de investigación (alcance de la investigación)
- Antecedentes.	- Población. - Aplicación.	exclusión.		

 La justificación de 	- Diseño	1.2.2. Preparación de un	
la revisión.	experimental.	formulario de	
- Criterios de	1.3. Selección de	extracción de datos	
selección de	fuentes	1.2.3. Selección de	
estudios.	1.3.1. Definición	revistas.	
- Procedimientos de	de los		
selección de	Criterios de		
estudios.	Selección		
 Listas de control y 	de Fuentes.		
procedimientos de	1.3.2. Estudios e		
evaluación de la	Idiomas.		
calidad de los	1.3.3. Identificació		
estudios.	n de		
- Estrategia de	fuentes.		
extracción de	- Métodos de		
datos.	búsqueda de		
- Síntesis de los	fuentes.		
datos extraídos.	- Cadena de		
- Estrategia de	búsqueda.		
difusión.	- Lista de		
- Calendario de la	búsquedas.		
revisión.	1.3.4. Selección		
1.5. Evaluación de un	de fuentes		
protocolo de revisión.	después de		
1.6. Lecciones aprendidas	la		
para la construcción de	evaluación.		
protocolos.	1.3.5. Verificación		
	de		
	Referencias		

1.4. Selección de	
estudios.	
1.4.1. Definición	
de los	
estudios.	
- Definición de los	
criterios de	
inclusión y	
exclusión.	
- Definición de	
Tipos de	
Estudios.	
- Procedimientos	
para la selección	
de estudios.	
1.5. Evaluación de la	
planificación.	
- Una manera de	
realizar dicha	
evaluación es	
pedir a los	
expertos que	
revisen el	
protocolo.	
- Otra forma de	
evaluar la	
planificación es	
probar la	
ejecución del	
protocolo.	
protocoio.	

- La revisión se		
ejecuta en un		
conjunto		
reducido de		
fuentes		
seleccionadas.		
1.6. Revisión de la		
ejecución.		
En esta fase se debe		
realizar:		
- Búsqueda en las		
fuentes		
definidas.		
- Evaluar los		
estudios		
obtenidos según		
los criterios		
establecidos.		
- La información		
relevante para la		
pregunta de		
investigación		
debe ser extraída		
de los estudios		
seleccionados		
1.7. Extracción de		
información.		

1.7.1.	Definición	
	de los	
	criterios de	
	inclusión y	
	exclusión de	
	la	
	información.	
1.7.2.	Formularios	
	de	
	Extracción	
	de Datos.	
1.7.3.	Ejecución Ejecución	
1.7.5.	de la	
	extracción.	
4724	Extracción	
1.7.3.1.		
	de	
	resultados	
	objetivos:	
	-	
	Identificació n del	
	estudio.	
	-	
	Metodología del estudio.	
	-	
	Resultados del estudio.	
	- Problemas	
	del estudio.	

	1.7.3.2. Extracción de Resultados Subjetivos. - Información a través de los autores Impresiones generales y abstraccion es			
2. Conducción de la revisión. 2.1. Identificación de la investigación. 2.1.1. Generación de una estrategia de búsqueda. 2.1.2. Sesgo de las publicacione s.	FASE 2: CONDU 2. Ejecución de la revisión - Evaluar los motores de búsqueda web en la fase de ejecución para verificar si son capaces de ejecutar las cadenas de	2. Realización de la revisión. 2.1. Identificación de la investigación. 2.1.1. Establecer estrategias de búsqueda. 2.1.1.1. Palabras de tesauro para la búsqued	2. Ejecución de la revisión 2.1. Selección de estudios 2.1.1. Búsquedas manuales en las revistas seleccionad as. 2.1.2. Aplicar los criterios de	2. Llevar a cabo la búsqueda de estudios primarios (todos los artículos) 2.1. Uso de cadenas de búsqueda en bases de datos científicas o de navegación.

2.1.3.	Gestión de la	búsqueda			a de	inclusión y	
	bibliografía y	previamente			criterios	exclusión.	2.2. Cadena de búsqueda
	recuperación	definidas durante			semántic	2.2. Extracción de datos	estructurada en
	de	la fase de			os.	(método de análisis de	términos de PICO.
	documentos.	planificación.				contenido)	
2.1.4.	Documentaci			2.1.1.2.	Estructur	2.2.1. Lectura	
	ón de la			2.1.1.2.	a	completa de	
	búsqueda.				semántic a para la	los	
2.1.5.	Lecciones				búsqued	documentos	
	aprendidas				a, documen		
	para los				tos	2.3. Síntesis de datos	
	procedimient				específic os.	2.4. Codificación de datos.	
	os de			2.1.1.3.	Script de	2.5. Tomar en cuenta las	
	búsqueda.				búsqued a.	categorías definidas.	
2.2. Selecció	n de estudios				u.		
2.2.1.	Aplicar						
	criterios de		2.2.	Sesgo de pi	ublicación.		
	selección de		2.3.	•	oliográfica y		
	estudios.			recuperació			
2.2.2.	Proceso de			documentos			
	selección de			documentad			
	estudios.			búsqueda.			
2.2.3.	Fiabilidad de		2.4.	Selección	de los		
	las			estudios pri	marios.		
	decisiones de		2.5.	Evaluación	de la calidad		
	inclusión.			de los estuc	lios		
2.3. Evaluac			2.6.	Extracción y	seguimiento		
calidad o	del estudio.			de datos.			
			2.7.	Síntesis y	seguimiento		
				de los datos	s.		

	0.0.1	1 - 1 - 1
	2.3.1.	La Jerarquía
		de la
		evidencia
	2.3.2.	Desarrollo de
		instrumentos
		de calidad.
	2.3.3.	Utilización
		del
		instrumento
		de calidad.
	2.3.4.	Limitaciones
	2.0.7.	de la
		evaluación
		de la calidad.
0.4	Cutro a si	ón de datos
	2.4.1.	Diseño de los
		formularios
		de extracción
		de datos.
	2.4.2.	Contenido de
		los
		formularios
		de recogida
		de datos.
	2.4.3.	Procedimient
		os de
		extracción de
		datos.
	2.4.4.	Múltiples
		publicacione
		,

	s de los
	mismos
	datos.
2.4.5.	Datos no
	publicados.
2.4.6.	Lecciones
	aprendidas
	sobre la
	extracción de
	datos.
2.5. Síntesis	
2.5.1.	Síntesis
2.3.1.	descriptiva
	(narrativa).
2.5.2	
2.5.2.	Síntesis
0.50	cuantitativa.
2.5.3.	Presentación
	de resultados
	cuantitativos.
2.5.4.	Síntesis
	cualitativa.
2.5.5.	Síntesis de
	estudios
	cualitativos y
	cuantitativos.
2.5.6.	Análisis de
I .	
	sensibilidad.
2.5.7.	sensibilidad. Sesgo de

2.5.8. Lecciones aprendidas sobre la síntesis de datos.	FASE 3: I	REPORTE DE LA REVISIÓN SISTEMÁTICA DE L 3. Presentación de informes sobre la		3 Selección de
 Presentación de informes sobre la revisión (Difusión). 3.1. Especificación de la estrategia de difusión. 3.2. Formateo del informe principal de la revisión sistemática. 3.3. Evaluación de los informes de revisión sistemática. 3.4. Lecciones aprendidas sobre la presentación de informes de revisiones sistemáticas de la literatura. 	resultados. 3.1. Cálculo estadístico de resultados. 3.2. Presentación de resultados en tablas. 3.3. Análisis de sensibilidad. 3.4. Trazado 3.5. Comentarios finales Número de estudios Sesgo de búsqueda Sesgo de publicación Variación entre revisores.	revisión. 3.1. Título. 3.2. Autoría. 3.3. Resumen Ejecutivo o Resumen Estructural: Contexto, Objetivos, Métodos, Resultados y Conclusiones. 3.4. Antecedentes. 3.5. Preguntas de repaso: Se debe especificar cada pregunta de revisión.	3. Informar sobre la revisión 3.1. Análisis de los resultados. 3.2. Discusión de los hallazgos, tendencias y conclusiones de la revisión. 3.3. Recomendaciones de la declaración PRISMA. 3.3.1. Título. 3.3.2. Resumen estructurado. 3.3.3. Justificación. 3.3.4. Objetivos. 3.3.5. Protocolo y registro. 3.3.6. Criterios de elegibilidad. 3.3.7. Fuentes de información. 3.3.8. Búsqueda. 3.3.9. Selección de estudios.	documentos para su inclusión y exclusión (documentos relevantes)

- Aplicación de	3.7.	Estudios incluidos y	3.3.10. Proceso de
resultados.		excluidos: Criterios de	recopilación de datos.
- Recomendacione		inclusión y exclusión,	3.3.11. Elementos de datos
S.		Lista de estudios	3.3.12. Riesgo de sesgo en
		excluidos con	los estudios individuales.
		justificación de la	3.3.13. Medidas de
		exclusión.	resumen.
	3.8.	Resultados: Hallazgos y	3.3.14. Síntesis de
		análisis de sensibilidad.	resultados.
	3.9.	Discusión: Principales	3.3.15. Riesgo de sesgo
		hallazgos, Fortalezas y	entre los estudios.
		febrilidades, y	3.3.16. Análisis
		significado de los	adicionales.
		hallazgos.	3.3.17. Selección de
	3.10.	Conclusiones y	estudios.
		recomendaciones.	3.3.18. Características del
	3.11.	Agradecimientos.	estudio.
	3.12.	Conflicto de interés	3.3.19. Riesgo de sesgo
	3.13.	Referencias y	dentro de los estudios.
		apéndices.	3.3.20. Resultado de
			estudios individuales.
			3.3.21. Síntesis de
			resultados.
			3.3.22. Riesgo de sesgo
			entre los estudios.
			3.3.23. Análisis adicional.
			3.3.24. Resumen de la
			evidencia.
			3.3.25. Limitaciones.
			3.3.26. Conclusiones.
			5.5.25. 00110100101100.

3.3.27. Financiamiento.
OTRAS FASES
4. Palabras clave de
los resúmenes
(Esquema de
clasificación)
5. Extracción de
datos y mapeo d
estudios (Mapa
Sistemático)
6. Análisis
comparativo
discusión.
6.1. Caracteriza
ón de la
revisiones
sistemáticas
existentes.
- Objetivos de
investigación.
- Requisitos
inclusión.
- Número
artículos incluido
- Medios de anális
6.2.
Comparació
·

		_	Diferencia	de
		_		ue
			Metas.	
		-	Diferencia er	า el
			proceso.	
		-	Diferencia	en
			amplitud	У
			profundidad.	
		-	Clasificación	del
			área temática.	
		-	Clasificación	del
			enfoque	de
			investigación.	
		-	Consideración	de
			validez.	
		7.	Accesibilidad	у
			relevancia	
			industrial.	
			ii idusti lai.	

6.1.5. La mejor Revisión Sistemática de la Literatura para la Inteligencia Artificial.

De los anteriores planteamientos se deduce que las metodologías de SLRs con mayor relevancia (que permitieron identificar documentos con mayor factor de impacto, escritos en inglés, publicados en las mejores bases de datos científicas) e importancia en el campo de la ingeniería son: "Methodology for Systematic Literature Review applied to Engineering and Education" [64], y "Augmented Reality Trends in Education: A Systematic review of Research and Aplications" [56]. Siendo estas las mejores metodologías para el desarrollo de una SLR en el campo de la ingeniería.

Asimismo, dichas SLRs sirven de base principal para el diseño y desarrollo de una propuesta de metodología de SLR en el campo de Ciencias de la Computación; específicamente en la Inteligencia Artificial (IA). Adicionalmente, se revelan las actividades en la propuesta de metodología de SLR para la IA, destacándose como actividades principales el desarrollo de un mentefacto conceptual para la IA vinculado con los criterios PICOC y la ayuda de un tesauro de la IEEE, también, se definió un grupo de categorías de análisis de acuerdo con cada pregunta de investigación (RQ) para agrupar los artículos según sus características compartidas. Adicionalmente, se incluye la actividad de codificación de los datos de cada uno de los artículos identificados con el desarrollo de la SLR. En consecuencia, se identificó que la mejor SLR para la búsqueda de información vinculada a la IA es la presentada como propuesta de SLR en el presente TT.

6.1.6. Diseñar y documentar la metodología de Revisión Sistemática de la Literatura para el uso en el campo de la Inteligencia Artificial.

En esta subsección, se diseñó la propuesta de metodología de SLR del presente TT (véase Tabla IX), en la cual se desarrolló, por una parte (**columna A**) las actividades de la propuesta de SLR para su uso en el campo de Ciencias de la Computación; específicamente Inteligencia Artificial (IA). Por otra parte (**columna B**) se identificó el aporte de cada actividad de las metodologías de SLRs seleccionadas en el campo de la ingeniería. Cabe agregar, que el desarrollo de la documentación de la SLR se muestra en el **Anexo 1**. Es necesario indicar que, para abordar e identificar las actividades relevantes de entre las metodologías analizadas se aplicó algunas técnicas de investigación (Investigación Bibliográfica, Observación Activa, Estudio del estado del

arte y Búsqueda Exploratoria) para diseñar más adelante la propuesta de metodología de SLR para la IA (véase Tabla IX). Esto, se llevó a cabo desde el análisis de las metodologías mencionadas hasta la aplicación de las fases y actividades propuestas en la SLR desarrollada en el presente TT.

TABLA IX. REVISIÓN SISTEMÁTICA DE LA LITERATURA PARA CIENCIAS DE LA COMPUTACIÓN ESPECIFICAMENTE (IA)

FASE 1: PLANIFICACIÓN						
COLUMNA A	COLUMNA B					
1.1 Identificación de la necesidad de una revisión.	Actividad 1.1 tomada del aporte de la SLR: (LRSIS) Universidad de Kéele (SLR 1).					
1.2 Puesta en servicio de una revisión.	Actividad 1.2 tomada del aporte de la SLR: (LRSIS) Universidad de Kéele (SLR 1).					
1.3 Estado actual de la investigación del problema.	Actividad 1.3 tomada del aporte de la SLR: (LRSIS) Universidad de Kéele (SLR 1).					
Especificar la(s) pregunta(s) de investigación. 1.4.1 Estructura de preguntas (PICOC).	Actividad 1.4 tomada del aporte de las SLRs: (LRSIS) Universidad de Kéele (SLR 1) y (SRMPIS) Estudios de Mapeo Sistemático para IS (SLR 5).					
1.5 Enfoque de la pregunta. 1.5.1 Calidad y amplitud de la pregunta. 1.5.2 Medida de resultado. 1.5.3 Aplicación. 1.5.4 Diseño experimental.	Actividad 1.5 tomada del aporte de la SLR: (UFRJ) Universidad Federal de Río de Janeiro (SLR 2).					
1.6 Mentefacto Conceptual.	Actividad 1.6 tomada del aporte de la SLR: (MAEE) Aplicada a la Ingeniería y la educación (SLR 3).					
 1.7 Desarrollar un protocolo de revisión. 1.7.1 Definición de los criterios de inclusión y exclusión. 1.7.1.1 Criterios de inclusión. 1.7.1.2 Criterios de exclusión. 	Actividad 1.7 tomada del aporte de la SLR: (MAEE) Aplicada a la Ingeniería y la educación (SLR 3).					

1.7.2 Identificar las bases de datos y motores de búsqueda.	Actividad 1.7.2 tomada del aporte de la SLR: (UFRJ) Universidad Federal de Río de Janeiro (SLR 2).
1.7.3 Preparación de un formulario de extracción de datos.	Actividad 1.7.3 tomada del aporte de la SLR: (MAEE) Aplicada a la Ingeniería y la educación (SLR 3).
1.7.4 Categorías de definición para el análisis y la codificación de datos.	Actividad 1.7.4 tomada del aporte de la SLR: (ARTE) Tendencias de Realidad Aumentada en la Educación (SLR 4).
1.8 Evaluación de un protocolo de revisión.	Actividad 1.8 tomada del aporte de la SLR: (LRSIS) Universidad de Kéele (SLR 1).
1.9 Lecciones aprendidas para la construcción de protocolos.	Actividad 1.9 tomada del aporte de la SLR: (LRSIS) Universidad de Kéele (SLR 1).

FASE 2: EJECUCIÓN

COLUMNA A	COLUMNA B	
2.1 Identificación de la investigación. 2.1.1 Establecer estrategias de búsqueda. 2.1.1.1 Palabras del tesauro para la búsqueda de criterios semánticos. 2.1.1.2 Estructura semántica para la búsqueda, documentos específicos. 2.1.1.3 Script de búsqueda (cadena de búsqueda). 2.1.1.4 Sesgo de las publicaciones.	Actividad 2.1 tomada del aporte de la SLR: (MAEE) Aplicada a la Ingeniería y la educación (SLR 3).	
2.2 Gestión de la bibliografía y recuperación de documentos.	Actividad 2.2 tomada del aporte de la SLR: (LRSIS) Universidad de Kéele (SLR 1).	
2.3 Selección de estudios primarios.	Actividad 2.3 tomada del aporte de la SLR: (MAEE) Aplicada a la Ingeniería y la educación (SLR 3).	
2.4 Evaluación de la calidad de los estudios.	Actividad 2.4 tomada del aporte de la SLR: (MAEE) Aplicada a la Ingeniería y la educación (SLR 3).	
2.5 Extracción de datos (Formularios EP).	Actividad 2.5 tomada del aporte de las SLRs: (ARTE) Tendencias de Realidad Aumentada en la Educación (SLR 4) y (LRSIS) Universidad de Kéele (SLR 1).	

2.6 Síntesis de datos.2.6.1 Vista general de los estudios seleccionados.	Actividad 2.6 tomada del aporte de la SLR: (LRSIS) Universidad de Kéele (SLR 1).	
2.7 Codificación de datos.	Actividad 2.7 tomada del aporte de la SLR: (ARTE) Tendencias de Realidad Aumentada en la Educación (SLR 4).	
FASE 3: INFOR	RME	
COLUMNA A	COLUMNA B	
3.1 Especificación de la estrategia de difusión.	Actividad 3.1 tomada del aporte de la SLR: (LRSIS) Universidad de Kéele (SLR 1).	
3.2 Formato del informe principal de la revisión sistemática.	Actividad 3.2 tomada del aporte de la SLR: (LRSIS) Universidad de Kéele (SLR 1).	
3.3 Evaluación de los informes de revisión sistemática.	Actividad 3.3 tomada del aporte de la SLR: (LRSIS) Universidad de Kéele (SLR 1).	

6.2. OBJETIVO II: Ejecución de Revisión Sistemática de literatura con la metodología seleccionada.

El presente TT muestra directrices para elaborar SLR en el campo de Ciencias de la Computación, específicamente en la Inteligencia Artificial (IA). El propósito de esta SLR es introducir la metodología para realizar revisiones rigurosas de evidencia real, actual y sustentada. En ese propósito, a continuación, se indica las tres fases principales: Planificación, Ejecución, e Informe.

Las actividades asociadas con la planificación de la revisión son:

6.2.1. Etapa I: Planificación

1. Planificación

1.1. Identificación de la necesidad de una revisión

El propósito de esta SLR surge de la necesidad de identificar el estado actual de la disciplina de Inteligencia Artificial en las Instituciones de Educación Superior en el Ecuador. Cabe agregar, que en Ecuador no existe una asociación de Inteligencia

Artificial, que vincule el estado del arte de la investigación y los desarrollos en el área de Inteligencia Artificial con las Instituciones de Educación Superior. Como consecuencia de esto, es importante examinar el estado actual de la Inteligencia Artificial en las Instituciones de Educación Superior en el Ecuador. También es necesario conocer la producción científica, a su vez, medir y analizar su impacto a través de una serie de indicadores para conocer el alcance e importancia de cada trabajo, revista, organización, o investigadores.

1.2. Puesta en servicio de una revisión

El documento de puesta en servicio de una SLR puede utilizarse tanto para solicitar ofertas a los grupos de investigación dispuestos a llevar a cabo la SLR como para actuar como documento de orientación para el grupo asesor (sí lo hubiera) a fin de garantizar que la revisión se mantenga centrada y pertinente en el contexto [14]. A continuación, se consideró los siguientes puntos adaptados de las directrices de CRD's Guidance for those Carrying Out or Commissioning Reviews [15] (véase Tabla X).

TABLA X.
PUNTOS DE PUESTA EN SERVICIO DE UNA REVISIÓN

Descripción	Detalle
Título del proyecto	Revisión sistemática de literatura: Estado actual de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador
Pregunta de investigación	¿Cuál es la situación actual de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador?
Membresía del Grupo	Autor: Miguel Antonio Cabrera Sarango Estudiante de Grado. Director: Ing. Luis Antonio Chamba Eras Mg. Sc. PhD.
Métodos de la revisión	Desarrollo de protocolo de revisión para revisión sistemática en el campo de Ciencias de la Computación (véase sección 1.7).
Estrategia de difusión	Desarrollo de estrategia de difusión para revisión sistemática en el campo de Ciencias de la Computación (véase sección 3.1).

1.3. Estado actual de la investigación del problema

El problema de la investigación es el punto de partida de todo proceso científico y, por esta razón, también es de la SLR. Según se ha visto, en Ecuador no existe una

Asociación de IA que vincule el estado del arte de la investigación y los desarrollos en el área de IA con las Instituciones de Educación Superior. Resulta oportuno indicar, que existen capítulos técnicos de IEEE Sección Ecuador, es la comunidad más activa en el área de tecnología en el Ecuador, con más de 1000 miembros a nivel nacional distribuidos en capítulos técnicos y ramas estudiantiles en 22 Instituciones de Educación Superior del País³³. En efecto, el capítulo técnico que mejor se vincula en el área de IA es, el Capítulo de Inteligencia Computacional (CIS) de la Sección IEEE Ecuador, y que se encuentra dentro de las líneas de trabajo del IEEE ETCM 2019. El CIS, ofrece la oportunidad de discutir el estado del arte de la investigación y los desarrollos en Inteligencia Computacional (Redes Neuronales, Lógica Difusa y Computación Evolutiva), así como compartir el conocimiento sobre Inteligencia Computacional mediante la presentación de algoritmos, modelos matemáticos y su aplicación en diferentes áreas, tales como reconocimiento de patrones, minería de datos, astronomía, ciencia e ingeniería biomédica, procesamiento de señales, inteligencia de negocios, entre otras. Es evidente entonces, explorar estos capítulos técnicos para identificar lo que realizan los miembros de estos capítulos y la producción científica realizada por los investigadores referentes, que publican con temas de IA. Según se ha visto a nivel de Instituciones de Educación Superior en Ecuador, algunos grupos de investigación e investigadores por propia iniciativa han explorado, descubriendo y trabajando en distintas áreas de investigación para relacionarlos con trabajos de IA. Lo anterior es reforzado por el impacto prometedor de la Inteligencia Artificial en un futuro cercano en las Instituciones de Educación Superior. Con referencia a lo anterior, luego de identificar la situación problemática sobre el tema en estudio, se cree conveniente realizar la "Revisión Sistemática de Literatura de la Situación Actual de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador".

Por las consideraciones anteriores, se plantea abordar el siguiente problema de investigación:

¿Cuál es la situación actual de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador?

1.4. Especificar la(s) pregunta(s) de investigación

La especificación de las preguntas de investigación es la parte más importante para el presente TT; dichas preguntas de investigación dirigen toda la metodología de la SLR.

_

³³ Véase: https://site.ieee.org/ecuador/

Con el fin de examinar la situación actual de la Inteligencia Artificial en las Instituciones de Educación Superior de Ecuador; se plantearon 4 preguntas de investigación:

- RQ 1. ¿Cuáles son las áreas de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador?
- RQ 2. ¿Cuáles son las líneas de investigación, en las áreas de Inteligencia Artificial de las Instituciones de Educación Superior del Ecuador?
- RQ 3. ¿Qué investigadores desarrollan publicaciones científicas en áreas de Inteligencia Artificial en Instituciones de Educación Superior del Ecuador?
- RQ 4. ¿En qué bases de datos de contenido científico, los investigadores realizan publicaciones sobre Inteligencia Artificial en Instituciones de Educación Superior del Ecuador?

1.4.1. Estructura de las preguntas

Petticrew y Roberts sugieren el uso de los criterios PICOC (Población, Intervención, Comparación, Resultado, Contexto) para enmarcar las preguntas de la investigación [70]. Para formular la(s) pregunta(s) de investigación, esta SLR utiliza el criterio PICOC y define los elementos de la(s) pregunta(s) de la siguiente manera:

Población

La población para analizar se compone de los artículos académicos de investigadores de Instituciones de Educación Superior del Ecuador, que están publicados en las bases de datos académicas seleccionadas.

Intervención

Los elementos de búsqueda en la intervención son las áreas, campos, disciplinas, técnicas; que se identificó en varias publicaciones sobre Inteligencia Artificial, observando, analizando y seleccionando los artículos posteriormente.

Comparación

Existe cuando hay más de una intervención, para la presente SLR no se realizó esta subsección.

Resultados

Los resultados esperados en la presente SLR permitirán identificar las áreas de la Inteligencia Artificial, las líneas de investigación de los IES de Ecuador, mostrar un listado (ranking) de investigadores con su filiación e indicadores cienciométricos; para evaluar la calidad de los artículos académicos publicados en Congresos/Revistas.

Contexto

Revisar la evidencia científica en ámbito educativo, vinculando la publicación científica de Inteligencia Artificial con investigadores de Instituciones de Educación Superior del Ecuador.

1.5. Enfoque de la pregunta.

La presente SLR, buscó establecer la vinculación directa entre la Inteligencia Artificial con la producción científica realizada por investigadores en las Instituciones de Educación Superior del Ecuador.

1.5.1. Calidad y amplitud de la pregunta.

Para establecer la calidad y la amplitud de las preguntas planteadas, se tomó en cuenta las respuestas que arrojaron las diferentes publicaciones, una vez definido los parámetros de búsqueda y las palabras claves que se utilizan en dichas búsquedas.

1.5.2. Medida de resultado

Para medir los resultados obtenidos en esta SLR, se desarrolló una bitácora de trabajo³⁴, en la cual se anexó las cadenas de búsqueda en cada una de las bases de datos académicas; desarrollando categorías para la posterior clasificación de los estudios seleccionados.

1.5.3. Aplicación

Los principales beneficiarios de esta SLR son las personas (académicos, investigadores, estudiantes de grado, posgrado, etcétera.) de IES. Las personas que trabajen en las Empresas (públicas o privadas), los funcionarios que trabajen en los Ministerios u otras Organizaciones de un Estado, las personas que producen en la Industria de un Estado. En efecto, estas personas e Instituciones u Organizaciones serán beneficiadas, al conocer la producción científica relevante y existente actualmente en el campo de Inteligencia Artificial en IES de Ecuador. Por ejemplo, prototipos,

³⁴ Véase: https://drive.google.com/file/d/1YnfguB0B-ncKLd5t1M1sm1n4dVHXO08D/view?usp=sharing

proyectos, estudios primarios, trabajos de titulación de grado, de posgrado, tesis de doctorado, reporte técnico, enciclopedias, libros, etcétera.

1.5.4. Diseño experimental.

El diseño experimental desarrollado en esta SLR, está enfocado a la evaluación de la calidad de los artículos o revistas científicas realizadas por los investigadores en áreas de la IA en IES del Ecuador. Para conocer la situación actual de la IA, analizando las áreas de interés más destacadas y seleccionando los artículos más significativos mediante una serie de indicadores cienciométricos, lo cual dio una visión general del panorama actual de la IA en IES del Ecuador.

1.6. Mentefacto conceptual.

Un Mentefacto es un diagrama jerárquico cognitivo que organiza y preserva el conocimiento, en él se plasman las ideas fundamentales y se desechan las secundarias. Los mentefactos conceptuales realizan dos funciones: organizan las proposiciones y preservan los conceptos así almacenados, mediante un diagrama simple jerárquico [71]. Esta acción requiere responder a cuatro preguntas: ¿Qué la caracteriza, en esencia? ¿En qué grupo de cosas lo incluye? ¿Cuáles son sus diferencias con objetos similares? y, ¿hay subtipos suyos? A partir de estas preguntas, se ensambla el andamiaje de los conceptos, dando como resultado cuatro grupos de pensamientos.

La Figura 6 describe el Mentefacto conceptual desarrollado en esta SLR. También, el vocabulario del Mentefacto conceptual utiliza ortografía americana con referencias cruzadas a ortografía variante británica, gracias a la complementación del instrumento de control terminológico Tesauro IEEE³⁵. Cabe agregar, que el desarrollo de dicho mentefacto conceptual permitió robustecer los elementos utilizados en los criterios PICOC; para establecer con mayor énfasis las palabras claves (Keywords) y los criterios de inclusión/exclusión.

³⁵ Véase: https://www.ieee.org/publications/services/thesaurus-access-page.html

Figura 6. Mentefacto conceptual "Artificial Intelligence" (Fuente propia)

A continuación, se explica de manera detallada la elaboración del Mentefacto conceptual en esta SLR. La "Artificial Intelligence" es una subclase de "Computer Science". Además, es diferente de algunas ramas de la Informática, tales como: "Automatons", "Software development", "Formal languages", "TIC's", "Programming languages". En el campo de estudio, la "Artificial Intelligence" permite que una máquina sea capaz de aprender por sí misma y tomar decisiones a través de: "Logic", "Information Theory", "Intelligence, Computers", "Cognition", "Cybernetics and Robotics". Finalmente, algunas de las áreas de la Artificial Intelligence seleccionadas en este Mentefacto Conceptual son: "Artificial Neural Network", "Robotics", "Semantic Web", "Big Data", "Machine Learning", HCI, SVM. De este Mentefacto conceptual se obtuvo las palabras de búsqueda (Keywords) para la SLR, que normalmente se encuentran en el lado izquierdo (Iso ordinación). Las subclases (Infra ordinación) también se consideran para las palabras de búsqueda de esta SLR. Los datos disponibles en Exclusión y Supra ordinación son considerados para el detalle de los criterios de inclusión y exclusión de esta SLR.

1.7. Desarrollar un protocolo de revisión

1.7.1. Definición de los criterios de inclusión y de exclusión.

A efectos de investigación, en esta SLR fue necesario definir criterios de selección de artículos relacionados con los objetivos planteados en este trabajo de titulación. A continuación, se detalla los criterios de inclusión y exclusión teniendo en cuenta la (s) pregunta (s) de investigación. Para este procedimiento, se consideró las clases

excluyentes y las clases altas (Supra ordinación) del Mentefacto conceptual (véase Figura 6).

1.7.1.1. Criterios de inclusión

Para el desarrollo de los criterios de inclusión, se analizó la estructura del Mentefacto conceptual; se observó la clase alta (Supra ordinación).

- Artículos cuya filiación sea de Ecuador.
- Artículos que utilicen métodos, técnicas, herramientas que propongan soluciones para resolver problemas de "Artificial Intelligence".
- Artículos que sean del área de Computer Science.
- Las soluciones propuestas son implementadas en áreas de la "Artificial Intelligence".
- Artículos que hayan sido revisados por pares externos.
- Artículos que estén escritos en inglés.
- Artículos cuyo título tenga relación con el objeto de investigación de este trabajo de titulación.
- Artículos cuyo Abstract contenga las palabras claves.
- Artículos publicados a partir del 2010.

1.7.1.2. Criterios de exclusión

Para el desarrollo de los criterios de exclusión, se analizó la estructura del Mentefacto conceptual; se observó la clase (Exclusión).

- Artículos que mencionan y solo conceptualicen el término "Artificial Intelligence".
- Artículos que no propongan soluciones en áreas de la "Artificial Intelligence".
- Artículos que el tema de investigación aparece sólo en la sección de referencias.
- No serán consideradas publicaciones informales, que no contengan una metodología científica, o que ayuden a responder las preguntas de investigación.
- Artículos duplicados.
- Y, todos los artículos que no cumplan los criterios de inclusión.

1.7.2. Identificar las bases de datos y motores de búsqueda.

En la Tabla XI, se muestra las bases de datos académicas utilizadas en esta SLR con su dirección Web correspondiente.

TABLA XI.
BASES DE DATOS ACADÉMICAS

Bases de datos Académica	URL
Google Scholar (Buscador	https://scholar.google.es/
académico)	
ACM:	https://dl.acm.org
IEEE:	https://ieeexplore.ieee.org/Xplore/home.jsp
Science Direct:	https://www.sciencedirect.com/search/advanced
Scopus:	https://www.scopus.com

1.7.3. Preparación de un formulario de extracción de datos.

En este apartado de la SLR, el estudiante investigador especificó y configuró herramientas y espacios de organización de resultados, como hojas de cálculo y aplicaciones de gestión de bibliografía, específicamente Mendeley³⁶. Después de lo anterior expuesto, se aplicó el proceso de búsqueda a los artículos, los resultados fueron clasificados y codificados uno a uno. Para organizar y facilitar el análisis, se especificó protocolos para la identificación de los artículos según la pregunta de investigación, el autor y el año. Se utilizó la plataforma OSF Home³⁷ la cual permitió tener un control de versiones y un trabajo colaborativo de contingencia.

1.7.4. Categorías de definición para el análisis y la codificación de datos.

En esta sección, se definió un grupo de categorías de análisis con sus correspondientes subcategorías de acuerdo con cada pregunta de investigación. Las categorías ayudan a agrupar los artículos según sus características compartidas. En el desarrollo de esta SLR, surgieron algunas subcategorías y otras fueron refinadas para cubrir toda la información emergente. La lista de categorías para el análisis clasificadas por preguntas de investigación es la siguiente:

³⁶ Véase: https://www.mendeley.com/library/

³⁷ Véase: https://osf.io/m2t78/

RQ 1 – ¿Cuáles son las áreas de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador?

- Ámbito de la educación:
 Basado en el CES (Consejo de Educación Superior) Quito Ecuador 2019.
- Identificar las áreas de la Inteligencia Artificial, en las Instituciones de Educación Superior del Ecuador, con mayor y menor impacto en investigación y trabajos desarrollados en el campo de la Inteligencia Artificial.

RQ 2 – ¿Cuáles son las líneas de investigación, en las áreas de Inteligencia Artificial de las Instituciones de Educación Superior del Ecuador?

- Líneas de investigación:
 - Basado en el Libro Blanco de la Sociedad de Líneas de Investigación, Desarrollo e innovación y Transferencia del Conocimiento en TIC (Versión 1.1) por Ministerio de Telecomunicaciones y Sociedad de la Información (MINTEL), y la Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT).
- Identificar las áreas de investigación priorizadas en las Instituciones de Educación Superior del Ecuador.
- Identificar las Líneas de Investigación priorizadas en las Instituciones de Educación Superior del Ecuador.
- Identificar la vinculación directa de la Inteligencia Artificial en dichas áreas y líneas de investigación priorizadas en las Instituciones de Educación Superior del Ecuador.

RQ 3 – ¿Qué investigadores desarrollan publicaciones científicas en áreas de Inteligencia Artificial en Instituciones de Educación Superior del Ecuador?

- Grupo objetivo:
 Basado en el CES (Consejo de Educación Superior) Quito Ecuador 2019.
- Identificar un listado de investigadores que desarrollen producción científica en el campo de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador.
- Clasificar las Instituciones de Educación Superior del Ecuador de acuerdo con la producción científica desarrollada en el campo de la Inteligencia Artificial.
- Identificar los grupos de investigación en el campo de la inteligencia artificial en las Instituciones de Educación Superior del Ecuador.

RQ 4 – ¿En qué bases de datos de contenido científico, los investigadores realizan publicaciones sobre Inteligencia Artificial en Instituciones de Educación Superior del Ecuador?

- Grupo objetivo de bases de datos se contenido científico:
 Basado en las principales bases de datos académicas mundiales de referencias bibliográficas y citas de publicaciones periódicas.
- Identificar las bases de datos académicas, donde publican los investigadores de IES del Ecuador.
- Identificar las bases de datos académicas donde publican más los investigadores de las IES de Ecuador.
- Identificar los Congresos/Revistas donde publican más los investigadores de las IES de Ecuador.
- Utilizar los indicadores Índice H e indicador SJR para identificar el impacto de los Congresos/Revistas donde publican más los investigadores de las IES de Ecuador.

1.8. Evaluación de un protocolo de revisión.

El protocolo de revisión es un elemento crítico de esta SLR, el estudiante investigador determinó un procedimiento para evaluar el protocolo. Posteriormente se pidió revisar el informe con un experto. El estudiante investigador presentó el protocolo al director del trabajo de titulación para su revisión y crítica. Las preguntas de investigación especificadas en la sección 1.4 fueron categorizadas para agrupar ciertos artículos según sus características compartidas y para ayudar a la evaluación del protocolo de revisión en la SLR.

Además, se comprobó la coherencia interna del protocolo de revisión, indicando los siguientes aspectos más destacados:

- Las cadenas de búsqueda se derivan adecuadamente de las preguntas de investigación y del mentefacto conceptual.
- Los artículos identificados, abordaron el problema de investigación de la SLR.
- El procedimiento de análisis de artículos fue el indicado para responder a las preguntas de la investigación de la SLR.

1.9. Lecciones aprendidas para la construcción de protocolos

De acuerdo a la literatura de Brereton [14], identifica una serie de problemas que los investigadores deben anticipar durante la construcción del protocolo, en ese sentido, en el desarrollo de la SLR el estudiante investigador tomó en cuenta los siguientes asuntos:

- Realizar un estudio previo a la SLR, esto ayudó a determinar el alcance de las preguntas de investigación.
- Revisar las preguntas de investigación durante el desarrollo del protocolo de revisión, a medida que aumente la comprensión del problema.
- Los miembros del equipo de SLR (estudiante investigador y director del TT) tuvieron parte activa en el desarrollo del protocolo de revisión, para entender cómo realizar el proceso de extracción de datos.
- Es fundamental conocer y aplicar el protocolo de revisión una y otra vez; hasta mejorarlo y optimizarlo. Esto ayudó a encontrar errores en los procedimientos de recopilación y agregación de datos.

6.2.2. Etapa II: Ejecución de la Revisión Sistemática de la Literatura.

2. Realización de la Revisión Sistemática.

2.1. Identificación de la revisión

En esta subsección se complementó de alguna manera el protocolo de revisión expuesto en la fase anterior, implicando actividades tales como:

2.1.1. Establecer estrategias de búsqueda

Las estrategias de búsqueda para la SLR, se aplicaron las tres primeras etapas del procedimiento de búsqueda sistemática S() propuesto en la literatura [55], en la Figura 7 se indica el procedimiento aplicado:

Figura 7. Procedimiento de búsqueda sistemática, SLR (tomada de [55])

2.1.1.1. Palabras del tesauro para la búsqueda de criterios semánticos

Para el desarrollo de los criterios semánticos en la SLR, se utilizó el instrumento de control terminológico denominado Thesaurus IEEE³⁸. A continuación, la Tabla XII, indica detalladamente la lista de términos utilizados en la presente SLR.

TABLA XII.
TÉRMINOS USADOS EN SLR CON THESAURUS IEEE

Definición		Función	
El Tesauro IEEE es un instrumento de		El Tesauro IEEE también proporciona un mapa	
control terminológico, normalizando y		conceptual a través del uso de relaciones semánticas	
controlando el voca	bulario. También, el	tales como:	
Tesauro IEEE pi	roporciona así un	BT: Término más amplio.	
vocabulario control	ado de títulos de	NT: Término más restringido.	
materias para ayud	ar a las personas a	RT: Término relacionado.	
categorizar o bus	scar conceptos de	USE/UF: Relaciones usadas "para".	
ingeniería y computa	ación, especialmente	El texto en cursiva denota términos no preferidos.	
el contenido publica	do por el IEEE.	El texto en negrita se utiliza para los encabezados	
		preferidos.	
Abreviaturas utiliza	das en el Tesauro	Relaciones semánticas, equivalencia	
para SLR			
Término	Descriptor	USE, en inglés UF: precediendo al término descriptor	
	BT: Computer	o preferente.	
	Science	TG, en inglés BT: término genérico que corresponde	
	BT: Computational	al término superordinado (Supra ordinación).	
	and artificial	TE, en inglés NT: término específico que corresponde	
	intelligence	al término subordinado	
	UF: IA		
RT: Artificial neural			
	networks		
Artificial	RT: Robotics		
Intelligence	RT: Semantic Web		
	RT: Big data		

³⁸ Véase: https://www.ieee.org/publications/services/thesaurus-access-page.html

_

RT:	Machine
learning	
RT: HCI	
RT: SVM	

2.1.1.2. Estructura semántica para la búsqueda, documentos específicos.

La estructura semántica de las búsquedas en esta SLR se realizó siguiendo los principios de búsqueda estructurada, comunes en el lenguaje SQL; para enriquecer la búsqueda se usó los operadores booleanos (palabra proveniente del Álgebra de Boole), que ofrecen, en mayor o menor medida, todas las bases de datos científicas. La Tabla XIII, identifica los tipos de operadores utilizados en el desarrollo de la estructura semántica para las búsquedas de la presente SLR.

TABLA XIII. TIPOS DE OPERADORES

Definición de operadores lógicos: permiten la combinación de palabras dentro de un mismo campo; por ejemplo, el título, como en varios campos entre sí; por ejemplo, título y autor. Suelen escribirse en inglés, y los más importantes son: AND (Y), OR (O), NOT (NO)

Símbolo	Función Resultado			
	Este operador limita el resultado de la	A mayor cantidad de términos combinados con este		
	búsqueda, uniendo diferentes	operador, menor número de resultados.		
"AND", "Y", "&", "+"	conceptos o campos de búsqueda.			
	Reduciendo y especificando la			
	búsqueda.			
	Este operador une diferentes	A mayor cantidad de términos combinados con este		
	conceptos o campos de búsqueda,	operador, mayor número de resultados.		
	mostrando resultados que contengan			
"OR", "O", "/", " " al menos uno de los dos términos.				
	También, es útil para indicar			
	asociaciones entre palabras o			
	sinónimos en tu búsqueda.			
	Este operador elimina aspectos de la			
	búsqueda que no interesan, También,	én, Reduce la cantidad de resultados al excluir términos.		

"NOT", "NO", "-",	muestra resultados que				
"AND NOT"	contengan únicamente el primer				
	término y no el segundo.				
Operadores de proxi	Operadores de proximidad: estos operadores no se consideran booleanos dado que no establecen relaciones lógicas entre los				
términos sino de pro	oximidad. Permiten afinar los resultados	obtenidos con las anteriores funciones; no obstante, no todos los			
buscadores permiten	utilizarlos.				
Símbolo	Función	Resultado			
	Muestra aquellas páginas o	Reduce la cantidad de resultados matizando las búsquedas.			
"NEAR", "[]", "~"	documentos en los que los términos				
	se encuentren próximos entre sí.				
	Muestra resultados que contengan los				
"JUNTO",	términos clave introducidos juntos; no	Reduce la cantidad de resultados y matiza tus búsquedas.			
"ADJACENT",	más de 10 palabras de distancia por				
"ADJ", " "	lo general, pero no funciona en todas				
	las bases de datos científicas.				
Operadores de Exacti	itud: estos operadores sirven para amplia	r y simplificar una búsqueda, permitiendo incluir el plural o las variantes			
del término que se ha	incluido.				
Símbolo	Función	Resultado			
	Localizan páginas o documentos que	Documentos que contienen cualquiera de las variantes del término			
	contengan palabras con las mismas	utilizado.			
Comodines: "*", "%",	letras y vocablos derivados (diet*,				
"\$", "?"	para dieta, dietas dietéticas, dietético,				
	dietista, dietoterapia, etcétera.)				
	Sirven para encontrar sólo los	Documentos que contienen La frase exacta que hemos			
Expresiones	términos idénticos al de la consulta	entrecomillado en el campo indicado.			
literales: "", "#"	propuesta, es decir, para concretar				
	aún más las búsquedas.				

Como se explica en la Figura 7 el Procedimiento de búsqueda sistemática S(), dio inicio a la elaboración de una lista de criterios semánticos con la ayuda del instrumento de control terminológico denominado Thesaurus IEEE.

2.1.1.3. Script de búsqueda (cadena de búsqueda)

Antes de formular un script o ecuación de búsqueda se estableció, de manera clara y precisa, los términos de búsqueda para, a continuación, establecer las relaciones lógicas entre ellos. Aplicando algunos de los operadores descritos en la Tabla X, y los criterios semánticos desarrollados en el Mentefacto conceptual; se obtuvo veinte ecuaciones de búsqueda (véase Tabla XII) para la Inteligencia Artificial (IA) en las Instituciones de Educación Superior (IES) de Ecuador, la primera de las cuales fue:

(("artificial intelligence" OR "IA" OR "artificial-intelligence" OR "artificial neural network" OR "robotics" OR "semantic web" OR "big data" OR "machine learning" OR "HCI" OR "SVM") AND ("educational institutions" OR "universities") AND ("Ecuador" OR "Equator"))

Resulta oportuno especificar que se diseñó una búsqueda general sistemática, para trabajar con las bases de datos académicas mostradas en la Tabla VIII. Además, se utilizó una sintaxis o ecuación de búsqueda lo más similar posible en las cinco bases de datos académicas y se adhiere las reglas establecidas para cada una de ellas.

2.1.1.4. Sesgo de las publicaciones

Fue necesario basarse en estudios que han sido avalados académicos con un historial reconocido, y que generalmente se encuentran detrás de revistas de alto impacto, en los índices JCR y SJR en el primer cuartil [55]. También se consideró que los elementos del criterio PICOC sean reforzados con el desarrollo de un mentefacto conceptual y la utilización del Thesaurus IEEE para el desarrollo de los criterios de inclusión y exclusión. Cabe agregar, que más adelante se desarrolló los criterios de calidad para cada artículo seleccionado en el desarrollo de la presente SLR (véase sección 2.4 Evaluación de la calidad de los estudios).

2.2. Gestión de la bibliografía y recuperación de documentos.

Al finalizar con la selección de estudios resultantes de la presente SLR, fue necesario obtener cada estudio completo de los estudios potencialmente útiles. Para la presente

SLR, se utilizó el gestor bibliográfico Mendeley³⁹. En la Figura 8 se indica los estudios seleccionados y almacenados en Mendeley. Cabe agregar, que los estudios primarios seleccionados y codificados; también, se encuentran almacenados en el repositorio GitHub⁴⁰, con otros archivos necesarios en el desarrollo del presente trabajo de titulación.

Figura 8. Estudios seleccionados en SLR almacenados en Mendeley (Fuente propia).

2.3. Selección de estudios primarios

El protocolo de la presente SLR y la selección de estudios primarios, fue elaborado siguiendo el siguiente diagrama de flujo (algoritmo) (véase Figura 9).

³⁹ Véase: https://www.mendeley.com/library/

⁴⁰ Véase: https://github.com/macabreras/Thesis-1

Figura 9. Diagrama de flujo para el proceso de selección de estudios primarios (Fuente propia)

Como resultado de este proceso, una primera búsqueda general en las bases de datos académicas seleccionadas (Google Scholar, ACM, IEEE, Science Direct y Scopus) (véase Tabla XIV), arrojó 4598 estudios relacionados con el tema sobre IA en la IES; luego refinando la búsqueda, se realizó una revisión cualitativa de títulos y resúmenes de cada estudio sobre temas específicos con las áreas de la IA en IES de Ecuador, esto dio una lista de 218 estudios seleccionados y clasificados en la sección de referencias, indicando el 5% (218/4598 = 4.74%), finalmente, aplicando una revisión sistemática final sobre los estudios en la sección de referencias arrojó 191 estudios seleccionados y clasificados en la sección válidos, indicando el 4% (191/4598 = 4.15%) (véase Tabla XIV, Tabla XV y Figura 10). Es importante señalar que, en la Tabla XI, el año 2019* indica los estudios publicados desde el año 2010 hasta el 2019; dando por finalizada las búsquedas de esta SLR el martes 16 de julio de 2019.

TABLA XIV.
CLASIFICACIÓN DE LOS ARTÍCULOS RESULTANTES

Artículos analizados (2010-2019*				
Base de Datos	Resultados	Referencias	Válidos	
Google Scholar	3254	56	48	
ACM	95	39	36	
IEEE	1031	21	17	
Science Direct	197	91	79	
Scopus	21	11	11	
Total	4598	218	191	

Figura 10. Estudios primarios seleccionados en cada Base de Datos científica (Fuente propia)

Todos los estudios primarios seleccionados al desarrollar la presente SLR, fueron publicados durante los últimos nueve años (año: 2010 - 2019). Los estudios resultantes se clasificaron en tres categorías:

- Estudios primarios Válidos
- Estudios primarios Referencias
- Estudios primarios Resultados (val/ref/res) (véase Tabla XIV y Tabla XV).

TABLA XV.
SINTÁXIS DE BÚSQUEDA INICIAL PARA ESTUDIOS DE ARTIFICIAL INTELLIGENCE EN IES EN ECUADOR

#	Base de datos Científicas	Sintaxis	Artículos elegidos
			válidos/referencias/resultados
		(("artificial intelligence" OR "IA" OR "artificial-intelligence" OR "artificial neural network" OR	
		"robotics" OR "semantic web" OR "big data" OR "machine learning" OR "HCI" OR "SVM") AND	
1	Google Scholar	("educational institutions" OR "universities") AND ("Ecuador" OR "equator"))	48/56/3254
		acmdlTitle:(+artificial intelligence, IA, artificial-intelligence, artificial neural network, robotics,	
		semantic web, big data, machine learning, HCI, SVM) AND recordAbstract:(artificial	
		intelligence, machine learning, artificial neural network, big data) AND (educational institutions,	
2		universities) AND (Ecuador, equator) "filter": "publicationYear": "gte":2010, "lte":2019	1/22/95
3	-	(+ Expert + systems + Ecuador)	0/6/95
4		(+ Neural + networks + Ecuador)	2/5/95
5	-	(+ Artificial + Vision + Ecuador)	1/1/95
6		(+ Intelligent + Agents + Ecuador)	1/1/95
7	-	(+ Machine + Learning + Ecuador)	6/16/95
8		(+ Deep + Learning + Ecuador)	1/2/95
9		(+ Fuzzy + Logic + Ecuador)	2/2/95
10		(+ Natural + language + processing + Ecuador)	3/8/95
11	ACM	(+ Genetic + Algorithms + Ecuador)	0/2/95
12		(+ Data + Mining + Ecuador)	5/10/95
13	1	(+Automatic +Recognition +Ecuador)	3/3/95
15		(+Vector +Support +Ecuador)	0/2/95

15		(+Big +Data +Ecuador)	6/9/95
16		(+Web +Semantics +Ecuador)	4/5/95
17		(+Web +Usability +Ecuador)	1/1/95
		((((((((((((((((((((((((((((((((((((((
		OR artificial neural network) OR robotics) OR semantic web) OR big data) OR machine	
		learning) OR HCl) OR SVM) AND educational institutions) OR universities) AND Ecuador) OR	17/21/1031
18	IEEE	equator)))	
		(("artificial intelligence" OR "IA" OR "artificial-intelligence" OR "artificial neural network" OR	
		"robotics" OR "semantic web" OR "big data" OR "machine learning" OR "HCI" OR "SVM") AND	
		("educational institutions" OR "universities") AND ("Ecuador"))	79/91/197
19	Science Direct		
		TITLE-ABS-KEY("artificial intelligence" OR IA OR "artificial-intelligence" OR "artificial neural	
		networks" OR "robotics" OR "semantic web" OR "big data" OR "machine learning" OR "HCI"	
		OR "SVM") AND TITLE-ABS-KEY("educational institutions" OR "universities") AND TITLE-	11/11/21
20	Scopus	ABS-KEY("Ecuador" OR "equator")	
		Total, de estudios primarios seleccionados:	vál=191/ref=218/res=4598

Después de finalizar la selección y categorización de cada estudio primario, fue necesario obtener los estudios completos y se procedió a la codificación uno por uno de los estudios seleccionados. Cabe agregar, que la categorización y selección de los estudios primarios; también, se encuentran alojados en el repositorio GitHub⁴¹ creado para el presente TT.

La sintaxis sugerida para organizar los artículos con un autor es la siguiente:

[apellido Autor1](año 4 dígitos) [Título-artículo]

Ejemplo:

 Sappa(2016)Incremental-scenario-representations-for-autonomous-drivingusing-geometric-polygonal-primitives.pdf

Donde:

Sappa: significa apellido del autor.

2016: significa, año de publicación del artículo.

[Título-artículo]: significa, que el título del artículo se lo va a separar con guion medio, evitando cualquier carácter que no sea inglés (ñ, tildes).

La sintaxis sugerida para organizar los artículos con un o dos autores es la siguiente:

[apellido Autor1]_&_[apellido Autor2](año_4_dígitos)[Título-artículo]

Ejemplo:

 Andrade&Yoo(2019)Cognitive-security-A-comprehensive-study-of-cognitivescience-in-cybersecurity.pdf

Donde:

Andrade&Yoo: significa apellido del autor 1 & autor 2.

2019: significa, año de publicación del artículo.

[Título-artículo]: significa, que el título del artículo se lo va a separar con guion medio, evitando cualquier carácter que no sea inglés (ñ, tildes).

La sintaxis sugerida para organizar los artículos con más de dos autores es la siguiente:

[apellido Autor1]_&_[EtAl]_[año_4_dígitos]_[Título-artículo]

⁴¹ Véase: https://github.com/macabreras/Thesis-1/tree/master/clasificacion_articulos_191/EP%20validos

Ejemplo:

Nugra_&_EtAl(2016)A-Low-cost-IoT-Application-for-the-urban-traffic-of-vehicles-based-on-wireless-sensors-using-GSM-technology.pdf

Donde:

Nugra_&_EtAl: significa apellido del autor 1 & varios autores más.

2016: significa, año de publicación del artículo.

[Título-artículo]: significa, que el título del artículo se lo va a separar con guion medio, evitando cualquier carácter que no sea inglés (ñ, tildes).

2.4. Evaluación de la calidad de los estudios

Esta subsección es complementaria a la anterior. Además de los criterios de exclusión e inclusión más el desarrollo del Mentefacto conceptual, se consideró de mucha importancia evaluar la calidad de los estudios primarios [72]. Estas consideraciones se apoyan en los criterios de inclusión y exclusión, añadiendo aspectos de calidad representados en la relevancia del estudio, calidad de las fuentes bibliográficas, relevancia y prestigio académico de los autores, impacto de la revista en la que se publica, entre otros. Cabe agregar, que tanto las Directrices para la CRD como el Manual Cochrane de Revisores [5], sugieren que la calidad se relaciona con el grado en que el estudio minimiza el sesgo y maximiza la validez interna y externa.

En este propósito, se consideró dichos criterios de evaluación expuestos en la lista de verificación (véase Tabla XVI) para la selección de estudios primarios en la presente SLR.

TABLA XVI.
LISTA DE VERIFICACIÓN DE EVALUACIÓN DE CALIDAD

#	Preguntas	Si	No
1	¿Cumple con los criterios de inclusión y exclusión?		
2	¿Se revisó el estudio para verificar que cumple con los criterios de inclusión?	V	
3	¿Los estudios seleccionados son experimentales?	V	
4	¿El autor o autores sustentan el problema de investigación?	V	
5	¿El autor o autores justifican el uso de la "Artificial Intelligence" en el problema de investigación?	V	
6	¿Los estudios abarcan los criterios desarrollados en el Mentefacto conceptual de esta SLR?	V	
7	¿Los estudios abordan las preguntas de investigación desarrolladas para esta SLR?	V	
8	¿Los estudios están sesgados hacia un área o técnica de "Artificial Intelligence"?		$\sqrt{}$

2.5. Extracción de datos (Formularios EP)

En esta subsección, se realizó las búsquedas manuales de los estudios seleccionados, aplicando los criterios de inclusión y exclusión desarrollados en el mentefacto conceptual para seleccionar los estudios validos de esta SLR. En relación con esto último, fue necesario obtener los estudios completos de los estudios seleccionados (véase Figura 7). También, fue necesario que el equipo de investigación (estudiante y director) implicado en esta SLR estén registrado en un sistema de administración de bibliografía, para este caso se consideró el gestor bibliográfico Mendeley y se guardó un respaldo de bibliografía en el repositorio The Open Science Framework OSF⁴², para acceder a la administración y selección conjunta de trabajos.

Al desarrollar el protocolo de revisión de la presente SLR, se seleccionó un total de 191 estudios primarios. A continuación, en la Tabla XVII se indica el diseño del modelo de extracción de datos, dicho modelo incluye datos generales del estudio (título, nombre autor, año de publicación). Los resultados se ordenaron por el área de "Artificial"

_

⁴² Véase: https://osf.io/. The Open Science Framework (OSF)

Intelligence" y se identifican mediante las iniciales EP (estudio primario), seguido del número correspondiente.

TABLA XVII.
FORMULARIO PARA EXTRACCIÓN DE DATOS

#	Descripción	Detalle								
1	Información	Título	Título Nombre del estudio							
	bibliográfica	Autor	tor Nombre del autor (es)							
		Referencia	Número referencia correspondiente a la bibliografía							
		Año	Año de publicación del estudio							
2	Aplicación	Técnica, áre	Técnica, área, campo o disciplina de aplicación de IA en el estudio							
3	Área/Línea de									
	investigación	Área o líne	ea de investigación priorizada por el MINTEL Y							
	priorizada	SENESCYT								
4	Funciones	Funcionamie	ento de la técnica, área, campo o disciplina de							
		aplicación d	aplicación de IA							
5	Conclusiones									
	Relevantes	Panorama p	ersonal del investigador							

Los resultados de esta subsección se muestran en el **Anexo 2** desde la Tabla XL hasta la Tabla CCXXX.

2.6. Síntesis de datos

La síntesis de los datos incluye la recopilación y el resumen de los resultados de los estudios primarios incluidos en la presente SLR de manera más precisa contestando así las cuatro preguntas de investigación con el objetivo de que dichos resultados sean legibles y comprensibles para los demás. Como ya se ha aclarado, para esta SLR se desarrolló una sección denominada codificación de datos; esto se realizó teniendo en cuenta las categorías definidas en (véase sección 1.7.3). En la sección codificación de datos, se muestra de manera más detallada el desarrollo de las cuatro preguntas de investigación de la presente SLR.

2.6.1. Vista general de los estudios seleccionados

En la Figura 11, se sintetizó el proceso de selección de estudios primarios desarrollado para la presente SLR. Indicando los resultados obtenidos en el protocolo de revisión, y finalizando con los estudios primarios seleccionados para la valoración.

Figura 11. Síntesis del proceso de selección de estudios primarios (EP) (Fuente propia).

2.7. Codificación de datos

A continuación, se realizó la lectura completa de los artículos, y el proceso de codificación de los datos se realizó teniendo en cuenta las categorías definidas; en total se analizó 191 artículos seleccionados de la sección válidos de la clasificación de estudios resultantes de la presente SLR. Para el desarrollo de esta sección, se utilizó la Tabla periódica de los indicadores cienciométricos⁴³ (véase Figura 12), específicamente:

- Indicadores básicos.
 - C: "Total Citations".
 - P: "Numbers of Publications".
- Indicadores basados en el Índice H.
 - h: "h-index".
 - GSh: "Google Scholar h-index".
- Indicadores bibliométricos.
 - SJR: "Simago Journal Rank".

⁴³ Véase: https://www.julianmarquina.es/la-tabla-periodica-de-los-indicadores-cienciometricos/

Periodic Table of Scientometric Indicators

Figura 12. Tabla periódica de los indicadores cienciométricos (Tomado de [73])

En la Tabla XVIII, se identifica el indicador cienciométrico de tipo bibliométrico⁴⁴. Denominado Scimago Journal and Country Rank⁴⁵ (SJR). Siendo este, una plataforma que realiza ranking de revistas y países en base a los datos ingresados en la base de datos Scopus, Este ranking esta ordenado en base al indicador SJR, un indicador desarrollado a partir de un algoritmo conocido como Google PageRank⁴⁶ que valora el número de citas que recibe cada publicación, teniendo en cuenta el número de artículos que publica cada revista y el origen de las citas. Los rankings pueden ordenarse en función a diversos indicadores bibliométricos como el indicador Índice H o el Indicador SJR.

A continuación, se muestra el proceso del ranking SJR usando el Índice H, analizando el año de publicación de los estudios considerados en la Tabla XV, se observó que el número de estudios publicados sobre "Artificial Intelligence" en el área de "Computer Science" en la región de Ecuador, ha ido aumentando año a año específicamente los

⁴⁴ Véase: https://ec3metrics.com/

⁴⁵ Véase: https://www.scimagojr.com/aboutus.php

⁴⁶ Véase: https://en.wikipedia.org/wiki/PageRank

últimos 4 años⁴⁷ (2015 - 2018), a excepción del año 2011, donde se observó que Ecuador desciende una posición en el Ranking; esto significa que muchos investigadores están interesados en explorar, conocer y divulgar trabajos sobre IA en las IES del Ecuador. Es importante señalar que la Tabla XV el año 2018* incluye indicadores hasta el año 2018, y a manera de resumen histórico; también incluye indicadores desde 1996 hasta 2018.

TABLA XVIII.

INDICADOR BIBLIOMÉTRICO SCIMAGO JOURNAL AND COUNTRY RANK

Artículos analizados (2010-2018*)												
Scimago J	ournal &	Country I	Rank									
País	Año	Rank	Documen	Documentos	Citas	Auto-	Citas por	Índice				
			tos	Citables		citas	documento	Н				
Ecuador	2010	12	5	5	5	2	1.00	14				
Ecuador	2011	13	5	5	30	0	6.00	14				
Ecuador	2012	12	6	6	26	6	4.33	14				
Ecuador	2013	12	8	7	14	5	1.75	14				
Ecuador	2014	8	15	15	106	9	7.07	14				
Ecuador	2015	6	36	36	193 43		5.36	14				
Ecuador	2016	6	55	54	181	74	3.29	14				
Ecuador	2017	5	128	124	167	50	1.30	14				
Ecuador	2018	3	386	384	97	51	0.25	14				
Ecuador	1996-	6	652	644	1305	242	2.00	14				
	2018											

En la Figura 13 se observa claramente el proceso del ranking SJR usando el Índice H, indicando el horizonte temporal desde el año 2010 hasta 2018, destacando la posición 3, 5 y 6 de Ecuador en los años 2016, 2017, 2018 respectivamente. Además, la Tabla XIX identificó la cantidad de documentos que se han publicado en el campo de la IA en Ecuador (véase también Figura 13 y Figura 14).

_

 $^{47\} V\'{e}ase: https://www.scimagojr.com/countryrank.php?category=1702\&area=1700\®ion=Latin\%20America\&year=2010$

TABLA XIX.

CANTIDAD DE DOCUMENTOS PUBLICADOS EN ECUADOR 2010-2018

Años	Número de documentos
2010	5
2011	5
2012	6
2013	8
2014	15
2015	36
2016	55
2017	128
2018	386
Total	644

Figura 13. Cantidad de documentos publicados en Ecuador 2010-2018

Scimago Journal & Country Rank

Figura 14. Scimago Journal & Country Rank (Fuente propia)

A continuación, en la Figura 15 se muestra el proceso del ranking de revistas, en la línea de investigación "Artificial Intelligence". Se identificó 30 revistas vinculadas al área de investigación "Computer Science", en la categoría de "Artificial Intelligence", se seleccionó todas las regiones y que son de acceso libre "Only Open Access Journals" para todos los usuarios; estos pueden acceder sin restricciones a las mismas y probablemente los artículos publicados tengan una mayor visibilidad e impacto para investigadores y demás. También se observó que existen 2 revistas de habla hispana en la categoría "Artificial Intelligence" (España, Uruguay), en la posición 28, 30 respectivamente en el Ranking.

Figura 15. Journals Ranking, línea de investigación "Artificial Intelligence" (Tomada de Scimago Journal & Country Rank).

En la Tabla XX, se indica un listado de revistas aplicando el indicador bibliográfico SJR. Se observó que existen 2 revistas que están categorizadas en el primer cuartil (Q1) en la base de datos académica Scopus. Dichas revistas se relacionan directamente con los 191 estudios seleccionados en el desarrollo de la presente SLR, a través de la producción científica realizada por investigadores vinculados al área de la IA o afines a

⁴⁸ Véase: https://www.scimagojr.com/journalrank.php?area=1700&openaccess=true&category=1702

"Computer Science"; los cuales realizaron sus publicaciones en algunas de estas prestigiosas revistas.

TABLA XX. LISTADO DE REVISTAS EN EL SJR

Ranking	Título de revista	SJR
		Quartile
1	Journal of Machine Learning Research	Q1
2	Journal of Artificial Intelligence Research	Q1
3	Frontiers in Neurorobotics	Q2
4	i-Perception	Q2
5	Frontiers Robotics IA	Q2
6	Computational Visual Media	Q2
7	Computational Linguistics	Q2
8	Systems Science and Control Engineering	Q2
9	Bulletin of the Polish Academy of Sciences: Technical Sciences	Q3
10	ICT Express	Q3
11	Journal of Artificial Intelligence and Soft Computing Research	Q3
12	International Journal of Intelligent Systems and Applications	Q3
13	Paladyn	Q3
14	International Journal of Advanced Robotic Systems	Q3
15	Cybernetics and Physics	Q3
16	Robotics	Q3
17	Kybernetika	Q3
18	Applied Computational Intelligence and Soft Computing	Q3
19	Statistics, Optimization and Information Computing	Q3
20	International Journal of Computer Information Systems and Industrial	Q3
	Management Applications	
21	ROBOMECH Journal	Q4
22	Journal of Intelligent Systems	Q4
23	SPIIRAS Proceedings	Q4
24	Journal of Computer Science	Q4
25	International Journal of Automation and Smart Technology	Q4
26	Journal of Automation, Mobile Robotics and Intelligent Systems	Q4
27	Journal of Information Systems and Telecommunication	Q4
28	Inteligencia Artificial	Q4

29	Computer Science	Q4
30	Lingüística	Q4

A continuación, en la Tabla XXI se muestra un listado de resultados, en el cual se observó las categorías indizadas de las revistas, también se observó la vinculación en áreas de "Artificial Intelligence" o afines a "Computer Science". Interpretando, se observó que las revistas no son exclusivas a una categoría en específico, sino que algunas son disciplinarias o multidisciplinarias, esto es de mucha importancia para varios investigadores al tener un nicho por explotar y motivarse a publicar en dichos temas en particular.

TABLA XXI.

LISTADO DE LAS CATEGORÍAS POR CADA UNA DE LAS REVISTAS DE LA LÍNEA

DE INVESTIGACIÓN

Ranking	Categorías
1	Artificial Intelligence (Q1); Control and Systems Engineering (Q1); Software (Q1);
	Statistics and Probability (Q1)
2	Artificial Intelligence (Q1)
3	Artificial Intelligence (Q2); Biomedical Engineering (Q2)
4	Artificial Intelligence (Q2); Ophthalmology (Q2); Experimental and Cognitive
	Psychology (Q3); Sensory Systems (Q3)
5	Artificial Intelligence (Q2); Computer Science Applications (Q2)
6	Artificial Intelligence (Q2); Computer Graphics and Computer Design (Q2);
	Computer Vision and Pattern Recognition (Q2)
7	Language and Linguistics (Q1); Linguistics and Language (Q1); Artificial
	Intelligence (Q2); Computer Science Applications (Q2)
8	Artificial Intelligence (Q2); Control and Systems Engineering (Q2); Control and
	Optimization (Q3)
9	Engineering (miscellaneous) (Q1); Computer Networks and Communications (Q2);
	Information Systems (Q2); Artificial Intelligence (Q3); Atomic and Molecular
	Physics, and Optics (Q3)
10	Computer Networks and Communications (Q2); Hardware and Architecture (Q2);
	Information Systems (Q2); Software (Q2); Artificial Intelligence (Q3)
11	Computer Vision and Pattern Recognition (Q2); Hardware and Architecture (Q2);
	Information Systems (Q2); Artificial Intelligence (Q3); Modeling and Simulation (Q3)

12	Computer Networks and Communications (Q2); Artificial Intelligence (Q3);
	Computer Science Applications (Q3); Control and Optimization (Q3); Human-
	Computer Interaction (Q3); Modeling and Simulation (Q3); Signal Processing (Q3)
13	Artificial Intelligence (Q3); Human-Computer Interaction (Q3); Behavioral
	Neuroscience (Q4); Cognitive Neuroscience (Q4); Developmental Neuroscience
	(Q4)
14	Software (Q2); Artificial Intelligence (Q3); Computer Science Applications (Q3)
15	Fluid Flow and Transfer Processes (Q2); Artificial Intelligence (Q3); Computer
	Vision and Pattern Recognition (Q3); Control and Optimization (Q3); Physics and
	Astronomy (miscellaneous) (Q3); Signal Processing (Q3)
16	Artificial Intelligence (Q3); Control and Optimization (Q3); Mechanical Engineering
	(Q3)
17	Artificial Intelligence (Q3); Control and Systems Engineering (Q3); Electrical and
	Electronic Engineering (Q3); Information Systems (Q3); Software (Q3); Theoretical
	Computer Science (Q4)
18	Artificial Intelligence (Q3); Civil and Structural Engineering (Q3); Computational
	Mechanics (Q3); Computer Networks and Communications (Q3); Computer
	Science Applications (Q3)
19	Artificial Intelligence (Q3); Computer Vision and Pattern Recognition (Q3); Control
	and Optimization (Q3); Information Systems (Q3); Signal Processing (Q3);
	Statistics and Probability (Q4); Statistics, Probability and Uncertainty (Q4)
20	Artificial Intelligence (Q3); Computer Vision and Pattern Recognition (Q3);
	Information Systems (Q3); Signal Processing (Q3); Strategy and Management
	(Q3); Management Information Systems (Q4)
21	Mechanical Engineering (Q3); Artificial Intelligence (Q4); Control and Optimization
	(Q4); Instrumentation (Q4); Modeling and Simulation (Q4)
22	Artificial Intelligence (Q4); Information Systems (Q4); Software (Q4)
23	Computer Networks and Communications (Q3); Applied Mathematics (Q4);
	Artificial Intelligence (Q4); Computational Mathematics (Q4); Computational Theory
	and Mathematics (Q4); Computer Science Applications (Q4); Control and Systems
	Engineering (Q4); Information Systems (Q4)
24	Artificial Intelligence (Q4); Computer Networks and Communications (Q4);
	Software (Q4)
25	Artificial Intelligence (Q4); Control and Systems Engineering (Q4); Electrical and
	Electronic Engineering (Q4); Hardware and Architecture (Q4); Human-Computer
	Interaction (Q4); Signal Processing (Q4)
26	Artificial Intelligence (Q4); Control and Systems Engineering (Q4); Signal
	Processing (Q4)

27	Artificial Intelligence (Q4); Computer Networks and Communications (Q4);											
	Computer Science Applications (Q4); Computer Vision and Pattern Recognition											
	(Q4); Information Systems (Q4)											
28	Artificial Intelligence (Q4); Software (Q4)											
29	Artificial Intelligence (Q4); Computational Theory and Mathematics (Q4); Computer											
	Graphics and Computer Design (Q4); Computer Networks and Communications											
	(Q4); Computer Science (miscellaneous) (Q4); Computer Vision and Pattern											
	Recognition (Q4); Modeling and Simulation (Q4)											
30	Artificial Intelligence (Q4); Language and Linguistics (Q4); Linguistics and											
	Language (Q4)											

En las siguientes subsecciones se presentan los hallazgos principales de la presente SLR, para dar respuesta a las preguntas de investigación con ayuda de las 4 categorías definidas en la presente SLR (véase sección 1.7.4).

Categoría 1:

RQ 1 – ¿Cuáles son las áreas de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador?

Con respecto a las áreas de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador, en la Tabla XXII se muestra los resultados obtenidos del proceso de codificación de datos en la Categoría 1. Se observó que el hallazgo más significativo es el "Machine Learning", siendo el área más investigada y con mayor producción vinculada a la Inteligencia Artificial en las IES de Ecuador, indicando el 20.94% (40/191=20.94%). El área de "Artificial Neural Network" fue la segunda área con mayor producción e investigación, indicando el 16.75% (32/191=16.75%). El área de "Data Mining", es un hallazgo significativo dentro de esta SLR, ya que fue un área fuera en el desarrollo del Mentefacto conceptual; y al ejecutar la SLR, esta indica el 11.51% (22/191=11.51%), de producción e investigación vinculada a la "Artificial Intelligence". Tomando en consideración estos tres principales hallazgos vinculados al área de la "Artificial Intelligence", también, se observó la destacable producción e investigación en el área "Big Data", indicando el 9.94% (19/191=9.94%). En el área de "Semantic Web", indicó el 8.37% (16/191=8.37%). El área de "Computer Vision", también indicó el 8.37% (16/191=8.37%). El área de "Support Vector Machine", indicó el 5.23% (10/191=5.23%). El área de "Fuzzy Logic", también indicó el 5.23% (10/191=5.23%). El área de "Robotics", indicó el 4.18% (8/191=4.18%). El área de "Human Computer Iteración",

indicó el 3.14% (6/191=3.14%). El área de "Natural Lenguaje Processesing", indicó el 2.61% (5/191=2.61%). El área de "Genetic Algorithms", indicó el 2.09% (4/191=2.09%). Y, por último, pero no menos importante el área de "Experts System", indicó el 1.57% (3/191=1.57%).

Interpretando estos últimos hallazgos encontrados, se observó que las áreas con menos producción científica e investigación son:

- Área de "Robotics".
- Área de "Human Computer Iteración".
- Área de "Natural Lenguaje Processesing".
- Área de "Genetic Algorithms".
- Área de "Experts System".

TABLA XXII. ÁREAS DE LA INTELIGENCIA ARTIFICIAL EN LAS IES DEL ECUADOR

		Número	Número de	Número de	Número de	Número de			
Áreas de la Inteligencia Artificial		de	artículos en	artículos en	artículos en	artículos en	Total	Porcentaje	
	"Artificial Intelligence"	artículos	Google Scholar	IEEE	Science	Scopus		(%)	
		en ACM			Direct				
1	"Machine Learning"	7	9	2	21	1	40	20.94%	
2	"Artificial Neural Network"	2	9	6	14	1	32	16.75%	
3	"Data Mining"	5	6	1	9	1	22	11.51%	
4	"Big Data"	7	4	1	7	1 19		9.94%	
5	"Semantic Web"	4	5	0	3	4	16	8.37%	
6	"Computer Vision"	4	7	0	5	0	16	8.37%	
7	"Support Vector Machine"	0	0	6	4	0	10	5.23%	
8	"Fuzzy Logic"	2	2	1	5	0	0 10		
9	"Robotics"	0	1	0	6	1	8	4.18%	
10	"Human Computer Iteración"	3	1	0	1	1	6	3.14%	
11	"NaturalLanguageProcessing"	3	1	0	0	1 5		2.61%	
12	"Genetic Algorithms"	0	1	0	3	0	4	2.09%	
13	3 "Experts System" 0 2		2	0	1	0	3	1.57%	
	Total	36	48	17	79	11	191	100%	

TABLA XXIII.
ESTUDIOS SELECCIONADOS POR CADA ÁREA DE LA IA

#	Área	Estudios primarios	# Estudios
1	"Machine Learning"	EP01,EP02,,EP40	40
2	"Artificial Neural Network"	EP41,EP42,,EP72	32
3	"Data Mining"	EP73,EP74,,EP94	22
4	"Big Data"	EP95,EP96,,EP113	19
5	"Semantic Web"	EP114,EP115,,EP129	16
6	"Computer Vision"	EP130,EP131,,EP145	16
7	"Support Vector Machine"	EP146,EP147,,EP155	10
8	"Fuzzy Logic"	EP156,EP157,,EP165	10
9	"Robotics"	EP166,EP167,,EP173	08
10	"Human Computer Iteración"	EP174,EP175,,EP179	06
11	"Natural Lenguaje Processing"	EP180,EP181,,EP184	05
12	"Genetic Algorithms"	EP185,EP186,,EP188	04
13	"Experts System"	EP189,EP190,EP191	03
		Total	191

Figura 16. Resultados de estudios seleccionados por áreas de la IA (Fuente propia).

Cabe agregar, que en las Tabla XXII, Tabla XXIII y Figura 16, se indica el área de mayor investigación en las IES de Ecuador, siendo en primer lugar el "Machine Learning" (ML), dejando en segundo lugar el área de "Artificial neural networks" (ANN), en tercer lugar, el área de "Data Mining" (DM), en cuarto lugar, el área "Big Data" (BD). Estas son las áreas con mayor relevancia en IA, en el ámbito de divulgación e investigación científica por parte de investigadores en las IES del Ecuador.

Categoría 2:

RQ 2 – ¿Cuáles son áreas y líneas de investigación priorizadas por el SENESCYT, vinculadas a la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador?

El Ministerio de Telecomunicaciones y de la Sociedad de la Información⁴⁹ (MINTEL), desarrolla y ejecuta trabajos relacionados principalmente en el sector de las Tecnologías de la Información y Comunicación (TIC) y Energía Eléctrica vinculando directamente con sus proyectos y accionistas.

Mientras que la Secretaría de Educación Superior, Ciencia, Tecnología e Innovación⁵⁰ (SENESCYT), es el órgano que tiene por objeto ejercer la rectoría de la política pública de Educación Superior y coordinar acciones entre la Función Ejecutiva y las Instituciones del Sistema de Educación Superior. En este orden de ideas se puede citar a estas dos Instituciones en el desarrollo del Libro Blanco de Líneas de Investigación, Desarrollo e Innovación y Transferencia del Conocimiento en TIC; este documento fue producido con la participación de científicos, catedráticos de las Universidades y Escuelas Politécnicas del país y personas involucradas en el desarrollo de las TIC, quienes como expertos conocedores de temas relacionados con la Investigación, Innovación y Transferencia Tecnológica, a través de las TIC, desarrollaron diferentes propuestas desde varios ambientes académicos enfocados a mejorar y desarrollar herramientas tecnológicas, que contribuirán en la construcción de un Ecuador Digital [74].

Con referencia a lo anterior, una Línea de Investigación se entiende como un eje temático mono o interdisciplinario que incluye un conjunto de objetivos, políticas y metodologías científico técnicas encaminados a la solución de uno o varios problemas identificados en las áreas y que permite generar nuevo conocimiento. Las Líneas de

⁴⁹ Véase: https://www.bnamericas.com/es/perfil-empresa/ministerio-de-telecomunicaciones-y-sociedad-de-la-informacion-de-la-republica-del-ecuador 50 Véase: https://www.educacionsuperior.gob.ec/secretario/

investigación pueden contener varias sub líneas y pueden modificarse, fortalecerse o eliminarse luego de un proceso evaluativo periódico y pertinente, dado que no son necesariamente permanentes [75]. En efecto, para las IES de Ecuador cada Línea de Investigación debe contar al menos con un profesor titular a tiempo completo, como responsable de la misma, así como profesores colaboradores, que pueden ser titulares o no titulares. Además, alrededor de una o varias líneas de investigación se vinculan a un grupo de investigación disciplinario o interdisciplinario. Cabe agregar, que un área de investigación está compuesta por varias líneas de investigación, que abarcan un conjunto amplio de problemas científico técnicos relacionados o afines, de interés nacional, regional e institucional, y que constituye una parte de la realidad física que puede ser objeto general de estudio a través del método científico. Es importante considerar que la base y punto de partida del investigador es la realidad, y que mediante la investigación científica puede construir la ciencia [75]. La definición de un área de investigación, además de estar asociada con la disciplina académica de un departamento, requiere de la preexistencia de una práctica investigativa y de un posicionamiento académico de la universidad en el contexto nacional e internacional. De hecho, son los departamentos y universidades con mayor trayectoria en investigación las que cuentan con mayores oportunidades para continuar organizando sus actividades académicas alrededor de un área de investigación [76]. En la Figura 18, se indica a través de un esquema de colores (solo para diferenciar entre sí) las principales áreas y líneas de investigación priorizadas del MINTEL Y SENESCYT para las IES del Ecuador. A los efectos de este, también se analizó otras líneas de investigación complementarias, destacando la vinculación directa de la IA en dos líneas de investigación priorizadas denominadas Internet de las Cosas (IoT) y Gobierno electrónico. En el contexto de esta SLR, se enfatizó el análisis en la línea de investigación priorizada denominada Tecnologías de la Información y Comunicación (TIC), teniendo a su vez dicha área de investigación; diez líneas de investigación priorizadas (véase Figura 17).

Finalmente, se muestra la vinculación directa de la "Artificial Intelligence" en cada una de las áreas o líneas de investigación priorizadas del MINTEL y SENESCYT (véase Figura 18 y Tabla XXIV). En este propósito, se diseñó una paleta de colores y una barra de progreso para cada área o línea de investigación; destacando el color azul, el cual indica mayor impacto y vinculación de áreas, técnicas, disciplinas de "Artificial Intelligence". Es decir, la "Artificial Intelligence" se vinculó en la línea priorizada denominada Software Aplicado (SA) con el 20.14% (54/268). Otra línea de investigación

priorizada destacada es TIC para educación e inclusión social (TEIS) con el 17.53% (47/268). La línea priorizada denominada Big data (BD), indica el 7.46% (20/268). El área de investigación priorizada del MINTEL y SENESCYT denominada Desarrollo Industrial indica el 8.95% (24/268). Finalmente, el área de investigación Salud y bienestar se vincula con la Inteligencia Artificial con el 8.20% (22/268).

El color verde indica el impacto y vinculación usual de áreas, técnicas, disciplinas de IA, Sin embargo, el color rojo indica menor impacto y producción científica vinculada a áreas, técnicas, disciplinas de "Artificial Intelligence", alertando y mostrando un indicador significativo; para desarrollar mayor producción científica en estas tres áreas de investigación priorizadas del MINTEL Y SENESCYT. Cabe agregar, que la IA es una ciencia trasversal y se vinculó directamente en todas las áreas y líneas de investigación priorizadas del MINTEL Y SENESCYT.

Figura 17. Esquema de áreas priorizadas de acuerdo con el MINTEL y SENESCYT (Fuente propia).

Figura 18. Esquema de IA vinculada con áreas y líneas de investigación priorizadas del MINTEL y SENESCYT (Fuente propia).

TABLA XXIV.

"INTELIGENCIA ARTIFICIAL" VINCULADA CON LAS ÁREAS Y LÍNEAS DE INVESTIGACIÓN PRIORIZADAS DEL MINTEL Y

SENESCYT

	Salud y	Agricultura y	Ambiente,	Energía y	Desarrollo	Territorio y												
Áreas	bienestar	ganadería	Biodiversidad y cambio climático	materiales	Industrial	Sociedad Inclusivos	BD	SI	CII	ETS	RIT	RAT	SA	TRTD	TEIS	TDIS	IoT	GE
ML	6	4	4	1	6	0		1	3	4	3	1	10	1	8	0	1	1
ANN	1	1	1	2	5	6		0	1	3	1	0	6	0	4	0	1	0
DM	3	1	0	0	2	2		0	1	0	1	0	3	0	11	0	1	0
BD	5	1	0	0	0	0	20	3	0	3	0	0	2	0	5	0	5	0
SW	0	0	0	0	0	0		0	0	0	0	0	8	0	7	0	1	11
CV	3	2	0	0	1	2		0	0	1	0	0	6	0	1	1	0	0
SVM	1	1	2	0	5	0		1	1	0	0	0	3	0	0	0	0	0
FL	0	0	1	0	3	0		0	1	1	1	4	3	0	1	0	0	1
ROB	1	0	0	0	1	0		0	3	0	0	0	3	0	0	0	0	0
HCI	1	0	0	0	0	0		0	0	2	0	0	4	0	3	2	1	0
NLP	0	0	0	0	0	0		0	1	0	0	0	2	0	4	0	0	0

GA	0	0	2	0	1	0		0	0	0	0	0	2	0	2	0	0	0
ES	1	0	0	0	0	0		0	0	0	0	0	2	0	1	0	0	0
Total	22	10	10	03	24	10	20	05	11	14	06	05	54	01	47	03	10	13

Categoría 3:

RQ 3 – ¿Qué investigadores desarrollan publicaciones científicas en áreas de Inteligencia Artificial en Instituciones de Educación Superior del Ecuador?

Con respecto a los investigadores que desarrollan publicaciones científicas en áreas de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador, en la Tabla XXV se muestra los hallazgos obtenidos en el proceso de codificación de datos en la Categoría 3. En este propósito, se creó un perfil de investigador en Google Scholar (Google Académico) [77], [78] (véase Figura 19), el cual tiene varias ventajas, tanto para el investigador como para su institución. También, permitió seguir a otros investigadores y recibir alertas por citas nuevas o nuevos trabajos encontrados (véase Figura 20).

Figura 19. Perfil en Google Académico, investigador Miguel Cabrera. S (Fuente propia).

Figura 20. Alertas de nuevas publicaciones de investigadores de IES de Ecuador (Fuente propia).

En ese mismo sentido, de acuerdo con los 191 estudios primarios seleccionados en la ejecución de la presente SLR; se identificó un listado y se desarrolló un ranking de 173 investigadores de IES de Ecuador (autores), a través de sus perfiles en Google Académico; aplicando los indicadores bibliométricos Índice H y las citaciones realizadas en sus publicaciones. Resulta oportuno aclarar que algunos de los investigadores identificados pertenecen a otras áreas del conocimiento [79] (Ciencias, Ciencias Sociales, Ingeniería, Industria, agricultura, Salud, etcétera). Significa entonces, que dichos investigadores se vincularon directamente con la producción de publicaciones o trabajos relacionados en el campo de la IA (véase Tabla XXV). Cabe agregar, que algunos de los investigadores identificados en los estudios primarios seleccionados ya no pertenecen a dichas Instituciones de Educación Superior del Ecuador. Además, se observa claramente en el ranking que los tres primeros investigadores ecuatorianos con mayor "índice h" y mayor número total de citaciones en sus publicaciones pertenecen a las siguientes IES Universidad de las Fuerzas Armadas (ESPE), Universidad Politécnica Salesiana (UPS) y Universidad Técnica Particular de Loja (UTPL) respectivamente.

TABLA XXV.

RANKING DE INVESTIGADORES DE LAS IES DE ECUADOR

Rank	Investigador	Filiación	H índex	Total Citation
1	José Luis Rojo-Álvarez Universidad de las Fuerzas Armadas ESPE			4739
2	Chuan Li	Universidad Politécnica Salesiana	28	2696
3	José Aguilar	Universidad Técnica particular de Loja	26	3059
4	Denis Borenstein	Universidad de Cuenca	25	4177
5	Ángel D. Sappa	Escuela Superior Politécnica del Litoral ESPOL	24	2980
6	José Valente de Oliveira	Universidad Politécnica Salesiana	23	2003
7	Xavier Ochoa	Escuela Superior Politécnica del Litoral ESPOL	22	2155
8	Theofilos Toulkeridis	Universidad de las Fuerzas Armadas ESPE	22	1431
9	Mariela Cerrada Lozada	Universidad Politécnica Salesiana	21	1472
10	René-Vinicio Sánchez Loja	Universidad Politécnica Salesiana	20	1253
11	Patricio Crespo	Universidad de Cuenca	19	982
12	Oscar Camacho	Escuela Politécnica Nacional EPN	18	1060
13	Diego Cabrera Mendieta	Universidad Politécnica Salesiana	17	1040

14	Wilmar Hernández	Universidad Técnica particular de Loja	17	843
15	Enrique V. Carrera	Universidad de las Fuerzas Armadas ESPE	16	2424
16	Diego S. Benítez	Universidad de las Fuerzas Armadas ESPE	16	2081
17	Gerardo M. Casañola-Martin	Universidad Estatal Amazónica	16	788
18	Ali Keyvanfar	Universidad Tecnológica Equinoccial	16	709
19	Aminael Sánchez-Rodríguez	Universidad Técnica particular de Loja	15	1218
20	Cristina L. Abad	Escuela Superior Politécnica del Litoral ESPOL	15	935
21	Nelson Piedra	Universidad Técnica particular de Loja	15	798
22	Grover Zurita Villarroel	Universidad Politécnica Salesiana	14	849
23	Janneth Chicaiza	Universidad Técnica particular de Loja	14	552
24	Esteban Palomo	Universidad de Yachay, San Miguel de Urcuquí	14	499
25	Davinia Sánchez-Macías	Universidad Nacional de Chimborazo	14	464
26	Víctor H. Andaluz	Universidad de las Fuerzas Armadas ESPE	13	573
27	Jorge López-Vargas	Universidad Técnica particular de Loja	13	511
28	Pablo Alejandro Quezada- Sarmiento	Universidad Internacional del Ecuador UIDE	13	429
29	Eduardo Tejera	Universidad de Las Américas	13	387
30	Jaime Cepeda	Escuela Politécnica Nacional EPN	12	516
31	Mauricio Espinoza Mejía	Universidad de Cuenca	11	704
32	Yunierkis Pérez-Castillo	Universidad de Las Américas	11	542
33	Diego Hernán Peluffo-Ordóñez	Universidad de Yachay, San Miguel de Urcuquí	11	492
34	Luis Domínguez-Granda	Escuela Superior Politécnica del Litoral ESPOL	11	314
35	Walter Marcelo Fuertes Diaz	Universidad de las Fuerzas Armadas ESPE	10	422
36	Jorge Maldonado-Mahuad	Universidad de Cuenca	10	409
37	Katherine Chiluiza García	Escuela Superior Politécnica del Litoral ESPOL	10	254
38	Jackeline Abad Torres	Escuela Politécnica Nacional EPN	10	171
39	Andreas Fríes	Universidad Técnica particular de Loja	9	373
40	Fannia Pacheco	Universidad Politécnica Salesiana	9	329
41	Luis I. Minchala	Universidad de Cuenca	9	306
42	Boris X. Vintimilla Burgos	Escuela Superior Politécnica del Litoral ESPOL	9	305
43	Mario González	Universidad de Las Américas	9	200
44	Carlos Calderón Córdova	Universidad Técnica particular de Loja	9	180
45	Enrique Peláez	Escuela Superior Politécnica del Litoral ESPOL	8	1252
46	Carmen Vaca-Ruiz	Escuela Superior Politécnica del Litoral ESPOL	8	474
47	Franklin Quilumba	Escuela Politécnica Nacional EPN	8	347
48	Víctor Saquicela	Universidad de Cuenca	8	306

49	Luis Terán	Universidad de las Fuerzas Armadas ESPE	8	286
50	Luis Rodrigo Barba-Guamán	Universidad Técnica particular de Loja	8	176
51	Cristian Rojas Villa	Universidad del Azuay	8	145
52	Douglas Plaza Guingla	Escuela Superior Politécnica del Litoral ESPOL	7	412
53	Diego Gustavo Arcos Avilés	Universidad de las Fuerzas Armadas ESPE	7	227
54	Vladimir Robles-Bykbaev	Universidad Politécnica Salesiana	7	195
55	Francisco Ortega-Zamorano	Universidad de Yachay, San Miguel de Urcuquí	7	189
56	Sang Guun Yoo	Escuela Politécnica Nacional EPN	7	187
57	Lorena Siguenza-Guzman	Universidad de Cuenca	7	178
58	Pablo Vanegas Peralta	Universidad de Cuenca	7	168
59	Washington X. Quevedo	Universidad de las Fuerzas Armadas ESPE	7	138
60	Torres-Carrión Pablo Vicente	Universidad Técnica particular de Loja	7	116
61	Fernando Oñate-Valdivieso	Universidad Técnica particular de Loja	6	165
62	Jack Fernando Bravo-Torres	Universidad Politécnica Salesiana	6	151
63	Rosa Navarrete	Escuela Politécnica Nacional EPN	6	140
64	Samanta Patricia Cueva Carrión	Universidad Técnica particular de Loja	6	135
65	Priscila Valdiviezo	Universidad Técnica particular de Loja	6	133
66	Rodríguez M. Germania	Universidad Técnica particular de Loja	6	131
67	Oswaldo Moscoso-Zea	Universidad Tecnológica Equinoccial	6	101
68	Vanessa Echeverría	Escuela Superior Politécnica del Litoral ESPOL	6	101
69	Luis Chamba- Eras	Universidad Nacional de Loja	6	83
70	Paul Rosero	Universidad Técnica del Norte	6	75
71	Diego Ordóñez Camacho	Universidad Tecnológica Equinoccial	6	74
72	Miguel Ángel Méndez	Universidad San Francisco de Quito	5	163
73	Jorge Luis Pérez Medina	Universidad de Las Américas	5	140
74	Danilo Chávez	Escuela Politécnica Nacional EPN	5	96
75	Luis Tello-Oquendo	Universidad Nacional de Chimborazo	5	93
76	Myriam Peñafiel	Escuela Politécnica Nacional EPN	5	84
77	César Villacís	Universidad de las Fuerzas Armadas ESPE	5	82
78	Katty Lagos-Ortiz	Universidad de Guayaquil	5	79
79	Esteban Ordóñez	Universidad Politécnica Salesiana	5	71
80	Diana Yacchirema	Escuela Politécnica Nacional EPN	5	68
81	Fabián Reyes-Bueno	Universidad Técnica particular de Loja	5	66
82	Juan Pablo Bermeo Moyano	Universidad Politécnica Salesiana	5	50
83	Ángel H. Moreno	Universidad Técnica de Cotopaxi Latacunga	4	100
84	Gonzalo Luzardo	Escuela Superior Politécnica del Litoral ESPOL	4	75

85	José Medina-Moreira	Universidad de Guayaquil	4	74
86	Edison Javier Guaña Moya	Universidad Central del Ecuador	4	72
87	García-Santillán Iván	Universidad Técnica del Norte	4	68
88	William Zamora Mero	Universidad Laica Eloy Alfaro de Manabí	4	67
89	Rubén Pazmiño-Maji	Escuela Superior Politécnica de Chimborazo	4	61
90	Marco Oswaldo Santórum Gaibor	Escuela Politécnica Nacional EPN	4	59
91	Eduardo Robinson Calle Ortiz	Universidad Politécnica Salesiana	4	58
92	Dennis Romero López	Escuela Superior Politécnica del Litoral ESPOL	4	56
93	Elizabeth Cadme	Universidad Técnica particular de Loja	4	53
94	Rodolfo García Bermúdez	Universidad Laica Eloy Alfaro de Manabí Manta	4	49
95	Lida Barba	Universidad Nacional de Chimborazo	4	49
96	Patricia Chávez-Burbano	Escuela Superior Politécnica del Litoral ESPOL	4	45
97	Jaime Veintimilla-Reyes	Universidad de Cuenca	4	42
98	Iván Ramírez-Morales	Universidad Técnica de Machala	4	39
99	Jorge Francisco Galán Montesdeoca	Universidad Politécnica Salesiana	4	37
100	Gladys E. Carrillo	Escuela Superior Politécnica del Litoral ESPOL	4	36
101	Bertha Mazón-Olivo	Universidad Técnica de Machala	4	34
102	Wilton Agila G	Universidad Politécnica Salesiana	3	75
103	Roberth Figueroa-Diaz	Universidad Nacional de Loja	3	58
104	Esteban Ricardo Gómez torres	Universidad Tecnológica Equinoccial	3	54
105	Edwin Valarezo Añazco	Escuela Superior Politécnica del Litoral ESPOL	3	49
106	Verónica Segarra Faggioni	Universidad Técnica particular de Loja	3	46
107	Pablo Pico-Valencia	Pontificia Universidad Católica del Ecuador	3	36
108	Efraín R. Fonseca C	Universidad de las Fuerzas Armadas ESPE	3	32
109	Andrés Tello	Universidad de Cuenca	3	31
110	Paola Ingavélez	Universidad Politécnica Salesiana	3	30
111	Karel Diéguez-Santana	Universidad Estatal Amazónica	3	27
112	Paul Esteban Vintimilla Tapia	Universidad Politécnica Salesiana	3	25
113	Andrés Auquilla	Universidad de Cuenca	3	24
114	Ana Santos Delgado	Universidad Técnica particular de Loja	3	24
115	Daniel Alejandro Guamán Coronel	Universidad Técnica particular de Loja	3	23
116	Otto Parra González	Universidad de Cuenca	3	22
117	Luis Bravo-Moncayo	Universidad de Las Américas	3	22
118	Alexandra González-Eras	Universidad Técnica particular de Loja	3	21
119	Geovanny Raura	Universidad de las Fuerzas Armadas ESPE	3	21
120	David Valencia Redrovan	Universidad de las Fuerzas Armadas ESPE	3	20
121	Fabián Cuzme-Rodríguez	Universidad Técnica del Norte	3	16

122	Luis Roberto Jácome Galarza	Universidad Nacional de Loja	3	14
123	William Villegas-Ch	Universidad de Las Américas	2	29
124	Allan Avendaño	Escuela Superior Politécnica del Litoral ESPOL	2	29
125	Yuri Merizalde	Universidad de Guayaquil	2	27
126	Diego Buenaño-Fernández	Universidad de las Américas Quito	2	27
127	Ricardo Cajo Diaz	Escuela Superior Politécnica del Litoral ESPOL	2	25
128	Juan Zaldumbide	Escuela Politécnica Nacional EPN	2	23
129	Javier Fernández-Cruz	Pontificia Universidad Católica del Ecuador	2	18
130	Juan Manuel García- Samaniego	Universidad Técnica particular de Loja	2	17
131	Wilmer Marcelo Urbina Gamboa	Universidad de las Fuerzas Armadas ESPE	2	16
132	Rodrigo Proaño-Escalante	Universidad Tecnológica Equinoccial	2	14
133	Gabriela Baquerizo	Universidad Casa Grande	2	14
134	Mariela Tapia-León	Universidad de Guayaquil	2	13
135	Xavier Sumba	Universidad de Cuenca	2	13
136	Ángel Fiallos Ordoñez	Escuela Superior Politécnica del Litoral ESPOL	2	12
137	M. Stefanie Vásquez P.	Escuela Politécnica Nacional EPN	2	12
138	Mao Garzón	Universidad Católica de Santiago de Guayaquil	2	11
139	Fernando Baculima	Universidad de Cuenca	2	11
140	Johnny Torres	Escuela Superior Politécnica del Litoral ESPOL	2	11
141	Fernando Baculima	Universidad de Cuenca	2	11
142	Maria-Belen Mora-Arciniegas	Universidad Técnica particular de Loja	2	11
143	Jorge Rodas-Silva	Universidad de Milagro	2	10
144	Edison Coronel-Romero	Universidad Nacional de Loja	2	9
145	Rene Guamán-Quinche	Universidad Nacional de Loja	2	9
146	Héctor Avalos-Silva	Universidad Tecnológica Equinoccial	2	8
147	Milton Labanda-Jaramillo	Universidad Nacional de Loja	2	8
148	Raquel Gomez-Chabla	Universidad Agraria del Ecuador UAE	2	8
149	Franklin Parrales	Universidad de Guayaquil	2	7
150	Ciro Saguay	Universidad Tecnológica Equinoccial	2	6
151	Gerardo Orellana	Universidad del Azuay	2	6
152	Alfonso Rodrigo Tierra Criollo	Universidad de las Fuerzas Armadas ESPE	2	5
153	Diego Fernando Vallejo- Huanga	Universidad Politécnica Salesiana	2	5
154	Elina Avila-Ordóñez	Universidad de Cuenca	1	33
155	Aníbal Vásquez Clad	Escuela Superior Politécnica del Litoral ESPOL	1	25
156	Cindy-Pamela López	Escuela Politécnica Nacional (EPN)	1	16
157	Rodrigo Tufiño Cárdenas	Universidad Politécnica Salesiana	1	12

158	Catalina López Chávez	Universidad Andina Simón Bolívar	1	6
159	Holger Ortega	Universidad Politécnica Salesiana	1	5
160	Karina Real	Universidad Agraria del Ecuador UAE	1	5
161	Marcos Patricio Orellana Cordero	Universidad del Azuay	1	4
162	Nayeth Solorzano Alcívar	Escuela Superior Politécnica del Litoral ESPOL	1	3
163	Christian Oyola-Flores	Universidad Politécnica Salesiana	1	2
164	Carmen Johanna Celi Sánchez	Universidad Politécnica Salesiana	1	2
165	José Julián Coronel Reyes	Universidad Técnica de Machala	1	2
166	José-Luis Granda	Universidad Nacional de Loja	1	2
167	Mario Andrés Palma Jaramillo	Universidad Nacional de Loja	1	2
168	Rosalba Marianela Rodríguez Reyes	Universidad de las Fuerzas Armadas ESPE	1	1
169	Teresa Mirian Santamaria López	Universidad de Guayaquil	1	1
170	Carmen Mireya Lapo	Universidad Técnica Particular de Loja	1	1
171	Nelson Salgado	Universidad Central del Ecuador	1	1
172	Cumbicus-Pineda Oscar M.	Universidad Nacional de Loja	1	1
173	Jorge Tulio Carrión González	Universidad Nacional de Loja	1	1

Después de lo anterior expuesto a continuación, se identificó el top 10 de investigadores con mayor producción científica en el campo de IA en las IES de Ecuador (véase Tabla XXVI, y Figura 21). Resulta oportuno indicar que, para desarrollar el top 10 se identificó a los investigadores de las IES de Ecuador a través de los indicadores cienciométricos "h-índex" y "total Citation" en sus perfiles de "Google Scholar".

TABLA XXVI. TOP 10 INVESTIGADORES CON MAYOR PRODUCCIÓN CIENTÍFICA EN EL CAMPO DE LA IA EN LAS IES DE ECUADOR

Rank	Investigador	Filiación	H índex	Total Citation
1	José Luis Rojo Álvarez	Universidad de las Fuerzas Armadas ESPE	35	4739
2	Chuan Li	Universidad Politécnica Salesiana UPS	28	2696
3	José Aguilar	Universidad Técnica particular de Loja UTPL	26	3059
4	Denis Borenstein	Universidad de Cuenca	25	4177
5	Ángel D. Sappa	Escuela Superior Politécnica del Litoral ESPOL	24	2980
6	José Valente de Oliveira	Universidad Politécnica Salesiana UPS	23	2003
7	Xavier Ochoa	Escuela Superior Politécnica del Litoral ESPOL	22	2155
8	Theofilos Toulkeridis	Universidad de las Fuerzas Armadas ESPE	22	1431
9	Mariela Cerrada Lozada	Universidad Politécnica Salesiana UPS	21	1472
10	René Vinicio Sánchez Loja	Universidad Politécnica Salesiana UPS	20	1253

Figura 21. Top 10 investigadores en el campo de la IA en las IES del Ecuador (Fuente propia).

A continuación, se explica la relación entre los investigadores (co-autoría) de las IES. Para establecer la relación, se aplica el método de normalización de la fuerza de asociación en el Software libre VOSviewer [80]. En la Figura 22 se identificó varios clústeres, donde el tamaño representa el número de citas, y relaciona la relación en las citas entre los investigadores; destacan los investigadores Mariela Cerrada, Diego Cabrera, René Vinicio Sánchez y Chuan Li, que pertenecen al clúster (color rojo) con filiación en la Universidad politécnica Salesiana (UPS). En el clúster (color turqués) destaca el investigador José Luis Rojo Álvarez, con filiación en la Universidad de las Fuerzas Armadas (ESPE). En el clúster (color verde) destaca el investigador Sergio Luján Mora en co-autoría con investigadores de la Universidad Técnica Particular de Loja. Finalmente, en el clúster (color morado) destaca el investigador Xavier Ochoa con filiación en la Escuela Politécnica de Litoral (ESPOL). Esto explica la relación entre la co-autoría, el número de documentos publicados y el número de citas, agrupadas entre los clústeres.

En ese mismo sentido, en la Figura 23, se identificó varios clústeres que representan el número de palabras claves relacionadas en las publicaciones desarrolladas en el campo de la IA. Destacándose los clústeres (color rojo) una mayor cantidad en el área de machine learning y artificial neural networks. También, se destaca el clúster (color azul) con el área de Data mMning. Finalmente, el clúster (color verde) pertenece al área de Big Data.

Figura 22. Relación entre los investigadores (co-autoría) de las IES (Fuente propia).

Figura 23. Palabras claves en los estudios seleccionados en la presente SLR (Fuente propia).

A continuación, en la Tabla XXVII se identificó la producción científica en el campo de la IA desarrollada en las IES del Ecuador a través de sus investigadores. Asimismo, se observó que las tres IES que aportan más en Ecuador de acuerdo con el número de estudios publicados en el campo de la IA, son: la Universidad Politécnica Salesiana (UPS) con veinte y cinco artículos publicados, la Universidad Técnica Particular de Loja (UTPL) con veinte y tres artículos publicados y la Escuela Superior Politécnica del Litoral (ESPOL) con veinte y tres artículos publicados (véase Figura 24).

TABLA XXVII .

PRODUCCIÓN CIENTÍFICA IDENTIFICADA DE ACUERDO CON EL NÚMERO DE ESTUDIOS PUBLICADOS EN LAS IES DE ECUADOR

Posición	IES	Nro. de Estudios
1	UPS	25
2	UTPL	23
3	ESPOL	23
4	ESPE	21
5	EPN	18
6	U. DE CUENCA	11
7	UNL	7
8	U. DE LAS AMÉRICAS	6
9	UTN	6
10	U. TECNOLÓGICA EQUINOCCIAL	5
11	U. NACIONAL DE CHIMBORAZO	5
12	U. DE GUAYAQUIL	5
13	ESCUELA SUPERIOR POLITÉCNICA DE	
	CHIMBORAZO	4
14	U. DEL AZUAY	3
15	U. SAN FRANCISCO DE QUITO	3
16	U. CENTRAL DEL ECUADOR	3
17	U. TÉCNICA DE MACHALA	3
18	UCSG	3
19	U. DE MILAGRO	2
20	U. ESTATAL AMAZÓNICA	1
21	U. DE YACHAY	1
22	UIDE	1
23	U. TÉCNICA DE COTOPAXI	1
24	U. LAICA ELOY ALFARO DE MANABÍ	1
25	PONTÍFICIA UNIVERSIDAD CATÓILICA DEL ECUADOR	1

26	U. CASA GRANDE	1
27	U. TÉCNICA DE AMBATO	1
28	U. AGRARIA DEL ECUADOR	1
29	U. ANDINA SIMON BOLIVAR	1
30	U. ESPÍRITU SANTO	1
31	U. TÉCNICA DE MANABÍ	1
32	U. ECOTEC	1

PRODUCCIÓN CIENTÍFICA NRO. DE ESTUDIOS

Figura 24. Producción científica identificada de acuerdo con el número de estudios publicados en las IES de Ecuador (Fuente propia).

Además, en la Tabla XXVIII se identificó las Universidades que aportan más con la producción científica en el campo de la IA de acuerdo al indicador bibliométrico índice H. Asimismo, se observó que las tres IES que lideran la producción científica en el campo de la IA en Ecuador son: la Universidad de las Fuerzas Armadas (ESPE) con índice H = 35. La Universidad Politécnica Salesiana (UPS) con índice H = 28. Y la Universidad Técnica Particular de Loja (UTPL) con índice H = 26 (véase Figura 25).

TABLA XXVIII .

PRODUCCIÓN CIENTÍFICA IDENTIFICADA DE ACUERDO CON EL ÍNDICE H EN
LAS PUBLICACIONES DE LAS IES DE ECUADOR

Posición	IES	Índice H	Nro. de Citaciones
1	ESPE	35	4739
2	UPS	28	2696
3	UTPL	26	3059
4	U. DE CUENCA	25	4177
5	ESPOL	24	2980
6	EPN	18	1060
7	U. ESTATAL AMAZÓNICA	16	788
8	U. TECNOLÓGICA EQUINOCCIAL	16	709
9	U. DE YACHAY	14	499
10	U. NACIONAL DE CHIMBORAZO	14	464
11	UIDE	13	429
12	U. DE LAS AMÉRICAS	13	387
13	U. DEL AZUAY	8	145
14	UNL	6	83
15	UTN	6	75
16	U. DE GUAYAQUIL	5	79
17	U. SAN FRANCISCO DE QUITO	5	163
18	U. TÉCNICA DE COTOPAXI	4	100
19	U. CENTRAL DEL ECUADOR	4	72
20	U. LAICA ELOY ALFARO DE MANABÍ	4	49
21	ESCUELA SUPERIOR		
	POLITÉCNICA DE CHIMBORAZO	4	61
22	U. TÉCNICA DE MACHALA	4	39
23	PONTÍFICIA UNIVERSIDAD		
	CATÓILICA DEL ECUADOR	3	36
24	U. CASA GRANDE	2	14
25	UCSG	2	11
26	U. TÉCNICA DE AMBATO	2	11
27	U. DE MILAGRO	2	10
28	U. AGRARIA DEL ECUADOR	2	8
29	U. ANDINA SIMON BOLIVAR	1	6
30	U. ESPÍRITU SANTO	0	0
31	U. TÉCNICA DE MANABÍ	0	0
32	U. ECOTEC	0	0

Figura 25. Producción científica identificada de acuerdo con el índice H en las publicaciones de las IES de Ecuador (Fuente propia).

Cabe agregar, que las IES de Ecuador con mayor aporte en las distintas áreas de la IA se detallan a continuación (véase Tabla XXIX).

En el área de Machine Learning (ML), las IES líderes en Ecuador son:

- La Universidad Politécnica Salesiana (UPS), con ocho artículos publicados.
- Y la Escuela Superior Politécnica de Litoral (ESPOL), con seis artículos publicados.

En el área de Artificial Neural Network (ANN), las IES líderes en Ecuador son:

- La Universidad Politécnica Salesiana (UPS), con seis artículos publicados.
- La Universidad de las Fuerzas Armadas (ESPE), con seis artículos publicados.
- Y la Escuela Politécnica Nacional (EPN), con seis artículos publicados.

En el área de Data Mining (DM), la IES líder en Ecuador es:

 La Universidad de las Fuerzas Armadas (ESPE), con cuatro artículos publicados.

En el área de Big Data (BD), la IES líder en Ecuador es:

La Escuela Politécnica Nacional (EPN), con cinco artículos publicados.

TABLA XXIX. ÁREAS DE LA IA DONDE LAS IES DE ECUADOR APORTAN MÁS A LA PRODUCCIÓN CIENTÍFICA

	IES	ML	ANN	DM	BD	SW	CV	SVM	FL	RO	HCI	NLP	GA	SE	
1	UPS	8	6	2	0	1	1	2	3	1	0	0	0	1	
2	UTPL	4	2	2	1	8	1	0	1	1	2	1	1	0	
3	ESPOL	6	4	2	2	2	0	0	3	2	1	1	1	1	
4	ESPE	2	6	4	1	1	1	1	1	0	0	1	0	0	
5	EPN	2	6	1	5	1	0	3	1	2	1	0	1	0	
6	U. DE CUENCA	2	2	1	1	0	0	2	1	0	1	0	0	0	
7	UNL	1	1	2	1	1	1	0	0	0	0	1	1	0	
8	U. DE LAS AMÉRICAS	0	1	1	1	0	0	0	0	0	0	0	0	0	
9	UTN	2	0	1	0	0	3	0	0	0	0	0	0	0	
10	U. TECNOLÓGICA EQUINOCCIAL	0	1	0	1	0	0	0	0	0	0	0	0	0	
11	U. NACIONAL DE CHIMBORAZO	2	0	0	0	0	0	0	0	0	1	0	0	0	
12	U. DE GUAYAQUIL	1	1	1	1	2	2	0	0	0	0	0	0	0	
13	ESCUELA SUPERIOR POLITÉCNICA DE	0	0	1	0	0	0	0	0	2	0	0	0	0	
	CHIMBORAZO														
14	U. DEL AZUAY	0	0	1	0	0	3	0	0	0	0	0	0	0	
15	U. SAN FRANCISCO DE QUITO	2	0	0	0	0	0	0	0	0	0	0	0	0	
16	U. CENTRAL DEL ECUADOR	1	0	0	0	0	0	0	0	0	0	0	0	0	
17	U. TÉCNICA DE MACHALA	1	0	1	0	0	0	2	0	0	0	0	0	0	
18	UCSG	1	0	0	0	0	0	0	0	0	0	0	0	0	
19	U. DE MILAGRO	0	0	0	1	0	0	0	0	0	0	0	0	0	
20	U. ESTATAL AMAZÓNICA	1	1	0	0	0	0	0	0	0	0	0	0	0	
21	U. DE YACHAY	0	0	0	0	0	1	0	0	0	0	0	0	0	
22	UIDE	0	0	0	1	0	0	0	0	0	0	0	0	0	
23	U. TÉCNICA DE COTOPAXI	0	0	1	0	0	0	0	0	0	0	0	0	0	
24	U. LAICA ELOY ALFARO DE MANABÍ	1	0	0	1	0	0	0	0	0	0	0	0	0	
25	PONTÍFICIA UNIVERSIDAD CATÓILICA DEL ECUADOR	0	0	0	1	0	0	0	0	0	0	0	0	0	
26	U. CASA GRANDE	1	0	0	0	0	0	0	0	0	0	0	0	0	
27	U. TÉCNICA DE AMBATO	0	0	0	0	0	2	0	0	0	0	0	0	0	
28	U. AGRARIA DEL ECUADOR	0	0	0	1	0	0	0	0	0	0	1	0	1	
29	U. ANDINA SIMON BOLIVAR	0	1	0	0	0	0	0	0	0	0	0	0	0	
30	U. ESPÍRITU SANTO	1	0	0	0	0	0	0	0	0	0	0	0	0	

31	U. TÉCNICA DE MANABÍ	1	0	1	0	0	0	0	0	0	0	0	0	0	
32	U. ECOTEC	0	0	0	0	0	1	0	0	0	0	0	0	0	
		40	32	22	19	16	16	10	10	8	6	5	4	3	191

A continuación, se presenta dos ejemplos para explicar el proceso de cálculo del factor de cercanía [81], denominado (C), basado en las fuentes de información (FI) y el número de iteraciones realizadas (I). Cabe agregar, que los ejemplos calculan el factor C en 2 ámbitos (nacional e internacional), para las publicaciones vinculadas en el campo de la IA.

Donde:

- C: cuantas relaciones se tiene entre IES.
- FI: los investigadores de las IES.
- I: el número de iteraciones de la FI para evaluar la C.

Ejemplo uno (ámbito nacional):

En la Tabla XXX se muestra la matriz de incidencia para el cálculo del factor de cercanía (C).

Donde:

- 1: presencia (relación entre IES).
- 0: ausencia (no existe relación entre IES).

Ejemplo dos (ámbito internacional):

En la Tabla XXXI se indica la matriz de incidencia para el cálculo del factor de cercanía (C).

Donde:

- 1: presencia (relación entre IES).
- 0: ausencia (no existe relación entre IES).

TABLA XXX.

MATRIZ DE INCIDENCIA CON FACTOR DE CERCANÍA ÁMBITO NACIONAL

	INSTITUCIONES DE EDUCACIÓN SUPERIOR DEL ECUADOR	1. UPS	2. UTPL	3. ESPOL	4. ESPE	5. EPN	6. U. DE CUENCA	7. UNL	8. U. DE LAS AMÉRICAS	9. U. TÉCNICA DEL NORTE	10. U. TÉCNICA EQUINOCCIAL	11. U. NACIONAL DE CHIMBORAZO	12. U. GYE	13. ESPCH	14. U. DEL AZUAY	15. USFQ	16. U. CENTRAL DEL ECUADOR	17. U. TÉCNICA DE MACHALA	18. UCSG	19. U. DE MILAGRO	20. U. ESTATAL AMAZÓNICA	21. U. DE YACHAY	22. UIDE	23. U. TÉCNICA DE COTOPÁXI	24. U. LAICA ELOY ALFARO	25. PUCE	26. U. CASA GRANDE	27. U. TÉCNICA DE AMBATO	28. U. AGRARÍA DEL ECUADOR	29. U. ANDINA SIMÓN BOLIVAR	30. UEES	31. U. TÉCNICA DE MANABÍ	32. U. ECOTEC
1	UPS	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	UTPL	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	ESPOL	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
4	ESPE	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	EPN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	U. DE CUENCA	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	UNL	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	U. DE LAS AMÉRICAS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	UTN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	UTE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	UNCH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	U. DE GYE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0
13	ESPECH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	U. DE AZUAY	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	USFQ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	UCE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	UTM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	UCSG	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	U. DE MILAGRO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	U. ESTATAL AMAZÓNICA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21	U. DE YACHAY	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

22	UIDE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23	UTC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24	ULEAM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25	PUCE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
26	U. CASA GRANDE	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
27	UTA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
28	U. AGRARÍA DEL ECUADOR	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
29	U. ANDINA SIMÓN BOLIVAR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
30	UEES	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
31	UTM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
32	U. ECOTEC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0

TABLA XXXI.

MATRIZ DE INCIDENCIA CON FACTOR DE CERCANÍA ÁMBITO INTERNACIONAL

País	INSTITUCIONES DE EDUCACIÓN SUPERIOR (IES)	1. UPS	2. UTPL	3. ESPOL	4. ESPE	5. EPN	6. U. DE CUENCA	7. UNL	8. U. DE LAS AMÉRICAS	9. U. TÉCNICA DEL NORTE	10. U. TÉCNICA EQUINOCCIAL	11. U. NACIONAL DE CHIMBORAZO	12. U. GYE	13. ESPCH	14. U. DEL AZUAY	15. USFQ	16. U. CENTRAL DEL ECUADOR	17. U. TÉCNICA DE MACHALA	18. UCSG	19. U. DE MILAGRO	20. U. ESTATAL AMAZÓNICA	21. U. DE YACHAY	22. UIDE	23. U. TÉCNICA DE COTOPÁXI	24. U. LAICA ELOY ALFARO	25. PUCE	26. U. CASA GRANDE	27. U. TÉCNICA DE AMBATO	28. U. AGRARÍA DEL ECUADOR	29. U. ANDINA SIMÓN BOLIVAR	30. UEES	31. U. TÉCNICA DE MANABÍ	32. U. ECOTEC
Corea	U. Kyung Hee	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02 IES	U. Ulsan	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. Alicante	0	1	0	1	0	0	0	1	1	1	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	U. Politécnica de Madrid	0	1	0	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	U. de Murcia	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	U. Politécnica de Valencia	1	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	U. de Salamanca	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. de León	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. de Laguna	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. Politécnica Cataluña	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. de Vigo	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. de Málaga	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0	0	0	0	0	1	0
Fanaña	U. de Alcalá	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
España 26 IES	U. de Valladolid	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20 123	U. Rey Juan Carlos	0	0	0	1	1	0	0	1	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0
	U. Pública de Navarra	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. del País Vasco	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. Complutense de Madrid	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. de Sevilla	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. Nacional de educación a distancia de Madrid	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	U. de Valencia	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0
	U. a Coruña	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. La Rioja	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. Autónoma de Madrid	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. Autónoma de	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Barcelona																																
	U. de Granada	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	U. Miguel Hernández	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. de Castilla la Mancha	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. de New York	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. de Stanford	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. de Nebraska-Lincoln	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
USA	U. de Texas	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08 IES	U. de Illinois	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. Estatal de Washington	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. de California	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0
	U. de Miami	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. de Ghent	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bélgica	U. Católica de Louvain	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04 IES	U. de Antwerp	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. Vrije Brussel	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. Stefan cel Mare de	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rumanía	Suceava																																
02 IES	U. Técnica de Cluj	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Napoca																																
	U. de Bielefeld	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. de Marburg	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Alemania	U. de Bayreuth	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
06 IES	U. de Leip Zig	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. de Dourtmund	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. de Duisburgo-Essen	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Irlandia		0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01 IES	C. Trinity Dublin	_					_																								ـــــــــــــــــــــــــــــــــــــ		
	U. Nacional de Pelotas	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. Federal de Paraná	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Instituto Brasileño de	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- "	Geografía y Estadística	1		1			1					_	_					<u> </u>					1							<u> </u>	↓		
Brasil	U. Federal Fluminense	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1	0	0	0	0	0

07 IES	U. Federal Río Grande do Norte	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. Federal Río Grande do Soul	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. Federal do Espiritu Santo	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Australia 01 IES	U. de Griffith	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Países	U. Tecnológica de Delf	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bajos 02 IES	U. de Groningen	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Suiza	U. de Frigbourg	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02 IES	U. de Bern	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Perú 01 IES	U. Nacional de San Marcos	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	U. de Holguin	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0
Cuba	U. de Ciencias Médicas	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
03 IES	U. del Oriente	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. Técnica Federico Santa María	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chile	Pontíficia U. Católica de Valparaíso	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04 IES	U. Católica del Norte	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Pontíficia U. Católica de Chile	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. de Nariño	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. Autónoma de Manizales	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Instituto Tecnológico Metropolitano de Medellin	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Colombia	U. Surcolombiana	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09 IES	U. Tecnológica de Pereira	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. Pontíficia Bolivariana	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. Fransisco de Paula	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
	U. Sergio Alboreda	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. Simon Bolivar	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Venezuela	U. de los Andes	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
02 IES	U. de Zulia	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Slovenia	Instituto Josef Stefan	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

01 IES																	Τ									T				1		\Box	T
Inglaterra 01 IES	Universidad de Portsmouth	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. Tecnológica de Dongguan	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
China 03 IES	U. Tecnológica de Chongqing	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. Tecnológica de Xi'an	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Vietnam	U. Tecnológica de Honoi	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
02 IES	Research Institute for Aquaculture No1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. Nacional de San Juan	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
Argentina	U. de Belgrano	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
04 IES	U. Nacional de la Plata	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. Nacional de Misiones	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Canada	U. de Windsor	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02 IES	U. de Concordia	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. do Algarve	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. do Aveiro	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. do Porto	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Portugal	U. do Minho	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
06 IES	Instituto Politécnico do Oporto	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Instituto Politécnico do Leira	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Tecnológico de Monterrey	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. Autónoma de Mexico	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mexico 04 IES	Centro de Investigación Científica y de educación Superior de Ensenada	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Universidad Autónoma de Baja California	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	U. de Tromso	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Noruega 02 IES	University Hospital of North Norway	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Italia	U. de Calabria	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02 IES	U. de Bari Aldomoro	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Francia 01 IES	U. de Pau y Pays	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bolivia		1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01 IES	U. Privada Boliviana																																
Ucrania		0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01 IES	U. de Kharkiv																																
Argelia		1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01 IES	U. Ferhat ABBAS																																
Malaysia	U. Tecnológica de		0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01 IES	Malaysia																																
Qatar			0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
01 IES	U. de Qatar																																

Después de lo anterior expuesto a continuación, se identificó la distribución geográfica de los investigadores para cada uno de los 32 países donde existe vinculación con las IES del Ecuador. Los vínculos de co-autoría con dichos países se seleccionaron y organizaron en grupos; identificando 113 IES en el mundo que realizan co-autoría con los investigadores de IES del Ecuador (véase Figura 26).

Se pueden observar 4 países destacados: el primer país es España con 67 estudios publicados, el segundo es Estados Unidos con 11 estudios publicados, el tercer y cuarto país son Brasil y Colombia con 10 estudios publicados en co-autoría con investigadores de las IES de Ecuador.

Figura 26. Distribución geográfica y cantidad de artículos publicados entre IES del Ecuador y el Mundo (Fuente propia).

A continuación, en la Tabla XXXII se identificó 48 grupos de investigación que desarrollan producción científica en el campo de la IA en 32 IES del Ecuador.

TABLA XXXII.

GRUPOS DE INVESTIGACIÓN DE IES DE ECUADOR

Nro.	IES	Nombre Grupo	Integrantes
1	UNIVERSIDAD DE LAS FUERZAS ARMADAS (ESPE)	Ciberseguridad e Inteligencia Artificial ⁵¹ .	Asesor Coordinador Ing. Sang Guun Yoo, PhD.
	2 Grupos	Sistemas Distribuidos, Ciberseguridad y Contenidos ⁵² .	Coordinador Ing. Walter Marcelo Fuertes Díaz, PHD.
2	UNIVERSIDAD POLITÉCNICA SALESIANA (UPS) 5 Grupos	Inteligencia Artificial y Tecnologías de Asistencia GI- IATa ⁵³ .	Coordinador: Ing. Vladimir Robles Bykbaev, Ph.D Docentes investigadores: Ing. Paola Ingavélez Guerra, Mg. Sc Ing. Vladimir Robles Bykbaev, Ph.D Ing. Eduardo Pinos Vélez. Mg, Sc Ing. Fernando Pesántez Avilés, Ph.D Ing. Luis Serpa Andrade, Mg. Sc Ing. Cristian Timbi Sisalima, Mg. Sc Ing. Luis González Delgado, Mg. Sc Ing. Rodolfo Borjorque Chasi, Mg. Sc Ing. Diana Monje Ortega Ing. Diego Quisi Peralta, Mg. Sc Ing. Mauricio Ortiz Ochoa, Mg. Sc Ing. Remigio Hurtado Ortiz, Mg. Sc Ing. Roberto García Vélez, Mg. Sc Ing. Edy Ayala Cruz, Mg. Sc Ing. Andrea Plaza Cordero, Mg. Sc
		Grupo De Investigación En Cloud Computing Smart Cities & High Perfomance Computing ⁵⁴ .	Coordinador: Ing. Gabriel A. León-Paredes, Ph.D Integrantes: Ing. Pablo Gallegos Segovia, Ph.D Ing. Jennifer Yépez Alulema, Mg. Sc Ing. Walter Verdugo Romero, Mg.Sc

⁵¹ Véase: https://investigacion.espe.edu.ec/grupos/

⁵² Véase: http://rackly.espe.edu.ec/rackly/?page_id=961

⁵³ Véase: https://giiata.blog.ups.edu.ec/

⁵⁴ Véase: https://www.ups.edu.ec/es/web/guest/gihp4c

	Ing. Jairo Sacoto Cabrera, Mg, Sc Ing. Rommel Carpio Cordero. Ing. Quintuña Padilla Wilson Patricio. Mg, Sc Ing. Gustavo Bravo Quezada, Ph.D Ing. Roberto García Vélez, Mg. Sc
Grupo De Investigación En Interacción Robótica Y Automática ⁵⁵ .	Investigadores Docentes: Ing. Christian Salamea Palacios Ing. Walter Orozco Ing. Marco Carpio, Ph.D Ing. Iván Escandón Ing. Julio Zambrano Ing. Eduardo Calle Profesores asociados Ing. Marco Amaya Ing. Diego Chacón Ing. Julio Montesdeoca Lcda. Psi. Trabajo. Carolina Zúñiga Psi. Clínica. María Eugenia Barros Asistentes de investigación: Ing. Melissa Montalvo Ing. Fernando Chica Asistente de Vinculación con la Colectividad: Ing. Luis Calle Arévalo
Grupo De Investigación En Sistemas De Control Y Robótica ⁵⁶ .	Coordinador: Ing. Mónica Miranda Ramos, Mg. Sc Integrantes: Ing. Gary Ampuño Ing. Byron Lima Ing. Ricardo Cajo Díaz Ing. Wilton Agila, Ph.D Ing. Mónica Miranda, Mg, Sc Ing. Víctor Huilcapi. Mg, Sc
Grupo De Investigación Infraestructura De Datos Espaciales, Inteligencia Artificial Geoportales Y Computación Aplicada ⁵⁷	Coordinador: Ing. Navas Ruilova Gustavo Ernesto, Mg. Sc Integrantes: Ing. Arévalo Campos Alonso Rene, Mg. Sc Ing. Espinosa González José Ramon Ing. Llerena Paz Robinson Dimitri

⁵⁵ Véase: https://www.ups.edu.ec/es/web/guest/giira

⁵⁶ Véase: https://www.ups.edu.ec/web/guest/giscor

⁵⁷ Véase: https://www.ups.edu.ec/web/guest/ideiageoca

3	UNIVERSIDAD TÉCNICA PARTICULAR DE LOJA (UTPL) 4 Grupos	Interacción Persona Computador para atención a las personas con discapacidades ⁵⁸ (i+IPC).	Ing. Pablo Vicente Torres Carrión, Ph.D Integrantes: Ing. Germania del Rocío Rodríguez Morales, Mg. Sc Ing. Carlos Alberto Calderón Córdova, Mg. Sc Ing. Silvia Libertad Vaca Gallegos, Ph.D Ing. Luis Rodrigo Barba Guamán, Mg. Sc Lic. Diego Baltazar Espinosa León Ing. María Magdalena Guajala Michay, Ph.D. Ing. Byron Fernando Bustamante Granda, Ph.D. Ing. Carlos Ortiz León, Ph.D. Ing. Katy Maricela Chamba Leiva, Mgs. Coordinador: Ing. Nelson Oswaldo Piedra Pullaguari, Ph.D. Integrantes: Fabiola Lucía Puertas Bravo, Ph.D.
		Sistemas Basados en el Conocimiento ⁵⁹ .	Ing. Nelson Oswaldo Piedra Pullaguari, Ph.D. Integrantes:
		Control, Automation and Intelligent Systems ⁶⁰ .	Coordinador: Ing. Carlos Alberto Calderón Córdova, Mgs. Integrantes: David Coleman Parsons, Mgs. Omar Alexander Ruiz Vivanco, Mgs.

⁵⁸ Véase: https://investigacion.utpl.edu.ec/grupos/ihci

⁵⁹ Véase: https://investigacion.utpl.edu.ec/grupos/kbs/about

⁶⁰ Véase: https://investigacion.utpl.edu.ec/grupos/consys/about

			Tuesman Daniel Castillo Calvas, Mgs. Ing. Darwin Patricio Castillo Malla
		Laboratorio de Inteligencia Artificial ⁶¹ (LabIA).	Responsable: Ing. Luis Rodrigo Barba Guamán, Mg. Sc
4	UNIVERSIDAD DE CUENCA 2 Grupos	Gestión Del Conocimiento ⁶² .	Director del grupo: Ing. Lorena Sigüenza Guzmán, PhD. Investigadores: Ing. Andrés Vinicio Auquilla Sangolquí Ing. Ángel Oswaldo Vázquez Patiño. Ing. Elina María Ávila Ordoñez. Ing. Jaime Eduardo Veintimilla Reyes. Ing. Jorge Mauricio Espinoza Mejía, PhD. Ing. Pablo Fernando Vanegas Peralta, PhD. Ing. Víctor Hugo Saquicela Galarza, PhD.
		Ingeniería de Software ⁶³ .	Director del grupo: Ing. Luis Otto Parra González, PhD. Investigadores: Ing. Carlos Villie Morocho Zurita, PhD. Ing. Diego Arturo Ponce Vásquez, PhD. Ing. Diego Teodoro Montero Banegas, PhD. Ing. Fernanda Mabel Méndez Rojas. Ing. Irene Priscila Cedillo Orellana, PhD. Ing. Jorge Javier Maldonado Mahuad. Ing. María Fernanda Granda Juca, PhD. Ing. Paola Gabriela Pesantez Cabrera, PhD. Ing. Piedad Magali Mejía Pesantez. Ing. Raúl Marcelo Ortiz Gaona.
5	ESCUELA POLITÉCNICA DE LITORAL (ESPOL) 3 Grupos	Grupo de investigación de Big Data ⁶⁴ .	Coordinador Grupo: Ing. Cristina Abad Robalino, Ph.D. Integrantes: Ing. Carmen Vaca Ruiz, Ph.D. Ing. Boris Ramos Sánchez, Ph.D. Ing. Daniel Ochoa Donoso, Ph.D. Ing. Mónica Villavicencio Cabezas, Ph.D.

⁶¹ Véase: https://investigacion.utpl.edu.ec/es/laboratorio-de-inteligencia-artificial

⁶² Véase: https://www.ucuenca.edu.ec/dcc/grupos-o-centros-de-investigacion-dcc

⁶³ Véase: https://www.ucuenca.edu.ec/dcc/grupos-o-centros-de-investigacion-dcc

⁶⁴ Véase: http://www.espol.edu.ec/es/ingestigacion/grupos-de-investigacion/big-data

			Ing. Andrés Guillermo Abad Robalino, Ph.D
		Grupo de investigación de	Coordinador Grupo
		Inteligencia Artificial ⁶⁵ .	Ana Teresa Tapia Rosero, Ph.D.
			Integrantes:
			Ing. Colón Enrique Peláez Jarrin, Ph.D.
			Ing. Sixto García, Ph.D.
			Ing. Víctor Manuel Asanza Armijos, MS.c.
			Ing. Johnny Torres, MSc.
			Ing. Kleber Loayza, M.Sc.
		Centro de Visión y Robótica ⁶⁶ .	Director
			Ing. Daniel Ochoa Ph. D.
6	ESCUELA POLITÉCNICA NACIONAL	Grupo de Aprendizaje de máquina	Coordinador:
	(EPN)	y visión por computador GI-	Ing. Benalcázar Palacios Marco Enrique Mg. Sc
	3 Grupos	AMVC ⁶⁷ .	Miembros:
			Ing. Pérez Hernández María Gabriela
			Ing. Lucio Naranjo José Francisco
			Ing. Aguiar Pontes Josafá De Jesús
			Ing. Intriago Pazmiño María Monserrate
			Ing. Paz Arias Henry Patricio
			Ing. Álvarez Rueda Robin Gerardo
			Ing. Cela Rosero Andrés Fernando
			Ing. Hernández Álvarez Myriam Beatriz
			Ing. Barona López Lorena Isabel
			Ing. Valdivieso Caraguay Ángel Leonardo
			Colaboradores:
			Ing. Zambrano Rodríguez Patricio Xavier
			Ing. Uquillas Andrade Adriana
		Optimización No Suave y	Coordinador:
		Aplicaciones GI-ONSA ⁶⁸ .	Ing. González Andrade Sergio Alejandro
			Miembros:
			Ing. Juan Carlos Bueno de los Reyes
			Ing. Merino Rosero Pedro Martin
			Ing. Valkonen Tuomo Jukka Markus
			Ing. Portilla Yandun Segundo Jesús

⁶⁵ Véase: http://www.espol.edu.ec/es/ingestigacion/grupos-de-investigacion/inteligencia-artificial

⁶⁶ Véase: http://www.espol.edu.ec/es/investigacion/unidades-de-investigacion/centros

⁶⁷ Véase: https://www.epn.edu.ec/estructuras-de-investigacion-2/#1568411789617-bf064b92-30b5

⁶⁸ Véase: https://www.epn.edu.ec/estructuras-de-investigacion-2/#1568411789617-bf064b92-30b5

		Estrategias de Control Avanzado y Robótica GI-ECAR ⁶⁹ .	Coordinador: Ing. Camacho Quintero Oscar Eduardo Miembros: Ing. Leica Arteaga Paulo Cesar Ing. Rosales Acosta Jorge Andrés Ing. Herrera Garzón Marco Antonio Ing. Morales Escobar Luis Alberto Colaboradores: Ing. Scaglia Gustavo Juan Eduardo Ing. Rivadeneira Pablo Ing. Rossomando Francisco Ing. Leiva Hugo Ing. Aboukheir Hernandez Hanna
7	UNIVERSIDAD ESTATAL AMAZÓNICA (UEA) 1 Grupo	Dirección de Investigación ⁷⁰ .	Director: Ing. Reinaldo Alemán, Ph.D Investigador: Ing. Héctor Reyes
8	UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL (UTE)	Sin información	Sin información
9	UNIVERSIDAD DE YACHAY 2 Grupos	Computer Vision, Image Processing, Computational Geometry ⁷¹ . Aprendizaje Automático, Inteligencia Artificial, Análisis de datos ⁷² .	Sin información Motivo, se encuentran en desarrollo.
10	UNIVERSIDAD NACIONAL DE CHIMBORAZO (UNACH) 1 Grupo	Grupo de Telecomunicaciones, Informática, Industria y Construcción TEIIC ⁷³	Líder: Ing. Ciro Diego Radicelli García, Ph.D Integrantes: Ing. Gonzalo Nicolay Samaniego Erazo, Ph.D Ing. Edison Patricio Villacrés Cevallos, Ph.D

⁶⁹ Véase: https://www.epn.edu.ec/estructuras-de-investigacion-2/#1568411789617-bf064b92-30b5

⁷⁰ Véase: https://www.uea.edu.ec/?page_id=4789

⁷¹ Véase: https://www.yachaytech.edu.ec/investigacion/lineas-investigacion-matematicas/#popup-1942

⁷² Véase: https://www.yachaytech.edu.ec/investigacion/lineas-investigacion-matematicas/#popup-1942

⁷³ Véase: http://investigacion.unach.edu.ec/gruposinvestigacion.php#collapse14

11	UNIVERSIDAD INTERNACIONAL DEL ECUADOR (UIDE)	Investigación ⁷⁴ .	María Isabel Uvidia Fassler, Mg. Sc Andrés Santiago Cisneros Barahona, Mg. Sc Pablo Martí Méndez Naranjo, Mg. Sc Édison Patricio Palacios Trujillo, Mg. Sc Directora general: Dra. Anne Gael Bilhaut
12	1 Grupo UNIVERSIDAD DE LAS AMÉRICAS (UDLA) 2 Grupos	Sistemas Inteligentes e Iterativos ⁷⁵ .	Director: Ing. Yves Rybarczyk, Ph.D Miembros: Ing. Mario Gonzales, Ph.D Ing. Jorge Pérez, Ph.D Ing. Patricia Acosta, Ph.D Ing. Santiago Villareal, Mg. Sc Ing. Karina Jiménez, Mg. SC Alianzas: Alianzas Estratégicas - Rasa Zalakeviciute, PhD. (Universidad de Las Américas) – Senior Researcher in Environmental Science - Danilo Esparza, PhD. (Pontificia Universidad Católica del Ecuador) – Senior Researcher in Physiotherapy - Sandra Sánchez-Gordon, PhD. (Escuela Politécnica Nacional) – Senior Researcher in Computer Science - Janio Jadán, PhD. (Universidad Tecnológica Indoamérica) Senior Researcher in Computer Science - Isabel Nunes, PhD. (Universida de Nova de Lisboa / Portugal) – Senior Researcher in Ergonomics - Gilbert Pradel, PhD. (INSERM U1129, Hôpital R. Poincaré / France) – Senior Researcher in Electronics - Jean Vanderdonckt, PhD. (Université Catholique de Louvain / Belgium) – Senior Researcher in Computer Science - David Dominguez, PhD. (Universidad Autónoma de Madrid Spain) – Senior Researcher in Computer Science

⁷⁴ Véase: https://www.uide.edu.ec/contactos/name/investigacion/

⁷⁵ Vease: http://investigacion.udla.edu.ec/grupos-de-investigacion/si2-lab/

			 - Angel Sánchez Calle, PhD. (Universidad Rey Juan Carlos / Spain) – Senior Researcher in Computer Science - Sergio Luján, PhD. (Universidad de Alicante / Spain) – Senior Researcher in Computer Science
		Bio-Quimio Informática ⁷⁶ .	Director: Eduardo Tejera, Ph.D Yunierkis Pérez, Ph.D Vinicio Armijos, Ph.D Raúl Alejandro Cabrera, Ph.D Alianzas: Universidad Técnica Particular de Loja Universidad do Porto, Portugal KU Leuven, Bélgica Universidad Central "Marta Abreu" de Las Villas, Cuba West Coast University, Miami Universidad del País Vasco, Bilbao
13	UNIVERSIDAD DEL AZUAY 7 Grupos	Investigación Perfiles ⁷⁷ .	María Inés Acosta, Mg. Sc Interés académico: interacción humano-computadora Uso del software Aplicaciones y entorno de gobierno electrónico y comercio electrónico. Omar Santiago Alvarado, Mg. Sc Interés académico: tecnología de asistencia Seguimiento ocular Ingeniería humana Procesamiento de señales biomédicas. Catalina Verónica Astudillo, Mg. Sc

⁷⁶ Véase: http://investigacion.udla.edu.ec/grupos-de-investigacion/bio-quimio-informatica/

⁷⁷ Véase: https://irene.uazuay.edu.ec/scholar

			Interés académico: ingeniería de software, HCI (interacción humano-computadora), ERP (planificación de recursos empresariales) Gabriel Alfonso Delgado, Mg. Sc Interés académico: Inteligencia Artificial Robótica Móvil Visión por Computador Lenin Xavier Erazo, Mg. Sc Interés académico: Desarrollo dirigido por modelos, calidad de software, ontologías, computación ubicua, computación sensible al contexto, ambientes de vida asistida. Iván Andrés Mendoza, Mg. Sc Interés académico: Minería de datos Big data Transporte / Tráfico Aprendizaje de máquina Inteligencia artificial Optimización con métodos numéricos. Ing. Paul Andrés Patiño Interés académico: Ingeniería de Software, Desarrollo de Aplicaciones (Metálico Ágiles, Datawarehouse y Web Semántica).
14	UNIVERSIDAD NACIONAL DE LOJA (UNL) 4 Grupos	GITIC ⁷⁸	Líder: Ing. Luis Chamba Eras, Ph.D Investigadores: Ing. Milton Labanda Jaramillo, Mg. Sc Ing. Édison Coronel Romero, Mg. Sc Ing. José Luis Granda, Mg. Sc
		SmartLab ⁷⁹ .	Director: Ing. Ordóñez Ordóñez Pablo Fernando, Mg Sc Miembros: Ing. Benavides Maldonado José Leonardo, Mg Sc Ing. Torres Carrión Hernán Leonardo, Mg Sc Ing. Ruilova Sánchez María del Cisne, Mg Sc Ing. Cumbicus Pineda Oscar, Mg Sc Ing. Narváez Guillén Cristian, Mg Sc

⁷⁸ Véase: http://www.gitic.org/cms/#miembros

⁷⁹ Véase: https://unl.edu.ec/node/773

		Herramienta para el soporte en la toma de decisiones para la planificación de la restauración de sistemas eléctricos de potencia ⁸⁰ .	Director: Ing. Aleaga Loaiza Leonel Francisco, Mg. Sc Miembros: Ing. Orellana Uguña Carlos Mauricio, Mg. Sc Ing. Coronel Villavicencio Iván Alberto, Mg. Sc Ing. Gómez Peña Julio Roberto, Mg. Sc Ing. Granda González José Roberto, Mg. Sc Ing. Camacho Muñoz Jefferson Fernando, Mg. Sc
		Sistema de inteligencia artificial para la predicción a corto plazo de la producción de energía de la Central Eólica Villonaco ⁸¹ .	Director: Ing. Maldonado Correa Jorge Luis, Mg. Sc Miembros: Ing. Valdiviezo Condolo Marcelo Fernando, Mg. Sc Ing. Samaniego Ojeda Carlos Gustavo, Mg. Sc Ing. Rojas Moncayo Marco, Mg. Sc Ing. Viñan Ludeña Marlon, Mg. Sc
15	UNIVERSIDAD TÉCNICA DE NORTE (UTN)	Sin información	Sin información
16	UNIVERSIDAD DE GUAYAQUIL 1 Grupo	Investigación Gestión del Conocimiento ⁸² .	Vicerrectora: Gulnara Borja, Ph.D
17	UNIVERSIDAD TÉCNICA DE COTOPÁXI (UTC) 1 Grupo	Grupo de Investigación en Robótica ⁸³ .	Investigadora Principal Ing. Mayra Susana Albán Taípe Investigadores: Ramiro Sebastián Vargas Cruz, Mg. Sc Oscar Alejandro Guaypatin Pico, Mg. Sc Ángel Guillermo Hidalgo Oñate, Mg. Sc Edwin Homero Moreano Martínez, Mg. Sc Edwin Marcelo Lema Guamán, Mg. Sc Diego Fernando Ávila Pesantes, Mg. Sc Edison Salazar Cueva, Mg. Sc Mónica Alexandra Salazar Cueva, Mg. Sc Ángel Manuel Viera Zambrano, Mg. Sc
18	UNIVERSIDAD CENTRAL DEL ECUADOR 1 Grupo	Grupo De Modelado De Sistemas Complejos ⁸⁴ .	Director: Ing. Almagro Blanco Pedro, Mg. Sc Investigadores:

⁸⁰ Véase: https://unl.edu.ec/node/723

⁸¹ Véase: https://unl.edu.ec/node/727

⁸² Véase: http://www.vigcyp.ug.edu.ec/informacion/

⁸³ Véase: http://www.utc.edu.ec/INVESTIGACI%C3%93N/Grupos-de-Investigaci%C3%B3n

⁸⁴ Véase: https://www.uce.edu.ec/web/di

19	UNIVERSIDAD LAICA ELOY ALFARO DE MANABÍ	Sin información.	Regalado Bolaños Sonia Elizabeth, Mg. Sc Fustillos Antonela, Mg. Sc Sancho Caparrini Fernando, Investigador Externo Medina Carranco Edgar Iván, Investigador Externo Lara Guatemal Oscar Adrián, Mg. Sc Páez Oscullo Danny Santiago, Mg. Sc Torres Bonilla Pablo Sebastián, Mg. Sc Oña Jativa Martín Patricio, Mg. Sc Sin información.
19	(ULEAM)		Siii iiiioiiiiacioii.
20	ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO 2 Grupos	Grupo de Investigación e Innovación Tecnológica en Ciencias Electrónicas GITCE ⁸⁵ .	Coordinador: Verónica Elizabeth Mora Chunllo, Mg. Sc Wilson Oswaldo Baldeón López, Mg. Sc Investigadores: Jorge Vicente Yuquilema Illapa, Mg. Sc Franklin Marcelo Coronel Maji, Mg. Sc Luis Enrique Sánchez Crespo, Mg. Sc
		Grupo De Investigación En Tecnologías De La Electrónica Y Automática. GITEA86.	Rosario Del Pilar Freire Rosero, Mg. Sc Coordinador: Jorge Luis Hernández Ambato, Mg. Sc Freddy Enrique Chávez Vásquez, Mg. Sc Investigadores: Wilson Armando Zúñiga Vinueza, Mg. Sc Diego Ramiro Ñacato Estrella, Mg. Sc Fabricio Javier Santacruz Sulca, Mg. Sc Fausto Ramiro Cabrera Aguayo, Mg. Sc Pablo Eduardo Lozada Yánez, Mg. Sc José Luis Morales Gordon, Mg. Sc Andrés Fernando Morocho Caiza, Mg. Sc Víctor Isaac Herrera Pérez, Mg. Sc Danny José Zea Orellana, Mg. Sc Mercedes Leticia Lara Freire, Mg. Sc Sandra Gabriela Barrazueta Rojas, Mg. Sc
21	UNIVERSIDAD TÉCNICA DE MACHALA (UTMACH)	Sin información.	Sin información.

⁸⁵ Véase: http://cimogsys.espoch.edu.ec/idi/public/grupo/FIE

⁸⁶ Véase: http://cimogsys.espoch.edu.ec/idi/public/grupo/FIE

22	PONTÍFICIA UNIVERSIDAD CATÓLICA DEL ECUADOR (PUCE) 1 Grupo	Ciencias Exactas y Naturales ⁸⁷ .	Director: Ing. Hugo Navarrete Zambrano, Ph.D Coordinadora de Propiedad Intelectual y Transferencia Tecnológica: Vanessa Saltos Cisneros, Mg. Sc Coordinadora de Administración de Procesos: Ginny Valladares Sandoval, Mg. Sc Coordinadora de Investigación Formativa: Verónica Idrovo González, Ph.D Coordinadora de Proyectos de Investigación: Cristina Balseca Chávez, Mg. Sc
23	UNIVERSIDAD CASA GRANDE	Sin información.	Sin información.
24	UNIVERSIDAD CATÓLICA SANTIAGO DE GUAYAQUIL (UCSG) 1 Grupo	Inteligencia Artificial, Aprendizaje Automático y Robótica. IAR ⁸⁸ .	Coordinador: Ing. Roberto García Sánchez, Mgs. Miembros: Ing. Roberto García Sánchez, Mgs. Ing. Roberto García Vacacela, Mgs. Ing. Pedro Piñeros, PhD. (Universidad de Ciencias Informáticas – Cuba) Lcdo. Wellington Villota Oyarvide, PhD. Ing. Nicolás Villavicencio Bermúdez, Mgs.
25	UNIVERSIDAD TÉCNICA DE AMBATO (UTA) 1 Grupo	Sistemas, Electrónica e Industrial ⁸⁹ .	Director: Carlos Diego Gordon Gallegos, Ph.D
26	UNIVERSIDAD DE MILAGRO (UNEMI) 1 Grupo	Robótica ⁹⁰ .	Director: Ing. Raúl Sánchez Hernández, Mg. Sc

⁸⁷ Véase: https://www.puce.edu.ec/investigacion/comites.php

⁸⁸ Véase: https://www.ucsg.edu.ec/investigacion/itp/

⁸⁹ Véase: https://investigacion.uta.edu.ec/investigacion.html

⁹⁰ Véase: http://www.unemi.edu.ec/index.php/grupos-de-investigacion/robotica/

27	UNIVERSIDAD AGRARIA DEL ECUADOR (UAE) 1 Grupo	Innovación Tecnológica ⁹¹ .	Coordinador: Ing. Mitchell Vásquez MSc.
28	UNIVERSIDAD ANDINA SIMON BOLIVAR	Sin información	Sin información
29	U. SAN FRANCISCO DE QUITO		
30	U. ESPÍRITU SANTO	Sin información	Sin información
31	U. TÉCNICA DE MANABÍ	Sin información	Sin información
32	U. ECOTEC 1 Grupo	Infraestructura Tecnológica ⁹²	Responsable: Ing. Wilson Polo González, Mgtr. Integrantes: Johanna Navarro Espinosa, Mgtr. Manuel Ramírez Pírez, Mgtr. Diana López Álvarez, Mgtr. Fernando Montalvo Quizhpe, Mgtr.

⁹¹ Véase: http://www.uagraria.edu.ec/investigaciones.html

⁹² Véase: https://www.ecotec.edu.ec/lineas-de-investigacion/

Categoría 4:

RQ 4 – ¿En qué bases de datos de contenido científico, los investigadores realizan publicaciones sobre Inteligencia Artificial en Instituciones de Educación Superior del Ecuador?

Con respecto a las bases de datos académicas de contenido científico, en la Tabla XXXIII se identifica los hallazgos obtenidos de los estudios primarios, se plasma el tipo de estudio, el año de publicación, el nombre del Congreso/Revista, el Índice H, el índice SJR, el Cuartil (si lo hubiese), y el número DOI (si lo hubiese).

Tal como se observan, se analizó la información de 191 estudios escogidos del proceso de selección de la presente SLR, identificando 54 revistas que están categorizadas en el primer cuartil (Q1), también existen 13 revistas categorizadas en el segundo cuartil (Q2), 3 revistas están categorizadas en el tercer cuartil (Q3), finalmente existe una revista categorizada en el cuarto cuartil (Q4). Cabe agregar que existen algunas revistas que no son categorizadas en ningún cuartil (véase Tabla XXXIII y Figura 27).

TABLA XXXIII.

BASES DE DATOS CIENTÍFICAS DONDE PUBLICAN INVESTIGADORES DE LAS IES DE ECUADOR

#	Base de	Tipo	Año de publicación	Título artículo	Congreso / Revista	Índice	SJR	Cuartil	DOI
	datos					Н			
1	IEEE	Artículo	Palermo, Italia,	Experts Agents in	2015 conferencia internacional	12	0.22	-	Sin información
			noviembre 2015	PEM Fuel Cell Control	sobre investigación y				
					aplicaciones de energías				
					renovables (ICRERA)				
	IEEE	Antinula	Ocata Once de Tenerife	Fratara ta Danillat	EDUCON COAC Conferencia	47	0.04		Oin informatión
2	IEEE	Artículo	Santa Cruz de Tenerife,	Factors to Predict	EDUCON 2018 - Conferencia	17	0.21	-	Sin información
			Islas Canarias, España,	Dropout at the	Global de Educación en				
			abril 2018	Universities: A case of	Ingeniería del IEEE				
				study in Ecuador					
3	Google	Artículo	Enero 2019	Predicting University	Indian Journal of Science and	33	0.14	Q4	10.17485/ijst/2019/
	Scholar			Dropout through Data	Technology, Vol 12(4)				v12i4/139729
				Mining: A Systematic					
				Literature					
4	Google	Artículo	Julio 2015	Modelo Neuronal de	XI Jornadas Iberoamericanas de	-	-	-	10.18294/relais.
	Scholar			Estimación para el	Ingeniería de Software e				2015.148-154
				Esfuerzo de	Ingeniería del Conocimiento y				
				Desarrollo en	Congreso Ecuatoriano en				
				Proyectos de	Ingeniería de Software (JIISIC-				
				Software (MONEPS)	CEIS'2015)				
5	Google	Artículo	Marzo 2019	Where to park?	Enfoque UTE es una revista	-	-	-	Sin información
	Scholar			Architecture and	científica de ingeniería V.10-N.1				
				implementation of an					

				empty parking lot, automatic recognition system					
6	Google Scholar	Libro	Abril 2014	Inteligencia Artificial principios y aplicaciones	Edición: 1er.Editorial: Escuela Politécnica Nacional	-	-	-	Sin información
7	Google Scholar	Tesis	Agosto 2018	Desarrollo de una plataforma tecnológica para la gestión de seguridad en una institución educativa de grado inicial mediante el uso de sistemas móviles, reconocimiento facial y sistemas de alertas	Repositorio Institucional Universidad de Guayaquil	-	-	-	Sin información
8	Springer Link International Publishing Suzie	Artículo	Palma de Mallorca, España, June 10-12, 2015	Non-Spontaneous Saccadic Movements Identification in Clinical Electrooculography Using Machine Learning	13ª Conferencia Internacional de Trabajo sobre Redes Neuronales Artificiales, IWANN 2015	-	-	-	10.1007/978-3-319- 19222-2 5
9	Science Direct	Artículo	9 agosto 2017	Data mining process for identification of non-spontaneous saccadic movements	Elsevier, Neurocomputing Volume 250, Pages 28-36	110	1	Q1	10.1016/j.neucom. 2016.10.077

		1		in alteriant			1 1		
				in clinical					
				electrooculography					
10	Springer	Artículo	30 de mayo 2018	Artificial Neural	Congreso Mundial de Física	25	0.15	-	10.1007/978-
	Link Nature			Network Applied like	Médica e Ingeniería Biomédica				981-10-9038-7_77
	Singapore			Qualifier of Symptoms	2018, Actas del IFMBE 68/2.				
	Pte. Ltd.			in Patients					
				with Parkinson's					
				Disease by Evaluating					
				the Movement of					
				Upper-Limbs					
				Activities					
11	Google	Artículo	17 de octubre de 2014	Una aproximación	MASKANA, I+D+ingeniería 2014	-	-	-	Sin información
	Scholar			para la descripción					
				semántica de					
				requisitos para					
				categorizaciones					
				docentes de					
				investigadores					
				ecuatorianos					
12	IEEE	Artículo	Octubre 17-19, 2018,	A machine vision	ICA-ACCA 2018	6	0.16	-	Sin información
			Greater Concepción,	system applied to the					
			Chile	teaching of					
				mathematics for blind					
				or visually impaired					
				children					
13	Google	Artículo	24 enero 2013	Complete Low-Cost	Open Access Sensor 2013	-	-	-	10.3390/
	Scholar			Implementation of a					s130201385

				Teleoperated Control					
				System for a					
				Humanoid Robot					
14	Google	Artículo	Buenos Aires, 13 al 15	Usabilidad Web:	Sexta Conferencia de Directores	-	-	-	Sin información
	Scholar		de septiembre de 2016	situación actual de los	de Tecnología de Información,				
				portales Web de las	TICAL 2016 Gestión de las TICs				
				Universidades de	para la Investigación y la				
				Ecuador	Colaboración				
15	Google	Artículo	2016, Universidad	"Tecnología y	Actas del VII Congreso	-	-	-	Sin información
	Scholar		Politécnica Salesiana	accesibilidad"	Internacional sobre Aplicación				
			Av. Turuhuayco 3-69 y	Volumen 2	de Tecnologías de la				
			Calle Vieja Cuenca-	Aplicación de	Información y Comunicaciones				
			Ecuador	Tecnologías de la	Avanzadas (ATICA2016) y de la				
				Información y	IV Conferencia Internacional				
				Comunicaciones	sobre Aplicación de Tecnologías				
				Avanzadas	de la Información y				
					Comunicaciones para mejorar la				
					Accesibilidad (ATICAc- ces				
					2016)				
16	IEEE	Artículo	4 - 6 de abril de 2010,	Implementation of	IEEE Global Engineering	15	0	-	Sin información
			Amman, Jordania	Social and Semantic	Education Conference				
				Tools into Open	(EDUCON) – "Learning				
				Educational	Environments and Ecosystems				
				Resources Production	in Engineering Education"				
17	IEEE	Artículo	Cusco, Perú 15-18	Detection of skin	IEEE XXIV International	2	0	-	10.1109/INTERCON.
			agosto 2017	cancer "Melanoma"	Conference on Electronics,				2017.8079674

				through Computer	Electrical Engineering and				
				Vision	Computing (INTERCON)				
18	Google	Artículo	Barcelona, España,	OER, estándares y	RUSC. Universities and	-	-	-	Sin información
	Scholar		enero de 2010	tendencias	Knowledge Society Journal				
19	Springer	Artículo	02 octubre 2018	Neuromarketing and	Conferencia Internacional sobre	-	-	-	10.1007/978-3-030-
	Link			Facial Recognition: A	Tecnologías e Innovación				00940-3_16
				Systematic Literature	CITI 2018: Tecnologías e				
				Review	Innovación				
20	Google	Libro de	Quito - Ecuador	Automatic	International Conference on	-	-	-	Sin información
	Scholar	actas de	24 - 26 de noviembre de	identification of a	Information Systems and				
		conferencia	2016	playing card through	Computer Science INCISCOS				
		UTE		kNN using a	2016				
				Raspberry Pi 3					
21	Google	Libro de	Quito - Ecuador	Implementación de	International Conference on	-	-	-	Sin información
	Scholar	actas de	24 - 26 de noviembre de	una base de datos	Information Systems and				
		conferencia	2016	relacional difusa.	Computer Science INCISCOS				
		UTE		Caso práctico: tutoría	2016				
				académica					
22	Google	Libro de	Quito - Ecuador	A multi-class	International Conference on	-	-	-	Sin información
	Scholar	actas de	24 - 26 de noviembre de	extension for case-	Information Systems and				
		conferencia	2016	based reasoning	Computer Science INCISCOS				
		UTE		applied to medical	2016				
				problems: A first					
				approach					
23	Google	Libro de	Quito, Ecuador	Estudio comparativo	International Conference on	-	-	-	Sin información
	Scholar	actas de	24 - 26 de noviembre de	de métodos	Information Systems and				
		conferencia	2016	espectrales para					

		UTE		reducción de la	Computer Science INCISCOS				
				dimensionalidad: LDA	2016				
				versus PCA					
24	Springer	Artículo	30 de diciembre de	Inductive Machine	Conferencia internacional sobre	-	-	-	10.1007/978-3-030-
	Link		2018	Learning with Image	tendencias tecnológicas				05532-5_45
				Processing for	CITT 2018: Tendencias				
				Objects Detection of a	tecnológicas				
				Robotic Arm with					
				Raspberry PI					
25	Google	Artículo	2015	Semantic Architecture	Ciencias de la Ingeniería	11	0.14	Q3	10.12988/ces.
	Scholar			for the Analysis of the	Contemporánea, Vol. 8, 2015,				2015.510282
				Academic and	no. 33, 1551 - 1563 HIKARI				
				Occupational Profiles					
				Based on					
				Competencies					
26	Google	Artículo	12 de mayo de 2019	A Systematic Review	Hindawi, Complexity 2019	48	0.54	Q1	10.1155/2019/
	Scholar			of Deep Learning					1306039
				Approaches to					
				Educational Data					
				Mining					
27	Google	Artículo	Ambato, noviembre 17	Caso de estudio.	Repositorio institucional	-	-	-	Sin información
	Scholar		del 2017	Perspectivas del uso	Pontificia Universidad Católica				
				de herramientas de	del Ecuador, sede Ambato, II				
				aprendizaje	Congreso: CIENCIA,				
				automático y cómputo	SOCIEDAD E INVESTIGACIÓN				
				de alto rendimiento en	UNIVERSITARIA				
				investigación					

28	Google Scholar	Artículo	11 enero 2019	científica por parte de estudiantes de pregrado en una universidad del Ecuador Maintenance Models Applied to Wind Turbines. A	Energies 2019, 12(2), 225	64	0.61	Q1	10.3390/en 12020225
29	IEEE	Artículo	Las Palmas, España,	Comprehensive Overview Minería de Datos	2016 11th Iberian Conference on	6	0.13		10.1109/CISTI.2016.
23	ILEE	Aiticulo	15-18 June 2016	Educacionales: una visión holística	Information Systems and Technologies (CISTI)	O	0.13	-	7521411
30	IEEE	Artículo	20 de marzo de 2019	A Hybrid Infrastructure of Enterprise Architecture and Business Intelligence & Analytics for Knowledge Management in Education	IEEE Access (Volume: 7)	56	0.61	Q1	10.1109/ACCESS. 2019.2906343
31	Springer Link	Artículo	27 de septiembre de 2017	Ontology Model for the Knowledge Management in the Agricultural Teaching at the UAE	Conferencia Internacional de Tecnologías e Innovación CITI 2017: Tecnologías e Innovación	-	-	-	10.1007/978-3-319- 67283-0_19

32	Springer	Libro de	2016	Actas de la 3ª	ICACNI 2015, Volumen 1,	-	-	-	10.1007/978-81-
	Link	actas de		Conferencia	Innovación Inteligente, Sistemas				322-2538-6
		conferencia		Internacional	y Tecnologías				
				sobre Informática					
				Avanzada, Redes e					
				Informática					
33	Google	Tesis	2016	Aplicación de Data	Repositorio Institucional	-	-	-	Sin información
	Scholar			Mining en la gestión	Universidad Técnica de Ambato				
				del plan anual de					
				contratación en las					
				universidades					
				públicas del ecuador.					
				Caso de estudio					
				universidad técnica de					
				Ambato					
34	IEEE	Artículo	2018	A text mining	International Conference on	-	-	-	10.1109/INCISCOS
				methodology to	Information Systems and				.2018.00045
				discovery syllabi	Computer Science (INCISCOS)				
				similarities among					
				Higher Education					
				Institutions					
35	IEEE	Artículo	Bogotá, Colombia, 3-5	An expert system to	2018 congreso Internacional de	-	-	-	10.1109/CONIITI.
			de octubre de 2018	provide sexual and	Innovación y Tendencias en				2018.8587059
				reproductive health	Ingeniería (CONIITI)				

				educational contents					
				for young deaf women					
36	Spring Link	Artículo	06 abril 2018	Use of Drones for	Conferencia internacional de	-	-	-	10.1007/978-3-319-
				Surveillance and	investigación aplicada a defensa				78605-6_10
				Reconnaissance of	y seguridad MICRADS 2018				
				Military Areas					
37	Google	Artículo	Esmeraldas Ecuador,	Revisión sistemática	Conferencia: II Jornada de	-	-	-	Sin información
	Scholar		13-14 de diciembre de	de literatura:	Investigación - Ciencia,				
			2018	Análisis de riesgos	Tecnología y Sociedad En:				
				utilizando Redes	Pontificia Universidad Católica				
				Bayesianas	del Ecuador Sede Esmeraldas				
38	Springer	Artículo	Berlín Heidelberg 2012	Evaluation of a Few	Geodesia para el Planeta Tierra,	-	-	-	10.1007/978-3-642-
	Link			Interpolation	Asociación Internacional de				20338-1_114
				Techniques of Gravity	Simposios de Geodesia 136				
				Values in the Border					
				Region of Brazil and					
				Argentina					
39	IEEE	Artículo	Cochabamba, Bolivia,	Estimating the Rician	2014 IEEE ANDESCON	6	0	-	10.1109/ANDESCON
			15-17 octubre 2014	Noise Level in Brain					2014.7098539
				MR Image					
40	Google	Tesis		Aplicación de	Repositorio Institucional	-	-	-	Sin información
	Scholar			Algoritmos Genéticos	Universidad Nacional de Loja				
				en la Ingeniería del					
				Software: Revisión					
				Sistemática del					
				Estado del Arte					
	1	1		I.	I.				

41	IEEE	Artículo	Salinas, Ecuador, 16-	Computer Vision for	2017 IEEE Second Ecuador	4	0.14	-	10.1109/ETCM.2017.
			20 oct. 2017	detection of body	Technical Chapters Meeting				8247528
				expressions of	(ETCM)				
				children with cerebral					
				palsy					
42	Google	Artículo	Mayo de 2017	An Exploration of	Revista Internacional de	36	0.55	Q1	10.1142/S0219622
	Scholar			Crime Prediction	Tecnología de la Información y				017500250
				Using Data Mining on	Toma de Decisiones				
				Open Data					
43	Google	Tesis	13 junio 2019	Detección de técnicas	Repositorio Digital Universidad	-	-	-	Sin información
	Scholar			de aprendizaje	Nacional de Loja				
				profundo aplicadas en					
				las diferentes áreas					
				del conocimiento,					
				empleando el método					
				de revisión					
				sistemática de					
				literatura					
44	IEEE	Artículo	23-25 noviembre 2017	Representation of	2017 International Conference	-	-	-	10.1109/INCISCOS.
			Quito, Ecuador	Latin American	on Information Systems and				2017.28
				University Syllabuses	Computer Science (INCISCOS)				
				in a Semantic Network					
45	IEEE	Artículo	4, agosto. 2019	Smart Sensor: SoC	IEEE Internet of Things Journal,	47	1.4	Q1	10.1109/JIOT.2019.
				architecture for the	Volume: 6				2908264
				Industrial					
				Internet of Things					

46	IEEE	Artículo	Quito, Ecuador 14-16	Analysis, Design and	Asia-Pacific Conference on	6	-	-	10.1109/APCASE.
			Julio 2015	Implementation of an	Computer Aided System				2015.42
				Autopilot for	Engineering				
				Unmanned Aircraft -					
				UAV's Based on					
				Fuzzy Logic					
47	Springer	Libro de	Palma de Mallorca,	Cluster Analysis of	13ª Conferencia Internacional de	-	-	-	10.1007/978-3-
	Link	actas de	España, 10-12 de junio	Finger-to-nose Test	Trabajo				319-19222-2 44
		conferencia	de 2015	for Spinocerebellar	sobre redes neuronales				
				Ataxia Assessment	artificiales, IWANN 2015, Actas,				
					Parte II				
48	Google	Artículo	20 de mayo de 2019	Application of a Smart	Sustainability 2019	53	0.55	Q2	10.3390/
	Scholar			City Model to a					su11102857
				Traditional University					
				Campus with a Big					
				Data Architecture: A					
				Sustainable Smart					
				Campus					
49	ACM	Artículo	25-27 de febrero de	Smoking Activity	CDSP 2018, Actas de la 2ª	19	0	-	10.1145/3193025.
			2018, Tokio, Japón	Recognition Using a	Conferencia Internacional sobre				3193028
				Single Wrist IMU and	Procesamiento Digital de				
				Deep Learning Light	Señales.				
50	ACM	Artículo	Kahului, HI, USA,	Prediction Model	ICCDA 2019 Actas de la 3ª	7	0	-	10.1145/3314545.
			marzo 14 - 17, 2019	Based on Neural	Conferencia Internacional de				3314551
				Networks for	Computación y Análisis de				
				Microwave Drying	Datos de 2019				
	1		<u> </u>	l					

				Process of Amaranth Seeds					
51	ACM	Artículo	Cádiz, España octubre 18 - 20, 2017	Improvement of massive open online courses by text mining of students' emails: a case study	Actas de la 5ª Conferencia Internacional sobre Ecosistemas Tecnológicos para Mejorar la Multiculturalidad (TEEM 2017)	-	-	-	10.1145/3144826. 3145393
52	ACM	Artículo	Beijing, China Julio 27 - 29, 2018	Virtual Assistant for loT process management, using a middleware	ICACS '18 Proceedings of the 2018 2nd International Conference on Algorithms, Computing and Systems	-	-	-	10.1145/3242840. 3242875
53	ACM	Artículo	Estambul, Turquía - 12 - 12 de noviembre de 2014	Presentation Skills Estimation Based on Video and Kinect Data Analysis	MLA '14 Actas del taller de la AAO 2014 sobre el Taller de Análisis de Aprendizaje Multimodal y el Gran Desafío	5	0	-	10.1145/2666633. 2666641
54	ACM	Artículo	Australia - 16 - 19 de enero de 2019	Are you a Good Driver? A Data-driven Approach to Estimate Driving Style	ICCMS 2019 Actas de la 11 ^a Conferencia Internacional sobre Modelado y Simulación por Computadora	9	0	-	10.1145/3307363. 3307375
55	ACM	Artículo	Tokio, Japón - 21 - 23 de diciembre de 2018	Detection of utility poles from noisy Point Cloud Data in Urban environments	IACCC `18 Proceedings of the 2018 Artificial Intelligence and Cloud Computing Conference	-	-	-	10.1145/3299819. 3299829
56	ACM	Artículo	Tempe, AZ, EE. UU 04 - 08 de marzo de 2019	Semi-Automatic Generation of Intelligent Curricula to	LAK19 Actas de la 9ª Conferencia Internacional sobre Análisis del Aprendizaje y Conocimiento	-	-	-	10.1145/3303772. 3303834

				Facilitate Learning					
				Analytics					
57	ACM	Artículo	Fortaleza, Brasil - 12 -	Sentiment Analysis on	EATIS '18 Proceedings of the	3	0.12	-	10.1145/3293614.
			15 de noviembre de	Tweets related to	Euro American Conference on				3293647
			2018	infectious diseases in	Telematics and Information				
				South America	Systems				
58	ACM	Artículo	Vilano va i la Gueltre,	Including multi-stroke	Interaction '15 Proceedings of	9	0.17	-	10.1145/2829875.
			España - 07 - 09 de	gesture-based	the XVI International Conference				2829931
			septiembre de 2015	interaction in user	on Human Computer Interaction				
				interfaces using a					
				model-driven method					
59	ACM	Artículo	Madrid, España - 24 -	Towards a (semi)-	ECSA '18 Proceedings of the	12	0	-	10.1145/3241403.
			28 de septiembre de	automatic reference	12th European Conference on				3241414
			2018	process to support the	Software Architecture				
				river engineering and					
				reconstruction of					
				software architectures					
60	ACM	Artículo	Tokio, Japón - 16 - 19	Data Analytics and BI	ICISS 2019 Actas de la 2ª	4	0.16	-	10.1145/3322645.
			de marzo de 2019	Framework based on	Conferencia Internacional sobre				3322667
				Collective Intelligence	Ciencias y Sistemas de la				
				and the Industry 4.0	Información de 2019				
31	ACM	Artículo	Tokio, Japón - 16 - 19	Framework to	ICISS 2019 Actas de la 2ª	4	0.16	-	10.1145/3322645.
			de marzo de 2019	Develop a Business	Conferencia Internacional sobre				3322668
				Synergy through	Ciencias y Sistemas de la				
				Enterprise	Información de 2019				
				Architecture					

62	ACM	Artículo	Estambul, Turquía - 12	Estimation of	MLA '14 Actas del taller de la	5	0	-	10.1145/2666633.
			- 12 de noviembre de	Presentations Skills	AAO 2014 sobre el Taller de				2666639
			2014	Based on Slides and	Análisis de Aprendizaje				
				Audio Features	Multimodal y el Gran Desafío				
63	ACM	Artículo	Mountain View,	Real-Time False-	MM '17 Actas de la 25ª	-	-	-	10.1145/
			California, EE. UU - 23	Contours Removal for	conferencia internacional de				3123266.3123400
			al 27 de octubre de	Inverse Tone Mapped	ACM sobre Multimedia				
			2017	HDR Content					
64	ACM	Artículo	Valencia, España - 18 -	Gasman: A Cloud-	EICS '19 Proceedings of the	4	0.14	-	10.1145/3319499.
			21 de junio de 2019	based Tool for Stroke-	ACM SIGCHI Symposium on				3328227
				Gesture Datasets	Engineering Interactive				
					Computing Systems				
65	ACM	Artículo	Portland, Oregón - 23 al	Combining statistical	SSST-5 Actas del Quinto Taller	-	-	-	Sin información
			23 de junio de 2011	and semantic	sobre Sintaxis, Semántica y				
				approaches to the	Estructura en la Traducción				
				translation of	Estadística				
				ontologies and					
				taxonomies					
66	ACM	Artículo	Montreal, Canadá - 11 -	Improving OER	W4A '16 Proceedings of the 13th	4		-	10.1145/2899475.
			13 de abril de 2016	Websites for Learners	Web for All Conference				2899517
				with Disabilities					
67	ACM	Artículo	Uxbridge, Reino Unido -	A Low-cost IoT	DS-RT '16 Proceedings of the	6	0.13	-	10.1109/DS-
			21 - 23 de septiembre	Application for the	20th International Symposium				RT.2016.24
			de 2016	Urban Traffic of	on Distributed Simulation and				
				Vehicles, based on	Real-Time Applications				
	1								1

				Wireless Sensors using GSM Technology					
68	ACM	Artículo	Estambul, Turquía - 12 - 16 de noviembre de 2014	MLA'14 - Third Multimodal Learning Analytics Workshop and Grand Challenges	ICMI '14 Proceedings of the 16th International Conference on Multimodal Interaction	17	0	-	10.1145/2663204. 2668318
69	ACM	Artículo	Puerto de la Cruz, Tenerife, España - 10 - 12 de septiembre de 2014	Use of a Semantic Learning Repository to Facilitate the Creation of Modern e- Learning Systems	Interaction '14 Proceedings of the XV International Conference on Human Computer Interaction	14	0	-	10.1145/2662253. 2662345
70	ACM	Artículo	Barcelona, España - 20 - 22 de diciembre de 2017	Teaching-Learning of Basic Language of Signs through Didactic Games	ICETC 2017 Actas de la 9ª Conferencia Internacional sobre Tecnología de la Educación y Computación de 2017	2	0	-	10.1145/3175536. 3175584
71	ACM	Artículo	Cádiz, España - 18 - 20 de octubre de 2017	Comparing Hierarchical Trees in Statistical Implicative Analysis & Hierarchical Cluster in Learning Analytics	Actas de la 5ª Conferencia Internacional sobre Ecosistemas Tecnológicos para Mejorar la Multiculturalidad (TEEM 2017)	-	-	-	10.1145/3144826. 3145399
72	ACM	Artículo	Oporto, Portugal - 15 - 17 de julio de 2018	Data Mining and Opinion Mining: A	ICoMS 2018 Actas de la Conferencia Internacional de	-	-	-	10.1145/3274250. 3274263

- 10.1145/3094243. 3094255
3094255
- 10.1145/3332305.
3332321
- 10.1145/3322134.
3322154
- 10.1145/3220267.
3220285

77	ACM	Artículo	Mumbai, India - 07 - 11	Characterization of a	ICPE '19 Proceedings of the	6	0.16	-	10.1145/3297663.
			de abril de 2019	Big Data Storage	2019 ACM/SPEC International				3310302
				Workload in the Cloud	Conference on Performance				
					Engineering				
78	ACM	Artículo	Barcelona, España - 20	Ontology of personal	ICETC 2017 Actas de la 9ª	2	0	-	10.1145/3175536.
			- 22 de diciembre de	learning environments	Conferencia Internacional sobre				3175555
			2017	in the development of	Tecnología de la Educación y				
				thesis project	Computación de 2017				
79	ACM	Artículo	22, diciembre 2015	A Literature Review	Expert systems with	-	-	-	10.1016/.eswa.2015.
				for Recommender	applications: an international				06.052
				Systems Techniques	journal archive				
				Used in Microblogs	Volume 42 Number 42.				
80	ACM	Artículo	Vilanova i la Gueltre,	Facial Emotion	Interaction '15 Proceedings of	13	0.16	-	10.1145/2829875.
			España - 07 - 09 de	Analysis in Down's	the XVI International Conference				2829882
			septiembre de 2015	syndrome children in	on Human Computer Interaction				
				classroom					
81	ACM	Artículo	Austin, Texas, EE. UU.	What Ignites a Reply?	BDCAT '17 Proceedings of the	4	0.15	-	10.1145/3148055.
			- 05 - 08 de diciembre	Characterizing	Fourth IEEE/ACM International				3148071
			de 2017	Conversations in	Conference on Big Data				
				Microblogs	Computing, Applications and				
					Technologies				
82	ACM	Artículo	Marina del Ray,	Visualizing Authorship	IUI '19 Proceedings of the 24th	3	0.13	-	10.1145/3301275.
			California - 17 al 20 de	and Contribution of	International Conference on				3302328
			marzo de 2019	Collaborative Writing	Intelligent User Interfaces				
				in e-Learning					
				Environments					

83	ACM	Artículo	Sídney, Australia - 31	SOPPIA: Social	ASONAM '17 Proceedings of the	8	0.2	-	10.1145/3110025.
			de julio - 03 de agosto	Opportunistic	2017 IEEE/ACM International				3110081
			de 2017	Intelligent Ambient of	Conference on Advances in				
				Learning	Social Networks Analysis and				
					Mining 2017				
84	ACM	Artículo	Salzburgo, Austria - 04	Noise-Sensing Using	MoMM 2017 Actas de la 15ª	5	0	-	10.1145/3151848.
			- 06 de diciembre de	Smartphones:	Conferencia Internacional sobre				3151868
			2017	Determining the Right	Avances en Computación Móvil				
				Time to Sample	y Multimedia				
85	IEEE	Artículo	Marzo de 2018	Fuzzy Logic-Based	IEEE Transactions on Smart	121	3.36	Q1	10.1109/TSG.2016.
				Energy Management	Grid				2555245
				System Design for					
				Residential Grid-					
				Connected Microgrids					
86	IEEE	Artículo	08 julio 2019	SMURF: Systematic	IEEE Access (Volume: 7)	56	0.61	Q1	10.1109/ACCESS.
				Methodology for					2019.2927429
				Unveiling Relevant					
				Factors in					
				retrospective data on					
				chronic disease					
				treatments					
87	IEEE	Artículo	20 de mayo de 2019	Generative	IEEE Access (Volume: 7)	56	0.61	Q1	10.1109/ACCESS.
				Adversarial Networks					2019.2917604
				Selection Approach					
				for Extremely					
				Imbalanced Fault					
				Diagnosis of					

				Reciprocating					
				Machinery					
88	IEEE	Artículo	23 de mayo de 2019	A Survey on	IEEE Access (Volume: 7)	56	0.61	Q1	10.1109/ACCESS.
				Fractional Order					2019.2918578
				Control Techniques					
				for Unmanned Aerial					
				and Ground Vehicles					
89	IEEE	Artículo	07 agosto 2014	Real-time transient	IET Generation, Transmission &	94	1.1	Q1	10.1049/iet-
				stability assessment	Distribution Volume: 8				gtd.2013.0616
				based on Centre of					
				inertia estimation from					
				phasor measurement					
				unit records					
90	IEEE	Artículo	23 de julio de 2018	From E-911 to NG-	IEEE Access	56	0.61	Q1	10.1109/ACCESS.
				911: Overview and					2018.2858751
				Challenges in					
				Ecuador					
91	IEEE	Artículo	Septiembre de 2016	Automatic	IEEE Transactions on	216	2.76	Q1	10.1109/TGRS.
				Recognition of Long	Geoscience and Remote				2016.2559440
				Period Events from	Sensing, Volume: 54.				
				Volcano Tectonic					
				Earthquakes at					
				Cotopaxi Volcano					
92	IEEE	Artículo	Julio de 2019	A systematic review of	IEEE Transactions on Fuzzy	170	2.79	Q1	10.1109/TFUZZ.
				fuzzy formalisms for	Systems, Volume: 27.				2018.2878200
				bearing fault					
				diagnosis					

93	IEEE	Artículo	Julio de 2015	Symmetrical Compression Distance for	IEEE Journal of Biomedical and Health Informatics Volume: 19	104	1.12	Q1	10.1109/JBHI.2015. 2412175
				Arrhythmia Discrimination in Cloud-based Big-Data					
94	IEEE	Artículo	4, agosto de 2016	Services Optimal Energy Management for Stable Operation of an Islanded Microgrid	IEEE Transactions on Industrial Informatics, Volume: 12.	100	1.68	Q1	10.1109/TII.2016. 2569525
95	IEEE	Artículo	14 de marzo de 2019	Prediction of Digital Terrestrial Television Coverage Using Machine Learning Regression	Transacciones del IEEE sobre radiodifusión ("Early Access")	71	0.84	Q1	10.1109/TBC.2019. 2901409
96	IEEE	Artículo	Marzo de 2015	Using Smart Meter Data to Improve the Accuracy of Intraday Load Forecasting Considering Customer Behavior Similarities	IEEE Transactions on Smart Grid, Volume: 6	121	3.36	Q1	10.1109/TSG.2014. 2364233
97	IEEE	Artículo	22 de mayo de 2019	Selection of Software Product Line Implementation Components Using	IEEE Access, Volume: 7	56	0.61	Q1	10.1109/ACCESS. 2019.2918469

				Recommender					
				Systems: An					
				Application to					
				WordPress					
98	IEEE	Artículo	Julio de 2014	Mapping Two	IEEE Journal of Selected Topics	64	1.51	Q1	10.1109/JSTARS.
				Competing Grassland	in Applied Earth Observations				2014.2321896
				Species from a Low-	and Remote Sensing, Volume: 7				
				Altitude Helium					
				Balloon					
99	IEEE	Artículo		Support Vector	IEEE Journal of Biomedical and	104	1.12	Q1	10.1109/JBHI.
			Septiembre de 2016	Feature Selection for	Health Informatics, Volume: 20				2014.2361688
				Early Detection of					
				Anastomosis Leakage					
				from Bag-of-Words in					
				Electronic Health					
				Records					
100	IEEE	Artículo	30 de abril de 2019	Spur Gear Fault	IEEE Access (Volume: 7)	56	0.61	Q1	10.1109/ACCESS.
				Diagnosis Using a					2019.2914181
				Multilayer Gated					
				Recurrent Unit					
				Approach					
				With Vibration Signal					
101	IEEE	Artículo	22 de noviembre de	Gearbox Fault	IEEE Access	56	0.61	Q1	10.1109/ACCESS.
			2018	Diagnosis Based on a					2018.2882801
				Novel Hybrid Feature					
				Reduction Method					

102	Science	Artículo	Octubre de 2013	Generating request	Performance Evaluation Volume	59	0.52	Q1	10.1016/j.peva.2013.
	Direct			streams on Big Data	70.				08.006
				using clustered					
				renewal processes					
103	Science	Artículo	Julio de 2017	A general framework	Applied Computing and	12	0.44	Q2	10.1016/j.aci.2016.
	Direct			for intelligent	Informatics				08.002
				recommender	Volume 13.				
				systems					
104	Science	Artículo	Diciembre de 2012	Adaptive unified	Control Engineering Practice	104	1	Q1	10.1016/j.conengprac.
	Direct			motion control of	Volume 20.				2012.07.008
				mobile manipulators					
105	Science	Artículo	Abril 2015.	Passivity-based visual	Robotics and Autonomous	100	0.83	Q1	10.1016/j.robot.
	Direct			feedback control with	Systems				2014.12.009
				dynamic	Volume 66.				
				compensation of					
				mobile manipulators:					
				Stability and L2-glAn					
				performance analysis					
106	Science	Artículo	Octubre de 2019	Cognitive security: A	Journal of Information Security	31	0.39	Q2	10.1016/j.jisa.2019.
	Direct			comprehensive study	and Applications				06.008
				of cognitive science in	Volume 48,				
				cybersecurity					
107	Science	Artículo	25 de septiembre de	Pruning strategies for	Neurocomputing	110	1	Q1	10.1016/j.neucom.
	Direct		2018.	nearest neighbor	Volume 308.				2018.04.017

				competence preservation learners					
108	Science	Artículo	2018	Improving Cluster-	Procedia Manufacturing	18	0.31	Q2	10.1016/j.promfg.
	Direct			based Methods for	Volume 24,				2018.06.044
				Usage Anticipation by					
				the Application of					
				Data Transformations					
109	Science	Artículo	Junio 2018	The potential of non-	Meat Science	142	1.4	Q1	10.1016/j.meatsci.
	Direct			invasive pre- and	Volume 140.				2018.02.019
				post-mortem carcass					
				measurements to					
				predict the					
				contribution of					
				carcass components					
				to slaughter yield of					
				guinea pigs					
110	Science	Artículo	Enero 2017	Neural based	Transportation Research Part D:	81	1.45	Q1	10.1016/j.trd.2016.
	Direct			contingent valuation	Transport and Environment				10.020
				of road traffic noise	Volume 50.				
111	Science	Artículo	Septiembre de 2017	Automatic Feature	Applied Soft Computing	110	1.22	Q1	10.1016/j.asoc.
	Direct			Extraction of Time-	Volume 58				2017.04.016
				Series applied to Fault					
				Severity Assessment					
				of Helical Gearbox in					
				Stationary and Non-					
				Stationary Speed					
				Operation					

112	Science	Artículo	Junio 2017	Medication of the	Computers & Geosciences	104	0.65	Q2	10.1016/j.cageo.
	Direct			random forest	Volume 103				2017.02.012
				algorithm to avoid					
				statistical dependence					
				problems when					
				classifying remote					
				sensing imagery					
113	Science	Artículo	Marzo 2016	Fault diagnosis in spur	Mechanical Systems and Signal	134	1.82	Q1	10.1016/j.ymssp.
	Direct			gears based on	Processing				2015.08.030
				genetic algorithm and	Volumes 70–71				
				random forest					
114	Science	Artículo	15 de abril de 2018	A fuzzy transition-	Fuzzy Sets and Systems	150	1.35	Q1	10.1016/j.fss.2016.
	Direct			based approach for	Volume 337				12.017
				fault severity					
				prediction in helical					
				gearboxes					
115	Science	Artículo	15 enero 2018	A review on data-	Mechanical Systems and Signal	134	1.82	Q1	10.1016/j.ymssp.
	Direct			driven fault severity	Processing				2017.06.012
				assessment in rolling	Volume 99				
				bearings					
116	Science	Artículo	Septiembre de 2019	Optical Camera	Optik	46	0.4	Q2	10.1016/j.ijleo.
	Direct			Communication	Volume 192.				2019.05.076
				system for three-					
				dimensional T indoor					
				localization					

117	Science	Artículo	Agosto 2017	Deep neural	Microelectronics Reliability	80	0.38	Q2	10.1016/j.microrel.
	Direct			networks-based	Volume 75.				2017.03.006
				rolling bearing fault					
				diagnosis					
118	Science	Artículo	Febrero 2018	Determination of egg	Computers and Electronics in	96	0.95	Q1	10.1016/j.compag.
	Direct			storage time at room	Agriculture				2017.12.030
				temperature using a	Volume 145.				
				low-cost NIR					
				spectrometer and					
				machine learning					
				techniques					
119	Science	Artículo	Diciembre 2016	Prediction of acute	Chemosphere	212	1.45	Q1	10.1016/j.
	Direct			toxicity of phenol	Volume 165				chemosphere.
				derivatives using					2016.09.041
				multiple linear					
				regression approach					
				for Tetrahymena					
				pyriformis					
				contaminant					
				identification in a					
				median-size					
				database					
120	Science	Artículo	2016	Impact reduction	CIRP Annals	132	2.43	Q1	10.1016/j.cirp.
	Direct			potential by usage	Volume 65, Edición 1.				2016.04.087
				anticipation under					
				comfort trade-off					
				conditions					

121	Science	Artículo	Septiembre 2018	Optimizing presetting	Advances in Engineering	66	1	Q1	10.1016/j.
	Direct			attributes by soft	Software				advengsoft.
				computing techniques	Volume 123.				2018.05.005
				to improve tapered					
				roller bearings					
				working conditions					
122	Science	Artículo	Abril 2016	Hybrid fuzzy MADM	Engineering Applications of	86	0.88	Q1	10.1016/j.
	Direct			ranking procedure for	Artificial Intelligence				engappai.
				better alternative	Volume 50.				2015.12.012
				discrimination					
123	Science	Artículo	Julio 2019	Developing Usability	Computer Standards &	58	0.46	Q1	10.1016/j.csi.
	Direct			Heuristics with	Interfaces				2019.03.003
				PROMETHEUS: A	Volume 65				
				Case Study in Virtual					
				Learning					
				Environments					
124	Science	Artículo	30 de abril de 2019	Conformation-	Ecotoxicology and	110	1.17	Q1	10.1016/j.ecoenv.
	Direct			independent	Environmental Safety				2018.12.056
				quantitative structure-	Volume 171.				
				property relationships					
				study on water					
				solubility of pesticides					
125	Science	Artículo	Febrero 2017	Fuzzy modelling to	Environmental Science & Policy	95	1.92	Q1	10.1016/j.envsci.
	Direct			identify key drivees of	Volume 68.				2016.12.004
				ecological water					
				quality to support					

				decision and policy					
				making					
126	Science	Artículo	Abril 2017	Automatic detection of	Biosystems Engineering	95	0.83	Q1	10.1016/j.
	Direct			curved and straight	Volume 156.				biosystemseng.
				crop rows from					2017.01.013
				images in maize fields					
127	Science	Artículo	Febrero 2018	On-line crop/weed	Biosystems Engineering	95	0.83	Q1	10.1016/j.
	Direct			discrimination through	Volume 166.				biosystemseng.
				the Mahalanobis					2017.11.003
				distance from images					
				in maize fields					
128	Science	Artículo	Junio 2017	Input variable	Environmental Modelling &	112	1.73	Q1	10.1016/j.envsoft.
	Direct			selection with a simple	Software				2017.02.012
				genetic algorithm for	Volume 92.				
				conceptual species					
				distribution models: A					
				case study of river					
				pollution in Ecuador					
129	Science	Artículo	1 abril 2017	Increase attractor	Expert Systems with	162	1.19	Q1	10.1016/j.eswa.
0	Direct	7 11 10 010	1 45111 2511	capacity using an	Applications	102	0	α.	2016.11.035
	Direct			ensembled neural	Volume 71.				2010.11.000
				network	voidine 71.				
130	Science	Artículo	2018	Material distribution	IFAC-PapersOnLine	52	0.3	Q3	10.1016/j.ifacol.
130		Articulo	2016		_	52	0.3	QS	-
	Direct			with mobile robots in	Volume 51. Edición 13.				2018.07.354
				an industrial					
				environment: system					
				design and simulation.					

131	Science	Artículo	2018	Spatial prediction of	Geoderma	141	1.62	Q1	10.1016/j.geoderma.
	Direct			soil water retention in	Volume 316				2017.12.002
				a Paramo landscape:					
				Methodological insight					
				into machine learning					
				using random fore's					
132	Science	Artículo	24 mayo 2019	Present and future	Ecological Modelling	139	1.04	Q2	10.1016/j.ecolmodel.
	Direct			incidence of dengue	Volume 400				2019.03.014
				fevers in Ecuador					
				nationwide and coast					
				region scale using					
				species distribution					
				modeling for climate					
				variability's effect					
133	Science	Artículo	Septiembre 2019	Distributed decision-	Automatica	239	3.78	Q1	10.1016/j.automatica.
	Direct			making algorithms	Volume 107.				2019.05.063
				with multiple					
				manipulative actors					
134	Science	Artículo	20 noviembre 2016	Semantic catalogs for	Journal of Cleaner Production	150	1.62	Q1	10.1016/j.jclepro.
	Direct			life cycle assessment	Volume 137.				2016.07.216
				data					
135	Science	Artículo	2017	Hybrid optimization	Procedia Engineering	51	0.28	-	10.1016/j.proeng.
	Direct			proposal for the	Volume 186				2017.03.266
				design of collective					
				on-rotation operating					
				irrigation networks					

136	Science	Artículo	15 de abril de 2016	Feature selection of	Journal of Volcanology and	105	1.28	Q1	10.1016/j.jvolgeores.
	Direct			seismic waveforms for	Geothermal Research				2016.02.022
				long period event	Volume 316				
				detection at Cotopaxi					
				Volcano					
137	Science	Artículo	30 de noviembre de	Multimodal deep	Neurocomputing	110	1	Q1	10.1016/j.neucom.
	Direct		2015	support vector	Volume 168				2015.06.008
				classification with					
				homologous features					
				and its application to					
				gearbox fault					
				diagnosis					
138	Science	Artículo	Agosto 2016	Gearbox fault	Mechanical Systems and Signal	134	1.82	Q1	10.1016/j.ymssp.
	Direct			diagnosis based on	Processing				2016.02.007
				deep random forest	Volumes 76–77				
				fusion of acoustic and					
				vibratory signals					
139	Science	Artículo	Abril 2016	Observer-biased	Engineering Applications of	86	0.88	Q1	10.1016/j.engappai.
	Direct			bearing condition	Artificial Intelligence				2016.01.038
				monitoring: From fault	Volume 50				
				detection to multi-fault					
				classification					
140	Science	Artículo	1 agosto 2017	A Bayesian approach	Knowledge-Based Systems	94	1.46	Q1	10.1016/j.knosys.
	Direct			to consequent	Volume 129.				2017.05.007
				parameter estimation					
				in probabilistic fuzzy					
				systems and its					
	I .								

				application to bearing fault classification					
141	Science	Artículo	4 abril 2015	Traffic sign	Neurocomputing	110	1	Q1	10.1016/j.neucom.
	Direct			segmentation and classification using statistical learning	Volume 153.				2014.11.026
				methods					
142	Science	Artículo	17 de mayo de 2019	Handling subjective	Fuzzy Sets and Systems	150	1.35	Q1	10.1016/j.fss.
	Direct			information through					2019.05.007
				augmented (fuzzy) computation					
143	Science	Artículo	Abril-Julio 2014	Reconocimiento en-	Revista Iberoamericana de	13	0.31	Q2	10.1016/j.riao.
	Direct			línea de acciones	Automática e Informática				2013.09.009
				humanas basado en	Industrial RIIA				
				patrones de RWE	Volume 11. Edición 2.				
				aplicado en ventanas					
				dinámicas de					
				momentos invariantes					
144	Science	Artículo	Marzo 2018	Mining theory-based	Computers in Human Behavior	137	1.71	Q1	10.1016/j.chb.
	Direct			patterns from Big	Volume 80				2017.11.011
				data: Identifying self-					
				regulated learning					
				strategies in Massive					
				Open Online Courses					
145	Science	Artículo	Noviembre 2018	Rules engine and	Computers and Electronics in	96	0.95	Q1	10.1016/j.compag.
	Direct			complex event	Agriculture				2018.09.013

		1		T .	I		1		I
				processor in the	Volume 154				
				context of internet of T					
				things for precision					
				agriculture					
146	Science	Artículo	Enero 2018	Data-driven	Ecological Informatics	42	0.79	Q1	10.1016/j.ecoinf.
	Direct			techniques for	Volume 43				2016.12.002
				modelling the gross					
				primary production of					
				the paramo vegetation					
				using climate data:					
				Application in the					
				Ecuadorian Andean					
				region					
147	Science	Artículo	Febrero 2016	Early warning in egg	Computers and Electronics in	96	0.95	Q1	10.1016/j.compag.
	Direct			production curves	Agriculture				2015.12.009
				from commercial	Volume 121.				
				hens: A SVM					
				approach					
148	Science	Artículo	Septiembre 2016	Ultra-high-speed	International Journal of Electrical	100	1.26	Q1	10.1016/j.ijepes.
	Direct			deterministic	Power & Energy Systems				2016.01.043
				algorithm for	Volume 80				
				transmission lines					
				disturbance					
				identification based on					
				principal component					
				analysis and					
				Euclidean norm					
	I		I				I		I

149	Science	Artículo	Octubre 2018	Automatic lightning	Electric Power Systems	104	1.04	Q1	10.1016/j.epsr.
	Direct			stroke location on	Research				2018.01.025
				transmission lines	Volume 163				
				using data mining and					
				synchronized initial					
				travelling					
150	Science	Artículo	24 de julio de 2015	Identifying polarity in	Procedia - Social and Behavioral	39	0	-	10.1016/j.sbspro.
	Direct			financial texts for	Sciences				2015.07.451
				sentiment analysis: a	Volume 198.				
				corpus-based					
				approach					
151	Science	Artículo	Septiembre 2016	Incremental scenario	Robotics and Autonomous	100	0.83	Q1	10.1016/j.robot.
	Direct			representations for	Systems				2016.05.011
				autonomous driving	Volume 83				
				using geometric					
				polygonal primitives					
152	Science	Artículo	Octubre 2016	Incremental texture	Robotics and Autonomous	100	0.83	Q1	10.1016/j.robot.
	Direct			mapping for	Systems				2016.06.009
				autonomous driving	Volume 84				
153	Science	Artículo	1 diciembre 2016	Smart motion	Expert Systems with	162	1.19	Q1	10.1016/j.eswa.
	Direct			detection sensor	Applications				2016.08.010
				based on video	Volume 64.				
				processing using self-					
				organizing maps					
154	Science	Artículo	19 junio 2016	A statistical	Neurocomputing	110	1	Q1	10.1016/j.neucom.
	Direct			comparison of	Volume 194				2016.02.028
				neuroclassifiers and					

				feature selection					
				methods for gearbox					
				fault diagnosis under					
				realistic conditions					
155	Science	Artículo	1 abril 2017	Attribute clustering	Expert Systems with	162	1.19	Q1	10.1016/j.eswa.
	Direct			using rough set theory	Applications				2016.11.024
				for feature selection in	Volume 71				
				fault severity					
				classification of					
				rotating machinery.					
156	Science	Artículo	noviembre de 2019	Deep reinforcement	Ad Hoc Networks	79	0.65	Q1	10.1016/j.adhoc.
	Direct			learning mechanism	Volume 94.				2019.101939
				for dynamic access					
				control in wireless					
				networks handling					
				mMTC					
457	0-1	A(l -	0040		December Occurrence	47	0.00		40.4040/:
157	Science	Artículo	2016	Resurgery clusters in	·	47	0.28	-	10.1016/j.procs.
	Direct			Intensive Medicine	Volume 98				2016.09.072
158	Science	Artículo	Mayo 2019	A systematic method	Future Generation Computer	93	0.84	Q1	10.1016/j.future.
	Direct			for building Internet of	Systems				2018.11.042
				Agents applications	Volume 94.				
				based on the Linked					
				Open Data approach					
159	Science	Artículo	Febrero 2019	Using Multilayer	Applied Soft Computing	110	1.22	Q1	10.1016/j.asoc.
	Direct			Fuzzy Cognitive Maps	Volume 75				2018.10.034
				to diagnose Autism					
				Spectrum Disorder					

160	Science	Artículo	15 diciembre 2016	Optimization of NIR	Chemometrics and Intelligent	109	0.74	Q1	10.1016/j.chemolab.
	Direct			calibration models for	Laboratory Systems				2016.10.003
				multiple processes in	Volume 159.				
				the sugar industry					
161	Science	Artículo	Diciembre 2018	Large-scale	Land Use Policy	93	1.41	Q1	10.1016/j.landusepol.
	Direct			simultaneous market	Volume 79.				2018.08.012
				segment definition					
				and mass appraisal T					
				using decision tree					
				learning for fiscal					
				purposes					
162	Science	Artículo	30 de noviembre de	SPELTA: An expert	Expert Systems with	162	1.19	Q1	10.1016/j.eswa.
	Direct		2015	system to generate	Applications				2015.06.011
				therapy plans for	Volume 42.				
				speech and language					
				disorders					
163	Science	Artículo	2017	A System for the	Procedia Computer Science	47	0.28	-	10.1016/j.procs.
	Direct			Monitoring and	Volume 121				2017.11.042
				Predicting of Data in					
				Precision Agriculture					
				in a Rose Greenhouse					
				Based on Wireless					
				Sensor Networks					
164	Science	Artículo	2015	MVMO for Optimal	IFAC-PapersOnLine	52	0.3	Q3	10.1016/j.ifacol.
	Direct			Reconfiguration in	Volume 48, Issue 30.				2015.12.390
				Smart Distribution					
				Systems					

165	Science	Artículo	Abril 2018	Data Mining and	Archives of Medical Research	72	0.77	Q2	10.1016/j.arcmed.
	Direct			Endocrine Diseases:	Volume 49.				2018.08.005
				A New Way to					
				Classify?					
166	Science	Artículo	Octubre 2017	From flamingo dance	Drug Discovery Today	157	2.25	Q1	10.1016/j.drudis.
	Direct			to (desirable) drug	Volume 22, Issue 10.				2017.05.008
				discovery: a nature-					
				inspired approach					
167	Science	Artículo	Octubre 2018	System for monitoring	Pervasive and Mobile	53	0.46	Q1	10.1016/j.pmcj.
	Direct			and supporting the	Computing				2018.07.007
				treatment of sleep	Volume 50				
				apnea using IoT and					
				big data					
168	Science	Artículo	Septiembre 2016	Data transferring	Robotics and Autonomous	100	0.83	Q1	10.1016/j.robot.
	Direct			model determination	Systems				2016.04.003
				in robotic group	Volume 83				
169	Science	Artículo	Junio 2017	Sustainable	International Journal of	22	0.62	Q1	10.1016/j.ijsbe.
	Direct			riverscape	Sustainable Built Environment				2017.03.003
				preservation strategy	Volume 6, Issue 1.				
				framework using goal-					
				oriented method:					
				Case of historical					
				heritage cities in					
				Malaysia					
170	Science	Artículo	Julio 2015	Literature Review of	The Journal of Academic	-	-	-	10.1016/j.acalib.
	Direct			Data Mining	Librarianship				2015.06.007
					Volume 41, Issue 4.				

				Applications in					
				Academic Libraries					
171	Science	Artículo	Octubre 2014	Statistical nonlinear	Digital Signal Processing	61	0.54	Q2	10.1016/j.dsp.
	Direct			analysis for reliable	Volume 33				2014.06.014
				promotion decision-					
				making					
172	Science	Artículo	9 diciembre 2016	Detecting Similar	Electronic Notes in Theoretical	53	0.29	Q2	10.1016/j.entcs.
	Direct			Areas of Knowledge	Computer Science				2016.12.009
				Using Semantic and	Volume 329				
				Data Mining					
				Technologies					
173	Science	Artículo	2015	Evaluation of	Procedia Computer Science	47	0.28	-	10.1016/j.procs.
	Direct			Visualization of a	Volume 62				2015.08.424
				Fuzzy-Based					
				Recommender					
				System for Political					
				Community-Building					
174	Science	Artículo	Octubre 2017	Integration in	Computers in Industry	87	1.24	Q1	10.1016/j.compind
	Direct			industrial automation	Volume 91				.2017.05.002
				based on multi-agent					
				systems using cultural					
				algorithms for					
				optimizing the					
				coordination					
				mechanisms					
175	Science	Artículo	Julio 2019	Dynamic profiles	Government Information	84	1.41	Q1	10.1016/j.giq.
	Direct			using sentiment	Quarterly				2019.03.003

				analysis and twitter	Volume 36, Issue 3				
				data for voting advice					
				applications					
176	Science	Artículo	2017	Semi-Supervised	Procedia Computer Science	47	0.28	-	10.1016/j.procs.
	Direct			Clustering Algorithms	Volume 108				2017.05.206
				for Grouping Scientific					
				Articles					
177	Science	Artículo	2013	Model-Based Fault-	Procedia Computer Science	47	0.28	-	10.1016/j.procs.
	Direct			Tolerant Control to	Volume 19				2013.06.094
				Guarantee the					
				Performance of a					
				Hybrid Wind-Diesel					
				Power System in a					
				Microgrid					
				Configuration					
178	Science	Artículo	2016	Artificial Neural	Procedia Engineering	51	0.28	-	10.1016/j.proeng.
	Direct			Networks applied to	Volume 162				2016.11.031
				flow prediction: A use					
				case for the					
				Tomebamba rive					
179	Science	Artículo	2015	Towards a robotic	Procedia Manufacturing	18	0.31	Q2	10.1016/j.promfg.
	Direct			knee exoskeleton	Volume 3				2015.07.296
				control based on					
				human motion					
				intention through EEG					
				and sEMGsignals					

180	Science	Artículo	2018	Fall detection system	Procedia Computer Science	47	0.28	-	10.1016/j.procs.
	Direct			for elderly people	Volume 130				2018.04.110
				using IoT and Big					
				Data					
181	Scopus	Artículo	01/2019	Minería de datos	RISTI - Revista Ibérica de	13	0.22	Q3	Sin información
				educativa para	Sistemas e Tecnologías de				
				identificar la relación	Información RISTI, No E17				
				entre cociente					
				intelectual, estilos de					
				aprendizaje,					
				inteligencia emocional					
				e inteligencias					
				múltiples de					
				estudiantes de					
				ingeniería					
182	IEEE	Artículo	Managua, Nicaragua,	Producing linked open	IEEE 37th Central América and	3	0.12	-	10.1109/CONCAPAN.
			2017	data to describe	Panamá Convention				2017.8278535
				scientific activity from	(CONCAPAN XXXVII)				
				researchers of					
				Ecuadorian					
				universities					
183	Springer	Artículo	27 septiembre 2017	A Cloud-Based	International Conference on	-	-	-	10.1007/978-3-319-
	Link			Architecture for	Technologies and Innovation				67283-0_17
				Robotics Virtual	CITI 2017				
				Laboratories					

184	Scopus	Artículo	01/2019	OpenChatBotUNL:	RISTI - Revista Ibérica de	13	0.22	Q3	Sin información
				Propuesta de	Sistemas e Tecnologías de				
				plataforma de	Información				
				ejecución de Agentes	RISTI, No E17				
				Conversacionales					
185	Scopus	Artículo	01/2019	Principios de la Web	RISTI - Revista Ibérica de	13	0.22	Q3	Sin información
				Semántica y	Sistemas e Tecnologías de				
				Computación Afectiva	Información				
				en un Ecoturismo	RISTI, No E17				
				Sustentable mediante					
				el Desarrollo de					
				Aplicación Web					
				Educativa					
186	Scopus	Artículo	01/2019	Modelo para predecir	RISTI - Revista Ibérica de	13	0.22	Q3	Sin información
				el rendimiento	Sistemas e Tecnologías de				
				académico basado en	Información				
				redes neuronales y	RISTI, No E17				
				analítica de					
				aprendizaje					
187	Springer	Artículo	18 Octubre 2018	Improving the Design	Conference on Information	-	-	-	10.1007/978-3-030-
	Link			of Virtual Learning	Technologies and				02828-2_8
				Environments from a	Communication of Ecuador				
				Usability Study	TICEC 2018				
188	Scopus	Artículo	25 Julio 2016	Web accessibility	Repositorio Institucional UTPL	-	-		10.1109/CISTI.
				analysis with semantic					2016.7521389
				approach of the					
				academic services					

				web portal to					
				university level					
189	Scopus	Artículo	Sangolquí, Ecuador, 30	Characterizing	Third International Conference	1	0.71	-	10.1109/ICEDEG.
			marzo -1 abril 2016	Influential Leaders of	on eDemocracy & eGovernment				2016.7461714
				Ecuador on Twitter	(ICEDEG)				
				Using Computational					
				Intelligence					
190	Scopus	Artículo	1 Enero 2012	OER Development	Journal of Universal Computer	48	0.33	Q2	Sin información
				and Promotion.	Science vol. 18, no. 1				
				Outcomes of an					
				International					
				Research Project on					
				the OpenCourseWare					
				Model					
191	Springer	Artículo	05 de enero de 2018	Big Data, the Next	ICITS 2018: Proceedings of the	1	0	-	10.1007/978-3-319-
	Link			Step in the Evolution	International Conference on				73450-7_14
				of Educational Data	Information Technology &				
				Analysis	Systems				

Figura 27. Número de estudios primarios seleccionados en la SLR (Fuente propia).

Según se ha visto, en la Figura 28 se especifica los 191 estudios primarios seleccionados en la ejecución de la presente SLR. Cabe agregar, que las bases de datos académicas de mayor impacto en publicaciones de IA por parte de los investigadores de las IES de Ecuador son: Science Direct con el 41.36%. Google Scholar con el 25.13 y ACM con 18.84%.

Figura 28. Número de estudios primarios en bases de datos académicas (Fuente propia).

Resulta oportuno indicar que, en la Figura 29 se identificó el patrón de producción científica en los resultados del Scimago Journal & Country Rank (SJR) para Ecuador, y en los resultados de la ejecución de la presente SLR.

Figura 29. Resultados de SJR en Ecuador y resultados SLR IES del Ecuador (Fuente propia).

6.2.3. Etapa III: Informe

Con respecto a esta última etapa de la presente SLR, se consideró oportuno realizar la redacción de los resultados de la revisión para informar a los demás.

3.1 Especificación de la estrategia de difusión

Es muy importante comunicar o difundir los resultados de la presente SLR, por esta razón, se planificó y diseñó una estrategia de difusión. En el campo académico, generalmente se asume que la difusión trata de informar sobre los resultados en revistas académicas y/o conferencias. Sin embargo, los resultados de la presente SLR tienen la intención de influir en los profesionales, estudiantes de grado, posgrado, estudiantes de doctorado, y demás investigadores o lectores en general.

3.2 Formato del informe principal de la revisión sistemática

Por lo general, varias directrices de revisiones sistemáticas de la literatura presentan al menos dos formatos:

- En un informe técnico o en una sección de una tesis doctoral.
- En una revista o ponencia de conferencia.

Para asegurar que los lectores en general puedan evaluar adecuadamente el rigor y la validez de esta SLR, se realizó un informe técnico el cual referenció los detalles necesarios en el desarrollo de la SLR. También, se tomó en consideración la estructura y el contenido de los informes sugeridos en la literatura CRD's Guidance for those Carrying Out or Commissioning Reviews [6], esta estructura es apropiada para informes técnicos y revistas. A continuación, en la Tabla XXXIV, se indica el informe técnico desarrollado en la presente SLR.

TABLA XXXIV. INFORME TÉCNICO

Sección	Subsección	Ámbito de aplicación	Comentarios
Preguntas de revisión	Categoría RQ1- Ámbito de la	Categoría RQ3- Grupo objetivo:	Se definió un grupo de categorías de
RQ1- ¿Cuáles son las áreas de la	educación:	Basado en el CES (Consejo de	análisis con sus correspondientes
Inteligencia Artificial en las Instituciones	``	Educación Superior) Quito - Ecuador	subcategorías de acuerdo con cada
de Educación Superior del Ecuador?	Educación Superior) Quito – Ecuador	2019.	pregunta de investigación. Las
RQ2- ¿Cuáles son las líneas de	2019.	Identificar un listado de investigadores	categorías ayudan a agrupar los
investigación, en las áreas de	Identificar las áreas de la Inteligencia	que desarrollen producción científica en	artículos según sus características
Inteligencia Artificial de las Instituciones	Artificial, en las Instituciones de	el campo de la Inteligencia Artificial en	compartidas.
de Educación Superior del Ecuador?	Educación Superior del Ecuador.	las Instituciones de Educación Superior	
RQ3- ¿Qué investigadores desarrollan		del Ecuador.	
publicaciones científicas en áreas de		Clasificar las Instituciones de	
Inteligencia Artificial en Instituciones de		Educación Superior del Ecuador de	
Educación Superior del Ecuador?	Sociedad de Líneas de Investigación,	acuerdo con la producción científica	
RQ4- ¿En qué bases de datos de	Desarrollo e innovación y Transferencia	desarrollada en el campo de la	
contenido científico, los investigadores	, , ,	Inteligencia Artificial.	
realizan publicaciones sobre		Identificar los grupos de investigación	
Inteligencia Artificial en Instituciones de	Sociedad de la Información (MINTEL), y	en el campo de la inteligencia artificial	
Educación Superior del Ecuador?	la Secretaría de Educación Superior,	en las Instituciones de Educación	
	Ciencia, Tecnología e Innovación	Superior del Ecuador.	
	(SENESCYT).	Categoría RQ4- Grupo objetivo de	
	Identificar las áreas de investigación	bases de datos se contenido científico:	
	priorizadas en las Instituciones de	Basado en las principales bases de	
	Educación Superior del Ecuador.	datos académicas mundiales de	
	Identificar las Líneas de Investigación	referencias bibliográficas y citas de	
	priorizadas en las Instituciones de	publicaciones periódicas.	
	Educación Superior del Ecuador.	Identificar las bases de datos	
	Identificar la vinculación directa de la	académicas, donde publican los	
	Inteligencia Artificial en dichas áreas y	investigadores de IES del Ecuador.	
	líneas de investigación priorizadas en	Identificar las bases de datos académicas donde publican más los	
	las Instituciones de Educación Superior del Ecuador.	investigadores de las IES de Ecuador.	
	uei Ecuaudi.	Identificar los Congresos/Revistas	
		donde publican más los investigadores	
		de las IES de Ecuador.	
		Utilizar los indicadores Índice H e	
		indicador SJR para identificar el	

Evaluación de un protocolo de revisión El protocolo de revisión es un elemento crítico de esta SLR, el estudiante investigador determinó un procedimiento para evaluar el protocolo. Posteriormente se pidió revisar el informe con un experto. El estudiante investigador presentó el protocolo al director del Trabajo de Titulación para su revisión y crítica. Selección de estudios Titulación para su revisión y crítica. Selección de estudios Una primera búsqueda general en las bases de datos cientificas seleccionados con el objeto de estudios revisar el informe con un experto. El estudiante investigador presentó el Trabajo de Titulación para su revisión y crítica. Selección de estudios Una primera búsqueda, senealizó una revisión cualitativa de titulos y resúmenes de cada estudio de 218 estudios seleccionados y clasificados en la sección de referencias, indicando el 5% (218/4598 = 5%), finalmente, aplicando una revisión sistemática final sobre los estudios en la sección de referencias arrojó 191 estudios seleccionados y clasificados en la sección válidos, indicando el 4% (191/4598 = 4.15%). Es importante señalar que los estudios tueron seleccionados desde el año 2010 hasta el 16 de julio de 2019. Evaluación de la calidad de los estudios y Formulario de extracción de datos
Google Scholar (Buscador académico) ACM IEEE Science Direct Scopus Selección de estudios Irulación para a va revisión y crítica. Google Scholar (Buscador académico) ACM IEEE Science Direct Scopus Selección de estudios Una primera búsqueda general en las bases de datos cientifícas eleccionados, arrojó 4598 estudios relacionados con el objeto de estudio. Para refinar la búsqueda, se realizó una revisión cualitativa de títulos y resúmenes de cada estudio de 15% (218/4598 e 5%), finalmente, aplicando una revisión sistemática final sobre los estudios en la sección de referencias arrojó 191 estudios seleccionados y clasificados en la sección de referencias arrojó 191 estudios seleccionados y clasificados en la sección de referencias arrojó 191 estudios seleccionados y clasificados en la sección válidos, indicando el 4% (191/4598 = 4.15%). Es importante señalar que los estudios fueron seleccionados dede el año 2010 hasta el 16 de julio de 2019. Evaluación de la calidad de los estudios promulario de extracción
Se desarrolló criterios de evaluación ⁹³ expuestos en una lista de verificación para la selección de estudios primarios en la presente SLR. También, se diseñó

⁹³ Véase: https://drive.google.com/file/d/1IW3NHx8kvT6fC713DU7HaeoQidiomukr/view?usp=sharing

	dal actudio (título, nambro sutar, cão da		
	del estudio (título, nombre autor, año de publicación). Los resultados se		
	ordenaron por el área de "Artificial		
	Intelligence" y se identifican mediante		
	las iniciales EP (estudio primario),		
	seguido del número correspondiente.		
	Síntesis de datos		
	Esta sección se llevó a cabo a través de		
	la lectura completa de los artículos, y el		
	proceso de codificación de los datos se		
	realizó teniendo en cuenta las		
	categorías definidas en la sección		
	(1.7.4) en total se analizó 191 artículos		
	seleccionados de la sección válidos de		
	la clasificación de estudios resultantes		
	de esta SLR.		
Estudios incluidos y excluidos		Criterios de inclusión	
Se diseñó y sintetizó el proceso de		Artículos cuya filiación sea de Ecuador.	Para el desarrollo de los criterios de
selección de estudios primarios		Artículos que utilicen métodos,	inclusión, se analizó la estructura del
desarrollado para la presente SLR, en una vista general de los estudios		técnicas, herramientas que propongan	mentefacto conceptual ⁹⁴ , se observó la
seleccionados.		soluciones para resolver problemas de "Artificial Intelligence".	clase alta (Supra ordinación). Para el desarrollo de los criterios de inclusión.
Selectionados.		Artificial intelligence : Artículos que sean del área de	se analizó la estructura del mentefacto
		Computer Science.	conceptual; se observó la clase
		Las soluciones propuestas son	(Exclusión).
		implementadas en áreas de la "Artificial	(Excidenti).
		Intelligence".	
		Artículos que hayan sido revisados por	
		pares externos.	
		Artículos que estén escritos en inglés.	
		Artículos cuyo título tenga relación con	
		el objeto de investigación de este	
		trabajo de titulación.	
		Artículos cuyo Abstract contenga las	
		palabras claves.	
		Artículos publicados a partir del 2010.	
		Criterios de exclusión	
		OHIGHOS UE EXCHUSION	

⁹⁴ Véase: https://drive.google.com/file/d/1EHAIWzZVCWuppug4cehza7KWRwioT5LS/view?usp=sharing

		Artículos que mencionan y solo conceptualicen el término "Artificial Intelligence". Artículos que no propongan soluciones en áreas de la "Artificial Intelligence". Artículos que el tema de investigación aparece sólo en la sección de referencias. No serán consideradas publicaciones informales, que no contengan una metodología científica, o que ayuden a responder las preguntas de investigación. Artículos duplicados. Y, todos los artículos que no cumplan los criterios de inclusión.	
Resultados	Hallazgos Se presentó los hallazgos principales de la presente SLR, para dar respuesta a las preguntas de investigación con ayuda de las cuatro categorías definidas (véase sección 1.7.4). Además, se identificó: -Las áreas en el campo de la Inteligencia Artificial con mayor y menor producción científica ⁹⁵ en las Instituciones de Educación Superior del Ecuador. -Listado de investigadores de las Instituciones de Educación Superior del Ecuador ⁹⁶ . -La clasificación de las Instituciones de Educación Superior del Ecuador ⁹⁷ , que realizan producción científica en el campo de la Inteligencia Artificial.		

_

⁹⁵ Véase: https://drive.google.com/file/d/1jS0ivwwt2cEOZrjkPsJZHHH0YZt4p_DJ/view?usp=sharing

⁹⁶ Véase: https://drive.google.com/file/d/1C-Lx2yupDkvcPRrDKPDJznaAbdyrT6Al/view?usp=sharing

⁹⁷ Véase: https://drive.google.com/file/d/1KnR4T6SoLHY8bDQZIn936J-c7bRABUc4/view?usp=sharing

-Los grupos de investigación ⁹⁸ en el campo de la Inteligencia Artificial.		
de las Instituciones de Educación Superior del Ecuador.		
Esta sección Discusión se encuentra		
limitaciones de este.		
Este trabajo de titulación indica la		
de esta SLR. Como consecuencia de		
aquello, la propuesta presentada en		
signification significant sign		
Los autores declaran que no existen		
thatacion:		
	campo de la Inteligencia Artificial. -Las bases de datos académicas, congresos/revistas ⁹⁹ donde realizan producción científica los investigadores de las Instituciones de Educación Superior del Ecuador. Esta sección Discusión se encuentra almacenada en el repositorio Google Drive ¹⁰⁰ . Donde se interpretó el significado de los resultados y algunas limitaciones de este. Este trabajo de titulación indica la considerable complejidad del proceso de esta SLR. Como consecuencia de aquello, la propuesta presentada en este trabajo de titulación aporta con las siguientes contribuciones ¹⁰¹ .	campo de la Inteligencia Artificial. -Las bases de datos académicas, congresos/revistas ⁹⁹ donde realizan producción científica los investigadores de las Instituciones de Educación Superior del Ecuador. Esta sección Discusión se encuentra almacenada en el repositorio Google Drive ¹⁰⁰ . Donde se interpretó el significado de los resultados y algunas limitaciones de este. Este trabajo de titulación indica la considerable complejidad del proceso de esta SLR. Como consecuencia de aquello, la propuesta presentada en este trabajo de titulación aporta con las siguientes contribuciones ¹⁰¹ . Los autores declaran que no existen conflictos de intereses en relación con la publicación de este trabajo de

_

 $^{98\} V\'{e}ase: https://drive.google.com/file/d/1 IHuvnn8j NB3 v UPRtOgWcGhZRFZWfJU1T/view?usp=sharing$

⁹⁹ Véase: https://drive.google.com/file/d/1ron2Yxp53LUy6tK6R7jlPH49ZxfzJXNb/view?usp=sharing

¹⁰⁰ Véase: https://drive.google.com/file/d/1wJO9jQ5ERWnaO8lGzZp3cFVGQapg64LX/view?usp=sharing

¹⁰¹ Véase: https://drive.google.com/file/d/1fjOanBs6a3E2yTOtgm7HlNAl1zedgj-G/view?usp=sharing

¹⁰² Véase: https://drive.google.com/file/d/1EC34CHDWOomcgYbi00sRdBVdCmasrCAP/view?usp=sharing

¹⁰³ Véase: https://drive.google.com/file/d/1Sz5f7Pr_8bQOk331JUZhUNjUnUTYQ9mo/view?usp=sharing

3.3 Evaluación de los informes de revisión sistemática

El informe técnico desarrollado en la presente SLR está disponible en el repositorio GitHub¹⁰⁴ en visibilidad público para que los resultados de dicho informe este disponibles rápidamente y los lectores e investigadores puedan explorar, analizar y evaluar (se recomienda descargar el archivo). Al reunir un grupo de investigadores o expertos, para que revisen el protocolo del objeto de estudio de la presente SLR, este mismo grupo de investigadores serán capaces de llegar a un conjunto de estudios iguales o muy parecidos a que se llegó en la presente SLR.

_

¹⁰⁴ Véase: https://github.com/macabreras/Thesis-1/blob/master/archivos_thesis/Informe%20tecnico%20SLR.pdf

7. DISCUSIÓN

La situación actual de la Inteligencia Artificial (IA) en las Instituciones de Educación Superior (IES) del Ecuador es que, existe un amplio rango de IES de Ecuador que realizan producción científica en varias áreas o disciplinas vinculadas al campo de la IA. Según se observa en la ejecución de la presente SLR se identifica un listado de investigadores, grupos de investigación, Instituciones de Educación Superior, Congresos/Revistas, áreas con mayor y menor producción científica vinculadas al campo de la IA.

El desarrollo del presente TT, se basó en la realización de dos objetivos específicos, encaminados a cumplir el objetivo general. A continuación, se detalla la sección discusión por cada objetivo planteado. La sección 7.1 explica la discusión de los resultados contrastándolos con la literatura relacionada del objeto de estudio; la sección 7.2 presenta la valoración científica, técnica, económica y ambiental del trabajo de titulación.

7.1. Desarrollo de la propuesta alternativa

7.1.1. Identificar una metodología de revisión sistemática de literatura, para su uso en el campo de Ciencias de la Computación.

Los resultados del presente objetivo permitieron identificar que, dentro del campo de Ciencias de la Computación, las metodologías de Revisión Sistemática de Literatura (SLR) son utilizadas en diversas áreas y subáreas del conocimiento (por ejemplo, Ingeniería de Software, Ingeniería, Realidad Aumentada). Estos resultados son útiles para conocer y entender las fases, protocolos y directrices de dichas metodologías de SLR; además, de identificar las adaptaciones que se realizaron a la metodología de SLR tradicional (metodología de SLR propuesta por la Profesora Bárbara Kitchenham).

Todo lo anterior, guarda relación con lo que sostiene la base del diseño, documentación y ejecución de una metodología de SLR para su uso en el campo de Ciencias de la Computación, específicamente en la IA propuesta en el presente TT. Con referencia a lo anterior, la presente SLR ayuda a desarrollar el protocolo de revisión; documentando las decisiones tomadas; además, con la ayuda de un mentefacto conceptual y el Thesaurus IEEE se permite robustecer el criterio PICOC; el cual ayuda a construir los criterios de inclusión, criterios de exclusión y las cadenas de búsqueda permitiendo ser más eficientes y recuperando la mayor cantidad posible de artículos. Finalmente, se

definen 4 categorías de análisis con sus correspondientes subcategorías de acuerdo con las preguntas de investigación (RQ); lo cual ayuda a aglomerar los artículos según sus características. En este propósito, el desarrollo de la presente SLR ayudará a lectores en general, investigadores, académicos, estudiantes de grado, posgrado, doctorado, etcétera. Cabe agregar que, la metodología de SLR propuesta en el presente TT puede ser extrapolada a otras áreas y subáreas del conocimiento, por ejemplo, en la Salud, la Industria, la Educación, etcétera; tomando en consideración las características particulares del objeto de estudio de la investigación. Después de lo anterior expuesto se da cumplimiento con el desarrollo del presente objetivo.

7.1.2. Ejecutar la Revisión Sistemática de Literatura con la metodología seleccionada.

Los resultados del presente objetivo permitieron diseñar, documentar y ejecutar la metodología de SLR para su uso en el campo de Ciencias de la Computación; considerando que dichas fases son las que reiteradamente aparecen en los procesos que han sido analizados previamente en [14], [54], [56], [66], [64]. Sin embargo, para el diseño y ejecución de cada una de estas fases y actividades de la SLR, se analizó las características del objeto de estudio (Inteligencia Artificial); para desarrollar un proceso sistemático, documentado, repetible y eficiente.

Estos resultados guardan relación con lo que sostiene la literatura [82], en su investigación de tesis doctoral. Esta autora se plantea, desarrollar un proceso de revisión sistemática adaptada a la Ingeniería de Software; considerando las características que la hacen particular para la aplicación de los procesos propuestos en otras disciplinas. Esto es acorde con lo que en este TT se desarrolló.

Después de todo lo anterior expuesto, se observa que de los 191 artículos seleccionados el "Machine Learning" (ML), es el área con mayor producción científica vinculada al campo de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador. Además, se detecta que la Línea de investigación priorizada donde más se vincula la Inteligencia Artificial es el Software Aplicado (SA), donde se identifica el desarrollo y la utilización de varios algoritmos y técnicas de ML aplicados a las fases de construcción y mantenimiento dentro de metodologías ágiles y procesos. Además, se observa que, de los 191 estudios primarios seleccionados, existen 2 estudios publicados por investigadores ecuatorianos que pertenecen a otras instituciones, estas son el Hospital General Provincial de Latacunga del Ministerio de Salud Pública (Cotopaxi) y el Centro Nacional de Control de Energía (CENACE). En este orden de ideas, se puede

citar el informe "Hype Cycle for Artificial Intelligence" (Gartner, 2019); el cual revela 5 tendencias tecnológicas emergentes que crean y permiten nuevas experiencias, aprovechando la Inteligencia Artificial. Cabe agregar que, dicho informe resume más de 2000 tecnologías en un grupo de 29 tecnologías y tendencias emergentes. En efecto, dicho informe identifica entre las 5 tendencias emergentes a el área de "Machine Learning" (ML) como una tecnología a seguir en varias áreas del conocimiento, y en especial en la investigación; ayudando a las organizaciones a identificar oportunidades que permitan la creación de nuevos modelos operativos.

Otra percepción importante es la valoración del número de citas que recibe cada publicación, de acuerdo con Scimago Journal & Country Rank (SJR) se observa por país (Ecuador) el número de documentos publicados en el campo de la Inteligencia Artificial (véase Tabla XIX y Figura 13). Con referencia a lo anterior, con la ejecución de la presente SLR se observa un patrón en los años 2017, 2018 y 2019 de mayor producción científica en las IES del Ecuador; esto es acorde con los resultados del SJR para Ecuador, identificando los años de mayor producción científica son 2017 y 2018 (véase Figura 29). En este propósito, se observa que el número de estudios publicados en el campo de la Inteligencia Artificial en el área de "Computer Science" en la región de Ecuador, ha ido incrementando año a año, de acuerdo con los 191 estudios identificados en la ejecución de la presente SLR, se observa que existen 54 revistas que están categorizadas en el primer cuartil (Q1) y que existen 13 revistas que están categorizadas en el segundo cuartil (Q2) (véase Tabla XXXIII).

Con respecto a los investigadores que realizan producción científica vinculada al campo de Inteligencia Artificial, se observa claramente un investigador que está a la cabeza del ranking con un alto valor en su perfil de "Google Scholar" (véase Tabla XXVI), cabe agregar que, dicho investigador realizó sus publicaciones con la filiación en la Universidad de las Fuerzas Armadas (ESPE). También se observa en el top 10 de investigadores, a varios investigadores que pertenecen a una misma Institución de Educación Superior del Ecuador. (Universidad Politécnica Salesiana, Universidad Técnica Particular de Loja y Universidad de las Fuerzas Armadas) (véase Tabla XXVII); identificando estas 3 Instituciones de Educación Superior como las líderes en producción científica en el campo de la IA en Ecuador.

Por las consideraciones anteriores, se utiliza el software VOSviewer para visualizar las redes bibliométricas, en este caso, se puede visualizar las relaciones de co-autoría entre

¹⁰⁵ Véase: https://elderecho.com/informe-hype-cycle-for-emerging-technologies-2019-gartner

investigadores, y el uso de palabras claves en las publicaciones realizadas por investigadores ecuatorianos. Como puede observarse en la Figura 22 y Figura 23.

Con respecto a los grupos de investigación que se vinculan al campo de la Inteligencia Artificial, se observa claramente que, solo en 23 IES del Ecuador existen grupos de investigación; mientras que en 9 IES del Ecuador no existen formalmente grupos de investigación en el campo de la IA. Resulta oportuno aclarar que, algunos de los investigadores identificados en dichos grupos de investigación actúan como colaboradores o asesores de otras IES del Ecuador.

En el orden de las ideas anteriores, una clasificación de Instituciones de Educación Superior en el mundo (véase sección 4.3.1 y Tabla II) identifica que Estados Unidos y China están a la cabeza en mayor impacto de citas en volúmenes de publicaciones sobre Inteligencia Artificial. Con referencia a lo anterior, los estudios [83], [84], sostienen que la aplicación de técnicas de Inteligencia Artificial (Machine Learning, Deep Learning) solo se dan en un campo determinado como es la medicina; destacando la aplicación de la Inteligencia Artificial en una sola área del conocimiento. En relación con este último, en el desarrollo del presente TT se observa claramente la producción científica de la Inteligencia Artificial en el campo de Ciencias de la Computación.

Finalmente, el presente TT expone algunas limitaciones, en la ejecución de la presente SLR no se analiza la relación directa entre cada área de la Inteligencia Artificial con todas las áreas o subáreas del conocimiento. Es decir, solo se desarrolló la presente SLR en el campo de Ciencias de la Computación específicamente Inteligencia Artificial. Además, otra limitación importante es la fecha de corte de la ejecución de las búsquedas de la presente SLR (16 de julio del 2019); exponiendo que luego de dicha fecha la producción científica en el campo de la Inteligencia Artificial por parte de los investigadores en las Instituciones de Educación Superior del Ecuador se incrementará significativamente.

7.2. Valoración técnica económica ambiental

El desarrollo del presente Trabajo de Titulación se expresa detallando los beneficios prestados desde tres aspectos.

7.2.1. Valoración Técnica

Los recursos técnicos permitieron el desarrollo de la presente SLR a través de diversas herramientas como:

- e-book "Proceso metodológico en la investigación 106", para la guía y aprendizaje del diseño de una investigación; desde el punto de vista general como estudiante investigador.
- e-book "Lista de verbos, enlaces oracionales, anotaciones gramaticales, conectores y relacionantes [85]". En efecto, se utilizó dicha lista para la escritura de la memoria del proyecto de trabajo de titulación y el trabajo de titulación.
- Gestor Bibliográfico Mendeley, para la recolección de todas las fuentes bibliográficas y estudios primarios que se usó en este trabajo de titulación.
- Repositorio y página web SciHub¹⁰⁷ (fines académicos), para la recolección de artículos académicos de acceso restringido (de pago).
- Repositorio The Open Science Framework, para monitorear el ciclo de vida del trabajo de titulación, también para el almacenamiento de documentos importantes que se utilizó.
- Repositorio GitHub, para almacenar los documentos pertinentes y necesarios para el desarrollo del presente trabajo de titulación; en formato doc. y pdf.
- Translator DeepL, para la traducción adecuada de los artículos académicos (en inglés) al lenguaje español; utilizados en el desarrollo de este trabajo de titulación.
- Google Académico/Mi Perfil, para conocer, tomar contacto y seguir la pista a través de alertas; de los investigadores de Instituciones de Educación Superior de Ecuador que desarrollan y realizan producción científica en el campo de la Inteligencia Artificial.
- Herramienta de diagramación Lucidchart¹⁰⁸, para el desarrollo de todos los diagramas y esquemas del presente Trabajo de Titulación.
- Tabla periódica de indicadores cienciométricos 109, para el conocimiento de la cienciometría y el uso de indicadores para medir y analizar el impacto de la producción científica de los investigadores de las Instituciones de Educación Superior de Ecuador.

¹⁰⁶ https://gsosa61.files.wordpress.com/2015/11/proceso-metodologico-en-la-investigacion-bavaresco-reduc.pdf

¹⁰⁸ Véase: https://www.lucidchart.com/invitations/accept/431fc21b-654f-4884-96ab-4a505cbeb045

¹⁰⁹ Véase: https://www.iulianmarquina.es/la-tabla-periodica-de-los-indicadores-cienciometricos/

7.2.2. Valoración Económica

En el desarrollo del presente trabajo de titulación, fue necesaria la inversión de talento humano, recursos de hardware y software, servicios, imprevistos.

7.2.2.1. Talento Humano

El presente trabajo de titulación involucra al estudiante investigador y la asesoría de un docente de la Carrera de Ingeniería en Sistemas – Computación; cuyo costo es asumido por la Universidad Nacional de Loja. En la Tabla XXXV, detalla en valor económico de talento humano.

TABLA XXXV.
VALORACIÓN ECONÓMICA TALENTO HUMANO

Rol	Número de horas	Valor por hora	Total
Investigador	400	10.00	4000.00
Tutor y director	400	00.00	00.00
		Total:	4000.00

7.2.2.2. Recursos de hardware y software

En la tabla XXXVI se detalla el valor económico que fue necesario adquirir para el desarrollo del Trabajo de Titulación.

TABLA XXXVI.

VALORACIÓN ECONÓMICA RECURSOS DE HARDWARE Y SOFTWARE

Recursos	Cantidad	Valor Unitario	Valor Total
	HARD	WARE	
Laptop	1	2400.00	2400.00
Flash Memory	1	20.00	20.00
Subtotal: 2420.00			
SOFTWARE			
Bases de datos académicas	5	0.00	00.00

		Total:	2420.00
		Subtotal:	00.00
Lucidchart	1	0.00	00.00
Mendeley	1	0.00	00.00
Framework			
The Open Science	1	0.00	00.00

7.2.2.3. Servicios

En la Tabla XXXVII se detalla el valor económico de los servicios que fue necesario adquirir para el desarrollo del Trabajo de Titulación.

TABLA XXXVII.
VALORACIÓN ECONÓMICA SERVICIOS

Servicio	Cantidad	Valor unitario	Total
Transporte	40	1.85	74.00
Internet	6 meses	26.50	159.00
		Total:	233.00

7.2.2.4. Materiales de oficina

En la Tabla XXXVIII se detalla el valor económico de los materiales de oficina que fue necesario adquirir para el desarrollo del Trabajo de Titulación.

TABLA XXXVIII.

VALORACIÓN ECONÓMICA MATERIALES DE OFICINA

Recursos	Cantidad	Valor unitario	Total
Impresiones	360	05.00	18.00
Copias	360	00.02	7.20
Materiales de oficina	1	25.00	25.00
Anillados	4	3.50	14.00
CDs	3	0.50	1.50
Empastados	3	28.00	84.00
		Total:	149.70

7.2.2.5. Presupuesto Final

El valor de imprevistos fue tomado del valor total de presupuesto del Trabajo de Titulación, este es, 10%. Todo esto, se agregó al valor total del Trabajo de Titulación; en la Tabla XXXIX se muestra dichos valores.

TABLA XXXIX.
PRESUPUESTO TOTAL

Recurso	Subtotal	
Talento Humano	4000.00	
Recursos de hardware y software	2420.00	
Servicios	233.00	
Materiales de Oficina	149.70	
Subtotal	6802.70	
Imprevistos 10%	680.27	
Total	7482.97	

7.2.3. Valoración Ambiental

En el aspecto ambiental se contribuye de forma positiva al medio ambiento, a través del desarrollo de la presente SLR; se aporta a los lectores (estudiantes, servidores públicos y demás investigadores) una gran variedad de literatura científica e investigación en distintas áreas y campos del conocimiento. En ese mismo sentido, es relevante la selección de estudios de la presente SLR, dejando constancia del protocolo de revisión seguido y la documentación pertinente en los distintos repositorios citados.

8. CONCLUSIONES

El desarrollo de una SLR es un proceso metodológico que requiere de práctica y soporte amplio para investigadores poco expertos. El presente TT indica la considerable complejidad de dicho proceso. Como consecuencia de aquello, la propuesta presentada en este TT aporta con las siguientes contribuciones:

- Se identificó dos metodologías de SLR con mayor relevancia e importancia en el campo de la ingeniería siendo estas: "Methodology for Systematic Literature Review applied to Engineering and Education" [64] y "Augmented Reality Trends in Education: A Systematic review of Research and Aplications" [56]. Siendo las mejores metodologías para el desarrollo de una SLR en el campo de la ingeniería. Asimismo, dichas SLR sirven de base principal para el diseño y desarrollo de una propuesta de metodología de SLR en el campo de Ciencias de la Computación; específicamente en la Inteligencia Artificial.
- Se determinó las fases y actividades en la propuesta de metodología de SLR para la IA, destacándose como actividades principales el desarrollo de un mentefacto conceptual para la IA vinculado con los criterios PICOC y la ayuda de un tesauro de la IEEE, también, se definió un grupo de categorías de análisis de acuerdo con cada pregunta de investigación (RQ) para agrupar los artículos según sus características compartidas. Adicionalmente, se incorporó la actividad de codificación de los datos para cada uno de los artículos identificados con el desarrollo de la SLR.
- Se identificó que la mejor SLR para la búsqueda de información vinculada a la IA es la presentada como propuesta de SLR en el presente TT.
- Por medio de la presente SLR se clarificó el estado del arte de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador, ya que se identificó las áreas de mayor producción científica en el campo de la Inteligencia Artificial: el "Machine Learning" (ML) con el 20.94 %, el "Artificial Neural Network" (ANN) con el 16.75 % y el "Data Mining" (DM) con el 11.51 %.
- Se identificó 32 Instituciones de Educación Superior del Ecuador donde sus investigadores desarrollan producción científica en el campo de la Inteligencia Artificial.
- Se identificó que las Instituciones de Educación Superior del Ecuador con mayor aporte en el área de Machine Learning (ML) son: La Universidad Politécnica

- Salesiana (UPS), con ocho artículos publicados. Y la Escuela Superior Politécnica de Litoral (ESPOL), con seis artículos publicados.
- Se identificó que las Instituciones de Educación Superior del Ecuador con mayor aporte en el área de Artificial Neural Network (ANN) son: La Universidad Politécnica Salesiana (UPS), con seis artículos publicados, la Universidad de las Fuerzas Armadas (ESPE), con seis artículos publicados y la Escuela Politécnica Nacional (EPN), con seis artículos publicados.
- Se identificó que la Institución de Educación Superior del Ecuador con mayor aporte en el área de Data Mining (DM) es: La Universidad de las Fuerzas Armadas (ESPE), con cuatro artículos publicados.
- Se identificó 113 Instituciones de Educación Superior en 32 países, que desarrollaron artículos publicados en co-autoría con investigadores ecuatorianos. Además, se identificó a España, Estados Unidos, Brasil realizar mayor vinculación con investigadores ecuatorianos.
- Se identificó 54 revistas que están categorizadas en el primer cuartil (Q1), también, se identificó 13 revistas categorizadas en el segundo cuartil (Q2), asimismo se identificó 3 revistas están categorizadas en el tercer cuartil (Q3).
- Finalmente, se identificó a los miembros de 48 grupos de investigación en 23 Instituciones de Educación Superior del Ecuador. Cabe agregar, que las Instituciones de Educación Superior líderes en el campo de la Inteligencia Artificial cuentan con mayor cantidad de grupos de investigación y mejor infraestructura para el desarrollo de trabajos de Inteligencia Artificial.

9. RECOMENDACIONES

El presente TT aporta con las siguientes recomendaciones:

- Se debe documentar el protocolo de revisión al final de cada proceso, en lugar de solo establecerlo al inicio sin haber explorado todas sus actividades. Posteriormente, permitirá tomar decisiones en relación a las mejoras del proceso, criterios, script de búsqueda, etcétera.
- Construir script de búsqueda eficientes, que permitan recuperar la mayor cantidad de artículos, con el menor esfuerzo necesario para el descarte de artículos irrelevantes.

- Desarrollar un mentefacto conceptual con el uso de un Thesaurus, para robustecer los elementos utilizados en los criterios PICOC estableciendo mayor énfasis en las palabras claves (keywords).
- Reforzar el protocolo de revisión, incluyendo más bases de datos científicas aparte de las principales, para abordar una mayor cantidad de artículos publicados.
- Actualizar los scripts de búsqueda para generar nuevas búsquedas en las bases de datos académicas seleccionadas.
- Con respecto a las Instituciones de Educación Superior del Ecuador es necesario impulsar el desarrollo e implementación de trabajos en el campo de la Inteligencia Artificial; ya que dichos trabajos representan un crecimiento significativo en su producción científica.
- Los investigadores en general, deben gestionar su perfil y mantenerlo actualizado (perfiles en repositorios, en redes académicas, en Google Scholar); para mejorar su visibilidad e impacto, difundir sus publicaciones, seguir a científicos relevantes a su tema, estar al día mediante la configuración de alertas, conocer quien lo cita, etcétera.
- Conocer y dominar la literatura de su campo, buscando temas en tendencia e internacionales que en su mayoría sean en Revistas de alto impacto y que estén escritos en inglés. Además, deben manejar a un nivel experto las bases de datos científicas (por ejemplo, Scopus, Web of Science, ACM, etcétera).
- Desarrollar SLR en cualquier campo del conocimiento, ya que estas permiten crear estados del arte mucho más robustos sobre los que sustentar una investigación o un trabajo académico.
- Al momento de utilizar el gestor de bibliográfico Mendeley, validar y confirmar los metadatos manualmente de los documentos descargados.
- Finalmente, utilizar y gestionar la herramienta de software libre VOSviewer, para construir y visualizar redes bibliométricas en los trabajos de SLR.

9.1. Trabajos Futuros

Una vez concluido el presente TT se plantea algunos trabajos futuros que pueden realizarse:

- Investigar a profundidad la vinculación de cada una de las áreas de la Inteligencia Artificial con las líneas de investigación priorizadas. Además, profundizar la investigación en distintas áreas de conocimiento por ejemplo en la Salud, la Agricultura, la Industria, etcétera.
- Desarrollar un estudio sobre la importancia que tiene la inserción de la investigación en las Instituciones de Educación Superior del Ecuador, y con ello fomentar una cultura investigativa. Además, impulsar la investigación formativa y la práctica investigativa.
- Desarrollar y analizar un estudio sobre la repercusión académica de la producción y divulgación científica en las Instituciones de Educación Superior del Ecuador. Además, el estudio podría vincular investigadores de Universidades internacionales.
- Analizar las las tendencias y tecnologías emergentes en la actualidad, la Industria 4.0 y el Internet de las Cosas (IoT) a través de la práctica investigativa.
- Finalmente, desarrollar una comparación utilizando la metodología propuesta en el presente TT para observar si mejoran los resultados; en relación con la metodología clásica de Bárbara Kitchenham.

10. BIBLIOGRAFÍA

- [1] J. Haugeland, *Mind Design II*. Cambridge, Massachusetts London, England, 1997.
- [2] D. Taraborrelli and R. Gala, "Génesis y actualidad de la inteligencia artificial (IA) en las instituciones públicas de la Argentina , una mirada desde," pp. 0–15, 2015.
- [3] G. de la C. León Rodriguez and S. M. Viña Brito, "La inteligencia artificial en la educacion superior. Oportunidades y amenazas.," *INNOVA Res. J.*, vol. 2, no. 8.1, pp. 412–422, 2017, doi: 10.33890/innova.v2.n8.1.2017.399.
- [4] R. Luckin, W. Holmes, M. Griffiths, and Laurie B. Forcier., *Intelligence Unleashed: An argument for AI in Education*. 2016.
- [5] Julian PT Higgins y Sally Green, Manual Cochrane de revisiones sistemáticas de intervenciones, Version 5. 2011.
- [6] K. Khan, Khalid, S, ter Riet, Gerben, Glanville, Julia, Sowden, Amanda J, *Systematic Reviews: CRD's guidance for undertaking reviews in health care*. CRD, University of York, 2009.
- [7] G. Urru and I. F. Gonza, "Revisiones sistemáticas y meta análisis: bases conceptuales e interpretación," vol. 64, no. 8, pp. 688–696, 2011, doi: 10.1016/j.recesp.2011.03.029.
- [8] G. V Glass and K. White, "Primary, Secondary, and Meta-Analysis of Research," pp. 3–8, 1974.
- [9] Julian PT Higgins y Sally Green, Cochrane Handbook for Systematic Reviews of Interventions. 2008.
- [10] S. Meca *et al.*, "La colaboración Campbell y la práctica basada en la evidencia," 2002
- [11] B. Kitchenham, "Source: " Guidelines for performing Systematic Literature Reviews in SE", Kitchenham et al Guidelines for performing Systematic Literature Reviews in Software Engineering," 2007. Accessed: Jul. 26, 2018. [Online]. Available: https://userpages.uni-koblenz.de/~laemmel/esecourse/slides/slr.pdf.
- [12] Sorrell and Steve, "Improving the evidence base for energy policy: The role of systematic reviews," *Energy Policy*, vol. 35, no. 3, pp. 1858–1871, 2007, Accessed: Aug. 10, 2018. [Online]. Available: https://ideas.repec.org/a/eee/enepol/v35y2007i3p1858-1871.html.
- [13] D. Tranfield, D. Denyer, and P. Smart, "Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review*," 2003. Accessed: Aug. 10, 2018. [Online]. Available: https://www.cebma.org/wp-content/uploads/Tranfield-et-al-Towards-a-Methodology-for-Developing-Evidence-Informed-Management.pdf.
- [14] B. Kitchenham and Stuart Charters., "Guidelines for performing Systematic Literature Reviews in Software Engineering," 2007. Accessed: Jul. 26, 2018. [Online]. Available: https://userpages.uni-koblenz.de/~laemmel/esecourse/slides/slr.pdf.
- [15] U. of Y. Centre for Reviews and Dissemination, "Undertaking systematic reviews of research on effectiveness: CRD's guidance for carrying out or commissioning reviews," 2001, Accessed: Aug. 10, 2018. [Online]. Available: http://eprints.whiterose.ac.uk/1139/.

- [16] H. Koleoso, M. Omirin, Y. Adewunmi, and G. Babawale, "Applicability of existing performance evaluation tools and concepts to the nigerian facilities management practice," *Int. J. Strateg. Prop. Manag.*, vol. 17, no. 4, pp. 361–376, Dec. 2013, doi: 10.3846/1648715X.2013.861367.
- [17] U. Yogesh K. Dwivedi, Swansea University, U. Michael D. Williams, Swansea University, U. Banita Lal, Nottingham Trent University, and U. Navonil Mustafee, Swansea University, "An Analysis of literature on consumer Adoption and diffusion of Information system/Information technology/Information and communication technology," 2010, doi: 10.4018/jegr.2010100105.
- [18] L. F. Rodríguez, J. D. Velásquez, and C. J. Franco, "A scientific research about the progress of computational intelligence ensemble methods for economic and financial time series prediction," Estudiante, Maestría en Ingeniería, 2008.
- [19] N. J. Nilsson, *Artificial Intelligence : a new synthesis*. Morgan Kaufmann Publishers, 1998.
- [20] J. Soto and E. Resumen, "Turing: El hombre que sabía demasiado," vol. 19, pp. 110–116, 2009.
- [21] A. M. Turing, "Computing Machinery and Intelligence," *Mind*, vol. 49, pp. 433–460, 1950.
- [22] C. M. Soto, "Teoría de Sistemas Expertos."
- [23] B. Javier, "Qué es la Inteligencia Artificial, cuál es su historia y cuáles son sus aplicaciones en una completa infografía.".
- [24] M. P. & P. Daugherty, "Inteligencia Artificial, el futuro del crecimiento," *Accenture*, 2016.
- [25] H. A. Banda, Inteligencia artificial: Principios y aplicaciones. 2014.
- [26] G. de la C. León-Rodriguez and S. M. Viña-Brito, "La inteligencia artificial en la educacion superior. Oportunidades y amenazas.," *INNOVA Res. J.*, vol. 2, no. 8.1, pp. 412–422, 2017, doi: 10.33890/innova.v2.n8.1.2017.399.
- [27] Consulting informático, "Industria 4.0: Nuevos retos para la Transformación Digital," 2019. .
- [28] G. G. I. Solutions, "¿Qué es y qué aporta la Industria 4.0?," 2018. .
- [29] J. Duitama, "La industria 4.0 y la Universidad," 2018.
- [30] J. M. Roca, "Informe 'Hype Cycle for Artificial Intelligence, 2019' (Gartner)," 2019.
- [31] M. Rimol and Gartner, "Gartner identifica cinco tendencias tecnológicas emergentes con impacto transformador," 2019. .
- [32] K. Wai, P. D. Thompson, and T. E. Kimber, "Article metrics: measuring the impact and importance papers," *J. Neurol. Neurosurg. Psychiatry*, vol. 87, no. 7, p. 782, 2016, doi: 10.1136/jnnp-2015-310628.
- [33] C. Almeida, "Radar latinoamericano: la región en la era de la inteligencia artificial," 2019.
- [34] M. de Ambrosio, "Argentina: Usan inteligencia artificial contra el dengue," 2018. https://www.scidev.net/america-latina/salud/noticias/argentina-usan-inteligencia-artificial-contra-eldengue.html?__cf_chl_jschl_tk__=0c77db19de2ffcfb018346dfdcb90e545a60db9 f-1594956531-0-Acl3N3-G_yeRF5W6_0cxytAZHKBSaGV-9pTQJNsrNAlVt1NdIlfJAtb27W_EDKiFwsq.
- [35] R. EC, "X-Ray Inteligencia Artificial," 2019. .
- [36] L. Siguenza-Guzman, V. Saquicela, E. Avila-ordóñez, J. Vandewalle, and D.

- Cattrysse, "Literature Review of Data Mining Applications in Academic Libraries," in *The Journal of Academic Librarianship*, 2015, doi: 10.1016/j.acalib.2015.06.007.
- [37] "Grupo de Investigación en Inteligencia Artificial y Tecnologías de Asistencia presenta los resultados de su trabajo UPS." https://www.ups.edu.ec.
- [38] T. M. Zapata, F. Q. Barbecho, V. R. Bykbaev, and P. I. Guerra, *Revista tecnológica*., vol. 28, no. 4. Escuela Superior Politécnica del Litoral (ESPOL), 2015.
- [39] E. Polit, "Especial de la EPN," 2014.
- [40] D. Vallejo-Huanga, P. Morillo, and C. Ferri, "Semi-Supervised Clustering Algorithms for Grouping Scientific Articles," *Procedia Comput. Sci.*, vol. 108, pp. 325–334, 2017, doi: 10.1016/j.procs.2017.05.206.
- [41] F. Pacheco, M. Cerrada, D. Cabrera, C. Li, and J. Valente-de -Oliveira, "Attribute clustering using rough set theory for feature selection in fault severity classification of rotating machinery," in *Expert Systems With Applications*, 2016, doi: 10.1016/j.eswa.2016.11.024.
- [42] Z. Chen, S. Deng, X. Chen, C. Li, R. Sanchez, and H. Qin, "Deep neural networks-based rolling bearing fault diagnosis," in *Microelectronics Reliability*, 2017, doi: 10.1016/j.microrel.2017.03.006.
- [43] D. Cabrera *et al.*, "Automatic Feature Extraction of Time-Series applied to Fault Severity Assessment of Helical Gearbox in Stationary and Non-Stationary Speed Operation," in *Applied Soft Computing Journal*, 2017, doi: 10.1016/j.asoc.2017.04.016.
- [44] I. Ramírez-morales, D. Rivero, A. Pazos, and E. Fernández-Blanco, "Optimization of NIR calibration models for multiple processes in the sugar industry," in *Chemometrics and Intelligent Laboratory Systems*, 2016, doi: 10.1016/j.chemolab.2016.10.003.
- [45] L. Bravo-moncayo, J. L. Naranjo, I. Pavón-Garcia, and R. Mosquera, "Neural based contingent valuation of road traffic noise," in *Transportation Research Part D*, 2017, vol. 50, pp. 26–39, doi: 10.1016/j.trd.2016.10.020.
- [46] J. Parraga-Alava, R. A. Caicedo, J. M. Gomez, and M. Inostroza-Ponta, "An Unsupervised Learning Approach for Automatically to Categorize Potential Suicide Messages in Social Media," *Proc. Int. Conf. Chil. Comput. Sci. Soc. SCCC*, vol. 2019-Novem, 2019, doi: 10.1109/SCCC49216.2019.8966443.
- [47] Consejo de Educación Superior., "Reglamento De Regimen Academico (Codificacion)," *Cons. Educ. Super.*, no. 051, pp. 1–51, 2017, [Online]. Available: http://www.ces.gob.ec/lotaip/Anexos Generales/a3/Anexo-lit-a3-R-Rég-Académico.pdf.
- [48] M. G. Bocco, J. A. Cruz-Lemus, and M. G. P. Velthuis, *Métodos de investigación en ingeniería del software*.
- [49] Ragnhild Guevara Patiño, "El estado del arte en la investigación: ¿análisis de los conocimientos acumulados o indagación por nuevos sentidos?" Accessed: Jul. 27, 2018. [Online]. Available: http://www.scielo.org.co/pdf/folios/n44/n44a11.pdf.
- [50] R. Hernández Sampieri, C. Fernández Collado, and M. del Pilar Baptista Lucio, "Metodología de la investigación, 5ta Ed." Accessed: Aug. 24, 2018. [Online]. Available: www.FreeLibros.com.
- [51] D. B. van. Dalen, W. J. Meyer, O. Muslera, and C. Moyano, Manual de técnica

- de la investigación educacional. Paidós, 1981.
- [52] B. Kitchenham, "Procedures for Performing Systematic Reviews," 2004. Accessed: Oct. 23, 2018. [Online]. Available: http://www.inf.ufsc.br/~aldo.vw/kitchenham.pdf.
- [53] G. P. Anna, "Proceso de revisión sistemática de experimentos de ingeniería de software," 2017, [Online]. Available: http://oa.upm.es/48641/1/ANNA_GRIMAN_PADUA.pdf.
- [54] J. Biolchini, P. Gomes Mian, A. Candida Cruz Natali, and G. Horta Travassos, "Systematic Review in Software Engineering," 2005.
- [55] P. V. Torres-Carrion, C. S. Gonzalez-Gonzalez, S. Aciar, and G. Rodriguez-Morales, "Methodology for systematic literature review applied to engineering and education," in 2018 IEEE Global Engineering Education Conference (EDUCON), Apr. 2018, pp. 1364–1373, doi: 10.1109/EDUCON.2018.8363388.
- [56] Bacca jorge, S. Baldiris, F. Ramon, G. Sabine, and Kinshuk, "Augmented Reality Trends in Education: A Systematic Review of Research and Applications.," *J. Educ. Technol. Soc.*, vol. 17, no. 4, pp. 133–149, 2014.
- [57] M. Planning, "1 Systematic Review and Mapping," no. i, pp. 4–6.
- [58] "Guidelines for performing Systematic Literature Reviews in Software Engineering," 2007.
- [59] Kitchenham, "Guidelines for performing Systematic Literature Reviews in Software Engineering," 2007, [Online]. Available: https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pd f.
- [60] R. I. H. John Concato, "Beyond randomised versus observational studies," *Rev. Clin. Esp.*, vol. 157, no. 3, pp. 197–199, 1980, doi: 10.1016/S0140-6736(04)16285-5.
- [61] T. Greenhalgh, "How to read a paper: Papers that summarise other papers (systematic reviews and meta-analyses)," 1997. Accessed: Nov. 07, 2018. [Online]. Available: http://www.vhpharmsci.com/decisionmaking/Therapeutic_Decision_Making/Inte rmediate_files/How to read a paper-Papers that summarise other papers-systematic reviews and meta-analyses-BMJ.pdf.
- [62] D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, and the P. Group, "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement," *Ann. Intern. Med.*, vol. 151, no. 4, pp. 264–269, 2009, doi: 10.1371/journal.pmed1000097.
- [63] T. C. Collaboration, "Cochrane reviewers' handbook," *Cochrane Libr.*, no. 1, p. 241, 2004, doi: 10.1038/sj.ijo.0801229.
- [64] P. V. Torres-Carrion, C. S. Gonzalez-Gonzalez, S. Aciar, and G. Rodriguez-Morales, "Methodology for systematic literature review applied to engineering and education," *IEEE Glob. Eng. Educ. Conf. EDUCON*, vol. 2018-April, no. April, pp. 1364–1373, 2018, doi: 10.1109/EDUCON.2018.8363388.
- [65] D. Budgen, M. Turner, P. Brereton, and B. Kitchenham, "Using mapping studies in software engineering," *Ppig*, vol. 8, pp. 195–204, 2008, doi: 10.1007/978-3-642-02152-7_36.
- [66] K. Peterson, R. Feldt, S. Mujtaba, and M. Mattsson, "Systematic Mapping Studies in Software Engineering," *Pediatr. Neonatol.*, vol. 58, no. 6, pp. 484–489, 2017, doi: 10.1016/j.pedneo.2016.08.011.

- [67] C. Costa and L. Murta, "Version control in Distributed Software Development: A systematic mapping study," *Proc. IEEE 8th Int. Conf. Glob. Softw. Eng. ICGSE* 2013, pp. 90–99, 2013, doi: 10.1109/ICGSE.2013.19.
- [68] S. of C. S. and M. K. U. Keele and U. Department of Computer Science University of Durham Durham, "Guidelines for performing Systematic Literature Reviews in Software Engineering," 2007, Accessed: Jun. 28, 2018. [Online]. Available: https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pd f.
- [69] I. Steinmacher, A. P. Chaves, and M. A. Gerosa, "Awareness support in distributed software development: A systematic review and mapping of the literature," *Comput. Support. Coop. Work*, vol. 22, no. 2–3, pp. 113–158, 2013, doi: 10.1007/s10606-012-9164-4.
- [70] Beelmann and R. Petticrew, Systematic reviews in the social sciences. A practical guide. 2006.
- [71] D. Strategy and B. Concepts, "Mentefactos conceptuales como estrategia didáctico- pedagógica de los conceptos básicos de la teoría de muestreo aplicados en investigación en salud," vol. 4, pp. 62–72, 2006.
- [72] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman, "Systematic literature reviews in software engineering A systematic literature review," *Inf. Softw. Technol.*, vol. 51, pp. 7–15, 2008, doi: 10.1016/j.infsof.2008.09.009.
- [73] El Profesional de la Información y EC3metrics, "Periodic Table of Scientometric Indicators Impact per Paper," p. 1, 2018, [Online]. Available: https://ec3metrics.com/wp-content/uploads/2018/06/tablaper3.pdf.
- [74] M. de T. y S. de la Información and T. e I. (SENESCYT) Seretaría De Educación Superior, Ciencia, *Libro Blanco Líneas de Investigación, Desarrollo e Innovación y Transferencia del Conocimiento en TIC.*.
- [75] E. P. Nacional, "Líneas y Áreas de Investigación de la Escuela Politécnica Nacional," 2018.
- [76] Oscar H. Arcila Niño, "Las líneas de investigación como elemento articulador de los procesos académicos en la universidad," *Nómadas (Colombia)*, vol. 3, no. 2, pp. 139–145, 1996.
- [77] D. Torres-Salinas, R. Ruiz-Pérez, and E. Delgado-López-Cózar, "Google Scholar como herramienta para la evaluación científica," *Prof. la Inf.*, vol. 18, no. 5, pp. 501–510, 2009, doi: 10.3145/epi.2009.sep.03.
- [78] E. Delgado López-Cózar and E. Orduna-Malea, "Cómo crear y mantener un perfil en Google Scholar Citations," [Presentation], 2016.
- [79] F. Unesco, C. Internacional, N. De, and E. Cine, "Areas Y Subáreas Del Conocimiento Unesco," 1997.
- [80] N. J. van Eck and L. Waltman, "VOSviewer manual," 2013. [Online]. Available: http://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.1.pdf.
- [81] L. A. C. Eras, "Propuesta de un Modelo de Confianza para Comunidades Virtuales de Aprendizaje," 2017.
- [82] G. P. Anna, "Proceso de Revisión Sistemática de experimentos en ingeniería del software," 2017.
- [83] N. T. Liu and J. Salinas, "Machine learning in burn care and research: A systematic review of the literature," *Burns*, vol. 41, no. 8, pp. 1636–1641, 2015,

- doi: 10.1016/j.burns.2015.07.001.
- [84] Y. Lee *et al.*, "Applications of machine learning algorithms to predict therapeutic outcomes in depression: A meta-analysis and systematic review," *J. Affect. Disord.*, vol. 241, pp. 519–532, 2018, doi: 10.1016/j.jad.2018.08.073.
- [85] M. Balestrini, A. Bavaresco, and C. Jesús, *Verbos que pueden ser utilizados en la redacción de objetivos*. 1997.
- [86] E. Ander-Egg, R. Baxter, N. Hastings, A. Law, and E. J. . Glass, *Aprender a investigar*, vol. 39, no. 5. 2008.
- [87] M. Roqué, "Organización de una Revisión Sistemática para un Grupo Cochrane de Revisiones," 2001.
- [88] D. Guamán, J. Pérez, and J. Díaz, "Towards a (semi)-automatic reference process to support the reverse engineering and reconstruction of software architectures," in *ACM International Conference Proceeding Series*, 2018, doi: 10.1145/3241403.3241414.
- [89] V. Echeverría, A. Avendaño, K. Chiluiza, A. Vásquez, and X. Ochoa, "Presentation skills estimation based on video and kinect data analysis," in *MLA* 2014 Proceedings of the 2014 ACM Multimodal Learning Analytics Workshop and Grand Challenge, Co-located with ICMI 2014, 2014, pp. 53–60, doi: 10.1145/2666633.2666641.
- [90] G. Luzardo, B. Guamán, K. Chiluiza, J. Castells, and X. Ochoa, "Estimation of presentations skills based on slides and audio features," in *MLA 2014 Proceedings of the 2014 ACM Multimodal Learning Analytics Workshop and Grand Challenge, Co-located with ICMI 2014*, 2014, pp. 37–44, doi: 10.1145/2666633.2666639.
- [91] S. Puente-C, C. E. Madrid, M. Realpe, and B. X. Vintimilla, "An empirical comparison of DCNN libraries to implement the vision module of a Danger Management System," in *ACM International Conference Proceeding Series*, 2017, pp. 60–65, doi: 10.1145/3094243.3094255.
- [92] J. Torres, C. Vaca, and C. L. Abad, "What ignites a reply? Characterizing conversations in microblogs," in *BDCAT 2017 Proceedings of the 4th IEEE/ACM International Conference on Big Data Computing, Applications and Technologies*, 2017, pp. 149–156, doi: 10.1145/3148055.3148071.
- [93] E. Valarezo-Añazco, P. Rivera-Lopez, K. Byun, S. Lee, and T. S. Kim, "Smoking activity recognition using a single wrist IMU and deep learning light," in *ACM International Conference Proceeding Series*, 2018, pp. 6–11, doi: 10.1145/3193025.3193028.
- [94] H. Ávalos, E. Gómez, D. Guzmán, D. Ordóñez-Camacho, J. Román, and O. Taipe, "Where to park? Architecture and implementation of an empty parking lot, automatic recognition system," in *Enfoque UTE*, 2019, vol. 10, no. 1, pp. 54–64, doi: 10.29019/enfoqueute.v10n1.445.
- [95] R. A. Becerra-García *et al.*, "Data Mining process for identification of non-spontaneous saccadic movements in clinical electrooculography," in *Neurocomputing*, 2017, vol. 250, pp. 28–36, doi: 10.1016/j.neucom.2016.10.077.
- [96] L. D. E. Actas, "Inciscos 2016," 2016.
- [97] M. Q. Garzón-Quiroz, "Inductive Machine Learning with Image Processing for Objects Detection of a Robotic Arm with Raspberry PI," in *Conferencia internacional sobre tendencias tecnológicas*, 2019, vol. 895, pp. 590–604, doi: 10.1007/978-3-030-05532-5.

- [98] M. Méndez, S. Oña, and S. Ayala, "Caso de estudio. Perspectivas del uso de herramientas de aprendizaje automático y cómputo de alto rendimiento en investigación científica por parte de estudiantes de pregrado en una universidad del Ecuador," 2017.
- [99] A. Muñoz-García, F. Del-Cioppo-Morstadt, and M. Bucaram-Leverone, "Ontology Model for the Knowledge Management in the Agricultural Teaching at the UAE," in *Communications in Computer and Information Science*, 2017, vol. 749, no. January 2019, pp. 0–15, doi: 10.1007/978-3-319-67283-0.
- [100] A. Hernández-Blanco, B. Herrera-Flores, D. Tomás, and B. Navarro-Colorado, "A Systematic Review of Deep Learning Approaches to Educational Data Mining," in *Complexity Hindawi*, 2019, pp. 1–22, doi: 10.1155/2019/1306039.
- [101] Suntaxi Sarango Martha Cristina, "Aplicaciones del Aprendizaje Profundo en Intermediación Financiera: Una revisión sistemática de la literatura," pp. 1–38, 2019.
- [102] C. E. Garcia-Moreta, M. R. Camana-Acosta, and I. Koo, "Prediction of Digital Terrestrial Television Coverage Using Machine Learning Regression," in *IEEE Transactions on Broadcasting*, 2019, pp. 1–11, doi: 10.1109/TBC.2019.2901409.
- [103] B. Silva *et al.*, "Mapping Two Competing Grassland Species from a Low-Altitude Helium Balloon," in *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (IEEE J-STARS)*, 2014, vol. 7, no. 7, pp. 3038–3049.
- [104] J. Aguilar, P. Valdiviezo-Díaz, and G. Riofrio, "A general framework for intelligent recommender systems," in *Appied Computing and Informatics*, 2017, pp. 147–160, doi: 10.1016/j.aci.2016.08.002.
- [105] F. Angiulli and E. Narvaez, "Pruning strategies for nearest neighbor competence preservation learners," in *Neurocomputing*, 2018, pp. 1–13, doi: 10.1016/j.neucom.2018.04.017.
- [106] A. Auquilla, Y. De-Book, and J. R. Duflou, "Improving Cluster-based Methods for Usage Anticipation by the Application of Data Transformations," in *Procedia Manufacturing*, 2018, vol. 24, pp. 166–172, doi: 10.1016/j.promfg.2018.06.044.
- [107] L. Barba, D. Sánchez-macías, I. Barba, and N. Rodríguez, "The potential of non-invasive pre- and post-mortem carcass measurements to predict the contribution of carcass components to slaughter yield of guinea pigs," in *Meat Science*, 2018, vol. 140, pp. 59–65, doi: 10.1016/j.meatsci.2018.02.019.
- [108] J. Coronel-reyes, I. Ramirez-morales, E. Fernandez-blanco, D. Rivero, and A. Pazos, "Determination of egg storage time at room temperature using a low-cost NIR spectrometer and machine learning techniques," in *Computers and Electronics in Agriculture*, 2018, vol. 145, pp. 1–10, doi: 10.1016/j.compag.2017.12.030.
- [109] F. Cánovas-garcía, F. Alonso-Sarría, F. Gomariz-castillo, and F. Oñate-Valdivieso, "Modication of the random forest algorithm to avoid statistical dependence problems when classifying remote sensing imagery," in *Computers and Geosciences*, 2017, doi: 10.1016/j.cageo.2017.02.012.
- [110] P. Chavez-burbano, V. Guerra, J. Rabadan, and R. Perez-jimenez, "Optical Camera Communication system for three-dimensional T indoor localization," in *Optik International Journal for Light and Electron Optics*, 2019, vol. 192, doi: 10.1016/j.ijleo.2019.05.076.
- [111] C. M. Guio Blanco, V. M. Brito Gomez, P. Crespo, and M. Ließ, "Spatial

- prediction of soil water retention in a Páramo landscape: Methodological insight into machine learning using random forest," in *Geoderma*, 2018, vol. 316, no. July 2017, pp. 100–114, doi: 10.1016/j.geoderma.2017.12.002.
- [112] R. A. Lara-cueva, D. S. Benítez, E. V. Carrera, M. Ruiz, and J. L. Rojo-Álvarez, "Feature selection of seismic waveforms for long period event detection at Cotopaxi Volcano," in *Journal of Volcanology and Geothermal Research*, 2016, vol. 316, pp. 34–49, doi: 10.1016/j.jvolgeores.2016.02.022.
- [113] C. Li, R. Sanchez, G. Zurita, M. Cerrada, D. Cabrera, and R. E. Vásquez, "Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis," in *Neurocomputing*, 2015, vol. 168, pp. 119–127, doi: 10.1016/j.neucom.2015.06.008.
- [114] C. Li, R. Sanchez, G. Zurita, M. Cerrada, D. Cabrera, and R. E. Vásquez, "Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals," in *Mechanical Systems and Signal Processing*, 2016, pp. 1–11, doi: 10.1016/j.ymssp.2016.02.007.
- [115] J. M. Lillo-Castellano, I. Mora-Jiménez, C. Figuera-Pozuelo, and J. L. Rojo-Álvarez, "Traffic sign segmentation and classification using statistical learning methods," in *Neurocomputing*, 2014, doi: 10.1016/j.neucom.2014.11.026.
- [116] J. A. Morales, E. Orduña, C. Rehtanzc, R. J. Cabrald, and A. S. Bretas., "Comparison between Principal Component Analysis and Wavelet Transform 'Filtering Methods for Lightning Stroke Classification on Transmission Lines," 2014, doi: 10.1016/j.epsr.2014.05.018.
- [117] A. Mozo, J. L. López-presa, and A. Fernández, "A distributed and quiescent max-min fair algorithm for network congestion control," *Expert Syst. Appl.*, vol. 91, pp. 492–512, 2018, doi: 10.1016/j.eswa.2017.09.015.
- [118] R. Santiago-mozos *et al.*, "On feature extraction for noninvasive kernel estimation of left ventricular chamber function indices from echocardiographic images," *Digit. Signal Process.*, vol. 39, pp. 63–79, 2015, doi: 10.1016/j.dsp.2014.12.012.
- [119] F. Pacheco *et al.*, "A statistical comparison of neuroclassifiers and feature selection methods for gearbox fault diagnosis under realistic conditions," in *Neurocomputing*, 2016, vol. 194, pp. 192–206, doi: 10.1016/j.neucom.2016.02.028.
- [120] E. Puerto, J. Aguilar, C. López, and D. Chávez, "Using Multilayer Fuzzy Cognitive Maps to diagnose Autism Spectrum Disorder," in *Applied Soft Computing Journal*, 2018, doi: 10.1016/j.asoc.2018.10.034.
- [121] A. Sánchez-Rodríguez *et al.*, "From flamingo dance to (desirable) drug discovery: a nature-inspired approach," in *Drug Discovery Today*, 2017, vol. 6446, no. 17, doi: 10.1016/j.drudis.2017.05.008.
- [122] D. Vallejo-Huanga, P. Morillo, and C. Ferri, "Semi-Supervised Clustering Algorithms for Grouping Scientific Articles," in *Procedia Computer Science*, 2017, pp. 325–334, doi: 10.1016/j.procs.2017.05.206.
- [123] J. Torres, G. Baquerizo, C. Vaca, and E. Peláez, "Characterizing Influential Leaders of Ecuador on Twitter Using Computational Intelligence," in *Third International Conference on eDemocracy & eGovéasenment (ICEDEG)*, 2016, pp. 159–163.
- [124] W. Zamora, C. T. Calafate, J. C. Cano, and P. Manzoni, "Noise-sensing using smartphones: Determining the right time to sample," in *ACM International*

- *Conference Proceeding Series*, 2017, pp. 196–200, doi: 10.1145/3151848.3151868.
- [125] L. Terán, A. O. Mensah, and A. Estorelli, "A Literature Review for Recommender Systems Techniques Used in Microblogs," in *Expert Systems with Applications*, 2018, vol. 103, pp. 63–73, doi: 10.1016/j.eswa.2018.03.006.
- [126] S. Bravo and Á. H. Moreno, "Prediction model based on neural networks for microwave drying process of amaranth seeds," in *ACM International Conference Proceeding Series*, 2019, pp. 88–93, doi: 10.1145/3314545.3314551.
- [127] A. Ferrin, J. Larrea, M. Realpe, and D. Ochoa, "Detection of utility poles from noisy Point Cloud Data in Urban environments," in *ACM International Conference Proceeding Series*, 2018, no. Figure 1, pp. 53–57, doi: 10.1145/3299819.3299829.
- [128] G. Luzardo, J. Aelterman, H. Luong, W. Philips, and D. Ochoa, "Real-time false-contours removal for inverse tone mapped HDR content," in *MM 2017 Proceedings of the 2017 ACM Multimedia Conference*, 2017, pp. 1472–1479, doi: 10.1145/3123266.3123400.
- [129] M. A. Parreño, C. J. Celi, W. X. Quevedo, D. Rivas, and V. H. Andaluz, "Teaching-learning of basic language of signs through didactic games," in *ACM International Conference Proceeding Series*, 2017, pp. 46–51, doi: 10.1145/3175536.3175584.
- [130] M. G. Almache-C, J. A. Ruiz-R, G. Raura, and E. R. Fonseca-C, "Modelo Neuronal de Estimación para el Esfuerzo de Desarrollo en Proyectos de Software (MONEPS)," in *XI Jornadas Iberoamericanas de Ingenieria de Software e Ingenieria del Conocimiento, JIISIC 2015*, 2015, pp. 133–146.
- [131] J. P. Bermeo, M. Huerta, M. Bravo, and A. Bermeo, "Artificial Neural Network Applied like Qualifier of Symptoms in Patients with Parkinson's Disease by Evaluating the Movement of Upper-Limbs Activities," in *Biomedizinische Technik*, 2018, vol. 27, no. 10, pp. 226–228, doi: 10.1515/bmte.1982.27.10.226.
- [132] Y. Merizalde, L. Hernández-Callejo, O. Duque-Perez, and V. Alonso-Gómez, "Maintenance models applied to wind turbines. A comprehensive overview," in *Energies*, 2019, vol. 12, no. 2, pp. 1–41, doi: 10.3390/en12020225.
- [133] A. Nagar, D. Prasad-Mohapatra, N. Chaki, and R. Herrera-Lara, "SmartInnovation, Systems and Technologies," in *3rd International Conference on Advanced Computing, Networking and Informatics*, 2016, vol. 43.
- [134] C. P. Pereira-Paredes and O. M. Cumbicus-Pineda, "Revisión sistemática de literatura: Análisis de riesgos utilizando Redes Bayesianas," in *Conferencia: II Jornada de Investigación Ciencia, Tecnología y SociedadEn: Pontificia Universidad Católica del Ecuador Sede Esmeraldas*, 2017.
- [135] R. A. D. Pereira *et al.*, "Evaluation of a Few Interpolation Techniques of Gravity Values in the Border Region of Brazil and Argentina," in *International Association of Geodesy Symposia*, 2012, vol. 136, doi: 10.1007/978-3-642-20338-1.
- [136] P. Ingavélez, J. R. Hilera, C. Timbi, and L. Bengochea, *Aplicación de tecnologías de la información y comunicaciones avanzadas*. 2016.
- [137] M. A. Espinoza Mina and D. D. P. Gallegos Barzola, "Neuromarketing and facial recognition: A systematic literature review," in *Communications in Computer and Information Science*, 2018, vol. 883, pp. 214–228, doi: 10.1007/978-3-030-00940-3_16.

- [138] D. Cabrera *et al.*, "Generative Adversarial Networks Selection Approach for Extremely Imbalanced Fault Diagnosis of Reciprocating Machinery," in *IEEE Access*, 2019, pp. 70643–70653, doi: 10.1109/ACCESS.2019.2917604.
- [139] R. Cajo, T. H. I. T. Mac, D. Plaza, C. Copot, R. De-Keyser, and C. Ionescu, "A Survey on Fractional Order Control Techniques for Unmanned Aerial and Ground Vehicles," in *IEEE Access*, 2016, vol. 4, pp. 1–16, doi: 10.1109/ACCESS.2019.2918578.
- [140] D. Corral-de-witt, E. V. Carrera, J. A. Matamoros-Vargas, S. Muñoz-Romero, and J. L. Rojo-Álvarez, "From E-911 to NG-911: Overview and Challenges in Ecuador," in *IEEE Access*, 2018, vol. 6, pp. 42578–42591, doi: 10.1109/ACCESS.2018.2858751.
- [141] L. I. Minchala, L. Garza-Castanñón, Y. Zhang, and H. J. Altuve-Ferrer, "Optimal Energy Management for Stable Operation of an Islanded Microgrid," in *IEEE Transactions on Industrial Informatics*, 2016, vol. 3203, pp. 1–9, doi: 10.1109/TII.2016.2569525.
- [142] F. L. Quilumba, W. Lee, H. Huang, D. Y. Wang, and R. L. Szabados, "Using Smart Meter Data to Improve the Accuracy of Intraday Load Forecasting Considering Customer Behavior Similarities," in *IEEE Transactions on Smart Grid*, 2014, pp. 1–8.
- [143] J. Rodas-silva, J. A. Galindo, J. García-Gutiérrez, and D. Benavides, "Selection of Software Product Line Implementation Components Using Recommender Systems: An Application to Wordpress," in *IEEE Access*, 2019, vol. 7.
- [144] M. González, D. Dominguez, Á. Sánchez, and F. B. Rodríguez, "Increase attractor capacity using an ensembled neural network," in *Expert Systems With Applications*, 2017, vol. 71, pp. 206–215, doi: 10.1016/j.eswa.2016.11.035.
- [145] V. Minaya, G. A. Corzo, D. P. Solomatine, and A. E. Mynett, "Data-driven techniques for modelling the gross primary production of the páramo vegetation using climate data: Application in the Ecuadorian Andean region," in *Ecological Informatics*, 2016, doi: 10.1016/j.ecoinf.2016.12.002.
- [146] J. A. Morales, E. Orduña, C. Rehtanz, R. J. Cabral, and A. S. Bretas, "Ultra high-speed deterministic algorithm for transmission lines disturbance identification based on principal component analysis and Euclidean norm," in *INTERNATIONAL JOURNAL OF ELECTRICAL POWER AND ENERGY SYSTEMS*, 2016, vol. 80, pp. 312–324, doi: 10.1016/j.ijepes.2016.01.043.
- [147] D. Pacheco-paramo, L. Tello-oquendo, V. Pla, and J. Martinez-bauset, "Deep reinforcement learning mechanism for dynamic access control in wireless networks handling mMTC," in *Ad Hoc Networks*, 2019, vol. 94, doi: 10.1016/j.adhoc.2019.101939.
- [148] C. Soguero-Ruiz, F. J. Gimeno-Blanes, I. Mora-jiménez, P. Martínez-ruiz, and J. L. Rojo-álvarez, "Statistical nonlinear analysis for reliable promotion decision-making," in *Digital Signal Processing*, 2014, vol. 33, pp. 156–168, doi: 10.1016/j.dsp.2014.06.014.
- [149] A. Vargas-martínez, L. I. Minchala-Avila, Y. Zhang, L. E. Garza-castañón, and R. E. Calle-Ortiz, "Model-Based Fault-Tolerant Control to Guarantee the Performance of a Hybrid Wind-Diesel Power System in a Microgrid Configuration," in *Procedia Procedia Computer Science*, 2013, vol. 19, no. Seit, pp. 712–719, doi: 10.1016/j.procs.2013.06.094.
- [150] A. Shafaghat, M. Mir-Ghasemi, A. Keyvanfar, H. Lamit, and M. Salim-Ferwati,

- "Sustainable riverscape preservation strategy framework using goal-oriented method: Case of historical heritage cities in Malaysia," in *International Journal of Sustainable Built Environment*, 2017, vol. 6, no. 1, pp. 143–159, doi: 10.1016/j.ijsbe.2017.03.003.
- [151] J. Veintimilla-Reyes, F. Cisneros, and P. Vanegas, "Artificial Neural Networks applied to flow prediction: A use case for the Tomebamba river," in *Procedia Engineering*, 2016, vol. 162, pp. 153–161, doi: 10.1016/j.proeng.2016.11.031.
- [152] K. Dieguez-santana, H. Pham-the, P. J. Villegas-aguilar, H. Le-thi-thu, J. A. Castillo-garit, and G. M. Casañola-Martin, "Prediction of acute toxicity of phenol derivatives using multiple linear regression approach for Tetrahymena pyriformis contaminant identification in a median-size database," in *Chemosphere*, 2016, vol. 165, pp. 434–441, doi: 10.1016/j.chemosphere.2016.09.041.
- [153] K. Koorehdavoudi, S. Roy, M. Xue, and J. Abad-Torres, "Distributed decision-making algorithms with multiple manipulative actors," in *Automatica*, 2019, vol. 107, pp. 317–326, doi: 10.1016/j.automatica.2019.05.063.
- [154] J. Terán, J. Aguilar, and M. Cerrada, "Integration in industrial automation based on multi-agent systems using cultural algorithms for optimizing the coordination mechanisms," in *Computers in Industry*, 2017, vol. 91, pp. 11–23, doi: 10.1016/j.compind.2017.05.002.
- [155] N. Salgado-Reyes, J. Beltrán-Morales, J. Guaña-Mora, C. Escobar-Teran, D. Nicolalde-Rodriguez, and G. Chafla-Altamirano, "Modelo para predecir el rendimiento académico basado en redes neuronales y analítica de aprendizaje," in *RISTI Revista Ibérica de Sistemas e Tecnologias de Informação*, 2018, pp. 258–267.
- [156] H. Nugra *et al.*, "A Low-Cost IoT Application for the Urban Traffic of Vehicles, Based on Wireless Sensors Using GSM Technology," in *Proceedings IEEE International Symposium on Distributed Simulation and Real-Time Applications, DS-RT*, 2016, pp. 161–169, doi: 10.1109/DS-RT.2016.24.
- [157] M. Worsley, "Multimodal learning analytics' past, present, and, potential futures," in *CEUR Workshop Proceedings*, 2018, vol. 2163, no. 2016, pp. 1–16.
- [158] R. A. Pazmiño-Maji, F. J. García-Peñalvo, and M. A. Conde-González, "Comparing Hierarchical Trees in Statistical Implicative Analysis & Hierarchical Cluster in Learning Analytics," in *Actas de la 5^a Conferencia Internacional sobre Ecosistemas Tecnológicos para Mejorar la Multiculturalidad.*, 2017, pp. 1–7, doi: 10.1145/3144826.3145399.
- [159] M. Peñafiel, S. Vásquez, D. Vásquez, J. Zaldumbide, and S. Luján-Mora, "Data mining and opinion mining: A tool in educational context," in *ACM International Conference Proceeding Series*, 2018, pp. 74–78, doi: 10.1145/3274250.3274263.
- [160] A. Mayra and D. Mauricio, "Factors to predict dropout at the Universities: A case of study in Ecuador," in *IEEE Global Engineering Education Conference*, *EDUCON*, 2018, pp. 1238–1242, doi: 10.1109/EDUCON.2018.8363371.
- [161] M. Alban-Taipe and D. Mauricio, "Predicting University Dropout trough Data Mining: A systematic Literature," in *Indian Journal of Science and Technology*, 2019, vol. 12, no. 4, pp. 1–12, doi: 10.17485/ijst/2019/v12i4/139729.
- [162] O. Moscoso-Zea and S. Lujan-Mora, "Minería de Datos Educacionales: una visión holística," in *Iberian Conference on Information Systems and Technologies, CISTI*, 2016, vol. 2016-July, doi: 10.1109/CISTI.2016.7521411.
- [163] L. Nieto-Mora and F. Mayorga, "Aplicación de data mining en la gestión del plan

- anual de contratación en las universidades públicas del ecuador. Caso de estudio universidad técnica de ambato," 2016.
- [164] G. V. Saltos-Bernal and M. Cocea, "Predicting Crime Using Data Mining," 2014.
- [165] F. Parrales-Bravo *et al.*, "SMURF: Systematic Methodology for Unveiling Relevant Factors in retrospective data on chronic disease treatments," in *IEEE Access*, 2019, pp. 1–16, doi: 10.1109/ACCESS.2019.2927429.
- [166] R. Fernandez, R. Lostado, A. A. Santos, and N. O. Piedra, "Optimizing presetting attributes by softcomputing techniques to improve tapered roller bearings working conditions," in *Advances in Engineering Software*, 2018, vol. 123, pp. 13–24, doi: 10.1016/j.advengsoft.2018.05.005.
- [167] J. A. Morales, Z. Anane, and R. J. Cabral, "Automatic lightning stroke location on transmission lines using data mining and synchronized initial travelling," in *Electric Power Systems Research*, 2018, pp. 1–12, doi: 10.1016/j.epsr.2018.01.025.
- [168] R. Peixoto *et al.*, "Resurgery clusters in Intensive Medicine," in *Procedia Procedia Computer Science*, 2016, vol. 98, pp. 528–533, doi: 10.1016/j.procs.2016.09.072.
- [169] F. Reyes-bueno, J. M. García-samaniego, and A. Sánchez-rodríguez, "Large-scale simultaneous market segment definition and mass appraisal T using decision tree learning for fiscal purposes," in *Land Use Policy*, 2018, vol. 79, pp. 116–122, doi: 10.1016/j.landusepol.2018.08.012.
- [170] S. Rodríguez, T. Gualotuña, and C. Grilo, "A System for the Monitoring and Predicting of Data in Precision Agriculture in a Rose Greenhouse Based on Wireless Sensor Networks," in *Procedia Computer Science*, 2017, vol. 121, pp. 306–313, doi: 10.1016/j.procs.2017.11.042.
- [171] J. Salazar, C. Espinoza, A. Mindiola, and V. Bermudez, "Data Mining and Endocrine Diseases: A New Way to Classify?," in *Archives of Medical Research*, 2018, pp. 8–10, doi: 10.1016/j.arcmed.2018.08.005.
- [172] X. Sumba, F. Sumba, A. Tello, F. Baculima, M. Espinoza, and V. Saquicela, "Detecting Similar Areas of Knowledge Using Semantic and Data Mining Technologies," in *Electronic Notes in Theoretical Computer Science*, 2016, vol. 329, pp. 149–167, doi: 10.1016/j.entcs.2016.12.009.
- [173] P. Arevalo-Marin *et al.*, "Minería de datos educativa para identificar la relación entre cociente intelectual, estilos de aprendizaje, inteligencia emocional e inteligencias múltiples de estudiantes de ingeniería," in *RISTI Revista Ibérica de Sistemas e Tecnologias de Informação RISTI, N.o E17*, 2019, pp. 48–64.
- [174] C. P. Lopez, M. Segura, and M. Santórum, "Data analytics and BI framework based on collective intelligence and the Industry 4.0," in *ACM International Conference Proceeding Series*, 2019, pp. 93–98, doi: 10.1145/3322645.3322667.
- [175] C. P. Lopez, M. Segura, and M. Santórum, "Framework to develop a business synergy through enterprise architecture," in *ACM International Conference Proceeding Series*, 2019, vol. Part F1483, pp. 125–129, doi: 10.1145/3322645.3322668.
- [176] M. Sánchez and L. Urquiza, "Security enhancement through effective encrypted communication using ELK," in *ACM International Conference Proceeding Series*, 2019, pp. 88–92, doi: 10.1145/3322134.3322154.
- [177] S. Talluri, C. L. Abad, A. Łuszczak, and A. Iosup, "Characterization of a big data storage workload in the cloud," in *ICPE 2019 Proceedings of the 2019*

- *ACM/SPEC International Conference on Performance Engineering*, 2019, pp. 33–44, doi: 10.1145/3297663.3310302.
- [178] D. Buenaño-Fernández, S. Luján-Mora, and W. Villegas-Ch, "Improvement of massive open online courses by text mining of students' emails: A case study," in *ACM International Conference Proceeding Series*, 2017, vol. Part F1322, pp. 1–7, doi: 10.1145/3144826.3145393.
- [179] J. A. García-Díaz, O. Apolinario-Arzube, J. Medina-Moreira, H. Luna-Aveiga, K. Lagos-Ortiz, and R. Valencia-García, "Sentiment analysis on tweets related to infectious diseases in South America," in ACM International Conference Proceeding Series, 2018, doi: 10.1145/3293614.3293647.
- [180] O. Moscoso-Zea, J. Castro, J. Paredes-Gualtor, and S. Lujan-Mora, "A Hybrid Infrastructure of Enterprise Architecture and Business Intelligence Analytics for Knowledge Management in Education," *IEEE Access*, vol. 7, pp. 38778–38788, 2019, doi: 10.1109/ACCESS.2019.2906343.
- [181] M. Urbina, T. Acosta, J. Lazaro, A. Astarloa, and B. Unai, "Smart Sensor: SoC architecture for the Industrial Internet of Things," in *IEEE Internet of Things Journal*, 2019, pp. 1–11, doi: 10.1109/JIOT.2019.2908264.
- [182] W. Villegas-ch, X. Palacios-pacheco, and S. Luján-Mora, "Application of a Smart City Model to a Traditional University Campus with a Big Data Architecture: A Sustainable Smart Campus," in *Sustainnability*, 2019, pp. 1–28.
- [183] I. Rojas et al., Advances in Computational Intelligence, Cluster Analysis of Finger-to-nose Test for Spinocerebellar Ataxia Assessment. 2015.
- [184] J. M. Lillo-Castellano *et al.*, "Symmetrical Compression Distance for Arrhythmia Discrimination in Cloud-based Big-Data Services," in *IEEE Journal of Biomedical and Health Informatics*, 2015, no. March, pp. 1–11, doi: 10.1109/JBHI.2015.2412175.
- [185] C. L. Abad, M. Yuan, C. X. Cai, Y. Lu, N. Roberts, and R. H. Campbell, "Generating request streams on Big Data using clustered renewal processes," in *Performance Evaluation*, 2013, vol. 70, pp. 704–719, doi: 10.1016/j.peva.2013.08.006.
- [186] R. O. Andrade and S. G. Yoo, "Cognitive security: A comprehensive study of cognitive science in cybersecurity," in *Journal of Information Security and Aplications*, 2019, vol. 48, doi: 10.1016/j.jisa.2019.06.008.
- [187] J. Maldonado-mahauad, M. Pérez-sanagustín, R. F. Kizilcec, and J. Munozgama, "Mining theory-based patterns from Big data: Identifying self-regulated learning strategies in Massive Open Online Courses," in *Computers in Human Behavior*, 2017, vol. 80, doi: 10.1016/j.chb.2017.11.011.
- [188] B. Mazon-Olivo, D. Hernández-Rojas, J. Maza-Salinas, and A. Pan, "Rules engine and complex event processor in the context of internet of T things for precision agriculture," in *Computers and Electronics in Agriculture*, 2018, vol. 154, pp. 347–360, doi: 10.1016/j.compag.2018.09.013.
- [189] D. Sarabia-jácome, D. Yacchirema, C. Palau, and M. Esteve, "System for monitoring and supporting the treatment of sleep apnea using IoT and big data," in *Pervasive and Mobile Computing*, 2018, doi: 10.1016/j.pmcj.2018.07.007.
- [190] D. Yacchirema, J. Suárez-de-Puga, C. Palau, and M. Esteve, "Fall detection system for elderly people using IoT and Big Data," in *Procedia Computer Science*, 2018, vol. 130, pp. 603–610, doi: 10.1016/j.procs.2018.04.110.
- [191] W. Villegas-Ch, S. Luján-Mora, D. Buenaño-Fernández, and X. Palacios-

- Pacheco, "Big Data, the Next Step in the Evolution of Educational Data Analysis," in *ICITS 2018: Proceedings of the International Conference on Information Technology & Systems*, 2018, vol. 1, doi: 10.1007/978-3-319-73450-7.
- [192] J. C. Cepeda, J. L. Rueda, D. G. Colomé, and D. E. Echeverría, "Real-time transient stability assessment based on centre-of-inertia estimation from phasor measurement unit records," in *IET Generation, Transmission & Distribution Volume:* 8, 2014, no. December 2013, doi: 10.1049/iet-gtd.2013.0616.
- [193] R. A. Lara-cueva, D. S. Benítez, E. V. Carrera, M. Ruiz, and J. L. Rojo-Álvarez, "Automatic Recognition of Long Period Events From Volcano Tectonic Earthquakes at Cotopaxi Volcano," in *IEEE Transactions on Geoscience and Remote Sensing, Volumen:* 54., 2016, pp. 1–11.
- [194] C. Soguero-ruiz *et al.*, "Support Vector Feature Selection for Early Detection of Anastomosis Leakage from Bag-of-Words in Electronic Health Records," in *IEEE Journal of Biomedical and Health Informatics*, 2014, pp. 1–12, doi: 10.1109/JBHI.2014.2361688.
- [195] Y. Tao, X. Wang, R. Sánchez, S. Yang, and Y. Bai, "Spur Gear Fault Diagnosis Using a Multilayer Gated Recurrent Unit Approach With Vibration Signal," in *IEEE Access*, 2019, vol. 7, doi: 10.1109/ACCESS.2019.2914181.
- [196] Y. Wang, S. Yang, and R. Sánchez, "Gearbox Fault Diagnosis Based on a Novel Hybrid Feature Reduction Method," in *IEEE Access*, 2018, pp. 75813–75823, doi: 10.1109/ACCESS.2018.2882801.
- [197] C. Li, J. Valente-de -Oliveira, M. Cerrada, D. Cabrera, R. V. Sánchez, and G. Zurita, "A systematic review of fuzzy formalisms for bearing fault diagnosis," in *IEEE Transactions on Fuzzy Systems, Volumen:* 27., 2018, pp. 1–21, doi: 10.1109/TFUZZ.2018.2878200.
- [198] M. Cerrada *et al.*, "A review on data-driven fault severity assessment in rolling bearings," in *Mechanical Systems and Signal Processing*, 2018, vol. 99, pp. 169–196, doi: 10.1016/j.ymssp.2017.06.012.
- [199] M. Loor and G. D. Tré, "Handling subjective information through augmented (fuzzy) computation," in *Fuzzy Sets and Systems*, 2019, vol. 1, pp. 1–25, doi: 10.1016/j.fss.2019.05.007.
- [200] I. Ramírez-Morales, D. Rivero-Cebrián, E. Fernández-Blanco, and A. Pazos-Sierra, "Early warning in egg production curves from commercial hens: A SVM approach," in *Computers and Electronics in Agriculture*, 2016, vol. 121, pp. 169–179, doi: 10.1016/j.compag.2015.12.009.
- [201] M. Cerrada, C. Li, R. Sánchez, F. Pacheco, D. Cabrera, and J. V. D. Oliveira, "A fuzzy transition based approach for fault severity prediction in helical gearboxes," in *Fuzzy Sets and Systems*, 2016, doi: 10.1016/j.fss.2016.12.017.
- [202] S. E. Fioressi, D. E. Bacelo, C. Rojas, J. F. Aranda, and P. R. Duchowicz, "Conformation-independent quantitative structure-property relationships study on water solubility of pesticides," in *Ecotoxicology and Environmental Safety*, 2019, vol. 171, pp. 47–53, doi: 10.1016/j.ecoenv.2018.12.056.
- [203] I. D. García-Santillan, M. Montalvo, J. M. Guerrero, and G. Pajares, "Automatic detection of curved and straight crop rows from images in maize fields," in *Biosystem Engineering*, 2017, vol. 6, doi: 10.1016/j.biosystemseng.2017.01.013.
- [204] I. . García Santillan and G. Pajares, "ScienceDirect On-line crop / weed discrimination through the Mahalanobis distance from images in maize fields," in

- *Biosystem Engineering*, 2017, vol. 166, pp. 28–43, doi: 10.1016/j.biosystemseng.2017.11.003.
- [205] C. Li *et al.*, "Observer-biased bearing condition monitoring: From fault detection to multi-fault classification," in *Engineering Applications of Artificial Intelligence*, 2016, vol. 50, pp. 287–301, doi: 10.1016/j.engappai.2016.01.038.
- [206] C. Li *et al.*, "A Bayesian approach to consequent parameter estimation in probabilistic fuzzy systems and its application to bearing fault classification," in *Knowledge-Based Systems*, 2017, doi: 10.1016/j.knosys.2017.05.007.
- [207] L. Terán, "Evaluation of Visualization of a Fuzzy-Based Recommender System for Political Community-Building," in *Procedia Procedia Computer Science*, 2015, vol. 62, pp. 116–125, doi: 10.1016/j.procs.2015.08.424.
- [208] J. McCrae, M. Espinoza, E. Montiel-Ponsoda, G. Aguado-de-Cea, and P. Cimiano, "Combining statistical and semantic approaches to the translation of ontologies and taxonomies," in *Acl Hlt 2011*, 2011, no. June, p. 116, [Online]. Available: http://aclweb.org/anthology-new/W/W11/W11-10.pdf#page=130.
- [209] X. Ochoa, G. Carrillo, and C. Cechinel, "Use of a semantic learning repository to facilitate the creation of modern e-learning systems," in *ACM International Conference Proceeding Series*, 2014, doi: 10.1145/2662253.2662345.
- [210] M. Tapia-León, T. Santamaría, J. Chicaiza, and S. Luján-Mora, "Ontology of personal learning environments in the development of thesis projects," in *ICETC* 2017 Actas de la 9^a Conferencia Internacional sobre Tecnología de la Educación y Computación de 2017, 2017, pp. 183–187.
- [211] P. E. Vintimilla-Tapia, J. F. Bravo-Torres, P. L. Gallegos-Segovia, E. F. Ordóñez-Morales, M. López-Nores, and Y. Blanco-Fernández, "SOPPIA: Social opportunistic intelligent ambient of learning.," in *Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2017*, 2017, pp. 782–789, doi: 10.1145/3110025.3110081.
- [212] E. Cadme and N. Piedra, "Una aproximación para la descripción semántica de requisitos para categorización docentes de investigadores Ecuatorianos," in *MASKANA*, *I+D+ingeniería 2014*, 2014, no. 2006, pp. 97–110.
- [213] S. Cueva Carrión, G. Rodríguez Morales, and E. Tóvar Caro, "Implementation of social and semantic tools into open educational resources production," in 2011 IEEE Global Engineering Education Conference, EDUCON 2011, 2011, pp. 712–720, doi: 10.1109/EDUCON.2011.5773217.
- [214] S. Cueva and G. Rodríguez, "OER, estándares y tendencias," in *RUSC*. *Universities and Knowledge Society Journal*, 2010, vol. 7, no. 1.
- [215] G. Orellana, N. Piedra, M. Orellana, V. Saquicela, and F. Baculima, "A text mining methodology to discovery syllabi similarities among Higher Education Institutions," in 2018 International Conference on Information Systems and Computer Science (INCISCOS), 2018, pp. 261–268, doi: 10.1109/INCISCOS.2018.00045.
- [216] M. Tapia-León, J. Chicaiza-Espinoza, A. Carrera-Rivera, and S. Luján-Mora, "Representation of Latin American University Syllabuses in a Semantic Network," in *International Conference on Information Systems and Computer Science Representation*, 2017, pp. 295–301, doi: 10.1109/INCISCOS.2017.28.
- [217] A. Moreno-Ortiz and J. Fernández-Cruz, "Identifying polarity in financial texts for sentiment analysis: a corpus-based approach," in *Procedia Social and Behavioral Sciences*, 2015, vol. 198, pp. 330–338, doi:

- 10.1016/j.sbspro.2015.07.451.
- [218] P. Pico-Talencia, J. A. Holgado-Terriza, and P. Paderewski, "A systematic method for building Internet of Agents applications based on the Linked Open Data approach," in *Future Generation Computer Systems*, 2019, vol. 94, pp. 250–271, doi: 10.1016/j.future.2018.11.042.
- [219] E. Cadme and N. Piedra, "Producing linked open data to describe scientific activity from researchers of Ecuadorian universities," in *IEEE 37th Central America and Panama Convention (CONCAPAN XXXVII)*, 2017.
- [220] P. A. Quezada-sarmiento and S. M. Andres, "Principios de la Web Semántica y Computación Afectiva en un Ecoturismo Sustentable mediante el Desarrollo de Aplicación Web Educativa," in *Revista Ibérica de Sistemas de Tecnologías de Informação*, 2018, pp. 212–222.
- [221] V. Segarra-Faggioni, M. Mora-Arciniegas, and G. Tenesaca-Luna, "Análisis de la accesibilidad con enfoque semántico de un portal de servicios académicos para nivel universitario," in 2016 11th Iberian Conference on Information Systems and Technologies (CISTI), 2016.
- [222] E. Tovar, N. Piedra, J. Chicaiza, J. López, and O. Martinez-Bonastre, "OER Development and Promotion . Outcomes of an International Research Project on the OpenCourseWare Model," in *Journal of Univéasesal Computer Science vol.* 18, no. 1, 2012, vol. 18, no. 1, pp. 123–141.
- [223] P. Nathan-Magrofuoco, J. V. Roselli, J. L. Pérez-Medina, and R.-D. Vatavu, "GestMan: A Cloud-based Tool for Stroke-Gesture Datasets," in *Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems EICS '19*, 2019, vol. 2019, pp. 1–6, doi: 10.1145/3319499.3328227.
- [224] E. Barrionuevo-Salazar, B. Navas-Escudero, and S. N. Rea-Minango, "Omnidirectional Transport System for Classification and Quality Control using Artificial Vision," in *ICVARS '19 Proceedings of the 2019 3rd International Conference on Virtual and Augmented Reality Simulations*, 2019, pp. 62–66, doi: 10.1145/3332305.3332321.
- [225] N. Basantes-Verdugo and P. Moncada-Romero, "Desarrollo de una plataforma tecnológica para la gestión de seguridad en una institución educativa de grado inicial mediante el uso de sistemas móviles, Reconocimiento facial y sistemas de alertas," 2018.
- [226] C. A. Calderon, M. Guajala, J. Lanchi, L. Barba-Guaman, C. Bermeo, and F. Rivas-Echeverria, "A machine vision system applied to the teaching of mathematics for blind or visually impaired children," in *IEEE International Conference on Automation/23rd Congress of the Chilean Association of Automatic Control: Towards an Industry 4.0 Proceedings*, 2019, pp. 1–7, doi: 10.1109/ICA-ACCA.2018.8609818.
- [227] W. F. Cueva, F. Munoz, G. Vasquez, and G. Delgado, "Detection of skin cancer 'Melanoma' through computer vision," in *Proceedings of the 2017 IEEE 24th International Congress on Electronics, Electrical Engineering and Computing, INTERCON 2017*, 2017, pp. 1–4, doi: 10.1109/INTERCON.2017.8079674.
- [228] C. Paucar *et al.*, "Use of Drones for Surveillance and Reconnaissance of Military Areas," in *Conferencia internacional de investigación aplicada a defensa y seguridad MICRADS 2018*, 2018, vol. 152, pp. 119–132, doi: 10.1007/978-981-13-9155-2.
- [229] C. Rosales, L. Jácome, J. Carrión, C. Jaramillo, and M. Palma, "Computer Vision

- for detection of body expressions of children with cerebral palsy," in 2017 IEEE 2nd Ecuador Technical Chapters Meeting, ETCM 2017, 2017, pp. 1–6, doi: 10.1109/ETCM.2017.8247528.
- [230] M. G. Perez, A. Conci, A. B. Moreno, V. H. Andaluz, and J. A. Hernandez, "Estimating the Rician noise level in brain MR image," in *2014 IEEE ANDESCON*, 2015, pp. 1–1, doi: 10.1109/andescon.2014.7098539.
- [231] K. Kellens, J. R. Duflou, A. Auquilla, Y. D. Bock, and A. Nowe, "Impact reduction potential by usage anticipation under comfort trade-off conditions," in *CIRP Annals Manufacturing Technology*, 2016, vol. 65, pp. 33–36, doi: 10.1016/j.cirp.2016.04.087.
- [232] D. Romero-López, A. Frizera-Neto, and T. Freire-Bastos, "Reconocimiento enlínea de acciones humanas basado en patrones de RWE aplicado en ventanas dinámicas de momentos invariantes," in *Revista Iberoamericana de Automática e Informática Industrial RIAI*, 2014, vol. 11, pp. 202–211, doi: 10.1016/j.riai.2013.09.009.
- [233] F. Ortega-zamorano, M. A. Molina-cabello, E. López-rubio, and E. J. Palomo, "Smart motion detection sensor based on video processing using self-organizing maps," in *Expert Systems With Applications*, 2016, vol. 64, pp. 476–489, doi: 10.1016/j.eswa.2016.08.010.
- [234] I. Silva-Feraud and J. E. Naranjo, "Are you a Good Driver? A Data-driven Approach to Estimate Driving Style," in *ICCMS 2019 Actas de la 11^a Conferencia Internacional sobre Modelado y Simulación por Computadora*, 2019, pp. 1–7.
- [235] N. I. Solorzano Alcivar, L. Houghton, and L. Sanzogni, "Using fuzzy logic in QCA for the selection of relevant is adoption drivers in emerging economies," in *ACM International Conference Proceeding Series*, 2018, pp. 38–43, doi: 10.1145/3220267.3220285.
- [236] D. Valencia-redrován, O. Guijarro-rubio, D. Basantes-montero, and V. Enríquez-champutiz, "Analysis, Design and Implementation of an Autopilot for Unmanned Aircraft UAV 's Based on Fuzzy Logic," in 2015 Asia-Pacific Conference on Computer Aided System Engineering Analysis, 2015, pp. 196–201, doi: 10.1109/APCASE.2015.42.
- [237] D. Arcos-aviles, J. Pascual, L. Marroyo, P. Sanchis, and F. Guinjoan, "Fuzzy Logic-Based Energy Management System Design for Residential Grid-Connected Microgrids," in *IEEE Transactions on Smart Grid*, 2016, vol. 3053, pp. 1–14, doi: 10.1109/TSG.2016.2555245.
- [238] M. A. . Eurie-Forio *et al.*, "Fuzzy modelling to identify key drivers of ecological water quality to support decision and policy making," in *Environmental Science and Policy*, 2016, doi: 10.1016/j.envsci.2016.12.004.
- [239] O. Y. Sergiyenko *et al.*, "Data transferring model determination in robotic group," in *Robotics and Autonomous Systems*, 2016, doi: 10.1016/j.robot.2016.04.003.
- [240] A. Cela, J. Yebes, R. Arroyo, L. M. Bergasa, R. Barea, and E. López, "Complete low-cost implementation of a teleoperated control system for a humanoid robot," in *Sensors (Switzerland)*, 2013, vol. 13, no. 2, pp. 1385–1401, doi: 10.3390/s130201385.
- [241] V. H. Andaluz, F. Roberti, J. Marcos, and R. Carelli, "Adaptive unified motion control of mobile manipulators," in *Control Engineering Practice*, 2012, vol. 20,

- pp. 1337–1352, doi: 10.1016/j.conengprac.2012.07.008.
- [242] V. H. Andaluz, F. Roberti, L. Salinas, J. M. Toibero, and R. Carelli, "Passivity-based visual feedback control with dynamic compensation of mobile manipulators: Stability and L2-gain performance analysis," in *Robotics and Autonomous Systems*, 2014, doi: 10.1016/j.robot.2014.12.009.
- [243] G. Grijalva, D. Chávez, and O. Camacho, "Material distribution with mobile robots in an industrial environment: System design and simulation," in *IFAC-PapersOnLine*, 2018, vol. 51, no. 13, pp. 650–655, doi: 10.1016/j.ifacol.2018.07.354.
- [244] M. Oliveira, V. Santos, A. D. Sappa, P. Dias, and A. P. Moreira, "Incremental scenario representations for autonomous driving using geometric polygonal primitives," in *Robotics and Autonomous Systems*, 2016, doi: 10.1016/j.robot.2016.05.011.
- [245] M. Oliveira, V. Santos, A. D. Sappa, P. Dias, and A. P. Moreira, "Incremental texture mapping for autonomous driving," in *Robotics and Autonomous Systems*, 2016, doi: 10.1016/j.robot.2016.06.009.
- [246] A. C. Villa-parra, D. Delisle-rodríguez, A. López-delis, T. Bastos-filho, R. Sagaró, and A. Frizera-Neto, "Towards a robotic knee exoskeleton control based on human motion intention through EEG and sEMGsignals," in *Procedia Manufacturing*, 2015, vol. 3, no. Ahfe, pp. 1379–1386, doi: 10.1016/j.promfg.2015.07.296.
- [247] R. Gómez-Chabla, K. Real-avillés, and J. Hidalgo, "A Cloud-Based Architecture for Robotics Virtual Laboratories," in *International Conference on Technologies and Innovation*, 2017, vol. 1, pp. 227–238, doi: 10.1007/978-3-319-67283-0.
- [248] D. Chilcañán, P. Navas, and M. Escobar, "Virtual assistant for IoT process management, using a middleware," in *ACM International Conference Proceeding Series*, 2018, pp. 209–213, doi: 10.1145/3242840.3242875.
- [249] O. Parra-González, S. España, and O. Pastor, "Including multi-stroke gesture-based interaction in user interfaces using a model-driven method," in *ACM International Conference Proceeding Series*, 2015, doi: 10.1145/2829875.2829931.
- [250] R. Navarrete and S. Luján-Mora, "Improving OER websites for learners with disabilities," in *W4A 2016 13th Web for All Conference*, 2016, vol. 18, no. 1, doi: 10.1145/2899475.2899517.
- [251] P. Torres-Carrión, C. González-González, and A. Mora-Carreño, "Facial emotion analysis in Down's syndrome children in classroom," in *ACM International Conference Proceeding Series*, 2015, doi: 10.1145/2829875.2829882.
- [252] L. Chamba-eras, E. Coronel-romero, and M. Labanda-jaramillo, "Usabilidad Web: situación actual de los portales Web de las Universidades de Ecuador," in Sexta Conferencia de Directores de Tecnología de Información, TICAL 2016 Gestión de las TICs para la Investigación y la Colaboración, 2016.
- [253] I. Figueroa, C. Jim, H. Allende-cid, and P. Leger, "Developing Usability Heuristics with PROMETHEUS: A Case Study in Virtual Learning Environments," in *Computer Standards & Interfaces*, 2019, doi: 10.1016/j.csi.2019.03.003.
- [254] G. Morales-Rodriguez, P. Torres-carrion, J. Pérez, and L. Peñafiel, "Improving the Design of Virtual Learning Environments from a Usability Study," in *Conference on Information Technologies and Communication of Ecuador*, 2019,

- vol. 1, pp. 100–115, doi: 10.1007/978-3-030-02828-2.
- [255] A. Fiallos and X. Ochoa, "Semi-automatic generation of intelligent curricula to facilitate learning analytics," in *ACM International Conference Proceeding Series*, 2019, pp. 46–50, doi: 10.1145/3303772.3303834.
- [256] J. Torres, S. García, and E. Peláez, "Visualizing authorship and contribution of collaborative writing in e-learning environments," in *International Conference on Intelligent User Interfaces, Proceedings IUI*, 2019, pp. 324–328, doi: 10.1145/3301275.3302328.
- [257] A. González-Eras and J. Aguilar, "Semantic architecture for the analysis of the academic and occupational profiles based on competencies," in *Contemporary Engineering Sciences*, 2015, vol. 8, no. 33–36, pp. 1551–1563, doi: 10.12988/ces.2015.510282.
- [258] J. Granda, L. Chamba-Eras, M. Labanda-Jaramillo, E. Coronel-Romero, R. Guaman-Quinche, and C. Maldonado-Ortega, "OpenChatBotUNL: Proposal for the execution platform of conversational agents," in *RISTI Revista Ibérica de Sistemas e Tecnologias de Informação*, 2019, no. January.
- [259] W. Agila, R. Cajo, and D. Plaza, "Experts agents in PEM fuel cell control," in *International Conference on Renewable Energy Research and Applications*, *ICRERA 2015*, 2015, vol. 5, no. Nafion 115, pp. 896–900, doi: 10.1109/ICRERA.2015.7418539.
- [260] C. Oyola-Flores, Y. Robles-Bykbaev, V. Robles-Bykbaev, P. Ingavelez-Guerra, and J. Galan-Montesdeoca, "An Expert System to Provide Sexual and Reproductive Health Educational Contents for Young Deaf Women," in *Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI* 2018, 2018, doi: 10.1109/CONIITI.2018.8587059.
- [261] V. E. Robles-Nykbaev, M. López-Nores, J. J. Pazos-Arias, and D. Arévalo-Lucero, "SPELTA: An expert system to generate therapy plans for speech and language disorders," in *EXPERT SYSTEMS WITH APPLICATIONS*, 2015, vol. 42, no. 21, pp. 7641–7651, doi: 10.1016/j.eswa.2015.06.011.
- [262] L. Terán and J. Mancera, "Dynamic profiles using sentiment analysis and twitter data for voting advice applications," in *Government Information Quarterly*, 2019, no. March, pp. 1–16, doi: 10.1016/j.giq.2019.03.003.
- [263] M. D. Quizhpe-Villavicencio and P. F. Ordoñez-Ordoñez, "Aplicación de Algoritmos Genéticos en la Ingeniería del Software: Revisión Sistemática del Estado del Arte," 2017.
- [264] M. Cerrada, G. Zurita, D. Cabrera, R. Sánchez, M. Artés, and C. Li, "Fault diagnosis in spur gears based on genetic algorithm and random forest," in *Mechanical Systems and Signal Processing*, 2015, pp. 1–17, doi: 10.1016/j.ymssp.2015.08.030.
- [265] S. Gobeyn, M. Volk, L. Dominguez-granda, and P. L. M. Goethals, "Input variable selection with a simple genetic algorithm for conceptual species distribution models: A case study of river pollution in Ecuador," in *Environmental Modelling and Software*, 2017, vol. 92, pp. 269–316, doi: 10.1016/j.envsoft.2017.02.012.
- [266] C. M. Lapo, R. Pérez-García, J. Izquierdo, and D. Ayala-Cabrera, "Hybrid optimization proposal for the design of collective on-rotation operating irrigation networks," in *Procedia Engineering*, 2017, vol. 186, pp. 530–536, doi: 10.1016/j.proeng.2017.03.266.

- [267] A. Becker and H. Giesinger, "RESUMEN INFORME HORIZON Edición 2017 Educación Superior The NMC Horizon Report: 2017 Higher Education Edition Contenidos," 2017, Accessed: Jul. 04, 2018. [Online]. Available: http://educalab.es/intef.
- [268] "Evolutionary Linguistics | Vub Artificial Intelligence Lab." https://ai.vub.ac.be/research/topics/evolutionary-linguistics.
- [269] "Horizon Report > 2017 Higher Education Edition," Accessed: Jul. 05, 2018.
 [Online]. Available:
 https://www.sconul.ac.uk/sites/default/files/documents/2017-nmc-horizon-report-he-EN.pdf.
- [270] F. Almaraz, A. Maz Machado, and C. López Esteban, *Edmetic revista de educación mediática y TIC*, vol. 6, no. 1. Verónica Marín Díaz, 2012.
- [271] G. W. Suter, "Review papers are important and worth writing," *Environ. Toxicol. Chem.*, vol. 32, no. 9, pp. 1929–1930, Sep. 2013, doi: 10.1002/etc.2316.
- [272] A. Bolderston, "Writing an Effective Literature Review," *J. Med. Imaging Radiat. Sci.*, vol. 39, no. 2, pp. 86–92, Jun. 2008, doi: 10.1016/j.jmir.2008.04.009.
- [273] K. Jaidka, C. S. G. Khoo, and J. Na, "Literature review writing: how information is selected and transformed," *Aslib Proc.*, vol. 65, no. 3, pp. 303–325, Mar. 2013, doi: 10.1108/00012531311330665.
- [274] G. de Trabajo, de D. TI, and C.- Tic, "Tic 360° Transformación Digital en la Universidad," 2017. Accessed: Aug. 24, 2018. [Online]. Available: http://tic.crue.org/wp-content/uploads/2016/03/transformacion-digital-univ.pdf.
- [275] A. T. Peter Stone, Rodney Brooks, Erik Brynjolfsson, Ryan Calo, Oren Etzioni, Greg Hager, Julia Hirschberg, Shivaram Kalyanakrishnan, Ece Kamar, Sarit Kraus, Kevin Leyton-Brown, David Parkes, William Press, AnnaLee Saxenian, Julie Shah, Milind Tambe, "Artificial intelligence and life in 2030, estudio de cien Años sobre Inteligencia Artificial: Informe del Panel de Estudio 2015-2016," 2016. [Online]. Available: https://ai100.stanford.edu.
- [276] I. Arroyo Almaraz, "Metodología de la investigación científica en Creatividad publicitaria." Accessed: Aug. 24, 2018. [Online]. Available: http://www.cesfelipesegundo.com/revista/articulos2005b/humanidades4.pdf.
- [277] C. Dawson and G. Martín, "El proyecto fin de carrera en ingeniería informática: una guía para el estudiante." p. 169, 2002.

11. ANEXOS

ANEXO 1: DOCUMENTACIÓN DE LA REVISIÓN SISTEMÁTICA DE LITERATURA PARA EL USO EN EL CAMPO DE CIENCIAS DE LA COMPUTACIÓN.

La presente documentación resume las etapas de esta SRL en tres fases principales:

FASE I: PLANIFICACIÓN

1.1 Identificación de la necesidad de una revisión.

Una revisión sistemática de la literatura (SLR) surge de la necesidad de los investigadores de resumir la información existente sobre alguna área, temática o asunto de una manera completa, objetiva e imparcial. Esto es con el fin de deducir conclusiones más generales sobre algún asunto; que las que se pueda extraer de estudios individuales, o como comienzo de otras actividades de investigación.

1.2 Puesta en servicio de una revisión.

Según la literatura [9], recomienda ciertas directrices. Un documento de puesta de servicio contendrá o considerará los siguientes puntos:

- Título del proyecto
- Antecedentes
- Preguntas de revisión
- Membresía del Grupo Asesor/Dirigente (Investigadores, Profesionales, Miembros Laicos, Responsables de Políticas, etc.)
- Métodos de la revisión
- Calendario del proyecto
- Estrategia de difusión
- Infraestructura de apoyo
- Presupuesto
- 1.3 Estado actual de la investigación del problema.

El problema de la investigación es el punto de partida de todo proceso científico y, en consecuencia, también es la revisión sistemática. La literatura [86], indica recomendaciones para el abordaje del problema, tales:

- Objetivos: guías de estudio.
- Preguntas de investigación.
- Justificación del estudio: ¿Por qué? ¿Y para qué? Del estudio.

- Viabilidad del estudio.
- Disponibilidad de recursos.
- Alcances del estudio.
- Implicaciones y consecuencias del estudio.
- Deficiencias en el conocimiento del problema.
- Estado del conocimiento.
- Nuevas perspectivas para estudiar.

De éstos, elementos algunos se obtienen como resultado de la revisión sistemática; sin embargo, el primero debe ser claro para iniciar el proceso.

1.4 Especificar la(s) pregunta(s) de investigación.

La especificación de las preguntas de investigación es la parte más importante de cualquier revisión sistemática; estas preguntas de investigación dirigen toda la metodología de la revisión sistemática [68].

- El proceso de búsqueda debe identificar los estudios primarios que abordan las preguntas de la investigación.
- El proceso de extracción de datos debe extraer los elementos de datos necesarios para responder a las preguntas.
- El proceso de análisis de datos debe sintetizar los datos de tal manera que las preguntas puedan ser contestadas.

1.4.1 Estructura de preguntas.

Petticrew y Roberts [70], sugieren el uso de los criterios PICOC (Población, Intervención, Comparación, Resultado, Contexto) para enmarcar las preguntas de la investigación.

Comparación:

Es decir, cuál es la intervención que se compara con el contexto: es decir, cuál es el contexto en el que se realiza la intervención. Además, se pueden identificar los diseños de los estudios apropiados para responder a las preguntas de revisión y utilizarlos para guiar la selección de los estudios primarios.

Población:

y Una pregunta puede referirse a grupos de población muy específicos, por ejemplo, un área de aplicación, sistemas informáticos, sistemas de mando y control. En la ingeniería, es posible que sea necesario evitar cualquier restricción en la población hasta que lleguemos a considerar las implicaciones prácticas de la revisión sistemática.

Intervención:

La intervención es la metodología, herramienta, tecnología, procedimiento que aborda un tema específico, por ejemplo, las tecnologías para realizar tareas específicas como la especificación de requisitos, las pruebas de sistemas o la estimación de costes.

Comparación:

Esta es la metodología, herramienta, tecnología, procedimiento de un área de la ingeniería con la que se está comparando la intervención.

Contexto:

En el campo de la ingeniería, este es el contexto en el que tiene lugar la comparación (por ejemplo, el mundo académico o la industria), los participantes que participan en el estudio (por ejemplo, profesionales, académicos, consultores, estudiantes) y las tareas que se realizan (por ejemplo, a pequeña o gran escala).

1.5 Enfoque de la pregunta

Define el enfoque sistemático de la revisión de interés, es decir, los objetivos de la investigación de la revisión. Aquí, el investigador debe decidir qué espera que se conteste al final de la revisión sistemática.

1.5.1 Calidad y amplitud de la pregunta

Esta sección tiene por objeto definir la sintaxis de la pregunta de investigación (el contexto en el que se aplica la revisión y la pregunta a la que debe responder el estudio) y su especificidad semántica (o rango de preguntas).

1.5.2 Medida de resultado

Son las métricas utilizadas para medir el efecto.

1.5.3 Aplicación

Son los roles, tipos profesionales o áreas de aplicación que se beneficiarán de los resultados de la revisión sistemática.

1.5.4 Diseño experimental

Describe cómo se llevará a cabo el diseño experimental, también se define qué métodos de análisis estadístico se aplicarán a los datos recogidos para interpretar los resultados.

1.6 Mentefacto conceptual

El mentefacto conceptual es una herramienta creada por la Pedagogía Conceptual para representar conceptos. Esta acción requiere responder a cuatro preguntas: ¿Qué la caracteriza, en esencia? ¿En qué grupo de cosas lo incluye? ¿Cuáles son

sus diferencias con objetos similares? y, ¿hay subtipos suyos? A partir de estas preguntas, se ensambla el andamiaje de los conceptos, dando como resultado cuatro grupos de pensamientos: 1) Iso ordinada, 2) superior, 3) excluida y 4) infra ordinada, como se muestra en la Figura 30. El grupo de pensamiento Iso ordinadas muestran esencialidades; los súper ordinados (superior), el grupo que incluye a los excluidos, señalan las nociones más cercanas al concepto; y, los infra ordenados, especifican las clases y subtipos del concepto.

Figura 30. Mentefacto conceptual

De este ideograma se obtendrán las palabras de búsqueda, que normalmente se encuentran en el lado izquierdo en las Iso ordinaciones. Las subclases Infra ordinaciones, también se consideran para las palabras de búsqueda, teniendo en cuenta que un estudio realizado sobre un subconjunto del concepto también le pertenecería. Los datos disponibles en exclusión y supra ordenación, son considerados para el detalle de los criterios de inclusión y exclusión [55].

1.7 Desarrollar un protocolo de revisión

Un protocolo de revisión especifica los métodos que se utilizarán para realizar una revisión sistemática específica. Se necesita un protocolo predefinido para reducir la posibilidad de sesgo de los investigadores. Por ejemplo, sin un protocolo, es posible que la selección de los estudios individuales o el análisis puedan ser impulsados por las expectativas de los investigadores. Los protocolos de revisión se someten generalmente a revisión por pares.

Los componentes de un protocolo incluyen todos los elementos de la revisión más alguna información adicional de planificación [68]:

1.7.1 Definición de los criterios de inclusión y exclusión

Como parte de la planificación del proceso de búsqueda, se definen varios criterios generales y específicos de inclusión y exclusión, junto con algunos parámetros complementarios de inclusión y exclusión (ignorar editoriales, reseñas de libros, informes técnicos y conjuntos de datos; considerar sólo los artículos publicados en los últimos cinco a diez años). Se establecen variables de investigación teórica, normas internacionales y métodos de investigación adaptables a cada tema con el fin de orientar las respuestas a las preguntas de investigación. Como resultado de esta sub fase, se debe preparar una lista de los criterios específicos de inclusión y exclusión aplicables a todos los trabajos resultantes [55]. Como ya se aclarado, tomando en cuenta las preguntas de la investigación, se consideraron criterios generales que definen el marco temporal del estudio y el tipo de estudios que son relevantes. En consecuencia, definimos los siguientes criterios [56]:

1.7.1.1 Criterios generales (Inclusión)

Como base para los criterios de inclusión pueden exponerse los siguientes aspectos relevantes [87]:

- Tamaño de muestra/número de sujetos incluidos
- Variables de estudio/resultado
- El tipo de diseño metodológico del estudio (por ejemplo, sólo incluir estudios controlados y aleatorizados)
- Idioma.
- El tamaño de las muestras de cada estudio.
- El año de publicación del estudio.

1.7.1.2 Criterios específicos (Exclusión)

Son los estudios que no serán considerados para la revisión sistemática.

- Los estudios que no contengan información relevante a la pregunta de investigación.
- Tipo de editoriales.
- Opiniones de expertos.
- Comunicaciones a congresos.
- Casos únicos.

 Aquellos estudios que cumpliendo los criterios de inclusión serán descartados.

1.7.2 Identificar las bases de datos y motores de búsqueda.

Se selecciona las bases de datos académicas, así como revistas pueden accederse manualmente, y consultar los términos de búsqueda. Cabe agregar, que se debe ingresar a la búsqueda avanzada de dichas bases de datos académicas; para enriquecer las búsquedas.

1.7.3 Preparación de un formulario de extracción de datos

Es necesario que el investigador prepare las plataformas para la organización de los resultados que se obtendrán; se debe especificar y configurar herramientas y espacios de organización de resultados. Por ejemplo: hojas de cálculo y aplicaciones de gestión de bibliografía. Al aplicar el proceso de búsqueda a los artículos, los resultados deben ser clasificados, siendo aconsejable utilizar una herramienta de gestión bibliográfica, como Mendeley, Zotero u otra que el investigador considere.

Para organizar y facilitar el análisis, se especifican protocolos para la identificación de los trabajos según la pregunta de investigación, el autor y el año. Si la investigación es compartida; se debe realizar la creación de documentos en la nube, con la posibilidad de editar a todos los miembros del grupo de investigación [55].

1.7.4 Categorías de definición para el análisis y la codificación de datos.

Se define un grupo de categorías de análisis con sus correspondientes subcategorías de acuerdo con la pregunta de investigación. Las categorías ayudaran a agrupar los estudios según sus características compartidas. En el proceso de la SRL, puede surgir subcategorías; estas, serán refinadas para cubrir toda la información.

1.8 Evaluación de un protocolo de revisión.

El protocolo es un elemento crítico de cualquier revisión sistemática. El investigador debe acordar un procedimiento para evaluar el protocolo. Si se dispone de fondos adecuados, se debería pedir a un grupo de expertos independientes que revise el protocolo. Posteriormente, se puede pedir a los mismos expertos que revisen el informe final.

1.9 Lecciones aprendidas para la construcción de protocolos.

De acuerdo a la literatura de Brereton [14], identifica una serie de problemas que los investigadores deben anticipar durante la construcción del protocolo, en ese sentido,

en el desarrollo de la SLR el estudiante investigador debe tomar en consideración algunos puntos de dicha literatura antes mencionada.

FASE II: EJECUCIÓN.

2.1 Identificación de la investigación

El objetivo de una revisión sistemática es encontrar el mayor número posible de estudios primarios relacionados con la pregunta de investigación mediante una estrategia de búsqueda imparcial. El rigor del proceso de búsqueda es un factor que distingue las revisiones sistemáticas de las revisiones tradicionales [68].

2.1.1 Establecer estrategias de búsqueda

Como estrategias de búsqueda se aplican las tres primeras etapas del procedimiento de búsqueda sistemática S() [55].

2.1.1.1 Palabras del tesauro para la búsqueda de criterios semánticos

La búsqueda fuerte se realiza en las bases de datos seleccionadas; se sugiere hacerlo en WoS, Scopus y Google Scholar teniendo como filtro la lista de revistas (artículos) previamente obtenidas.

El proceso en la literatura "Knowledge Discovery in Data bases" (KDD) citar, se recomienda para realizar una búsqueda continua en cada uno de los artículos y ordenar los resultados en función de la estructura de las variables de las preguntas de investigación.

2.1.1.2 Estructura semántica para la búsqueda documentos específicos

La estructura semántica de las búsquedas se realiza siguiendo los principios de para consultar bases de datos a través de lenguajes de consulta estructurados (SQL). Las puertas lógicas AND, OR, NOT, entre otras, ayudan a que el filtrado sea eficiente. El conector AND, se utiliza para unificar los niveles de búsqueda y el conector OR para la secuencia de sinónimos según el tesauro previamente elaborado, el conector NOT se utiliza para limitar ciertas palabras que están malogrando la búsqueda.

2.1.1.3 Script de búsqueda

La búsqueda en las bases de datos científicas académicas, ayuda de alguna manera a limitar el sesgo; sin embargo, la realización de un estado del arte de alto nivel es necesario basarse en estudios que han sido avalados por investigadores académicos con un historial reconocido, y que generalmente se encuentran detrás de revistas de alto impacto, en los índices JCR y SJR en el primer cuartil.

2.1.1.4 Sesgo de publicación

En cuanto al sesgo de publicación, se refiere al problema de que es más probable que se publiquen resultados positivos que negativos; el concepto de resultados positivos o negativos a veces depende del punto de vista del investigador [72].

La búsqueda en Google Scholar, ayuda de alguna manera a limitar el sesgo; sin embargo, debe mencionarse que para la realización de un estado del arte de alto nivel, es necesario basarse en estudios que han sido avalados por colegas académicos con un historial reconocido, y que generalmente se encuentran detrás de revistas de alto impacto, en los índices JCR y SJR en el primer cuartil [55].

2.2 Gestión de la bibliografía y recuperación de documentos

Al aplicar el proceso de búsqueda a las bases de datos científicas, los resultados deben ser clasificados y codificados, siendo aconsejable utilizar una herramienta de gestión bibliográfica como Mendeley¹¹⁰, Zotero¹¹¹, Endnote¹¹² u otra que el investigador considere conveniente. Una vez que se haya finalizado la clasificación de referencias, será necesario obtener los artículos completos de los estudios potencialmente útiles. Se necesita un sistema de registro para asegurar que se obtengan todos los estudios relevantes.

2.3 Selección de los estudios primarios

Una vez que se hayan finalizado las listas de referencias, será necesario obtener los artículos completos de los estudios seleccionados. Es necesario que todo el grupo de investigación esté registrado en el sistema de administración de bibliografía, para acceder a la administración y selección conjunta de trabajos. Los criterios de selección de estudios tienen por objeto identificar aquellos estudios primarios que proporcionan evidencia directa sobre la pregunta de investigación [7].

Cada trabajo debe ser etiquetado, descargado y colocado en el repositorio previamente creado para este fin.

2.4 Evaluación de la calidad de los estudios

Esta subetapa es complementaria a la anterior. Además de los criterios generales de exclusión de la inclusión, generalmente se considera importante evaluar la "calidad" de los trabajos primarios [7].

-

 $^{110\,{\}tt V\'ease:\,https://www.mendeley.com/?interaction_required=true}$

 $^{111 \; \}text{V\'ease: https://www.zotero.org}$

 $^{112\,{\}tt V\'ease:\,https://access.clarivate.com/login?app=endnote}$

Estas consideraciones se apoyan en los criterios de inclusión y exclusión, añadiendo aspectos de calidad representados en la relevancia del estudio, calidad de las fuentes bibliográficas, relevancia y prestigio académico de los autores, factor de impacto de la revista en la que se publica, entre otros.

2.5 Extracción de los datos.

Se aplica el método de análisis de contenido, el objetivo de esta etapa es diseñar formularios de extracción de datos para registrar con precisión la información que los investigadores obtienen de los estudios primarios. Para reducir la posibilidad de sesgo, los formularios de extracción de datos deben definirse y probarse cuando se define el protocolo del estudio.

2.6 Síntesis de datos.

La síntesis de los datos incluye la recopilación y el resumen de los resultados de los estudios primarios incluidos. La síntesis puede ser descriptiva (no cuantitativa). Sin embargo, a veces es posible complementar una síntesis descriptiva con un resumen cuantitativo. El uso de técnicas estadísticas para obtener una síntesis cuantitativa se denomina meta análisis. La descripción de los métodos de meta-análisis está fuera del alcance de este documento, aunque se describirán técnicas para mostrar los resultados cuantitativos.

2.7 Codificación de datos.

Esta sección, se llevará a cabo a través de la lectura completa de los artículos, y el proceso de codificación de los datos se realizó teniendo en cuenta las categorías definidas en la Fase I.

FASE III: INFORME

3.1 Especificación de la estrategia de difusión.

Se planifica y diseña una estrategia de difusión para comunicar o difundir los resultados de la SLR.

3.2 Formato del informe principal de la revisión sistemática.

Para la evaluación adecuada con rigor y la validez de esta SLR, se realiza un informe técnico el cual contiene los detalles necesarios de cada estudio seleccionado.

3.3 Evaluación de los informes de revisión sistemática.

El informe técnico desarrollado en esta SLR estará disponible en un repositorio.

ANEXO 2: FORMULARIOS DE EXTRACCIÓN DE DATOS

TABLA XL.
RESULTADO DEL ARTÍCULO EP01

#	Descripción	Detalle		
1	Información	Título	Towards a (semi)-automatic reference process to support	
	bibliográfica		the reverse engineering and reconstruction of software	
			architectures	
		Autor	Daniel Guamán, Jennifer Pérez, Jessica Díaz.	
		Referencia	[88]	
		Año	2018	
2	Aplicación	Algorithms	and techniques of Machine Learning: Fase de	
		recomendaci	ón basada en algoritmos y técnicas de Machine Learning,	
		aplicando a	las fases de construcción y mantenimiento dentro de	
		metodologías	s ágiles y procesos.	
3	Área/Línea de			
	investigación	Software Aplicado		
	priorizada			
4	Funciones	Se determinó mecanismos para recomendar alternativas de		
		arquitectura de software en términos de deuda técnica y/o mejora de la		
		sostenibilidad	d, aplicando conceptos, técnicas y algoritmos de Machine	
		Learning.		
5	Conclusiones	Se utilizó un subconjunto de datos para entrenar el conjunto de datos		
	Relevantes	utilizando algoritmos de Machine Learning con el fin de generar, definir		
		e interpretar patrones derivados del proceso de reconstrucción de la		
		arquitectura, y se almacenó en el Repositorio de Conocimientos para		
		mejorar o rec	omendar una arquitectura en un contexto.	

TABLA XLI. RESULTADO DEL ARTÍCULO EP02

#	Descripción	Detalle	
1	Información	Título	Presentation Skills Estimation Based on Video and Kinect
	bibliográfica		Data Analysis

		Autor	Vanessa Echeverría, Allan Avendaño, Katherine Chiluiza, Aníbal Vásquez		
		Referencia	[89]		
		Año	2014		
2	Aplicación	Pattern Rec	Pattern Recognition: mediante vídeo y datos de Kinect, un conjunto		
		de predictore	es que estiman las habilidades de presentación de 448		
		estudiantes	individuales. Se predijeron dos criterios de evaluación:		
		contacto visu	al y postura y lenguaje corporal.		
3	Área/Línea de				
	investigación	TIC para la e	ducación e inclusión social		
	priorizada				
4	Funciones	Las evaluaciones de Machine Learning dieron como resultado modelos			
		que predijeron el nivel de rendimiento (bueno o malo) de los			
		presentadores con un 68% y un 63% de las instancias correctamente			
		clasificadas,	clasificadas, para criterios de contacto visual y de postura y lenguaje		
		corporal, respectivamente			
5	Conclusiones	Se pudo concluir que las medidas relacionadas con el tacto de los ojos;			
	Relevantes	el movimient	to de los brazos; la suavidad y fluidez en el escenario,		
		mientras se comunica; y, un conjunto de posturas corporales que			
		ayudan a en	nfatizar los puntos, de lo que se pronuncia, son buenas		
		estimaciones	del nivel de desarrollo de las habilidades de presentación.		

TABLA XLII.
RESULTADO DEL ARTÍCULO EP03

#	Descripción	Detalle	
1	Información bibliográfica	Título	Estimation of Presentations Skills Based on Slides and Audio Features
		Autor	Gonzalo Luzardo, Bruno Guamán, Katherine Chiluiza, Xavier Ochoa.
		Referencia	[90]
		Año	2014
2	Aplicación	Pattern Rec	ognition: Se realizó una estimación simple a través de
		reconocimiento de patrones de la calidad de las presentaciones orales	
		de los estudiantes. Se basa en el estudio y análisis de las carac	
		extraídas de	las diapositivas de audio y digitales de 448 presentaciones.

3	Área/Línea de investigación priorizada	TIC para la educación e inclusión social
4	Funciones	Los métodos de aprendizaje se utilizaron para crear varios modelos que clasifican a los estudiantes en dos grupos: los de alto y los de bajo rendimiento. Los modelos creados a partir de las características de las diapositivas tenían una precisión de hasta el 65%. Las características más relevantes para los modelos de base de diapositivas fueron: número de palabras, imágenes y tablas, y el tamaño máximo de fuente. Los modelos basados en audio alcanzaron hasta un 69% de precisión, siendo las características relacionadas con el tono y las pausas llenas las más significativas.
5	Conclusiones Relevantes	Una conclusión del trabajo es que incluso las pruebas simples de audio y los archivos de diapositivas ya podrían producir modelos mejores que los que se utilizan para estimar la calificación que un ser humano asignaría a los diferentes criterios de la rúbrica de presentación de un estudiante.

TABLA XLIII. RESULTADO DEL ARTÍCULO EP04

#	Descripción	Detalle	
1	Información	Título	An Empirical Comparison of DCNN libraries to implement
	bibliográfica		the Vision Module of a Danger Management System
		Autor	Sianna Puente, Cindy E. Madrid, Miguel Realpe, Boris X.
			Veintimilla Burgos.
		Referencia	[91]
		Año	2017
2	Aplicación	AlexNet and	Inception-v3 models: de las librerías MatConvNet y
		TensorFlow p	para la formación de nuevos DCNN con el método Fine-
		Tuning. Ader	más, se creó un nuevo conjunto de datos públicos, que
		incluye divers	sas posturas de otoño, así como vistas superiores de las
		personas que	e caminan en una escena.
3	Área/Línea de		
	investigación	Ciudades inte	eligentes e inclusivas + Software aplicado
	priorizada		
4	Funciones	Se ha aplicad	do el método de ajuste fino para entrenar a los DCNNs. La
		idea del ajus	te fino es que un modelo pre entrenado actuará como un

		extractor de características (hasta la penúltima capa), luego la última	
		capa es entrenada para un nuevo modelo de clasificación. En esta	
		investigación, los modelos AlexNet e Inception-v3 de las bibliotecas	
		MatConvNet y TensorFlow se utilizaron para la formación de nuevos	
		modelos con imágenes diversas seleccionadas del conjunto de datos.	
5	Conclusiones	Al comparar los resultados de TensorFlow y Matconvnet, se puede ver	
	Relevantes	que TensorFlow produjo el mejor resultado para la detección de Cabeza	
		y la detección de Caída con una precisión de 94.74% y 98.61%,	
		respectivamente. Además, el tiempo de procesamiento TensorFlow	
		(0,022 ms) permite la aplicación del sistema en tiempo real, lo cual es	
		un requisito para el módulo de visión de Kishwar.	

TABLA XLIV. RESULTADO DEL ARTÍCULO EP05

#	Descripción	Detalle		
1	Información	Título	What Ignites a Reply? Characterizing Conversations in	
	bibliográfica		Microblogs	
		Autor	Johnny Torres, Carmen Vaca-Ruiz, Cristina L. Abad	
		Referencia	[92]	
		Año	2017	
2	Aplicación	Twitter Conv	versations Modeling: se analizó los factores que pueden	
		provocar con	versiones en Twitter, para los idiomas inglés y español.	
		Utilizando ur	corpus de 2,7 millones de tweets, reconstruimos las	
		conversacion	es existentes y luego extraemos varias características	
		contextuales	y de contenido.	
3	Área/Línea de			
	investigación	Seguridad de la información + Gobierno electrónico		
	priorizada			
4	Funciones	Basándose en las características extraídas, se entrenó y evaluó varios		
		modelos pred	lictivos para identificar los tweets que desencadenarán una	
		conversación	, mostrando que el mejor modelo predictivo es capaz de	
		obtener una p	ountuación media F 1 = 0,80.	
5	Conclusiones	En cuanto al análisis predictivo, se encontró que la puntuación general		
	Relevantes	de F1 mejora, si se considera tanto las características del perfil de los		
		usuarios como las características del contenido de los tweets. En el		
		análisis explo	análisis exploratorio, se encontró las dificultades de trabajar con datos	
		ruidosos que	se encuentran en Twitter.	

TABLA XLV. RESULTADO DEL ARTÍCULO EP06

#	Descripción	Detalle			
1	Información	Título	Smoking Activity Recognition Using a Single Wrist IMU		
	bibliográfica		and Deep Learning Light		
		Autor	Edwin Valarezo Añasco, Patricio Rivera López, Sangmin		
			Lee, Kyungmin Byun, Tae-Seong Kim.		
		Referencia	[93]		
		Año	2018		
2	Aplicación	Activity Rec	ognition: Se utilizó una pulsera que aloja un único sensor		
		de Unidad de	e Medida Inercial (IMU), y un Smartphone App. que aloja		
		inteligencia a	rtificial basada en la Red Neural Recurrente (RNN).		
3	Área/Línea de				
	investigación	Salud y biene	estar + Software aplicado		
	priorizada				
4	Funciones	Para detectar las fumadas, el sistema propuesto utiliza un esquema de			
		clasificación	en dos pasos: primero, un modelo general categoriza las		
		actividades	actividades medidas en Actividades de la Vida Diaria (ADL) y		
		Actividades d	le Gestos de las Manos (HGA). Luego, un modelo Experto		
		categoriza a	as HGAs en fumar, comer y beber.		
5	Conclusiones	Los resultado	os preliminares muestran una precisión del 94,07% con un		
	Relevantes	valor de retira	ada del mercado del 91,38% para el reconocimiento de la		
		actividad del humo. Se cree que el público podría beneficiarse del			
		sistema obte	sistema obteniendo retroalimentación y vibración en tiempo real. A		
		través del sistema, podría ser capaz de promover menos tabaquismo,			
		lo que posible	emente llevaría a dejar de fumar.		

TABLA XLVI. RESULTADO DEL ARTÍCULO EP07

#	Descripción	Detalle	
1	Información bibliográfica	Título	Where to park? Architecture and implementation of an empty parking lot, automatic recognition system
		Autor	Héctor Avalos, Esteban Gómez, Diego Guzmán, Diego Ordóñez, Jessica Román, Oswaldo Taipe.

		Referencia	[94]		
		Año	2019		
2	Aplicación	The classification and prediction: fue desarrollado e implementado			
		en el servidor central Payara, y utiliza librerías de procesamiento de			
		imágenes ba	sadas en OpenCV, ImgLib2 e ImageJ, para el caso los		
		filtros estático	os, pre configurados e ImageFilters para facilitar el proceso		
		de creación d	de nuevos filtros dentro del módulo.		
3	Área/Línea de				
	investigación	Ciudades inte	Ciudades inteligentes e inclusivas + Software aplicado + Internet de las		
	priorizada	cosas (IoT)	cosas (IoT)		
4	Funciones	La arquitectura propuesta en este trabajo se centra en el uso de			
		sensores. Desde un punto de vista más general, se adopta la sugestión			
		de estandarización de Pham, aunque seguimos una línea menos			
		estricta, prefiriendo los alternativos más vinculados a la IoT			
5	Conclusiones	Esta arquitec	tura de un sistema inteligente de gestión de aparcamientos		
	Relevantes	aprovecha la	a infraestructura existente de cámaras de vigilancia,		
		minimizando costes; distribuye el procesamiento de los diferentes			
		subsistemas para ofrecer una respuesta en tiempo real, es fácil y			
		ampliamente configurable permitiendo su adaptación a una gran			
		variedad de	entornos, y contribuye a la reducción de los retrasos de		
		llegada en ur	na institución.		

TABLA XLVII. RESULTADO DEL ARTÍCULO EP08

#	Descripción	Detalle	
1	Información bibliográfica	Título	Non-Spontaneous Saccadic Movements Identification in Clinical Electrooculography Using Machine Learning
		Autor	Rodolfo Becerra, Gonzalo Joya, Abel Fernández, Camilo Velázquez, Michel Velázquez, Franger Cuevas, Francisco García, Roberto Rodríguez. [95]
		Año	2017
2	Aplicación	Classification and Regression Trees (CART) y Naive Bayes (NB): para identificar sacudidas no espontáneas en pruebas de electrocardiografía clínica.	

3	Área/Línea de investigación priorizada	Salud y bienestar + Software aplicado
4	Funciones	Proponer una modificación a un algoritmo de estimación de umbral adaptativo para detectar impulsos de señal sin necesidad de ninguna entrada de usuario. Además, se seleccionó un conjunto de características para aprovechar las características intrínsecas de las pruebas de electrocardiografía clínica. Los modelos fueron evaluados con señales registradas en sujetos afectados por Ataxia Espinocerebelosa tipo 2 (SCA2).
5	Conclusiones Relevantes	Para clasificar usamos y comparamos cuatro paradigmas de aprendizaje por máquina: Máquinas Vectoriales Support, Vecinos K-Nearest, Árboles de Clasificación y Regresión y Bayes Ingenuas. El procedimiento se ha aplicado a una base de datos de movimientos oculares registrados en sujetos con ataxias espinocerebelosas.

TABLA XLVIII. RESULTADO DEL ARTÍCULO EP09

#	Descripción	Detalle	
1	Información	Título	Estudio comparativo de métodos espectrales para
	bibliográfica		reducción de la dimensionalidad: LDA versus PCA
		Autor	Andrés J. Anaya, Diego Peluffo-Ordóñez, Juan C.
			Alvarado, Jorge Ivan-Rios, Juan A. Castro, Paul Rosero,
			Diego F. Peña, José A. Salazar, CastroJuan C, Ana
			Umaquinga,
		Referencia	[96]
		Año	2016
2	Aplicación	Clasificación	supervisada: Determina, bajo criterios de objetividad,
		cuál de las te	écnicas (Análisis de Componentes Principales & Análisis
Discriminante Lineal) obtiene el mejor resultado de s		e Lineal) obtiene el mejor resultado de separabilidad entre	
		clases.	
3	Área/Línea de		
	investigación	Agricultura y	ganadería
	priorizada		
4	Funciones	El proceso b	ousca la transformación lineal que produce la máxima
		separación e	entre clases, para ello se calcula una nueva variable
		llamada disc	riminante, esta variable es la encargada de realizar el

		proceso de separación entre grupos. Posteriormente se calculan las medias de los diferentes grupos y la media del resultado entre estos,
		para obtener el punto de corte que será nuestra regla de decisión, que
		permite visualizar la clasificación de cada uno de los vinos en sus
		respectivas poblaciones.
5	Conclusiones	LDA tiene un mejor rendimiento en tareas de clasificación gracias al
	Relevantes	punto de corte del modelo discriminante que proyecta una robusta regla
		de decisión. PCA posee un mejor desempeño que LDA en tareas de
		compresión de datos, sin embargo, no es eficiente realizando tareas de
		separación entre clases

TABLA XLIX. RESULTADO DEL ARTÍCULO EP10

#	Descripción	Detalle		
1	Información bibliográfica	Título	A multi-class extension for case-based reasoning applied to medical problems: A first approach	
	-	Autor	D. Viveros, M. Ortega, X. Blanco Valencia, A. Castro- Ospina, S. Murillo Rendón, Diego Peluffo	
		Referencia	[96]	
		Año	2016	
2	Aplicación	Multi-class classifiers: En particular, se emplean cuatro técnicas de clasificación y dos técnicas de reducción para realizar un estudio comparativo de clasificadores multiclase sobre el razonamiento basado en casos (CBR)		
3	Área/Línea de investigación priorizada	Salud y bienestar + Software aplicado		
4	Funciones	Se utilizan una serie de algoritmos en la fase de preprocesamiento para realizar tanto la selección de variables como los procedimientos de reducción de dimensiones		
5	Conclusiones Relevantes	campo del re	Se presenta una evaluación de factibilidad del uso de técnicas del campo del reconocimiento de patrones en marcos CBR, para que la CBR convencional pueda extenderse a escenarios multiclase.	

TABLA L.
RESULTADO DEL ARTÍCULO EP11

#	Descripción	Detalle		
1	Información bibliográfica	Título	Inductive Machine Learning with Image Processing for Objects Detection of a Robotic Arm with Raspberry PI	
		Autor	Mao Queen Garzón Quiroz	
		Referencia	[97]	
		Año	2019	
2	Aplicación	Image Proce	essing: usando algoritmos de detección y clasificación de	
		movimiento d	le objetos de un brazo robótico de 4 DOF con las siguientes	
		tecnologías:	Estructura de brazo ArmUno, Frambuesa Pi 3 B+, PiCam	
		2.1, driver PC	CA9685 para servomotores, Opencv3, y python.	
3	Área/Línea de			
	investigación	Robótica, automatización y telemática + Software aplicado		
	priorizada			
4	Funciones	Evaluar la eficacia de la predicción y clasificación de los objetos		
		fotografiados	por el brazo robótico, utilizando el aprendizaje automático	
		con el métod	o del clasificador KNN.	
5	Conclusiones	Se trabajó	controlando los movimientos del brazo del robot, su	
	Relevantes	capacidad c	de conectar soluciones de software para potenciar	
		prototipos, el	manejo de 4 servomotores con PCA9685, la codificación	
		de alto nivel	se realizó utilizando Python, debido a la librería Adafruit	
		como interfaz	z entre Python y Raspberry Pi.	

TABLA LI.
RESULTADO DEL ARTÍCULO EP12

#	Descripción	Detalle	
1	Información	Título	Caso de estudio. Perspectivas del uso de herramientas
	bibliográfica		de aprendizaje automático y cómputo de alto rendimiento
			en investigación científica por parte de estudiantes de
			pregrado en una universidad del Ecuador
		Autor	Miguel Méndez, Samara Oña, Sebastián Ayala
		Referencia	[98]
		Año	2017
2	Aplicación	Cómputo de	e alto rendimiento: utilizado a nivel educativo, con
		herramientas	del aprendizaje automático. Asimismo, el cómputo del alto

		rendimiento se analizó como caso de estudio la experiencia en el área de un grupo de investigación en una universidad ecuatoriana, donde la actividad se centró en ejecución de proyectos con la participación de estudiantes de pregrado.
3	Área/Línea de investigación priorizada	TIC para la educación e inclusión social
4	Funciones	Se evaluó una muestra de quince estudiantes que durante sus estudios de tercer nivel realizaron actividades de investigación en el grupo QCT-ISC USFQ. Los resultados obtenidos demuestran que los estudiantes percibieron claros beneficios en el uso de herramientas de aprendizaje automático y cómputo de alto rendimiento.
5	Conclusiones Relevantes	En este estudio de caso, se evaluó una muestra de estudiantes de pregrado miembros del grupo de química computacional y teoría USFQ/Instituto de Simulación Computacional-USFQ. Los resultados obtenidos demuestran que el uso de herramientas de aprendizaje automático y cómputo de alto rendimiento es una parte importante en su desarrollo profesional y académico.

TABLA LII.
RESULTADO DEL ARTÍCULO EP13

#	Descripción	Detalle	Detalle		
1	Información	Título	Ontology Model for the Knowledge Management in the		
	bibliográfica		Agricultural Teaching at the UAE		
		Autor	Muñoz-García Ana, Del Cioppo-Morstadt Francisco,		
			Bucaram-Leverone Martha.		
		Referencia	[99]		
		Año	2017		
2	Aplicación	Ontological models: La estructura de este modelo se compone de tres			
		capas: mode	elo de negocio y procesos, gestión del conocimiento y		
		tecnologías de gestión del conocimiento, es importante destacar que la			
		Ontología pa	ra la Gestión del Conocimiento del Campus Agrícola fue		
		desarrollada	con la metodología y su implementación fue realizada con		
		el editor de o	el editor de ontología Protégé-OWL.		
3	Área/Línea de				
	investigación	Agricultura y ganadería + Software aplicado			
	priorizada				

4	Funciones	Este modelo indicará el conocimiento a través de los procesos de		
		gestión del conocimiento y apoyará la generación de nuevos		
		aprendizajes e innovaciones. Estos procesos se muestran en forma de		
		frases en lenguaje natural y la lógica predicada de primer orden, que		
		permite la formalización de los axiomas dará soporte al razonamiento		
		para encontrar nuevos conocimientos.		
5	Conclusiones	El modelo ontológico representa el conocimiento del dominio de la		
	Relevantes	enseñanza de la agricultura y describe la lógica de sus procesos a		
		través de los axiomas definidos en la Tabla 1. Las ontologías para		
		representar el conocimiento requieren los siguientes componentes:		
		conceptos, relaciones, funciones, instancias y axiomas.		

TABLA LIII. RESULTADO DEL ARTÍCULO EP14

#	Descripción	Detalle	
1	Información	Título A Systematic Review of Deep Learning Approaches to	
	bibliográfica		Educational Data Mining
		Autor	Antonio Hernández, Boris Herrera, David Tomás, Borja
			Navarro.
		Referencia	[100]
		Año	2019
2	Aplicación	Methods to	detect patterns: se ha aplicado con éxito a una amplia
		gama de pro	oblemas en las áreas de reconocimiento de imágenes y
		procesamien	to del lenguaje natural. En este trabajo se hace un repaso
		de la investi	gación llevada a cabo en las técnicas de Aprendizaje
		Profundo aplicadas a la EDM, desde sus orígenes hasta la actualidad.	
3	Área/Línea de		
	investigación	TIC para la educación e inclusión	
	priorizada		
4	Funciones	Se identificó las tareas de EDM que se han beneficiado del Aprendizaje	
		Profundo y la	as que están pendientes de ser exploradas, describir los
		principales of	conjuntos de datos utilizados, proporcionar una visión
		general de	los conceptos clave, las principales arquitecturas y
		configuracion	nes del Aprendizaje Profundo y sus aplicaciones a EDM, y
			tado actual del arte y las direcciones futuras en esta área
		de investigac	ión.

5	Conclusiones	Se realizó un estudio exhaustivo de las técnicas de DL, comenzando	
	Relevantes	con una introducción al campo, un análisis de los tipos de arquitecturas	
		de DL utilizadas en cada tarea, una revisión de las configuraciones de	
		híper parámetros más comunes y una lista de los marcos existentes	
		para ayudar en el desarrollo de los modelos de DL. Dado que la	
		definición de una arquitectura de DL se basa principalmente en u	
		proceso empírico, la información proporcionada en este estudio puede	
		servir de base para iniciar futuros desarrollos de aplicaciones de DL en	
		EDM.	

TABLA LIV. RESULTADO DEL ARTÍCULO EP15

#	Descripción	Detalle			
1	Información	Título	Detección de técnicas de aprendizaje profundo aplicadas		
	bibliográfica		en las diferentes áreas del conocimiento, empleando el		
			método de revisión sistemática de literatura		
		Autor	Suntaxi Martha Cristina, Pablo Ordoñez.		
		Referencia	[101]		
		Año	2019		
2	Aplicación	Modelado de	e varias capas de procesamiento: se emplean algoritmos		
		profundos pa	ra detectar patrones y extraer características de los datos,		
		con el propós	sito de obtener resultados más precisos que los modelos		
		comúnmente usados.			
3	Área/Línea de				
	investigación	Economía tecnología y sociedad			
	priorizada				
4	Funciones	Las técnicas y/o modelos de aprendizaje profundo que se aplican			
		actualmente	en las áreas de conocimiento de ingeniería, medicina,		
		investigación	, industria y finanzas		
5	Conclusiones	Esto indica que los tres modelos son capaces de capturar la máxima			
	Relevantes	información presente en los datos con valores atípicos, pero el modelo			
		DL LSTM su	pera a los modelos convencionales, por tanto, las redes		
		LSTM demue	LSTM demuestran potencial en la previsión de ventas en conjuntos de		
		datos limitado	os.		

TABLA LV. RESULTADO DEL ARTÍCULO EP16

#	Descripción	Detalle			
1	Información	Título	Prediction of Digital Terrestrial Television Coverage		
	bibliográfica		Using Machine Learning Regression		
		Autor	Carla E. Garcia Moreta, Mario R. Camana Acosta, Insoo		
			Коо		
		Referencia	[102]		
		Año	2019		
2	Aplicación	Prediction r	nethods: basados en la estimación de las pérdidas del		
		trayecto de p	propagación y en modelos estadísticos tradicionales. Sin		
		embargo, la	elección del modelo depende de muchos factores, como la		
		presencia d	e obstáculos (edificios, árboles, etc.) y caminos de		
		propagación.			
3	Área/Línea de				
	investigación	Tecnologías de radiodifusión y televisión digital + Software aplicado			
	priorizada				
4	Funciones	En enfoque basado en algoritmos de clustering y regresión máquina,			
		como la regresión aleatoria de bosques, la regresión AdaBoost y la			
		regresión K-nearest neighbors, donde elegimos el mejor algoritmo para			
		nuestro enfo	que.		
5	Conclusiones	Se utilizó me	ediciones reales de la intensidad de campo y realizamos		
	Relevantes	clustering con regresión de aprendizaje automático algorithms para			
		obtener una alta precisión en la predicción y una baja carga			
		computacional. Cabe destacar que el regresor aleatorio forest tiene el			
		mejor rendimiento, en comparación con la regresión de Adaboost, la			
		regresión de	los vecinos más cercanos y el kriging ordinario.		

TABLA LVI. RESULTADO DEL ARTÍCULO EP17

#	Descripción	Detalle	
1	Información	Título	Mapping Two Competing Grassland Species from a Low-
	bibliográfica		Altitude Helium Balloon
		Autor	Brenner Silva, Lukas Lehnert, Kristin Roos, Andreas
			Fries, Rütger Rollenbeck, Erwin Beck, Jörg Bendix.
		Referencia	[103]

		Año	2014		
2	Aplicación	Image Proce	essing: Se combinaron técnicas de procesamiento de		
		imágenes par	a resolver problemas geométricos y construir mosaicos de		
		alta calidad pa	ara la clasificación de imágenes.		
3	Área/Línea de				
	investigación	Ambiente biod	diversidad y cambio climático		
	priorizada				
4	Funciones	El primer paso	del proceso es la construcción del mosaico de imágenes.		
		En primer lug	ar, se utilizaron imágenes superpuestas para reconstruir		
		la superficie	y rectificar los azulejos de imagen normalizados de		
		contraste en	una cuadrícula de mosaico. En el segundo paso de		
		procesamient	o, se mejoraron, segmentaron y clasificaron las bandas		
		individuales d	e VIS (azul, verde y rojo) en bracken y pasto, basándose		
		en los atributos de textura obtenidos de las imágenes NIR y RGB, así			
		como en los índices geométricos. Finalmente, se realizó una			
		interpretación	visual para la validación de la clasificación. El tercer paso		
		del proceso es la conversión de FPC a LIA, que consiste en un solo paso. Para los pasos de procesamiento se utilizó lenguaje R y Python.			
5	Conclusiones	Se desarrolló	una metodología para el registro y procesamiento de		
	Relevantes	fotografías de	e baja altitud transmitidas por globos, enfocándose en la		
		ocurrencia de	e individuos de plantas (frondas helecho y manojos de		
		pasto) a esca	ala de parcela. Demostramos que se puede utilizar una		
		plataforma rer	ntable para grabar mosaicos de imágenes de calidad, que		
		se pueden	procesar y clasificar utilizando procedimientos		
		semiautomátic	cos. Las herramientas robustas disponibles para el		
		procesamient	o de imágenes aéreas (por ejemplo, la reconstrucción de		
		superficies) p	ermitieron la rectificación geométrica de alta calidad en		
		una serie tem	poral de pares de imágenes (VIS y NIR).		

TABLA LVII. RESULTADO DEL ARTÍCULO EP18

#	Descripción	Detalle	
1	Información	Título	A general framework for intelligent recommender
	bibliográfica		systems
		Autor	José Aguilar, Priscila Valdivieso, Guido Riofrio.
		Referencia	[104]
		Año	2017

2	Aplicación	Fuzzy Cognitive Maps (FCMs): El sistema inteligente de recomendación explota el conocimiento, aprende, descubre nueva información, infiere preferencias y críticas, entre otras cosas. Basándonos en estas ideas, en este trabajo proponemos un nuevo tipo de sistema de recomendación, llamado Sistema Inteligente de Recomendación (IRS), que es una extensión del RS basado en el
3	Área/Línea de	conocimiento.
3	investigación priorizada	TIC para la educación e inclusión
4	Funciones	El IRS considera algoritmos de aprendizaje, mecanismos de representación del conocimiento y motores de razonamiento, entre otros aspectos. En este documento, definimos un IRS, y describimos sus componentes, y las relaciones entre ellos, entre otras cosas. Un IRS puede utilizar cualquier técnica inteligente (lógica difusa, enfoques lógicos, etc.) para su implementación. Además, damos un ejemplo de su aplicación utilizando los FCMs. Los FCMs han sido utilizados en diferentes dominios. Los FCMs se basan en la teoría de los Mapas Cognitivos (CMs), para modelar sistemas basados en conceptos que describen las principales características del sistema modelado (variables o estados del sistema), y las relaciones causales entre ellos. Los FCMs se basan en la teoría de la lógica difusa para definir su estructura y su proceso de inferencia a partir de una entrada de datos dada.
5	Conclusiones Relevantes	La implementación del IRS utilizando FCM muestra la verosimilitud del marco. Los aspectos principales que deben garantizar las técnicas inteligentes a utilizar para implementar el IRS, son las capacidades de razonamiento, la representación de diversos conocimientos y el aprendizaje. En particular, la capacidad de aprendizaje del FCM es utilizada fácilmente por la RS, y el razonamiento se define por el proceso iterativo implícito en el FCM.

TABLA LVIII. RESULTADO DEL ARTÍCULO EP19

#	Descripción	Detalle						
1	Información	Título	Pruning s	strategies	for	nearest	neighbor	competence
	bibliográfica		preservati	ion learner	s			

		Autor	Fabricio Angiulli, Estela Narváez		
		Referencia	[105]		
		Año	2018		
2	Aplicación	Classification	n: Todas las imágenes digitales han sido normalizadas y		
		centradas er	n una imagen de tamaño fijo de 28x28 píxeles. En el		
		conjunto de	datos original cada píxel de la imagen está representado		
		por un valor	entre 0 y 255, donde 0 es negro, 255 es blanco y todo lo		
		que hay en n	nedio es de un tono de gris diferente.		
3	Área/Línea de				
	investigación	Economía te	cnología y sociedad		
	priorizada				
4	Funciones	Para cada co	onjunto de datos, se indican el nombre, la abreviatura, el		
		tamaño, las	tamaño, las características y el número de clases. Además, también		
		empleamos los siguientes conjuntos de datos.			
		El conjunto de datos MIST consiste en imágenes binarias de la			
		excavación manuscrita (60.000 objetos, 784 características y 10 clases)			
5	Conclusiones	Como resultados importantes, demostramos que las estrategias de			
	Relevantes	selección aq	uí introducidas garantizan la preservación de la precisión		
		de un subcor	njunto consistente de un vecino más cercano con un factor		
		de reducción	mucho mayor, que se pueden obtener mejoras sensatas		
		en la genera	alización utilizando un subconjunto reducido de tamaño		
		intermedio, y que estas estrategias son capaces de obtener un modelo			
		de tamaño comparable al que se obtiene con los mejores métodos de			
		selección de prototipos, pero que es más rápido en órdenes de			
		magnitud dife	erentes.		

TABLA LIX.
RESULTADO DEL ARTÍCULO EP20

#	Descripción	Detalle				
1	Información	Título Improving Cluster-based Methods for Usage Anticipation				
	bibliográfica		by the Application of Data Transformations			
			Manufacturing			
		Autor	Andrés Auquilla, Yannick De Bock, Joost R. Duflou			
		Referencia	[106]			
		Año	2018			
2	Aplicación	Decision tree: una metodología que encuentra la dimensionalidad				
		intrínseca de un conjunto de datos que contiene datos históricos de uso				

		binarios, realizando reducciones de dimensionalidad para mejorar el paso de perfilado. Luego, el paso de detección de perfil hace uso de los datos transformados y mejorados para detectar con precisión el perfil actual.
3	Área/Línea de investigación priorizada	Desarrollo industrial
4	Funciones	La técnica logSVD proporciona una mejor representación de los datos para los conjuntos de datos, ya que el número de dimensiones necesarias para explicar la varianza original es menor que para el PCA logístico. Además, logSVD mejora la separabilidad entre clústers, tal y como se muestra en los resultados de detección de ambos conjuntos de pruebas.
5	Conclusiones Relevantes	Como resultado, se puede descubrir la dimensionalidad intrínseca del conjunto de datos, ayudando así al proceso de agrupamiento a descubrir los perfiles más relevantes a partir de los datos históricos. Las técnicas de reducción de la dimensionalidad también son beneficiosas para el proceso de detección del clúster más probable, dada la información ya disponible en la actualidad.

TABLA LX. RESULTADO DEL ARTÍCULO EP21

#	Descripción	Detalle		
1	Información	Título	The potential of non-invasive pre- and post-mortem	
	bibliográfica		carcass measurements to predict the contribution of	
			carcass components to slaughter yield of guinea pigs	
		Autor	Lida Barba, Davinia Sánchez, Iván Barba, Nibaldo	
			Rodríguez.	
		Referencia	[107]	
		Año	2018	
2	Aplicación	Prediction n	nodel: se basaron en la Regresión Lineal Múltiple, los	
		resultados d	e la predicción mostraron una mayor precisión en la	
		predicción de la atribución de los componentes de la canal expresada		
		en gramos, en comparación con la expresada como porcentaje de los		
		componentes	de la calidad de la canal.	

3	Área/Línea de	
	investigación	Agricultura y ganadería + Software aplicado
	priorizada	
4	Funciones	En la predicción de la posición de la canal se han utilizado diversas
		mediciones internas o externas de la canal, en animales vivos o
		sacrificados, como un método sencillo para evaluar la calidad del
		producto comestible sin que ello implique daños en la canal.
5	Conclusiones	Los modelos de predicción presentados en este estudio tienen una muy
	Relevantes	buena precisión para estimar el peso de los diferentes componentes de
		la canal de cuy, así como el porcentaje de grasa en la canal.

TABLA LXI.
RESULTADO DEL ARTÍCULO EP22

#	Descripción	Detalle			
1	Información bibliográfica	Título	Automatic Feature Extraction of Time-Series applied to Fault Severity Assessment of Helical Gearbox in Stationary and Non-Stationary Speed Operation		
		Autor	Diego Cabrera, Fernando Sancho, Chuan Li, Mariela Cerrada, René Sánchez, Fannia Pacheco, José Valente de Oliveira.		
		Referencia	[43]		
		Año	2017		
2	Aplicación	Deep Convolutional Neural Network pretrlAned: La robustez y la			
		precisión de este nuevo método se validan utilizando un conjunto de			
		datos con diferentes condiciones de gravedad en el modo de fallo en			
		una caja de engranajes helicoidal, trabajando tanto en modo constante			
		como en mod	lo velocidad de funcionamiento variable.		
3	Área/Línea de investigación priorizada	Desarrollo ind	dustrial		
4	Funciones	La caja de e	ngranajes cilíndricos de una etapa (GB) está compuesta		
		por dos engra	anajes (Z1 y Z2) montados en ejes independientes. El eje		
		de entrada está conectado a un motor, que			
		transforma la energía eléctrica en movimiento de rotación para ser			
		transmitida al sistema mecánico. El eje de salida está unido al sistema			
		de freno (B),	que tiene una correa conectada a un freno magnético, y		

		transforma la energía eléctrica en fuerza mecánica opuesta al		
		movimiento de rotación de la salida.		
5	Conclusiones	Se ha propuesto un nuevo método de extracción automática de		
	Relevantes	características para evaluar la gravedad de los fallos. Consiste en un		
		proceso de extracción de patrones siguiendo un enfoque no		
		supervisado desde una representación en el dominio de la frecuencia		
		temporal del tiempo.		

TABLA LXII.
RESULTADO DEL ARTÍCULO EP23

#	Descripción	Detalle		
1	Información bibliográfica	Título	Determination of egg storage time at room temperature using a low-cost NIR spectrometer and machine learning techniques	
		Autor	Julián coronel, Iván Ramírez, Enrique Fernández, Daniel Rivero, Alejandro Pazos	
		Referencia	[108]	
		Año	2018	
2	Aplicación	Savitzky Golay pre-processing technique: esta técnica m		
		potencial ind	ustrial y la utilidad para el consumidor para determinar la	
		frescura de	un huevo utilizando un espectrómetro de bajo coste	
		conectado a	un Smartphone.	
3	Área/Línea de investigación priorizada	Desarrollo industrial		
4	Funciones	La adquisición espectral se realizó utilizando un espectrómetro de		
		le infrarrojo cercano (NIR) de bajo coste que tiene un rango		
		de onda entre 740nm y 1070 nm. El conjunto de datos		
		resultante de	660 muestras fue dividido aleatoriamente de acuerdo con	
		una validació	n cruzada de 10 veces para ser utilizado en un proceso de	
		contraste y o	ptimización de dos algoritmos de aprendizaje de máquina.	
		Durante la optimización, se probaron varios modelos para desarrollar		
		un modelo de calibración robusto.		
5	Conclusiones	Se construy	eron modelos predictivos adecuados con técnicas de	
	Relevantes	regresión PL	S y ANN, pero estas últimas se desempeñaron mejor,	
alcanzando un valor R-cuadrado de 0,873 y un		ın valor R-cuadrado de 0,873 y un RMSECV de 1,97 en los		
		datos del co	onjunto de pruebas, lo que sugiere que los espectros	

obtenidos con el espectrómetro NIR conectado a un teléfono inteligente
pueden utilizarse como un método no destructivo para la evaluación del
tiempo de almacenamiento de los huevos, un parámetro de calidad y
frescura.

TABLA LXIII. RESULTADO DEL ARTÍCULO EP24

#	Descripción	Detalle	
1	Información bibliográfica	Título	Modication of the random forest algorithm to avoid statistical dependence problems when classifying remote sensing imagery
		Autor	Fulgencio Cánovas, Francisco Sarría, Francisco Gomáriz, Fernando Oñate
		Referencia	[109]
		Año	2017
2	Aplicación	The random forest algorithm: para dividir los parches de entrenamiento en lugar de los píxeles (u objetos) que los componen. Este algoritmo modificado no sobreestima la precisión y no tiene una capacidad predictiva menor que la original.	
3	Área/Línea de investigación priorizada	TIC para la educación e inclusión + Software aplicado	
4	Funciones	Analizamos tres imágenes de teledetección con diferentes enfoques de clasificación (basados en píxeles y objetos); En los tres casos informados, la modificación que proponemos produce una estimación de precisión menos sesgada.	
5	Conclusiones Relevantes	Según nuestros resultados, la validación cruzada fuera de la bolsa claramente sobreestima la precisión, tanto en general como por clase. La razón es que, en un parche de entrenamiento, los píxeles u objetos no son independientes (desde un punto de vista estadístico) entre sí; sin embargo, se dividen por bootstrapping dentro y fuera de la bolsa como si fueran realmente independientes.	

TABLA LXIV. RESULTADO DEL ARTÍCULO EP25

# Descripción Detalle			
-----------------------	--	--	--

1	Información	Título	Optical Camera Communication system for three-	
	bibliográfica		dimensional T indoor localization	
		Autor	Patricia Chávez, Víctor Guerra, José Rabadán, Rafael	
			Pérez	
		Referencia	[110]	
		Año	2019	
2	Aplicación	Image processing: Este paso comenzó con la binarización de		
		imágenes, denominada procedimiento A en el diagrama de		
		Procesamiento de Imágenes. Para este proceso, el canal apropiado es		
		binarizado usando el algoritmo de Otsu para el umbral, basado en los		
		datos extraíd	os de su histograma. Para las balizas, la binarización se	
		aplica sólo a	l canal verde del primer fotograma. En el caso de los	
		objetos, se p	rocesan los canales rojo y azul de cada trama, luego se	
		combinan ambos canales (procedimiento B) para componer una imagen		
		binaria única.		
3	Área/Línea de			
	investigación	Internet de la	s cosas IoT + Software aplicado	
	priorizada			
4	Funciones	Se realizó una validación experimental, las pruebas para localizar y		
		rastrear cuatro objetos al mismo tiempo se realizaron en una sala		
		oscura de 3 m \times 3,5 m \times 2,5 m. El emisor seleccionado fue un conjunto		
		de Leds redondos de 16 cm2, compuesto por doce Leds RGB de 6 pines		
		con un ángulo de visión de 120°. De esta manera, cada canal de color		
		se controlaba de forma dependiente mediante un pequeño ordenador		
		de placa única programado con Python; y cada fuente emitía su señal		
		de identificad	ión única como modulación OOK del código "0 x AAAA"	
			cia y canal definidos en el cuadro 1.	
5	Conclusiones	Este trabajo	ha demostrado que es factible un sistema de localización	
	Relevantes	de interiores en 3D de dos pasos en tiempo real basado en OCC para		
		múltiples objetos simultáneos. Este sistema de localización de interiores		
		•	ser fácilmente implementado para la navegación de robots	
		_	nte campo de aplicaciones de la Internet Industrial de los	
		, ,	, o para cualquier ejecución de seguimiento, ya que el	
			puesto no requiere una cámara integrada en los objetos	
		que se van a	localizar.	

TABLA LXV. RESULTADO DEL ARTÍCULO EP26

#	Descripción	Detalle				
1	Información	Título Spatial prediction of soil water retention in a Parar				
	bibliográfica		landscape: Methodological insight into machine learning			
			using random forest			
		Autor	Carlos M. Guio, Víctor M. Brito, Patricio Crespo, Mareike			
			Lie.			
		Referencia	[111]			
		Año	2018			
2	Aplicación	Random For	rest: difiere de los modelos de árboles de decisión en el			
		crecimiento c	de muchos árboles en lugar de un solo árbol de decisión y			
		en el promed	io de los resultados.			
3	Área/Línea de					
	investigación	Ambiente biodiversidad y cambio climático				
	priorizada					
4	Funciones	El tamaño de este subconjunto de predictores, aquí llamado mtry, sigue				
		siendo el mismo para todo el bosque. Las observaciones no incluidas				
		en el entrenamiento con modelos, llamadas "out of bag" (OOB), se				
		utilizan para estimar la precisión del modelo (Breiman, 2001). Para los				
		modelos de regresión, el error de predicción se devuelve como error				
		cuadrado medio (MSE) (Grömping, 2009). Usamos la función traen ()				
			R para el entrenamiento de modelos y empleamos como			
		dependencia la implementación de randomForest () por Liaw y Wiener				
		(2002).				
5	Conclusiones		del pronosticador ayudó a reducir la complejidad del			
	Relevantes		interpretarlo. Los predictores más importantes fueron la			
		altitud, la apertura positiva -aunque sólo en pF 0,5- y los índices de				
		vegetación. En los mapas regionalizados, se observaron				
		consistentemente valores medios bajos para todos los valores de pF en				
		el valle del río	o Quinuas.			

TABLA LXVI. RESULTADO DEL ARTÍCULO EP27

#	Descripción	Detalle
---	-------------	---------

1	Información	Título	Feature selection of seismic waveforms for long period			
	bibliográfica		event detection at Cotopaxi Volcano			
		Autor	R.A. Lara, D.S. Benítez, E.V. Carrera, M. Ruiz, J.L. Rojo			
		Referencia	[112]			
		Año	2016			
2	Aplicación	k-NN and d	ecision trees: Se aplicó este enfoque a la sismicidad			
		presentada e	n el volcán Cotopaxi en Ecuador durante 2009 y 2010.			
3	Área/Línea de					
	investigación	Ambiente bio	diversidad y cambio climático			
	priorizada					
4	Funciones	Se produjo ur	na mejora significativa con el clasificador k-NN, en términos			
		de P al men	os en un 10%, mientras que, para R, sin el bloque de			
		selección de características, presentó valores diferentes para los				
		conjuntos de validación y de prueba (33% y 92%, respectivamente), una				
		diferencia de alrededor del 60%. Mientras tanto, al utilizar este bloque				
		para la validación y los sets de prueba, la detección alcanzó una R				
		inferior al 77%, con una notable reducción de características de 513 a				
		50 para la	matriz F, y de 257 a 25 para la matriz G, debido			
		principalment	e a la identificación de una banda de frecuencias fb \in (2,7)			
		Hz, que conti	ene las características más relevantes.			
5	Conclusiones	Nuestros exp	perimentos han demostrado que los mejores resultados			
	Relevantes	pueden obter	nerse en el dominio de la frecuencia, utilizando matrices F			
		o G, en lugar de en el dominio del tiempo y la escala, y utilizando un				
		clasificador DT en lugar de un clasificador k-NN.				

TABLA LXVII. RESULTADO DEL ARTÍCULO EP28

#	Descripción	Detalle	
1	Información	Título	Multimodal deep support vector classification with
	bibliográfica		homologous features and its application to gearbox fault
			diagnosis
		Autor	Chuan Li, René Sánchez, Grover Zurita, Mariela Cerrada,
			Diego Cabrera, Rafael Vásquez.
		Referencia	[113]
		Año	2015

	2	Aplicación	Deep support vector classification (MDSVC): emplea el aprendizaje
			profundo basado en la fusión por separación para realizar tareas de
			diagnóstico de fallas en las cajas de engranajes.
	3	Área/Línea de	
		investigación	Desarrollo industrial
		priorizada	
	4	Funciones	La DBM es elegida la red básica para nuestro modelo MDSVC. La DBM
			estándar es una red de neuronas binarias estocásticas de pareja
			simétrica. Como se muestra en la Fig. 1, una sola capa visible v y L
			capas ocultas h(1),, h(l),, y h(L) contribuyen a una red DBM, donde
			las conexiones sólo se permiten entre las neuronas visibles y las
			primeras ocultas, así como entre las neuronas ocultas en capas ocultas
			adyacentes. La energía E del estado {v, h(1),, h(L)} se define
			como[33].
	5	Conclusiones	Si se dispone de diferentes mediciones, tales como señales de
		Relevantes	vibración, acústicas y térmicas, el modelo MDSVC propuesto puede
			utilizarse como un enfoque de fusión de datos de múltiples fuentes.
- 1			

TABLA LXVIII. RESULTADO DEL ARTÍCULO EP29

#	Descripción	Detalle				
1	Información	Título Gearbox fault diagnosis based on deep random fores				
	bibliográfica	fusion of acoustic and vibratory signals				
		Autor	Chuan Li, René Sánchez, Grover Zurita, Mariela Cerrada,			
			Diego Cabrera, Rafael Vásquez.			
		Referencia	[114]			
		Año	2016			
2	Aplicación	Deep randor	n forest fusion (DRFF): para mejorar el rendimiento del			
		diagnóstico de fallas en las cajas de engranajes mediante el uso de				
		mediciones de un sensor de emisión acústica y un acelerómetro que se				
		utilizan para monitorear la condición de la caja de engranajes				
		simultáneamente.				
3	Área/Línea de					
	investigación	Desarrollo industrial				
	priorizada					
4	Funciones	La técnica DRFF propuesta se evalúa utilizando experimentos de				
		diagnóstico d	e fallas en la caja de cambios bajo diferentes condiciones			

		de operación, y alcanza el 97,68% de la tasa de clasificación para 11
		patrones de condición diferentes. En comparación con otros algoritmos
		de par, el método dirigido exhibe el mejor rendimiento.
5	Conclusiones	Para evaluar el método DRFF propuesto, se llevaron a cabo
	Relevantes	experimentos de diagnóstico de fallos en la caja de cambios. Los
		resultados muestran que el método actual es capaz de mejorar el
		rendimiento del diagnóstico de fallos de la caja de cambios, en
		comparación con los métodos de pares.

TABLA LXIX. RESULTADO DEL ARTÍCULO EP30

#	Descripción	Detalle				
1	Información	Título	Traffic sign segmentation and classification using			
	bibliográfica		statistical learning methods			
		Autor	J.M. Lillo-Castellano, I. Mora-Jiménez, C. Figuera-			
			Pozuelo, J.L. Rojo-Álvarez			
		Referencia	[115]			
		Año	2014			
2	Aplicación	k-Nearest N	leighbors and Support Vector Machines: Para la			
		segmentació	n cromática y logra la clasificación de la forma de los			
		signos, y es	robusto para rotaciones de signos, cambios de escala,			
		traslaciones,	sombras y deformaciones menores.			
3	Área/Línea de					
	investigación	Ciudades inteligentes inclusivas				
	priorizada					
4	Funciones	Método automático para detectar por separado los signos cromáticos y				
		acromáticos en imágenes tomadas en escenarios realistas. El método				
		propuesto logra la clasificación de la forma de los signos, y es robusto				
		para rotaciones de signos, cambios de escala, traslaciones, sombras y				
		deformaciones menores. Nuestro procedimiento está estructurado en				
		tres etapas. En primer lugar, la imagen se segmenta utilizando los				
		espacios L*a*b* y HSI, con el fin de separar los elementos cromáticos				
		y acromáticos de la señalización de tráfico.				
5	Conclusiones	Este procedir	niento ha mostrado un alto rendimiento con signos de color			
	Relevantes	y blanco y	negro. La segunda contribución es la etapa de pos			
		procesamien	to, en la que el algoritmo para separar los signos cubicados			
		proporciona e	excelentes resultados. La descripción de las formas de los			

	signos po	r m	edio de desci	riptores o	le F	ourier	y su uso ju	nto	con un
	algoritmo	de	clasificación	basado	en	SVM	representa	la	tercera
	contribuci	ón							

TABLA LXX. RESULTADO DEL ARTÍCULO EP31

#	Descripción	Detalle				
1	Información	Título Comparison between Principal Component Analysis and				
	bibliográfica	Wavelet Transform 'Filtering Methods for Lightn				
		Stroke Classification on Transmission Lines				
		Autor John A. Morales, E. Orduña, C. Rehtanzc, R.J. Cabralo				
			A.S. Bretas.			
		Referencia	[116]			
		Año	2014			
2	Aplicación	Artificial Ne	ural Network (ANN), k-Nearest Neighbors (k-NN) and			
		Support Ved	etor Machine (SVM): mediante el empleo de técnicas de			
		vectores prop	oios y clasificadores, se logra con éxito la clasificación de			
		los rayos con	y sin fallas.			
3	Área/Línea de					
	investigación	Redes e infraestructura de telecomunicaciones + Software aplicado				
	priorizada					
4	Funciones	Se muestran los patrones extraídos a través del procesamiento de PCA				
		y MRA, es posible ver que se extraen patrones bien definidos, siendo				
		las señales de rayos claramente disimuladas.				
		Es necesario tener en cuenta que utilizando la Ecuación (10) se pueden				
		proyectar nuevas señales fn.				
5	Conclusiones	Se desarrolla	an comparaciones considerando diferentes técnicas de			
	Relevantes	clasificación como Red Neural Artificial, Vecinos k-Nearest y Máquina				
		de Soporte Vecinal. Los resultados ilustran que no sólo el PCA, sino				
		también estas técnicas pueden ser fácilmente adaptadas para la				
		clasificación o	de los rayos.			
	<u> </u>					

TABLA LXXI. RESULTADO DEL ARTÍCULO EP32

# Descripción	Detalle
---------------	---------

1	Información	Título	A distributed and quiescent max-min fair algorithm for			
	bibliográfica		network congestion control			
		Autor	Alberto Mozo, José Luis López, Antonio Fernández			
		Referencia	[117]			
		Año	2018			
2	Aplicación	B-Neck: cald	cula proactivamente las tasas de envío de las sesiones			
		óptimas inde	pendientemente de las señales de congestión. B-Neck			
		aplica la máx	ima imparcialidad como criterio de optimización.			
3	Área/Línea de					
	investigación	Redes e infraestructura de telecomunicaciones + Software aplicado				
	priorizada					
4	Funciones	B-Neck se vuelve quiescente, entonces a cada sesión en la red se le ha				
		asignado su tarifa justa máxima-mínima. Además, le damos un límite				
		superior al tiempo que el Cuello-B necesita para quedarse quieto, una				
		vez que la red llega a un estado estable. Para empezar, vamos a probar				
		algunas prop	iedades básicas del algoritmo.			
5	Conclusiones	Se evaluó la	precisión de las predicciones de velocidad de las sesiones			
	Relevantes	entrenando	diferentes modelos profundos (por ejemplo, redes			
		neuronales recurrentes o convolucionales) contra predictores				
		tradicionales	y técnicas de predicción de series de tiempo (por ejemplo,			
		ARIMA, GARCH) en el contexto de la prevención de la congestión.				

TABLA LXXII. RESULTADO DEL ARTÍCULO EP33

#	Descripción	Detalle		
1	Información	Título	On feature extraction for noninvasive kernel estimation of	
	bibliográfica		left ventricular chamber function indices from	
			echocardiographic images	
		Autor	Ricardo Mozos, José L Rojo, Carlos Antoranz, Mar Desco, Daniel Rodríguez, Raquel Yotti, Javier Bermejo	
			Desco, Daniel Rodriguez, Raquel Totti, Saviel Berniejo	
		Referencia	[118]	
		Año	2015	
2	Aplicación	Nonlinear al	gorithms: eficientes del núcleo mejora la calidad de la	
		estimación de los índices de BT a partir de imágenes CDMM cuando se		
		utilizan espac	sios de entrada DCT que capturan casi toda la energía.	

	3	Área/Línea de	
	Ū	investigación	Redes e infraestructura de telecomunicaciones
			Redes e illitaestructura de telecomunicaciones
		priorizada	
	4	Funciones	La RVS lineal se construyó a partir de espacio de entrada sin procesar
			(imágenes CDMM sin transformaciones), tanto para estimar E max
			como para т. Se prestó atención a la búsqueda de parámetros libres.
			Se realiza un análisis de errores y un diagnóstico del modelo. Los pesos
			se grafican y analizan desde una perspectiva fisiológica. En el
			Experimento 2, usamos coeficientes DCT de imágenes sin procesar
			como espacio de entrada. Se utilizó la RVS lineal para analizar las
			imágenes resultantes y se examinó la dependencia de la energía
			reticulada y se examinaron dos esquemas de normalización. En el
			Experimento 3, analizamos imágenes sin procesar usando PCR. Este
			método fue una de las alternativas más simples a la RVS, ya que reduce
			la dimensión con PCA y luego las estimaciones utilizando OLS.
ľ	5	Conclusiones	Entre la comunidad de métodos del kernel, se acepta generalmente que
		Relevantes	la Máquina Vectorial de Soporte lineal (SVM) es mejor que la SVM no
			lineal para espacios de entrada de alta dimensión como la
			categorización de texto o datos fMRI.

TABLA LXXIII.
RESULTADO DEL ARTÍCULO EP34

#	Descripción	Detalle	
1	Información	Título	A statistical comparison of neuroclassifiers and feature
	bibliográfica		selection methods for gearbox fault diagnosis under
			realistic conditions
		Autor	Fannia Pacheco, José Valente de Oliveira, René-
			Sánchez, Mariela Cerrada, Diego Cabrera, Chuan Li,
			Grover Zurita, Mariano Artés.
		Referencia	[119]
		Año	2016
2	Aplicación	Feature selection: extracción de características se realiza calculando	
		estadísticas,	que provienen del análisis de vibraciones en el dominio del
		tiempo, el do	ominio de la frecuencia y el dominio de la frecuencia del
		tiempo. Como consecuencia de esto, es probable que el	
características redundantes de alta correlación. El		s redundantes de alta correlación. El análisis de	
		correlación s	e ejecutó sobre el conjunto de datos original obteniendo

		como resultado una alta correlación dentro de más de 400 características. Se eliminan todas y cada una de las características que presentan una correlación superior al 95% con otra, y este análisis terminó con una base de datos de datos1 con 330 características y 900 muestras.
3	Área/Línea de investigación priorizada	Desarrollo industrial
4	Funciones	Los conjuntos de datos son evaluados por clasificadores ANN, que se dividen básicamente en tres tipos: (1) clasificadores ANN multi-salida clásicos, con aprendizaje supervisado y no supervisado, (2) clasificadores ANN binarios que utilizan el enfoque One Vs All y (3) ANN con GA, la estructura optimizada de la ANN y se utilizan las características más significativas.
5	Conclusiones Relevantes	Se completa un estudio de varios métodos de reducción de características con aprendizaje supervisado y no supervisado. Los clasificadores fueron evaluados utilizando métricas ACC y AUC

TABLA LXXIV. RESULTADO DEL ARTÍCULO EP35

#	Descripción	Detalle		
1	Información	Título	Using Multilayer Fuzzy Cognitive Maps to diagnose	
	bibliográfica		Autism Spectrum Disorder	
		Autor	E. Puerto, J. Aguilar, C. López, D. Chávez	
		Referencia	[120]	
		Año	2018	
2	Aplicación	Multilayer Fu	uzzy Cognitive Map (MFCM): Las MFCM son una técnica	
		de computac	de computación suave caracterizada por propiedades robustas que la	
		convierten er	convierten en una técnica eficaz para los sistemas de apoyo a la toma	
		de decisiones médicas. Para la evaluación del modelo MFCM-ASD,		
		hemos utilizado conjuntos de datos reales de casos diagnosticados, con		
		el fin de compararlos con otros métodos/enfoques.		
3	Área/Línea de			
	investigación	Salud y biene	Salud y bienestar	
	priorizada			
4	Funciones	La muestra	del estudio fue de 300 niños: 150 del grupo clínico	
		(diagnosticad	los con autismo o síndrome de Asperger) y otros 150 niños	

		neurotípicos, es decir, libres de estas afecciones. En el grupo clínico,
		30.2% fueron diagnosticados con Autismo y 14.3% con Espectro
		Autista. Los niños tenían entre 2 y 12 años, y estaban compuestos por
		76 niñas y 224 niños.
5	Conclusiones	El modelo MCFM-ASD tiene la virtud de permitir que el experto (por
	Relevantes	ejemplo, un psicólogo) interprete sus resultados de una manera fácil e
		intuitiva. Esta es la principal contribución, que compensa en gran
		medida su tenue diferencia de precisión con respecto a las otras
		técnicas, cuyos resultados son buenos, pero no ayudan mucho en la
		contextualización de los resultados, lo que es muy importante para los
		psicólogos en sus procesos diagnósticos.

TABLA LXXV. RESULTADO DEL ARTÍCULO EP36

#	Descripción	Detalle		
1	Información bibliográfica	Título	Optimization of NIR calibration models for multiple processes in the sugar industry	
		Autor	Iván Ramírez, Daniel Rivero, Enrique Fernández, Alejandro Pazos	
		Referencia	[44]	
		Año	2016	
2	Aplicación	Support vec	tor machines regression: El modelo depende sólo de un	
		subconjunto	de datos (vectores de apoyo), porque la función de costo	
		para la consti	rucción del modelo no considera los puntos que están más	
		allá del margo	allá del margen; además, la función de costo ignora cualquier dato que	
		se aproxime a	al modelo de predicción, dentro de un umbral.	
3	Área/Línea de			
	investigación	Agricultura y	ganadería + Software aplicado	
	priorizada			
4	Funciones	Las máquinas vectoriales de soporte (SVM) son algoritmos de		
		aprendizaje	supervisado, basados en la minimización del riesgo	
		estructural,	y pueden utilizarse en problemas de clasificación y	
		regresión (S\	/R). Su funcionamiento parte de un conjunto de patrones	
		de formación cuyos resultados se conocen y que permiten predecir		
		nuevos patro	nes.	
5	Conclusiones	Este estudio	evalúa la aplicación de técnicas de selección de	
	Relevantes	característica	s y la determinación de la configuración óptima de los	

parámetros de un modelo de calibración quimiométrica basado en la regresión vectorial de soporte, una técnica comúnmente utilizada en el aprendizaje automático. En comparación con los modelos publicados, los modelos propuestos aquí pudieron estimar mejor las no linealidades causadas por la combinación de los espectros NIR de múltiples etapas del proceso de fabricación de la caña de azúcar.

TABLA LXXVI. RESULTADO DEL ARTÍCULO EP37

#	Descripción	Detalle		
1	Información	Título	From flamingo dance to (desirable) drug discovery: a	
	bibliográfica		nature-inspired approach	
		Autor	Aminael Sánchez, Yunierkis Pérez, Stephan C. Schurer,	
			Orazio Nicolotti, Giuseppe Felice, Fernanda Borges, M.	
			Natalia D.S. Cordeiro, Eduardo Tejera, José L. Medina,	
			Maykel Cruz.	
		Referencia	[121]	
		Año	2017	
2	Aplicación	Multicriteria	VS: utilizado en las bases de datos de compuestos	
		químicos. Pa	ra utilizar las puntuaciones de clasificación con el fin de	
		derivar los va	alores de deseabilidad de los parámetros, es fundamental	
		basarse en m	basarse en modelos de clasificación de alta calidad para un modelado	
		robusto.		
3	Área/Línea de			
	investigación	Salud y bienestar		
	priorizada			
4	Funciones	Se basa en tres etapas. En el primero, un modelo de conjunto predictivo		
		para cada pu	unto final individual se deriva de un conjunto de modelos	
		QSAR de bas	se. En el segundo, estos modelos de conjunto se utilizan	
			r las puntuaciones de clasificación previstas de un conjunto	
		de datos d	leterminado. Posteriormente, estas puntuaciones se	
		transforman en valores individuales de deseabilidad de los puntos		
		finales, que fi	inalmente se combinan para obtener una herramienta VS	
		de priorizació	n multicriterio basada en la deseabilidad.	
5	Conclusiones	Los resultado	os proporcionaron pruebas sólidas que respaldan nuestra	
	Relevantes	hipótesis de	que las funciones de deseabilidad pueden utilizarse para	

	obtener herramientas altamente eficaces y robustas para el desarrollo	
	de flujos de trabajo multicriteria VS de alto rendimiento.	

TABLA LXXVII. RESULTADO DEL ARTÍCULO EP38

#	Descripción	Detalle		
1	Información bibliográfica	Título	Semi-Supervised Clustering Algorithms for Grouping Scientific Articles	
		Autor	Diego Vallejo-Huanga, Paulina Morillo, César Ferri	
		Referencia	[122]	
		Año	2017	
2	Aplicación	K-Means or	MPCK-Means algorithm: algoritmos semi-supervisados	
		que utilizarer	nos en los experimentos para resolver el problema de la	
		agrupación c	on restricciones de tamaño.	
3	Área/Línea de			
	investigación	TIC para edu	cación e inclusión + Software aplicado	
	priorizada			
4	Funciones	Los puntos i	niciales para nuestros algoritmos de clustering se eligen	
		usando dos	métodos: Técnica del Vecino Más Lejano y algoritmo	
		Buckshot. El primero selecciona los puntos más lejanos de todo		
		conjunto de datos, y de esta manera se asegura la convergencia de los		
		K-Medoides (o K-Means) con el óptimo global. Buckshot es una técnica		
		híbrida cuya idea principal es elegir una pequeña muestra aleatoria de		
		puntos (de t	amaño √kn), y luego aplicar un método de agrupación	
		jerárquica pa	ra encontrar clústers k. Los centroides de estos cúmulos	
		son los punto	os iniciales k.	
5	Conclusiones	En este traba	ajo hemos presentado dos algoritmos novedosos para la	
	Relevantes	agrupación s	semisupervisada que permiten reducir el tamaño de los	
		clústers. El	primero, el algoritmo CSCLP, se basa en técnicas de	
		optimización,	mientras que el segundo, el algoritmo K-MedoidsSC,	
		representa ι	una variación del algoritmo K-Medoids original para	
		considerar la	s restricciones de tamaño en los clústers.	

TABLA LXXVIII. RESULTADO DEL ARTÍCULO EP39

# Descripción Detalle			
-----------------------	--	--	--

bibliográfica Autor	1	Información	Título	Characterizing Influential Leaders of Ecuador on Twitter	
Autor JohnnyTorres, Gabriela Baquerizo, Carmen Vaca, Enrique Peláez. Referencia [123] Año 2016 Nearest Neighbors, NIAve Bayes: Para clasificar a los usuarios influyentes se realizó un análisis comparativo del conjunto de datos, utilizando los siguientes algoritmos de aprendizaje automático para la clasificación binaria: Máquinas Vectoriales de Apoyo (SVM), Vecinos Más Cercanos, Ingenuas Bayes. Afrea/Línea de investigación priorizada Funciones La función de decisión del SVM sobre la clasificación depende de algún subconjunto de los datos de entrenamiento, llamados vectores de apoyo. El kernel utilizado puede ser utilizado de acuerdo con el problema en cuestión, las opciones son lineales: polinomial, función de base radial (RBF), sigmoide, pre calculada, entre otras. En nuestros experimentos se utilizó el núcleo RBF porque presentaba mejores resultados en comparación con otros núcleos. Conclusiones Relevantes Los resultados de las tareas de clasificación para los tres algoritmos muestran una puntuación de alta precisión cuando se utilizan datos normalizados. Se muestra que la máquina vectorial de soporte funciona		bibliográfica			
Enrique Peláez. Referencia [123] Año 2016 2 Aplicación Nearest Neighbors, NIAve Bayes: Para clasificar a los usuarios influyentes se realizó un análisis comparativo del conjunto de datos, utilizando los siguientes algoritmos de aprendizaje automático para la clasificación binaria: Máquinas Vectoriales de Apoyo (SVM), Vecinos Más Cercanos, Ingenuas Bayes. 3 Área/Línea de investigación priorizada 4 Funciones La función de decisión del SVM sobre la clasificación depende de algún subconjunto de los datos de entrenamiento, llamados vectores de apoyo. El kernel utilizado puede ser utilizado de acuerdo con el problema en cuestión, las opciones son lineales: polinomial, función de base radial (RBF), sigmoide, pre calculada, entre otras. En nuestros experimentos se utilizó el núcleo RBF porque presentaba mejores resultados en comparación con otros núcleos. 5 Conclusiones Relevantes Relevantes Relevantes Relevantes Remedia de su susuarios influencias: Para clasificación de datos, utilizan datos normalizados. Se muestra que la máquina vectorial de soporte funciona		J.J. J.	Autor	•	
Referencia [123] Año 2016 2 Aplicación Nearest Neighbors, NIAve Bayes: Para clasificar a los usuarios influyentes se realizó un análisis comparativo del conjunto de datos, utilizando los siguientes algoritmos de aprendizaje automático para la clasificación binaria: Máquinas Vectoriales de Apoyo (SVM), Vecinos Más Cercanos, Ingenuas Bayes. 3 Área/Línea de investigación priorizada 4 Funciones La función de decisión del SVM sobre la clasificación depende de algún subconjunto de los datos de entrenamiento, Ilamados vectores de apoyo. El kernel utilizado puede ser utilizado de acuerdo con el problema en cuestión, las opciones son lineales: polinomial, función de base radial (RBF), sigmoide, pre calculada, entre otras. En nuestros experimentos se utilizó el núcleo RBF porque presentaba mejores resultados en comparación con otros núcleos. 5 Conclusiones Relevantes una puntuación de alta precisión cuando se utilizan datos normalizados. Se muestra que la máquina vectorial de soporte funciona			Autoi		
Año 2016 Nearest Neighbors, NIAve Bayes: Para clasificar a los usuarios influyentes se realizó un análisis comparativo del conjunto de datos, utilizando los siguientes algoritmos de aprendizaje automático para la clasificación binaria: Máquinas Vectoriales de Apoyo (SVM), Vecinos Más Cercanos, Ingenuas Bayes. Area/Línea de investigación priorizada Funciones La función de decisión del SVM sobre la clasificación depende de algún subconjunto de los datos de entrenamiento, llamados vectores de apoyo. El kernel utilizado puede ser utilizado de acuerdo con el problema en cuestión, las opciones son lineales: polinomial, función de base radial (RBF), sigmoide, pre calculada, entre otras. En nuestros experimentos se utilizó el núcleo RBF porque presentaba mejores resultados en comparación con otros núcleos. Conclusiones Relevantes Nearest Neighbors, NIAve Bayes: Para clasificar a los usuarios influyentes e realizó un análisis comparativo del conjunto de datos, utilizado para la stresa lagoritmos muestran una puntuación de alta precisión cuando se utilizan datos normalizados. Se muestra que la máquina vectorial de soporte funciona			Defense	·	
Aplicación Nearest Neighbors, NIAve Bayes: Para clasificar a los usuarios influyentes se realizó un análisis comparativo del conjunto de datos, utilizando los siguientes algoritmos de aprendizaje automático para la clasificación binaria: Máquinas Vectoriales de Apoyo (SVM), Vecinos Más Cercanos, Ingenuas Bayes. Area/Línea de investigación priorizada Economía tecnología y sociedad Funciones La función de decisión del SVM sobre la clasificación depende de algún subconjunto de los datos de entrenamiento, Ilamados vectores de apoyo. El kernel utilizado puede ser utilizado de acuerdo con el problema en cuestión, las opciones son lineales: polinomial, función de base radial (RBF), sigmoide, pre calculada, entre otras. En nuestros experimentos se utilizó el núcleo RBF porque presentaba mejores resultados en comparación con otros núcleos. Conclusiones Relevantes Nearest Neighbors, NIAve Bayes: Para clasificar a los usuarios influyentes de datos, utilizando de acuernático para la la trace de clasificación para los tres algoritmos muestran una puntuación de alta precisión cuando se utilizan datos normalizados. Se muestra que la máquina vectorial de soporte funciona				• •	
influyentes se realizó un análisis comparativo del conjunto de datos, utilizando los siguientes algoritmos de aprendizaje automático para la clasificación binaria: Máquinas Vectoriales de Apoyo (SVM), Vecinos Más Cercanos, Ingenuas Bayes. 3 Área/Línea de investigación priorizada 4 Funciones La función de decisión del SVM sobre la clasificación depende de algún subconjunto de los datos de entrenamiento, llamados vectores de apoyo. El kernel utilizado puede ser utilizado de acuerdo con el problema en cuestión, las opciones son lineales: polinomial, función de base radial (RBF), sigmoide, pre calculada, entre otras. En nuestros experimentos se utilizó el núcleo RBF porque presentaba mejores resultados en comparación con otros núcleos. 5 Conclusiones Relevantes Los resultados de las tareas de clasificación para los tres algoritmos muestran una puntuación de alta precisión cuando se utilizan datos normalizados. Se muestra que la máquina vectorial de soporte funciona			Año	2016	
utilizando los siguientes algoritmos de aprendizaje automático para la clasificación binaria: Máquinas Vectoriales de Apoyo (SVM), Vecinos Más Cercanos, Ingenuas Bayes. 3 Área/Línea de investigación priorizada 4 Funciones La función de decisión del SVM sobre la clasificación depende de algún subconjunto de los datos de entrenamiento, llamados vectores de apoyo. El kernel utilizado puede ser utilizado de acuerdo con el problema en cuestión, las opciones son lineales: polinomial, función de base radial (RBF), sigmoide, pre calculada, entre otras. En nuestros experimentos se utilizó el núcleo RBF porque presentaba mejores resultados en comparación con otros núcleos. 5 Conclusiones Relevantes Los resultados de las tareas de clasificación para los tres algoritmos muestran una puntuación de alta precisión cuando se utilizan datos normalizados. Se muestra que la máquina vectorial de soporte funciona	2	Aplicación	Nearest Nei	ghbors, NIAve Bayes: Para clasificar a los usuarios	
clasificación binaria: Máquinas Vectoriales de Apoyo (SVM), Vecinos Más Cercanos, Ingenuas Bayes. 3 Área/Línea de investigación priorizada 4 Funciones La función de decisión del SVM sobre la clasificación depende de algún subconjunto de los datos de entrenamiento, llamados vectores de apoyo. El kernel utilizado puede ser utilizado de acuerdo con el problema en cuestión, las opciones son lineales: polinomial, función de base radial (RBF), sigmoide, pre calculada, entre otras. En nuestros experimentos se utilizó el núcleo RBF porque presentaba mejores resultados en comparación con otros núcleos. 5 Conclusiones Relevantes Los resultados de las tareas de clasificación para los tres algoritmos muestran una puntuación de alta precisión cuando se utilizan datos normalizados. Se muestra que la máquina vectorial de soporte funciona			influyentes s	e realizó un análisis comparativo del conjunto de datos,	
Más Cercanos, Ingenuas Bayes. 3 Área/Línea de investigación priorizada 4 Funciones La función de decisión del SVM sobre la clasificación depende de algún subconjunto de los datos de entrenamiento, llamados vectores de apoyo. El kernel utilizado puede ser utilizado de acuerdo con el problema en cuestión, las opciones son lineales: polinomial, función de base radial (RBF), sigmoide, pre calculada, entre otras. En nuestros experimentos se utilizó el núcleo RBF porque presentaba mejores resultados en comparación con otros núcleos. 5 Conclusiones Relevantes Más Cercanos, Ingenuas Bayes. Economía tecnología y sociedad subconjún de alta precisión depende de algún subconjún de alta precisión cuando se utilizan datos normalizados. Se muestra que la máquina vectorial de soporte funciona			utilizando los	siguientes algoritmos de aprendizaje automático para la	
Area/Línea de investigación priorizada 4 Funciones La función de decisión del SVM sobre la clasificación depende de algún subconjunto de los datos de entrenamiento, llamados vectores de apoyo. El kernel utilizado puede ser utilizado de acuerdo con el problema en cuestión, las opciones son lineales: polinomial, función de base radial (RBF), sigmoide, pre calculada, entre otras. En nuestros experimentos se utilizó el núcleo RBF porque presentaba mejores resultados en comparación con otros núcleos. 5 Conclusiones Relevantes Los resultados de las tareas de clasificación para los tres algoritmos muestran una puntuación de alta precisión cuando se utilizan datos normalizados. Se muestra que la máquina vectorial de soporte funciona			clasificación	binaria: Máquinas Vectoriales de Apoyo (SVM), Vecinos	
investigación priorizada 4 Funciones La función de decisión del SVM sobre la clasificación depende de algún subconjunto de los datos de entrenamiento, llamados vectores de apoyo. El kernel utilizado puede ser utilizado de acuerdo con el problema en cuestión, las opciones son lineales: polinomial, función de base radial (RBF), sigmoide, pre calculada, entre otras. En nuestros experimentos se utilizó el núcleo RBF porque presentaba mejores resultados en comparación con otros núcleos. 5 Conclusiones Relevantes Los resultados de las tareas de clasificación para los tres algoritmos muestran una puntuación de alta precisión cuando se utilizan datos normalizados. Se muestra que la máquina vectorial de soporte funciona			Más Cercano	s, Ingenuas Bayes.	
priorizada 4 Funciones La función de decisión del SVM sobre la clasificación depende de algún subconjunto de los datos de entrenamiento, llamados vectores de apoyo. El kernel utilizado puede ser utilizado de acuerdo con el problema en cuestión, las opciones son lineales: polinomial, función de base radial (RBF), sigmoide, pre calculada, entre otras. En nuestros experimentos se utilizó el núcleo RBF porque presentaba mejores resultados en comparación con otros núcleos. 5 Conclusiones Relevantes Los resultados de las tareas de clasificación para los tres algoritmos muestran una puntuación de alta precisión cuando se utilizan datos normalizados. Se muestra que la máquina vectorial de soporte funciona	3	Área/Línea de			
priorizada 4 Funciones La función de decisión del SVM sobre la clasificación depende de algún subconjunto de los datos de entrenamiento, llamados vectores de apoyo. El kernel utilizado puede ser utilizado de acuerdo con el problema en cuestión, las opciones son lineales: polinomial, función de base radial (RBF), sigmoide, pre calculada, entre otras. En nuestros experimentos se utilizó el núcleo RBF porque presentaba mejores resultados en comparación con otros núcleos. 5 Conclusiones Relevantes Los resultados de las tareas de clasificación para los tres algoritmos muestran una puntuación de alta precisión cuando se utilizan datos normalizados. Se muestra que la máquina vectorial de soporte funciona		investigación	Economía ted	cnología y sociedad	
4 Funciones La función de decisión del SVM sobre la clasificación depende de algún subconjunto de los datos de entrenamiento, llamados vectores de apoyo. El kernel utilizado puede ser utilizado de acuerdo con el problema en cuestión, las opciones son lineales: polinomial, función de base radial (RBF), sigmoide, pre calculada, entre otras. En nuestros experimentos se utilizó el núcleo RBF porque presentaba mejores resultados en comparación con otros núcleos. 5 Conclusiones Relevantes Los resultados de las tareas de clasificación para los tres algoritmos muestran una puntuación de alta precisión cuando se utilizan datos normalizados. Se muestra que la máquina vectorial de soporte funciona		_			
apoyo. El kernel utilizado puede ser utilizado de acuerdo con el problema en cuestión, las opciones son lineales: polinomial, función de base radial (RBF), sigmoide, pre calculada, entre otras. En nuestros experimentos se utilizó el núcleo RBF porque presentaba mejores resultados en comparación con otros núcleos. 5 Conclusiones Relevantes Conclusiones Conclu	4	Funciones	La función de decisión del SVM sobre la clasificación depende de algún		
apoyo. El kernel utilizado puede ser utilizado de acuerdo con el problema en cuestión, las opciones son lineales: polinomial, función de base radial (RBF), sigmoide, pre calculada, entre otras. En nuestros experimentos se utilizó el núcleo RBF porque presentaba mejores resultados en comparación con otros núcleos. 5 Conclusiones Relevantes Conclusiones Conclu			·		
problema en cuestión, las opciones son lineales: polinomial, función de base radial (RBF), sigmoide, pre calculada, entre otras. En nuestros experimentos se utilizó el núcleo RBF porque presentaba mejores resultados en comparación con otros núcleos. 5 Conclusiones Relevantes Conclusiones Conclusiones Conclusiones Relevantes Conclusiones Conclusion					
base radial (RBF), sigmoide, pre calculada, entre otras. En nuestros experimentos se utilizó el núcleo RBF porque presentaba mejores resultados en comparación con otros núcleos. 5 Conclusiones Relevantes Conclusiones Conclu					
experimentos se utilizó el núcleo RBF porque presentaba mejores resultados en comparación con otros núcleos. 5 Conclusiones Relevantes Conclusiones Relevantes Muestran una puntuación de alta precisión cuando se utilizan datos normalizados. Se muestra que la máquina vectorial de soporte funciona				' '	
resultados en comparación con otros núcleos. 5 Conclusiones Relevantes Conclusiones Relevantes Conclusiones Relevantes Conclusiones Relevantes Conclusiones Conc			, , , , , , , , , , , , , , , , , , , ,		
5 Conclusiones Los resultados de las tareas de clasificación para los tres algoritmos muestran una puntuación de alta precisión cuando se utilizan datos normalizados. Se muestra que la máquina vectorial de soporte funciona			-		
Relevantes muestran una puntuación de alta precisión cuando se utilizan datos normalizados. Se muestra que la máquina vectorial de soporte funciona				·	
normalizados. Se muestra que la máquina vectorial de soporte funciona	5			· ·	
		Relevantes	muestran un	a puntuación de alta precisión cuando se utilizan datos	
			normalizados	s. Se muestra que la máquina vectorial de soporte funciona	
ligeramente mejor en comparación con otros algoritmos.			ligeramente r	nejor en comparación con otros algoritmos.	

TABLA LXXIX. RESULTADO DEL ARTÍCULO EP40

#	Descripción	Detalle	
1	Información	Título	Noise-Sensing Using Smartphones: Determining the
	bibliográfica		Right Time to Sample
		Autor	William Zamora, Carlos T. Calafate, Juan-Carlos Cano,
			Pietro Manzoni.
		Referencia	[124]
		Año	2017
2	Aplicación	Classification and regression trees: mantiene los niveles de precisión	
		de los árbole	es autogenerados y reduce significativamente el consumo

		de recursos introducido por estos últimos. Los resultados		
		experimentales muestran que nuestro árbol de decisión propuesto		
		puede reducir el impacto energético de nuestra aplicación objetivo en		
		un 60% en comparación con el árbol teórico de la madre óptico		
		generado a través de procedimientos de clasificación automática.		
3	Área/Línea de			
	investigación	Ambiente biodiversidad + Software aplicado		
	priorizada			
4	Funciones	Se utilizó un árbol de decisión como metodología para clasificar los		
		diferentes contextos definidos. En particular, se utilizó dos algoritmos		
		conocidos como J48 y árbol aleatorio (RT) que son capaces de lograr		
		estimaciones precisas. Confiamos en la implementación de estos		
		algoritmos proporcionados por la herramienta Weka. Esta herramienta		
		proporciona salidas que permiten encontrar el mejor algoritmo para la		
		clasificación de datos para diferentes conjuntos de datos.		
5	Conclusiones	En particular, abordamos la cuestión de la optimización del proceso de		
	Relevantes	decisión que precede al muestreo de ruido real, determinando si se		
		cumplen o no las condiciones requeridas. Con este propósito, primero		
		definimos un conjunto de contextos para los smartphones, y luego, a		
		través de diferentes algoritmos, generamos automáticamente dos		
		árboles de decisión capaces de cumplir con los requisitos de decisión.		

TABLA LXXX. RESULTADO DEL ARTÍCULO EP41

#	Descripción	Detalle	
1	Información	Título	A Literature Review for Recommender Systems
	bibliográfica		Techniques Used in Microblogs
		Autor	Luis Terán, Alvin Oti Mensah, Arianna Estorelli.
		Referencia	[125]
		Año	2018
2	Aplicación	Recommend	ler systems (RSs): A continuación, se adopta una
		clasificación general presentada en este trabajo, que se utiliza para	
		describir los	enfoques de recomendación de redes sociales más
		avanzados pa	ara el microblogging.
3	Área/Línea de		
	investigación	Economía tecnología y sociedad	
	priorizada		

4	Funciones	Se proporciona a los autores una visión de las tendencias de las
		revisiones de la literatura académica en el contexto propuesto y
		proporcionar una comparación de los diferentes enfoques de
		investigación. Los autores buscaron trabajos de investigación
		actualizados relacionados con los métodos de RS utilizando microblogs
		en un período de tiempo de cinco años, desde 2012 hasta enero de
		2018. A partir de 2012, los autores de este trabajo realizaron e
		identificaron una cantidad significativa de investigaciones relacionadas
		con el campo temático de las RS. Después del proceso de filtrado,
		finalmente se seleccionaron 39 artículos de revistas y conferencias en
		cuatro bases de datos diferentes relacionadas con las tecnologías de
		Internet (es decir, IEEE, ACM, Science Direct y Springer).
5	Conclusiones	Este estudio presentó una SLR sobre el estado del arte de las
	Relevantes	recomendaciones que se ofrecen en el ámbito del microblogging. Esta
		revisión sistemática fue motivada por el desarrollo de Twitter como uno
		de los OSNs de microblogging más populares y su alto uso por parte
		del público, en el que los investigadores han mostrado su interés en
		utilizar su fuente de datos para diferentes propósitos.

TABLA LXXXI.
RESULTADO DEL ARTÍCULO EP42

#	Descripción	Detalle		
1	Información bibliográfica	Título	Prediction Model Based on Neural Networks for Microwave Drying Process of Amaranth Seeds	
		Autor	Silvia Bravo, Ángel H. Moreno	
		Referencia	[126]	
		Año	2019	
2	Aplicación	Prediction model: desarrollado con las variables fundamentales del secado de las semillas de amaranto en microondas, utilizando como datos de entrada la masa inicial de las semillas y la temperatura del proceso.		
3	Área/Línea de investigación priorizada	Agricultura y	Agricultura y ganadería	
4	Funciones	El modelo fue desarrollado utilizando el lenguaje de progr Python, la biblioteca de aprendizaje de máquinas Sklearn análisis de datos y el predictor MLPRegressor para la forma		

Г			modeles. Les dates utilizades en el conjunte de dates creade se
			modelos. Los datos utilizados en el conjunto de datos creado se
			obtuvieron a partir de las mediciones del tiempo de secado y del
			consumo de energía en los experimentos de secado realizados a tres
			temperaturas (35, 45, 55 °C) en un horno de microondas doméstico, así
			como de la tasa de germinación de las semillas de amaranto obtenida
			en las pruebas de germinación
	5	Conclusiones	En este trabajo se ha desarrollado un modelo para la predicción de las
		Relevantes	variables fundamentales del proceso de secado por microondas de las
			semillas de amaranto con el uso de la red neural artificial Multilayer
			Perceptron (MLP). El modelo prevé una disminución del tiempo de
			secado, del consumo de energía y de la tasa de germinación de las
			semillas con un aumento de la temperatura de secado, de 35 °C a 55
			°C.

TABLA LXXXII. RESULTADO DEL ARTÍCULO EP43

#	Descripción	Detalle		
1	Información	Título Detection of utility poles from noisy Point Clou		
	bibliográfica		Urban environments	
		Autor	Alex Ferrin, Julio Larrea, Miguel Realpe, Daniel Ochoa.	
		Referencia	[127]	
		Año	2018	
2	Aplicación	Pole Detect	ion, 3D Classification, Point Cloud, 3D Recognition:	
		desarrolla un	método automático para la detección de polos de utilidad	
		a partir de da	itos de nubes de puntos ruidosos de Guayaquil - Ecuador,	
		donde much	os polos están ubicados muy cerca de edificios, lo que	
		aumenta la d	aumenta la dificultad de discriminar polos, paredes, columnas, cercas y	
		esquinas de	esquinas de edificios. El método propuesto aplica una etapa de	
		segmentació	n basada en la agrupación con vóxeles verticales y una	
		etapa de clasificación basada en redes neuronales.		
3	Área/Línea de			
	investigación	Territorio y so	ociedad inclusivos	
	priorizada			
4	Funciones	En primer lugar, se utiliza un modelo de RANSAC para encontrar la		
		mayor superficie horizontal plana con el fin de crear un modelo del		
		terreno. A continuación, se descartan todos los puntos situados dentro		
		de un umbra	al de 15 cm. Debido a que algunos postes de servicios	

		públicos en Ecuador están construidos muy cerca de los edificios (tocándolos), es necesario dividir el punto de nube para obtener los objetos verticales independientes. Para ello, se aplicó un filtro de vóxele con el fin de dividir el espacio de nubes de puntos en una cuadrícula 3D
		de vóxeles verticales cuya resolución horizontal de la sección transversal es similar a la sección transversal horizontal de un polo. Finalmente, los puntos se agrupan con sus vecinos más cercanos en
		base a la métrica de distancia euclídea.
5	Conclusiones Relevantes	Segmentar objetos para centrarse en áreas específicas es beneficioso para calcular eficientemente las variables sin mucho margen de error. Ese proceso corta datos ruidosos como personas, plantas, objetos que pueden estar en la parte baja del poste. El tamaño de la muestra de árboles y palmeras es bajo en comparación con el resto de las muestras, como tal; la red neural no puede hacer un modelo robusto de ellas, y tiende a cometer errores en esas clases.

TABLA LXXXIII. RESULTADO DEL ARTÍCULO EP44

#	Descripción	Detalle	
1	Información bibliográfica	Título	Real-Time False-Contours Removal for Inverse Tone Mapped HDR Content
		Autor	Gonzalo Luzardo, Jan Aelterman, Hiep Luong, Wilfried Philips, Daniel Ochoa.
		Referencia	[128]
		Año	2017
2	Aplicación	en todas las variedad de	ework: para aprovechar la potencia de cálculo de la GPU operaciones de píxel por píxel. Además, se utilizó una e técnicas de optimización recomendadas en la ón de Quasar para asegurar la mejor ejecución en tiempo
3	Área/Línea de investigación priorizada	Software aplicado	
4	Funciones	Para las imáç	genes sintéticas y no sintéticas, fijamos el número máximo
		de iteraciones en 10. Sin embargo, encontramos que, en la mayor	
		los casos, el algoritmo converge hacia una buena solución, es deci	
		contornos falsos perceptibles, en la séptima iteración. Asimismo, par	

		las imágenes sintéticas y no sintéticas encontramos que los mejores resultados los obtuvimos fijando el radio del filtro de paso bajo a 3 y 7,
		respectivamente.
5	Conclusiones	Se propuso un método para eliminar los contornos falsos en el
	Relevantes	contenido del Informe sobre Desarrollo Humano en tonos inversos,
		basado en el principio de los POCS. Nuestro método se basa en el
		hecho de que los bordes de cuantización perturbadores son más
		evidentes en los gradientes suaves de las imágenes LDR y que el iTMO
		los expande de forma no lineal. Se basa en proyecciones sobre
		conjuntos convexos (POCS), iterando entre los conjuntos convexos de
		imágenes lisas y el conjunto de imágenes que corresponderían a la
		entrada cuantizada.

TABLA LXXXIV. RESULTADO DEL ARTÍCULO EP45

#	Descripción	Detalle	
1	Información bibliográfica	Título	Teaching-Learning of Basic Language of Signs through Didactic Games
		Autor	Mateo A. Parreño, Carmen J. Celi, Washington X. Quevedo, David Rivas, VíctorH.Andaluz.
		Referencia	[129]
		Año	2017
2	Aplicación	clasificación configuración la configurac DTW se utiliz	implementado en MatLab para los dos tipos de de señales: estática y dinámica; la correlación se utiliza si ión es estática (sin señal de movimiento) y el algoritmo ca para configuraciones dinámicas (señal de movimiento). ción entre Unity3D y MatLab se realiza mediante memoria
3	Área/Línea de investigación priorizada	Software aplicado	
4	Funciones	instalado en de la mano y	nto de la mano a través del dispositivo Leap Motion, el motor gráfico Unity 3D, permite detectar el movimiento localizar los huesos y articulaciones de cada uno de los punto de interés definido.

5	Conclusiones	Se presenta el desarrollo de un juego didáctico para la enseñanza-
	Relevantes	aprendizaje del lenguaje básico de los signos ecuatorianos, para las
		personas con discapacidad auditiva y/o interesadas en aprender el
		lenguaje básico de signos del Ecuador. El dispositivo de entrada es un
		Leap Motion, que detecta las señales gestuales en el software Unity3D.

TABLA LXXXV. RESULTADO DEL ARTÍCULO EP46

#	Descripción	Detalle	
1	Información	Título	Modelo Neuronal de Estimación para el Esfuerzo de
	bibliográfica		Desarrollo en Proyectos de Software (MONEPS)
		Autor	Mario G. Almache, Jenny A. Ruiz, Geovanny Raura,
			Efraín R. Fonseca.
		Referencia	[130]
		Año	2015
2	Aplicación	Estimación o	del Esfuerzo MONEPS: pretende mejorar la precisión en
		la estimación	del esfuerzo, utilizando una Red Neuronal Artificial (RNA)
		en Backpropa	agation, cuya capa de entrada se estructura sobre la base
		de un conjun	to de características y atributos tomados de la norma ISO
		25000 de la calidad del software.	
3	Área/Línea de		
	investigación	Software aplicado	
	priorizada		
4	Funciones	A través de MONEPS, se muestra el mecanismo predictivo de las RNA's	
		[49] para mejorar la precisión en la tarea de estimar el tiempo y costo	
		para el desar	rollo de software.
5	Conclusiones	La RNA utili	zada por MONEPS aprendió rápidamente a configurar
	Relevantes	patrones de	comportamiento para tiempos y costos referidos a
		proyectos de	software, y por ende, las estimaciones realizadas son
		bastante cer	canas a los costos y tiempos reales. Los resultados
		arrojados po	or la propuesta neuronal, en la fase de evaluación,
			nejor precisión respecto a los modelos Cocomo-81 y
			en la estimación de costo y tiempo para proyectos
		académicos de software.	

TABLA LXXXVI. RESULTADO DEL ARTÍCULO EP47

Descripción	Detalle		
Información	Título	Artificial Neural Network Applied like Qualifier of	
bibliográfica		Symptoms in Patients with Parkinson's Disease by	
		Evaluating the Movement of Upper-Limbs Activities	
	Autor	J. P. Bermeo, M. Huerta, M. Bravo, A. Bermeo	
	Referencia	[131]	
	Año	2018	
Aplicación	Artificial neu	ıral network MDS-UPDRS scale: Para el entrenamiento	
	de la RNA	se utilizó el modelo de retropropagación y muchas	
	configuracion	configuraciones de RNA, hasta conseguir el mejor ajuste entre las	
	entradas (dat	os procesados) y la salida (diagnóstico médico).	
Área/Línea de			
investigación	Salud y bienestar		
priorizada			
Funciones	Se probaron algunas configuraciones, al final, la ANN con los mejores		
	resultados, tenía tres capas, 357 entradas, treinta neuronas en capa		
	oculta y una salida; función logsig a capa oculta y función lineal a última		
	сара.		
Conclusiones	Se necesitan	al menos treinta minutos para evaluar a los pacientes con	
Relevantes	EP en una es	cala MDS-UPDRS, con el equipo y software que se afirma	
	en este traba	jo, el tiempo de evaluación es de aproximadamente diez	
	minutos, y es	to es una gran ventaja en el proceso. Además, el alto nivel	
	de certeza (>	90%), muestra que la RNA puede ser utilizada para el	
	diagnóstico.		
	Información bibliográfica Aplicación Área/Línea de investigación priorizada Funciones Conclusiones	Información bibliográfica Autor Referencia Año Aplicación Artificial neu de la RNA configuracion entradas (dat Área/Línea de investigación priorizada Funciones Se probaron resultados, te oculta y una s capa. Conclusiones Relevantes EP en una es en este traba minutos, y es de certeza (x	

TABLA LXXXVII. RESULTADO DEL ARTÍCULO EP48

#	Descripción	Detalle	
1	Información	Título	Maintenance Models Applied to Wind Turbines. A
	bibliográfica		Comprehensive Overview
		Autor	Yuri Merizalde, Luis Hernández, Oscar Duque, Víctor
			Alonso.
		Referencia	[132]
		Año	2019

Aplicación	Bayesian Networks (BNs): tiene asignada una probabilidad (que			
	puede obtenerse mediante el análisis estadístico de los datos			
	disponibles); se tratan según la teoría de la probabilidad (reglas de			
	Bayes), por lo que este modelo de IA también se conoce como red			
	probabilística. Los MatMs tradicionales se incorporan a los modelos de			
	IA (ANN, fuzzy y neuro fuzzy) para desarrollar modelos capaces de			
	autoaprendizaje.			
Área/Línea de				
investigación	Energía y materiales + Software aplicado			
priorizada				
Funciones	Los BNs forman parte de los modelos conocidos como sistemas			
	basados en el conocimiento o basados en modelos. Su estructura está			
	representada por un tipo de gráfico conocido como Gráfico A cíclico			
	Dirigido (DAG), en el que los nodos simbolizan las variables			
	preposicionales y la dependencia entre variables (relación causa-			
	efecto) está representada por una flecha junto con la correspondiente			
	probabilidad de ocurrencia.			
Conclusiones	Los modelos de soft computing y machine learning se aplican de			
Relevantes	manera holística con el gran concepto de datos para una mejor			
	utilización de una gran cantidad de información que puede obtenerse			
	de todas las señales y variables controladas por el CMS y SCADA.			
	Como resumen de los resultados de los avances científicos y			
	tecnológicos en el área de O&M de la industria eólica, sus actividades			
	de mantenimiento se simplifican a un trabajo planificado que incluye la			
	ejecución de tareas específicas, una o dos veces al año, y al monitoreo			
	constante (por parte del CMS) de las condiciones de los			
	aerogeneradores.			
	Área/Línea de investigación priorizada Funciones			

TABLA LXXXVIII. RESULTADO DEL ARTÍCULO EP49

#	Descripción	Detalle	
1	Información	Título	Smart Innovation, Systems and Technologies 43, Book,
	bibliográfica		the conference organized by School of Computer Engineering, KIIT University, ICACNI
		Autor	Atulya Nagar, Durga Prasad, Mohapatra Nabendu Chaki,
			Roberto Herrera Lara.
		Referencia	[133]

		Año	2016
2	Aplicación	Algorithms,	Applications and Future Directions
3	Área/Línea de investigación priorizada	Software apli	icado
4	Funciones	La conferencia organizada por la Escuela de Ingeniería Informática de la Universidad KIIT, India, del 23 al 25 de junio de 2015, ciertamente marca un éxito para reunir a investigadores, académicos y profesionales en la misma plataforma. Hemos recibido más de 550 artículos y hemos seleccionado muy rigurosamente a través de la revisión por pares 132 de los mejores artículos para su presentación y publicación. No pudimos acomodar muchos trabajos prometedores ya que tratamos de asegurar la calidad.	

TABLA LXXXIX. RESULTADO DEL ARTÍCULO EP50

#	Descripción	Detalle	
1	Información	Título	Revisión sistemática de literatura: Análisis de riesgos
	bibliográfica		utilizando Redes Bayesianas
		Autor	Pereira Carlos Patricio, Cumbicus Oscar M.
		Referencia	[134]
		Año	2017
2	Aplicación	Revisión sis	stemática de literatura (SRL): Los artículos analizados
		van desde 20	010 a 2017; la búsqueda inicial dio como resultado 1.854
		artículos de	los cuales se suprimió los que no tenían información
		relevante pa	ra el estudio, obteniendo un total de 154 artículos de
		revisión, de la	os cuales se seleccionó 20 para ser analizados.
3	Área/Línea de		
	investigación	TIC para la educación e inclusión	
	priorizada		
4	Funciones	La metodología principal utilizada para realizar la SRL fue el la de	
		Bárbara Kitch	nenham, ya que es un medio para evaluar e interpretar de
		las investiga	aciones disponibles los estudios más importantes y
		destacados (llamados estudios primarios o estudios individuales), que
		van a dar res	spuesta a una pregunta en particular de la investigación,
		área temática	a, o fenómeno de interés; además tienen como objetivo

		presentar una evaluación razonable de un tema de investigación
		mediante el uso de una metodología fiable, rigurosa y auditable.
5	Conclusiones	Se concluye que las redes bayesianas permiten de manera gráfica la
	Relevantes	evaluación probabilística en el análisis de riesgos, a su vez dichas redes
		se pueden modelar con cualquier proceso probabilístico que se
		componga de relaciones causales, y al poderse diagramar y programar
		se puede llegar a la toma de decisiones de manera más intuitiva que es
		lo que permite analizar el riesgo en cada área.

TABLA XC.
RESULTADO DEL ARTÍCULO EP51

#	Descripción	Detalle		
1	Información	Título	Evaluation of a Few Interpolation Techniques of Gravity	
	bibliográfica		Values in the Border Region of Brazil and Argentina	
		Autor R.A.D. Pereira, S.R.C. De Freitas, V.G. Ferre		
		Faggion, D.P. dos Santos, R.T. Luz, A.R. Tierra		
			Cogliano.	
		Referencia	[135]	
		Año	2012	
2	Aplicación	Artificial Neu	ural Network (ANN): Para probar el rendimiento de la RNA	
		frente a prob	lemas de interpolación con respecto a LSC y kriging, se	
		desarrolló un	experimento en una región de la frontera entre Brasil y	
		Argentina.		
3	Área/Línea de			
	investigación	Territorio y sociedad inclusivos		
	priorizada			
4	Funciones	Los valores de gravedad interpolados fueron obtenidos por LSC y		
		kriging y com	parados con los valores obtenidos por ANN considerando	
		diferentes dis	stribuciones de datos y utilizando los mismos puntos de	
		•	e se conocen los valores de gravedad.	
5	Conclusiones	Las RNAs so	n muy fáciles de aplicar para la predicción de la gravedad,	
	Relevantes		derando la integración de diferentes bases de datos. Cabe	
		destacar que	el peor caso de interpolación con RNA podría mejorarse,	
		reduciendo el RMS a la mitad mediante la integración de alturas de		
		geoides EGM	12008.	

TABLA XCI.
RESULTADO DEL ARTÍCULO EP52

#	Descripción	Detalle		
1	Información	Título	Inteligencia Artificial Principios y Aplicaciones, Book	
	bibliográfica	Autor	Hugo A. Banda Gamboa	
		Referencia	[25]	
		Año	2014	
2	Aplicación	La presente	obra constituye una recopilación y actualización de un	
		conjunto de p	ublicaciones que en los últimos 20 años he realizado en la	
		Escuela Polit	écnica Nacional acerca de diversos tópicos relacionados	
		con la Intelig	encia Artificial: Redes Neuronales y Sistemas Expertos,	
		Fundamentos de las Redes Neuronales, Programación Básica en LISP,		
		Principios de la Inteligencia Artificial, Programación en PROLOG,		
		Tópicos Avanzados de Inteligencia Artificial, entre otras.		
3	Área/Línea de			
	investigación	TIC para educación e inclusión + Software aplicado		
	priorizada			
4	Funciones	Esta es una	guía a través tópicos de inteligencia artificial y sus	
		principales a	plicaciones. Ha sido escrita a un nivel introductorio para	
		estudiantes de carreras de ingeniería y no requiere más prerrequisitos		
		que fundame	ntos matemáticos y lenguajes de programación.	

TABLA XCII. RESULTADO DEL ARTÍCULO EP53

#	Descripción	Detalle		
1	Información	Título	Implementación de una plataforma para análisis de datos	
	bibliográfica		un enfoque de big data y data mining	
		Autor	Roberth Figueroa-Díaz, José A. Gutiérrez de Mesa	
		Referencia	[136]	
		Año	2016	
2	Aplicación	Data mining	g y técnicas de Big data: primero se utilizó una	
		metodología en la cual se detalla paso a paso lo desarrollado, luego la		
		arquitectura	arquitectura planteada para el proyecto. Como tercer elemento se	

		considera la integración entre SGBD Mysql y Weka como herramienta de aprendizaje automático aprovechando sus ventajas del gran número de técnicas o algoritmos que posee, para al final realizar la etapa de experimentación y puesta en marcha con datos analizados de pacientes con diabetes.
3	Área/Línea de investigación priorizada	Big data + Salud y bienestar
4	Funciones	Se describe la experiencia de implementar una plataforma experimental a través de la integración de Weka con base de datos para la aplicación de algoritmos de minería con el propósito de extraer conocimiento útil a partir de datos almacenados.
	Conclusiones Relevantes	Este estudio, determinó que el mejor algoritmo de clasificación para analizar los datos descritos fue MLP, mientras que para la tarea de clustering fue K-medias.

TABLA XCIII. RESULTADO DEL ARTÍCULO EP54

#	Descripción	Detalle		
1			Neuromarketing and Facial Recognition: A Systematic Literature Review	
		Autor	Marcos Antonio Espinoza Mina, Doris Del Pilar Gallegos Barzola.	
		Referencia	[137]	
		Año	2018	
2	Aplicación	informáticos	stemática de la literatura (SLR): buscar sistemas y tecnologías de reconocimiento facial que estén ara apoyar el neuromarketing.	
3	Área/Línea de investigación priorizada	Economía tecnología y sociedad		
4	Funciones	resúmenes n las herramier	En la mayoría de los artículos revisados, lo que se documenta en los resúmenes no proporciona información específica sobre el potencial de las herramientas, el lenguaje de programación o el marco utilizado, lo que hace que el proceso de revisión literaria sistemática sea más compleio	

5	Conclusiones	Se señala la existencia de pocos artículos publicados de		
	Relevantes	neuromarketing sobre el reconocimiento facial. La mayoría de los		
		esfuerzos de investigación se centran en encontrar algoritmos que		
		mejoren la eficacia del reconocimiento facial asistido por programas		
		informáticos. Era difícil encontrar información detallada y especializada,		
		pero en cualquier caso se encontraron varios documentos serios que		
		permiten aclarar términos y encontrar análisis de soluciones técnicas		
		que han estado en el mercado durante varios años.		

TABLA XCIV. RESULTADO DEL ARTÍCULO EP55

#	Descripción	Detalle	
1	Información	Título	Generative Adversarial Networks Selection Approach for
	bibliográfica		Extremely Imbalanced Fault Diagnosis of Reciprocating
			Machinery
		Autor	Diego Cabrera, Fernando Sancho, Jianyu Long, René-
			Vinicio Sánchez, Shaohui Zhang, Mariela Cerrada,
			Chuan Li.
		Referencia	[138]
		Año	2019
2	Aplicación	GAN-based	approach: A continuación, los modelos de la GAN evalúan
		la distribución	n de datos para cada modo defectuoso minoritario con el
		fin de aumen	tar su tamaño de forma sintética.
3	Área/Línea de		
	investigación	Desarrollo ind	dustrial
	priorizada		
4	Funciones	Los modelos de GAN adolece de dos problemas principales: (i)	
		inestabilidad	debida a la competencia entre los modelos de generador
		y discriminad	lor, y (ii) un criterio subjetivo en la evaluación. Para hacer
		frente a esto	os problemas, en este trabajo se introduce una fase de
		selección de	modelos en línea no supervisada en el proceso de
		formación de la GAN, basada en un índice de similitud estadística entre	
		el grupo de m	nuestras reales y el grupo de muestras generadas.
5	Conclusiones	En este traba	ajo se propone un nuevo método de selección de modelos
	Relevantes	GAN para el	diagnóstico de fallos de máquinas alternativas con datos

muy desequilibrados. Después de la etapa de adquisición de la señal, se presenta la extracción de la característica utilizando el árbol WPD. A continuación, se introduce como principal contribución la creación de GAN con un enfoque novedoso para la selección de modelos generativos.

TABLA XCV.
RESULTADO DEL ARTÍCULO EP56

#	Descripción	Detalle	
1	Información	Título	A Survey on Fractional Order Control Techniques for
	bibliográfica		Unmanned Aerial and Ground Vehicles
		Autor	Ricardo Cajo, Thi Thoa Mac, Douglas Plaza, Cosmin
			Copot, Robain De Keyser, Clara Ionescu
		Referencia	[139]
		Año	2016
2	Aplicación	Fractional o	rder techniques: se presentan los enfoques BDC de los
		UAVs y se in	vestigan las aplicaciones de los UAVs como el control de
		seguimiento	de trayectoria, planificación de trayectos, evitación de
		colisiones, c	ontrol de actitud, estimación de estado, control de
		formación y c	ontrol de tolerancia a fallos.
3	Área/Línea de		
	investigación	Ciudades inteligentes e inclusivas	
	priorizada		
4	Funciones	Se propone un controlador derivado de orden fraccionario (FOD),	
		también llam	nado la primera generación de la estrategia CRONE
		(Commande l	Robuste d'Ordre Non Entier) para el control de seguimiento
		de trayectoria	a de un avión de ala rotatoria.
5	Conclusiones	En la última	década se ha producido un avance significativo en el
	Relevantes	desarrollo de	nuevas técnicas BDC. Esta encuesta ha estudiado el
		estado actual	de las técnicas BDC aplicadas a los vehículos aéreos no
		tripulados y	a los vehículos aéreos no tripulados para abordar sus
		diferentes pro	oblemas de control.

TABLA XCVI. RESULTADO DEL ARTÍCULO EP57

#	Descripción	Detalle	
1	Información bibliográfica	Título	From E-911 to NG-911: Overview and Challenges in Ecuador
		Autor	Danilo Corral de Witt, Enrique V. Carrera, José A. Matamoros, Sergio Muñoz, José Rojo, Kemal Tepe.
		Referencia	[140]
		Año	2018
2	Aplicación	Image analy	sis algorithms: Durante estos cortos lapsos de tiempo,
		podrían esta	r funcionando algoritmos para el reconocimiento facial,
		para la detec	cción de objetos abandonados en las terminales o para la
		identificación	de personas en posiciones amenazantes en las entradas
		de los bancos, por ejemplo.	
3	Área/Línea de		
	investigación	Territorio y sociedad inclusivos	
	priorizada		
4	Funciones	Actualmente,	una de las técnicas de Machine Learning (ML) o Artificial
		Intelligence (IA) que mejor resuelve estas tareas es Deep Learning, en
		particular, las redes neuronales convolucionales.	
5	Conclusiones	El modelo de	gestión y la arquitectura de flujo de información permiten
	Relevantes	a la ECU 911 recibir alertas de diferentes dispositivos, formatos y	
		tecnologías.	

TABLA XCVII. RESULTADO DEL ARTÍCULO EP58

#	Descripción	Detalle	Detalle	
1	Información	Título	Optimal Energy Management for Stable Operation	
	bibliográfica		of an Islanded Microgrid	
		Autor	Luis I. Minchala, Luis Garza-Castañón, Youmin Zhang,	
			Héctor J. Altuve Ferrer.	
		Referencia	[141]	
		Año	2016	
2	Aplicación	Model predi	ctive control (NMPC): para procesar un conjunto de datos	
		compuesto por el estado de carga de las baterías (SOC), la generación		
		activa de energía distribuida (DER) y la carga prevista.		

3	Área/Línea de		
	investigación	Desarrollo industrial	
	priorizada		
4	Funciones	El NMPC identifica los próximos desequilibrios de potencia activa e	
		inicia la eliminación automática de cargas sobre cargas no críticas. La	
		estrategia de control se prueba en un sistema de distribución de media	
		tensión con DERs. Esta estrategia de control es asistida por un sistema	
		de monitoreo de distribución (DMS), que realiza un monitoreo en tiempo	
		real de la potencia activa generada por los DERs y de la demanda de	
		carga actual en cada uno de los nodos de la micro red.	
5	Conclusiones	Se ha diseñado y probado una estrategia de control predictivo óptima	
	Relevantes	para la gestión de la energía de las baterías y para la reducción de la	
		carga en una micro red aislada con DERs.	

TABLA XCVIII. RESULTADO DEL ARTÍCULO EP59

#	Descripción	Detalle	
1	Información bibliográfica	Título	Using Smart Meter Data to Improve the Accuracy of Intraday Load Forecasting Considering Customer
	Dibliografica		Behavior Similarities
		Autor	Franklin L. Quilumba, Wei-Jen Lee, Fellow, Heng Huang,
			David Y. Wang, Robert L. Szabados.
		Referencia	[142]
		Año	2014
2	Aplicación	k-means clu	stering: la agrupación por consumo de carga basada en
		datos de co	ntadores inteligentes a nivel de hogar para mejorar el
		rendimiento d	de la previsión de carga a nivel de sistema.
3	Área/Línea de		
	investigación	Energía y ma	iteriales
	priorizada		
4	Funciones	Nuestro méto	odo propuesto se ha implementado con dos conjuntos de
		datos de me	didores inteligentes reales diferentes para demostrar la
		eficacia de nuestro enfoque.	
5	Conclusiones	Demostramos	s la aplicación de la agrupación en clústeres para agrupar
Relevantes a los clientes mediante similitudes en el co		mediante similitudes en el consumo de carga como una	
		ayuda para m	nejorar el pronóstico de carga a nivel de sistema.

Tabla XCIX. RESULTADO DEL ARTÍCULO EP60

#	Descripción	Detalle	
1	1 Información Título bibliográfica		Selection of Software Product Line Implementation Components Using Recommender Systems: An Application to WordPress
		Autor	Jorge Rodas-Silva, José A. Galindo, Jorge García-Gutiérrez, David Benavides.
		Referencia	[143]
		Año	2019
2	Aplicación	Component-	based recommender system: proporcionan a los
		usuarios una	serie de sugerencias de forma personalizada según sus
		gustos o pr	referencias. Se dividen en dos grupos: sistemas de
		recomendacio	ón basados en la colaboración y en el contenido.
3	Área/Línea de		
	investigación priorizada	Software aplicado	
4	Funciones	User-User KN	NN, este algoritmo utiliza la experiencia de otros usuarios
		para construi	ir recomendaciones para un usuario activo, el siguiente
		algoritmo es	the input of the system is a matrix of ratings (M): Las
		clasificacione	s se recogen por adelantado midiendo la relevancia de los
		artículos por	parte de los usuarios.
5	Conclusiones	Recomendac	iones de componentes de implementación basados en
	Relevantes	calificaciones	s, que, basándose en los componentes vinculados al perfil
		de usuario, re	ecomienda componentes que otros usuarios han utilizado
		en configuraciones anteriores. Finalmente, el escenario	
		Recomendac	iones de componentes de implementación basados en
		característica	s, que recomienda componentes de implementación
		basados en l	as características de los componentes asociados al perfil
		de usuario, e	s decir, en la información descriptiva de los componentes.

TABLA C. RESULTADO DEL ARTÍCULO EP61

#	Descripción	Detalle	
1		Título	Neural based contingent valuation of road traffic noise

	Información	Autor	Luis Bravo, José Naranjo, Ignacio Pavón García, Roberto
	bibliográfica		Mosquera.
		Referencia	[45]
		Año	2017
2	Aplicación	Artificial neu	ıral network ensemble: El modelo predice, con precisión
		y precisión, ι	un rango de disposición a pagar a partir de evaluaciones
		subjetivas de	el ruido, un nivel de exposición al ruido modelado y
		condiciones of	demográficas y socioeconómicas.
3	Área/Línea de		
	investigación	Territorio y so	ociedad inclusivos + Software aplicado
	priorizada		
4	Funciones	Esto se muestra en los resultados del comité de la ANN, que indican	
		que el modelo de la RNA puede predecir con un 89% más de precisión	
		que el model	o econométrico para la WTP = 0 casos.
5	Conclusiones	Se presentó un enfoque alternativo para valorar el impacto del ruido del	
	Relevantes	tráfico por medio de la predicción de WTP realizada con un comité de	
		ANN. Este comité fue capacitado con una encuesta de valoración	
		contingente i	realizada en el Distrito Metropolitano de Quito, la cual
		mostró que la	a WTP reduce la molestia del ruido del tránsito vial.

TABLA CI. RESULTADO DEL ARTÍCULO EP62

#	Descripción	Detalle	
1	Información	Título	Deep neural networks-based rolling bearing fault
	bibliográfica		diagnosis
		Autor	Zhiqiang Chen, Shanghai Deng, Xudong Chen, Chuan Li,
			René-Vinicio Sanchez, Huafeng Qin.
		Referencia	[42]
		Año	2017
2	Aplicación	Deep neural	network models (Deep Boltzmann Machines, Deep
		Belief Netw	orks y Stacked Auto-Encoders): para identificar la
		condición de	falla del rodamiento.
3	Área/Línea de		
	investigación	Desarrollo ind	dustrial + Software aplicado
	priorizada		

4	Funciones	Se presentó brevemente las redes neurales profundas (DNN) utilizadas:			
		Máquinas Deep Boltzmann (DBM), redes de creencias profundas (DBN)			
		y autoencoders apilados (SAE).			
5	Conclusiones	DBM, DBN y SAE son eficientes en el diagnóstico de fallas de			
	Relevantes	rodamiento, cuya precisión de clasificación alcanza más del 99%. Estos			
		clasificadores tienen un buen potencial para proporcionar directrices de			
		mantenimiento útiles para los sistemas industriales.			
		La entrada basada en datos brutos no es buena. Encontrar la			
		combinación más apropiada de parámetros que se producen en una			
		DNN es una tarea difícil para la clasificación basada en datos brutos.			
		En tal sentido, la extracción de características de la señal de vibración			
		sigue siendo un paso necesario para los clasificadores basados en			
		DNN.			
		El esquema de extracción de características, incluyendo el dominio del			
		tiempo, la frecuencia y el dominio de la frecuencia del tiempo, es			
		superior a las características de modo único tales como los esquemas			
		2 y 3.			
		La arquitectura más profunda de la red neural profunda no			
		necesariamente conduce a mejores resultados.			

TABLA CII.
RESULTADO DEL ARTÍCULO EP63

#	Descripción	Detalle	
1	Información bibliográfica	Título	Increase attractor capacity using an ensembled neural network
		Autor	Mario González, David Domínguez, Ángel Sánchez, Francisco B. Rodríguez
		Referencia	[144]
		Año	2017
2	Aplicación	Ensemble of Attractor Neural Networks (ANN): el cuál aumenta el	
		almacenamiento de los patrones, a un coste computacional similar al de	
		un sistema Al	NN de un solo módulo.
3	Área/Línea de		
	investigación	Redes e infra	estructura y telecomunicaciones
	priorizada		
4	Funciones	Se construyó conjunto de	el conjunto de componentes de la RNA y se dividió el patrones aleatorios uniformes en subconjuntos

			desarticulados durante la etapa de aprendizaje, de manera que cada			
			subconjunto se asigna a un componente diferente.			
ľ	5	Conclusiones	El aumento de rendimiento del sistema de ensamblaje propuesto puede			
		Relevantes	ser útil para tratar aplicaciones del mundo real en las que se debe			
			procesar un gran número de patrones. El enfoque sugerido de dividir y			
			conquistar puede ser visto como una especialización de cada trabajo en			
			red/componente del conjunto para tratar con tipos específicos de			
			patrones.			
- 1						

TABLA CIII.
RESULTADO DEL ARTÍCULO EP64

#	Descripción	Detalle	
1	Información bibliográfica	Título	Data-driven techniques for modelling the gross primary production of the páramo vegetation using climate data: Application in the Ecuadorian Andean region
		Autor	Verónica Minaya, Gerald A. Corzo, Dimitri P. Solomatine, Arthur E. Mynett.
		Referencia	[145]
		Año	2016
2	Aplicación	Linear regre	ssion method (LRM), model tree (MT), instance-based
		learning (IB	L) and artificial neural network (ANN): El objetivo es
		explorar la c	apacidad de los modelos basados en datos (DDM), para
		replicar un	modelo bioquímico de cálculo de la estimación de la
		producción p	rimaria bruta (CPE).
3	Área/Línea de investigación priorizada	Ambiente biodiversidad y cambio climático	
4	Funciones	Este estudio evalúa la capacidad de cuatro DDM sustitutos, a saber, el	
		método de re	egresión lineal (LRM), el árbol modelo (MT), el aprendizaje
		basado en la	instancia (IBL) y la red neuronal artificial (ANN).
5	Conclusiones	Aunque las técnicas de DDM probadas en este trabajo mostraron que	
	Relevantes	la precipitaci	ón no era una variable que influyera en la variación de la
		CPE, es bien	sabido que la precipitación es la principal fuerza impulsora
		del crecimiento de las plantas y, por esta razón, de la absorción de	
		carbono por l	parte de las plantas. La capacidad de las técnicas de DDM
		para modela	r los escenarios climáticos y la sensibilidad de la CPE a la
		precipitación	merecen estudios adicionales debido al elevado número

de procesos biológicos complejos (es decir, la adaptación al clima, a la disponibilidad de nutrientes y otros).

TABLA CIV. RESULTADO DEL ARTÍCULO EP65

#	Descripción	Detalle		
1	Información	Título	Ultra-high-speed deterministic algorithm for transmission	
	bibliográfica		lines disturbance identification based on principal	
			component analysis and Euclidean norm	
		Autor	J.A. Morales, E. Orduña, C. Rehtanz, R.J. Cabral, A.S.	
			Bretas.	
		Referencia	[146]	
		Año	2016	
2	Aplicación	Deterministi	c algorithm: las pruebas muestran que el algoritmo	
		propuesto tie	ene un gran éxito en la detección e identificación de	
		fenómenos y	presenta un gran potencial para las aplicaciones en línea.	
3	Área/Línea de			
	investigación	TIC para la e	ducación e inclusión	
	priorizada			
4	Funciones	Para desarrollar un algoritmo determinista de velocidad ultra alta, es		
		necesario considerar dos aspectos de la siguiente manera.		
		El tiempo de funcionamiento del algoritmo de protección viene		
		determinado por el tamaño de la ventana de datos y por el		
		procesamiento de los datos de tiempo, que actualmente, debido al		
		avance tecnológico, es muy corto.		
		Por otro lado, en cuanto al procesamiento de datos de tiempo, utilizando		
		el número de operaciones (225 para el algoritmo de detección y 150		
			itmo de identificación), y el tiempo de procesamiento del	
			dor de retransmisión (1 ns para cada operación) el tiempo	
			e 0,225 ls y 0,15 ls, respectivamente. Estos tiempos son	
			os que el paso del tiempo a lo largo de las muestras.	
5	Conclusiones		ijo se desarrolla un algoritmo de detección e identificación	
	Relevantes		las ondas viajeras perturbadas con una frecuencia de	
			y corta. El algoritmo se basa en el Patrón Elíptico-Soidal	
		(EP), que tiene tres criterios de detección, permitiendo una		
		representació	ón visual del comportamiento de la perturbación.	

TABLA CV.
RESULTADO DEL ARTÍCULO EP66

#	Descripción	Detalle		
1	Información	Título	Attribute clustering using rough set theory for feature	
	bibliográfica		selection in fault severity classification of rotating	
			machinery	
		Autor	Fannia Pacheco, Mariela Cerrada, René Sánchez, Diego	
			Cabrera, Chuan Li, José Valente de Oliveira.	
		Referencia	[41]	
		Año	2016	
2	Aplicación	Unsupervise	ed algorithm: para la selección de características basado	
		en la agrupad	ción en tributo y la teoría de conjuntos aproximados.	
3	Área/Línea de			
	investigación	Desarrollo ind	dustrial	
	priorizada			
4	Funciones	El enfoque de agrupación en clúster combina la clasificación basada en		
		la distancia	con la agrupación en clúster basada en prototipos para	
		agrupar cara	cterísticas similares, sin requerir el número de clústeres	
		como entrada. Además, el algoritmo tiene una propiedad en evolución		
		que permite	el ajuste dinámico de la estructura del clúster durante el	
		proceso de d	clustering, incluso cuando un nuevo conjunto de atributos	
		alimenta el	algoritmo. Esto le da al algoritmo una propiedad de	
		aprendizaje i	ncremental, evitando un proceso de reentrenamiento.	
5	Conclusiones	Se propone u	ın nuevo algoritmo llamado ACARS para la agrupación de	
	Relevantes	atributos basa	ado en una estrategia no supervisada. El algoritmo se basa	
		en las ideas	principales de la clasificación basada en la distancia y la	
		agrupación b	asada en prototipos. En particular, ACARS se inspira en	
		las técnicas l	K-means y 1-NN, que se combinan adecuadamente en un	
		flujo de traba	ajo para analizar un subconjunto de clústers disponibles	
		cuando las entradas, en este caso at-homenaje, entran continuamente		
		una a una.		

TABLA CVI. RESULTADO DEL ARTÍCULO EP67

#	Descripción	Detalle

1	Información	Título	Deep reinforcement learning mechanism for dynamic		
	bibliográfica		access control in wireless networks handling mMTC		
		Autor	Diego Pacheco Paramo, Luis Tello Oquendo, Vicent Pla,		
			Jorge Martinez-Bauset		
		Referencia	[147]		
		Año	2019		
2	Aplicación	Deep reinfo	rcement learning: para adaptar la tasa de bloqueo del		
		ACB en con	diciones dinámicas. El algoritmo se entrena con tráfico		
		simultáneo d	simultáneo de H2H y máquina a máquina (M2M), pero realizamos una		
		evaluación de rendimiento separada para cada tipo de tráfico.			
3	Área/Línea de				
	investigación	Internet de las cosas (IoT)			
	priorizada				
4	Funciones	En el caso del mecanismo Double Deep QL-ACB (DDQL), utilizamos la			
		implementación de Levenberg-Marquardt utilizada en la MAT- LAB			
		Optimization	Toolbox con sus parámetros por defecto para entrenar la		
		red neuronal de feedforward.			
5	Conclusiones	La solución QL-ACB de doble profundidad puede alcanzar un retardo			
	Relevantes	menor que la	solución QL-ACB. Se evalúa el desempeño del esquema		
		QL-ACB de	Doble Profundidad, ya que se entrena con diferentes		
		cantidades c	le datos, demostrando su capacidad para trabajar aún		
		cuando existe	cuando existen limitaciones de procesamiento o de datos.		

TABLA CVII. RESULTADO DEL ARTÍCULO EP68

#	Descripción	Detalle	
1	Información	Título	Statistical nonlinear analysis for reliable promotion
	bibliográfica		decision-making
		Autor	Cristina Soguero-Ruiz, Francisco Javier Gimeno-Blanes,
			Inmaculada Mora-Jiménez, María del Pilar Martínez-
			Ruiz, José Luis Rojo-Álvarez
		Referencia	[148]
		Año	2014
2	Aplicación	Nonlinear m	nethods: los modelos lineales o estáticos sólo pueden
		explicar vag	amente las interacciones complejas entre productos y
		ventas. Se h	a estudiado extensamente los métodos de aprendizaje de

		máquinas no lineales para intentar desarrollar métodos que sigan mejor el comportamiento humano.
3	Área/Línea de investigación priorizada	Economía tecnología y sociedad
4	Funciones	Para probar la metodología propuesta, utilizamos una base de datos que contiene el historial de ventas de productos representativos registrados por una cadena de distribución española. Los resultados indican que: (1) el análisis de la curva del efecto de negociación y el modelo lineal de series temporales no proporcionan suficiente capacidad expresiva, y (2) los modelos promocionales no lineales siguen con mayor precisión el patrón de ventas real obtenido en respuesta a las promociones de ventas implementadas.
5	Conclusiones Relevantes	Se evaluó y optimizó los motores de predicción lineales y no lineales que utilizan el re muestreo no paramétrico Bootstrap basado en estadísticas de rendimiento.

TABLA CVIII. RESULTADO DEL ARTÍCULO EP69

#	Descripción	Detalle	
1	Información	Título	Model-Based Fault-Tolerant Control to Guarantee the
	bibliográfica		Performance of a Hybrid Wind-Diesel Power System in a
			Microgrid Configuration
		Autor	Adriana Vargas, Luis Minchala Ávila, Youmin Zhang, Luis
			Garza, Eduardo Robinson Calle.
		Referencia	[149]
		Año	2013
2	Aplicación	Artificial ne	eural network (ANN): El primer esquema utiliza un
		controlador a	daptativo de referencia modelo (MRAC) con un controlador
		proporcional-	integral-derivado (PID) sintonizado por un algoritmo
		genético (GA	A) para controlar la velocidad del motor diesel (DE) para
		regular la fre	cuencia del sistema de potencia y utiliza un MRAC clásico
		para controla	r la amplitud de voltaje de la máquina sincrónica (SM). El
		segundo esq	uema utiliza un MRAC con un controlador PID sintonizado
		por un GA para controlar la velocidad del DE, y un MRAC con una red neural artificial (ANN) y un controlador PID sintonizado por un GA para controlar la amplitud de voltaje del SM.	

3	Área/Línea de	
	investigación	Desarrollo industrial
	priorizada	
4	Funciones	Con el fin de aumentar el umbral de acomodación de fallas del sistema, se integraron un controlador ANN y un controlador PID en la estructura MRAC; estos controladores tienen una arquitectura de retroalimentación para obtener una estructura FTC robusta. En esta estructura, el controlador PID ayuda a atenuar el sobre impulso, el subimpulso y también ayuda a obtener el tiempo de estabilización y el tiempo de subida deseados. Por otro lado, el controlador ANN intentará atenuar el fallo ayudando al sistema a seguir la trayectoria de referencia deseada.
5	Conclusiones Relevantes	MRAC tiene una capacidad inherente para acomodar las perturbaciones debidas a fallas y cambios de carga, etc., y también es relativamente fácil de implementar. Sin embargo, el uso de este tipo de controlador tiene ciertas limitaciones. Por esta razón, se ha propuesto una combinación de MRAC con ANN para garantizar el rendimiento del sistema en presencia de dinámicas de modelos desconocidos, fallas y variaciones de carga con un mejor comportamiento transitorio y también capacidad de rechazo de perturbaciones.

Tabla CIX. RESULTADO DEL ARTÍCULO EP70

#	Descripción	Detalle	
1	Información	Título	Sustainable riverscape preservation strategy framework
	bibliográfica		using goal-oriented method: Case of historical heritage
			cities in Malaysia
		Autor	Arezou Shafaghat, Mohammad Mir Ghasemi, Ali
			Keyvanfar, Hasanuddin Lamit, Mohamed Salim Ferwati
		Referencia	[150]
		Año	2017
2	Aplicación	MCDM (multi-criteria decision making): este marco incluye técnicas	
		de Inteligend	cia Artificial y Redes Neuronales; que ayudan a los
		responsables	de la toma de decisiones a indicar la calidad del agua del
		río en relació	n con la gestión del sitio, el uso de la tierra, la preservación
		del suelo con	tra los contaminantes y las acciones correctivas

3	Área/Línea de investigación priorizada	Territorio y sociedad inclusivos
4	Funciones	Para la validación, el estudio de factibilidad muestra que el aporte del experto ha alcanzado una saturación superior al 70% para todos los factores de evaluación de factibilidad, excepto los aspectos técnicos del factor potencial de extensión del proyecto, que ha recibido una saturación del 45%. Este marco estratégico se refiere a los ámbitos de la sostenibilidad: los beneficios sociales, la calidad ambiental y el crecimiento económico.
5	Conclusiones Relevantes	Esta investigación ha desarrollado el marco estratégico basado en la perspectiva del diseño y la planificación urbana. Las características, calidad y valor del paisaje fluvial de la ciudad patrimonial se incorporan al apego humano y a los comportamientos pro ambiéntales que causan efectos positivos en los aspectos sociales, económicos y ambientales del desarrollo urbano sostenible.

TABLA CX. RESULTADO DEL ARTÍCULO EP71

#	Descripción	Detalle	
1	Información bibliográfica	Título	Artificial Neural Networks applied to flow prediction: A use case for the Tomebamba river
		Autor	Jaime Veintimilla-Reyes, Felipe Cisneros, Pablo Vanegas.
		Referencia	[151]
		Año	2016
2	Aplicación	Artificial Ne	ural Networks (ANN): que permita predecir el caudal del
		río Tomebam	ba, en tiempo real y en un día específico del año
3	Área/Línea de investigación priorizada	Territorio y sociedad inclusivos	
4	Funciones	Backpropaga	tion y un modelo híbrido entre backpropagation y OWO-
		HWO (optimización del peso de salida - optimización del peso oculto) para seleccionar los pesos iniciales de la conexión.	
5	Conclusiones	Cuando los tiempos de entrenamiento son iguales en ambos algoritmos	
	Relevantes	se nota que valor MSE.	el algoritmo de retropropagación reduce drásticamente el

TABLA CXI. RESULTADO DEL ARTÍCULO EP72

#	Descripción	Detalle		
1	Información	Título	Prediction of acute toxicity of phenol derivatives using	
	bibliográfica		multiple linear regression approach for Tetrahymena	
			pyriformis contaminant identification in a median-size	
			database	
		Autor	Karel Diéguez-Santana, HIA Pham, Pedro J. Villegas-	
			Aguilar, Huong Le-Thi-Thu, Juan A. Castillo-Garit,	
			Gerardo M. Casañola.	
		Referencia	[152]	
		Año	2016	
2	Aplicación	La técnica de	e modelado seleccionada fue la Regresión Lineal Múltiple	
		(MLR).		
3	Área/Línea de			
	investigación	TIC para edu	cación e inclusión	
	priorizada			
4	Funciones	En este ca	so, los coeficientes de regresión y los parámetros	
		estadísticos	se obtuvieron mediante este enfoque basado en la	
		regresión. El software seleccionado para el desarrollo del modelo QSTR		
		fue STATISTICA (STATISTICA, 2007). El parámetro de tolerancia		
		considerado para la tolerancia mínima aceptable fue el valor por defecto		
		de 0,01.		
5	Conclusiones	En este estu	dio, se utilizó la técnica MLR para desarrollar un modelo	
	Relevantes	QSTR lineal	para la predicción de la toxicidad de los fenoles a	
		Tetrahymena	pyriformis. Los descriptores químicos derivados de	
		estructuras r	moleculares se calcularon con el software Dragon. El	
		modelo QSTF	R-MLR obtenido fue estadísticamente significativo, robusto	
		y con valores	y con valores positivos de R2 1/4 0,74 y q2 1/4 0,69 en el entrenamiento,	
		y un adecuad	o valor predictivo de R2 de 0,70, lo que indica la capacidad	
		de predecir	la toxicidad acuática de los derivados fenólicos en el	
		deterioro del	crecimiento poblacional de T. pyriformis.	

Tabla CXII.
RESULTADO DEL ARTÍCULO EP73

#	Descripción	Detalle	
1	Información bibliográfica	Título	Distributed decision-making algorithms with multiple manipulative actors
		Autor	Kasra Koorehdavoudi, Sandip Roy, Mengran Xue, Jackeline Abad Torres
		Referencia	[153]
		Año	2019
2	Aplicación	representativ sistemas de d ejemplo, pro	control empotrados de edificios, sistemas industriales istemas de transferencia con múltiples autoridades de transferencia con múltiples autoridades de
3	Área/Línea de investigación priorizada	Redes e infraestructura de telecomunicaciones + Software aplicado	
4	Funciones	Como un contraste adicional, nuestro análisis es un punto de partida para relacionar la asintótica con las ganancias de control de los actores.	
5	Conclusiones Relevantes	Se ha introducido un modelo para la toma de decisiones distribuida con múltiples actores manipuladores, que se representan como controles lineales de retroalimentación con diferentes señales de referencia.	

TABLA CXIII. RESULTADO DEL ARTÍCULO EP74

#	Descripción	Detalle	
1	Información	Título	Integration in industrial automation based on multi-agent
	bibliográfica		systems using cultural algorithms for optimizing the
			coordination mechanisms
		Autor	Juan Terán, José Aguilera, Mariela Cerrada
		Referencia	[154]
		Año	2017
2	Aplicación	Sistemas N	Multiagente (MAS): que consiste en optimizar los
		mecanismos	de coordinación que implementan las conversaciones
		entre agentes, mediante el uso de algoritmos culturales.	

	3	Área/Línea de			
		investigación	Desarrollo industrial		
		priorizada			
ľ	4	Funciones	Se desarrollo un modelo de aprendizaje colectivo basado en CA. El		
			modelo de optimización utiliza los modelos formales de subasta y		
			licitación como protocolos de interacción, que consideran las variables		
			y parámetros del proceso de comunicación entre agentes		
ľ	5	Conclusiones	Se propuso un enfoque desde la optimización de los mecanismos de		
		Relevantes	coordinación (protocolos de interacción), para implementar las		
			diferentes conversaciones en la arquitectura de automatización basada		
			en MAS.		

TABLA CXIV. RESULTADO DEL ARTÍCULO EP75

#	Descripción	Detalle	
1	Información bibliográfica	Título	Modelo para predecir el rendimiento académico basado en redes neuronales y analítica de aprendizaje
		Autor	Nelson Salgado, Jéfferson Beltrán, Javier Guaña, Charles Escobar, Damian Nicolalde, Gustavo Chafla.
		Referencia	[155]
		Año	2018
2	Aplicación		al multicapa (MLP): la cual fue entrenada de forma e para cada asignatura obteniendo predicciones únicas de a.
3	Área/Línea de investigación priorizada	TIC para edu	cación e inclusión
4	Funciones	La arquitectura de la red estuvo determinada por una capa de entrada y una capa intermedia u oculta con funciones de activación sigmoidal tangente hiperbólica y una capa de salida con función de activación lineal.	
5	Conclusiones Relevantes		uronal de perceptrón multicapa fue entrenada por un propagación inversa, para predecir la capacidad de pasar la carrera.

TABLA CXV. RESULTADO DEL ARTÍCULO EP76

#	Descripción	Detalle	
1	Información bibliográfica	Título	A Low-cost IoT Application for the Urban Traffic of Vehicles, based on Wireless Sensors using GSM Technology
		Autor	Hugo Nugra, Alejandra Abad, Walter Fuertes, Fernando
			Galárraga, Hernán Aules, César Villacís, Theofilos
			Toulkeridis
		Referencia	[156]
		Año	2016
2	Aplicación	Data mining	: Sobre los datos recogidos se monta un motor para la
		minería de da	atos con el fin de recibir información sobre el tráfico en las
		autopistas y p	posteriormente proponer posibles soluciones.
3	Área/Línea de		
	investigación	Internet de la	s cosas (IoT)
	priorizada		
4	Funciones	Otro aspecto favorable es que el sistema de retención se ha	
		implementade	o utilizando herramientas de minería de datos y BI de
		código abierto como Pentaho, que trabaja con el proceso que involucra	
		la extracción de información significativa de grandes bases de datos,	
		información que revela inteligencia de negocios, a través de factores	
		ocultos, tend	encias y correlaciones que permiten a los usuarios hacer
		_	que resuelven problemas asociados con la congestión del
		tráfico urbano	D.
5	Conclusiones	Sobre los dat	os recogidos se montó un motor de minería de datos para
	Relevantes	obtener infor	mación sobre el tráfico en las carreteras y proponer
		posibles soluciones. La prueba de concepto ha sido aplicada en la	
		ciudad de Qu	uito, particularmente sobre los dos carriles centrales de la
			ón Bolívar con resultados incuestionables, tanto en la
			I software y hardware que componen el prototipo, como en
		la medición d	e referencia de tráfico.

TABLA CXVI. RESULTADO DEL ARTÍCULO EP77

#	Descripción	Detalle
---	-------------	---------

1	Información bibliográfica	Título	MLA'14 – Third Multimodal Learning Analytics Workshop and Grand Challenges	
	2.5.nog.anoa	Autor	Xavier Ochoa, Marcelo Worsley, Katherine Chiluiza, Saturnino Luz.	
		Referencia	[157]	
		Año	2014	
2	Aplicación	Multimodal I	learning analytics: Varios de los análisis se basaron en	
		scripts desar	rollados a medida, aunque la mayoría aprovecharon los	
		existentes ba	ses de código y/o kits de herramientas para llevar a cabo	
		los análisis.		
3	Área/Línea de			
	investigación	TIC para educación e inclusión		
	priorizada			
4	Funciones	Se ha orien	tado en gran medida hacia el estudio de grupos de	
		estudiantes q	ue utilizan un amplio número de modalidades para realizar	
		tareas asistidas por ordenador.		
5	Conclusiones	En la mayoría de los estudios describen el trabajo realizado en el		
	Relevantes	laboratorio, e incluye principalmente un alto nivel de		
		estudiantes e	estudiantes escolares y universitarios.	

TABLA CXVII. RESULTADO DEL ARTÍCULO EP78

#	Descripción	Detalle		
1	Información	Título	Comparing Hierarchical Trees in Statistical Implicative	
	bibliográfica		Analysis & Hierarchical Cluster in Learning Analytics	
		Autor	Rubén A. Pazmiño, Francisco J. García, Miguel A. Conde	
		Referencia	[158]	
		Año	2017	
2	Aplicación	Árbol de col	nesión (ASI), árbol de similitud (ASI), agnes (paquete R	
		del clúster)	del clúster) y hclust (función base R): se comparará los cuatro	
		métodos en e	métodos en el Análisis Implicativo Estadístico (SIA) y algunos clústers	
		jerárquicos e	jerárquicos en el Análisis del Aprendizaje.	
3	Área/Línea de			
	investigación	Software aplicado		
	priorizada			

4	Funciones	Se utilizó una prueba no paramétrica Kruskal-Wallis con un único factor:		
		los 4 métodos de clúster jerárquico (árbol de cohesión, árbol de		
		similitud, agnes y hclust), con un nivel de significación del 95%.		
5	Conclusiones	La diferencia entre los tiempos para evaluar las funciones de ejecución		
	Relevantes	de los algoritmos del árbol de cohesión, árbol de similitud, agnes y hclus		
		es muy significativa (valor p < 2,2e-16) y se necesitan de 2 a 2		
		comparaciones en el futuro.		

TABLA CXVIII. RESULTADO DEL ARTÍCULO EP79

#	Descripción	Detalle			
1	Información	Título	Data Mining and Opinion Mining: A Tool in Educational		
	bibliográfica		Context		
		Autor	Myriam Peñafiel, Stefanie Vásquez, Diego Vásquez,		
			Juan Zaldumbide, Sergio Luján-Mora		
		Referencia	[159]		
		Año	2018		
2	Aplicación	Data mining	: Se propuso el uso de técnicas de minería de datos como		
		el análisis de	sentimientos para validar la información que proviene de		
		las plataforma	as educativas.		
3	Área/Línea de				
	investigación	TIC para educación e inclusión			
	priorizada				
4	Funciones	El proceso de minería de datos, desde la manipulación de los datos			
		hasta el conocimiento, pasa por diferentes etapas:			
		Recogida de datos: consiste en obtener datos de sus fuentes.			
		Preprocesam	niento: los datos se convierten en un formato apropiado		
		(datos modif	ficados). Extracción de datos: los datos se procesan		
		utilizando técnicas ya establecidas y nuevas para la explotación de			
		conocimientos ocultos.			
5	Conclusiones	La informació	La información obtenida puede ser utilizada para tomar decisiones que		
	Relevantes	ayuden a mejorar el proceso de enseñanza/aprendizaje con la			
		información o	obtenida de las plataformas de aprendizaje.		

TABLA CXIX. RESULTADO DEL ARTÍCULO EP80

#	Descripción	Detalle			
1	Información	Título	Factors to Predict Dropout at the Universities: A case of		
	bibliográfica		study in Ecuador		
		Autor	Albán Mayra, David Mauricio		
		Referencia	[160]		
		Año	2018		
2	Aplicación	Data mining	para diseñar un modelo para determinar nuevos factores		
		de predicción	de la deserción escolar en el que la dimensión del análisis		
		sean los est	tudiantes, las instituciones, el contexto académico y el		
		entorno socia	al y económico.		
3	Área/Línea de				
	investigación	TIC para educación e inclusión			
	priorizada				
4	Funciones	Para calcula	Para calcular la probabilidad de abandono, la estimación de		
		verosimilitud máxima responsable de los problemas de análisis se			
		aplicará med	aplicará mediante una rutina de optimización interactiva que maximice		
		la función	del logaritmo de verosimilitud cuando las variables		
		dependientes sean similares			
5	Conclusiones	Fue necesari	o implementar medidas prácticas para cambiar el círculo		
	Relevantes	vicioso en el que se encuentran inmersas las universidades respecto a			
		la deserción escolar, se identificaron 11 factores para determinar			
		deserción escolar, también la técnica que presenta mayor precisión es			
		el Clasificado	el Clasificador de Árboles de Decisión con 98%.		

Tabla CXX.
RESULTADO DEL ARTÍCULO EP81

#	Descripción	Detalle	
1	Información	Título	Predicting University Dropout through Data Mining: A
	bibliográfica		Systematic Literature
		Autor	Albán Mayra, David Mauricio
		Referencia	[161]
		Año	2019
2	Aplicación	Systematic review of literatura: sobre la predicción de la deserción	
		escolar universitaria a través de técnicas de minería de datos.	

3	Área/Línea de		
	investigación	TIC para educación e inclusión	
	priorizada		
4	Funciones	En esta fase, se proporcionó el protocolo de revisión, los requisitos de	
		selección para los estudios potenciales y el método para analizar el	
		contenido de los estudios seleccionados.	
5	Conclusiones	Se identificaron 1.681 estudios primarios relacionados con el tema, de	
	Relevantes	los cuales se seleccionaron 67 documentos según los criterios de	
		inclusión y exclusión establecidos, identificando cinco dimensiones	
		importantes: factores, técnicas de preprocesamiento, técnicas de	
		selección de factores, predicción y herramientas. Este estudio hace un	
		inventario de 112 factores que influyen en la predicción de la deserción	
		escolar.	

TABLA CXXI. RESULTADO DEL ARTÍCULO EP82

#	Descripción	Detalle		
1	Información bibliográfica	Título Data mining process for identification of spontaneous saccadic movements in cli electrooculography		
		Autor	R.A. Becerra, R.V. García, G. Joya-Caparrós, A. Fernández, C. Velázquez, M. Velázquez, F.R. Cuevas, F. García, R. Rodráguez.	
		Referencia	[95]	
		Año	2017	
2	Aplicación	Data mining: como selección de características y ajuste de modelos, obteniendo modelos muy eficientes utilizando sólo 3 atributos: desviación de amplitud, latencia de respuesta absoluta y latencia relativa		
3	Área/Línea de investigación priorizada	Salud y bienestar		
4	Funciones	afectados po obtenidos po recuperacion	Los modelos fueron evaluados con señales registradas de sujetos afectados por Ataxia Espinocerebelosa tipo 2 (SCA2). Los resultados obtenidos por el algoritmo muestran precisiones superiores al 98%, recuperaciones superiores al 98% y precisiones superiores al 95% para los tres modelos evaluados.	

5	Conclusiones	Para mejorar el rendimiento de la clasificación, se realizaron algunas
	Relevantes	tareas de minería de datos, como la selección de características y el
		ajuste del modelo.

TABLA CXXII. RESULTADO DEL ARTÍCULO EP83

#	Descripción	Detalle			
1	Información	Título	Minería de Datos Educacionales: una visión holística		
	bibliográfica	Autor	Oswaldo Moscoso-Zea, Sergio Luján-Mora.		
		Referencia	[162]		
		Año	2016		
2	Aplicación	Minería de	datos educacionales (MDE): para analizar datos de		
		instituciones	educativas mediante el uso de diferentes técnicas como:		
		predicción, cl	ustering, análisis de series de tiempo, clasificación, entre		
		otras.			
3	Área/Línea de				
	investigación	TIC para educación e inclusión			
	priorizada				
4	Funciones	Se presenta una visión holística de MDE que abarca una clasificación			
		de los algorit	de los algoritmos, métodos y herramientas usados en procesos de MD		
		y un análisis	de procesos e indicadores con potencial de mejoras en		
		instituciones educativas.			
5	Conclusiones	Este artículo presenta una visión holística de MDE y busca ser una			
	Relevantes	buena fuente para investigadores que deseen experimentar con MD en			
		el campo educativo en áreas como evaluación, matriculación,			
		planificación,	bienestar estudiantil, marketing, etc.		

TABLA CXXIII. RESULTADO DEL ARTÍCULO EP84

#	Descripción	Detalle	
1	Información	Título	Aplicación de data mining en la gestión del plan anual de
	bibliográfica		contratación en las universidades públicas del ecuador.
			Caso de estudio universidad técnica de Ambato
		Autor	Luis Nieto Mora, Franklin Mayorga.
		Referencia	[163]
		Año	2016

2	Aplicación	Data mining: se realizó un análisis a las bases de datos de la		
		Universidad, tomando su forma y diseño, su estructura y como fue		
		planificada. Verificando la integridad de los datos y "minando" datos o		
		información que es relevante de acuerdo con el estudio y el tratamiento		
		de estos.		
3	Área/Línea de			
	investigación	TIC para educación e inclusión		
	priorizada			
4	Funciones	Se recopiló la información que se encuentra en diferentes motores de		
		base de datos e inclusive archivos planos, y presentar un pequeño		
		aplicativo de minería de datos, con el objetivo obtener datos relevantes		
		para la toma de decisiones en el futuro en la gestión de las compras		
		públicas de la Universidad.		
5	Conclusiones	Una vez realizado la minería de datos, dentro de la gestión del plan		
	Relevantes	anual de contratación, se pudo observar que la información		
		proporcionada por cada dependencia y facultades, en muchos de los		
		casos son ítems de compra repetidos, generando documentación física		
		duplicada ya que solicitan el mismo requerimiento.		

TABLA CXXIV. RESULTADO DEL ARTÍCULO EP85

#	Descripción	Detalle	
1	Información	Título	Predicting Crime Using Data Mining
	bibliográfica	Autor	Ginger Viviana Saltos Bernal, Micaela Cocea.
		Referencia	[164]
		Año	2014
2	Aplicación	Data Mining	tales como el aprendizaje ponderado local, la regresión
		lineal y el ár	bol de decisión M5P, y el algoritmo apriori, que ha sido
		utilizado en el campo por los investigadores.	
3	Área/Línea de		
	investigación	Territorio y sociedad inclusivos	
	priorizada		
4	Funciones	Se ejecutó c	uatro experimentos diferentes usando cada algoritmo, y
		evalúa el rendimiento de los modelos creados, resultando que los	
		modelos M5P tienen menos valores de error, mejor correlación y una	
		cantidad de ti	iempo aceptable para el análisis que los otros modelos.

5	Conclusiones	Este informe presenta el análisis de los conjuntos de datos del Reino		
	Relevantes	Jnido y Ecuador utilizando cuatro algoritmos (LWL, LR, M5P y Apriori)		
		en cuatro experimentos diferentes para crear modelos que permita		
		predecir la delincuencia.		

TABLA CXXV. RESULTADO DEL ARTÍCULO EP86

#	Descripción	Detalle		
1	Información	Título	SMURF: Systematic Methodology for Unveiling Relevant	
	bibliográfica		Factors in retrospective data on chronic disease	
			treatments	
		Autor	Franklin Parrales, Alberto A. Del Barrio, Ana Beatriz	
			Gago, María Mercedes, Marina Ruiz, Ángel Guerrero,	
			Saso Dzeroski, José L. Ayala.	
		Referencia	[165]	
		Año	2019	
2	Aplicación	Data mining: aborda la predicción de la respuesta terapéutica de		
		manera panorámica y de retroalimentación, a la vez que revela los		
		factores médicos relevantes.		
3	Área/Línea de			
	investigación	Salud y bienestar		
	priorizada			
4	Funciones	La predicción panorámica permite decidir si el tratamiento será		
		beneficioso sin utilizar conocimientos previos y sin necesidad de		
		tratamientos innecesarios.		
5	Conclusiones	Este estudio presenta una metodología para obtener una predicción de		
	Relevantes	la respuesta	al tratamiento en varias etapas de este. Conocer de	
		antemano las	respuestas al tratamiento continuo es vital en términos de	
		economía, ca	alidad de vida y tiempo.	

TABLA CXXVI. RESULTADO DEL ARTÍCULO EP87

bibliográfica techniques to improve tapered roller bearings working	7	#	Descripción	Detalle	
conditions		1		Título	Optimizing presetting attributes by softcomputing techniques to improve tapered roller bearings working conditions

		Autor	Roberto Fernández Martínez, Rubén Lostado Lorza, Ana	
			A. Santos, Nelson O. Piedra.	
		Referencia	[166]	
		Año	2018	
2	Aplicación	Data mining	classification techniques and Machine Learning: se	
		creó un m	odelo que pudiera clasificar automáticamente una	
		combinación	de cargas que definiera las condiciones de pre ajuste de	
		un TRB de do	os hileras en relación con la estabilidad de sus condiciones	
		de trabajo.		
3	Área/Línea de			
	investigación	Desarrollo ind	dustrial	
	priorizada			
4	Funciones	Este trabajo valida un método de dos pasos para aplicar FEM y		
		procesos de minería de datos basados en el análisis de datos y la		
		técnica de Machine Learning.		
5	Conclusiones	se observa que el modelo más preciso se encontraba dentro del grupo		
	Relevantes	de métodos de clasificación no lineal. Más específicamente, se basó en		
		un análisis di	scriminante flexible y produjo resultados muy precisos, un	
		93,75%, mier	ntras que las cuatro clases iniciales se redujeron a sólo dos.	

TABLA CXXVII. RESULTADO DEL ARTÍCULO EP88

#	Descripción	Detalle	
1	Información bibliográfica	Título Automatic lightning stroke location on transmiss using data mining and synchronized initial travel	
		Autor	J.A. Morales, Z. Anane, R.J. Cabral.
		Referencia	[167]
		Año	2018
2	Aplicación	Data mining: para realizar la detección de señales y los tiempos de las	
		ondas viajeras para determinar la localización a lo largo de la línea	
		transmisión.	
3	Área/Línea de		
	investigación	Ciudades inteligentes e inclusivas	
	priorizada		
4	Funciones	Se desarrolló una metodología basada en ondas viajeras sincronizadas	
		registradas e	en ambos extremos de las líneas de transmisión para
		calcular la dis	stancia desde el recorrido de la iluminación hasta los relés

		de protección. Para el procesamiento de señales y la detección de	
		señales transitorias, se utiliza un patrón elipsoidal.	
5	Conclusiones	La principal contribución de este trabajo es determinar si las ondas	
	Relevantes	viajeras y la minería de datos pueden ser utilizadas para la localización	
		de la carrera de iluminación tanto en TL como en tierra.	

TABLA CXXVIII. RESULTADO DEL ARTÍCULO EP89

#	Descripción	Detalle		
1	Información	Título	Resurgery clústers in Intensive Medicine	
	bibliográfica	Autor	Ricardo Peixoto, Filipe Portela, Filipe Pinto, Manuel	
			Santosa, José Machado, António Abelha, Fernando Rúa.	
		Referencia	[168]	
		Año	2016	
2	Aplicación	Data mining	aplicada a través de modelos predictivos, identifica si un	
		paciente debe o no someterse a una nueva cirugía por el mi		
		problema.		
3	Área/Línea de			
	investigación	TIC y salud		
	priorizada			
4	Funciones	Se aplicó técnicas de agrupamiento en los datos recopilados para		
		categorizar las re intervenciones en cuidados intensivos. Conocien		
		las características comunes de los pacientes de re intervención, será		
		posible ayudar al médico a predecir un futuro resurgimiento.		
5	Conclusiones	Con este trabajo se crearon nuevas variables para predecir e		
Relevantes resurgimiento de los pacientes. El número de días que e		de los pacientes. El número de días que el paciente es re		
		intervenido d	espués de la primera cirugía es uno de los atributos más	
		importantes.		

TABLA CXXIX. RESULTADO DEL ARTÍCULO EP90

#	Descripción	Detalle	
1	Información	Título	Large-scale simultaneous market segment definition and
	bibliográfica		mass appraisal T using decision tree learning for fiscal
			purposes

		Autor	Fabián Reyes-Bueno, Juan Manuel García-Samaniego,	
			Aminael Sánchez-Rodríguez.	
		Referencia	[169]	
		Año	2018	
2	Aplicación	Data mining	aplicada a un conjunto de datos de 410 transacciones de	
		compraventa	(2003-2009) de terrenos ubicados en el sector rural de la	
		parroquia de	Vilcabamba (sur de Ecuador).	
3	Área/Línea de			
	investigación	Territorio y so	ociedad inclusivos	
	priorizada			
4	Funciones	Se aplicó las metodologías como el model-tress (M5P) y los splines de		
		regresión adaptativa multivariante (MARS) a la evaluación de masas de		
		tierras rurales. Tanto M5P como MARS permiten definir segmentos de		
		mercado y establecer simultáneamente los pesos de las variables		
		predictoras para la formación del valor de la tierra.		
5	Conclusiones	En este estudio, recolectamos evidencia que apoya que la eliminación		
	Relevantes	de variables de desempeño productivo de los modelos de predicción del		
		valor de la tierra no obstaculiza el poder predictivo de los modelos, al		
		menos en l	as áreas rurales donde se está llevando a cabo el	
		aburguesami	ento.	

TABLA CXXX. RESULTADO DEL ARTÍCULO EP91

#	Descripción	Detalle		
1	Información	Título A System for the Monitoring and Predicting of Data in		
	bibliográfica		Precision Agriculture in a Rose Greenhouse Based on	
			Wireless Sensor Networks	
		Autor	Schubert Rodríguez, Tatiana Gualotuña, Carlos Grilo.	
		Referencia	[170]	
		Año	2017	
2	Aplicación	Data mining: con el propósito de identificar patrones de		
		comportamie	nto dadas las condiciones ambientales capturadas por la	
		red de sensores.		
3	Área/Línea de			
	investigación	Agricultura y ganadería		
	priorizada			

4	Funciones	El mejor conjunto de resultados dentro de los escenarios probados		
		utilizó sólo datos de temperatura anteriores como entradas (es decir, sin		
		considerar los valores de otras variables de entorno) y sin tener en		
		cuenta la desviación estándar. Se obtuvo un error absoluto relativo del		
		13,18%. Aunque el error es alto a primera vista, corresponde a un error		
		absoluto medio de 0,807 °C.		
5	Conclusiones	El sistema propuesto otorgará a la floricultura una herramienta de		
	Relevantes	monitoreo permanente de los factores mencionados. Permitirá a los		
		agricultores tomar medidas preventivas o correctivas, cuando sea		
		necesario, proporcionando una plataforma tecnológica basada en		
		software libre y hardware de bajo coste, así como el uso de técnicas de		
		minería de datos.		

TABLA CXXXI. RESULTADO DEL ARTÍCULO EP92

#	Descripción	Detalle	
1	Información bibliográfica	Título	Data Mining and Endocrine Diseases: A New Way to Classify?
		Autor	Juan Salazar, Cristóbal Espinoza, Andrés Mindiola, Valmore Bermúdez
		Referencia	[171]
		Año	2018
2	Aplicación	Data mining: implementada para predecir, identificar biomarcadores, complicaciones, terapias, políticas de salud, efectos genéticos y ambientales de esta enfermedad; podría generalizarse en el campo de la endocrinología, en la clasificación de otras enfermedades endocrinas.	
3	Área/Línea de investigación priorizada	Salud y bienestar	
4	Funciones	la minería de datos no sólo se limita a predecir la DM, sino también a identificar biomarcadores, complicaciones, terapias, políticas de salud, efectos genéticos y ambientales; y ahora su propia clasificación.	
5	Conclusiones Relevantes	la DM, sino endocrinas c	de la minería de datos no sólo han sido explorados para que también se han aplicado a otras enfermedades como la obesidad, las enfermedades de la tiroides y el ovarios poliquísticos.

TABLA CXXXII. RESULTADO DEL ARTÍCULO EP93

#	Descripción	Detalle	
1	Información	Título	Literature Review of Data Mining Applications in Academic Libraries
	bibliográfica	Autor	Lorena Sigüenza, Víctor Saquicela, Elina Ávila, Joos
			Vandewalle, Dirk Cattrysse.
		Referencia	[36]
		Año	2015
2	Aplicación	Literature re	view, Data mining: clasificación de técnicas de minería
		de datos apli	cadas a las bibliotecas académicas.
3	Área/Línea de		
	investigación	TIC para edu	cación e inclusión
	priorizada		
4	Funciones	Cada artículo fue categorizado de acuerdo con las principales funciones	
		de minería de datos: clustering, asociación, clasificación y regresión; y	
		su aplicación en los cuatro aspectos principales de la biblioteca:	
		servicios, calidad, colección y comportamiento de uso. Además, los	
		modelos de clasificación y regresión son las dos funciones de minería	
		de datos más	s utilizadas y aplicadas en entornos de bibliotecas.
5	Conclusiones	La aplicación	de técnicas de minería de datos en las bibliotecas es una
	Relevantes	tendencia em	nergente que ha captado la atención de los profesionales y
		académicos o	con el fin de comprender los patrones de comportamiento
		de los usuari	os y el personal de las bibliotecas, así como los patrones
		de informació	on sobre el uso de los recursos en toda la biblioteca.

TABLA CXXXIII. RESULTADO DEL ARTÍCULO EP94

#	Descripción	Detalle	
1	Información	Título	Detecting Similar Areas of Knowledge Using Semantic
	bibliográfica		and Data Mining Technologies
		Autor	Xavier Sumba, Freddy Sumba, Andrés Tello, Fernando
			Baculima, Mauricio Espinoza, Víctor Saquicela.
		Referencia	[172]
		Año	2016
2	Aplicación	Data mining	g: en el dominio de la comunidad de investigadores
		ecuatorianos	

3	Área/Línea de investigación priorizada	TIC en la educación e inclusión + Software aplicado
4	Funciones	Se propuso una arquitectura novedosa para unir múltiples fuentes bibliográficas, con el objetivo de identificar áreas de investigación comunes y redes de colaboración potenciales, a través de una combinación de ontologías, vocabularios y tecnologías de Linked Data para enriquecer un modelo de datos base. Además, implementamos un prototipo para proporcionar un repositorio centralizado con fuentes bibliográficas y para encontrar áreas de conocimiento similares utilizando técnicas de minería de datos en el dominio de la comunidad de investigadores ecuatorianos.
5	Conclusiones Relevantes	Hemos presentado una arquitectura para identificar áreas de investigación comunes entre los autores ecuatorianos. Esta arquitectura abarca un proceso de extracción, enriquecimiento y representación de recursos bibliográficos para el descubrimiento de patrones mediante la minería de datos de los algoritmos.

TABLA CXXXIV. RESULTADO DEL ARTÍCULO EP95

#	Descripción	Detalle	
1	Información bibliográfica	Título	Minería de datos educativa para identificar la relación entre cociente intelectual, estilos de aprendizaje, inteligencia emocional e inteligencias múltiples de estudiantes de ingeniería Pedro Arévalo, Yonder Cabrera, Miguel Cabrera, Jonathan Caicedo, Andrés Camacho, Sergio Cartuche, Cristian Castillo, Daniel Castillo, Jasón Chamba, Alex Condoy, Mónica Coronel, Jorlan Elizalde, Elvis Freire, Adriana Gómez, Johnny González, Manuel Mora, Andrés Morocho, María Ojeda, Nelson Puchaicela, Guido Quezada, Nayo Salinas, Javier Sarango.
		Referencia	[173]
		Año	2019
2	Aplicación	identificar la	latos: a través de la minería de datos educativa (MDE), relación que existe entre el cociente intelectual (CI), múltiples (IM), inteligencia emocional (IE) y estilos de

		aprendizaje (EA) de 282 estudiantes universitarios de ingeniería, que	
		será un instrumento objetivo para la toma de decisiones en el contexto	
		educativo.	
3	Área/Línea de		
	investigación	TIC para educación e inclusión	
	priorizada		
4	Funciones	La investigación fue de tipo exploratoria y descriptiva. La investigación	
		exploratoria permitió el acercamiento al fenómeno objeto de estudio	
		(búsqueda bibliográfica, identificación, selección de cuestionarios,	
		planificación de la experimentación), en cambio, la investigación	
		descriptiva permitió describir la realidad del objeto de estudio. Los	
		investigadores responsables del estudio fueron técnicos y profesores	
		del Laboratorio de Inteligencia Artificial, en conjunto, con una experta	
		en pedagogía.	
5	Conclusiones	Podemos concluir como una de las principales contribuciones del	
	Relevantes	trabajo es que mediante el uso de las técnicas de reglas de asociación	
		y agrupamiento se ha identificado dos conjuntos de relaciones entre las	
		variables, cociente intelectual, inteligencias múltiples, inteligencia	
		emocional y estilos de aprendizaje de los estudiantes de ingeniería.	

TABLA CXXXV. RESULTADO DEL ARTÍCULO EP96

#	Descripción	Detalle	
1	Información	Título	Data Analytics and BI Framework based on Collective
	bibliográfica		Intelligence and the Industry 4.0
		Autor	Cindy López, Marco Segura, Marco Santórum.
		Referencia	[174]
		Año	2019
2	Aplicación	Big data: se	realiza el análisis de los datos, seguido de la analítica.
		Después de	eso, la mejor decisión se toma de acuerdo con la
		información r	ecolectada en Big Data.
3	Área/Línea de		
	investigación	Economía tecnología y sociedad	
	priorizada		
4	Funciones	Big Data en la toma de decisiones son la comprensión de los viajes de	
		los clientes,	la reducción de costes y tiempo, la optimización y
		simulación de	e la cadena de suministro, la inteligencia competitiva, el

		proceso de toma de decisiones en tiempo real y la predicción de resultados futuros
5	Conclusiones	El sistema propuesto se centra en el coste. Aquí se desarrolla el marco
	Relevantes	para apoyar a las empresas medianas y pequeñas durante la toma de
		decisiones. El uso de diferentes tecnologías también mejora la
		capacidad de toma de decisiones y la precisión.

TABLA CXXXVI. RESULTADO DEL ARTÍCULO EP97

#	Descripción	Detalle	
1	Información	Título	Framework to Develop a Business Synergy through
	bibliográfica		Enterprise Architecture
		Autor	Cindy López, Marco Segura, Marco Santórum.
		Referencia	[175]
		Año	2019
2	Aplicación	Big data and	alytics: han tenido un gran impacto y han cambiado la
		forma en qu	ne las organizaciones entienden y utilizan el creciente
		volumen, valo	or y velocidad de los datos empresariales.
3	Área/Línea de		
	investigación	Economía ted	cnología y sociedad
	priorizada		
4	Funciones	La arquitectura VE propuesta en este estudio, es un concepto que está	
		integrando todos los artefactos de la arquitectura de negocio de la	
		empresa. Es perfecto para colaborar en el desarrollo colaborativo	
		multidisciplina	ar de productos y servicios.
5	Conclusiones	En esta propuesta nos centramos en la integración de entidades, para	
	Relevantes	responder a las necesidades cambiantes de los clientes, analizando no	
		sólo la arquitectura individual de la empresa, sino analizando toda la	
		perspectiva o	que impacta en la forma en que se toman las decisiones
		estratégicas	y logrando sinergias de negocio para crear una nueva
		empresa diná	ámica.

TABLA CXXXVII. RESULTADO DEL ARTÍCULO EP98

#	Descripción	Detalle
---	-------------	---------

1	Información bibliográfica	Título	Security Enhancement through Effective Encrypted Communication using ELK		
		Autor	Marco Sánchez, Luis Urquiza.		
		Referencia	[176]		
		Año	2019		
2	Aplicación	Big data stack ELK: en nuestra propuesta los datos se envían			
		encriptados	desde su origen en estaciones de trabajo hasta su		
		almacenamie	ento en formato de encriptación en Elasticsearch,		
		garantizando	así su confidencialidad.		
3	Área/Línea de				
	investigación	Software apli	icado		
	priorizada				
4	Funciones	Las pruebas realizadas muestran que el proceso de encriptación de la información no compromete el rendimiento de la plataforma ELK,			
		demostrando que el tiempo adicional necesario para encriptar los			
		mensajes es	mensajes es imperceptible de menos de 2 milisegundos por paquete de		
		datos, obteniendo una respuesta adecuada y asegurando el			
		cumplimiento	o de los requisitos de monitorización en tiempo real.		
5	Conclusiones	Este trabajo	diseñó e implementó una solución para encriptar la		
	Relevantes	información e	en origen (estaciones de trabajo) que circula por la red de		
		forma protegi	ida y se almacena en el destino (Elasticserch) encriptada,		
		garantizando	así la confidencialidad de la información.		

TABLA CXXXVIII. RESULTADO DEL ARTÍCULO EP99

#	Descripción	Detalle	
1	Información	Título	Characterization of a Big Data Storage Workload in the
	bibliográfica		Cloud
		Autor	Sacheendra Talluri, Alicja Luszczak, Cristina L. Abad,
			Alexandru losup.
		Referencia	[177]
		Año	2019
2	Aplicación	Big data: se recopiló y analizó una carga de trabajo de 6 meses de	
		Spark de	un importante proveedor de grandes servicios de
		procesamien	to de datos, Databricks.

3	Área/Línea de			
	investigación	Economía tecnología y sociedad		
	priorizada			
4	Funciones	Los identificadores de clúster y de trabajador eran originalmente		
		cadenas, que van en contra de las necesidades de privacidad de		
		Databricks y aumentan los costes de almacenamiento, memoria y		
		cálculo. Fueron procesados usando el hash de Murmur3, y		
		almacenaron los 64 bits más significativos de los números de 128 bits		
		del hash.		
5	Conclusiones	Este estudio contiene varias perspectivas novedosas, pero también		
	Relevantes	corrobora bien los hallazgos de estudios anteriores sobre grandes		
		cargas de trabajo de almacenamiento de datos.		

TABLA CXXXIX. RESULTADO DEL ARTÍCULO EP100

#	Descripción	Detalle	
1	Información bibliográfica	Título	Improvement of massive open online courses by text mining of students' emails: a case study
		Autor	Diego Buenano, Sergio Lujan, W. Villegas
		Referencia	[178]
		Año	2017
2	Aplicación		nalysis: analiza las opiniones de los estudiantes sobre sus nstructores y las principales herramientas utilizadas en el
3	Área/Línea de investigación priorizada	TIC para edu	icación e inclusión
4	Funciones	estructurados y siguiendo preprocesam herramientas para el anál operativos W de texto o PE gestión de e	se recogió una cantidad importante de datos textuales no si (datos que no tienen una estructura interna identificable) la metodología propuesta, el siguiente paso fue el siento de dichos datos. Para ello utilizamos las si AntConc y R. AntConc es un paquete de software libre lisis lingüístico de textos, disponible para los sistemas l'indows, MacOS y Linux que permite trabajar con archivos DF, mientras que R es un entorno de software libre para la stadísticas informáticas que recopila datos y funciona en ariedad de plataformas UNIX, Windows y MacOS.

5	Conclusiones	El presente estudio se centró en dos áreas. En primer lugar, el análisis
	Relevantes	de los términos de frecuencia, que proporcionó algunos resultados
		interesantes como punto de partida para mejorar la aplicación de las
		técnicas de análisis lingüístico y semántico de los mensajes de correo
		electrónico. En segundo lugar, la propuesta de un modelo predictivo de
		la polaridad del sentimiento para los documentos recopilados. El grado
		de precisión obtenido por el modelo nos desafía a encontrar diferentes
		algoritmos o a hacer una predicción preliminar más eficiente para
		mejorar el indicador.

TABLA CXL. RESULTADO DEL ARTÍCULO EP101

#	Descripción	Detalle	
1	Información bibliográfica	Título	Sentiment Analysis on Tweets related to infectious diseases in South América
		Autor	José Antonio García, Óscar Apolinario, José Medina, Harry Luna, Katty Lagos, Rafael Valencia.
		Referencia	[179]
		Año	2018
2	Aplicación	de sentimien	sentimientos: En este trabajo hemos aplicado un análisis tos al dominio de enfermedades infecciosas dentro de un áfico concreto.
3	Área/Línea de investigación priorizada	Salud y biene	estar
4	Funciones	Clasificación enfermedade	de sentimientos de los tweets relacionados con es infecciosas.
5	Conclusiones Relevantes	enfermedade grandes volú para que las	écnicas de análisis de sentimientos al dominio de es infecciosas puede ser efectivo. Mediante la obtención de menes online sería posible generar alertas y notificaciones a autoridades sanitarias fueran capaces de efectuar una ción de estas y así poder mitigar sus efectos.

TABLA CXLI. RESULTADO DEL ARTÍCULO EP102

#	Descripción	Detalle	
1	Información bibliográfica	Título	A Hybrid Infrastructure of Enterprise Architecture and Business Intelligence & Analytics for Knowledge Management in Education
		Autor	Oswaldo Moscoso, Jorge Castro, Joel Paredes, Sergio Luján.
		Referencia	[180]
		Año	2019
2	Aplicación	Business int	telligence and analytics (BI&A): basada en un almacén
		de datos edu	cativos (EDW) y un repositorio de arquitectura empresarial
		(EA) que pe	ermite la digitalización del conocimiento y potencia la
		visualización	y el análisis de componentes organizacionales diferentes
		como person	as, procesos y tecnología.
3	Área/Línea de		
	investigación	TIC para edu	cación e inclusión
	priorizada		
4	Funciones	Es desarrolla	ada en base a la investigación y servirá para ejecutar
		diferentes ex	sperimentos para analizar datos educativos y procesos
		académicos	y para la creación de conocimiento explícito usando
		diferentes al	goritmos y métodos de minería de datos educativos,
		análisis de a	aprendizaje, procesamiento analítico en línea (OLAP) y
		análisis de E	Α.
5	Conclusiones	Este docume	nto presenta una infraestructura híbrida de información y
	Relevantes	conocimiento	para mejorar la toma de decisiones en las IES. Esta
		infraestructur	a se diseñó a partir de la investigación empírica destinada
		a mejorar la g	gestión de las IES.

TABLA CXLII. RESULTADO DEL ARTÍCULO EP103

#	Descripción	Detalle	
1	Información	Título	Smart Sensor: SoC architecture for the Industrial
	bibliográfica		Internet of Things
		Autor	Marcelo Urbina, Tatiana Acosta, Jesús Lázaro, Armando
			Astarloa, Unai Bidarte

		Referencia	[181]
		Año	2019
2	Aplicación	Coud comp	uting y Big Data: para proporcionar capacidades de
		aprendizaje y	adaptación a los sensores inteligentes
3	Área/Línea de		
	investigación	Internet de la	s cosas (IoT)
	priorizada		
4	Funciones	La exploració	n inteligente de datos mediante modelos de descripción,
		predicción y o	optimización mejoró la gestión de los recursos disponibles.
5	Conclusiones	La FPGA utili	zada tiene dos procesadores ARM de alto rendimiento que
	Relevantes	ejecutan el si	stema operativo Linux y sistemas de análisis Big Data. En
		el PL de la F	PGA, se implementó un módulo de comunicaciones con
		interfaces HS	SR para proporcionar redundancia en las comunicaciones
		y evitar la pé	rdida de información.

TABLA CXLIII. RESULTADO DEL ARTÍCULO EP104

#	Descripción	Detalle	
1	Información bibliográfica	Título	Application of a Smart City Model to a Traditional University Campus with a Big Data Architecture: A Sustainable Smart Campus William Villegas Ch, Xavier Palacios, Sergio Luján.
		Referencia	[182]
		Año	2019
2	Aplicación	de los objeto	a través de la adquisición de datos a través de la Internet s, la centralización de datos en infraestructura propia y el data para la gestión y análisis de datos.
3	Área/Línea de investigación priorizada	Internet de la	s cosas (IoT) + Ciudades inteligentes e inclusivas
4	Funciones	Se identificó a los estudiantes en riesgo, asegurando que los estudiantes están progresando adecuadamente y puede apoyar la implementación de un mejor sistema para la evaluación y el apoyo de los maestros y directores.	
5	Conclusiones Relevantes	campus tradi	sta pretende facilitar la gestión en todas las áreas de un cional a través de procesos de análisis de datos que se en este método.

TABLA CXLIV. RESULTADO DEL ARTÍCULO EP105

#	Descripción	Detalle	
1	Información	Título	Cluster Analysis of Finger-to-nose Test for
	bibliográfica		Spinocerebellar Ataxia Assessment
		Autor	Michel Velázquez, Miguel Atencia, Rodolfo García,
			Daniel Pupo, Roberto Becerra, Luis Veláquez, Francisco
			Sandoval.
		Referencia	[183]
		Año	2015
2	Aplicación	Analysis of	data: de la Finger-to-nose test (FNT), para evaluar la
		evolución del	estado de los pacientes con ataxia espinocerebelosa tipo
		2 (Ataxia esp	inocerebelosa tipo 2 (SCA2).
3	Área/Línea de		
	investigación	Salud y biene	estar
	priorizada		
4	Funciones	El algoritmo	Mean Shift se utilizó para realizar una agrupación no
		supervisada	sin ninguna suposición previa sobre el número de
		agrupaciones	s, mientras que el método k-means proporcionó una
		validación ind	dependiente sobre el número de agrupaciones óptimo.
5	Conclusiones	Se ha logra	do un análisis de conglomerados de respuestas a los
	Relevantes	protocolos FI	NT, mediante la aplicación de una secuencia de técnicas
		de aprendiz	aje automático a los datos obtenidos del software
		NeuroScreen	ing Coordination.

TABLA CXLV. RESULTADO DEL ARTÍCULO EP106

#	Descripción	Detalle	
1	Información	Título	Symmetrical Compression Distance for Arrhythmia
	bibliográfica		Discrimination in Cloud-based Big-Data Services
		Autor	J.M. Lillo, I. Mora, R. Santiago-Mozos, F. Chavarría, A.
			Cano, A. García, J.L. Rojo.
		Referencia	[184]
		Año	2015

2	Aplicación	Big data y Machine learning techniques: clasificación automática de
		los electrogramas intracardíacos (EGMs) en un sistema de computación
		en nube, diseñado para el preprocesamiento mínimo de la señal.
3	Área/Línea de	
	investigación	Salud y bienestar
	priorizada	
4	Funciones	Un conjunto de 6848 EGMs extraídos de la plataforma SCOOP se
		clasificaron en siete clases de arritmias cardíacas y una clase de ruido,
		alcanzando una precisión cercana al 90% cuando se disponía de
		información previa sobre arritmias de pacientes y al 63% en los demás
		casos, superando así en todos los casos la clasificación proporcionada
		por la clase mayoritaria.
5	Conclusiones	Cuando se trabaja con grandes bases de datos de pacientes, parece
	Relevantes	razonable desarrollar procedimientos automáticos, rápidos y fiables,
		capaces de aprender el diagnóstico proporcionado por el experto.

TABLA CXLVI. RESULTADO DEL ARTÍCULO EP107

#	Descripción	Detalle	
1	Información	Título	Generating request streams on Big Data using clustered
	bibliográfica		renewal processes
		Autor	Cristina L. Abad, Mindi Yuan, Chris X. CIA, Yi Lu, Nathan
			Roberts, Roy Campbell.
		Referencia	[185]
		Año	2013
2	Aplicación	Big Data sto	orage (HDFS): Implementamos un generador de trazas
		sintéticas y	lo validamos usando: (1) una carga de trabajo de
		almacenamie	nto de datos grandes (HDFS) de Yahoo, (2) un rastro de
		una empresa	de animación de características, y (3) una carga de trabajo
		de streaming	de medios.
3	Área/Línea de		
	investigación	Seguridad de	la información
	priorizada		
4	Funciones	HDFS fue dis	señado para funcionar en máquinas de productos básicos
		(datanodes),	cuyos discos pueden fallar con frecuencia. Para evitar la
		indisponibilid	ad de los datos debido a fallos de hardware, estos
		clústeres rep	lican cada bloque de datos en varios nodos de datos. Los

archivos se dividen en bloques de tamaño fijo (de 128 M		archivos se dividen en bloques de tamaño fijo (de 128 MB por defecto),	
			y cada bloque se replica tres veces por defecto. Los tamaños de bloque
			y los factores de replicación son configurables por archivo.
	5	Conclusiones	El modelo se basa en un conjunto de procesos de renovación retardada,
		Relevantes	donde cada proceso representa un objeto en el flujo de solicitud original.

TABLA CXLVII. RESULTADO DEL ARTÍCULO EP108

#	Descripción	Detalle	
1	Información	Título	Cognitive security: A comprehensive study of cognitive
	bibliográfica		science in cybersecurity
		Autor	Roberto O Andrade, Sang Guun Yoo.
		Referencia	[186]
		Año	2019
2	Aplicación	Big Data, M	Machine Learning y Support Decision System: con
		procesos co	gnitivos de los analistas de seguridad utilizados para
		generar con	ocimiento, comprensión y ejecución de acciones de
		respuesta de	seguridad.
3	Área/Línea de		
	investigación	Seguridad de	la información
	priorizada		
4	Funciones	La seguridad	d cognitiva considera cuatro componentes: procesos,
		conocimiento	, tecnología y habilidades cognitivas, para establecer
		mapas ment	ales, fusión de datos complejos, el manejo de datos
		masivos y el	mantenimiento del conocimiento.
5	Conclusiones		ciencias cognitivas en el campo de la ciberseguridad nos
	Relevantes	permite abor	dar las contribuciones de la psicología, la inteligencia
		,	güística y la interacción entre el hombre y la computadora
		,	los procesos cognitivos de los analistas de seguridad con
		el fin de mejo	rar los tiempos de respuesta y la eficacia en las decisiones
		sobre las ac	ciones para detectar, contener o mitigar un ataque a la
		seguridad.	

TABLA CXLVIII. RESULTADO DEL ARTÍCULO EP109

_			
- 1 3	#	Descripción	Detalle

	1	Información	Título	Mining theory-based patterns from Big data: Identifying
		bibliográfica		self-regulated learning strategies in Massive Open Online
				Courses
			Autor	Jorge Maldonado, Mar Pérez Sanagustín, René F.
				Kizilcec, Nicolás Morales, Jorge Muñoz.
			Referencia	[187]
			Año	2017
	2	Aplicación	Process min	ing: se extrajeron secuencias de interacción de trazas de
			comportamie	nto de grano fino para 3.458 alumnos a través de tres
			Cursos Masi	vos Abiertos en Línea. Identificamos seis patrones de
			secuencia de	interacción distintos.
	3	Área/Línea de		
		investigación	TIC para edu	cación e inclusión
		priorizada		
	4	Funciones	Comparamos	cada patrón de secuencia de interacción con una o más
			estrategias a	prendizaje autorregulado (SRL) basadas en la teoría e
			identificamos	tres grupos de estudiantes.
	5	Conclusiones	El estudio co	mbina un enfoque basado en las aptitudes con un enfoque
		Relevantes	basado en lo	s procesos para investigar las estrategias del SRL en los
			MOOC, basá	ndose tanto en un instrumento de auto informe como en la
			extracción de	e datos sobre el comportamiento de los estudiantes.
- 1			I .	

TABLA CXLIX. RESULTADO DEL ARTÍCULO EP110

#	Descripción	Detalle	
1	Información	Título	Rules engine and complex event processor in the context
	bibliográfica		of internet of T things for precision agriculture
		Autor	Bertha Mazón Olivo, Dixys Hernández, José Maza
			Salinas, Alberto Pan.
		Referencia	[188]
		Año	2018
2	Aplicación	Cloud comp	uting: la implementación de este subsistema se realizó en
		una máquina	virtual.
3	Área/Línea de		
	investigación	Software apli	cado + Agricultura y ganadería + Internet de las cosas (IoT)
	priorizada		

4	Funciones	CEP, func	iona co	mo un servi	cio de fond	do y es respo	nsable	e de proce	sar
		eventos	que	integran	reglas,	acciones	de	control	у
		alertas/no	tificacio	nes. Para e	l subcomp	onente Adap	otador	de Protoc	olo
		se utilizó	el brok	er MQTT M	losquitto,	y para el su	bcomp	onente D	ata
		Streaming	se u	tilizó Apach	ne Kafka.	El gestor d	de ba	se de da	tos
		PostgreS0	QL se u	itilizó tanto p	ara RE co	mo para CEI	Ρ.		
5	Conclusiones	Este traba	ajo prop	one una ar	quitectura	RECEP para	a el pi	rocesamie	nto
	Relevantes	de evento	s gene	rados en el	contexto	de la Agricul	tura d	e Precisió	n e
		Internet d	e las C	Cosas (PA-Id	oT), forma	da por: Moto	or de r	eglas (RE	i) y
		Procesado	or de ev	ventos comp	olejos (CEF	?).			

TABLA CL.
RESULTADO DEL ARTÍCULO EP111

#	Descripción	Detalle	
1	Información	Título	System for monitoring and supporting the treatment of
	bibliográfica		sleep apnea using IoT and big data
		Autor	David Sarabia, Diana Yacchirema, Carlos Palau, Manuel
			Esteve.
		Referencia	[189]
		Año	2018
2	Aplicación	Cloud comp	uting: basado en tecnologías de informática de niebla con
		loT y big da	ata, ofrece nuevas oportunidades para crear servicios
		novedosos e	innovadores de apoyo a la apnea del sueño y para superar
		las limitacion	es actuales.
3	Área/Línea de		
	investigación	Internet de la	s cosas (IoT) + Salud y bienestar
	priorizada		
4	Funciones	En la niebla	, un nodo de borde (Smart IoT Gateway) proporciona
		conexión e in	teroperabilidad de IoT y preprocesamiento de datos de IoT
		para detectar	eventos en tiempo real que podrían poner en peligro la
		salud de las ¡	personas mayores y actuar en consecuencia. En la nube,
		un Generic E	nabler Context Broker gestiona, almacena e inyecta datos
		en el gran a	analizador de datos para su posterior procesamiento y
		análisis.	
5	Conclusiones	En estudio, h	a propuesto un sistema innovador para monitorizar y guiar
	Relevantes	el tratamient	o de la apnea del sueño mediante la combinación de

	tecnologías como IoT, la informática de niebla, la cloud computing y big	
	data.	

TABLA CLI. RESULTADO DEL ARTÍCULO EP112

#	Descripción	Detalle	
1	Información	Título	Fall detection system for elderly people using IoT and Big
	bibliográfica		Data
		Autor	Diana Yacchirema, Jara Suárez de Puga, Carlos Palau,
			Manuel Esteve.
		Referencia	[190]
		Año	2018
2	Aplicación	Big data, clo	pud computing: se propone un sistema basado en la loT
		para la dete	ección de caídas de personas mayores en entornos
		interiores, qu	e aprovecha las redes de sensores inalámbricos de baja
		potencia, los	dispositivos inteligentes.
3	Área/Línea de		
	investigación	Internet de la	s cosas (IoT) + Salud y bienestar
	priorizada		
4	Funciones	Para ello, se	e utiliza un acelerómetro de ejes 3D integrado en un
		dispositivo 6L	LowPAN que se puede llevar puesto y que se encarga de
		recoger los d	latos de los movimientos de las personas mayores. Para
		proporcionar	una alta eficiencia en la detección de caídas, las lecturas
		de los sensoi	res se procesan y analizan utilizando un modelo Big Data
		basado en ái	rboles de decisión que se ejecuta en un Gateway Smart
		IoT. Si se det	ecta una caída, se activa una alerta y el sistema reacciona.
5	Conclusiones	Este estudio	ha presentado un sistema de loT para la detección de
	Relevantes	caídas de pe	rsonas mayores basado en un modelo Big Data que utiliza
		técnicas de p	rocesamiento de Machine Learning basadas en árboles de
		decisión.	

TABLA CLII. RESULTADO DEL ARTÍCULO EP113

#	Descripción	Detalle	
1	Información	Título	Big Data, the Next Step in the Evolution of Educational
	bibliográfica		Data Analysis

		Autor	W. Villegas, Sergio Luján.
		Referencia	[191]
		Año	2018
2	Aplicación	Big data, sm	art data and a data lake: se busca integrar los sistemas
		de gestión d	lel aprendizaje con estas plataformas y contribuir a la
		educación ha	ciéndola personalizada y de calidad.
3	Área/Línea de		
	investigación	TIC para edu	cación e inclusión
	priorizada		
4	Funciones	El uso de d	atos inteligentes se centra en cómo podemos integrar
		nuestro alma	cén de datos en su procesamiento. Lo ideal para esta
		herramienta e	es que pueda hacer uso de los cubos que están disponibles
		en el sisten	na actual sin necesidad de procesar la información.
		Simplemente	extraerá el valor de esta en el proceso. Mantener los datos
		que han pasa	ado por un proceso anterior garantiza la exactitud de los
		datos de la m	nisma manera que reduce el procesamiento.
5	Conclusiones	Este estudio	busca calificar las distintas plataformas en función de las
	Relevantes	necesidades	de una institución educativa en particular, considerando,
		como base pi	rincipal, las múltiples fuentes de datos.

TABLA CLIII. RESULTADO DEL ARTÍCULO EP114

#	Descripción	Detalle	
1	Información	Título	Real-time transient stability assessment based on centre-
	bibliográfica		of-inertia estimation from phasor measurement unit records
		Autor	Jaime Cepeda, José Rueda, Delia Colomé, Diego Echeverría.
		Referencia	[192]
		Año	2014
2	Aplicación	Procedimien	ntos basados en Monte Carlo: para evaluar de forma
		iterativa la re	spuesta de estabilidad transitoria del sistema.
3	Área/Línea de		
	investigación	Ciudades inte	eligentes e inclusivas
	priorizada		

	4	Funciones	Las muestras, adquiridas constituyen las entradas de un clasificador
			binario basado en máquinas vectoriales de soporte (SVM), utilizadas
			para identificar el estado real del TS.
ľ	5	Conclusiones	El marco de Monte Carlo, también se utilizó para la evaluación repetitiva
		Relevantes	del rendimiento del TS del sistema de potencia con el fin de estructurar
			una base de datos de conocimientos (que incluye datos de PMU y
			ángulo de rotor referido por el COI), que sirve para diseñar un regresor
			inteligente de ángulo de rotor referido por el COI para cada área del
			sistema.
- 1		I .	

TABLA CLIV. RESULTADO DEL ARTÍCULO EP115

#	Descripción	Detalle	
1	Información	Título	Automatic Recognition of Long Period Events From
	bibliográfica		Volcano Tectonic Earthquakes at Cotopaxi Volcano
		Autor	Román A. Lara, Diego S. Benítez, Enrique V. Carrera,
			Mario Ruiz, José Luis Rojo-Álvarez.
		Referencia	[193]
		Año	2016
2	Aplicación	Support vector machine (SVM), the decision trees (DT): cada	
		técnica se utilizó con un algoritmo de clasificación adecuado	
		apropiado para el sistema.	
3	Área/Línea de	Ambiente biodiversidad y cambio climático	
	investigación		
	priorizada		
4	Funciones	El mejor resultado se obtuvo utilizando el clasificador SVM, con una	
		precisión de hasta el 99% en la etapa de detección y del 97% en la	
		etapa de clasificación de eventos.	
5	Conclusiones	Se aplica una	a solución de dos etapas, que consiste en la detección de
	Relevantes	eventos y su	clasificación. En la etapa de clasificación, el algoritmo DT
mostró una aceleración cercana al 90% cons		aceleración cercana al 90% considerando las	
		características de frecuencia, mientras que un SVM lineal ha alcanza el 97% considerando las características de los parámetros.	

TABLA CLV. RESULTADO DEL ARTÍCULO EP116

#	Descripción	Detalle	
1	Información	Título	Support Vector Feature Selection for Early Detection of
	bibliográfica		Anastomosis Leakage from Bag-of-Words in Electronic
			Health Records
		Autor	Cristina Soguero, Kristian Hindberg, José Luis Rojo,
			Stein Olav, Fred Godtliebsen, Kim Mortensen, Arthur
			Revhaug, Rolv Lindsetmo, Knut Augestad, Robert
			Jenssen.
		Referencia	[194]
		Año	2014
2	Aplicación	Support vector machine linear máximum: el propósito es la detección	
		temprana de anastomosis (AL) y la predicción de AL con datos	
		generados en la Registros Electrónicos de Salud (HCE) antes de que	
		ocurra la complicación real.	
3	Área/Línea de		
	investigación	Salud y bienestar	
	priorizada		
4	Funciones	Debido a la alta dimensionalidad de los datos, derivamos estrategias de	
		selección de	características utilizando el robusto clasificador de margen
		máximo lineal de la máquina vectorial de soporte, mediante la	
		investigación: a) un criterio estadístico simple (prueba basada en el	
		principio de "dejar uno fuera"); b) un criterio estadístico de cálculo	
		intensivo (re muestreo Bootstrap); y c) un criterio estadístico avanzado	
		(entropía del núcleo).	
5	Conclusiones	Se demostró en este estudio, que hay información en la narrativa clínica	
	Relevantes	que puede utilizarse para predecir la pérdida de anastomosis después	
		de la cirugía colorrectal	

TABLA CLVI. RESULTADO DEL ARTÍCULO EP117

	#	Descripción	Detalle	
ſ	1	Información	Título	Spur Gear Fault Diagnosis Using a Multilayer Gated
		bibliográfica		Recurrent Unit Approach With Vibration Signal

		Autor	Ying Tao, Xiaodan Wang, René-Vinicio Sánchez, Shuai
			Yang, Yun BIA.
		Referencia	[195]
		Año	2019
2	Aplicación	Support vector machine (SVM): para evaluar la precisión de	
		clasificación del método denominado unidad recurrente con compuertas	
		multicapa (MGRU), se utilizaron cuatro métodos para la comparación,	
		es decir, el GRU, la memoria a corto plazo (LSTM), el LSTM multicapa	
		(MLSTM) y la máquina vectorial de soporte (SVM), respectivamente.	
3	Área/Línea de		
	investigación	Desarrollo industrial	
	priorizada		
4	Funciones	Primero, las señales de vibración de engranajes rectos sanos y nueve	
		tipos de fallas diferentes se recogen en primer lugar en la plataforma de	
		experimentac	sión. En segundo lugar, se llevan a cabo doce tipos de
		extracción de características de dominio de tiempo y ocho de extracción	
		de características de dominio de frecuencia de tiempo WPT, y se	
		introducen en el modelo GRU de tres capas para diagnosticar	
		finalmente la falla.	
5	Conclusiones	Basado en la precisión de clasificación promedio generada por cinco	
	Relevantes	clasificadores	s, los resultados muestran que la precisión de clasificación
		de fallas del r	nodelo de varias capas es mayor que la del modelo de una
		sola capa, y	el modelo propuesto MGRU tiene la mejor precisión de
		clasificación.	

TABLA CLVII. RESULTADO DEL ARTÍCULO EP118

#	Descripción	Detalle	
1	Información	Título	Gearbox Fault Diagnosis Based on a Novel Hybrid
	bibliográfica		Feature Reduction Method
		Autor	Yu Wang, Shuai Yang, René Vinicio Sánchez.
		Referencia	[196]
		Año	2018
2	Aplicación	Support vector machine (SVM)	
3	Área/Línea de		
	investigación	Desarrollo industrial	
	priorizada		

4	Funciones	Para el modelo SVM, la selección de la función kernal es crítica. En el
		experimento, la función de base radial gaussiana (RBF), se introduce
		con el parámetro de escala kernal de 0,1. Con base en el resultado de
		la clasificación, la precisión de PCA, LLE y PCLLE con SVM es de
		96.36%, 97.02% y 98.93%, respectivamente.
5	Conclusiones	Basado en el análisis de la precisión media de clasificación generada
	Relevantes	por cinco clasificadores, la característica comprimida por el método
		PCLLE propuesto puede lograr una alta precisión de clasificación en los
		experimentos. La media, a la vez que mantiene una alta precisión de
		clasificación en los diferentes clasificadores en comparación con el
		método PCA y LLE, lo que demuestra la excelente adaptabilidad del
		método propuesto.

TABLA CLVIII. RESULTADO DEL ARTÍCULO EP119

#	Descripción	Detalle		
1	Información bibliográfica	Título	A systematic review of fuzzy formalisms for bearing fault diagnosis	
	Ziziiogranica	Autor	Chuan Li, José Valente de Oliveira, Mariela Cerrada, Diego Cabrera, René Vinicio Sánchez, Grover Zurita.	
		Referencia	[197]	
		Año	2018	
2	Aplicación	Systematic methodology: este estudio emplea una metodología sistemática para identificar, resumir, analizar e interpretar la literatura primaria sobre formalismos difusos para el diagnóstico de fallas de porte de 2000 a 2017 (marzo).		
3	Área/Línea de investigación priorizada	Desarrollo industrial		
4	Funciones	Se consideraron más de 150 trabajos. La mayoría de ellas se publicaron en más de 50 revistas diferentes; también se tuvieron en cuenta los artículos de las conferencias.		
5	Conclusiones Relevantes	La mayoría de los trabajos existentes utilizan formalismos difusos para fines de clasificación de fallas. Sin embargo, la entropía difusa se utiliza a menudo para la extracción de características.		

TABLA CLIX. RESULTADO DEL ARTÍCULO EP120

#	Descripción	Detalle		
1	Información	Título	A review on data-driven fault severity assessment in	
	bibliográfica		rolling bearings	
		Autor	Mariela Cerrada, René Sánchez, Chuan Li, Fannia	
			Pacheco, Diego Cabrera, José Valente de Oliveira,	
			Rafael Vásquez.	
		Referencia	[198]	
		Año	2018	
2	Aplicación	Artificial neu	ral networks (ANN), Support Vector Machine (SVM): se	
			étodos y técnicas basadas en aprendizaje utilizados para	
		lograr la eva	luación de la gravedad de la avería en los principales	
		componentes	de los rodamientos, tales como el anillo interior, el anillo	
		exterior y la b	oola.	
3	Área/Línea de			
	investigación	Desarrollo ind	dustrial	
	priorizada			
4	Funciones	Los enfoques basados en el aprendizaje necesitan extraer		
			s de los dominios de tiempo, frecuencia y frecuencia de	
			como RMS, kurtosis, factor de cresta, desviación estándar,	
			energía de los coeficientes de WPD o IMF de EMD, y	
			señal después de aplicar la transformación de Hilbert-	
_		Huang, entre otras características especializadas.		
5	Conclusiones	Este estudio discute como las redes neuronales artificiales (ANN) y las		
	Relevantes	máquinas vectoriales de apoyo (SVM) han sido reportadas como las		
			populares usadas como multiclasificadores, pero también	
		·	tado las agrupaciones, los modelos de Markov (MM), los	
		enfoques difusos y los clasificadores estadísticos tales como el análisis		
		de los crimina	ales de Dis lineal (LDA).	

TABLA CLX. RESULTADO DEL ARTÍCULO EP121

	#	Descripción	Detalle					
ſ	1	Información	Título	Handling	subjective	information	through	augmented
		bibliográfica		(fuzzy) co	mputation			

		Autor	Marcelo Loor, Guy De Tré.	
		Referencia	[199]	
		Año	2019	
2	Aplicación	Support vector machines (SVM): se ha utilizado con éxito para		
		problemas de	e reconocimiento de patrones en la teoría del aprendizaje	
		estadístico.		
3	Área/Línea de			
	investigación	Seguridad de	e la información	
	priorizada			
4	Funciones	El SVM es un clasificador basado en la idea de que un hiperplano		
		separador, es decir, una superficie con dimensiones m-1 que separa un		
		espacio m-dimensional en dos partes.		
5	Conclusiones	En estudio se ha descrito un método mediante el cual los mensajes		
	Relevantes	subjetivos pu	ublicados por una persona en los medios sociales son	
		digeridos pai	ra obtener un conjunto borroso de Atanassov aumentado	
		(AIAFS), que caracteriza una colección de evaluaciones artificiales		
		basadas en la experiencia (XBE) que se asemejan a los XBE reales		
		realizados por esta persona en relación con un tema (o concepto)		
		específico.		

TABLA CLXI.
RESULTADO DEL ARTÍCULO EP122

#	Descripción	Detalle		
1	Información	Título	Early warning in egg production curves from commercial	
	bibliográfica		hens: A SVM approach	
		Autor	Iván Ramírez Morales, Daniel Rivero Cebrián, Enrique	
		Fernández Blanco, Alejandro Pazos Sierra.		
		Referencia	[200]	
		Año	2016	
2	Aplicación	Support ve	ctor machine (SMV): para la detección precoz de	
		problemas er	n la curva de producción de huevos comerciales, utilizando	
		los datos de	producción de huevos de granja de 478.919 gallinas	
		ponedoras agrupadas en 24 manadas.		
3	Área/Línea de			
	investigación	Agricultura y	ganadería	
	priorizada			

4	Funciones	Se realizaron experimentos con máquinas vectoriales de soporte con				
		una validación cruzada de 5 k-dobles a intervalos de tiempo diferentes,				
		para alertar con hasta 5 días de intervalo de pronóstico, si un lote va a				
		experimentar un problema en la curva de producción. Se evaluaron				
		métricas de desempeño tales como precisión, especificidad,				
		sensibilidad y valor predictivo positivo, alcanzando valores de 0 días de				
		0.9874, 0.9876, 0.9783 y 0.6518 respectivamente en datos no vistos				
		(test-set).				
5	Conclusiones	Los parámetros de un modelo de clasificación SVM se evalúa mediante				
	Relevantes	métricas de rendimiento, los resultados indican claramente que es				
		posible alertar a tiempo de problemas en la curva de las gallinas				
		ponedoras comerciales.				

TABLA CLXII. RESULTADO DEL ARTÍCULO EP123

#	Descripción	Detalle		
1	Información	Título	A fuzzy transition-based approach for fault severity	
	bibliográfica		prediction in helical gearboxes	
		Autor	Mariela Cerrada, Chuan Li, René Sánchez, Fannia	
			Pacheco, Diego Cabrera, José Valente de Oliveira	
		Referencia	[201]	
		Año	2016	
2	Aplicación	Fuzzy C-means (FCM) algorithm: este trabajo aplica un modelo		
		basado en la transición difusa para predecir las condiciones d		
		severidad de	la falla en engranajes helicoidales.	
3	Área/Línea de			
	investigación	Desarrollo ind	dustrial	
	priorizada			
4	Funciones	El aprendiza	je estadístico (SL) como las Máquinas Vectoriales de	
		Soporte (SVI	M) combinadas con enfoques inteligentes, también son	
		estudiadas pa	ara abordar la clasificación de fallas en maquinaria rotativa.	
5	Conclusiones	Este estudio combina un modelo difuso de tipo Mamdani y una		
	Relevantes	agrupación jerárquica, con el fin de estimar las funciones de membres		
		de cada clase	e de severidad.	

TABLA CLXIII. RESULTADO DEL ARTÍCULO EP124

#	Descripción	Detalle			
1	Información bibliográfica	Título	Conformation-independent quantitative structure- property relationships study on water solubility of pesticides		
		Autor	Silvina E. Fioressi, Daniel E. Bacelo, Cristian Rojas, José F. Aranda, Pablo R. Duchowicz.		
		Referencia	[202]		
		Año	2019		
2	Aplicación	Multivariable	Linear Regression (MLR) models: validados y de		
		aplicación ge	neral, incluyendo descriptores moleculares con aspectos		
		constituciona	les y topológicos de los compuestos analizados.		
3	Área/Línea de				
	investigación	Ambiente biodiversidad y cambio climático			
	priorizada				
4	Funciones	El procedimiento se basa en el análisis de clústeres de k-Means (k-			
		MCA), que g	MCA), que garantiza una relación estructura-propiedad similar en los		
		tres subconjuntos. Se aplicó el Método de Reemplazo (RM) (Duchowicz			
		et al., 2006) o	de selección de subconjuntos variables programados en el		
		software de	MATLAB para generar modelos de Regresión Lineal		
		Multivariable	(MLR) en el equipo de entrenamiento. RM es un método		
		secuencial qu	ue optimiza la desviación de la media cuadrática de la raíz		
		(RMSD) en e	I LMR.		
5	Conclusiones	Este estudio desarrolló un modelo simple que predice con éxito la			
	Relevantes	solubilidad er	n agua de un conjunto diverso y grande de plaguicidas a		
		través de ui	na estrategia que no requiere el conocimiento de la		
		conformación	molecular como parte de la representación estructural.		

TABLA CLXIV. RESULTADO DEL ARTÍCULO EP125

#	Descripción	Detalle	
1	Información	Título	Automatic detection of curved and straight crop rows from
	bibliográfica		images in maize fields
		Autor	Iván D. García, Martín Montalvo, José M. Guerrero,
			Gonzalo Pajares.

		Referencia	[203]	
		Año	2017	
2	Aplicación	Image segmentation: para la detección de hileras de cultivos curvas y		
		rectas con va	lidez comprobada.	
3	Área/Línea de			
	investigación	Agricultura y	ganadería	
	priorizada			
4	Funciones	Los métodos	s supervisados requieren una formación exhaustiva, a	
		diferencia de	I doble umbral, que tiene la capacidad de adaptarse a las	
		cambiantes of	condiciones ambientales comunes de la agricultura. Bajo	
		estas consid	eraciones, la fase de segmentación se diseñó con los	
		siguientes cuatro procesos vinculados: a) Determinación del		
		rendimiento de la inversión; b) identificación del verdor; c) doble umbral;		
		y d) operaciones morfológicas. El proceso de segmentación produce		
		una imagen donde el suelo y las plantas verdes (cultivos y malezas) se		
		han separad	o. Las alineaciones de cultivos son candidatas para la	
		detección de	filas de cultivos mediante la aplicación de ajustes curvos.	
5	Conclusiones	Este estudio	propone un nuevo método de visión por computador para	
	Relevantes	detectar filas	de cultivos curvadas y rectas en campos de maíz basado	
		en el concep	to de ROI (región de interés) para las etapas iniciales de	
		crecimiento e	en cultivos y malezas (hasta 40 d, donde las hojas no	
		ocluyen el su	uelo y las alineaciones de las filas de cultivo se pueden	
		distinguir del	suelo).	

TABLA CLXV. RESULTADO DEL ARTÍCULO EP126

#	Descripción	Detalle		
1	Información bibliográfica	Título	On-line crop/weed discrimination through the Mahalanobis distance from images in maize fields	
	bibliografica		Manatanobis distance from images in maize neids	
		Autor	Iván D. García Santillán, Gonzalo Pajares	
		Referencia	[204]	
		Año	2017	
2	Aplicación	Mahalanobis	distance, Image segmentation: para la discriminación	
		de cultivos y malezas en las imágenes capturadas en los campos de		
		maíz durante	las etapas iniciales de crecimiento.	

3	Área/Línea de investigación priorizada	Agricultura y ganadería
4	Funciones	Este tema se aborda en este trabajo aplicando un criterio mínimo de distancia basado en la distancia de Mahalanobis derivado de un enfoque de clasificación bayesiana, lo que constituye la principal contribución.
5	Conclusiones Relevantes	El presente estudio propone un nuevo método de visión computarizada automática para discriminar cultivos/hierbas en los campos de maíz para las etapas iniciales de crecimiento (hasta 40 días) de las plantas, basado en la distancia Mahalanobis como métrica de similitud espectral, considerando tanto las filas de cultivos rectas como las curvas.

TABLA CLXVI. RESULTADO DEL ARTÍCULO EP127

#	Descripción	Detalle	
1	Información	Título	Observer-biased bearing condition monitoring: From fault
	bibliográfica		detection to multi-fault classification
		Autor	Chuan Li, José Oliveira, Mariela Cerrada, Fannia
			Pacheco, Diego Cabrera, Vinicio Sánchez, Grover Zurita.
		Referencia	[205]
		Año	2016
2	Aplicación	Fuzzy cluste	ring Fuzzy c-means (FCM): el empleo de agrupaciones
		difusas para l	a monitorización del estado de los rodamientos, es decir,
		la detección y	v clasificación de fallos.
3	Área/Línea de		
	investigación	Desarrollo inc	dustrial
	priorizada		
4	Funciones	FCM es el alç	goritmo de agrupación difusa más popular y ampliamente
		utilizado en el	l diagnóstico de fallas de cojinetes. Este algoritmo permite
		al usuario sele	eccionar iterativamente un nivel adecuado de granularidad
		mientras bus	sca clústeres significativos, es decir, clústeres que
		correspondan	realmente a la estructura subyacente de los datos.
		Además, el a	algoritmo permite un análisis detallado de una región
		determinada o	del espacio de la característica.
5	Conclusiones	En este estud	dio se abordó el problema del diagnóstico de fallos en los
	Relevantes	rodamientos	(detección y clasificación). Se explotan aún más las
-		En este estuc	dio se abordó el problema del diagnóstico de fallos

	técnicas	de	agrupamiento	suave	para	el	diagnóstico	de	fallas	de
	rodamier	itos.								

TABLA CLXVII. RESULTADO DEL ARTÍCULO EP128

#	Descripción	Detalle	
1	Información bibliográfica	Título	A Bayesian approach to consequent parameter estimation in probabilistic fuzzy systems and its application to bearing fault classification
		Autor	Chuan Li, Luis Ledo, Myriam Delgado, Mariela Cerrada, Fannia Pacheco, Diego Cabrera, Rene´ Sánchez, José Oliveira.
		Referencia	[206]
		Año	2017
2	Aplicación	Probabilistic	Fuzzy systems: se trata de sistemas basados en reglas
		en los que ca	ada regla puede diagnosticar un conjunto de fallos, cada
		uno de ellos d	con una probabilidad asociada.
3	Área/Línea de		
	investigación	Desarrollo ind	dustrial
	priorizada		
4	Funciones	dos pasos ba estimaron lo iterativo de antecedentes contribución estimación	ación de parámetros se adoptó un método secuencial de sado en datos de última generación. En el primer paso se s antecedentes de las reglas utilizando un algoritmo agrupamiento supervisado. Sobre la base de los s, se estiman los parámetros consiguientes. Otra de este trabajo fue la propuesta de un nuevo método de de parámetros bayesianos para los parámetros s con la regla.
5	Conclusiones Relevantes		ha presentado una aplicación por primera vez de sprobabilísticos difusos para el diagnóstico de fallas en los

TABLA CLXVIII. RESULTADO DEL ARTÍCULO EP129

#	Descripción	Detalle
---	-------------	---------

1	Información bibliográfica	Título	Evaluation of Visualization of a Fuzzy-Based Recommender System for Political Community-Building			
	Sibilogranica	Autor	Luis Terán			
		Referencia	[207]			
		Año	2015			
2	Aplicación		ler systems on eGovernment: el uso de sistemas de			
	Aplicación		ón sobre la administración electrónica es un tema de			
		investigación que tiene por objeto mejorar la interacción entre las				
			nes públicas, los ciudadanos y el sector privado mediante			
			de la sobrecarga de información sobre los servicios de			
		administracio	n electrónica.			
3	Área/Línea de					
	investigación	Gobierno electrónico				
	priorizada					
4	Funciones	En este tra	abajo se propone la evaluación de la visualización			
		proporcionad	a por un sistema de recomendaciones de base difusa para			
		estimular la p	articipación política y la colaboración, utilizando diferentes			
		métodos de	evaluación para la reducción de la dimensionalidad y			
		algoritmos de	e agrupación difusa que son el núcleo del enfoque del			
		sistema de re	ecomendaciones.			
5	Conclusiones		ecomendaciones. pajo se recomienda el uso de las técnicas de mapeo			
5	Conclusiones Relevantes	En este trab				

TABLA CLXIX. RESULTADO DEL ARTÍCULO EP130

#	Descripción	Detalle	
1	Información	Título	Combining statistical and semantic approaches to the
	bibliográfica		translation of ontologies and taxonomies
		Autor	John McCrae, Mauricio Espinoza, Elena Montiel,
			Guadalupe Aguado, Philipp Cimiano.
		Referencia	[208]
		Año	2011
2	Aplicación	Ontologies,	taxonomies: abordamos de tres maneras: adaptando el
		sistema de	traducción al dominio del recurso; examinando si la
		semántica pu	nede ayudar a predecir la estructura sintáctica utilizada en
		la traducción	; y evaluando si podemos usar las taxonomías traducidas

		existentes para desambiguar las traducciones. Presentamos algunos
		resultados preliminares de estas experiencias,
3	Área/Línea de	
	investigación	Gobierno electrónico
	priorizada	
4	Funciones	Se tradujo la taxonomía de la NIIF 2009 utilizando el Moses Decoder, el
		cual se entrenó en el corpus EuroParl, pasando del español al inglés.
		Como el taxón IFRS está dedicado al tema de finanzas y contabilidad,
		se eligió todos los términos del corpus de Wikipedia que pertenecían a
		categorías que contenían las palabras: "finance", "financial",
		"accounting", "accountancy", "bank", "banking", "economy", "economic",
		"investment", "insurance" y "actuarial", y como tal teníamos un corpus
		de dominios de aproximadamente 5000 términos. Luego procedimos a
		volver a calcular la tabla de frases usando la metodología descrita en
		Wu et al, (2008), calculando las probabilidades como sigue para algún
		factor de ponderación, ver tabla 4 en estudio.
5	Conclusiones	Este estudio presenta el problema de la traducción de la ontología y la
	Relevantes	taxonomía como un caso especial de traducción automática.

TABLA CLXX. RESULTADO DEL ARTÍCULO EP131

#	Descripción	Detalle			
1 Información bibliográfica		Título	Use of a Semantic Learning Repository to Facilitate the Creation of Modern e-Learning Systems		
		Autor	Xavier Ochoa, Gladys Carrillo, Cristian Cechinel.		
		Referencia	[209]		
		Año	2014		
2	Aplicación	Semantic Le	earning Repository: para incluir información vinculada de		
		entidades que no suelen denominarse Objetos de Aprendizaje, pero			
		que son nece	esarias para la implementación de sistemas de e-learning		
		más avanzad	los.		
3	Área/Línea de investigación priorizada	Gobierno ele	Gobierno electrónico + Software aplicado		
4	Funciones	repositorio a	nto consistió en recomendar los objetos presentes en el diferentes tipos de estudiantes de una manera similar a a un tutor humano. También consiste en comparar la lista		

		de actividades de aprendizaje recomendadas por el algoritmo híbrido
		con las sugeridas por un sujeto experto. Un profesor del curso
		Fundamentos de Programación recibió una lista de 10 temas de estudio
		de programación.
5	Conclusiones	Este estudio presenta y describe el concepto de un Repositorio de
	Relevantes	Aprendizaje Semántico que reubica el papel del LOR como parte de las
		soluciones de e-learning.

TABLA CLXXI. RESULTADO DEL ARTÍCULO EP132

#	Descripción	Detalle		
1	Información bibliográfica	Título	Ontology of personal learning environments in the development of thesis project	
		Autor	Mariela Tapia, Janneth Chicaiza, Sergio Luján.	
		Referencia	[210]	
		Año	2017	
2	Aplicación	Ontological	model: ha sido diseñado para organizar el proceso de	
		desarrollo de	tesis utilizando los elementos necesarios para crear un	
		PLE.		
3	Área/Línea de investigación	TIC para educación e inclusión + Software aplicado		
	priorizada			
4	Funciones	y la ontolog McGuiness.	PLET4Tesis fue creada de acuerdo con METONTOLOGÍA, ía se basa en la guía práctica propuesta por Noy y La idea de unificar estos dos enfoques fue iniciar un al y ágil para la creación de la ontología.	
5	Conclusiones Relevantes	desarrollo de entregables entregables,	presentada en este estudio puede ayudar a controlar el e una tesis, una tesis se realiza en fases y genera al final de cada etapa. Obtener el control de dichos junto con el uso óptimo de tecnologías y estrategias, plazos de entrega para la realización de las tesis.	

TABLA CLXXII. RESULTADO DEL ARTÍCULO EP133

#	Descripción	Detalle
---	-------------	---------

	1.6	T'().	CODDIA Occide Occurs visting betalling at Australia
1	Información	Título	SOPPIA: Social Opportunistic Intelligent Ambient of
	bibliográfica		Learning.
		Autor	Paúl E. Veintimilla, Jack F. Bravo, Martín López.
		Referencia	[211]
		Año	2017
2	Aplicación	Knowledge	Management: es el lugar para desarrollar soluciones en
		áreas como	la minería de datos, los sistemas de recomendación y la
		web semánti	ca, para seleccionar automáticamente los mejores perfiles
		y formar una	red de aprendizaje.
3	Área/Línea de		
	investigación	Gobierno ele	ctrónico + Software aplicado
	priorizada		
4	Funciones	Es necesario	contar con técnicas de modelización de las preferencias
		de los usu	arios, considerando diferentes perfiles (estudiantes,
		profesores y	expertos) y contenidos (institucionales y personales).
		Además, en	este proceso de modelización, SOPPIA aprovecha la
		información a	académica almacenada en las bases institucionales, como
		el currículo g	eneral, las actividades de enseñanza y los resultados del
		aprendizaje.	
5	Conclusiones	Este estudio	o, presentó una primera implementación de SOPPIA,
1	I		
	Relevantes	basada en lo	os recursos institucionales y personales de cada usuario
	Relevantes		os recursos institucionales y personales de cada usuario un SLN o presentar diferentes actividades de aprendizaje.

TABLA CLXXIII. RESULTADO DEL ARTÍCULO EP134

#	Descripción	Detalle	
1	Información bibliográfica	Título	Una aproximación para la descripción semántica de requisitos para categorización docentes de
			investigadores ecuatorianos
		Autor	Elizabeth Cadme, Nelson Piedra
		Referencia	[212]
		Año	2014
2	Aplicación	Red de onto	logías: para representar conceptos, atributos, operaciones
		y restriccione	es, en relación con los ítems curriculares que se usan en
		procesos na	cionales de categorización de docentes universitarios
		ecuatorianos	

3	Área/Línea de investigación priorizada	Gobierno electrónico + Software aplicado
4	Funciones	El proceso de desarrollo del modelo ontológico inicia con la especificación de requisitos, basado en un conjunto de preguntas y respuestas dentro del dominio que ya está determinado, con ello se ha logrado obtener una frecuencia de términos utilizados, contrastados con los resultados obtenidos en la actividad de mapeo. La ontología tiene que enfocarse en el dominio de información científica y académica que realizan un docente universitario, los principales conceptos que la ontología debe representar son: docente, publicación, proyecto, actualización académica, universidad, organización, grado académico.
5	Conclusiones Relevantes	La red de ontologías desarrollada permite describir semánticamente conceptos almacenados en fuentes de datos heterogéneas, tanto estructuradas, como no estructuradas.

TABLA CLXXIV. RESULTADO DEL ARTÍCULO EP135

#	Descripción	Detalle	
1	Información	Título	Implementation of Social and Semantic Tools into Open
	bibliográfica		Educational Resources Production
		Autor	Samanta Cueva, Germania Rodríguez, Edmundo Tóvar.
		Referencia	[213]
		Año	2011
2	Aplicación	Cycle of OE	Rs: para la vinculación semántica se realiza mediante el
		uso de metad	datos y ontologías Folksonomies.
3	Área/Línea de investigación priorizada	Gobierno ele	ctrónico + Software aplicado
4	Funciones	Se comenzó a utilizar la recomendación social para permitir vincular e integrar el uso de otros recursos y repositorios relacionados, la difusión de nuevos recursos se realiza a través de microblogging, redes sociales, RSS, al tiempo que se garantiza la calidad a través del uso de control de versiones y la aplicación de rúbricas. Sobre folksonomía semántica u ontología enlaza con la red.	
5	Conclusiones Relevantes		desarrolló el sistema OER, para dotar de significado la OER, fue necesario incorporar herramientas de la Web

	Semántica como los metadatos y las ontologías educativas que mejoren
	las características de usabilidad, accesibilidad y visibilidad.

TABLA CLXXV. RESULTADO DEL ARTÍCULO EP136

#	Descripción	Detalle	
1	Información	Título	OER, estándares y tendencias
	bibliográfica	Autor	Samanta Cueva, Germania Rodríguez.
		Referencia	[214]
		Año	2010
2	Aplicación	OER estánda	ares de accesibilidad: incorpora componentes sociales y
		la web semár	ntica.
3	Área/Línea de		
	investigación	Gobierno ele	ctrónico + Software aplicado
	priorizada		
4	Funciones	Los objetos de aprendizaje, por ser recursos educativos que se	
		encuentran en la web, están involucrados en el propósito de la web	
		semántica de	e dotar significado a toda clase de información disponible
		en web.	
5	Conclusiones	Este estudio	dotó el significado semántico a los OER, e incorporó
	Relevantes	herramientas	de la Web Semántica como los metadatos y las ontologías
		educacionale	s lo cual mejorará las características de usabilidad,
		accesibilidad	y visibilidad.

TABLA CLXXVI. RESULTADO DEL ARTÍCULO EP137

#	Descripción	Detalle	
1	Información	Título	A text mining methodology to discovery syllabi similarities
	bibliográfica		among Higher Education Institutions
		Autor	Gerardo Orellana, Marcos Orellana, Víctor Saquicela,
			Fernando Baculima.
		Referencia	[215]
		Año	2018
2	Aplicación	Pre-processing techniques, Latent Semantic Analysis: para la	
		reducción de	la dimensionalidad, enriquecimiento de texto a través de

		la API de Wikipedia y Google Engine, Soporte de Máquina Vectorial como clasificador, y similitud del coseno como métrica de similitud.
3	Área/Línea de investigación priorizada	Gobierno electrónico + TIC para educación e inclusión
4	Funciones	Dichas técnicas desarrollan un enfoque de comparación semántica de los contenidos de los planes de estudio a través de métodos de similitud de textos.
5	Conclusiones Relevantes	Este estudio indica el enfoque que es muy sensible a los valores umbral para la similitud. Esto puede indicar que diferentes áreas de conocimiento pueden necesitar diferentes umbrales para predecir con éxito la similitud. El umbral definido para los cursos de informática puede no ser tan bueno para otros cursos.

TABLA CLXXVII. RESULTADO DEL ARTÍCULO EP138

#	Descripción	Detalle	
1	Información	Título	Representation of Latin American University Syllabuses
	bibliográfica		in a Semantic Network
		Autor	Mariela Tapia, Janneth Chicaiza, Sergio Luján.
		Referencia	[216]
		Año	2017
2	Aplicación	Content ana	lysis: una mezcla de técnicas automáticas y manuales les
		ayudó a obte	ner los términos comunes en el programa de estudios de
		las mejores u	niversidades de América Latina.
3	Área/Línea de		
	investigación	TIC para educación e inclusión	
	priorizada		
4	Funciones	Primero fue necesario crear una estructura basada en los términos que	
		se utilizan en los planes de estudio latinoamericanos.	
5	Conclusiones	Este estudio, desarrolló una red semántica enriquecida basada no sólo	
	Relevantes	en los términos comunes extraídos de los planes de estudios, sino que	
		también han	incorporado términos que se consideran importantes para
		que un plan o	de estudios sea un contrato, un registro permanente y una
		herramienta d	de aprendizaje.

TABLA CLXXVIII. RESULTADO DEL ARTÍCULO EP139

#	Descripción	Detalle	
1	Información	Título	Semantic catalogs for life cycle assessment data
	bibliográfica	Autor	Brandon Kuczenski, Christopher B. Davis, Beatriz Rivela,
			Krzysztof Janowicz
		Referencia	
		Año	
2	Aplicación	Semantic W	eb, text mining techniques: utilizamos el modelo de
		consenso pa	ara derivar una descripción de un "catálogo" de La
		evaluación d	el ciclo de vida (LCA), que puede utilizarse para expresar
		el contenido	semántico de un recurso de datos.
3	Área/Línea de		
	investigación	Gobierno electrónico + TIC para educación e inclusión	
	priorizada		
4	Funciones	Se enlozó d	ichos catálogos a modelos de conocimiento existentes
		utilizando JS0	ON-LD, un formato de datos enlazados que puede exponer
		los contenidos del catálogo a herramientas de la Web Semántica.	
5	Conclusiones	Este estudio,	utilizó el modelo de consenso para derivar una descripción
	Relevantes	de un "catálo	go" de LCA que puede utilizarse para expresar el contenido
		semántico de	un recurso de datos.

TABLA CLXXIX. RESULTADO DEL ARTÍCULO EP140

#	Descripción	Detalle	
1	Información bibliográfica	Título	Identifying polarity in financial texts for sentiment analysis: a corpus-based approach
	-	Autor	Antonio Moreno, Javier Fernández.
		Referencia	[217]
		Año	2015
2	Aplicación	específicos d	analysis: para integrar el análisis de sentimientos le un dominio en un sistema basado en el léxico diseñado para textos en lenguaje general.
3	Área/Línea de investigación priorizada	Gobierno ele	ctrónico

4	Funciones	Como corpus lingüístico especializado, se utilizó las secciones "Mag
		Finance" y "News-Money" del Corpus of Contemporary American
		English, que comprende aproximadamente 7,97 millones de palabras.
		Nuestro corpus lingüístico general fue el Corpus of Global Web-Based
		English, de aproximadamente 1.900 millones de palabras.
5	Conclusiones	Este estudio, propuso un modelo simple de 3 pasos basado en la
	Relevantes	medida de la relación de rareza para extraer los términos candidatos de
		corpus especializados, que luego se comparan con nuestra base de
		datos de polaridad de lenguaje general existente para obtener palabras
		que contienen sentimientos cuya polaridad es específica del dominio.

TABLA CLXXX. RESULTADO DEL ARTÍCULO EP141

#	Descripción	Detalle		
1	Información bibliográfica	Título	A systematic method for building Internet of Agents applications based on the Linked Open Data approach	
		Autor	Pablo Pico, Juan A. Holgado, Patricia Paderewski.	
		Referencia	[218]	
		Año	2019	
2	Aplicación	Linked Oper	Data (LOD): se presenta las directrices para desarrollar	
		aplicaciones	de Internet de los Agentes (IOA) basadas en agentes	
		semánticos d	escritos siguiendo el enfoque (LOD) y las especificaciones	
		de la ontología IOA-OWL.		
3	Área/Línea de			
	investigación	Gobierno electrónico + Internet de las cosas (IoT) + Software aplicado.		
	priorizada			
4	Funciones	Este método crea aplicaciones inteligentes, autónomas y colaborativas		
		de IOA basa	das en nuevos Agentes Abiertos Vinculados (LOAs) que	
		son impulsad	los por Contratos de Agentes Vinculados (LACs) y Flujos	
		de Trabajo para el Control de Agentes (WACs).		
5	Conclusiones	Este estudio	Este estudio propone un método especializado basado en metodologías	
	Relevantes	ágiles que son capaces de cubrir el modelado de objetos de loT como		
		agentes.		

TABLA CLXXXI. RESULTADO DEL ARTÍCULO EP142

#	Descripción	Detalle	
1	Información	Título	Producing linked open data to describe scientific activity
	bibliográfica		from researchers of Ecuadorian universities
		Autor	Elizabeth Cadme, Nelson Piedra.
		Referencia	[219]
		Año	2017
2	Aplicación	Semantic da	ta model, linked data: para la recogida de datos de los
		repositorios,	creación de un modelo de datos semánticos, limpieza de
		datos, transfo	ormación, enlace y publicación de datos vinculados.
3	Área/Línea de		
	investigación	Gobierno ele	ctrónico
	priorizada		
4	Funciones	La transformación de datos se ha llevado a cabo utilizando una	
		herramienta desarrollada por el Grupo de Investigación en Sistemas	
		Basados en el Conocimiento, esta herramienta ha permitido una forma	
		flexible de ha	cer el mapeo de la ontología Ontura-Net, con información
		tomada de la SIAC.	
5	Conclusiones	Este estudio, utilizó la tecnología semántica para representar la	
	Relevantes	información científica y académica universitaria basada en las	
		instituciones	reguladoras de la educación superior en el Ecuador. Se ha
		ejecutado un	caso práctico utilizando información de UTPL. Fue posible
		integrar vari	as fuentes de información heterogéneas con datos
		universitarios	a través de la tecnología semántica y el uso de ontologías.

TABLA CLXXXII. RESULTADO DEL ARTÍCULO EP143

#	Descripción	Detalle	
1	Información	Título	Principios de la Web Semántica y Computación Afectiva
	bibliográfica		en un Ecoturismo Sustentable mediante el Desarrollo de
			Aplicación Web Educativa
		Autor	Pablo Alejandro Quezada, Santiago Mengual.
		Referencia	[220]
		Año	2018
2	Aplicación	Web semánt	ica: aplicada en los contextos del ecoturismo y educativo

3	Área/Línea de investigación priorizada	TIC para educación e inclusión + Software aplicado		
	'			
4	Funciones	Se desarrollo un aplicativo con principios de la web semántica y		
		computación afectiva que satisfaga la problemática de cubrir un		
		ecoturismo inteligente y cuyo resultado el buscador semántico tal como		
		lo muestra la figura 2 del estudio, donde se visualiza el resultado de una		
		búsqueda como es los grafos, los filtros, categorías, etc.		
5	Conclusiones	Este estudio, desarrolló la aplicación de la web semántica y		
	Relevantes	computación afectiva se logró mitigar la problemática identificada en el		
		sector del ecoturismo, al desarrollar el buscador semántico y aplicar los		
		principios de las metodologías agiles		

TABLA CLXXXIII. RESULTADO DEL ARTÍCULO EP144

Descripción	Detalle	
Información	Título	Análisis de la accesibilidad con enfoque semántico de un
bibliográfica		portal de servicios académicos para nivel universitario
	Autor	Verónica Segarra, María Belén Mora, Gladys Tenesaca.
	Referencia	[221]
	Año	2016
Aplicación	Web semánt	ica: evaluar el portal de servicios académicos de la UTPL
	verificando e	el cumplimiento de las directrices de accesibilidad web
	establecidos	por el contenido de Word Wide Web Consortium en la
	recomendaci	ón WCAG 2.0.
Área/Línea de		
investigación	TIC para edu	cación e inclusión
priorizada		
Funciones	El sitio de servicios académicos de la UTPL ha sido evaluado utilizando	
	las cuatro hei	ramientas de análisis automático: TAW, WAVE, Achecker,
	Tingtun Acce	ssibility Checker. Estas herramientas se utilizan en línea y
	facilitan la v	alidación del nivel de cumplimiento de las pautas de
	Accesibilidad	al Contenido en la WCAG 2.0 indicando el URL del sitio a
	verificar.	
Conclusiones	En el caso de	e estudio realizado para el portal de Universidad Técnica
Relevantes	Particular de	e Loja podemos sugerir la corrección de los errores
	encontrados	como ausencia de propiedades de cumplimiento con las
	Información bibliográfica Aplicación Área/Línea de investigación priorizada Funciones Conclusiones	Información bibliográfica Autor Referencia Año Aplicación Web semánt verificando e establecidos recomendacio Área/Línea de investigación priorizada Funciones El sitio de ser las cuatro her Tingtun Acce facilitan la v Accesibilidad verificar. Conclusiones Relevantes Particular de

guías de accesibilidad web, además de las soluciones técnicas propuestas para mejorar la accesibilidad y considerar aplicar módulos semánticos a contenido web garantizado el acceso por medio de teclado y mejorando la participación para colaborar a través de la web tomando en cuenta que el contenido que se comparte es académico.

TABLA CLXXXIV. RESULTADO DEL ARTÍCULO EP145

#	Descripción	Detalle		
1	Información	Título	OER Development and Promotion. Outcomes of an	
	bibliográfica		International Research Project on the OpenCourseWare	
			Model	
		Autor	Edmundo Tovar, Nelson Piedra, Janneth Chicaiza, Jorge	
			López, Oscar Martínez.	
		Referencia	[222]	
		Año	2012	
2	Aplicación	Web Social,	Web Semántica: se propuso un nuevo ciclo de producción	
		de TEA. Est	e proceso incluyó principalmente el papel clave de los	
		componentes	s sociales y de la Web Semántica.	
3	Área/Línea de			
	investigación	TIC para edu	cación e inclusión	
	priorizada			
4	Funciones	Para el estudio de diferentes líneas de investigación del interés		
		estratégico d	estratégico de la REA para los ciclos de producción verticales y	
		centrados en el profesor, la calidad del material educativo, cómo medir		
			la colaboración, la creatividad y el aprendizaje de competencias en	
			producción abiertos, y los problemas para compartir y re	
		mezclar o loc	alizar y acceder al material educativo.	
5	Conclusiones	Este estudi		
	Relevantes	Ū	es realizadas por investigadores junior adscritos a la	
			tesis fueron supervisadas por investigadores senior de la	
			esultados han dado lugar a la aparición de nuevas	
		•	s para integrarse en nuevas redes con otros grupos de	
		investigación	de prestigio en el ámbito del e-learning.	

TABLA CLXXXV. RESULTADO DEL ARTÍCULO EP146

#	Descripción	Detalle	
1	Información bibliográfica	Título Gestman: A Cloud-based Tool for Stroke-Gest Datasets	
		Autor	Nathan Magrofuoco, Paolo Roselli, Jean Vanderdonckt, Jorge Pérez, Radu Daniel Vatavu.
		Referencia	[223]
		Año	2019
2	Aplicación	Gesture sets	s, Cloud computing: para la adquisición, diseño y gestión
		de conjuntos	de datos de movimientos para aplicaciones interactivas.
3	Área/Línea de investigación priorizada	Software apli	cado
4	Funciones	GestMan, almacena los gestos de trazos en múltiples niveles de representación, desde muestras individuales hasta clases, grupos y vocabularios, y permite a los practicantes procesar, analizar, clasificar, compilar y reconfigurar conjuntos de comandos de gestos de acuerdo con los requisitos específicos de sus aplicaciones, prototipos y sistemas interactivos.	
5	Conclusiones Relevantes	Este estudio, presentó una aplicación basada en la nube disponible públicamente para la gestión colaborativa de accidentes cerebrovasculares, vocabularios, conjuntos, clases y clústeres, que implementa cinco características de calidad ISO.	

TABLA CLXXXVI. RESULTADO DEL ARTÍCULO EP147

#	Descripción	Detalle	
1	Información	Título	Omnidirectional Transport System for Classification and
	bibliográfica		Quality Control using Artificial Vision
		Autor	Erick Barrionuevo Salazar, Bryan Navas, Sylvia Nathaly
			Rea.
		Referencia	[224]
		Año	2019
2	Aplicación	Artificial vision: está constituido por un sistema de visión artificial, el	
		cual se encargará de tomar la información necesaria para realizar la	

		clasificación y control de calidad mediante una red neuronal; y, una matriz de ruedas omnidireccionales que permite el movimiento de la pieza en el plano XY.
3	Área/Línea de investigación priorizada	Desarrollo industrial + Software Aplicado
4	Funciones	Se trata de un mecanismo de transporte omnidireccional para la clasificación y control de calidad de piezas procedentes de procesos de prototipado rápido.
5	Conclusiones Relevantes	Este estudio, desarrolló un sistema que es capaz de clasificar tres tipos de piezas de diferentes formas, tamaños y perspectivas con alta fiabilidad y rapidez; además permite una mejor interacción hombremáquina gracias a una interfaz gráfica.

TABLA CLXXXVII. RESULTADO DEL ARTÍCULO EP148

#	Descripción	Detalle	
1	Información bibliográfica	Título	Desarrollo de una plataforma tecnológica para la gestión de seguridad en una institución educativa de grado inicial mediante el uso de sistemas móviles, Reconocimiento facial y sistemas de alertas Nathalia Basantes Verdugo, Pedro Moncada Romero.
		Referencia	[225]
		Año	2017
2	Aplicación	control de la	cial: para usar métodos de validación de identidad para el seguridad, utilizando el scanner de código QR para un econocimiento facial.
3	Área/Línea de investigación priorizada	Software aplicado + TIC para educación e inclusión	
4	Funciones	La visión artificial es la técnica que se basa en la obtención de imágenes en dos dimensiones, para posteriormente se puedan procesar por algún tipo de CPU, para poder extraer y medir las propiedades puntuales de las imágenes que se obtienen.	
5	Conclusiones Relevantes		desarrolló una aplicación para el control de entrega de e desarrolló en Android, también es portable y se utilizaron

	herramientas OpenSource (PHP, MySql y OpenCV) conforme a lo	1
	propuesto.	

TABLA CLXXXVIII. RESULTADO DEL ARTÍCULO EP149

#	Descripción	Detalle	
1	Información bibliográfica	Título	Automatic identification of a playing card through kNN using a Raspberry Pi 3
		Autor	Juan Estévez, Holger Ortega y Rodrigo Tufiño.
		Referencia	[96]
		Año	2016
2	Aplicación	Computer v	ision: para capturar, pre procesar y segmentar la imagen
		independient	emente de la orientación y el ángulo de depresión.
3	Área/Línea de investigación priorizada	Software aplicado + Economía tecnología y sociedad	
4	Funciones	El algoritmo utilizado como clasificador para reconocer la tarjeta es k- nearest neighbor (kNN). En la fase de formación se utilizó un conjunto basado en una lista de caracteres alfanuméricos. El resultado de la clasificación se envió a una salida de audio utilizando un convertidor de texto a voz.	
5	Conclusiones Relevantes		desarrolló un sistema que tiene una precisión del 95% y ta media de espera de 5 segundos teniendo en cuenta la de audio.

TABLA CLXXXIX. RESULTADO DEL ARTÍCULO EP150

#	Descripción	Detalle	
1	Información	Título	A machine vision system applied to the teaching
	bibliográfica		of mathematics for blind or visually impaired
			children
		Autor	C. A. Calderón, María Guajala, John Lancha, Luis Barba-
			Guamán, Carlos Bermeo, F. Rivas.
		Referencia	[226]
		Año	2019

2	Aplicación	Machine vision, pattern matching: para un tutor automatizado orientado a instituciones de educación especial.
3	Área/Línea de investigación priorizada	TIC para discapacidades e inclusión social + Software aplicado
4	Funciones	Se aplicó la visión artificial al juego de mesa educativo enfocado en operaciones matemáticas en Braille bidimensional. Primero, prueba de rendimiento de la visión artificial basada en el algoritmo de correlación cruzada, segundo, prueba del algoritmo que localiza errores en el juego de mesa educativo, y tercero evaluación de la usabilidad por parte de niños con discapacidad visual y profesores del Instituto para Ciegos Byron Eguiguren (Loja-Ecuador).
5	Conclusiones Relevantes	Este estudio, diseñó y desarrolló un tutor automatizado aplicado a juegos de mesa educativos (centrados en temas de matemáticas) para niños con discapacidad visual.

TABLA CXC. RESULTADO DEL ARTÍCULO EP151

#	Descripción	Detalle	
1	Información	Título	Detection of skin cancer "Melanoma" through Computer
	bibliográfica		Vision.
		Autor	Wilson F. Cueva, F. Muñoz, G. Vásquez., G. Delgado.
		Referencia	[227]
		Año	2017
2	Aplicación	Image proce	essing: para obtener Asimetría, Borde, Color y Diámetro
		(ABCD del m	elanoma).
3	Área/Línea de		
	investigación	Salud y bienestar	
	priorizada		
4	Funciones	Se desarrolló	un procesamiento de imágenes usando redes neuronales
		para realizar	una clasificación de los diferentes tipos de lunares. Como
		resultado, es	te algoritmo se desarrolló después de un análisis de 200
		imágenes y s	se obtuvo un rendimiento del 97,51%.
5	Conclusiones	Este sistema	, da un resultado con mayor eficiencia, debido a que el
	Relevantes	análisis y p	procesamiento de imágenes se realiza en pequeños

	intervalos de tiempo, limitados por el tipo de ordenador y el procesador
	que tiene a su disposición, obteniendo un resultado oportuno y eficiente.

TABLA CXCI. RESULTADO DEL ARTÍCULO EP152

#	Descripción	Detalle	
1	Información	Título	Use of Drones for Surveillance and Reconnaissance of
	bibliográfica		Military Areas
		Autor	Carlos Paucar, Lilia Morales, Katherine Pinto, Marcos
			Sánchez, Rosalba Rodríguez, Marisol Gutiérrez, Luis
			Palacios.
		Referencia	[228]
		Año	2018
2	Aplicación	Image proce	essing, control algorithms: se diseñó algoritmos de
		control para	cámaras estáticas y drones.
3	Área/Línea de		
	investigación	Territorio y so	ociedad inclusivos
	priorizada		
4	Funciones	Estos fueron	modelados en el Quad-Copter Parrot Bebop 2 usando el
		software de	comunicación Robot Operating System ROS para
		proporcionar	datos y reconocer diferentes etapas de drones (aterrizado,
		en vuelo, y sı	us maniobras: guiñada, aceleración, balanceo, cabeceo).
5	Conclusiones	Este estudio	implementó una tecnología que permitió mayor control y
	Relevantes	cobertura de	los activos estratégicos de las Fuerzas Armadas.

TABLA CXCII. RESULTADO DEL ARTÍCULO EP153

#	Descripción	Detalle	
1	Información	Título	Computer Vision for detection of body expressions of
	bibliográfica		children with cerebral palsy
		Autor	Cristhian Rosales, Luis Jácome, Jorge Carrión, Carlos
			Jaramillo, Mario Palma.
		Referencia	[229]
		Año	2018

2	Aplicación	Computer vision: para mejorar la comunicación con un caso de estudio	
		que sufre de parálisis cerebral	
3	Área/Línea de		
	investigación	Salud y bienestar + TIC y salud + Software aplicado	
	priorizada		
4	Funciones	Se desarrolló un prototipo que detecte expresiones corporales	
		utilizando la librería OpenCV con el lenguaje de programación Python.	
5	Conclusiones	Con el desarrollo de este prototipo, se ha demostrado que la	
	Relevantes	comunicación con niños con parálisis cerebral puede mejorarse	
		mediante el uso de la visión por ordenador.	

TABLA CXCIII. RESULTADO DEL ARTÍCULO EP154

#	Descripción	Detalle	
1	Información	Título	Estimating the Rician Noise Level in Brain MR Image
	bibliográfica	Autor	María G. Pérez, Aura Conci, Ana Belén Moreno, Víctor
			H. Andaluz, Juan A. Hernández.
		Referencia	[230]
		Año	2015
2	Aplicación	Image proce	essing: para la estimación del nivel de ruido en las
		imágenes.	
3	Área/Línea de		
	investigación	Salud y biene	estar
	priorizada		
4	Funciones	Se propuso	un nuevo método para estimar el nivel de ruido en las
		imágenes de	RM T1-w y se compara con un nivel conocido de la
		relación seña	ıl-ruido presentada.
5	Conclusiones	Este estudio,	presenta una idea para estimar directamente el nivel de
	Relevantes	ruido de las ir	mágenes de Rician. La idea ha sido probada en imágenes
		sintéticas y re	eales de la RM cerebral.

TABLA CXCIV. RESULTADO DEL ARTÍCULO EP155

#	Descripción	Detalle	
1	Información	Título	Impact reduction potential by usage anticipation under
	bibliográfica		comfort trade-off conditions

		Autor	Joost R. Duflou, Andres Auquilla, Yannick De Bock, Ann Nowé, Karel Kellens.
		Referencia	[231]
		Año	2016
2	Aplicación	Pattern reco	gnition: para abstraer la capacidad de predicción de los
		sistemas de d	control inteligente.
3	Área/Línea de		
	investigación	Economía ted	cnología y sociedad
	priorizada		
4	Funciones	La variabilida	ad en los registros históricos de uso refleja la única
		incertidumbre	e sobre la exactitud de los patrones repetitivos. Con el fin
		de evaluar es	sta variabilidad, se registran patrones estadísticos de uso.
		Estos registro	os se agrupan para distinguir los diferentes patrones de
		uso.	
5	Conclusiones	Para los siste	emas con patrones de uso documentados y características
	Relevantes	conocidas de	el sistema, el procedimiento de análisis de uso y el modelo
		de cambio de	e modo descritos en este documento permiten evaluar el
		potencial de	reducción de impacto que pueden ofrecer los sistemas
		inteligentes d	le control predictivo.

TABLA CXCV. RESULTADO DEL ARTÍCULO EP156

#	Descripción	Detalle	
1	Información	Título	Reconocimiento en-línea de acciones humanas basado
	bibliográfica		en patrones de RWE aplicado en ventanas dinámicas de
			momentos invariantes
		Autor	Dennis Romero, Anselmo Frizera, Teodiano Freire.
		Referencia	[232]
		Año	2014
2	Aplicación	Mapas de p	rofundidad: para el uso de momentos invariantes como
		descriptores	de imagen, aplicados en siluetas obtenidas del
		procesamien	to de mapas de profundidad.
3	Área/Línea de		
	investigación	Salud y biene	estar + TIC y salud
	priorizada		
4	Funciones	Una compara	ación rápida entre ventanas de tamaño 4 (equivalente a 4
		frames) es	realizada mediante el cómputo de la distancia de

			Mahalanobis, sobre una de las secuencias de momentos invariantes
			identificada como la menos sensible al ruido de captura y la más estable
			durante ausencia de movimiento.
ľ	5	Conclusiones	En este estudio se presentó una metodología para el reconocimiento en
		Relevantes	línea de acciones humanas. El enfoque propuesto hace uso de mapas
			de profundidad, cuyo uso está siendo cada vez más común en
			aplicaciones de visión por ordenador, debido al surgimiento de nuevos
			dispositivos que integran diferentes sensores, con el objetivo de aportar
			información adicional al proceso de captura.
- 1			

TABLA CXCVI. RESULTADO DEL ARTÍCULO EP157

#	Descripción	Detalle		
1	Información	Título	Smart motion detection sensor based on video	
	bibliográfica		processing using self-organizing maps	
		Autor	Francisco Ortega, Miguel A. Molina, Ezequiel López,	
			Esteban J. Palomo.	
		Referencia	[233]	
		Año	2016	
2	Aplicación	Image proce	essing: para el desarrollo de un sistema de visión por	
		computador	de bajo costo y fácil despliegue para la detección de	
		movimiento.		
3	Área/Línea de			
	investigación	Territorio y so	ociedad inclusivos + Software aplicado	
	priorizada			
4	Funciones	Esto se logra por tres medios. En primer lugar, se utiliza una plataforma		
		de hardware	de hardware asequible y flexible. En segundo lugar, el algoritmo de	
		detección de movimiento está específicamente diseñado para implicar		
		una carga co	omputacional muy pequeña. En tercer lugar, se sigue un	
		paradigma de	e programación de punto fijo al implementar el sistema para	
		reducir aún n	nás los requerimientos computacionales.	
5	Conclusiones	Este estudio	o implemento el algoritmo denominado decisión de	
	Relevantes	detección po	or el sistema propuesto (SOM), con éxito en una placa	
		microcontrolle	er DUE. El SOM ha sido adaptado para superar las	
		limitaciones	impuestas por los limitados recursos de memoria y	
		velocidad de	cálculo del dispositivo de hardware. Se ha verificado la	
		correcta imp	lementación del algoritmo y se ha comprobado que a	

	medida que se aumenta la precisión para evitar efectos de redondeo, el
	microcontrolador necesita un mayor tamaño de memoria.

TABLA CXCVII. RESULTADO DEL ARTÍCULO EP158

#	Descripción	Detalle			
1	Información bibliográfica	Título	Are you a Good Driver? A Data-driven Approach to Estimate Driving Style		
		Autor	Iván Silva Feraud, José Eugenio Naranjo.		
		Referencia	[234]		
		Año	2019		
2	Aplicación	Fuzzy logic	model: se propone un modelo para estimar el estilo de		
		conducción a	gresivo del conductor considerando los eventos agresivos		
		a partir de los	s datos a bordo del vehículo y los datos de infracciones de		
		tráfico utilizar	ndo un modelo de lógica difusa.		
3	Área/Línea de				
	investigación	Ciudades inteligentes inclusivas			
	priorizada				
4	Funciones	Se recopilaron datos dentro del vehículo y datos GPS de veinticinco			
		conductores	en diferentes rutas, para generar un modelo de lógica		
		difusa que ca	aptura los eventos agresivos y las infracciones de tráfico.		
5	Conclusiones	Este estudio propuso un modelo de lógica difusa para estimar los estilos			
	Relevantes	de conducción utilizando un enfoque basado en datos. El modelo difuso			
		fue diseñado usando un FIS de Sugeno, con ocho reglas y cinco			
		variables de entrada de datos del vehículo, incluyendo violaciones de			
		tráfico.	tráfico.		

TABLA CXCVIII. RESULTADO DEL ARTÍCULO EP159

#	Descripción	Detalle	
1	Información	Título	Using Fuzzy Logic in QCA for the Selection of Relevant
	bibliográfica		IS Adoption Drivers in Emerging Economies
		Autor	Nayeth I. Solórzano, Luke Houghton, Louis Sanzogni.
		Referencia	[235]
		Año	2018

2	Aplicación	Fuzzy logic: para refinar la selección de los conductores obtenidos de estudios anteriores.
3	Área/Línea de investigación priorizada	Economía tecnología y sociedad
4	Funciones	Las técnicas de lógica difusa, se uso para refinar un conjunto de impulsores identificados de la adopción. La aplicación de la lógica difusa en el proceso de selección se hizo utilizando un software existente llamado fsQCA. Este enfoque ayuda a evitar ambigüedades que son difíciles de superar en los estudios cualitativos y proporciona resultados claros y mensurables.
5	Conclusiones Relevantes	En este estudio, se utilizó un estudio de caso para identificar los candidatos a la adopción en los PEOs, pretendemos explicar la aplicabilidad de fs/QCA en los estudios de adopción de SI.

TABLA CXCIX. RESULTADO DEL ARTÍCULO EP160

#	Descripción	Detalle		
1	Información bibliográfica	Título	Implementación de una base de datos relacional difusa. Caso práctico: tutoría académica	
		Autor	Saguay Chafla Ciro, Rodrigo Arturo Proaño, Segundo Bolívar Jácome, Carolina Denisse Aguirre.	
		Referencia	[96]	
		Año	2016	
2	Aplicación	Fuzzy logic: para obtener el modelo relacional difuso utilizando como metodología la arquitectura ANSI-SPARC de bases de datos, para este sistema.		
3	Área/Línea de investigación priorizada	TIC para educación e inclusión + Software aplicado		
4	Funciones	En el nivel conceptual se obtuvo el modelo relacional difuso, para lograr		
		este modelo	se realizó la transformación de los datos difusos a través	
		de modelos r	natemáticos usando la herramienta Fuzzy-Lookup y en el	
		nivel físico se implementó la base de datos relacional difusa y se		
		realizaron pruebas con el uso de SQL-Server.		
5	Conclusiones	Este estudio, realizó la implementación de la base de datos relacional		
	Relevantes	difusa para e	difusa para el caso práctico de las tutorías académicas de la Facultad	

	de Ciencias de la Ingeniería de la Universidad Tecnológica Equinoccial
	(UTE).

TABLA CC.
RESULTADO DEL ARTÍCULO EP161

#	Descripción	Detalle	
1	Información bibliográfica	Título Analysis, Design and Implementation of an Autopil Unmanned aircraft - UAV's Based on Fuzzy Logic	
		Autor	Valencia-Redrován David, Guijarro-Rubio Octavio, Basantes-Montero David, Enríquez-Champutiz Víctor.
		Referencia	[236]
		Año	2015
2	Aplicación	Fuzzy logic: para un control completo de la aeronave, en estabilidad, altitud, rumbo, dirección y aceleración utilizando los mínimos controles posibles, reduciendo el procesamiento computacional.	
3	Área/Línea de investigación priorizada	Desarrollo industrial + Software aplicado + Robótica automatización y telemática	
4	Funciones	La arquitectura funcional del piloto automático que se ha presentado en este trabajo basa su funcionamiento en la lógica difusa para un control completo de la aeronave.	
5	Conclusiones Relevantes	Este sistema tiene 4 controladores difusos para el control completo de la aeronave, lo que reduce significativamente el procesamiento computacional. Tener sólo este número de controladores (basados en lógica difusa) simplifica el sistema, haciéndolo más eficiente, rápido y sobre todo fácil de implementar.	

TABLA CCI.
RESULTADO DEL ARTÍCULO EP162

#	Descripción	Detalle	
1	Información	Título	Fuzzy Logic-Based Energy Management System Design
	bibliográfica		for Residential Grid-Connected Microgrids
		Autor	Diego Arcos, Julio Pascual, Luis Marroyo, Pablo Sanchis,
			Francesc Guinjoan.
		Referencia	[237]

		Año	2016
2	Aplicación	Fuzzy Logic Controller: de baja complejidad de sólo 25 reglas para ser integrado en un sistema de gestión de energía para una microred residencial conectada a la red que incluye fuentes de energía renovables y capacidad de almacenamiento	
3	Área/Línea de investigación priorizada	Redes e infra	nestructura de telecomunicaciones + Software aplicado
4	Funciones	propuesto uti	utilizar métodos basados en la previsión, el enfoque liza tanto la tasa de cambio de energía de la microred como batería para aumentar, disminuir o mantener la potencia dabsorbida por la red.
5	Conclusiones Relevantes	suavizar el conectada a	perfil de la red eléctrica de una microred residencial la red con generadores renovables y capacidad de ento de baterías.

TABLA CCII. RESULTADO DEL ARTÍCULO EP163

#	Descripción	Detalle		
1	Información	Título	Fuzzy modelling to identify key drivers of ecological water	
	bibliográfica		quality to support decision and policy making	
		Autor	Marie Eurie Forio, Ans Mouton, Koen Lock, Pieter Boets,	
			Nguyen Thi Hanh Tien, Minar Naomi Damanik, Peace Liz	
			Sasha, Luis Domínguez, Peter L.M. Goethals.	
		Referencia	[238]	
		Año	2016	
2	Aplicación	Fuzzy mode	els: se determinó y analizó el efecto de las principales	
		variables am	bientales que predicen la calidad ecológica del agua	
		mediante la aplicación de modelos difusos.		
3	Área/Línea de			
	investigación	Ambiente bio	diversidad y cambio climático	
	priorizada			
4	Funciones	Se utilizó una metodología de lógica difusa, previamente aplicada para		
		predecir la distribución de las especies, fue extendida para modelar los		
		efectos ambi	entales en toda una comunidad.	

5	Conclusiones	Este estudio, mostró que los modelos difusos son transparentes para
	Relevantes	una amplia gama de usuarios y, como resultado, pueden estimular la
		comunicación entre modelistas, gestores de ríos, responsables políticos
		y partes interesadas.

TABLA CCIII. RESULTADO DEL ARTÍCULO EP164

#	Descripción	Detalle		
1	Información	Título	Data transferring model determination in robotic group	
	bibliográfica	Autor	O. Yu. Sergiyenko, M.V. Ivanov, V.V. Tyrsa, V.M.	
			Kartashov, M. Rivas-López, D. Hernández, W. Flores,	
			J.C. Rodríguez, J.I. Nieto, W. Hernández, A. Tchernykh.	
		Referencia	[239]	
		Año	2016	
2	Aplicación	Fuzzy logic:	se utilizó el método de cambio de líder.	
3	Área/Línea de			
	investigación	Robótica auto	omatización y telemática	
	priorizada			
4	Funciones	El conocimiento de dicha técnica ayudó a elegir los modelos apropiados		
		de transferencia de datos, realiza su simulación y crea una red		
		adecuada entre los robots para evitar la pérdida de datos.		
5	Conclusiones	El sistema de	cambio de líder que se implementó en este estudio mejora	
	Relevantes	el proceso d	de transferencia de datos cambiando dinámicamente el	
		modelo de	red de la gestión centralizada al control jerárquico	
		centralizado y	y hacia atrás.	

TABLA CCIV. RESULTADO DEL ARTÍCULO EP165

#	Descripción	Detalle	
1	Información	Título	Complete Low-Cost Implementation of a Teleoperated
	bibliográfica		Control System for a Humanoid Robot
		Autor	Andrés Cela, J. Javier Yebes, Roberto Arroyo, Luis M.
			Bergasa, Rafael Barea, Elena López.
		Referencia	[240]
		Año	2013

2	Aplicación	Algoritmo difuso: de dos entradas que controla cinco servomotores regula el equilibrio del robot.
3	Área/Línea de investigación priorizada	Robótica automatización y telemática
4	Funciones	Se implementa un sistema de tele operación de bajo coste para controlar un robot humanoide, como primer paso para el desarrollo y estudio del movimiento y la marcha humana. Se construye un traje humano, compuesto por 8 sensores, 6 potenciómetros lineales resistivos en las extremidades inferiores y 2 acelerómetros digitales para los brazos.
5	Conclusiones Relevantes	En este estudio, se presentó la tele operación de un robot MechRc y la implementación de un control de balance no lineal basado en plataformas open-source y open-hardware, obteniendo una solución completa de bajo coste para este tipo de sistemas.

TABLA CCV. RESULTADO DEL ARTÍCULO EP166

#	Descripción	Detalle		
1	Información	Título	Adaptive unified motion control of mobile manipulators	
	bibliográfica	Autor	Víctor Andaluz, Flavio Roberti, Juan Toibero, Ricardo	
			Carelli	
		Referencia	[241]	
		Año	2012	
2	Aplicación	Control algo	orithm: para evaluar experimentalmente la función de	
		evitación de obstáculos.		
3	Área/Línea de			
investigación Robótica automatización y telemática			omatización y telemática	
	priorizada			
4	Funciones	El algoritmo y la estructura de control propuesta es lo suficientemente		
		general com	o para admitir cualquier diseño para la compensación	
dinámica,			ne podría incluir controladores robustos que consideren	
		incertidumbre	es estructurales o cualquier otra dinámica no lineal.	
5	Conclusiones	Este estudio	o, presentó un diseño unificado de controladores de	
	Relevantes	movimiento	para la estabilización de puntos, el seguimiento de	
		trayectorias y	el seguimiento de trayectorias de un manipulador móvil.	

TABLA CCVI. RESULTADO DEL ARTÍCULO EP167

#	Descripción	Detalle		
1	Información bibliográfica	Título	Passivity-based visual feedback control with dynamic compensation of mobile manipulators: Stability and L2-glAn performance analysis	
		Autor	Víctor H. Andaluz, Flavio Roberti, Lucio Salinas, Juan M. Toibero, Ricardo Carelli.	
		Referencia	[242]	
		Año	2014	
2	Aplicación	Visual servoing: para el seguimiento del objeto de destino en movimiento; y objetivos secundarios, logrados aprovechando la redundancia del manipulador móvil.		
3	Área/Línea de investigación priorizada	Robótica automatización y telemática		
4	Funciones	Se supone que el obstáculo está colocado hasta una altura máxima que no interfiere con la cámara de visión, de modo que el efector final puede seguir el objeto de destino incluso cuando la plataforma está evitando el obstáculo.		
5	Conclusiones Relevantes	Este estudio, presentó un controlador visual en 3D basado en la pasividad para manipuladores móviles con configuración ojo en mano.		

TABLA CCVII. RESULTADO DEL ARTÍCULO EP168

#	Descripción	Detalle		
1	Información	Título	Material distribution with mobile robots in an industrial	
	bibliográfica		environment: System design and simulation	
		Autor	Gabriel Grijalva, Danilo Chávez, Oscar Camacho.	
		Referencia	[243]	
		Año	2018	
2	Aplicación	Path planning: para encontrar la ruta más rápida para los robots		
		autónomos en un entorno industrial.		
3	Área/Línea de			
	investigación	Desarrollo industrial + Ciudades inteligentes e inclusivas + Software		
	priorizada	aplicado		

4	Funciones	El sistema predice la ruta más rápida comparando el rendimiento teórico		
		de las rutas más cortas y rápidas. El sistema ha sido probado con el		
		diseño de la línea de montaje de autobuses de MAN en Turquía.		
5	Conclusiones	Este estudio, propuso una metodología para resolver problemas de		
	Relevantes	planificación de rutas, usando un selector de ruta con simulación		
		predictiva es capaz de obtener una ruta más rápida bajo condiciones		
		inesperadas.		

TABLA CCVIII. RESULTADO DEL ARTÍCULO EP169

#	Descripción	Detalle			
1	Información	Título	Incremental scenario representations for autonomous		
	bibliográfica		driving using geometric polygonal primitives		
		Autor	Miguel Oliveira, Víctor Santos, Ángel D. Sappa, Paulo		
			Días, A. Paulo Moreira.		
		Referencia	[244]		
		Año	2016		
2	Aplicación	Reconstruct	ion algorithm: para explorar el uso de Primitivas		
		Geométricas	Poligonales (GPP) para realizar la reconstrucción de		
		escenas.			
3	Área/Línea de				
	investigación	Ciudades inteligentes e inclusivas + Software aplicado			
	priorizada				
4	Funciones	La idea es describir una escena mediante una lista de polígonos de			
		escala macro. La búsqueda del plano de apoyo se realiza en una			
		determinada nube de puntos de entrada P utilizando un procedimiento			
		de Random Sample Consensus (RANSAC), es un método iterativo para			
		estimar parámetros de un modelo matemático a partir de un conjunto			
		de puntos de datos observados.			
5	Conclusiones	Este estudi	o, propuso un enfoque novedoso para producir		
	Relevantes	representacio	ones de escenas utilizando la serie de sensores a bordo de		
		vehículos aut	ónomos.		

TABLA CCIX. RESULTADO DEL ARTÍCULO EP170

#	Descripción	Detalle	
---	-------------	---------	--

1	Información	Título	Incremental texture mapping for autonomous driving
	bibliográfica	Autor	Miguel Oliveira, Víctor Santos, Ángel D. Sappa, Paulo
			Días, A. Paulo Moreira.
		Referencia	[245]
		Año	2016
2	Aplicación	Texture map	pping: aplicando un algoritmo capaz de mapear la textura
		recogida de	los sensores basados en la visión en una descripción
		geométrica	del escenario construida a partir de los datos
		proporcionad	os por los sensores 3D.
3	Área/Línea de		
	investigación	Ciudades inte	eligentes e inclusivas + Software aplicado
	priorizada		
4	Funciones	El algoritmo u	utiliza una triangulación Delaunay restringida para producir
		una malla qu	ue se actualiza mediante una secuencia de operaciones
		especialmente diseñada.	
5	Conclusiones	Este estudio	abordó el problema de cómo crear y actualizar una malla
	Relevantes	triangular. Es	stas mallas se utilizan para el mapeo de texturas de
		superficies e	n 3D, y la entrada son imágenes recogidas de cámaras
		montadas a b	oordo de un vehículo.

TABLA CCX. RESULTADO DEL ARTÍCULO EP171

#	Descripción	Detalle		
1	Información	Título	Towards a robotic knee exoskeleton control based on	
	bibliográfica		human motion intention through EEG and sEMGsignals	
		Autor	A.C. Villa, D. Delisle Rodríguez, A. López, T. Bastos, R.	
			Sagaró, A. Frizera.	
		Referencia	[246]	
		Año	2015	
2	Aplicación	Pattern reco	gnition: para desarrollar un protocolo experimental para	
		identificar pat	trones de control del exoesqueleto de acuerdo con la HMI	
		basada en El	basada en EEG/sEMG.	
3	Área/Línea de			
	investigación	Salud y bienestar + TIC en la salud		
	priorizada			

4	Funciones	Las señales del EEG y de los electroencefalogramas se registran
		durante las siguientes actividades: de pie/sentado y flexión/extensión
		de la rodilla.
5	Conclusiones	Este estudio, analizó la evaluación de la intención de movimiento
	Relevantes	humano (HMI) basada en señales de electroencefalograma (EEG) y
		electromiografía de superficie (sEMG) para el control del exoesqueleto
		de la rodilla como estudio preliminar para la neurorehabilitación de la
		marcha con un sistema robótico híbrido.

TABLA CCXI. RESULTADO DEL ARTÍCULO EP172

#	Descripción	Detalle	
1	Información bibliográfica	Título	A Cloud-Based Architecture for Robotics Virtual Laboratories
	- January Granden	Autor	Raquel Gómez, Karina Real, Jorge Hidalgo.
		Referencia	[247]
		Año	2017
2	Aplicación	Cloud Comp	puting y virtualization: para desarrollar una arquitectura
		de tres capas	s para laboratorios virtuales que utiliza principios básicos
		de Cloud Cor	mputing y virtualización.
3	Área/Línea de		
	investigación	TIC para edu	cación e inclusión
	priorizada		
4	Funciones	Estos laboratorios ofrecen ventajas como flexibilidad, escalabilidad,	
		herramientas	de colaboración y una mejor comunicación entre los
		estudiantes.	
5	Conclusiones	La arquitectu	ra de tres capas para laboratorios virtuales propuesta en
	Relevantes	este trabajo	utiliza principios básicos de Cloud computing y
		virtualización	. Gracias a estas tecnologías, la arquitectura proporciona
		característica	s como tolerancia a fallos, escalabilidad, entre otras.

TABLA CCXII. RESULTADO DEL ARTÍCULO EP173

#	Descripción	Detalle	
1	Información	Título	Virtual Assistant for IoT process management, using a
	bibliográfica		middleware

		Autor	David Chilcañán, Patricio Navas, Milton Escobar.
		Referencia	[248]
		Año	2018
2	Aplicación	Message O	riented Middleware (MOM): para la interconexión de
		dispositivos d	que permite monitorizar el consumo energético doméstico
		de un hogar	(KWH, tarifas a pagar por día, semana, mes) en tiempo
		real.	
3	Área/Línea de		
	investigación	Software apli	cado + Internet de las cosas (IoT) + Ciudades inteligentes
	priorizada	e inclusivas	
4	Funciones	Utilizando un asistente virtual (chatbot) que facilita la Administración y	
		el control de l	los dispositivos eléctricos conectados.
5	Conclusiones	El middlewar	re aplicado en este estudio facilitó la automatización de
	Relevantes	procesos de	hardware y software mediante la integración de MOM
		(Message-ori	ented middleware), permitiendo a los usuarios gestionar y
		monitorizar e	el consumo energético de sus hogares en tiempo real,
		ahorrando tie	empo y recursos.

TABLA CCXIII. RESULTADO DEL ARTÍCULO EP174

#	Descripción	Detalle	
1	Información	Título	Including multi-stroke gesture-based interaction in user
	bibliográfica		interfaces using a model-driven method
		Autor	Otto Parra González, Sergio España, Oscar Pastor.
		Referencia	[249]
		Año	2015
2	Aplicación	Gesture-bas	ed interaction, customised gesture: para desarrollar
		gestUI, un en	foque basado en el modelo para el desarrollo de la interfaz
		de usuario ba	asada en el gesto de múltiples trazos.
3	Área/Línea de		
	investigación	Software aplicado + Economía tecnología y sociedad	
	priorizada		
4	Funciones	Este sistema	a permite modelar gestos, generar automáticamente
		catálogos de	gestos para diferentes plataformas de reconocimiento de
		gestos y probar los gestos por parte del usuario.	
5	Conclusiones	Este estudio, desarrolló gestUl un método basado en modelos para	
	Relevantes	desarrollar in	terfaces de usuario basadas en gestos de múltiples trazos.

TABLA CCXIV. RESULTADO DEL ARTÍCULO EP175

#	Descripción	Detalle	
1	Información	Título	Improving OER Websites for Learners with Disabilities
	bibliográfica	Autor	Rosa Navarrete, Sergio Luján-Mora.
		Referencia	[250]
		Año	2016
2	Aplicación	User Experi	ence: diseñado para mejorar la experiencia del usuario
		(UX) de los e	estudiantes con discapacidad en la interacción dentro de
		este sitio web	para la búsqueda y recuperación de recursos de acuerdo
		con sus nece	sidades y preferencias.
3	Área/Línea de		
	investigación	Software apli	cado + TIC para discapacidades e inclusión social
	priorizada		
4	Funciones	El sitio web de TEA es ofrecer un UX positivo a todos los estudiantes,	
		incluyendo a	aquellos con discapacidades. Para conseguirlo, el diseño
		del sitio web	se basa en la selección de un perfil de usuario que incluya
		consideracion	nes de discapacidad. Además, el usuario puede
		personalizar	las preferencias de visualización y comportamiento de la
		interfaz. Este	e perfil completo afecta no sólo a la disposición de la
		interfaz, sino también a la selección de recursos adecuados para el	
		usuario.	
5	Conclusiones		udio, presentamos un sitio web de REA diseñado para
	Relevantes	mejorar la e	experiencia del usuario (UX) de los estudiantes con
		discapacidad	en la interacción dentro de este sitio web

TABLA CCXV. RESULTADO DEL ARTÍCULO EP176

#	Descripción	Detalle	
1	Información	Título	Facial Emotion Analysis in Down's syndrome children in
	bibliográfica		classroom
		Autor	Pablo Torres-Carrión, Carina González-González,
			Alberto Mora Carreño.
		Referencia	[251]
		Año	2015

2	Aplicación	HCI, affective computing: para el reconocimiento de las emociones se
		lleva a cabo principalmente en las expresiones faciales, la entonación
		de la voz y los rasgos gestuales.
3	Área/Línea de	
	investigación	Software aplicado + TIC para discapacidades e inclusión social
	priorizada	
4	Funciones	Sus singularidades son consideradas a través de recursos de
		aprendizaje personalizados, y la interacción con Kinect HCI, y la
		plataforma Tango: H. En este primer momento realizamos una
		interacción inicial, dando como resultado imágenes de vídeo de la
		interacción, y una evaluación subjetiva de las emociones a través de
		una extensión de EMODIANA.
5	Conclusiones	En este estudio se presentó un avance de un proyecto de investigación,
	Relevantes	con especial atención a los niños con Síndrome de Down (SD).

TABLA CCXVI. RESULTADO DEL ARTÍCULO EP177

#	Descripción	Detalle	
1	Información bibliográfica	Título	Usabilidad Web: situación actual de los portales Web de las Universidades de Ecuador
	_	Autor	Luis Chamba-Eras, Edison Coronel-Romero, Milton Labanda-Jaramillo.
		Referencia	[252]
		Año	2016
2	Aplicación	Usabilidad, heurísticas: para abordar un estudio heurístico sobre el nivel de usabilidad de los portales Web de 24 universidades que pertenecen a la Red Nacional de Investigación y Educación Ecuatoriana	
		(REDCEDIA-	- ,
3	Área/Línea de investigación priorizada	TIC para edu	cación e inclusión
4	Funciones	Se utilizó la herramienta Prometheus que presta el soporte en la valoración de usabilidad de sitios Web aplicando el sistema de evaluación SIRIUS que integra 10 heurísticas para realizar este proceso.	

5	Conclusiones	Este estudio, aportó la obtención de valores cuantitativos de nivel de
	Relevantes	usabilidad de los portales Web de las universidades que pertenecen a
		la Red Nacional de Investigación y Educación Ecuatoriana.

TABLA CCXVII. RESULTADO DEL ARTÍCULO EP178

#	Descripción	Detalle	
1	Información bibliográfica	Título	Developing Usability Heuristics with PROMETHEUS: A Case Study in Virtual Learning Environments
		Autor	Ismael Figueroa, Cristhy Jiménez, Héctor Allende-Cid, Paul Leger.
		Referencia	[253]
		Año	2019
2	Aplicación	Heuristic evaluation: para evaluar la usabilidad de un producto de software.	
3	Área/Línea de investigación priorizada	TIC para educación e inclusión	
4	Funciones	En este trabajo se aplica la metodología PROMETHEUS, recientemente propuesta por los autores, para desarrollar la heurística de los VLEs: un novedoso conjunto de heurísticas de usabilidad para el dominio de los entornos de aprendizaje virtual.	
5	Conclusiones Relevantes		tudio, se aplicó la metodología PROMETHEUS para heurística VLE para entornos de aprendizaje virtual.

TABLA CCXVIII. RESULTADO DEL ARTÍCULO EP179

#	Descripción	Detalle	
1	Información	Título	Improving the Design of Virtual Learning Environments
	bibliográfica		from a Usability Study
		Autor	Germania Rodríguez Morales, Pablo Torres-Carrión,
			Jennifer Pérez, Luis Peñafiel.
		Referencia	[254]
		Año	2019
2	Aplicación	Usability: pa	ara sustentar el método de consulta con la técnica del
		cuestionario,	siguiendo la propuesta de Ferreira & Sanz en 2009,

		midiendo los parámetros de Satisfacción, Aprendizaje, Operabilidad,
		Atractivo, Contenido y Comunicación.
3	Área/Línea de	
	investigación	TIC para educación e inclusión
	priorizada	
4	Funciones	Se busca diversificar las herramientas que permitan el desarrollo de
		nuevas estrategias de enseñanza, ubicuas y continuas, adaptables a
		las necesidades del usuario.
5	Conclusiones	La implementación permitió un post-estudio de la plataforma,
	Relevantes	determinando que ofrece una variedad de alternativas para integrar
		funcionalidades suficientes y necesarias para mejorar la usabilidad;
		esto se corrobora con pruebas post-implementación que demuestran su
		funcionalidad con resultados superiores al 80% y niveles de aceptación
		superiores al 85%.

TABLA CCXIX. RESULTADO DEL ARTÍCULO EP180

#	Descripción	Detalle	
1	Información	Título	Semi-Automatic Generation of Intelligent Curricula to Facilitate Learning Analytics
	bibliográfica	Autor	Ángel Fiallos, Xavier Ochoa.
		Referencia	[255]
		Año	2019
2	Aplicación	Natural lan	guage processing steps: usando la información
		semiestructui	rada presente en el contenido existente se transforma en
		un gráfico co	nceptual.
3	Área/Línea de	TIC para educación e inclusión	
	investigación		
	priorizada		
4	Funciones	Se aporta un enfoque novedoso para generar semi-automáticamente el	
		Curriculum d	e Intel a través de ontologías extraídas de materiales de
		aprendizaje existentes tales como libros digitales o contenido web.	
5	Conclusiones	Este estudio, contribuyó a resolver la barrera de costos de la	
	Relevantes construcción de ontologías que limita el uso del Currículo		de ontologías que limita el uso del Currículo Inteligente
		para las apl	licaciones de Análisis de Aprendizaje. Con muy poco
		esfuerzo poi	r parte del usuario final, sólo recomendando fuentes

	fidedignas de materiales de aprendizaje como los libros digitales, se	
	puede crear automáticamente una ontología aceptable del dominio.	

TABLA CCXX. RESULTADO DEL ARTÍCULO EP181

#	Descripción	Detalle	
1	Información	Título	Visualizing Authorship and Contribution of Collaborative
	bibliográfica		Writing in e-Learning Environments
		Autor	Johnny Torres, Sixto García, Enrique Peláez.
		Referencia	[256]
		Año	2019
2	Aplicación	Collaborativ	e Writing: para fomentar la interacción entre los
		estudiantes y determinar el nivel de contribución de cada estudiante en	
		el documento).
3	Área/Línea de		
	investigación	TIC para educación e inclusión	
	priorizada		
4	Funciones	Se describió un marco analítico para medir y visualizar la contribución	
		de la escritura colaborativa.	
5	Conclusiones	Este estudio	o, generó la plena comprensión de los documentos,
	Relevantes	especialment	te de la calidad asociada a ellos, esto dio muchos
		beneficios en	el ámbito educativo.

TABLA CCXXI. RESULTADO DEL ARTÍCULO EP182

#	Descripción	Detalle	
1	Información	Título	Semantic Architecture for the Analysis of the Academic
	bibliográfica		and Occupational Profiles Based on Competencies
		Autor	Alexandra González Eras, José Aguilar.
		Referencia	[257]
		Año	2015
2	Aplicación	Natural language processing, similarity calculation: para determinar	
		las diferencias entre las competencias profesionales y educativas.	

3	Área/Línea de investigación priorizada	TIC para educación e inclusión
4	Funciones	Los patrones lingüísticos permiten considerar las variaciones de competencias que se encuentran en los textos, lo que constituye una ventaja de nuestro modelo respecto a trabajos anteriores basados en ontologías. Los resultados preliminares obtenidos en el proceso de comparación son alentadores, ya que detecta la similitud (sinonimia) y la disimilitud de los individuos (representan el conocimiento) del trabajo y las ontologías académicas, utilizando tesauro especializado.
5	Conclusiones Relevantes	Este estudio, presentó un modelo para comparar los perfiles de competencias, utilizando los patrones lingüísticos de conocimientos y habilidades, a través de una medida de similitud compuesta por una parte léxica y otra taxonómica.

TABLA CCXXII. RESULTADO DEL ARTÍCULO EP183

#	Descripción	Detalle	
1	Información	Título	OpenChatBotUNL: Proposal for the execution platform of
	bibliográfica		conversational agents
		Autor	José Luis Granda, Luis Chamba Eras, Milton Labanda
			Jaramillo, Edison Coronel Romero, René Guamán
			Quinche, Carlos Maldonado Ortega.
		Referencia	[258]
		Año	2019
2	Aplicación	Agentes Co	onversacionales (ChatBots): se plantea como una
		alternativa a	las plataformas de implementación y ejecución (SDKs).
3	Área/Línea de	TIC para educación e inclusión	
	investigación		
	priorizada		
4	Funciones	Integra en una arquitectura algunos paquetes de software como el	
		protocolo Mi	PP, penfire, martinbigio chatterbot, Python ChatterBot,
		como sopor	te para la infraestructura de comunicación, gestión,
		monitoreo e i	nteligencia artificial.
5	Conclusiones	Este estudio, dispuso de una plataforma de ejecución de Agen	
	Relevantes	Conversacionales (ChatBots) implementada sobre softw	
		Source, prov	eída desde la academia, eso representa una oportunidad

	para propender a la innovación transparentando la complejidad de los
	componentes de la plataforma de ejecución.

TABLA CCXXIII. RESULTADO DEL ARTÍCULO EP184

#	Descripción	Detalle	
1	Información	Título	Experts Agents in PEM Fuel Cell Control
	bibliográfica	Autor	Wilton Agila, Ricardo Cajo, Douglas Plaza.
		Referencia	[259]
		Año	2015
2	Aplicación	Perception a	ind control algorithms: para desarrollar una arquitectura
		utilizando info	ormación sensorial y de contexto.
3	Área/Línea de		
	investigación	TIC para edu	cación e inclusión
	priorizada		
4	Funciones	Los valores del estado de funcionamiento de la pila corresponden a los	
		siguientes parámetros: tensión delta (V), tensión oscilatoria (v) y	
		pendiente delta (p), estos parámetros están relacionados con las	
		variables lingüísticas de entrada y con el algoritmo de estimación del	
		estado basado en el árbol de decisión difuso e implementado en el	
		agente UPDATE STATUS.	
5	Conclusiones	Este estudio, presentó la arquitectura de percepción y control basada	
	Relevantes	en agentes expertos posee una jerarquía de niveles con diferentes	
		grados de abstracción y ventanas temporales. En el que se observa la	
		integración entre diferentes agentes, técnicas y modelos: control	
		clásico, control cualitativo basado en el conocimiento experto, control	
		de supervisió	n.

TABLA CCXXIV. RESULTADO DEL ARTÍCULO EP185

#	Descripción	Detalle	
1	Información	Título	An expert system to provide sexual and reproductive
	bibliográfica		health educational contents for young deaf wom

		Autor	C. Oyola Flores, Y. Robles Bykbaev, V. Robles Bykbaev,		
			P. Ingavélez, J. Galán Montesdeoca.		
		Referencia	[260]		
		Año	2018		
2	Aplicación	Expert syste	m: con el apoyo del sistema experto, la plataforma genera		
		automáticam	ente un "plan de estudio", que consiste en los subtemas		
		que deben se	er aprendidos por las mujeres.		
3	Área/Línea de				
	investigación	Software aplicado + TIC para discapacitados e inclusión social			
	priorizada				
4	Funciones	Por estas raz	zones, en este trabajo presentamos un ecosistema y una		
		metodología	metodología educativa orientada a mejorar el acceso a los programas		
		de Salud Sexual y Reproductiva (SSR), así como a complementar el			
		currículo aca	démico de ingeniería.		
5	Conclusiones	Este estudio,	desarrolló una propuesta para una plataforma educativa		
	Relevantes	sobre SSR p	ara mujeres sordas. Con el objetivo de sugerir "planes de		
		aprendizaje",	la plataforma utiliza dos elementos esenciales: el perfil de		
		las mujeres y	el nivel de conocimiento que tienen sobre SSR.		

TABLA CCXXV. RESULTADO DEL ARTÍCULO EP186

#	Descripción	Detalle				
1	Información	Título	SPELTA: An expert system to generate therapy plans for			
	bibliográfica		speech and language disorders			
		Autor	Vladimir E. Robles, Martín López, José J. Pazos, Daysi			
			Arévalo.			
		Referencia	[261]			
		Año	2015			
2	Aplicación	Expert syste	m: diseñado para brindar apoyo en esa labor mediante la			
		generación a	utomática de planes terapéuticos que incluyen actividades			
		semestrales	en las áreas de audición, estructura y función oral,			
		formulación I	lingüística, lenguaje expresivo + articulación y lenguaje			
		receptivo.				

3	Área/Línea de	
	investigación	Software aplicado + Salud y bienestar
	priorizada	
4	Funciones	El sistema se basa en la implementación del algoritmo Partition Around
		Medoids (PAM) para generar grupos de perfiles de sujetos con dos
		niveles de granularidad, primero considerando términos diagnósticos y
		condiciones médicas generales, y luego considerando las habilidades
		de comunicación específicas afectadas.
5	Conclusiones	Este estudio, presentó un sistema experto que genera planes de terapia
	Relevantes	para personas con trastornos del habla y lenguaje, manejando datos
		médicos, datos de desarrollo cognitivo y los resultados de 102 pruebas
		de habilidades del habla y lenguaje.

TABLA CCXXVI. RESULTADO DEL ARTÍCULO EP187

#	Descripción	Detalle			
1	Información	Título	Dynamic profiles using sentiment analysis and twitter		
	bibliográfica		data for voting advice applications		
		Autor	Luis Terán, José Mancera.		
		Referencia	[262]		
		Año	2019		
2	Aplicación	Sentiment a	inalysis: para centrarse en la implementación de perfiles		
		dinámicos de	candidatos utilizando datos de Twitter y como un elemento		
		adicional a la generación de perfiles estáticos de solicitud			
		asesoramien	to electoral (VAAs).		
3	Área/Línea de				
	investigación	Seguridad de	Seguridad de la información		
	priorizada				
4	Funciones	La implemer	ntación de un elemento dinámico para las VAAs podría		
		ayudar a mit	tigar el efecto de las recomendaciones sesgadas dadas		
		durante la c	construcción de los perfiles de los candidatos y de los		
		partidos.			
5	Conclusiones	Este estudio	, presenta una extensión de una VAA, implementada en el		
	Relevantes	evantes marco del proyecto Participa Inteligente (PI), una plataforma			
		sociales dise	ñada para las elecciones nacionales ecuatorianas de 2017.		

TABLA CCXXVII. RESULTADO DEL ARTÍCULO EP188

#	Descripción	Detalle			
1	Información	Título	Aplicación de Algoritmos Genéticos en la Ingeniería del		
	bibliográfica		Software: Revisión Sistemática del Estado del Arte		
		Autor	Milton Darío Quizhpe Villavicencio, Pablo Fernando		
			Ordoñez Ordoñez.		
		Referencia	[263]		
		Año	2017		
2	Aplicación	Revisión sis	temática del estado del arte: para la aplicación de los		
		algoritmos ge	enéticos en la Ingeniería del software		
3	Área/Línea de				
	investigación	TIC en la educación e inclusión + Software aplicado			
	priorizada				
4	Funciones	Los resultados que se muestran están basados en el análisis de 20			
		documentos	documentos los mismos que se obtuvieron de un total de 127, luego de		
		pasar por un	pasar por un protocolo de Revisión y selección ya que son los que se		
		encuentran m	nás acorde con el tema de investigación.		
5	Conclusiones	Este estudio	o, realizó el análisis de estudios primarios que son		
	Relevantes	específicos y	que ofrecen una respuesta clara sobre los problemas que		
		ha resuelto la aplicación de algoritmos genéticos. Así mismo se puede			
		definir que su	definir que su aplicación permite la optimización de varias etapas que		
		se definen en	se definen en la ingeniería del software, además que las tecnologías en		
		las que se p	las que se pueden ejecutar estos algoritmos no son limitadas o no		
		muestran res	tricciones.		

TABLA CCXXVIII. RESULTADO DEL ARTÍCULO EP189

#	Descripción	Detalle	
1	Información	Título	Fault diagnosis in spur gears based on genetic algorithm
	bibliográfica		and random forest
		Autor	Mariela Cerrada, Grover Zurita, Diego Cabrera, René-
			Vinicio Sánchez, Mariano Artés, Chuan Li.
		Referencia	[264]

		Año	2015			
2	Aplicación	Genetic algo	orithms and a classifier based on random forest: El			
		sistema de d	iagnóstico se realiza mediante algoritmos genéticos y un			
		clasificador b	asado en bosque aleatorio, en un entorno supervisado.			
3	Área/Línea de					
	investigación	Desarrollo in	dustrial + TIC para educación e inclusión			
	priorizada					
4	Funciones	Esta sección	se presenta el desarrollo de nuestro enfoque para la			
		selección de	atributos, también llamado selección de características.			
		Una vez obte	Una vez obtenido el conjunto de datos en el proceso de extracción de			
		característica	características anterior, la fase de formación se realiza utilizando las			
		librerías de	GA y RF disponibles en Matlab. Estas librerías tienen			
		opciones par	a personalizar nuestras propias aplicaciones, de acuerdo			
		con nuestro	diseño. Que A y X sean el conjunto de atributos y el			
		conjunto de datos, respectivamente. El conjunto A es A 1/4 fa1; a2;;				
		un g donde a	ij es un atributo y el vector xi en el conjunto de datos es xi			
		1⁄4 fxi1 ; xi2 ;	; xin g.			
5	Conclusiones	Este estudio	construyó un sistema robusto para el diagnóstico de fallas			
	Relevantes	multiclase er	multiclase en engranajes rectos, seleccionando el mejor conjunto de			
		parámetros	parámetros de condición en los dominios de tiempo, frecuencia y			
		frecuencia de	e tiempo, que se extraen de las señales de vibración.			

TABLA CCXXIX. RESULTADO DEL ARTÍCULO EP190

#	Descripción	Detalle					
1	Información	Título	ulo Input variable selection with a simple genetic algorithm				
	bibliográfica		for conceptual species distribution models: A case study of river pollution in Ecuador				
		Autor	Autor Sacha Gobeyn, Martin Volk, Luis Domínguez-Granda, Peter L.M. Goethals.				
		Referencia [265]					
		Año	2017				
2	Aplicación	Simple gene	etic algorithm (SGA): para identificar los MDF de buen				
		desempeño p	por medio de una selección de variables de entrada (IVS).				
3	Área/Línea de						
	investigación	Ambiente bio	diversidad y cambio climático + Software aplicado				
	priorizada						

4	Funciones	Un análisis de 14 taxones de macro invertebrados muestra que la SGA
		es capaz de identificar los MDF de buen desempeño. Se observa que
		la incertidumbre sobre la estructura del modelo es relativamente
		grande.
5	Conclusiones	Este estudio, mostró que un simple algoritmo genético (SGA), un tipo
	Relevantes	de algoritmo evolutivo (EA), es una herramienta adecuada para realizar
		IVS para SDMs basados en la idoneidad del hábitat y en la teoría de
		nicho y filtro.

TABLA CCXXX. RESULTADO DEL ARTÍCULO EP191

#	Descripción	Detalle				
1	Información	Título	Hybrid optimization proposal for the design of collective			
	bibliográfica		on-rotation operating irrigation networks			
		Autor	C. Mireya Lapo, Rafael Pérez García, Joaquín Izquierdo			
			David Ayala Cabrera.			
		Referencia	[266]			
		Año	2017			
2	Aplicación	Genetic Algorithms (GA): La propuesta se basa en un modelo híbrido				
		de optimización, que incluye la Programación Lineal (LP) y los				
		Algoritmos G	enéticos (GA).			
3	Área/Línea de					
	investigación	Ambiente biodiversidad y cambio climático				
	priorizada					
4	Funciones	El método se aplica a una red de riego para comprobar su eficacia y				
		minimizar los costes totales de inversión en tuberías.				
5	Conclusiones	Este estudio	propuso una metodología para el diseño óptimo de			
	Relevantes	sistemas de r	riego por turnos de trabajo colectivo.			

ANEXO 3: PROYECTO DE TRABAJO DE TITULACIÓN

UNIVERSIDAD NACIONAL DE LOJA

Facultad de Energía, las Industrias y los Recursos Naturales No Renovables

CARRERA DE INGENIERÍA EN SISTEMAS

"Revisión Sistemática de Literatura: Estado actual de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador"

Autor:

• Miguel Antonio Cabrera Sarango

Asesor académico:

• Ing. Luis Antonio Chamba Eras

LOJA-ECUADOR 2018

Índice

A.	Tema	396
В.	Problemática	396
1	. Situación problemática	396
2	. Problema de investigación	400
С.	Justificación	400
D.	Objetivos	401
1	. Objetivo General	401
2	. Objetivos específicos	401
E.	Alcance	401
F.	Marco Teórico	402
G.	Metodología	410
Н.	Cronograma	412
I.	Presupuesto y financiamiento	413
I.	Bibliografía	413

Tabla o	de .	Figu	ras
---------	------	------	-----

Fig. 1. Proceso de transformación digital en entornos universitarios [18]. 406

A. Tema

Revisión sistemática de literatura: Estado actual de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador.

B. Problemática

1. Situación problemática

Uno de los sueños más anhelados por la ciencia, es el de lograr máquinas o robots inteligentes. Ramón Llull, por ejemplo, expresó en su Ars Magna, la idea de que el razonamiento podría implementarse de manera artificial en una máquina [19]. Más tarde Alan Turing se aventuró a manifestarse acerca de cuándo podría decirse que se habían construido máquinas que, efectivamente, pensaban. En 1950 Turing publica en la revista Mind su artículo "Computing Machinery and Intelligence", que fue el principio de una de las áreas de la informática que hoy conocemos como inteligencia artificial (IA). El artículo empezaba diciendo: "Me propongo examinar la cuestión: ¿Pueden pensar las máquinas?" [20]. Turing propuso a la comunidad científica la teoría de que algún día las máquinas podrían imitar la inteligencia humana y que la misma sea indistinguible por el hombre [21]. Desde la década de 1950, el punto de referencia para la IA ha sido el test de Turing, que requiere que un ser humano sea incapaz de distinguir una máquina de otro humano en conversaciones y situaciones del mundo real. Conociendo un conjunto muy abierto de campos de aplicación de la IA, citando algunos: la IA en la medicina, que incluye la interpretación de imágenes médicas, diagnóstico, sistemas expertos para ayudar a los médicos, la monitorización y control en las unidades de cuidados intensivos, diseño de prótesis, diseño de fármacos, sistemas tutores inteligentes para diversos aspectos de la medicina. La IA en aspectos de la ingeniería: diagnóstico de fallos, sistemas inteligentes de control, sistemas inteligentes de fabricación, ayuda inteligente al diseño, sistemas integrados de ventas, diseño, producción, mantenimiento, herramientas de configuración expertas (por ejemplo, garantizando que el personal de ventas no venda un sistema que no funciona). La AI en la ingeniería de software incluye síntesis de programas, verificación, depuración, prueba y monitorización de software. La IA en las matemáticas: diseño de herramientas para ayudar con distintas clases de funciones matemáticas, ahora tan utilizadas que ya no se reconocen como productos de la IA. La IA en la biología: hay muchos problemas complicados en biología donde se están desarrollando sistemas informáticos más o menos inteligentes, por ejemplo, análisis de ADN, predicción de la estructura de plegado de moléculas complejas, la predicción, la elaboración de modelos de procesos biológicos, evolución, desarrollo de embriones, comportamientos de los distintos organismos. La IA en la arquitectura, el diseño urbano, la gestión del tráfico: herramientas para ayudar a resolver problemas de diseño que presentan múltiples restricciones, ayudar a predecir el comportamiento

de las personas en los nuevos entornos, herramientas para analizar los patrones de los fenómenos observados. La IA en la educación: incluye diversos tipos de sistemas tutores inteligentes y sistemas de gestión de estudiantes. Aplicaciones particulares incluyen diagnóstico de lagunas en los conocimientos del estudiante, diversos tipos de tutores de ejercicios y prácticas, marcado automático de ejercicios de programación, entre otros¹¹³. El potencial de la IA para la educación sigue sin explotarse, pero las instituciones pueden fijarse en los desarrollos en el sector de consumo. Algunos temen, sin embargo, que el campo esté avanzando más rápidamente que la comprensión que la gente tiene de él. Por naturaleza, la IA es compleja e ininteligible en su funcionamiento, por lo que hay una necesidad de interfaces que aclaren cómo funciona para aumentar la confianza de los usuarios. En la educación superior, las preocupaciones en torno a las posibilidades de los tutores virtuales y las herramientas de aprendizaje adaptativo más sofisticadas giran habitualmente sobre el tema de que la tecnología, por más humana que sea, no puede ni debe reemplazar a los docentes. Esto hace que la IA sea una tecnología prometedora para la educación superior, sobre todo porque la enseñanza y el aprendizaje tienen lugar cada vez más en línea [20], [267].

El Foro Económico Mundial cita como preocupación principal los prejuicios aprendidos, como el racismo, que cuestionan la capacidad de los seres humanos para prevenir tales consecuencias no deseadas¹¹⁴. A medida que los defensores de la IA se adentran en estos temas, las universidades son incubadoras vitales para el desarrollo de nuevas tecnologías facilitadoras. El Laboratorio de Ciencias de la Computación e Inteligencia Artificial del MIT creó recientemente un algoritmo de aprendizaje profundo que observa imágenes fijas y luego crea videos breves que simulan posibles eventos futuros¹¹⁵. En Suiza, el Laboratorio de IA de la Universidad de Zurich desarrolló Roboy, un robot humanoide con articulaciones y tendones parecidos a los de la vida real que impulsó muchas actividades de seguimiento; a través del proyecto del cerebro humano, por ejemplo, científicos y profesores están simulando cerebros humanos para robots¹¹⁶. Investigadores de la Universidad Libre de Bruselas están investigando cómo los agentes robóticos pueden autoorganizarse los lenguajes, planteando que el significado puede co-evolucionar con el lenguaje [268][269].

Un análisis de datos de Scopus Editor Elsevier llevado a cabo por el Times Higher Education¹¹⁷

113 A. Sloman, "Artificial Intelligence. An illustrative overview."

116 "Hello my name is Roboy.". https://roboy.org/.

^{114 &}quot;Top 9 ethical issues in artificial intelligence | World Economic Forum.".

^{115 &}quot;Ted Adelson | Mt Csail."

¹¹⁷ Evolutionary Linguistics | Vub Artificial Intelligence Lab. (n.d.). Retrieved from https://ai.vub.ac.be

muestra en términos de volúmenes de publicaciones en el campo, a China como el líder mundial con más de 41,000 publicaciones, en segundo lugar, se encuentra Estados Unidos con casi 25,500 publicaciones, seguido por Japón con 11,700 y el Reino Unido con 10,100 artículos en el campo de la IA, publicados entre 2011 y 2015. Sin embargo, en términos de impacto de citas en el campo de la IA, el líder mundial es Suiza, con un impacto del 2.71, seguido por Singapur (2.24) y Hong Kong (2.00)¹¹⁸.

En Ecuador, el CEAACES¹¹⁹ hizo público los resultados de la evaluación de las 54 Universidades y Escuelas Politécnicas del país en diciembre de 2013 (excepto la Universidad de las Fuerzas Armadas ESPE), estas debieron presentar planes de mejoras (las 46 IES ubicadas en las categorías A, B y C), y planes de fortalecimiento institucional (las 8 IES ubicadas en la categoría D) conforme a lo establecido en el "Reglamento para la Determinación de resultados del Proceso de Evaluación, Acreditación y Categorización de Universidades y Escuelas Politécnicas y de su Situación Académica e Institucional".

En la Universidad Técnica Particular de Loja, las áreas de investigación están integradas por departamentos responsables de la generación, transmisión y aplicación de conocimientos de una disciplina científica. Dentro del Departamento de Ciencias de la Computación y Electrónica, se encuentran trabajos relacionados con el desarrollo de IA, bajo responsabilidad de Cordero Zambrano Jorge, Mg¹²⁰. El grupo de investigación en Interacción Persona Computador para atención a las personas con discapacidades (i+IPC), investiga en tecnologías para establecer ambientes de clase inteligentes, reconocimiento de emociones, chat de respuesta automática, personalización de recursos didácticos, y plataformas de interacción natural en 2D y 3D, como áreas emergentes para la educación¹²¹.

La Universidad Nacional de Loja (UNL), existe la Dirección de investigación. Esta es, la entidad organizadora, promotora y evaluadora de los procesos de investigación científica, tecnológica y de innovación de la UNL. A través, de las líneas de investigación científica, desarrollo tecnológico e innovación, direccionan y promueven la generación de conocimiento científico, base para la innovación tecnológica y la transferencia de conocimientos. Dentro de las líneas de investigación se tiene: Energía, Industrias y Recursos naturales No renovables 122 que se encuentra en el área de conocimiento vinculada a la IA. El Grupo de Investigación en Tecnologías de la Información y Comunicación (GITIC), es un grupo multidisciplinario que promueve y realiza actividades de

120 "Departamento de Ciencias de la Computación y Electrónica | Investigación.". https://investigacion.utpl.edu.ec/computacion_electronica.

398

^{118 &}quot;Estas son las universidades líderes en inteligencia artificial". https://observatorio.itesm.mx/edu-news.

^{119 &}quot;Transparencia - CEAACES." http://ceaaces.gob.ec/web/ceaaces/

^{121 &}quot;Inteligencia artificial al servicio del aprendizaje - Cultura Científica - UTPL.". https://culturacientifica.utpl.edu.ec

^{122 &}quot;Investigación | Universidad Nacional de Loja.". http://unl.edu.ec/investigacion/inicio-investigacion.

I+D+i en el ámbito de las Tecnologías de la Información y Comunicación, adscrito a la Carrera de Ingeniería en Sistemas (CIS) de la Facultad de Energía, las Industrias y los Recursos Naturales No Renovables. Actualmente, el GITIC, cuenta con líneas de investigación, en particular la línea de IA en educación y está relacionada directamente con el Área de la Computación. También cuenta con Grupos Asociados, como son: Grupo de Investigación (GI) TEPUY, este grupo está compuesto por investigadores e ingenieros de varios campos de investigación asociados con aplicaciones computacionales, utilizando la IA como la herramienta principal para abordar problemas en varios dominios. Y el GI GALAN, es un Grupo de Entornos de Enseñanza Adaptativos, de la Universidad del País Vasco UPV/EHU¹²³.

Las razones para realizar esta SLR son diversas, como por ejemplo la vinculación de la IA con Universidades y formar redes de colaboración, en el XVI Congreso Iberoamericano de IA (IBERAMIA2018)¹²⁴, que se celebrará en Trujillo (Perú) del 13 al 16 de noviembre de 2018, organizado por la Universidad Nacional de Trujillo y la Sociedad Peruana de IA, aceptará propuestas sobre temas principales de IA, así como trabajos transversales novedosos en áreas relacionadas. Por nombrar algunos:

- Ingeniería del Conocimiento, Representación del Conocimiento y Razonamiento bajo Incertidumbre.
- Tecnología de Agentes y Sistemas Multi Agentes.
- Heurística y Meta heurística, Robótica.
- Procesamiento del lenguaje natural, Visión por computador, Reconocimiento de patrones.
- IA en Educación, Computación Afectiva e Interacción Humano-Computadora.
- Inteligencia ambiental, Humanos y IA, Teoría de Juegos y Entretenimiento Interactivo, La IA y la Web.
- Machine Learning and Deep Learning, Big Data, Knowledge Discovery, Data Mining, entre otros.

En Ecuador, no existe una Asociación de IA que vincule el estado del arte de la investigación y los desarrollos en el área de IA con las Instituciones de Educación Superior. Resulta oportuno indicar, que existen capítulos técnicos de IEEE Sección Ecuador, es la comunidad más activa en el área de tecnología en el Ecuador, con más de 1000 miembros a nivel nacional distribuidos en capítulos técnicos y ramas estudiantiles en 22 Instituciones de Educación Superior del País¹²⁵.

En efecto, el capítulo técnico que mejor se vincula en el área de IA es, el Capítulo de Inteligencia Computacional (CIS) de la Sección IEEE Ecuador, y que se encuentra dentro de las líneas de

-

^{123 &}quot;Gitic- Unl.". https://giticunl.github.io/quienes.html.

^{124 &}quot;Iberamia'2018 – 13-16, Noviembre'2018. Trujillo, Perú.". http://www.iberamia.org/iberamia/iberamia2018.

^{125 &}quot;IEEE Sección Ecuador.". http://sites.ieee.org/ecuador.

trabajo del IEEE ETCM 2018. El CIS, ofrece la oportunidad de discutir el estado del arte de la investigación y los desarrollos en Inteligencia Computacional (Redes Neuronales, Lógica Difusa y Computación Evolutiva), así como compartir el conocimiento sobre Inteligencia Computacional mediante la presentación de algoritmos, modelos matemáticos y su aplicación en diferentes áreas, tales como reconocimiento de patrones, minería de datos, astronomía, ciencia e ingeniería biomédica, procesamiento de señales, inteligencia de negocios, entre otras.

Es evidente entonces, explorar estos capítulos técnicos para identificar lo que realizan los miembros de estos capítulos y la producción científica realizada por los investigadores referentes, que publican con temas de IA. Según se ha visto a nivel de Instituciones de Educación Superior en Ecuador, algunos grupos de investigación e investigadores por propia iniciativa han explorado, descubriendo y trabajando en distintas áreas de investigación para relacionarlos con trabajos de IA. Lo anterior es reforzado por el impacto prometedor de la IA en un futuro cercano en las Instituciones de Educación Superior.

Además, al realizar la SRL, se puede focalizar la importancia de conocer como es el estado actual de la IA en las Instituciones de Educación Superior de Ecuador.

2. Problema de investigación

Luego de identificar la situación problemática sobre el tema en estudio, se cree conveniente realizar la Revisión Sistemática de Literatura de la Situación Actual de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador.

Por ello se plantea dar respuesta al siguiente problema de investigación:

¿Cuál es la situación actual de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador?

C. Justificación

El desarrollo del presente Trabajo de Titulación (TT), tiene como finalidad el Análisis del estado actual de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador. Además, el presente TT permitirá adquirir nuevos conocimientos de Revisión Sistemática de Literatura (SLR), de esta manera se reforzará y aplicará los estudios en el transcurso de la formación como Ingeniero en Sistemas. Para la elaboración del TT, se cuenta con los recursos tecnológicos y económicos propicios para investigación, al ser un trabajo de investigación se utiliza recursos que no atenta con el medio ambiente.

Como ya se ha aclarado, la SLR es de carácter investigativo brindando un aporte bibliográfico significativo a la sociedad en general. La Universidad Nacional de Loja cuenta con algunas líneas

de Investigación entre ellas: Energía, Industrias y Recursos Naturales no Renovables, refiriendo específicamente la Carrera de Ingeniería en Sistemas, la cual tiene algunas líneas de Investigación vinculándose directamente con este TT, estas son: Informática Educativa Inteligente, Sistemas Inteligentes. Al contar con un aporte bibliográfico como es la SRL, se permite observar la importancia de aplicar las TIC en el sector académico en las Instituciones de Educación Superior. De los anteriores planteamientos, se deduce un ámbito muy importante, la transformación digital, está desarrollando una cultura en las Universidades como organizaciones de servicios a los estudiantes y a la sociedad en general [270]. Ofreciendo servicios que brindan los grupos de investigación, las carreras, los profesores a los estudiantes. Además, las universidades tienen otro grupo importante de usuarios en los demandantes de formación permanente. Este es un mercado importante al que las tecnologías digitales aportan la capacidad de aprender en cualquier momento y en cualquier lugar [270]. En efecto, este TT permitirá vincular la transformación digital, identificando esos grupos de investigación y los profesores, indicando proyectos relacionados en el campo presencial, virtual o semipresencial de las Instituciones de Educación Superior en Ecuador. En ese mismo sentido, la SLR se vinculará con la transformación digital, explorando e indicando que es lo que han hecho los investigadores, como se han vinculado con proyectos de investigación, indicará las ofertas para programas de maestrías, programas de doctorado y las pasantías u actividades pre profesionales para estudiantes.

D. Objetivos

1. Objetivo General

 Desarrollar una revisión sistemática de literatura sobre el estado actual de la Inteligencia Artificial en las Instituciones de Educación Superior del Ecuador.

2. Objetivos específicos

- Identificar una metodología de revisión sistemática de literatura, para su uso en el campo de la Ingeniería.
- Ejecutar la revisión sistemática de literatura con la metodología seleccionada.

E. Alcance

El presente Trabajo de Titulación (TT) se desarrollará en un tiempo de 400 horas. El foco del TT se encuentra en el análisis e identificación actual sobre la Inteligencia Artificial en las Universidades del Ecuador, por lo que se tiene que la información a utilizar será desde el año 2010 hasta el año 2018.

A continuación, se detallan las fases y las actividades estimadas para el desarrollo del TT.

- Identificar una metodología de revisión sistemática de literatura, para su uso en el campo de la Ingeniería.
 - Establecer métricas para la revisión y selección de la metodología de SRL.
 - Búsqueda de información relacionada con la metodología de SLR para la ingeniería.
 - Analizar las metodologías de SLR seleccionadas en base métricas planteadas.
 - Elaborar una tabla comparativa de metodología de SLR relacionados con el campo de la ingeniería.
- Ejecutar la revisión sistemática de literatura con la metodología seleccionada.
 - Definir los términos de búsqueda
 - Identificar las bases de datos y motores de búsqueda
 - Aplicar filtros de búsqueda para la inclusión y exclusión
 - Evaluar la calidad de los resultados
 - Reunir los resultados más sobresalientes para su análisis
 - Extracción de los datos
 - Escribir los resultados

F. Marco Teórico

En el siguiente apartado se presenta la base teórica para el TT. Para ello se dará una descripción general de la SRL, para luego seguir con los elementos de la rama de extracción de información presente en el TT. Finalmente, se presenta la metodología que se aplicará al campo de la ingeniería.

Revisión Sistemática de Literatura

Las revisiones de literatura son una componente fundamental del método científico, las revisiones de literatura tienen como fin resumir, compilar, criticar y sintetizar la investigación existente sobre un área temática o fenómeno de interés [271], [272] usando un proceso de búsqueda, catalogación, ordenamiento, análisis, critica y síntesis; las revisiones de literatura son contribuciones al conocimiento actual ya que sus hallazgos son únicamente obtenidos cuando la literatura más relevante es analizada como un todo y no como la simple lectura de documentos aislados; en este sentido, las revisiones de literatura pueden clarificar el estado del arte [271], identificar tendencias de investigación [271], [14], dar soporte para nuevas investigaciones [14], identificar variables importantes [273], establecer la importancia de un problema de investigación o fenómeno de interés [273], identificar puntos de controversia [272], recopilar evidencias que apoyen o contradigan las hipótesis actuales sobre un fenómeno de interés [14] y generar nuevas hipótesis [14]. La metodología de revisión sistemática de literatura (SLR) surge originalmente a partir del concepto de *evidence-based medicine* (EBM), que se refiere al hecho de que el individuo en su

práctica profesional debe tomar decisiones soportadas en su experiencia, juicio profesional y en la evidencia objetiva más rigurosa que este disponible [14]; de ahí que el énfasis de la actividad investigativa este orientada a demostrar objetiva y transparentemente qué es lo que realmente funciona y que el énfasis de la práctica profesional este orientado a usar dicha información para tomar mejores decisiones. La EBM nace como respuesta a que la mayoría de estudios primarios en medicina y ciencias de la salud carecían de un rigor apropiado, o presentaban resultados contradictorios; y a la dificultad de poder sintetizar adecuadamente grandes volúmenes de evidencia cuestionable [12]; en consecuencia, muchas revisiones de literatura presentaban conclusiones deficientes, inapropiadas o sesgadas [13]. Estas situaciones causaron que la evidencia tomara un rol central en la investigación y el ejercicio profesional [13]. El concepto de EBM fue posteriormente extendido en UK (y otros países), desde la década de los 80s, a la política publica y la práctica profesional (evidence-based policy and practice —EBPP—) pero particularmente se difundió en las ciencias sociales, la educación y la justicia criminal [12]; como consecuencia, se desarrollaron muchas guías y manuales de buenas prácticas [13]. Tanto el concepto y práctica de la EBM como de la EBPP implican la realización de estudios primarios que provean evidencias con altos estándares de rigurosidad, transparencia, calidad y objetividad; recursos para almacenar y hacer disponible la evidencia recolectada a la comunidad científica y profesional; y mecanismos para su sintetización y análisis.

En este contexto, la revisión sistemática de literatura (SLR) entra a jugar un papel fundamental como un mecanismo para recolectar, organizar, evaluar y sintetizar toda la evidencia disponible respecto a un fenómeno de interés, ya sea para mejorar la práctica actual (mostrar que es lo que realmente funciona) o para sugerir nuevas direcciones de investigación. Pero para ello, la revisión de literatura debe cumplir con los mismos estándares de calidad con que se realizan los estudios primarios de la más alta calidad. Es así como emerge la metodología de SLR en respuesta a dicha necesidad. Ya que la EBM se sustenta fundamentalmente en estudios cuantitativos y métodos estadísticos de análisis, el desarrollo de guías para realizar SLRs ha estado fundamentalmente orientado hacia estos fines, y particularmente a la utilización del meta-análisis, que es un procedimiento estadístico para la agregación de los resultados cuantitativos provenientes de varios estudios empíricos, con el fin de inferir estadísticamente resultados más confiables de los que se pueden obtener por la realización de estudios individuales [12], [14].

Claramente el concepto de la EBPP puede ser aplicado en todas las disciplinas profesionales, pero particularmente la ingeniería puede obtener grandes beneficios; esto es especialmente importante en aquellas áreas de rápido desarrollo, tales la computación, la energía y la electrónica, en las cuales los desarrollos conceptuales pueden provenir de forma independiente desde diferentes áreas; esto puede dificultar la búsqueda y recopilación de evidencias. Así mismo, las revisiones

de literatura en la ingeniería son tradicionalmente narrativas —excepto en la ingeniería de software y la política energética— y adolecen de todas las limitantes que ya se han discutido. Dados los beneficios de la EBPP, no resulta extraño que dichas prácticas se hayan extendido a otras disciplinas. Tranfield et al [13] propone el uso de la metodología de SLR en el área de la gestión, discute sus beneficios, y como las diferencias entre dicha área y la medicina pueden afectar el proceso para realizar SLRs. Kitchenham y Charters [14] prepararon unos lineamientos con base en las guías existentes para el desarrollo de SLR en medicina y ciencias sociales, y particularmente en los preparados por el Centre for Reviews and Dissemination (CRD) [15], para que fueran usados por investigadores, profesionales y estudiantes de postgrado en el área de la ingeniería de software en la preparación de revisiones de literatura rigurosas. Mientras que en las ciencias de la vida y la salud existen abundantes estudios que usan la metodología de SLR, existen muy pocos ejemplos en ingeniería -excepto en el campo de la ingeniería de software-. La metodología de SLR ha sido usada para: analizar las herramientas para medir desempeño de construcciones en Nigeria [16]; analizar los problemas de adopción y difusión en sistemas de información, tecnologías de la información y tecnologías de la comunicación [17]; para analizar los métodos de ensamble de redes neuronales artificiales en el pronostico de series de tiempo económicas o financieras [18].

En general, las ingenierías modernas son disciplinas jóvenes en comparación con la medicina, y al igual a como ocurre en la gestión [13], los estudios en estas áreas difícilmente comparten los mismos objetivos o investigan los mismos interrogantes. Es así como para cada tópico particular existe un número relativamente bajo de estudios, posiblemente realizados desde diferentes ópticas; pero más aún, en el caso de estudios cuantitativos, difícilmente se usan los mismos datos experimentales, de tal forma que se hace imposible la agregación de estudios para aumentar la confiabilidad de los resultados. Existen contadas excepciones, en las que se ha recopilado y puesto a disposición de la comunidad científica bases de datos de problemas con el fin de que los resultados de diferentes investigaciones sean comparables; un ejemplo es el *UCI Machine Learning Repository* en el que se pone a disposición de la comunidad más de 280 conjuntos de datos para la experimentación con técnicas de aprendizaje de máquinas; sin embargo, los investigadores no tiene la obligación de usar estos conjuntos de datos. Sin embargo, y a diferencia de muchas de las guías existentes, los lineamientos de Kitchenham y Charters [14] y de Tranfield et al [13] no enfatizan el meta-análisis como una herramienta fundamental debido a que existe poca evidencia empírica cuantitativa en comparación con otras áreas de investigación [14].

Transformación Digital y la Inteligencia Artificial en Institutos de Educación Superior

La digitalización está produciendo cambios en el entorno competitivo de las universidades. Por otro lado, si miramos a los servicios de formación superior que las universidades proporcionan a sus estudiantes es donde los cambios que trae la digitalización parecen tener tintes disruptivos. Esto está obligando a muchas universidades a crear más puntos de contacto digitales con sus estudiantes, actuales y potenciales, como parte de una estrategia multicanal integrada que abarca redes sociales, aplicaciones móviles y espacios web. Además, muchas universidades tradicionales han incorporado a su oferta académica cursos on-line de distintos niveles (grado y post-grado). El mercado global del e-learning sigue creciendo: en 2011 movió 35.600 millones de dólares en todo el mundo (Santamans, 2014; Docebo, 2014). En 2013, 56.200 millones y cerraba 2015 alcanzando los 107.000 millones de dólares (McCue, 2016). En este ámbito de la formación online, la última gran sacudida que ha experimentado la Educación Superior ha sido la aparición de los MOOC - Massive On-Line Open Courses, nacidos como resultado de la tormenta perfecta formada por la confluencia de la crisis económica, el desarrollo de la conectividad digital y la corriente del conocimiento abierto. Desde el punto de vista de las tecnologías digitales, un aspecto a destacar es que los MOOC han traído a primer plano la versión educativa del Big Data, que se reconoce con el nombre de Learning Analytics. De la misma forma, otras tecnologías digitales emergentes como la impresión 3D se están usando ya en la formación universitaria. Así, por ejemplo, se han usado modelos 3D para manipular y estudiar réplicas de objetos frágiles, como antigüedades o fósiles [270].

Como ya se ha aclarado, el proceso de transformación digital conlleva implícitamente un cambio en el modelo de organización. A este efecto, y de manera personalizada para el entorno universitario, se indica en la Fig. 1. Los hitos más esenciales a fin de entender la diferencia entre digitación y digitalización [274].

Fig. 1. Proceso de transformación digital en entornos universitarios [274].

Según se ha citado, es importante observar que la digitalización comporta una transformación en el modelo de negocio y en los servicios en un entorno universitario.

En efecto, la docencia virtual se está reinventando y se nos muestra de multitud de maneras. Conceptos como el ya tradicional e-learning han sido superados por el m-learning y el b-learning. La tecnología ayuda a la impartición de docencia en cualquier momento y lugar y de un modo desasistido. La ubicación de la universidad ya no es un inconveniente para seleccionar una formación. Por otra parte, las universidades están apostando por la generación de MOOCs, con toda su diversidad (nanomoocs, xmooc, cmoocs, transfermoocs, etc.) [274].

En este orden de ideas se puede citar en Ecuador, a la Unidad de Educación Virtual del CEC-EPN, que tiene el objetivo de impulsar el uso de las TIC (Tecnologías de la Información y Comunicación) en los procesos de aprendizaje a través del uso de soluciones de educación virtual basadas en las últimas tecnologías. En el 2015, esta universidad implementó una nueva solución a través de la creación de una nueva plataforma para cursos MOOC (Massive Open Online Course)¹²⁶. En relación con este último, la Escuela Superior Politécnica del Litoral (ESPOL), cuenta con la Plataforma ESPOL Virtual, formando a estudiantes con programas de preparación para Ayudantes de Investigación y con la plataforma para cursos MOOC¹²⁷.

En la ciudad de Loja, la Universidad Técnica Particular de Loja, cuenta con una modalidad de estudio online MOOCs UTPL, oferta Cursos en línea masivos y abiertos para crear auténticas comunidades de aprendizaje, está modalidad de estudios es coordinada por la Dirección de Tecnologías para la Educación y la Dirección de Materiales y Recursos Educativos de

-

^{126 &}quot;Mooc Epn.". https://mooc.virtualepn.edu.ec/

^{127 &}quot;Plataforma Virtual Espol.". https://virtual.espol.edu.ec/.

la Universidad Técnica Particular de Loja – Ecuador. Es una nueva modalidad de formación, que se caracteriza por facilitar el aprendizaje de forma abierta y gratuita, mediante el trabajo colaborativo. Los participantes disponen de material audiovisual diseñado por docentes expertos en las temáticas de los cursos, actividades interactivas, ejercicios para comprobar sus progresos, y cuestionarios para validar el conocimiento adquirido. El modelo de aprendizaje activo se basa en el uso de elementos motivacionales, a través de orientaciones pedagógicas y reconocimiento de logros con medallas o insignias (badges), además se incentiva la interactividad a través del aprendizaje basado en juegos y del uso de redes sociales. Estrategias que fomentan la participación, el logro de objetivos y el cumplimiento de sus expectativas¹²⁸.

Un grupo de investigadores y académicos que, avalados por la Universidad de Standford, publicaron el informe Artificial Intelligence and Life in 2030. Según el estudio, la realidad virtual, el aprendizaje adaptativo, la analítica del aprendizaje (learning analitycs) y la enseñanza online serán habituales en las aulas en tan solo quince años.

En los últimos quince años se han producido avances considerables en la educación. Aplicaciones son ampliamente utilizados por educadores y estudiantes hoy en día, con alguna variación entre los grados K-12 y entornos universitarios. Aunque la educación de calidad siempre requerirá un compromiso activo por maestros humanos, AI promete mejorar la educación en todos los niveles, especialmente mediante proporcionando personalización a escala. Similar al cuidado de la salud, resolver la mejor manera de integrar la interacción humana y el aprendizaje cara a cara con tecnologías prometedoras de IA sigue siendo un reto fundamental. Los robots han sido durante mucho tiempo dispositivos educativos populares, comenzando con los primeros Los kits de Lego Mindstorms se desarrollaron con el MIT Media Lab en la década de 1980. Inteligente Los Sistemas de Tutoría (ITS) para ciencias, matemáticas, lenguaje y otras disciplinas coinciden. estudiantes con tutores de máquinas interactivas. Procesamiento del lenguaje natural, especialmente cuando combinado con el aprendizaje automático y el crowdsourcing, ha impulsado el aprendizaje en línea y permitió a los profesores multiplicar el tamaño de sus aulas al mismo tiempo que abordar las necesidades y estilos de aprendizaje individuales de los estudiantes. Los conjuntos de datos de grandes los sistemas de aprendizaje en línea han impulsado un rápido crecimiento de la analítica de aprendizaje. Sin embargo, las escuelas y universidades han sido lentas en la adopción de tecnologías de IA principalmente debido a la falta de fondos y la falta de pruebas sólidas de que ayudan a los estudiantes a lograr objetivos de aprendizaje. Durante los próximos quince años, en una típica ciudad norteamericana, el uso de tutores inteligentes y otras tecnologías de IA para ayudar a los maestros en el aula y en el hogar es

_

^{128 &}quot;MOOCsUTPL.". https://cursosmooc.utpl.edu.ec/.

probable que se expanda significativamente, al igual que el aprendizaje basado en la virtualización. aplicaciones de la realidad. Sin embargo, es poco probable que los sistemas de aprendizaje informatizados reemplazar la enseñanza humana en las escuelas [275].

Todo lo anterior, relaciona y vincula la IA con la educación en las universidades, el estudio destaca la realidad virtual, la robótica educativa, los sistemas de tutoría inteligente y aprendizaje online o la analítica del aprendizaje como las tecnologías que, con toda probabilidad, ocuparán un lugar destacado en las aulas dentro de quince años. Pero, ¿en qué consisten? ¿Cuál es su nivel de desarrollo en el presente y qué se espera de ellas en el futuro? Este informe Artificial Intelligence and Life in 2030 ofrece algunas pistas 129:

- Realidad virtual: en la actualidad ya se usan entornos de realidad virtual que permiten a
 los alumnos interactuar con distintos ambientes y objetos. Los expertos creen que en 2030
 estos entornos sean más generales y sofisticados, de modo que los estudiantes podrán
 sumergirse en ellos para explorar asignaturas de distintas disciplinas. "La recreación de
 mundos pasados y ficticios será tan popular en el estudio de las artes como en el de otras
 ciencias", señalan.
- Robótica educativa: desde que Lego desarrollara en los años ochenta sus primeros kits de robótica bajo la marca Mindstorms, se han lanzado al mercado numerosos modelos destinados a promover distintas áreas del aprendizaje. Ozobot, Cubelets o Dash and Dot permiten a los alumnos crear y programar sus propios robots a la vez que desarrollan el pensamiento lógico y deductivo y la creatividad. Los expertos, sin embargo, creen que la robótica educativa solo encontrará su sitio en las aulas si se demuestra que, además de motivar a los alumnos, mejora sus resultados académicos.
- Sistemas de tutoría inteligente: el desarrollo de algunas tecnologías de IA, como el reconocimiento automático de habla (RAH) y el procesamiento de lenguajes naturales (PLN), ha facilitado el desarrollo de los sistemas de tutoría inteligente, que han pasado rápidamente del laboratorio al uso real. Estos tutores cognitivos imitan el rol del profesor y guían el aprendizaje y la ejercitación en distintas disciplinas. Ofrecen pistas a los estudiantes cuando están atascados en un problema, les proporcionan un feedback inmediato en función de sus errores o respuestas, e incluso diseñan secuencias de aprendizaje personalizadas para cada alumno. Sus aplicaciones son muchas y se han traducido en distintas herramientas de aprendizaje adaptativo. Por ejemplo, Duolingo, enfocada al aprendizaje de lenguas extranjeras, detecta los errores del estudiante, los corrige y le ayuda a progresar a su ritmo. Los expertos creen que este tipo de herramientas "van a convertirse en uno de los núcleos del proceso de enseñanza en la educación superior ", ya que ayudarán a mantener los costes al dar servicio a un mayor número de alumnos y permitir que estos pasen por la escuela más rápidamente.
- Sistemas de aprendizaje online: el informe califica de "sorprendente" la "explosión de los MOOC y de otros modelos de educación online en todos los niveles educativos". Estos han logrado expandir el tamaño del aula y dar cabida a miles de estudiantes, que pueden ser evaluados más fácilmente gracias a las tecnologías de inteligencia artificial. De hecho, ya existen programas que generan preguntas de manera automática y evalúan preguntas de respuesta corta y abierta. Según el informe, esta tendencia se consolidará y perfeccionará hacia 2030. Y, aunque la educación formal no desaparecerá, los investigadores del estudio creen que "los MOOC y otros tipos de educación online

_

^{129 &}quot;Inteligencia artificial: las tecnologías que cambiarán la educación en 2030 - Aika Educación.".http://www.aikaeducacion.com/tendencias/inteligencia-artificial

- formarán parte del aprendizaje en todos los niveles, desde Secundaria a la universidad", de forma que la educación evolucionará hacia un formato semipresencial o de blended learning.
- Analítica del aprendizaje o learning analytics: esta área, que consiste en la medición, recopilación y análisis de datos de los estudiantes durante el proceso de aprendizaje, se ha visto impulsada por el crecimiento de los MOOC y los sistemas de aprendizaje online, que han actuado como "vehículos naturales" para la recopilación de datos. Esta colaboración podría contribuir a nuevos descubrimientos científicos en el campo de la cognición, y conducir a la mejora del aprendizaje a gran escala. De hecho, en la actualidad, ya se usan tecnologías de inteligencia artificial para analizar la motivación, comportamiento y resultados de los El objetivo de estos estudios es "detectar los errores más comunes de los estudiantes, predecir cuáles están en riesgo de suspenso y proporcionarles una respuesta en tiempo real, lo que está estrechamente ligado a sus resultados". Por otro lado, también se están llevando a cabo investigaciones para "entender mejor los procesos cognitivos implicados en la comprensión, la escritura, ila adquisición de conocimientos y la memoria!", cuyos resultados tendrán aplicación en la práctica educativa y el desarrollo de nuevas tecnologías. De hecho, los expertos consideran que la analítica del aprendizaje acelerará la creación de herramientas para personalizar el aprendizaje.

Trabajos relacionados de Inteligencia Artificial en Institutos de Educación Superior

Desde el año 2014, la Escuela Politécnica Nacional (EPN) ha realizado trabajos muy importantes en IA, se inauguró con éxito el Congreso De Inteligencia Artificial 2014 (CODIA 2014), este evento contó con la organización de la Rama Estudiantil del Institute of Electrical and Electronics Engineers de la Escuela Politécnica Nacional (IEEE-EPN) y el capítulo técnico de Robotics and Automation Society (RAS); en colaboración con el Departamento de Automatización y Control Industrial (DACI), la Red Ecuatoriana De Universidades y Escuelas Politécnicas Para Investigación y Postgrado (REDU), la Unidad de Apoyo al Politécnico Emprendedor (UAPE), y la Agencia Metropolitana de Promoción Económica (CONQUITO). Desde esa fecha hasta la actualidad, en la EPN se ha realizado: Presentación del Libro Inteligencia Artificial. Autor: Dr. Hugo A. Banda Gamboa, Conferencias de IA aplicada a procesos, actualmente en el 2018, seminarios sobre IA¹³⁰.

La Escuela Superior Politécnica del Litoral (ESPOL), cuenta con El Centro de Tecnologías de Información, CTI, renace a finales del 2007 como un Centro de Investigación de la ESPOL. Reestructura su organización, estableciendo 4 Programas de Investigación que abarcan diversas líneas de impacto de las TIC. Estos programas desarrollan proyectos reales que combinan tecnologías emergentes, participación multidisciplinaria y las diferentes dimensiones humanas de la tecnología. CTI está compuesto de varios PhDs, Masters e Ingenieros que realizan proyectos orientados a la computación. A través de estos proyectos, se han presentado servicios para uso

^{130 &}quot;Escuela Politécnica Nacional | Congreso inteligencia artificial.". https://www.epn.edu.ec/congreso.

dentro y fuera de ESPOL¹³¹. La Revista Tecnológica ESPOL – RTE, indica un artículo sobre IA, el cual se denomina: Estimulación de sensopercepciones: Un enfoque educativo basado en inteligencia artificial. En este artículo se presenta la primera etapa de un ecosistema de estimulación de sensopercepciones que se fundamenta en tres módulos independientes y que emplea redes neuronales para estimar el porcentaje de trabajo que se debe realizar con el paciente (niños, jóvenes o adultos) en cada uno de ellos. A fin de iniciar el proceso de validación del modelo se empleó un corpus de 60 casos reales para entrenar la red neuronal. Los resultados iniciales obtenidos son prometedores y permiten establecer los aspectos a mejorar para la implementación del módulo inteligente [38].

Por otro lado, en la Universidad Politécnica Salesiana se presentó los resultados del Grupo de Investigación en Inteligencia Artificial y Tecnologías de Asistencia GI-IATa, proyectos enfocados a mejorar la calidad de vida de las personas con habilidades diferentes, se presentaron proyectos como [37]:

Sistema de inteligencia de soporte a la terapia de lenguaje.

Primer observatorio de accesibilidad web-Ecuador.

Sistema ecuatoriano para el desarrollo de algoritmos de detección de plagio académico.

Proyecto Buenas prácticas de las tecnologías aplicadas en el aprendizaje de niños con discapacidad auditiva.

G. Metodología

Para el desarrollo del presente TT se utilizará algunos métodos y técnicas con la finalidad de recolectar información relevante para la ejecución del mismo.

Las técnicas que se utilizarán son:

Búsqueda exploratoria: Esta técnica indica que se va a inmiscuir, incursionar o indagar sobre un tema, o lugar parcialmente, y en algunas ocasiones totalmente desconocido, por tal motivo se debe de realizar esta clase de investigación para cubrir un terreno amplio en cuanto a argumentos de varias personalidades, de pequeños datos que se pudieses haber recopilado anteriormente, o incluso de experiencias de otros individuos en el tema a tratar¹³².

Estudio del estado del arte: El estado del arte requiere de un análisis hermenéutico y crítico de su objeto de estudio para la transformación de su significado, de manera que le permita superar

^{131 &}quot;CTI Espol.". http://www.cti.espol.edu.ec/nosotros.html.

^{132 &}quot;Beneficios que brinda la investigación exploratoria.". https://www.recursosdeautoayuda.com/investigacion-exploratoria.

la visión de técnica de análisis del conocimiento investigado [49]. Se de analizará la información bibliográfica existente, y así se levantará información útil acerca de la Inteligencia Artificial en las Universidades del Ecuador.

Investigación Bibliográfica: Se caracteriza por la utilización de los datos secundarios como fuente de información. Pretendiendo encontrar soluciones a problemas planteados [50]. Con esta técnica se sustentarán la base teórica de la realización del TT, mediante consultas a: fuentes bibliográficas confiables, textos, revistas indexadas, artículos científicos, casos de éxito, apuntes, documentos varios, entre otros.

Observación Activa: es "la inspección y estudio realizado por el investigador, mediante el empleo de sus propios sentidos, con o sin ayuda de aparatos técnicos, de las cosas o hechos de interés social, tal como son o tienen lugar espontáneamente" [276], [277], también se "consideran que la observación juega un papel muy importante en toda investigación porque le proporciona uno de sus elementos fundamentales; los hechos" [51]. Esta técnica se utilizará para obtener datos reales, con el motivo de conseguir una documentación que sea sustento para una mejor comprensión de la SLR.

H.Cronograma

Actividades	Número de Horas	Mes 1				Mes 2				Mes 3				Mes 4				Mes 5			Mes 6			
	400	1	2	3	4	1	2	3	4	1	2	3		4	1	2	3	4	1	2 3	4	1	2 3	4
Identificar una metodología de revisión sistemática de literatura, para su uso en el campo de la Ingeniería	100			-									Г											
Establecer métricas para la revisión y selección de la metodología de SRL	20																				П			
Búsqueda de información relacionada con la metodología de SLR para la ingeniería	20																							
Analizar las metodología de SLR seleccionadas en base métricas planteadas	40																							
Elaborar una tabla comparativa de metodología de SLR relacionados con el campo de la ingeniería	20																							
Ejecutar la revisión sistemática de literatura con la metodología seleccionada	300																							
Definir los términos de búsqueda	25											Г			T							T		
Identificar las bases de datos y motores de búsqueda	25							П					Г	T			T	T			П			
Aplicar filtros debúsqueda para la inclusión y exclusión	25													I					1			1		
Evaluar la calidad de los resultados	100																							
Reunir los resultados más sobresalientes para su análisis	30												Г	T										
Extracción de los datos	30																		15					
Escribir los resultados	65												Г							Г				

I. Presupuesto y financiamiento

	Talento	Humano	
Rol	Número de Horas	Valor Unitario	Valor Total
Estudiante	400	\$5,00	\$2.000,00
Docente Tutor	48	\$12,50	\$600,00
Profesor de la	384	\$12,50	\$4.800,00
asignatura			
Total			\$7.400,00
	Rubros divulgaci	ón de información	
	Cantidad de Rubros	Valor Unitario	Valor Total
Capacitación	5	\$25,00	\$125,00
Traducciones	3	\$15,00	\$45,00
Viajes a congresos	1	\$250,00	\$250,00
Total	\$420,00		
	Rec	ursos	
	Cantidad	Valor Unitario	Valor Total
Portátil	1	\$1.000,00	\$1.000,00
USB	1	\$20,00	\$14,00
Internet	6	\$26,50	\$159,00
Impresiones	5	\$30,00	\$150,00
Movilización	200	\$1,25	\$250,00
Total	1	•	\$2.573,00
Subtotal	\$10.393,00		
Imprevistos	\$1.039,93		
Total, de gastos	\$10.432,93		

El presupuesto necesario para el desarrollo del TT será asumido por el investigador, por tratarse de una investigación de carácter formativo.

J. Bibliografía

- [1] N. J. Nilsson, Artificial Intelligence: a new synthesis. Morgan Kaufmann Publishers, 1998.
- [2] J. Soto and E. Resumen, "Turing: El hombre que sabía demasiado," vol. 19, pp.

- 110-116, 2009.
- [3] A. M. Turing, "Computing Machinery and Intelligence," Mind, vol. 49, pp. 433–460, 1950.
- [4] A. Becker and H. Giesinger, "Resumen informe horizon Edición 2017 Educación Superior The Nmc Horizon Report: 2017 Higher Education Edition Contenidos," 2017.
- [5] "Evolutionary Linguistics | Vub Artificial Intelligence Lab." [Online]. Available: https://ai.vub.ac.be/research/topics/evolutionary-linguistics.
- [6] "Horizon Report 2017 Higher Education Edition."
- [7] F. Almaraz, A. Maz Machado, and C. López Esteban, Edmetic revista de educación mediática y Tic, vol. 6, no. 1. Verónica Marín Díaz, 2012.
- [8] G. W. Suter, "Review papers are important and worth writing," Environ. Toxicol. Chem., vol. 32, no. 9, pp. 1929–1930, Sep. 2013.
- [9] A. Bolderston, "Writing an Effective Literature Review," J. Med. Imaging Radiat. Sci., vol. 39, no. 2, pp. 86–92, Jun. 2008.
- [10] B. Kitchenham, "Guidelines for performing Systematic Literature Reviews in SE, Kitchenham et al Guidelines for performing Systematic Literature Reviews in Software Engineering," 2007.
- [11] K. Jaidka, C. S. G. Khoo, and J. Na, "Literature review writing: how information is selected and transformed," Aslib Proc., vol. 65, no. 3, pp. 303–325, Mar. 2013.
- [12] Sorrell and Steve, "Improving the evidence base for energy policy: The role of systematic reviews," Energy Policy, vol. 35, no. 3, pp. 1858–1871, 2007.
- [13] D. Tranfield, D. Denyer, and P. Smart, "Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review," 2003.
- [14] U. of Y. Centre for Reviews and Dissemination, "Undertaking systematic reviews of research on effectiveness: CRD's guidance for carrying out or commissioning reviews," 2001.
- [15] H. Koleoso, M. Omirin, Y. Adewunmi, and G. Babawale, "Applicability of existing performance evaluation tools and concepts to the nigerian facilities management practice," Int. J. Strateg. Prop. Manag., vol. 17, no. 4, pp. 361–376, Dec. 2013.
- [16] U. Yogesh K. Dwivedi, Swansea University, U. Michael D. Williams, Swansea University, U. Banita Lal, Nottingham Trent University, and U. Navonil Mustafee, Swansea University, "An Analysis of literature on consumer Adoption and diffusion of Information system/Information technology/Information and communication technology," 2010.
- [17] L. F. Rodríguez, J. D. Velásquez, and C. J. Franco, "A scientific research about the progress of computational intelligence ensemble methods for economic and financial time series prediction," Estudiante, Maestría en Ingeniería, 2008.
- [18] G. de Trabajo, de D. TI, and C.- Tic, "Tic 360o Transformación Digital en la Universidad," 2017.
- [19] A. T. Peter Stone, Rodney Brooks, Erik Brynjolfsson, Ryan Calo, Oren Etzioni, Greg Hager, Julia Hirschberg, Shivaram Kalyanakrishnan, Ece Kamar, Sarit Kraus, Kevin Leyton-Brown, David Parkes, William Press, AnnaLee Saxenian, Julie Shah, Milind Tambe, "Artificial intelligence and life in 2030, estudio de cien Años sobre Inteligencia Artificial: Informe del Panel de Estudio 2015-2016," 2016.
- [20] T. M. Zapata, F. Q. Barbecho, V. R. Bykbaev, and P. I. Guerra, Revista tecnológica., vol. 28, no. 4. Escuela Superior Politécnica del Litoral (Espol), 2015.
- [21] "Grupo de Investigación en Inteligencia Artificial y Tecnologías de Asistencia presenta los resultados de su trabajo Ups." [Online]. Available: https://www.ups.edu.ec.

- [22] Ragnhild Guevara Patiño, "El estado del arte en la investigación: ¿análisis de los conocimientos acumulados o indagación por nuevos sentidos?"
- [23] R. Hernández Sampieri, C. Fernández Collado, and M. del Pilar Baptista Lucio, "Metodología de la investigación, 5ta Ed."
- [24] I. Arroyo Almaraz, "Metodología de la investigación científica en Creatividad publicitaria."
- [25] C. Dawson and G. Martín, "El proyecto fin de carrera en ingeniería informática: Una guía para el estudiante." p. 169, 2002.
- [26] D. B. van. Dalen, W. J. Meyer, O. Muslera, and C. Moyano, Manual de técnica de la investigación educacional. Paidós, 1981.