6. Esercizi di riepilogo

*1.
$$\int (arcsinx + \sqrt{1-x^2})dx$$

*3.
$$\int \frac{1}{\sin^2 x (t \cdot g x + 2)} dx$$

*5.
$$\int \cos^3 2x \cdot \sin 2x dx$$

7.
$$\int \frac{x - \sqrt[4]{x}}{\sqrt{x}} dx$$

*9.
$$\int \frac{arctge^x}{e^{-x}+e^x} dx$$

*11.
$$\int \sin x \cdot \cos x \cdot e^{2x} dx$$

*13.
$$\int \frac{\cos(6x)}{\sin^2(3x) \cdot \cos^2(3x)} dx$$

* 15.
$$\int x^2 \log(1-x^2) dx$$

*17.
$$\int \left(\frac{1}{x(\log x + 2)^2} + \log \sqrt{x}\right) dx$$

19.
$$\int \frac{2x-1}{x^2-3x+2} \, dx$$

* 21.
$$\int \frac{\cos x}{1 + \cos^2 x} dx$$

*23.
$$\int x^2 \log(x+1) dx$$

*25.
$$\int x \cdot arctg \sqrt{x} dx$$

*27.
$$\int \sin^3 x \cdot \cos^4 x dx$$

*29.
$$\int tg^3x \, dx$$

$$31. \int \frac{x^3 - x^2 + x - 3}{6 - 7x + x^2} dx$$

*33.
$$\int \frac{e^{2x+2}}{e^x - e^{2x}} dx$$

*35.
$$\int \frac{1}{\sqrt{8-x^2}} dx$$

*37.
$$\int \frac{1}{\sqrt{8+x^2}} dx$$

*39.
$$\int \frac{1}{x(\log^2 x - 1)} dx$$

*41.
$$\int \frac{\sin^3 x}{1-\cos x} dx$$

*43.
$$\int (\sqrt{3+4x^2} - 2x) dx$$

*45.
$$\int \frac{1}{4sinx - 3cosx} dx$$

$$2.\int \frac{2x+x^3}{6x-x^2-5} \, dx$$

*4.
$$\int \frac{\sqrt{x+1}}{x} dx$$

6.
$$\int \sqrt{tgx} (1 + tg^2x) dx$$

8.
$$\int \frac{e^{2x}}{e^{2x}-1} dx$$

*10.
$$\int xe^{\sqrt{x}}dx$$

$$12. \int \frac{1}{x \log^2(2x)} dx$$

14.
$$\int \frac{x-\sqrt{x}}{\sqrt{x}+2} dx$$

*16.
$$\int \frac{e^{2x} + e^x - 1}{e^x + 1} dx$$

18.
$$\int x \log(2x+1) dx$$

*20.
$$\int \frac{x}{\sqrt{x-2}} dx$$

* 22.
$$\int \sin x \cdot \cos 3x \, dx$$

*24.
$$\int x^2 arctgx dx$$

*26.
$$\int \sin^2 x \cdot \cos^2 x dx$$

*28.
$$\int \sin(3x) \cdot \cos x \, dx$$

*30.
$$\int \sin^5 x \, dx$$

*32.
$$\int \frac{1}{e^{-x}+1} dx$$

*34.
$$\int \frac{x(e^{x^2}+1)}{e^{x^2}+x^2+1} dx$$

*36.
$$\int \sqrt{8-x^2} \, dx$$

*38.
$$\int \sqrt{8 + x^2} \, dx$$

*40.
$$\int \frac{\sqrt{x}}{\sqrt[3]{x}-\sqrt{x}} dx$$

*42.
$$\int \frac{\cos^2 x}{\sin^3 x} \, dx$$

*44.
$$\int \frac{1}{\sqrt{x^2 - x} - x} dx$$

*46.
$$\int \frac{1}{x^3+1} dx$$

Soluzioni

*1. S. (vedi par.5 es. 2, esempio 4, par.4 es.53)
$$\frac{1}{2}[(2x+1)arcsinx + (x+2)\sqrt{1-x^2}] + c;$$

2. S.
$$-\frac{1}{2}x(x+12) - \frac{135}{4}log|x-5| + \frac{3}{4}log|x-1| + c;$$

*3. S. posto tgx=t si ha x=arctgt , $dx=\frac{1}{1+t^2}$, $sin^2x=\frac{t^2}{1+t^2}$, sostituendo nell'integrale e semplificando

$$\int \frac{1}{t^2(t+2)} dt = \frac{1}{4} \int \frac{-t+2}{t^2} dt + \frac{1}{4} \int \frac{1}{t+2} dt = -\frac{1}{4} \log|t| - \frac{1}{2t} + \frac{1}{4} \log|2 + t| + c, \text{ quindist}$$

$$\int \frac{1}{\sin^2 x (tgx + 2)} dx = -\frac{\log|tgx|}{4} + \frac{\log|2 + tgx|}{4} - \frac{1}{2tgx} + c;$$

*4.S.
$$2\sqrt{x+1} + 2\log|\sqrt{x+1} - 1| - \log x + c$$
; (porre $\sqrt{x+1} = t$);

*5. S.
$$\int \cos^3 2x \cdot \sin 2x dx = -\frac{1}{2} \int \cos^3 2x \cdot (-2\sin 2x) dx = -\frac{\cos^4 2x}{8} + c;$$

6. S.
$$\frac{2tgx\sqrt{tgx}}{3} + c$$
; **7. S.** $\frac{2}{3}[x\sqrt{x} - 2\sqrt[4]{x^3}] + c$; **8. S.** $\log\sqrt{|e^{2x} - 1|} + c$;

*9. S.
$$\int \frac{arctge^x}{e^{-x} + e^x} dx = \int \frac{arctge^x}{1 + e^{2x}} e^x dx = (posto e^x = t ...) = \frac{arctg^2 e^x}{2} + c;$$

*10. S.
$$2e^{\sqrt{x}}(x\sqrt{x}-3x+6\sqrt{x}-6)+c$$
; (porre $\sqrt{x}=t$, si ottiene l'integrale $2\int t^3 e^t dt$... integrare due volte per parti par. 5 es. 18);

*11 S.
$$\int sinx \cdot cosx \cdot e^{2x} dx = \frac{1}{2} \int sin2x \cdot e^{2x} dx = \cdots$$
 (integrare per parti) =

$$=\frac{e^{2x}}{8}(\sin(2x)-\cos(2x))+c;$$

12. S.
$$-\frac{1}{\log 2x} + c$$
;

*13. S.
$$\int \frac{\cos(6x)}{\sin^2(3x)\cdot\cos^2(3x)} dx = \int \frac{\cos(6x)}{\frac{1}{4}\sin^2(6x)} dx = = \frac{2}{3} \int \frac{6\cos(6x)}{\sin^2(6x)} dx \dots = -\frac{2}{3\sin6x} + c ;$$

14. S.
$$2\left[\frac{x\sqrt{x}}{3} - \frac{3x}{2} + 6\sqrt{x} - 12\log(\sqrt{x} + 2)\right] + c;$$

*15.S. integrando per parti
$$\int x^2 \log(1-x^2) dx = \frac{x^3}{3} \log(1-x^2) - \int \frac{x^3}{3} \cdot \frac{-2x}{1-x^2} dx = \frac{x^3}{3} \cdot \frac{-2x}{1-x^2} dx$$

$$= \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{x^4-1+1}{x^2-1} dx = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int (x^2+1) dx - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2) - \frac{2}{3} \int \frac{1}{x^2-1} dx = \dots = \frac{x^3}{3} log(1-x^2$$

$$=\frac{x^3}{3}\log(1-x^2)-\frac{2x^3}{9}-\frac{2x}{3}+\frac{1}{3}\log\left|\frac{x+1}{1-x}\right|+c;$$

*16.5.
$$\int \frac{e^{2x} + e^{x} - 1}{e^{x} + 1} dx = \int \frac{e^{2x} - 1}{e^{x} + 1} dx + \int \frac{e^{x}}{e^{x} + 1} dx = \int (e^{x} - 1) dx + \log(e^{x} + 1) = e^{x} - x + \log(e^{x} + 1) + c;$$

*17.S.
$$\int \left(\frac{1}{x(\log x + 2)^2} + \log \sqrt{x}\right) dx = \int \frac{1}{x(\log x + 2)^2} dx + \frac{1}{2} \int \log x dx = \int \frac{1}{x(\log x + 2)^2} dx + \frac{1}{2} \int \log x dx = \int \frac{1}{x(\log x + 2)^2} dx + \frac{1}{2} \int \log x dx = \int \frac{1}{x(\log x + 2)^2} dx + \frac{1}{2} \int \log x dx = \int \frac{1}{x(\log x + 2)^2} dx + \frac{1}{2} \int \log x dx = \int \frac{1}{x(\log x + 2)^2} dx + \frac{1}{2} \int \log x dx = \int \frac{1}{x(\log x + 2)^2} dx + \frac{1}{2} \int \log x dx = \int \frac{1}{x(\log x + 2)^2} dx + \frac{1}{2} \int \log x dx = \int \frac{1}{x(\log x + 2)^2} dx + \frac{1}{2} \int \log x dx = \int \frac{1}{x(\log x + 2)^2} dx + \frac{1}{2} \int \log x dx = \int \frac{1}{x(\log x + 2)^2} dx + \frac{1}{2} \int \log x dx = \int \frac{1}{x(\log x + 2)^2} dx + \frac{1}{2} \int \log x dx = \int \frac{1}{x(\log x + 2)^2} dx + \frac{1}{2} \int \log x dx = \int \frac{1}{x(\log x + 2)^2} dx + \frac{1}{2} \int \log x dx = \int \frac{1}{x(\log x + 2)^2} dx + \frac{1}{2} \int \log x dx = \int \frac{1}{x(\log x + 2)^2} dx + \frac{1}{2} \int \log x dx = \int \frac{1}{x(\log x + 2)^2} dx + \frac{1}{2} \int \log x dx = \int \frac{1}{x(\log x + 2)^2} dx + \frac{1}{2} \int \log x dx = \int \frac{1}{x(\log x + 2)^2} dx + \frac{1}{2} \int \log x dx = \int \frac{1}{x(\log x + 2)^2} dx + \frac{1}{2} \int \log x dx = \int \frac{1}{x(\log x + 2)^2} dx + \frac{1}{2} \int \log x dx = \int \frac{1}{x(\log x + 2)^2} dx + \frac{1}{2} \int \log x dx = \int \frac{1}{x(\log x + 2)^2} dx + \frac{1}{2} \int \log x dx = \int \frac{1}{x(\log x + 2)^2} dx + \frac{1}{2} \int \log x dx = \int \frac{1}{x(\log x + 2)^2} dx + \frac{1}{2} \int \log x dx = \int \frac{1}{x(\log x + 2)^2} dx + \frac{1}{2} \int \log x dx + \frac{1}{2} \int \log$$

(il 1° integrale è immediato, il 2° per parti(par. 5 es. 1)) = $-\frac{1}{log x+2} + x log \sqrt{x} - \frac{x}{2} + c$;

18.5.
$$\left(\frac{x^2}{2} - \frac{1}{8}\right) log(2x+1) - \frac{x^2}{4} + \frac{1}{4}x + c;$$
 19.5. $log\left|\frac{(x-2)^3}{x-1}\right| + c;$

*20.S.Posto
$$\sqrt{x-2} = t \to x-2 = t^2 \to dx = 2tdt$$
, si ha $\int \frac{t^2+2}{t} \cdot 2tdt = \cdots da \ cui \int \frac{x}{\sqrt{x-2}} dx = \frac{2}{3}(x+4)\sqrt{x-2} + c$;

*21. S.
$$\int \frac{\cos x}{1 + \cos^2 x} dx = \int \frac{\cos x}{2 - \sin^2 x} dx = \frac{1}{2} \int \frac{\cos x}{1 - \left(\frac{\sin x}{\sqrt{2}}\right)^2} dx$$
, posto $\frac{\sin x}{\sqrt{2}} = t \to \cos x dx = \sqrt{2} dt$ si ha = $\frac{\sqrt{2}}{2} \int \frac{1}{1 - t^2} dt = -\frac{\sqrt{2}}{4} \log \left| \frac{1 - t}{1 + t} \right| + c \ perciò \int \frac{\cos x}{1 + \cos^2 x} dx = -\frac{\sqrt{2}}{4} \log \left| \frac{\sqrt{2} - \sin x}{\sin x + \sqrt{2}} \right| + c;$

*22.5. ricordando le formule di Werner, si ha $sinx \cdot cos3x = \frac{1}{2}(sin(x+3x) - sin(3x-x))$ quindi $\int sinx \cdot cos3x \ dx = \frac{1}{2}\int (sin4x - sin2x) dx = -\frac{cos4x}{8} + \frac{cos2x}{4} + c$;

*23 S. integrando per parti e sviluppando si ricava:

$$\int x^2 \log(x+1) dx = \frac{x^3}{3} \log(x+1) - \frac{1}{3} \int \frac{x^3}{x+1} dx = \frac{x^3}{3} \log(x+1) - \frac{1}{3} \int \frac{x^3+1-1}{x+1} dx = \dots = \frac{\left(\frac{x^3}{3} + \frac{1}{3}\right) \log(x+1) - \frac{x^3}{9} + \frac{x^2}{6} - \frac{1}{3}x + c}{1 + \frac{x^3}{3} + \frac$$

*24.5.
$$\frac{x^3}{3} arctgx + \frac{1}{6} log(x^2 + 1) - \frac{x^2}{6} + c$$
; (per parti ponendo $f'(x) = x^2 e g(x) = arctgx$);

*25. S.
$$\frac{1}{2}(x^2-1)arctg\sqrt{x}-\frac{\sqrt{x}(x-3)}{6}+c$$
; (porre $\sqrt{x}=t\Rightarrow x=t^2\Rightarrow dx=2tdt$ e poi per parti);

*26. S.
$$\frac{1}{8}\left(x - \frac{1}{4}\sin 4x\right) + c$$
; $(\sin^2 x \cdot \cos^2 x = \frac{1}{4}\sin^2 2x = \frac{1 - \cos 4x}{8})$;

*27. S.
$$-\frac{1}{5}cos^5x + \frac{1}{7}cos^7x + c$$
; ($sin^3x \cdot cos^4x = sinx \cdot sin^2x \cdot cos^4x = sinx \cdot (1 - cos^2x) \cdot cos^4x = sinx \cdot cos^4x - sinx \cdot cos^6x$...);

*28. S. $-\frac{\cos 4x}{8} - \frac{\cos 2x}{4} + c$; (trasformare la funzione integranda mediante le formule di Werner);

*29. S.
$$\frac{1}{2}tg^2x - \frac{1}{2}log(1 + tg^2x) + c$$
; (1° metodo: porre $tgx = t \Rightarrow x = arctgt \Rightarrow dx = \frac{1}{1+t^2}dt$ pertanto $\int \frac{t^3}{1+t^2}dt = \int \left(t - \frac{t}{1+t^2}\right)dt = \frac{1}{2}t^2 - \frac{1}{2}log(1+t^2) + c$, quindi risulta $\int tg^3x \, dx = \frac{1}{2}tg^2x - \frac{1}{2}log(1+tg^2x) + c$;

2° metodo :
$$\int tg^3x \, dx = \int \frac{\sin^3x}{\cos^3x} \, dx = \int \frac{\sin x \cdot (1 - \cos^2x)}{\cos^3x} \, dx = \int \frac{\sin x}{\cos^3x} \, dx + \int \frac{-\sin x}{\cos x} \, dx =$$

$$= -\frac{1}{2\cos^2x} + \log|\cos x| + c; \text{ i due risultati coincidono a meno di una costante additiva)};$$

*30. S.
$$-\cos x - \frac{1}{5}\cos^5 x + \frac{2}{3}\cos^3 x + c$$
; $(\sin^5 x = \sin x \cdot \sin^4 x = \sin x \cdot (1 - \cos^2 x)^2)$...);

31. S.
$$\frac{x^2}{2} + 6x + \frac{1}{5} [183 \log|x - 6| + 2\log|x - 1|] + c;$$

*32. S.
$$\log(e^x + 1) + c$$
; $(\int \frac{1}{e^{-x} + 1} dx = \int \frac{e^x}{1 + e^x} dx =)$;

*33. S.
$$-e^2 log |1-e^x|+c$$
; $(\int \frac{e^{2x+2}}{e^x-e^{2x}} dx = e^2 \int \frac{e^{2x}}{e^x(1-e^x)} dx = \cdots)$;

*34. S.
$$\frac{1}{2}\log(e^{x^2}+x^2+1)+c$$
; $(\int \frac{x(e^{x^2}+1)}{e^{x^2}+x^2+1}dx=\frac{1}{2}\int \frac{2x(e^{x^2}+1)}{e^{x^2}+x^2+1}dx=....)$;

*35. S.
$$arcsin\left(\frac{x}{2\sqrt{2}}\right) + c$$
; $\left(\int \frac{1}{\sqrt{8-x^2}} dx = \frac{1}{2\sqrt{2}} \int \frac{1}{\sqrt{1-\left(\frac{x}{2\sqrt{2}}\right)^2}} dx = \int \frac{\frac{1}{2\sqrt{2}}}{\sqrt{1-\left(\frac{x}{2\sqrt{2}}\right)^2}} dx = \cdots\right)$;

*36. S.
$$\frac{x}{2}\sqrt{8-x^2} + 4\arcsin\left(\frac{x}{2\sqrt{2}}\right) + c$$
;

(1° metodo : per parti ponendo f'(x) = 1, $g(x) = \sqrt{8 - x^2} \Rightarrow f(x) = x$, $g'(x) = -\frac{x}{\sqrt{8 - x^2}}$

 $\int \sqrt{8-x^2} \, dx = x\sqrt{8-x^2} + \int \frac{x^2}{\sqrt{8-x^2}} \, dx = \cdots \text{ si veda l'esempio 4 del par. 5 integrazione per parti ;}$

2° metodo : per sostituzione ponendo $x=2\sqrt{2}sint \Rightarrow dx=2\sqrt{2}cost\ dt$,

 $\sqrt{8-x^2}=\sqrt{8-8sin^2t}=2\sqrt{2}cost$... si veda nel par. 4 l'esempio relativo alle sostituzioni con funzioni goniometriche);

*37. S.
$$-\log(\sqrt{8+x^2}-x)+c$$
; (porre $\sqrt{8+x^2}=x+t \Rightarrow x=\frac{8-t^2}{2t} \Rightarrow dx=-\frac{t^2+8}{2t^2}$ si ha $-\int \frac{1}{\frac{t^2+8}{2t}} \frac{t^2+8}{2t^2} dt = -\int \frac{1}{t} dt = -logt+c$, pertanto:

$$\int \frac{1}{\sqrt{8+x^2}} dx = -\log(\sqrt{8+x^2} - x) + c);$$

*38.
$$S \cdot \frac{x}{2} \sqrt{8 + x^2} - 4 \log(\sqrt{8 + x^2} - x) + c$$
; (si può procedere in due modi :

1° metodo : per parti ponendo f'(x)=1, $g(x)=\sqrt{8+x^2} \Rightarrow f(x)=x$, $g'(x)=\frac{x}{\sqrt{8+x^2}}$

$$\int \sqrt{8 + x^2} \, dx = x\sqrt{8 + x^2} - \int \frac{x^2}{\sqrt{8 + x^2}} \, dx = x\sqrt{8 + x^2} - \int \frac{x^2 + 8 - 8}{\sqrt{8 + x^2}} \, dx =$$
$$= x\sqrt{8 + x^2} - \int \sqrt{8 + x^2} \, dx + 8 \int \frac{1}{\sqrt{8 + x^2}} \, dx$$

per l'ultimo integrale si veda l'es. 37 precedente ...;

2° metodo: si veda il par. 4, sostituzioni con le funzioni iperboliche : si pone

$$x = 2\sqrt{2}sinht \Rightarrow dx = 2\sqrt{2}cosht$$
 e poiché $1 + sinh^2t = cosh^2t$, si ha

$$8 \int \cosh^2 t \, dt = 8 \int \left(\frac{e^t + e^{-t}}{2}\right)^2 dt \dots$$
);

*39. S. $\frac{1}{2}log(\left|\frac{logx-1}{logx+1}\right|+c$; (porre $logx=t\Rightarrow\frac{1}{x}dx=dt$ da cui

$$\int \frac{1}{t^2 - 1} dt = \frac{1}{2} \left(\int \frac{1}{t - 1} - \frac{1}{t + 1} \right) dt = \frac{1}{2} \log \left| \frac{t - 1}{t + 1} \right| + c \right);$$

*40. S. $-x - \frac{6}{5} \sqrt[6]{x^5} - \frac{3}{2} \sqrt[3]{x^2} - 2\sqrt{x} - 3\sqrt[3]{x} - 6\sqrt[6]{x} - 6\log|-1 + \sqrt[6]{x}| + c$; (porre $\sqrt[6]{x} = t$

$$x = t^6 \implies dx = 6t^5 dt \implies 6 \int \frac{t^3}{t^2 - t^3} \cdot t^5 dt \dots);$$

*41. S.
$$-\frac{(1+\cos x)^2}{2} + c$$
; $\left(\frac{\sin^2 x \cdot \sin x}{1-\cos x} = \frac{(1-\cos^2 x) \cdot \sin x}{1-\cos x} = (1+\cos x) \cdot \sin x\right)$;

*42. S.
$$-\frac{\cos x}{2\sin^2 x} - \frac{1}{2}\log\left|tg\frac{x}{2}\right| + c$$
; $(\frac{\cos^2 x}{\sin^3 x} = \cos x \cdot \frac{\cos x}{\sin^3 x})$ per parti ponendo $f'(x) = \frac{\cos x}{\sin^3 x}$ e

$$g(x) = cosx \Rightarrow f(x) = -\frac{1}{2sin^2x}, g'(x) = -sinx$$
, pertanto:

$$\int \frac{\cos^2 x}{\sin^3 x} dx = -\frac{\cos x}{2\sin^2 x} - \frac{1}{2} \int \frac{\sin x}{\sin^2 x} dx = -\frac{\cos x}{2\sin^2 x} - \frac{1}{2} \int \frac{1}{\sin x} dx$$
, si ha:

$$\int \frac{1}{sinx} dx = \int \frac{sin^2 \frac{x}{2} + cos^2 \frac{x}{2}}{2sin \frac{x}{2} cos \frac{x}{2}} dx = \cdots);$$

*43. S.
$$\frac{3}{4}log(\sqrt{3+4x^2}+2x)+\frac{1}{2}x\sqrt{3+4x^2}-x^2+c; (\sqrt{3+4x^2}=2x+t ...);$$

*44. S.
$$\frac{1}{2(2\sqrt{x^2-x}-2x+1)} - \frac{1}{2}log|2\sqrt{x^2-x}-2x+1|+c$$
;

(porre
$$\sqrt{x^2 - x} = x + t \dots - 2 \int \frac{t+1}{(2t+1)^2} dt = \dots = \frac{1}{2(2t+1)} - \frac{1}{2} \log|2t+1| + c$$
);

*45. S.
$$\frac{1}{5}log\left|\frac{3tg\frac{x}{2}-1}{tg\frac{x}{2}+3}\right|$$
 +c ; (trasformare in $tg\frac{x}{2}$ porre $t=tg\frac{x}{2}$, vedi par. 4 , sostituzioni , ...);

*46. S.
$$\frac{1}{3}\log|x+1| - \frac{1}{6}\log(x^2 - x + 1) + \frac{\sqrt{3}}{3}arctg\left(\frac{2x-1}{\sqrt{3}}\right) + c$$
; $\left(\frac{1}{x^3+1} = \frac{A}{x+1} + \frac{Bx+C}{x^2-x+1}\right)$ risulta $A = \frac{1}{3}$, $B = -\frac{1}{3}$, $C = \frac{2}{3}$...);