Program 2 - Write a program of KMeans clustring using ml techinque

```
import matplotlib.pyplot as plt
In [76]:
          import pandas as pd
          import seaborn as sns
In [38]: | df=sns.load_dataset('iris')
In [39]: df.head()
Out[39]:
              sepal_length sepal_width petal_length petal_width species
           0
                      5.1
                                 3.5
                                             1.4
                                                        0.2
                                                              setosa
           1
                      4.9
                                 3.0
                                             1.4
                                                        0.2
                                                              setosa
           2
                      4.7
                                 3.2
                                             1.3
                                                        0.2
                                                              setosa
           3
                      4.6
                                 3.1
                                             1.5
                                                        0.2
                                                              setosa
                      5.0
                                 3.6
                                             1.4
                                                        0.2
                                                              setosa
In [40]: df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 150 entries, 0 to 149
          Data columns (total 5 columns):
          sepal length
                           150 non-null float64
          sepal_width
                           150 non-null float64
          petal_length
petal_width
                           150 non-null float64
                           150 non-null float64
                           150 non-null object
          species
          dtypes: float64(4), object(1)
          memory usage: 5.9+ KB
```

In [41]: df.describe()

Out[41]:

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

```
df.isnull().sum()
In [45]:
Out[45]: sepal_length
                              0
                              0
           sepal_width
           petal_length
                              0
           petal_width
                              0
           species
                              0
           dtype: int64
In [48]:
           df.duplicated().sum()
Out[48]: 1
In [74]:
           sns.scatterplot(x='sepal_length',y='sepal_width',data=d)
           plt.show()
              4.5
              4.0
              3.5
            sepal_width
              3.0
              2.5
              2.0
                      4.5
                            5.0
                                   5.5
                                         6.0
                                                6.5
                                                      7.0
                                                            7.5
                                                                   8.0
                                       sepal length
In [63]:
           sns.scatterplot(x='sepal_length',y='petal_width',data=df)
           plt.show()
              2.5
              2.0
            petal width
              0.5
              0.0
                                                      7.0
                      4.5
                            5.0
                                   5.5
                                         6.0
                                                6.5
                                                             7.5
                                                                   8.0
```

sepal_length

```
In [64]: sns.barplot(x='sepal_length',y='petal_width',data=df)
plt.show()
```


In [66]: sns.barplot(y='sepal_length',x='species',data=df)
plt.show()


```
In [19]: df = df.drop(columns=['species'])
```

In [27]: from sklearn.cluster import KMeans

In [28]: kmean=KMeans(n_clusters=3,max_iter=150,random_state=20)

In [30]: kmean

```
In [31]: kmean.fit(df)
Out[31]: KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=150,
           n_clusters=3, n_init=10, n_jobs=None, precompute_distances='auto',
           random_state=20, tol=0.0001, verbose=0)
In [32]:
       kmean.labels_
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0,
           0, 0, 0, 2, 2, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0,
           0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2])
In [78]: | df['cluster'] = kmean.labels_
In [81]: df.head(20)
Out[81]:
```

	sepal_length	sepal_width	petal_length	petal_width	species	cluster
0	5.1	3.5	1.4	0.2	setosa	1
1	4.9	3.0	1.4	0.2	setosa	1
2	4.7	3.2	1.3	0.2	setosa	1
3	4.6	3.1	1.5	0.2	setosa	1
4	5.0	3.6	1.4	0.2	setosa	1
5	5.4	3.9	1.7	0.4	setosa	1
6	4.6	3.4	1.4	0.3	setosa	1
7	5.0	3.4	1.5	0.2	setosa	1
8	4.4	2.9	1.4	0.2	setosa	1
9	4.9	3.1	1.5	0.1	setosa	1
10	5.4	3.7	1.5	0.2	setosa	1
11	4.8	3.4	1.6	0.2	setosa	1
12	4.8	3.0	1.4	0.1	setosa	1
13	4.3	3.0	1.1	0.1	setosa	1
14	5.8	4.0	1.2	0.2	setosa	1
15	5.7	4.4	1.5	0.4	setosa	1
16	5.4	3.9	1.3	0.4	setosa	1
17	5.1	3.5	1.4	0.3	setosa	1
18	5.7	3.8	1.7	0.3	setosa	1
19	5.1	3.8	1.5	0.3	setosa	1

```
In [80]:
         sns.pairplot(df, hue='cluster', palette='Dark2')
         plt.show()
```

D:\jupter\lib\site-packages\statsmodels\nonparametric\kde.py:487: RuntimeW arning: invalid value encountered in true_divide binned = fast_linbin(X, a, b, gridsize) / (delta * nobs) D:\jupter\lib\site-packages\statsmodels\nonparametric\kdetools.py:34: Runt

imeWarning: invalid value encountered in double scalars

In []: