Probability (2 points)

	P(A)	$P(B \mid A)$	+b	-b	$P(C \mid A)$	+c	-c
+a	0.25	+a	0.5	0.5	+a	0.2	0.8
-a	0.75	-a	0.25	0.75	-a	0.6	0.4

$P(D \mid B)$	+d	-d	$P(E \mid B)$	+e	-e
+b	0.6	0.4	+b	0.25	0.75
-b	0.8	0.2	-b	0.1	0.9

- 1. Using the Bayes net and conditional probability tables above, calculate the following quantities: (2 pts)
 - (a) $P(+b \mid +a) = \underline{My \ answer}$
 - (b) P(+a,+b) =_____
 - (c) $P(+a \mid +b) =$ _____
 - (d) P(-e, +a) =
 - (e) P(D | A) =

$P(D \mid A)$	+d	-d
+a	Fill in	
-a		

Independence (8 points)

- 2. For each of the following equations, select the minimal set of conditional independence assumptions necessary for the equation to be true.
 - (a) $P(A,C) = P(A \mid B)P(C)$
 - $\square \ A \perp\!\!\!\perp B \quad \square \ A \perp\!\!\!\perp B \mid C \quad \square \ A \perp\!\!\!\perp C \quad \square \ A \perp\!\!\!\perp C \mid B$
 - $\hfill\Box \hfill B \perp\!\!\!\perp C \hfill \Box \hfill B \perp\!\!\!\perp C \mid A \hfill \Box \hfill$ No independence assumptions needed
 - (b) $P(A \mid B, C) = \frac{P(A)P(B|A)P(C|A)}{P(B|C)P(C)}$
 - $\Box \ A \perp\!\!\!\perp B \quad \Box \ A \perp\!\!\!\perp B \mid C \quad \Box \ A \perp\!\!\!\perp C \quad \Box \ A \perp\!\!\!\perp C \mid B$
 - $\hfill\Box \hfill B \perp\!\!\!\perp C \hfill \Box \hfill B \perp\!\!\!\perp C \hfill A \hfill \Box \hfill \hfill$ No independence assumptions needed
 - (c) $P(A,B) = \sum_{c} P(A \mid B,c) P(B|c) P(c)$
 - $\Box \ A \perp\!\!\!\perp B \quad \Box \ A \perp\!\!\!\perp B \mid C \quad \Box \ A \perp\!\!\!\perp C \quad \Box \ A \perp\!\!\!\perp C \mid B$
 - $\hfill\Box \hfill B \perp\!\!\!\perp C \hfill \Box \hfill B \perp\!\!\!\perp C \hfill A \hfill \Box \hfill \hfill$ No independence assumptions needed
 - (d) $P(A, B \mid C, D) = P(A \mid C, D)P(B \mid A, C, D)$
 - $\square \quad A \perp\!\!\!\perp B \quad \square \quad A \perp\!\!\!\perp B \mid C \quad \square \quad A \perp\!\!\!\perp C \quad \square \quad A \perp\!\!\!\perp C \mid B$
 - $\ \square \ \ B \perp\!\!\!\perp C \quad \ \Box \ \ B \perp\!\!\!\perp C \mid A \quad \ \Box \quad \ \mbox{No independence assumptions needed}$

3. Indicate whether each of the following conditional independence relationships is guaranteed to be true in the Bayes Net below. If the independence relationship does not hold, identify all active (d-connected) paths in the graph.

- (a) $T \perp \!\!\! \perp Y$ Independence is \bigcirc Guaranteed \bigcirc Not Guaranteed
- (b) $T \perp\!\!\!\perp Y \mid W$ Independence is \bigcirc Guaranteed \bigcirc Not Guaranteed
- (c) $U \perp \!\!\! \perp T$ Independence is \bigcirc Guaranteed \bigcirc Not Guaranteed
- (d) $U \perp \!\!\! \perp T \mid Z$ Independence is \bigcirc Guaranteed \bigcirc Not Guaranteed
- (e) $Z \perp \!\!\! \perp U$ Independence is \bigcirc Guaranteed \bigcirc Not Guaranteed
- (f) $Z \perp\!\!\!\perp Y \mid V$ Independence is \bigcirc Guaranteed \bigcirc Not Guaranteed
- (g) $Z \perp\!\!\!\perp Y \mid T, W$ Independence is \bigcirc Guaranteed \bigcirc Not Guaranteed
- (h) $Z \perp \!\!\! \perp W$ Independence is \bigcirc Guaranteed \bigcirc Not Guaranteed

Representation (4 points)

4. We are given the following ten Bayes nets, labeled G_1 to G_{10} :

(4 pts)

and the following three Bayes nets, labeled \mathbf{B}_1 to \mathbf{B}_3 :

(a) Assume we know that a joint distribution d_1 (over A, B, C) can be represented by Bayes net \mathbf{B}_1 . Mark all of the following Bayes nets that are guaranteed to be able to represent d_1 .

- \square None of the above

(b) Assume we know that a joint distribution d_2 (over A, B, C) can be represented by Bayes net \mathbf{B}_2 . Mark all of the following Bayes nets that are guaranteed to be able to represent d_2 .

- \square None of the above

(c) Assume we know that a joint distribution d_3 (over A, B, C) cannot be represented by Bayes net \mathbf{B}_3 . Mark all of the following Bayes nets that are guaranteed to be able to represent d_3 .

- \square None of the above

(d) Assume we know that a joint distribution d_4 (over A, B, C) can be represented by Bayes nets \mathbf{B}_1 , \mathbf{B}_2 and \mathbf{B}_3 . Mark all of the following Bayes nets that are guaranteed to be able to represent d_4 .

- \square None of the above

Inference (4 points)

5. Using the same Bayes Net from question 3, we want to compute $P(Y \mid +z)$. All variables have (4 pts) binary domains. Assume we run variable elimination to compute the answer to this query, with the following variable elimination ordering: U, T, X, V, W.

Complete the following description of the factors generated in this process:

- (a) After inserting evidence, we have the following factors to start out with: $P(U), P(T), P(X \mid U, T), P(V \mid T), P(W \mid T), P(+z \mid X), P(Y \mid V, W)$
- (b) When eliminating U we generate a new factor f_1 as follows, which leaves us with the factors: $f_1(X,T) = \sum_u \mathsf{P}(u)\mathsf{P}(X\mid u,T)$ Factors: $\mathsf{P}(T), \mathsf{P}(V\mid T), \mathsf{P}(W\mid T), \mathsf{P}(+z\mid X), \mathsf{P}(Y\mid V,W), f_1(X,T)$
- (c) When eliminating T we generate a new factor f_2 as follows, which leaves us with the factors:

 $f_2(...) =$ Factors:

(d) When eliminating X we generate a new factor f_3 as follows, which leaves us with the factors:

 $f_3(...) =$ Factors:

(e) When eliminating V we generate a new factor f_4 as follows, which leaves us with the factors:

 $f_4(...) =$ Factors:

(f) When eliminating W we generate a new factor f_5 as follows, which leaves us with the factors:

 $f_5(...) =$ Factors:

- (g) How would you obtain $P(Y \mid +z)$ from the factors left above?
- (h) What is the size of the largest factor that gets generated during the above process?
- (i) Does there exist a better elimination ordering (one which generates smaller largest factors)? Argue why not or give an example.