МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ІВАНА ФРАНКА

Факультет електроніки та комп'ютерних технологій

Звіт

Про виконання лабораторної роботи № 1 «ОСНОВИ АЛГОРИТМІЗАЦІЇ. НАЙПРОСТІШІ АЛГОРИТМИ»

Виконав:

студент групи ФЕП-13

МАГОРА Максим

Перевірив:

професор ФЕСЮК А.В.

Тема: Основи алгоритмізації. Найпростіші алгоритми.

Мета роботи: Опанувати основи, поняття та принципи побудови алгоритмів. Навчитися самостійно складати найпростіші алгоритми розв'язку математичних рівнянь.

Теоретичні відомості

Алгоритмом це чітко і однозначно визначена послідовність дій, необхідна для виконання поставленої мети.

Алгоритми мають такі властивості:

- Зрозумілість;
- Однозначність;
- Дискретність;
- Масовість;
- Скінченність;
- Результативність;
- Правильність.

Зрозумілість алгоритмів - це властивість, яка відображає наскільки легким ϵ алгоритм для сприйняття людиною.

Під однозначністю алгоритмів розуміється те, що вони повинні мати єдиний спосіб трактування дій і правил.

Під *дискретністю* алгоритмів розуміють розбиття всієї послідовності дій на окремі елементарні дії, виконання яких не викликає сумнівів.

Масовість алгоритмів - це властивість, яка полягає в застосуванні алгоритму для рішення цілого класу конкретних задач.

Скінченність алгоритму – це властивість, яка полягає в тому, що для досягнення поставленої мети використовується скінченна кількість кроків.

Результативність — це властивість, яка полягає у тому, що після виконання всіх кроків алгоритму відбувається або отримання шуканого результату, або повідомлення про те, що результат не можна отримати.

Хід роботи

1. Записано у математичній формі площу трикутника, заданого довжинами його сторін.

$$p = (a + b + c) / 2$$
.

$$S = \sqrt{p(p-a)(p-b)(p-c)}.$$

- 2. Описано природною мовою послідовність дій для успішного обчислення площі трикутника, заданого довжинами його сторін.
 - 1. Почати.
 - 2. Введення а, b, с.
 - 3. р присвоїти (a + b + c) / 2.
 - 4. S присвоїти $\sqrt{p(p-a)(p-b)(p-c)}$.
 - 5. Якщо $a \le 0$, то йти до п. 11.
 - 6. Якщо $b \le 0$, то йти до п. 11.
 - 7. Якщо $c \le 0$, то йти до п. 11.
 - 8. Якщо a + b < c, то йти до п. 11.
 - 9. Якщо a + c < b, то йти до п. 11.
 - 10. Якщо b + c < a, то йти до п. 11.
 - 11. Не підлягає обчисленню.
 - 12. Перейти до п. 15.
 - 13. Обчислити S.
 - 14. Вивести значення S.
 - 15. Закінчити.

В пунктах 5, 6, 7 виконано перевірку на коректність введення даних, у випадку коли одна чи декілька сторін є від'ємні або дорівнюють нулю виконується логічне завершення алгоритму (пункт 12) оскільки такий трикутник існувати не може.

В пунктах 8, 9, 10 виконано перевірку за базовою умовою існування трикутника, у випадку коли сума довжин будь-яких двох сторін трикутника менша за третю виконується логічне завершення алгоритму (пункт 12) оскільки такий трикутник існувати не може.

3. Побудовано графічно блок-схему алгоритму програми обчислення площі трикутника, заданого довжинами його сторін.

Висновки

У ході лабораторної роботи:

- Опанував основи, поняття та принципи побудови алгоритмів.
- Навчився самостійно складати найпростіші алгоритми розв'язку математичних рівнянь.
- Записав у математичній формі площу трикутника, заданого довжинами його сторін.
- Описав природною мовою послідовність дій для успішного обчислення площі трикутника, заданого довжинами його сторін.
- Побудував графічно блок-схему алгоритму програми обчислення площі трикутника, заданого довжинами його сторін.