Guião 3

Resolução Automática de Problemas através de Pesquisa

Ano Lectivo de 2016/2017

©Luís Seabra Lopes

Departamento de Electrónica, Telecomunicações e Informática Universidade de Aveiro

Última actualização: 2014-12-16

I Objectivos

O presente guião centra-se no tema da resolução automática de problemas através de diferentes técnicas de pesquisa de soluções, Em particular, explora-se a utilização de técnicas de pesquisa em árvore

Este guião é usado nas disciplinas de Inteligência Artificial, da Licenciatura em Engenharia Informática, e Introdução à Inteligência Artificial, do Mestrado Integrado em Engenharia de Computadores e Telemática.

O guião será realizado em 4 a 5 aulas práticas. Para um bom aproveitamente das aulas, os exercícios que estejam no âmbito temático de uma dada aula devem ser completados antes da aula seguinte.

II Pesquisa em árvore

Apresentação do módulo inicial

Uma implementação completa do algoritmo básico de pesquisa em árvore é fornecida em anexo a este guião, no módulo tree_search.

O módulo contém as seguintes classes:

- Classe SearchDomain() classe abstracta que formata a estrutura de um domínio de aplicação
- Classe SearchProblem(domain, initial, goal) classe para especificação de problemas concretos a resolver
- Classe SearchNode (state, parent) classe dos nós da árvore de pesquisa
- Classe SearchTree (problem) classe das árvores de pesquisa, contendo métodos para a geração de uma árvore para um dado problema

Como se pode inferir da estrutura de dados adoptada, cada instância da classe SearchTree tem acesso aos seguintes atributos e métodos:

- self.problem O problema a resolver (uma instância de SearchProblem)
- self.problem.domain O domínio (uma instância de SearchDomain) em que se enquadra o problema
- self.problem.domain.actions(state) Devolve uma lista com as acções aplicáveis em state
- self.problem.domain.result(state,action) Devolve o resultado de action em state
- self.problem.domain.cost(state,action) Devolve o custo de action em state
- self.problem.domain.heuristic(state1, state2) Devolve uma estimativa do custo de ir de state1 para state1
- self.problem.initial O estado inicial
- self.problem.goal O estado objectivo
- self.problem.goal_test(state) Verifica se state é o objectivo
- self.strategy A estratégia de pesquisa usada
- self.open_nodes A fila dos nós abertos (folhas da árvore, a expandir), em que cada nó é uma instância de SearchNode
- self.search() O método principal de pesquisa

O método principal da classe SearchTree implementa um procedimento genérico de pesquisa, baseado em fila de nós abertos:

```
def search(self):
while self.open_nodes != []:
    node = self.open_nodes[0]
    if self.problem.goal_test(node.state):
        return self.get_path(node)
    self.open_nodes[0:1] = []
    lnewnodes = []
    for a in self.problem.domain.actions(node.state):
        newstate = self.problem.domain.result(node.state,a)
        lnewnodes += [SearchNode(newstate,node)]
    self.add_to_open(lnewnodes)
    return None
```

Em anexo, encontra ainda o módulo cidades, com um domínio de aplicação concreto, que pode usar para testes.

2 Exercícios

Resolva em seguida as seguintes alíneas:

- 1. A implementação fornecida não previne ciclos. Isso leva a desperdício de espaço de memória na pesquisa em largura e a ciclos infinitos na pesquisa em profundidade. Assim, altere e/ou acrescente o código necessário por forma a prevenir a criação de ramos com ciclos. Teste o programa com a estratégia de pesquisa em profundidade.
- 2. Na classe Cidades do módulo cidades, acrescente uma implementação do método cost (), o qual, dado um estado e uma acção, devolve o respectivo custo de executar essa acção nesse estado. Neste caso, para uma acção (C1, C2), correspondente a uma deslocação da cidade C1 para a cidade C2, o custo deverá ser a distância entre essas cidades.
- 3. Na estrutura de dados usada para representar os nós no módulo tree_search, acrescente um campo para o custo acumulado desde a raiz até cada nó. Modifique o algoritmo de pesquisa por forma a registar o custo acumulado em cada nó introduzido na árvore.
- 4. Faça as alterações necessárias ao código deste módulo por forma a suportar a pesquisa de custo uniforme.
- Modifique o algoritmo de pesquisa de maneira a registar, na árvore de pesquisa (uma instância de TreeSearch), o custo total da solução encontrada, dado pela soma dos custos das sucessivas transições.
- 6. Na estrutura de dados usada para representar os nós no módulo de pesquisa, acrescente um campo para registar a profundidade do nó (sendo que a raiz da árvore de pesquisa está na profundidade 0).
- 7. Modifique o algoritmo de pesquisa de maneira a registar, na árvore de pesquisa (uma instância de SearchTree), o comprimento da solução encontrada, dado pelo número de transições de estado desde o estado inicial até ao estado que satisfaz o objectivo.
- 8. Faça as alterações necessárias ao módulo tree_search, por forma a suportar a pesquisa em profundidade com limite.
- 9. Na estrutura de dados usada para representar os nós no módulo de pesquisa, acrescente um campo para registar uma estimativa (heurística) do custo de chegar a uma solução a partir do estado desse nó.
- 10. Identifique uma heurística adequada para o classe de domínios de problemas definida no módulo cidades (classe Cidades) e implemente o método heuristic () dessa classe.
- 11. Faça as alterações necessárias ao módulo tree_search por forma a suportar a pesquisa gulosa.
- 12. Faça as alterações necessárias ao módulo tree_search por forma a suportar a pesquisa A*.
- 13. Acrescente código ao método search () da classe SearchTree por forma a calcular o número total de nós terminais e não terminais existentes na árvore após a conclusão da pesquisa. Essa informação deverá ficar armazenada em campos do self. Considere que um nó expandido, mas sem filhos, conta como nó não terminal.

- 14. Acrescente código ao método search () da classe SearchTree por forma a calcular o respectivo factor de ramificação média, armazenando-o num campo do self. Relembra-se que o factor de ramificação média é dado pelo ratio entre o número de nós filhos (ou seja, todos os nós com excepção da raiz da árvore) e o número de nós pais (nós não terminais).
- 15. Acrescente código ao método search() da classe SearchTree por forma a determinar o nó ou nós com maior custo acumulado. Esta informação dever armazenada na forma de uma lista num campo do self.
- 16. Acrescente código ao método search () da classe SearchTree por forma a determinar a profundidade média dos respectivos nós. Esta informação dever armazenada num campo do self.

III Pesquisa para problemas de atribuição com restrições

Em anexo a este guião, pode encontrar o módulo constraintsearch, similar ao desenvolvido nas aulas teóricas. O módulo disponibiliza uma classe ConstraintSearch que permite resolver problemas de atribuição com restrições. Por sua vez, e a título de exemplo, o módulo rainhas cria uma instância de ConstraintSearch para resolver o problema das 4 rainhas.

1 Exercícios

- 1. Resolva os exercícios IV.4 e IV.5 do guião teórico-pratico usando o módulo constraintsearch.
- 2. O método search () da classe ConstraintSearch não faz propagação de restrições. Acrescente um método para fazer propagação de restrições e utilize-o no método search ().