ME C231A, EECS C220B, Problem Set #1, Modeling and Simulation

Table of Contents

roblem 1
(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)
(k)
(l) 1
roblem 2
roblem 3
(a)
(b)
(c)
roblem 4
(a)
(b)
(c)
Demo of recording a moving-line Movie
Attribution

Follow this format to organize the script file which "manages" all of the tasks in producing HW1. Conclude by **publishing** this file, and then printing the resulting html file to pdf. Turn the pdf file (electronically) in via bCourses (more instructions later).

Problem 1

Simulation and Linearization of Engine/Drivetrain model

1(a)

Plot Throttle characteristic

```
fprintf('1(a) \n');
x=0:0.01:1.4;
y= HW1_T(x);
f1=figure(1);
set(f1,'name','T(alpha)-1(a)','Numbertitle','off');
hold on;
```

```
plot(x,y);
%plot(tSol,d_vSol,'b-o','LineWidth',2);
%axis([-Inf Inf -1 1]);
xlabel('alpha');
ylabel('T');
title('Plot of T(alpha)');
legend('T(alpha)');
box on;
legend('boxoff');
hold off;
```


1(b)

Rewrite equations in state-variable form. Nothing to include in script file. If desired, can enter equations using LaTex.

```
fprintf('1(b) all good \n');
1(b) all good
```

1(c)

hcModel is autograded. This section can make small illustration of its behavior.

ME C231A, EECS C220B, Problem Set #1, Modeling and Simulation

```
fprintf('1(c) all good \n');
fprintf('Use the equations from 1(b) to establish hcModel.\n');
%Use the equations from 1(b) to establish hcModel.

1(c) all good
Use the equations from 1(b) to establish hcModel.
```

1(d)

hcEqPt is autograded. Nothing to include in script file here. Problem 1(f) below carries out linearization at 2 specific speeds.

1(e)

Based on Throttle characteristic, and maximum value of T, what is maximum equilibrium speed car? Use this section to make the simple calculation.

1(f)

Illustrate the results of hcEqPt at vBar=22 and vBar=32

```
fprintf('1(f) \n');
[maBar_v22, wBar_v22, alphaBar_v22] = hcEqPt(22, 0.6, 0.095, 47500, 0.0026);
[maBar_v32, wBar_v32, alphaBar_v32] = hcEqPt(32, 0.6, 0.095, 47500, 0.0026);
fprintf('v=22, ma=%d, w=%d, alpha=%d \n', maBar_v22, wBar_v22, alphaBar_v22);
fprintf('v=32, ma=%d, w=%d, alpha=%d \n', maBar_v32, wBar_v32, alphaBar_v32);
% maBar_v22=0.0027, wBar_v22=170.5426, alphaBar_22=0.3618;
% maBar_v32=0.0047, wBar_v22=248.0620, alphaBar_32=0.5632;

1(f)
v=22, ma=2.743115e-03, w=1.705426e+02, alpha=3.618500e-01
v=32, ma=4.692315e-03, w=2.480620e+02, alpha=5.632053e-01
```

1(g)

constantThrottleSim is autograded. In this section, carry out the simulations, and format the plots nicely.

```
c1=0.6;
c2=0.095;
c3=47500;
c4=0.0026;
TFinal=20;
w = 0.5;
[tSol1, maSol1, vSol1] = constantThrottleSim(22, 0.01,c1, c2, c3, c4,
TFinal);
[tSol2, maSol2, vSol2] = constantThrottleSim(22, -0.01, c1, c2, c3, c4,
 TFinal);
[tSol3, maSol3, vSol3] = constantThrottleSim(22, 0.04,c1, c2, c3, c4,
 TFinal);
[tSol4, maSol4, vSol4] = constantThrottleSim(22, -0.04,c1, c2, c3, c4,
 TFinal);
[tSol5, maSol5, vSol5] = constantThrottleSim(22, 0.1,c1, c2, c3, c4,
TFinal);
[tSol6, maSol6, vSol6] = constantThrottleSim(22, -0.1,c1, c2, c3, c4,
 TFinal);
[tSol7, maSol7, vSol7] = constantThrottleSim(32, 0.01,c1, c2, c3, c4,
 TFinal);
[tSol8, maSol8, vSol8] = constantThrottleSim(32, -0.01,c1, c2, c3, c4,
 TFinal);
[tSol9, maSol9, vSol9] = constantThrottleSim(32, 0.04,c1, c2, c3, c4,
 TFinal);
[tSol10, maSol10, vSol10] = constantThrottleSim(32, -0.04,c1, c2, c3,
 c4, TFinal);
[tSol11, maSol11, vSol11] = constantThrottleSim(32, 0.1,c1, c2, c3,
 c4, TFinal);
[tSol12, maSol12, vSol12] = constantThrottleSim(32, -0.1,c1, c2, c3,
 c4, TFinal);
f2=figure(2);
set(f2,'name','constantThrottleSim_ma 1(g)','Numbertitle','off');
hold on;
plot(tSol1, maSol1, tSol2, maSol2, tSol3, maSol3, tSol4, maSol4, tSol5, maSol5, tSol6, maSol6
%plot(tSol,d vSol,'b-o','LineWidth',2);
%axis([-Inf Inf -1 1]);
xlabel('t');
ylabel('ma');
title('Plot of ma');
legend('ma Beta=0.01,vBar=22','ma Beta=-0.01,vBar=22','ma
 Beta=0.04,vBar=22','ma Beta=-0.04,vBar=22','ma Beta=0.1,vBar=22','ma
Beta=-0.1, vBar=22', 'ma Beta=0.01, vBar=32', 'ma Beta=-0.01, vBar=32', 'ma
 Beta=0.04,vBar=32','ma Beta=-0.04,vBar=32','ma Beta=0.1,vBar=32','ma
 Beta=-0.1, vBar=32');
box on;
legend('boxoff');
hold off;
```

```
figure;
f3=figure(3);
set(f3,'name','constantThrottleSim_v 1(g)','Numbertitle','off');
hold on;
plot(tSol1, vSol1, tSol2, vSol2, tSol3, vSol3, tSol4, vSol4, tSol5, vSol5, tSol6, vSol6, tSol7
%plot(tSol,d_vSol,'b-o','LineWidth',2);
%axis([-Inf Inf -1 1]);
xlabel('t');
ylabel('v');
title('Plot of v');
legend('v Beta=0.01, vBar=22', 'v Beta=-0.01, vBar=22', 'v
Beta=0.04,vBar=22','v Beta=-0.04,vBar=22','v Beta=0.1,vBar=22','v
 Beta=-0.1,vBar=22','v Beta=0.01,vBar=32','v Beta=-0.01,vBar=32','v
 Beta=0.04,vBar=32','v Beta=-0.04,vBar=32','v Beta=0.1,vBar=32','v
 Beta=-0.1, vBar=32');
box on;
legend('boxoff');
hold off;
```


1(h)

sinusoidThrottleSim is autograded. In this section, carry out the simulations, and format the plots nicely.

```
c1=0.6;
c2=0.095;
c3=47500;
c4=0.0026;
TFinal=20;
w = 0.5;
[tSol1, maSol1, vSol1] = sinusoidThrottleSim(22, 0.01,w,c1, c2, c3,
 c4, TFinal);
[tSol3, maSol3, vSol3] = sinusoidThrottleSim(22, 0.04,w,c1, c2, c3,
 c4, TFinal);
[tSol5, maSol5, vSol5] = sinusoidThrottleSim(22, 0.1,w,c1, c2, c3, c4,
 TFinal);
[tSol7, maSol7, vSol7] = sinusoidThrottleSim(32, 0.01,w,c1, c2, c3,
 c4, TFinal);
[tSol9, maSol9, vSol9] = sinusoidThrottleSim(32, 0.04,w,c1, c2, c3,
 c4, TFinal);
```

ME C231A, EECS C220B, Problem Set #1, Modeling and Simulation

```
[tSol11, maSol11, vSol11] = sinusoidThrottleSim(32, 0.1,w,c1, c2, c3,
 c4, TFinal);
figure;
f4=figure(4);
set(f4,'name','sinusoidThrottleSim_ma 1(h)','Numbertitle','off');
hold on;
plot(tSol1, maSol1, tSol3, maSol3, tSol5, maSol5, tSol7, maSol7, tSol9, maSol9, 'r', tSol11, m
%plot(tSol,d_vSol,'b-o','LineWidth',2);
%axis([-Inf Inf -1 1]);
xlabel('t');
ylabel('ma');
title('Plot of ma');
legend('ma Beta=0.01, vBar=22', 'ma Beta=0.04, vBar=22', 'ma
Beta=0.1, vBar=22', 'ma Beta=0.01, vBar=32', 'ma Beta=0.04, vBar=32', 'ma
Beta=0.1, vBar=32');
box on;
legend('boxoff');
hold off;
figure;
f5=figure(5);
set(f5,'name','sinusoidThrottleSim_v 1(h)','Numbertitle','off');
plot(tSol1, vSol1, tSol3, vSol3, tSol5, vSol5, tSol7, vSol7, tSol9, vSol9, 'r', tSol11, vSol11
%plot(tSol,d vSol,'b-o','LineWidth',2);
%axis([-Inf Inf -1 1]);
xlabel('t');
ylabel('v');
title('Plot of v');
legend('v Beta=0.01, vBar=22', 'v Beta=0.04, vBar=22', 'v
Beta=0.1, vBar=22', 'v Beta=0.01, vBar=32', 'v Beta=0.04, vBar=32', 'v
Beta=0.1, vBar=32');
box on;
legend('boxoff');
hold off;
```


1(i)

hcLinearModel is autograded. Nothing to include in script file here. This section can make small illustration of its behavior.

```
fprintf('1(i) all good \n');
%Good
1(i) all good
```

1(j)

Illustrate the results of hcLinearModel at vBar=22 and vBar=32

```
fprintf('1(j) \ n');
c1=0.6;
c2=0.095;
c3=47500;
c4=0.0026;
[A_22, B_22, C_22, D_22, maBar_22, wBar_22, alphaBar_22] =
hcLinearModel(22,c1, c2, c3, c4);
[A_32, B_32, C_32, D_32, maBar_32, wBar_32, alphaBar_32] =
hcLinearModel(32,c1, c2, c3, c4);
fprintf('vBar=32, A=%d, B=%d, C=%d, D=%d, wBar=%d, alphabar=%d
 \n',A_22, B_22, C_22, D_22, maBar_22, wBar_22);
fprintf('vBar=32, A=%d, B=%d, C=%d, D=%d, wBar=%d, alphabar=%d
 \n', A_32, B_32, C_32, D_32, maBar_32, wBar_32);
1(j)
vBar=32, A=-1.620155e+01, B=1.304945e+03,
 C=-2.605959e-04,D=-2.727532e-02, wBar=2.583455e-01, alphabar=0
vBar=32, A=0, B=1.290000e-01, C=0,D=2.743115e-03, wBar=1.705426e
+02, alphabar=vBar=32, A=-2.356589e+01, B=1.304945e+03,
 C=-4.457699e-04,D=-3.834952e-02, wBar=3.956747e-01, alphabar=0
vBar=32, A=0, B=1.290000e-01, C=0,D=4.692315e-03, wBar=2.480620e+02,
 alphabar=
```

1(k)

constantThrottleLinearSim is autograded. In this section, carry out the simulations, and format the plots nicely.

```
fprintf('1(k) \n');
c1=0.6;
c2=0.095;
c3=47500;
c4=0.0026;
TFinal=20;
[tSol1, maSol1, vSol1] = constantThrottleLinearSim(22, 0.01,c1, c2, c3, c4, TFinal);
[tSol2, maSol2, vSol2] = constantThrottleLinearSim(22, -0.01,c1, c2, c3, c4, TFinal);
[tSol3, maSol3, vSol3] = constantThrottleLinearSim(22, 0.04,c1, c2, c3, c4, TFinal);
```

```
[tSol4, maSol4, vSol4] = constantThrottleLinearSim(22, -0.04,c1, c2,
 c3, c4, TFinal);
[tSol5, maSol5, vSol5] = constantThrottleLinearSim(22, 0.1,c1, c2, c3,
c4, TFinal);
[tSol6, maSol6, vSol6] = constantThrottleLinearSim(22, -0.1,c1, c2,
 c3, c4, TFinal);
[tSol7, maSol7, vSol7] = constantThrottleLinearSim(32, 0.01,c1, c2,
 c3, c4, TFinal);
[tSol8, maSol8, vSol8] = constantThrottleLinearSim(32, -0.01,c1, c2,
 c3, c4, TFinal);
[tSol9, maSol9, vSol9] = constantThrottleLinearSim(32, 0.04,c1, c2,
 c3, c4, TFinal);
[tSol10, maSol10, vSol10] = constantThrottleLinearSim(32, -0.04,c1,
c2, c3, c4, TFinal);
[tSol11, maSol11, vSol11] = constantThrottleLinearSim(32, 0.1,c1, c2,
 c3, c4, TFinal);
[tSol12, maSol12, vSol12] = constantThrottleLinearSim(32, -0.1,c1, c2,
c3, c4, TFinal);
figure;
f6=figure(6);
set(f6, 'name', 'constantThrottleLinearSim_ma
1(k)','Numbertitle','off');
hold on;
plot(tSol1, maSol1, tSol2, maSol2, tSol3, maSol3, tSol4, maSol4, tSol5, maSol5, tSol6, maSol6
%plot(tSol,d_vSol,'b-o','LineWidth',2);
%axis([-Inf Inf -1 1]);
xlabel('t');
ylabel('ma');
title('Plot of d_ma');
legend('ma Beta=0.01,vBar=22','ma Beta=-0.01,vBar=22','ma
 Beta=0.04, vBar=22', 'ma Beta=-0.04, vBar=22', 'ma Beta=0.1, vBar=22', 'ma
Beta=-0.1,vBar=22','ma Beta=0.01,vBar=32','ma Beta=-0.01,vBar=32','ma
Beta=0.04,vBar=32','ma Beta=-0.04,vBar=32','ma Beta=0.1,vBar=32','ma
Beta=-0.1, vBar=32');
box on;
legend('boxoff');
hold off;
figure;
f7=figure(7);
set(f7,'name','constantThrottleLinearSim_v 1(k)','Numbertitle','off');
hold on;
plot(tSol1, vSol1, tSol2, vSol2, tSol3, vSol3, tSol4, vSol4, tSol5, vSol5, tSol6, vSol6, tSol7
%plot(tSol,d_vSol,'b-o','LineWidth',2);
%axis([-Inf Inf -1 1]);
xlabel('t');
ylabel('v');
title('Plot of d v');
legend('v Beta=0.01, vBar=22', 'v Beta=-0.01, vBar=22', 'v
 Beta=0.04,vBar=22','v Beta=-0.04,vBar=22','v Beta=0.1,vBar=22','v
Beta=-0.1,vBar=22','v Beta=0.01,vBar=32','v Beta=-0.01,vBar=32','v
Beta=0.04, vBar=32', 'v Beta=-0.04, vBar=32', 'v Beta=0.1, vBar=32', 'v
Beta=-0.1, vBar=32');
box on;
```

```
legend('boxoff');
hold off;

1(k)
```


1(I)

sinusoidalThrottleLinearSim is autograded. In this section, carry out the simulations, and format the plots nicely.

```
fprintf('1(I) all good \n');
c1=0.6;
c2=0.095;
c3=47500;
c4=0.0026;
TFinal=20;
w = 0.5;
[tSol1, maSol1, vSol1] = sinusoidalThrottleLinearSim(22, 0.01, w, c1,
c2, c3, c4, TFinal);
[tSol2, maSol2, vSol2] = sinusoidalThrottleLinearSim(22, -0.01,w,c1,
c2, c3, c4, TFinal);
[tSol3, maSol3, vSol3] = sinusoidalThrottleLinearSim(22, 0.04,w,c1,
c2, c3, c4, TFinal);
[tSol4, maSol4, vSol4] = sinusoidalThrottleLinearSim(22, -0.04,w,c1,
c2, c3, c4, TFinal);
[tSol5, maSol5, vSol5] = sinusoidalThrottleLinearSim(22, 0.1,w,c1, c2,
c3, c4, TFinal);
[tSol6, maSol6, vSol6] = sinusoidalThrottleLinearSim(22, -0.1,w,c1,
c2, c3, c4, TFinal);
[tSol7, maSol7, vSol7] = sinusoidalThrottleLinearSim(32, 0.01,w,c1,
c2, c3, c4, TFinal);
```

```
[tSol8, maSol8, vSol8] = sinusoidalThrottleLinearSim(32, -0.01,w,c1,
 c2, c3, c4, TFinal);
[tSol9, maSol9, vSol9] = sinusoidalThrottleLinearSim(32, 0.04,w,c1,
c2, c3, c4, TFinal);
[tSol10, maSol10, vSol10] = sinusoidalThrottleLinearSim(32,
 -0.04, w, c1, c2, c3, c4, TFinal);
[tSol11, maSol11, vSol11] = sinusoidalThrottleLinearSim(32, 0.1,w,c1,
 c2, c3, c4, TFinal);
[tSol12, maSol12, vSol12] = sinusoidalThrottleLinearSim(32, -0.1, w, c1,
 c2, c3, c4, TFinal);
figure;
f8=figure(8);
set(f8, 'name', 'sinusoidalThrottleLinearSim ma
1(i)','Numbertitle','off');
hold on;
plot(tSol1, maSol1, tSol2, maSol2, tSol3, maSol3, tSol4, maSol4, tSol5, maSol5, tSol6, maSol6
%plot(tSol,d_vSol,'b-o','LineWidth',2);
%axis([-Inf Inf -1 1]);
xlabel('t');
ylabel('ma');
title('Plot of d ma');
legend('ma Beta=0.01,vBar=22','ma Beta=-0.01,vBar=22','ma
Beta=0.04,vBar=22','ma Beta=-0.04,vBar=22','ma Beta=0.1,vBar=22','ma
 Beta=-0.1, vBar=22', 'ma Beta=0.01, vBar=32', 'ma Beta=-0.01, vBar=32', 'ma
Beta=0.04,vBar=32','ma Beta=-0.04,vBar=32','ma Beta=0.1,vBar=32','ma
Beta=-0.1, vBar=32');
box on;
legend('boxoff');
hold off;
figure;
f9=figure(9);
set(f9,'name','sinusoidalThrottleLinearSim_v
1(i)','Numbertitle','off');
hold on;
hold on;
plot(tSol1, vSol1, tSol2, vSol2, tSol3, vSol3, tSol4, vSol4, tSol5, vSol5, tSol6, vSol6, tSol7
%plot(tSol,d_vSol,'b-o','LineWidth',2);
%axis([-Inf Inf -1 1]);
xlabel('t');
ylabel('v');
title('Plot of d v');
legend('v Beta=0.01,vBar=22','v Beta=-0.01,vBar=22','v
Beta=0.04, vBar=22', 'v Beta=-0.04, vBar=22', 'v Beta=0.1, vBar=22', 'v
Beta=-0.1,vBar=22','v Beta=0.01,vBar=32','v Beta=-0.01,vBar=32','v
 Beta=0.04,vBar=32','v Beta=-0.04,vBar=32','v Beta=0.1,vBar=32','v
Beta=-0.1, vBar=32');
box on;
legend('boxoff');
hold off;
1(I) all good
```


Problem 2

Stability of specific discrete-time system. isSystemStable is autograded. Illustrate its behavior here for a few values of alpha

```
fprintf('2 all good \n');
for alpha=[0.01 0.2 3 10];
    [TF] = isSystemStable(alpha);
    fprintf('alpha=%d,TF=%i \n',alpha,all(TF));
end

2 all good
alpha=1.000000e-02,TF=0
alpha=2.000000e-01,TF=0
alpha=3,TF=0
alpha=10,TF=0
```

Problem 3

Modeling an Euler-discretization of building heat transfer model

3(a)

bldgHTM is autograded. Illustrate its behavior here.

```
fprintf('3(a) all good \n');
3(a) all good
```

3(b)

Add code here to carry out the ode45 simulation, including relevant plots.

```
fprintf('3(b) \ n');
cp = 1;
mz = 100;
cz = 20;
u1H = @(t) 1000*(2 + sin(0.1*t));
u2H = @(t) 25 + sin(0.2*t);
qH = @(t) 1000*(t>50);
Tinit=25;
tSpan=[0 200];
%bldgHTMModel=@(t,T) (qH(t)+cp*u1H(t).*(u2H(t)-T))/(mz+cz);
[tSol11,TSol11] = ode45(@(t,T) bldgHTM(T, ulH(t), u2H(t), qH(t), mz,
 cz, cp),tSpan,Tinit);
figure;
f10=figure(10);
set(f10, 'name', 'ode45 and bldgHTM 3(b)', 'Numbertitle', 'off');
hold on;
hold on;
plot(tSol11,TSol11);
%plot(tSol,d_vSol,'b-o','LineWidth',2);
%axis([-Inf Inf -1 1]);
```

```
xlabel('t');
ylabel('T');
title('Plot of TSol');
legend('T');
box on;
legend('boxoff');
hold off;
```


3(c)

Add code here to carry out the first-order, forward Euler simulation, including relevant plots, and comparison to ode45 simulation.

```
fprintf('3(c) \n');
TS=0.1;
[tESol,TESol]=recall_xEsol(200/0.1,0.1);
figure;
f11=figure(11);
set(f11,'name','3(b)','Numbertitle','off');
hold on;
plot(tSol11,TSol11,tESol,TESol);
%plot(tSol,d_vSol,'b-o','LineWidth',2);
%axis([-Inf Inf -1 1]);
```

```
xlabel('t');
ylabel('T');
title('Plot of T');
legend('"Exact"','Euler');
box on;
legend('boxoff');
hold off;
```


Problem 4

Kinematic Bicycle model, simulation and animation

4(a)

bikeFE is autograded. Illustrate its behavior here.

```
fprintf('4(a) all good \n');
4(a) all good
```

4(b)

bikeFEsim is autograded. Illustrate its behavior here, including a few plots. Data produced in this section will be used in the next section to build the animation.

```
fprintf('4(b) all good \n');
initState=[0 0 0 0];
TS=0.1;
[xE, yE, vE, psiE] = bikeFEsim(a, deltaF, initState, TS);
tSol12=zeros(length(xE),1);
for i=2:length(xE)
    tSol12(i)=tSol12(i-1)+TS;
```

```
end
figure;
f12=figure(12);
set(f12,'name','4(b)','Numbertitle','off');
hold on;
subplot(2,2,1)
plot(tSol12, xE, 'r', tSol12, yE, 'k');
legend('x1','x2','location','Best');
xlabel('Time, t')
ylabel('Both Solutions x(t)')
subplot(2,2,2)
plot(xE, yE, 'b');
xlabel('x1')
ylabel('x2')
subplot(2,2,3)
plot(tSol12, xE, 'r');
xlabel('Time, t')
ylabel('x1(t)')
subplot(2,2,4)
plot(tSoll2, yE, 'k');
xlabel('Time, t')
ylabel('x2(t)')
box on;
hold off;
```


4(c)

Include code here to produce the animation, mimicing the ideas in the movingLineMovieDemo.m file introduced in Lab.

```
fprintf('4(c) \n');
%run movingLineMovieDemo;
4(c)
```

Demo of recording a moving-line Movie

This is a simple script to demonstrate some of the ideas to capturing a sequence of "frames", collecting them into an array, and finally viewing them sequentially as a movie, at a fixed, specified frame rate.

```
figure;
f13=figure(13);
set(f13,'name','4(c)','Numbertitle','off');
clf
% Initial center and orientation of line (uncaptured - see below)
%cx = 1; cy = 1; theta = 0; L = 0.5;
cx = 1; cy = 1; theta = 0; L = 5;
% Create initial line object (xdata, and ydata)
Lh = line([cx-L/2*cos(theta) cx+L/2*cos(theta)],...
    [cy-L/2*sin(theta) cy+L/2*sin(theta)]);
%+++
initState=[0 0 0 0];
TS=0.1;
%[xE, yE, vE, psiE] = bikeFEsim(a, deltaF, initState, TS);
nFrames = length(xE);
%+++
nFrames = 400;
% Allocate a 1-by-nFrames STRUCT array with 2 fields
F(nFrames) = struct('cdata',[],'colormap',[]);
disp('Creating and recording frames...')
for j = 1:nFrames
    % Change center and angle, in a sensible manner, based on Frame#
    응+++
    cx=xE(j);
    cy=yE(j);
    theta=psiE(j);
    응+++
    %cx = cos(j/nFrames*pi);
    %cy = sin(j/nFrames*pi);
    %theta = 3*pi*j/nFrames;
    % Move the line to new location/orientation
    set(Lh,'xdata',[cx-L/2*cos(theta) cx+L/2*cos(theta)],...
        'ydata', [cy-L/2*sin(theta) cy+L/2*sin(theta)]);
    % Make sure the axis stays fixed (and square)
    axis([0 500 -6 8]); axis square
    % Flush the graphics buffer to ensure the line is moved on screen
    drawnow
    % Capture frame
```

```
F(j) = getframe;
end
disp('Playing movie...')
Fps = 100;
nPlay = 1;
movie(F,nPlay,Fps)

Creating and recording frames...
Playing movie...
```


Attribution

Include you name, date and the class number. Zhipeng Yu ,2016/9/4 ME231A

```
fprintf('Zhipeng Yu ,2016/9/4 ME231A');
Zhipeng Yu ,2016/9/4 ME231A
```

Published with MATLAB® R2015b