Simulating a Dynamic Model: Reviewing Numerical Integration

Aerospace Autonomy

References; Hamming, R. W. (1962). Numerical methods for Scientists and Engineers

AERSP 497/597 Dr Simon W Miller simon.w.miller@psu.edu

Basic premise: Can propagate forward dynamics throughout time

Common formulation using the system model

$$\dot{x} = f(x, u)$$

Numerical integration finds

$$x(t) = f(\dot{x}(t - \Delta t))$$

Concept of Numerical Integration

Remember Taylor Series Expansion?

$$f(x + \Delta t)$$

$$\approx f(x) + \Delta t f'(x) + \frac{\Delta t^2}{2!} f''(x) + \cdots$$

First-Order Forward Euler (FOFE)

$$\mathbf{x}(t_{i+1}) = \mathbf{x}(t_i) + \dot{\mathbf{x}}(t_i) \cdot \Delta t + \mathcal{O}(\Delta t^2)$$

- The 'classic' vision of numerical integration
- But not the best algorithm...

Accuracy of Forward Euler

Useful test: how well can it approximate

$$x(t) = e^{at}$$

$$\dot{x}(t) = a e^{at} = a \cdot x(t)$$

For Forward Euler:

$$\dot{x}(t) \approx x(t) + \Delta t \, x'(t) + \mathcal{O}(\Delta t^2)$$

$$x(t + \Delta t) \approx e^{at} + \Delta t \cdot ae^{at} = x(t)(1 + a\Delta t)$$

$$x(t + n\Delta t) = (1 + a\Delta t)^n \cdot x_{t=0}$$

- Compare the two, reality and approximation
 - And think about when Forward Euler will blow up...

Stability of Forward Euler

- If a < 0 (decay):
 - Solution can grow in magnitude if $1 + a\Delta t < -1$
 - Need small Δt if 'a' very negative
- If a < 0 (decay)
 - Solution will oscillate between positive & negative if $-1 < 1 + a\Delta t < 0$
 - Need small Δt if 'a' very negative

Here is the solution to the differential equation that we want to find numerically...

$$f'(x) = 2\pi \cos(2\pi x) + \frac{16\pi \cos(16\pi x)}{8} + \frac{32\pi \cos(32\pi x)}{16}$$
$$\therefore f(x) = \sin(2\pi x) + \frac{\sin(16\pi x)}{8} + \frac{\sin(32\pi x)}{16}$$

Let's look at just one small step ...

Analytic $f_0(0) = 0$ $f_1(0+0.1) \approx f_0 + 0.1 \cdot f'(0)$ = 0 + 1.88496= 1.884956 $f_2(0.1 + 0.1) \approx f_1 + 0.1 \cdot f'(0.1)$ = 1.884956 + 0.194161= 2.079117 $f_3(0.2 + 0.1) \approx f_2 + 0.1 \cdot f'(0.2)$ = 2.079117 + -0.119998= 1.959119

Forward-Euler

$$f(0) = 0$$

 $f(0.1) = 0.432167$
 $f(0.2) = 0.937024$
 $f(0.3) = 0.965089$

Ummm...this is looking bad!

Let's look at just one small(er) step ... $\Delta t = 0.0125$

Analytic $f_0(0) = 0$ $f_1(0 + \Delta t) \approx f_0 + \Delta t f'(0)$ = 0.235619 $f_2(\Delta t + \Delta t) \approx f_1 + \Delta t f'(\Delta t)$ = 0.401727 $f_3(2\Delta t + \Delta t) \approx f_2 + \Delta t f'(2\Delta t)$ = 0.440030

Forward-Euler
$$f(0) = 0$$

 $f(\Delta t) = 0.211373$
 $f(2\Delta t) = 0.312053$

 $f(3\Delta t) = 0.315591$

Well...that is better

Applying Forward Euler integration ... it loses stability as soon as it loses accuracy

Forward Euler Integration

Laying them on top of the Truth

This type of integration maintains stability, even when inaccurate

Bogacki-Shampine Integration

Laying them on top of the Truth

Bogacki-Shampine Integration

Numerical integration 'goodness' measured by

- Accuracy
 - The error $x_{n\Delta t} x_n$ can be bounded by $\mathcal{O}(n\Delta t)^p$
 - Error can be reduced by:
 - Reducing Δt (almost always, except numerical stability!)
 - Using an algorithm with a higher order of accuracy p

- Stability
 - Do errors grow in relation to $x\{t\}$, or do they take on a life of their own?

- Simplicity, i.e. Flops
 - Computation time caused by calculating derivative

So, what's the point?

There are many different 'integration methods'

- There are three performance metrics by which to evaluate them:
 - Accuracy, Stability, Simplicity

- Different integration methods score better-or-worse on these metrics
 - Some can score badly ... on all of the metrics!

First-Order Backward Euler

Calculate derivative @ next time-step (instead of at current time)

$$x_{n+1} - \dot{x}\{x_{n+1}\}\Delta t = x_n, \qquad \to \quad x_{n+1} = \frac{1}{1 - a\Delta t}x_n$$

- Still Only First-Order Accuracy (p = 1)
 - But stable for all decay!
 - Stable for growth when $a\Delta t < 1$

Laying them on top of the Truth

Backward Euler Integration

Trapezoidal Rule

Use contribution from derivative at this and next time-step

$$x_{n+1} - \frac{1}{2}\dot{x}\{x_{n+1}\}\Delta t = \frac{1}{2}\dot{x}\{x_n\}\Delta t + x_n$$

$$\to x_{n+1} = x_n + \frac{1}{2}(\dot{x}\{x_{n+1}\} + \dot{x}\{x_n\})\Delta t$$

Second-Order Accuracy!

Stability same as Backward Euler

This type of integration has better stability than FOFE

Problem with Methods to Date

- In reality, not looking at super simple functions like e^{at}
 - How to set Δt ?
 - Predict 'fastest' derivative within system (greatest 'a')
 - Look for stability requirements (growth & decay)

Error always grows to first/second order

- Backward Euler & Trapezoidal
 - More stable but how do you calculate the derivative of a future state before you know what the future state is in the first place? (Implicit routines)

Factors affecting numerical integration success

• Where in the time-step is the derivative calculated?

How big is the time-step?

- More advanced routines...
 - Better forward estimate of derivative through consideration of multiple past derivatives
 - Better forward estimate of derivative throughout time-step
 - Better estimate of derivative through iteration
 - Adjustable time-step

Multi-Step Methods

Estimate derivative from multiple past values

$$x_{n+1} = x_n + (c_n \dot{x}_n + c_{n-1} \dot{x}_{n-1} + \dots + c_{n-p} \dot{x}_{n-p}) \Delta t$$

$$\sum_{n=1}^{\infty} c_i = 1$$

- Accuracy of order p
 - Creates accurate estimate of smoothly varying derivatives
 - Late response to sudden changes in derivative

Multi-Step Coefficients

- More coefficients for hyper-accuracy
 - e.g., Astronomers go Out to p=8
- Adams-Bashforth methods related to MATLAB's ode23 and ode45

	<i>c</i> ₁	<i>c</i> ₂	<i>c</i> ₃	<i>c</i> ₄	Stability Threshold	Error Constant
P=1	1				-2	1/2
P=2	3/2	-1/2			-1	5/12
P=3	23/12	-16/12	5/12		-6/11	3/8
P=4	55/24	-59/24	37/24	-9/24	-3/10	251/720

Predictor-Error-Corrector

- Forward Euler is EXPLICIT assumes can estimate forward, linearly, the derivative value
- Would be nice to compare derivative at end of time-step with derivative used to get there
- Suggests iterative process
 - P: use explicit multi-step process to predict x_{n+1}
 - E: use x_{n+1} to evaluate \dot{x}_{n+1}
 - C: extrapolate from x_n using \dot{x}_{n+1} to correct x_{n+1} with implicit (backwards) method, e.g., Trapezoidal rule

Can repeat a set number of times, or until error is within bounds

Runge-Kutta Routines

- RK algorithms calculate derivative multiple times within the same time-step
- Unlike PEC methods, though, it does not iterate freely, i.e., we have a constrained iteration technique constrained iterations

• RK2:

$$\dot{x}_{1} = \dot{x}\{x(t), t\}
\dot{x}_{2} = \dot{x}\{x(t) + \dot{x}_{1} \cdot \Delta t, t + \Delta t\}
\dot{x}_{RK2} = \frac{1}{2}(\dot{x}_{1} + \dot{x}_{2})$$

RK4 – The Classic Approach

• 'Classic', 4th order, it requires calculating the derivative FOUR times per iteration, expensive!

$$\dot{x}_1 = \dot{x}\{x(t), t\}$$

$$\dot{x}_2 = \dot{x}\left\{x(t) + \dot{x}_1 \cdot \frac{\Delta t}{2}, t + \frac{\Delta t}{2}\right\}$$

$$\dot{x}_3 = \dot{x}\left\{x(t) + \dot{x}_2 \cdot \frac{\Delta t}{2}, t + \frac{\Delta t}{2}\right\}$$

$$\dot{x}_4 = \dot{x}\{x(t) + \dot{x}_3 \cdot \Delta t, t + \Delta t\}$$

$$\dot{x}_{RK4} = \frac{1}{6} (\dot{x}_1 + 2\dot{x}_2 + 2\dot{x}_3 + \dot{x}_4)$$

But ... it is stable and robust, hooray!

How does one decide on a numerical technique?

Ask yourself some questions ...

- Which method would work well for smooth dynamics, predictable from the past?
- Which method would work well for dynamics in which sudden changes can occur (e.g., sudden inputs)?
- Which method guarantees stability?
- Which method guarantees that it might not iterate forever?

