SUPPLEMENTARY MATERIAL

Supplementary Table 1. Sample results from a subset of texts processed using T5. The largest T5 model with 11b parameters was used for this test.

Phenotype	Prompt+Input Text	Output	Expected Output	Result explanation
Stage	Prompt: "Extract initial stage information from the following text" Section of the input text: "Diagnosis: Pulmonary adenocarcinoma Stage IV Diagnosed xx/xx/xx PD-L1 = 100% Genomics: FISH: negative for ALK gene rearrangement	'adenocarcinoma. a a a,: - resection of the cerebellar tumor on xx/xx/xx and - 1141.4. No hepatosplenomegaly. No lytic or blastic osseous lesions. No edema. Skin: Denies rash, heartburn, nausea and vomiting. Eyes: Denies blurred vision and'	Stage IV	The model haphazardly summarizes the text without being specific to the context.
Treatment	Prompt: "Extract initial treatment information from the following text" Section of the input text: "TREATMENT HISTORY: 1. Concurrent chemoradiation with carboplatin and paclitaxel Thoracic radiation given from 01/15/2020-02/26/2020."	: Current: CURRENT: /// 2.	Chemoradiation	The model does not generate the expected result
Recurrence	Prompt: "Identify whether a patient had cancer recurrence/relapse after first treatment completion from the following text. Output: Relapse 'Yes' or 'No' and relapse/recurrence date" Section of the input text: "who developed inflammatory locoregional recurrence with nodal involvement s/p second line chemo (carboplatin/gemcitabine)	ss// to chemo////e e//oos.	Logoregional recurrence or Yes	The model generated incorrect result when expected to identify recurrence

with minimal pathologic		
response"		

Supplementary Table 2. Results from a subset of texts processed using clinical BERT

Phenotype	Keyword+Input Text	Output	Expected	Result explanation
Stage	Keyword:stage Section of the input text: Staging form: Lung, AJCC 8th Edition - Clinical stage from xx/xx/xx: Stage IIIC	from	Output Stage III	To search and extract clinicalBERT embeddings that corresponds we set a keyword. Only based on that keyword, ClinicalBERT extracts the desired information using their contextual embeddings. In this text, model extracts the first occurring 'stage' and the 'word' right after 'stage'.
Stage	Section of the input text: REASON FOR CONSULTATION: New diagnosis of non- small cell lung cancer. ONCOLOGY HISTORY: Oncology History DIAGNOSIS: cT1N2, Stage IIIA adenocarcinoma of the right upper lobe	IIIA	IIIA	Extracts the expected output

Supplementary Text 1. Additional details on the GPT models

Model Description

GPT-3.5 and GPT-4, developed by OpenAI, are transformer-based language model trained for multiple NLP tasks, including natural language generation. Our setup is an adaptation of the sequence labeling task where we provide context as input to the model, and the model generates responses. The context includes the clinical text and prompt where we ask GPT model to extract expected phenotypes from the clinical notes. The models follow transformer model

architecture. According to openAI, given both the competitive landscape of developing these models and the safety implications of large-scale models like GPT-4, they are not providing any additional details on the model architecture (including model size), hardware, training compute, dataset construction, and the training method.

Training Dataset

The models were trained using publicly available data (such as internet data) as well undisclosed licensed data. According to OpenAI, it is a web-scale corpus of data including correct and incorrect solutions to math problems, weak and strong reasoning statements, self-contradictory and consistent statements, and statements representing varying ideologies. The data used to train the model is from until September 2021. Data generated after September 2021 was not used to train the model.

Framework Setup

To build the GPT framework, we used Microsoft's Azure OpenAI Service, which provides REST API access to OpenAI's language models. We deployed the OpenAI API endpoint into a HIPAA-compliant subscription within Washington University's Azure tenant. This enabled us to study the performance of GPT in a secure and HIPAA-compliant manner. Additionally, we applied for and received an exemption from content filtering, abuse monitoring, and human review of our use of the Azure OpenAI service, which removes the ability of Microsoft employees to perform any form of data review. At the time of our experiments, GPT-3.5 Version 0301 and GPT-4 Version 0613 were the most recent GPT models available. The openAI version 0.28.1 was used for the experiments in this study.

Supplementary Figure 1. Prompts selected in the GPT Model to extract all phenotypes.

```
prompt = [
{"role":"system", "content": "As an Al assistant, I extract patient lung cancer stage information from clinical text."},
{"role":"user","content":"Extract the initial lung cancer stage information from the following text:"+document},
{"role":"user","content":"If stage information is not available, only output: 'Not Available'."},
"role":"user","content":"As an Al assistant, I extract patient lung cancer treatment information from clinical text."}, {"role":"user","content":"Extract the initial treatment information from the following text:"+document},
["role":"user", "content":"If treatment information is not available, only output: 'Not Available'."},
{"role":"user","content":"If treatment is available, categorize into treatment types: radiation, chemotherapy, chemoradiation, surgery.
Output: Treatment Type"}
{"role":"system", "content":"As an Al assistant, I extract patient lung cancer relapse/recurrence information from clinical text."},
("role": "user", "content": "Identify whether a patient had cancer recurrence/relapse after first treatment completion from the following
text:"+document},
{"role":"user", "content": "Output:Relapse: 'Yes' or 'No' and Relapse/Recurrence Date"},
{"role":"user","content":"If relapse/recurrence information is not available, only output: 'Not Available' "}
prompt = [
{"role":"system", "content":"As an Al assistant, I extract patient lung cancer relapse/recurrence information from clinical text."},
{"role":"user", "content": "Extract only the organ names that patient had recurrence in after initial lung cancer diagnosis. Text:"+document},
{"role":"user","content":"If recurrence organ information is not available, only output 'Not Available' and nothing else."},
```

Supplementary Table 3. GPT Output Variations

Phenotype	Output Variations			
	Output: Stage IIIA,			
	Output: T1 N2 M0,			
Staging	Output: Stage 4,			
	The initial lung cancer stage mentioned in the text is Stage IIIB,			
	Output: Stage T4N3M0 (IIIC)			
	Treatment: Radiation therapy,			
	Treatment: Chemoimmunotherapy (carbo/pem/pembro),			
	Treatment: Carboplatin plus pemetrexed and pembrolizumab,			
Treatment	Treatment: PACLItaxel / CARBOplatin with Concurrent Radiation,			
	Treatment: Taxol/Carbo,			
	Treatment: Concurrent chemoradiation, 60 Gy in 30 fractions (CoT xx/xx/xx) with			
	weekly carbo/taxol			
	Relapse/recurrence information: Disease progression was noted in mediastinal nodes			
	and the calvarium on CT imaging on xx/xx/xx,			
Cancer	Relapse/recurrence information: Locoregional recurrence of non-small cell lung cancer			
recurrence	(NSCLC) with possible NE differentiation,			
	Relapse/recurrence information: Locally advanced non-small cell lung cancer with			
	local regional recurrence			
	Relapse/recurrence organ: Brain, bone, and lung,			

Recurrence	Relapse/recurrence organ: Mediastinal nodes and the calvarium,
organs	Relapse/recurrence organ: Left supraclavicular lymph nodes,
	Relapse/recurrence organ: The relapse/recurrence is in the right lower lobe of the lung,
	Right upper lobe lung mass, hepatic segment 4

Supplementary Table 4. Hyperparameters used in the model.

Hyperparameter	Value
Tokenization and Context Window	200 tokens
Temperature (Randomness of the model output)	0
Top p (Top-K Sampling Technique)	0.95
Presence_penalty (Penalty to discourage model	
from generating responses that contain certain	-1.0
specified tokens)	

Supplementary Text 2. Additional details on the spaCy models

ScispaCy

Model Description

ScispaCy is a specialized NLP library for processing biomedical texts which builds on the spaCy library. It was first published in 2019. The model en_core_sci_md within scispaCy have a larger vocabulary and include word vectors compared the original spaCy library which is trained for POS tagging, dependency parsing, and Named Entity Recognition using datasets relevant to biomedical text. The tokenization module within scispaCy has also been improved with additional rules. The spaCy was designed for general NLP tasks covering multiple domains. ScispaCy models with its added features improves on the accuracy and terminology recognition for healthcare text. At the time of our experiments, version 0.5.3 was the most recent model for use.

Framework Setup

We input the text into the scispacy model where individual components of the model was added in to process, tokenize, tag, parse, and normalize the input to perform scientific NER and extract the phenotypes as the input.

Training Dataset

ScispaCy has incorporated training data from the OntoNotes 5.0 corpus when training the dependency parser and POS tagger. To train the dependency parser and part of speech tagger in both released models, they convert the treebank of McClosky and Charniak, 4 which is based on the GENIA 1.0 corpus to Universal Dependencies v1.0 using the Stanford Dependency Converter. As this dataset has POS tags annotated, we use it to train the POS tagger jointly with the dependency parser in both released models. Finally, they also leveragedPubMed abstracts for training the models. In addition, they also include relevant named entities linked to their Medical Subject Headings (MeSH terms) as well as chemicals and drugs linked to a variety of ontologies, as well as author metadata, publication dates, citation statistics and journal metadata.

To increase the robustness of the dependency parser and POS tagger to generic text, we make use of the OntoNotes 5.0 corpus when training the dependency parser and part of speech tagger The OntoNotes corpus consists of multiple genres of text, annotated with syntactic and semantic information, but we only use POS and dependency parsing annotations in this work. The main NER model in both released packages in scispaCy is trained on the mention spans in the MedMentions dataset. They also have finer-grained NER techniques embedded trained on BC5CDR (for chemicals and diseases), CRAFT (for cell types, chemicals, proteins, genes; Bada), JNLPBA (for cell lines, cell types, DNAs, RNAs, proteins) and BioNLP13CG (for cancer genetics), respectively.

MedspaCy

Model Description

The default spaCy tokenizer is not trained on clinical text. The major drawback of the default spaCy tokenizer for clinical text processing is that it is not trained on clinical text.

Additionally, it has a variety of rules designed to handle text sourced online, including many rules that mitigate excess tokenization of URLs. These rules prevent splitting sequences of alphanumeric characters and punctuation into multiple tokens. However, URLs are relatively uncommon in clinical text but typos and using punctuation to delineate document structures are common. The tokenizer included in medspaCy implemented custom rules to handle punctuation and inconsistent use of whitespace that are common in clinical notes. It was published in 2021.

Added features in medspacy were Tokenization, sentence split, Sentence Detection, NER techniques, Section Detection, Concept extraction, UMLS mapping, Contextual analysis, prepost processing utilities. So, there are overlapping and non-overlapping components between scispacy and medspacy. Medspacy which came after scispacy does not have baseline comparison results to each other.

Training Data

From the documentation, it seems like medpsacy's implementation was on top of spacy's with added features. With that, the assumption is that there was no additional clinical data added to the actual model. However, for every added feature like section detection, concept extraction, medspacy utilizes LOINC, and a sample of UMLS ontologies to map concepts and improve the extraction results.

Supplementary Text 3. Additional details on the Flan-T5 models

Model Description

Flan-T5 is an open-source language model built upon the T5 encoder-decoder

archictecture and developed by Google. It leverages instruction fine-tuning on several tasks. The model was built by extending instruction finetuning by scaling the number of finetuning tasks, scaling the size of the model, and finetuning on chain-of-thought (COT) datasets. The performance evaluation also indicates enhanced generalizability across different downstream tasks, including a range of few-shot, zero-shot, and CoT tasks.

Training Data

The model is trained on a large dataset that includes data from various natural language processing tasks and coding problems. The data includes more than 1800 inference and training tasks dataset. The model also utilizes 9 chain-of-thought(COT) datasets, which includes answers and reasoning for answers from annotators. The Flan-T5 is trained on instructions referencing these COT annotations, allowing to potentially learn and apply reasoning skills to unseen tasks.

Supplementary Table 5. Distribution of the text types from where phenotypes were extracted.

Phenotype	Text Type	Count
	Letter	22
Treatment	Progress Notes	40
	Telephone Encounter	1
	Letter	33
Staging	Progress Notes	17
	Telephone Encounter	2
Relapse Instances	Letter	13
	Progress Notes	8
Recurrence Organs	Letter	13
	Progress Notes	8

Supplement Table 6: Phenotype extraction performance results for all models. CI=Confidence Interval

Approach	Phenotype	F1-Score	Precision	Recall
		(Point Estimate,	(Point Estimate,	(Point Estimate,
		95% CI)	95% CI)	95% CI)

	Staging	0.92 (0.91, 0.93)	0.93(0.92, 0.94)	0.91(0.90, 0.92)
GPT-4	Treatment	0.92 (0.90, 0.94)	0.95(0.92, 0.97)	0.89(0.86, 0.92)
011.	Recurrence	0.96(0.94,0.98)	0.94(0.90, 0.97)	0.98(0.97, 0.99)
	Organs	0.68(0.65,0.71)	0.67(0.64, 0.70)	0.70(0.65,0.75)
		` ' '		` ' '
	Staging	0.90(0.88,0.92)	0.93(0.91, 0.95)	0.88 (0.85,0.91)
	Treatment	0.91(0.88, 0.94)	0.94(0.91, 0.97)	0.89(0.88,0.90)
GPT-3.5-	Recurrence	0.96(0.93,0.98)	0.93(0.89, 0.97)	1.00(1.00,1.00)
turbo	Organs	0.62(0.60,0.64)	0.59(0.56, 0.62)	0.65(0.61,0.69)
Flan-T5-xl	Staging	0.87 (0.85,0.90)	0.94 (0.92,0.96)	0.82 (0.80,0.83)
	Treatment	0.79 (0.76,0.82)	0.89 (0.85, 0.93)	0.71(0.68,0.74)
	Recurrence	0.76 (0.72, 0.78)	1.00(1.00, 1.00)	0.62(0.60,0.64)
	Organs	0.54 (0.48, 0.59)	0.58(0.54,0.61)	0.52 (0.48,0.56)
Flan-T5-xxl	Staging	0.89(0.86,0.92)	0.96(0.94, 0.98)	0.84(0.81,0.86)
	Treatment	0.84 (0.81,0.86)	0.91 (0.90, 0.92)	0.77(0.75,0.79)
	Recurrence	0.76 (0.72,0.78)	1.00 (1.00, 1.00)	0.61(0.60,0.63)
	Organs	0.54(0.52,0.55)	0.57 (0.55,0.60)	0.51(0.49,0.53)
	Staging	0.66(0.63,0.68)	0.61(0.58, 0.64)	0.71(0.70,0.72)
scispaCy	Treatment	0.60(0.57, 0.63)	0.58(0.54, 0.61)	0.63(0.61,0.65)
	Recurrence	0.61(0.58, 0.64)	0.54(0.51, 0.57)	0.71(0.70,0.72)
	Organs	0.55(0.52, 0.58)	0.57(0.54, 0.60)	0.54(0.50,0.58)
	Staging	0.66(0.63, 0.69)	0.63(0.60, 0.66)	0.69(0.67,0.71)
medspaCy	Treatment	0.61(0.57, 0.65)	0.58(0.54, 0.61)	0.65(0.63, 0.67)
	Recurrence	0.59(0.55, 0.63)	0.56(0.53, 0.60)	0.63(0.60,0.66)
	Organs	0.53(0.50, 0.56)	0.55(0.52, 0.58)	0.51(0.47,0.55)

Supplementary Table 7. Manual review of the true positive results from a subset of texts processed using GPT-3.5-turbo and GPT-4

Model	Phenotype	Input Text	Output
GPT-3.5 -turbo	Stage	Snippet of the input text: The immunoprofile is consistent with an adenocarcinoma (Missouri Baptist Hospital, MC18-1670). T1N2M0 at diagnosis Genomic and molecular markers	The initial lung cancer stage mentioned in the given text is T1N2M0.
GPT-4	Stage	Snippet of the input text: The immunoprofile is consistent with an adenocarcinoma (Missouri Baptist Hospital, MC18-1670). T1N2M0 at diagnosis Genomic and molecular markers	T1N2M0
		Snippet of the input text: Referral done and faxed	I'm sorry, but it is not possible to extract lung cancer stage information

GPT- 3.5- turbo	Stage		from the given text "Referral done and faxed". This text does not contain any information related to the patient's lung cancer stage. Therefore, the output will be "Not Available".
GPT-4	Stage	Snippet of the input text: Referral done and faxed	Not Available
GPT-	Treatment		Model Output: Radiation
3.5-		Mention of treatments in the input Text:	Expected output: Chemo-
turbo		Concurrent radiation with carboplatin and paclitaxel A. Week one:	radiation
GPT-4	Treatment	Mention of treatments in the input Text: T3 Nx M0 primary squamous cell carcinoma of the right upper lobe of the lung, with right suprahilar involvement TREATMENT HISTORY: 1. Concurrent chemoradiation with carboplatin and paclitaxel	Model Output: Concurrent chemoradiation with carboplatin and paclitaxel
GPT-4	Recurrence	Mention of recurrence in the input text: Radiology Progress Note Interval History: 67 year old man with laryngeal cancer recurrence with reduced	Model Output: No. The patient had laryngeal cancer recurrence.

Supplementary Table 8. Qualitative results from an instance of a patient visit for scispaCy

Phenotype	Mention of stage and	Output	Expected	Error explanation
	treatments in the input text		Output	
Staging	Assessment: xx xx is a xx y.o. female with left upper lobe adenocarcinoma, clinical stage T1c N0 M0.	Null	T1c N0 M0	The model made an error because it was not able to correctly identify the TNM staging of the patients which are documented in different forms (example: T1c N0 M0, T1N0M0, cT2bN2M0, T1b N0 M0)
	The CT shows that a lobectomy would not be sufficient- she would need more than a lobectomy with some partial or complete removal of part of the			The surgical treatment was a possible treatment, and not

Treatment	LLL to get a complete resection. Summary: Stage IIIa (T2N2) with some DOE and some objective evidence of reduced lung capacity. I think the best approach is non- surgical therapy with combined chemo and radiation.	lobectomy	Chemo- radiation	a definite one which the model was not able to capture.
Recurrence	If there is evidence of disease recurrence, then would reinduce remission with steroids	recurrence	Null	The recurrence instance was a possibility. There was no certainty about the patient having recurrence which the model was not able to identify
Organs	Diabetes Mother Aneurysm Sister passed away	Brain	Null	Recurrence did not occur in the brain for the patient. In this context, there was a family history of brain aneurysm

Supplementary Table 9. Qualitative error analysis on a selected sample of sentences from an instance of a patient visit for medspaCy

Phenotype	Mention of recurrence in the input text:	Output	Expected Output	Error explanation
Recurrence	She has not had a recurrence of chest tightness.	Recurrence	Null	The model made an error by incorrectly extracting a negated instance of chest tightness for instances when it was expected not to extract any phenotype, as the input text does not indicate cancer recurrence.

Organs	Please specify the stage of Chronic Kidney Disease and document in the medical record and on the form below Chronic Kidney Disease, Stage II (Mild)	Kidney	Null	The model identified kidney as one of the organs for recurrence, when in fact it was a diagnosis for chronic kidney disease. Because of the rule-based setup, medspaCy is unable to identify contextual information
Organs	In addition to his vascular disease, the radiologist also noted some fatty changes in his liver.	Liver	Null	The model extracted liver as the organ for recurrence. However, the sentence does not indicate cancer recurrence in the liver
Treatment	T3 Nx M0 primary squamous cell carcinoma of the right upper lobe of the lung, with right suprahilar involvement TREATMENT HISTORY: 1. Concurrent chemoradiation with carboplatin and paclitaxel	chemoradiation	chemoradiation	The model was able to identify the treatment as it was explicitly mentioned in the text
Staging	Assessment: xx xx is a xx y.o. female with left upper lobe adenocarcinoma, clinical stage T1c N0 M0.	Null	T1c N0 M0	The model made an error because it was not able to correctly identify the TNM staging of the patients which are documented in different forms (example: T1c N0 M0, T1N0M0, cT2bN2M0, T1b N0 M0)
Staging	AJCC 8th Edition - Clinical: FIGO Stage IVB	Stage IVB	Stage IVB	Model is able to identify explicit mentions of the stage which was specified in the rules

Supplement Table 10. Time and cost to run the phenotypes with GPT models

	Runtime		
Models	Time (Average in hours)/ phenotype	Total Time (in hours) (Phenotypes=4)	
GPT-3.5-turbo	5.92	23.68	
GPT-4	8.54	34.16	

	Rate	Token Length	Cost (in Dollars)/	Total Cost
			phenotype	(Phenotypes = 4)
GPT-4	Input (\$0.03/1k	11092178	332.76	1331
	tokens)			
	Output (\$0.06/1k	1364600	81.876	327.504
	tokens)			
	Total	12456778	414.636	1658.504
GPT-3.5-turbo	Input (\$0.003/1k	11092178	33.27	133.11
	tokens)			
	Output	1364600	5.46	21.84
	(\$0.004/1k			
	tokens)			
	Total	12456778	38.73	154.95