ACRUEX CORP MOUNTAIN VIEW CA ENERGY AND ENVIRONMENTAL DIV F/G 10/3 APPLICATION POTENTIAL OF ENERGY SYSTEMS AT NAVY SITES, VOLUME I--ETC(U) NAM AD S J ANDERSON, M D JACKSON, S J CHAMYS N68305-78-C-0009 AD-A081 384 JAN 80 S J ANDERSON, M D JACKSON, S J CHAMYS N6830 CEL-CR-80.006-VOL-2 UNCLASSIFIED NL OF | AD 4081384 END PILMED 4-80 DTIC

PO81 383 CEL 4 CC 3 AD A 0 81 CIVIL ENGINEERING LABORATORY Naval Construction Battalion Center Port Hueneme, California 93043 Sponsored by APPLICATION POTENTIAL OF ENERGY SYSTEMS AT NAVY SITES. YOLUME IL NAVY ENERGY SITING (NES) COMPUTER PROGRAM USER'S MANUAL An Investigation Conducted by **ACRUEX CORPORATION Energy & Environmental Division** Mountain View, California 9404 Approved for public release, distribution unlimited.

411623

nit

80 2 27 008

FOREWORD

This user's manual documents the Navy Energy Siting (NES) code developed by Acurex Corporation, Energy and Environmental Division, Mountain View, California for the Civil Engineering Laboratory, Naval Construction Battalion Center, Port Hueneme, California. This work was performed on Contract N68305-78-C-0009.

This user's manual represents Volume II of the Final Report. It provides the information necessary to understand input requirements and program macro logic of the NES code.

PRECEDING PAGE BLANK - NOT FILMED

TABLE OF CONTENTS

Section		Page
1	INTRODUCTION	1-1
	1.1 Purpose	1-1
	Program	1-1 1-2
2	HOW TO USE THE CODE	2-1
	2.1 Site Data	2-1
	2.1.1 Problem Title Set 2.1.2 Energy Demand Sets 2.1.3 Commercial Energy Set 2.1.4 General Data Set 2.1.5 Insolation Data Sets 2.1.6 Wind Data Set 2.1.7 Geothermal Data Set	2-3 2-3 2-5 2-5 2-9 2-9 2-10
	2.2 Model Data Sets	2-10 2-13
	2.3.1 Card Formats	2-22
3	DESCRIPTION OF OUTPUT	3-1
	3.1 Diagnostic Messages	3-1
4	PROGRAM LOGIC DESCRIPTION	4-1
	4.1 Input/Output	4-1 4-3 4-4 4-7
5	SUBROUTINE DESCRIPTIONS	5-1
6	SAMPLE RUN	6-1

PRECEDING PAGE BLANK - NOT FILMED

LIST OF ILLUSTRATIONS

Figure		Page
2-1	Input Data Deck Set Up	2-2
2-2	Format for the Title, Demand, and Commercial Energy Card Sets	2-4
2-3	Format for General Data Set	2-8
2-4	Card Format for Geothermal Run Specification Data Sets	2-11
2-5	Card Format for the Model Data Set	2-12
4-1	Navy Energy Siting Code	4-2
4-2	OPTMIZ Flow Chart	4-5
4-3	EVAL Flow Chart	4-6
4-4	Common Block Structure for Alternate Energy Model Parameters	4-8

LIST OF TABLES

<u>Table</u>		Page
1-1	Alternate Energy Models List	1-3
2-1	Energy Demand Sets	2-5
2-2	Commercial Energy Set	2-6
2-3	Card Format for General Data Set	2-7
2-4	Card Format for Geothermal Model	2-10
2-5	Description of Required Data and Card Format for Model Cost Data	2-14
2-6	Description of Required Data and Card Format for Model Performance Data	2-16
2-7	Description of Required Data and Card Format for Model Starting Values and Bounds	2-18
2-8	Description of Required Data and Card Format Miscellaneous Model Input	2-20
2-9	Print Option Flag Outputs	2-23

SECTION 1

INTRODUCTION

1.1 PURPOSE

The Navy Energy Siting (NES) code was developed to determine, at various naval sites, the optimum mix of alternate energy and commercially purchased energy that will meet all the site's energy demands. The optimum mix meets the energy demands within given site constraints at the lowest cost.

The code handles three types of energy demands: electricity, space heating and hot water (combined), and process steam. Alternate energy models are designed to satisfy a single demand, with the exception of a cogeneration model which can satisfy two energy demands concurrently.

1.2 PROCESSING PERFORMED BY THE OPTIMIZATION PROGRAM

The code uses a gradient projection method to determine the optimum mix of systems that minimize energy cost. The gradient projection routines were provided by the Civil Engineering Laboratory while the alternate energy models and supporting routines were developed by Acurex.

During each iteration, the optimization routine selects a mix of alternate energy systems which reduces total energy costs relative to the system mix selected during the previous iteration. Total energy cost is determined by totaling the annualized life-cycle costs of each alternate energy system and commercial energy costs. The amount of commercial

1

energy that must be purchased (electricity, space heating, hot water, and process steam) is calculated by deducting the energy produced by the alternate energy sources from the total demand. This iterative procedure continues until a minimum annual cost is determined.

1.3 RESTRICTIONS AND LIMITATIONS

Restrictions and limitations associated with use of the NES code are listed below:

- The user is restricted to three energy demands and the alternate energy models currently programmed in the optimization code. The list of alternate energy models is given in Table 1-1.
- When selecting starting values for the alternate energy models the user should pick values which do not exceed energy demands, site area, and coal and refuse constraints on the first iteration. If the demands are greatly exceeded the optimization process does not converge.
- The user should select reasonable upper and lower bounds on the number of systems for each alternate energy model because the difference between the bounds determines the step size for the first iteration.

TABLE 1-1. ALTERNATE ENERGY MODELS LIST

Subroutine Name	Model Name	Model No.	Description
EVAL01	SLTHTG	1	Solar thermal for space heating and hot water.
EVAL02	RDFHTG	2	Refuse derived fuel for space heating and hot water.
EVAL03	RDFSTM	3	Refuse derived fuel for process steam.
EVAL04	RDFELE	4	Refuse derived fuel for electricity.
EVAL05	FBCHTG	5	Fluidized bed combustion for space heating and hot water.
EVAL06	FBCSTM	6	Fluidized bed combustion for process steam.
EVAL07	FBCELE	7	Fluidized bed combustion for electricity.
EVAL08	GEOSTM	8	Geothermal for process steam.
EVAL09	GEOELE	9	Geothermal for electricity.
EVAL 10	WD5	10	5 kW wind generator for electricity.
EVAL11	WD200	11	200 kW wind generator for electricity.
EVAL12	WD1500	12	1500 kW wind generator for electricity.
EVAL13	PHVELE	13	Photovoltaic for electricity.
EVAL14	CCLHTG	14	Conventional coal for space heating and hot water.
EVAL15	CCLSTM	15	Conventional coal for process steam.
EVAL16	CCLELE	16	Conventional coal for electricity.
EVAL 17	CCLCOG	17	Conventional coal for cogeneration of process steam and electricity.

SECTION 2

HOW TO USE THE CODE

The input necessary to run the NES code is broken into three categories: site data, model data, and run specification data. The deck structure is depicted in Figure 2-1.

The site input data is site dependent data which changes from site to site. This data includes site energy demand profiles, site insolation profiles, site wind profiles, and general site inputs such as commercial energy costs, commercial energy purchase limits, and availability of coal and refuse.

The model input data is model dependent data required by each alternate energy model to compute energy produced, cost, and area required. This data includes such parameters as capital cost, fuel cost, efficiency, and area factors. A complete list of parameters for each alternate energy model is given in Volume I, Appendix A. Actual data required is described subsequently in Tables 2-6 to 2-9.

The run specification input data specifies which alternate energy models are to be considered in a particular run.

2.1 SITE DATA

For simplicity, the site input data consist of a fixed number on input records (cards). The code assumes that all site data is present. Therefore all data cards must be present, although some may be blank if

Figure 2-1. Input data deck set up.

the data is not to be used in a particular run. For example, if the user is considering only electrical demand, then data for the other two demands need not be input, but the blank data cards must be present.

The site data is divided into seven subsets and the order in which they occur in the code is as follows:

- PROBLEM TITLE SET (3 cards)
- ENERGY DEMAND SETS (36 cards each)
- COMMERCIAL ENERGY SET (4 cards)
- GENERAL DATA SET (6 cards)
- INSOLATION DATA SETS (36 cards each)
- WIND VELOCITY DATA SET (36 cards)
- GEOTHERMAL DATA SET (1 card)

Each subset is described in detail below.

Unless otherwise specified, the user may assume that all numeric input data is contained in floating point fields of width 10 columns, in which E format is acceptable (E10.0). Furthermore, it is assumed that all yearly input profiles begin in January and end in December.

2.1.1 Problem Title Set

This data set consists of three cards describing the case. Columns 1 through 78 are available on each card (Figure 2-2) and the information is printed at the beginning of the run. Format for these cards is (13A6).

2.1.2 Energy Demand Sets

Alternate energy models compete in three energy demand sectors: electrical, space heating and hot water (combined), and process steam.

Each energy demand set consists of 36 cards which contain 12 monthly-average days of hourly demand data. Each card represents 8 hours of demand. Therefore three cards make up a daily profile of 24 hours

	:				-		T :: : : :			-		-			Ì
:				!							_	_			
						· · · · · · · · · · · · · · · · · · ·	. CHIKAN	KOKIKAN TATEMINE					,	ž .	Ann Alma
	Three	Three Card Title Set	tle Set						-						
			78 Ch	78 Characters p	per Card										
						:									
		ſ												-	1
Tuon,	- 6	101	1	-	i •			<u> </u>		- ,3	0 47	1	2	9	
	7	18	•	10	! 	50		2,		22		23		24	1
															Ι.
	-		!												
										•				-	
Dat	15, 12, 5019	(days) per gemeng (3 deniar	r delland						-	:		,			!
*This	is the	same format used for the inso	used for		ation profiles and the wind profile	files and	the wind	profile	:	; ;		!			1
															i
					:										i
-	-	!													-
:		:									•	•		-	1
		1	:			:				1	:				i
		गुनुद्र की जान			-	•			. !						:
Commerc	ial.	Inflation	ion .	Mainter	ance	Efficiency.	ency.	Capital		Hourly		Yearly			
energy	1	rate		and operating	rating			cost		purchase		purchase limit		_	i
	_				_							_		_	

Figure 2-2. Format for the title, demand, and commercial energy card sets.

(Figure 2-2). All cards must be present for all three demands but only the demand sets being modeled need to have actual data input.

Format for each card in the energy demand sets is (8E10.0). Table 2-1 indicates the sequence and units of the demand inputs.

2.1.3 Commercial Energy Set

This set of four cards (only the first three cards are used) contains information about the commercial energy purchased to satisfy the three energy demands. The cards are input in the same order described for the energy demand. The fourth is left blank. Each card is identically formatted and described in Figure 2-2 and Table 2-2.

2.1.4 General Data Set

This data consists of six cards containing general information about the site. A summary of this information and its use follows. Card formats are described in Table 2-3 and in Figure 2-3.

Card 1

The quantity of coal (tons/day) available for the coal combustion energy models is limited. Also, capital cost of coal combustion systems depends upon the sulfur content of the coal. The amounts (tons/day) and the particular type of coal (high or low sulfur) available at a site is input on card 1.

TABLE 2-1. ENERGY DEMAND SETS

Number	Demand	Units of Input
1	Electrical	MWh's
2	Space heating and hot water	MBtu's
3	Process steam	MBtu's
L		l

TABLE 2-2. COMMERCIAL ENERGY SET^a

Column	Input	Units
1 - 10	Commercial energy cost	(\$/MWh) Electrical (\$/MBtu) Space heating (\$/MBtu) Process steam
11 - 20	Differential inflation rate	(%) expressed as a fraction
21 - 30	Maintenance and operation cost	(%) expressed as a fraction
31 - 40	Efficiency	(%) expressed as a fraction
41 - 50	Capital cost	(\$)
51 - 60	Purchase limit	(MWh/hr) Electrical (MBtu/hr) Space heating (MBtu/hr) Process steam
61 - 70	Purchase limit	(MWh/yr) Electrical (MBtu/yr) Space heating (MBtu/yr) Process steam

^aFormat (7E10.4)

TABLE 2-3. CARD FORMAT FOR GENERAL DATA SET

Card/Column	Format	Input
Card 1		
11 - 20 26 - 32	E10.0 A6	Coal quantity (tons/day) Coal quality ("high" or "low")
Card 2		
11 - 20	E10.0	Land area available (ft ²)
Card 3		
11 - 20	E10.0	Refuse available (tons/day)
Card 4	,	
1 - 20	E10.0	Discount interest rate
Card 5		(% expressed as a fraction)
1 - 80	8E10.0	Ambient temperature (^O F) January - August
Card 6		
1 - 40	4E10.0	Ambient temperature (^O F) September - December

				The second lives and the second				The second second	Annual Spinster, or other Persons and Other Pers					
			1				:	: 					, , , , , ,	
				1.1									12.	IBN: 1
Hereita de la constanta de la						FORTRAN	FORTRAN STATEMENT							catching about
										*	3			
+		+								-	1		+	
	+		-							+		-	+	
	+	+	-	+									+	
	General Data Set	Data Set	•	; ;					:	:				
	Coal quantity	ntity		C091										
		-	Г	quality										
	 		-	<u> </u>		· } !		!			<u> </u>		-	
	Land Area	-												
	Refuse available	ailable												
	1	-		1	-							-		-
											_			
Dischart														
raie				į	-	:		•		-	-	-	-	
	; 		:	-			:						+	
Ambien: temeratures					- t			-			-		-	
month 1			F					-		9	-	-		æ
Ga.	<u>م</u>		=		1									
, , ,			•											
											-		_	

Figure 2-3. Format for general data set.

Card 2

Card 2 contains the land area (ft^2) available for siting alternate energy systems.

Card 3

Similar to coal, refuse is limited at each site. The amount available (tons/day) is input on card 3.

Card 4

The discount (interest) rate (percent expressed as a fraction) used in the uniform annual cost function (see Volume I, Section 2.3) is given on card 4.

Cards 5 to 6

These cards contain the monthly average temperatures $({}^{O}F)$ representing one year of data. These data are used by Subroutine FCHART to determine the amount of energy supplied by the solar thermal model.

2.1.5 Insolation Data Sets

There are two insolation data sets (36 cards each): one for the solar thermal model and one for the photovoltaic model. Each data set contains hourly insolation profiles for 12 average days representing 12 months of the year. Identical to demand data card (see Figure 2-2), each card contains 8 hours of data with three cards comprising a 24-hour profile. The units of input are $(Btu/ft^2/hr)$. The format for each card is (8E10.0).

2.1.6 Wind Data Set

The wind data set consists of 36 cards representing the hourly wind velocity profiles for the site. The set contains profiles for 12 monthly average days, 24 hours for each day (Figure 2-2). Each card contains 8 hours of data, formatted (8E10.0). Units of input are (MPH).

2.1.7 Geothermal Data Set

Three inputs are needed for the geothermal mode!: geothermal pool quality (LIQUID or VAPOR), geothermal pool size (MBTU), and geothermal pool temperature (DEG C). The format for this data is given in Table 2-4 and illustrated in Figure 2-4.

2.2 MODEL DATA SETS

The model data sets consist of input for each alternate energy model. Unlike the site data, model data should be input only if the model is a candidate model in the run. The order of input determines the sequence in which the models are called to satisfy demands. The alternate energy models currently available in the code were listed in Table 1-1.

The data set required by each model consist of five cards. The format for these data sets was standardized as much as possible to simplify input procedures. The standard format is illustrated in Figure 2-5.

The user should review the alternate energy models described in Volume I. Appendix A before using the tables. The first card of each

TABLE 2-4. CARD FORMAT FOR GEOTHERMAL MODEL

Column	Format	Input
1 - 6	A6	"LIQUID or VAPOR" Vapor sets geothermal efficiency at 20% Liquid sets geothermal efficiency based on pool temperature Efficiency = 2.308E-04 * Temp (°C) + 0.0392
11 - 20	E10.0	Pool size (MBtu)
21 - 30	E10.0	Pool temperature (^O C)

Figure 2-4. Card format for geothermal run specification data sets.

				-			111111	: !!!!	•							,
Model deta set Fuel post Enel Detail Maintenance Espanent Iransportation Buran and factor Area Factor Low Factor Area Factor Constitue of Systems of Systems of Systems (EUO.)		-		1												
Model dita set Fige Dott				í	!	1			:		1	1		-		
Model dita set field but field historian defeating field but field historian costs Epital cest factors Field but field								- NARIBOI	IAIFMENI						reduction .	
hodel dita set fiel cost fiel cost fiel costs field costs fields field costs fields field costs fields fiel										- { -						$\ \cdot\ $
Equital cest factors Fuel net Fuel Maintenance Exponent Iransportation Inflation Inflat			Model data	set	:	:		i		:				1		
itiency Low factor Area Sctor Tail Color Tail Color	9															
Lost factors Low factor Area Factor T max. no. of starting no. systems of systems 6 floating point fields (E10.0)			;								:					
Lost factors Low factor Area factor Systems of Systems This card contains 6 floating point fields (E10.0)					Fige	nst	[91]		Maintona	9	l de la constant de l	\[.				1
Cost factors Low factor Area factor Systems Systems This card contains 6 floating point fields (E10.0)							Inflation		pue				costs		recovered	
Low factor Area Sector Low factor Area Sector Systems of starting no. Systems of Systems This card contains 6 floating point fields (E10.0)	>		>		-		rate		operating							
Low factor Area Factor systems of systems systems of systems [This card contains 6 loating point fields (E.D.O.)		pital cas	it factors				1		!							
Low factor Area actor systems of starting no. systems of systems [1	: 	•	!		1
Systems of starting no. Systems of systems (Also card contains 6 loating point fields (E10.0)	Efficie	ency	Low flac	tor	Area	actor										
systems systems of systems Systems of systems (Stems systems of					1	-										
systems of systems This card contains 6 floating point fields (E10.0) For any additional data	min. nc	-	Max. no. 6	يو	startin	,										
tains 6 floating point fields (E10.0)	<u>8</u>		systems		of syst	2							-			
itains 6 floating point fields (E10.0)	7														1	ł
tains 6 floating point fields (E10.0)	+	+														
tains 6	†	-	!	-			+									
tains 6	+	+	+	-												
tains 6		+												-		
				<u>1</u>	s card co	ains 6	loating po	int fields	s (E10.0)	-						
	7	 		tor	any 2001	sonal day	-	-		-						-
				-			 		 	-						1

Figure 2-5. Card format for the model data set.

model data set contains the abbreviated name for the energy model. The abbreviated names were given in Table 1-1. The remaining four cards in the model data set are described in Tables 2-5 through 2-8. The tables are set up in a matrix format where each table describes a particular card in the data set. The rows of the matrix describe a particular field on the card. The columns in the matrix represent each of the alternate energy models.

These columns are labeled by the abbreviated names of the models. The body of the matrix contains the units and/or description of inputs for that model. All fields described in these tables are formatted for input (E10.0). For example, for card 2 of SLTHTG (solar heating model), four parameters should be input: two capital cost factors, a maintenance and operating cost, and an exponent.

The code recognizes the end of the alternate energy model data set when it sees ENDMDL (end model) in columns 1 - 6. This causes the code to stop searching for model data and to look for a run specification data set (Figure 2-1).

2.3 THE RUN SPECIFICATION DATA SET

The run specification data set identifies the conditions of the run: the energy demands and the alternate energy models to be considered. This data set consists of four cards. Card 1 specifies the demands to be considered, while cards 2 and 3 specify models to be used. Card 4 specifies a print option.

The user must provide all necessary input for the energy demands and alternate energy models being considered. If an alternate energy model is requested and no data was input, the program will terminate with

TABLE 2-5. DESCRIPTION OF REQUIRED DATA AND CARD FORMAT FOR MODEL COST DATA

Card 2

Input Parameter Units of input					Model Name and Model Number	Model Number			
appear under model name if data is used	Columns	SL.THT6 1	ROFHTG 2	ROFSTM 3	ROFELE 4	FBCHTG 5	FBCSTM 6	FBCELE	GEOSTM B
Capital Cost Factor	1-10	(\$)	(\$/ton/day)	(\$/ton/day)	(\$/ton/day)	\bigvee	\bigvee	\bigvee	\bigvee
Capital Cost Factor	11-20	(\$/ft ²)	\bigvee	\bigvee	(MH/S)	\bigvee	\bigvee	\bigvee	\bigvee
Fuel Cost	21-30	\bigvee	\bigvee	\bigvee	\bigvee	\bigvee	\bigvee	\bigvee	
Fuel inflation Rate	31-40	\bigvee	\bigvee	\bigvee	\bigvee	*(X)	*(X)	≠ (%)	\bigvee
Maintenance and Operation Cost	41-50	Fraction of annualized capital cost	(\$/ton)	(\$/ton)	(\$/ton)	Fraction of annualized capital cost	Fraction of annualized capital cost	Fraction of annualized capital cost	
Exponent	51-60	1	Dimensionless	Dimensionless	Dimensionless	Dimensionless Dimensionless		Dimensionless	Dimensionless
Transportation Cost	61-70	\bigvee	(\$)	(\$)	(\$)	\bigvee	\bigvee	\bigvee	\bigvee
Revenue Recovered	71-80	X	(\$/ton)	(\$/ton)	(\$/ton)	\bigvee	\bigvee	\bigvee	\bigvee

*Percent expressed as a fraction.

1-1683

Card 2

Input Parameter Units of input					Made Name	Model Name and Model Number	ا			
appear under model name if data is used	Columns	6 9	Ş	MD200 11	M01500 12	PHYELE 13	CCLHT6 14	CCLSTM 15	9l CCLELE	17 17
Capital Cost Factor	1-10	(\$/184)	(\$/mit)	(S/unit)	(\$/unit)	(\$)	\bigvee	\bigvee	\bigvee	\bigvee
Capital Cost Factor	11-20	\bigvee	X	X	\bigvee	(\$/ft²)	\bigvee	X	\bigvee	\bigvee
Fuel Cost	21-30		\bigvee	X	\bigvee	\bigvee	\bigvee	\bigvee	\bigvee	\bigvee
Fuel Inflation Rate	31-40	\bigvee	X	X	X	\bigvee	•(X)	*(X)	•(X)	*(X)
Maintenance and Operation Cost	41-50	X	(\$/wit)	(S/unit)	(\$/unit)	Fraction of annualized capital cost	Fraction of annualized capital cost	Fraction of annualized capital cost	Fraction of annualized capital cost	Fraction of annualized capital cost
Exponent	21-60	Dimension less	X	X	\bigvee	Dimensionless	Dimensionless Dimensionless Dimensionless Dimensionless Dimensionless	Dimension less	Dimension less	Dimensionless
Transportation Cost	61-70	X	X	X	X	X		X		Efficiency for Steam Production
Revenue Recovered	71-80	X	X	X	X	X	X	X	X	Efficiency for Electrical Production

*Percent expressed as a fraction.

1-1883

TABLE 2-6. DESCRIPTION OF REQUIRED DATA AND CARD FORMAT FOR MODEL PERFORMANCE DATA

Card 3

Input Parameter Units of input				Mode	Model Name and Model Number	Number			
appear under name 1f data is used	Columns	SLTMT6	ROFHTG 2	RDFSTN 3	ROFELE 4	FBCHTG 5	FBCSTM 6	FBCELE	GE057M 8
Efficiency	1-10	X	(8tu delivered /8tu input)	(Btu delivered /Btu input)	(8tu delivered (8tu delivered /8tu input) /8tu input) /8tu input)	(8tu delivered' (8tu delivered (MMH delivered (8tu delivered /8tu input) /8tu input) /8tu input)	(Btu delivered /Btu input)	(MMH delivered /MMH input)	(Btu delivered /Btu input)
Load Factor	02-11	X	Dimensionless	Dimensionless Dimensionless Dimensionless		Dimens ion less	Dimension less Dimension less Dimension less	Dimension less	Dimensionless
Fuel Cost	21-30	104 ft2 system)	(ft²/ MBtu/yr)	(ft²/ HBtu/yr)	(ft2/ MBH/yr)	(ft2/ MBtu/yr)	(ft²/ MBtu/yr)	(ft2/ MM/yr)	(ft2/ HBtu/yr

Card 3

Input Parameter					Model Na	Model Name and Model Number	iber			
units of input appear under appear under appear under appear under dete is used	Columns	6.06LE	10.	MD200	MD1500	PHVELE 13	CCLHT6 14	CCL ST# 15	CCLELE 16	17 17
Efficiency	1-10	X	Performance Factor	X	X	delivered/Mail /	(Btu nput) Btu Btu input)		(MAH delivered/ MAH input)	X
Load Factor	11-20	11-20 Dimensionless	X		X		Dimensionless Dimensionless Dimensionless Dimensionless	Dimens ion less	Dimens fon less	Dimension less
Area factor	21-30	21-30 (ft2/MH)	(ft2/unit) capacity)	(ft2/unit)	(ft2/unit) (ft2/unit) (103 ft2/ system)	(103 ft2/ system)	(ft2/ HBtu/yr)	(ft²/ HBtu/yr)	(ft2/ HMH/yr)	(ft²/ton/ day)
*See model description: Volume	intion:	tolume I. Appendix A.	dis A.					 		1-1883

*See model description; Volume I, Appendix A.

TABLE 2-7. DESCRIPTION OF REQUIRED DATA AND CARD FORMAT FOR MODEL STARTING VALUES AND BOUNDS

Card 4

Input Parameter Units of input					Model Name and Model Number	a) Number			
Appear under model name if data is used	Columns	St. THTG 1	RDFHTG 2	RDFSTM 3	RDFELE 4	FBCHT6 5	FBCSTM 6	FBCELE	GE057M 8
Minimum Number of Systems	1-10	104ft2 systems	Tons refuse per day	Tons refuse per day	Tons refuse per day	fons coa? per day	Tons coal per day	fons coal per day	(MBtu/yr)
Maximum Number of Systems	11-20	104ft2 systems	Tons refuse per day	Tons refuse per day	Tons refuse per day	Tons coal per day	Tons coal per day	Tons coal	*(MBtu/yr)
Start Number of Systems	21-30	104ft2 systems	Tons refuse per day	Tons refuse per day	Tons refuse per day	Tons coal per day	Tons coal per day	Tons coal	(MBtu/yr)

eif maximum number of systems input for geothermal equals zero, the model will calculate its own maximum.

1-1883

TABLE 2-7. Concluded

Card 4

20 James 2 Jam									
	33.5	2 2	323	33.2	3702	;;;	i, N	11 19	200 m
Experience of the second secon	- J. P	5.2	3 3	10 m	10 M	3.5 8.k	S i	3 5 8 8 8	3 8 X
2011 15 John William 19 19 19 19 19 19 19 19 19 19 19 19 19	£. 3	3	*	33	1000	3.8	20 Sec. 198	1985 1989 1987 1989	Sec. Seg.
Start Baren of Start Sta	t.	100	\$ 12 m	3::		33	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	70 X8 X	3 3 X

TABLE 2-8. DESCRIPTION OF REQUIRED DATA AND CARD FORMAT -- MISCELLANEOUS MODEL INPUT Card 5

Input Parameter Units of input					Hodel Name and Hodel Number	el Number			
Appear under Rodel name if data is used	50	Strife 1	IODFHTG 2	NOFSTN 3	ROFELE	FBCHTG 5	FBCSTN 6	FBCELE 7	6.E0STM
Field 1	1-10	F1=0.81 See model descript.	Revenue recovered inflation rate (%)*	Revenue recovered inflation rate (%)*	Revenue recovered inflation rate (%)*	Capital cost high sulfur (\$/#Btu/yr)	Capital cost high sulfur (\$/18tu/yr)	Capital cost high sulfur (\$/MMh/yr)	X
Field 2	11-20	F2=0.73 See model descript.	Maint. & oper. inflation rate (%)*	Maint. & oper. inflation rate (%)*	Maint. & oper. inflation rate (%)*	Coal quality high sulfur (Btu/lbm)	Coal quality high sulfur (Btu/lbm)	Coal quality high sulfur (8tu/lbm)	X
Field 3	21-30	X	Transportation cost inflation rate (%)*	Transportation cost inflation rate (%)*	Transportation cost inflation rate (%)*	Coal costs high sulfur (\$/ton)	Coal costs high sulfur (\$/ton)	Coal costs high sulfur (\$/ton)	X
Field 4	31-40	X	X	X	X	Capital cost low sulfur (\$/#Btu/yr)	Capital cost low sulfur (\$/MBtw/yr)	Capital cost low sulfur (\$/Meh/yr)	X
Field 5	41-50	<u></u>	X	X	X	Coel quality low sulfur (Btu/lbm)	Coal quality low sulfur (Btu/lbm)	Coal quality low sulfur (Btu/lbm)	X
Field 6	51-60	X	X	X	X	Coal cost low sulfur (\$/ton)	Coal cost low sulfur (\$/ton)	Coal cost low sulfur (\$/ton)	X
*Percent is exprassed as a fraction.	essed as a	fraction.		ı					1-1883

TABLE 2-8. Concluded

Card 5

Input Parameter Units of input					Mode Name	Model Name and Model Number	ber			
appear under model name if data is used	Columns	6 6 6 6 6 7 9 9 9	MD5 10	MD200 11	MD1500 12	PHVELE 13	CCLHTG 14	CCL STM 15	90 CCLEUE 30	21 902123
Field 1	1-10	X	Maintenance & operating inflation rate (%)*	Maintenance 6 operating inflation rate (%)*	Mainenance & operating inflation rate (%)*	X	Capital cost high sulfur (\$/#Btu/yr)	Capital cost high sulfur (\$/MBtu/yr)	Capital cost high sulfur (\$/MMI/yr)	Capital cost high sulfur (\$/MBtu/yr)
Field 2	11-20	X	X	X	X	X	Coal quality high sulfur (Btu/lbm)	Coal quality high sulfur (Btu/lbm)	Coal quality high sulfur (Btu/lbm)	Coal quality high sulfur (8tu/lbm)
Field 3	21-30	X	X	X	X	X	Coal costs high sulfur (\$/ton)	Coal costs high sulfur (\$/ton)	Coal costs high sulfur (\$/ton)	Coal costs high sulfur (\$/ton)
Field 4	31-40	X	X	X	X	X	Capital cost low sulfur (\$/MBtu/yr)	Capital cost low sulfur (\$/MBtu/yr)	Capital cost low sulfur (\$/MM/yr)	Capital cost low sulfur (\$/MBtu/yr)
Field 5	41-50	X	X	X	X	X	Coal quality low sulfur (Btu/lbm)	Coal quality low sulfur (8tu/lbm)	Coal quality low sulfur (Btu/lbm)	Coal quality low sulfur (8tu/lbm)
F 1e 1d 6	51-60	X		X	X	X	Coal cost low sulfur (\$/ton)	Coal cost low sulfur (\$/ton)	Coal cost low sulfur (\$/ton)	Coal cost low sulfur (\$/ton)

a diagnostic error message. Similarly, if a demand or alternate energy model name is not recognized, the program will terminate with a message.

2.3.1 Card Formats

Card 1

Card 1 specifies the energy demand to be considered. The energy demand six character names appear left justified in any of three fields: columns 1 - 6, columns 8 - 13, columns 15 - 19.

The energy demand names are as follows:

- ELECTR Electrical
- SPCHTG Space heating and hot water
- PROSTM Process steam

Cards 2 and 3

The alternate energy model names appear left justified in any of 10 fields on each card. The order of model names input determines the calling sequence of the models considered. The fields begin in columns 1, 8, 15, 22, 29, 36, 43, 50, 57, 64. Only those alternate energy models being considered appear on these cards. The six character model names are listed in Table 1-1. Both cards must be input even if one is blank.

Card 4

Print option flag is specified on this card.

Table 2-9 describes the output generated for various values of the print option flag. A print option flag of a particular value will generate information for that value as well as information for flags of lower value. For example, if the user specifies Flag 1, he will receive all the output associated with the Flags -1, 0, and 1. Needless to say, considerable output is produced for a print option flag other than -1.

TABLE 2-9. PRINT OPTION FLAG OUTPUTS

Flag	Printed Output			
-1	Input data. Initialization data. Results summary.			
0	Overall status of the optimization process. Status after each evaluation of alternate energy models. Partial derivatives. Objective function.			
1	Point to be projected onto constraints.			
2	Status of energy demands after evaluation of alternate energy models. Values of various constraints. Matrixes, vectors and solutions used during optimization.			

Column	Format	Input
1 - 2	12	PRINT OPTION FLAG
		(-1, 0, 1 or 2)

SECTION 3

DESCRIPTION OF OUTPUT

The printed output generated by the Navy Energy Siting code fall into the following categories: input, summary of results, debug and diagnostics.

All site model and run specification input data is printed at the beginning of the run. A summary of optimum results is printed at the end of the run. As an option, a debug printout monitors the status of the optimization process (Flag ≥ 0). This debug printout indicates the status of each alternate energy model, costs of alternate energy produced, cost of commercial energy purchased, and total cost of energy supplied (objective function). The debug option generates considerable output and is not recommended unless it is necessary to monitor the optimization process.

In addition, a set of diagnostic error messages were incorporated into the code. These are listed below.

3.1 DIAGNOSTIC MESSAGES

"***ERROR DEATH***CARD READ ERROR"

Usually a result of improper deck set up, a card missing, or a card out of sequence.

"***ERROR DEATH***PREMATURE END OF DATA"

End of deck reached before all data is read. Check deck for missing data.

"***ERROR DEATH***MODEL NOT RECOGNIZED"

When trying to input model data, the model name was not recognized.

"***ERROR DEATH***DATA FOR A MODEL INPUT TWICE"

Self-explanatory.

"NO DATA FOR MODEL"

A model has been requested for which no data has been input.

"(Name) IS NOT IN THE LIST"

Check run specification data. A demand or model requested is not recognized.

"NO MATCH ON THE n VALUES"

Check run specification data, no demands or models recognized.

"ERROR ON INPUT"

Check run specification data.

SECTION 4

PROGRAM LOGIC DESCRIPTION

This section presents a description of the Navy Energy Siting (NES) code structure and logic flow. Included in this section is a flow chart describing the major processes performed by the code.

The Navy Energy Siting code is driven by the main program ENSITE, which calls various subroutines designed to handle the major processes performed. The code can be broken into three major components: input/output, optimization and the set of alternate energy models.

The input process consists of reading three types of data; site data, model data and the run specification data. All input/output variables are stored in labeled common blocks, which allow subroutines easy access to large blocks of information.

The optimization portion of the program consists of a set of subroutines supplied by the Civil Engineering Laboratory. These routines use a gradient projection technique to determine the optimum mix of alternate energy systems.

The alternate energy models are the individual subroutines designed to model the various alternate energy systems.

4.1 INPUT/OUTPUT

The main program ENSITE, as shown in Figure 4-1, calls three subroutines to load the input data: INSITE, INMODL, RUNSPC. The data are

Figure 4-1. Navy Energy Siting code.

INSITE reads the site dependent input data and stores it in the labeled common SITE and FUELSC. The site data consists of the demand data: electricity, heating, process steam, insolation and wind velocity profiles. Also included are geothermal reservoir data, commercial energy costs, inflation rates, and crunch factors.

Subroutine INMODL reads the model input data and stores the input in the labeled common block MODEL. The model input consists of data necessary for each alternate energy model. This data includes capital cost factors, fuel costs, fuel inflation rates, maintenance and operating costs, exponents, transportation cost, revenue from recovered material (RDF), efficiency factors, load factors, area factors, minimum and maximum number of systems, and starting values for number of systems. Not every alternate energy system requires all the input parameters mentioned, but all parameters are available to each model.

Subroutine RUNSPC reads input data, specifying which energy demand is to be satisfied and which alternate energy models are to be considered.

The output processes are handled by a wide range of subroutines, each designed to print a variety of information. All site, model and run specification data are printed. During the iterative steps of the optimization process, various levels of information are also printed indicating the progress of the optimization program. Once the optimization is complete, there is a summary printout that lists the mix of systems used, costs and energy produced.

4.2 OPTIMIZATION

The optimization process uses the gradient projection technique to minimize total energy costs. Subroutine OPTMIZ (NONLIN) initiates the

program by calling subroutine INPUT which loads some fixed inputs and the minimum, maximum and starting points (number of systems) for each model (see Figure 4-2). This information is stored in labeled common LINCOM. The optimization process calls EVAL to compute alternate energy cost and commercial energy cost.

Subroutine CSUM and PARTL are also called during the optimization process to check constraints and compute the partial derivatives of the constraints. Once the costs and value of constraints are determined, the optimization routines adjust the mix of alternate energy systems accordingly, to minimize costs and not violate the various constraints. This process is repeated until a minimum is reached.

4.3 EVAL (ALTERNATE ENERGY SYSTEMS)

The EVAL subroutine calls the individual alternate energy models (EVAL_n) and the commercial energy routine (COSTCE) to determine total cost to satisfy all energy demands (Figure 4-3). Each alternate energy model (EVAL_n) , given the number of systems to evaluate (X_i) , computes energy produced, area required for systems, and cost of energy produced. This information is passed back to the main subroutine EVAL.

To determine the demand for commercial energy, EVAL calls the LOADDM subroutine before calling the alternate energy models. This moves the energy demands stored in common to the working array DMANDW. Each model called produces energy on an hourly basis, decrements the working demand array (energy produced is subtracted from the demand); the remaining energy demand is the commercial energy requirement. EVAL then calls the COSTCE subroutine to determine the cost of purchasing commercial energy that meets the demand not satisfied by the alternate energy models. Finally, EVAL returns the total cost to satisfy the annual energy demand to the OPTMIZ driver.

Figure 4-2. OPTMIZ flow chart.

Figure 4-3. EVAL flow chart.

4.4 COMMON BLOCK STORAGE

Most of the communication between subroutines is through labeled common blocks. In this section, the nature of the data contained in each labeled common is described.

The most important common is the labeled common MODEL which contains all input and output of the alternate energy models. The common block structure is illustrated in Figure 4-4. Essentially, each model has a block of storage equivalenced to the AMODEL array in labeled common MODEL. This storage is positional for each alternate energy model according to the MTYPE function.

Most of the communication between subroutines is done through labeled common blocks. A general description of the use and contents of these common blocks is:

<u>Common/CMMRCL/</u>: working storage for commercial energy parameters.

These parameters are used to store the cost and amount of commercial energy purchased.

<u>Common/CNTRLS/</u>: model and demand names, working storage for number and names of models, and demands considered. This common block also contains values describing the demands that are satisfied by each alternate energy model.

<u>Common/COSTS/</u>: working storage for costs of energy produced by alternate energy models and commercial energy costs.

Common/ENRGY/: storage for energy produced by alternate energy
models. Each model stores the energy produced hourly
into any of three demand sectors.

Common/FUELSC/: storage for site input related to commercial energy
purchases.

Figure 4-4. Common block structure for alternate evergy model parameters.

Common/HEADNG/: expanded names for demands, used in output headings.

Common/IO/: variables related to input/output and logical variables

related to end and error conditions.

Common/LINCOM/: input data defined in INPUT that is transmitted to the

optimization routines.

Common/MODEL/: a large single dimension array (AMODEL) equivalenced to

individual model parameters (Figure 4-4).

Common/NDAYS/: storage for data such as number of days in each month and

total number of days in the year.

Common/SITE/: storage for site input data and working demand arrays.

Common/USER/: storage for equality and inequality constraints and partials

of constraints.

SECTION 5

SUBROUTINE DESCRIPTIONS

This section describes the routines developed by Acurex to supplement the optimizing routines supplied by the Civil Engineering Laboratory.

Block Data BLKDAT: various data elements used by the code. Names of

models and demand can be found here in arrays MODLS

and DMANDS, respectively.

Subroutine BLKOUT: used to print the various yearly demand,

insolation, and wind profiles used by the code.

Subroutine COSTCE: computes annual cost of commercial energy to meet

demands left by alternate energy models.

Subroutine CSUM: loads the BSUM array with values of the equality

constraints, and loads the BSUMNT array with values

of the inequality constraints. The code currently

has three inequality constraints on area, coal, and

refuse availability. The sum of area used by the

alternate energy models must be less or equal to

the area available at the site. The total amount

of refuse used by the RDF models must not exceed

the amount available at the site. The amount of

coal used by alternate energy models must not exceed the coal available at the site.

Subroutine DETEXC: determines excess energy produced by each model.

The models are ordered according to energy cost so that the cheapest energy is used first.

Main Program ENSITE: driver routine for the Navy Energy Siting Code.

Subroutine ERROUT: contains various input error messages used by code. Control is not returned to calling routine and code terminates.

Subroutine EVAL: executive driver for the individual alternate energy models. EVAL calls LOADDM to load demands into working array and then calls each model to determine energy produced and compute costs.

Subroutine EVAL routine. Each EVAL notine. Each EVAL where n corresponds to the model numbers (see alternate energy models list Table 1-1), models a particular type of alternate energy system. Given the system size (e.g., ton/day, 10,000 ft² solar panels), the models determine the amount of energy delivered to a particular demand or set of demands (cogeneration). Also, capital cost, maintenance

Subroutine FCHART: uses f-chart method to determine the amount of energy supplied by the solar thermal model.

cost, fuel cost, and area required are computed.

<u>Subroutine INMODL</u>: recognizes model name in the input deck and calls

MODLIN to input model data.

Subroutine INPTCL: a special input routine called in addition to INPUT (see description) for all models which use coal as a fuel. It sets the capital cost factor and fuel cost to correct values depending on coal quality (high or low sulfur content).

<u>Subroutine INPTO8</u>: a special input routine called in addition to INPUT (see description) when geothermal model EVALO8 is a candidate model. It computes maximum potential thermal energy.

<u>Subroutine INPTO9</u>: a special input routine called, in addition to

INPUT (see description), when geothermal model

EVALO9 is a candidate model. It computes maximum potential electrical energy.

<u>Subroutine INPTXX</u>: called by INPUT to load minimum, maximum and starting X values (number of systems) for the alternate energy models.

Subroutine INPUT: initializes data for starting the optimization process. It loads this data into the common block, LINCOM, which transmits the data to the optimization routines. The variables used and their meaning are as follows:

XL(50) -- lower bound estimate for the number of systems
XB(50) -- starting values for the number of systems
XH(50) -- upper bound estimate for the number of systems

KNT(50) -- array used by the system only

KON(50) -- array used by the system only

N -- number of models being considered

CMM -- -1 minimize cost

NLINEQ -- number of equality constraints

NNOTEQ -- number of inequality constraints

TOLCON -- allowable violation of constraints, approximately $((XH(1)) - XL(1)) * 10^{-7}$, never 0.0

IOUT -- output flag: -1 -- answer only, 0, 1 or 2 -- more debugging information

ITER -- used by the system only

ITERMX -- used by the system only

It also calls INPTXX to load the starting values

XL, XH, XB for each alternate energy model. If a

particular model, for example geothermal, requires

additional calculations at this stage, INPUT calls

additional input subroutines designed specifically

for that model.

Subroutine INSITE: reads the various site dependent data. That data includes the energy demand profiles, weather profiles, commercial energy data set, and general data set.

<u>Subroutine ITRPRT:</u> used to print progress of optimization during the iterative process. This print output is initiated when IOUT is greater than -1.

Subroutine LOADDM: called by EVAL to load energy demand profiles into

the working demand arrays.

Function MATBIT: called to determine the demand a particular model

satisfies. Each model has a value in the ISTSFY

array which, when broken down into bit

representation, will identify the demand(s) the

model will satisfy.

<u>Subroutine MATCH</u>: called by RUNSPC to determine from input which

demand or model is being requested.

Subroutine MAXVAL: a general utility routine that determines the

maximum value contained in an array.

Subroutine MODLIN: called by INMODL to read data for the model named

on lead card of model input data set.

Subroutine MODOUT: called to output the model data in a readable

format.

Function MTYPE: used to determine the subscript of model data when

given the model number (see Table 2-1 for model

numbers). This is done because of the complex

structure of the model data contained in the

labeled common MODEL. The user should refer to

Section 4.4 (common block storage) and Figure 4-4

(common block structure for alternate energy model

parameters).

Subroutine OPTMIZ

(NONLIN): the gradient projection optimization technique,

supplied by the Civil Engineering Laboratory.

<u>Subroutine ORDER</u>: used to reorder model calling sequence according

to cost.

<u>Subroutine PARTL(X)</u>: loads the FPC array with the partial derivatives

of the constraints, with respect to the number of

systems. For example, FPC(I,J) = partial

derivative of constraint J with respect to number

of systems I.

Subroutine PRTLIN: called by MODOUT to print various lines of

alternate energy model output.

Subroutine PRTSUM: called to give a summary printout after the

optimum is reached.

Subroutine RAPUP: duplicates last call to EVAL with models

reordered.

Subroutine RUNSPC: reads run specification input data deck and

determines whether data are available for models

requested.

Subroutine SCRIPT: returns the proper subscripts to be used in

referencing working arrays when given the month,

hour, model, and demand.

Subroutine SETOUT: called to set up output for ITRPRT.

<u>Function UAC:</u> computes uniform annual cost, given model initial

capital costs, and inflation rates.

Subroutine UPDATE: sets up the last call to EVAL, applying the

maximum number of systems for each demand to the

other models in that demand. This is done so

that cost comparisons can be made across models.

An additional summary printout shows the results

of UPDATE.

SECTION 6

SAMPLE RUN

Presented in this section is a sample run which was run on a CDC 7600 Computer. For this run the following is presented:

- A brief description of the nature of the run and solution
- A listing of the input data deck
- A listing of the output generated

The goal of this run was to determine the optimum mix of alternate energy systems and commercially produced energy at the Norfolk Naval Base which satisfies the three energy demands: space heating and hot water (SPCHTG), process steam (PROSTM), and electricity (ELECTR).

The candidate models for this run are refuse derived fuel for each demand (RDFHTG, RDFSTM, RDFELE), fluidized bed combustion for each demand (FBCHTG, FBCSTM, FBCELE); conventional coal for each demand (CCLHTG, CCLSTM, CCLELE); plus the co-generation model (CCLCOG) for electricity and steam, solar thermal for heating (SLTHTG), photovoltaic for electricity (PHVELE), and three wind electric models sized at 5 kW, 200 kW, 1500 kW, (WD5, WD200, WD1500).

The input deck and results are listed. Note that the print flag for this run was set at -1 (card 320 of input deck).

The output generated shows all demand, insolation and wind profiles input. Next, the geothermal, commercial, and general site data are

printed. Once all site data is printed, each of the model's data is printed as it is read from the input deck. Then the run specification is read, checked, and printed. The demand numbers and model numbers are printed for those demands and models being considered. Each of the model's lower bound, starting point and upper bound are listed in order of the models input sequence. The optimization process is not printed when a print option flag of -1 is used. The end of the optimization is indicated by the printing of "BEST RESULTS OBTAINED," a summary printout follows.

The summary printout shows the demand left to be satisfied by oil-fired boilers for the heating and process steam demand and purchased electricity. Then the energy produced by each model for the optimum mix and a summary printout for each demand, indicating the models selected (optimum mix) is listed. Finally, for cost comparison, a summary printout for each demand is listed using the same number of systems for each model within a demand sector.

The results for the sample run show the optimum mix to be:

- Space heating and hot water
 - -- Fluidized bed combustion: 295.4 (tons/day)
- Process steam
 - -- Refuse derived fuel: 6.7 (tons/day)
 - -- Fluidized bed combustion: 70.95 (tons/day)
 - -- Conventional ccal cogeneration: 206.9 (tons/day)

Electricity

- -- Fluidized bed combustion: 553.4 (tons/day)
- -- Conventional coal cogeneration: 206.9 (tons/day)

NOTE: Cogeneration competes in two demand sectors. Thus, 206.9 (tons/day) is the total amount of coal consumed: 206.9 (tons/day) is not consumed in each demand sector.

•								
, ,	35.35	•	34.35	CK. 40	36.45	36. 15	C) • 014	30
	70.35	χ,	70.35	12,35	71.35	∢,	1 7,53	
	60 A	9	1. A. S.	47.33	45.50	•	1	
	36.37		57.57	57,37	72.75	٠,	10,00	
	74 47		74.47	(5,37	74.47		٠,	1
•	65.33	14.40	51.37	50.37	48.57		41.37	
	35.70	-	34.70	34.70	34.70	۲.	^	_
	70.70	'n	70.70	72.70	71.70	۲.	۲.	~
	62,70	56.70	46.70	47.70	45.70	43.70	5.7	~
	41.91	5	40,71	46.73	40.91	٦,	50.91	7.
	76.91	Ġ	76.91	16.91	77.91	٠,		٥.
	68.91	~	54.91	53.91	51,91	⋾.	16.44	7.
	39,92	•	36.92	36.92	36,92	J.	75. 55	FX. 12
	74.92	3	74.92	16.92	75.92	J.		٥.
	66.92	0	52,92	51,92	49.92	2		2.
	55,22	•	54.22	34.22	54.22	N		64.2
	90.22	•	90.22	72.22	51.22	ų		•
	82.22	•	68,22	67.22	65.22	٠,		٠,
	51.00	0	50.63	50,00	50.63	. 5	66.03	Ξ.
. ,	A		86.83	#B . A 5	87.85		82.43	. T
	78.83	•	64.83	63.63	61,63	. ≈	54.40	٣.
	50.20	69.20	49.20	47.20	49.20	٠.	45,64	. ~
	85.20	•	85.20	87.20	96.20		6+,20	۸.
	77.20	•	63.20	62.20	60.20	N	55,20	. ?∙
	45,37	44.97	44.57	44.37	44.37		60,37	•
	60.37	•	40,37	62.37	61.37		19,37	•
	72,37	•	58,37	57,37	55,37	53.37	46.57	45.3
	40.56	•	39,56	39.56	39,56		35,56	
•	75,56	*	75,56	77.5b	76.56		74.56	71.56
	67.56	_	53,56	52.56	50.56		43.56	40.56
	38.44	۲.	37.44	57.44	37.44		55,44	4. 19
	73.44	~	73.44	75.44	74° 74		72.44	65°4
	44.69	e.	51.44	20.44	*** B*		オナ。しま	30.00
	38,38	37,58	37,38	37,38	37.3B		53,38	•
	73,38	72,38	73,38	15.38	74.38		72.38	65.38
	65,38	59,38	51,38	50.38	48,38		41.38	
	9.469	~	674.6	674.6	674.6		9,4,0	
	9.419	674.6	674.6	674.6	674.6		0.4/0	÷
	674.6	~	674.6	674.6	674.6		į.	174.
	540	\$ 0 *	540.5	540,5			5	5
	540.5	0	540,5	540,5	•		÷	
	540.5	9	540,5	C. 0 4C	540,5		\$ c.	=;
	365,6	65.	·O	565,6		•	·	
	365,6	365.6	Ω	365.6		v.	•	365,6
	365,6	٥	•	LC2	365,6	ď	•	•
	_	61.	~			_:	261.3	7.t 1 .t
	261.8	4				•		
	,							

NOTE: Cogeneration competes in two demand sectors. Thus, 206.9 (tons/day) is the total amount of coal consumed: 206.9 (tons/day) is not consumed in each demand sector.

	٠.٠	1:1:4	· •	40.Ed	#L*T	45.40	32,23	35.70	17.15		19,15	5	٠. د	55.A4	٠ د	ດ.	4C.UK	-	510.7	•	J.	9,256	9.269	٠.	_	•		7.963	•	. •	_	υ.	.,	٠,	v			٠,	\ <u>`</u>	•	· M	_	163,5	٠.٧	_	165.5	205.5	667.5	7.0	
	2	•• 07	# 1	+G.10	# A	32.56	37.20	35.68	17.15	17.15	47.15	36.04	36.84	35.04	¥C.0%	#C.0%	4C. D.	1.016	510.7	210.7	978.6	276.0	546.6	137.5	241.6	174.2	156.5	267.5	172.7	137.5	41.0	2.4/1	7	7.642	0.25	0.147	7.671	144.1	1.47	160,0	157.5	0.14%	174.2	157.5	241.0	7.4/1	176.1	1.642	180.0	
r = 20 T	¥. #11	16.43	#4. TO	91°04	71.14	95.4c	95.20	92°56	17.15	15,15	45.15	36,84	36.84	36,84	40°06	70.54	70.54	210.	310.7	510.	9.56c	392 t	292.h	71.61	277.6	179.5	100°	307.0	158.E	71.07	677.0	0.641	07.5	281.1	100,0	D	179.3	74.10	267.1	n	4	7.	ν.	-	11	179.3	•	207.1	ċ	
6.001	, • F = 7	100.	11.54	11.54	12.54	35.20	55.20	37.20	19.15	17,15	17,15	30,84	36.84	36.84	¥0.04	90,54	30°04	510.7	310.7	310.7	94769	592.6	9.269	91.67	301,1	189.6	100.8	333,5	20%	91,07	301,1	369.6	77.46	311.1	70 16	501.3	184.5	3	7	95.	Ξ.	3	109.0	Ξ.	7	ξ	•	11.	D	
	168,4	104.7	##. I o	51.54	51,54	35.20	55.2U	95.20	17.15	15.15	19,15	36.84	36.84	36.84	70.54	4C.OX	70.54	510.7	510.7	210.7	552.6	352.b	555.6	70.16	303,7	210.5	100.8	536.4	733.0	71.07	505	د.012	01.46	0 4 1 1 1 1	20 15	7 . W. C.	210.5	24,10	514.0	217.5	70.16	303,7	<10°2	71.07	503,4	210.5	94.10	314.0	_	
	10.0	10%. U	+¢ • 1 ·	51,54	\$0.1¢	35.40	35.20	35.20	15.15	19,15	19,15	36.64	36,84	36.04	40°04	4C.06	4C.08	310.7	310.7	310.7	592.6	552.6	572.6	104.1	275.5	152.4	115.2	305.0	213.0	104.1	275.5	192.4	0.707	,	170.0	2.25.5	192.4	107.5	7.482	198.8	104.1	275.5	192.4	104.1	~	192.4	107.5	Ð	156.8	
	7.501	roe. 1		51.54	57°24		•		_	19,15		40	•	•	^	^	^	510.7	310./	•	•	592.6			280.6	_	126.5	_	-		-	•		195.	_				290.0	195.7	114.5		149.6	_		-	116.1	90.	95	
108.2	108.5	108.9	51,54	51,54	51,54	35.20	35.20	35.20	19,15	19,15	19,15	36.84	36.84	36.84	90.54	¥0.04	90.54	310,7	310,7	310,7	592,6	592,6	592,6	129,6	272,7	194.7	143.5	502.0	215.5	129.6	272.7	7. 46.	100	201.00	3. 102	272.7	194.7	134.0	281,8	201,2	129.6	272.7	194.7	129.6	272.7	194,7	134.0	201.8	201.2	
• >c	55.	, ,		56.	57.	. 26.	54.	.09	61.	62.	63.	6 .	65.	. 66.	67.	. 66	.69	.02	71.	72.	73.	74.	75.	76.	77.	78.	79.	.08	61.	95		• • •	• 60	9 6		9.4	70.	91.	72.	35.	74.	95.	9.	٠٢٢.	98.	44.	9	101.	102.	

				•	•	3		
103.	129.6	114.3	104.1	10.14		13.16	0.70	
104.	272.7	400°	C.C.)	6.000	1.100	6117		9.17
105.	194.7	189.6	1,761	c.012	147.6	0.11	7.	11.000
106.	134.0	118.1	107.5	74.10	54.10	74.10	1.7.1	8.00%
107.	281.8	290.0	1.84.7	314.0	311.1	Z#7.1	7.647	お・シャン
108.	201,2	175.7	3.44.	<17.5	1,00.9	165.5	101	1+2.0
10%	129.6	114.3	104.1	71.07	41.67	71.07	13/.5	6.c.2.3
110.	272.7	280.b	275.5	503.4	301,1	271.0	3.15%	615.6
111	194.7	169.6	192.4	<10.15	189.6	179.5	174.4	165.5
112.	43.51	90		•	0.0	+ 5556	-	
113.	4.89	0.08	05.0	0.60	12601.	1 2444	7175K	
•	2.89	80.0	3.	0.40		, 4664.	-	
115.								
116.		9 6666 6	30 HICH	-				
117.		3.89	90					
118		120.						
776	0.10			•	•	, ,		;
. 50	24,95	0	10° 57	64.34	55.	1	27.67	15.20
[2]	/6.4/	27.12	22.67	4/.10				
122.	0000.	0000.	0000.	2002.	9999.	2000.	743.5	145.7
123.	159.4	182.8	203.5	215. 3	203.5	182.0	159.4	145.7
124.	749.3	.0000	0000	0000	0000.	0000.	Ogon.	_
125.	0000	0000.	0100.	2000.	2222	2000.	97.71	121.2
.26.	156.6	190.0	216.7	230.7	216.7	150.0	155.8	
27.	94.46	0000	0000	0000	0000	2000.	2002	0000
28.	0000	0000	0000	0000	0000	0000	94.59	116.5
29.	170.7	217.8	25.80	272.5	2.4.2	217.E	17.0.7	116.5
	- F	000	0000	0000	0000	9900	0000	0004
	non		0000	9999	0000	2000	34.13	101.7
	4 6 4 4		0 0	285.7	2 200	* ***	16.41	101.7
, K		(1777	2000			7.00		
ה ה ה	71.40	-	0000			0000	90000	0000
,								100
000	141.1	1.000	K-967	K 90 V	6.007	**OF*	7.17.7	20.00
9	96.12	0000	0000	2000	0000	0000		0000
. 27.	0000	0000	0000	0000	0000	0000	66.41	61.CU
38.	111.5	156.9	191.7	208	191.7	156.7	111.5	61.20
.39.	14,33	0000.	0000	0000	0000.	2000.	0000.	0000
. 60	2000.	0000.	0000.	2222.	ວກກຸກ•	0000	11.94	72.06
. 41	129.1	180.3	219.5	238.2	219.5	180.3	1.9.1	72.06
.42.	17,94	0000	0000	0000.	0000.	9.200.	0000	0000.
.43.	0000	0000	0000.	0000	0000	0000	26.40	96.00
**	8° 551	196.0	235.3	254.4	235.3	196.0	144.5	66.00
.45	26.40	.0000	0000	0000	9000	0000	ດລຸດດ.	0000
9	0000	0000	0000	0000	0000	0000	44.84	101.8
+7	155.2	201.6	237.1	254.8	237.1	401.6	155.2	101.8
8	41.85	n000*	0000	0000	0000	7000	nonn	0000
54	0000	0000	9000	0000	0000	nnnn.	47.06	140.9
150.	189.5	233.8	268.6	286.6	26.8.6	£33.8	164.9	7.00
51.	90-24	0000	0000	0000	0000	0000	8000	0000
52.	0000	0000	0000	חמממ	0000	0000	327.5	7.44.
153	163.2	212.3	238.5	252.6	236.5	212. 7	103.2	158.7
	:		:	•) . ; ; ; ; ;		,	

A ROW COTX RESIDENCE

9000.	115.4	175.2	0000	211.6	711,	0000.	165.9	16.5.9	0000.	172.9	172.9	0000.	170.1	174.1	0000.	150.5	150.5	Onun.	108.2	104.2	0000.	154.7	154.7	0000.	141.9	141.9	0000	145.5	145.5	0000.	215,9	215.9	0000.	5.462	2.34.2	0000.	2002	<06.2	0000.	14,33	4.841	4. A 40	16.90	15,04	2.636	14.33	14.53	4.509	14.41	1.586
apun.	2000.	140.5	17110.	0000.	15%.7	0000.	210.7	150.0	nnan.	154.5	117.0	.0000	117.4	194.0	ខារពិក•	95.5e	1/7.4	0000.	65.da	164.0	0000.	45.61	160.2	3000.	95.23	165.2	0000.	140.8	100	0000.	1.7</th <th>201.2</th> <th>იიიი•</th> <th>0000.</th> <th>100.9</th> <th>กกกา</th> <th>0000.</th> <th>176.0</th> <th>nnna.</th> <th>11.01</th> <th>10.97</th> <th>607.5</th> <th>5.772</th> <th>17.26</th> <th>4.171</th> <th>11.22</th> <th>13.60</th> <th>142.8</th> <th>1.10</th> <th>7.611</th>	201.2	იიიი•	0000.	100.9	กกกา	0000.	176.0	nnna.	11.01	10.97	607.5	5.772	17.26	4.171	11.22	13.60	142.8	1.10	7.611
nonn.	٠ د د د د	۲۲. ۵	. u i u u	2001.	149.0		0000.	149,0	0 100.		167.6	3:37.	0000.	C07.7	0 000	0000.	156.5	0000	,000	144.7	0.300.	4000.	178.2	.0000	0000	178.5	n 000•	,0000	165.0	• 0000	, 0000	7.607	1040.	0000.	177.3	0000.	0000	174.7	0000.	11.77	11.71	1,951	0.740	16.37	0,14.0	16.39	14.00	5,398	12.48	10.74
4020.	0000.	2/4.1	0000.	9900.	140.9	nnnn•	0000.	155.2	enno.	0000	176.4	0000	0000	221.6	0000.	0000.	211,4	0000.	0000.	156.0	0000.	0000.	194,4	იიიი•	0,000	r. 251	0000.	0000.	174.5	,000 ·	0000.	215.9	0000.	0000.	170.2	0000.	0000.	177.1	nnnn.	10.97	13,11	2.705	7.565	66.02	7.745	9,369	16,99	7.021	11.54	11.54
.0000	nnna.	4.952	0000.	, ueur	152.2	2000.	0000.	157.7	0000.	, 000 u	203.4	0000.	0000.	230.7	0000.	ກຸດຄຸດ •	220.8	0000	0000.	164.0	0000	ຄຄດກ•	201,1	0000	0000.	199.0	0000	0000.	161.1	0000	0000.	222.6	1000°	0000.	162.5	0000.	0000.	160.5	0000.	7.841	14,35	4.846	904.9	16.37	0.748	r.207	21.62	6.207	10.74	12.88
96.00.	2203.	224.1	nnnn.	ກຸດກຸ	140.1	0000	0000	153.2	300a.	0000	196.4	0000	0000	221.6	0000.	ງດກຸກ•	211.4	0000.	0000.	156.8	0000.	0000.	152.4	0000	0000.	190.9	0000	0000.	174.5	0000	0000	215.9	0000	0000.	17e.2	0000.	0000.	177.1	0000.	6.617	16.44	494.0	4.777	14.20	4.112	7.621	16.99	7,369	9.611	14.10
.0000	0000.	202.3	1:00 0	, o 0 0 .	749.0	9000	(000.	149.5	0000	7300	107.0	0000	0000	207.9	P000°	0000.	196.3	0000	0000.	7 tt.	0000.	າດດດ•	178.2	0000.	0000.	178.3	0000.	n000°	165.6	0000.	າ ດທູດ •	209.5	0000	0000.	177.3	0000.	0000.	178.9	0000.	7.654	21.00	7.654	2.636	13.04	10.70	5.378	14.83	10.57	9.586	10.21
327.5	, , , ,	180.5	300 0	0000.	1.6.1	0000	ງດດາ.	150.5	270.7	onon.	179.6	154.5	0000.	192.0	119.4	0000.	177.4	95.56	0000.	129.8	66.28	70 00 °	160.2	63,61	0000.	163.2	95.25	0000.	156.4	116.6	0000.	207.2	271.7	300n°	186.5	0000.	0000.	196.6	0000.	6.465	16.44	8.817	1.680	11,71	11.71	3.257	13,66	11.52	7.424	20.83
154.	155.	156.	157.	106.	159.	160.	lėl.	162.	163.	164.	165.	166.	167.	168.	169.	170.	171.	172.	173.	174.	175.	176.	177.	178.	179.	180.	101.	182.	163.	164.	185.	186.	167.	166.	187.	190.	171.	192.	193.	194.	1,45.	196.	197.	198.	199.	<00×	201.	202.	203.	204.

į		1				:	•	•
502	***	007	919.	214.7	10.165	0 .	210.	807
506.	1.807	0 7	7.00	00.0	£16.7		70.61	÷
207.	12.21	15.43	10.04	70.17	10.34	15.45	17.7	A
208.	10.01	6.943	7.919	6.756	5.571	£ 7 £ 3	10.01	1.034
20%	3,246	1.105	.3568	1,105	3.246	4,61.3	+(:)+	7.611
210.	6.241	4.364	10.17	11,51	12.75	22.44	17.46	+ · · · ·
211.	12.73	11,51	16.17	7.364	8 .243	1.81	+4:174	£ . 2 . 2
212.	7.884	6.864	5,697	4,512	2,589	1441.	0000.	1477.
213.	2,889	4.512	5,697	094.9	7.864	×.012	47.14	11.15
214.	12,37	14.48	19.11	14.48	12,37	11,15	¥. C 114	4.012
215.	5.087	3,465	1.524	.5755	1,324	5,405	55.087	6.273
216.	7,435	0.440	5.588	10.39	11.73	12.95	12.46	17.68
217.	15.06	12.35	11.73	10.35	9,588	200	4.4.5	5.275
	1 957	2.00	742	950	027.4	5	742	7 ~ 7
216		42.4	12 36	A C .	4 4		1 1	
, ,	10 26	7	0000	1 1		4 4		2000
			24.5	7.00	0000		700	
120	196.7			910	6,00	50/02		11.04
777	16.51	¥1.47	16.30	66.92	16.50	74.17	14.31	11.64
223.	10.93	9.703	8.679	1.516	6.330	*.70E	195.07	1,419
224.	.2647	1.015	3,154	4.777	5.462	1.125	B. 149	112.6
225.	10.06	11,42	12.64	14.74	19,37	14.74	12.64	11.42
226.	10.06	9.277	8.149	7,125	5,462	177.	3.154	1.013
227.	1.680	2.429	4.569	6,192	7.578	940	4.50%	10.69
228.	11.50	12.85	14.05	16.16	211.79	16.16	7.0	7 . 83
900		3	474					
210	9C* 14	0.01	•	•	916.1	•	•	() , ()
220	S. TUYP							
232.	85000	35.00	0.0	9.0	0.00	3 - 2	17.17	8
28.4		; =	2000	•	•	•	•	•
2 2 2			•					
2 2 2 4		, ,	•					
236	4000	?						
237	27050	c	19 - 11	0.0	14.67		:	
238	90.0	6	327	•		•	•	34.
234		35.0						
240		• • • •						
241.	ROFSTA	•	•					
242	27000	0	0.0	0.0	10 57	=	2	7 26
243.	0.486	0.9u	327.1	•		•		
244	0.0	500.						
245								
246	ROFFIE		•					
247	27000	250000.	0.0	0.0	18.57	7	0.0	۲.
248.	0.23	90	327.1	•	•		•	•
247	0	1000.	15.					
250.	•							
251.	6E OSTM		•					
252	125.77	0.0	0.0	2.0	9	70.0	n - n	2 . 2
253.	0.720	0,40	6.6933	•	•	•	•	•
. 457	0.0	0.0	60000					
255.			•					

255. U.0 255. U.0 256. U.0 265. U.0 265. U.0 266. WD200 266. WD200 266. U.0 266. U.0 277. SUUDUO.	1000 00 00 00 00 00 00 00 00 00 00 00 00	300. 15. 15. 15. 15. 15. 15.		375. 1500u.		:	
	1000°.)	375. 15000.			
	1000°.			375. 15000.			
	1000°.	300. 15. 15. 15. 15. 15.		375. 1500u.			
	1000°.	300. 15. 16000. 15.		375. 15000.			
	3000.	300. 15. 15. 15. 15.		15000.			
	000000000000000000000000000000000000000	15. 00.00.		15000.			
	1000.	15. 15. 15. 15.		15000.			
•	1000.	15. 15. 15. 15.		15000.			
	1000.	15.000.					
	1000.	15. 55600. 15.					
_	1000.	35000. 15.					
_	1000.	350U0. 15.					
	1000.	35000.					
	1000.	15.		116206.			
273.	•	•					
27.4. 0.0							
274. COLUTE							
			¢n•0	06.0	3/37		
276. 0.65	0.90	*C. 79*))	•			
	350.	10.					
	12510.	39.53	211.77	9956.	31.78		
			ე. ი	04.0	٥ ٠ (۲		
	0.40	40.704					
284. 0.0	Sec.	1c.		•	;		
	12510.	54.45	224.12	.0864	\$1.70		
286. CCLELF	240000		4	3 4	4		
			000	00.0			
)	402.94					
2000		, ,	37.	7	41 75		
	• • • • • • • • • • • • • • • • • • • •	,	0 6 7 7 7	•	•		
			50.0	د. ت	ر. د و د	0.031	1.100
293. 0.0	0,70	46.574					
	1000.	15.					
295. 197.35	12510.	54,55	202,36	.066£	51.70		
			30.0	0.50	0.00	٠.	د.
	U. YU	+05.50+					
	350.	1 0.					
	12510.	39.53	83/.1	7550.	31.72		
	;		C . C J	u•5€	္ ရ ာ	ر • •	ت . د
503. 0.765	٠, د د د	*C.>U.					
2007	.000	10.	3	3	4.1 7		
0.000	.01.21	37.00	0.000	.000	0.40		

And the state of t

307.				63.0	00.0	0.00	=	
308.	0.37	06.0	465.204					
309.	0.0	1000	15.					
310.	1.621	E0612510.	54.13		1.021 £069930.	51.78		
311.	PHVELE							
312.	0.0		0.3	٥ •	n	J.c	ے • •	3. 3
313.	0.10		. 0002					
314.	0.0	1000	15.					
315.								
316.	ENDMOL							
317.	SPCHTS	PHOSTA ELEC	TR					
318.	RUFELE	FUCELE	SOM.	. WD200.	401500,PHVE	1F • CCLELE • C(90273	
319.	SLIHTG	SLINTG.RUFHTG.FUCHTG.CCLH1G.RUFSIP.FUCSIMCCL31M.	TG.CCLH1	G. KDFS [P.	FBCS1M.	• CCL > 114		
430	7							

ALIEMNATIVE ENERGY SYSTEMS OFFIMIZATION CODE SITE INFOL DATA

ALTERNATE ENTHUT SYSTEMS OPTIMAZATION CASE STUUT SITE: NOKFOLM

THIS PAGE 1S DEST GIVE THE LABOR AND SAME

RONTH	ENEMGY DEMAND MOURS	Ĭ	, HK 1	ELEC	ELECTHICITY				
SAS	1- 6 9-16 17-24	35,350 70,350 62,350	34.550 69.350 36.350	34.350 70.350	34.350 74.350 47.350	34.350 71.350 45.350	36,350 74,350 45,350	50,35U 69,350 88,350	64,35U 66,35U 35,350
FEB	1- 6 9-16 17-24	58.370 73,370 65 .370	57,570 72,570 59,570	37,370 73,370 51,370	37.370 75.370 50.370	37.370 74.570 48.370	39.370 75.370 46.370	53,370 72,370 41,370	67.57U 69.37U 38.570
Ĭ	1- 0 9-16 17-24	35.700 70.70u 62.700	34,700 69,700 56,700	34.700 70.700	34.700 72.700 47.700	34.700 71.700 45.700	36.700 70.700	50.700 69.700 36.700	64.70U 66.70U 35.70U
₽	1- 6 9-16 17-24	41.910 76.910 68.910	40,910 75,910 6 2,910	40.910 76.910 54.910	40.910 7 6. 910 53.910	40.910 77.910 51.910	42.910 76.910 49.910	56.910 75.910 44.910	70.910 72.910 41.910
HAR	1- 6 9-16 17-24	39,720 74,920 66,720	38,920 73,920 60,920	38.920 74.920 32.920	38,920 76,920 51,920	38,920 75,920 49,920	40.520 74.920	54,920 73,920 42,920	68.920 70.920 39.920
200	9-16	55.220 90.220 62.220	54.220 89.220 76.220	54.220 90.2 20	54.220 94.220 67.220	54.220 91.220 65.220	56.220 90,220 63,220	70.220 89.220 56.220	84.220 86.420 55.460
יטר	1- 8 9-16 17-24	51.45U 66.63U 78.43U	50,830 83.830 72.830	00000000000000000000000000000000000000	50.830 88.830 64.830	50.850 87.850 61.830	52,630 86,630 59,830	088°48 088°48 088°48	80.63U 82.83U 51.83U
A ∪6	1- 8 9-16 17-24	~ ~ ~	7.20 7.40 1.20	9.20 5.20 8.20	26.	202	1,20 5,20 8,20	5.20 4.20	£ 4 9
7	1- 8 9-16 17-24	45.370 80.370 72.370	44.370 79.370 66.370	44.370 80,370 56.570		41, 570 61, 570 55, 370	46.370 60.370 53.370	60.370 79.370 48.370	74.370
. 30	1- 8 9-16 17-24	+0.56U 73.56U #7.56U	37,540 74,560 61,5e0	39.560 75.560 58.560	39.560 77.560 54.560	39.560 76.560 50.560	41.560 75.560 48.560	55.560 74.560 43.560	40.5eu
2	1- 9 9-16 7-24	34.440	57.440	37.440	37.440 75.440	77. 44. 77. 47. 78. 48.	39.440	53.440	57.44C
זר	1- A 7-16 17-24	36.34U 73.34U 63.38U	*7.340 72.380 59.360	37.3eu 73.3eu 51.3e0	57.340 75.340 50.380	37.500 74.500 48.500	39.340 75.380 46.380	53.380 72.380	67.390 69.390 38.390

HONTE	ENERGY	DL MAND (P-4TJ/HR)	1 H	SPACE HEATING AND HOT WATER	S AND HOT WAT	x		
MAC	10.0	674.60	674.60	674.60	674,60	674.60	674.60	674.60
	17-24	674.60	674.60	674.60	674.60	09.4.69	674.60	09.419
FEB		540.50	540.50	540,50	540,50	540,50	540.50	540.50
	9-16	940.50 540.50	04.0 04.0 00.0	040.00	540.50 540.50	540,50 540,50	540,50 540,50	940.90
AAK	1- 0	365.60	365.60	365.60	365,60	365,60	365,60	365.60
	9-16	365.60	365.60	365.60 365.60	365,60 365,60	365,60 365,60	365,60	365.60
APK	1. 6	261.80	261.00	261.60	261,60	261,60	•	261.00
	3-16	261.80	261.80	261.60	261.80	261.60	261.80	261.60
AA	1:	106.90	108.90	106.90	106.90	108.90	106.90	106.90
	17-24	108.90	106.90	108.90	106.90	108.90	106.90	100.90
ر د د د	1: 0	51.540	51.540	51,540	51.540	51.540	51.540	51,540
	9-16	51,540	51,540	51,940 51,540	52.540 51.040	51.540 51.540	51,540	51.540 51.540
:						,		
Š	9-16	35.200	35,200	35.200	35.200	35.200	35.200	35.200
	17-24	35,200	35.200	35,200	35,200	35.200	35,200	35,200
AUE	1- 6	19.150	- 3	19.150	19.150	19.150	19.150	19.150
	9-16	19,150	19,150	19,150	19.150	19,150	19,150	19,150
					•			•
SEP	1- 8	36.840	36.840	36.640	36.340	36.640	36.840	36.840
	17-24	36.840	36.840	36.040	36.840	36.040	36.040	36.840
1 20	1. 0	90.540	90.540	90.540	90.540	90.540	90.540	90.540
	9-16	345.06	040.06	90.540	90.540	90.540	90.540	90.540
	17-24	90.540	90.540	90.540	90.540	90.540	90.540	90.540
MOV	1- 6	310.70	310.70	310.70	310,70	310,70	310,70	310.70
	9-16	310,70	310.70	310.70	510,70	310.70	310.70	310.70
				91.0	•	0.015	0.010	01.016
OEC	• •	592,60	592.60	592.60	592,60	592.60	592.60	592.60
	17-24	592.60	592,60	592.60	592,60	592.60	592,60	592.60
		> 0 - 4 / 7	2017/0	276.00	276,000	276,00	00'740	276,00

362,6U 362,6U 362,60

35.200 35.200 35.200

1199.1190 1199.1

Torior Torior	ENERGY HOURS	DEMANDINBTU/HK	Z X X	PROCESS	SSTEAM				
247	1- 8 9-16 17-24	129.60 272.70 194.70	114.30 260.60 189.60	104.10 275.50 192.40	91.070 303.90 210.50	91.070 301.10 189.60	91.070 277.60 179.30	137,50 241,60 174,20	225,80 215,60 165,50
FEB	1- 6 9-16 17-24	30 8	126.50 310.70 209.90	115.20 305.00 213.00	100.80 356.40 255.00	333,36	100.80 307.60 198.60	152,30 267,50 192,90	250.00 236.70 161.10
K K	1- 8 9-16 17-24	21 27 21 21	114.30 280.60 189.60	104.10 275.50 192.40	91.070 305.90 210.50	91.070 301.10 189.60	91.070 277.80 179.30	137.50 241.60 174.20	225.8U 215.6U 163.5v
A P X	1- 8	134.00 261.60 201.20	118.10 290.00 195.90	107.50 264.70 198.80	94.100 314.00 217.50	94.100 311.10 195.90	94,100 287,10 185,30	142.10 249.70 180.00	235,34 224,80 167,04
YAR	1- 8 9-16 17-24	129.60 272.70 194.70	114.30 280.60 189.60	104.10 275.50 192.40	91.070 303.90 210.50	91.070 301.10 169.60	91.070 277.60 179.30	137.50 241.60 174.20	225.80 215.60 163.5v
200	1- 0 9-16 17-24	154.00 281.80 201.20	116.10 290.00 195.90	107.50 264.70 196.60	94.100 314.00 217.50	94.100 311.10 195.90	94.100 267.10 165.30	142.10249.70	233.34 222.80 169.00
AU SU	17:24 17:24 17:24 17:24 17:24 17:24		114,30 280,60 189,60 114,30 280,60	104.10 192.50 192.40 104.10 192.50	91.07u 305.90 210.50 91.070 305.90	91.070 101.10 109.60 91.070 101.070	91,070 277,00 179,30 91,070 277,00	137,50 241,60 174,20 137,50 141,60	2225.80 215.60 165.50 215.60 165.50
38	1- 8 9-16 17-24	134.0	_ ~ or or		4.10 14.0 17.5	94.100 311,10 195,90	0 4 6	~ ~ ~ 0	234,30 222,80 164,00
1 20	1- 8 9-16 17-24	129.60 272.70 194.70	114.30 280.60 189.60	104,10 275,50 192,40	91.070 305.90 210.50	91.070 301.10 189.60	91,070 277,60 179,30	137.50 241.60 174.20	225.8U 215.60 163.5U
> 0	1- 8 9-16 17-24	134,00 261,60 201,20	116.10 290.00 195.90	107.50 264.70 198.60	54.100 314.00 217.50	94,100 311,10 195,90	94,100 287,10 185,30	142,10 249,70 180,00	235.30 222.8u 169.00
DEC	1- B 9-16 17-24	129.60 272.70 194.70	114.30 240.60 189.60	104.10 275.50 192.40	91.070 305.90 210.50	91.070 301.10 169.60	91.070 277.00 179.30	137.50 241.60 174.20	225.80 215.60 165.50

159.40 159.40 159.40 159.40 169.40 170.40 162.80 10.00 HERMAL INSULATION PROFILE (BIU/FI*#2/HR) Hours 17 - 24 17 - 24 17 - 24 17 - 24 17 - 24 17 - 24 17 - 24 17 - 24 17 - 24 1- 8 9-16 7-24 1-9-16 7-24 4 ¥ ¥ 44 ACC SEF 20 ş

145.70 1116.50 1116

PHOTO-VULTAIC INSOLATION PROFILE (BTU/FT++2/HK)
MONIH HOURS

0, 0, 0, 0, 159.70 149.00 146.90 154.20 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0, 0, 0, 1, 0, 1, 1, 1, 2, 20 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0. 146.90 152.20 0. 0.	152.20		0.0	06	0. 149.00 0.	0. 159.70 0.	211,60 211,60 0.
150,50 149,50 153,20 157,70 2 0.	0, 0, 0, 157,70 149,50 153,20 157,70 0, 0, 0,	0, 153,20 157,70 0,	157,70		0 4 0	53.20	0. 149.50 0.	270.70 150.50 0.	163,40 163,90 0.
179,60 107,60 196,40 205,40 154,50 0.	0. 107.60 196.40 205.40 0. 0.	196,40 205,40	203,40		0 ~ 0	96.40	167.60	154.50	172.50 172.90 0.
0, 0, 0, 0, 192,00 201,60 119,40 0, 0,	0, 207,90 221,60	09° 18' 60		230.70		0. 221.60 0.	207.90 0.	114.40	170.1U 170.10 0.
177,40 196,30 211,40 595,560 0.	0. 196,30 211,40	211.0		0. 220.80 0.		0. 211.40 0.	0, 196,30 0,	95.560 177.40 0.	150.50 150.50 0.
0, 0, 0, 0, 129,80 156,80 66,280 0, 0,	0. 144,90 156,80 0.	156.60		0. 164.00		0. 156.60 0.	144.90 0.	66.280 129.80 0.	106.20
0, 160,20 178,20 192,40 3	176.20 192.40 0. 0.	0. 1922. 0.		6. 201.10 0.		0. 192.40 0.	178.20 0.	63.610 160.20 0.	134.70
0, 0, 0, 150,90 163,20 176,30 190,90	176.30 190.90	190.90		0. 199.00 0.		0. 190.90 0.	178.30	95,290 163,20 0.	141.90 141.90 0.
156,40 165,60 174,50 116.80 0.	165,60 174,50 0.	174,50		0. 161.10 0.		0. 174.50	0. 165.60 0.	116.80	140.50 145.50 0.
207.20 209.20 215.90 271.70 0.	209,20 215,90 0. 0.	215,90		0. 222.60 0.		0. 215.90 0.	0. 209.20 0.	271.70 207.20 0.	215.90 215.90 0.
1-8 0. 0. 0. 0. 0. 0. 9-16 184.50 177.30 178.20 182.50 187-24 0. 0. 0. 0. 0.	177.30 176.20 0	176.20		0. 182,50 0.		176.20	0. 177.30 0.	0. 186.90	234,20
0. 0. 0. 176.90 177.10 0. 0. 0.	0. 176.90 177.10	177.10		0. 180.50 0.		0. 177.10 0.	0. 176.90 0.	0. 196.60 0.	266.20

INPUT WIND VELOCITY PROFILE (MPH) HON'H HOURS

		,			1	7.75	1 77	-	34.40
2	P . (2000					77.		
	9-10	# * • • ·	000.17						
	17-24	8.6170	7.6540				706.	6	
1	1.	2	9	.777	000**	•	7 = 6	.772	06.0
}	9-16	=	3.04	•	× n	20.990	9	14.260	
	17-24	11,710	10,900	9.7720	.7.0	•	004.	.777	.636
;	•	-				1072 8	9	3	=
X V		0/5/8	00000		007	• •	0000		
	91.6				100				•
	17-24	•	9.39	. 369	. 607	•	. 378	/67.	, 00,
AP	1. 8	7.4240	.586	.611	17.0	*	2.88	4.10	6.21
i	9-16	20,030	16,210	14,100	12,880	11,540	10,740	9,6110	0,3860
	17-24	7.4240	.230	.616	. 175	1,7260	¥12	.616	. 230
*		1.4070	ŧ	571	.756	919	E 46.	6	0.0
į	9-16	12.210		• IO	20.170	15.540	13,430	12,210	
	17-24	10.070	0646.9	7.9190	.756	.571	9.6	100	. 059
M. M.	•	1.206.	•	3568		246	699		417
•	9-16	8.2410	7	0.17	•	12.730	14.640	19.460	
	17-24	12.730	11.510	10.170	9.5690	6.2410	.217	20	. 869
:				7.07	3	940	746	•	7481
5					ACO	1			
	7-16	2.9990	2710.1	0.49		0.0000			
	17-24	12.370	•	7.11			CT • T		77.
P O¢	1. 0	5,0870	.465	.324	5755	324	.465	.087	.×7
	9-16	7,4350	0094.0	9.5680	10,390	11.730	12,950	15.060	99
	17-24	15,060	2.95	1.73	0.39	566	. 460	435	×73
SEP		.9	~	. 457	960	٦.	906	690	. 093
	9-16	9.5	93	12,360	3.5	15.690	20,320	15,690	13.580
	17-24	12,360	-	0.22	093	• 069	906.	.720	. 098
00.1	1- 8	9	.4.7080	.330	.516	619	•	•	3
ı	9-16	6	61.4	··•	20.930	16.500	14.190	12,970	11.640
	17-24	10.630	9.7030	673	• 516	530	. 706	.567	619
MON	1. 8	.26470	•	154	4.7770	962	25	0.1490	717
	9-16	10.080	~	2.6	- 3	o	14.740	2.64	11.420
	17-24	10.080	9.2770	8.1490	7,1250	5,9620	4.7770	3,1540	10
DÉ C	1. 6	1.6400	*	569	6.1920	378	6.5400	.565	•
)	9-16	11.500	M)		16.160	20.790	9	14.050	12.830
	17-24	11,500	69.0	9,5650	2,0	378	•	.569	~
			F		,				

COMMERCIAL ENERGY DATA						
	LINII (MWH /YK)	.999996+31	LINIT (NBTU/TK)	LIMIT (MBTU/YR)	.999996+31	GENERAL SITE DATA
	PURCHASE LIMIT	16+366666.	PURCHASE LIMIT (MBTU/HK) (MBTU	PURCHASE LIMIT	.999996+31	55.07 47.11
	HAINT.	•	MAINT. 4 OPER.	MAINT.	00005.	3 60 3 60 3 60 3 60
IL DATA	EFFICIENCY CAPITAL COST (\$)	•	IAL ENERGY CAPITAL COST (S) 12661.	IAL ENERGY CAPITAL COST (\$)	16433.	4 6 8 9 4 4 6 8 9 4 6 8 9 4 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
GEOTHERMAL DATA	COMMERC Efficiency	1.0000	EFFICIENCY CAPITAL COST (S)	INFLATION EFFICIENCY CAPITAL KATE	.80000	45.09 76.20
NONE -0. (DEG C) -0.	INFLATION	.60000L-01	INFLATION RATE .80000E-01	INFLATION RATE	.600006-01	39.95 79.40 13.890E+08 00. 120.00 1000 1000 1000 1000 1000 100
GUALITY Size (Mbtu) Tenpemature	DEMAND COST	43.510	CUST (\$/MBTU)	COST (\$/MBTU)	2.6700) (066 F) (SQ FT) (SQ
GEUTHENHAL PCOL GEOTHENHAL POOL GEUTHENHAL POOL	DEMAND	ELECTR	DEMAND . SPCHTG	DEMAND	PROSTM	GENERAL SITE INPUT DATA AMBIENT TEMPERATURES (DEG F) ROUF AREA AVAILABLE (SO FT) LAND AREA AVAILABLE (SO FT) NUMBER OF PEOPLE AT SITE TONS OF REFUSE DISCOUNT INTEREST RATE COAL COST +NOT USED+ QUANTITY OF COAL (TONS) QUALITY OF COAL -SULFUR-

GEUTHERMAL PCOL INPUT DATA

```
INDICATES THAT MODEL FBCHTG HAS BEEN INPUT
                                                        IAPUT DATA FOR FUCHTG MUDEL
       AUULII. - Fornite
```

```
PRINTOUT OF MODEL FBCHTG DATA
                                                                                                                                                                                                                                                                                                                           . 500000
              . 450000
                                                                                                                                                                                                                           MIGH SULFUR CONTENT

- CAPITAL COST FACTOR ($/MBTU/TR) = 887,100

LOW SULFUR CONTENT

- CAPITAL COST FACTOR ($/MBTU/TR) = 887,100

- OP. AND MAINT, COST ($/MBTU/TR) = 887,100

- EXPONENT * .650000
        - LEFTLE CCT (414 DELIVERED / 414 INPUT) = - ARE ALE ARE (114-2/100-/DAT)) = +04.940 - LOAD FACTOR = .900000 HIGH SULFUR CONTENT = COAL GUALITY (414)/LGM) = 12510.0 LOW SULFUR CONTENT = 50AL QUALITY (414)/LBM) = 9950.00
PENFORMANCE :
                                                                                                                                                                                                                                                                                                                                                                        HODLIN - FBCSTM
                                                                                                                                                                                                          COST
```

INPUT DATA FOR FRESTM NODEL

```
PERFORMANCE:

EFFICIENCY IBTU DELIVERED / BTU INPUT! = .765000

AREA FACTOR IFT==2/10M/DAY)) = 402.940

LOAD FACTOR | FT==2/10M/DAY)) = 402.940

LOAD SULFUR CONTENT

COAL BUALITY (BTU/LBM) # 12510.0

LOAD SULFUR CONTENT

COAL BUALITY (BTU/LBM) # 9930.00

COST:

CAPITAL COST FACTOR (3/MBTU/TR) = 950.000

LOM SULFUR CONTENT

CAPITAL COST FACTOR (3/MBTU/TR) = 950.000

LOM SULFUR CONTENT

CAPITAL COST FACTOR (3/MBTU/TR) = 950.000

LOM SULFUR CONTENT

CAPITAL COST FACTOR (3/MBTU/TR) = 950.000

LOM SULFUR CONTENT

CAPITAL COST FACTOR (3/MBTU/TR) = 950.000

LOM SULFUR CONTENT

CAPITAL COST FACTOR (3/MBTU/TR) = 950.000

LOM SULFUR CONTENT

CAPITAL COST FACTOR (3/MBTU/TR) = 950.000
```

IAPUT DATA FOR FECELE MODEL

MODLIN - FACELE

```
PERFORMANCE:

- EFFICIENCY (BTU DELIVERED / BTU INPUT) = .570000

- LOAD FACTOR = .900000

- COAL GUALITY (BTU/LBM) = .25510.0

- COAL GUALITY (BTU/LBM) = .35510.0

- CAPITAL CONTENT

- CAPITAL COST FACTOR ($/MW) = .162100E+07

- CAPITAL COST FACTOR ($/MW) = .162100E+07

- CAPITAL COST FACTOR ($/MW) = .362100E+07

- CAPITAL COST FACTOR ($/MW) = .362100E+07

- CAPITAL COST FACTOR ($/MW) = .362100E+07

- CAPITAL COST FACTOR ($/MW) = .3620000

- EXPONENT = .650000
```

. EFFICIENCY IS DETERMINED BY THE FCHART METHOD. PLEASE CONSULT MODEL DESCRIPTION. 25000.0 - AREA FACTOR = PERFORMANCE :

35.0000 0.0006 - ARLA UEPENDENT CAPITAL COST (\$/F1++2) = 3
- NUN AHEA DEPENDENT CAPITAL CUST (\$) = 850
- MAINTENANCE COST (\$ ANNUALIZED CAP, COST) = COST :

HODLIN - RDFHTG

INPUT DATA FOR ROFMTG MODEL

327,100 - EFFICIENCY (BTU DLLIVERED / BTU INPUT) = - AMEA FACTOR (FT++2/(TON/DAY)) = 327,10 - LOAD FACTOR = .900000 PERFORMANCE :

7.80000 16,5700 - CAPITAL COST FACTOR (\$/(TON/DAY)) = 27000.0
- OPEHATING AND MAINTENANCE COST (\$/TON) = 18.
- REVENUE FROM RECOVERED MATERIAL (\$/TON) = 7.
- TRANSPORTATION COST (\$) # 0.

HODLIN - RDFSTM

INPUT DATA FOR RDFSTM MUDEL

. 486000 327,100 - EFFICIENCY (BTU DELIVERED / BTU INPUT) = - AMEA FACTOR (FT**2/(TON/DAY)) = 327,10 - LOAD FACTOR = 990000 PERFORMANCE :

7.60000 18,5700 27000.0 - CAPITAL COST FACTUR (\$/(TON/DAY)) = 270 - OPERATING AND MAINTENANCE COST (\$/TON) = - REVENUE FROM RECOVERED MATERIAL (\$/TON) = - TRANSPORTATION COST (\$) # COST :

- EXPONENT =

MODLIN - RDFELE

INPUT DATA FOR RDFELE MODEL

327,100 - EFFICIENCY (BTU DELIVERED / BTU INPUT) = AREA FACTOR (FT0-2/(TON/DAY)) = 327.10 - LOAD FACTOR = .900000 PERFORMANCE :

250000.

6.5700 - CAPITAL COST FACTOR (\$/(TON/UAY)) = 27000.0
- CAPITAL COST ELECTHIC GENEMATOR (\$/MW) = 250
- OPEHATING AND MAINTENANCE COST (\$/TON) = 8.
- REVENUE FROM RECOVERLD MATERIAL (\$/TON) = 7.

1,00000 - EXPONENT #

INPUT DATA FOR GEOSTIP MODEL

- EFFICIENCY (BJU DELLIVENED / BJU 14PUT) = - AMEA FACTOF (FI=+2/Maju/th) = - 0.09530 = LOAD FACTOF = .990000 PEFFORMANCE :

- CAPITAL COST FACTOR (\$/MBTU/TR) = 125,770 - OPEKATING AND MAINTENANCE COST IS A FUNCTION OF THE SIZE OF PLANT. PLEASE CONSULT THE MODEL DESCRIPTION. CCST :

.858000 . EAPONENT & MODLIN - GEOELE IMPUT DATA FOR GEOELE MODEL

PERFORMANCE:
- EFFILIEMEY IS A FUNCTION OF RESERVOIM TEMP,
- PLEASE CONSULT MODEL DESCRIPTION.
- AREA FACTOR (FIREZ/MM CAPACITY) # 217808.
- LOAD FACTOR # "980888

- CAPITAL COST FACTOR (8/MM) = ,250060E+07 - OPERATING AND MAINTENANCE COST IS A FUNCTION OF THE SIZE OF PLANT, PLEASE CONSULT THE MODEL DESCRIPTION. CCST :

.656060 - EXPONENT E

MOCL 14 - #05

INPUT DATA FOR MOS

PERFURMANCE :

MOUNLY WIND VELOCITY. PLEASE CONSULT MODEL. - AREA FACTOR (FT=#2/UNIT) # 300.000 - EFFICIENCY IS A LINEAH FUNCTION OF THE

375.000 - CAPITAL COST (S/UNIT) 15000.0 - AMMUAL MAINTENANCE COST (S/UNIT) #

MODULE - MD200

MOCEL INFUT DATA FOR MD200

PEFFORMANCE :

- EFFICIENCY IS A LINEAR FUNCTION OF THE HOWELY WIND VELOCITY, PLEASE CONSULT MODEL. - AMEA FACTOR (FT**2/UMIT) # 16006.0

15000.0 - CAPITAL COST (\$/UNIT) SCUSSOS. - ANYUAL MAINTÉNANCE COST (\$/UNIT) =

THIS PARK IS BEIT OF LAKE ERACTIOABLE A Section Control Control of Cont .500000 MIGH SULFUE CONTEN!

- CAPITAL COST FACTOP (\$/MBTU/YH) = 274,34(
LOW SULFUE CONTEN- CAPITAL COST FACTOP (\$/MBTU/YH) = 294,12(
- OP, AND MAINT, COST (\$ ANNUALIZED CAP, COST) =
- EXPONENT = .750000 - CAPITAL COST FACTO - SYMBTUYTH B CTLOST
- CAPITAL COST FACTO - STANDALICE, DATE COST
- CAPITAL COST FACTO - STANDALICE, DATE COST
- CAPITAL - STANDALICE, DATE COST - EFFICIENCY IS A LINEAP FUNCTION OF THE MOUNLY WIND VELOCITY. PLEASE CONSULT MODEL - AREA FACTOR (FT+42/UN)?: 2 33066.0 * 3 . 40 * * 02. 30 A SERVINERAND
- FRETLIENCY FRITO DELLIVERED - PAT. IMPLI
- AKES FACTOR (Fleezime) Liver, L. Rozlif
- Loap Factor (Fleezime) . 2 2 *150000t* - CAPITAL COST (ANDA) - ANNOA MAINTENANCI COST (ANGUSTI) E 9930. 125.1 í * FFFICIENT TET DELIVERET TO PRESENTATION DELIVERATION DE PIDSH SULFU- CORPEY - - FARITAL COST FARITAL - NAVEGTO - - SULFUR CONTENT HIGH SULFUE CONTENT - COAL QUALITY (BTUZLEM B - COAL QUALITY (BIOZLEM : MIGH SOLFOR CONTE - COA, QUALITY HATUZEUM - CM SOLFOR CONTE - COA, QUALITY (RIUZEM) INFU! DATA FOR MO1500 PODEL CATE FOR COUNTY MADE LOH SULFUP CONTENT PERFORMANC #000 th # 01000 #000 - 1100p DEAL SHABAS

100

CCST

```
.500000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       .500000
. 360000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       .631000
                                                                                                                                                                                                                                                                                 250000.
                                                                                                                                                                                          MIGH SULFUR CONTENT
CAPITAL COST FACTOR ($/MW/YR) = 1212.50
LOW SULFUR CONTENT
- CAPITAL COST FACTOR ($/MW/YR) = 1299.8U
- CAPITAL COST ELECTRIC GENERATOR ($/MW) = 250.
- OP. AND HAINT. COST ($ ANNUALIZED CAP. COST) = EXPONENT # .750000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              HIGH SULFUR CONTENT

- CAPITAL COST FACTOR ($/MBTU/YR) = 197,350

LOW SULFUR CONTENT

- CAPITAL COST FACTOR ($/MBTU/YR) = 202,360

- OP, AND MAINT, COST ($ ANNUALIZED CAP, COST) =

- EXPONENT = .800000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        - EFFICIENCY (MMM DLLIVLRED / MMH INSOLATION) = - AREA FACTOR 8 2500.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      - AMEA DEPENDENT CAPITAL COST ($/FT002) X

- NON AMEA DEPENDENT CAPITAL COST ($) = 0.

- MATNIFNANCE CAST ($ ANNIALIZED CAP. COST) E
402.940
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   - EFFICIENCY (BTU DELIVERED / BTU INPUT) = - EFFICIENCY (MWH DELIVERED / MWH INPUT) = - AREA FACTOR (FTs+2/(10N/DAY)) = +02,94 - LOAD FACTOR = -900000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      9930.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 - LOAD FACTOR & .900000
HIGH SULFUR CONTENT
- COAL GUALITY (BTU/LBR) B
LOW SULFUR CONTENT
- COAL GUALITY (BTU/LBR) =
                                                                                                                                                                                                                                                                                                                                                                                     INPUT DATA FOR CCLCOG MODEL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        INPUT DATA FOR PHYELE MODEL
                                                                                                                                                                                                                                                                                                                                                                                                                                                   PERFORMANCE :
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        PERFORMANCE :
                                                                                                                                                                                                                                                                                                                                           MODLIN - CCLCOG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                MODLIN - PHVELE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              cost :
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ccsr :
                                                                                                                                                                              COST
```

INPUT DATA FOR CCLELE MUDEL

MODLIN - CCLELE

PERFORMANCE :

	EPSLN •1E-06	
MODEL OR THOSE SIDERED	TOLEMANCE •10000E-02	OWER BOUND STARTING POINT JPPER BOUND OR EACH MODEL SONSIDERED (THESE ARE ORDERED BY LIST OF MODEL NUMBERS GIVEN ABOVE)
DEMAND AND MODEL NUMBERS FOR THOSE BEING CONSIDERED	BLANK	EL NUMBERS
10	IGRID	LST OF MOD
126	NNOTEG 3	ERED BY L]
4 9	LINE#,	LOWER BOUND STARTING POINT UPPER BOUND FOR EACH MODEL CONSIDERED (THESE ARE ORDE
	NON R O	30734.00
M 2 0 M M	1001	UPPER BOUNDS 10000000E+04 10000000E+04 10000000E+04 10000000E+04 10000000E+04 100000000000000000000000000000000000
້ວ 4 ວ	BET • 0250	
[™] ~ N O	IS CASE Alpha .0050	STARTING POINT .15000000E+02 .10000000E+02
ANDS 2 ELS 4 ELS 3 ELS 0 NSPC LL OPTMIZ IN INPUT	INPUT DATA FOR THIS CASE N CAM ALP 15 -1.0000 .0	E BOUNDS 00.00.00.00.00.00.00.00.00.00.00.00.00.
DEMANDS HODELS HODELS RUNSPC CALL OPTMIZ IN INPUT	INPUT D	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BEST RESULTS OBTAINED

--- NUMBER OF ITERATIONS FOR THIS RUN

0. .67056968E+01 .709538U3E+02

EXCELSION

(THE OPTIMUM MIX HAS BEEN FOUND SUMMARY OF RESULTS FOLLOWS)

-.44419E-02 -.44419E-02 -.46419E-02 412.80 412.80 412.80 103.60 103.60 103.60 -152.90 -152.90 -152.90 -242.65 -224.96 48.896 48.896 48.896 330.80 330.80 330.80 -210.26 -226.60 -171.26 -171.26 -210.26 -226.60 -242.65 -224.96 -,44419E-02 -,44419E-02 -,44419E-02 103,80 103,80 103,80 412.80 412.80 412.80 276.70 276.70 276.70 -152.90 -152.90 -152.90 -210.26 -210.26 -210.26 -242.65 -242.65 -242.65 -224.96 -224.96 -224.96 48.896 48.896 48.896 330,80 350,80 350,80 -226.60 -171.26 -226.60 -171,26 -.44419E-02 -.44419E-02 -. 103.80 103.80 103.80 -152.90 -152.90 -152.90 412.80 412.80 412.80 27**8**.70 27**8**.70 27**8**.70 -210.26 -210.26 -210.26 -226.60 -242,65 -224.96 -224.96 -224.96 -171.26 -171.26 48.896 48.896 48.896 330.80 -226,60 -242.65 -.44419E-02 -.44419E-02 -.44419E-02 412.80 412.80 412.80 278.70 278.70 278.70 103.60 103.60 103.60 -152.90 -152.90 -152.90 -210,26 -210,26 -210,26 -226.60 -226.60 -226.60 -242.65 -242.65 -242.69 -224.96 -224.96 -224.96 350.80 350.80 350.80 -171.26 -171.26 46.896 48.896 -.44419E-02 -.44419E-02 -.44419E-02 SPCHTG DEMAND SLEN BY COMMENICAL (MBTU/HR) Mouns 103,80 103,80 103,80 -152,90 -152,90 -152,90 412.80 412.80 412.80 27**8.**70 27**8.**70 27**8.**70 .210,26 .210,26 .210,26 -224.96 -224.96 -224.96 -171.26 330,60 330,60 330,60 -226.60 -242.65 -171.26 46.696 -226.60 -242.65 48.896 -,44419E-02 -,44419E-02 -,44419E-02 103.80 105.80 103.80 -152,90 -152,90 -152,90 412.8U 412.80 412.80 278.70 278.70 278.70 -210.26 -210.26 -210.26 -226.60 -226.60 -226.60 -242.65 -242.65 -242.65 -224.96 -224.96 -224.96 -171.26 -171.26 48.896 48.896 48.896 330,80 330,80 330,80 -. ***19E-02 -. ***19E-02 -. ***19E-02 412.60 412.60 412.60 -152.90 -152.90 -152.90 278.78 278.78 278.70 -210.26 -210.26 -210.26 -224.96 -224.96 -224.96 -171.26 40.096 40.896 40.896 330,60 330,60 330,60 103.80 103.60 103.80 -242,65 .242.65 -226.60 -226,60 -242.65 -226,61 1-2 17-2 1- 8 1- 6 9-16 17-24 9-16 9-16 9-16 17-24 1- 8 9-16 17-24 9-16 9-16 17-24 17-24 17-24 _ : HORIT 4 FEB MA APA 4 3 3 ŧ SEF Š Š Sec

-,44419E-02 -,44419E-02 -,44419E-02

-152.90 -154.90 -152.90

-210,26 -210,26 -210,26

-226.60 -226.60 -226.60

-242.65 -242.65 -242.63

-224.96 .224,96 *6.696 *6.896 *6.896

330,80 330,80 330,80

-171,26 -171,26 -171,26

414,40 412,80°

278.70 276.70 278.70

278.70 278.70 278.70

105.60 105.60 105.60

1

and the state of the second state of the second second second second second second second second second second

The second section of the second seco

71.

PROSTF DEMAND SEEN BY COMMERICAL (MBTU/HR)
MONIM MOURS

WAL	-	-	104.47	-89.801	-102.85	-102.65	-102.83	-56.401	31.899
į	,			204		107 20	904 44	7 6 7 7	2.1.6
	7-16	::	60.00	66.10	00.011	07.701	02.07	41.677	C.T • D 2 2
	17-24	. 79675	-4.3012	-1,5012	16.599	-4.3012	-14.601	-19.701	-30.401
FEB		-	-67.401	-78.701	-94,101	-93.101	-95.101	-41.601	56.099
}	71-0	40.4	116 An	111	242		113.70	71.599	707 11
		•	٠.	• •			: :		
	*>-/1	550077	13,737	12.037	37.077	12022	• 6700	710011	1001712
X	7 · 8		-79.601	-89.801	-102.83	-102.83	-102.63	-56.401	31.899
į	71-5	304 44	967 YW	400	1 1 0	107	***	7. 4.00	597.66
				() () () () () () () () () ()	000				
	17-24		-4.3012	-1.5012	16.599	-4.5012	-14.601	-19.701	700.00-
707	1.	196.981	.75.801	-86.401	108-99-	108.801	108-66-	-51.801	
				;		٠:			
	91-6	640.70	76.079	30.05	140.10	07.11	93,139	500.137	60.077 01.001
	17-24	7.2988	1.7766		23.599	1.7766	2109.9-	106.61-	106.42-
Ž	1. 8	-64.301	-79.601	-69-601	-102.83	-102.83	-102.63	-56.401	31.699
•	71-6		667 YW	A1 500	101		P 8 8 9	7. 699	669.10
		1000				2010			
	17-71		7106.1-	2106.1-	16:91	7106.	104.41-	-13.761	•
NO.	1- 8	-	-75.601	-66.401	-99.801	-99.801	-99.801	-51.601	39,399
;	9-16		560 76	907 00	120 10	-	55- 15	45. 700	•
		7007		******			γ.		100.40
	47-/1		•			0064		100.01	•
¥	1.		-79.601	-69.801	-102.63	-102.85	-102.83	-56.401	31.699
	9-16		669.99	61.599	110.00	107.20	5	47.699	21,699
	17-24	. 19875	-4.3012	-1.5012	16.599	-4.3012	109.41-	-19.701	704.06-
A 116		100 47	107 07	00				78-	30
}			1000	700.60	60.301	50.701	50.707-		
	7-16	70.73	66.67	-	110,00	107,20	60.00	44° /4	21.677
	17-24	¢1961.	-4.5012	-1,5012	16.599	-4.5012	-14.601	-19,701	-20.401
SEP	1. 6	-59.901	-75.801	-86.401	-99.801	-99.601	-99.801	-51.601	39.397
	9-16	67.699	96.099	90.799	120.10	117.20	93,199	55.799	20.694
	17-24	7.2968	1.9988	4.6966	2	1.9988	-8.6012	-13,901	-24.901
20	1- 8	-64.302	-79.603	-69-603	-102.83	-102.A3	-102.83	-56.401	31.897
	9-16	78.799	B67 98	A1 500	110 00	107 20	94 F.	47 699	667.16
	17-24	.79875	-4.3012	-1.5012	16.599	-4.3012	-14.601	2	-30.401
		,		,					
> 2	1- 8	-59.901	-75.801	-86.401	-99.801	-99.801	-99.601	-51.801	Ď.
	9-16	64.099	660.96	90.799	120,10	117,20	93,199	3	26.899
	17-24	7,2988	1.9988	4.6988	23.599	1.9988	-8.6012	-13.901	_
0£ C	1- 8	-64 - 301	104.67-	108.80	-102.43	-102.83	-102.83	56.401	31.899
	9-16	78.794	567 74			•	904 74	507 67	707 60
	17.20	70.07	440.00	640.10	00,011		62,077	6	×1.077
	13011	0/0//	-4.3012	-1.5012	16.377	-4.3012	-14.601	-19.701	-20.401

-19.016 -.16013E-01 -31.016 -12.456 6.5440 -24.456 -15.996 3.0040 -27.996 -18.666 .33399 -30.666 -14.446 .85399 19.854 -11.146 -2.5360 16.464 -14.536 -4.1660 14.834 -16.166 -6.9960 10.004 -20.996 -13.806 5.1940 -25.806 -15.926 3.0740 -27.926 -15.986 3.0140 -27.986 .33.016 .98399 .26.016 -28.446 5.5540 -21.446 32.666 1.3340 25.666 -26.456 7.5440 -19.456 -13.146 20.854 -6.1460 -16.536 17.464 -9.5360 4.0040 -18.166 15.834 -11.166 6.1940 4.0740 -29.986 4.0140 -22.986 11.004 .22,996 .27.806 .29.926 -35.016 1.9840 -24.016 -20.456 6.5440 -17.456 .30.446 6.5540 -19.446 -15.146 21.854 -4.1460 5.0040 -34.666 2.3340 -23.666 .16.536 16.464 -7.5360 -20.166 16.834 -9.1660 7,1940 5.0740 5,0140 12.004 31,996 -24.996 -29.806 -31.926 31.986 -35.016 2.9840 -22.016 -31.996 6.0040 3.3340 3.3340 -21.666 -20.456 9.5440 -15.456 -30.446 7.5540 -17.446 -15.1%6 22.05% -2.1%60 -18.536 19.464 -5,5360 -20.166 17.834 -7.1660 -24.996 13.004 -11.996 -31.986 6.0140 -18.986 -29.806 6.1940 6.0740 -16.806 -31.926 ELECTh DEMAND SLEN BY COMMERICAL (RWM /MR) Mouns -35.016 .98399 -21.016 -18.536 17.464 -4.5360 .31.996 4.0040 .17.996 -34.666 1.3340 -20.666 -28.456 -30.446 -16.446 -31.926 4.0740 -17.926 -31.986 4.0140 -17.986 -19.146 15.834 6,1940 1,1460 -24.996 -14.456 20,166 10,996 -29.606 11.004 -.16013E-01 -13.016 -20.456 6.5440 -6.4560 -34.666 .33399 -12.666 -30.446 -15.1%6 19.854 6.8540 -20.166 14.634 1.6340 -24,996 10,004 -2,9960 -31.926 3.0740 -9.9260 3.0140 3.0040 -18.536 16.464 3.4640 5,1940 -35.016 -31.996 29,606 -34.016 .98397 -7.016u -33.666 1.3340 -6.6660 -29.446 5.5540 -2.4460 -14.146 20.854 12.854 -17.536 17.464 9.4640 6,1940 -30.926 4.074U -3.9260 4.8040 -27.456 -19.166 15.834 7.834u 11,004 3,0040 4.0140 -1.0060 -23.996 -30.986 -30.996 -.45601 -28.806 1- 8 9-16 17-24 1- 6 -9-16 17-24 1- 0 9-16 17-24 1- 0 9-16 7-24 1- 8 9-16 1- 8 9-16 17-24 9-16 17-24 1- 8 9-16 17-24 17-24 9-16 1- 0 17-24 1. 0 HONT ž FEB ĭ Ž MA ş 230 ¥ Š

-1.796U .37867E-02 -50.976

-4.6660 -2.6660 -33.666 1.5440 3.5440 -27.456 1,5540

14.854 16.854 114.146

11.464

9,6340

5.0040 7.0040

2,1940

-5.016U -3.016U -34.010 -1,926U ,73987E-01 -30,926

-1.7864 .15987£-61 -30.986

The second secon

And the second s

f..ENGY PHUDUCED BY ALL MODELS TO SATISFY --- SPACE HEATING AND HOT WATER An + 18FORE NUMBEM INDICATES AN EXCESS OF ENERGY DAS PRODUCED BY THE MODEL

	TOTAL	COMMENCIAL	SLIHIG	ROFHTG	CCLHT6	FBCHTG
MAJ	.5019£+06	.50196+06 .30716+06	•	•	•	.1948E+06
FEB	.36326+06	.3632E+06 .1873E+06		•	•	.1759£+06
44	,2720£+06	.27206+06 .77226+05	•	•	•	.1948£+06
A A	.1005E+06 0.	•		•	•	1885E+06
MAY	.8102E+05 0.	•		•	•	•.6102E+05
3	.37116+09 0.	•	•	•	•	e.3711£+05
¥	.26196+05 0.	•	•	•	•	•.2619E+05
AUG	.14256+05 0.	•	•	•	•	1425E+05
3 EP	.2652E+05 0.	•	:	:	•	*.2652E+05
100	.6736£+05 0.	•	•	•	•	*.6736E+U5
2	.22376+06	.22376+06 .35206+05	•	•	•	.19056+06
DEC	. ** 09E + 06	.4409E+06 .2461E+06	•	•		.1946E+06

	ENERGY PROUDCLU BY ALL MODELS TO AN * BEFORE NUMBER INDICATES AN ENERGY LAS PROUDCED BY THE HOUEL	EMEMBY PRODUCED BY ALL MODELS TO SATISFY Am • BEFORE MUMBEM INDICATES AN EXCESS OF ENEMBY WAS PRODUCED BY THE MODEL	EMEMGY PRODUCLU BY ALL MODELS TO SATISFY Am • Before mumbem indicates an excess of Ememby has produced by the model	SATISFY ICESS OF	6	PROCESS STEAM
	TOTAL	COMPLHCIAL	CCLSTM	RDFSTR	FBCSTM	900 133
442	.14416.06	.14416+06 .20676+05		909.3	.4210E+05	.4210E+058038E+05
FEB	.14416+06	.1441£+06 .2863£+05	•	821.3	.3803E+05	.7658£+05
K 4 E	.14416+06	.1441£+06 .2067£+05	•	909.3	.4210E+05	.4210E+05 *.4038E+05
APA	.14416+06	.1441£+06 .2308E+05	•	619.9	.4074E+05	.79376+45
MAY	.14416.06	.14416+06 .20676+05	•	909.3	.42105+05	.4210E+85 +.8838E+05
N	.14416+06	.1441E+06 .2308E+05	•	619.9	.4074E+05	.7937E+05
3	.14416+06	.1441E+06 .2067E+05	•	909.3	.4210E+05	.4210E+056038E+05
96	.14416+06	.14416+06 .20676+05	•	909.3	.4210E+05	.4210E+058038E+05
SEP	.14416+06	.1441E+06 .230BE+05	•	619.9	.4074E+05	.7937£+05
100	114415+06	11416+06 .20676+05	•	909.3	.4210£+05	.4210E+05 +.8038E+05
MOV	.14416+06	.14416+06 .23086+05	•	6.649	.40746+05	.7937E+05
DEC	.14416+06	.1441E+06 .2067E+05	•	909.3	.4210E+05	.4210E+058038E+05

	FBCELE	*.3375E+05	**919 <e+05< th=""><th>•.3394E+05</th><th>*.3383E+05</th><th>*.3611£+05</th><th>.4123E+05</th><th>*.4126E+05</th><th>********</th><th>+.3732E+05</th><th></th><th>*.3424E+05</th><th>•.3535E+05</th></e+05<>	•.3394E+05	*.3383E+05	*.3611£+05	.4123E+05	*.4126E+05	********	+.3732E+05		*.3424E+05	•.3535E+05
	900700	5070.	4586.	5076.	+914.	5078.	4914.	5076.	5076.	4914.	5078.	4914.	5076.
	CCLELE	•	•	÷	•	÷	•	•	:	•	•	•	•
	PHVELE	•	• 0	•	•	•	•	•	•	•	•	•	•
ELECTRICITY	MD1500	•	•	•	•	•	•	•	•	•	•	•	•
5	MU200	•	•	ċ	•	•	•	•	•	•	•	•	•
MODELS TO SATISFY CATES AN EXCESS OF THE MODEL	507	•	•	•	÷	÷	ċ	÷	•	ċ	•	÷	÷
	ROFELE	•	•	•	•	•	•	ċ		•	•	.	;
FNEMGY FMODUCEU MY ALL AN . BEFONE NUMBER INDI EMEMGY BAS PHODUCEU BY	TOTAL COMMENCIAL	.3907£+05 2*5.5	.3732E+05 612.7	.39336+05 320,5	.42546+05 1767.	.4247£.05 1284.	.5212E+05 5977.	.5133E+05 #99#.	.5012E+05 4430.	.4503£+05 2791.	.4295E+05 1449.	.4004£+05 887.8	.*133£+05 902.5
ند که س		447	£28	£	APR	AAY	857	ą	₽ñe Pûe	J3 S	100	208	960

ELECTRICITY

--- OPTIMIZED MESULT ---

ENERGY SOURCE SYSTEM UNITS	NUMBEH OF Systems	DELIVERLD ENERGY (MWH)	INITIAL CAPITAL COST (MS)	ANNUAL IZED COST (Na.)	DELIVERED ENEHGY COST	DELIVERED AREA REQUIRED	EXCESS	PHODUCED ENERGY COST
ROFELE Tons Refuse	•	•	•	•	0.	(FT**2) 0.	Î	(8/884)
MOS SKW S12E	•	•0	•	•	•		•	• 1
MD200 200 KWSIZE	ċ	.	;	ċ	• •	e d	•	• :
MD1588 1500MWS12L	•	•	• 0	•	•	: .	• (•
PHVELE 1000 FT**2	•	•	•	:		•	• •	• 0
CCLELE TONS COAL	•	•	•	•	ď	•	•	•
*CCLCOG TONS COAL	206.9	.5979£+05	15.59	7.324	21.54		• ,	ċ
FBCELE TONS COAL	553,4	•4380E+06	25.53	16.92		60.3866		17.90
COMMERCIAL		.2567E+05	ď	ā 6			90+36601•	. O
. INDICATES A	. INDICATES A CO-GENERATION MODEL.	HODEL.	;	****	76.71			

MODELS WITH NON ZERO NUMBERS OF SYSTEMS HAVE BEEN SELECTED FOR OPTIMUM MIX

PROCESS STEAM

•	
RESUL T	
OPTIMIZED	
•	

ENERGY SOURCE System units	AUMBER OF Systems	DELIVERED Energy (Mbtu)	INITIAL CAPITAL COST (M\$)	ANNUALIZED COST (MB)	DELIVERED ENERGY COST (\$/MBTU)	DELIVERED AREA REGUIRED EXCESS ENERGY (S/MBTU) (FT002) (MBTU)	EXCLSS ENENGY (MBTU)	PRODUCEO ENÉNGY COST (\$/MBTU)
CCLSTM TONS COAL	•	• 0	•	•	•	•	• •	•
RDFSTM Tons Mefuse	901.9	.10716+05	.2012	.4852E-01	5.53	2193.	• 0	4.532
FBCSTM Tons Coal	10.95	.4957£+06	5,121	2.474	4.992	.2659£+05		*****
•CCLCO6 TONS COAL	206.9	.9567£+06	15.59	7.324	6.510	.6336E+05	.2355E+06	5.246
COMERCIAL		.2656E+06	2.342	2.467	9.364			

. INDICATES A CO-GENERATION MODEL.

MODELS WITH NON ZERO NUMBERS OF SYSTEMS HAVE BEEN SELECTED FOR OPTIMUM MIX

SPACE HEATING AND HOT WATER

:
RESULT
OPTIMIZED
•

ENERGY SOURCE SYSTEM UNITS	NUMBER OF Systers	DELIVERED ENERGY (MBTU)	INITIAL CAPITAL COST (MS)	ANNUALIZED COST (M&)	DELIVERED ENERGY COST (\$/MBTU)	DELIVERED AKEA REQUIRED EXCESS ENEMGY COST (FT0+2) (MBTU)	EXCESS ENEMGY (MBTU)	PRODUCED ENERGY COST (\$/MBTU)
SLTHTG 10000 FT**2	•	•	•	ċ	• 0	• 0	•	÷
RDFHTG TONS REFUSE	•	•	•	•	•	•	•	•
CCLHTG TONS COAL	•	•	•	•	•	•	•	;
FBCHTG TONS COAL	295.4	.1390E+07	12.94	6.919	6.410	.1190E+06	.9037E+06	5.869
COMERCIAL		.8529E+06	5,226	7.600	6.919			

* INDICATES A CO-GENERATION MODEL.

MODELS WITH NON ZERO NUMBERS OF SYSTEMS HAVE BEEN SELECTED FOR OPTIMUM MIX

THE FOLLOWING SUMMARY USES THE SAME NUMBER OF SYSTEMS IN EACH DEMAND SECTOR FUR COST COMPARISONS. NOTE THAT COGENERATION MODELS MAY BE THE SAME IN ONLY ONE DEMAND SECTOR.

SPACE HEATING AND HOT WATER

			INITAD	OPTIMIZED RESULT	:			
ENEMET SOUNCE STSTEM UNITS	AUMBER OF Systems	DELIVERED Energy (mbtu)	INITIAL Capital Cost (MS)	ANNUALIZED COST (RS)	DELIVERED ENERGY COST (\$/MdTu)	DELIVERED AKEA REGUIRED NERGY COST (8/MBTU) (FTee2)	EXCESS ENERGT (Matu)	PRUDUCED ENEMEY COST (\$/MBTU)
SLTHTU 10000 FT.+2	295.4	.9027E+06	103.5	13.68	15.16	.73665+07	•	15.16
RDFHTG TOMS MEFUSE	295.4	.2771E+06	8,863	2.136	7,715	,9664E+05	.2470E+06	6.00
CCLMT6 TOMS COAL	295.4	.8082E+06	16.17	9.452	11.69	.11906+06	.1485£+07	4.121
FBCHTG TONS LOAL	\$ 882°.	.2547E+06	12.94	6.919	35.02	.11906+06	.20396+07	3.689
COMMENCIAL		•	•	••	•			

. INDICATES A CO-GENERATION MODEL.

PROCESS STEAM

PHODUCED ENERGY COST (\$/MBTU)

4.700

4.532

4.459

4.916

			OPTIMI	OPTIMIZED RESULT	•		
ENERGY SOUNCE SYSTEM UNITS	NUMBER OF Systems	DELIVERED Energy (mbtu)	INITIAL CAPITAL COST (MS)	ANNUALIZED COST (MS)	DELIVERED ENERGY COST (\$/MBTU)	DELIVENED AREA REGUIRED INLEGY COST (FT002)	EXCESS ENERGY (MJ 10)
CCLSTM Tons COAL	206.9	.1306£+07	12.38	6.793	5.2 0≥	,8336E+05	.1396E+06
ROFSTM TONS NEFUSE	206.9	.1927E+06	6.207	1.497	7.767	.6767£+05	.1376E+06
FBCSTR Tons Coal	506.9	.2303E+U6	10.27	***************************************	27.96	.6336E+05	.12156+07
*CCLCO6	55.50	.7451E-07	34.26	36.36	3994,	. 2230E+06	.3189£+07
COMMERCIAL		•	•	• 0	•		

. INDICATES A CO-GENERATION MODEL.

ELECTHICITY

---- OPTIMIZED RESULT ----

ERLHGY SOUNCE SYSTEM UNITS	NUMBER OF Systems	DELIVERED Enekgy (MWH)	INITIAL Capital Cost (MS)	ANNUAL IZED COST (MS)	OLLIVERED ENERGY COST (S/MMH)	OLLIVENED ANEA REQUIRED NERGY COST (S/MMH) (FT002)	EXCESS ENEMGY (MMH)	PHODUCED ENCHGY COST (S/MMH)
RUPELE TONS MEFUSE	553.4	.1225E+06	20.49	4.432	56.18	.1810E+U6	•	36.18
3715 MUS 001	553.4	.18156+06	830.1	112.4	618.2	.1660E+08	.3567E+05	516.7
MD-00 200 MWS12L	553.	.57008+05	277.0	70.	661.0	. 68545+07	.1024E+06	9 · · · · · · · · · · · · · · · · · · ·
MD1500 1500KWS126	553.4	126.7	432°C	153.8	.1214E+07	.1826€+08	.4730£+06	325.1
PHVELE 1000 FT0+2	553.4	3946.	17.62	2,356	597.0	.1303£+07	6864.	217.9
CCLELE TONS COAL	553.4	.1572E+06	42.79	19.77	125.7	,2230E+06	.37585+06	57.09
OCCLEUG TONS COAL	553.4	1347.	34.26	16.36	.1363£+05	.2230€+06	.1566€+06	16.7B
FBCELE Tons Coal	553.4	.2980£-07	25.53	16,92	.56/7E+15	.2230£+06	.5479£+06	99° 05
COMMENCIAL		ŏ	•	ċ	•			
	AND MANAGEMENT OF THE PROPERTY	A MODEL						

• INDICATES A CO-GENERATION MODEL. AFTEM UPUATE RUNSPC

A CONTRACTOR OF THE PROPERTY O