NOVA Microhypervisor Interface Specification

Udo Steinberg udo@hypervisor.org

March 6, 2020

Copyright © 2006–2011 Udo Steinberg, Technische Universität Dresden

Copyright © 2012–2013 Udo Steinberg, Intel Corporation

Copyright © 2014-2016 Udo Steinberg, FireEye, Inc.

Copyright © 2019-2020 Udo Steinberg, BedRock Systems, Inc.

This specification is provided "as is" and may contain defects or deficiencies which cannot or will not be corrected. The author makes no representations or warranties, either expressed or implied, including but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement that the contents of the specification are suitable for any purpose or that any practice or implementation of such contents will not infringe any third party patents, copyrights, trade secrets or other rights.

The specification could include technical inaccuracies or typographical errors. Additions and changes are periodically made to the information therein; these will be incorporated into new versions of the specification, if any.

Contents

ı	Int	roduc	tion													1
1	Syst	tem Arc	chitecture	•												2
II	Ba	sic Al	ostractio	ons												3
2	Kerr	nel Obje	ects													4
	2.1			ain			 	 				 		 		4
		2.1.1	Object S	pace			 	 				 		 		4
		2.1.2	Memory	Space			 	 				 		 		4
		2.1.3	•	Space												4
	2.2			ext												4
	2.3		_	text												5
	2.4															5
	2.5	Semap	hore				 	 	• •	• •		 	•	 •		5
	A	!!	ian Dua													_
Ш		-		gramming Inte	riace											6
3		Types														7
	3.1		•													7
		3.1.1	-	pability												7
		3.1.2	-	Capability												7
			3.1.2.1	PD Object Capab	•											7
			3.1.2.2	EC Object Capab	•											7
			3.1.2.3 3.1.2.4	SC Object Capabi	•											7
			3.1.2.4	PT Object Capabi												8
		3.1.3		SM Object Capab Capability												8
		3.1.4		Capability												8
	3.2			tor												8
	3.3			ntrol Block												9
			medd Cor	Hor Brock		• • •	 	 • •		• •	•	 •	•	 •	•	
4		ercalls														10
	4.1															10
		4.1.1	• 1	ll Numbers												10
		4.1.2		odes												10
		4.1.3		ype												10
		4.1.4	Table Ty	1												11
		4.1.5		ility Attributes												11
	4.0	4.1.6		ility Attributes												11
	4.2															12
		4.2.1		[12
	12	4.2.2		ly												13 14
	4.3	4.3.1		rotection Domain												14 14
		4.3.1		Execution Context												15
		4.3.3		cheduling Context												16
		4.3.4		ortal												17
		1.5.7	Create I	orum			 	 				 		 		1/

		4.3.5 Create Semaphore	18
	4.4	Object Control	19
		4.4.1 Control Protection Domain	19
		4.4.2 Control Execution Context	21
		4.4.3 Control Scheduling Context	22
		4.4.4 Control Portal	23
		4.4.5 Control Semaphore	24
		4.4.6 Control Hardware	25
	4.5	Interrupt and Device Assignment	26
	4.5	4.5.1 Assign Interrupt	26
			27
		4.5.2 Assign Device	21
5	Boo	na	28
	5.1	Microhypervisor	28
	3.1	5.1.1 ELF Image Loading	28
		5.1.2 ELF Image Launching	28
			28
	<i>5</i> 0	1	
	5.2	Root Protection Domain	29
		5.2.1 Initial Configuration	29
		5.2.1.1 Object Space	29
		5.2.1.2 Memory Space	29
	5.3	Hypervisor Information Page	30
6		arch64 Virtual Memory	33
	60	Initial Ctata	22
	6.2	Initial State	33
	6.2 6.3	Event-Specific Capability Selectors	34
		Event-Specific Capability Selectors	34 34
	6.3	Event-Specific Capability Selectors 5.3.1 Architectural Events 6.3.2 Microhypervisor Events	34 34 34
	6.3	Event-Specific Capability Selectors 5.3.1 Architectural Events 6.3.2 Microhypervisor Events User Thread Control Block: Architectural State	34 34 34 35
	6.3 6.4 6.5	Event-Specific Capability Selectors 5.3.1 Architectural Events 6.3.2 Microhypervisor Events User Thread Control Block: Architectural State Message Transfer Descriptor: Regular IPC	34 34 34 35 36
	6.3 6.4 6.5 6.6	Event-Specific Capability Selectors 5.3.1 Architectural Events 5.3.2 Microhypervisor Events User Thread Control Block: Architectural State Message Transfer Descriptor: Regular IPC Message Transfer Descriptor: Architectural State	34 34 35 36 36
	6.3 6.4 6.5	Event-Specific Capability Selectors 5.3.1 Architectural Events 6.3.2 Microhypervisor Events User Thread Control Block: Architectural State Message Transfer Descriptor: Regular IPC	34 34 34 35 36
V	6.3 6.4 6.5 6.6 6.7	Event-Specific Capability Selectors 5.3.1 Architectural Events 5.3.2 Microhypervisor Events User Thread Control Block: Architectural State Message Transfer Descriptor: Regular IPC Message Transfer Descriptor: Architectural State	34 34 35 36 36
V	6.3 6.4 6.5 6.6 6.7	Event-Specific Capability Selectors 5.3.1 Architectural Events 6.3.2 Microhypervisor Events User Thread Control Block: Architectural State Message Transfer Descriptor: Regular IPC Message Transfer Descriptor: Architectural State Calling Convention	34 34 35 36 36 37
	6.3 6.4 6.5 6.6 6.7 Apr	Event-Specific Capability Selectors 5.3.1 Architectural Events 6.3.2 Microhypervisor Events User Thread Control Block: Architectural State Message Transfer Descriptor: Regular IPC Message Transfer Descriptor: Architectural State Calling Convention Dendix	34 34 35 36 36 37
A B	6.3 6.4 6.5 6.6 6.7 App	Event-Specific Capability Selectors 5.3.1 Architectural Events 5.3.2 Microhypervisor Events User Thread Control Block: Architectural State Message Transfer Descriptor: Regular IPC Message Transfer Descriptor: Architectural State Calling Convention Dendix Dendix Dendix Degraphy	34 34 35 36 36 37 40 41 43
A B	6.3 6.4 6.5 6.6 6.7 App	Event-Specific Capability Selectors 5.3.1 Architectural Events 5.3.2 Microhypervisor Events User Thread Control Block: Architectural State Message Transfer Descriptor: Regular IPC Message Transfer Descriptor: Architectural State Calling Convention Dendix Dendix	34 34 35 36 36 37 40 41 43
A B	6.3 6.4 6.5 6.6 6.7 App Acro Bibli Con C.1	Event-Specific Capability Selectors 5.3.1 Architectural Events 5.3.2 Microhypervisor Events User Thread Control Block: Architectural State Message Transfer Descriptor: Regular IPC Message Transfer Descriptor: Architectural State Calling Convention Dendix Dendix	34 34 35 36 37 40 41 43 44
A B	6.3 6.4 6.5 6.6 6.7 App Acro Bibli Con C.1 C.2	Event-Specific Capability Selectors 5.3.1 Architectural Events 5.3.2 Microhypervisor Events User Thread Control Block: Architectural State Message Transfer Descriptor: Regular IPC Message Transfer Descriptor: Architectural State Calling Convention Dendix Dendix	34 34 35 36 36 37 40 41 43

Notation

Throughout this document, the following symbols are used:

- Indicates that the value of this parameter or field is **undefined**. Future versions of this specification may define a meaning for the parameter or field.
- Indicates that the value of this parameter or field is **ignored**. Future versions of this specification may define a meaning for the parameter or field.
- Indicates that the value of this parameter or field is **unchanged**. The microhypervisor will preserve the value across hypercalls.

Part I Introduction

1 System Architecture

The NOVA OS Virtualization Architecture facilitates the coexistence of multiple legacy guest operating systems and a multi-server user-mode framework on a single platform [2]. The core system leverages virtualization technology provided by modern x86 or ARM platforms and comprises the NOVA microhypervisor and one or more Virtual-Machine Monitors (VMMs).

Figure 1.1: System Architecture

Figure 1.1 shows the structure of the system. The microhypervisor is the only component running in privileged root/kernel mode. It isolates the user-level servers, including the virtual-machine monitor, from one another by placing them in different address spaces in unprivileged root/user mode. Each legacy guest operating system runs in its own virtual-machine environment in non-root mode and is therefore isolated from the other components.

Besides isolation, the microhypervisor also provides mechanisms for partitioning and delegation of platform resources, such as CPU time, physical memory, I/O ports and hardware interrupts and for establishing communication paths between different protection domains.

The virtual-machine monitor handles virtualization faults and implements virtual devices that enable legacy guest operating systems to function in the same manner as they would on bare hardware. Providing this functionality outside the microhypervisor in the VMM considerably reduces the size of the trusted computing base for all applications that do not require virtualization support.

The architecture and interfaces of the VMM and the multi-server user-mode framework are not described in this document.

Part II Basic Abstractions

2 Kernel Objects

2.1 Protection Domain

- 1. The Protection Domain (PD) is a unit of protection and isolation.
- 2. Access to a Protection Domain (PD) is controlled by a PD Object Capability (CAP_{OBJpp}).
- 3. A PD is composed of a set of spaces that store Capabilities (CAP) to kernel objects or platform resources that can be accessed by ECs within that PD. The following subsections detail these spaces.

2.1.1 Object Space

- 1. Each empty slot of the Object Space (SPC_{OBJ}) contains a Null Capability (CAP₀).
- 2. Each non-empty slot of the Object Space (SPC_{OBJ}) contains an Object Capability (CAP_{OBJ}) that refers to a kernel object.

2.1.2 Memory Space

- 1. Each empty slot of the Memory Space (SPC_{MEM}) contains a Null Capability (CAP₀).
- 2. Each non-empty slot of the Memory Space (SPC_{MEM}) contains a Memory Capability (CAP_{MEM}) that refers to a page frame in physical memory.

2.1.3 I/O Port Space

- 1. Each empty slot of the I/O Port Space (SPC_{PIO}) contains a Null Capability (CAP₀).
- 2. Each non-empty slot of the I/O Port Space (SPC_{PIO}) contains a I/O Port Capability (CAP_{PIO}) that refers to an I/O port.

2.2 Execution Context

- 1. The Execution Context (EC) is an abstraction for an activity within a PD.
- 2. Access to an Execution Context (EC) is controlled by an EC Object Capability (CAPOBIRC).
- 3. An EC is permanently bound to the PD in which it was created.
- 4. An EC may optionally have an SC bound to it.
- 5. There exist two flavors of execution context:
 - Threads
 - Virtual CPUs
- 6. An EC comprises the following state:
 - Reference to PD (2.1)
 - Event Selector Base (SEL_{EVT}) (??)
 - User Thread Control Block (UTCB) (3.3)
 - CPU Number (CPU) registers (architecture dependent)
 - Floating Point Unit (FPU) registers (architecture dependent)

2.3 Scheduling Context

- 1. The Scheduling Context (SC) is a unit of dispatching and prioritization.
- 2. Access to a Scheduling Context (SC) is controlled by an SC Object Capability (CAP_{OBJsc}).
- 3. An SC is permanently bound to exactly one physical CPU.
- 4. At any point in time, an SC is bound to exactly one EC.
- 5. Donation of an SC to another EC temporarily binds the SC to that other EC.
- 6. A scheduling context comprises the following state:
 - Reference to EC (2.2)
 - Time quantum
 - Priority

2.4 Portal

- 1. A Portal (PT) represents a dedicated entry point into the PD in which the portal was created.
- 2. Access to a Portal (PT) is controlled by a PT Object Capability (CAP_{OBJet}).
- 3. A PT is permanently bound to exactly one EC.
- 4. A portal comprises the following state:
 - Reference to EC (2.2)
 - Message Transfer Descriptor (MTD) (??)
 - Entry instruction pointer
 - Portal Identifier (PID)

2.5 Semaphore

- 1. A Semaphore (SM) provides a means to synchronize execution and interrupt delivery by selectively blocking and unblocking execution contexts.
- 2. Access to a Semaphore (SM) is controlled by a SM Object Capability (CAPOBISM).

Part III Application Programming Interface

3 Data Types

3.1 Capability

A Capability (CAP) is a reference to a resource plus associated auxiliary data, such as access permissions.

Capabilities are opaque and immutable for applications – they cannot be inspected or modified directly; instead applications refer to a Capability via a Capability Selector (SEL).

3.1.1 Null Capability

A Null Capability (CAP₀) does not refer to anything and carries no permissions.

3.1.2 Object Capability

An Object Capability (CAP_{OBJ}) is stored in the Object Space (SPC_{OBJ}) of a PD and refers to a kernel object.

3.1.2.1 PD Object Capability

A PD Object Capability (CAP_{OBJpp}) refers to a Protection Domain (PD) and carries the following permissions:


```
CTRL ctrl_pd permitted if set.

PD create_pd permitted if set.
```

EC PT SM create_ec, create_pt, create_sm permitted it set.

SC create_sc permitted if set.

ASSIGN assign_dev permitted if set.

3.1.2.2 EC Object Capability

An EC Object Capability (CAP_{OBJFC}) refers to an Execution Context (EC) and carries the following permissions:


```
CTRL ctrl_ec permitted if set.

BIND<sub>PT</sub> create_pt can bind a Portal (PT) to the EC if set.
```

BIND_{SC} create_sc can bind a Scheduling Context (SC) to the EC if set.

3.1.2.3 SC Object Capability

An SC Object Capability (CAP_{OBJsc}) refers to a Scheduling Context (SC) and carries the following permissions:


```
CTRL ctrl_sc permitted if set.
```

3.1.2.4 PT Object Capability

A PT Object Capability (CAP_{OBJer}) refers to a Portal (PT) and carries the following permissions:

3.1.2.5 SM Object Capability

An SM Object Capability (CAP_{OBJsM}) refers to a Semaphore (SM) and carries the following permissions:

 $\begin{array}{ll} \text{CTRL}_{\text{UP}} & \text{ctrl_sm} \ (\text{Up}) \ \text{permitted if set.} \\ \text{CTRL}_{\text{DN}} & \text{ctrl_sm} \ (\text{Down}) \ \text{permitted if set.} \\ \text{ASSIGN} & \text{assign_int} \ \text{permitted if set.} \\ \end{array}$

3.1.3 Memory Capability

A Memory Capability (CAP_{MEM}) is stored in the Memory Space (SPC_{MEM}) of a PD, refers to a 4KB page frame, and carries the following permissions:

R the memory page is readable if set. W the memory page is writable if set.

X the memory page is executable if set.

3.1.4 I/O Port Capability

A I/O Port Capability (CAP_{PIO}) is stored in the I/O Port Space (SPC_{PIO}) of a PD, refers to an I/O port, and carries the following permissions:

A the I/O port is accessible if set.

3.2 Capability Selector

A Capability Selector (SEL) is a user-visible unsigned number as follows:

- An Object Capability Selector (SEL_{OBJ}) serves as an index into the Object Space (SPC_{OBJ}) of a Protection Domain (PD) and selects a slot that either contains an Object Capability (CAP_{OBJ}) or a Null Capability (CAP_O).
- A Memory Capability Selector (SEL_{MEM}) serves as an index into the Memory Space (SPC_{MEM}) of a Protection Domain (PD) and selects a slot that either contains a Memory Capability (CAP_{MEM}) or a Null Capability (CAP₀).
- A I/O Port Capability Selector (SEL_{PIO}) serves as an index into the I/O Port Space (SPC_{PIO}) of a Protection Domain (PD) and selects a slot that either contains a I/O Port Capability (CAP_{PIO}) or a Null Capability (CAP_O).

3.3 User Thread Control Block

Each host EC (local/global thread) has its own User Thread Control Block (UTCB), which is mapped into the Memory Space (SPC_{MEM}) of the PD in which that EC is executing. A guest EC (virtual CPU) does not have a UTCB.

The UTCB always has a size of one page (4096 bytes) and is used as inbox/outbox during IPC as follows:

- ipc_call transfers a message from the UTCB of the caller EC to the UTCB of the callee EC.
- ipc_reply transfers a message from the UTCB of the callee EC to the UTCB of the caller EC.

Data Transfer

The data transfer from one UTCB to another UTCB is defined as follows:

- The microhypervisor copies the data using the CPU on which the caller/callee EC execute.
- The data is copied from low words to high words, beginning with word₀.
- The granularity of the loads and stores used for copying is **undefined**.
- Loads from and stores to the UTCB by the microhypervisor use relaxed memory ordering.

To ensure proper visibility of loads and stores with relaxed memory ordering, application programs are expected to access a UTCB only from the EC to which that UTCB is bound.

64-bit Architectures

A 64-bit UTCB consists of 512 message words. Each message word has a size of 8 bytes.

32-bit Architectures

A 32-bit UTCB consists of 1024 message words. Each message word has a size of 4 bytes.

4 Hypercalls

4.1 Definitions

4.1.1 Hypercall Numbers

Each hypercall is identified by a unique number. The following hypercalls are currently defined:

Number	Hypercall	Section
0x0	ipc_call	4.2.1
0x1	ipc_reply	4.2.2
0x2	create_pd	4.3.1
0x3	create_ec	4.3.2
0x4	create_sc	4.3.3
0x5	create_pt	4.3.4
0x6	create_sm	4.3.5
0x7	ctrl_pd	4.4.1
8x0	ctrl_ec	4.4.2
0x9	ctrl_sc	4.4.3
0xa	ctrl_pt	4.4.4
0xb	ctrl_sm	4.4.5
0xc	ctrl_hw	4.4.6
0xd	$assign_int$	4.5.1
0xe	assign_dev	4.5.2
0xf	reserved for future use	

4.1.2 Status Codes

Hypercalls return a status code to indicate success or failure. The following status codes are currently defined:

Number	Status Code	Description
0x0	SUCCESS	Operation Successful
0x1	TIMEOUT	Operation Timeout
0x2	ABORTED	Operation Abort
0x3	OVRFLOW	Operation Overflow
0x4	BAD_HYP	Invalid Hypercall
0x5	BAD_CAP	Invalid Capability
0x6	BAD_PAR	Invalid Parameter
0x7	BAD_FTR	Invalid Feature
8x0	BAD_CPU	Invalid CPU Number
0x9	BAD_DEV	Invalid Device ID

4.1.3 Space Type

Number	TYPE _{SPC}	Contains	Indexed By	Description
0x0	SPC _{OBJ}	CAP _{OBJ}	SEL _{OBJ}	Object Space
0x1	SPC_{MEM}	CAP_{MEM}	SEL _{MEM}	Memory Space
0x2	SPC_{PTO}	CAP_{PTO}	SELPTO	I/O Port Space

4.1.4 Table Type

Number	TYPE _{TBL}	Description
0x0	CPU_HST	CPU Page Table for Host Accesses
0x1	CPU_GST	CPU Page Table for Guest Accesses
0x2	DMA_HST	DMA Page Table for Host Accesses
0x3	DMA_GST	DMA Page Table for Guest Accesses

4.1.5 Cacheability Attributes

Number	ATTR _{CA}	Description
0x0	DEV	Device
0x1	$DEV_{-}E$	Device, Early Ack
0x2	DEV_RE	Device, Early Ack, Reordering
0x3	DEV_GRE	Device, Early Ack, Reordering, Gathering
0x4	-	reserved
0x5	MEM_NC	Memory, Inner/Outer Non-Cacheable
0x6	MEM_WT	Memory, Inner/Outer Write-Through
0x7	MEM_WB	Memory, Inner/Outer Write-Back

4.1.6 Shareability Attributes

Number	ATTR _{SH}	Description
0x0	NONE	Not Shareable
0x1	_	reserved
0x2	OUTER	Outer Shareable
0x3	INNER	Inner Shareable

4.2 Communication

4.2.1 IPC Call

Parameters:

Flags:

Description:

Sends a message from EC_{CURRENT} (caller) to the EC (callee) bound to the specified Portal (PT).

Prior to the hypercall:

• { PD_{CURRENT}, SEL_{OBJ} pt } must refer to a PT Object Capability (CAP_{OBJpt}) with permission CALL.

If the hypercall completed successfully:

- If **T=0** (**No Timeout**): If the callee **EC** was busy handling another request, then the caller **EC** has helped run that request to completion, i.e. until the callee **EC** became available again.
- The microhypervisor has transferred a message from the UTCB of the caller EC to the UTCB of the callee EC. The content of that message is defined by the MTD mtd, which has been passed from the caller EC to the callee EC.
- The hypercall returns once the callee EC has issued an ipc_reply. Upon return, the UTCB of the caller EC and the parameter mtd have been updated by the reply message.
- The Current Scheduling Context (SC_{CURRENT}) has been donated to the callee EC upon ipc_call and returned back upon ipc_reply, thereby accounting the entire handling of the request to SC_{CURRENT}.

Status:

SUCCESS

• The hypercall completed successfully.

BAD_CAP

• { PD_{CURRENT}, SEL_{OBJ} pt } did not refer to a PT Object Capability (CAP_{OBJPT}) or that capability had insufficient permissions.

BAD_CPU

• Caller EC and callee EC are on different CPUs.

TIMEOUT

• The callee EC is busy handling another request – only if **T=1** (**Timeout**).

ABORTED

• The callee EC is dead and the operation aborted.

4.2.2 IPC Reply

Parameters:

Flags:

Description:

Sends a reply message from $EC_{CURRENT}$ (callee) back to the caller EC (if one exists) and subsequently waits for the next incoming message.

If the hypercall completed successfully:

- If a caller **EC** exists:
 - The microhypervisor has transferred a reply message from the UTCB of the callee EC back to the UTCB of the caller EC.
 - The content of that reply message is defined by the MTD mtd, which has been passed from the callee EC back to the caller EC.
 - The Current Scheduling Context (SC_{CURRENT}) that had been donated to the callee EC upon ipc_call
 has been returned back to the caller EC.
- ECCURRENT blocks until the next incoming message arrives on any Portal (PT) bound to it.

Status:

This hypercall does not return directly.

Instead, when the next message arrives via a subsequent ipc_call to any Portal (PT) bound to the callee EC:

- The microhypervisor passes the Portal Identifier (PID) of the called PT to the callee EC.
- The UTCB of the callee EC and the parameter mtd have been updated by the incoming message.
- Execution of the callee EC continues at the Instruction Pointer (IP) specified in the called PT.

4.3 Object Creation

4.3.1 Create Protection Domain

Parameters:

Flags:

Description:

Creates a new Protection Domain (PD).

Prior to the hypercall:

- { PD_{CURRENT}, SEL_{OBJ} own } must refer to a PD Object Capability (CAP_{OBJPD}) with permission PD.
- { $PD_{CURRENT}$, SEL_{OBJ} sel } must refer to a Null Capability (CAP₀).

If the hypercall completed successfully:

- A new Protection Domain (PD) has been created.
- The resources for the created PD are accounted to the PD referred to by { $PD_{CURRENT}$, SEL_{OBJ} own }.
- { PD_{CURRENT}, SEL_{OBJ} sel } refers to a PD Object Capability (CAP_{OBJPD}) for the created PD.

Status:

SUCCESS

• The hypercall completed successfully.

- { PD_{CURRENT}, SEL_{OBJ} own } did not refer to a PD Object Capability (CAP_{OBJPD}) or that capability had insufficient permissions.
- { $PD_{CURRENT}$, SEL_{OBJ} sel } did not refer to a Null Capability (CAP₀).

4.3.2 Create Execution Context

Parameters:

```
status = create_ec (SEL<sub>OBJ</sub>
                                sel,
                                               // Created EC
                                               // Owner PD
                       SEL<sub>OB1</sub>
                                own,
                       SEL_{MEM}
                                utcb,
                                               // UTCB Page Number
                       UINT
                                               // CPU Number
                                cpu,
                       UINT
                                               // Initial Stack Pointer
                                sp,
                                               // Event Selector Base
                       SELEVE
                                evt);
```

Flags:

Description:

Creates a new Execution Context (EC).

Prior to the hypercall:

- { PD_{CURRENT}, SEL_{OBJ} own } must refer to a PD Object Capability (CAP_{OBJpp}) with permission EC.
- { PD_{CURRENT}, SEL_{OBJ} sel } must refer to a Null Capability (CAP₀).

If the hypercall completed successfully:

- If V=0,G=0 (Local Thread): A new host Execution Context (EC) has been created with its UTCB mapped as virtual page number utcb and its initial Stack Pointer (SP) set to sp. Portals (PTs) can subsequently be bound to that EC and the EC will run whenever any of those bound portals is called.
- If V=0,G=1 (Global Thread): A new host Execution Context (EC) has been created with its UTCB mapped as virtual page number utcb and its initial Stack Pointer (SP) set to sp. The EC will generate a startup exception the first time a Scheduling Context (SC) is bound to it.
- If **V=1** (**Virtual CPU**): A new guest Execution Context (EC) has been created. The EC will generate a startup exception the first time a Scheduling Context (SC) is bound to it. The parameters utcb, sp and the G-flag were ignored.
- The created EC will be able to use FPU instructions only if the F-flag is set. Otherwise any FPU access by that EC will generate an exception.
- The created EC is bound to the PD referred to by { PD_{CURRENT}, SEL_{OBJ} own } on CPU cpu with its Event Selector Base (SEL_{EVT}) set to evt.
- The resources for the created EC are accounted to the PD referred to by { PD_CURRENT, SEL_OBJ own }.
- { PD_{CURRENT}, SEL_{OBJ} sel } refers to an EC Object Capability (CAP_{OBJEC}) for the created EC.

Status:

SUCCESS

• The hypercall completed successfully.

BAD_CAP

- { PD_{CURRENT}, SEL_{OBJ} own } did not refer to a PD Object Capability (CAP_{OBJPD}) or that capability had insufficient permissions.
- { $PD_{CURRENT}$, SEL_{OBJ} sel } did not refer to a Null Capability (CAP₀).

BAD_CPU

• The CPU number is invalid.

BAD_FTR

• Virtual CPUs are not supported on the machine.

BAD_PAR

• UTCB region is not free or outside the user-addressable memory range.

4.3.3 Create Scheduling Context

Parameters:

Flags:

Description:

Creates a new Scheduling Context (SC).

Prior to the hypercall:

- { PD_{CURRENT}, SEL_{OBJ} own } must refer to a PD Object Capability (CAP_{OBJpD}) with permission SC.
- { PD_{CURRENT}, SEL_{OBJ} ec } must refer to an EC Object Capability (CAP_{OBJ_{EC}}) with permission BIND_{SC}.
- { PD_{CURRENT}, SEL_{OBJ} sel } must refer to a Null Capability (CAP₀).

If the hypercall completed successfully:

- A new Scheduling Context (SC) has been created.
- The created SC is bound to the EC referred to by { PD_{CURRENT}, SEL_{OBJ} ec } on the CPU of that EC with its scheduling parameters set to qpd.
- The resources for the created SC are accounted to the PD referred to by { $PD_{CURRENT}$, SEL_{OBJ} own }.
- { PD_{CURRENT}, SEL_{OBJ} sel } refers to an SC Object Capability (CAP_{OBJsc}) for the created SC.

Status:

SUCCESS

• The hypercall completed successfully.

BAD_CAP

- { PD_{CURRENT}, SEL_{OBJ} own } did not refer to a PD Object Capability (CAP_{OBJpD}) or that capability had insufficient permissions.
- { PD_{CURRENT}, SEL_{OBJ} ec } did not refer to a EC Object Capability (CAP_{OBJEC}) or that capability had insufficient permissions.
- { $PD_{CURRENT}$, SEL_{OBJ} sel } did not refer to a Null Capability (CAP₀).
- Binding the SC to the EC failed, e.g. because the EC is a local EC.

BAD_PAR

• qpd time quantum or priority is zero.

4.3.4 Create Portal

Parameters:

Flags:

Description:

Creates a new Portal (PT).

Prior to the hypercall:

- { PD_{CURRENT}, SEL_{OBJ} own } must refer to a PD Object Capability (CAP_{OBJpp}) with permission PT.
- { PD_{CURRENT}, SEL_{OBJ} ec } must refer to an EC Object Capability (CAP_{OBJ_{EC}}) with permission BIND_{PT}.
- { PD_{CURRENT}, SEL_{OBJ} sel } must refer to a Null Capability (CAP₀).

If the hypercall completed successfully:

- A new Portal (PT) has been created.
- The created PT is bound to the EC referred to by { PD_{CURRENT}, SEL_{OBJ} ec } on the CPU of that EC, with its portal Instruction Pointer (IP) set to ip, its initial MTD set to 0 and its initial PID set to 0.
- The resources for the created PT are accounted to the PD referred to by { PD_{CURRENT}, SEL_{OBJ} own }.
- { PD_{CURRENT}, SEL_{OBJ} sel } refers to an PT Object Capability (CAP_{OBJPT}) for the created PT.

Status:

SUCCESS

• The hypercall completed successfully.

- { PD_{CURRENT}, SEL_{OBJ} own } did not refer to a PD Object Capability (CAP_{OBJpD}) or that capability had insufficient permissions.
- { PD_{CURRENT}, SEL_{OBJ} ec } did not refer to a EC Object Capability (CAP_{OBJEC}) or that capability had insufficient permissions.
- { PD_{CURRENT}, SEL_{OBJ} sel } did not refer to a Null Capability (CAP₀).
- Binding the PT to the EC failed, e.g. because the EC is not a local EC.

4.3.5 Create Semaphore

Parameters:

Flags:

Description:

Creates a new Semaphore (SM).

Prior to the hypercall:

- { PD_{CURRENT}, SEL_{OBJ} own } must refer to a PD Object Capability (CAP_{OBJPD}) with permission SM.
- { PD_{CURRENT}, SEL_{OBJ} sel } must refer to a Null Capability (CAP₀).

If the hypercall completed successfully:

- A new Semaphore (SM) has been created.
- The created SM has its initial counter value set to cnt.
- The resources for the created SM are accounted to the PD referred to by { $PD_{CURRENT}$, SEL_{OBJ} own }.
- { $PD_{CURRENT}$, SEL_{OBJ} sel } refers to an SM Object Capability (CAP_{OBJSM}) for the created SM.

Status:

SUCCESS

• The hypercall completed successfully.

- { PD_{CURRENT}, SEL_{OBJ} own } did not refer to a PD Object Capability (CAP_{OBJPD}) or that capability had insufficient permissions.
- { PD_{CURRENT}, SEL_{OBJ} sel } did not refer to a Null Capability (CAP₀).

4.4 Object Control

4.4.1 Control Protection Domain

Parameters:

```
// Protection Domain: Source
status = ctrl_pd (SEL<sub>OBJ</sub> spd,
                                            // Protection Domain: Destination
                    SELORI dpd,
                                            // Base Selector: Source
                    SEL
                           src,
                    SEL
                           dst,
                                            // Base Selector: Destination
                                            // Order
                    UINT
                           ord,
                    UINT
                                            // Permission Mask
                           pmm,
                   TYPE_{SPC} spc,
                                            // Space Type
                                            // Table Type
                   TYPE<sub>TBL</sub> tbl,
                                           // Cacheability Attribute
                    ATTR_{CA} ca,
                                            // Shareability Attribute
                    ATTR<sub>SH</sub> sh);
```

Flags:

Description:

Takes capabilities from the Source Protection Domain (PD) and grants them to the Destination Protection Domain (PD) and thereby optionally reduces the permissions of the destination capabilities.

Prior to the hypercall:

- { PD_{CURRENT}, SEL_{OB1} spd } must refer to a PD Object Capability (CAP_{OB1pp}) with permission CTRL.
- { PD_{CURRENT}, SEL_{OBJ} dpd } must refer to a PD Object Capability (CAP_{OBJpp}) with permission CTRL.
- { PD_{CURRENT}, SEL_{OBJ} dpd } must not refer to a PD Object Capability (CAP_{OBJpp}) for PD_{NOVA}.
- SEL src and SEL dst must be order-aligned, i.e. src=0 (mod 2^{ord}) and dst=0 (mod 2^{ord}).
- TYPE_{SPC} spc and TYPE_{TBL} tb1 must be valid, i.e. supported by the architecture.
- ATTR_{CA} ca and ATTR_{SH} sh must be valid, i.e. supported by the architecture.

If the hypercall completed successfully:

- If spc=SPC_{0BJ}: All CAP_{0BJ} and CAP₀ from source SEL range { PD spd, SEL_{0BJ} src...src+2^{ord}-1 } were delegated to destination SEL range { PD dpd, SEL_{0BJ} dst...dst+2^{ord}-1 }. Any pre-existing CAP_{0BJ} in the destination selector range were revoked. The parameters tbl, ca and sh were ignored.
- If spc=SPC_{MEM}: All CAP_{MEM} and CAP₀ from source SEL range { PD spd, SEL_{MEM} src...src+2^{ord}-1 } were delegated to destination SEL range { PD dpd, SEL_{MEM} dst...dst+2^{ord}-1 }. Any pre-existing CAP_{MEM} in the destination selector range were revoked.
- If **spc=SPC**_{PIO}: All CAP_{PIO} and CAP₀ from source SEL range { PD spd, SEL_{PIO} src...src+2^{ord}-1 } were delegated to destination SEL range { PD dpd, SEL_{PIO} dst...dst+2^{ord}-1 }. Any pre-existing CAP_{PIO} in the destination selector range were revoked. The parameters tbl, ca and sh were ignored.
- The permissions of each destination capability were masked by computing the logical AND of the permissions of the respective source capability and the permission mask pmm, i.e.
 - for bits set (1) in pmm, the respective permissions were *inherited* from the source capability.
 - for bits clear (0) in pmm, the respective permissions were removed for the destination capability.
- If the source capability was a Null Capability (CAP₀) or if the destination capability would have had zero permissions after masking, then the destination capability is now a Null Capability (CAP₀).

Status:

SUCCESS

• The hypercall completed successfully.

- { PD_{CURRENT}, SEL_{OBJ} spd } did not refer to a PD Object Capability (CAP_{OBJ_{PD}}) or that capability had insufficient permissions.
- { PD_{CURRENT}, SEL_{OBJ} dpd } did not refer to a PD Object Capability (CAP_{OBJPD}) or that capability had insufficient permissions.
- { PD_{CURRENT}, SEL_{OBJ} dpd } referred to a PD Object Capability (CAP_{OBJpp}) for PD_{NOVA}.

BAD_PAR

- SEL src or SEL dst were not order-aligned.
- TYPE_{SPC} spc or TYPE_{TBL} tbl were not valid, i.e. not supported by the architecture.
- ATTR_{CA} ca or ATTR_{SH} sh were not valid, i.e. not supported by the architecture.

4.4.2 Control Execution Context

Parameters:

```
status = ctrl_ec (SEL<sub>OBJ</sub> ec);  // Execution Context
```

Flags:

Description:

Prior to the hypercall:

• { PD_{CURRENT}, SEL_{OBJ} ec } must refer to a EC Object Capability (CAP_{OBJFC}) with permission CTRL.

If the hypercall completed successfully:

- The EC referred to by { PD_{CURRENT}, SEL_{OBJ} ec } has been forced to enter the microhypervisor. It will generate a recall exception prior to its next exit from the microhypervisor and will traverse through the respective Portal (PT).
- If **S=0** (**Weak**): the hypercall returns as soon as the recall exception has been *pended*, i.e. the EC may not have entered the microhypervisor yet.
- If **S=1** (**Strong**): the hypercall returns as soon as the recall exception has been *observed*, i.e the EC will have entered the microhypervisor.

Status:

SUCCESS

• The hypercall completed successfully.

BAD_CAP

• { PD_{CURRENT}, SEL_{OBJ} ec } did not refer to a EC Object Capability (CAP_{OBJEC}) or that capability had insufficient permissions.

4.4.3 Control Scheduling Context

Parameters:

Flags:

Description:

Prior to the hypercall:

• { PD_{CURRENT}, SEL_{OBJ} sc } must refer to an SC Object Capability (CAP_{OBJ_{SC}}) with permission CTRL.

If the hypercall completed successfully:

• The microhypervisor has returned the total consumed execution time in ticks for the SC referred to by { $PD_{CURRENT}$, SEL_{OBJ} sc }.

Status:

SUCCESS

• The hypercall completed successfully.

BAD_CAP

• { PD_{CURRENT}, SEL_{OBJ} sc } did not refer to an SC Object Capability (CAP_{OBJ_{SC}}) or that capability had insufficient permissions.

4.4.4 Control Portal

Parameters:

Flags:

Description:

Prior to the hypercall:

• { PD_{CURRENT}, SEL_{OBJ} pt } must refer to a PT Object Capability (CAP_{OBJpt}) with permission CTRL.

If the hypercall completed successfully:

- The microhypervisor has set the Portal Identifier (PID) to pid and the Message Transfer Descriptor (MTD) to mtd for the Portal referred to by { PD_{CURRENT}, SEL_{OBJ} pt }.
- Subsequent portal traversals will use the new MTD and return the new PID.

Status:

SUCCESS

• The hypercall completed successfully.

BAD_CAP

• { PD_{CURRENT}, SEL_{OBJ} pt } did not refer to a PT Object Capability (CAP_{OBJPT}) or that capability had insufficient permissions.

4.4.5 Control Semaphore

Parameters:

Flags:

Description:

Prior to the hypercall:

- If D=0 (Up): { $PD_{CURRENT}$, SEL_{OBJ} sm } must refer to a SM Object Capability (CAP_{OBJ_{SM}}) with permission CTRL_{UP}.
- If D=1 (Down): { $PD_{CURRENT}$, SEL_{OBJ} sm } must refer to a SM Object Capability (CAP_{OBJ_{SM}}) with permission CTRL_{DN}.

If the hypercall completed successfully:

- If **D=0** (**Up**): if there were **ECs** blocked on the semaphore, then the microhypervisor has released the first of those blocked **ECs**. Otherwise, the microhypervisor has incremented the semaphore counter. The deadline timeout value and the Z-flag were ignored.
- If **D=1** (**Down**): if the semaphore counter was zero, then the microhypervisor has blocked **EC**_{CURRENT} on the semaphore. Otherwise, the microhypervisor has decremented the semaphore counter (Z=0) or set it to zero (Z=1). If the deadline timeout value was non-zero, the down operation will abort with a timeout when the architectural timer reaches or exceeds the specified ticks value.

Status:

SUCCESS

• The hypercall completed successfully.

TIMEOUT

• Hypercall aborted due to timeout.

OVRFLOW

• Hypercall aborted due to semaphore counter overflow.

BAD_CAP

• { PD_{CURRENT}, SEL_{OBJ} sm } did not refer to a SM Object Capability (CAP_{OBJ_{SM}}) or that capability had insufficient permissions.

4.4.6 Control Hardware

Parameters:

```
status = ctrl_hw (UINT &arg0,
                                     // Parameter 0
                                     // Parameter 1
                UINT &arg1,
                UINT &arg2,
                                     // Parameter 2
                UINT &arg3,
                                     // Parameter 3
                                     // Parameter 4
                UINT arg4,
                                     // Parameter 5
                UINT
                      arg5,
                                     // Parameter 6
                UINT
                      arg6);
```

Flags:

Description:

Performs a firmware call via SMC.

Prior to the hypercall:

- PD_{CURRENT} must be the Root Protection Domain (PD_{ROOT}).
- Flags must be set to 0b1111 to indicate a firmware call.
- The SMC number must be passed in arg0 and must represent an atomic SIP SMC.
- The SMC parameters must be passed in arg1 ... arg6.

If the hypercall completed successfully:

• The SMC return values will be passed in arg0 . . . arg3.

Status:

SUCCESS

• The hypercall completed successfully.

BAD_HYP

• The hypercall was not issued from the Root Protection Domain (PD_{ROOT}).

BAD_PAR

• The flags value was not **0b1111** or the SMC did not represent an atomic SIP call.

BAD_FTR

• The CPU does not support SMCs.

4.5 Interrupt and Device Assignment

4.5.1 Assign Interrupt

Parameters:

Flags:

Description:

Configures a platform interrupt and routes it to the specified CPU.

Prior to the hypercall:

- { PD_{CURRENT}, SEL_{OBJ} sm } must refer to a SM Object Capability (CAP_{OBJSM}) with permission ASSIGN.
- CAP_{OBJ_{SM}} must refer to an interrupt semaphore and thereby identifies the platform interrupt.

If the hypercall completed successfully:

- The platform interrupt referred to by { PDCURRENT, SELOBJ sm } has been routed to the CPU cpu.
- If M=0 (Unmask): The interrupt is now unmasked, i.e. it will be signaled on the semaphore.
- If M=1 (Mask): The interrupt is now masked, i.e. it will not be signaled on the semaphore.
- If **T=0** (Level): The interrupt is now configured for level-triggered operation.
- If **T=1** (**Edge**): The interrupt is now configured for edge-triggered operation.
- If **G=0** (**Host**): The interrupt is now host-owned.
- If **G=1** (**Guest**): The interrupt is now guest-owned (VM pass-through).

Status:

SUCCESS

• The hypercall completed successfully.

BAD_CPU

• The specified CPU number was invalid.

- { PD_{CURRENT}, SEL_{OBJ} sm } did not refer to a SM Object Capability (CAP_{OBJ_{SM}}) or that capability had insufficient permissions.
- CAP_{OBJ_{SM}} did not refer to an interrupt semaphore.

4.5.2 Assign Device

Parameters:

Flags:

Description:

Assigns the specified device/stream to the specified Protection Domain (PD).

Prior to the hypercall:

- PD_{CURRENT} must be the Root Protection Domain (PD_{ROOT}).
- { PD_{CURRENT}, SEL_{OBJ} pd } must refer to a PD Object Capability (CAP_{OBJpD}) with permission ASSIGN.
- ctx must be within the number of translation contexts supported by the hardware (see 5.3).
- smg must be within the number of stream mapping groups supported by the hardware (see 5.3).
- sid must be within the number of stream identifiers supported by the hardware.
- TYPETBL tbl must refer to a DMA page table.

If the hypercall completed successfully:

- The device/stream, identified by stream identifier sid, has been assigned to the Protection Domain (PD) referred to by { PD_{CURRENT}, SEL_{OBJ} pd }.
- DMA transactions issued by that device/stream will be managed using stream mapping group smg and translation context ctx. Prior users of stream mapping group smg or translation context ctx have been unconfigured.
- DMA transactions issued by that device/stream will be translated by the DMA page table referred to by TYPE_{TBL} tbl of the assigned PD.

Status:

SUCCESS

• The hypercall completed successfully.

BAD_HYP

• The hypercall was not issued from the Root Protection Domain (PD_{ROOT}).

BAD_CAP

• { PD_{CURRENT}, SEL_{OBJ} pd } did not refer to a PD Object Capability (CAP_{OBJPD}) or that capability had insufficient permissions.

BAD_PAR

• At least one of the parameters ctx, smg, sid or tbl was not valid.

5 Booting

5.1 Microhypervisor

5.1.1 ELF Image Loading

The bootloader must load the NOVA microhypervisor into physical memory according to the physical addresses (PhysAddr) and memory sizes (MemSiz) of all loadable (PT_LOAD) program segments defined in the NOVA microhypervisor ELF image. The following is an example:

readelf -l aarch64-qemu-hypervisor

Elf file type is EXEC (Executable file)

Entry point 0x48000000

There are 2 program headers, starting at offset 64

Program Headers:

Type	Offset	VirtAddr	PhysAddr
	FileSiz	MemSiz	Flags Align
LOAD	0x000000000000000000000000000000000000	0x0000000048000000	0x0000000048000000
	0x00000000000000268	0x0000000000001000	RWE 0x8
LOAD	00800000000000000000000000000000000000	0x0000ff8000001000	0x0000000048001000
	0x0000000000000e960	0x000000000fff000	RWE 0x800

5.1.2 ELF Image Launching

After loading the image into physical memory, the bootloader must invoke the NOVA microhypervisor by jumping to the physical address of the entry point of the NOVA microhypervisor ELF image with the following preconditions:

- Paging (MMU) must be disabled.
- I-Cache must be disabled.
- D-Cache must be disabled.
- The address range corresponding to the microhypervisor image must be clean to the Point of Coherence.

5.1.3 Special Resource Access

Possession of a PD Object Capability (CAP_{OBJpD}) for PD_{NOVA} allows the caller to invoke the ctrl_pd hypercall to take resources from the NOVA Protection Domain and grant them to another Protection Domain. In addition to memory regions not claimed by the NOVA microhypervisor, the following capabilities can be taken:

Interrupt Semaphores

{ PD_{NOVA} , SEL_{OBJ} 1024...1024+INT_{NUM} } refer to $CAP_{OBJ_{SM}}$ for interrupt semaphores, where INT_{NUM} is the maximum number of supported interrupts, as indicated by the HIP. These capabilities can be used with the assign_int and ctrl_sm hypercalls.

Console Signaling Semaphore

{ PD_{NOVA}, SEL_{OBJ} SEL_{NUM}-1 } refers to a CAP_{OBJSM} for the signaling semaphore of the NOVA memory-buffer console. This capability can be used with the ctrl_sm hypercall.

5.2 Root Protection Domain

After the NOVA microhypervisor has initialized the system, it creates the following initial kernel objects:

- PD_{ROOT} the Root Protection Domain
- EC_{ROOT} the Root Execution Context (executing in PD_{ROOT})
- SC_{ROOT} the Root Scheduling Context (bound to EC_{ROOT})

The Root Protection Domain (PD_{ROOT}) is responsible for bootstrapping the other components of the user-mode framework by creating additional kernel objects, loading additional images, assigning resources, etc.

5.2.1 Initial Configuration

Prior to invoking the entry point of the Root Protection Domain (PD_{ROOT}) ELF image, using the Root Execution Context (EC_{ROOT}), the NOVA microhypervisor sets up PD_{ROOT} as follows.

5.2.1.1 Object Space

The object space contains the following initial capabilities:

```
• { PD<sub>ROOT</sub>, SEL<sub>OBJ</sub> SEL<sub>NUM</sub>-1 } refers to a PD Object Capability (CAP<sub>OBJpp</sub>) for PD<sub>NOVA</sub>.
```

- { PD_{ROOT}, SEL_{OBJ} SEL_{NUM}-2 } refers to a PD Object Capability (CAP_{OBJpp}) for PD_{ROOT}.
- { PD_{ROOT}, SEL_{OBJ} SEL_{NUM}-3 } refers to a EC Object Capability (CAP_{OBJEC}) for EC_{ROOT}.
- { PD_{ROOT}, SEL_{OBJ} SEL_{NUM}-4 } refers to a SC Object Capability (CAP_{OBJ_{SC}}) for SC_{ROOT}.

All other { PD_{ROOT} , SEL_{OBJ} } refer to a Null Capability (CAP₀).

The value of SEL_{NUM} is conveyed in the Hypervisor Information Page (HIP).

5.2.1.2 Memory Space

ELF Program Segments

The microhypervisor maps the root protection domain into virtual memory according to the virtual addresses (VirtAddr) and memory sizes (MemSiz) of all loadable (PT_LOAD) program segments defined in the root protection domain ELF image.

Hypervisor Information Page

The microhypervisor maps the Hypervisor Information Page (HIP) into the memory space 4KB below the end of user-accessible virtual memory. The virtual address of the HIP is passed to EC_{ROOT} during startup.

UTCB

The microhypervisor maps the User Thread Control Block of EC_{ROOT} into the memory space 4KB below the address of the HIP.

All other { PD_{ROOT} , SEL_{MEM} } refer to a Null Capability (CAP₀).

5.3 Hypervisor Information Page

The Hypervisor Information Page (HIP) conveys information about the platform and configuration to the Root Protection Domain (PD_{ROOT}) and has the following layout:

63	48 47	32 31	16 15	+Length				
CTX_{NUM}	SMG _{NUM}	INT _{NUM}	CPU _{NUM}	+0x48				
SEL _{GST/NOVA}	SEL _{GST/ARCH}	SEL _{HST/NOVA}	SEL _{HST/ARCH}	+0x40				
	SI	EL _{NUM}		+0x38				
	ROOT End Address							
	ROOT Start Address							
	MBUF En	d Address		+0x20				
	MBUF Sta	rt Address		+0x18				
	NOVA End Address							
	NOVA Start Address							
Length	Checksum	Sig	nature	+0x00				
63	48 47	32 31		0				

All HIP fields are unsigned values unless stated otherwise and have the following meaning:

Signature

The value 0x41564f4e identifies the NOVA microhypervisor.

Checksum

The checksum is valid if 16bit-wise addition of the entire HIP contents produces a value of 0.

Length

Length of the entire **HIP** in bytes.

NOVA Start/End Address

Start and end address of the NOVA microhypervisor image in physical memory.

MBUF Start/End Address

Start and end address of the memory buffer console (see C.1) region in physical memory.

ROOT Start/End Address

Start and end address of the root protection domain image in physical memory.

SEL_{NUM}

Total number of capability selectors in each object space.

SEL_{HST/ARCH}

Number of capability selectors required for handling architectual host events. (ARM)

SEL_{HST/NOVA}

Number of additional capability selectors required for handling NOVA host events. (ARM)

$\textbf{SEL}_{GST/ARCH}$

Number of capability selectors required for handling architectual guest events. (ARM)

SEL_{GST/NOVA}

Number of additional capability selectors required for handling NOVA guest events. (ARM)

CPU_{NUM}

Total number of CPUs that are online.

INT_{NUM}

Total number of interrupts that can be configured.

SMG_{NUM}

Total number of SMMU stream mapping groups that can be configured.

CTX_{NUM}

Total number of SMMU translation contexts that can be configured.

Part IV Application Binary Interface

6 ABI aarch64

6.1 Virtual Memory

The accessible virtual memory range for user applications is 0-0x7fffffffff.

6.2 Initial State

Figure 6.1 details the state of the CPU registers when the microhypervisor has finished booting and transfers control to the Root Execution Context (EC_{ROOT}).

Register	Description	Note
IP	Virtual address of entry point from ELF header	
SP	Virtual address of hypervisor information page	
X0	Physical address of additional boot image	0 xfffffffffffffff if not present
X1	Physical address of flattened device tree (FDT)	0xffffffffffffffffffffffffffffffffffff
0ther	~	

Figure 6.1: Initial State

6.3 Event-Specific Capability Selectors

For the delivery of exception/intercept messages, the microhypervisor performs an implicit portal traversal.

The selector for the destination portal (SEL_{OBJ}) is determined by adding the exception/intercept number to SEL_{EVT} of the affected execution context and that selector must refer to a PT Object Capability ($CAP_{OBJ_{PT}}$).

6.3.1 Architectural Events

SEL _{OBJ}	Exception/Intercept	SEL _{OBJ}	Exception/Intercept
SEL _{EVT} + 0x0	Unknown Reason	$\overline{SEL_{EVT} + 0x20}$	Instruction Abort (lower EL)
$SEL_{EVT} + 0x1$	Trapped WFI or WFE	$SEL_{EVT} + 0x21$	Instruction Abort (same EL)
$SEL_{EVT} + 0x2$	reserved	$SEL_{EVT} + 0x22$	PC Alignment Fault
$SEL_{EVT} + 0x3$	Trapped MCR or MRC	$SEL_{EVT} + 0x23$	reserved
$SEL_{EVT} + 0x4$	Trapped MCRR or MRRC	$SEL_{EVT} + 0x24$	Data Abort (lower EL)
$SEL_{EVT} + 0x5$	Trapped MCR or MRC	$SEL_{EVT} + 0x25$	Data Abort (same EL)
$SEL_{EVT} + 0x6$	Trapped LDC or STC	$SEL_{EVT} + 0x26$	SP Alignment Fault
$SEL_{EVT} + 0x7$	SVE, SIMD, FPU	$SEL_{EVT} + 0x27$	reserved
$SEL_{EVT} + 0x8$	Trapped VMRS Access	$SEL_{EVT} + 0x28$	Trapped FPU (AArch32)
$SEL_{EVT} + 0x9$	Trapped PAuth Instruction	$SEL_{EVT} + 0x29$	reserved
$SEL_{EVT} + 0xa$	reserved	$SEL_{EVT} + 0x2a$	reserved
$SEL_{EVT} + 0xb$	reserved	$SEL_{EVT} + 0x2b$	reserved
$SEL_{EVT} + 0xc$	Trapped MRRC	$SEL_{EVT} + 0x2c$	Trapped FPU (AArch64)
$SEL_{EVT} + 0xd$	reserved	$SEL_{EVT} + 0x2d$	reserved
$SEL_{EVT} + 0xe$	Illegal Execution State	$SEL_{EVT} + 0x2e$	reserved
$SEL_{EVT} + 0xf$	reserved	$SEL_{EVT} + 0x2f$	SError
$SEL_{EVT} + 0x10$	reserved	$SEL_{EVT} + 0x30$	Breakpoint (lower EL)
$SEL_{EVT} + 0x11$	SVC (from AArch32 State) ¹	$SEL_{EVT} + 0x31$	Breakpoint (same EL)
$SEL_{EVT} + 0x12$	HVC (from AArch32 State)	$SEL_{EVT} + 0x32$	Software Step (lower EL)
$SEL_{EVT} + 0x13$	SMC (from AArch32 State)	$SEL_{EVT} + 0x33$	Software Step (same EL)
$SEL_{EVT} + 0x14$	reserved	$SEL_{EVT} + 0x34$	Watchpoint (lower EL)
$SEL_{EVT} + 0x15$	SVC (from AArch64 State) ¹	$SEL_{EVT} + 0x35$	Watchpoint (same EL)
$SEL_{EVT} + 0x16$	HVC (from AArch64 State)	$SEL_{EVT} + 0x36$	reserved
$SEL_{EVT} + 0x17$	SMC (from AArch64 State)	$SEL_{EVT} + 0x37$	reserved
$SEL_{EVT} + 0x18$	Trapped MSR or MRS	$SEL_{EVT} + 0x38$	BKPT (AArch32)
$SEL_{EVT} + 0x19$	Trapped SVE	$SEL_{EVT} + 0x39$	reserved
$SEL_{EVT} + 0x1a$	Trapped ERET	$SEL_{EVT} + 0x3a$	Vector Catch (AArch32)
$SEL_{EVT} + 0x1b$	reserved	$SEL_{EVT} + 0x3b$	reserved
$SEL_{EVT} + 0x1c$	reserved	$SEL_{EVT} + 0x3c$	BRK (AArch64)
$SEL_{EVT} + 0x1d$	reserved	$SEL_{EVT} + 0x3d$	reserved
$SEL_{EVT} + 0x1e$	reserved	$SEL_{EVT} + 0x3e$	reserved
$SEL_{EVT} + 0x1f$	reserved	$SEL_{EVT} + 0x3f$	reserved

6.3.2 Microhypervisor Events

SEL _{OBJ}	Event
SEL _{EVT} + 0x40	Startup
$SEL_{EVT} + 0x41$	Recall
$SEL_{EVT} + 0x42$	Virtual Timer

¹These events may be handled by the microhypervisor, in which case they will not cause portal traversals.

6.4 User Thread Control Block: Architectural State

	VMCR	ELRSR	+0x290)
LR15	LR	+0x280		
LR13	LR	+0x270		
LR11	LR	+0x260		
LR9	LR8		+0x250	GIC
LR7	LF	R6	+0x240	
LR5	LF	+0x230		
LR3	LF	+0x220		
LR1	LF	+0x210	j	
CNTVOFF_EL2	CNTKCTL_EL1		+0x200	TMR
CNTV_CTL_EL0	CNTV_C\		+0x1f0	J
HCR_EL2	HPFAI		+0x1e0	
FAR_EL2	ESR.		+0x1d0	EL2
SPSR_EL2	ELR		+0x1c0	
VMPIDR_EL2	VPIDI		+0x1b0	,
SCTLR_EL1	VBAR		+0x1a0	
AMAIR_EL1	MAIR		+0x190	
TCR_EL1	TTBR		+0x180	
TTBR0_EL1	AFSR1_EL1		+0x170	EL1
AFSRO_EL1	FAR_EL1		+0x160	
ESR_EL1	SPSR_EL1		+0x150	
ELR_EL1	CONTEXTIDR EL1 SP_EL1		+0x140	
TPIDR_EL1	IFSR	DACR	+0x130)
SPSR_und SPSR_irq	SPSR_fiq	SPSR_abt	+0x120	A32
TPIDRRO_EL0	TPIDI		+0x110)
SP_EL0	X3	+0x100		
X29	X2	+0x0f0		
X27	X2	+0x0e0		
X25	X24		+0x0d0	
X23	X2	+0x0c0		
X21	X20		+0x0b0	
X19	X18		+0x0a0	
X17	X16		+0x090	EL0
X15	X14		+0x080 +0x070	
X13	X1	+0x070 +0x060		
X11	X1	+0x050 +0x050		
Х9	Х	+0x040 +0x040		
Х7	Х	+0x030		
X 5	Х	+0x020		
Х3	X	+0x010		
X1	X	0	+0x000	J

6.5 Message Transfer Descriptor: Regular IPC

The Message Transfer Descriptor (MTD), which controls the number of 64-bit message words transferred during regular IPC, as described in Section ??, has the following layout:

6.6 Message Transfer Descriptor: Architectural State

The Message Transfer Descriptor (MTD), which controls the subset of the architectural state transferred during exceptions and intercepts, as described in Section ??, has the following layout:

Each MTD bit controls the transfer of the listed architectural state to/from the respective fields in the UTCB (6.4) as follows:

- State with access r can be read from the architectural state into the UTCB.
- State with access w can be written from the UTCB into the architectural state.

MTD Bit	Access	Host Exception State	Guest Intercept State
POISON	W	Kills the EC	Kills the EC
GPR	rw	X0 X30	X0 X30
EL0_SP	rw	SP_EL0	SP_EL0
$EL0_{-}IDR$	rw	TPIDR_EL0, TPIDRRO_EL0	TPIDR_EL0, TPIDRRO_EL0
A32_SPSR	rw	-	SPSR_ABT, SPSR_FIQ, SPSR_IRQ, SPSR_UND
A32_DACR_IFSR	rw	_	DACR, IFSR
EL1_SP	rw	-	SP_EL1
$EL1_IDR$	rw	-	TPIDR_EL1, CONTEXTIDR_EL1
EL1_ELR_SPSR	rw	-	ELR_EL1, SPSR_EL1
EL1_ESR_FAR	rw	-	ESR_EL1, FAR_EL1
EL1_AFSR	rw	-	AFSR0_EL1, AFSR1_EL1
EL1_TTBR	rw	-	TTBR0_EL1, TTBR1_EL1
EL1_TCR	rw	-	TCR_EL1
EL1_MAIR	rw	-	MAIR_EL1, AMAIR_EL1
EL1_VBAR	rw	-	VBAR_EL1
EL1_SCTLR	rw	-	SCTLR_EL1
EL2_IDR	rw	-	VPIDR_EL2, VMPIDR_EL2
EL2_ELR_SPSR	rw	ELR_EL2, SPSR_EL2	ELR_EL2, SPSR_EL2
EL2_ESR_FAR	r	ESR_EL2, FAR_EL2	ESR_EL2, FAR_EL2
EL2_HPFAR	r	-	HPFAR_EL2
EL2_HCR	rw	-	HCR_EL2
тмр			CNTV_CVAL_ELO, CNTV_CTL_ELO
TMR	rw	_	CNTKCTL_EL1, CNTVOFF_EL2
CTC	rw		LR0 LR15
GIC	r	_	ELRSR, VMCR

6.7 Calling Convention

The following pages describes the calling convention for each hypercall. An execution context calls into the microhypervisor by loading the hypercall identifier and other parameters into the specified processor registers and then executes the svc #0 instruction [1].

The hypercall identifier consists of the hypercall number and hypercall-specific flags, as illustrated in Figure 6.2.

Figure 6.2: Hypercall Identifier

The status code returned from a hypercall has the format shown in Figure 6.3.

Figure 6.3: Status Code

The assignment of hypercall parameters to general-purpose registers is shown on the left side; the contents of the registers after the hypercall is shown on the right side.

IPC Call

$$\begin{array}{c|cccc} pt_{[63-8]} \ hypercall_{[7-0]} & \textbf{X0} & & & & \textbf{ipc_call} \\ & mtd_{[31-0]} & \textbf{X1} & & & & \textbf{X1} \\ & & & & & & \textbf{X1} & mtd_{[31-0]} \\ & & & & & & \textbf{IP} & \textbf{IP+4} \end{array}$$

IPC Reply

Create Protection Domain

Create Execution Context

Create Scheduling Context

Create Portal

Create Semaphore

Control Protection Domain

Control Execution Context

Control Scheduling Context

Control Portal

$$\begin{array}{c|cccc} pt_{[63-8]} \ hypercall_{[7-0]} & \texttt{X0} & & \hline & \textbf{ctrl_pt} & & \texttt{X0} & & status_{[7-0]} \\ & pid & \texttt{X1} & & & & \texttt{X1} & \equiv \\ & mtd_{[31-0]} & \texttt{X2} & & & & \texttt{X2} & \equiv \\ & & & & & & & \texttt{IP} & \texttt{IP+4} \\ \end{array}$$

Control Semaphore

Control Hardware

Assign Interrupt

Assign Device

Part V Appendix

A Acronyms

ATTR_{CA} Cacheability Attribute
ATTR_{SH} Shareability Attribute

CAP Capability

CAP₀ **Null Capability CAP_{OBJ} Object Capability** PD Object Capability $CAP_{OBJ_{PD}}$ $CAP_{OBJ_{EC}}$ **EC** Object Capability SC Object Capability $CAP_{OBJ_{SC}}$ PT Object Capability $CAP_{OBJ_{PT}}$ **SM** Object Capability $CAP_{OBJ_{SM}}$ CAP_{MEM} **Memory Capability** I/O Port Capability CAP_{PIO} CPU **CPU** Number EC **Execution Context**

EC_{CURRENT} Current Execution Context
EC_{ROOT} Root Execution Context

ELF Executable and Linkable Format

FPU Floating Point Unit

HIP Hypervisor Information Page
MTD Message Transfer Descriptor

IP Instruction Pointer
PD Protection Domain

PD_{CURRENT} Current Protection Domain
PD_{NOVA} NOVA Protection Domain
PD_{ROOT} Root Protection Domain

PID Portal Identifier

PT Portal

QPD Quantum Priority Descriptor

SC Scheduling Context

 $\begin{array}{lll} \text{SC}_{\text{CURRENT}} & \text{Current Scheduling Context} \\ \text{SC}_{\text{ROOT}} & \text{Root Scheduling Context} \\ \text{SEL} & \text{Capability Selector} \\ \text{SEL}_{\text{EVT}} & \text{Event Selector Base} \\ \end{array}$

SEL_{MEM} Memory Capability Selector
SEL_{OBJ} Object Capability Selector
SEL_{PIO} I/O Port Capability Selector

SM Semaphore

SP Stack Pointer

SPC_{MEM} Memory Space

SPC_{OBJ} Object Space

SPC_{PTO} I/O Port Space

TYPE_{SPC} Space Type

TYPE_{TBL} Table Type

create_pd Hypercall: Create Protection Domain
create_ec Hypercall: Create Execution Context
create_sc Hypercall: Create Scheduling Context

create_pt Hypercall: Create Portal

create_sm Hypercall: Create Semaphore

ctrl_pdHypercall: Control Protection Domainctrl_ecHypercall: Control Execution Contextctrl_scHypercall: Control Scheduling Context

ctrl_pt Hypercall: Control Portal

ctrl_sm Hypercall: Control Semaphore
ctrl_hw Hypercall: Control Hardware
assign_int Hypercall: Assign Interrupt
assign_dev Hypercall: Assign Device

B Bibliography

- [1] ARM Architecture Reference Manual ARMv8, for ARMv8-A Architecture Profile. ARM Limited. URL https://developer.arm.com/docs/ddi0487/latest. Document Number: DDI0487. 37
- [2] U. Steinberg and B. Kauer. NOVA: A Microhypervisor-Based Secure Virtualization Architecture. In *Proceedings of the 5th ACM SIGOPS/EuroSys European Conference on Computer Systems*, pages 209–222. ACM, 2010. ISBN 978-1-60558-577-2. URL https://doi.acm.org/10.1145/1755913.1755935. 2

C Console

C.1 Memory-Buffer Console

The NOVA microhypervisor implements a memory-buffer console that provides run-time debug output. The memory-buffer console is an in-memory data structure that consists of a header area and a data areas follows:

The start address and end address of the memory-buffer console are conveyed in the HIP.

The console buffer size (N characters) can be computed as:

The fields of the header area are used as follows:

- RdPtr ranges from 0 . . . N-1.

 It points to the **next** character that the console consumer will read and is typically advanced by the console consumer
- WrPtr ranges from 0 ... N-1.
 It points to the next character that the NOVA microhypervisor will write and is only advanced by the NOVA microhypervisor.
- The console buffer is empty if RdPtr is equal to WrPtr.
- Otherwise WrPtr will be ahead of RdPtr, wrapping around the console buffer size N accordingly, i.e. character N+x will be stored in the same console buffer slot as character x.
- If the buffer becomes full, the NOVA microhypervisor will advance RdPtr, forcing the oldest character to be discarded from the console buffer.

C.2 UART Console

Additionally several different UART consoles can be used to provide boot-time-only debug output of the microhypervisor. UART consoles should be configured for 115200 baud and 8N1 mode.

D Download

The source code of the NOVA microhypervisor and the latest version of this document can be downloaded from GitHub.

https://github.com/udosteinberg/NOVA