MAC0209 - Modelagem e Simulação **Relatório EP1**

Artur Alvarez - 9292931 Mateus Anjos - 9298191 Nícolas Nogueira - 9277541 Victor Domiciano - 8641963

20 de Setembro de 2016

1. Introdução

O experimento realizado consistiu em simular o movimento de pessoas ao longo de um trajeto. Duas naturezas de movimento foram testadas para o experimento: o movimento retilíneo uniforme (MRU) e o movimento retilíneo uniformemente variado (MRUV).

2. Método

Realização da coleta de dados para o experimento realizado no Cepeusp:

- 3 pessoas
- 3 travessias por pessoa com dois tipos de movimento: movimento uniforme (MRU) e movimento uniformemente variado (MRUV)
- 1 pessoa filmando alguns trechos do experimento
- cada travessia deve ser ao longo de 60 metros com um sensor (acelerômetro)
- 2 sensores (cronômetros) nas posições 20m, 40m e 60m.

Protocolo de aquisição de dados:

- pausa inicial para estabilizar acelerômetro
- inicia trajeto junto com os sensores iniciando os cronômetros
- pausa final até estabilizar acelerômetro.

Criação de um programa que simula para cada travessia, a trajetória da pessoa (posição, tempo) para n posições amostrais. No caso foi simulado para n = 10.

- tira-se a média de tempos entre os dois sensores para uma mesma travessia
- com os dados de cada travessia estima-se a velocidade média (MRU) e aceleração média (MRUV)
- plota a posição e tempo para as *n* posições estimadas com estimativa por resultado numérico (com a utilização do algoritmo de Euler) e por resultado analítico (com equações horárias do MRU e MRUV)
- gera as 18 imagens que comparam os resultados (uma por travessia)

3. Verificação do programa

É conhecido que os gráficos gerados para travessias do MRU seguem o comportamento de uma reta e para travessias do MRUV seguem comportamento de crescimento quadrático. Com o gráfico gerado pelo programa (Figura 1) fica claro que a simulação segue o comportamento esperado, mostrando a diferença caraterística entre os dois resultados explorados (Euler e resultado analítico).

Figure 1: Gráfico gerado para uma das travessias do MRUV. Resultado pelo algoritmo de Euler em vermelho, resultado analítico em azul e dados experimentais em verde.

4. Dados

Para discutir sobre os dados do experimento vamos mostrar matriz de dados coletados (Figura 2). Com os dados do experimento, calcula-se a média entre os sensores da mesma travessia (Figura 3).

Movimento	Pessoa	Tempo (s) até 20m	Tempo (s) até 40m	Tempo (s) até 60m
MU1	Mateus	13,16		40,68
	iviace as	13,09		40,79
MU2		12,40		39,56
		12,33		39,67
MU3		11,53		34,48
		11,47		34,31
MUV1		18,81	29,01	34,33
		19,41	29,65	39,06
MUV2		17,50		28,68
		18,37		29,69
MUV3		15,00		26,27
		15,49		26,71
MU1	Victor	13,91	26,99	39,85
		13,75		39,65
MU2		13,03	25,79	38,45
		13,29	25,84	38,69
MU3		13,03	25,63	37,95
		13,34	25,93	38,05
MUV1		18,27	27,27	32,89
		18,81	27,73	33,32
MUV2		17,16	25,07	30,23
		17,57	25,65	30,62
MUV3		19,96	30,24	36,56
		19,95	30,33	36,75
MU1	Artur	14,84	28,41	42,63
		14,64	28,27	42,11
MU2		14,70	28,94	43,02
		14,34	28,83	42,76
MU3		14,23	28,55	43,43
		14,32	28,41	43,29
MUV1		24,10	37,22	44,14
		24,29	37,23	44,18
MUV2		22,73	33,94	39,79
		22,61	33,88	39,81
MUV3		19,67	30,73	36,23
		19,67	30,74	36,17

Figure 2: Tabela dos dados coletados pelos sensores (cronômetros) do experimento.

Movimento	Media (s) 20m	Media (s) 40m	Media (s) 60m
MU1	13,13	26,54	40,74
MU2	12,37	25,98	39,62
MU3	11,50	23,36	34,40
MUV1	19,11	29,33	36,70
MUV2	17,94	25,38	29,19
MUV3	15,25	22,30	26,49
MU1	13,83	26,94	39,75
MU2	13,16	25,82	38,57
MU3	13,19	25,78	38,00
MUV1	18,54	27,50	33,11
MUV2	17,37	25,36	30,43
MUV3	19,96	30,29	36,66
MU1	14,74	28,34	42,37
MU2	14,52	28,89	42,89
MU3	14,28	28,48	43,36
MUV1	24,20	37,23	44,16
MUV2	22,67	33,91	39,80
MUV3	19,67	30,74	36,20

Figure 3: Média dos tempos dos sensores dos dados coletados no experimento para cada travessia.

5. Análise

A partir dessas medias calculadas poderíamos calcular a variância dos sensores para cada marcação (20m, 40m, 60m) porém com apenas dois dados tomamos como decisão de projeto apenas subtrair o valor encontrado de um sensor do valor médio, para termos uma ideia da variação entre a média dos sensores e o que cada sensor marcou. Obtivemos então a tabela das diferenças (Figura 4).

		Marcaçao	Marcaçao	Marcaçao
Movimento	Pessoa	20 - media	40 - media	60 - media
MU1	Mateus	0,04	0,01	-0,05
MU2		0,04	0,03	-0,05
MU3		0,03	-0,03	0,09
MUV1		-0,30	-0,32	-2,37
MUV2		-0,44	-0,45	-0,51
MUV3		-0,25	-0,06	-0,22
MU1	Victor	0,08	0,05	0,10
MU2		-0,13	-0,02	-0,12
MU3		-0,15	-0,15	-0,05
MUV1		-0,27	-0,23	-0,22
MUV2		-0,21	-0,29	-0,20
MUV3		0,01	-0,04	-0,09
MU1	Artur	0,10	0,07	0,26
MU2		0,18	0,05	0,13
MU3		-0,04	0,07	0,07
MUV1		-0,09	-0,01	-0,02
MUV2		0,06	0,03	-0,01
MUV3		0,00	0,00	0,03

Figure 4: Módulo das diferenças entre o tempo de um dos sensores e a média entre eles.

Figure 5: Imagens geradas pelo programa para uma travessia de MRU (esquerda) e de MRUV (direita). Resultados analíticos em azul, pelo algoritmo de Euler em vermelho e pontos do experimento em verde.

6. Interpretação

A partir do módulo dessas diferenças encontradas, o grupo concluiu que os erros gerados a partir dos sensores para os Movimentos Uniformes foram suficientemente pequenos para nosso experimento, portanto não acarretando em grandes problemas para a sequência do modelo. Pensamos também a respeito dos Movimentos Uniformemente Variados que apresentaram diferenças, em módulo, um pouco maiores, porém a dificuldade de capturar um objeto acelerando nos fez aceitar tais erros, uma vez que seria mais difícil a captura de tais dados.

As pequenas diferenças observadas em relação ao movimento uniforme e grandes em relação ao movimento uniformemente variado ficam claras nas imagens geradas pelo programa. No MRU os pontos amostrais quase são interpolados pelos resultados analíticos e numéricos, enquanto no MRUV fica evidente a diferença entre eles (Figura 5).

7. Crítica

O experimento realizado foi interessante para entender como estimar os dados para um caso real, ainda que com poucos dados e comparar uma simulação com o experimento observado e analisar as diferenças. O experimento exigiu que os alunos fossem criativos de modo a melhor resolver os problemas que o mundo real impõe aos passos do experimento em si.

Outra questão interessante foi comparar as diferenças entre os resultados pelo método de Euler e pela solução analítica dentro da simulação gerada.

8. Log

- Planejamento do experimento 1 semana
- Realização do experimento 1 dia
- Elaboração do programa 1 semana
- Elaboração do relatório 3 dias

9. Contribuições dos Autores

Artur Alvarez e Mateus Anjos analisaram, calcularam os dados estatísticos e os interpretaram, Victor Domiciano elaborou a plotagem dos gráficos a partir dos dados de posição e tempo, Nícolas Nogueira implementou o método de Euler e o resultado analítico para os 10 pontos propostos, montou o relatório e editou o vídeo do experimento. Todos participaram da execução do experimento e revisaram este relatório.

10. Vídeo do experimento

 $O\ v\'ideo\ do\ experimento\ est\'a\ dispon\'ivel\ em\ https://www.youtube.com/watch?v=hEWAqWPRRBA$

•