OFDM and DMT: System Model

EIT 140, tom<AT>eit.lth.se

Review: LTI channel and dispersion

Time-dispersive LTI channel

- Dispersion M = length of impulse response 1 = order of channel filter
- LTI channel performs linear convolution

$$r(n) = \sum_{k} s(k)h(n-k)$$

- Length-N input s(n), n = 0, ..., N-1 yields length-(N+M) output r(n), n = 0, ..., N+M-1
- Input block is "smeared out" (dispersed) over M additional samples

Review: Dispersion can cause unacceptable ISI/ICI

ullet High datarate \longrightarrow high symbol rate \longrightarrow severe ISI

severe ISI!

ullet Dispersion causes transients: $\underline{\mathsf{severe}\ \mathsf{ICI}} \longleftrightarrow \mathsf{loss}\ \mathsf{of}\ \mathsf{orthogonality}$

Review: Ideas of multicarrier transmission

- Use several, mutually orthogonal, longer, sinusoidal transmit waveforms
 - "several": compensate for the "longer" in terms of data rate
 - "mutually orthogonal": avoid ICI
 - "sinusoidal": eigenfunctions of LTI systems, efficient implementation (FFT)
- Cyclic extension avoids ISI and ICI in time-dispersive channels

channel output

- System design limits
 - $T_{\rm MC}\gg au_{\rm max}$
 - $T_{MC} \ll \min\{T_{coh}$, latency limit, carrier-spacing limit}

CP: linear convolution --> circular convolution

$$\underbrace{\tilde{s}(n)}_{\text{CP}}\underbrace{s(n)}_{h(n)}\underbrace{\tilde{r}(n)}_{\text{CP}}\underbrace{r(n)}_{\text{CP}}$$

- ullet CP-add block: $s(n) = egin{cases} ilde{s}(n), & n=0,\ldots,N-1 \ ilde{s}(N+n), & n=-L,\ldots,-1 \end{cases}$
- Channel: linear convolution $\tilde{r}(n) = \sum_k s(k)h(n-k)$
- CP-remove block: $r(n) = \tilde{r}(n), n = 0, ..., N-1$

For L > M: CP-add + channel + CP-remove yield circular convolution

$$r(n) = \tilde{r}(n) = \sum_{k} \tilde{s}((n-k) \mod N)h(k), \qquad n = 0, \dots, N-1$$

and consequently $R[k] = \tilde{S}[k]H[k], k = 0, ..., N-1$ holds.

Orthogonal Frequency Division Multiplex (OFDM) system

$$\begin{array}{ll} \underline{s}(n) = \mathsf{IDFT}_N \left\{ \underline{x}_k \right\}_{k=0}^{N-1} & n = 0, \dots, N-1 \\ \underline{s}(n) = \underline{s}(n+N), & n = -L, \dots, -1 \\ \underline{s}(m) = \left\{ \underline{s}(n) \right\}_{\uparrow p}, & m = -Lp, \dots, Np-1 \\ u(m) = \mathsf{Re} \left\{ \underline{s}(m) e^{j2\pi f_{\mathsf{c}} m} \right\} \\ v(m) = u(m) * h(m) \\ \underline{r}(m) = \left(v(m) 2 e^{-j2\pi f_{\mathsf{c}} m} \right) * h_{\mathsf{LP}}(m) \\ \underline{r}(n) = \left\{ \underline{r}(m) \right\}_{\downarrow p}, & n = 0, \dots, N-1 \\ y_k = \mathsf{DFT}_N \left\{ \underline{r}(n) \right\}_{n=0}^{N-1} & k = 0, \dots, N-1 \end{array}$$

Receive signal components (passband)

Real-valued passband receive signal components¹:

$$v_k^{(i)}(m) = \frac{1}{\sqrt{N}} \cos(2\pi \left(f_c + \frac{k}{Np} \right) m),$$

$$v_k^{(q)}(m) = -\frac{1}{\sqrt{N}} \sin(2\pi \left(f_c + \frac{k}{Np} \right) m),$$

$$m = 0, \dots, Np - 1$$

for k = -N/2 + 1, ..., N/2.

- f_c is a positive carrier frequency
- p is the oversampling factor and sufficiently large to ensure that $f_{\rm c}+\frac{k}{pN}<\frac{1}{2},\ k=-N/2+1,\ldots,N/2$ holds for all the N normalised frequencies

Receive signal components (passband) in time-domain

- $v_k^{(i)}(m)$ (cosine signals, left column) and $v_k^{(q)}(m)$ (sine signals, right column); parameters: $N=8, p=32, f_c=1/32, k=-3, \ldots, 4$
- There are 2N mutually orthogonal real-valued length-pN discrete-time sinusoidal waveforms with an integer number of periods

Transmit signal components (passband)

Similarly, we consider the transmit signals of length $(N + L)_p$ samples

$$u_k^{(i)}(m) = \frac{1}{\sqrt{N}} \cos(2\pi \left(f_c + \frac{k}{Np} \right) m),$$

$$u_k^{(q)}(m) = -\frac{1}{\sqrt{N}} \sin(2\pi \left(f_c + \frac{k}{Np} \right) m),$$

$$m = -L_p, \dots, N_p - 1$$

where k = -N/2 + 1, ..., N/2.

• Cyclic prefix of length pL (passband)

RF modulator

We write the passband transmit signal as

$$u(m) = \frac{1}{\sqrt{N}} \sum_{k=-N/2+1}^{N/2} \left(x_{[k]_N}^{(i)} \cos(2\pi \left(f_c + \frac{k}{Np} \right) m) - x_{[k]_N}^{(q)} \sin(2\pi \left(f_c + \frac{k}{Np} \right) m) \right)$$

$$= \text{Re} \left\{ \underbrace{\frac{1}{\sqrt{N}} \sum_{k=-N/2+1}^{N/2} \underline{x}_{[k]_N} e^{j2\pi \frac{k}{Np} m} e^{j2\pi f_c m}}_{s(m)} \right\},$$

where $[k]_N$ denotes the modulo-N operation applied to k.

- This operation corresponds to a cos/sin modulator structure
- ullet Perfect interpolation by factor p of $\underline{s}(n)$ yields $\underline{s}(m)$
- $\bullet \text{ Note that } \underline{s}(\textit{n}) = \frac{1}{\sqrt{N}} \sum_{k=-N/2+1}^{N/2} \underline{x}_{[k]_N} e^{j2\pi \frac{k}{N}\textit{n}} = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \underline{x}_k e^{j2\pi \frac{k}{N}\textit{n}}$

Baseband transmit signal processing (OFDM modulator)

$$\underline{s}(n) = \frac{1}{\sqrt{N}} \sum_{k=-N/2+1}^{N/2} \underline{x}_{[k]_N} e^{j2\pi \frac{k}{N}n}$$

$$= \frac{1}{\sqrt{N}} \left(\sum_{k=0}^{N/2} \underline{x}_k e^{j2\pi \frac{k}{N}n} + \sum_{k=-N/2+1}^{-1} \underline{x}_{(\underbrace{N+k})} e^{j2\pi \frac{k}{N}n} \right)$$

$$= \frac{1}{\sqrt{N}} \left(\sum_{k=0}^{N/2} \underline{x}_k e^{j2\pi \frac{k}{N}n} + \sum_{i=N/2+1}^{N-1} \underline{x}_i \underbrace{e^{j2\pi \frac{i-N}{N}n}}_{e^{j2\pi \frac{i-N}{N}n} e^{-j2\pi \frac{N}{N}n} = e^{j2\pi \frac{i}{N}n} \right)$$

$$= \frac{1}{\sqrt{N}} \left(\sum_{k=0}^{N/2} \underline{x}_k e^{j2\pi \frac{k}{N}n} + \sum_{k=N/2+1}^{N-1} \underline{x}_k e^{j2\pi \frac{k}{N}n} \right)$$

$$= \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \underline{x}_k e^{j2\pi \frac{k}{N}n}, \quad \text{which is the IDFT of } \underline{x}_k$$

Channel output

The channel coefficients are given by

$$\underline{H}_{[k]_N} = A_{[k]_N} + jB_{[k]_N} = \sum_{m=0}^{(M+1)p-1} h(m)e^{-j2\pi(f_c + \frac{k}{pN})m}, \ k = -N/2 + 1, \dots, N/2.$$

The passband transmit signal u(m) yields the channel output

$$\begin{split} v(m) &= \frac{1}{\sqrt{N}} \sum_{k=-N/2+1}^{N/2} \left((A_{[k]_N} x_{[k]_N}^{(\mathbf{i})} - B_{[k]_N} x_{[k]_N}^{(\mathbf{q})}) \cos(2\pi \left(f_{\mathsf{c}} + \frac{k}{pN} \right) m) - \right. \\ & \left. \left(B_{[k]_N} x_{[k]_N}^{(\mathbf{i})} + A_{[k]_N} x_{[k]_N}^{(\mathbf{q})} \right) \sin(2\pi \left(f_{\mathsf{c}} + \frac{k}{pN} \right) m) \right) \end{split}$$

RF demodulator

Receiver performs the cosine-sine demodulation, low pass filtering and downsampling by factor p of the receive signal, which yields

$$\underline{r}(n) = \frac{1}{\sqrt{N}} \sum_{k=-\frac{N}{N}+1}^{\frac{N}{2}} \left(\left(A_{[k]_N} x_{[k]_N}^{(i)} - B_{[k]_N} x_{[k]_N}^{(q)} \right) + j \left(B_{[k]_N} x_{[k]_N}^{(i)} + A_{[k]_N} x_{[k]_N}^{(q)} \right) e^{j2\pi \frac{k}{N}n},$$

which can be written as

$$\underline{r}(n) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \left((A_k x_k^{(i)} - B_k x_k^{(q)}) + j(B_k x_k^{(i)} + A_k x_k^{(q)}) \right) e^{j2\pi \frac{k}{N}n}$$
(1)

We can interpret (1) as receive multiplex using the receive signal components

$$\underline{r}_{k}(n) = \frac{1}{\sqrt{N}} e^{j2\pi \frac{kn}{N}}, \qquad n = 0, \dots, N-1$$

Baseband receive signal processing (OFDM demodulator)

Finally, we pass the complex-valued receive multiplex

$$\underline{r}(n) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \left((A_k x_k^{(i)} - B_k x_k^{(q)}) + j(B_k x_k^{(i)} + A_k x_k^{(q)}) \right) e^{+j2\pi \frac{k}{N}n}$$

through a bank of correlators, which yields

$$\langle \underline{r}, \underline{r}_{k} \rangle = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \underline{r}(n) e^{-j2\pi \frac{k}{N}n} = (A_{k} x_{k}^{(i)} - B_{k} x_{k}^{(q)}) + j(B_{k} x_{k}^{(i)} + A_{k} x_{k}^{(q)})$$

where k = 0, ..., N-1. The operation performed by these correlators is equivalent to the scaled N-point Discrete Fourier Transform (DFT) of the complex-valued baseband receive multiplex $\underline{r}(n)$

$$\underline{y}_{k} = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \underline{r}(n) e^{-j2\pi \frac{k}{N}n}.$$

Complex baseband representation

We now introduce a model of a fictitious system which has the same *behaviour* as the real-world, implementable passband system above. The received *complex* signal can be written as

$$\underline{r}(n) = \underline{h}(n) * \underline{s}(n),$$

where the *complex* channel impulse response $\underline{h}(n)$ is given by

$$\underline{h}(n) = \mathsf{IDFT}_{N} \{ \underline{H}_{k} \} = \sum_{k=0}^{N-1} \underline{H}_{k} e^{j2\pi \frac{kn}{N}}.$$

- We model the (real-valued) passband signals as (complex-valued) baseband signals
- In essence, we omit RF modulator and RF demodulator and transform the passband channel into an equivalent baseband channel

OFDM spectra (flat channel)

solid blue: DTFT of Re $\{x\}$. dashed red: DTFT of Im $\{x\}$. dashed-dotted green: DTFT of $x = \text{Re}\{x\} + j \text{Im}\{x\}$.

Power spectral density (PSD)

- Average measure for spectral allocation of transmit power
- Stationary signals: $\mathcal{PSD}(f) = \mathcal{F}_m(r(m))$
 - PSD is Fourier transform of transmit signal's autocorrelation function r(m)
- Cyclostationary signals: $\mathcal{PSD}(f) = \mathcal{F}_m\left(\frac{1}{N'}\sum_n r(m,n)\right)$
 - PSD is Fourier transform of time-averaged transmit signal's autocorrelation function r(m, n). (r(m, n) = r(m, n + N'))
- For uncorrelated data (over both time and subchannels):

$$\mathcal{PSD}(f) = \sum_{k \in \text{set of used subchannels}} P_k | \text{DTFT of } k \text{th basis function} |^2$$

where P_k is the power on the kth subchannel.

• cf. psdmc.m

 $[\]mathcal{F}.(r(\cdot,\ldots))$ is the Fourier transform (DTFT) of the continuous(discrete)-time signal r with respect to \cdot

Discrete Multi-Tone (DMT) spectra (flat channel)

In case we have a baseband channel, we

- do not need the RF modulator/demodulator
- need a real-valued transmit multiplex

solid blue: DTFT of Re $\{x\}$. dashed red: DTFT of Im $\{x\}$. dashed-dotted green: DTFT of $x = \text{Re } \{x\} + j \text{Im } \{x\}$.

Receive signal components: baseband \leftrightarrow passband

Sinusoidal receive signal components

- There are N mutually orthogonal real-valued length-N discrete-time sinusoidal waveforms with an integer number of periods (N = 8 in this example).
- For $k \in \{\lfloor N/2 \rfloor + 1, ..., N-1\}$, the number of oscillations per N samples decreases with increasing k.
- In fact, it is easy to verify that

$$\cos(2\pi \frac{k}{N}n) = \cos(2\pi \frac{(N-k)}{N}n),$$

$$\sin(2\pi \frac{k}{N}n) = -\sin(2\pi \frac{(N-k)}{N}n)$$
(2)

Discrete Multi-Tone (DMT) system

$$\begin{split} \underline{x}_{N-k} &= \underline{x}_k^* & k = 0, \dots, N/2 \\ s(n) &= \mathsf{IDFT}_N \left\{ \underline{x}_k \right\}_{k=0}^{N-1} & n = 0, \dots, N-1 \\ s(n) &= s(n+N), & n = -L, \dots, -1 \\ r(n) &= h(n) * s(n), & n = 0, \dots, N-1 \\ y_k &= \mathsf{DFT}_N \{ r(n) \}_{n=0}^{N-1} & k = 0, \dots, N/2 \end{split}$$

DMT: Hermitian symmetry of transmit symbols

We make the following choice for the transmit symbols

$$x_k^{(i)} = x_{N-k}^{(i)} \quad \text{and} \quad x_k^{(q)} = -x_{N-k}^{(q)},$$
 (3)

which implies $x_0^{(q)} = x_{N/2}^{(q)} = 0$. (3) ensures Hermitian symmetry of the transmit symbol blocks. With (2), we obtain for $n = -L, \ldots, N-1$

$$s(n) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \left(x_k^{(i)} \cos(2\pi \frac{k}{N} n) - x_k^{(q)} \sin(2\pi \frac{k}{N} n) \right) + j \frac{1}{\sqrt{N}} \underbrace{\sum_{k=0}^{N-1} \left(x_k^{(i)} \sin(2\pi \frac{k}{N} n) + x_k^{(q)} \cos(2\pi \frac{k}{N} n) \right)}_{=0} = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \underline{x}_k e^{j2\pi \frac{k}{N} n}.$$

• On the interval 0, ..., N-1, the transmit signal multiplex s(n) is generated by the scaled N-point Inverse Discrete Fourier Transform (IDFT) of the data symbols \underline{x}_k .

DMT and OFDM

- DMT: real-valued baseband multiplex s(n), OFDM: complex-valued baseband multiplex $\underline{s}(n)$
- DMT: wireline communications (lowpass channel), OFDM: wireless communications (passband channel)
- DMT: channel known at the transmitter, OFDM: channel unknown at transmitter

Examples of OFDM/DMT systems and parameters

	HiperLAN/2	DVB-T 8k	ADSL DS	VDSL DS	DAB
multiplex ² :	complex	complex	real	real	complex
N:	64	8192	512	8192	2048
L:	16	256	32 or ³ 40	640	504
bandwidth:	20 MHz	7.61 MHz	966 kHz	pprox 8 MHz	1.536 MHz
band:	5.15-5.35 GHz	UHF	0-1.1 MHz	0-12 MHz	III
$\frac{F_s}{N}$:	0.3125 MHz	1.116 kHz	4.3125 kHz	4.3125 kHz	1 kHz
datarate:	6-54 Mbps	5-30 Mbps	0.5-8 Mbps	\leq 54 Mbps	\leq 348 kbps
modulation:	B/Q/8PSK	4/16/64QAM	BPSK	BPSK	diff. QPSK
	16/64QAM		4-2 ¹⁵ QAM	4-2 ¹⁵ QAM	
mobility:	pedestrian	vehicular	none	none	vehicular
channel:	wireless	wireless	wire	wire	wireless
reach:	\leq 150 m	pprox km	\leq 5 km	$\leq 1.5\mathrm{km}$	pprox km

III band: 174MHz - 240MHz; UHF band: 790MHz - 806MHz

Note that many standards include various modes with different parameter sets.

 $^{^2}$ complex $\hat{=}$ OFDM. real $\hat{=}$ DMT.

 $^{^3}L=32$ in case a synch-symbol is used, otherwise L=40 \downarrow 4 \downarrow \downarrow 4 \downarrow \downarrow 4 \downarrow

Matrix representation of DMT and OFDM

- Comes in handy since OFDM/DMT is a block transmission scheme
- More compact and less painful than scalar description
- Yields another interpretation of cyclic prefixing, ISI-free and ICI-free transmission
- Notation:
 - lowercase boldface: (usually a column⁴) vector (e.g. $\mathbf{a} \in \mathbb{R}^N$)
 uppercase boldface: matrix (e.g. $\mathbf{A} \in \mathbb{C}^{N \times (N+L)}$)
 \mathbf{A}^T : transpose. \mathbf{A}^H : Hermitian transpose (transposed conjugate).

Channel: linear convolution matrix

We describe the channel dispersion using a convolution matrix \mathbf{H} , where we assume L=M:

$$\begin{bmatrix}
r(0) \\
r(1) \\
\vdots \\
r(N-1)
\end{bmatrix} = \begin{bmatrix}
h(L) & \cdots & h(1) & h(0) & 0 & \cdots & \cdots & \cdots & 0 \\
0 & \ddots & & h(1) & h(0) & \ddots & & & \vdots \\
\vdots & & h(L) & \vdots & h(1) & \ddots & & & \vdots \\
\vdots & & & h(L) & \vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & & 0 & h(L) & \ddots & \ddots & \ddots & \vdots \\
\vdots & & & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & 0 & \cdots & 0 & h(L) & \cdots & h(1) & h(0)
\end{bmatrix}
\begin{bmatrix}
s(-L) \\
\vdots \\
s(-1) \\
s(0) \\
s(1) \\
\vdots \\
s(N-1)
\end{bmatrix}$$
(4)

- Both DMT (H real-valued) or OFDM (H complex-valued) can be represented
- The first L received samples r(n), $n = -L, \ldots, -1$ are implicitly ignored

Channel + CP: circulant convolution matrix

Exploiting the fact that s(n) = s(N-n), n = -L, ..., -1, we can rewrite (4) as

$$\begin{bmatrix}
r(0) \\
r(1) \\
\vdots \\
r(N-1)
\end{bmatrix} =
\begin{bmatrix}
h(0) & 0 & \cdots & 0 & h(L) & \cdots & h(1) \\
h(1) & h(0) & \ddots & & 0 & \ddots & \vdots \\
\vdots & h(1) & \ddots & & \ddots & \ddots & h(L) \\
h(L) & \vdots & \ddots & \ddots & & \ddots & \ddots & \vdots \\
0 & h(L) & & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & h(L) & & h(1) & h(0)
\end{bmatrix}
\underbrace{\begin{bmatrix}
s(0) \\
s(1) \\
\vdots \\
s(N-1)
\end{bmatrix}}_{\mathbf{S}}.$$

- Only possible for L > M
- Addition of the CP and removal of the CP are implicitly included

Receive signal processing

$$\underbrace{\begin{bmatrix} \frac{y}{y_1} \\ \vdots \\ \frac{y}{N-1} \end{bmatrix}}_{\mathbf{y}} = \underbrace{\frac{1}{\sqrt{N}} \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & w & w^2 & \dots & w^{N-1} \\ 1 & w^2 & w^4 & \dots & w^{2(N-1)} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & w^{N-1} & w^{2(N-1)} & \dots & w^{(N-1)^2} \end{bmatrix}}_{\mathbf{R}} \underbrace{\begin{bmatrix} r(0) \\ r(1) \\ \vdots \\ r(N-1) \end{bmatrix}}_{\mathbf{r}}$$

where $w = e^{-j2\pi \frac{1}{N}}$.

- R is the normalised DFT matrix
- Rows of R contain the receive signal components
- Multiplication of R with r corresponds to computing N correlations (one per subcarrier/subchannel)
- ullet Can be implemented in $\mathcal{O}(N \log N)$ using the FFT

Transmit signal processing

$$\underbrace{\begin{bmatrix} s(0) \\ s(1) \\ \vdots \\ s(N-1) \end{bmatrix}}_{\mathbf{S}} = \underbrace{\frac{1}{\sqrt{N}} \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & w^{-1} & w^{-2} & \dots & w^{-(N-1)} \\ 1 & w^{-2} & w^{-4} & \dots & w^{-2(N-1)} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & w^{-(N-1)} & w^{-2(N-1)} & \dots & w^{-(N-1)^2} \end{bmatrix}}_{\mathbf{R}^{\mathbf{H}}} \underbrace{\begin{bmatrix} \underline{x}_0 \\ \underline{x}_1 \\ \vdots \\ \underline{x}_{N-1} \end{bmatrix}}_{\mathbf{X}}$$

- R^H is the normalised IDFT matrix
- ullet The columns of $oldsymbol{R}^H$ are the transmit signal components
- kth transmit symbol (\underline{x}_{k-1}) scales the kth column of \mathbf{R}^{H}
- Transmit multiplex is the sum of N scaled complex exponentials (scaled by the data)
- Can be implemented in $\mathcal{O}(N \log N)$ using the IFFT

"Diagonalisation" of the circulant channel matrix

- Note:
 - $\mathbf{R}^{-1} = \mathbf{R}^{H}$ (R is unitary matrix) $\longrightarrow \mathbf{R}\mathbf{R}^{H} = \mathbf{R}^{H}\mathbf{R} = \mathbf{I}$
 - Any circulant matrix $\tilde{\mathbf{H}}$ can be written as $\tilde{\mathbf{H}}=\mathbf{R}^H\mathbf{\Lambda}\mathbf{R}$, where $\mathbf{\Lambda}$ is a diagonal matrix
- Consequently, we can write

$$\mathbf{y}\triangleq\mathbf{R}\mathbf{r}=\mathbf{R}\tilde{\mathbf{H}}\mathbf{s}=\mathbf{R}\tilde{\mathbf{H}}\mathbf{R}^{H}\mathbf{x}=\mathbf{R}\underbrace{\tilde{\mathbf{H}}}_{\mathbf{R}^{H}}\mathbf{R}^{H}\mathbf{x}=\mathbf{\Lambda}\mathbf{x}.$$

- The DFT/IDFT matrix-pair diagonalises any circulant channel matrix
- As long as $L \ge M$ (proper cyclic prefix), we obtain parallel, independent subchannels (no ISI, no ICI)

Summary

- $\textbf{ 1} \textbf{ Transmit signal processing: linear combination of transmit signal components (complex exponentials)} \longrightarrow \textbf{IFFT}$
- ullet Receive signal processing: correlation with complex exponentials \longrightarrow FFT
- OFDM vs DMT
- Three interpretations of cyclic prefixing
- Matrix notation