RS 07 (HA) zum 07.12.2012

Paul Bienkowski, Hans Ole Hatzel

7. Dezember 2012

1. a)

$$f(x) = \underbrace{(\overline{x_3} \lor x_2 \lor \overline{x_1}) \land (\overline{x_3} \lor \underline{x_2} \lor x_1) \land (\overline{x_3} \lor \overline{x_2} \lor x_1) \land (x_3 \lor \overline{x_2} \lor x_1)}_{= \overline{x_3} x_2 x_1 \lor \overline{x_3} \xrightarrow{x_2} x_1 \lor x_2 \oplus x_2 x_3} (KNF)$$

$$= 1 \oplus x_1 \oplus x_2 \oplus x_1 x_2 \oplus x_2 x_3 \qquad (Reed-Muller-Form)$$

b)

$$g(x) = \underbrace{x_3 \oplus x_1}_{x_3} \underbrace{x_1 \wedge x_3 x_2 x_1 \wedge x_3 \overline{x_2} x_1 \wedge \overline{x_3} x_2 \overline{x_1}}_{(DNF)}$$

$$= (\overline{x_3} \vee \overline{x_2} \vee \overline{x_1}) \wedge (x_3 \vee x_2 \vee x_1) \wedge (x_3 \vee \overline{x_2} \vee x_1) \wedge (\overline{x_3} \vee x_2 \vee \overline{x_1})$$
(Ened-Muller-Form)
$$= (\overline{x_1} \vee \overline{x_2} \vee \overline{x_1}) \wedge (x_3 \vee x_2 \vee x_1) \wedge (x_3 \vee \overline{x_2} \vee x_1) \wedge (\overline{x_3} \vee x_2 \vee \overline{x_1})$$
(KNF)

- **2.** Es sei $a \overline{\wedge} b$ die Schreibweise für (a NAND b).
 - a) Da $a \wedge a = a$ gilt, ist $a \wedge a = \overline{a}$, also lässt sich die Negation von a durch NAND-Kombination von a mit sich selbst bilden. Wahrheitstafel:

Um AND zu erreichen, kann das Ergebnis von NAND einfach negiert werden (siehe oben). Dann gilt $a \wedge b = \overline{a \,\overline{\wedge}\, b} = (a \,\overline{\wedge}\, b) \,\overline{\wedge}\, (a \,\overline{\wedge}\, b)$. Wahrheitstafel:

a	b	$a \wedge b$	$a \overline{\wedge} b$	$(a \overline{\wedge} b) \overline{\wedge} (a \overline{\wedge} b)$
0	0	0	1	0
0	1	0	1	0
1	0	0	1	0
1	1	1	0	1

Nach de Morgan gilt $\overline{a \lor b} = \overline{a} \land \overline{b}$. Dies lässt sich umformen zu $a \lor b = \overline{a} \land \overline{b}$. Die Negation von a und b kann wie oben mit NAND dargestellt werden: $a \lor b = (a \land \overline{a}) \land (b \land \overline{b})$.

a	$\mid b \mid$	$a \lor b$	$a \bar{\wedge} a = \bar{a}$	$b \overline{\wedge} b = \overline{b}$	$(a \overline{\wedge} a) \overline{\wedge} (b \overline{\wedge} b)$
0	0	0	1	1	0
0	1	1	1	0	1
1	0	1	0	1	1
1	1	1 1	0	0	1

b)
$$f(x_3, x_2, x_1) = (\overline{x_3}(\overline{x_2} \vee x_1)) \vee (x_1(\overline{x_2} \vee x_1))$$

$$= (\overline{x_2} \vee x_1) \wedge (\overline{x_3} \vee x_1)$$

$$= x_1 \wedge (\overline{x_2} \vee \overline{x_3})$$

$$= x_1 \wedge (x_2 \overline{\wedge} x_3)$$

$$= (x_1 \overline{\wedge} (x_2 \overline{\wedge} x_3)) \overline{\wedge} (x_1 \overline{\wedge} (x_2 \overline{\wedge} x_3))$$

3. a) Funktionstabelle für A und B:

\boldsymbol{x}	x_4	x_3	x_2	x_1	A	B
0	0	0	0	0	1	1
1	0	0	0	1	0	1
$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	0	0	1	0	1	1
3	0	0	1	1	1	1
4	0	1	0	0	0	1
5	0	1	0	1	1	0
6	0	1	1	0	1	0
7	0	1	1	1	1	1
8	1	0	0	0	1	1
9	1	0	0	1	1	1

$$\begin{array}{l} A(x) = \underbrace{x_3}_{B} \vee \underbrace{x_1}_{x_2} \vee \underbrace{x_2 x_0}_{x_0} \vee \underbrace{x_2}_{x_0} \\ B(x) = \underbrace{x_2}_{x_2} \vee \underbrace{x_1}_{x_0} \vee \underbrace{x_1 x_0}_{x_1 x_0} \end{array}$$

4. a) Funktionstabelle: $x \parallel x_2 \parallel x_2 \parallel x_1 \parallel x_0 \parallel y$

x	x_3	x_2	x_1	x_0	$\mid y \mid$
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0 1 1 0	0	0
5	0	1		1	1
6	0	1	1	0	0
0 1 2 3 4 5 6 7 8 9	0 0 0 0 0 0 0 1 1 1	0 1 1 1 1	0 1 1 0 0 1 1 0	1	1
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	0
11 12	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	0
15	1	1	1	1	1

b) Karnaugh-Veitch-Diagramme:

b) Karnaugh-Veitch-Diagramm:

- c) $y = x_3x_2 \lor x_2x_0$
- d) Schaltnetz (US-Symbole):

e) Binäres Entscheidungsdiagramm (ROBDD):

Die Schaltvariable x_1 wurde weggelassen, da sie für den Wert der Schaltfunktion ohne Bedeutung ist. Durchgezogene Linien haben den Wert 1, gestrichelte den Wert 0.