Aula 10

Conteúdo

- Flip-Flop
 - RS Básico
 - RS com entrada Clock
 - \circ JK
 - JK com entrada Preset e Clear
 - JK Mestre-Escravo
 - JK Mestre-Escravo com entrada Preset e Clear
 - Tipo T
 - o Tipo D

introdução

 O campo da Eletrônica Digital é basicamente dividido em duas áreas: lógica combinacional e lógica sequencial.

 Circuitos combinacionais: apresentam as saídas, única e exclusivamente, dependentes das variáveis de entrada.

 Circuitos sequenciais: tem as saídas dependentes das variáveis de entrada e/ou de seus estados anteriores que permanecem armazenados, sendo geralmente, sistemas pulsados, ou seja, operam sob o comando de uma sequencia de pulsos denominados clock.

Flip-flops

- De forma geral, podemos representar o flip-flop como um bloco onde temos 2 saídas: Q e \bar{Q} , entradas para as variáveis e uma entrada de controle (clock).
- A saída Q será a principal do bloco.

Possui basicamente 2 estados de saída.

Flip-flops

 Para o flip-flop assumir um destes estados é necessário que haja uma combinação das variáveis e do pulso de controle (clock).

- Após este pulso, o flip-flop permanecerá neste estado até a chegada de um novo pulso de clock e, então, de acordo com as variáveis de entrada, mudará ou não de estado.
- Dos dois estados possíveis:

1)
$$Q = 0 \rightarrow \overline{Q} = 1$$

2)
$$\bar{Q} = 1 \rightarrow Q = 0$$

Flip-flop RS BÁSICO

Construído a partir de portas NE e inversores:

Flip-flop RS BÁSICO

Construído a partir de portas NE e inversores:

S	R	Qa	Qf	Qf	
0 0 0 0 1 1	0 0 1 1 0 0	0 1 0 1 0 1	0 1 0 0 1 1	1 0 1 1 0 0	} fixa Qf = Qa } fixa Qf em 0 } fixa Qf em 1
1	1	1	î	î	} não permitido

Flip-flop RS BÁSICO

 A entrada S é denominada Set, pois quando acionada (nível 1), passa a saída para 1 (estabelece ou fixa em 1), e a entrada R é denominada Reset, pois quando acionada (nível 1), passa a saída para 0 (recompõe ou zera o flip-flop).

 Este circuito irá mudar de estado apenas no instante em que mudam as variáveis de entrada.

Flip-flop RS com entrada do clock

 Para que o flip-flop RS Básico seja controlado por uma sequencia de pulsos de clock, basta trocarmos os 2 inversores por portas NE, e às outras entradas destas, injetamos o clock.

 Quando a entrada do clock for igual a 0, o flip-flop irá permanecer no seu estado, mesmo que variem as entradas S e R.

(clock = 0 as saídas das bortas NE serão sempre 1)

Flip-flop RS com entrada do clock

 Quando a entrada do clock for igual a 1, o circuito irá comporta-se como um flip-flop RS Básico.

CK	Qf
0	Qa
1	RS básico

Flip-flop RS com entrada do clock

 De maneira geral, podemos concluir que o circuito irá funcionar quando a entrada clock assumir valor e manterá travada esta saída quando a entrada clock passar para o valor 0.

Flip-flop JK

 O flip-flop JK nada mais do que um flip-flop RS realimentado da seguinte maneira:

Flip-flop JK

Tabela verdade com entrada clock igual a 1:

J	K	Qa	Qa	S	lk .	Qf	
0	0	0	1	0	0	Qa	1
0	0	1	0	0	0	Qa	} Qn
0	1	0	1	0	0	Qa (Qa = 0)	1 .
0	1	1	0	0	1	0	子"
1	0	0	1	1	0	1	ι.
1.	0	1	0	0	0	Qa(Qa = 1)	\frac{1}{1}
I	1	0	1	1.	0	$\frac{Qa(Qa = 1)}{\overline{Q}a(Qa = 0)}$	$\sum_{\overline{O}a}$
1.	1	1	0	0	1.	$\overline{Q}a(Qa = 1)$)

5 5 5 5 m

Flip-flop JK

Tabela simplificada:

 No caso J=1 e K=1, para obter-se Qf = Qa é necessário que a entrada clock volte à situação 0 em um tempo conveniente após a aplicação das entradas, pois caso contrário, a saída estará em constante mudança, provocando novamente a indeterminação.

Flip-flop JK com entradas Preset e clear

- Flip-Flop JK com entradas Preset e Clear:
 - Flip-Flop JK poderá assumir valores Q=1 e Q=0 mediante a utilização das entradas Preset (PR) e Clear (CLR)

Flip-flop JK com entradas Preset e clear

ЪR	PR	Qf -
0	0	não permitido
0	1	0
1	0	1
1	1	funcionamento normal

 Para o FF RS abaixo, identifique as entradas R e S e desenhe as formas de onda nas saídas em função dos sinais aplicados.

2) Para o FF da figura abaixo, desenhe as formas de onda nas saídas em função dos sinais aplicados.

3. Preencha o diagrama de tempos para um flip-flop RS com clock sensível a nível '1':

4. Preencha o diagrama de tempos para um flip-flop RS com clock sensível a nível '0':

