El camino más corto Clase 12

Investigación Operativa UTN FRBA 2020

Curso: I4051

Elaborado por: Rodrigo Maranzana

Docente: Martín Palazzo

Modelo de programación matemática:

Flujo de Mínimo Costo

- * Resolución simple por algoritmos generalistas.
- * Interés matemático teórico.

 X_{ij} Variable de decisión binaria de ir por camino i => j

 $X_{ij} = 0$, no elijo el camino

 $X_{ii} = 1$, elijo el camino

Veamos un camino:

Cálculo de distancia del camino:

Generalización del cálculo de distancia del camino:

$$d_{TOTAL} = X_{AB} * d_{AB} + X_{BC} * d_{BC} + X_{CE} * d_{CE} + X_{BD} * d_{BD} + X_{AC} * d_{AC} + X_{DE} * d_{DE}$$

Generalización del cálculo de distancia del camino:

$$d_{TOTAL} = X_{AB}^{1} * d_{AB} + X_{BC}^{1} * d_{BC} + X_{CE}^{1} * d_{CE} + X_{CE}^{1} * d_{BD} + X_{AC}^{1} * d_{AC} + X_{DE}^{1} * d_{DE}^{1}$$

$$0$$

$$d_{TOTAL} = d_{AB} + d_{AB} + d_{CE}$$

$$d_{TOTAL} = X_{AB} * d_{AB} + X_{BC} * d_{BC} + X_{CE} * d_{CE} + X_{BD} * d_{BD} + X_{AC} * d_{AC} + X_{DE} * d_{DE}$$
 $X_{AB} = X_{BD} = X_{DE} = 1$
 $X_{AB} = X_{BC} = X_{CE} = 1$
 $X_{AC} = X_{BC} = X_{CE} = 0$
 $X_{AC} = X_{BD} = X_{DE} = 0$
 $X_{AB} = X_{BC} = X_{BD} = X_{DE} = 0$

Cálculo del camino más corto:

 $Min \{d_{TOTAL 1}, d_{TOTAL 2}, d_{TOTAL 3}\}$

$$d_{TOTAL_{k}} = X_{AB} * d_{AB} + X_{BC} * d_{BC} + X_{CE} * d_{CE} + X_{BD} * d_{BD} + X_{AC} * d_{AC} + X_{DE} * d_{DE}$$

Generalización para encontrar un camino "k"

$$d_{TOTAL_k} = \sum_{i} \sum_{j} X_{ij} d_{ij}$$

¿Qué grafo se adapta a esta ecuación?

Generalización del grafo sin ciclos:

Arcos siempre apagados

Problemas de la ecuación anterior:

- A) ¿Cómo explico al modelo qué es un camino?
- B) ¿Cómo le digo al modelo qué arcos existen?

La clave está en agregar: Restricciones

Resolvemos problema A

Posibilidades de un agente viajando por el camino:

Entradas y salidas de B (1 persona viaja):

$$0 = Salidas_B - Entradas_B$$

 $0 \neq Salidas_B - Entradas_B$ (no se cumple restricción)

Generalizamos la restricción

$$0 = Salidas_i - Entradas_i$$

$$0 = \sum_{j} X_{ij} - \sum_{j} X_{ji} \qquad ; \ \forall i$$

¡Pero con esto surge el mismo **problema B!**

¿Cómo le digo qué arcos existen?

Generalización del grafo sin ciclos:

Un problema más:

Los nodos A (inicio) y E (final) no tienen forma de cumplir

$$1 = Salidas_A$$

$$1 = X_{AB} + X_{AC}$$

 $-1 = Entradas_E$

$$-1 = -X_{DE} - X_{CE}$$

1 = "Sale de A" -1 = "Llega a E"

Generalizamos la restricción

$$b_{i} = \sum_{j, ij \subset A} X_{ij} - \sum_{j, ji \subset A} X_{ji} \quad ; \forall i$$

 $b_i = 1$ si es inicio $b_i = -1$ si es final $b_i = 0$ si es intermedio

$$Min\sum_{i}\sum_{j}X_{ij}d_{ij}$$

Sujeto a la restricción:

$$b_i = \sum_{j, ij \subset A} X_{ij} - \sum_{j, ji \subset A} X_{ji} \quad ; \ \forall i$$

¡ Más adelante vamos a ver cómo resolver esto con programación matemática!

Resolución con algoritmos puntuales

- . Encuentra siempre la solución óptima.
- La complejidad depende del problema. Pero es muy eficiente.
- No sirve si los pesos de los arcos son negativos

Pseudo código

Inicializar etiquetas de todos los nodos a infinito

S ya explorado

VECINOS DE "2"

S	2	3	4	5	t
	S	S	2		

S	2	3	4	5	t
	S	S	2		2

S	2	3	4	5	t
	S	S	2	3	2

6 No es menor que 5, no actualiza!

Nodo "t" final, sin vecinos. Fin del algoritmo

Reconstrucción del camino más corto

Distancia mínima s-t

Resolución con algoritmos puntuales

Comentarios adicionales:

- Dijkstra puede resolver todos los caminos más cortos desde cualquier nodo.
- No tiene heurística.
- Para acelerarlo, agregar heurística. Ej: Algoritmo A*