NASA TECHNICAL MEMORANDUM

NASA TM X-3356

AERODYNAMIC PERFORMANCE OF 0.4066-SCALE MODEL OF JT8D REFAN STAGE

Royce D. Moore, George Kovich, and Edward R. Tysl Lewis Research Center Cleveland, Ohio 44135

1. Report No. TM X -3356	2. Government Accession	No.	3. Recipient's Catalog	No.		
4. Title and Subtitle AERODYNAMIC PERFORMAN	CE OF 0.4066-SCA	LE	5. Report Date March-1976			
		·	6. Performing Organiz	ation Code		
MODEL OF JT8D REFAN STA	GE /		o. renorming Organiz	action code		
7. Author(s)		_	8. Performing Organiz	ation Report No.		
Royce D. Moore, George Kovi	ch, and Edward R.	Tysl	E-8040			
			10. Work Unit No.			
9. Performing Organization Name and Address	•		505-04			
Lewis Research Center			11. Contract or Grant	No.		
National Aeronautics and Space						
Cleveland, Ohio 44135						
12. Sponsoring Agency Name and Address			Technical Me	emorandum		
National Aeronautics and Space	Administration	ļ-	14. Sponsoring Agency	Code		
Washington, D.C. 20546						
15. Supplementary Notes						
16. Abstract			10D C 1			
The aerodynamic performance				I		
over a range of flows at speeds						
ciency of 0.800 occurred at a t	total weight flow of	35.82 kilograms	per second and	a pressure		
ratio of 1,679. The stall marg	gin was 15 percent	based on pressure	e ratio and weig	ht flow at		
stall and peak efficiency condit	tions. The data ind	licated that the hu	b region of the o	core stators		
was choked at design speed over	er the entire flow r	ange tested.				
-						
f·	•					
•						
	•					
-			,			
17. Key Words (Suggested by Author(s))	18	B. Distribution Statement				
Compressors		Unclassified - u	ınlimited			
Turbomachinery		STAR Category	02 (rev)			
•						
•						
19. Security Classif. (of this report)	20. Security Classif. (of the	his page)	21 No. of De	22. Price*		
	· ·	· •	21. No. of Pages. 157			
Unclassified	Unclassifi	eu	191	\$5. 75		

AERODYNAMIC PERFORMANCE OF 0. 4066-SCALE MODEL OF JT8D REFAN STAGE

by Royce D. Moore, George Kovich, and Edward R. Tysl

Lewis Research Center

SUMMARY

A single-stage fan was designed to replace the two-stage fan currently being used in the JT8D engine. The fan design was constrained by noise related considerations and the desire to minimize the number of engine modifications.

The aerodynamic performance of a 0.4066-scale model of the split flow JT8D refan stage is presented over a range of flows at speeds from 40 to 100 percent of design speed. Radial and circumferential measurements of the flow conditions were made. The bypass stage peak efficiency of 0.800 occurred at a total weight flow of 35.82 kilograms per second and a pressure ratio of 1.679. The stall margin of the fan was 15 percent based on pressure ratio and weight flow at stall and peak efficiency conditions. The data indicated that the hub region of the core stators was choked at design speed over the entire flow range tested.

INTRODUCTION

The National Aeronautics and Space Administration is engaged in a program with the Pratt & Whitney Division of United Technologies Corporation to provide the technology required to significantly reduce the noise level of the JT8D engines while maintaining their aerodynamic performance. These engines are used on the Boeing 727 and 737 aircraft and the McDonnell-Douglas DC-9 aircraft. The new fan stage design was constrained by noise related considerations and the desire to minimize the number of engine modifications. The current two-stage fan was replaced by a single-stage fan to be used with the existing core compressor. Booster stages were also added to the inlet to the core compressor. The fan diameter was increased and the spacing between rotor and stator was also increased. The stage was designed by Pratt and Whitney.

To obtain the detailed aerodynamic performance of the new design, a 0.4066-scale model of the split flow fan stage was built to be tested in the Lewis single-stage

compressor facility. The scaled stage consists of the inlet guide vanes, the rotor, the bypass stator, and the core inlet stator.

This report presents the overall and blade-element performances of the scaled fan stage. The stage was designated "stage 65" for tests in the Lewis facility. Data were obtained at speeds of 40 to 100 percent of design speed. Blade-element survey data were taken at 11 radial positions for the inlet guide vanes and the rotor, at 7 radial positions for the bypass stator, and at 3 radial positions for the core stator. The data presented in this report are in tabular as well as plotted form.

TEST STAGE

Aerodynamic Design

The aerodynamic design of the fan stage was accomplished by the Pratt & Whitney Division of United Technologies Corporation (ref. 1). The overall design parameters for this stage are listed in table I. The flow path for this split flow stage is presented in figure 1. The inlet guide vanes consist of NACA-65-series airfoils. The tip section of the inlet guide vanes turned in the direction of rotor rotation and the hub section turned opposite to the rotative direction. The rotor blades used multiple-circular-arc profiles. The bypass and core stator blades used NACA-65-series airfoils. The blade-element design parameters are presented in tables II to V, and the blade geometries are presented in tables VI to IX. The values of the design parameters shown have been interpolated from those supplied by the contractor to the radial positions used for data measurement. The symbols and equations are defined in appendixes A and B. The definitions and units used for the tabular data are presented in appendix C.

Mechanical Design

The mechanical design of the scale model fan was done under contract by the Boeing Company. The 23 inlet guide vanes (fig. 2) were machined from a single piece of 17 percent chromium - 4 percent copper - precipitation hardened (17-4 ph) steel. The rotor had 34 blades (fig. 3), each machined from titanium - 6-percent aluminum - 4-percent vanadium alloy and mounted in a disk of the same material. The bypass stator blades, the core stator blades (fig. 4(a) and (b)) were also machined from single pieces of 17-4ph steel. An assembly showing the 83 bypass stator blades and the 56 core stator blades separated by the flow splitter is shown in figure 4(c). The rotor had a static tip clearance of 0.076 centimeter, which was calculated to give a running clearance of 0.038 centimeter at design conditions.

APPARATUS AND PROCEDURE

Test Facility

With the exception of the addition of a dual throttle valve in the collector, the test facility is the same as that described in reference 2. A schematic view of the facility is shown in figure 5(a). The drive system consists of an electric motor with a variable frequency speed control. The drive motor is coupled to a 5.521 ratio speed-increase gearbox that drives the test rotor. Atmospheric air enters from a line on the roof of the building and flows through the orifice and into the plenum chamber. The air then passes through the stage and collector throttle valves and exhausts to an altitude exhaust system. The flow and bypass ratio can be controlled by adjusting the collector throttle valves (fig. 5(b)) or by adjusting a remote downstream exhaust valve.

Instrumentation

The total weight flow was determined from measurements on a thin-plate orifice. The orifice temperature was determined from an average of two Chromel-Constantan thermocouple readings. The orifice pressures were measured by calibrated transducers.

Radial surveys of the flow were made ahead of the inlet guide vanes (station 0), between the inlet guide vanes and the rotor (station 1), between the rotor and stator (station 2), and downstream of the bypass stator (station 3, see fig. 1). Fixed rakes were located upstream and downstream of the core stator (stations 5 and 6), and downstream of the bypass stators (station 4). At stations 0, 1, 2, and 3 two combination probes and two static-pressure wedge probes were used. The probes were located approximately 90° apart, with the two like probes located opposite each other (fig. 6). The combination probes at stations 1 and 3 were circumferentially traversed one blade gap counterclockwise from the nominal values shown in figure 6. The combination probes (fig. 7(a)) were used to determine total pressure, total temperature, and flow angle. At stations 0, 1, and 3 two 8° C-shaped wedge probes (fig. 7(b)) were used to determine static pressure. At station 2 two 180 wedge probes (fig. 7(c)) were used to measure static pressure. Each probe had associated null-balancing equipment that automatically alined the probe to the direction of flow. Chromel-Constantan thermocouples were used in the combination probes to determine stream temperature. Calibrated transducers were used to measure all pressures.

At stations 4, 5, and 6 total pressures and temperatures were measured with fixed rakes. At station 4 two five-element radial rakes (fig. 8(a)) located 180⁰ apart were used to measure total pressure and total temperature. The rakes were alined with the axial direction. At station 5 two three-element radial rakes were used to measure total

pressure and two three-element rakes (fig. 8(b)) were used for total temperature. The station 5 rakes were set at an angle of 45° from the axial direction. At station 6 total temperature was determined from a three-element radial rake (fig. 8(c)) set at an angle of 15° from the axial direction. At each radial element radius a nine-element circumferential rake (fig. 8(c)) was used to measure total pressure. Each circumferential rake was set at the design flow angle for that particular radius. The locations of the rakes are shown in figure 6.

At each measuring station static pressure taps were installed on both the inner and outer walls of the casing. These pressure taps were at the same axial location as the probes but were offset in the circumferential direction (fig. 6). The rotative speed of the test rotor was determined by an electronic speed counter. The test data were recorded by a central data recording system.

The estimated errors of the data, based on inherent accuracies of the instrumentation and recording system, are as follows:

Weight flow kg/geo	
Weight flow, kg/sec	
Rotative speed, rpm ±	30
Flow angle, deg	. 0
Temperature, K	. 6
Total pressure, N/cm ² , at -	
Station 0	02
Station 1	04
Station 2	10
Station 3	10
Station 4	10
Station 5	10
Station 6	10
Static pressure, N/cm ² , at -	
Station 0	04
Station 1	04
Station 2	07
Station 3	07
Station 4	10
Station 5	10
Station 6	10

A further indication of the consistency of the data can be observed by comparing the integrated flows at each measuring station with the orifice flow in table X.

Test Procedure

The stage survey data were taken over a range of flows at 40, 70, 80, 90, 97, and 100 percent of design speed. For each performance point at a given speed and weight flow, data were recorded at 11 radial positions for station 3. At the first radial positions the data from the fixed rakes at stations 4, 5, and 6 were also recorded. At each radial position the two combination probes at stations 1 and 3 were traversed circumferentially to nine locations between blade midgaps. These locations were selected to define the blade wakes. The wedge probes were set at midgap because preliminary studies showed that the static pressure was constant across the gap. Values of pressure, temperature, and flow angle were recorded at each circumferential location. At the last circumferential location, values of pressure, temperature, and flow angle were also recorded for stations 0 and 2. All probes were then traversed to the next radial position and the circumferential traverse procedure repeated.

It was considered to be impractical to map the fan performance over a large range of bypass ratio. Performance was therefore obtained at values of flow and bypass ratio that were of specific interest from the standpoint of engine application. Using the online calculated orifice weight flow and bypass flow calculated from fixed instrumentation at station 4, the desired total weight flow and bypass ratio were set and the survey data were taken.

The weight flow at stall was obtained in the following manner: From a condition near stall, the remote downstream throttle valve was slowly closed in small increments. At each increment the weight flow was obtained. The weight flow obtained just before stall occurred is called the stall weight flow. The pressure ratio at stall was obtained by extrapolating the total pressures obtained from the survey data to the stall weight flow.

Calculation Procedure

All the data shown herein have been corrected to standard-day conditions at the entrance to the inlet guide vanes. The blade-element data have been translated from the measuring stations to the blade edges using the translation procedure described in reference 3.

Because of the physical construction of the 8^o wedge, static pressure could not be measured at the 5- and 10-percent locations. Thus, a linear interpolation between the outer-wall static pressure and the value of static pressure at 20-percent span was used to obtain the static pressures at 5- and 10-percent spans.

At each radial survey position the nine circumferential values of pressure, temperature, and flow angle at stations 1 and 3 were mass averaged and the blade-element data are based on these averaged values.

To obtain overall performance, the circumferentially averaged values of pressure and temperature were averaged radially. The bypass ratio is calculated from the orifice weight flow and integrated weight flow at station 3. The inlet guide vane (IGV) and rotor overall performance are based on conditions from tip to hub. The bypass stage pressure ratio and temperature ratio are based on the average IGV inlet pressure and temperature from the outer casing to the design split streamline and corresponding values at the bypass stator outlet. The core stage pressure ratio and temperature ratio are based on the average inlet pressure and temperature from the design split streamline to the inner wall and values at the core stator outlet.

RESULTS AND DISCUSSION

The overall performance for the rotor and the bypass and core stages are presented first. Radial distributions of several performance parameters are then presented for the inlet guide vanes, the rotor, the bypass stator, and the core stator at design speed. Blade-element performance as a function of incidence angle is also presented. All the plotted data, together with some additional performance parameters, are listed in tabular form. The overall performance data are presented in table X. The blade-element data are given for the inlet guide vane, rotor, bypass stator, and core stator in tables XI to XIV, respectively.

Overall Performance

The overall performance for the rotor is presented in figure 9, and for the bypass and core stages, in figures 10 and 11, respectively. The data in these figures are presented for speeds from 40 to 100 percent of design. Design point values are shown as solid symbols on the figures.

The rotor was designed for a pressure ratio of 1.704 and efficiency of 0.861 at a total weight flow of 35.01 kilograms per second. At the near design weight flow of 35.28 kilograms per second, the rotor produces a pressure ratio of 1.807. Considering an operating line passing through the design point, a rotor pressure ratio of 1.741 would be obtained at 35.82 kilograms per second. The efficiency at both conditions was 0.87. Rotor peak efficiency of 0.874 occurred at a total weight flow of 36.07 kilograms per second and a pressure ratio of 1.666.

The bypass stage peak efficiency of 0.800 occurred at a total weight flow of 35.82 kilograms per second (fig. 10). At peak efficiency the pressure ratio was 1.679. This point would correspond to a point on the operating line passing through the design point. Because the efficiency and pressure ratio drop off much more rapidly for the stage than

for the rotor for the maximum flow condition, it is likely that the maximum flow is limited by the stator.

Design speed results were as follows: The stall margin was 15 percent, based on the weight flow and pressure ratio at stall and peak efficiency conditions. The core stage weight flow increased slightly with increasing back pressure (fig. 11). It would appear that the core stator was choked for all weight flows tested. The peak efficiency drops off very rapidly as the speed was increased from 97 to 100 percent of design speed. The pressure ratio of 1.637 was obtained at weight flow of 11.05 kilograms per second. However, the efficiency was only 0.795.

For the design Mach number of 0.89 the hub of the core stator was considered to be near the upper Mach number limit acceptable for a NACA-65 series blade profile. At design speed the measured Mach numbers in the hub section were higher than the design value, and at these excessive Mach numbers the performance deteriorate due to shock losses and possible shock induced separation. For these core stators it appears that such shock related losses may have been responsible for the low efficiency.

The fan has satisfactory performance, and it appears that a good operating line can be established. However, some of the flow conditions were somewhat different than design and this will be discussed in the next sections.

Radial Distributions

The radial distributions of several parameters for 100 percent of design speed are presented in figures 12 to 15. In each figure data are presented for four weight flows. The design values are shown by the solid symbols. Adiabatic efficiency, temperature ratio, pressure ratio, incidence angle, meridional velocity ratio, deviation angle, totalloss parameter, total-loss coefficient, and diffusion factor are presented for the rotor as a function of percent span from the rotor outlet blade tip. For the inlet guide vanes and stators all of these parameters are presented except efficiency, temperature ratio, and pressure ratio. Also for the inlet guide vanes outlet flow angle is presented rather than deviation angle.

Inlet guide vanes. - The meridional velocity ratio is significantly higher than design in the tip region (fig. 12). In the tip section the measured flow angles were less than design values. In the hub section the flow angles were less negative than design. This indicates insufficient turning in both the tip and hub sections of the inlet guide vanes. The inlet guide vanes overturned the flow slightly in the midspan region, as indicated by the flow angles being more positive than design. With the exception of the 5- and 95-percent span locations, the losses are less than design. The inlet guide vane parameters are affected only slightly by weight flow.

Rotor. - As the weight flow was reduced, the pressure ratio increased substantially in the bypass portion of the rotor (fig. 13). In the core portion pressure ratio increased slightly with decreasing weight flow except at 80 percent span. At that position pressure ratio decreased with decreasing weight flow. The effect of the splitter was experienced downstream of the rotor as evidenced by the decrease in meridional velocity ratio and increase in diffusion factor at the 60 percent span location. The increase in losses and decrease in efficiency at the 35-percent span location is attributed to the vibration damper. The increased loss level experienced was not included in design efficiency and loss distribution. The deviation angles are less than design values except in the splitter and hub regions.

At the near-design weight flow of 35.28 kilograms per second, the lower than design incidence angles in the hub region were a result of the inlet guide vane underturning. In the tip region the inlet guide vane underturning would have resulted in higher than design incidence angles. However, the high meridional velocity ratio through the inlet guide vanes was sufficient to result in a lower than design incidence angle for the rotor.

At the flow of 35.82 kilograms per second, which approximated an operating line, the radial distribution of total pressure ratio was approximately equal to design except at the 5 and 80 percent span locations. The diffusion factor for this weight flow was also equal to design except in the regions of the damper (35 percent span) and splitter (60 percent span) and at the hub. The diffusion factor is probably high at the splitter because the measurement was taken rather close to the splitter. The losses in the core flow portion of the rotor match design values. The losses in the tip region are significantly lower than design values.

Bypass stators. - The radial distribution of performance for the bypass stator blades is presented in figure 14. The radial distribution of velocity ratio is different from design, and it also varies with weight flow. In the tip region velocity ratio increases with decreasing flow, and in the splitter region it decreases with decreasing flow. For the stage peak efficiency (35.82 kg/sec) the bypass stator losses were the lowest at all radial positions. However, in the region between the dampers and splitter, losses were significantly higher than design values. The radial distribution of diffusion factor is much flatter than design with the tip values less than design and the hub values greater than design. Deviation angles were slightly less than design for all radial positions.

Core stators. - Although the diffusion factor was much lower than design, the core stator losses were significantly greater than design (fig. 15). The gradient of velocity ratio was much steeper than design. Higher than design velocity ratios were measured in the region near the splitter, and near design values were measured at the hub. No measured deviation angles are presented because flow angles were not measured downstream of the core stators.

Variations with Incidence Angle

The variations of selected blade-element parameters with suction surface incidence angle are presented in figures 16, 17, and 18 for the rotor, bypass stators, and core stators, respectively. For the rotor the data are presented for 70, 90, and 100 percent of design speed for blade-element locations of 5.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 64.0, 80.0, and 95.0 percent of span from the blade tip. For the bypass stator blade-element data are presented at the first six radial positions only; and for the core stator data are presented for the last three radial positions. In addition to all the parameters that were shown in the radial distribution plots, inlet relative Mach number is also presented. Design values are shown by the solid symbols.

Rotor. - At design speed the lowest measured loss and highest element efficiency occurred at a suction surface incidence angles less than design. The absolute value of loss was also less than design values except in the region of the dampers (30 and 40 percent span locations). With the exception of the damper and hub region, the rotor was operating at the lowest loss at the maximum flow condition; at the hub (95 percent span) the losses were highest at maximum flow. At the 40 percent span location the minimum loss condition was achieved at the midflow condition.

Bypass stators. - A minimum loss was defined at each radial position measured. At the 5, 30, and 50 percent span locations the minimum loss occurred at the design incidence angle. At 10 and 20 percent span minimum loss occurred at an incidence angle less than design; whereas at 40 percent span it occurred at incidence angle greater than design. The minimum losses were greater than design except at the 10 and 20 percent span locations. The sharp rise in losses in the tip region of the bypass stator at the lower incidence angle coupled with the decrease in losses with lower incidence angle in the rotor-tip region indicates that the bypass stator was the limiting factor in the maximum flow attainable by the bypass stage.

Core stator. - At the 80 and 95 percent span locations the core stator incidence angles remained essentially unchanged over the complete fan flow range. This indicates that the blade passages at these radial positions were choked over the whole range of flows. At the 64 percent span location the stator did have some range. At the 80 percent span location the stator choked at a higher than design incidence angle, and at the 95 percent span it choked at a lower than design incidence angle. For all three span locations the losses are greater than design.

SUMMARY OF RESULTS

The overall and blade-element performances of the scale model of the split flow JT8D refan stage are presented. Radial and circumferential measurements were made

ahead of the inlet guide vanes, ahead of and behind the rotor, and downstream of both core and bypass stators. Data were taken over the stable operating range of the fan stage at speeds from 40 to 100 percent of design speed. Flow and performance parameters were calculated across 11 blade elements. The following principal results were obtained from this investigation:

- 1. The fan has satisfactory performance, and it appears that a good operating line can be established.
- 2. A bypass stage peak efficiency of 0.800 occurred at a total weight flow of 35.82 kilograms per second and a pressure ratio of 1.679. This compares with design values of 0.815, 35.01 kilograms per second, and 1.672, respectively.
- 3. The hub region of the core stators was choked over the entire flow range tested at design speed.
- 4. Stall margin for this stage at design speed was 15 percent, based on the weight flow and pressure ratio at the stall and peak efficiency conditions.
- 5. The rotor peak efficiency of 0.874 occurred at a total weight flow of 36.07 kilograms per second and a pressure ratio of 1.666.

Lewis Research Center,

National Aeronautics and Space Administration, Cleveland, Ohio, October 10, 1975, 505-04.

APPENDIX A

SYMBOLS

- A_{an} annulus area at rotor leading edge, m²
- A_f frontal area at rotor leading edge, m²
- C_n specific heat at constant pressure, 1004 J/(kg)(K)
- D diffusion factor
- i_{mc} mean incidence angle, angle between inlet air direction and line tangent to blade mean camber line at leading edge, deg
- iss suction-surface incidence angle, angle between inlet air direction and line tangent to blade suction at leading edge, deg
- N rotative speed, rpm
- P total pressure, N/cm²
- p static pressure, N/cm²
- r radius, cm
- SM stall margin
- T total temperature, K
- U wheel speed, m/sec
- V air velocity, m/sec
- W weight flow, kg/sec
- Z axial distance referenced from rotor blade hub leading edge, cm
- $\alpha_{\rm c}$ cone angle, deg
- $\alpha_{_{\mathbf{S}}}$ slope of streamline, deg
- β air angle, angle between air velocity and axial direction, deg
- $eta_{
 m c}^{'}$ relative meridional air angle based on cone angle, arctan (tan $eta_{
 m m}^{'}$ cos $lpha_{
 m c}/\coslpha_{
 m s}$), deg
- γ ratio of specific heats (1.40)
- δ ratio of rotor-inlet total pressure to standard pressure of 10.13 N/cm²
- δ^{O} deviation angle, angle between exit air direction and tangent to blade mean camber line at trailing edge, deg
- θ ratio of rotor inlet total temperature to standard temperature of 288.2 K

 η efficiency

 $\kappa_{
m mc}$ angle between blade mean camber line and meridional plane, deg

 $\kappa_{\rm SS}$ angle between blade suction-surface camber line at leading edge and meridional

plane, deg

σ solidity, ratio of chord to spacing

 $\overline{\omega}$ total loss coefficient

 $\overline{\omega}_{\rm p}$ profile loss coefficient

 $\overline{\omega}_{\mathbf{S}}$ shock loss coefficient

Subscripts:

ad adiabatic (temperature rise)

id ideal

LE blade leading edge

m meridional direction

mom momentum rise

p polytropic

TE blade trailing edge

z axial direction

 θ tangential direction

Superscripts:

relative to blade

APPENDIX B

EQUATIONS

Suction-surface incidence angle -

$$i_{ss} = (\beta_c)_{LE} - \kappa_{ss}$$
 (B1)

Mean incidence angle -

$$i_{mc} = (\beta'_c)_{LE} - (\kappa_{mc})_{LE}$$
(B2)

Deviation angle -

$$\delta^{O} = \left(\beta_{\mathbf{c}}^{\dagger}\right)_{\mathbf{TE}} - \left(\kappa_{\mathbf{mc}}\right)_{\mathbf{TE}}$$
 (B3)

Diffusion factor -

$$D = 1 - \frac{V_{TE}'}{V_{LE}'} + \left| \frac{\left(rV_{\theta}\right)_{TE} - \left(rV_{\theta}\right)_{LE}}{\left(r_{TE} + r_{LE}\right)^{c_f}(V_{LE}')} \right|$$
(B4)

Total loss coefficient -

$$\overline{\omega} = \frac{\left(P_{id}'\right)_{TE} - P_{TE}'}{P_{LE}' - p_{LE}}$$
(B5)

Profile loss coefficient -

$$\overline{\omega}_{p} = \overline{\omega} - \overline{\omega}_{s}$$
 (B6)

Total loss parameter -

$$\frac{\overline{\omega}\cos\left(\beta_{\mathbf{m}}^{\prime}\right)_{\mathbf{TE}}}{2\sigma}\tag{B7}$$

Profile loss parameter -

$$\frac{\overline{\omega}_{p} \cos \left(\beta_{m}^{\dagger}\right)_{TE}}{2\sigma} \tag{B8}$$

Adiabatic (temperature rise) efficiency -

$$\eta_{ad} = \frac{\left(\frac{P_{TE}}{P_{LE}}\right)^{(\gamma-1)/\gamma} - 1}{\frac{T_{TE}}{T_{LE}} - 1}$$
(B9)

Momentum-rise efficiency -

$$\eta_{\text{mom}} = \frac{\left(\frac{P_{\text{TE}}}{P_{\text{LE}}}\right)^{(\gamma-1)/\gamma} - 1}{\left(UV_{\theta}\right)_{\text{TE}} - \left(UV_{\theta}\right)_{\text{LE}}} \tag{B10}$$

Equivalent weight flow -

$$\frac{\mathbf{W}\sqrt{\theta}}{\delta} \tag{B11}$$

Equivalent rotative speed -

$$\frac{N}{\sqrt{\theta}}$$
 (B12)

Weight flow per unit annulus area -

$$\frac{\left(\frac{\mathbf{W}\sqrt{\theta}}{\delta}\right)}{\mathbf{A}_{2n}} \tag{B13}$$

Weight flow per unit frontal area -

$$\frac{\left(\frac{\mathbf{W}\sqrt{\theta}}{\delta}\right)}{\mathbf{A_f}} \tag{B14}$$

Head-rise coefficient -

$$\frac{C_{p}T_{LE}}{U_{tip}^{2}} \left[\frac{P_{TE}}{P_{LE}} \right]^{(\gamma-1)/\gamma} - 1 \right]$$
(B15)

Flow coefficient -

$$\left(\frac{\mathbf{v_z}}{\mathbf{U_{tip}}}\right)_{\mathbf{LE}} \tag{B16}$$

Stall margin -

$$SM = \left[\frac{\left(\frac{P_{TE}}{P_{LE}} \right)_{stall}}{\left(\frac{P_{TE}}{P_{LE}} \right)_{ref}} \times \frac{\left(\frac{W\sqrt{\theta}}{\delta} \right)_{ref}}{\left(\frac{W\sqrt{\theta}}{\delta} \right)_{stall}} - 1 \right] \times 100$$
(B17)

Polytrópic efficiency -

$$\eta_{p} = \frac{\ln\left(\frac{P_{TE}}{P_{LE}}\right)^{(\gamma-1)/\gamma}}{\ln\left(\frac{T_{TE}}{T_{LE}}\right)}$$
(B18)

APPENDIX C

DEFINITIONS AND UNITS USED IN TABLES

ABS absolute

AERO CHORD aerodynamic chord, cm

AREA RATIO ratio of actual flow area to critical area (where local Mach number

is one)

BETAM meridional air angle, deg

CONE ANGLE angle between axial direction and conical surface representing blade

element, deg

DELTA INC difference between mean camber blade angle and suction-surface

blade angle at leading edge, deg

DEV deviation angle (defined by eq. (B3)), deg

D-FACT diffusion factor (defined by eq. (B4))

EFF adiabatic efficiency (defined by eq. (B9))

IN inlet (leading edge of blade)

INCIDENCE incidence angle (suction surface defined by eq. (B1) and mean defined

by eq. (B2)), deg

KIC angle between the blade mean camber line at the leading edge and the

meridional plane, deg

KOC angle between the blade mean camber line at the trailing edge and the

meridional plane, deg

KTC angle between the blade mean camber line at the transition point and

the meridional plane, deg

LOSS COEFF loss coefficient (total defined by eq. (B5) and profile defined by

eq. (B6))

LOSS PARAM loss parameter (total defined by eq. (B7) and profile defined by

eq. (B8))

MERID meridional

MERID VEL R meridional velocity ratio

OUT outlet (trailing edge of blade)

PERCENT SPAN percent of blade span from tip at rotor outlet

PHISS suction-surface camber ahead of assumed shock location, deg

PRESS pressure, N/cm²

PROF profile

RADII radius, cm

REL relative to blade

RI inlet radius (leading edge of blade), cm

RO outlet radius (trailing edge of blade), cm

RP radial position

RPM equivalent rotative speed, rpm

SETTING ANGLE angle between aerodynamic chord and meriodional plane, deg

SOLIDITY ratio of aerodynamic chord to blade spacing

SPEED speed, m/sec

SS suction surface

STREAMLINE SLOPE slope of streamline, deg

TANG tangential

TEMP temperature, K

TI thickness of blade at leading edge, cm

TM thickness of blade at maximum thickness, cm

TO thickness of blade at trailing edge, cm

TOT total

TOTAL CAMBER difference between inlet and outlet blade mean camber lines, deg

VEL velocity, m/sec

WT FLOW equivalent weight flow, kg/sec

X FACTOR ratio of suction-surface camber ahead of assumed shock location

of multiple-circular-arc blade section to that of double-

circular-arc blade section

ZIC axial distance to blade leading edge from inlet, cm

ZMC axial distance to blade maximum thickness point from inlet, cm

ZOC axial distance to blade trailing edge from inlet, cm

ZTC axial distance to transition point from inlet, cm

REFERENCES

- 1. JT8D-100 Turbofan Engine; Phase I. (PWA-4790, Pratt and Whitney Aircraft; NAS3-17840.), NASA CR-134654, 1974.
- 2. Urasek, Donald C.; and Janetzke, David C.: Performance of Tandem-Bladed Transonic Compressor Rotor With Tip Speed of 1375 Feet Per Second.

 NASA TM X-2484, 1972.
- 3. Lewis, George, W., Jr.; and Urasek, Donald C.: Comparison of the Effect of Two Damper Sizes on the Performance of a Low-Solidity Axial-Flow Transonic Compressor Rotor. NASA TM X-2536, 1972.

TABLE I. - DESIGN OVERALL PARAMETERS

FOR STAGE 65

IGV total pressure ratio 0.992
Rotor total pressure ratio 1.704
BP stator total pressure ratio 0.984
Core stator total pressure ratio 0.980
Rotor total temperature ratio 1. 19
Rotor adiabatic efficiency 0.863
Rotor polytropic efficiency 0.871
Rotor head-rise coefficient 0. 200
Rotor flow coefficient 0.428
Weight flow per unit frontal area 166.50
Weight flow per unit annulus area 185.48
Weight flow
Bypass ratio
Bypass stage total pressure ratio 1.672
Core stage total pressure ratio 1.642
Bypass stage total temperature ratio 1. 194
Core stage total temperature ratio 1.178
Bypass stage adiabatic efficiency 0.815
Core stage adiabatic efficiency 0.855
Bypass stage polytropic efficiency 0.828
Core stage polytropic efficiency 0.865
Rotative speed 18322.7
Tip speed

TABLE II. - DESIGN BLADE-ELEMENT PARAMETERS FOR INLET GUIDE VANE 65

	RAC	II	AB S	BETAM	REL	BETAM	TOTA	L TEMP	TOTAL	PRESS
RP	IN	CUT	IN	UUT	IN	QUT	IN	RATIU	IN	PATIO
TIP	25.87C	25.870	-0.	10.0	-0.	10.0	288.2	1.000	10.13	0.982
1	25.246	25.258	0.	9.3	u.	9.3	288.2	1.000	10.13	0.985
ž	24.566	24.554	-0.	8.5	-0.	8.5	288.2	1.000	10.13	0.988
3	23.045	22.931	-0.	6.8	-0.	6.8	288.2	1.000	10.13	0.992
4	21.421	21.465	-o.	5.0	-0.	5.0	288.2	1.000	10.13	0.995
5	20.585	2C.630	-0.	4.0	-0.	4.0	288.2	1.000	10.13	ú.995
6	19.744	15.800	-0.	3.1	-0.	3.1	288.2	1.000	10.13	0.996
7	18.045	18.128	-0.	1.2	-0.	1.2	288.2	1.000	10.13	0.995
8	16.328	16.437	-0.	-0.7	-o.	-0.7	288.2	1.000	10.13	0.995
9	15.632	15.752	-0.	-1.5	-c.	-1.5	288.2	1.000	10.13	0.995
10	12.686		-o.	-6.2	-0.	-6.2	288.2	1.000	10.13	0.994
11	9.445	5.536	-0.	-16.1	-0.	-16.1	288.2	1.000	10.13	0.989
HUB	8.263	8.263	-0.	-20.0	-0.	-20.0	288.2	1.000	10.13	0.984
	AES	VEL	REL	VE L	MERI	D VEL	TAN	G VEL	WHEEL	SFEEC
RP	IN	DUT	IN	OUT	IN	OUT	IN	OUT	IN	CUT
TIP	172.3	178.4	172.3	178.4	172.3	175.6	-0.	31.0	0.	0.
1	172.8	179.5	172.8	179.5	172.8	177.2	0.	29.0	0.	0.
2	173.3	180.6	173.3	180.€	173.3	178.6	-o.	26.7	0.	0.
3	174.4	182.0	174.4	182.0	174.4	183.7	-ū.	21.5	o.	0.
4	175.3	182.5	175.3	132.5	175.3	181.8	-0.	15.8	0.	0.
5	175.5	182.4	175.5	192.4	175.5	181.9	-J.	12.9	0.	0.
6	175.6	182.1	175.6	182. L	175.6	181.8	-0.	9.9	0.	0.
7	175.5	181.1	175.5	181.1	175.5	181.0	-0.	3.8	0.	o.
8	175.C	179.5	175.0	179.5	175.0	179.5	-o.	-2.2	0.	0.
9	174.6	179.0	174.6	179.3	174.6	178.9	- ∪.	-4.7	0.	0.
10	172.5	175.7	172.5	175.7	172.5	174.7	-0.	-18.9	0.	0.
11	171.2	168.6	171.3	168.6	171.3	162.0	-o.	-46.9	0.	0.
HUB	172.C	165.1	172.0	165. L	172.0	155.2	-0.	-56.5	0.	٥.
	ABS M	ACH NO	REL M	ACH NO	MERID M	ACH NO	STREAMLI	NE SLOPE	MERID	
RP	7 4.									
	IN	OUT	IN	OUT	IN .	าบบา	IN	OUT	VĒLR	
TIP	0.520	C.539	0.520	C.539	C.520	0.531	0.31	-1.15	1.019	
TIP 1	0.520 0.521	(.539 0.543	0.52U 0.521	C.539 C.543	C.520 O.521	0.531 0.536	0.31 0.23	-1.15 -1.47	1.019	
T I P	0.520 0.521 0.523	C.539 O.543 C.546	0.520 0.521 0.523	C.539 C.543 C.546	0.520 0.521 0.523	0.531 0.536 J.540	0.31 0.23 0.16	-1.15 -1.47 -1.71	1.019 1.025 1.031	
1 2 3	0.520 0.521 0.523 0.527	C.539 O.543 C.546 C.551	0.520 0.521 0.523 0.527	G.539 G.543 G.546 O.551	0.520 0.521 0.523 0.527	0.531 0.536 J.540 0.547	0.31 0.23 0.16 0.08	-1.15 -1.47 -1.71 -1.75	1.019 1.025 1.031 1.036	
TIP 1 2 3 4	0.520 0.521 0.523 0.527 0.529	C.539 O.543 C.546 C.551 C.553	0.520 0.521 0.523 0.527 0.529	C.539 C.543 C.546 O.551 C.553	0.520 0.521 0.523 0.527 0.529	0.531 0.536 J.540 0.547 0.551	0.31 0.23 0.16 0.08 0.08	-1.15 -1.47 -1.71 -1.75 -1.48	1.019 1.025 1.031 1.036 1.038	
TIP 1 2 3 4 5	0.520 0.521 0.523 0.527 0.529 0.530	C.539 O.543 C.546 C.551 C.553 O.552	0.520 0.521 0.523 0.527 0.529 0.533	C.539 C.543 C.546 O.551 C.553 C.552	0.520 0.521 0.523 0.527 0.529 0.530	0.531 0.536 J.540 0.547 0.551 J.551	0.31 0.23 0.16 0.08 0.08 0.12	-1.15 -1.47 -1.71 -1.75 -1.48 -1.28	1.019 1.025 1.031 1.036 1.038	
TIP 1 2 3 4 5	0.520 0.521 0.523 0.527 0.529 0.530 0.530	C.539 O.543 C.546 C.551 C.553 O.552 O.551	0.520 0.521 0.523 0.527 0.529 0.529 0.530	G. 539 G. 543 G. 546 O. 551 C. 553 G. 552 G. 551	0.520 0.521 0.523 0.527 0.529 0.530 0.530	0.531 0.536 0.540 0.547 0.551 0.551 0.550	0.31 0.23 0.16 0.08 0.08 0.12 0.16	-1.15 -1.47 -1.71 -1.75 -1.48 -1.28 -1.05	1.019 1.025 1.031 1.036 1.038 1.037	
TIP 1 2 3 4 5 6 7	0.520 0.521 0.523 0.527 0.529 0.530 0.530	C.539 O.543 C.546 G.551 G.553 O.552 O.551 C.548	0.520 0.521 0.523 0.527 0.529 0.530 0.530	G. 539 G. 543 G. 546 O. 551 C. 553 G. 552 G. 551 C. 548	0.520 0.521 0.523 0.527 0.529 0.530 0.530 0.530	0.531 0.536 0.540 0.547 0.551 0.551 0.548	0.31 0.23 0.16 0.08 0.08 0.12 0.16 0.28	-1.15 -1.47 -1.71 -1.75 -1.48 -1.28 -1.05 -0.52	1.019 1.025 1.031 1.036 1.038 1.037 1.036 1.031	
TIP 1 2 3 4 5 6 7	0.520 0.521 0.523 0.527 0.529 0.530 0.530 0.530	C.539 O.543 C.546 C.551 C.553 O.552 O.551 C.548 C.543	0.520 0.521 0.523 0.527 0.529 0.530 0.530 0.530	G. 539 G. 543 G. 546 O. 551 G. 553 G. 552 G. 551 G. 548 G. 543	0.520 0.521 0.523 0.527 0.529 0.530 0.530 0.530	0.531 0.536 J.540 0.547 0.551 J.550 0.548 0.543	0.31 0.23 0.16 0.08 0.08 0.12 0.16 0.28 0.38	-1.15 -1.47 -1.71 -1.75 -1.48 -1.28 -1.05 -0.52 0.13	1.019 1.025 1.031 1.036 1.038 1.037 1.036 1.031	
TIP 1 2 3 4 5 6 7 8	0.520 0.521 0.523 0.527 0.529 0.530 0.53C 0.530 0.529 0.527	C.539 O.543 O.546 C.551 C.553 O.552 O.551 C.548 C.543 C.541	0.520 0.521 0.523 0.527 0.529 0.530 0.530 0.530 0.529 J.527	C. 539 C. 543 C. 546 O. 551 C. 553 C. 552 C. 551 C. 548 C. 543 C. 541	C.520 O.521 O.523 O.527 O.529 O.530 C.530 C.530 O.529 O.527	0.531 0.536 0.540 0.547 0.551 0.551 0.550 0.548 0.543	0.31 0-23 0.16 0.08 0.12 0.16 0.28 0.38 0.44	-1.15 -1.47 -1.71 -1.75 -1.48 -1.05 -0.52 0.13 0.39	1.019 1.025 1.031 1.036 1.038 1.037 1.036 1.031 1.026	
TIP 1 2 3 4 5 6 7 8 9	0.520 0.521 0.523 0.527 0.529 0.530 0.530 0.530 0.529 0.527	C.539 O.543 C.546 C.551 C.553 O.555 C.552 O.5551 C.548 C.543 C.541 C.531	0.520 0.521 0.523 0.527 0.529 0.530 0.530 0.530 0.529 0.527 0.521	C. 539 C. 543 C. 546 O. 551 C. 553 C. 552 C. 551 C. 548 C. 543 C. 541 C. 531	0.520 0.521 0.523 0.527 0.529 0.530 0.530 0.530 0.529 0.527 0.527	0.531 0.536 0.540 0.547 0.551 0.550 0.548 0.543 0.541	0.31 0.23 0.16 0.08 0.08 0.12 0.16 0.28 0.38 0.44	-1.15 -1.47 -1.71 -1.75 -1.48 -1.28 -1.05 -0.52 0.13 0.39 1.27	1.019 1.025 1.031 1.036 1.038 1.037 1.036 1.031 1.026 1.025 1.013	
TIP 1 2 3 4 5 6 7 8 9 10	0.520 0.521 0.523 0.527 0.529 0.530 0.530 0.530 0.527 0.521 0.521	C.539 O.543 O.546 G.551 O.552 O.552 O.551 C.548 G.543 C.551 C.508	0.520 0.521 0.523 0.527 0.529 0.530 0.530 0.530 0.527 0.527 0.521 0.517	G. 539 G. 543 G. 546 G. 551 G. 553 G. 552 G. 551 G. 548 G. 541 G. 531 G. 508	C.520 O.521 O.523 O.527 O.529 O.530 C.530 O.529 O.527 C.521 O.521	0.531 0.536 0.540 0.547 0.551 0.550 0.548 0.543 0.528	0.31 0.23 0.16 0.08 0.08 0.12 0.16 0.28 0.38 0.44 0.72	-1.15 -1.47 -1.71 -1.75 -1.48 -1.28 -1.05 -0.52 0.13 0.39 1.27 0.76	1.019 1.025 1.031 1.036 1.038 1.037 1.036 1.031 1.026 1.025 1.013 0.946	
TIP 1 2 3 4 5 6 7 8 9	0.520 0.521 0.523 0.527 0.529 0.530 0.530 0.530 0.529 0.527	C.539 O.543 C.546 C.551 C.553 O.555 C.552 O.5551 C.548 C.543 C.541 C.531	0.520 0.521 0.523 0.527 0.529 0.530 0.530 0.530 0.529 0.527 0.521	C. 539 C. 543 C. 546 O. 551 C. 553 C. 552 C. 551 C. 548 C. 543 C. 541 C. 531	0.520 0.521 0.523 0.527 0.529 0.530 0.530 0.530 0.529 0.527 0.527	0.531 0.536 0.540 0.547 0.551 0.550 0.548 0.543 0.541	0.31 0.23 0.16 0.08 0.08 0.12 0.16 0.28 0.38 0.44	-1.15 -1.47 -1.71 -1.75 -1.48 -1.28 -1.05 -0.52 0.13 0.39 1.27	1.019 1.025 1.031 1.036 1.038 1.037 1.036 1.031 1.026 1.025 1.013	
TIP 1 2 3 4 5 6 7 8 9 10	0.520 0.521 0.523 0.527 0.529 0.530 0.530 0.530 0.527 0.521 0.521	C.539 O.543 O.546 G.551 O.552 O.552 O.551 C.548 G.543 C.551 C.508	0.520 0.521 0.523 0.527 0.529 0.530 0.530 0.530 0.527 0.527 0.521 0.517	G. 539 G. 543 G. 546 G. 551 G. 553 G. 552 G. 551 G. 548 G. 541 G. 531 G. 508	C.520 O.521 O.523 O.527 O.529 O.530 C.530 O.529 O.527 C.521 O.521	0.531 0.536 0.540 0.547 0.551 0.550 0.548 0.543 0.528	0.31 0.23 0.16 0.08 0.08 0.12 0.16 0.28 0.38 0.44 0.72	-1.15 -1.47 -1.71 -1.75 -1.48 -1.28 -1.05 -0.52 0.13 0.39 1.27 0.76	1.019 1.025 1.031 1.036 1.038 1.037 1.036 1.031 1.026 1.025 1.013 0.946	
TIP 1 2 3 4 5 6 7 8 9 10	0.520 0.521 0.523 0.527 0.529 0.530 0.530 0.530 0.529 0.521 0.521 0.521	C.539 O.5446 C.551 C.553 O.552 O.5551 C.548 C.543 C.541 C.508 C.497	0.520 0.521 0.523 0.527 0.529 0.520 0.530 0.530 0.529 0.527 0.521 0.517 0.519	G. 539 G. 543 G. 546 G. 556 G. 557 G. 552 G. 551 G. 548 G. 541 G. 541 G. 531 G. 542 G. 541 G. 541 G. 541 G. 541 G. 541 G. 544 G.	C.52 C O.521 O.523 O.527 O.529 O.530 C.530 C.530 O.529 O.527 C.521 O.517 O.519	0.531 0.536 0.540 0.547 0.551 0.551 0.550 0.548 0.543 0.541 0.528 0.488 0.467	0.31 0.23 0.16 0.08 0.08 0.12 0.16 0.28 0.38 0.44 0.72 0.54	-1.15 -1.47 -1.71 -1.75 -1.48 -1.28 -1.05 -0.52 0.13 0.39 1.27 0.76	1.019 1.025 1.031 1.036 1.038 1.037 1.036 1.031 1.026 1.025 1.013 0.946 0.902	
TIP 1 2 3 4 5 6 7 8 9 10 11 HU8	0.520 0.521 0.523 0.527 0.529 0.530 0.530 0.530 0.527 0.521 0.521 0.517	C.539 O.543 C.5546 C.551 C.553 O.552 C.548 C.543 C.543 C.5531 C.508 C.497	0.520 0.521 0.523 0.527 0.529 0.530 0.530 0.530 0.527 0.527 0.521 0.517	G. 539 G. 543 G. 546 G. 551 G. 553 G. 552 G. 551 G. 548 G. 541 G. 531 G. 508	C.520 O.521 O.523 O.527 O.529 O.530 C.530 O.529 O.527 C.521 O.521	0.531 0.536 0.540 0.547 0.551 0.551 0.550 0.548 0.543 0.541 0.528 0.488 0.467	0.31 0.23 0.16 0.08 0.08 0.12 0.16 0.28 0.38 0.44 0.72 0.54 0.12	-1.15 -1.47 -1.71 -1.75 -1.48 -1.28 -1.05 -0.52 0.13 0.39 1.27 0.76 -0.44	1.019 i.025 i.031 i.036 i.038 i.037 i.036 i.031 i.026 i.025 i.013 0.946 0.902	
TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	0.520 0.521 0.527 0.529 0.530 0.530 0.530 0.529 0.527 0.521 0.517 0.515	C.539 O.543 C.546 C.551 C.553 O.552 O.551 C.548 G.543 C.541 C.508 C.497	0.520 0.521 0.523 0.527 0.529 0.520 0.530 0.530 0.529 0.527 0.521 0.517 0.519	C. 539 C. 543 C. 543 C. 551 C. 553 C. 552 C. 554 C. 543 G. 541 C. 531 C. 508 C. 508 C. 508	C.52 C O.521 O.523 O.527 O.529 O.530 C.530 O.529 O.527 C.521 O.517 O.519	0.531 0.536 0.5540 0.5547 0.551 0.5551 0.5548 0.548 0.548 0.467	0.31 0.23 0.16 0.08 0.12 0.16 0.28 0.38 0.44 0.72 0.54 0.12	-1.15 -1.47 -1.71 -1.75 -1.48 -1.28 -1.05 -0.52 0.13 0.39 1.27 0.76 -0.44	1.019 1.025 1.031 1.036 1.037 1.036 1.031 1.026 1.025 1.013 0.946 0.902	PRGF
TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	0.520 0.521 0.523 0.527 0.529 0.530 0.530 0.530 0.527 0.521 0.517 0.515	C.539 O.5446 C.551 C.553 O.5552 O.5551 C.548 G.541 C.531 C.531 C.508 C.497 INCI	0.520 0.521 0.523 0.527 0.529 0.520 0.530 0.530 0.529 0.527 0.521 0.517 0.519	G. 539 G. 543 G. 544 G. 551 G. 553 G. 552 G. 548 G. 541 G. 541 G. 542 G. 547 DE V	C.52 C O.521 O.523 O.527 O.529 O.530 C.530 O.529 O.5227 C.521 O.517 O.519	0.531 0.536 0.5540 0.5547 0.551 0.553 0.548 0.543 0.541 0.528 0.488 0.467	0.31 0.23 0.16 0.08 0.12 0.16 0.28 0.38 0.44 0.72 0.54 0.12	-1.15 -1.47 -1.71 -1.75 -1.48 -1.28 -1.05 -0.52 0.13 0.39 1.27 0.76 -0.44	1.019 1.025 1.031 1.036 1.037 1.036 1.031 1.026 1.025 1.013 0.946 0.902	PRGF 0.083
TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	0.520 0.521 0.523 0.527 0.529 0.530 0.530 0.530 0.521 0.521 0.517 0.519	C.539 O.543 C.551 C.551 C.553 O.552 C.548 C.543 C.543 C.508 C.497 INCI MEAN 12.0	0.520 0.521 0.523 0.527 0.529 0.520 0.530 0.530 0.529 0.527 0.521 0.517 0.519	C. 539 C. 543 C. 551 C. 553 C. 552 C. 552 C. 548 C. 543 C. 541 C. 508 O. 497 DEV	C.52 C O.521 O.523 O.527 O.529 O.530 C.530 C.530 O.527 C.521 O.517 O.519 D-FACT C.102 O.086	0.531 0.536 0.547 0.557 0.551 0.551 0.548 0.543 0.548 0.488 0.467 EFF	0.31 0.23 0.16 0.08 0.08 0.12 0.16 0.28 0.38 0.44 0.72 0.54 0.12	-1.15 -1.47 -1.71 -1.75 -1.48 -1.05 -0.52 0.13 0.39 1.27 0.76 -0.44	1.019 1.025 1.036 1.036 1.037 1.036 1.031 1.026 1.025 1.013 0.946 0.902	PRCF 0.083 0.066
TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	0.520 0.521 0.523 0.527 0.529 0.530 0.530 0.530 0.521 0.521 0.517 0.515 SPAN 0.500	C.539 O.543 C.546 C.551 C.553 O.552 C.548 C.543 C.543 C.508 C.497 INCI MEAN 12.0 11.0 9.8	0.520 0.521 0.523 0.527 0.529 0.520 0.530 0.530 0.529 0.527 0.521 0.517 0.519	C. 539 C. 543 C. 543 C. 551 C. 553 C. 552 C. 554 C. 543 C. 541 C. 528 C. 541 C. 528 C. 528 C. 528 C. 528	C.52 C O.521 O.523 O.527 O.529 O.530 C.530 O.529 O.527 C.521 O.517 O.517 O.519	0.531 0.536 0.547 0.557 0.551 0.554 0.543 0.543 0.488 0.467 EFF	0.31 0.23 0.16 0.08 0.12 0.16 0.28 0.38 0.44 0.72 0.54 0.12	-1.15 -1.47 -1.71 -1.75 -1.48 -1.05 -0.52 0.13 0.39 1.27 0.76 -0.44	1.019 1.025 1.031 1.036 1.038 1.037 1.036 1.031 1.025 1.015 0.946 0.902 LCSS P TCT 0.080 0.066 0.052	PRCF 0.083 0.066 0.052
TIP 1 2 3 4 5 6 7 8 9 10 11 HUB RP TIP 1 2 3	0.520 0.521 0.523 0.527 0.527 0.530 0.530 0.530 0.521 0.521 0.517 0.519 PER CENT SPAN 0.500	C.539 O.5446 C.551 C.553 O.5552 O.5551 C.548 G.541 C.531 C.508 C.497 INCI MEAN 12.0 11.0 96.6	0.520 0.521 0.523 0.527 0.529 0.520 0.530 0.530 0.529 0.527 0.521 0.517 0.519	G. 539 G. 543 G. 551 G. 551 G. 552 G. 552 G. 5543 G. 543 G. 541 G. 543 G. 547 DE V	C.52 C O.521 O.523 O.527 O.530 C.530 O.527 O.527 O.521 O.517 O.519 D-FACT C.102 O.086 C.040 C.040	0.531 0.536 0.547 0.557 0.551 0.551 0.548 0.543 0.548 0.467 EFF	0.31 0.23 0.16 0.08 0.12 0.16 0.28 0.38 0.44 0.72 0.54 0.12 LCSS C TCT 0.107 0.073 0.073	-1.15 -1.47 -1.71 -1.75 -1.48 -1.28 -1.05 -0.52 0.13 0.39 1.27 0.76 -0.44	1.019 1.025 1.036 1.036 1.037 1.036 1.031 1.025 1.013 0.946 0.902 LCSS PTCT 0.080 0.066 0.052 0.056	PRCF 0.083 0.066 0.052 0.030
TIP 1 2 3 4 5 6 7 8 9 10 11 HUB RP TIP 1 2 3	0.520 0.521 0.523 0.527 0.529 0.530 0.530 0.530 0.521 0.521 0.517 0.515 PER CENT SPAN 0.500 10.00 20.00 30.00	C.539 O.5446 C.551 C.553 O.5551 C.548 G.543 C.541 C.508 C.497 INC I MEAN 12.0 11.0 9.8 6.6	0.520 0.521 0.523 0.527 0.529 0.520 0.530 0.530 0.529 0.527 0.521 0.517 0.519	C. 539 C. 543 C. 551 C. 553 C. 552 C. 554 C. 543 C. 541 C. 508 C. 497 DEV	C.52 C O.521 O.523 O.527 O.529 O.530 C.530 O.527 C.521 O.517 O.517 O.519 D-FACT C.102 O.086 C.070 C.04C O.04C O.016	0.531 0.536 0.547 0.557 0.551 0.548 0.543 0.548 0.467 EFF 0.0.0	0.31 0.23 0.16 0.08 0.12 0.16 0.28 0.38 0.44 0.72 0.54 0.12 LCSS C TCT 0.107 0.090 0.073 0.045 0.028	-1.15 -1.47 -1.71 -1.75 -1.48 -1.28 -1.05 -0.52 0.13 0.39 1.27 0.76 -0.44	1.019 1.025 1.036 1.036 1.037 1.036 1.031 1.026 1.025 1.013 0.946 0.902 LCSS P TCT 0.080 0.066 0.052 0.052 0.030 0.018	PRCF 0.083 0.066 0.052 0.030 0.018
TIP 1 2 3 4 5 6 7 8 9 10 11 HU8 RP TIP 1 2 3 4 5	0.520 0.521 0.527 0.529 0.530 0.530 0.530 0.527 0.517 0.517 0.515 PER CENT SPAN 0. 5.00 10.00 20.00 30.00 35.00	C.539 O.543 C.551 C.553 O.5551 C.548 C.543 C.543 C.508 C.497 INCI MEAN 12.0 11.0 9.8 6.6 4.6	0.520 0.521 0.523 0.527 0.529 0.520 0.530 0.530 0.529 0.527 0.521 0.517 0.519	C. 539 C. 543 C. 5543 C. 5553 C. 5551 C. 5548 C. 5443 C. 541 C. 508 O. 497 DEV	C.52 C O.521 O.523 O.527 O.529 O.530 C.530 C.530 O.527 C.531 O.517 O.519 D-FACT C.102 O.086 C.070 C.040 O.046 C.005	0.531 0.536 0.547 0.557 0.551 0.548 0.543 0.548 0.488 0.467 EFF 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	0.31 0.23 0.16 0.08 0.12 0.16 0.28 0.38 0.44 0.72 0.54 0.12 LCSS C TCT 0.107 0.090 0.073 0.045 0.045 0.028	-1.15 -1.47 -1.71 -1.75 -1.48 -1.05 -0.52 0.13 0.39 1.27 0.76 -0.44	1.019 1.025 1.031 1.036 1.037 1.036 1.031 1.026 1.025 0.946 0.902 LCSS P TCT 0.080 0.066 0.052 0.038 0.018 0.018	PRCF 0.083 0.066 0.052 0.030 0.018 0.016
TIP 1 23 45 6 7 8 9 10 11 HUB RP TIP 1 2 3 4 5 6	0.520 0.521 0.523 0.527 0.530 0.530 0.530 0.527 0.521 0.517 0.517 PER CENT SPAN 0. 5.00 10.00 20.00 30.00 40.00	C.539 O.5446 C.551 C.553 O.5551 C.548 C.541 C.531 C.531 C.531 C.497 INCN 12.0 11.0 96.6 4.6 2.6	0.520 0.521 0.523 0.527 0.529 0.520 0.530 0.530 0.529 0.527 0.521 0.517 0.519	G. 539 G. 543 G. 551 G. 551 G. 552 G. 551 G. 544 G. 541 G. 541 G. 542 G. 543 G. 541 G.	C.52 C O.521 O.523 O.527 O.530 C.530 C.530 O.527 C.521 O.517 O.519 D-FACT C.102 O.086 C.040 C.040 C.040 C.040 O.016 C.040 O.016	0.531 0.536 0.547 0.557 0.551 0.558 0.543 0.548 0.488 0.467 EFF 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	0.31 0.23 0.16 0.08 0.12 0.16 0.28 0.38 0.44 0.72 0.54 0.12 LCSS C TCT 0.107 0.090 0.073 0.045 0.028 0.026	-1.15 -1.47 -1.71 -1.75 -1.48 -1.28 -1.05 -0.52 0.13 0.39 1.27 0.76 -0.44	1.019 1.025 1.036 1.038 1.037 1.036 1.031 1.025 1.013 0.946 0.902 LCSS P TCT 0.080 0.066 0.052 0.018 0.018 0.018	PRCF 0.083 0.066 0.052 0.030 0.018 0.016 0.015
7 IP 1 2 3 4 5 6 7 8 9 10 11 HU8 RP 7 IP 1 2 3 4 5 6 7	0.520 0.521 0.523 0.527 0.529 0.530 0.530 0.529 0.521 0.517 0.515 PER CENT SPAN 0.00 10.00 30.00 30.00 40.00 50.00	C.539 O.5446 C.551 C.553 O.5551 C.548 G.541 C.531 C.531 C.508 C.497 INCI MEAN 12.0 11.0 9.8 4.6 3.6 2.6	0.520 0.521 0.523 0.527 0.529 0.520 0.530 0.530 0.529 0.527 0.521 0.517 0.519	G. 539 G. 543 G. 551 G. 552 G. 553 G. 551 G. 548 G. 541 G. 541 G. 542 G. 543 G. 541 G. 542 G. 543 G. 541 G. 542 G. 543 G. 543 G. 543 G. 543 G. 543 G. 543 G. 544 G.	C.52 C O.521 O.523 O.527 O.529 O.530 C.530 O.529 O.521 O.521 O.517 O.519 D-FACT C.102 G.086 C.070 C.046 C.046 C.006 C.006	0.531 0.536 0.547 0.557 0.551 0.548 0.543 0.543 0.548 0.467 EFF 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	U.31 0.23 0.18 0.08 0.12 0.16 0.28 0.38 0.44 0.72 0.54 0.12 UCSS C TCT 0.107 0.090 0.073 0.045 0.028 0.026 0.025	-1.15 -1.47 -1.71 -1.75 -1.48 -1.28 -1.05 -0.52 0.13 0.39 1.27 0.76 -0.44	1.019 1.025 1.036 1.036 1.037 1.026 1.025 1.021 1.025 1.025 1.025 1.025 1.025 1.025 1.025 1.025 1.025 1.025 1.026 1.025 1.026 1.025 1.026 1.025 1.026 1.025 1.026 1.025 1.026 1.025 1.026 1.025 1.026 1.025 1.026 1.025 1.025 1.026 1.025 1.026 1.025 1.	PRCF 0.083 0.066 0.052 0.030 0.018 0.016 0.015
TIP 1 2 3 4 5 6 7 8 9 10 11 HUB RPIP 1 2 3 4 5 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 7 8 8 7 8 7 8 8 7 8 8 7 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 8 8 7 8 8 7 8 8 8 7 8 8 7 8 8 8 8 7 8 8 8 8 7 8 8 8 8 7 8	0.520 0.521 0.523 0.527 0.529 0.530 0.530 0.530 0.521 0.517 0.517 0.519 PER CENT SPAN 0.00 20.00 30.00 40.00 50.00 60.00	C.539 O.543 C.546 C.551 C.553 O.5551 C.548 G.543 C.508 C.497 INCI MEAN 11.0 9.8 6.6 3.6 2.6 9.0.4	0.520 0.521 0.523 0.527 0.529 0.520 0.530 0.530 0.529 0.527 0.521 0.517 0.519	C.539 C.543 C.551 C.553 C.552 C.548 C.543 C.541 C.508 O.497 DEV -3.C -2.8 -2.6 -1.7 -C.5 -0.8 -0.3	C.52 C O.521 O.523 O.527 O.529 O.530 C.530 O.529 O.527 C.521 O.517 O.519 D-FACT C.102 O.086 C.070 C.040 C.005 	0.531 0.536 0.547 0.557 0.551 0.548 0.543 0.548 0.488 0.467 EFF 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	0.31 0.23 0.16 0.08 0.12 0.16 0.28 0.38 0.44 0.72 0.54 0.12 LCSS C TCT 0.107 0.073 0.045 0.025 0.025 0.026 0.025 0.026	-1.15 -1.47 -1.71 -1.75 -1.48 -1.05 -0.52 0.13 0.39 1.27 0.76 -0.44	1.019 1.025 1.036 1.038 1.037 1.026 1.021 1.026 1.025 1.013 0.946 0.902 LCSS P TCT 0.380 0.066 0.052 0.018 0.016 0.015 0.016 0.015 0.016 0.015 0.016 0.015 0.016 0.015 0.016 0.0	PRCF 0.083 0.066 0.052 0.030 0.018 0.016 0.015 0.014 0.013
TIP 1 2 3 4 5 6 7 8 9 10 11 HUB RP TIP 1 2 3 4 5 6 7 8 9 7 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	0.520 0.521 0.523 0.529 0.530 0.530 0.530 0.527 0.517 0.517 0.515 PER CENT SPAN 0. 5.00 10.00 20.00 30.00 30.00 40.JC 50.00 64.00	C.539 O.543 C.551 C.553 O.5551 C.548 C.543 C.543 C.508 C.497 INCI MEAN 12.0 11.0 9.8 6.6 4.6 2.6 0.9 -0.9	0.520 0.521 0.523 0.527 0.529 0.520 0.530 0.530 0.529 0.527 0.521 0.517 0.519	C. 539 C. 543 C. 551 C. 553 C. 552 C. 554 C. 543 C. 543 C. 541 C. 508 C. 497 DEV	C.52C O.521 O.523 O.527 O.529 O.530 C.530 C.530 O.527 C.521 O.517 O.519 D-FACT C.102 O.086 C.070 C.040 C.005 	0.531 0.536 0.547 0.557 0.551 0.548 0.543 0.548 0.488 0.467 EFF 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	0.31 0.23 0.16 0.08 0.12 0.16 0.28 0.38 0.44 0.72 0.54 0.12 LCSS C TET 0.107 0.073 0.045 0.025 0.025 0.025 0.025 0.025	-1.15 -1.47 -1.71 -1.75 -1.48 -1.28 -1.05 -0.52 0.13 0.39 1.27 0.76 -0.44	1.019 1.025 1.031 1.036 1.038 1.037 1.036 1.031 1.026 1.025 0.946 0.902 LCSS P TCT 0.080 0.066 0.052 0.030 0.016 0.015 0.015 0.014 0.013	PRCF 0.080 0.066 0.052 0.030 0.018 0.016 0.015 0.014 0.013
TIP 1 23 45 6 7 8 9 10 11 HUB RP TIP 1 2 3 4 5 6 7 8 9 10 11 10 10 10 10 10 10 10 10 10 10 10	0.520 0.521 0.523 0.527 0.529 0.530 0.530 0.521 0.521 0.517 0.519 PER CENT SPAN 0.500 20.00 30.00 30.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00	C.539 C.546 C.551 C.553 C.552 C.548 C.541 C.531 C.531 C.531 C.5097 INAN 12.0 11.0 9.8 6.6 0.9 -0.4 -0.8 -0.3 10.5 10.	0.520 0.521 0.523 0.527 0.529 0.520 0.530 0.530 0.529 0.527 0.521 0.517 0.519	G. 539 G. 543 G. 551 G. 551 G. 552 G. 551 G. 548 G. 541 G. 531 G. 531 G. 528 G. 497 DE V	C.52 C O.521 O.523 O.527 O.529 O.530 C.530 O.529 O.521 O.517 O.519 D-FACT C.102 O.036 C.040 O.016 C.005 	0.531 0.536 0.547 0.557 0.551 0.548 0.543 0.548 0.548 0.467 EFF 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	U.31 0.23 0.16 0.08 0.12 0.16 0.28 0.38 0.44 0.72 0.54 0.12 U.55 0.10 0.07 0.073 0.045 0.025 0.025 0.027	-1.15 -1.47 -1.71 -1.75 -1.48 -1.28 -1.05 -0.52 0.13 0.39 1.27 0.76 -0.44 OEFF PRCF 0.107 0.090 0.0773 0.045 0.028 0.026 0.025 0.026 0.027 0.028 0.028 0.033	1.019 i.025 i.031 i.036 i.038 i.037 i.036 i.031 i.026 i.013 0.946 0.902 LCSS PTCT 0.080 0.066 0.052 0.016 0.015 0.014 0.013 0.013	PRCF 0.083 0.066 0.052 0.030 0.018 0.016 0.015 0.014 0.013 0.013
TIP 1 2 3 4 5 6 7 8 9 10 11 HUB RP TIP 1 2 3 4 5 6 7 8 9 7 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	0.520 0.521 0.523 0.529 0.530 0.530 0.530 0.527 0.517 0.517 0.515 PER CENT SPAN 0. 5.00 10.00 20.00 30.00 30.00 40.JC 50.00 64.00	C.539 O.543 C.551 C.553 O.5551 C.548 C.543 C.543 C.508 C.497 INCI MEAN 12.0 11.0 9.8 6.6 4.6 2.6 0.9 -0.9	0.520 0.521 0.523 0.527 0.529 0.520 0.530 0.530 0.529 0.527 0.521 0.517 0.519	C. 539 C. 543 C. 551 C. 553 C. 552 C. 554 C. 543 C. 543 C. 541 C. 508 C. 497 DEV	C.52C O.521 O.523 O.527 O.529 O.530 C.530 C.530 O.527 C.521 O.517 O.519 D-FACT C.102 O.086 C.070 C.040 C.005 	0.531 0.536 0.547 0.557 0.551 0.548 0.543 0.548 0.488 0.467 EFF 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	0.31 0.23 0.16 0.08 0.12 0.16 0.28 0.38 0.44 0.72 0.54 0.12 LCSS C TET 0.107 0.073 0.045 0.025 0.025 0.025 0.025 0.025	-1.15 -1.47 -1.71 -1.75 -1.48 -1.28 -1.05 -0.52 0.13 0.39 1.27 0.76 -0.44	1.019 1.025 1.031 1.036 1.038 1.037 1.036 1.031 1.026 1.025 0.946 0.902 LCSS P TCT 0.080 0.066 0.052 0.030 0.016 0.015 0.015 0.014 0.013	PRCF 0.080 0.066 0.052 0.030 0.018 0.016 0.015 0.014 0.013

TABLE III. - DESIGN BLADE-ELEMENT PARAMETERS FOR ROTOR 65 ABS BETAM REL BETAM TOTAL TEMP TOTAL PRESS RACII OUT OUT OUT RATIO IN IN IN RAT IO RP IN IN 25.405 25.029 67.3 288.2 9.95 TIP 9.4 55.3 69.4 1.227 1.674 24.797 24.334 8.7 51.0 66.5 65.8 288.2 1.220 9.98 1.700 1 24.142 23.640 22.707 22.250 7.8 47.9 65.7 62.9 288.2 1.213 10.01 1.717 44.6 63.6 58.9 288.2 1.202 10.05 1.729 6.1 21.218 20.861 4.3 43.4 61.5 55.7 288.2 1.195 10.08 1.725 20.461 20.166 3.4 43.3 60.5 54.2 288.2 1.192 10.09 1.719 19.704 19.472 18.192 18.082 2.6 43.2 59.5 52.6 288.2 1.188 10.09 1.712 43.3 1.182 1.0 57.7 49.0 288.2 10.08 1.698 16.693 16.693 -0.6 43.9 55.9 44.5 288.2 1.177 10.08 1.687 16.092 16.137 13.595 13.914 -1.2 43.8 55.1 41.8 288.2 1.176 10.08 1.684 -4.7 10 42.6 51.8 27.4 288.2 1.174 10.08 1.676 -11.3 7.6 288.2 1.186 11 10.894 11.830 43.6 50.7 10.02 1.711 9.898 11.135 -13.6 50.6 -2.7 288.2 1.197 9.97 HUR 46.4 1.749 REL VEL MERID VEL TANG VEL WHEEL SPEED ABS VEL OUT OUT 1N OUT RP IN IN IN OUT IN OUT 494.2 190.7 31.5 169.2 TIP 193.3 205.8 332.4 117.2 487.5 480.2 486.5 29.5 195.9 214.3 329.3 193.7 134.9 166.5 475.8 466.9 199.0 220.9 325.3 197.2 148.0 27.2 478.6 163.9 463.2 453.6 207.0 312.7 205.8 161.3 159.1 226.6 462.2 21.8 213.3 228.6 445.2 294.3 212.7 165.9 16.0 157.2 407.1 400.3 215.4 228.5 436.3 283.9 215.0 166.2 13.0 156.8 392.6 386.9 373.6 216.9 228.3 427.2 273.6 216.7 160.3 9.9 156.4 378.1 347.0 7 218.4 227.9 408.5 252.6 218.4 165.8 3.8 156.4 349.1 Ŕ 218.5 228.4 389.5 230.8 218.5 164.6 -2.2 158.4 320.3 320.3 231.3 224.1 -4.6 -17.8 Q 219.0 382.2 219.0 167.0 160.1 308.8 309.6 219.1 10 219.8 252.4 354.5 209.3 185.9 170.8 260.9 267.0 288.7 204.6 208.9 199.2 323.1 210.8 -41.0 11 208.7 209.0 227.0 155.1 212.9 -47.3 HUB 309.0 307-1 223.9 189.9 20 C - 7 213.2 213.7 ABS MACH NO REL MACH NO MERID MACH NO STREAMLINE SLOPE MERID FEAK SS RP ΙN OUT IN · OUT ΙN JUI IN OUT VEL R MACHINE TIP 0.587 C.563 1.502 C. 909 0.580 0.321 -8.87 -6.66 0.615 1.484 1.513 0.596 C.590 1.480 C. 906 J.589 0.371 -9.46 -7.28 0.697 -7.29 -9.48 0.606 0.611 1.457 C.90C C.60C 0.409 0.751 1.536 J. 629 -7.61 -5.65 7 0.632 C.631 1.412 C.871 0.449 0.784 1.568 0.653 C.639 1.363 0.823 0.651 0.464 -5.14 -3.35 J.780 1.666 0.659 -3.97 0.660 0.640 1.337 0.795 0-466 -2.14 0.773 1.691 6 0.665 C-640 1.310 C. 767 0.664 0.467 -2-89 -0.90 J.768 1.677 0.670 0-641 1.253 C. 71C 0.670 4.466 -0-80 1.05 0.759 1.589 1.195 0.753 0.670 C.67C 0.464 1.56 0.644 C. 651 1.35 1.486 0.672 0.653 C.672 0.471 0.762 1.173 2.64 1.483 C.633 1.18 C.719 0.596 0.673 0.530 7.52 ŭ.849 10 0.675 1.088 3.49 1.549 0.987 0.625 11 0.638 C.831 C.637 0.601 16.04 10.56 1.021 1.601 0.616 HILR 0.612 C.894 0.936 0.617 C.594 20.33 13.66 1.091 D-FACT FFF PERCENT LOSS: COEFF INCIDENCE DF V LCSS PARAM RP PROF PROF SPAN MEAN SS TCT TOT 0.244 0.034 TIP 9.3 0.436 0.697 0.150 ο. 2.6 1.0 0.021 5.0C 0.205 0.033 6.7 5.1 0.433 0.743 0.782 4.1 2.2 C.109 0.018 10.00 5.1 2.9 C.43C 0.173 0.075 0.128 0.031 0.031 0.013 20.Ú0 5.3 2.5 4.1 0.432 0.839 0.024 0.006 30.0C 5.5 1.9 C.457 0.108 -0.004 0.023 -0.001 4.4 C. 866 35.0C 4.6 J. 471 0.873 0.104 -0.010 J.023 -J.J02 5.6 1.6 40.00 5.7 4.9 0.485 C. 881 0.099 -0.007 0.022 -0.002 1.4 50.UC 5.7 0.9 5.9 C.514 0.896 0.088 0.012 0.321 0.003 0.910 60.00 5.5 0.3 7.3 C.547 0.380 0.031 0.019 0.008

64.00

80.0C

95.0C

100.00

10

HUR

5.4

5.0

6.2

7.3

-0.1

-1.8

-1.4

-0-4

7.8

10.1

11.5

11.7

C.556

C.564

0.533

0.511

0.913

0.914

Ú.891

0.878

0.078

0.086

0.132

0.167

0.033

0.040

0.090

0.143

0.019

0.022

0.032

0.037

0.008

0.010

0.022

0.032

TABLE IV. - DESIGN BLADE-ELEMENT PARAMETERS FOR BYPASS STATOR 65

	RAC IN 24.610	11	ABS	BETAM	REL	BETAM	TOTA	L TEMP	TOTAL	PRESS
ŔP	IN	OUT	ĪN	าบก	IN	OUT	IN	RATIO	IN	PAT 10
TIP	24.610	24.130	53.4	10.1	53.4	10.1	353.7	1.000	16.66	0.964
1	24.005	23.627	48.4 44.7	2.1	48.4	2.1	351.6	1.000	16.96	0.971
Ž	23.397	23.111	44.7	-2.0	44.7	- 2 A		1.000	17.18	
	22.174	22.044	40.3	-1.6	4.1. 3	-1.6			17.38	J.990
4	20.568	20.976	38.3	-1.3	38.3	-1 3	344.3	1.000		
5	20.367	20 445	37 8	-1 2	27 0	-1.3	343 4	1.000	17.33	0.992
6	10 770	10 017	37 3	-1.2	27 2	-1.2	343.4	1.000	17.26	0.992
7	19 502	10 885	36.0	-0.9	34 8	-1.2	340 4	1.000	17.12	
	22.174 20.968 20.367 19.770 18.592 17.425	17 866	34 3	-0.0	37.8 37.3 ,36.8 36.8	-0.0	339.2		17.02	
NUB	414427							1.000	17.02	0.770
	ABS	VEL	REL IN	VE L	MERI	D VËL	TAN	G VEL	WHEEL	SPEEC
RP	IN	OUT	IN	อบร	IN	OUT	IN	OUT	IN	CUT
TIP	213.5	169.0	213.5	169.0	127.2	166.4	171.5	29.5	0.	0.
1	225.3	180.1	225.3	180.1	149.6	17969	168.5	6.6	0.	0.
2	235.2	196.9	235.2	196.9	167.1	190.8	165.5	-6.7	ō.	o.
3	246.6	204.2	246.6	234.2	187.9	204.1	159.6	-5.6	0.	ā.
3	252.5	210.1	252.5	21 C - 1	198.1	210-1	156.7	-4.7	0.	0.
5	253.6	212.2	253.6	212.2	200.5	212.1	155.4	-4.3	0.	0.
5 6	254.0	214.4	254.0	214.4	202-1	214.3	154.0	-4.4	0.	0.
7	253.8	217.7	253-5	217.7	203.3	217.7	152.0	-2.9	n.	0.
HUB	257.1	220-0	253.1	220.0	202.7	219.4	TAN IN 171.5 168.5 165.5 159.6 156.7 155.4 154.0 152.0 151.6	12.6	0.	0.
		ACH NO	REL M	ACH NO	MERID M		STREAMLI			
RP			IN	วบา	IN	OUT	IN	OUT	VEL R	
TIP		C.458	0.585	0.458	C.349	0.451	-7.95	-8.86	1.309	
1	0.622		J.622		0.413		-5.65		1.203	
2	0.654	C.523		C.523			-3.74	-5.83	1.142	
3	0.692	0.565		C.565	C.528	0.565	~0.98	-3.78	1.086	
3 4 5		C.584		C. 584	C.559	0.584	1.34	-2.15	1.061	
5		C.591	0.717	C.591	0.567	0.591	2.46	-1.4Ž	1.058	
6	0.720	C.598			0.572	0.598	3.59	-0.74	1.061	
7	0.721	C.610	0.721	C.61(0.577	0.610	5.86	0 -48	1.071	
HUB	0.721	C.618	C.721	0.618	0.577	0.617	1.34 2.46 3.59 5.86 7.81	1.36	1.083	
	PERCENT	INC	IDENCE	DEV	D-FACT	eee	LCSS C	OFFE	LOSS P	A D A M
RP	SPAN	MEAN	SS	0 E ¥	J-1 4C1	Err	TCT	PRCF	TOT	PAGE
TIP	O.		- 14.J	25.2	0.392	0.		0.175		
1	5.00		-11.0	18.7	0.394			0.177	0.055	
	10 00	-4.0	-05	122	0 303				C. 039	
2 3 4	20.00	-4.0	-6.5	6 5	C.343		0.089 0.037		0.026	
3	20.00	-0.9	-5,5 -6'3	7.3	0.343				C. 01 C	
7	36.00	0.4	74.2	0.0	0.323	0.	0.028 0.027	0.028	0.008	0.008
5 6	35.00	0.8	- 5. 3	7.6	G.312	Ų•	0.027	0.021	C.036	
7	40 a00	1 · L	-3.6	7.5	0.299	0.	0.028	0.028	C. 006	
	50.00	1.2	-5.5 -4.2 -3.9 -3.6 -3.5	1.5	0.273	Ų.	0.060	0.060	0.014	
FUB	90.00	0.8	-3.8	11.5	C.240	0.	0.144	U . 144	C.031	Ç.031

TABLE V. - DESIGN BLADE-ELEMENT PARAMETERS FOR CORE STATOR 65

	RAC	11	ABS	BETAM	REL	BETAM	TOTA	L TEMP	TOTAL	PRESS
RP	· IN	OUT	EN.	aut	I N	CuT	[N	CITAR	IN	RATIC
TIP	16.530	16.274	41.7	22.3	41.7	22.3	339.2	1.000	17.02	0.963
9	16.037	15.772	41.2	18.8	41.2	18.8	338-7	1.000	16.98	0.975
10	14.030	13.822	39 • 6	15.1	39.6	15-1	338+3	1.000	16.89	3.991
11	17.184	12.C33	34.3	10.3	39.3	1 C - 3	341.7	1.000	17-13	0.961
HI/B	11.600	11.466	41.5	12.2	41.5	12.2	345.0	1.000	17-44	0.952
	Ans	VEL	REL	VEL .	MERT	VEL	TAN	G VEL	WHEEL	SPEEC
RP	IN	กบา	IN	OUT	IN-	OUT	I N	Out	IN	OUT
TIP	240.3	176.5	240.3	176.5	179.4	163.3	159.9	07.0	0.	0.
9	244.7	184.4	244.2	184.4	183.7	174.0	160.9	59.4	0.	0.
10	266.5	201.4	266.5	2C1 -4	205.2	194.5	170-1	52-4	j.	3.
11	305.5	2 C8 - 8	.305.5	268.8	236.3	205.4	193.5	37.3	0.	0.
HUB	326.5	218-5	326.5	218.5	244.4	213-5	216.4	46-1	0-	0•
	ABS M	ACH NO	REL M	ACH NO	MERID N	ACH NO	STREAMLE	NE SLOPE	MERIO	
RP	IN	OUT	IN	OUT	IN.	OUT	IN	OUT	VEL R	
TIP	0.680	0.489	C+0d0	0.489	J.5Ca	0.453	-4.79		0.910	
9	0.693	0.513	0.693	0.513	0.521	0.485	-4-84		0.950	
10	C.764	0.563	0.764	C-563	0.588	0.544	-1.92	-0.55	0.948	
11	0.887	3.582	J-687	0.502	1.686	0.573	0.86	-6.16	0.869	
HUB	0.953	0.608	C-953	C • 6C 8	0.714	0.594	1.92	-6.11	0.874	
	PERCENT	INC	DENCE	DEV	D-FACT	EFF	LCSS C	refe	LCSS P	AFAM
μP	SPAN	MEAN	SS	561			TOT	PROF.	1CT	PRCF
TIP	60.00	-1.7	-12.4	14-5	J-354	j.	0-140		C-C48	C.C41
9	64.00	-5.5	-10-2	9.5		0.	C-090	0.040	C.C3C	C. C3
			-4.6	0 · C	U-374	0.	C+028		0.009	0.00
10	8C.00	0.2	-4.0							
	8C.OO	1.4	-4.6	9.1	J-447	0.	0.098	0.098	0.026	0.02

TABLE VI. - BLADE GEOMETRY FOR INLET GUIDE VANE 65

ABLE	VI B	LADE	GEOM	IETRY	FOR 1	NLET	GUIDE	VANE	65
	PERCENT		11.		ADE, ANG		DELTA		
RP	SPAN		RO	KIC		KOC	INC	ANGLE	
TIP		25.870		-12.00		13.00		0.057	
1		25.246		-11.C1		12.13		0.151	
2		24.566		-9.76		11.09		-0.146	
3	20.	23.045		-6.61		8.53		-1.453	
4			21.465	-4.61		6.11		0.557	
5		20.585		-3.58		4.99		0.567	
. 6 7			15.800			3.86		0.701 1.044	
		18.045				1.53	-0-	1.376	
8 9		15.632				-1.85		1.505	
10		12.686				-6.22		2.014	
11	95.		9.536	6.79		-16.79		1.164	
HUB	100.	e.263	8.263	7.90		-19.90		0.057	
HUB	100.	6.203	C. 203	7.70		-17.70	-0.	0,031	
	BLADE	THICKN	ESSES		AXIAL D	IMENSIC	NS		
RP	TI	TM	TO	ZIC	ZMC		200		
TIP	0.102	C.325	C.168	-13.254	-11.697	7	-8.759		
1	0.102	0.325		-13.257			-8.754		
2	0.102	0.325		-13.260			-8.749		
3	0. 102	0.325		-13.265			-0.739		
4	0.102	0.325		-13.268			-8.732		
5	0.132	0.325		-13.269			-8.730		
6	0.102	C.325		- 13. 270			-B.729		
7	0.102	C-325		-13.273			-8.727		
8	0.102	0.325		-13.272			-8.726		
9	0.102			-13.272			-8.726		
10	0.102 0.102			-13.267 -13.238			-8.816 -8.791		
11 HUB				-13.220			-8.862		
HUB	0.102	C+325	0.100	-13+220	-11.69	•	-0.002		
	AERO	SETTING							
RP	CHORD	ANGL E	CAMBER	SOLIDIT	Y				
TIP	4.648	8.20	- 25.00	J. 658					
1	4.648	7.8C	-23.14	C. 674					
2	4.648	6.90	-20.85	J-692					
3	4.648		-15.14	C. 739					
4	4.648		-1C.7L	J. 793					
	4.648		-8.57	C. 825					
ŧ	4.648		-6.49						
7		C.9C	-2.48						
e	4.648		1.39						
5	4.648		2.66						
10	4.648	-4.1C	9.31						
11		-11.83	23.58						
FUB	4.648	-14.10	27.80	2.059	٠.				

TABLE VII. - BLADE GEOMETRY FOR ROTOR 65

	PERCENT	r RAI	110	RI AI	DE ANGL	FS	DELTA	CCNE
RP	SPAN	RI	RO	KIC	KTC	KOC	INC	ANGLE
TIP	0.		25.029	64.63	70.95	59.92	1.59	-9.437
1	5.	24.797	24.334	62.32	68.07	58.86		-10.857
2	10.	24.142	23.640	60.43	65.15	57.62	2.22	-11.036
3	20 -	22.707	22.25C	58.14	59.28	54.62	2 . 84	-8.889
4	30 .	21.218	26.861	55.91	53.25	51.16	3 - 58	-6.749
5	35.	20.461	20.166	54.80	5C.52	49.45	3.98	-5.442
6	40.	19.704	19.472	53.80	49. 38	47.57	4.28	-4.256
7	50.		18.082	52.02	48.27	43.07	4.73	-2.014
8	60.			50.38	47.95	37.24	5-18	-0.057
9	64.			49.67	46.39	34.05	5.47	
10		12.595		47.01	37.52	17.24	6.77	4.968
11	95.	10.894	11.83C	44.86	31.17	-4.37	7.54	13.481
HUB	100.	9.898	11.135	43.73	31.25	-14.38	7.68	17.467
	BLACE	E THÍCKI	VESSES	Α:	XIAL DI	MENSION	ıs	
RP	TI	TM	TO	ZIC	ZMC	ZTC	ZOC	
TIP	0.031	C.118	C.022	0.643	1.870	2-064	2.905	
1	0.031	0.134	C.022	0.595	1.509	2.115	3.004	
2	0.C31	C-148	C.022	0.545	1.943	2.152	3.121	
3	0.031	C-174	0.022	0.444	1.975	2.169	3.366	
4	0.031	C - 2U3	0.022	C.334	1.508	2.064	3.351	
5	0.031	C.217	0.022	0.301	1.508	2.037	3.398	
6	0.031	C • 226	0.023	C.257	1.907	2.000	3.422	
7 8	0.031 0.031	G-236 C-249	0.024	0.321	1.503	1.897	3.447 3.484	
9	0.031	C • 260	0.C26 C.C27	0.319 0.292	1.873	1.745	3.5484	
10	0.033	C.316	0.031	0.132	1.839	1.353	3.798	
ii	0.045	C • 365	C.04C	0.013	1.820	1.013	3.919	
HUB	0.051	C • 375	C.044	-6.	1.807	0.923	3.931	
				•••				
	AERO		S TOTAL				AREA	
RP	CHORD		CAMBER	SCLIDITY		PHISS	RATIO	
TIP	5.886	66.97	4.71	1.263		-1.56	1.052	
1	5.742	64.58	3.46	1.265		-1.25	1.044	
2	5.667	62.28 58.01	2.81 3.52	1.284 1.350		-0.60	1.039	
4	5.609 5.146	53.63	4.75	1.323		2.07 6.98	1.042	
5	5.026	51.52	5.35	1.323		8.69	1.090	
6	4.916	50.07	6.24	1.356		9.28	1.098	
ž	4.703	48.02	8.95	1.403		8.69	1.071	
ė	4.565	45.75	13.14	1.480		7.73	1.041	
9	4.521	43.85	15.62	1.518		8.56	1.038	
10	4.418	22.95	29.77	1.738		14.04	1.036	
11	4.336	20.67	49.23	2.065		16.85	1.043	
HUB	4.343	16.36	58.11	2.234		16.06	1.031	

TABLE VIII. - BLADE GEOMETRY FOR BYPASS STATOR 65

	PERCENT	RAE	11.	BLA	ADE ANGL	.es	DELTA	CONE
RP	SPAN	RI	RO	KIC		KOC	INC	ANGLE
TIP	υ.	24.610	24.130	63.05		-19.13	4.19	-10.418
ı	.5 .	24.005	23.627	54.96		-16.59	4.34	-7.928
2	10.	23.397	23.111	48.66		-14.36	4.45	-5.840
3		22.174		41.22		-11.06	4.58	-2.570
4		20.968		37.95		-9.92	4.65	J.176
5		26.367				-9.45	4.65	1.529
6		19.770		36.2€		-9.08		2.882
7		18.592		35.62		-8.67		
FUB	60.	17.429	17.866	35.9 3		-8.66	4.62	8.463
	BLACE	THICKN	ESSES	4	XIAL DI	MENSION	s	
βP	TI	TM	TO	ZIC	ZMC	-	ZOC	
TIP	0.029	G-144	C.C29	12.363	12.959		14.974	
1	0.029	0.144	C.025	12.276	13.123		14.991	
2	0.029	0.144	C. C29	12.211	13.216		15.006	
3	0.029	C - 144			13.216		15.034	
4	0.029		C.C29	12.123	13.217		15.040	
5	0.029		0.029	12.120	13.218		15.049	
6	0.029			12.109	13.217		15.046	
7		C.144		12.109	13.219		15.046	
HUB	0.029	0.144	0.029	12.109	13.219		15.046	
	AERO	SETTING	TOTAL				AREA	
RP	CHOKIC	ANGLE	CAMBER	SOLIDITY	,		RATIC	1
T 1P	2.840	15.30	E2.19	1.557			1.213	
1	2.901	17.00	71.56	1.630			1.175	
Ž	2.941	16.00	63.02	1.691			1.144	
2	2.987	14.55	52.29	1.807			1.106	
4	3.005	14.05	47.56	1.516			1.088	
5	3.01ú	13.85	46.44	1.976			1.083	
É	3.012	13.68	45.35	2.031			1.079	
7	3.015	13.60	44.25	2.152			1.072	
FUB	3.015	13.60	44.59	2.283			1.065	

TABLE IX. - BLADE GEOMETRY FOR CORE STATOR 65

	PERCENT	T RAI	110	BLA	DE ANGLES	CELT	A CONE
KP	SPAN	RI	RO	KIC	K	OC INC	ANGLE
TIP	60.	16.530	16.274	49.30	7	. 85 4 • 6	59 -6.784
9	64.	16.037	15.772	40.64	9.	.35 4.7	70 -6.941
10	80 •	14.030	13.832	39.35	9.	12 4-7	16 -4•987
11	45.	12.164	12.033	37.67	1	-20 4-7	12 -3.104
HUR	100•	11.600	11.460	33.35	-1	• 95 4 • 6	o6 -3•3o3
	PLAD	F THICKI	NESSES	Δ	XIAL DIMEN	SIONS	
RP					ZMC		C .
TIP					7.546		34
9					7.549		
					1.561		
					7.503		
HIIB					7.501		
	4500	CCTTIN	TOTAL			ARE	E A
			S TOTAL				ric
RF				SOLIDITY			099
TIP				1.335		1.0	
5				1.394			071
10	2.484	24.:13	30.23	1.589			044
			30.01	1.816			010
FLB	2.446	2C. 80	37.30	1.890		1.0	710

TABLE X. - OVERALL PERFORMANCE FOR STAGE 65A

(a) 100 Percent of design speed

Parameter			Reading		
	154	135	134	133	156
IGV TOTAL PRESSURE RATIO ROTOR TOTAL PRESSURE RATIO BP STATOR TOTAL PRESSURE RATIO CORE STATOR TOTAL PRESSURE RATIO IGV TOTAL TEMPERATURE RATIO ROTOR TOTAL TEMPERATURE RATIO OPS STATOR TOTAL TEMPERATURE RATIO CORE STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR MEAD-RISE COEFFICIENT FLOW COEFFICIENT HI FLOW PER UNIT FRONTAL AREA HI FLOW PER UNIT FRONTAL AREA HI FLOW AT ROTOR INLET HI FLOW AT ROTOR OUTLET HI FLOW AT ROTOR OUTLET HI FLOW AT CORE STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	0.995 1.666 0.948 0.948 1.001 1.180 0.998 0.874 0.824 0.226 0.380 171.58 191.07 36.07 36.07 37.70 25.39 10.73 12.93 18316.1	0.995 1.741 0.970 0.925 1.001 1.198 0.996 1.000 0.869 0.251 0.376 170.39 189.74 25.62 36.49 36.80 36.87 24.96 12.09 1333.3	0.995 1.807 0.963 0.943 1.001 1.212 0.995 1.000 0.870 0.273 0.368 167.82 186.88 35.28 35.28 35.28 35.28 35.28 12.06 13.26 12.43 12.06	0.995 1.835 0.962 0.945 1.001 1.219 0.997 0.999 0.864 0.829 0.282 0.559 164.84 185.56 35.68 35.08 23.61 11.96 11.96 18506.7	0.995 1.858 0.952 0.934 1.001 1.228 0.994 0.850 0.850 0.290 0.350 162.22 180.64 34.11 34.68 34.66 34.66 12.12 13.49 18334.7
COMPRESSOR PERFORMANCE			,		
BYPASS STAGE TOTAL PRESSURE RATIO CORE STAGE TOTAL PRESSURE RATIO BYPASS STAGE TOTAL TEMPERATURE RATIO CORE STAGE TOTAL TEMPERATURE RATIO BYPASS STAGE ADIABATIC EFFICIENCY CORE STAGE ADIABATIC EFFICIENCY BYPASS RATIO	1,537 1,559 1,175 1,183 0,746 0,741 2,38	1.679 1.587 1.199 1.187 0.800 0.755 2.30	1.762 1.623 1.220 1.189 0.800 0.786 2.22	1.801 1.637 1.232 1.190 0.787 0.796 2.14	1.810 1.623 1.241 1.191 0.767 0.777 2.03

(b) 97 Percent of design speed

Parameter	Reading			
	124	123	128	
IGY TOTAL PRESSURE RATIO . ROTOR TOTAL PRESSURE RATIO BP STATOR TOTAL PRESSURE RATIO CORE STATOR TOTAL PRESSURE RATIO IGY TOTAL TEMPERATURE RATIO ROTOR TOTAL TEMPERATURE RATIO BP STATOR TOTAL TEMPERATURE RATIO CORE STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR MEAD-RISE COEFFICIENT FLOM COEFFICIENT HIT FLOM PER UNIT FRONTAL AREA HIT FLOM PER UNIT FRONTAL AREA HIT FLOM AT ROTOR INLET HIT FLOM AT ROTOR INLET HIT FLOM AT ROTOR INLET HIT FLOM AT BOTOR OUTLET HIT FLOM AT BP STATOR OUTLET HIT FLOM AT CORE STATOR OUTLET HIT FLOM AT CORE STATOR OUTLET HIT FLOM AT CORE STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	0.995 1.709 0.976 1.000 1.191 0.996 0.865 0.864 0.256 0.864 0.256 0.865 34.85 35.47 35.87 35.16 24.17 11.52 12.64 17750.3	0.995 1.781 0.962 0.984 1.000 1.208 0.997 0.998 0.8631 0.280 0.573 159.74 177.88 33.51 134.58 34.57 23.04 10.96 12.20 17774.5	0.995 1.793 0.958 1.000 1.213 0.998 0.998 0.854 0.853 0.286 0.345 156.52 174.30 32.91 33.84 33.84 35.47 22.25 11.21 12.36 17737.5	
COMPRESSOR PERFORMANCE				
BYPASS STAGE TOTAL PRESSURE RATIO CORE STAGE TOTAL PRESSURE RATIO BYPASS STAGE TOTAL TEMPERATURE RATIO CORE STAGE TOTAL TEMPERATURE RATIO BYPASS STAGE ADIABATIC EFFICIENCY CORE STAGE ADIABATIC EFFICIENCY BYPASS RATIO	1.660 1.596 1.194 1.173 0.804 0.824 2.26	1.745 1.646 1.219 1.176 0.789 0.869 2.18	1.754 1.644 1.226 1.178 0.771 0.857 2.09	

TABLE X. - Continued. OVERALL PERFORMANCE FOR STAGE 65A

(c) 90 Percent of design speed

Parameter			Reading		
	99	85	97	84	89
IGY TOTAL PRESSURE RATIO ROTOR TOTAL PRESSURE RATIO BP STATOR TOTAL PRESSURE RATIO CORE STATOR TOTAL PRESSURE RATIO IGY TOTAL TEMPERATURE RATIO ROTOR TOTAL TEMPERATURE RATIO BP STATOR TOTAL TEMPERATURE RATIO CORE STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT HIT FLOM PER UNIT ANNULUS AREA HIT FLOM PER UNIT ANNULUS AREA HIT FLOM AT ROTOR INLET HIT FLOM AT ROTOR INLET HIT FLOM AT ROTOR OUTLET HIT FLOM AT BP STATOR OUTLET HIT FLOM AT CORE STATOR INLET HIT FLOM AT CORE STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	0.995 1.505 0.971 0.981 1.000 1.144 0.997 0.998 0.860 0.852 0.213 0.377.98 175.92 33.22 33.22 23.25 10.69 11.78 16485.7	0.995 1.532 0.974 0.981 1.000 1.150 0.998 0.861 0.857 0.224 0.373 156.94 174.77 33.60 33.62 33.90 10.92 11.87 16494.2 90.0	0.995 1.611 0.971 1.000 1.169 1.000 0.858 0.256 0.352 167.72 31.67 32.17 32.56 32.16 21.70 10.59 11.50 16525.3	0.995 1.602 0.971 0.992 1.000 1.167 0.995 1.000 0.862 0.254 0.355 150.51 167.61 31.65 32.20 32.48 32.03 21.95 10.47 11.30	0.996 1.640 0.969 0.990 1.000 1.178 0.997 1.000 0.851 1.000 0.851 1.42.54 158.73 29.97 30.50 30.50 20.59 10.14 11.02
COMPRESSOR PERFORMANCE					
BYPASS STAGE TOTAL PRESSURE RATIO CORE STAGE TOTAL PRESSURE RATIO BYPASS STAGE TOTAL TEMPERATURE RATIO CORE STAGE TOTAL TEMPERATURE RATIO BYPASS STAGE ADIABATIC EFFICIENCY CORE STAGE ADIABATIC EFFICIENCY BYPASS RATIO	1.435 1.491 1.141 1.141 0.769 0.860 2.34	1.474 1.501 1.148 1.143 0.791 0.860 2.27	1.579 1.543 1.175 1.149 0.795 0.888 2.18	1.567 1.541 1.171 1.148 0.803 0.890 2.26	1.621 1.540 1.191 1.150 0.776 0.876 2.20

(d) 80 Percent of design speed

Parameter			Reading		
	114	115	91	92	116
IGV TOTAL PRESSURE RATIO ROTOR TOTAL PRESSURE RATIO BP STATOR TOTAL PRESSURE RATIO CORE STATOR TOTAL PRESSURE RATIO IGV TOTAL TEMPERATURE RATIO ROTOR TOTAL TEMPERATURE RATIO BP STATOR TOTAL TEMPERATURE RATIO CORE STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR MEAD-RISE COEFFICIENT FLOW COEFFICIENT HIT FLOW PER UNIT FRONTAL AREA HIT FLOW PER UNIT ANNULUS AREA HIT FLOW AT ROTOR UNLET HIT FLOW AT ROTOR UNLET HIT FLOW AT ROTOR UNLET HIT FLOW AT ROTOR OUTLET HIT FLOW AT ROTOR OUTLET HIT FLOW AT CORE STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	0.996 1.347 0.968 9.984 1.001 1.102 0.997 0.873 0.867 0.186 0.373 143.44 30.16 30.56 30.57 21.40 9.85 10.41	0.996 (.355) 0.917 0.993 1.001 1.103 1.000 0.998 0.875 0.189 0.366 141.55 157.62 29.76 30.27 30.59 30.17 22.15 8.91 9.24	0.997 1.425 0.979 0.992 1.001 1.125 0.998 0.860 0.857 0.229 0.353 130.08 144.85 27.84 28.12 27.89 19.43 9.00 9.29 14616.7 79.8	0.997 1.422 0.974 0.988 1.001 1.131 0.997 0.299 0.299 0.299 118.54 132.01 24.92 25.67 25.40 17.58 8.24 8.24 79.9	0.998 1.429 0.968 0.985 1.002 1.158 0.997 0.780 0.755 0.274 109.66 122.33 23.10 25.44 25.74 25.74 26.77 7.77 7.77 7.77 7.79 9.99
COMPRESSOR PERFORMANCE					
BYPASS STAGE TOTAL PRESSURE RATIO CORE STAGE TOTAL PRESSURE RATIO BYPASS STAGE TOTAL TEMPERATURE RATIO CORE STAGE TOTAL TEMPERATURE RATIO BYPASS STAGE ADIABATIC EFFICIENCY CORE STAGE ADIABATIC EFFICIENCY BYPASS RATIO	1.275 1.372 1.099 1.106 0.729 0.893 2.45	1.218 1.389 1.101 1.109 0.574 0.900 2.91	1.400 1.388 1.128 1.111 0.790 0.884 2.45	1.389 1.386 1.138 1.112 0.711 0.875 2.39	1.390 1.384 1.150 1.112 0.659 0.873 2.29

TABLE X. - Concluded. OVERALL PERFORMANCE FOR STAGE 65A

(e) 70 Percent of design speed

Parameter		Reading	
	77	78	86
IGY TOTAL PRESSURE RATIO ROTOR TOTAL PRESSURE RATIO BP STATOR TOTAL PRESSURE RATIO CORE STATOR TOTAL PRESSURE RATIO IGV TOTAL TEMPERATURE RATIO ROTOR TOTAL TEMPERATURE RATIO BP STATOR TOTAL TEMPERATURE RATIO CORE STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR MEAD-RISE COEFFICIENT FLOW COEFFICIENT HIT FLOW PER UNIT FRONTAL AREA HIT FLOW PER UNIT ANNULUS AREA HIT FLOW AT ORIFICE HIT FLOW AT ROTOR OUTLET HIT FLOW AT ROTOR OUTLET HIT FLOW AT CORE STATOR OUTLET HIT FLOW STATOR OUTLET HIT FLOW AT CORE STATOR OUTLET HIT FLOW STAT	0.997 1.233 0.968 0.993 1.000 1.071 1.001 0.997 0.870 0.164 0.365 125.55 125.55 126.40 26.88 27.11 27.01 19.53 8.33 8.33 8.33 8.33	0.998 1.289 0.985 0.996 1.000 1.001 0.998 0.999 0.814 0.204 0.316 110.84 125.43 23.30 23.73 23.65 16.89 7.57 7.68 12833.9	0.998 1.315 0.978 0.998 1.000 1.104 0.998 0.786 0.774 0.223 0.277 98.44 109.62 20.70 21.16 20.92 14.84 6.68 6.65 12839.8
COMPRESSOR PERFORMANCE			
BYPASS STAGE TOTAL PRESSURE RATIO CORE STAGE TOTAL PRESSURE RATIO BYPASS STAGE TOTAL TEMPERATURE RATIO CORE STAGE TOTAL TEMPERATURE RATIO BYPASS STAGE ADIABATIC EFFICIENCY CORE STAGE ADIABATIC EFFICIENCY BYPASS RATIO	1.169 1.272 1.067 1.078 0.683 0.906 2.74	1.261 1.287 1.091 1.084 0.748 0.887 2.6	1.289 1.285 1.108 1.086 0.695 0.868 2.54

(f) 40 Percent of design speed

Parameter		Reading	
	81	82	83
ICY TOTAL PRESSURE RATIO ROTOR TOTAL PRESSURE RATIO BP STATOR TOTAL PRESSURE RATIO CORE STATOR TOTAL PRESSURE RATIO ICY TOTAL TEMPERATURE RATIO ROTOR TOTAL TEMPERATURE RATIO BP STATOR TOTAL TEMPERATURE RATIO CORE STATOR TOTAL TEMPERATURE RATIO ROTOR ADIABATIC EFFICIENCY ROTOR MOMENTUM-RISE EFFICIENCY ROTOR HEAD-RISE COEFFICIENT HIT FLOM PER UNIT FRONTAL AREA HIT FLOM PER UNIT FRONTAL AREA HIT FLOM AT ORIFICE HIT FLOM AT ROTOR OUTLET HIT FLOM AT ROTOR OUTLET HIT FLOM AT ROTOR OUTLET HIT FLOM AT CORE STATOR INLET HIT FLOM AT CORE STATOR INLET HIT FLOM AT CORE STATOR OUTLET HIT FLOM AT CORE STATOR OUTLET HIT FLOM AT CORE STATOR OUTLET ROTATIVE SPEED PERCENT OF DESIGN SPEED	0.999 1.052 0.981 0.997 1.000 1.017 1.001 0.997 0.848 0.875 0.113 0.875 0.113 0.370 76.49 85.17 16.08 16.35 16.45 16.26 12.72 4.29 4.20 7343.6	0.999 1.088 0.994 0.998 1.000 1.000 0.998 0.809 0.809 0.190 0.299 60.29 67.13 12.68 12.89 12.95 12.83 9.57 7355.5	0.999 1.092 0.987 1.001 1.034 0.999 0.741 0.752 0.198 0.226 47.53 52.93 9.99 10.14 9.95 10.29 6.59 5.86 3.73 7376.1
COMPRESSOR PERFORMANCE			
BYPASS STAGE TOTAL PRESSURE RATIO CORE STAGE TOTAL PRESSURE RATIO BYPASS STAGE TOTAL TEMPERATURE RATIO CORE STAGE TOTAL TEMPERATURE RATIO BYPASS STAGE ADIABATIC EFFICIENCY CORE STAGE ADIABATIC EFFICIENCY BYPASS RATIO	1.020 1.084 1.015 1.024 0.376 0.950 . 3.8	1.080 1.088 1.030 1.027 0.731 0.900 3.08	1.076 1.087 1.037 1.026 0.566 0.916 1.93

(a) 100 Percent of design speed; reading 154

RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 5 4 5 6 7 8 9 10 11	RP 1 25 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10 1!
PERCENT SPAN 5.00 10.00 20.00 30.00 40.00 50.00 60.00 64.00 80.00 95.00	ABS IN 0.525 0.532 0.544 0.559 0.565 0.567 0.585 0.587	ABS IN 174.2 176.3 179.9 184.6 186.4 187.7 190.0 191.9 192.5 193.1 193.2	RAD IN 25.245 24.567 23.045 21.420 20.584 19.743 18.044 16.327 15.634 12.687 9.446
INCI MEAN 11.0 9.8 6.6 4.6 3.6 2.6 0.9 -0.4 -5.1 -6.8	ACH NO 0.622 0.628 0.602 0.594 0.598 0.581 0.575 0.576	VEL OUT 204.7 206.3 198.1 195.7 195.0 193.5 191.6 188.9 188.1 188.1	0UT 25.258 24.554 22.931 21.466 20.630 19.799 18.128 16.436 15.753
DENCE	REL M IN 0,525 0,532 0,544 0,559 0,565 0,565 0,587 0,585 0,587	REL IN 174.2 176.3 179.9 184.6 186.4 187.7 190.0 191.9 192.5 193.1	ABS IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DEV -4.6 -4.1 -1.7 0.1 0.6 1.1 1.5 2.1 2.5 4.6	0.622 0.628 0.602 0.594 0.592 0.588 0.581 0.573 0.575 0.571	VEL 0UT 204.7 206.3 198.1 195.7 195.0 193.5 191.6 188.9 188.9 189.8 189.8	BETAM OUT 7.5 7.0 6.9 6.2 5.6 5.0 2.9 1.2 0.2 -3.7
D FACT061067012 0.012 0.016 0.021 0.019 0.025 0.021 0.041 0.084	MERID M IN 0.525 0.532 0.544 0.559 0.565 0.567 0.583 0.585 0.587	MERII 1N 174.2 176.3 179.9 184.6 186.4 187.7 190.0 191.9 192.5 193.1	REL IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
EFF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	ACH NO 0U17 0.624 0.598 0.591 0.585 0.585 0.573 0.575 0.558	D VEL 0UT 203.0 204.8 196.7 194.5 194.1 192.8 191.3 188.9 188.9 189.4 183.9	BETAM OUT 7.5 7.0 6.9 6.2 5.6 5.0 2.9 1.2 0.2 -3.7
LOSS TOT 0.083 0.023 0.022 0.019 0.016 0.018 0.013 0.017 0.017 0.021 0.068		IN 0.0 0.0	TOTAL IN 289.5 289.0 288.6 287.8 287.8 287.9 287.9 287.7 287.6
COEFF PROF 0.083 0.023 0.022 0.019 0.016 0.018 0.017 0.017 0.021		G VEL 0UT 26.9 25.1 23.7 21.0 18.9 16.8 9.6 3.9 -12.4 -39.7	TEMP RATIO 1.002 1.002 1.001 1.002 1.003 1.002 1.001 1.001 1.001
LOSS TOT 0.016 0.015 0.012 0.010 0.011 0.007 0.008 0.008 0.019	MERID VEL 65 1.162 1.095 1.054 1.041 1.027 1.007 0.981 0.981	HHEEL 1N 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	TOTAL IN 10.11 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.14
PARAM PROF 0.061 0.015 0.012 0.011 0.007 0.008 0.008 0.009		SPEED OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	PRESS RATIO 0.986 0.996 0.996 0.997 0.996 0.997 0.996 0.998

(b) 100 Percent of design speed; reading 135

RP 1 2 3 4 5 6 7 8 9	RP 1 2 5 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10 11
PERCENT INC SPAN MEAN 5.00 11.0 10.00 9.8 20.00 6.6 30.00 4.6 35.00 3.6 40.00 2.6 50.00 1.0 60.00 -0.4 64.00 -0.8 80.00 -3.1 95.00 -6.8	ABS MACH NO IN OUT 0.519 0.616 0.527 0.621 0.538 0.595 0.564 0.586 0.565 0.582 0.572 0.574 0.577 0.565 0.580 0.565 0.579 0.564 0.578 0.559	ABS VEL JN 0UT 172.4 202.9 174.9 204.1 178.2 196.0 183.0 193.5 184.8 195.0 186.4 191.7 188.6 189.4 190.1 186.3 190.8 186.3 190.6 186.1 190.2 184.6	RAD11 IN OUT 25.245 25.258 24.567 24.554 23.045 22.931 21.420 21.466 20.584 20.630 19.743 19.799 18.044 18.128 16.327 16.436 15.634 15.753 12.687 12.842 9.446 9.535
-4.8 -4.3 -2.5 -0.7 -0.4 0.0 0.3 1.0 1.1	REL MACH NO IN OUT 0.519 0.616 0.527 0.621 0.538 0.595 0.554 0.588 0.560 0.586 0.565 0.582 0.572 0.574 0.577 0.565 0.580 0.565 0.579 0.564 0.578 0.559	REL VEL IN OUT 172.4 202.9 174.9 204.1 178.2 196.0 183.0 193.5 184.8 193.0 186.4 191.7 188.6 189.4 190.1 186.3 190.8 186.3 190.6 186.1 190.2 184.6	ABS BETAM IN OUT 0.0 7.3 0.0 6.6 0.0 6.6 0.0 5.4 0.0 3.9 0.0 1.6 0.0 0.0 0.0 -4.7 -0.0 -12.9
D FACT EFF066 0.000067 0.000022 0.000 0.005 0.000 0.012 0.000 0.013 0.000 0.020 0.000 0.029 0.000 0.054 0.000 0.090 0.000	MERID MACH NO IN OUT 0.519 0.611 0.527 0.617 0.538 0.592 0.564 0.585 0.560 0.584 0.565 0.580 0.572 0.565 0.580 0.565 0.579 0.562 0.578 0.545	MERID VEL 1N OUT 172.4 201.2 174.9 202.7 178.2 194.9 183.0 192.7 184.8 192.4 186.4 191.2 188.6 189.3 190.1 186.3 190.8 186.3 190.6 185.4 190.2 179.9	3 0.0 6.8 0.0 6.0 1 0.0 5.4 0.0 4.6 0.0 3.9 0.0 1.8 0.0 0.0 7 0.0 -0.7
LOSS COEFF TOT PROF 0.075 0.075 0.019 0.019 0.023 0.023 0.020 0.020 0.016 0.016 0.017 0.017 0.013 0.013 0.017 0.017 0.017 0.017 0.021 0.021 0.065 0.065		TANG VEL 1N OUT 0.0 25.8 0.0 24.2 0.0 20.6 0.0 18.1 0.0 15.5 0.0 13.1 0.0 6.0 0.0 0.1 0.0 -2.4 0.0 -15.2 -0.0 -41.4	TOTAL TEMP IN RATIO 289.3 1.002 289.2 1.001 288.6 1.001 288.1 1.002 288.0 1.002 288.2 1.001 287.9 1.002 287.6 1.002 287.6 1.002 287.6 1.002 287.6 1.002 287.7 1.002
LOSS PARAM TOT PRGF 0.055 0.055 0.014 0.014 0.015 0.015 0.013 0.013 0.009 0.009 0.010 0.010 0.007 0.007 0.008 0.008 0.008 0.008 0.008 0.008 0.018 0.018	MERID VEL R 1.167 1.159 1.094 1.053 1.041 1.026 1.003 0.980 0.976 0.973 0.946	WHEEL SPEED IN OUT 0.0	TOTAL PRESS IN RATIO 10.11 0.987 10.13 0.997 10.13 0.996 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.996 10.13 0.996 10.13 0.996

(c) 100 Percent of design speed; reading 134

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 25.245 25.258 24.567 24.554 23.045 22.931 21.420 21.466 20.584 20.630 19.743 19.799 18.044 18.128 16.327 16.436 15.634 15.753 12.687 12.842 9.446 9.535	ABS BETAM IN OUT 0.0 7.3 0.0 6.6 0.0 6.1 0.0 5.4 0.0 4.8 0.0 3.8 0.0 1.7 0.0 0.1 0.0 -0.7 0.0 -12.9	0.0 7.3 0.0 6.6 0.0 6.1 0.0 5.4 0.0 4.8 0.0 3.8 0.0 1.7 0.0 0.1 0.0 -0.7 0.0 -4.7	TOTAL TEMP IN RATIO 289.3 1.002 289.1 1.001 288.6 1.001 287.9 1.002 287.9 1.002 287.9 1.002 287.9 1.001 287.7 1.001 287.8 1.001 287.8 1.001	TOTAL PRESS IN RATIO 10.11 0.987 10.13 0.996 10.13 0.996 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.997
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL 1N OUT 169.1 197.0 171.5 199.4 175.2 192.2 179.8 190.0 181.4 189.2 182.9 187.9 184.7 185.6 186.3 182.4 185.8 182.0 185.5 181.2 185.0 179.2	REL VEL IN OUT 169.1 197.0 171.5 199.4 175.2 192.2 179.8 190.0 181.4 189.2 182.9 187.9 184.7 185.6 186.3 182.4 185.8 182.0 185.5 181.2 185.0 179.2	MERID VEL IN OUT 169.1 195.4 171.5 198.1 175.2 191.1 179.8 189.2 181.4 188.6 182.9 187.5 184.7 185.5 186.3 182.4 185.8 182.0 185.5 180.6 185.0 174.7	TANG VEL IN OUT 0.0 25.1 0.0 22.8 0.0 20.5 0.0 17.8 0.0 15.7 0.0 12.5 0.0 5.6 0.0 0.2 0.0 -2.3 0.0 -15.0 0.0 -40.1	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.509 0.597 0.516 0.606 0.529 0.583 0.544 0.576 0.554 0.574 0.554 0.570 0.560 0.562 0.565 0.552 0.563 0.551 0.563 0.548 0.561 0.542	REL MACH NO IN OUT 0.509 0.597 0.516 0.606 0.529 0.583 0.544 0.576 0.549 0.574 0.554 0.570 0.560 0.562 0.565 0.552 0.563 0.551 0.563 0.548 0.561 0.542	MERID MACH NO IN OUT 0.509 0.592 0.516 0.602 0.529 0.580 0.544 0.574 0.564 0.568 0.560 0.562 0.565 0.552 0.563 0.551 0.563 0.561 0.528		MERID VEL R 1.155 1.155 1.052 1.052 1.059 1.025 1.025 0.979 0.980 0.973
RP 1 2 3 4 5 6 7 8 9 10	PERCENT INCI SPAN MEAN 5.00 11.0 10.00 9.8 20.00 6.6 30.00 4.6 35.00 3.6 40.00 2.6 50.00 0.9 60.00 -0.4 64.00 -0.8 80.00 -3.1 95.00 -6.8	DENCE DEV -4.8 -4.5 -2.4 -0.7 -0.2 -0.1 0.2 1.1 1.5 3.9	D FACT EFF055 0.000066 0.000018 0.000 0.016 0.000 0.011 0.000 0.012 0.000 0.011 0.000 0.021 0.000 0.026 0.000 0.054 0.000 0.092 0.000	LOSS COEFF TOT PROF 0.083 0.083 0.023 0.023 0.023 0.023 0.020 0.020 0.017 0.017 0.018 0.018 0.013 0.013 0.017 0.017 0.016 0.016 0.021 0.021 0.065 0.065	LOSS PARAM TOT PROF 0.061 0.061 0.016 0.016 0.015 0.015 0.013 0.013 0.010 0.010 0.010 0.010 0.007 0.007 0.008 0.008 0.008 0.008 0.008 0.008

(d) 100 Percent of design speed; reading 133

RP 1 2 5 4 5 6 7 8 9 10	RADII IN OUT 25.245 25.258 24.567 24.554 23.045 22.931 21.420 21.466 20.584 20.630 19.743 19.799 18.044 18.128 16.327 16.436 15.634 15.753 12.687 12.842 9.446 9.535	ABS BETAM IN OUT 0.0 7.2 0.0 6.4 0.0 6.1 0.0 5.2 0.0 4.4 0.0 3.6 0.0 1.7 0.0 -0.1 0.0 -0.8 0.0 -4.7 0.0 -13.1	0.0 6.4 0.0 6.1 0.0 5.2 0.0 4.4 0.0 3.6 0.0 1.7 0.0 -0.1 0.0 -0.8	TOTAL TEMP IN RATIO 289.3 1.002 289.2 1.001 288.5 1.001 288.1 1.002 287.9 1.002 287.9 1.001 287.9 1.001 287.9 1.001 287.8 1.000 287.8 1.000	TOTAL PRESS IN RATIO 10.11 0.986 10.13 0.996 10.13 0.996 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.998 10.13 0.998
RP 1 2 3 4 5 6 7 8 9 10	ABS VEL IN OUT 165.0 191.1 167.2 193.3 170.2 186.4 174.4 184.4 176.5 184.2 177.8 183.5 179.9 181.5 181.2 178.9 181.4 178.8 180.5 178.4	REL VEL IN OUT 165.0 191.1 167.2 193.3 170.2 186.4 174.4 184.4 176.5 184.2 177.8 181.5 181.2 178.9 181.4 178.8 180.5 178.4 180.0 176.0	MERID VEL IN OUT 165.0 189.6 167.2 192.1 170.2 185.3 174.4 183.7 176.5 183.6 177.8 183.1 179.9 181.4 181.2 178.9 181.4 178.7 180.5 177.8 180.0 171.4	TANG VEL IN OUT 0.0 23.9 0.0 21.6 0.0 19.9 0.0 16.6 0.0 14.3 0.0 11.6 0.0 5.3 0.0 -0.4 0.0 -2.6 0.0 -14.7 0.0 -39.8	HHEEL SPEED IN OUT 0.0
RP 1 2 3 4 5 6 7 8 9 10	ABS MACH NO IN OUT 0.495 0.578 0.503 0.586 0.513 0.564 0.527 0.558 0.555 0.544 0.549 0.544 0.549 0.544 0.549 0.541 0.546 0.540 0.545 0.532	REL MACH NO IN OUT 0.495 0.578 0.503 0.586 0.513 0.564 0.527 0.558 0.533 0.557 0.538 0.555 0.544 0.549 0.549 0.541 0.549 0.541 0.546 0.540 0.545 0.532	MERID MACH NO IN OUT 0.495 0.574 0.503 0.582 0.513 0.561 0.527 0.556 0.538 0.556 0.538 0.554 0.544 0.549 0.544 0.549 0.549 0.541 0.549 0.540 0.546 0.538 0.545 0.518		MERID VEL R 1,149 1,149 1,089 1,053 1,040 1,030 1,008 0,987 0,985 0,985 0,985
RP 1 25 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 11.0 10.00 9.8 20.00 6.6 30.00 4.6 35.00 3.6 40.00 2.6 50.00 1.0 60.00 -0.4 64.00 -0.8 80.00 -5.1 95.00 -6.8	DENCE DEV -4.9 -4.7 -2.4 -0.9 -0.5 -0.2 0.1 0.9 1.0 1.5 3.7	D FACT EFF051 0.000063 0.000017 0.000 0.003 0.000 0.006 0.000 0.006 0.000 0.007 0.000 0.014 0.000 0.021 0.000 0.042 0.000 0.084 0.000	LOSS COEFF TOT PROF 0.091 0.091 0.024 0.024 0.024 0.024 0.021 0.021 0.018 0.018 0.017 0.017 0.013 0.013 0.017 0.017 0.017 0.017 0.017 0.017 0.020 0.020 0.062 0.062	LOSS PARAM TOT PROF 0.067 0.067 0.017 0.017 0.016 0.016 0.013 0.013 0.011 0.011 0.010 0.010 0.007 0.007 0.008 0.008 0.008 0.008 0.007 0.007 0.017 0.017

TABLE XI. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR

INLET GUIDE VANE 65

(e) 100 Percent of design speed; reading 156

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 25.245 25.258 24.567 24.554 23.045 22.931 21.420 21.466 20.584 20.630 19.743 19.799 18.044 18.128 16.327 16.436 15.634 15.753 12.687 12.842 9.446 9.535	ABS BETAM IN OUT 0.0 9.7 0.0 8.7 0.0 8.4 0.0 7.1 0.0 6.4 0.0 5.6 0.0 3.8 0.0 1.7 0.0 1.1 0.0 -3.1 0.0 -3.1	REL BETAM IN OUT 0.0 9.7 0.0 8.7 0.0 8.4 0.0 7.1 0.0 6.4 0.0 5.6 0.0 3.8 0.0 1.7 0.0 1.1 0.0 -3.1	TOTAL TEMP IN RATIO 289.5 1.002 289.1 1.001 288.6 1.002 288.1 1.002 287.8 1.002 287.8 1.002 287.8 1.001 287.6 1.002 287.8 1.001 287.7 1.001	TOTAL PRESS IN RATIO 10.10 0.986 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.997 10.14 0.997 10.14 0.997 10.14 0.996 10.13 0.989
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 159.8 183.1 162.6 186.9 165.7 180.3 170.2 179.1 172.3 179.0 174.3 178.4 176.4 177.0 177.9 174.5 177.6 174.2 177.2 173.6 176.3 172.0	REL VEL IN OUT 159.8 183.1 162.6 186.9 165.7 180.3 170.2 179.1 172.3 179.0 174.3 178.4 176.4 177.0 177.9 174.5 177.6 174.2 177.2 173.6 176.3 172.0	MERID VEL IN OUT 159.8 180.5 162.6 184.7 165.7 178.4 170.2 177.7 172.3 177.9 174.3 177.6 176.4 176.6 177.9 174.4 177.6 174.2 177.2 173.3 176.3 168.6	TANG VEL IN OUT 0.0 30.7 0.0 28.4 0.0 26.3 0.1 22.2 0.1 19.8 0.0 17.5 0.1 11.7 0.1 5.2 0.1 5.2 0.1 -9.3 0.1 -9.3	HHEEL SPEED IN OUT 0.0
RP 1 2 5 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.479 0.553 0.488 0.565 0.498 0.545 0.513 0.541 0.526 0.539 0.533 0.535 0.538 0.527 0.537 0.526 0.536 0.524 0.533 0.519	REL MACH NO IN OUT 0.479 0.553 0.488 0.565 0.545 0.541 0.526 0.539 0.533 0.535 0.538 0.527 0.536 0.526 0.536 0.524 0.533 0.519	MERID MACH NO 1N OUT 0.479 0.545 0.488 0.559 0.537 0.537 0.526 0.535 0.535 0.538 0.526 0.537 0.526 0.536 0.523 0.533 0.528 0.535 0.528 0.523 0.533 0.509		MERID VEL R 1.129 1.136 1.076 1.044 1.033 1.019 1.001 0.981 0.981
RP 1 2 3 4 5 6 7 8 9 10	PERCENT INCI SPAN MEAN 5.00 11.0 10.00 9.8 20.00 6.6 30.00 4.6 35.00 3.6 40.00 2.6 50.00 1.0 60.00 -0.4 64.00 -0.8 80.00 -3.1 95.00 -6.8	-2.5 -2.3 -0.1 1.0 1.4 1.8 2.3 2.7 2.9 3.2 5.4	D FACT EFF003 0.000023 0.000 0.019 0.000 0.031 0.000 0.035 0.000 0.035 0.000 0.032 0.000 0.033 0.000 0.033 0.000 0.037 0.000 0.040 0.000 0.078 0.000	LOSS COEFF TOT PROF 0.096 0.096 0.025 0.023 0.028 0.028 0.024 0.024 0.020 0.020 0.018 0.018 0.014 0.014 0.016 0.016 0.018 0.018 0.020 0.020 0.061 0.061	LOSS PARAM TOT PROF 0.070 0.070 0.017 0.017 0.019 0.019 0.015 0.015 0.012 0.012 0.011 0.011 0.007 0.007 0.007 0.007 0.008 0.008 0.008 0.008 0.017 0.017

(f) 97 Percent of design speed; reading 124

(g) 97 Percent of design speed; reading 123

RP 1 2 3 4 5 6 7 8 9 1 0 1 1 1 RP 1 2	RADII IN OUT 25.245 25.258 24.567 24.554 23.045 22.931 21.420 21.466 20.584 20.630 19.743 19.799 18.044 18.128 16.327 16.436 15.634 15.753 12.687 12.842 9.446 9.535 ABS VEL IN OUT 157.8 181.4 160.0 183.9	ABS BETAM IN OUT 0.0 7.3 0.0 6.4 0.0 5.0 0.0 4.4 0.0 3.6 0.0 1.6 0.0 -0.2 0.0 -13.4 REL VEL IN OUT 157.8 181.4 160.0 185.9	IN OUT 2 0.0 7.2 4 0.0 6.4 2 0.0 6.2 0.0 5.1 4 0.0 4.4 5 0.0 3.6 6 0.0 1.6 6 0.0 -0.4	289.0 1.002 288.9 1.001 288.6 0.999 288.2 1.000 288.0 1.000 287.8 1.000 287.8 1.000 287.9 0.999 287.8 0.999 287.9 0.998	IN RA 10.11 0. 10.13 0. 10.13 0. 10.13 0. 10.13 0. 10.13 0. 10.13 0. 10.13 0. 10.13 0.
5 4 5 6 7 8 9 1 1	163.2 177.6 166.7 176.1 168.6 176.0 170.0 175.2 171.9 173.6 172.7 171.4 172.8 171.1 172.4 170.9 172.0 168.4	163.2 177.6 166.7 176.1 168.6 176.0 170.0 175.2 171.9 173.6 172.7 171.4 172.8 171.1 172.4 170.9 172.0 168.4 REL MACH NO	163.2 176.5 166.7 175.4 168.6 175.4 170.0 174.9 171.9 173.5 172.7 171.4 172.8 171.0 172.4 170.2 172.0 163.8 MERID MACH NO	0.0 19.2 0.0 15.6 0.0 13.5 0.0 10.9 0.0 4.7 0.0 -1.2 0.0 -3.5 0.0 -15.1 0.0 -39.1	0.0 (0.0 (0.0 (0.0 (0.0 (0.0 (0.0 (0.0
RP 1 2 3 4 5 6 7 8 9 10 11	IN OUT 0.473 0.547 0.480 0.556 0.490 0.536 0.502 0.532 0.508 0.532 0.513 0.529 0.519 0.524 0.521 0.518 0.522 0.517 0.520 0.516 0.519 0.508	IN OUT 0.473 0.547 0.480 0.556 0.490 0.536 0.502 0.532 0.513 0.529 0.519 0.524 0.521 0.518 0.522 0.517 0.520 0.516 0.519 0.508			VEL R 1.141 1.142 1.082 1.052 1.041 1.028 1.009 0.992 0.990 0.997 0.952
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 11.0 10.00 9.8 20.00 6.6 30.00 4.6 35.00 3.6 40.00 2.6 50.00 1.0 60.00 -0.4 64.00 -0.8 80.00 -3.1 95.00 -6.8	DENCE DEV -4.9 -4.7 -2.3 -1.0 -0.6 -0.3 0.0 0.6 0.7 1.1 3.4	D FACT EFF 043 0.000057 0.000009 0.000 0.003 0.000 0.005 0.000 0.007 0.000 0.011 0.000 0.019 0.000 0.042 0.000 0.085 0.000	LOSS COEFF TOT PROF 0.089 0.089 0.024 0.024 0.029 0.029 0.025 0.025 0.020 0.020 0.018 0.018 0.014 0.014 0.017 0.017 0.018 0.018 0.021 0.021 0.064 0.064	LOSS PARATOT PRO 0.066 0.017 0.020 0.015 0.015 0.010 0.011 0.000 0.008 0.000 0.008 0.000 0.017 0.008 0.008 0.008 0.008 0.008 0.0017 0.008 0.008 0.0017 0.008 0.008 0.0017 0.008 0.00017 0.008 0.0017 0.008 0.0017 0.008 0.0017 0.008 0.0017 0.008 0.0017 0.008 0.0017 0.008 0.008 0.0017 0.008 0.008 0.0000 0.008 0.0000 0.008 0.0000 0.

(h) 97 Percent of design speed; reading 128

RP 1 2 3 4 5 6 7 8 9 10	RADII IN OUT 25.245 25.258 24.567 24.554 23.045 22.931 21.420 21.466 20.584 20.630 19.743 19.799 18.044 18.128 16.327 16.436 15.634 15.753 12.687 12.842 9.446 9.535	ABS BETAM IN OUT 0.0 7.0 0.0 6.4 0.0 6.3 0.0 5.4 0.0 3.6 0.0 1.5 0.0 -0.4 0.0 -1.2 0.0 -4.9 0.0 413.1	0.0 6.4 0.0 6.3 0.0 5.4 0.0 4.5 0.0 3.6 0.0 1.5 0.0 -0.4 0.0 -1.2	TOTAL TEMP IN RATIO 289.2 1.001 288.9 1.001 288.4 1.000 288.0 1.001 287.9 1.001 287.9 1.000 287.8 1.000 288.0 0.999 288.0 0.999 287.9 0.999 287.9 0.999	TOTAL PRESS IN RATIO 10.11 0.989 10.13 0.996 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.989
RP 1 2 5 4 5 6 7 8 9 1 1 1	ABS VEL IN OUT 153.4 175.5 155.9 177.7 158.7 170.5 162.7 170.4 165.6 170.1 167.7 168.7 169.4 167.0 169.6 166.7 168.7 166.5 167.9 164.4	REL VEL 1N OUT 153.4 175.5 155.9 177.7 158.7 171.9 162.7 170.5 164.1 170.4 165.6 170.1 167.7 168.7 169.4 167.0 169.6 166.7 168.7 166.5 167.9 164.4	MERID VEL IN OUT 153.4 174.2 155.9 176.6 158.7 170.9 162.7 169.8 164.1 169.8 165.6 169.8 167.7 168.7 169.4 167.0 169.6 166.7 168.7 165.9 167.9 160.1	TANG VEL IN OUT 0.0 21.5 0.0 19.7 0.0 18.9 0.0 15.4 0.0 10.6 0.0 4.5 0.0 -1.3 0.0 -5.4 0.0 -14.4 0.0 -37.3	WHEEL SPEED IN OUT 0.0
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.459 0.529 0.467 0.536 0.477 0.518 0.489 0.514 0.494 0.513 0.505 0.509 0.511 0.503 0.501 0.502 0.509 0.502 0.506 0.495	REL MACH NO 1N OUT 0.459 0.529 0.467 0.536 0.477 0.518 0.489 0.514 0.494 0.514 0.499 0.513 0.505 0.509 0.511 0.503 0.511 0.502 0.509 0.502 0.509 0.502	MERID MACH NO IN OUT 0.459 0.525 0.467 0.533 0.477 0.515 0.489 0.512 0.494 0.512 0.505 0.509 0.511 0.503 0.511 0.502 0.509 0.500 0.506 0.482		MERID VEL R 1,136 1,133 1,077 1,044 1,035 1,026 1,006 0,986 0,983 0,984 0,954
RP 1 2 3 4 5 6 7 8 9 10 1 1	PERCENT INC SPAN MEAN 5.00 11.0 10.00 9.8 20.00 6.6 30.00 4.6 355.00 3.6 40.00 2.6 50.00 1.0 60.00 -0.4 64.00 -0.8 80.00 -3.1 95.00 -6.8	-5.1 -4.7 -2.2 -0.8 -0.5 -0.3 -0.0 0.6 0.7 1.3	D FACT EFF 041 0.000048 0.000003 0.000 0.014 0.000 0.011 0.000 0.010 0.000 0.008 0.000 0.018 0.000 0.026 0.000 0.045 0.000 0.083 0.000	LOSS COEFF TOT PROF 0.085 0.085 0.027 0.027 0.030 0.030 0.027 0.027 0.022 0.022 0.019 0.019 0.014 0.014 0.017 0.017 0.017 0.017 0.019 0.019 0.067 0.067	LOSS PARAM TOT PROF 0.062 0.062 0.019 0.020 0.017 0.017 0.013 0.013 0.011 0.011 0.007 0.007 0.008 0.008 0.008 0.008 0.007 0.007 0.018 0.018

(i) 90 Percent of design speed; reading 99

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 25.245 25.258 24.567 24.554 23.045 22.931 21.420 21.466 20.584 20.630 19.743 19.799 18.044 18.128 16.327 16.436 15.634 15.753 12.687 12.842 9.446 9.535	ABS BETAM IN OUT -0.0 7.1 -0.0 6.3 -0.0 6.3 -0.0 5.4 -0.0 4.5 -0.0 3.7 -0.0 1.6 -0.0 -0.3 -0.0 -1.0 -0.0 -4.9 -0.0 -12.6	-0.0 6.3 -0.0 6.3 -0.0 5.4 -0.0 4.5 -0.0 1.6 -0.0 -0.3 -0.0 -1.0 -0.0 -4.9	TOTAL TEMP IN RATIO 289.2 1.001 288.9 1.000 288.5 1.000 287.9 1.000 287.8 1.000 287.9 0.999 287.9 0.999 287.9 0.999 287.9 0.999	TOTAL PRESS IN RATIO 10.11 0.988 10.13 0.995 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.9986
RP 1 2 5 4 5 6 7 8 9 11 1	ABS VEL IN OUT 154.8 177.1 157.3 179.8 160.5 173.8 164.2 172.6 165.5 172.1 167.2 171.8 169.3 170.7 170.9 168.8 171.3 168.8 171.9 168.9 172.0 165.8	REL VEL IN OUT 154.8 177.1 157.3 179.8 160.5 173.8 164.2 172.6 165.5 172.1 167.2 171.8 169.3 170.7 170.9 168.8 171.3 168.8 171.9 168.9 172.0 165.8	MERID VEL IN OUT 154.8 175.7 157.3 178.7 160.5 172.8 164.2 171.8 165.5 171.6 167.2 171.4 169.3 170.7 170.9 168.8 171.3 168.8 171.9 168.3 172.0 161.8	TANG VEL IN OUT -0.0 22.0 -0.0 19.8 -0.0 18.9 -0.1 16.4 -0.0 13.6 -0.0 11.1 -0.0 4.7 -0.0 -0.9 -0.0 -2.8 -0.0 -14.5 -0.0 -36.2	WHEEL SPEED IN OUT 0.0
RP 1 2 5 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.464 0.534 0.472 0.543 0.482 0.524 0.521 0.499 0.519 0.504 0.518 0.511 0.515 0.516 0.509 0.517 0.509 0.517 0.509 0.519 0.510 0.519 0.500	REL MACH NO IN OUT 0.464 0.534 0.472 0.543 0.482 0.524 0.494 0.521 0.499 0.519 0.504 0.518 0.511 0.515 0.516 0.509 0.517 0.509 0.519 0.510 0.519 0.500	MERID MACH NO IN OUT 0.464 0.530 0.472 0.539 0.482 0.521 0.494 0.518 0.494 0.518 0.504 0.517 0.511 0.515 0.516 0.509 0.517 0.509 0.519 0.508 0.519 0.488		MERID VEL R 1.135 1.136 1.077 1.047 1.025 1.008 0.987 0.985 0.979
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 11.0 10.00 9.7 20.00 6.6 30.00 4.6 35.00 3.6 40.00 2.6 50.00 0.9 60.00 -0.4 64.00 -0.8 80.00 -3.1 95.00 -6.8	-5.0 -4.8 -2.3 -0.7 -0.5 -0.2 0.0 0.7 0.9 1.3	D FACT EFF038 0.000052 0.000003 0.000 0.012 0.000 0.012 0.000 0.012 0.000 0.015 0.000 0.023 0.000 0.049 0.000 0.095 0.000	LOSS COEFF TOT PROF 0.089 0.089 0.028 0.028 0.031 0.031 0.025 0.025 0.020 0.020 0.017 0.017 0.014 0.014 0.016 0.016 0.017 0.017 0.020 0.020 0.085 0.085	LOSS PARAM TOT PROF 0.066 0.066 0.020 0.020 0.021 0.021 0.016 0.016 C.012 0.012 0.010 0.010 0.007 0.007 0.008 0.008 0.008 0.008 0.007 0.007 0.023 0.023

INLET GUIDE VANE 65

(j) 90 Percent of design speed; reading 85

RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10 11	RP: 234567891011	RP 1 2 3 4 5 6 7 8 9 10 11
PERCENT SPAN 5.00 10.00 20.00 35.00 40.00 50.00 60.00 80.00 95.00	ABS MA IN 0.461 0.469 0.480 0.492 0.497 0.501 0.512 0.513	ABS IN 154.1 156.5 159.7 163.5 165.0 166.2 168.0 169.6 169.7	RAD IN 25.245 24.567 23.045 21.420 20.584 19.743 18.044 16.327 15.634 12.687 9.446
INC I MEAN 11.0 9.8 6.6 4.6 3.6 2.6 1.0 -0.4 -0.8 -3.1	ACH NO 0.017 0.530 0.539 0.521 0.517 0.516 0.515 0.511 0.503 0.503 0.493	VEL 0UT 175.9 175.9 171.6 171.2 170.7 169.5 167.0 166.9 163.5	0UT 25.258 24.554 22.931 21.466 20.630 19.799 18.128 16.436 15.753
DENCE	REL M 1N 0.461 0.469 0.480 0.492 0.501 0.506 0.512 0.513	REL IN 154.1 156.5 159.7 163.5 165.0 166.2 168.0 169.6 169.7 169.9	ABS IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DEV -4.8 -4.5 -2.1 -0.7 -0.3 -0.0 0.1 0.8 1.6 4.6	ACH NO 0.530 0.559 0.5517 0.516 0.515 0.515 0.503 0.503 0.493	VEL OUT 175.9 178.7 172.9 171.6 171.2 170.7 169.5 167.0 166.9	BETAM OUT 7.4 6.6 6.4 5.4 4.7 3.8 1.6 -0.2 -0.8 -4.7 -12.2
D FACT033047001 0.013 0.014 0.013 0.006 0.018 0.023 0.048 0.096	MERID M IN 0.461 0.469 0.480 0.492 0.501 0.506 0.512 0.513	MERI IN 154.1 156.5 159.7 163.5 165.0 166.2 168.0 169.7 169.7	1N 0.0 0.0 0.0 0.0 0.0 0.0 0.0
EFF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.526 0.536 0.518 0.515	D VEL 0UT 174.5 177.5 171.8 170.6 170.6 170.3 169.4 166.9 166.5 159.8	DETAM OUT 7.4 6.6 6.4 5.4 4.7 3.8 1.6 -0.2 -0.8 -4.7
LOSS TOT 0.095 0.030 0.034 0.028 0.022 0.017 0.020 0.019 0.021 0.087		TAN IN 0.1 0.1 0.1 0.1 0.0 0.1 0.1	TOTAL IN 269.2 288.9 288.5 288.1 287.9 287.9 287.8 287.8 287.8
COEFF PROF 0.095 0.030 0.034 0.028 0.022 0.022 0.017 0.020 0.021 0.087		G VEL OUT 22.6 20.6 19.4 16.1 13.9 11.4 4.7 -0.6 -2.4 -13.6 -34.6	TEMP RATIO 1.001 1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.999
LOSS 1 707 0.070 0.022 0.023 0.017 0.013 0.013 0.009 0.010 0.009 0.008	MERID VEL R 1,132 1,134 1,075 1,034 1,024 1,009 0,984 0,984 0,979 0,940	WHEEL IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0	TOTAL IN 10.11 10.13 10.13 10.13 10.13 10.13 10.13 10.13
PARAM PROF 0.070 0.022 0.023 0.017 0.013 0.013 0.019 0.010 0.009		SPEED OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0	RAT10 0.987 0.996 0.995 0.997 0.997 0.997 0.997 0.997

(k) 90 Percent of design speed; reading 97

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 25.245 25.258 24.567 24.554 23.045 22.931 21.420 21.466 20.584 20.630 19.743 19.799 18.044 18.128 16.327 16.436 15.634 15.753 12.687 12.842 9.446 9.535	ABS BETAM IN OUT 0.0 7.1 -0.0 6.5 -0.0 5.6 0.0 4.5 -0.0 3.7 -0.0 1.4 -0.0 -0.2 -0.0 -0.9 -0.0 -12.8	IN OUT 0.0 7.1 -0.0 6.5 -0.0 6.7 -0.0 5.6 0.0 4.5 -0.0 3.7 -0.0 1.4 -0.0 -0.2 -0.0 -0.9 -0.0 -5.0	TOTAL TEMP IN RATIO 289.2 1.002 288.9 1.001 288.4 1.001 288.0 1.001 288.0 1.000 287.9 0.999 287.9 0.999 287.9 0.998 287.9 0.998 287.9 0.998	TOTAL PRESS IN RATIO 10.11 0.988 10.13 0.996 10.13 0.995 10.13 0.997 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998
RP 1 2 5 4 5 6 7 8 9 1 1 1	ABS VEL 1N OUT 146.2 166.2 148.0 168.5 150.9 163.1 154.1 161.9 155.5 161.8 156.8 161.4 159.1 160.8 160.2 159.0 160.6 159.1 159.8 158.4 159.7 154.5	REL VEL IN OUT 146.2 166.2 148.0 168.5 150.9 163.1 161.9 155.5 161.8 156.8 161.4 159.1 160.8 160.2 159.0 160.6 159.1 159.8 158.4 159.7 154.5	MERID VEL IN OUT 146.2 164.9 148.0 167.4 150.9 162.0 154.1 161.2 155.5 161.3 156.8 161.1 159.1 160.7 160.2 159.0 160.6 159.0 159.8 157.8 159.7 150.7	TANG VEL IN OUT 0.0 20.5 -0.0 19.1 -0.0 19.7 -0.0 15.7 -0.0 10.5 -0.0 3.9 -0.0 -0.5 -0.0 -13.9 -0.0 -34.2	MHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 234 5 6 7 8 9 11 1	ABS MACH NO IN OUT 0.437 0.499 0.443 0.507 0.452 0.490 0.463 0.487 0.467 0.486 0.471 0.486 0.478 0.484 0.482 0.478 0.483 0.479 0.481 0.477 0.480 0.464	REL MACH NO 1N OUT 0.437 0.499 0.443 0.507 0.452 0.490 0.463 0.487 0.471 0.487 0.471 0.486 0.478 0.484 0.482 0.478 0.483 0.479 0.481 0.477 0.481 0.464	MERIO MACH NO 1N OUT 0.437 0.495 0.443 0.503 0.452 0.487 0.463 0.485 0.467 0.485 0.471 0.485 0.478 0.484 0.482 0.478 0.483 0.478 0.481 0.475 0.480 0.453		MERID VEL R 1.128 1.131 1.074 1.046 1.037 1.027 1.010 0.992 0.990 0.987
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 11.0 10.00 9.8 20.00 6.6 30.00 4.6 35.00 3.6 40.00 2.6 50.00 0.9 60.00 -0.4 64.00 -0.8 80.00 -3.1 95.00 -6.8	-5.0 -4.6 -1.8 -0.6 -0.5 -0.1 -0.2 0.8 0.9	D FACT EFF033 0.000045 0.000 0.004 0.000 0.014 0.000 0.009 0.000 0.003 0.000 0.009 0.000 0.0017 0.000 0.0017 0.000 0.0017 0.000 0.0017 0.000 0.0017 0.000	LOSS COEFF TOT PROF 0.094 0.094 0.031 0.031 0.035 0.035 0.026 0.026 0.019 0.019 0.017 0.017 0.013 0.016 0.016 0.016 0.017 0.017 0.019 0.019 0.083 0.083	LOSS PARAM TOT PROF 0.069 0.069 0.023 0.023 0.024 0.024 0.017 0.017 0.011 0.011 0.010 0.010 0.007 0.007 0.008 0.008 0.008 0.008 0.007 0.007 0.023 0.023

(l) 90 Percent of design speed; reading 84

RP 1 2 3 4 5 6 7 8 9 10	RADII 1N OUT 25.245 25.258 24.567 24.554 23.045 22.931 21.420 21.466 20.584 20.630 19.743 19.799 18.044 18.128 16.327 16.436 15.634 15.753 12.687 12.842 9.446 9.535	ABS BETAM IN OUT 0.0 7.5 0.0 6.8 0.0 7.0 0.0 5.8 0.0 4.7 0.0 3.7 0.0 1.5 0.0 -0.0 0.0 -0.7 0.0 -12.4	0.0 6.8 0.0 7.0 0.0 5.8 0.0 4.7 0.0 3.7 0.0 1.5 0.0 -0.0 0.0 -0.7 0.0 -4.7	TOTAL TEMP IN RATIO 289.1 1.001 288.9 1.001 288.5 1.001 288.0 1.000 288.0 1.000 287.9 1.000 287.9 0.999 287.9 0.999 287.8 0.999 287.8 1.000	TOTAL PRESS IN RATIO 10.11 0.988 10.13 0.995 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.997 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.988
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 145.5 165.5 147.9 168.3 151.0 163.4 154.7 162.1 156.2 161.3 159.0 160.2 160.3 158.3 160.8 158.0 160.6 157.6 160.7 154.3	REL VEL IN OUT 145.5 165.5 147.9 168.3 151.0 163.4 154.7 162.1 156.2 162.0 156.9 161.3 159.0 160.2 160.3 158.3 160.8 158.0 160.6 157.6 160.7 154.3	MERID VEL IN OUT 145.5 164.1 147.9 167.1 151.0 162.2 154.7 161.3 156.2 161.5 156.9 160.9 159.0 160.2 160.3 158.3 160.8 158.0 160.6 157.1 160.7 150.7	TANG VEL IN OUT 0.0 21.7 0.1 20.0 0.1 16.4 0.1 13.3 0.1 10.5 0.1 4.3 0.1 -0.1 0.1 -2.0 0.1 -12.8 0.1 -33.0	HHEEL SPEED IN OUT 0.0
RP 1 2 5 4 5 6 7 8 9 10 11	ABS MACH NO 1N OUT 0.435 0.497 0.442 0.506 0.452 0.491 0.464 0.487 0.469 0.487 0.471 0.485 0.478 0.482 0.482 0.476 0.484 0.475 0.483 0.463	REL MACH NO IN OUT 0.435 0.497 0.442 0.506 0.452 0.491 0.464 0.487 0.469 0.487 0.471 0.485 0.478 0.482 0.482 0.476 0.484 0.475 0.483 0.463	MERID MACH NO IN / OUT 0.435 0.493 0.442 0.503 0.452 0.488 0.464 0.485 0.469 0.486 0.471 0.484 0.478 0.482 0.482 0.476 0.484 0.475 0.483 0.472 0.483 0.453		MERID VEL R 1.128 1.130 1.074 1.043 1.034 1.025 1.008 0.988 0.983 0.978
RP 1 23 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 11.0 10.00 9.8 20.00 6.6 30.00 4.6 35.00 3.6 40.00 2.6 50.00 1.0 60.00 -0.4 64.00 -0.8 80.00 -3.1 95.00 -6.8	DENCE DEV -4.6 -4.3 -1.5 -0.3 -0.1 0.0 1.0 1.1 1.6 4.4	D FACT EFF027 0.000040 0.000 0.007 0.000 0.019 0.000 0.014 0.000 0.011 0.000 0.006 0.000 0.013 0.000 0.023 0.000 0.049 0.000 0.097 0.000	LOSS COEFF TOT PROF 0.099 0.099 0.037 0.037 0.035 0.035 0.028 0.028 0.021 0.021 0.021 0.021 0.016 0.016 0.018 0.018 0.020 0.020 0.021 0.021 0.021 0.021	LOSS PARAM TOT PROF 0.073 0.073 0.026 0.026 0.024 0.024 0.017 0.017 0.013 0.013 0.012 0.012 0.008 0.008 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008

INLET GUIDE VANE 65

(m) 90 Percent of design speed; reading 89

RP 1 2 3 4 5 6 7 8 9 10	RADII IN OUT 25.245 25.258 24.567 24.554 23.045 22.931 21.420 21.466 20.584 20.630 19.743 19.799 18.044 18.128 16.327 16.436 15.634 15.753 12.687 12.842 9.446 9.535	ABS BETAM IN OUT 0.0 7.7 0.0 7.5 0.0 7.9 0.0 6.3 0.0 5.0 0.0 3.9 0.0 1.7 0.0 0.0 0.0 -0.7 0.0 -4.6 0.0 -12.2	IN OUT 0.0 7.7 0.0 7.5 0.0 7.9 0.0 6.3 0.0 5.0 0.0 3.9 0.0 1.7 0.0 0.0 0.0 -0.7 0.0 -4.6	TOTAL TEMP IN RATIO 289.1 1.001 288.7 1.002 288.3 1.002 287.9 1.001 288.0 1.000 287.9 1.000 287.9 1.000 287.8 0.999 287.8 0.999 287.8 0.999 287.9 1.000	TOTAL PRESS IN RATIO 10.12 0.989 10.13 0.996 10.13 0.997 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998
RP 1 2 5 4 5 6 7 8 9 11 1	ABS VEL IN OUT 136.9 153.7 156.3 141.4 152.0 144.1 151.2 145.5 151.1 147.0 150.8 148.4 150.0 150.2 148.1 150.3 148.3 150.0 148.1 149.7 144.7	REL VEL IN OUT 136.9 153.7 156.3 141.4 152.0 144.1 151.2 145.5 151.1 147.0 150.8 148.4 150.0 150.2 148.1 150.3 148.3 150.0 148.1 149.7 144.7	148.4 149.9 150.2 148.1 150.3 148.2	TANG VEL IN OUT 0.1 20.5 0.0 20.3 0.1 20.9 0.1 16.6 0.1 13.2 0.0 1 4.3 0.1 0.1 -1.9 0.1 -11.8 0.0 -30.7	WHEEL SPEED IN OUT 0.0
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.408 0.460 0.414 0.468 0.423 0.455 0.431 0.453 0.436 0.453 0.440 0.452 0.445 0.450 0.450 0.444 0.451 0.445 0.450 0.444	REL MACH NO IN OUT 0.408 0.460 0.414 0.468 0.423 0.455 0.431 0.453 0.436 0.453 0.446 0.452 0.445 0.450 0.450 0.444 0.451 0.445 0.450 0.444 0.451 0.445	MERID MACH NO IN OUT 0.408 0.456 0.414 0.464 0.423 0.451 0.431 0.450 0.436 0.451 0.440 0.451 0.445 0.450 0.450 0.444 0.451 0.445 0.450 0.443 0.449 0.423		MERID VEL R 1.113 1.118 1.065 1.043 1.035 1.023 1.010 0.986 0.986 0.984
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 11.0 10.00 9.8 20.00 6.6 30.00 4.6 35.00 3.6 40.00 2.6 40.00 -0.4 64.00 -0.8 80.00 -3.1 95.00 -6.8	-4.5 -3.6 -0.6	D FACT EFF 012 0.000022 0.000 0.025 0.000 0.016 0.000 0.015 0.000 0.015 0.000 0.014 0.000 0.014 0.000 0.020 0.000 0.042 0.000 0.091 0.000	LOSS COEFF TOT PROF 0.104 0.104 0.037 0.037 0.037 0.037 0.027 0.027 0.018 0.018 0.015 0.015 0.017 0.017 0.018 0.018 0.085 0.085	LOSS PARAM TOT PROF 0.077 0.077 0.026 0.026 0.025 0.025 0.017 0.017 0.011 0.011 0.010 0.010 0.007 0.007 0.007 0.007 0.008 0.008 0.007 0.007 0.023 0.023

(n) 80 Percent of design speed; reading 114

RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 5 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 1 1 1	RP 1 2 3 4 5 6 7 8 9 10
PERCENT INC. SPAN MEAN 5.00 11.00 10.00 9.8 20.00 6.6 30.00 4.6 35.00 3.6 40.00 2.6 50.00 1.0 60.00 -0.4 80.00 -3.1 95.00 -6.8	ABS MACH NO IN OUT 0.409 0.460 0.415 0.469 0.424 0.461 0.433 0.457 0.438 0.457 0.442 0.456 0.448 0.453 0.452 0.448 0.453 0.448 0.455 0.448	ABS VEL IN OUT 137.0 153.7 139.0 156.7 141.7 153.9 144.8 152.6 146.3 152.3 147.4 151.9 149.4 151.2 150.7 149.4 150.9 149.5 151.6 149.2 151.8 146.3	RADII IN OUT 25.245 25.258 24.567 24.554 23.045 22.931 21.420 21.466 20.584 20.650 19.743 19.799 18.044 18.128 16.327 16.436 15.634 15.753 12.687 12.842 9.446 9.535
DENCE DEV -4.4 -3.9 -1.8 -1.1 -0.8 -0.4 0.1 0.8 1.3 4.0	REL MACH NO IN OUT 0.409 0.460 0.415 0.469 0.424 0.461 0.433 0.457 0.438 0.457 0.442 0.456 0.448 0.453 0.452 0.448 0.455 0.448 0.455 0.447	REL VEL IN OUT 137.0 153.7 139.0 156.7 141.7 153.9 144.8 152.6 146.3 152.3 147.4 151.9 149.4 151.2 150.7 149.4 150.9 149.5 151.6 149.2 151.8 146.3	ABS BETAM IN OUT 0.0 70.0 70.0 60.0 50.0 4. 0.0 3. 0.0 -10.0 -00.0 -1. 0.0 -4.
D FACT EFF009 0.000025 0.000001 0.000 0.005 0.000 0.004 0.000 0.006 0.000 0.003 0.000 0.010 0.000 0.018 0.000 0.047 0.000 0.096 0.000	MERID MACH NO IN OUT 0.409 0.456 0.415 0.466 0.424 0.458 0.433 0.456 0.438 0.456 0.442 0.455 0.448 0.455 0.448 0.453 0.452 0.448 0.455 0.448 0.455 0.448	139.0 155.4 141.7 152.9 144.8 152.0 146.3 151.9 147.4 151.6 149.4 151.1 150.7 149.4 150.9 149.4 151.6 148.6	IN OUT
LOSS COEFF TOT PROF 0.097 0.097 0.038 0.038 0.025 0.025 0.020 0.020 0.015 0.015 0.016 0.016 0.012 0.012 0.016 0.016 0.016 0.016 0.018 0.018 0.081 0.081		TANG VEL IN OUT 0.0 20.8 -0.0 19.7 -0.0 18.0 -0.0 13.4 -0.0 11.0 0.0 9.2 0.0 4.2 -0.0 -0.5 -0.0 -2.6 0.0 -12.7 0.0 -32.4	TOTAL TEMP IN RATIO 289.1 1.003 288.7 1.003 288.3 1.002 288.2 1.001 288.0 1.000 288.0 1.000 288.0 0.999 287.9 0.999 287.9 0.999 287.9 0.999 287.9 0.999 287.9 1.000
LOSS PARAM TOT PROF 0.071 0.071 0.027 0.027 0.017 0.017 0.012 0.012 0.009 0.010 0.007 0.007 0.008 0.008 0.007 0.007 0.007 0.007 0.007 0.007	MERID VEL R 1,111 1,118 1,079 1,049 1,039 1,028 1,012 0,991 0,990 0,981 0,940	WHEEL SPEED IN OUT 0.0	TOTAL PRESS IN RATIO 10.11 0.989 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.989

(o) 80 Percent of design speed; reading 115

ABS MACH NO REL MACH NO MERID MACH NO RP IN OUT IN OUT IN OUT 10 OL402 0.455 0.402 0.455 0.402 0.448 0.408 0.465 0.408 0.465 0.408 0.459 0.417 0.456 0.417 0.456 0.417 0.452 0.426 0.451 0.426 0.451 0.426 0.451 0.426 0.451 0.426 0.451 0.426 0.451 0.426 0.451 0.426 0.451 0.450 0.451 0.450 0.451 0.450 0.451 0.450 0.451 0.450 0.451 0.450 0.451 0.450 0.451 0.450 0.451 0.450 0.451 0.450 0.451 0.450 0.451 0.450 0.451 0.450 0.451 0.450 0.451 0.450 0.451 0.450 0.451 0.450 0.451 0.450 0.451 0
MERID VEL R 1.111 1.120 1.083 1.053 1.040 1.030 1.012 0.990 0.987 0.975 0.975 0.932 LOSS PARAM TOT PROF 0.074 0.029 0.017 0.017 0.011

INLET GUIDE VANE 65

(p) 80 Percent of design speed; reading 91

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 25.245 25.258 24.567 24.554 23.045 22.931 21.420 21.466 20.584 20.630 19.743 19.799 18.044 18.128 16.327 16.436 15.634 15.753 12.687 12.842 9.446 9.535	IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0	BETAM OUT 9.4 8.8 7.6 5.5 4.6 3.9 1.8 0.1 -0.7 -4.5 -12.3	1N 0.0 0.0 0.0 0.0 0.0 0.0 0.0	BETAM OUT 9.4 8.8 7.6 5.5 4.6 3.9 1.8 0.1 -0.7 -4.5 -12.3	TOTAL TEMP IN RATIO 288.9 1.005 288.6 1.005 288.3 1.002 288.1 1.001 288.0 1.000 288.0 0.999 288.0 0.999 288.0 0.999 288.0 0.999 287.9 1.000	TOTAL PRESS (N RATIO 10.12 0.990 10.13 0.998 10.13 0.999 10.13 0.999 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 122.1 136.9 123.7 140.0 126.4 137.7 128.9 135.8 130.0 135.5 131.1 135.2 132.7 134.0 134.2 132.3 134.7 132.3 134.8 131.6 134.8 128.8	REL IN 122.1 123.7 126.4 128.9 130.0 131.1 132.7 134.2 134.7 134.8	VEL OUT 136.9 140.0 137.7 135.8 135.5 135.2 134.0 132.3 131.6 128.8	MERI IN 122.1 123.7 126.4 128.9 130.0 131.1 132.7 134.2 134.8 134.8	D VEL OUT 135.1 138.4 136.5 135.2 135.0 134.9 133.9 132.3 132.3 132.3	TANG VEL IN OUT 0.0 22.3 0.0 21.4 0.1 18.2 0.0 13.0 0.1 10.8 0.1 9.2 0.1 4.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	WHEEL SPEED IN OUT 0.0
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.363 0.408 0.417 0.377 0.411 0.384 0.405 0.391 0.404 0.396 0.401 0.395 0.402 0.395 0.403 0.394	REL M IN 0.365 0.368 0.377 0.384 0.398 0.391 0.402 0.403 0.403	ACH NO OUT 0.408 0.417 0.411 0.405 0.405 0.404 0.395 0.395 0.395 0.393	MERID M IN 0.363 0.368 0.377 0.384 0.391 0.396 0.401 0.402 0.403	0.402 0.402 0.402 0.407 0.404 0.403 0.403 0.403 0.403 0.395 0.395 0.395 0.395		MERID VEL. R 1.107 1.119 1.080 1.049 1.039 1.029 1.010 0.986 0.985 0.974 0.934
RP 1 23 4 5 6 7 8 9 10 11	PERCENT INC SPAN MEAN 5.00 11.0 10.00 9.8 20.00 6.6 30.00 4.6 35.00 3.6 40.00 2.7 50.00 1.0 60.00 -0.4 64.00 -0.6 80.00 -3.1 95.00 -6.8		DEV -2.7 -2.3 -0.9 -0.6 -0.4 0.0 0.3 1.1 1.2 1.7 4.5	D FACT 0.014007 0.008 0.010 0.008 0.010 0.007 0.014 0.023 0.052 0.101	EFF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	LOSS COEFF TOT PROF 0.114 0.114 0.043 0.043 0.023 0.023 0.017 0.017 0.015 0.015 0.015 0.015 0.013 0.013 0.015 0.015 0.016 0.016 0.018 0.018 0.076 0.076	LOSS PARAM TOT PROF 0.083 0.083 0.083 0.031 0.031 0.016 0.016 0.011 0.011 0.009 0.009 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

(q) 80 Percent of design speed; reading 92

RP 1 2 3 4 5 6 7 8 9 10	RADII IN OUT 25.245 25.258 24.567 24.554 23.045 22.931 21.420 21.466 20.584 20.630 19.743 19.799 18.044 18.128 16.327 16.436 15.634 15.753 12.687 12.842 9.446 9.535	ABS BETAM IN OUT 0.0 9.7 0.0 8.9 0.0 7.8 0.0 5.5 0.0 4.6 0.0 3.8 0.0 1.7 0.0 -0.2 0.0 -0.8 0.0 -4.4 0.0 -12.3	REL BETAM IN OUT 0.0 9.7 0.0 8.9 0.0 7.8 0.0 5.5 0.0 4.6 0.0 3.8 0.0 1.7 0.0 -0.2 0.0 -0.8 0.0 -4.4 0.0 -12.3	TOTAL TEMP IN RATIO 288.8 1.007 288.5 1.006 288.1 1.001 288.2 1.000 288.0 1.000 288.0 1.000 288.0 1.000 288.0 1.000 288.0 1.000 288.0 1.000 288.0 1.000 288.0 1.000 288.0 1.000	TOTAL PRESS IN RATIO 10.12 0.990 10.13 0.996 10.13 0.999 10.13 0.999 10.13 0.999 10.13 0.999 10.13 0.999 10.13 0.999 10.13 0.999 10.13 0.999 10.13 0.999
RP 1 2 5 4 5 6 7 8 9 10 11	ABS VEL 1N OUT 110.1 120.8 112.0 124.5 114.0 123.4 115.9 121.6 117.0 121.3 117.7 120.9 119.2 120.1 120.2 119.2 120.3 119.4 120.9 119.9 120.9 118.3	REL VEL IN OUT 110.1 120.8 112.0 124.5 114.0 123.4 115.9 121.6 117.0 121.3 117.7 120.9 119.2 120.1 120.2 119.2 120.3 119.4 120.9 119.9 120.9 118.3	MERID VEL IN OUT 110.1 119.1 112.0 123.0 114.0 122.3 115.9 121.1 117.0 120.9 117.7 120.6 119.2 120.1 120.2 119.2 120.3 119.4 120.9 119.6 120.9 115.6	TANG VEL. IN OUT 0.1 20.3 0.0 19.4 0.0 16.8 0.0 11.8 0.0 9.8 0.0 8.0 0.1 3.5 0.1 -0.3 0.0 -1.7 0.0 -9.2 0.1 -25.3	WHEEL SPEED IN OUT 0.0
RP 1 2 5 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.327 0.358 0.353 0.370 0.369 0.367 0.348 0.361 0.355 0.358 0.355 0.358 0.358 0.355 0.360 0.357 0.360 0.357 0.360 0.352	REL MACH NO IN OUT 0.327 0.358 0.353 0.370 0.367 0.345 0.362 0.348 0.350 0.355 0.358 0.358 0.358 0.358 0.355 0.360 0.357 0.360 0.352	MERID MACH NO IN OUT 0.327 0.353 0.365 0.359 0.365 0.345 0.360 0.350 0.359 0.355 0.358 0.355 0.358 0.355 0.360 0.356 0.360 0.356 0.360 0.356		MERID VEL R 1.081 1.098 1.072 1.045 1.033 1.025 1.025 1.007 0.992 0.992 0.989
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 11.0 10.00 9.8 20.00 6.6 30.00 4.6 35.00 3.6 40.00 2.6 50.00 1.0 60.00 -0.4 64.00 -0.8 80.00 -3.1 95.00 -6.8	DENCE DEV -2.4 -2.1 -0.7 -0.6 -0.4 -0.1 0.8 1.1 1.8 4.4	D FACT EFF 0.040 0.000 0.013 0.000 0.017 0.000 0.014 0.000 0.012 0.000 0.018 0.000 0.010 0.000 0.014 0.000 0.014 0.000 0.017 0.000 0.018 0.000 0.018 0.000	LOSS COEFF TOT PROF 0.134 0.134 0.052 0.052 0.021 0.021 0.018 0.018 0.015 0.015 0.016 0.016 0.013 0.013 0.015 0.015 0.016 0.016 0.019 0.019 0.066 0.066	LOSS PARAM TOT PROF 0.098 0.098 0.037 0.037 0.014 0.014 0.011 0.011 0.009 0.009 0.009 0.009 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

(r) 80 Percent of design speed; reading 116

RP 1 2 3 4 5 6 7 8 9	RP 1 25 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10 11
PERCENT SPAN 5.00 10.00 20.00 30.00 35.00 40.00 50.00 64.00 80.00 95.00	ABS M IN 0.297 0.302 0.308 0.314 0.317 0.319 0.324 0.327 0.327 0.329 0.330	ABS IN 100.4 101.9 103.8 106.0 106.8 107.5 109.2 110.2 110.1 110.8	RAD IN 25.245 24.567 23.045 21.420 20.584 19.743 18.044 16.327 15.634 12.687 9.446
INCI MEAN 11.0 9.8 6.6 4.6 2.6 1.0 -0.4 -0.8 -3.1	0.319 0.331 0.331 0.327 0.326 0.327 0.328 0.329 0.329	VEL OUT 108.1 111.8 111.6 110.1 109.9 110.0 110.5 110.7 111.7	OUT 25.258 24.554 22.931 21.466 20.630 19.799 18.128 16.436 15.753
DENCE	REL M 0.297 0.502 0.308 0.314 0.317 0.319 0.324 0.327 0.327 0.329 0.330	REL IN 100.4 101.9 103.8 106.0 106.8 107.5 109.2 110.2 110.1 110.8	ABS IN -0.0 0.0 -0.0 0.0 -0.0 0.0 0.0 0.0
DEV -3.0 -2.8 -1.3 -1.0 -0.9 -1.0 -0.6 0.0 0.2 1.0	0.319 0.351 0.351 0.351 0.327 0.326 0.327 0.328 0.329 0.329	VEL OUT 108.1 111.8 111.6 110.1 109.9 110.0 110.5 110.3 110.7 111.7	BETAM OUT 9.1 8.3 7.3 5.1 4.1 2.9 0.9 -1.0 -5.2 -13.1
D FACT 0.050 0.018 0.017 0.019 0.016 0.007003 0.007 0.008 0.026 0.066	MERID M IN 0.297 0.302 0.308 0.314 0.317 0.319 0.324 0.327 0.327 0.329 0.330	MERI IN 100.4 101.9 103.8 106.0 106.8 107.5 109.2 110.2 110.8 110.9	REL IN -0.0 0.0 -0.0 0.0 -0.0 0.0 0.0 0.0
EFF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	MACH NO OUT 0.315 0.327 0.328 0.326 0.325 0.326 0.328 0.328 0.329 0.331 0.320	D VEL OUT 106.8 110.6 110.7 109.7 109.6 109.9 110.5 110.3 110.6	BETAM OUT 9.1 8.3 7.3 5.1 4.1 2.9 0.9 -1.6 -5.2 -13.1
LOSS COEFF TOT PROF 0.136 0.136 0.056 0.056 0.021 0.02 0.017 0.017 0.016 0.016 0.015 0.015 0.016 0.016 0.015 0.018 0.018 0.016 0.018 0.016		TANG VEL IN OUT -0.0 17. 0.0 160.0 14. 0.0 90.0 7. 0.0 5. 0.0 1. 0.0 -1. 0.0 -25.	TOTAL TEMP IN RATI 288.8 1.00 288.6 1.00 288.2 1.00 288.2 1.00 288.0 1.00 287.9 1.00 287.9 1.00 287.9 1.00
TOT PROF 0.100 0.100 0.040 0.040 0.014 0.014 0.013 0.015 0.010 0.010 0.009 0.009 0.008 0.008 0.008 0.008 0.007 0.007	MERID VEL R 1.063 1.085 1.086 1.035 1.026 1.022 1.012 1.001 1.004 1.005 0.971	IN OUT 2 0.0 0.0 1 0.0 0.0 7 0.0 0.0 8 0.0 0.0 6 0.0 0.0 7 0.0 0.0 9 0.0 0.0 1 0.0 0.0 2 0.0 0.0	0 IN RATIO 9 10.12 0.992 8 10.13 0.997 4 10.13 0.999 1 10.13 0.999 1 10.13 0.999 0 10.13 0.999 0 10.13 0.999 0 10.13 0.999 0 10.13 0.999

INLET GUIDE VANE 65

(s) 70 Percent of design speed; reading 77

RP 1 23 4 5 6 7 8 9 10	RADII IN OUT 25.245 25.258 24.567 24.554 23.045 22.931 21.420 21.466 20.584 20.630 19.743 19.799 18.044 18.128 16.327 16.436 15.634 15.753 12.687 12.842	ABS BETAM IN OUT 0.0 6. 0.0 5. 0.0 5. 0.0 4. 0.0 4. 0.0 3. 0.0 1. 0.0 -1.	IN OUT 7 0.0 6.7 8 0.0 5.8 7 0.0 5.7 8 0.0 4.8 3 0.0 4.3 3 0.0 3.3 6 0.0 1.6 5 0.0 -0.5 2 0.0 -1.2	TOTAL TEMP IN RATIO 288.7 1.002 288.8 1.000 288.4 0.999 288.0 1.000 287.9 1.000 288.0 0.999 288.0 0.999 288.0 0.999 288.0 0.999 287.9 0.999	TOTAL PRESS IN RATIO 10.12 0.991 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998 10.13 0.998
11	9,446 9,535	0.0 -13.	2 0.0 -13.2	287.9 0.999	10.13 0.994
RP 1 2 5 4 5 6 7 8 9 0 1 1	ABS VEL IN OUT 118.2 129.3 118.7 132.7 121.2 129.9 124.0 129.4 124.7 129.2 125.8 128.8 127.2 128.1 128.0 126.3 128.6 126.5 129.8 125.6	REL VEL IN OUT 118.2 129.3 118.7 132.7 121.2 129.9 124.0 129.4 124.7 129.2 125.8 128.8 127.2 128.0 126.3 128.6 126.5 129.8 125.6	118.7 132.0 121.2 129.2 124.0 128.9 124.7 128.8 125.8 128.6 127.2 128.0 128.0 126.3 128.6 126.5 129.3 125.9	TANG VEL IN OUT 0.0 15.1 0.0 13.4 0.0 13.0 0.0 10.7 0.0 9.7 0.0 7.4 0.0 3.6 0.0 -1.1 0.0 -2.7 0.1 -12.1 0.0 -28.7	HHEEL SPEED IN OUT 0.0
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO 1N OUT 0.351 0.385 0.353 0.395 0.361 0.387 0.369 0.386 0.372 0.385 0.375 0.384 0.379 0.382 0.382 0.377 0.383 0.377 0.386 0.377	REL MACH NO 1N OUT 0.351 0.365 0.365 0.366 0.372 0.385 0.375 0.382 0.375 0.382 0.377 0.383 0.377 0.386 0.375 0.387 0.375	1N 0UT 0.351 0.382 0.353 0.393 0.361 0.385 0.369 0.385 0.372 0.384 0.375 0.384 0.379 0.382 0.382 0.377 0.383 0.377 0.386 0.375		MERID VEL R 1.086 1.112 1.066 1.040 1.033 1.022 1.006 0.987 0.984 0.974
RP 1 25 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 11.0 10.00 9.8 20.00 6.6 30.00 4.6 35.00 3.6 40.00 2.6 50.00 1.0 60.00 -0.4 64.00 -0.8 80.00 -3.1 95.00 -6.8	-5.4 -5.3 -2.8 -1.3 -0.7 -0.6 0.1 0.5 0.6 0.7	0.001 0.000 036 0.000 0.000 0.000 0.011 0.000 0.011 0.000 0.010 0.000 0.008 0.000 0.017 0.000 0.026 0.000 0.057 0.000	LOSS COEFF TOT PROF 0.104 0.104 0.015 0.015 0.023 0.023 0.020 0.020 0.017 0.017 0.017 0.017 0.014 0.014 0.016 0.016 0.018 0.018 0.019 0.019 0.057 0.057	LOSS PARAM TOT PROF 0.077 0.077 0.011 0.015 0.015 0.015 0.013 0.013 0.010 0.010 0.010 0.010 0.008 0.008 0.008 0.008 0.008 0.008 0.007 0.007 0.015 0.015

INLET GUIDE VANE 65

(t) 70 Percent of design speed; reading 78

RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 23 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 1 0 1 1
PERCENT SPAN 5.00 10.00 20.00 30.00 40.00 50.00 60.00 64.00 80.00 95.00	ABS M IN 0.304 0.307 0.311 0.319 0.325 0.325 0.329 0.331 0.333	ABS IN 102.5 103.6 105.0 107.6 108.7 109.6 110.8 111.5 111.7	RAD IN 25.245 24.567 23.045 21.420 20.584 19.743 18.044 16.327 15.634 12.687 9.446
INCI MEAN 11.0 9.8 6.6 4.6 3.6 2.7 1.0 -0.4 -0.8 -3.1	ACH NO OUT 0.332 0.340 0.333 0.330 0.331 0.330 0.329 0.327 0.327 0.324 0.321	VEL OUT 111.8 114.6 112.1 111.1 111.4 111.2 110.8 110.0 109.9 109.2 108.1	24.554 22.931 21.466 20.630 19.799 18.128 16.436 15.753 12.842
DENCE	REL M IN 0.304 0.307 0.311 0.319 0.323 0.325 0.329 0.331 0.333 0.333	REL IN 102.5 103.6 105.0 107.6 108.7 109.6 110.8 111.5 111.7	ABS IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DEV -5.5 -5.4 -3.0 -1.4 -0.9 -0.3 0.0 0.7 0.9 3.3	ACH NO OUT 0.332 0.340 0.333 0.330 0.331 0.330 0.329 0.327 0.327 0.327	VEL OUT 111.8 114.6 112.1 111.1 111.4 111.2 110.8 110.0 109.9 109.2 108.1	BETAM OUT 6.6 5.6 5.5 4.7 4.1 3.6 -0.6 -1.2 -5.3 -13.5
D FACT 0.002028 0.001 0.020 0.020 0.022 0.014 0.019 0.027 0.055 0.095	MERID M IN 0.304 0.307 0.311 0.319 0.323 0.325 0.329 0.331 0.333 0.333	MERI IN 102.5 103.6 105.0 107.6 108.7 109.6 110.8 111.5 111.7	IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0
EFF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	ACH NO OUT 0.329 0.339 0.331 0.329 0.330 0.329 0.327 0.327 0.327 0.323 0.312	D VEL OUT 111.0 114.1 111.5 110.8 111.1 111.0 110.8 109.9 109.9 108.7	BETAM OUT 6.6 5.6 5.5 4.7 4.1 3.6 1.6 -0.6 -1.2 -5.3 -13.5
LOSS COEFF TOT PROF 0.101 0.101 0.028 0.028 0.025 0.025 0.019 0.019 0.017 0.017 0.019 0.019 0.014 0.014 0.016 0.016 0.018 0.018 0.017 0.017 0.056 0.056		TANG VEL IN OUT 0.0 12.8 0.0 11.3 0.0 10.8 0.0 9.1 0.0 8.0 0.0 6.9 0.0 3.0 0.0 -1.1 0.0 -2.3 0.1 -10.1 0.0 -25.2	TOTAL TEMP IN RAT[0 288.7 1.001 288.6 1.001 288.3 1.000 288.0 1.000 288.0 1.000 288.0 1.000 288.0 1.000 288.0 1.000 288.1 1.000 288.0 1.000 288.0 1.000 288.0 1.000
LOSS PARAM TOT PROF 0.075 0.075 0.020 0.020 0.017 0.017 0.012 0.012 0.010 0.010 0.011 0.011 0.008 0.008 0.008 0.008 0.008 0.008 0.006 0.006 0.015 0.015	MERID VEL R 1.084 1.101 1.063 1.030 1.022 1.013 1.000 0.986 0.982 0.975 0.941	WHEEL SPEED IN OUT 0.0	TOTAL PRESS IN RATIO 10.12 0.994 10.13 0.998 10.13 0.999 10.13 0.999 10.13 0.999 10.13 0.999 10.13 0.999 10.13 0.999 10.13 0.999 10.13 0.999 10.13 0.999 10.13 0.996

(u) 70 Percent of design speed; reading 86

RP 1 2 3 4 5 6 7 8 9 10	RADII IN OUT 25.245 25.258 24.567 24.554 23.045 22.931 21.420 21.466 20.584 20.630 19.743 19.799 18.044 18.128 16.327 16.436 15.634 15.753 12.687 12.842 9.446 9.535	ABS BETAM IN OUT 0.0 7.7 0.0 6.6 0.0 5.6 0.0 4.7 0.0 3.6 0.0 1.9 0.0 0.1 0.0 -0.6 0.0 -4.5 0.0 -12.3	0.0 4.1 0.0 3.6 0.0 1.9 0.0 0.1 0.0 -0.6 0.0 -4.5	TOTAL TEMP IN RATIO 288.6 1.001 288.5 1.000 288.2 1.000 288.1 1.000 288.0 1.000 288.0 1.000 288.1 1.000 288.1 1.000 287.9 1.000	TOTAL PRESS IN RATIO 10.12 0.995 10.13 0.999 10.13 0.999 10.13 0.999 10.13 0.999 10.13 0.999 10.13 0.999 10.13 0.999 10.13 0.999 10.13 0.999 10.13 0.999 10.13 0.996
RP 1 234567 8 9 111	ABS VEL IN OUT 89.7 95.6 90.9 98.5 92.4 96.9 94.6 96.9 95.4 97.2 96.1 97.5 97.1 96.8 97.1 96.8 97.1 96.8 97.1 96.8 97.1 96.8	REL VEL IN OUT 89.7 95.6 90.9 98.5 92.4 96.9 94.6 96.9 95.4 97.2 96.1 97.5 97.1 96.8 97.1 96.6 97.6 97.3 97.9 96.3	MERID VEL IN OUT 89.7 94.7 90.9 97.9 92.4 96.4 94.6 96.6 95.4 96.9 96.1 97.1 97.1 97.5 97.1 96.8 97.1 96.8 97.1 96.6 97.6 97.0 97.9 94.1	TANG VEL IN OUT 0.1 12.8 0.1 11.2 0.1 9.5 0.1 7.9 0.1 7.0 0.1 6.2 0.0 3.3 0.1 0.2 0.1 -1.0 0.1 -7.7 0.1 -20.5	WHEEL SPEED IN OUT 0.0
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.265 0.283 0.269 0.292 0.273 0.287 0.280 0.287 0.283 0.288 0.285 0.288 0.288 0.289 0.288 0.287 0.288 0.286 0.289 0.288 0.289 0.288	REL MACH NO 1N OUT 0.265 0.283 0.269 0.292 0.273 0.287 0.280 0.287 0.283 0.288 0.285 0.288 0.288 0.289 0.288 0.287 0.288 0.286 0.289 0.288 0.290 0.285	MERID MACH NO 1N OUT 0.265 0.280 0.269 0.290 0.273 0.285 0.280 0.286 0.283 0.287 0.285 0.288 0.288 0.289 0.288 0.287 0.288 0.287 0.289 0.287 0.290 0.279	7.	MERID VEL R 1.056 1.077 1.043 1.021 1.016 1.010 1.004 0.997 0.995 0.995
RP 1 2 3 4 5 6 7 8 9 10	PERCENT INCI SPAN MEAN 5.00 11.0 10.00 9.8 20.00 6.6 30.00 4.6 35.00 3.6 40.00 2.7 50.00 1.0 60.00 -0.4 64.00 -0.8 80.00 -3.1 95.00 -6.8	DENCE DEV -4.4 -4.5 -2.9 -1.4 -0.9 -0.2 0.4 1.1 1.3 1.7 4.5	D FACT EFF 0.040 0.000 0.005 0.000 0.021 0.000 0.028 0.000 0.025 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000 0.013 0.000	LOSS COEFF TOT PROF 0.104 0.104 0.031 0.031 0.025 0.025 0.023 0.023 0.020 0.020 0.021 0.021 0.017 0.017 0.018 0.018 0.019 0.019 0.019 0.019 0.063 0.063	LOSS PARAM TOT PROF 0.076 0.076 0.022 0.022 0.017 0.017 0.014 0.014 0.012 0.012 0.012 0.012 0.009 0.009 0.009 0.009 0.009 0.009 0.007 0.007 0.017 0.017

(v) 40 Percent of design speed; reading 81

RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10
PERCENT SPAN 5.00 10.00 20.00 30.00 40.00 50.00 60.00 64.00 80.00 95.00	ABS M 0.203 0.206 0.208 0.213 0.215 0.216 0.218 0.220 0.221 0.221	ABS IN 68.9 69.9 70.4 72.1 73.7 74.5 74.7 74.8 75.1	RAD IN 25.245 24.567 23.045 21.420 20.584 19.743 18.044 16.327 15.634 12.687 9.446
INCI MEAN 11.0 9.8 6.6 4.6 3.6 2.6 1.0 -0.4 -0.8 -3.1	0.222 0.227 0.222 0.222 0.222 0.222 0.221 0.219 0.216 0.215 0.212	VEL OUT 75.2 76.9 75.1 75.0 74.7 74.0 73.1 73.1 72.7 71.7	OUT 25.258 24.554 22.931 21.466 20.630 19.799 18.128 16.436 15.753
DENCE	REL M IN 0.203 0.206 0.208 0.213 0.215 0.216 0.218 0.220 0.221 0.221	REL IN 68.9 69.9 70.4 72.1 73.1 73.7 74.5 74.7 74.8 75.1	ABS IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DEV -4.4 -4.2 -2.3 -0.5 -0.0 0.4 0.9 1.7 1.9 1.8 3.6	ACH NO OUT 0.222 0.227 0.222 0.222 0.222 0.219 0.216 0.216 0.215 0.212	VEL OUT 75.2 76.9 75.1 75.0 74.7 74.0 73.1 73.1 72.7	BETAM OUT 7.8 6.9 6.2 5.6 5.0 4.2 2.4 0.7 0.0 -4.4 -13.2
D FACT 0.018005 0.012 0.023 0.023 0.021 0.018 0.024 0.021 0.056 0.107	MERID M IN 0.203 0.206 0.208 0.213 0.215 0.216 0.218 0.220 0.221 0.221	MERI [N 68.9 69.9 70.4 72.1 73.1 73.7 74.5 74.7 74.8 75.1	REL IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0
EFF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	ACH NO OUT 0.220 0.225 0.220 0.221 0.221 0.220 0.218 0.216 0.216 0.214 0.206	D VEL OUT 74.5 76.3 74.6 74.7 74.7 74.5 74.0 73.1 72.5 69.8	BETAM OUT 7.8 6.9 6.2 5.6 5.0 4.2 2.4 0.7 0.0 -4.4 -13.2
LOSS TOT 0.091 0.029 0.024 0.018 0.017 0.016 0.011 0.013 0.015 0.016 0.058		TAN 1N 0.0 0.0 0.0 0.0 0.0 0.0 0.0	TOTAL IN 288.6 288.5 288.3 288.2 288.0 288.1 288.0 288.1 288.0 288.1
COEFF PROF 0.091 0.029 0.024 0.018 0.017 0.016 0.011 0.015 0.016 0.058		9.3 8.2 7.3 6.5 5.5 3.1 0.9 0.0 ~5.6	TEMP RATIO 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
LOSS 170T 0.067 0.021 0.016 0.012 0.010 0.006 0.006 0.007 0.006 0.016	MERID VEL R 1.082 1.092 1.060 1.036 1.027 1.019 1.004 0.981 0.981 0.969 0.928	WHEEL IN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	TOTAL IN 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13
PARAM PROF 0.067 0.021 0.016 0.012 0.010 0.010 0.006 0.006 0.007 0.006		SPEED OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	PRESS RAT[0 0.997 0.999 0.999 0.999 1.000 1.000 1.000 0.998

(w) 40 Percent of design speed; reading 82

RP 1 2 5 4 5 6 7 C 9 10 11 RP	RAD I IN 25.245 2 24.567 2 23.045 2 21.420 2 20.584 2 19.745 1 18.044 1 16.327 1 15.634 1 12.687 1 9.446	0UT 5.258 4.554 2.931 1.466 0.630 9.799 8.128 6.436 5.753 2.842 9.535	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		IN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0UT 8.1 7.3 6.7 5.7 5.3 4.4 2.4 0.6 -0.1 -4.5 -13.2	288.0 1.000	1N 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13 10.13	RATI 0.99 0.99 1.00 1.00 1.00 1.00 1.00 0.99
1 2 3 4 5 6 7 8 9	53.4 54.4 55.2 56.3 56.8 57.2 57.6 58.1 58.3	58.0 59.5 58.2 58.2 57.3 57.1	53.4 54.4 55.2 56.8 57.6 58.5 58.5	58.0 59.5 58.3 58.2 58.2 58.0 57.8 57.3	53.4 54.4 55.2 56.8 57.2 57.6 58.5	57.4 59.0 57.9 57.9 58.0 57.8 57.3 57.2	0.0 6.8 0.0 5.8 0.0 5.4 0.0 4.4 0.0 2.4 0.0 0.6 0.0 -4.5 0.0 -13.0	0.0	
RP 1 2 3 4 5 6 7 8 9 1 1 1	0.160 0.162 0.166 0.167 0.168 0.170 0.171 0.172 0.173	CH NO OUT 0.171 0.175 0.172 0.171 0.172 0.170 0.170 0.169 0.168 0.168	REL M IN 0.157 0.160 0.162 0.166 0.167 0.170 0.171 0.172 0.173	OUT	MERID M IN 0.157 0.160 0.162 0.166 0.167 0.168 0.171 0.172 0.173 0.173	OUT		MERID VEL R 1.075 1.084 1.050 1.029 1.022 1.011 1.002 0.985 0.980 0.973 0.936	
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 20.00 30.00 35.00 40.00 50.00 64.00 80.00 95.00	INCI MEAN 11.0 9.8 6.6 4.6 3.6 2.6 1.0 -0.8 -3.1	DENCE	DEV -4.1 -3.8 -1.8 -0.4 0.3 0.5 0.8 1.6 1.7 1.7	D FACT 0.027 0.007 0.027 0.031 0.031 0.030 0.019 0.020 0.022 0.053 0.100	EFF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	LOSS COEFF TOT PROF 0.091 0.091 0.030 0.030 0.025 0.025 0.017 0.017 0.016 0.016 0.011 0.011 0.014 0.014 0.015 0.016 0.016 0.016	TOT 0.067 (0.022 0.017 (0.011 (0.009 (0.009 (0.007 (0.007 (0.007 (0.007 (0.008 (0.007 (0.008 (0.007 (0.008	ARAM PROF 0.06: 0.01: 0.01: 0.00: 0.00: 0.00: 0.00:

(x) 40 Percent of design speed; reading 83

RP 1 2 3 4 5 6 7 8 9 10 11	16 634 16 763	ABS BETAM IN OUT 0.0 61.9 0.0 20.0 0.0 7.2 0.0 6.1 0.0 5.6 0.0 4.8 0.0 2.9 0.0 0.9 0.0 0.2 0.0 -3.9 0.0 -12.5	0.0 61.9 0.0 20.0 0.0 7.2 0.0 6.1 0.0 5.6 0.0 4.8 0.0 2.9 0.0 0.9 0.0 0.2 0.0 -3.9	TOTAL TEMP IN RATIO 288.5 1.015 288.5 1.006 288.2 1.000 288.2 1.001 288.0 1.001 288.1 1.001 288.2 1.000 288.1 1.000 288.0 1.000 288.0 1.000	TOTAL PRESS IN RATIO 10.13 0.992 10.13 0.994 10.13 0.999 10.13 0.999 10.13 0.999 10.13 1.000 10.13 1.000 10.13 1.000 10.13 1.000 10.13 1.000 10.13 1.000
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 41.0 15.1 41.7 32.3 42.5 45.3 43.5 49.0 44.0 49.4 44.6 49.9 45.2 50.4 46.1 50.4 45.8 50.4 46.7 50.5 47.3 50.2	REL VEL IN OUT 41.0 15.1 41.7 32.3 42.5 45.3 43.5 49.0 44.0 49.4 44.6 49.9 45.2 50.4 46.1 50.4 45.8 50.4 46.7 50.5 47.3 50.2	45.2 50.4	TANG VEL IN OUT 0.0 13.3 0.0 11.1 0.0 5.7 0.0 5.2 0.0 4.8 0.0 4.2 0.0 2.6 0.0 0.8 0.0 0.2 0.0 -3.4 0.0 -10.9	0.0 0.0
RP 1 2 5 4 5 6 7 8 9 10 11	0.135 0.148 0.138 0.149		MERID MACH NO IN OUT 0.121 0.021 0.125 0.132 0.145 0.145 0.145 0.135 0.146 0.135 0.148 0.135 0.148 0.135 0.148 0.139 0.144		MERID VEL R 0.173 0.726 1.056 1.119 1.115 1.113 1.100 1.078 1.035
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 11.0 10.00 9.8 20.00 6.6 30.00 4.6 35.00 3.6 40.00 2.6 50.00 1.0 60.00 -0.4 64.00 -0.8 80.00 -3.1 95.00 -6.8	DENCE DEV 49.8 9.0 -1.3 -0.0 0.6 1.0 1.4 1.9 2.1 2.4 4.3	D FACT EFF 0.873 0.000 0.418 0.000 0.025 0.000051 0.000058 0.000064 0.000085 0.000086 0.000098 0.000098 0.000053 0.000 0.004 0.000	LOSS COEFF TOT PROF 0.836 0.836 0.536 0.536 0.230 0.230 0.114 0.114 0.081 0.081 0.057 0.057 0.038 0.038 0.027 0.027 0.028 0.028 0.023 0.025 0.055 0.055	LOSS PARAM TOT PROF 0.292 0.292 0.364 0.364 0.154 0.154 0.072 0.072 0.049 0.049 0.033 0.033 0.020 0.020 0.013 0.013 0.013 0.013 0.009 0.009 0.015 0.015

TABLE XII. - BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 65

(a) 100 Percent of design speed; reading 154

RP 1 2 3 4 5 6 7 8 9 10	RADII IN OUT 24.795 24.333 24.143 23.640 22.708 22.250 21.219 20.861 20.462 20.165 19.705 19.472 18.191 18.082 16.693 16.693 16.091 16.137 13.597 13.914 10.894 11.829	ABS BETAM IN OUT 6.9 41.1 6.2 37.1 6.0 36.5.2 37.4.7 4.7 43.4.1 2.13 37.0.9 50.0 0.2 45.7 -7.8 43.1	IN OUT 63.1 62.7 62.0 61.0 62.0 61.0 60.9 56.5 9 59.0 51.1 7 9 57.0 48.6 7 55.2 42.3 8 53.5 44.7 7 52.5 34.7 52.5 34.7	TOTAL TEMP IN RATIO 290.1 1.188 289.5 1.166 288.9 1.166 288.5 1.189 288.5 1.182 288.3 1.171 288.2 1.172 288.1 1.179 288.0 1.195 287.6 1.189	TOTAL PRESS IN RATIO 9.96 1.615 10.09 1.584 10.09 1.613 10.10 1.649 10.10 1.616 10.11 1.675 10.10 1.716 10.10 1.716 10.09 1.796 9.99 1.699
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 229.4 221.2 234.5 221.8 230.6 235.9 233.3 251.5 234.8 240.9 234.7 246.8 235.2 259.9 234.0 228.5 235.9 257.8 248.7 302.3 255.5 289.9	REL VEL 1N OUT 503.1 360.6 495.8 365.6 471.7 345.8 450.9 316.4 441.1 283.8 430.1 273.7 412.3 278.3 393.3 203.1 387.7 218.9 368.4 227.1 351.3 210.5	MERID VEL IN OUT 227.8 165.5 233.1 177.1 229.3 190.7 232.3 198.6 234.0 176.0 234.1 180.9 235.0 205.7 234.0 144.4 235.9 179.9 248.4 219.5 253.1 208.9	TANG VEL 1N OUT 27.4 146.7 25.5 133.6 24.0 138.9 21.2 154.4 19.1 164.6 16.9 167.9 9.6 158.9 3.8 177.1 0.8 184.6 -11.7 207.9 -34.8 201.0	WHEEL SPEED IN OUT 476.0 467.1 463.1 453.5 436.2 427.4 407.7 400.8 393.0 387.3 377.7 373.2 348.3 346.3 319.9 319.9 308.4 309.3 260.5 266.5 208.9 226.9
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.705 0.617 0.722 0.625 0.710 0.669 0.720 0.713 0.725 0.678 0.725 0.698 0.727 0.744 0.722 0.646 0.729 0.734 0.773 0.872 0.798 0.835	REL MACH NO IN OUT 1.545 1.005 1.527 1.031 1.452 0.981 1.391 0.897 1.362 0.779 1.328 0.775 1.274 0.796 1.214 0.574 1.198 0.623 1.146 0.655 1.097 0.606	MERID MACH NO IN OUT 0.699 0.461 0.718 0.499 0.706 0.541 0.717 0.563 0.722 0.495 0.723 0.512 0.726 0.589 0.722 0.408 0.729 0.512 0.773 0.633 0.790 0.602		MERID PEAK SS VEL R MACH NO 0.726 1.460 0.760 1.479 0.831 1.518 0.855 1.628 0.773 1.609 0.875 1.525 0.617 1.421 0.763 1.417 0.884 1.445 0.826 1.435
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 0.7 10.00 1.4 20.00 2.7 30.00 3.0 35.00 3.1 40.00 3.2 50.00 3.2 60.00 3.1 64.00 2.9 80.00 0.7 95.00 -0.6	SS -1.3 3.6 -0.8 3.2 -0.1 1.7 -0.6 -0.2 -1.1 1.0 -1.5 -0.7 -2.1 7.5 -2.6 0.7 -6.0 -2.3 -8.1 11.3	D FACT EFF 0.376 0.782 0.346 0.847 0.356 0.882 0.409 0.840 0.479 0.758 0.492 0.807 0.454 0.931 0.632 0.955 0.592 0.930 0.557 0.932 0.568 0.866	LOSS COEFF TOT PROF 0.149 0.054 0.096000 0.079014 0.120 0.017 0.187 0.085 0.151 0.058 0.055011 0.038002 0.063 0.025 0.070 0.034 0.142 0.114	LOSS PARAM TOT PROF 0.027 0.010 0.018000 0.016003 0.028 0.004 0.043 0.020 0.037 0.014 0.014003 0.009000 0.017 0.007 0.019 0.010 0.034 0.027

TABLE XII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 65

(b) 100 Percent of design speed; reading 135

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 24.795 24.333 24.143 23.640 22.708 22.250 21.219 20.861 20.462 20.165 19.705 19.472 18.191 18.082 16.693 16.693 16.091 16.137 13.597 13.914 10.894 11.829	ABS BETAM IN OUT 6.7 49.6 6.1 43.6 5.2 42.2 4.6 43.4 3.9 47.6 1.5 42.6 0.0 51.4 -0.6 45.6 -3.4 43.4	62.3 61.5 61.3 57.2 59.4 52.1 58.4 51.9 57.6 49.5 55.9 45.0 55.9 45.0 55.4 36.0 48.9 17.4	TOTAL TEMP IN RATIO 289.9 1.234 289.5 1.203 288.6 1.207 288.6 1.213 288.5 1.201 288.4 1.186 288.2 1.179 288.1 1.181 288.1 1.191 287.9 1.189	TOTAL PRESS IN RATIO 9.98 1.785 10.10 1.735 10.09 1.759 10.10 1.716 10.10 1.721 10.10 1.722 10.10 1.727 10.09 1.774 10.00 1.716
RP 1 2 3 4 5 6 7 8 9 1 1 1	ABS VEL IN OUT 227.0 227.2 231.4 224.3 227.6 234.0 230.1 246.5 231.7 241.8 231.9 245.6 231.6 245.2 229.5 223.8 231.4 253.2 240.5 291.5 246.2 281.5	REL VEL IN OUT 502.8 328.9 495.2 339.1 471.9 319.6 451.0 292.0 441.7 264.2 431.9 261.1 413.3 254.1 393.5 201.1 387.7 217.9 365.1 221.8 345.6 200.9	MERID VEL IN OUT 225.4 147.4 230.1 161.8 226.7 173.2 229.4 179.2 231.2 163.1 231.5 169.7 231.5 179.8 229.5 139.5 231.3 176.4 240.1 211.6 243.6 198.9	TANG VEL IN OUT 26.3 172.9 24.6 155.3 20.8 157.3 18.3 169.2 15.6 178.5 13.1 174.8 6.0 166.7 0.1 175.0 -2.3 181.6 -14.4 200.4 -56.2 199.1	WHEEL SPEED IN OUT 475.7 466.9 463.1 453.4 425.9 406.6 399.8 392.0 386.3 377.7 375.2 348.3 346.2 319.7 308.8 309.6 260.7 266.8 209.0 226.9
RP 1 2 5 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.696 0.622 0.712 0.622 0.700 0.654 0.709 0.689 0.714 0.673 0.715 0.683 0.714 0.692 0.707 0.629 0.714 0.719 0.745 0.838 0.765 0.807	REL MACH NO IN OUT 1.543 0.900 1.523 0.941 1.451 0.893 1.389 0.816 1.362 0.736 1.352 0.732 1.274 0.717 1.213 0.565 1.196 0.619 1.131 0.638 1.074 0.576	MERID MACH NO IN OUT 0.692 0.404 0.708 0.449 0.697 0.484 0.707 0.501 0.714 0.454 0.714 0.507 0.707 0.392 0.714 0.501 0.744 0.609 0.757 0.570		MERID PEAK SS VEL R MACH NO 0.654 1.467 0.703 1.487 0.764 1.530 0.781 1.622 0.706 1.645 0.733 1.632 0.776 1.548 0.608 1.448 0.762 1.444 0.882 1.478 0.817 1.464
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INC1 SPAN MEAN 5.00 0.9 10.00 1.8 20.00 3.1 30.00 3.4 35.00 3.6 40.00 3.7 50.00 3.9 60.00 3.9 64.00 3.7 80.00 2.0 95.00 0.7	DENCE DEV SS -1.0 4.3 -0.5 3.6 0.2 2.4 -0.1 0.8 -0.4 2.3 -0.5 1.8 -0.8 1.9 -1.2 8.8 -1.8 1.9 -4.8 0.1 -6.9 12.2	D FACT EFF 0.460 0.770 0.416 0.840 0.428 0.869 0.478 0.844 0.538 0.782 0.532 0.839 0.523 0.900 0.639 0.940 0.594 0.931 0.564 0.933 0.588 0.884	LOSS COEFF TOT PROF 0.186 0.090 0.119 0.022 0.100 0.005 0.129 0.024 0.187 0.081 0.137 0.039 0.085 0.014 0.053 0.009 0.063 0.022 0.069 0.030 0.128 0.097	LOSS PARAM TOT PROF 0.033 0.016 0.022 0.004 0.020 0.001 0.030 0.005 0.043 0.019 0.033 0.009 0.022 0.004 0.013 0.002 0.017 0.006 0.019 0.008 0.031 0.023

EDGES FOR ROTOR 65

(c) 100 Percent of design speed; reading 134

RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 23 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10	RP 1 2 3 4 5 6 7 8 9 10 11
PERCENT SPAN 5.00 10.00 20.00 30.00 35.00 40.00 50.00 64.00 80.00 95.00	ABS MA IN 0.670 0.690 0.692 0.690 0.694 0.695 0.695 0.685 0.689 0.727	222.2 224.7 225.8 225.9 225.5 223.1 224.1	RADI 1N 24.795 2 24.143 2 22.708 2 21.219 2 20.462 2 19.705 1 18.191 1 16.693 1 16.091 1 13.597 1 10.894 1
INCI MEAN 1.8 2.5 3.7 4.1 4.3 4.5 4.7 4.7 4.5 3.1	0.646 0.638 0.638 0.670 0.699 0.691 0.689 0.687 0.631 0.714 0.831 0.836	VEL 0UT 238.5 231.8 241.3 251.5 249.7 247.1 244.7 225.1 252.2 289.1 281.3	OUT 24.333 23.640 22.250 20.861 20.165 9.472 18.082 16.693 16.137
DENCE SS -0.1 0.3 0.9 0.5 0.3 -0.1 -0.4 -1.0 -3.7 -5.7	REL M IN 1.529 1.515 1.442 1.380 1.349 1.321 1.263 1.199 1.176 1.107	REL IN 499.8 493.7 469.9 449.0 438.8 429.6 410.6 390.0 382.5 358.9 337.1	ABS IN 6.7 5.9 5.3 4.6 4.0 3.2 1.4 0.6 -3.5 -8.6
DEV 3.7 3.3 1.8 0.3 1.5 2.1 8.9 1.7 0.5	ACH NO OUT 0.837 0.884 0.835 0.766 0.685 0.689 0.538 0.538 0.531 0.566	VEL 0UT 308.7 321.2 301.0 275.6 247.4 247.4 247.9 219.6 191.9 197.5	BETAM OUT 53.7 48.0 46.6 47.1 51.3 49.1 47.4 53.8 47.7 45.9
D FACT 0.512 0.465 0.480 0.525 0.587 0.574 0.578 0.665 0.616 0.589	MERID M IN 0.666 0.686 0.679 0.688 0.693 0.693 0.693 0.685 0.685 0.712 0.719	MERII IN 217.7 223.7 221.2 224.0 225.2 225.4 223.1 224.1 230.9 232.6	1N 64.2 63.1 61.9 60.1 59.1 58.3 56.7
EFF 0.779 0.853 0.878 0.856 0.803 0.860 0.895 0.915 0.927 0.927	ACH NO OUT 0.385 0.427 0.460 0.476 0.451 0.465 0.372 0.461 0.561	VEL OUT 141.3 155.0 165.8 171.2 156.2 161.7 165.8 169.7 209.1	BETAM OUT 62.8 61.1 56.6 51.6 50.9 49.1 45.2 35.7 17.8 7.3
LOSS COEFF TOT PROF 0.200 0.103 0.121 0.021 0.103 0.007 0.129 0.022 0.184 0.076 0.127 0.027 0.096 0.023 0.078 0.033 0.087 0.047 0.077 0.037		TANG VEL IN OUT 25.5 192.1 23.2 172.3 20.7 175.3 18.0 184.2 15.9 194.8 12.5 186.9 5.6 180.0 0.2 181.7 -2.2 186.5 -14.1 199.6 -35.1 201.8	TOTAL TEMP IN RATIO 289.9 1.267 289.5 1.227 288.6 1.219 288.6 1.226 288.5 1.214 288.4 1.199 288.2 1.186 288.1 1.186 288.1 1.191 288.0 1.189
TOT PROF 0.036 0.019 0.023 0.004 0.021 0.001 0.030 0.005 0.043 0.018 0.031 0.006 0.024 0.006 0.018 0.008 0.023 0.013 0.021 0.010	MERID PEAK SS VEL R MACH NO 0.649 1.481 0.693 1.541 0.750 1.541 0.764 1.635 0.693 1.656 0.717 1.647 0.735 1.564 0.596 1.463 0.757 1.454 0.906 1.498 0.842 1.488	463.3 453.7 435.2 426.5 407.1 400.2 392.4 386.7 378.1 373.7 348.8 346.7 320.1 320.1 307.7 308.6 260.6 266.7	9.97 1.937 10.09 1.860 10.09 1.852 10.10 1.856 10.10 1.806 10.11 1.774 10.10 1.736 10.10 1.727 10.09 1.768

TABLE XII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 65

(d) 100 Percent of design speed; reading 133

RP S 1 2 1 3 2 4 3 5 6 4 7 5	2 0 3 0 5 0 6 7 0 8 0 9 0	2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 2	2 24 3 22 4 27 5 20 6 19 7 18 8 16 9 16
RCENT SPAN 5.00 0.00 0.00 0.00 0.00 0.00	0.645 0 0.663 0 0.655 0 0.663 0 0.669 0 0.672 0 0.672 0 0.672 0 0.672 0	211.7 2 216.8 2 214.1 2 216.5 2 218.2 2 219.1 2 219.1 2 217.6 2 218.9 2 226.4 2	RADII IN 4.795 24 4.143 23 2.708 22 1.219 20 0.462 20 9.705 19 8.191 18 6.693 16 6.693 16 6.691 16 5.597 13
3.4 1 4.6 1 5.1 1 5.2 1 5.3 1 5.4 0	H NO REDUT IN .634 1.5 .640 1.5 .675 1.4 .713 1.3 .705 1.3 .705 1.3 .702 1.3 .699 1.2 .648 1.1 .727 1.1 .834 1.0 .830 1.0		.333 .640 .250 .861 .165 .472 .082 .137 .693 .137
E DEV .7 5.1 .2 3.5 .8 1.9 .5 -0.7 .2 0.6 .7 1.0 .7.2	17 0.813 03 0.853 27 0.792 65 0.729 38 0.653 09 0.658 50 0.633 87 0.529 67 0.577 94 0.628	.6 311.8 .7 287.0 .7 263.4 .4 236.5 .6 236.3 .3 225.6 .2 188.7 .1 203.6 .3 218.2	ABS BETAM N OUT 1.6 56.0 1.8 50.4 1.4 49.6 1.8 53.5 1.1 51.4 1.1 54.4 1.7 49.1 1.5 44.0
0.528 0. 0.489 0. 0.516 0. 0.560 0. 0.620 0. 0.605 0.	0.641 0. 0.660 0. 0.652 0. 0.661 0. 0.667 0. 0.672 0. 0.672 0. 0.672 0. 0.696 0.	210.3 13 215.7 14 213.2 15 215.8 16 217.7 15 218.8 16 217.6 13 218.9 16	64.0 6 62.8 5 61.0 5 60.1 5 57.5 4 57.5 4 57.5 4 57.5 4 57.5 4
FF LOSS TOT 774 0.211 840 0.139 867 0.118 852 0.140 803 0.192 856 0.107 917 0.078	NO DUT 354 408 435 462 419 438 454 378 476 599 570	DUT IN 51.4 24.3 49.3 22.0 57.7 20.1 57.0 16.8 51.7 14.4 61.9 5.3 54.7 -0.3 58.0 -2.5 08.4 -13.9	ETAM TOTA OUT IN 64.2 289.9 61.4 289.5 56.7 288.6 50.1 288.5 48.5 288.4 44.1 288.3 44.5 288.1 34.4 288.0 17.3 287.8 4.9 287.7
COEFF PROF 0.112 0.037 0.021 0.031 0.081 0.034 0.033 0.032		180.3 186.7 196.2 205.3 197.1 189.5 187.8 194.0 201.6	1.244 1.234 1.240 1.244 1.223 1.205 1.190 1.190
LOSS 1 TOT 0.036 0.026 0.024 0.034 0.046 0.033 0.027 0.019		WHEELL IN 475.4 463.7 435.2 406.7 392.5 377.9 348.7 320.0 308.3 260.3 208.8	TOTAL IN 9.97 10.09 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.02
PARAM PROF 0.019 0.007 0.004 0.007 0.019 0.008 0.008	PEAK SS MACH NO 1.498 1.524 1.558 1.653 1.677 1.663 1.578 1.477 1.471 1.508 1.506	SPEED OUT 466.5 454.0 426.5 399.9 386.8 373.4 346.6 520.0 309.2 266.3 226.7	PRESS RATIO 1.972 1.918 1.908 1.917 1.869 1.842 1.794 1.753 1.740 1.758

EDGES FOR ROTOR 65

(e) 100 Percent of design speed; reading 156

RP 1 2 3 4 5 6 7 8 9 10	RADII IN 0UT 24.795 24.333 24.143 23.640 22.708 22.250 21.219 20.861 20.462 20.165 19.705 19.472 18.191 18.082 16.693 16.693 16.091 16.137 13.597 13.914 10.894 11.829	ABS BETAM IN OUT 8.9 57.7 8.0 52.0 7.4 50.6 6.2 51.6 5.5 55.0 4.8 52.2 3.1 52.2 3.1 55.5 0.9 49.3 -2.3 44.3 -7.7 46.3	51.0 17.8	TOTAL TEMP IN RATIO 289.7 1.295 289.3 1.260 288.8 1.247 288.7 1.251 288.5 1.235 288.4 1.213 288.2 1.195 288.1 1.194 288.0 1.191 288.0 1.189	TOTAL PRESS IN RATIO 9.96 2.024 10.10 1.964 10.09 1.941 10.09 1.946 10.10 1.865 10.11 1.804 10.11 1.774 10.10 1.762 10.10 1.758 10.03 1.741
RP 1 2 3 4 5 6 7 8 9 0 1 1	ABS VEL 1N OUT 201.5 239.2 208.2 238.7 205.5 245.1 208.7 256.7 210.4 253.5 211.3 249.0 212.1 244.2 210.8 235.0 211.9 261.8 218.5 287.7 223.2 282.2	REL VEL IN OUT 486.3 293.2 480.2 302.9 457.0 254.9 427.9 231.3 418.5 234.6 398.9 220.3 379.8 184.1 372.3 203.9 346.9 216.1 325.6 196.4	MERID-VEL IN OUT 199.0 127.8 206.2 147.0 203.8 155.6 207.5 159.4 209.5 145.4 210.6 152.7 211.8 153.7 210.7 133.0 211.8 170.6 218.3 205.8 221.2 195.0	TANG VEL IN OUT 31.3 202.2 28.9 188.1 26.5 189.4 22.5 201.2 20.0 207.6 17.6 196.7 11.6 189.7 5.1 193.7 3.2 198.6 -8.8 201.0 -29.8 203.9	WHEEL SPEED IN OUT 474.9 466.1 462.5 452.9 456.8 406.9 387.5 379.3 374.8 349.7 347.6 321.1 309.4 310.2 260.9 266.9 209.2 227.1
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.612 0.641 0.635 0.649 0.626 0.673 0.637 0.707 0.643 0.696 0.646 0.688 0.649 0.681 0.645 0.658 0.648 0.742 0.670 0.826 0.686 0.809	REL MACH NO IN OUT 1.477 0.785 1.464 0.824 1.593 0.779 1.333 0.701 1.307 0.636 1.279 0.649 1.220 0.614 1.161 0.516 1.139 0.578 1.064 0.620 1.001 0.563	MERID MACH NO 1N OUT 0.605 0.342 0.629 0.400 0.621 0.427 0.633 0.439 0.640 0.400 0.648 0.422 0.648 0.428 0.644 0.373 0.648 0.483 0.670 0.591 0.680 0.559		MERID PEAK SS VEL R MACH NO 0.642 1.486 0.713 1.505 0.763 1.548 0.769 1.644 0.694 1.670 0.725 1.568 0.631 1.473 0.805 1.466 0.943 1.507 0.882 1.503
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 3.4 10.00 4.0 20.00 5.3 30.00 5.7 35.00 5.8 40.00 6.0 50.00 5.9 60.00 5.9 64.00 5.7 80.00 4.1 95.00 2.7	DENCE DEV SS 1.5 5.1 1.8 3.1 2.5 2.0 2.1 -0.0 1.9 1.5 1.7 1.7 1.2 2.7 0.7 6.5 0.2 -0.8 -2.6 0.5 -4.9 11.1	D FACT EFF 0.534 0.757 0.497 0.819 0.509 0.846 0.570 0.833 0.622 0.797 0.596 0.828 0.606 0.862 0.683 0.911 0.625 0.908 0.553 0.915 0.576 0.906	LOSS COEFF TOT PROF 0.242 0.152 0.168 0.077 0.145 0.055 0.167 0.066 0.207 0.103 0.172 0.076 0.137 0.070 0.089 0.047 0.093 0.055 0.094 0.058 0.114 0.086	LOSS PARAM TOT PROF 0.042 0.026 0.032 0.014 0.029 0.011 0.040 0.016 0.049 0.024 0.041 0.018 0.034 0.017 0.022 0.011 0.026 0.015 0.026 0.016 0.027 0.021

EDGES FOR ROTOR 65

(f) 97 Percent of design speed; reading 124

RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 25 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10
PERCENT SPAN 5.00 10.00 20.00 30.00 40.00 50.00 64.00 80.00 95.00	ABS M IN 0.655 0.671 0.664 0.673 0.678 0.678 0.670 0.671 0.711	ABS IN 214.4 219.2 216.6 219.2 220.7 221.4 220.6 218.3 219.4 227.2 230.4	RAD IN 24.795 24.143 22.708 21.219 20.462 19.705 18.191 16.693 16.091 13.597 10.894
INCI MEAN 1.6 2.4 3.6 4.1 4.2 4.5 4.5 4.5 2.9	ACH NO 0.020 0.620 0.644 0.676 0.667 0.667 0.667 0.681 0.816	VEL 0UT 225.9 223.1 230.2 241.3 240.6 237.8 236.0 213.3 240.6 213.3 283.0	OUT 24.535 23.640 22.250 20.861 20.165 19.472 18.082 16.693 16.137 13.914
DENCE SS -0.3 0.2 0.7 0.4 0.2 -0.0 -0.3 -0.7 -1.2 -3.9 -5.8	REL M IN 1,484 1,469 1,398 1,340 1,513 1,285 1,285 1,165 1,165 1,082 1,016	REL IN 485.9 479.6 456.4 436.5 427.5 418.1 399.6 379.4 372.8 350.9 329.1	ABS IN 6.7 5.9 5.3 4.4 5.8 1.3 -0.8 -3.8 -8.9
DEV 3.4 2.9 2.1 0.5 1.3 1.6 2.3 9.7 3.2 1.3 9.2	0UT 0UT 0.872 0.899 0.843 0.786 0.695 0.699 0.682 0.549 0.593 0.571	VEL OUT 317.7 323.5 301.3 280.8 249.2 249.2 241.6 195.1 208.6 218.9 198.1	BETAM OUT 49,4 45.0 44,4 43.9 49.2 46.8 44.1 51,4 46.2 42.3
D FACT 0.464 0.434 0.453 0.486 0.562 0.546 0.537 0.635 0.596 0.545	MERID M 1N 0.650 0.668 0.661 0.671 0.676 0.678 0.670 0.674 0.699 0.703	MERI IN 213.0 218.1 215.7 218.6 220.2 221.1 220.6 218.3 219.3 226.7 227.7	1N 64.0 62.9 61.8 60.0 59.0 58.1 56.5 54.9 54.0 49.8
EFF 0.786 0.849 0.867 0.844 0.786 0.835 0.912 0.901 0.927 0.911	0.458 0.458 0.460 0.487 0.458 0.456 0.479 0.375 0.472 0.598 0.569	D VEL OUT 146.9 157.8 164.4 173.8 157.2 162.7 169.6 133.1 166.0 207.5 197.4	DETAM OUT 62.5 60.8 56.9 51.8 50.9 49.3 45.4 47.0 37.2 18.6 4.9
LOSS (107 0.177 0.115 0.104 0.132 0.189 0.144 0.102 0.077 0.089 0.075 0.101		TAN IN 25.1 22.4 19.9 16.7 14.5 11.8 5.0 -0.9 -3.2 -15.1	TOTAL IN 289.7 289.2 288.1 288.1 287.7 287.5 287.4 287.4 287.5
COEFF PROF 0.098 0.033 0.025 0.041 0.057 0.042 0.057 0.042 0.057	-	G VEL OUT 171.6 157.7 161.2 167.4 182.1 173.5 164.1 166.7 172.9 188.9 202.8	TEMP RATIO 1.228 1.200 1.194 1.202 1.212 1.195 1.180 1.170 1.172 1.177 1.180
LOSS TOT 0.032 0.022 0.021 0.031 0.045 0.035 0.025 0.018 0.023 0.020		MHEEL IN 461.9 449.5 422.2 394.6 381.0 366.7 338.2 309.4 252.8 202.2	TOTAL IN 9.98 10.09 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10 10.10
PARAM PROF 0.018 0.006 0.005 0.010 0.023 0.014 0.010 0.015 0.011	PEAK SS MACH NO 1.455 1.495 1.593 1.618 1.605 1.527 1.427 1.424 1.473	SPEED OUT 453.3 440.2 413.7 388.0 375.5 362.3 336.2 309.4 299.1 258.7 219.5	PRESS RATIO 1.783 1.730 1.724 1.737 1.696 1.677 1.655 1.703 1.700

EDGES FOR ROTOR 65

(g) 97 Percent of design speed; reading 123

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 24.795 24.333 24.143 23.640 22.708 22.250 21.219 20.861 20.462 20.165 19.705 19.472 18.191 18.082 16.693 16.693 16.091 16.137 13.597 13.914 10.894 11.829	ABS BETAM IN OUT 6.6 54.6 5.8 49.1 5.5 49.1 4.4 49. 3.8 53.3 3.0 50.3 1.3 48.9 -0.3 54.4 -1.0 49.1 -3.8 43.5 -9.1 46.1	7 64.6 60.6 63.5 55.8 61.7 50.2 60.7 49.8 59.9 48.1 5 59.9 44.0 8 56.5 45.3 55.6 35.8 51.4 18.4	TOTAL TEMP IN RATIO 289.7 1.259 289.1 1.230 288.4 1.225 288.3 1.227 288.1 1.231 287.9 1.211 287.7 1.194 287.5 1.180 287.4 1.180 287.3 1.178 287.3 1.182	TOTAL PRESS IN RATIO 9.98 1.911 10.10 1.853 10.09 1.852 10.09 1.854 10.10 1.809 10.10 1.783 10.11 1.742 10.10 1.685 10.10 1.704 10.10 1.685 10.10 1.702 10.03 1.713
RP 1 2 5 4 5 6 7 8 9 10 11	ABS VEL IN OUT 199.7 232.9 204.8 251.9 206.5 248.8 207.1 245.2 207.3 242.5 206.4 222.1 207.2 243.8 213.7 278.2 215.5 288.3	REL VEL 1N OUT 481.3 295.7 474.6 303.6 451.3 281.5 430.7 257.7 420.9 229.9 412.1 234.4 393.0 221.4 374.4 183.6 366.4 197.0 341.7 212.8 318.4 200.5	MERID VEL 1N OUT 198.4 134.9 203.7 149.2 201.4 158.2 204.2 165.0 206.0 148.5 206.8 156.7 207.3 159.3 206.4 129.2 207.2 159.7 213.2 201.9 212.8 200.1	TANG VEL IN OUT 25.1 189.9 20.8 175.6 19.3 181.9 15.7 190.3 13.6 199.6 10.9 188.6 4.7 182.8 -1.2 180.7 -3.5 184.3 191.5 -34.2 207.6	HHEEL SPEED IN OUT 461.6 453.0 449.4 440.0 423.3 580.7 375.1 367.4 365.0 338.6 336.5 511.2 311.2 298.8 299.6 252.7 258.6 252.7 220.1
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.607 0.632 0.624 0.635 0.616 0.668 0.625 0.700 0.631 0.690 0.633 0.685 0.634 0.682 0.631 0.624 0.634 0.691 0.655 0.801 0.661 0.833	REL MACH NO IN OUT 1.461 0.803 1.445 0.835 1.375 0.780 1.314 0.716 1.285 0.637 1.259 0.655 1.201 0.623 1.144 0.516 1.121 0.558 1.048 0.613 0.977 0.579	MERID MACH NO IN OUT 0.602 0.366 0.620 0.410 0.614 0.438 0.623 0.459 0.629 0.412 0.632 0.438 0.634 0.448 0.631 0.363 0.634 0.453 0.634 0.453 0.634 0.581 0.653 0.578		MERID PEAK SS VEL R MACH NO 0.680 1.464 0.732 1.487 0.785 1.530 0.808 1.627 0.721 1.649 0.758 1.560 0.626 1.469 0.771 1.461 0.947 1.512 0.940 1.497
RP 1 :2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 3.2 10.00 4.0 20.00 5.3 30.00 5.7 35.00 6.0 40.00 6.1 60.00 6.2 64.00 5.9 80.00 4.5 95.00 3.5	DENCE DEV SS 1.3 3.8 1.8 2.7 2.4 1.0 2.1 -1.1 1.9 0.2 1.8 0.4 1.4 0.9 1.0 8.1 0.5 1.8 -2.3 1.1 -4.0 7.9	D FACT EFF 0.521 0.786 0.486 0.837 0.508 0.862 0.553 0.849 0.617 0.800 0.589 0.855 0.598 0.885 0.674 0.912 0.631 0.893 0.552 0.919 0.560 0.916	LOSS COEFF TOT PROF 0.198 0.115 0.140 0.056 0.122 0.039 0.143 0.048 0.194 0.099 0.141 0.051 0.108 0.045 0.083 0.044 0.103 0.068 0.086 0.051 0.101 0.077	LOSS PARAM TOT PROF 0.036 0.021 0.027 0.011 0.025 0.008 0.035 0.012 0.047 0.024 0.035 0.012 0.028 0.012 0.020 0.010 0.028 0.018 0.023 0.014 0.025 0.019

EDGES FOR ROTOR 65

(h) .97 Percent of design speed; reading 128

EDGES FOR ROTOR 65

(i) 90 Percent of design speed; reading 99

RP 1 2 5 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9
PERCENT SPAN 5.00 10.00 20.00 30.00 35.00 40.00 50.00 64.00 80.00 95.00	0.590 0.000 0.607 0.600 0.613 0.600 0.613 0.600 0.613 0.600 0.618 0.600 0.618 0.600 0.645 0.645 0.645	194.5 19 199.7 196 197.5 20 200.1 22 201.2 22 202.3 22 203.2 22 203.5 19 203.8 21 210.6 25	24.795 24.3 24.143 23.6 22.708 22.2 21.219 20.6 20.462 20.1 19.705 19.4 18.191 18.6
INCIDENCE MEAN SS . 2.1 0.2 2.8 0.6 4.0 1.1 4.3 0.7 4.5 0.5 4.6 0.4 4.7 -0.0 4.6 -0.6 4.4 -1.1 2.9 -3.8 1.9 -5.6	NO REL M UT IN 557 1.361 558 1.348 592 1.281 642 1.226 629 1.199 639 1.177 641 1.131 645 1.078 615 1.059 750 0.997 769 0.931	REL UT IN 7.6 448.9 6.8 443.5 7.8 421.1 5.1 402.5 2.0 393.5 4.0 386.2 370.6 1.8 353.1 5.1 346.9 8.4 325.5 5.7 303.9	JT IN 5333 6.6 640 5.8 250 5.6 861 4.7 165 3.9 472 3.2 082 1.3 693 -0.2 137 -0.8 914 -3.7
DEV 3.6 3.7 2.5 0.0 0.7 0.6 1.9 11.3 6.1 3.8	NACH NO OUT 0.928 0.927 0.878 0.825 0.735 0.737 0.729 0.568 0.597 0.624 0.559	VEL 0UT 329.3 327.1 308.4 289.5 259.3 258.5 254.2 199.8 208.8 215.0	BETAM OUT 40.0 37.7 36.5 41.7 39.8 36.5 46.3 42.1 43.8
D FACT 0.357 0.349 0.359 0.390 0.467 0.456 0.437 0.568 0.538 0.497	MER 10 M 1N 0.586 0.604 0.598 0.607 0.612 0.616 0.620 0.618 0.622 0.643 0.641	MER II IN 193.2 198.7 196.6 199.5 200.7 201.9 203.2 202.5 203.8 210.1 209.4	REL (N 64.5 63.4 62.2 60.3 59.3 58.5 56.8 55.0 54.0 49.8 46.4
EFF 0.783 0.809 0.839 0.756 0.823 0.823 0.890 0.917 0.945 0.878	ACH NO OUT 0.426 0.441 0.515 0.470 0.491 0.516 0.376 0.457 0.556	D VEL 0UT 151.3 155.7 166.7 180.9 165.8 172.1 179.9 132.4 159.6 200.6 191.9	BETAM OUT 62.6 61.6 57.3 51.3 50.3 48.3 45.0 48.5 40.1 21.1 6.2
LOSS COEFF TOT PROF 0.138 0.099 0.115 0.07 0.103 0.05 0.121 0.060 0.189 0.133 0.134 0.08 0.083 0.044 0.054 0.05 0.052 0.03 0.135 0.12		TANG VEL IN OUT 22.5 127. 20.1 124. 16.6 134. 13.7 147. 11.1 143. 4.6 133. -0.9 138. -2.8 144. -13.7 163. -31.7 183.	TOTAL TEMP IN RATIO 289.5 1.14 289.0 1.15 288.2 1.15 288.0 1.16 288.0 1.14 287.8 1.13 287.6 1.13 287.5 1.13 287.5 1.13
0 0.021 0.013 9 0.021 0.012 6 0.029 0.015 2 0.045 0.032 0.033 0.020 8 0.021 0.012 5 0.012 0.008 1 0.017 0.013 5 0.014 0.009	MERIO PEAK SS VEL R MACH NO 0.783 1.325 0.784 1.349 0.848 1.394 0.907 1.501 0.826 1.528 0.852 1.525 0.886 1.457 0.654 1.369 0.783 1.369 0.954 1.437 0.917 1.375	1 427.6 419.6 3 416.6 407.9 2 391.5 383.6 0 366.2 360.0 6 352.1 347.0 340.3 356.5 0 314.6 312.7 7 288.5 268.5 2 277.9 278.7 0 234.9 240.4	N RATIO 9.98 1.471 8 10.09 1.447 8 10.09 1.467 0 10.09 1.512 0 10.10 1.489 9 10.11 1.500 9 10.11 1.502 4 10.11 1.511 8 10.10 1.517 3 10.10 1.560

EDGES FOR ROTOR 65

(j) 90 Percent of design speed; reading 85

RP 1 2 3 4 5 6 7 8 9 10	RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10
PERCENT SPAN 5.00 10.00 20.00 30.00 35.00 40.00 50.00 64.00 80.00	ABS M IN 0.585 0.602 0.597 0.605 0.612 0.614 0.614 0.635 0.637	ABS 1N 193.1 198.3 196.2 198.8 199.9 200.7 201.5 200.0 201.2 207.5 208.4	RAD IN 24.795 24.143 22.708 21.219 20.462 19.705 18.191 16.693 16.091 13.597 10.894
INCI MEAN 2.3 3.0 4.1 4.6 4.7 4.8 5.0 4.7 5.0	ACH NO OUT 0.564 0.563 0.592 0.638 0.631 0.635 0.630 0.552 0.624 0.751	VEL 0UT 201.3 199.4 208.8 224.9 223.3 222.7 220.6 194.5 218.1 259.0 266.4	OUT 24.333 23.640 22.250 20.861 20.165 19.472 18.082 16.693 16.137 13.914
DENCE SS 0.3 0.8 1.3 1.0 0.8 0.5 0.1 -0.2 -0.8 -3.5	REL M 1N 1.358 1.344 1.279 1.227 1.200 1.174 1.125 1.072 1.052 0.987 0.919	REL IN 448.2 442.2 420.7 403.0 394.1 385.3 368.8 351.6 344.9 322.8 300.3	ABS IN 6.8 6.1 5.7 4.0 3.3 1.3 -0.2 -0.7 -3.5 -8.4
DEV 3.4 3.5 2.5 0.2 0.8 0.9 2.5 5.5 5.5	ACH NO OUT 0.897 0.852 0.797 0.712 0.713 0.698 0.566 0.599 0.620	VEL 0UT 320.1 319.9 300.4 280.9 252.1 250.7 244.2 199.3 209.4 213.8 193.2	BETAM OUT 42.6 39.7 39.9 43.9 41.8 38.8 46.5 42.0 39.5 43.8
D FACT 0.384 0.369 0.383 0.419 0.492 0.480 0.466 0.569 0.535 0.497	MERID M IN 0.581 0.599 0.603 0.607 0.614 0.614 0.614 0.633 0.631	MERI IN 191.7 197.1 195.3 198.1 199.4 200.4 201.4 199.9 201.2 207.1 206.2	REL IN 64.7 63.5 60.6 59.6 59.7 56.9 55.3 54.3
EFF 0.788 0.814 0.844 0.838 0.768 0.833 0.885 0.928	ACH NO OUT 0.415 0.460 0.497 0.455 0.472 0.491 0.380 0.463 0.556	D VEL OUT 148.1 153.4 162.2 175.0 160.9 165.9 171.9 133.9 162.0 200.0	BETAM OUT 62.4 61.4 57.3 51.5 50.3 48.6 45.3 47.8 39.3 20.7 5.9
LOSS COEFF TOT PROF 0.145 0.102 0.120 0.075 0.106 0.061 0.122 0.065 0.187 0.129 0.131 0.078 0.090 0.055 0.059 0.040 0.070 0.053		TANG VEL IN OUT 23.0 136.3 20.9 127.4 19.5 131.4 16.2 141.2 14.0 154.8 11.5 148.6 4.7 138.3 -0.6 141.0 -2.4 145.9 -12.8 164.5 -30.3 184.4	TOTAL TEMP IN RATIO 289.6 1.163 289.1 1.149 288.5 1.148 288.2 1.159 288.0 1.168 287.9 1.155 287.7 1.143 287.5 1.138 287.4 1.141 287.5 1.156
LOSS PARAM TOT PROF 0.027 0.019 0.022 0.014 0.021 0.012 0.029 0.015 0.045 0.031 0.032 0.019 0.023 0.014 0.013 0.009 0.018 0.014	MERID PEAK SS VEL R MACH NO 0.772 1.326 0.772 1.349 0.831 1.349 0.831 1.358 0.807 1.538 0.828 1.529 0.853 1.458 0.670 1.378 0.805 1.376 0.966 1.433 0.932 1.363	WHEEL SPEED IN OUT 428.1 420.1 416.8 408.1 392.2 384.3 367.1 360.9 353.9 348.8 340.5 336.5 313.7 311.8 288.5 288.5 277.8 278.6 234.8 240.3 188.1 204.2	TOTAL PRESS IN RATIO 9.98 1.525 10.09 1.508 10.09 1.548 10.10 1.531 10.10 1.530 10.11 1.519 10.10 1.525 10.10 1.529 10.10 1.563 9.99 1.564

EDGES FOR ROTOR 65

(k) 90 Percent of design speed; reading 97

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 24.795 24.333 24.143 23.640 22.708 22.250 21.219 20.861 20.462 20.165 19.705 19.472 18.191 18.082 16.693 16.693 16.091 16.137 13.597 13.914 10.894 11.829	ABS BETAM IN OUT 6.6 50.7 6.0 46.6 6.0 46.1 3.9 50.0 3.2 46.4 1.2 45.6 -0.1 51.1 -0.7 46.1 -3.9 41.8 -8.9 45.0	REL BETAM IN OUT 66.2 61.8 65.1 60.8 63.9 56.8 62.2 50.8 61.3 49.7 60.4 47.4 58.7 44.6 56.9 46.5 55.9 38.0 52.0 20.4 48.7 4.0	TOTAL TEMP IN RATIO 289.6 1.208 289.2 1.184 288.6 1.176 288.3 1.182 288.1 1.187 288.0 1.172 287.7 1.158 287.5 1.148 287.4 1.150 287.4 1.148 287.5 1.157	TOTAL PRESS IN RATIO 9.99 1.697 10.09 1.643 10.09 1.657 10.11 1.632 10.11 1.583 10.11 1.562 10.11 1.557 10.11 1.567 10.01 1.580
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 181.6 215.2 185.9 209.1 185.9 216.1 186.1 229.5 187.4 228.7 188.3 228.4 189.5 222.9 188.8 200.6 190.0 221.5 194.7 255.2 194.1 270.6	REL VEL IN OUT 446.3 288.8 439.1 294.5 415.9 274.1 397.1 252.1 388.8 227.3 580.5 232.9 364.1 218.8 345.5 182.9 339.3 194.9 515.4 203.0 290.7 191.7	MERID VEL IN -0UT 180.4 136.3 184.9 143.7 182.9 150.1 185.4 159.2 187.0 147.0 188.0 157.5 189.4 155.8 188.8 125.9 190.0 153.7 194.3 190.3 191.8 191.3	TANG VEL IN OUT 20.9 166.5 19.4 151.9 19.2 155.5 15.8 165.3 12.8 175.3 10.5 165.4 3.9 159.3 -0.5 156.2 -2.5 159.5 -13.1 170.1 -29.9 191.4	HHEEL SPEED. IN OUT 429.2 421.2 417.7 409.0 392.7 384.8 353.7 348.6 341.1 337.0 314.8 312.9 288.8 278.6 279.4 235.3 240.8 188.6 204.7
RP 1 2 5 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.548 0.594 0.557 0.606 0.564 0.646 0.568 0.642 0.571 0.646 0.575 0.633 0.573 0.568 0.577 0.631 0.593 0.738 0.591 0.784	REL MACH NO IN OUT 1.347 0.797 1.328 0.821 1.258 0.769 1.203 0.709 1.179 0.638 1.154 0.658 1.106 0.621 1.049 0.518 1.031 0.556 0.960 0.587 0.884 0.556	MERID MACH NO 1N OUT 0.544 0.376 0.559 0.400 0.553 0.421 0.562 0.448 0.567 0.412 0.570 0.445 0.575 0.442 0.575 0.438 0.591 0.550 0.584 0.554		MERID PEAK SS VEL R MACH NO 0.756 1.368 0.777 1.390 0.820 1.434 0.859 1.545 0.786 1.576 0.838 1.571 0.823 1.504 0.667 1.419 0.809 1.422 0.979 1.455 0.997 1.375
RP 1 2 3 4 5 6 7 8 9	PERCENT INC SPAN MEAN 5.00 3.7 10.00 4.6 20.00 5.7 30.00 6.2 35.00 6.4 40.00 6.5 50.00 6.6 60.00 6.5 80.00 5.1 95.00 4.2	IDENCE DEV \$5 1.8 2.7 2.3 2.9 2.9 2.0 2.6 -0.5 2.4 0.1 2.3 -0.2 1.9 1.5 1.3 9.3 0.8 3.9 -1.7 3.1 -3.3 8.3	D FACT EFF 0.480 0.784 0.445 0.830 0.461 0.858 0.506 0.853 0.570 0.802 0.537 0.862 0.551 0.886 0.624 0.916 0.583 0.901 0.525 0.925 0.530 0.887	LOSS COEFF TOT PROF 0.181 0.133 0.132 0.083 0.113 0.066 0.127 0.067 0.179 0.116 0.121 0.062 0.100 0.059 0.075 0.053 0.091 0.070 0.076 0.058 0.137 0.131	LOSS PARAM TOT PROF 0.034 0.025 0.025 0.016 0.023 0.013 0.030 0.016 0.043 0.028 0.030 0.016 0.025 0.015 0.017 0.012 0.024 0.018 0.020 0.016 0.033 0.052

EDGES FOR ROTOR 65

(1) 90 Percent of design speed; reading 84

RP 1 2 3 4 5 6 7 8 9 10	RAD11 IN OUT 24.795 24.335 24.143 23.640 22.708 22.250 21.219 20.861 20.462 20.165 19.705 19.472 18.191 18.082 16.693 16.693 16.091 16.137 13.597 13.914 10.894 11.829	ABS BETAM IN OUT 7.0 49.6 6.3 45.6 6.3 45.1 4.1 49.2 3.2 45.7 1.3 45.0 -0.0 50.9 -0.6 45.9 -3.6 41.7 -8.6 45.0	65.0 60.8 63.8 56.9 62.0 51.3 61.1 50.2 60.3 48.1 58.6 45.6 56.9 47.6 56.0 39.1 51.9 21.6	TOTAL TEMP IN RATIO 289.5 1.202 289.1 1.179 288.6 1.174 288.3 1.179 288.1 1.185 288.0 1.170 287.7 1.157 287.5 1.148 287.5 1.149 287.5 1.147 287.7 1.158	TOTAL PRES IN RAT 9.99 1.6 10.09 1.6 10.09 1.6 10.10 1.6 10.11 1.5 10.11 1.5 10.11 1.5 10.10 1.5 WHEEL SPE
RP 1 2 3 4 5 6 7 8 9 10 11	IN OUT 180.8 213.6 185.7 207.5 184.2 214.5 186.3 226.0 187.7 225.5 188.0 224.7 188.7 218.2 187.9 196.3 188.6 216.9 193.6 250.1 194.0 263.3	IN OUT 443.2 291.0 436.9 296.5 414.2 275.7 395.5 256.2 387.4 230.1 379.2 235.3 362.3 220.4 345.8 183.5 337.4 194.8 313.5 200.8 289.8 187.2	IN OUT 179.4 137.8 184.5 144.6 183.1 150.5 185.6 160.0 187.2 147.3 187.7 157.0 188.7 154.3 187.9 123.8 188.6 151.1 193.2 186.7 191.8 186.3	IN OUT 22.1 163.1 20.3 148.8 20.2 152.8 16.6 159.6 13.4 170.7 10.5 160.7 4.3 154.3 -0.1 152.4 -2.0 155.6 -12.1 166.3 -28.9 186.1	IN 00 427.4 419 416.3 407 391.7 383 365.8 359 352.6 347 340.0 356 313.6 311 287.9 287 277.8 278 234.8 240 188.3 204
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.546 0.591 0.562 0.579 0.602 0.565 0.636 0.569 0.635 0.573 0.619 0.573 0.619 0.573 0.617 0.589 0.722 0.590 0.760	REL MACH NO IN OUT 1.337 0.805 1.321 0.828 1.253 0.774 1.198 0.720 1.175 0.645 1.150 0.665 1.100 0.625 1.044 0.519 1.025 0.555 0.954 0.580 0.881 0.540	MERID MACH NO IN OUT 0.541 0.381 0.558 0.404 0.554 0.422 0.562 0.450 0.568 0.413 0.569 0.443 0.573 0.438 0.570 0.350 0.573 0.430 0.588 0.539 0.583 0.538		MERID PEAK VEL R MACH 0.768 1.3 0.784 1.3 0.822 1.4 0.862 1.5 0.862 1.5 0.818 1.4 0.659 1.4 0.966 1.4 0.971 1.3
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INC SPAN MEAN 5.00 3.7 10.00 4.5 20.00 5.5 30.00 6.0 35.00 6.3 40.00 6.5 50.00 6.6 60.00 6.5 64.00 6.4 80.00 5.1 95.00 4.0	IDENCE DEV SS 1.8 2.6 2.3 2.9 2.7 2.1 2.5 0.0 2.3 0.6 2.2 0.5 1.8 2.5 1.3 10.4 0.9 5.1 -1.7 4.3 -3.5 10.0	D FACT EFF 0.468 0.791 0.434 0.833 0.451 0.857 0.488 0.848 0.557 0.799 0.525 0.861 0.539 0.882 0.616 0.913 0.577 0.901 0.525 0.926 0.539 0.880	LOSS COEFF TOT PROF 0.173 0.128 0.128 0.081 0.114 0.068 0.131 0.073 0.181 0.120 0.121 0.064 0.103 0.064 0.078 0.057 0.091 0.071 0.075 0.059 0.147 0.142	LOSS PARA TOT PRO 0.032 0.0 0.024 0.0 0.023 0.0 0.031 0.0 0.043 0.0 0.026 0.0 0.018 0.0 0.023 0.0 0.023 0.0 0.023 0.0

TABLE XII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 65

(m) 90 Percent of design speed; reading 89

RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 25 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10
PERCENT SPAN 5.00 10.00 20.00 30.00 40.00 60.00 64.00 95.00	ABS M/IN 0.502 0.516 0.520 0.524 0.527 0.529 0.527 0.527 0.527 0.545 0.544	ABS IN 167.1 171.5 170.2 172.5 173.7 174.4 175.2 174.3 175.5 180.1 179.9	RADI 1N 24.795 2 24.143 2 22.708 2 21.219 2 20.462 2 19.705 1 18.191 1 16.693 1 16.091 1 13.597 1
INCI MEAN 5.4 6.2 7.3 7.8 8.4 8.4 8.2 6.9 5.8	ACH NO OUT 0.578 0.589 0.609 0.642 0.635 0.636 0.622 0.571 0.633 0.757	VEL 0UT 211.6 213.3 219.0 229.9 227.6 226.3 220.0 201.8 222.3 245.7 262.4	0UT 24.333 23.640 22.250 20.861 20.165 9.472 8.082 6.693 6.137
DENCE SS 3.5 4.0 4.5 4.1 4.0 3.7 5.2 2.7 0.1	REL M IN 1.320 1.296 1.226 1.172 1.148 1.124 1.072 1.015 0.996 0.920 0.843	REL IN 439.3 430.7 407.2 588.8 380.5 372.4 354.9 356.1 529.7 304.0 278.6	ABS IN 7.2 6.9 7.1 5.6 4.4 3.4 1.4 0.0 -0.6 -3.5 -8.6
DEV 4.9 5.1 2.2 -0.9 0.4 2.0 8.9 5.1 4.5 8.9	0.745 0.745 0.765 0.714 0.660 0.594 0.614 0.581 0.526 0.526 0.558	VEL 0UT 272.4 276.9 257.0 236.2 212.8 218.7 205.6 174.9 184.7 193.6 182.5	BETAM OUT 55.7 50.3 49.8 53.5 49.8 48.8 53.1 48.5 43.0
D FACT 0.517 0.486 0.501 0.545 0.606 0.572 0.582 0.642 0.608 0.534 0.538	MERID M IN 0.498 0.512 0.508 0.518 0.523 0.526 0.529 0.527 0.530 0.544	IN	REL 1N 67.8 65.5 63.8 62.9 62.1 60.4 58.7 57.5
EFF 0.757 0.809 0.827 0.839 0.799 0.848 0.890 0.919 0.910 0.910	0.326 0.372 0.389 0.414 0.378 0.411 0.410 0.343 0.419 0.518	D VEL OUT 119.3 134.5 140.0 148.3 135.4 146.2 145.0 121.3 179.7 181.9	BETAM OUT 64.0 60.9 51.1 50.5 48.1 45.1 46.1 21.8 4.6
LOSS COEFF TOT PROF 0.222 0.172 0.165 0.116 0.155 0.107 0.153 0.091 0.196 0.130 0.145 0.083 0.103 0.061 0.076 0.051 0.088 0.064 0.095 0.081 0.133 0.130		TANG VEL IN OUT 20.8 174.7 20.7 165.6 21.1 168.4 16.8 175.6 13.3 182.9 10.2 172.7 4.3 165.4 0.1 161.3 -1.8 166.6 -11.1 167.6 -26.8 189.0	TOTAL TEMP IN RATIO 289.5 1.227 289.2 1.205 288.9 1.197 288.5 1.196 288.1 1.183 287.8 1.165 287.7 1.152 287.6 1.152 287.7 1.146 287.9 1.156
LOSS PARAM TOT PROF 0.038 0.030 0.031 0.022 0.036 0.022 0.046 0.031 0.036 0.020 0.026 0.015 0.018 0.012 0.023 0.017 0.025 0.022 0.032 0.031	MERID PEAK SS VEL R MACH NO 0.719 1.399 0.790 1.416 0.829 1.460 0.864 1.574 0.782 1.609 0.840 1.609 0.828 1.543 0.696 1.470 0.839 1.474 1.000 1.450 1.023 1.356	MHEEL SPEED IN OUT A27.6 419.7 416.3 407.6 591.7 385.8 365.5 359.4 352.1 347.0 359.4 352.1 347.0 277.3 278.1 287.4 277.3 278.1 234.0 239.5 187.6 203.7	TOTAL PRESS IN RATIO 10.00 1.742 10.09 1.713 10.09 1.696 10.10 1.705 10.11 1.671 10.11 1.658 10.12 1.614 10.11 1.578 10.11 1.573 10.11 1.548 10.02 1.582

EDGES FOR ROTOR 65

(n) 80 Percent of design speed; reading 114

RP 1 2 3 4 5 6 7 8 9 10	RADII IN OUT 24.795 24.333 24.143 23.640 22.708 22.250 21.219 20.861 20.462 20.165 19.705 19.472 18.191 18.082 16.693 16.693 16.091 16.137 13.597 13.914 10.894 11.829	ABS 1N 7.3 6.7 6.0 4.5 3.6 3.6 1.4 -0.2 -0.8 -3.8	BETAM 0UT 34.2 31.3 31.9 36.3 30.9 41.3 38.9 36.6 41.2	REL IN 65.3 64.0 62.6 60.9 60.0 59.1 57.3 55.5 54.6 50.6 47.5	0UT 62.7 61.2 57.1 51.1 49.9 47.5 45.3 49.8 42.6 23.6 4.3	TOTAL TEMP IN RATIO 289.8 1.097 289.6 1.090 288.8 1.093 288.5 1.106 288.2 1.115 288.0 1.105 287.8 1.094 287.7 1.094 287.7 1.097 287.7 1.106 287.8 1.125	TOTAL PRESS IN RATIO 10.01 1.292 10.09 1.283 10.10 1.346 10.11 1.352 10.11 1.348 10.12 1.343 10.11 1.350 10.11 1.355 10.11 1.355 10.11 1.394 10.03 1.453
RP 1 2 3 4 5 6 7 8 9 1 1 1	ABS VEL IN OUT 167.1 172.7 171.9 175.3 172.7 185.9 174.3 202.9 175.3 200.0 175.9 204.6 176.7 201.3 176.1 165.3 177.0 184.2 181.5 225.4 182.0 254.1	390.1 372.6 357.5 350.1 342.3 326.9 311.2 305.9 285.5	VEL 0UT 311.4 307.8 292.2 274.1 250.1 251.6 245.5 192.5 194.8 197.6 191.7	170.7 171.7 173.8 175.0 175.7 176.7 176.1 177.0	VEL 0UT 142.8 148.4 158.8 172.2 161.1 169.9 172.8 124.2 143.3 181.0	TANG VEL IN OUT 21.2 97.2 20.0 93.4 18.2 96.5 13.6 107.3 11.1 118.5 9.3 114.0 4.2 103.2 -0.5 109.1 -2.6 115.6 -12.0 134.3 -28.4 167.4	WHEEL SPEED IN OUT 381.1 374.0 370.8 363.0 348.8 341.8 326.1 320.6 314.3 309.8 303.1 299.5 279.3 277.6 256.1 256.1 246.9 247.6 208.7 213.5 167.5 181.9
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.502 0.495 0.517 0.505 0.520 0.537 0.526 0.586 0.529 0.575 0.531 0.592 0.534 0.585 0.532 0.475 0.535 0.531 0.550 0.657 0.551 0.742	1.174 1.123 1.079 1.057 1.034 0.988 0.941 0.925 0.864	OCH NO OUT 0.892 0.886 0.718 0.718 0.728 0.713 0.553 0.562 0.576	0.514 0.517 0.524 0.528 0.531 0.534 0.532 0.535 0.549	CH NO OUT 0.409 0.427 0.459 0.497 0.463 0.491 0.502 0.357 0.414 0.528 0.558		MERID PEAK SS VEL R MACH NO 0.861 1.177 0.869 1.202 0.925 1.270 0.991 1.410 0.921 1.451 0.967 1.454 0.978 1.391 0.705 1.275 0.810 1.266 0.999 1.270 1.063 1.217
RP 1 23 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 2.9 10.00 3.5 20.00 4.3 30.00 4.9 35.00 5.2 40.00 5.3 50.00 5.2 60.00 5.2 64.00 5.0 80.00 3.7 95.00 2.9	10ENCE SS 0.9 1.3 1.5 1.4 1.2 1.0 0.5 -0.0 -0.5 -3.0 -4.6	DEV 3.6 3.3 2.3 -0.2 0.3 -0.1 2.2 12.6 8.6 6.4 8.7	0.289 0.283 0.292 0.331 0.399 0.377 0.357 0.491 0.491 0.457 0	EFF 1.779 1.820 1.846 1.839 1.744 1.848 1.937 1.957 1.934 1.937 1.937	LOSS COEFF TOT PROF 0.112 0.102 0.086 0.076 0.080 0.068 0.100 0.076 0.174 0.147 0.100 0.075 0.041 0.027 0.029 0.026 0.048 0.046 0.055 0.054 0.112 0.112	LOSS PARAM TOT PROF 0.020 0.018 0.016 0.014 0.016 0.014 0.024 0.018 0.042 0.035 0.025 0.019 0.010 0.007 0.006 0.006 0.012 0.011 0.014 0.014 0.027 0.027

EDGES FOR ROTOR 65

(o) 80 Percent of design speed; reading 115

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 24.795 24.333 24.143 23.640 22.708 22.250 21.219 20.861 20.462 20.165 19.705 19.472 18.191 18.082 16.693 16.693 16.091 16.137 13.597 13.914 10.894 11.829	ABS BETAM IN OUT 7.6 33.9 7.0 32.2 6.2 31.3 4.5 32.0 3.7 36.3 3.1 32.3 1.3 30.8 -0.3 44.6 -0.9 42.6 -3.9 39.4 -9.1 43.1	64.4 60.7 62.9 56.6 61.3 50.6 60.5 49.2 59.5 46.6 55.9 51.6 55.3 46.1 51.4 27.7	TOTAL TEMP IN RATIO 289.9 1.099 289.6 1.095 288.3 1.107 288.1 1.116 288.0 1.106 287.8 1.097 287.8 1.099 287.7 1.102 287.8 1.105 287.9 1.126	TOTAL PRESS IN RATIO 10.01 1.300 10.09 1.294 10.10 1.311 10.11 1.351 10.11 1.361 10.12 1.359 10.11 1.376 10.11 1.376 10.11 1.390 10.03 1.457
RP 1 2 3 4 5 6 7 8 9 1 1 1	ABS VEL IN OUT 164.6 176.3 169.5 178.6 170.5 188.8 171.8 205.5 172.5 203.4 172.9 209.9 173.4 206.7 172.6 160.6 173.3 172.5 177.2 206.2 176.9 242.1	REL VEL IN OUT 395.4 313.0 389.4 308.4 371.9 292.6 356.7 274.3 349.3 250.9 340.7 257.9 326.0 247.5 310.4 184.3 304.5 183.0 283.4 180.1 262.4 177.4	MERID VEL IN OUT 163.2 146.4 168.3 151.1 169.5 161.3 171.3 174.2 172.1 163.9 172.7 177.4 173.3 177.5 172.6 114.4 173.2 126.9 176.7 159.5 174.7 176.6	TANG VEL IN OUT 21.9 98.3 20.6 95.3 18.4 98.2 13.5 109.0 11.1 120.5 9.3 112.2 4.1 105.9 -0.8 112.8 -2.6 116.7 -12.1 130.8 -27.9 165.5	WHEEL SPEED IN OUT 382.0 374.9 371.8 364.1 349.4 342.4 326.4 320.9 315.1 310.5 303.0 299.4 280.2 278.5 257.2 247.8 248.5 209.5 214.4 167.9 182.3
RP 1 2 5 4 5 6 7 8 9 10	ABS MACH NO IN OUT 0.494 0.505 0.510 0.514 0.513 0.545 0.518 0.594 0.520 0.608 0.522 0.608 0.524 0.601 0.521 0.460 0.523 0.495 0.536 0.597 0.535 0.703	REL MACH NO IN OUT 1.186 0.897 1.171 0.887 1.120 0.845 1.076 0.792 1.054 0.721 1.028 0.747 0.984 0.720 0.937 0.528 0.920 0.525 0.857 0.521 0.793 0.515	MERID MACH NO IN OUT 0.490 0.419 0.506 0.435 0.510 0.466 0.516 0.503 0.519 0.471 0.521 0.514 0.523 0.516 0.521 0.328 0.523 0.364 0.534 0.462 0.528 0.513		MERID PEAK SS VEL R MACH NO 0.897 1.188 0.898 1.213 0.951 1.280 1.017 1.422 0.952 1.465 1.024 1.406 0.663 1.293 0.733 1.281 0.902 1.283 1.011 1.220
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 3.2 10.00 3.9 20.00 4.7 30.00 5.3 35.00 5.6 40.00 5.7 50.00 5.8 60.00 5.8 64.00 5.7 80.00 4.5 95.00 3.7	DENCE DEV SS 1.3 3.0 1.6 2.8 1.8 1.8 1.7 -0.7 1.6 -0.3 1.4 -1.1 1.1 1.1 0.7 14.4 0.2 12.0 -2.2 10.4 -3.8 9.7	D FACT EFF 0.284 0.788 0.282 0.824 0.291 0.849 0.331 0.839 0.398 0.752 0.354 0.968 0.352 0.948 0.530 0.951 0.528 0.936 0.511 0.935 0.507 0.902	LOSS COEFF TOT PROF 0.109 0.099 0.087 0.076 0.081 0.068 0.101 0.077 0.171 0.143 0.088 0.062 0.034 0.020 0.036 0.032 0.049 0.047 0.057 0.056 0.114 0.114	LOSS PARAM TOT PROF 0.020 0.018 0.017 0.014 0.016 0.014 0.024 0.018 0.042 0.035 0.022 0.016 0.009 0.005 0.008 0.007 0.011 0.011 0.015 0.014 0.028 0.028

EDGES FOR ROTOR 65

(p) 80 Percent of design speed; reading 91

RP 1 2 3 4 5 6 7 8 9 10 11 RP 1 2 3 4 5 6 7 8 9 10 11	RAD11 IN OUT 24.795 24.333 24.143 23.640 22.708 22.250 21.219 20.861 20.462 20.165 19.705 19.472 18.191 18.082 16.693 16.693 16.091 16.137 13.597 13.914 10.894 11.829 ABS VEL IN OUT 148.0 185.7 152.7 182.0 153.3 188.4 153.8 199.4 154.4 199.3 155.0 198.5 155.0 190.1 154.2 167.3 154.9 182.4 158.0 204.6 157.9 241.8	ABS BETAM IN OUT 8.8 47.0 8.2 43.2 6.9 43.1 4.9 42.6 4.0 45.6 3.4 43.0 1.6 40.9 0.0 47.6 -0.6 45.2 -3.5 41.8 -8.7 44.0 REL VEL IN OUT 386.1 269.0 379.1 271.7 362.6 252.5 347.2 235.7 338.9 216.7 530.9 218.0 0514.9 209.3 298.4 173.7 292.7 174.6 268.5 170.6 246.4 174.3	66.5 60.8 65.2 57.0 63.8 51.5 63.0 49.9 62.1 48.3 60.5 46.7 58.9 49.5 58.0 42.6 54.0 26.5	TOTAL TEMP IN RATIO 290.2 1.146 289.9 1.129 288.9 1.128 288.0 1.128 287.9 1.113 287.8 1.108 287.9 1.110 287.9 1.106 288.0 1.123 TANG VEL IN OUT 22.8 135.7 21.8 124.6 18.4 128.7 13.2 134.9 10.9 142.3 9.3 135.5 4.2 124.4 0.1 123.5 -1.5 129.4 -9.7 136.2 -23.9 168.0	TOTAL PRI IN R. 10.02 1. 10.09 1. 10.12 1. 10.13 1. 10.14 1. 10.15 1. 10.16 1. 10.17 1. 10.18 1. 10.19 1. 10.19 1. 10.10 1.
25 4 5 6 7 8 9	152.7 182.0 153.3 188.4 153.8 199.4 154.4 199.3 155.0 198.5 155.0 190.1 154.2 167.3 154.9 182.4 158.0 204.6	379.1 271.7 362.6 252.5 347.2 235.7 358.9 216.7 350.9 218.0 314.9 209.3 298.4 173.7 292.7 174.6 268.5 170.6	151.1 132.6 152.2 137.6 153.2 146.8 154.0 139.5 154.7 145.1 155.0 143.7 154.2 112.9 154.9 128.6 157.7 152.7	21.8 124.6 18.4 128.7 13.2 134.9 10.9 142.3 9.3 135.5 4.2 124.4 0.1 123.5 -1.5 129.4 -9.7 136.2	369.5 3 347.5 3 324.8 3 312.8 3 301.8 2 278.3 2 255.6 2 246.8 2 207.7 2
RP 1 2 5 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.442 0.521 0.456 0.515 0.459 0.535 0.461 0.567 0.463 0.566 0.465 0.545 0.465 0.545 0.465 0.545 0.465 0.523 0.475 0.592 0.475 0.703	REL MACH NO IN OUT 1.152 0.756 1.134 0.769 1.086 0.718 1.042 0.671 1.017 0.616 0.994 0.623 0.945 0.600 0.896 0.496 0.879 0.500 0.807 0.494 0.740 0.507	MERID MACH NO 1N OUT 0.437 0.356 0.452 0.375 0.456 0.391 0.460 0.418 0.462 0.396 0.464 0.414 0.465 0.412 0.463 0.322 0.465 0.368 0.474 0.441 0.469 0.506		MERID PE. VEL R MA 0.866 1 0.878 1 0.904 1 0.958 1 0.906 1 0.938 1 0.927 1 0.927 1 0.928 1
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 5.3 10.00 6.0 20.00 7.0 30.00 7.8 35.00 8.1 40.00 8.3 50.00 8.5 60.00 8.5 64.00 8.4 80.00 7.2 95.00 6.2	DENCE DEV SS 3.4 2.8 3.8 2.9 4.1 2.2 4.3 0.2 4.1 0.4 4.0 0.6 3.8 3.6 3.3 12.2 2.9 8.5 0.4 9.3 -1.4 8.6	D FACT EFF 0.417 0.796 0.387 0.844 0.415 0.849 0.452 0.838 0.504 0.792 0.481 0.851 0.471 0.894 0.557 0.902 0.551 0.884 0.522 0.906 0.487 0.917	LOSS COEFF TOT PROF 0.152 0.140 0.107 0.095 0.109 0.093 0.130 0.099 0.175 0.141 0.122 0.090 0.084 0.070 0.081 0.078 0.101 0.098 0.090 0.090 0.107 0.107	LOSS PA TOT PO 0.028 0 0.020 0 0.022 0 0.030 0 0.042 0 0.030 0 0.021 0 0.018 0 0.024 0 0.023 0

EDGES FOR ROTOR 65

(q) 80 Percent of design speed; reading 92

1 0.586 0. 2 0.402 0. 3 0.408 0. 4 0.409 0. 5 0.410 0. 6 0.412 0. 7 0.412 0. 8 0.412 0. 9 0.415 0. 10 0.428 0. 11 0.431 0.	1 130.1 18 2 135.2 18 3 136.7 18 4 136.9 19 5 137.4 19 6 137.7 19 7 138.0 18 8 138.0 16 9 138.9 17 10 142.9 19 11 144.0 23	RADII RP IN 0 1 24.795 24. 2 24.143 23. 3 22.708 22. 4 21.219 20. 5 20.462 20. 6 19.705 19. 7 18.191 18. 8 16.693 16. 9 16.091 16. 10 13.597 13. 11 10.894 11.
DUT IN 1508 1.137 519 1.116 528 1.068 565 1.019 554 0.995 564 0.921 463 0.870 495 0.851 571 0.778 681 0.709	DUT IN 382.8 14.5 375.3 17.1 358.1 19.8 341.3 16.0 332.9 18.6 324.3 18.7 308.0 12.4 291.2 284.6 18.4 259.9 14.7 236.7	OUT IN 0333 9.2 640 8.4 250 7.1 861 5.0 1165 4.1 472 3.3 082 1.4 693 -0.1 137 -0.7 914 -3.5
ACH NO OUT 0.733 0.726 0.666 0.556 0.554 0.576 0.461 0.455 0.479	VEL 0UT 262.5 258.4 236.0 215.3 161.8 161.3 157.8 165.1	BETAM 0UT 50.0 47.6 48.6 48.5 51.8 49.7 43.4 52.3 49.6 45.1 45.5
MERID M IN 0.381 0.398 0.404 0.407 0.409 0.411 0.412 0.415 0.427 0.426	MER II IN 128.4 133.7 135.6 136.4 137.5 138.0 138.0 138.9 142.6 142.3	REL IN 70.4 69.1 67.7 66.4 65.7 64.9 63.4 61.7 60.8 56.7 53.1
0UT 0.327 0.350 0.349 0.375 0.343 0.365 0.392 0.283 0.321 0.403 0.477	0UT 117.2 124.5 123.7 132.5 121.3 128.6 137.1 99.4 112.4 140.0 164.5	BETAM 0UT 63.5 61.2 58.4 52.0 51.9 48.8 47.1 45.9 27.5 4.8
LOSS COEFF TOT PROF	TANG VEL IN OUT 20.7 139.4 19.7 136.2 17.0 140.4 11.9 149.6 9.9 154.0 8.0 151.4 3.5 129.7 -0.3 128.5 -1.6 131.8 -8.7 140.6 -22.1 167.5	TOTAL TEMP IN RATIO 290.7 1.156 290.2 1.144 289.1 1.141 288.5 1.147 288.1 1.140 288.0 1.111 287.9 1.111 288.0 1.112 288.0 1.122
MERID PEAK SS VEL R MACH NO 0.912 1.327 0.931 1.346 0.912 1.419 0.971 1.570 0.885 1.615 0.935 1.591 0.994 1.487 0.720 1.364 0.809 1.344 0.981 1.304 1.156 1.205 LOSS PARAM TOT PROF	WHEEL SPEED IN OUT 381.4 374.2 370.4 362.7 348.4 341.4 324.7 319.2 313.3 308.7 301.7 298.1 278.9 277.2 256.1 256.1 246.8 247.5 208.6 213.5 167.1 181.4	TOTAL PRESS IN RATIO 10.02 1.459 10.09 1.445 10.12 1.450 10.12 1.453 10.12 1.429 10.12 1.434 10.12 1.397 10.12 1.381 10.12 1.380 10.12 1.386 10.08 1.455

EDGES FOR ROTOR 65

(r) 80 Percent of design speed; reading 116

RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 254 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10 11
PERCENT SPAN 5.00 10.00 20.00 30.00 35.00 40.00 50.00 64.00 80.00	ABS M IN 0.344 0.359 0.366 0.368 0.369 0.372 0.377 0.379 0.382 0.395	ABS IN 116.2 121.0 123.2 123.6 124.0 124.9 126.5 127.2 132.5 133.8	RAD IN 24.795 24.143 22.708 21.219 20.462 19.705 18.191 16.693 16.091 13.597
INCI MEAN 10.0 10.8 11.7 12.7 13.1 13.4 13.5 13.4	ACH NO OUT 0.498 0.519 0.534 0.576 0.563 0.563 0.472 0.563 0.664	VEL 0UT 180.1 186.6 190.7 204.5 197.5 199.1 189.4 158.3 165.6 195.9 229.2	0UT 24.333 23.640 22.250 20.861 20.165 19.472 18.082 16.693 16.137 13.914
DENCE \$5 8.1 8.6 8.8 9.1 9.1 9.1 8.8 8.2 7.7 5.2	REL M IN 1.125 1.107 1.057 1.007 0.958 0.958 0.909 0.858 0.837 0.761 0.688	REL IN 380.6 373.8 355.7 338.5 329.9 321.8 305.1 287.7 280.6 255.1 230.3	ABS IN 8.7 7.8 6.7 4.6 3.6 2.6 0.8 -0.8 -1.4 -4.2 -9.4
7.8 5.2 4.4 0.4 2.8 1.9 16.9 10.3	ACH NO 0UT 0.660 0.6653 0.606 0.562 0.527 0.514 0.577 0.4456 0.430 0.458	VEL 0UT 238.6 234.8 216.3 199.7 187.2 181.6 201.9 157.7 152.9 149.7 158.0	BETAM OUT 58.7 55.3 54.6 52.8 54.6 53.7 43.4 54.3 52.8 47.4 46.6
D FACT 0.513 0.513 0.537 0.579 0.604 0.612 0.488 0.605 0.614 0.588	MERID M IN 0.340 0.355 0.364 0.367 0.368 0.372 0.377 0.379 0.382 0.394	MERI IN 114.9 119.9 122.4 123.2 123.7 124.7 126.5 127.2 128.2 132.1	REL IN 72.4 71.3 69.9 68.7 68.0 67.2 65.5 63.8 62.8 58.8 55.0
0.665 0.681 0.705 0.729 0.742 0.856 0.869 0.864 0.896	ACH NO 0UT 0.259 0.295 0.310 0.348 0.322 0.3394 0.263 0.286 0.381 0.456	D VEL 0UT 93.7 106.3 110.6 123.7 114.4 117.9 137.8 92.5 100.2 132.6 157.3	BETAM OUT 66.9 63.1 59.3 51.7 52.3 49.5 47.0 54.1 49.0 27.6 5.3
LOSS (107 0.288 0.273 0.257 0.257 0.279 0.247 0.126 0.117 0.127 0.115		TAN IN 17.5 16.4 14.3 9.9 7.9 5.6 1.7 -1.9 -3.6 -21.9	TOTAL IN 291.3 290.8 289.3 288.5 288.3 288.1 288.1 288.0 288.0
COEFF PROF 0.262 0.246 0.226 0.204 0.224 0.200 0.103 0.111 0.123		G VEL 0UT 153.8 153.4 155.3 162.9 161.0 160.5 130.1 128.5 131.9 144.1 166.7	TEMP RATIO 1.171 1.166 1.157 1.160 1.155 1.148 1.119 1.110 1.110 1.112
LOSS TOT 0.045 0.048 0.049 0.060 0.059 0.031 0.023 0.023		WHEEL IN 380.3 370.5 348.3 325.2 313.7 302.2 279.4 256.2 246.6 208.6 166.9	TOTAL IN 10.04 10.10 10.12 10.12 10.12 10.12 10.12 10.12 10.10 10.
PARAM PROF 0.041 0.043 0.043 0.048 0.051 0.048 0.025 0.025 0.027 0.029	PEAK SS MACH NO 1.391 1.416 1.426 1.645 1.670 1.534 1.404 1.379 1.330 1.216	SPEED 0UT 373.2 362.8 341.2 319.7 309.1 298.6 277.7 256.2 247.3 213.5 181.2	PRESS RATIO 1.458 1.456 1.445 1.471 1.439 1.403 1.378 1.375 1.399 1.454

EDGES FOR ROTOR 65

(s) 70 Percent of design speed; reading 77

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 24.795 24.333 24.143 23.640 22.708 22.250 21.219 20.861 20.462 20.165 19.705 19.472 18.191 18.082 16.693 16.693 16.091 16.137 13.597 13.914 10.894 11.829	6.3 2' 5.4 2' 5.2 2' 4.3 2: 3.8 3. 2.9 2! 1.4 2 -0.4 3: -1.0 3: -4.3 3'	AM RELL JT IN 9.2 66.4 7.1 65.1 7.4 63.7 8.6 62.0 2.7 61.0 8.9 60.3 7.7 58.5 8.8 56.9 8.0 56.0 5.8 52.2	BETAM OUT 61.8 60.8 56.9 51.1 46.9 51.6 46.8 27.3	TOTAL TEMP IN RATIO 289.2 1.061 288.8 1.059 288.2 1.062 287.9 1.080 287.8 1.065 287.8 1.068 287.8 1.068 287.8 1.071 287.7 1.078 287.7 1.095	TOTAL PRESS IN RATIO 10.03 1.183 10.11 1.177 10.11 1.191 10.12 1.224 10.12 1.236 10.12 1.233 10.12 1.233 10.12 1.233 10.12 1.234 10.11 1.274 10.08 1.332
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL 1N 0UT 139.6 154.6 144.5 154.9 144.3 163.7 146.1 178.7 146.9 178.9 147.2 184.7 147.7 181.9 146.7 138.9 147.7 149.0 151.1 186.2 153.3 226.7	REL VEL 1N OU 346.6 285 341.7 282 324.8 266 310.4 249 302.5 230 296.5 236 282.2 225 268.5 174 263.7 171 245.6 169 228.6 174	T 1N .3 138.8 .4 143.8 .2 145.7 .8 145.7 .1 146.6 .5 147.6 .4 146.7 .2 147.6 .9 150.7	D VEL 0UT 135.0 138.0 145.4 156.8 150.6 161.7 161.1 108.3 117.3 151.0 173.7	TANG VEL 1N OUT 15.3 75.4 13.6 70.5 13.1 75.2 10.9 85.6 9.8 96.5 7.4 89.2 3.6 84.5 -1.1 87.1 -2.6 91.8 -11.4 108.9 -25.2 145.6	WHEEL SPEED IN OUT 332.9 326.7 323.6 316.9 304.4 298.3 284.9 280.1 274.5 270.5 264.9 261.8 244.1 242.6 223.7 223.7 215.9 216.5 182.5 186.8 146.3 158.8
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.417 0.449 0.432 0.451 0.432 0.477 0.438 0.521 0.440 0.520 0.441 0.540 0.443 0.533 0.440 0.402 0.443 0.431 0.453 0.543 0.460 0.664	REL MACH IN OU 1.034 0.8 1.022 0.8 0.972 0.7 0.930 0.7 0.906 0.6 0.889 0.6 0.886 0.6 0.805 0.6 0.791 0.4 0.737 0.4 0.686 0.5	T IN 29 0.414 22 0.430 76 0.430 28 0.436 68 0.436 99 0.441 61 0.443 04 0.440 96 0.443 95 0.452	1ACH NO OUT 0.392 0.402 0.424 0.457 0.472 0.472 0.313 0.339 0.440 0.509		MERID PEAK SS VEL R MACH NO 0.973 1.087 0.959 1.127 1.012 1.212 1.076 1.315 1.028 1.328 1.100 1.319 1.091 1.225 0.738 1.128 0.795 1.118 1.002 1.122 1.149 1.064
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 4.0 10.00 5.5 30.00 6.0 35.00 6.2 40.00 6.4 50.00 6.4 60.00 6.5 64.00 6.3 80.00 5.3 95.00 4.1	SS 2.1 2 2.4 2 2.7 2 2.4 -0 2.2 -0 1.7 1 1.3 14 0.8 12 -1.5 10	.4 0.345 .8 0.304 .4 0.302 .4 0.461 .7 0.469	EFF 0.809 0.812 0.832 0.828 0.873 0.954 0.921 0.907 0.919 0.896	LOSS COEFF TOT PROF 0.075 0.074 0.073 0.072 0.073 0.071 0.092 0.087 0.160 0.156 0.072 0.069 0.026 0.026 0.051 0.051 0.064 0.064 0.068 0.068 0.118 0.118	LOSS PARAM TOT PROF 0.014 0.014 0.014 0.014 0.015 0.014 0.022 0.021 0.039 0.038 0.018 0.017 0.007 0.007 0.011 0.011 0.014 0.014 0.017 0.017 0.028 0.028

EDGES FOR ROTOR 65

(t) 70 Percent of design speed; reading 78

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 24.795 24.333 24.143 23.640 22.708 22.250 21.219 20.861 20.462 20.165 19.705 19.472 18.191 18.082 16.693 16.693 16.091 16.137 13.597 13.914 10.894 11.829	5.3 40 5.0 41 4.2 42 3.7 45 3.2 41 1.4 36 -0.5 47 -1.0 45 -4.2 42		BETAM 0UT 63.1 61.8 58.7 51.3 51.1 48.3 46.9 52.0 46.8 27.9 6.1	289.1 1 288.8 1 288.2 1 288.0 1 288.0 1 288.0 1 288.0 1 288.0 1 287.9 1 288.0 1	EMP AT10 .099 .092 .093 .105 .104 .095 .080 .080 .083 .093	TOTAL IN 10.06 10.11 10.12 10.12 10.12 10.12 10.12 10.12 10.12 10.12 10.12 10.12 10.12 10.12	PRESS RATIO 1.284 1.270 1.277 1.312 1.293 1.293 1.277 1.274 1.273 1.286 1.333
RP 1 23 4 5 6 7 8 9 10 11	ABS VEL IN OUT 120.3 153.5 124.3 153.3 123.9 158.2 124.7 175.7 125.8 171.5 126.3 174.1 126.9 167.2 126.8 140.0 127.3 148.7 129.2 175.5 130.4 207.8	REL VEL IN OUT 341.6 250. 336.5 248. 319.9 228. 303.1 207. 295.2 190. 286.8 195. 272.7 196. 258.6 153. 253.0 151. 231.0 147. 211.9 152.	IN 4 119.6 4 123.8 0 123.4 5 124.4 7 125.6 5 126.1 5 126.8 8 127.3 5 128.9	D VEL 0UT 113.3 117.3 118.3 129.6 119.7 130.1 134.3 94.5 103.9 130.4 151.2	11.5 10.9 1 9.2 1 8.1 7.0 1 3.0 -1.0 1 -2.3 1 -9.6	VEL OUT 03.6 98.7 05.0 18.7 22.8 99.6 03.4 06.4 17.4 42.7	WHEEL IN 333.1 324.4 306.0 285.5 275.3 264.6 244.5 224.3 216.4 182.1	SPEED 0UT 326.9 317.6 299.8 280.7 271.3 261.5 243.0 224.3 217.0 186.4 158.9
RP 1 2 5 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.357 0.438 0.370 0.439 0.369 0.454 0.372 0.504 0.375 0.491 0.376 0.501 0.378 0.484 0.378 0.403 0.380 0.428 0.386 0.508 0.389 0.605	REL MACH N IN OUT 1.015 0.71 1.001 0.71 0.952 0.65 0.903 0.59 0.880 0.54 0.855 0.56 0.813 0.56 0.771 0.44 0.754 0.43 0.689 0.42 0.632 0.44	IN 4 0.355 1 0.368 4 0.367 5 0.374 5 0.374 3 0.378 9 0.378 1 0.378 7 0.380 7 0.384	0.325 0.336 0.339 0.371 0.343 0.375 0.389 0.272 0.279 0.378 0.440				PEAK SS MACH NO 1.219 1.259 1.312 1.394 1.403 1.375 1.283 1.180 1.166 1.140
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 7.1 10.00 7.9 20.00 9.1 30.00 9.8 35.00 10.0 40.00 10.1 50.00 10.3 64.00 10.1 80.00 9.2 95.00 8.1	DENCE DE SS 5.2 4. 5.7 3. 6.3 3. 6.2 0. 6.0 1. 5.8 0. 5.5 3. 5.1 14. 4.7 12. 2.4 10. 0.6 10.	0 0.371 9 0.361 9 0.395 0 0.451 6 0.498 0 0.457 8 0.457 8 0.543 7 0.542 6 0.521	EFF 0.750 0.771 0.777 0.772 0.734 0.812 0.905 0.909 0.895 0.903 0.918	0.155 0 0.136 0 0.144 0 0.176 0 0.212 0 0.147 0 0.069 0 0.071 0 0.086 0 0.095 0	EFF ROF .152 .131 .139 .205 .143 .069 .071 .086	LOSS TOT 0.028 0.025 0.028 0.042 0.050 0.036 0.017 0.015 0.019 0.024 0.025	PARAM PROF 0.027 0.024 0.027 0.040 0.048 0.035 0.017 0.015 0.019 0.024 0.025

EDGES FOR ROTOR 65

(u) 70 Percent of design speed; reading 86

RP 1 2 3 4 5 6 7 8 9 10	RADII IN OUT 24.795 24.333 24.143 23.640 22.708 22.250 21.219 20.861 20.462 20.165 19.705 19.472 18.191 18.082 16.693 16.693 16.091 16.137 13.597 13.914 10.894 11.829	ABS BETAM IN OUT 7.3 59.5 6.2 52.0 5.2 48.2 4.2 48.5 3.7 50.6 3.2 48.9 1.7 41.4 0.1 53.8 -0.5 52.3 -3.6 47.7 -8.9 46.7	71.3 62.6 70.2 58.6 68.7 51.7 67.9 51.0 67.0 48.0 65.3 46.6 63.7 53.5 62.9 48.6 59.0 28.9	TOTAL TEMP 1N RAT10 289.0 1.138 288.7 1.124 288.3 1.110 288.2 1.116 288.1 1.115 288.1 1.110 288.1 1.089 288.0 1.085 288.0 1.086 288.0 1.087 287.9 1.093	TOTAL PRESS IN RATIO 10.07 1.330 10.12 1.317 10.12 1.342 10.12 1.331 10.12 1.331 10.12 1.385 10.12 1.285 10.12 1.285 10.12 1.293 10.10 1.336
RP 1 23 4 5 6 7 8 9 10 11	ABS VEL IN OUT 102.6 157.6 106.5 160.5 162.5 108.4 176.4 109.3 174.1 110.0 176.5 111.1 167.2 111.1 140.0 111.3 146.2 114.6 168.5 115.9 199.5	REL VEL IN OUT 335.7 207.1 330.2 215.2 313.9 208.2 297.5 188.8 289.5 175.9 281.2 173.4 265.9 182.8 250.4 139.0 244.3 135.1 221.8 129.4 200.4 137.6	MERID VEL IN OUT 101.7 79.9 105.8 98.9 106.2 108.3 108.1 116.9 109.1 110.6 109.8 116.0 111.1 125.5 111.1 82.7 111.3 89.3 114.4 113.3 114.5 136.9	TANG VEL IN OUT 13.1 135.8 11.4 126.4 9.6 121.1 8.0 132.1 7.1 134.5 6.2 133.0 3.2 110.5 0.2 112.9 -0.9 115.7 -7.2 124.6 -17.9 145.1	WHEEL SPEED IN OUT 333.0 326.8 324.2 317.5 305.0 298.8 285.2 280.4 275.2 271.2 265.0 261.9 244.8 243.3 224.6 216.5 217.1 182.8 187.1 146.6 159.2
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.304 0.442 0.316 0.453 0.316 0.463 0.322 0.503 0.325 0.496 0.327 0.505 0.330 0.482 0.330 0.401 0.331 0.419 0.341 0.486 0.345 0.580	REL MACH NO IN OUT 0.994 0.581 0.979 0.608 0.931 0.593 0.883 0.538 0.860 0.501 0.835 0.496 0.790 0.526 0.744 0.398 0.726 0.388 0.660 0.373 0.596 0.400	MERID MACH NO IN OUT 0.301 0.224 0.314 0.279 0.315 0.308 0.321 0.335 0.324 0.315 0.326 0.332 0.330 0.362 0.330 0.362 0.331 0.256 0.340 0.327 0.341 0.398		MERID PEAK SS VEL R MACH NO 0.786 1.315 0.934 1.336 1.020 1.376 1.081 1.451 1.014 1.459 1.056 1.430 1.130 1.327 0.745 1.215 0.802 1.198 0.991 1.156 1.196 1.057
RP 1 2 3 4 5 6 7 8 9 10	PERCENT INCI SPAN MEAN 5.00 10.0 10.00 10.8 20.00 12.0 30.00 12.7 35.00 13.0 40.00 13.2 50.00 13.3 64.00 13.2 80.00 12.1 95.00 10.6	SS 8.1 8.2 8.6 4.8 9.2 3.8 9.1 0.4 9.0 1.5 8.9 0.4 8.5 3.5	D FACT EFF 0.526 0.617 0.482 0.672 0.467 0.743 0.522 0.755 0.555 0.733 0.548 0.775 0.456 0.876 0.597 0.869 0.604 0.860 0.589 0.880 0.517 0.931	LOSS COEFF TOT PROF 0.320 0.313 0.259 0.250 0.198 0.190 0.215 0.203 0.241 0.231 0.205 0.199 0.103 0.102 0.116 0.116 0.130 0.130 0.132 0.132 0.097 0.097	LOSS PARAM TOT PROF 0.049 0.048 0.046 0.045 0.038 0.037 0.050 0.048 0.057 0.054 0.051 0.049 0.025 0.025 0.025 0.025 0.023 0.023 0.028 0.023 0.023 0.023

TABLE XII. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR ROTOR 65

(v) 40 Percent of design speed; reading 81

RP 1 2 3 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9	RP 1 2 5 4 5 6 7 8 9 10 11	RP 1 2 3 4 5 6 7 8 9 10
PERCENT SPAN 5.00 10.00 20.00 30.00 40.00 50.00 64.00 80.00 95.00	ABS M IN 0.238 0.245 0.243 0.247 0.248 0.248 0.248 0.248 0.248 0.251	ABS IN 80.5 82.8 82.4 83.6 83.9 84.0 83.9 83.4 83.7 85.0	RAD IN 24.795 24.143 22.708 21.219 20.462 19.705 18.191 16.693 16.091 13.597 10.894
INCI MEAN 3.7 4.4 5.6 5.8 6.1 6.5 6.4 5.5	ACH NO OUT 0.255 0.264 0.286 0.314 0.317 0.339 0.345 0.236 0.223 0.294 0.365	VEL 0UT 86.8 89.6 97.1 106.8 107.6 115.0 116.9 80.6 76.4 100.3 124.6	OUT 24.333 23.640 22.250 20.861 20.165 19.472 18.082 16.693 16.137 13.914
DENCE SS 1.8 2.2 2.7 2.2 2.1 1.7 1.2 0.9 -1.3 -2.6	REL M IN 0.581 0.574 0.548 0.520 0.510 0.498 0.475 0.450 0.443 0.411	REL IN 196.8 194.4 185.5 175.8 172.5 168.6 160.5 152.0 149.8 138.9 129.5	ABS IN 7.4 6.5 5.7 5.1 4.5 3.8 2.1 0.6 0.0 -3.5 -9.7
DEV 3.8 3.5 2.4 -0.1 -0.5 -1.0 13.8 18.1 13.6 11.0	ACH NO OUT 0.542 0.533 0.509 0.476 0.449 0.464 0.436 0.295 0.294 0.279 0.281	VEL 0UT 184.1 181.0 172.8 161.8 152.6 157.3 147.9 100.9 100.7 95.2 96.0	BETAM OUT 15.2 14.7 15.4 18.3 21.7 18.6 20.0 38.0 36.1 35.5 40.1
D FACT 0.089 0.095 0.103 0.135 0.134 0.160 0.444 0.427 0.448 0.441	MERID M IN 0.236 0.243 0.242 0.246 0.247 0.248 0.248 0.248 0.248 0.249	MER I. IN 79.8 82.3 81.9 83.2 83.7 83.8 83.8 83.4 83.7 84.8	1N 66.1 65.0 63.8 61.7 61.0 60.2 58.5 56.8
EFF 0.664 0.675 0.805 0.749 0.677 0.873 0.987 0.982 0.996 0.911	ACH NO OUT 0.246 0.255 0.276 0.298 0.294 0.321 0.324 0.186 0.181 0.239 0.280	D VEL OUT 83.8 86.7 93.6 101.4 99.9 109.0 109.8 63.5 61.8 81.7 95.3	BETAM OUT 62.9 61.4 57.2 51.2 49.1 42.0 51.0 52.2 30.9 6.7
0.049 0.050 0.038 0.079 0.121 0.048 0.005 0.062 0.061		TANG IN 10.3 9.4 8.2 7.4 6.6 5.5 3.1 0.9 0.0 -5.3	288.7 288.5 288.4 288.2 288.0 288.0 288.1 288.0 288.1 288.0
OEFF PROF 0.049 0.058 0.079 0.121 0.048 0.005 0.062 0.061 0.070 0.127		VEL 0UT 22.8 22.8 25.9 33.5 36.6 40.1 49.6 45.0 58.3 80.2	TEMP RATIO 1.009 1.009 1.011 1.015 1.018 1.017 1.017 1.020 1.021 1.025 1.032
LOSS TOT 0.009 0.009 0.008 0.019 0.030 0.012 0.015 0.012	MERID VEL R 1.050 1.053 1.142 1.218 1.194 1.301 0.762 0.738 0.963 1.133	WHEEL IN 190.2 185.6 174.6 162.3 157.4 151.8 140.0 128.0 124.2 104.7 84.1	TOTAL 1N 10.10 10.12 10.13 10.13 10.13 10.13 10.13 10.13
PARAM PROF 0.009 0.009 0.008 0.019 0.030 0.012 0.001 0.013 0.012 0.017	PEAK SS MACH NO 0.611 0.640 0.731 0.747 0.738 0.688 0.629 0.627 0.628 0.605	SPEED OUT 186.7 181.7 171.1 159.5 155.1 150.0 139.1 128.0 124.5 107.1 91.3	PRESS RATIO 1.020 1.021 1.030 1.041 1.043 1.054 1.060 1.063 1.069 1.083

EDGES FOR ROTOR 65

(w) 40 Percent of design speed; reading 82

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 24.795 24.335 24.143 23.640 22.708 22.250 21.219 20.861 20.462 20.165 19.705 19.472 18.191 18.082 16.693 16.693 16.091 16.137 13.597 13.914 10.894 11.829 ABS VEL	ABS BETAM IN OUT 7.7 44.6 6.9 38.9 6.2 39.0 5.2 39.8 4.8 42.9 3.9 38.9 2.1 36.5 0.5 47.1 -0.1 48.0 -9.7 44.8	70.4 62.1 69.3 59.0 67.8 52.0 67.0 50.3 66.2 48.3 64.7 46.5 62.9 52.9 62.2 50.6 58.6 30.9 55.2 7.6	TOTAL TEMP IN RATIO 288.6 1.034 288.4 1.030 288.4 1.030 288.3 1.034 288.1 1.034 288.1 1.031 288.1 1.027 288.0 1.027 287.9 1.028 288.0 1.031	TOTAL PRES IN RAT 10.11 1.0 10.13 1.0 10.13 1.0 10.13 1.0 10.13 1.0 10.13 1.0 10.13 1.0 10.13 1.0 10.13 1.0 10.13 1.0
RP 1 2 3 4 5 6 7 8 9 10 11	IN OUT 62.0 84.6 64.0 86.8 63.8 89.2 64.6 99.2 65.0 99.6 65.0 99.9 65.3 96.6 65.1 78.3 65.3 79.7 66.6 94.8 67.2 114.2	IN OUT 192.7 141.4 189.3 144.4 179.5 134.4 170.4 123.7 165.9 114.3 160.9 116.8 152.4 112.8 143.1 88.5 140.1 84.0 127.5 78.4 116.3 81.7	IN OUT 61.4 60.2 63.5 67.6 63.4 69.3 64.3 76.2 64.8 72.9 65.2 77.6 65.1 53.4 65.3 53.3 66.5 67.3 66.3 81.0	IN OUT 8.3 59.4 7.7 54.5 6.9 56.1 5.8 63.4 5.4 67.9 4.4 62.7 2.4 57.5 0.6 57.4 -0.1 59.3 -4.2 66.9 -11.3 80.5	IN 0U 191.0 187 186.0 182 174.8 171 163.7 160 158.1 155 151.7 149 140.1 139 128.0 128 123.8 -124 104.6 107 84.2 91
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.183 0.246 0.189 0.253 0.188 0.260 0.190 0.289 0.192 0.291 0.193 0.282 0.192 0.292 0.193 0.232 0.197 0.277 0.198 0.334	REL MACH NO IN OUT 0.568 0.411 0.558 0.420 0.529 0.392 0.503 0.361 0.489 0.333 0.474 0.341 0.450 0.330 0.422 0.258 0.413 0.245 0.376 0.229 0.343 0.239	MERID MACH NO IN OUT 0.181 0.175 0.187 0.197 0.187 0.202 0.190 0.222 0.191 0.213 0.191 0.227 0.192 0.227 0.192 0.156 0.193 0.155 0.196 0.197 0.196 0.237		MERID PEAK VEL R MACH 0.980 0.7 1.093 0.7 1.185 0.8 1.126 0.8 1.198 0.8 1.190 0.7 0.820 0.6 0.816 0.6 1.012 0.6
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INC SPAN MEAN 5.00 9.0 10.00 9.9 20.00 11.1 30.00 12.2 40.00 12.4 50.00 12.6 60.00 12.6 80.00 11.7 95.00 10.7	SS 7.1 5.7 7.7 4.2 8.3 4.2 8.3 0.7 8.2 0.8 8.1 0.6 7.9 3.4 7.4 15.7 7.1 16.6 4.9 13.6	D FACT EFF 0.370 0.671 0.332 0.755 0.351 0.778 0.400 0.776 0.450 0.748 0.407 0.812 0.389 0.875 0.515 0.870 0.541 0.847 0.548 0.886 0.495 0.906	LOSS COEFF TOT PROF 0.192 0.192 0.131 0.131 0.127 0.127 0.159 0.159 0.190 0.190 0.138 0.138 0.088 0.088 0.100 0.100 0.128 0.128 0.115 0.115 0.127 0.127	LOSS PARA TOT PRO 0.032 0.0 0.024 0.0 0.024 0.0 0.037 0.0 0.045 0.0 0.034 0.0 0.022 0.0 0.022 0.0 0.027 0.0 0.028 0.0 0.031 0.0

EDGES FOR ROTOR 65

(x) 40 Percent of design speed; reading 83

RP 1 2 3 4 5 6 7 8 9 10 11	RADII IN OUT 24.795 24.333 24.143 23.640 22.708 22.250 21.219 20.861 20.462 20.165 19.705 19.472 18.191 18.082 16.693 16.693 16.091 16.137 13.597 13.914 10.894 11.829	ABS BETAM IN OUT 60.8 73.0 19.1 71.6 6.7 64.1 5.5 52.4 5.0 48.5 4.3 42.0 2.6 38.0 0.8 48.6 0.2 49.4 -3.1 46.7	79.5 70.8 73.8 67.9 71.1 57.6 70.3 53.5 69.3 50.7 0 67.6 47.6 65.9 53.4 65.2 50.4 7 61.6 29.6	TOTAL TEMP IN RATIO 292.8 1.050 290.1 1.049 288.7 1.043 288.5 1.037 288.3 1.037 288.3 1.027 288.3 1.027 288.1 1.027 288.1 1.027 288.1 1.028 288.0 1.031	TOTAL PRESS IN RATIO 10.04 1.146 10.07 1.111 10.11 1.085 10.12 1.085 10.12 1.086 10.13 1.083 10.13 1.082 10.13 1.084 10.13 1.090 10.12 1.103
RP 1 2 3 4 5 6 7 8 9 10 11	ABS VEL IN OUT 15.5 115.5 34.5 98.8 49.5 86.6 54.3 91.5 55.1 94.6 55.9 95.2 56.9 94.3 57.2 78.6 57.5 81.0 58.8 96.5 59.6 115.4	REL VEL 1N OUT 178.0 84.4 178.1 93.9 176.1 100.8 167.0 104.3 162.6 105.4 157.9 111.2 140.4 87.2 137.2 82.7 123.4 76.1 111.0 81.2	MERID VEL IN OUT 7.6 33.7 32.6 30.9 49.2 37.9 54.1 55.9 54.9 62.7 55.7 70.8 56.9 74.3 57.2 52.0 57.5 52.7 58.7 66.2 58.8 80.6	TANG VEL IN OUT 13.5 110.4 11.2 93.8 5.7 77.9 5.2 72.5 4.8 70.8 4.2 63.7 2.6 58.0 0.8 59.0 0.2 61.4 -3.2 70.3 -9.5 82.5	WHEEL SPEED IN OUT 191.4 187.8 186.3 182.4 174.9 171.3 163.5 160.5 157.9 155.6 152.0 150.2 140.3 139.5 129.0 124.7 125.1 105.4 107.8 84.6 91.8
RP 1 2 3 4 5 6 7 8 9 10 11	ABS MACH NO IN OUT 0.045 0.332 0.101 0.285 0.146 0.251 0.160 0.266 0.162 0.275 0.168 0.275 0.169 0.229 0.169 0.236 0.173 0.282 0.176 0.338	REL MACH NO IN OUT 0.519 0.243 0.522 0.271 0.518 0.292 0.492 0.303 0.479 0.307 0.465 0.326 0.439 0.322 0.414 0.254 0.404 0.241 0.364 0.222 0.327 0.238	MERID MACH NO IN OUT 0.022 0.097 0.095 0.089 0.145 0.110 0.159 0.162 0.162 0.182 0.164 0.206 0.168 0.217 0.169 0.152 0.169 0.154 0.173 0.193 0.173 0.236		MERID PEAK SS VEL R MACH NO 4.458 0.959 0.949 0.858 0.770 0.828 1.033 0.848 1.142 0.853 1.306 0.772 0.908 G.708 0.917 0.699 1.127 0.671 1.371 0.612
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT INCI SPAN MEAN 5.00 25.2 10.00 19.0 20.00 15.6 30.00 15.2 35.00 15.4 40.00 15.5 50.00 15.5 64.00 15.6 80.00 14.7 95.00 13.4	IDENCE DEV SS 23.5 7.4 16.8 13.0 12.8 13.2 11.6 6.3 11.4 4.0 11.2 3.1 10.8 4.6 10.4 16.2 10.1 16.3 7.9 12.3 5.9 10.9	D FACT EFF 0.738 0.786 0.651 0.620 0.578 0.551 0.526 0.611 0.502 0.654 0.430 0.736 0.392 0.854 0.545 0.857 0.557 0.885 0.476 0.919	LOSS COEFF TOT PROF 0.210 0.210 0.357 0.357 0.375 0.375 0.325 0.325 0.288 0.288 0.208 0.208 0.119 0.119 0.118 0.118 0.123 0.123 0.126 0.126 0.119 0.119	LOSS PARAM TOT PROF 0.033 0.033 0.046 0.046 0.052 0.052 0.066 0.066 0.064 0.064 0.049 0.049 0.029 0.029 0.024 0.024 0.026 0.026 0.032 0.032 0.029 0.029

TABLE XIII. - BLADE-ELEMENT DATA AT BLADE EDGES

FOR BYPASS STATOR 65

(a) 100 Percent of design speed; reading 154

RP 1 2 3 4 5 6 7	RADII IN OUT 24.006 23.62 23.396 23.11 22.174 22.049 20.968 20.979 20.366 20.444 19.769 19.910 18.593 18.889	IN 7 38.7 33.6 5 31.4 5 31.8 4 37.2 5 36.4	BETAM OUT -0.1 -1.9 -3.4 -2.9 -3.0 -3.0 -2.6	REL 1N 38.7 33.6 31.4 31.8 37.2 36.4 29.2	BETAM OUT -0.1 -1.9 -3.4 -2.9 -3.0 -3.0 -2.6	TOTAL TEMP IN RATIO 344.5 0.998 337.5 1.007 336.9 1.004 341.4 0.994 342.9 0.990 341.0 0.994 337.5 0.995	TOTAL PRESS IN RATIO 16.09 0.927 15.99 0.955 16.28 0.963 16.65 0.950 16.13 0.978 16.32 0.965 16.93 0.927
RP 1 2 3 4 5 6	ABS VEL IN OUT 237.9 230. 244.0 237. 267.7 250. 291.3 264. 269.3 270. 278.4 283. 316.4 335.0	IN 7 237.9 5 244.0 0 267.7 4 291.3 2 269.3 2 278.4	VEL 0UT 230.7 237.3 250.0 264.4 270.2 283.2 335.6	MER II 1N 185.6 203.3 228.5 247.5 214.5 224.0 276.1	0 VEL 0UT 230.7 237.2 249.5 264.0 269.8 282.8 335.3	TANG VEL IN OUT 148.7 -0.5 135.0 -7.8 139.4 -14.9 153.6 -13.6 162.9 -14.2 165.3 -14.7 154.5 -15.4	HEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6	ABS MACH NO IN OUT 0.667 0.644 0.67 0.769 0.71 0.840 0.750 0.767 0.779 0.81 0.930 1.00	IN 0.667 0.694 0.769 0.840 4.0.767 7.0.799	ACH NO OUT 0.646 0.670 0.711 0.756 0.774 0.817	MERID M. 1N 0.521 0.578 0.657 0.714 0.611 0.642 0.812	ACH NO OUT 0.646 0.670 0.710 0.755 0.773 0.816 1.000		MERID VEL R 1.243 1.167 1.092 1.067 1.258 1.263
RP 1 2 3 4 5 6 7	5PAN ME 5.00 -16 10.00 -15 20.00 -9 30.00 -6 35.00 0	.4 -20.7 .2 -19.6 .9 -14.4 .1 -10.8 .2 -4.4 .2 -4.5	DEV 16.5 12.5 7.6 7.0 6.4 6.1 6.1	D FACT 0.224 0.201 0.226 0.242 0.163 0.141 0.063	EFF 0.000 0.000 0.000 0.000 0.000 0.000	LOSS COEFF TOT PROF 0.283 0.283 0.165 0.165 0.116 0.116 0.135 0.135 0.067 0.067 0.103 0.103 0.170 0.170	LOSS PARAM TOT PROF 0.087 0.087 0.049 0.049 0.032 0.032 0.035 0.035 0.017 0.017 0.025 0.025 0.040 0.040

(b) 100 Percent of design speed; reading 135

RP 1 2 3 4 5 6 7	RADII IN OUT 24.006 23.627 23.396 23.111 22.174 22.045 20.968 20.975 20.366 20.444 19.769 19.916 18.593 18.885	ABS BETAM IN OUT 46.9 -0. 40.5 -2. 57.8 -2. 57.9 -1. 42.0 -2. 59.8 -2. 55.7 -1.	IN OUT 4 46.9 -0.4 1 40.5 -2.1 9 37.8 -2.9 7 37.9 -1.7 0 42.0 -2.0 2 39.8 -2.2	TOTAL TEMP IN RATIO 357.6 0.988 348.3 1.003 345.7 1.003 348.4 0.994 350.1 0.987 346.5 0.992 342.1 0.994	TOTAL PRESS IN RATIO 17.81 0.955 17.52 0.982 17.54 0.989 17.76 0.967 17.33 0.981 17.43 0.969 17.39 0.955
RP 1 2 3 4 5 6 7	ABS VEL IN OUT 240.1 209.3 241.8 213.4 257.7 220.6 274.3 224.3 265.9 224.6 269.1 226.6 277.6 233.0	REL VEL IN OUT 240.1 209.3 241.8 213.4 257.7 220.6 274.3 224.3 263.9 224.6 269.1 226.6 277.6 233.0	183.9 213.3 203.6 220.4 216.6 224.2 196.0 224.5 206.9 226.4	TANG VEL IN OUT 175.2 -1.3 157.0 -7.7 157.9 -11.2 168.4 -6.6 176.7 -8.0 172.2 -8.8 162.1 -7.4	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6 7	ABS MACH NO IN OUT 0.660 0.573 0.675 0.589 0.727 0.613 0.776 0.624 0.741 0.626 0.762 0.634 0.795 0.657	REL MACH NO IN OUT 0.660 0.573 0.675 0.589 0.727 0.613 0.776 0.624 0.741 0.626 0.762 0.634 0.795 0.657	IN OUT 0.451 0.573 0.513 0.588 0.574 0.612 0.613 0.624 0.550 0.626 0.586 0.633		MERID VEL R 1.275 1.160 1.082 1.035 1.146 1.094
RP 1 2 3 4 5 6 7	PERCENT INCI SPAN MEAN 5.00 -8.2 10.00 -8.3 20.00 -3.5 30.00 -0.1 35.00 5.1 40.00 3.5 50.00 0.1	DENCE DEV SS -12.6 16.2 -12.7 12.3 -8.0 8.1 -4.7 8.2 0.4 7.4 -1.1 6.9 -4.5 6.9	0.356 0.000 0.320 0.000 0.326 0.000 0.349 0.000 0.325 0.000 0.323 0.000	LOSS COEFF TOT PROF 0.176 0.176 0.069 0.069 0.037 0.037 0.102 0.102 0.062 0.062 0.098 0.098 0.133 0.133	LOSS PARAM TOT PROF 0.054 0.054 0.020 0.020 0.010 0.010 0.026 0.026 0.016 0.016 0.024 0.024 0.031 0.031

BLADE EDGES FOR BYPASS STATOR 65

(c) 100 Percent of design speed; reading 134

RP 1 2 3 4 5 6 7	RADII IN OUT 24.006 23.627 23.396 23.111 22.174 22.045 20.968 20.975 20.366 20.444 19.769 19.916 18.593 18.885	ABS BETAM 1N OUT 51.1 -0.4 44.8 -1.7 42.2 -2.2 41.8 -0.7 46.0 -1.2 43.3 -1.6 40.7 -0.5	44.8 -1.7 42.2 -2.2 41.8 -0.7 46.0 -1.2 43.3 -1.6	TOTAL TEMP IN RATIO 367.2 0.983 355.3 1.004 352.2 1.002 353.8 0.994 355.7 0.984 350.2 0.993 345.7 0.995	TOTAL PRESS IN RATIO 19.31 0.947 18.77 0.974 18.69 0.978 18.74 0.959 18.40 0.963 18.24 0.960 17.93 0.952
RP 1 2 3 4 5 6 7	ABS VEL IN OUT 250.2 202.7 247.3 203.1 261.7 206.9 275.1 206.5 268.2 203.2 268.4 200.8 268.6 196.5	REL VEL 1N OUT 250.2 202.7 247.3 203.1 261.7 206.9 275.1 206.5 268.2 203.2 268.4 200.8 268.6 196.5	MERID VEL IN OUT 157.1 202.7 175.6 203.0 193.8 206.7 205.1 206.5 186.4 203.1 195.3 200.7 203.7 196.5	TANG VEL IN OUT 194.7 -1.3 174.1 -6.2 175.9 -7.8 183.3 -2.7 192.9 -4.3 184.1 -5.5 175.1 -1.8	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6 7	ABS MACH NO IN OUT 0.681 0.548 0.684 0.553 0.732 0.567 0.772 0.567 0.748 0.558 0.755 0.553 0.761 0.544	REL MACH NO 1N OUT 0.681 0.548 0.684 0.553 0.732 0.567 0.772 0.567 0.748 0.558 0.755 0.553 0.761 0.544	MERID MACH NO IN OUT 0.427 0.548 0.486 0.552 0.542 0.566 0.575 0.567 0.520 0.558 0.549 0.553 0.577 0.544		MERID VEL R 1.290 1.156 1.067 1.007 1.090 1.028 0.964
RP 1 2 3 4 5 6 7	PERCENT INCI SPAN MEAN 5.00 -4.0 10.00 -4.0 20.00 1.0 30.00 3.8 35.00 9.0 40.00 7.0 50.00 5.1	DENCE DEV SS -8.5 16.2 -8.4 12.6 -3.6 8.9 -0.8 9.2 4.4 8.2 2.4 7.5 0.4 8.1	D FACT EFF 0.432 0.000 0.395 0.000 0.404 0.000 0.426 0.000 0.428 0.000 0.425 0.000 0.420 0.000	.LOSS COEFF TOT PROF 0.199 0.199 0.096 0.096 0.074 0.074 0.127 0.127 0.121 0.121 0.128 0.128 0.151 0.151	LOSS PARAM TOT PROF 0.061 0.061 0.028 0.028 0.020 0.020 0.033 0.033 0.031 0.031 0.032 0.032 0.035 0.035

BLADE EDGES FOR BYPASS STATOR 65

(d) 100 Percent of design speed; reading 133

RP 1 2 3 4 5 6 7	RADII IN OUT 24.006 23.627 25.396 25.111 22.174 22.045 20.968 20.975 20.366 20.444 19.769 19.916 18.593 18.885	ABS BETAM IN OUT 53.6 -0.4 47.2 -1.5 45.6 -1.0 44.4 -0.8 48.4 -1.3 45.7 -1.4 42.9 -0.2	REL BETAM IN OUT 53.6 -0.4 47.2 -1.5 45.6 -1.0 44.4 -0.8 48.4 -1.3 45.7 -1.4 42.9 -0.2	TOTAL TEMP IN RATIO 370.1 0.985 360.0 1.001 356.3 1.004 357.8 0.994 358.8 0.985 352.6 0.995 347.4 0.997	TOTAL PRESS IN RATIO 19.66 0.955 19.36 0.973 19.26 0.973 19.35 0.949 18.88 0.957 18.60 0.958 18.14 0.951
RP 1 2 3 4 5 6 7	ABS VEL IN OUT 245.5 199.5 248.3 199.0 262.1 198.3 278.9 194.2 271.8 189.8 271.1 186.3 270.5 176.7	REL VEL 1N OUT 245.5 199.3 248.3 199.0 262.1 198.3 278.9 194.2 271.8 189.8 271.1 186.3 270.5 176.7	MERID VEL IN OUT 145.6 199.3 168.8 198.9 183.3 198.3 199.2 194.2 180.5 189.8 189.2 186.3 198.0 176.7	TANG VEL IN OUT 197.7 -1.4 182.2 -5.0 187.3 -3.6 195.2 -2.6 203.3 -4.2 194.1 -4.5 184.3 -0.5	NHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6	ABS MACH NO IN OUT 0.664 0.536 0.683 0.538 0.728 0.538 0.779 0.528 0.755 0.517 0.761 0.509 0.765 0.484	REL MACH NO IN OUT 0.664 0.536 0.683 0.538 0.728 0.538 0.779 0.528 0.755 0.517 0.761 0.509 0.765 0.484	MERID MACH NO IN OUT 0.394 0.536 0.464 0.537 0.509 0.538 0.556 0.528 0.501 0.517 0.531 0.509 0.560 0.484		MERID VEL R 1.368 1.178 1.082 0.975 1.052 0.984 0.892
RP 1 2 3 4 5 6 7	PERCENT INCI SPAN MEAN 5.00 -1.5 10.00 -1.6 20.00 4.4 30.00 6.5 35.00 11.5 40.00 9.5 50.00 7.3	DENCE DEV SS -5.8 16.2 -6.0 12.9 -0.2 10.0 1.8 9.2 6.8 8.2 4.8 7.7 2.7 8.5	D FACT EFF 0.439 0.000 0.423 0.000 0.445 0.000 0.489 0.000 0.494 0.000 0.493 0.000 0.504 0.000	LOSS COEFF TOT PROF 0.174 0.174 0.099 0.099 0.091 0.091 0.156 0.156 0.138 0.132 0.132 0.132	LOSS PARAM TOT PROF 0.053 0.053 0.029 0.029 0.025 0.025 0.041 0.041 0.035 0.035 0.033 0.033

${\tt TABLE~XIII.~-Continued.~BLADE-ELEMENT~DATA~AT}$

BLADE EDGES FOR BYPASS STATOR 65

(e) 100 Percent of design speed; reading 156

RP 1 2 3 4 5 6 7	RADII 1N 0UT 24.006 23.627 23.396 23.111 22.174 22.045 20.968 20.975 20.366 20.444 19.769 19.916 18.593 18.885	ABS BETAM 1N OUT 55.4 -0.3 46.9 -0.8 46.5 -1.1 46.7 -1.9 50.0 -2.0 46.6 -1.3 44.7 -0.5	48.9 -0.8 46.5 -1.1 46.7 -1.9 50.0 -2.0 46.6 -1.3	TOTAL TEMP IN RATIO 375.1 0.980 364.5 0.997 360.0 1.000 361.3 0.990 361.5 0.983 356.4 0.991 349.9 0.995	TOTAL PRESS IN RATIO 20.16 0.949 19.83 0.962 19.59 0.956 19.64 0.929 19.16 0.939 18.83 0.947 18.24 0.948
RP 1 2 3 4 5 6 7	ABS VEL IN OUT 249.1 201.4 252.3 199.1 262.1 192.5 275.3 183.4 268.1 177.4 266.5 174.2 262.4 164.1	RÉL VEL IN OUT 249.1 201.4 252.3 199.1 262.1 192.5 275.3 183.4 268.1 177.4 266.5 174.2 262.4 164.1	MERID VEL IN OUT 141.6 201.4 166.0 199.0 180.5 192.5 189.0 183.3 172.2 177.2 183.0 174.2 186.5 164.1	TANG VEL IN OUT 205.0 -1.1 190.0 -2.8 190.0 -3.7 200.2 -6.1 205.5 -6.2 193.7 -4.0 184.5 -1.5	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6 7	ABS MACH NO IN OUT 0.670 0.539 0.690 0.536 0.724 0.519 0.763 0.496 0.741 0.480 0.742 0.473 0.757 0.447	REL MACH NO IN OUT 0.670 0.539 0.690 0.536 0.724 0.519 0.763 0.496 0.741 0.480 0.742 0.473 0.737 0.447	MERID MACH NO 1N OUT 0.381 0.539 0.454 0.536 0.499 0.519 0.524 0.495 0.476 0.480 0.509 0.473 0.524 0.447		MERID VEL R 1.425 1.199 1.066 0.970 1.029 0.952 0.880
RP 1 2 5 4 5 6 7	PERCENT INCI SPAN MEAN 5.00 0.3 10.00 0.1 20.00 5.2 30.00 8.7 35.00 13.1 40.00 10.4 50.00 9.1	DENCE DEV SS -4.1 16.3 -4.3 15.6 0.7 10.0 4.1 8.0 8.4 7.5 5.7 7.8 4.4 8.2	D FACT EFF 0.447 0.000 0.438 0.000 0.471 0.000 0.529 0.000 0.538 0.000 0.528 0.000 0.538 0.000	LOSS CUEFF TOT PROF 0.198 0.198 0.140 0.140 0.148 0.148 0.221 0.221 0.200 0.200 0.173 0.173 0.170 0.170	LOSS PARAM TOT PROF 0.061 0.061 0.041 0.041 0.041 0.041 0.058 0.058 0.051 0.051 0.043 0.043 0.040 0.040

(f) 97 Percent of design speed; reading 124

RP 1 2 3 4 5 6 7	RADII IN OUT 24.006 23.627 23.396 23.111 22.174 22.045 20.968 20.975 20.366 20.444 19.769 19.916 18.593 18.885	ABS BETAM IN OUT 46.8 -0.6 41.7 -2.2 40.1 -3.0 38.5 -1.6 45.8 -1.7 40.9 -2.1 37.3 -1.9	REL BETAM IN OUT 46.8 -0.6 41.7 -2.2 40.1 -3.0 38.5 -1.6 43.8 -1.7 40.9 -2.1 37.3 -1.9	TOTAL TEMP IN RATIO 355.9 0.988 347.0 1.003 344.4 1.002 346.4 0.995 349.1 0.985 344.2 0.993 339.5 0.995	TOTAL PRESS IN RATIO 17.79 0.949 17.47 0.985 17.53 0.969 17.52 0.973 17.12 0.974 16.95 0.963
RP 1 2 3 4 5 6	ABS VEL IN OUT 238.8 203.4 239.7 206.7 251.1 212.8 267.3 216.3 260.4 217.0 260.8 217.7 263.7 219.6	REL VEL IN OUT 238.8 203.4 239.7 206.7 251.1 212.8 267.3 216.3 260.4 217.0 260.8 217.7 263.7 219.6	MERID VEL IN OUT 163.6 203.4 179.0 206.5 192.0 212.5 209.0 216.2 187.9 216.9 197.0 217.5 209.9 219.5	TANG VEL IN OUT 174.0 -2.0 159.4 -7.9 161.7 -11.3 166.5 -6.0 180.3 -6.3 170.9 -8.0 159.6 -7.2	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6 7	ABS MACH NO IN OUT 0.658 0.558 0.670 0.570 0.708 0.591 0.756 0.602 0.732 0.605 0.738 0.609 0.753 0.618	REL MACH NO IN OUT 0.658 0.558 0.670 0.570 0.708 0.591 0.756 0.602 0.732 0.605 0.738 0.609 0.753 0.618	MERIO MACH NO IN OUT 0.451 0.558 0.501 0.570 0.541 0.590 0.591 0.602 0.528 0.604 0.558 0.608 0.600 0.618		MERIO VEL R 1.243 1.154 1.106 1.034 1.154 1.104
RP 1 2 3 4 5 6 7	PERCENT INC SPAN MEAN 5.00 -8.3 10.00 -7.1 20.00 -1.1 30.00 0.6 35.00 6.8 40.00 4.7 50.00 1.6	SS -12.7 16.0 -11.5 12.2 -5.7 8.0 -4.0 8.3 2.2 7.8 0.0 7.0 -3.0 6.8	D FACT EFF 0.376 0.000 0.345 0.000 0.344 0.000 0.359 0.000 0.348 0.000 0.354 0.000 0.354 0.000	LOSS COEFF TOT PROF 0.203 0.203 0.092 0.092 0.053 0.053 0.099 0.099 0.091 0.091 0.087 0.087 0.117 0.117	LOSS PARAM TOT PROF 0.062 0.062 0.027 0.027 0.015 0.015 0.026 0.026 0.023 0.023 0.021 0.021 0.027 0.027

BLADE EDGES FOR BYPASS STATOR 65

(g) 97 Percent of design speed; reading 123

RP 1 2 3 4 5 6 7	RAD11 IN OUT 24.006 23.627 25.396 25.111 22.174 22.045 20.968 20.975 20.366 20.444 19.769 19.916 18.593 18.885	ABS BETAM IN OUT 52.1 -0.1 46.5 -1.5 44.8 -1.4 43.9 -0.4 48.3 -1.7 44.6 -1.6 42.4 -0.	1N OUT 5 52.1 -0.3 5 46.5 -1.5 4 44.8 -1.4 6 43.9 -0.6 2 48.3 -1.2 6 44.6 -1.6	TOTAL TEMP IN RATIO 364.6 0.987 355.7 1.002 352.8 1.002 353.8 0.994 354.5 0.986 348.8 0.996 343.6 0.998	TOTAL PRESS IN RATIO 19.08 0.950 18.71 0.970 18.68 0.969 18.71 0.954 18.27 0.963 18.01 0.964 17.61 0.954
RP 1 2 3 4 5 6 7	ABS VEL IN OUT 243.8 195.6 244.8 194.9 259.1 196.2 273.0 194.7 264.9 191.4 264.7 187.4 265.6 177.6	REL VEL IN OUT 243.8 195.6 244.8 194.9 259.1 196.2 273.0 194.7 264.9 191.4 264.7 187.4 263.6 177.6	MERID VEL 1N OUT 149.7 195.6 168.6 194.9 183.9 196.1 196.6 194.6 176.4 191.4 188.5 187.3 194.6 177.6	TANG VEL IN OUT 192.5 -1.0 177.4 -5.2 182.5 -4.7 189.4 -2.0 197.6 -4.1 185.8 -5.2 177.8 -0.4	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6 7	ABS MACH NO IN OUT 0.664 0.528 0.676 0.529 0.723 0.535 0.765 0.552 0.739 0.524 0.745 0.515 0.748 0.490	REL MACH NO IN OUT 0.664 0.528 0.676 0.529 0.723 0.535 0.765 0.532 0.739 0.524 0.745 0.515 0.748 0.490	MERID MACH NO IN OUT 0.408 0.528 0.466 0.529 0.513 0.535 0.551 0.532 0.492 0.524 0.531 0.514 0.552 0.490		MERID VEL R 1.307 1.156 1.066 0.990 1.085 0.993 0.912
RP 1 2 5 4 5 6	PERCENT INCI SPAN MEAN 5.00 -3.0 10.00 -2.3 20.00 3.5 30.00 6.0 35.00 11.3 40.00 8.3 50.00 6.8	DENCE DEV \$S -7.3 16.3 -6.7 12.8 -1.0 9.7 1.3 9.3 6.6 8.2 3.7 7.5 2.1 8.5	D FACT EFF 0.443 0.000 0.426 0.000 0.443 0.000 0.470 0.000 0.470 0.000 0.469 0.000 0.482 0.000	LOSS COEFF TOT PROF 0.196 0.196 0.115 0.115 0.107 0.107 0.144 0.144 0.122 0.122 0.116 0.116 0.149 0.149	LOSS PARAM TOT PROF 0.060 0.060 0.034 0.034 0.030 0.030 0.038 0.038 0.031 0.031 0.028 0.028 0.035 0.035

(h) 97 Percent of design speed; reading 128

RP 1 2 3 4 5 6	RADII IN OUT 24.006 23.627 23.396 23.111 22.174 22.045 20.968 20.975 20.366 20.444 19.769 19.916 18.593 18.885	ABS BETAM IN OUT 54.9 -0.4 48.7 -1.2 46.7 -1.1 45.7 -1.3 49.9 -1.7 46.7 -1.4 43.9 -0.4	48.7 -1.2 46.7 -1.1 45.7 -1.3 49.9 -1.7 46.7 -1.4	TOTAL TEMP IN RATIO 368.5 0.985 359.5 0.999 355.8 1.000 355.8 0.993 356.1 0.985 350.6 0.994 344.6 0.997	TOTAL PRESS IN RATIO 19.41 0.950 18.98 0.969 18.95 0.959 18.91 0.940 18.47 0.949 18.01 0.962 17.63 0.952
RP 1 2 3 4 5 6 7	ABS VEL IN OUT 242.6 194.8 243.0 193.1 256.7 189.8 268.6 183.8 261.1 179.1 255.5 175.2 255.5 164.6	REL VEL IN OUT 242.6 194.8 243.0 193.1 256.7 189.8 268.6 183.8 261.1 179.1 255.5 175.2 255.5 164.6	MERID VEL IN OUT 139.6 194.8 160.3 193.1 176.2 189.8 187.5 183.8 168.4 179.0 175.3 175.2 184.1 164.6	TANG VEL IN OUT 198.4 -1.3 182.6 -3.9 186.8 -3.5 192.3 -4.2 199.6 -5.3 185.8 -4.2 177.2 -1.2	HHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6 7	ABS MACH NO IN OUT 0.657 0.524 0.667 0.522 0.713 0.515 0.749 0.500 0.726 0.488 0.714 0.479 0.722 0.452	REL MACH NO IN OUT 0.657 0.524 0.667 0.522 0.713 0.515 0.749 0.500 0.726 0.488 0.714 0.479 0.722 0.452	MERID MACH NO IN OUT 0.378 0.524 0.440 0.522 0.489 0.515 0.523 0.500 0.468 0.488 0.490 0.479 0.520 0.452	·	MERID VEL R 1.395 1.204 1.077 0.980 1.063 0.999 0.894
RP 1 2 3 4 5 6 7	PERCENT INCI SPAN MEAN 5.00 -0.2 10.00 -0.0 20.00 5.4 30.00 7.8 35.00 12.9 40.00 10.4 50.00 8.3	DENCE DEV SS -4.6 16.2 -4.5 13.2 0.8 10.0 3.1 8.6 8.2 7.7 5.8 7.7 3.6 8.3	D FACT EFF 0.452 0.000 0.434 0.000 0.466 0.000 0.507 0.000 0.512 0.000 0.497 0.000 0.517 0.000	LOSS COEFF TOT PROF 0.199 0.199 0.119 0.119 0.142 0.142 0.192 0.192 0.174 0.174 0.131 0.131 0.163 0.163	LOSS PARAM TOT PROF 0.061 0.061 0.035 0.035 0.039 0.039 0.050 0.050 0.044 0.044 0.032 0.032 0.038 0.038

(i) 90 Percent of design speed; reading 99

RP 1 2 3 4 5 6 7	RADII IN OUT 24.006 23.627 23.396 23.111 22.174 22.045 20.968 20.975 20.366 20.444 19.769 19.916 18.593 18.885	ABS BETAM IN OUT 37.4 -0.2 34.5 -2.0 32.5 -3.5 31.2 -2.9 36.1 -2.6 33.8 -2.8 29.6 -2.8	REL BETAM IN OUT 37.4 -0.2 34.5 -2.0 32.5 -3.5 31.2 -2.9 36.1 -2.6 33.8 -2.8 29.6 -2.8	TOTAL TEMP IN RATIO 332.6 0.998 328.8 1.003 328.2 1.002 331.5 0.997 334.0 0.989 330.9 0.995 327.6 0.996	TOTAL PRESS IN RATIO 14.69 0.947 14.60 0.976 14.80 0.985 15.26 0.969 15.05 0.980 15.15 0.972 15.19 0.966
RP 1 2 3 4 5 6 7	ABS VEL IN OUT 212.3 208.4 214.4 216.5 231.7 229.3 257.3 244.3 248.0 250.7 254.2 259.8 261.6 287.3	REL VEL IN OUT 212.3 208.4 214.4 216.5 231.7 229.3 257.3 244.3 248.0 250.7 254.2 259.8 261.6 287.3	MERID VEL IN OUT 168.7 208.4 176.6 216.4 195.3 228.9 220.1 244.0 200.3 250.4 211.4 259.5 227.4 286.9	TANG VEL IN OUT 128.9 -0.6 121.5 -7.5 124.6 -14.0 133.3 -12.2 146.2 -11.5 141.3 -12.7 129.4 -14.3	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6	ABS MACH NO IN OUT 0.601 0.590 0.611 0.617 0.666 0.658 0.743 0.703 0.710 0.723 0.734 0.753 0.762 0.849	REL MACH NO 1N OUT 0.601 0.590 0.611 0.617 0.666 0.658 0.743 0.703 0.710 0.723 0.734 0.753 0.762 0.849	MERID MACH NO IN OUT 0.478 0.590 0.504 0.616 0.561 0.656 0.635 0.702 0.574 0.722 0.610 0.753 0.662 0.848		MERID VEL R 1.235 1.225 1.172 1.109 1.250 1.228
RP 1 2 3 4 5 6 7	PERCENT INCI SPAN MEAN 5.00 -17.7 10.00 -14.2 20.00 -8.7 30.00 -6.7 35.00 -0.9 40.00 -2.5 50.00 -6.0	DENCE DEV SS -22.1 16.4 -18.7 12.4 -13.3 7.6 -11.4 7.1 -5.5 6.8 -7.2 6.3 -10.6 5.8	D FACT EFF 0.207 0.000 0.169 0.000 0.176 0.000 0.198 0.000 0.150 0.000 0.127 0.000 0.029 0.000	LOSS COEFF TOT PROF 0.242 0.242 0.106 0.106 0.056 0.056 0.099 0.099 0.071 0.071 0.093 0.093 0.108 0.108	LOSS PARAM TOT PROF 0.074 0.074 0.031 0.031 0.016 0.016 0.026 0.026 0.018 0.018 0.023 0.023 0.025 0.025

(j) 90 Percent of design speed; reading 85

RP 1 2 3 4 5 6 7	RADII 1N OUT 24.006 23.627 23.396 23.111 22.174 22.045 20.968 20.975 20.366 20.444 19.769 19.916 18.593 18.885	ABS BETAM IN OUT 40.0 -0.4 36.5 -1.6 54.8 -5.3 33.6 -2.4 38.4 -2.3 35.9 -2.6 52.1 -2.6	IN OUT 4 40.0 -0.4 9 36.5 -1.9 5 34.8 -3.3 4 33.6 -2.4 5 38.4 -2.3 5 35.9 -2.5	TOTAL TEMP IN RATIO 336.7 0.997 332.2 1.002 331.0 1.001 533.9 0.996 336.6 0.986 332.5 0.993 328.9 0.994	TOTAL PRESS IN RATIO 15.23 0.956 15.06 0.982 15.21 0.990 15.62 0.972 15.46 0.977 15.45 0.973 15.35 0.968
RP 1 2 .3 4 5 6 7	ABS VEL 1N OUT 215.2 202.5 216.2 208.3 230.8 218.1 253.8 229.4 246.8 232.5 249.6 235.6 253.1 247.8	REL VEL IN OUT 215.2 202.5 216.2 208.3 230.8 218.1 253.8 229.4 246.8 232.5 249.6 235.6 253.1 247.8	MERID VEL IN OUT 164.9 202.5 173.7 208.2 189.4 217.8 211.4 229.2 193.5 232.3 202.2 235.4 214.4 247.5	TANG VEL IN OUT 138.2 -1.3 128.7 -6.9 131.9 -12.4 140.5 -9.6 153.2 -9.3 146.3 -10.1 134.5 -11.1	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
RP 1 2 3 4 5 6 7	ABS MACH NO IN OUT 0.606 0.569 0.614 0.589 0.660 0.620 0.729 0.654 0.704 0.664 0.717 0.676 0.732 0.718	REL MACH NO 1N OUT 0.606 0.569 0.614 0.589 0.660 0.620 0.729 0.654 0.704 0.664 0.717 0.676 0.732 0.718	MERID MACH NO IN OUT 0.464 0.569 0.493 0.588 0.541 0.619 0.607 0.653 0.552 0.663 0.581 0.675 0.621 0.717		MERID VEL R 1.228 1.198 1.150 1.084 1.200 1.164 1.154
RP 1 2 5 4 5 6 7	PERCENT INCI SPAN MEAN 5.00 -15.1 10.00 -12.2 20.00 -6.4 30.00 -4.3 35.00 1.4 40.00 -0.4 50.00 -3.5	DENCE DEV SS -19.5 16.2 -16.7 12.5 -11.0 7.8 -9.0 7.5 -3.3 7.2 -5.0 6.6 -8.2 6.1	D FACT EFF 0.259 0.000 0.223 0.000 0.228 0.000 0.250 0.000 0.224 0.000 0.210 0.000 0.154 0.000	LOSS COEFF TOT PROF 0.199 0.199 0.078 0.078 0.041 0.041 0.095 0.095 0.080 0.080 0.094 0.094 0.106 0.106	LOSS PARAM TOT PROF 0.061 0.061 0.023 0.023 0.011 0.011 0.025 0.025 0.020 0.020 0.023 0.023 0.025 0.025

(k) 90 Percent of design speed; reading 97

RP 1 2 3 4 5 6 7	RADII IN OUT 24.006 23.627 23.396 23.111 22.174 22.045 20.968 20.975 20.366 20.444 19.769 19.916 18.593 18.885	ABS BETAM IN OUT 48.1 -0.4 43.4 -2.1 41.9 -2.7 41.0 -1.0 44.8 -1.3 40.6 -1.8 39.1 -1.3	REL BETAM IN OUT 48.1 -0.4 43.4 -2.1 41.9 -2.7 41.0 -1.0 44.8 -1.3 40.6 -1.8 39.1 -1.3	TOTAL TEMP IN RATIO 349.8 0.989 342.3 1.002 339.4 1.002 340.7 0.997 342.1 0.988 337.4 0.996 333.3 0.996	TOTAL PRESS IN RATIO 16.96 0.951 16.58 0.978 16.50 0.985 16.73 0.967 16.50 0.972 16.39 0.969 16.01 0.968
RP 1 2 3 4 5 6 7	ABS VEL 1N OUT 226.7 188.5 223.2 189.2 233.6 192.8 250.7 196.3 246.2 195.5 250.5 194.2 245.5 191.8	REL VEL 1N OUT 226.7 188.5 223.2 189.2 233.6 192.8 250.7 196.3 246.2 195.5 250.5 194.2 245.5 191.8	MERID VEL IN OUT 151.3 188.5 162.1 189.0 173.8 192.6 189.3 196.3 174.7 195.5 190.2 194.1 190.4 191.8	TANG VEL IN OUT 168.8 -1.4 153.5 -6.8 156.0 -8.9 164.5 -3.4 173.5 -4.4 163.0 -6.1 155.0 -4.5	MHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6 7 .	ABS MACH NO IN OUT 0.628 0.519 0.625 0.523 0.659 0.536 0.711 0.547 0.695 0.546 0.714 0.544 0.703 0.540	REL MACH NO IN OUT 0.628 0.519 0.625 0.523 0.659 0.536 0.711 0.547 0.695 0.546 0.714 0.544 0.703 0.540	MERID MACH NO IN OUT 0.419 0.519 0.454 0.523 0.491 0.535 0.537 0.547 0.493 0.546 0.542 0.544 0.545 0.540		MERID VEL R 1.246 1.167 1.108 1.037 1.119 1.021 1.007
RP 1 2 3 4 5 6 7	PERCENT INCI SPAN MEAN 5.00 -7.0 10.00 -5.3 20.00 0.7 30.00 3.0 35.00 7.8 40.00 4.3 50.00 3.5	DENCE DEV SS -11.3 16.2 -9.8 12.3 -3.9 8.4 -1.6 8.9 3.2 8.2 -0.3 7.3 -1.1 7.3	D FACT EFF 0.401 0.000 0.366 0.000 0.371 0.000 0.392 0.000 0.389 0.000 0.390 0.000 0.368 0.000	LOSS COEFF TOT PROF 0.210 0.210 0.097 0.097 0.058 0.058 0.115 0.115 0.101 0.101 0.108 0.108 0.115 0.115	LOSS PARAM TOT PROF 0.064 0.064 0.029 0.029 0.016 0.016 0.030 0.030 0.026 0.026 0.027 0.027

BLADE EDGES FOR BYPASS STATOR 65

(1) 90 Percent of design speed; reading 84

RP 1 2 3 4 5	RADII IN OUT 24.006 23.627 23.396 23.111 22.174 22.045 20.968 20.975 20.366 20.444 19.769 19.916	ABS BETAM IN OUT 47.2 -0.5 42.6 -2.3 41.3 -2.6 39.8 -1.1 44.0 -1.5 39.9 -1.9	5 42.6 -2.3 8 41.3 -2.8 5 39.8 -1.1 6 44.0 -1.5	TOTAL TEMP IN RATIO 548.0 0.990 540.9 1.001 538.8 1.000 539.9 0.996 541.4 0.987 536.9 0.994	TOTAL PRESS IN RATIO 16.78 0.952 16.40 0.979 16.40 0.983 16.56 0.970 16.36 0.973 16.29 0.968
7	18.593 18.885	38.5 -1.7	7 38.5 -1.7	333.0 0.994	15.92 0.969
RP 1 2 3 4 5 6 7	ABS VEL IN OUT 225.3 190.2 221.9 191.3 232.2 195.6 247.9 200.6 243.4 200.1 246.9 198.9 240.9 199.0	REL VEL IN OUT 225.3 190.2 221.9 191.3 232.2 195.6 247.9 200.6 243.4 200.1 246.9 198.9 240.9 199.0	MERID VEL IN OUT 153.1 190.2 163.2 191.2 174.4 195.4 190.3 200.5 175.1 200.0 189.5 198.8 188.4 198.9	TANG VEL IN OUT 165.4 -1.5 150.3 -7.5 153.3 -9.5 158.8 -3.8 169.1 -5.2 158.3 -6.5 150.1 -6.0	HHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6 7	ABS MACH NO IN OUT 0.626 0.525 0.622 0.531 0.656 0.546 0.703 0.561 0.687 0.560 0.704 0.559 0.689 0.562	REL MACH NO IN OUT 0.626 0.525 0.622 0.531 0.656 0.546 0.703 0.561 0.687 0.560 0.704 0.559 0.689 0.562	MERID MACH NO IN OUT 0.425 0.525 0.458 0.530 0.492 0.545 0.540 0.560 0.495 0.560 0.540 0.558 0.539 0.562		MERID VEL R 1.243 1.171 1.121 1.054 1.142 1.049 1.056
RP 1 2 5 4 5 6 7	PERCENT INCI SPAN MEAN 5.00 -7.9 10.00 -6.1 20.00 0.1 30.00 1.9 35.00 7.0 40.00 3.6 50.00 2.9	DENCE DEV SS -12.2 16.1 -10.5 12.1 -4.5 8.3 -2.8 8.8 2.4 8.0 -1.0 7.2 -1.7 6.9	0.385 0.000 0.349 0.000 0.352 0.000 0.362 0.000 0.359 0.000 0.358 0.000 0.323 0.000	LOSS COEFF TOT PROF 0.205 0.205 0.090 0.090 0.069 0.069 0.105 0.105 0.100 0.100 0.113 0.113 0.115 0.115	LOSS PARAM TOT PROF 0.063 0.063 0.027 0.027 0.019 0.019 0.027 0.027 0.025 0.025 0.028 0.028 0.027 0.027

BLADE EDGES FOR BYPASS STATOR 65

(m) 90 Percent of design speed; reading 89

RP 1 2 3 4 5 6 7	RADII IN OUT 24.006 23.627 23.396 23.111 22.174 22.045 20.968 20.975 20.366 20.444 19.769 19.916 18.593 18.885	ABS BETAM IN OUT 53.3 -0. 47.9 -1. 46.3 -1. 45.0 -0. 48.6 -0. 44.2 -1. 42.5 -0.	IN OUT 1 53.3 -0.1 1 47.9 -1.1 3 46.3 -1.3 3 45.0 -0.3 9 48.6 -0.9 2 44.2 -1.2	TOTAL TEMP IN RATIO 355.3 0.991 348.6 1.000 345.9 0.999 345.1 0.995 345.2 0.988 340.9 0.994 335.3 0.998	TOTAL PRESS IN RATIO 17.43 0.967 17.28 0.974 17.11 0.979 17.22 0.960 16.89 0.966 16.77 0.963 16.33 0.959
RP 1 2 3 4 5 6 7	ABS VEL IN OUT 220.8 183.0 225.5 181.5 233.6 181.4 247.2 179.8 241.5 176.2 244.0 172.9 238.1 162.5	REL VEL 1N OUT 220.8 183.6 225.5 181.5 233.6 181.4 247.2 179.6 241.5 176.2 244.0 172.6 238.1 162.5	5 151.2 181.5 4 161.3 181.4 3 174.9 179.8 2 159.7 176.2 9 174.9 172.8	TANG VEL 1N OUT 177.1 -0.2 167.3 -3.4 168.9 -4.0 174.7 -1.1 181.1 -2.9 170.1 -3.6 160.9 -0.2	HHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6 7	ABS MACH NO 1N OUT 0.605 0.499 0.626 0.497 0.653 0.499 0.695 0.496 0.677 0.487 0.690 0.479 0.678 0.452	REL MACH NO 1N OUT 0.605 0.499 0.626 0.497 0.653 0.499 0.605 0.496 0.677 0.487 0.690 0.479	1N 0UT 9 0.361 0.499 7 0.419 0.497 9 0.451 0.499 5 0.492 0.496 7 0.448 0.487 9 0.494 0.479		MERID VEL R 1,389 1,201 1,124 1,028 1,103 0,988 0,926
RP 1 2 3 4 5 6 7	PERCENT INC SPAN MEAN 5.00 -1.7 10.00 -0.6 20.00 5.1 30.00 7.0 35.00 11.6 40.00 8.0 50.00 6.5	7 -6.1 16.5 3 -5.3 13.3 1 0.5 9.6 2.4 9.6 7.0 8.5 3.3 7.6	5 0.419 0.000 5 0.420 0.000 8 0.429 0.000 5 0.458 0.000 6 0.463 0.000 9 0.466 0.000	LOSS COEFF TOT PROF 0.149 0.149 0.111 0.111 0.086 0.086 0.145 0.145 0.130 0.130 0.136 0.136 0.153 0.153	LOSS PARAM TOT PROF 0.046 0.046 0.033 0.033 0.024 0.024 0.038 0.038 0.033 0.033 0.033 0.033 0.036 0.036

BLADE EDGES FOR BYPASS STATOR 65

(n) 80 Percent of design speed; reading 114

RP 1 2 3 4 5 6 7	RADII IN OUT 24.006 23.627 23.396 23.111 22.174 22.045 20.968 20.975 20.366 20.444 19.769 19.916 18.593 18.885	ABS BETAM IN OUT 31.8 0.1 29.3 -1.5 27.6 -3.4 27.2 -3.0 31.1 -2.8 28.2 -2.8 24.8 -2.8	27.6 -3.4 27.2 -3.0 31.1 -2.8 28.2 -2.8	TOTAL TEMP IN RATIO 318.1 0.999 315.6 1.002 315.6 1.002 318.8 0.997 321.3 0.992 318.3 0.998 314.8 1.001	TOTAL PRESS IN RAT10 12.93 0.939 12.94 0.968 13.15 0.974 13.61 0.964 13.47 0.981 13.63 0.972 13.59 0.971
RP 1 2 3 4 5 6 7	ABS VEL IN OUT 186.8 206.0 192.5 216.7 209.1 228.3 233.9 247.8 227.1 258.9 237.3 270.9 239.4 325.1	REL VEL 1N OUT 186.8 206.0 192.5 216.7 209.1 228.3 233.9 247.8 227.1 258.9 237.5 270.9 239.4 325.1	MERID VEL 1N OUT 158.7 206.0 167.8 216.6 185.4 227.9 208.1 247.5 194.4 258.6 209.0 270.6 217.3 524.7	TANG VEL IN OUT 98.5 0.2 94.4 -5.8 96.8 -13.4 106.8 -12.8 117.4 -12.6 112.3 -13.1 100.4 -15.7	HHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6	ABS MACH NO IN OUT 0.537 0.596 0.557 0.632 0.609 0.668 0.683 0.729 0.659 0.765 0.695 0.806 0.706 1.001	REL MACH NO IN OUT 0.537 0.596 0.557 0.632 0.609 0.668 0.683 0.729 0.659 0.765 0.695 0.806 0.706 1.001	MERID MACH NO IN OUT 0.456 0.596 0.486 0.631 0.539 0.667 0.608 0.728 0.564 0.764 0.612 0.805 0.641 1.000		MERID VEL R 1.298 1.291 1.229 1.189 1.330 1.294 1.494
RP 1 2 3 4 5 6	PERCENT INCI SPAN MEAN 5.00 -23.2 10.00 -19.4 20.00 -13.7 30.00 -10.8 35.00 -5.9 40.00 -8.0 50.00 -10.8	DENCE DEV SS -27.6 16.7 -23.8 12.8 -18.2 7.7 -15.4 7.0 -10.5 6.7 -12.7 6.3 -15.5 5.9	D FACT EFF 0.060 0.000 0.029 0.000 0.055 0.000 0.074 0.000 0.004 0.000012 0.000246 0.000	LOSS COEFF TOT PROF 0.344 0.344 0.166 0.166 0.118 0.118 0.135 0.135 0.076 0.076 0.103 0.103 0.102 0.102	LOSS PARAM TOT PROF 0.105 0.105 0.049 0.049 0.033 0.033 0.035 0.035 0.019 0.019 0.025 0.025 0.024 0.024

BLADE EDGES FOR BYPASS STATOR 65

(o) 80 Percent of design speed; reading 115

RP 1 2 3 4 5 6 7	RADII 1N 0UT 24.006 23.627 23.396 23.111 22.174 22.045 20.968 20.975 20.366 20.444 19.769 19.916 18.593 18.885	31.4 29.4 27.6 27.2 31.0 26.6	TAM REL 0UT IN -6.7 31.4 -7.8 29.4 -8.7 27.6 -7.7 27.2 -7.7 31.0 -7.9 26.6 -8.4 24.6	BETAM OUT -6.7 -7.8 -8.7 -7.7 -7.7 -7.9 -8.4	TOTAL IN 318.5 316.4 316.3 319.2 321.6 318.5 315.7	TEMP RAT10 0.998 1.000 1.001 0.999 0.992 0.999 1.002	TOTAL F IN 13.01 13.05 13.25 13.66 13.56 13.77 13.75	PRESS RATIO 0.889 0.908 0.913 0.926 0.936 0.927 0.922
RP 1 2 3 4 5 6 7	ABS VEL IN OUT 190.9 386.6 196.3 376.4 212.7 303.0 237.2 329.2 231.4 329.4 246.5 329.0 247.3 328.4	190.9 38 196.3 37 212.7 30 237.2 32 231.4 32 246.5 32	L MERI UT IN 6.6 162.9 6.4 171.1 3.0 188.5 9.2 211.0 9.4 198.3 9.0 220.4 8.4 224.9	D VEL 0UT 384.0 372.9 299.5 326.3 326.4 325.9 324.9	1N 99.6 96.3 98.5 108.4 119.3	VEL 0UT -44.8 -51.2 -46.0 -43.9 -44.2 -45.0 -48.0	WHEEL IN 0.0 0.0 0.0 0.0 0.0 0.0	SPEED OUT 0.0 0.0 0.0 0.0 0.0
RP 1 2 5 4 5 6 7	ABS MACH NO IN OUT 0.549 1.236 0.568 1.197 0.619 0.918 0.693 1.009 0.672 1.009 0.724 1.009 0.731 1.011	0.549 1. 0.568 1. 0.619 0. 0.693 1. 0.672 1. 0.724 1.	NO MERID M UT IN 236 0.469 197 0.495 918 0.549 009 0.617 009 0.576 009 0.647 011 0.664	1.227 1.186 0.907 1.000 1.000 1.000			MERID VEL R 2.358 2.180 1.589 1.547 1.646 1.479 1.445	
RP 1 2 3 4 5 6 7	PERCENT INCI SPAN MEAN 5.00 -23.6 10.00 -19.4 20.00 -13.6 30.00 -10.7 35.00 -5.9 40.00 -9.6 50.00 -11.0	SS -28.0 -23.8 -18.2 -15.4 -10.6 -14.3	DEV D FACT 9.9792 6.5695 2.3236 2.3220 1.7245 1.2179 0.3186	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.600 0.468 0.383 0.269 0.243 0.246	0EFF PR0F 0.600 0.468 0.383 0.269 0.243 0.246 0.262	LOSS F TOT 0.183 0.137 0.105 0.070 0.061 0.060	PARAM PROF 0.183 0.137 0.105 0.070 0.061 0.060

(p) 80 Percent of design speed; reading 91

RP 1 2 3 4 5 6 7	RADII 1N OUT 24.006 23.627 23.396 23.111 22.174 22.045 20.968 20.975 20.366 20.444 19.769 19.916 18.593 18.885	ABS BETAM IN OUT 44.5 -0.5 40.2 -2.4 39.2 -3.3 37.8 -1.8 40.4 -1.8 37.5 -2.1 34.7 -1.9	40.2 -2.4 39.2 -3.3 37.8 -1.8 40.4 -1.8 37.5 -2.1	TOTAL TEMP IN RATIO 332.5 0.995 327.3 1.003 325.8 1.001 327.0 0.997 328.0 0.991 324.7 0.996 320.5 0.997	TOTAL PRESS IN RATIO 14.71 0.963 14.49 0.985 14.51 0.976 14.57 0.981 14.57 0.981 14.51 0.979 14.19 0.979
RP 1 2 3 4 5 6 7	ABS VEL IN OUT 196.4 176.5 195.1 179.4 204.4 183.9 219.2 189.5 217.2 191.3 219.3 191.5 212.4 188.1	REL VEL 1N 0UT 196.4 176.5 195.1 179.4 204.4 183.9 219.2 189.5 217.2 191.3 219.3 191.5 212.4 188.1	MERID VEL 1N OUT 140.2 176.5 149.0 179.2 158.4 183.6 173.3 189.4 165.3 191.2 174.0 191.4 174.5 188.0	TANG VEL IN OUT 137.6 -1.7 125.9 -7.6 129.2 -10.6 134.2 -5.9 140.9 -6.0 133.4 -7.0 121.0 -6.3	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6 7	ABS MACH NO IN OUT 0.553 0.496 0.554 0.506 0.584 0.522 0.628 0.539 0.621 0.545 0.631 0.547	REL MACH NO IN OUT 0.553 0.496 0.554 0.506 0.584 0.522 0.628 0.539 0.621 0.545 0.631 0.547 0.614 0.540	MERID MACH NO IN OUT 0.395 0.496 0.423 0.506 0.452 0.521 0.497 0.538 0.473 0.545 0.500 0.547 0.504 0.559		MERID VEL R 1.259 1.203 1.159 1.093 1.157 1.100
RP 1 2 3 4 5 6 7	PERCENT INCI SPAN MEAN 5.00 -10.6 10.00 -8.5 20.00 -2.1 50.00 -0.2 35.00 3.5 40.00 1.2 50.00 -0.9	DENCE DEV SS -15.0 16.0 -13.0 11.9 -6.6 7.7 -4.8 8.1 -1.2 7.7 -3.4 7.0 -5.5 6.8	D FACT EFF 0.320 0.000 0.284 0.000 0.290 0.000 0.302 0.000 0.290 0.000 0.284 0.000 0.253 0.000	LOSS COEFF TOT PROF 0.195 0.195 0.081 0.081 0.060 0.060 0.103 0.103 0.083 0.083 0.088 0.088 0.095 0.095	LOSS PARAM TOT PROF 0.060 0.060 0.024 0.024 0.017 0.017 0.027 0.027 0.021 0.021 0.022 0.022 0.022 0.022

(q) 80 Percent of design speed; reading 92

RP 1 2 3 4 5 6 7	RADII IN OUT 24.006 23.627 25.396 23.111 22.174 22.045 20.968 20.975 20.366 20.444 19.769 19.916 18.593 18.885	ABS BETAM IN OUT 47.5 -0.6 44.6 -1.4 44.8 -1.9 43.8 -1.4 47.0 -1.4 44.4 -1.4 37.3 -1.4	44.6 -1.4 44.8 -1.9 43.8 -1.4 47.0 -1.4 44.4 -1.4	TOTAL TEMP IN RATIO 335.9 0.997 332.0 1.003 329.9 1.002 330.8 0.992 330.7 0.988 528.3 0.990 321.9 0.998	TOTAL PRESS IN RATIO 14.62 0.975 14.56 0.979 14.46 0.985 14.70 0.964 14.46 0.974 14.51 0.964 14.14 0.968
RP 1 2 3 4 5 6	ABS VEL 1N OUT 191.5 166.3 196.0 166.5 199.7 168.3 214.9 169.0 208.6 168.3 213.3 166.5 208.2 159.3	REL VEL 1N 0UT 191.5 166.3 196.0 166.5 199.7 168.3 214.9 169.0 208.6 168.3 213.3 166.5 208.2 159.3	MERID VEL 1N OUT 129.3 166.3 139.5 166.4 141.6 168.2 155.1 169.0 142.4 168.3 152.5 166.4 165.6 159.3	TANG VEL IN OUT 141.3 -1.8 137.7 -4.0 140.8 -5.5 148.8 -4.1 152.4 -4.0 149.1 -4.0 126.2 -3.8	WHEEL SPEED 1N OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6 7	ABS MACH NO IN OUT 0.536 0.463 0.553 0.465 0.566 0.472 0.611 0.476 0.592 0.475 0.609 0.471 0.599 0.452	REL MACH NO IN OUT 0.536 0.463 0.553 0.465 0.566 0.472 0.611 0.476 0.592 0.475 0.609 0.471 0.599 0.452	MERID MACH NO IN OUT 0.362 0.463 0.393 0.465 0.401 0.472 0.441 0.476 0.404 0.475 0.435 0.471 0.477 0.452		MERID VEL R 1.286 1.193 1.188 1.090 1.182 1.091 0.961
RP 1 2 3 4 5 6 7	PERCENT INCI SPAN MEAN 5.00 -7.6 10.00 -4.1 20.00 3.6 30.00 5.9 35.00 10.0 40.00 8.1 50.00 1.7	DENCE DEV SS -11.9 16.0 -8.6 13.0 -1.0 9.2 1.2 8.5 5.3 8.1 3.4 7.7 -3.0 7.3	D FACT EFF 0.363 0.000 0.366 0.000 0.360 0.000 0.399 0.000 0.383 0.000 0.396 0.000 0.379 0.000	LOSS COEFF TOT PROF 0.141 0.141 0.113 0.113 0.078 0.078 0.163 0.163 0.123 0.123 0.163 0.163 0.147 0.147	LOSS PARAM TOT PROF 0.043 0.043 0.034 0.034 0.022 0.022 0.043 0.043 0.031 0.031 0.040 0.040 0.034 0.034

(r) 80 Percent of design speed; reading 116

RP 1 2 3 4 5 6 7	RADII 1N OUT 24.006 23.62 23.396 23.11 22.174 22.045 20.968 20.975 20.366 20.444 19.769 19.916 18.593 18.885	1N 7 56.6 52.6 51.0 48.3 50.0 48.7	OUT -0.4 -0.7 -1.2 -0.7 -0.8 -1.0 -0.5	REL IN 56.6 52.6 51.0 48.3 50.0 48.7 37.2	BETAM OUT -0.4 -0.7 -1.2 -0.7 -0.8 -1.0 -0.5	TOTAL IN 341.2 359.2 334.9 334.6 333.0 330.8 322.4	TEMP RATIO 0.997 0.998 1.000 0.989 0.987 0.986 0.999	TOTAL IN 14.64 14.70 14.62 14.89 14.57 14.57	PRESS RAT10 0.975 0.972 0.975 0.950 0.966 0.959
RP 1 2 3 4 5 6 7	ABS VEL 1N 0UT 186.9 154.3 195.1 154.4 200.5 154.9 216.9 153.1 208.1 151.4 210.5 149.3 209.1 139.4	IN 186.9 195.1 200.5 216.9 208.1 3 210.5	VEL OUT 154.3 154.4 154.9 153.1 151.4 149.3 139.4	IN 103.0 118.5 126.1 144.1 133.9	D VEL OUT 154.3 154.4 154.9 153.1 151.4 149.2 139.4	TAN: IN 155.9 155.0 155.9 162.0 159.4 158.1 126.5	G VEL OUT -1.1 -1.9 -3.2 -1.8 -2.1 -2.6 -1.3	WHEEL IN 0.0 0.0 0.0 0.0 0.0	SPEED OUT 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6 7	ABS MACH NO IN OUT 0.518 0.425 0.544 0.426 0.564 0.430 0.613 0.427 0.588 0.424 0.597 0.419 0.602 0.395	IN 0.518 0.544 0.564 0.613 0.588 0.597	ACH NO OUT 0.425 0.426 0.430 0.427 0.424 0.419 0.595	MERID M. IN 0.285 0.330 0.354 0.408 0.378 0.395 0.479	ACH NO OUT 0.425 0.426 0.430 0.427 0.424 0.419			MERID VEL R 1.499 1.302 1.229 1.062 1.131 1.074 0.837	
RP 1 2 3 4 5 6	PERCENT IN SPAN MEA 5.00 1. 10.00 3. 20.00 9. 30.00 10. 35.00 13. 40.00 12. 50.00 1.	5 -2.9 9 -0.6 8 5.2 4 5.8 0 8.4 4 7.8	DEV 16.2 13.6 9.9 9.2 8.6 8.1 8.1	D FACT 0.434 0.448 0.447 0.491 0.469 0.478 0.474	EFF 0.000 0.000 0.000 0.000 0.000 0.000 0.000	LOSS C TOT 0.149 0.154 0.128 0.221 0.164 0.189 0.172	OEFF PROF 0.149 0.154 0.128 0.221 0.164 0.189 0.172	LOSS F TOT 0.046 0.046 0.035 0.058 0.042 0.047	PARAM PROF 0.046 0.046 0.035 0.058 0.042 0.047

BLADE EDGES FOR BYPASS STATOR 65

(s) 70 Percent of design speed; reading 77

RP 1 2 3 4 5 6 7	RADII 1N 0UT 24.006 23.627 23.396 23.111 22.174 22.045 20.968 20.975 20.366 20.444 19.769 19.916 18.593 18.885	ABS BETAM 1N OUT 27.0 0.6 24.6 -1.2 24.2 -2.8 24.5 -2.6 27.9 -2.4 24.0 -2.6 22.3 -3.0	24.6 -1.2 24.2 -2.8 24.5 -2.6 27.9 -2.4 24.0 -2.6	TOTAL TEMP IN RATIO 306.8 1.003 305.7 1.003 305.9 1.002 308.6 1.000 310.9 0.994 308.4 1.000 306.4 1.002	TOTAL PRESS IN RATIO 11.87 0.938 11.90 0.965 12.05 0.965 12.38 0.972 12.36 0.984 12.51 0.975 12.48 0.971
RP 1 2 3 4 5 6 7	ABS VEL IN OUT 168.1 192.3 170.9 202.5 184.6 210.2 205.6 231.1 204.2 241.8 216.3 250.6 216.3 279.7	REL VEL 1N 0UT 168.1 192.3 170.9 202.5 184.6 210.2 205.6 231.1 204.2 241.8 216.3 250.6 216.3 279.7	MERID VEL IN OUT 149.7 192.3 155.4 202.4 168.4 210.0 187.1 230.9 180.5 241.6 197.6 250.3 200.1 279.3	TANG VEL IN OUT 76.4 1.9 71.2 -4.1 75.5 -10.4 85.2 -10.7 95.6 -10.1 87.9 -11.5 82.2 -14.6	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6	ABS MACH NO IN OUT 0.490 0.564 0.500 0.597 0.541 0.622 0.605 0.687 0.598 0.721 0.639 0.751 0.641 0.852	REL MACH NO IN OUT 0.490 0.564 0.500 0.597 0.541 0.622 0.605 0.687 0.598 0.721 0.639 0.751 0.641 0.852	MERID MACH NO IN OUT 0.436 0.564 0.454 0.597 0.494 0.621 0.550 0.686 0.529 0.720 0.584 0.750 0.593 0.851		MERID VEL R 1.284 1.303 1.247 1.234 1.338 1.267 1.396
RP 1 2 3 4 5 6 7	PERCENT INCI SPAN MEAN 5.00 -28.0 10.00 -24.1 20.00 -17.1 30.00 -13.5 35.00 -9.1 40.00 -12.3 50.00 -13.3	DENCE DEV \$\$ -32.4 17.2 -28.6 13.2 -21.7 8.2 -18.1 7.3 -13.7 7.1 -16.9 6.5 -17.9 5.7	D FACT EFF007 0.000053 0.000010 0.000003 0.000053 0.000046 0.000189 0.000	LOSS COEFF TOT PROF 0.408 0.408 0.222 0.222 0.192 0.192 0.130 0.130 0.073 0.073 0.106 0.106 0.119 0.119	LOSS PARAM TOT PROF 0.125 0.125 0.066 0.066 0.053 0.053 0.034 0.034 0.018 0.018 0.026 0.026 0.028 0.028

BLADE EDGES FOR BYPASS STATOR 65

(t) 70 Percent of design speed; reading 78

RP 1 2 3 4 5 6 7	RADII IN OUT 24.006 23.627 23.396 23.111 22.174 22.045 20.968 20.975 20.366 20.444 19.769 19.916 18.593 18.885	IN 40.1 37.2 37.9 37.9 40.9 36.3	BETAM OUT -0.7 -2.2 -2.7 -2.1 -2.0 -1.9 -2.3	IN 40.1 37.2 37.9 37.9 40.9 36.3	BETAM OUT -0.7 -2.2 -2.7 -2.1 -2.0 -1.9 -2.3	TOTAL TEMP IN RATIO 317.6 1.000 315.2 1.004 315.1 1.002 318.2 0.992 317.9 0.991 315.4 0.995 311.0 0.999	TOTAL PRESS IN RATIO 12.92 0.976 12.84 0.989 12.92 0.991 13.28 0.969 13.08 0.984 13.14 0.979 12.93 0.985
RP 1 2 3 4 5 6 7	ABS VEL IN OUT 163.2 155.1 164.8 158.9 171.5 165.0 192.2 170.9 185.9 175.4 192.2 178.6 189.2 183.0	IN 163.2	VEL 0UT 155.1 158.9 165.0 170.9 175.4 178.6 183.0	MERI IN 124.9 131.2 135.3 151.7 140.6 154.8 162.5	D VEL 0UT 155.1 158.8 164.8 170.8 175.3 178.5 182.9	TANG VEL IN OUT 105.0 -1.9 99.7 -6.0 105.4 -7.9 118.1 -6.3 121.6 -6.1 113.9 -6.1 96.9 -7.3	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6 7	ABS MACH NO IN OUT 0.466 0.443 0.473 0.455 0.493 0.473 0.554 0.491 0.535 0.505 0.556 0.516 0.551 0.532	REL M. IN 0.466 0.473 0.493 0.554 0.535 0.556 0.551	0.443 0.443 0.455 0.473 0.491 0.505 0.516	MERID M. IN 0.357 0.377 0.389 0.437 0.404 0.448 0.473	ACH NO OUT 0.443 0.454 0.473 0.491 0.505 0.516 0.532		MERID VEL R 1.242 1.210 1.218 1.126 1.247 1.153 1.125
RP 1 2 3 4 5 6 7	PERCENT IN SPAN MEA 5.00 -15. 10.00 -11. 20.00 -3. 30.00 -0. 35.00 3. 40.00 -4.	0 -19.4 5 -16.0 3 -7.9 0 -4.7 9 -0.8 1 -4.6	DEV 15.9 12.2 8.3 7.8 7.4 7.1 6.4	D FACT 0.252 0.226 0.221 0.280 0.230 0.224 0.159	0.000	LOSS COEFF TOT PROF 0.177 0.177 0.077 0.077 0.061 0.061 0.164 0.164 0.089 0.089 0.113 0.113 0.078 0.078	LOSS PARAM TOT PROF 0.054 0.054 0.023 0.023 0.017 0.017 0.043 0.043 0.023 0.023 0.028 0.028 0.018 0.018

BLADE EDGES FOR BYPASS STATOR 65

(u) 70 Percent of design speed; reading 86

RP 1 2 3 4 5 6 7	RADII IN OUT 24.006 23.627 23.396 23.111 22.174 22.045 20.968 20.975 20.366 20.444 19.769 19.916 18.593 18.885	ABS BETAM IN OUT 57.5 -0.1 49.2 -1.1 44.6 -1.9 44.0 -1.3 45.8 -1.2 43.7 -1.2 35.5 -1.2	44.6 -1.9 44.0 -1.3 45.8 -1.2 43.7 -1.2	TOTAL TEMP IN RATIO 328.8 0.990 324.6 0.998 320.1 1.004 321.7 0.992 321.4 0.989 319.8 0.990 313.7 0.999	TOTAL PRESS IN RATIO 13.40 0.980 13.39 0.982 13.32 0.988 13.58 0.968 13.45 0.975 13.47 0.969 13.16 0.974
RP 1 2 3 4 5 6 7	ABS VEL IN OUT 163.2 141.3 168.6 142.0 173.2 144.4 189.1 146.8 185.7 147.0 189.5 146.1 185.2 138.8	REL VEL 1N OUT 163.2 141.3 168.6 142.0 173.2 144.4 189.1 146.8 185.7 147.0 189.5 146.1 185.2 138.8	MERID VEL IN OUT 87.6 141.3 110.1 141.9 123.4 144.3 136.0 146.8 129.4 146.9 136.9 146.1 150.9 138.8	TANG VEL IN OUT 137.6 -0.2 127.7 -2.8 121.5 -4.8 131.5 -3.3 133.2 -3.1 131.0 -3.2 107.5 -2.9	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 23 4 5 6 7	ABS MACH NO IN OUT 0.458 0.397 0.477 0.400 0.495 0.408 0.541 0.417 0.531 0.418 0.544 0.417 0.536 0.397	REL MACH NO IN OUT 0.458 0.397 0.477 0.400 0.495 0.408 0.541 0.417 0.531 0.418 0.544 0.417 0.536 0.397	MERID MACH NO IN OUT 0.246 0.397 0.312 0.400 0.352 0.408 0.389 0.417 0.370 0.418 0.393 0.417 0.437 0.397		MERID VEL R 1.613 1.289 1.169 1.079 1.136 1.067
RP 1 2 3 4 5 6 7	PERCENT INC SPAN MEAN 5.00 2.4 10.00 0.5 20.00 3.3 30.00 6.1 35.00 8.8 40.00 7.5 50.00 -0.1	DENCE DEV SS -1.9 16.5 -4.0 13.2 -1.3 9.2 1.4 8.6 4.2 8.3 2.8 7.8 -4.8 7.5	D FACT EFF 0.395 0.000 0.388 0.000 0.369 0.000 0.410 0.000 0.394 0.000 0.402 0.000 0.388 0.000	LOSS COEFF TOT PROF 0.148 0.148 0.128 0.128 0.077 0.077 0.179 0.179 0.145 0.145 0.171 0.171 0.148 0.148	LOSS PARAM TOT PROF 0.045 0.045 0.038 0.038 0.021 0.021 0.047 0.047 0.037 0.037 0.042 0.042 0.034 0.034

(v) 40 Percent of design speed; reading 81

RP 1 2 3 4 5 6 7	RADII IN OUT 24.006 23.627 23.396 23.111 22.174 22.045 20.968 20.975 20.366 20.444 19.769 19.916 18.593 18.885	ABS BETAM IN OUT 14.1 1.5 13.5 0.2 13.7 -1.4 15.8 -1.6 18.7 -2.1 15.6 -2.5 16.5 -2.6	13.5 0.2 13.7 -1.4 15.8 -1.6 18.7 -2.1 15.6 -2.5	TOTAL TEMP IN RATIO 291.2 1.002 291.1 1.002 291.4 1.002 292.7 1.001 293.2 1.000 293.1 1.000 292.9 1.002	TOTAL PRESS IN RATIO 10.30 0.971 10.34 0.980 10.43 0.982 10.54 0.986 10.56 0.990 10.68 0.979 10.73 0.981
RP 1 2 3 4 5 6 7	ABS VEL IN OUT 94.7 118.1 98.9 126.1 109.4 133.3 122.1 146.2 123.2 152.7 133.7 155.5 137.1 167.0	REL VEL IN OUT 94.7 118.1 98.9 126.1 109.4 133.3 122.1 146.2 123.2 152.7 133.7 155.5 137.1 167.0	MERID VEL IN OUT 91.8 118.1 96.2 126.1 106.3 133.3 117.5 146.1 116.7 152.6 128.8 155.4 131.5 166.9	TANG VEL IN OUT 23.1 3.1 23.0 0.4 26.0 -3.2 33.3 -4.0 39.4 -5.5 36.1 -6.8 39.0 -7.5	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6	ABS MACH NO IN OUT 0.279 0.349 0.292 0.373 0.323 0.395 0.361 0.434 0.364 0.454 0.396 0.463 0.406 0.498	REL MACH NO IN OUT 0.279 0.349 0.292 0.373 0.323 0.395 0.361 0.434 0.364 0.454 0.396 0.463 0.406 0.498	MERID MACH NO IN OUT 0.270 0.349 0.284 0.373 0.314 0.395 0.347 0.434 0.345 0.454 0.381 0.462 0.389 0.498		MERID VEL R 1.286 1.310 1.254 1.244 1.307 1.207
RP 1 2 3 4 5 6 7	PERCENT INC SPAN MEAN 5.00 -40.9 10.00 -35.2 20.00 -27.5 30.00 -22.1 35.00 -18.3 40.00 -20.6 50.00 -19.1	DENCE DEV SS -45.2 18.1 -39.7 14.5 -32.1 9.7 -26.8 8.3 -23.0 7.4 -25.3 6.6 -23.8 6.1	D FACT EFF182 0.000206 0.000145 0.000117 0.000147 0.000084 0.000140 0.000	LOSS COEFF TOT PROF 0.548 0.548 0.344 0.344 0.263 0.263 0.168 0.168 0.115 0.115 0.201 0.201 0.178 0.178	LOSS PARAM TOT PROF 0.168 0.168 0.102 0.102 0.073 0.073 0.044 0.044 0.029 0.029 0.049 0.049 0.041 0.041

(w) 40 Percent of design speed; reading 82

RP 1 2 3 4 5 6 7	RADII IN OUT 24.006 23.627 23.396 23.111 22.174 22.045 20.968 20.975 20.366 20.444 19.769 19.916 18.593 18.885	ABS BETAM IN OUT 42.5 -0.1 36.4 -2.5 35.7 -3.1 35.7 -2.0 38.5 -1.6 34.2 -1.6 31.4 -2.2	5 36.4 -2.5 35.7 -3.1 35.7 -2.0 3 38.5 -1.8 3 34.2 -1.8	TOTAL TEMP IN RATIO 298.5 0.999 297.2 1.001 296.9 1.001 298.0 0.998 298.0 0.997 297.1 0.999 295.9 0.999	TOTAL PRESS IN RATIO 10.95 0.995 10.96 0.995 10.97 0.998 11.08 0.991 11.06 0.993 11.05 0.994 10.99 0.994
RP 1 2 3 4 5 6 7	ABS VEL IN OUT 89.2 90.4 92.9 91.5 96.4 95.7 108.0 100.5 107.9 102.6 109.8 103.3 107.4 103.7	REL VEL IN OUT 89.2 90.4 92.9 91.5 96.4 95.7 108.0 100.5 107.9 102.6 109.8 103.3 107.4 103.7	MERID VEL IN OUT 65.7 90.4 74.7 91.4 78.3 95.5 87.7 100.5 84.5 102.6 90.8 103.2 91.7 103.6	TANG VEL IN OUT 60.3 -1.0 55.1 -4.0 56.3 -5.2 63.1 -3.4 67.2 -3.2 61.7 -3.2 55.9 -4.0	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3 4 5 6 7	ABS MACH NO IN OUT 0.259 0.263 0.271 0.266 0.281 0.279 0.315 0.293 0.315 0.300 0.321 0.302 0.315 0.303	REL MACH NO IN OUT 0.259 0.263 0.271 0.266 0.281 0.279 0.315 0.293 0.315 0.300 0.321 0.302 0.315 0.303	MERID MACH NO IN OUT 0.191 0.263 0.218 0.266 0.228 0.278 0.256 0.293 0.247 0.299 0.265 0.302 0.269 0.303		MERID VEL R 1.375 1.223 1.220 1.146 1.214 1.137 1.129
RP 1 2 3 4 5 6	PERCENT INC SPAN MEAN 5.00 -12.6 10.00 -12.4 20.00 -5.5 30.00 -2.2 35.00 1.5 40.00 -2.0 50.00 -4.2	IDENCE DEV SS -16.9 15.9 -16.8 11.8 -10.1 7.9 -6.9 8.0 -3.1 7.7 -6.7 7.3 -8.9 6.5	D FACT EFF 0.198 0.000 0.204 0.000 0.185 0.000 0.230 0.000 0.214 0.000 0.204 0.000 0.164 0.000	LOSS COEFF TOT PROF 0.114 0.114 0.103 0.103 0.043 0.043 0.139 0.139 0.099 0.099 0.093 0.093 0.087 0.087	LOSS PARAM TOT PROF 0.035 0.035 0.031 0.031 0.012 0.012 0.036 0.036 0.025 0.025 0.023 0.023 0.020 0.020

(x) 40 Percent of design speed; reading 83

RP 1 2 3 4 5 6 7	RADII IN OUT 24.006 23.627 23.396 23.111 22.174 22.045 20.968 20.975 20.366 20.444 19.769 19.916 18.593 18.885	ABS BETAM IN OUT 71.8 -1.4 70.2 -1.9 61.4 -2.5 48.4 -0.8 44.0 -0.6 37.2 -0.6 37.2 -0.6	70.2 -1.9 61.4 -2.5 48.4 -0.8 44.0 -0.6 37.2 -0.6	TOTAL TEMP IN RATIO 307.6 0.984 304.4 0.991 301.1 0.996 299.6 0.996 298.9 0.996 297.7 0.998 296.1 1.000	TOTAL PRESS IN RATIO 11.51 0.950 11.19 0.976 10.97 0.995 10.98 0.993 10.99 0.992 11.00 0.991 10.96 0.991
RP 1 2 3 4 5 6 7	ABS VEL 1N OUT 117.8 67.6 100.7 66.9 89.0 66.3 96.4 66.6 100.8 67.6 103.6 68.5 104.3 65.9	REL VEL 1N 0UT 117.8 67.6 100.7 66.9 89.0 66.3 96.4 66.6 100.8 67.6 105.6 68.5 104.3 65.9	MERID VEL IN OUT 36.8 67.6 34.1 66.9 42.6 66.2 64.0 66.6 72.5 67.6 82.5 68.5 87.7 65.9	TANG VEL IN OUT 111.9 -1.6 94.8 -2.2 78.2 -2.8 72.1 -0.9 70.1 -0.7 62.7 -0.7 56.4 -0.5	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 5 4 5 6 7	ABS MACH NO IN OUT 0.339 0.194 0.290 0.193 0.258 0.191 0.280 0.193 0.293 0.196 0.302 0.199 0.305 0.192	REL MACH NO IN OUT 0.339 0.194 0.290 0.193 0.258 0.191 0.280 0.193 0.293 0.196 0.302 0.199 0.305 0.192	MERID MACH NO IN OUT 0.106 0.194 0.098 0.193 0.123 0.191 0.186 0.193 0.211 0.196 0.241 0.199 0.256 0.192		MERID VEL R 1.836 1.961 1.554 1.041 0.933 0.830
RP 1 2 3 4 5 6 7	PERCENT INCI SPAN MEAN 5.00 16.8 10.00 21.5 20.00 20.2 30.00 10.5 35.00 7.1 40.00 1.0 50.00 -2.8	IDENCE DEV \$5 12.4 15.2 17.1 12.5 15.6 8.6 5.8 9.1 2.4 8.8 -3.7 8.5 -7.5 8.3	D FACT EFF 0.724 0.000 0.622 0.000 0.508 0.000 0.507 0.000 0.507 0.000 0.489 0.000 0.493 0.000	LOSS COEFF TOT PROF 0.650 0.650 0.420 0.420 0.120 0.120 0.133 0.133 0.143 0.143 0.144 0.144 0.152 0.152	LOSS PARAM TOT PROF 0.199 0.199 0.124 0.124 0.033 0.035 0.035 0.035 0.036 0.036 0.035 0.035 0.035 0.035

TABLE XIV. - BLADE-ELEMENT DATA AT BLADE EDGES

FOR CORE STATOR 65

(a) 100 Percent of design speed; reading 154

RP 1 2 3	RADII IN OUT 16.038 15.771 14.031 13.833 12.184 12.032	ABS BETAM IN OUT 47.0 18.7 45.9 15.4 35.7 11.6	45.9 15.4	TOTAL TEMP IN RATIO 335.8 1.008 342.8 0.987 342.6 1.009	TOTAL PRESS IN RATIO 16.23 0.994 16.47 0.946 17.29 0.909
RP 1 2 3	ABS VEL IN OUT 253.9 262.7 287.7 274.8 329.2 258.2	REL VEL IN OUT 253.9 262.7 287.7 274.8 329.2 258.2	MERID VEL IN OUT 173.2 248.9 200.3 264.9 267.2 253.0	TANG VEL IN OUT 185.6 84.3 206.5 73.0 192.3 51.9	HHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3	ABS MACH NO IN OUT 0.727 0.751 0.826 0.790 0.966 0.729	REL MACH NO IN OUT 0.727 0.751 0.826 0.790 0.966 0.729	MERID MACH NO IN OUT 0.496 0.712 0.575 0.762 0.784 0.714		MERID VEL R 1.437 1.322 0.947
RP 1 2 3	PERCENT INC! SPAN MEAN 64.00 0.2 80.00 6.4 95.00 -2.2	DENCE DEV SS -4.5 9.4 1.7 6.3 -6.9 10.4	D FACT EFF 0.113 0.000 0.193 0.000 0.334 0.000	LOSS COEFF TOT PROF 0.019 0.019 0.149 0.149 0.202 0.202	LOSS PARAM TOT PROF 0.006 0.006 0.045 0.045 0.055 0.055
	(b) 100) Percent of o	design speed;	reading 135	
RP 1 2 3	RADII IN OUT 16.038 15.771 14.031 13.833 12.184 12.032	ABS BETAM IN OUT 40.9 19.4 41.2 16.2 35.1 12.5	REL BETAM IN OUT 40.9 19.4 41.2 16.2 35.1 12.5	TOTAL TEMP IN RATIO 337.1 1.008 343.0 0.990 342.9 1.011	TOTAL PRESS IN RATIO 17.39 0.953 17.46 0.914 17.34 0.903
RP 1 2 3	ABS VEL IN OUT 279.2 279.6 302.1 289.5 332.5 260.1	REL VEL IN OUT 279.2 279.6 302.1 289.5 332.5 260.1	MERID VEL IN OUT 211.1 263.7 227.1 278.0 272.1 253.9	TANG VEL IN OUT 182.7 92.7 199.2 80.8 191.0 56.5	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0
RP 1 2 3	ABS MACH NO 1N OUT 0.807 0.804 0.875 0.837 0.977 0.733	REL MACH NO IN OUT 0.807 0.804 0.873 0.837 0.977 0.733	MERID MACH NO IN OUT 0.610 0.758 0.657 0.803 0.800 0.716		MERID VEL R 1.249 1.224 0.933
RP 1 2 3	PERCENT INCI SPAN MEAN 64.00 -5.9 80.00 1.8 95.00 -2.9	DENCE DEV SS -10.6 10.1 -3.0 7.1 -7.6 11.4	D FACT EFF 0.118 0.000 0.167 0.000 0.330 0.000	LOSS COEFF TOT PROF 0.136 0.136 0.219 0.219 0.211 0.211	LOSS PARAM TOT PROF 0.046 0.046 0.066 0.066 0.057 0.057

TABLE XIV. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR CORE STATOR 65

(c) 100 Percent of design speed; reading 134

	RADII	ABS BETAM	REL BETAM	TOTAL TEMP	TOTAL PRESS
RP 1	IN OUT 16.038 15.771	IN OUT 42.0 18.5		IN RATIO 340.2 1.000	IN RATIO 17.48 0.959
2 3	14.031 13.833 12.184 12.032	40.9 15.3 35.7 11.1		342.8 0.992 342.9 1.013	17.55 0.939 17.30 0.924
	ABS VEL	REL VEL	MERID VEL	TANG VEL	WHEEL SPEED
RP	IN OUT	IN OUT	IN OUT	IN OUT	IN OUT
1	281.1 256.7 302.9 268.6	281.1 256.7 302.9 268.6	209.1 243.4 228.8 259.0	187.9 81.6 198.5 71.1	0.0 0.0
3	332.6 249.5	332.6 249.5	270.1 244.8	194.1 48.2	0.0 0.0
	ABS MACH NO	REL MACH NO			MERID
RP 1	IN OUT 0.808 0.730	IN OUT 0.808 0.730	IN OUT 0.601 0.692		VEL R 1.164
2	0.876 0.768 0.978 0.700		0.662 0.741		1.132 0.906
,	0.976 0.700	V.976 V.7VV	V.194 V.000		0.500
RP	PERCENT INC. SPAN MEAN	IDENCE DEV SS	D FACT EFF	LOSS COEFF TOT PROF	LOSS PARAM TOT PROF
1 2	64.00 -4.8 80.00 1.5	-9.5 9.2 -3.3 6.3	0.226 0.000 0.248 0.000	0.116 0.116 0.156 0.156	0.040 0.040 0.047
3	95.00 -2.2		0.372 0.000	0.165 0.165	0.045 0.045
		_			
	(d) 10	0 Percent of	design speed;	reading 133	
	RADII	ABS BETAM	REL BETAM	TOTAL TEMP	TOTAL PRESS
RP	IN OUT	IN OUT	IN OUT	IN RATIO	IN RATIO
1 2	16.038 15.771 14.031 13.833	43.6 18.4 41.2 15.1		342.2 0.998 342.7 0.993	17.58 0.964 17.67 0.949
3	12.184 12.032	37.2 11.8	37.2 11.8	343.1 1.014	17.41 0.908
00	ABS VEL	REL VEL	MERID VEL	TANG VEL	WHEEL SPEED
RP 1	IN OUT 283.5 249.0	IN OUT 283.5 249.0	IN OUT 205.5 236.2	IN OUT 195.4 78.7	IN OUT 0.0 0.0
- 2 3	304.6 264.3 334.7 218.6	304.6 264.3 334.7 218.6	229.1 255.2 266.7 214.0	200.7 69.0 202.2 44.5	0.0 0.0
			27.13		
	ABS MACH NO	REL MACH NO	MERID MACH NO		MERID
RP	IN OUT	IN OUT	IN OUT		VEL R
1 2	0.813 0.705 0.882 0.754	0.813 0.705 0.882 0.754	0.589 0.668 0.664 0.728		1.150 1.114
3	0.985 0.606	0.985 0.606	0.785 0.593		0.802
RP		DENCE DEV	D FACT EFF	LOSS COEFF	LOSS PARAM
1	SPAN MEAN 64.00 -3.2	SS -7.9 9.1	0.273 0.000	TOT PROF 0.103 0.103	TOT PROF 0.035 0.035
2 3	80.00 1.8 95.00 -0.8	-3.0 6.0 -5.5 10.6	0.270 0.000 0.478 0.000	0.127 0.127 0.199 0.199	0.039 0.039 0.054 0.054

TABLE XIV. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR CORE STATOR 65

(e) 100 Percent of design speed; reading 156

RP 1 2 3	RADII IN OUT 16.058 15.771 14.031 13.833 12.184 12.052	ABS BETAM IN OUT 43.9 19.3 40.5 16.3 35.7 12.5	REL BETAM IN OUT 43.9 19.3 40.5 16.3 35.7 12.5	TOTAL TEMP IN RATIO 343.8 1.000 343.0 0.987 343.0 1.013	TOTAL PRESS IN RATIO 17.64 0.951 17.72 0.927 17.46 0.920
RP 1 2 3	ABS VEL IN OUT 288.4 277.2 308.2 284.0 337.0 256.3	REL VEL IN OUT 288.4 277.2 308.2 284.0 337.0 256.3	MERIO VEL IN OUT 207.7 261.7 234.2 272.6 273.8 250.3	TANG VEL N OUT 200.1 91.5 200.2 79.7 196.5 55.4	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3	ABS MACH NO IN OUT 0.827 0.791 0.894 0.820 0.993 0.721	REL MACH NO IN OUT 0.827 0.791 0.894 0.820 0.993 0.721	MERID MACH NO IN OUT 0.596 0.747 0.679 0.787 0.807 0.704		MERID VEL R 1.260 1.164 0.914
RP 1 2 3	PERCENT INC1 SPAN MEAN 64.00 -2.8 80.00 1.1 95.00 -2.3	DENCE DEV SS -7.5 10.0 -3.7 7.2 -7.0 11.3	D FACT EFF 0.178 0.000 0.204 0.000 0.356 0.000	LOSS COEFF TOT PROF 0.135 0.135 0.181 0.181 0.171 0.171	LOSS PARAM TOT PROF 0.046 0.046 0.055 0.055 0.046 0.046
	(f) 97	Percent of d	esign speed; 1	eading 124	
RP 1 2 3	RADII IN OUT 16.038 15.771 14.031 13.833 12.184 12.032	ABS BETAM IN OUT 40.5 18.3 40.9 15.0 37.8 10.5	40.9 15.0	TOTAL TEMP IN RATIO 336.4 1.000 338.5 0.999 339.4 0.999	TOTAL PRESS IN RATIO 16.82 0.972 16.78 0.972 16.74 0.940
RP 1 2 3	ABS VEL IN OUT 268.1 231.7 286.7 248.9 319.3 231.7	REL VEL IN OUT 268.1 231.7 286.7 248.9 319.3 231.7	MERID VEL IN OUT 204.0 220.0 216.7 240.4 252.2 227.7	TANG VEL IN OUT 174.0 72.6 187.8 64.4 195.8 42.4	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0
RP 1 2 3	ABS MACH NO IN OUT 0.771 0.657 0.829 0.708 0.937 0.654	REL MACH NO IN OUT 0.771 0.657 0.829 0.708 0.937 0.654	MERID MACH NO IN OUT 0.587 0.624 0.627 0.684 0.740 0.643		MERID VEL R 1.079 1.109 0.903
RP 1 2 5	PERCENT INC1 SPAN MEAN 64.00 -6.3 80.00 1.5 95.00 -0.1	DENCE DEV SS -11.0 9.0 -3.3 5.9 -4.8 9.4	D FACT EFF 0.275 0.000 0.269 0.000 0.408 0.000	LOSS COEFF TOT PROF 0.085 0.085 0.077 0.077 0.140 0.140	LOSS PARAM TOT PROF 0.029 0.029 0.023 0.025 0.038 0.038

FOR CORE STATOR 65

(g) 97 Percent of design speed; reading 123

RP 1 2 3	RADII IN OUT 16.038 15.771 14.031 13.833 12.184 12.032	ABS BETAM IN OUT 45.4 18.2 43.2 14.9 40.5 10.4	REL BETAM IN OUT 45.4 18.2 43.2 14.9 40.5 10.4	TOTAL TEMP IN RATIO 339.7 0.999 338.3 0.998 339.6 0.997	TOTAL PRESS IN RATIO 16.99 0.991 16.93 0.989 16.94 0.967
RP 1 2 3	ABS VEL 1N OUT 260.9 209.2 278.4 221.2 309.4 208.1	REL VEL IN OUT 260.9 209.2 278.4 221.2 309.4 208.1	MERID VEL IN OUT 183.1 198.8 203.1 213.7 235.3 204.7	TANG VEL IN OUT 185.8 65.3 190.5 56.9 200.9 37.7	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3	ABS MACH NO IN OUT 0.744 0.586 0.802 0.623 0.903 0.583	REL MACH NO IN OUT 0.744 0.586 0.802 0.623 0.903 0.583	MERID MACH NO IN OUT 0.522 0.557 0.585 0.602 0.687 0.573		MERID VEL R 1.086 1.052 0.870
RP 1 2 3	PERCENT INCI SPAN MEAN 64.00 -1.3 80.00 5.7 95.00 2.5	DENCE DEV SS -6.0 8.9 -1.0 5.8 -2.2 9.3	D FACT EFF 0.368 0.000 0.359 0.000 0.474 0.000	LOSS COEFF TOT PROF 0.028 0.028 0.035 0.033 0.080 0.080	LOSS PARAM TOT PROF 0.010 0.010 0.010 0.010 0.022 0.022
	(h) 97	Percent of c	lesign speed;	reading 128	
RP 1 2 3	RAD11 IN OUT 16.038 15.771 14.031 13.835 12.184 12.032	ABS BETAM IN OUT 45.1 18.2 42.5 14.9 38.6 10.6	REL BETAM IN OUT 45.1 18.2 42.5 14.9 38.6 10.6	TOTAL TEMP IN RATIO 340.6 0.999 339.5 0.998 359.4 0.998	TOTAL PRESS IN RATIO 17.02 0.991 16.92 0.990 17.02 0.956
RP 1 2 3	ABS VEL 1N 0UT 269.3 216.4 284.6 228.6 315.7 209.3	REL VEL IN OUT 269.3 216.4 284.6 228.6 515.7 209.3	MERID VEL IN OUT 190.1 205.6 209.8 220.9 246.6 205.8	TANG VEL IN OUT 190.8 67.6 192.5 58.8 197.1 38.3	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3	ABS MACH NO IN OUT 0.770 0.606 0.821 0.645 0.925 0.587	REL MACH NO IN OUT 0.770 0.606 0.821 0.645 0.925 0.587	MERID MACH NO IN OUT 0.543 0.576 0.605 0.623 0.723 0.577		MERID VEL R 1.082 1.053 0.834
RP 1 2 3	PERCENT INCII SPAN MEAN 64.00 -1.6 80.00 3.1 95.00 0.7	DENCE DEV SS -6.3 8.9 -1.7 5.8 -4.0 9.4	D FACT EFF 0.365 0.000 0.346 0.000 0.477 0.000	LOSS COEFF TOT PROF 0.028 0.028 0.027 0.027 0.105 0.105	LOSS PARAM TOT PROF 0.010 0.010 0.008 0.008 0.028 0.028

FOR CORE STATOR 65

(i) 90 Percent of design speed; reading 99

RP 1 2 3	RADII IN OUT 16.038 15.771 14.031 13.835 12.184 12.032	ABS BETAM IN OUT 38.6 18.2 38.1 15.0 36.7 9.9	REL BETAM IN OUT 58.6 18.2 58.1 15.0 36.7 9.9	TOTAL TEMP IN RATIO 325.8 1.001 329.2 0.993 331.7 1.003	TOTAL PRESS IN RATIO 15.08 0.990 15.48 0.987 15.61 0.966
RP 1 2 3	ABS VEL IN OUT 232.6 208.4 262.1 234.4 297.5 244.1	REL VEL IN OUT 232.6 208.4 262.1 234.4 297.5 244.1	MERID VEL IN OUT 181.8 197.9 206.2 226.5 238.4 240.5	TANG VEL 1N OUT 145.0 65.2 161.8 60.5 177.9 41.8	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3	ABS MACH NO IN OUT 0.671 0.596 0.761 0.676 0.875 0.699		MERID MACH NO IN OUT 0.525 0.566 0.599 0.653 0.701 0.689		MERID VEL R 1.089 1.098
RP 1 2 3	SPAN MEAN 64.00 -8.2	DENCE DEV SS -12.9 8.9 -6.1 5.9 -5.9 8.7	D FACT EFF 0.231 0.000 0.229 0.000 0.307 0.000	LOSS COEFF TOT PROF 0.038 0.038 0.040 0.040 0.086 0.086	LOSS PARAM TOT PROF 0.013 0.013 0.012 0.012 0.023 0.023
	(j) 90	Percent of d	esign speed; r	eading 85	
RP 1 2 3	RADII IN OUT 16.038 15.771 14.031 13.833 12.184 12.032	ABS BETAM IN OUT 37.8 18.2 37.8 15.0 36.1 9.9		TOTAL TEMP IN RATIO 326.8 1.001 329.4 0.995 332.2 1.003	
RP 1 2 3	ABS VEL IN OUT 239.6 211.8 266.8 234.4 302.7 243.2	REL VEL IN OUT 239.6 211.8 266.8 234.4 302.7 243.2	MERID VEL IN OUT 189.3 201.2 210.9 226.4 244.5 239.6	TANG VEL IN OUT 146.9 66.3 163.4 60.5 178.5 41.8	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0
RP 1 2 3	ABS MACH NO IN OUT 0.692 0.605 0.776 0.675 0.892 0.696	REL MACH NO IN OUT 0.692 0.605 0.776 0.675 0.892 0.696	IN OUT 0.547 0.575		MERIO VEL R 1.063 1.073 0.980
RP 1 2 3	SPAN MEAN 64.00 -8.9	DENCE DEV SS -13.6 8.9 -6.4 5.9 -6.5 8.7	D FACT EFF 0.240 0.000 0.245 0.000 0.322 0.000	LOSS COEFF TOT PROF 0.054 0.054 0.045 0.045 0.064 0.064	LOSS PARAM TOT PROF 0.019 0.019 0.014 0.014 0.017 0.017

FOR CORE STATOR 65

(k) 90 Percent of design speed; reading 97

RP 1 2 3	RADII IN OUT 16.038 15.771 14.031 13.833 12.184 12.032	ABS BETAM IN OUT 42.2 18.1 40.5 14.9 38.7 9.7	REL BETAM IN OUT 42.2 18.1 40.5 14.9 38.7 9.7	TOTAL TEMP IN RATIO 328.6 1.002 329.6 0.997 333.5 1.004	TOTAL PRESS [N RAT[0 15.73 0.988 15.79 0.986 16.05 0.988
RP 1 2 3	ABS VEL IN OUT 239.3 193.3 260.3 207.9 297.0 230.5	REL VEL IN OUT 239.3 193.3 260.3 207.9 297.0 230.5	MERID VEL IN OUT 177.2 183.7 197.9 201.0 231.9 227.2	TANG VEL IN OUT 160.8 60.1 169.1 53.5 185.6 38.9	HHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3	ABS MACH NO IN OUT 0.689 0.547 0.755 0.592 0.871 0.655	REL MACH NO IN OUT 0.689 0.547 0.755 0.592 0.871 0.655	MERID MACH NO IN OUT 0.510 0.520 0.574 0.572 0.680 0.645		MERID VEL R 1.037 1.016 0.980
RP 1 2 3	PERCENT INCI SPAN MEAN 64.00 -4.5 80.00 1.1 95.00 0.7	DENCE DEV SS -9.2 8.8 -5.7 5.8 -4.0 8.5	D FACT EFF 0.347 0.000 0.343 0.000 0.361 0.000	LOSS COEFF TOT PROF 0.043 0.043 0.045 0.045 0.030 0.030	LOSS PARAM TOT PROF 0.015 0.015 0.014 0.014 0.008 0.008
	(I) 90	Percent of de	esign speed; r	eading 84	
RP 1 2 3	RADII IN OUT 16.038 15.771 14.031 13.833 12.184 12.032	ABS BETAM IN OUT 42.3 18.1 40.2 14.9 38.2 9.8	REL BETAM IN OUT 42.3 18.1 40.2 14.9 38.2 9.8	TOTAL TEMP IN RATIO 328.4 1.002 329.6 0.996 333.1 1.005	TOTAL PRESS IN RATIO 15.65 0.991 15.72 0.989 15.87 0.999
RP 1 2 3	ABS VEL IN OUT 232.9 188.0 256.0 203.4 291.9 225.0	REL VEL IN OUT 232.9 188.0 256.0 203.4 291.9 225.0	MERID VEL IN OUT 172.2 178.7 195.5 196.5 229.5 221.7	TANG VEL IN OUT 156.9 58.5 165.3 52.3 180.4 38.1	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0
RP 1 2 3	ABS MACH NO IN OUT 0.669 0.531 0.741 0.578 0.854 0.638	REL MACH NO IN OUT 0.669 0.531 0.741 0.578 0.854 0.638	MERID MACH NO IN OUT 0.495 0.505 0.566 0.559 0.671 0.629		MERID VEL R 1.038 1.005 0.966
RP 1 2 3	PERCENT INCI SPAN MEAN 64.00 -4.4 80.00 0.8 95.00 0.2	DENCE DEV SS -9.1 8.8 -4.0 5.8 -4.5 8.6	D FACT EFF 0.348 0.000 0.346 0.000 0.365 0.000	LOSS COEFF TOT PROF 0.034 0.034 0.036 0.036 0.004 0.004	LOSS PARAM TOT PROF 0.012 0.012 0.011 0.011 0.301 0.001

TABLE XIV. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR CORE STATOR 65

(m) 90 Percent of design speed; reading 89

RP 1 2 3	RADII IN OUT 16.038 15.771 14.031 13.833 12.184 12.032	ABS BETAM IN OUT 45.6 18.1 41.7 14.9 39.2 10.2		TOTAL TEMP IN RATIO 330.4 1.001 329.7 0.995 333.2 1.007	TOTAL PRESS IN RATIO 15.71 0.998 15.57 0.993 16.04 0.980			
RP 1 2 3	ABS VEL IN OUT 234.7 190.3 251.4 196.5 290.8 205.8	REL VEL IN OUT 234.7 190.3 251.4 196.5 290.8 205.8	MERID VEL IN OUT 164.1 180.9 187.8 189.9 225.5 202.6	TANG VEL IN OUT 167.8 59.2 167.1 50.5 183.6 36.4	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0			
RP 1 2 3	ABS MACH NO IN OUT 0.673 0.537 0.726 0.558 0.850 0.579	REL MACH NO IN OUT 0.673 0.537 0.726 0.558 0.850 0.579	MERID MACH NO IN OUT 0.470 0.510 0.542 0.539 0.659 0.570		MERID VEL R 1.102 1.011 0.898			
RP 1 2 3	PERCENT INCI SPAN MEAN 64.00 -1.1 80.00 2.2 95.00 1.2	DENCE DEV SS -5.8 8.8 -2.5 5.8 -3.5 9.0	D FACT EFF 0.359 0.000 0.366 0.000 0.433 0.000	LOSS COEFF TOT PROF 0.008 0.008 0.022 0.022 0.053 0.053	LOSS PARAM TOT PROF 0.003 0.003 0.007 0.007 0.014 0.014			
	(n) 80 Percent of design speed; reading 114							
RP 1 2 3	RADII IN OUT 16.038 15.771 14.031 13.833 12.184 12.032	ABS BETAM IN OUT 35.1 18.2 34.9 14.9 35.3 9.6	34.9 14.9	TOTAL TEMP IN RATIO 315.3 0.999 317.9 0.997 323.9 0.999	TOTAL PRESS IN RATIO 13.62 0.986 13.97 0.986 14.77 0.984			
RP - 1 - 2 - 3	ABS VEL IN OUT 201.7 178.5 232.8 205.2 282.1 244.1	REL VEL IN OUT 201.7 178.5 232.8 205.2 282.1 244.1	MERID VEL IN OUT 164.9 169.5 190.8 198.3 230.2 240.7	TANG VEL IN OUT 116.1 55.7 135.4 52.9 163.2 40.7	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0			
RP 1 2 3	ABS MACH NO IN OUT 0.586 0.515 0.681 0.595 0.835 0.710	REL MACH NO IN OUT 0.586 0.515 0.681 0.595 0.835 0.710	MERID MACH NO IN OUT 0.479 0.489 0.558 0.575 0.681 0.700		MERIO VEL R 1.028 1:039			
RP 1 2 3	PERCENT INCI SPAN MEAN 64.00 -11.6 80.00 -4.5 95.00 -2.6	DENCE. DEV SS -16.3 8.9 -9.3 5.9 -7.3 8.4	D FACT EFF 0.226 0.000 0.229 0.000 0.256 0.000	LOSS COEFF TOT PROF 0.068 \ 0.068 0.051 \ 0.051 0.045 \ 0.045	LOSS PARAM TOT PROF 0.023 0.023 0.016 0.016 0.012 0.012			

FOR CORE STATOR 65

(o) 80 Percent of design speed; reading 115

RP 1 2 3	RADII IN OUT 16.038 15.771 14.031 13.833 12.184 12.032	ABS BETAM IN OUT 41.0 18.1 37.9 14.9 38.2 9.6	37.9 14.9	TOTAL TEMP IN RATIO 316.0 1.001 318.7 0.998 324.3 0.998	TOTAL PRESS IN RATIO 13.77 0.993 13.98 0.994 14.75 0.995
RP 1 2 3	ABS VEL IN OUT 179.2 144.9 211.5 169.0 261.6 210.6	REL VEL IN OUT 179.2 144.9 211.5 169.0 261.6 210.6	MERID VEL IN OUT 135.3 137.7 167.0 163.4 205.7 207.6	TANG VEL IN OUT 117.5 45.0 129.9 43.4 161.6 35.2	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3	ABS MACH NO IN OUT 0.516 0.413 0.613 0.484 0.766 0.605	REL MACH NO IN OUT 0.516 0.413 0.613 0.484 0.766 0.605	MERID MACH NO IN OUT 0.390 0.393 0.484 0.467 0.602 0.596		MERID VEL R 1.018 0.979 1.009
RP 1 2 3	PERCENT INCI SPAN MEAN 64.00 -5.8 80.00 -1.6 95.00 0.2	DENCE DEV SS -10.5 8.8 -6.3 5.8 -4.5 8.5	D FACT EFF 0.340 0.000 0.331 0.000 0.329 0.000	LOSS COEFF TOT PROF 0.042 0.042 0.029 0.029 0.016 0.016	LOSS PARAM TOT PROF 0.014 0.014 0.009 0.009 0.004 0.004
	(p) 80	Percent of d	esign speed; 1	reading 91	
RP 1 2 3	RADII IN OUT 16.038 15.771 14.031 13.833 12.184 12.032	ABS BETAM IN OUT 42.6 18.1 38.1 14.9 38.8 9.7		TOTAL TEMP IN RATIO 318.2 0.999 320.0 0.995 323.3 1.002	TOTAL PRESS IN RATIO 13.83 0.995 14.06 0.986 14.61 1.000
RP 1 2 3	ABS VEL IN OUT 192.4 151.5 220.0 169.2 261.5 207.7	REL VEL IN OUT 192.4 151.3 220.0 169.2 261.5 207.7	MERID VEL IN OUT 141.7 143.8 173.1 163.5 203.7 204.8	TANG VEL IN OUT 130.1 46.9 135.7 43.5 164.0 34.9	NHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3	ABS MACH NO IN OUT 0.554 0.431 0.638 0.484 0.767 0.596	REL MACH NO IN OUT 0.554 0.431 0.638 0.484 0.767 0.596	MERID MACH NO IN OUT 0.408 0.410 0.502 0.468 0.597 0.587		MERID VEL R 1.015 0.945 1.005
RP 1 2 3	PERCENT INCI SPAN MEAN 64.00 -4.2 80.00 -1.4 95.00 0.9	DENCE DEV SS -8.9 8.8 -6.1 5.8 -3.8 8.5	D FACT EFF 0.373 0.000 0.364 0.000 0:343 0.000	LOSS COEFF TOT PROF 0.028 0.028 0.057 0.057 0.000 0.000	LOSS PARAM TOT PROF 0.010 0.010 0.017 0.017 0.000 0.000

FOR CORE STATOR 65

(q) 80 Percent of design speed; reading 92

RP 1 2 3	RADII IN OUT 16.038 15.771 14.031 13.835 12.184 12.032	ABS BETAM IN OUT 47.9 18.1 42.1 14.9 40.7 10.5	REL BETAM IN OUT 47.9 18.1 42.1 14.9 40.7 10.5	TOTAL TEMP IN RATIO 318.7 0.999 320.5 0.994 322.6 1.005	TOTAL PRESS IN RATIO 13.88 0.995 14.07 0.992 14.65 0.983
RP 1 2 3	ABS VEL IN OUT 178.9 135.0 208.6 154.0 250.2 167.9	REL VEL IN OUT 178.9 135.0 208.6 154.0 250.2 167.9	MERID VEL IN OUT 119.8 128.3 154.8 148.8 189.8 165.1	TANG VEL IN OUT 132.8 42.0 139.8 39.7 163.0 30.5	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3	ABS MACH NO IN OUT 0.513 0.383 0.602 0.439 0.731 0.475	REL MACH NO IN OUT 0.513 0.385 0.602 0.439 0.731 0.475	MERID MACH NO IN OUT 0.343 0.364 0.447 0.424 0.554 0.468		MERID VEL R 1.071 0.961 0.870
RP 1 2 3	PERCENT INCI SPAN MEAN 64.00 1.2 80.00 2.6 95.00 2.7	DENCE DEV SS -3.5 8.8 -2.1 5.9 -2.0 9.3	D FACT EFF 0.431 0.000 0.415 0.000 0.476 0.000	LOSS COEFF TOT PROF 0.030 0.030 0.036 0.036 0.057 0.057	LOSS PARAM TOT PROF 0.010 0.010 0.011 0.011 0.015 0.015
	(r) 80	Percent of d	esign speed; r	reading 116	
RP 1 2 3	RADII IN OUT 16.038 15.771 14.031 13.833 12.184 12.032	ABS BETAM IN OUT 50.4 18.2 44.7 15.0 42.5 12.2		TOTAL TEMP IN RATIO 319.3 0.998 320.6 0.993 322.7 1.005	TOTAL PRESS IN RATIO 13.90 0.995 14.17 0.992 14.58 0.975
RP 1 2 3	ABS VEL IN OUT 172.3 126.6 203.4 147.8 239.4 130.9	REL VEL IN OUT 172.3 126.6 203.4 147.8 239.4 130.9	MERID VEL IN OUT 109.8 120.3 144.5 142.8 176.4 127.9	TANG VEL IN OUT 132.8 39.6 143.2 38.3 161.8 27.6	MHEEL SPEED IN OUT 0.0 0.0 0.0 0.0
RP 1 2 3	ABS MACH NO IN OUT 0.493 0.358 0.586 0.420 0.696 0.367	REL MACH NO IN OUT 0.493 0.358 0.586 0.420 0.696 0.367	MERID MACH NO IN OUT 0.314 0.340 0.416 0.406 0.513 0.359		MERID VEL R 1.095 0.988 0.725
RP 1 2 3	PERCENT INCI SPAN MEAN 64.00 3.7 80.00 5.3 95.00 4.6	DENCE DEV SS -1.0 8.9 0.5 5.9 -0.1 11.0	D FACT EFF 0.464 0.000 0.438 0.000 0.609 0.000	LOSS COEFF TOT PROF 0.032 0.032 0.041 0.041 0.089 0.089	LOSS PARAM TOT PROF 0.011 0.011 0.012 0.012 0.024 0.024

FOR CORE STATOR 65

(s) 70 Percent of design speed; reading 77

RP 1 2 3	RADII IN OUT 16.038 15.771 14.031 13.833 12.184 12.032	ABS BETAM IN OUT 34.5 18.1 33.6 14.9 36.5 9.6	REL BETAM IN OUT 34.5 18.1 33.6 14.9 36.5 9.6	TOTAL TEMP IN RATIO 308.1 0.999 310.5 0.995 315.0 1.000	TOTAL PRESS IN RATIO 12.56 0.990 12.88 0.992 13.46 0.998
RP 1 2 3	ABS VEL IN OUT 162.6 135.2 195.4 162.6 239.7 199.7	REL VEL IN OUT 162.6 135.2 195.4 162.6 239.7 199.7	MERID VEL IN OUT 134.0 128.5 162.8 157.2 192.8 196.8	TANG VEL IN OUT 92.2 42.1 108.1 41.8 142.5 33.5	MHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3	ABS MACH NO IN OUT 0.472 0.390 0.571 0.472 0.707 0.580	REL MACH NO IN OUT 0.472 0.390 0.571 0.472 0.707 0.580	MERID MACH NO IN OUT 0.389 0.371 0.476 0.456 0.568 0.572		MERIO VEL R 0.959 0.965 1.021
RP 1 2 3	PERCENT INC SPAN MEAN 64.00 -12.2 80.00 -5.9 95.00 -1.5	-16.9 8.8 -10.6 5.8	D FACT EFF 0.283 0.000 0.276 0.000 0.294 0.000	LOSS COEFF TOT PROF 0.070 0.070 0.042 0.042 0.006 0.006	LOSS PARAM TOT PROF 0.024 0.024 0.013 0.013 0.002 0.002
	(t) 7	70 Percent of d	esign speed;	reading 78	
RP 1 2 3	RADII IN OUT 16.038 15.771 14.031 13.833 12.184 12.032	ABS BETAM IN OUT 41.9 18.1 39.5 14.9 38.5 9.8	39.5 14.9	TOTAL TEMP IN RATIO 311.1 0.997 311.6 0.999 315.0 1.001	TOTAL PRESS IN RATIO 12.84 0.994 12.94 0.999 13.45 0.999
RP 1 2 3	ABS YEL [N OUT 160.5 123.3 183.4 144.5 223.2 176.6	REL VEL IN OUT 160.5 123.3 183.4 144.5 223.2 176.6	MERID VEL IN OUT 119.5 117.3 141.6 139.6 174.7 174.0	TANG VEL IN OUT 107.1 38.2 116.6 37.1 139.0 29.9	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3	ABS MACH NO IN OUT 0.464 0.354 0.533 0.415 0.654 0.509		0.411 0.402		MERID VEL R 0.981 0.986 0.996
RP 1 2 3	PERCENT INC SPAN MEAN 64.00 -4.9 80.00 0.0 95.00 0.6	-9.6 8.7 -4.7 5.8	D FACT EFF 0.389 0.000 0.351 0.000 0.345 0.000	LOSS COEFF TOT PROF 0.045 0.045 0.008 0.008 0.005 0.005	LOSS PARAM TOT PROF 0.015 0.015 0.003 0.003 0.001 0.001

FOR CORE STATOR 65

(u) 70 Percent of design speed; reading 86

RP 1 2 3	RADII IN OUT 16.038 15.771 14.031 13.833 12.184 12.032	ABS BETAM IN OUT 51.3 18.2 44.7 15.0 41.6 10.8	REL BETAM IN OUT 51.3 18.2 44.7 15.0 41.6 10.8	TOTAL TEMP IN RATIO 311.8 0.999 312.8 0.995 314.5 1.005	TOTAL PRESS IN RATIO 12.93 0.996 13.04 0.995 13.44 0.985		
RP 1 2 3	ABS VEL IN OUT 149.3 110.6 176.1 126.9 212.4 134.1	REL VEL IN OUT 149.3 110.6 176.1 126.9 212.4 134.1	MERID VEL IN OUT 93.3 105.0 125.1 122.6 158.9 131.7	TANG VEL IN OUT 116.6 34.5 123.9 32.9 141.0 25.2	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0 0.0 0.0		
RP 1 2 3	ABS MACH NO IN OUT 0.430 0.316 0.509 0.364 0.620 0.382	REL MACH NO IN OUT 0.430 0.316 0.509 0.364 0.620 0.382	MERID MACH NO IN OUT 0.268 0.300 0.362 0.351 0.464 0.375		MERID VEL R 1.125 0.980 0.829		
RP 1 2 3	PERCENT INCI SPAN MEAN 64.00 4.6 80.00 5.3 95.00 3.6	DENCE DEV SS -0.1 8.9 0.5 5.9 -1.1 9.7	D FACT EFF 0.461 0.000 0.444 0.000 0.520 0.000	LOSS COEFF TOT PROF 0.035 0.035 0.032 0.032 0.066 0.066	LOSS PARAM TOT PROF 0.012 0.012 0.010 0.010 0.018 0.018		
	(v) 40 Percent of design speed; reading 81						
RP 1 2 3	RADII IN OUT 16.038 15.771 14.031 13.833 12.184 12.032	ABS BETAM IN OUT 58.9 18.1 33.8 14.9 36.2 9.7	33.8 14.9	TOTAL TEMP IN RATIO 294.5 0.998 295.5 0.996 297.5 0.997	TOTAL PRESS IN RATIO 10.83 0.999 10.96 0.999 11.17 0.997		
RP 1 2 3	ABS VEL IN OUT 73.1 63.6 102.8 86.2 132.9 108.2	REL VEL IN OUT 73.1 63.6 102.8 86.2 132.9 108.2	MERID VEL IN OUT 56.9 60.4 85.4 83.3 107.2 106.7	TANG VEL IN OUT 45.9 19.7 57.2 22.1 78.5 18.2	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0		
RP 1 2 3	ABS MACH NO IN OUT 0.213 0.186 0.301 0.252 0.390 0.317	REL MACH NO IN OUT 0.213 0.186 0.301 0.252 0.390 0.317	MERID MACH NO IN OUT 0.166 0.176 0.250 0.244 0.315 0.312		MERID VEL R 1.062 0.975 0.995		
RP 1 2 3	PERCENT INC.I SPAN MEAN 64.00 -7.9 80.00 -5,6 95.00 -1.7	DENCÉ DEV SS -12.6 8.7 -10.4 5.8 -6.4 8.5	D FACT EFF 0.262 0.000 0.271 0.000 0.312 0.000	LOSS COEFF TOT PROF 0.043 0.043 0.015 0.015 0.027 0.027	LOSS PARAM TOT PROF 0.015 0.015 0.005 0.005 0.007 0.007		

FOR CORE STATOR 65

(w) 40 Percent of design speed; reading 82

RP 1 2 3	RADII IN OUT 16.038 15.771 14.031 13.833 12.184 12.032	ABS BETAM IN OUT 46.9 18.1 41.3 14.9 39.5 10.0	41.3 14.9	TOTAL TEMP IN RATIO 295.9 0.998 296.0 0.998 297.3 0.999	TOTAL PRESS IN RATIO 10.96 0.999 11.02 0.999 11.15 0.997
RP 1 2 3	ABS VEL IN OUT 81.7 63.9 100.5 76.3 123.2 89.1	REL VEL IN OUT 81.7 63.9 100.5 76.3 123.2 89.1	MERID VEL IN OUT 55.8 60.7 75.5 73.7 95.0 87.7	TANG VEL IN OUT 59.7 19.8 66.4 19.7 78.4 15.4	WHEEL SPEED IN OUT 0:0 0.0 0.0 0.0 0.0 0.0
RP 1 2 3	ABS MACH NO IN OUT 0.238 0.186 0.294 0.222 0.561 0.260	REL MACH NO IN OUT 0.258 0.186 0.294 0.222 0.361 0.260	MERID MACH NO IN OUT 0.163 0.177 0.221 0.215 0.278 0.256		MERID VEL R 1.088 0.977 0.923
RP 1 2 3	PERCENT INCI SPAN MEAN 64.00 0.2 80.00 1.9 95.00 1.6	DENCE DEV SS . -4.5 8.8 -2.9 5.9 -3.2 8.8	D FACT EFF 0.397 0.000 0.389 0.000 0.419 0.000	LOSS COEFF TOT PROF 0.014 0.014 0.013 0.013 0.032 0.032	LOSS PARAM TOT PROF 0.005 0.005 0.004 0.004 0.009 0.009
	(x) 40	Percent of d	esign speed; 1	reading 83	
RP 1 2 3	RADII IN OUT 16.038 15.771 14.031 13.833 12.184 12.032	ABS BETAM IN OUT 47.9 18.1 43.2 15.0 40.3 10.1	REL BETAM IN OUT 47.9 18.1 43.2 15.0 40.3 10.1	TOTAL TEMP IN RATIO 295.6 0.998 295.8 0.998 296.8 1.000	TOTAL PRESS IN RATIO 10.95 0.999 11.01 0.999 11.14 0.997
RP 1 2 3	ABS VEL IN OUT 83.2 64.1 101.9 75.2 123.8 85.5	REL VEL IN OUT 83.2 64.1 101.9 75.2 123.8 85.5	MERID VEL IN OUT 55.8 60.9 74.3 72.7 94.4 84.2	TANG VEL IN OUT 61.8 19.9 69.8 19.4 80.1 15.0	WHEEL SPEED IN OUT 0.0 0.0 0.0 0.0
RP 1 2 3	ABS MACH NO IN OUT 0.245 0.187 0.298 0.219 0.363 0.249	REL MACH NO IN OUT 0.243 0.187 0.298 0.219 0.363 0.249	MERID MACH NO IN OUT 0.163 0.178 0.217 0.212 0.277 0.245		MERID VEL R 1.093 0.978 0.892
RP 1 2 3	PERCENT INCI SPAN MEAN 64.00 1.2 80.00 3.8 95.00 2.4	DENCE DEV SS -3.5 8.8 -1.0 5.9 -2.3 8.9	D FACT EFF 0.414 0.000 0.419 0.000 0.456 0.000	LOSS COEFF TOT PROF 0.031 0.031 0.022 0.022 0.040 0.040	LOSS PARAM TOT PROF 0.011 0.011 0.007 0.007 0.011 0.011

Figure 1. - Flow path for stage 65, showing axial location of instrumentation.

Figure 2. - Inlet guide vanes.

Figure 3. - Rotor.

(a) Bypass stator.

(b) Core stator.

(c) Stator assembly showing splitter.

Figure 4. - Stators.

(a) Compressor test facility.

Figure 5. - Single-stage compressor test facility.

Figure 6. - Circumferential location of instrumentation at measuring stations - facing downstream. (Angles are in degrees.)

(a) Combination total pressure, total temperature, and flow angle probe (double barrel probe).

(b) $8^{\rm O}$ static-pressure wedge probe.

(c) 18⁰ static-pressure wedge probe.

Figure 7. - Sensing probes.

Figure 8. - Stationary rakes.

Figure 9. - Overall performance for rotor 65.

Figure 10. - Overall performance for bypass stage 65.

Figure 11. - Overall performance of core stage 65.

Figure 12. - Radial distribution of performance for inlet guide vane 65. 100 Percent design speed.

FIGURE 13, - RADIAL DISTRIBUTION OF PERFORMANCE FOR ROTOR 65, 100 PERCENT DESIGN SPEED.

FIGURE 14. - RADIAL DISTRIBUTION OF PERFORMANCE FOR BYPASS STATOR 65. 100 PERCENT DESIGN SPEED.

FIGURE 16, - BLADE-ELEMENT PERFORMANCE FOR ROTOR 65.

FIGURE 16. - CONTINUED. BLADE-ELEMENT PERFORMANCE FOR ROTOR 65.

FIGURE 16. - CONTINUED. BLADE-ELEMENT PERFORMANCE FOR ROTOR 65.

FIGURE 16, - CONTINUED, BLADE-ELEMENT PERFORMANCE FOR ROTOR 65.

FIGURE 16. - CONTINUED. BLADE-ELEMENT PERFORMANCE FOR ROTOR 65.

FIGURE 16, - CONTINUED, BLADE-ELEMENT PERFORMANCE FOR ROTOR 65,

FIGURE 16. - CONTINUED. BLADE-ELEMENT PERFORMANCE FOR ROTOR 65.

FIGURE 16. - CONTINUED. BLADE-ELEMENT PERFORMANCE FOR ROTOR 65.

(H) 64.0 PERCENT SPAN,

FIGURE 16, - CONTINUED, BLADE-ELEMENT PERFORMANCE FOR ROTOR 65.

FIGURE 16. - CONCLUDÈD, BLADE-ELEMENT PERFORMANCE FOR ROTOR 65.

FIGURE 17, - BLADE-ELEMENT PERFORMANCE FOR BYPASS STATOR 65.

FIGURE 17. - CONTINUED. BLADE-ELEMENT PERFORMANCE FOR BYPASS STATOR 65.

FIGURE 17, - CONTINUED. BLADE-ELEMENT PERFORMANCE FOR BYPASS STATOR 65.

FIGURE 17, - CONTINUED, BLADE-ELEMENT PERFORMANCE FOR BYPASS STATOR 65,

FIGURE 17, - CONTINUED, BLADE-ELEMENT PERFORMANCE FOR BYPASS STATOR 65,

FIGURE 17. - CONCLUDED. BLADE-ELEMENT PERFORMANCE FOR BYPASS STATOR 65.

FIGURE 18. - BLADE-ELEMENT PERFORMANCE FOR CORE STATOR 65.

FIGURE 18. - CONTINUED. BLADE-ELEMENT PERFORMANCE FOR CORE STATOR 65.

FIGURE 18. - CONCLUDED. BLADE-ELEMENT PERFORMANCE FOR CORE STATOR 65.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D.C. 20546

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300

SPECIAL FOURTH-CLASS RATE BOOK

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546