CSL 101- Discrete Mathematics Indian Institute of Technology Bhilai Tutorial Sheet 2

1. Let $f_1: \mathbb{R} \to \mathbb{R}$ and $f_2: \mathbb{R} \to \mathbb{R}$ be functions defined as follows:

$$f_1(y) = y^2 - 2$$

$$f_2(y) = y + 4$$

Compute $f_1 \circ f_2$ and $f_2 \circ f_1$. Determine whether these functions are one-to-one , onto , one-one onto .

- 2. Let $f:A\to B$ and $g:B\to C$. If both f and g are onto, show that $g\circ f$ is also onto. Is $g\circ f$ one-to-one if both g and f are one-to-one?
- 3. Let \mathbb{N} be the set of natural numbers including zero. Determine which of the following functions are one-to-one, onto, and which are both.
 - 1. $f: \mathbb{N} \to \mathbb{N}, \ f(x) = x^2 + 2$
 - 2. $f: \mathbb{N} \to \mathbb{N}, \ f(x) = x \mod 3$
 - 3. $f: \mathbb{N} \to \mathbb{N}$, $f(x) = \left\{ \begin{array}{ll} 1, & \text{for x is even} \\ 0, & \text{for x is odd} \end{array} \right\}$
- 4. Let $f_1: \mathbb{R}^2 \to \mathbb{R}$ and $f_2: \mathbb{R} \to \mathbb{R}$ be functions defined as follows:

$$f_1(x,y) = w_1 \cdot x + w_2 \cdot y$$

$$f_2(x) = \frac{1}{1 + e^{-x}}$$

Find $f_1 \circ f_2$. If $\sigma(z) = f_1 \circ f_2$ then write a derivative of $\sigma(z)$ in in terms of $\sigma(z)$ and draw the graph of $\sigma(z)$. Try to draw some observations from $\sigma(z)$. (Here w_1 and w_2 are real constant)

- 5. Consider these functions from set of students in a discrete mathematics class. Under what conditions is the function one-to-one if it assigns to a student his or her
 - 1. mobile number
 - 2. student identity number
 - 3. final grade in the class
 - 4. home town
- 6. Prove or disprove Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by

1.
$$\lceil x \rceil + \lceil y \rceil = \lceil x + y \rceil$$

$$2. \ \lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor$$

..

7. Find out the domain, co-domain and range of the function

```
int function(float x)\{\ldots\}
```

- 8. Give an example of a function from $\mathbb N$ to $\mathbb N$ that is:
 - 1. One-to-one but not onto.
 - 2. Onto but not one-to-one.
 - 3. Both onto and one-to-one (but different from the identity function).
 - 4. Neither one-to-one nor onto.
- 9. Suppose that f is a function from A to B, where A and B are finite sets with |A| = |B|. Show that f is one-to-one if and only if it is onto.