MAPREDUCE FUNDAMENTAL CONCEPTS

Why MapReduce?

- Distributes the processing of data on your cluster
- Divides your data up into partitions that are MAPPED (transformed) and REDUCED (aggregated) by mapper and reducer functions you define
- Resilient to failure an application master monitors your mappers and reducers on each partition

Let's illustrate with an example

■ How many movies did each user rate in the MovieLens data set?

How MapReduce Works: Mapping

■ The MAPPER converts raw source data into **key/value** pairs

Example: MovieLens Data (u.data file)

USER ID MOVIE ID RATING TIMESTAM	USER ID	MOVIE ID	RATING	I TIMESTAM
--	---------	----------	--------	-------------------

196	242	3	881250949
186	302	3	891717742
196	377	1	878887116
244	51	2	880606923
166	346	1	886397596
186	474	4	884182806
186	265	2	881171488

Map users to movies they watched

```
USER ID|MOVIE ID|RATING|TIMESTAMP

196 242 3 881250949

186 302 3 891717742

196 377 1 878887116

244 51 2 880606923

166 346 1 886397596

186 474 4 884182806

186 265 2 881171488

Mapper
```

196:242 186:302 196:377 244:51 166:346 186:274 186:265

Extract and Organize What We Care About

196:242 186:302 196:377 244:51 166:346 186:274 186:265

MapReduce Sorts and Groups the Mapped Data ("Shuffle and Sort")

196:242 186:302 196:377 244:51 166:346 186:274 186:265

166:346 186:302,274,265 196:242,377 244:51

The REDUCER Processes Each Key's Values

```
166:346 186:302,274,265 196:242,377 244:51

len(movies)

166:1 186:3 196:2 244:1
```

Putting it All Together

```
USER ID | MOVIE ID | RATING | TIMESTAMP
                196 242 3
                            881250949
                    302 3
                186
                            891717742
                196 377 1
                            878887116
                244 51 2
                            880606923
                166 346 1
                            886397596
                186 474 4 884182806
                186 265 2
                            881171488
                       MAPPER
196:242 186:302 196:377 244:51 166:346 186:274 186:265
                 SHUFFLE AND SORT
               186:302,274,265 196:242,377 244:51
      166:346
                      REDUCER
              166:1 186:3 196:2 244:1
```

MAPREDUCE ON A CLUSTER

How MapReduce Scales

Putting it All Together

What's Happening

How are mappers and reducers written?

- MapReduce is natively Java
- STREAMING allows interfacing to other languages (ie Python)

Handling Failure

- Application master monitors worker tasks for errors or hanging
 - Restarts as needed
 - Preferably on a different node
- What if the application master goes down?
 - YARN can try to restart it
- What if an entire Node goes down?
 - This could be the application master
 - The resource manager will try to restart it
- What if the resource manager goes down?
 - Can set up "high availability" (HA) using Zookeeper to have a hot standby

MAPREDUCE: A REAL EXAMPLE

How many of each rating type exist?

How many of each movie rating exist?

Making it a MapReduce problem

- MAP each input line to (rating, 1)
- REDUCE each rating with the sum of all the 1's

USER ID | MOVIE ID | RATING | TIMESTAMP

196 242 3 186 302 3 196 377 1	881250949 891717742 878887116	3,1 3,1 Map 1,1	Shuffle & Sort 1 -> 1, 1 2 -> 1, 1	Reduce 1, 2 2, 2
244 51 2	880606923	2,1	3 -> 1, 1	3, 2
166 346 1 186 474 4	886397596 884182806	1,1 4,1	4 -> 1	4, 1
186 265 2	881171488	2,1		

Writing the Mapper

```
USER ID | MOVIE ID | RATING | TIMESTAMP
      196 242 3 881250949
                                      3,1
                                             Shuffle
      186 302 3 891717742
                                                     1 -> 1, 1
                                                                 Reduce
                                             & Sort
                              Map
      196 377 1 878887116
                                                 2 -> 1, 1
                                      2,1
      244 51 2 880606923
                                                     3 -> 1, 1
                                      1,1
      166 346 1 886397596
                                                    4 -> 1
      186 474 4 884182806
                                      4,1
                                      2,1
      186 265 2 881171488
```

```
def mapper_get_ratings(self, _, line):
    (userID, movieID, rating, timestamp) = line.split('\t')
    yield rating, 1
```

Writing the Reducer

```
USER ID | MOVIE ID | RATING | TIMESTAMP
      196 242 3
                  881250949
                                        3,1
                                                Shuffle
      186 302 3 891717742
                                                        1 -> 1, 1
                                                                    Reduce
                                                & Sort
                               Map
      196 377 1 878887116
                                                       2 -> 1, 1
                                        2,1
      244 51 2 880606923
                                                        3 -> 1, 1
                                        1,1
      166 346 1 886397596
                                                        4 -> 1
      186 474 4 884182806
                                        4,1
                                        2,1
      186 265 2 881171488
```

```
def reducer_count_ratings(self, key, values):
    yield key, sum(values)
```

Putting it all together

```
from mrjob.job import MRJob
from mrjob.step import MRStep
class RatingsBreakdown(MRJob):
   def steps(self):
        return [
           MRStep(mapper=self.mapper_get_ratings,
                   reducer=self.reducer_count_ratings)
   def mapper_get_ratings(self, _, line):
        (userID, movieID, rating, timestamp) = line.split('\t')
        yield rating, 1
   def reducer_count_ratings(self, key, values):
       yield key, sum(values)
if __name__ == '__main__':
   RatingsBreakdown.run()
```

RUNNING MAPREDUCE WITH MRJOB

Run our MapReduce job in our Hadoop installation

Installing what we need

- PIP
 - Utility for installing Python packages
 - su root
 yum install python-pip
- Nano
 - yum install nano
- MRJob
 - pip install mrjob exit
- Data files and the script
 - wget http://media.sundog-soft.com/hadoop/ml-100k/u.data
 - wget http://media.sundog-soft.com/hadoop/RatingsBreakdown.py

Running with mrjob

- Run locally
 - python RatingsBreakdown.py u.item
- Run with Hadoop
 - python MostPopularMovie.py -r hadoop --hadoop-streaming-jar /usr/hdp/current/hadoop-mapreduce-client/hadoop-streaming.jar u.data

YOUR CHALLENGE

Sort movies by popularity with Hadoop

Challenge exercise

- Count up ratings given for each movie
 - All you need is to change one thing in the mapper we don't care about ratings now, we care about movie ID's!
 - Start with this and make sure you can do it.
 - You can use nano to just edit the existing RatingsBreakdown.py script

Stretch goal

- Sort the movies by their numbers of ratings
- Strategy:
 - Map to (movieID, 1) key/value pairs
 - Reduce with output of (rating count, movielD)
 - Send this to a second reducer so we end up with things sorted by rating count!
- Gotchas:
 - How do we set up more than one MapReduce step?
 - How do we ensure the rating counts are sorted properly?

Multi-stage jobs

Ensuring proper sorting

- By default, streaming treats all input and output as strings. So things get sorted as strings, not numerically.
- There are different formats you can specify. But for now let's just zero-pad our numbers so they'll sort properly.
- The second reducer will look like this:

```
def reducer_count_ratings(self, key, values):
    yield str(sum(values)).zfill(5), key
```

Iterating through the results

Spoiler alert! def reducer_sorted_output(self, count, movies): for movie in movies: yield movie, count

CHECK YOUR RESULTS

Did it work?

My solution

```
from mrjob.job import MRJob
from mrjob.step import MRStep
class RatingsBreakdown(MRJob):
    def steps(self):
        return [
            MRStep(mapper=self.mapper_get_ratings,
                   reducer=self.reducer_count_ratings),
            MRStep(reducer=self.reducer_sorted_output)
    def mapper_get_ratings(self, _, line):
        (userID, movieID, rating, timestamp) = line.split('\t')
        yield movieID, 1
    def reducer_count_ratings(self, key, values):
        yield str(sum(values)).zfill(5), key
    def reducer_sorted_output(self, count, movies):
        for movie in movies:
            yield movie, count
if __name__ == '__main__':
   RatingsBreakdown.run()
```


On MacOS or Linux, open a terminal and run: ssh maria_dev@127.0.0.1 -p 2222

```
Using username "maria dev".
maria dev@127.0.0.1's password:
Last login: Fri Nov 11 20:39:50 2016 from 10.0.2.2
[maria dev@sandbox ~] $ hadoop fs -ls
Found 3 items
drwx---- - maria dev hdfs 0 2016-11-11 20:53 .Trash
drwxr-xr-x - maria dev hdfs 0 2016-11-11 20:16 files-view
drwxr-xr-x - maria dev hdfs 0 2016-11-09 17:21 hive
[maria dev@sandbox ~] $ hadoop fs -mkdir ml-100k
[maria dev@sandbox ~]$ hadoop fs -ls
Found 4 items
drwx----- - maria dev hdfs 0 2016-11-11 20:53 .Trash
drwxr-xr-x - maria dev hdfs
                                   0 2016-11-11 20:16 files-view
drwxr-xr-x - maria dev hdfs 0 2016-11-09 17:21 hive
drwxr-xr-x - maria dev hdfs
                                   0 2016-11-11 20:58 ml-100k
[maria dev@sandbox ~]$
```

×

```
[maria dev@sandbox ~] $ wget http://media.sundog-soft.com/hadoop/ml-100k/u.data
--2016-11-11 20:59:41-- http://media.sundog-soft.com/hadoop/ml-100k/u.data
Resolving media.sundog-soft.com... 54.231.72.51
Connecting to media.sundog-soft.com [54.231.72.51]:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 2079229 (2.0M) [application/octet-stream]
Saving to: "u.data"
100%[==================================>] 2,079,229 3.64M/s in 0.5s
2016-11-11 20:59:41 (3.64 MB/s) - "u.data" saved [2079229/2079229]
[maria dev@gandhov ~1$
```

```
[maria dev@sandbox ~]$ ls
u.data
[maria dev@sandbox ~]$ ls -la
total 2056
drwx----- 1 maria dev maria dev 4096 Nov 11 20:59 .
drwxr-xr-x 1 root root 4096 Oct 25 08:04 ...
-rw----- 1 maria dev maria dev 896 Nov 11 20:39 .bash history
-rw-r--r-- 1 maria dev maria dev 18 May 10 2016 .bash logout
-rw-r--r-- 1 maria dev maria dev 176 May 10 2016 .bash profile
-rw-r--r-- 1 maria dev maria dev 124 May 10 2016 .bashrc
-rw-rw-r-- 1 maria dev maria dev 2079229 Nov 11 20:32 u.data
[maria dev@sandbox ~] $ hadoop fs -copyFromLocal u.data ml-100k/u.data
[maria dev@sandbox ~]$
```

```
[maria dev@sandbox ~] $ hadoop fs -copyFromLocal u.data ml-100k/u.data
[maria dev@sandbox ~]$ hadoop fs -ls ml-100k
Found 1 items
-rw-r--r-- 1 maria dev hdfs 2079229 2016-11-11 21:00 ml-100k/u.data
[maria dev@sandbox ~]$ hadoop fs -rm ml-100k/u.data
16/11/11 21:00:59 INFO fs.TrashPolicyDefault: Moved: 'hdfs://sandbox.hortonworks
.com:8020/user/maria dev/ml-100k/u.data' to trash at: hdfs://sandbox.hortonworks
.com:8020/user/maria dev/.Trash/Current/user/maria dev/ml-100k/u.data
[maria dev@sandbox ~]$
```

```
[maria dev@sandbox ~] $ hadoop fs -rmdir ml-100k
[maria dev@sandbox ~]$ hadoop fs -ls
Found 3 items
drwx----- - maria dev hdfs
                                      0 2016-11-11 20:53 .Trash
drwxr-xr-x - maria dev hdfs
                                      0 2016-11-11 20:16 files-view
drwxr-xr-x - maria dev hdfs
                                      0 2016-11-09 17:21 hive
[maria dev@sandbox ~]$
```



```
GNU nano 2.0.9
                           File: RatingsBreakdown.py
from mrjob.job import MRJob
from mrjob.step import MRStep
class RatingsBreakdown (MRJob):
    def steps(self):
        return [
            MRStep (mapper=self.mapper get ratings,
                   reducer=self.reducer count ratings)
    def mapper get ratings(self, , line):
        (userID, movieID, rating, timestamp) = line.split('\t')
        yield rating, 1
    def reducer count ratings (self, key, values):
        yield key, sum(values)
if name == ' main ':
    RatingsBreakdown.run()
                 Read 19 lines (Converted from DOS format)
```