PART

Ι

Mecánica Newtoniana

Section 1

Vectores

Esto ya deberían saberlo y probablemente se actualice de último :)

Section 2

Mecánica Newtoniana para una partícula

A continuación se expresará la mecánica de partículas de forma idealizada, donde no se presenta ningún tipo de fuerza disipativa en el sistema de interés.

Subsection 2.1

Leyes de Newton

Las leyes de Newton tal y como se expresarán a continuación son unicamente válidas para sistemas de referencias **inerciales**, es decir, sistemas de referencia que no poseen ningun tipo de aceleración.

Definition 1

(**Primera Ley de Newton o Ley de la Inercia**) Un cuerpo mantiene su estado de equilibrio a menos de que una fuerza neta lo perturbe. Dicho de otra forma, un cuerpo siempre mantendrá su estado de equilibrio a menos de que una fuerza neta llegue a afectarlo.

$$\sum \vec{F} = \vec{0} \tag{2.1}$$

Definition 2

(**Segunda Ley de Newton**) Un cuerpo que experimenta una fuerza neta diferente de cero, tendrá como resultado un cambio en su momentum lineal.

$$\sum \vec{F} = \frac{d\vec{p}}{dt} = \dot{\vec{p}} \tag{2.2}$$

Definition 3

(Tercera Ley de Newton o Ley de Acción-Reacción) Considere dos cuerpos denotados como A y B que presentan algún tipo de interacción entre sí, se dice que: Toda acción que realice el cuerpo A sobre el cuerpo B le corresponde una reacción que proveniente del cuerpo B. Estas acciones y reacciones corresponden a fuerzas internas del sistema (cuerpos A y B) debido a su interacción, dichas fuerzas poseen la misma magnitud y su dirección es contraria.

$$\vec{F}_{AB} = -\vec{F}_{BA} \tag{2.3}$$

Para trabajar con esta ley hay que tomar cuenta cierta ambiguedad que nos lleva a los siguientes enunciados de la tercera ley:

- Enunciado Fuerte: Los vectores correspondientes a las fuerzas de acción y reacción se encuentran sobre una misma recta, es decir, sí se conocen las direcciones de las fuerzas de acción y reacción es posible trazar una recta (conocida como línea de acción) que una los vectores de fuerzas y sea paralela a estos.
- Enunciado Débil: No ocurre lo anterior. Es imposible unir los vectores de las fuerzas de acción y reacción por medio de una recta que sea paralela a ambos vectores.

Un estado de **equilibrio** se refiere a que el cuerpo o sistema de interés se encuentra movientodose con velocidad lineal constante (**equilibrio dinámico**) o se encuentra en reposo (**equilibrio estático**).

Figura 1. Situación del enunciado fuerte

Figura 2. Situación del enunciado débil

Subsection 2.2

Trabajo y Energía

Definition 4

(**Trabajo**) Corresponde a la cantidad generada al tomar el producto punto de la fuerza ejercida sobre un cuerpo a lo largo de todo su desplazamiento desde una punto A a un punto B.

$$W = \int_{A}^{B} \vec{F} \cdot d\vec{r} \tag{2.4}$$

Definition 5

(Fuerza conservativa) Una fuerza \vec{F} es conservativa si se puede escribir de la forma:

$$\vec{F} = -\vec{\nabla}V\tag{2.5}$$

A partir de las ecuaciones 2.2 y 2.4:

$$W = \int_{A}^{B} \vec{F} \cdot d\vec{r} = \int_{A}^{B} \frac{d\vec{p}}{dt} \cdot d\vec{r}$$

Ejerciendo el producto punto y trabajando por índices:

$$W = \int_{A}^{B} \sum_{i=1}^{3} \frac{dp_i}{dt} dr_i$$

Suponiendo que la masa es constante, la derivada temporal del momentum lineal es de la forma: $\frac{dp_i}{dt}=m\frac{dv_i}{dt}$:

$$W = \sum_{i=1}^{3} m \int_{A}^{B} \frac{dv_{i}}{dt} dr_{i} = \sum_{i=1}^{3} m \int_{A}^{B} \frac{dv_{i}}{dt} dr_{i} \frac{dt}{dt}$$

$$= \sum_{i=1}^{3} m \int_{A}^{B} dv_{i} \underbrace{\frac{dr_{i}}{dt}}_{=v_{i}} \frac{dt}{dt}$$

$$= \sum_{i=1}^{3} m \int_{A}^{B} v_{i} dv_{i} = \sum_{i=1}^{3} \frac{1}{2} m v_{i}^{2} \Big|_{A}^{B} = \sum_{i=1}^{3} \frac{1}{2} m v_{iB}^{2} - \sum_{i=1}^{3} \frac{1}{2} m v_{iA}^{2}$$

Definition 6

(Energía Cinética) Corresponde al trabajo necesario para comenzar a mover un cuerpo desde el reposo hasta la rapidez \vec{v} .

$$T = \frac{1}{2}m\sum_{i=1}^{3}v_{i}^{2} \tag{2.6}$$

Theorem 1

(Trabajo - Energía Cinética)
$$W = \Delta T \eqno(2.7)$$

Regresando a la definición 2.4 pero ahora tomando la fuerza que es ejercida sobre el cuerpo como una fuerza conservativa, ecuación 2.5.

$$W = \int_A^B \vec{F} \cdot d\vec{r} = \int_A^B -\vec{\nabla} V \cdot d\vec{r} = -V_B + V_A$$

Definition 7

(**Energía Potencial**) Corresponde a la capacidad de un cuerpo de ejercer trabajo se denomina energía potencial. Ahora se presentan algunos ejemplos de energías potenciales.

$$V = \begin{cases} mgh \\ \frac{1}{2}kx^2 \\ \frac{-GMm}{r} \\ \frac{-Kq_1q_2}{r} \\ \vdots \end{cases}$$
 (2.8)

Theorem 2

(Trabajo - Energía Potencial)

$$W = -\Delta V \tag{2.9}$$

Subsection 2.3

Análogo rotacional de las leyes de Newton

Subsection 2.4

Teoremas de Conservación

Definition 8

(Momentum Lineal)

$$\vec{p} = m\vec{v} \tag{2.10}$$

Definition 9

(Momentum Angular)

$$\vec{L} = \vec{r} \times \vec{p} = m \ \vec{r} \times \vec{v} \tag{2.11}$$