HW2

Exercise 0.1. Show that a Lie algebra \mathfrak{g} is nilpotent if and only if ad(X) is a nilpotent endomorphism of \mathfrak{g} for every $X \in \mathfrak{g}$.

Exercise 0.2. Show that a Lie algebra \mathfrak{g} is semisimple if and only if every finite-dimensional representation is semisimple, i.e., every invariant subspace has a complement.

Exercise 0.3. A Lie algebra is called **reductive** if its radical is equal to its center. A Lie group is reductive if its Lie algebra is reductive. For example, $GL_n\mathbb{C}$ is reductive. Show that the following are true for a reductive Lie algebra \mathfrak{g} : (i) $\mathcal{D}\mathfrak{g}$ is semisimple; (ii) the adjoint representation of \mathfrak{g} is semisimple; (iii) \mathfrak{g} is a product of a semisimple and an abelian Lie algebra; (iv) \mathfrak{g} has a finite-dimensional faithful semisimple representation. In fact, each of these conditions is equivalent to \mathfrak{g} being reductive.

Exercise 0.4. A Lie subalgebra $\mathfrak{h} \subset \mathfrak{g}$ is called Cartan subalgebra of \mathfrak{g} if

- 1. h is abelian
- 2. A generic element of \mathfrak{h} is diagonalazable in the adjoint representation.
- 3. h is a maximal subalgebra with above two property.

(i) Classify all Cartan subalgebras for the Lie algebras of dimension ≤ 3 . Suppose G is simply connect connected group with the Lie algebra \mathfrak{g} . G acts on the set of Cartan subalgebras. (ii) In the same examples, classify all the orbits of this action.