#### **PSYC 2300**

#### Introduction to Statistics



Lecture 04: Correlations, Reliability, & Validity

## Outline for today

- Defining relationships in the world
  - Correlation coefficient
- Reliability
  - Test-retest reliablity
  - Parallel forms reliability
  - Internal consistency
  - Interrater reliability

#### Validity

- Content validity
- Criterion validity
- Construct validity



## Defining Relationships in the World

In psychological science, **correlational designs** examine the extent to which two variables are associated

#### Examples

- Do people who are more creative do better in school?
- Is there a relationship between hours studied and exam scores? Class attendance and final grades?
- Are people who have higher marital satisfaction better parents?

Correlations are either *positive*, *negative*, or *zero* 







Negative

Zero

**Positive** 

**Positive correlation**: as one variable changes, the other variable changes in the *same direction* 

#### **Examples**

- Relationship between hours studied and exam grade
  - More hours studied, better exam grade
  - Fewer hours studied, worse exam grade



Examples of positive correlations?

lacktriangle

**Negative correlation**: as one variable changes, the other variable changes in the *opposite direction* 

#### **Examples**

- Relationship between running speed and time to finish a race
  - Faster running = Less time to finish
  - Slower running = More time to finish



Examples of negative correlations?

•

Zero correlation: there is no relationship between the two variables

#### **Examples**

- Relationship between math ability and dancing ability
  - Being better at one tells us nothing about how good you'll be at the other



Correlations are *always* between -1.0 and +1.0

- This tells you the **magnitude** of relationship
  - Correlations closer to absolute value of 1 are stronger
  - Correlations closer to a value of 0 are weaker



### **Correlation** ≠ **Causation**



Ice Cream Sales

**Shark Attacks** 

### **Correlation** ≠ **Causation**



### **Correlation** ≠ **Causation**

A third variable could be



#### Pearson's r

$$r_{xy} = rac{n\sum XY - \sum X\sum Y}{\sqrt{[n\sum X^2 - (\sum X)^2][n\sum Y^2 - (\sum Y)^2]}}$$

We just need six values:

$$egin{array}{c} \sum X \ Y \ \sum XY \end{array}$$

$$\sum_{\sum} X^2 Y^2$$

Set up our table with the x and y values



Square our x values

| x  | y  | $x^2$ | $y^2$ | xy |
|----|----|-------|-------|----|
| 5  | 6  | 25    |       |    |
| 9  | 11 | 81    |       |    |
| 10 | 6  | 100   |       |    |
| 3  | 4  | 9     |       |    |
| 5  | 6  | 25    |       |    |
| 7  | 9  | 49    |       |    |

Square our y values

| x  | y  | $x^2$ | $y^2$ | xy |
|----|----|-------|-------|----|
| 5  | 6  | 25    | 36    |    |
| 9  | 11 | 81    | 121   |    |
| 10 | 6  | 100   | 36    |    |
| 3  | 4  | 9     | 16    |    |
| 5  | 6  | 25    | 36    |    |
| 7  | 9  | 49    | 81    |    |

Multiply x and y together row-wise

| x  | y  | $x^2$ | $y^2$ | xy |
|----|----|-------|-------|----|
| 5  | 6  | 25    | 36    | 30 |
| 9  | 11 | 81    | 121   | 99 |
| 10 | 6  | 100   | 36    | 60 |
| 3  | 4  | 9     | 16    | 12 |
| 5  | 6  | 25    | 36    | 30 |
| 7  | 9  | 49    | 81    | 63 |

| x  | y  | $x^2$ | $y^2$ | xy |
|----|----|-------|-------|----|
| 5  | 6  | 25    | 36    | 30 |
| 9  | 11 | 81    | 121   | 99 |
| 10 | 6  | 100   | 36    | 60 |
| 3  | 4  | 9     | 16    | 12 |
| 5  | 6  | 25    | 36    | 30 |
| 7  | 9  | 49    | 81    | 63 |
|    |    |       |       |    |

#### Sum each of the columns

$$\frac{\sum x}{39} \frac{\sum y}{42} \frac{\sum x^2}{289} \frac{\sum y^2}{326} \frac{\sum xy}{294}$$

#### Pearson's r

$$r_{xy} = rac{n\sum XY - \sum X\sum Y}{\sqrt{[n\sum X^2 - (\sum X)^2][n\sum Y^2 - (\sum Y)^2]}}$$

$$\frac{\sum x}{39} \frac{\sum y}{42} \frac{\sum x^2}{289} \frac{\sum y^2}{326} \frac{\sum xy}{294}$$

$$r_{xy} = rac{(6)(294) - (39)(42)}{\sqrt{[(6)(289) - (39)^2][(6)(326) - (42)^2]}}$$

$$egin{aligned} r_{xy} &= rac{n \sum XY - \sum X \sum Y}{\sqrt{[n \sum X^2 - (\sum X)^2][n \sum Y^2 - (\sum Y)^2]}} \ r_{xy} &= rac{(6)(294) - (39)(42)}{\sqrt{[(6)(289) - (39)^2][(6)(326) - (42)^2]}} \ r_{xy} &= rac{126}{\sqrt{(213)(192)}} = 0.62306 = 0.62 \end{aligned}$$

\*In psychology, round to two decimals except *p*-values

## Reliability and Validity

A few preliminaries

## **Terminology**

**Indendent variable**: The variable that is hypothesized to have an effect on some outcome of interest

**Dependent variable**: The outcome of interest that the independent variable might have an effect on

|                     | Hypothesized to influence | Hypothesized to be influenced |
|---------------------|---------------------------|-------------------------------|
| Experiment          | Independent variable      | Dependent variable            |
| Correlational study | Predictor variable        | Outcome variable              |

## **Terminology**

**Reliability**: Does it work accurately every time?

**Validity**: Is it actually measuring what it was designed to measure?

Why does this matter?

Since we're heading toward *inferential statistics*, it's very important that our data are what we think they are

You'll learn more about this topic in Research Methods

## Validity & Reliability: Example

- Are manipulations and measures reliable and valid?
- Valid: measuring/manipulating what you intend to measure?
- Reliable: consistency of measurement/manipulation?



Participant watches sad video



Webcam shows participant display prototypical **sadness** 



Participant self-reports sadness

## **Classical Test Theory**

**True score**: The true value that we are trying to measure

You understand 95% of the concepts and computations

In an ideal world, you would receive a 95% on the midterm

**Observed Score**: The value that we actually measure

You receive a 78% on the midterm

## **Classical Test Theory**



## **Classical Test Theory**



Estimating and evaluating reliability helps us to reduce the error score and more closely align the true score with the observed score

# Reliability

## Reliability

- Test-Retest Reliability: Used to determine whether a test (or scale) is reliable over time
- Parallel Forms Reliability: Used to examine the equivalence or similarity between two forms of the same test (or scale)
- **Internal consistency**: Used to determine whether the items on a test (or scale) are consistent with each other

### **Test-Retest Reliability**

**Test-Retest Reliability**: Measured as the correlation  $r_{xy}$  between scores on a measure at Time 1 and the same measure at Time 2

• Example: Developing a new personality measure



### Parallel Forms Reliability

**Parallel Forms Reliability**: Measured as the correlation  $r_{xy}$  between scores for the same individuals on Form A and Form B

- Example: Measuring your ability to calculate standard deviations on two different days
  - We would use two different forms because giving you identical problems would be trivial



## **Internal Consistency**

**Internal consistency**: Used to determine whether the items on a test (or scale) are consistent with each other, typically measured with Cronbach's  $\alpha$ 

#### **Anxiety Scale**

Rate your agreement to the following statements

- 1. I often have worrying thoughts
- 2. I have trouble getting out of bed in the morning
- 3. I often feel nervous
- 4. I no longer take pleasure in things I used to enjoy
- 5. My heart often beats fast as fears enter in
- 6. I often feel sluggish and tired

## **Internal Consistency**

#### **Anxiety Scale**

- 1. I often have worrying thoughts
- 2. I have trouble getting out of bed in the morning
- 3. I often feel nervous
- 4. I no longer take pleasure in things I used to enjoy
- 5. My heart often beats fast as fears enter in
- 6. I often feel sluggish and tired

#### **Issues with this scale**

- This scale has anxiety and depression items
- This would result in *poor* internal consistency

## **Internal Consistency**

**Internal consistency**: Used to determine whether the items on a test (or scale) are consistent with each other, typically measured with Cronbach's  $\alpha$ 

- $\bullet$  The more consistently individual items vary with the total score on the test, the higher the value of Cronbach's  $\alpha$
- Higher values means more internal consistency

#### **Cronbach's Alpha**

$$lpha=(rac{k}{k-1})(rac{s_y^2-\sum s_i^2}{s_y^2})$$

k the number of items

 $oldsymbol{s}_y^2$  the variance associated with the observed score

 $\sum s_i^2$  the sum of all the variances for each individual item

| Item_1 | Item_2 | Item_3 |
|--------|--------|--------|
| 6      | 6      | 8      |
| 5      | 5      | 6      |
| 9      | 8      | 6      |
| 3      | 2      | 4      |
| 2      | 3      | 2      |
| 1      | 1      | 2      |
| 5      | 4      | 6      |

- 1. I often have worrying thoughts
- 2. I often feel nervous
- 3. My heart often beats fast as fears enter in

| Item_1 | Item_2 | Item_3 | Total |
|--------|--------|--------|-------|
| 6      | 6      | 8      | 20    |
| 5      | 5      | 6      | 16    |
| 9      | 8      | 6      | 23    |
| 3      | 2      | 4      | 9     |
| 2      | 3      | 2      | 7     |
| 1      | 1      | 2      | 4     |
| 5      | 4      | 6      | 15    |

Sum the values of Item 1, Item 2, and Item 3 row-wise to create a "Total" column

| Item_1 | Item_2 | Item_3 | Total |
|--------|--------|--------|-------|
| 6      | 6      | 8      | 20    |
| 5      | 5      | 6      | 16    |
| 9      | 8      | 6      | 23    |
| 3      | 2      | 4      | 9     |
| 2      | 3      | 2      | 7     |
| 1      | 1      | 2      | 4     |
| 5      | 4      | 6      | 15    |

Calculate the **sample variance** for each item and 'total'

| Item_1 | Item_2 | Item_3 | Total |
|--------|--------|--------|-------|
| 7.29   | 5.81   | 5.14   | 48.95 |

$$\sum s_i^2 = s_1^2 + s_2^2 + s_3^2$$

$$\sum s_i^2 = 7.29 + 5.81 + 5.14 = 18.24$$

| Item_1 | Item_2 | Item_3 | Total |
|--------|--------|--------|-------|
| 6      | 6      | 8      | 20    |
| 5      | 5      | 6      | 16    |
| 9      | 8      | 6      | 23    |
| 3      | 2      | 4      | 9     |
| 2      | 3      | 2      | 7     |
| 1      | 1      | 2      | 4     |
| 5      | 4      | 6      | 15    |

Calculate the **sample variance** for each item and 'total'

| Item_1 | Item_2 | Item_3 | Total |
|--------|--------|--------|-------|
| 7.29   | 5.81   | 5.14   | 48.95 |

k=3 items in our scale

 $s_y^2=48.95$  is the 'total' column variance

#### **Cronbach's Alpha**

$$lpha = (rac{k}{k-1})(rac{s_y^2 - \sum s_i^2}{s_y^2})$$

$$\alpha = (\frac{3}{3-1})(\frac{48.95 - 18.24}{48.95})$$

$$\alpha = .941$$

$$k = 3$$

$$\sum s_i^2=18.24$$

$$s_y^2 = 48.95$$

## **Interrater Reliability**

**Interrater Reliability**: the degree of agreement among independent observers who rate, code, or agree on their judgments of an outcome of interest

$$Interrater\ Reliability = rac{Number\ of\ agreements}{Number\ of\ possible\ agreements}$$



# **Validity**

### **Content Validity**

**Content validity**: the extent to which the items on a test are fairly representative of the entire domain the test seeks to measure

"I want to design a test to measure my students' ability in statistics."





- 1. Calculate the mean of sample A.
- 2. Calculate the mean of sample B.
- 3. Calculate the mean of sample C.
- 4. Calculate the mean of sample D.
- 5. Calculate the mean of sample E.
- 6. Calculate the mean of sample F.

- 1. Calculate the mean.
- 2. Calculate the standard deviation.
- 3. Calculate the correlation.
- 4. Calculate a *t*-test.
- 5. Calculate an ANOVA.
- 6. Calculate a regression.

## **Criterion Validity**

**Criterion validity**: measures how well one measure predicts an outcome for another measure

Here and now

*In the future* 

**Concurrent Criterion Validity**: Does this test accurately assess my students' current level of ability?

**Predictive Validity**: Does this test accurately assess how my students will do on the final exam?

To find out, correlate scores on your test with some well-established measure of ability

### **Construct Validity**

**Construct Validity**: the degree to which a test, scale, or assessment measures the construct it claims to measure

A *construct* is a group of interrelated variables that you care about

*Example*: When I measure extraversion as a self-report measure, does this correlate with behavioral extraversion?

#### Next time

#### Lecture

Using hypotheses to test questions

#### Reading

- Chapter Five
- Chapter Six

#### Quiz 1

- Due Wednesday 01/19/2022 at 11:59pm MT
  - Lecture 1-4, Ch.1-5

