Computing the smallest enclosing ball of balls

Mike Bostock and Robin Houston

May 15, 2017

Abstract

We consider the problem of computing the smallest ball enclosing a set of balls. There is an elegant randomised algorithm due to Welzl (1991) that computes the smallest ball enclosing a set of points: it was shown by Fischer and Gärtner (2003); Fischer (2005) that a natural extension of Welzl's algorithm to sets of balls does not work in general. We observe that a trivial modification to this algorithm makes it work correctly.

1 Welzl's algorithm

There is an algorithm BallBoundedBy(T) that takes a finite set of points in \mathbb{R}^d and computes the smallest d-ball whose boundary contains all the points in T. This amounts to solving a system of |T| quadratic equations. [Explain how this reduces to one quadratic equation and |T|-1 linear equations, etc.] There may be no such ball, in which case the algorithm returns **null**.

Using Ballboundedby as a subroutine, the following recursive algorithm due to Welzl (1991) computes the smallest ball containing a finite set of points, with some of them constrained to be on the ball's boundary. Again there may be no such ball, in which case the algorithm will return null.

Algorithm 1 Welzl's algorithm for the bounding ball of points

```
 \{ \text{ Compute the smallest ball containing all the points in } S \cup T \text{ that has all the points in } T \text{ on its boundary. } \}   \text{function WelzlP}(S,T)   \text{if } S = \emptyset \text{ then }   \text{return BallBoundedBy}(T)   \text{end if }   \text{Choose } p \in S \text{ uniformly at random } D \leftarrow \text{WelzlP}(S - \{p\}, T)   \text{if } D = \text{null or } p \in D \text{ then }   \text{return } D   \text{else }   \text{return WelzlP}(S - \{p\}, T \cup \{p\})   \text{end if }   \text{end function }
```

We can use this to compute the smallest ball containing all the points in a finite set P simply by calling Welzlp (P,\emptyset) .

2 Enclosing ball of balls

Let's write $\operatorname{mb}(S)$ to mean the smallest ball containing all the balls in S, where S is a finite set of balls in \mathbb{R}^d . [Show this exists and is unique.] Let's also write $\operatorname{mb}(S;T)$ to mean the smallest ball containing all the balls in $S \cup T$ that has all the balls in T tangent to its boundary. In general $\operatorname{mb}(S;T)$ may not exist, and if it does exist it may not be unique. [Give examples.]

Assume we have an algorithm BallTangentTo(T) that computes $mb(\emptyset, T)$. The solution procedure is essentially the same as that for BallBoundedby, with slightly different equations. [Explain further.] As we shall see below, we need only assume that BallTangentTo(T) gives an answer when $mb(\emptyset, T) = mb(T)$: in other cases it is allowed to return **null**.

Here is our version of Welzl's algorithm adapted to computing the bounding ball of balls.

Algorithm 2 Compute the bounding ball of balls

```
 \{ \text{ Compute mb}(S;T) \text{ assuming that mb}(S;T) = \text{mb}(S \cup T) \}   \text{function WelzlB}(S,T)   \text{if } S = \emptyset \text{ then }   \text{ return BallTangentTo}(T)   \text{end if }   \text{Choose } B \in S \text{ uniformly at random } D \leftarrow \text{WelzlB}(S - \{B\}, T)   \text{if } D = \text{null or } B \not\subseteq D \text{ then }   \text{ return WelzlB}(S - \{B\}, T \cup \{B\})   \text{else }   \text{ return } D   \text{end if }   \text{end function }
```

The only change to the actual algorithm is that a **null** return value from a recursive call is handled in the opposite way: we treat **null** as a ball that contains nothing, rather than as a ball that contains everything. More important is the way we have weakened the description of the algorithm: it is only guaranteed to give an answer when $\operatorname{mb}(S;T)=\operatorname{mb}(S\cup T)$. Of course this makes no difference in the case we principally care about, where the algorithm is initially called with $T=\emptyset$.

3 Proof of correctness

Theorem 3.1. For any finite sets S, T of d-balls:

- i) If WelzlB(S,T) returns an answer, rather than null, that answer is equal to mb(S;T);
- ii) If $mb(S;T) = mb(S \cup T)$ then Welzlb(S,T) returns an answer.

Proof. We proceed by induction on |S|. For the base case: if $S = \emptyset$ then both parts are true by the correctness of BallTangentTo. So assume we have chosen $B \in S$, and that (i) and (ii) are true for WelzlB $(S - \{B\}, T)$.

Suppose first that $mb(S - \{B\}; T) = mb((S - \{B\}) \cup T)$. Then, by the inductive hypothesis, D is equal to $mb(S - \{B\}; T) = mb((S - \{B\}) \cup T)$.

If $B \subseteq D$ then D must also be equal to mb(S;T), as required. If $B \not\subseteq D$ then ...

Next, suppo

4 Practical considerations

Just like Welzls original algorithm. We can just shuffle the input balls once at the outset, rather than making a random choice at each step. This is more efficient and still runs in expected linear time. Also the move-tofront heuristic seems to make it faster in practice: explain why this is intuitively plausible, though not supported by rigorous theory. (Also do a more thorough literature search to see if anyone has done any theoretical analysis of the move-to-front heuristic.)]

5 Experimental results

[Compare our algorithm to the MSW algorithm, and report how much faster it is.]

6 Move-to-front

[Can we say anything about whether the move-to-front heuristic has the effect that recursive calls are always tight?]

References

Kaspar Fischer. Smallest enclosing balls of balls. PhD thesis, Swiss Federal Institute of Technology, ETH Zürich, 2005.

Kaspar Fischer and Bernd Gärtner. The smallest enclosing ball of balls: Combinatorial structure and algorithms. ings of the Nineteenth Annual Symposium on Computational Geometry, SCG '03, pages 292-301, New York, NY, USA, 2003. ACM. ISBN 1-58113-663-3. doi: 10.1145/777792.777836. http://doi.acm.org/10.1145/777792.777836.

Emo Welzl. Smallest enclosing disks (balls and ellipsoids). New Results and New Trends in Computer Science, pages 359-370, 1991.