Processamento e Análise de Imagens

Support Vector Machines

Prof. Alexei Machado PUC Minas

Support Vector Machines

- A classifier derived from statistical learning theory by Vapnik, et al. in 1992
- SVM became famous when, using images as input, it gave accuracy comparable to neural-network with hand-designed features in a handwriting recognition task
- Currently, SVM is widely used in object detection & recognition, content-based image retrieval, text recognition, biometrics, speech recognition, etc.
- Also used for regression

Support Vector Machines

- SVMs pick best separating hyperplane according to some criterion
 - e.g. maximum margin
- Training process is an optimisation
- Training set is effectively reduced to a relatively small number of support vectors

Discriminant Function

A classifier is said to assign a feature vector \mathbf{x} to class \mathbf{w}_i if

$$g_i(\mathbf{x}) > g_j(\mathbf{x})$$
 for all $j \neq i$

For two-category case, $g(\mathbf{x}) = g_1(\mathbf{x}) - g_2(\mathbf{x})$

Decide ω_1 if $g(\mathbf{x}) > 0$; otherwise decide ω_2

Discriminant Function

It can be arbitrary functions of x, such as:

Nearest Neighbor

Decision Tree

Linear Functions

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

Nonlinear Functions

g(x) is a linear function:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

A hyper-plane in the feature space

• (Unit-length) normal vector of the hyper-plane:

$$\mathbf{n} = \frac{\mathbf{w}}{\|\mathbf{w}\|}$$

How would you classify these points using a linear discriminant function in order to minimize the error rate?

Infinite number of answers!

denotes +1

○ denotes -1

How would you classify these points using a linear discriminant function in order to minimize the error rate?

Infinite number of answers!

denotes +1

○ denotes -1

How would you classify these points using a linear discriminant function in order to minimize the error rate?

Infinite number of answers!

denotes +1

○ denotes -1

How would you classify these points using a linear discriminant function in order to minimize the error rate?

- Infinite number of answers!
- Which one is the best?
 - denotes +1
 - denotes -1

The linear discriminant function (classifier) with the maximum margin is the best

- Margin is defined as the width that the boundary could be increased by before hitting a data point
- Why it is the best?
 - Robust to outliners and thus strong generalization ability

Given a set of data points:

$$\{(\mathbf{x}_{i}, y_{i})\}, i = 1, 2, \dots, n, \text{ where }$$

For
$$y_i = +1$$
, $\mathbf{w}^T \mathbf{x}_i + b > 0$

For
$$y_i = -1$$
, $\mathbf{w}^T \mathbf{x}_i + b < 0$

• With a scale transformation on both w and b, the above is equivalent to

For
$$y_i = +1$$
, $\mathbf{w}^T \mathbf{x}_i + b \ge 1$

For
$$y_i = -1$$
, $\mathbf{w}^T \mathbf{x}_i + b \le -1$

Processamento e Análise de Imagens

We know that

$$\mathbf{w}^T \mathbf{x}^+ + b = 1$$
$$\mathbf{w}^T \mathbf{x}^- + b = -1$$

The margin width is:

$$M = (\mathbf{x}^+ - \mathbf{x}^-) \cdot \mathbf{n}$$
$$= (\mathbf{x}^+ - \mathbf{x}^-) \cdot \frac{\mathbf{w}}{\|\mathbf{w}\|} = \frac{2}{\|\mathbf{w}\|}$$

Formulation:

maximize
$$\frac{2}{\|\mathbf{w}\|}$$

such that

For
$$y_i = +1$$
, $\mathbf{w}^T \mathbf{x}_i + b \ge 1$

For
$$y_i = -1$$
, $\mathbf{w}^T \mathbf{x}_i + b \le -1$

Formulation:

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

such that

For
$$y_i = +1$$
, $\mathbf{w}^T \mathbf{x}_i + b \ge 1$
For $y_i = -1$, $\mathbf{w}^T \mathbf{x}_i + b \le -1$

Processamento e Análise de Imagens

Formulation:

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

such that

$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$$

Solving the Optimization Problem

Quadratic programming with linear constraints

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

s.t.
$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$$

What if data is not linear separable? (noisy data, outliers, etc.)

Slack variables ξ_i can be added to allow misclassification of difficult or noisy data points

Formulation:

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$

such that

$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i$$
$$\xi_i \ge 0$$

• Parameter *C* can be viewed as a way to control over-fitting.

Soft and Hard margin

- Circled points show support vectors.
- Decreasing C causes classifier to sacrifice linear separability in order to gain stability, in a sense that influence of any single datapoint is now bounded by C.

Non-linear SVMs

Datasets that are linearly separable with noise work out great:

But what are we going to do if the dataset is just too hard?

How about... mapping data to a higher-dimensional space:

Non-linear SVMs: Feature Space

• General idea: the original input space can be mapped to some higher-dimensional feature space where the training set is separable:

Nonlinear SVMs: The Kernel Trick

Examples of commonly-used kernel functions:

• Linear kernel:
$$K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$$

- Polynomial kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^p$
- Gaussian (Radial-Basis Function (RBF)) kernel:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2})$$

Sigmoid:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(\beta_0 \mathbf{x}_i^T \mathbf{x}_j + \beta_1)$$

Support Vector Machine: Algorithm

- 1. Choose a kernel function
- 2. Choose a value for C
- 3. Solve the quadratic programming problem (many software packages available)
- 4. Construct the discriminant function from the support vectors

Multiclass classification

- Specify n(n-1)/2 classifiers of the form "one against one" and choose the "most voted" class.
- Specify n classifiers of the form "one against all" and choose the class with larger score.
- Specify a tree of classifiers of the form "one against the remaining" until a single class is selected.

Some Issues

Choice of kernel

- Gaussian or polynomial kernel is default
- if ineffective, more elaborate kernels are needed

Choice of kernel parameters

- e.g. σ in Gaussian kernel
- σ is the distance between closest points with different classifications
- In the absence of reliable criteria, applications rely on the use of a validation set or cross-validation to set such parameters.

Optimization criterion – Hard margin v.s. Soft margin

- a lengthy series of experiments in which various parameters are tested