Demo 3 Cheat Sheet: Classical Uncertainty and Wavefunction Expectation values

Numpy: Numerical Vectors and arrays (np)

Usage	Purpose	Inputs	
x=np.zeros(5) x =np.zeros((5,5))	Return a new array of given shape and type, filled with zeros.	shape = number or numbers	
x = np.arange(-1.0,1.0, 0.1)	Return an array evenly spaced values within a given interval according to a step size.	start, stop, step_size	
x = np.linspace(-1.0,1.0, 100)	Return an array of evenly spaced numbers over a specified interval.	start, stop, num	
np.conjugate(x)	Return complex conjugate value of x.	scalar or vector	
np.double(3)	Convert a number or integer in to a floating number (decimals).	scalar	
np.random.normal(loc,scale)	Draw random samples from a normal (Gaussian) distribution.	loc = center, scale = standard deviation	
np.mean(x)	Calculate average of a vector.	vector	
np.exp(x)	Exponential function.	scalar or vector	

Matplotlib : Plotting (plt)

Usage	Purpose	Inputs
plt.figure(figsize=(10,8))	Setup parameter for a graphic, in this case we will use it change size.	figsize= (inches width, inches height)
plt.plot(x,y)	Plot lines	x, y = vectors
plt.hist(x)	Plot a histogram.	X =vector
plt.xlabel("Axis x name")	Set the x axis label of the current plot.	Name = string
plt.xlim([xmin,xmax])	Set the *x* limits of the current axes.	xmin,xmax = scalars
plt.title("Plot name")	Set a title of the current plot.	Name = string
plt.show()	Display a figure.	

Demo Specific - Common variables:

psi_x == vector representing wavefunction
x == scalar o vector for position
x0 /xf = =initial /final position
v0 == initial velocity
p0 /pf == initial momentum
dt = time step for simulation
L== length of box

x_list == list of positions for multiple particles p_list == list of momentum for multiple particle

Function	Purpose
verlet(x,v,dt,a)	Function to update positions and velocities on each timestep.
a_box(x)	Acceleration of a particle in a box
time, x_list, p_list = ode_integrate_box(x, v, a_box,	Solve ode for motion using the verlet algorithm
stopTime = stopT)	with boundaries for a particle in a box.
wavefunction(x, L)	given x, returns a valid wavefunction for the 1D particle in a box
probabilityDensity(psi_x)	get probability density function from psi.
expectation_value_generalized(x, f_x):	Return expectation value ($<$ f(x) $>$) for the function operator f.
f_x_position(x)	Function to represent position
f_spread (x)	Function to represent spread of a function (x- L/2)^2