AE 308: Control Theory
AE 775: System Modeling, Dynamics and Control

Lecture 9: Stability - Routh Hurwitz Criterion

Dr. Arnab Maity Department of Aerospace Engineering Indian Institute of Technology Bombay Powai, Mumbai 400076, India

Table of Contents

- Introduction
- Stability
- Routh Hurwitz Criterion

Introduction

- Stability of a system is one of the most important requirements.
- Stability of a system can be defined based on the type of the system.
- Here, the stability of Linear Time Invariant (LTI) systems will be discussed.

Definitions

- LTI system with bounded input is said to be Stable, if the system's natural response approaches to zero as $t \to \infty$.
- LTI system with bounded input is said to be Unstable, if the system's natural response grows without bound as $t \to \infty$.
- LTI system with bounded input is said to be Marginally Stable, if the system's natural response neither decays to zero nor grows but remains constant or oscillates as $t \to \infty$.

Table of Contents

- Introduction
- Stability
- **3** Routh Hurwitz Criterion

Stability

Definitions

Figure: Stable system

Figure: Unstable system

$$G(s) = \frac{1}{s+1}$$

$$G(s) = \frac{1}{s-1}$$

$$G(s) = \frac{1}{s^2 + 1}$$

Definitions

Consider a system

- ullet Total response approaches to ∞ , as $t \to \infty$. Response is growing unbounded due to input.
- Stability depends on input and system poles.

 As stability depends on both input and system poles, the stability can be defined based on total response

Stability Based on Total Response

- A system is Stable, if every bounded input yields bounded output. This
 notion is Bounded Input Bounded Output (BIBO) stability.
- A system is Unstable, if any bounded input yields unbounded output.

System	Pole location
Stable	Left half of s -plane
Unstable	Right half of s -plane
Marginally stable	Imaginary axis of s - plane

Example 1:

 Though the open loop system is stable, its closed loop system can be unstable by varying the gain. Consider the following the example:

Pole location:

$$s_1 = -2.672$$

 $s_{2,3} = -0.1642 \pm 1.0469i$

Pole location:

$$s_1 = -3.087$$

 $s_{2,3} = 0.0434 \pm 1.5053i$

Example 2:

- It is not an easy task to find the closed loop poles of a system.
- Although we know the open loop poles, it is difficult to find closed loop poles of the system.

Stability

Question

Consider the following system

 Comment on the stability of the system based on natural response and BIBO definitions.

Stability

Solution

- Marginally stable: Natural response definition
- Unstable: BIBO definition
- Consider a bounded input $r(t) = \sin 3t$.

$$C(s) = \frac{27}{(s^2 + 9)^2}$$

- As there are repeated roots in the imaginary axis, it is not BIBO stable.
- Consider a bounded input $r(t) = \sin \omega t, \ \omega \neq 3$. Then the response is

$$C(s) = \frac{9\omega}{(s^2 + 9)(s^2 + \omega)}.$$

• Corresponding response will have two sinusoidal signals of frequencies ω and $3\frac{rad}{s}$.

Table of Contents

- Introduction
- Stability
- Routh Hurwitz Criterion

Methodology

- Let us discuss a method that yields system's stability without solving for poles of the system.
- Through the Routh Hurwitz (RH) criterion, we can say how many poles are present in left half, right half and imaginary axis of s-plane.
- Using this criteria, we can find number of poles, but not their coordinates.
- This method requires two steps:
 - Generate Routh's table
 - Interpret Routh's table to decide how many poles are present in left half, right half and imaginary axis of s-plane

Generating Routh's Table

s^4	a_4	a_2	a_0
s^3	a_3	a_1	0
s^2			
s			
s^0			

Table: Initial layout of RH table

- Since we are interested in the poles, let us consider the denominator.
- Begin by labelling the rows with highest powers of s from the denominator of the closed loop transfer function to s^0 .
- Next start with the coefficient of highest power of s in the denominator, and list every other coefficient horizontally in the first row.

Generating Routh's Table (Continued...)

ullet In the second row, starting with the next highest power of s, fill every coefficient that was skipped in the previous row.

s^4	a_4	a_2	a_0
s^3	a_3	a_1	0
s^2	b_1	b_2	0
s	c_1	0	0
s^0	d_1	0	0

Table: Completed Routh's table

$$b_{1} = -\frac{\begin{vmatrix} a_{4} & a_{2} \\ a_{3} & a_{1} \end{vmatrix}}{a_{3}} \quad c_{1} = -\frac{\begin{vmatrix} a_{3} & a_{1} \\ b_{1} & b_{2} \end{vmatrix}}{b_{1}}$$

$$b_{2} = -\frac{\begin{vmatrix} a_{4} & a_{0} \\ a_{3} & 0 \end{vmatrix}}{a_{3} \quad 0} \quad d_{1} = -\frac{\begin{vmatrix} b_{1} & b_{2} \\ c_{1} & 0 \end{vmatrix}}{a_{3} \quad 0}$$

Generating Routh's Table (Continued...)

- Each entry is a negative determinant of entries in the previous two rows divided by the entry in the first column.
- The left hand column of the determinant is always the first column of previous two rows.
- The right hand column is the elements of the column above and to the right.
- ullet The table is complete, when all the rows are completed down to s^0 .

Routh Hurwitz Criterion - Example

 Create a Routh table for the following system:

- The first step is to find equivalent closed loop transfer function.
- The Routh Hurwitz criterion will be applied to the denominator of closed loop transfer function.
- Label the rows with powers of s, from s^3 to s^0 .
- Start with the coefficient of the highest power and skip every other power of s.

Routh Hurwitz Criterion - Example

$$\begin{vmatrix} 0 \\ b_3 \\ 0 \end{vmatrix} \qquad b_2 = -\frac{\begin{vmatrix} 1 & 0 \\ 10 & 0 \end{vmatrix}}{10} = 0 \qquad c_1 = -\frac{\begin{vmatrix} 10 & 1030 \\ b_1 & b_2 \end{vmatrix}}{b_1} = 1030$$

$$c_1 = -\frac{\begin{vmatrix} b_1 & b_2 \\ b_1 & b_2 \end{vmatrix}}{b_1} = 1030$$

$$b_1 = -\frac{\begin{vmatrix} 1 & 31 \\ 10 & 1030 \end{vmatrix}}{10} = -72 \quad b_3 = -\frac{\begin{vmatrix} 1 & 0 \\ 10 & 0 \end{vmatrix}}{10} = 0 \qquad c_2 = -\frac{\begin{vmatrix} 10 & 0 \\ b_1 & b_3 \end{vmatrix}}{b_1} = 0$$

$$c_2 = -\frac{\begin{vmatrix} 10 & 0 \\ b_1 & b_3 \end{vmatrix}}{b_1} = 0$$

Interpretation of Routh Table

- We have generated Routh table. Now let us see what can be commented on stability based on the table.
- The number of sign changes in the first column is equal to number of poles in right half of the s-plane.
- In the above example, there is a sign change from $10\ (+)$ to $b_1\ (-)$ and another sign change from $b_1\ (-)$ to $c_1\ (+)$.
- Hence there are two right half poles for the above system.
- System is Unstable, as it has two poles in right half of s-plane.
- The poles of closed loop system are

$$s_1 = -13.4136$$

 $s_{2.3} = 1.7068 \pm 8.5950i$

Zero Only in the First Column

- If the first element is zero, division by zero would be required.
- A polynomial which has reciprocal roots of original polynomial has its roots distributed in the same left half, right half and imaginary axis of s-plane.
- Using this fact, the above problem can be handled.
- Let us show that the polynomial we are looking for, the one with reciprocal roots, is simply the original polynomial with its coefficients written in reverse order.

Zero Only in the First Column

Consider the equation,

$$s^{n} + a_{n-1}s^{n-1} + \dots + a_{1}s + a_{0} = 0$$

- If s is replaced by $\frac{1}{d}$, then d will have roots which are reciprocal of s.
- By substituting this, we get

$$\frac{1}{d^n} + a_{n-1} \frac{1}{d^{n-1}} + \dots + a_1 \frac{1}{d} + a_0 = 0$$
$$\frac{1}{d^n} \left[1 + a_{n-1} d + \dots + a_1 d^{n-1} + a_0 d^n \right] = 0$$

 Thus, the polynomial with reciprocal roots is a polynomial with coefficients written in reverse order.

Example

Comment on the stability of the following system

$$T(s) = \frac{10}{s^5 + 2s^4 + 3s^3 + 6s^2 + 5s + 3}$$

Form a Routh's table

s^5	1	3	5
s^4	2	6	3
s^3	0	$\frac{7}{2}$	0

- As there is zero in the first column, we have to proceed with the alternative procedure.
- ullet The new polynomial, which has roots equal to reciprocal of s, is

$$P(d) = 3d^5 + 5d^4 + 6d^3 + 3d^2 + 2d + 1$$

Example (Continued...)

 Form a new Routh's table for the new polynomial as

d^5	3	6	2
d^4	5	3	1
d^3	4.2	1.4	0
d^2	1.33	1	0
d	-1.75	0	0
d^0	1	0	0

- There are no zeros in the first column.
- As there are two sign changes in first column, the system has two right half poles and hence the system is unstable.
- The poles of the system are

$$s_1 = -1.6681$$

 $s_{2,3} = -0.5088 \pm 0.7020i$
 $s_{4,5} = 0.3429 \pm 1.5083i$

Entire Row is Zero

- While forming a Routh's table, we find that entire row consists of zero.
- Let us look at an example that demonstrates how to construct and interpret the Routh table when entire row has zeros.

Example

Determine the stability of the following system

$$T(s) = \frac{10}{s^5 + 7s^4 + 6s^3 + 42s^2 + 8s + 56}$$

Example (Continued...)

 Form a Routh table for the above system as

s^5	1	6	8
s^4	71	<i>4</i> 2 6	5 68
s^3	0	0	0
s^2			
s			
s^0			

- Consider a row immediately above to the rows which has complete zeros.
- Form an auxiliary polynomial using the entries as coefficients

$$P(s) = s^4 + 6s^2 + 8$$

• Differentiate the above equation w.r.t. s,

$$\frac{dP(s)}{ds} = 4s^3 + 12s$$

Example (Continued...)

s^5	1	6	8
s^4	1	6	8
s^3	# 1	123	0
s^2	3	8	0
s	$\frac{1}{3}$	0	0
s^0	8	0	0

- Coefficients of the auxiliary equation is used to fill the rows which has zeros.
- As there are no sign changes in first column, the system has no poles in right half of s-plane.
- Hence the system is stable.
- The pole locations are

$$s_1 = -7$$

 $s_{2,3} = \pm 2i$
 $s_{4,5} = \pm 1.4142i$

Relative Stability

- Through RH criterion, absolute stability of system can be derived.
- Relative stability gives the degree of stability or how close to instability.
- As shown earlier in one of the examples, by varying gains, the system becomes unstable. This change in gain gives some degree of stability.
- Let us see how to obtain relative stability through RH criterion.

- We usually require information about relative stability of the system.
- ullet A useful approach for examining relative stability is to shift s axis and proceed with RH criterion. Substitute

$$s = \hat{s} - \sigma_1$$
.

- Use this substitution in characteristic equation, write the polynomials in terms of \hat{s} .
- The number of sign changes results in poles right to the vertical line $s=-\sigma_1$.

Example

 \bullet Determine the range of K such that the following characteristic equation has poles more negative than -1

$$s^{3} + 3(K+1)s^{2} + (7K+5)s + 4K + 7 = 0$$

• As we are interested in roots more negative to -1, substitute $s=\hat{s}-1$

$$(\hat{s}-1)^3 + 3(K+1)(\hat{s}-1)^2 + (7K+5)(\hat{s}-1) + 4K + 7 = 0$$

Simplifying the equation,

$$\hat{s}^3 + 3K\hat{s}^2 + (K+2)\hat{s} + 4 = 0$$

• Form a Routh table corresponding to the above polynomial

Example (Continued...)

\hat{s}^3	1	(K+2)
\hat{s}^2	3K	4
\hat{s}	$\frac{3K(K+2)-4}{3K}$	0
\hat{s}^0	4	0

Table: Routh Table

- The first column should not have any sign changes.
- From \hat{s}^2

• From \hat{s}

$$3K(K+2) - 4 > 0$$
$$3K^{2} + 6K - 4 > 0$$
$$(K - 0.5275)(K + 2.5275) > 0$$

• Hence, the range of K is K > 0.5275.

Example - Stability Design

 Find the range of gain K, for which system becomes stable, unstable and marginally stable.

First find the closed loop transfer function

$$T(s) = \frac{K}{s^3 + 18s^2 + 77s + K}$$

Next form the Routh table

Example - Stability Design (Continued ...)

- sign changes.

 The third row first element should also be nosi.
 - The third row first element should also be positive to have no sign change. Hence

K should be positive for first column to have no

$$1386 - K > 0 \implies K < 1386$$

ullet For the system to be Stable, K should be

$$0 < K < 1386$$

• If K > 1386, there are two sign changes in the first column.

18

 s^3

 s^2

77

K

Example - Stability Design (Continued ...)

- Hence, if K > 1386, the system is Unstable.
- System to be marginally stable, an entire row in Routh's table should be zero.
- ullet The row corresponding to s will have zeros, if

$$1386 - K = 0 \implies K = 1386$$

Consider the auxiliary equation,

$$P(s) = 18s^2 + 1386$$
$$\frac{dP(s)}{ds} = 36s$$

Example - Stability Design (Continued ...)

s^3	1	77
s^2	18	K
s	36	0
s^0	1386	0

- As there are no sign changes in first column, the system is marginally stable.
- The pole locations are

$$s_1 = -18$$

 $s_{2,3} = \pm 8.775i$

Question

• Consider the general third-order polynomial equation

$$P(s) = a_0 s^3 + a_1 s^2 + a_2 s + a_3$$

- Find the condition such that all roots are negative through RH criterion.
- Assume all the coefficients are positive.

Solution

s^3	a_0	a_2
s^2	a_1	a_3
s^1	$-\frac{(a_0a_3-a_1a_2)}{a_1}$	0
s^0	a_3	0

- ullet To have all negative roots, the column corresponding to s row should be positive.
- Hence,

$$a_0 a_3 - a_1 a_2 < 0$$
$$a_1 a_2 > a_0 a_3$$

References 1

- Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini: "Feed-back Control of Dynamic Systems", Pearson Education, Inc., Upper Saddle River, New Jersey, Seventh Edition, 2015.
- Katsuhiko Ogata: "Modern Control Engineering", Pearson Education, Inc., Upper Saddle River, New Jersey, Fifth Edition, 2010.
- Farid Golnaraghi and Benjamin C. Kuo: "Automatic Control Systems", John Wiley & Sons, Inc., New Jersey, Ninth Edition, 2010.
- Karl Johan Äström and Richard M. Murray: "Feedback Systems An Introduction for Scientists and Engineers", Princeton University Press, Second Edition, 2019.
- Norman S. Nise: "Control Systems Engineering", John Wiley & Sons, Inc., New Jersey, Sixth Edition, 2011.