Homework 6

6.5.a. Let $H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$. Write the matrix of the operator H[2] acting on the space $B^{\otimes 3}$

1. We have qubit space of 3 and Hardman operator on subset of 2 qubits, given by below formula,

$$X[p] = I_{B^{\otimes (p-1)}} \otimes I_{B^{\otimes (n-p)}}$$

2. In our case n=3, p=2, we get, $H[2]=I_{B^{\otimes (1)}}\otimes H\otimes I_{B^{\otimes (1)}}$

$$H[2] = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$=\frac{1}{\sqrt{2}}\begin{bmatrix}1 & 1 & 0 & 0\\ 1 & -1 & 0 & 0\\ 0 & 0 & 1 & 1\\ 0 & 0 & 1 & -1\end{bmatrix}\otimes\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}=\frac{1}{\sqrt{2}}\begin{bmatrix}1 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0\\ 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1\end{bmatrix}$$

[00 R371	(VI [1])	= 0	0,0	0	0	0	0	0	0
01		0	U 10	10 0	0	0	U ₁₀₁₁	0	0
		0	0	0	0	0	0	0	0
V1) = 1010	Violi	0	0	0	U1010	0	0	0	U1011
Ullio	VIIII	0	0	0	0	0	0	0	0
	16.2	0	U ₁₁₁	00	0	0	UIII	0	0
		0	0	0	0	0	0	0	0
		0	0	0	UIIIO	0	0	0	Unil
1989									
U[3,1] =	U ₀₀₀₀	U ₀₀₁₀	0	0	U ₀₀₀₁	U0011	0	C)]
U[3,1] =	U ₀₀₀₀	U ₀₀₁₀			U ₀₀₀₁			0	
U[3,1] =	U ₀₀₀₀	U ₀₀₁₀ U ₁₀₁₀		0	U ₀₀₀₁	0	0	0	011
U[3,1] =	01000	U1010	0	0	0	0	0	0	011
U[3,1] =	0	0	0	0	0	0	0	0	011
U[3,1] =	0	V1010 0 0 V0110	0 V ₀₀₀₀	O V ₀ 010 V ₁ 010	U,001 O O U0101	0	U0001	0 0 0	
	0 0 0 0 0 0 0	V1010 0 V0110 V1110	0 V ₀₀₀₀ V ₁₀₀₀	0 000	U 1001 O U 0101 U 1101	0	0001 V1001	0 0 0	
	0 0 0 0 0 0 0	V1010 0 0 V0110	0 V ₀₀₀₀ V ₁₀₀₀	0 V ₀ 010 O	U,001 O U0101 U101	0 0 0 0	0 0001 0 0	0 0 0 0	011

- **7.1.** Prove that negation and Toffoli gate form a complete basis for reversible circuits.
- 1. Any function $f:0,1^n\to 0,1^m$ is computable by a boolean circuit. We know that negation \neg and conjunction \land are complete basis for boolean circuits, that is, any such function can be built using negation and conjunction.
- **2.** By lemma 7.1 and 7.2, we can say that any function $f:0,1^n\to 0,1^m$ may be efficiently transformed in to a reversible circuit over the basis A_{\oplus} having the function $(x,y)\to (x,y,x\oplus y)$
- **3.** Toffoli gate $(x, y, c) \to (x, y, c \oplus (x \land y)$ is universal if ancillas, $allsetto|1\rangle$ and garbage outputs are allowed. If we include \neg in our basis, such basis can realize any such function with ancillas set to $|0\rangle$
- 4. By above points, we can say that Toffoligate and negation form the complete basis for reversible circuits.

- **1.** Prove that the inner product and the tensor product commute: $\langle \alpha \otimes \beta \mid \gamma \otimes \delta \rangle = \langle \alpha \mid \gamma \rangle \langle \beta \mid \delta \rangle$
 - **1.** We know that $|\varepsilon\rangle = \langle \varepsilon^{\dagger}|$, where $\dagger = Conjugate\ transpose$. Let,

$$\begin{split} |\alpha\rangle &= \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}, \ |\beta\rangle = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}, \ |\gamma\rangle = \begin{bmatrix} \gamma_1 \\ \gamma_2 \end{bmatrix}, \ |\delta\rangle = \begin{bmatrix} \delta_1 \\ \delta_2 \end{bmatrix} \\ \langle \alpha^\dagger| &= \begin{bmatrix} \alpha_1^\dagger & \alpha_2^\dagger \end{bmatrix}, \ \langle \beta^\dagger| &= \begin{bmatrix} \beta_1^\dagger & \beta_2^\dagger \end{bmatrix}, \ \langle \gamma^\dagger| &= \begin{bmatrix} \gamma_1^\dagger & \gamma_2^\dagger \end{bmatrix}, \ \langle \delta^\dagger| &= \begin{bmatrix} \delta_1^\dagger & \delta_2^\dagger \end{bmatrix} \end{split}$$

2. Using above vectors, we can define tensors as below,

$$|\alpha \otimes \beta\rangle = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} \otimes \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} \text{ and } \langle \alpha \otimes \beta| = \begin{bmatrix} \alpha_1^\dagger & \alpha_2^\dagger \end{bmatrix} \otimes \begin{bmatrix} \beta_1^\dagger & \beta_2^\dagger \end{bmatrix} = \begin{bmatrix} \alpha_1^\dagger \beta_1^\dagger & \alpha_1^\dagger \beta_2^\dagger & \alpha_2^\dagger \beta_1^\dagger & \alpha_2^\dagger \beta_2^\dagger \end{bmatrix}$$

$$|\gamma \otimes \delta\rangle = \begin{bmatrix} \gamma_1 \\ \gamma_2 \end{bmatrix} \otimes \begin{bmatrix} \delta_1 \\ \delta_2 \end{bmatrix} = \begin{bmatrix} \gamma_1 \delta_1 \\ \gamma_1 \delta_2 \\ \gamma_2 \delta_1 \\ \gamma_2 \delta_2 \end{bmatrix}$$

$$\langle \alpha \otimes \beta \mid \gamma \otimes \delta \rangle = \alpha_1^{\dagger} \beta_1^{\dagger} \gamma_1 \delta_1 + \alpha_1^{\dagger} \beta_2^{\dagger} \gamma_1 \delta_2 + \alpha_2^{\dagger} \beta_1^{\dagger} \gamma_2 \delta_1 + \alpha_2^{\dagger} \beta_2^{\dagger} \gamma_2 \delta_2$$

3. We will derive inner product as below,

$$\langle \alpha \mid \gamma \rangle = \begin{bmatrix} \alpha_1^{\dagger} & \alpha_2^{\dagger} \end{bmatrix} \begin{bmatrix} \gamma_1 \\ \gamma_2 \end{bmatrix} = \alpha_1^{\dagger} \gamma_1 + \alpha_2^{\dagger} \gamma_2 \text{ and } \langle \beta \mid \delta \rangle = \begin{bmatrix} \beta_1^{\dagger} & \beta_2^{\dagger} \end{bmatrix} \begin{bmatrix} \delta_1 \\ \delta_2 \end{bmatrix} = \beta_1^{\dagger} \delta_1 + \beta_2^{\dagger} \delta_2$$

$$\langle \alpha \mid \gamma \rangle \langle \beta \mid \delta \rangle = [\alpha_1^{\dagger} \gamma_1 + \alpha_2^{\dagger} \gamma_2] [\beta_1^{\dagger} \delta_1 + \beta_2^{\dagger} \delta_2] = \alpha_1^{\dagger} \beta_1^{\dagger} \gamma_1 \delta_1 + \alpha_1^{\dagger} \beta_2^{\dagger} \gamma_1 \delta_2 + \alpha_2^{\dagger} \beta_1^{\dagger} \gamma_2 \delta_1 + \alpha_2^{\dagger} \beta_2^{\dagger} \gamma_2 \delta_2$$

4. From the results of point 2 and 3, we can say that,

$$\langle \alpha \otimes \beta \mid \gamma \otimes \delta \rangle = \langle \alpha \mid \gamma \rangle \langle \beta \mid \delta \rangle$$

- 2. Find the basis A so that every idempotent Boolean function is representable as a circuit over A.
- ${f 1.}$ An idempotent function is a self inverse function. It should preserve the state of the input 0,1.
- **2.** According to Post's Lattice, Clone $P = P_0 P_1$ is the clone of constant-preserving functions. It is the set of idempotent boolean functions.
 - **3.** One of the bases for above clone is x?y:z $x?y:z=y, if x \neq 0$ else=z. Equivalent to the terenary operator in programming.
 - For any $k \ge 1$, T_0^k is the set of functions f such that

$$\mathbf{a}^1 \wedge \cdots \wedge \mathbf{a}^k = \mathbf{0} \Rightarrow f(\mathbf{a}^1) \wedge \cdots \wedge f(\mathbf{a}^k) = 0.$$

Moreover, $T_0^{\infty} = \bigcap_{k=1}^{\infty} T_0^k$ is the set of functions bounded above by a variable: there exists i = 1, ..., n such that $f(\mathbf{a}) \le \mathbf{a}_i$ for all \mathbf{a} .

As a special case, $P_0 = T_0^{-1}$ is the set of *O-preserving* functions: f(0) = 0. Furthermore, T can be considered T_0^{-0} when one takes the empty meet into account.

• For any $k \ge 1$, T_1^k is the set of functions f such that

$$\mathbf{a}^1 \lor \cdots \lor \mathbf{a}^k = \mathbf{1} \implies f(\mathbf{a}^1) \lor \cdots \lor f(\mathbf{a}^k) = 1,$$

and $T_1^{\infty} = \bigcap_{k=1}^{\infty} T_1^k$ is the set of functions bounded below by a variable: there exists i = 1, ..., n such that $f(\mathbf{a}) \ge \mathbf{a}_i$ for all \mathbf{a} .

The special case $P_1 = T_1^{-1}$ consists of the 1-preserving functions: f(1) = 1. Furthermore, T can be considered T_1^{-0} when one takes the empty join into account.

- The largest clone of all functions is denoted T, the smallest clone (which contains only projections) is denoted \bot , and $P = P_0P_1$ is the clone of constant-preserving functions.
- 4. Reference https://en.wikipedia.org/wiki/