README

Given below are the instructions to execute a code written for the implementation of '2D Optimal Path Planning' for a point robot in a workspace space with obstacles, using Dijkstra's Algorithm.

- In the map (dimensions: 1200 * 500) shown below:
 - The 'Free Space' for the point robot is depicted by 'White' pixels
 - The 'Obstacle Space' are denoted by 'Blue' pixels
 - A 'Clearance Space' of 5mm from obstacles and walls are given by 'Black' pixels

The workspace space map of the point robot is already fed into the code as shown above.

Instructions to execute the code:

- The source code is a python file written using Visual Studio Code and I've attached both (.py) and (.pdf) formats.
- Run 'dijkstra_Hamsaavarthan_Ravichandar.py' in the VS Code for execution.
- Enter the (x, y) coordinates for the 'Start' and 'Goal' respectively, one at a time node as requested by the code, with the respect to the origin at the bottom-left corner of the map shown above.
- If the given coordinates are not reachable (belongs to obstacle space), the code will prompt with "The given coordinates are not reachable. Try again with different coordinates".

- Provided with valid 'Start' and 'Goal' coordinates, the code will display the 'Optimal Path', as example shown below, for 30 seconds. (Press any 'key' to quit).

- The output of an animated video 'dijkstra_output.avi', will be created as a demonstration for node exploration and optimal path travelling for reference.
- The 'Start' and 'Goal' nodes are denoted by 'Yellow' and 'Purple' circles respectively.

Libraries used in the code:

- cv2
- heapq
- math
- numpy
- time

Link to the GitHub Repository:

 $\underline{https://github.com/HamsaavarthanR/2D-Path-Planning-for-Point-Robot}$