Grundlagen

- Qualitative Attribute:
 - Variieren nach Beschaffenheit
- Quantitative Attribute:
 - Variieren nach Wert/Zahlen
- Diskrete Attribute:
 - abgestufte Werte
- Stetige Attribute:
 - können im Intervall jeden reellen Wert annehmen

1.1 Skalenniveaus

- Nominal
 - nur Gleichheit oder Andersartigkeit feststellbar (keine Bewertung)
 - stets qualitativ
- Ordinal
 - natürliche oder festzulegende Rangfolge
- Kardinal/Metrisch
 - numerischer Art
 - Ausprägung und Unterschied sind messbar
 - verhältnisskaliert (Absoluter Nullpunkt vorhanden; (Doppelt so viel.))
 - intervallskaliert (Kein Nullpunkt, nur Differenzen)

Sym. vs asym. Attribute

- Das symmetrische binäre Attribut ist ein Attribut, bei dem jeder Wert gleichwertig ist (w/m)
- · Asymmetrisch ist ein Attribut, bei dem die beiden Ausprägungen nicht gleichwertig sind (Testergebnisse oder Vergleich von Umfragen)

1.3 Rauschen Artefakte, Ausreißer

- Rauschen (Random Verzerrung der Messung durch Einflussfaktoren)
- Artefakte (Unvollständige Messwerte)
- Ausreißer (Messwerte, die nicht im Normalbereich liegen)

1.4 Datenvorverarbeitung

- Aggregation (Zusammenfassung mehrerer Messwerte, Details gehen verloren)
- Sampling
- Diskretisierung / Binarisierung
- Transformation
- Dimensionsreduktion
- Feature Subset Selection (Konzentration auf wichtige Features)
- Feature Creation

Ähnlichkeits- und Distanzmaße

1.5.1 Ähnlichkeit

Eigenschaften:

- $s(x, y)0 \le s \le 1$
- s(x, y) = 0, wenn x = y
- Symmetry: s(x, y) = s(y, x)

Simple Matching Coefficient (SMC):

- gut für sym. Attribute, da Vorhandensein und Abwesenheit gleich gewertet wird

Jaccard Coefficient:

- Binäre Daten
- gut für asym. Attribute, da Vorhandensein gewertet wird

Extended Jaccard Coefficient (Tanimoto):

- $\overline{||x||^2+||y||^2-\langle x,y\rangle}$
- · Jaccard für alle Daten

Cosine Similarity:

- cos(x, y) =
- -1 <= cos(x, y) <= 1
- 1 = sehr ähnlich, 0 = Vekrtor im 90° Winkel, -1 = Vektor im 180° Winkel
- Umrechnung von zahl zu Winkel im Taschenrechner mit
- auch für asym. Attribute da 0-0 Paare rausfallen

Correlation:

- corr(x, y) über Taschenrechner
- zeigt linearen Zusammenhang

1.5.2 Distanz (Minkowski)

Eigenschaften:

- Positivity $(d(x,y) \ge 0, d(x,y) = 0, wenn x = y)$
- Symmetry (d(x,y)=d(y,x))
- Triangle Inequality $(d(x,z) \le d(x,y) + d(y,z))$

$$d(x, y) = \sqrt[r]{\sum_{k=1}^{n} |x_k - y_k|^r}$$

Name	r	Anwendung
Hamming	1	Bin.Vekt.
CityBlock	1	nur gerade
Euclid	2	schräg
Supremum	∞	nur größte Dist.

1.5.3 Weiteres

Verhalten für Multiplikation und Addition:

Property	Cosine	Correlation	Minkowski
Invariant to multiplication	Yes	Yes	No
Invariant to addition	No	Yes	No

Mutual Information:

- Ähnlich wie Correlation, aber für nicht linearen Zusammenhang
- 0 = kein Zusammenhang, 1 = starker Zusammenhang
- HIER fehlts

Umrechnung Ähnlichkeit < − > Distanz:

Bspw:

- s = ln(x) * -1
- d = 1 s• $d = \sqrt[2]{1-s}$

Klassifikation

- Zuordnung einer abhängigen Variable (y) anhand von unanhängigen Variablen
- Model hat beim Training (Induction) gelernt zuzuord-
- Model wendet das gelernte bei der Klassifikation an (Deduction)

2.1 Beispiele von Klassifikationsverfahren

- Elementare Verfahren (Decision Trees, KNN, Naive Bays, SVM, NN)
- Ensemble Verfahren (Random Forests, bagging, Boosting, ...)

2.2 Entscheidungsbäume

- Datensatz durchläuft von der Wurzel bis zum Blatt die Knoten und wird anhand der Entscheidungen am Knoten klassifiziert
- Hunts Algo entscheidet, wie Splits gesetzt werden (gibt noch mehr)

2.2.1 Hunts Algo

- Sei D_t die Menge der Trainingsdatensätze, die Knoten t erreichen
- Wenn D_t nur Datensätze enthält, die zur selben Klasse ytgehören, dann ist t ein Blatt des Baumes und wird mit ytgekennzeichnet.
- Falls D_t Datensätze enthält, die zu mehr als einer Klasse gehören, verwende eine Attribut-Testbedingung, um die Daten in kleinere Untermengen aufzuteilen

2.2.2 Split bei Attributen

- Binärer Split
- Mehrfach Split

Möglichkeiten der Diskretisierung

- Einteilung in gleichbelegte Bereiche (Percentile)
- Einteilung in gleiche Bereiche (Clustering)
- Binäre Entscheidung: (A < v) und (A >= v)

Greedy Ansatz Algorithmus der schrittweise den besten nächsten Schritt mit dem höchsten gewinn wählt.

2.3 Maß für Knotenunreinheit

- $p_i(t)$ Häufigkeit von klasse i beim Knoten t c Gesamtzahl der Klassen
- Gini Index
 - $GI = 1 \sum_{i=0}^{c-1} p_i(t)^2$ Maximum: $1 \frac{1}{c}$

 - Minimum: 0 (Best Case)
- Entropy
 - $-E = -\sum_{i=0}^{c-1} p_i(t) * log_2 p_i(t)$
 - Maximum: log_2c
 - Minimum: 0 (Best Case)

Klassifikationsfehler

- $CE = 1 max[p_i(t)]$
- Maximum: Wenn alle Datensätze auf die Klassen gleich verteilt sind
- Minimum: 0 (Best Case, wenn alle datensätze zu einer Klasse gehören)

Nachfolgende Berechnungen

- Können mit allen 3 Maßen berechnet werden.
- Split
 - $split = \sum_{i=1}^{k} \frac{n_i}{n} * Knotenunreinheit$
 - n_i = Anzahl der Daten im Kindknoten i
 - n = Anzahl der Daten im Elternknoten
- Gain
 - -gain = P M
 - − *P* = Knotenunreinheit des Elternknoten
 - -M =Split der Kindknoten
 - Gain maximieren für einen guten Split bzw. M minimieren!!!
- Problem: Splits mit vielen Kindsknoten mit wenigen aber einen Datensätze werden bevorzugt!
- SplitInfo
 - $splitInfo = \sum_{i=1}^{k} \frac{n_i}{n} log_2 \frac{n_i}{n}$
 - *splitInfo* = Entropie der Partitionierung
- GainRatio
 - $gainRatio = \frac{gain_{split}}{splitInfo}$
 - Korrigierter Gain um Entropie -> Bestrafung hoher Anzahl kleiner Partitionen
 - Maximum (Best Case)

Bewertung Bäume, Overfitting etc.

- Trainingsfehler: Klassifikationsfehler von Daten aus Training
- Testfehler: Klassifikationsfehler von Daten aus Test
- Generalisierungsfehler: Erwarteter K-Fehler bei random Daten

2.5.1 Under-/Overfitting

- Undefitting: Modell ist zu simpel (Training- /Testfehler groß)
- Overfitting: Modell ist zu komplex oder zu wenig Daten (Testfehler groß)
- Typischer Ellenbogen Im "Knick" ist das Optimum

2.5.2 Fehlerabschätzung

- Ockhams Razor/Sparsamkeitsprinzip
- pess. Fehlerabschätzung: $err_{gen}(T) = err(T) + \Omega *$

 \overline{N}_{train}

- err(T) = Gesamtfehlermenge Training
- k = Anzahl Blätter im Baum
- N_{train} Anzahl Trainingsdatensätze

2.5.3 Pruning

· Pre-Pruning

Modell Evaluation 2.6

2.6.1 Validierung

- Holdout (Split zwischen Training- und Testdaten)
- Kreuzvalidierung (Mehrfach Holdout mit disjunkten Mengen und Durchschnitt über)

2.6.2 Konfusionmatrix

Siehe Bild im Repo

- Precision (% der richtig klassifizierten innerhalb der positiven Vorhersagen)
- Recall/True Positive Rate (% der richtig klassifizierten von den ursprünglich positiven)
- False Positive Rate (% der flasch positiv klassifizierten innerhalb der ursprünglich negativen)
- Accuracy (% der richtig klassifizierten Daten über allen)
- F1-Score (Gewichtetes Maß zwischen Precision und Recall)

2.6.3 ROC Kurve

Siehe Bild im Repo

- Achsen:
 - X: False Positive Rate
 - Y: True Positive Rate
 - (0,0): alle Prognosen negativ
 - (1,1): alle Prognosen positiv
 - (1,0): Idealzustand, alle Prognosen korrekt
- Diagonale (Ergebnis zufälligen Ratens)
- Area under the Curve (AUC)
 - Idealwert 1, Zufallsmodell 0.5
- Bester Split beim Punkt, der am nächsten an (1,0) liegt!

Clustering

4	Übungsaufgaben und Musterlösungen