UNCLASSIFIED

AD NUMBER AD011504 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 15 MAY 1953. Other requests shall be referred to Office of Naval Research, Arlington, VA 22203. **AUTHORITY** ONR ltr dtd 26 Oct 1977

Keproduced by

Armed Services Technical Information Agency DOCUMENT SERVICE CENTER

KNOTT BUILDING, DAYTON, 2, OHIO

AD -

UNCLASSIFIED

Best Available Copy

Incipient-Cavitation Scaling Experiments

for

Hemispherical and 1.5-Caliber Ogive-Nosed Bodies

A Joint Study by

The Hydrodynamics Laboratory California Institute of Technology

and

Ordnance Research Laboratory The Pennsylvania State College

May 15, 1953

Serial No. NOrd 7958-261

(op) to 31

Department of the Navy

Office of Naval Research

Bureau of Ordnance Contract Nord-7958

Incipient-Cavitation Scaling Experiments

for

Hemispherical and 1.5-Caliber Ogive-Nosed Bodies

A Joint Study by

The Hydrodynamics Laboratory California Institute of Technology

and

Ordnance Research Laboratory The Pennsylvania State College

May 15, 1953

и.

Blaine R. Parkin

J & Holl

Approved for Distribution

V Assistant Director

Ordnance Research Laboratory
The Pennsylvania State College

M. S. Plenet

The Hydrodynamics Laborators California Institute of Technology

Distribution List

Chief, Bureau of Ordnance (Reb) Department of the Navy	2 copies	Westinghouse Electric Corporation Sharon, Pennsylvania	l copy
Washington 25, D. C.			
Chief, Bureau of Ordnance (Ad3) Department of the Navy	2 copies	Via: Development Contract Administrator Westinghouse Electric Corporation Sharon, Pennsylvania	
Washington 25, D. C.			
		Aerojet Corporation Agusa, California	1 copy
British Joint Services Mission (Navy Staff)	3 copies	Azusa, California	
Room 4930, Main Navy Building		Via: Bureau of Aeronautics Representative	
18th & Constitution Avenue Washington 25, D. C.		15 South Raymond Street	
•		Pasadena, California	
Via: Bureau of Ordnance (Ad8)			
Department of the Navy		National Advisory Committee for Aeronautics	1 copy
Washington 25, D. C.		1724 "F" Street, N. W.	
Commander	1 copy	Washington, D. C.	
U. S. Naval Ordnance Test Station, Inyokern		Donate Francis and Toming Took	1 copy
China Lake, California		Director, Experimental Towing Tank	, сору
	l copy	Stevens Institute of Technology 711 Hudson Street	
Commander U. S. Naval Ordnance Test Station	1 сору	Hoboken, New Jersey	
1202 East Foothill		1,000,000,000	
Pasadena Activity		Via: Inspector of Naval Material	
Pasadena 8, California		Naval Industrial Reserve Shipyard	
		Building 13	
Director, Ordnance Research Laboratory	1 copy	Port Newark, New Jersey	
Pennsylvania State College			
State College, Pennsylvania		Director, Hydrodynamics Laboratory	i copy
		California Institute of Technology	
Via Development Contract Administrator		Pasadena, California	
Ordnance Research Laboratory		Via: Inspector of Naval Material	
Pennsylvania State College State College, Pennsylvania		1206 South Santee Street	
State Cottege, sentingsvanie		Los Angeles 15, California	
Commander	2 copies	•	
U. S. Naval Ordnance Laboratory		Chief, Bureau of Ships	1 copy
White Oak		Department of the Navy	
Silver Spring 19, Maryland		Washington 25, D. C.	
		Charl Burney of Assessation	1 сору
Commanding Officer	2 copies	Chief, Bureau of Aeronautics Department of the Navy	, cop,
U. S. Naval Underwater Ordnance Station		Washington 25, D. C.	
Newport, Rhode Island			
Director, Applied Physics Laboratory	1 copy	Johns Hopkins University	1 copy
University of Washington	•	(Mr. Wisclencinus)	
Seattle, Washington		Baitimore, Maryland	
Via Inspector of Naval Material		Via Inspector of Naval Material 401 Water Street	
412 I you Building		Baltimore 2, Maryland	
607 Third Avenue		Date Commission	
Seattle 4, Washington		Brush Development Company	1 copy
Commanding Officer and Director) copy	3405 Perkins Avenue	
David Taylor Model Basin	• •	Cleveland 14, Ohio	
Carderock, Maryland			
		Via Inspector of Navel Material	
Chief of Naval Renearch	l copy	1620 Euclid Avenue, 3rd Floor	
Department of the Navy		Cleveland 15, Ohio	
Washington 25, D. C.		Chief of Naval Research	2 copies
Director	i copy	c/o Technical Information Division	
U.S. Nevel Research Laboratory	, copy	Library of Congress	
Washington 25, D C		Washington 25, D. C.	
· · · · · · · · · · · · · · · · · · ·			
Chief of Navai Operations (OP 316)	l copy	University of Minnesota	l copy
Department of the News		Hydrodynamics Laboratory	
Washington 25, D. C.		Minneapolis, Minnesota	
Council Electric Company	i copy	Hydrodynamics Laboratory	Ιεοργ
General Electric Company Principle. Massachusetts		Massachusetts Institute of Technology	
f 114pd 10 / 10 . Aug 1004 wwsf 115		Cambridge, Massachusetts	
Via Naval Inspector of Ordnance		•	
Schenectedy, New York		Illinois Institute of Technology	i co py
		Chicago, Illinois	
General Electric Company	i c opy	Physics Deportment	1 copy
Schonectedy, New York		Physics Department (Mr. Lindsay)	
Via Naval Inspector of Ordnosco		Brown University	
Schemectody, New York		Previdence, Rhode Island	
**			

DISTRIBUTION LIST CONTINUED (Contract Néonr-24435)

Office of Navai Research Department of the Navy	•	Chicago Branch	
Department of the Many			
		American Fore Building	
Washington 25, D. C.		844 North Rush Street	
		Chicago II, Illinois	
Director, Office of Navai Research	1 copy		
Boston Branch		Aerojet Engineering Corporation	1 copy
495 Summer Street		332 North Irwindale Road	
Boston IC, Massachusetts		Azusa, California	
		Attention: C. Gongwer	
Director, Office of Naval Research	2 copies	<u>-</u>	
346 Broadway	•	Commander, Naval Ordnance Test Station, Invokern	1 copy
New York 13, New York		China Lake, California	
		Attention: Technical Library, Code 5507	
Office of Naval Research	2 copies		
London Branch		Officer-in-Charge, Pasadena Annex	2 copies
Office of Aset. Naval Attache for Research		Naval Ordnance Test Station, Inyokern	
American Embassy, Navy 100		3202 East Foothill Boulevard	
First Post Office		Pasadena, California	
New York, New York		Attention: Pasadena Annex Library, Code P5507	
Director, Office of Naval Research	2 copies		
Lus Angeles Branch		Commander, Submarine Development Group Two	1 copy
1830 Last Green Street		Box 70, U. S. Naval Submarine Base	• •
Pasadena i, California		New London, Connecticut	
Director, Office of Naval Research	Lopy	Dr. F. C. Lindvall	Lopy
San Francisco Branch		California Institute of Technology	, ,
ACI Donahue Street		1201 East California Street	
San Francisco 24, California		Pasadena 4, California	

Abstract

THIS REPORT presents the results of the joint experimental program on cavitation scale effects conducted at the Ordnance Research Laboratory, The Pennsylvania State College, and the Hydrodynamics Laboratory, California Institute of Technology. Two families of axially symmetric bodies were tested in the Garfield Thomas Water Tunnel at ORL and in the High-Speed Water Tunnel at CIT. One family of bodies consisted of models with hemispherical noses while the other geometrically similar family had 1.5-caliber ogive noses.

It was found that in spite of differences in the test facilities, such as the resorber in the High-Speed Water Tunnel circuit, the measurements for incipient cavitation taken at CIT and ORL showed good agreement. The dependence of the incipient cavitation number upon free-stream velocity and model size, previously observed at CIT, was verified. In addition, the range of model sizes was extended to larger scale for the ORL experiments. It was found that the values for the incipient cavitation number for each family of models could be represented as a function of the product of the flow velocity and the square root of the model size. These results show that for cavitation tests of small models it is not correct to assume that the incipient cavitation number equals the negative of the minimum pressure coefficient.

Contents

		PAGE
Introduction	on	1
Test Proc	edure	2
Reduction	of Data	4
	n of Results	6
Depen	dence of •, on V ₀	6 13 13
•	15	19
	A	21
	s and Test Configurations	21
	B ctions for Tunnel Constraint	24 24
	s of Experimental Data	26 26
Reference	•••••	33
	Illustrations	
		PAGE
Fig. 1.	Noise Generated by Cavitation on 1-1/8-Inch Hemisphere - ORL Data	3
Fig. 2.	Incipient Cavitation Number vs Free-Stream Velocity for 1/4-Inch Hemisphere - CIT and ORL Data	7
Fig. 3.	Incipient Cavitation Number vs Free-Stream Velocity for 3/8-Inch Hemisphere - CIT and ORL Data	7
Fig. 4.	Incipient Cavitation Number vs Free-Stream Velocity for 1/2-Inch Hemisphere - CIT and ORL Data	8
Fig. 5.	Incipient Cavitation Number vs Free-Stream Velocity for 1-1/8-Inch Hemisphere - CIT and ORL Data	8
Fig. 6.	Incipient Cavitation Number vs Free-Stream Velocity for 2-Inch Hemisphere - CIT and ORL Data	9

			PAGE
Fig.	7.	Incipient Cavitation Number vs Free-Stream Velocity for 4-Inch Hemisphere - CIT and ORL Data	9
Fig.	8.	Incipient Cavitation Number vs Free-Stream Velocity for 8-Inch Hemisphere - ORL Data	10
Fig.	9.	Incipient Cavitation Number vs Free-Stream Velocity for 1/2-Inch Ogive - CIT and ORL Data	10
Fig.	10.	Incipient Cavitation Number vs Free-Stream Velocity for 1-Inch Ogive - CIT and ORL Data	11
Fig.	11.	Incipient Cavitation Number vs Free-Stream Velocity for 2-Inch Ogive - CIT and ORL Data	11
Fig.	12.	Incipient Cavitation Number vs Free-Stream Velocity for 4-Inch Ogive - CIT and ORL Data	12
Fig.	13.	Effect of Free-Stream Velocity upon Incipient Cavitation for All Hemisphere and Ogive Models	12
Fig.	14.	Effect of Model Size upon Incipient Cavitation for Several Values of the Free-Stream Velocity	13
Fig.	15.	Incipient Cavitation Number vs Reynolds Number - ORL Data	14
Fig.	16.	Incipient Cavitation Number vs Reynolds Number - CIT Data	14
Fig.	17.	Correlation of ORL Hemisphere Data with $V_0 \sqrt{d}$	16
Fig.	18.	Correlation of CIT Hemisphere Data with $V_0\sqrt{d}$	16
Fig.	19.	Correlation of ORL Ogive Data with $V_0\sqrt{d}$	17
Fig.	20.	Correlation of CIT Ogive Data with Vola	17
Fig.	21.	A Comparison of Vava Correlations Obtained at CIT and ORL	18
Fig.	A-1.	ORL Arrangement for Supporting 4-Inch Hemisphere	21
Fig.	A-2.	The 4-Inch 1.5-Caliber Ogive Model Installed in the High-Speed Water Tunnel	23
Fig.	B-1.	Experimentally Determined Blockage Correction Factors	25
Fig.	B-2.	Pressure Distribution Around 4-Inch Hemisphere Nose in the High-Speed Water Tunnel	25
Fig.	B-3.	Comparison of CIT and ORL Data for 4-Inch Hemisphere with Iowa and CIT Blockage Corrections Applied to CIT Data	25
Fig.	B-4.	Effect of Tunnel Walls upon the Pressure Distribution of 1.5-Caliber Ogive Noses	25

Introduction

EXPERIMENTS at the Hydrodynamics Laboratory, California Institute of Technology1,2*, have shown that the inception of cavitation on geometrically similar bodies in steady rectilinear liquid flow is definitely influenced by the size of the body and the free-stream velocity. Further, it has been found theoretically that if Reynoldsnumber effects are neglected, the inception of cavitation still depends upon both free-stream velocity and model size3. For the experiments performed at CIT, the largest body in any geometrically similar family of axially symmetric models was two inches in diameter. Consequently, it was desirable to extend the range to larger sizes. Further, no other laboratory had attempted to confirm the trends observed at CIT. Therefore, the Ordnance Research Laboratory at The Pennsylvania State College and the Hydrodynamics Laboratory at CIT have been cooperating in a joint research program to extend observations of incipient cavitation to larger models and to compare the results obtained when a given series of models is tested in two different test facilities. This report presents the results of the joint research program which was carried out in the 14-inch High-Speed Water Tunnel of the Hydrodynamics Laboratory, CIT, and the 48inch Garfield Thomas Water Tunnel at ORL.

Throughout this report we shall use the term "incipient cavitation number", σ , to designate that state of liquid flow in which cavitation disappears as the static pressure is slowly increased at constant free-stream velocity. ** We shall also include that state in which small wisps of cavitation occur only intermittently near the point of lowest pressure on the model. This definition is only one of several, sys by which the inception conditions could be determined. For example, it might seem more logical to require that the

pressure be lowered from the noncavitating flow state to determine incipient cavitation. However, experience has shown that the present definition enables one to obtain reproducible data for that flow state at the highest free-stream static pressure for which cavitation can occur at a given velocity on smooth bodies. If the pressure is lowered to this value, cavitation may or may not occur, and its occurrence depends in a random manner upon the time during which the pressure is held at the lower value. Thus, the present definition offers the engineering advantage that conservative values can be found, and it simplifies the problem by excluding any time dependence as well as giving reproducible experimental results. We use the customary definition for the cavitation number, , namely,

$$\sigma = \frac{0 - D}{\frac{1}{2} \rho V_0^2}$$

where p_0 is the free-stream static pressure, p_v is the liquid vapor pressure, ρ is the liquid density, and v_0 is the free-stream velocity.

In this investigation we have confined ourselves to determining visually the incipient cavitation number of two families of geometrically similar axially symmetric bodies in steady rectilinear flows at various free-stream velocities and at several values of dissolved-air content. The two model shapes consist of right circular cylindrical bodies with hemispherical noses for one family and with 1.5-caliber ogive noses for the other family. The family of hemispheres includes models 1/4, 3/8, 1/2, 1-1/8, 2, 4 and 8 inches in diameter while the family of 1.5caliber ogives includes models 1/2, 1, 2 and 4 inches in diameter. Except for the four- and eight-inch models, the hemispheres were among those tested by Kermeen 2 at CIT. More detailed descriptions of the models and the test arrangements are given in Appendix A of this report.

Superscribed numbers refer to the list of references.

^{••} Kermeen² calls this flow state "intermittent incipient cavitation".

Test Procedure

The general test procedures for the tests at ORL and CIT were essentially the same for all models. The tunnel velocity was held constant and the free-stream static pressure was lowered until cavitation was established around the entire nose. The pressure was then raised until incipient cavitation was seen to exist (usually on top of the model near the lowest-pressure point). The free-stream static pressure measurement was then recorded and free-stream velocity readings were taken in terms of the pressure differentials across the water-tunnel nozzles. At both CIT and ORL, tunnel pressure fluctuations caused the conditions for incipient cavitation to be unsteady. The test conditions at ORL, and occasionally at CIT, would change from too much cavitation to incipient cavitation and then to no cavitation. The entire cycle repeated itself in various orders. At CIT, where the fluctuations were less severe, a random pressure rise would often cause the incipient cavitation to vanish. The cavitation would not return even though the pressure would fall again to a low value, so that cavitation had to be completely re-established. Therefore, it was necessary to correlate the inception conditions with the static pressure readings by recording only those static pressure readings which were observed when incipient cavitation was seen on the body. The methods used for measuring the free-stream velocity were slightly different at the two laboratories. At ORL, sequences of differential pressure readings were recorded during every observation period. These pressure differences were then averaged so that an average velocity could be calculated for each period when incipient cavitation observations were made. At CIT, the differential pressures were averaged in this way only for tunnel speeds in excess of 60 fps. For lower velocities, the static and differential pressure readings were taken simultaneously when incipient cavitation was seen on the model.

During the ORL experiments, each observer noted the cavitation condition at each velocity.

Thus at least two points were obtained for each velocity and a check was made on "personal constants" for identifying incipient cavitation. In practically all cases the two readings agreed very closely. For those models and velocities where very low working-section pressures were required, air came out of solution and the resulting entrained air obscured the model and made data impossible to obtain if the very low static pressure was held for too long a time. This difficulty was overcome by making a measurement as quickly as possible after the freestream static pressure had been lowered. Then the working-section pressure would be raised to 40 psia and held there for ten minutes to redissolve the entrained air before another reading was taken. It was usually at the end of these high-pressure periods that water samples were collected for a Van Slyke analysis of the dissolved air concentration. In addition to the sample which was taken from the nozzle section, samples were sometimes also taken from the diffuser section and the lower leg of the tunnel. This procedure was followed to check the homogeneity of the water samples. The air-content readings of such triple samples were found to agree within five per cent.

At CIT, the resorber in the High-Speed Water Tunnel circuit allows for continuous operation without appreciable air entrainment so that special techniques were not required. The determinations of air content, with a Van Slyke apparatus, for the CIT experiments followed the procedure outlined by Kermeen.

In addition to visual observations, some sound measurements were made with the ORL acoustic apparatus⁵. As with the visual observations, the velocity was held constant and the pressure was lowered until the nose cavitated all over. The static pressure was then gradually raised through the cavitation range while the hydrophone acoustic pressure readings and the working-section static pressure readings were

correlated by the observers. The result of such measurements for the 1-1/8-inch-diameter hemisphere is shown in figure 1. The shape of the curve is like that given in reference 2, figure 4, although the curve of figure 1 does not have as sharp a peak. If the maximum point is arbitrarily taken as the point of inception, we find a value of 0.64 for the incipient cavitation number at a free-stream velocity of 51 fps. This value shows good agreement with ORL visual value of 0.646 (figure 5). For the larger bodies, the difference in hydrostatic pressure from the bottom to the top of the model allows various degrees of cavitation to be distributed around the nose, from nearly incipient at the bottom, say, to more profuse cavitation at the top. This hydrostatic effect tends to make the sound peak more gradual for models which are larger than two inches in diameter. Thus, the acoustic determination loses its usefulness if the point of maximum acoustic pressure is to be used to define incipient cavitation.

For the smaller models tested at both ORL and CIT a noticeable "hysteresis" in the cavitation phenomenon was observed. When the pressure was lowered rather quickly below the inception point, cavitation would not occur immediately. When cavitation finally appeared, its state was more highly developed than the incipient state of the maximum of figure 1, and it was then necessary to increase the pressure to attain incipient conditions. As mentioned previously,

FIG. 1. NOISE GENERATED BY CAVITATION ON 1-1 8-INCH. HEMISPHERE - ORL. DATA

the general procedure of first establishing cavitation and then raising the pressure to its value for visual incipient cavitation has been found to be the most practicable for this study, as this procedure avoids the above difficulty and allows reproducible data to be obtained easily.

Reduction of Data

The cavitation number, σ , is a convenient parameter for describing cavitating flows. From the procedure outlined above, it is clear that po and va. which enter in the expression for a, were not measured directly. Therefore, p, and V, must be obtained from the measured quantities by taking account of elementary flow laws and certain en pirically derived corrections. The corrections employed here include the correction for the streamwise loss in static pressure due to the growth of the boundary layer in the working section; and for the larger models, the static pressure loss from the model centerline to the top of the model, plus a correction to the freestream velocity to account for blockage or tunnel wall effects. * Further, all ORL data were corrected to account for the change in the velocity due to the growth of the boundary layer so that the final value of Vo represents the effective free-stream velocity along the centerline of the model.

If p, is the measured working-section static pressure taken from taps located at the upstream end of the test section, Δp_i is the loss in static pressure due to the growth of the boundary layer along the working section between the piezometer ring and the model nose, and Δp_n is the loss in pressure from the model centerline to the top of the model, then

The mean velocity in the free stream $\nabla_{\!\!\!\!\! 0}$ is given by

$$\overline{V}_0 = k\sqrt{\Delta}$$

where Δ is the pressure differential across the nozzle and k is a constant of proportionality. For example, for the ORL tunnel, if Δ is in inches of mercury and \overline{V}_0 is in feet per second, k = 5.2 ft/sec (inches of Hg)^{1/2}.

If V_0' is the free-stream velocity in the center of the tunnel without blockage corrections, then for the ORL data

while for the CIT data

The blockage correction factor is defined as

$$\frac{\sqrt{a^2 (m) \cdot hout \ walls,}}{\left(\sqrt{a}\right)^2 (m \cdot h \cdot mails)} = N \qquad (cf. \ Appendix \ B)$$

If accounts taken of all these factors, the incipsent cavitation number can be written as

$$\sigma_{i} = \frac{p_{i} - \Delta p_{i} - \Delta p_{h} - p_{g}}{\frac{1}{2} \rho V_{0}^{4}} = \frac{1}{N} \left[\frac{p_{i} - p_{g}}{\frac{1}{2} \rho V_{0}^{4}} - C_{g} - C_{h} \right]$$

^{*} Details of the blockage corrections are given tient cavitation number can be written as in Appendix B.

^{**} At the present time the High-Speed Water Tunnel, CIT, has an uncertainty factor within 2 per cent for $(b + \Delta s_0)^2 + s_0^2$

whe re

$$c_{r} = \frac{\Delta p_{r}}{\frac{1}{2} p_{r} \sqrt{6}}$$

and

$$C_{h} = \frac{\Delta p_{h}}{\frac{1}{2} \rho V_{h}}$$

are dimensionless coefficients for the pressure losses due to the growth of the boundary layer in the working section and the difference in elevation from the centerline to the top of the model, respectively. It has been assumed that consistent units are employed for all quantities which form the last equation so that no conversion factors need be explicitly indicated. For most of the data N=1. At ORL, blockage corrections were applied to the data on the eight-inch-diameter hemisphere only, while at CIT, blockage corrections were applied to data from both the four-inch-diameter hemisphere and the four-inch-diameter ogive. Of course, Ch is important only for the larger models or for very low velocities.

After all data had been reduced as outlined above, they were arranged in tabular forms. These tables are presented in Appendix C. Mr. R. W. Kermeen has kindly permitted the authors to use those portions of his experimental data which apply to the present study. Since he has given no tables of data in reference 2, we have included these data with our own test results in Appendix C.

Discussion of Results

Dependence of Gi on Vo

The CIT and ORL data are presented in figures 2 through 12, where the incipient cavitation number for each model size is shown as a function of the free-stream velocity. The average air content for each model is also shown in the figures. The eight-inch-diameter hemisphere was not tested at CIT.

Except for the one-fourth-inch hemisphere (figure 2), the CIT data shown in figures 2 through 12 are generally slightly higher than the ORL data. In most cases, this difference appears to be well within the experimental error one would expect in the two test facilities. In addition to dissimilarities in instrumentation and control, a resorber 1 semployed in the circuit of the High-Speed Water Tunnel to redissolve entrained air, whereas the ORL tunnel is not equipped for this. In view of these differences in the facilities and those in the test procedure, the over-all agreement of the test results is very satisfactory.

Curves were faired through the data of figures 3 through 12 and the accumulative results are given in figure 13. Because of the wide spread in the data for the one-fourth-inch hemisphere, no attempt was made to obtain a faired curve. Except for the smaller hemispheres at low velocities, figure 13 shows that the incipient cavitation number increases with both velocity and size. The cross plot of figure 13 excluding the low velocity range is shown in figure 14.

It is customary to assume that $e_i = |C_{\theta_{min}}|$ on the body, and hence for comparison purposes, the absolute value of the minimum pressure coefficient is shown in figure 13 for both the hemispheres and ogives. These values of the minimum pressure coefficient are for Reynolds number in

the supercritical range⁶. Except for the eight-inch hemisphere, all values of σ are below $|C_{P_{m,n}}|$. This shows that the conventional method of calculating the incipient cavitation index is not valid.

It was observed both at ORL and at CIT that wide variations in the dissolved air content made no systematic differences in the test results (except in the case of the one-fourth-inch hemisphere at very low velocities). The nondependence of the incipient cavitation number upon air content is typified by the CIT data plotted in figure 10 for the one-inch-diameter 1.5-caliber ogive.

The data obtained from the tests on the onefourth-inch hemisphere are shown in figure 2. In particular, the CIT data become more scattered as the velocity, Voi decreases, and the data taken at the higher air content tend to lie above the data for the lower air content. Also, these data show a reversal of the general trend exhibited by figures 5 through 12 in that for the low velocity range, a increases with a decrease in the velocity. This trend is also shown by the CIT data for the three-eighths-inch and one-halfinch hemispheres in figures 3 and 4. In contrast to the data for the smaller hemispheres, the ogive data do not show a reversal of the general trend in the low velocity range. However, the ogive data do not extend far enough into the low-velocity range to justify definitely concluding that a reversal of the general trend does not exist. Kermeen2 found that by employing a special test procedure, clear cavities up to 23 model diameters in length could be established on small hemispheres at very low velocities. In some cases, the cavities were maintained at cavitation numbers as high as 4.8. This phenomenon, which was apparently due to air diffusion, may account for the reversal of the general trend shown by

Fig. (4) Independs a vitation number vs free-stream velocity for a (2) inch hemisphere - α and ore data

FIG. 9 INCIPIENT CAVITATION NUMBER VS FREE-STREAM VELOCITY FOR 1-1 8-INCH HEMISPHERE - CIT AND ORL DATA

FIG. 7 INCIPIENT AVITATION NUMBER VS FREE-STREAM VELOCITY FOR 4-INCH HEMISPHERE - CIT AND ORL DATA

V., FREE STREAM VELOCITY IN FT/SEC

Fig. (i) Incipient cavitation number vs free stream velocity for zoinch orive . Cit and onlideta

FOR THE REPRESENTATION OF THE PROPERTY AND AND ADDRESS TO A STANDARD AND ADDRESS MINDELS

FIG. 14 EFFECT OF MODEL SIZE UPON INCIPIENT CAVITATION FOR SEVERAL VALUES OF THE FPEE-STREAM VELOCITY

the one-fourth-inch, three-eighths-inch, and one-half-inch hemispheres.

Part of the scatter shown by the ORL data for the one-fourth-inch hemisphere may be due to difficult conditions of observation in the 48inch tunnel. In order to see cavitation on the model in the test section, it was necessary to look through some two feet of water. In addition, the reflection of intense highlights from the shiny surface of the model hindered visual observation, so that incipient cavitation was difficult to define. However, the ORL data for the one-fourth-inch nose have less scatter than the corresponding CIT data. But at CIT, since the test section is much smaller, visual observations were not difficult. Hence, we may conclude that the trend so clearly shown by the data represents an actual difference in the nature of incipient cavitation when the model size and free-stream velocity are sufficiently reduced.

The spread in the data for the eight-inch hemisphere was due to surface roughness and entrained air. Small diamond-shaped cavitation zones apparently due to very small rough spots became fixed at random points on the nose for a long time before they were swept away. In some cases these points of apparent roughness seemed to shift to another spot. These diamond-shaped cavitation patches were also characteristic of

the four-inch hemisphere; however, they were less severe than those for the eight-inch hemisphere. Recent tests of a two-inch-diameter hemisphere having a somewhat rough finish showed that similar diamond-shaped patches appeared at high velocities. Possibly this is due to the boundary layer becoming thinner as the velocity is increased, with the resulting protrusion of large roughnesses causing cavitation. Polishing the eight-inch hemisphere appeared to help somewhat, but did not completely remove the small diamond-shaped cavitation zones. When such zones were near the top of the model, the observation of inception conditions was difficult. Further, at low pressures the cavitation zone around the eight-inch model was confused by growing air bubbles and entrained air, so that observations of the inception of cavitation were made more uncertain. This type of airbubble growth was observed to be more pronounced as the nose size was increased, probably because the larger the model the greater the time available for the air bubbles to grow at any given free-stream velocity. The situation was improved by raising the pressure to 40 psia for ten minutes (as mentioned under Test Procedure, page 2) to drive the entrained air back into solution. Then the pressure was lowered and readings were taken before air came out of solution. We believe that the greater scatter shown by the test results for the eight-inch model (figure 8) is largely due to the above effects.

Dependence of σ_i on Reynolds Number

The ORL and CIT data for incipient cavitation number are shown as a function of Reynolds number in figures 15 and 16, respectively. Referring to figure 15, the ORL data indicate that the incipient cavitation number is not a unique function of Reynolds number, for a distinct curve could be drawn for each model size. This trend is also shown by the CIT data in figure 16. Although there may be some Reynolds-number effects, we do not yet understand their full significance. We believe that such effects could influence the bubble growth required to produce incipient cavitation by their influence upon the time available for the occurrence of such growth³.

Dependence of σ_i on Vd^{ve}

On the basis of a dimensional analysis, J. W. Holl concluded that it might be useful to express the incipient cavitation number as a function of the Weber number based upon the model diameter. Thus, if s is the surface tension of the water, v, is the free-stream velocity, p is

FIG. 15. INCIPIENT - AVITATION NUMBER VS REYNOLDS NUMBER - OPI. DATA

FIG. 16. INCIPIENT CAVITATION NUMBER VS BETNOLDS NUMBER—CIT DATA

the liquid density and 6 is the maximum diameter of the body, the Weber number of interest here is given by

$$W_0 = \frac{V_0 \sqrt{d}}{\sqrt{V_0}}$$

However, the correlation of the experimental data for e_i with W_d would imply a more general result than can actually be inferred from these Water Tunnel tests, because the ratio $\frac{q_i}{q_i}$ was not significantly altered during these experiments.

For example, table I below shows only a 3.38-percent variation in $\frac{8}{2}$, when the water temperature is changed from 70 to 100 degrees F. Actually the temperature variation encountered in the course of the present experiments was somewhat less than 70 to 100 degrees F, so that the variation in the ratio, $\frac{8}{2}$, was less than 3.38 per cent. Such a variation is not of engineering significance.

The ORL data for incipient cavitation number were plotted as a function of Weber number, and the results showed that e, could be represented by a single curve for each model shape. How-

Table I - Values of 1, as a Function of Water Temperature*

(degrees E)	(11 ² /p
50	0/02619
•,(6 C 25 35
7:	0.062564
M (I	0.002544
ð:	1 12514
1 - 1	E 196 24M5
42)	8 0024 H

^{*} Values of s were taken from reference 7.

ever, as shown previously, the ratio 3/2 was not varied significantly, so that one could only conclude that , was a function of Wd. The ORL and CIT data were then plotted as a function of V√d , and the results are shown in figures 17 through 20. The hemisphere data obtained at ORL and CIT are shown in figures 17 and 18, respectively. Although there is some scatter in the data, we see that, for the most part, there are no consistent variations in the data because of changes in model size. The ORL and CIT data for the 1.5-caliber ogives given in figures 19 and 20 show the same correlation as did the hemisphere data, but in this case, there is less scatter** in the data. Thus it appears possible to represent the data by a single curve for each of the four figures. For comparison purposes, a curve was faired through the experimental points for each of figures 17 through 20, and from these faired curves figure 21 was constructed. The over-all trends for the ogive and hemisphere experiments are very much alike for both laboratories. The more detailed differences in the curves of figure 21 appear to be within the experimental scatter of the plots in figures 17 through 20.

From the foregoing it is clear that the present experiments indicate a correlation between the incipient cavitation number σ_i and the parameter $V_0\sqrt{d}$. We regret that the ratio of surface tension to density, s_{ip} , could not also be varied so that the dependence of σ_i upon Weber number could be investigated. We believe that it may be profitable to perform similar cavitation studies in different liquids to investigate the Weber-number dependence.

^{**} Deviations from the theoretical body shape would not be so critical in the case of the ogives because of the flatter pressure distribution; hence, this would probably account for the smaller amount of scatter in the data.

FIG. 17. CORRELATION OF ORL HEMISPHERE DATA WITH V Jd

FIG. 18 CORRELATION OF CIT HEMISPHERE DATA BITH Y J.

FIR IN CORRELATION OF ORL OGIVE DATA WITH VOVE

Could be the server of the server of the server of the server of

FIG. 11 CORRELATION OF SIT OUIVE DATA WITH V. VA

FIG. 21. A COMPARISON OF VOID CORRELATIONS OBTAINED AT CIT AND ORE

Conclusions

The ORL experiments verify the CIT findings which show that the inception of cavitation in a steady rectilinear flow of a liquid past a body depends upon the free-stream velocity and the body size. This result was found to hold for hemisphere-nosed bodies up to eight inches in diameter, while the largest bodies tested before were two inches in diameter. In general, it was verified that the incipient cavitation number increases with body scale and free-stream velocity. Except for the largest body at higher flow velocities, the measured values of the incipient cavitation number are not as great as the incipient cavitation number which would be found by the customary calculation procedure. Hence, at the inception point, the pressure external to the cavities is not in general equal to the vapor pressure as is so often assumed. However, for fullscale work, it is safe to assume that e = |Complete

Except for the smaller hemispheres at the lower velocities (less than 30 fps) no consistent variations of the incipient cavitation number with air content were observed.

The results for the smaller hemispheres at lower velocities showed a tendency for the incip-

ient cavitation number to increase with increasing dissolved air content. Also, in the low velocity range, the incipient cavitation number increased with a decrease in the velocity. This phenomenon was a reversal of the general trend characteristic of the larger hemispheres and all of the 1.5-caliber ogives. Evidently, this exceptional behavior is caused by air diffusion from the liquid into the cavitation bubbles. Data having sizable scatter and poor reproducibility are characteristic of tests made on small models at low velocities; consequently, these test conditions should be avoided when the results of model tests are used for predicting the performance of larger scale bodies.

It has been found possible to represent the data from the present experiments as a function of the parameter $V_0\sqrt{d}$ for each family of shapes tested. Of course, the data are also representable in terms of the Weber number, $V_0\sqrt{d}/\sqrt{s_p}$, because the ratio of surface tension to density, $\frac{s_p}{r_p}$, was not significantly varied in these experiments. Further experiments with other liquids should be undertaken to see if the more general correlation of the incipient cavitation number with Weber number is meaningful.

Appendix A

Models and Test Configurations

Seven hemispherical heads and four 1.5-caliber ogive heads were used in these experiments. The pertinent details concerning these head forms are given in table A-1. The designations A and B for the two-inch, one-half-inch, and one-fourth-inch hemispheres correspond to those used in references 1 and 2. The Ordnance Research Laboratory has two four-inch hemispheres designated A and B, and as shown in table A-1, nose B was used in these studies. The eight-inch hemisphere was not tested at CIT.

At OR1 the one-fourth-inch to two-inch noses were supported in the Tunnel on a two-inch cylindrical brass body with a conical tail. The four-inch and eight-inch noses were supported on a four-inch cylindrical brass body with a conical

tail and with a wooden fairing to fair the eightinch nose into the four-inch supporting body.
These bodies were supported from the Tunnel
floor by a thin aluminum strut so that the axis
of the models coincided with the centerline of
the Tunnel test section. A pictorial description
of the mounting arrangements of the various
noses is given in table A-2. In this table, "L"
refers to the straight section behind the nose,
which was measured from the point where the
nose joins the straight section. The B arrangement is typified by the four-inch hemisphere
with its supporting structure, shown in figure
A-1.

At CIT the test arrangement for the one-half-inch, one-inch, and two-inch ogives was

FIG. A. FORL ARRANGEMENT FOR SUPPORTING 4. INCH HEMISPHERE

Table A-1 Hemispheres and Ogives

Diameter (inches)	Туре	Material	Made by	Maximum Deviation from Theoretical Shape
8	Hemisphere	Brass	ORL	Not inspected
4 (B)	11	Brass	ORL	Not inspected
2 (B)	ŧŧ	Stainless Steel	CIT	Not given in Ref. 2
1 1/8	**	Stainless Steel	CIT	**
1/2 (B)	11	Stainless Steel	CIT	'n
3/8	н	Stainless Steel	CIT	11
1/4 (A)	**	Stainless Steel	CIT	0.0003" (Ref. 2)
4 (1.5 caliber)	Ogive	Brass	ORL	Not inspected
2 (1.5 caliber)	**	Stainless Steel	CIT	U, 0020 M
1 (1.5 caliber)	11	Stainless Steel	CIT	0.0020 ^m
1/2 (1.5 caliber)	**	Stainless Steel	CIT	0.0010 ^M

Table A-2 - Mounting Arrangements

O.R.L. Experiments

Nose Si and Typ		Arrange- ment	$L/_{\overline{D}}$	
1/4" He	misphere	A	8	Vo
3/8"	••	A	8	[2-
1/2"	**	A	8	STRUT
1 1/8"	**	A	3	
2"	••	В	5.5	
4"	**	В	4.5	STRUT B
8	••	С	1.5	
1/2" O ₈	live	A	4	
1	••	A	1.5	WOODEN FAIRING 4"
2"	••	В	5, 5	STRUT
4"	**	В	4.5	

FIG. A-2 THE 4-INCH I.S-CALIBER OGIVE MODEL INSTALLED IN THE HIGH-SPEED WATER TUNNEL

equivalent to the arrangements used at ORL. The models were supported from the bottom of the High-Speed Water Tunnel test section. The data for the one-fourth-inch to two-inch hemispheres were taken by R. W. Kermeen. A sting support was used for all models in his experiments. The details of his setup are given in ref-

erence 2. The CIT cavitation tests for the four-inch hemisphere and ogive were made on models which were supported as shown in figure A-2. This method of support was also used for the pressure distribution tests which were run to determine wall-effect correction factors (Appendix B).

Appendix B

Corrections for Tunnel Constraint

The elementary ideas behind the tunnel blockage corrections are described in Appendix A of reference 1. It was found that the blockage correction factor, N, could be defined by

$$N = \frac{C_{\theta_{min}}'}{C_{\theta_{min}}} = \left(\frac{V_0}{V_0'}\right)^{\xi}$$

where V₀ and C₀ are the free-stream velocity and minimum pressure coefficient, repectively, for unconstrained flow. The quantities V₀ and C₀ are the corresponding free-stream velocity and minimum pressure coefficient as measured in the water tunnel where the flow is constrained. The blockage correction factor, N₀ is defined so that for equal free-stream static pressures, the minimum static pressure is the same for both flows. For incipient cavitation, it follows that

where e_i is the incipient cavitation number for the constrained water-tunnel flow and e_i is the incipient cavitation number in the equivalent unconstrained flow.

When a systematic series of pressure distributions for various degrees of blockage on a given shape is available, the blockage factor N is easily determined. Such experimental pressure distributions have been reported by the lowa Institute of Hydraulic Research^B for a family of hemispheres. The correction factors derived from the lowa tests are plotted against the model diameter to working section diameter ratio, d/D, in figure B-1.

Pressure distribution tests for a four-inchdiameter hemisphere were made at CIT to check the Iowa results. The averaged and faired results of these tests are shown in figure B-2. The blockage correction factor, N, calculated from the minimum C_p of figure B-2 is shown by the square symbol in figure B-1.

The incipient-cavitation data for the four-inch-diameter hemisphere taken at CIT was corrected for blockage by using both the Iowa and CIT correction factors. A comparison of the corrected CIT data with the ORL data for the four-inch hemisphere is shown in figure B-3. One can see that the CIT data corrected by the Iowa correction factor agree more closely with the ORL results, which needed no correction. Consequently, the CIT data for the four-inch hemisphere presented in this report were corrected by the Iowa blockage factor.

Blockage data were not available for the ogive noses, so a series of pressure distribution experiments was made at CIT. The average pressure distributions for 1.5-caliber ogive noses of two-inch, three-inch and four-inch diameter are shown in figure B-4. The C, curve for the two-inch model corresponds to unconstrained flow, and the minimum C. obtained from the curve is -0. 398, while a similar lowa result6, obtained by interpolation, gives -0.410 for the minimum C_s. For computing N, a value of -0.404 was taken for the minimum Co in unconstrained flow. The resulting blockage corrections for the 1.5-caliber ogives are shown as a solid curve infigure B-1. We see that the wall-effect curves for the two nose shapes intersect in figure B-1. The blockage theory of Lock and Johansen indicates that we may expect the correction curve for the ogives to have a slightly greater slope than the hemisphere correction curve, but certainly not an intersection as shown in figure B-1. It is estimated that the CIT values for the minimum C, have a total uncertainty from all causes which is less than 23 per cent. The precision of the lowa data is not known.

O ORIL DATA, NO WALL EFFECTS

CIT DATA, CORRECTED WITH CIT
WALL EFFECT FACTOR
A CIT DATA, CORRECTED WITH IOWA
WALL EFFECT FACTOR

V., FREE STREAM VELOCITY IN FT/SEC

Fig. 8-1 EXPERIMENTALLY DETERMINED BLOCKAGE $_{\nu}$ ORRECTION FACTORS

FIG. 8-2 PRESSURE DISTRIBUTION AROUND 4-INCH HEMISPHERE NOSE IN THE HIGH-SPEED WATER TUNNEL

FIG. B 4 EFFECT OF TUNNEL WALLS UPON THE PRESSURE DISTRIBUTION OF 1.5-CALIBER $\Theta_{\rm G}$ OGIVE NOSES

Appendix C

Tables of Experimental Data

The attached tables give the values of the incipient cavitation numbers which were found from visual observations of the flow. The values titled Reduction of Data, page 4.

			O # L. Tee	mere - Angust B, 1 No. 726	1952) 8"-Daei	O. R. L. Te	phere - August i at No. 726	1, 1952	
Lime	•	<u>v.</u>	<u>v.√4</u>	B c 10 ⁻⁵	Air Coas As Mesoured	ent * <u>Corrected</u>	Time	<u>•</u>	<u>v.</u>	V. V.	R # 10-5	Air Co As Messured	
1919					1.2	7 2	1347	554	10. 6	5.41	1.24		
1553	101	29 3	4 91	80 1			1348	554	10, 6	5. 41	1. 24		
1991	374	29 1	4 9)	841		į.	1110	. 991	34. 1	6, 10	1,44		
1014	677	14. 2		170			1354	118	36 1	4. 18	1.44		
1618	. 700	14.3	6.09	994			1344	. 542	19.7	7. 02	1.61		
1070	710	42. 2	7 10	: 15			1358	. 541	19.7	7.01	1.41	•	
1424	. 470	42 2	7.10	1.45			1411					4 1	7. 0
1647	504	41 1	7, 10	1 15			1022	. 544	45. 9	0.12	1.04		
1040	449	44 1	7 74	1 26			1425	. 564	45 9	0.12	1.84		
1632		46 1	7.76	1 26			1020	144	10 4	8.91	2.94		
1613	412	44 4		1 44			1427	. 566	30 4	0.11	2.04		
1614	. 641	10 1	8 14	3 40			1428	572	35 4	9.83	2 25		
14 14	*10	** 1	• 1•	1 11			1411	172	44 6	9, 61	2, 25		
1616	411	44.2	9 19	1.51		i	1412	574	59, 7	10.4	2.42		
1940	6.14	40 4	10 3	1 66			1474	. 102	59, 7	10.6	2,48		
1041	629		10 2	1 64			1414	114	44.7	11.4	2, 42	3. ♦	7 6
1645	661	76.1	31.	1 94			1419	194	64. T	14.4	2, 42		
1041	1.25	76 1	11 .	1, 92			1 440	. 661	64 6	12. 3	2 82		
1041	419	70.1	11.0	1 94			1442	661	69.6	14.)	2.62		
1661	404	19 9	11 4	2 1 9	, ,	7.2	1000	401	14.6	13.2	1, 42		
1641	414	79.9	43 4	2 19			1447	. 610	74 6	13.2	1.02		
1444					1.2	7 4	1649	621	79. 4	14-1	3, 15		
							1451	421	79 9	14 1	1, 11		
							1455	114	44 1	6. 10	1 89		
							1447	142	44 1	0 i8	1 99		
							1499					3.6	7.4

^{*} All air contents are in parts per million. The values of air content for the ORL tests were corrected to account for water vapor on the mercury column of the Van Slyke apparatus.

1/2"-Diameter Homisphere - August 6, 1952 O. R. L. Topt Ho. 725								
Time	<u>•,</u>	<u>v.</u>	<u>v.</u> √7	R ₀ = 10 ⁻⁵	Air Content As Monoured Corre	icted		
9954	. 584	20.5	5. 62	1.44				
0957	. 584	28, 5	5.02	1.46				
1011					3. 7	7.5		
1616	. 535	32.4	6.61	1.71				
1014	. 542	32. 4	*. 61	1.71				
1035					4.2	7. 0		
1039	. 556	37. 2	7. 59	1.96				
1040	. 550	37. 2	7. 59	1.96				
1002	. 562	40, 7	0. 30	2.14				
1945	. 110	48, 7	8. 30	2.34				
1100					3, 7	7.4		
1106	. 186	46. 8	9. 55	2.47				
1100	. 148	44. 8	9.55	2.47				
1110	. 574	50. 5	10. 3	2.66				
1111	. 574	50, 5	10. 3	2.64				
1114	. 561	11.2	11.3	2.90				
1116	. 991	55 2	11.3	2.90				
1110	, 600	60, 4	12.3	3. 19				
1129	. 606	60, 6	12. 3	3. 19				
1124	. 415	65, 6	13. 3	3. 42				
1125	. 433	65. 0	13. 3	3.42				
1114	. 440	70 1	14. 1	1, 49				
1124	. 611	70, 1	14. 3	3.69				
1110	424	70. 3	14. 3	3.69				
1111	. 625	74.8	15. 3	3. 93				
1134	. 432	74. 0	15. 3	3.93				
1114	. 441	79. 8	16. 3	4.21				
1140	. 644	79, 8	16. 1	4.21				
1140	. 574	44. 4	9.51	2.45				
1143	. \$77	44.4	9. 51	2.45				

	1 - 1	0'-Diamete O.R.L. T	er Hemispher ests Nos. 72	e - August 7-8, 4 and 725	1952	
Tool No	724					
Time	<u></u>	<u>v.</u>	<u>v. V4</u>	R. x 10-5	Air Cont	leni <u>Carrected</u>
1510	. 620	40, 1	12. 5	4. 85	3. 2	7, 2
1110						
1521	. 629	45. 1	14 1	3.45		
1525	. 644	49. 0	15.2	4.41		
1110					3.1	7.1
1998	, 447	** *	16. 6	6, 51		
1001	. 676	59 7	10. 1	7, 89		
1007	. 454	44. 0	19. 9	7.72		
1010	, 644	49. 4	21. 4	6, 29		
1016	. 676	79. 0	23, 0	0.07		
1619	. 481	79, 1	24. 4	9.44		
1+27	100	79, 7	24. 4	9.44		
1614	676	74. 6	22.0	8. 84		
1427	. 679	74 6	22.0	8. 84		
1428	. 677	64, 7	21. 3	8 47		
1412	. 686	69. 7	21. 3	0 27		
1634	444	44 4	19 7	7.69	4.0	6.9
1616	. 644	44 4	19. 7	7.65		
1042	. 653	99. 5	10.2	7.06		
1663	450	19, 1	10 2	7.06		
1004					1. 2	7. 3
Tool No.	745					
6611					4,7	0.1
1100	199	14 4	11 1	4. 11		
****					4, 7	0. 2
8041	100	14. I	9.01) 0 1		
0017					4. 3	7.6
****	170	24. 1	7 99	3. 10		
9901	. 100	10, 4	9 37	1, 00		
9907	146	10, 6	• 17	3. 60		
9900	. 991	14, 7	11.4	4 34		
****	794	36 7	11.4	4, 14		
**11					3. •	7. \$
002)					3, 7	7. 6

2"-Diame to r	Hemisphere -	August 6-7, 1952	
O. R. L., T.	nate Mag. 722.	723 734	

	-	O. H. L. T	1018 MGG. 762,	783, 784	_	
Toot M	<u>. 722</u> -					
Time	•,	<u>v.</u>	v.√2	R _a x 10.5	Air Co As Messured	eneni Corrected
1320					3.2	6.8
1326	. 614	31. 5	12, 9	4, 49	•••	55
1346	. 600	25. 5	10.4	5, 24		
1400					2,6	6, 6
1413	. 592	30, 5	12. 4	6. 28		
1430					2.7	6.6
1434	. 618	30. 5	14.9	7.50		
1455					2, 5	6.4
1521	. 643	50.5	20. 6	10.4	3.6	7, 5
1528	. 632	44. 9	18. 3	9. 24	3, 6	7.5
1550	. 608	27.6	11.3	5, 68	3, 4	7.4
1605	. 625	30. 7	12.5	6. 33		
1615					3, 1	7. 1
1623	. 624	41.0	16.7	8.72		
1625	. 452	54. 8	22.4	11.3		
1631	. +20	59, 3	24. 2	12, 2		
1638	. 448	45, 0	26. 5	13,4		
1643	. 674	70, 1	28, 6	14. 4		
1648	. 682	74.6	30, 4	15. 3		
1651	. 681	80, 3	32.6	16. 5		
Test No						
0855	. 632	40, 9	16.7	8, 42	4.0	7. 0
1000	. 641	45. 1	18.4	9.20		
0913	. 650	51, 2	20.9	10.6		
0919	. 668	55, 8 60, 6	22.0	11.5		
9933	. 664	60. 8	24.7	12, 5		
0941	. 677	65.0	24. 0 26. 5	12. 5 13. 4	4, 1	7. 3
0947	. 679	70, 2	20. 5	15.4		
0952	. 677	75.0	30.6	15.4		
0956	. 676	79. 8	32, 6	16. 4		
1010		. 7. •	72. •	10.4	3, 4	6.6
1055					3, 7	7. 2
1145					3. 4	7, 0
Test No	. 724 -					-
1110					4.2	7, 7
1336	. 606	24. 0	9, 79	4.94	7.4	1, 1
1355				****	3, 9	7, 6
1401	. 616	31.2	12.7	6.42	** *	,,,
1410					3. 6	7,4
1414	. 612	36. 5	14. 9	7, 50		
1430					3, 56	7.4

		O, R. L.	Nominghore Trote Nos,	- August 12, 199 729 and 730	ł 				0 ° - Di	ameter Hemi O.R.L. Test	aphere - Angust a Nos. 727 and 1	11, 1952 28	
To ot Pla					Air Ca		Tool No	. 727 -		_		A	C
Time	•,	<u>v,</u>	V. V4	B _a = 10 ⁻⁵	As Messured		Time	•,	_ v	<u>v.û</u>	R _a z 10 ⁻⁵	As Messures	Contont I Correcte
2718					5, 3	8. 6	9714					5. 7	8.6
114	. 605	50.4	29, 1	20, 7			1002					4,5	7,7
P924	. 690	50,4	29. 1	20, 7			1012	. 725	61.2	50.0	49.8		
1927	. 676	55.0	31 7	22. T			1014	. 730	61.2	50.0	49.8		
9929	, 678	55.0	31.7	22.7			1016	. 726	61.2	50, 0	49.8		
07 16	. 489	59.0	14.5	24.6			1021	. 737	65.4	53, 4	53.2		
09 12	. 691	59.0	34 5	24 4			1022					4. 6	6,0
99 14	. 691	69. 0	17.5	26.7			1024	. 734	65.4	53.4	53.2		
09 14	. 643	*5 •	37 5	24.7			1026	. 736	70, 2	57. 3	57, 1		
1962					4.6	8, 1	1029	, 738	70.2	57. 3	57.1		
1006	. 724	70, 5	40.7	29. 0			1030	. 743	74.0	61. i	60.7		
1010	. 721	70, 5	40 7	29.0			1032	. 743	74. 8	61. i	60.7		
1011	. 708	75 .	43.6	31.1			1034	. 745	79. 3	64.8	64.5		
1011	. 710	75 4	43.6	31. 1			1034	. 739	79. 1	64.6	64, 5		
1015	. 70)	79. 1	45.7	12 6			1106					4.2	7, 7
1917	, 103	79, 3	45 7	32, 6			1113	. 732	55. 2	45. 1	44. 9		
1017	. 600	15. 6	34.0	22.7			1113	. 716	55. 2	45.1	44. 9		
1922	, 684	59. 6	12. 6	22,7			1116	, 718	55. 2	45, 1	44.9		
1011	. 500	33.4	32. 0	22.7			1110	. 645	50, 5	41, 2	41.1		
1014					5,0	8.5	1122	. 694	50. 5	41, 2	41.1		
1049					4.4	8.0	1123	. 695	50, 5	41.2	41.1		
1053	475	34 6	31.5	22.4			!						
1011	677	54.6	31.5	22. 4				728 -					
1946	676	70.2	40. 5	28. 6			1130					4.2	7, 7
1919	. 676	70. 2	40. 1	28. 8			1132	. 717	79, 7	65, 1	64.0		
1101	, 779	79, 7	46.0	12.8			1135	. 740	79, 7	65. 1	64.6		
1104	. 764	79, 7	46.0	12. 8			1140	. 672	44.5	36, 3	36. 3		
1107	764	79, 1	46.0	32. 0			1142	. 660	44.5	16. 1	36.3		
1110		•••	****		4.4	0.1	1144	. 703	40. 1	32.7	32.4		
1113	. 452	44.4	25. 6	18, 2	***	•••	1145	. 703	40. 1	32. 7	12.6		
1110	642	44 4	25.4	10.2			1147	. 693	40. 1	32. 7	32.6		
1110	617	10, 1	22.1	15. 7			1149	. 682	33, 8	27.6	27.5		
1116	. 672	30.1	22, 1	15, 7			1151	. 671	33, 8	27 6	27.5		_
1121	. 617	30. 3	12.1	15.7			1150					4.3	●. 0
1121	. 641	36 1	22. 1	15.7			1356	670	32 6	26.6	26.5		
1131	. •••	~ .	••. •	• • • • • • • • • • • • • • • • • • • •	4 2	●. 0	1357	. 664	32. 6	26. 6	26.5		- 4
					٠.	•••	1415					3. 0	7.6
Tool No	7 14						1422	. 664	24. 3	19. 6	19.0		
1124					4.9	6. 6	1457	444	,	19. 1	19.0	4. 0	7, 9
1112	661	19, 4	23.0	16. 6			1511	. 688	23 4				1, 1
1111	991	19, 9	21.0	16.4			1528	. 646	24. 9	20.6	20.2	1. 7	1,1
1 5 54	. 614	15 9	20, 7	16.7			1591	. 670	26. 3	21.5	21.4		
1 3 34	646	35. 9	20, 7	14. 7			1553	. 493	46 1	37. 6	37.5		
1 1 14	. 644	35.5	40.7	14. 7			1999	. 676	46 1	37. 6	37. 5		
1411	. 647	17 .	15. 6	11. 0			1557	. 747	48 0	19. 2	39. 0		
1411	414	27.0	14. 6	11,0			1457	766	48.0	19.2	19 0		7.6
1414					4 6, 4, 5	8.4, 8.3 Nozale	1601	4				1, 6	7, •
1414					4 2, 4.4	0 0, 0 3	1613	. 644	50. 1	40, 9	40, 7		
1414					4.5, 4.3	Diffuser 8. 1, 8 2	1615	444	50. 1	40, 9	40.7		
						Lover Log	1624	. 440	54.6	44. 6	44.4		
1 1 1 1	4 14		14. 7	11 9			1624	. 667	54 6	44. 6	44.4		

. 487

. 706

498

448

6.78

1627

1627

1613

1631

1635

54 6

59. 6

49 6

44. 4

44. 6

44.4

48.7

48, 7

14, 4

16.4

44.4

48.5

48.3

14. 1

34. 3

11 9

11.9

14. 2

14. 2

28. 6

20. 0

28. 6

10, 7

30. T

34. T

32 7

16, 7

16. 7

20 0

18. 0

44. 2

44, 2

40. 2

43. 1

41 1

45, 5

41, 1

H 1

34 4

64, 1

69 7

74.6

19.5 19.5

0. i

4. 9

1104

1104

1101

1112

1510

1510

1120

1141

1583

1926

**

. 841

. 484

994 , 791

. 101

. 714

, 100

1/2"-Diameter Hemisphere	"B '

		1/47-0	name to e House	estere "A" 6		
•,	٠.	A 10.5	v.#	Dissolved Ass Contest P.P.M.	71	1
. 665	10. 1	. 776	7.00	7.01	91.4	16
. 667	30. 2	776	5.96			•
. 101	14. 8	. 054	5 84		91.0	-
. 184	14. 6	894	5.06			-
. 119	19 1	1.02	6. 65			-
. 164	19.5	1 02	4. 65			•
. 543	44. 7	1 15	7, 51			•
561	44 7	1 45	7.51			-
. 148	44. 0	1 13	7. 53		89.6	•
141	44 8	4.15	7 53			•
. 101	44 7	1.27	0.37		91.0	•
601	55 1	1 41	9, 27	7, 24		-
. 617	59.5	1 52	10 0		91.4	-
. 641	65 1	3 60	11.0		91.0	-
. 623	79 8	1.81	31 B		92.0	**
. 57	75 7	1 97	14. 7		92. 6	•
863	79 3	1,29	13. 1		73.0	
614	84 7	2 43	14.3		43.2	-
653	84 5	1.11	14 2	7, 24	91.0	17
47.2	84 3	2 22	14 2			•
. 641	75.7	2.50	12. 7		93. 8	•
. 667	** *	2 50	12. 7			•
+14	44. 9	1.72	19. 🕈		94 0	
114		1.72	10. 9			
•11	•• •	1,72	19, 9			
. 624	64, 9	1.72	10. 4			-
100	11 2	\$ 47	9. 28		94. 2	.,
647	11 2	1.47	4 18			**
4 75	44 6	1-19	7. 54		94. 3	
141	** *	1 19	7, 34			-
112	15 #	912	1 94		94. 1	
917	15 0	. 112	5, 86			
44 7	24 3	646	4, 26		94.3	
+44	14)	446	1 24			
649	19 1	1 41	10.0			32
794	4* *	1 51	8. 54			12
. 404	47 4	1.91				32
***	19 4		6. 64			12
*14	17 &	⊅, ⊕ (1,44			32
•1•	24 .	5. 01	4, 99			12
***	24 1	0.01	4.99			12

					_
3.0 -0	ame le s	Hemie	he 10	•	
			~		

		3.0	Diameter He	misphere *		
٠,	<u>*.</u>	A . 4 10 3	v.,¥4"	Dissolved Air Contest P. P. M.	Tomp by	Bun
***	15.0	14	1 10	6.0	69. 6	2.
122	40.1	1 16	7 34			-
997	94. I	1 4'			69.7	**
144	00 Z	, ,.	10 .			
147	11.2	1 42	• ••			
***	74. 1	•4	1 54	٠,	71.2	27
144	24.3	79	4 42			•
***	15.1	74	4. 42			-
. 101	25 8	79	4 42			-
84 1	19 9	*1	4 49		71 1	-
611	29.9	94	5 29			
*11	24 4	**	1 29			-
421	14 2	1 85	4 17		*1 4	-
144	11 1	1 91	١.			-
142	49.9	1 10	7 00		71 9	-
9 No.	19 9	1 20	7 84			
117	44 #	1 14			71 4	
106	41 4	1 14	1, 94			•
**1	44 1	L 140	8.84		71 7	-
1*1	44, 1	1 14				•
141	** *	3 67	9 72		71 4	•
1 74	** *	1 47	9, 73			•
994	44 4	1 64	10. 6			*
144		1 61	10. 4			-
640	** *	1 00	31.0	7.4	74.4	28
613	49 1	2 84	11.5			-
**	94, 1	2. 00	11.5			
444	76.1	4 19	12 4			•
	70 1	2 15	44 4			•
449	* 1	8 11	13.4			-
441	75.1	LH	11.4			•
1	84 1	3 00	14. 2			•
***		4.1	14.4			

		9	v vā	Dissolved Air Costest	Vater Temp.	
<u>.</u>	<u>v.</u>	R ₀ = 10 ⁻⁵	<u>***</u>	P. P. M.	•	Ree.
. 776	20.4	1.03	4. 16	7, 7	90.0	14
. 844	20. 4	1.9)	4. 10			-
. 793	20.4	1.03	4.16			-
. 697	24.2	1.22	4. 94			•
. 444	24.2	1.22	4.94			-
. 652	30, 7	1.55	6.27			*
. 406	10. 7	1.55	6.27			•
.5*1	30.7	L, 99	6.27			*
. 623	30, 7	1.55	6, 27			•
. 540	54. 7	1.75	7.08			••
. 559	34, 7	1.75	7, 06			••
. 606	18. 6	1.95	7.88		90.0	•
. 591	18. 6	1. 95	7, 88			*
. 991	38 6	1.95	7.88			
. 59 i	44. 7	2. 26	9. 10			•
. 594	44.7	2.26	9, 10			**
. 180	44. 7	2.26	9.10			**
597	44.7	2.26	9 10			*
. 623	48, 1	2.47	9.98		90 2	**
. 620	48.9	2 47	9.96			**
. + 24	54.2	2.75	11.1		90.4	••
. 623	34. 2	2. 75	11.1			•
. 6 30	58.7	2.98	12.0			**
. 626	50, 7	2. 96	12.0			
. 629	58. 7	2.96	12.0			.,
. 608	H. 1	3. 28	13.2			**
. 637	64.9	1.20	13.2			**
413	64.9	3. 28	13.2			**
. 615	70.0	3, 57	14. 3		90.6	
. 637	70.0	5. 57	14. 5			**
64 0	69.9	3, 52	14. 2		90.6	
. 433	75.8	3.66	15.5	7. 3		•
. 449	79.4	4.07	14.2		91 0	
. 662	84. 6	4, 14	17 3		91.4	**
414	59 4	3, 05	12.1	7. 7	91 6	15
622	59 4	3, 05	12.1			**
. 607	49. •	2.55	10 2		91.0	**
. 197	49.6	2.55	10, 2			
. 540	19 4	2.03	8.04		91.6	
. 576	39.4	2.01	8 04			**
520	36. 2	1.56	6, 16			**
. 519	10.2	1.56	4, 14			•

1-1 4"-Diameter Hemisphere

•,	<u>v.</u>	R. v 10-1	<u>v.</u> ¥	Dissolved Air Contest P P M	Tomp.	Lun
191	19.4	1 49	. 72	7 3	67 0	41
571	19.6	1.69	4 72			
411	20 4	2 24	e 25			•
441	20.4	1, 14	s 25			**
451	20 6	2 24	6 25			•
181	24 4	2 47	7 45			•
	10 į	1 10	9, 14			
612	14 9	1.81	18 7			-
141	19 4	4 31	12 4			-
661	19. 6	4 31	12 0			-
. 653	66 7	4. 93	11 1			•
670	49. •	3.45	19.2			-
472	14 1		10 0		67 2	-
494	99 1	6.56	10 1	1, 7	87.4	•
444	41 4	+, 94	19.9			-
. 701	64. 9	7, 74	22 4		00 1	-
719	75 7	8 41	21.2		86. 1	•
711	79 3	0 07	14 1		80.0	-
. 714	84 7	* 12	25 5		89.4	•

		Indiana He	<u> </u>	<u>-</u> •				1/2	**Diameter O. B.	I. S-Colabre O L. Test No.	pro - August 14 35	. 1952	
•,	<u>v.</u>	B 10-5	v. 44	Discolved Air Control P. P. M.	Tomp.	<u> </u>	Lime	<u>•,</u>	<u>v.</u>	<u>v.</u> √4	R _e = 10 ⁻⁵		Content Corrected
744	84.7	14.93	34.6	8.4	89. 6	10	1330					4.0	7.6
. 723	84. 7	14.93	34. 6				1405					3.6	7.1
. 723	84.7	16 93	34. 6			-	1414	. 191	42.9	8. 76	2.39		
. 704	75.0	25.27	30, 9			-	1416	. 191	42. 9	8, 76	2. 39		
. 69 1	75.8	15. 27	30.9			- (1423	. 193	44.5	9.48	2.56		
. 791	44.9	11.00	24. 4		90.0	-	1423	. 193	44.5	7.48	2.58		
. 70 3	64. 9	13.09	26. 4				1430	. 202	50.5	10. 3	2.81		
409	55 2	11.05	22.5		89. 3	-	1430	. 202	50.5	10. 3	2.01		
. 676	55 2	11.05	22.5				1433	. 212	54. 6	11.1	3. 04		
. 644	44. 0	4.16	18. 1			• .	1434	. 216	54. 6	11.1	3. 64		
70	44. B	8.14	10.3			-	1438	. 226	59.6	32. 2	3. 31		
+14	35. 0	7.61	14. 3			-	1440	. 223	59. 6	12. 2	3, 31		
655	15. 0	7.01	14. 3			-	1442	. 229	64.5	13.2	3.59		
391	24.5	4,94	10 0		90. 2	-	1444	. 228	64.5	13. 2	3, 59		
. 661	24.5	4, 96	10.0			-	1446	. 234	69.6	14. 2	3.67		
417	15.5	1, 14	4. 36				1448	. 238	69.6	14. 2	3, 67		
319	19.9	1.14	6.34			-	1450	. 230	74.4	15. 2	4 13		
	• • • •					- 1	1452	. 233	74.4	15.2	4.13		
						- 1	1455	. 234	79.5	16. 2	4.42		
							1455	258	79.5	16.2	4.42		
Do to	e from R. W leaunry 195	. Kermees ² . Ti	h: 4 6 4 6	taken during the	period April	1951	1519					4.5	8.3
								1**	Diameter 1 O.R.L	. 5-Calibre Ogi Test No., 71	ve - August 14,	1952	
							Time	•,	<u>v.</u>	v. √4	R _a = 10 ⁻⁵	Air C	Corrected
							0837					5.2	8.1
						ļ	1102					4, 6	7, 6
						Ì	1105	. 223	50.6	14.6	5.52		
						Į	1196	. 227	50.8	14.6	5.52		
							1109	. 235	55.0	15. 9	5,97		
						ł	1110	. 211	55.0	15.9	5.97		
						1							

						1.	"-Diameter 1. O.R.L	5-Calibre Ogt Test No. 71	ve - August 14, 4	1952	
					Time	•,	<u> </u>	v. v4	R. u 10-5	Air (As Measured	Content Corrected
					0837					5.2	8.1
					1102					4.6	7, 8
					1105	. 223	50.6	14.6	5.52		
					1196	. 227	50.8	14.6	5.52		
					1109	. 235	55.0	15. 9	5.97		
					1110	. 211	55.0	15. 9	5.97		
			misphere - Octol	ber 16, 1952	1112	. 240	59. 4	17. 1	6.44		
		<u>C</u>	. i. T. Toot		1114	. 238	59.4	17.1	6.44		
				Disselved	1115	. 247	64.6	18. 6	7.01		
_	v	R. a 10-5	v 47	Air Content	1116	. 250	64.4	18.6	7, 01		
	<u> </u>		V. 14	<u>P. P. M.</u>	1119	. 251	69.8	20. 1	7, 56		
+44	61.4	24. 6	37.8	Av 9.0	1120	. 251	49.8	20. 1	7.56		
74 7	45.1	26 6	37.4		1322	. 257	75.6	21.8	0.29		
703	45. 4	24. 7	37,8		1124	. 259	75. 6	21.8	8.29		
705	59. 0	22.4	34. 6		1126	. 242	79.4	23. 0	8.42		
. 76 1	99, 9	32.4	34. 6		1127	. 242	79.6	23. 0	0.62		
. 11+	94, 1	20.4	31 4		1131	226	44.8	12. 9	4.85		
.716	56, 1	29 4	11.2		1132	. 222	44.8	12.9	4.65		
940	14. 4	20. 5	31.4		1136	. 215	40.6	11.7	4.40		
. 700	54,4	20 5	11.4		1137	. 215	40.4	11.7	4.40		
796	47.9	10 1	27. 6		1164					4.5	7. 0
161	48. 2	10. 6	27. 0								
.77	41 #	16.7	25, 1								
160	41. 8	16. 5	24. 1		[
400	41 4	14. 4	25.3								
+44	10 1	14.4	22.0				I*-Diameter	l S-Calibre (R.L. Teel N	Ogive - August 1 5. 733	3, 1952	
. 471	16. 6	14 4	21.9		j						
***	12 8	12.)	18.9				٧	v.√4	R. x 10 -5	Air C	
***	32. 0	12.4	10, 4		Time	<u>•' </u>	<u> </u>			As Measured	Corrected

. 78 5	14, 1	22 4	34, 6	1127	42	79.4	23.0	0.62		
*14	94, 1	20.4	31.4	1131	24	44.8	12.9	4.85		
. 716	54, 1	29 4	11.2	1 1132	22	44.8	12.9	4.85		
	94.4	20. 5	31.4	1136	15	40, 6	11.7	4.40		
. 700	54.4	20 5	11.4	1137	115	40. 6	11.7	4.40		
796	47.9	10 1	27.6	1144					4.5	7. 8
104	48. 2	10. 6	27. 0							
.77	41 #	16.7	45, 1							
140	41. 8	16.5	24. 3							
100	41 4	14. 5	25, 3							
+44	10 1	14.4	22.0				l 5-Calibre R.L. Teel N	Ogive - August 11	. 1952	
. 471	18. 6	14 4	21. ♥					<u> </u>		
***	12 8	12. 3	18. 9	_		٧	<u>v.√4</u>	R _a = 10 - 5	Air Ce	
***	32. 0	12.4	10, ♦	Time	1	<u> </u>		•	As Measured	Corrected
. 444	14 7	12 1	10.9	1907					4. 3	8.4
***	27 4	10.4	19.6	1919	140	45 0	18 4	10.00		
6 39	27.4	10.4	19.6	1920	45	45.6	18.4	10.00		
. 🕶 1	47. 5	10.0	19 0	1920	167	50, 1	20.4	11. 2		
-34	21.0	8, 1	12.6	1991 .	142	50 1	20.4	11.2		
. 444	21 0	0. 3	14 4	1936	149	55.0	22.4	12. 1		
444	21.4	0. 1	12.6	1941 .1	164	95. 0	22.4	12.)		
. 645	10.9	6.3	• •	1949	175	19 8	24. 4	13.4		
. 644	14.1	6, 3	9, 9	1947 .	184	99.0	24. 4	11.4		
. 866	14.6	4. I	4.1	1949	179	64.6	24. 4	14. 4		
1.70	71.0	27 .	41.0	1991	175	64.6	26.4	14.4		
•••	71.0	27.0	41.4	1941	r#1	47 1	28 1	19.7		
494	71 0	27. 9	41 *	1999	191	44 1	28, 9	19.7		
719	76. 6	30, 2	44.1	1990	10 1	74.6	30. 5	16.00		
. 111	10.4	30. ž	44.1	1999 .	199	74. 8	30, 5	16.80		
. 710	76. 4	16, 8	44.1	1002 -	110	79 1	32. 4	17.00	•	
7 80	76.4	36 3	94.1	140) .	114	79 1	12. 4	17.00		
. 786	70.6	36, 3	44.1	1630					4.1	7.6

			1.5-Calibre (Tesis Mes. 7)	Dgrve - August 1 1 and 732	3, 1952			1"Diameter 1, 5-Calibre Ogive - October 8-14, 1952 C.L.T. Test				
e et No			• Jā	R. m 20.5	Air Ce							
- Ber	<u>.</u>	<u>*•</u>	<u>v.√4</u>		As Measured	Corrected	<u> •</u> ,	<u>v.</u>	R _e = 10 ⁻⁵	V. 44	Air Çentent	
•					4. 6	7.0	. 216	29. 7	2. 72	0.54		
29 42	. 310 300	49. 9 49. 9	28. 6 28. 0	21 1 21 1		1	, 221	29. 7	2.72	8.56		
14	. 312	99. 4	31. 0	21. 3		1	. 219	34. 6	3.17	1. 16		
04	. 314	55. 2	31. 6	23. 3			. 219	34. 7	3.10	10.0		
20					4.3	7.6	. 227 . 225	39, 7 39, 7	3. 64 3. 13	11.4 11.4		
24	. 317	59 6	14.4	25. 2			. 232	44. 6	4. 09	12.9		
**1	. 323	59.6	34. 4	25.2		!	. 232	44, 6	4.08	12.9		
34	. 324	64. 7	37, 3	27. 3		i.	. 240	49. 6	4.54	14. 3		
141 155	. 329	64.7 70.6	17. 5 40. 4	27, 3 29, 5		1	. 245	49.8	4.56	14.4		
**	110	70.0	40.4	29.5			. 244	49, 6	4,55	14, 3		
16	.,,		***	• •	3.9	7,5	, 243	54. 7	5.01	15.0		
112	334	74, 7	43.1	31.5		1	, 243	54. 5	4, 99	15.7		
120	334	74 7	63-1	31. 5		į.	, 24 0 , 246	59. 3 59. 5	5, 4) 5, 44	17.1 17.2		
10	. 130	79. 1	45 5	33.5			. 254	64, 7	5.92	16.7		
14	. 114	79. 3	45.6	33. 5			, 251	64, 7	5. 92	10.7		
10					3. 6	7. 3	, 248	65. 1	5, 96	10.0		
44	. 296 293	47. 6 69. 6	26. 7 28. 7	23.0 21.0		t	. 255	r5.1	5, 96	10.0		
**	477	•• •	. · ·	2, 0		ŀ	. 252	65. 1	5, 96	10.0	7.4 4	
et No	712					i	. 207	97.4	8.92	28.1		
14					4.3	7. 9	. 201 . 277	97. 4 90. 2	0. 92 0. 26	28, 1 26, 0		
10	286	45 9	26.5	19. 4	4. ,	1.7	. 277	90.2	0. 26	26.0		
40	276	45. 9	24.5	19. 4			. 276	65, 3	7. 81	24.6		
44	284	45, 9	26.5	19. 4			. 276	85, 3	7.81	24.6		
9.7					4.0	7.7	. 274	60. 2	7, 35	23.2		
1 4					4.0	7.7	. 274	80, 2	7. 35	23.2		
-							. 274	75. 3	6,90	21.7		
	1.2"-0	nameter 1.5	Calibre Onive	- October 15, 11	952		, 276	75. 3	6, 90	21,7		
			C. 1. 7 Tess			†	. 269	70, 2 70, 2	n, 43 4, 43	20. 3 20, 1	6.2	
						i.	, 270 , 263	65,4	5, 99	18.9		
•.		. · · ·	D = 10 ⁻⁵	٧,٧٩	Air Content		. 265	65.4	5, 99	18.9		
2+4		100 4	4. 75	20.5	8. 5 P. I	Р. М.	, 265	60. 2	5, 52	17.4		
265		100.4	4, 75	20.5		i	. 210	30.0	2, 75	4, 65		
244		100, 4	4.75	20 5		į	. 231	29. 9	2.74	8, 62		
257		90 2	4, 26	18.4			. 256	40, 1	3, 67	11.6		
245		90 2	4, 24	10.4			. 249	40,0	3.67	11.5		
105		* 0 /	4, 26	16.4			. 226	24.4	2, 26	7, 04	11.0	
250		65. 2 65. 2	4, 03	17.4 17.4		Ī	. 217 , 218	29. 0 28. 9	2,68 2,67	8, 14 8, 14		
264		05.2	4,03	17.4			. 224	10.0	2, 78	8.65		
250		65. 2	4, 03	17.4		1	. 220	29.9	2.77	8. +3		
255		80.1	3, 79	16.1			. 226	35, 1	3, 24	10.1		
110		80 1	3, 79	16.3		ř	. 212	34, 9	1, 22	10.1		
144		80 1	3, 79	16, 1	•		. 214	40.0	3. 70	11.5		
147		75 4	3, 56	15.1			. 215	40.1	3, 71	11.6		
111		19.3	3, 56	19 3			. 244	45. 1	4, 17	11.0		
148		75 A 70 1	1, 96 1, 18	15.1 14.3			. 244	44, 9 45, 0	4, 15 4, 16	13.0 13.0		
24 4 242		70.1	3, 14 3 12	14.1			. 240 . 255	45. 0 50. 1	4, 63	14.4		
:4.		10. 1	3 32	14.3			. 258	30.0	4.62	14.4		
114		65, 1	1.00	43, 1			, 297	31.0	5.90	15.9		
14 :		65, 1	3, 40	11.1			. 254	45 0	5.06	15.9		
141		65 1	1, 46	13.1		·	. 257	60. 3	5.54	17.3		
2 10		39 B	2,81	14,4		Į.	. 244	60. i	5, 56	17. 1		
227		10, 7	2.04	12.2			. 261	60, 1	5.55	17, 1	12, 3	
124		19,9	2.01	12 2		:	. 284	69. 2	6, 15	10.0	**	
111		99 I	2 61 2, 61	11 1			, 281 , 279	65, 2 65, 2	6. 15 6. 15	10. 0 18. 8	• "	
110		10, 0	2, 91	10 1		İ	. 285	70, 0	6, 61	20, 2		
110		10.0	2. 17	10.4		\	. 201	78, 0	6.61	10.1		
110		10, 1	2. 37	10.4			. 279	79.0	4.41	20. 2	-	
199		64, 8	4, 14	9.14		!	. 276	75.4	7, 10	21.7	6.5	
247		44. 7	4. 12	9 10		;	, 274	75. 4	7. 10	21.7		
104		44, 9	2. 12	9. 10		1	. 276	75. 2	7. 10	21.7	**	
811		10. T	1 00	8, 14			, 276	84, 2	7, 57	25.2	-	
196		46. 1	1.89	0,16			. 271	90. 2	7, 97	23.2	•	
197		44, 9	1 04	0 10		Ī	. 261	64. <u>2</u>	7, 57	23, 2	-	
100		34. 5	1.44	* 10		ì	. 176	65.2	0.00	24. 6	47	
189		34. 8	1.66	7, 10								
. 214		79 1	1 41	6 10								
179		29.4	1.41									
170		29, 6	1.41	6. 46								

1 * Disease for	1.5-Calibre Ogire - October (J- 14,	1952
	C. L. T. Tool (Continued)		

<u>.</u>	<u>v.</u>	B = 10-5	v.14	Ale Contoct
. 200	95. 1	8,94	34.6	0.1
. 101	90. 1	9. 33	28.6	
. 291	96, 9	9, 33	28.6	-
. 290	90.9	9, 33	20.6	•
. 294	90.6	9, 28	28. 5	
. 296	96. 6	9. 26	28. 5	•
. 273	90, 1	8. 50	26. 0	•
. 274	90, 3	8. 50	26, 0	•
. 273	90.3	8.50	24.0	*
. 212	34.7	2. 12	7.13	•
. 22)	24.1	2. 32	7. 13	•
. 204	25. 1	2, 36	7, 24	-
. 211	30, €	2.62	8. 65	-
. 229	30, 6	2.62	8. 65	-
. 220	30.0	2.82	8. 65	•
. 236	39.1	3, 30	10, 1	-
. 234	35. 3	3. 31	10.1	=
. 241	40.0	3, 77	11.5	
. 241	44.2	3, 79	11.6	••
. 441	40. 2	3. 78	11.6	×
249	45. 2	4, 25	13.0	-
. 254	45. 1	4. 25	13.0	-
. 162	49.8	4.69	14.4	=
. 240	50. 2	4, 73	14.5	**
. 244	50.1	4, 72	14, 5	•
. 259	55.1	9.19	15.9	
. 259	55, 2	5.19	15.9	•

2"-Diameter 1.5-Calibre Ogive - October 15, 1912 C.J.T. Teel (continued)

<u>•1</u>	<u>*</u>	B ₀ = 10 ⁻⁹	V. 14	Air Content
. 232	30, 0	5.71	12. 3	0.6
. 239	25, 1	4.76	10.2	-
. 234	25. 0	4.76	10.2	-
. 244	25. 0	4.76	10.2	
. 250	19.5	3.71	7.96	•
. 229	19. 6	5. 73	8. 00	•

2"-Diameter 1. 5-Calibre Ogive - October 15, 1992

5, 61

5. 64 5. 65 17. 2 17. 3 17. 1

<u>v.</u>	R _p = 10 ⁻⁵	V. 44	Air Contes
100.)	10.91	42.1	8. 6
100, 3		42.1	•
100. 3		42.1	-
90.2	17, 00	36.8	-
90. 1	17,00	34. 0	•
90. 2	17.00	36.8	
84. 7	14, 00	34.4	
84, 9	16.00	34. 6	-
84. 9	14, 00	34. 6	=
80, 1	19. 1	12.6	-
80, 1	19.1	32. 0	-
80. 3	19. 1	32.6	-
79. 8	14. 2	30, 7	•
79, 2	14.4	30, 7	•
75. 2	14.2	30. 7	•
70. 2	19. 2	28. 6	•
10 2	13. 2	28. 6	•
70.1	13, 2	20. 6	•
66. 2	12.4	26.6	•
69. 2	12.4	24. 6	•
4 1	18.4	86.6	•
66, j	11.4	24.6	-
99 8	11.4	34,4	•
29, 6	11.4	34. 4	•
M I	10, 1	22. 9	•
94, 1	10. 5	22.1	•
94. 9	10. 4	24. 4	•
49. 8	1.40	20 4	•
90,0	9. M	30, 4	•
64. 6	0, 14	18. 4	•
66. 6	8, 96	10. 4	•
49. 8	7, 97	16. 3	•
60, 0	7. 61	14, 1	•
56. 0	6.66	14. 1	•
14.1	4.64	14. 1	•
20. 6	9, 71	14, 1	

4"-Diameter 1.5-Calibre Ogive - October 16, 1952

	C.I. T. Teel			
<u>•1</u>	<u>v.</u>	R. = 10-5	v 14	Air Cont
. 324	67.0	25. 4	30. 6	1.0
. 323	67. 0	25.4	30. 6	
. 331	67.0	25.2	38. 6	
. 325	62. 0	23.4	35. 6	
. 319	61.6	23. 3	35. 6	
. 134	61.4	29. 2	35.4	
. 319	61.6	23. 3	35. 6	
. 331	94. 1	21.2	31.0	
. 330	54.0	21.2	31.7	
. 330	56. 0	21.2	31.7	
. 121	90.5	17. 0	29.2	
. 122	50.4	19. ●	29. 1	
. 315	\$0.3	19. 0	29.0	
. 120	50.5	19. 0	29, 2	
. 307	44. 9	17.0	25.9	
. 104	49. 1	17.0	26. 0	
. 294	44, 7	16. 9	25.0	
, 209	44. 0	16. 🕈	21.0	
. 296	44. 0	16.9	25.8	
. 315	44. 8	16. 9	25.0	
. 296	39. 1	14.9	22.6	
. 364	34. 2	14. 9	22.6	
. 296	39. Z	14.9	22. 6	
. 294	39. 2	14. 9	23.6	
. 276	33. T	12.7	19.4	
. 304	33. 7	14.7	19.4	
, 464	13.4	12.7	19.4	
. 203	33. 6	12.7	19.4	
. 299	26.2	10, 7	16. 3	
. 204	20.1	10, 6	16, 2	
. 260	26.1	10.6	16.2	
. 277	26. 2	10, 7	16. 3	
. 342	26.0	10.6	16.2	
. 204	21.0	6.3	12,6	
. 244	22. I	8.3	12.6	
. 800	24. 1	6.1	12.0	

272

. 264

. 269

19, 6

59, 9

60.0

References

- Parkin, Blaine R. Scale Effects in Cavitating Flow - A Preliminary Report. Report 21-7, Hydrodynamics Laboratory, CIT, December 28, 1951.
- Kermeen, R. W. Some Observations of Cavitation on Hemispherical-Head Models. Report E-35.1, Hydrodynamics Laboratory, CIT, June 1952.
- Parkin, Blaine R. Scale Effects in Cavitating Flow. Report 21-8, Hydrodynamics Laboratory, CIT, July 31, 1952.
- 4. Brown, F. Barton. Air Resorption in Water Tunnels. Report N-62, Hydrodynamics Laboratory, CIT, March 1949.
- Power, R. B., Robertson, J. M., Ross, Donald, and Water Tunnel staff. Garfield Thomas Water Tunnel Operation. ORL report NOrd 7958-211, May 1, 1951.
- Rouse, H., McNown, J. S., and Hsu, E. Summary of Cavitation Tests on a Systematic

Series of Round Torpedo Heads. Final Report - Contract OEMsr 1353 (Declassified), Iowa Institute of Hydraulic Research, State University of Iowa, Iowa City, May 31, 1945, or

Rouse, H., and McNown, J. S. Cavitation and Pressure Distribution - Head Forms at Zero Angle of Yaw. Bulletin 32, State University of Iowa, Studies in Engineering.

- Rouse, H. Engineering Hydraulics. John Wiley and Sons, 1950, page 1011.
- McNown, J. S., and Lamb, C. A. Cavitation Tests on a Systematic Series of Torpedo Heads - Effect of Model Size. Report 14, Iowa Institute of Hydraulic Research, State University of Iowa, Iowa City, April 1947.
- Lock, C. N. H., and Johansen, F. C. Wind-Tunnel Interference on Streamline Bodies. R and M 1451, Aeronautical Research Committee, 1931.