$20250207~{\rm MATH} 4302~{\rm NOTE}~2[1]$

Author: Be $\sqrt{-1}$ maginative, and nothing will be $\frac{d}{dx}$ ifficult!

Email: u3612704@connect.hku.hk;

Phone: +852 5693 2134; +86 19921823546;

Contents

1	Field of Fractions	3
2	Local Ring	7
3	Localization of Ring	8

1 Field of Fractions

Example 1.1. We have the following matrix identity:

$$\begin{pmatrix} p' & -q' \\ 0 & 1 \end{pmatrix} \begin{pmatrix} q & q' \\ p & p' \end{pmatrix} = \begin{pmatrix} p'q - pq' & 0 \\ p & p' \end{pmatrix}$$

Hence, we have the following logical equivalence when $p, p' \neq 0$:

$$\operatorname{Rank} \begin{pmatrix} q & q' \\ p & p' \end{pmatrix} = 1 \iff p'q - pq' = 0$$

Proposition 1.2. Let R be an integral domain.

The following relation on $R \times (R \setminus \{0\})$ is an equivalence relation:

$$\frac{q}{p} = \frac{q'}{p'} \iff \operatorname{Rank} \begin{pmatrix} q & q' \\ p & p' \end{pmatrix} = 1$$

Proof. We may divide our proof into three parts.

Part 1: The following equation suggests that this relation is reflexive:

$$\begin{pmatrix} q & 0 \\ p & 0 \end{pmatrix} = \begin{pmatrix} q & q \\ p & p \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

Part 2: The following equation suggests that this relation is symmetric:

$$\begin{pmatrix} q' & q \\ p' & p \end{pmatrix} = \begin{pmatrix} q & q' \\ p & p' \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Part 3: The following equation suggests that this relation is transitive:

$$p'(p''q-pq'')=p(p''q'-p'q'')+p''(p'q-pq'), \text{where } p'\neq 0$$

Quod. Erat. Demonstrandum.

Example 1.3. We have the following matrix identity:

$$\begin{pmatrix} |P'|I & -Q'\underline{P'} \\ O & I \end{pmatrix} \begin{pmatrix} Q & Q' \\ P & P' \end{pmatrix} \begin{pmatrix} \underline{P} & O \\ O & \underline{P'} \end{pmatrix} = \begin{pmatrix} |P'|Q\underline{P} - |P|Q'\underline{P'} & O \\ |P|I & |P'|I \end{pmatrix}$$

Hence, we have the following logical equivalence when $|P|, |P'| \neq 0$:

$$\operatorname{Rank} \begin{pmatrix} Q & Q' \\ P & P' \end{pmatrix} = n \iff |P'|Q\underline{P} - |P|Q'\underline{P}' = O$$

Proposition 1.4. Let R be an integral domain.

The following relation on $M_{n,n}(R) \times M_{n,n}^n(R)$ is an equivalence relation:

$$\frac{Q}{P} = \frac{Q'}{P'} \iff \operatorname{Rank} \begin{pmatrix} Q & Q' \\ P & P' \end{pmatrix} = n$$

Proof. We may divide our proof into three parts.

Part 1: The following equation suggests that this relation is reflexive:

$$\begin{pmatrix} Q & O \\ P & O \end{pmatrix} = \begin{pmatrix} Q & Q \\ P & P \end{pmatrix} \begin{pmatrix} I & -I \\ O & I \end{pmatrix}$$

Part 2: The following equation suggests that this relation is symmetric:

$$\begin{pmatrix} Q' & Q \\ P' & P \end{pmatrix} = \begin{pmatrix} Q & Q' \\ P & P' \end{pmatrix} \begin{pmatrix} O & I \\ I & O \end{pmatrix}$$

Part 3: The following equation suggests that this relation is transitive:

$$|P'|(|P''|Q\underline{P} - |P|Q''\underline{P}'') = |P|(|P''|Q'\underline{P}' - |P'|Q''\underline{P}'') + |P''|(|P'|QP - |P|Q'P'), \text{ where } |P'| \neq 0$$

Quod. Erat. Demonstrandum.

Proposition 1.5. The quotient Frac R of $R \times (R \setminus \{0\})$ under $\frac{q}{p} = \frac{q'}{p'}$ is a field.

Proof. We may divide our proof into two parts.

Part 1: Define addition as $\frac{q}{p} + \frac{q'}{p'} = \frac{p'q + pq'}{pp'}$. This operation is well-defined:

$$p_2p_2'(p_1'q_1 + p_1q_1') - p_1p_1'(p_2'q_2 + p_2q_2') = p_1'p_2'(p_2q_1 - p_1q_2) + p_1p_2(p_2'q_1' - p_1'q_2') = 0$$

This operation satisfies four axioms:

$$\begin{split} \left(\frac{q}{p} + \frac{q'}{p'}\right) + \frac{q''}{p''} &= \frac{p'p''q + p''pq' + pp'q''}{pp'p''} = \frac{q}{p} + \left(\frac{q'}{p'} + \frac{q''}{p''}\right) \\ \frac{q}{p} + \frac{q'}{p'} &= \frac{p'q + pq'}{pp'} = \frac{q'}{p'} + \frac{q}{p} \\ \frac{0}{1} + \frac{q}{p} &= \frac{p0 + 1q}{1p} = \frac{q}{p} \\ \frac{-q}{p} + \frac{q}{p} &= \frac{-pq + pq}{p^2} = \frac{0}{1} \end{split}$$

Part 2: Define multiplication as $\frac{q}{p}\frac{q'}{p'} = \frac{qq'}{pp'}$. This operation is well-defined:

$$(p_2p_2')(q_1q_1') = (p_2q_1)(p_2'q_1') = (p_1q_2)(p_1'q_2') = (p_1p_1')(q_2q_2')$$

This operation satisfies five axioms:

$$\left(\frac{q}{p}\frac{q'}{p'}\right)\frac{q''}{p''} = \frac{qq'q''}{pp'p''} = \frac{q}{p}\left(\frac{q'}{p'}\frac{q''}{p''}\right)$$

$$\frac{q}{p}\frac{q'}{p'} = \frac{q'q}{p'p} = \frac{q'}{p'}\frac{q}{p}$$

$$\frac{1}{1}\frac{q}{p} = \frac{1q}{1p} = \frac{q}{p}$$

$$\frac{p}{q}\frac{q}{p} = \frac{qp}{pq} = \frac{1}{1}$$

$$\frac{u}{l}\left(\frac{q}{p} + \frac{q'}{p'}\right) = \frac{up'q + upq'}{lpp'} = \frac{u}{l}\frac{q}{p} + \frac{u}{l}\frac{q'}{p'}$$

Hence, Frac R is a field. Quod. Erat. Demonstrandum.

Proposition 1.6. The quotient $\operatorname{Frac}_n R$ of $M_{n,n}(R) \times M_{n,n}^n(R)$ under $\frac{Q}{P} = \frac{Q'}{P'}$ is a ring, where every nonzero element is either a zero divisor or a unit.

Proof. We may divide our proof into three parts.

Part 1: Define addition as $\frac{Q}{P} + \frac{Q'}{P'} = \frac{|P'|QP + |P|Q'P'}{|P||P'|I}$. This operation is well-defined:

$$|P_2||P_2'|I(|P_1'|Q_1\underline{P_1} + |P_1|Q_1'\underline{P_1'}) - |P_1||P_1'|I(|P_2'|Q_2\underline{P_2} + |P_2|Q_2'\underline{P_2'}) =$$

$$|P_1'||P_2'|I(|P_2|Q_1\underline{P_1} - |P_1|Q_2\underline{P_2}) + |P_1||P_2|I(|P_2'|Q_1'P_1' - |P_1'|Q_2'P_2') = O$$

This operation satisfies four axioms:

$$\begin{split} \left(\frac{Q}{P} + \frac{Q'}{P'}\right) + \frac{Q''}{P''} &= \frac{|P'||P''|Q\underline{P} + |P''||P|Q'\underline{P'} + |P||P'|Q''\underline{P''}}{|P||P'||P''|} = \frac{Q}{P} + \left(\frac{Q'}{P'} + \frac{Q''}{P''}\right) \\ \frac{Q}{P} + \frac{Q'}{P'} &= \frac{|P'|Q\underline{P} + |P|Q'\underline{P'}}{|P||P'|I} = \frac{Q'}{P'} + \frac{Q}{P} \\ \frac{O}{I} + \frac{Q}{P} &= \frac{|P|O\underline{I} + |I|Q\underline{P}}{|I||P|I} = \frac{Q}{P} \\ \frac{-Q}{P} + \frac{Q}{P} &= \frac{-|P|Q\underline{P} + |P|Q\underline{P}}{|P|^2I} = \frac{O}{I} \end{split}$$

Part 2: Define multiplication as $\frac{Q}{P}\frac{Q'}{P'} = \frac{QPQ'P'}{|P||P'|I}$. This operation is well-defined:

$$\begin{split} \left| |P_2||P_2'|I| \left(Q_1 \underline{P_1} Q_1' \underline{P_1'} \right) \underline{|P_1||P_1'|I} &= \left(|P_1||P_1'||P_2||P_2'| \right)^{n-1} \left(|P_2|Q_1\underline{P_1} \right) \left(|P_2'|Q_1'\underline{P_1'} \right) \\ &= \left(|P_1||P_1'||P_2||P_2'| \right)^{n-1} \left(|P_1|Q_2\underline{P_2} \right) \left(|P_1'|Q_2'\underline{P_2'} \right) \\ &= \left| |P_1||P_1'|I \left| \left(Q_2\underline{P_2} Q_2'\underline{P_2'} \right) \underline{|P_2||P_2'|I} \right. \end{split}$$

This operation satisfies four axioms:

$$\begin{split} \left(\frac{Q}{P}\frac{Q'}{P'}\right)\frac{Q''}{P''} &= \frac{Q\underline{P}Q'\underline{P}'Q''\underline{P}''}{|P||P'||P''|I} = \frac{Q}{P}\left(\frac{Q'}{P'}\frac{Q''}{P''}\right) \\ &= \frac{I}{I}\frac{Q}{P} = \frac{I\underline{I}Q\underline{P}}{|I||P|I} = \frac{Q}{P} \\ \frac{U}{L}\left(\frac{Q}{P} + \frac{Q'}{P'}\right) &= \frac{|P'|U\underline{L}Q\underline{P} + |P|U\underline{L}Q'\underline{P}'}{|L||P||P'|I} = \frac{U}{L}\frac{Q}{P} + \frac{U}{L}\frac{Q'}{P'} \\ \left(\frac{Q}{P} + \frac{Q'}{P'}\right)\frac{U}{L} &= \frac{|P'|Q\underline{P}U\underline{L} + |P|Q'\underline{P}'U\underline{L}}{|P||P'||L|I} = \frac{Q}{P}\frac{U}{L} + \frac{Q'}{P'}\frac{U}{L} \end{split}$$

Part 3: Assume that the nonzero element $\frac{Q}{P}$ is not a zero divisor. This implies $Q \in M_{n,n}^n(R)$, so $\frac{Q}{P}$ has an multiplicative inverse $\frac{P}{Q}$:

$$\frac{P}{Q}\frac{Q}{P} = \frac{P\underline{Q}Q\underline{P}}{|Q||P|I} = \frac{I}{I}$$

Quod. Erat. Demonstrandum.

Proposition 1.7. Let R be an integral domain.

All field F containing R contains Frac R.

Proof. F contains R means there exists an embedding $i: R \to F$. Define a map by:

$$I: \operatorname{Frac} R \to F, \frac{q}{p} \mapsto \frac{i(q)}{i(p)}$$

- (1) As i is an embedding, I is well-defined and injective.
- (2) As i is an embedding, I is a ring homomorphism.

Hence, I is an embedding, so F contains Frac R. Quod. Erat. Demonstrandum.

Proposition 1.8. Let R be an integral domain, and $F = \operatorname{Frac} R$. Frac R[x] is isomorphic to Frac F[x], namely, the field of Laurent polynomials $F[x, x^{-1}]$.

Proof. Define a map by:

$$I: \operatorname{Frac} R[x] \to \operatorname{Frac} F[x], \frac{\sum_{j=0}^{n} q_j x^j}{\sum_{j=0}^{m} p_j x^j} \mapsto \frac{\sum_{i=0}^{n} \frac{q_i}{1} x^i}{\sum_{j=0}^{m} \frac{p_j}{2} x^j}$$

- (1) For all element of Frac F[x], as there are finitely many terms upstairs and down-stairs, it is possible to reduce the fraction, which proves that I is surjective.
- (2) As $R \to F$, $a_i \mapsto \frac{a_i}{1}$ is an embedding, I is a field homomorphism, which is injective. This implies I is a field isomorphism. Quod. Erat. Demonstrandum.

Proposition 1.9.

Frac
$$\mathbb{Z}[x] \neq \text{Frac } \mathbb{Q}[x]$$

Proof. It suffices to prove that $e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!} \notin \text{Frac } \mathbb{Z}[\![x]\!]$. Assume to the contrary that:

$$\exists \sum_{n=0}^{+\infty} a_n x^n \in \mathbb{Z}[\![x]\!], \exists \sum_{n=0}^{+\infty} b_n x^n \in \mathbb{Z}[\![x]\!] \setminus \{0\}, \sum_{n=0}^{+\infty} a_n x^n = \sum_{n=0}^{+\infty} b_n x^n \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$

As $\sum_{n=0}^{+\infty} b_n x^n \neq 0$, there exists a unique $b_m \neq 0$ with minimal $m \geq 0$. As $b_m \neq 0$, there exists a positive number k, such that $k \nmid b_m$. Consider the coefficient a_{m+k} :

$$a_{m+k} = \frac{b_{m+k}}{0!} + \dots + \frac{b_{m+1}}{(k-1)!} + \frac{b_m}{k!} + \frac{b_{m-1}}{(k+1)!} + \dots + \frac{b_0}{(m+k)!}$$

$$(k-1)!a_{m+k}(\text{integer}) = (k-1)! \left[\frac{b_{m+k}}{0!} + \dots + \frac{b_{m+1}}{(k-1)!} \right] \text{ (integer)}$$

$$+ \frac{b_m}{k} \text{ (not integer)}$$

$$+ (k-1)! \left[\frac{b_{m-1}}{(k+1)!} + \dots + \frac{b_0}{(m+k)!} \right] \text{ (zero, as } m \text{ is minimal)}$$

This contradicts to \mathbb{Z} is a group. Quod. Erat. Demonstrandum.

2 Local Ring

Proposition 2.1. Let R be a commutative ring.

Any proper ideal \mathfrak{a} of R is contained in some maximal ideal \mathfrak{p} of \mathfrak{p} .

Proof. Let \mathcal{A} be the set of all proper ideal containing \mathfrak{a} .

As $\mathfrak{a} \in \mathcal{A}$, and every chain $\mathcal{C} \subseteq \mathcal{A}$ has an upper bound $\bigcup_{\mathfrak{c} \in \mathcal{C}} \mathfrak{c} \not\ni 1$,

 \mathcal{A} contains a maximal element. Quod. Erat. Demonstrandum.

Definition 2.2. (Local Ring)

Let R be a commutative ring.

If R has a unique maximal ideal, then R is local.

Example 2.3. Every field F has a unique maximal ideal $\{0\}$, so F is local.

Example 2.4. \mathbb{Z} has two maximal ideals $2\mathbb{Z}, 3\mathbb{Z}$, so \mathbb{Z} is not local.

Example 2.5. $\mathbb{Z}[i]$ has two maximal ideals $(1 \pm 2i)\mathbb{Z}[i]$, so $\mathbb{Z}[i]$ is not local.

Example 2.6. \mathbb{Z}_4 has a unique maximal ideal $2\mathbb{Z}_4$, so \mathbb{Z}_4 is local.

Example 2.7. \mathbb{Z}_6 has two maximal ideals $2\mathbb{Z}_6, 3\mathbb{Z}_6$, so \mathbb{Z}_6 is not local.

Example 2.8. Every polynomial ring F[x] over field F has two maximal ideals xF[x], (x+1)F[x], so F[x] is not local.

Proposition 2.9. Let R be a commutative ring.

R is local $\iff R \neq \{0\}$ and $R \setminus R^{\times}$ is an ideal of R

Proof. We may divide our proof into two parts.

"if" direction: Assume that $R \neq \{0\}$ and $R \setminus R^{\times}$ is an ideal of R.

As $R \neq \{0\}$, $R \setminus R^{\times}$ is a nonempty set containing all proper ideals of R.

As $R \setminus R^{\times}$ is an ideal, it is the unique maximal ideal of R, so R is local.

"only if" direction: Assume that R is local.

As R has at least one maximal ideal, $R \neq \{0\}$.

As R has at most one maximal ideal, this ideal is $R \setminus R^{\times}$.

Quod. Erat. Demonstrandum.

Proposition 2.10. Let R be an integral domain, but not a field. R is a local principal ideal domain iff for some nonzero, nonunit element r, $R \setminus \{0\} = R^{\times} r^{\mathbb{Z}_{\geq 0}}$.

Proof. We may divide our proof into two parts.

"if" direction: Assume that for some nonzero, nonunit element $r, R \setminus \{0\} = R^{\times} r^{\mathbb{Z}_{\geq 0}}$.

Now $R \neq \{0\}$ and $R \setminus R^{\times} = \{0\} \cup R^{\times} r^{\mathbb{Z}_{\geq 0}} = Rr$ is an ideal of R.

"only if" direction: Assume that R is a local and principal ideal domain.

Take the generator r of $R \setminus R^{\times}$. For every $a \neq 0$, divide it by r whenever a is nonunit.

According to ascending chain property for ideals, this process terminates.

Hence, $r \in R^{\times} r^{\mathbb{Z}_{\geq 0}}$, so $R \setminus \{0\} = R^{\times} r^{\mathbb{Z}_{\geq 0}}$ as r is not a zero-divisor.

Quod. Erat. Demonstrandum.

Example 2.11. As $F[x] \setminus \{0\} = F[x] \times x^{\mathbb{Z}_{\geq 0}}$, every formal power series ring F[x] over field F is local.

3 Localization of Ring

Definition 3.1. (Multiplicative Subset)

Let R be an integral domain, and D be a subset of R.

If $0 \notin D$ and $D^2 \subseteq D$, then D is multiplicative.

Example 3.2. Let R be an integral domain, and r be a nonzero element of R.

- (1) If r is not a zero divisor, then its nonzero multiple $rR\setminus\{0\}$ is multiplicative.
- (2) If r is not a nilpotent, then its nonnegative power $r^{\mathbb{Z}_{\geq 0}}$ is multiplicative.

Definition 3.3. (Localization of Ring)

Let R be an integral domain, and D be a multiplicative subset of R. Define the localization $D^{-1}R$ of R at D as the quotient of $R \times D$ under $\frac{q}{p} \sim \frac{q'}{p'}$.

Example 3.4. Let R be an integral domain, and r be a nonzero element of R.

(1) If r is not a zero divisor, then define the localization of R at r as:

$$R_r = (rR \setminus \{0\})^{-1}R$$

(2) If r is not a nilpotent, then define the localization of R at r as:

$$R_r = r^{\mathbb{Z}_{\leq 0}} R$$

Example 3.5. Let R be an integral domain. The proper ideal \mathfrak{p} is prime iff \mathfrak{p}^c is multiplicative. In case that \mathfrak{p} is prime, define the localization of R at \mathfrak{p} as:

$$R_{\mathfrak{p}} = (\mathfrak{p}^c)^{-1}R$$

Theorem 3.6. (Production of Local Principal Ideal Domain)

Let R be a unique factorization domain with fraction field F.

If $D = (pR)^c$ for some prime element p, then R is a local principal ideal domain.

Proof. As $D^{-1}R\setminus\{0\}=(D^{-1}R)^{\times}p^{\mathbb{Z}_{\geq 0}},\ D^{-1}R$ is a local principal ideal domain. Quod. Erat. Demonstrandum.

References

 $[1]\,$ H. Ren, "Template for math notes," 2021.