Vorlesungsskript

LinA II* SoSe 24

LinA II* SoSe 24 Konrad Rösler

Inhaltsverzeichnis

1. Eigenwerte und Eigenvektoren	3
1.1. Definition und grundlegende Eigenschaften	3
1.2. Das charakteristische Polynom	7
2. Diagonalisierbarkeit und Normalform	
2.1. Diagonalisierbarkeit	16
2.2. Dualräume	22
2.3. Zyklische f -invariant Unterräume	25
2.4. Die Jordan-Normalform	30
3. Euklidische und unitäre Vektorräume	
3.1. Skalarprodukt und Normen	39
3.2. Winkel und Orthogonalität	44
3.3. Selbstadjungierte Abbildungen	
4. Affine Geometrie	
4.1. Operation einer Gruppe auf einer Menge	
4.2. Affine Räume	
4.3. Lagebeziehungen von affinen Unterräumen	62
4.4. Affine Abbildungen	

Definitionen

1.1: 1.2: 1.7: 1.10: 1.12: 1.17: 1.20:	Ligenwert und Eigenvektor Eigenwert und Eigenvektor Eigenraum Geometrische Vielfachheit Charakteristisches Polynom ähnliche Matrizen Algebraische Vielfachheit	4.4: 4.6: 4.9: 4.11: 4.12: 4.13: 4.16: 4.17:	 4.6: affiner Raum 4.9: affiner Raum von 4.11: Verbindungsvektor 4.12: Dimension affiner Räume 4.13: affiner Unterraum 4.16: Aufpunkt und Richtung 4.17: schwach
	2.	 4.19: Punkt, Gerade, Ebene 4.22: affine Hülle 4.28: affine Selbstabbildung, Fixpun 4.30: Translation 4.34: zentrisch 4.35: affin unabhängig 4.36: kollinear 	affine Hülle affine Selbstabbildung, Fixpunkt
2.1: 2.8: 2.9: 2.12: 2.15: 2.16: 2.17: 2.19: 2.20:	Diagonalisierbar Jordan Linearform, Dualraum duale Abbildung nilpotent vom Grad equation Bilinearform Grad von Krylov		34: zentrisch35: affin unabhängig
	3.		
3.1: 3.2: 3.3: 3.6: 3.9: 3.14: 3.16: 3.17: 3.22: 3.23: 3.27:	Sesquilinearform Skalarprodukt hermitesche Matrix Norm orthogonal Orthogonale und unitäre Matrizen orthogonale Abbildung linebreak adjungierter Endorphismus selbstadjungiert positiv definite Matrix		
4.1:	Wirkung einer Gruppe		

4.3:

Bahn von

Wiederholung:

K sei ein beliebiger Körper, V ein n-dimensionaler K-Vektorraum,

$$L(V, V) = \{ f : V \to V \mid f \text{ lin. Abbildung} \}$$

 $f\in L(V,V)$ heißt Endomorphismus. Ist $f\in L(V,V)$, so läßt sich f bezüglich einer Basis $B=\{v_1,...,v_n\}$ von V eindeutig durch eine Matrix

$$A_f^{B,B} = \left(a_{ij}\right)_{1 < i,j < n} \in K^{n,n}$$

Es gilt

$$f(v_j) = \sum_{i=1}^n a_{ij} v_i \qquad 1 \le j \le n$$

Abbildung

$$F:L(V,V)\to K^{n,n}$$

ist ein Isomorphismus.

Basiswechsel? Basen B, C von V

(siehe Lem. 5.27, LinA I*)

Eine zentrale Frage: Sei $f\in L(V,V)$, existiert eine Basis $B=\{v_1,...,v_n\}$ von V, so dass $A_f^{B,B}$ eine möglichst einfache Form besitzt?

z.B. Diagonalmatrix:

$$A_f^{B,B} = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix}$$

Wir werden:

• Endomorphismen charakterisieren, die sich durch eine Diagonalmatrix beschreiben lassen.

Wenn ja: Dann gilt $f(v_j) = \lambda_j v_j$

 $\Longrightarrow f$ ist eine Streckung von v_i um den Faktor λ_i .

• Die Jordan-Normalform herleiten.

LINA II* SOSE 24 Konrad Rösler

1. Eigenwerte und Eigenvektoren

Eigenwerte charakterisieren zentrale Eigenschaften linearer Abbildungen. Z.B.

- Lösbarkeit von linearen Gleichungssystemen
- Eigenschaften von physikalischen Systemen
 - \rightarrow gewöhnliche Differentialgleichungen
 - → Eigenschwingungen / Resonanzkatastrophe

Zerstörung einer Brücke über dem Fluß Maine / Milleanium-Bridge London

1.1. Definition und grundlegende Eigenschaften

Definition 1.1: Eigenwert und Eigenvektor (Endomorphismus)

Sei V ein K-Vektorraum. Ein Vektor $v \in V, v \neq 0_V$, heißt **Eigenvektor** von $f \in L(V,V)$, falls $\lambda \in K$ mit

$$f(v) = \lambda v$$

existiert. Der Skalar $\lambda \in K$ heißt der **Eigenwert** zum Eigenvektor $v \in V$.

Definition 1.2: Eigenwert und Eigenvektor (Matrix)

Sei K ein Körper und $n\in\mathbb{N}$. Ein Vektor $v\in K^n$, $v\neq 0_{K^n}$, heißt Eigenvektor von $A\in K^{n,n}$, falls $\lambda\in K$ mit

$$Av = \lambda v$$

existiert. Der Skalar $\lambda \in K$ heißt der Eigenwert zum Eigenvektor $v \in V.$

Bemerkungen:

- In Def 1.1 kann $\dim(V)=\infty$ sein. Dies ist für viele Definitionen/Aussagen in denen wir Endomorphismen betrachten, der Fall.
- Für $\dim(V) < \infty$ kann man jedes $f \in L(V, V)$ eindeutig mit einer Matrix A identifizieren. Dann: Def 1.2 ist Spezialfall von Def 1.1.

• Achtung: $0 \in K$ kann ein Eigenwert sein:

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 0 \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Der Nullvektor $0 \in V$ ist **nie** ein Eigenvektor.

Für $\dim(V) = 0$ besitzt f keinen Eigenvektor für $f \in L(V, V)$.

• Ist v Eigenvektor zum Eigenwert λ , so ist auch αv für jedes $\alpha \in K \setminus \{0\}$ ein Eigenvektor

$$f(\alpha v) = \alpha f(v) = \alpha \lambda v = \lambda(\alpha v)$$

Zentrale Frage dieses Kapitels:

Existens von Eigenwerten? Wenn sie existieren: Weitere Eigenschaften?

Beispiel 1.3: Sei $I\subset\mathbb{R}$ ein offenes Intervall und V der unendlichdimensionale Vektorraum der auf I beliebig oft differenzierbaren Funktionen. Ein Endomorphismus $f\in L(V,V)$ ist gegeben durch

$$f(\varphi) = \varphi' \qquad \forall \varphi \in V$$

Die Abbildung f hat jedes $\lambda \in \mathbb{R}$ als Eigenwert, da für $c \in \mathbb{R} \setminus \{0\}$ und die Funktion

$$\varphi(x) \coloneqq c \cdot e^{\lambda x} \ \neq \ 0_V \qquad \forall x \in I$$

gilt

$$f(\varphi(x)) = f(c \cdot e^{\lambda x}) = \lambda(ce^{\lambda x}) = \lambda \varphi(x)$$

Hier: $\varphi'(x) = f(\varphi)$ ist eine gewöhnliche Differentialgleichung.

Beispiel 1.4: Wir betrachten die lineare Abbildung $f: \mathbb{R}^2 \to \mathbb{R}^2$, welche durch

$$f\binom{x_1}{x_2} = \binom{x_2}{-x_1} = \binom{0}{-1} \binom{x_1}{x_2}$$

definiert ist. Sei x ein Eigenvektor, dann gilt

$$f\begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} x_2 \\ -x_1 \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\iff x_2 = \lambda x_1 \text{ und } -x_1 = \lambda x_2$$

O.B.d.A: $x_2 \neq 0$

D.h. f besitzt keinen Eigenwert/-vektor. Für $f:\mathbb{C}^2\to\mathbb{C}^2$ ändert sich dies! \Longrightarrow Die Wahl von K entscheidet!

Beispiel 1.5: Wieder $f: \mathbb{R}^2 \to \mathbb{R}^2$, diesmal

$$f\bigg(\binom{x_1}{x_2}\bigg) = \binom{2x_2}{2x_1} = \underbrace{\binom{0}{2} \binom{2}{2}}_{-\cdot A} \binom{x_1}{x_2}$$

 $\begin{array}{l} \text{Dann gilt für } v_1 = \binom{1}{0}, v_2 = \binom{1}{1}, v_3 = (-1,1) \text{ dass } f(v_1) = \binom{0}{2}, f(v_2) = \binom{2}{2} = 2 \cdot v_2 \\ \text{und } f(v_3) = \binom{2}{-2} = (-2) \cdot v_3. \end{array}$

Beobachtung: $\dim(V) = 2$

zwei Eigenwerte: 2, -2, es existieren keine Weiteren,

zwei Eigenvektoren: $v_2 = \binom{1}{1}, v_3 = \binom{-1}{1}$, sind linear unabhängig

Lemma 1.6: Es sei $f \in L(V, V)$ ein Endomorphismus. Eigenvektoren zu paarweise verschiedenen Eigenwerten von f sind linear unabhängig.

Beweis: Es seien $v_1,...,v_m$ Eigenvektoren zu den paarweise verschiedenen Eigenwerten $\lambda_1,...,\lambda_m$ von f. Beweis durch Induktion:

Induktionsanfang: m=1, $\lambda_1,v_1\neq 0\Longrightarrow v_1$ lin. unabh.

Induktionsschritt: $m-1 \rightarrow m$

Induktionsvorraussetzung: Behauptung gelte für m-1

Betrachte

$$\begin{split} &\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_m v_m = 0 \ (*) \quad \alpha_m \in K \\ &\overset{\mathrm{EV, \ f}()}{\Longrightarrow} \ \alpha_1 \lambda_1 v_1 + \alpha_2 \lambda_2 v_2 + \ldots + \alpha_m \lambda_m v_m = 0 \\ &\overset{(*) \cdot \lambda_m}{\Longrightarrow} \ \lambda_m \alpha_a v_1 + \lambda_m \alpha_2 v_2 + \ldots + \lambda_m \alpha_m v_m = 0 \end{split}$$

Wir bilden die Differenz aus Zeile 1 und 2

$$\underbrace{(\lambda_1-\lambda_m)}_{\neq 0}\alpha_1v_1+\underbrace{(\lambda_2-\lambda_m)}_{\neq 0}\alpha_2v_2+\ldots+\underbrace{(\lambda_{m-1}-\lambda_m)}_{\neq 0}\alpha_{m-1}v_{m-1}=0$$

 $v_1,...,v_{m-1}$ lin. unabh. $\Longrightarrow \alpha_1=\alpha_2=...=\alpha_{m-1}=0$ Einsetzen in (*) liefert

$$\alpha_m \underbrace{v_m}_{\neq 0} = 0 \Longrightarrow \alpha_m = 0$$

 $\Longrightarrow v_1,...,v_m$ lin unabh.

Folgerung: Es gibt höchstens $n = \dim(V)$ verschiedene Eigenwerte für $n = \dim(V) < \infty$.

Definition 1.7: Eigenraum

Ist $f \in L(V, V)$ und $\lambda \in K$, so heißt

$$\operatorname{Eig}(f, \lambda) = \{ v \in V \mid f(v) = \lambda v \}$$

der **Eigenraum** von f bezüglich λ .

Es gilt:

- $\operatorname{Eig}(f,\lambda) \subseteq V$ ist ein Untervektorraum
- λ ist Eigenwert von $f \iff \text{Eig}(f, \lambda) \neq \{0\}$
- Eig $(f, \lambda) \setminus \{0\}$ ist die Menge der zu λ gehörenden Eigenvektoren von f.
- $\operatorname{Eig}(f,\lambda) = \ker(f-\lambda \operatorname{Id})$
- $\dim(\operatorname{Eig}(f,\lambda)) = \dim(V) \operatorname{rg}(f-\lambda \operatorname{Id})$
- Sind $\lambda_1,\lambda_2\in K$ verschiedene Eigenwerte, so ist $\mathrm{Eig}(f,\lambda_1)\cap\mathrm{Eig}(f,\lambda_2)=\{0\}$

Die letzte Aussage kann verallgemeinert werden zu:

Lemma 1.8: Sei V ein K-Vektorraum mit $\dim(V)=n<\infty$ und $f\in L(V,V)$. Sind $\lambda_1,...,\lambda_m,m\leq n$, paarweise verschiedene Eigenwerte von f, so gilt

$$\operatorname{Eig}(f,\lambda_i) \cap \sum_{\substack{j=1\\j\neq i}}^m \operatorname{Eig}\big(f,\lambda_j\big) = \{0\} \qquad \forall i=1,...,m$$

Beweis: Summe von Vektorräumen, vgl. Def 3.32 LinA I.

Sei $i \in \{1, ..., m\}$ fest gewählt.

$$v \in \mathrm{Eig}(f,\lambda_i) \cap \sum_{\substack{j=1 \\ i \neq j}}^m \mathrm{Eig}\big(f,\lambda_j\big)$$

Also ist

$$v = \sum_{\substack{j=1\\j \neq i}}^m v_j \quad \text{für } v_j \in \operatorname{Eig} \big(f, \lambda_j \big) \quad \text{für } \ j \neq i$$

 $\Longrightarrow -v + \sum_{\substack{j=1 \\ j \neq i}}^m v_j = 0$ Aus Lemma 1.6 folgt damit v = 0.

Über die Identifikation von Endomorphismen und Matrizen für $\dim(V) < \infty$ erhält man:

Korollar 1.9: Für ein $n \in \mathbb{N}$ und einem Körper K sei $A \in K^{n,n}$. Dann gilt für jedes $\lambda \in K$, dass

$$\dim(\operatorname{Eig}(A,\lambda)) = n - \operatorname{rg}(A - \lambda I_n)$$

Insbesondere ist $\lambda \in K$ ein Eigenwert von A, wenn $\operatorname{rg}(A - \lambda I_n) < n$ ist.

Definition 1.10: Geometrische Vielfachheit

Ist $f \in L(V, V)$ und $\lambda \in K$ ein Eigenwert von f, so heißt

$$g(f,\lambda) := \dim(\operatorname{Eig}(f,\lambda))$$
 (> 0)

die geometrische Vielfachheit des Eigenwerts $\lambda.$

1.2. Das charakteristische Polynom

Wir bestimmt man Eigenwerte?

Lemma 1.11: Seien $A \in K^{n,n}$ und $\lambda \in K$. Dann ist

$$\det(A - \lambda I_n)$$

ein Polynom n-ten Grades in λ .

Beweis: Mit der Leibniz-Formel folgt,

$$\begin{split} \det(\underbrace{A-\lambda I_n}_{\tilde{a}_{ij}}) &= \sum_{\sigma \in S_1} \operatorname{sgn}(\sigma) \cdot \tilde{a}_{1\sigma(1)} \cdot \ldots \cdot \tilde{a}_{n\sigma(n)} \\ &= \underbrace{(a_{11}-\lambda) \cdot (a_{22}-\lambda) \cdot \ldots \cdot (a_{nn}-\lambda)}_{\sigma = \operatorname{Id}} + \underbrace{S}_{\substack{\sigma \neq \operatorname{Id} \\ \in \mathcal{P}_{n-2} \text{ in } \lambda}}_{\in \mathcal{P}_{n-2} \text{ in } \lambda} \end{split}$$

Weiter gilt:

$$(a_{11} - \lambda) \cdot \ldots \cdot (a_{nn} - \lambda) = (-1)^n \lambda^n + (-1)^{n-1} \lambda^{n-1} (a_{11} + \ldots + a_{nn}) + \underbrace{S_1}_{\in \mathcal{P}_{n-2} \text{ in } \lambda}$$

Insgesamt: Es existieren Koeffizienten $a_0,...,a_n\in K$ mit

$$\det(A - \lambda I_n) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0$$

$$a_n = (-1)^n$$

$$a_{n-1} = (-1)^{n-1} (a_{11} + \dots + a_{nn})$$

man kann zeigen: $a_0 = \det(A)$

Man nennt $a_{11}+a_{22}+\ldots+a_{nn}$ auch die **Spur** von A.

Definition 1.12: Charakteristisches Polynom

Sei $A \in K^{n,n}$ und $\lambda \in K$. Dann heißt das Polynom n-ten Grades

$$P_A(\lambda)\coloneqq \det(A-\lambda I_n)$$

das charakteristische Polynom zu A.

Lemma 1.13: Sei $A \in K^{n,n}$ und $\lambda \in K$. Der Skalar λ ist genau dann Eigenwert von A, wenn

$$P_{A}(\lambda) = 0$$

gilt.

Beweis: Die Gleichung

$$Av = \lambda v \iff Av - \lambda v = 0 \iff (A - \lambda I_n)v = 0$$

hat genau eine Lösung $v \in V, v \neq 0$, wenn $\operatorname{rg}(A-\lambda I_n) < n$, vgl. Satz 6.3 aus Lin
A I. Dies ist genau dann der Fall, wenn

$$\det(A-\lambda I_n)=0, \mathrm{vlg.}$$
D
10 aus Lin
A I

Beispiel 1.14: Eigenwerte und -vektoren von

$$A = \begin{pmatrix} 3 & 8 & 16 \\ 0 & 7 & 8 \\ 0 & -4 & -5 \end{pmatrix}$$

Regel von Sarrus liefert

$$\begin{split} P_A(\lambda) &= \begin{pmatrix} 3-\lambda & 8 & 16 \\ 0 & 7-\lambda & 8 \\ 0 & -4 & -5-\lambda \end{pmatrix} \\ &= (3-\lambda)\big(-35-7\lambda+5\lambda+\lambda^2+32\big) \\ &= (3-\lambda)[(7-\lambda)(-5-\lambda)-8(-4)]-8(0-0)+16(0-0) \\ &= (3-\lambda)\big(\lambda^2-2\lambda-3\big) = (3-\lambda)(\lambda+1)(\lambda-3) \end{split}$$

 \Longrightarrow Eigenwerte sind $\lambda = 3$ und $\lambda = -1$

Zugehörige Eigenvektoren?

 $\lambda = -1$:

$$Av = -v \iff (A + I_3)v = 0$$

$$\begin{pmatrix} 4 & 8 & 26 \\ 0 & 8 & 8 \\ 0 & -4 & -4 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

LGS lösen: $\Longrightarrow v_2 = -v_3, v_1 = -2v_3$

Damit ist z.B.: $\boldsymbol{w}_1 = (2,1,-1)^\top$ Eigenvektor.

 $\lambda = 3$:

$$\begin{aligned} (A-3I_3)v &= 0 \Longleftrightarrow \\ \begin{pmatrix} 0 & 8 & 16 \\ 0 & 4 & 8 \\ 0 & -4 & -8 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = 0 \in \mathbb{R}^3 \Longleftrightarrow v_2 + 2v_3 = 0 \end{aligned}$$

Damit sind z.B.: $\boldsymbol{w}_2 = (1,2,-1)^\top, \boldsymbol{w}_3 = (-1,2,-1)$ Eigenvektoren.

 $\lambda=-1$: einfache Nullstelle und $\dim(\mathrm{Span}(w_1))=1$ passt zu $\mathrm{rg}(A-(-1)I_n)=2$ und $\dim(\mathrm{Eig}(A_1-1))=3-2=1.$

 $\lambda=-3$: doppelte Nullstelle und $\dim(\mathrm{Span}(w_2,w_3))=2$ passt zu $\mathrm{rg}(A-3I_n)=1$ und $\dim(\mathrm{Eig}(A,3))=3-1=2$

Lemma 1.15: Sei $A \in K^{n,n}$. Dann gilt

$$p_A(.) = p_{A^\top}(.)$$

D.h. eine Matrix und ihre Transponierte haben die gleichen Eigenwerte.

Beweis:

$$p_A(\lambda) = \det(A - \lambda I_n) \stackrel{\mathrm{D12}}{=} = \det\left(\left(A - \lambda I_n\right)^\top\right) = \det\left(A^T - \lambda I_n\right) = p_{A^\top}(\lambda)$$

Achtung: Die Eigenwerte bleiben gleich, aber nicht die Eigenvektoren.

Beispiel 1.16: Für die Matrix A aus Bsp. 1.14 gilt

$$\begin{split} A^\top &= \begin{pmatrix} 3 & 0 & 0 \\ 8 & 7 & -4 \\ 16 & 8 & -5 \end{pmatrix} \Longrightarrow \det(A^\top - \lambda I_n) = (3 - \lambda)[(7 - \lambda)(-5 - \lambda) + 4 \cdot 8] \\ &= -(\lambda - 3)^2(\lambda + 1) \end{split}$$

Aber

$$\begin{pmatrix} 3 & 0 & 0 \\ 8 & 7 & -4 \\ 16 & 8 & -5 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 6 \\ 27 \\ 45 \end{pmatrix} \neq (-1) \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$

Man kann ausrechnen:

$$\tilde{w}_1 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \ \text{EV zu EW} - 1, \\ \tilde{w}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \\ \tilde{w}_3 \ \text{EV zu EW 3}$$

Übertragung auf Endomorphismen?

$$p_f(\lambda)\ f\in L(V,V), B \ \mathrm{Basis} \Rightarrow \exists ! A_f^{B,B}, C \ \mathrm{Basis} \Longrightarrow \exists ! A_f^{C,C}$$

$$p_{A_f^{B,B}}(\lambda) \stackrel{?}{=} p_{A_f^{C,C}}(\lambda)$$

Definition 1.17: ähnliche Matrizen

Zwei Matrizen $A,B\in K^{n,n}$ heißen **ähnlich**, wenn es eine Matrix $T\in \mathrm{GL}_n(K)$ gibt, so dass $A=TBT^{-1}$ gilt.

Man kann leicht beweisen, dass die Ähnlichkeit von Matrizen eine Äquivalenzrelation auf der Menge der quadratischen Matrizen ist.

Mit $\det(A^{-1}) \stackrel{\mathrm{D11}}{=} (\det(A))^{-1}$ folgta für zwei ähnliche Matrizen A und B, dass

$$\det(A) = \det(TBT^{-1}) = \det(T)\det(B)\det(T^{-1}) = \det(B)$$

Beispiel 1.18: Sei $f \in L(\mathbb{R}^3, \mathbb{R}^3)$, d.h. $V = \mathbb{R}^3$, gegeben durch

$$f\left(\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}\right) = \begin{pmatrix} x_1 \\ -4x_1 + 7x_2 \\ 3x_1 + 5x_2 + 3x_3 \end{pmatrix}$$

Wir betrachten für den \mathbb{R}^3 die Basen

$$E = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\},$$

$$B = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\},$$

$$C = \left\{ \begin{pmatrix} 0\\0\\-1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\0 \end{pmatrix} \right\}$$

Für darstellende Matrix von f bezüglich der Standardmatrix E erhalten wir aus Satz 5.18, LinA I,

$$f(e_j) = \sum_{i=1}^3 a_{ij} e_i \quad \forall j \in \{1, 2, 3\}$$

dass

$$A_f^{E,E} = \begin{pmatrix} 1 & 0 & 0 \\ -4 & 7 & 0 \\ 3 & 5 & 3 \end{pmatrix}$$

Das zugehörige kommutative Diagramm ist gegeben durch

Für die Basis B erhalten wir

$$f\left(\begin{pmatrix} 1\\0\\0 \end{pmatrix}\right) = \begin{pmatrix} 1\\-4\\3 \end{pmatrix} = 5\begin{pmatrix} 1\\0\\0 \end{pmatrix} + (-7)\begin{pmatrix} 1\\1\\0\\0 \end{pmatrix} + 3\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

$$f\left(\begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}\right) = \begin{pmatrix} 1\\3\\8 \end{pmatrix} = (-2)\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} + (-5)\begin{pmatrix} 1\\1\\0\\0 \end{pmatrix} + 8\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

$$f\left(\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}\right) = \begin{pmatrix} 1\\3\\11 \end{pmatrix} = (-2)\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} + (-8)\begin{pmatrix} 1\\1\\1\\0 \end{pmatrix} + 11\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

$$\Rightarrow A_f^{B,B} = \begin{pmatrix} 5&-2&-2\\-7&-5&-8\\3&8&11 \end{pmatrix}$$

Herleitung bezüglich Matrizen?

Koordinatenabbildung Φ_B ?

Abbildung vom \mathbb{R}^3 + Standardbasis E in den $V(=\mathbb{R}^3)$ + Basis B.

$$\begin{split} \Phi_B = (e_i) &= v_i \quad \text{für} \quad B = \{v_1, v_2, v_3\} \\ \Longrightarrow A_{\Phi_B}^{E,B} &= \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \end{split}$$

Damit folgt insgesamt:

$$\begin{split} A_f^{B,B} &= \left(A_{\Phi_B}^{E,B}\right)^{-1} I_n A_f^{E,E} I_n^{-1} A_{\Phi_B}^{E,B} = \left(A_{\Phi_B}^{E,B}\right)^{-1} A_f^{E,E} \underbrace{A_{\Phi_B}^{E,B}}_{\in \mathrm{GL}_n(\mathbb{R})} \end{split}$$

$$\Longrightarrow A_f^{B,B} \text{ und } A_f^{E,E} \text{ sind \"{a}hnlich}$$

Für die Basis C erhalten wir

$$f\left(\begin{pmatrix} 0\\0\\-1 \end{pmatrix}\right) = \begin{pmatrix} 0\\0\\-3 \end{pmatrix} = 3\begin{pmatrix} 0\\0\\-1 \end{pmatrix} + 0\begin{pmatrix} 1\\0\\0 \end{pmatrix} + 0\begin{pmatrix} 0\\-1\\0 \end{pmatrix}$$
$$f\left(\begin{pmatrix} 1\\0\\0 \end{pmatrix}\right) = \begin{pmatrix} 1\\-4\\3 \end{pmatrix} = (-3)\begin{pmatrix} 0\\0\\-1 \end{pmatrix} + 1\begin{pmatrix} 1\\0\\0 \end{pmatrix} + 4\begin{pmatrix} 0\\-1\\0 \end{pmatrix}$$
$$f\left(\begin{pmatrix} 0\\-1\\0 \end{pmatrix}\right) = \begin{pmatrix} 0\\-7\\-5 \end{pmatrix} = 5\begin{pmatrix} 0\\0\\-1 \end{pmatrix} + 0\begin{pmatrix} 1\\0\\0 \end{pmatrix} + 7\begin{pmatrix} 0\\-1\\0 \end{pmatrix}$$

Als Darstellungsmatrix erhält man

$$A_f^{C,C} = \begin{pmatrix} 3 & -3 & 5 \\ 0 & 1 & 0 \\ 0 & 4 & 7 \end{pmatrix}$$

Als Matrizenmultiplikation

Darstellung von $\Phi_C? \ \Phi_C(e_i) = w_i \quad \text{für} \quad C = \{w_1, w_2, w_3\}$

$$A_{\Phi_C}^{E,C} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{pmatrix}$$

$$A_f^{C,C} = \left(A_{\Phi_C}^{E,C}\right)^{-1} I_n A_f^{E,E} I_n^{-1} A_{\Phi_C}^{E,C} = \left(A_{\Phi_C}^{E},C\right)^{-1} A_f^{E,E} A_{\Phi_C}^{E,C}$$

Also auch: $A_f^{C,C}$ ist ähnlich zu $A_f^{E,E}$.

Alternativ:

$$\begin{split} A_f^{C,C} &= \left(A_{\Phi_C}^{E,C}\right)^{-1} I_n I_n^{-1} A_{\Phi_B}^{E,B} A_f^{B,B} \left(A_{\Phi_B}^{E,B}\right)^{-1} I_n A_{\Phi_C}^{E,C} \\ &= \underbrace{\left(A_{\Phi_C}^{E,C}\right)^{-1} A_{\Phi_B}^{E,B}}_{\in \mathrm{GL}_n(\mathbb{R})} A_f^{B,B} \left(A_{\Phi_B}^{E,B}\right)^{-1} A_{\Phi_C}^{E,C} \end{split}$$

Jetzt allgemein: $f \in L(V,V)$, $\dim(V) < \infty$, B,C seien Basen von $V \Longrightarrow$

$$A\coloneqq A_f^{B,B} \qquad \tilde{A}\coloneqq A_f^{C,C}$$

und es existiert $T\in \mathrm{GL}_n(K)$ als Basistransformationsmatrix, so dass

$$\tilde{A} = TAT^{-1}$$

Dann gilt

$$\begin{split} p_{\tilde{A}}(\lambda) &= \det \left(\tilde{A} - \lambda I_n \right) = \det \left(TAT^{-1} - \lambda TT^{-1} \right) \\ &= \det \left(T(A - \lambda I_n) T^{-1} \right) \\ &= \det (T) \det (A - \lambda I_n) \det \left(T^{-1} \right) \\ &= p_A(\lambda) \end{split}$$

D.h. für einen Endomorphismus ist das charakteristische Polynom der zugehörigen Darstellungsmatrix unabhängig von der Wahl der Basis!

Damit ist es sinnvoll, für $f \in L(V, V)$, dim $(V) < \infty$,

$$p_f(.) \coloneqq p_A(.)$$

für A als Darstellungsmatrix $A_f^{B,B}$ für eine Basis B.

Lemma 1.19: Sei V ein K-Vektorraum mit $\dim(V)=n<\infty$ und $f\in L(V,V)$. Dann sind folgende Aussagen äquivalent:

- 1. $\lambda \in K$ ist ein Eigenwert von f.
- 2. $\lambda \in K$ ist ein Eigenwert der Darstellungsmatrix $A_f^{B,B}$ für eine gewählte B von V.

Des weiteren gilt auch. Für zwei ähnliche A und B gilt $p_A(\lambda) = p_B(\lambda)$

$$A,B$$
ähnlich $\Longrightarrow p_A(\lambda)=p_B(\lambda)$

z.B.

$$A=\begin{pmatrix}1&0\\2&1\end{pmatrix} \qquad B=\begin{pmatrix}1&0\\0&1\end{pmatrix}$$

$$p_A(\lambda)=(1-\lambda)^2=p_B(\lambda), \text{aber für jedes } T\in \mathrm{GL}_2(\mathbb{R}) \text{ gilt}$$

$$TBT^{-1}=TT^{-1}=I\neq A \text{ also } A, B \text{ nicht \"ahnlich}$$

Weitere Beobachtung: Aus Lemma 1.13 und Lemma 1.19 folgt, dass die Eigenwerte von $f \in L(V,V)$ die Nullstellen des charakteristischen Polynoms der Matrix $A_f^{B,B}$ für eine Basis B ist. Dies gilt **nicht** i.a. für Darstellungsmatrizen $A_f^{B,C}$ für $B \neq C$.

Definition 1.20: Algebraische Vielfachheit

Sei V ein K-Vektorraum mit $\dim(V)=n<\infty$. Ist $f\in L(V,V)$ und $\tilde{\lambda}$ ist Eigenwert von f hat das charakteristische Polynom $p_f(\lambda)$ die Form

$$p_f(\lambda) = \left(\lambda - \tilde{\lambda}\right)^d \cdot \tilde{p}(\lambda)$$

für ein $\tilde{p}(.) \in \mathbb{K}[\lambda]$ mit $\tilde{p}(\tilde{\lambda}) \neq 0$, so nennt man d die **algebraische Vielfachheit** von $\tilde{\lambda}$ und bezeichnet sie $a(f, \tilde{\lambda})$.

Lemma 1.21: Seien V ein K-Vektorraum, $\dim(V)=n<\infty$, und $f\in L(V,V)$. Für Eigenwert $\tilde{\lambda}$ von f gilt

$$g\!\left(f,\tilde{\lambda}\right) \leq a\!\left(f,\tilde{\lambda}\right)$$

Beweis: Ist $\tilde{\lambda}$ EW von f mit der geometrischen Vielfachheit $m:=g\left(f,\tilde{\lambda}\right)$, so gibt es nach Def. 1.10 zu $\tilde{\lambda}$ m linear unabhängige Eigenvektoren $v_1,...,v_m\in V$.

Gilt $m=n=\dim(V)$ sind $\{v_1,...,v_m\}$ schon Basis von V.

Gilt m < n, so folgt aus dem Basisergänzungssatz (Satz 3.21, LinA I), dass man $\{v_1,...,v_m\}$ zu einer Basis $\{v_1,...,v_m,v_{m+1},...,v_n\}$ =: B ergänzen. Wegen $f\big(v_j\big)=\tilde{\lambda}v_j, 1\leq j\leq m$, gilt

$$A_f^{B,B} = \begin{pmatrix} \tilde{\lambda} I_n & A_1 \\ 0 & A_2 \end{pmatrix} \in K^{n,n}$$

für zwei Matrizen $A_1 \in K^{m,n-m}, A_2 \in K^{n-m,n-m}.$

Mit D9 aus LinA I folgt

$$p_f(\lambda) = \left(\tilde{\lambda} - \lambda\right)^m \cdot \det \left(A_2 - \lambda I_{n-m,n-m}\right)$$

 \Longrightarrow EW $\tilde{\lambda}$ ist mindestens m-fache Nullstelle von $p_f(\lambda)$. Für $m=n\Longrightarrow A_f^{B,B}=\tilde{\lambda}I_n\Longrightarrow p_f(\lambda)=\left(\tilde{\lambda}-\lambda\right)^m$

LINA II* SOSE 24 Konrad Rösler

2. Diagonalisierbarkeit und Normalform

2.1. Diagonalisierbarkeit

Definition 2.1: Diagonalisierbar

Sei V ein K-Vektorraum mit $\dim(V)=n<\infty$. Ein $f\in L(V,V)$ heißt **diagonalisierbar**, wenn es eine Basis B von V gibt, so dass $A_f^{B,B}$ eine Diagonalmatrix ist. D.h. es existieren $\lambda_1,...,\lambda_n\in K$ mit

$$A_f^{B,B} = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix} \in K^{n,n}$$

Entsprechend nennen wir eine Matrix $A \in K^{n,n}$ diagonalisierbar, wenn es eine Matrix $T \in \mathrm{GL}_n(K)$ und eine Diagonalmatrix $D \in K^{n,n}$ gibt mit

$$A = TDT^{-1}$$

D.h. A ist ähnlich zu einer Diagonalmatrix.

Satz 2.2: Sei V ein K-Vektorraum mit $\dim(V) = n < \infty$ und $f \in L(V, V)$. Dann sind folgende Aussagen äquivalent:

- 1. f ist diagonalisierbar
- 2. Es gibt eine Basis B von V bestehend aus Eigenvektoren von f.
- 3. Das charakteristische Polynom $p_f(.)$ zerfällt in n Linearfaktoren über K, d.h.

$$p_f(\lambda) = (\lambda - \lambda_1) \cdot \ldots \cdot (\lambda - \lambda_n)$$

mit Eigenwerten $\lambda_1,...,\lambda_n\in K$ für f und für jeden Eigenwert $\tilde{\lambda}$ gilt $a\!\left(f,\tilde{\lambda}\right)=g\!\left(f,\tilde{\lambda}\right)\!.$

Beweis:

"1 \Longrightarrow 2": f diagonalisierbar \Longrightarrow $\exists \{v_1,...,v_n\}=B$ Basis von $V,\lambda_1,..,\lambda_n\in K$:

$$\tilde{A} \coloneqq A_f^{B,B} = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix} \qquad f(v_j) = \sum_{i=1}^n a_{ij} v_i$$

 $\Longrightarrow f\big(v_j\big)=\lambda_iv_i, 1\leq i\leq n, v_i\neq 0. \Longrightarrow \text{Damit sind } \lambda_1,...,\lambda_n \text{ Eigenwerte von } f \text{ mit zugehörigen Eigenvektoren } v_1,...,v_n.\Longrightarrow 2.$

"2 \Longrightarrow 1": Ist $B=\{v_1,...,v_n\}$ eine Basis von V bestehend aus Eigenvektoren, so gibt es zugehörige Eigenwerte $\lambda_1,...,\lambda_n$ mit $f(v_j)=\lambda_j v_j, 1\leq j\leq n\Longrightarrow$

$$A_f^{B,B} = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix}$$

"2 \Longrightarrow 3": Sei $B=\{v_1,...,v_n\}$ eine Basis von Eigenvektoren, $\lambda_1,...,\lambda_n$ seien die zugehörigen Eigenwerte \Longrightarrow

$$\begin{split} p_f(\lambda) &= p_{A_f^{B,B}}(\lambda) = \det \left(A_f^{B,B} - \lambda I_n \right) \\ &= (\lambda_1 - \lambda) \cdot (\lambda_2 - \lambda) \cdot \ldots \cdot (\lambda_n - \lambda) \end{split}$$

 $\Longrightarrow p_f(.)$ zerfällt in Linearfaktoren. Verschiedene Eigenwerte $\tilde{\lambda}_1,...,\tilde{\lambda}_k,k\leq n.$ Der Eigenwert $\tilde{\lambda}_i$ besitzt die algebraische Vielfachheit $m_j\coloneqq a\left(f,\tilde{\lambda}_j\right)$ genau dann, wenn er m_j -mal auf den Diagnolen von $A_f^{B,B}$ steht. Dies ist genau dann der Fall, wenn m_j -Eigenvektoren zu $\tilde{\lambda}_j$ in B enthalten sind. Diese sind linear unabhängig \Longrightarrow

$$1.\dim\!\left(\mathrm{Eig}\!\left(f,\tilde{\lambda}_{j}\right)\right)=g\!\left(f,\tilde{\lambda}_{j}\right)\geq m_{j}=a\!\left(f,\tilde{\lambda}_{j}\right)$$

2. Lemma 1.21:
$$g(f, \tilde{\lambda}_j) \leq a(f, \tilde{\lambda}_j)$$

$$1 \wedge 2 \Longrightarrow g(f, \tilde{\lambda}_i) = a(f, \tilde{\lambda}_i)$$

"3 \Longrightarrow 2": Seien $\tilde{\lambda}_1,...,\tilde{\lambda}_k,k\leq n$ die paarweise verschiedenen Eigenwerte von f. Wir wissen: $\mathcal{P}_n\in p_f(.)$ zerfällt in Linearfaktoren, $a\left(f,\tilde{\lambda}_j\right)=g\left(f,\tilde{\lambda}_j\right),1\leq j\leq n$.

$$\dim(V) = n = \sum_{j=1}^k a\Big(f,\tilde{\lambda}_j\Big) = \sum_{j=1}^k g\Big(f,\tilde{\lambda}_j\Big) = \sum_{j=1}^k \dim\Big(\mathrm{Eig}\Big(f,\tilde{\lambda}_j\Big)\Big)$$

Es gilt (Lemma 1.8):

$$\operatorname{Eig}ig(f, \tilde{\lambda}_jig) \cap \sum_{i=1}^k \operatorname{Eig}ig(f, \tilde{\lambda}_iig) = 0 \quad orall j = 1, ..., k$$

Dann folgt (Lemma 3.31, (2), Lemma 3.35, Satz 3.14) (direkte Summe, $U \subset V$ UVR \Longrightarrow $\dim(U) \leq \dim(V), U = V \dim(U) = \dim(V)$, Basis \Longleftrightarrow eindeutige Darstelltung), dass die zu $\tilde{\lambda}_1, ..., \tilde{\lambda}_n$ linear unabhängigen Eigenvektoren, die jeweils eine Basis von $\mathrm{Eig} \left(f, \tilde{\lambda}_j \right)$, $1 \leq j \leq k$, eine Basis von V bilden.

In Verbindung mit Lemma 1.6 folgt unmittelbar:

Korollar 2.3: Sei V ein K-Vektorraum mit $\dim(V) = n < \infty$ und $f \in L(V, V)$ mit n paarweise verschiedenen Eigenwerten, dann ist f diagonalisierbar.

Bemerkung: Das Kriterium der n paarweise verschiedenen Eigenwerte ist nicht notwendig z.B. $V = K^n$, B = E Standardbasis

$$f: \mathrm{Id}: K^n \to K^n, \Longrightarrow A_f^{E,E} = I_n \Longrightarrow 1n$$
-facher Eigenwert

Beispiel 2.4: Fortsetzung von Bsp. 1.14

$$A = \begin{pmatrix} 3 & 8 & 16 \\ 0 & 7 & 8 \\ 0 & -4 & -5 \end{pmatrix}, \text{EW:} -1, 3$$

$$w_1 = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \text{ EV zu } -1, \ w_2 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, w_3 = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix} \text{ EV zu } 3$$

 $\Longrightarrow \exists$ Basis von Eigenvektoren $\stackrel{\mathrm{Satz}\ 2.2}{\Longrightarrow} A$ ist diagonalisierbar

$$\begin{split} p_A(\lambda) &= (3-\lambda)(\lambda+1)(\lambda-3)\\ a(f,-1) &= 1 = g(f,-1)\\ a(f,3) &= 2 = g(f,3) \end{split}$$

 $T \in \mathrm{GL}_n(\mathbb{R})$ so, dass $T^{-1}AT = D$?

Die zu $B=\{w_1,w_2,w_3\}$ gehörende Koordinatentransformation Φ_B ist gegeben durch

$$A_{\Phi_B}^{E,B} = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & 2 \\ -1 & -1 & -1 \end{pmatrix}$$

Dann gilt: Für $f \in L(\mathbb{R}^3, \mathbb{R}^3)$ mit

$$A_f^{E,E} = A$$
 $A_f^{B,B} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix} = D$

Mit Basiswechsel von A zu D

$$D = \left(A_{\Phi_B}^{E,B}\right)^{-1} A \underbrace{A_{\Phi_B}^{E,B}}_{=T}$$

Beispiel 2.5: Nicht jeder Endomorphismus bzw. jede Matrix ist diagonalisierbar. Bsp. 1.4:

$$f:\mathbb{R}^2\to\mathbb{R}^2,\quad f\biggl(\begin{pmatrix}x_1\\x_2\end{pmatrix}\biggr)=\overbrace{\begin{pmatrix}0&1\\-1&0\end{pmatrix}}^A\begin{pmatrix}x_1\\x_2\end{pmatrix},\quad p_f(\lambda)=\lambda^1+1$$

D.h. über \mathbb{R} zerfällt $p_f(.)$ nicht in Linearfaktoren.

Ein weiteres Beispiel

$$A = \begin{pmatrix} 5 & 10 & 7 \\ 0 & -3 & -3 \\ 0 & 3 & 3 \end{pmatrix}$$

 $\Longrightarrow p_A(\lambda)=(5-\lambda)\lambda^2\Longrightarrow p_A(.)$ zerfällt in Linearfaktoren. $a(f,\lambda_i),g(f,\lambda_i)$ für $\lambda_1=5,\lambda_2=0.$ Lemma 1.21: $g(f,\lambda_i)\le a(f,\lambda_i)\Longrightarrow g(f,5)=1=a(f,5),$ $a(f,0)=2,g(f,0)\ge 1$ Ein Eigenvektor zu $\lambda=0$ sind

$$w_1 = \begin{pmatrix} 3 \\ -5 \\ 5 \end{pmatrix} \Longrightarrow g(f,0) = 1 < 2 = a(f,0)$$

 $\Longrightarrow f$ nicht diagonalisierbar.

Mit Satz 2.2 erhält man einen Algorithmus zur Überprüfung, ob ein gegebenes $f\in L(V,V)$ (bzw. $A\in K^{n,n}$) diagonalisierbar ist:

- 1. Bestimme mit einer Basis B von V die Darstellungsmatrix $A=A_f^{B,B}$
- 2. Bestimme für A das charakteristische Polynom $p_A(.)$ (Determinantenberechnung)
- 3. Zerfällt $p_A(.)$ in Linearfaktoren über K? Nein: f nicht diagonalisierbar. Ja: Seien $\lambda_i, 1 \leq i \leq k \leq n = \dim(V)$ die paarweise verschiedene Eigenwerte von f.

Für i = 1, ..., k

- 1. Bestimme eine Basis von $\mathrm{Eig}(f,\lambda_i)$
- 2. Prüfe, ob $a(f, \lambda_i) = g(f, \lambda_i)$

Gilt $a(f,\lambda_i)=g(f,\lambda_i)$ für alle $i\in\{1,...,k\}$. Nein: f ist nicht diagonalisierbar. Ja: f ist diagonalisierbar.

Beispiel 2.6: Fischer/Springborn

Betrachtet wird: Masse aufgehänt an einer Feder. Zur Zeit t=0 in Position $y(0)=\alpha$ und ausgelenkt in senkrechter Richtung mit Geschwindigkeit $\beta=\dot{y}(0)$

 $y(t) \cong \text{Position der Masse zum Zeitpunkt } t$

Dieses System wird durch die gewöhnliche Differentialgleichungen

$$\ddot{y} + 2\mu\dot{y} + \omega^2 y = 0$$
, $y(0) = \alpha, \dot{y}(0) = \beta$

Umschreiben

$$\begin{split} \dot{y}_0 &= y_1 \\ \dot{y}_1 &= -\omega^2 y_0 - 2\mu y_1 \end{split}$$

 $\text{mit } y_0 = y, \ddot{y}_0 = \ddot{y}, y_0(0) = \alpha, y_1(0) = \beta.$

$$\dot{\tilde{y}} \coloneqq \begin{pmatrix} \dot{y}_0 \\ \dot{y}_1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\omega^2 & -2\mu \end{pmatrix} \begin{pmatrix} y_0 \\ y_1 \end{pmatrix}$$

$$p_A(\lambda) = \lambda^2 + 2\mu\lambda + w^2$$

mit den potentiellen Nulstellen

$$\lambda = -\mu \pm \sqrt{\mu^2 - w^2}$$

Man unterscheidet drei Fälle:

- $0 \le \mu < \omega$, d.h. $\mu^2 \omega^2 < 0$ \Longrightarrow schwache Dämpfung
- $\mu=\omega$, d.h. $\mu^2=\omega^2\Longrightarrow$ aperiodischer Fall $\Longrightarrow a(A,-\mu)=2$, $\dim(\mathrm{Eig}(A,-\mu))=1$, A nicht diagonalisierbar
- $\mu > \omega$, d.h. $\mu^2 > \omega^2$, starke Dämpfung

Eine solche Eigenwertanalyse kann auch nutzen, um das Langzeitverhalten von Lösungen von gewöhnlichen DGL zu bestimmen.

Satz 2.7: Sei V ein K-Vektorraum mit $\dim(V) = n < \infty$ und $f \in L(V, V)$. Dann sind folgende Aussagen äquivalent:

- 1. Das charakteristische Polynom $p_f(.)$ zerfällt über K in Linearfaktoren.
- 2. Es gibt eine Basis B von V, so dass $A_f^{B,B}$ eine obere Dreiecksmatrix ist, d.h.

$$A_f^{B,B} = \begin{pmatrix} 1 & \dots & * \\ \vdots & \ddots & \vdots \\ 0 & \dots & * \end{pmatrix}$$

und f ist damit **triangulierbar**.

Beweis: Beweis von Satz 14.18 im Liesen/Mehrmann

Nun ist das Ziel:

Bestimmung einer Basis B von V, so dass $A_f^{B,B}$ eine obere Dreiecksmatrix ist, die möglichst nah an einer Diagonalmatrix ist und von der geometrischen Vielfachheiten der Eigenwerte abgelesen werden können.

D.h. $p_f(.)$ zerfällt in Linearfaktoren mit den Eigenwerten $\lambda_1,...,\lambda_k$ (notwendig, Satz 2.7) und wir wollen eine Basis B bestimmen, so dass $A_f^{B,B}$ Diagonalblockgestalt hat mit

$$A_f^{B,B} = \begin{pmatrix} J_1(\lambda_1) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & J_m(\lambda_m) \end{pmatrix}$$

wobei jeder Diagonalblock die Form

$$J_i(\lambda_i) = \begin{pmatrix} \lambda_i & 1 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 0 & \dots & 0 & \lambda_i \end{pmatrix} \in K^{d_i,d_i} \qquad (*)$$

Definition 2.8: Jordan-Block

Sei V ein K-Vektorraum mit $\dim(V)=n<\infty,\,f\in L(V,V)$ und λ_i ein Eigenwert von f. Eine Matrix der Form (*) heißt **Jordan-Block** der Größe d_i zum Eigenwert λ_i .

Wegen der Bedeutung der Jordan-Normalform gibt es zahlreiche Herleitungen mit unterschiedlichen mathematischen Hilfsmitteln.

Hier: Beweis über die Dualitätstheorie basirend auf einer Arbeit von V. Pt \bar{a} k (1956)

2.2. Dualräume

Definition 2.9: Linearform, Dualraum

Sei V ein K-Vektorraum. Eine Abbildung $f \in L(V,K)$ heißt **Linearform**. Den K-Vektorraum $V^* := L(V,K)$ nennt man **Dualraum**.

Gilt $\dim(V)=n<\infty$ so folgt aus Satz 5.18 Lin
A I, dass $\dim(V^*)=n$ gilt. Ist $B=\{v_1,...,v_n\}$ eine Basis von
 V und $C=\{1\}$ eine Basis des K-Vektorraum
 K, dann gilt für

$$f(v_i) = \mu_i \in K$$
 für $f \in V^*$, d.h. $f: V \to K$,

für i = 1, ..., n und damit

$$A_f^{B,C} = (\mu_1,...,\mu_n) \in K^{1,n}$$

Beispiel 2.10: Sei V der \mathbb{R} -Vektorraum der auf dem Intervall [0,1] stetigen, reellwertigen Funktionen und $a \in [0,1]$. Dann sind

$$g_1:V\to\mathbb{R},\quad g_1(f)\coloneqq\int_0^1f(x)dx$$

$$g_2:V\to\mathbb{R},\quad g_2(f)\coloneqq f(a)$$

Linearformen auf V.

Basis des Dualraums?

Satz 2.11: Sei V ein K-Vektorraum mit $\dim(V)=n<\infty$ und $B=\{v_1..,v_n\}$ eine Basis von V. Dann gibt es genau eine Basis $B^*=\{v_1^*,...,v_n^*\}$ von $V^*=L(V,K)$ für die

$$v_i^* \big(v_j \big) = \delta_{ij} \quad i,j = 1,...,n$$

gilt. Diese Basis heißt die zu B duale Basis.

Beweis: Lemma 4.10: LinA I. Es gibt eine lineare Abbildung v_i^* für die $v_i^*(v_j) = \delta_{ij}$ für j=1,...,n, für i=1,...,n. Noch zu zeigen: v_i^* sind Basis von V^* . Wir wissen schon: $\dim(V^*)=n$. Also: Es reicht zu zeigen: $\left\{v_i^*\right\}_{i=1,...,n}$ linear unabhängig. Seien $\mu_i\in K$ so, dass

$$\sum_{i=1}^{n} \mu_i v_i^* = 0 \in V^* = L(V, K)$$

Dann gilt:

$$0_K = 0_{V^*} (v_j) = \sum_{i=1}^n \mu_i v_i^* (v_j) = \mu_j \quad j = 1, ..., n$$

Definition 2.12: duale Abbildung

Seien V und W zwei K-Vektorräume mit den zugehörigen Dualräumen V^* und W^* . Für $f \in L(V,W)$ heißt

$$f^*: W^* \rightarrow V^*, \quad f^*(h) = h \circ f$$

die zu f duale Abbildung.

Seien $U\subseteq V$ und $Z\subseteq V^*$ zwei Unterräume. Dann heißt die Menge

$$U^0 \coloneqq \{h \in V^* \mid h(u) = 0 \text{ für alle } u \in U\}$$

Annihilator von U und die Menge

$$Z^0 := \{ v \in V \mid z(v) = 0 \text{ für alle } z \in Z \}$$

Annihilator von Z.

Man kann sich überlegen:

- Die Mengen $U^0 \subseteq V^*$ und $Z^0 \subseteq V$ sind Untervektorräume von V^* bzw V
- Es gilt für $f \in L(V, V)$

$$\left(f^k\right)^* = \left(f^*\right)^k$$

Des Weiteren besitzt die duale Abbildung folgende Eigenschaften:

Lemma 2.13: Sind V, W und X drei K-Vektorräume. Dann gilt

- 1. Ist $f \in L(V, W)$, dann ist die duale Abbildung f^* linear, d.h. $f^* \in L(W^*, V^*)$
- 2. Ist $f\in L(V,W)$ und $g\in L(W,X)$, dann ist $(g\circ f)^*\in L(X^*,V^*)$ und es gilt $(g\circ f)^*=f^*\circ g^*$
- 3. Ist $f \in L(V,W)$ bijektiv, dann ist $f^* \in L(W^*,V^*)$ bijektiv und es gilt $(f^*)^{-1} = (f^{-1})^*$

Beweis: ÜB

Lemma 2.14: Sei V ein endlichdimensionaler Vektorraum, $f \in L(V, V)$, $f^* \in L(V^*, V^*)$ und $U \subseteq V$, sowie $W \subseteq V^*$ zwei Vektorräume. Dann gilt:

- 1. $\dim(V) = \dim(W) + \dim(W^0)$
- 2. Ist f nilpotent vom Grad m, dann ist die duale Abbildung f^* ebenfalls nitpotent vom Grad m.
- 3. Ist $W \subseteq V^*$ ein f^* -invarianter Vektorraum, dann ist W^0 ein f-invarianter Unterraum.

Beweis: ÜA

Definition 2.15: nilpotent vom Grad m

Sei $\{0\} \neq V$ ein K-Vektorraum. Man nennt $f \in L(V,V)$ **nilpotent**, wenn ein $m \in \mathbb{N}$ existiert, so dass $f^m = 0 \in L(V,V)$ gilt. Gilt für dieses m, dass $f^{m-1} \neq 0 \in L(V,V)$, so heißt f **nilpotent vom Grad m** und m is der **Nilpotenzindex** von f.

Definition 2.16: *f*-invarianter Unterraum

Sei V ein K-Vektorraum mit $\dim(V)=n<\infty, U\subseteq V$ ein Unterraum und $f\in L(V,V)$. Gilt $f(U)\subseteq U$, d.h. ist $f(u)\in U$ für alle $u\in U$, so nennt man U einen f-invarianten Unterraum von V.

Definition 2.17: Bilinearform

Seien V und W zwei K-Vektorräume. Eine Abbildung $a:V\times W\to K$ heißt Bilinearform, wenn

1. $a(\cdot, w): V \to K$ für alle $w \in W$ eine lineare Abbildung ist und

2. $a(v,\cdot):W\to K$ für alle $v\in V$ eine lineare Abbildung ist

Eine Bilinearform $a(\cdot,\cdot)$ heißt **nicht ausgeartet** in der ersten Variable, wenn aus

$$a(v, w) = 0$$
 für alle $w \in W$

folgt, dass v=0 ist. Eine Bilinearform heißt nicht ausgeartet in der zweiten Variable, wenn aus

$$a(v, w) = 0$$
 für alle $v \in V$

folgt, dass w=0 ist. Falls $a(\cdot,\cdot)$ in beiden Variablen nicht ausgeartet ist, so nennt man $a(\cdot,\cdot)$ eine **nicht ausgeartete Bilinearform** und die Räume V,W ein **duales Paar von Räumen** oder **duales Raumpaar** bezüglich $a(\cdot,\cdot)$. Ist V=W, so heißt $a(\cdot,\cdot)$ eine **Bilinearform auf** V. Eine Bilinearform $a(\cdot,\cdot)$ auf V heißt **symmetrisch**, wenn a(v,w)=a(w,v) für alle $v,w\in V$, ansonsten heißt $a(\cdot,\cdot)$ unsymmetrisch.

Bemerkung: Damit V, W ein duales Raumpaar für eine nicht ausgeartete Bilinearform bilden können, muss $\dim(V) = \dim(W)$ gelten.

Lemma 2.18: Sei V ein endlichdimensionaler K-Vektorraum, $f \in L(V,V)$, $f^* \in L(V^*,V^*)$ die duale Abbildung zu $f,U \subseteq V$ und $W \subseteq V^*$ zwei Untervektorräume. Ist die Bilinearform

$$a: U \times W \to K, (v, h) \mapsto h(v)$$

nicht ausgeartet ist, d.h. sind U und W ein duales Raumpaar bezüglich dieser Bilinearform, so ist

$$V = U \oplus W^0$$

Beweis: Sei $u \in U \cap W^0$. Dann gilt h(u) = 0 für alle $h \in W$. Weil U, W ein duales Raumpaar bzgl. $a(\cdot, \cdot)$ bilden, folgt u = 0. Außerdem $\dim(U) = \dim(W)$ gelten. Damit folgt aus Lemam 2.14, 1., dass

$$\dim(V) = \dim(W) + \dim(W^0)$$
$$= \dim(U) + \dim(W^0)$$

$$\Longrightarrow V = U \oplus W^0$$

2.3. Zyklische *f*-invariant Unterräume

Jetzr: Genauere Analyse der Struktur von Eigenräumen

Beispiel: Ist V ein K-Vektorraum, $f \in L(V, V)$ und $\lambda \in K$ ein Eigenwert von f, so ist $\mathrm{Eig}(f, \lambda)$ ein f-invarianter Unterraum, da: Für $v \in \mathrm{Eig}(f, \lambda)$ gilt $f(v) = \lambda v \in \mathrm{Eig}(f, \lambda)$.

Sei V ein K-Vektorraum mit $\dim(V) = n < \infty$ und $f \in L(V, V)$. Ist $v \in V \setminus \{0\}$, so existiert ein eindeutig definiertes $m = m(f, v) \in \mathbb{N}$, sodass die Vektoren

$$v, f(v), f(f(v)), ..., f^{m-1}(v)$$

linear unabhängig, die Vektoren

$$v, f(v), ..., f^m(v)$$

jedoch linear abhängig sind. Wegen $\dim(V) = n$, muss $m \le n$ gelten!

Definition 2.19: Grad von v

Die eindeutig definiert Zahl $m(f, v) \in \mathbb{N}$ heißt Grad von v bezüglich f.

$$0 \neq v, f(v), f^2(v), ..., f^{m-1}(v) \mbox{ lin. unabh.}$$

$$v, f(v), ..., f^m(v) \mbox{ lin. abh.}$$

 \Longrightarrow Grad m von $v, m \in \mathbb{N}$.

Bemerkungen:

- Der Vektor $v=0\in V$ ist lin. abhängig. Deswegen muss man $v\neq 0$ fordern oder $m\in\mathbb{N}\cup\{0\}.$
- Der Grad von $0 \neq v \in V$ ist gleich 1, genau dann wenn v, f(v) linear abhängig sind. Das ist genau dann der Fall wenn v ein Eigenvektor von f ist. Damit folgt auch: Ist $v \in V$ kein Eigenvektor von f und $v \neq 0$, so ist der Grad von v also $m(v, f) \geq 2$.

Definition 2.20: Krylov-Raum

Sei V ein K-Vektorraum mit $\dim(V)=n<\infty,$ $f\in L(V,V),$ $v\in V$ und $j\in\mathbb{N}.$ Der Unterraum

$$\mathcal{K}_{i}(f,v)\coloneqq \operatorname{Span}\bigl\{v,f(v),f^{2}(v),...,f^{j-1}(v)\bigr\}\subseteq V$$

heißt **j-ter Krylov-Raum** von f und v.

Alexei Krylov (russischer Schiffsbauingeneur und Mathematiker, 1863-1945). Krylov-Räume spielen auch eine wichtige Rolle für das CG-Verfahren (Conjugate Gradients).

Lemma 2.21: Sei V ein K-Vektorraum mit $\dim(V)=n<\infty$ und $f\in L(V,V)$. Dann gilt:

1. Hat $0 \neq v \in V$ den Grad m bzgl. f, so ist $\mathcal{K}_m(f,v)$ ein f-invarianter Unterraum und es gilt:

Span
$$\{v\} = \mathcal{K}_1(f, v) \subset \mathcal{K}_2(f, v) \subset \ldots \subset \mathcal{K}_m(f, v) = \mathcal{K}_{m+i}(f, v)$$

für alle $j \in \mathbb{N}$.

2. Hat $0 \neq v \in V$ den Grad m bzgl. f und ist $U \subseteq V$ ein f-invarianter Unterraum, so dass $v \in U$, so ist

$$\mathcal{K}_m(f,v) \subseteq U$$

D.h. betrachtet man alle f-invarianten Unterräume von V, die v enthalten, so ist $\mathcal{K}_m(f,v)$ derjenige mit der kleinsten Dimension.

3. Gilt für $v \in V$, dass $f^{m-1}(v) \neq 0$ und $f^m(v) = 0$ für ein $m \in \mathbb{N}$, dann ist

$$\dim \left(\mathcal{K}_{j}(f,v)\right) = j \quad \text{für } j = 1,...,m$$

Beweis:

1. ÜA

2. Sei $U\subseteq V$ ein f-invarianter Unterraum mit $v\in U$. Dann gilt $f^j(v)\in U$ für j=1,...,m-1. Da v den Grad m hat, sind $v,f(v),...,f^{m-1}(v)$ linear unabhängig. $\Longrightarrow \mathcal{K}_m(f,v)\subseteq U$ und $\dim(\mathcal{K}_m(f,v))=m\leq \dim(U)$

3. Seien $\mu_0,, \mu_{m-1} \in K$ so gewählt, dass

$$0 = \mu_0 v + \mu_1 f(v) + \dots + \mu_{m-1} f^{m-1}(v)$$

gilt. Anwendung f^{m-1}

$$\begin{split} 0 &= \mu_0 f^{m-1}(v) + \mu_1 f^m(v) = \mu_0 \underbrace{f^{m-1}(v)}_{\neq 0} \\ \Longrightarrow \mu_0 &= 0 \end{split}$$

Für m>1 kann man dieses Argument induktiv für f^{m-j} , j=2,...,m, anwenden und erhält damit

$$\mu_1 = \ldots = \mu_{m-1} = 0$$

 \Longrightarrow Beh.

Beobachtungen: Hat v den Grad m bzgl. f gilt

• $\mathcal{K}_j(f,v)$ ist für j < m kein f-invarianter Unterraum, da $0 \neq f(f^{j-1}(v)) = f^j(v) \notin \mathcal{K}_j(f,v)$

• wie oben gezeigt, bilden die Vektoren $v, f(v), ..., f^{m-1}(v)$ eine Basis von $\mathcal{K}_m(f,v)$. Wendet man f auf ein Element dieser Basis an, d.h. $f^{k+1}(v), k=0, ..., m-1$, so erhält man für k=m-1 $f^m(v)$ als Linearkombination von $v, f(v), ..., f^{m-1}(v) \Longrightarrow f^m(v) \in \mathcal{K}_m(f,v)$. Deswegen wird $\mathcal{K}_m(f,v)$ auch **zyklische invarianter Unterraum** zu v von f genannt.

Lemma 2.22: Sei $\{0\} \neq V$ ein K-Vektorraum. Ist $f \in L(V, V)$ nilpotent vom Grad m, so gilt $m \leq \dim(V)$.

Beweis: Nach Definition existiert ein $v \in V$ mit $f^{m-1}(v) \neq 0$ und $f^m(v) = 0$. Lemma 2.21 sichert, dass $v, f(v), ..., f^{m-1}(v)$ linear unabhängig $\Longrightarrow m \leq \dim(V)$.

Beobachtung: Sei V ein K-Vektorraum und $f \in L(V, V)$. Ist $U \subseteq V$ ein f-invarianter Unterraum, so gilt für die Einschränkung von f auf U, d.h.

$$f|_{U}: U \to U, \quad u \to f(u),$$

dass $f|_{U} \in L(U, U)$.

Satz 2.23: Fittingzerlegung

Sei V ein endlichdimensionaler K-Vektorraum und $f \in L(V, V)$. Dann existieren f-invariante Unterräume $U \subseteq V$ und $W \subseteq V$, so dass gilt:

- 1. $V = U \oplus W$
- 2. $f|_U \in L(U, U)$ ist bijektiv
- 3. $f|_W \in L(W, W)$ ist nilpotent

Beweis: $v \in \ker(f)$. Dann gilt wegen der Linearität von f, sodass $f^2(v) = f(f(v)) \stackrel{f(v)=0}{=} 0 \Longrightarrow \ker(f) \subseteq \ker(f^2)$

Induktiv zeigt man:

$$\{0\}\subseteq \ker(f)\subseteq \ker(f^2)\subseteq \ker(f^3)\subseteq \dots$$

Da $\dim(V) < \infty$, muss es eine kleinste Zahl $m \in \mathbb{N} \cup \{0\}$ geben, so dass $\ker(f^m) = \ker(f^{m+j})$ für alle $j \in \mathbb{N}$. Damit sehen wir

$$U = \operatorname{im}(f^m)$$
 und $W = \ker(f^m)$

Zeige: U und W sind f-invariant. Sei $u \in U$. Dann existiert $w \in V$ mit $f^m(w) = u \Longrightarrow f(u) = f(f^m(w)) = f^m(f(w)) \in U$.

Sei $w \in W$. Dann gilt

$$f^m(f(w))=f(f^m(w))=0\Longrightarrow f(w)\in W$$

Also existieren f-invariante Unterräume $U \subseteq V$ und $W \subseteq V$.

П

1. Es gilt $U+W\subseteq V$. Die Dimensionsformel für lineare Abbildungen (Satz 4.16, LinA I) liefert für f^m , dass

$$\dim(V) = \dim(U) + \dim(W)$$

 $\text{Ist } v \in U \cap W \Longrightarrow \exists w \in V : v = f^m(w) (v \in U)$

$$v \in W \Longrightarrow 0 = f^m(v) = f^m(f^m(v)) = f^{2m}(v)$$

Es gilt $\ker(f^m) = \ker(f^{2m}) \Longrightarrow v = f^m(v) = 0$

$$\Longrightarrow V = U \oplus W$$

2. Sei $v \in \ker(f|_k) \subseteq U$. Dann existiert ein $w \in V$, so dass $f^m(w) = v$ gilt. $\Longrightarrow 0 = f(v) = f(f^m(w)) = f^{m+1}(w)$. Mit $\ker(f^m) = \ker(f^{m+1}) \Longrightarrow w \in \ker(f^m) \Longrightarrow v = f^m(w) = 0 \Longrightarrow f$ injektiv.

Aus der Dimensionsformel folgt, dass f surjektiv ist.

3. Sei $v \in W$. Dann gilt

$$0 = f^m(v) = (f|_W)^m(v)$$

 $\Longrightarrow \left(f|_{W}\right)^{m}=0\in L(W,W),$ d.h. $\left(f|_{W}\right)^{m}$ ist die Nullabbildung $\Longrightarrow f|_{W}$ nilpotent.

Satz 2.24: Sei V ein endlichdimensionaler K-Vektorraum, $f \in L(V,V)$ nilpotent vom Grad $m,v \in V$ ein beliebiger Vektor mit $f^{m-1}(v) \neq 0$ und $h \in V^*$ mit $h(f^{m-1}(v)) \neq 0$. Dann sind v und h vom Grad m bzgl. f und f^* . Die beiden Räume $\mathcal{K}_m(f,v)$ bzw. $\mathcal{K}_m(f^*,h)$ sind zyklisch f- bzw. f^* -invariante Unterräume von V bzw. V^* . Sie bilden ein duales Raumpaar bzgl. der Bilinearform

$$a: \mathcal{K}_m(f,v) \times \mathcal{K}_m(f^*,h) \to K, \quad \left(\bar{v},\bar{h}\right) \mapsto \bar{h}(\bar{v})$$

und es gilt

$$V = \mathcal{K}_m(f, v) \oplus \left(\mathcal{K}_m(f^*, h)\right)^0$$

Hierbei ist $\mathcal{K}_m(f^*,h)^0$ ein f-invarianter Unterraum von V.

Beweis: Für $v\in V$ gilt $f^{m-1}(v)\neq 0$. Lemma 2.20 $\Longrightarrow \mathcal{K}_m(f,v)$ m-dimensionaler zyklischer f-invarianter Unterraum von V. Für V^* gilt

$$0 \neq h(f^{m-1}(v)) = (f^*)^{m-1}(h)(v)$$

Dann ist $0 \neq (f^*)^{m-1}(h) \in L(V^*, V^*)$. f nilpotent von Grad $m \Longrightarrow$ (Lemma 2.14) f^* nilpotent von Grad $m \Longrightarrow$

$$(f^*)^m(h) = 0 \in L(V^*, V^*)$$

 \Longrightarrow (Lemma 2.20) $\mathcal{K}_m(f^*,h)$ ist m -dimensionaler zyklischer f^* -invarianter Unterraum von $V^*.$

Nun zu zeigen: $\mathcal{K}_m(f,v), \mathcal{K}_m(f^*,h)$ sind ein duales Raumpaar. Sei

$$\bar{v} = \sum_{i=0}^{m-1} \mu_i f^i(v) \ \in \mathcal{K}_m(f,v)$$

so gewählt, dass

$$\bar{h}(\bar{v}) = a\big(\bar{v}, \bar{h}\big) = 0 \quad \forall \bar{h} \in \mathcal{K}_m(f^*, h)$$

Zeige induktiv, dass $\mu_k=0, k=0,...,m-1.$ Wegen $\left(\left(f^*\right)^{m-1}(h)\right)\in\mathcal{K}_m(f^*,h)$ folgt

$$\begin{split} 0 &= \Big((f^*)^{m-1}(h) \Big) (\bar{v}) = h \big(f^{m-1}(\bar{v}) \big) = \sum_{i=0}^{m-1} \mu_i h \big(f^{m-1+i}(v) \big) = \mu_0 \underbrace{h \big(f^{m-1}(v) \big)}_{\neq 0} \\ \Longrightarrow \mu_0 = 0 \end{split}$$

Sei nun $\mu_0=...=\mu_{k-1}=0$ fü ein $k\in\{1,...,m-2\}$. Wegen $(f^*)^{m-1-k}(h)\in\mathcal{K}_m(f^*,h)$ folgt aus der Darstellung von \bar{v} , dass

$$\begin{split} 0^{(*)} &= \left((f^*)^{m-1-k} \right) (h)) \left(\bar{v} = h \Big(f^{m-1-k} (\bar{v}) \Big) \right) = \sum_{i=0}^{m-1} \mu_I h \Big(f^{m-i+i-k} (v) \Big) = \mu_k \underbrace{h \Big(f^{m-1} (v) \Big)}_{\neq 0} = \mu_k \underbrace{h \Big(f^{m-1} (v) \Big)}_{\neq 0}$$

 $\Longrightarrow a(.,.)$ ist nicht ausgeartet in der ersten Komponente. Analog zeigt man, dass a(.,.) auch in der zweiten Kompontente nicht ausgeartet ist $\Longrightarrow \mathcal{K}_m(f,v)$ und $\mathcal{K}_m(f^*,h)$ sind ein duales Raumpaar.

Mit Lemma 2.18: $V = \mathcal{K}_m(f,v) \oplus \left(\mathcal{K}_m(f^*,h)\right)^0$

Mit Lemma 2.14, 3: $\left(\mathcal{K}_m(f^*,h)\right)^0$ ist f-invarianter UR von V.

(zyklisch f-invarianter UR: $v, f(v), f^2(v), ...$)

2.4. Die Jordan-Normalform

Satz 2.25: Sei V ein endlichdimensionaler K-Vektorraum und $f \in L(V,V)$. Ist $\lambda \in K$ ein Eigenwert von f, dann gibt es f-invariante Unterräume $U \subset V$ und $\{0\} \neq W \subseteq V$, so dass

- 1. $V = U \oplus W$
- 2. die Abbildung $f|_U \lambda \mathrm{Id}_U$ ist bijektiv und
- 3. die Abbildung $f|_W \lambda \mathrm{Id}_W$ ist nilpotent

Des Weiteren ist λ kein Eigenwert von $f|_U$.

Beweis: Wir definieren

$$q := f - \lambda \operatorname{Id}_V \in L(V, V)$$

Satz 2.23: $\exists g$ -invariante UR $U \subseteq V$ und $W \subseteq V$:

$$V = U \oplus W$$
, $g|_U$ bijektiv, $g|_W$ nilpotent

Annahme: $\{0\} = W \Longrightarrow V = U$

$$\Longrightarrow g|_U = g|_V = g$$
 bijektiv

 λ ist Eigenwert von $f \Longrightarrow \exists 0 \neq v : f(v) = \lambda v$

$$\implies g(v) = f(v) - \lambda v = \lambda v - \lambda v = 0$$

$$\implies \ker(g) \supseteq \{0, v\} \neq \{0\} \ \ \ \ \ g \ \ \text{bijektiv}$$

$$\implies U \subset V$$

Annahme: λ ist Eigenwert von $f|_U$

$$\begin{split} &\Longrightarrow \exists 0 \neq v \in U: f(v) = \lambda v \\ &\Longrightarrow g|_U \ (v) = f(v) - \lambda v = \lambda v - \lambda v = 0 \ \ \ \ \ g|_U \ \ \text{bijektiv} \end{split}$$

Beispiel 2.26: Wir betrachten $V=\mathbb{R}^5$, die Standardbasis E und $f\in L(V,V)$ gegeben durch

$$A = \begin{pmatrix} -3 & -1 & 4 & -3 & -1 \\ 1 & 1 & -1 & 1 & 0 \\ -1 & 0 & 2 & 0 & 0 \\ 4 & 1 & -4 & 5 & 1 \\ -2 & 0 & 2 & -2 & 1 \end{pmatrix}$$

Dann gilt

$$\begin{split} p_f(\lambda) &= p_A(\lambda) = (\lambda - 1)^4 (\lambda - 2)^1 \\ \Longrightarrow \text{EW: } 1, 2 \quad a(f, 1) = 4 \quad a(f, 2) = 1 \end{split}$$

 $\Longrightarrow p_A(.)$ zerfällt in Linearfaktoren

$$\lambda_1=1$$
: Es gilt $\ker(g_1^3)=\ker(g_1^4)$ für $g_1\coloneqq f-\lambda_1\mathrm{Id}_V$

$$\implies m_1 = 3$$

$$U_1 = \operatorname{Span} \left\{ \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ -2 \end{pmatrix} \right\} \qquad W_1 = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

$$\lambda_2=2:$$
 Für $g_2=f-\lambda_2\mathrm{Id}_V$ gilt $\ker(g_2)=\ker(g_2^2)$ $\Longrightarrow m_2=1$

$$U_2 = \operatorname{Span} \left\{ \begin{pmatrix} -5 \\ 1 \\ -1 \\ 4 \\ -2 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ -1 \\ 0 \\ -4 \\ 2 \end{pmatrix}, \begin{pmatrix} -3 \\ 1 \\ 0 \\ 3 \\ -2 \end{pmatrix} \right\}, W_2 = \operatorname{Span} \left\{ \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ -2 \end{pmatrix} \right\}$$

Beobachtung: $\dim(W_1) = a(f, \lambda_1), \dim(W_2) = a(f, \lambda_2)$

Satz 2.27: Sei V ein endlichdimensionaler K-Vektorraum und $f \in L(V,V)$. Ist $\lambda \in K$ ein Eigenwert von f, dann existieren für den Unterraum W aus Satz 2.25 Vektoren $w_1,...,w_k \in W$ und $d_1,...,d_k \in \mathbb{N}$, so dass

$$W=\mathcal{K}_{d_1}(f,w_1)\oplus\mathcal{K}_{d_2}(f,w_2)\oplus\ldots\oplus\mathcal{K}_{d_k}(f,w_k)$$

Des Weiteren gibt es eine Basis B von W, so dass

$$A_{f|_W}^{B,B} = egin{pmatrix} J_{d_1}(\lambda) & 0 & & & \\ & \ddots & & & \\ 0 & & J_{d_k}(\lambda) & & \end{pmatrix}$$

Beweis: Sei wie in Satz 2.25 $g \coloneqq f - \lambda \mathrm{Id}_V$ und $g_1 \coloneqq g|_W$ nilpotent vom Grad d_1 . Dann gilt $1 \le d_1 \le \dim(W)$.

Sei $w_1 \in W$ ein Vektor mit $g_1^{d_1-1}(w_1) \neq 0$. Wegen $g^{d_1}(w_1) = 0$

 $\Longrightarrow g_1^{d_1-1}(w_1)$ ist ein Eigenvektor von g_1 zum Eigenwert 0.

Lemma 2.21, 3, liefert, dass die d_1 Vektoren

$$\left\{w_1,g(w_1),....,g_1^{d_1-1}(w)\right\}$$

linear unabhängig sind. Außerdem ist $W_1\coloneqq\mathcal{K}_{d_1}(g_1,w_1)$ ein d_1 -dimensionaler zyklischer g_1 -invarianter UR von W. Also ist

$$B_1 \coloneqq \left\{g_1^{d_1-1}(w_1), g_1^{d_1-2}(w_2), ..., g_1(w_1), w_1\right\}$$

eine Basis von $\mathcal{K}_{d_1}(g_1,w_1)=W_1$ und

$$A_{g_1\mid_{W_1}}^{B_1,B_1} = \begin{pmatrix} 0 & 1 & 0 \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & 0 \end{pmatrix} = J_{d_1}(0) \in K^{d_1,d_1}$$

Per Definition gilt $A_{g_1|_{W_1}}^{B_1,B_1}=A_{g|_{W_1}}^{B_1,B_1}.$ Ist $d_1=\dim(W):$ siehe unten $\ \ \, \bullet \ \ \, \bullet$

Sei nun $d_1<\dim(W)$. Satz 2.25 sichert, dass es für $g_1\in L(W,W)$ einen g_1 -invarianten Unterraum $\widetilde{W}\neq\{0\}$ mit $W=W_1\oplus\widetilde{W}$ gibt.

Die Abbildung $g_2 \coloneqq g_1 \mid_{\widetilde{W}}$ ist nilpotent vom Grad λ_2 mit $1 \le d_2 \le d_1$.

Wiederholung der Konstruktion:

$$\begin{split} \exists w_2 \in \widetilde{W}: g_2^{d_2-1}(w_1) \neq 0, ..., W_2 &:= \mathcal{K}_{d_2}(g_2, w_2) \dots \text{UR von } \widetilde{W} \subseteq W, \\ B_2 &:= \left\{ g_2^{d_2-1}(w_2), g_2^{d_2-2}(w_2), ..., g_2(w_2), w_2 \right\} \\ \\ A_{g|_{W_2}}^{B_2, B_2} &= A_{g_2}^{B_2, B_2} = \begin{pmatrix} 0 & 1 & 0 \\ \ddots & \ddots & \\ & \ddots & 1 \\ 0 & & 0 \end{pmatrix} \end{split}$$

Nach $k \leq \dim(W)$ Schritten muss diese Konstruktion abbrechen und es gilt

$$\begin{split} W &= \mathcal{K}_{d_1}(g_1, w_1) \oplus \mathcal{K}_{d_2}(g_2, w_2) \oplus \ldots \oplus \mathcal{K}_{d_K}(g_k, w_k) \\ &= \mathcal{K}_{d_1}(g, w_1) \oplus \mathcal{K}_{d_2}(g, w_2) \oplus \ldots \oplus \mathcal{K}_{d_2}(g, w_k) \end{split}$$

Vereinigt man die Basen $B_1,...,B_k$ zu einer Basis B von W (direkte Summe!), so erhält man

$$A_{g|_{W}}^{B,B} = \begin{pmatrix} A_{g|_{W_{1}}}^{B_{1},B_{1}} & 0 \\ & \ddots & \\ 0 & A_{g|_{W_{k}}}^{B_{k},B_{k}} \end{pmatrix} = \begin{pmatrix} J_{d_{1}}(0) & 0 \\ & \ddots & \\ 0 & J_{d_{k}}(0) \end{pmatrix}$$

Jetzt: Übertragung auf $f = g + \lambda \operatorname{Id}_V$. Man kann sich leicht überlegen, dass jeder g-invariante Unterraum von V auch f-invariant ist und damit gilt:

$$\begin{split} \mathcal{K}_{d_i}(f,w_i) &= \mathcal{K}_{d_i}(g,w_i) \ \text{ für } i=1,...,k \\ &\stackrel{\text{UA}}{\Longrightarrow} W = \mathcal{K}_{d_1}(f,w_1) \oplus \ldots \oplus \mathcal{K}_{d_k}(f,w_k) \end{split}$$

Für $j \in \{1,...k\}$ und $0 \leq l \leq d_j - 1$ ist

$$\begin{split} f\big(g^l\big(w_j\big)\big) &= g\big(g^l\big(w_j\big)\big) + \lambda g^l\big(w_j\big) \\ &= \lambda g^l\big(w_j\big) + \underbrace{g^{l+1}\big(w_j\big)}_{=0, l = d_j - 1} \end{split}$$

$$\Longrightarrow A_{f|_{W}}^{B,B} = \begin{pmatrix} A_{f|_{W_{1}}}^{B_{1},B_{1}} & 0 \\ & \ddots & \\ 0 & A_{f|_{W_{k}}}^{B_{k},B_{k}} \end{pmatrix} = \begin{pmatrix} J_{d_{1}}(\lambda) & 0 \\ & \ddots & \\ 0 & J_{d_{k}}(\lambda) \end{pmatrix}$$

Beispiel 2.28: Fortsetzung von Bsp 2.26

$$A = \begin{pmatrix} -3 & -1 & 4 & -3 & -1 \\ 1 & 1 & -1 & 1 & 0 \\ -1 & 0 & 2 & 0 & 0 \\ 4 & 1 & -4 & 5 & 1 \\ -2 & 0 & 2 & -2 & 1 \end{pmatrix} \qquad \text{EW:} \quad \begin{aligned} \lambda_1 &= 1, a(f, \lambda_1) = 4 = \dim(W_1) \\ \lambda_2 &= 2, a(f, \lambda_2) = 1 = \dim(W_2) \end{aligned}$$

 $\lambda_{1}=1$: $g^{1}_{|_{W_{1}}}$ nil
potent vom Grad $\lambda_{1}^{1}=3$ und $1< d^{1}_{1}<\dim(W_{1})$

Erinnerung: $g_1^1 = f - \lambda_1 I_d$. Für $w_1^1 = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \end{pmatrix}^T$ ist $\begin{pmatrix} g_1^1 \end{pmatrix}^2 (w_1) = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \end{pmatrix}^T \neq 0$ und $\begin{pmatrix} g_1^1 \end{pmatrix}^3 (w_1) = 0 \in V = \mathbb{R}^5$.

Mit Lemma 2.21:

$$\left\{w_{1},\left(g_{1}^{\mathbf{1}}\right)^{1}\left(w_{1}^{\mathbf{1}}\right),\left(g_{1}^{\mathbf{1}}\right)^{2}\left(w_{1}^{\mathbf{1}}\right)\right\} = \left\{\begin{pmatrix} 0\\0\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} -1\\0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1\\0\\0 \end{pmatrix}\right\}$$

$$\Longrightarrow \operatorname{Span} \left\{ w_1, g_1^{\textcolor{red}{1}} \big(w_1^{\textcolor{red}{1}} \big), \big(g_1^{\textcolor{red}{1}} \big)^2 (w_1) \right\} = \mathcal{K}_3 \big(g_1^{\textcolor{red}{1}}, w_1^{\textcolor{red}{1}} \big)$$

 $d_1^{\textcolor{red}{1}} < \dim(W_1) \Longrightarrow \text{es existiert zu } W_{11} \coloneqq \mathcal{K}\big(g_1^{\textcolor{red}{1}}, w_1^{\textcolor{red}{1}}\big) \text{ ein } \widetilde{W}_1 \neq \{0\} \text{ mit } W_1 = W_{11} \oplus \widetilde{W}_1.$

Zum Beispiel: $w_2^1 = \begin{pmatrix} 1 & -1 & 1 & 0 & 1 \end{pmatrix}^T \Longrightarrow$

$$w_2^{\textcolor{red}{1}}, w_1^{\textcolor{red}{1}}, g_1^{\textcolor{red}{1}}(w_1^{\textcolor{red}{1}}), \left(g_1^{\textcolor{red}{1}}\right)^2(w_1^{\textcolor{red}{1}}) \quad \text{lin. unab.}$$

$$\widetilde{W}_1 := \operatorname{Span}\{w_2^1\} \cap \mathcal{K}_3(g_1^1, w_1^1) = \{0\}$$

Es gilt $g_2^1 \coloneqq g_1^1|_{\widetilde{W}_1}$ nilpotent vom Grad 1

$$\Longrightarrow d_2^{\textcolor{red}{1}} = 1 \qquad W_1 = \mathcal{K}_3\big(g_1^{\textcolor{red}{1}}, w_1^{\textcolor{red}{1}}\big) \oplus \mathcal{K}_1\big(g_2^{\textcolor{red}{1}}, w_2^{\textcolor{red}{1}}\big)$$

Weitherhin kann man nachrechnen

$$\begin{split} \mathcal{K}_3(f,w_1^{\textcolor{red}{1}}) &= \mathrm{Span}\Big\{w_1,g_1^{\textcolor{red}{1}}(w_1^{\textcolor{red}{1}}),\big(g_1^{\textcolor{red}{1}}\big)^2\big(w_1^{\textcolor{red}{1}}\big)\Big\} = \mathcal{K}_3\big(g_1^{\textcolor{red}{1}},w_1^{\textcolor{red}{1}}\big) \\ \mathcal{K}_1(f,w_2) &= \mathrm{Span}\big\{w_2^{\textcolor{red}{1}}\big\} = \mathcal{K}_1\big(g_2^{\textcolor{red}{1}},w_2^{\textcolor{red}{1}}\big) \end{split}$$

 $\lambda_2 = 2$:

$$\begin{array}{l} g_1^2 \mid_{W_2} \text{ nilpotent vom Grad } \lambda_1^2 = 1 \\ \lambda_1^2 = \dim(W_2) \\ w_1^2 = \begin{pmatrix} 0 \ 1 \ 2 \ 3 \ -2 \end{pmatrix}^T \neq 0 \\ \begin{pmatrix} g_1^2 \end{pmatrix}^1 \begin{pmatrix} w_1^2 \end{pmatrix} = 0 \in V \Longrightarrow W_2 = \mathcal{K}_1(f, w_1^2) \end{array}$$

$$A_{f|_{W_1}}^{B^1, B^1} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad A_{f|_{W_2}}^{B^2, B^2} = (2)$$

$$\stackrel{\text{Ziel:}}{\Longrightarrow} A_f^{B, B} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ & & & 1 \\ 0 & & & 2 \end{pmatrix}$$

Satz 2.29: Sei V ein K-Vektorraum mit $\dim(V) < \infty$ und $f \in L(V,V)$. Ist $\lambda \in K$ ein Eigenwert von f, dann gilt für die $d_j, 1 \leq j \leq k$ aus Satz 2.27, dass

$$\begin{split} a(f,\lambda) &= \dim(W) = d_1 + \ldots + d_k \\ g(f,\lambda) &= k \end{split}$$

Beweis: Für den Unterraum U aus Satz 2.23/2.25 ist die Abbildung $f|_U=(f-\lambda \text{ Id})|_U$ bijektiv $\Longrightarrow \lambda$ ist kein Eigenwert von $f|_U$. Daraus erhält man

$$a(f,\lambda)=\dim W=d_1+\ldots+d_k$$

Zur Bestimmung von $g(f, \lambda)$ sei $v \in W$ ein beliebiger Vektor. Dann ist

$$v = \sum_{j=1}^{k} \sum_{l=0}^{d_j - 1} \mu_{jl} g^l(w_j)$$

und es gilt

$$\begin{split} f(v) &= \sum_{j=1}^k \sum_{l=0}^{d_j-1} \mu_{jl} f\big(g^l\big(w_j\big)\big) = \sum_{j=1}^k \sum_{l=0}^{d_j-1} \mu_{jl} g^l\big(w_j\big) + \sum_{j=1}^k \sum_{l=0}^{d_j-1} \mu_{jl} g^{l+1}\big(w_j\big) \\ &= \lambda v + \underbrace{\sum_{j=1}^k \sum_{l=0}^{d_j-2} \mu_{jl} \underbrace{g^{l+1}\big(w_j\big)}_{=0}}_{=0} \end{split}$$

 $v \in \mathrm{Eig}(f,\lambda) \Longleftrightarrow \mu_{jl} = 0, 1 \leq j \leq k, 0 \leq l \leq d_j - 2$

$$\iff v = \sum_{j=1}^k \mu_j g^{d_j - 1} (w_j)$$

Für $v \neq 0$ muss mindestens ein Koeffizient $\mu_j \neq 0, j = 1,...,k$. Daraus folgt

$$\operatorname{Eig}(f,\lambda) = \operatorname{Span} \underbrace{\left\{g^{d_1-1}(w_1), ..., g^{d_k-1}(w_k)\right\}}_{\text{lin. unab. wegen direkter Summe}}$$

Beispiel 2.30: Fortsetzung von Bsp. 2.28. Es gilt

$$\operatorname{Eig}(f,1) = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ -1 \end{pmatrix} \right\} \Longrightarrow g(f,1) = 2$$

$$\lambda_1 = 1 : a(f,1) = 4 = 3 + 1 = d_1^1 + d_2^1, g(f,1) = 2 = k$$

$$\lambda_2 = 2 : a(f,2) = 1 = d_1^2, g(f,2) = 1$$

Fazit: Für einen Eigenwert λ zu $f \in L(V, V)$ gilt:

• Die geometrische Veilfachheit des Eigenwert λ ist gleich der Anzahl der Jordanblöcke zu diesem Eigenewrt in der entsprechenden Dartsellungsmatrix

$$A_f^{B,B} = \begin{pmatrix} J_{d_1}(\lambda_1) & 0 \\ & \ddots & \\ 0 & J_{d_k}(\lambda_m) \end{pmatrix}$$

- Die algebraische Vielfachheit des Eigenwert λ ist gleich der Summe der Dimensionen der zugehörigen Jordanblöcke
- In jedem Unterraum $\mathcal{K}_{d_i}\big(f,w_j\big)$ gehört genau ein Eigenvektor und seine Vielfachheiten.

Was gilt für weitere Eigenwerte?

Ist $\tilde{\lambda} \neq \lambda$ ein weiterer Eigenwert von f, dann ist $\tilde{\lambda}$ auch ein Eigenwert der Einschränkung $f|_U \in L(U_\lambda,U_\lambda)$

- \Longrightarrow Man kann die Sätze 2.25-2.29 auf $f|U_{\lambda}$ anwenden. Damit erhält man
 - $U_{\lambda} = X \oplus Y$
 - $f|_X \tilde{\lambda} \mathrm{Id}_X$ ist bijektiv
 - $f|_Y \tilde{\lambda} \mathrm{Id}_Y$ ist nilpotent
 - Der UVR Y ist die direkte Summe von Krylovräumen
 - Es gibt eine Darstellungsmatrix von $f|_{Y}$ bestehend aus Jordanblöcken

Da man dieses Argument für alle paarweise verschiedene Eigenewerte von f anwenden kann, erhält man.

Satz 2.31: Sei V ein endlichdimensionaler K-Vektorraum und $f \in L(V,V)$. Zerfällt das charakteristische Polynom $p_f(.)$ in Linearfaktoren, so gibt es eine Basis B von V für welche die Darstellungsmatrix in Jordan-Normalform ist, d.h.

$$A_f^{B,B} = \begin{pmatrix} J_{d_1}(\lambda_1) & 0 \\ & \ddots \\ 0 & J_{d_k}(\lambda_m) \end{pmatrix}$$

Beweis: s.o.

Marie Ennemond Jordan (fr. Mathematiker, 1838-1922) gab diese Form 1870 an. Zwei Jahre vor Jordan bewies Karl Weierstraß (dt. Mathematiker, 1815-1897) ein Resultat, aus dem die JNF folgt.

Beispiel 2.32:

$$A = \begin{pmatrix} -3 & -1 & 4 & -3 & -1 \\ 1 & 1 & -1 & 1 & 0 \\ -1 & 0 & 2 & 0 & 0 \\ 4 & 1 & -4 & 5 & 1 \\ -2 & 0 & 2 & -2 & 1 \end{pmatrix} \rightsquigarrow J = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ & & 1 \\ 0 & & 2 \end{pmatrix} = A_f^{B,B}$$

$$B = \left\{ \left(g_1^1\right)^2(w_1^1), g_1^1(w_1^1), w_1^1, w_2^1, w_1^2 \right\}$$

Für

$$S = \begin{pmatrix} 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & 0 & 3 \\ 0 & 0 & 1 & 1 & -2 \end{pmatrix}$$

gilt $J = S^{-1}AS$. Also J ähnlich zu A.

Für $f \in L(V, V)$ hatten wir:

- f ist diagonalisierbar \iff
 - $p_f(.)$ zerfällt in Linearfaktoren
 - \forall EW λ von $f: a(f, \lambda) = g(f, \lambda)$
- zerfällt $p_j(.)$ in Linearfaktor $\Longrightarrow \exists$ Basis $B:A_f^{B,B}$ in JNF

Folgerung: Existiert eine Darstellungsmatrix in Jordan-Normalform: f ist diagonalisierbar $\iff d_i = 1 \forall i \in \{1,...,k\}$

Frage: Wann zerfällt $p_f(.)$ in Linearfaktoren?

Fundamendtalsatz der Algebra:

Jedes Polynom $p \in P[t]$ über \mathbb{C} mit einem Grad größer 0 hat mindestens eine Nullstelle.

Beweis: Liesen, Mehrmann, Kapitel 15, braucht substantiell Hilfsmittel aus der Analysis.

Damit folgt unmittelbar:

Korollar 2.33: Jedes Polynom $p \in P[t]$ über $\mathbb C$ zerfällt in Linearfaktoren, d.h. es gibt $a, \lambda_1, ..., \lambda_n \in \mathbb C$ mit $n = \operatorname{grad}(p)$ und

$$p(t) = a(t-\lambda_1)(t-\lambda_2)...(t-\lambda_n)$$

Daraus folgt direkt:

Korollar 2.34: Sei V ein endlichdimensionaler \mathbb{C} -Vektorraum. Dann besitzt jedes $f \in L(V,V)$ eine Jordan-Normalform.

Matrix-Version:

Korollar 2.35: Sei K ein Körper und $A \in K^{n,n}$, so dass das charakteristische Polynom $p_A(.)$ in Linearfaktoren zerfällt. Dann ist A ähnlich zu einer Matrix J in Jordan-Normalform.

Ist die Jordan-Nomralform eindeutig bestimmt?

Satz 2.36: Sei V ein K-Vektorraum mit $\dim(V)=n<\infty$. Bestizt $f\in L(V,V)$ eine Jordan-Normalform, so ist diese bis auf die Reihenfolge der Jordanblöcke eindeutig bestimmt.

Beweis: sehr technisch, z.B. Liesen, Mehrmann Satz 16.12, Fischer/Springborn, Abschnitt 5.7.

Alternativer Beweis für die JNF über Hauptvektoren und Haupträume, vgl. Fischer/Spingborn, Abschnitt 5.5.

Damit: Für Bsp. 2.32 wären

$$\begin{pmatrix} 2 & & \\ & J_3(1) & & \text{oder} & \begin{pmatrix} 2 & & \\ & 1 & & \\ & & J_3(1) \end{pmatrix}$$

alternative JNF. Jordanblöcke bleiben gleich. D.h. Satz 2.36 rechtfertigt den Namen "Normalform".

LINA II* SOSE 24 Konrad Rösler

3. Euklidische und unitäre Vektorräume

Jetzt: V Vkeotrraum über \mathbb{R} oder \mathbb{C} mit $\dim(V) < \infty$.

Damit: Definition eines Skalarproduktes und Verallgemeinerung von Begriffen aus der Geometrie für \mathbb{R}^2 bzw. \mathbb{R}^3 . Dies beinhaltet auch Orthogonalität und orthonormale Basen.

3.1. Skalarprodukt und Normen

Für $K=\mathbb{R}$ werden wir Bilinearformen (Def. 2.17) verwenden. Für $K=\mathbb{C}$ benötigen wir

Definition 3.1: Sesquilinearform

Seien V und W zwei \mathbb{C} -Vektorräume. Man nennt eine Abbildung

$$s: V \times W \to \mathbb{C}, (v, w) \mapsto s(v, w)$$

Sesquilinearform auf $V \times W$, wenn für alle $v, v_1, v_2 \in V$, $w, w_1, w_2 \in W$ und $\lambda \in \mathbb{C}$ gilt

1. $s(v_1+v_2,w)=s(v_1,w)+s(v_2,w)$ und $s(\lambda v,w)=\lambda s(v,w)$

 $\widehat{=} s(.,.)$ ist linear in der ersten Komponente

2.
$$s(v,w_1+w_2)=s(v,w_1)+s(v,w_2)$$
 und $s(v,\lambda w)=\bar{\lambda}s(v,w)$

Ist V=W, so heißt s Sesquilinear form auf V. Eine Sesquilinear form auf V nennt man hermitesch, wenn

$$s(v,w) = \overline{s(w,v)} \quad \forall v,w \in V$$

Definition 3.2: Skalarprodukt

Sei V ein K-Vektorraum. Eine Abbildung

$$\langle .,. \rangle : V \times V \to K, \quad (v,w) \to \langle v,w \rangle$$

nennet man **Skalarprodukt** oder **inneres Produkt** auf V, wenn gilt

- 1. Ist $K = \mathbb{R}$, so ist $\langle ., . \rangle$ eine symmetrische Bilinearform
- 2. Ist $K = \mathbb{C}$, so ist $\langle ., . \rangle$ eine hermitesche Sesquilinearform
- 3. $\langle ., . \rangle$ ist positiv definit, d.h. es gilt

$$\langle v,v\rangle \geq 0 \quad \forall v \in V$$

$$\langle v, v \rangle = 0 \Longleftrightarrow v = 0 \in V$$

Ein \mathbb{R} -Vektorraum mit einem Skalarprodukt nennt man **euklidischen Vektorraum** und einen \mathbb{C} -Vektorraum mit einem Skalarprodukt **unitären Vektorraum**.

Bemerkungen:

- Für alle $v \in V$ gilt $\langle v, v \rangle \in \mathbb{R}^+$ unabhängig von $K = \mathbb{R}$ oder $K = \mathbb{C}$
- Ein Unterraum eines euklidischen (unitären) Vektorraums ist wieder ein euklidischer (unitärer) Vektorraum.

Definition 3.3: hermitesche Matrix

Für eine Matrix $A=\left(a_{ij}\right)\in\mathbb{C}^{m,n}$ ist die hermitesch transponierte von A definiert als

$$A^H = \left(\bar{a}_{ii}\right) \in \mathbb{C}^{n,m}$$

Gilt $A = A^H$, so heißt A hermitesche Matrix.

Ist $A \in \mathbb{R}^{m,n}$, so $A^H = A^T$. Für eine hermitesche Matrix A gilt $a_{ii} = \bar{a}_{ii} \Longrightarrow a_{ii} \in \mathbb{R}$.

Beispiel 3.4: Man kann leicht nachrechnen:

• Für $V=\mathbb{R}^n$ ist

$$\langle v, w \rangle \coloneqq v^T w = \sum_{i=1}^n v_i w_i$$

ein Skalarprodukt. Es ist das Standardskalarprodukt im \mathbb{R}^n .

• Für $V=\mathbb{C}^n$ ist

$$\langle v, w \rangle \coloneqq w^H v = \sum_{i=1}^n \bar{w}_i v_i$$

ein Skalarprodukt. Es ist das Standardskalarprodukt im \mathbb{C}^n .

• Für $V=K^{m,n}$ ist

$$\langle A, B \rangle := \operatorname{Spur} \underbrace{(B^H A)}_{\in K^{n,n}} = \sum_{i=1}^n \left(\sum_{j=1}^m \bar{b}_{ij} a_{ji} \right)$$

- Auf dem Vektorraum der auf dem Intervall [0,1] stetigen, reellwertigen Funktionen ist

$$\langle f, g \rangle \coloneqq \int_0^1 f(x)g(x)dx$$

ein Skalarprodukt.

Lemma 3.5: Cauchy-Schwarz-Ungleichung

Ist V ein euklidischer oder unitärer Vektorraum, so gilt

$$\left| \left\langle v,w\right\rangle \right| ^{2}\leq \left\langle v,v\right\rangle \cdot \left\langle w,w\right\rangle \quad \forall v,w\in V$$

wobei das Gleichheitszeichen genau dann gilt,, wenn v und w linear abhängig sind.

Beweis: Für w = 0 folgt die (Un-) gleichung.

Für $w \neq 0$ definiert man

$$\lambda := \frac{\langle v, w \rangle}{\langle w, w \rangle}$$

Dann folgt

$$0 \leq \langle v - \lambda w, v - \lambda w \rangle = \langle v, v \rangle - \overline{\lambda} \langle v, w \rangle - \lambda \langle w, v \rangle - \lambda \cdot \left(-\overline{\lambda} \right) \langle w, w \rangle$$

$$= \langle v, v \rangle - \frac{\overline{\langle v, w \rangle}}{\langle w, w \rangle} \langle v, w \rangle - \frac{\langle v, w \rangle}{\langle w, w \rangle} \langle w, v \rangle + \frac{\left| \langle v, w \rangle \right|^2}{\left(\langle w, w \rangle \right)^2} \langle w, w \rangle$$

$$= \langle v, v \rangle - \frac{\left| \langle v, w \rangle \right|^2}{\langle w, w \rangle}$$

$$\Longrightarrow \left| \langle v, w \rangle \right|^2 \le \langle v, v \rangle \cdot \langle w, w \rangle$$

"=":

$$\begin{split} 0 &= \langle v - \lambda w, v - \lambda w \rangle \\ \iff v - \lambda w &= 0 \iff v = \lambda w \iff w = \lambda^{-1} v \end{split}$$

$$\langle v, \lambda w \rangle = \bar{\lambda} \langle v, w \rangle$$

Deshalb:

Die Cauchy-Schwartsche Ungleichung ist ein sehr wichtiges Instrument der Analysis, z.B. für Approximationsfehler.

Nächstes Ziel: Vektoren $v \in V$ eine Länge zuzu
ordnen \to Norm als Verallgemeinerung des Betrags

Für die reellen Zahlen: $|.|:\mathbb{R}\to\mathbb{R}^+, x\mapsto |x|$ mit

- $|\lambda x| = |\lambda| \cdot |x|$ $\forall \lambda \in \mathbb{R}, \forall x \in \mathbb{R}$
- $|x| \ge 0$ $\forall x \in \mathbb{R}, |x| = 0 \iff x = 0$
- $|x+y| \le |x| + |y|$ $\forall x, y \in \mathbb{R}$

Definition 3.6: Norm

Sei V ein K-Vektorraum. Eine Abbildung

$$\|.\|: V \to \mathbb{R}, \quad v \mapsto \|v\|$$

nennt man Norm auf V, wenn für alle $v, w \in V$ und $\lambda \in K$ gilt:

• sie ist homogen, d.h.

$$\|\lambda v\| = |\lambda| \cdot \|v\|$$

• sie ist positiv definit, d.h:

$$||v|| \ge 0$$
, $||v|| = 0 \iff v = 0 \in V$

• sie erfüllt die Dreiecksungleichung, d.h.

$$||v + w|| \le ||v|| + ||w||$$

Einen K-Vektorraum, auf dem eine Norm definierst ist, nennt man **normierten Raum**.

Beispiel 3.7: Man kann leicht nachrechnen:

• Ist $\langle .,. \rangle$ das Standardskalarprodukt auf \mathbb{R}^m oder \mathbb{C}^m , dann definiert

$$||v|| := \langle v, v \rangle^{\frac{1}{2}} = (v^T v)^{\frac{1}{2}}$$
 bzw. $= (v^H v)^{\frac{1}{2}}$

eine Norm auf \mathbb{R}^m bzw. \mathbb{C}^m . Sie wird **euklidische Norm** genannt

• Für $V = K^{m,n}$ ist

$$\left\|A\right\|_{F} \coloneqq \left(\operatorname{Spur}(A^{H}A)\right)^{\frac{1}{2}} = \left(\sum_{i=1}^{n} \left(\sum_{j=1}^{m} \left|a_{ji}\right|^{2}\right)\right)^{\frac{1}{2}}$$

eine Norm. Sie wird Frobenius
norm genannt. Es gilt $\|A\|_F = \|A^H\|_F$ für alle $A \in K^{m,n}.$

• Auf dem Vektorraum der auf dem Intervall [0, 1] stetigen, reellwertigen Funktionen ist

$$\lVert f \rVert \coloneqq \left\langle f, f \right
angle^{rac{1}{2}} = \left(\int_0^1 \left(f(x)
ight)^2 dx
ight)^{rac{1}{2}}$$

eine Norm. Sie wird L_2 - oder L^2 -Norm genannt.

• Sei $p \in \mathbb{R}$, $p \ge 1$ und $V = K^n$. Dann definiert

$$\left\|v\right\|_p = \left(\sum_{i=1}^n \left|v_i\right|^p\right)^{\frac{1}{p}}$$

eine Norm im K^n . Sie wird p-Norm genannt. Für n=2 erhält man die euklidische Norm. Für $p\to\infty$ erhält man die sogenannte ∞ -Norm

$$\|v\|_{\infty} \coloneqq \max_{1 \le i \le n} \lvert v_i \rvert$$

Je nach Situation kann es einem erheblichen Unterschied bedeuten, welche Norm betrachtet wird. Für $V=\mathbb{R}^2$:

• Die p-Norm auf $K^{m,n}$ ist definiert durch

$$\left\|A\right\|_p \coloneqq \sup_{0 \neq v \in \mathbb{K}^n} \frac{\left\|Av\right\|_p}{\left\|v\right\|_n}$$

 $\|A\|_n$ ist die durch die p-Norminduzierte Matrix-Norm.

Man kann zeigen:

- Supremum wird angenommen
- $\blacktriangleright \ \left\|A\right\|_p = \max_{v \in K^n} \left\|Av\right\|_p$

Man kann zeigen:

$$\left\|A\right\|_1 = \max_{1 \leq j \leq m} \sum_{i=1}^n \bigl|a_{ij}\bigr| \quad \text{(Spaltensummennorm)}$$

$$\|A\|_{\infty} = \max_{1 \le i \le n} \sum_{i=1}^{m} |a_{ij}|$$
 (Zeilensummennorm)

Korollar 3.8: Sei V ein K-Vektorraum mit einem Skalarprodukt. Dann ist die Abbildung

$$\|.\|: V \to \mathbb{R}, \quad v \mapsto \|v\| := (\langle v, v \rangle)^{\frac{1}{2}}$$

eine Norm auf V. Man nennt sie die durch das Skalarprodukt induzierte Norm.

Beweis:

1. Homogenität: (Es gilt mit $\text{Re}(z) \leq |z| \forall z \in \mathbb{C}$)^((*))

$$\|\lambda v\|^2 = \langle \lambda v, \lambda v \rangle = \lambda \bar{\lambda} \langle v, v \rangle = |\lambda^2| \langle v, v \rangle$$

2. Positive Definitheit:

$$\langle v, v \rangle \ge 0 \Longrightarrow ||v|| \ge 0$$

 $\langle v, v \rangle = 0 \Longleftrightarrow v = 0,$
 $\Longleftrightarrow ||v|| = 0$

3. $||v + w|| \le ||v|| + ||w||$

$$||v + w||^{2} = \langle v + w, v + w \rangle = \langle v, v \rangle + \langle v, w \rangle + \langle w, v \rangle + \langle w, w \rangle$$

$$= \langle v, v \rangle + \langle v, w \rangle + \overline{\langle v, w \rangle} + \langle w, w \rangle$$

$$= \langle v, v \rangle + 2 \operatorname{Re}(\langle v, w \rangle) + \langle w, w \rangle$$

$$\stackrel{(*)}{\leq} \langle v, v \rangle + 2 |\langle v, w \rangle| + \langle w, w \rangle$$

$$\stackrel{\text{CSU}}{\leq} \langle v, v \rangle + 2 \langle v, v \rangle \langle w, w \rangle + \langle w, w \rangle$$

$$= ||v||^{2} + 2 ||v|| ||w|| + ||w||^{2}$$

$$= (||v|| + ||w||)^{2}$$

$$\stackrel{\checkmark}{\Longrightarrow} ||v + w|| \leq ||v|| + ||w||$$

3.2. Winkel und Orthogonalität

In \mathbb{R}^2 bzw. \mathbb{R}^3 ist der von zwei Vektoren eingeschlossene Winkel anschaulich klar. Übertragung auf allgemeine Vektorräume?

Zunächst: $V=\mathbb{R}^2$, Standardskalarprodukt $\langle v,w\rangle=w^Tv$ und der damit induzierten Norm. Aus Cauchy-Schwartz folgt:

$$-1 \leq \frac{\langle v, w \rangle}{\|v\| \cdot \|w\|} \quad \forall v, w \in \mathbb{R}^2 \smallsetminus \{0\}$$

D.h. dieser Quotient ist gleich $\cos(\theta)$ für ein $\theta \in [0, \pi]$. Diesen nennt man den zwischen v und w eingeschlossenen Winkel.

$$\frac{\langle v,w\rangle}{\|v\|\cdot\|w\|}=\cos(\theta)\quad\rightarrow\quad \measuredangle(v,w)\coloneqq\arccos\frac{\langle v,w\rangle}{\|v\|\cdot\|w\|}$$

Passt das zur "üblichen" Winkeldefinition?

Aufgrund der Eigenschaften des Skalarprodukts folgt

$$\angle(v, w) = \angle(w, v), \quad \angle(\lambda v, w) = \angle(v, w) = \angle(v, \lambda w) \quad \forall \lambda > 0$$

Für $v \neq 0 \neq w$ und

$$\tilde{v} = \frac{1}{\|v\|} v \ (\Longrightarrow \|\tilde{v}\| = 1) \ \ \text{und} \ \ \tilde{w} = \frac{1}{\|w\|} \ (\Longrightarrow \|\tilde{w}\| = 1)$$

gilt $\measuredangle(v,w)=\measuredangle(\tilde{v},\tilde{w}).$ Im Einheitskreis erhält man

Also gibt es $\alpha, \beta \in [0, 2\pi \text{ mit}]$

$$\tilde{v} = (\cos \beta, \sin \beta)^T$$
 $\tilde{w} = (\cos \alpha, \sin \alpha)^T$

Gilt $\alpha, \beta \in [0, \pi]$ folgt aus einem Additionstheorem für cos

$$\begin{split} \cos(\beta-\alpha) &= \cos\alpha\cos\beta + \sin\alpha\sin\beta\\ &= \langle \tilde{v}, \tilde{w} \rangle \cdot 1 \cdot 1\\ \measuredangle(\tilde{v}, \tilde{w}) &= \cos(\beta-\alpha) \end{split}$$

Man kann den Winkel auch über die Gleichung

$$\langle v, w \rangle = \|v\| \cdot \|w\| \cdot \cos(\measuredangle(v, w))$$

definiere. Dann ist auch v=0 und/oder w=0 erlaubt. Stehen v und w senkrecht aufeinander ($v\perp w$)

$$\cos(\measuredangle(v,w)) = \cos\left(\frac{\pi}{2}\right) = 0 \implies \langle v, w \rangle = 0$$

Definition 3.9: orthogonal

Sei V ein endlichdimensionaler euklidischer oder unitärer Vektorraum.

- 1. Zwei Vektoren $v, w \in V$ heißten **orthogonal** bezüglich des gegebenen Skalarproduktes $\langle .,. \rangle$, wenn gilt $\langle v, w \rangle = 0$.
- 2. Für dieses Skalarprodukt heißt eine Basis $\{v_1,...,v_n\}$ von V Orthogonalbasis, wenn

$$\langle v_i, v_j \rangle = 0 \quad i,j = 1,...,n, \ i \neq j$$

Ist zusätzlich für die induzierte Norm

$$\langle v_i, v_i \rangle^{\frac{1}{2}} = ||v_i|| = 1 \quad i = 1, ..., n$$

so heißt $\{v_1,...,v_n\}$ Orthonormalbasis von $V.\,(\Longleftrightarrow \langle v_i,v_j\rangle=\delta_{ij})$

Satz 3.10: Sei V ein euklidischer oder unitärer Vektorraum mit $\dim(V)=n<\infty$. Sei $\{v_1,...,v_n\}$ eine Basis von V. Dann existiert eine Orthonormalbasis $\{w_1,...,w_n\}$ von V.

Beweis: Per Induktion über n.

Induktionsanfang: n = 1

Sei $v_1 \in V$, $v_1 \neq 0$. Dann gilt für $w_1 = \|v_1\|^{-1}v_1$, $\|w_1\| = 1$ und $\operatorname{Span}\{v_1\} = \operatorname{Span}\{w_1\}$. $\Longrightarrow \{w_1\}$ ONB

Induktionsschritt: $n \rightarrow n+1$

Die Aussage gelte für n. Sei $\dim(V)=n+1$ und $\{v_1,...,v_{n+1}\}$ eine Basis von V. Dann ist $U=\operatorname{Span}\{v_1,...,v_n\}$ ein n-dimensionaler Unterraum von V. Nach Induktionsvorraussetzung existiert eine ONB $\{w_1,...,w_n\}$ von U. D.h,

$$Span\{w_1, ..., w_n\} = Span\{v_1, ..., v_n\}$$

Für

$$\tilde{w}_{n+1} = v_{n+1} - \sum_{k=1}^n \langle v_{n+1}, w_k \rangle w_k$$

gilt wegen $v_{n+1} \notin U$, dass $\tilde{w}_{n+1} \neq 0$. Mit dem Austauschsatz von Steinitz (Satz 2.23, LinA I) folgt für $w_{n+1} = \|\tilde{w}_{n+1}\|^{-1} \tilde{w}_{n+1}$, dass

$$V = \text{Span}\{v_1, ..., v_{n+1}\} = \text{Span}\{w_1, ..., w_{n+1}\}$$

Für j = 1, ..., n erhält man

$$\langle w_{n+1}, w_j \rangle = \langle \| \tilde{w}_{n+1} \| \ \tilde{w}_{n+1}, w_j \rangle)$$

$$\|\tilde{\boldsymbol{w}}_{n+1}\|^{-1}\langle \boldsymbol{v}_{n+1} - \sum_{k=1}^{n} \langle \boldsymbol{v}_{n+1}, \boldsymbol{w}_k \rangle \boldsymbol{w}_k, \boldsymbol{w}_j \rangle$$

$$= \|\tilde{w}_{n+1}\|^{-1} \left(\langle v_{n+1}, w_j \rangle - \sum_{k=1}^n \langle v_{n+1}, w_k \rangle \langle w_k, w_j \rangle \right)$$

$$\|\tilde{\boldsymbol{w}}_{n+1}\|^{-1} \big(\langle \boldsymbol{v}_{n+1}, \boldsymbol{w}_j \rangle - \langle \boldsymbol{v}_{n+1}, \boldsymbol{w}_j \rangle \big) = 0$$

 $\Longrightarrow \{w_1,...,w_{n+1}\}$ sind ONB.

Diese Orthogonalisierung ist als Gram-Schmidt-Verfahren bekannt. Jorgen Gram (dänisher Mathematiker, 1850-1916), Erhard Schmidt (deutscher Mathematiker, 1876-1959). Das Verfahren wurde bereits vor Laplace und Cauchy verwendet.

Algorithmus 3.11: Gram-Schmidt-Verfahren

Gegeben: $\{v_1, ..., v_n\}$ als Basis eines euklidischen (unitären) Vektorraums V

46

- 1. Setze $w_1 := \|v_1\|^{-1} v_1$
- 2. Für j = 2, ..., n setze

$$\begin{split} \tilde{w}_j \coloneqq v_j - \sum_{k=1}^{j-1} \langle v_j, w_k \rangle w_k \\ w_j \coloneqq \|\tilde{w}_j\|^{-1} \tilde{w}_j \end{split}$$

Die ursprüngliche Basis $\{v_1,...,v_n\}$ hat dann die Darstellung

$$(v_1,...,v_n) = (w_1,...,w_k) \underbrace{ \begin{pmatrix} \|v_1\| \ \langle v_1,w_1\rangle \ ... \ \langle v_n,w_1\rangle \\ 0 \ \|\tilde{w}_2\| \ \ddots \ \vdots \\ \vdots \ \vdots \ \ddots \ \langle v_n,w_{n-1}\rangle \\ 0 \ 0 \ \|\tilde{w}_n\| \end{pmatrix}}_{=R}$$

Da alle Diagnonale
inträge von R ungleich 0 sind, ist R invertierbar. Sei nu
nU ein m-dimensionaler Unterraum von \mathbb{R}^n oder \mathbb{C}^n mit dem Skalar
produkt. Wir definieren eine Orthonormalbasis $\{w_1,...,w_m\}$ die Matrix

$$Q = (w_1, ..., w_m) \in K^{n,m}$$

Damit gilt im reellen Fall

$$\mathbb{R}^{m,m}\ni Q^TQ=\left(w_i^Tw_j\right)_{i,j=1,\dots,m}=\left(\delta_{ij}\right)_{i,j=1,\dots,m}=I_m$$

und im komplexen Fall

$$\mathbb{C}^{m,m}\ni Q^HQ=\left(w_i^Hw_j\right)_{i,j=1,\dots,m}=I_m$$

für
$$m=n$$
: $Q^T=Q^{-1}$ bzw. $Q^H=Q^{-1}$

Umgekehrt gilt: Ist für eine Matrix $Q \in K^{m,n}$ $Q^TQ = I_m$ bzw. $Q^HQ = I_m$, so sind die Spalten von Q eine ONB bzgl. des Standardskalarproduktes eines m-dimensionalen Unterraums von \mathbb{R}^n bzw. \mathbb{C}^m . Damit gilt:

Satz 3.12: Sind $v_1,...,v_m\in K^n$ linear unabhängig, dann gibt es eine Matrix $Q\in K^{n,m}$ mit orthonormalen Spalten bezüglich des Standardskalarproduktes und eine obere Dreiecksmatrix $R\in \mathrm{GL}_m(K)$ mit

$$K^{n,m}\ni (v_1,...,v_m)=QR$$

als sogenannte QR-Zerlegung

QR o numerische lineare Algebra o kleinste Quadrate-Problem

Die Matrix *Q* ist längenerhaltend:

Lemma 3.13: Sei $Q \in K^{m,n}$ eine Matrix mit orthogonalen Spalten bzgl des Standardskalarproduktes. Dann gilt $\|v\|_2 = \|Qv\|_2$ für alle $v \in K^n$, wobei hier $\|.\|_2$ die euklidische Norm ist.

Beweis:

$$\|v\|_{2}^{2} = \langle v, v \rangle = v^{H}v = v^{H}Iv = v^{H}Q^{H}Qv = \|Qv\|_{2}^{2}$$

Definition 3.14: Orthogonale und unitäre Matrizen

• Eine Matrix $Q \in \mathbb{R}^{n,n}$ heißt **orthogonal**, wenn $Q^TQ = I_n$ gilt. Wir definieren

$$O_n(\mathbb{R}) := \{ Q \in \mathbb{R}^{n,n} \mid Q \text{ orthogonal} \}$$

• Eine Matrix $Q \in \mathbb{C}^{n,n}$ heißt **unitär**, wenn $Q^HQ = I_n$. Wir definieren

$$U_n(\mathbb{C}) \coloneqq \{Q \in \mathbb{C}^{n,n} \mid Q \text{ unit"ar}\}$$

Für orthogonale bzw. unitäre Matrizen gilt

$$\mathbb{R}^{n,n}\ni Q^TQ=I_n\Longrightarrow Q^T=Q^{-1}, \mathbb{C}^{n,n}\ni Q^HQ=I_n\Longrightarrow Q^H=Q^{-1}$$

D.h.

Lemma 3.15: Die Mengen $O_n(\mathbb{R})$ und $U_n(\mathbb{C})$ bilden Untergruppen von $\mathrm{GL}_n(\mathbb{R})$ und $\mathrm{GL}_n(\mathbb{C})$.

Beweis: Hier nur $GL_n(\mathbb{R})$

Für
$$I_n \in \mathbb{R}^{n,n}$$
 gilt $I_n^T I_n = I_n \Longrightarrow I_n \in O_n(\mathbb{R}) \Longrightarrow O_n(\mathbb{R}) \neq \emptyset.$

zu zeigen: Gruppeneigenschaften

1. Abgeschlossenheit bzgl. der inneren Verknüpfung

Sind $Q_1, Q_2 \in O_n(\mathbb{R})$. Dann gilt:

$$\begin{aligned} \left(Q_1Q_2\right)^TQ_1Q_2 &= Q_2^TQ_1^TQ_1Q_2 = I_n\\ \Longrightarrow Q_1Q_2 &\in O_n(\mathbb{R}) \end{aligned}$$

- 2. Neutrales Element: I_n
- 3. Inverses Element: $Q^{-1} = Q^T$

Jetzt: Übertragung auf Endomorphismen, auch der geometrische Aspekt

Definition 3.16: orthogonale Abbildung

Eine Abbildung $f \in L(V, V)$ heißt **orthogonal** $(V = \mathbb{R})$ bzw. **unitär** $(V = \mathbb{C})$ falls gilt

$$\langle f(v), f(w) \rangle = \langle v, w \rangle \quad \forall v, w \in V$$

Definition 3.17:

Wir definieren für einen euklidischen Vektorraum V

$$O(V) \coloneqq \{f \in L(V,V) \ | \ f \text{ orthogonal}\}$$

bzw. für einen unitären Vektorraum ${\cal V}$

$$U(V) := \{ f \in L(V, V) \mid f \text{ unit"ar} \}$$

Lemma 3.18: Sei $f \in L(V, V)$ orthogonal bzw. unitär. Dann gilt:

- 1. $||f(v)|| = ||v|| \quad \forall v \in V$ für die durch das Skalarprodukt induzierte Norm
- 2. $v \perp w \Longrightarrow f(v) \perp f(w)$
- 3. f ist ein Isomorphismus und f^{-1} ist ebenfalls orthogonal bzw. unitär.
- 4. Ist $\lambda \in K$ ein Eigenwert von f, so gilt $|\lambda| = 1$

Beweis: 1 und 2 folgt direkt aus der Definition.

3: Injektivitt folgt aus 1 + pos. Definitheit der Norm. Surjektivität folgt dann aus der Dimensionsformel. Aus der Surjektivität von f und F orthogonal bzw. unitär folgt diese Eigenschaft auch für f^{-1} . 4: Ist λ ein Eigenwert von f mit dem Eigenvektor $v \neq 0$, so gilt

$$\|v\| = \|f(v)\| = \|\lambda v\| = |\lambda| \ \|v\|$$

$$1 = |\lambda|$$

Aus der Definition des Skalarproduktes und orthogonal bzw. unitär folgt

Korollar 3.19: Gilt für $f \in L(V, V)$, dass

$$||f(v)|| = ||v||$$

für die durch das Skalarprodukt induzierte Norm, so ist f orthogonal bzw. unitär.

Aus diesen Gründen werden orthogonale bzw. unitäre Abbildungen auch Isometrien genannt.

Satz 3.20: Sei V ein euklidischer (unitärer) Vektorraum mit einer Orthonormalbasis $B=\{v_1,...,v_n\}$ und $f\in L(V,V)$. Dann gilt:

$$f \in O(V) \ \text{bzw.} \ f \in U(V) \ \iff \ A_f^{B,B} \in O_n(\mathbb{R}) \ \text{bzw.} \ A_f^{B,B} \in U_n(\mathbb{C})$$

D.h. die Abbildungen

$$O(V) \to O_n(\mathbb{R}), f \mapsto A_f^{B,B} \quad \text{bzw.} \quad U(V) \to U_n(\mathbb{C}), f \mapsto A_f^{B,B}$$

sind Isomorphismen.

Beweis: Hier nur für $K=\mathbb{R}$

" \Longrightarrow ": f orthogonal

Dann gilt wegen der Orthonormalität von B für $A_f^{B,B} = (a_{ij})$, dass

$$\delta_{ij} = \langle v_i, v_j \rangle \stackrel{3.16}{=} \langle f(v_i), f\big(v_j\big) \rangle = \langle \sum_{l=1}^n a_{li} v_l, \sum_{k=1}^n a_{kj} v_k \rangle = \sum_{l=1}^n a_{li} a_{lj}$$

Also:

$$I_n = \left(A_f^{B,B}\right)^T A_f^{B,B} \Longrightarrow A_f^{B,B} \in O_n(\mathbb{R})$$

"=": $A_f^{B,B} \in O_n(\mathbb{R})$. Für die zugehörige lineare Abbildung f gilt wegen

$$f(v_i) = \sum_{l=1}^n a_{li} v_l,$$

dass

$$\langle f(v_i), f(v_j) \rangle = \langle \sum_{l=1}^n a_{li} v_l, \sum_{k=1}^n a_{kj} v_k \rangle = \sum_{l=1}^n a_{li} a_{lj} \stackrel{A_f^{B,B} \in O_n(\mathbb{R})}{=} \delta_{ij} = \langle v_i, v_j \rangle$$

$$\Longrightarrow f \in O(V)$$

3.3. Selbstadjungierte Abbildungen

Was ist ein adjungierter Endomorphismus?

Lemma 3.21: Sei V ein euklidischer (unitärer) Vektorraum und $f \in L(V, V)$. Dann gibt es genau ein $g \in L(V, V)$ mit

$$\langle f(v), w \rangle = \langle v, g(w) \rangle \quad \forall v, w \in V$$

Ist B eine Orthonormalbasis von V, so gilt

$$A_g^{B,B} = \left(A_f^{B,B}\right)^H$$

Beweis: Hier nur für $K=\mathbb{R}$. Da B orthonormal ist gilt für $v=\Phi_B(x)$ und $w=\Phi_B(y)$, dass

$$\langle v,w\rangle = \langle A_{\Phi_B}^{E,B}v,A_{\Phi_B}^{E,B}w\rangle_{\mathbb{R}^n} = x^T\underbrace{\left(A_{\Phi_B}^{E,B}\right)^TA_{\Phi_B}^{E,B}}_{I}y = x^Ty = \langle x,y\rangle_{\mathbb{R}^n} \quad \forall v,w\in V$$

Dann gilt für $A_f^{B,B}$

$$\left\langle A_f^{B,B}x,y\right\rangle_{\mathbb{R}^n}=\left(A_f^{B,B}x\right)^Ty=x^T\left(A_f^{B,B}\right)^Ty=\left\langle x,\left(A_f^{B,B}\right)^Ty\right\rangle_{\mathbb{R}^n}$$

Damit ist wegen der Definition des Skalarproduktes eindeutig eine lineare Abbildung mit der Darstellungsmatrix $\left(A_f^{B,B}\right)^T$ gegeben. Diese bestimmt eindeutig den gesuchten Endomorphismus g.

Definition 3.22: adjungierter Endorphismus

Die in Lemma 3.21 eindeutig definierte Abbildung $g \in L(V, V)$ nennt man den zu $f \in L(V, V)$ adjungierten Endomorphismus. Er wird mit f^{ad} bezeichnet.

Definition 3.23: selbstadjungiert

Sei V ein euklidischer (unitärer) Vektorraum und $f \in L(V,V)$. Der Enomorphismus f heißt selbstadjungiert, wenn

$$\langle f(v), w \rangle = \langle v, f(w) \rangle \quad \forall v, w \in V$$

gilt. D.h. $f^{ad} = f$.

Bemerkungen: Es folgt unmittelbar

• Ist $f \in L(V, V)$ und B eine ONB, so gilt

fselbstadjungier
t $\Longleftrightarrow A_f^{B,B}$ ist symmetrisch bzw. hermitesch, d.h.
 $A=A^H$

• Ist f orthogonal bzw. unitär, so ist $f^{\rm ad}=f^{-1}$, denn für $u,v\in V$ mit w=f(u) d.h. $u=f^{-1}(w)$ gilt

$$\langle f(v),w\rangle = \langle f(v),f(u)\rangle = \langle v,u\rangle = \langle v,f^{-1}(w)\rangle$$

Lemma 3.24: Sei V ein euklidischer (unitärer) Vektorraum und $f \in L(V, V)$ selbstadjungiert. Dann sind alle Eigenwerte von f reell und das charakteristische Polynom zerfällt in Linearfaktoren.

Beweis: Sei zunächst $K=\mathbb{C}.$ Sei λ ein Eigenwert von f mit zugehörigen Eigenvektor $v\neq 0.$ Dann gilt

$$\lambda \underbrace{\langle v,v\rangle}_{>0} = \langle \lambda v,v\rangle = \langle f(v),v\rangle = \langle v,f(v)\rangle = \langle v,\lambda v\rangle = \bar{\lambda}\langle v,v\rangle$$

$$\Longrightarrow \lambda = \bar{\lambda} \in \mathbb{R}$$

Fundamentalsatz der Algebra $\Longrightarrow p_f(.) = p_A(.)$ zerfällt über $\mathbb C$ in Linearfaktoren.

Sei nun $K=\mathbb{R}$. B ONB $\Longrightarrow A:=A_f^{B,B}=\left(A_f^{B,B}\right)^T$ ist eine spezielle komplexe Matrix \Longrightarrow wie oben folgt für $p_A(.)$ betrachtet über \mathbb{C} , dass $p_A(.)$ in Linearfaktoren zerfällt

$$(\lambda - \lambda_i)$$
 $(\lambda_i \text{ ist EW} \in \mathbb{R})$

 $\Longrightarrow p_A(.)$ zerfällt auch über $\mathbb R$ in Linearfaktoren.

Satz 3.25: Sei V ein euklidischer (unitärer) Vektorraum und $f \in L(V, V)$ selbstadjungiert. Dann gibt es eine Orthonormalbasis von V die aus Eigenvektoren zu den reellen Eigenwerten von f besteht.

Beweis: Sei $n = \dim(V) < \infty$.

Für n = 1: klar \checkmark

 $n-1 \rightarrow n$:

Wegen Lemma 3.24 gilt

$$p_f(\lambda) = \pm (\lambda - \lambda_1) \cdot \ldots \cdot (\lambda - \lambda_n)$$

mit $\lambda_1,...,\lambda_n\in\mathbb{R}$. Zu λ_1 existiert ein Eigenvektor v_1 mit $\|v_1\|=1$. Dann gilt für

$$u \in U \coloneqq \{u \in V \mid \langle v_1, u \rangle = 0\},\$$

dass

$$\langle v_1, f(u) \rangle = \langle f(v_1), u \rangle = \lambda_1 \underbrace{\langle v_1, u \rangle}_{=0} = 0$$

d.h. $f(U)\subseteq U.$ Also ist U invariant unter f. Die Einschränkung $f|_U:U\to U$ ist selbstadjungiert mit

$$p_{f|_U} = \pm (\lambda - \lambda_2) \cdot \ldots \cdot (\lambda - \lambda_k)$$

Nach Induktionsvorraussetzung ex. ONB für U. Die Vereinigung dieses ONB mit v_1 ist ONB für V.

Für die Matrixform erhalten wir analog:

Lemma 3.26: Sei $A\in K^{n,n}$ symmetrisch (hermitesch). Dann gibt es ein $T\in \mathrm{GL}_n(K)$ und $\lambda_1,...,\lambda_n\in\mathbb{R}$ so dass gilt

$$TAT^{-1} = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{pmatrix}$$

Beweis: Über Darstellungsmatrix eines selbstadjungierten Endomorphismus.

Definition 3.27: positiv definite Matrix

Eine symmetrische (hermitesche) Matrix $A \in K^{n,n}$ heißt **positiv definit**, wenn

$$v^T A v > 0$$
 bzw. $v^H A v > 0$ $\forall v \in V \setminus \{0\}$

Lemma 3.26 $\Longrightarrow A$ symmetrisch (hermitesch) $\Longrightarrow A$ diagonalisierbar

Des Weiteren gilt:

Satz 3.28: Sei $A \in K^{n,n}$ symmetrisch (hermitesch). Dann sind folgende Aussagen äquivalent:

- 1. *A* ist positiv definit
- 2. Alle Eigenwerte $\lambda_1,...,\lambda_n\in\mathbb{R}$ von A sind positiv.

Beweis: Hier nur $K = \mathbb{C}$, $K = \mathbb{R}$ folgt analog.

"1 \Longrightarrow 2": Sei λ Eigenwert von A. Lemma 3.26 \Longrightarrow $\lambda \in \mathbb{R}$. Sei v ein Eigenvektor zu λ , dann gilt:

$$0 < v^{H}Av = v^{H}A^{H}v = \left(Av\right)^{H}v = \left(\lambda v\right)^{H}v = \lambda v^{H}v = \lambda \underbrace{\left\|v\right\|^{2}}_{>0} \Longrightarrow \lambda > 0$$

"2 \Longrightarrow 1": Satz 3.25: Es exit
stiert ONB $\{v_1,...,v_n\}$ bestehend aus Eigenvektoren zu Eigenwerten vo
nA.

$$v_i^H A v_j = \lambda_i v_i^H v_j = \lambda_i \delta_{ij}$$

Jedes $v \in V$ bestizt eine Darstellung

$$\begin{split} v &= \sum_{i=1}^n \mu_i v_i, \quad \mu_i \in \mathbb{C}, 1 \leq i \leq n \\ v^H A v &= \langle \sum_{i=1}^n \mu_i v_i, \sum_{j=1}^n \mu_j A v_j \rangle = \sum_{i=1}^n \sum_{j=1}^n \mu_i \bar{\mu}_j \lambda_j \underbrace{\langle v_i, v_j \rangle}_{\delta_{ij}} \\ &= \sum_{i=1}^n \mu_i \bar{\mu}_i \underbrace{\lambda_i}_{>0} = \sum_{i=1}^n \underbrace{|\mu_i|^2}_{\geq 0} \lambda_i > 0 \quad \text{für } v \neq 0 \end{split}$$

Zur Berechnung einer solchen ONB:

Algorithmus 3.29: Gegeben: $A \in K^{n,n}$ bzw. $f \in L(V,V)$ mit $A_f^{B,B} = A$.

• Bestimme

$$p_A(\lambda) = \pm (\lambda - \lambda_1)^{k_1} \cdot \ldots \cdot (\lambda - \lambda_m)^{k_m}$$

mit paarweise verschiedenen λ_i , $1 \le i \le m$. Ist dies nicht möglich: STOP

- Für jeden Eigenwert λ_i der algebraischen Vielfachheit k_i bestimme eine Basis des dazugehörigen Eigenraums $\mathrm{Eig}(A,\lambda_i)$. Stimmen geometrische und algebraische Vielfachheit nicht überein: STOP
- Orthonormalisiere die Vereinigung der jeweiligen Basen mit dem Gram-Schmidt-Verfahren.

Beispiel 3.30: Fortsetzung von Beispiel 2.32

Wir betrachten wieder

$$A = \begin{pmatrix} 3 & -1 & 4 & -3 & -1 \\ 1 & 1 & -1 & 1 & 0 \\ -1 & 0 & 2 & 0 & 0 \\ 4 & 1 & -4 & 5 & 1 \\ -2 & 0 & 2 & -2 & 1 \end{pmatrix}$$

$$p_A(\lambda) = (\lambda - 1)^4 (\lambda - 2) \qquad \lambda_1 = 1 > 0, \lambda_2 = 2 > 0$$

Es gilt

$$\begin{split} \operatorname{Eig}(A,1) &= \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\} = \left\{ v_1, v_2, v_3, v_4 \right\} \\ \operatorname{Eig}(A,2) &= \operatorname{Span} \left\{ \begin{pmatrix} 0 & 1 & 2 & 3 & -2 \end{pmatrix}^T \right\} = \left\{ v_5 \right\} \end{split}$$

GS-Verfahren

$$w_1 = \|v_1\|^{-1} v_1 = \frac{1}{2} (1 \ -1 \ 1 \ 0 \ 1)^T$$

j = 1

$$\tilde{w}_2 = v_2 - \sum_{k=1}^1 \langle v_2, w_k \rangle w_k = \begin{pmatrix} 1 & 1 & 1 & 0 & -1 \end{pmatrix}^T - 0, \quad w_2 = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 0 & -1 \end{pmatrix}^T$$

 $\underline{j=2}$:

$$\begin{split} \tilde{w}_3 &= v_3 - \sum_{k=1}^2 \langle v_3, w_k \rangle w_k = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 \end{pmatrix}^T - \frac{1}{2} \cdot \frac{1}{2} \cdot \begin{pmatrix} 1, -1, 1, 0, 1 \end{pmatrix}^T - \frac{1}{2} \cdot \frac{1}{2} \cdot \begin{pmatrix} 1 & 1 & 1 & 0 & -1 \end{pmatrix}^T \\ &= \begin{pmatrix} -\frac{1}{2} & 0 & \frac{1}{2} & 1 & 0 \end{pmatrix}^T, \quad w_3 &= \frac{1}{\sqrt{\frac{3}{2}}} \begin{pmatrix} -\frac{1}{2} & 0 & \frac{1}{2} & 1 & 0 \end{pmatrix}^T \end{split}$$

j = 3:... j = 4:...

LINA II* SOSE 24 Konrad Rösler

4. Affine Geometrie

Bisher als Struktur:

Gruppen \Longrightarrow Körper \Longrightarrow Vektorraum über Körper \Longrightarrow Unterraum affine Unterräume als weitere Struktur

Zur Motivation/Startpunkt, \mathbb{R}^3

Gerade:

$$G := \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + a \cdot \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \mid a \in \mathbb{R} \right\}$$

Ebene:

$$E \coloneqq \left\{ egin{pmatrix} 1 \ 2 \ 3 \end{pmatrix} + a \cdot egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix} + b \cdot egin{pmatrix} 0 \ 1 \ 0 \end{pmatrix} \mid a, b \in \mathbb{R}
ight\}$$

Def. 6.5 aus LinA: G und E sind affine Unterräume des \mathbb{R}^3 . Damit ist $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}^T$ ein Punkt im Raum zu dem ein Vektor als Repräsentant einer Äquivalenzklasse addiert wird. D.h.

$$G: P + \bar{\imath}$$

Wir hatten schon: U=v+W mit W UVR

4.1. Operation einer Gruppe auf einer Menge

Definition 4.1: Wirkung einer Gruppe

Es sei G eine Gruppe mit der Verknüpfung o und dem neutralen Element e sowie eine Menge M. Eine Abbildung der Form

$$G \times M \to M$$
, $(g, m) \mapsto g \bullet m$

nennt man Wirkung oder Operation der Gruppe G auf der Menge M, falls gilt

- $1. \ (g_1 \circ g_2) \bullet m = g_1 \bullet (g_2 \bullet m) \quad \forall g_1, g_2 \in G, \forall m \in M$
- 2. $e \bullet m = m \quad \forall m \in M$

Beispiel 4.2:

• Passend zum obigen Beispiel der Gerade/Ebene:

Sei G = V ein K-Vektorraum (vgl. Def. 2.26 Lin I), M = V. Dann ist durch

$$V \times V \to V, (v, x) \mapsto v + x$$

eine Operation von ${\cal V}$ auf sich selbst definiert.

• Für die Gruppe $G \coloneqq (\mathbb{R}, +)$ und $M = S^1$ als Einheitskreis im \mathbb{R}^2 , d.h.

$$S^1 = \{ x \in \mathbb{R}^2 \mid x_1^2 + x_2^2 = 1 \}$$

wird durch

$$(a,x)\mapsto e^{ia}\cdot x \quad \forall a\in G, \forall x\in M$$

eine Operation von $(\mathbb{R}, +)$ auf S^1 gegeben.

• Sei $G = \mathrm{GL}_n(\mathbb{R})$ und $M = \mathbb{R}^n$. Dann definiert

$$(A, x) \mapsto A \cdot x \in M \quad \forall A \in G, \forall x \in M$$

eine Operation von $\mathrm{GL}_n(\mathbb{R})$ auf M.

Definition 4.3: Bahn von m

Eine Gruppe G wirke auf die Menge M. Für $m \in M$ wird die Teilmenge

$$G \bullet m := \{g \bullet m \mid g \in G\} \subseteq M$$

die Bahn von m unter G genannt.

Beobachtung: In Beispiel 4.2:

In 1 und 2 entspricht die Bahn eines einzigen Elements der ganzen Menge.

In 3)

Definition 4.4: transitive Wirkung

Eine Gruppe G wirke auf der Menge M. Die Wirkung nennt man **transitiv**, wenn für alle Paare $m, \widetilde{m} \in M$ ein $g \in G$ existiert, so dass

$$m = g \bullet \widetilde{m}$$

Man nennt die Wirkung **einfach transitiv**, falls das Gruppenelement g eindeutig bestimmt ist.

Lemma 4.5: Eine Gruppe G wirke auf die Menge M. Dann gilt:

- 1. Ist die Wirkung transitiv, so gilt für jedes $m \in M$ die Gleichheit $G \bullet m = M$
- 2. Ist die Wirkung einfach transitiv, so existiert eine Bijektion zwischen M und G.

Beweis:

zu 1) Sei $m\in M$ bel. gewählt. Dann existiert wegen der transitiven Wirkung zu $\widetilde{m}\in M$ ein $g\in G$ mit $\widetilde{m}=g\bullet m\Longrightarrow M=G\bullet m$

zu 2) Für ein fest gewähltes $m \in M$, definiert man

$$\psi_m: G \to M, \quad g \mapsto g \bullet m$$

Wegen der transitiven Wirkung ist φ_m surjektiv. Da die Wirkung einfach transitiv ist, ist φ_m auch injektiv \Longrightarrow Bijektivität

4.2. Affine Räume

Definition 4.6: affiner Raum

Sei V ein K-Vektorraum. Eine nichtleere Menge M heißt **affiner Raum** über dem Vektorraum V, wenn V einfach transitiv auf M wirkt. Die Elemente von M werden als **Punkte** bezeichnet. Ist $M=\emptyset$, so wird M ebenfalls als affiner Raum aufgefasst.

Wie passt das zu 6.5 aus LinA I?

Beispiel 4.7: Sei $\mathcal{L}(A, b)$ die Lösungsmenge des LGS Ax = b mit $A \in \mathbb{R}^{m,n}, x \in \mathbb{R}^n, b \in \mathbb{R}^m$. Im Satz 6.3, LinA I, haben wir gezeigt, dass $\mathcal{L}(A, 0)$ ist ein Unterraum des \mathbb{R}^n (\Longrightarrow Gruppe). Ist $\mathcal{L}(A, b) \neq \emptyset$, gilt nach Satz 6.4, LinA I, dass

$$\mathcal{L}(A,b) = x_* + \mathcal{L}(A,0)$$

für ein beliebiges $x_*\in\mathcal{L}(A,b)$. Dann ist $M=\mathcal{L}(A,b)$ ein affiner Raum über dem Vektorraum $\mathcal{L}(A,0)$, denn es gilt

$$+: \mathcal{L}(A,0) \times \mathcal{L}(A,b) \to \mathcal{L}(A,b), \quad (y,x) \mapsto y + x$$

dass $\forall y \in G, \forall x \in M$:

$$A(y+x) = Ay + Ax = 0 + b = b$$

 $\implies y + x \in M$

 $\forall y, \tilde{y} \in G, \forall x \in M \text{ gilt}$

1.
$$(y +_G \tilde{y}) +_W x = y +_W (\tilde{y} +_W x) = y +_{\mathbb{R}^n} \tilde{y} +_{\mathbb{R}^n} x$$

2.
$$0 +_W x = 0 +_{\mathbb{R}^n} x = x$$

 \Longrightarrow + ist eine Wirkung der Gruppe G auf die Menge M. Sind $x,\tilde{x}\in\mathcal{L}(A,b)$ ist $Ax=A\tilde{x}=b\Longrightarrow$

$$A(x - \tilde{x}) = b - b = 0$$

 $y\coloneqq x-\tilde x\in\mathcal L(A,0)\Longrightarrow x=(x-\tilde x)+\tilde x=y+\tilde x\Longrightarrow$ Wirkung ist transitiv Sei $\tilde y\in\mathcal L(A,0)=G$ so gewählt, dass auch

$$x = \tilde{y} + \tilde{x}$$

gilt.

$$x=y+\tilde{x}$$

$$x=\tilde{y}+\tilde{x}$$

$$\Longrightarrow 0=y-\tilde{y}\Longrightarrow y=\tilde{y}\Longrightarrow \text{einfach transitiv}$$

Korollar 4.8: Sind M und \widetilde{M} zwei affine Räume, so existiert eine Bijektion zwischen M und \widetilde{M} .

Beweis: Folgt aus Lemma 4.5 und Komposition zweier bijektiver Abbildungen.

Folgerung: Ein affiner Raum ist bis auf eine Bijektion eindeutig bestimmt. Damit ist folgendes sinnvoll:

Definition 4.9: affiner Raum von V als A(V)

Wir bezeichnen den affinen Raum über den zugehörigen K-Vektorraum V mit A(V) bzw. A, wenn der Kontext klar ist. Die einfach transitive Wirkung \bullet von V auf A(V) wird mit + bezeichnet, d.h.

$$x \bullet P := P + x, \quad x \in V, P \in A(V)$$

Lemma 4.10: Sei V ein K-Vektorraum und A ein affiner Raum über V. Sei $P, Q, R, S \in A$ und $v, w \in V$. Dann gelten folgende Aussagen:

 $P + v = P + w \Longrightarrow v = w$

D.h. für $Q = P + x \in A$ ist der Vektor $x \in V$ eindeutig bestimmt.

- 2. $P + v = Q + v \Longrightarrow P = Q$
- 3. $P + v = Q \Longrightarrow P = Q + (-v)$
- 4. Für $Q = P + v \in A$ wird v als Verbindungsvektor von P nach Q bezeichnet und man schreibt

$$v = \overrightarrow{PQ}$$

Es gilt

$$\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$$

5. Für $n\in\mathbb{N}$ Punkte, n>1, $P_1,...,P_n\in A$ gilt

$$\overrightarrow{P_1P_2} + \overrightarrow{P_2P_3} + \dots + \overrightarrow{P_{n-1}P_n} = \sum_{i=1}^{n-1} \overrightarrow{P_iP_{i+1}} = \overrightarrow{P_1P_n}$$

- 6. $\overrightarrow{PQ} + \overrightarrow{QP} = 0 \in V$, d.h. $\overrightarrow{PQ} = -\overrightarrow{QP} \in V$ 7. $\overrightarrow{PQ} = \overrightarrow{RS} \Longrightarrow \overrightarrow{PR} = \overrightarrow{QS}$

Beweis: Hier nur der Beweis von einigen Aussagen

zu 1: Wegen der einfachen Transitivität existiert genau ein Vektor $v \in V$ mit Q = P + v =P+w

Formal: $\overrightarrow{PQ}, \overrightarrow{QR}, \overrightarrow{PR}$ sind definitionsgemäß die eindeutig bestimmten Vektoren, für die gilt

$$Q = P + \overrightarrow{PQ}, R = Q + \overrightarrow{QR}, R = P + \overrightarrow{PR}$$

Damit folgt

$$R = \left(P + \overrightarrow{PQ}\right) + \overrightarrow{QR} = P + \left(\overrightarrow{PQ} + \overrightarrow{QR}\right)$$

zu 7: Sei $\overrightarrow{PQ} = \overrightarrow{RS}$. Dann folgt mit 4:

$$\overrightarrow{PR} = \overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{RS} + \overrightarrow{QR} = \overrightarrow{QR} + \overrightarrow{RS} \stackrel{4)}{=} \overrightarrow{QS}$$

Definition 4.11: Verbindungsvektor $v_O(P)$

Sei V ein K-Vektorraum und A ein affiner Raum über V. Für einen Punkt $O \in A$ definiert man:

$$\psi_O: V \to A, \quad x \mapsto P := O + x$$

Aus Lemma 4.10 folgt unmittelbar, dass ψ_O eine Bijektion ist. D.h. für alle $P\in A$ ist der Vektor $v_O(P)$ das eindeutig bestimmte Element in V mit

$$P = O + v_O(P)$$

Definition 4.12: Dimension affiner Räume

Sei V ein K-Vektorraum und A ein affiner Raum über V. Dann ist

$$\dim A := \dim V$$

die **Dimension von** A. Ist $A = \emptyset$, so definiert man dim A = -1.

Als Verallgemeinerung von Def. 6.5, LinA I:

Definition 4.13: affiner Unterraum

Sei V ein K-Vektorraum, A ein affiner Raum über V mit der Verknüpfung $+:V\times A\to A$ und $P\in A$. Ist $U\subseteq V$ ein Untervektorraum von V, so nennt man die Menge

$$B := P + U := \{Q \in A \mid \exists u \in U : Q = u + P\}$$

einen affinen Unterraum von A.

Lemma 4.14: Sei B ein affiner Unterraum des affinen Raums A(V), d.h. $B \subseteq A(V)$. Damit ist B selbst ein affiner Raum über einen Vektorraum $U \subseteq V$.

Beweis: Nach Definition existiert zu B ein $P \in A(V)$ und ein Unterraum $U \subseteq V$:

$$B = \{Q \in A \mid \exists u \in U : Q = P + u\}$$

 $A \text{ affiner Raum} \Longrightarrow \exists +: V \times A \to A$

Einschränkung auf B liefert:

$$+: V \times B \rightarrow B$$

$$B = \{Q \in A \mid \exists v \in U : Q = P + v\}, \quad + : U \times B \to B \text{ wohldefiniert?}$$

 $\forall Q \in A : \forall v \in V \text{ ist } Q = P + v \text{ definiert.}$

 $\Longrightarrow \forall Q \in B \subseteq A, \forall u \in U \subseteq V$ ist Q = P + u wohldefiniert. Des Weiteren gilt: für $Q \in B$, $u \in U$ sowie $v \in U$ erhält man

$$Q+u=(P+v)+u=P+\underbrace{(v+u)}_{\in U}\in B$$

Auch bei der Einschränkung auf B bzw. U bleibt die einfache Transitivität erhalten.

Analago zu Satz 6.6 aus LinA I kann man zeigen:

 Satz 4.15: Sei V ein K-Vektorraum, A ein affiner Raum über V, $P, \tilde{P} \in A$ und $U, \tilde{U} \subseteq$ V Untervektorräume von V. Dann gilt:

- 1. Für jedes $Q\in P+U$ ist P+U=Q+U2. Gilt $P+U=\tilde{P}+\tilde{U}$, so ist $U=\tilde{U}$ und $\overrightarrow{PP}\in U=\tilde{U}$

Beweis: siehe LinA I

Definition 4.16: Aufpunkt und Richtung

Sei V ein K-Vektorraum, A ein affiner Raum über V und A(W) ein affiner Unterraum von A. Gilt

$$A(W) = P + W$$

so nennt man P einen **Aufpunkt** von A(W) und den Untervektorraum W die **Richtung** von A(W)

4.3. Lagebeziehungen von affinen Unterräumen

Definition 4.17: (schwach) parallel

Sei V ein K-Vektorraum, A(V) ein affiner Raum und $A(W_1)$, $A(W_2)$ zwei affine Unterräume von A(V).

- $A(W_1)$ und $A(W_2)$ heißen **parallel**, wenn $W_1 = W_2$ gilt $(A(W_1) \parallel A(W_2))$
- $A(W_1)$ und $A(W_2)$ heißen schwach parallel, falls $W_1 \subset W_2$ gilt $(A(W_1) \triangleleft A(W_2))$

Satz 4.18: Sei V ein K-Vektorraum, A(V) ein affiner Raum über V und $A(W_1), A(W_2)$ zwei parallele affine Unterräume. Dann gilt entweder $A(W_1) = A(W_2)$ oder $A(W_1) \cap A(W_2) = \emptyset$

Beweis: Gilt $A(W_1) \parallel A(W_2) \Longrightarrow W_1 = W_2$

Annahme: $A(W_1) \cap A(W_2) \neq \emptyset$. Dann existiert ein $P \in A(W_1) \cap A(W_2)$. Satz 4.15 liefert

$$A(W_1) = P + W_1 = P + W_2 = A(W_2)$$

Bekannt ist:

• Ein 0-dimensionaler affine Unterraum \mathbb{R}^3 heißt Punkt im \mathbb{R}^3 .

- Ein 1-dimensionaler affine Unterraum des \mathbb{R}^3 heißt Gerade im \mathbb{R}^3 .
- Ein 2-dimensionaler affine Unterraum des \mathbb{R}^3 heißt Ebene in \mathbb{R}^2 .

Verallgemeinerung:

Definition 4.19: Punkt, Gerade, Ebene

Sei V ein K-Vektorraum, A(V) ein affiner Raum über V und A(W) ein affiner Unterraum von A(V).

- Ist $\dim(A(W)) = 0$, so heißt A(W) (affiner) Punkt von A(V).
- Ist $\dim(A(W)) = 1$, so heißt A(W) (affine) Gerade von A(V).
- Ist $\dim(A(W)) = 2$, so heißt A(W) (affine) Ebene von A(V).

Bemerkung: Geraden können maximal schwach parallel zu Ebenen sein!

 Für Untervektorräume gilt: $\dim(U_1\cap U_2)=\dim(U_1)+\dim(U_2)-\dim(U_1+U_2)$, Satz 3.40, Lin A I

Lemma 4.20: Es seien U_1 und U_2 zwei Untervektorräume eines K-Vektorraums V sowie $A(U_1)=:A_1$ und $A(U_2)=:A_2$ zwei affine Unterräume des affinen Raums A(V). Ist $A_1\cap A_2\neq \emptyset$, so ist $A_1\cap A_2$ ein affiner Unterraum von A(V) mit dem zugehörigen Untervektorraum $U_1\cap U_2$ und es gilt

$$\dim(A_1\cap A_2)=\dim(U_1\cap U_2)$$

Beweis: Es gilt:

$$A_1 = P_1 + U_1$$
 und $A_2 = P_2 + U_2$

$$A_1 \cap A_2 \neq \emptyset \Longrightarrow \exists Q \in A_1 \cap A_2$$

$$A_1 \cap A_2 = \{ P \in A \mid \exists u_1 \in U_1, u_2 \in U_2 : P = Q + u_1 = Q + u_2 \}$$

Für jedes Paar (P,Q) von Punkten aus A genau einen Vektor $v \in V$ mit P = Q + v (Lemma 4.10, 1)

$$\Longrightarrow u_1=u_2\Longrightarrow A_1\cap A_2=\left\{P\in A\mid \exists u\in \underbrace{U_1\cap U_2}_{\text{UVR}}: P=Q+u\right\}$$

 $\Longrightarrow A_1 \cap A_2$ affiner Raum.

 $\dim(A_1\cap A_2)=\dim(U_1\cap U_2)$ nach Def.

Lemma 4.21: Es seien U_1 und U_2 zwei Untervektorräume des K-Vektorraums V, $A_1=A(U_1)$ und $A_2=A(U_2)$ zwei affine Unterräume eines affinen Raums A(V) sowie $P_1\in A_1$ und $P_2\in A_2$ zwei beliebige Punkte

$$A_1 \cap A_2 \neq \emptyset \Longleftrightarrow \overrightarrow{P_1P_2} \in U_1 + U_2$$

Beweis:

"
$$\Longrightarrow$$
": $A_1 \cap A_2 \neq \emptyset \Longrightarrow \exists Q \in A_1 \cap A_2$

Dann liegen die Verbindungsvektoren $\overrightarrow{P_1Q}$ bzw. $\overrightarrow{P_2Q}$ in den jeweiligen Untervektorräume U_1 bzw. U_2 . Lemma 4.10, 4):

$$\overrightarrow{P_1P_2} = \underbrace{\overrightarrow{P_1Q}}_{\in U_1} + \underbrace{\overrightarrow{QP_2}}_{\in U_2} \in U_1 + U_2 \checkmark$$

"
$$\Leftarrow$$
": Sei $\overrightarrow{P_1P_2} \in U_1 + U_2 \Longrightarrow$

 $\exists u_1 \in U_1, u_2 \in U_2: \overrightarrow{P_1P_2} = u_1 + u_2.$ Setzt man $Q \coloneqq P_1 + u_1 \in A_1,$ so gilt

$$\begin{split} Q &= P_1 + u_1 = P_1 + ((u_1 + u_2) - u_2) = P_1 + \left(\overrightarrow{P_1P_2} - u_2\right) \\ &= \left(P_1 + \overrightarrow{P_1P_2}\right) - u_2 = \underbrace{P_2}_{\in A_2} + \underbrace{(-u_2)}_{\in U_2} \in A_2 \end{split}$$

$$\Longrightarrow A_1\cap A_2\neq\emptyset$$

Definition 4.22: affine Hülle

Sei $M \subset A(V)$ eine Teilmenge eines affinen Raumes A(V) über einem K-Vektorraum V. Der kleinste affine Unterraum von A, der M enthält, wird **affine Hülle** von M gennant und mit $\langle M \rangle_{\rm aff}$ bezeichnet.

Sind $A(U_1)$ und $A(U_2)$ zwei affine Unterräume eines affines Raums A(V), so bezeichnen wir die affine hülle $\langle A(U_1) \cup A(U_2) \rangle_{\rm aff}$ als Verbindungsraum von A_1 und A_2 .

Lemma 4.23: Seien $U_1,U_2\subseteq V$ zwei Untervektorräume des K-Vektorraums $V,A_1=A(U_1)$ und $A_2=A(U_2)$ zwei offene Unterräume eines affines Raums A(V), sowie $P_1\in A_1$ und $P_2\in A_2$ d.h.

$$A_1 = P_1 + U_1$$
 und $A_2 = P_2 + U_2$

Dann ist der Verbindungsraum durch

$$\langle A_1 \cup A_2 \rangle_{\mathrm{aff}} = P_1 + \left(\mathrm{Span} \bigg(\overrightarrow{P_1 P_2} \bigg) + U_1 + U_2 \bigg)$$

bestimmt.

Beweis: Sei U der Untervektorraum zu $\langle A_1 \cup A_2 \rangle_{\mathrm{aff}}$. Nach Definition gilt

$$A_1 \cup A_2 \subseteq \langle A_1 \cup A_2 \rangle_{\mathrm{aff}}$$

also auch

$$\begin{split} A_1 &= P_1 + U_1 \subseteq \langle A_1 \cup A_2 \rangle_{\mathrm{aff}} \text{ und} \\ A_2 &= P_2 + U_2 \subseteq \langle A_1 \cup A_2 \rangle_{\mathrm{aff}} \end{split}$$

 $\Longrightarrow U_1 \subseteq V, U_2 \subseteq V. \ P_1, P_2 \in \langle A_1 \cup A_2 \rangle_{\mathrm{aff}} \ \mathrm{und} \ \langle A_1 \cup A_2 \rangle_{\mathrm{aff}} \ \mathrm{affiner} \ \mathrm{Unterrraum} \Longrightarrow P_1 P_2 \in V$

Damit erhalten wir

$$P_1 + \operatorname{Span} \left(\overrightarrow{P_1 P_2} \right) \subseteq \langle A_1 \cup A_2 \rangle_{\operatorname{aff}}$$

Man kann sich überlegen:

Für Teilmengen $M_1, M_2 \subseteq V, V$ Vektorraum, gilt

$$\begin{split} &\operatorname{Span}\{M_1 \cup M_2\} = \operatorname{Span}\{M_1\} + \operatorname{Span}\{M_2\} \\ &\Longrightarrow \operatorname{Span}\left\{\overrightarrow{P_1P_2}\right\} + U_1 + U_2 \subseteq U \\ &\Longrightarrow P_1 + \operatorname{Span}\left\{\overrightarrow{P_1P_2}\right\} + U_1 + U_2 \subseteq \langle A_1 \cup A_2 \rangle_{\operatorname{aff}} \end{split}$$

Gleihheit gilt nach Definition der affinen Hülle.

Satz 4.24: Dimensionssatz

Seien U_1,U_2 zwei Untervektorräume eines K-Vektorraums V sowie $A_1=P_1+U_1$ und $A_2=P_2+U_2$ zwei affine Unterräume eines affinen Raums A(V). Dann gilt

1. Ist $A_1 \cap A_2 \neq \emptyset$, so ist

$$\begin{split} \dim \langle A_1 \cup A_2 \rangle_{\mathrm{aff}} &= \dim(U_1 + U_2) \\ &= \dim(A_1) + \dim(A_2) - \dim(U_1 \cap U_2) \\ &= \dim(A_1) + \dim(A_2) - \dim(A_1 \cap A_2) \end{split}$$

2. Ist $A_1 \cap A_2 = \emptyset$, so ist

$$\begin{split} \dim \langle A_1 \cup A_2 \rangle_{\mathrm{aff}} &= \dim(U_1 + U_2) + 1 \\ &= \dim(A_1) + \dim(A_2) - \dim(U_1 \cap U_2) + 1 \end{split}$$

Beweis:

zu 1) $A_1 \cap A_2 \neq \emptyset \Longrightarrow$ Lemma 4.21: $\overrightarrow{P_1P_2} \in U_1 + U_2$. Mit Lemma 4.23:

$$\langle A_1 \cup A_2 \rangle_{\mathrm{aff}} = P_1 + \left(\mathrm{Span} \bigg\{ \overrightarrow{P_1 P_2} \bigg\} + U_1 + U_2 \right) = P_1 + (U_1 + U_2)$$

Satz 3.40, LinA I (Dimensionssatz für UVR)

$$\dim(U_1 + U_2) = \dim(U_1) + \dim(U_2) - \dim(U_1 \cap U_2)$$

Die Aussage folgt dann aus Lemma 4.20.

zu 2) Lemma 4.21: $\overrightarrow{P_1P_2} \notin U_1 + U_2 \Longrightarrow$

$$\dim \left(\operatorname{Span}\left\{\overrightarrow{P_1P_2}\right\} + U_1 + U_2\right) = 1 + \dim(U_1) + \dim(U_2) - \dim(U_1 \cap U_2)$$

4.4. Affine Abbildungen

Definition 4.25: affine Abbildung

Seien A(V) und A(W) zwei affine Räume über dem K-Vektorraum V und W. Eine Abbildung $f:A(V)\to A(W)$, d.h. zwischen den Mengen, die A(V) und A(W) zugrundeliegen, heißt affine Abbildung, falls ein Punkt $P\in A(V)$ existiert, so dass die Abbildung

$$\overrightarrow{f_P}: V \to W, \quad \overrightarrow{f_P}\left(\overrightarrow{PQ}\right) \coloneqq \overrightarrow{f(P)f(Q)} \qquad \forall Q \in A(V)$$

linear ist.

Beispiel 4.26: Für $n, m \in \mathbb{N}$ sei $A \in \mathbb{R}^{m,n}$, $b \in \mathbb{R}^m$

$$g: \mathbb{R}^n \to \mathbb{R}^m$$
, $g(x) := Ax + b$ für $b \neq 0$ nicht linear!

Ist diese Abbildung affin? Dazu: $V:=\mathbb{R}^n, W=\mathbb{R}^m, A(V)=\mathbb{R}^n, A(W)=\mathbb{R}^m, P=?, g_P=?$

Sei $p \in A(V)$ beliebig gewählt, $v \in V$ und q := p + v. Dann gilt:

$$g(p) = Ap + b$$
 $g(q) = Aq + b = A(p + v) + b = Av + g(p)$

Damit setzen wir

$$\overrightarrow{g_P}(v) = \overrightarrow{g(p)g(q)} = Av$$

D.h. die resultierende Abbildung

$$\stackrel{
ightarrow}{g_P}: V
ightarrow W, \quad \stackrel{
ightarrow}{g_P} (v) = Av$$

ist linear, also ist g affin

Sind die Eigenschaften von $\overset{
ightarrow}{f_P}$ Abhängigkeit von der Wahl von P?

Lemma 4.27: Die Definition einer affinen Abbildung $f: A(V) \to A(W)$ ist unabhängig von dem in der Definitionausgegebenen Punkt P.

Beweis: Zuerst: Zeige für $v\in V$ beliebig, dass das Bild $\overrightarrow{f_P}\in W$ unabhängig von P ist. Dazu sei $Q\in A(V)$ beliebig gewhählt. Für $R:=Q+v\in A(V)$ gilt $Q,R\in A(V),v=\overrightarrow{QR}.$ Wegen

$$\overrightarrow{PR} = \overrightarrow{PQ} + \overrightarrow{QR} \Longrightarrow v = \overrightarrow{PR} - \overrightarrow{PQ}$$

 \overrightarrow{f}_{P} linear \Longrightarrow

$$\overrightarrow{f_P} \ (v) = \overrightarrow{f_P} \ \left(\overrightarrow{PR} - \overrightarrow{PQ}\right) = \overrightarrow{f_P} \ \left(\overrightarrow{PR}\right) - \overrightarrow{f_P} \ \left(\overrightarrow{PQ}\right) = \overrightarrow{f(P)f(R)} - \overrightarrow{f(P)f(Q)} = \oplus$$

$$\left(\overrightarrow{f(P)f(R)} = \overrightarrow{f(P)f(Q)} + \overrightarrow{f(Q)f(R)}\right)$$

$$\oplus = \overrightarrow{f(Q)f(R)}$$

 $\Longrightarrow \stackrel{\rightarrow}{f_P}(v)$ ist unabhängig von P.

Bemerkung: Ist $f:A(V)\to A(W)$ eine affine Abbildung, so erlaubt Lemma 4.27, die durch f induzierte lineare Abbildung $f_P\in L(V,W)$ mit $f\in L(V,W)$ zu bezeichnen. Damit haben wir zwei Möglichkeiten f zu charakterisieren: $P,Q\in A(V)$

$$\stackrel{\rightarrow}{f}\left(\overrightarrow{PQ} \right) = \overrightarrow{f(P)f(Q)} \Longleftrightarrow f(Q) = f(P) + \stackrel{\rightarrow}{f}\left(\overrightarrow{PQ} \right)$$

Definition 4.28: affine Selbstabbildung, Fixpunkt

Seien A(V), A(W) zwei affine Räume mit zugehörigen K-Vektorräumen V und W. Dann definiert man

$$A(V, W) := \{ f : A(V) \to A(W) \mid f \text{ affin} \}$$

Eine affine Abbildung $f:A(V)\to A(V)$ nennt man **affine Selbstabbildung**. Für ein $f\in A(V,V)$ nennt man einen Punkt $P\in A(V)$ mit f(P)=P **Fixpunkt von** f. Die Menge der bijektiven affinen Selbstabbildungen bezeichnet man mit

$$GA(V) := \{ f : A(V) \to A(V) \mid f \text{ affin und bijektiv} \}$$

Bemerkungen:

- Die Menge $\mathrm{GA}(V)$ bildet eine Gruppe bzgl. der Komposition von Abbildungen. Sie wird deswegen auch **affine Gruppe** zum K-Vektorraum V gennant.
- Betrachtet man einen Vektorraum V, als A(V) über sich selbst, so lässt sich sich jede lineare Abbildung $f \in L(V, V)$ als affine Abbildung interpretieren

$$f_P: V \to V, \quad x \mapsto 0_V + \vec{f} \biggl(\overset{\longrightarrow}{0_V x} \biggr) = f(x)$$

Diese Abbildung besitzt immer den Fixpunkt 0_V , denn $f_P(0_V) = f(0_V) = 0_V$.

Lemma 4.29: Seien $f \in A(V, W)$ und A(V') ein affiner Unterraum von A(V). Dann ist das Bild f(A(V')) ein affiner Unterraum von A(W) mit der Richtung f(V').

Beweis: Nach Definition existiert ein $P \in A(V')$ mit der Eigenschaft

$$A(V') = P + V'$$

 $f \in A(V,W)$ induziert eine lineare Abbildung $\overset{
ightarrow}{f} \in L(V,W)$. Für diese gilt:

$$f(A(V')) = f(P + V') = f(P) + \overrightarrow{f}(V')$$

Man kann sich relativ leicht überlegen:

Ist $f \in GA(V)$, so werden mittels f (affine) Geraden und Ebenen wieder in (affine) Geraden und Ebenen überführt. Deswegen nennt man eine Abbildung $f \in GA(V)$ auch **geradentreu**. Vgl. Lemma 4.37, Satz 4.39.

Beispiele für affine Abbildungen.

Definition 4.30: Translation

Sei V ein K-Vektorraum, $v \in V$ und A(V) ein affiner Raum. Dann heißt die Abbildung

$$f_v: A(V) \to A(V), \quad f_v(P) = P + v$$

Verschiebung oder Translation um den Vektor v.

Lemma 4.31: Für eine Translation f_v gilt

$$f_v \in \mathrm{GA}(V)$$

Beweis:

 f_v bijektiv: einfach zu zeigen f_v affin: Seien $P,Q\in A(V)$. Dann gilt:

$$\begin{split} f_v(Q) &= f_{v(P)} + \overrightarrow{f_v(P)f_v(Q)} &= P + v + \overrightarrow{f_v} \left(\overrightarrow{PQ}\right) \\ &= Q + \overrightarrow{QP} + v + \overrightarrow{f_v} \left(\overrightarrow{PQ}\right) \end{split}$$

Des Weiteren gilt

$$f_v(Q) = Q + v \quad \left(\Longrightarrow Q + v = Q + \overrightarrow{QP} + v + f_v \left(\overrightarrow{PQ} \right) \right)$$

$$\Longrightarrow v = \overrightarrow{QP} + v + \overrightarrow{f_v} \left(\overrightarrow{QP} \right)$$

$$\Longrightarrow \overrightarrow{f_v} \left(\overrightarrow{PQ} \right) = -\overrightarrow{QP} = \overrightarrow{PQ} \Longrightarrow \overrightarrow{f_v} = \text{Id in V}$$

$$\Longrightarrow \overrightarrow{f_v} \in L(V, V)$$

Bemerkungen:

- Nicht jede affine Abbildung besitzt einen Fixpunkt, z.B. hat jede Translation um $v \neq 0_V$ keinen Fixpunkt
- Die Menge der Translationen werden mit

$$T(V) = \{ f \in \operatorname{GA}(V) \mid \exists v \in V : f = f_v \}$$

zusammengefasst. Diese Menge bildet eine Untergruppe von GA(V).

Korollar 4.32:

$$D(V) = \left\{ f \in \operatorname{GA}(V) \mid \exists \lambda \in K : \vec{f} = \lambda \operatorname{Id}_{V} \right\}$$

ist eine Verallgemeinerung von T(V) und bildet wieder eine Untergruppe von $\mathrm{GA}(V)$, wobei T(V) eine Untergruppe von D(V) ist. Die Elemente von D(V) nennt man **Dilationen**.

Lemma 4.33: Es sei $f \in D(V) \setminus T(V)$, d.h. $\overrightarrow{f} = \lambda \mathrm{Id}_V$ mit $\lambda \neq 1$. Dann existiert ein eindeutig bestimmter Punkt $Z \in A(V)$ mit

$$f(P) = Z + \lambda \overrightarrow{ZP} \quad \forall P \in A(V)$$

Beweis: ÜA

Definition 4.34: zentrisch

Ist $f \in D(V) \setminus T(V)$ und besitzt f den Fixpunkt $Z \in A(V)$, so nennt man f **zentrische** Streckung mit dem Zentrum Z und dem Streckungsfaktor $\lambda \neq 1$.

Dafür zunächst noch:

Definition 4.35: affin unabhängig

Die (n+1) Punkte $P_0,...,P_n\in A(V)$ heißen
 affin unabhängig, falls die n Verbindungsvektoren

$$\overrightarrow{P_0P_1}, \overrightarrow{P_0P_2}, ..., \overrightarrow{P_0P_n} \in V$$

linear unabhängig sind.

Definition 4.36: kollinear

Drei Punkte $P,Q,R\in A(V)$ heißen **kollinear**, falls eine affine Gerade $A(W)\subseteq A(V)$ existiert, so dass $P,Q,R\in A(W)$.

Lemma 4.37: Ist $f \in GA(V)$ und sind $P,Q,R \in A(V)$ kollinear, so sind auch die Bildpunkte kollinear.

Beweis: Nach Vorraussetzung existiert eine affine Gerade A(W) mit $P,Q,R\in A(W)$

 $f\in \mathrm{GA}(V)\Longrightarrow (\ddot{\mathsf{U}}\;\mathsf{A})\;f$ bildet Geraden auf Geraden ab \Longrightarrow Bildpunkte sind kollinear

Hilfsresultat:

Lemma 4.38: Es sei $\sigma: \mathbb{R} \to \mathbb{R}$ eine bijektive Abbildung, welche additiv und multiplikativ ist, d.h. es gilt

$$\sigma(x+y) = \sigma(x) + \sigma(y)$$
 und $\sigma(x \cdot y) = \sigma(x) \cdot \sigma(y)$

Dann ist $\sigma = Id$.

Beweis: Aus der Additivität folgt sofort $\sigma(0)=0$. Wegen $\sigma(0)=0$ und $\sigma(1)\neq 0$ folgt aus der Multiplikativität $\sigma(1)=1$. Mit der Additivität erhält man $\sigma(n)=n, \forall n\in\mathbb{N}$. Aus der Additivität und $\sigma(0)=0$ folgt, dass $\sigma(-x)=-\sigma(x)$

$$\Longrightarrow \sigma(y) = y \quad \forall y \in \mathbb{Z}$$

Jetzt: $r \in \mathbb{Q},$ d.h. $r = \frac{p}{q}$ mit $p,q \in \mathbb{Z}, q \neq 0$

$$\begin{aligned} p &= \sigma(p) = \sigma(r \cdot q) = \sigma(r) \cdot \sigma(q) = \sigma(r) \cdot q \\ \Longrightarrow \sigma(r) &= r \quad \forall r \in \mathbb{Q} \end{aligned}$$

Wenn σ stetig wäre, wären wir fertig. Das wissen wir aber nicht. Zeige zunächst, dass σ monoton wachsend ist.

Ist $x \ge 0 \Longrightarrow \exists y \in \mathbb{R} : x = y^2$. Dann gilt:

$$\sigma(x) = \sigma(y^2) = \sigma(y) \cdot \sigma(y) \geq 0$$

Ist also $a \ge b$, also $a - b \ge 0$

$$\implies \sigma(a-b) \ge 0$$

$$\implies 0 \le \sigma(a-b) = \sigma(a) - \sigma(b)$$

$$\implies \sigma(b) \le \sigma(a)$$

Sei $x\in\mathbb{R}$, dann kann man x durch zwei monotone, rationale Zahlenfolgen $\{\hat{r}_n\}$ von uunten und $\{\check{r}_n\}$ von oben approximieren. Damit gilt

$$\ldots \leq \hat{r}_n \leq \hat{r}_{n+1} \leq \ldots \leq x \leq \ldots \leq \check{r}_{n+1} \leq \check{r}_n \leq \ldots$$

Anwendung von σ liefert

$$\ldots \leq \hat{r}_n \leq \hat{r}_{n+1} \leq \ldots \leq \sigma(x) \leq \ldots \leq \check{r}_{n+1} \leq \check{r}_n \leq \ldots$$

$$\Longrightarrow |x-\sigma(x)| \leq \check{r}_n - \hat{r}_n \quad \forall n \in \mathbb{N}$$

Für $n \to \infty$ folgt $\sigma(x) = x$.

Satz 4.39: Hauptsatz der afinnen Geometrie

Sei $K=\mathbb{R}$ und A(V) ein affiner Raum der Dimension $n\geq 2$. Ist $f:A(V)\to A(V)$ eine bijektive Abbildung, die je drei kollineare Punkte $P,Q,R\in A(V)$ in drei kollineare Punkte $f(P),f(Q),f(R)\in A(V)$ abbildet, so gilt $f\in \mathrm{GA}(V)$

Folgerung: Wir hatten schon, dass bijektive affine Abbildungen geradentreu sind. Damit erhalten wir das Gesamtresultat:

Satz: Für $K = \mathbb{R}$ gilt:

Eine bijektive Abbildung $f:A(V)\to A(V)$ ist genau dann geradentreu, wenn sie affin ist. Damit erhält man für $O\in A(V)$

Beweis: Der Beweis besteht aus 5 Schritten.

- 1. Sind $A, B, C \in A(V)$ affin unabhängig so sind auch f(A), f(B), f(C) affin unabhängig.
- 2. Ist A(W) eine affine Gerade in A(V), so ist auch f(A(W)) eine affine Gerade.
- 3. Sdin A(W), $A\left(\widetilde{W}\right)$ parallele Geraden in A(V), so sind f(A(W)) und $f\left(A\left(\widetilde{W}\right)\right)$ auch parallele Geraden in A(V).

⇒ÜA