TA2 : calcul statique d'une poutre en flexion par les EF

Objectifs : calcul d'une force généralisée, mise en œuvre de la méthode des EF.

Fig. 1 – Poutre en flexion

On se propose de résoudre le problème présenté sur la figure 1 par la méthode des éléments finis. Les données mécaniques et géométriques sont précisées sur cette figure; f représente une force linéique.

Avant de résoudre ce problème, il convient de calculer le vecteur force généralisé correspondant à un chargement linéique triangulaire tel que le montre la figure 2. Il est de la forme :

 $\left\{\varphi\right\}_{e} = f \,\ell_{e} \begin{cases} 3/20 \\ xxx \\ 7/20 \\ -\ell_{e}/20 \end{cases}$

Fig. 2 – Chargement linéique triangulaire sur un élément poutre

Calculer le terme xxx

Construction du modèle

On veut résoudre le problème de la figure 1 en utilisant deux éléments finis

Préciser sur une figure le modèle et la numérotation adoptée.

Définir vos vecteurs déplacements nodaux, et force généralisée donnée et inconnue

Résolution

Déterminer la matrice raideur du problème complet.

Calculer la déformée de la poutre.

Calculer les efforts de liaison et vérifier l'équilibre global de la poutre.

Post-traitement

Tracer le diagramme du moment de flexion le long de la poutre.

Commenter.

Nous donnons ci-dessous les Diagrammes Mf et v obtenus par la RDM

Les calculs peuvent être menés et rédigés sur une copie à part, tous vos résultats doivent être reportés au recto de ce texte pour la correction.

Le terme manquant
$$xxx = \dots xxx = \frac{f \ell}{30}$$

Modélisation : $U^T = \langle v_1, \theta_1, v_2, \theta_2, v_3, \theta_3 \rangle$

CL
$$\rightarrow$$
 $U_I^T = <\theta_2, \theta_3>$ et $F_L^T =$

$$F_D^T = f \ell < \frac{3}{20}, \frac{\ell}{30}, \frac{17}{20}, \frac{\ell}{30}, \frac{1}{2}, -\frac{\ell}{12} >$$

Équations du modèle :

$$[K] = \frac{EI}{\ell^3} \begin{bmatrix} 12 & 6\ell & -12 & 6\ell & 0 & 0 \\ & 4\ell^2 & -6\ell & 2\ell^2 & 0 & 0 \\ & & 24 & 0 & -12 & 6\ell \\ & & & 8\ell^2 & -6\ell & 2\ell^2 \\ & & & & 12 & -6\ell \\ & & & & 4\ell^2 \end{bmatrix} \text{ puis système } \frac{EI}{\ell^3} \begin{bmatrix} 8\ell^2 & 2\ell^2 \\ 2\ell^2 & 4\ell^2 \end{bmatrix} \begin{Bmatrix} \theta_1 \\ \theta_2 \end{Bmatrix} = f \, \ell^2 \begin{Bmatrix} 1/30 \\ -1/12 \end{Bmatrix}$$

puis système
$$\frac{EI}{\ell^3}\begin{bmatrix} 8\ell^2 & 2\ell^2 \\ 2\ell^2 & 4\ell^2 \end{bmatrix} \begin{Bmatrix} \boldsymbol{\theta}_1 \\ \boldsymbol{\theta}_2 \end{Bmatrix} = f \ell^2 \begin{Bmatrix} 1/30 \\ -1/12 \end{Bmatrix}$$

Résolution

$$\begin{cases} \theta_1 \\ \theta_2 \end{cases} = \frac{f \, \ell^3}{EI} \begin{cases} 3/280 \\ -11/420 \end{cases}$$

$$\begin{cases} Y_1 = \frac{6EI}{\ell^2} \theta_2 - \frac{3}{20} f \ell = -\frac{3}{35} f \ell \\ 2EI = \frac{1}{2} f \ell^2 - \frac{1}{35} f \ell \end{cases}$$

$$M_1 = \frac{2EI}{\ell} \theta_2 - \frac{1}{30} f \ell^2 = -\frac{1}{84} f \ell^2$$

$$Y_2 = \frac{6EI}{\ell^2} \theta_3 - \frac{17}{20} f \ell = -\frac{141}{140} f \ell$$

$$Y_3 = -\frac{6EI}{\ell^2}(\theta_2 + \theta_3) - \frac{1}{2}f\ell = -\frac{57}{140}f\ell$$

Post traitement

Sur l'élément 1 :
$$Mf = EIv_{,xx} = EI N_{4,xx} \theta_2 = \frac{3f\ell}{280} (6x - 2\ell)$$

Sur l'élément 2 :
$$Mf = EI(N_{2,xx} \theta_2 + N_{4,xx} \theta_3) = f \ell(-\frac{13}{140}x + \frac{\ell}{105})$$

Le moment de flexion est discontinu, ce qui met en évidence l'erreur numérique due à l'approximation élément fini.

Il faut mettre plus d'élément