-16-

WHAT IS CLAIMED IS:

5

5

7

9

10

11

1

2

1	.1. An a	pparatus	for applyi	ing a	thermal	cond	ductive
2	medium to	an insid	le portion	of a	sheath,	the	apparatus
3	comprisin	ıg:					

a tubular applicator tip including a nozzle positioned in a sidewall of the tubular applicator tip;

a pump having an input adapted for coupling to a source of thermal conductive medium and an output coupled to said tubular applicator tip; and

a control module for controlling the pump and thereby the amount of thermal conducive medium applied to said sheath by the tubular applicator tip.

- 2. The apparatus of claim 1, wherein the tubular applicator tip has a closed tip end preventing expulsion of thermal conductive medium from the tip in the axial direction of said tip.
- 3. The apparatus of claim 2, further comprising:
 a contact switch coupled to the control
 circuit, the contact switch being positioned to come into
 contact with the sheath when the sheath is properly
 positioned over the tubular applicator tip.
- 1 4. The apparatus of claim 3, further comprising:
 2 an applicator shaft for coupling the tubular
 3 applicator tip to the pump output.

- 5. The apparatus of claim 4,
 wherein the nozzle has a diameter in the range
 extending from and including 0.14" to and including
 0.145"; and
- wherein the applicator shaft includes a bleeder hole having a diameter one third or less the diameter of said nozzle.
- 1 6. The apparatus of claim 3, further comprising:
 2 a motor, for rotating said shaft, coupled to
 3 said applicator shaft and to said control module.
- 7. The apparatus of claim 6, wherein the control module includes:
 3 a timing circuit for activating said pump in

response to activation of said contact switch and for activating said motor following activation of said pump.

- 1 8. The apparatus of claim 7, wherein the timing circuit includes:
- means for deactivating said pump after a set period of time; and
- deactivating said motor after deactivation of said pump.
- 9. The apparatus of claim 2, wherein said tubular applicator tip includes:
- an open shaft end attached to said applicator shaft; and

-18-

5	a plurality of nozzles located along a line
6	extending in the axial direction between said closed tip
7	end and said open end.
1	10. The apparatus of claim 9 wherein the tubular
2	applicator tip further comprises:
3	a mushroom shaped cap portion at the closed tip
4	end; and
5	wherein each of said plurality of nozzles is a
5	hole in the sidewall of said tubular applicator tip.
1	11. A system for applying a thermal conductive medium to
2	a portion of the interior of a sheath, the system
3	comprising:
4	a thermal conductive medium storage device;
5	a pump coupled to the thermal conductive medium
6	storage device;
7	a thermal conductive medium applicator tip
8	coupled to said pump and including at least on hole
9	through which thermal conductive medium can be expelled
10	when pumped through the applicator tip by said pump; and
11	a switch coupled to said pump, for controlling
12	activation of said pump.
1	12. The system of claim 11, further comprising:
2	a hollow applicator shaft for mounting said
3	thermal conductive medium applicator tip, the hollow
4	applicator shaft coupling said thermal conductive medium
5	applicator tip to the pump; and

5

4

5 6

7

8

9

a motor connected to said hollow applicator

starting the pumping of the thermal conductive

stopping the pumping of the thermal conductive

rotating the applicator tip; and

medium after a first set period of time.

7	shaft for causing said applicator shaft to rotate.
1	13. The system of claim 12, wherein said thermal
2	conductive medium applicator tip is tubular in shape
3	having a closed tip end, an open shaft end and a sidewall
4	extending from the closed tip end to the open shaft end,
5	said hole being located in the sidewall.
1	14. The system of claim 13, further comprising:
2	a control circuit for coupling said switch to
3	said pump and said motor, the control circuit including
4	means for activating said pump in response to activation
5	of said switch.
1	15. The system of claim 11, wherein said switch is a
2	contact switch, the switch being positioned to come into
3	contact with the sheath when the sheath is positioned
4	over said thermal conductive medium applicator tip.
1	16. A method of applying a thermal conductive medium to
2	an interior portion of a sheath, the method comprising:
3	positioning a sheath over a thermal conductive

medium applicator tip;

medium;

-20-

1	17. The method of claim 16, further comprising:
2	stopping the rotation of the applicator tip
3	after a second set period of time passes, the second
· i	period of time starting from the point in time at which
5	the pumping is stopped.
1	18. The method of claim 17, wherein the applicator tip
2	is attached to a source of thermal conductive medium by
3	an applicator shaft, the method further comprising:
4	purging the applicator shaft of thermal
5	conductive medium after the rotation of the applicator
5	tip is stopped.
1	19. The method of claim 18, further comprising:
2	following stopping the rotation but prior to
3	purging, removing the sheath so that it is no longer
4	positioned over the applicator tip.
1	20. The method of claim 16, further comprising:
2	sensing when said sheath is positioned over a
3	thermal conductive medium applicator tip; and
4	wherein said step of starting the pumping is
5	performed in response to sensing that said sheath is
6	positioned over the thermal conductive medium applicator
7	tip.
1	21. The method of claim 17, wherein stopping the pumping

of the thermal conductive medium after a first set period

2

3

of time includes:

4	operating the control circuit to stop the
5	supply of power to a pump; and
б	wherein stopping the rotation of the applicator
7	tip includes:
8	operating the control circuit to stop the
9	supply of power to a motor used to rotate the
10	applicator tip.
1	22. The method of claim 19, wherein the first set period
2	of time is long enough to pump sufficient thermal
3	conductive medium to produce a coating on said interior
4	portion of the sheath having a thickness, T, in the range
5	of $.002" \le T \le .004"$.