MA 125 - Limits & Derivatives

Tuesday, September 8, 2020 7:25 PM

Functions
- Equation that says if I give A, I will receive B

Example: Find y if x=5
$$\frac{3x}{5} = y \to \frac{3(5)}{5} = \frac{15}{5} = 3 = y$$

In function notation: f(x) = 3 in $\frac{3x}{5} = y$

Limits

Says that all numbers up to a certain value can be used in a function
 Example: We can use all numbers under curve for the function except 3 and over

- If lim has (+), limit goes towards right
 If lim has (-), limit goes towards left

- Derivatives

 Definition
 Identifies the area under a curve
 Since the curve has infinite points, we use calculus to estimate the area under the curve

- Basic Properties 1) Power Rule
- Put exponent value in front & subtract one from exponent

- 2) Sum Rule

 Two functions being added can be separated

 Separate, then add the answer to the functions together to get final answer

Since the derivative and was spin, its multiplier by free
$$\left(\frac{f}{g}\right) = \frac{f'g - fg'}{g^2}$$

5) Chain Rule

- Asks to find the derivative of a function within a function First, take derivative of f and multiply it by g

- Second, take derivative of g

- Multiple the two answers together

Example Answers

Examples

7-10 • Sketch the graph of an example of a function f that satisfies all of the given conditions.

9.
$$\lim_{x \to 3^{+}} f(x) = 4$$
, $\lim_{x \to 3^{-}} f(x) = 2$, $\lim_{x \to -2} f(x) = 2$, $f(3) = 3$, $f(-2) = 1$

$$\begin{array}{c}
\bullet \\
51. \lim_{t \to 0} \frac{\tan 6t}{\sin 2t}
\end{array}$$

$$\lim_{t\to 0} \frac{\sin 2t}{\sin 6t}$$

$$\lim_{t\to 0} \frac{\tan 6t}{\sin 2t} \to \lim_{t\to 0} \frac{\sin 6t}{(\cos 6t)(\sin 2t)} \to \lim_{t\to 0} \frac{3(\sin 6t)}{(\cos 6t)(\sin 2t)}$$

$$\lim_{t\to 0} \frac{3(\sin 6t)}{(\cos 6t)(\sin 6t)} \to \lim_{t\to 0} \frac{3}{(\cos 6t)} = \lim_{t\to 0} \frac{3}{(\cos 6t)(\sin 6t)}$$

$$\lim_{t\to 0} \frac{\sin 2t}{(\cos 6t)(\sin 2t)} \to \lim_{t\to 0} \frac{3(\sin 6t)}{(\cos 6t)(\sin 2t)} \to \lim_{t\to 0} \frac{3}{(\cos 6t)(\cos 6t)} \to \lim_{t\to 0} \frac{3}{(\cos 6t)(\cos 6t)(\cos 6t)(\cos 6t)} \to \lim_{t\to 0} \frac{3}{(\cos 6t)(\cos 6t)(\cos 6t)(\cos 6t)(\cos 6t)} \to \lim_{t\to 0} \frac{3}{(\cos 6t)(\cos 6t)(\cos 6t)(\cos 6t)(\cos 6t)(\cos 6t)(\cos 6t)(\cos 6t)(\cos 6t)} \to \lim_{t\to 0} \frac{3}{(\cos 6t)(\cos 6t)$$

25.
$$f(x) = 3x^2 - 4x + 1$$

$$3x^{2-1} = 6x
-4x^{1-1} = -4
6x-4 = f'(x)$$

29.
$$f(x) = \sqrt{1 - 2x}$$

$$\frac{1-2x = fx}{1-2x = gx}$$

$$\frac{1}{1-2x} = \frac{1}{2}x$$

$$\frac{1}{1-2x} = \frac{1}{2}x$$

$$\frac{1}{1-2x} = \frac{1}{2}(1-2x)^{\frac{1}{2}} =$$

$$\left(\frac{1}{2\sqrt{1-2}}\right)\left(-2\right) = \frac{-2}{2\sqrt{1-2}} = \frac{1}{2\sqrt{1-2}}$$