Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

ооразовательное учреждение высшего ооразования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Информатика и системы управления
КАФЕДРА	Системы обработки информации и управления (ИУ5)

ОТЧЁТ по лабораторной работе №1

По курсу: «Технологии машинного обучения»

«Разведочный анализ данных. Исследование и визуализация данных»

	Евсюков Н.М.
(Подпись, дата)	(Ф.И.О.)
	Гапанюк Ю.Е.
(Подпись, дата)	(Ф.И.О.)

1. Цель работы

Изучение различных методов визуализация данных.

2. Описание задания

- Выбрать набор данных
- Создать ноутбук, который содержит следующие разделы:
- Текстовое описание выбранного наборы данных
- Основные характеристики датасета
- Визуальное исследование датасета
- Информация о корелляции признаков
- Сформировать отчет и разместить его на своем репозитории GitHub

3. Текстовое описание набора данных

В качестве набора данных мы будем использовать набор данных Diabets dataset. Для каждого из n = 442 больных сахарным диабетом были получены десять исход массы тела, среднее артериальное давление и шесть измерений сыворотки крови, а также количественная мера прогрессирования заболевания через год после исходного уровня.

```
import numpy as
np import pandas
as pd import
seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")

data = pd.read_csv('data/diabetes.tab.txt', sep="\t")
```

4. Основные характеристики датасета

Первые 5 строк датасета data.head()

AGE	SE X	BM I	ВР	S1	S2	S3	S4	S 5	S6	Υ
0 59	2	32. 1	101. 0	157	93.2	38. 0	4.0	4.859 8	87	151
1 48	1	21. 6	87.0	183	103. 2	70. 0	3.0	3.891 8	69	75
2 72	2	30. 5	93.0	156	93.6	41. 0	4.0	4.672 8	85	141
3 24	1	25. 3	84.0	198	131. 4	40. 0	5.0	4.890 3	89	206
4 50	1	23. 0	101. 0	192	125. 4	52. 0	4.0	4.290 5	80	135

Размер датасета - 442 строки, 11 колонок data.shape

(442, 11)

total_count = data.shape[0]
print('Bcero cτροκ: {}'.format(total_count))

```
Всего строк: 442
# Список
колонок
data.colum
ns
      Index(['AGE', 'SEX', 'BMI', 'BP', 'S1', 'S2', 'S3', 'S4', 'S5', 'S6', 'Y'], dt
# Список колонок с типами
данных data.dtypes
      AGE
                  int64
      SEX
                  int64
      BMI
               float64
      BP
               float64
      S1
                  int64
      S2
               float64
      S3
               float64
      S4
               float64
      S5
               float64
      S6
                  int64
      Υ
                  int64
      dtype: object
# Проверим наличие пустых
значений # Цикл по колонкам
датасета
for col in data.columns:
     # Количество пустых значений - все значения заполнены
     temp_null_count = data[data[col].isnull()].shape[0] print('{} -
     {}'.format(col, temp_null_count))
       Α
              0
       G
       S
E
X
            - 0
       В
            - 0
       Μ
       B
P
          - 0
       S
1
             0
       S
2
             0
       S
3
          - 0
```

S 4

0

Основные статистические характеристки набора данных data.describe()

	AGE	SEX	ВМІ	ВР	S1	S2	s
co	442.0000	442.0000	442.0000	442.0000	442.0000	442.0000	442.000
unt	00	00	00	00	00	00	00
me	48.51810	1.468326	26.37579	94.64701	189.1402	115.4391	49.7884
an	0		2	4	71	40	6
std	13.10902 8	0.499561	4.418122	13.83128 3	34.60805 2	30.41308 1	12.9342 0
mi	19.000	1.00000	18.000	62.000000		41.600	22.0000
n	000		000	97.000000		000	0
25	38.250	1.00000	23.200	84.000000		96.050	40.2500
%	000	0	000	164.250000		000	0

5. Визуальное исследование датасета

fig, ax = plt.subplots(figsize=(10,10)) sns.scatterplot(ax=ax, x='S1', y='S2', data=data)

<matplotlib.axes._subplots.AxesSubplot at 0xe70c610> fig, ax = plt.subplots(figsize=(10,10)) sns.scatterplot(ax=ax, x='S1', y='S2', data=data, hue='Y')

<matplotlib.axes._subplots.AxesSubplot at 0xfd81e70>

250 -

Гистограмма

fig, ax = plt.subplots(figsize=(10,10)) sns.distplot(data['S1'])

<matplotlib.axes._subplots.AxesSubplot at 0xfd816b0>

Jointplot

Комбинация гистограмм и диаграмм рассеивания.

▼ "Парные диаграммы"

sns.pairplot(data)

• Ящик с усами

Отображает одномерное распределение вероятности.

Violin plot

Похоже на предыдущую диаграмму, но по краям отображаются распределения плотности

→ 4 cells hidden

6. Информация о корреляции признаков

data.corr()

	AGE	SEX	ВМІ	ВР	S1	S2	S3	S 4
AG	1.00000	0.17373	0.18508	0.33542	0.26006	0.21924	-0.07518	0.20384
E	0	7	5	8	1	3	1	1
SE	0.17373	1.00000	0.08816	0.24101	0.03527	0.14263	-0.37909	0.33211
X	7	0	1	0	7	7	0	5
ВМІ	0.18508 5	0.08816 1	1.00000	0.39541 1	0.24977 7	0.26117 0	-0.36681 1	0.41380 7

8

 BP
 0.33542
 0.24101
 0.39541
 1.00000
 0.24246
 0.18554
 -0.17876
 0.2576

 8
 0
 1
 0
 4
 8
 2
 50

	AGE	SEX	ВМІ	ВР	S1	S 2	S3	S4
AG E	1.000000	0.173737	0.185085	0.335428	0.26006	0.219243	-0.07518 1	3 0.203841
SE X	0.173737	1.000000	0.088161	0.241010	0.03527 7	0.142637	-0.37909 0	0 0.332115
BM I	0.185085	0.088161	1.000000	0.395411	0.24977 7	0.261170	-0.36681 1	9 0.413807
ВР	0.335428	0.241010	0.395411	1.000000	0.24246 4	0.185548	-0.17876 2	2 0.257650
								3
S1	0.260061	0.035277	0.249777	0.242464	1.00000 0	0.896663	0.051519	0.542207
S2	0.219243	0.142637	0.261170	0.185548	0.89666 3	1.000000	-0.19645 5	0.659817
S3	-0.07518 1	-0.37909 0	-0.36681 1	-0.17876 2	0.05151 9	-0.19645 5	1.000000	-0.73849 3
S4	0.203841	0.332115	0.413807	0.257650	0.54220 7	0.659817	-0.73849 3	1.000000
S5	0.270774	0.149916	0.446157	0.393480	0.51550 3	0.318357	-0.39857 7	0.617859
S6	0.301731	0.208133	0.388680	0.390430	0.32571 7	0.290600	-0.27369 7	0.417212
Υ	0.187889	0.043062	0.586450	0.441482	0.21202 2	0.174054	-0.39478 9	0.430453

data.corr(method='kendall')

	AGE	SEX	ВМІ	ВР	S1	S2	S3	S4
AG E	1.000000	0.146580	0.136535	0.242111	0.18222 0	0.153612	-0.07384 6	0.160898
SE X	0.146580	1.000000	0.080424	0.215733	0.02280 9	0.110208	-0.32618 8	0.297335
BM I	0.136535	0.080424	1.000000	0.281770	0.19417 1	0.198583	-0.24983 1	0.335625

ВР	0.242111	0.215733	0.281770	1.000000	0.18806 7	0.140253	-0.13101 4	0.205948
S1	0.182220	0.022809	0.194171	0.188067	1.00000 0	0.717229	0.010695	0.393367
S2	0.153612	0.110208	0.198583	0.140253	0.71722 9	1.000000	-0.13333 2	0.503579
S3	-0.07384 6	-0.32618 8	-0.24983 1	-0.13101 4	0.01069 5	-0.13333 2	1.000000	-0.63863 3
S4	0.160898	0.297335	0.335625	0.205948	0.39336 7	0.503579	-0.63863 3	1.000000
S5	0.180544	0.143172	0.344720	0.268863	0.35626 8	0.242250	-0.31177 5	0.485410
S6	0.201784	0.168199	0.266373	0.264566	0.22713 9	0.194082	-0.20054 5	0.307397
Υ	0.130709	0.030630	0.391195	0.289352	0.15401 6	0.129665	-0.27888 4	0.324734

data.corr(method='spearman')

	AGE	SEX	ВМІ	ВР	S1	S2	S3	S 4
AG E	1.00000 0	0.17746 3	0.20055 4	0.35085 9	0.26252 4	0.22171 1	-0.10697 3	0.22101 7
SE X	0 177463	1 000000	0 098079	0 261508	0 027790	0 134695	-0 394584	0 33752
BM I	0.200554	0.098079	1.000000	0.397985	0.28782 9	0.295494	-0.37117 2	0.4590 68
ВР	0.350859	0.261508	0.397985	1.000000	0.27522 4	0.205638	-0.19103 3	0.2807 99
S1	0.262524	0.027790	0.287829	0.275224	1.00000 0	0.878793	0.015308	0.5206 74
S2	0.221711	0.134695	0.295494	0.205638	0.87879 3	1.000000	-0.19743 5	0.6522 83
S3	-0.10697 3	-0.3945 84	-0.3711 72	-0.19103 3	0.01530 8	-0.1974 35	1.000000	-0.7896 94
S4	0.221017	0.337524	0.459068	0.280799	0.52067 4	0.652283	-0.78969 4	1.0000 00
S5	0.265176	0.174625	0.491609	0.396071	0.51286 4	0.349947	-0.45042 0	0.6403 90
S6	0.296235	0.203277	0.384664	0.381219	0.33217 3	0.286483	-0.29086 3	0.4137 00
Υ	0.197822	0.037401	0.561382	0.416241	0.23242 9	0.195834	-0.41002 2	0.4489 31

sns.heatmap(data.corr())

Вывод значений в ячейках sns.heatmap(data.corr(), annot=True, fmt='.3f')

<matplotlib.axes._subplots.AxesSubplot at 0x2ccbdf70>

Изменение цветовой гаммы

sns.heatmap(data.corr(), cmap='YIGnBu', annot=True, fmt='.3f')

Треугольный вариант матрицы
mask = np.zeros_like(data.corr(), dtype=np.bool) # чтобы
оставить нижнюю часть матрицы
mask[np.triu_indices_from(mask)] = True # чтобы
оставить верхнюю часть матрицы
mask[np.tril_indices_from(mask)] = True

sns.heatmap(data.corr(), mask=mask, annot=True, fmt='.3f')

fig, ax = plt.subplots(1, 3, sharex='col', sharey='row', figsize=(15,5)) sns.heatmap(data.corr(method='pearson'), ax=ax[0], annot=True, fmt='.2f') sns.heatmap(data.corr(method='kendall'), ax=ax[1], annot=True, fmt='.2f') sns.heatmap(data.corr(method='spearman'), ax=ax[2], annot=True, fmt='.2f') fig.suptitle('Koppeляционные матрицы, построенные различными методами') ax[0].title.set_text('Pearson')

ax[1].title.set_text('Kendall') ax[2].title.set_text('Spearman')

