

Lecture 4: Experiment 3 EE380 (Control Systems)

Ramprasad Potluri

Associate Professor potluri@iitk.ac.in

Manavaalan Gunasekaran

PhD student manvaal@iitk.ac.in

Department of Electrical Engineering Indian Institute of Technology Kanpur

Forward Close

4

5

6

8

9

10

11

Back

Forward Close

Contents

	Official	L
1	Announcem	ıe

ents

Procedure of Exp.3 Outline of the experiment

Homework (HW) vs. Lab work (LW) **Discretization**

П

Simulate; LW: C code, Implement, Analyze

Bilinear transform and Z-transform

Tasks common to all 6 experiments

Second Ziegler-Nichols method

Review of Exp.2: Least squares sys-id theory

12 13

Announcements

- Before doing an experiment, download latest versions of supporting documents from Brihaspati.
- Turn off power supply to board when not programming dsPIC or taking readings.
- After completion of experiment
 - Shut down PC, FG, PS.
 - Remove PICkit 2 from dsPIC board.

Back

Procedure of Exp.3

Part I

5/18

Back **Forward**

Outline of the experiment

Want speed of motor to track a reference step. Steps:

• Convert plant into 3rd order by prefixing 2nd order TF.

Here, \hat{u} is controller's output, $u_{\rm actual}$ is numerical value of voltage applied to motor's armature. $V_{\rm req}$ is actual voltage applied to motor's armature, δ is duty ratio of PWM signal.

- Apply step & tune k_p so that CL system's output oscillates sustainedly.
- Determine coefficients of P, PI, PID controllers.
- Observe CL system's response to step under P, PI, PID control.

Forward

Tasks common to all 6 experiments

Simulation

- Perform PC-based simulation of CL system using GNU Octave.
- Perform PC-based simulation of digital control of a continuous-time system using GNU Octave.

Realization on hardware

- Utilize the various components of an integrated development environment (IDE): editor, compiler, linker, debugger, and programmer to program a μ C.
- Program controller using C language into μ C.
- Monitoring: read data into PC from μ C using UART modules.

Analysis

• Compare actual performance with predicted performance.

Back

Forward

Second Ziegler-Nichols method

Applies to plants exhibiting sustained oscillations in CL proportional control for some $k_p = k_{cr} > 0$.

Step 1: Form CL system with $k_p > 0$.

$$\xrightarrow{\omega_{\text{ref}}} + \xrightarrow{u} \text{Plant} \xrightarrow{\omega}$$

Step 2: Apply step ω_{ref} to CL system and record ω .

Step 3: With ω_{ref} on, increase k_p from 0 to k_{cr} .

Step 4: Determine period P_{cr} of oscillations.

Step 5: Tune parameters of PID controller according to table.

Type of controller	k_p	T_i	T_D
Р	$0.5k_{cr}$	∞	0
PI	$0.45k_{cr}$	$(1/1.2)P_{cr}$	0
PID	0.6k _{cr}	$0.5P_{cr}$	$0.125P_{cr}$

Back

Forward

Back

Forward Close

Homework (HW) vs. Lab work (LW)

Discretization

44

>>

Back

Forward

Simulate; LW: C code, Implement, Analyze

- Simulation: easysim.m
- Discretized controller
 - \longrightarrow C code:

- Implement: As in demo slides
- Analyze: Compare results

```
x_1(k+1) = a_{11}x_1(k) + a_{12}x_2(k) + b_1u(k)

x_2(k+1) = a_{21}x_1(k) + a_{22}x_2(k) + b_2u(k)

y(k) = c_1x_1(k) + c_2x_2(k) + du(k)
```

In main-prog.c before main() insert float x1[2],x2[2];
In main() insert x1[0] = x2[0] = 0;

```
x1[1] = a11 * x1[0] + a12 * x2[0] + b1 * u;
x2[1] = a21 * x1[0] + a22 * x2[0] + b2 * u;
y = c1 * x1[0] + c2 * x2[0] + d * u;
x1[0] = x1[1];
x2[0] = x2[1];
```


Forward

Part II
Review of Exp.2: Least squares sys-id theory

Back

Bilinear transform and Z-transform

- Both s-domain & z-domain are fictitious domains.
- *s*-domain simplifies working with differential equations; *z*-domain simplifies working with difference equations.
- Bilinear transform is not the only way to go $G(s) \leftrightarrow G(z)$.
- T_s determined by Nqyquist sampling rate.

Back

Forward

$$G(s) \longleftrightarrow G(z)$$

 \bullet Consider definitions of $\mathcal L$ and $\mathcal Z$

$$Y(s) = \mathcal{L} \{y(t)\} \triangleq \int_{t=0}^{\infty} y(t)e^{-st}dt$$
$$Y(z) = \mathcal{Z} \{y(k)\} \triangleq \sum_{k=0}^{\infty} y(k)z^{-k}$$

- Comparison suggests $z = e^{sT_s}$.
- To convert G(s) to G(z), can substitute $s = \frac{\ln z}{T_s}$.
- Easier to work with an approximation

$$z = e^{sT_s} = e^{\frac{sT_s}{2}} e^{\frac{sT_s}{2}} = \frac{e^{\frac{sT_s}{2}}}{e^{-\frac{sT_s}{2}}} = \frac{1 + \frac{\left(\frac{sT_s}{2}\right)}{1!} + \frac{\left(\frac{sT_s}{2}\right)^2}{2!} + \cdots}{1 + \frac{\left(-\frac{sT_s}{2}\right)^2}{1!} + \frac{\left(-\frac{sT_s}{2}\right)^2}{2!} + \cdots} \approx \frac{1 + \frac{sT_s}{2}}{1 - \frac{sT_s}{2}}$$

44

>>

◀

▶ Back

orward

How Z-transform used in our sys-id

- u(k) denotes sample of u(t) at sampling instant $t = kT_s$.
- Let $u(k) \to \omega(k)$ TF be G(z).
- Use u(k), $\omega(k)$ pairs to build G(z).
- Use bilinear transform to go from G(z) to G(s).

Important property of Z-transform used:

$$z^{-l}X(z) \leftrightarrow x(k-l)$$
 given $X(z) \leftrightarrow x(k)$.

orward

What is least squares sys-id? (1/2)

- Let $G(z) = \frac{b_1 z^2 + b_2 z + b_3}{z^3 + a_1 z^2 + a_2 z + a_3} = \frac{Y(z)}{U(z)}$.
- Cross multiply:

$$b_1z^2U(z) + b_2zU(z) + b_3U(z) = z^3Y(z) + a_1z^2Y(z) + a_2zY(z) + a_3Y(z).$$

• Multiply throughout by z^{-3} :

$$b_1 z^{-1} U(z) + b_2 z^{-2} U(z) + b_3 z^{-3} U(z) =$$

$$Y(z) + a_1 z^{-1} Y(z) + a_2 z^{-2} Y(z) + a_3 z^{-3} Y(z).$$

• Take \mathcal{Z}^{-1} to obtain difference equation

$$b_1 u(k-1) + b_2 u(k-2) + b_3 u(k-3) = y(k) + a_1 y(k-1) + a_2 y(k-2) + a_3 y(k-3).$$

44

4

Back

Forward

What is least squares sys-id? (2/2)

Consider
$$b_1u(k-1) + b_2u(k-2) + b_3u(k-3) = y(k) + a_1y(k-1) + a_2y(k-2) + a_3y(k-3)$$
. (1)

- Let $\sigma = [b_1 \quad b_2 \quad b_3 \quad -a_1 \quad -a_2 \quad -a_3]^{\mathsf{T}}$.
- Suppose we have data of u(k) and y(k) for k = 0, 1, ..., N.
- Problem: Find σ such that (1) holds for this data. I.E., find parameters of a TF that <u>fits</u> to input-output data.
- Let error in the fit be

$$\varepsilon(k,\sigma) = b_1 u(k-1) + b_2 u(k-2) + b_3 u(k-3) - y(k) - a_1 y(k-1) - a_2 y(k-2) - a_3 y(k-3).$$

- Modified problem: Find σ to minimize $\mathcal{J}(\sigma) \triangleq \sum_{k=0}^{N} \varepsilon^{2}(k, \sigma)$.
- If $\mathcal{J}(\sigma = \sigma_0) = 0$, then find best estimate $\hat{\sigma}$ of σ_0 .

Part III

Review of Exp.2: What the experiment taught

- Sys-id techinques from Exp.1 & Exp.2 give different results.
- Likely cause is not only the dead zone nonlinearity in the plant, but also the input signals the sys-id technique uses.
 - E.g., the step input (u = 7) in Exp.1 does not keep plant in dead zone, while the low-frequency (5 10 Hz) triangular input makes the plant go into dead zone twich every cycle.
- Will using rectangular waveform instead of triangular waveform (TW) give a different model with least squares sys-id (LSS)?
- If plant behaves as 1st order even with TW, LSS will say that

Forward

