CHAPTER 0

L2 Inner Product: The L^2 inner product on $L^2([a,b])$ is defined as $\langle f,g\rangle_{L^2}=\int_a^b f(t)\overline{g(t)}dt$. **12 Inner Product:** The space l^2 is the set of all sequences $x_i\in\mathbb{C}$ with $\sum_{-\infty}^\infty |x_n|^2<\infty$. The inner product on l^2 i defined as $\langle X,Y\rangle_{l^2}=\sum_{n=-\infty}^\infty x_n\overline{y_n}$. **Schwartz Inequality:** $|\langle X,Y\rangle|\leq ||X||||Y||$ **Triangle Inequality:** $||X+Y||\leq ||X||+||Y||$ **Orthogonal Projection:** Suppose V is an inner product space and V_0 is an N-dimensional subspace with orthonormal basis $\{e_1,e_2,\ldots,e_N\}$. The orthogonal projection of a vector $v\in V$ onto V_0 is given by $v_0=\sum_{j=1}^N\langle v,e_j\rangle\,e_j$. In addition, $||v-v_0||=\min_{w\in V_0}||v-w||$ **Adjoints:** If $T:V\to W$ is a linear operator between two inner product spaces, the adjoint of T is the linear operator $T^*:W\to V$, such that $\langle T(v),w\rangle_W=\langle v,T*(w)\rangle_V$.

CHAPTER 1: FOURIER SERIES

Real Fourier Series

Orthonormal Basis: The set of functions $\{\frac{\sin(k\pi x/a)}{\sqrt{\pi}}, \frac{1}{\sqrt{2\pi}}, \frac{\cos(k\pi x/a)}{\sqrt{\pi}}\}$ with $k=1,2,\ldots$, is an orthonormal set of functions in $L^2([-a,a])$. **Fourier Coefficients:** If $f(t)=a_0+\sum_{k=1}^{\infty}a_k\cos(k\pi t/a)+\sum_{k=1}^{\infty}b_k\sin(k\pi t/a)$ on the interval $-a\leq t\leq a$, then $a_0=\frac{1}{2a}\int_{-a}^a f(t)dt,\ a_k=\frac{1}{a}\int_{-a}^a f(t)\cos(k\pi t/a)dt$ and $b_k=\frac{1}{a}\int_{-a}^a f(t)\sin(k\pi t/a)dt$.

Complex Fourier Series

Orthonormal Basis: The set of functions $\{\frac{1}{\sqrt{2a}}e^{i\frac{n\pi}{a}t}, n=0,\pm 1,\pm 2,\dots\}$ is an orthonormal basis for $L^2([-a,a])$. **Fourier Coefficients:** If $f(t)=\sum_{n=-\infty}^{\infty}\alpha_ne^{i\frac{n\pi}{a}t}$, then $\alpha_n=\frac{1}{2a}\int_{-a}^af(t)e^{-i\frac{n\pi}{a}t}dt$

Convergence Theorems

Riemann-Lebesgue Lemma: Suppose f is a piecewise continuous function on the interval [a,b]. Then $\lim_{k\to\infty}\int_a^b f(x)\cos(kx)dx=\lim_{k\to\infty}\int_a^b f(x)\sin(kx)dx=0$. Convergence at a Point of Continuity: Suppose f is a continuous and 2π -periodic function. Then for each point x, where the derivative of f is defined, the Fourier series of f converges to f(x). Convergence at a Point of Discontinuity: Suppose f is periodic function and piecewise continuous. Suppose f is a point where f is left and right differentiable (but not necessarily continuous).

Then the Fourier series of f at x converges to $\frac{f(x-0)+f(x+0)}{2}$, i.e., converges to the average of the left and right limits of f. Uniform Convergence: The Fourier series of a continuous, piecewise smooth 2π -periodic function f(x) converges uniformly to f(x) on $[-\pi,\pi]$. Convergence in the Mean: Suppose f is an element of $L^2([-\pi,\pi])$. Let $f_N(x)=a_0+\sum_{k=1}^N a_k\cos(kx)+\sum_{k=1}^N b_k\sin(kx)$, where a_k and b_k are the Fourier coefficients of f. Then f_N converges to f in $L^2([-\pi,\pi])$, that is, $||f_N-f||_{L^2}\to 0$ as $N\to\infty$. Parseval's Equation - Real Version: Suppose $f(x)=a_0+\sum_{k=1}^\infty a_k\cos(kx)+\sum_{k=1}^\infty b_k\sin(kx)\in L^2[-\pi,\pi]$. Then $\frac{1}{\pi}\int_{-\pi}^\pi |f(x)|^2dx=2|a_0|^2+\sum_{k=1}^\infty \left(|a_k|^2+|b_k|^2\right)$. Parseval's Equation - Complex Version: Suppose $f(x)=\sum_{k=-\infty}^\infty \alpha_k e^{ikx}\in L^2[-\pi,\pi]$. Then $\frac{1}{2\pi}||f||^2=\frac{1}{2\pi}\int_{-\pi}^\pi |f(x)|^2dx=\sum_{k=-\infty}^\infty |\alpha_k|^2$.

CHAPTER 2: FOURIER TRANS-FORM

Definition: If f is a continuously differentiable function with $\int_{-\infty}^{\infty} |f(t)| dt < \infty$, then $f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\lambda) e^{i\lambda t} d\lambda$, where $\hat{f}(\lambda)$ is the Fourier transform of f(t) given by $\hat{f}(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\lambda t} dt$ **Properties:**

• $\mathcal{F}[\alpha f + \beta g] = \alpha \mathcal{F}[f] + \beta \mathcal{F}[g] // \mathcal{F}^{-1}[\alpha f + \beta g] = \alpha \mathcal{F}^{-1}[f] + \beta \mathcal{F}^{-1}[g]$

CHAPTER 3:

Identities Sum and Difference Formula $\sin(A\pm B)=\sin A\cos B\pm\cos A\sin B.$ $\cos(A\mp B)=\cos A\cos B\pm\sin A\sin B.$ Double Angle Formula $\sin(2A)=2\sin A\cos A.$ $\cos(2A)=\cos^2 A-\sin^2 A=2\cos^2 A-1=1-2\sin^2 A.$ $\tan(2A)=(2\tan A)/(1-\tan^2 A).$ Half Angle Formula $\sin(A/2)=\pm\sqrt{(1-\cos A)/2}.$ $\cos(A/2)=\pm\sqrt{(1+\cos A)/2}.$ $\tan(A/2)=(1-\cos A)/(\sin A)=(\sin A)/(1+\cos A).$ Geometric Sum $\sum_{k=1}^{\infty}q^k=q/(1-q).$ $\sum_{k=1}^{n}q^k=(q-q^{n-1})/(1-q).$ General ODE Solutions $y''=y(t)\implies y=c_1e^{-t}+c_2e^t \ \Box \ dy/dt+p(t)y=g(t)\implies y=(\int u(t)g(t))/u(t)+c$ where $u(t)=\exp(\int p(t)dt)\ \Box \ y'=x;x'=y\implies x=c_1\cosh t+c_2\sinh t,y=c_1\sinh t+c_2\cosh t$ or $x=c_1e^t+c_2e^{-t},y=c_1e^t-c_2e^{-t}\ \Box \ y'=-x;x'=y\implies y=c_1\cos t+c_2\sin t,x=c_1\sin t-c_2\cos t\ \Box \ x'=x+y;y'=-x+y\implies x=e^t(c_1\cos t+c_2\sin t);y=e^t(-c_1\sin t+c_2\cos t)\ \Box \ v'=\gamma v,v(z,0)=u_0\implies v=u_0e^{\gamma t}\ \Box$