3D Data Processing Image processing-2

Hyoseok Hwang

contents

- Introduction of image processing
- Pixel point processing
- Geometric transform
- Domain transform
- Spatial filtering

Image transform

A Section of the Control of the Cont

- Hough Transform
- Fourier Transform

Main idea: Any periodic function can be decomposed into a summation of sines and cosines

- Main idea: Any periodic function can be decomposed into a summation of sines and cosines
- Mathematially easier to analyze effects of transmission medium, noise, etc. on simple sine functions, then add to get effect on complex signal

Fourier transform

$$G(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x) \cdot \left[\cos(\omega x) - i \cdot \sin(\omega x) \right] dx$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x) \cdot e^{-i\omega x} dx.$$

Inverse Fourier transform

$$g(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} G(\omega) \cdot \left[\cos(\omega x) + i \cdot \sin(\omega x) \right] d\omega$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} G(\omega) \cdot e^{i\omega x} d\omega.$$

• Example

- Fourier transform
 - Convert **continuous** signals of time domain into frequency domain
- Inverse Fourier transform
 - Convert continuous signals of frequency domain into time domain
- Discrete Fourier transform (DFT)
 - The equivalent of the continuous Fourier Transform for discrete(sampling) signals.
 - Discrete signals = Quantization(Sampling(continuous signals))
- Fast Fourier transform (FFT)
 - A fast algorithm for computing the Discrete Fourier Transform
 - In image processing, FFT (iFFT) is mainly used.

- 2D Fourier Transform
 - Fourier transform can be generalized to higher dimensions
- Images as functions
 - Gray scale images: 2D functions Domain of the functions: set of (x,y) values for which f(x,y) is defined: 2D lattice [i,j] defining the pixel locations Set of values taken by the function: gray levels

- 2D Fourier Transform
 - Fourier transform is invertible.

- Frequency on images
 - High frequency: edges, points
 - Low frequency: All the rest

Intensity of N-th row

Check the region of Low/High frequency

- Removing artifacts by frequency analysis
- Types of artifacts
 - Noise
 - Noise is a large difference from the nearby values → high frequency
 - Unwanted pattern
 - The periodic pattern is distributed throughout the image(spatial domain), but is displayed as a single dot in the frequency domain.
- Methodology
 - Convert image to frequency domain using FFT
 - Remove artifacts
 - Convert frequency values to image using iFFT

Removing unwanted pattern (periodic noise)

Image with periodic Noise

DFT of Image

Removing unwanted pattern (periodic noise)

Notch Filter

Result after notch filter applied then inverted

• Removing random noise

2D FFT

Remove high frequency (low-pass filter)

2D iFFT

소프트웨어흉압악과

- Exercise
 - File name: 3_2D_FFT_denoising.py

- Convert (x,y) domain to (ρ, θ)
 - Represent a line on (x,y) coordinate to a point on the (ρ, θ) coordinate.
- Hough transform is used for detection certain shapes (especially lines)
 - Suppose that there is a point p(x,y)
 - Infinitely many straight lines pass through that point.
 - Each line can be represented to a point in (ρ, θ) coordinate
 - Lines passing through p(x,y) are represented in the form of a curve.
 - The straight line we are looking for appears as a superposition(such as a point) of the curves in A.

Transform of a line on the point p(x,y)

And Andrews of Andrews

- Transform of a line on the point p(x,y)
 - ρ : The orthogonal distance between the origin and a straight line.
 - θ : angle of orthogonal line

No Final Action of the Control of th

- Transform of a line on the point p(x,y)
 - Repeat getting parameters of other lines passing through p(x,y)

A Charles of the Char

- Transform of a line on the point p(x,y)
 - Repeat getting parameters of other lines passing through p(x,y)

No Area and Area and

- Transform of a line on the point p(x,y)
 - Repeat getting parameters of other lines passing through p(x,y)

소프트웨어융합학과

- Transform of a line on the point p(x,y)
 - Get parameters of other lines passing through p'(x,y)

And Andrews of Andrews

- Transform of a line on the point p(x,y)
 - Repeat getting parameters of other lines passing through p'(x,y)

Assistant of the state of the s

- Transform of a line on the point p(x,y)
 - They have a same point on (ρ, θ) coordinate if they are on the same line.

An example of Hough transform

Thank you