Rank-65760 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_2^3 + X_3^3 + X_0^2 X_1 + X_0^2 X_3 + X_0 X_1^2 + X_0 X_1 X_2 = 0$$

 $(\ 1,\ 0,\ 1,\ 1,\ 1,\ 0,\ 1,\ 1,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 1,\ 0,\ 0,\ 0)$

The point rank of the equation over GF(8) is 1229497486

General information

Number of lines	7
Number of points	89
Number of singular points	0
Number of Eckardt points	0
Number of double points	9
Number of single points	45
Number of points off lines	35
Number of Hesse planes	0
Number of axes	0
Type of points on lines	97
Type of lines on points	$2^9, 1^{45}, 0^{35}$

Singular Points

The surface has 0 singular points:

The 7 Lines

The lines and their Pluecker coordinates are:

$$\begin{split} \ell_0 &= \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{array} \right]_{4673} = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{array} \right]_{4673} = \mathbf{Pl}(0,0,0,1,0,1)_{769} \\ \ell_1 &= \left[\begin{array}{cccc} 1 & 0 & \gamma^2 & \gamma \\ 0 & 1 & \gamma^2 & \gamma^2 \end{array} \right]_{1496} = \left[\begin{array}{cccc} 1 & 0 & 4 & 2 \\ 0 & 1 & 4 & 4 \end{array} \right]_{1496} = \mathbf{Pl}(2,6,2,6,1,1)_{1498} \end{split}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & \gamma^{4} & \gamma^{2} \\ 0 & 1 & \gamma^{4} & \gamma^{4} \end{bmatrix}_{2910} = \begin{bmatrix} 1 & 0 & 7 & 4 \\ 0 & 1 & 7 & 7 \end{bmatrix}_{2910} = \mathbf{Pl}(4, 3, 4, 3, 1, 1)_{1563}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & \gamma & \gamma^{4} \\ 0 & 1 & \gamma & \gamma \end{bmatrix}_{4252} = \begin{bmatrix} 1 & 0 & 2 & 7 \\ 0 & 1 & 2 & 2 \end{bmatrix}_{4252} = \mathbf{Pl}(7, 5, 7, 5, 1, 1)_{1706}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 0 & \gamma^{6} \\ 0 & 1 & \gamma^{6} & \gamma^{6} \end{bmatrix}_{3558} = \begin{bmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 6 & 6 \end{bmatrix}_{3558} = \mathbf{Pl}(2, 6, 1, 1, 1, 0)_{307}$$

$$\ell_{5} = \begin{bmatrix} 1 & 0 & 0 & \gamma^{5} \\ 0 & 1 & \gamma^{5} & \gamma^{5} \end{bmatrix}_{1779} = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 3 & 3 \end{bmatrix}_{1779} = \mathbf{Pl}(4, 3, 1, 1, 1, 0)_{309}$$

$$\ell_{6} = \begin{bmatrix} 1 & 0 & 0 & \gamma^{3} \\ 0 & 1 & \gamma^{3} & \gamma^{3} \end{bmatrix}_{2965} = \begin{bmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 5 & 5 \end{bmatrix}_{2965} = \mathbf{Pl}(7, 5, 1, 1, 1, 0)_{312}$$

Rank of lines: (4673, 1496, 2910, 4252, 3558, 1779, 2965)

Rank of points on Klein quadric: (769, 1498, 1563, 1706, 307, 309, 312)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 9 Double points: The double points on the surface are:

$P_{161} = (0, 3, 1, 1) = \ell_0 \cap \ell_1$	$P_{193} = (0,7,1,1) = \ell_0 \cap \ell_0$
$P_{177} = (0, 5, 1, 1) = \ell_0 \cap \ell_2$	$P_{454} = (5,7,5,1) = \ell_1 \cap \ell_2$
$P_{185} = (0, 6, 1, 1) = \ell_0 \cap \ell_3$	$P_{479} = (6, 2, 6, 1) = \ell_2 \cap \ell_3$
$P_{153} = (0, 2, 1, 1) = \ell_0 \cap \ell_4$	$P_{300} = (3,4,3,1) = \ell_3 \cap \ell_6$
$P_{169} = (0, 4, 1, 1) = \ell_0 \cap \ell_5$	

Single Points

The surface has 45 single points: The single points on the surface are:

$0: P_1 = (0, 1, 0, 0)$ lies on line ℓ_0	15: $P_{207} = (6,0,2,1)$ lies on line ℓ_1
$1: P_{21} = (2, 1, 1, 0)$ lies on line ℓ_1	16: $P_{229} = (4, 3, 2, 1)$ lies on line ℓ_6
$2: P_{23} = (4, 1, 1, 0)$ lies on line ℓ_2	17: $P_{239} = (6, 4, 2, 1)$ lies on line ℓ_4
$3: P_{26} = (7, 1, 1, 0)$ lies on line ℓ_3	18: $P_{242} = (1, 5, 2, 1)$ lies on line ℓ_5
4: $P_{29} = (2, 2, 1, 0)$ lies on line ℓ_4	19: $P_{245} = (4, 5, 2, 1)$ lies on line ℓ_3
$5: P_{47} = (4, 4, 1, 0)$ lies on line ℓ_5	20: $P_{250} = (1, 6, 2, 1)$ lies on line ℓ_2
6: $P_{74} = (7,7,1,0)$ lies on line ℓ_6	21: $P_{277} = (4, 1, 3, 1)$ lies on line ℓ_1
7: $P_{76} = (2,0,0,1)$ lies on line ℓ_4	22: $P_{278} = (5, 1, 3, 1)$ lies on line ℓ_5
8: $P_{78} = (4, 0, 0, 1)$ lies on line ℓ_5	23: $P_{317} = (4, 6, 3, 1)$ lies on line ℓ_4
9: $P_{81} = (7,0,0,1)$ lies on line ℓ_6	24: $P_{326} = (5,7,3,1)$ lies on line ℓ_2
10: $P_{92} = (2, 2, 0, 1)$ lies on line ℓ_1	25: $P_{332} = (3,0,4,1)$ lies on line ℓ_2
11: $P_{110} = (4, 4, 0, 1)$ lies on line ℓ_2	26: $P_{354} = (1, 3, 4, 1)$ lies on line ℓ_3
12: $P_{137} = (7,7,0,1)$ lies on line ℓ_3	$27: P_{376} = (7, 5, 4, 1)$ lies on line ℓ_4
13: $P_{138} = (0,0,1,1)$ lies on line ℓ_0	28: $P_{378} = (1, 6, 4, 1)$ lies on line ℓ_6
14: $P_{146} = (0, 1, 1, 1)$ lies on line ℓ_0	29: $P_{384} = (7, 6, 4, 1)$ lies on line ℓ_1

The single points on the surface are:

Points on surface but on no line

The surface has 35 points not on any line: The points on the surface but not on lines are:

$0: P_{12} = (1, 0, 1, 0)$	$18: P_{195} = (2,7,1,1)$
$1: P_{32} = (5, 2, 1, 0)$	$19: P_{197} = (4,7,1,1)$
$2: P_{41} = (6, 3, 1, 0)$	$20: P_{219} = (2, 2, 2, 1)$
$3: P_{49} = (6, 4, 1, 0)$	$21: P_{274} = (1, 1, 3, 1)$
$4: P_{54} = (3, 5, 1, 0)$	$22: P_{287} = (6, 2, 3, 1)$
$5: P_{64} = (5, 6, 1, 0)$	$23: P_{290} = (1,3,3,1)$
$6: P_{70} = (3, 7, 1, 0)$	$24: P_{327} = (6,7,3,1)$
$7: P_{85} = (3, 1, 0, 1)$	$25: P_{365} = (4, 4, 4, 1)$
$8: P_{87} = (5, 1, 0, 1)$	$26: P_{402} = (1, 1, 5, 1)$
9: $P_{88} = (6, 1, 0, 1)$	$27: P_{412} = (3, 2, 5, 1)$
$10: P_{93} = (3, 2, 0, 1)$	$28: P_{428} = (3, 4, 5, 1)$
$11: P_{111} = (5, 4, 0, 1)$	$29: P_{434} = (1, 5, 5, 1)$
$12: P_{136} = (6,7,0,1)$	$30: P_{466} = (1, 1, 6, 1)$
13: $P_{139} = (1,0,1,1)$	$31: P_{494} = (5,4,6,1)$
$14: P_{157} = (4, 2, 1, 1)$	$32: P_{506} = (1, 6, 6, 1)$
15: $P_{160} = (7, 2, 1, 1)$	$33: P_{518} = (5,7,6,1)$
$16: P_{171} = (2,4,1,1)$	$34: P_{584} = (7,7,7,1)$
$17: P_{176} = (7, 4, 1, 1)$	

Line Intersection Graph

	0123456
0	0111111
1	1000100
2	1000010
3	1000001
4	1100000
5	1010000
6	$\begin{matrix} 011111\\ 1000100\\ 100001\\ 100000\\ 110000\\ 101000\\ 1001000\\ \end{matrix}$
	'

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6
in point	P_{161}	P_{177}	P_{185}	P_{153}	P_{169}	P_{193}

 ${\bf Line~1~intersects}$

Line	ℓ_0	ℓ_4
in point	P_{161}	P_{454}

Line 2 intersects

Line	ℓ_0	ℓ_5
in point	P_{177}	P_{479}

Line 3 intersects

Line	ℓ_0	ℓ_6
in point	P_{185}	P_{300}

Line 4 intersects

Line	ℓ_0	ℓ_1
in point	P_{153}	P_{454}

Line 5 intersects

Line	ℓ_0	ℓ_2
in point	P_{169}	P_{479}

Line 6 intersects

Line	ℓ_0	ℓ_3
in point	P_{193}	P_{300}

The surface has 89 points: The points on the surface are:

$\begin{array}{l} 0: P_1 = (0,1,0,0) \\ 1: P_{12} = (1,0,1,0) \\ 2: P_{21} = (2,1,1,0) \\ 3: P_{23} = (4,1,1,0) \\ 4: P_{26} = (7,1,1,0) \\ 5: P_{29} = (2,2,1,0) \\ 6: P_{32} = (5,2,1,0) \\ 7: P_{41} = (6,3,1,0) \\ 8: P_{47} = (4,4,1,0) \\ 9: P_{49} = (6,4,1,0) \\ 10: P_{54} = (3,5,1,0) \\ 11: P_{64} = (5,6,1,0) \\ 12: P_{70} = (3,7,1,0) \\ 13: P_{74} = (7,7,1,0) \\ 14: P_{76} = (2,0,0,1) \\ 15: P_{78} = (4,0,0,1) \\ 16: P_{81} = (7,0,0,1) \\ 17: P_{85} = (3,1,0,1) \end{array}$	$30: P_{157} = (4, 2, 1, 1)$ $31: P_{160} = (7, 2, 1, 1)$ $32: P_{161} = (0, 3, 1, 1)$ $33: P_{169} = (0, 4, 1, 1)$ $34: P_{171} = (2, 4, 1, 1)$ $35: P_{176} = (7, 4, 1, 1)$ $36: P_{177} = (0, 5, 1, 1)$ $37: P_{185} = (0, 6, 1, 1)$ $38: P_{193} = (0, 7, 1, 1)$ $39: P_{195} = (2, 7, 1, 1)$ $40: P_{197} = (4, 7, 1, 1)$ $41: P_{207} = (6, 0, 2, 1)$ $42: P_{219} = (2, 2, 2, 1)$ $43: P_{229} = (4, 3, 2, 1)$ $44: P_{239} = (6, 4, 2, 1)$ $45: P_{242} = (1, 5, 2, 1)$ $46: P_{245} = (4, 5, 2, 1)$ $47: P_{250} = (1, 6, 2, 1)$	$\begin{array}{l} 60:\ P_{376}=(7,5,4,1)\\ 61:\ P_{378}=(1,6,4,1)\\ 62:\ P_{384}=(7,6,4,1)\\ 63:\ P_{388}=(3,7,4,1)\\ 64:\ P_{402}=(1,1,5,1)\\ 65:\ P_{407}=(6,1,5,1)\\ 66:\ P_{408}=(7,1,5,1)\\ 67:\ P_{412}=(3,2,5,1)\\ 68:\ P_{415}=(6,2,5,1)\\ 69:\ P_{424}=(7,3,5,1)\\ 70:\ P_{428}=(3,4,5,1)\\ 71:\ P_{434}=(1,5,5,1)\\ 72:\ P_{454}=(5,7,5,1)\\ 73:\ P_{466}=(1,1,6,1)\\ 74:\ P_{467}=(2,1,6,1)\\ 75:\ P_{468}=(3,1,6,1)\\ 76:\ P_{479}=(6,2,6,1)\\ 77:\ P_{492}=(3,4,6,1)\\ \end{array}$
$12: P_{70} = (3,7,1,0)$ $13: P_{74} = (7,7,1,0)$ $14: P_{76} = (2,0,0,1)$ $15: P_{78} = (4,0,0,1)$ $16: P_{81} = (7,0,0,1)$ $17: P_{85} = (3,1,0,1)$ $18: P_{87} = (5,1,0,1)$ $19: P_{88} = (6,1,0,1)$ $20: P_{92} = (2,2,0,1)$ $21: P_{93} = (3,2,0,1)$ $22: P_{110} = (4,4,0,1)$ $23: P_{136} = (6,7,0,1)$ $24: P_{136} = (6,7,0,1)$ $25: P_{137} = (7,7,0,1)$	$42: P_{219} = (2, 2, 2, 1)$ $43: P_{229} = (4, 3, 2, 1)$ $44: P_{239} = (6, 4, 2, 1)$ $45: P_{242} = (1, 5, 2, 1)$ $46: P_{245} = (4, 5, 2, 1)$ $47: P_{250} = (1, 6, 2, 1)$ $48: P_{274} = (1, 1, 3, 1)$ $49: P_{277} = (4, 1, 3, 1)$ $50: P_{278} = (5, 1, 3, 1)$ $51: P_{287} = (6, 2, 3, 1)$ $52: P_{290} = (1, 3, 3, 1)$ $53: P_{300} = (3, 4, 3, 1)$ $54: P_{317} = (4, 6, 3, 1)$ $55: P_{326} = (5, 7, 3, 1)$	$72: P_{454} = (5,7,5,1)$ $73: P_{466} = (1,1,6,1)$ $74: P_{467} = (2,1,6,1)$ $75: P_{468} = (3,1,6,1)$ $76: P_{479} = (6,2,6,1)$ $77: P_{492} = (3,4,6,1)$ $78: P_{494} = (5,4,6,1)$ $79: P_{499} = (2,5,6,1)$ $80: P_{506} = (1,6,6,1)$ $81: P_{518} = (5,7,6,1)$ $82: P_{526} = (5,0,7,1)$ $83: P_{542} = (5,2,7,1)$ $84: P_{546} = (1,3,7,1)$ $85: P_{547} = (2,3,7,1)$
26: $P_{138} = (0, 0, 1, 1)$ 27: $P_{139} = (1, 0, 1, 1)$ 28: $P_{146} = (0, 1, 1, 1)$ 29: $P_{153} = (0, 2, 1, 1)$	$56: P_{327} = (6,7,3,1)$ $57: P_{332} = (3,0,4,1)$ $58: P_{354} = (1,3,4,1)$ $59: P_{365} = (4,4,4,1)$	86: $P_{562} = (1, 5, 7, 1)$ 87: $P_{571} = (2, 6, 7, 1)$ 88: $P_{584} = (7, 7, 7, 1)$