# Московский физико-технический институт (национальный исследовательский университет)

# Термоэлектронный диод

Лабораторная работа по курсу Вакуумная электроника

> Работу выполнил студент Б04-005 группы Карташов Константин

# Оглавление

| Цель работы                                           | 3 |
|-------------------------------------------------------|---|
| ч т<br>Введение                                       |   |
| Этчет о выполнении работы                             |   |
| 1. Теоретическая справка                              |   |
| 2. Изготовление диода                                 |   |
| 3. Описание экспериментальной установки и хода работы |   |
| 4. Обработка полученных данных                        |   |
| Заключение                                            |   |
| July 110 activite                                     |   |

## Цель работы

Целью работы является практическое изучение явления термоэлектронной эмиссии и процессов токопрохождения в вакууме, изготовление вакуумного диода и исследование некоторых его характеристик.

#### Введение

Термоэлектронная эмиссия — это испускание электронов поверхностью нагретых проводящих тел. Термоэлектронная эмиссия и токопрохождение в вакууме являются основными процессами, определяющими работу многих электровакуумных приборов, а также электронно-лучевых приборов различных назначений.

Хотя современные приборы имеют довольно сложную конструкцию, многие их характеристики подчиняются тем же закономерностям, которым подчиняется электронный поток в простейшей приборе, представляющем собой двухэлектродную термоэлектронную лампу или, иными словами, диод. Таким образом, изучение его характеристик позволяет сделать выводы и о процессах проходящих в более сложных приборах.

Диод состоит из двух металлических электродов, помещенных в объем с низким давлением остаточных газов. При термоэмиссии катод нагревается до высокой температуры и начинает испускать электроны, которые затем попадают на анод, имеющий существенно более низкую температуру.

### Отчет о выполнении работы

#### 1. Теоретическая справка

В ходе работы мы будем пользоваться формулой Ричардсона-Дэшмана, которая позволяет расчитать максимальную плотность тока (тока насыщения), которую может обеспечить катод при температуре Т:

$$j = A_0(1-r)T^2 e^{-\frac{\phi}{kT}}$$
, (1)

где  $A_0$  - термоэмиссионная постоянная Зоммерфельда; T - абсолютная температура катода; r - коэффициент отражения электронов на границе металлвакуум (обычно не превосходит 0,07, поэтому в данной работе мы будем им пренебрегать);  $\phi$  - работа выхода электронов из катода; k - постоянная Больцмана.

Если дополнительно имеется тормозящее электроны электрическое поле, то ток в цепи будет обеспечиваться теми электронами, которые смогли преодолеть дополнительный потенциальный барьер. Тогда формула 1 примет вид

$$j = A_0(1-r)T^2 e^{-\frac{\phi - eU_a}{kT}}$$
, (2)

где U<sub>а</sub> - напряжение на аноде.

В общем случае, сила тока термоэлектронной эмиссии будет определяться выражением  $I=jS_k=\pi dl_a j$ , где  $S_k-$  площадь эмитирующей поверхности катода; d-диаметр катода;  $l_a$  - высота анода.

Зависимость удельного сопротивления катода от его температуры определяется формулой

$$\rho = \rho_0 (1 + \alpha T) \quad , \tag{3}$$

где  $\rho_0$  - удельное сопротивление в нормальных условиях,  $\alpha$  - температурный коэффициент электрического сопротивления.

Уравнение движения электрона можно представить в виде

$$m\frac{d^2x}{dt^2} = eE = 4\pi \ qe = 4\pi \ ejt \tag{4}$$

Проинтегрировав, полагая dx/dt = 0 при t = 0 и  $x = x_{min}$ , получаем

$$\frac{dx}{dt} = 2\pi \left(\frac{e}{m}\right) jt^2 \quad , \tag{5}$$

$$x - x_{min} = \frac{2\pi}{3} \left(\frac{e}{m}\right) jt^3 \tag{6}$$

Из закона сохранения энергии следует:

$$\frac{mv^2}{2} = m\left(\frac{dx}{dt}\right)^2 = -e\left(U - U_{min}\right) \tag{7}$$

Из формул (5), (6) и (7) следует:

$$U - U_{min} = 3\left(\frac{3\pi^2}{2}\right)^{1/3} \left(\frac{m}{-e}\right)^{1/3} j^{3/2} (x - x_{min})^{4/3} , \qquad (8)$$

откуда мы получаем выражение для ј:

$$j = \frac{\sqrt{2}}{9\pi} \sqrt{\frac{-e}{m}} \frac{(U - U_{min})^{3/2}}{(x - x_{min})^2}$$
 (9)

По итогу при  $x_{\text{min}} << d$  и  $U_{\text{min}} << U_{\text{a}}$  мы получаем уравнение Чайлда-Ленгмюра:

$$I_{a} = \frac{\sqrt{2}}{9\pi} \sqrt{\frac{-e}{m}} \frac{(U - U_{min})^{3/2}}{(d - x_{min})^{2}} S_{k} \approx g (U_{a} - U_{min})^{3/2} \approx g U_{a}^{3/2} , \qquad (10)$$

где g - первеанс диода, который в случае цилиндрической симметрии принимает вид

$$g = \frac{\sqrt{2}}{9\pi} \sqrt{\frac{-e}{m}} \frac{1}{\beta^2 r_a^2} S_a = \frac{2\sqrt{2}}{9} \sqrt{\frac{-e}{m}} l_a \frac{1}{r_a \beta^2} = 14,67 \cdot 10^{-6} \frac{l_a}{r_a \beta^2} , \qquad (11)$$

где  $\beta$  — функция от соотношения радиусов анода и катода, значение которой можно приближенно считать равным 1.

#### 2. Изготовление диода

Для изготовления анода мы взяли лист никеля со сторонами 30 и 40 мм, сделали на нем ребра жесткости и свернули в цилиндр с помощью оправки. За счет ребер жесткости анод удерживал приданную нами форму. Шов был проварен точечной электросваркой.

Затем мы создали траверсы из отрезков никелевой проволоки длиной 40 мм, которые мы приварили к двум диаметрально противоположным образующим нашего анода цилиндрической формы. Предварительно траверсы были сплющены и загнуты у одного конца для последующего монтажа анода на промышленно изготовленную металлостеклянную ножку.

Катод представляет собой тонкую вольфрамовую проволоку, протянутую коаксиально сквозь анод и закрепленную на ножке с помощью отрезка сложенного никелевой проволоки с флажком-креплением, сложенным пополам, на конце.

# 3. Описание экспериментальной установки и хода работы

Схема установки представлена ниже (Рис. 1). В вакуумной камере находится диод, к его выходам подключены два источника питания со встроенными вольтметром и амперметром (мультиметры). Один подключен непосредственно к выходам катода: он показывает выходное напряжение (напряжение накала) и силу тока, идущего через катод (ток накала). Второй подключен к одному выходу катода и одному выходу анода: он показывает напряжение на аноде и силу анодного тока.

В ходе работы мы помещаем наш диод в вакуумную камеру и откачиваем в ней воздух до образования высокого вакуума. Затем мы начинаем прогревать катод, постепенно повышая ток накала. Начиная с момента, когда ток накала равен 2,4 А мы записываем показания мультиметра, подключенного к аноду и катоду, для каждого значения тока проводя по 14 измерений при различных значениях напряжения на аноде. Эти данные в дальнейшем послужат для создания вольт-амперных характеристик диода.



Рис. 1: Электрическая схема для измерений характеристик диода

# 4. Обработка полученных данных

Построим график зависимости  $I_{\text{нак}}$  от  $U_{\text{нак}}$  (Рис.2). Очевидно, эта зависимость нелинейна. Это вызвано тем, что катод нагревается и от этого меняется его сопротивление. Построим также график зависимости сопротивления катода R от приложенной мощности P, где R = U/I, P = UI (Рис.3).



 $Puc.\ 2:\ \Gamma paфик зависимости\ I_{{\scriptsize Hak}}(U_{{\scriptsize Hak}})$ 



Рис. 3: График зависимости R(P)

Построим график зависимости температуры катода T от тока накала  $I_{\text{нак}}$ , воспользовавшись зависимостью сопротивления катода от его температуры, определяемой уравнением (3). Отсюда получаем следующую формулу:

$$T = \frac{1}{\alpha} \left( \frac{\pi d^2 U_{\text{\tiny HAK}}}{4 I_{\text{\tiny HAK}} \rho_0 l_{\text{\tiny K}}} - 1 \right)$$

где  $\rho_0$  - удельное сопротивление в нормальных условиях,  $\alpha$  - температурный коэффициент электрического сопротивления; d - диаметр катода;  $l_\kappa$  - длина катода. График зависимости представлен ниже (Рис. 4)



Рис. 4 График зависимости Т(Інак)

Построим вольт-амперные характеристики диода в координатах lgI(lgU). Из графиков по углу наклона прямой в зоне выполнения закона Чайлда-Ленгмюра определим g и сравним ее со значением полученным с помощью формулы (11). Из нее же найдем и значение удельного заряда электрона. Также построим график зависимости  $lgI_A(I_{\text{нак}})$  для различных значений  $U_{\text{нак}}$ .



 $Puc. 5: \Gamma paфик зависимости <math>lgI_a(lgU_a)$  при  $I_{\scriptscriptstyle H}$  = 2,4 A



Рис. 6: График зависимости  $lgI_a(lgU_a)$  при  $I_{\scriptscriptstyle H}$  = 2,5 A



Рис. 7: График зависимости  $lgI_a(lgU_a)$  при  $I_{\scriptscriptstyle H}$  = 2,6 A



Рис. 8: График зависимости  $lgI_a(lgU_a)$  при  $I_{\scriptscriptstyle H}$  = 2,7 A



Рис. 9: График зависимости  $lgI_a(lgU_a)$  при  $I_{\scriptscriptstyle H}$  = 2,8 A



Puc.~10: График зависимости  $lgI_a(lgU_a)$  при  $I_{\scriptscriptstyle H}$  = 2,9 A



 $Puc.\ 11:$  График зависимости  $lgI_a(lgU_a)$  при  $I_{\scriptscriptstyle H}$  = 2,8 A



Puc. 12: График зависимости  $lgI_{\rm A}(I_{\rm H})$  при различных значениях  $U_{\rm H}$ 

| I <sub>H</sub> , A | g, A/B <sup>3/2</sup> |
|--------------------|-----------------------|
| 2.4                | $1.7 \cdot 10^{-5}$   |
| 2.5                | 5.3·10 <sup>-5</sup>  |

| 2.6 | $7.6 \cdot 10^{-5}$  |
|-----|----------------------|
| 2.7 | $10.3 \cdot 10^{-5}$ |
| 2.8 | $10.3 \cdot 10^{-5}$ |
| 2.9 | $11.6 \cdot 10^{-5}$ |
| 3.0 | $10.1 \cdot 10^{-5}$ |

Наименьший разброс для значения g у графиков соответствующих значениям тока  $I_A$  от 2.7 A до 3.0 A. По ним рассчитаем  $g=10.3\cdot 10^{-5}$  . Ему соответствует  $e/m=-2.38\cdot 10^{11}$  Кл/кг

Из формулы (11) следует, что  $g=8.8\cdot 10^{-5}$  .

Табличное значение удельного заряда электрона равно -  $-1.76\cdot10^{11}$  Кл/кг

#### Заключение

В данной лабораторной работе мы ознакомились с устройством диода, исследовали его вольт-амперные характеристики, получили значение его первеанса (  $g=10.3\cdot 10^{-5}$  ), в целом удовлетворящее теоретическим рассуждениям, рассчитали удельный заряд электронов, соответствующий ему (  $e/m=-2.38\cdot 10^{11}$  Кл/кг), который практически равен табличному значению.

Помимо этого мы убедились в наличии у диода области напряжений, на которой выполняется закон Чайлда-Ленгмюра и определили зависимость температуры катода от силы тока накала.