

ADA034044

DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

Bethesda, Md. 20084

ANALYSIS OF WAKE SURVEY DATA FOR A GUIDED MISSILE STRIKE CRUISER (CSGN) REPRESENTED BY MODEL 5352

BY

ALAN C. M. LIN AND RAE B. HURWITZ

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

SHIP PERFORMANCE DEPARTMENT REPORT

DECEMBER 1976

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

UNCLASSIFIED

	READ INSTRUCTIONS BEFORE COMPLETING FOI
SPD-724-45 (2)	N NO. 3. RECIPIENT'S CATALOG NUMBER
GUIDED MISSILE STRIKE CRUISER (CSGN) REPRESENTE BY MODEL 5352	FINAL rept., 5. PERFORMING ORG. REPORT NOM
AUTHOR(e)	S. CONTRACT OR GRANT NUMBER(
ALAN C. M./LIN RAE B./HURWITZ	
9. PERFORMING ORGANIZATION NAME AND ADDRESS DAVID W. TAYLOR NAVAL SHIP R&D CENTER BETHESDA, MD. 20084	10. PROGRAM ELEMENT, PROJECT.
11. CONTROLLING OFFICE NAME AND ADDRESS NAVAL SHIP ENGINEERING CENTER WASHINGTON, D. C. 20362	DECEMBER OF PAGES 48
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Off	UNCLASSIFIED
16. DISTRIBUTION STATEMENT (of this Report) APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLT	
	MITED
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLI	MITED
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIN	MITED nt from Report)

CURITY CLASSIFICATION OF THIS PAGE When Date Entered) The cause of the contract of t The second second second and at the an Cambridge research that the state when a first of the same is section

LIST OF FIGURES

- Figure 1 Rake Arrangement Showing Spherical Head Pitot Tubes
- Figure 2 Stern Views of the Pitot Tube Rake at the Propeller Disk
 Position on Model 5352 Representing the Conventional Hull Form
 CSGN
- Figure 3 Sectional View of the Experimental Radii in the Plane of Propeller Disk
- Figure 4 Circumferential Distribution of the Longitudinal. Tangential and Radial Velocity Component Ratios Radius Ratio = 0.338
- Figure 5 Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios Radius Ratio = 0.524
- Figure 6 Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios Radius Ratio = 0.729
- Figure 7 Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios Radius Ratio = 0.933
- Figure 8 Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios Radius Ratio = 1.109
- Figure 9 Radial Distribution of the Mean Velocity Component Ratios
- Figure 10 Radial Distribution of the Mean Advance Angle and Other Derived Quantities
- Figure 11 Radial Distribution of the Amplitude and Phase Angle of the 1st
 Harmonic of the Circumferential Distribution of the Longitudinal
 Velocity Component Ratios
- Figure 12 Radial Distribution of the Amplitude and Phase Angle of the 2nd Harmonic of the Circumferential Distribution of the Longitudinal Velocity Component Ratios
- Figure 13 Radial Distribution of the Amplitude and Phase Angle of the 3rd Harmonic of the Circumferential Distribution of the Longitudinal Velocity Component Ratios
- Figure 14 Radial Distribution of the Amplitude and Phase Angle of the 4th Harmonic of the Circumferential Distribution of the Longitudinal Velocity Component Ratios
- Figure 15 Radial Distribution of the Amplitude and Phase Angle of the 5th Harmonic of the Circumferential Distribution of the Longitudinal Velocity Component Ratios
- Figure 16 Radial Distribution of the Amplitude and Phase Angle of the 6th Harmonic of the Circumferential Distribution of the Longitudinal Velocity Component Ratios

LIST OF FIGURES (continued)

- Figure 17 Radial Distribution of the Amplitude and Phase Angle of the 7th
 Harmonic of the Circumferential Distribution of the Longitudinal
 Velocity Component Ratios
- Figure 18 Radial Distribution of the Amplitude and Phase Angle of the 8th
 Harmonic of the Circumferential Distribution of the Longitudinal
 Velocity Component Ratios
- Figure 19 Radial Distribution of the Amplitude and Phase Angle of the 9th Harmonic of the Circumferential Distribution of the Longitudinal Velocity Component Ratios
- Figure 20 Radial Distribution of the Amplitude and Phase Angle of the 10th Harmonic of the Circumferential Distribution of the Longitudinal Velocity Component Ratios
- Figure 21 Radial Distribution of the Amplitude and Phase Angle of the 1st
 Harmonic of the Circumferential Distribution of the Tangential
 Velocity Component Ratios
- Figure 22 Radial Distribution of the Amplitude and Phase Angle of the 2nd Harmonic of the Circumferential Distribution of the Tangential Velocity Component Ratios
- Figure 23 Radial Distribution of the Amplitude and Phase Angle of the 3rd Harmonic of the Circumferential Distribution of the Tangential Velocity Component Ratios
- Figure 24 Radial Distribution of the Amplitude and Phase Angle of the 4th Harmonic of the Circumferential Distribution of the Tangential Velocity Component Ratios
- Figure 25 Radial Distribution of the Amplitude and Phase Angle of the 5th Harmonic of the Circumferential Distribution of the Tangential Velocity Component Ratios
- Figure 26 Radial Distribution of the Amplitude and Phase Angle of the 6th Harmonic of the Circumferential Distribution of the Tangential Velocity Component Ratios
- Figure 27 Radial Distribution of the Amplitude and Phase Angle of the 7th Harmonic of the Circumferential Distribution of the Tangential Component Ratios
- Figure 28 Radial Distribution of the Amplitude and Phase Angle of the 8th Harmonic of the Circumferential Distribution of the Tangential Velocity Component Ratios

LIST OF FIGURES (continued)

- Figure 29 Radial Distribution of the Amplitude and Phase Angle of the 9th Harmonic of the Circumferential Distribution of the Tangential Velocity Component Ratios
- Figure 30 Radial Distribution of the Amplitude and Phase Angle of the 10th Harmonic of the Circumferential Distribution of the Tangential Velocity Component Ratios

LIST OF TABLES

- Table 1 Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities at the Experimental and the Interpolated Radii
- Table 2 Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii
- Table 3 Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii
- Table 4 Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii
- Table 5 Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii

ACCESSION	IOF		
HTIS	W	hite Seci	ion 🗗
3.6	B	utf Sectle	n 🗆
U1.2:11032	CED		
JOSTIFIE !!	10H		
	TION /AVAI	ARII ITY	CODES
	TION/AVAI		
		and/or	

NOTATION

YMBOL	ON PLOTS	<u>DEFINITION</u>
A N	COS COEF	The cosine coefficient of the Nth harmonic*
BN	SIN COEF	The sine coefficient of the Nth harmonic*
D		Propeller diameter
Ja		Apparent advance coefficient
		$J_a = \frac{V}{nD}$ (dimensionless)
N	N	Harmonic number
n .		Propeller revolutions
r/R or x	RADIUS or RAD.	Distance (r) from the propeller axis expressed as a ratio of the propeller radius (R)
vas koldui.	namena y a (namen ^y 2)	Actual model or ship velocity
V _b (x,θ)	tragogopa, v., toolog. 1.	Resultant inflow velocity to blade for a given point
v _b (x)	TOMOGRAD TITOLOGY	Mean resultant inflow velocity to blade for a given radius
V _r (x,0)	VR Accommod yeloolay	Radial component of the fluid velocit for a given point (positive toward the shaft centerline)
v _r (x)	as Roccasa I	Mean radial velocity component for a given radius
V _r (x,0)/V	VR/V	Radial velocity component ratio for a given point
<u>v</u> (x)/v	VRBAR	Mean radial velocity component ratio for a given radius
V _t (x,0)	VI	Tangential component of the fluid velocity for a given point (positive in a counterclockwise direction looks forward)

^{*}See footnote on the following page

NOTATION (Continued)

$\overline{V}_{t}(x)$		Mean tangential velocity component for a given radius
		Tor a given fautus
V _t (x,0)/V	VT/V	Tangential velocity component ratio for a given point
$\overline{V}_{t}(x)/V$	VTBAR	Mean tangential velocity component ratio for a given radius
		Table 101 a Priori
$(\widetilde{V}_t(x)/V)_N$	AMPLITUDE	Amplitude (B_N for single screw symmetric; C_N otherwise) of Nth harmonic of the tangential
) - 748/43 J	velocity component ratio for a given radius*
V _χ (x,θ)	vx ,	Longitudinal (normal to the plane of survey) component of the fluid velocity
Vot		for a given point (positive in the astern direction)
∇ _x (x)	= (#\10.40\40)	Mean longitudinal velocity component for a given radius
V _x (x,0)/V	vx/v	Longitudinal continuous component ratio for a given point
∇ _x (x)/V	VXBAR	Mean longitudinal velocity component ratio for a given radius
(V _x (x)/V) _N	AMPLITUDE	Amplitude (Anfor single screw symmetric; CN otherwise) of Nth harmonic of the longitudinal velocity component ratio for a given radius*
$\phi_{\rm N}$	PHASE ANGLE	Phase Angle of Nth harmonic*

The harmonic amplitudes of any circumferential velocity distribution $f(\theta)$ are the coefficients of the Fourier Series: $f(\theta) = A_0 + \sum_{N=1}^{NH} A_N \cos(N\theta) + \sum_{N=1}^{NH} B_N \sin(N\theta)$

$$f(\theta) = A_0 + \sum_{N=1}^{NH} A_N \cos(N\theta) + \sum_{N=1}^{HH} B_N \sin(N\theta)$$

$$= A_0 + \sum_{N=1}^{HR} C_N \sin(N\theta + \phi_N)$$

NOTATION (Continued)

1-w(x)

proceedings of the few the process

Volumetric mean velocity ratio from the hub to a given radius

$$1-w(r/R) = \begin{bmatrix} r/R \\ 2 \cdot \int_{-\infty}^{\infty} (v_{x_c}(x)/v) \cdot x \cdot dx \\ r_{hub}/R \\ \hline (r/R)^2 - (r_{hub}/R)^2 \end{bmatrix}$$

where
$$V_{x_c}(x)/V = \int_0^{2\pi} \left[\frac{V_{x_c}(x,\theta)}{2\pi V} \right] d\theta$$

and
$$(V_{x_c}(x,\theta)/V) = (V_{x}(x,\theta)/V)$$

- $(V_{x_c}(x,\theta)/V)$ tan $(\beta(x,\theta))$

1-w(x) 1-WVX

end at cottique onte long a set

Volumetric mean velocity ratio from the hub to a given radius (without the tangential velocity correction)

$$1-w(r/R) = \begin{bmatrix} r/R \\ 2 \cdot \int (\overline{V}_{x}(x)/V) \cdot x \cdot dx \\ r_{hub}/R \\ \hline (r/R)^{2} - (r_{hub}/R)^{2} \end{bmatrix}$$

 $\beta(x,\theta)$

 $\overline{B}(x)$

BBAR

Advance angle in degrees for a given point of to assertions significant

Mean advance angle in degrees for a given radius

SA SOUNTS OF A SA

NOTATION (Continued).

+Δβ	BPOS .		Variation of the maximum advance angle from the mean for a given radius
-Δβ	BNEC	•.	Variation of the minimum advance angle from the mean for a given radius
•	ANGLE IN DECREES		Position angle (angular coordinate) in degrees

ENGLISH/SI EQUIVALENTS

SI **ENGLISH** 25.400 millimetres [0.0254 m (metres] 1 inch 0.3048 m (metres) 1 foot 0.3048 m/sec (metres per second) 1 foot per second 0.5144 m/sec (metres per second) 1 knot 4.4480 N (Newtons) 1 pound (force) 0.01745 rad (radians) 1 degree (angle) 0.7457 kW (kilowatts) 1 horsepower 1.016 tonnes, 1.016 metric tons, or 1016 kilograms 1 long ton

INTRODUCTION AND ADMINISTRATION OF THE PROPERTY OF THE PROPERT

The Naval Ship Engineering Center (NAVSEC) initiated a model experimental program at the David W. Taylor Naval Ship Research and Development Center (DTNSRDC) to aid in the evaluation of a proposed design of the Nuclear Guided Missile Strike Cruiser (CSGN). This report presents the results of the wake survey experiment performed in the plane of the propeller disk. The harmonic analyses of the circumferential distribution of the longitudinal and tangential velocities are also presented. Separate reports associated with this experimental program have been issued.

EXPERIMENTAL PROCEDURE AND PRESENTATION OF DATA

DTNSRDC Model 5352, representing a conventional hull form of CSGN design, was constructed to a linear ratio of 24 in accordance with NAVSEC's model plans. 1,2 The model was fitted with appendages except for the rudders. The velocity survey was conducted at the design draft of 22.15 feet (6.751 m), even keel in the static condition, at a displacement of 17,050 tons (17320 tonne) full scale, and at a velocity representing a ship speed of 30 knots (15.432 m/s).

A pitot tube rake, DTNSRDC No. 7, and four differential pressure gages were used to measure the velocities in the plane of the propeller disk at five radial locations. The pitot tube rake consisted of five 5-hole

spherical pitot tubes mounted in a housing. Figure 1 shows this arrangement and Figure 2 shows the pitot tube rake, mounted in the port shaft of the model.

The full scale propeller disk was 18 feet (5.488 m) in diameter.

The radii at which the measurements were made were expressed as ratios of the propeller radius (r/R), and were 0.338, 0.524, 0.729, 0.933 and 1.109 as shown in Figure 3. The propeller plane in which the velocity measurements were taken was 2 feet (0.61 m) forward of station 19. To ensure the proper trim throughout the experiments, the model was towed at the corresponding design displacement of 17,050 tons (17320 tonne) and a ship speed of 30 knots (15.432 m/s) with the rake in the zero-degree position. The model was then locked and tested at this trimmed condition throughout the experiment.

Circumferential distribution of the longitudinal, tangential, and radial velocity component ratios are shown in graphical form for each tube radius in Figures 4 through 8. The mean longitudinal (VXBAR), tangential (VTBAR), and radial (VRBAR) component ratios of the velocity-vectors and volumetric mean wake velocity ratio (1-w_X) are presented in Table 1. These quantities, except the radial component (VRBAR) are shown graphically in Figure 9.

The calculated mean values of the advance angle (BBAR), and the maximum variations thereof, (BPOS) and (BNEG), are given in Figure 10 and Table 1. The advance angles were calculated using an advance coefficient, J_a , of 1.051. A diagram showing the relationship between the longitudinal and tangential velocity vectors, the advance coefficients and the advance angles is described on page ix .

Tables 2 through 5 present the harmonic analyses of the circumferential distributions of the longitudinal and tangential velocity component ratios at the experimental and interpolated radii. The amplitudes and phase angles of the ten harmonics of the longitudinal and tangential velocities are plotted graphically in Figures 11 through 30.

DISCUSSION

Data from this experiment has been compared with data from a typical twin-screw destroyer. The comparison showed that the results reported herein for the CSGN are reasonable, and in addition that the average effective wake factor ($\frac{(1-w_T) + (1-w_Q)}{2} = 0.949$) from the propulsion experiment is consistent with the volumetric mean wake velocity (1-w_X = 0.936 at 1.0 propeller radius) from this wake experiment. Therefore, this experiment is considered valid.

Figure 1 - Rake Arrangement Showing Spherical Head Pitot Tubes

Figure 2 - Stern Views of the Pitot Tube Rake at the Propeller Disk Position on Model 5352 Representing the Conventional Hull Form CSGN

Sectional View of the Experimental Radii in the Plane of Propeller Disk 3

Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity a vr/v Component Ratios - Radius Ratio = 0.338 1 Figure 4

Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios - Radius Ratio = 0.524 . Figure 5

Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios - Radius Ratio = 0.729 Figure 6

Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios - Radius Ratio = 0.933 Figure 7 -

.

× 6 4 Circumferential Distribution of the Longitudinal, Tangential and Radial Velocity Component Ratios - Radius Ratio = 1.109 1 Figure 8

Figure 9 - Radial Distribution of the Mean Velocity Component Ratios

Figure 10 - Radial Distribution of the Mean Advance Angle and Other Derived Quantities

N = 1 VX/V

Figure 11 - Radial Distribution of the Amplitude and Phase Angle of the 1st Harmonic of the Circumferential Distribution of the Longitudinal Velocity Component Ratios

N = 2 VX/V

Figure 12 - Radial Distribution of the Amplitude and Phase Angle of the 2nd Harmonic of the Circumferential Distribution of the Longitudinal Velocity Component Ratios

N = 3 VX/V

Figure 13 - Radial Distribution of the Amplitude and Phase Angle of the 3rd Harmonic of the Circumferential Distribution of the Longitudinal Velocity Component Ratios

N = 4 VX/V

Figure 14 - Radial Distribution of the Amplitude and Phase Angle of the 4th Harmonic of the Circumferential Distribution of the Longitudinal Velocity Component Ratios

N = 5 VX/V

Figure 15 - Radial Distribution of the Amplitude and Phase Angle of the 5th Harmonic of the Circumferential Distribution of the Longitudinal Velocity Component Ratios

N = 6 VX/V

Figure 16 - Radial Distribution of the Amplitude and Phase Angle of the 6th Harmonic of the Circumferential Distribution of the Longitudinal Velocity Component Ratios

N = 7 /X/V

Figure 17 - Radial Distribution of the Amplitude and Phase Angle of the 7th Harmonic of the Circumferential Distribution of the Longitudinal Velocity Component Ratios

N = 8 VX/V

Figure 18 - Radial Distribution of the Amplitude and Phase Angle of the 8th Harmonic of the Circumferential Distribution of the Longitudinal Velocity Component Ratios

N = 9 VX/V

Figure 19 - Radial Distribution of the Amplitude and Phase Angle of the 9th Harmonic of the Circumferential Distribution of the Longitudinal Velocity Component Ratios

N -10 VX/V

Figure 20 - Radial Distribution of the Amplitude and Phase Angle of the 10th Harmonic of the Circumferential Distribution of the Longitudinal Velocity Component Ratios

N = 1 VT/V

Figure 21 - Radial Distribution of the Amplitude and Phase Angle of the 1st Harmonic of the Circumferential Distribution of the Tangential Velocity Component Ratios

N = 2 VT/V

Figure 22 - Radial Distribution of the Amplitude and Phase Angle of the 2nd Harmonic of the Circumferential Distribution of the Tangential Velocity Component Ratios

N = 3 VT/V

Figure 23 - Radial Distribution of the Amplitude and Phase Angle of the 3rd Harmonic of the Circumferential Distribution of the Tangential Velocity Component Ratios

N = 4 VT/V

Figure 24 - Radial Distribution of the Amplitude and Phase Angle of the 4th Harmonic of the Circumferential Distribution of the Tangential Velocity Component Ratios

N = 5 VT/V

Figure 25 - Radial Distribution of the Amplitude and Phase Angle of the 5th Harmonic of the Circumferential Distribution of the Tangential Velocity Component Ratios

N = 6 VT/V

Figure 26 - Radial Distribution of the Amplitude and Phase Angle of the 6th Harmonic of the Circumferential Distribution of the Tangential Velocity Component Ratios

N = 7 VT/V

Figure 27 - Radial Distribution of the Amplitude and Phase Angle of the 7th Harmonic of the Circumferential Distribution of the Tangential Velocity Component Ratios

N = 8 VT/V

Figure 28 - Radial Distribution of the Amplitude and Phase Angle of the 8th Harmonic of the Circumferential Distribution of the Tangential Velocity Component Ratios

N = 9 VT/V

Figure 29 - Radial Distribution of the Amplitude and Phase Angle of the 9th Harmonic of the Circumferential Distribution of the Tangential Velocity Component Ratios

N =10 VT/V

Figure 30 - Radial Distribution of the Amplitude and Phase Angle of the 10th Harmonic of the Circumferential Distribution of the Tangential Velocity Component Ratios

Listing of the Mean Velocity Component Ratios, the Mean Advance Angles and other Derived Quantities at the Experimental and the Interpolated Radii Table 1

1.109 .200 .400 .904 .906 .900 .700 .005 .914 .906 .906 .909 .930 .932 .944 .906 .909 .932 .944 .906 .909 .932 .944 .906 .909 .932 .944 .906 .909 .932 .944 .906 .909 .932 .944 .906 .909 .944 .946 .945 .942 .942 .945 .944 .906 .909 .944 .946 .945 .942 .945 .944 .946 .945 .945 .945 .944 .946 .945 .945 .945 .945 .945 .945 .945 .945							PROPELLE	PROPELLER DIAMETER = 18.00 FEET	ER = 16.	00 FEET		3	JA = 1.051		
.936 .946 .946 .932 .923 .914 .906 021 010 010 010 .011 .011 .133 .077 .064 .071 .074 .085 .014 0.000 .944 .946 .942 .943 .944 .965 0.010 .964 .972 .965 .942 .933 .924 .926 56.41 36.71 32.52 27.77 24.06 21.05 16.69 16.64 10.17 3.96 2.96 2.77 2.106 47.50 4	.339 .524 .729	.729	.729		.933	1.10	.280		.500	.66	.70	:		1.	==
015 021 014 010 005 005 011 004 .066 .133 .077 .064 .071 .074 .095 .094 004 .924 0.000 .944 .946 .945 942 939 989 989 .930 0.000 .901 .972 965 996 991 998 998 998 998 15.24 50.41 2.406 2.406 2.406 2.406 14.00 </td <td>.945</td> <td>.929</td> <td>626*</td> <td></td> <td>.911</td> <td>.89</td> <td>.938</td> <td>.947</td> <td>.946</td> <td>.940</td> <td>. 932</td> <td>.923</td> <td></td> <td>•</td> <td>•</td>	.945	.929	626*		.911	.89	.938	.947	.946	.940	. 932	.923		•	•
.056 .133 .077 .864 .071 .074 .055 .044 .086 .945 .942 .939 .934 .929 .926 .926 .939 .934 .929 .936 .926 .939 .934 .929 .936 .936 .936 .936 .926 .936 .936 .936 .936 .936 .936 .936 .93	010004	00	-:00		.010		121	.014	010	006	005	980.		=	-
.924 0.000 .944 .946 .945 .942 .933 .934 .928 .929 .934 .929 .934 .929 .934 .929 .934 .929 .934 .929 .934 .929 .934 .929 .934 .936 .934 .934 .934 .934 .934 .934 .934 .934	.062 .073	.073	.073		.043	.06	.133	.077	.864		.074	.055		*	•
15.24 50.41 30.71 32.52 27.77 24.06 21.05 10.09 16.04 15.24 50.41 30.71 32.52 27.77 24.06 21.05 10.09 16.04 17.50 7.50 7.50 2.96 2.42 2.14 2.01 1.01 77.50 7.50 77.50 67.50 67.50 65.00 67.50 70.00 -3.09 -14.64 -5.03 -3.93 -3.44 -3.09 -3.63 -3.21 -3.14 42.50 327.50 322.50 322.50 327.50 317.50 317.50 347.50	196. 346. 546. = XVM-1	.941	.941		. 933	.92			.946	.945	.942	.939		.929	*
15.24 50.41 30.71 32.52 27.77 24.06 21.05 10.69 16.04 1.22 10.17 3.98 2.96 2.42 2.14 2.01 1.01 1.52 77.50 7.50 77.50 67.50 67.59 65.00 67.50 77.00 -3.69 -14.64 -5.03 -3.93 -3.44 -3.89 -3.63 -3.21 -3.14 42.50 327.50 322.50 322.50 317.50 317.50 317.50	.969 .956	.86	. 986	3 m	3	.93	:	.981	.972	.965	.956	.951		.936	
1.22 10.17 3.96 2.96 2.42 2.14 2.01 1.01 1.58 77.50 77.50 77.50 67.59 65.00 67.59 70.00 -3.69 -14.64 -5.03 -3.93 -3.44 -3.09 -3.63 -3.21 -3.14 42.50 327.50 317.50 317.50 317.50 347.50	31.27 23.14	23.14	23.14 10	=	.03	15.5	58.41	8.71	32.52	27.77	24.06	21.85		16.8	15.3
-3.69 -14.64 -5.63 -3.93 -3.44 -3.89 -3.63 -3.21 -3.14 42.50 327.50 322.50 322.50 317.50 317.50 317.50 347.50	2.79 2.00 77.50 67.50	2.09	2.08		22.1	1.2	7.50	3.98	2.96	2.42	67.58	2.03		7.5	772
	= -6.23 -3.68 -3.93 -3 =327.50 322.50 317.50 311	-3.93	-3.93 -3	3.5	.50	-3.6	-14.84	5.03	-3.93	-3.44	-3.89	-3.63		347.50	35.

2 2

IS CIRCUMFERENTIAL MEAN LONGITUDINAL VELOCITY.

IS CIRCUMFERENTIAL PEAN TANGENTIAL VELOCITY.

IS CIRCUMFERENTIAL MEAN RADIAL VELOCITY.

IS VOLUMETRIC MEAN MAKE VELOCITY MITHOUT TANGENTIAL CORRECTION.

IS VOLUMETRIC MEAN MAKE VELOCITY MITH TANGENTIAL CORRECTION.

IS MEAN ANGLE OF ADVANCE.

IS VARIATION BETWEEN THE MAXIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS VARIATION BETWEEN THE MINIMUM AND MEAN ADVANCE ANGLES (DELTA BETA MINUS).

IS ANGLE IN DEGREES AT WHICH CORRESPONDING BPOS OR GNEG OCCURS.

Table 2 - Harmonic Analyses of Longitudinal Velocity Component Ratios at the Experimental Radii

		97	.0065	.0054	340.6	.0024	.0065
		6	.0067	.0059	.0032	.0013	.0045
1.051		•	.0030	.0001	289.4	20.6	.0063
JA = 1.051	(VX/V)	,	.0036	.0079	.0824	.0039	.0054
	RATIOS	•	343.3	.0064	3.69.2	71.1	.0061
FEET	VELOCITY COMPONENT RATIOS	r.	.0147	236.2	.0019	.0035	.0076
PROPELLER DIAMETER = 18.00 FEET	ELOCITY (.0205	.0039	.0054	.0035	.0093
IAMETER		m	.0367	.0179	.0185	.0268	.0342
PELLER D	YSES OF LONGITUDINAL	8	.0445	.0233	.0283	.0425	.0534
PRO	_	•	.0461	.0234	.0459	.0495	.0934
	HARMONIC ANA	HARMONIC =	RADIUS = .338 AMPLITUDE = PHASE ANGLE =	RADIUS = .524 AMPLITUDE = = PHASE ANGLE =	RADIUS = .729 APPLITUDE = PHASE ANGLE =	AMPLITUDE = .933	RADIUS = 1.109 AMPLITUDE = PHASE ANGLE =
				44			

- Harmonic Analyses of Longitudinal Velocity Component Ratios at the Interpolated Radii Table 3

	T	ROPELLES	DIAMETE	PROPELLER DIAMETER = 18.00 FEET	FEET		JA = 1.051	1.051		
HARMONIC	HARMONIC ANALYSES OF		LONGITUDINAL	VELOCITY	VELOCITY COMPONENT	RATIOS	(VX/V)			
MARMONIC .	•	~	n	٠	6	•		•	•	:
RADIUS = .200 AMPLITUDE = PHASE ANGLE =	.0905	.0759	306.3	.0443	.0350	.0256	.0137	20.05	.0051	.0049
RADIUS = .400 AMPLITUDE = PHASE AMGLE =	.0337	.0347		.0130	2003	.1839	.0056	.0056	.0068	.0067
RADIUS = .500 AMPLITUDE = PHASE ANGLE =	. 0239	.0247	.0193	303.6	243.6	230.5	.0079	.0061	231.0	.0050
RADIUS = .600 AMPLITUDE = PHASE ANGLE =	.0342	.0241	.0170	.0049	.1149	239.1	.0042	. 8059	.0041	275.0
RADIUS = .700 AMPLITUDE = PHASE ANGLE =	.0440	.0270	.0179	.0054	.0024	.0011	.0021	.0042	.0032	.0037
RADIUS = .800 AMPLITUDE = PHASE ANGLE =	.0412	.0336	.0211	.0035	.0016	.0023	.0031	.0032	.0025	.0025
RADIUS = .900 AMPLITUDE = PHASE ANGLE =	.0453	.0404	.0254	.0031	.0035	.004	.0038	.0037	333.2	39.4
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	.0619	.0467	.0297	337.0	.0034	.0053	10.01	.0049	30.19	.0036
AMPLITUDE = PHASE ANGLE =	.0903	.0529	.0336	.0086	.0072	.0060	.0053	.0062	2,00	.1162

Harmonic Analyses of Tangential Velocity Component Ratios at the Experimental Radii Table 4 -

	ă .	PROPELLER DIAMETER * 18.00 FEET	DIAMETER	= 18.00	FEET		# Y	JA = 1.051		
HARMONIC ANA	ANALYSES	OF TANGE	ENTIAL V	ELOCITY	LYSES OF TANGENTIAL VELOCITY COMPONENT	RATIOS	(VT/V)			
HARMONIC =	1	2	m	•	5	9		•	6	10
RADIUS = .338 AMPLITUDE = PHASE ANGLE =	.1399	.0134	.0130	.0107	.0090	.0045	.0005	.0035	.0057	.0067
RADIUS = .524 AMPLITUDE = PHASE ANGLE =	.1224	.0106	.0062	.0047	.0043	.0039	.0035	.0042	.0040	.0025
RADIUS = .729 AMPLITUDE = PHASE ANGLE =	.1215	.0104	.0033	.0027	.0027	.0015	.0022	.0022	.0024	.0024
RADIUS = .933 AMPLITUDE = PHASE ANGLE =	.1172	.0165	.0020	.0010	.0005	.0011	.0016	.0010	.0009	.0012
RADIUS = 1.109 AMPLITUDE = PHASE ANGLE =	1127	.0166	.0039	.0021	.0024	.0026	.0015	.0016	.0018	.0013

Table 5 - Harmonic Analyses of Tangential Velocity Component Ratios at the Interpolated Radii

	ă	OPELLE	R DIAMET	PROPELLER DIAMETER = 18.00 FEET	.00 FEET		- 45	1.051		
HARMONIC	ANALYSES	0F T	NGENTIAL	VELOCIT	ANALYSES OF TANGENTIAL VELOCITY COMPONENT	T RATIOS	(1/1/1)			
HARMONIC =	•	~	m	•	6	•		•	•	=
RADIUS = .200 AMPLITUDE = PHASE ANGLE =	.1644	.0174	.6 239.1	30 .0209 .1 246.7	.0195	.0124	.0067	.0072	.0103	.0127
RADIUS = .400 AMPLITUDE = PHASE ANGLE =	.1322	.0122	.9 .0096 .9 208.6	36 .0077 .6 216.9	7 .0061 9 225.3	.0032	.0014	.0035	.0046	.0047
RADIUS = .500 AMPLITUDE = PHASE ANGLE =	.1238	.0108	18 .0066 .6 180.6	.6 .0050	.0044	.0038	.0033	.0041	.0040	.0028
RADIUS = .600 AMPLITUDE = PHASE ANGLE =	.1224	.0099	9 .0051	51 .0036 .4 162.3	3 164.6	.0030	.0033	.0035	.0034	.0022
RADIUS = .700 AMPLITUDE = PHASE ANGLE =	.1218	.0101	11 .0037 .7 171.6	37 .0029 .8 143.6	.6 156.2	.0019	.0025	.0025	.0027	.0024
RADIUS = .800 AMPLITUDE = PHASE ANGLE =	.1202	.0132	12 .0022	.0019	.9 .0018	.0003	.0007	.0011	.0012	.0016
RADIUS = .900 AMPLITUDE = PHASE ANGLE =	.1180	.0159	.1 237.6	18 .0011 .6 85.9	11 .0007	.0009	.0013	.0009	.0007	.0012
RADIUS = 1.000 AMPLITUDE = PHASE ANGLE =	.1156	.0171	71 .0027 .0 261.0	27 .0012 .0 22.1	.2 .0010	.0016	.0018	.0013	.0013	.0012
RADIUS = 1.100 AMPLITUDE = PHASE ANGLE =	.1130	.0167	57 .0038 .7 262.7	36 .0020	.0022	.0025	.0015	.0015	.0016	.0012

DTNSRDC ISSUES THREE TYPES OF REPORTS

- (1) DINSRDC REPORTS, A FORMAL SERIES PUBLISHING INFORMATION OF PERMANENT TECHNICAL VALUE, DESIGNATED BY A SERIAL REPORT NUMBER.
- (2) DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, RECORDING INFORMATION OF A PRELIMINARY OR TEMPORARY NATURE, OR OF LIMITED INTEREST OR SIGNIFICANCE, CARRYING A DEPARTMENTAL ALPHANUMERIC IDENTIFICATION.
- (3) TECHNICAL MEMORANDA, AN INFORMAL SERIES, USUALLY INTERNAL WORKING PAPERS OR DIRECT REPORTS TO SPONSORS, NUMBERED AS TM SERIES REPORTS; NOT FOR GENERAL DISTRIBUTION.