

POWERED BY Dialog

Antibacterial pyrazole derivs. - active against Escherichia coli, Bacillus pyocyaneus, Bacillus subtilis, etc.

Patent Assignee: MITSUBISHI PETROCHEMICAL CO LTD

Patent Family

Patent Number	Kind	Date	Application Number	Kind	Date	Week	Type
JP 58188858	A	19831104				198350	B

Priority Applications (Number Kind Date): JP 8271069 A (19820427)

Patent Details

Patent	Kind	Language	Page	Main IPC	Filing Notes
JP 58188858	A		5		

Abstract:

JP 58188858 A

Pyrazole derivs. of formula (I) are new. R is subst. alkyl (except for benzoylmethyl or toluoylmethyl), subst. alkenyl opt. subst. aralkyl acyl, carbamoyl, thiocarbonyl, sulphonyl or sulphamoyl.

(I) may be produced by treating 1,3-dimethyl-4-(2,4-dichloro-3-methylbenzoyl)-5-hydroxy pyrazole or its alkali metal salts, alkali-earth metal salts, tert. ammonium salt with organic halide of formula: R-X (II) (where X is F, Cl, Br and I) in inert solvent opt. in the presence of acid bonding agent.

An example of (I) is 1,3-dimethyl-4-(2,4-dichloro-3-methylbenzoyl)-5-(p-bromophenacyloxy) pyrazole.

0/0

Derwent World Patents Index

© 2001 Derwent Information Ltd. All rights reserved.

Dialog® File Number 351 Accession Number 3844863

04

17

⑯ 日本国特許庁 (JP)

⑪ 特許出願公開

⑫ 公開特許公報 (A)

昭58—188858

⑩Int. Cl.³
C 07 D 231/20
// A 01 N 43/56
A 61 K 31/415

識別記号
ADZ

府内整理番号
7133—4C
7055—4H
6408—4C

⑬公開 昭和58年(1983)11月4日
発明の数 1
審査請求 未請求

(全 5 頁)

⑭新規ピラゾール誘導体

⑭発明者 内村邦男

茨城県稻敷郡阿見町大字若栗13
15番地三菱油化株式会社中央研
究所内

⑭特願 昭57—71069

⑭発明者 普谷清志

茨城県稻敷郡阿見町大字若栗13
15番地三菱油化株式会社中央研
究所内

⑭出願 昭57(1982)4月27日

⑭出願人 三菱油化株式会社

東京都千代田区丸の内2丁目5
番2号

⑭発明者 紺野和彦

⑭代理人 弁理士 古川秀利 外1名

茨城県稻敷郡阿見町大字若栗13
15番地三菱油化株式会社中央研
究所内

⑭発明者 郷敦

茨城県稻敷郡阿見町大字若栗13
15番地三菱油化株式会社中央研
究所内

明細書

1. 発明の名称

新規ピラゾール誘導体

2. 特許請求の範囲

一般式(I)

(式中、Rは置換基を有してもよいアルキル基
(但し、ベンゾイルメチル基及びトルオイルメチ
ル基を除く)、置換基を有するアルケニル基、置
換基を有してもよいアラルキル基、アシル基、カ
ルバモイル基、チオールカルボニル基、スルホニ
ル基又はスルフアモイル基を示す)で表わされる
新規ピラゾール誘導体に関する。

3. 発明の詳細な説明

本発明は、新規ピラゾール誘導体に関する。更
に詳しくは、一般式(I)

(式中、Rは置換基を有してもよいアルキル基
(但し、ベンゾイルメチル基及びトルオイルメチ
ル基を除く)、置換基を有するアルケニル基、置
換基を有してもよいアラルキル基、アシル基、カ
ルバモイル基、チオールカルボニル基、スルホニ
ル基又はスルフアモイル基を示す)で表わされる
新規ピラゾール誘導体に関する。

本発明者らは、一連のピラゾール誘導体の生理
活性を研究する中で、1,3-ジメチル-4-(2,
4-ジクロロ-3-メチルベンゾイル)-5-ヒ
ドロキシピラゾール誘導体を検討した結果、一般
式(I)で表わされる化合物が大腸菌、綠膿菌、枯草
菌などに抗菌活性を有することを見い出した。從
つて本発明の化合物は工業用殺菌剤などの用途が
期待されるが、そのほかにも各種生理活性物質の

出発物質としても有用である。

上記一般式(I)において、無置換のアルキル基とはC₁～C₁₂であり、例えばメチル、エチル、ヨーブロビル、1-ブロビル、n-ブチル、sec-ブチル、tert-ブチル、1-ブチル、n-ペンチル、1-ペンチル、ヨーヘキシル、ヨーヘブチル、n-オクチル、n-デシル、またはn-ドデシル等が挙げられる。

置換基を有するアルキル基のアルキル基はC₁～C₁₂であり、その置換基とは、クロロ、ブロム等のハロゲン原子、ニトリル基、C₁～₄のアルコキシカルボニル基、カルバモイル基、または-CO-R¹（R¹はC₁～₆のアルキル基、ステリル基、チエニル基、ハロゲン置換チエニル基、ビリジル基、フェニル基または1つ以上のC₁～₆のアルキル基、ハロゲン原子、ニトロ基もしくはC₁～₄のアルコキシ基が置換したフェニル基を表わす。）で表わされるアシル基である。

その具体例としてはクロロメチル、ブロモメチル、シアノメチル、メトキシカルボニルメチル、

エトキシカルボニルメチル、プロポキシカルボニルメチル、ブトキシカルボニルメチル、アセチルメチル、セーブチルカルボニルメチル、2-メチルビペリジン-1-カルボニルメチル、5-クロロ-2-チエニルカルボニルメチル、ビリジカルボニルメチル、2-クロロエチル、2-シアノエチル、1-メトキシカルボニルエチル、1-エトキシカルボニルエチル、1-ブトキシカルボニルエチル、3,4-ジメチルフェナシル、p-エチルフェナシル、p-n-ブロビルフェナシル、p-ヨーブチルフェナシル、p-1-ブチルフェナシル、p-セーブチルフェナシル、o-クロロフェナシル、p-クロロフェナシル、p-ブロモフェナシル、2,4-ジクロロフェナシル、2-クロロ-4-ニトロフェナシル、p-ニトロフェナシル、o-メトキシフェナシル、m-メトキシフェナシル、p-メトキシフェナシル、2,4-ジクロロ-3-メチルフェナシルまたはシンナモイルメチル、等が挙げられる。

置換基を有するアルケニル基のアルケニル基は

C₁～₄であり、置換基はハロゲン原子、C₁～₄のアルコキシカルボニル基またはフェニル基であり、その具体例としては、4-クロロ-2-ブチニル、3-メトキシカルボニル-2-ブロベニル、3-エトキシカルボニル-2-ブロベニル、または3-フェニル-2-ブロベニル基等が挙げられる。

置換基を有していてもよいアラルキル基のアラルキル基はC₁～₉であり、置換基とは、C₁～₄のアルキル基、水酸基、ハロゲン原子、ニトロ基またはシアノ基である。その具体例としてはベンジル、フェニル、フェニルブロビル、α,α-ジメチルベンジル、p-メチルベンジル、p-クロロベンジル、2,4-ジクロロベンジル、m-ニトロベンジル、p-ニトロベンジル、2-クロロ-4-ニトロベンジル、p-シアノベンジル、p-ヒドロキシベンジル、3,5-ジセーブチル-4-ヒドロキシベンジル等が挙げられる。

アシル基とは-CO-R²で表わされ、R²はC₁～₆のアルキル基、C₁～₉のアラルキル基、フェニル基または1以上のハロゲン原子、C₁～₄のア

ルキル基、C₁～₄のアルコキシ基、もしくはニトロ基が置換したフェニル基を表わす。アシル基の具体例としてはアセチル、ブロピオニル、クロロアセチル、ブロモアセチル、トリフルオロアセチル、o-メチルベンゾイル、ヨーメチルベンゾイル、p-メチルベンゾイル、p-1-ブロビルベンゾイル、p-メトキシベンゾイル、3,4-ジメトキシベンゾイル、o-クロロベンゾイル、p-クロロベンゾイル、p-ブロモベンゾイル、p-ニトロベンゾイル、2,4-ジクロロベンゾイル、2-クロロ-4-ニトロベンゾイル、2,4-ジクロロ-3-メチルベンゾイル等が挙げられる。

カルバモイル基とは-CON<sup>R³</sub>_{R⁴}で表わされ、R³、R⁴はC₁～₆のアルキル基、C₁～₄のアルコキシ基、フェニル基またはR³とR⁴が結合し、Nを含めてC₁～₈の環を表わす。その具体例としては、N,N-ジメチルカルバモイル、N,N-ジエチルカルバモイル、N-メチル-N-メトキシカルバモイル、N,N-テトラメチレンカルバモイル、N,N-ペンタメチレンカルバモイル、N,N-

特開昭58-188858 (3)

ヘキサメチレンカルバモイル、N-メチル-N-フェニルカルバモイル、N-エチル-N-フェニルカルバモイル、または3,5-ジメチルピラゾリルカルボニル等が挙げられる。

チオールカルボニル基とは-COS-R⁶で表わされ、R⁶はC₁~₄のアルキル基、ハログン置換ベンジル基、またはC₇~₁₀のアラルキル基であり、その具体例としてはS-メチルカルボニル、S-エチルカルボニル、S-ベンジルカルボニル、S-(p-クロロベンジル)カルボニル、S-(α,α-ジメチルベンジル)カルボニル等が挙げられる。

スルホニル基とは-SO₂-R⁶で表わされ、R⁶はC₁~₄のアルキル基、C₆~₁₀のアリール基であり、その具体例としては、メタンスルホニル、エタンスルホニル、ベンゼンスルホニル、トルエンスルホニル等が挙げられる。

スルフアモイル基とは-SO₂N<sup>R⁷</sub>-R⁸で表わされ、R⁷およびR⁸はC₁~₄のアルキル基またはフェニル基を表わす。その具体例としてはN,N-ジメチルスルホニル、N,N-ジエチルスルホニ

ル、N-フェニルスルホニル、N-メチル-N-フェニルスルホニル等が挙げられる。

一般式(I)で示される本発明の化合物の代表例を以下に示す。

化合物番号	R	物性 融点(℃)
1	CH ₃	108.5~109.5
2	C ₂ H ₅	78.5~79.0
3	n-C ₃ H ₇	57.0~57.5
4	i-C ₃ H ₇	88.5~89.0
5	n-C ₆ H ₁₃	72.0~73.0
6	n-C ₁₂ H ₂₅	46.5~48.0

7	CH ₃ CH ₂ Cl	粉末状固体
8	CH ₃ CN	結晶性固体
9	CH ₃ CO ₂ C ₂ H ₅	80.8~81.8
10	CH ₃ CO ₂ C ₄ H ₉ t	86.5~88
11	CH(CH ₃)CO ₂ CH ₃	126.5~129
12	CH(CH ₃)CO ₂ C ₂ H ₅	86.6~87.2
13	CH(CH ₃)CO ₂ C ₄ H ₉ t	97~100
14	CH ₃ COCH=CH-○	139.0~139.5
15	CH ₃ COC(CH ₃) ₃	69.0~70.0
16	CH ₃ COCH ₃	粉末状固体
17	CH ₃ CO-○-Cl	106.0~107.5
18	CH ₃ CO-○-N	129~131
19	CH ₃ CH=CHCO ₂ C ₂ H ₅	115.8~117
20	CH ₃ CH=CHCH ₂ Cl	粘性半固体

21	CH ₃ CH=CH-○	192.3~195.3
22	CH ₃ -○	112.4~113.1
23	CH ₃ CH ₂ CH ₂ -○	78.7~79.6
24	CH ₃ -○-OH C ₄ H ₉ (t) C ₄ H ₉ (t)	203.2~204.3
25	CH ₃ -○-Cl	123.9~125.1
26	CH ₃ CO-○-CH ₃	155~157
27	CH ₃ CO-○-C ₄ H ₉ (t)	粉末状固体
28	CH ₃ CO-○-OCH ₃	132~133
29	CH ₃ CO-○-OCH ₃	124.1~125.3
30	CH ₃ CO-○-Cl	136.8~137.7
31	CH ₃ CO-○-Br	126.1~126.8
32	CH ₃ CO-○-Cl	123~124
33	CH ₃ CO-○-CH ₃	130.3~132.4
34	CH ₃ CO-○-NO ₂	131~132

35	<chem>COCH3</chem>	112.0~113.8
36	<chem>COCH2-C6H5</chem>	103 ~ 105
37	<chem>CO-C6H5</chem>	176.0~176.4
38	<chem>CO-C6H5-CH3</chem>	148.8~149.4
39	<chem>CO-C6H5-OCH3</chem>	187.4~187.7
40	<chem>CO-C6H5-Cl</chem>	163 ~ 164
41	<chem>CO-C6H4-Cl</chem>	109.5~114.2
42	<chem>CO-C6H4-CH3-Cl</chem>	172.8~173.8
43	<chem>CON<CH3>-CH3</chem>	120.0~120.3
44	<chem>CON<CH3>-OCH3</chem>	89.1~ 90.0
45	<chem>CON-C6H5</chem>	129 ~ 133
46	<chem>CON-C6H5-CH3</chem>	154.5~154.7
47	<chem>CO-C6H4-N=CH2-CH3</chem>	94.5~105
48	<chem>COSC2H5</chem>	n_D^{20} 1.5650 oil

49	<chem>COS-C(=O)c1ccccc1</chem>	91 ~ 93
50	<chem>SO2-C6H5</chem>	104.5~105.5
51	<chem>SO2-C6H5-CH3</chem>	147.5~149.0
52	<chem>SO2N<CH3>-CH3</chem>	94 ~ 97
53	<chem>CH(CH3)CO-C6H5</chem>	139.0~139.5
54	<chem>CH2CO-N-C6H5</chem>	粉末状固体

一般式(I)で示される本発明の化合物は、1,3-ジメチル-4-(2,4-ジクロロ-3-メチルベンゾイル)-5-ヒドロキシピラゾールあるいはそのアルカリ金属塩、アルカリ土類金属塩、第3級アンモニウム塩と、一般式(II)

(式中、Rは、一般式(I)と同一の意味であり、Xは、フッ素、塩素、臭素及びヨウ素である)で示される有機ハライドとを、反応に不活性な溶媒中、酸結合剤の存在又は不在下で反応させることにより得られる。

1,3-ジメチル-4-(2,4-ジクロロ-3-メチルベンゾイル)-5-ヒドロキシピラゾールを原料とする場合は、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、トリエチルアミン等の第3級アミン類が酸結合剤として使用される。又、1,3-ジメチル-4-(2,4-ジクロロ-3-メチルベンゾイル)-5-ヒドロキシピラゾールのアルカリ金属塩、アルカリ土類金属塩、第3級アンモニウム塩等を原料として使用する場合は、前述の酸結合剤を加えることなく反応に供される。アルカリ金属塩としては、ナトリウム塩、カリウム塩等が、アルカリ土類金属塩として、カルシウム塩等が、第3級アンモニウム塩として、トリエチルアンモニウム塩、トリ-*n*-ブチルアンモニウム塩等が挙げられる。

反応に用いる溶媒としては、本反応に不活性な溶媒であれば使用可能であり、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン等のハログン化炭化水素類、エチルエー

テル、テトラヒドロフラン、ジオキサン等のエーテル類、アセトン、メチルエチルケトン等のケトン類の他、アセトニトリル、N,N-ジメチルホルムアミド、ジメチルスルホキサイド等が使用される。反応温度は室温~150℃の範囲で実施可能であるが、好ましくは50°~100℃の範囲である。反応時間は、使用する原料、反応温度、溶媒種により異なり、必ずしも一定ではないが、通常0.5~10時間の範囲である。酸結合剤の量は、通常、1,3-ジメチル-4-(2,4-ジクロロ-3-メチルベンゾイル)-5-ヒドロキシピラゾールに対し、1~2倍モルの範囲である。一般式(II)で示される有機ハライドの量は、1,3-ジメチル-4-(2,4-ジクロロ-3-メチルベンゾイル)-5-ヒドロキシピラゾールに対し、0.5~5倍モルで実施できるが、通常1~2倍モルの範囲である。

本発明に用いる一般式(II)で示される有機ハライドとして、臭化メチル、ヨウ化メチル、臭化エチル、ヨウ化エチル、臭化*n*-ブロビル、臭化*n*-ブチル、塩化ヘキシル、塩化

ドデシル、クロロアセトニトリル、1-ブロモ-2-クロロエタン、プロモ酢酸エチル、α-クロロ-ブロビオン酸メチル、クロロアセトン、プロモメチル-3-ピリジルケトン、3-エトキシカルボニルアリルブロマイド、3-フェニル-1-クロロブロバン、p-クロロベンジルクロライド、3,4-ジメチルフェナシルブロマイド、p-メトキシフェナシルブロマイド、アセチルクロライド、フェニル酢酸クロライド、ベンゾイルクロライド、2,4-ジクロロベンゾイルクロライド、N,N-ジメチルカルバモイルクロライド、S-エチルクロロホルムート、ベンゼンスルホニルクロライド、N,N-ジメチルスルホニルクロライド等を例示することができる。

本発明の化合物は、反応終了後、溶媒を留去すると粗生成物として得られるが、更に、再結晶、カラムクロマトグラフィー等の通常の精製方法を用いることにより、高純度のものが得られる。

次に本発明の製造例を具体的に説明する。

実施例

1,3-ジメチル-4-(2,4-ジクロロ-3-メチルベンゾイル)-5-(p-ブロモフェナシルオキシ)ビラゾール(化合物番号31)の合成

1,3-ジメチル-4-(2,4-ジクロロ-3-メチルベンゾイル)-5-ヒドロキシビラゾール2.99g(0.01モル)、無水炭酸カリウム2.19(0.015モル)、及びメチルエチルケトン50mlを1時間懸濁させたのち、p-ブロモフェナシルブロマイド2.78g(0.01モル)を20mlのメチルエチルケトンに溶解させた溶液を30分間で滴下した。滴下後、還流下で3時間反応させ、冷却後、無機物を沪過し、溶媒を減圧下に留去し、4.5gの粗生成物を得た。クロロホルムを用いカラムクロマト精製し、3.7gの1,3-ジメチル-4-(2,4-ジクロロ-3-メチルベンゾイル)-5-(p-ブロモフェナシルオキシ)ビラゾールを得た。このものの融点は127.0~128.5℃であつた。(収率74.6モル%)

