5. Szkeleton tervezése

54 – Override

Konzulens:

dr. László Zoltán

Csapattagok:

Kriván Bálint CBVOEN balint@krivan.hu
Jákli Gábor ONZ5G1 j_gab666@hotmail.com
Dévényi Attila L1YRH0 devenyiat@gmail.com
Apagyi Gábor X8SG3T apagyi.gabooo@gmail.com
Péter Tamás Pál N5ZLEG falconsaglevlist@gmail.com

Tartalomjegyzék

5	Szk	keleton tervezése					
	5.1.	Errata	4				
		5.1.1. Objektumleírás: Wire	4				
		5.1.2. Objektumleírás: Node	4				
		5.1.3. Osztályleírás: AbstractComponent	4				
		5.1.4. Osztályleírás: Node	5				
		5.1.5. Osztályleírás: Wire	5				
		5.1.6. Statikus struktúra diagramok	6				
	5.2.	A szkeleton modell valóságos use-case-ei	7				
		5.2.1. Use-case diagram	7				
		5.2.2. Use-case leírások	7				
	5.3.	Architektúra	11				
	5.4.	A szkeleton kezelői felületének terve, dialógusok	11				
	5.5.	Szekvencia diagramok a belső működésre	13				
	5.6.	Napló	18				

Ábrák jegyzéke

5.1.	Statikus struktúra nézet
	A szkeleton modell valóságos use-case-ei
5.3.	Áramkör inicializálása
5.4.	Kapcsoló és Led
5.5.	Kapcsoló, Inverter és Led
5.6.	5-ös

5. Szkeleton tervezése

5.1. Errata

Az előző fejezetben leírtak egy apró részletben megváltoztak. Az elemeket már nem közvetlenül kötjük össze, hanem *vezeték*ek segítségével, melyeket egymással *csomópont*okkal lehet összekötni, ha szükséges. Így javítottuk a láthatósággal kapcsolatosan felmerült problémákat, ehhez fel kellett venni 2 új osztályt (Wire, Node), illetve az AbstractComponent módosítani, ezekhez tartozó objektum és osztályleírások alább olvashatóak, valamint mellékeltük a módosított statikus osztálydiagramot is. (Egy-két egyéb objektumleírás is módosult, de csak azért mert a kiértékelés logikája változott – nem hátulról megyünk, hanem az összes kiértékeli magát, ez nem szükséges a jelen fejezethez, hiszen magától értetődő)

5.1.1. Objektumleírás: Wire

Vezeték, mely az áramköri komponensek ki és bemeneteit köti össze. Egy vezeték egy darab kimenetet és egy darab bemenetet köt össze. A rajta lévő értéket le lehet tőle kérdezni, illetve be lehet azt állítani.

5.1.2. Objektumleírás: Node

Csomópont, mely a bemenetén lévő értéket a kimeneteire adja. Segítségével lehet egy vezetéket "szétágaztatni".

5.1.3. Osztályleírás: AbstractComponent

Absztrakt osztály.

• Felelősség

Egy komponens absztrakt megvalósítása, ebből származik az összes többi komponens. A közös logikát valósítja meg. A gyakran használt feladatokra ad alapértelmezett implementációt (pl. vezetékek bekötése). Tudja magáról, hogy a legutóbbi két kiértékelés között változtak-e a kimenetei.

- Ősosztályok: (nincs)
- Interfészek: (nincs)
- Attribútumok
 - protected Wire[] inputs: Bemeneteire kötött vezetékek.
 - protected Wire[] outputs: Kimeneteire kötött vezetékek.

Metódusok

- addTo(Circuit c): Meghívja az áramkör add(AbstractComponent ac) metódusát.
- void evaluate(): Komponens kimenetein lévő értékek kiszámolása a bemenetek alapján.
- boolean isChanged(): Visszaadja, hogy a legutóbbi két kiértékelés között változtak-e a kimenetek.
- void setInput(int inputPin, Wire wire): Az adott bemeneti lábára rákötjük a megadott vezetéket.
- void setOutput(int outputPin, Wire wire): Az adott kimeneti lábára rákötjük a megadott vezetéket.

5.1.4. Osztályleírás: **Node**

Felelősség

Csomópont, mely a bemenetén lévő értéket a kimeneteire adja. Segítségével lehet egy vezetéket "szétágaztatni".

- Ősosztályok: AbstractComponent.
- Interfészek: (nincs)
- Attribútumok
 - (nincs)
- Metódusok
 - (nincs)

5.1.5. Osztályleírás: Wire

• Felelősség

Vezeték, mely az áramköri komponensek ki és bemeneteit köti össze. Egy vezeték egy darab kimenetet és egy darab bemenetet köt össze. A rajta lévő értéket le lehet tőle kérdezni, illetve be lehet azt állítani.

- Ősosztályok: AbstractComponent.
- Interfészek: (nincs)
- Attribútumok
 - private Value value: Vezetéken lévő érték
- Metódusok
 - Value getValue (): Visszaadja a vezetéken lévő értéket.
 - void settValue (Value v): Beállítja a vezetéken lévő értéket.

5.1.6. Statikus struktúra diagramok

5.1. ábra. Statikus struktúra nézet

5.2. A szkeleton modell valóságos use-case-ei

5.2.1. Use-case diagram

5.2. ábra. A szkeleton modell valóságos use-case-ei

5.2.2. Use-case leírások

Use-case neve	Áramkör inicializálása		
Rövid leírás	Ez a usecase egy áramkör és a hozzá tartozó szimuláció inicializálását mutatja be, hogyan jönnek létre a komponensek és a közöttük lévő összeköttetés. Jelen példa egy Kapcsoló és egy Led összeköttetését prezentálja.		
Aktorok	Tesztelő		
Forgatókönyv	zöttük lévő összeköttetés. Jelen példa egy Kapcsoló és egy I összeköttetését prezentálja.		

Use-case neve	Kapcsoló és Led		
Rövid leírás	Ez a usecase egy olyan áramkör tesztelését mutatja be, amely egy		
	kapcsolóból és rá kötött ledből áll.		
Aktorok	Tesztelő		

Forgatókönyv	 Áramkör és komponensek létrehozása kapcsoló értékének beállítása (megkérdezi a tesztelőt) szimuláció indítása
	 hálózat kiértékelés indítása
	* kapcsoló kiértékelése (állapotának kijelzése)* led kiértékelése (világít/nem világít kijelzése)
	 áramkör változásának vizsgálata stacionárius állapot, szimuláció vége

Use-case neve	Kapcsoló, Inverter és Led		
Rövid leírás	Ez a usecase egy olyan áramkör tesztelését mutatja be, amely egy		
	kapcsolóból egy rá kötött inverterből és egy arra kötött ledből áll.		
Aktorok	Tesztelő		
Forgatókönyv	 Áramkör és komponensek létrehozása kapcsoló értékének beállítása (megkérdezi a tesztelőt) szimuláció indítása 		
	 hálózat kiértékelés indítása (2x) 		
	* kapcsoló kiértékelése (állapotának kijelzése)* inverter kiértékelése		
	 bemenetén lévő érték lekérése 		
	 kimenetére kötött érték kiszámolása és ki- adása 		
	 * led kiértékelése (világít/nem világít kijelzése) 		
	 áramkör változásának vizsgálata 		
	 két lépés alatt stacionárius állapot¹, szimuláció vége 		

Use-case neve	2 Kapcsoló, Vagy kapu és Led
Rövid leírás	Ez a usecase egy olyan áramkör tesztelését mutatja be, amely egy vagy kapura kötött két kapcsolóból és a vagy kapu kimenetére kötött ledből áll.
Aktorok	Tesztelő

¹amennyiben a kapcsoló logikai igazra van állítva, akkor egy lépés is elég, de két lépés biztosan, így ezt ábrázoljuk diagramon 2011. március 13.

5. SZKELETON TERVEZÉSE Override

Forgatókönyv

- Áramkör és komponensek létrehozása
- egyik kapcsoló értékének beállítása (megkérdezi a tesztelőt)
- másik kapcsoló értékének beállítása (megkérdezi a tesztelőt)
- szimuláció indítása
 - hálózat kiértékelés indítása (2x)
 - egyik kapcsoló kiértékelése (állapotának kijelzése)
 - másik kapcsoló kiértékelése (állapotának kijelzése)
 - * VAGY kapu kiértékelése
 - · bemenetén lévő értékek lekérése
 - kimenetére kötött érték kiszámolása és kiadása
 - * led kiértékelése (világít/nem világít kijelzése)
 - áramkör változásának vizsgálata
 - második lépés után stacionárius állapot², szimuláció vége

²amennyiben mindkét kapcsoló 0-ás állapotban van, egy lépés alatt stabil lesz a hálózat, hiszen a VAGY kapu végig hamis állapotot ad ki, itt és a szekvencia diagramon úgy vesszük, mintha legalább az egyik kapcsoló 1-esbe lenne állítva.

Use-case neve	Inverter visszakötve és Led		
Rövid leírás	Ez a usecase egy olyan áramkör tesztelését mutatja be, amely egy inverterből, amelynek kimenete egy ledbe illetve saját bemenetére van kötve. Oszcillálni fog, ezért a szimuláció rövid időn belül leáll.		
Aktorok	Tesztelő		
Forgatókönyv	Áramkör és komponensek létrehozásaszimuláció indítása		
	 hálózat kiértékelés indítása (3x) 		
	 inverter kiértékelése 		
	 bemenetén lévő értékek lekérése kimenetére kötött érték kiszámolása és kiadása 		
	 * csomópont kiértékelése 		
	bemenetén lévő érték lekérésekimeneteire az érték kiadása		
	* led kiértékelése (világít/nem világít kijelzése)		
	 áramkör változásának vizsgálata harmadik lépés után sincs stacionárius állapot, szimuláció vége 		

Use-case neve	Kapcsoló, Vagy kapu visszakötve és Led	
Rövid leírás	Ez a usecase egy olyan áramkör tesztelését mutatja be, amely egy	
	kapcsolóból, egy VAGY kapuból, melynek egyik bemenetére a	
	kapcsoló, másik bemenetére a saját kimenete van kötve és egy	
	ledből, melyre szintén a VAGY kapu kimenetét kötöttük. Ez egy	
	olyan visszakötéses hálózat, mely stabil állapotban van.	
Aktorok	Tesztelő	

5. SZKELETON TERVEZÉSE Override

Forgatókönyv

- Áramkör és komponensek létrehozása
- szimuláció indítása
 - hálózat kiértékelés indítása (2x)
 - * kapcsoló kiértékelése (állapotának kijelzése)
 - * VAGY kapu kiértékelése
 - bemenetén lévő értékek lekérése
 - kimenetére kötött érték kiszámolása és kiadása
 - * csomópont kiértékelése
 - · bemenetén lévő érték lekérése
 - · kimeneteire az érték kiadása
 - * led kiértékelése (világít/nem világít kijelzése)
 - áramkör változásának vizsgálata
 - második lépés után stacionárius állapot³, szimuláció vége

5.3. Architektúra

5.4. A szkeleton kezelői felületének terve, dialógusok

Az általunk elkészített szkeleton egy program váz melynek felülete egy egyszerű konzolos megjelenítési felület, amely alkalmas arra, hogy a use case-k által leírt teszteseteket bemutassuk. Az egyes tesztesetek a neki megfelelő use case sorszámával van elnevezve, így program indítás után egy szám bevitelét követően a kiválasztott teszteset lefut. A teszteset futása közben kiír minden objektumot amin metódust hív, illetve kiírja a metódus nevét a paraméterekkel együtt, majd a visszatérési értéket. Ez azért lehetséges, mert a szkeleton már tartalmazza az elkészítendő szoftver összes fontos osztályát és metódusát, azonban az üzleti logikát még nem. Így könnyen eldönthető, hogy a use case-nek megfelelően viselkedik a program és továbbiakban képes lesz-e megfelelően működni. A tesztelési folyamat során döntési helyzet léphet fel. Ilyenkor a program felteszi a kérdést, majd a kapott válasz alapján folytatja a további futást. Ezzel csökkentjük a tesztesetek számát, anélkül, hogy bizonyos esetek kimaradnának a tesztelés alól. Futás közben megjegyzés formájában a program tájékoztat néhány elem belső állapotáról (például kapcsoló értéke) vagy bizonyos fontosabb lépésekről (például inicializálás). Az elvárás, hogy a szkeleton a szekvenciadiagramok által leírt működést mutassa. A program egyszerű és könnyen összehasonlítható formában írja ki a működését, amelyet könnyen összevethetjük a szekvencia diagrammokkal.

Egy metódushívás és visszatérés esetén kiírt adatok a következők:

- Metódushívás esetén a CALL szót, konstruktorhívás esetén CREATE szót, míg visszatéréskor a RE-TURN szót
- Objektum neve
- A metódus neve és a metódus paramétereinek értékét
- Visszatérés esetén a visszatérési értéket

Egy döntési helyzetben a kiírt adatok a következő:

QUESTION szó

³ha a kapcsoló 0-ás állapotban van, akkor egy lépés alatt bekövetkezik, de érdekesebb szituáció, amikor 1-es állapotban van, ezt ábrázoljuk diagramon

- objektum neve
- Egy rövid magyarázó szöveg
- Szögletes zárójelben a lehetséges válaszok

Formátumra példa:

```
CALL simulation.start()
  CALL circuit.doEvaluationCycle()
    CALL toggle.evaluate()
      QUESTION toggle állapot? [0/1]
1
      CALL toggle_to_inv.setValue(Value.TRUE)
      RETURN
    RETURN
    CALL inv.evaluate()
      CALL toggle_to_inv.getValue()
        QUESTION toggle_to_inv vezetéken lévő érték? [0/1]
1
      RETURN Value.TRUE
      CALL inv_to_led.setValue(Value.FALSE)
      RETURN
    RETURN
    CALL led.evaluate()
      CALL inv_to_led.getValue()
        QUESTION inv_to_led vezetéken lévő érték? [0/1]
0
      RETURN Value.FALSE
      # nem világít
    RETURN
  RETURN
  CALL circuit.doEvaluationCycle()
    CALL toggle.evaluate()
      QUESTION toggle állapot? [0/1]
1
      CALL toggle_to_inv.setValue(Value.TRUE)
      RETURN
    RETURN
    CALL inv.evaluate()
      CALL toggle_to_inv.getValue()
        QUESTION toggle_to_inv vezetéken lévő érték? [0/1]
1
      RETURN Value.TRUE
      CALL inv_to_led.setValue(Value.FALSE)
      RETURN
    RETURN
    CALL led.evaluate()
      CALL inv_to_led.getValue()
        QUESTION inv_to_led vezetéken lévő érték? [0/1]
0
      RETURN Value.FALSE
```

```
# nem világít
    RETURN
  RETURN
  CALL circuit.isChanged()
    CALL toggle.isChanged()
      QUESTION toggle változott? [0/1]
0
    RETURN false
    CALL inv.isChanged()
      QUESTION inv változott? [0/1]
0
    RETURN false
    CALL led.isChanged()
      QUESTION led változott? [0/1]
0
    RETURN false
  RETURN false
RETURN true
```

5.5. Szekvencia diagramok a belső működésre

[A szkeletonban implementált szekvenciadiagramok. Tipikusan egy use-case egy diagram. Ezek megegyezhetnek a korábban specifikált diagramokkal, de az egyes életvonalakat (lifeline) egyértelműen a szkeletonban példányosított objektumokhoz kell tudni kötni. Azt kell megjeleníteni, hogy a szkeletonban létrehozott objektumok egymással hogyan fognak kommunikálni.]

5.3. ábra. Áramkör inicializálása

5.4. ábra. Kapcsoló és Led

5.5. ábra. Kapcsoló, Inverter és Led

5.6. ábra. 5-ös

5.6. Napló

Kezdet	Időtartam	Résztvevők	Leírás
2010.03.12. 14:00	1,5 óra	Kriván B.	Javasolt módosítások elvégzése az előző feje-
			zetben, rövid errate készítése jelen fejezet elé.
2010.03.13.00:00	2 óra	Péter T.	Use-casek leírása szöveges formátumban
2010.03.13.09:30	30 perc	Kriván B.	Use-case diagram megrajzolása
2010.03.13.10:00	2 óra	Kriván B.	Use-casek leírásának LATEX formátumra való
			alakítása, apróbb finomítások
	•••	•••	