PHYS 3038 Optics L9 Propagation of Light Reading Material: Ch4

03

Shengwang Du

2015, the Year of Light

Light in Bulk (Dielectric) Matter

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P} = \varepsilon \vec{E}$$

$$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M} = \frac{\vec{B}}{\mu}$$

$$e_0 \triangleright e = e(w)$$

Dispersion

$$m_0 \triangleright m = m(W)$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{H} = \vec{J}_f + \frac{\partial \vec{D}}{\partial t}$$

$$\nabla \cdot \vec{D} = \rho_f$$

$$\nabla \cdot D = \rho_f$$

$$\nabla \cdot \vec{B} = 0$$

For most material (nonmagnetic)

$$m = m(W) @ m_0$$

Dispersion (Dielectric)

$$v(W) = \frac{1}{\sqrt{e(W)m(W)}} = \frac{c}{n(W)}$$

$$n(W) = \sqrt{\frac{e(W)m(W)}{e_0 m_0}} = \sqrt{K_E(W)K_M(W)}$$

$$K_E(W) = \sqrt{\frac{e(W)}{e_0}}$$

$$K_{E}(W) = \sqrt{\frac{e(W)}{e_{0}}}$$
 Dielectric constant
$$K_{M}(W) = \sqrt{\frac{m(W)}{m_{0}}} @ 1$$

Reflection and Refraction

Reflection and Refraction

Reflection

Reflection

$$\overline{AC} = \overline{BD} \longrightarrow \theta_i = \theta_r$$

Reflection: Ray

$$\theta_i = \theta_r$$

Specular

Diffuse

Refraction

$$n_i \overline{BD} = n_t \overline{AE}$$

 $n_i \overline{AD} \sin \theta_i = n_t \overline{AD} \sin \theta_t$
 $n_i \sin \theta_i = n_t \sin \theta_t$

Refraction

Rays from the submerged portion of the pencil bend on leaving the water as they rise toward the viewer. (Photo by E.H.)

Figure 4.38 Plane waves incident on the boundary between two homogeneous, isotropic, lossless dielectric media.

EM Approach

$$\vec{E}_i = \vec{E}_{i0} \exp[i(\vec{k}_i \cdot \vec{r} - \omega t)]$$

$$\vec{E}_r = \vec{E}_{r0} \exp[i(\vec{k}_r \cdot \vec{r} - \omega t + \varphi_r)]$$

$$\vec{E}_t = \vec{E}_{t0} \exp[i(\vec{k}_t \cdot \vec{r} - \omega t + \varphi_t)]$$

Boundary conditions at the interface: y=b

$$\oint_{C} \vec{E} \cdot d\vec{l} = -\iint_{A} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}$$

$$\iint_{A} \vec{D} \cdot d\vec{S} = \frac{Q_f}{\varepsilon_0} = 0$$

$$\widehat{U}_n \times \left(\vec{E}_i + \vec{E}_r \right) = \widehat{U}_n \times \vec{E}_t$$

$$\widehat{U}_n \cdot \epsilon_i \left(\vec{E}_i + \vec{E}_r \right) = \widehat{U}_n \cdot \epsilon_t \vec{E}_t$$

Figure 4.38 Plane waves incident on the boundary between two homogeneous, isotropic, lossless dielectric media.

Reflection and Refraction Laws

 $\vec{E}_{i} = \vec{E}_{i0} \exp[i(\vec{k}_{i} \cdot \vec{r} - \omega t)]$ $\vec{E}_{r} = \vec{E}_{r0} \exp[i(\vec{k}_{r} \cdot \vec{r} - \omega t + \varphi_{r})]$ $\vec{E}_{t} = \vec{E}_{t0} \exp[i(\vec{k}_{t} \cdot \vec{r} - \omega t + \varphi_{t})]$

$$\begin{split} \widehat{U}_{n} \times \left(\vec{E}_{i} + \vec{E}_{r} \right) |_{y=b} &= \widehat{U}_{n} \times \vec{E}_{t} |_{y=b} \\ \widehat{U}_{n} \times \left(\vec{E}_{i0} \exp[i(\vec{k}_{i} \cdot \vec{r} - \omega t)] + \vec{E}_{r0} \exp[i(\vec{k}_{r} \cdot \vec{r} - \omega t + \varphi_{r})] \right) |_{y=b} \\ &= \widehat{U}_{n} \times \vec{E}_{t0} \exp[i(\vec{k}_{t} \cdot \vec{r} - \omega t + \varphi_{t})] |_{y=b} \\ \left(\vec{k}_{i} \cdot \vec{r} - \omega t \right) |_{y=b} &= \left(\vec{k}_{r} \cdot \vec{r} - \omega t + \varphi_{r} \right) |_{y=b} = \left(\vec{k}_{t} \cdot \vec{r} - \omega t + \varphi_{t} \right) |_{y=b} \\ \left(\vec{k}_{i} \cdot \vec{r} \right) |_{y=b} &= \left(\vec{k}_{r} \cdot \vec{r} + \varphi_{r} \right) |_{y=b} = \left(\vec{k}_{t} \cdot \vec{r} + \varphi_{t} \right) |_{y=b} \\ n_{i} k_{0} x \sin \theta_{i} + n_{i} k_{0} b \cos \theta_{i} = n_{i} k_{0} x \sin \theta_{r} - n_{i} k_{0} b \cos \theta_{r} + \varphi_{r} = n_{t} k_{0} x \sin \theta_{t} + n_{t} k_{0} b \cos \theta_{t} + \varphi_{t} \end{split}$$

Reflection and Refraction Laws

 $n_i k_0 x \sin \theta_i = n_i k_0 x \sin \theta_r = n_t k_0 x \sin \theta_t$

$$\theta_i = \theta_r$$

 $n_i \sin \theta_i = n_t \sin \theta_t$

Figure 4.38 Plane waves incident on the boundary between two homogeneous, isotropic, lossless dielectric media.

 $n_i k_0 b \cos \theta_i = -n_i k_0 b \cos \theta_r + \varphi_r = n_t k_0 b \cos \theta_t + \varphi_t$

Fresnel Equations: Amplitudes

$$\widehat{U}_n \times (\overrightarrow{E}_i + \overrightarrow{E}_r)|_{y=b} = \widehat{U}_n \times \overrightarrow{E}_t|_{y=b}$$

$$\widehat{U}_n \cdot \epsilon_i \left(\vec{E}_i + \vec{E}_r \right) |_{y=b} = \widehat{U}_n \cdot \epsilon_t \vec{E}_t |_{y=b}$$

$$\widehat{U}_n \times \left(\vec{E}_{i0} + \vec{E}_{r0} \right) = \widehat{U}_n \times \vec{E}_{t0}$$

$$\widehat{U}_n \cdot \epsilon_i \left(\vec{E}_{i0} + \vec{E}_{r0} \right) = \widehat{U}_n \cdot \epsilon_t \vec{E}_{t0}$$

Case 1: E perpendicular to the plane-of-incidence

$$\oint_{C} \vec{H} \cdot d\vec{l} = \iint_{A} \left(\vec{J}_{f} + \frac{\partial \vec{D}}{\partial t} \right) \cdot d\vec{S}$$

$$\widehat{U}_n \times \left(\overrightarrow{H}_{i0} + \overrightarrow{H}_{r0} \right) = \widehat{U}_n \times \overrightarrow{H}_{t0}$$

$$\widehat{U}_n \times \frac{1}{\mu_i} \left(\vec{B}_{i0} + \vec{B}_{r0} \right) = \frac{1}{\mu_t} \widehat{U}_n \times \vec{B}_{t0}$$

$$\widehat{U}_n \times \left(\vec{E}_{i0} + \vec{E}_{r0} \right) = \widehat{U}_n \times \vec{E}_{t0}$$

$$E_{i0} + E_{r0} = E_{t0}$$

$$-\frac{1}{\mu_i} B_{i0} \cos \theta_i + \frac{1}{\mu_i} B_{r0} \cos \theta_r = -\frac{1}{\mu_t} B_{r0} \cos \theta_t$$

$$-\frac{E_{i0}}{\mu_i v_i} \cos \theta_i + \frac{E_{r0}}{\mu_i v_i} \cos \theta_i = -\frac{E_{t0}}{\mu_t v_t} \cos \theta_t$$

$$\frac{1}{\mu_{i}v_{i}}(E_{i0} - E_{r0})\cos\theta_{i} = \frac{1}{\mu_{t}v_{t}}E_{t0}\cos\theta_{t}$$

$$\frac{n_i}{\mu_i}(E_{i0} - E_{r0})\cos\theta_i = \frac{n_t}{\mu_t}E_{t0}\cos\theta_t$$

Case 1: E perpendicular to the plane-of-incidence

 $\mu_i \approx \mu_t \approx \mu_0$

$$E_{i0} + E_{r0} = E_{t0}$$

 $\frac{n_i}{\mu_i}(E_{i0} - E_{r0})\cos\theta_i = \frac{n_t}{\mu_t}E_{t0}\cos\theta_t$

$$\left(\frac{E_{0r}}{E_{0i}}\right)_{\perp} = \frac{\frac{n_i}{\mu_i}\cos\theta_i - \frac{n_t}{\mu_t}\cos\theta_t}{\frac{n_i}{\mu_i}\cos\theta_i + \frac{n_t}{\mu_t}\cos\theta_t}$$
(4.32)

and

$$\left(\frac{E_{0t}}{E_{0i}}\right)_{\perp} = \frac{2\frac{n_i}{\mu_i}\cos\theta_i}{\frac{n_i}{\mu_i}\cos\theta_i + \frac{n_t}{\mu_t}\cos\theta_t}$$
(4.33)

$$r_{\perp} \equiv \left(\frac{E_{0r}}{E_{0i}}\right)_{\perp} = \frac{n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t} \tag{4.34}$$

and

$$t_{\perp} \equiv \left(\frac{E_{0t}}{E_{0i}}\right)_{\perp} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_i + n_t \cos \theta_t} \tag{4.35}$$

Case 2: E parallel to the plane-of-incidence

$$r_{\parallel} = \frac{n_t \cos \theta_i - n_i \cos \theta_t}{n_i \cos \theta_t + n_t \cos \theta_i} \tag{4.40}$$

$$t_{\parallel} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_t + n_t \cos \theta_i} \tag{4.41}$$

Snell's Laws and Fresnel Eqs.

03

$$\theta_i = \theta_r$$

$$n_i \sin \theta_i = n_t \sin \theta_t$$

$$r_{\perp} = -\frac{\sin(\theta_i - \theta_t)}{\sin(\theta_i + \theta_t)} \tag{4.42}$$

$$r_{\parallel} = + \frac{\tan (\theta_i - \theta_t)}{\tan (\theta_i + \theta_t)} \tag{4.43}$$

$$t_{\perp} = + \frac{2 \sin \theta_t \cos \theta_i}{\sin (\theta_i + \theta_t)} \tag{4.44}$$

$$t_{\parallel} = + \frac{2 \sin \theta_t \cos \theta_i}{\sin (\theta_i + \theta_t) \cos (\theta_i - \theta_t)}$$
(4.45)

Amplitude Coefficients

$$r_{\perp} = -\frac{\sin(\theta_i - \theta_t)}{\sin(\theta_i + \theta_t)} \tag{4.42}$$

$$r_{\parallel} = + \frac{\tan (\theta_i - \theta_t)}{\tan (\theta_i + \theta_t)} \tag{4.43}$$

$$t_{\perp} = + \frac{2 \sin \theta_t \cos \theta_i}{\sin (\theta_i + \theta_t)} \tag{4.44}$$

$$t_{\parallel} = + \frac{2 \sin \theta_t \cos \theta_i}{\sin (\theta_i + \theta_t) \cos (\theta_i - \theta_t)}$$
(4.45)

$$n_i < n_t$$
 $\theta_i > \theta_t$ $r_{\perp} < 0$ $r_{\parallel} > 0$?

$$\theta_i = 0$$

$$r_{\perp} = -r_{||} = \frac{n_i - n_t}{n_i + n_t}$$

Reflectance & Transmittance

$$R \equiv \frac{I_r A \cos \theta_r}{I_i A \cos \theta_i} = \frac{I_r}{I_i}$$

$$R = \left(\frac{E_{0r}}{E_{0i}}\right)^2 = r^2$$

$$T \equiv \frac{I_t \cos \theta_t}{I_i \cos \theta_i}$$

$$R + T = 1$$

$$T = \frac{n_t \cos \theta_t}{n_t \cos \theta_i} \left(\frac{E_{0t}}{E_{0i}}\right)^2 = \left(\frac{n_t \cos \theta_t}{n_i \cos \theta_i}\right) t^2$$

Reflectance & Transmittance

$$n_{ti} = \frac{n_t}{n_i}$$

4.7 Total Internal Reflection

 $n_i \sin \theta_i = n_t \sin \theta_t$

 $\sin \theta_t = \frac{n_i}{n_t} \sin \theta_i$

Total Internal reflection

4.7.1 Evanescent Wave

