การทดลองที่ A

การทำงานของแคชชนิด Direct Mapped
วิชา Computer Organization and Assembly Language
ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์
สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

ใช้เว็บเบราส์เซอร์เปิดใช้งานซิมูเลเตอร์ ชื่อ Para Cache

https://www3.ntu.edu.sg/home/smitha/ParaCache/Paracache/start.html

เอกสารอธิบาย

https://www3.ntu.edu.sg/home/smitha/ParaCache/Paracache/kb.pdf

ทำการทดลอง ตามขั้นตอนต่อไปนี้

1. การทดลอง Direct Mapped Cache

กดเมนู เลือก Direct Mapped Cache ตั้งขนาดและ Write Policy ของแคช ดังรูป

2. กด Submit แล้วสังเกตรายละเอียดของแคชที่อยู่ด้านขวา

เลื่อนหน้าต่างลงไปด้านล่างสุดของ Memory Block โปรดสังเกตหมายเลขบล็อก (B.) มีค่าเท่ากับ 0 ถึง F และหมายเลขเวิร์ด (W.) เท่ากับ 0 เสมอ

เพราะเหตุใด

เมื่องจาก B. (Block) ขั้นอยู่กับ Memory Size ผละ W. (Word) ขั้นอยู่กับ Offset bits

3. การทดลองคำสั่ง Load Instruction ที่หมายเลขแอดเดรสที่ต้องการ หรือ ให้โปรแกรมสุ่มหมายเลขแอดเดรสให้ กรอก 4 ลงในหมายเลขฐานสิบหกที่มีอยู่ในกล่องข้อความด้านขวา กรอกหมายเลข 7, 7, c, 4, 0, 4, 3, 5, 5 ในกล่องข้อความดังรูป

อธิบาย information ในรูปว่า Tag, Index และ Offset สัมพันธ์กับ Cache Size และ Memory Size ที่กรอก

Cache Size Mundo index

Memory size มีผลต่อ Instruction Length ซึ่งจะนำ cache และ memory มค์น ณหา Tag 4. กดปุ่ม Submit หมายเลข 4 ที่กรอก โปรดสังเกตและอ่านกล่องข้อความที่เป็นสีชมพู อธิบายตามความเข้าใจ

นภาษเลบ 4 ระกูกเปลี่ยนจาก Hex เป็น Binary แล้วแบ่งใน tag, index, offset

5. กดปุ่ม Next และสังเกตกล่องข้อความที่เปลี่ยนเป็นสีเหลืองว่าเกี่ยวข้องกับหมายเลขที่ Submit ไปก่อนหน้านี้อย่างไร

อธิบายความสัมพันธ์ระหว่าง Instruction Breakdown 01 00 และหมายเลข 4

0100 คือเลขุานสอง ซึ่งในเลขุานาด จะได้เฟากับ + ซึ่งแบ่งออกเป็น tag = 10 เผละ index = 00

รหัสนักศึกษา

6. กดปุ่ม Next และสังเกตกล่องข้อความที่เปลี่ยนเป็นสีเขียว

→)In	nstructi	on Bre	eak	down	
	01	00		0	
	2 bit	2 bit		0 bit	
=	Cache '	Table			
	Index	Valid		Tag	
	0	0		-	
	1	0		-	
	2	0		-	
	3	0		-	

อธิบายรูปนี้ และบิต Valid จึงเป็น 0

ให่หี value เก็บไว้ใน Cache

7. กดปุ่ม Next และสังเกตกล่องข้อความที่เปลี่ยนเป็นน้ำเงิน และ AND เกตว่าทำกระบวนการอะไรกัน

ทำกรกราสงข 2 bit แรก

อธิบายว่า Tag จึงมีสัญลักษณ์ '-'

ให่หี value เก็บไว้ใน Cache

8. กดปุ่ม Next ต่อเพื่อดำเนินการต่อ โปรดสังเกตข้อความบน AND เกต

	00	0
2 bit	2 bit	0 bit
_		
■ Cache	Table	
Index	Valid	Tag
0	0	= 1
1	0	-
2	0	-
3	0	-

กดปุ่ม Next เพื่อดำเนินการต่อ โปรดสังเกต Cache Table ว่ามีการเปลี่ยนแปลงอย่างไร

Ⅲ Cache Table

Index	Valid	Tag	Data (Hex)	Dirty Bit
0	1	01	BLOCK 4 WORD 0 - 0	0
1	0	-	0	0
2	0	-	0	0
3	0	-	0	0

อธิบายบิต Valid Tag และ Data (Hex) จึงเปลี่ยนเป็นรูปนี้

Valid Tag บ่าบอกว่า Index ที่ 0 มีค่า Value เก็บอยู่แล้ว , Data เป็นการเก็บค่ามากา Block ที่ 4 กก Main memory 9. กดปุ่ม Next เพื่อดำเนินการต่อ โปรดสังเกตข้อมูลสถิติสีเหลืองด้านล่าง

Statistics
Hit Rate: 0%
Miss Rate: 100%
List of Previous Instructions:
• Load 4 [Miss]

อธิบายข้อมูลที่ได้

สาใน cache ไม่มีตัวในนท์ศาวกับที่ request เลยนรือ miss ทั้งนมก หลังจากนี้ งจะเก็บฝา Value ใน Cache

- 10. โปรดสังเกตหมายเลขแอดเดรสถัดไปจะย้ายมาในกล่องข้อความด้านขวาบนของรูปนี้ กดปุ่ม Submit
- 11. กดปุ่ม Fast Forward เพื่อเร่งการทำงานของคำสั่งให้รวดเร็วขึ้น โปรดสังเกตการเปลี่ยนแปลงใน Cache Table และ Statistics หลัง จากนั้น

Statistics

Hit Rate 0%

Miss Rate: 100%

List of Previous Instructions:

- · Load 4 [Miss]
- · Load 7 [Miss]

12. กด Submit และ Fast Forward เรื่อยๆ จนไม่เหลือหมายเลขแอดเดรส โปรดสังเกตการเปลี่ยนแปลงใน Statistics หลังจากนั้น

Instruction	
Load v (in hex)#
List of next 10 Ins	structions
Gen. Random	Submit
Information The cycle has b Please submit and	•
Next	Fast Forward

อธิบายข้อมูลที่ได้ว่า Hit Rate และ Miss Rate คำนวณอย่างไร

Hit rate คือ กานานครั้งที่ Hit , Miss Rate คือ กำนานครั้งที่ Miss = 1- His rate กำนานทั้งมูล request ทั้งนมก

นักศึกษาควรจะได้ผลการทดลองใน Cache Table ตรงกับรูปนี้

Ⅲ Cache Table

Index	Valid	Tag	Data (Hex)
0	1	01	BLOCK 4 WORD 0 - 0
1	1	01	BLOCK 5 WORD 0 - 0
2	0	-	0
3	1	00	BLOCK 3 WORD 0 - 0

13. กรอกหมายเลขบล็อกที่แคชมีอยู่ เพื่อจงใจให้เกิด แคชฮิต ดังรูป

Load v (in hex)#	
3, 4, 5	
Gen. Random	Submit

กด Submit และ Next จนได้เหตุการณ์นี้

โปรดสังเกตคอลัมน์ Valid และ Tag ว่าตรงกันหรือไม่ ทรงก**้**ง

14. กดปุ่ม Submit หมายเลขถัดไปจนหมด และแนบรูปตาราง Statistics ว่ามีการเปลี่ยนแปลงหรือไม่ อย่างไร

.. dn Hit rate เปลี่ยนแปลงจาก 20 7 เป็น 38 7 ... dn Miss rate เปลี่ยนแปลงจาก 80 % เป็น 62 %

nstruction	Broakdov		RECT MAPPED CACHE	
01	01	0	■■ Memory Block B.5 W.0	
2 bit	2 bit	0 bit	B. 6 W. 0 B. 7 W. 0	
			B. 8 W. 0 B. 9 W. 0	
			8.AW 0	
Cache Ta	able			
Cache Ta	able Valid	Tag		Dirty Bit
		Tag 01	R.AW.O	Dirty Bit
Index		-	8 A.W. n. Data (Hex)	,
Index		01	Data (Hex) BLOCK 4 WORD 0 - 0	0

กิจกรรมท้ายการทดลอง

- 1. ศึกษาการทำงานของ Load Instruction เช่นเดิม
- 11) O ตั้งขนาดของแคชเท่ากับ 8 และ Memory Size เท่ากับ 16 OFFSET = 0 บิต แล้วเปรียบเทียบ
- 12) o ตั้งขนาดของแคชเท่ากับ 4 และ Memory Size เท่ากับ 16 OFFSET = 1 บิต แล้วเปรียบเทียบ
- ศึกษาการทำงานของ Load Instruction เช่นเดิม แต่ตั้ง Write Policy เป็น Write Through และ Write Around
 - o ตั้งขนาดของแคชเท่ากับ 4 และ Memory Size เท่ากับ 16 OFFSET = 0 บิต
 - ตั้งขนาดของแคชเท่ากับ 8 และ Memory Size เท่ากับ 16 OFFSET = 0 บิต
 - o ตั้งขนาดของแคชเท่ากับ 4 และ Memory Size เท่ากับ 16 OFFSET = 1 บิต
- 3. เปลี่ยน Instruction เป็น Store เพื่อศึกษาการทำงานของ Dirty Bit โดยตั้ง Write Policy เป็น Write Back และ Write on Allocate
 - ตั้งขนาดของแคชเท่ากับ 4 และ Memory Size เท่ากับ 16 OFFSET = 0 บิต
 - o ตั้งขนาดของแคชเท่ากับ 8 และ Memory Size เท่ากับ 16 OFFSET = 0 บิต
 - o ตั้งขนาดของแคชเท่ากับ 4 และ Memory Size เท่ากับ 16 OFFSET = 1 บิต
- 4. เปลี่ยน Instruction เป็น Store เพื่อศึกษาการทำงานของ Dirty Bit โดยตั้ง Write Policy เป็น Write Through และ Write Around
 - o ตั้งขนาดของแคชเท่ากับ 4 และ Memory Size เท่ากับ 16 OFFSET = 0 บิต
 - ตั้งขนาดของแคชเท่ากับ 8 และ Memory Size เท่ากับ 16 OFFSET = 0 บิต
 - ตั้งขนาดของแคชเท่ากับ 4 และ Memory Size เท่ากับ 16 OFFSET = 1 บิต

() ต่างกันที่ ms ทั้งฝา Cache แกะ Memory Size ชึ่ง Cache Table มีบทาเล้าลงและเก็บ cache Yก็ปอยลง

