- 1. Consider the function f3 where f3(0)=1 and f3(1)=0.
 - a. What would be an oracle associated with this function?
 - b. Build the internal circuit of the oracle. (There is no single way to do this.)
 - c. What is the matrix associated with this quantum operation? (Textbook mentions it, but it is incorrect!)

Answer:

f3(0)=1; f3(1)=0; f3(x)=!x
$$a \oplus f3(x) = a \oplus (!x)$$

a)

b)

c)

ax	00	01	10	11
00	0	0	1	0
01	0	1	0	0
10	1	0	0	0
11	0	0	0	1

3. Let's now consider a function that receives two bits as input and outputs a single bit. It works as follows:

$$f(00) = f(01) = 1$$
 and $f(10) = f(11) = 0$.

- a. Is this function balanced, constant, or none?
- b. What would be an oracle associated with this function?
- c. What is the matrix associated with this quantum operation? Hint: It should be a 8*8 matrix.

Answer:

$$f(00) = f(01) = 1$$
 $f(10) = f(11) = 0$ $f(x2,x1) = !x2$

a) Balanced.

b)

c)

a x2 x1	000	001	010	011	100	101	110	111
000	0	0	0	0	1	0	0	0
001	0	0	0	0	0	1	0	0
010	0	0	1	0	0	0	0	0
011	0	0	0	1	0	0	0	0
100	1	0	0	0	0	0	0	0
101	0	1	0	0	0		0	0
110	0	0	0	0	0	0	1	0
111	0	0	0	0	0	0	0	1