1.1 MODEL

We do not want to build our analysis on one particular computer, programming language, compiler, etc.

no abstract computational model:

- (1) standard simple instructions, e.g.,
 - · simple arithmetic (addition, multiplication, ...)
 - · companisons (ali) > a[j])
 - · assignments

take (1 unit) of time to process.

(2) unbounded memory available

and unrealistic model, but reasonable for comparison of algorithms.

often the size of the input influences the number than other aspects of the input.

leg when finding the maximum in an un sorted array of N district integers, the length N of the array is what matters most.)

Depuition 1. For a given algorithm X, we denote

- · by Targ (N) the average-case running time used by A on inputs of size N.
- · by Tworst (N) the worst case -11-
- · by Tbest (N) the best ase -11-

	Example 3	2.				
	Problem:	refrieve dat	a stored un	der key k	ih aa a	nsorted
		table of		Y		
		sequential				
	Tworst (N		for som	e constant	f c	
	Thest CN	1) = c		-11 -		
	Tavg (N)	$=\frac{N}{2}\cdot c$		-11 -		
			N . 2		for sou	re constant c'
	Henry to a	ompare two	algorthmi	A and F	4 2	
					2 .	
	Example	2 4. Assni	ne you ku	on the follow	lowing i	worst-time
			ing time va			
	N	Twenst (N)	Tworst (N)			
	1	1,000	2	•		
	5	5,000	30			
	10	10,000	1,000			
	20	20,000	1, 000, 000		TAI	+ (N) ~1,000 N
	1		/A2		Tworst	$(N) \approx 1,000 N$ $(N) \approx 2^{N}$
	20,000-			A	1	A, is much
	15,000-		9			A, is much work efficient than Az for large hyports.
+++	5,000 -					wy ye hyporo.

~ str	dy the	efficien	cy of	algonto	ams for	growing	iliput size /
1.2. MA	THE MA	TICAL	BACK	SROUNI)		
						0 6 1	
We saw to	at 12 (N) = 2	asya	4p10-11 Ca	ug g	rows faste	9
than T ((N) = 1,00	20·N.					
Even 0					5 H 01	9 ⁹⁹ . N	1177
) liver) -
	expone	utial gr	owth			livea	r growth
	•						
growth 1	rate clas	ises e	.9.,				
V							
$c \cdot 1$		<u> </u>	onstau				
c·log	(N)		loganitu	mic			
			U				
c. TN							
c N			linear				
						15 0.01	(11)
c. N.L.	og CN					N- log C	J0 /
c.N	2		quadro	atic		N·N	
CN			cubic				
			CUSIC		7		
(c · N	k 22		polyn	onial			
c· 2'	U		exporde				
			exposition	,,,,,,			
c · 3'	V						
c. 4	N						
$ N = \{c$	0, 1, 2, .	} de	notes 7	the set	of nati	ral aunt	ress.
R ²⁰ de							
μ \	100	_		V			

Dépurtion 2. Let $T: IN \rightarrow IR^{\geq 0}$, $f: IN \rightarrow IR^{\geq 0}$ be any two functions.

(a) T(N) = O(f(N)) if and only if

there are positive constants c and n_o such that $T(N) \leq c \cdot f(N)$ for all $N \geq n_o$.

for example 1,000 N = $O(2^N)$ -> $n_0 \approx 14$ 1,000 N = O(N) -> $c \geq 1,000$ $1,000 N \leq c \cdot N$

T(N) is asymptotically upper-bounded by for)