INFORME DE LECTURA

Curso: ST0247 - ESTRUCTURA DATOS Y ALGORÍTMOS 2		
Profesor: Mauricio Toro Bermúdez		
Grupo:	032	
Nombre del estudiante:	Daniel Rendon Montaño	
	Juan Daniel Morales Arias	
	Brayam Cristyam Sepulveda Vasquez	
Código del estudiante:	201510145010	
	201519101010	
	201510077010	

Referencia del artículo:			
Nombre de los autores R.C.T. Lee – S.S. T	Seng – R.C. Chang – Y.T. Tsai		
Nombre del artículo Introducción al dis	Introducción al diseño y análisis de algoritmos		
Libro _X_ Revista Internet Otro			
Editorial, Ciudad, Fecha, Núm pág	McGrawHill, Pag 71 - 115		

Tema del artículo:

El método codicioso (Greedy Algorithms)

¿Cuánto tiempo (en minutos) le dedicó a la lectura del artículo?:

90 minutos.

Ideas clave (mínimo 5, sustentadas):

- 1. Los algoritmos voraces sirven para resolver problemas de optimización basados en una secuencia de decisiones. Se basa en elegir la opción optima local, esperando llegar a la solución óptima global
- 2. Para que los problemas sean solucionables mediante los algoritmos voraces deben cumplir con el Principio de optimalidad de Richard Bellman, el cual dice "dada una secuencia óptima de decisiones, toda subsecuencia de ella es, a su vez, óptima". Es decir, que estamos seguros que tomando cada optima decisión elemental, podemos llegar a la solución óptima general.
- 3. El algoritmo de Kruskal es $O(m \log m)$, en el peor de los casos donde m sea n^2 la complejidad será $O(n^2 \log n)$. El algoritmo de Prim tiene complejidad de $O(n^2)$ tanto para el peor de los casos como en caso promedio. Es decir, si el número de aristas del grafo es pequeño, es preferible usar el método de Kruskal, pero en el peor de los casos, el algoritmo de Kruskal se vuelve más lento que el de Prim, por lo cual se recomienda usar el segundo.
- 4. El algoritmo de Dijkstra nos sirve para encontrar la ruta más corta desde un origen único y lo realiza, en el peor de los casos con n^2 aristas, en una complejidad temporal de $O(n^2)$. Sin embargo, Dijkstra es óptimo en el sentido de los pasos e instrucciones.
- 5. El algoritmo voraz para mezclar dos listas ordenadas es O(n log n). Se realiza haciendo un árbol optimo que representa la mezcla de varias listas, donde se mezclan las dos listas de menor elementos sucesivamente hasta llegar a una sola lista.

INFORME DE LECTURA

Conclusiones propias – qué aprendió del artículo

- Los algoritmos voraces solo son capaces de resolver algunos problemas de optimización, pero no todos. Aunque la solución óptima local dada por el algoritmo no sea la solución óptima global, esta solución seguirá siendo recomendable porque al menos produce una solución aceptable al problema.
- Los algoritmos voraces no pueden mirar hacia delante. Es decir, "prevenir" lo que viene y usar esto para calcular cual de todas es la mejor solución, en lugar de solo arriesgarse por la mejor en cada movimiento. Esto causa que en muchos casos falle.
- La mezcla de listas es utilizada en el código de Huffman para codificar y comprimir datos, buscando minimizar los costos de transmisión y codificación.

¿Cuánto tiempo (en minutos) le dedicó al análisis del artículo?:

90 minutos.