

WEEK 9 HOMEWORK

INSTRUCTIONS

- Every learner should submit his/her own homework solutions. However, you <u>are</u> allowed to
 discuss the homework with each other (in fact, I encourage you to form groups and/or use the
 forums) but everyone must submit his/her own solution; you may <u>not</u> copy someone else's
 solution.
- The homework will be peer-graded. In analytics modeling, there are often lots of different approaches that work well, and I want you to see not just your own, but also others.
- The homework grading scale reflects the fact that the primary purpose of homework is learning:

Rating	Meaning	Point value (out of 100)
4	All correct (perhaps except a	100
	few details) with a deeper	
	solution than expected	
3	Most or all correct	90
2	Not correct, but a reasonable	75
	attempt	
1	Not correct, insufficient effort	50
0	Not submitted	0

Question 12.1

Describe a situation or problem from your job, everyday life, current events, etc., for which a design of experiments approach would be appropriate.

Question 12.2

To determine the value of 10 different yes/no features to the market value of a house (large yard, solar roof, etc.), a real estate agent plans to survey 50 potential buyers, showing a fictitious house with different combinations of features. To reduce the survey size, the agent wants to show just 16 fictitious houses. Use R's FrF2 function (in the FrF2 package) to find a fractional factorial design for this experiment: what set of features should each of the 16 fictitious houses? Note: the output of FrF2 is "1" (include) or "-1" (don't include) for each feature.

Question 13.1

For each of the following distributions, give an example of data that you would expect to follow this distribution (besides the examples already discussed in class).

- a. Binomial
- b. Geometric
- c. Poisson
- d. Exponential
- e. Weibull

Question 13.2

In this problem you, can simulate a simplified airport security system at a busy airport. Passengers arrive according to a Poisson distribution with λ_1 = 5 per minute (i.e., mean interarrival rate μ_1 = 0.2 minutes) to the ID/boarding-pass check queue, where there are several servers who each have exponential service time with mean rate μ_2 = 0.75 minutes. [Hint: model them as one block that has more than one resource.] After that, the passengers are assigned to the shortest of the several personal-check queues, where they go through the personal scanner (time is uniformly distributed between 0.5 minutes and 1 minute).

Use the Arena software (PC users) or Python with SimPy (PC or Mac users) to build a simulation of the system, and then vary the number of ID/boarding-pass checkers and personal-check queues to determine how many are needed to keep average wait times below 15 minutes. [If you're using SimPy, or if you have access to a non-student version of Arena, you can use $\lambda_1 = 50$ to simulate a busier airport.]