

Machine Learning Model

Machine Learning 2023-24
UML Book Chapter 2
Slides P. Zanuttigh (some material F. Vandin)

Friday: Lecture in Rn

Lectures:

- Tue 16:30 -18:00 Room Ae
- Fri 12:30 14:00 lecture or lab
- Next Friday the lecture will be in Room Rn (Vallisneri building)

Machine Learning

- Machine learning (ML) is a set of methods that give computer systems the ability to "learn" from (training) data to make predictions about novel data samples, without being explicitly programmed for the considered task
- ML techniques: data driven methods
- Training data can be provided with or without corresponding correct predictions (labels)
 - Unsupervised learning: no labels are provided for training data
 - Supervised learning: training data with labels

Supervised Learning

Training data with labels

In most of the course we will focus on supervised learning

Unsupervised Learning

Data to be analyzed

ML model (training: estimate parameters)

Supervised Learning: Data Representation

The machine learning algorithm has access to:

- 1. Domain set (or *instance space*) \mathcal{X} : set of all possible objects to make predictions about
 - $x \in \mathcal{X}$ is a domain point or instance
 - It is typically (but not always) represented by a vector of numbers (*features*)
- 2. Label set \mathcal{Y} : set of possible labels
 - E.g., simplest case: binary classification $\mathcal{Y} = \{0,1\}$
- 3. Training set $S = ((x_1, y_1), ..., (x_m, y_m))$: finite sequence of *labeled* $(\rightarrow supervised learning)$ domain points (in $\mathcal{X}x\mathcal{Y}$)
 - It is the input of the ML algorithm!

Make Predictions on Data

- 4. Prediction rule $h: \mathcal{X} \to \mathcal{Y}$ (sometimes called also \hat{f})
 - The learner's output, called also predictor, hypothesis or classifier
 - A(S): prediction rule produced by ML alg. A when training set S is given to it
- 5. Data-generation model: instances are
 - Generated by a probability distribution ${\mathcal D}$ over ${\mathcal X}$ (NOT KNOWN BY THE ML ALGORITHM)
 - Labeled according to a function f (NOT KNOWN BY THE ML ALGORITHM)
 - Training set: $\forall x_i \in S$, sample x_i according to \mathcal{D} then label it as $y_i = f(x_i)$
- 6. Measure of success = error of the classifier = probability it does not predict the correct label on a random data point generated by \mathcal{D}

Notes:

Data Generating Distribution

$$x \in \mathcal{X} = R^+$$

 $A: 170 < x < 180$
 $D(A) = D(\{x: 170 < x < 180\}) = 0.3$

$$\pi(x) = \begin{cases} 1: & 170 < x < 180 \\ 0: & otherwise \end{cases}$$

- \square Samples $x \in X$ are produced by a probability distribution $D: x \sim D$
- \Box Consider a domain subset $A \subset X$:
 - A: event, expressed by $\pi: X \to \{0,1\}$, i.e., $A = \{x \in X: \pi(x) = 1\}$
 - O(A): probability of observing a point $x \in A$ (it is a number in the 0-1 range)
 - We get that $P_{x \sim D}[\pi(x) = 1] = D(A)$

Measure of Success: Loss Function

Recall:

- \square Assume a domain subset $A \subseteq X$
- \triangle A: event, expressed by $\pi: X \to \{0,1\}$, i.e., $A = \{x \in X: \pi(x) = 1\}$
- D(A): probability of observing a point $X \in A$
- \square We get that $P_{x \sim D}[\pi(x)] = D(A)$

Error of prediction rule in classification problems $h: X \to Y$

$$L_{D,f}(h) \stackrel{\text{def}}{=} P_{x \sim D}[h(x) \neq f(x)] = D(x: \ h(x) \neq f(x))$$
Predicted label
correct label

Notes:

- \Box $L_{D,f}(h)$: loss depends on distribution D and labelling function f
- $\Box L_{D,f}(h)$ has many different names: generalization error, true error, true risk, loss
- \Box Often f is omitted: $L_D(h)$

Empirical Risk Minimization

- lacktriangle Learner outputs $h_{S}: \mathcal{X} \rightarrow \mathcal{Y}$ (note the dependency on S!)
- ullet Goal: find h_S which minimizes the generalization error $L_{D,f}(h)$
 - o But $L_{D,f}(h)$ is unknown!
- What about considering the error on the training data?
- Training error: $L_S(h) \triangleq \frac{|\{i: h(x_i) \neq y_i, 1 \leq i \leq m\}|}{m} = \frac{\text{# wrong predictions}}{\text{# training samples}}$
 - Assuming a classification problem and 0-1 loss, otherwise different definition
 - also called empirical error or empirical risk
- Empirical Risk Minimization (ERM) : produce in output predictor h minimizing $L_s(h)$

Is training error a good measure of true error?

Assume following *D*:

- Instance x is taken uniformly at random in the square
- f: label is 0 if x in upper side, 1 if lower side (red vs blue)
- Area of the two sides is the same

Is training error a good measure of true error?

Training set: samples in the figure

Consider this predictor:

$$h_s(x) = \begin{cases} 0 & if \ x \ in \ left \ side \\ 1 & if \ x \ in \ right \ side \end{cases}$$

- $L_S(h_S) = 0$
- Minimizes training loss (i.e., empirical risk)!
- Is it a good predictor?

Is training error a good measure?

•
$$L_{D,f}(h_S) = \frac{1}{2}$$

- Same loss as random guess
- Poor performances: overfitting on training data!
- In this case very good performances on training set an poor performances in general
- When does ERM lead to good performances w.r.t. generalization error?

Hypothesis Class

- ☐ Apply ERM over a restricted set of possible hypotheses
 - \mathcal{H} = hypothesis class
 - Each $h \in \mathcal{H}$ is a function $h: \mathcal{X} \to \mathcal{Y}$
 - Restricting to a set of hypothesis → making assumptions (priors) on the problem at hand
- \square Which hypothesis classes \mathcal{H} do not lead to overfitting?

Assumptions

- 1. Assume \mathcal{H} is a finite hypothesis class, i.e., $\mathcal{H} < \infty$
- 2. Let h_s be the output of $ERM_{\mathcal{H}}(S)$, i.e., $h_s \in \underset{h \in \mathcal{H}}{\operatorname{argmin}} L_s(h)$

Two further assumptions:

- 3. Realizability: there exist $h^* \in \mathcal{H}$ such that $L_{D,f}(h) = 0$
- 4. i.i.d.: examples in the training set are independently and identically distributed (i.i.d) according to D, that is $S \sim D^m$
- →Note: these assumptions are very difficult to be satisfied in practice
- \square Realizability assumption implies that $L_S(h^*) = 0$
- \square Can we learn h^* ?

PAC Learning

Probably Approximately Correct (PAC) learning

- Since the training data comes from D:
- we can only be approximately correct
- we can only be probably correct

Parameters:

- lacktriangle accuracy parameter ϵ : we are satisfied with a good h_{S} for which $L_{D,f}(h_{S}) \leq \epsilon$
- ightharpoonup confidence parameter δ : want h_s to be a good hypothesis with probability $\geq 1-\delta$

Theorem

Let \mathcal{H} be a finite hypothesis class. Let $\delta \in (0,1)$, $\epsilon \in (0,1)$ and $m \in \mathbb{N}$ such that:

$$m \ge \frac{\log\left(\frac{|\mathcal{H}|}{\delta}\right)}{\epsilon}$$

Notice: m grows with $|\mathcal{H}|$ and is inversely proportional to δ and ϵ

Then, for any f and any D for which the realizability assumption holds, with probability $\geq 1 - \delta$ we have that for every ERM hypothesis h_s , computed on a training set S of size m sampled i.i.d. from D, it holds that

$$L_{D,f}(h_s) \leq \epsilon$$

probably approximately correct

m: size of the training set (i.e., S contains m I.I.D. samples)

Idea of the Demonstration

- □ The critical issue are the training sets leading to a "misleading" predictor h with $L_S(h) = 0$ but $L_{D,f}(h) > \epsilon$
- Place an upper bound to the probability of sampling m instances leading to a misleading training set, i.e., producing a "misleading" predictor
- Using the union bound after various mathematical computations the bound of the theorem can be obtained
- $lue{}$ Message of the theorem: if $\mathcal H$ is a finite class then ERM will not overfit, provided it is computed on a sufficiently big training set
- Demonstration not part of the course, but you can find it on the book if you are interested

Theorem: Graphical Illustration

Figure 2.1 Each point in the large circle represents a possible m-tuple of instances. Each colored oval represents the set of "misleading" m-tuple of instances for some "bad" predictor $h \in \mathcal{H}_B$. The ERM can potentially overfit whenever it gets a misleading training set S. That is, for some $h \in \mathcal{H}_B$ we have $L_S(h) = 0$. Equation (2.9) guarantees that for each individual bad hypothesis, $h \in \mathcal{H}_B$, at most $(1-\epsilon)^m$ -fraction of the training sets would be misleading. In particular, the larger m is, the smaller each of these colored ovals becomes. The union bound formalizes the fact that the area representing the training sets that are misleading with respect to some $h \in \mathcal{H}_B$ (that is, the training sets in M) is at most the sum of the areas of the colored ovals. Therefore, it is bounded by $|\mathcal{H}_B|$ times the maximum size of a colored oval. Any sample S outside the colored ovals cannot cause the ERM rule to overfit.

Demonstration: some notes (1)

$$D(\{x_i: h(x_i) = y_i\}) = 1 - L_{D,f}(h) \le 1 - \epsilon$$

- $lue{}$ In this step we are considering a single sample x_i
- 1. First step: $D(\{x_i: h(x_i) = y_i\})$ is the probability of a correct prediction (i.e., 1 probability of error)
- 2. Second step: $h \in \mathcal{H}_B$ (set of bad hypotheses) \Rightarrow probability of error for h is bigger than ϵ , i.e., $L_{D,f}(h) > \epsilon$

Demonstration not part of the course

Here are just some notes for critical steps, refer to the book and lecture notes for the complete demonstration

Demonstration: some notes (2)

$$D^{m}\left(\left\{S \mid_{x} : L_{D,f}(h_{S}) > \epsilon \right\}\right) \leq \sum_{h \in \mathcal{H}_{B}} D^{m}\left(\left\{S \mid_{x} : L_{S}(h) = 0 \right\}\right)$$
$$D^{m}\left(\left\{S \mid_{x} : L_{S}(h) = 0 \right\}\right) \leq e^{-\epsilon m}$$

- First equation: from union bound
- Second equation: consequence of previous slide result
- By combining the 2 equations (substituting the red part)

$$D^{m}\left(\left\{S \mid_{x} : L_{D,f}(h_{S}) > \epsilon \right\}\right) \leq \sum_{h \in \mathcal{H}_{B}} e^{-\epsilon m} = |\mathcal{H}_{B}| e^{-\epsilon m} \leq |\mathcal{H}| e^{-\epsilon m}$$

- $lue{\square}$ \mathcal{H}_B is a subset of \mathcal{H} \rightarrow last inequality
- Notice the difference between true error $L_{D,f}(h_s)$ and empirical errror $L_S(h)$

Demonstration not part of the course

Demonstration: some notes (3)

- $lue{}$ Thesis of the theroem: the probability of having a small error is $\geq 1\text{-}\delta$
 - \circ corresponds to probability of large error is $\leq \delta$
 - o i.e., we need to demonstrate that: $D^m(\{S|_{x}:L_{D,f}(h_{s})>\epsilon\})\leq \delta$
- We have obtained:

$$D^{m}\left(\left\{S \mid_{x} : L_{D,f}(h_{S}) > \epsilon \right\}\right) \leq \mathcal{H} |e^{-\epsilon m}|$$

- \Box Finally: purple part is smaller than red, to satisfy the theorem we need to find m for which red is smaller than δ :
 - \circ Set $m \ge \log(\frac{|\mathcal{H}|}{\delta})/\epsilon$