COMP8760

Handout Note - 1

(on $\mathbb{Z}_N, \mathbb{Z}_N^*, \mathbb{F}_p, \mathbb{F}_p^*, \mathbb{QR}_p, \mathbb{QNR}_p$, Legendre and Jacobi symbols)

Sanjay Bhattacherjee

This handout note should be useful as a quick reference on some of the mathematical notions and notations introduced in this module.

- 1. The set $\mathbb{Z}_N = \{0, 1, 2, \dots, N-1\}$ has all remainders of N.
- 2. The algebraic structure $(\mathbb{Z}_N, +, \cdot)$ forms a ring with respect to addition and multiplication modulo N. This means, $(\mathbb{Z}_N, +)$ is a commutative group. However, (\mathbb{Z}_N, \cdot) follows the properties closure, associativity, identity and commutativity, but not all elements of \mathbb{Z}_N will have inverses.

An element $a \in \mathbb{Z}_N$ has a multiplicative inverse if and only if

$$gcd(a, N) = 1.$$

All $a \in \mathbb{Z}_N$ such that gcd(a, N) = 1 form the set \mathbb{Z}_N^* .

- 3. If N is composite, the set \mathbb{Z}_N^* will not have all the non-zero elements from \mathbb{Z}_N . It will only have elements $a \in \mathbb{Z}_N$ which have $\gcd(a, N) = 1$. These elements will not have any common divisor with N that is greater than 1.
- 4. Unlike point 3 above, if N is *prime*, the set \mathbb{Z}_N^* will have all the non-zero elements from \mathbb{Z}_N .

\mathbb{Z}_5	$=\{0,1,2,3,4\}$
\mathbb{Z}_5^*	$=\{1,2,3,4\}$
\mathbb{Z}_6	$=\{0,1,2,3,4,5\}$
\mathbb{Z}_6^*	$=\{1,5\}$
\mathbb{Z}_7	$=\{0,1,2,3,4,5,6\}$
\mathbb{Z}_7^*	$=\{1,2,3,4,5,6\}$
\mathbb{Z}_8	$=\{0,1,2,3,4,5,6,7\}$
\mathbb{Z}_8^*	$=\{1,3,5,7\}$

Table 1: Examples for $N \in \{5, 6, 7, 8\}$ to demonstrate points 3 and 4.

5. In point 2 above, we noticed that (\mathbb{Z}_N, \cdot) is not a multiplicative group because all its elements may not have inverses. In other words, there may not be a solution to the equation

$$a \cdot x = 1 \pmod{N}$$

unless $\gcd(a,N)=1$. In Table 2, this can be checked for all $a\in\mathbb{Z}_{12}$ that are not mutually prime to 12. However, all elements of \mathbb{Z}_N^* have multiplicative inverses. From point 2 we know that every $a\in\mathbb{Z}_N^*$ has $\gcd(a,N)=1$. By substituting the value of $\gcd(a,N)$ in the expression for the extended Euclidean algorithm, we get that there exists integers x,y such that

$$1 = a \cdot x + N \cdot y \pmod{N}.$$

Since $N \cdot y = 0 \pmod{N}$, we can say that there exists an $x \in \mathbb{Z}_N^*$ such that $a \cdot x = 1 \pmod{N}$. Hence, \mathbb{Z}_N^* is a multiplicative group under multiplication modulo N.

a	0	1	2	3	4	5	6	7	8	9	10	11
b												
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11
2	0	2	4	6	8	10	0	2	4	6	8	10
3	0	3	6	9	0	3	6	9	0	3	6	9
4	0	4	8	0	4	8	0	4	8	0	4	8
5	0	5	10	3	8	1	6	11	4	9	2	7
6	0	6	0	6	0	6	0	6	0	6	0	6
7	0	7	2	9	4	11	6	1	8	3	10	5
8	0	8	4	0	8	4	0	8	4	0	8	4
9	0	9	6	3	0	9	6	3	0	9	6	3
10	0	10	8	6	4	2	0	10	8	6	4	2
11	0	11	10	9	8	7	6	5	4	3	2	1

Table 2: The multiplication table for elements of \mathbb{Z}_{12} . The variables a and b both take values from \mathbb{Z}_{12} and the result of $a \cdot b \pmod{12}$ is mentioned in the corresponding entry in the table. We have the set $\mathbb{Z}_{12}^* = \{1, 5, 7, 11\}$ such that for each $a \in \mathbb{Z}_{12}^*$, $\gcd(a, 12) = 1$. To corroborate with the result of substituting this value of $\gcd(a, 12) = 1$ in the extended Euclidean algorithm, we note that there are solutions to the equation $a \cdot x = 1 \pmod{12}$ if and only if $a \in \mathbb{Z}_{12}^*$.

6. Euler's totient function $\phi(n)$ is defined to take as input an integer n and gives as output the number of positive integers a smaller than n for which $\gcd(a,n)=1$. Let the prime factorisation of n be

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}.$$

Then, the value of $\phi(n)$ is given by the formula:

$$\phi(n) = n \prod_{i=1}^{k} \left(1 - \frac{1}{p_i} \right).$$

Note here that the notation $\prod_{i=1}^{k} \left(1 - \frac{1}{p_i}\right)$ denotes the product of terms $\left(1 - \frac{1}{p_i}\right)$ where *i* varies from 1 to *k*.

7. When the integer N is prime, we use the notation p instead. From point 4, we know that the set \mathbb{Z}_p^* will have all non-zero elements of \mathbb{Z}_p . So,

$$\mathbb{Z}_p^* = \{1, 2, \dots, p-1\}.$$

By counting the number of elements in \mathbb{Z}_p^* , we get the cardinality of the set

$$|\mathbb{Z}_p^*| = p - 1.$$

From point 6 on the Euler's totient function, we get that for a prime p,

$$\phi(p) = p\left(1 - \frac{1}{p}\right) = p - 1.$$

In summary, $|\mathbb{Z}_p^*| = \phi(p) = p - 1$.

- 8. From point 5, we know that the non-zero elements of \mathbb{Z}_p form a multiplicative group, where every element has an inverse. The following properties hold:
 - $(\mathbb{Z}_p,+)$ is an additive abelian group with identity 0.
 - (\mathbb{Z}_p^*, \cdot) is a multiplicative abelian group with identity 1.
 - The distributive law holds in $(\mathbb{Z}_p, +, \cdot)$.

Based on these three properties, we say that $(\mathbb{Z}_p, +, \cdot)$ is a *field*. (Note from point 2 that in general, $(\mathbb{Z}_N, +, \cdot)$ is a *ring* and not a *field* because of the absence of inverses for elements that are not mutually prime with N.)

We use the notation \mathbb{F}_p to denote the field of integers module a prime p.

Henceforth, whenever we are concerned with a prime p, we will use the notation \mathbb{F}_p in place of $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$ to denote all the remainders modulo the prime p and the notation \mathbb{F}_p^* to denote $\mathbb{Z}_p^* = \{1, \dots, p-1\}$.

9. We define the set of quadratic residues modulo p as \mathbb{QR}_p that contains all a^2 such that $a \in \mathbb{F}_p^*$. Using formal mathematical notation, we write

$$\mathbb{QR}_p = \{a^2 : a \in \mathbb{F}_p^*\}.$$

The set of quadratic non-residues modulo p is denoted as \mathbb{QNR}_p . It contains all $a \in \mathbb{F}_p^*$ that are not in \mathbb{QR}_p . More formally,

$$\mathbb{QNR}_p = \{a : a \in \mathbb{F}_p^*, a \notin \mathbb{QR}_p\}.$$

This set is also denoted using the set minus notation as $\mathbb{F}_p^* \setminus \mathbb{QR}_p$ (read as \mathbb{F}_p^* setminus \mathbb{QR}_p).

\overline{a}												
a^2	1	4	9	3	12	10	10	12	3	9	4	1

Table 3: The values of a^2 for all $a \in \mathbb{F}_{13}^*$. From this computation we get that, the set of quadratic residues $\mathbb{QR}_{13} = \{1, 3, 4, 9, 10, 12\}$ and the set of quadratic non-residues $\mathbb{QNR}_{13} = \mathbb{F}_{13}^* \setminus \mathbb{QR}_{13} = \{2, 5, 6, 7, 8, 11\}$.

10. For $a \in \mathbb{F}_p$, the Legendre symbol is denoted by $\left(\frac{a}{p}\right)$. It is defined to take one of three values.

$$\left(\frac{a}{p}\right) = \begin{cases} -1 = p-1 \pmod{p}, & \text{if } a \in \mathbb{QNR}_p, \\ 0, & \text{if } p \text{ divides } a, and \\ 1, & \text{if } a \in \mathbb{QR}_p. \end{cases}$$

The Legendre symbol can be computed using the formula:

$$\left(\frac{a}{p}\right) = a^{\frac{(p-1)}{2}} \pmod{p}.$$

11. Let $n \geq 3$ be odd and its prime factorisation be

$$n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}.$$

The Jacobi symbol is defined in terms of the Legendre symbol as:

$$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right)^{e_1} \left(\frac{a}{p_2}\right)^{e_2} \cdots \left(\frac{a}{p_k}\right)^{e_k}.$$