Modulprüfung

Mathematik IV für Elektrotechnik Mathematik III für Informatik Numerik und Stochastik für M. Edu Mathematik B für Elektrotechnik - Teil 2

Punktzahl

Fachbereich Ma Prof. Dr. Stefan				7. April				. April 201	2011	
Name: _ Vorname: _				Matrik Studie						
	Aufgabe	1	2	3	4	5	Σ			

Bitte alle Blätter mit Namen und Matrikelnummer versehen, fortlaufend nummerieren und am Ende der Klausur in das Aufgabenblatt einlegen. Sie werden mit diesem zusammen abgegeben. Bei der Bearbeitung der Aufgaben müssen

7

3

5

8

30

7

Die Klausurdauer beträgt 90 Minuten.

Zwischenergebnisse angegeben werden.

Als Hilfsmittel sind vier eigenhandschriftliche DIN-A4-Seiten und Taschenrechner zugelassen. Der Raum darf erst nach Klausurende verlassen werden.

alle verwendeten Sätze, Verfahren und Formeln, die erforderlichen Voraussetzungen, die Rechenwege und sämtliche

Es werden 3 Wochen Korrekturzeit benötigt. Die Ergebnisse werden im Glasskasten von Prof. Alber (gegenüber von Raum S2 | 15 408) ausgehängt. Informationen zur Klausureinsicht erhalten sie über eine Systemnachricht in TUCaN oder auf der Fachbereichs-Webseite zur Veranstaltung "Mathematik IV f. ET" im Sommersemester 2011.

Aufgabe 1 (Anfangswertaufgabe)

Gegeben sei folgende modifizierte Mittelpunktregel

$$u_{j+1} = u_j + hf\left(t_j + \frac{4}{9}h, \frac{4}{9}u_j + \frac{5}{9}u_{j+1}\right) \tag{1}$$

zur Lösung von Anfangswertproblemen der Form $y'(t) = f(t, y(t)), t \in [a, b], y(a) = y_0.$

- a) Berechnen Sie die Stabilitätsfunktion für (1) und prüfen Sie, ob das Verfahren L-stabil ist.
- b) Es sei weiter das Anfangswertproblem

$$y'(t) = ty(t), y(0) = 1$$
 (2)

mit der exakten Lösung $y(t)=e^{\frac{t^2}{2}}$ gegeben. Berechnen Sie jeweils mit der Mittelpunktregel (1) und dem expliziten Euler-Verfahren für die Schrittweite $h=\frac{1}{2}$ eine Näherung an y(1) für (2). Runden Sie dabei die Endergebnisse auf vier Stellen nach dem Komma.

c) Beurteilen Sie die Genauigkeit Ihrer Approximationen aus Teil b).

Aufgabe 2 (Interpolation)

Gegeben sei die Funktion

$$f:[0,1] \to \mathbb{R}$$
 $x \mapsto 16x^4 - 36x^3 + 20x^2 + x$.

- a) Berechnen Sie zu f und den Stützstellen $\{0, \frac{1}{2}, 1\}$ das Interpolationspolynom vom Grad ≤ 2 auf dem Intervall [0,1].
- b) Berechnen Sie zu f und den Stützstellen $\{0, \frac{1}{2}, \frac{3}{4}, 1\}$ das Interpolationspolynom vom Grad ≤ 3 auf dem Intervall [0, 1].
- c) Geben Sie die kleinste Zahl $n \in \mathbb{N}$ an, sodass die Fehlerabschätzung für das Newtonsche Interpolationspolynom zu f und n+1 paarweise verschiedenen Stützstellen $x_0, \ldots, x_n \in [0,1]$ auf dem Intervall [0,1] einen Interpolationsfehler von höchstens 10^{-3} sicherstellt.

Hinweis: Sie dürfen ohne Beweis $\max_{x \in [0,1]} |f'(x)| \approx 5,2664$ verwenden.

Aufgabe 3 (Multiple Choice)

Pro Frage darf eine Antwort angekreuzt werden. Für jedes richtige Kreuz gibt es einen Punkt. Für jedes falsche Kreuz wird ein halber Punkt abgezogen. Für kein Kreuz oder mehr als ein Kreuz pro Frage gibt es Null Punkte. Für die Gesamtpunktzahl dieser Aufgabe wird das Maximum aus Null und den erreichten Punkten gebildet.

a)	_	eben sei eine Messreihe mit zwei Merkmalen x und y . Für die Messreihe berechnet man den Korrelationsko- lenten 0, 97. Was können Sie daraus folgern?
		Für die Messreihe kann der Zusammenhang von x und y durch eine steigende Gerade beschrieben werden.
		Für die Messreihe kann der Zusammenhang von x und y durch eine fallende Gerade beschrieben werden.
		Die Regressionsgerade der Messreihe besitzt die Steigung 0,97.
b)		$F: \mathbb{R} \to \mathbb{R}$ stetig differenzierbar und besitze mindestens zwei Nullstellen. Wenn F' in den Nullstellen nichtsinist
		dann kann es beliebig nahe an den Nullstellen Startwerte geben, sodass das lokale Newton-Verfahren nicht konvergiert.
		dann gibt es zu jeder Nullstelle ein Intervall, sodass das lokale Newton-Verfahren für alle Startwerte aus diesem Intervall mindestens superlinear konvergiert.
		dann gibt es ein Interval, das alle Nullstellen enthält, sodass das lokale Newton-Verfahren für alle Startwerte aus diesem Intervall konvergiert.
c)	zur N	ei ein Polynom $p_n: \mathbb{R} \to \mathbb{R}$ vom Grad n gegeben. Bezeichne $I_m(f)$ die geschlossene Newton-Cotes-Formel Näherung von $I(f) = \int_a^b f(x) dx$ mit $m+1$ Knoten. Welche der folgenden Aussagen gibt <u>kein</u> hinreichendes rium dafür an, dass $I_{m+2}(p_n) = I(p_n)$ gilt?
		Es gilt $n \le m + 2$.
		$I_m(p)$ integriert alle Polynome p vom Grad n exakt.
		Es gilt $I_m(p_n) = I(p_n)$.
fa	ho 4	(Schätzer)

a) Die Zufallsvariablen X_1, \dots, X_n seien unabhängig und identisch verteilt mit Dichte

$$f_{\theta}(x) = \begin{cases} 2\theta \cdot x \cdot e^{-\theta x^2} & \text{falls } x \ge 0\\ 0 & \text{sonst} \end{cases}$$

mit einem Parameter $\theta > 0$. Bestimmen Sie den Maximum-Likelihood-Schätzer für θ .

b) Die Zufallsvariablen $X_1, ..., X_n$ seien unabhängig und identisch rechteckverteilt im Intervall $[a, \theta]$ mit einem unbekannten Parameter $\theta > a$. Zeigen Sie, dass

$$T_n(X_1, \dots, X_n) = -a + \frac{2}{n} \sum_{k=1}^n X_k$$

ein erwartungstreuer Schätzer für θ ist.

Hinweis: Sie können ohne Beweis verwenden, dass $E_{\theta}(X_1) = \frac{a+\theta}{2}$ gilt.

Aufgabe 5 (Testverfahren)

Eine Maschine stellt Widerstände für elektrische Schaltungen her. Die produzierten Bauelemente sollten im Mittel einen elektrischen Widerstand von 10 Ω (Ohm) haben. Bei einer Stichprobe von 25 Bauteilen betrug das arithmetische Mittel der gemessenen Widerstände jedoch 10,0004 Ω . Die empirische Varianz hatte den Wert $S_{(25)}^2 = 10^{-6}$. Es soll nun überprüft werden, ob der mittlere Widerstand der von der Maschine hergestellten Teile wirklich vom Sollwert abweicht. Dabei werden die Widerstände der Bauteile als unabhängige normalverteilte Zufallsvariablen angenommen.

a) Die Varianz σ^2 sei unbekannt. Überprüfen Sie die Nullhypothese

$$H_0: \mu = 10$$

zum Niveau $\alpha = 0,05$.

- b) Können Sie auf Grund der Ergebnisse aus a) beurteilen, wie sicher es (mindestens) ist, dass die Maschine im Mittel nicht den gewünschten Widerstand liefert? Falls ja, geben Sie die entsprechende Wahrscheinlichkeit an. Begründen Sie in jedem Fall Ihre Antwort.
- c) Die Varianz σ^2 sei nun bekannt und betrage ebenfalls 10^{-6} . Überprüfen Sie wieder die Nullhypothese H_0 zum Niveau $\alpha=0,05$.
- d) Können Sie auf Grund der Ergebnisse aus c) beurteilen, wie sicher es (mindestens) ist, dass die Maschine im Mittel nicht den gewünschten Widerstand liefert? Falls ja, geben Sie die entsprechende Wahrscheinlichkeit an. Begründen Sie in jedem Fall Ihre Antwort.

Statistische Tabellen

Verteilungsfunktion $\Phi(x)$ der N(0,1)-Verteilung

х	0	1	2	3	4	5	6	7	8	9
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986

Quantile $u_p \operatorname{der} N(0,1)$ -Verteilung

х	0.750	0.800	0.850	0.900	0.950	0.975	0.990	0.995	0.999	0.9995
u_p	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291

Quantile $t_{n,p}$ der t_n -Verteilungen

	1							
p	0.750	0.800	0.850	0.900	0.950	0.975	0.990	0.995
n								
1	1.0000	1.3764	1.9626	3.0777	6.3138	12.7062	31.8205	63.6567
2	0.8165	1.0607	1.3862	1.8856	2.9200	4.3027	6.9646	9.9248
3	0.7649	0.9785	1.2498	1.6377	2.3534	3.1824	4.5407	5.8409
4	0.7407	0.9410	1.1896	1.5332	2.1318	2.7764	3.7469	4.6041
5	0.7267	0.9195	1.1558	1.4759	2.0150	2.5706	3.3649	4.0321
6	0.7176	0.9057	1.1342	1.4398	1.9432	2.4469	3.1427	3.7074
7	0.7111	0.8960	1.1192	1.4149	1.8946	2.3646	2.9980	3.4995
8	0.7064	0.8889	1.1081	1.3968	1.8595	2.3060	2.8965	3.3554
9	0.7027	0.8834	1.0997	1.3830	1.8331	2.2622	2.8214	3.2498
10	0.6998	0.8791	1.0931	1.3722	1.8125	2.2281	2.7638	3.1693
11	0.6974	0.8755	1.0877	1.3634	1.7959	2.2010	2.7181	3.1058
12	0.6955	0.8726	1.0832	1.3562	1.7823	2.1788	2.6810	3.0545
13	0.6938	0.8702	1.0795	1.3502	1.7709	2.1604	2.6503	3.0123
14	0.6924	0.8681	1.0763	1.3450	1.7613	2.1448	2.6245	2.9768
15	0.6912	0.8662	1.0735	1.3406	1.7531	2.1314	2.6025	2.9467
16	0.6901	0.8647	1.0711	1.3368	1.7459	2.1199	2.5835	2.9208
17	0.6892	0.8633	1.0690	1.3334	1.7396	2.1098	2.5669	2.8982
18	0.6884	0.8620	1.0672	1.3304	1.7341	2.1009	2.5524	2.8784
19	0.6876	0.8610	1.0655	1.3277	1.7291	2.0930	2.5395	2.8609
20	0.6870	0.8600	1.0640	1.3253	1.7247	2.0860	2.5280	2.8453
21	0.6864	0.8591	1.0627	1.3232	1.7207	2.0796	2.5176	2.8314
22	0.6858	0.8583	1.0614	1.3212	1.7171	2.0739	2.5083	2.8188
23	0.6853	0.8575	1.0603	1.3195	1.7139	2.0687	2.4999	2.8073
24	0.6848	0.8569	1.0593	1.3178	1.7109	2.0639	2.4922	2.7969
25	0.6844	0.8562	1.0584	1.3163	1.7081	2.0595	2.4851	2.7874
26	0.6840	0.8557	1.0575	1.3150	1.7056	2.0555	2.4786	2.7787
27	0.6837	0.8551	1.0567	1.3137	1.7033	2.0518	2.4727	2.7707
28	0.6834	0.8546	1.0560	1.3125	1.7011	2.0484	2.4671	2.7633
29	0.6830	0.8542	1.0553	1.3114	1.6991	2.0452	2.4620	2.7564
30	0.6828	0.8538	1.0547	1.3104	1.6973	2.0423	2.4573	2.7500
31	0.6825	0.8534	1.0541	1.3095	1.6955	2.0395	2.4528	2.7440
32	0.6822	0.8530	1.0535	1.3086	1.6939	2.0369	2.4487	2.7385
33	0.6820	0.8526	1.0530	1.3077	1.6924	2.0345	2.4448	2.7333
34	0.6818	0.8523	1.0525	1.3070	1.6909	2.0322	2.4411	2.7284
35	0.6816	0.8520	1.0520	1.3062	1.6896	2.0301	2.4377	2.7238
36	0.6814	0.8517	1.0516	1.3055	1.6883	2.0281	2.4345	2.7195
37	0.6812	0.8514	1.0512	1.3049	1.6871	2.0262	2.4314	2.7154
38	0.6810	0.8512	1.0508	1.3042	1.6860	2.0244	2.4286	2.7116
39	0.6808	0.8509	1.0504	1.3036	1.6849	2.0227	2.4258	2.7079
40	0.6807	0.8507	1.0500	1.3031	1.6839	2.0211	2.4233	2.7045
,0	3.0007	3.0007	1.0000	1.0001	1.0007	2.0211	2. 1200	2.,010

Quantile $\chi^2_{n:n}$ der χ^2_n -Verteilungen

р	0.005	0.010	0.025	0.050	0.100	0.250
n						
1	0.000	0.000	0.001	0.004	0.016	0.102
2	0.010	0.020	0.051	0.103	0.211	0.575
3	0.072	0.115	0.216	0.352	0.584	1.213
4	0.207	0.297	0.484	0.711	1.064	1.923
5	0.412	0.554	0.831	1.145	1.610	2.675
6	0.676	0.872	1.237	1.635	2.204	3.455
7	0.989	1.239	1.690	2.167	2.833	4.255
8	1.344	1.646	2.180	2.733	3.490	5.071
9	1.735	2.088	2.700	3.325	4.168	5.899
10	2.156	2.558	3.247	3.940	4.865	6.737
11	2.603	3.053	3.816	4.575	5.578	7.584
12	3.074	3.571	4.404	5.226	6.304	8.438
13	3.565	4.107	5.009	5.892	7.042	9.299
14	4.075	4.660	5.629	6.571	7.790	10.165
15	4.601	5.229	6.262	7.261	8.547	11.037
16	5.142	5.812	6.908	7.962	9.312	11.912
17	5.697	6.408	7.564	8.672	10.085	12.792
18	6.265	7.015	8.231	9.390	10.865	13.675
19	6.844	7.633	8.907	10.117	11.651	14.562
20	7.434	8.260	9.591	10.851	12.443	15.452
21	8.034	8.897	10.283	11.591	13.240	16.344
22	8.643	9.542	10.982	12.338	14.041	17.240
23	9.260	10.196	11.689	13.091	14.848	18.137
24	9.886	10.856	12.401	13.848	15.659	19.037
25	10.520	11.524	13.120	14.611	16.473	19.939
26	11.160	12.198	13.844	15.379	17.292	20.843
27	11.808	12.879	14.573	16.151	18.114	21.749
28	12.461	13.565	15.308	16.928	18.939	22.657
29	13.121	14.256	16.047	17.708	19.768	23.567
30	13.787	14.953	16.791	18.493	20.599	24.478
31	14.458	15.655	17.539	19.281	21.434	25.390
32	15.134	16.362	18.291	20.072	22.271	26.304
33	15.815	17.074	19.047	20.867	23.110	27.219
34	16.501	17.789	19.806	21.664	23.952	28.136
35	17.192	18.509	20.569	22.465	24.797	29.054
36	17.887	19.233	21.336	23.269	25.643	29.973
37	18.586	19.960	22.106	24.075	26.492	30.893
38	19.289	20.691	22.878	24.884	27.343	31.815
39	19.996	21.426	23.654	25.695	28.196	32.737
40	20.707	22.164	24.433	26.509	29.051	33.660

Quantile $\chi^2_{n:n}$ der χ^2_n -Verteilungen

n	0.750	0.900	0.950	0.975	0.990	0.995
p n	0.730	0.900	0.930	0.973	0.990	0.993
1	1.323	2.706	3.841	5.024	6.635	7.879
2	2.773	4.605	5.991	7.378	9.210	10.597
3	4.108	6.251	7.815	9.348	11.345	12.838
4	5.385	7.779	9.488	11.143	13.277	14.860
5	6.626	9.236	11.070	12.833	15.086	16.750
6	7.841	10.645	12.592	14.449	16.812	18.548
7	9.037	12.017	14.067	16.013	18.475	20.278
8	10.219	13.362	15.507	17.535	20.090	21.955
9	11.389	14.684	16.919	19.023	21.666	23.589
10	12.549	15.987	18.307	20.483	23.209	25.188
11	13.701	17.275	19.675	21.920	24.725	26.757
12	14.845	18.549	21.026	23.337	26.217	28.300
13	15.984	19.812	22.362	24.736	27.688	29.819
14	17.117	21.064	23.685	26.119	29.141	31.319
15	18.245	22.307	24.996	27.488	30.578	32.801
16	19.369	23.542	26.296	28.845	32.000	34.267
17	20.489	24.769	27.587	30.191	33.409	35.718
18	21.605	25.989	28.869	31.526	34.805	37.156
19	22.718	27.204	30.144	32.852	36.191	38.582
20	23.828	28.412	31.410	34.170	37.566	39.997
21	24.935	29.615	32.671	35.479	38.932	41.401
22	26.039	30.813	33.924	36.781	40.289	42.796
23	27.141	32.007	35.172	38.076	41.638	44.181
24	28.241	33.196	36.415	39.364	42.980	45.559
25	29.339	34.382	37.652	40.646	44.314	46.928
26	30.435	35.563	38.885	41.923	45.642	48.290
27	31.528	36.741	40.113	43.195	46.963	49.645
28	32.620	37.916	41.337	44.461	48.278	50.993
29	33.711	39.087	42.557	45.722	49.588	52.336
30	34.800	40.256	43.773	46.979	50.892	53.672
31	35.887	41.422	44.985	48.232	52.191	55.003
32	36.973	42.585	46.194	49.480	53.486	56.328
33	38.058	43.745	47.400	50.725	54.776	57.648
34	39.141	44.903	48.602	51.966	56.061	58.964
35	40.223	46.059	49.802	53.203	57.342	60.275
36	41.304	47.212	50.998	54.437	58.619	61.581
37	42.383	48.363	52.192	55.668	59.893	62.883
38	43.462	49.513	53.384	56.896	61.162	64.181
39	44.539	50.660	54.572	58.120	62.428	65.476
40	45.616	51.805	55.758	59.342	63.691	66.766