Laborbericht: Messtechnik und Fehlerrechnung

Helen Klos Matrikelnummer: 2222449

Sandro Fahrion Matrikelnummer: 6684592

29.-30.10.2024

Contents

Ei	nfüh	rung und Uberblick	3				
1	Ver Box	such 1: Kapazitätsmessung eines unbekannten Kondensators (Black	4				
	1.1	Zielsetzung	4				
	1.2	Bauteile und Messgeräte	4				
	1.3	Messkonzept	5				
	1.4	Messergebnisse	5				
2	Ver	such 2: Passiver Zweipol (Black Box)	6				
	2.1	Zielsetzung	6				
	2.2	Bauteile und Messgeräte	6				
	2.3	Messkonzept	7				
	2.4	Messergebnisse	7				
3	Ver	such 3: Leistungsaufnahme eines elektrischen Widerstands	7				
	3.1	Zielsetzung	7				
	3.2	Bauteile und Messgeräte	7				
	3.3	Messkonzept	8				
	3.4	Messergebnisse	8				
4	Ver	Versuch 4: Widerstandsmessung mittels Vierdrahtmethode					
	4.1	Zielsetzung	8				
	4.2	Bauteile und Messgeräte	8				
	4.3	Messkonzept	9				
	4.4	Messergebnisse	9				
5	Ver	such 5: Statistik	9				
	5.1	Zielsetzung	9				
	5.2	Bauteile und Messgeräte	9				
	5.3	Messkonzept	10				
	5.4	Messergebnisse	10				
6	Ver	such 6: Aktiver Tiefpass erster Ordnung	10				
	6.1	Zielsetzung	10				
	6.2	Bauteile und Messgeräte	11				
	6.3	Messkonzept	12				
	6.4		12				
7	Dis	kussion	12				

Einführung und Überblick

Die moderne Messtechnik bildet die Grundlage zahlreicher technischer sowie naturwissenschaftlicher Erkenntnisse. Allerdings ist zu berücksichtigen, dass Messergebnisse niemals vollständig fehlerfrei sind. Die Ursachen für Messfehler und -ungenauigkeiten sind vielfältig. Als Ursachen für Messfehler und -ungenauigkeiten können beispielsweise eine fehlende Kalibrierung, Linearität und Stabilität der verwendeten Messinstrumente oder eine mangelnde Qualität des Messobjekts genannt werden. Des Weiteren kann auch der*die Messende selbst als Ursache in Betracht gezogen werden, welcher, zum Beispiel durch eine mögliche Sehschwäche oder einen ungünstigen Winkel, die Messwerte ungenau abliest. Nicht angepasste oder unvollkommene Messmethoden können ebenfalls zu einer Verfälschung der Messung führen.

Genannte Ursachen können zu drei verschiedenen Fehlerarten führen: grobe, statistische und systematische Fehler.

In diesem Laborbericht werden Versuche beschrieben, welche die Genauigkeit verschiedener Bauteile ermitteln. Des Weiteren beschäftigen sich diese mit Fehlerrechnung

1 Versuch 1: Kapazitätsmessung eines unbekannten Kondensators (Black Box)

1.1 Zielsetzung

Das Ziel des ersten Versuchs bestand darin, die Kapazität eines unbekannten Kondesators in einer Black-Box zu bestimmen.

1.2 Bauteile und Messgeräte

Messgeräte

- Teledyne Technologies Funktionsgenerator T3AFG80 80 MHz
- Keysight Oszilloskop (DSOX1102A)
- Fluke 87 V True RMS Multimeter
- Oszilloskop BNC Tastkopf mit Messeklemme
- Steckkabel (mehrere)
- Tru Components Steckbrett
- Bananenkabel (schwarz und rot)
- Sicherheits-Klemmprüfspitze (2 Stück)

Bauteile

- Black-Box (Nr. 18-30)
- Widerstand Nominalwert 4,7 k Ω

Zu Beginn wurde die Formel der Ladekurve $u_c = U(1 - e^{-\frac{t}{RC}})$ und der Entladekurve $u_c = Ue^{-\frac{t}{RC}}$) grafisch am Computer dargestellt (siehe Figure 1).

Figure 1: Ladekurve (blau) und Entladekurve (rot) eines Kondensators

Diese sollte in den folgenden Schritten mit dem Oszilloskop sichtbar gemacht werden. Hierzu wurde der Funktionsgenerator wie in Table 1 notiert eingestellt.

Frequenz		Signalform	Amplitude	Offset	
	$500~\mathrm{Hz}$	Rechtecksignal	$5 V_{pp}$	$2.5 \mathrm{~V_{dc}}$	

Table 1: Einstellungen des Funktionsgenerators

1.4 Messergebnisse

Fehlerquelle	Einfluss	typische Größe	stat. oder sys.	Berücksichtigung?	relevant?
$R = 4.7 \text{ k}\Omega$	DMM-Messung	‰ siehe Datenblatt	statistisch	Fehlerrechnung	Ja
Oszilloskop	R _i ,C _i Tastkopf (10x)	10 μΩ, ~pF	systematisch	Nein $< 0.5\%$	Nein
	x, y - Messung	$\approx 3 \%$ Datenblatt!	statistisch	Fehlerrechnung	Ja
	Curser	Steigung beachten	statistisch	Fehlerrechnung	Ja
Funktionsgenerator	Anstiegszeit	einige ns	systematisch	≈ 1 ‰	Nein
	R_{i}	50Ω	systematisch	Korrektur	Ja
		$\Delta R_{\rm i}~(\approx 1\%)$	statistisch	$1\% \Rightarrow \pm 0.5 \Omega$	Nein
	Amplitude, Offset	-	systematisch	relativ	Nein
Kabel +5 V	Widerstand	$\approx 20 \mathrm{m}\Omega$	systematisch	zu klein	Nein

Table 2: ...

2 Versuch 2: Passiver Zweipol (Black Box)

2.1 Zielsetzung

Bestimmung der Bauteile Typen (Möglichkeiten: R, L oder C) und deren Anordnung innerhalb einer Black Box.

- Netzgerät (NEP-8323)
- Fluke 87 V True RMS Multimeter
- Keysight Oszilloskop (DSOX1102A)
- Bananenkabel (mehrere: rot, blau, schwarz)
- Sicherheits-Klemmprüfspitze (2 Stück)
- Oszilloskop BNC Tastkopf mit Messeklemme
- Steckkabel (mehrere: im Idealfall verschiedene Farben)
- Steckbrett
- A/D Converter ADC080x
- $\bullet~10$ Segment LED-Bar OSX10201-B

- Kondensatoren:
 - 10 μF "Tantalum"
 - 0,1 μF (2 Stück)
 - -150 pF
- Widerstände:
 - $-1k\Omega$
 - $-10k\Omega$
 - $-8 \times 1 \text{ k}\Omega$ Widerstandsnetzwerk

. . .

Figure 2: ...

2.4 Messergebnisse

. . .

3 Versuch 3: Leistungsaufnahme eines elektrischen Widerstands

3.1 Zielsetzung

Es soll die elektrische Leistung bestimmt werden, die bei Stromdurchfluss in einem Widerstand R anfällt.

- Netzgerät (NEP-8323)
- Fluke 87 V True RMS Multimeter
- Keysight Oszilloskop (DSOX1102A)
- Bananenkabel (mehrere: rot, blau, schwarz)
- Sicherheits-Klemmprüfspitze (2 Stück)
- Oszilloskop BNC Tastkopf mit Messeklemme
- Steckkabel (mehrere: im Idealfall verschiedene Farben)
- Steckbrett
- A/D Converter ADC080x
- 10 Segment LED-Bar OSX10201-B

- Kondensatoren:
 - 10 μF "Tantalum"
 - 0,1 μF (2 Stück)
 - -150 pF
- Widerstände:
 - $-1k\Omega$
 - $-10k\Omega$
 - 8 x 1 k Ω Widerstandsnetzwerk

. . .

Figure 3: ...

3.4 Messergebnisse

. . .

4 Versuch 4: Widerstandsmessung mittels Vierdrahtmethode

4.1 Zielsetzung

Es soll der (sehr niederohmige) Übergangswiderstand eines Kabels inclusive seiner Steckverbinder mittels der Vierdrahtmethode gemessen werden.

- Netzgerät (NEP-8323)
- Fluke 87 V True RMS Multimeter
- Keysight Oszilloskop (DSOX1102A)
- Bananenkabel (mehrere: rot, blau, schwarz)
- Sicherheits-Klemmprüfspitze (2 Stück)
- Oszilloskop BNC Tastkopf mit Messeklemme
- Steckkabel (mehrere: im Idealfall verschiedene Farben)
- Steckbrett
- \bullet A/D Converter ADC080x
- 10 Segment LED-Bar OSX10201-B

- Kondensatoren:
 - 10 μF "Tantalum"
 - 0,1 μF (2 Stück)
 - -150 pF
- Widerstände:
 - $-1k\Omega$
 - $-10k\Omega$
 - $-8 \times 1 \text{ k}\Omega$ Widerstandsnetzwerk

...

Figure 4: ...

4.4 Messergebnisse

. . .

5 Versuch 5: Statistik

5.1 Zielsetzung

Bestimmung einer gemessenen Zufallsverteilung und ihrer Eigenschaften (Momente). Hierbei stellt das vorgegebene Los von Widerständen eine willkürlich entnommene Stichprobe einer vom Hersteller erzeugten Grundgesamtheit dar.

- Netzgerät (NEP-8323)
- Fluke 87 V True RMS Multimeter
- Keysight Oszilloskop (DSOX1102A)
- Bananenkabel (mehrere: rot, blau, schwarz)
- Sicherheits-Klemmprüfspitze (2 Stück)
- Oszilloskop BNC Tastkopf mit Messeklemme
- Steckkabel (mehrere: im Idealfall verschiedene Farben)
- Steckbrett
- A/D Converter ADC080x
- 10 Segment LED-Bar OSX10201-B

- Kondensatoren:
 - 10 μF "Tantalum"
 - $-0.1 \mu F$ (2 Stück)
 - -150 pF
- Widerstände:
 - $-1k\Omega$
 - $-~10 k\Omega$
 - -8 x 1 k Ω Widerstandsnetzwerk

...

Figure 5: ...

5.4 Messergebnisse

Widerstand	Wert in $k\Omega$	Widerstand	Wert in kOhm
1	1.183	14	1.183
2	1.181	15	1.180
3	1.186	16	1.183
4	1.181	17	1.180
5	1.186	18	1.182
6	1.183	19	1.184
7	1.182	20	1.183
8	1.181	21	1.184
9	1.187	22	1.187
10	1.181	23	1.182
11	1.188	24	1.179
12	1.186	25	1.187
13	1.179	-	-

Table 3: ...

6 Versuch 6: Aktiver Tiefpass erster Ordnung

6.1 Zielsetzung

Bestimmung der frequenzabhängigen Verstärkung eines aktiven Tiefpasses

- Netzgerät (NEP-8323)
- Fluke 87 V True RMS Multimeter
- Keysight Oszilloskop (DSOX1102A)
- Bananenkabel (mehrere: rot, blau, schwarz)
- Sicherheits-Klemmprüfspitze (2 Stück)
- Oszilloskop BNC Tastkopf mit Messeklemme
- Steckkabel (mehrere: im Idealfall verschiedene Farben)
- \bullet Steckbrett
- \bullet A/D Converter ADC080x
- $\bullet~10$ Segment LED-Bar OSX10201-B

- Kondensatoren:
 - 10 μF "Tantalum"
 - $-0.1 \mu F$ (2 Stück)
 - 150 pF
- Widerstände:
 - $-\ 1k\Omega$
 - $-~10k\Omega$
 - -8 x 1 k Ω Widerstandsnetzwerk

...

Figure 6: ...

6.4 Messergebnisse

...

7 Diskussion

Was würden Sie nächstes Mal anders machen? Was hat besondere Schwierigkeiten bereitet?