One star, two star, red star, blue star

Part I
Cole Johnston | MPA
11/10/2024

Image: Casey Reed

Aims

Part I: Orbits and Observations

- Describe binary orbits
- Understand observational techniques
- What do we get from different observations?

Part II: Examples

- Spectroscopy
 - Instrumental considerations
 - T_{eff}, logg, vsini, macro-turbulence
 - SB1
 - SB2 → Disentangling

How do we observe a binary?

How do we observe a binary: Spectra - instrumental considerations

How do we go from photons to normalized flux?

Instrumental considerations

- light path
- total efficiency
- environmental factors
- response + blaze function
- wavelength solution
- normalisation

How do we observe a binary: Spectra - instrumental considerations

How do we go from photons to normalized flux?

Instrumental considerations

- light path
- total efficiency
- environmental factors
- response + blaze function
- wavelength solution
- normalisation

How do we observe a binary: light path

How do we observe a binary: total efficiency

How do we observe a binary: environmental factors

How do we observe a binary: environmental factors

How do we observe a binary: response function

How do we observe a binary: response function

How do we observe a binary: blaze function

How do we observe a binary: blaze function

How do we observe a binary: blaze function

Raskins et al., 2011

How do we observe a binary: wavelength solution

How do we observe a binary: normalisation

How do we observe a binary: normalisation

How do we observe a binary: normalisation

- What code do you use?
- What temperature / logg is your target?
- Grid based vs. ionisation balance?

GSSP LTE Grid based (at first)

- line list + oscillator strength
- metallicity
- T_{eff} & logg
- micro-turbulence
- macro-turbulence
- vsini
- resolution
- wavelength range
- parameter range

logg=2 logg=3 logg=4 logg=5

- equal equivalent width
- vsini = 15 km s⁻¹
- macroturbulent velocity = 20 km s⁻¹
- isotropic (full line)
- pure radial (dashed line)
- pure tangential (dashed-dot line)
- equal radial-tangential (dotted line)

vsini is not uniquely measured!!!

$$v\sin i = \frac{2\pi R}{P_{rot}}\sin i$$

How do we observe a binary: least squares deconvolution

How do we observe a binary: least squares deconvolution

How do we observe a binary: least squares deconvolution

How do we observe a binary: spectral disentangling

RV fitting example; go to: