Reinforcement Learning HSE, winter - spring 2024 Lecture 8: Multi-armed Bandits

Sergei Laktionov slaktionov@hse.ru LinkedIn

Multi-armed Bandit

- The episode ends after the first step so we have only one state in the environment.
- ullet An agent is facing repeatedly with a choice among K different actions.

Multi-armed Bandit

- $\{p(r|a) | a \in \mathcal{A}\}$ is a set of reward's distributions;
- On each step, t an agent chooses a_t and get reward $r_t \sim p(\,.\,|\,a_t)$

The agent's goal is to maximise $\mathbb{E}_{p(r|a)}[\sum_{t=1}^{\infty} r_t]$ by choosing an action on each step.

Source

RL Formalism

- Policy: π is just a rule of making decisions on each step
- Action value function: $Q(a) = \mathbb{E}[r_t | a_t = a]$
- Optimal value: $V^* = \max_a Q(a)$
- Gap: $V^* Q(a) \ge 0$

• Total Regret:
$$\mathbb{E}\sum_{t=1}^{T}\left[V^*-Q(a_t)\right] \to \min_{\pi}$$

RL Formalism

- Policy: π is just a rule of making decisions on each step
- Action value function: $Q(a) = \mathbb{E}[r_t | a_t = a]$
- . Optimal value: $V^* = \max_a Q(a)$
- Gap: $V^* Q(a) \ge 0$
- Total Regret: $\mathbb{E}\sum_{t=1}^T \left[V^* Q(a_t)\right] \to \min_{\pi} \iff \mathbb{E}_{p(r|a)}\left[\sum_{t=1}^T r_t\right] \to \max_{\pi}$

Regret Minimisation

$$\mathbb{E}\sum_{t=1}^{T} \left[V^* - Q(a_t)\right] \to \min_{\pi} \iff \mathbb{E}_{p(r|a)}\left[\sum_{t=1}^{T} r_t\right] \to \max_{\pi}$$

Regret

$$\sum_{t=1}^{T} [V^* - Q(a_t)] = TV^* - \sum_{t=1}^{T} Q(a_t)$$

Realised regret:
$$R(T) = TV^* - \sum_{t=1}^{I} Q(a_t)$$

Expected regret: $\mathbb{E}[R(T)]$

We are interested in the minimising of $\lim_{T\to\infty}\mathbb{E}[R(T)]$

Regret Bounds

$$R(T) = \sum_{a} n_T(a)[V^* - Q(a)]$$

Upper bound:
$$\mathbb{E}[R(T)] \leq T(V^* - \min_a Q(a))$$

Regret Bounds

$$R(T) = \sum_{a} n_T(a)[V^* - Q(a)]$$

Upper bound:
$$\mathbb{E}[R(T)] \leq T(V^* - \min_a Q(a))$$

Lower bound:
$$\mathbb{E}[R(T)] \ge \log T \sum_{a|V^*>Q(a)} \frac{V^* - Q(a)}{D_{KL}(p(r|a)||p(r|a^*))}$$

Action Values

$$Q_{t}(a) = \frac{\sum_{n=1}^{t} \mathbb{I}(a_{n} = a)r_{n}}{\sum_{n=1}^{t} \mathbb{I}(a_{n} = a)} = \frac{\sum_{n=1}^{t} \mathbb{I}(a_{n} = a)r_{n}}{n_{t}(a)} \iff$$

Action Values

$$Q_{t}(a) = \frac{\sum_{n=1}^{t} \mathbb{I}(a_{n} = a)r_{n}}{\sum_{n=1}^{t} \mathbb{I}(a_{n} = a)} = \frac{\sum_{n=1}^{t} \mathbb{I}(a_{n} = a)r_{n}}{n_{t}(a)} \iff \frac{Q_{t}(a) = Q_{t-1}(a) + \alpha_{t}(a)[r_{t} - Q_{t-1}(a)]}{\alpha_{t}(a) = n_{t-1}(a) + \mathbb{I}[a_{t} = a]}$$

ε -greedy Policy

$$\pi_{t}(a) = \begin{cases} (1 - \varepsilon) + \frac{\varepsilon}{|\mathcal{A}|}, & \text{if } a = argmax_{a}Q_{t}(a) \\ \frac{\varepsilon}{|\mathcal{A}|}, & \text{otherwise} \end{cases}$$

- Greedy policy can stuck in a suboptimal action forever
- ε -greedy continues to explore

ε -greedy Policy

$$\pi_{t}(a) = \begin{cases} (1 - \varepsilon) + \frac{\varepsilon}{|\mathcal{A}|}, & \text{if } a = argmax_{a}Q_{t}(a) \\ \frac{\varepsilon}{|\mathcal{A}|}, & \text{otherwise} \end{cases}$$

- Greedy policy can stuck in a suboptimal action forever
- ε -greedy continues to explore

Adaptive Exploration

Epsilon-greedy algorithm with exploration probabilities $\varepsilon_t = t^{-\frac{1}{3}} (K \log T)^{\frac{1}{3}}$ achieves regret bound:

$$\mathbb{E}[R(T)] \leq T^{\frac{2}{3}}O(K\log T)^{\frac{1}{3}}$$

Optimism in the Face of Uncertainty

Which action should we pick?

Optimism in the Face of Uncertainty

- Which action should we pick?
- The more uncertain we are about an action-value, the more critical it is to explore that action.
- It could be the best action.

Optimism in the Face of Uncertainty

Upper Confidence Bound

- Estimate an upper confidence $U_t(a)$ for each action value, such that $Q(a) \leq Q_t(a) + U_t(a)$ with high probability.
- This depends on the number of times $n_t(a)$ has been selected
 - Small $n_t(a) \Rightarrow$ large $U_t(a)$ (estimated value is uncertain)
 - Large $n_t(a) \Rightarrow \text{small } U_t(a)$ (estimated value is accurate)
- Select action maximising upper confidence bound (UCB): $a_t = argmax_{a \in A}[Q_t(a) + U_t(a)]$

Hoeffding's Inequality

Let X_1, \ldots, X_t be i.i.d. random variables in [0,1] with true mean μ , and let \bar{X}_t be the sample mean. Then $\mathbb{P}(\mu \geq \bar{X}_t + u) \leq e^{-2tu^2}$.

$$\mathbb{P}(Q_t(a) + U_t(a) \le Q(a)) \le e^{-2n_t(a)U_t(a)^2}$$

UCB

$$\mathbb{P}(Q_t(a) + U_t(a) \le Q(a)) \le e^{-2N_t(a)U_t(a)^2} = p$$

If
$$U_t(a) = \sqrt{\frac{-\log p}{2N_t(a)}}$$
 then $e^{-2N_t(a)U_t(a)^2} = p$

Reduce p as we get more information: $p = \frac{1}{t^{2C}}$

$$U_t(a) = C_1 \frac{\log t}{2N_t(a)}$$

UCB

Select action maximising upper confidence bound (UCB):

$$a_t = argmax_{a \in A}[Q_t(a) + c\sqrt{\frac{\log t}{2N_t(a)}}]$$

• Theorem: if $C = \sqrt{2}$ then UCB achieves logarithmic expected regret.

Comparison

k (number of arms): 100 \checkmark T (number of steps): 1000 \checkmark

Source

Model-based Approach

- Learn the environment's model: $p(r \mid a) \approx p(r \mid \theta_a)$
- It allows us to inject rich prior knowledge θ_a^0
- We can then use posterior belief to guide exploration: $p(\theta_a) \leftarrow p(\theta_a \mid r) \propto p(r \mid \theta_a) p(\theta_a)$
- $\mathbb{E}p(. | \theta_a)$ is a random variable

Probability Matching

We can choose an action in the following way:

$$a = argmax_a \mathbb{E}_{\theta_a \sim p(\theta_a)} \mathbb{E}p(. \mid \theta_a)$$

- However, now there is a probability that it's not optimal
- Let's choose an action with the probability of being optimal

$$\pi(a) = \mathbb{P}[\mathbb{E}p(.|\theta_a) > \mathbb{E}p(.|\theta_{a'}), a \neq a']$$

Thompson Sampling

Thompson sampling implements probability matching:

$$\pi(a) = \mathbb{P}[\mathbb{E}p(.|\theta_a) > \mathbb{E}p(.|\theta_{a'}), a \neq a']$$

- 1. Use Bayes's law to compute the posterior distribution $p(\theta_a \mid r)$
- 2. Sample parameters θ_a from these distributions
- 3. Select action maximising value on sample: $a = argmax_{a'} \mathbb{E}p(r \mid \theta_{a'})$

Thompson Sampling

Thompson sampling implements probability matching:

$$\pi(a) = \mathbb{P}[\mathbb{E}p(.|\theta_a) > \mathbb{E}p(.|\theta_{a'}), a \neq a']$$

- 1. Use Bayes's law to compute the posterior distribution $p(\theta_a \mid r)$
- 2. Sample parameters θ_a from these distributions:
- 3. Select action maximising value on sample: $a = argmax_{a'} \mathbb{E}p(r \mid \theta_{a'})$

Thompson sampling achieves a logarithmic bound!

Contextual Bandits

- 1. The algorithm observes a "context" x_t ;
- 2. The algorithm picks an arm a_t from the K possible actions;
- 3. The reward $r_t \sim p(.|x_t, a_t)$ is realised.

Example: a user with a known "user profile" arrives in each round, and the context is the user profile.

Disjoint LinUCB

- Let $x_{t,a} \in \mathbb{R}^d$ the context summarise information of both the global context x_t (e.g. for user u_t) and arm a.
- The main assumption: $\mathbb{E}[r_{t,a} | x_t, a] = x_{t,a}^T \theta_a$
- Apply ridge regression to derive $\hat{\theta}_{t,a}$ on each step.

Disjoint LinUCB

- $D_a \in \mathbb{R}^{m \times d}$ is a matrix containing contexts which were observed previously for action a.
- $A_a = D_a^T D_a + I_d$
- $b_a = r_t x_{t,a}$
- Expected payoff on each step: $x_{t,a}\hat{\theta}_a$ with variance $x_{t,a}^TA_a^{-1}x_{t,a}$.

Algorithm 1 LinUCB with disjoint linear models.

```
0: Inputs: \alpha \in \mathbb{R}_+
 1: for t = 1, 2, 3, \ldots, T do
            Observe features of all arms a \in \mathcal{A}_t: \mathbf{x}_{t,a} \in \mathbb{R}^d
            for all a \in \mathcal{A}_t do
                 if a is new then
 4:
                      \mathbf{A}_a \leftarrow \mathbf{I}_d (d-dimensional identity matrix)
                      \mathbf{b}_a \leftarrow \mathbf{0}_{d \times 1} (d-dimensional zero vector)
                 end if
          \hat{\boldsymbol{\theta}}_{a} \leftarrow \mathbf{A}_{a}^{-1} \mathbf{b}_{a}
p_{t,a} \leftarrow \hat{\boldsymbol{\theta}}_{a}^{\top} \mathbf{x}_{t,a} + \alpha \sqrt{\mathbf{x}_{t,a}^{\top} \mathbf{A}_{a}^{-1} \mathbf{x}_{t,a}}
10:
             end for
            Choose arm a_t = \arg \max_{a \in A_t} p_{t,a} with ties broken arbi-
            trarily, and observe a real-valued payoff r_t
12: \mathbf{A}_{a_t} \leftarrow \mathbf{A}_{a_t} + \mathbf{x}_{t,a_t} \mathbf{x}_{t,a_t}^{\top}
          \mathbf{b}_{a_t} \leftarrow \mathbf{b}_{a_t} + r_t \mathbf{x}_{t,a_t}
14: end for
```

Regret bound: $\tilde{O}(\sqrt{KdT})$,

where $\tilde{O}(.)$ is is the same as O(.) but suppresses logarithmic factors.

Bayesian Interpretation

- Gaussian prior: $p(\theta_a) = \mathcal{N}(0, I_d)$
- On step t for action *a*:
 - m noisy measurements: $\mathbf{r}_a \sim \mathcal{N}(D_a\theta_a, I_m)$
 - Posterior distribution: $\theta_a \sim \mathcal{N}(\hat{\theta}_a, A_a^{-1})$
 - $A_a = D_a^T D_a + I_d$, $\hat{\theta}_a = A_a^{-1} D_a^T \mathbf{r}_a$
 - $x_{t,a}^T \theta_a \sim \mathcal{N}(x_{t,a}^T \hat{\theta}_a, x_{t,a}^T A_a^{-1} x_{t,a})$
 - UCB: $x_{t,a}^{T} \hat{\theta}_{a} + \alpha \sqrt{x_{t,a}^{T} A_{a}^{-1} x_{t,a}}$

Neural UCB

Algorithm 1 NeuralUCB

- 1: **Input:** Number of rounds T, regularization parameter λ , exploration parameter ν , confidence parameter δ , norm parameter S, step size η , number of gradient descent steps J, network width m, network depth L.
- 2: Initialization: Randomly initialize θ_0 as described in the text
- 3: Initialize $\mathbf{Z}_0 = \lambda \mathbf{I}$
- 4: **for** t = 1, ..., T **do**
- 5: Observe $\{\mathbf{x}_{t,a}\}_{a=1}^{K}$
- 6: **for** a = 1, ..., K **do**
- 7: Compute $U_{t,a} = f(\mathbf{x}_{t,a}; \boldsymbol{\theta}_{t-1}) + \gamma_{t-1} \sqrt{\mathbf{g}(\mathbf{x}_{t,a}; \boldsymbol{\theta}_{t-1})^{\top} \mathbf{Z}_{t-1}^{-1} \mathbf{g}(\mathbf{x}_{t,a}; \boldsymbol{\theta}_{t-1})/m}$
- 8: Let $a_t = \operatorname{argmax}_{a \in [K]} U_{t,a}$
- 9: **end for**
- 10: Play a_t and observe reward r_{t,a_t}
- 11: Compute $\mathbf{Z}_t = \mathbf{Z}_{t-1} + \mathbf{g}(\mathbf{x}_{t,a_t}; \boldsymbol{\theta}_{t-1}) \mathbf{g}(\mathbf{x}_{t,a_t}; \boldsymbol{\theta}_{t-1})^{\top} / m$
- 12: Let $\boldsymbol{\theta}_t = \text{TrainNN}(\lambda, \eta, J, m, \{\mathbf{x}_{i,a_i}\}_{i=1}^t, \{r_{i,a_i}\}_{i=1}^t, \boldsymbol{\theta}_0)$
- 13: Compute

$$\gamma_{t} = \sqrt{1 + C_{1}m^{-1/6}\sqrt{\log m}L^{4}t^{7/6}\lambda^{-7/6}} \cdot \left(\nu\sqrt{\log\frac{\det\mathbf{Z}_{t}}{\det\lambda\mathbf{I}}} + C_{2}m^{-1/6}\sqrt{\log m}L^{4}t^{5/3}\lambda^{-1/6} - 2\log\delta + \sqrt{\lambda}S\right) + (\lambda + C_{3}tL)\left[(1 - \eta m\lambda)^{J/2}\sqrt{t/\lambda} + m^{-1/6}\sqrt{\log m}L^{7/2}t^{5/3}\lambda^{-5/3}(1 + \sqrt{t/\lambda})\right].$$

14: end for

Bandits in Practice

- Recommender systems: Spotify, Netflix
- Adaptive clinical trials

Background

- 1. Practical RL course by YSDA, week 5
- 2. Sutton & Barto, Chapter 2
- 3. <u>DeepMind course</u>, Lecture 2
- 4. <u>David Silver Course</u>, Lecture 9
- 5. Introduction to Multi-Armed Bandits

Thank you for your attention!