KoGES 골다공증 예측

증강지능 연구실 황승현 2023-10-10

목차

- 이전 내용 정리
- 골다공증 분석 모델 소개 및 문제점
- 지적사항 수정 후
- 결론

이전 내용

- Tabular Data 증강
 - 식품영양학과 KoGES ← **가제 아직 진행 중**
 - Imbalanced Classification
 - 증강 연구 안 할 거임
- Anomaly detection
 - 고전 이상치 탐지 알고리즘 공부
 - 최신 이상치 탐지 연구 현황

문제점 보고 해결 방법 모색

골다공증 분석 모델

소개 그리고 문제점

골다공증 분석 모델

- 식품영양학적 정보만으로 골다공증 예측
- 폐경 전 / 후 여자
- KoGES
 - 기본 정보, 의료 정보
 - 영양소 섭취량, 식이 패턴
 - 유전체 정보 등등

여러 알고리즘으로 나온 결과

	식이패턴	식이패턴+유전자	유전자
DT	0.729	0.734	0.679
KNN	0.749	0.749	0.575
SVM	0.667	0.608	0.262
XGB	0.785	0.776	0.713
LGBM	0.789	0.775	0.682

- 그럴듯한 결과?
- 문제점 있음

문제점

- Data Augmentation 오류
 - Train 데이터 뿐만 아니라, Test 데이터도 증강
 - 모델 학습의 순수성 보장 x
- Data Scaling 오류
 - 전체 데이터로 scaling 후 train test 분리...?

지적사항 수정

지적사항 해결

기존

- Data Augmentation
 - X, y 모두 증강

- Data Scaling
 - X, y 전체를 보고 Scaling

개선

- Data Augmentation
 - X_train, y_train만 증강
 - X_test, val 등은 증강 X
- Data Scaling
 - Train, test 각각 Scaling

폐경 전, 식이패턴 있음, 유전체 있음

Confusion Matrix:	Confusion Matrix:	Confusion Matrix:	Confusion Matrix:	Confusion Matrix:	Confusion Matrix:
[[282 12]	[[258 36]	[[294 0]	[[224 10]	[[290 4]	[[290 4]
[11 1]]	[11 1]]	[12 0]]	[9 1]]	[10 2]]	[10 2]]
Accuracy: 0.925 Precison: 0.077 Recall : 0.083 F1 Score: 0.080	Accuracy: 0.846 Precison: 0.027 Recall : 0.083 F1 Score: 0.041	Accuracy: 0.961 Precison: 1.000 Recall : 0.000 F1 Score: 0.000	Accuracy: 0.922 Precison: 0.091 Recall : 0.100 F1 Score: 0.095	Accuracy: 0.954 Precison: 0.333 Recall : 0.167 F1 Score: 0.222	Accuracy: 0.954 Precison: 0.333 Recall : 0.167 F1 Score: 0.222

폐경 후, 식이패턴 있음, 유전체 있음

Confusion Matrix:	Confusion Matrix:	Confusion Matrix:	Confusion Matrix:	Confusion Matrix:	Confusion Matrix:
[[273 97]	[[280 90]	[[119 251]	[[197 98]	[[370 0]	[[370 0]
[84 60]]	[105 39]]	[8 136]]	[68 48]]	[144 0]]	[144 0]]
Accuracy: 0.648	Accuracy: 0.621	Accuracy: 0.496	Accuracy: 0.596 Precison: 0.329 Recall : 0.414 F1 Score: 0.366	Accuracy: 0.720	Accuracy: 0.720
Precison: 0.382	Precison: 0.302	Precison: 0.351		Precison: 1.000	Precison: 1.000
Recall : 0.417	Recall : 0.271	Recall : 0.944		Recall : 0.000	Recall : 0.000
F1 Score: 0.399	F1 Score: 0.286	F1 Score: 0.512		F1 Score: 0.000	F1 Score: 0.000

주요 수치 정리

이전	폐경 전	폐경 후
XGBoost	0.959	0.682
LGBM	0.974	0.713

현재	폐경 전	폐경 후
XGBoost	0.222	0.000
LGBM	0.222	0.000

전체 데이터로 학습했을 때

이전 현재

- Train, test 100% 나왔음
- 학습을 할 수 있는 문제

```
1 # Defining the hyper parameters
      2 hps = {
            'max_depth': 5,
            'min_samples_split': 4
      5 }
      7 # Loading the tree object
      8 tree = DecisionTreeClassifier(**hps)
      9 tree.fit(x, y)
⊡
                       DecisionTreeClassifier
     DecisionTreeClassifier(max_depth=5, min_samples_split=4)
     1 y_pred = tree.predict(x)
      3 SAMCGS(y, y_pred)
       Confusion Matrix:
     [[1764 82]
      [ 535 186]]
       [[TP FN]
       [ FP TN]]
       Accuracy: 0.760
       Precison: 0.694
       Recall : 0.258
       F1 Score: 0.376
```

결론 및 향후 계획

- 왜 이렇게 됐을까..?
- 스케일링 방법 변경
 - 기존: QuantileTransformer
 - 변경 예정..?
 - RobustScaler
 - sklearn.preprocessing Normalizer