

Erreichte Punkte

Handzeichen

Kontinuumsmechanik

Sommersemester 2019

Schriftlicher Test vom 15.07.2019

Nε	ame, Vorn	iame				Matrikelnummer
			Studienga	ang		
nen DIN A4-Blattes z darauf hingewiesen, o zählen insbesondere Ta	u benutze lass keine aschenrec dokument verwende	en. Ander erlei elekt hner, Lap senechten et werden.	re Hilfsmit cronische otops und Stiften (ttel sind i Hilfsmitt Mobiltele	nicht erlau el benutz efone. Skiz	nes einseitig beschriebe- ıbt. Es wird ausdrücklich t werden dürfen. Hierzu zen, Rechnungen und Er- ıntstifte) erstellt werden.
			Untersch	rift		
C	sind auss	schließlic	ch in geg	ebenen (•	gesehenen Kästen ein. nzugegeben. Integrale

Aufgabe 1 [13 Punkte]

Die skizzierte Saite (Länge l, Masse pro Länge $\mu)$ wird durch die Kraft F vorgespannt. Geg.: l, μ, F

a) Geben Sie die Feldgleichung, die Randbedingungen sowie die Wellenausbreitungsgeschwindigkeit \boldsymbol{c} an.

Ergebnisse:			

b) Die Saite wird zum Zeitpunkt $t_0 = 0$ wie skizziert **sinusförmig** mit $w_0(x)$ ausgelenkt und besitzt keine Anfangsgeschwindigkeit. **Geg.:** \hat{w}_0 , l

Geben Sie die Anfangsbedingungen an.

Ergebnisse:

$$w(x,0) =$$

$$\dot{w}(x,0) =$$

c) Bestimmen Sie mittels des Verfahrens der Wellenausbreitung (d'Alembertsche Lösung) die Lösung zum Zeitpunkt $t_1 = \frac{1}{2}l\sqrt{\frac{\mu}{F}}$. Skizzieren Sie diese.

Rechnung:

Ergebnis:

$$w(x,t_1) =$$

Skizze:

$$t_1 = \frac{1}{2}l\sqrt{\frac{\mu}{F}}$$

d	Nach welcher Zeit T ist erstmals wieder die gleiche Auslenkung und Geschwindigkeit w	ie
	bei $t=0$ erreicht? Die wievielte Eigenkreisfrequenz können Sie daraus bestimmen und w	ie
	groß ist sie?	

T =

 $\omega_2 =$

Aufgabe 2 [20 Punkte]

Der skizzierte Euler-Bernoulli-Balken (Länge l, Masse pro Länge μ , Biegesteifigkeit EI) wird durch eine Streckenlast $q(x,t)=q_0\sin(\frac{\pi x}{l})\cos(\Omega t)$ belastet. **Geg:** $l,\ \mu,\ EI,\ q_0,\ \Omega,\ q(x,t)=q_0\sin(\frac{\pi x}{l})\cos(\Omega t)$

a) Geben Sie die Feldgleichung und alle Randbedingungen (sowohl dynamische als auch geometrische) an.

Ergebnisse:	

Rechnung/Ergebnisse:			

c) Skizzieren Sie die erste Eigenform $W_1(x)$ (ohne Rechnung). Wie groß ist die erste Eigenkreisfrequenz ω_1 des Systems?

Hinweis: Die erste Eigenkreisfrequenz ω_1 lässt sich aus der Lösung der Teilaufgabe 2b) ermitteln.

Erste Eigenkreisfrequenz ω_1 :

Aufgabe 3 [21 Punkte]

Der freie (nicht gelagerte) Dehnstab (Länge l, Masse pro Länge μ , Dehnsteifigkei EA) ist an seinem Ende bei $x = -\frac{l}{2}$ mit einer Punktmasse m_1 und an seinem Ende bei $x = \frac{l}{2}$ mit einer Punktmasse m_2 verbunden. Es wirken außerdem die Kräfte $F_1(t)$ und $F_2(t)$. Mit dem **Prinzip von Hamilton** sollen die Feldgleichung sowie die dynamischen Randbedingungen bestimmt werden.

Geg.: $l, m_1, m_2, \mu, EA, F_1(t), F_2(t)$

a) Geben Sie die kinetische Energie T des Systems an.

$$T=$$

b) Geben Sie die potentielle Energie U des Systems an.

U=

c) Geben Sie die virtuelle Arbeit δW potentialloser Kräfte und Momente an.

 $\delta W =$

Ergebnis:					
Bestimmen Sie mit bedingungen.	Prinzip von H	amilton die l	Feldgleichung u	ınd die dynamis	schen Ra
Rechnung:					

Rechnung:		

Rechnung:
Feldgleichung:
dynamische Randbedingung(en):

Aufgabe 4 [21 Punkte]

Gegeben ist ein Torsionsstab (Länge l, Dichte ρ , Schubmodul G, polares Flächenträgheitsmoment I_p) mit einer starren homogenen Enddrehmasse (Massenträgheitsmoment $\Theta^{(S)}$). Mittels des Rayleigh-Quotienten ist eine Abschätzung der ersten Eigenkreisfrequenz vorzunehmen. **Geg:** l, μ , ρ , GI_p , $\Theta^{(S)}$.

a) Geben Sie die Feldgleichung, die Wellenausbreitungsgeschwindigkeit c sowie die geometrische(n) Randbedingung(en) an.

Ergebnisse:	

b) Geben Sie die dynamische(n) Randbedingung(en) an.

Eı	rgebnis(se):				

Rechnung:		

c) Geben Sie das Randwertproblem für $\boldsymbol{\Theta}^{(S)} = \mathbf{0}$ an. Berechnen Sie die erste Eigenform $\Theta_1(x)$

Rechnung:	
Ergebnisse:	
$\omega_1 =$	
$\Theta_1(x) =$	
Skizze:	
$\Theta_1(x)$	
↑	
	
	l x
·	

d) Berechnen Sie mit Hilfe der im Aufgabenteil c) bestimmten ersten Eigenform $\Theta_1(x)$ als Ansatzfunktion eine Näherung $\tilde{\omega}_1$ für die erste Eigenkreisfrequenz ω_1 für den Fall $\Theta^{(S)} > \mathbf{0}$ mittels des Rayleigh-Quotienten. Prüfen Sie für den Fall $\Theta^{(S)} = \mathbf{0}$ die Richtigkeit des Ergebnisses aus Aufgabenteil c) für die erste Eigenkreisfrequenz. Der Rayleigh-Quotient ist gegeben mit:

$$\tilde{\omega}_1^2 = \frac{\int\limits_0^l GI_p \Theta_1'^2(x) dx}{\int\limits_0^l \rho I_p \Theta_1^2(x) dx + \Theta^{(S)} \Theta_1^2(l)}$$

Hinweis:

$$\int \sin^2(ax) dx = \frac{1}{2a} (ax - \sin(ax)\cos(ax)), a = \text{konst.}$$
$$\int \cos^2(ax) dx = \frac{1}{2a} (ax + \sin(ax)\cos(ax)), a = \text{konst.}$$

Rechnung:		

Rechnung:		

Rechnung:	
$\tilde{\omega}_1$ für $\Theta^{(S)} > 0$:	
$\tilde{\omega}_1$ für $\Theta^{(S)}=0$:	