Coordinate System: Plane Polar Coordinates

 Whenever we are dealing with a system with circular symmetry, such as a particle executing circular motion, it is much more convenient to use a different set of coordinates called "Plane Polar Coordinates.

- It is a 2D coordinate system equivalent to Cartesian 2D:(x,y)
- Location of a point specified by (r, θ)
- r is distance from the origin
- $m{ heta}$ is the angle which line joining the point to the origin, makes with the x axis.

Plane polar coordinates contd.

Clearly

$$x = r\cos\theta$$
$$y = r\sin\theta$$

Easy to deduce from above

$$r = \sqrt{x^2 + y^2}$$
$$\theta = \tan^{-1}\left(\frac{y}{x}\right)$$

Plane polar coordinates ...

• Unit vectors denoted as \hat{r} and $\hat{\theta}$ are shown below

- Direction of $\hat{\mathbf{r}}$ is the one in which r increases, but $\boldsymbol{\theta}$ is held fixed.
- Similarly $\hat{\boldsymbol{\theta}}$ is in the direction in which $\boldsymbol{\theta}$ increases, but r is held fixed
- Yet \hat{r} and $\hat{\theta}$ are mutually perpendicular, just like \hat{i} and \hat{j} .
- Also note that unlike Cartesian coordinates, (r, θ) have different dimensions.
- r has dimensions of length, while θ is dimensionless

Plane Polar Coordinates....

- In Cartesian coordinates, directions of unit vectors \hat{i} , \hat{j} and \hat{k} are fixed in space, and same everywhere
- This is not true in plane polar coordinates

Relation between plane polar and Cartesian unit vectors

Consider the figure below

 From above, it is easy to derive the relationship between two sets of unit vectors

$$\hat{\mathbf{r}} = \cos \theta \hat{\mathbf{i}} + \sin \theta \hat{\mathbf{j}}$$
$$\hat{\boldsymbol{\theta}} = -\sin \theta \hat{\mathbf{i}} + \cos \theta \hat{\mathbf{j}}$$

Polar-Cartesian Relationship contd...

• And, the inverse relationship

$$\hat{\mathbf{i}} = \cos\theta \hat{\mathbf{r}} - \sin\theta \,\hat{\boldsymbol{\theta}}$$

$$\hat{\mathbf{j}} = \sin\theta \,\hat{\mathbf{r}} + \cos\theta \,\hat{\boldsymbol{\theta}}$$

Polar-Cartesian Comparison

 Position vector of an arbitrary point P in two coordinate systems is given by

$$r = x\hat{i} + y\hat{j}$$
$$r = r\hat{r}$$

Infinitesimal displacement dr is given by

$$dr = dx\hat{i} + dy\hat{j}$$
$$dr = dr\hat{r} + rd\theta\hat{\theta}$$