CS2040S Data Structures and Algorithms

Dynamic Programming...

Semester Roadmap

Where are we?

- Searching
- Sorting
- Lists
- Trees
- Hash Tables
- Graphs
- Dynamic Programming

You are here

Reminder...

As the semester comes to an end...

If you didn't submit a problem set, you have until Friday of next week to submit it for some credit.

Roadmap

Today and Monday: Dynamic Programming

- Basics of DP
- Example: Longest Increasing Subsequence
- Example: Bounded Prize Collecting
- Example: Vertex Cover on a Tree
- Example: All-Pairs Shortest Paths

Dynamic Programming Basics

Dynamic Programming Basics

Optimal sub-structure:

Optimal solution can be constructed from optimal solutions to smaller sub-problems.

Which of these problems exhibit optimal sub-structure? (Choose all that apply.)

- 1. Sorting
- 2. Reversing a string
- 3. Merging two arrays
- 4. Shortest paths
- 5. Minimum spanning tree

Optimal Sub-structure

Property of (nearly) every problem we study:

- Greedy algorithms
 - Dijkstra's Algorithm
 - Minimum Spanning Tree algorithms

- Divide-and-conquer algorithms
 - MergeSort
 - Fast Fourier Transform

Optimal Sub-structure

Property of (nearly) every problem we study:

- Greedy algorithms
 - Dijkstra's Algorithm
 - Minimum Spanning Tree algorithms

- Divide-and-conquer algorithms
 - MergeSort
 - Fast Fourier Transform

Optimal substructure (simple case):

Optimal substructure (overlapping sub-problems):

The same smaller problem is used to solve multiple different bigger problems.

Overlapping sub-problems:

The same smaller problem is used to solve multiple different bigger problems.

Contrast: Both have optimal substructure

No overlapping subproblems

Divide-and-Conquer

Overlapping subproblems

Dynamic Programming

Basic strategy:

(bottom up dynamic programming)

Step 4: solve root problem

Step 3: combine smaller problems

Step 2: combine smaller problems

Step 1: solve smallest problems

Basic strategy:

(DAG + topological sort)

Step 1: Topologically sort DAG

Step 2: Solve problems in reverse order

Basic strategy:

(top down dynamic programming)

Step 1: Start at root and recurse.

Step 2: Recurse.

Step 3: Recurse.

Step 4: Solve and memoize.

Only compute each solution once.

Table view:

	a	b	С	d	е	f	g	h	i	j	k		m	n	0	р
1	17	22	14	19	8	4	9	12	15	7	5	9	13	14	18	4
2	15	12	13	13	7											
3																
4																
5																
6																
7																
8																
9																
10																
11																

Contrast: Both have optimal substructure

No overlapping subproblems

Divide-and-Conquer

Overlapping subproblems

Dynamic Programming

Roadmap

Today and Monday: Dynamic Programming

- Basics of DP
- Example: Longest Increasing Subsequence
- Example: Bounded Prize Collecting
- Example: Vertex Cover on a Tree
- Example: All-Pairs Shortest Paths

Longest Increasing Subsequence

Input: Sequence of integers

Example: {8, 3, 6, 4, 5, 7, 7}

Output: Increasing subsequence

- Example: {8, 3, 6, 4, 5, 7, 7}

Goal: Output sequence of maximum length

Example: {8, 3, 6, 4, 5, 7, 7}

Longest Increasing Subsequence

Input: Sequence of integers

Example: {8, 3, 6, 4, 5, 7, 7}

Output: Length of increasing subsequence

- Example: $3 \rightarrow \{8, 3, 6, 4, 5, 7, 7\}$

Goal: Output sequence of maximum length

- Example: $4 \rightarrow \{8, 3, 6, 4, 5, 7, 7\}$

Step 1: Topological sort. (Oops, nothing to do.)

Step 2: Calculate longest paths.

Step 2: Calculate longest paths: DAG_SSSP.

Step 2: Calculate longest paths: DAG_SSSP.

Step 2: Calculate longest paths. LIS = max(LP)+1

What is the running time of the DAG alg for a sequence of n numbers?

- 1. O(n)
- 2. O(n log n)
- 3. $O(n^2)$
- 4. $O(n^2 \log n)$
- **✓**5. O(n³)
 - 6. None of the above.

$$V = list of numbers$$

 $|V| = n$
 $|E| = (n + n-1 + n-2 + ...)$

Longest path: $O(V + E) = O(n^2)$

5. LP(5) = 1

Run longest path n times = $O(n^3)$

Overlapping Subproblems

Overlapping Subproblems

Start with the smallest sub-problem: LP(7)

1.
$$LP(7) = 0$$

Calculate LP(5):

- Examine each outgoing edge.
- Find the maximum.
- Add 1.

Calculate LP(4):

- Examine each outgoing edge.
- Find the maximum.
- Add 1.

Calculate LP(6):

- Examine each outgoing edge.
- Find the maximum.
- Add 1.

6.
$$LP(3) = max(1, 2, 1, 0, 0) + 1 = 3$$

Calculate LP(3):

- Examine each outgoing edge.
- Find the maximum.
- Add 1.

Input:

Array A[1..n]

Define sub-problems:

– S[i] = LIS(A[i..n]) starting at A[i]

Example: {8, 3, 6, 4, 5, 7, 7}

- $-S[5] = 2 \rightarrow \{8, 3, 6, 4, 5, 7, 7\}$
- $-S[2] = 4 \rightarrow \{8, 3, 6, 4, 5, 7, 7\}$

Dynamic Programming

Table view:

Entry	Longest path that starts at entry X
7	0
7	0
5	
4	
6	
3	
8	

Input:

Array A[1..n]

Define sub-problems:

– S[i] = LIS(A[i..n]) starting at A[i]

Solve using sub-problems:

- S[n] = 0
- $-S[i] = (max_{(i,j) \in E}S[j]) + 1$

Dynamic Programming Recipe

Step 1: Identify optimal substructure E.g., LIS can be built from suffix LIS

Step 2: Define sub-problems E.g., S[i] = LIS(A[i..n]) starting at A[i]

Step 3: Solve problem using sub-problems E.g., $S[i] = (\max_{(i,j) \in E} S[j]) + 1$

Step 4: Write (pseudo)code.

6.
$$LP(2) = max(1, 2, 1, 0, 0) + 1 = 3$$

Calculate LP(2):

- Examine each outgoing edge.
- Find the maximum.
- Add 1.

LIS(V): // Assume graph is already topo-sorted

```
int[] S = new int[V.length]; // Create memo array
for (i=0; i<V.length; i++) S[i] = 0; // Initialize array to zero
S[n-1] = 1; // Base case: node V[n-1]
for (int v = A.length-2; v >= 0; v -- ) {
   int max = 0; // Find maximum S for any outgoing edge
   for (Node w : v.nbrList()) { // Examine each outgoing edge
             if (S[w] > max) max = S[w]; // Check S[w], which we already
                                           // calculated earlier.
   S[v] = max + 1; // Calculate S[v] from max of outgoing edges.
```

Input:

Array A[1..n]

Let's stop thinking about this as a graph...

Alternate definition:

-S[i] = LIS(A[1..i]) ending at A[i]

Example: {8, 3, 6, 4, 5, 7, 7}

- $-S[4] = 2 \rightarrow \{8, 3, 6, 4, 5, 7, 7\}$
- $-S[5] = 3 \rightarrow \{8, 3, 6, 4, 5, 7, 7\}$

Input:

Array A[1..n]

Let's stop thinking about this as a graph...

Alternate definition:

- S[i] = LIS(A[1..i]) ending at A[i]

Solve using sub-problems:

- S[1] = 0
- $-S[i] = (max_{(j < i, A[j] < A[i])}S[j]) + 1$

LIS(A):

```
int[] S = new int[A.length]; // Create memo array
for (i=0; i<A.length; i++) S[i] = 0; // Initialize array to zero
S[0] = 1; // Base case: length 1
for (int i = 0; i < A.length; i++) {
    int max = 0; // Find maximum S for any preceding node
    for (int j=0; j<i; j++) { // Examine each preceding element in the sequence
             if (A[j] < A[i]) // If A[i] is bigger than A[j]
                      if (S[j] > max)
                               max = S[j]; // If S[j] is longer sequence
    S[i] = max + 1; // Calculate S[i] from max of preceding elements.
```

What is the running time of the LP-LIS alg for a sequence of n numbers?

- 1. O(n)
- 2. O(n log n)
- \checkmark 3. O(n²)
 - 4. $O(n^2 \log n)$
 - 5. $O(n^3)$
 - 6. None of the above.

LIS(A):

```
int[] S = new int[A.length]; // Create memo array
for (i=0; i<A.length; i++) S[i] = 0; // Initialize array to zero
S[0] = 1; // Base case: length 1
for (int i = 0; i < A.length; i++) {
    int max = 0; // Find maximum S for any preceding node
    for (int j=0; j<i; j++) { // Examine each preceding element in the sequence
             if (A[j] < A[i]) // If A[i] is bigger than A[j]
                      if (S[j] > max)
                               max = S[j]; // If S[j] is longer sequence
    S[i] = max + 1; // Calculate S[i] from max of preceding elements.
```

Summary:

```
Greedy subproblems: S[i] = LIS(A[1..i])
```

- n subproblems
- Subproblem i takes takes time O(i)

Total time: $O(n^2)$

Challenge of the Day:

How do you solve LIS in time O(n log n)?

Hint: use binary search to solve subproblems faster.

Roadmap

Today and Monday: Dynamic Programming

- DP Basics
- Longest Increasing Subsequence
- Prize Collecting
- Vertex Cover on a Tree
- All-Pairs-Shortest-Paths

Input:

- Directed Graph G = (V,E)
- Edge weights \mathbf{w} = prizes on each edge

Output:

- Prize collecting path
- Example: 7 + 2 + 1 = 10

What is the maximum prize?

- 1. 1
- 2. 3
- 3. 10
- 4. 15
- 5. 17
- ✓ 6. Infinite

Output:

- Prize collecting path: 7 + 2 + 1 5 + 3 3 4 = 1
- Positive weight cycle → infinite prizes!

Aside: How could we determine if there is a positive weight cycle in a graph?

- 1. Check for positive weight cycles.
- 2. Negate the edges, run BF.

Input:

- Graph G = (V,E)
- Edge weights w = prizes on each edge
- Limit k: only cross at most k edges

Example:

$$-k=1 \rightarrow 7$$

$$-k=2 \rightarrow 9$$

$$-k=3 \rightarrow 10$$

$$- k = 4 \rightarrow 10$$

$$- k = 5 \rightarrow 10$$

- ...

$$- k = 71 \rightarrow 17$$

Note: Not a shortest path problem

- Not a shortest path problem! Longest path...
- Negative weight cycles.
- Positive weight cycles.

Idea 1:

Transform G into a DAG

- Transform G into a DAG
- Make k copies of every node: (v,1), (v,2), (v,3), ...

- Transform G into a DAG
- Make k copies of every node: (v,1), (v,2), (v,3), ...

- Transform G into a DAG
- Make k copies of every node: (v,1), (v,2), (v,3), ...

- Transform G into a DAG
- Make k copies of every node: (v,1), (v,2), (v,3), ...
- Solve prize collecting via DAG_SSSP (longest path)

- Transform G into a DAG
- Make k copies of every node: (v,1), (v,2), (v,3), ...
- Solve longest-path problem for each source.

