CS 2223 Algorithms – D Term 2020

March 25, 2020

Instructor:

Michael Engling mengling@wpi.edu

Lectures:

MTΘF 3:00-3:50

Zoom Room: https://wpi.zoom.us/j/6982696493

Office Hours:

MT RF 4–4:30pm (Immediately after class... in the Zoom Room) Wednesday 3–4:30pm (Classtime on non-class day... in the Zoom Room) Also by arrangement

Teaching Assistants / Office Hours:

Tariq Rakha TBD Zekun Dai TBD

Recommended Background:

- CS 2022 ∧ CS 2102
- Discrete Math and Java.

Course Description:

Building on a fundamental knowledge of data structures, data abstraction techniques, and mathematical tools, a number of examples of algorithm design and analysis, worst case and average case, will be developed. Topics include greedy algorithms, divide-and-conquer, dynamic programming, heuristics, and probabilistic algorithms. Problems will be drawn from areas such as sorting, graph theory, and string processing. The influence of the computational model on algorithm design will be discussed. Students will be expected to perform analysis on a variety of algorithms.

Recommended Textbooks:

Introduction to the Design and Analysis of Algorithms, 3rd edition, 2012; by Anany Levitin; ISBN-10: 0-13-231681-1; ISBN-13: 978-0-13-231681-1

https://doc.lagout.org/science/0_Computer%20Science/2_Algorithms/Introduction%20to%20the%20Design%20and%20Analysis%20of%20Algorithms%20%283rd%20ed.%29%20%5BLevitin%202011-10-09%5D.pdf

Other Textbooks:

Introduction to Algorithms, 3rd edition, MIT Press, 2009; by T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein; ISBN 978-0-262-03384-8

URL:https://mitpress.mit.edu/books/introduction-algorithms

Algorithm Design, Addison-Wesley, 2005;

by J. Kleinberg, E. Tardos;

ISBN-10 0-321-29535-8; ISBN-13: 978-0-321-29535-4

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/

Algorithms in a Nutshell: A Practical Guide, O'Reilly, 2nd edition, 2016;

by by George T. Heineman, Gary Pollice, Stanley Selkow;

ISBN-10: 1-491-94892-2; ISBN-13: 978-1-491-94892-7

http://www.r-5.org/files/books/computers/algo-list/common/Heineman_

Pollice_Selkow-Algorithms_in_a_Nutshell-EN.pdf

Student Accomodations:

Students with disabilities who need to utilize accommodations in this course are encouraged to contact the Office of Disability Services (ODS) as soon as possible to ensure that such accommodations are implemented in a timely fashion. That office can be contacted via email: DisabilityServices@wpi.edu, via phone: (508) 831-4908, or in person: 124 Daniels Hall. If you have approved accommodations, please request your accommodation letters online through the Office of Disability Services Student Portal.

Objectives:

- Calculate the asymptotic running time of standard algorithms.
- Explain the meaning of big Oh, Theta, and Omega notations and use them to reason about the performance of diverse algorithms.
- Use the Master Theorem to prove asymptotic assumptions.
- Implement standard algorithms using graphs and weighted graphs in an object-oriented programming language, e.g. Depth-First Search, Breadth-First Search, Minimum Spanning Tree algorithms.
- Compare and analyze basic and advanced sorting algorithms.
- \bullet Implement advanced search trees such as B-trees, AVL trees, & 2-3 trees.
- Implement numerical algorithms such as Gaussian elimination, binary exponentiation, and the simplex method.
- Apply standard algorithm design techniques such as the greedy technique, dynamic programming, hashing, space/time trade-offs, reduction, backtracking, and branch-and-bound.

Grading: (Total 1000 points)

Programming Assignments (Homeworks)

[500 points]

There will be six programming assignments using Java. We will begin with an introductory exercise worth 50 points. Homeworks 2 and 3 will be somewhat more involved and be worth 75 points each. The final three Homeworks will each have a more sophisticated implementation and count for 100 points each.

Midterm Exam	$[\ 140 \ \mathrm{points} \]$
Final Exam	[150 points]
Quizzes (Best 21 of at least 24)	[210 points]

Final letter grades will be assigned on the following basis:

A = 900 pointsB = 800 points

C = 655 points

NR < 650 points

Programming Assignments / Homeworks:

Homework 0	Introduction and Setup	10 (Bonus) Points	Due March 28
Homework 1	Double Trouble	50 Points	Due April 4
Homework 2	TBA	75 Points	Due April 11
Homework 3	TBA	75 Points	Due April 18
Homework 4	TBA	100 Points	Due April 25
Homework 5	TBA	100 Points	Due May 2
Homework 6	TBA	100 Points	Due May 9
Total		500 Points	

Homeworks will be assigned on Wednesdays. They will be due at 2pm on the second Saturday after they are assigned, so you will always have more than 9 full days to work on them and ask questions about them. Homeworks will usually contain at least two significant problems from topics recently discussed in class sessions. Do not put off working on them until the last day or two.

Late Homework Policy:

- Homeworks submitted after 2 pm on the Saturday due date or anytime on the following Sunday will incur a 10% penalty.
- Homeworks submitted on Monday will incur a 25% penalty.
- Homeworks not submitted by midnight Monday will receive a grade of 0.

Academic Integrity:

We will, perforce, be conducting all our interactions online, from a distance. We will make use of the Piazza forum within Canvas, and we'll have numerous opportunities to collaborate and share ideas, dispersed though we may be. That being said, it is incumbent on you to do your own work and submit your own code. You are encouraged to consult me, the TAs, and your classmates. Annotate your work in comments; credit those who spark your understanding; write your own code for the Homeworks, and do the Quizzes and Exams solo.

Week	M	T	W	Θ	F
		March 24	March 25	March 26	March 27
	Data Structures		Introduction	Size of Input	Recurrence
0	Non-Recursive		Terminology	Orders of Growth	Relations
	Algorithms		Day 0		
	O, Θ, Ω notations		HW 0 Due: Sat 2pm	Day 1	Day 2
	March 30	March 31	Brute Force	April 2	April 3
	Selection Sort	Searching	Exhaustive Search	Insertion Sort	Generating
1	Bubble Sort	Depth First	Decrease & Conquer	Topological	Permutations
		Breadth First		Sorting	and Sets
	Day 3	Day 4	HW 1 Due: Sat 2pm	Day 5	Day 6
	April 6	April 7	Master Theorem	April 9	April 10
	Mergesort		Divide & Conquer	Master	Horner's Rule
2		Heapsort		Theorem	Square &
	Quicksort		Transform & Conquer		Multiply
	Day 7	Day 8	HW 2 Due: Sat 2pm	Day 9	Day 10
	April 13	April 14		April 16	April 17
	DP Basics	Knapsack	Dynamic Programming	Gaussian	
3		Problem		Elimination	Midterm Exam
			Transform & Conquer		
	Day 11	Day 12	HW 3 Due: Sat 2pm	Day 13	Day 14
	April 20	April 21		April 23	April 24
		Minimum	Greedy	Dijkstra's	Huffman
4	Patriot's Day	Spanning Trees	Algorithms	Algorithm	Codes
	N. CI	D 45		D 46	D 45
	No Class	Day 15	HW 4 Due: Sat 2pm	Day 16	Day 17
	April 27	April 28	G 1.777	April 30	May 1
	Closed & Open	D 1. 1.	Space and Time	Horspool's	Bipartite
5	Hashing	Backtracking	Trade-Offs	Algorithm	Matching
	Dog 10	Day 10	IIW 5 Due: Cet 2mm	Day 20	Stable Marriage
	Day 18	Day 19	HW 5 Due: Sat 2pm	Day 20	Day 21
	May 4 Branch	May 5 Max Flow	Iterative Improvement	May 7 Counting	May 8
6	and	and	Limitations of	Paths in	AVL Trees
0	Bound	Min Cut	Algorithmic Power	Graphs	AVL Hees
	Day 22	Day 23	HW 6 Due: Sat 2pm	Day 24	Doy 25
	May 11	May 12	11 vv o Due: Sat 2pm	May 14	Day 25 May 15
	1v1ay 11	1V1ay 12	P, NP, NP-complete	1v1ay 14	Iviay 10
7	P, NP, NP-complete	Final Exam	1, IVI, IVI -complete		
'	1, 1vi, 1vi -complete	r mai Ezam	FINAL EXAM		
	Day 26	Day 27	FINAL EAAW		
	ı		1		