บทที่ 13

การวิเคราะห์และออกแบบระบบเชิงวัตถุด้วย UML

การวิเคราะห์และออกแบบระบบเชิงวัตถุเป็นแนวคิดที่พยายามจัดระบบกระบวนการพัฒนาระบบงาน ให้มีระเบียบ และสามารถนำโปรแกรมที่เคยเขียนมาก่อนให้สามารถนำกลับมาใช้งานใหม่ การวิเคราะห์ระบบ เชิงวัตถุเป็นการอธิบายระบบสารสนเทศว่าประกอบด้วยสิ่งต่าง ๆ ที่เรียกว่า วัตถุ (Object) ทั้งที่จับต้องได้และ จับต้องไม่ได้ ผลลัพธ์สุดท้ายของการวิเคราะห์ระบบเชิงวัตถุก็คือ แบบจำลองเชิงวัตถุ (Object Model) ที่ นำเสนอระบบสารสนเทศในลักษณะเชิงวัตถุ จากนั้นในระหว่างขั้นตอนของการพัฒนาระบบในวงจรการพัฒนา ระบบ (SDLC) สามารถแปลงเป็นการออกแบบเชิงวัตถุได้โดยตรงโดยใช้โปรแกรมเชิงวัตถุในการพัฒนา เช่น C++ Java เป็นต้น

13.1 แนวคิดเชิงวัตถุ

แนวคิดเชิงวัตถุมุ่งเน้นสิ่งต่าง ๆ ที่ใกล้เคียงกับโลกแห่งความจริงในลักษณะรูปธรรมโดยมองระบบเป็น กลุ่มของวัตถุที่มีปฏิกริยาต่อกันด้วยการนำข้อมูลและฟังก์ชันการทำงานรวมเข้าด้วยกันเป็นวัตถุ ทำให้ข้อมูลที่ เป็นวัตถุนั้นสามารถอธิบายคุณสมบัติรวมทั้งฟังก์ชันการทำงานในตัวเองได้

1. วัตถุหรืออ็อบเจ็กต์ (Object)

คือ ทุกสิ่งที่เราสนใจในเหตุการณ์ใดเหตุการณ์หนึ่งทั้งที่จับต้องได้และจับต้องไม่ได้ เช่น คน สถานที่ เหตุการณ์ หรือรายการต่าง ๆ เป็นต้น วัตถุจะประกอบด้วยคุณสมบัติ กิจกรรม การกระทำ วิธีการ และมี ความสัมพันธ์กันระหว่างวัตถุภายในระบบ

2. คลาส (Class)

คือ กลุ่มของวัตถุที่มีโครงสร้างและพฤติกรรมที่เหมือนกัน หรืออาจเปรียบได้ว่า คลาส เปรียบเสมือนแม่พิมพ์ที่ใช้เพื่อสร้างวัตถุ เช่น นิยามคลาสของรถยนต์ว่ามี 4 ล้อ ใช้น้ำมันเป็นเชื้อเพลิง ฉะนั้นจึง สามารถจัดรถยนต์ฮอนด้า รถยนต์โตโยต้า รถยนต์ฟอร์ด เป็นอ็อบเจ็กต์ของคลาสรถยนต์ได้ แต่ไม่สามารถจัด รถจักรยานยนต์เป็นอ็อบเจ็กต์ในคลาสรถยนต์ได้เพราะมีคุณสมบัติไม่ตรงกับนิยามที่วางไว้ เป็นต้น คลาส ประกอบด้วย ชื่อของคลาส แอททริบิวท์ และโอเปอเรชั่น ในภาพที่ 13.1 แสดงคลาส Student ที่มี 6 แอททริบิวท์ และ 2 โอเปอเรชั่น

ภาพที่ 13.1 คลาสนักศึกษา (Student)

3. แอททริบิวท์ (Attributes)

คือ คุณสมบัติที่ใช้บรรยายคลาสหรืออ็อบเจ็กต์โดยคุณสมบัติเหล่านี้อยู่ภายในขอบเขตที่เราสนใจ เท่านั้น เช่น จากอ็อบเจ็กต์รถยนต์ฮอนด้าในคลาสรถยนต์ คุณสมบัติที่สามารถอธิบายคลาสรถยนต์ได้คือ สี ขนาดเครื่องยนต์ รุ่น ความเร็ว เป็นต้น เช่น คลาสStudent มีแอททริบิวท์ที่บรรยายคุณสมบัติได้ คือ รหัส นักศึกษา (StudentID) ชื่อ-สกุล (Name) ที่อยู่ (Address) เบอร์โทรศัพท์ (TelephoneNumber) กรุ๊ปเลือด (Blood) และสาขาวิชา (Subject)

4. การดำเนินการหรือโอเปอเรชั่น (Operation) หรือ เมธอด (Method)

ในอ็อบเจ็กต์แต่ละอ็อบเจ็กต์ต้องมีความสามารถในการดำเนินการ หมายถึง การกระทำที่อ็อบ เจ็กต์สามารถกระทำได้หรือสามารถถูกร้องขอให้กระทำได้ ความสามารถในการดำเนินการบางอย่างถูกแสดง ออกมาให้เห็นเป็นพฤติกรรมได้ต้องเกิดจากการสื่อสารหรือปฏิสัมพันธ์กันระหว่างอ็อบเจ็กต์ ในทางการเขียน โปรแกรม เมธอด (Method) เป็นชุดคำสั่งที่เขียนขึ้นมาอย่างเป็นลำดับขั้นตอนเพื่อให้มีการดำเนินการขึ้นมักใช้ คำว่า "Operation" และ "Method" ในความหมายเดียวกัน เช่น คลาสรถยนต์มีโอเปอเรชัน วิ่ง เลี้ยว สตาร์ท เครื่องยนต์ ดับเครื่องยนต์ เป็นต้น คลาส Student มีความสามารถในการดำเนินการได้ คือ ลงทะเบียน (Register())ยกเลิกรายวิชา (DropCourse())

5. การสืบทอดคุณสมบัติ (Inheritance)

เป็นวิธีการในการสร้างคลาสใหม่จากคลาสเดิมที่มีอยู่ การสืบทอดคุณสมบัติถือเป็นเรื่องที่สำคัญ สำหรับเทคโนโลยีเชิงวัตถุ เนื่องจากการสืบทอดคุณสมบัตินี้ทำให้เกิดข้อดี คือ ทำให้ได้ระบบที่มีโครงสร้างที่เป็น ระบบ ปรับเปลี่ยนได้ง่าย และทำให้ลดเวลา ค่าใช้จ่ายในการพัฒนาระบบการสืบทอดคุณสมบัติของคลาสใน ระบบทำให้เกิดคลาสย่อย (Subclass) คลาสย่อยจะรับคุณสมบัติของคลาสที่ให้กำเนิด ซึ่งเรียกว่า คลาสหลัก (Super Class) เช่น คลาส Employee เป็นคลาสหลักที่มีแอททริบิวท์ 8 แอททริบิวท์ที่อธิบายคุณสมบัติของ คลาส Employee และมีโอเปอเรชัน 4 โอเปอเรชัน จากคลาส Employee สามารถสืบทอดคุณสมบัติของ คลาสให้เกิดเป็นคลาสย่อยคือ คลาส Manager ที่มีคุณสมบัติทุกอย่างเหมือนคลาสหลัก แต่มีคุณสมบัติเพิ่ม ขึ้นมาคือมีแอททริบิวท์เงินประจำตำแหน่ง (Ex_salary) และโอเปอเรชันออกคำสั่ง (Order) ซึ่งเป็น ลักษณะเฉพาะของคลาส Manager ดังแสดงในภาพที่ 13.2

6. โพลิมอร์ฟิสซึม (Polymorhpism)

หมายถึง คลาสต่างกันสามารถตอบสนองต่อการดำเนินการชื่อเดียวกัน โดยอาจให้พฤติกรรมหรือ วิธีการกระทำต่อการดำเนินการนั้นต่างกันได้ เช่น Draw() คือ ฟังก์ชันการวาดซึ่งมีความสามารถในการวาดรูป ได้หลายลักษณะมิได้เฉพาะเจาะจงเช่น การวาดรูปวงกลม วงรี สามเหลี่ยม สี่เหลี่ยม เป็นต้น ซึ่งหากต้องการให้ มีการตอบสนองรูปวาดต่าง ๆ ผู้ใช้สามารถติดต่อได้ด้วยการใช้ฟังก์ชัน Draw()เพียงฟังก์ชันเดียวส่วนจะมีการ ตอบสนองการวาดในลักษณะใดนั้นขึ้นอยู่กับรายละเอียดของคำสั่ง ดังนั้นผู้ใช้งานไม่จำเป็นต้องจดจำฟังก์ชันใน การวาดมากมายซึ่งแตกต่างจากการเขียนโปรแกรมแบบเดิมที่จำเป็นต้องมีฟังก์ชันการวาดต่าง ๆ ในการวาดรูป เหล่านั้น เช่น ฟังก์ชันวาดรูปสี่เหลี่ยม ฟังก์ชันวาดรูปสามเหลี่ยม ฟังก์ชันวาดรูปวงกลม เป็นต้น

ภาพที่ 13.2 ตัวอย่างการสืบทอดคุณสมบัติ

7. เอ็นแคปซูเลชัน (Encapsulation)

หมายถึง กระบวนการซ่อนรายละเอียดของคุณลักษณะต่าง ๆ และรายละเอียดการทำงานของ คลาสไว้ภายในโดยการที่สิ่งที่อยู่ภายนอกคลาสจะติดต่อกับคลาสได้ต้องติดต่อผ่านทางช่องทางที่คลาสเตรียมไว้ ให้เท่านั้น หลักการนี้ทำให้เกิดการมองคลาสใน 2 ลักษณะคือ การมองคลาสจากภายใน และมองคลาสจาก ภายนอก ถ้ามองคลาสจากภายในตัวคลาสเองจะเห็นรายละเอียดทั้งหมดของคลาสแต่ถ้ามองคลาสจากภายนอก จะเห็นเฉพาะสิ่งที่คลาสเปิดเผยให้ได้เห็นผ่านทางที่กำหนดเท่านั้น การที่สิ่งที่อยู่ภายนอกคลาสไม่สามารถเห็น รายละเอียดของคลาสจากภายนอกได้นั้นเรียกว่า การซ่อนข้อมูล (Information Hiding) ซึ่งหมายถึง การซ่อน รายละเอียดของแอททริบิวท์และการดำเนินการของคลาสจากภายนอก ระดับในการเข้าถึงแอททริบิวท์และ โอเปอเรชันของคลาส มี 3 ระดับ คือ ไพรเวต (Private) โปรเท็กเท็ต (Protected) และพับลิก (Public)

- 7.1 ไพรเวต แอททริบิวท์และ/หรือการดำเนินการของคลาสที่ถูกกำหนดเป็นไพรเวต ไม่ถูกเปิดเผย แก่ภายนอกและไม่สามารถเข้าถึงได้โดยตรงจากภายนอก แต่สามารถเข้าถึงได้จากภายในตัวคลาสเอง สัญลักษณ์ที่ใช้ระบุในแผนภาพว่าแอททริบิวท์ใดการดำเนินการใดเป็นไพรเวตคือ เครื่องหมายลบ (-)
- 7.2 โปรเท็กเท็ต แอททริบิวท์และ/หรือการดำเนินการของคลาสที่ถูกกำหนดให้เป็นโปรเท็กเท็ต จะไม่ถูกเปิดเผยแก่ภายนอกและไม่สามารถเข้าถึงได้โดยตรงจากภายนอก แต่สามารถเข้าถึงได้จากภายในตัว คลาสเองโปรเท็กเท็ตแอททริบิวท์และโปรเท็กเท็ตโอเปอเรชั่นจะถูกถ่ายทอดไปให้กับคลาสย่อยและสามารถ เข้าถึงได้จากภายในซับคลาสสัญลักษณ์ที่ใช้ในแผนภาพคือ เครื่องหมายชาร์ป (#)
- 7.3 พับลิก แอททริบิวท์และ/หรือการดำเนินการของคลาสที่ถูกกำหนดให้เป็นพับลิกจะถูก เปิดเผยและถูกเข้าถึงได้โดยตรงจากภายนอกไม่มีการปกปิดใด ๆ ทั้งสิ้น รวมทั้งยังสามารถถ่ายทอดไปยังคลาส ย่อยได้ด้วยแอททริบิวท์และการดำเนินการที่ถูกกำหนดให้เป็นพับลิกสัญลักษณ์ที่ใช้ในแผนภาพคือ เครื่องหมาย บวก (+)

ประโยชน์ของการห่อหุ้มแอททริบวิท์และการดำเนินการ คือ สามารถป้องกันความเสียหายของ แอททริบิวท์และการดำเนินการจากการเข้าถึงของอ็อบเจ็กต์อื่นโดยไม่ได้รับอนุญาต เนื่องจากถ้ามีการอนุญาต ให้อ็อบเจ็กต์อื่นสามารถเข้าถึงส่วนของโปรแกรมทั้งหมดจะส่งผลให้แอททริบิวท์และเมธอดนั้นถูกเรียกไปใช้งาน อย่างผิด ๆ ได้ง่ายทำให้ค่าของแอททริบิวท์เปลี่ยนแปลงไปซึ่งอาจทำให้โปรแกรมทำงานผิดพลาดได้

13.2 แอ็บสเตรคชั่น (Abstraction)

แอ็บสเตรคชั่นเป็นการมองสิ่งต่าง ๆ แล้วใส่ความคิดรวบยอด (Concept) ให้กับสิ่งที่มองนั้นว่ามี คุณลักษณะที่สำคัญอย่างไรหรือกล่าวว่าแอ็บสเตรคชั่น คือ กระบวนการในการสร้างแนวคิดของคลาสจากกลุ่ม ของอ็อบเจ็กต์ที่สนใจ ดังนั้นการมองอ็อบเจ็กต์หนึ่งชนิดของคนหลายคนจะมีมุมมองที่แตกต่างกันขึ้นอยู่กับ ความสนใจในสิ่งนั้น แอ็บสเตรคชั่นเป็นส่วนหนึ่งที่ช่วยในการวิเคราะห์ถึงปัญหาของระบบงานที่ต้องการพัฒนา ซึ่งมีกระบวนการ 4 ประเภท คือ Classification Abstraction Association Abstraction Aggregation Abstraction และ Generalization Abstraction

1. Classification Abstraction

คือ กระบวนการในการให้แนวคิดกับอ็อบเจ็กต์ที่สนใจ เพื่อก่อให้เกิดแนวคิดของคลาส หัวใจสำคัญ ของClassification Abstraction คือ แนวคิดรวบยอดที่ให้แก่อ็อบเจ็กต์ การให้แนวความคิดคือ การให้ขอบเขต แก่อ็อบเจ็กต์ว่าต้องมีคุณลักษณะอะไรบ้าง

2. Association Abstraction

Association หมายถึง ความสัมพันธ์ระหว่างคลาส หรืออ็อบเจ็กต์ที่อยู่ในระดับเดียวกันคือ คลาส ทั้งสองมีความสำคัญเท่าเทียมกันไม่มีคลาสใดเป็นองค์ประกอบของคลาสใด เช่น ลูกค้าจัดทำใบสั่งซื้อสินค้า นักศึกษาลงทะเบียนวิชาเรียน สินค้าอยู่ในคลังสินค้า เป็นต้น และกระบวนการในการหาความสัมพันธ์ระหว่าง คลาสที่สนใจในลักษณะที่คลาสทั้งสองมีความเกี่ยวข้องกันในระดับเดียวกัน เรียกว่า Association Abstraction คลาสที่มีความสัมพันธ์กันถูกเชื่อมความสัมพันธ์ด้วยชื่อความสัมพันธ์ (Association Name) เช่น ลูกค้าจัดทำ ใบสั่งชื้อ คลาสลูกค้ากับคลาสใบสั่งซื้อถูกเชื่อมความสัมพันธ์ด้วยAssociationที่ชื่อว่าจัดทำ เป็นต้น ดังนั้นการ เขียนสัญลักษณ์แทนความสัมพันธ์ระหว่างคลาสจึงควรระบุชื่อ Associationไว้ด้วยโดยอาจใช้ลูกศรแสดงให้เห็น ทิศทางของความสัมพันธ์

ตัวอย่าง แสดง Association Abstraction "นักศึกษาลงทะเบียนวิชาเรียน"

Student	register		Subject
	11	0*	

ภาพที่ 13.3 Association Abstraction

3. Aggregation Abstraction

เป็นความสัมพันธ์อีกชนิดหนึ่ง โดยที่ Aggregation หมายถึง ความสัมพันธ์ระหว่างคลาสหรืออ็อบ เจ็กต์แบบต่างระดับกัน คือ คลาสหนึ่งมีความสัมพันธ์แบบเป็นองค์ประกอบของอีกคลาสหนึ่งและกระบวนการ ในการหาความสัมพันธ์ระหว่างคลาสในลักษณะนี้เรียกว่า Aggregation Abstraction สัญลักษณ์ความสัมพันธ์ แบบ Aggregation ใช้เส้นตรงหัวข้าวหลามตัดโปร่งเชื่อมทั้งสองคลาสหันหัวข้าวหลามตัดโปร่งไปทางด้านคลาส ที่เป็นคลาสหลัก

ตัวอย่าง ห้องเรียน (Class) เกิดจากการรวมกันของนักศึกษา (Student) อย่างน้อยหนึ่งคน อาจารย์ผู้สอน (Lecturer) หนึ่งคน และอุปกรณ์การสอน (TeachingMaterial) ซึ่งอาจจะมีหรือไม่มีเลยก็ได้

ภาพที่ 13.4 ความสัมพันธ์แบบ Aggregation

4. Generalization Abstraction

Generalization หมายถึง ความสัมพันธ์แบบต่างระดับระหว่างคลาสหลัก (Superclass) กับคลาส ย่อย (Subclass) โดยที่คลาสย่อยจะสืบทอดคุณลักษณะทั้งแอททริบิวท์และการดำเนินการที่สำคัญของคลาส หลักนั้นมาด้วยทำให้คลาสรองมีแอททริบิวท์และการดำเนินการบางอย่างเหมือน กับคลาสหลัก ในขณะเดียวกัน คลาสย่อยก็จะสามารถสร้างแอททริบิวท์และการดำเนินการเพิ่มเติมได้ด้วย

ตัวอย่าง ในการสั่งซื้อสินค้า ลูกค้าสามารถเลือกได้ว่าจะชำระเงินด้วยวิธีใดระหว่างการชำระด้วยเช็ค และชำระ ด้วยบัตรเครดิต ไม่ว่าลูกค้าจะเลือกชำระเงินด้วยวิธีใดก็จัดเป็นใบสั่งซื้อเหมือนกัน จะแตกต่างกันเพียง รายละเอียดของการชำระเงินเท่านั้น ดังนั้นคลาสใบสั่งซื้อสินค้าจึงสามารถถ่ายทอดคุณลักษณะไปยังคลาสใหม่ คือ คลาสใบสั่งซื้อด้วยเช็ค (OrderCheque) และใบสั่งซื้อด้วยบัตรเครดิต (OrderCredit) โดยที่ทั้งสองคลาส ใหม่มีแอททริบิวท์และการดำเนินการเพิ่มเติมตามสมควร

ภาพที่ 13.5 แผนภาพแสดง Generalization Abstraction

13.3 ภาษายูเอ็มแอล

ยูเอ็มแอล (Unified Modeling Language : UML) เป็นภาษาสัญลักษณ์รูปภาพมาตรฐานที่ใช้เพื่อ ถ่ายทอดความคิดที่มีต่อระบบให้ออกมาเป็นแผนภาพซึ่งประกอบไปด้วยรูปภาพหรือสัญลักษณ์ตามกฎในการ สร้างแผนภาพซึ่งเรียกได้ว่ายูเอ็มแอลเป็นภาษาสำหรับใช้ในการสร้างแบบจำลองเชิงวัตถุ

13.3.1 ข้อดีของยูเอ็มแอล

ในการใช้ยูเอ็มแอลเป็นภาษามาตรฐานในการวิเคราะห์และออกแบบระบบเชิงวัถตุ จะมีข้อดี หลายประการดังนี้

- 1. เป็นภาษารูปภาพมาตรฐาน หรือภาษาสากลที่ใช้ในการพัฒนาซอฟต์แวร์เชิงวัตถุและ สามารถใช้ในการเปลี่ยนแบบจำลองได้อย่างสื่อความหมายรวมถึงการจัดสร้างเอกสารการวิเคราะห์ออกแบบ ระบบ การประยุกต์ใช้ยูเอ็มแอลจะทำให้ผู้ร่วมงานมีความเข้าใจและสามารถแลก เปลี่ยนผลของการวิเคราะห์ และออกแบบระบบในขั้นตอนต่าง ๆ ได้อย่างรวดเร็วและตรงกัน
- 2. สามารถนำเสนอและสนับสนุนหลักการเชิงวัตถุได้อย่างครบถ้วน ชัดเจน ทำให้นักพัฒนา ระบบสามารถทำความเข้าใจปัญหาและค้นพบวิธีการแก้ไขได้อย่งรวดเร็วและง่ายยิ่งขึ้น
- 3. ไม่ผูกติดกับภาษาโปรแกรมภาษาใดภาษาหนึ่ง คือสามารถถูกแปลงเป็นระบบจริง ด้วย ภาษาเชิงวัตถุใดก็ได้
 - 4. เป็นภาษาที่ง่ายต่อการทำความเข้าใจ
- 5. สามารถถูกแปลงเป็นภาษาที่ใช้ในการสร้างระบบขึ้นจริงได้อย่างอัตโนมัติทำให้ลดเวลา และค่าใช้จ่ายในการพัฒนาระบบ
 - 6. สนับสนุนการขยายปรับปรุงระบบ
- 7. ในการพัฒนาสิ่งต่าง ๆ จะถูกบันทึกความคิดของนักพัฒนาในลักษณะของเอกสารที่พร้อม จะนำมาทำความเข้าใจได้อย่างรวดเร็ว

13.3.2 องค์ประกอบของยูเอ็มแอล

องค์ประกอบของภาษายูเอ็มแอลมี 3 ส่วน คือ

- 1. สัญลักษณ์ทั่วไป (Things) คือสัญลักษณ์พื้นฐานที่ถูกใช้งานในการสร้างไดอะแกรม แบ่งเป็นหมวดย่อยได้ดังนี้
- 1) หมวดโครงสร้าง (Structural) ได้แก่ ยูเคส คลาส อินเทอร์เฟซ คอมโพเนนต์ คอลแล บอเรชั่น และโหนด
- 2) หมวดพฤติกรรม (Behavioral) คือส่วนที่เป็นไดนามิกของยูเอ็มแอล ซึ่งได้แก่ อินเตอร์ แอ็กชั่น สเตตแมชชีน
- 3) หมวดการจัดกลุ่ม (Grouping) เพื่อใช้ในการรวบรวมองค์ประกอบต่าง ๆ ในโมเดลให้ เหมาะสม ได้แก่ แพ็กเกจ
 - 4) หมวดคำอธิบายประกอบ (Annotational) ได้แก่ โน้ต (Note)
 - 2. ความสัมพันธ์ (Relationship) มี 3 ชนิด คือ
 - 1) ความสัมพันธ์แบบพึ่งพา (Dependency Relationship)

- 2) ความสัมพันธ์แบบเกี่ยวพัน (Association Relationship)
- 3) ความสัมพันธ์แบบเจเนอรัลไลเซชั่น (Generalization Relationship)
- 3. ไดอะแกรมต่าง ๆ (Diagram)

ยูเอ็มแอลประกอบด้วย 8 ไดอะแกรม แต่ละไดอะแกรมเปรียบเสมือนมุมมองในด้านต่าง ๆ ของระบบที่กำลังพัฒนาซึ่งช่วยให้การวิเคราะห์และออกแบบระบบเป็นไปได้อย่างมีประสิทธิภาพและง่ายยิ่งขึ้น

- 1) ยูสเคสไดอะแกรม (Use Case Diagram) ใช้ในการจำลองฟังก์ชันการทำงานของ ระบบ
 - 2) คลาสไดอะแกรม (Class Diagram) ใช้ในการจำลองคลาสต่าง ๆ ที่จำเป็นในระบบ
 - 3) แอ็กทิวิตี้ไดอะแกรม (Activity Diagram) มีหลักการเช่นเดียวกับโฟลว์ชาร์ต
- 4) สเตตชาร์ตไดอะแกรม (Statechart Diagram) ใช้สำหรับแสดงถึงสถานะของ อ็อบเจ็กต์ในระหว่างการทำงาน
- 5) คอลลาบอเรชั่นไดอะแกรม (Collaboration Diagram) ใช้แสดงการทำงานร่วมกัน ของอ็อบเจ็กต์ในระบบ
- 6) ซีเควนซ์ไดอะแกรม (Sequence Diagram) ใช้ในการจำลองกิจกรรมต่าง ๆ ที่เกิด ขึ้นกับอ็อบเจ็กต์ในระบบ
- 7) คอมโพเนนต์ใดอะแกรม (Component Diagram) ใช้สำหรับสร้างโมเดลของ คอมโพเนนต์ในระบบ
- 8) ดีพลอยเมนต์ไดอะแกรม(Deployment Diagram) ใช้แสดงการติดตั้งใช้งาน ส่วนประกอบต่าง ๆ ของระบบ

13.4 ยูเคสไดอะแกรม

เมื่อเริ่มต้นการพัฒนาระบบทุกครั้งผู้พัฒนาจะต้องเริ่มต้นที่ขั้นตอนแรก คือการค้นหาและเก็บ รวบรวมข้อมูล ความสามารถของระบบที่ผู้ใช้ต้องการซึ่งถือว่าสำคัญมากในการพัฒนาระบบในมาตรฐาน ยูเอ็มแอลจะใช้ยูสเคสไดอะแกรมเพื่อเป็นเทคนิคในการจำลองความต้องการของผู้ใช้รวมถึงแสดงความสามารถ ของระบบ ยูสเคสไดอะแกรมเป็นไดอะแกรมมาตรฐานที่สามารถทำความเข้าใจได้โดยง่าย

13.4.1 ส่วนประกอบสำคัญในยูสเคสไดอะแกรม

ส่วนประกอบที่สำคัญของยูสเคสไดอะแกรมมี 3 ส่วนคือ ยูสเคส (Use Case) แอ็กเตอร์ (Actor) เส้นแสดงความสัมพันธ์ (Relationship) ในการสร้างยูสเคสไดอะแกรมสิ่งสำคัญคือการค้นหาว่าระบบ ทำอะไรได้บ้าง โดยไม่สนว่าจะทำงานอย่างไรหรือใช้เทคนิคการสร้างอย่างไร

- 1. ยูสเคส คือ ความสามารถหรือฟังก์ชันที่ระบบจะต้องทำได้จึงจะถือว่าระบบไม่มี ข้อผิดพลาด ซึ่งมีคุณสมบัติดังนี้
 - 1) ต้องถูกกระทำโดยแอ็กเตอร์และแอ็กเตอร์เป็นผู้ติดต่อกับระบบตามยูสเคสที่กำหนด
- 2) ยูสเคสรับข้อมูลจากแอ็กเตอร์และส่งข้อมูลให้แอ็กเตอร์ นั่นคือแอ็กเตอร์ กระทำกับ ยูสเคสโดยการส่งข้อมูลเข้าสู่ระบบตามยูสเคสหรือรอรับค่าที่ระบบส่งกลับให้

3) ยูสเคสถือว่าเป็นการรวบรวมคุณลักษณะความต้องการในระบบอย่างสมบูรณ์ เปรียบเสมือนเป็นการสรุปความต้องการของลูกค้าออกเป็นข้อ ๆ

ยูสเคสในยูเอ็มแอลแทนด้วยรูปวงรี มีชื่อยูสเคสอยู่ข้างใน และทุกยูสเคสจะอยู่ภายใต้ กรอบสี่เหลี่ยมซึ่งหมายถึงระบบ

ภาพที่ 13.6 สัญลักษณ์ของยูสเคส

2. แอ็กเตอร์ คือ ผู้ที่กระทำกับยูสเคสหรือใช้งานยูสเคสอาจเป็นคนหรือไม่ก็ได้ซึ่งจะเป็นผู้ที่ ส่งข้อมูลหรือรับข้อมูล หรือแลกเปลี่ยนข้อมูลข่าวสารกับระบบที่กำลังพัฒนา ชื่อของแต่ละแอ็กเตอร์ไม่ใช่เป็น ชื่อเฉพาะเจาะจงจะไม่บอกว่าผู้ที่กระทำชื่ออะไรเป็นใครแต่จะบอกถึงประเภทของแอ็กเตอร์หรือบทบาทและ หน้าที่ต่อระบบ ในการหาแอ็กเตอร์ของระบบจะดูที่ว่าใครเป็นผู้ใช้ระบบในฟังก์ชันที่สำคัญ ใครเป็นผู้ดูแลระบบ อุปกรณ์ฮาร์ดแวร์ใดบ้างที่กระทำการเชื่อม ต่อกับระบบ และระบบข้างนอกใดบ้างที่เชื่อมต่อรับส่งข้อมูลกับ ระบบที่เราสร้าง แอ็กเตอร์ในยูเอ็มแอลแทนด้วยรูปคน (Stick Man)

ภาพที่ 13.7 สัญลักษณ์แอ็กเตอร์เจ้าหน้าที่พัสดุ

- 3. เส้นแสดงความสัมพันธ์ เป็นการเชื่อมโยงระหว่างยูสเคสและแอ็กเตอร์ เป็นเส้นที่แสดง ความสัมพันธ์ระหว่างยูสเคส มี 2 ชนิด คือ
- 1) ความสัมพันธ์แบบขยาย (Extend Relationship) ยูสเคสหนึ่งอาจถูกช่วยเหลือโดยการ ทำงานจากยูสเคสอื่น เช่น ยูสเคสการใส่รหัสอาจถูกช่วยเหลือโดยยูสเคสคำอธิบายการใส่รหัส สัญลักษณ์ใน ยูเอ็มแอลคือลูกศรเส้นประที่ชี้จากยูสเคสแรกไปยังยูสเคสที่ถูกช่วยเหลือหรือถูกขยาย โดยมีคำว่า "extend" อยู่ในเครื่องหมายสเตริโอไทป์ (stereotype) <<extend>> อยู่ที่กึ่งกลางลูกศร
- 2) ความสัมพันธ์แบบรวม (Include Relationship) ยูสเคสหนึ่งอาจจำเป็นต้องอาศัยการ ทำงานของยูสเคสอื่น สำหรับยูสเคสที่ถูกเรียกใช้โดยยูสเคสอื่น สัญลักษณ์ในยูเอ็มแอล ของความสัมพันธ์ คือ

ลูกศรเส้นประชี้ไปยังยูสเคสที่ถูกเรียกใช้หรือถูกรวมไว้ โดยมีคำว่า "Uses" อยู่ในเครื่องหมายสเตริโอไทป์ (stereotype) <<uses>> อยู่ที่กึ่งกลางลูกศร

ตัวอย่าง ระบบสารสนเทศจัดซื้อจัดจ้างพัสดุมีวิธีการทำงาน คือ เมื่อเจ้าหน้าที่พัสดุได้รับเอกสารขอซื้อจ้างจาก หน่วยงาน จะจัดทำเอกสารซื้อจ้างซึ่งมีประเภทพัสดุ 2 กลุ่ม คือ วัสดุ และครุภัณฑ์ ในการทำเอกสารจัดซื้อจ้าง นั้นเจ้าหน้าที่พัสดุต้องพิจารณาว่าการจัดซื้อจัดจ้างพัสดุนั้นเพื่อนำมาใช้ในแผนงานใดใช้งบประมาณจากหมวด ใด จากนั้นเจ้าหน้าที่พัสดุจะพิจารณาว่าใช้วิธีการใดในการจัดซื้อจ้าง โดยแบ่งเป็น 5 วิธี คือ

การซื้อจ้างวิธีตกลงราคา วงเงินน้อยกว่า 100,000 บาท

การซื้อจ้างวิธีสอบราคา วงเงินน้อยกว่า 100,000 บาท แต่ไม่เกิน 2,000,000 บาท

การซื้อจ้างวิธีประกวดราคา วงเงินน้อยกว่า 2,000,000 บาท

การซื้อจ้างวิธีพิเศษ วงเงินน้อยกว่า 100,000 บาทโดยมีเงื่อนไขพิเศษ เช่น
เป็นพัสดุที่ต้องซื้อเร่งด่วนหรือพัสดุที่ใช้ในราชการลับ เป็นต้น

 การซื้อจ้างวิธีกรณีพิเศษ ไม่มีการกำหนดวงเงิน แต่ต้องเป็นการซื้อหรือจ้างจาก หน่วยงานราชการ รัฐวิสาหกิจ

ซึ่งสามารถนำเสนอกระบวนการทำงานต่าง ๆ โดยใช้ยูสเคสไดอะแกรม ดังภาพที่ 13.8

ภาพที่ 13.8 แสดงยูสเคสไดอะแกรมระบบสารสนเทศจัดซื้อจัดจ้างพัสดุ

13.4.2 ประโยชน์ของยูสเคสไดอะแกรม

ยูสเคสไดอะแกรมจะจำลองการทำงานต่าง ๆ ของระบบ ซึ่งจะช่วยให้สามารถมองระบบได้ อย่างชัดเจนขึ้น ยูสเคสไดอะแกรมมีประโยชน์สรุปได้ดังนี้

- 1. เพื่อให้ผู้พัฒนาทราบถึงความสามารถของระบบว่าต้องทำอะไรได้บ้าง
- 2. เพื่อทราบถึงผู้ใช้งานในแต่ละส่วนของระบบ
- 3. ทำให้การติดต่อสื่อสารระหว่างผู้พัฒนากับลูกค้าหรือระหว่างผู้พัฒนาด้วยกันทำได้ง่าย
- 4. ใช้ในการทดสอบระบบซอฟต์แวร์ ว่าทำงานได้ครบถ้วนตามความต้องการหรือไม่ เนื่องจากนักพัฒนาส่วนใหญ่มักไม่มีแนวทางหรือขั้นตอนในการทดสอบอย่างเป็นระบบระเบียบชัดเจนไม่รู้ว่า จะต้องเริ่มทดสอบส่วนใดก่อน

13.5 คลาสไดอะแกรม

คลาสไดอะแกรมเป็นไดอะแกรมที่แสดงการใช้งานคลาส อ็อบเจ็กต์ และมีการสร้างความสัมพันธ์ ระหว่างคลาสหรืออ็อบเจ็กต์เหล่านั้น เช่น การสืบทอดคุณสมบัติของคลาส เป็นต้น การหาคลาสของอ็อบเจ็กต์ ได้ต้องสามารถจัดหมวดหมู่ของอ็อบเจ็กต์ได้ การหาคลาสจากอ็อบเจ็กต์ควรให้อยู่ในระบบที่กำลังสร้างเช่น ระบบจัดซื้อสามารถหาคลาสของระบบได้คือ คลาสลูกค้า คลาสใบสั่งซื้อ คลาสใบเสนอราคา คลาส ใบเสร็จรับเงิน เป็นต้น

13.5.1 การสร้างคลาสไดอะแกรม

วัตถุประสงค์ของการสร้างคลาสไดอะแกรมเพื่อแสดงถึงโครงสร้างของระบบที่ประกอบด้วย คลาส และความสัมพันธ์ระหว่างคลาส คลาสไดอะแกรมถือว่าเป็นไดอะแกรมที่มีความสำคัญมากเพราะถูกใช้ เป็นไดอะแกรมหลักในการสร้างไดอะแกรมอื่นอีกหลายประเภทสิ่งสำคัญในการสร้างคลาสไดอะแกรม คือ การ ค้นหาแนวคิดต่าง ๆ ที่อยู่ในขอบข่ายของระบบที่กำลังสนใจ มีวิธีการในการค้นหาคลาสดังนี้

- 1. คำนามที่ปรากฏอยู่ในคำบรรยายยูสเคสจะถูกสร้างเป็นคลาส เช่น คลาสรถยนต์ คลาสวิชา เรียน คลาสหนังสือ คลาสสินค้า เป็นต้น
- 2. คำวิเศษณ์ที่ปรากฏอยู่ในคำบรรยายยูสเคสจะถูกสร้างเป็นแอททริบิวท์ เช่น สีรถ รุ่นรถ ยี่ห้อรถ เป็นต้น
- 3. คำกิริยาที่ปรากฏอยู่ในคำบรรยายยูสเคสจะถูกสร้างเป็นโอเปอเรชั่น เช่น สตาร์ทรถ เบรก ลงทะเบียน ยกเลิกรายวิชา เป็นต้น

13.5.2 สัญลักษณ์

ตามมาตรฐานยูเอ็มแอล คลาสไดอะแกรมประกอบไปด้วยสัญลักษณ์ของคลาสและเส้นแสดง ความสัมพันธ์ สัญลักษณ์คลาสประกอบด้วย 3 ส่วนคือ ชื่อคลาส (Class Name) แอททริบิวท์และโอเปอเรชั่น ความสัมพันธ์ระหว่างคลาส ซึ่งความสัมพันธ์เหล่านี้สามารถเป็นได้ 3 รูปแบบ ดังนี้

1. ความสัมพันธ์แบบพึ่งพิง (Dependency) ความสัมพันธ์แบบนี้เกิดขึ้นเมื่อการเปลี่ยนแปลง ที่เกิดขึ้นกับคลาสที่ถูกพึ่งพิง (Independent Class) ส่งผลต่อคลาสที่พึ่งพิง (Dependent Class) คลาส ดังกล่าว การจำลองความสัมพันธ์แบบนี้สามารถทำได้โดยวาดเส้นตรงแบบประที่มีหัวลูกศรเป็นเส้นโปร่งชี้จาก คลาสรองที่พึ่งพิงไปยังคลาสหลักที่ถูกพึ่งพิง

- 2. ความสัมพันธ์แบบถ่ายทอด (Generalization) คือความสัมพันธ์ระหว่างคลาสหลักและ คลาสรองนั่นเอง การจำลองความสัมพันธ์แบบนี้สามารถทำได้โดยวาดเส้นตรงทึบที่มีหัวลูกศรเป็นสี่เหลี่ยมโปร่ง ชี้จากคลาสรองไปยังคลาสหลัก
 - 3. ความสัมพันธ์แบบเชื่อมโยง (Association) เป็นความสัมพันธ์อีกชนิดหนึ่งระหว่างคลาส

ตัวอย่าง จากระบบสารสนเทศจัดซื้อจัดจ้างพัสดุ สามารถค้นหาคลาสของระบบ และแสดงความสัมพันธ์ ระหว่างคลาสต่าง ๆ ได้ดังภาพที่ 13.9

ภาพที่ 13.9 คลาสไดอะแกรมระบบสารสนเทศจัดซื้อจัดจ้างพัสด

13.6 สเตตชาร์ตไดอะแกรม

สเตตชาร์ตไดอะแกรมบอกถึงพฤติกรรมของคลาสต่าง ๆ ในระบบว่ามีสถานะอะไรบ้างจะเปลี่ยน สถานะเมื่อเกิดเหตุการณ์อะไร สเตตชาร์ตไดอะแกรมของแต่ละคลาสประกอบไปด้วยสถานะ ที่สามารถเกิดขึ้น ได้ เช่น คนอยู่ในสถานะกำลังเดิน รถอยู่ในสถานะกำลังวิ่ง เป็นต้น เมื่อเวลาผ่านไปหรือมีเหตุการณ์บางอย่าง เกิดขึ้นย่อมทำให้เกิดการเปลี่ยนสถานะหรือเปลี่ยนพฤติกรรมได้ สเตตชาร์ตไดอะแกรมในยูเอ็มแอลมีจุดเริ่มต้น สถานะและจุดสิ้นสุดสถานะ โดยจุดเริ่มต้นมีสัญลักษณ์เป็นรูปวงกลมทึบและจุดสิ้นสุดสถานะเป็นรูปวงกลมโปร่งล้อมรอบวงกลมทึบข้างใน ส่วนสถานะในไดอะแกรมถูกแสดงเป็นรูปสี่เหลี่ยมหัวมนรูปร่างเหมือนแคปซูล และเชื่อมกันด้วยเส้นลูกศรชี้จากสถานะหนึ่งไปยังอีกสถานะหนึ่งสามารถเขียนคำอธิบายเหตุการณ์ที่ทำให้ เปลี่ยนสถานะตรงเส้นลูกศรได้ ดังตัวอย่างภาพที่ 13.10

ตัวอย่าง สถานะของการรอชำระเงิน คือเมื่อมีการชำระเงินและป้อนรายละเอียดต่าง ๆ สถานะก็จะเปลี่ยนจาก การรอเป็นปรับปรุงข้อมูลและเสร็จสมบูรณ์

ภาพที่ 13.10 สเตตชาร์ตไดอะแกรม

13.6 ซีเควนไดอะแกรม

ซีเควนไดอะแกรมบ่งบอกถึงในยูสเคสนั้นวัตถุแต่ละตัวจะติดต่อสื่อสารกันอย่างไร มีขั้นตอนการทำงาน อย่างไร โดยเน้นไปที่แกนเวลาเป็นสำคัญถ้าเวลาเปลี่ยนขั้นตอนการทำงานจะเปลี่ยนโดยมีแอ็กเตอร์เป็น ผู้กระทำเริ่มต้น ในยูเอ็มแอลซีเควนไดอะแกรมมีแกนสมมติ 2 แกนคือ แกนนอนและแกนตั้ง แกนนอนแสดง ขั้นตอนการทำงานและการส่งข้อความของแต่ละวัตถุว่าต้องทำอะไรเมื่อใด แกนตั้งเป็นแกนเวลาโดยแกนนอน และแกนตั้งต้องสัมพันธ์กัน ในซีเควนไดอะแกรมมีสัญลักษณ์ของวัตถุหรือคลาสแทนรูปสี่เหลี่ยมเรียงกันตาม แนวนอน ภายในบรรจุชื่ออ็อบเจ็กต์ตามด้วยเครื่องหมายทวิภาค (:)และชื่อคลาส เส้นประที่อยู่ในแนวแกน เวลาแสดงถึงชีวิตของวัตถุ สี่เหลี่ยมแนวตั้งที่อยู่ตำแหน่งเดียวกับวัตถุหรือคลาสเรียกว่า แอ็กทิเวชัน (Activation) ซึ่งใช้แสดงช่วงเวลาที่วัตถุกำลังปฏิบัติงาน และเส้นที่ทำหน้าที่ส่งข้อมูลระหว่างวัตถุ

ตัวอย่าง จากตัวอย่างระบบสารสนเทศจัดซื้อจัดจ้างพัสดุการทำงานของยูสเคสการดำเนินการซื้อจ้างซึ่งมี ขั้นตอนการทำงานคือ เจ้าหน้าที่พัสดุดับเบิ้ลคลิกเมาส์ที่เอกสารขอซื้อจ้างพัสดุที่ต้องการดำเนินการก็จะไปที่ หน้าจอเอกสารนั้น แสดงเป็นซีเควนไดอะแกรมได้ดังภาพที่ 13.11

ภาพที่ 13.11 ซีเควนไดอะแกรมการดำเนินการซื้อจ้าง

13.7 คอลลาบอเรชั่นไดอะแกรม

มีหน้าที่เดียวกันกับซีเควนซ์ไดอะแกรมแต่ไม่แสดงถึงแกนเวลาอย่างชัดเจนยกเว้นการโต้ตอบกัน ระหว่างอ็อบเจ็กต์สัญลักษณ์ที่ใช้ประกอบด้วย วัตถุ หรือคลาสแทนด้วยรูปสี่เหลี่ยมคล้ายซีเควนซ์ไดอะแกรมมี รูปแบบคือ ชื่ออ็อบเจ็กต์/บทบาท: ชื่อคลาสและขีดเส้นใต้เพื่อแสดงว่าเป็นอินสแตนซ์ แต่ไม่จำเป็นต้องเรียง ตามแนวนอนเหมือนในซีแควนไดอะแกรมมีเส้นเชื่อมกันระหว่างวัตถุ เรียกว่า ลิงก์ (Link) ซึ่งแต่ละลิงค์มี คำอธิบายแสดงขั้นตอนการทำงานตามทิศทางลูกศรโดยมีตัวเลขลำดับกำกับไว้เพื่อบอกว่าขั้นตอนใดทำก่อนทำ หลังซึ่งแทนแกนเวลาตามด้วยเครื่องหมายทวิภาคและเมสเสจ ในส่วนของลำดับย่อยนั้นคอลลาบอเรชั่น โดอะแกรมจะใช้ตัวเลขและเติมจุดย่อยแล้วใส่ตัวเลขต่อท้ายเหมือนทศนิยมเพื่อให้รู้ว่าขั้นตอนนี้เป็นการทำงาน ย่อยของเลขลำดับใด คอลลาบอเรชั่นไดอะแกรมใช้ในการออกแบบกระบวนการทำงานที่แสดงถึงลำดับของ การโต้ตอบกันระหว่างอ๊อบเจ็กต์ นั่นคือ แสดงถึงกลุ่มของอ๊อบเจ็กต์ที่ทำงานร่วมกันสอดคล้องกับความหมาย ของชื่อไดอะแกรม ลูกศรที่ซี้จะชื้ไปในทิศทางเดียวไม่มีการชี้ย้อนกลับในเส้นเดียวกัน ตัวเลขที่กำกับข้างหน้า เป็นการบอกลำดับขั้นการทำงานว่าใครส่งก่อนหรือหลังและยังบอกว่ากระบวนการใดที่มีการจัดลำดับเป็น อนุกรมคือต้องทำขั้นตอนนี้เสร็จก่อนจึงสามารถทำขั้นต่อไปได้ตัวเลขที่กำกับข้างหน้าถูกแบ่งย่อยเป็นทศนิยมแต่ ถ้ากระบวนการใดสามารถทำพร้อมกันได้ก็ไม่ต้องแยกย่อยเป็นทศนิยมเพิ่มขึ้นอีกให้อยู่ในระดับเดียวกันได้ ใน ส่วนของการวนซ้ำแสดงด้วยเครื่องหมาย *[] และในส่วนของเงื่อนไขแสดงภายในเครื่องหมายวงเล็บก้ามปู

ตัวอย่าง จากตัวอย่างระบบสารสนเทศจัดซื้อจัดจ้างพัสดุการทำงานของยูสเคสการดำเนินการซื้อจ้างซึ่งมี ขั้นตอนการทำงานคือ เจ้าหน้าที่พัสดุดับเบิ้ลคลิกเมาส์ที่เอกสารขอซื้อจ้างพัสดุที่ต้องการดำเนินการก็จะไปที่ หน้าจอเอกสารนั้น สามารถแสดงคอลลาบอเลชั่นไดอะแกรมทำเอกสารดำเนินการซื้อจ้าง ดังภาพที่ 13.12

ภาพที่ 13.12 คลอลาบอเรชั่นไดอะแกรมการดำเนินการซื้อจ้าง

13.8 แอ็กทิวิตี้ไดอะแกรม

แอ็กทิวิตี้ไดอะแกรมแสดงขั้นตอนการทำงานของยูสเคสเช่นเดียวกับซีเควนไดอะแกรมและคอลลา บอเรชั่นไดอะแกรมแต่เน้นที่งานย่อยของวัตถุ ส่วนแอ็กทิวิตี้ไดอะแกรมจะเปลี่ยนสถานะได้โดยไม่ต้องมี เหตุการณ์ที่กำหนดไว้ในไดอะแกรมมากระทำก่อนแต่เปลี่ยนสถานะเองตามกระบวนการทำงานคล้ายกับผังงาน โปรแกรม สัญลักษณ์ในแอ็กทิวิตี้ไดอะแกรม มีแอ็กทิวิตี้คือกิจกรรมที่แสดงด้วยสี่เหลี่ยมมนเหมือนแคปซูล เชื่อมโยงกันด้วยลูกศรเพื่อแสดงลำดับการทำงาน และมีเส้นทึบหนาในแนวนอนใช้วาดในกรณีที่ต้องรอแอ็กทิวิตี้ อื่นเสร็จหมดก่อนจึงทำแอ็กทิวิตี้ถัดไปได้ โดยมีเส้นลูกศรเข้ามารวมกันที่จุดเดียวสวิมแลนด์ (Swimlanes) เป็น การแบ่งกลุ่มแอ็กทิวิตี้เป็นเลนเหมือนสระว่ายน้ำโดยแบ่งเป็นช่องในแนวดิ่งและกำหนดแต่ละช่องด้วยชื่อของ อ็อบเจ็กต์ไว้แถวบนสด

ตัวอย่าง จากระบบสารสนเทศจัดซื้อจัดจ้างพัสดุแสดงภาพรวมของระบบได้โดยใช้แอ็กทิวิตี้ไดอะแกรม

ภาพที่ 13.13 แอ็กทิวิตี้ไดอะแกรมภาพรวมระบบสารสนเทศจัดซื้อจัดจ้างพัสดุ

13.9 คอมโพเนนต์ใดอะแกรม

แสดงความสัมพันธ์ที่เชื่อมต่อกันระหว่างซอฟต์แวร์คอมโพเนนต์ในระบบว่าประกอบด้วยไฟล์อะไรบ้าง ซึ่งอาจเป็นไฟล์ซอร์สโค้ด (Source Code) ไฟล์ไบนารี (Binary Code) และไฟล์เอ็กซิคิวต์ (Executable Code) การตั้งชื่อของคอมโพเนนต์ในคอมโพเนนต์ใดอะแกรมจะใช้ชื่อของคลาสจากคลาสไดอะแกรมไม่ใช่ชื่อ ของอินสแทนซ์ (Instance) สัญลักษณ์ของคอมโพเนนต์ในคอมโพเนนต์ใดอะแกรมถูกแสดงเป็นสี่เหลี่ยม ประกอบด้วยสี่เหลี่ยมเล็ก 2 รูปติดอยู่ที่ขอบด้านซ้าย และอาจเชื่อมต่อกันด้วยเส้นแสดงความสัมพันธ์

ตัวอย่าง จากระบบสารสนเทศจัดซื้อจัดจ้างพัสดุ สามารถสร้างคอมโพเนนต์ไดอะแกรมที่แสดงองค์ประกอบ ของระบบซอฟต์แวร์ที่ประกอบด้วยไฟล์ที่สร้างโดย Oracle Developer ซึ่งมีส่วนขยายของไฟล์ คือ .fmx และ .mmx โดยไฟล์ทั้งหมดทำงานอยู่บนไฟล์เมนูดังนี้

ภาพที่ 13.14 คอมโพเนนต์ใดอะแกรมระบบสารสนเทศจัดซื้อจัดจ้างพัสดุ

13.10 ดีพลอยเมนต์ใดอะแกรม

แสดงการเชื่อมต่อของอุปกรณ์ฮาร์ดแวร์ในระบบและมักใช้ร่วมกับคอมโพเนนต์ไดอะแกรมโดยข้างใน ฮาร์ดแวร์อาจประกอบไปด้วยซอฟต์แวร์คอมโพเนนต์ ดีพลอยเมนต์ไดอะแกรมแสดงอยู่ในรูปอินสแทนซ์ และ แสดงในช่วงเวลาของการรันหรือระหว่างการเอ็กซิคิวต์ ดังนั้นไฟล์คอมโพเนนต์ของระบบที่ไม่ได้ใช้สำหรับรันจะ ไม่ปรากฏในไดอะแกรมนี้แต่มีในคอมโพเนนต์ของไฟล์ที่ใช้ทำงานจริงเท่านั้น

สัญลักษณ์ของดีพลอยเมนต์ใดอะแกรมเป็นการเชื่อมกันระหว่างโหนดซึ่งคือฮาร์ดแวร์ก็จะบรรจุ อินสแทนซ์ของซอฟต์แวร์คอมโพเนนต์ที่ถูกแสดงด้วยสัญลักษณ์ของคอมโพเนนต์ไว้ข้างใน แต่ละคอมโพเนนต์ เชื่อมต่อกันโดยใช้ความสัมพันธ์แบบพึ่งพิงโดยชี้จากคอมโพเนนต์ที่ขอใช้บริการไปยังคอมโพเนนต์อื่นเหมือนกับ คอมโพเนนต์ใดอะแกรมโดยบนลูกศรอาจมีคำกำกับอยู่ภายใต้เครื่องหมายสเตอริโอไทป์เพื่อสร้างความกระจ่าง ยิ่งขึ้นหากจำเป็น สัญลักษณ์ของโหนดถูกแสดงด้วยรูปลูกบาศก์ 3 มิติ ภายในบรรจุชื่อที่แสดงถึงประเภทของ โหนดถ้าเป็นโหนดอินสแทนซ์จะมีทั้งชื่อจริงและประเภทของโหนดและต้องขีดเส้นใต้ที่ชื่อของโหนดเพื่อแสดงว่า เป็นอินสแทนซ์หรืออ๊อบเจ็กต์ ชื่อของโหนดเป็นชื่อเฉพาะ ส่วนประเภทของโหนดเป็นการบ่งบอกว่าโหนดนั้นคือ อุปกรณ์ชนิดอะไร โหนดอาจถูกเชื่อมต่อกับโหนดอื่นได้ ซึ่งแสดงว่าอุปกรณ์แต่ละตัวมีการติดต่อสื่อสารกัน อย่างไรผ่านระบบเครือข่าย อาจมีคำกำกับภายใต้สัญลักษณ์สเตอริโอไทป์เพื่อบอกว่าทั้ง 2 โหนดนี้เชื่อมต่อกัน ด้วยการสื่อสารวิธีใดซึ่งก็คือชนิดของช่องสัญญาณของเครือข่ายหรือโปรโตคอล เช่น <<TCP/IP>> เป็นต้น

ตัวอย่าง จากระบบสารสนเทศจัดซื้อจัดจ้างพัสดุ สามารถสร้างดีพลอยเมนต์ใดอะแกรมที่แสดงการออกแบบ สถาปัตยกรรมทางกายภาพของระบบที่เป็นไคลเอนต์/เซิร์ฟเวอร์ ดังนี้

ภาพที่ 13.15 ดีพลอยเมนต์ไดอะแกรมระบบสารสนเทศจัดซื้อจัดจ้างพัสดุ

13.11 บทสรุป

การวิเคราะห์และออกแบบระบบเชิงวัตถุเป็นแนวคิดที่พยายามพัฒนาระบบโดยนำโปรแกรมเดิมที่มีอยู่ กลับมาใช้งานใหม่ การวิเคราะห์ระบบเชิงวัตถุอาศัยแนวคิดเชิงวัตถุที่ประกอบด้วย วัตถุ คลาส แอททริบิวท์ โอเปอเรชั่น/เมธอด การสืบทอดคุณสมบัติ โพลิมอร์ฟิสซึม และเอ็นแคปซูเลชัน ในการมองสิ่งต่าง ๆ ภายใน ระบบนักวิเคราะห์แต่ละคนมีวิธีการมองที่ไม่เหมือนกัน ดังนั้นจึงต้องมีกระบวนการสร้างแนวความคิดของคลาส จากกลุ่มของอ็อบเจ็กต์ ซึ่งเรียกว่า แอ็บสเตรคชั่น (Abstraction) มีกระบวนการที่สำคัญ 4 กระบวนการคือ Classification Abstraction Association Abstraction Aggregation Abstraction และ Generalization Abstraction ซึ่งทำให้สามารถนิยามคลาสได้ทั้งหมดในระบบเพื่อดำเนินการในการพัฒนาระบบต่อไป

ยูเอ็มแอลเป็นภาษาสัญลักษณ์รูปภาพมาตรฐานที่ใช้เพื่อถ่ายทอดความคิดที่มีต่อระบบให้ออกมาเป็น แผนภาพประกอบด้วยรูปภาพหรือสัญลักษณ์ตามกฎการสร้างแผนภาพยูเอ็มแอลเป็นภาษาสำหรับใช้ในการ สร้างแบบจำลองเชิงวัตถุ ไดอะแกรมของยูเอ็มแอลประกอบด้วย 8 ไดอะแกรม โดยแต่ละไดอะแกรม เปรียบเสมือนมุมมองในด้านต่าง ๆ ของระบบที่กำลังพัฒนาช่วยให้การวิเคราะห์และออกแบบระบบเป็นไปได้ อย่างมีประสิทธิภาพ ยูสเคสไดอะแกรม คือไดอะแกรมเชิงพฤติกรรมซึ่งแสดงถึงกลุ่มของยูสเคส แอ็กเตอร์ และ ความสัมพันธ์ ซึ่งเป็นมุมมองภายนอกระบบ คลาสไดอะแกรม คือไดอะแกรมเชิงโครงสร้างที่แสดงถึงกลุ่มของ คลาส และความสัมพันธ์ของคลาส บีเฮฟเยอร์โดอะแกรม (Behavioral Diagram) คือไดอะแกรมที่บ่งบอก พฤติกรรมของตัวระบบ ได้แก่ สเตตชาร์ตไดอะแกรม ซีเควนไดอะแกรม คอลแลบอเรชั่นไดอะแกรม และแอ็กทิวิตี้ไดอะแกรม กลุ่มอิมพลีเมนเตชั่นไดอะแกรม (Implementation Diagram) ประกอบด้วย สัญลักษณ์ที่ใช้แสดงถึง โครงสร้างของซอร์สโค้ดหรือไฟล์และโครงสร้างของส่วนประกอบที่เชื่อมต่อกันในระบบ ซึ่งคือฮาร์ดแวร์และซอฟต์แวร์ที่ใช้ในระบบนั่นเองได้แก่ คอมโพเนนต์ไดอะแกรม และดีพลอยเมนต์ไดอะแกรม

คำถามทบทวน

- 1. จงอธิบายความหมายของคำต่อไปนี้
 - 1.1 Object
 - 1.2 Class
 - 1.3 Method
 - 1.4 Polymorphism
 - 1.5 Encapsulation
- 2. จงอธิบายหลักการวิเคราะห์และออกแบบระบบเชิงวัตถุ
- 3. ยูเอ็มแอล คืออะไร มีข้อดีอย่างไร
- 4. จากกรณีศึกษาต่อไปนี้ ให้สร้างยูสเคสไดอะแกรม และคลาสไดอะแกรม

คณะวิทยาศาสตร์ของสถาบันการศึกษาแห่งหนึ่งมีบุคลากรหลายประเภท ได้แก่ อาจารย์ นักศึกษา และเจ้าหน้าที่ โดยอาจารย์แต่ละท่านมีหน้าที่ในการสอนอย่างน้อยหนึ่งวิชา นักศึกษามีหน้าที่ใน การศึกษาวิชาใดวิชาหนึ่งหรือมากกว่า 1 วิชา ในขณะที่เจ้าหน้าที่ คือ เจ้าหน้าที่ห้องปฏิบัติการต่าง ๆ ซึ่งใน 1 ห้องต้องมีเจ้าหน้าที่อย่างน้อย 1 คนดูแล