Assignment-3

Course: SC-374

Computational and Numerical Methods

Instructor: Prof. Arnab Kumar

Made by:

Yatin Patel – 201601454

Rutvik Kothari – 201601417

Problem: 1

♦ Statement:

Write a code, applying the algorithm of the bisection method to determine both the real roots of $f(x) = x^6 - x - 1 = 0$.

Smallest Root which we are getting is at x = -0.7781. Largest Root which we are getting is at x = 1.1347.

Problem: 2

♦ Statement:

Use the bisection method to find the real roots of the following functions, using an error tolerance of ϵ = 0.0001.

(A)
$$f(x) = x^3 - x^2 - x - 1 = 0$$

Root which we are getting is at x = 1.8393.

(B)
$$f(x) = x - 1 - 0.3 \cos x = 0$$

Root which we are getting is at x = 1.1284.

(c)
$$f(x) = cosx - sinx - 0.5 = 0$$

♦ Observations:

Root which we are getting is at x = 0.4241.

(D)
$$f(x) = x - e^{-x} = 0$$

Root which we are getting is at x = 0.5672.

(E)
$$f(x) = e^{-x} - \sin x = 0$$

Root which we are getting is at x = 0.5885.

Root which we are getting is at x = 3.0964.

(F)
$$f(x) = x^3 - 2x - 2 = 0$$

Root which we are getting is at x = 1.7693.

(G)
$$f(x) = x^4 - x - 1 = 0$$

Smallest Root which we are getting is at x = -0.7245.

Largest Root which we are getting is at x = 1.2207.

(H)
$$f(x) = e^x - x - 2 = 0$$

Root which we are getting is at x = 1.1462.

$$(I) \ f(x) = 1 - x + sinx = 0$$

♦ Observations:

Root which we are getting is at x = 1.9345.

(J)
$$f(x) = x - tanx = 0$$

Smallest non-zero positive Root which we are getting is at x=4.4934. Root closest to x=100, which we are getting is at x=98.9501.