Student's Adaptability Level in Online Learning Classifier

Aditya Jain Harshit Jain Vaibhav Wali Vasu Khanna

1 Abstract

Since Covid-19 online education has become very crucial. It has been due to the fact that it has enabled people to continue their education even when the whole world had been hit by the pandemic. People pursued their studies, sitting in front of electronic devices in their homes worldwide. The increasing importance of online education led to the emergence of the need to determine the student's adaptability level in online education. The student's adaptability level in online education depends on various factors, which include the characteristics of the student itself, the student's location, access to technology and the internet etc. Different students with varying factors faced different difficulties in online education. So, it becomes extremely important for educational institutions to predict the adaptability level in online education for the student with given constraints w.r.t their location, internet and technology access, age etc. Using ML techniques, predicting the adaptability level beforehand is very beneficial for the students as it helps improve the adaptability level further to get an optimal level for that scenario. [Git Link]

2 Introduction

There has been a sudden substantial increase in the importance of online education with the advent of Covid-19 as it was the only medium left to pursue the education of an individual. But the major drawback of online education is that there is not an effective one-on-one interaction between teachers and students, so it becomes extremely important to predict a student's adaptability level. Different students have different adaptability levels depending on various factors related to a student, viz. Gender, Age, Education level, Institution type, location, internet access, etc. Prediction of adaptability level is

done using different Machine Learning techniques (logistic regression, Naive Bayes, SVM, Decision Trees, Random Forests, KNN, ANN) and their performance is compared to find the best classifier.

3 Literature Survey

Technology allows for virtual or remote learning. Thanks to technological advancements, we can now create online education systems. Aspects of education will be held in digitization under current circumstances. Students must accept the challenge of adapting to online education to make these changes. In the following discussion, we will provide an overview of the findings from the analysis of related works on online education. In [1] and [2], the researchers have studied the improvement of the online education model. Online education decisions should be based on evidence of effectiveness rather than the assumption that face-to-face interaction is superior. A demonstration by Rojan et al. [1] helped us observe a significant difference in student performance and satisfaction and made us realize many benefits of online education for students. It has comparable off-campus and on-campus performances, offers, and student satisfaction, but communication has been difficult. An investigation was done by William et al. [2] on how to improve the Online Education Model by using Machine Learning and Data Analysis in a Learning Management System (LMS), He also focused on formative assessment for better learning and the exploratory results show that 85The researchers have examined how the ongoing pandemic is a worry for international education systems in [3] and [4]. During the pandemic, a vast majority of the countries shut down their schools. The research studies in [3] and [4] demonstrate the terrible impacts of the coronavirus on education and identify a number of obstacles that prevent interactions between students and instructors in online learning during the pandemic. They further took their research into

depth and found out that as the rural areas didn't have adequate digital skills and had a lot of barriers including technological barriers, domestic barriers, financial inadequacy, and poor electricity, hence, they faced even more challenges compared to the people in urban areas.

4 Dataset Analysis

4.1 Dataset Description

The dataset has 13 independent and 1 dependent feature. There are 1205 samples in the dataset. Some of the features have binary values like Yes/No and Low/High while others have multiple values. Since the data is categorical, no outlier is present. A brief description of the dataset attributes with their possible values has been provided the below Table1.

Figure 1: No. of Students vs Education Level

The above countplot depicts the distribution of different adaptivity levels as per the different types of education levels.

Figure 2: No. of Students vs Network type

The above countplot depicts the distribution of different adaptivity levels as per the different types of networks. The above scatterplot depicts the plot

Figure 3: Scatterplot of class duration vs age groups

of class duration for different age groups.

4.2 Data Preprocessing

Variable	Variable Type	Possible values	
Gender	Independent	Girl(1), Boy(0)	
Age	Independent	Around 1-5(5), 6-10(4)	
	_	11-15 (1), 16-20 (2),	
		21-25 (3),26-30 (0)	
Education level	Independent	School(1), College(0),	
		University(2)	
Institution Type	Independent	Non Govt(1), Govt(0)	
IT Student	Independent	No(0), Yes(1)	
Location (Is town)	Independent	No(0), Yes(1)	
Load Shedding	Independent	Low(0), High(1)	
Financial Condition	Independent	Poor(1), Mid(0), Rich(2)	
Internet Type	Independent	2G(0), 3G(1), 4G(2)	
Network Type	Independent	Mobile Data(0),WiFi(1)	
Class Duration	Independent	0 Hours(0), 1-3 Hours(1),	
		3-6 Hours(2)	
Self lms	Independent	No(0), Yes(1)	
Device	Independent	Tab(2), Mobile(1),	
		Computer(0)	
Adaptivity Level	Dependent	Low(1),Moderate(2),	
		High(0)	

Table1: Attribute Details

In the given dataset:

- 1. There are no null values present.
- 2. Feature Transformation: The data present is categorical, so the string values have been scaled to Integer for model prediction.
- 3. Feature selection: On the basis of Information Gain, and correlation matrix some of the attributes 'Load Shedding' and 'Self Lms' are dropped.

The below plot Fig 4. shows the information gain by different independent variables on 'Adaptivity Level'. It is clear that the features like 'Load shedding' and 'Self Lms' have very low correlation w.r.t target variable and low information gain and hence are dropped while selecting features to improve model performance.

Figure 4: No. of Students vs Network type

5 Methodology

After preprocessing the data, we used several Machine Learning models to predict the Adaptivity Level based on the features in the sample. We have used the following classifiers:

- 1. **Logistic Regression:** It is a type of regression used in case of classification problems. It learns a linear relationship from the given dataset and then introduces a non-linearity in the form of the Sigmoid function.
- 2. **Gaussian Naive Bayes:** It is a type of classification model which uses the Bayes algorithm. It is easy and fast in multiclass classification as it needs less training data. It is used to determine the benchmark performance of the models.
- 3. **Decision Tree Classifier:** A decision tree is a non-parametric supervised learning algorithm which provides interpretability while doing classification. At each level, a feature is chosen as per its information gain or entropy for classifying data and final classification is obtained at the leaf level.
- 4. Random Forests Classifier: It is ensemble learning of Decision Trees(which provides interpretability and is non-parametric in nature) where some weak classifiers are combined and the prediction is done by majority voting for

classification problems.

- 5. **SVM:** A support vector machine (SVM) is a supervised learning algorithm to classify or predict data groups. The goal of the SVM is to determine the unique decision boundary known as Optimum Separating Hyperplane (OSH) that can segregate n-dimensional space into the required number of regions for classification.
- 6. **KNN:** The k-nearest neighbours' algorithm, also known as KNN or k-NN, is a supervised learning classifier that makes predictions or classifications about the clustering of a single data point based on proximity. It makes the assumption that the new case and the existing cases are similar, classifies the new case into the category that most closely resembles the existing categories, stores all the existing data, and then assigns a new data point based on the similarity.
- 7. **ANN:** Artificial Neural Network comprises several different layers viz. input layer, one or more hidden layer, and output layer. Each node connects to the node in the previous and next layer having a certain weight associated with it. The node can be activated or deactivated depending upon the output it generates.

6 Results and Analysis

Model	Class	Accuracy	Precision	Recall	F1-score
LR M	Low	64.73%	0.80	0.22	0.35
	Mod	64.73%	0.66	0.56	0.60
	High	64.73%	0.64	0.79	0.70
NB N	Low	63.07%	0.32	0.39	0.35
	Mod	70.12%	0.65	0.62	0.64
	High	70.12%	0.67	0.67	0.67
	Low	82.98%	0.72	0.72	0.72
DT	Mod	82.98%	0.86	0.84	0.85
H	High	82.98%	0.82	0.84	0.83
RF	Low	86.72%	1.00	0.88	0.84
	Mod	86.72%	0.67	0.85	0.92
	High	86.72%	0.80	0.86	0.88
SVM	Low	85.89%	0.62	0.72	0.67
	Mod	85.89%	0.87	0.93	0.90
	High	85.89%	0.90	0.82	0.85
KNN M	Low	81.74%	0.87	0.72	0.79
	Mod	81.74%	0.85	0.77	0.81
	High	81.74%	0.79	0.87	0.83
ANN	Low	82.57%	0.62	0.72	0.67
	Mod	82.57%	0.87	0.93	0.90
	High	82.57%	0.90	0.82	0.85

Figure 5: Loss vs epochs

Fig 5. depicts the Loss vs Epochs curve of Multilayer Perceptron model, the minima is achieved after 10 epochs showing that the model is training quickly as the dataset is not large enough.

Given above in the table are the accuracy, precision, recall and f1- scores obtained on the testing data after training the given dataset using different machine learning models. forest outperform all the other models giving an accuracy of 87% approx. This is because it does ensemble learning on decision trees and decision trees works well on categorical data. However, logistic performs poorly with just 64.7% accuracy as data present is much complex and Naive Bayes also gives poor results with an accuracy of 63.1% because it works well on the probabilistic data. SVM also performs well nearly to the Random Forests, this accounts to its ability to generalize well in high dimensional feature spaces, it eliminates the need for feature selection,

7 Conclusion

In this project, we have tried to forecast the student's adaptability level in online education using various Machine Learning models. We have used the dataset available on Kaggle for our experiments and have shown different exploratory data analysis for the same. We have used different machine learning models like Logistic regression, Naive Bayes, Random Forest, Decision Trees, Support Vector Machine, K-Nearest Neighbours and Artificial Neural Networks. Strong classifiers like SVM ,ANN and KNN have given good results for this complex dataset. Random Forest gave the best accuracy as they are based on the concept

of ensemble learning and decision trees which work well on categorical data. This work would benefit educational decision-makers and help them improve the quality of education for students.

8 References

Dataset from Kaggle

[1] R. Afrouz and B. R. Crisp "Online education in social work, effectiveness, benefits, and challenges: A scoping review," Australian Social Work, vol. 74, no. 1, pp. 55–67, 2021.

[2] D. Wiliam "Assessment in Education: Principles, policy practice," Assessment in Education: Principles, Policy and Practice, vol. 15, no. 3, pp. 253–257, 2008.

[3] M. Onyema, N. C. Eucheria, F. A. Obafemi, S. Sen, F. G. Atonye, A. Sharma, and A. O. Alsayed, "Impact of coronavirus pandemic on education," Journal of Education and Practice, vol. 11, no. 13, pp. 108–121, 2020.

[4] R. E. Baticulon, J. J. Sy, N. R. I. Alberto, M. B. C. Baron, R. E. C.Mabulay, L. G. T. Rizada, C. J. S. Tiu, C. A. Clariational survey of medical students in the philippines," Medical scieon, and J. C. B. Reyes, "Barriers to online learning in the time of covid-19: A nnce educator, pp. 1–12, 2021.

9 Individual Contribution

Dataset description: Aditya, Harshit Model training: Aditya, Harshit Analysis: Aditya, Harshit, Vaibhav, Vasu Report: Aditya, Harshit, Vaibhav, Vasu Literature Review and Slides: Vasu, Vaibhav