See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/239930623

Integer Programming Formulations of Graph Colouring

Article			
CITATIONS		READS	
0		68	
4 author	rs, including:		
	Jakub Marecek		Andrew J. Parkes
	IBM		University of Nottingham
	38 PUBLICATIONS 216 CITATIONS		101 PUBLICATIONS 1,818 CITATIONS
	SEE PROFILE		SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Variety, Veracity, VaLue: Handling the Multiplicity of Urban Sensors View project

All content following this page was uploaded by Andrew J. Parkes on 06 January 2017.

Integer Programming Formulations of Graph Colouring

Jakub Mareček^{1,2} w/ Edmund K. Burke¹, Andrew J. Parkes¹ and Hana Rudová²

¹Automated Scheduling, Optimisation and Planning School of Computer Science and IT, The University of Nottingham Wollaton Road, Nottingham NG8 1BB, UK ²Faculty of Informatics, Masaryk University Botanická 68a, Brno 602 00, The Czech Republic E-mail: jakub@marecek.cz

October 18, 2007

- 1 Introduction
- 2 Known IP Formulations of Vertex Colouring
 - The Standard Formulation
 - The Binary Encoded Formulation
 - An Independent Set Formulations
 - Another Independent Set Formulation
 - A Scheduling Formulation (with Precedency Constraints)
 - Encoding Using Acyclic Orientations
 - Formulation Using Asymmetric Representatives
- 3 A New Clique-Based Formulation
- 4 Empirical Tests
 References42

Graph G = (V, E):

- is a set of vertices plus a set of two-element pairs of vertices
- thus is not oriented, without loops $\{u, u\} \in E$
- has vertices u, v adjacent if they form an edge $\{u, v\} \in E$

Subset *S* of vertices of a graph G = (V, E) is:

- clique, if each two $u, v \in S$ form an edge $\{u, v\} \in E$
- independent, if no two $u, v \in S$ form an edge $\{u, v\} \in E$
- dominating (max. independent), if each vertex in the graph is either in S or is adjacent to some vertex in S

Subset S of vertices of a graph G = (V, E) is:

- clique, if each two $u, v \in S$ form an edge $\{u, v\} \in E$
- independent, if no two $u, v \in S$ form an edge $\{u, v\} \in E$
- dominating (max. independent), if each vertex in the graph is either in S or is adjacent to some vertex in S

Colouring of G = (V, E):

- assign colours $c \in \{1, 2, \dots, k\}$ to vertices of G = (V, E) such that each two adjacent vertices are assigned different c
- vertices of one colour form an independent set
- each edge and clique: an all_different constraint
- \blacksquare \mathcal{NP} -Complete
- benchmark by Johnson and Trick (1996)

Colouring of G = (V, E):

- assign colours $c \in \{1, 2, \dots, k\}$ to vertices of G = (V, E) such that each two adjacent vertices are assigned different c
- vertices of one colour form an independent set
- each edge and clique: an all_different constraint
- \blacksquare \mathcal{NP} -Complete
- benchmark by Johnson and Trick (1996)

Integer Programming: A Quick Guide

- Come up with an encoding of a solution
- Come up with variables suitable for storing that encoding
- Come up with a set of linear equations in those variables, which are satisfied if and only if variables encode a feasible solution
- 4 Optionally come up with some more linear equations ("cuts") that have to be satisfied for each feasible solution

Advanced Integer Programming: A Quick Guide

- "Exponential" spells trouble!
- Cut Generation ("Branch-and-Cut"): if you end up with an exponential no. of constraints, you have to figure out on the fly which are violated when and add/remove them in the process of solving
- Column Generation ("Branch-and-Price"): if you end up with an exponential no. of variables, you have to figure out which where important when and add/remove them in the process of solving

The Standard Formulation

The Standard Formulation

$$x_{v,c} = \begin{cases} 1 & \text{if vertex } v \text{ is coloured with colour } c \\ 0 & \text{otherwise} \end{cases}$$

	1	2	3	4	5	6	7
Math101 ₋ 1	1	0	0	0	0	0	0
$Math101_{-}2$	0	1	0	0	0	0	0
$Math101_3$	0	0	1	0	0	0	0
$Math101_4$	0	0	0	1	0	0	0
$Algo101_{-}1$	0	0	0	0	1	0	0
$Algo101_2$	0	0	0	0	0	1	0
Algo101_3	0	0	0	0	0	0	1
Juggling	1	0	0	0	0	0	0

The Standard Formulation

The Standard Formulation

$$x_{v,c} = \begin{cases} 1 & \text{if vertex } v \text{ is coloured with colour } c \\ 0 & \text{otherwise} \end{cases}$$

$$\sum_{c=1}^{\kappa} x_{v,c} = 1 \quad orall \ \ \, ext{vertices} \ v \in V$$
 $x_{u,c} + x_{v,c} \leq 1 \quad orall \ \ \, ext{colours} \ c \in K \quad orall \ \ \, ext{edges} \ \{u,v\} \in E$

- \bullet k | V | binary variables and k | E | constraints
- Mehrotra and Trick (1996): imagine $x_{v,c} = 1/k \quad \forall v \forall c$
- Coll, Marenco, Méndez-Díaz, and Zabala (2002): polyhedron
- Zabala and Méndez-Díaz (2006): branch-and-cut

☐ The Standard Formulation

Extension: Synchronisation with General Integer Variables

 $X_v = c$ if colour c used to colour vertex v

$$X_v - \sum_{c=1}^k cx_{v,c} = 0 \quad \forall \text{ vertices } v \in V$$

- ullet |V| additional variables and |V| additional constraints
- Williams and Yan (2001): does not perform well

The Binary Encoded Formulation

$$x_{v,b} = \begin{cases} 1 & \text{if vertex } v \text{ is assigned colour having bit } b \text{ set to } 1 \\ 0 & \text{otherwise} \end{cases}$$

	1	2	3
Math101 ₋ 1	1	0	0
$Math101_2$	0	1	0
$Math101_3$	1	1	0
$Math101_4$	0	0	1
$Algo101_1$	1	0	1
Algo101_2	0	1	1
Algo101_3	1	1	1
Juggling	1	0	0

The Binary Encoded Formulation

The Binary Encoded Formulation

$$x_{v,b} = \begin{cases} 1 & \text{if vertex } v \text{ is assigned colour having bit } b \text{ set to } 1 \\ 0 & \text{otherwise} \end{cases}$$

- $[\log_2 k] |V|$ variables
- Lee (2002; 2007): the all_different polyhedron
- three exp. large classes of inequalities
- perhaps suitable for edge colouring?

An Independent Set Formulations

$$x_i = \begin{cases} 1 & \text{if dominating set } i \text{ is assigned a single colour} \\ 0 & \text{otherwise} \end{cases}$$

	used?
Algo101_1	1
Algo101_2	1
Algo101_3	1
Math101_1 - Juggling	1
Math101_2 - Juggling	1
Math101_3 - Juggling	1
Math101_4 - Juggling	1

An Independent Set Formulations

An Independent Set Formulations

$$x_i = \begin{cases} 1 & \text{if dominating set } i \text{ is assigned a single colour} \\ 0 & \text{otherwise} \end{cases}$$

$$\sum_{i \in I} x_i \leq k$$
 $\sum_{i \in I} x_i \geq 1 \quad orall \ \ \, ext{ vertices } v \in V$

- Mehrotra and Trick (1996): the first alternative formulation
- based on set I of maximal independent sets
- |V| + 1 constraints $+ \exp$ no. of variables
- Column generation, post-processing

Another Independent Set Formulation

$$x_i = \begin{cases} 1 & \text{if independent set } i \text{ is assigned a single colour} \\ 0 & \text{otherwise} \end{cases}$$

	used?
Math101_1	0
Math101_2	1
Math101_3	1
Math101_4	1
Algo101_1	1
Algo101_2	1
Algo101_3	1
Juggling	0
Math101_1 - Juggling	1
Math101_2 - Juggling	0
Math101_3 - Juggling	0
Math101_4 - Juggling	0

Another Independent Set Formulation

Another Independent Set Formulation

$$x_i = \begin{cases} 1 & \text{if independent set } i \text{ is assigned a single colour} \\ 0 & \text{otherwise} \end{cases}$$

$$\sum_{i \in I} x_i \leq k$$
 $\sum_{s.t.} x_i = 1 \quad orall \ \ ext{ vertices } v \in V$

- Mehrotra and Trick (1996), Hansen, Labbé, and Schindl (2005)
- based on set I of (not necessarily max.) independent sets
- |V| + 1 constraints $+ \exp$ no. of variables
- Column generation

- Known IP Formulations of Vertex Colouring
 - A Scheduling Formulation (with Precedency Constraints)

A Scheduling Formulation (with Precedency Constraints)

 $X_v = c \text{ if colour } c \text{ used to colour vertex } v$ $x_{u,v} = \begin{cases} \bot & \text{if vertex } u = v \\ 1 & \text{if vertices } u, v \text{ are assigned colours } c_u, c_v \text{ with } c_u < c_v \\ 0 & \text{otherwise} \end{cases}$

	1	2	3	4	5	6	7	8
Math101_1		1	1	1	1	1	1	0
$Math101_2$	0		1	1	1	1	1	0
$Math101_3$	0	0		1	1	1	1	0
$Math101_4$	0	0	0		1	1	1	0
$Algo101_1$	0	0	0	0		1	1	0
$Algo101_2$	0	0	0	0	0		1	0
$Algo101_{-}3$	0	0	0	0	0	0		0
Juggling	0	1	1	1	1	1	1	

└A Scheduling Formulation (with Precedency Constraints

A Scheduling Formulation (with Precedency Constraints)

$$X_v = c$$
 if colour c used to colour vertex v

$$x_{u,v} = \left\{ egin{array}{ll} \bot & ext{if vertex } u = v \\ 1 & ext{if vertices } u,v ext{ are assigned colours } c_u,c_v ext{ with } c_u < c_v \\ 0 & ext{otherwise} \end{array} \right.$$

$$egin{aligned} X_u - X_v - kx_{u,v} & \leq -1 & orall \ edges \ \{u,v\} \in E \ X_v - X_u - kx_{u,v} & \leq k-1 & orall \ edges \ \{u,v\} \in E \end{aligned}$$

- ullet |V|(|V|-1) variables and 2|E| precedency constraints
- Williams and Yan (2001): detailed study, "poor relaxations"
- Branch and cut

Encoding Using Acyclic Orientations

Encoding Using Acyclic Orientations

Definition

An acyclic orientation G'=(V,E') of an undirected G=(V,E) is a directed graph such that for each $\{u,v\}\in E$, there is either $(u,v)\in E'$ or $(v,u)\in E'$, and there is no directed cycle in G'.

Theorem

Deming (1979): if χ is the smallest k, such that there is a k-colouring of G, there is an acyclic orientation of G, with longest path of χ vertices

■ Here be the lions: Never implemented.

- Known IP Formulations of Vertex Colouring
 - Formulation Using Asymmetric Representatives

Formulation Using Asymmetric Representatives

$$x_{u,v} = \begin{cases} \bot & \text{if } u = v \text{ or if } \{u,v\} \in E \\ 1 & \text{if vertex } u \text{ represents the colour assigned also to vertex } v \\ 0 & \text{otherwise} \end{cases}$$

	1	2	3	4	5	6	7	8
Math101_1	0							1
$Math101_{-}2$		1						0
$Math101_3$			1					0
$Math101_4$				1				0
$Algo101_1$					1			
$Algo101_2$						1		
Algo101_3							1	
Juggling	0	0	0	0				0

Formulation Using Asymmetric Representatives

$$x_{u,v} = \begin{cases} \bot & \text{if } u = v \text{ or if } \{u,v\} \in E \\ 1 & \text{if vertex } u \text{ represents the colour assigned also to vertex } v \\ 0 & \text{otherwise} \end{cases}$$

- $|V| + |V|^2 |E|$ variables and $\mathcal{O}(|V|^3)$ constraints
- Campêlo, Campos, and Corrêa (2007): "representatives"
- Campêlo et al. (2007): order vertices, which induces an acyclic orientation, add symmetry-breaking constraints
- No empirical results are available

Known IP Formulations of Vertex Colouring

Formulation Using Asymmetric Representatives

A Summary

Known integer programming formulations of graph colouring:

Based on	Pre-proc.	Variables	Constraints	Post-proc.
Vertices	Easy	k V	k E	Easy
Max. Independent	Hard	Exp. many	V + 1	Hard
Any Independent	Hard	Exp. many	V +1	Easy
Binary Encoding	Easy	$\lceil \log_2 k \rceil V $	Exp. many	Easy
Precedencies	Easy	$ V ^2$	2 <i>E</i>	Easy
Ac. Orientations	Easy	E	Exp. many	Hard
Asymmetric Reps.	Easy	$\mathcal{O}(E)$	$\mathcal{O}(V E)$	Easy

What is good? What is bad?

- Come up with an encoding of a solution
- Come up with variables suitable for storing that encoding
- Come up with a set of linear equations in those variables, which are satisfied if and only if variables encode a feasible solution
- 4 Optionally come up with some more linear equations ("cuts") that have to be satisfied for each feasible solution

Definition

Clique partition of graph G=(V,E) is a pair (Q,E'), where Q is a partition of vertices V, such that for all sets $q\in Q$, all $v\in Q$ are pairwise adjacent in G, and

$$E' = \{\{q_u, q_v\} | \{u, v\} \in E, q_u, q_v \in Q, q_u \neq q_v, u \in q_u, v \in q_v, \}.$$

- For general graphs, it's \mathcal{NP} -Hard to find a clique partition of minimum cardinality (of Q)
- In a number of applications, a (not min.) partition of the vertex set into (not max.) cliques is given implicitly
- In Udine CTT, it's "events grouped by the course"
- It should be possible to take advantage of this

Definition

Good clique partition (Q, E') of a graph G = (V, E) maitains the following property: if there exists $\{q_u, q_v\} \in E'$, then for all $u \in q_u$ and for all $v \in q_v$, there exists an edge $\{u, v\} \in E$.

- What is the structure of the clique partition?
- In Udine CTT, if there is a student enrolled in courses c and d, there are edges connecting each event of c with each event of d
- The good clique partition is also a "suitable" clique cover

Definition

Set colouring of a graph G = (V, E) assigning each vertex $f: V \to \mathbb{N}$ colours out of the set $K = \{1, \ldots, k\}$, is a mapping $c: V \to 2^K$, such that for all $v \in V: |c(v)| = f(v)$ and for all $\{u, v\} \in E$, $c(u) \cap c(v) = \emptyset$.

- lacktriangle It's \mathcal{NP} -Hard to find a minimum cardinality clique cover
- Given a good clique partition, it remains \mathcal{NP} -Complete to decide, if there exists a set colouring of G' with f(q) using k colours
- If we have one, we can reformulate vertex colouring as set colouring
- Assigning each vertex a set of colours of cardinality equal to the size of the clique it represents

A New Clique-Based Formulation

$$x_{q,c} = \begin{cases} 1 & \text{if colour } c \in K \text{ is included in the set assigned to } q \in Q \\ 0 & \text{otherwise} \end{cases}$$

	1	2	3	4	5	6	7
Math101	1	1	1	1	0	0	0
Algo101	0	0	0	0	1	1	1
Juggling	1	0	0	0	0	0	0

A New Clique-Based Formulation

$$x_{q,c} = \begin{cases} 1 & \text{if colour } c \in K \text{ is included in the set assigned to } q \in Q \\ 0 & \text{otherwise} \end{cases}$$

$$\sum_{c=1}^k x_{q,c} = f(q) \quad orall \ \ \, ext{vertices} \ q \in Q$$
 $x_{u',c} + x_{v',c} \leq 1 \ orall \ \ \, ext{colours} \ c \in K \quad orall \ \, ext{edges} \ \{u',v'\} \in E'$

• k |Q| binary variables and |Q| + k |E'| constraints

How good is it?

- Breaks some symmetries
- For a trivial integer programming solver (w/o bounding & cuts) speed-up by the factor of:

$$\prod_{q\in Q}|q|!$$

■ For a modern IP solver, speed-up by the factor of at least

■ There are |V| - |Q| fewer variables, without raising the number of constraints or making the constraint matrix considerably denser

Empirical Tests

- Public (7) and not-yet-public (7) instances from Udine
- Own rule-based generator of random instances
- Roughly (e/10) curricula, (e/6) teachers, (e/3) courses
- CPLEX 10.0 on Faramir
- Default parameters, symmetry-breaking off, 1hr time limit

Empirical Results I

Performance on colouring (feasibility):

Inst.	Std.	lts.	New	Its.	<u>Std.</u> New
rand01	2.85s	1635	0.90s	931	3.16
rand02	2.99s	1666	0.94s	1106	3.18
rand03	9.92s	5792	1.05s	1045	9.45
rand04	99.48s	26317	5.18s	2802	19.20
rand05	73.72s	19802	33.49s	17467	2.20
rand06	83.78s	22537	40.35s	19836	2.08
rand07	216.08s	35821	86.44s	25541	2.50
rand08	59.70s	10760	43.45s	13342	1.37
rand09	127.19s	22155	98.32s	25782	1.29
rand11	3.80s	1761	1.51s	1194	2.52
rand12	4.55s	2005	2.31s	1377	1.97

Empirical Tests

Empirical Results II

	rand13	95.67s	22851	47.94s	18957	2.00
	rand14	45.25s	10544	6.64s	2629	6.81
	rand15	30.77s	6799	6.89s	2685	4.47
	rand16	114.32s	11603	275.44s	51518	0.42
	rand17	251.15s	33185	144.93s	36949	1.73
	rand18	160.25s	21686	138.04s	34461	1.16
	udine1	23.23s	8082	4.45s	3370	5.22
	udine2	14.51s	4749	10.04s	4826	1.45
	udine3	83.41s	16807	17.25s	11698	4.84
	udine4	144.49s	30655	145.99s	30655	0.99
_						

Empirical Results III

Performance on Udine CTT:

Inst.	Std.	lts.	New	lts.	Std. New
rand01	385.59s	180854	84.42s	43737	4.57
rand02	290.09s	71537	72.42s	34296	4.01
rand03	443.95s	148961	59.99s	23310	7.40
rand04	gap 0.24%	419910	1242.50s	210104	
rand05	gap 4.15%	360868	1194.71s	250148	
rand06	gap 8.33%	299998	1257.72s	247075	
rand07	gap 89.71%	234087	gap 90.11%	242978	
rand08	gap 99.85%	237243	gap 99.90%	312158	
rand09	gap 93.97%	199619	gap 95.44%	263820	
rand10	285.91s	66842	70.17s	27416	4.07
rand11	211.71s	68244	61.32s	31738	3.45
rand12	337.31s	129788	84.16s	48401	4.01

Empirical Results IV

rand13	gap 0.24%	431148	884.60s	175513	
rand14	gap 6.47%	322073	1356.97s	320129	
rand15	gap 1.74%	303518	1166.50s	280722	
rand16	gap 66.44%	175766	gap 67.19%	417706	
rand17	gap 94.15%	239576	gap 94.06%	293519	
rand18	gap 90.57%	251822	gap 49.34%	345817	
udine1	1175.40s	166539	237.12s	104221	4.96
udine2	gap 100.00%	639068	gap 100.00%	3318838	
udine3	gap 99.31%	367505	gap 59.59%	2000062	
udine4	gap 99.69%	220364	gap infinite	962856	

Conclusions

Integer programming formulations of graph colouring:

Based on	Pre-proc.	Variables	Constraints	Post-proc.
Vertices	Easy	k V	k E	Easy
Max. Independent	Hard	Exp. many	V + 1	Hard
Any Independent	Hard	Exp. many	V + 1	Easy
Binary Encoding	Easy	$\lceil \log_2 k \rceil V $	Exp. many	Easy
Precedencies	Easy	$ V ^2$	2 <i>E</i>	Easy
Ac. Orientations	Easy	<i>E</i>	Exp. many	Hard
Asymmetric Reps.	Easy	$\mathcal{O}(E)$	$\mathcal{O}(V E)$	Easy
Cliques	Hard	k Q	Q + k E'	Easy
Cliques (Udine)	Easy	k Q	Q + k E'	Easy

The \$1M Question: Which one is the best?

Conclusions

- The answer: depends on soft constraints
- Our formulation works well for some timetabling apps¹
 and does not require column generation ...
- ... but cannot beat good column generation in general (e.g. dense random graphs)
- Overall, integer programming is a great tool

¹Where you are given a clique partition.

Questions are Welcome!

Any questions or comments are very welcome!

- See http://cs.nott.cz/~jxm for more
- Come and talk to me in B78
- We have a draft and love to get feedback

Empirical Tests

Bibliography I

Empirical Tests

Bibliography II

Bibliography III

- Campêlo, M., Campos, V. A., & Corrêa, R. C. (2007). On the asymmetric representatives formulation for the vertex coloring problem. *Disc. App. Math.*, in press.
- Coll, P., Marenco, J., Méndez-Díaz, I., & Zabala, P. (2002). Facets of the graph coloring polytope. *Ann. Op. Res.*, *116*, 79–90.
- Deming, R. W. (1979). Acyclic orientations of a graph and chromatic and independence numbers. *J. Comb. Theory, Ser. B*, 26(1), 101-110.
- Hansen, P., Labbé, M., & Schindl, D. (2005). Set covering and packing formulations of graph coloring: algorithms and first polyhedral results (Tech. Rep. No. G-2005-76). Montreal, Canada: GERAD.

Bibliography IV

- Johnson, D. J., & Trick, M. A. (Eds.). (1996). Cliques, coloring, and satisfiability: Second dimacs implementation challenge, workshop, october 11-13, 1993. Boston, MA, USA:

 American Mathematical Society.
- Lee, J. (2002). All-different polytopes. *J. Comb. Optim.*, *6*(3), 335–352.
- Lee, J., & Margot, F. (2007). On a binary-encoded ILP coloring formulation. *INFORMS J. Computing*, 19(3), 406–415.
- Mehrotra, A., & Trick, M. A. (1996). A column generation approach for graph coloring. *INFORMS J. Computing*, 8(4), 344–354.
- Williams, H. P., & Yan, H. (2001). Representations of the all_different predicate of constraint satisfaction in integer programming. *INFORMS J. Computing*, *13*(2), 96–103.

Integer Programming Formulations of Graph Colouring

Empirical Tests

Bibliography V

Zabala, P., & Méndez-Díaz, I. (2006). A branch-and-cut algorithm for graph coloring. *Disc. App. Math.*, 154(5), 826–847.