Taller de Traceroute

Teoría de las Comunicaciones

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

10.04.2021

Bibliografía

The TCP/IP Guide Version 3.0 Charles M. Kozierok. Pags 602 - 649

Agenda

- Preliminares
- 2 ICMP: el protocolo de control de internet
- 3 Traceroute: construyendo la ruta que siguen los datagramas
 - Implementaciones
 - traceroute desde Scapy
- Trabajo Práctico: Rutas en Internet

Motivación

1. Introducción

En este trabajo práctico nos proponemos experimentar con herramientas y técnicas de uso frecuente a nivel de red. Particularmente, la versión de traceroute basada en los mensajes *echo request/reply* del protocolo ICMP [2, 1].

Motivación

1. Introducción

En este trabajo práctico nos proponemos experimentar con herramientas y técnicas de uso frecuente a nivel de red. Particularmente, la versión de traceroute basada en los mensajes echo request/reply del protocolo ICMP [2, 1].

Agenda

- Conceptos
 - ► ICMP
 - ► Traceroute
- Taller
 - ► Scapy 2.0
 - Ejercicios
- Presentación de TP2

- Internet Protocol (IP)
 - Qué características tiene?

- Internet Protocol (IP)
 - Qué características tiene?
- Pista: Best Effort...

- Internet Protocol (IP)
 - Qué características tiene?
- Pista: Best Effort...
 - Sin conexión.

- Internet Protocol (IP)
 - Qué características tiene?
- Pista: Best Effort...
 - Sin conexión.
 - Sin confianza.

- Internet Protocol (IP)
 - Qué características tiene?
- Pista: Best Effort...
 - Sin conexión.
 - Sin confianza.
 - Sin reconocimiento.

- Internet Protocol (IP)
 - Qué características tiene?
- Pista: Best Effort...
 - Sin conexión.
 - ► Sin confianza.
 - Sin reconocimiento.
- Sin embargo, ante cualquier error no tenemos forma de hacer nada.

• Internet Control Message Protocol.

- Internet Control Message Protocol.
- Protocolo de control que forma parte integral de la capa de red.
 - Dato de color: Es tan necesario que cuando se desarrolló IPV6, se desarrolló ICMPv6

- Internet Control Message Protocol.
- Protocolo de control que forma parte integral de la capa de red.
 - Dato de color: Es tan necesario que cuando se desarrolló IPV6, se desarrolló ICMPv6
- IP se encarga del direccionamiento, encapsular los datos y ruteo

- Internet Control Message Protocol.
- Protocolo de control que forma parte integral de la capa de red.
 - Dato de color: Es tan necesario que cuando se desarrolló IPV6, se desarrolló ICMPv6
- IP se encarga del direccionamiento, encapsular los datos y ruteo
- ICMP asiste a IP.
 - Reportes de error

- Internet Control Message Protocol.
- Protocolo de control que forma parte integral de la capa de red.
 - Dato de color: Es tan necesario que cuando se desarrolló IPV6, se desarrolló ICMPv6
- IP se encarga del direccionamiento, encapsular los datos y ruteo
- ICMP asiste a IP.
 - Reportes de error
 - Feedback

- Internet Control Message Protocol.
- Protocolo de control que forma parte integral de la capa de red.
 - Dato de color: Es tan necesario que cuando se desarrolló IPV6, se desarrolló ICMPv6
- IP se encarga del direccionamiento, encapsular los datos y ruteo
- ICMP asiste a IP.
 - Reportes de error
 - Feedback
 - Testing

- Internet Control Message Protocol.
- Protocolo de control que forma parte integral de la capa de red.
 - Dato de color: Es tan necesario que cuando se desarrolló IPV6, se desarrolló ICMPv6
- IP se encarga del direccionamiento, encapsular los datos y ruteo
- ICMP asiste a IP.
 - Reportes de error
 - Feedback
 - Testing
 - No intercambia datos

- Internet Control Message Protocol.
- Protocolo de control que forma parte integral de la capa de red.
 - Dato de color: Es tan necesario que cuando se desarrolló IPV6, se desarrolló ICMPv6
- IP se encarga del direccionamiento, encapsular los datos y ruteo
- ICMP asiste a IP.
 - Reportes de error
 - Feedback
 - Testing
 - No intercambia datos
- Especificado en el RFC 792 (IP: RFC791)

• Es un protocolo simple. Únicamente intercambia información.

- Es un protocolo simple. Únicamente intercambia información.
- Pueden ser enviados tanto por routers como por hosts arbitrarios.

- Es un protocolo simple. Únicamente intercambia información.
- Pueden ser enviados tanto por routers como por hosts arbitrarios.
- ICMP no define el uso que se le da a sus mensajes.

- Es un protocolo simple. Únicamente intercambia información.
- Pueden ser enviados tanto por routers como por hosts arbitrarios.
- ICMP no define el uso que se le da a sus mensajes.
- Son generados a causa de:
 - Errores en los datagramas IP.
 - Necesidad de comunicar información de diagnóstico.
 - Necesidad de comunicar información de ruteo.

- Es un protocolo simple. Únicamente intercambia información.
- Pueden ser enviados tanto por routers como por hosts arbitrarios.
- ICMP no define el uso que se le da a sus mensajes.
- Son generados a causa de:
 - Errores en los datagramas IP.
 - Necesidad de comunicar información de diagnóstico.
 - Necesidad de comunicar información de ruteo.

ICMP: Limitaciones

 Por cómo está implementado IP, el datagrama IP sólo contiene fuente y destino.

¿Qué problema trae esto?

• Se dividen en dos clases:

- Se dividen en dos clases:
- Mensajes de error
 - Proveen feedback sobre un error.

- Se dividen en dos clases:
- Mensajes de error
 - Proveen feedback sobre un error.
 - Usualmente son en respuesta a alguna acción.

- Se dividen en dos clases:
- Mensajes de error
 - Proveen feedback sobre un error.
 - Usualmente son en respuesta a alguna acción.
 - Los errores pueden ser:
 - ★ Estructura o contenido del datagrama.
 - ★ Problemas de la red mientras se "routea" el datagrama.
- Información

- Se dividen en dos clases:
- Mensajes de error
 - Proveen feedback sobre un error.
 - Usualmente son en respuesta a alguna acción.
 - ▶ Los errores pueden ser:
 - ★ Estructura o contenido del datagrama.
 - ★ Problemas de la red mientras se "routea" el datagrama.
- Información
 - Permite que dispositivos intercambien información

- Se dividen en dos clases:
- Mensajes de error
 - Proveen feedback sobre un error.
 - Usualmente son en respuesta a alguna acción.
 - Los errores pueden ser:
 - ★ Estructura o contenido del datagrama.
 - ★ Problemas de la red mientras se "routea" el datagrama.
- Información
 - Permite que dispositivos intercambien información
 - Testing

- Se dividen en dos clases:
- Mensajes de error
 - Proveen feedback sobre un error.
 - Usualmente son en respuesta a alguna acción.
 - Los errores pueden ser:
 - ★ Estructura o contenido del datagrama.
 - ★ Problemas de la red mientras se "routea" el datagrama.
- Información
 - Permite que dispositivos intercambien información
 - Testing
 - No suelen dispararse en respuesta a un envío normal de paquete IP.
 - ► Tienen un formato request/reply

ICMP: Formato de los paquetes

- Se dividen en dos clases:
 - Mensajes de error: Mensajes de feedback al emisor del datagrama, sea por un error en el formato del datagrama o de ruteo, entre otros.
 - Información: Permite a los dispositivos intercambiar información entre sí.
- Los paquetes constan de un header de 4 bytes y una sección de datos variable.

• Header:

- ➤ Type (1 byte): indica el tipo del mensaje y define el formato de lo que sigue. (256 posibles).
- ▶ Code (1 byte): especifica el subtipo de cada tipo (256 posibles).
- Checksum (2 bytes): usa el msimo algoritmo de IP.
- Message body/data Campos específicos según el tipo.

ICMP: Formato de los paquetes

- Se dividen en dos clases:
 - Mensajes de error: Mensajes de feedback al emisor del datagrama, sea por un error en el formato del datagrama o de ruteo, entre otros.
 - Información: Permite a los dispositivos intercambiar información entre sí.
- Los paquetes constan de un header de 4 bytes y una sección de datos variable.

• Header:

- ▶ Type (1 byte): indica el tipo del mensaje y define el formato de lo que sigue. (256 posibles).
- ▶ Code (1 byte): especifica el subtipo de cada tipo (256 posibles).
- Checksum (2 bytes): usa el msimo algoritmo de IP.
- Message body/data Campos específicos según el tipo.

Por ejemplo, el *type* puede ser Destination Unreachable (3), y el *code* Network Unreachable o Host Unreachable (0 y 1 respectivamente). Luego en Message iría el datagrama IP que generó el error.

10.04.2021

Type	Name
0	Echo Reply
1	Unassigned
2	Unassigned
3	Destination Unreachable
4	Source Quench
5	Redirect
6	Alternate Host Address
7	Unassigned
8	Echo
9	Router Advertisement
10	Router Selection
11	Time Exceeded
12	Parameter Problem
13	Timestamp
14	Timestamp Reply
15	Information Request
16	Information Reply
17	Address Mask Request
18	Address Mask Reply
19	Reserved (for Security)
20-29	Reserved (for Robustness Experiment)

ICMP: Formato de los paquetes

Algunos códigos o subtipos de **Destination Unreachable**

- 0 Network Unreachable
- 1 Host Unreachable
- 2 Protocol unreachable
- 3 Port unreachable

..

15 Precedence Cutoff in Effect (?

ICMP: Resúmen

- Es un paquete de control (testing, feedback, reportes de error).
- Es simple. No hay algoritmos, cómo se utiliza ICMP va por fuera del protocolo.
- Asiste a y se encapsula en IP.
- Sus mensajes se dividen en información y error.

Taller

- Vamos a hacer el taller con modalidad parecida al taller 1.
- Recomendable hacer los ejercicios para poder entender y modificar el código del TP2.

¿Qué es traceroute?

- Es una herramienta de diagnóstico para averiguar las rutas que atraviesan los paquetes en Internet.
- La mayoría de los sistemas operativos actuales proveen alguna implementación. Ejemplos:
 - tracert en Windows.
 - traceroute en Unix.
- Al correr la herramienta, se debe indicar hacia qué host destino se desea trazar la ruta.
- La salida obtenida suele mostrar las direcciones IP de los hops sucesivos y el respectivo tiempo de respuesta esperado.

Los distintos sabores

- Existen varias maneras de implementar traceroute.
- Usualmente consisten en enviar paquetes IP donde se incremente progresivamente el campo TTL.

• El efecto colateral de esto es recibir respuestas ICMP sucesivas

- informando que el tiempo de vida del paquete acaba de expirar.
- En lo que sigue describiremos dos implementaciones de traceroute:
 - Enviando paquetes ICMP de tipo Echo Request ajustando el TTL. (Listo)
 - Utilizando las opciones de los datagramas IP (RFC 1393).

traceroute sobre ICMP

- Implementa (esencialmente) el siguiente algoritmo:
 - ① Sea h la IP del host destino y sea ttl = 1.
 - Repetir los siguientes pasos hasta obtener una respuesta ICMP de tipo Echo Reply por parte de h:
 - Enviar un paquete ICMP de tipo Echo Request al host h cuyo campo TTL en el header IP valga ttl.
 - Si se recibe una respuesta ICMP de tipo Time Exceeded, anotar la IP origen de dicho paquete. En otro caso, marcar como desconocido (*) el hop.
 - Incrementar ttl.

traceroute sobre ICMP: observaciones

- Usualmente suele enviarse una serie de paquetes por cada valor de ttl (por lo general tres).
- A través de esto, puede estimarse el tiempo medio de respuesta.
- El host origen define un timeout para esperar por cada respuesta. Pasado este intervalo, el hop actual se asume desconocido.
- Observar que las rutas no necesariamente serán siempre iguales!

traceroute sobre ICMP: observaciones

• Veamos que sucede cuándo corremos traceroute en la consola.

traceroute utilizando opciones IP

- Problemas del enfoque anterior:
 - ▶ Se generan muchos paquetes: $\geq 2n$, siendo n la cantidad de hops.
 - La ruta puede cambiar en el transcurso del algoritmo.
- El RFC 1393 especifica un algoritmo nuevo de traceroute que utiliza las opciones IP.
- Es más eficiente: genera n+1 paquetes y no sufre del cambio de rutas dado que el origen envía un único paquete.

El algoritmo básico

- La idea: enviar un paquete arbitrario con la opción IP de traceroute adjuntada.
- Cada hop intermedio notará su presencia y devolverá un paquete ICMP de tipo 30 (*Traceroute*) con información apropiada.
- Desventaja: los routers deben implementar esta nueva funcionalidad.

Formato de la opción IP

- La opción de traceroute definida en el RFC esencialmente contiene estos campos:
 - ▶ ID Number: valor arbitrario para identificar las respuestas ICMP.
 - Hop Count: número de routers a través de los cuales pasó hasta el momento el paquete original.
 - Originator IP Address: dirección IP del host que origina el traceroute. Los routers utilizan este campo para devolver las respuestas ICMP.

La implementación nativa de Scapy

- Scapy provee una implementación propia de traceroute.
- Utiliza conceptos de nivel de transporte (puntualmente TCP).

```
>>> traceroute('www.dc.uba.ar')
************************Finished to send 30 packets.
  157.92.27.21:tcp80
  192.168.0.3
                  11
                              10 190, 220, 179, 1
                                                11
2 190.246.18.1 11
                              11 190.220.176.34
                                                11
6 200.89.165.117 11
                              12 190.220.179.122 11
7 200.89.165.1 11
                              14 157.92.47.13
                                                11
8 200.89.165.250
                  11
                              15 157.92.18.21
                                                11
  200 49 69 165
                  11
                              16 157 92 27 21
                                                SA
```

- 11 indica el tipo ICMP: Time to Live Exceeded.
- SA indica la contestación positiva del destino (SYN-ACK).

Trabajo práctico: Rutas en Internet

Trabajo práctico: Rutas en Internet

Objetivos

- Experimentar con herramientas y técnicas frecuentes a nivel de red: traceroute.
- Entender los protocolos involucrados.
- Desarrollar implementaciones propias para afianzar los conocimientos.
- Continuar con el enfoque analítico de la instancia anterior.

Fecha límite de entrega

• Hasta el 24 de Mayo del 2022

Herramientas adicionales

- Recomendamos el uso de herramientas de geolocalización (ver referencias en el enunciado).
- Nos permiten ubicar en el mapa la localización aproximada de una dirección IP.
- En nuestro caso serán las direcciones de los hops encontrados en las rutas.

Todo por hoy

- Vamos a ver el TP
- Preguntas.