Departamento de Análisis Matemático, Universidad de Granada Variable Compleja I, Grado en Ingeniería Informática y Matemáticas

Ejercicio 1. (3.5 puntos) Probar que la serie $\sum_{n\geqslant 0} \mathrm{e}^{-zn}$ converge absolutamente en todo punto del dominio $\Omega = \{z \in \mathbb{C} : \mathrm{Re}\, z > 0\}$ y uniformemente en cada subconjunto compacto contenido en Ω . Deducir que la función $g: \Omega \to \mathbb{C}$ dada por

$$g(z) = \sum_{n=0}^{\infty} e^{-zn}$$
 $(z \in \Omega)$

es continua en Ω y calcular $\int_{C(2,1)} g(z) dz$.

Ejercicio 2. (3.5 puntos) Estudiar la derivabilidad de las funciones $f,g:\mathbb{C}\to\mathbb{C}$ dadas por

$$f(z) = \cos(\overline{z})$$
 y $g(z) = (z-1)f(z)$ $\forall z \in \mathbb{C}$.

Ejercicio 3. (**3 puntos**) Sea Ω un abierto de $\mathbb C$ y $f \in \mathcal H(\Omega)$. Probar que la función |f| no puede tener ningún máximo relativo estricto. Es decir, no pueden existir $z_0 \in \Omega$ y r > 0 con $\overline{D}(z_0, r) \subset \Omega$ de modo que $|f(z_0)| > |f(z)|$ para cada $z \in \overline{D}(z_0, r) \setminus \{z_0\}$.