ГУАП

КАФЕДРА № 43

ОТЧЕТ		
ЗАЩИЩЕН С ОЦЕНКОЙ		
ПРЕПОДАВАТЕЛЬ		
Дожность		Рогачев С.А
старший преподаватель	подпись, дата	инициалы, фамилия
	БОРАТОРНОЙ РАБОТЕ ия теории конечных ав	
по дисциплине: Тес	рия вычислительных	процессов
РАБОТУ ВЫПОЛНИЛ		

подпись, дата

Л. Мвале инициалы, фамилия

Санкт-Петербург 2025

4236

СТУДЕНТ ГР.

1. Цель работы

Построение конечного автомата Мили для проверки входных слов на соответствие регулярному выражению (x|d)<n|m>k(<a>x) и изучение методов формального описания конечных автоматов.

2. Постановка задачи

Для регулярного выражения (x|d) < n|m > k(<a > x < b >) требуется:

- Построить детерминированный конечный автомат Мили
- Реализовать проверку слов вида: k групп, где каждая группа
 состоит либо из n символов 'x', либо из m символов 'd', за которыми
 следует фиксированный суффикс "a x b"

$$(x|d)^{< n|m>}k(axb)$$

- Представить автомат тремя классическими способами
- Протестировать автомат на корректных и некорректных словах

3. Исправленный общий автомат Мили для (x|d)< n|m>k(<a>x)

Формальное определение

 q_0 = (Qstart, 0, 0, 0) # (состояние, количество x, количество d, завершённые группы)

Ключевая идея

Нужно отслеживать три счётчика:

- x_count: количество x в активной x-группе (0...n)
- d count: количество d в активной d-группе (0...m)
- groups_completed: количество завершённых групп (0...k)

Метод 1: Исправленная матрица переходов (δ)

Текущее состояние	x_cou nt	d_cou nt	groups	Вход х	Вход d	Вход а	Вход b
Qstart	0	0	0	ReadingX(1,0,0)	ReadingD(0,1,0)	Qtrap	Qtrap
ReadingX	i < n	0	g	ReadingX(i+1,0,g)	Qtrap	Qtrap	Qtrap
ReadingX	i = n	0	g < k-1	ReadingX(1,0,g+1)	ReadingD(0,1,g+1)	Qtrap	Qtrap
ReadingX	i = n	0	g = k-1	Qtrap	Qtrap	SuffixA	Qtrap
ReadingD	0	j < m	g	Qtrap	ReadingD(0,j+1,g)	Qtrap	Qtrap
ReadingD	0	j = m	g < k-1	ReadingX(1,0,g+1)	ReadingD(0,1,g+1)	Qtrap	Qtrap
ReadingD	0	j = m	g = k-1	Qtrap	Qtrap	SuffixA	Qtrap
SuffixA	-	-	-	Qtrap	Qtrap	SuffixX	Qtrap
SuffixX	-	-	-	Qtrap	Qtrap	Qtrap	SuffixB
SuffixB	-	-	-	Qtrap	Qtrap	Qtrap	Qfinal

Qfinal	-	-	-	-	-	-	-
Qtrap	_	_	-	Qtrap	Qtrap	Qtrap	Qtrap

Исправленная матрица выходов (λ)

Текущее состояние	Вход х	Вход d	Вход а	Вход b
Qstart	0	0	0	0
ReadingX	0	0	0	0
ReadingD	0	0	0	0
SuffixA	0	0	0	0
SuffixX	0	0	0	0
SuffixB	0	0	0	1
Qfinal	-	-	-	-
Qtrap	0	0	0	0

Текущее состояние	Вход х	Вход d	Вход а	Вход в
(Qstart,0,0,0)	(ReadingX,1,0,0)/0	(ReadingD,0,1,0)/0	Qtrap/0	Qtrap/0
(ReadingX,i,0,g) i <n< th=""><th>(ReadingX,i+1,0,g)/0</th><th>Qtrap/0</th><th>Qtrap/0</th><th>Qtrap/0</th></n<>	(ReadingX,i+1,0,g)/0	Qtrap/0	Qtrap/0	Qtrap/0
(ReadingX,n,0,g) g <k-1< th=""><th>(ReadingX,1,0,g+1)/0</th><th>(ReadingD,0,1,g+1)/0</th><th>Qtrap/0</th><th>Qtrap/0</th></k-1<>	(ReadingX,1,0,g+1)/0	(ReadingD,0,1,g+1)/0	Qtrap/0	Qtrap/0
(ReadingX,n,0,k-1)	Qtrap/0	Qtrap/0	(SuffixA,-,-,-)/0	Qtrap/0
(ReadingD,0,j,g) j <m< th=""><th>Qtrap/0</th><th>(ReadingD,0,j+1,g)/0</th><th>Qtrap/0</th><th>Qtrap/0</th></m<>	Qtrap/0	(ReadingD,0,j+1,g)/0	Qtrap/0	Qtrap/0
(ReadingD,0,m,g) g <k-1< th=""><th>(ReadingX,1,0,g+1)/0</th><th>(ReadingD,0,1,g+1)/0</th><th>Qtrap/0</th><th>Qtrap/0</th></k-1<>	(ReadingX,1,0,g+1)/0	(ReadingD,0,1,g+1)/0	Qtrap/0	Qtrap/0

(ReadingD,0,m,k-1)	Qtrap/0	Qtrap/0	(SuffixA,-,-,-)/0	Qtrap/0
(SuffixA,-,-,-)	Qtrap/0	Qtrap/0	(SuffixX,-,-,-)/0	Qtrap/0
(SuffixX,-,-,-)	Qtrap/0	Qtrap/0	Qtrap/0	(SuffixB,-,-,-)/0
(SuffixB,-,-,-)	Qtrap/0	Qtrap/0	Qtrap/0	(Qfinal,-,-,-)/1
(Qfinal,-,-,-)	-	-	-	-
Qtrap	Qtrap/0	Qtrap/0	Qtrap/0	Qtrap/0

Конкретный пример: n=2, m=3, k=1

Разберём правильные и неправильные слова:

- 1. ххахь (х-группа)
- 2. dddaxb (d-группа)

★ НЕДОПУСТИМЫЕ СЛОВА:

- 3. хахь только 1 символ х в первой группе (неполная)
- 4. xxbbbaxb всего 2 группа (требуется k=1)
- 5. xddxaxb смешение внутри группы (недопустимо)
- 6. xxdddxxaxb слишком много групп (k=3 при k=1)

3. Конечный автомат заданный тремя способами

3.1. Матрицы переходов и выходов

3.1.1. Матрица переходов $\Delta(\delta)$ задает функцию отображения переходов

$$\delta \colon Q \times \Sigma \to Q$$

Состояния: $Q = \{S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, Qtrap\}$

δ\Σ	X	d	a	b
S0	S1	S3	Qtrap	Qtrap
S1	S2	Qtrap	Qtrap	Qtrap
S2	Qtrap	Qtrap	S6	Qtrap
S3	Qtrap	S4	Qtrap	Qtrap
S4	Qtrap	S5	Qtrap	Qtrap
S5	Qtrap	Qtrap	S7	Qtrap
S6	S8	Qtrap	Qtrap	Qtrap
S7	S8	Qtrap	Qtrap	Qtrap
S8	Qtrap	Qtrap	Qtrap	S9
S9	-	-	-	-
Qtrap	Qtrap	Qtrap	Qtrap	Qtrap

3.1.2. Матрица выходов $\Lambda(\lambda)$ задает функцию выходов

$$\lambda: Q \times \Sigma \to \Delta$$

Выходной алфавит: $\Delta = \{0, 1\}$

λ\Σ	X	d	a	b
S0	0	0	0	0
S1	0	0	0	0
S2	0	0	0	0
S3	0	0	0	0

S4	0	0	0	0
S5	0	0	0	0
S6	0	0	0	0
S7	0	0	0	0
S8	0	0	0	1
S9	-	-	-	-
Qtrap	0	0	0	0

3.2. Ориентированный граф (диаграмма переходов)

 $\Gamma = \langle Q, \Sigma, \Delta, \delta, \lambda \rangle$

Диаграмма переходов:

Пояснение к диаграмме:

• Верхняя ветка: Обработка последовательности "ххахв"

- Нижняя ветка: Обработка последовательности "dddaxb"
- Объединение: Обе ветки сходятся в состоянии S8 для обработки финального "xb"
- **Финальное состояние:** S9 достигается только при корректном завершении слова

3.3. Автоматная матрица (таблица)

$$M = [m_ij]$$

где:

$$X_i = \delta(q_i, x_j)$$
 - следующее состояние

$$U_{ij} = \lambda(q_i, x_j)$$
 - выходной сигнал

$$m_ij = X_ij/U_ij$$

$Q \setminus \Sigma$	X	d	a	b
S0	S1/0	S3/0	Qtrap/0	Qtrap/0
S1	S2/0	Qtrap/0	Qtrap/0	Qtrap/0
S2	Qtrap/0	Qtrap/0	S6/0	Qtrap/0
S3	Qtrap/0	S4/0	Qtrap/0	Qtrap/0
S4	Qtrap/0	S5/0	Qtrap/0	Qtrap/0
S5	Qtrap/0	Qtrap/0	S7/0	Qtrap/0
S6	S8/0	Qtrap/0	Qtrap/0	Qtrap/0
S7	S8/0	Qtrap/0	Qtrap/0	Qtrap/0
S8	Qtrap/0	Qtrap/0	Qtrap/0	S9/1
S9	-	-	-	-
Qtrap	Qtrap/0	Qtrap/0	Qtrap/0	Qtrap/0

Выводы

В ходе лабораторной работы был успешно построен конечный автомат Мили для заданного регулярного выражения. Автомат

корректно распознает слова, состоящие из k групп символов, где каждая группа представляет собой либо n символов 'x', либо m символов 'd', за которыми следует фиксированная последовательность "a x b".

- 1. Автомат представлен тремя эквивалентными способами: Матрицы переходов и выходов наиболее формальное представление, удобное для анализа и программной реализации
- 2. Диаграмма переходов наглядное графическое представление, удобное для визуального анализа работы автомата
- 3. Автоматная таблица компактное комбинированное представление, удобное для ручного моделирования работы автомата

Проверка автомата на тестовых примерах показала его корректную работу: автомат принимает только слова, строго соответствующие шаблону, и отвергает все отклонения от заданной структуры.