Homework 5 Points: 35

1. (3) Given that you have a Fully Associative cache of size 2¹⁰ bytes with a line size of 16 bytes show how an Address of 29 bits would be partitioned.

2. (3) Given that you have Direct Mapped cache of size 2¹² bytes with a line size of 32 bytes show how an Address of 50 bits would be partitioned.

Tag	Set	Offset				
49 - 12	11 - 5	4 - 0				

3. (3) Given that you have a 5 way Set Associate cache of size 5242880 bytes with a line size of 64 bytes show how an Address of 64 bits would be partitioned.

Tag	Set	Offset				
63 - 20	19 - 6	5 - 0				

- 4. (3 per) Here is a string of hex address references given as byte addresses: 1, 2, 3, 1A, A,1B, 16, 14, 3, 12, 9, 23, 3A, 5, 19, 1, 9
 - 1. Assuming a **direct mapped cache** with a **total size of 16 bytes** and a **line size that is 1 byte**. that is initially empty, label each reference in the list as a hit or miss and show the final contents of the cache tag bits for each line. If a line is not written to leave its tag bits blank. Compute the hit rate for this example.

Set	Tag
0	
1	0
2	1
3	2
4	1
5	0
6	1
7	
8	
9	0
10	3
11	1
12	
13	

14	
15	

1	2	3	1A	A	1B	16	14	3	12	9	23	3A	5	19	1	9
M	M	M	M	M	M	M	M	Н	M	M	M	M	M	M	Н	M

1. Hit rate = 2 / 17

2. Repeat 4.1 but for a **direct mapped cache** that is **16 bytes big** and has a **line size of 4 bytes.**

Set	Tag
0	0
1	0
2	0
3	

1.

1	2	3	1A	A	1B	16	14	3	12	9	23	3A	5	19	1	9
M	Н	Н	M	M	M	M	Н	Н	M	M	M	M	M	M	M	M

2. Hit rate = 4/17

3. Repeat 4.1 but for a **two way set associative cache** that is **16 bytes big** and has a **line size of 1 byte**. Assume an **LRU replacement strategy** is used.

1. The tags can be placed in either way

Set	Way 1	Way 2
0		
1	1	0
2	7	2
3	0	4
4	2	
5	0	
6	2	
7		

2.

1	2	3	1A	A	1B	16	14	3	12	9	23	3A	5	19	1	9
M	M	M	M	M	M	M	M	Н	M	M	M	M	M	M	M	M

3. Hit rate 1/17

4. Repeat 4.1 but for a **fully associative** cache that is **16 bytes big** and has a **line size of 1 byte**. Assume an **LRU replacement strategy** is used.

1. 1, set so order doesn't matter.

Tag	
1	
2	

3
1A
A
1B
16
14
12
9
23
3A
5
19

2.

1	2	3	1A	A	1B	16	14	3	12	9	23	3A	5	19	1	9
M	M	M	M	M	M	M	M	Н	M	M	M	M	M	M	Н	Н

- 3. Hit rate = 3/17
- 5. Repeat 4.1 but for a fully associative cache that is 16 bytes big and has a line size of 4 bytes. Assume an LRU replacement strategy is used.
 - 1. Since there is only 1 set tags can be in any order

2.

1	2	3	1A	A	1B	16	14	3	12	9	23	3A	5	19	1	9
M	Н	Н	M	M	Н	M	Н	Н	M	M	M	M	M	M	M	M

- 6. Hit rate = 5/17
- 5. (5) Consider a computer that has 2¹⁶ bytes of RAM and is using a Virtual Memory system whose virtual address is 32 bits long and is using a page size of 2¹⁰ bytes.
 - 1. How many physical pages are there? $\frac{2^{16}}{2^{10}} = 2^6$
 - 2. How many virtual pages are there? $\frac{2^{32}}{2^{10}} = 2^{22}$
 - 3. How large is each entry in the page table (in bits)? $log_2(2^6)=6$ bits
- 4. How large is the page table for a single process (in bytes)? 6*2²² bits=6*2¹⁹ bytes
 5. Are there any problems with a page table that size? It is larger than memory
 6. (6) Consider a computer that has 2¹⁸ bytes of RAM and is using a Virtual Memory system

with secondary page tables. The virtual address is 32 bits long and the page size is 2^{10} bytes. The size of the secondary pages is equal to the page size.

- 1. How many physical pages are there? $\frac{2^{18}}{2^{10}} = 2^8$ 2. How may virtual pages are there? $\frac{2^{32}}{2^{10}} = 2^{22}$
- 3. How many secondary page tables are there? $\frac{2^{22}}{2^{10}} = 2^{12}$
- 4. How large is each entry in the primary page table (in bytes)? 1 byte
- 5. How large is each entry in the secondary page table (in bytes)? 1 byte
 6. How large is the primary page table (in bytes)? 2¹²*1=2¹² bytes