

# Maximal flows in networks Bachelorarbeit aus Diskreter Mathematik

Florian Schager

TU Wien, Vienna, Austria

19. April 2021

### Problemstellung

#### **Problem**

Wir wollen in einem Flussnetzwerk die maximale Transportkapazität von einem ausgezeichnetem Knoten, der Quelle *s*, zum Abflussknoten *t* bestimmen. Ursprünglich wurde das Problem in den 50ern zur Modellierung des sowjetischen Schienenverkehrs gestellt.

Anwendungen reichen von der Fluglinienplanung bis hin zur Segmentierung in der Bildverarbeitung.



#### Definition (Flussnetzwerk)

Ein Flussnetzwerk N=(G,c,s,t) besteht aus einem gerichteter Graph G=(V,E) mit einer Kapazitätsfunktion  $c:E\to\mathbb{R}^+$  mit zwei ausgezeichneten Knoten s und t, wobei t von s aus erreichbar sein soll.



#### Definition (Flussnetzwerk)

Ein Flussnetzwerk N=(G,c,s,t) besteht aus einem gerichteter Graph G=(V,E) mit einer Kapazitätsfunktion  $c:E\to\mathbb{R}^+$  mit zwei ausgezeichneten Knoten s und t, wobei t von s aus erreichbar sein soll.

#### Definition (Fluss)

Ein zulässiger Fluss durch N ist eine Funktion  $f: E \to \mathbb{R}_0^+$ , welche den folgenden Bedingungen genügt:



#### Definition (Flussnetzwerk)

Ein Flussnetzwerk N=(G,c,s,t) besteht aus einem gerichteter Graph G=(V,E) mit einer Kapazitätsfunktion  $c:E\to\mathbb{R}^+$  mit zwei ausgezeichneten Knoten s und t, wobei t von s aus erreichbar sein soll.

#### Definition (Fluss)

Ein zulässiger Fluss durch N ist eine Funktion  $f: E \to \mathbb{R}_0^+$ , welche den folgenden Bedingungen genügt:

 $0 \le f(e) \le c(e)$  für jede Kante e; (Kapazitätsbeschränkung)



#### Definition (Flussnetzwerk)

Ein Flussnetzwerk N=(G,c,s,t) besteht aus einem gerichteter Graph G=(V,E) mit einer Kapazitätsfunktion  $c:E\to\mathbb{R}^+$  mit zwei ausgezeichneten Knoten s und t, wobei t von s aus erreichbar sein soll.

#### Definition (Fluss)

Ein zulässiger Fluss durch N ist eine Funktion  $f: E \to \mathbb{R}_0^+$ , welche den folgenden Bedingungen genügt:

- $0 \le f(e) \le c(e)$  für jede Kante e; (Kapazitätsbeschränkung)
- 2  $\sum_{e^+=v} f(e) = \sum_{e^-=v} f(e)$  für jeden Knoten  $v \neq s, t$ . Dabei bezeichnen  $e^-$  und  $e^+$  jeweils den Start- und Endpunkt der Kante e. (Flusserhaltung)



#### Definition (Wert eines Flusses)

Die Größe

$$w(f) := \sum_{e^-=s} f(e) - \sum_{e^+=s} f(e) = \sum_{e^+=t} f(e) - \sum_{e^-=t} f(e)$$

nennen wir den Wert eines Flusses.



#### Definition (Wert eines Flusses)

Die Größe

$$w(f) := \sum_{e^-=s} f(e) - \sum_{e^+=s} f(e) = \sum_{e^+=t} f(e) - \sum_{e^-=t} f(e)$$

nennen wir den Wert eines Flusses.

#### Definition (Cut)

Ein Cut ist eine Partition  $V = S \dot{\cup} T$  eines Flussnetzwerks N = (G, c, s, t) mit  $s \in S$  und  $t \in T$ . Die Kapazität eines Cuts ist gegeben durch

$$c(S,T) = \sum_{e^- \in S, s^+ \in T} c(e).$$



### Beispiel - Flüsse und Cuts

#### Maximaler Fluss f





# Beispiel - Flüsse und Cuts

#### Maximaler Fluss f



### Minimaler Cut (S, T)





#### Erweiternde Pfade

#### Definition (Pfad)

Wir definieren einen Pfad in einem gerichteten Graphen als eine Folge  $(e_1, \ldots, e_n)$  von Kanten, sodass die zugehörige Folge an ungerichteten Kanten ein Pfad in dem zugehörigen ungerichteten Graph ist.



#### Erweiternde Pfade

#### Definition (Pfad)

Wir definieren einen Pfad in einem gerichteten Graphen als eine Folge  $(e_1, \ldots, e_n)$  von Kanten, sodass die zugehörige Folge an ungerichteten Kanten ein Pfad in dem zugehörigen ungerichteten Graph ist.

Sei  $(v_0, \ldots, v_n)$  die zum Pfad zugehörige Knotenfolge. Dann heißt jede Kante der Form  $v_{i-1}v_i$  eine Vorwärts-Kante und jede Kante der Form  $v_iv_{i-1}$  eine Rückwärts-Kante.



#### Erweiternde Pfade

#### Definition (Pfad)

Wir definieren einen Pfad in einem gerichteten Graphen als eine Folge  $(e_1, \ldots, e_n)$  von Kanten, sodass die zugehörige Folge an ungerichteten Kanten ein Pfad in dem zugehörigen ungerichteten Graph ist.

Sei  $(v_0, \ldots, v_n)$  die zum Pfad zugehörige Knotenfolge. Dann heißt jede Kante der Form  $v_{i-1}v_i$  eine Vorwärts-Kante und jede Kante der Form  $v_iv_{i-1}$  eine Rückwärts-Kante.

#### Definition (Erweiternder Pfad)

Ein erweiternder Pfad bezüglich einem Fluss f in einem Flussnetzwerk N=(G,c,s,t) ist ein Pfad P von s nach t, sodass f(e)< c(e) für alle Vorwärts-Kanten  $e\in P$  und f(e)>0 für alle Rückwärts-Kanten  $e\in P$  gilt.



# Beispiel - Erweiternde Pfade

### Erweiternder Pfad $(s, v_1, v_2, t)$





# Beispiel - Erweiternde Pfade

Erweiternder Pfad  $(s, v_1, v_2, t)$ 



Erweiterter Fluss  $f_1$ 





### Wichtige Resultate

#### Satz (Augmenting Path Theorem)

Ein Fluss f in einem Flussnetzwerk N = (G, c, s, t) ist genau dann maximal, wenn es keine erweiternden Pfade bezüglich f gibt.



### Wichtige Resultate

#### Satz (Augmenting Path Theorem)

Ein Fluss f in einem Flussnetzwerk N = (G, c, s, t) ist genau dann maximal, wenn es keine erweiternden Pfade bezüglich f gibt.

#### Satz (Integral Flow Theorem)

Sei N = (G, c, s, t) ein Flussnetzwerk mit ausschließlich ganzzahligen Kapazitäten. Dann existiert ein maximaler Fluss, der ebenso nur aus ganzzahligen Werten f(e) besteht.



### Wichtige Resultate

#### Satz (Augmenting Path Theorem)

Ein Fluss f in einem Flussnetzwerk N = (G, c, s, t) ist genau dann maximal, wenn es keine erweiternden Pfade bezüglich f gibt.

#### Satz (Integral Flow Theorem)

Sei N=(G,c,s,t) ein Flussnetzwerk mit ausschließlich ganzzahligen Kapazitäten. Dann existiert ein maximaler Fluss, der ebenso nur aus ganzzahligen Werten f(e) besteht.

#### Satz (Max-Flow Min-Cut Theorem)

Der maximale Wert eines Flusses in einem Flussnetzwerk N entspricht der minimalen Kapazität eines Cuts in N.



#### Algorithmus

• Starte mit dem trivialen Fluss:  $f(e) = 0, e \in E$ .



#### Algorithmus

- Starte mit dem trivialen Fluss:  $f(e) = 0, e \in E$ .
- Finde einen erweiternden Pfad P.



#### **Algorithmus**

- Starte mit dem trivialen Fluss:  $f(e) = 0, e \in E$ .
- Finde einen erweiternden Pfad P.
- Berechne

$$d := \min[\{c(e) - f(e) : e \text{ Vorwärts-Kante } \in P\} \cup \{f(e) : e \text{ Rückwärts-Kante } \in P\}].$$

#### **Algorithmus**

- Starte mit dem trivialen Fluss:  $f(e) = 0, e \in E$ .
- Finde einen erweiternden Pfad P.
- Berechne

$$d := \min[\{c(e) - f(e) : e \text{ Vorwärts-Kante } \in P\} \cup \{f(e) : e \text{ Rückwärts-Kante } \in P\}].$$

• Konstruiere erweiterten Fluss f' mit w(f') = w(f) + d:

$$f'(e) = egin{cases} f(e) + d, & e ext{ ist Vorwärts-Kante } \in P \ f(e) - d, & e ext{ ist Rückwärts-Kante } \in P \ f(e), & ext{sonst} \end{cases}$$

#### Algorithmus

- Starte mit dem trivialen Fluss:  $f(e) = 0, e \in E$ .
- Finde einen erweiternden Pfad P.
- Berechne

$$d := \min[\{c(e) - f(e) : e \text{ Vorwärts-Kante } \in P\} \cup \{f(e) : e \text{ Rückwärts-Kante } \in P\}].$$

• Konstruiere erweiterten Fluss f' mit w(f') = w(f) + d:

$$f'(e) = egin{cases} f(e) + d, & e ext{ ist Vorwärts-Kante } \in P \ f(e) - d, & e ext{ ist Rückwärts-Kante } \in P \ f(e), & ext{sonst} \end{cases}$$



• Wiederhole solange, bis kein erweiternder Pfad mehr gefunden werden kann.



Abbildung: Flussnetzwerk, Kanten mit (f(e)/c(e)) markiert

























Abbildung:  $w(f_1) = 1$ 

























Abbildung:  $w(f_2) = 2$ 



### Algorithmus: Ford-Fulkerson - Analyse

• Der Algorithmus garantiert noch nicht effiziente Wahl der erweiternden Pfade und hat nicht polynomielle Laufzeit in Abhängigkeit von |V| und |E|, da die Laufzeit auch noch von der Kapazitätsfunktion c abhängt.



### Algorithmus: Ford-Fulkerson - Analyse

- Der Algorithmus garantiert noch nicht effiziente Wahl der erweiternden Pfade und hat nicht polynomielle Laufzeit in Abhängigkeit von |V| und |E|, da die Laufzeit auch noch von der Kapazitätsfunktion c abhängt.
- Kann für irrationale Kapazitäten scheitern, ist aber in der Praxis irrelevant.



### Algorithmus: Ford-Fulkerson - Analyse

- Der Algorithmus garantiert noch nicht effiziente Wahl der erweiternden Pfade und hat nicht polynomielle Laufzeit in Abhängigkeit von |V| und |E|, da die Laufzeit auch noch von der Kapazitätsfunktion c abhängt.
- Kann für irrationale Kapazitäten scheitern, ist aber in der Praxis irrelevant.

### Modifikation (Edmonds und Karp)

Wird die Reihenfolge, in der die Knoten mit Labeln versehen werden, gemäß einer Breitensuche gewählt, so lässt sich der Aufwand auf  $O(|V||E|^2)$  reduzieren.





# Vertiefung

#### Weiterführende Algorithmen

- Blocking Flows
- Push-Relabel-Algorithmus von Goldberg und Tarjan

#### Anwendungen

Welche Probleme können auf ein Maximum Flow Problem reduziert werden?

- Maximale Anzahl disjunkter Pfade von der Quelle zum Abfluss.
- Knotenüberdeckungsproblem.
- Matrix-Rundungsproblem.