Chapter 1

Solution approximation

1.1 The Bisection Method

Exercise 1

Use the Bisection method to find p_3 for $f(x) = \sqrt{x} - \cos x$ on [0, 1].

Solution 1

f(0) = -1 and $f(1) \approx 0.459\,697\,694$ have the opposite signs, so there's a root in [0,1].

Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0	1	0.5	-0.170475781
2	0.5	1	0.75	0.134336535
3	0.5	0.75	0.625	-0.020393704

So $p_3 = 0.625$.

Exercise 2

Let $f(x) = 3(x+1)(x-\frac{1}{2})(x-1)$. Use the bisection method to find p_3 in the following intervals:

a)
$$[-2, 1.5]$$

b)
$$[-1.5, 2.5]$$

Solution 2

(a) f(-2) = -22.5 and f(1.5) = 3.75 have the opposite signs, so there's a root in [-2, 1.5].

Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-2	1.5	-0.25	2.109375
2	-2	-0.25	-1.125	-1.294921875
3	-1.125	-0.25	-0.6875	1.878662109

So $p_3 = -0.6875$.

(b) f(-1.25) = -2.953125 and f(2.5) = 31.5 have the opposite signs, so there's a root in [-1.25, 2.5].

Applying Bisection method generates the following table:

The solution is found in the first iteration so p_3 doesn't exist.

Exercise 3

Use the Bisection method to find solutions accurate to within 10^{-2} for $x^3 - 7x^2 + 14x - 6 = 0$ in the following intervals:

a)
$$[0,1]$$

c)
$$[3.2, 4]$$

Solution 3

(a) f(0) = -6 and f(1) = 2 have the opposite signs, so there's a root in [0, 1]. The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{1 - 0}{2^n} < 10^{-2} \iff n \ge 7$$

n	a_n	b_n	p_n	$f(p_n)$
1	0	1	0.5	-0.625
2	0.5	1	0.75	0.984375
3	0.5	0.75	0.625	0.259766
4	0.5	0.625	0.5625	-0.161865
5	0.5625	0.625	0.59375	0.054047
6	0.5625	0.59375	0.578125	-0.052624
7	0.578125	0.59375	0.5859375	0.001031

So $p \approx 0.5859$.

(b) f(1) = 2 and f(3.2) = -0.112 have the opposite signs, so there's a root in [1, 3.2].

The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{3.2 - 1}{2^n} < 10^{-2} \iff n \ge 8$$

Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	1	3.2	2.1	1.791
2	2.1	3.2	2.65	0.552125
3	2.65	3.2	2.925	0.085828
4	2.925	3.2	3.0625	-0.054443
5	2.925	3.0625	2.99375	0.006328
6	2.99375	3.0625	3.028125	-0.026521
7	2.99375	3.02813	3.010938	-0.010697
8	2.99375	3.010938	3.002344	-0.002333

So $p \approx 3.0023$.

(c) f(3.2) = -0.112 and f(4) = 2 have the opposite signs, so there's a root in [3.2,4].

The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{4 - 3.2}{2^n} < 10^{-2} \iff n \ge 7$$

Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	3.2	4	3.6	0.336
2	3.2	3.6	3.4	-0.016
3	3.4	3.6	3.5	0.125
4	3.4	3.5	3.45	0.046125
5	3.4	3.45	3.425	0.013016
6	3.4	3.425	3.4125	-0.001998
7	3.4125	3.425	3.41875	0.005382

So $p \approx 3.4188$.

Exercise 4

Use the Bisection method to find solutions accurate to within 10^{-2} for $x^4 - 2x^3 - 4x^2 + 4x + 4 = 0$ for the following intervals:

- a) [-2, -1] b) [0, 2]
- d) [-1,0]

Solution 4

(a) f(-2) = 12 and f(-1) = -1 have the opposite signs, so there's a root in

The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{-1 - (-2)}{2^n} < 10^{-2} \iff n \ge 7$$

Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-2	-1	-1.5	0.8125
2	-1.5	-1	-1.25	-0.902344
3	-1.5	-1.25	-1.375	-0.288818
4	-1.5	-1.375	-1.4375	0.195328
5	-1.4375	-1.375	-1.40625	-0.062667
6	-1.4375	-1.40625	-1.421875	0.062263
7	-1.421875	-1.40625	-1.414063	-0.001208

So $p \approx -1.4141$.

(b) f(0) = 4 and f(2) = -4 have the opposite signs, so there's a root in [0, 2]. The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{2 - 0}{2^n} < 10^{-2} \iff n \ge 8$$

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0	2	1	3
2	1	2	1.5	-0.6875
3	1	1.5	1.25	1.285156
4	1.25	1.5	1.375	0.312744
5	1.375	1.5	1.4375	-0.186508
6	1.375	1.4375	1.40625	0.063676
7	1.40625	1.4375	1.421875	-0.061318
8	1.40625	1.421875	1.414063	0.001208

So $p \approx 1.4141$.

(c) f(2) = -4 and f(3) = 7 have the opposite signs, so there's a root in [2, 3]. The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{3 - 2}{2^n} < 10^{-2} \iff n \ge 7$$

Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	2	3	2.5	-3.1875
2	2.5	3	2.75	0.347656
3	2.5	2.75	2.625	-1.757568
4	2.625	2.75	2.6875	-0.795639
5	2.6875	2.75	2.71875	-0.247466
6	2.71875	2.75	2.734375	0.044125
7	2.71875	2.734375	2.726563	-0.103151

So $p \approx 2.7266$.

(d) f(-1) = -1 and f(0) = 4 have the opposite signs, so there's a root in [-1,0].

The number of iteration n needed to approximate p to within 10^{-2} is:

$$|p_n - p| \le \frac{0 - (-1)}{2^n} < 10^{-2} \iff n \ge 7$$

Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-1	0	-0.5	1.3125
2	-1	-0.5	-0.75	-0.089844
3	-0.75	-0.5	-0.625	0.578369
4	-0.75	-0.625	-0.6875	0.232681
5	-0.75	-0.6875	-0.71875	0.068086
6	-0.75	-0.71875	-0.734375	-0.011768
7	-0.734375	-0.71875	-0.726563	0.027943

So $p \approx -0.7266$.

Exercise 5

Use the Bisection method to find solutions accurate to within 10^{-5} for the following problems:

(a)
$$x - 2^{-x} = 0, x \in [0, 1]$$

(b)
$$e^x - x^2 + 3x - 2 = 0, x \in [0, 1]$$

(c)
$$2x\cos 2x - (x+1)^2 = 0, x \in [-3, -2]$$

(d)
$$x\cos x - 2x^2 + 3x - 1 = 0, x \in [0.2, 0.3]$$

Solution 5

(a) f(0) = -1 and f(1) = 0.5 have the opposite signs, so there's a root in [0, 1].

The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{1 - 0}{2^n} < 10^{-5} \iff n \ge 17$$

Applying Bisection method generates the following table:

n	a_n	b_n	p_n	$f(p_n)$
1	0	1	0.5	-0.207106781
2	0.5	1	0.75	0.155396442
3	0.5	0.75	0.625	-0.023419777
4	0.625	0.75	0.6875	0.066571094
5	0.625	0.6875	0.65625	0.021724521
6	0.625	0.65625	0.640625	-0.000810008
7	0.640625	0.65625	0.6484375	0.010466611
8	0.640625	0.6484375	0.64453125	0.004830646
9	0.640625	0.64453125	0.642578125	0.002010906
10	0.640625	0.642578125	0.641601562	0.000600596
11	0.640625	0.641601562	0.641113281	-0.000104669
12	0.641113281	0.641601562	0.641357422	0.000247972
13	0.641113281	0.641357422	0.641235352	0.000071654
14	0.641113281	0.641235352	0.641174316	-0.000016507
15	0.641174316	0.641235352	0.641204834	0.000027573
16	0.641174316	0.641204834	0.641189575	0.000005533
17	0.641 174 316	0.641 189 575	0.641 181 946	-0.000005487

So $p \approx -0.641182$.

(b) f(0) = -1 and f(1) = e have the opposite signs, so there's a root in [0, 1].

The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{1 - 0}{2^n} < 10^{-5} \iff n \ge 17$$

Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0	1	0.5	0.898721271
2	0	0.5	0.25	-0.028474583
3	0.25	0.5	0.375	0.439366415
4	0.25	0.375	0.3125	0.206681691
5	0.25	0.3125	0.28125	0.089433196
6	0.25	0.28125	0.265625	0.030564234
7	0.25	0.265625	0.2578125	0.001066368
8	0.25	0.2578125	0.25390625	-0.013698684
9	0.25390625	0.2578125	0.255859375	-0.006314807
10	0.255859375	0.2578125	0.256835938	-0.002623882
11	0.256835938	0.2578125	0.257324219	-0.000778673
12	0.257324219	0.2578125	0.257568359	0.000143868
13	0.257324219	0.257568359	0.257446289	-0.000317397
14	0.257446289	0.257568359	0.257507324	-0.000086763
15	0.257507324	0.257568359	0.257537842	0.000028553
16	0.257507324	0.257537842	0.257522583	-0.000029105
17	0.257522583	0.257537842	0.257530212	-0.000000276

So $p \approx 0.25753$.

(c) $f(-3) \approx -9.761\,021\,72$ and $f(-2) \approx 1.614\,574\,483$ have the opposite signs, so there's a root in [-3,-2].

The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{-2 - (-3)}{2^n} < 10^{-5} \iff n \ge 17$$

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-3	-2	-2.5	-3.66831093
2	-2.5	-2	-2.25	-0.613918903
3	-2.25	-2	-2.125	0.630246832
4	-2.25	-2.125	-2.1875	0.038075532
5	-2.25	-2.1875	-2.21875	-0.280836176
6	-2.21875	-2.1875	-2.203125	-0.119556815

n	a_n	b_n	p_n	$f(p_n)$
7	-2.203125	-2.1875	-2.1953125	-0.040278514
8	-2.1953125	-2.1875	-2.19140625	-0.000985195
9	-2.19140625	-2.1875	-2.18945312	0.018574337
10	-2.19140625	-2.18945312	-2.19042969	0.008801851
11	-2.19140625	-2.19042969	-2.19091797	0.003910147
12	-2.19140625	-2.19091797	-2.19116211	0.00146293
13	-2.19140625	-2.19116211	-2.19128418	0.000238981
14	-2.19140625	-2.19128418	-2.19134521	-0.000373078
15	-2.19134521	-2.19128418	-2.1913147	-0.000067041
16	-2.1913147	-2.19128418	-2.19129944	0.000085972

So $p \approx -2.191299$.

(d) $f(0.2) \approx -0.283\,986\,684$ and $f(0.3) \approx 0.006\,600\,946$ have the opposite signs, so there's a root in [0.2,0.3].

The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{0.3 - 0.2}{2^n} < 10^{-5} \iff n \ge 14$$

n	a_n	b_n	p_n	$f(p_n)$
1	0.2	0.3	0.25	-0.132771895
2	0.25	0.3	0.275	-0.061583071
3	0.275	0.3	0.2875	-0.027112719
4	0.2875	0.3	0.29375	-0.010160959
5	0.29375	0.3	0.296875	-0.001756232
6	0.296875	0.3	0.2984375	0.002428306
7	0.296875	0.2984375	0.29765625	0.000337524
8	0.296875	0.29765625	0.297265625	-0.000708983
9	0.297265625	0.29765625	0.297460938	-0.000185637
10	0.297460938	0.29765625	0.297558594	0.000075967
11	0.297460938	0.297558594	0.297509766	-0.000054829
12	0.297509766	0.297558594	0.29753418	0.00001057
13	0.297509766	0.29753418	0.297521973	-0.000022129
14	0.297521973	0.29753418	0.297528076	-0.000005779

Exercise 6

Use the Bisection method to find solutions accurate to within 10^{-5} for the following problems:

a)
$$3x - e^x = 0, x \in [1, 2]$$

b)
$$2x + 3\cos x - e^x = 0, x \in [0, 1]$$

c)
$$x^2 - 4x + 4 - \ln x = 0$$
, $x \in [1, 2]$ d) $x + 1 - 2\sin \pi x = 0$, $x \in [0, 0.5]$

d)
$$x + 1 - 2\sin \pi x = 0, x \in [0, 0.5]$$

Solution 6

(a) $f(1) \approx 0.281718172$ and $f(2) \approx -1.389056099$ have the opposite signs, so there's a root in [1, 2].

The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{2 - 1}{2^n} < 10^{-5} \iff n \ge 17$$

Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	1	2	1.5	0.01831093
2	1.5	2	1.75	-0.504602676
3	1.5	1.75	1.625	-0.203419037
4	1.5	1.625	1.5625	-0.083233182
5	1.5	1.5625	1.53125	-0.030203153
6	1.5	1.53125	1.515625	-0.005390404
7	1.5	1.515625	1.5078125	0.006598107
8	1.5078125	1.515625	1.51171875	0.000638447
9	1.51171875	1.515625	1.51367188	-0.002367313
10	1.51171875	1.51367188	1.51269531	-0.000862268
11	1.51171875	1.51269531	1.51220703	-0.00011137
12	1.51171875	1.51220703	1.51196289	0.000263674
13	1.51196289	1.51220703	1.51208496	0.000076186
14	1.51208496	1.51220703	1.512146	-0.000017584
15	1.51208496	1.512146	1.51211548	0.000029303
16	1.51211548	1.512146	1.51213074	0.00000586
17	1.512 130 74	1.512 146	1.512 138 37	-0.000005861

So $p \approx 1.512138$.

- (b) f(0) = 2 and $f(1) \approx 0.902625089$ have the same sign, so there's no root in [0,1].
- (c) f(1) = 1 and f(2) = -0.693147181 have the opposite signs, so there's a root in [1, 2].

The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{2 - 1}{2^n} < 10^{-5} \iff n \ge 17$$

Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	1	2	1.5	-0.155465108
2	1	1.5	1.25	0.339356449
3	1.25	1.5	1.375	0.072171269
4	1.375	1.5	1.4375	-0.046499244
5	1.375	1.4375	1.40625	0.011612476
6	1.40625	1.4375	1.421875	-0.017747908
7	1.40625	1.421875	1.4140625	-0.003144013
8	1.40625	1.4140625	1.41015625	0.004215136
9	1.41015625	1.4140625	1.41210938	0.00053079
10	1.41210938	1.4140625	1.41308594	-0.001307804
11	1.41210938	1.41308594	1.41259766	-0.000388805
12	1.41210938	1.41259766	1.41235352	0.000070918
13	1.41235352	1.41259766	1.41247559	-0.000158962
14	1.41235352	1.41247559	1.41241455	-0.000044027
15	1.41235352	1.41241455	1.41238403	0.000013444
16	1.41238403	1.41241455	1.41239929	-0.000015292
17	1.41238403	1.41239929	1.41239166	-0.000000924

So $p \approx 1.412392$.

(d) f(0) = 1 and f(1) = -0.5 have the opposite signs, so there's a root in [0, 0.5].

The number of iteration n needed to approximate p to within 10^{-5} is:

$$|p_n - p| \le \frac{0.5 - 0}{2^n} < 10^{-5} \iff n \ge 16$$

n	a_n	b_n	p_n	$f(p_n)$
1	0	0.5	0.25	-0.164213562
2	0	0.25	0.125	0.359633135
3	0.125	0.25	0.1875	0.076359534
4	0.1875	0.25	0.21875	-0.050036568
5	0.1875	0.21875	0.203125	0.011726391
6	0.203125	0.21875	0.2109375	-0.019525681

n	a_n	b_n	p_n	$f(p_n)$
7	0.203125	0.2109375	0.20703125	-0.003990833
8	0.203125	0.20703125	0.205078125	0.003845166
9	0.205078125	0.20703125	0.206054688	-0.00007851
10	0.205078125	0.206054688	0.205566406	0.001881912
11	0.205566406	0.206054688	0.205810547	0.000901347
12	0.205810547	0.206054688	0.205932617	0.00041133
13	0.205932617	0.206054688	0.205993652	0.000166388
14	0.205993652	0.206054688	0.20602417	0.000043934
15	0.20602417	0.206054688	0.206039429	-0.000017289
16	0.20602417	0.206039429	0.206031799	0.000013322

So $p \approx 0.206\,032$.

Exercise 7

- (a) Sketch the graphs of y = x and $y = 2 \sin x$.
- (b) Use the Bisection method to find an approximation to within 10^{-5} to the first positive value of x with $x=2\sin x$.

Solution 7

(a) Graph of y = x and $y = 2 \sin x$ is as follow:

(b) According to the graph, the first positive root p of $f=x-2\sin x$ is in $[\frac{\pi}{2},\pi].$

The number of iteration n needed to approximate p to within 10^{-5} in that interval is:

$$|p_n - p| \le \frac{\pi - \frac{\pi}{2}}{2^n} < 10^{-5} \iff n \ge 18$$

n	a_n	b_n	p_n	$f(p_n)$
1	1.57079633	3.14159265	2.35619449	0.941980928
2	1.57079633	2.35619449	1.96349541	0.115736343
3	1.57079633	1.96349541	1.76714587	-0.194424693
4	1.76714587	1.96349541	1.86532064	-0.048560033
5	1.86532064	1.96349541	1.91440802	0.031319893
6	1.86532064	1.91440802	1.88986433	-0.009192031
7	1.88986433	1.91440802	1.90213618	0.010921526
8	1.88986433	1.90213618	1.89600025	0.000829072
9	1.88986433	1.89600025	1.89293229	-0.004190408
10	1.89293229	1.89600025	1.89446627	-0.001682899
11	1.89446627	1.89600025	1.89523326	-0.000427471
12	1.89523326	1.89600025	1.89561676	0.000200661
13	1.89523326	1.89561676	1.89542501	-0.00011344
14	1.89542501	1.89561676	1.89552088	0.000043602
15	1.89542501	1.89552088	1.89547295	-0.000034921
16	1.89547295	1.89552088	1.89549692	0.00000434
17	1.89547295	1.89549692	1.89548493	-0.000015291
18	1.89548493	1.89549692	1.89549092	-0.000005476

So $p \approx 1.895491$.

Exercise 8

- (a) Sketch the graphs of y = x and $y = \tan x$.
- (b) Use the Bisection method to find an approximation to within 10^{-5} to the first positive value of x with $y = \tan x$.

Solution 8

(a) Graph of y = x and $y = \tan x$ is as follow:

(b) According to the graph, the first positive root p of $f = x - \tan x$ is in $[\pi, \frac{3\pi}{2}]$.

The number of iteration n needed to approximate p to within 10^{-5} in that interval is:

$$|p_n - p| \le \frac{\frac{3\pi}{2} - \pi}{2^n} < 10^{-5} \iff n \ge 18$$

n	a_n	b_n	p_n	$f(p_n)$
1	3.14159265	4.71238898	3.92699082	2.92699082
2	3.92699082	4.71238898	4.3196899	1.90547634
3	4.3196899	4.71238898	4.51603944	-0.511300053
4	4.3196899	4.51603944	4.41786467	1.12130646
5	4.41786467	4.51603944	4.46695205	0.474728271
6	4.46695205	4.51603944	4.49149575	0.038293523
7	4.49149575	4.51603944	4.50376759	-0.219861735
8	4.49149575	4.50376759	4.49763167	-0.086980389
9	4.49149575	4.49763167	4.49456371	-0.023432692
10	4.49149575	4.49456371	4.49302973	0.007653323
11	4.49302973	4.49456371	4.49379672	-0.007833371
12	4.49302973	4.49379672	4.49341322	-0.00007602
13	4.49302973	4.49341322	4.49322148	0.003792144
14	4.49322148	4.49341322	4.49331735	0.001858936
15	4.49331735	4.49341322	4.49336529	0.000891677
16	4.49336529	4.49341322	4.49338925	0.000407883
17	4.49338925	4.49341322	4.49340124	0.000165946
18	4.49340124	4.49341322	4.49340723	0.000044966

So $p \approx 4.493407$.

Exercise 9

- (a) Sketch the graphs of $y = e^x 2$ and $y = \cos e^x 2$.
- (b) Use the Bisection method to find an approximation to within 10^{-5} to a value in [0.5, 1.5] with $e^x 2 = \cos e^x 2$.

Solution 9

(a) The graphs of the 2 functions are as follow:

(b) Let $f = e^x - 2 - \cos e^x - 2$. $f(0.5) \approx -1.290212$ and $f(1.5) \approx 3.27174$ have the opposite signs, so there's a root p of f in [0.5, 1.5].

The number of iteration n needed to approximate p to within 10^{-5} in that interval is:

$$|p_n - p| \le \frac{1.5 - 0.5}{2^n} < 10^{-5} \iff n \ge 17$$

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0.5	1.5	1	-0.034655726
2	1	1.5	1.25	1.40997635
3	1	1.25	1.125	0.609079747
4	1	1.125	1.0625	0.266982288
5	1	1.0625	1.03125	0.111147764
6	1	1.03125	1.015625	0.037002875
7	1	1.015625	1.0078125	0.000864425

$\underline{}$	a_n	b_n	p_n	$f(p_n)$
8	1	1.0078125	1.00390625	-0.016972716
9	1.00390625	1.0078125	1.00585938	-0.00807344
10	1.00585938	1.0078125	1.00683594	-0.003609335
11	1.00683594	1.0078125	1.00732422	-0.001373662
12	1.00732422	1.0078125	1.00756836	-0.00025492
13	1.00756836	1.0078125	1.00769043	0.000304677
14	1.00756836	1.00769043	1.00762939	0.000024859
15	1.00756836	1.00762939	1.00759888	-0.000115035
16	1.00759888	1.00762939	1.00761414	-0.000045089

So $p \approx 1.007614$.

Exercise 10

Let $f(x) = (x+2)(x+1)^2x(x-1)^3(x-2)$. To which zero of f does the Bisection method converge when applied on the following intervals?

a)
$$[-1.5, 2.5]$$

b)
$$[-0.5, 2.4]$$
 c) $[-0.5, 3]$ d) $[-3, -0.5]$

c)
$$[-0.5, 3]$$

d)
$$[-3, -0.5]$$

Solution 10

f has 5 zeros: ± 2 , ± 1 , 0.

(a) Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-1.5	2.5	0.5	0.52734375
2	-1.5	0.5	-0.5	-1.58203125
3	-0.5	0.5	0	0

So when applied on [-1.5, 2.5], the Bisection method gives 0.

(b) Applying Bisection method generates the following table:

n	a_n	b_n	p_n	$f(p_n)$
1	-0.5	2.4	0.95	0.001398666
2	-0.5	0.95	0.225	0.62070919

At n=2, the interval shrinks to [-0.5, 0.95]. So when applied on [-0.5, 2.4], the Bisection method gives 0.

(c) Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-0.5	3	1.25	-0.241012573
2	1.25	3	2.125	15.2352825

At n = 2, the interval shrinks to [1.25,3]. So when applied on [-0.5,3], the Bisection method gives 2.

(d) Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-3	-0.5	-1.75	-19.1924286
2	-3	-1.75	-2.375	283.204185

At n = 2, the interval shrinks to [3, -1.75]. So when applied on [-3, -0.5], the Bisection method gives -2.

Exercise 11

Let $f(x) = (x+2)(x+1)x(x-1)^3(x-2)$. To which zero of f does the Bisection method converge when applied on the following intervals?

a)
$$[-3, 2.5]$$

b)
$$[-2.5, 3]$$

c)
$$[-1.75, 1.5]$$

d)
$$[-1.5, -1.75]$$

Solution 11

f has 5 zeros: $\pm 2, \pm 1, 0$.

(a) Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-3	2.5	-0.25	-1.44195557
2	-0.25	2.5	1.125	-0.012767315
3	1.125	2.5	1.8125	-1.95457248

At n=3, the interval shrinks to [1.125, 2.5]. So when applied on [-3, 2.5], the Bisection method gives 2.

(b)	Applying	Bisection	method	generates	the	following	table:
-----	----------	-----------	--------	-----------	-----	-----------	--------

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-2.5	3	0.25	0.519104004
2	-2.5	0.25	-1.125	3.68975401
3	-2.5	-1.125	-1.8125	23.4201732

At n = 3, the interval shrinks to [-2.5, -1.125]. So when applied on [-2.5, 3], the Bisection method gives -2.

(c) Applying Bisection method generates the following table:

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-1.75	1.5	-0.125	-0.620491505
2	-1.75	-0.125	-0.9375	-1.33009678

At n=2, the interval shrinks to [-1.75, -0.125]. So when applied on [-1.75, 1.5], the Bisection method gives -1.

(d) Applying Bisection method generates the following table:

n	a_n	b_n	p_n	$f(p_n)$
1	-1.5	1.75	0.125	0.375359058
2	0.125	1.75	0.9375	0.001384076

At n=2, the interval shrinks to [0.125, 1.75]. So when applied on [-1.5, 1.75], the Bisection method gives 1.

Exercise 12

Find an approximation to $\sqrt{3}$ correct to within 10^{-4} using the Bisection Algorithm.

Solution 12

Let $f(x) = x^2 - 3$. The positive zero of f is $\sqrt{3}$, so by approximating that positive zero, we get an approximation of $\sqrt{3}$.

The positive zero of f clearly is inside [1,2]. Using Bisection, the number of iteration n needed to approximate $\sqrt{3}$ to within 10^{-4} in that interval is:

$$\frac{2-1}{2^n} < 10^{-4} \iff n \ge 14$$

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	1	2	1.5	-0.75
2	1.5	2	1.75	0.0625
3	1.5	1.75	1.625	-0.359375
4	1.625	1.75	1.6875	-0.15234375
5	1.6875	1.75	1.71875	-0.045898438
6	1.71875	1.75	1.734375	0.008056641
7	1.71875	1.734375	1.7265625	-0.018981934
8	1.7265625	1.734375	1.73046875	-0.005477905
9	1.73046875	1.734375	1.73242188	0.001285553
10	1.73046875	1.73242188	1.73144531	-0.00209713
11	1.73144531	1.73242188	1.73193359	-0.000406027
12	1.73193359	1.73242188	1.73217773	0.000439703
13	1.73193359	1.73217773	1.73205566	0.000016823
14	1.73193359	1.73205566	1.73199463	-0.000194605

So $\sqrt{3} \approx 1.73199$.

Exercise 13

Find an approximation to $\sqrt[3]{25}$ correct to within 10^{-4} using the Bisection Algorithm.

Solution 13

Let $f(x) = x^3 - 25$. The zero of f is $\sqrt[3]{25}$, so by approximating that positive zero, we get an approximation of $\sqrt[3]{25}$.

The positive zero of f clearly is inside [2, 3]. Using Bisection, the number of iteration n needed to approximate $\sqrt[3]{25}$ to within 10^{-4} in that interval is:

$$\frac{3-2}{2^n} < 10^{-4} \iff n \ge 14$$

Ī	n	a_n	b_n	p_n	$f(p_n)$
	1	2	3	2.5	-9.375
	2	2.5	3	2.75	-4.203125
	3	2.75	3	2.875	-1.23632812
	4	2.875	3	2.9375	0.347412109
	5	2.875	2.9375	2.90625	-0.452972412
	6	2.90625	2.9375	2.921875	-0.054920197
	7	2.921875	2.9375	2.9296875	0.145709515
	8	2.921875	2.9296875	2.92578125	0.045260727
	9	2.921875	2.92578125	2.92382812	-0.004863195

n	a_n	b_n	p_n	$f(p_n)$
10	2.92382812	2.92578125	2.92480469	0.020190398
11	2.92382812	2.92480469	2.92431641	0.00766151
12	2.92382812	2.92431641	2.92407227	0.001398635
13	2.92382812	2.92407227	2.9239502	-0.001732411
14	2.9239502	2.92407227	2.92401123	-0.000166921

So $\sqrt[3]{25} \approx 2.92401$.

Exercise 14

Use Theorem 2.1 (*Dinh lí* 2.2 in the Lectures.pdf of the project) to find a bound for the number of iterations needed to achieve an approximation with accuracy 10^{-3} to the solution of $x^3 + x - 4 = 0$ lying in the interval [1, 4]. Find an approximation to the root with this degree of accuracy.

Solution 14

Let $f(x) = x^3 + x - 4$. f(1) = -2 and f(4) = 64 have the opposite signs, so there's a root p of f in [1, 4].

The number of iteration n needed to approximate p to within 10^{-3} in that interval is:

$$|p_n - p| \le \frac{4 - 1}{2^n} < 10^{-3} \iff n \ge 12$$

n	a_n	b_n	p_n	$f(p_n)$
1	1	4	2.5	14.125
2	1	2.5	1.75	3.109375
3	1	1.75	1.375	-0.025390625
4	1.375	1.75	1.5625	1.37719727
5	1.375	1.5625	1.46875	0.637176514
6	1.375	1.46875	1.421875	0.296520233
7	1.375	1.421875	1.3984375	0.13326025
8	1.375	1.3984375	1.38671875	0.053363502
9	1.375	1.38671875	1.38085938	0.013844214
10	1.375	1.38085938	1.37792969	-0.005808686
11	1.37792969	1.38085938	1.37939453	0.004008885
12	1.37792969	1.37939453	1.37866211	-0.000902119

Exercise 15

Use Theorem 2.1 (*Dinh lí* 2.2 in the Lectures.pdf of the project) to find a bound for the number of iterations needed to achieve an approximation with accuracy 10^{-4} to the solution of $x^3 - x - 1 = 0$ lying in the interval [1, 2]. Find an approximation to the root with this degree of accuracy.

Solution 15

Let $f(x) = x^3 - x - 1$. f(1) = -2 and f(4) = 64 have the opposite signs, so there's a root p of f in [1, 2].

The number of iteration n needed to approximate p to within 10^{-4} in that interval is:

$$|p_n - p| \le \frac{2 - 1}{2^n} < 10^{-4} \iff n \ge 14$$

Applying Bisection method generates the following table:

n	a_n	b_n	p_n	$f(p_n)$
1	1	2	1.5	0.875
2	1	1.5	1.25	-0.296875
3	1.25	1.5	1.375	0.224609375
4	1.25	1.375	1.3125	-0.051513672
5	1.3125	1.375	1.34375	0.082611084
6	1.3125	1.34375	1.328125	0.014575958
7	1.3125	1.328125	1.3203125	-0.018710613
8	1.3203125	1.328125	1.32421875	-0.002127945
9	1.32421875	1.328125	1.32617188	0.00620883
10	1.32421875	1.32617188	1.32519531	0.002036651
11	1.32421875	1.32519531	1.32470703	-0.000046595
12	1.32470703	1.32519531	1.32495117	0.000994791
13	1.32470703	1.32495117	1.3248291	0.000474039
14	1.32470703	1.3248291	1.32476807	0.000213707

So $p \approx 1.32477$.

Exercise 16

Let $f(x) = (x-1)^{10}$, p = 1, and $p_n = 1 + \frac{1}{n}$. Show that $|f(p_n)| < 10^{-3}$ whenever n > 1 but that $|p - p_n| < 10^{-3}$ requires that n > 1000.

Solution 16

For $f(p_n) < 10^{-3}$, it is required that n > 1 as:

$$f(p_n) < 10^{-3}$$

1.1. THE BISECTION METHOD

$$\iff (p_n - 1)^{10} < 10^{-3}$$

$$\iff \frac{1}{n^{10}} < 10^{-3}$$

$$\iff n > 1$$

For $|p - p_n| < 10^{-3}$, it is required that n > 1000 as:

$$|p - p_n| < 10^{-3}$$

$$\iff \frac{1}{n} < 10^{-3}$$

$$\iff n > 1000$$

Exercise 17

Let $\{p_n\}$ be the sequence defined by $p_n = \sum_{k=1}^n \frac{1}{k}$. Show that $\{p_n\}$ diverges even though $\lim_{n\to\infty} (p_n - p_{n-1}) = 0$.

Solution 17

It's clear that the difference of 2 consecutive terms goes to zero:

$$\lim_{n \to \infty} (p_n - p_{n-1}) = \lim_{n \to \infty} \frac{1}{n} = 0$$

However, the sequence diverges as:

$$p_n = \sum_{k=1}^n \frac{1}{k}$$

$$= 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$

$$> 1 + (\frac{1}{2}) + (\frac{1}{4} + \frac{1}{4}) + \dots$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \dots$$

$$= \infty$$

Exercise 18

The function defined by $f(x) = \sin \pi x$ has zeros at every integer. Show that when -1 < a < 0 and 2 < b < 3, the Bisection method converges to

a) 0 if
$$a + b < 2$$
 b) 2 if $a + b > 2$

b) 2 if
$$a + b > 2$$

c) 1 if
$$a + b = 2$$

21

Solution 18

Let p be the zero converged by Bisection. With -1 < a < 0 and 2 < b < 3:

$$\sin \pi a < 0$$
$$\sin \pi b > 0$$
$$1 < a + b < 3$$

- (a) If a + b < 2, then $0.5 < p_1 = \frac{a+b}{2} < 1$. Then $\sin p_1 > 0$, and the interval shrinks to $[a, p_1]$. 0 is the only zero in that interval, so p = 0.
- (b) If a+b>2, then $1< p_1=\frac{a+b}{2}<1.5$. Then $\sin p_1<0$, and the interval shrinks to $[p_1,b]$. 2 is the only zero in that interval, so p=0.
- (c) If a+b=2, then $p_1=\frac{a+b}{2}=1$. Then $\sin p_1=0$, and a zero p=1 is found

Exercise 19

A trough of length L has a cross section in the shape of a semicircle with radius r. When filled with water to within a distance h of the top, the volume V of water is:

$$V = L(0.5\pi r^2 - r^2 \arcsin \frac{h}{r} - h\sqrt{r^2 - h^2})$$

Suppose $L=10\,\mathrm{ft},\,r=1\,\mathrm{ft},$ and $V=12.4\,\mathrm{ft}^3.$ Find the depth of water in the trough to within 0.01 ft.

Solution 19

Let d be the depth of the water, so d = r - h. Let

$$f(h) = 10(0.5\pi - \arcsin(h) - h\sqrt{1 - h^2}) - 12.4$$

Instead of finding d directly, we find h, also to within 0.01 ft. The number of iteration n needed to approximate h to within 0.01 in [0, r] is:

$$|h - h_n| < \frac{1 - 0}{2^n} < 0.01 \iff n \ge 7$$

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	0	1	0.5	-6.25815151
2	0	0.5	0.25	-1.63945387
3	0	0.25	0.125	0.814489029

n	a_n	b_n	p_n	$f(p_n)$
4	0.125	0.25	0.1875	-0.419946724
5	0.125	0.1875	0.15625	0.195725903
6	0.15625	0.1875	0.171875	-0.112536394
7	0.15625	0.171875	0.1640625	0.041493241

So $h \approx 0.1641$, hence $d = r - h \approx 0.8359$.

Exercise 20

A particle starts at rest on a smooth inclined plane whose angle θ is changing at a constant rate ω such that:

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \omega < 0$$

At the end of t seconds, the position of the object is given by:

$$x(t) = -\frac{g}{2\omega^2} \left(\frac{e^{\omega t} - e^{-\omega t}}{x} - \sin \omega t \right)$$

Suppose the particle has moved 1.7 ft in 1 s. Find, to within 10^5 , the rate ω at which θ changes. Assume that $g = 32.17 \, \text{ft/s}^2$.

Solution 20

As $\omega < 0$, the plane rotates clockwise. After 1 s, the particle still sticks to the plane, so:

$$\theta(1) < \frac{\pi}{2} \iff -\frac{\pi}{2} < \omega < 0$$

After 1s, the particle has moved 1.7ft, so that:

$$x(1) = 1.7 = -\frac{32.17}{2\omega^2} \left(\frac{e^{\omega t} - e^{-\omega t}}{2} - \sin \omega t \right)$$

Let

$$f(\omega) = 3.4\omega^2 + 32.17 \left(\frac{e^{\omega t} - e^{-\omega t}}{2} - \sin \omega t \right)$$

The root of the above function in $(-\frac{\pi}{2},0)$ will be the solution of the problem. Applying Bisection on f on $[-\frac{\pi}{2},0]$ fails as f(0)=0. We need to expand (arbitrarily even) the searching interval a bit for the method to work, and check the solution later on. Hence, we use the interval $[-\frac{\pi}{2},1]$.

The number of iteration n needed to approximate ω to within 10^{-5} is:

$$|\omega - \omega_n| < \frac{1 - (-0.5\pi)}{2^n} < 10^{-5} \iff n \ge 18$$

\overline{n}	a_n	b_n	p_n	$f(p_n)$
1	-1.57079633	1	-0.285398163	0.027657569
2	-1.57079633	-0.285398163	-0.928097245	-5.65148786
3	-0.928097245	-0.285398163	-0.606747704	-1.14396969
4	-0.606747704	-0.285398163	-0.446072934	-0.275313029
5	-0.446072934	-0.285398163	-0.365735549	-0.06982238
6	-0.365735549	-0.285398163	-0.325566856	-0.009667545
7	-0.325566856	-0.285398163	-0.30548251	0.011587981
8	-0.325566856	-0.30548251	-0.315524683	0.001641051
9	-0.325566856	-0.315524683	-0.320545769	-0.003838965
10	-0.320545769	-0.315524683	-0.318035226	-0.001055895
11	-0.318035226	-0.315524683	-0.316779954	0.00030328
12	-0.318035226	-0.316779954	-0.31740759	-0.000373625
13	-0.31740759	-0.316779954	-0.317093772	-0.000034503
14	-0.317093772	-0.316779954	-0.316936863	0.000134556
15	-0.317093772	-0.316936863	-0.317015318	0.000050068
16	-0.317093772	-0.317015318	-0.317054545	0.000007793
17	-0.317093772	-0.317054545	-0.317074159	-0.000013352
18	-0.317074159	-0.317054545	-0.317064352	-0.000002779

As $-0.317\,064 \in (-\frac{\pi}{2},0)$, it is a valid approximation of ω . We conclude that $\omega \approx -0.317\,064$.

1.2 Fixed-Point Iteration

Exercise 1

Use algebraic manipulation to show that each of the following functions has a fixed-point at p precisely when f(p) = 0, where $f(x) = x^4 + 2x^2 - x - 3$.

a)
$$g_1(x) = (3 + x - 2x^2)^{1/4}$$
 b) $g_2(x) = \left(\frac{x + 3 - x^4}{2}\right)^{1/2}$

c)
$$g_3(x) = \left(\frac{x+3}{x^2+2}\right)^{1/2}$$
 d) $g_4(x) = \frac{3x^4+2x^2+3}{4x^3+4x-1}$

Solution 1

a) For x = p:

$$g_1(p) = (3 + p - 2p^2)^{\frac{1}{4}} = (p^4 - f(p))^{1/4} = |p|$$

So p is a fixed-point of g_1 .

b) For x = p:

$$g_2(p) = \left(\frac{p+3-p^4}{2}\right)^{1/2}$$
$$= \left(\frac{2p^2}{2}\right)^{\frac{1}{2}}$$
$$= |p|$$

So p is a fixed-point of g_2 .

c) For x = p:

$$g_3(p) = \left(\frac{p+3}{p^2+2}\right)^{1/2}$$
$$= \left(\frac{p^4+2p^2}{p^2+2}\right)^{1/2}$$
$$= |p|$$

So p is a fixed-point of g_3 .

d) For x = p:

$$g_4(p) = \frac{3p^4 + 2p^2 + 3}{4p^3 + 4p - 1}$$

$$= \frac{4p^4 - (3 + p - 2p^2) + 2p^2 + 3}{4p^3 + 4p - 1}$$

$$= \frac{4p^4 + 4p^2 - p}{4p^3 + 4p - 1}$$

$$= p$$

So p is a fixed-point of g_4 .

Exercise 2

- a) Perform four iterations, if possible, on each of the functions g defined in Exercise 1. Let $p_0 = 1$ and $p_{n+1} = g(p_n)$, for n = 0, 1, 2, 3.
- b) Which function do you think gives the best approximation to the solution?

Solution 2

a) Applying fixed-point method on the four functions g generates the following

\overline{n}	p_n by g_1	p_n by g_2	p_n by g_3	p_n by g_4
0	1	1	1	1
1	1.189207115	1.224744871	1.154700538	1.142857143
2	1.080057753	0.993666159	1.11642741	1.12448169
3	1.149671431	1.228568645	1.126052233	1.124123164
4	1.107820053	0.987506429	1.123638885	1.12412303

b) g_4 gives the best approximation as it generates the smallest difference between p_3 and p_4 : $|p_4 - p_3| = -134 \times 10^{-7}$.

Exercise 3

The following four methods are proposed to compute $21^{1/3}$. Rank them in order, based on their apparent speed of convergence, assuming $p_0 = 1$.

a)
$$p_n = \frac{20p_{n-1} + \frac{21}{p_{n-1}^2}}{21}$$

a)
$$p_n = \frac{20p_{n-1} + \frac{21}{p_{n-1}^2}}{21}$$
 b) $p_n = p_{n-1} - \frac{p_{n-1}^3 - 21}{3p_{n-1}^2}$

c)
$$p_n = p_{n-1} - \frac{p_{n-1}^4 - 21p_{n-1}}{p_{n-1}^2 - 21}$$
 d) $p_n = \left(\frac{21}{p_{n-1}}\right)^{1/2}$

d)
$$p_n = \left(\frac{21}{p_{n-1}}\right)^{1/2}$$

Solution 3

Applying fixed-point method on the four sequences generate the following table:

\overline{n}	a)	b)	c)	d)
0	1	1	1	1
1	1.952380952	7.666666667	0	4.582575695
2	2.121754174	5.230203739	0	2.140695143
3	2.242849692	3.742696919		3.132075595
4	2.334839673	2.994853568		2.589366527
5	2.40109338	2.777022226		2.847822274
6	2.465059288	2.759041866		2.715521253
7	2.512243463	2.758924181		2.780885095
8	2.551057096	2.758924176		2.748008838
9	2.583237767	2.758924176		2.764398093
10	2.610081445			2.756191284
11	2.632580301			2.760291639
12	2.651509504			2.758240699

n	a)	b)	c)	d)
13	2.667484488			2.759265978
14	2.681000202			2.758753291
15	2.692458887			2.759009623
16	2.702190249			2.758881454
17	2.710466453			2.758945538
18	2.717513483			2.758913496
19	2.723519902			2.758929517

Apparently, the speed of convergence is ranked in descending order as follow: b), d), a). c) does not converge.

Exercise 4

The following four methods are proposed to compute $7^{1/5}$. Rank them in order, based on their apparent speed of convergence, assuming $p_0 = 1$.

a)
$$p_n = p_{n-1} - \left(1 + \frac{7 - p_{n-1}^5}{p_{n-1}^2}\right)^3$$
 b) $p_n = p_{n-1} - \frac{p_{n-1}^5 - 7}{p_{n-1}^2}$

b)
$$p_n = p_{n-1} - \frac{p_{n-1}^5 - 7}{p_{n-1}^2}$$

c)
$$p_n = p_{n-1} - \frac{p_{n-1}^5 - 7}{5p_{n-1}^4}$$
 d) $p_n = p_{n-1} - \frac{p_{n-1}^5 - 7}{12}$

d)
$$p_n = p_{n-1} - \frac{p_{n-1}^5 - 7}{12}$$

Solution 4

Applying fixed-point method on the four sequences generate the following table:

n	a)	b)	c)	d)
0	1	1	2.2	1
1	343	7	1.819763677	1.5
2	-2.25×10^{25}	-335.857	1.58347483	1.450520833
3		37884356	1.489460974	1.498749661
4			1.476022436	1.451903535
5			1.475773246	1.497577067
6			1.475773162	1.45319229
7			1.475773162	1.496475364
9				1.454396119
8				1.495438587
10				1.45552281
11				1.494461513
12				1.456579138
13				1.493539533
14				1.457571031
15				1.49266856

n	a)	b)	c)	d)
16				1.458803715
17				1.491844948
18				1.459381814
19				1.491065425

Apparently, the speed of convergence is ranked in descending order as follow: c), d). a) and b) do not converge.

Exercise 5

Use a fixed-point iteration method to determine a solution accurate to within 10^{-2} for $x^4 - 3x^2 - 3 = 0$ on [1, 2]. Use $p_0 = 1$.

Solution 5

Let $f(x) = x^4 - 3x^2 - 3$. Let p be the root of f in [1,2]. We need to find a function g for which p = g(p) to perform the fixed-point method.

Extract p to RHS gives:

$$p^4 = 3p^2 + 3 \iff |p| = (3p^2 + 3)^{1/4}$$

Then q is chosen as:

$$g(x) = (3x^2 + 3)^{1/4}$$

Applying fixed-point method on g generate the following table:

n	p_n	n	p_n
0	1	4	1.922847844
1	1.56508458	5	1.93750754
2	1.793572879	6	1.94331693
3	1.885943743		

We can try the other obvious option

$$g(x) = \left(\frac{x^4 - 3}{3}\right)^{0.5}$$

which fails on the first iteration. A reasonable explanation for the choice of g is that we need |g'| to be as small as possible. On [1, 2], the $O(x^{0.5})$ of the first choice clearly has an advantage over $O(x^2)$ of the second choice of g.

We conclude that $p \approx 1.943$.

29

Exercise 6

Use a fixed-point iteration method to determine a solution accurate to within 10^{-2} for $x^3 - x - 1 = 0$ on [1, 2]. Use $p_0 = 1$.

Solution 6

Let $f(x) = x^3 - x - 1 = 0$. Let p be the root of f in [1,2]. We need to find a function g for which p = g(p) to perform the fixed-point method.

Extract p to RHS gives:

$$p^3 = p + 1 \iff p = (p+1)^{1/3}$$

Then q is chosen as:

$$g(x) = (p+1)^{1/3}$$

Applying fixed-point method on g generates the following table:

\overline{n}	p_n	n	p_n
0	1	3	1.322 353 819
1	1.25992105	4	1.324268745
2	1.312293837		

We conclude that $p \approx 1.324$.

Exercise 7

Use Theorem 2.3 (Định lý 2.3 in the accompanying Lectures.pdf) to show that $g(x) = \pi + 0.5 \sin 0.5x$ has a unique fixed point on $[0, 2\pi]$. Use fixed-point iteration to find an approximation to the fixed point that is accurate to within 10^{-2} . Use Corollary 2.5 (Hệ quả 2.1) to estimate the number of iterations required to achieve 10^{-2} accuracy, and compare this theoretical estimate to the number actually needed.

Solution 7

From the formula of g:

$$g(x) = \pi + 0.5 \sin 0.5x$$

$$\Rightarrow g(x) \in [\pi - 0.5, \pi + 0.5] \,\forall x$$

Consider the interval $I = [\pi - 0.5, \pi + 0.5] \in [0, 2\pi]$. From the above equations, we know that:

•
$$g \in CI$$

• $g(x) \in I \, \forall x \in I$

According to Theorem 2.3, there exists a fixed point of g on I. Differentiating g gives:

$$g'(x) = -0.25\cos 0.5x \Rightarrow |g'(x)| \le k = 0.25 < 1 \,\forall x$$

Again, according to Theorem 2.3, there exists one and only one fixed point of g on I.

Applying fixed-point method on g, with $p_0 = \pi$, generates the following table:

\overline{n}	p_n	n	p_n
0	3.141592654	2	3.626 048 864
1	3.641592654	3	3.626995622

Using corollary 2.5, the number of iterations n required to achieve 10^{-2} accuracy is

$$|p_n - p| \le k^n 0.5 < 10^{-2} \iff n \ge 3$$

which is in line with the number of iteration actually performed.

Exercise 8

Use Theorem 2.3 (Định lý 2.3 in the accompanying Lectures.pdf) to show that $g(x) = 2^{-x}$ has a unique fixed point on $[\frac{1}{3}, 1]$. Use fixed-point iteration to find an approximation to the fixed point that is accurate to within 10^{-4} . Use Corollary 2.5 (Hệ quả 2.1) to estimate the number of iterations required to achieve 10^{-4} accuracy, and compare this theoretical estimate to the number actually needed.

Solution 8

From the formula of g:

$$g(x) = 2^{-x}$$
$$\Rightarrow g'(x) = -2^{-x} \ln 2$$

It is clear that $g \in C^1R$.

Consider the interval $I = [\frac{1}{3}, 1], I_{open} = (\frac{1}{3}, 1)$:

$$\begin{split} g'(x) &< 0 \forall x \in I \\ \Rightarrow 1 > g(\frac{1}{3}) = 2^{-1/3} \ge g(x) \ge g(1) = 2^{-1} > \frac{1}{3} \\ \Rightarrow g(x) \in I \, \forall x \in I \end{split}$$

So far, we know that:

- $g \in CI \ (g \in CR \text{ even})$
- $g(x) \in I \, \forall x \in I$

According to Theorem 2.3, there exists a fixed point of g on I. Consider g':

$$-1 < -\ln 2 \le g'(x) \le -\frac{1}{3}\ln 2 < 0 \,\forall x \in I$$
$$\Rightarrow |g'(x)| \le k = \ln 2 < 1 \,\forall x \in I$$

Again, according to Theorem 2.3, there exists one and only one fixed point of g on I.

Applying fixed-point method on g, with $p_0 = \frac{2}{3}$, generates the following table:

n	p_n	n	p_n
0	0.666666667	5	0.640746653
1	0.629960525	6	0.641380922
2	0.646194096	7	0.641099006
3	0.638963711	8	0.641224295
4	0.642174057	9	0.641 168 611

Using Corollary 2.5, the number of iterations n required to achieve 10^{-4} accuracy is

$$|p_n - p| \le k^n \frac{1}{3} < 10^{-4} \iff n \ge 23$$

which is quit a bit higher than the number of iteration actually performed.

Exercise 9

Use a fixed-point iteration method to find an approximation to $\sqrt{3}$ that is accurate to within 10^{-4} . Compare your result and the number of iterations required with the answer obtained in Exercise 12 of Section 2.1.

Solution 9

Let $f(x) = x^2 - 3$, p > 0 is a zero of f. Then $p = \sqrt{3}$, and an approximation of p is an approximation of $\sqrt{3}$.

Consider $g(x) = \frac{3}{x}$. It is clear that this is a bad choice, as applying g on any p_0 generates a sequence that jumps between p_0 and $\frac{3}{p_0}$.

From the textbook examples, we choose $g(x) = x - \frac{x^2 - 3}{x^2}$. Applying fixed-point method on g with $p_0 = 1.5$ generates the following table:

\overline{n}	p_n	n	p_n
0	1.5	4	1.73189858
1	1.83333333	5	1.73207438
2	1.72589532	6	1.73204716
3	1.73304114		

We conclude that $\sqrt{3} \approx 1.73205$. In exercise 12 of section 2.1, 14 iteration is needed, much higher than that of this method.

Exercise 10

Use a fixed-point iteration method to find an approximation to $\sqrt[3]{25}$ that is accurate to within 10^{-4} . Compare your result and the number of iterations required with the answer obtained in Exercise 13 of Section 2.1.

Solution 10

Let $f(x) = x^3 - 25$, p > 0 is a zero of f. Then $p = \sqrt[3]{25}$, and an approximation of p is an approximation of $\sqrt[3]{25}$.

We choose $g(x) = x - \frac{x^3 - 25}{x^3}$. Applying fixed-point method on g with $p_0 = 2.5$ generates the following table:

\overline{n}	p_n	n	p_n
0	2.5	3	2.92378369
1	3.1	4	2.92402386
2	2.93917962	5	2.92401758

We conclude that $\sqrt[3]{25} \approx 2.92402$. In exercise 13 of section 2.1, 14 iteration is needed, much higher than that of this method.

Exercise 11

For each of the following equations, determine an interval [a,b] on which fixed-point iteration converges. Estimate the number of iterations necessary to obtain approximations accurate to within 10^{-5} , and perform the calculations.

a)
$$x = \frac{2 - e^x + x^2}{3}$$

b)
$$x = \frac{5}{x^2} + 2$$

c)
$$x = (e^x/3)^{1/2}$$

d)
$$x = 5^{-x}$$

e)
$$x = 6^{-x}$$

f)
$$x = 0.5(\sin x + \cos x)$$

33

Solution 11

a) Let

$$g(x) = \frac{2 - e^x + x^2}{3}$$

$$\Rightarrow \qquad g'(x) = \frac{2x - e^x}{3}$$

$$\Rightarrow \qquad g''(x) = \frac{2 - e^x}{3}$$

It is clear that g is continuous in \mathbb{R} .

Consider q'':

- $g''(x) > 0 \iff x < \ln 2$
- $g''(x) = 0 \iff x = \ln 2$
- $g''(x) < 0 \iff x > \ln 2$

So, $\max g'(x) = g'(\ln 2) = \frac{\ln 4 - 2}{3} < 0$. So g is monotonically decreasing in \mathbb{R} .

Consider the interval I = [0, 1]:

$$1 > g(0) = \frac{1}{3} > g(x) > g(1) = \frac{3-e}{3} > 0 \,\forall x \in I$$
$$\Rightarrow g(x) \in I \,\forall x \in I$$

So, I is an interval in which a fixed point p of g exists. Applying fixed-point method on g with $p_0 = 0.5$ generates the following table:

\overline{n}	p_n	n	p_n
0	0.5	5	0.257265636
1	0.200426243	6	0.257598985
2	0.272749065	7	0.257512455
3	0.253607157	8	0.257534914
4	0.258550376	9	0.257529084

We conclude that the fixed point $p \approx 0.257529$.

b) Let

$$g = \frac{5}{x^2} + 2$$

Consider the interval I = [2.5, 3]. $0 \notin I$, so g is continuous in I. x^2 is monotonically increasing in I, so g is monotonically decreasing in I. So that:

$$3 > g(2.5) = 2.8 > g(x) > g(3) = {}^{23}/9 > 2.5 \,\forall x \in I$$

 $\Rightarrow g(x) \in I \,\forall x \in I$

So, I is an interval in which a fixed point p of g exists. Applying fixed-point method on g with $p_0 = 2.75$ generates the following table:

\overline{n}	p_n	n	p_n	n	p_n
0	2.75	6	2.69171092	12	2.69066691
1	2.66115702	7	2.69010182	13	2.69063746
2	2.7060395	8	2.69092764	14	2.69065258
3	2.68281293	9	2.69050363	15	2.69064482
4	2.69468708	10	2.69072129		
5	2.68857829	11	2.69060954		

We conclude that the fixed point $p \approx 2.690645$.

c) Let

$$g(x) = \left(\frac{e^x}{3}\right)^{1/2}$$

It is clear that g is continuous in \mathbb{R} .

g is monotonically increasing in \mathbb{R} . Consider the interval I = [0, 1]:

$$0 < g(0) = \frac{1}{\sqrt{3}} < g(x) < g(1) = \sqrt{\frac{e}{3}} < 1$$
$$\Rightarrow g(x) \in I \,\forall x \in I$$

So, I is an interval in which a fixed point p of g exists. Applying fixed-point method on g with $p_0=0.5$ generates the following table:

\overline{n}	p_n	n	p_n	n	p_n
0	0.5	5	0.903281143	10	0.909876791
1	0.74133242	6	0.906952163	11	0.909948068
2	0.836407007	7	0.908618411	12	0.909980498
3	0.87712774	8	0.909375718	13	0.909995254
4	0.895169428	9	0.909720122	14	0.910001967

We conclude that the fixed point $p \approx 0.910002$.

d) Let $g(x) = 5^{-x}$. It is clear that g is continuous in \mathbb{R} . 5^x is monotonically increasing in \mathbb{R} , so g is monotonically decreasing in \mathbb{R} . Consider the interval I = [0, 1]:

$$0 < g(1) = 0.2 < g(x) < g(0) = 1$$

 $\Rightarrow g(x) \in I \ \forall x \in I$

So, I is an interval in which a fixed point p of g exists. Applying fixed-point method on g with $p_0 = 0.5$ generates the following table:

n	p_n	n	p_n	n	p_n
0	0.5	11	0.468245559	22	0.469685261
1	0.447213595	12	0.470663369	23	0.469574052
2	0.486867866	13	0.468835429	24	0.469658106
3	0.456766207	14	0.470216753	25	0.469594575
4	0.479439843	15	0.469172549	26	0.469642593
5	0.462259591	16	0.469961695	27	0.4696063
6	0.475219673	17	0.469365184	28	0.469633731
7	0.465409992	18	0.469816013	29	0.469612998
8	0.47281623	19	0.469475247	30	0.469628669
9	0.467213774	20	0.469732798	31	0.469616824
10	0.4714456	21	0.469538128	32	0.469625777

We conclude that the fixed point $p \approx 0.469626$.

e) Let $g(x) = 6^{-x}$. It is clear that g is continuous in \mathbb{R} . 6^x is monotonically increasing in \mathbb{R} , so g is monotonically decreasing in \mathbb{R} . Consider the interval I = [0, 1]:

$$0 < g(1) = \frac{1}{6} < g(x) < g(0) = 1$$
$$\Rightarrow g(x) \in I \,\forall x \in I$$

So, I is an interval in which a fixed point p of g exists. Applying fixed-point method on g with $p_0 = 0.5$ generates the following table:

\overline{n}	p_n	n	p_n	n	p_n
0	0.5	15	0.446 190 464	30	0.448 132 603
1	0.40824829	16	0.449568975	31	0.448007263
2	0.481194974	17	0.446855739	32	0.448107887
3	0.422238208	18	0.449033402	33	0.448027103
4	0.469282988	19	0.447284756	34	0.448091958

$\underline{}$	p_n	n	p_n	n	p_n
5	0.431347074	20	0.448688365	35	0.448039891
6	0.461686032	21	0.447561363	36	0.448081691
7	0.437258678	22	0.448466044	37	0.448048133
8	0.456821582	23	0.447739682	38	0.448075074
9	0.441086448	24	0.44832278	39	0.448053445
10	0.453699216	25	0.44785463	40	0.448070809
11	0.443561035	26	0.448230453	41	0.448056869
12	0.451692029	27	0.447928723	42	0.44806806
13	0.445159128	28	0.448170951	43	0.448059076
14	0.450400504	29	0.447976481		

We conclude that the fixed point $p \approx 0.448059$.

f) Let $g(x) = 0.5(\sin x + \cos x)$. It is clear that g is continuous in \mathbb{R} . Manipulating g gives:

$$\sin x + \cos x = \sqrt{2} \left(\frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x \right)$$

$$= \sqrt{2} \left(\cos \frac{\pi}{4} \sin x + \sin \frac{\pi}{4} \cos x \right)$$

$$= \sqrt{2} \sin \left(x + \frac{\pi}{4} \right)$$

$$\Rightarrow g(x) = 0.5(\sin x + \cos x)$$

$$= \frac{1}{\sqrt{2}} \sin \left(x + \frac{\pi}{4} \right)$$

Consider the interval $I=[0,\frac{\pi}{4}]$. sinx is monotonically increasing in $[0,\frac{\pi}{2}]$, so $\sin x + \frac{\pi}{4}$ also is monotonically increasing in I. It follows that:

$$0 < g(0) = 0.5 < g(x) < g(\frac{\pi}{4}) = \frac{1}{\sqrt{2}} < \frac{\pi}{4}$$
$$\Rightarrow g(x) \in I \, \forall x \in I$$

So, I is an interval in which a fixed point p of g exists. Applying fixed-point method on g with $p_0 = \frac{\pi}{8}$ generates the following table:

n	p_n	n	p_n
0	0.392699082	4	0.704799153
1	0.653281482	5	0.704811271
2	0.700944543	6	0.70481196
3	0.70458659		

We conclude that the fixed point $p \approx 0.704812$.

Exercise 12

For each of the following equations, use the given interval or determine an interval [a, b] on which fixed-point iteration will converge. Estimate the number of iterations necessary to obtain approximations accurate to within 10^{-5} , and perform the calculations.

a)
$$2 + \sin x - x = 0$$
 on [2, 3]

b)
$$x^3 - 3x - 5 = 0$$
 on [2, 3]

c)
$$3x^2 - e^x = 0$$

$$d) x - \cos x = 0$$

Solution 12

a) Let I = [2, 3] and

$$g(x) = \sin x + 2$$
$$\Rightarrow g'(x) = \cos x$$

A fixed point p of g is also a root of the problem.

Consider g. It is clear that g is continuous on \mathbb{R} . $\sin x$ is monotonically decreasing in I, so that:

$$2 < g(3) = \sin 3 + 2 < g(x) < g(2) = \sin 2 + 2 < 3$$

Consider g'. $\cos x$ is monotonically decreasing in I, so that:

$$\cos 3 \le g'(x) \le \cos 2 < 0 \,\forall x \in I$$
$$\Rightarrow |g'(x)| \le k = -\cos 3 < 1$$

Therefore, all the conditions in Corollary 2.5 hold. Using Corollary 2.5, with $p_0 = 2.5$, the number of iteration n required to obtain approximations accurate to within 10^{-5} is:

$$|p_n - p| \le k^n 0.5 < 10^{-5} \iff n \ge 1076$$

Applying fixed-point method on g generates the following table:

\overline{n}	p_n	n	p_n	n	p_n
0	2.5	18	2.55222543	36	2.55412346
1	2.59847214	19	2.55583511	37	2.55425629
2	2.51680997	20	2.5528308	38	2.55414573
3	2.58492102	21	2.55533177	39	2.55423776
4	2.52836328	22	2.55325015	40	2.55416115
5	2.57551141	23	2.55498297	41	2.55422492
6	2.5363287	24	2.55354068	42	2.55417184

n	p_n	n	p_n	n	p_n
7	2.56897915	25	2.55474128	43	2.55421602
8	2.54183051	26	2.55374195	44	2.55417925
9	2.56444615	27	2.5545738	45	2.55420986
10	2.54563487	28	2.5538814	46	2.55418438
11	2.56130168	29	2.55445776	47	2.55420559
12	2.5482673	30	2.55397801	48	2.55418793
13	2.55912111	31	2.55437735	49	2.55420263
14	2.55008961	32	2.55404495	50	2.5541904
15	2.55760933	33	2.55432164	51	2.55420058
16	2.55135148	34	2.55409133	52	2.5541921
17	2.55656141	35	2.55428304		

So one solution of the problem is $p \approx 2.554192$.

b) Let I = [2, 3] and

$$g(x) = \sqrt[3]{2x+5}$$

 $\Rightarrow g'(x) = \frac{2}{3}(2x+5)^{-2/3}$

A fixed point p of g is also a solution of the problem.

Consider g. It is clear that g is continuous and monotonically increasing on \mathbb{R} , so that:

$$2 < g(2) = \sqrt[3]{9} < g(x) < g(3) = \sqrt[3]{11} < 3$$

 $\Rightarrow g(x) \in I \, \forall x \in I$

Consider g'. Since -2/3 < 0 and I > 0, g'(x) is monotonically decreasing in I, so that:

$$g'(2) = \frac{2}{9\sqrt[3]{3}} \ge g'(x) \ge g'(3) = \frac{2}{3\sqrt[3]{121}}$$
$$\Rightarrow |g'(x)| \le k = \frac{2}{9\sqrt[3]{3}} < 1$$

Therefore, all the conditions in Corollary 2.5 hold. Using Corollary 2.5, with $p_0 = 2.5$, the number of iteration n required to obtain approximations accurate to within 10^{-5} is:

$$|p_n - p| \le k^n 0.5 < 10^{-5} \iff n \ge 6$$

Applying fixed-point method on g generates the following table:

\overline{n}	p_n	n	p_n
0	2.5	4	2.09476055
1	2.15443469	5	2.09458325
2	2.10361203	6	2.09455631
3	2.09592741	7	2.09455222

So one solution of the problem is $p \approx 2.094552$.

c) Let I = [3, 4] and

$$g(x) = \ln 3x^2 = 2 \ln x + \ln 3$$
$$\Rightarrow g'(x) = \frac{2}{x}$$

A fixed point p of g is also a solution of the problem.

Consider g. It is clear that g is continuous and monotonically increasing on I, so that:

$$3 < g(3) = \ln 27 < g(x) < g(4) = \ln 48 < 4$$
$$\Rightarrow g(x) \in I \ \forall x \in I$$

Consider g'. Since I > 0, g'(x) is monotonically decreasing in I, so that:

$$g'(3) = \frac{2}{3} \ge g'(x) \ge g'(4) = \frac{1}{2}$$

 $\Rightarrow |g'(x)| \le k = \frac{2}{3} < 1$

Therefore, all the conditions in Corollary 2.5 hold. Using Corollary 2.5, with $p_0 = 3.5$, the number of iteration n required to obtain approximations accurate to within 10^{-5} is:

$$|p_n - p| \le k^n 0.5 < 10^{-5} \iff n \ge 27$$

Applying fixed-point method on g generates the following table:

\overline{n}	p_n	n	p_n	n	p_n
0	3.5	6	3.72717712	12	3.73293923
1	3.60413823	7	3.72991458	13	3.73300413
2	3.66277767	8	3.73138295	14	3.7330389
3	3.69505586	9	3.73217015	15	3.73305753
4	3.71260363	10	3.73259204	16	3.73306751
5	3.72207913	11	3.7328181		

So one solution of the problem is $p \approx 3.733068$.

d) Let I = [0, 1] and

$$g(x) = \cos x$$
$$\Rightarrow g'(x) = -\sin x$$

A fixed point p of g is also a solution of the problem.

Consider g. It is clear that g is continuous and monotonically decreasing on I, so that:

$$1 = g(0) \ge g(x) \ge g(1) = \cos 1 > 0$$

$$\Rightarrow g(x) \in I \, \forall x \in I$$

Consider g'. Since I > 0, g'(x) is monotonically decreasing in I, so that:

$$g'(0) = 0 \ge g'(x) \ge g'(1) = -\sin 1$$

 $\Rightarrow |g'(x)| \le k = \sin 1 < 1$

Therefore, all the conditions in Corollary 2.5 hold. Using Corollary 2.5, with $p_0 = 0.5$, the number of iteration n required to obtain approximations accurate to within 10^{-5} is:

$$|p_n - p| \le k^n 0.5 < 10^{-5} \iff n \ge 63$$

Applying fixed-point method on g generates the following table:

\overline{n}	p_n	n	p_n	n	p_n
0	0.5	10	0.735006309	20	0.73900678
1	0.877582562	11	0.741826523	21	0.739137911
2	0.639012494	12	0.737235725	22	0.739049581
3	0.802685101	13	0.740329652	23	0.739109081
4	0.694778027	14	0.738246238	24	0.739069001
5	0.768195831	15	0.739649963	25	0.739096
6	0.719165446	16	0.738704539	26	0.739077813
7	0.752355759	17	0.739341452	27	0.739090064
8	0.730081063	18	0.738912449	28	0.739081812
9	0.745120341	19	0.739201444		

So one root of the problem is $p \approx 0.739082$.

Exercise 13

Find all the zeros of $f(x) = x^2 + 10\cos x$ by using the fixed-point iteration method for an appropriate iteration function g. Find the zeros accurate to within 10^{-4} .

Solution 13

Consider f = 0. Since $x^2 \ge 0$, $\cos x$ must be negative for the equation to hold, so that:

$$x \in I_k = \left[\frac{\pi}{2} + k2\pi, \frac{3\pi}{2} + k2\pi\right] \forall k \in \mathbb{N}$$
 (1)

Also, since $10 \cos x \in [-10, 0]$:

$$x \in \left[-\sqrt{10}, \sqrt{10}\right] \tag{2}$$

Combining (1) and (2) gives:

$$x \in I = I_a \cup I_b \text{ where } I_a = [-\sqrt{10}, -\frac{\pi}{2}] \text{ and } I_b = [\frac{\pi}{2}, \sqrt{10}]$$

As x^2 and $\cos x$ take Oy as a symmetry axis, each zero z_b of f in I_b results in another zero $z_a = -z_b$ in I_a . Hence, from now on, we just need to examine on I_b .

Differentiating f gives:

$$f'(x) = 2x - 10\sin x$$

x is monotonically increasing on I_b , $\sin x$ is monotonically decreasing on I_b . It follows that f' is monotonically increasing on I_b , which means:

$$f'(\frac{\pi}{2}) = \pi - 10 \le f'(x) \le f'(\sqrt{10}) = 2\sqrt{10} - 10\sin\sqrt{10}$$

Combining with the fact that f' is continuous on I_b , according to Intermediate Value Theorem, f' has one zero in I_b . It follows that f has at most two zeros in I_b .

Let

$$g(x) = x - \frac{-10\cos x}{x^2} + 1 = x + \frac{10\cos x}{x^2} + 1$$

A fixed point of g is also a zero of f. Try applying fixed-point method on g with several p_0 , we found two fixed points:

• $p_0 = \frac{\pi}{2}$ generates the following table:

\overline{n}	p_n	n	p_n	n	p_n
0	1.57079633	4	1.95354867	8	1.96859328
1	2.57079633	5	1.9749308	9	1.96897439
2	2.29757529	6	1.96675733	10	1.96883622
3	2.03884343	7	1.96964871	11	1.96888624

• $p_0 = -\sqrt{10}$ generates the following table:

\overline{n}	p_n
0	-3.16227766
1	-3.16206373
2	-3.16198949

The second fixed point is interesting. It is indeed a fixed point of g, a zero of f, but it belongs to I_a . Due to the symmetry property, we conclude that f has 4 zeros: $\pm 1.968\,89$ and $\pm 3.161\,99$.

Exercise 14

Use a fixed-point iteration method to determine a solution accurate to within 10^{-4} for $x = \tan x$, for $x \in [4, 5]$.

Solution 14

Let

$$g(x) = x - \sqrt[3]{\frac{\tan x}{x}} + 1$$

A fixed point p of g is also a solution of the problem. Applying fixed-point method on g generates the following table:

\overline{n}	p_n	n	p_n	n	p_n
0	4	4	4.49534411	8	4.49352955
1	4.33850407	5	4.49242947	9	4.49334961
2	4.50097594	6	4.49389301	10	4.49343923
3	4.48937873	7	4.4931677		

So $p \approx 4.49344$ is a solution of the problem in [4, 5].

Exercise 15

Use a fixed-point iteration method to determine a solution accurate to within 10^{-2} for $2 \sin \pi x + x = 0$ on [1, 2]. Use $p_0 = 1$.

Solution 15

Consider f:

$$f(x) = 0$$

$$\iff 2\sin \pi x = -x$$

$$\iff \pi x = \arcsin -0.5x + k2\pi \ (k \in \mathbb{N})$$

$$\iff x = \frac{\arcsin -0.5x}{\pi} + 2k$$

Let

$$g(x) = \frac{\arcsin -0.5x}{\pi} + 2$$

arcsin is chosen as it "behaves" nicer than normal sin. Since arcsin returns values in principal branch $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, we need to use k=1 to shift the value to cover [1,2].

A fixed point p of g is also a solution of the problem. Applying fixed-point method on g generates the following table:

\overline{n}	p_n	n	p_n
0	1	3	1.696498
1	1.83333333	4	1.67765706
2	1.63086925	5	1.68324099

So $p \approx 1.683$ is a solution of the problem in [1, 2].

Exercise 16

Let A be a given positive constant and $g(x) = 2x - Ax^2$.

- a) Show that if fixed-point iteration converges to a nonzero limit, then the limit is $p={}^{1}/A$, so the inverse of a number can be found using only multiplications and subtractions.
- b) Find an interval about $^1/\!$ A for which fixed-point iteration converges, provided p_0 is in that interval.

Solution 16

a) If fixed-point iteration converges to a nonzero limit p, then:

$$p = \lim_{n \to \infty} p_n$$

$$= \lim_{n \to \infty} g(p_{n-1})$$

$$= \lim_{n \to \infty} \left(2p_{n-1} - Ap_{n-1}^2 \right)$$

$$= 2p - Ap^2$$

$$\iff p = Ap^2 \iff p = \frac{1}{A}$$

b) We try to find $\delta > 0$ such that fixed-point method converges on $I = [1/A - \delta, 1/A + \delta]$ using Fixed Point Theorem.

The condition that g is continuous on I is satisfied with any δ . Consider g:

$$g(x) = -Ax^2 + 2x = -A\left(x - \frac{1}{A}\right)^2 + \frac{1}{A}$$

So $x = \frac{1}{A}$ is the axis of symmetry for g.

Differentiating g gives:

$$g'(x) = 2 - 2Ax$$

It follows that:

- $g'(x) < 0 \iff x > \frac{1}{A}$
- $g'(x) = 0 \iff x = \frac{1}{A}$
- $g'(x) > 0 \iff x < \frac{1}{A}$

Combining with the fact that $x = \frac{1}{A}$ is the symmetry axis of g gives:

$$g\left(\frac{1}{A} + \delta\right) = g\left(\frac{1}{A} - \delta\right) = g\left(\frac{1}{A} \pm \delta\right) \le g(x) \le g\left(\frac{1}{A}\right) \ \forall x \in I$$

$$\iff \frac{2}{A} - A\delta^2 \le g(x) \le \frac{1}{A}$$

Then, to satisfy the condition that $g(x) \in I \forall x \in I$, δ must satisfy the following:

$$\frac{2}{A} - A\delta^2 \ge \frac{1}{A} - \delta$$

$$\iff (A\delta)^2 - A\delta - 1 \le 0$$

$$\iff 0 < \delta \le \frac{1 + \sqrt{5}}{2A} \text{ (as } \delta > 0) \tag{1}$$

Consider g'. g' is monotonically decreasing on \mathbb{R} , so:

$$g'\left(\frac{1}{A} - \delta\right) = 2A\delta \ge g'(x) \ge g'\left(\frac{1}{A} - \delta\right) = -2A\delta$$

$$\iff |g'(x)| \le 2A\delta \text{ (equal sign only at either end)}$$
(2)

Then, to satisfy the condition that $|g'(x)| < 1 \,\forall x \in I_{open} = (1/A - \delta, 1/A + \delta), \delta$ must satisfy the following:

$$2A\delta \le 1 \iff \delta \le \frac{1}{2A}$$

From (1) and (2):

$$0 < \delta < \frac{1}{2A}$$

As all the conditions needed for Fixed Point Theorem hold, we conclude that for any $\delta \in (0, \frac{1}{2A}]$, applying fixed-point method on g with $p_0 \in I$ converges to the fixed point.

Exercise 17

Find a function g defined on [0,1] that satisfies none of the hypotheses of Theorem 2.3 but still has a unique fixed point on [0,1].

Solution 17

Let
$$I = [0, 1], g = \frac{1}{x + 0.5}$$
.

Consider g. g is defined on $\mathbb{R} \setminus \{-0.5\}$, so it is defined on I.

 $g(x) > 1 \,\forall x \in [-0.5, 0.5]$, so the condition that $g(x) \in I \,\forall x \in I$ does not hold.

Differentiating g gives:

$$g'(x) = -\frac{1}{(x+0.5)^2} < -1 \iff x \in (-1.5, 0.5) \setminus \{-0.5\}$$

So the condition that $|g'(x)| < 1 \forall x \in I$ does not hold.

Yet, g has a fixed point at $x = \frac{\sqrt{17} - 1}{4}$.

Exercise 18

- a) Show that Theorem 2.2 is true if the inequality $|g'(x)| \le k$ is replaced by $g'(x) \le k$, for all $x \in (a, b)$. [Hint: Only uniqueness is in question.]
- b) Show that Theorem 2.3 may not hold if inequality $|g'(x)| \le k$ is replaced by $g'(x) \le k$.

Solution 18

- a) Where the fuck is Theorem 2.2 in the fucking book?
- b) In the proof of Theorem 2.3, if $|g'(x) \le k|$ is replaced with $g'(x) \le k$, then there is a chance that $g'(\xi) = -1$. In that case, the assumption is no longer a contradiction, therefore the proof is invalid, and the theorem doesn't hold.

46

Exercise 19

a) Use Theorem 2.4 (Định lí 2.5 in the accompanying Lectures.pdf) to show that the sequence defined by:

$$x_n = \frac{1}{2}x_{n-1} + \frac{1}{x_{n-1}}$$
, for $n \le 1$

converges to $\sqrt{2}$ whenever $x_0 > \sqrt{2}$.

- b) Use the fact that $0 < (x_0 \sqrt{2})^2$ whenever $x_0 \neq \sqrt{2}$ to show that if $0 < x_0 < \sqrt{2}$, then $x_1 > \sqrt{2}$.
- c) Use the above results to show that the sequence in (a) converges to $\sqrt{2}$ whenever $x_0 > 0$.

Solution 19

a) Let g be the function that generates the sequence $\{x_n\}$:

$$g(x) = \frac{x}{2} + \frac{1}{x} = \frac{x^2 + 2}{2x}$$
$$\Rightarrow g'(x) = \frac{1}{2} - \frac{1}{x^2} = \frac{x^2 - 2}{2x^2}$$

Consider $I = [\sqrt{2}, b]$, for any $b > \sqrt{2}$. It is clear that g and g' exists on I. Since $g'(x) \le 0 \,\forall x \in I$, g is monotonically increasing on I.

Consider g'. x^2 is strictly increasing on I, so g' is strictly decreasing on I, therefore:

$$\frac{1}{2} > g'(x) \le g'(\sqrt{2}) = 0 \,\forall x \in I$$
$$\Rightarrow |g'(x)| < 1 \,\forall x \in I$$

Let

$$f(x) = g(x) - x = \frac{1}{x} - \frac{x}{2}$$

 $^{1}/_{x}$ is strictly decreasing on I, and so is -x. Therefore, f is strictly decreasing on I, so:

$$f(\sqrt{2}) = 0 \le f(x) \, \forall x \in I$$

In other words, $g(x) \leq x \, \forall x \in I$. It means that for any b, g(b) < b. Combining with the fact that $g(\sqrt{2}) = \sqrt{2}$, it is guaranteed that:

$$q(x) \in I \, \forall x \in I$$

All the conditions of Theorem 2.4 hold, so we can apply it here: for any $x_0 \in I$, applying fixed-point method on g converges to the unique fixed point in I, using any $x_0 \in I$.

Trivially, $\sqrt{2}$ is a fixed point of g, therefore it must be the unique fixed point on I.

We can conclude that for any $x_0 > \sqrt{2}$, the sequence converges to $\sqrt{2}$.

b) When $0 < x < \sqrt{2}$, g'(x) < 0, which means g is monotonically decreasing. Applying this on $0 < x_0 < \sqrt{2}$ gives:

$$x_1 = g(x_0) > g(\sqrt{2}) = \sqrt{2}$$

- c) We have:
 - If $x_0 > \sqrt{2}$: proven.
 - If $x_0 = \sqrt{2}$: it is exactly the fixed point.
 - If $0 < x_0 < \sqrt{2}$: $x_1 = g(x_0) > \sqrt{2}$, then from x_1 onwards, the sequence converges to $\sqrt{2}$, as proven with the case $x_0 > \sqrt{2}$.

Therefore, we can conclude that the sequence converges to $\sqrt{2}$ whenever $x_0 > 0$.

Exercise 20

a) Show that if A is any positive number, then the sequence defined by

$$x_n = \frac{1}{2}x_{n-1} + \frac{A}{2x_{n-1}}$$
, for $n \ge 1$

converges to \sqrt{A} whenever $x_0 > 0$.

b) What happens if $x_0 < 0$?

Solution 20

a) Let

$$g(x) = \frac{x}{2} + \frac{A}{2x} = \frac{x^2 + A}{2x}$$
$$\Rightarrow g'(x) = \frac{1}{2} - \frac{A}{2x^2} = \frac{x^2 - A}{2x^2}$$

Trivially, we can find out that \sqrt{A} is a fixed point of g.

Let

$$f(x) = g(x) - x = \frac{A}{2x} - \frac{x}{2} = \frac{A - x^2}{2x}$$

$$\Rightarrow f'(x) = -\frac{A}{2x^2} - \frac{1}{2} = -\frac{x^2 + A}{2x^2}$$

Since $f'(x) < 0 \,\forall x \neq 0$, f(x) is monotonically increasing when x > 0. Consider the sign of g':

- $g'(x) < 0 \iff |x| < \sqrt{A}$
- $g'(x) = 0 \iff |x| = \sqrt{A}$
- $g'(x) > 0 \iff |x| > \sqrt{A}$

If $x > \sqrt{A}$, then:

• g' > 0, which means g is monotonically increasing. It follows that:

$$g(x) > g(\sqrt{A}) = \sqrt{A}$$

• $f(x) < f(\sqrt{A}) = 0$, which means g(x) < x, making $\{x_n\}$ a decreasing sequence.

From both of the above, we know that $\{x_n\}$ is a lower-bounded decreasing sequence, and therefore must converge:

$$x = \lim_{n \to \infty} x_n$$

$$= \lim_{n \to \infty} g(x_{n-1})$$

$$= \lim_{n \to \infty} \frac{x_{n-1}}{2} + \frac{A}{2x_{n-1}}$$

$$= \frac{x}{2} + \frac{A}{2x}$$

$$\iff x = \sqrt{A}$$

So, for all $x_0 > \sqrt{A}$, the sequence converges to \sqrt{A} .

If $x = \sqrt{A}$, then $g(x) = x = \sqrt{A}$. Hence $x_n = \sqrt{A} \,\forall n \geq 0$. So, for $x_0 = \sqrt{A}$, the sequence converges to \sqrt{A} .

If $0 < x < \sqrt{A}$, then g' < 0, which means g is monotonically decreasing. It follows that:

$$g(x)>g(\sqrt{A})=\sqrt{A}$$

So, for $0 < x_0 < \sqrt{A}$, $x_1 = g(x_0) > \sqrt{A}$, then from x_1 onwards, the sequence converges to \sqrt{A} , as proven with the case $x_0 > \sqrt{A}$.

We can conclude that the sequence $\{x_n\}$ converges to $\sqrt{2}$ whenever $x_0 > 0$.

b) If $x_0 < 0$, then similar to the above proof, we conclude that the sequence converges to $-\sqrt{A}$.

Exercise 21

Replace the assumption in Theorem 2.4 that "a positive number k < 1 exists with $|g(x)| \le k$ " with "g satisfies a Lipschitz condition on the interval [a, b] with Lipschitz constant L < 1" (See Exercise 27, Section 1.1.) Show that the conclusions of this theorem are still valid.

Solution 21

g satisfies a Lipschitz condition on the interval [a,b] with Lipschitz constant L<1 means that:

$$\frac{g(x_1) - g(x_2)}{x_1 - x_2} \le L \,\forall x_1, x_2 \in [a, b] \tag{*}$$

In the proof of Theorem 2.4, we see that:

$$|p - p_n| = |g(p) - g(p_{n-1})|$$

From the previous section of the proof, we already proved that p and p_{n-1} is in [a, b]. Applying (*) with $x_1 = p$, $x_2 = p_{n-1}$ gives:

$$|p - p_n| = |g(p) - g(p_{n-1})| \le L|p - p_{n-1}|$$

Then the proof proceeds normally, replacing k with L.

Exercise 22

Suppose that g is continuously differentiable on some interval (c, d) that contains the fixed point p of g. Show that if |g'(p)| < 1, then there exists a $\delta > 0$ such that if $|p_0 - p| \le \delta$, then the fixed-point iteration converges.

Solution 22

Since p is a fixed point in (c, d) of g, g(p) = p.

Since g' is continuous at p, according to the definition of continuity and limit, for every $\varepsilon > 0$, there exist $\delta > 0$ such that:

$$|g'(x) - g'(p)| < \varepsilon \, \forall x \in D = [p - \delta, p + \delta]$$

$$\iff g'(x) \in E = [g'(p) - \varepsilon, g'(p) + \varepsilon] \, \forall x \in D$$

We can always choose a ε such that $E \subset (-1,1)$. Then the proof proceeds normally, replacing [a,b] with E.

Exercise 23

An object falling vertically through the air is subjected to viscous resistance as well as to the force of gravity. Assume that an object with mass m is dropped from a height s_0 and that the height of the object after t seconds is:

$$s(t) = s_0 - \frac{mg}{k}t + \frac{m^2g}{k^2}(1 - e^{-kt/m})$$

where $g = 32.17 \,\text{ft/s}^2$ and k represents the coefficient of air resistance in lb/s. Suppose $s_0 = 300 \,\text{ft}$, $m = 0.25 \,\text{lb}$, and $k = 0.1 \,\text{lb/s}$. Find, to within 0.01 s, the time it takes this quarter-pounder to hit the ground.

Solution 23

Replacing symbols in s(t) with number gives:

$$s(t) = 501.0625 - 80.425t - 201.0625e^{-0.4t}$$

Let

$$g(t) = \frac{1}{80.425} (501.0625 - 201.0625e^{-0.4t})$$

A fixed point p of g is also a root of s(t) = 0, which is the time it takes the quarter-pounder to hit the ground.

Applying fixed-point method on g with $p_0 = 3$ generates the following table:

\overline{n}	p_n	n	p_n
0	3	3	5.99886594
1	5.47719787	4	6.00328561
2	5.9506374		

We conclude that it takes approximately 6.003s for the quarter-pounder to hit the ground.

Exercise 24

Let $g \in C^1[a, b]$ and p be in (a, b) with g(p) = p and |g'(p)| > 1. Show that there exists a $\delta > 0$ such that if $0 < |p_0 - p| < \delta$, then $|p_0 - p| < |p_1 - p|$. Thus, no matter how close the initial approximation p_0 is to p, the next iterate p_1 is farther away, so the fixed-point iteration does not converge if $p_0 \neq p$.

Solution 24

This problem is similar to Exercise 22.

Since g' is continuous at p, according to the definition of continuity and limit, for every $\varepsilon > 0$, there exist $\delta > 0$ such that:

$$|g'(x) - g'(p)| < \varepsilon \, \forall x \in D = [p - \delta, p + \delta]$$

$$\iff g'(x) \in E = [g'(p) - \varepsilon, g'(p) + \varepsilon] \, \forall x \in D$$

We can always choose a ε such that $E \subset (1, \infty)$.

If $p_0 \in D$, then according to Mean Value Theorem, there exist a $\xi \in D$ such that:

$$|p_1 - p| = |g(p_0) - g(p)| = |g'(\xi)||p_0 - p| > |p_0 - p|$$

1.3 Newton's Method and Its Extensions

Exercise 1

Let $f(x) = x^2 - 6$ and $p_0 = 1$. Use Newton's method to find p_2 .

Solution 1

$$f'(x) = 2x$$
. Therefore, $p_1 = 3.5$, $p_2 = 2.607142$.

Exercise 2

Let $f(x) = -x^3 - \cos x$ and $p_0 = -1$. Use Newton's method to find p_2 . Could $p_0 = 0$ be used?

Solution 2

$$f'(x) = -3x^2 + \sin x$$
. Therefore, $p_1 = -0.880\,333$, $p_2 = -0.865\,684$. $p_0 = 0$ can't be used, as $f'(p_0) = 0$, therefore p_1 can't be calculated.

Exercise 3

Let
$$f(x) = x^2 - 6$$
. With $p_0 = 3$ and $p_1 = 2$, find p_3 .

- a) Use the Secant method.
- b) Use the method of False Position.
- c) Which of the above is closer to $\sqrt{6}$?

Solution 3

a) Applying Secant method generates the following table:

\overline{n}	p_n	$f(p_n)$
0	3	3
1	2	-2
2	2.4	-0.24
3	2.454545	0.024793

So $p_3 = 2.454545$.

b) Applying False Position method generates the following table:

\overline{n}	p_n	$f(p_n)$
0	3	3
1	2	-2
2	2.4	-0.24
3	2.454545	2.444444

So $p_3 = 2.4444444$.

c) p_3 produced by Secant method is better.

Exercise 4

Let $f(x) = -x^3 - \cos x$. With $p_0 = -1$ and $p_1 = 0$, find p_3 .

- a) Use the Secant method.
- b) Use the method of False Position.

Solution 4

a) Applying Secant method generates the following table:

\overline{n}	p_n	$f(p_n)$
0	-1	0.459697694
1	0	-1
2	-0.685073357	-0.452850234
3	-1.252076489	1.649523592

So $p_3 = -1.252076$.

b) Applying False Position method generates the following table:

\overline{n}	p_n	$f(p_n)$
0	-1	0.459697694
1	0	-1
2	-0.685073357	-0.452850234
3	-0.841355126	-0.070875968

So $p_3 = -0.841355$.

Exercise 5

Use Newton's method to find solutions accurate to within 10^{-4} for the following problems.

a)
$$x^3 - 2x^2 - 5 = 0$$
 in [1, 4]

b)
$$x^3 + 3x^2 - 1 = 0$$
 in $[-3, -2]$

c)
$$x - \cos x = 0$$
 in $[0, \pi/2]$

d)
$$x - 0.8 - 0.2 \sin x = 0$$
 in $[0, \pi/2]$

Solution 5

a) Let

$$f(x) = x^3 - 2x^2 - 5$$
$$\Rightarrow f'(x) = 3x^2 - 4x$$

Applying Newton's method on f with $p_0 = 2.5$ gives:

n	p_n	$f(p_n)$	$f'(p_n)$
0	2.5	-1.875	8.75
1	2.714285714	0.262390671	11.24489796
2	2.690951571	0.003331987	10.95985413
3	2.690647499	0.000000561	10.9561619
4	2.690647448	0	10.95616128

We conclude that $p \approx 2.690\,65$ is a solution of the problem.

b) Let

$$f(x) = x^3 + 3x^2 - 1$$
$$\Rightarrow f'(x) = 3x^2 + 6x$$

Applying Newton's method on f with $p_0 = -2.5$ gives:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	-2.5	2.125	3.75
1	-3.06666667	-1.626962963	9.81333333
2	-2.900875604	-0.165860349	7.839984184
3	-2.879719904	-0.002542819	7.600040757
4	-2.879385325	-0.000000631	7.596267596
5	-2.879385242	0	7.596266659

We conclude that $p \approx 2.690\,65$ is a solution of the problem.

c) Let

$$f(x) = x - \cos x$$

$$\Rightarrow f'(x) = 1 + \sin x$$

Applying Newton's method on f with $p_0 = 0.739$ gives:

n	p_n	$f(p_n)$	$f'(p_n)$
0	0.739	-0.000142477	1.673549106
1	0.739085135	0.000000002	1.67361203

We conclude that $p \approx 0.739\,09$ is a solution of the problem.

d) Let

$$f(x) = x - 0.8 - 0.2 \sin x$$

$$\Rightarrow f'(x) = 1 - 0.2 \cos x$$

Applying Newton's method on f with $p_0 = 0.964$ gives:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	0.964	-0.000295817	0.885952272
1	0.964333898	-0.000000009	0.886007136
2	0.964333888	0	0.886007135

We conclude that $p \approx 0.96433$ is a solution of the problem.

Exercise 6

Use Newton's method to find solutions accurate to within 10^{-5} for the following problems.

a)
$$e^x + 2^{-x} + 2\cos x - 6 = 0$$
 for $x \in [1, 2]$

b)
$$\ln(x-1) + \cos(x-1) = 0$$
 for $x \in [1.3, 2]$

c)
$$2x\cos(2x) - (x-2)^2 = 0$$
 for $x \in [2,3]$ and $x \in [3,4]$

d)
$$(x-2)^2 - \ln x = 0$$
 for $x \in [1,2]$ and $x \in [e,4]$

e)
$$e^x - 3x^2 = 0$$
 for $x \in [0, 1]$ and $x \in [3, 5]$

f)
$$\sin x - e^x = 0$$
 for $x \in [0, 1], x \in [3, 4]$ and $x \in [6, 7]$

Solution 6

a) Let

$$f(x) = e^{x} + 2^{-x} + 2\cos x - 6$$

$$\Rightarrow f'(x) = e^{x} - \ln 2 \cdot 2^{-x} - 2\sin x$$

Applying Newton's method on f with $p_0 = 1.829$ gives:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	1.829	-0.001572837	4.098862489
1	1.829383725	0.000000506	4.101500646
2	1.829383602	0	4.101499798

We conclude that $p \approx 1.829384$ is a solution of the problem.

b) Let

$$f(x) = \ln(x-1) + \cos(x-1)$$
$$\Rightarrow f'(x) = \frac{1}{x-1} - \sin(x-1)$$

Applying Newton's method on f with $p_0 = 1.398$ gives:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	1.398	0.000534714	1.527454989
1	1.397649931	-0.00020962	1.52972716

We conclude that $p \approx 1.39765$ is a solution of the problem.

c) Let

$$f(x) = 2x \cos(2x) - (x - 2)^{2}$$

$$\Rightarrow f'(x) = 2(\cos x - x \sin(2x)^{2}) - 2(x - 2)$$

$$= 2(\cos x - 2x \sin(2x) - x + 2)$$

Applying Newton's method on f with $p_0=2.371$ gives:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	2.371	0.002753936	7.30284651
1	2.3706229	-0.000563086	7.30282746
2	2.3707	0.000115071	7.30283178
3	2.37068424	-0.000023518	7.30283091

Applying	Newton's	method	on f	with p_0	= 3.722 gives:
----------	----------	--------	--------	------------	----------------

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	3.722	0.001838451	-18.77068249
1	3.722097943	0.000241783	-18.77229246
2	3.722110823	0.000031801	-18.77250414
3	3.722112517	0.000004182	-18.77253198

We conclude that $p\approx 2.370\,684$ and $p\approx 3.722\,113$ are solutions of the problem.

d) Let

$$f(x) = (x-2)^2 - \ln x$$
$$\Rightarrow f'(x) = 2(x-2) - \frac{1}{x}$$

Applying Newton's method on f with $p_0 = 1.412$ gives:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	1.412	0.00073686	-1.884215297
1	1.41239107	0.000000191	-1.883237062
2	1.412391172	0	-1.883236808

Applying Newton's method on f with $p_0 = 3.057$ gives:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	3.057	-0.000185043	1.78688191
1	3.05710356	0.000000011	1.7871001
2	3.05710355	0	1.78710009

We conclude that $p\approx 1.412\,391$ and $p\approx 3.057\,104$ are solutions of the problem.

e) Let

$$f(x) = e^x - 3x^2$$

$$\Rightarrow f'(x) = e^x - 6x$$

Applying Newton's method on f with $p_0=0.91$ gives:

n	p_n	$f(p_n)$	$f'(p_n)$
0	0.91	0.000022533	-2.97567747
1	0.910007573	0	-2.97570409

Applying Newton's method on f with $p_0 = 3.733$ gives:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	3.733	-0.001533768	19.4063332
1	3.73307903	0.000000112	19.4091631
2	3.73307903	0	19.4091629

We conclude that $p\approx 0.910\,008$ and $p\approx 3.733\,079$ are solutions of the problem.

f) Let

$$f(x) = \sin x - e^{-x}$$

$$\Rightarrow f'(x) = \cos x + e^{-x}$$

Applying Newton's method on f with $p_0 = 0.588$ gives:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	0.588	-0.000739019	1.38748879
1	0.58853263	-0.000000157	1.38689746
2	0.588532744	0	1.38689733

Applying Newton's method on f with $p_0 = 3.096$ gives:

n	p_n	$f(p_n)$	$f'(p_n)$
0	3.096	0.0003471	-0.953731075
1	3.09636394	-0.000000601	-0.953764054
2	3.09636393	0	-0.953764053

Applying Newton's method on f with $p_0 = 6.285$ gives:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	6.285	-0.000049365	1.00186241
1	6.28504927	0	1.00186223
2	6.28504927	0	1.00186223

We conclude that $p \approx 0.588\,53$, $p \approx 3.096\,36$ and p = 6.285049 are solutions of the problem.

Exercise 7

Repeat Exercise 5 using the Secant method.

Solution 7

a) Applying Secant method with $p_0 = 2.6$ and $p_1 = 2.7$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	2.6	-0.944
1	2.7	0.103
2	2.690162369	-0.005313179
3	2.690644942	-0.000027451
4	2.690647449	0.000000007

We conclude that $p \approx 2.690\,65$ is a solution of the problem.

b) Applying Secant method with $p_0 = -2.8$ and $p_1 = -2.9$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	-2.8	0.568
1	-2.9	-0.159
2	-2.878129298	0.009531586
3	-2.879366233	0.000144394
4	-2.879385259	-0.000000134

We conclude that $p \approx -2.87939$ is a solution of the problem.

c) Applying Secant method with $p_0=0.73$ and $p_1=0.74$ generates the following table:

n	p_n	$f(p_n)$
0	0.73	-0.015174402
1	0.74	0.001531441
2	0.73908329	-0.000003084
3	0.739085133	0

We conclude that $p\approx 0.739\,09$ is a solution of the problem.

d) Applying Secant method with $p_0=0.96$ and $p_1=0.97$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	0.96	-0.003838313
1	0.97	-0.005022857
2	0.96433161	-0.000002018
3	0.964333887	-0.000000001

We conclude that $p \approx 0.96433$ is a solution of the problem.

Exercise 8

Repeat Exercise 6 using the Secant method.

Solution 8

a) Applying Secant method with $p_0=1.82$ and $p_1=1.83$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	1.82	-0.038185199
1	1.83	0.002529463
2	1.829378734	-0.000019965
3	1.829383599	0.000000001

We conclude that $p \approx 1.829\,384$ is a solution of the problem.

b) Applying Secant method with $p_0=1.39$ and $p_1=1.4$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	1.39	-0.01669948
1	1.4	0.004770262
2	1.397778147	0.0000631
3	1.397748362	-0.000000242
4	1.397748476	0

We conclude that $p \approx 1.397748$ is a solution of the problem.

c) Applying Secant method with $p_0=2.37$ and $p_1=2.375$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	2.37	-0.006040395
1	2.375	0.037985226
2	2.370686009	-0.00000799
3	2.370686916	-0.000000001

Applying Secant method with $p_0=3.72$ and $p_1=3.73$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	3.72	0.034398018
1	3.73	-0.129244414
2	3.722102023	0.000175259
3	3.722112719	0.000000889
4	3.722112773	0

We conclude that $p\approx 2.370\,69$ and $p\approx 3.722\,113$ are solutions of the problem.

d) Applying Secant method with $p_0=1.41$ and $p_1=1.42$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	1.41	0.004510296
1	1.42	-0.014256872
2	1.41240329	-0.000022822
3	1.41239111	0.000000116
4	1.41239117	0

Applying Secant method with $p_0=3.05$ and $p_1=3.06$ generates the following table:

n	p_n	$f(p_n)$
0	3.05	-0.012641591
1	3.06	0.005185084
2	3.05709139	-0.000021731
3	3.05710353	-0.000000037
4	3.05710355	0

We conclude that $p \approx 1.412\,391$ and $p \approx 3.057\,104$ are solutions of the problem.

e) Applying Secant method with $p_0=0.91$ and $p_1=0.92$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	0.91	0.000022533
1	0.92	-0.02990961
2	0.910007528	0.000000132
3	0.910007572	0

Applying Secant method with $p_0=3.73$ and $p_1=3.74$ generates the following table:

n	p_n	$f(p_n)$
0	3.73	-0.059591836
1	3.74	0.135190165
2	3.73305941	-0.000380739
3	3.7330789	-0.000002422
4	3.73307903	0

We conclude that $p\approx 0.910\,008$ and $p\approx 3.733\,079$ are solutions of the problem.

f) Applying Secant method with $p_0=0.58$ and $p_1=0.59$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	0.58	-0.01187443
1	0.59	0.002033738
2	0.588537738	0.000006927
3	0.588532741	-0.000000004

Applying Secant method with $p_0=3.09$ and $p_1=3.1$ generates the following table:

n	p_n	$f(p_n)$
0	3.09	0.006067814
1	3.1	-0.00346854
2	3.09636282	0.000001057
3	3.09636393	0

Applying Secant method with $p_0=6.28$ and $p_1=6.29$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	6.28	-0.005058702
1	6.29	0.00495988
2	6.28504932	0.000000046
3	6.28504927	0

We conclude that $p\approx 0.588\,533,\ p\approx 3.096\,364$ and $p\approx 6.285\,049$ are solutions of the problem.

Exercise 9

Repeat Exercise 5 using the method of False Position.

Solution 9

a) Applying False Position method with $p_0 = 2.6$ and $p_1 = 2.7$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	2.6	-0.944
1	2.7	0.103
2	2.690162369	-0.005313179
3	2.690644942	-0.000027451
4	2.690647435	-0.000000141

We conclude that $p \approx 2.690\,647$ is a solution of the problem.

b) Applying False Position method with $p_0 = -2.8$ and $p_1 = -2.9$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	-2.8	0.568
1	-2.9	-0.159
2	-2.878129298	0.009531586
3	-2.879366233	0.000144394
4	-2.87938526	-0.000000135

We conclude that $p \approx -2.87939$ is a solution of the problem.

c) Applying False Position method with $p_0 = 0.73$ and $p_1 = 0.74$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	0.73	-0.015174402
1	0.74	0.001531441
2	0.73908329	-0.000003084
3	0.739085133	0

We conclude that $p \approx 0.739\,09$ is a solution of the problem.

d) Applying False Position method with $p_0 = 0.96$ and $p_1 = 0.97$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	0.96	-0.003838313
1	0.97	-0.005022857
2	0.96433161	-0.000002018
3	0.964333887	-0.000000001

We conclude that $p \approx 0.96433$ is a solution of the problem.

Exercise 10

Repeat Exercise 6 using the False Position method.

Solution 10

a) Applying False Position method with $p_0 = 1.82$ and $p_1 = 1.83$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	1.82	-0.038185199
1	1.83	0.002529463
2	1.829378734	-0.000019965
3	1.829383599	0.000000001

We conclude that $p \approx 1.829384$ is a solution of the problem.

b) Applying False Position method with $p_0 = 1.39$ and $p_1 = 1.4$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	1.39	-0.01669948
1	1.4	0.004770262
2	1.39777815	0.0000631
3	1.39774887	0.000000831
4	1.39774848	0.000000001

We conclude that $p \approx 1.397748$ is a solution of the problem.

c) Applying False Position method with $p_0=2.37$ and $p_1=2.375$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	2.37	-0.006040395
1	2.375	0.037985226
2	2.370686009	-0.00000799
3	2.370686916	-0.000000001

Applying False Position method with $p_0=3.72$ and $p_1=3.73$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	3.72	0.034398018
1	3.73	-0.129244414
2	3.722102023	0.000175259
3	3.722112719	0.000000889
4	3.72211277	0.000000001

We conclude that $p\approx 2.370\,69$ and $p\approx 3.722\,113$ are solutions of the problem.

d) Applying False Position method with $p_0=1.41$ and $p_1=1.42$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	1.41	0.004510296
1	1.42	-0.014256872
2	1.41240329	-0.000022822
3	1.41239119	-0.000000036
4	1.41239117	0

Applying False Position method with $p_0=3.05$ and $p_1=3.06$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	3.05	-0.012641591
1	3.06	0.005185084
2	3.05709139	-0.000021731
3	3.05710353	-0.000000037
4	3.05710355	0

We conclude that $p \approx 1.412\,391$ and $p \approx 3.057\,104$ are solutions of the problem.

e) Applying False Position method with $p_0=0.91$ and $p_1=0.92$ generates the following table:

n	p_n	$f(p_n)$
0	0.91	0.000022533
1	0.92	-0.02990961
2	0.910007528	0.000000132
3	0.910007572	0

Applying False Position method with $p_0=3.73$ and $p_1=3.74$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	3.73	-0.059591836
1	3.74	0.135190165
2	3.73305941	-0.000380739
3	3.7330789	-0.000002422
4	3.73307903	-0.000000015

We conclude that $p \approx 0.910\,008$ and $p \approx 3.733\,079$ are solutions of the problem.

f) Applying False Position method with $p_0=0.58$ and $p_1=0.59$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	0.58	-0.01187443
1	0.59	0.002033738
2	0.588537738	0.000006927
3	0.588532761	0.000000024

Applying False Position method with $p_0 = 3.09$ and $p_1 = 3.1$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	3.09	0.006067814
1	3.1	-0.00346854
2	3.09636282	0.000001057
3	3.09636393	0

Applying False Position method with $p_0=6.28$ and $p_1=6.29$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	6.28	-0.005058702
1	6.29	0.00495988
2	6.28504932	0.000000046
3	6.28504927	0

We conclude that $p\approx 0.588\,533,\ p\approx 3.096\,364$ and $p\approx 6.285\,049$ are solutions of the problem.

Exercise 11

Use all three methods in this Section to find solutions to within 10^{-5} for the following problems.

a)
$$3xe^x = 0$$
 for $x \in [1, 2]$

b)
$$2x + 3\cos x - e^x$$
 for $x \in [0, 1]$

Solution 11

- a) Such math... much difficult...
- b) Let

$$f(x) = 2x + 3\cos x - e^x$$

$$\Rightarrow f'(x) = 2 - 3\sin x - e^x$$

 $\sin x$ and e^x are both monotonically increasing in I = [0, 1], therefore f'(x) is monotonically decreasing I. It follows that

$$f'(0) = 2 > f'(x) > f'(1) \approx -0.5244129544$$

and that f'(x) has exactly one zero p in I. Since the sign of f'(x) changes from positive to negative as x passes p, the local maximum of f in I is at p. Then the minimum value of f in I is achieved at either end:

$$f(x) \ge \min\{f(0), f(1)\} \approx 0.9026250891 > 0$$

Then f has no zero in I.

Exercise 12

Use all three methods in this Section to find solutions to within 10^{-7} for the following problems.

a)
$$x^2 - 4x + 4 - \ln x = 0$$
 for $x \in [1, 2]$ and $x \in [2, 4]$

b)
$$x + 1 - 2\sin \pi x = 0$$
 for $x \in [0, 1/2]$ and $x \in [1/2, 1]$

Solution 12

a) Let

$$f(x) = x^2 - 4x + 4 - \ln x$$
$$\Rightarrow f'(x) = 2x - 4 - \frac{1}{x}$$

Applying Newton's method on f with $p_0=1.41$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	1.41	0.00451029561	-1.88921985816
1	1.41238738524	0.00000713142	-1.88324627986
2	1.41239117201	0.00000000002	-1.88323680804
3	1.41239117202	0	-1.88323680802

Applying Newton's method on f with $p_0 = 3.05$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	3.05	-0.01264159062	1.77213114754
1	3.05713355252	0.00005361847	1.78716330575
2	3.05710355053	0.00000000095	1.7871000916
3	3.05710354999	0	1.78710009048

Applying Secant method with $p_0=1.41$ and $p_1=1.42$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	1.41	0.00451029561
1	1.42	-0.01425687161
2	1.41240329057	-0.00002282192
3	1.41239111052	0.00000011582
4	1.41239117202	0

Applying Secant method with $p_0=3.05$ and $p_1=3.06$ generates the following table:

n	p_n	$f(p_n)$
0	3.05	-0.01264159062
1	3.06	0.00518508404
2	3.05709139021	-0.00002173059
3	3.05710352927	-0.00000003704
4	3.05710354999	0

Applying False Position method with $p_0=1.41$ and $p_1=1.42$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	1.41	0.00451029561
1	1.42	-0.01425687161
2	1.41240329057	-0.00002282192
3	1.41239119124	-0.00000003619
4	1.41239117205	-0.00000000006

Applying False Position method with $p_0=3.05$ and $p_1=3.06$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	3.05	-0.01264159062
1	3.06	0.00518508404
2	3.05709139021	-0.00002173059
3	3.05710352927	-0.00000003704
4	3.05710354996	0

b) Let

$$f(x) = x + 1 - 2\sin \pi x$$

$$\Rightarrow f'(x) = 1 - 2\pi \cos \pi x$$

Applying Newton's method on f with $p_0=0.21$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	0.21	-0.01581410731	-3.96469036415
1	0.20601126296	0.0000957226	-4.01255625306
2	0.20603511873	0.00000000339	-4.01227230982
3	0.20603511957	0	-4.01227229977

Applying Newton's method on f with $p_0=0.68$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	0.68	-0.008655851	4.36669904541
1	0.68198224126	0.00003270017	4.39967030778
2	0.68197480884	0.00000000046	4.39954692747
3	0.68197480874	0	4.39954692574

Applying Secant method with $p_0=0.21$ and $p_1=0.22$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	0.21	-0.01581410731
1	0.22	-0.0548479795
2	0.20594861939	0.00034710682
3	0.20603698468	-0.0000074833
4	0.20603511981	-0.00000000096
5	0.20603511957	0

Applying Secant method with $p_0=0.68$ and $p_1=0.69$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	0.68	-0.008655851
1	0.69	0.03583885145
2	0.68194536665	-0.00012952468
3	0.68197437195	-0.00000192166
4	0.68197480876	0.00000000107
5	0.68197480874	0

Applying False Position method with $p_0=0.21$ and $p_1=0.22$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	0.21	-0.01581410731
1	0.22	-0.0548479795
2	0.20594861939	0.00034710682
3	0.20603698468	-0.0000074833
4	0.20603511981	-0.00000000096
5	0.20603511957	0

Applying False Position method with $p_0 = 0.68$ and $p_1 = 0.69$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	0.68	-0.008655851
1	0.69	0.03583885145
2	0.68194536665	-0.00012952467
3	0.68197437195	-0.00000192166
4	0.68197480226	-0.00000002851
5	0.68197480864	-0.00000000042

Exercise 13

Use Newton's method to approximate, to within 10^{-4} , the value of x that produces the point on the graph of $y=x^2$ that is closest to (1,0).

Solution 13

Let d be the squared distance between the point (x, x^2) of the graph and (1, 0).

$$d(x) = (x-1)^2 + x^4$$

$$\Rightarrow d'(x) = 4x^3 + 2(x-1)$$

$$\Rightarrow d''(x) = 12x^2 + 2$$

We need to find x that minimizes d. First we have to examine d'. As $d''(x) \ge 2 > 0 \,\forall x \in \mathbb{R}$, d' is monotonically increasing in \mathbb{R} . It follows that d' has at most one zero in \mathbb{R} .

Applying Newton's method on d' with $p_0=0.59$ generates the following table:

\overline{n}	p_n	$d'(p_n)$	$d''(p_n)$
0	0.59	0.001516	6.1772
1	0.589754581	0.000000426	6.17372559
2	0.589754512	0	6.17372462

Then $p \approx 0.58975$ is the only zero of d'. Since the sign of d' changes from negative to positive as x passes p, the global minimum of d is achieved at p.

We conclude that $x \approx 0.58975$ produces the point on the graph of $y = x^2$ that is closest to (1,0).

Exercise 14

Use Newton's method to approximate, to within 10^{-4} , the value of x that produces the point on the graph of $y = \frac{1}{x}$ that is closest to (2,1).

Solution 14

Let d be the squared distance between the point $(x, \frac{1}{x})$ of the graph and (2, 1).

$$d(x) = (x-2)^2 + \left(\frac{1}{x} - 1\right)^2$$

$$\Rightarrow d'(x) = 2(x-2) - 2\left(\frac{1}{x} - 1\right)\frac{1}{x^2} = \frac{2(x^4 - 2x^3 + x - 1)}{x^3}$$

$$\Rightarrow d''(x) = 2\left(\frac{3}{x} - 2\right)\frac{1}{x^3} + 2 = \frac{2(x^4 - 2x + 3)}{x^4}$$

Let

$$f(x) = x^4 - 2x + 3$$
$$\Rightarrow f'(x) = 4x^3 - 2$$

f' has exactly one zero at $0.5^{1/3}$. Since f' is monotonically increasing in \mathbb{R} , the sign of f' changes from negative to positive as x passes $0.5^{1/3}$. It follows that the global minimum of f is achieved at $0.5^{1/3}$:

$$f(x) \ge f(0.5^{1/3}) \approx 1.809449211 > 0$$

Then, $d''(x) > 0 \,\forall x \in \mathbb{R} \setminus 0$. It follows that d' is monotonically increasing in $D^+ = \mathbb{R}_{>0}$ and $D^- = \mathbb{R}_{<0}$, which means it has at most one zero in D^+ and D^- alike.

Let

$$g(x) = x^4 - 2x^3 + x - 1$$

$$\Rightarrow g'(x) = 4x^3 - 6x^2 + 1$$

Every zero of g is also a zero of d'. Applying Newton's method on g with $p_0 = 1.86$ generates the following table:

\overline{n}	p_n	$g(p_n)$	$g'(p_n)$
0	1.86	-0.04087984	5.981824
1	1.86683401	0.000449982	6.11376765
2	1.86676041	0.000000053	6.11233849

Applying Newton's method on g with $p_0 = -0.86$ generates the following table:

n	p_n	$g(p_n)$	$g'(p_n)$
0	-0.86	-0.04087984	-5.981824
1	-0.866834009	0.000449982	-6.11376765
2	-0.866760408	0.000000053	-6.11233849

We conclude that $x \approx 1.86676$ and $x \approx -0.86676$ produce the points on the graph of $y = x^2$ that are closest to (1,0).

Exercise 15

The following describes Newton's method graphically:

Suppose that f'(x) exists on [a,b] and that $f'(x) \neq 0 \, \forall x \in [a,b]$. Further, suppose there exists one $p \in [a,b]$ such that f(p) = 0.

Let $p_0 \in [a, b]$ be arbitrary. Let p_1 be the point at which the tangent line to f at $(p_0, f(p_0))$ crosses the x-axis. For each $n \ge 1$, let p_n be the x-intercept of the line tangent to f at $(p_{n-1}, f(p_{n-1}))$. Derive the formula describing this method.

Solution 15

The equation of the line tangent to f at $(p_{n-1}, f(p_{n-1}))$ is:

$$y = f'(p_{n-1})(x - p_{n-1}) + f(p_{n-1})$$

Then its x-intercept is:

$$x = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$

Then the formula describing the sequence generated by the procedure is:

$${p_n} \mid p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$

Exercise 16

Use Newton's method to solve the equation

$$0 = \frac{1}{2} + \frac{1}{4}x^2 - x\sin x - \frac{1}{2}\cos 2x \text{ with } p_0 = \frac{\pi}{2}$$

Iterate using Newton's method until an accuracy of 10^{-5} is obtained. Explain why the result seems unusual for Newton's method. Also, solve the equation with $p_0 = 5\pi$ and $p_0 = 10\pi$.

Solution 16

Let

$$f(x) = \frac{1}{2} + \frac{1}{4}x^2 - x\sin x - \frac{1}{2}\cos 2x$$
$$\Rightarrow f'(x) = \frac{1}{2}x - \sin x + x\cos x + \sin 2x$$

Applying Newton's method on f with $p_0 = \frac{\pi}{2}$ generates the following table:

n	p_n	$f(p_n)$	$f'(p_n)$
0	1.57079633	0.046053948	-0.214601837
1	1.78539816	0.007116978	-0.120293455
2	1.84456163	0.001638544	-0.062366566
3	1.87083442	0.000396329	-0.031675918
4	1.88334643	0.000097601	-0.015954846
5	1.88946376	0.000024225	-0.008005932
6	1.89248962	0.000006035	-0.004010008
7	1.89399457	0.000001506	-0.002006754
8	1.89474507	0.000000376	-0.001003813
9	1.89511983	0.000000094	-0.000502015
10	1.89530709	0.000000023	-0.000251035
11	1.89540069	0.000000006	-0.000125524
12	1.89544748	0.000000001	-0.000062764
13	1.89547087	0	-0.000031382
14	1.89548257	0	-0.000015691
15	1.895 488 42	0	-0.000007846

It's clear that the number of iteration is unusually large. Applying Newton's method on f with $p_0=5\pi$ generates the following table:

n	p_n	$f(p_n)$	$f'(p_n)$
0	15.7079633	61.6850275	23.5619449
1	13.0899694	36.54184	-4.42523593
2	21.347572	101.479949	26.1907751
3	17.4729273	94.4331539	5.96762372
4	1.64867992	0.029800649	-0.199491346
5	1.79806309	0.005663214	-0.109166251
6	1.84994006	0.001319265	-0.056337315
7	1.87335731	0.000320334	-0.028563789
8	1.884572	0.000079014	-0.014376187
9	1.89006817	0.000019626	-0.007211151
10	1.8927898	0.00000489	-0.003611278
11	1.89414416	0.00000122	-0.001807057
12	1.89481974	0.000000305	-0.000903882
13	1.89515714	0.000000076	-0.000452029
14	1.89532573	0.000000019	-0.000226037
15	1.89541001	0.000000005	-0.000113024
16	1.89545214	0.000000001	-0.000056513
17	1.8954732	0	-0.000028257
18	1.89548374	0	-0.000014129
19	1.895489	0	-0.000007064

For $p_0=10\pi$, the sequence converges and diverges back and forth, then finally stops at $p_{154}\approx -0.000\,006$.

Exercise 17

The fourth-degree polynomial

$$f(x) = 230x^4 + 18x^3 + 9x^2 - 221x - 9$$

has two real zeros, one in [-1,0] and the other in [0,1]. Attempt to approximate these zeros to within 10^{-6} using the

- a) Method of False Position
- b) Secant method
- c) Newton's method

Use the endpoints of each interval as the initial approximations in a) and b) and the midpoints as the initial approximation in c).

a) Applying False Position method with $p_0=-1$ and $p_1=0$ generates the following table:

n	p_n	$f(p_n)$
0	-1	433
1	0	-9
2	-0.020361991	-4.49638093
3	-0.030430247	-2.26689137
4	-0.035479814	-1.14807119
5	-0.038030414	-0.58277074
6	-0.03932338	-0.296160751
7	-0.039980008	-0.150595231
8	-0.040313782	-0.076599144
9	-0.040483524	-0.038967468
10	-0.040569867	-0.019825027
11	-0.040613793	-0.010086543
12	-0.040636141	-0.005131916
13	-0.040647511	-0.002611086
14	-0.040653296	-0.00132851
15	-0.04065624	-0.000675943
16	-0.040657737	-0.000343918
17	-0.040658499	-0.000174985

Applying False Position method with $p_0=0$ and $p_1=1$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	0	-9
1	1	27
2	0.25	-62.5078125
3	0.773762765	-83.8305203
4	0.944885169	-11.2651302
5	0.961110797	-0.855867823
6	0.962305662	-0.061802369
7	0.962391747	-0.004446181
8	0.962397939	-0.000319781
9	0.962398384	-0.000022999

b) Applying Secant method with $p_0 = -1$ and $p_1 = 0$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	-1	433
1	0	-9
2	-0.020361991	-4.49638093
3	-0.040691256	0.007087483
4	-0.040659263	-0.000005706
5	-0.040659288	0

Applying Secant method with $p_0=0$ and $p_1=1$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	0	-9
1	1	27
2	0.25	-62.5078125
3	0.773762765	-83.8305203
4	-1.28541778	879.638986
5	0.59459552	-104.691389
6	0.394641105	-88.1289404
7	-0.669318136	183.71316
8	0.049714398	-19.9610216
9	-0.020754151	-4.40957429
10	-0.040735333	0.016859473
11	-0.040659228	-0.000013318
12	-0.040659288	0

c) Applying Newton's method with $p_0=-0.5$ generates the following table:

\overline{n}	p_n	$g(p_n)$	$g'(p_n)$
0	-0.5	115.875	-331.5
1	-0.150452489	24.510271	-225.618988
2	-0.041816814	0.256640771	-221.725549
3	-0.040659344	0.000012234	-221.704436
4	-0.040659288	0	-221.704435

Applying Newton's method with $p_0=0.5$ generates the following table:

\overline{n}	p_n	$g(p_n)$	$g'(p_n)$
0	0.5	-100.625	-83.5
1	-0.70508982	201.836304	-529.339073
2	-0.323791114	65.4184267	-252.397607

n	p_n	$g(p_n)$	$g'(p_n)$
3	-0.064603131	5.31400707	-222.185539
4	-0.040686151	0.005955616	-221.704923
5	-0.040659288	0.000000007	-221.704435
6	-0.040659288	0	-221.704435

Exercise 18

The function $f(x) = \tan \pi x - 6$ has a zero at $\frac{\arctan(6)}{\pi} \approx 0.447431543$. Let $p_0 = 0$ and $p_1 = 0.48$, and use ten iterations of each of the following methods to approximate this root. Which method is most successful and why?

- a) Bisection
- b) False Position
- c) Secant

Solution 18

a) Applying Bisection method on f with $a=0,\ b=0.48$ generates the following table:

n	a_n	b_n	p_n	$f(p_n)$
1	0	0.48	0.24	-60.5096832
2	0.24	0.48	0.36	-82.6906752
3	0.36	0.48	0.42	-91.7419152
4	0.42	0.48	0.45	-95.5558125
5	0.45	0.48	0.465	-97.2559241
6	0.465	0.48	0.4725	-98.0504281
7	0.4725	0.48	0.47625	-98.4332975
8	0.47625	0.48	0.478125	-98.6210739
9	0.478125	0.48	0.4790625	-98.7140395
10	0.4790625	0.48	0.47953125	-98.7602908

The method indeed does not produce the root in this case, as $f(a_1)$ and $f(b_1)$ have the same sign.

b) Applying method of False Position on f with $p_0=0$ and $p_1=0.48$ generates the following table:

\overline{n}	p_n	$f(p_n)$
0	0	-9
1	0.48	-98.8063872
2	-0.048103483	1.65092314
3	-0.03942459	-0.273724354
4	-0.040658906	-0.000084697
5	-0.040659288	-0.000000026

c)	Applying Secant method on	f with $p_0 = 0$ and $p_1 = 0.48$	generates the
	following table:		

\overline{n}	p_n	$f(p_n)$
0	0	-9
1	0.48	-98.8063872
2	-0.048103483	1.65092314
3	-0.03942459	-0.273724354
4	-0.040658906	-0.000084697
5	-0.040659288	0.000000004

Clearly, Secant method is the most successful one in this case.

Exercise 19

The iteration equation for the Secant method can be written in the simpler form:

$$p_n = \frac{f(p_{n-1})p_{n-2} - f(p_{n-2})p_{n-1}}{f(p_{n-1}) - f(p_{n-2})}$$

Explain why, in general, this iteration equation is likely to be less accurate than the one given in the text book.

Solution 19

In both formulas, the denominator is close to 0 as consecutive p_n is close to each other

In the above formula, the numerator is also close to 0 for the same reason. Therefore, both numerator and denominator are close to 0, which can lead to losing digits.

The formula provided in the text book circumvents this situation by having the difference of 2 consecutive p_n multiplied with f before dividing.

As a consequence, the formula should be written in the specific way that it is printed in the text book, as it implies the multiplication should be done before division.

Exercise 20

The equation $x^2 - 10\cos x = 0$ has two solutions, $\pm 1.379\,364\,6$. Use Newton's method to approximate the solutions to within 10^{-5} with the following values of p_0 .

a)
$$p_0 = -100$$
 b) $p_0 = -50$ c) $p_0 = -25$

d)
$$p_0 = 25$$
 e) $p_0 = 50$ f) $p_0 = 100$

Let

$$f(x) = x^2 - 10\cos x$$
$$\Rightarrow f'(x) = 2x + 10\sin x$$

a) Applying Newton's method with $p_0=-100$ generates the following table:

n	p_n	$f(p_n)$	$f'(p_n)$
0	-100	9991.3768112771	-194.9363435889
1	-48.7454384989	2375.6104686195	-87.503753248
2	-21.596769094	475.6527869722	-47.0358919679
3	-11.4842195691	127.1929976708	-14.1387429948
4	-2.4881583409	14.1309390157	-11.0554850027
5	-1.2099747957	-2.0663908208	-11.7760206276
6	-1.3854492523	0.076592885	-12.5996219873
7	-1.3793702695	0.0000713728	-12.5760796699
8	-1.3793645942	0.0000000001	-12.5760575214

b) Applying Newton's method with $p_0 = -50$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	-50	2490.3503397151	-97.376251463
1	-24.4254856569	589.0028702885	-42.3534708223
2	-10.5186473541	115.2324542098	-12.1531966041
3	-1.0369893209	-4.0127969624	-10.6827411852
4	-1.4126229615	0.4203572492	-12.7004124469
5	-1.3795250404	0.0020178304	-12.5766835597
6	-1.3793645982	0.0000000502	-12.576057537
7	-1.3793645942	0	-12.5760575214

c) Applying Newton's method with $p_0=-25$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	-25	615.0879718814	-48.676482499
1	-12.3637547271	143.0669956648	-22.7151855357
2	-6.0654572538	27.0258643344	-9.9707957587
3	-3.3549550042	21.0289678026	-4.5924380275
4	1.2240872555	-1.8996558667	11.8531352735
5	1.3843533642	0.0627874198	12.5954047231
6	1.3793684177	0.0000480838	12.5760724428
7	1.3793645942	0	12.5760575214

d) Applying Newton's method with $p_0 = 25$ generation	rates the following table	e:
--	---------------------------	----

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	25	615.0879718814	48.676 482 499
1	12.3637547271	143.0669956648	22.7151855357
2	6.0654572538	27.0258643344	9.9707957587
3	3.3549550042	21.0289678026	4.5924380275
4	-1.2240872555	-1.8996558667	-11.8531352735
5	-1.3843533642	0.0627874198	-12.5954047231
6	-1.3793684177	0.0000480838	-12.5760724428
7	-1.3793645942	0	-12.5760575214

e) Applying Newton's method with $p_0 = 50$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	50	2490.3503397151	97.376251463
1	24.4254856569	589.0028702885	42.3534708223
2	10.5186473541	115.2324542098	12.1531966041
3	1.0369893209	-4.0127969624	10.6827411852
4	1.4126229615	0.4203572492	12.7004124469
5	1.3795250404	0.0020178304	12.5766835597
6	1.3793645982	0.0000000502	12.576057537
7	1.3793645942	0	12.5760575214

f) Applying Newton's method with $p_0 = 100$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	100	9991.3768112771	194.9363435889
1	48.7454384989	2375.6104686195	87.503753248
2	21.596769094	475.6527869722	47.0358919679
3	11.4842195691	127.1929976708	14.1387429948
4	2.4881583409	14.1309390157	11.0554850027
5	1.2099747957	-2.0663908208	11.7760206276
6	1.3854492523	0.076592885	12.5996219873
7	1.3793702695	0.0000713728	12.5760796699
8	1.3793645942	0.0000000001	12.5760575214

Exercise 21

The equation $4x^2 - e^x - e^{-x} = 0$ has two positive solutions x_1 and x_2 . Use Newton's method to approximate the solution to within 10^{-5} with the following values of p_0 .

a)
$$p_0 = -10$$

b)
$$p_0 = -5$$

c)
$$p_0 = -3$$

d)
$$p_0 = -1$$

e)
$$p_0 = 0$$

e)
$$p_0 = 0$$
 f) $p_0 = 1$

g)
$$p_0 = 3$$

h)
$$p_0 = 5$$

i)
$$p_0 = 10$$

Let

$$f(x) = 4x^2 - e^x - e^{-x}$$
$$\Rightarrow f'(x) = 8x - e^x + e^{-x}$$

a) Applying Newton's method with $p_0=-10$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	-10	-21626.4658402066	21946.4657494068
1	-9.0145809313	-7897.0494558112	8149.9832425813
2	-8.0456158156	-2861.1584947403	3055.7206626145
3	-7.1092872664	-1021.1083215684	1166.4002502262
4	-6.2338516504	-354.2732875489	459.8421761797
5	-5.4634280009	-116.5127783823	192.1930584606
6	-4.8572001833	-34.3016609642	89.7980895533
7	-4.4752136496	-7.7145986461	52.0002627102
8	-4.3268567329	-0.8324004204	41.0778853008
9	-4.3065927778	-0.0137992441	39.7210636401
10	-4.3062453741	-0.0000039943	39.6980697257
11	-4.3062452735	0	39.698 063 067 3

b) Applying Newton's method with $p_0 = -5$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	-5	-48.4198970496	108.4064211556
1	-4.5533484407	-12.0284142159	58.5124910196
2	-4.3477784161	-1.7067559697	42.5113662274
3	-4.3076301894	-0.0550419721	39.7897810066
4	-4.3062468701	-0.0000633809	39.6981687205
5	-4.3062452735	-0.0000000001	39.6980630674

c) Applying Newton's method with $p_0 = -3$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	-3	15.8646760084	-3.9642501452
1	1.0019361613	0.9247864701	5.6591071879
2	0.8385205483	0.0671745913	4.82757152
3	0.8246057692	0.0005095513	4.754272591
4	0.8244985917	0.0000000303	4.7537066175
5	0.8244985853	0	4.7537065838

d) Applying Newton's method with $p_0 = -1$ generates the following table:

n	p_n	$f(p_n)$	$f'(p_n)$
0	-1	0.9138387304	-5.6495976127
1	-0.8382471119	0.065854754	-4.8261346213
2	-0.824601667	0.0004900484	-4.7542509289
3	-0.8244985912	0.0000000281	-4.753706615
4	-0.8244985853	0	-4.7537065838

- e) The method fails in this case as f'(0) = 0.
- f) Applying Newton's method with $p_0=1$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	1	0.9138387304	5.6495976127
1	0.8382471119	0.065854754	4.8261346213
2	0.824601667	0.0004900484	4.7542509289
3	0.8244985912	0.0000000281	4.753706615
4	0.8244985853	0	4.7537065838

g) Applying Newton's method with $p_0=3$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	3	15.8646760084	3.9642501452
1	-1.0019361613	0.9247864701	-5.6591071879
2	-0.8385205483	0.0671745913	-4.82757152
3	-0.8246057692	0.0005095513	-4.754272591
4	-0.8244985917	0.0000000303	-4.7537066175
5	-0.8244985853	0	-4.7537065838

h) Applying Newton's method with $p_0=5$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	5	-48.4198970496	-108.4064211556
1	4.5533484407	-12.0284142159	-58.5124910196
2	4.3477784161	-1.7067559697	-42.5113662274
3	4.3076301894	-0.0550419721	-39.7897810066
4	4.3062468701	-0.0000633809	-39.6981687205
5	4.3062452735	-0.0000000001	-39.6980630674

i) Applying Newton's method with $p_0 = 10$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	10	-21626.4658402066	-21946.4657494068
1	9.0145809313	-7897.0494558112	-8149.9832425813
2	8.0456158156	-2861.1584947403	-3055.7206626145
3	7.1092872664	-1021.1083215684	-1166.4002502262
4	6.2338516504	-354.2732875489	-459.8421761797
5	5.4634280009	-116.5127783823	-192.1930584606
6	4.8572001833	-34.3016609642	-89.7980895533
7	4.4752136496	-7.7145986461	-52.0002627102
8	4.3268567329	-0.8324004204	-41.0778853008
9	4.3065927778	-0.0137992441	-39.7210636401
10	4.3062453741	-0.0000039943	-39.6980697257
11	4.3062452735	0	-39.6980630673

Exercise 22

Use Maple to determine how many iterations of Newton's method with $p_0 = \pi/4$ are needed to find a root of $f(x) = \cos x - x$ to within 10^{-100} .

Solution 22

Python FTW: 51 iterations.

Exercise 23

The function described by $f(x) = \ln(x^2 + 1) - e^{0.4x} \cos \pi x$ has an infinite number of zeros.

- a) Determine, within 10^{-6} , the only negative zero.
- b) Determine, within 10^{-6} , the four smallest positive zeros.
- c) Determine a reasonable initial approximation to find the n^{th} smallest positive zero of f. [Hint: Sketch an approximate graph of f.]
- d) Use part c) to determine, within 10^{-6} , the 25^{th} smallest positive zero of f.

Differentiating f gives:

$$f'(x) = \frac{2x}{x^2 + 1} - e^{0.4x} (0.4\cos \pi x - \pi \sin \pi x)$$

Consider each term of f:

- $\ln(x^2+1) \ge 0 \,\forall x \in \mathbb{R}$
- $e^{0.4x} > 0 \,\forall x \in \mathbb{R}$
- $\cos \pi x > 0 \iff -0.5 + 2k < x < 0.5 + 2k$, with $k \in \mathbb{N}$

which means that every zero of f must be in $[2k - 0.5, 2k + 0.5], k \in \mathbb{N}$.

a) e^x is monotonically increasing in \mathbb{R} . It follows that:

$$0 < e^{0.4x} \cos \pi x \le e^{0.4x} 1 < e^{0.4 \cdot 0} = 1 \,\forall x < 0$$

 $\ln x$ is monotonically increasing in $\mathbb{R}_{>0}$. Therefore $\ln(x^2+1)$ is monotonically decreasing in $\mathbb{R}_{<0}$. Also, e^x is monotonically increasing in \mathbb{R} . Therefore, if f has a negative zero, it must satisfy:

$$\ln(x^2+1) < 1 \iff -\sqrt{e-1} \approx -1.310832494 < x < 0$$

Combining the above points, it is clear that if f has a negative zero, it must be in $D_1 = [-0.5, 0]$.

As $\ln(x^2+1)$ is monotonically decreasing in D_1 , it follows that:

$$\ln(-0.5^2 + 1) \ge \ln(x^2 + 1) \ge \ln 1 = 0 \,\forall x \in D_1$$

As both e^x and $\cos \pi x$ is monotonically increasing in D_1 , it follows that:

$$0 \le e^{0.4x} \cos \pi x \le 1 \,\forall x \in D_1$$

From the above points, there must be exactly one zero of f in D_1 .

Applying Newton method on f with $p_0 = -0.25$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	-0.25	-0.579192052	-2.797220033
1	-0.457059883	0.077693927	-3.74279653
2	-0.436301627	0.007306593	-3.691332860
3	-0.434322236	0.000606405	-3.685958212
4	-0.434157718	0.000049647	-3.685507782
5	-0.434144247	0.00000406	-3.685470876
6	-0.434143145	0.000000332	-3.685467857
7	-0.434143055	0.000000027	-3.68546761

We conclude that the sole negative zero of f is $p \approx -0.4341431$.

not yet finished

Exercise 24

Find an approximation for λ , accurate to within 10^{-4} , for the population equation

$$1564\,000 = 1\,000\,000e^{\lambda} + \frac{435\,000}{\lambda}(e^{\lambda} - 1)$$

discussed in the introduction to this chapter. Use this value to predict the population at the end of the second year, assuming that the immigration rate during this year remains at $435\,000$ individuals per year.

Solution 24

Let

$$f(x) = 1000e^{\lambda} + \frac{435}{\lambda}(e^{\lambda} - 1) - 1564$$
$$\Rightarrow f'(x) = 1000e^{\lambda} + 435\left(\frac{1 - e^{\lambda}}{\lambda^2} + \frac{e^{\lambda}}{\lambda}\right)$$

Applying Newton's method on f with $p_0 = 0.1$ generates the following table:

n	p_n	$f(p_n)$	$f'(p_n)$
0	0.1	-1.3355882953	1337.729475414
1	0.1009983994	0.000628932	1338.9895592632
2	0.1009979297	0.0000000001	1338.988966158

So $\lambda \approx 0.100\,997\,9$.

Since

$$N(t) = N_0 e^{\lambda t} + \frac{v}{\lambda} (e^{\lambda t} - 1)$$

then the population predicted at the end of the second year $N(2)\approx 2187.938\,632\cdot 1000=2\,187\,938.632.$

Exercise 25

The sum of two numbers is 20. If each number is added to its square root, the product of the two sums is 155.55. Determine the two numbers to within 10^{-4} .

Let one number is $x \in [0, 20]$, and the other is 20 - x. We have:

$$(x + \sqrt{x})(20 - x + \sqrt{20 - x}) = 155.55$$

Let

$$f(x) = (x + \sqrt{x})(20 - x + \sqrt{20 - x}) - 155.55$$

$$\Rightarrow f'(x) = \frac{2\sqrt{x} + 1}{2\sqrt{x}}(20 - x + \sqrt{20 - x}) - \frac{2\sqrt{20 - x} + 1}{2\sqrt{20 - x}}(x + \sqrt{x})$$

Applying Newton's method on f with $p_0 = 6.5$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	6.5	-0.1315962935	10.261387078
1	6.5128244157	-0.0002485155	10.2226328622
2	6.512848726	-0.0000000009	10.2225594124

We conclude that the two numbers are approximately 6.51285 and 13.48715.

Exercise 26

The accumulated value of a savings account based on regular periodic payments can be determined from the *annuity due equation*:

$$A = \frac{P}{i}[(1+i)^n - 1]$$

In this equation, A is the amount in the account, P is the amount regularly deposited, and i is the rate of interest per period for the n deposit periods. An engineer would like to have a savings account valued at \$750 000 upon retirement in 20 years and can afford to put \$1500 per month toward this goal. What is the minimal interest rate at which this amount can be invested, assuming that the interest is compounded monthly?

Solution 26

Replacing symbols with numbers gives:

$$A = \frac{1500}{i}[(1+i)^{20\cdot 12} - 1]$$

Find the minimal interest rate is finding i > 0 such that $A \ge 750\,000$:

$$\frac{1500}{i}[(1+i)^{240} - 1] \ge 750\,000$$

$$\iff 1500(1+i)^{240} - 750\,000i - 1500 \ge 0 \tag{*}$$

Let

$$f(x) = (1+x)^{240} - 500x - 1$$

$$\Rightarrow f'(x) = 240(x+1)^{239} - 500$$

Consider f'.

$$f'(x) = 0 \iff x = A = \sqrt[239]{\frac{25}{12}} - 1$$

As f' is monotonically increasing in \mathbb{R}^+ , it follows that:

- f is monotonically decreasing in $D_1 = \mathbb{R}_{\leq A} \cap \mathbb{R}^+$
- f is monotonically increasing in $\mathbb{R}_{\geq A}$

Consider the set D_1 .

$$f(0) = 0 > f(x) \,\forall x \in D_1$$

Therefore, (*) has no positive zero in D_1 . Consider the set $\mathbb{R}_{\geq A}$.

$$f(A) \approx -0.448119 \le f(x) \, \forall x \in \mathbb{R}_{>A}$$

Therefore, f has at most one zero in $\mathbb{R}_{\geq A}$. Applying Newton's method on f with $p_0 = 0.005$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	0.005	-0.1897955241926	290.4965912375794
1	0.0056533485415	0.0422743720995	423.3277805212566
2	0.0055534865101	0.0010855795042	401.6714997843162
3	0.0055507838551	0.0000007825278	401.0924808210714
4	0.0055507819041	0.0000000000003	401.092062972948
5	0.0055507819041	0.0000000000001	401.0920629728054

We conclude that the minimal monthly interest rate (assuming that the interest is compounded monthly) is approximately $0.555\,078\,\%$.

Exercise 27

Problems involving the amount of money required to pay off a mortgage over a fixed period of time involve the formula

$$A = \frac{P}{i} [1 - (1+i)^{-n}]$$

known as an ordinary annuity equation. In this equation, A is the amount of the mortgage, P is the amount of each payment, and i is the interest rate per period for the n payment periods. Suppose that a 30-year home mortgage in the amount of \$135 000 is needed and that the borrower can afford house payments of at most \$1000 per month. What is the maximal interest rate the borrower can afford to pay?

Solution 27

Replacing symbols with numbers gives:

$$A = \frac{1000}{i} [1 - (1+i)^{-(30\cdot12)}]$$

Find the maximal interest rate is finding i such that $A \leq 135\,000$:

$$\frac{1000}{i} [1 - (1+i)^{-360}] \le 135\,000$$

$$\iff 1000[1 - (1+i)^{-360}] - 135\,000i \le 0 \tag{*}$$

Let

$$f(x) = 1 - (1+x)^{-360} - 135x$$
$$\Rightarrow f'(x) = 360(x+1)^{-361} - 135$$

Consider f'.

$$f'(x) = 0 \iff x = A = \sqrt[-361]{0.375} - 1$$

As f' is monotonically decreasing in \mathbb{R}^+ , it follows that:

- f is monotonically increasing in $D_1 = \mathbb{R}_{\leq A} \cap \mathbb{R}^+$
- f is monotonically decreasing in $\mathbb{R}_{\geq A}$

Consider the set D_1 .

$$f(0) = 0 < f(x) \,\forall x \in D_1$$

Therefore, (*) has no positive zero in D_1 .

Consider the set $\mathbb{R}_{>A}$.

$$f(A) \approx 0.256689 \ge f(x) \, \forall x \in \mathbb{R}_{>A}$$

Therefore, f has at most one zero in $\mathbb{R}_{\geq A}$. Applying Newton's method on f with $p_0 = 0.0067$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	0.0067	0.0051401919049	-102.6869664108261
1	0.0067500569068	-0.0000144304894	-103.2618053134924
2	0.0067499171601	-0.0000000001111	-103.2602148635103

We conclude that the maximal monthly interest rate is approximately $0.674\,992\,\%$.

Exercise 28

A drug administered to a patient produces a concentration in the blood stream given by $c(t) = Ate^{\frac{-t}{3}}$ milligrams per milliliter, t hours after A units have been injected. The maximum safe concentration is $1 \,\mathrm{mg/mL}$.

- a) What amount should be injected to reach this maximum safe concentration, and when does this maximum occur?
- b) An additional amount of this drug is to be administered to the patient after the concentration falls to 0.25 mg/mL. Determine, to the nearest minute, when this second injection should be given.
- c) Assume that the concentration from consecutive injections is additive and that 75 % of the amount originally injected is administered in the second injection. When is it time for the third injection?

Solution 28

a) Let

$$f(x) = xe^{\frac{-x}{3}}$$

$$\Rightarrow f'(x) = \left(1 - \frac{x}{3}\right)e^{\frac{-x}{3}}$$

Consider f'.

$$f'(x) = 0 \iff x = 3$$

It's clear that f' is monotonically decreasing in \mathbb{R} . It follows that:

- f is monotonically increasing in $\mathbb{R}_{\leq 3}$
- f is monotonically decreasing in $\mathbb{R}_{>3}$
- f has a global maximum at 3

We now know that $\max f = \frac{3}{e}$ is achieved at 3. In other words, the maximum concentration of any injection is reached 3 hours later, regardless of the amount administered.

To reach the maximum safe concentration of 1 mg/mL, the amount should be injected is:

$$A\frac{3}{e} = 1 \iff A = \frac{e}{3} \approx 0.906\,093\,942\,8$$

We conclude that to reach the maximum safe concentration, approximately 0.906 093 942 8 unit should be injected, and the concentration reaches its highest 3 hours after injection.

b) Let

$$g(t) = Ate^{\frac{-t}{3}} - 0.25$$
$$\Rightarrow g'(t) = A\left(1 - \frac{t}{3}\right)e^{\frac{-t}{3}}$$

with $A = \frac{e}{3}$.

We want to inject after the concentration of the first injection already reached its highest, therefore the second injection should be no sooner than 3 hours since the first one.

Applying Newton's method on g with $p_0 = 11.08$ generates the following table:

\overline{n}	p_n	$g(p_n)$	$g'(p_n)$
0	11.08	-0.000127362	-0.060739197
1	11.077903126	0.000000028	-0.060765892
2	11.077903587	0	-0.060765887

We conclude that after about 11 hours and 5 minutes since the first injection, the second one can be administered.

c) Let

$$c_n(t) = \sum_{i=1}^n A_i(t - t_i)e^{\frac{-(t - t_i)}{3}}$$

$$\Rightarrow c'_n(t) = \sum_{i=1}^n A_i \left(1 - \frac{t - t_i}{3}\right)e^{\frac{-(t - t_i)}{3}}$$

be the function of concentration $t \ge t_n$ hours since the first injection and during that time window another n-1 shots are administered. t_n is the number of hours between the first injection and the n^{th} one, and clearly $t_1 = 0$.

From the above parts, we know that $A_1 = \frac{e}{3}$, $A_2 = 0.75A_1 = \frac{e}{4}$, $t_2 = 11.077\,903\,587$.

Consider c_2 .

$$c_2(t) = 0$$

$$\iff (1 - \frac{t}{3}) + 0.75(1 - \frac{t - t_2}{3})B = 0 \text{ with } B = e^{\frac{t_2}{3}}$$

$$\iff t - 3 = 2.25(3 - t + t_2)B$$

$$\iff t = \frac{2.25(t_2 + 3)B}{1 + 2.25B} \approx 13.92377483$$

We want to inject after the total concentration from the previous injections already reached its highest, therefore the third injection should be no sooner than 13.923 774 83 hours since the first one.

Applying Newton's method on $h_2 = c_2 - 0.25$ with $p_0 = 21.25$ generates the following table:

\overline{n}	p_n	$h_2(p_n)$	$h_2'(p_n)$
0	21.25	-0.0009922998726	-0.0593509605878
1	21.2332808119236	0.0000016642222	-0.0595501020878
2	21.2333087585113	0.0000000000047	-0.0595497689062
3	21.2333087585895	0	-0.0595497689052

We conclude that after about 21 hours and 14 minutes since the first injection, the third one can be administered.

Exercise 29

Let

$$f(x) = 3^{3x+1} - 7 \cdot 5^{2x}$$

- a) Use the Maple commands solve and fsolve to try to find all roots of f.
- b) Plot f to find initial approximations to roots of f.
- c) Use Newton's method to find roots of f to within 10^{-16} .
- d) Find the exact solutions of f(x) = 0 without using Maple.

Solution 29

- 1. Opps, can't help without Maple license.
- 2. The graph of f is as follow:

No useful initial point found, every where: MATLAB, Maple, gnuplot,...

3. Let:

$$f(x) = 3^{3x+1} - 7 \cdot 5^{2x}$$

$$\Rightarrow f'(x) = 3(\ln 3)3^{3x+1} - 14(\ln 5)5^{2x}$$

Applying Newton's method on f with $p_0=11$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	11	-12118837442806	1244484233952568
1	11.00973804015525026	396801311654	1326632411906544
2	11.009438935966258555	386222634	1324050511461616
3	11.009438644268449536	370	1324047995335120
4	11.009438644268170648	-38	1324047995332592
5	11.00943864426819907	4	1324047995332848
6	11.009438644268195517	66	1324047995333032
7	11.009438644268145779	0	1324047995332608

So $p \approx 11.009438644268145779$.

4. Manipulating f = 0 gives:

$$f(x) = 0$$

$$\iff 3 \cdot 3^{3x} = 7 \cdot 5^{2x}$$

$$\iff \frac{27^x}{25^x} = \frac{7}{3}$$

$$\iff x = \log_{27/25} \frac{7}{3}$$

Exercise 30

Repeat Exercise 29 using $f(x) = 2^{x^2} - 3 \cdot 7^{x+1}$.

Solution 30

- a) Opps, can't help without Maple license.
- b) The graph of f is as follow:

c) Let:

$$f(x) = 2^{x^2} - 3 \cdot 7^{x+1}$$

$$\Rightarrow f'(x) = (\ln 2)2x2^{x^2} - 21(\ln 7)7^x$$

Applying Newton's method on f with $p_0 = 3.92$ generates the following table:

n	p_n	$f(p_n)$	$f'(p_n)$
0	3.919999999999999929	-909.989020751884	145585.672581531893
1	3.92625053966242632	22.625719019627	152874.530827350565
2	3.926102537775538082	0.013028085261	152698.506017085223
3	3.926102452456528891	0.000000004293	152698.404592337756
4	3.926102452456500913	0.000000000095	152698.404592304723
5	3.926102452456500469	-0.000000000015	152698.404592304141

So $p \approx 3.926102452456500469$.

d) Manipulating f = 0 gives:

$$\begin{split} f(x) &= 0 \\ \iff 2^{x^2} = 21 \cdot 7^x \\ \iff x^2 &= \log_2(21 \cdot 7^x) \\ &= \log_2 21 + x \log_2 7 \\ \iff x^2 - \log_2 7x - \log_2 21 = 0 \\ \iff x &= \frac{\log_2 7 \pm \sqrt{\Delta}}{2} \text{ with } \Delta = (\log_2 7)^2 + 4 * \log_2 21 = \log_2 9 \cdot 529 \cdot 569 \end{split}$$

Exercise 31

The logistic population growth model is described by an equation of the form

$$P(t) = \frac{P_L}{1 - ce^{-kt}}$$

where P_L , c, and k > 0 are constants, and P(t) is the population at time t. P_L represents the limiting value of the population since $\lim_{t\to\infty} P(t) = P_L$. Use the census data for the years 1950, 1960, and 1970 listed in the table on page 105 to determine the constants P_L , c, and k for a logistic growth model. Use the logistic model to predict the population of the United States in 1980 and in 2010, assuming t = 0 at 1950. Compare the 1980 prediction to the actual value.

Solution 31

We have:

$$P(0) = \frac{P_L}{1 - ce^{-k0}} = P_1 \iff ce^0 = 1 - \frac{P_L}{P_1}$$
 (1)

$$P(10) = \frac{P_L}{1 - ce^{-k10}} = P_2 \iff ce^{-10k} = 1 - \frac{P_L}{P_2}$$
 (2)

$$P(20) = \frac{P_L}{1 - ce^{-k20}} = P_3 \iff ce^{-20k} = 1 - \frac{P_L}{P_3}$$
 (3)

Divide (1) by (2) and (2) by (3) gives:

$$\begin{split} e^{10k} &= \frac{A - P_2 P_L}{A - P_1 P_L} \text{ with } A = P_1 P_2 \\ e^{10k} &= \frac{B - P_3 P_L}{B - P_2 P_L} \text{ with } B = P_2 P_3 \end{split}$$

Combining both above equations gives:

$$\frac{A - P_2 P_L}{A - P_1 P_L} = \frac{B - P_3 P_L}{B - P_2 P_L}$$

$$\iff (A - P_6 P_L)(B - P_6 P_L) = (A - P_5 P_L)(B - P_7 P_L)$$

$$\iff (P_6^2 - P_5 P_7)P_L^2 + (-AP_6 - BP_6 + AP_7 + BP_5)P_L = 0$$

$$\iff P_L = \frac{A(P_7 - P_6) + B(P_5 - P_6)}{P_5 P_7 - P_6^2} \approx 265\,816.4151$$

It follows that $k \approx 0.045\,017\,502\,25$, and $c \approx -0.756\,581\,255\,8$. We now predict the US population in 1980 and 2010:

$$P_{1980} = P(30) \approx 222248.3277$$

 $P_{2010} = P(60) \approx 252967.4246$

It is predicted, using the above model, that the US population in 1980 is 222 248 323 and in 2010 is 252 967 425. However, the actual population in 1980 is larger, so the 1980 prediction undershoots.

Exercise 32

The Gompertz population growth model is described by

$$P(t) = P_L e^{-ce^{-kt}}$$

where P_L , c, and k > 0 are constants, and P(t) is the population at time t. Repeat Exercise 31 using the Gompertz growth model in place of the logistic model.

Solution 32

We have:

$$P(0) = P_L e^{-ce^{-k0}} = P_1 \iff e^{-k0} = \log_d \frac{P_1}{P_L}$$
 (1)

$$P(10) = P_L e^{-ce^{-k_{10}}} = P_2 \iff e^{-k_{10}} = \log_d \frac{P_2}{P_L}$$
 (2)

$$P(20) = P_L e^{-ce^{-k20}} = P_3 \iff e^{-k20} = \log_d \frac{P_3}{P_L}$$
 (3)

with $d = e^{-c}$.

From (1), we know that:

$$e^{-k0} = 1 = \log_d \frac{P_1}{P_L} \iff d = \frac{P_1}{P_L}$$

Divide (1) by (2) and (2) by (3) gives:

$$\begin{split} e^{10k} &= \frac{\log_d \frac{P_1}{P_L}}{\log_d \frac{P_2}{P_L}} = \frac{\log_d P_1 - \log_d P_L}{\log_d P_2 - \log_d P_L} = \frac{\ln P_1 - \ln P_L}{\ln P_2 - \ln P_L} \\ e^{10k} &= \frac{\log_d \frac{P_2}{P_L}}{\log_d \frac{P_3}{P_L}} = \frac{\log_d P_2 - \log_d P_L}{\log_d P_3 - \log_d P_L} = \frac{\ln P_2 - \ln P_L}{\ln P_3 - \ln P_L} \end{split}$$

Combining both above equations gives:

$$\frac{\ln P_1 - \ln P_L}{\ln P_2 - \ln P_L} = \frac{\ln P_2 - \ln P_L}{\ln P_3 - \ln P_L}$$

$$\iff (\ln P_2 - \ln P_L)^2 = (\ln P_1 - \ln P_L)(\ln P_3 - \ln P_L)$$

$$\iff (\ln P_2)^2 - 2 \ln P_2 \ln P_L = \ln P_1 \ln P_3 - \ln(P_1 P_3) \ln P_L$$

$$\iff \ln P_L = \frac{(\ln P_2)^2 - \ln P_1 \ln P_3}{2 \ln P_2 - \ln(P_1 P_3)}$$

$$\iff P_L \approx 290 \, 227.8618$$

It follows that $k \approx 0.030\,200\,281\,3$, $d = 0.521\,404\,110\,1$, $c = 0.651\,229\,894\,7$. We now predict the US population in 1980 and 2010:

$$P_{1980} = P(30) \approx 223\,069.2173$$

 $P_{2010} = P(60) \approx 260\,943.6839$

It is predicted, using the above model, that the US population in 1980 is $223\,069\,217$ and in 2010 is $260\,943\,684$. However, the actual population in 1980 is larger, so the 1980 prediction undershoots.

Exercise 33

Player A will shut out (win by a score of 21-0) player B in a game of racquetball with probability

$$P = \frac{1+p}{2} \left(\frac{p}{1-p+p^2} \right)^{21}$$

where p denotes the probability A will win any specific rally (independent of the server). Determine, to within 10^{-3} , the minimal value of p that will ensure that A will shut out B in at least half the matches they play.

Solution 33

Let

$$g(x) = \frac{x}{1 - x + x^2}$$

$$\Rightarrow g'(x) = \frac{1 - x^2}{(1 - x + x^2)^2}$$

$$f(x) = \frac{1 + x}{2} \left(\frac{x}{1 - x + x^2}\right)^{21}$$

$$\Rightarrow f'(x) = \frac{1}{2} \left(\frac{x}{1 - x + x^2}\right)^{21} + \frac{1 + x}{2} 21 \left(\frac{x}{1 - x + x^2}\right)^{20} \frac{1 - x^2}{(1 - x + x^2)^2}$$

$$= \frac{1}{2} \left(\frac{x}{1 - x + x^2}\right)^{20} \left[\frac{x}{1 - x + x^2} + \frac{21(1 + x)(1 - x^2)}{(1 - x + x^2)^2}\right]$$

$$= \frac{1}{2} \left(\frac{x}{1 - x + x^2}\right)^{20} \frac{-20x^3 - 22x^2 + 22x + 21}{(1 - x + x^2)^2}$$

Finding the minimal value of p that will ensure that A will shut out B in at least half the matches they play is finding the minimal $x \in D = [0,1]$ such that $f(x) \ge 0.5$.

Consider g'.

$$g'(x) = 0 \iff x = \pm 1$$
$$x^2 - x + 1 = x^2 - 2x0.5 + 0.5^2 + 0.75 \ge 0.75 > 0 \,\forall x \in \mathbb{R}$$

It follows that the sign of g' is the sign of $1 - x^2$. Therefore, in $D, g' \ge 0$. Therefore, g and then f are monotonically increasing in D:

$$f(0) = 0 \le f(x) \le f(1) = 1 \, \forall x \in D$$

It's clear that $f(x) \ge 0.5$ is guaranteed to have solution in D.

Applying Newton's method on h = f - 0.5 with $p_0 = 0.84$ generates the following table:

\overline{n}	p_n	$h(p_n)$	$h'(p_n)$
0	0.84	-0.010231745763236211	4.430566512699972925
1	0.842309353834076791	0.000020294149810418	4.44775767420762147
2	0.842304791051817325	0.000000000072282402	4.447725988980080203
3	0.84230479103556577	0.000000000000000888	4.447725988867216707
4	0.842304791035565548	-0.000000000000000444	4.447725988867211377

We conclude that $p \ge 0.842304791035565548$ will ensure that A will shut out B in at least half the matches they play.

Exercise 34

In the design of all-terrain vehicles, it is necessary to consider the failure of the vehicle when attempting to negotiate two types of obstacles. One type of failure is called *hang-up failure* and occurs when the vehicle attempts to cross an obstacle that causes the bottom of the vehicle to touch the ground. The other type of failure is called *nose-in failure* and occurs when the vehicle descends into a ditch and its nose touches the ground.

The accompanying figure shows the components associated with the nose-in failure of a vehicle. It is shown that the maximum angle α that can be negotiated by a vehicle when β is the maximum angle at which hang-up failure does *not* occur satisfies the equation

$$A\sin\alpha\cos\alpha + B\sin^2\alpha - C\cos\alpha - E\sin\alpha = 0$$

where

$$\begin{cases} D: \text{ wheel diameter} \\ A = l \sin \beta_1 \\ B = l \cos \beta_1 \\ C = (h + 0.5D) \sin \beta_1 - 0.5D \tan \beta_1 \\ E = (h + 0.5D) \cos \beta_1 - 0.5D \end{cases}$$

- a) It is stated that when $l = 89 \,\text{in}$, $h = 49 \,\text{in}$, $D = 55 \,\text{in}$, and $\beta_1 = 11.5^{\circ}$, angle α is approximately 33°. Verify this result.
- b) Find α for the situation when l, h, and β_1 are the same as in part a) but D = 30 in.

Let

$$f(x) = A\sin x \cos x + B\sin^2 x - C\cos x - E\sin x$$

$$\Rightarrow f'(x) = A(\cos^2 x - \sin^2 x) + 2B\sin x \cos x + C\sin x - E\cos x$$

a) Applying Newton's method on f with $p_0=33^\circ\approx 0.575\,958\,653\,158\,13$ generates the following table:

\overline{n}	p_n	$g(p_n)$	$g'(p_n)$
0	0.57595865315813	0.02541130581159	52.34290413106125
1	0.5754731755899	0.00000854683891	52.30768181120521
2	0.57547301219442	0.00000000000097	52.30766994413587
3	0.5754730121944	0	52.30766994413455

So $\alpha \approx 0.5754730121944 \approx 32.97217482^{\circ}$, which is indeed close to 33°.

b) Applying Newton's method on f with $p_0=33^\circ\approx 0.575\,958\,653\,158\,13$ generates the following table:

\overline{n}	p_n	$f(p_n)$	$f'(p_n)$
0	0.57595865315813	-0.15407902197157	52.16025344654213
1	0.57891260778432	0.00031564555417	52.37350858776342
2	0.57890658096727	0.00000000130272	52.37307627539987
3	0.5789065809424	0.00000000000001	52.37307627361562

So $\alpha \approx 0.578\,906\,580\,942\,4 \approx 33.168\,903\,82^{\circ}$.