

Análise de Dados Aplicada à Computação REGRESSÃO

Prof. M.Sc. Howard Roatti

Sumário

- 1. Definição de Regressão
- 2. Regressão Linear Simples
- 3. Regressão Linear Múltipla
- 4. Avaliação de Regressão

- A Regressão é um modelo de análise de dados que visa estudar o relacionamento da(s) variável(is) independente(s) com a variável dependente.
- Diferente do coeficiente de correlação de Pearson, que mostra o comportamento das variáveis medindo a força da relação, a Regressão quantifica a natureza do relacionamento.

- Exemplos de Relacionamentos Analisados (1/2):
- 1. Variação de gastos familiares com alimentação em decorrência do quanto de renda a família ganha;
- 2. Variação da concessão de limite no cartão de crédito em decorrência do salário;
- 3. Crescimento da taxa de criminalidade, relacionado com o crescimento na taxa de desemprego.

- Exemplos de Relacionamentos Analisados (2/2):
- 4. Renda semanal e despesas de consumo;
- 5. Variação dos salários e taxa de desemprego;
- 6. Demandas dos produtos e a publicidade do mesmo;

- Se considerarmos que apenas uma variável independente (X) causa algum efeito sobre a variável dependente (Y), estaremos tratando de uma Regressão Simples
- Porém, se tivermos um conjunto de variáveis independentes (X_i, onde i = 1..n), então estaremos tratando de uma análise de Regressão Múltipla.

 Um modelo de Regressão Linear é uma equação matemática que fornece uma relação linear, ou seja, uma reta entre duas variáveis.

$$y = a + bx$$
 $\widehat{y} = \widehat{\beta}_0 + \widehat{\beta}_1 x$

Matemática Estatística

- o y é igual à b vezes x, mais uma constante a
- y-hat é igual à Beta-hat₁ vezes x, mais uma constante Betahat₀

- Cada conjunto de valores do estimador beta zero e beta 1 fornece uma linha reta diferente
- O coeficiente de x (inclinação) fornece a quantidade de variação em y

Dataset : Doença Respiratória

PEFR: Taxa do Pico de Fluxo Expiratório

[Peak Expiratory Flow Rate (L/min)]

Exposure: Tempo de exposição

$$\widehat{PEFR} = \hat{\beta_0} + \hat{\beta_1} Exposure$$

A regressão linear simples tenta encontrar a melhor linha para prever a resposta, nesse caso a variável PEFR como uma função da variável preditora Exposure.

Como o modelo é ajustado aos dados?

o Inclinação
$$\Rightarrow \hat{\beta}_1 = \frac{\sum_{i=1}^n (y_i - \bar{y})(x_i - \bar{x})}{\sum_{i=1}^n (x_i - \bar{x})}$$

 \circ Intercepto $\Rightarrow \hat{\beta_0} = \bar{y} - \hat{\beta_1}\bar{x}$


```
predictors = ['Exposure']
outcome = 'PEFR'
model = LinearRegression()
model.fit(lung[predictors], lung[outcome])

print(f'Intercept: {model.intercept_:.3f}')
print(f'Coefficient Exposure: {model.coef_[0]:.3f}')
```

Intercept(PEFR): 424.583
Coefficient (Exposure): -4.185

$$P\widehat{EFR} = \hat{\beta_0} + \hat{\beta_1} Exposure$$

A interpretação que podemos ter em relação a esse resultado é que, como o intercepto vale 424.583, quando a exposição do trabalhador for igual a zero, a expiração será equivalente à 424.583 e a cada ano que o trabalhador se expõe a expiração diminui em -4.185 unidades.

Python

```
fig, ax = plt.subplots(figsize=(4, 4))
ax.set_xlim(0, 23)
ax.set ylim(295, 450)
ax.set xlabel('Exposure')
ax.set ylabel('PEFR')
y1 = model.predict(pd.DataFrame({"Exposure": [0, 23]}))
ax.plot((0, 23), (y1[0], y1[1]))
ax.text(0.4, model.intercept , r'$b 0$', size='larger')
y2 = model.predict(pd.DataFrame({"Exposure": [7.5, 17.5]}))
ax.plot((7.5, 7.5, 17.5), (y2[0], y2[1], y2[1]), '--')
ax.text(5, np.mean(y), r'$\Delta Y$', size='larger')
ax.text(12, y[1] - 10, r'$\Delta X$', size='larger')
ax.text(12, 390, r'$b_1 = \frac{\Delta Y}{\Delta Y}, size='larger')
plt.tight layout()
plt.show()
```


Python

A equação incluindo o erro residual ficaria assim:

$$y_i = \beta_0 + \beta_1 x_1 + e_i$$

Onde e_i pode ser estimado por:

$$\hat{e}_i = y_i - \hat{y}_i$$

E y-hat será estimado por cada par de valores (y_i, x_i):

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

o y_i é o valor real e y-hat_i é o valor calculado pelo modelo de regressão

O Python

```
predictors = ['Exposure']
outcome = 'PEFR'

fitted = model.predict(lung[predictors])
residuals = lung[outcome] - fitted

ax = lung.plot.scatter(x='Exposure', y='PEFR', figsize=(4, 4))
ax.plot(lung.Exposure, fitted)
for x, yactual, yfitted in zip(lung.Exposure, lung.PEFR, fitted):
    ax.plot((x, x), (yactual, yfitted), '--', color='C1')

plt.tight_layout()
plt.show()
```


O Python

Regressão Múltipla

- o O que muda na regressão múltipla é o número de variáveis independentes: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + e$
- Ao invés de uma linha, teremos um modelo linear.
- O Todos os outros conceitos permanecem os mesmos, bem como estimar valores: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1,i} + + \hat{\beta}_2 x_{2,i} + \dots + \hat{\beta}_p x_{p,i}$

Regressão Múltipla

O Python

```
subset = ['AdjSalePrice', 'SqFtTotLiving', 'SqFtLot', 'Bathrooms', 'Bedrooms',
'BldgGrade']
house = pd.read_csv('house_sales.csv', sep='\t')
print(house[subset].head())
```

	AdjSalePrice	SqFtTotLiving	SqFtLot	Bathrooms	Bedrooms	BldgGrade
1	300805.0	2400	9373	3.00	6	7
2	1076162.0	3764	20156	3.75	4	10
3	761805.0	2060	26036	1.75	4	8
4	442065.0	3200	8618	3.75	5	7
5	297065.0	1720	8620	1.75	4	7

Regressão Múltipla

O Python

SqFtTotLiving: 228.8306036024083

SqFtLot: -0.06046682065305298 Bathrooms: -19442.840398320997 Bedrooms: -47769.955185214465 BldgGrade: 106106.96307898074

Avaliação de Regressão

OAvaliando o Modelo:

Raiz Quadrada do Erro Quadrático Médio

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}}$$
o Erro-Padrão Residual $\rightarrow RSE = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{(n-p-1)}}$

$$R2 \rightarrow R^2 = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y}_i)^2}$$

• Erro Médio Absoluto(MAE) $\Rightarrow \frac{1}{n} \sum |y_i - \hat{y}_i|$

Outras Métricas:

- MSE (Mean Squared Error)
- MSLE (Mean Squared Logarithmic Error)
- RMSLE (Root Mean Squared Logarithmic Error)
- MAPE (Mean Absolute Percentage Error)
- RAE (Relative Absolute Error)
- RSE (Relative Squared Error)

Avaliação de Regressão

Python – Avaliando o Modelo

```
fitted = house_lm.predict(house[predictors])
RMSE = np.sqrt(mean squared error(house[outcome], fitted))
r2 = r2 score(house[outcome], fitted)
mae = mean absolute error(house[outcome], fitted)
rse = RSE(house[outcome], fitted)
print(f'RMSE: {RMSE:.2f}')
                           RMSE: 261220.20
print(f'R2: {r2:.4f}')
                           R<sup>2</sup>: 0.5406
print(f'MAE: {mae:.4f}')
print(f'RSE: {rse:.4f}')
                           MAE: 150660.9141
```

RSE: 261231.7123

Referências

- o Bruce, P.; Bruce, A.; **Estatística Prática para Cientista de Dados**: 50 Conceitos Essenciais; Rio de Janeiro; Alta Books; 2019.
- Morettin, P. A.; Bussab, W. O.; Estatística Básica. 8 ed. São Paulo: Saraiva, 2013.
- https://oestatistico.com.br/regressao-linear-simples/

Análise de Dados Aplicada à Computação

PROF. M.SC HOWARD ROATTI