

Norwegian University of Science and Technology Department of Mathematical Sciences TMA4145 Linear Methods Fall 2017

Exercise set 4

Please justify your answers! The most important part is *how* you arrive at an answer, not the answer itself.

1 Show that the sets $U, V \subset \mathcal{P}_4$, the space of polynomials of degree at most 4, defined by

$$U := \{ p \in \mathcal{P}_4 : p(-1) = p(1) = 0 \},$$

$$V := \{ p \in \mathcal{P}_4 : p(1) = p(2) = p(3) = 0 \}$$

are subspaces of \mathcal{P}_4 and determine the subspace $U \cap V$.

Prove that $(l^{\infty}(\mathbb{R}), \|\cdot\|_{\infty})$ is a normed space, where for any bounded sequence $x = (x_n) \in l^{\infty}(\mathbb{R})$ we define

$$||x||_{\infty} := \sup_{n \in \mathbb{N}} |x_n|.$$

Is this norm associated with an inner product?

- $\boxed{\mathbf{3}}$ Let $M_n(\mathbb{C})$ be the space of $n \times n$ matrices with complex entries. For $A \in M_n(\mathbb{C})$ we define its trace by $\operatorname{tr}(A) = a_{11} + \cdots + a_{nn}$.
 - a) Show that for $A, B \in M_3(\mathbb{C})$ we have tr(AB) = tr(BA) and try to show this property of the trace for $n \times n$ matrices.
 - b) Let \mathcal{D} be the set of all diagonal $n \times n$ matrices. Show that \mathcal{D} is a subspace of $M_n(\mathbb{C})$ and that for any $A, B \in D$ we have AB = BA (in contrast to arbitrary matrices in $M_n(\mathbb{C})$).
 - c) Let $S \subset M_n(\mathbb{C})$ be defined as the matrices with $\operatorname{tr}(A) = 0$. Show that S is a subspace of $M_n(\mathbb{C})$.
- 4 Suppose $(X, \langle ., . \rangle)$ is an innerproduct space.

a) Let ω be a n^{th} root of unity, i.e. $\omega^n = 1$. Show that

$$\langle x, y \rangle = \frac{1}{n} \sum_{k=1}^{n} \omega^{k} ||x + \omega^{k} y||^{2}.$$

b) Show that

$$\langle x, y \rangle = \int_0^1 e^{2\pi i \varphi} ||x + e^{2\pi i \varphi}y||^2 d\varphi.$$

5 Let $(\mathbb{R}^n, \|.\|_p)$ be the space of real n-tuples with the p-norms $\|x\|_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $1 \le p < \infty$. Show that

$$\sum_{i=1}^{n} |x_i| \le n^{(p-1)/p} \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p}.$$