An Example of Gruenhage's Compact-Point Game for which K has a winning strategy, but no winning k-tactical strategy

We construct a ZFC example given by Gary Gruenhage, inpsired by a ZFC+ \neg SH example due to Stephen Watson [3].

Theorem 1. There exists a compact, zero-dimensional topological space X which has a point-countable cover $\mathcal{U} = \{U_c : c \in 2^{\omega}\}$ which is not the union of countably-many point-finite collections.

Proof. Take a zero-dimensional Corson compact Y of weight 2^{ω} , which is not Eberlein compact. It follows by [1] that $Y^2 \setminus \Delta = \{(y_1, y_2) : y_1, y_2 \in Y, y_1 \neq y_2\}$ is metalindelof, but not σ -metacompact. So every cover has a point-countable refinement of cardinality 2^{ω} , but no open refinement composed of the union of countably-many point-finite collections. \square

Example 2. Using the X from Theorem 1, let

$$\mathbb{X} = (X \times 2^{<\omega}) \cup 2^{\omega}$$

compose a disjoint union of $2^{<\omega}$ copies of X along with a discrete copy of the Cantor Set 2^{ω} , and add open neighborhoods of the form:

$$B_c = c \cup (U_c \times \{c \upharpoonright n : n < \omega\})$$

as seen in Figure 1.

Definition 3. Let $S \in [2^{\omega}]^{<\omega}$ and $m < \omega$. Define

$$K_S = \bigcup_{c \in S} B_c$$

$$A = \{z^{\frown} \langle 1 \rangle : z \in 1^{<\omega}\}$$

$$K_S^* = K_S \setminus (X \times A)$$

$$L_m = X \times 2^{< m}$$

and observe that every compact set is dominated by $K_S^* \cup L_m$ for some S, m.

Intuitively, K_S^* collects the branches of U_c converging up to each $c \in S$ while avoiding the copy of X for each s in an antichain A, and L_m collects the copies of X with |s| < m at the base of the tree. (See Figure 2)

Definition 4. $LF_{K,P}(\mathbb{X})$ is a topological game consisting of players K and P. During each round, K chooses a compact subset of \mathbb{X} , and P chooses a point outside of any compact set previously played by K. K wins the game if the set of points chosen by P throughout all rounds of the game are locally finite in the space.

c = <0,1,0,...>

Figure 1: The Cantor Tree space $\mathbb X$

Figure 2: K_S^* and L_m

Proposition 5. Without loss of generality, we may assume P always plays points in $X \times 2^{<\omega}$ throughout $LF_{K,P}(\mathbb{X})$.

Proposition 6. $K \uparrow LF_{K,P}(\mathbb{X})$

Proof. Let $x \in X$. $C^x = \{c \in C : x \in U_c\}$ is a countable collection by the point-countability of \mathcal{U} , so label its elements as $\{c_n^x : n < \omega\}$.

K may use the strategy

$$\sigma(\langle x_0, s_0 \rangle, \dots, \langle x_{n-1}, s_{n-1} \rangle) = \bigcup_{i < n} K_{\{c_0^{x_i}, \dots, c_{n-1}^{x_i}\}} \cup L_{|s_i|+1}$$

This is a winning strategy because each point $\langle x_i, s_i \rangle$ played by P cannot be a part of a sequence converging to some $c_n^{x_i}$, since a $K_{\{c_0^{x_i}, \dots, c_n^{x_i}\}} \supseteq B_{c_n^{x_i}}$ was forbidden during round n.

Theorem 7. $K \gamma_{tact} LF_{K,P}(X)$.

Proof. This is actually a corollary of Gruenhage's theorem in [2] by proving X is not meta-compact. The following is a direct game-theoretic proof.

Suppose that $\sigma(\langle x,s\rangle)$ was a winning tactical strategy for K and define the compact set

$$\sigma'(x,n) = \bigcup_{|s| \le n} \sigma(\langle x, s \rangle)$$

There exists some $f: 2^{\omega} \to \omega$ such that for all $x \in U_c$, $\sigma'(x, f(c))$ covers some $B_c \setminus L_m$. (If not, P counters by simply always playing in $B_c \setminus L_m$.)

Recall that \mathcal{U} is not the union of the countably-many point-finite collections, and

$$\mathcal{U} = \bigcup_{n < \omega} \{ U_c : f(c) = n \}$$

so we may find choose n where $\mathcal{U}_n = \{U_c : f(c) = n\}$ is not point-finite. Fix x so that x belongs to each of $\{U_{c_0}, U_{c_1}, \ldots\} \subseteq \mathcal{U}_n$.

For each c_i , $\sigma'(x, f(c_i)) = \sigma'(x, n)$ covers c_i . Thus $\sigma'(x, n) \supseteq \{c_0, c_1, \dots\}$ is not compact, a contradiction.

Theorem 8. $K \gamma_{2-tact} LF_{K,P}(X)$.

Proof. Suppose $\sigma(\langle x, s \rangle, \langle y, t \rangle)$ was a winning 2-tactical strategy. Without loss of generality we assume it ignores order. We may define $S(x, y, n) \in [2^{\omega}]^{<\omega}$ (increasing on n) and $n < m(x, y, n) < \omega$ such that for each (x, y),

$$\bigcup_{s,t\in 2^{\leq n}} \sigma(\langle x,s\rangle,\langle y,t\rangle) \subseteq K_{S(x,y,n)}^* \cup L_{m(x,y,n)}$$

and so we assume

$$\sigma(\langle x, s \rangle, \langle y, t \rangle) = K_{S(x, y, \max(|s|, |t|))}^* \cup L_{m(x, y, \max(|s|, |t|))}$$

Select an arbitrary point $x' \in X$. We define a tactical strategy

$$\tau(x,s) = K_{S(x,x',m(x,x',|s|)+1)}^* \cup L_{m(x,x',m(x,x',|s|)+1)}$$

We complete the proof by showing τ is a winning tactical strategy (a contradiction).

Suppose

$$\langle x_0, s_0 \rangle, \langle x_1, s_1 \rangle, \langle x_2, s_2 \rangle, \dots$$

successfully countered τ by clustering at $c \in 2^{\omega}$ (the strategy trivially prevents clustering elsewhere). Let $z_n = \langle 0, \dots, 0 \rangle$ with n zeros. We claim

$$\langle x_0, s_0 \rangle, \langle x', z_{m(x_0, x', |s_0|)} \cap \langle 1 \rangle \rangle, \langle x_1, s_1 \rangle, \langle x', z_{m(x_1, x', |s_1|)} \cap \langle 1 \rangle \rangle, \langle x_2, s_2 \rangle, \langle x', z_{m(x_2, x', |s_2|)} \cap \langle 1 \rangle \rangle, \dots$$

is a successful counter to σ .

We will need the fact that, as $\langle x_{i+1}, s_{i+1} \rangle$ was legal against τ :

$$|s_i| < m(x_i, x', |s_i|) + 1 = |z_{m(x_i, x', |s_i|)} \land \langle 1 \rangle|$$

$$< m(x_i, x', m(x_i, x', |s_i|) + 1) = m(x_i, x', |z_{m(x_i, x', |s_i|)} \land \langle 1 \rangle|) \le |s_{i+1}|$$

Note that $m(x, y, \max(|s|, |t|))$ is increasing throughout this play of the game versus σ :

$$\begin{split} m(x_i, x', \max(|s_i|, |z_{m(x_i, x', |s_i|)} \widehat{\ \ } \langle 1 \rangle |)) \\ &= m(x_i, x', |z_{m(x_i, x', |s_i|)} \widehat{\ \ } \langle 1 \rangle |) \\ &\leq |s_{i+1}| \\ &< m(x_{i+1}, x', |s_{i+1}|) \\ &= m(x_{i+1}, x', \max(|s_{i+1}|, |z_{m(x_i, x', |s_i|)} \widehat{\ \ } \langle 1 \rangle |)) \\ &= |z_{m(x_{i+1}, x', |s_{i+1}|)}| \end{split}$$

$$\langle |z_{m(x_{i+1},x',|s_{i+1}|)} \rangle \langle 1 \rangle |$$

$$\langle m(x_{i+1},x',|z_{m(x_{i+1},x',|s_{i+1}|)} \rangle \langle 1 \rangle |)$$

$$= m(x_{i+1},x',\max(|s_{i+1}|,|z_{m(x_{i+1},x',|s_{i+1}|)} \rangle \langle 1 \rangle |))$$

We turn to showing that $\langle x', z_{m(x_{i+1}, x', |s_{i+1}|)} \cap \langle 1 \rangle \rangle$ is always a legal move. Since $z_{m(x_{i+1}, x', |s_{i+1}|)} \cap \langle 1 \rangle$ is on the antichain avoided by any K^* , the problem is reduced to showing that this move isn't forbidden by

$$L_{m(x_{i+1},x',\max(|s_{i+1}|,|z_{m(x_{i},x',|s_{i}|)} \cap \langle 1 \rangle|))}$$

which we can see here:

$$m(x_{i+1}, x', \max(|s_{i+1}|, |z_{m(x_i, x', |s_i|)} \cap \langle 1 \rangle |)) = m(x_{i+1}, x', |s_{i+1}|) < |z_{m(x_{i+1}, x', |s_{i+1}|)} \cap \langle 1 \rangle |$$

We can conclude by showing that $\langle x_{i+1}, s_{i+1} \rangle$ is always a legal move. We can see it avoids

$$L_{m(x_i,x',\max(|s_i|,|z_{m(x_i,x',|s_i|)} \cap \langle 1 \rangle|))}$$

since

$$m(x_i, x', \max(|s_i|, |z_{m(x_i, x', |s_i|)} \cap \langle 1 \rangle |)) = m(x_i, x', |z_{m(x_i, x', |s_i|)} \cap \langle 1 \rangle |) \le |s_{i+1}|$$

Since $\langle x_{i+1}, s_{i+1} \rangle$ was legal against τ , it avoided

$$K_{S(x_h,x',m(x_h,x',|s_h|)+1)}^* = K_{S(x_h,x',\max(|s_h|,|z_{m(x_h,x',|s_h|)} \cap \langle 1 \rangle|))}^*$$

for $h \leq i$. And when h < i, we see it avoids:

$$\begin{split} K_{S(x_{h+1},x',\max(|s_{h+1}|,|z_{m(x_h,x',|s_h|)} ^\frown \langle 1 \rangle |))}^* &= K_{S(x_{h+1},x',|s_{h+1}|)}^* \\ &\subseteq K_{S(x_{h+1},x',m(x_{h+1},x',|s_{h+1}|)+1)}^* \end{split}$$

This concludes the proof.

Theorem 9. $K \gamma_{k\text{-}tact} LF_{K,P}(\mathbb{X})$.

Proof. The proof proceeds in parallel to the proof of K $\gamma_{2\text{-tact}}$ $LF_{K,P}(\mathbb{X})$, and in fact is just a generalization of said proof (at the cost of simplicity).

Suppose $\sigma(\langle x_0, s_0 \rangle, \dots, \langle x_k, s_k \rangle)$ was a winning (k+1)-tactical strategy. Without loss of generality we assume it ignores order. We may define $S(x_0, \dots, x_k, n) \in [2^{\omega}]^{<\omega}$ (increasing on n) and $n < m(x_0, \dots, x_k, n) < \omega$ such that for each (x_0, \dots, x_k) ,

$$\bigcup_{s_0,\dots,s_k\in 2^{\leq n}} \sigma(\langle x_0,s_0\rangle,\dots,\langle x_k,s_k\rangle) \subseteq K_{S(x_0,\dots,x_k,n)}^* \cup L_{m(x_0,\dots,x_k,n)}$$

and so we assume

$$\sigma(\langle x_0, s_0 \rangle, \dots, \langle x_k, s_k \rangle) = K^*_{S(x_0, \dots, x_k, \max(|s_0|, \dots, |s_k|))} \cup L_{m(x_0, \dots, x_k, \max(|s_0|, \dots, |s_k|))}$$

Select an arbitrary point $x' \in X$. Let $M^0(x,n) = m(x,x',\ldots,x',n)$ and $M^{i+1}(x,n) = M^0(x,M^i(x,n)+1)$. We define a tactical strategy

$$\tau(x,s) = K_{S(x,x',\dots,x',M^{k-1}(x,|s|)+1)}^* \cup L_{m(x,x',\dots,x',M^{k-1}(x,|s|)+1)}$$

We complete the proof by showing τ is a winning tactical strategy (a contradiction).

Suppose

$$\langle x_0, s_0 \rangle, \langle x_1, s_1 \rangle, \langle x_2, s_2 \rangle, \dots$$

successfully countered τ by clustering at $c \in 2^{\omega}$ (the strategy trivially prevents clustering elsewhere). Let $z_n = \langle 0, \dots, 0 \rangle$ with n zeros. We claim

$$\langle x_0, s_0 \rangle, \langle x', z_{M^0(x_0, |s_0|)} \cap \langle 1 \rangle \rangle, \langle x', z_{M^1(x_0, |s_0|)} \cap \langle 1 \rangle \rangle, \dots, \langle x', z_{M^{k-1}(x_0, |s_0|)} \cap \langle 1 \rangle \rangle,$$

$$\langle x_1, s_1 \rangle, \langle x', z_{M^0(x_1,|s_1|)} \cap \langle 1 \rangle \rangle, \langle x', z_{M^1(x_1,|s_1|)} \cap \langle 1 \rangle \rangle, \dots, \langle x', z_{M^{k-1}(x_1,|s_1|)} \cap \langle 1 \rangle \rangle, \dots$$

is a successful counter to σ .

We will need the fact that, as $\langle x_{i+1}, s_{i+1} \rangle$ was legal against τ :

$$|s_i| < M^0(x_i, |s_i|) + 1 = |z_{M^0(x_i, |s_i|)} \land \langle 1 \rangle| < M^0(x_i, M^0(x_i, |s_i|) + 1) + 1$$

$$= M^1(x_i, |s_i|) + 1 = |z_{M^1(x_i, |s_i|)} \land \langle 1 \rangle| < \dots < |z_{M^{k-1}(x_i, |s_i|)} \land \langle 1 \rangle|$$

$$= M^{k-1}(x_i, |s_i|) + 1 < m(x_i, x', \dots, x', M^{k-1}(x_i, |s_i|) + 1) \le |s_{i+1}|$$

Note that $m(x_0, \ldots, x_k, \max(|s_0|, \ldots, |s_k|))$ is increasing throughout this play of the game versus σ :

$$\begin{split} m(x_i, x', \dots, x', \max(|s_i|, |z_{M^0(x_i, |s_i|)} \cap \langle 1 \rangle|, \dots, |z_{M^{k-1}(x_i, |s_i|)} \cap \langle 1 \rangle|)) \\ &= m(x_i, x', \dots, x', |z_{M^{k-1}(x_i, |s_i|)} \cap \langle 1 \rangle|) \\ &= m(x_i, x', \dots, x', M^{k-1}(x_i, |s_i|) + 1) \\ &\leq |s_{i+1}| \\ &\leq M^0(x_{i+1}, |s_{i+1}|) \\ &= m(x_{i+1}, x', \dots, x', |s_{i+1}|) \\ &= m(x_{i+1}, x', \dots, x', \max(|s_{i+1}|, |z_{M^0(x_i, |s_i|)} \cap \langle 1 \rangle|, \dots, |z_{M^{k-1}(x_i, |s_i|)} \cap \langle 1 \rangle|)) \\ &= |z_{m(x_{i+1}, x', \dots, x', |s_{i+1}|)}| \end{split}$$

$$= |z_{M^{0}(x_{i+1},|s_{i+1}|)}|$$

$$< |z_{M^{0}(x_{i+1},|s_{i+1}|)} \land \langle 1 \rangle|$$

$$< m(x_{i+1},x',\ldots,x',|z_{M^{0}(x_{i+1},|s_{i+1}|)} \land \langle 1 \rangle|)$$

$$= m(x_{i+1},x',\ldots,x',\max(|s_{i+1}|,|z_{M^{0}(x_{i+1},|s_{i+1}|)} \land \langle 1 \rangle|,|z_{M^{1}(x_{i},|s_{i}|)} \land \langle 1 \rangle|,\ldots,|z_{M^{k-1}(x_{i},|s_{i}|)} \land \langle 1 \rangle|))$$

$$\vdots$$

$$< m(x_{i+1},x',\ldots,x',\max(|s_{i+1}|,|z_{M^{0}(x_{i+1},|s_{i+1}|)} \land \langle 1 \rangle|,\ldots,|z_{M^{k-1}(x_{i+1},|s_{i+1}|)} \land \langle 1 \rangle|))$$

We turn to showing that $\langle x', z_{M^j(x_{i+1}, |s_{i+1}|)} \cap \langle 1 \rangle \rangle$ is always a legal move. Since $z_{M^j(x_{i+1}, |s_{i+1}|)} \cap \langle 1 \rangle$ is on the antichain avoided by any K^* , the problem is reduced to showing that this move isn't forbidden by

$$\begin{split} L_{m(x_{i+1},x',\dots,x',\max(|s_{i+1}|,|z_{M^0(x_{i+1},|s_{i+1}|)} \cap \langle 1 \rangle|,\dots,|z_{M^{j-1}(x_{i+1},|s_{i+1}|)} \cap \langle 1 \rangle|,|z_{M^j(x_i,|s_i|)} \cap \langle 1 \rangle|,\dots,|z_{M^k(x_i,|s_i|)} \cap \langle 1 \rangle|))} \\ &= L_{m(x_{i+1},x',\dots,x',|z_{M^{j-1}(x_{i+1},|s_{i+1}|)} \cap \langle 1 \rangle|)} \end{split}$$

which we can see here:

$$m(x_{i+1}, x', \dots, x', |z_{M^{j-1}(x_{i+1}, |s_{i+1}|)} \land \langle 1 \rangle |)$$

$$= m(x_{i+1}, x', \dots, x', M^{j-1}(x_{i+1}, |s_{i+1}|) + 1)$$

$$= M^{0}(x_{i+1}, M^{j-1}(x_{i+1}, |s_{i+1}|) + 1)$$

$$= M^{j}(x_{i+1}, s_{i+1})$$

$$< |z_{M^{j}(x_{i+1}, |s_{i+1}|)} \land \langle 1 \rangle |$$

We can conclude by showing that $\langle x_{i+1}, s_{i+1} \rangle$ is always a legal move. We can see it avoids

$$L_{m(x_i,x',\dots,x',\max(|s_i|,|z_{M^0(x_i,|s_i|)} ^\frown \langle 1 \rangle|,\dots,|z_{M^{k-1}(x_i,|s_i|)} ^\frown \langle 1 \rangle|))}$$

since

$$m(x_{i}, x', \dots, x', \max(|s_{i}|, |z_{M^{0}(x_{i}, |s_{i}|)} \land \langle 1 \rangle|, \dots, |z_{M^{k-1}(x_{i}, |s_{i}|)} \land \langle 1 \rangle|))$$

$$= m(x_{i}, x', \dots, x', |z_{M^{k-1}(x_{i}, |s_{i}|)} \land \langle 1 \rangle|)$$

$$= m(x_{i}, x', \dots, x', M^{k-1}(x_{i}, |s_{i}|) + 1)$$

$$\leq |s_{i+1}|$$

Since $\langle x_{i+1}, s_{i+1} \rangle$ was legal against τ , it avoided

$$K_{S(x_h,x',...,x',M^{k-1}(x_h,|s_h|)+1)}^*$$

$$=K_{S(x_h,x',...,x',\max(|s_h|,|z_{M^0(x_h,|s_h|)} ^\frown \langle 1 \rangle|,...,|z_{M^{k-1}(x_h,|s_h|)} ^\frown \langle 1 \rangle|))}$$

for $h \leq i$. And when h < i, we see it avoids both:

$$\begin{split} K_{S(x_{h+1},x',\ldots,x',\max(|s_{h+1}|,|z_{M^0(x_{h+1},|s_{h+1}|)} \cap \langle 1 \rangle|,\ldots,|z_{M^{j-1}(x_{h+1},|s_{h+1}|)} \cap \langle 1 \rangle|,|z_{M^j(x_h,|s_h|)} \cap \langle 1 \rangle|,\ldots,|z_{M^k(x_h,|s_h|)} \cap \langle 1 \rangle|)) \\ &= K_{S(x_{h+1},x',\ldots,x',|z_{M^{j-1}(x_{h+1},|s_{h+1}|)} \cap \langle 1 \rangle|)} \\ &= K_{S(x_{h+1},x',\ldots,x',M^{j-1}(x_{h+1},|s_{h+1}|)+1)}^* \\ &\subseteq K_{S(x_{h+1},x',\ldots,x',M^{k-1}(x_{h+1},|s_{h+1}|)+1)}^* \end{split}$$

and:

$$\begin{split} K_{S(x_{h+1},x',\dots,x',\max(|s_{h+1}|,|z_{M^0(x_h,|s_h|)} ^\frown \langle 1 \rangle |,\dots,|z_{M^k(x_h,|s_h|)} ^\frown \langle 1 \rangle |))} \\ &= K_{S(x_{h+1},x',\dots,x',|s_{k+1}|)}^* \\ &\subseteq K_{S(x_{h+1},x',\dots,x',M^{k-1}(x_{h+1},|s_{h+1}|)+1)}^* \end{split}$$

This concludes the proof.

References

- [1] G. Gruenhage, Covering Properties on $X^2 \setminus \Delta$, W-sets, and Compact Subsets of Σ -Products. Topology Appl. 17 (1984), 287-304
- [2] G. Gruenhage, Games, Covering Properites, and Eberlein Compacts. Topology Appl. 23 (1986), 291-297
- [3] S. Watson, Locally compact normal meta-Lindelf spaces may not be paracompact: an application of uniformization and Suslin lines. Proc. Amer. Math. Soc. 98 (1986), no. 4, 676680.