

advective)

— to minimize residual — Test function or test function orthogonal — Solution approximation ——— and initial conditions — Mapping — Physical -> Computation domain — for curvilinear domains Understand DG spatial discretization (DG Galerkin formulation DG weak form -Integration by parts -> Flux functions ———— Solution smoothness requirements: ———— Differences from FEM Linear vs. Non-linear flux — Ramifications — for semi-discrete system ─ Hyperbolic vs. Parabolic Applying BCs ——— include periodic BCs

Understand time discretization

Forward Euler Types, e.g. — Method of lines style semi-discrete form

CFL condition & stability

Intuitive understanding of methodology

Conceptualization of process — not tied down to specific examples

Learn how to apply DG to arbitrary PDEs & realm of applicability

Understand pros / cons

Understand how DG "simplifies" to -

Self-contained set of knowledge & algorithms ———— to be able to write a full solver Generate runnable code of your own

Topics Layout			
Module 1: What is DG?	Module 2: A Simple 1D DG Solver	Module 3: To Higher-Orders (nodal) 3A: Sol'n Approximation	Module 3: To Higher-Orders (nodal) 3B: Discrete System
DG motivation (why vs. FEM, FVM, FDM) ©	Linear solution approximation	Revisit weak form	Numerical Quadrature (Gauss)
Do metivation (why vs. 121 i, 1 vi i, 121 i)	Test function choice (Galerkin)	Approx. space	Hermite interpolation (2N+1 quad)
Scalar conservation law (linear) PDE	Upwind flux	L2 Projection minimizes residual norm	Truncation error/exact quadrature
	Mass Matrix	Test space -> orthogonal	GL Lagrange orthogonality
Weak form derivation	Stiffness Matrix	Monomial basis?	Local differentiation
	Putting it all together (linear system)	Ill-conditioning of monomials	Flux interpolation
Global domain vs. local element	Semi-discrete system	Recall: Lagrange interpolation (code) Derive Lagrange spatial approximation	Stiffness Integral
	Semi-discrete system		Stiffless integral
	Forward Euler	Equispaced interp points?	Numerical Flux (interpolated)
Multiple-valued element boundaries	Investigate h-convergence	Runge phenomenon	Assembly of system
	Investigate t-convergence	Why: Bernstein/Markov inequality	RK4 time discretization
Recall: Flux functions	Investigate stability (CFL)	Roots of Leg instead	Investigate p-convergence (smoothness reqs)

A F	A Pedagogical Comment						
	Take advantage of format	Each section may have subsectionsbut of section is intended to be a self-containe concept.	Fasy to "zone-out" hetore the start of new	Each Module has a larger self-contained concept.			
	replay	First slide of a new section	try and put what you learned into action:	Should be able to put together a script			
	pause						
	speed up	has the title format Costion. Subsection	to test your understanding Make a code snippet	that accomplishes something substantial!			
	slow down	has the title format Section: Subsection	or verify a claimed result etc				

