An Overview of Riemann-Hurwitz in Positive Characteristic

Dean Bisogno

April 5, 2016

- I. A Reminder of Riemann-Hurwitz from characteristic 0
 - A. $2g_X 2 = d(2g_Y 2) + \sum_{x \in \mathcal{X}} \nu_b$
 - i. Where g_x and g_y are the genuses of the the respective spaces, d the degree of the covering map $X \to Y$, $\nu_x = e_x 1$ the differential length of x and e_x the ramification index of x.
- II. Now think about algebraically closed field of characteristic p. An example that still works.
 - A. An Artin-Schreier Curve: $X_{p,t}^{\circ}: x^p x y^t$ where $p \not| t$.
 - B. For $\pi_{x,p,t}: X_{p,t}^{\circ} \to \mathbb{A}_k^1$ projection on x, ramified only over the p points (x,0), each with $\nu_{(x,0)} = t-1$.
 - C. Can calculate a genus for X with Riemann-Hurwitz, and we get $\frac{(p-1)(t-1)}{2}$. Can verify that by checking geometric genus $dim(H^0(X,\Omega^1))$. Can find basis $\{y^bx^rdy|r\geq 0,b\geq 0,bp+rt\geq (p-1)(t-1)-2\}$
- III. A Case that breaks
 - A. For $\pi_{y,p,t}: X_{p,t} \to \mathbb{P}^1_k$ (projection on y) only ramified over P_{∞} with ramification index p.
 - B. Classical Riemann-Hurwitz: $2g_X 2 = p(-2) + (p-1)$ yields a negative genus!
 - C. Need to be careful in the case $p|e_x$
- IV. Wild Riemann-Hurwitz
 - A. For a non-constant, separable, Galois cover $f: X \to Y$ of smooth projective curves over field k of characteristic p. Let e_x be the ramification index of f at a point x. And if $p \not| e_x$ then $\nu_x = e_x 1$. If $p|e_x$ then there exists a ramification filtration of the inertia group I at x such that $\nu_x = \sum_{i=0}^{\infty} (|I_i| 1)$. Then

$$2g_X - 2 = d(2g_Y - 2) + \sum_{x \in \mathcal{X}} \nu_b$$

- B. If $e_x = p$ then $\nu_x = (p-1)(t_x+1)$ where t_x is the ramification jump. Understanding the ramification jump requires higher ramification groups. The ramification jumps occur where the filtration of the ramification groups in upper numbering yields strict inclusion.
- C. Higher ramification groups.
 - i. For Galois extension L or K with Galois groups G, where K is complete with respect to discrete valuation ν_K and L has the discrete valuation induced by ν_K (there are some normalization conditions on the discrete valuations). Then we can define the i^{th} ramification group by

$$I_i = \{ \sigma \text{ in } G - \nu_L(\sigma(a) - a) \ge i + 1 \ \forall a \in \mathcal{O}_L \}.$$

- D. We see that there is a natural filtration of the higher ramification groups. The with the inertia group corresponding to I_0 . There is another chain of inclusions for the higher ramification groups in the upper numbering, which is likely beyond the scope of the presentation.
- V. Finish "a case that breaks," show that $t_{P_{\infty}}=1$, then Wild-Riemann Hurwitz calculates the correct genus
- VI. If time is permitting or if we condense the beginning, perhaps we can looks at a case where $p|e_x$ and $p \neq e_x$.