

1. HOW MANY VARIANTS DOES THE GENOME HAVE?

2. WHICH TYPE?

3. WHAT EFFECT DO THEY HAVE?

4. WHAT IS THE BIOLOGICAL SIGNIFICANCE?

3. WHAT EFFECT DO THEY HAVE?

Loss of function (LoF) genetic variants

- Nonsense
- Splice site
- Frameshift indels
- Large deletions

The intron is also present in the RNA copy of the gene and must be removed by a process called "RNA splicing"

Splice site genetic variants

Examples of the potential consequences of mutations on splicing

Wild-type gene

- Normal coding mRNA is called in frame when codons are arranged in specific sequence from start codon to stop codon.
- Insertion and deletion mutations introduce a disruption to the codon sequence called frame-shift.

- Insertion point mutations introduce a base-pair or more to the sequence of the gene which causes a frame-shift downstream.
- The frame-shift may result in a premature stop codon down stream or changes in amino acid sequence.

Number of loss-of-function variants

Category	Filtered number/individual (CEU)							
	All	Homozygous						
nonsense SNP	26.2	5.2						
splice SNP	11.2	1.9						
frameshift indel	38.2	9.2						
large LoF deletion	28.3	6.2						
total	103.9	22.3						

2. TYPES OF GENETIC VARIANTS

Functional annotation

Table 1 | Median autosomal variant sites per genome

	AFR 661 8.2		AN	1R	E	EAS		JR	5	SAS
Samples Mean coverage			347 7.6		504 7.7		503 7.4		489 8.0	
	Var. sites	Singletons	Var. sites	Singletons	Var. sites	Singletons	Var. sites	Singletons	Var. sites	Singletons
SNPs	4.31M	14.5k	3.64M	12.0k	3.55M	14.8k	3.53M	11.4k	3.60M	14.4k
Indels	625k	-	557k	-	546k	-	546k	-	556k	-
Large deletions	1.1k	5	949	5	940	7	939	5	947	5
CNVs	170	1	153	1	158	1	157	1	165	1
MEI (Alu)	1.03k	0	845	0	899	1	919	0	889	0
MEI (L1)	138	0	118	0	130	0	123	0	123	0
MEI (SVA)	52	0	44	0	56	0	53	0	44	0
MEI (MT)	5	0	5	0	4	0	4	0	4	0
Inversions	12	0	9	0	10	0	9	0	11	0
Nonsynon	12.2k	139	10.4k	121	10.2k	144	10.2k	116	10.3k	144
Synon	13.8k	78	11.4k	67	11.2k	79	11.2k	59	11.4k	78
Intron	2.06M	7.33k	1.72M	6.12k	1.68M	7.39k	1.68M	5.68k	1.72M	7.20k
UTR	37.2k	168	30.8k	136	30.0k	169	30.0k	129	30.7k	168
Promoter	102k	430	84.3k	332	81.6k	425	82.2k	336	84.0k	430
Insulator	70.9k	248	59.0k	199	57.7k	252	57.7k	189	59.1k	243
Enhancer	354k	1.32k	295k	1.05k	289k	1.34k	288k	1.02k	295k	1.31k
TFBSs	927	4	759	3	748	4	749	3	765	3
Filtered LoF	182	4	152	3	153	4	149	3	151	3
HGMD-DM	20	0	18	0	16	1	18	2	16	0
GWAS	2.00k	0	2.07k	0	1.99k	0	2.08k	0	2.06k	0
ClinVar	28	0	30	1	24	0	29	1	27	1

See Supplementary Table 1 for continental population groupings. CNVs, copy-number variants; HGMD-DM, Human Gene Mutation Database disease mutations; k, thousand; LoF, loss-of-function; M, million; MEI, mobile element insertions.

- synonymous
- splice donor
- missense
- frameshift
- intron
- stop gained

synonymous

splice donor

splice donor

frameshift

missense

stop gained

frameshift

missense

intron

synonymous

stop gained

intron

Functional annotation

synonymous

splice donor

splice donor

frameshift

missense

stop gained

frameshift

missense

intron

synonymous

stop gained

intron

FUNCTIONAL ANNOTATION OF VARIANTS

➤ What differentiates one pathogenic variant from a neutral one_

➤ How can we use these properties to predict pathogeneicity?

How would you predict the functional and biological consequences of a variant?

Genetic variant	Position	Change	Consequence	Gene	Freq
A	3:1403401- 1403401	A/C	missense	CNTN6	0.003
В	12:49022301- 49022301	G/A	missense	KMT2D	-
G	3:25634002- 25634002	G/A	missense	TOP2B	4×10 ⁻⁶
D	15:72353105- 72353105	C/T	missense	HEXA	5×10 ⁻⁵
E	4:38797314- 38797314	C/A	synonymous	TLR1	0.38
F	7:117639961- 117639961	C/T	intron	CFTR	6×10 ⁻⁵
G	17:31230383- 31230383	G/A	splice_donor	NF1	4×10 ⁻⁶
H	11:63290453- 63290453	G/A	stop_gained	SLC22A10	0.434

Marth et al. (2011) Genome Biol. 12, R84

Functional annotation

Computational approaches to predict the impact of SNVs

Sorting Intolerant From Tolerant substitutions (SIFT)

- > Funtionally important positions (e.g. active sites) tend to be conserved across species.
 - ♦ Changes at conserved sites tend to be detrimental.
- > Some positions show a high level of diversity acorss species.
 - Changes at these positions tend to be neutral.

POLYmorphism **PHEN**otyping (POLYPHEN)

➤ Predicts the impact of amino acid changes based on multiple sequence alignements and the protein structure.

> Assumes that:

- Amino acid changes at conserved positions have more probabilities of generating functional changes.
- 2. Changes affecting to active and interaction sites, protein solubility or stability will probably affect to its structure.
- 3. Changes in the structure of the protein will probably generate functional changes that is probable that originate phenotype changes.
 Polyphen value

Polyphen value	Qualitative prediction	Website display example
greater than 0.908	"Probably Damaging"	0.95
greater than 0.446 and less than or equal to 0.908	"Possibly Damaging"	0.5
less than or equal to 0.446	"Benign"	0.25
unknown	"Unknown"	unknown

Figure 1. Wordle of variant impact predictors.

Functional annotation

De Analysis of genetic variation and potential Applications in genome-scale metabolic modeling Frontiers in Bioengineering and Biotechnology, 2015

De Evalutation of in silico algorithms for use with ACMG/AMP clinical variant interpretion guidelines Genome Biology, 2017

Figure 1. Wordle of variant impact predictors.

Genetic	Position	Change	Consequence	Gene	Freq	SIFT	Polyphen	Mutation	CADD	Condel
variant								Assessor		
A	3:1403401- 1403401	A/C	missense	CNTN6	0.003	0.47	0	Neutral	9.52	Neutral
В	12:49022301- 49022301	G/A	missense	KMT2D	-	0	1	Medium	32	0.945
C	3:25634002- 25634002	G/A	missense	TOP2B	4×10 ⁻⁶	0.01	0.152	Medium	29.3	0.778
D	15:72353105- 72353105	C/T	missense	HEXA	5×10 ⁻⁵	0	1	Damaging	32	0.945
E	4:38797314- 38797314	C/A	synonymous	TLR1	0.38	-	-	-	0.29	-
F	7:117639961- 117639961	C/T	intron	CFTR	6×10 ⁻⁵	-	-	-	1.08	-
G	17:31230383- 31230383	G/A	splice_donor	NF1	4×10 ⁻⁶	-	-	-	34	-
H	11:63290453- 63290453	G/A	stop_gained	SLC22A10	0.434	-	-	-	36	-

Gene properties

Number of loss-of-function variants per individual genome

Category	Filtered number/individual (CEU								
	All	Homozygous							
nonsense SNP	26.2	5.2							
splice SNP	11.2	1.9							
frameshift indel	38.2	9.2							
large LoF deletion	28.3	6.2							
total	103.9	22.3							

Genome analysis

LoFtool: a gene intolerance score based on loss-of-function variants in 60 706 individuals

João Fadista^{1,2,*}, Nikolay Oskolkov², Ola Hansson² and Leif Groop^{2,3}

Gene properties

OPEN & ACCESS Freely available online

Genic Intolerance to Functional Variation and the Interpretation of Personal Genomes

Slavé Petrovski^{1,2}*, Quanli Wang¹, Erin L. Heinzen^{1,3}, Andrew S. Allen^{1,4}, David B. Goldstein¹*

RVIS: residual variation intolerance score

Figure 4. The proportion of genes explained by each of the 25-percentile bins (RVIS) for the human disease networks disorder class with the lowest "Developmental Disorders" and highest "Immunological Disorders" average residual variation intolerance score. doi:10.1371/journal.pgen.1003709.g004

Genetic	Position	Change	Consequence	Gene	Freq	SIFT	Polyphen	Mutation	CADD	Condel	LoF tol	RVIS
variant								Assessor				
A	3:1403401- 1403401	A/C	missense	CNTN6	0.003	0.47	0	Neutral	9.52	Neutral	0.974	-0.92 (9.81%)
В	12:49022301- 49022301	G/A	missense	KMT2D	-	0	1	Medium	32	0.945	-	-5.29 (0.06%)
C	3:25634002- 25634002	G/A	missense	TOP2B	4×10 ⁻⁶	0.01	0.152	Medium	29.3	0.778	0.82	-0.15 (42.28%)
D	15:72353105- 72353105	C/T	missense	HEXA	5×10 ⁻⁵	0	1	Damaging	32	0.945	0.17	-0.33 (30.7%)
E	4:38797314- 38797314	C/A	synonymous	TLR1	0.38	-	-	-	0.29	-	0.963	1.32 (94.07%)
F	7:117639961- 117639961	C/T	intron	CFTR	6×10 ⁻⁵	-	-	-	1.08	-	0.0235	-0.51 (21.73%)
G	17:31230383- 31230383	G/A	splice_donor	NF1	4×10 ⁻⁶	-	-	-	34	-	0.116	-3.09 (0.47%)
	11:63290453- 63290453	G/A	stop_gained	SLC22A10	0.434	-	-	-	36	-	0.7	1.85 (97.12%)

Go to www.menti.com and use the code 39 77 019

Classify from more to less pathogenic

Mentimeter

0 B-D-G-H-A-C-F-E 0 H-G-D-C-B-A-E-F 0 G-A-B-C-D-H-F-E

0 G-B-D-C-A-H-F-E

D-B-C-F-G-A-E-H

*

Go to www.menti.com and use the code 39 77 01 9

Classify from more to less pathogenic

Mentimeter

0 B-D-G-H-A-C-F-E 0 H-G-D-C-B-A-E-F 0 G-A-B-C-D-H-F-E

0 G-B-D-C-A-H-F-E 0 D-B-C-F-G-A-E-H

G

B

D

C

A

E

Functional annotation

TOOLS FOR GENETIC VARIANTS FUNCTIONAL ANNOTATION

> ANNOVAR

De Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR Nature Protocols, 2015

> ENSEMBL VARIANT EFFECT PREDICTOR (VEP)

Ensembl Variant Effect Predictor (VEP)

Simply input the coordinates of your variants and the nucleotide changes to find out the:

- Genes and Transcripts affected by the variants
- Location of the variants (e.g. upstream of a transcript, in coding sequence, in non-coding RNA, in regulatory regions)
- . Consequence of your variants on the protein sequence (e.g. stop gained, missense, stop lost, frameshift)
- Known variants that match yours, and associated minor allele frequencies from the 1000 Genomes Project
- SIFT and PolyPhen-2 scores for changes to protein sequence
- ... And more! See <u>data types</u>, <u>versions</u>.

<u>a</u>

is the more pathogenic variant......but is it really pathogenic?

