

Managing Operations: A Focus on Excellence

Cox, Blackstone, and Schleier, 2003

Chapter 14
The Tools of Quality:
Exceeding Customer's Expectations

The Seven	Tools o	of Quality
-----------	---------	------------

- 1. Control chart
- 2. Run chart
- 3. Pareto chart
- 4. Flow chart
- 5. Cause and effect diagram
- 6. Histogram
- 7. Scatter diagram

CBS Chapter 1

14-2

Statistical Process Control

- A method of inspection by which it can be determined whether a process is in control
- Differs from Acceptance Sampling in that SPC does not make judgements about the quality of the item processed.
- Key tool is the Control Chart of which several types exist.

BS Chapter 14

SPC Defined

- · All processes are affected by multiple factors and, therefore, SPC can be applied to any process.
- There is inherent variation in any process which can be measured and "controlled."
- · SPC does not eliminate variation, but it does allow the user to track special cause variation.
- "SPC is a statistical method of separating variation resulting from special causes from natural variation and to establish and maintain consistency in the process, enabling process improvement." (Goetsch & Davis, 2003. p. 631)

Variation in Processes

- · Common Cause variation the variation which in inherent in the process itself; when sampled, a normal distribution is found; a process is said to be in statistical control when only common cause variation exists.
- Special (or Assignable) Cause variation the variation in process output that might be traced to a specific cause; the process is said to be out of control when a special cause variation exists.

Rationale for SPC

Control of Variation Continuous Improvement Predictability of Processes Elimination of Waste **Product Inspection**

-	

Creating Control Charts

- All control charts rely on the periodic sampling and measurement of items.
- The data collected will allow the calculation of a centerline, and upper and lower control limits.
- The centerline is the mean of all samples, whereas the control limits are, conceptually, the mean +/- three standard deviations.

CBS Chapter 14

14-7

Interpreting Control Charts

SPC is based upon the Central Limit Theorem which tells us, in effect, that the samples will follow a normal distribution regardless of the shape of the parent distribution.

Interpreting control charts is, then, all about probabilities – if the observations aren't probable, then there must be a special cause variation.

CBS Chapter 14

14-8

Interpreting Control Charts

Special Cause Variation is assumed $\mu + 3\sigma_{\overline{x}}$ to exist if:

- Any point falls outside the control limits.
- 2. Nine consecutive observations fall on one side of the mean.
- 3. Six consecutive observations are increasing (or decreasing.)
- 14 observations alternate above and below the mean.
- Two of three consecutive points fall in zone C in one-half of the chart.
- 6. Four of five consecutive points fall in zone B in one-half of the chart.
- μ+3σ_χ
 μ+2σ
 μ+1σ
 μ
 μ+1σ
 μ
 μ+1σ
 μ+1σ
 μ+1σ
 μ-2σ
 μ-3σ_χ
 LCL
 - 15 consecutive observations in the A zones.
 - Eight consecutive points outside of the A zones.

CBS Chapter 1

14-9

Risks of SPC

- SPC has the same Type I and Type II risks as acceptance sampling
- If the process if in fact in control but we conclude that it is out of control, we have committed a Type I error.
- If the process if in fact out of control but we conclude that it is in control, we have committed a Type II error.

CBS Chapter 14	14-1

Common control charts for variables & attributes

Data Category	Chart Type	Statistical Qty
Variables data	X-bar & R	Mean & Range
	X-tilde & R	Median & Range
	X-Rs	Individual values
Attributes data	P-chart	Percent defective
	Np-chart	Number of defectives
	C-chart	Number of defects
	U-chart	Number of defects per unit (area, time, length, etc.)

What SPC does not do

- SPC only determines whether a process is in statistical control NOT whether the process is producing within specifications nor whether the process is even capable of producing within specifications.
- We must rely on another measure AFTER we have assured that the process is in control using SPC.

S Chapter 14			

_	

Process Capability

- Process capability is the ability of the process, as it currently exists, to product within specifications.
- One measure known as C_p compares the natural variation of the process to the specification width.
- Another, more precise, measure known as C_{pk} compares the natural variation of the process to the specification width and target.

CBS Chapter 14

14-13

Process Capability Process Capability (PC) is the range in which "all" output can be produced – the inherent capability of the process. Definition: PC = 6σ

Process Capability Index

Index $C_{\rm pk}$ compares the spread and location of the process, relative to the specifications.

$$C_{pk}$$
 = the smaller of:
$$\begin{cases} C_{pk} = \frac{\text{Upper Spec Limit } - \overline{X}}{3\sigma} \\ \frac{\overline{X} - \text{Lower Spec Limit}}{3\sigma} \end{cases}$$

CBS Chapter 14

The Seven "New" Tools

- 1. Affinity diagram
- 2. Relational diagram
- 3. Tree diagram
- 4. Matrix diagram
- 5. Program decision process chart
- 6. Arrow diagram
- 7. Matrix data analysis

CBS Chapter 1

14-26

Affinity Diagram

A method to "get your arms around" a complex problem. Similar to a brainstorming session wherein each participant writes his/her idea for a cause on an index card.

The possible causes are then arranged into groups of similar causes. The groups might be functional areas.

(Group	1
	4	
	6	
	11	

CBS Chapter 14

Relational Diagram

Used to logically examine the interrelationships among the causes within a particular grouping.

The problem is written to the left and the causes are placed according to their relationship to the problem -- the further away the weaker the relationship.

Relationship Diagram Example Loses not defined vectoring surrent vectoring surrent

		Dept 1	Dept 2	Dept 3
	1	1	2	
	5		1	
T	10	3	1	2
T A S	3	2	3	1
S	4			1
K	6		1	2
	13	1	3	2
	2	2		1
	8		2	1
	12	1		2
	14			1
	7	3	2	1
	11	3	1	2
	9		2	1
	16		1	2
CBS	15		1	2

Matrix Diagram Example

The matrix L-diagram is often used to identify and assign responsibility for tasks identified in the tree diagram.

- 1 = primary
- 2 = secondary
- 3 = tertiary

14-34

What is QFD?

A specialized method for making customers part of the product development cycle.

It translates customer wants into what the organization produces enabling the organization to:

- · Prioritize customer needs;
- Find innovative responses to those needs; and,
- · Improve processes to maximize effectiveness.

3S Chapter 14

1 Customer Input Structure of QFD 2 Manufacturer's Current Requirements/Specifications to Suppliers 3 Planning Matrix importance rating 6 competition rating target values 2 scale-up needed sales points 4 Relationships 5 Prioritized list of 1 4 3 manufacturer's critical process requirements 6 Process requirement 5 trade-offs

