Aula 12 COLORAÇÃO DE GRAFOS

Grafos e Teoria da Complexidade

Professor: Fabio Tirelo

Coloração de Vértices

- \circ Seja G = (V,E) um grafo conexo simples
- O Uma coloração de vértices de G é uma atribuição de cores aos seus vértices de modo que vértices adjacentes não recebam a mesma cor
- O Exemplo:

Grafos K-Coloríveis, $\chi(G)$

- O Dizemos que um grafo *G* é *K*-colorível se *K* cores forem suficientes para colorir seus vértices
- O **número cromático** $\chi(G)$ é igual ao menor número K tal que G é K-colorível
- \circ No grafo abaixo $\chi(G) = 2$

Cliques

- \circ Seja G = (V,E) um grafo
- Um subconjunto $S \subseteq V$ é uma **clique** se $\forall v,w \in S$, tem-se $(v,w) \in E$
- O número de clique $\omega(G)$ é igual à cardinalidade da maior clique de S

Propriedades

$$\chi(G) \le \Delta(G) + 1$$
 e $\chi(G) \le \omega(G) + 1$

○ Se G não possuir circuitos ímpares e não for um grafo completo, então

$$\chi(G) \leq \Delta(G)$$
 e $\chi(G) \leq \omega(G)$

- **Teorema das 4 cores**: Se G for um grafo planar, então $\chi(G) \le 4$
- \circ Se $\chi(G) > 2$, então determinar o valor de $\chi(G)$ é um problema NP-Completo

Coloração de Arestas

- \circ Seja G = (V,E) um grafo conexo
- O Uma coloração de arestas de G é uma atribuição de cores às suas arestas de modo que arestas adjacentes não recebam a mesma cor
- O Exemplos:

Grafos K-Aresta-Coloríveis,

- Dizemos que um grafo G é K-aresta-colorível se K cores forem suficientes para colorir suas arestas
- O **índice cromático** $\chi'(G)$ é igual ao menor número K tal que G é K-aresta-colorível
- \circ No grafo abaixo $\chi'(G) = 3$

$$\chi'(K_{m,n}) =$$

$$\chi'(K_n) =$$

$$\chi'(C_n) =$$

$$\chi'(W_n) =$$

Propriedades e Exemplos

$$\Delta(G) \le \chi'(G) \le \Delta(G) + 1$$

 \circ Se G for um grafo bipartido, então

$$\chi'(G) = \Delta(G)$$

Coloração de Faces

- \circ Seja G = (V,E) um grafo planar
- O Uma **coloração de faces** de *G* é uma atribuição de cores às suas faces de modo que faces adjacentes não recebam a mesma cor
- O Um grafo é K-face-colorível se K cores forem suficientes para colorir suas faces
- O Aplicação: colorir mapas
- Propriedade:
 - O Todo grafo planar é 4-face colorível
 - O Prova pela coloração de vértices do dual

Alocação de Recursos

- O Sejam $R_1 ... R_k$ recursos a serem distribuídos para os elementos $E_1 ... E_n$
- Suponha que haja restrições da forma E_i não pode receber o mesmo recurso que E_j
- O Duas variantes:
 - É possível alocar os k recursos para os n elementos respeitando todas as restrições
 - Quantos recursos devem existir para que possamos alocar recursos distintos para elementos conflitantes
- O Solução: coloração do grafo de conflitos
 - O Vértices = elementos
 - Arestas = unem elementos conflitantes

- Uma universidade está preparando o vestibular para os seus n cursos
- O Para cada curso, os candidatos deverão realizar algumas provas específicas
 - O Computação: matemática, física
 - O Nutrição: química, biologia
 - O Arquitetura: física, matemática, história
 - O Medicina: química, biologia
- Ocomo definir os horários das provas de modo que os candidatos de cada curso façam no máximo uma prova por dia?

- Uma empresa possui N tarefas a serem executadas e M funcionários
- Cada funcionário já foi designado para um conjunto de tarefas
- Cada tarefa demandará a dedicação do funcionário durante um dia completo
- Quantos dias serão necessários para que todas as tarefas sejam concluídas?

- Suponha que N candidatos a uma vaga devam ser entrevistados individualmente por profissionais de uma empresa
- Os entrevistadores são escolhidos de acordo com a área de atuação que um está pleiteando
- O Como determinar o número mínimo de períodos de entrevista?

- O Uma escola está montando o horário do semestre
- Já foram definidos quais professores estarão ministrando aula em cada turma
- O Como determinar os horários das aulas?
- O Restrições possíveis:
 - O Mais de uma aula por semana da matéria
 - Professor restringe os dias da semana que podem ser utilizados na alocação
 - Recursos conflitantes (ex: salas, equipamentos)

Grafo de Linha, L(G)

- Seja *G* um grafo não-dirigido
- O grafo de linha (ou grafo adjunto) de G, L(G), é definido como:
 - \circ Os vértices de L(G) são as arestas de G
 - O Dois vértices são adjacentes em L(G) se as arestas correspondentes forem adjacentes em G
- \bigcirc Propriedade: $\chi'(G) = \chi(L(G))$

Coloração por Classe

- O Welsh e Powell, 1967
- \bigcirc Entrada: Grafo G = (V,E), com n vértices

$$C_i = \emptyset$$
, para $i = 1,...,n$
 $Y = V$; $k = 1$
Enquanto $Y \neq \emptyset$ faça
Para todo $v_i \in Y$ faça
Se $C_k \cap \Gamma(v_i) = \emptyset$ então
 $C_k = C_k \cup \{v_i\}; Y = Y - \{v_i\}$
 $k = k + 1$

Implementação

- \circ Entrada: um grafo G com vértices $v_1,...,v_n$
- \circ Saída: uma coloração válida de G

c = 0; // Inicia cor em 'cor 0'

Enquanto houver algum vértice não colorido faça

$$c = c + 1$$
;

Para i = 1 até n faça

Se (*v_i* não foi colorido)

e (não há vizinho de v_i com cor c)

Então atribua cor c a v_i