Tema 8: Distribuciones de Probabilidad Continuas

Profesora: Carmen Elvira Ramos Domínguez

Índice

- Distribución Uniforme Continua.
- Distribución Normal.
- Distribución Exponencial.
- Distribución de Gamma.
- Distribución Beta.
- Distribución Chi-Cuadrado.
- Distribución T de Student.
- Distribución F de Fisher-Snedecor.

Distribución Uniforme Continua

Definición: Una variable aleatoria X con función de

densidad: $f_X(x) = \frac{1}{(b-a)}$ $a \le x \le b$

se dice que sigue una Distribución Uniforme Continua.

Se denota $X \cong U[a,b]$.

Gráficamente $f_X(x)$ es:

Nota: La probabilidad de que la variable tome valores en un intervalo dentro del intervalo [a,b], sólo depende de la amplitud del intervalo.

Si
$$X \cong U[a,b] \Rightarrow \frac{X-a}{b-a} \cong U[0,1]$$

Distribución Uniforme Continua

La Función de Distribución de una variable $X \cong U[a,b]$

$$F_{X}(x) = \begin{cases} 0 & si \ x < a \\ \frac{x-a}{b-a} & si \ a \le x < b \\ 1 & si \ x \ge b \end{cases}$$

$$F(x)$$

$$1$$

$$a \qquad b \qquad X$$

La media y varianza de una $X \cong U[a,b]$ son:

$$\mu_X = E[X] = \frac{a+b}{2}$$
 y $\sigma_X^2 = V(X) = \frac{(b-a)^2}{Distribucion 2s}$ Continuas

distribución más utilizada para modelizar experimentos aleatorios ya que aparece de forma natural

- Distribuciones de pesos, alturas.
- ☐ Errores de Medida.
- Puntuaciones de exámenes.
- Distancia de frenado, etc..

Definición: Una variable aleatoria X con función de densidad $f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} - \infty < x < \infty$ tiene una distribución normal con parámetros $-\infty < \mu < \infty$, y $\sigma > 0$.

Se denota por $X \cong N(\mu, \sigma)$ y su media y varianza son:

$$E[X] = \mu \ y \ V(X) = \sigma^2$$

Es simétrica, luego tiene igual media, mediana y moda.

Su función de densidad es una curva simétrica en forma de campana llamada Campana de Gauss. Por eso se la llama también Distribución Gaussiana.

Función de Densidad de N(0,1)

Los valores de μ y σ determinan la forma de la función de densidad. El valor de μ determina el centro y el de σ la dispersión. El máximo se alcanza en x= μ y vale $\frac{1}{\sqrt{2\pi}\sigma}$.

La función de densidad de una $N(\mu,\sigma)$ para distintos valores de μ y σ .

a)
$$\mu = -3$$
; $\mu = 0$; $\mu = 3$

b)
$$\sigma = 1$$
; $\sigma = 2$; y $\sigma = 4$

Entre la media y una desviación típica tenemos siempre la misma probabilidad: aprox. 68%

Entre la media y dos desviaciones típicas se tiene aprox.

95%

Definición: Una variable aleatoria normal con media $\mu = 0$ y varianza $\sigma^2 = 1$ recibe el nombre de variable aleatoria Normal Estándar y se denota por Z.

Proposición: Sea X una variable aleatoria normal con $E[x] = \mu y V(X) = \sigma^2$, entonces la variable

$$Z = \frac{X - \mu}{\sigma} \cong N(0,1)$$

A este proceso se le denomina tipificar la variable. Su función de densidad es:

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} \quad z \in R$$

que como vemos no depende de ningún parámetro.

Uso de las Tablas de la Normal N(0,1): En la tabla aparecen las probabilidades de la cola superior. Esto es,

Archi	ivo Inicio	Insertar	Diseño	de página	Fórmulas	Datos	Revisar	Vista
	M3	* (j.	Se .				
24	А	В	С	D	E	F	G	Н
1		Areas bajo la curva normal, N(0; 1)						
2	Zα	0,00	0,01	0,02	0,03	0,04	0,05	0,06
3	0,0	0,5000	0,4960	0,4920	0,4880	0,4840	0,4801	0,4761
4	0,1	0,4602	0,4562	0,4522	0,4483	0,4443	0,4404	0,4364
5	0,2	0,4207	0,4168	0,4129	0,4090	0,4052	0,4013	0,3974
6	0,3	0,3821	0,3783	0,3745	0,3707	0,3669	0,3632	0,3594
7	0,4	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264	0,3228
8	0,5	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912	0,287
9	0,6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578	0,2546
10	0,7	0,2420	0,2389	0,2358	0,2327	0,2296	0,2266	0,2236
11	0,8	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977	0,1949
12	0,9	0,1841	0,1814	0,1788	0,1762	0,1736	0,1711	0,1685
13	1,0	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	0,1446
14	1,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251	0,1230
15	1,2	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056	0,1038
16	1,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885	0,0869
17	1,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	0,072
18	1,5	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606	0,0594
19	1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	0,0485
20	1,7	0,0446	0,0436	0,0427	0,0418	0,0409	0,0401	0,0392
21	1,8	0,0359	0,0351	0,0344	0,0336	0,0329	0,0322	0,0314

Las abcisas z_{α} están en los ejes y las probabilidades en el interior de la tabla.

Sean los siguientes casos de probabilidades:

1. $P(Z \ge z_{\alpha}) = \alpha$. Ejemplo: $P(z \ge 0.42) = 0.3372$

-000000	vo Inicio	Insertar		o de página	Fórmulas	Datos	Revisar
	N13	- (*		fx			
di	A	В	С	D	E	F	G
1	Areas bajo la curva normal, N(0; 1)						
2	Zα	0,00	0,01	0,02	0,03	0,04	0,05
3	0,0	0,5000	0,4960	0,4920	0,4880	0,4840	0,4801
4	0,1	0,4602	0,4562	0,4522	0,4483	0,4443	0,4404
5	0,2	0,4207	0,4168	0,4129	0,4090	0,4052	0,4013
6	0,3	0,3821	0,3783	0,3745	0,3707	0,3669	0,3632
7	0,4	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264
8	0,5	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912
9	0,6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578
10	0,7	0,2420	0,2389	0,2358	0,2327	0,2296	0,2266
11	0,8	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977
12	0,9	0,1841	0,1814	0,1788	0,1762	0,1736	0,1711
13	1,0	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469
14	1,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251
15	1,2	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056
16	1,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885
17	1,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735
18	1,5	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606
19	1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495
20	1,7	0,0446	0,0436	0,0427	0,0418	0,0409	0,0401

Tener en cuenta que : $P(Z > z_{\alpha}) = P(Z \ge z_{\alpha})$ ya que la probabilidad de un punto es 0.

2. $P(Z \ge z_{\alpha}) = \alpha$, pero z_{α} no viene en la tabla. Ejemplo: $P(Z \ge 0.427)$ Se debe interpolar: $P(Z \ge 0.42) = 0.3372$ y $P(Z \ge 0.43) = 0.3336$

Archi	vo Inicio	Insertar	Diseño	de página	Fórmulas	Datos	Revisar
	M7	- (*	J	Sec .			
4	А	В	С	D	E	F	G
1	22			Areas bajo I	a curva norr	nal, N(0; 1)	
2	Zα	0,00	0,01	0,02	0,03	0,04	0,05
3	0,0	0,5000	0,4960	0,4920	0,4880	0,4840	0,4801
4	0,1	0,4602	0,4562	0,4522	0,4483	0,4443	0,4404
5	0,2	0,4207	0,4168	0,4129	0,4090	0,4052	0,4013
6	0,3	0,3821	0,3783	0,3745	0,3707	0,3669	0,3632
7	0,4	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264
8	0,5	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912
9	0,6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578
10	0,7	0,2420	0,2389	0,2358	0,2327	0,2296	0,2266
11	0,8	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977
12	0,9	0,1841	0,1814	0,1788	0,1762	0,1736	0,1711
13	1,0	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469
14	1,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251
15	1,2	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056
16	1,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885
17	1,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735
18	1,5	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606
19	1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495
20	1,7	0,0446	0,0436	0,0427	0,0418	0,0409	0,0401
21	1,8	0,0359	0,0351	0,0344	0,0336	0,0329	0,0322

$$\frac{0.43 - 0.42}{0.3372 - 0.3336} = \frac{0.43 - 0.427}{y}$$

$$y = \frac{0.003 \times 0.0036}{0.01} = 0.00108$$

Solución: $P(Z \ge 0.427) = 0.3336 + 0.00108 = 0.33468$

3. $P(Z \le z_{\alpha})$ con $z_{\alpha} > 0$, entonces $P(Z \le z_{\alpha}) = 1$ - $P(Z > z_{\alpha})$. Ejemplo: $P(Z \le 2.12) = 1 - P(Z > 2.12) = 1$ - 0.0170 = 0.983

4. $P(Z \le z_{\alpha})$ con $z_{\alpha} < 0$, entonces debido a que la función es simétrica $P(Z \le z_{\alpha}) = P(Z \ge -z_{\alpha})$.

Ejemplo: $P(Z \le -0.71) = P(Z \ge 0.71) = 0.2389$

5. $P(Z \ge z_{\alpha})$ con $z_{\alpha} < 0$, entonces mediante el complementario $P(Z \ge z_{\alpha}) = 1 - P(Z < z_{\alpha}) = 1 - P(Z > - z_{\alpha})$.

Ejemplo: $P(Z \ge -1.5) = 1 - P(Z < -1.5) = 1 - P(Z > 1.5) = 1 - 0.0668$ = 0.9332

- 6. $P(a \le Z \le b) = P(Z \ge a) P(Z > b)$ y para el cálculo de estas dos últimas probabilidades se usan los apartados anteriores.
- 7. $P(|Z a| \le b) = P(-b \le Z a \le b) = P(a-b \le Z \le a+b)$.
- 8. $P(|Z a| \ge b) = P(Z a \le -b) + P(Z a \ge b) =$ = $P(Z \le a-b) + P(Z \ge a+b)$

Búsqueda del punto z_{α} dado α .

1. $P(Z \ge a) = \alpha \cos \alpha < 0.5$.

Ejemplo: $P(z \ge a) = 0.0778$ entonces a = 1.42

Archi	vo Inicio	Insertar	Diseño	de página	Fórmulas	Datos	Revisar	
D17 ▼ (* f _x			=1-DISTR.NORM.ESTAND.N(\$A17+D\$2;V					
di	A	В	С	D	E	F	G	
1	Areas bajo la curva normal, N(0; 1)							
2	Zα	0,00	0,01	0,02	0,03	0,04	0,05	
3	0,0	0,5000	0,4960	0,4920	0,4880	0,4840	0,4801	
4	0,1	0,4602	0,4562	0,4522	0,4483	0,4443	0,4404	
5	0,2	0,4207	0,4168	0,4129	0,4090	0,4052	0,4013	
6	0,3	0,3821	0,3783	0,3745	0,3707	0,3669	0,3632	
7	0,4	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264	
8	0,5	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912	
9	0,6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578	
10	0,7	0,2420	0,2389	0,2358	0,2327	0,2296	0,2266	
11	0,8	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977	
12	0,9	0,1841	0,1814	0,1788	0,1762	0,1736	0,1711	
13	1,0	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	
14	1,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251	
15	1,2	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056	
16	1,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885	
17	1,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	
18	1,5	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606	
19	1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	
20	1,7	0,0446	0,0436	0,0427	0,0418	0,0409	0,0401	

2. $P(Z \le a) = \alpha \cos \alpha < 0.5$. Al ser la gráfica simétrica entonces $P(Z \le a) = P(Z \ge -a) = \alpha \cos \alpha < 0.5$, y sería como en el apartado anterior pero buscando -a.

Ejemplo: $P(Z \le a) = 0.00820 = P(Z \ge -a)$ entonces $-a=2.4 \rightarrow a=-2.4$

3. $P(Z \le a) = \alpha \cos \alpha > 0.5$. Entonces como la gráfica es simétrica, entonces $P(Z > a) = 1-\alpha$ y además $1-\alpha < 0.5$, lo que nos conduce al apartado anterior.

Ejemplo: $P(Z \le a) = 0.6554 \Rightarrow P(Z > a) = 1 - 0.6554 = 0.3446 y a = 0.4$

4. $P(Z \ge a) = \alpha \text{ con } \alpha \ge 0.5 \text{ entonces aplicamos igual que antes}$ $P(Z < a) = 1 - \alpha \text{ y vamos al caso 2}.$

Ejemplo:
$$P(Z \ge a) = 0.7054 \Rightarrow P(Z < a) = 1-0.7054 = 0.2946 \Rightarrow P(Z > -a) = 0.2946 \Rightarrow -a = 0.54 \Rightarrow a = -0.54$$

5. $P(Z \ge a) = \alpha$ pero α no está en las tablas. Se tiene que interpolar.

Ejemplo: $P(Z \ge a) = 0.152$. Si se busca en la tabla se tiene: $P(Z \ge 1.03) = 0.1515$ y $P(Z \ge 1.02) = 0.1539$

$$\frac{1.03 - 1.02}{0.1539 - 0.1515} = \frac{x}{0.152 - 0.1515}$$

$$x = \frac{0.0005 \times 0.01}{0.0024} = 0.00208$$

Solución: a = 1.03-0.00208 = 1.02792

Relación Binomial-Normal

La distribución Normal es una buena aproximación de la Binomial bajo ciertas condiciones:

Proposición: Sea X una variable aleatoria Bi(n,p) con n lo suficientemente grande y p y q no son próximos a cero (esto es, np> 5 y nq>5) entonces $X \cong N(np, \sqrt{npq})$ o

$$Z = \frac{X - np}{\sqrt{npq}} \cong N(0,1)$$

Nota: Téngase en cuenta que se debe considerar un factor de corrección:

X es un variable discreta X es un variable continua

$$P(X = k) \ge 0$$

$$P(X = k) = 0$$

$$P(X = k) = P(k-0.5 \le X \le k+0.5)$$

 $P(a < X < b) = P(a-0.5 < X < b+0.5)$

Relación Binomial-Normal

Ejemplo: Supóngase que en un canal de comunicación digital, el nº de bits que se reciben de forma errónea se distribuye como una Binomial, y que la probabilidad de recibir un bit de forma errónea es 0.1. Se transmiten n=50 bits.

- ► La probabilidad exacta de que se presenten dos o menos errores es: $P(X \le 2) = {50 \choose 0} 0.9^{50} + {50 \choose 1} 0.9^{49} 0.1 + {50 \choose 2} 0.9^{48} 0.1^2 = 0.11$
- > En base a la aproximación Normal sería:

$$P(X \le 2) = P\left(\frac{X - 5}{2.12} \le \frac{2 - 5}{2.12}\right) = P(Z \le -1.415) = 0.08$$

$$P(X \le 2.5) = P\left(\frac{X - 5}{2.12} \le \frac{2.5 - 5}{2.12}\right) = P(Z \le -1.179) = P(Z \ge 1.179)$$
$$= P(Z \ge 1.18) = 0.1190$$

Relación Poisson-Normal

Proposición: Sea X una variable aleatoria Poisson con $E[X]=\lambda$ y $V(X)=\lambda$ entonces si $\lambda > 5$ se puede aproximar a

$$Z = \frac{X - \lambda}{\sqrt{\lambda}} \cong N(0,1).$$

Ejemplo: Supóngase que el nº de partículas de asbesto en un centímetro cuadrado de polvo tiene un distribución Po(1000). Si se analiza un cm² de polvo ¿Cuál es la probabilidad de encontrar menos de 950 partículas?.

➤ La probabilidad exacta sería:

$$P(X \le 950) = \sum_{x=0}^{950} \frac{e^{-1000}1000^x}{x!}$$

➤ En base a la aproximación Normal sería:

$$P(X \le 950.5) = P\left(Z \le \frac{950.5 - 1000}{\sqrt{1000}}\right) = P(Z \le -1.565)$$
$$= P(Z \ge 1.565) = 0.0588$$

Distribución Exponencial

Definición: La variable aleatoria X que mide el tiempo entre dos ocurrencias sucesivas de un proceso de Poisson de media $\theta>0$, se dice que sigue una distribución Exponencial con parámetro θ . Se denota por $X \cong \text{Exp}(\theta)$.

Su función de densidad es: $f_X(x) = \theta e^{-\theta x}$ x > 0

Distribución Exponencial

La media y varianza de una variable $X \cong Exp(\theta)$ son:

$$E[X] = \frac{1}{\theta}$$
 y $V(X) = \frac{1}{\theta^2}$

Se suele usar en modelos de duración de componentes electrónicas.

Propiedad de Amnesia: La probabilidad de que una componente funcione más de a+b unidades de tiempo sabiendo que lleva funcionando a unidades es igual a la probabilidad de que una nueva componente funciones más de b unidades de tiempo.

$$P(X \ge a + b / X \ge a) = P(X \ge b)$$

La exponencial de parámetro θ es igual a una $\Gamma(\theta,1)$.

Distribución Gamma

Definición: Sea X una variable aleatoria con función de densidad $f_X(x) = \frac{a^p}{\Gamma(p)} e^{-ax} x^{p-1} \quad x>0,$

con a y p > 0 y $\Gamma(p) = \int_0^\infty x^{p-1} e^{-x} dx$, entonces se dice que X sigue una distribución Gamma de parámetros a y p. Se denota por $\Gamma(a,p)$. "1/a" llamado parámetro de escala y "p", parámetro de forma.

Se tiene:

- \Box $\Gamma(p) = (p-1) \times \Gamma(p-1)$
- \square Si p es un entero $\Rightarrow \Gamma(p) = (p-1)!$
- □ Si p=1/2 \Rightarrow $\Gamma(1/2) = \sqrt{\pi}$

Su media y varianza son:

$$E[X] = \frac{p}{a}$$
 y $V(X) = \frac{p}{a^2}$

Distribución Gamma

Proposición: Sean X_1 , X_2 , ..., X_n , n variables aleatorias todas independientes entre sí e idénticamente distribuidas como una $\Gamma(a,1)$ entonces:

$$X = \sum_{i=1}^{n} X_i \cong \Gamma(a, n)$$

Proposición: Sea una variable aleatoria $X \cong \Gamma(a,p)$ y c una constante $\Rightarrow cX \cong \Gamma(a/c,p)$.

Distribución Beta

Definición: Sea X una variable aleatoria con función de densidad

$$f_X(x) = \frac{1}{\beta(p,q)} x^{p-1} (1-x)^{q-1} \quad 0 < x < 1$$

con p y q > 0 y $\beta(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx$, entonces se dice que X sigue una distribución Beta de parámetros p y q. Se denota por X $\cong \beta(p,q)$.

Se tiene que
$$\beta(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

Su media y varianza son:

$$E[X] = \frac{p}{p+q}$$
 y $V(X) = \frac{pq}{(p+q+1)(p+q)^2}$

Distribución Weibull

Definición: Sea X una variable aleatoria con función de

densidad
$$f_X(x) = \frac{\alpha}{\beta^{\alpha}} x^{\alpha - 1} e^{-\left(\frac{x}{\beta}\right)^{\alpha}} \quad x \ge 0$$

con α y β > 0 entonces se dice que X sigue una distribución Weibull de parámetros α y β . Se denota por $X \cong W(\alpha, \beta)$.

Su media y varianza son:

$$E[X] = \beta \Gamma \left(1 + \frac{1}{\alpha} \right)$$

$$V(X) = \beta^2 \left(\Gamma \left(1 + \frac{2}{\alpha} \right) - \left(\Gamma \left(1 + \frac{1}{\alpha} \right) \right)^2 \right)$$

Definición: Sea X una variable aleatoria Normal estándar, N(0,1), entonces se define $Y = X^2$, y se dice que sigue una distribución Chi-cuadrado de Pearson con 1 grado de libertad. Se denota por χ_1^2 .

Su función de densidad es: $f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x} x^{-\frac{1}{2}}$ x > 0,

lo que equivale a una $\Gamma\left(\frac{1}{2}, \frac{1}{2}\right)$.

Definición: Sean X_1 , X_2 , ..., X_n , n variables aleatorias independientes entre sí e idénticamente distribuidas según una N(0,1) se define

$$Y = X_1^2 + X_2^2 + ... + X_n^2$$

Y se dice que sigue una distribución Chi-cuadrado de Pearson con n grados de libertad. Se denota por χ_n^2 .

Su función de densidad es:

$$f_X(x) = \frac{1}{2^{n/2}\Gamma(\frac{n}{2})}e^{-\frac{x}{2}}x^{\frac{n}{2}-1} \quad x > 0$$

Y la función $\Gamma(p) = \int_0^\infty x^{p-1} e^{-x} dx$.

Es equivalente a una distribución $\Gamma\left(\frac{1}{2}, \frac{n}{2}\right)$.

Su media y varianza son:

$$\mu = E[\chi_n^2] = n$$
 y $\sigma^2 = V(\chi_n^2) = 2n$

Aproximación a la Normal. Sea $X \cong \chi_n^2$ entonces se tiene:

- 1. Para 30 < n \leq 200 que $\sqrt{2\chi_n^2} \cong N(\sqrt{2n-1}, 1)$.
- 2. Para n > 200 que $\chi_n^2 \cong N(n, \sqrt{2n})$

- \triangleright El campo de variabilidad es de $(0, +\infty)$
- La función de densidad es asimétrica positiva.
- Depende del parámetro n, por tanto, la curva no es única.
- La función de densidad se hace más simétrica, casi gaussiana cuando aumentan los grados de libertad.

Proposición: Sean X_1 y X_2 dos variables aleatorias independientes y cada una con una distribución Chi-Cuadrado con n_1 y n_2 grados de libertad, entonces X_1+X_2 también tiene una distribución Chi-cuadrado con n_1+n_2 grados de libertad.

Distribución t de Student

Definición: Sean Z e Y dos variables aleatorias independientes, Z una variable Normal estándar, N(0,1), e Y una Chi-Cuadrado con n grados de libertad χ_n^2 , se define la variable: $t_n = \frac{Z}{\sqrt{Y/_n}}$

Y se dice que sigue una distribución t de Student con n grados de libertad.

Su función de densidad es:

$$f(t_n) = \frac{1}{\sqrt{n\pi}} \frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})} \frac{1}{(1+\frac{t^2}{n})^{\frac{(n+1)}{2}}} - \infty < t < \infty$$

Su media y varianza son:

$$E[X] = 0 \text{ y } V(X) = \frac{n}{n-2}$$

Distribución T de Student

- \triangleright Su Campo de Variabilidad va de $(-\infty,\infty)$
- Es simétrica con respecto al eje de ordenadas. Las media, mediana y moda coinciden en 0.
- Depende del parámetro n. Cuando aumentan los grados de libertad (n>30), más se acerca a N(0,1).
- ➤ La curva tiene forma de campana uniforme centrada en el 0 y con colas más extensas que la N(0,1).

Distribución T de Student

Se cumplen las siguientes relaciones al ser simétrica:

$$ightharpoonup P(t \le -t_{\alpha,n}) = P(t \ge t_{\alpha,n}) = \alpha$$

$$> P(t \ge -t_{\alpha,n}) = 1 - P(t \le -t_{\alpha,n}) = 1 - \alpha$$

$$\succ$$
 $t_{1-\alpha,n} = -t_{\alpha,n}$

Distribución F de Fisher-Snedecor

Definición: Sean X_1 y X_2 dos variables aleatorias independientes entre sí, X_1 una variable Chi-Cuadrado con n_1 grados de libertad $\chi_{n_1}{}^2$ y X_2 una variable Chi-Cuadrado con n_2 grados de libertad $\chi_{n_2}{}^2$ se define la

variable:
$$F = \frac{x_1/n_1}{x_2/n_2}$$

y se dice que sigue una distribución F de Fisher Snedecor con n₁ y n₂ grados de libertad.

Su función de densidad es:

$$f(x) = \frac{\Gamma(\frac{n_1 + n_2}{2}) (\frac{n_1}{n_2})^{\frac{n_1}{2}}}{\Gamma(\frac{n_1}{2}) \Gamma(\frac{n_2}{2})} \frac{\frac{n_1}{2} - 1}{(1 + \frac{n_1}{n_2} x)^{\frac{(n_1 + n_2)}{2}}} \quad x > 0$$

Distribución F de Fisher-Snedecor

- \triangleright Su campo de variabilidad va de $(0, \infty)$.
- ➤ La curva es asimétrica positiva, pero dicha asimetría va disminuyendo a medida que n₁ y n₂ toman valores cada vez más grandes.
- Depende de los parámetros n₁ y n₂, así que la curva no es única.

Distribución F de Fisher-Snedecor

Su media y varianza son:

$$E[X] = \frac{n_1}{n_1 - 2} y V(X) = \frac{2n_1^2(n_2 + n_1 + 2)}{n_2(n_1 - 2)^2(n_1 - 4)}$$

La tabla de la F de Snedecor sólo viene para α < 0.5 para los α > 0.5 se utiliza la expresión:

$$F_{\alpha,n_1,n_2} = \frac{1}{F_{1-\alpha,n_2,n_1}}$$