1.

Gen 1

```
Predicted genes/exons:

Gn.Ex Type S .Begin ...End .Len Fr Ph I/Ac Do/T CodRg P.... Tscr..

1.01 Sngl + 53 3781 3729 1 0 110 36 3485 0.849 336.62

1.02 PlyA + 5597 5602 6 1.05

2.02 PlyA - 9312 9307 6 1.05

2.01 Sngl - 29533 29201 333 1 0 43 43 346 0.311 21.37

2.00 Prom - 46857 46818 40 -3.05

3.03 PlyA - 46923 46918 6 1.05

3.02 Term - 51355 51246 110 2 2 82 36 136 0.870 5.49

3.01 Init - 56840 56606 235 2 1 67 19 205 0.368 9.85
```

Eksony trzech różnych typów:

Тур	Start	Koniec	Nić	Ramka	Prwdpbd.
				odczytu	
Sngl	53	3781	+wiodąca	1	0.849
Term	51355	51246	-	2	0.870
			komplementarna		
Init	56840	56606	-	2	0.368
			komplementarna		

Gen 2

Gn.Ex	Туре	S	.Begin	End	.Len	Fr	Ph	I/Ac	Do/T	CodRg	P	Tscr
1.01	Intr		1980	2116	137	1	2	78	48	59	0.185	1.19
1.02	Term		2827	3315	489	0	9	93	42	303	0.304	20.86
1.03	PlyA		5001	5006	6							1.05
2.00	Prom		14393	14432	40							-4.46
2.01	Init	+	17439	17665	227	2	2	60	105	153	0.398	10.69
2.02	Intr		30289	30373	85	1	1	62	73	25	0.002	-1.78
2.03	Intr		38134	38153	20	0	2	105	105	45	0.007	3.31
2.04	Intr	+	67150	67248	99	1	9	129	76	-12	0.034	0.93
2.05	Intr	+	71254	71442	189	1	9	105	80	100	0.275	9.60
2.06	Intr		74411	74468	58	2	1	133	65	50	0.388	6.09
2.07	Intr		74785	74893	109	0	1	66	115	-15	0.256	-1.14
2.08	Intr		80756	80916	161	9	2	-5	34	167	0.392	1.71
2.09	Intr		83127	83209	83	2	2	95	109	29	0.938	4.14
2.10	Intr		84384	84537	154	0	1	89	78	255	0.985	24.67
2.11	Term		86104	86121	18	0	9	100	48	23	0.537	-2.18
2.12	PlyA		86465	86470	6							1.05
3.06	PlyA		86623	86618	6							1.05
3.05	Term		93759	93695	65	1	2	58	46	76	0.820	-1.55
3.04	Intr		94003	93882	122	0	2	66	110	69	0.921	7.04
3.03	Intr		95191	95013	179	1	2	20	42	155	0.560	2.82
3.02	Intr		97559	97301	259	1	1	62	58	236	0.633	15.47
3.01	Init		98484	98468	17	0	2	68	88	2	0.335	-1.95
3.00	Prom		100586	100547	40							-2.46
				100920								-6.46
				101737					72		0.747	
				108737							0.446	
				112726			9		100		0.795	
				114249					107		0.983	
				115968			1	81	88		0.935	
				131461							0.005	
				132623							0.013	
				141725							0.000	
				144155			1				0.991	
				144530			9	78	50	116	0.977	
4.11	PlyA	+	146631	146636	6							1.05

5.04	PlyA		149081	149076	6						1.05
5.03	Term		162574	162452	123	1	0	94	49	106 0.952	5.68
5.02	Intr		165660	165530	131	1	2	75	81	62 0.662	4.61
5.01	Init		181717	181636	82	1	1	54	100	57 0.252	4.63
5.00	Prom		191787	191748	40						-3.06
6.00	Prom	+	198088	198127	40						-5.86
6.01	Init	+	201368	201418	51	1	8	80	90	75 0.568	8.09
6.02	Intr	+	203136	203332	197	2	2	35	33	161 0.032	3.51
6.03	Intr	+	215457	215652	196	0	1	65	17	99 0.012	-0.08
6.04	Intr	+	217079	217282	204	1	0	-15	83	123 0.089	0.90
6.05	Intr	+	228055	228159	105	0	0	99	101	154 0.910	18.21
6.06	Term	+	229533	229637	105	2	0	91	46	70 0.468	1.51
6.07	PlyA	+	229817	229822	6						-0.45
7.04	PlyA		230423	230418	6						-0.45
7.03	Term		231351	231205	147	0	0	112	44	79 0.975	3.80
7.02	Intr		232661	232520	142	1	1	59	59	126 0.597	7.16
7.01	Init		236106	236003	104	0	2	66	115	71 0.330	7.03
7.00	Prom		246212	246173	40						-2.46
8.05	PlyA		246496	246491	6						-0.45
8.04	Term		246875	246733	143	0	2	72	32	116 0.049	2.49
8.03	Intr		251953	251692	262	1	1	121	40	129 0.191	8.46
8.02	Intr		252608	252468	141	2	0	54	68	86 0.589	3.75
8.01	Init		283040	282942	99	2	0	73	98	33 0.467	3.06
8.00	Prom		289161	289122	40						-1.76
9.03	PlyA		289531	289526	6						1.05
9.02	Term		291994	291932	63	1	0	114	47	67 0.950	3.09
9.01	Init		293194	293096	99	1	0	47	106	113 0.777	7.27
9.00	Prom	-	298651	298612	40						-6.26

```
10.00 Prom + 301959 301998 40
                                                       -3.76
10.01 Init + 302859 302923 65 2 2 79 110
                                            113 0.789 11.38
10.02 Intr + 306313 306406 94 1 1
                                   35 86
                                            58 0.082
10.03 Intr + 331167 331370 204 2 0
                                  85
                                       53
                                            99 0.388
                                                       5.50
10.04 Term + 335668 335760
                         93 0 0 125 40
                                            108 0.904
                                                       7.53
10.05 PlyA + 339535 339540
                                                       1.05
11.04 PlyA - 339831 339826
                                                       1.05
11.03 Term - 340093 339994 100 0 1 36 44
                                           113 0.875 -0.70
11.02 Intr - 342253 342180
11.01 Init - 342727 342578 150 1 0
                                   50 110
                                             71 0.563
                                                       5.54
```

Eksony trzech różnych typów:

Тур	Start	Koniec	Nić	Ramka	Prwdpbd.
				odczytu	
Intr	84384	84537	+wiodąca	0	0.985
Init	101351	101737	+wiodąca	1	0.747
Term	335668	335760	+wiodąca	0	0.904

2.

Gen 1

Blast wykrył gen IRS1 w sekwencji pierwszego pliku.

Gen ten koduje białko podstawowe receptora insuliny. Funkcja genu IRS1 jest ściśle związana z regulacją sygnałów przekazywanych przez receptor insuliny.

Gen 2

Tutaj Blast wyszukiwał bardzo długo i przez to został przekroczony limit.

Gen 1

Współrzędne eksonu

```
CDS
                53..3781
                /gene="IRS1"
                /gene_synonym="HIRS-1"
                /codon_start=1
                /product="insulin receptor substrate 1"
                /protein id="NP 005535.1"
                /db_xref="CCDS:CCDS2463.1"
                /db_xref="GeneID:3667"
                /db_xref="HGNC:HGNC:6125"
                /db_xref="MIM:<u>147545</u>"
                /translation="MASPPESDGFSDVRKVGYLRKPKSMHKRFFVLRAASEAGGPARL
                EYYENEKKWRHKSSAPKRSIPLESCFNINKRADSKNKHLVALYTRDEHFAIAADSEAE
                QDSWYQALLQLHNRAKGHHDGAAALGAGGGGGSCSGSSGLGEAGEDLSYGDVPPGPAF
                KEVWQVILKPKGLGQTKNLIGIYRLCLTSKTISFVKLNSEAAAVVLQLMNIRRCGHSE
                NFFFIEVGRSAVTGPGEFWMQVDDSVVAQNMHETILEAMRAMSDEFRPRSKSQSSSNC
                SNPISVPLRRHHLNNPPPSQVGLTRRSRTESITATSPASMVGGKPGSFRVRASSDGEG
                TMSRPASVDGSPVSPSTNRTHAHRHRGSARLHPPLNHSRSIPMPASRCSPSATSPVSL
                SSSSTSGHGSTSDCLFPRRSSASVSGSPSDGGFISSDEYGSSPCDFRSSFRSVTPDSL
                GHTPPARGEEELSNYICMGGKGPSTLTAPNGHYILSRGGNGHRCTPGTGLGTSPALAG
                DEAASAADLDNRFRKRTHSAGTSPTITHQKTPSQSSVASIEEYTEMMPAYPPGGGSGG
                RLPGHRHSAFVPTRSYPEEGLEMHPLERRGGHHRPDSSTLHTDDGYMPMSPGVAPVPS
                GRKGSGDYMPMSPKSVSAPQQIINPIRRHPQRVDPNGYMMMSPSGGCSPDIGGGPSSS
                SSSSNAVPSGTSYGKLWTNGVGGHHSHVLPHPKPPVESSGGKLLPCTGDYMNMSPVGD
                SNTSSPSDCYYGPEDPOHKPVLSYYSLPRSFKHTORPGEPEEGARHOHLRLSTSSGRL
                LYAATADDSSSSTSSDSLGGGYCGARLEPSLPHPHHQVLQPHLPRKVDTAAQTNSRLA
                RPTRLSLGDPKASTLPRAREQQQQQQPLLHPPEPKSPGEYVNIEFGSDQSGYLSGPVA
                FHSSPSVRCPSQLQPAPREEETGTEEYMKMDLGPGRRAAWQESTGVEMGRLGPAPPGA
                ASICRPTRAVPSSRGDYMTMQMSCPRQSYVDTSPAAPVSYADMRTGIAAEEVSLPRAT
                MAAASSSSAASASPTGPQGAAELAAHSSLLGGPQGPGGMSAFTRVNLSPNRNQSAKVI
                RADPOGCRRRHSSETFSSTPSATRVGNTVPFGAGAAVGGGGGSSSSSEDVKRHSSASF
                ENVWLRPGELGGAPKEPAKLCGAAGGLENGLNYIDLDLVKDFKOCPOECTPEPOPPPP
                PPPHOPLGSGESSSTRRSSEDLSAYASISFOKOPEDRO"
```

4.

Tak, predykcja GENSCANA była prawidłowa, ponieważ prawdziwy ekson znajduje się na współrzędnych 53-3781, czyli dokładnie takich jak przewidywany ekson.

Zadanie 2

Myślę, że w tym białku występuje struktura drugorzędowa typu alfahelisa.

Spodziewałbym się, że mapa Ramachandrana wyglądałaby tak, iż większość aminokwasów znajdowałaby się w którymś z dwóch okienek, tak jak na wykresie z wykładu.

Wykres:

Zgodny z oczekiwaniami. Potwierdzający hipotezę struktury alfahelisy.

Wybrałem białko Antistasin.

Wykres Ramachandrana:

Tym razem większość znajduje się w lewym górnym rogu, czyli w ćwiartce charakterystycznej dla struktury z arkuszami beta. Było to spodziewane, gdyż takie białko właśnie wybraliśmy.