- Actuarial, Statistical, and Financial Formulas Reference Document
 - Aligned with IFOA Standards
 - 1. Financial Mathematics
 - Time Value of Money
 - Additional Financial Mathematics Formulas
 - 2. Actuarial Mathematics
 - Life Contingencies
 - Additional Life Contingencies Formulas
 - Mortality and Survival Functions
 - Additional Mortality and Survival Functions
 - Commutation Functions (IFOA)
 - Additional Commutation Functions
 - 3. Probability and Statistics
 - Distributions
 - Additional Distributions
 - Expectation and Variance
 - Additional Expectation and Variance Formulas
 - Hypothesis Testing
 - Additional Hypothesis Testing Formulas
 - 4. Financial Derivatives
 - Additional Financial Derivatives Formulas
 - Additional Actuarial Formulas
 - 5. Regulations and Standards (IFRS 17)
 - Key Considerations under IFRS 17
 - 6. IFRS 17 Insurance Contracts
 - Measurement Models
 - Risk Adjustment Calculation Methods
 - CSM Adjustments
 - 7. Risk Measures
 - Value at Risk and Related Measures
 - Risk Adjusted Performance Measures

Actuarial, Statistical, and Financial Formulas Reference Document

Aligned with IFOA Standards

1. Financial Mathematics

Time Value of Money

1. Compound Interest (Accumulation Factor)

$$FV = PV \cdot (1+i)^n$$
 or $FV = PV \cdot e^{\delta n}$

- *i*: Annual effective interest rate.
- δ : Force of interest ($\delta = \ln(1+i)$).
- 2. Discount Factor

$$v = \frac{1}{1+i} = e^{-\delta}$$

- 3. Present Value (PV) of Annuity-Certain
 - o Annuity-immediate (payments at end of period):

$$a_{\overline{\mathbf{n}}} = \frac{1 - v^n}{i}$$

o Annuity-due (payments at start of period):

$$\ddot{a}_{\overline{\mathbf{n}}|} = \frac{1 - v^n}{d}$$
 where $d = \frac{i}{1 + i}$

4. Future Value (FV) of Annuity-Certain

$$s_{\overline{\Pi}} = \frac{(1+i)^n - 1}{i}, \quad \ddot{s}_{\overline{\Pi}} = \frac{(1+i)^n - 1}{d}$$

Additional Financial Mathematics Formulas

- 1. Perpetuity
 - Annuity-immediate:

$$a_{\langle \infty \rangle} = \frac{1}{i}$$

Annuity-due:

$$\ddot{a}_{\langle \infty \rangle} = \frac{1}{d}$$

2. Varying Annuities

Increasing Annuity-Immediate:

$$(Ia)_{\overline{\Pi}} = \frac{\ddot{a}_{\overline{\Pi}} - nv^n}{i}$$

Increasing Annuity-Due:

$$(I\ddot{a})_{\overline{\Pi}} = \frac{\ddot{a}_{\overline{\Pi}} - nv^n}{d}$$

3. Continuous Annuities

Present Value:

$$\bar{a}_{\overline{\mathbf{n}}} = \frac{1 - v^n}{\delta}$$

Future Value:

$$\bar{s}_{\overline{\mathbf{n}}} = \frac{(1+i)^n - 1}{\delta}$$

2. Actuarial Mathematics

Life Contingencies

- 1. Present Value of Whole Life Annuity
 - Annuity-due (IFOA notation):

$$\ddot{a}_x = \sum_{k=0}^{\infty} v^k \cdot {}_k p_x$$

Continuous annuity:

$$\bar{a}_x = \int_0^\infty v^t \cdot {}_t p_x \, dt$$

2. Present Value of Term Life Insurance

$$A_{x:\overline{\mathbf{n}}|}^{1} = \sum_{k=0}^{n-1} v^{k+1} \cdot {}_{k}p_{x} \cdot q_{x+k}$$

- q_x : Probability of death within 1 year for age x.
- 3. Net Premium Reserve

$$_{t}V = \ddot{a}_{x+t} - P \cdot \ddot{a}_{x+t} \cdot \overline{\mathbf{n-t}}$$

- P: Premium payment.
- 4. Endowment Insurance

$$A_{x:\overline{\mathbf{n}}|} = A_{x:\overline{\mathbf{n}}|}^1 + v^n \cdot {}_{n}p_x$$

5. Deferred Life Annuity

$$_{m}\ddot{a}_{x}=\sum_{k=m}^{\infty}v^{k}\cdot{}_{k}p_{x}$$

6. Accumulated Cost of Insurance

$$\bar{A}_x = \int_0^\infty v^t \cdot {}_t p_x \cdot \mu_{x+t} \, dt$$

Additional Life Contingencies Formulas

- 1. Present Value of Whole Life Insurance
 - Discrete:

$$A_x = \sum_{k=0}^{\infty} v^{k+1} \cdot {}_k p_x \cdot q_{x+k}$$

Continuous:

$$\bar{A}_x = \int_0^\infty v^t \cdot {}_t p_x \cdot \mu_{x+t} \, dt$$

2. Variance of the Present Value of a Whole Life Insurance

$$Var(Z) = {}^{2}A_x - (A_x)^2$$

where

$${}^{2}A_{x} = \sum_{k=0}^{\infty} v^{2(k+1)} \cdot {}_{k}p_{x} \cdot q_{x+k}$$

- 3. Temporary Life Annuity
 - o Annuity-due:

$$\ddot{a}_{x:\overline{\Pi}} = \sum_{k=0}^{n-1} v^k \cdot {}_k p_x$$

Continuous:

$$\bar{a}_{x:\overline{\mathbf{n}}|} = \int_{0}^{n} v^{t} \cdot {}_{t} p_{x} \, dt$$

- 4. m-thly Life Annuities
 - Annuity-due:

$$\ddot{a}_x^{(m)} \approx \ddot{a}_x - \frac{m-1}{2m}$$

5. m-thly Life Insurance

0

$$A_x^{(m)} \approx A_x + \frac{m-1}{2m}i$$

Mortality and Survival Functions

1. Survival Probability

$$_tp_x=e^{-\int_0^t\mu_{x+s}\,ds}$$

- μ_x : Force of mortality.
- 2. Deferred Mortality Probability

$$_{t}|_{u}q_{x} = _{t}p_{x} \cdot _{u}q_{x+t}$$

3. Complete Expectation of Life

$$e_x = \int_0^\infty p_x dt$$

4. Select Mortality

$$_{t}p_{[x]+s} = \frac{l_{x+s+t}}{l_{x+s}}$$

Additional Mortality and Survival Functions

1. Curtate Expectation of Life

$$e_x = \sum_{k=1}^{\infty} {}_k p_x = \sum_{k=0}^{\infty} {}_k p_x - 1 = \ddot{a}_x - 1$$

2. De Moivre's Law

$$_{t}p_{x} = \frac{\omega - x - t}{\omega - x}, \quad 0 \le t \le \omega - x$$

where ω is the limiting age.

3. Uniform Distribution of Deaths (UDD)

$$_{t}p_{x}=1-t\cdot q_{x},\quad 0\leq t\leq 1$$

4. Mortality Rate

$$q_x = 1 - p_x$$

Commutation Functions (IFOA)

1. Discounted Lives

$$D_x = v^x l_x$$

2. Accumulated Annuity Factors

$$N_x = \sum_{k=0}^{\infty} D_{x+k}$$

3. Death Benefit Factors

$$C_x = v^{x+1} d_x, \quad M_x = \sum_{k=0}^{\infty} C_{x+k}$$

4. Annuity-Due Commutation

$$\ddot{a}_x = \frac{N_x}{D_x}$$

5. Term Insurance Commutation

$$A_{x:\overline{\mathbf{n}}|}^{1} = \frac{M_{x} - M_{x+n}}{D_{x}}$$

Additional Commutation Functions

1. Immediate Annuity

$$a_x = \frac{N_{x+1}}{D_x}$$

2. Whole Life Insurance

$$A_x = \frac{M_x}{D_x}$$

3. Temporary Annuity

$$\ddot{a}_{x:n} = \frac{N_x - N_{x+n}}{D_x}$$

3. Probability and Statistics

Distributions

1. Normal Distribution

$$X \sim N(\mu, \sigma^2) \Rightarrow f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

2. Binomial Distribution

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

3. Poisson Distribution

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

4. Exponential Distribution

$$f(x) = \lambda e^{-\lambda x}, \quad x \ge 0$$

5. Gamma Distribution

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, \quad x \ge 0$$

Additional Distributions

1. Chi-Squared Distribution

$$f(x;k) = \frac{1}{2^{k/2}\Gamma(k/2)} x^{k/2-1} e^{-x/2}$$

where k is the degrees of freedom.

2. t-Distribution

$$f(t;v) = \frac{\Gamma(\frac{v+1}{2})}{\sqrt{v\pi}\Gamma(\frac{v}{2})} \left(1 + \frac{t^2}{v}\right)^{-\frac{v+1}{2}}$$

where v is the degrees of freedom.

3. Weibull Distribution

$$f(x) = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k}, \quad x \ge 0$$

Expectation and Variance

1. Law of Total Expectation

$$E[X] = E[E[X|Y]]$$

2. Variance Formula

$$Var(X) = E[X^2] - (E[X])^2$$

3. Covariance

$$Cov(X, Y) = E[XY] - E[X]E[Y]$$

Additional Expectation and Variance Formulas

1. Law of Total Variance

$$Var(X) = E[Var(X|Y)] + Var(E[X|Y])$$

2. Correlation

$$\rho_{X,Y} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

Hypothesis Testing

1. Z-Test Statistic

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

2. Chi-Square Test

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

3. t-Test Statistic

$$t = \frac{\bar{X} - \mu}{s / \sqrt{n}}$$

Additional Hypothesis Testing Formulas

1. F-Test Statistic

$$F = \frac{s_1^2}{s_2^2}$$

where s_1^2 and s_2^2 are the sample variances of two populations.

2. **p-value** The probability of obtaining test results at least as extreme as the results actually observed during the test, assuming that the null hypothesis is correct.

4. Financial Derivatives

1. Black-Scholes Option Pricing

$$C = S_0 N(d_1) - K e^{-rT} N(d_2)$$

•
$$d_1 = \frac{\ln(S_0/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}}$$
, $d_2 = d_1 - \sigma\sqrt{T}$.

Macaulay Duration:

$$D = \frac{\sum t \cdot PV(CF_t)}{\text{Price}}$$

· Convexity:

$$C = \frac{\sum t(t+1) \cdot PV(CF_t)}{(1+i)^2 \cdot \text{Price}}$$

Additional Financial Derivatives Formulas

1. Put-Call Parity

$$C - P = S_0 - Ke^{-rT}$$

2. Delta

$$\Delta = \frac{\partial C}{\partial S}$$

3. Gamma

$$\Gamma = \frac{\partial^2 C}{\partial S^2}$$

4. Vega

$$v = \frac{\partial C}{\partial \sigma}$$

5. Theta

$$\Theta = \frac{\partial C}{\partial t}$$

6. **Rho**

$$\rho = \frac{\partial C}{\partial r}$$

Additional Actuarial Formulas

1. Joint Life Annuity

$$\ddot{a}_{xy} = \sum_{k=0}^{\infty} v^k \cdot {}_k p_{xy}$$

2. Last Survivor Annuity

$$\ddot{a}_{\overline{xy}} = \ddot{a}_x + \ddot{a}_y - \ddot{a}_{xy}$$

3. Net Premium for Whole Life Insurance

$$P_x = \frac{A_x}{\ddot{a}_x}$$

4. Thiele's Differential Equation

$$\frac{d}{dt}{}_{t}V = \delta \cdot {}_{t}V + P - \mu_{x+t}(S - {}_{t}V)$$

5. Variance of Present Value

$$Var(PV) = E[PV^2] - (E[PV])^2$$

Regulations and Standards (IFRS 17)

Key Considerations under IFRS 17

- 1. Measurement Models:
 - General Measurement Model (GMM): Used for most insurance contracts.
 Requires estimating future cash flows, discounting them, and adding a risk adjustment for non-financial risk.
 - Premium Allocation Approach (PAA): A simplified approach for short-duration contracts or when the GMM is too burdensome. Revenue is recognized as

premiums are received, and a simplified liability for incurred claims is used.

 Variable Fee Approach (VFA): Used for contracts with direct participation features. The CSM is adjusted to reflect the changes in the value of the underlying items.

2. Contractual Service Margin (CSM):

- Represents the unearned profit that the insurer will recognize over the coverage period.
- Initially measured as the difference between the fulfillment cash flows and the premiums received.
- Recognized in profit or loss as services are provided.

3. Risk Adjustment:

- Reflects the compensation an insurer requires for bearing the uncertainty about the amount and timing of future cash flows.
- Can be determined using techniques such as Confidence Level, Cost of Capital, or Quantile techniques.

4. Discount Rates:

- Should reflect the current market rates and the characteristics of the insurance contract liabilities.
- Adjustments may be needed to reflect liquidity premiums.

5. Presentation:

- Insurers must present insurance revenue separately from insurance service expenses.
- Disclose significant judgments and assumptions made in applying IFRS 17.

6. Transition:

- IFRS 17 provides different transition approaches: Full Retrospective, Modified Retrospective, and Fair Value.
- The choice of transition approach can significantly impact the opening balance sheet.

7. Relevant Formulas/Concepts for IFRS 17 Calculations:

Best Estimate of Future Cash Flows:

$$BE = \sum_{t=1}^{n} \frac{E[CF_t]}{(1+r)^t}$$

Where $E[CF_t]$ is the expected cash flow at time t, and r is the discount rate.

- Risk Adjustment (RA):
 - Cost of Capital Approach:

$$RA = \sum_{t=1}^{n} \frac{CF_t \times CoC}{(1+r)^t}$$

Where CoC is the cost of capital rate.

Contractual Service Margin (CSM) Amortization:

Amortization =
$$\frac{\text{CSM at start of period}}{\text{Coverage Units}} \times \text{Coverage Units Provided}$$

6. IFRS 17 Insurance Contracts

Measurement Models

1. General Measurement Model (GMM) - Building Blocks Approach

Insurance Contract Liability = FCF + RA + CSM

where:

FCF: Fulfilment Cash Flows

RA: Risk Adjustment

CSM: Contractual Service Margin

2. Premium Allocation Approach (PAA) - Liability for Remaining Coverage

 $LRC = Premiums\ Received - Acquisition\ Cash\ Flows + Amortization$

3. Loss Component Calculation

Loss Component = max(0, -CSM)

Risk Adjustment Calculation Methods

1. Cost of Capital Method

$$RA = \sum_{t=1}^{T} \frac{CoC \cdot SCR_t}{(1+r_f)^t}$$

CoC: Cost of Capital rate

SCR: Solvency Capital Requirement

2. Confidence Level Approach

$$RA = VaR_a(Losses) - E(Losses)$$

CSM Adjustments

1. CSM Roll-forward

 $CSM_t = CSM_{t-1} \cdot (1+i) + New\ Business - Amortization \pm Experience\ Adjustments$

2. Coverage Units Recognition

$$CSM \ Release = CSM_t \cdot \frac{CU_t}{\sum_{i=t}^{T} CU_i}$$

where CU represents Coverage Units

7. Risk Measures

Value at Risk and Related Measures

1. Value at Risk (VaR)

$$P(X \leq VaR_{\alpha}) = \alpha$$

2. Conditional Tail Expectation (CTE) / Expected Shortfall

$$CTE_{\alpha}(X) = E[X|X > VaR_{\alpha}]$$

3. Risk-Based Capital

$$RBC\ Ratio = \frac{Total\ Adjusted\ Capital}{Required\ Risk\ Based\ Capital}$$

Risk Adjusted Performance Measures

1. Sharpe Ratio

$$SR = \frac{R_p - R_f}{\sigma_p}$$

2. Risk-Adjusted Return on Capital (RAROC)

$$RAROC = \frac{Expected \ Return}{Economic \ Capital}$$