Программирование. Язык СИ. Функции в языке С. Введение

8 Задачи

Комплект 8: Самостоятельные задания

8.1: Напишите программу для вычисления матричного синуса ¹

$$\sin(A) \approx A - \frac{1}{3!}A^3 + \frac{1}{5!}A^5 - \frac{1}{7!}A^7 + \dots + \frac{(-1)^{n+1}}{(2n-1)!}A^{2n-1},$$

где A — некоторая квадратная матрица, а целое число n считается от единицы до некоторого своего конечного значения. Возведение матрицы в целую степень k может быть представлено, как умножение её на саму себя k раз:

$$A^7 = A \times A \times A \times A \times A \times A \times A$$
 , для $k=7$

Умножение некоторой матрицы M на число означает умножение каждого её элемента на это число:

$$\frac{1}{7!}M = \frac{1}{5040} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 0.000198413 & 0.000396825 \\ 0.000595238 & 0.000793651 \end{bmatrix}$$

Для проверки можно использовать:

$$\sin\left(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\right) = \begin{bmatrix} -0.465581 & -0.148424 \\ -0.222637 & -0.688218 \end{bmatrix}$$

8.2: Напишите все необходимые функции для численного интегрирования простого дифференциального уравнения²

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -0.6y\tag{1}$$

¹https://en.wikipedia.org/wiki/Trigonometric_functions_of_matrices

² Differential Equations and the Exponential Function: https://www.youtube.com/watch?v=1QAKg-5AruA

$$y(0) = 2 \tag{2}$$

в интервале [0,10] по переменной x классическим методом Рунге-Кутты 4-го порядка $^{3-4-5}$ с шагом по оси Ох $\Delta x=0.1$. Формулы классического метода Рунге-Кутты 4-го порядка для одного шага интегрирования $\Delta x\equiv h$ задаются следующим образом:

$$k_1 = f(x_n, y_n); (3)$$

$$k_2 = f(x_n + \frac{h}{2}, y_n + \frac{k_1}{2});$$
 (4)

$$k_3 = f(x_n + \frac{h}{2}, y_n + \frac{k_2}{2});$$
 (5)

$$k_4 = f(x_n + h, y_n + k_3);$$
 (6)

$$y_{n+1} = y_n + \frac{h}{6} \cdot (k_1 + 2k_2 + 2k_3 + k_4) ; (7)$$

$$x_{n+1} = x_n + h; (8)$$

где $h = \Delta x = 0.1$ – один шаг по оси Ох начиная с 0.0 и до 10.0,

f(x,y) = -0.6y – функция правой части

данного дифференциального уравнения (1),

 k_1, k_2, k_3, k_4 — коэффициенты численного метода Рунге-Кутты 4-го порядка, x_n — n-ое значение переменной x (0.0, 0.1, 0.2, ... 10.0),

 $y_n - n$ -ое численно найденное вами значение решения y(x) в точке x_n .

Как можно видеть, все указанные выше формулы (3), (4), (5), (6), (7) и (8) относятся к одному шагу h (Δx) интегрирования по x, то есть для одного x_n , одного y_n , одного x_{n+1} и одного y_{n+1} . При этом n меняется от нуля до такого значения, чтобы последний x_n был равен 10.0.

Необходимо распечатать полученные результаты численного решения y(x) в виде таблицы в консоли терминала, как два набора элементов массивов X_n и соответствующих ему Y_n , скопировать их из консоли как текст и нарисовать в виде графика, изобразив на нём же аналитическое решение дифференциального уравнения с заданным начальным условием. Аналитическое и численное решения должны хорошо совпадать. Достаточно правильной реализации решения дифференциального уравнения на языке С. Глубокого понимания работы метода Рунге-Кутты не требуется.

 $^{^3}$ The Runge-Kutta method in Wikipedia: https://en.wikipedia.org/wiki/Runge-Kutta_methods, раздел "The Runge-Kutta method".

⁴ Classical Fourth-Order Runge-Kutta: https://www.youtube.com/watch?v=wr3-dWoxiY4

⁵ Runge-Kutta 4th Order Method to Solve Differential Equation: https://www.geeksforgeeks.org/runge-kutta-4th-order-method-solve-differential-equation/

Точное аналитическое решение задачи для сравнения:

$$y(x) = e^{-0.6x + \ln(2)} = 2e^{-0.6x}$$

Рис. 1: Точное решение дифференциального уравнения (1) с начальным условием y(0)=2.

Можно распечатывать не все значения для того, чтобы можно было удобнее нарисовать график численно получившейся табличной функции y(x). Инструменты доля рисования графиков:

- MS Excel
- Desmos online graph tool and calculator: https://www.desmos.com/calculator
- Plotly Chart Studio: https://plot.ly/create/
- QtiPlot: https://www.qtiplot.com/download.html
- gnuplot (относительно понятный скриптовый язык и мощный инструмент):
 - http://www.gnuplotting.org/plotting-data/
 - http://www.gnuplotting.org/plotting-functions/
 - Online: http://gnuplot.respawned.com/
 - Wikipedia: https://ru.wikipedia.org/wiki/Gnuplot
 - Wiki-учебник: https://ru.wikibooks.org/wiki/Gnuplot

Можно воспользоваться одним из online решателей обыкновенных дифференциальных уравнений для самопроверки:

- Runge-Kutta method (4th-order,1st-derivative) Calculator: https://keisan.casio.com/exec/system/1222997077
- The On-Line Runge-Kutta Calculator: https://www.mathstools.com/section/main/Runge_Kutta_On_Line https://www.mathstools.com/section/main/runge_kutta_calculator

The initial condition is y0=f(x0), and the root x is calculated within the range of from x0 to xn. $y'=F'(x,y) \qquad y_0=f(x_0) \to \ y=f(x)$

X	y=f(x)
0	2
0.1	1.88352908
0.2	1.7738408976028232
0.3	1.67054045696410989
0.4	1.57325576500419475
0.5	1.48163649183152357

Рис. 2: Скриншот с сайта https://keisan.casio.com/exec/system/1222997077 с численным решением дифференциального уравнения (1) с начальным условием y(0)=2.