COM3110/4115/6115: Text Processing

Information Retrieval:
Term Manipulation
Web Search Ranking

Mark Hepple

Department of Computer Science University of Sheffield

Overview

- Definition of the information retrieval problem
- Approaches to document indexing
 - manual approaches
 - automatic approaches
- Automated retrieval models
 - boolean model
 - ranked retrieval methods (e.g. vector space model)
- Term manipulation:
 - stemming, stopwords, term weighting
- Web Search Ranking
- Evaluation

What counts as a term?

Common to just use the words, but pre-process them for generalisation

- Tokenisation: split words from punctuation (get rid of punctuation)
 e.g. word-based. → word based three issues: → three issues
- Capitalisation: normalise all words to lower (or upper) case
 e.g. Cat and cat should be seen as the same term, but should we conflate Turkey and turkey?
- Lemmatisation: conflate different inflected forms of a word to their basic form (singular, present tense, 1st person):

```
e.g. cats, cat \rightarrow cat have, has, had \rightarrow have worried, worries \rightarrow worry
```

What counts as a term? (ctd)

• **Stemming**: conflate morphological variants by chopping their affix:

CONNECT CONNECTED CONNECTING CONNECTION CONNECTIONS

WORRY
WORRIED
WORRIES
WORRYING
WORRYINGLY

GALL
GALLED
GALLEY
GALLERY

 Normalisation: heuristics to conflate variants due to spelling, hyphenation, spaces, etc.

```
e.g. USA and U.S.A. and U.S.A. \rightarrow USA
```

e.g. word-sense and word sense ightarrow word-sense

e.g. chequebook and cheque book \rightarrow cheque book

Word Frequency and Term Usefulness

- The most and least frequent terms are not the most useful for retrieval
 - ♦ (Figure from van Rijsbergen (1979) Information Retrieval http://www.dcs.gla.ac.uk/Keith/Preface.html)

Stop words

- Use **Stop list** removal to exclude "non-content" words
- Usually most frequent (and least useful for retrieval)

а	always	both
about	am	being
above	among	СО
across	amongst	could

- greatly reduces the size of the inverted index
- but what if we want to search for *phrases* that include these terms?
 - Kings of Leon
 - Let it be
 - To be or not to be
 - Flights to London

Single vs. Multi-word Terms

- To aid recognition of phrases, might allow multi-word terms
 e.g. Sheffield University
- Possible approach allow multi-word indexing
 - e.g. bigram indexing: store each bigram as a term in index

For pease porridge in the pot get:

pease porridge porridge in the the pot

- Problem: number of bigrams is v.large c.f. number of words
 - leads to a huge increase in size of the index
- Alternative: identify multi-word phrases during retrieval
 - Positional indexes, storing position terms in documents, can help
 - use to compute if occurrences of search terms in document are adjacent / close / far apart

Single vs. Multi-word Terms (ctd)

Positional indexes:

Doc	Text
1	Pease porridge hot, pease porridge cold
2	Pease porridge in the pot
3	Nine days old
4	Some like it hot, some like it cold
5	Some like it in the pot
6	Nine days old

Num	Token	Docs
1	cold	1:(6), 4:(8)
2	days	3:(2), 6:(2)
3	hot	1:(3), 4:(4)
4	in	2:(3), 5:(4)
5	it	4:(3, 7), 5:(3)
6	like	4:(2, 6), 5:(2)
7	nine	3:(1), 6:(1)
8	old	3:(3), 6:(3)
9	pease	1:(1, 4), 2:(1)
10	porridge	1:(2, 5), 2:(2)
11	pot	2:(5), 5:(6)
12	some	4:(1, 5), 5:(1)
13	the	2:(4), 5:(5)

Term Weighting

What do we use for the inverted index?

- binary weights 0/1: whether or not term is present in document
 - But documents with multiple occurrences of query keyword may be more relevant
- Frequency of term in document: like the examples we have seen
 - But what if the term is also frequent in collection?
 - Common terms: not very useful for discriminating relevant documents
- Frequency in document vs in collection: weight terms highly if
 - ♦ They are frequent in relevant documents . . . but
 - They are infrequent in collection as a whole

• Key concepts:

document collection	D	collection (set) of documents
size of collection	D	total number of documents in collection
term freq	$tf_{w,d}$	number of times w occurs in document d
collection freq	cf_w	number of times w occurs in collection
document freq	df_w	number of documents containing w

The informativeness of terms

- Idea that less common terms are more useful to finding relevant docs:
 - i.e. these terms are more informative
- Is this idea best addressed using document frequency or collection frequency?
- Consider following counts (from New York Times data, |D| = 10000):

Word	cf _w	df_w
insurance	10440	3997
try	10422	8760

- term insurance semantically focussed, term try very general
 - document frequency reflects this difference
 - collection frequency fails to distinguish them (i.e. very similar counts)

- Informativeness is inversely related to (document) frequency
 - i.e. *less common* terms are *more useful* to finding relevant documents *more common* terms are *less useful* to finding relevant documents
- Compute metric such as: $\frac{|D|}{df_w}$
 - \diamond Value reduces as df_w gets larger, tending to 1 as df_w approaches |D|

e.g.
$$\frac{10000}{3997} = 2.5$$
 (insurance) $\frac{10000}{8760} = 1.14$ (try)

 \diamond Value very large for small df_w — over-weights such cases

e.g.
$$\frac{10000}{350} = 28.6$$
 (mischief)

To moderate this, take log: Inverse document frequency (idf)

$$idf_{w,D} = log \frac{|D|}{df_w}$$

$$log \frac{10000}{3997} = 0.398 \text{ (insurance)} \qquad log \frac{10000}{8760} = 0.057 \text{ (try)} \qquad log \frac{10000}{350} = 1.456 \text{ (mischief)}$$

- BUT Not all terms describe a document equally well
- Putting it all together: tf.idf
 - Terms which are frequent in a document are better:

$$tf_{w,d} = freq_{w,d}$$

Terms that are rare in the document collection are better:

$$idf_{w,D} = log \frac{|D|}{df_w}$$

Combine the two to give tf.idf term weighting:

$$tf.idf_{w,d,D} = tf_{w,d} \cdot idf_{w,D}$$

- Most commonly used method for term weighting.
 - Used in other fields too (e.g. summarisation)

tf.idf example:

Term	tf	df	D	idf	tf.idf
the	312	28,799	30,000	0.018	5.54
in	179	26,452	30,000	0.055	9.78
general	136	179	30,000	2.224	302.50
fact	131	231	30,000	2.114	276.87
explosives	63	98	30,000	2.486	156.61
nations	45	142	30,000	2.325	104.62
haven	37	227	30,000	2.121	78.48

For term the:

$$idf(the) = \log_{10}(\frac{30,000}{28,799}) = 0.018$$

$$tf.idf(the) = 312 \cdot 0.018 = 5.54$$

Putting things together

Example: Vector Space Model, tf.idf term weighting, cosine similarity

• tf.idf values for words in two documents D_1 and D_2 , and in a query Q "hunter gatherer Scandinavia":

	Q	D_1	D_2
hunter	19.2	56.4	112.2
gatherer	34.5	122.4	0
Scandinavia	13.9	0	30.9
30,000	0	457.2	0
years	0	12.4	0
BC	0	200.2	0
prehistoric	0	45.3	0
deer	0	0	23.6
rifle	0	0	452.2
Mesolithic	0	344.2	0
$\sqrt{\sum_{i=1}^{n} x_i^2}$	41.9	622.9	467.5

(i.e. length of vector)

$$sim(\vec{q}, \vec{d}) = cos(\vec{q}, \vec{d}) = \frac{\sum_{i=1}^n q_i d_i}{\sqrt{\sum_{i=1}^n q_i^2} \sqrt{\sum_{i=1}^n d_i^2}}$$

Putting things together (ctd)

•
$$sim(\vec{q}, \vec{d}) = cos(\vec{q}, \vec{d}) = \frac{\sum_{i=1}^{n} q_i d_i}{\sqrt{\sum_{i=1}^{n} q_i^2} \sqrt{\sum_{i=1}^{n} d_i^2}}$$

$$cos(Q, D_1) = \frac{(19.2 * 56.4) + (34.5 * 122.4) + \dots + (0 * 0) + (0 * 344.2)}{41.9 * 622.9}$$

$$= \frac{5305.68}{26071.72}$$

$$= 0.20$$

$$cos(Q, D_2) = \frac{(19.2 * 112.2) + (34.5 * 0) + \dots + (0.0 * 452.2) + (0.0 * 0.0)}{41.9 * 467.5}$$

$$= \frac{2583.8}{19570.0}$$

• so document D_1 is more similar to Q than D_2

= 0.13

Web Search Ranking

- Web docs contain info beyond their mere "textual content"
 - state-of-the-art web search engines, like Google, exploit this
 - achieve much more effective retrieval than could without it
- HTML contains clues that some terms are more important
 - e.g. terms in regions marked as title or headings
 - e.g. terms *emphasised by formatting*: bold / bigger / colour
 - can use clever term weighting schemes, that add weight to such terms
- Link text commonly provide description of target doc
 - often a better description than doc provides of itself
 - e.g. "Hey, here's a great intro to calculus for beginners check it out!"
 - ♦ Google treats link text as part of target doc
- Link structure of web *more broadly*
 - ♦ if page A *points to* page B, implies B is worth looking at
 - can be used as a measure of authority / quality

Exploiting Link Structure: the PageRank Algorithm

- Key method to exploit link structure of web: PageRank algorithm
 - named after its inventor: Larry Page (co-founder of Google)
 - - can be seen to represent the page's authority (or quality)
- PageRank algorithm key idea:
 - link from page A to page B confers authority on B
 - how much authority is conferred depends on:
 - the authority (PageRank score) of A, and its number of *out-going links* i.e. A's authority is *shared out* amongst its out-going links
 - note that this measure is recursively defined
 - i.e. score of any page depends on score of every other page
- PageRank scores have an alternative interpretation:
 - probability that a random surfer will visit that page
 - i.e. one who starts at a random page, clicks randomly-chosen links forward, then (getting bored) jumps to a new random page, and so on . . .

Exploiting Link Structure: the PageRank algorithm (ctd)

Graphical intuition:

- During retrieval, rank score of doc d is a weighted combination of:
 - its PageRank score: a measure of its authority
 - \diamond its IR-Score: how well d matches the query q, based on
 - Vector Space model, TF.IDF, up-weighting of important terms, etc.