

Project By: PRASAD JADHAV

```
import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        from imblearn.over_sampling import SMOTE
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import StandardScaler
        from sklearn.model_selection import cross_val_score
        from sklearn.metrics import accuracy_score
        from sklearn.linear_model import LogisticRegression
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.ensemble import GradientBoostingClassifier
        from sklearn import svm
        from sklearn.model_selection import GridSearchCV
        from sklearn.model_selection import RandomizedSearchCV
        import warnings
In [2]:
        warnings.filterwarnings('ignore')
        dataset = pd.read_csv('lung_cancer.csv')
In [3]:
        dataset.shape
        (309, 16)
Out[3]:
In [4]:
        dataset.head()
```

import pandas as pd

In [1]:

Out[4]:		GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	FATIGUE	ALLER
	0	М	69	1	2	2	1	1	2	
	1	М	74	2	1	1	1	2	2	
	2	F	59	1	1	1	2	1	2	
	3	М	63	2	2	2	1	1	1	
	4	F	63	1	2	1	1	1	1	

In [5]: dataset.tail()

Out[5]:

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	FATIGUE	ALL
304	F	56	1	1	1	2	2	2	
305	М	70	2	1	1	1	1	2	
306	М	58	2	1	1	1	1	1	
307	М	67	2	1	2	1	1	2	
308	М	62	1	1	1	2	1	2	

In [6]: dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 309 entries, 0 to 308
Data columns (total 16 columns):

	00200000 (000002 000000		
#	Column	Non-Null Count	Dtype
0	GENDER	309 non-null	object
1	AGE	309 non-null	int64
2	SMOKING	309 non-null	int64
3	YELLOW_FINGERS	309 non-null	int64
4	ANXIETY	309 non-null	int64
5	PEER_PRESSURE	309 non-null	int64
6	CHRONIC DISEASE	309 non-null	int64
7	FATIGUE	309 non-null	int64
8	ALLERGY	309 non-null	int64
9	WHEEZING	309 non-null	int64
10	ALCOHOL CONSUMING	309 non-null	int64
11	COUGHING	309 non-null	int64
12	SHORTNESS OF BREATH	309 non-null	int64
13	SWALLOWING DIFFICULTY	309 non-null	int64
14	CHEST PAIN	309 non-null	int64
15	LUNG_CANCER	309 non-null	object

dtypes: int64(14), object(2)
memory usage: 38.8+ KB

In [7]: dataset.isnull().sum()

```
GENDER
                                    0
Out[7]:
         AGE
                                    0
         SMOKING
                                    0
                                    0
         YELLOW_FINGERS
         ANXIETY
                                    0
         PEER_PRESSURE
                                    0
         CHRONIC DISEASE
                                    0
         FATIGUE
                                    0
         ALLERGY
                                    0
         WHEEZING
                                    0
                                    0
         ALCOHOL CONSUMING
                                    0
         COUGHING
         SHORTNESS OF BREATH
                                    0
         SWALLOWING DIFFICULTY
                                    0
                                    0
         CHEST PAIN
         LUNG_CANCER
                                    0
         dtype: int64
In [8]:
         dataset.isna().sum()
         GENDER
                                    0
Out[8]:
                                    0
         AGE
                                    0
         SMOKING
                                    0
         YELLOW_FINGERS
         ANXIETY
                                    0
         PEER_PRESSURE
                                    0
         CHRONIC DISEASE
                                    0
                                    0
         FATIGUE
         ALLERGY
                                    0
                                    0
         WHEEZING
         ALCOHOL CONSUMING
                                    0
         COUGHING
                                    0
         SHORTNESS OF BREATH
                                    0
         SWALLOWING DIFFICULTY
                                    0
         CHEST PAIN
                                    0
                                    0
         LUNG_CANCER
         dtype: int64
         dataset.duplicated().sum()
In [9]:
         33
Out[9]:
          dataset = dataset.drop_duplicates()
In [10]:
         dataset.describe()
In [11]:
```

Out	Г 1 1	٦.
out		

SM	SM	10KIN	IG	YELI	_OW_	FING	ERS		ANXI	ETY	PEE	R_P	RESS	URE		DISE		ı	FATIG
6.0	276.0	00000	00		27	6.000	0000	27	6.000	0000		27	6.000	000	27	6.000	000	276	.0000
1.	1.5	54347	78			1.576	087		1.496	377			1.507	246		1.521	739	1	.6630
0.4	0.4	49901	11			0.495	075		0.500	895			0.500	856	(0.500	435	0	.4735
1.0	1.0	00000	00			1.000	0000		1.000	0000			1.000	000	,	1.000	000	1	.0000
1.0	1.0	00000	00			1.000	0000		1.000	0000			1.000	000	,	1.000	000	1	.0000
2.0	2.0	00000	00			2.000	0000		1.000	0000			2.000	000	:	2.000	000	2	.0000
2.0	2.0	00000	00			2.000	0000		2.000	0000			2.000	000	:	2.000	000	2	.0000
2.0	2.0	00000	00			2.000	0000		2.000	0000			2.000	0000	:	2.000	000	2	.0000

In [12]: dataset.corr()

Out[12]:

	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	FA
AGE	1.000000	-0.073410	0.025773	0.050605	0.037848	-0.003431	0.0
SMOKING	-0.073410	1.000000	-0.020799	0.153389	-0.030364	-0.149415	-0.0
YELLOW_FINGERS	0.025773	-0.020799	1.000000	0.558344	0.313067	0.015316	-0.0
ANXIETY	0.050605	0.153389	0.558344	1.000000	0.210278	-0.006938	-0.1
PEER_PRESSURE	0.037848	-0.030364	0.313067	0.210278	1.000000	0.042893	0.0
CHRONIC DISEASE	-0.003431	-0.149415	0.015316	-0.006938	0.042893	1.000000	-0.0
FATIGUE	0.021606	-0.037803	-0.099644	-0.181474	0.094661	-0.099411	1.0
ALLERGY	0.037139	-0.030179	-0.147130	-0.159451	-0.066887	0.134309	-0.0
WHEEZING	0.052803	-0.147081	-0.058756	-0.174009	-0.037769	-0.040546	0.1
ALCOHOL CONSUMING	0.052049	-0.052771	-0.273643	-0.152228	-0.132603	0.010144	-0.1
COUGHING	0.168654	-0.138553	0.020803	-0.218843	-0.068224	-0.160813	0.1
SHORTNESS OF BREATH	-0.009189	0.051761	-0.109959	-0.155678	-0.214115	-0.011760	0.4
SWALLOWING DIFFICULTY	0.003199	0.042152	0.333349	0.478820	0.327764	0.068263	-0.1
CHEST PAIN	-0.035806	0.106984	-0.099169	-0.123182	-0.074655	-0.048895	0.0

In [13]: dataset.cov()

		AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	F#
	AGE	70.213584	-0.306957	0.106917	0.212398	0.158841	-0.014387	0.0
	SMOKING	-0.306957	0.249012	-0.005138	0.038340	-0.007589	-0.037312	-0.0
١	ELLOW_FINGERS	0.106917	-0.005138	0.245099	0.138458	0.077628	0.003794	-0.0
	ANXIETY	0.212398	0.038340	0.138458	0.250896	0.052754	-0.001739	-0.0
	PEER_PRESSURE	0.158841	-0.007589	0.077628	0.052754	0.250856	0.010751	0.0
	CHRONIC DISEASE	-0.014387	-0.037312	0.003794	-0.001739	0.010751	0.250435	-0.0
	FATIGUE	0.085731	-0.008933	-0.023360	-0.043043	0.022451	-0.023557	0.2
	ALLERGY	0.155191	-0.007510	-0.036324	-0.039829	-0.016706	0.033518	-0.0
	WHEEZING	0.220646	-0.036601	-0.014506	-0.043465	-0.009433	-0.010119	0.0
	ALCOHOL CONSUMING	0.217339	-0.013123	-0.067510	-0.037997	-0.033096	0.002530	-0.0
	COUGHING	0.699644	-0.034229	0.005099	-0.054269	-0.016917	-0.039842	0.0
	SHORTNESS OF BREATH	-0.037233	0.012490	-0.026324	-0.037708	-0.051858	-0.002846	0.0
	SWALLOWING DIFFICULTY	0.013399	0.010514	0.082490	0.119881	0.082055	0.017075	-0.0
	CHEST PAIN	-0.149275	0.026561	-0.024427	-0.030698	-0.018603	-0.012174	0.0

In [14]: dataset['GENDER'] = dataset['GENDER'].map({'M':1,'F':0})
 dataset['LUNG_CANCER'] = dataset['LUNG_CANCER'].map({'YES':1,'NO':0})

In [15]: dataset.sample(11)

Out[15]:

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC DISEASE	FATIGUE	ALL
194	1	63	1	1	1	1	2	2	
234	1	77	1	2	1	2	1	2	
176	0	70	1	2	1	1	2	2	
253	0	67	2	2	2	2	1	2	
59	1	69	2	2	2	2	1	2	
21	0	64	1	2	2	2	1	1	
188	1	65	2	2	2	2	2	1	
102	1	64	2	1	1	1	1	2	
205	1	62	1	2	2	2	1	2	
180	1	63	2	2	2	2	1	1	
227	1	71	1	2	2	1	2	1	

```
GENDER
                                 2
Out[16]:
                                39
        AGE
                                 2
        SMOKING
                                 2
        YELLOW_FINGERS
                                 2
        ANXIETY
        PEER PRESSURE
                                 2
                                 2
        CHRONIC DISEASE
                                 2
        FATIGUE
        ALLERGY
                                 2
                                 2
        WHEEZING
                                 2
        ALCOHOL CONSUMING
                                 2
        COUGHING
                                 2
        SHORTNESS OF BREATH
                                 2
        SWALLOWING DIFFICULTY
                                 2
        CHEST PAIN
                                 2
        LUNG_CANCER
        dtype: int64
        dataset.dtypes
In [17]:
        GENDER
                                int64
Out[17]:
        AGE
                                int64
        SMOKING
                                int64
        YELLOW_FINGERS
                                int64
        ANXIETY
                                int64
        PEER_PRESSURE
                                int64
        CHRONIC DISEASE
                                int64
        FATIGUE
                                int64
        ALLERGY
                                int64
        WHEEZING
                                int64
        ALCOHOL CONSUMING
                                int64
        COUGHING
                                int64
        SHORTNESS OF BREATH
                                int64
        SWALLOWING DIFFICULTY
                                int64
        CHEST PAIN
                                int64
        LUNG_CANCER
                                int64
        dtype: object
'SWALLOWING DIFFICULTY', 'CHEST PAIN', 'LUNG_CANCER']]
In [19]: for i in df.columns:
            plt.figure(figsize=(5,5))
            sns.countplot(df[i], data = df)
            plt.xticks(rotation = 90)
            plt.show()
```


Univariate Analysis of Features


```
In [22]: num_features = [feature for feature in dataset.columns]
```

```
In [23]: plt.figure(figsize = (15,15))
  plt.suptitle('Univariate Analysis of Features',fontweight='bold',fontsize=20,y)

for i in range(0,len(num_features)):
    plt.subplot(10,4,i+1)
    sns.boxplot(data=dataset,x=features[i])
    plt.xlabel(num_features[i])
    plt.tight_layout()
```

Univariate Analysis of Features


```
In [ ]: def remove_outliers(in_dataset, in_cols):
```

```
third_quartile = in_dataset[in_cols].quantile(0.75)
              igr = third_quartile - first_quartile
             upper_limit = third_quartile + 1.5 * iqr
             lower_limit = first_quartile - 1.5 * iqr
              in_dataset.loc[(in_dataset[in_cols] > upper_limit), in_cols] = upper_limit
              in_dataset.loc[(in_dataset[in_cols] < lower_limit), in_cols] = lower_limit</pre>
              return in_dataset
 In [ ]: for features in num_features:
              dataset = remove_outliers(dataset, features)
         plt.figure(figsize = (20,250))
         plt.suptitle('Univariate Analysis of Num Features', fontweight='bold', fontsize=
         for i in range(0,len(num_features)):
             plt.subplot(85,3,i+1)
             sns.boxplot(data=dataset,x=num_features[i])
             plt.xlabel(num_features[i])
             plt.tight_layout()
In [24]: dataset['LUNG_CANCER'].value_counts()
              238
Out[24]:
               38
         Name: LUNG_CANCER, dtype: int64
In [26]: X = dataset.drop('LUNG_CANCER',axis=1)
         y = dataset['LUNG_CANCER']
In [27]: X_res,y_res = SMOTE().fit_resample(X,y)
In [28]: X_train,X_test,y_train,y_test = train_test_split(X_res,y_res,test_size=0.20,rai
In [29]: st = StandardScaler()
         X train = st.fit transform(X train)
         X_test = st.fit_transform(X_test)
         model_df = \{\}
In [30]:
         def model_val(model,X,y):
             X_train, X_test, y_train, y_test = train_test_split(X_res, y_res, test_size=0.20
             model.fit(X_train,y_train)
             y_pred = model.predict(X_test)
             print(f'{model} Accuracy is {accuracy_score(y_test,y_pred)}')
             score = cross_val_score(model, X, y, cv=5, n_jobs=-1)
             print(f'{model} Average cross val score is {np.mean(score)}')
             model_df[model] = round(np.mean(score)*100,2)
In [31]: model = LogisticRegression()
         model_val(model,X,y)
         LogisticRegression() Accuracy is 0.96875
         LogisticRegression() Average cross val score is 0.9057792207792208
```

first_quartile = in_dataset[in_cols].quantile(0.25)

```
model = DecisionTreeClassifier()
In [32]:
         model_val(model,X,y)
         DecisionTreeClassifier() Accuracy is 0.9479166666666666
         DecisionTreeClassifier() Average cross val score is 0.8477922077922078
         model = RandomForestClassifier()
In [33]:
         model_val(model,X,y)
         RandomForestClassifier() Accuracy is 0.96875
         RandomForestClassifier() Average cross val score is 0.8949350649350649
         model = GradientBoostingClassifier()
In [34]:
         model_val(model,X,y)
         GradientBoostingClassifier() Accuracy is 0.9375
         GradientBoostingClassifier() Average cross val score is 0.8841558441558443
         model_df
In [35]:
         {LogisticRegression(): 90.58,
Out[35]:
          DecisionTreeClassifier(): 84.78,
          RandomForestClassifier(): 89.49,
          GradientBoostingClassifier(): 88.42}
         lr = LogisticRegression()
In [38]:
         lr.fit(X_train,y_train)
Out[38]: v LogisticRegression
         LogisticRegression()
         y_pred = lr.predict(X_test)
In [39]:
         accuracy_score(y_test,y_pred)
In [40]:
         0.96875
Out[40]:
         import pickle
In [41]:
         import joblib
         pickle.dump(lr,open('lung_cancer_prediction.pkl','wb'))
In [42]:
         model = pickle.load(open('lung_cancer_prediction.pkl','rb'))
In [43]:
         dataset.head()
In [44]:
```

```
CHRONIC
Out[44]:
            GENDER AGE SMOKING YELLOW_FINGERS ANXIETY PEER_PRESSURE
                                                                                FATIGUE ALLER
                                                                        DISEASE
         0
                 1
                     69
                               1
                                               2
                                                       2
                                                                     1
                                                                              1
                                                                                      2
          1
                               2
                                                                     1
                                                                              2
                 1
                     74
                                               1
          2
                 0
                     59
                               1
                                               1
                                                       1
                                                                     2
                                                                              1
                                                                                      2
         3
                 1
                     63
                               2
                                               2
                                                       2
                                                                     1
                                                                              1
                                                                              1
          4
                 0
                     63
                               1
                                               2
                                                       1
                                                                     1
                                                                                      1
         new_df = pd.DataFrame({
In [46]:
              'GENDER':1,
              'AGE':69,
              'SMOKING':1,
              'YELLOW_FINGERS':2,
              'ANXIETY':2,
              'PEER_PRESSURE':1,
              'CHRONIC DISEASE':1,
              'FATIGUE':2,
              'ALLERGY':1,
              'WHEEZING':2,
              'ALCOHOL CONSUMING':2,
              'COUGHING':2,
              'SHORTNESS OF BREATH':2,
              'SWALLOWING DIFFICULTY':2,
              'CHEST PAIN':2
          },index=[0])
         model.predict(new_df)
In [47]:
         array([1], dtype=int64)
Out[47]:
In [48]:
         p = model.predict(new_df)
          prob = model.predict_proba(new_df)
          if p == 1:
              print('Lung Cancer!')
              print(f'You will be Lung Cancer! with Probability of {prob[0][1]:.2f}')
          else:
              print('Not-Lung Cancer!')
         Lung Cancer!
         You will be Lung Cancer! with Probability of 1.00
```

CONNECT WITH ME

Linked in GitHub kaggle ● Medium

PRASADMJADHAV2