TED STATES IN APPLICANT OF COMMERCE

JESSE H. MINER, Secretary

MEATHER BURTAU

F. W. Reichelderfer, Chief

MONTHLY

WEATHER REVIEW

JUNE 1942

CONTENTS

The Brave Rang Over September Prizes Movement	Mirroriotocotal and Chinapolousia Dava:
	Aerological Observations 19 River Steems and Floods 18
Norm and Raviness. Thomas A. Elsis, Weather Bestitations, Start An	Citratological Data
. Manualary Michael Park, ed., Berlin,	COULD RADIATION AND SUMPOP DATA:
V. Control. Fundamental & Floring Chancelogy.	Provisional Relative Supepot Numbers, May 1942 15
Bulling (Physics of the Barth - D.) Rosson 184	Charte I-XI. (Chart VH-Snowfall-omitted).

COMMETICALS.

Morrowy Westing Myrray, March 200, 44, 70; Page 50; Cathard 2,000 notes granters 2,000, shades 320 to 750.

, Monrang Waarana Bartawa April 1945, 701, 70: Page 72, jable 1, Andrewsk, Alaska 15,023-at. Sevel, "186" should be "116"

Morrore Washing the Law, May 1943, vol. 1945, 101, table 5, many trains, 7, hove 5,000 and 1, 5th line down, debte 40.6 v. 6,011 a St. Law 1947, and makelitute, "50.0 and \$4,000 3 Down City, Kan 2 page 103, let column the fact to had prograph, 5th 104, the prograph of the law 1947, and the page 103, let column the fact to had prograph, 5th 104, the prograph of the law 1947, and the law 1

MONTHLY WEATHER REVIEW

Editor, EDGAR W. WOOLARD

Vol. 70, No. 6 W. B. No. 1363

JUNE 1942

CLOSED AUG. 3, 1942 ISSUED SEPT. 12, 1942

THE HEAVY RAINS OVER SOUTHEAST TEXAS, NOVEMBER 22-25, 1940

By JAMES H. FERGUSON

[Weather Bureau, Fort Worth, Tex., April 1941]

The paper gives a three-dimensional picture of the meteorological conditions over the southern United States during November 21 to 25, 1940, inclusive. The air-mass designations are based on those of the Bergeron ¹ classification as modified by Willett and Showalter; Showalter's values for autumn are used. The isentropic cross sections are similar to those used by Pierce.4 The method of locating fronts is that suggested by Rossby and Willett . "* * true air mass boundaries must sain Willett 6: "* * true air-mass boundaries must coincide with isentropic surfaces." The isentropic condensation temperature is used for determining the amount of lift that a front will create, using winds aloft to show the

fourth, fronts are easily found; fifth, all isentropic surfaces are shown; and, finally, the nearness to saturation at any point can be determined.

On the synoptic map of November 21, 1940, at 1:30 a. m., E. S. T. (fig. 1a), a cold front extended from a weak Low center of approximately 1010.5 mb. (29.84 inches) in eastern Kansas southward to central East Texas, near Laredo. The cold front was developing definite quasi-stationary characteristics in the interior of southeast Texas, which were indicated by rapidly falling pressure tendencies to the northwest of the front over central and northwest Texas. As will be shown later, these falls were

FIGURE 1.

air flow along constant potential temperature (or isentropic) surfaces; the isentropic condensation temperature of a mass of air is defined as the temperature it would have if it were raised adiabatically without gain or loss of water vapor to the condensation level. The advantages of this type of cross section are shown by Pierce to be: first, there are a less number of lines on the cross section; second, convective instability is roughly shown; third, amount of lift necessary for condensation is easily found;

significant according to Norton, Petterssen 10 and others, who have pointed out that when a cold front slows down or becomes quasi-stationary its characteristics often change from those of a cold front to those of a warm front; furthermore, cyclonic disturbances develop easily on such fronts. Experience in forecasting along the Gulf Region has taught that wave developments are generally the rule in such cases.

Warm, moist, stable MTw air (maritime tropical air) lay to the south of the cold front along the East Texas coast, with specific humidity 14.7 grams per kilogram at the surface at Brownsville and extended to near 3 kilometers, with drier, cool, unstable air above (fig. 2). Over Texas was a weakening east-west high-pressure ridge, approximately 1017 mb., of MPK air with the specific humidity near 5 grams per kilogram from the surface to 4 kilometers, but cPw mixed with MPw westward to

1 Bergeron, T., "Uber die dreidimensional verknüpfende Wetteranalyse," Geofysiske Publikasionar, Oslo, 1928, vol. V, No. 6.

1 Willett, H. C., "American Air Mass Properties," Massachusetts Institute of Technology Papers in Physical Oceanography and Meteorology, vol. II, No. 2, June 1933.

1 Showalter, A. K., "Further Studies of American Air-Mass Properties," MONTHLY WEATHER REVIEW, vol. 67, No. 7, pp. 204-218, July 1939.

4 Pierce, C. H., "On the use of Vertical Cross Sections in Studying Isentropic Flow," MONTHLY WEATHER REVIEW, vol. 66, No. 9, pp. 266-267, September 1938.

5 Rossby, C. G., "Isentropic Analysis," Buildin of the American Meteorological Society, vol. 18, No. 6-7, p. 201, June-July 1937.

6 Willett, H. C., "Discussion and Illustration of Problems Suggested by the Analysi, of Atmospheric Cross-Sections." Papers in Physical Oceanography and Meteorology, Massachusetts Institute of Technology, and Woods Hole Oceanographic Institutions July 1935: vol. IV, No. 2:

Norton, Grady, "Studying Weather Forecasting in the Lower Mississippi Valley" inpublished). (unpublished).

** Petterssen, S., Weather Analysis and Forecesting, 1940.

FIGURE 1a. 1:00 a. m., Nov. 21, 1940.

California, and very dry air above 2 kilometers west of El Paso, Tex., as shown by the soundings at El Paso and

It will be noted on the cross section (fig. 2) that the air aloft between Brownsville and Waco, Tex., just to the west of the region where the heavy rains developed, was very moist and stable to about 2,500 meters and was rather dry and unstable above. This condition of "convective instability" is inducive to heavy rain showers once the air is lifted over a region; the air above the moist layer becomes increasingly unstable as it is forced upward. cooling at or near the dry adiabatic rate, while the lower level moist air cools much slower and near the pseudoadiabatic rate. This condition plus the continuous inflow of moist air over southern Texas, from the south, for the following 3 days (November 22, 23, and 24) is shown graphically on the isentropic surface with a potential temperature of 298° in figures 11, 12, and 13. This potential surface is a very representative one as it was on an average at about 1 km., well above any surface inversions. The air aloft over the Southern Plateau States of New

course, the moisture content is high, the intermediate and upper levels are unstable with respect to dry air and enough convergence is present to start the processes of

condensation and precipitation.

After the "wave" of low pressure had developed strongly over southeast Texas November 25 (fig. 8a), the southerly current highly charged with moisture was cut off and replaced in the intermediate and high levels by a dry northwesterly current as shown on the isentropic chart of November 26 (fig. 14), and the rain stopped suddenly as a

result of this on the afternoon of November 25.

The isentropic cross section (fig. 1) shows potential temperatures and isentropic condensation temperature isotherms, both in absolute temperature for each 5 degrees. From the slow increase of potential temperature with elevation, instability of the air is apparent above the cold surface layers immediately behind (to west) of the front. Although the cold front near McAlester, Okla., shows a slope of about 1 mile in 100 miles, the low condensation temperatures above 2 kilometers to the west and east of the cold front restrict the precipitation and clouds to a strip

Mexico, Arizona, and west Texas, was very cold in the levels above 2,500 meters and very unstable. The inflow of the warm moist air northwestward into the region occupied by the shallow cold air on November 21, figures 1, 1a, and 2, resulted in a concentrated thunderstorm activity when the rain once began in the region of southeast Texas. The air aloft was becoming more and more unstable as is evident from the slow fall of potential temperature over the Brownsville region. With the approach of cold air from the Northern Plains States on November 22 (fig. 3a), the rains and thunderstorms over the Palestine, Tex., area began to intensify; and by November 23 (fig. 5a), a definite "wave" of low pressure seemed to be forming over a line from southern Arkansas to Waco, Tex., as an isobaric deformation was evident and rapidly falling tendencies of as much as 1.6 mb. were noted in southern Arkansas and northeast Texas. It has been observed in many other heavy-rain-type maps over southeast Texas, notably, December 1940, the spring of 1941, and October 29-31, 1941, that the heaviest rains are associated with that area where the "wave" begins to form, provided, of

of approximately 100 miles between McAlester, Okla., and Fort Smith, Ark., extending northward and southward.

As shown on the north-south cross section (fig. 2), the rain covered an area from near Omaha, Nebr., to Waco, Tex. An example of the use of cross section for finding amount of lift necessary for condensation is as follows: The air over Brownsville, Tex., at 937 mb. had a temperature of 291° and an isentropic condensation temperature of 288°, a difference of 3° C. Since air cools approximately 1° C. per 100 meters, only 300 meters lifting was required for condensation. This is first realized near Waco, Tex., where the potential surfaces rise sharply enough above the cold front to produce precipitation. Although no observations were made within the cloud it is conceivable that the cloud deck was supercooled to freezing or below over the rain area, as was apparent in figure 1 over the Oklahoma City area. During this entire rain period the moisture increased steadily over south Texas, as seen on subsequent cross sections, starting with near 15 grams at Brownsville on the 21st and increasing to near 18 grams per kilogram on the 23d, at the surface level.

During the night of November 22, moderate to severe thunderstorms and heavy rains occurred over southeast Texas as the warm, moist Gulf (MTK) air overran the cold air remaining at the lower levels in central southeast Texas. This area was where the cold front became quasi-stationary the day before, the 21st, a fact which is extremely significant as the MTW air to the south of the front was not displaced and later started northward, overrunning the stagnant, stable, cold, moist air. The quasi-stationary front over southeast Texas had advanced northwestward as a warm front to north central Texas. Light precipitation, mostly drizzle, as is usually the case, occurred over south and central Texas in the MTW air.

As shown on the east-west cross section (fig. 3), a flattening of the frontal (potential) surfaces caused subsidence and temporary clearing over Oklahoma. At the same time, as seen on the north-south cross section (fig. 4), unstable air was over the Dallas-Fort Worth, Tex., area and caused heavy precipitation in north central Texas, the warm, moist air continuing its northern trek.

The clearing, we find, for Texas is from a southwesterly direction; and the first clue is the ending of the rain along the Mexican border, near Del Rio, Tex., in particular.

By 7:30 p. m., November 23, the eastern part of the cold front in north Texas had moved to near Palestine, Tex., and the western portion to Del Rio, Tex. The cold air underrunning the warm air caused more rain all along the front, but not quite so heavy as in the afternoon and night of the 22d.

The cross section for November 23, 1940 (fig. 5), shows that a deepening of the cold air is occurring over the western portion of the east-west cross section and also over the north-south cross section (fig. 6), with cloud tops soaring high and rain increasing. The southerly winds over El Paso, Tex., changed to northerly in the lower levels during the night following this cross section, causing considerable rain in that area and to the eastward for the next 2 days.

The front that had advanced southeastward to central Arkansas extended southwestward to Del Rio, Tex., by the 1:30 a.m., E. S. T., map of November 24, 1940 (fig. 7a). This map is the turning point of the situation. As men-

FIGURE 3.

It may be stated here that when a cold front tends to flatten out and become quasi-stationary over the Southern States, it should never be ignored for the reason that it may return as a warm front, sometimes generating a well-developed cyclone, as mentioned previously; this also holds true for the Gulf, and the regions along the southern Rockies.

By 1:30 a. m., E. S. T., November 23, 1940 (fig. 5a), the cold air that was over central Kansas on the 22d had advanced rapidly southward to the central Oklahoma area and was underrunning the warm air to the southward over West Texas. The large negative tendencies over Arkansas and Texas portended a movement of the front southward for the time being.

Norton (op. cit.) states with respect to a storm-center movement:

"Abnormal movements are indicated by the greatest fall being north or west of the center. If the storm has been blocked by a saddle for several days in Texas or the west Gulf region, then the old rule to look for a fall north of the center as indicating a breaking through, is a good one. In this case the storm increases in intensity and moves northeast, and clearing weather should be forecast as soon as a normal movement will carry the storm center from the district."

tioned above, rapidly falling 3-hourly tendencies, usually over 1 mb., to the north or west of a point on a cold front portend a definitive wave formation. The fall of 2.4 mb. at Texarkana, Ark., is especially significant because the cold front changed to a warm front and moved northward. The 1:30 a. m. map of the 24th (fig. 7a) shows a continued definite inflow of the cold air to the west over the El Paso area, while the east-west cross section (fig. 7) shows a deepening of the cold air from the west and north to high levels.

This deepening of the cold moist air continued, and the wave over East Texas on the 24th developed into a deepening wave by the 1:30 a. m., E. S. T., map of the 25th (fig. 8a); the cross section (fig. 8) shows still more deepening cold air to the westward. By the 1:30 a. m., E. S. T., map of November 26 (fig. 9), a strong cyclone had developed and moved northeastward to southern Missouri. The rain ended suddenly over Louisiana and Texas behind the center; clearing occurred over a wide arc from the southwest, and more slowly in Oklahoma and Arkansas due to an occluded front in that region.

In conclusion, it is to be emphasized that the upper-air conditions over the southwest are especially important

FIGURE 3a. 1:00 a. m., Nov. 22, 1910.

FIGURE 5a. 1:00 a. m., Nov. 23, 1940.

FIGURE 7a. 1:00 a. m., Nov. 24, 1940.

during a rain period. During the period of heavy precipitation in November 1940 (and also in December), the winds aloft in the vicinity of El Paso eastward to the Gulf were southerly, 30 to 50 miles an hour, at intermediate and high levels, and only began to turn southwesterly over El Paso on November 24 at 4 a.m., after which a general clearing began over Texas from the southwest. (This change in wind direction was indicated by pilotballoon runs or by streamlines constructed from upper-air temperatures and pressures, the method employed by Vernon and Ashburn 11 being used.) As shown previously on the cross sections, the moisture content from upper-air

on whether they are blocked to the eastward by a highpressure area over the southeast or northeast. It is hoped that this paper, together with the synoptic maps, will aid in realizing the importance of wave developments possible along secondary cold fronts and quasi-stationary fronts in this region.

The action of the air flowing northward along upsloping isentropic surfaces will cause rain anytime with or without definite surface frontal action, provided moisture is sufficient. It is to be emphasized that in this region the isentropic nature of these quasi-stationary fronts is most important, and not their definite location at the

soundings at Brownsville and El Paso, Tex., and Oklahoma City, Okla., increased rapidly after November 21, preceding the rain period.

The isohyetal chart (fig. 10) shows the heaviest rains over southeast Texas, where over 15 inches fell from November 18 to 27, 1940. This region was where the wave, which caused heavier rains, developed.

The accuracy of forecasts in this region depends primarily on ability to prognosticate wave developments. Then since nearly all low-pressure areas change in the south central Plains area to another directions of movement, the movements after development depend largely

earth's surface, either in the Gulf or adjacent regions. Potential temperatures and isentropic condensation temperatures enable use of isentropic cross sections for airway and local forecasts. Further, by drawing the eastwest, north-south cross sections through a given area the slopes of the isentropic surfaces can be determined in any given direction; and consequently, when air-flow changes occur, the amount of lifting or subsidence will become immediately apparent.

¹¹ Vernon, E. N., and Ashbburn, E. V., "A practical method for computing winds aloft from pressure and temperature fields," MONTHLY WEATHER REVIEW, Vol. 66, No. 9, pp. 267-274, September 1938.

FIGURE 10.

U. S. DEPARTMENT OF COMMERCE, WEATHER BUREAU

FIGURE 11.

U. S. DEPARTMENT OF COMMERCE, WEATHER BUREAU

FIGURE 12.

FIGURE 13.

FIGURE 14.

NOTES AND REVIEWS

THOMAS A. BLAIR. Weather Elements—A Text in Elementary Meteorology. Revised Edition. New York (Prentice-Hall, Inc.), 1942.

The scope and character of this book are indicated in the review of the first edition that appeared in the Monthly Weather Review for December 1937, p. 447.

This new edition represents a limited revision, in which numerous additions and modifications have been introduced without any change in the general character of the book

V. CONRAD. Fundamentals of Physical Climatology. Harvard University, Blue Hill Meteorological Observatory, 1942. 121 pp., 60 figs.

This book is a semi-technical discussion, from the climatological viewpoint, of the principal physical factors that influence the climatological characteristics of different regions of the earth—the radiation balance of the atmosphere, the general temperature distribution over the globe, lapse rates in the atmosphere, transfer of heat horizontally and vertically, atmospheric and oceanic circulations, humidity, clouds, and precipitation.

OSCAR E. MEINZER, editor. Hydrology (Physics of the Earth—IX). New York (McGraw Hill Book Co.) 1942.

This treatise completes the series on geophysics planned

in 1926 by the National Research Council, the earliest volumes of which were published in 1931. The volume on Hydrology has been in preparation since 1936, and is the work of 24 authors; it fills 712 large pages, and includes many diagrams and photographs, and extensive bibliographic lists.

All phases of the hydrologic cycle are covered. After an introductory chapter (which includes an interesting section on the historical development of hydrologic concepts from ancient times to the present), the basic processes of precipitation and evaporation are discussed. These chapters are followed by a treatment of the numerous phenomena involved in the natural storage and transfer of water during the hydrologic cycle-snow cover, ice, glaciers, lakes and swamps; infiltration of surface water into the ground, transpiration, soil moisture and its movements, ground water and its flow and discharge by springs and in other ways, runoff and river flow, floods and droughts. The closing group of chapters are devoted to the physical and chemical work done by natural waterserosion, transport and deposition, solution and leachingand to a special discussion of the hydrology of limestone and volcanic terrains.

METEOROLOGICAL AND CLIMATOLOGICAL DATA FOR JUNE 1942

[Climate and Crop Weather Division, J. B. KINCER, in charge]

AEROLOGICAL OBSERVATIONS

Table 1.—Mean free-air barometric pressure in millibars, termperature in degrees Centigrade, and relative humidities in percent obtained by airplanes and radiosondes during June 1942

					39			10	20	1	Stations	s and	l elevi	ations i	n mete	rs ab	ove s	ea level			3							
	A	lbuque Mex. (1	erque, 1 1,620 m.	V.)			ta, Ga.		Bis	marck (505	, N. D.	ak.		Boise, (864	Idaho m.)		Bı	rownsv (6 1	rille, Te m.)	ex.		Buffalo (221			C	aribou (191	, Main m.)	10
Altitude (meters) m. s. l.	Number of ob-	Pressure	Temperature	Realtive humid-	Number of ob- servations	Pressure	Temperature	Relative humid- ity	Number of ob- servations	Pressure	Temperature	Relative humid-	Number of ob- servations	Pressure	Temperature	Relative humid-	Number of ob- servations	Pressure	Temperature	Relative humid-	Number of ob- servations	Pressure	Temperature	Realtive humid-	Number of ob- servations	Pressure	Temperature	Relative humid-
urface	30 29 29 29 28 27 25 24 23 17 11	835 800 755 712 632 558 492 432 377 328 286 246 212 181 154 131 112 94 480 68 58	-57. 1 -60. 8 -63. 2 -65. 9	200 200 202 244 277 266 244 222	30 30 30 30 30 30 30 29 29 29 29	981 959 906 855 806 759 715 633 559 492 432 378 329 286 247 212 182 154 131 111 94 80 68	23. 2 23. 4 20. 9 11. 8 8. 9 3. 1 -2. 7 -8. 6 -21. 5 -28. 7 -36. 3 -44. 1 -51. 5 -63. 3 -65. 9 -67. 7 -67. 9 -65. 4 -61. 9	766 7573 699 688 644 611 590 566 533 511 499 488	30 30 30 30 30 30 29 27 27 27	953 899 847 797 750 706 623 364 481 420 366 316 273 235 201 172 147 126 108 92 78 67	2.8 -3.0 -9.8 -16.1 -23.2 -30.8 -38.1 -44.8 -50.1 -53.3 -54.2 -54.6 -56.6	68 70 63 61 54 42 44 44 42 42	30 30 30 30 30 30 30 30 30 30 30 30 30 3	148 127 108 92	17. 9 19. 0 16. 1 12. 0 7. 8 4. 3 -9. 7 -16. 1 -22. 8 -30. 1 -37. 4 -43. 6 -54. 6 -55. 6 -55. 6 -57. 6 -56. 7	466 422 433 477 500 56 55 51 346 488 477	29 29 29 29 29 29 29 29 29 29 28 28 28 28 28	1010 955 902 852 804 758 714 633 560 494 434 380 331 288 245 215 187 137 133 95 80 68 57 48	26. 6 24. 2 23. 2 21. 6 18. 2 15. 8 12. 1 6. 1 0. 2 -6. 6 -12. 8 -48. 1 -54. 8 -61. 6 -72. 8 -76. 3 -72. 4 -63. 2 -76. 3	82 63 55 51 48 45 45 45 45 45 45 45 45 45 45 45 45 45	29 29 29 29 29 28 28 28 28	151 129 110 93 79	-39.3 -45.3 -51.6 -56.4 -60.4	72 68 68 61 55 40 68 68 61 1 40 68 68 61 1 40 68 68 61 1 40 68 68 61 1 40 68 68 68 68 68 68 68 68 68 68 68 68 68	27 27 27 27 27 27 27 27 25 24 24 24 24 24	990 954 900 848 798 751 706 623 365 316 273 235 201 172 142 106 90 76	14.8 15.6 13.8 10.6 7.4 4.8 -3.6 -9.6 -16.6 -30.8 -37.7 -44.8 -50.6 -55.6 -56.8 -57.7 -57.8	9 5 6 6 4 5 5 5 8 9 9 6 6 6 6 6 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7

and relative humidities in percent obtained by

								layed,	000		Stations	s and	eleva	tions	in mete	rs ab	ove s	ea leve	1									
	C	harlest (14	on, S. (c.	2/1	Denve (1,61	r, Colo	have unit	9 1		, Mich m.)	(2)	97.8	El Pas (1,19	so, Tex. 3 m.)	105)	Ely	, Nev.	(1,908	m.)	Gr	reat Fa (1,12	alls, Me 8 m.)	ont.	Hu	ntingt (172	on, W.	Va.
Altitude (meters) m.s.	Number of ob-	Pressure	Temperature	Relative humid-	Number of ob-	Pressure	Temperature	Relative humid-	Number of ob- servations	Pressure	Temperature	Relative humid-	Number of ob-	Pressure	Temperature	Relative humid-	Number of ob-	Pressure	Temperature	Relative humid-	Number of ob-	Pressure	Temperature	Relative humid-	Number of ob-	Pressure	Temperature	Relative humid-
Surface	300 300 300 300 300 300 300 300 288 222 221 211 211 220 200 191 111	1, 014 960 906 855 806 759 715 633 559 492 432 378 329 286 247 212 182 1112 94 80	23. 6 22. 7 20. 0 17. 1 14. 2 8. 5 2. 9 -2. 7 -8. 2 -21. 2 -28. 4 -36. 2 -43. 8 -51. 0 -67. 7 -67. 7 -67. 6	80 78 74 71 66 62 66 62 57 87 83 83 83 85 81 80	30 30 30 30 30 30 30 30 29 29 29	800	16. 4 16. 2 13. 4 10. 2 3. 4 -1. 2 2-26. 4 -33. 9 -41. 6 -49. 2 -55. 5 -59. 2 -61. 0 -64. 6 -62. 0 -60. 6	61 58 59 59 59 55 52 46 45	30 30 30 30 30 30 29 29 28 28	991 956 902 850 801 754 709 627 553 486 426 426 2207 177 151 129 109 93 79 68	17. 4 18. 8 16. 5 13. 7 11. 0 8. 4 5. 7 0. 2 -5. 8 -11. 9 -25. 0 -39. 5 -46. 4 -52. 8 -58. 2 -61. 7 -60. 6 -61. 6 -62. 1 -61. 6 -62. 1 -61. 6 -62. 5	67 68 67 64 50 56 56 50 49 43 41 40 38 83 39	30 30 30 30 30 30 30 29 29	878 848 801 756 713 633 560 493 433 379 330 287 248 213 182 156 133 112 95 80 68 58	28. 7 28. 4 25. 0 20. 8 16. 7 8. 4 -14. 0 -20. 6 -28. 1 -35. 8 -43. 4 -55. 5 -60. 2 -67. 8 -70. 4 -69. 2 -65. 4 -60. 5	22 22 22 22 24 28 32 32		799 753 710 628 554 487 427 322 279 240 206 176 150 127 109 92 78 66	16. 1 17. 2 14. 7 10. 8 2. 3 -5. 7 -13. 1 -20. 1 -28. 6 -42. 7 -48. 8 -53. 7 -57. 5 -61. 2 -62. 4 -62. 1 -60. 7	29 29 30 34 36 37 35 34 34	30	848 798 751 706 623 548 480 419 364 315 272 234 200 172 126 108 58 58	11. (8. (8. (8. (1. (1. (1. (1. (1. (1. (1. (1. (1. (1	9 622 6 5 62 6 5 62 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	30 30 30 30 30 30 29 27	994 957 904 852 803 756 712 630 556 490 430 375 326 284 210 180 110 93 79 67 57	20. 2 21. 2 18. 6 15. 4 12. 6 9. 8 7. 8 2. 1 -3. 3 -15. 6 -22. 8 -3. 3 -58. 6 -63. 2 -64. 8 -65. 2 -64. 8	22 746 714 756 738 665 65 631 663 3 565 5 50 5 50 5 50 5 50 5 50 5 50 5 50
	Jol	liet III	. (178 M	(L)	L	ike Ch	arles, I	А.	L	kehur	Station				in met				el la. (4 l	vf.)	N	ashvil	le, Ter	ın.	Non	rfolk, \	Va.1 (4:	m.)
Altitude (meters) m.s.l.	Number of ob-	Pressure		-pi		Pressure 9)	Temperature	hamid-	Number of ob- servations		Temperature H.	-pjunid-	Number of ob-	Pressure (40)	Temperature Temperature	-bimuid-		Pressure	Temperature	Relative humid-	Number of ob- servations	Pressure (180	Temperature	Realtive humid-	Number of ob-	Pressure	Temperature	Relative humid-
Surface		994 957 903 852 802 756 711 630 556 488 429 374 325 282 243	19. 0 20. 0 17. 6 14. 7 12. 1 9. 6 7. 0 1. 4 4 - 4. 5 -17. 5 -24. 4 -31. 5 -38. 8 -46. 0	84 75 74 73 69 62 58 53 56 54 52 51 50 48	29 29 29 29 28 28 28 28 27 27 27 26 26	1, 012 956 903 853 804 758 714 632 559 492 378 329 286 247 213	-20.8 -27.9 -35.4 -42.9	90 78 67 62 55 49 50 47 43 39 36 35 36	30 30 30 30 30 30 30 30 30 30 30 30	1, 011 959 905 853 803 756 712 629 555 488 428 374 325 284 210	-30.7 -38.3 -45.8	822 64 59 62 60 57 52 46 44 38 35 34 33	30 30 30 30 30 30 30 29 28 27 27 26	968 957 902 850 800 753 709 626 551 484 424 368 320 277 238 204	19. 3 18. 8 15. 7 12. 0 8. 3 5. 3 5. 3 2. 8 -2. 5 -14. 8 -21. 6 -28. 8 -42. 5 -48. 5 -53. 5	49 56 56 67 62 49 48 46	30 30 30 30 30 30 29 29	1, 016 960 906 855 806 760 716 634 890 493 433 379 330 287 248 213	25. 2 23. 3 20. 4 17. 5 14. 7 11. 8 9. 0 2. 9 -2. 5 -20. 3 -27. 4 -35. 0 -42. 8	86 78 75 72 69 68 67 68 67 66 63 63 62	30 30 30 30 30 30 30 30 30 29 29	993 957 904 853 804 758 714 633 559 492 432 378 329 286 248 213	23. 4 23. 8 21. 17. 8 15. 1 12. 3. 4 -2. 4 -8. 6 -14. 1 -20. 6 -27. 8 -35. 3 -43. 2 -50. 8	6 67 6 66 71 71 71 68 65 64 64 60 56 53 51 50 58	29 29 29 29 29 29 29 27 27 27		23. 2 21. 7 19. 2 16. 1 13. 4 10. 8 8. 3 2. 5 -3. 3 -15. 3	7 70 22 66 1 67 4 66 8 60 8 55 8 44 4 56 4 56 4 56 4 56 4 56 4 56 4 56 4

Table 1.—Mean free-air barometric pressure in millibars, temperature in degrees Centigrade, and relative humidities in percent obtained by airplanes and radiosondes during June 1942—Continued

										1	Station	s and	l elev	ations	in met	ers al	bove s	sea leve	el									
	Oak	land,	Calif. (2 m.)	0	klahor	na Cit; 391 m.)	у,		Omahi (301	, Nebr		1	Pensaco (24	la, Fla m.)	.1			ix, Ariz		P	ortland (20	, Mair m.)	ie,	8	St. Lou (171	is, Mo m.)	
Altitude (meters) m. s. l.	Number of ob- servations	Pressure	Temperature	Relative humid-	Number of ob- servations	Pressure	Temperature	hun	Number of ob- servations	Pressure	Temperature	Relative humid-	Number of ob- servations	Pressure	Temperature	Relative humid-	Number of ob-	Pressure	Temperature	Relative humid-	Number of ob- servations	Pressure	Temperature	Relative humid-	Number of ob- servations	Pressure	Temperature	Relative humid-
urface 00 00 000 000 000 000 000 000 000 000	300 300 300 300 300 300 300 300 300 285 277 277 225 244 222 222 222 220 191 13 3	1, 013 956 902 850 801 755 710 629 555 488 428 374 324 208 177 151 128 109 93 79 67	16. 0 16. 4 18. 2 16. 0 13. 8 11. 0 8. 1 1. 2 9. 9 -17. 1 -24. 9 -32. 3 -39. 8 -47. 1 -53. 6 -57. 9 -61. 0 -62. 3 -61. 1 -59. 4	63 38 32 29 27 26 24 23 23 23 23 23	30	966 954 901 851 802 559 432 377 328 285 246 212 181 151 111 94 79 67 87 49	23. 2 23. 3 21. 8 19. 0 16. 8 11. 9 4 -1. 3 -8. 0 -14. 7 -21. 8 -29. 1 -36. 8 -44. 5 -58. 1 -62. 6 -67. 7 -68. 3 -66. 0 -69. 4 -59. 4	777 722 726 64 656 522 51 446 444 411 339 339	30 30 30 30 30 28 28 28	978 956 902 852 802 756 712 630 556 489 374 325 243 209 152 130 110 94 80 68	20. 9 21. 2 19. 1 16. 0 13. 2 10. 8 8. 2 2. 4 -17. 3 -24. 3 -31. 8 -39. 2 -46. 9 -60. 9 -61. 6 -59. 5	69 71 68 64 58 52 52 53 49 46 45	26 26 26 26 26 26 26 27 21 20 15 13 12 20 6 5	1, 012 958 905 854 805 714 632 558 490 431 377 327 284 245 212 180	26. (23.) 20. 2 17. 4 14. 8 2. 3 -3. 4 -9. (-14. § -22.) -22.) -29. § -52. 7 -58. 7	69 654 622 6554 622 6554 622 6554 622 6554 622 6554 622 6254 622 6254 622 6254 6254	30 30 30 30 30 30 30 29 29 29	802 756 713 632 559 493 433 379 330 287 248 213 182 155 132	29. 3 33. 1 30. 5 26. 4 22. 1 17. 9 14. 1 7. 5 0. 8 -6. 3 -13. 4 -21. 2 -29. 1 -37. 2 -44. 9 -51. 8 -67. 9 -70. 1 -67. 7	17 16 16 16 17 17 17 17 17 16 16 16 16	30 30 30 30 30 27 25 22 19	1, 012 956 902 850 800 753 709 626 551 484 424 368 319 276 237 203 173 147	14. 2 16. 8 11. 9 9. 1 6. 2 3. 4 -2. 8 -8. 3 -14. 2 -28. 6 -36. 0 -43. 8 -49. 7 -55. 7 -57. 0	71 73 78 78 69 68 61 53 51 82 54	30 30 30 30 28	994 956 903 852 803 756 712 631 557 490 376 326 284 245 211 180 154 139 111 111 194 80 68 58	21. 8 22. 19. 3 16. 3 14. 1 11. 8 3. 6 -3. 2 -9. 3 -15. 7 -22. 6 -29. 8 -51. 1 -57. 62. 3 -64. 6 -64. 6 -63. 6 -65. 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	s	t. Pau (225	l, Minr	1.	Sar	Anto	nio, To	ex.		n Dieg	and ele			S. Mai			_	Seattle,	, Wash.	,1	8	pokane (598		n.	Wa	shingt (25	on, D.	C.
Altitude (meters) m. s. l.	Number of ob- servations	Pressure	Temperature	Realtive humid-	Number of ob-	Pressure	Temperature	Relative humid- ity	Number of ob	Pressure	Temperature	Relative humid-	Number of ob- servations	Pressure	Temperature	Relative humid-	Number of ob-	Pressure	Temperature	Relative humid-	Number of ob servations	Pressure	Temperature	Realtive humid-	Number of ob- servations	Pressure	Temperature	Relative humid-
urface 10	29 29 29 29 29 29 29 29 28 28 27 26 26 26 25 22 21	987 955 901 850 800 753 709 627 552 485 425 370 321 278 240 205 175 149 127 108	18. 5 17. 7 15. 3 12. 7 10. 3 7. 8 5. 2 -0. 4 -6. 4 -12. 9 -19. 4 -27. 1 -34. 8 -42. 2 -48. 7 -53. 7 -57. 0 -58. 8	74 75 76 71 66 62 52 46 45 42 39 38	30 30 30 30 30 30 30	991 955 902 852 804 758 715 634 561 494 434 380 331 288 249 214 184 157 133	27. 1 26. 1 23. 7 21. 2 18. 1 14. 9 12. 1 6. 5 -5. 8 -12. 5 -26. 9 -34. 3 -41. 9 -48. 7 -54. 8 -60. 0 -64. 9	65 62 58 49 44 37 34 32 31 31	30 30 30 30 30 30 30 30 30 30 17 17 16 16 16 11	1, 009 953 899 849 801 754 711 631 557 491 431 377 328 284 246 211 180 154 130	16. 2 14. 9 19. 5 19. 9 18. 5 15. 9 -0. 3 -7. 4 -14. 7 -22. 7 -30. 7 -30. 7 -31. 6 -51. 6 -62. 3 -64. 3 -64. 6 -66. 5	78 44 24 16 14 13 20	30	989 957 902 850 800 753 708 625 551 484 423 368 319 276 238 204 175 149 128	13. 2 15. 1 14. 0 11. 0 7. 8 5. 3 -2. 8 -2. 8 -2. 1 -14. 6 -21. 5 -28. 8 -36. 1 -42. 3 -47. 7 -51. 1 -53. 7 -55. 5 -56. 5	73 65 65 67 64 60 53 47 45 44 44 43	30 30 30 30 30 30 30 28 28 28	959 903 850 799 751 706 622 546 416 361 312 269 231 198 170 145	16. 5 13. 6 10. 3 7. 0 3. 7 0. 5 -2. 5 -8. 5 -14. 6 -21. 4 -28. 4 -35. 3 -47. 7 -50. 4 -51. 6 -52. 6 -52. 2	67 67 65 68 69 65 55 56 61 63 62	30 30 30 30 29 29 28 28 27	944 900 848 798 751 706 622 547 479 418 363 314 271 233 199 191 146 125 107	16. 3 14. 8 11. 2 7. 2 3. 4 -6. 1 -12. 3 -19. 2 -26. 2 -46. 3 -51. 1 -52. 7 -52. 9 -53. 3 -54. 3	57 58 65 73 79 75 65 60 58 87 56	30 30 30 30 30 30 29 29 29	1, 012 958 904 853 804 757 713 631 557 490 430 376 327 284 246 211 181 154 131	22. (20. 21. 22. 22. 22. 22. 22. 22. 22. 22. 22	

Table 1.—Mean free-air barometric pressure in millibars, temperature in degrees Centigrade, and relative humidities in percent obtained by airplanes and radiosondes during June 1942—Continued

					Stati	ons an	d elevat	ions	in me	eters a	bove se	a leve	el			
	A	nchor	age Ala (2 m.)	ska	Bar	row, A	laska (6	3 m.)	Bet	bel, Al	laska, (7 m.)	F	irban (15	ks, Alı 6 m.)	aska
Altitude (meters) m. s. l.	Number of ob-	Pressure	Temperature	Realtive bumid-	Number of ob-	Pressure	Temperature	Relative humid-	Number of ob- servations	Pressure	Temperature	Relative humid-	Number of ob-	Pressure	Temperature	Relative humid-
Surface	30 30 30 30 30 30 30 30 26 24 24 24 22 21 20 19 18 18 18 18 15	1,000 953 898 844 794 700 615 540 472 410 356 307 227 194 167 143 123 106 91 78 67 57	12. 8. 4. 1. -2. -5. -10. -17. -23.	6	30 30 30 30 30 30 30 30 30 30 30 29 29 29 29 27 27 27 27 27 26 25 24 22 19 16	1, 0155 9555 808 8444 7933 539 471 410 3555 306 203 2266 194 167 144 124 127 79 92 79 68 58	3.2	58 58 58 53 50 49	30 30 30 30 30 30 29 29 29	1,008 9511 895 842 791 7433 537 607 613 537 469 408 305 262 226 194 1124 1124 1107 192 799 68 58 50	14.8 10.8 6.8 3.1 -5.9 -11.7 -18.1 -24.4 -31.4 -31.4 -31.4 -31.4 -31.4 -47.0 -47.0 -44.9 -45.0 -45.6 -45.6 -45.4 -44.1 -43.8	63 69 73 76 76 74 70 63 61 55 55	29	960 951 897 844 705 618 543 359 310 267 229 196 168 144 124 127 86 86	-28. -36.	6 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	1		, Alaski m.)			tehika	elevati n, Alasi m.)				n, Alas)			Nome,	Alaski m.)	a
Altitude (meters) m. s. l.	Number of ob- servations	Pressure	Temperature	hun	Number of ob-	Pressure	Temperature	han	Number of ob-	Pressure	Temperature	hum	Number of ob- servations	Pressure	Temperature	Relative humid-
Surface	30 30 30 30 30 30 30 28 27 26 24 23 21 21 19 19 17 17 17 17 17 17	1, 009 956 901 848 797 749 703 619 543 475 414 350 310 267 229 197 169 145 107 92 79 68	15. 2 12. 0 8. 3 4. 9 -3. 6 -9. 1 -14. 8 -21. 3 -28. 5 -36. 0 -44. 0 -49. 6 -50. 7 -49. 6 -47. 1 -47. 0 -46. 9 -46. 9 -46. 7	78 74 68 65	30 30 30 30 30 30 30 30 30 27 26 24 24 19 17 13 11 11 11 10 8 7	1, 013 957 902 849 798 750 620 544 476 414 360 311 208 230 197 168 144 124	14. 4 11. 0 7. 9 5. 0 2. 0 -0. 7 -3. 5 -9. 0 -15. 1 -21. 6 -28. 5 -35. 7 -49. 4 -51. 7 -50. 6 -49. 1 -49. 1	71 74 78 80 79 76 74 72 69 66 63 61	30 30 30 30 30 30 30 30 29 29 29 29 29 27 27 27 27 27 21 18	996 950 895 842 792 744 600 615 539 471 410 356 307 264 227 195 168 145 124 107 92 79 68	17. 9 14. 4 10. 1 6. 1 2. 3 -1. 1 -4. 0 -10. 3 -1. 6. 7 -23. 2 -30. 1 -37. 3 -43. 9 -47. 6 -48. 2 -46. 4 -45. 5 -48. 7 -45. 4 -45. 2 -44. 8 -44. 6	48 40 54 61 66 71 72 73 68 66 65 64	30 30 30 30 30 30 30 30 30 30 30 30 29 28 28 28 27 27 27 27 22 22 22 22 22 22	144 124 107 92 79	11. 1 10. 4 7. 2 4. 5 1. 3 -1. 5 -1. 4 -10. 6 -17. 1 -23. 6 -30. 6 -38. 0 -47. 4 -47. 2 -45. 7 -45. 1 -46. 2 -45. 1 -44. 3 -44. 7 -44. 7	4 71 72 72 74 8 74 8 74 8 64 8 65 8 85 8 85 8 85 8 85 8 85 8 85 8 85

All observations taken at 11 p. m., 75th meridian time. None of the means included in this table are based on less than 15 surface or 5 standard level observations.

Number of observations refers to pressure only, as temperature and humidity are missing for some observations at certain levels, also, the humidity data are not used in daily observations when the temperature is below $-40^{\circ}~\mathrm{C}_{\odot}$ Stations marked with the figure one (1) are Navy stations.

Table 2.—Free-air resultant winds based on pilot balloon observations made near 5 p. m. (75th meridian time) during June 1942. Directions given in degrees from North (N=360°, E=90°, S=180°, W=270°)—Velocities in meters per second.

		A bile Te: (537 1	ne,	9	Alb	lue,		Atlan Ga (299 1			Mon Mon	t.	1	isma N. D 512 1	ak.	1	Bois Idal (866)	se, ho m.)	1	Brow ville Tex (7 m		I	Buffa N. 1 220 r	ilo, Y.	B	urlin Vt (132 1	gton	CI	s. C	ston	, Ci	ncin Ohi 152 r	Lati,		Denv Col:	0.	E:	Pase Tex.
Altitude (meters) m. s. l.	Observations	T	Velocity	Observations	Direction 089,	I	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	tions	T	T	Observations	Direction	Velocity	ions	Direction	Velocity	Observations	1	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction
Surface	30 30 30 30 25 27 24 21 20 16 16 16 15	150 176 176 197 216 226 1296 1296 1311 1312 1312 1312 1312 1312 1312 131	4. 5. 4. 2. 3. 4. 5. 4. 7. 8. 7. 5.	4 30 5 30 9 30 2 30 9 29 9 28 8 26 8 21 16	23 23 23 25 26 26 27 26	3 2. 9 3. 5 5. 1 6. 7 7. 5 10. 11. 5 16. 9 27. 1 19.	29 29 5 26 5 23 3 21 1 18 4 12 2 12 4 10	9 208 9 220 9 241 9 270 6 302 8 302 8 278 2 266 2 266 9 259	0.9 0.7 1.4 2.2 3.2 4.2 3.1 2.6 3.5 3.9	30	348 322 264 254 252 255 260 265			281 270 271 271 263 263 254 260 247			1	4 3. 1 4. 6 4. 1 5. 7. 1 8. 6 18. 6	30	143 154 165 166 232 293 318 278 290	6. 9	29 29 26 25 24 18 15 12	245 259 262 273 274 274 270 280	2. 2. 2. 3. 2. 8. 4. 8. 5. 6. 8. 7. 7. 11. 2	5 29 29 22 27 3 26 5 22 10 16	191 192 248 275 279 279 282	1. 7 2. 2 2. 6 4. 2 6. 7 7. 4 7. 7	30 30 27 25 23 19 18 15 11	154 151 193 297 308 299 319 238 260	3. 0 3. 1 1. 6 1. 4 2. 2 1. 8 1. 6 1. 4 3. 6	30 30 30 30 29 28 20 15 11	114 257 252 262 269 273 271 283 268	0. 5 0. 4 1. 2 2. 0 3. 7 4. 6 4. 7 5. 5 4. 7			2.9 4. 1 4. 0 2. 9 5. 4 9. 6 12. 2 15. 6	30	260 257 258 262 269 267 277 288 286
	E	ly, N (1,91	lev.	Ji	Granunct Col.	nd ion, o. m.)		Oreer bord N. C	ns-),). n.)		Havr Mon 767 n	t.	J. vi	acks ille, i	on- Fla.	J	oliet,	nı.		s Ve Nev 570 n			tle R Ark 88 m			ledfo Oreg	ζ.		Mian Fla. 10 m			Ala 66 m			ashv Teni 194 n	1.	Ne	w Yo N. Y. 15 m.
Altitude (nieters) m. s. l.	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction
urface		218 224 229 237 236 246 268 278 279			238 237 245 231 226	1.8 2.6 4.5 5.8 8.0 7.8 9.6	28 28 28 27 26 25 24 19	176 195 252 268 284 297 290 286 283 273 271 275	1.0 1.1 1.9 2.5 3.5 3.7 5.1 7.5 6.5 6.3 8.2 9.8	***	274 282 278 271 262 252	2.5 3.3 3.7 3.9 5.8 8.0	29 29 25 23 20 18 16	122 157 222 252 264 266 263	2.0 2.3 2.7 3.0 2.6 2.2 3.1	28 28 28 28 28 24 20 21 21 10	250 231 232 257 265 270 275	0. 9 1. 1 2. 1 2. 8 4. 5 5. 3 6. 4	30 30 30 30 30 30 30 30 29 24 23 19	174 188 197 214 222 237 252 264 262 260 270 270 267	2. 9 3. 2 3. 8 4. 4 5. 2 6. 2 8. 6 11. 7 13. 5 17. 5 24. 4 25. 6 24. 4	28 28 28 28 24 21 21 19 14	148 154 179 195 220 238 249 253 279	1. 5 2. 3 2. 4 2. 0 2. 3 3. 3 3. 4 2. 7	30 30 30 29 29 26 26 26 25 23 19 17	272	2.6 3.4 2.7 2.4 2.6 2.7 3.6 6.7 8.4 11.7 16.9 14.9 16.3	29 28 26 26 24 24 20 16 11 11	116 138 161 166 188 170 148 258 233 233	3.7 2.7 1.8 2.1 2.0 2.5		176 184 213 251 250 240	2.6 2.6 2.3 1.6 1.6 3.2	30 30 30 30 29 29 28 27 24 17 11	197 208 248 262 264 268 285 277	1. 1 1. 2 1. 7 2. 4 3. 5 3. 6 4. 0 4. 5 3. 7 3. 3	29 28 28 26 22 20 15	192 239 256 274 277 293 291
		aklar Calif (8 m.			claho City Okla 02 n	7	1	mah Nebr			noeni Ariz. 38 m		8 (9	Rapi City . Da	d k.		. Los Mo. 181 m		1	. Par Minn 25 m			San nton Tex. 80 m			San Diego Calif 15 m),	Ste.	Sault Ma Mich 30 m	t irie)	1	eattl Vash 12 m	1.	1	ooka Wash 303 m	1.	W	ashin ton,). C. 24 m.)
Altitude (meters) m. s. l.	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction	Velocity	Observations	Direction
urface	30 30 28 28 28 28 28 27 27 27 27 24 20 14	269	6. 3 4. 6 3. 9 4. 8 3. 9 4. 6 5. 7 7. 6 9. 8 12. 6 14. 6 19. 4 20. 6	29 29 29 25 22 19 16 15 14 12	160 158 161 185 203 218 228 242 257 264	4. 9 5. 0 5. 4 6. 0 6. 7 6. 2 6. 8 6. 1 5. 5 6. 9	30 30 30 27 24 21 17 16 11 11	177 178 182 221 248 257 260 248 265 273	1. 9 2. 1 2. 8 3. 0 4. 9 5. 4 4. 5 6. 7 10. 5 11. 8	30 30 30 30 30 30 30 29 29 27 25 23 15	247 243 249 234 218 220 235 247 250 251 270 278 278 275 269	1.6 2.7 3.4 3.2 4.7 6.2 8.0 8.6 9.9 0.1 12.8 7.5 19.8	30 30 30 30 22 19 16 11	102 98 163 240 249 256 263 258	1. 7 1. 6 . 3 2. 4 6. 1 8. 1 11. 2 16. 2	90	266 241 255 256 269 271 276 279 294 289	0.8 1.1 2.8 3.5 4.5 5.1 6.1 6.0 8.8 8.7	29 29 25 22 18 14 11	198 214 231 234 241 255 268	1. 4 2. 1 3. 3 4. 5 5. 5 9. 1 10. 3	30 30 29 29 29 29 27 23 17 16 14 13 11	126 131 135 152 169 201 218 188 205 296 311 276 268	2.8 4.4 5.0 4.5 3.9 1.7 1.3 1.4 1.0 2.0 4.6 9.5 17.0	27 27 23 23 22 22 22 19 18 15 12	230 232 256 269 278 271 259 251 256 244	4. 1 2. 4 1. 7 2. 2 3. 4 5. 2 7. 4 8. 4 9. 7 9. 9	29 29 28 26 23 20 18 11	306 282 290 267 287 297 287 283	1. 2 1. 8 3. 7 3. 4 3. 6 4. 7 6. 0 7. 3	29	249 229 231 230 239 231 210 266 272 279	2.0 1.7 2.1 2.5 2.6 2.8 2.5 2.7 4.6 5.7	30 30 30 28 20 17	226 228 224 235 216 206	2.5 3.7 3.2 3.4 2.0 3.2	30 30 26 24 22 20 16 12 11 11	254 261 257 267 275 281 288 298 1 284 1 280 1

Late Reports for Table 2.

		MAY 1942		THE PARTY	APRIL 1942	2	and the street	g hot B	MAY 1942			APRIL 1942	
Altitude (meters) m. s. l.	Boise,	, Idaho (86	6 m.)	Chie	ago, Ill. (19	92 m.)	Altitude (meters) m. s. l.	Boise	, Idaho (80	36 m.)	Chion	go, III. (19	2 m.)
اعد بالد ب	Observa- tions	Direc- tion	Velocity	Observa- tions	Direc- tion	Velocity	and anthony of	Observa- tions	Direc- tion	Velocity	Observa- tions	Direc- tion	Velocity
Surface	30	324	2.6	29	186 191	1.5	2,500	27 22 18	271 255	2.8 2.9 4.8	22 20	271	8.
1,000	30 30 29	314 299 285	2.8 3.4 3.5	29 29 27 24	205 223 258	3.7 3.5 4.8	4,000 5,000 6,000	18 15 12	271 255 239 275 290	4.8 5.7 7.3	17 14 13	271 286 310 321 329	6. 8. 10. 13.

Table 3 .- Maximum free-air wind velocities (m. p. s.) for different sections of the United States based on pilot-balloon observations

									_						
Total		Surface	to 2,50	0 me	ters (m. s. l.)		Between 2,	,500 and	5,000) meters (m. s. l.)		Abo	ve 5,000	mete	ers (m. s. l.)
Section	Maximum ve-	Direction	Altitude (m.) m. s. l.	Date	Station	Maximum ve-	Direction	Altitude (m.) m. s. l.	Date	Station	Maximum ve-	Direction	Altitude (m.) m. s. l.	Date	Station
Vortheast 1	31. 0 34. 7 23. 4 45. 7 33. 2 31. 4 38. 5	NNW W WNW SW SE WNW	2, 500 2, 500	5 13 13 21 26 21 19	Hartford, Conn Nashville, Tenn. Atlanta, Ga Duluth, Minn. Dodge City, Kans. Big Spring, Tex. Billings, Mont	32. 0 39. 6 29. 0 35. 8 33. 8 34. 9 33. 8	WSW WSW WNW WNW SE	4.600 4,280 3,400 4,090 4,350 2,670 4,060	23 24 13 12 22 21 16	Boston, Mass	56.8 49.0 43.5 58.0 44.3 43.0 58.0	\{\bar{W}\W\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7, 120 11, 950 12, 820 16, 500 8, 850 12, 130 13, 260 8, 770 9 040	20 15 14 18 17 14 16	Boston, Mass. Kylertown, Pa. Nashville, Tenn. Miami, Fla. Huron, S. Dak. St. Louis, Mo. San Antonio, Tex. Great Falls, Mont
Vest-Central *		w wsw	2, 500 2, 470	12 27	Grand Junction, Colo. Winslow, Ariz	48. 4 38. 5	wsw		11 27	Casper, Wyo	68. 8 79. 2	wsw	10, 630 9 130	19	Reno, Nev. Winslow, Ariz.

Maine, Vermont, New Hampshire, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, Pennsylvania, and northern Ohio.
 Delaware, Maryland, Virginia, West Virginia, southern Ohio, Kentucky, eastern Tennessee, and North Carolina.
 South Carolina, Georgia, Florida, and Alabama.
 Michigan, Wisconsin, Minnesota, North Dakota, and South Dakota.
 Indiana, Illinois, Iowa, Nebraska, Kansas, and Missouri.

RIVER STAGES AND FLOODS

By BENNETT SWENSON

Precipitation during June was above normal throughout the country except for a few scattered areas. The greatest exception was the far Southwest where a large area, for the second consecutive month, received little or no pre-cipitation. The driest states for the two months of May and June were Arizona and New Mexico. On the other hand, the Plains States had an abundance of rain during June, and for the first 6 months of the year precipitation was generally well above normal in this area.

Extensive floods occurred in the Plains States from South Dakota to Texas from frequent, and at times heavy, rains; and local floods resulted in northern New England from unusually heavy thundershowers near the middle of the month. The Missouri River from Blair, Nebr., to its mouth and most of the Mississippi River above Cairo, Ill., were in flood. The Mississippi and Missouri River floods combined at St. Louis to produce unusually high stages between that point and Cairo, Ill.

Atlantic Slope drainage.—High stages occurred in the Presumpscot, Androscoggin and Kennebec River Basins in Maine as the result of rainfall of high intensities during the period June 14-18. The storm occurred in two phases, causing two crests on most streams. The peak stages were not unusually high but damage was caused in some sections by the heavy rainfall and resultant floods, especially to crops and highways.

Intense rainfall on the afternoon and evening of June 14, in the upper Connecticut and Merrimack River Mississippi, Arkansas, Louisiana, Oklahoma, Texas (except El Paso), and Western

Tennessee.

7 Montana, Idaho, Washington, and Oregon.

8 Wyoming, Colorado, Utah, northern Nevada, and northern California.

8 Southern California, southern Nevada, Arizona, New Mexico, and extreme west

Basins produced unusually rapid rises in some of the tributary streams in New Hampshire. In the Connecticut Basin, Oliverian Brook, between Glencliff and East Haverhill, N. H., overflowed causing severe damage to highways and bridges and Mascoma River flooded the streets of Canaan, N. H. The upper reach of the Connecticut River, immediately below Pittsburgh Reservoir overflowed causing damage to the extent of \$40,000. At Hartford, Conn., the river rose 7 feet above the stage on

the 15th, reaching a crest of 10.2 feet on the 18th.

In the Merrimack River Basin above Nashua, N. H., rains beginning about 3 p. m., June 14, and continuing for 12 hours averaged 3.75 inches. The greatest amounts were concentrated in the Bakers River Valley and in the upper portion of Smith River, where over 8 inches of rain occurred, resulting in serious flooding in these rivers. At Rumney, N. H., Bakers River reached a peak stage of 15.5 feet on June 15, exceeding the floods of March 1936 and September 1938 and second only to the flood of 1927 at that station. The Pemigewasset River was in moderate flood at and above Plymouth, N. H. Elsewhere in the Merrimack Basin, flows did not reach flood proportions. Damages, the greater part of which occurred in the Bakers River area, have been estimated at \$53,000.

In the remainder of the Atlantic Slope drainage, showers on June 14 in the upper Susquehanna River Basin were sufficiently heavy to raise that river slightly above flood stage at Oneonta, N. Y., and heavy showers on June 10-11 over the Roanoke River Basin caused slight flooding at Randolph, Va., and Weldon, N. C., but stages were not sufficiently high to cause damage. East Gulf of Mexico drainage.—The only flooding reported during the month was at Centerville, Ala., on the Cababa River, where a stage of 30.8 feet occurred on June

13. The damage was negligible.

Ohio Basin.—Light flooding occurred in the White River and its tributary, the West Fork, between June 15 and June 30. The total damage from the flooding has

been estimated at about \$45,000, the greater part of which was to growing crops. The overflow resulted from frequent rains, which occurred on more than half of the days in the month and totalled from 7 to more than 10

inches for the month at stations in the area.

Upper Mississippi Basin.—Heavy rains over the upper portions of the Chippewa and Wisconsin River Basins caused moderate flooding in these streams on the first of the month. A series of rains beginning on June 7 and continuing to June 27, occurred over most of the Mississippi River area above Cairo, Ill., and produced moderate flooding in the Mississippi River from Winona, Minn., to just above the mouth of the Ohio River and in tributary streams in Minnesota, Wisconsin, Iowa, Missouri, and Illinois. A discussion of these floods will be given in a later issue of the REVIEW. The flood in the Missouri River, which is discussed below, combined with the flood in the upper Mississippi River to produce unusually high stages in the reach between St. Louis, Mo., and the mouth of the Ohio River. The crest at St. Louis was 34.3 feet on June 30, and 36.9 feet at Cape Girardeau, Mo., on July 2. A comparison of the crest stages in this flood with previous high stages is shown in the accompanying table.

The Tennessee and Ohio Rivers remained low throughout the month, a condition which decreased the flood height of the Mississippi in the vicinity of the Ohio River. Flood stage was not reached from this point

downstream.

were under water.

Missouri Basin.—Heavy rainfall during the first part of June in the Big Sioux and Floyd River Basins produced record high stages in those streams and resulted in extensive overflow and considerable damage in both basins.

In the Floyd River a crest of 18.8 feet occurred on June 5 at James, Iowa, surpassing the previous high stage of record, 18.1 feet in 1936. Upstream from this point, the river is said to have been as high or higher than in 1881, the greatest known flood in the Floyd River. In spite of the high water, the damage in Sioux City, Iowa, was negligible, due to recent channel improvements and construction of high levees. Above Sioux City the flood damage was mainly to crops, fields, dikes, fences, and roads.

In the Big Sioux River a stage of 19.3 feet at Akron, Iowa, was reached on June 4, 0.1 foot below the highest stage, in September 1926, when a high-water mark of 19.4 was established. The river spread out in some districts to a width of 3 miles and thousands of acres of farm land

The Republican River overflowed slightly on two occasions during the month, the first from June 12 to 15 and the second from the 24th to the 27th. In both cases, the flooding extended from slightly above Guide Rock,

Nebr., to below Clay Center, Kans., and was confined only to very low places.

The other tributaries of the Kansas River, the Solomon, Saline, Smoky Hill and Blue Rivers, and the Kansas River itself, experienced moderate to rather serious floods with considerable damage, largely from flooded crops. The greater part of this damage occurred in the basin of the Kansas River, which overflowed from Manhattan to

below Lawrence, Kans., except that bankful stages were not quite reached at Wamego, Kans. Crest stages in the Kansas River generally ranged from 1 to 2 feet above bankful. At Topeka, Kans., the crest was 22.5 feet on June 21, but protecting levees prevented any part of the city from being flooded.

The next most damaging overflow was along the Smoky Hill River from Ellsworth, Kans., to its mouth. At Lindsborg, Kans., a crest of 27.95 feet, 6.95 feet above bankful, was recorded on the 21st, and at Salina, Kans., a crest of 22.65 feet, 2.65 feet above bankful, occurred on the 23rd. The only city that suffered material damage was Salina, where a considerable part of the eastern section was flooded.

The floods in the Solomon and Big Blue Rivers were of

minor importance.

In eastern Nebraska, heavy to excessive rainfall occurred on June 19–20 and flood stages prevailed in the Elkhorn River for a few hours at Norfolk on the 20–21st with a crest of 10.25 feet. There was some overflow at a few places above and below Norfolk but damage was mostly light. However, moderate damage occurred at a number of places in eastern Nebraska from flooding of small creeks and draws many of which are dry most of the time.

In the Grand, Osage, Gasconade and lower Missouri River Basins rains occurred on June 1–2, were almost continuous from the 5–19th, and were heavy on the 25th and 26th, causing moderate flooding in the Gasconade and Osage Rivers and severe flooding in the Grand and lower Missouri Rivers. Jerome, Mo., in the Gasconade Basin, recorded a total of 14.50 inches of precipitation for the month; Waverly, Mo., on the Missouri River, had 12.70 inches while other stations in this area had amounts generally in the neighborhood of 10 inches.

The Missouri River which was still at moderately high stages following generous rains during May rose to high stages again in June when heavy rains occurred over western Iowa, eastern Kansas and Nebraska and northern

Missouri during much of the month.

The Missouri River first exceeded flood stage in the vicinity of Nebraska City, Nebr., on June 6 and from that date to the end of the month was in flood at most points downstream to its mouth. The river crested at Nebraska City on June 22 at a stage of 18.4 feet, the same as the record stage reached during the preceding month. most serious overflow in this area was in Mills and Fremont Counties, Iowa, where considerable damage had occurred in May. Damage was moderate in Monona County, Iowa, near Onawa, and in Washington County, Nebr., near Blair where the river remained above flood stage several days, reaching 19.4 feet on June 10-11. Severe damage to crops was sustained in several counties immediately above and below Kansas City, due to creek overflows, and in the vicinity of Lexington, Mo. crest stage at Kansas City was 24.2 feet on June 22 and 24.3 feet at Lexington, Mo., on June 27.

In the reach of the lower Missouri River below Kansas City, stages began a slow rise on June 7, reaching unusually high stages near the end of the month. On June 6, a series of rains began over this portion of the basin and from that date until the 27th, precipitation was reported daily from stations in the basin. The combination of high discharges from the Missouri above Kansas City and from the Kansas River, plus the heavy discharges from the Grand, Osage, and Gasconade Rivers, and other small tributaries, in the lower basin, produced unusually high stages in the extreme lower Missouri River, closely

approaching the highest stages of record. A comparison of the stages in this flood with the previous high stages of record is given in the accompanying table.

Arkansas-Red Basin.—Moderate floods occurred in the Verdigris, Neosho, Canadian and the main Arkansas River in the Arkansas Basin and in the Sulphur River in the Red Basin during the month.

The Arkansas River overflowed near Oxford, Kans., on June 21, extending to a short distance above Little Rock, Ark., near the end of the month. The flooding in the vicinity of Arkansas City, Kans., was severe although the city itself was protected by levees. The high stages in this area were caused by heavy rains in the Ninnescah and Walnut River Basins and over the Arkansas River above Arkansas City during the afternoon of June 20, producing rapid rises in the streams.

In the Cottonwood and Neosho Rivers, crest stages were generally 3 to 5 feet above bankful during the latter part of the month with the overflow lasting about a week. The Canadian and Sulphur Rivers overflowed slightly

during the second week of June.

West Gulf of Mexico drainage.—Several separate rises occurred in the Trinity River during the month as the result of a flood, which was in progress at the close of May, plus further heavy rains during June. The overflows were light to moderate and in general the crest stages in the May floods were higher than subsequent ones.

In the Rio Grande, the releases of water from Elephant Butte Reservoir decreased from 8,000 second feet on June 1 to 5,000 second feet on June 30. The water level in the Cabello Reservoir, immediately below Elephant Butte Dam, was lowered likewise, and by the end of the month the old river channel could accommodate all of the relessed water. June was a very dry month in this area and a considerable amount of water was used for irrigation purposes. As a result, practically all of the land that was flooded in the Candelaria-Presidio irrigated district was above water on June 30.

Crest stages for floods of June 1942 in Mississippi and Missouri River Basins and comparison with previous maximum floods

	Previous	maxim	um flood kno	wn	Crest st	tage
River and station	During per record		Prior to record		during p	resent
	Date	Crest	Date	Crest stage	Date	Crest
Mississippi Basin						
		Feet		Feet		Feet
Salt River: New London, Mo. Mississippi River:	June 1928	28.8			June 29	25. 5
Dubuque, Iowa	June 1880	21.7			June 12	19.3
Keokuk, Iowa	May 1888	19.6	June 1851	21.0	June 16.	15.8
St. Louis, Mo	June 1903	38.0	June 1844	41.4	June 30	34.3
Chester, III	April 1927	34. 4	do	39. 9	July 1	33. 9
Cape Girardeau, Mo	do	40.0	July 1844	42.5	July 2	36. 9
Missouri Basin						
Big Sioux River: Akron, Iowa,	March 1929.	18.6	Septem- ber 1926.	19. 4	June 4	19. 3
Floyd River: James, Iowa Grand River:	March 1936.	118.1		******	June 5	18. 8
Chillicothe, Mo	June 1929	32.1	July 1909	33. 6	June 27	30.8
Brunswick, Mo Missouri River:	June 1935	20. 5	do	23. 0	June 29	_ 21.8
Nebraska City, Nebr	May 1942	18.4	April 1881.	18.0	June 22	18. 4
Kansas City, Mo	June 1903	34. 95	June 1844	38.0	do	24. 2
Waverly, Mo	June 1935	22.0	*********	******	June 27	21.8
Boonville, Mo	June 1903	30.9	June 1844	32.7	June 29	27. 8
Hermann, Mo	do	29. 5	**********		June 28	29.4
St. Charles, Mo		36.8	June 1844	40.1	June 29	34.8

I Ice jam.

The extreme lower Rio Grande was slightly above flood stage at Mercedes and Brownsville, Tex., on June 27-28 but the water generally was confined within the levees.

Gulf of California and Pacific Slope drainages.—Stages continued high in the upper Colorado River, and some flooding occurred in the Gunnison River during the month, but there was no damage of consequence.

Streams were high during the first three weeks of June in the upper San Joaquin River Basin and in the Tulare Lake Basin. Kings River at Piedra, Calif., exceeded flood stage slightly, reaching a peak stage of 10.8 feet on June 10–12.

The Columbia River exceeded flood stage at Vancouver, Wash., from June 12–22, with a crest of 15.8 feet (flood stage 15 feet).

Note.—A complete report of the floods of April and May in the Missouri, Arkansas, Red and Trinity River Basins will be given in a later issue of the Review. Data on flood losses and savings for floods during the period April–June have not been fully assembled. A tabulation of these data also will appear in a later issue.

FLOOD-STAGE REPORT FOR JUNE 1942

[All dates in June unless otherwise specified]

River and Station	Flood	Above stages-		C	Prest
	stage	From-	То-	Stage	Date
ATLANTIC SLOPE DRAINAGE	Post			Fort	
Bakers: Rumney, N. H	Feet 7	14	15	Feet 15. 5	15
Pemigewasset:		15	18	9.0	
Woodstock, N. H	8	15	15 15	13.7	15 15
Connecticut: North Stratford, N. H Susquehanna: Oneonta, N. Y	10 12	16 15	16 16	10.0	16
Roanoke:	-				
Randolph, Va	21 81	12 13	12 14	21. 3 31. 3	12
Williamston, N. C.	10	(1)	2	10.9	May 30
EAST GULF OF MEXICO DRAINAGE				100	
Cahaba: Centerville, Ala	23	12	14	30.8	13
MISSIBSIPPI SYSTEM			-		
Upper Mississippi Basin					
Chippewa:				100	
Holcombe, Wis Durand, Wis	22	May 30 May 31	3	25. 9	May 30-31
Zumbro: Theilman, Minn	35	May 29	2	37. 3	i
Black: Galesville, Wis	12	1 7	3 8	12.6 12.5	3 8
Wisconsin:					
Knowlton, Wis	12	May 30	2 8	18.65	May 31
Wisconsin Rapids, Wis	12	1	1	12.2	i
Portage, Wis	17	3 14	6 15	18. 4	4-5
Cedar: Waterloo, Iowa	12	4	4	12.2	4
Salt: New London, Mo	19	(23	30 24	25. 5 13. 2	29
Bourbeuse: Union, Mo	12	26	29	17. 8	28
Meramec:		f 21	22	12.6	22
Sullivan, Mo	11	26	27	14.9	27
		May 31	2 17	16. 8 16. 4	1 16
Pacific, Mo	11	23	23	14.0	23
		26	30	20. 0 15. 6	29
Valley Park, Mo	14	15	17	16.0	17
valley Park, Mo	14	24 26	(1)	14. 0 21. 9	24 29
Mississippi:			(-)		
Winona, Minn. La Crosse, Wis	13 12	3 3	10	13. 2 13. 0	4-5
Lansing, Iowa	18		******	14.3	9-10
Dubuque, Iowa Gordons Ferry, Iowa	18	9	16	19. 3 17. 4	12-13
Clinton, Iowa	16	10	19	17.8	13-14
Davenport, Iowa	15	13	16	15. 2 17. 6	14-15
Muscatine, Iowa Keithsburg, Ill	15 12	11	22	14. 05	
Burlington, Iowa	15	14	19	15. 5	16
Keokuk, Iowa	12 12	11 10	25 25	15. 8 15. 6	16 15-17
Gregory Landing, MoQuincy, Ill.		10	26	17. 7	10-17

River and Station	Flood		e flood dates	C	rest	River and Station	Flood	Above stages-		(Prest
	stage	From-	То-	Stage	Date	weithmonth olivers the	stage	From-	То-	Stage	Date
MISSISSIPPI SYSTEM—continued	all e		omil		Danie	MISSISSIPPI SYSTEM—continued	-Ain		TALL CEN		E Dai
Upper Mississippi Basin-Continued	Sni	mis almi	d and	17 7		Ohio Basin	Feet		1 100	Feet	
and find the most beauty of other prime all the way	Past	mutol	mil.	Fast		West Fork of White: Edwardsport, Ind	12	14 21	20 30	15. 5 16. 0	1 2
Mississippi—Continued. Hannibal, Mo	Feet 13	9	28	Feet 17. 7	19	White:		1	and the	ulin	2
Louisiana, Mo	12 18	11	29	16. 3 21. 7	20 29	Petersburg, Ind	16 16	23 23	25 26	16.4	2
St. Louis, Mo	30 27	23 21	(2)	34.3	30		10	20	20	10.0	
Chester, Ill	27 32	21 24	(1)	33. 9 36. 9	July 1 July 2	Verdigris: Sageeyah, Okla	35	22	27	37.7	2
Missouri Basin	02	-1	10	30. 0	July 2	Cottonwood: Emporia, Kans Neosho:	20	25	27	23.6	2
				1-01.5	20271112	Neosho Rapids, Kans	22	26	27 22	22.7	26-2
mes: Scotland, S. Dak.	13	(May 14	May 17	15. 5 13. 6	May 15 May 16	Burlington, Kans	23	{ 20 26	22	25. 8 25. 9	2 2
ig Sioux: Akron, Iowa	12	May 28	10	19.3	4	Iola, Kans	15	20	22	17.3	2
		(May 29	(2) May 31	14.0 14.2	May 29	Chanute, Kans	20	20	23 27	25. 5 20. 7	2
loyd: James, Iowa	14	3	9	18.8	5	Parsons, Kans	22	20 20 25 21	28 22 23 27 28 30 27	25. 4	23, 2
loju. values, towa	14	20	(2)	15. 7 16. 8	22 30	Oswego, Kans	17	21	30	22. 1 25. 3	2 2
lkhorn: Norfolk, Nebr	10	29 20	21	10. 2	21	Ft. Gibson, Okla	22	{ 22 27	29	26.6	2
aline: Tescott, Kans	25 18	20 25	21 27	26. 3 22. 3	20 26	North Canadian: Woodward, Okla	5	11	11	5.5	1
moky Hill:						Canton, Okla	9	11	11	9.4	1
Ellsworth, Kans Lindsborg, Kans	20 21	19 20	19	20. 7 27. 95	19 21	Canadian: Union City, OklaArkansas:	6	10	10	7.0	1
Salina, Kans	20	f 22	24	22. 65	23	Arkansas City, Kans	16	19	25	21.8	2
Enterprise, Kans	26	19 24	24 22 27	27. 5 28. 45	20 25	Ralston, Okla	16 23	22 22	25 28	19. 1 27. 4	2 2 2 2 2 2 2 2 2 2
epublican:						Ft. Smith. Ark	22	23	28 30 30 26	27.2	2
Guide Rock, Nebr	10	12	14	10.8	13 24	Van Buren, Ark	22 22	23 26	30 26	26. 1 22. 2	2
Scandia, Kans	10	24 { 13 25 { 13	26 13	10.0	13	Ozark, Ark	22	25	29	23. 5	2
		25	26 14	11. 1 8. 5	25 13	Morrilton, Ark	20	28	28	20.0	2
Concordia, Kans	8	25	26	8.8	25 14	Red Basin			1775	942	
Clay Center, Kans	15	25	26 15 27	16. 0 16. 4	14 26	Sulphur:		f 11	12	37.5	1
ig Blue:	10					Hagansport, Tex	36	1 15	19 25	40.0	10
Barnston, Nebr	18 22	20 21	20 22	21. 1 22. 0	20 21-22	Naples, Tex	22	17	25	25. 9	2
ansas:	-			15 150		WEST GULF OF MEXICO DRAINAGE					
Manhattan, Kans	17	20 25 20 20 21	23 28 21 21 21 21	18.0 18.5	20, 22	Elm Fork of Trinity: Carrollton, Tex	6	{ 7	.7	7.4 7.6	
Topeka, Kans	21	20	21	22.5	27 21 21 21 21 26	2011 1 012 01 1 11111 1 1 1 1 1 1 1 1 1 1 1		16 7	17 8	11. 2	10
Le Compton, KansLawrence, Kans	17 18	20	21	19. 5 19. 3	21	East Fork of Trinity: Rockwall, Tex	10	3	14	13.0	15
hompsons Fork: Trenton, Mo	20	26	27	22.4	26	Trinity:	111/41	15	19	12.8	1
rand: Gallatin, Mo	20	ſ 21	24	30.7	23	Dallas, Tex	28	{ 7 15	10 19	31. 6 33. 8	1
Chillicothe, Mo	18	25 20	27 30	26. 0 30. 8	26 27	Rosser, Tex	26	9	22	30.1	19-2
Brunswick, Mo	12	12	(1)	21.8	29	Trinidad, Tex	28	(1)	3 27	39.0	May 2
sage:		ſ 20	24	23.4	22	Long Lake, Tex	40	(1)	3	35.0 42.6	May 2
Osceola, Mo	20	25	28	21.6	26	Liberty, Tex	24	(1)	23	28.9 26.5	May 14
Warsaw, Mo	60	17	30	33.1	26 18 19	Rio Grande:	11			(20.5	13-1
Lakeside, Mo	23	19	28	62.4	21	Mercedes, Tex	21 18	27 27	28 28	21. 9 18. 3	2
asconade: Jerome, Mo	15	20	21	17.1	27 20	Brownsville, Tex	10	21	40	10.0	-
iscouri:						Colorado Basin					
Blair, Nebr	18 19	9	12	19.4	10-11	Roaring Fork: Carbondale, Colo	5	11	13	5. 3 5. 8	1
Nebraska City, Nebr	15	6	25	18.4	22	Avoning Pota. Carbondate, Colo		17	21	5. 7	15
St. Joseph, Mo	17	29	30 26	16.0	29	Gunnison: Delta, Colo	9	(1)	15 21	10.4	19
Kansas City, Mo	22	29 23 20 5 8 13 22 22 22 19	29	17. 1 24. 2	29 24 22 5 27 27 29 28 28 16	PACIFIC SLOPE DRAINAGE		(18	21	9. 4	11
Lexington, Mo	18	5	5	18.0	5	Kings: Piedra, Calif	10	5	7	10.7	10-13
Waverly, Mo		13	(2)	24.3 21.8	27	Columbia: Vancouver, Wash	15	12	18 22	10.8 15.8	17-19
Boonville, Mo	18 21 23	22	(2) (2) (2)	27. 5 29. 6	29						
Hermann, Mo	23	19	(3)	29.4	28	¹ Continued from previous month. ² Continued into following month. ³ Records furnished by U. S. Geological S					
St. Charles, Mo	25	15	(1)	25. 3 34. 8	16 29	Continued into following month.					

CLIMATOLOGICAL DATA

CONDENSED CLIMATOLOGICAL SUMMARY OF TEMPERATURE AND PRECIPITATION BY SECTIONS

[For description of tables and charts, see Review, January 1940, page 32]

In the following table are given for the various sections of the climatological service of the Weather Bureau the monthly average temperature and total rainfall; the stations reporting the highest and lowest temperatures, with dates of occurrence; the stations reporting the greatest and least total precipitation; and other data as indicated by the several headings.

The mean temperature for each section, the highest and lowest temperatures, the average precipitation, and the greatest and least monthly amounts are found by using all trustworthy records available.

The mean departures from normal temperatures and precipitation are based only on records from stations that have 10 or more years of observations. Of course, the number of such records is smaller than the total number of stations.

1 1 1 1 1 1			Te	mper	ature						Precipit	ation		
Continu	-Ja	ure nor-		Mo	nthly	extremes			-Jear	ure nor-	Greatest monthly		Least monthly	
Section	Section ave	Departu from the	Station	Highest	Date	Station	Lowest	Date	Section	Depart from the mal	Station	Amount	Station	Amount
Alabama	° F. 78.7 73.8 77.2 66.7 61.1	° F. +0.4 -1.6 1 -1.4 6	Spring Hill	116 104 119	15 1 21 29 30 19	Valley Head Alpine Rogers Ellery Lake	21 45	24 1 14 3 1	In. 5. 72 T 4. 54 . 06 2. 07	In. +1.52 36 +.47 26 +.65	Spring Hill Stephens Rahch Mountain Valley Lake City	In. 15. 03 . 51 9. 91 1. 42 6. 74	Chase	1.90
FloridaGeorgiaIdahoIlinois	56.8 72.4	+.3 +.4 -3.5 +.3	Fort Myers	100 100 100	16 21 30 3	Bartow Jasper Sun Valley 7 stations	18 40	8 15 20 1 14	10. 32 5. 05 1. 60 5. 46	+3.52 +.57 +.28 +1.51	Belle Glade	24. 11 10. 60 5. 77 12. 23	Carrabelle	1.8
Indiana Iowa Kansas Kentucky Louisiana Maryland-Delaware	69. 7 72. 7 74. 7	+.8 +.1 -1.1 +.8 -1.6 +1.4	2 stations Ottumwa 2 stations Henderson Lake Providence Pocomoke City, Md	99 102 98 99	1 2 4 1 18 2 28 21	2 stations Decorab 2 stations Lynch (near) Doyline 2 stations	34 40 41 60	14 14 14 1 15 14 1 24	5, 55 5, 93 6, 49 5, 54 8, 40 3, 91	+1.65 +1.28 +2.48 +1.38 +3.62 08	Paoli	11. 82 14. 03 14. 47 11. 57 17. 23 7. 71	Notre Dame Donnellson Hoxie Smiths Grove Jonesville Odessa, Del.	2.9 2.3 1.6 2.2
Michigan	64.7 63.1 79.3 73.3	+.3 -1.7 +.4 3 -3.8	Eloise	101	30 1 5 28 1 4 30	4 stations Itacca State Park 3 stations Albany Lima	53 35	1 14 13 24 13 21	3. 45 3. 60 4. 42 7. 70 3. 16	+.36 44 +.18 +3.01 +.67	mit, Md. Charlotte Grand Meadow Biloxi Morehouse Turner	7. 09 9. 14 12. 67 14. 51 8. 85	Detour	1.8 2.7
Nevada	68. 2 64. 5 64. 9	-1.2 1 +.9	Ashland Overton Woodland, Maine	113 96	1 22 12	Gordon 3 stations 4 stations	25	13 17 1	5. 12 . 24 4. 54	+1.47 27 +1.07	Bertrand Golliber Pasture North Bridgeton, Maine	12.74 1.38 10.88	Hyannis	. 0
New Mexico	69. 8 68. 8	+.8	Canoe Brook	110	13	Charlotteburg Elizabethtown	24	10	3.11	72 42	Layton Pasamonte (near)	6. 98 5. 02	Woodstown	.0
North Carolina North Dakota Dhio	66. 2 75. 6 60. 1 71. 2 77. 0	+1.2 +1.6 -2.9 +1.6 2	do	90	1 11 22 10 1 2 17	Salisbury Mount Mitchell Portal Millport Kenton	41	9 14 13 18 15	3.00 4.84 3.12 4.19 6.69	64 +. 16 30 +. 28 +2.76	Sharon Springs No. 1. Highlands Fullerton Eaton Cushing	6. 86 10. 16 7. 50 8. 88 16. 77	Clarence Center Wilson Foxholm Steubinville Waynoka	1.4
Pennsylvania South Carolina South Dakota	56. 8 69. 0 78. 8 64. 1 76. 4	-2.8 +.9 +1.2 -2.3 +1.6	4 stations 2 stations Orangeburg Wagner Samberg	96	30 1 10 20 27 4	2 stations Coudersport Caesars Head 3 stations Dover	34 49 32	1 11 16 15 1 13 15	1. 65 3. 83 5. 00 4. 27 3. 73	+.38 31 +.22 +.84 47	Timberline Lodge Gouldsboro Rimini Glenham Copperhill	9. 48 8. 16 9. 80 8. 11 8. 47	Klamath Williamsport Ware Shoals Pierre New River	1.10
Jtah Virginia Vashington	80. 4 63. 1 73. 3 59. 0 71. 4	+.2 -1.5 +1.5 -1.9 +1.7	2 stations St. George Diamond Springs North Dalles Valley Chapel	115 104 103 106	11 30 21 30 11	Stratford Soldier Summit Mountain Lake Stockdill Ranch 3 stations	37 28	22 28 26 19 1 15	3. 39 . 27 5. 29 2. 86 5. 17	+. 43 32 +1. 08 +1. 29 +. 69	Port Arthur Lewiston Mountain Lake Cedar Lake Hackers Creek	15. 04 1. 68 11. 98 12. 09 9. 66	Laredo	.0
Visconsin Vyoming	64. 7 56. 6	4 -2.1	Brodhead	95 95	28 25	Laona Hunter's Station	28 18	14 13	4. 66 1. 43	+. 58 20	Sparta Colony	8. 76 5. 61	Ashland 3 stations	1.4
Iawaii	47. 4 74. 3 79. 0	+5.8 +.6 +.9	View Cove Makaweli	84 94 97	18 1 5 1 4	Nulato Nui Ridge 3 stations	$\frac{-2}{50}$	8 11 12	1.30 5.38 7.48	30 +.43 +1.49	Latouche Kahana La Mina (El Yunque)	10. 48 35. 52 23. 38	Livengood	. 0

¹ Other dates also.

CLIMATOLOGICAL DATA FOR WEATHER BUREAU STATIONS

intolate)		vatio rum			Pressur	e		T	emp	erat	ure	of th	e air	27		the	a	Pre	ecipitat	ion		v	Vind						tenths	0	ound mder-
of named and	70 868	above	above	od to	of ped to	nor-	mean	nor-			3			1	nometer	sture of	umidity		n nor-	inch,	-9A A	tion		faximi relocit;			days				od of month days with thunder-
District and station	Barometer above level	Thermometer		Station, reduced mean of 24 hours	Sea level, reduced mean of 24 hours	Departure from mal	Mean max.+ min.+2	Departure from	Maximum	Date	Mean maximum	Minimum	Date	George delle sone	Mean wet thermometer	Mean temperature	Mean relative humidity	Total	Departure from mal	Days with 0.01 inch, or more	Average hourly locity	Prevailing direction	Miles per hour	Direction	Date	Clear days	De I	Cloudy days	Average cloudiness,	Total snowfall	Snow, sleet, and ice on ground at end of month Number of days with thunder
New England Eastport. Greenville, Me. Portland, Me. Concord Burlington Northfield.	Ft. 75 1, 070 103 289 403	5	85	29, 80 29, 82 29, 62 29, 50	29.95	In. +0.02 01 02 03	° F. 63. 7 55. 1 61. 2 62. 4 64. 9 65. 1	° F. +1.2 0.0 +2.2 +2.0 6	°F 81 91 90 92 88		° F 63 74 78 77 74	42	3	47 3 48 4 52 3 53 4	F ° F 33 52 12 57 33 58 15 60 37 61	50 54 55 57 58	80 77 76	3. 06 5. 73 5. 94 5. 36 6. 36	+1.8 +2.7 +2.2 +3.0	14 14 14 12	Miles 8.3 7.1 6.0 7.2 6.4	s. s. s. nw.	28 21 24 26 20	s. n. s.	16 12 7 30	7 5 11 12 6	7 13 9 6 10 14 9		0-10 6. 2 6. 7 5. 5 5. 3 7. 0 6. 9	0.0	In. 0.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .
Nortmeid Boston ! Nantucket Block Island Providence 2 Hartford ! New Haven 2	289 403 876 124 12 26 159 159 107	11 46 5	46 60 44	29. 81 29. 95 29. 94 29. 80 29. 78	29. 97 29. 96	01 00	68. 7 68. 2 68. 4	+1.8	93 89 86	21 12 12 12 12 12 13 20 20 13 13 19	63 74 78 77 74 74 75 70 70 77 78 76	30 37 44 43 36 48 47 51 50 50	1 9 9 1 18 1 2 18 2 2 2	59 56 56 58 50 59 30 2	16 28 60 23 60 20 60 28 61 31 62 28 63	58 59 58 59	78 80		-1.0 +.8 +1.0 .0	16 13 12 14 11	9. 4 9. 2 11. 7 7. 8 7. 7 7. 4	SW. SW. SW. SW.	29 23 25 31 24 21	nw. sw. w. sw.	12 19 7 25 7 5 5	7 5 11 12 6 6 3 7 12 4 6 8	11	7	6.7 6.7 4.4 6.6 6.8 6.0	.0	.0
Middle Atlantic States Albany 1 Jinghamton Vew York Isrrisburg 1 Philadelphia 3 Leading cranton Ltlantic City Trenton Saltimore 1 Vashington 1 Jape Henry Jynchburg Jorfolk 2 Lichmond 3	97 871 314 374 114 323 805 52 190 123 112 18 686 91	57 415 30 174 47 72 37 89 100 62 8 144 80	79 454 49 367 306 104 172 107 215 85 54 184 125	29. 06 29. 62 29. 57 29. 84 29. 63 29. 12 29. 91 29. 76 29. 84 29. 90 29. 94 29. 26 29. 87	29.98	03 +. 01 02 02 02	67. 8 68. 0	+2.4	90 88	13 20 20 20 29 21 20 21 20	78 78 77 81 81 81 79 77 80 82 83 82 86 85 85	55 53 57 58 64	6 3 6 6 16 6 2 6 6 15 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8 3	89 61 17 61 33 63 44 65 44 65 18 64 36 65 66 67 66 70 68 68 13 70 77 69	57 59 61 61 62 60 63 63 68 65 67	73 73 75 71 80 73	2 52	+2.4 -0 -1.1 +1.2 -1.6 -1.8 -1.6 +1.2 -3.5 +2.4	12 16 15 14 14 17 12 13 10 12 8	7. 9 5. 2 11. 2 6. 9 10. 6 9. 5 5. 6 12. 6 7. 4 9. 3 6. 6 9. 7 6. 1	se. nw. se. nw. n. s. s. nw. se. nw.	25 20 34 43 30 31 31 28 22 33 26 32 25 24	w. nw. sw. nw. nw. nw. n. nw. sw. nw. nw. nw. nw. nw. nw.	30 30 19 12 14 14 19 12 14 7 4 14 4 21	6 5 8 4 9 10 6 4 5 6 8 9 6 5 7	14 13 11 10 10 12 12 15	10	6. 2 6. 5 6. 7 6. 1 6. 9 5. 5 6. 0 6. 1 6. 6 6. 5 6. 6 5. 5 6. 1 6. 5	.0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
South Atlantic States	144			29. 81			78.7	+2.2				60					78	4.38	-0.2	9	6. 6		22		14		14	9	5.9		.0
sheville	2, 253 779 886 11 376 72 48 347 1, 040 182 65 43	89 63 6 5 27 73 11 70 70 62 73 86	86 56 50 69 107 92 91 78	27. 71 29. 16 29. 06 29. 96 29. 58 29. 91 29. 92 29. 60 28. 90 29. 78 29. 91 29. 94		03 04 04 03 04 05 05 03 03				21 21 21 21 21 21 21 21 21 21	86 87 90 88 90 90	60 57 65 61 65 69 63 59 66	15 6 15 6 16 7 3 6 15 7 15 7 15 7 15 7 17 7	19 2 15 2 17 2 17 2 13 2 10 2	2 65 4 70 9 68 7 73 8 70 2 71 4 74 5 72 7 69 3 71 4 74 74 74	67	79 76 77 81 74 78 83 77 71 74 80 83	2. 07 6. 82 4. 23 3. 12 4. 34 4. 76 5. 30 4. 67 1. 90 5. 21 7. 99	-1.9 +2.6 -1.4 -0 3 +.7 +.5 -2.6 -2.7 1 +2.7	12 11 15 3 11 10 11 10 13 13 13	6.3 6.1 6.8 10.3 7.2 8.1 10.1 7.4 7.7 5.2 9.2 7.1	s. s. sw. sw. se. s. sw.	29 17 32 26 32 30 36 28 29 27 36 32	sw. nw. w.	13 6 19 14 13 19 13 22 13 13 12 22	2 4 8 6 12 13 6 0 7 5	16 19 17 17 12 12 12 8 15 22 12 13 18	7 9	6.6 6.0 4.8 6.0 4.9 5.2 5.9 6.6 6.1 6.3 6.7	.0	.0 10 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
Florida Peninsula ey West ³	21	10	64	29.94			81.7	+1,0		23	88	60	27 7	7 1	8 78	76	82	9.93	+3.8	12	8.0	0.	29	80.	7	10	8	12	5.8	.0	.0 1
iami ² ampa ¹	25 35	10 124 5	168 61	29. 94 29. 94	29. 97 29. 98	-0.03 03 03			89 95	23 5 16	87 89	68	27 7 3 7 1 7	6 1 2	6 78 9 76 1 75	74 73	82	9. 10 13. 90 6. 80	+4.9 +7.0 4	18 16	8.3 9.0	80.	29 29	8W.	9 7	5	8 8 13	12 17 10	7. 2 6. 1	.0	.0 18
East Gulf States tlanta ¹	370 273	5 79 49	87 58	28.77 29.58 29.70 29.92	29, 96 29, 96 29, 99 29, 96 29, 96	05 05 01	77.8	+0.6 +.3 1 +.2				00 /	15 6 25 7 1 7 16 7	0 0	8 71 7 75	66 66 74 72	75 75	7.29 3.61 3.20 10.60 5.57	+2.8 3 8 +5.2	8 11 13 12	7.6 6.3	6. 6. SW.	41 26 30	nw. s.	13 16	1 9	14 13 13	14 16 8	5.3	.0	.0 14 .0 9 .0 18 .0 11
ensacola nniston irmingham ³ Iobile ² Iontgomery ² Ieridian ² icksburg ² ew Orleans ²	35 56 741 700 57 218 375 247 53	11 54 9 11 6 92 67 82 76	40	29. 92 29. 90 29. 24 29. 89 29. 73 29. 56 29. 67 29. 88	00.07	03 02 04 04 03 04 05	79. 8 77. 4 78. 4 81. 0 79. 6 79. 3 79. 4 81. 4		95 94 91 96 95 95 97 95 95 96 94	20 14 14 14 27 27 13 27 28 28 14	991	65 70 68 55 61 69 65 62 66 170	1 7 16 7 7 16 7 7 7 25 6 24 6 25 7 25 7 25 7 25 7 25 7	4 2: 6 3: 9 2: 3 2: 0 2: 9 2: 1 2: 5 1:	5 74 5 6 69 3 73 4 71 9 72 5 72 7 74		72 83 77 79 83	12.68 2.75 4.68 13.07 6.29 4.91 4.11 16.01	+8.0 -1.4 +.2 +7.6 +2.5 +.4 +.1 +10.1	13 9 13 14 15 16 15 16	7.6 6.1 6.2 6.4 5.8 7.9 5.8	SW. Se. S. 6. 6. 8. 8.	28 20 23	6. S. S. W. W. nW.	27 11 16 15 13 22 4	11	14	2 8 9 11 7 11	5.5 6.3 6.4 4.5 6.4	.0	.0 8 .0 13 .0 13 .0 13 .0 16
West Gulf States hreveport 1 entonville 1 fort Smith 1 title Rock 2 ustin 2 rownsville 2 orpus Christi 2 allas 1 ort Worth 1 alveston 2 ouston 3 ouston 3	357 605 57 20 512 679 54	12 57 94 68 88 11 6 35 106	51 82 102 90 96 78 46 56 114	28. 58 29. 40 29. 54 29. 23 29. 77 29. 83 29. 33 29. 16 29. 83	29, 91 29, 85 29, 83 29, 85	06 8 03 7 07 7 05 7 06 8	31.3 73.0 78.5 78.2 32.8 3.2 3.5	+.8 $+1.6$ $+.8$ $+2.5$	97 100 101	3 28 12 9	82 88 88 93 91 90 90 92 86	16 1 54 1 50 1 54 1 36 34 32 1 50 1	4 72 4 64 4 66 4 66 72 1 72 6 72 4 71 0 78 0 78	2 24 2 26 2 26 2 27 3 26 2 25 2 25 2 27 17 2 23 2 23 2 23 2 23 2 29	73 70 71 72 76 76 76 72 72 76 75 72 75	71 67 69 69 74 75 69 68	77 70 78 70 80 1 84 71 70	6. 04 7. 28 4. 85 3. 94 2. 23 3. 06 3. 30 3. 87 3. 23	+1.2 +2.5 +3.1 +1.1 +.2 2 +.7 1 -1.3 +.3 +.2	14 16 13 12 5 11 9 7 7 7	8.7 6.9 7.0 9.4 11.3 11.1 11.1 10.4 9.1	S. 6. S. S6. S.	47 32 37 27 33 32 32 32 33	s. nw. nw. sw. se. s. w. n. n.	13 15 15 15	3 10 5 9	26 10 18 18 14 8 10	13 1 10 7 3	5.4 5.9 4.6 5.9 4.9 5.5	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 13 .0 14 .0 15 .0 10 .0 6 .0 8 .0 9 .0 7 .0 5 .0 6 .0 13

CLIMATOLOGICAL DATA FOR WEATHER BUREAU STATIONS-Continued

		vatio		1	Pressur	e		Ten	per	atur	re of	the	air				dew-		Prec	fpitat	ion		1	Vind								ground	under
	868	above	above	to to	d to	rmal	1 e s n	normal							92	neter	of the	idity		rmal	inch, or	ve-	a		aximu elocity			_		, tenths		ice on g	days with thunder-
District and station	Barometer above level	Thermometer a		Station, reduced mean of 24 hours	Sea level, reduced mean of 24 hours	Departure from normal	Mean max.+mean min.+2	Departure from n	Maximum	Date	Mean maximum	Minimum	Date	Mean minimum	Greatest daily range	Mean wet thermometer	Mean temperature point	Mean relative humidity	Total	ture from	Days with 0.01 in	Average hourly locity	Prevailing direction	Miles per hour	Direction	Date	Clear days	Partly cloudy days	Cloudy days	Average cloudiness,	nowfall	eet,	Number of days
Ohio Valley and Tennessee	Ft.	Ft.	Ft.	In.	In.	In.	°F. 73.7	°F. +1.8	°F		°F	°F		F	F	°F	°F.	% 77	In. 4,72	In. +0.8		Miles	-							0-10 6, 2		In.	
hattanooga 1 Inoxville 2 femphis 2 femphis 3 feshville 1 exington ouisville 2 vansville 1 dianapolis 2 fere Haute 3 folumbus 2 sayton 2 sayton 2 sarkersburg 'itsburgh 1 Lower Lake Region		66 78 5 6 106 5 98 68 11 90 186 61	84 86 72 120 38 129 149 51 110 213	29.02	29. 97 29. 91 29. 94 29. 96 29. 96 29. 95 29. 96 29. 96 29. 96 29. 96 29. 96 29. 96	08 06 08 02 06 06	77. 8 74. 4 74. 6 74. 0 73. 6 74. 0 3 73. 3 72. 4 2 69. 2 1 73. 7 2 70. 8	+2.2 3 $+2.0$	97 95 92 94 93 94 93 92 88 92 88	1 1	88 88 89 89 86 84 85 83 83 82 81 80 83 80	54 52 57 55 51 52 50 47 48 52 52 50 46 52 52	24 15 15 14 15 14	66 68 67 63	31 28 32 30	70 69 71 69 68 68 66 68 67 65 65 63 66 64	67 65 68 65 65 64 65 65 62 62 62 64 60		4.59 2.04 2.39 1.87 5.72 8.48 3.23 7.65 8.37 5.38 2.95 4.27 6.33 3.48 3.99	+4.4 +1.7 4 +1.3 5	11 12 13 17 11 18 17 18 17 18 11 18 11 18 11 18 11 18 11 18 11 18 11 18 11 18 11 18 11 18 11 18 18	7. 2 6. 7 7. 1 6. 7 6. 4 6. 4 7. 4 5. 4 7. 7 9 4. 8	sw. sw. s. n. se. ne. s. sw.	40 32 46 36 22 36 21 39 30 25 26 34	w. nw. w. nw. s. nw. sw. w. w. ne. nw.	13 13 13 13 13 13 20 30 6 4 2 12	11 12 7 10 3 4 4 6 5	16 9 15 14	3 9 8 6 8 14 18 18 12 12	4.5 4.9 5.4 6.2 6.5 7.1 6.7 6.4 6.5	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0	00 00 00 00 00 00 00 00	
unfalo ¹ anton .haca .swego .cochester ¹ .yracuse ¹ .rie ¹ .eleveland ¹ andusk y .oledo ² .ort Wayne ¹ .etroit ¹	836 335 523 596 714 762 628 857	10 77 71 71 8 8 8 79	100	29, 46 29, 59 29, 40 29, 32 29, 21 29, 15	29, 93 29, 95 29, 96 29, 96 29, 97 29, 96 29, 97 29, 96	0: 0: 0: 0: 0:	65. 7 66. 2 67. 0 2 64. 8 1 67. 8 1 67. 8 2 70. 6 70. 6 6 69. 8 70. 0	+1.3 +1.1 +.8 .0 +2.9 +1.6 +1.8 +1.1 +2.6	88 92 88 91 94 93 90 92 93 92 92	12 30 30 30 10	77 78 73 79 78	49 43 45 48 46 45 53 51 48 47 46	25 9 16 9 16 15 24 24 15 15	56 56	39	61 60 61 62 62 64 63 64 62	57 56 57 57 59 60 60 61 58	73 72 75 73 76 79 72 75 75 75	. 76 . 72 2. 39 2. 28 1. 03 2. 09 1. 53 4. 09 4. 21 3. 47 6. 12 2. 31	+2.6 -1.2	14 12 12 12 13 11 11 11 11 11 11 11 11 11	6.4 7.3 7.4 7.3 7.9 6.6 8.4 7.4 8.4	W. nW. sW. s. ne. s. ne. e.	38 24 24 24 30 50 20 36 20 23 33 29	SW. Se. n. W. nW. SW. SW. nW.	23 30 1 14 23 19 25 30 22 22 22 22	5	10 11 9 7 13 12 14 18 19 6 16	14 14 10 10 12 12 12	6. 6 6. 3 5. 1 6. 3 6. 2 5. 8 6. 6 6. 1 3. 8 6. 8	3 .0 3 .0 3 .0 3 .0 3 .0 5 .0 5 .0 6 .0		
Upper Lake Region Ilpena Scanaba Irand Rapids 2 Ansing farquette ault Sainte Marie 1 hicago Ireen Bay Gilwaukee 1 Ouluth	612 707 878 734 614 673 617 681	100	52 7 131 9 141	29. 20 29. 04 29. 16 29. 31 29. 22 29. 31 29. 24	29, 98 29, 96 29, 96 29, 96 29, 98 29, 98 29, 98	+.0 0 +.0 +.0 +.0	1 62. 0 4 60. 8 1 69. 4 67. 0 2 59. 9 2 59. 5 0 68. 2	+1.6 +1.6 +1.6 +1.6 +1.0 +1.0 +1.0 +1.9 +1.9	84 81 94 88 89 83 94 86	29 12 29 29 10 10 29 29 29 11	71 68 79 76 68 71 75 74 74 66	45 38 43 43 41 40 50 44 42 36	9 14 14 15 14 15 13 14 14 14	53 53 60 57 52 48 61 56 54 48	32 30 27 38 26 24 31	62 62 54 55 62 59	53 59 59 50 52 58 55 55 50	76 27 75 73 75 77 74	1. 56 2. 69 4. 06 4. 48 2. 91 2. 69 1. 87 4. 83 4. 26	+1.0	7 12 5 14 5 12 6 10 10 10 10 11	8.6 8.6 6.4 8.4 8.6 8.7 9.3	6.	28 27 21 23 26 25 31 28	nw. sw. nw. s. nw. w. w.	13 26 13 10 13 26 21 11	3 5 6 6 10 a a a a a a a a a a a a a a a a a a	13 6 14 13 14 13 11 11 11	3 10 9 14 5 9 4 11 3 11 5 15 3 14 1 16 1 15 9 17	5. 6 6. 6 6. 1 7. 1 6. 9 7. 0			
North Dakota	940		43	28.89	29, 90	0	61. 1	-1. 9 -1. 8		10	72	37	13	53	30	58	54	75	3. 18 2. 32	-0.4 -1.7		12.5	80.	34	w.	21	4	1 15	2 14	6.1	0.0		
'argo 1 Jismarek 1 Devils Lake Jemmon, S. Dak Jirand Forks Villiston	1, 677 1, 478 2, 602 832 1, 878	1	41 44 438 71	28. 13 28. 33	29.89 29.88 29.90 29.89	+.0:	2 61. 5 0 60. 1 59. 8 61. 1 2 60. 1	-1. 4 -1. 8 -2. 6	84 81 79 84 81	3 9 23	71	38	23 13 22 14 13	51 51 49 51	36 30 35 35	56 54 54 57	51 50 50 53 48	71 73 68	2. 21 2. 63 3. 96 2. 06 5. 56	+2.	1	9.4	nw. se. w. s. w.	22	w. nw.	10	4	9 8	2 9 7 19 8 13 9 15 1 7	5.6	0,0		0
Upper Mississippi Valley							71. 4	+0.€										75	5. 30	+1.													
Minnespolis-St. Paul, Minn. Minn. Minn. A Crosse Addison Charles City Davenport Does Moines Dubuque Burlington, Ia Dairo Peoria Licuis Licuis Missouri Valley	714 974 1, 013 606 860 696 702 358 606 636	70 10 10 10 10 10 10 10 10 10 10 10 10 10	4 42 1 48 1 78 1 51 1 61 1 61	28, 83 29, 18 28, 94 28, 88 29, 30 29, 01 29, 21 29, 19 29, 56 29, 31 29, 27	29. 92 3 29. 94 4 29. 97 5 29. 95 5 29. 96 29. 91 29. 95 5 29. 93 29. 95 7 29. 94	+.0 +.0 +.0 +.0 0 +.0 0 0 0		6 + .8 + 1.8 + 1.9 + 1.1 + 1.0 + 1.7 .0 + 0.2		11 28 28 5 4 4 4 29 5 4	76 76 75 77 81 81 78 82 87 81 82 82	42 45 47 43 47 45 47 45 55 44 50 51	13 14 14 14 14 14 14 15 15 15	58 57 59 58 63 62 61 62 68 62 65 67	30 32 27 23 30 24 23 25 29 24 30 26 25	60 61 62 62 64 64 63 65 66 67	57 58 58 58 61 61 59 61	76 77 75 73 76 73 74	5. 44 7. 24	+2. +1. +4. +1. +1. +1. +1.	13 13 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	8 4.1 6 6.1 4 8.4 8 8.1 7 8.1 7 8.1	se. nw. s. se. se. se. se. se. se. se. se. se.	118 26 21 22 36 22 31 22 31	2 nw. 5 w. 5 sw. 5 s. 6 nw. 6 nw. 9 w. 5 e. 8 sw. 2 s. 9 se.	1 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 15 8 18 7 19 1 12 8 19 1 14 9 19 7 19	7. 7. 12 6. 10 7. 14 6. 10 7. 10 7. 15 6. 15 4. 15	1 .00 5 .00 5 .00 5 .00 6 .00 6 .00 5 .00	1	0
olumbia, Mo.2	784 963		76	28.90	90 01	00 0	3 73. 7	+1.0	94	3 4	82 82	45 48	14	65 66	24	67	65 62	79 72	7. 18 7. 35 5. 61	+2 +2 +. +1.	1 1	9.	e. se.	56		1	8 1	3 10	6 11	6.	6 .0		0
kansas City ' tt. Joseph ' pringfield, Mo.' Opeka incoln ' maha ' ' Jalentine loux City ' Iuron	967 1, 324 987 1, 186 1, 108 2, 596 1, 138 1, 301	61 11 31 44	49 60 8 87 1 81 1 44	28. 90 28. 55 28. 87 28. 65 28. 76 27. 23 28. 71	29. 91 29. 92 29. 90 29. 89 29. 91 29. 91 29. 90	00 00 +.00 +.00 +.00	73. 0 3 72. 2 74. 2 1 72. 2 0 72. 4 5 65. 2 0 69. 6 2 66. 1	+ 8 + 1.7 + 1.7 + 1.7 + 1.7	94 90 97 94 96 84 94 89	5 3 3 27 4 4 4 4	82 82 82 81 84 82 82 75 80 76	48 46 44 47 48 48 42 45 39	14 14 14 13 13 13 14 13	64 63 64 62 63 55 60 57	25 25	67 67 66 65 65 68 63 61	AR	82 80 73 79 71 72 73 75	5, 61 6, 01 4, 83 5, 40 5, 40 2, 98 4, 83 2, 42	+++++++		8 8 8 8 8 8 9 1 11 11 1 8 8 8 9 1	e. 8e. 8. 8. 8.	64 63 31 26	7 se. 3 nw. 4 se. 5 n. 1 se.	11 12 11 12 11 12 11 11 11 11 11 11 11 1		5 1: 5 1: 6 1: 6 1: 6 1:	2 12 9 16 8 9 3 13 3 14 5 9 1 13 2 12	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	7 .02 .09 .00 .00 .00 .00 .00 .00 .00 .00 .00		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CLIMATOLOGICAL DATA FOR WEATHER BUREAU STATIONS-Continued

District and station	Barometer above sea	Thermometer above	neter above	reduced to	od by	normal	u ·	I	1	1						- 1	ethi.			-			_	T							tenths		n ground
District and station	Barometer above			need		0	168	rma							92	ete.	or the	nidity		ormal	inch, or	ve-	g		laximu velocit								month
		The	Anemometer	Station, red mean of 24	Sea level, reduced mean of 24 hours	re from	Mean max.+mean	Departure from normal	Maximum	Date	Mean maximum	Minimum	Date	Mean minimum	Greatest daily range	Mean wet thermometer	Mean temperature	Mean relative humidity	Total	Departure from normal	Days with 0.01 in more	Average hourly locity	Prevailing direction	Miles per hour	Direction	Date	Date	Clear days	Partly cloudy days	Cloudy days	Average cloudiness,	Total snowfall	Snow, sleet, and ice on at end of month
Northern Slope	Ft.	Ft.	Ft.	In.	In.	In.	°F.	°F.	°F		°F	°F	0	F	F	F	F.	% 67	In. 2.77	In. +0.1		Miles									0-10 6.1	In.	
Billings 1 Havre Helena 1 Missoula 3 Kalispell. Miles City 2 Rapid City 3 Cheyenne 1 Lander Sheridan 6 North Platte 3	3, 570 2, 507 4, 124 3, 205 2, 973 2, 371 3, 259 6, 094 5, 352 3, 790 2, 821	18 111 5 80 48 48 50 5 60 6	67	25. 78 26. 62	9 29, 90 8 29, 95 2 29, 97 0 29, 93 2 29, 89 8 29, 90 5 29, 87 3 29, 85	+. 05 +. 07 +. 04 +. 04 +. 05 +. 03 . 00		-2.6 -3.3 -2.8 -2.9 -4.0 -2.4 5 -2.2 +.4		30 8 30 30 30 15 26 10 25 25 3	71 68 68 64 73	41 36 33 36 38 42 36 33 37 37 48	13 13 21 21 17 12 13 13 13 13	48 44 46 46	38 36 37 34 31 29 34 37 36	51 50 48 49 49 54 55 51 47 51 60	50 46 37 45 56	70 70 70 49 65 73	2.30 3.70 1.96 2.05 4.13 4.28 3.23 2.48 .04 1.23 5.06	.0 +.8 4 +.1 -2.1 +1.6 1 +.9 -1.1 8 +1.8	16 13 14 18 17 12 17 1 10 16	10. 2 9. 6 6. 2 5. 8 7. 1 7. 5 9. 8 5. 7 7. 9	8W. W. W. W. N. N.	49 34 41 27 21 33 30 31 30 35 27	SW. W. NW. SW. NW. NW. SW.	15 16 15 20 16 10 4 28 26 18 27	16 18 20 16 10	7 6 4 4 3 9 3 7 9 5 9	15 8 11 12 8 12 19 13 14 13 12	8 16 15 14 19 9 8 10 7 12 9	5.6 6.3 6.7 6.8 7.5 5.2 6.3 6.1 5.1 6.2 5.3	.0	.0
Middle Slope Denver ¹ Pueblo ¹ Concordia Dodge City Wichita ¹ Oklahoma City ²	5, 292 4, 690 1, 392 2, 509 1, 358 1, 214	106 5 50 10 6 10	36 58 86	24. 71 25. 24 28. 45 27. 30 28. 47 28. 60	29. 85 29. 81 5 29. 89 6 29. 83 7 29. 88 9 29. 85	1 01	65. 0 68. 4 72. 5	6 5 + 3	90 95 95 100	26	76 82 82 84 84 86	46 47 46	13 14 14 15 14 14	54	31 41 25 38 29 24	53 55 65 63 66 70	46	63 57 73 68 76	1.85	+.5 +1.5 +.8 +2.8 +4.3 +3.3	10 10	7. 4 8. 4 7. 9 12. 3 15. 0 9. 4	6. 8. 8.	28 40 50 49 50 24	nw. nw. nw.	27 3 12 18 12 25	13 18 12	6 9 6 6 7 8	15 12 13 12 12 12	9 11 12 11 11	5. 7 5. 6 6. 2 6. 6 6. 2 5. 9	.0	.0
Southern Slope Abilene ²	1, 738 3, 676 960	10 10 63 75	56 49 71 85	28. 07 26. 19 28. 82 26. 28	29, 82 29, 80 29, 77 329, 78			+1.1 +1.4 +1.6 +.6	106 103 108	12 19 11	91 87 95 92	60 49 65 54	14 14 5 5	70 62 74 62	32 35 32 43	69 62 71	65 56 65 50	68 64 59	1. 44 2. 21 2. 29 . 70	-1, 1 8 6 -1.8	7	10. 5 15. 0 10. 5	sw. se.	25 39 30 29	se.	15 23 9	15 23 9	14 8 9 14	8 12 20	8 10 1 4	4.7 5.5 4.8 3.9	.0	.0
Southern Pintenu	3, 566	75	85	26. 28	29.78	02		+1.6	1 1	19	92	54	5	62	43	60		48	. 56 0. 12	-1.1 -0.2	7	8. 2	8.	29	nw.	23	23	14	12	4	1.4	.0	.0
El Paso ³ Albuquerque ¹ Phoenix ² Tucson ¹ Yuma Independence	3, 778 5, 314 1, 107 2, 555 142 3, 957	82 5 39 5 9 5	101 45 87 23 54 26	24. 69 28. 60	29. 73 29. 72 29. 74 29. 72	02	83. 6 74. 8 85. 0 82. 9	+4.0 +2. +.5	104 297 112 109	19 22 22	97 90 102 101 104 89	63 50 62 56 58 48	555883	70 60 68 65 66 58	37 36 43 44 44 36	57 53 58 56 63 51			. 52 . 22 . 00 . 00 . 00	1 3 1 3 0 +.1	0	9. 2 11. 1 5. 8	se. e. sw.	25 42 22 17	e.	4 7 25		20 21 26 24 28	6	1 3 1 1 0	2.4 2.2 1.7 1.8 .6	.0	.0
Middle Plateau								-0.4	1									42	0.19	-0.3											2.9		
Reno 2	4, 527 6, 090 4, 339 5, 473 4, 227 4, 602	61 9 5 10 86 60	76 20 56 46 47 68	25. 44 24. 01 25. 59 25. 53 25. 28	29. 92 29. 84 29. 90 29. 76 29. 83 29. 78	+. 06 +. 02 06 02 05	61. 9 65. 1 61. 6 63. 4 64. 8 72. 0	5 -1. 2 +. 1 9 +. 6	93 88 93 90 92 95	30 30 30 22 18 17	79	41 38 36 34 42 46	26 12 28	51 3 46 4 45	38 4 43 4		27 34 39	49 44 46 27	.08 T .38 T .47	2 3 3 3 4	0	7. 0 7. 9 11. 3 8. 7 7. 6	nw. sw.	28		25 18 2 25 27			10 6 11 9	5 0 .	1.8 3.6 3.2 3.1	.0	.0
Walla Walla	3, 471 2, 739 4, 778 1, 929 991 1, 076	57	65	28. 91	29, 98 29, 92 29, 88 29, 95 29, 96 29, 97	. 00	55. 0 60. 8 60. 4 59. 6 64. 6	-2.7 -3.6 -3.2 -1.9 -2.2	90	30	70	48	12 4	99 3	50		42 42 36 45	68 57 47 64	. 62 . 58 . 93 2. 79	+0,2 3 4 +1.7 2	6 4 12 11	10. 6 7. 5 6. 7	nw. sw.	31 34 26 21	n. nw. w. sw. w.	15 25 9 15 15 15	25 9 15 15	8 11 5 10	8	12	5.3 5.2 4.1 4.9 6.5 5.7 5.3	. 0	.0
North Pacific Coast Region							59.8	+0,4										73	2.55	+0.9											6.6		
North Head	211 125 194 86 1, 329 154 510	90 172 9 29 68	321 201 61 58 106	29, 91 29, 78 29, 95 28, 62 29, 88	30. 04	+. 07 +. 04 +. 02 +. 03	62. 4	-2.1	102	30 30 30 30 30 30 30	67 58 77 71	49 46 47 40 48	12 & 12 & 12 & 12 & 11 & 4	53 3 52 2 51 2 49 4	35 8 28	53 53 52 53 55 54	49	72 84 59 74	2. 96 2. 40	+1.0 +1.6 +.9 +2.1 1 +.5 +.2	16 12 11 12 7 16 9	14. 5 9. 2 9. 1 10. 7 5. 6 4. 3	s. sw. w. nw. nw.		sw. sw. e.	9 15 5 30 5 14	15 5 30	6 4 4 12	6 8 10 4 7 6 8	20 16 16 22 11 17 12	7. 5 6. 8 6. 9 7. 6 5. 0 6. 5 6. 0	.0 .0 .0 .0	.0
Middle Pacific Coast Region							65.3	+1.0										62	0.20	-0.3											3.0		
Cureka tedding ¹ acramento ² an Francisco	60 722 66 155	72 20 92 112	34 115	30. 02 29. 13 29. 82 29. 78	29.90	+. 04 00 01	74. 7 71. 6 58. 6	4 +2.2 +.1	109 108	30	87 87	54 51	10 6 6 3 8 3 8	52 2 33 3 56 4 52 2	20 8 35 8 12 8 28 8	52 56 57 53		82 34 54 77	. 57 . 22 . 00 T	2 6 2 2	8 2 0 0	7. 7 9. 7 7. 7 11. 6	nw.	25 27 21 33	n. w. sw. w.	11 15 24 6	15 24	20 25	8 7 4 7		2. 5 1. 5 2. 5	.0	.0
South Pacific Coast Region	327	5	35	29. 52	29. 86	+ 01	68.9 75.8	+ 1	110	30	92	50	3 5	59 4	13	38		63	.00	-0.1 1	0	9.4	nw.	24	nw.	5	5	28	1		0.6	.0	.0
os Angelesan Diego ¹	338 87	223	250	29.54	29. 90 29. 91	01 01	65. 9 64. 9	+1.0	81 75	21 22	74 71	54	1 8	58 2 59 1	13 8 24 5 18 5	59	56 56	40 74 76	.01	1 .0	0	5.8 7.0	W. 8.	18	W.	25 11	25	8	18 20	4	5. 2 6. 5	.0	.0
West Indies																																	
an Juan, P. R	82	10	54											-	-	-								****									
	118	6			29. 83 29. 84	+.01	80. 9	+0.8	90	23	87	73 1	14 7	5 1	5		76 2	88	5. 59	-2.6 +4.6	21 22	5. 1 5. 6	nw.	22 25	n. nw.	28 20		0	12	18	7.7	.0	.0

CLIMATOLOGICAL DATA FOR WEATHER BUREAU STATIONS-Continued

1 1/12 1/19 1		vatio rum		1	Pressur	0		Ten	aper	atu	re o	the	air			1	dew-	17%	Pre	cipitat	ion	Sun jes	W	7ind			ata l	0.0	20			ground	thunder-
	e sea	above	above	d to	ed to	normal	ax.+mean	normal							ge	eter	e of the	humidity		normal	inch, or	-94	g	M	aximu elocity	m		80		s, tenths	-	ice on g	with the
District and station	Barometer above	Thermometer		Station, reduced mean of 24 hours	Sea level, reduced mean of 24 hours	Departure from no	Mean max.+r min.+2	Departure from 1	Maximum	Date	Mean maximum	Minimum	Date	Mean minimum	Greatest daily range	wet the	Mean temperature point	Mean relative hun	Total	Departure from n	Days with 0.01 in	Average hourly locity	Prevailing direction	Miles per hour	Direction	Date	Clear days	Partly cloudy days	Cloudy days	Average cloudines	Total snowfall	sleet, and at end of	Number of days
Alaska	Ft.	Ft.	Ft.	In.	In.	In.	°F.	°F.	°F		°F	°F	1	°F	°F	°F	°F.	%	In.	In.		Miles								0-10	In.	In.	
nchorage	135	36	27		4 29.88			+1.9					. 5		27	40						5. 5	nw.	18	sw.	5	6	9	15		0.0	0.0	
Bethel Fairbanks Juneau Ketchikan McGrath	135 20 22 484 132 75 331 43	111 96 66 4	87 116 85 31	4 29.32 4 29.90 4 29.98 4 29.43	4 29.81 4 29.82 4 29.98 4 30.00 4 29.80 4 29.83	****	51. 6 61. 4 55. 4 55. 8 56. 6 49. 4	-1.4 +2.9 +1.2 +1.2 +3.7	91 77 77 89	24 23 30 20	62 73 62 63 68 57	34 38 40 43 36 33	6 1 15 2 6 10	41 49 48 49 45 42	31 38 29 26 40 32	48 52 50 51 49 45	43 44 46 48 43 42	60 75 79	1. 35 2. 75 5. 97 2. 33 1. 93 1. 36	+1.4 +1.9 -4.1	12 15 16 10	6.0	8. 90. 8.	27 24 21 23 37	86.	10 13 23 12 29	1 3 4 2 3 8	7 11 4 5 16 10	22 16 22 23 11 12	8.1 7.1 7.8 8.3 6.1	.0	.0	
Hawaii															-																		
Honolulu	38	86	100	29. 98	30.02		77.3	+.7	84	3	82	64	15	73	15	69	65	70	1.11	+.2	11	10.0	ne.	26	ne.	15	8	18	7	5.9	.0	.0	

Data are airport records.

Barometric data (adjusted to old city elevation) and hygrometric data from airport; otherwise city office records.

Observations taken bihourly.

Pressure not reduced to a mean of 24 hours.

Barometric data from airport; other data from city office records.

Wind, clear, partly cloudy, and cloudy data from city office records; other data from airport.

Note.—Except as indicated by notes 1, 2, 5 and 6 data in table are city office records.

SEVERE LOCAL STORMS, JUNE 1942

[Compiled by Mary O. Souder]

[The table herewith contains such data as has been received concerning severe local storms that occurred during the month. A revised list of tornadoes will appear in the United States Meteorological Yearbook]

Place	Date	Time	of path, yards	of life	property destroyed	Character of storm	Remarks
Custer, S. Dak., vicinity of	2	1-4:30 a. m	1 10		\$19,000	Heavy hail	Loss to buildings and livestock, \$8,000; to crops, \$2,000; path 10 mile
Faith, S. Dak	2	6;30-7:30 p. m	14	0	5, 500	Ternado and hail	long. Several buildings destroyed and several moved from their foundations. Roofs punctured and some crops stripped; property damage, \$5,000
Pittsylvania Co., Va	2	P. m			1,000	Hail, electrical	crops loss, \$500. Barn and farming implements and mules burned near Chatham, with \$1,000 loss. Crop loss mostly in tobacco, not estimated.
Chouteau County, MontDelaware and Dubuque Counties, Iowa.	3	3:15 p. m	15		25, 000 2, 100	Heavy hail	\$1,000 loss. Crop loss mostly in tobacco, not estimated. Loss in winter wheat and rye; path 40 miles long. Barn burned and cattle killed.
Counties, Iowa. Big Horn County, Mont Minnesota Lake, Minn., vi-	1	5 p. m 7:10 p. m	12		10, 100 1, 000	Heavy hailThundersquall	
New Albany, Ind	4	P. m			500	Wind and hail	Trees and houses damaged.
Jackson Nicollet and Dodge	5	5:45-7:10 p. m			5, 000 37, 000	Hail	Crop loss, \$28,000; property damage, \$9,000.
Counties, Minn. Shell Lake, Wis. Minnesota Lake, Minn., vicinity of.	5	6:10 p. m 6:15 p. m	17		35, 000 6, 000	Thundersquall	
Aurelia, Iowa, vicinity of Waverly, Iowa, vicinity of Cooney Dam, Mont., vicinity	6 6 7	2:10 p. m. 4:30-4:50 p. m. 10 p. m.	890	0	6, 000	Tornadodo	Path narrow and 3 miles long; amount of damage not given. No damage of consequence and no details of the storm available. Chief loss in crops: path 5 miles long.
of. Montague and Geraldine,	8	6:30 p. m			150, 000	dodo	
Mont., and vicinities. Winifred, Mont., vicinity of	8-9	P. m			15, 000	Heavy hail and	
Bunkie, La., 3 miles north-	10	10:15 a. m		0	500	wind. Tornado	Small cabin and outbuildings destroyed; number of trees uprooted.
west. Judith Basin and Fergus	10				10,000	Heavy hail and rain	
Counties, Mont. Miner and Lake Counties, S. Dak.	11	5:15 a. m			1, 000	Heavy hail	Storm extended from north of Howard into Lake County. Property damage, \$1,000; thousands of dollars' loss in crops and livestock.
Evansville, Ind	11 11	2 p. m 2:45-3 p. m	100	0	1, 500 11, 200	Wind Tornado and hail	Trees, wires and buildings damaged. Property damaged; trees uprooted; path 8 miles long. At 2:45 p.m. funnel cloud was observed northwest of Dumont, in Traverse County. It descended to earth twice causing property damage and uprooting trees with \$1,200 damage over a path 8 miles long. Hall loss to growing
Todd County, Minn	11 11	5 p. m P. m	1 30	0	15, 000 500	Thundersqualls Tornado	crops, \$10,000. Property damaged; path about 20 miles long. Portion of barn torn off and carried around so that the debris was
Howard County, Nebr.,	11	do	11		4, 000	Hail	deposited on the opposite side. Loss in small grain.
northern portion. York County, Nebr., western	11	do	11		1,000	do	Loss principally in small grain; slight damage to windows and roofs.
portion. Grinnell, Iowa	. 11	Non midulaba	1 21/2		1, 500	Electrical	Roof of Grinnell College Dormitory damaged by lightning.
Lyons, Kans., south of Rawlins, Lawrence, and De- catur Counties, Kans.	11-12	Near midnightdo	1 15		75, 000 350, 000	Wind Heavy hail	Much loss in wheat; path 4 miles long. Storm occurred over an east-west strip extending from northwest McDonald in Rawlins County, across Lawrence and Decatur Coun- ties. Loss mostly in wheat over a path 60 miles long.
Decatur, Norton, and Phillips Counties, Kans.		12:35-2 a. m	1 4-20	3 5 5 6 6	350, 000	High wind and hail.	Storm extended from the northern portion of Decatur County, through Norton, in Norton County, into eastern Phillips County. Considerable property damage in Norton. About 40 barns destroyed in Phillips County. Hall especially severe in northeastern portion of Norton County and the northwestern portion of Phillips County.
Upland, Nebr	12 12	1-4 a. m 2-3 a. m	14		6, 000 15, 000	Hail and wind Hail, wind, and rain.	path 70 miles long. Loss mainly to small grain; little damage to buildings. Loss in small grain; windows broken, roofs damaged, and several barns and sheds collapsed; fields, bridges, and highways damaged by flooding.
Reno County, Kans	12	6 a. m		1	60, 000	Wind	Storm covered greater part of county and was especially severe in Hutchinson, where trees, wires and many buildings were damaged.
Posper County, Nebr	12 12	7 a. m 7:30 a. m	1 5		5, 000 80, 000	High wind Violent wind	Loss to crops, \$39,000, included in the estimate. Buildings damaged; windmills blown down; grain lodged. Storm especially severe over a strip extending from 7 miles northeast of Hesston to the southeastern portion of Marion County. Damage mostly in rural districts; path 40 miles long.
McPherson and Harvey Counties, Kans.	12	do	13		50, 000	Heavy hail	This storm occurred in connection with a violent wind storm. Approxi- mately 1,500 acres of growing crops destroyed and buildings damaged path 10 miles long.
Republic, Cloud, Washington, and Clay Counties, Kans.	12	5-5:30 p. m	1 12		200, 000	Heavy hail and wind.	Occurred in the northern part of Cloud and Clay Counties and south ern portion of Republic and Washington Counties. Greater part of loss due to hail. Much damage in Clifton, Washington County, and vicinity, where 210 claims were paid by insurance companies.
Oklahoma City, Okla., vi- cinity of.	12	8:41 p. m., cen- tral standard time.	117	35		Tornado and rain	Path 25 miles long. This reported to have been one of the worst tornadoes in the history of Oklahoma. A funnel-cloud seen and an almost deafening roar that could be heard for several miles in all directions reported —116 familles affected by the storm; 73 homes demolished and 31 others damaged, while numerous outbuildings were destroyed or damaged and 29 persons received hospitalization. Numerous automobiles destroyed and as many badly damaged. Houses were spattered with mud.
ake Providence, La Palton, Pa., and vicinity	13	8:30 p. m P. m			20, 000 5, 000	WindRain and electrical	Estimate of damage not available. Property damage, \$5,000; crop loss, mostly uncut oats and corn, \$15,000. Estimated that from 5 to 6 inches of rain fell in about an hour. Water 4 feet deep in center of the community. Property damaged; bridge washed out.
denmont, N. Y	13 14 14	1 p. m 8:12 p. m	111110	0	8, 000 300 750, 000	Tornado	Barn burned. Damage to buildings and fences. Loss mostly in crops; some damage to roofs and windows.
Tex. Jueces and Jim Wells Coun-		5 p. m	1.00		1, 200	Straight-line winds	Property damage, \$1,200; considerable crop loss not estimated.
ties, Tex. annvalley, S. Dak. obles, Cass, Hennepin, and Ramsey Counties, Minn.	17	2 a. m	13		6, 000 62, 000	Hail and thunder- storms.	Windows broken; poultry killed; crop loss, \$6,000; path 10 miles long. Much poultry and many birds perished. Loss to crops, \$53,000; property damage, \$9,000; path ranged from 3 to 20 miles long. Property damage, \$5,000; loss in wheat and barley, \$500. Trees uprooted; buildings and windmills blown down.

¹ Miles instead of yards.

SEVERE LOCAL STORMS, JUNE 1942-Continued

[Compiled by Mary O. Souder]

[The table herewith contains such data as has been received concerning severe local storms that occurred during the month. A revised list of ternadoes will appear in the United States Meteorological Yearbook]

Place	Date	Time	Width of path, yards	Loss of life	Value of property destroyed	Character of storm	Remarks
Elsmore County, Kans., and	18	4-5 a. m			\$7,000	High wind	Property damage, \$5,000; crop loss, \$2,000.
vicinity. Ness Valley, Kans., southern	18	8:10 p. m	15		400,000	Heavy hail	Loss principally to wheat; path 21 miles long.
portion. Douglas, Osage, and Franklin Counties, Kans.	18	11:30 p. m			50,000	High winds	were unroofed and many farm buildings damaged and some demol-
Colby, Kans., and vicinity	18		13		20,000	Heavy hail	ished. Much damage to automobiles, electric signs, and roofs; path 25 miles
Platte County, Nebr Pottawatomie County, Kans.	18-19	P. m Midnight-2a.m.	13/2 to 4 440		1, 000 20, 000	Hail. Wind and hail	long. Property damage, \$1,000; small loss to grain and corn. Occurred over a strip extending approximately north and south of Westmoreland to Blaine. Some indications that a tornado may have occurred in connection with the general wind storm. Damage mostly to farm property. Much hall fell in some sections; path 15 miles long.
Butte and Spencer, Nebr Plymouth, Woodbury, and Ida Counties, Iowa.	19 19	6-7 a. m 8:30 a. m	11		5, 000 30, 500	Hail Hail and wind	to farm property. Much hall fell in some sections; path 15 miles long. Loss in small grain and corn. Trees blown down, buildings damaged. Loss to crops in Woodbury County, \$30,000; damage to buildings, \$500.
Iva, Ind., north of Milford to Manhattan, Kans., and vicinities.	19	3 p. m 9:30 p. m	200	0	8, 000 30, 000	Tornado and hall	Path southwest to northeast; no details. This storm apparently originated 4 miles northeast of Milford, ending 5 miles northwest of Manhattan. At about the same time, wind caused additional damage in the vicinities of Junction City and Fort Riley; path 12 miles long.
Riley, Kans., vicinity of Haigler, Nebr	19 19 19	10 p. m P. m do	1.5	0	9, 500 2, 000 5, 000	Tornado	Damage to farm property, \$8,000; loss in crops, \$1,500; path 2 miles long. Loss principally in wheat. Roots damaged; tower wrecked; trees uprooted; electric service dis rupted; man injured.
Angelica, N. Y. Onondaga County, N. Y	19	**************	1,320		2, 000 30, 000	Haildo	Loss in canning peas: path 5 miles long.
Loup and Vailey Counties,	19-20	P. m			25, 000	Hail, wind, and rain.	Loss in tobacco, corn, potatoes, wheat, apples, and cherries. Some individual crops a total loss; path 25 miles long. Most damage from hall; fields flooded.
Nebr. Waverly, Raymond, Ceresco, and Wahoo, Nebr., and vicinities.	19-20	do		1	30, 000	do	Barns and small buildings damaged; loss in grain.
Pottawattamie, Mills, and Fremont Counties, Iowa.	19-20	do			206, 100	Heavy rain and wind.	Crop loss in Pottawattamie County, \$100,000, and damage mostly to buildings and roads in Council Blufts, \$100,000. Railroad tracks washed out in numerous localities and trains delayed. Other damage
Omaha, Nebr	19-20	11 p. m., of 19th-6 a. m., 20th.			4,000	do	reported near Randolph where 3.50 inches of rain fell. Maximum wind velocity of 65 miles an hour and 3.48 inches of rain recorded during this storm. Damage to trees and transmission lines, \$2,000; from flooding, \$2,000.
Oketo, Lillis, and Vermillion, Kans., and vicinities.	20	1-2 a. m	11		80, 000	High winds	Damage to farm property, \$50,000; loss to crops, \$30,000; path 20 miles long.
Indianapolis, Ind., west of	20	6 p. m	20	0	2, 500	Tornado	Path southwest to northeast, about a mile long. Trees and Buildings damaged.
Clinton and Howard Coun- ties, Ind.	20	6:30 p. m	167	4	500, 000	Tornado	Greatest damage at Kokomo; many persons injured; path from south
Kimball County, Nebr	20	7-9 p. m	1 2-5		50, 000	Hail	Principal loss in wheat. Storm moved across the country from west northwest to east-southeast.
Mulvane, Kans., vicinity of Scott County, Kans	20 20	8:32-8:50 p. m 11 p. mmid- night.	i 4-10	4	85, 000 500, 000	Tornado and hail Heavy hail and wind.	Property damaged; path 8 miles long. Between 30,000 and 40,000 acres of wheat destroyed and other cropp badly damaged. In some places hallstones were 10 inches deep path 35 miles length.
Pawnee City, Nebr	20	P. m		0	6,000	Hail, wind, and beavy rain. Tornado	Small acreage of grain severely damaged by hall; fields flooded, farm buildings blown over. 12 cars blown from a moving Missouri Pacific train; number of small
Wichita County, Kans.,	21	6:30 p. m			30, 000	Heavy hail	buildings damaged. Estimate of damage not given. Damage over path 10 miles long; no details.
southern portion. Kearney, Kans., northeast-	21	7-7:30 p. m			75, 000	do	Loss chiefly to wheat with 90 percent loss in some areas; path 18 miles
ern portion. Pittsburgh, Pa	21			1	10,000	Electrical	long. Steam generator and powerhouse at steel plant struck by lightning
Clayton, N. Mex	21-22 21-22	8-9 p. m. 11:30 p. m1:30			10, 500 350, 000	HailHeavy hail	man killed; trees uprooted; electric service distrupted. Some sheep and cattle killed. Loss principally in wheat; path 24 miles long.
Bellview, N. Mex., vicinity of Clayton, N. Mex.	22 22-23	a. m. 7-7:30 p. m	14		10, 000 40, 000	Hall	
MAVRIII. N. MAY	23 24	2-3 p. m 5 p. m	13		1,000 10,000	Heavy hall	Loss mostly in fruit. Loss in crops; path 35 miles long.
Hardin, Mont., vicinity of Chouteau and Teton Counties, Mont.	25	5:30 p. m	16		250, 000	do	Began in Power, Teton County, and terminated near Chouteau County line; path 36 miles long.
benchiand and Windham.	25	6 p. m	11		10, 000	do	Loss in crops; path 5 miles long.
Mont, vicinity of. Buena Vista County, Iowa Ellis and Rooks Counties, Kans.	27 27	1:30 p. m. 5 p. mmid- night.	12		25, 000 400, 000	Hail	Considerable damage; path 10 miles long. Much wheat completely destroyed; chickens killed, windows broken and automobiles damaged; path 35 miles long.
Santee, Nebr	27	6 p. m	440	0	10, 000	Tornado	Damage to buildings, \$5,000; to personal property, \$5,000; 1 person injured.
Estherville, Iowa. Outhrie, Dallas, Polk, Grimes, Boone, Story, and Marshall Counties, Iowa.	27 28	10:30 p. m 6:15-7 p. m	******	1	1, 000 148, 150	Hall, electrical Tornado and rain	Trees and wires down; 1 person injured. Much property damaged; trees uprooted. At Dodge Field, near Det Moines, a hangar was wrecked, a building moved off its foundation and 4 planes damaged. Heavy rains caused erosion near Cumber land and 3 inches of rain were reported from Anits. Pastures and
Houston County, Minn	28	8 p. m	33		10,000	Thundersquall	highways and caused small streams to overflow. In some sections a crop loss was heavy. Several persons were injured. This storm a possible tornado. Number of farm buildings wrecked or damaged. Trees uprooted lay on the ground mostly in the same direction; length of path 10 miles. The storm crossed the State line from Minneshiek and Allamakee Counties, Iowa where greatest
Minnesota, extreme south- eastern Counties.	28	P. m			90, 000	Rain and flood	damage occurred.
adysmith, Wis	28		********		2,000	Wind	sides washed; lowiands inuncated with much loss in growing crops. Barn and silo blown down, another barn damaged. 2 large barns destroyed by fire, and 3 cows and a quantity of feed lost.
Ruston, La. ohn Martin Dam, Colo	28	5:10 a. m	1 10		10, 000 50, 000	Thunderstorm	Loss in corn, small grain, hay, beets, and melons. 125 sheep and 400

¹ Miles instead of yards.

LATE REPORTS FOR APRIL 1942

Place	Date	Time	Width of path, yards	Loss of life	Value of property destroyed	Character of storm	Remarks
Chippewa and Clark Counties, Wis.	•	8 p. m	55-100	0	\$60,000	Tornado	The tornado cloud lifted several times so that some areas in the path were untouched. At least 15 barns demolished and several damaged Damage to 3 houses and a cheese factory; several small building destroyed; 20 cows and 2 horses killed. Small crop loss becaus
Minnesota, extreme south- eastern counties.	5	9:20 p. m			5, 000	Sleet and glaze	early season; length of path 18 miles. Communication and electric service disrupted. Ice, beginning to form at 9:20 p. m., remained on the wires about 12 hours. Trees and shrubbery coated with glaze. Roads very slippery: number of motor accidents occurred.
Erick, Okla	26	12:05-1:30 a. m	12		3, 500	Heavy hail	Property damage, \$500; loss in crops, \$3,000. The storm moved from the southwest over a path 7 miles long.
Clinton, Okla	26-27	7:23 p. m., of 26th-2:30 a. m., of 27th.	1 236		185, 000	do	Property damage, \$150,000; loss in crops, \$35,000; path 10 miles long.
Talala and Chelsea, Okla.,	27	3:45 p. m		0		Tornado	Several buildings and other property destroyed. Estimated loss several thousand dollars. Path narrow and 15 miles long.
and vicinities. Minnesota, southern counties.	27-28	P. m., and a. m			108, 000	Thundersqualls	Many barns, outbuildings, siles, and windmills wrecked; houses dam aged, windows broken, signs and awnings torn away, poles and wired down, trees uprooted, and growing crops slightly damaged. The general direction of the storm was from southwest to northeast over a path about 200 miles long.
Dubuque, Iowa	28	*************			4,000	Thunderstorm, ex- cessive rain, and hail.	Lawns and gardens washed; streets flooded and blooms knocked of cherry and plum trees.
Harrison, Monone, and Woodbury Counties, Iowa and vicinities.	28	7:30 p. mmid- night.			18, 400	Wind and rain	There were reports of scattered damage in all sections of the State Two men injured when blown off a roof in Woodbury County.
Murdock, Minn., and vicin-	30	9:30 p. m	500		3, 000	Thundersqualls	Property damaged. Storm moved from the southwest to northeast over a path 9 miles long.
Todd County, Minn., north- western portion.	30	11:45 p. m	880		5, 000	Hall	Considerable damage to property; much poultry perished. Growing crops not advanced enough to be injured. The storm moved from the southwest to northeast over a path about 3 miles long.
Roseau, Wadena, and Big Stone Counties, Minn.	30				100, 000	Rain and flood	Heavy to excessive rains near the close of April caused considerable damage to highways and bridges. Lowlands inundated and growing crops damaged. Loss to tangible property, \$40,000, farm property and prospective crops, \$57,000, and to livestock, \$3,000.

¹ Miles instead of yards.

June 13

June 14

June 15

June 16

June 17

June 18

June 19

June 20

June 21

11 52

10 47

12 48

10 46

10 39

12 31

10 30

11

(*) 7447

7448

7448 7450

7448 7448 7450

+13

-79132 +6

 $\frac{-67}{+25}$

-53 -33

238 +11

(225)(+1)

 $\frac{132}{224}$

(199)

133 153 $^{+6}_{-10}$

(186)(+1)

130 137 153 -42 -35 -19

(172)(+2)

130 137 153

(159)(+2)

11 6 No spots

+10 +11

(+1)

(+1)(211)

 $^{+6}_{-10}$

(+1)

+7 +6 -10

+7 +6 -11 -3

G

G

G 3

G

G

VG

G

Do.

Do.

Do.

Do.

Do.

Do.

6

3

1

10

7 G

8

17

19

10

60

36

194

291 6

297

194

200

97 97 73

79 194

67 27

SOLAR RADIATION AND SUNSPOT DATA FOR JUNE 1942

[Communicated by Capt. J. F. Hellweg, U. S. N. (Ret.), Superintendent, U. S. Naval Observatory.] All measurements and spot counts were made at the Naval Observatory from plates taken at the observatories indicated. Difference in longitude is measured from the central meridian, positive toward the west. Latitude is positive toward the north. Areas are corrected for foreshortening and expressed in millionths of Sun's hemisphere. For each day, under longitude, latitude, area of spot or group, and spot count, are included assumed longitude of center of the disk, assumed latitude of center of the disk, total area of spots and groups, and total spot count.

POSITIONS, AREAS, AND COUNTS OF SUNSPOTS FOR POSITIONS, AREAS, AND COUNTS OF SUNSPOTS FOR JUNE 1942—Continued

Communicated by Capt. J. F. Hellweg, U. S. N. (Ret.), Superintendent, U. S. Naval Observatory.] All measurements and spot counts were made at the Naval Observatory from plates taken at the observatories indicated. Difference in longitude is measured from the central meridian, positive toward the west. Latitude is positive toward the north. Areas are corrected for foreshortening and expressed in millionths of Sun's hemisphere. For each day, under longitude, latitude, area of spot or group, and spot count, are included assumed longitude of center of the disk, assumed latitude of center of the disk, total area of spots and groups, and total spot count.

				1	TT-W								T		T									
	E	ast-			Heliog	rapnic		Area					1	East				Heliog	raphie		Area			
Date	sta 8	rn ind- rd me	Mount Wilson group No.	Dif- fer- ence in longi- tude	Lon- gi- tude	Lati- tude	Dis- tance from cen- ter of disk	of	Spot	Plate qual- ity	Observatory	Date	8	ern tand ard time	d-	Mount Wilson group No.	Dif- fer- ence in longi- tude	Lon- gi- tude	Lati- tude	Dis- tance from cen- ter of disk	of spot or group	Spot	Plate qual- ity	Observatory
194 8 June 1	h 10	m 45			° N	o spots				G	Mt. Wilson.	1948 June 2	2 1	A m 10 48		7448 7448	-2 +5	131	* +7 +6	8 6	48 73	4	G	U. S. Naval
June 2	10	39	7444	-53	345	+12	55	48	6	G	Do.				1	7995	40	138		0	121	5		
					(38)	(-1)		48	6			June 2		0 5		7448	1.19	132	(+2)			6	G	Do.
Tune 3	14	42	7444	-36	346	+12	38	36	3	G	U. S. Naval.	June 2	,	0	"	7448	+13 +20	139	+7 +6	14 21	73 73	1	G	190.
					(22)	(-1)		36	3						-			(119)	(+2)		146	7		
June 4	10	32	7444	-24	347	+12	27	24	1	G	Do.	June 2	4 1	0 3	32	7448 7448 7452	+26 +33 +43	132 139 149	+6 +5 -10	27 33 45	48 73 6	5 6 2	G	Do.
une 5	10	45	7444	-15	343	+13	20	12	1	G	Mt. Wilson.						1.00	(106)	(+2)	-	127	13		
					(358)	(0)		12	1			June 2	5 1	0 3	14	(*) 7448 7452	-32 +47 +59	61 140 152	-13 +6 -11	35 47 60	12 97 48	3 8 3	F	Do.
June 6	10	48	7445	$^{-1}_{+25}$	344 10	+12 +11	12 28	145 12	10 2	G	U. S. Naval.				-	7452	+59			60		-		
					(345)	(0)		157	12			*			.			(93)	(+2)		157	14		_
une 7	11	22	7446 7445 (*)	-47 +13 +22	284 344 353	+5 +12 -6	48 18 23	12 145 6	8 3	F	Do.	June 2	1	0 4	•	7453 7448 7452	+49 +60 +70	129 140 150	+4 +5 -11	49 60 71	24 48 24	3 3	G	Do.
					(331)	(0)		163	13									(80)	(+2)		96	7		
une 8	13	20	7445	+27	344	+12	30	133	6	F	Do.	June 2	7	8 3	19	7453 7453 7448	+63 +67 +77	131 135	+5	63 67 77	73 48 48	4 5	F	Mt. Wilson.
					(317)	(0)		133	6							7448	+77	145		77	_	1		
une 9	8	25	7445	+40	346	+13	42	97	2	G	Mt. Wilson.	*						(68)	(+2)		160	10		-
					(306)	(0)		97	2			June 2	1	9 3	1	7453	+76	130	+5	76	97	- 6	P	Dn.
une 10	10	45	(*) 7445	+53	292 345	+21 +13	21 54	6 24	1	G	Do.	June 2	1	1	1	1	1	(54) N	(+3) o spots		97	6	G	U. S. Naval
une 11	9	6	7445	+67	(292) 346	(0) +13	68	30 12	2	G	Do.	June 3	1	0 3	8			N	spots				G	Do.
					(279)	(+1)		12	. 1							Mea	n dai	ly ar	ea for	30 d	ays=	103		
une 12	10	34	,		No	spots	,	1		G	U. S. Naval.	(*) No	t nu	mbe	ered									

(*) Not numbered. VG=very good; G=good; F=fair; P=poor.

PROVISIONAL RELATIVE SUNSPOT NUMBERS FOR **MAY 1942**

[Based on observations at Zurich, except at Locarno on May 15. Data furnished through the courtesy of Prof. W. Brunner, Eidgen. Sternwarte, Zurich, Switzerland]

May 1942	Relative numbers	May 1942	Relative numbers	May 1942	Relative numbers
1	51 38 30 31 a 27	11 12 13 14 15	31 a 40	21 22 23 24 25	a 11 9 8 8
6 7 8 9 10	25 d 25 20 d 25 d 29	16 17 18 19 20	ad 52 46 35 34 26	26 27 28 29	15 7 15 0 0
1				31	7

Mean, 30 days=24.8

Observation at Locarno.
 Passage of an average-sized group through the central meridian.
 Entrance of a large or average-sized center of activity on the east limb.

											gill me b	100				
180																

the of

(oF.)

HOURLY PERCENTAGES Lines show amount of excess or deficiency Shaded portions show excess (+)
Unshaded portions show deficiency (-)

Chart I. Departure (°F.) of the Mean Temperature from the Normal, and Wind Roses for Selected Stations, June 1942

Chart II. Tracks of Centers of Anticyclones, June 1942. (Inset) Departure of Monthly Mean Pressure from Normal

Circle indicates position of anticyclone at 7:30 a. m. (75th meridian time), with barometric reading. Dot indicates position of anticyclone at 7:30 p. m. (75th meridian time). Tracks of Centers of Oyclones, June 1942. (Inset) Change in Mean Pressure from Preceding Month

Circle indicates position of anticyclone at 7:30 a. m. (75th meridian time), with barometric reading. Dot indicates position of anticyclone at 7:30 p. m. (75th meridian time).

Circle indicates position of cyclone at 7:30 a. m. (75th meridian time), with barometric reading. Dot indicates position of cyclone at 7:30 p. m. (75th meridian time).

Chart IV. Percentage of Clear Sky Between Sunrise and Sunset, June 1942

Chart V. Total Precipitation, Inches, June 1942

Chart V. Total Precipitation, Inches, June 1942

Chart VI. Isobars at Sea Level and Isotherms at Surface; Prevailing Winds, June 1942

Isobars (mb) for 1,524 Meters (5,000 ft.) and Isotherms (°C.) and Resultant Winds for 1,500 Meters (m. s. l.) June 1942

Chart VIII.

200 100/

Chart VIII. Isobars (mb) for 1,524 Meters (5,000 ft.) and Isotherms (°C.) and Resultant Winds for 1,500 Meters (m. s. l.) June 1942 Isobars and isotherms based on radiosonde observations at 11:00 p. m. (E. S. T.) and winds based on pilot-balloon observations at 5:00 a. m. (E. S. T.).

200

Chart IX. Isobars (mb) Isotherms (°C.) 11:00 p.m. (E.S.T) and Resultant Winds 5:00 a.m. (ES.T.) for 3,000 Meters (m. s. l.) June 1942

Chart X. Isobars (mb) Isotherms (°C.) 11:00 p.m. (E.S.T.) and Resultant Winds 5:00 p.m. (E.S.T.) for 5,000 Meters (m.s.1.) June 1942

260 548 100/ 550

Isobars (mb) Isotherms (°C.) 11:00 p.m. (E.S.T.) and Resultant Winds 5:00 p.m. (E.S.T.) for 5,000 Meters (m.s.1.) June 1942 Chart X.

Chart XI. Isobars (mb) Isotherms (°C.) 11:00 p.m. (E.S.T.) and Resultant Winds 5:00 p.m. (E.S.T.) for 10,000 Meters (m.s.l.) June 1942 272 = ·460 274 -440 276 -