

CD4051B, CD4052B, CD4053B

SCHS047I-AUGUST 1998-REVISED SEPTEMBER 2017

CD405xB CMOS Single 8-Channel Analog Multiplexer/Demultiplexer With Logic-Level Conversion

1 Features

- · Wide Range of Digital and Analog Signal Levels
 - Digital: 3 V to 20 V
 - Analog: ≤20 V_{P-P}
- Low ON Resistance,125 Ω (Typical) Over 15 V_{P-P} Signal Input Range for V_{DD} V_{EE} = 18 V
- High OFF Resistance, Channel Leakage of ±100 pA (Typical) at V_{DD} – V_{EE} = 18 V
- Logic-Level Conversion for Digital Addressing Signals of 3 V to 20 V ($V_{DD}-V_{SS}=3$ V to 20 V) to Switch Analog Signals to 20 V_{P-P} ($V_{DD}-V_{EE}=20$ V) Matched Switch Characteristics, $r_{ON}=5$ Ω (Typical) for $V_{DD}-V_{EE}=15$ V Very Low Quiescent Power Dissipation Under All Digital-Control Input and Supply Conditions, 0.2 μ W (Typical) at $V_{DD}-V_{SS}=V_{DD}-V_{EE}=10$ V
- · Binary Address Decoding on Chip
- 5 V, 10 V, and 15 V Parametric Ratings
- 100% Tested for Quiescent Current at 20 V
- Maximum Input Current of 1 μA at 18 V Over Full Package Temperature Range, 100 nA at 18 V and 25°C
- Break-Before-Make Switching Eliminates Channel Overlap

2 Applications

- Analog and Digital Multiplexing and Demultiplexing
- A/D and D/A Conversion
- Signal Gating
- Factory Automation
- Televisions
- Appliances
- Consumer Audio
- Programmable Logic Circuits
- Sensors

3 Description

The CD405xB analog multiplexers and demuliplexers are digitally-controlled analog switches having low ON impedance and very low OFF leakage current. These multiplexer circuits dissipate extremely low quiescent power over the full $V_{DD}-V_{SS}$ and $V_{DD}-V_{EE}$ supply-voltage ranges, independent of the logic state of the control signals.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
	CDIP (16)	19.50 mm × 6.92 mm		
	PDIP (16)	19.30 mm × 6.35 mm		
CD405xB	SOIC (16)	9.90 mm × 3.91 mm		
	SOP (16)	10.30 mm × 5.30 mm		
	TSSOP (16)	5.00 mm × 4.40 mm		

 For all available packages, see the orderable addendum at the end of the data sheet.

Functional Diagrams of CD405xB

Table of Contents

Features 1		8.3 Feature Description	17
Applications 1		8.4 Device Functional Modes	17
	9	Application and Implementation	18
		9.1 Application Information	18
		9.2 Typical Application	18
<u> </u>	10	Power Supply Recommendations	19
•	11	Layout	20
S C		11.1 Layout Guidelines	
		11.2 Layout Example	<mark>2</mark> 0
· · · · · · · · · · · · · · · · · · ·	12	Device and Documentation Support	21
		12.1 Documentation Support	21
		12.2 Related Links	
		12.3 Trademarks	<mark>2</mark> 1
		12.4 Electrostatic Discharge Caution	<mark>2</mark> 1
		12.5 Glossary	21
8.1 Overview	13	Mechanical, Packaging, and Orderable	24
8.2 Functional Block Diagrams		IIIOIIIIauoii	2
	Applications 1 Description 1 Revision History 2 Pin Configuration and Functions 3 Specifications 5 6.1 Absolute Maximum Ratings 5 6.2 ESD Ratings 5 6.3 Recommended Operating Conditions 5 6.4 Thermal Information 5 6.5 Electrical Characteristics 6 6.6 AC Performance Characteristics 8 6.7 Typical Characteristics 9 Parameter Measurement Information 11 Detailed Description 15 8.1 Overview 15	Applications 1 Description 1 Revision History 2 Pin Configuration and Functions 3 Specifications 5 6.1 Absolute Maximum Ratings 5 6.2 ESD Ratings 5 6.3 Recommended Operating Conditions 5 6.4 Thermal Information 5 6.5 Electrical Characteristics 6 6.6 AC Performance Characteristics 8 6.7 Typical Characteristics 9 Parameter Measurement Information 11 Detailed Description 15 8.1 Overview 15	Applications18.4 Device Functional ModesDescription19 Application and ImplementationRevision History29.1 Application InformationPin Configuration and Functions39.2 Typical ApplicationSpecifications510 Power Supply Recommendations6.1 Absolute Maximum Ratings511 Layout6.2 ESD Ratings511.1 Layout Guidelines6.3 Recommended Operating Conditions511.2 Layout Example6.4 Thermal Information512 Device and Documentation Support6.5 Electrical Characteristics612.1 Documentation Support6.6 AC Performance Characteristics812.2 Related Links6.7 Typical Characteristics912.3 TrademarksParameter Measurement Information1112.4 Electrostatic Discharge CautionBear In Overview1515Mechanical, Packaging, and Orderable Information

4 Revision History

CI	hanges from Revision H (April 2015) to Revision I	Page
	Added: ON Channel Leakage Current to the Electrical Characteristics table	6
•	Added Note 3 to the Electrical Characteristics table	6
•	Added Figure 13	12
_		
CI	hanges from Revision G (October 2003) to Revision H	Page
CI	hanges from Revision G (October 2003) to Revision H Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	

5 Pin Configuration and Functions

Pin Functions CD4051B

	PIN	I/O	DESCRIPTION
NO.	NAME	1/0	DESCRIPTION
1	CH 4 IN/OUT	I/O	Channel 4 in/out
2	CH 6 IN/OUT	I/O	Channel 6 in/out
3	COM OUT/IN	I/O	Common out/in
4	CH 7 IN/OUT	I/O	Channel 7 in/out
5	CH 5 IN/OUT	I/O	Channel 5 in/out
6	INH	I	Disables all channels. See Table 1.
7	V _{EE}	_	Negative power input
8	V _{SS}	_	Ground
9	С	I	Channel select C. See Table 1.
10	В	I	Channel select B. See Table 1.
11	Α	I	Channel select A. See Table 1.
12	CH 3 IN/OUT	I/O	Channel 3 in/out
13	CH 0 IN/OUT	I/O	Channel 0 in/out
14	CH 1 IN/OUT	I/O	Channel 1 in/out
15	CH 2 IN/OUT	I/O	Channel 2 in/out
16	V_{DD}	_	Positive power input

Copyright © 1998–2017, Texas Instruments Incorporated

Pin Functions CD4052B

PIN I/O		1/0	DESCRIPTION
NO.	NAME	1/0	DESCRIPTION
1	Y CH 0 IN/OUT	I/O	Channel Y0 in/out
2	Y CH 2 IN/OUT	I/O	Channel Y2 in/out
3	Y COM OUT/IN	I/O	Y common out/in
4	Y CH 3 IN/OUT	I/O	Channel Y3 in/out
5	Y CH 1 IN/OUT	I/O	Channel Y1 in/out
6	INH	I	Disables all channels. See Table 1.
7	V _{EE}	_	Negative power input
8	V _{SS}	_	Ground
9	В	I	Channel select B. See Table 1.
10	А	I	Channel select A. See Table 1.
11	X CH 3 IN/OUT	I/O	Channel X3 in/out
12	X CH 0 IN/OUT	I/O	Channel X0 in/out
13	X COM IN/OUT	I/O	X common out/in
14	X CH 1 IN/OUT	I/O	Channel in/out
15	X CH 2 IN/OUT	I/O	Channel in/out
16	V_{DD}	_	Positive power input

Pin Functions CD4053B

	PIN	1/0	DESCRIPTION
NO.	NAME	I/O	DESCRIPTION
1	BY IN/OUT	I/O	B channel Y in/out
2	BX IN/OUT	I/O	B channel X in/out
3	CY IN/OUT	I/O	C channel Y in/out
4	CX OR CY OUT/IN	I/O	C common out/in
5	CX IN/OUT	I/O	C channel X in/out
6	INH	I	Disables all channels. See Table 1.
7	V _{EE}	_	Negative power input
8	V _{SS}	-	Ground
9	С	I	Channel select C. See Table 1.
10	В	I	Channel select B. See Table 1.
11	A	l	Channel select A. See Table 1.
12	AX IN/OUT	I/O	A channel X in/out
13	AY IN/OUT	I/O	A channel Y in/out
14	AX OR AY OUT/IN	I/O	A common out/in
15	BX OR BY OUT/IN	I/O	B common out/in
16	V _{DD}	_	Positive power input

Submit Documentation Feedback

Copyright © 1998–2017, Texas Instruments Incorporated

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
	Supply Voltage	V+ to V-, Voltages Referenced to V _{SS} Terminal	-0.5	20	٧
	DC Input Voltage		-0.5	$V_{DD} + 0.5$	٧
	DC Input Current	Any One Input	-10	10	mA
T _{JMAX1}	Maximum junction tem	perature, ceramic package		175	°C
T _{JMAX2}	Maximum junction tem	Maximum junction temperature, plastic package			°C
T _{LMAX}	Maximum lead tempera		265	°C	
T _{stg}	Storage temperature		– 65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
CD4051	B in PDIP, CDIP, SOIC, SOP, T	SSOP Packages	•	
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	+3000	
V _(ESD) Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	+2000	V	
CD4053	B in PDIP, CDIP, SOP and TSS	OP Packages		
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	+2500	
V _(ESD) Electrostatic discharge		Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	+1500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	MAX	UNIT
Temperature Range	– 55	125	°C

6.4 Thermal Information

		CD405xB					
THERMAL METRIC (1)		E (PDIP)	M (SOIC)	NS (SOP)	PW (TSSOP)	UNIT	
		16 PINS	16 PINS	16 PINS	16 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	67	73	64	108	°C/W	

 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Product Folder Links: CD4051B CD4052B CD4053B

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.5 Electrical Characteristics

over operating free-air temperature range, $V_{SUPPLY} = \pm 5 \text{ V}$, and $R_L = 100 \Omega$, (unless otherwise noted)⁽¹⁾

		mperature range			T CONDITIC			MIN	TYP	MAX	UNIT
	PARAMETER		V _{IS} (V)	V _{EE} (V)	V _{ss} (V)	V _{DD} (V)	TEMP				
IGNAL INPUTS	(V _{IS}) AND OUTPU	JTS (V _{os})									
							–55°C			5	
							-40°C			5	
						5	25°C		0.04	5	
							85°C			150	
						125°C			150		
						−55°C			10		
							-40°C			10	
						10	25°C		0.04	10	
							85°C			300	
							125°C			300	
uiescent Device	Current, I _{DD} Max						-55°C			20	μA
							-40°C			20	
						15			0.04		
						15	25°C		0.04	20	
							85°C			600	
							125°C			600	
							-55°C			100	
							-40°C			100	
				20	25°C		0.08	100			
						85°C			3000		
						125°C			3000		
						–55°C			800		
							– 40°C			850	
				0	0	5	25°C		470	1050	
							85°C			1200	
							125°C			1300	
							−55°C			310	
							− 40°C			300	
rain to Source O ≤ V _{IS} ≤ V _{DD}	N Resistance r _{on}	Max		0	0	10	25°C		180	400	Ω
- VIS - VDD							85°C			520	
							125°C			550	
							–55°C			200	
							-40°C			210	
				0	0	15	25°C		125	240	
							85°C			300	
							125°C			300	
				0	0	5	120 0		15		
hange in ON Re Between Any Tw	sistance o Channels)			0	0	10	25°C		10		Ω
r _{on}	- J			0	0	15			5		32
					+ -	10	-55°C		<u> </u>	± 100	
							-33 °C -40°C			_ 100	
FF Channel Lea	kage Current: Any	Channel OFF (Max)		0	0	18	_40 C 25°C		± 0.01	± 100 ⁽²⁾	nA
or ALL Channels OFF (Common OUT/IN) (Max)					10			± 0.01	± 100 ⁽²⁾	ΠA	
							85°C			± 1000(=)	
				_	-	10.5	125°C			. 225 (2)	
N Channel Leak	age Current: Any I (Common OUT/II	Channel ON (Max) or	5 or 0	-5	0	10.5	85°C			± 300 ⁽³⁾	nA
LL Crianneis ON	1	v) (Wax)	5	0	0	18	85°C			± 300 ⁽³⁾	
	Input, C _{IS}			- 5	- 5	- 5	25°C		5		pF
		CD4051							30		
apacitance	Output, Cos	CD4052					25°C		18		
		CD4053							9		
	Feed through, 0	Pios —						-	0.2		

(1) Peak-to-Peak voltage symmetrical about $(V_{DD} - V_{EE}) / 2$.

Submit Documentation Feedback

Copyright © 1998–2017, Texas Instruments Incorporated

⁽²⁾ Determined by minimum feasible leakage measurement for automatic testing.

⁽³⁾ Does not apply to Hi-Rel CD4051BF and CD4051BFA3 devices.

Electrical Characteristics (continued)

over operating free-air temperature range, $V_{SUPPLY} = \pm 5 \text{ V}$, and $R_L = 100 \Omega$, (unless otherwise noted)⁽¹⁾

	PARAMETER		TES	T CONDITIO	NS		MIN	TYP	MAX	UNIT				
	ANAMETEN	V _{IS} (V)	V _{EE} (V)	V _{SS} (V)	V _{DD} (V)	TEMP								
		V _{DD}	$R_L = 200 \text{ k}\Omega$,		5			30	60					
ropagation Delay Time (Signal Input to Output)		_	C _L = 50 pF,		10	25°C		15	30	ns				
		┚┖	t _r , t _f = 20 ns		15			10	20					
ONTROL (ADI	DRESS OR INHIBIT), V _C		1						· · · · · ·					
						-55°C		1.5						
						-40°C		1.5						
					5	25°C			1.5					
						85°C		1.5						
						125°C		1.5						
						–55°C		3						
						-40°C		3						
nput Low Voltag	de. V _{II} . Max				10	25°C			3	V				
	9-7 - IC 7					85°C		3						
						125°C		3						
						–55°C		4						
						_40°C		4						
					15	25°C			4					
	V _{IL} = V _{DD}			15	85°C		4							
	through 1	V _{EE} = V _{SS} ,			125°C		4							
	$k\Omega$; $V_{IH} = V_{DD}$	$V_{EE} = V_{SS},$ $R_L = 1 \text{ k}\Omega \text{ to } V_{LS}$ $I_{LS} < 2 \mu\text{A on } V_{LS}$	V _{SS} , All OFF		-55°C		3.5							
		through 1	Channels											
		kΩ			-	-40°C	2.5	3.5						
				5		25°C	3.5	0.5		+				
						85°C		3.5		1				
					125°C		3.5							
					10	−55°C		7		V				
						-40°C		7						
put High Volta	ge, V _{IH} , Min					25°C	7							
						85°C		7						
						125°C		7						
						–55°C		11						
						-40°C		11						
					15	25°C	11							
						85°C		11						
						125°C		11						
						−55°C		± 0.1						
						-40°C		± 0.1						
put Current, I _{IN}	rrent, I _{IN} (Max)		ent, I _{IN} (Max)		i _{IN} (Max)		V _{IN} = 0, 18		18	25°C		± 10 ⁻⁵	± 0.1	μΑ
						85°C		± 1						
						125°C		± 1						
			0	0	5			450	720					
ropagation	Address-to-Signal OUT (Channels ON	t _r , t _f = 20 ns,	0	0	10			160	320					
elay Time	or OFF) (See Figure 10, Figure 11, and Figure 15)	$C_L = 50 \text{ pF},$ $R_L = 10 \text{ k}\Omega$	0	0	15			120	240	ns				
		$R_L = 10 \text{ k}\Omega$	-5	0	5			225	450					
			0	0	5			400	720					
	Propagation Inhibit-to-Signal OUT (Channel Delay Time Turning ON) (See Figure 11)	t _r , t _f = 20	0	0	10			160	320					
ronogatia-		ns, $C_L = 50 \text{ pF},$	0	0	15			120	240	ns				
	Turning ON) (See Figure 11)	$C_L = 50 \text{ pF},$ $R_L = 1 \text{ k}\Omega$		0	5			200	400					
	Turning ON) (See Figure 11)	R _L = 1 KΩ	_10		ı J	1		200	400					
	Turning ON) (See Figure 11)	K ^r = 1 K73	-10		E			200	450					
elay Time		t _r , t _f = 20	0	0	5			200	450					
Pelay Time	Inhibit-to-Signal OUT (Channel	t _r , t _f = 20 ns,	0	0	10			90	210	ns				
elay Time		t _r , t _f = 20	0	0						ns				

6.6 AC Performance Characteristics

DADAMETES		T)/D						
PARAMETER	$V_{IS}(V)$ $V_{DD}(V)$ $R_{L}(k\Omega)$					TYP	UNIT	
Cutoff (–3dB) Frequency Channel ON (Sine Wave Input)	5 ⁽¹⁾	10	1	V _{OS} at Common OUT/IN	CD4053	30		
					CD4052	25		
					CD4051	20		
	V _{EE} = V _{SS} ,				,		MHz	
	$20Log \frac{V_{OS}}{V_{IS}} = -3 dB$			V _{OS} at Any Channel		60		
Total Harmonic Distortion, THD	2 ⁽¹⁾	5				0.3%		
	3 ⁽¹⁾	10	10			0.2%		
	5 ⁽¹⁾	15				0.12%		
	V _{EE} = V _{SS} , f _{IS} = 1 kHz Sine Wave							
–40dB Feedthrough Frequency (All Channels OFF)	5 ⁽¹⁾	10	1		CD4053	8		
	$V_{\text{EE}} = V_{\text{SS}}$, $20Log \frac{V_{OS}}{V_{IS}} = -40dB$			103	CD4052	10	MHz	
					CD4051	12		
				V _{OS} at Any Channel		8		
–40dB Signal Crosstalk Frequency	5 ⁽¹⁾	10	1	Between Any two Channels		3		
	$V_{EE} = V_{SS},$ $20Log \frac{V_{OS}}{V_{IS}} = -40dB$			OD 4050 O I	Measured on Common	6	MHz	
					Measured on Any Channel	10		
				Detweet 7 tily 1 wo	In Pin 2, Out Pin 14	2.5		
					In Pin 15, Out Pin 14	6		
Address-or-Inhibit-to- Signal Crosstalk		10	10 ⁽²⁾		·	65		
	$V_{EE} = 0, V_{SS} = 0, V_{CC} = V_{DD} - V_{SS}$					65	mV _{PEAK}	

⁽¹⁾ Peak-to-Peak voltage symmetrical about (V_{DD} - V_{EE}) / 2. (2) Both ends of channel.

6.7 Typical Characteristics

300 $\mathbf{r}_{ extsf{ON}},$ CHANNEL ON RESISTANCE (Ω) 250 T_A = 125°C 200 150 T_A = 25°C 100 $T_A = -55^{\circ}C$ 50 -10 -7.5 -2.5 2.5 7.5 10 V_{IS}, INPUT SIGNAL VOLTAGE (V)

Figure 1. Channel ON Resistance vs Input Signal Voltage (All Types)

Figure 2. Channel ON Resistance vs Input Signal Voltage (All Types)

Figure 3. Channel ON Resistance vs Input Signal Voltage (All Types)

Figure 4. Channel ON Resistance vs Input Signal Voltage (All Types)

Figure 5. ON Characteristics for 1 of 8 Channels (CD4051B)

Figure 6. Dynamic Power Dissipation vs Switching Frequency (CD4051B)

Typical Characteristics (continued)

Figure 7. Dynamic Power Dissipation vs Switching Frequency (CD4052B)

Figure 8. Dynamic Power Dissipation vs Switching Frequency (CD4053B)

7 Parameter Measurement Information

Figure 9. Typical Bias Voltages

NOTE

The ADDRESS (digital-control inputs) and INHIBIT logic levels are: $0 = V_{SS}$ and $1 = V_{DD}$. The analog signal (through the TG) may swing from V_{EE} to V_{DD} .

Figure 10. Waveforms, Channel Being Turned ON $(R_L = 1 \text{ k}\Omega)$

Figure 11. Waveforms, Channel Being Turned OFF $(R_L = 1 \text{ k}\Omega)$

Figure 12. OFF Channel Leakage Current - Any Channel OFF

Figure 13. On Channel Leakage Current - Any Channel On

Figure 14. OFF Channel Leakage Current - All Channels OFF

Figure 15. Propagation Delay - Address Input to Signal Output

Figure 16. Propagation Delay - Inhibit Input to Signal Output

Figure 17. Input Voltage Test Circuits (Noise Immunity)

Figure 18. Quiescent Device Current

Figure 19. Channel ON Resistance Measurement Circuit

Figure 20. Input Current

Figure 21. Feedthrough (All Types)

Figure 22. Crosstalk Between Any Two Channels (All Types)

Figure 23. Crosstalk Between Duals or Triplets (CD4052B, CD4053B)

Special Considerations: In applications where separate power sources are used to drive V_{DD} and the signal inputs, the V_{DD} current capability should exceed V_{DD}/R_L (R_L = effective external load). This provision avoids permanent current flow or clamp action on the V_{DD} supply when power is applied or removed from the CD4051B, CD4052B or CD4053B.

Figure 24. Typical Time-Division Application of the CD4052B

Figure 25. 24-to-1 MUX Addressing

8 Detailed Description

8.1 Overview

The CD4051B, CD4052B, and CD4053B analog multiplexers are digitally-controlled analog switches having low ON impedance and very low OFF leakage current. Control of analog signals up to 20 V_{P-P} can be achieved by digital signal amplitudes of 4.5 V to 20 V (if $V_{DD} - V_{SS} = 3$ V, a $V_{DD} - V_{EE}$ of up to 13 V can be controlled; for $V_{DD} - V_{EE}$ level differences above 13 V, a $V_{DD} - V_{SS}$ of at least 4.5 V is required). For example, if $V_{DD} = +4.5$ V, $V_{SS} = 0$ V, and $V_{EE} = -13.5$ V, analog signals from -13.5 V to +4.5 V can be controlled by digital inputs of 0 V to 5 V. These multiplexer circuits dissipate extremely low quiescent power over the full $V_{DD} - V_{SS}$ and $V_{DD} - V_{EE}$ supply-voltage ranges, independent of the logic state of the control signals. When a logic 1 is present at the inhibit input terminal, all channels are off.

The CD4051B device is a single 8-channel multiplexer having three binary control inputs, A, B, and C, and an inhibit input. The three binary signals select 1 of 8 channels to be turned on, and connect one of the 8 inputs to the output.

The CD4052B device is a differential 4-channel multiplexer having two binary control inputs, A and B, and an inhibit input. The two binary input signals select 1 of 4 pairs of channels to be turned on and connect the analog inputs to the outputs.

The CD4053B device is a triple 2-channel multiplexer having three separate digital control inputs, A, B, and C, and an inhibit input. Each control input selects one of a pair of channels which are connected in a single-pole, double-throw configuration.

When these devices are used as demultiplexers, the CHANNEL IN/OUT terminals are the outputs and the COMMON OUT/IN terminals are the inputs.

8.2 Functional Block Diagrams

All inputs are protected by standard CMOS protection network.

Figure 26. Functional Block Diagram, CD4051B

Copyright © 1998–2017, Texas Instruments Incorporated

TEXAS INSTRUMENTS

Functional Block Diagrams (continued)

All inputs are protected by standard CMOS protection network.

Figure 27. Functional Block Diagram, CD4052B

All inputs are protected by standard CMOS protection network.

Figure 28. Functional Block Diagram, CD4053B

8.3 Feature Description

The CD405xB line of multiplexers and demultiplexers can accept a wide range of digital and analog signal levels. Digital signals range from 3 V to 20 V, and analog signals are accepted at levels \leq 20 V. They have low ON resistance, typically 125 Ω over 15 V_{P-P} signal input range for V_{DD} – V_{EE} = 18 V. This allows for very little signal loss through the switch. Matched switch characteristics are typically r_{ON} = 5 Ω for V_{DD} – V_{EE} = 15 V.

The CD405xB devices also have high OFF resistance, which keeps from wasting power when the switch is in the OFF position, with typical channel leakage of ± 100 pA at $V_{DD} - V_{EE} = 18$ V. Very low quiescent power dissipation under all digital-control input and supply conditions, typically 0.2 μ W at $V_{DD} - V_{SS} = V_{DD} - V_{EE} = 10$ V keeps power consumption total very low. All devices have been 100% tested for quiescent current at 20 V with maximum input current of 1 μ A at 18 V over the full package temperature range, and only 100 nA at 18 V and 25°C.

Logic-level conversion for digital addressing signals of 3 V to 20 V ($V_{DD} - V_{SS} = 3$ V to 20 V) to switch analog signals to 20 V_{P-P} ($V_{DD} - V_{EE} = 20$ V). Binary address decoding on chip makes channel selection easy. When channels are changed, a break-before-make system eliminates channel overlap.

8.4 Device Functional Modes

Table 1. Truth Table (1)

Table II II all						
INPUT STATES				ON CHANNEL(S)		
INHIBIT	С	В	A	ON CHARACE(S)		
CD4051B						
0	0	0	0	0		
0	0	0	1	1		
0	0	1	0	2		
0	0	1	1	3		
0	1	0	0	4		
0	1	0	1	5		
0	1	1	0	6		
0	1	1	1	7		
1	Х	Х	X	None		
CD4052B	1		-			
0		0	0	0x, 0y		
0		0	1	1x, 1y		
0		1	0	2x, 2y		
0		1	1	3x, 3y		
1		Х	X	None		
CD4053B	•		•			
0	Х	Х	0	ax		
0	Х	Х	1	ay		
0	Х	0	Х	bx		
0	Х	1	Х	by		
0	0	Х	Х	сх		
0	1	Х	Х	су		
1	Х	Х	X	None		

⁽¹⁾ X = Don't Care

Copyright © 1998–2017, Texas Instruments Incorporated

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The CD405xB multiplexers and demuliplexers can be used for a wide variety of applications.

9.2 Typical Application

One application of the CD4051B is to use it in conjunction with a microcontroller to poll a keypad. Figure 29 shows the basic schematic for such a polling system. The microcontroller uses the channel select pins to cycle through the different channels while reading the input to see if a user is pressing any of the keys. This is a very robust setup, allowing for multiple simultaneous key-presses with very little power consumption. It also utilizes very few pins on the microcontroller. The down side of polling is that the microcontroller must continually scan the keys for a press and can do little else during this process.

Figure 29. The CD4051B Being Used to Help Read Button Presses on a Keypad.

9.2.1 Design Requirements

These devices use CMOS technology and have balanced output drive. Take care to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads, so routing and load conditions should be considered to prevent ringing.

Submit Documentation Feedback

Copyright © 1998–2017, Texas Instruments Incorporated

Typical Application (continued)

9.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions
 - For switch time specifications, see propagation delay times in *Electrical Characteristics*.
 - Inputs should not be pushed more than 0.5 V above V_{DD} or below V_{EE}.
 - For input voltage level specifications for control inputs, see V_{IH} and V_{IL} in *Electrical Characteristics*.
- 2. Recommended Output Conditions
 - Outputs should not be pulled above V_{DD} or below V_{EE}.
- 3. Input/output current consideration: The CD405xB series of parts do not have internal current drive circuitry and thus cannot sink or source current. Any current will be passed through the device.

9.2.3 Application Curve

Figure 30. ON Characteristics for 1 of 8 Channels (CD4051B)

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Electrical Characteristics*.

Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1- μ F bypass capacitor is recommended. If there are multiple pins labeled V_{CC} , then a 0.01- μ F or 0.022- μ F capacitor is recommended for each V_{CC} because the V_{CC} pins will be tied together internally. For devices with dual supply pins operating at different voltages, for example V_{CC} and V_{DD} , a 0.1- μ F bypass capacitor is recommended for each supply pin. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. 0.1- μ F and 1- μ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.

Copyright © 1998–2017, Texas Instruments Incorporated

11 Layout

11.1 Layout Guidelines

Reflections and matching are closely related to loop antenna theory, but different enough to warrant their own discussion. When a PCB trace turns a corner at a 90° angle, a reflection can occur. This is primarily due to the change of width of the trace. At the apex of the turn, the trace width is increased to 1.414 times its width. This upsets the transmission line characteristics, especially the distributed capacitance and self-inductance of the trace — resulting in the reflection. It is a given that not all PCB traces can be straight, and so they will have to turn corners. Figure 31 shows progressively better techniques of rounding corners. Only the last example maintains constant trace width and minimizes reflections.

11.2 Layout Example

Figure 31. Trace Example

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

• Implications of Slow or Floating CMOS Inputs, SCBA004

12.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 2. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
CD4051B	Click here	Click here	Click here	Click here	Click here
CD4052B	Click here	Click here	Click here	Click here	Click here
CD4053B	Click here	Click here	Click here	Click here	Click here

12.3 Trademarks

All trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossarv.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 1998–2017, Texas Instruments Incorporated