Solutions de quelques exercices de la série N° 1

Exercice 8.

1. Soit G un graphe simple biparti d'ordre n, montrer que le nombre d'arêtes $m \le n^2/4$.

G est biparti ⇒ $X=X_1 \cup X_2$ tel que $X_1 \cap X_2 = \emptyset$ et $\forall \{x,y\} \in E$, $\{x \in X_1 \text{ et } y \in X_2\}$ ou $\{x \in X_2 \text{ et } y \in X_1\}$. ⇒

$$\forall x \in X_1, V(x) \subseteq X_2...$$
 (1)

$$\forall y \in X_2, V(y) \subseteq X_1...$$
 (2)

G est simple ⇒ $\forall z \in X$, $d_G(z) = |V(z)|$... (3)

On pose $|X_1| = p$ et $|X_2| = q \Rightarrow p + q = n$... (4)

De (1) et (3) $\Rightarrow \forall x \in X_1, d_G(x) \le q...$ (5)

De (2) et (3) $\Rightarrow \forall y \in X_2, d_G(y) \leq p...$ (6)

Calculons la somme des degrés des sommets de G :

$$\sum_{\forall z \in X} d_G(z) = \sum_{\forall x \in X_1} d_G(x) + \sum_{\forall y \in X_2} d_G(y) \dots$$
 (7)

De (5)
$$\Rightarrow \sum_{\forall x \in X_1} d_G(x) \le q + q + \dots + q = pq$$

$$\Rightarrow \sum_{\forall x \in X_1} d_G(x) \leq pq \dots$$
 (8)

De (6)
$$\Rightarrow \sum_{\forall y \in X_2} d_G(y) \le p + p + \dots + p = pq$$

$$\Rightarrow \sum_{\forall y \in X_2} d_G(y) \leq pq \dots (9)$$

De (7), (8) et (9) $\Rightarrow \sum_{\forall z \in X} d_G(z) \le 2pq \dots$ (10)

On a |E|=m et selon la formule des degrés, on a $\sum_{\forall z \in X} d_G(z) \leq 2m$... (11)

De (4), (10) et (11) \Rightarrow 2 $m \le 2p(n-p) \Rightarrow m \le p(n-p) ...$ (12)

Par ailleurs, on sait que $(p-q)^2 \ge 0$ et de $(4) \Rightarrow (p-(n-p))^2 \ge 0$

$$\Rightarrow (2p-n)^2 \ge 0 \Rightarrow 4p^2 - 4np - n^2 \ge 0 \Rightarrow 4p(n-p) \le n^2$$

$$\Rightarrow p(n-p) \le n^2/4 \dots (13)$$

De (12) et (13) et par transitivité, nous avons : $m \le n^2/4$

2. En déduire qu'il existe un sommet x tel que $d_G(x) \le n/2$.

Si $\forall x \in X$, $d_G(x) > n/2 \Rightarrow \sum_{\forall x \in X} d_G(x) > n$. $\left(\frac{n}{2}\right) \Rightarrow 2m > n$. $\left(\frac{n}{2}\right) \Rightarrow 2m > n^2/4$. Ce qui est en contradiction avec ce que nous avons démontré dans la question 1.

$$\Rightarrow \forall x \in X, d_G(x) \leq n/2.$$

3. Montrer qu'un graphe régulier d'ordre impair ne peut être biparti.

Pour éviter la répétions, nous utilisons toutes les définitions, notations et formules (particulièrement 4 et 7) liées aux graphes bipartis vues dans la question 1.

Démontrons par l'absurde : On suppose qu'on a un graphe régulier d'ordre impair et biparti.

Nous avons :
$$\sum_{\forall z \in X} d_G(z) = \sum_{\forall x \in X_1} d_G(x) + \sum_{\forall y \in X_2} d_G(y)$$

Et : G est régulier $\Rightarrow \forall x \in X, d_G(x) = k$.

$$\Rightarrow \sum_{\forall z \in X} d_G(z) = kp + kq$$

Par ailleurs, nous savons que dans un graphe biparti, toute arête a une extrémité dans X_1 et une extrémité

dans
$$X_2 \Rightarrow \sum_{\forall x \in X_1} d_G(x) = \sum_{\forall y \in X_2} d_G(y) \Rightarrow kp = kq \Rightarrow p = q$$

n=p+q et n=2l+1 (impair) et $p=q\Rightarrow n=2p=2q=2l+1\Rightarrow p=q=l+1/2\Rightarrow p$ et q ne sont pas des entiers. Or, le nombre d'éléments dans un ensemble (ici nombre de sommets) est toujours entier positif ou nul \Rightarrow Contradiction \Rightarrow Cqfd.

Exercice 10.

Avant de répondre aux questions, il faut procéder à la modélisation.

On modélise le problème sous forme d'un graphe non orienté G=(X, E).

Chaque sommet $x \in X$ représente une matière x. En d'autres termes $X = \{D, E, G, I, L, M, S\}$

Chaque arête $\{x,y\} \in E$ représente la relation « Les matières x et y ne peuvent pas être mises en parallèle ». C'est-à-dire « elles ont des étudiants en commun ».

1. Quel est le nombre maximum d'épreuves qu'on peut mettre en parallèle ?

Identification du problème :

Nombre maximal de matières qu'on eut mettre en parallèle :

2 matières en parallèle \Rightarrow 2 sommets non reliés \Rightarrow Stable de 2 éléments.

k matières en parallèle $\Rightarrow k$ sommets non reliés \Rightarrow Stable de k éléments.

Chapitre 1 : Concepts fondamentaux

Donc, la solution revient à chercher le plus grand stable dans le graphe *G*. Dessinons le graphe et cherchons le plus grand stable :

Soit $S_1=\{I, S, G\}$ un stable de 3 éléments.

C'est le plus grand stable (Mais pas le seul, on a par exemple : $S_2=\{I, M, G\}$ ou $S_3=\{E, S, G\}$). Donc, on peut mettre en parallèle au maximum 3 matières.

2. Une épreuve occupe une demi-journée ; quel est le temps minimal nécessaire pour ces options ? La durée minimale des examens :

2 créneaux \Rightarrow 2 matières qui ont des candidats en commun \Rightarrow 2 sommets reliés \Rightarrow 2 couleurs minimum. k créneaux \Rightarrow k matières qui ont des candidats en commun \Rightarrow k sommets complètement reliés (2 à 2) \Rightarrow k couleurs minimum

Donc, la solution revient à chercher $\chi(G)$ le nombre chromatique de G.

Appliquons l'algorithme de Welsh & Powell pour effectuer une k-coloration des sommets de G.

Sommet x ∈ X	d _G (x)	Couleur $\varphi(x)$	
L	4	1	
M	4	2	
D	3	1	
E	3	3	
S	3	3	
I	2	2	
G	1	2	

Nous avons obtenu une 3-coloration. Est-ce que 3 est le nombre chromatique ? Vérification :

On a $|C| \le \chi(G) \le \Delta(G) + 1$ où C est la plus grande clique dans le graphe G.

- $\Rightarrow 3 \le \chi (G) \le 5$
- \Rightarrow 3 est le minimum et on a obtenu 3 couleurs \Rightarrow 3 est le nombre chromatique.

La durée est 3 demi-journées (1,5 journées).

Exercice 12

Montrez que dans un groupe de six (6) personnes, il y en a nécessairement trois (3) qui se connaissent mutuellement ou trois (3) qui ne se connaissent pas (on suppose que si A connaît B, B connaît également A).

On modélise le problème par un graphe non orienté G=(X, E).

Chaque personne i sera représentée par un sommet $i \in X$.

Les arêtes vont représenter la relation « se connaissent ».

 $\{i, j\} \in E$ correspond à : les personnes i et j « se connaissent ».

Nous pouvons reformuler le problème sous la forme suivante : Il faut montrer que le graphe *G* contient une clique de 3 éléments (3 qui se connaissent mutuellement) ou un stable de 3 éléments (3 qui ne se connaissent pas). Le graphe *G* est simple car :

- − Une boucle $\{i, i\}$ correspond à la relation i et i se connaissent qui n'a pas de sens \Rightarrow Pas de boucles dans G.
- Si i et j se connaissent, ça sera représenté par une seule arête \Rightarrow Pas d'arêtes parallèles dans G.

G simple \Rightarrow $0 \le d_G(x) \le 5$

Pour un sommet quelconque, nous avons deux cas :

- Soit $d_G(x) \in \{0, 1, 2\}$
- Soit $d_G(x)$ ∈{3, 4, 5}

Chapitre 1: Concepts fondamentaux

a) $1^{\text{er}} \cos : d_G(x) \in \{0, 1, 2\} :$

Il y a au moins 3 sommets qui ne sont pas reliés avec x.

On a 2 possibilités :

- Soit ces 3 sommets sont reliés complètement entre eux et ils forment une clique de 3 éléments.
- Soit il y a au moins 2 sommets non reliés entre eux et ils forment avec x un stable de 3 éléments.

b) $2^{\text{ème}} \cos : d_G(x) \in \{3, 4, 5\}:$

Il y a au moins 3 sommets qui sont reliés à x.

On a 2 possibilités :

- Soit ces 3 sommets ne sont pas du tout reliés entre eux et ils forment une stable de 3 éléments.
- Soit il y a au moins 2 sommets reliés entre eux et ils forment avec x une clique de 3 éléments.

Donc, dans toutes les situations, il y a 3 personnes qui se connaissent mutuellement ou 3 personnes qui ne se connaissent pas.

Cela est-il nécessairement vrai dans un groupe de cinq (5) personnes ?

Pour 5 sommets, ça ne marche pas toujours.

Prenons le contre-exemple suivant. Soit l'exemple d'un graphe simple d'ordre 5 qui est 2-régulier comme le montre le dessin ci-dessous :

La plus grande clique : 2 éléments. Le plus grand stable : 2 éléments.

Exercice 13

Soit G=(X, E) un graphe simple, d'ordre n. Si G est k-régulier, dans quelles conditions il est isomorphe à son complémentaire ?

Si G et \overline{G} sont isomorphes alors :

- G = (X, E) non orienté simple, d'ordre n, k-régulier.
- \bar{G} = (X, E') non orienté simple, d'ordre n, k-régulier.

$$\Rightarrow \forall x \in X, d_G(x) = k \text{ et } d_{\bar{G}}(x) = k \dots (1)$$

Vu que G est simple, on sait que chaque sommet X dans le complément est relié à tous les sommets (n) sauf luimême (-1) et les sommets auxquels il était relié dans G $(-d_G(X))$.

$$\Rightarrow d_{\bar{G}}(x) = n - d_G(x) - 1 \dots (2)$$

De (1) et (2)
$$\Rightarrow k=n-1-k$$
.

 \Rightarrow *n*=2*k* +1, c'est-à-dire le graphe doit être d'ordre impair

 $\Rightarrow k = (n-1)/2$, c'est-à-dire les degrés des sommets doivent être égaux à la partie entière de la moitié de n.