```
import pandas as pd
import numpy as np
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import MinMaxScaler, StandardScaler, LabelEncoder, OneHotEncoder
# Load the dataset
df = pd.read csv("/content/sample dataset with nulls.csv")
# 1.Get the number of rows, columns, datatype, and summary stats of each column of a dataframe. Als
print("Number of Rows:", df.shape[0])
print("Number of Columns:", df.shape[1])
    Number of Rows: 100
    Number of Columns: 10
print("Data Types:\n", df.dtypes)
print("Summary Stats:\n", df.describe())
   Data Types:
     ID
                             int64
    Name
                           object
                          float64
    Age
    Salary
                          float64
    Department
                           obiect
    Rating
                          float64
    Experience
                            int64
    Join Date
                           object
    Has_Certification
                             bool
    Performance_Score
                            int64
    dtype: object
    Summary Stats:
                     TD
                               Age
                                          Salary
                                                      Rating Experience \
    count 100.000000 90.000000
                                      90.000000 100.000000 100.000000
                        37.588889
                                                               20.470000
            50.500000
                                   66913.388889
                                                   2.916000
    mean
    std
            29.011492
                        12.234501
                                   20883.453851
                                                   1.214119
                                                               10.907744
                        18.000000
                                                                0.000000
    min
              1.000000
                                   30206.000000
                                                   1.000000
    25%
             25.750000
                        26.250000
                                   51928.250000
                                                    1.775000
                                                               11.000000
    50%
             50.500000
                        38.000000
                                   68988.000000
                                                   2.850000
                                                               21.000000
    75%
                                   82927.250000
            75.250000
                        46.000000
                                                   3.900000
                                                               30.000000
            100.000000
                        59.000000
                                   99163.000000
                                                   4.900000
                                                               39.000000
    max
            Performance Score
    count
                  100.000000
    mean
                   73.780000
                    14.950815
    std
    min
                    50.000000
    25%
                    61.750000
    50%
                    75.000000
    75%
                    85.250000
                    99.000000
    max
print("Array Equivalent:\n", df.values)
```

→

```
[32 PEISUI_32 33.0 04/00.0 11 2.0 10 2014-04-30 11UE 00]
         [53 'Person_53' 57.0 91087.0 'IT' 2.0 11 '2014-05-31' True 54]
         [54 'Person 54' 21.0 98840.0 'Finance' 1.4 8 '2014-06-30' True 80]
         [55 'Person_55' 19.0 84384.0 'Sales' 1.7 6 '2014-07-31' False 54]
         [56 'Person_56' 23.0 81005.0 'HR' 4.7 27 '2014-08-31' False 87]
         [57 'Person_57' 59.0 76576.0 'Marketing' 3.6 13 '2014-09-30' True 52]
         [58 'Person 58' 21.0 69353.0 'HR' 3.1 30 '2014-10-31' True 72]
         [59 'Person 59' 46.0 92003.0 'Sales' 3.6 18 '2014-11-30' False 86]
         [60 'Person_60' 35.0 82733.0 'Marketing' 2.7 15 '2014-12-31' True 86]
         [61 'Person_61' 43.0 95318.0 'Sales' 3.9 4 '2015-01-31' False 59]
         [62 'Person_62' 51.0 53664.0 'IT' 1.2 34 '2015-02-28' True 59]
         [63 'Person_63' 27.0 97172.0 'Marketing' 3.3 11 '2015-03-31' True 68]
         [64 'Person_64' 53.0 56736.0 'IT' 1.6 24 '2015-04-30' False 66]
[65 'Person_65' 31.0 30854.0 'HR' 1.5 20 '2015-05-31' True 70]
         [66 'Person_66' 48.0 68623.0 'HR' 2.4 35 '2015-06-30' False 63]
         [67 'Person_67' nan nan 1.4 22 '2015-07-31' True 58]
         [68 'Person_68' nan nan 1.4 15 '2015-08-31' True 95]
         [69 'Person_69' 31.0 76717.0 'Sales' 2.2 38 '2015-09-30' True 50]
         [70 'Person_70' 40.0 80859.0 'Sales' 4.9 38 '2015-10-31' False 94]
         [71 'Person_71' 57.0 56309.0 'IT' 1.7 13 '2015-11-30' True 62]
         [72 'Person_72' 38.0 93734.0 'Marketing' 1.1 30 '2015-12-31' True 53]
         [73 'Person_73' 33.0 82662.0 'HR' 4.1 4 '2016-01-31' True 50]
         [74 'Person_74' 35.0 42688.0 'Sales' 4.2 34 '2016-02-29' True 98]
         [75 'Person_75' 41.0 55342.0 'Sales' 2.4 22 '2016-03-31' False 89]
         [76 'Person_76' 43.0 67157.0 'HR' 2.9 28 '2016-04-30' False 81]
         [77 'Person_77' 42.0 97863.0 'Sales' 3.6 10 '2016-05-31' True 83]
         [78 'Person_78' 58.0 82083.0 'IT' 1.2 17 '2016-06-30' False 77]
         [79 'Person_79' 46.0 95733.0 'Marketing' 4.8 11 '2016-07-31' True 80]
         [80 'Person_80' 32.0 64698.0 'HR' 4.5 8 '2016-08-31' True 57]
         [81 'Person_81' 18.0 52671.0 'Marketing' 2.0 9 '2016-09-30' True 88]
         [82 'Person 82' 42.0 55184.0 'Sales' 1.1 16 '2016-10-31' False 75]
         [83 'Person 83' 24.0 72107.0 'Sales' 4.7 37 '2016-11-30' False 83]
         [84 'Person_84' 26.0 81663.0 'HR' 3.0 6 '2016-12-31' False 52]
         [85 'Person_85' nan nan nan 3.2 12 '2017-01-31' False 99]
         [86 'Person_86' 18.0 79811.0 'Finance' 3.7 39 '2017-02-28' False 61]
         [87 'Person 87' nan nan nan 3.5 8 '2017-03-31' False 50]
         [88 'Person 88' nan nan 1.8 26 '2017-04-30' False 93]
         [89 'Person 89' 28.0 64754.0 'Finance' 4.8 1 '2017-05-31' False 54]
         [90 'Person 90' 34.0 41411.0 'IT' 4.5 4 '2017-06-30' False 79]
         [91 'Person_91' 25.0 32911.0 'Finance' 3.5 28 '2017-07-31' True 79]
         [92 'Person_92' 52.0 97270.0 'Finance' 4.2 36 '2017-08-31' False 66]
         [93 'Person 93' 52.0 38680.0 'IT' 3.7 37 '2017-09-30' False 97]
         [94 'Person 94' 50.0 41111.0 'Finance' 3.3 18 '2017-10-31' False 96]
         [95 'Person 95' 22.0 67504.0 'Finance' 1.5 7 '2017-11-30' False 72]
         [96 'Person_96' 59.0 31802.0 'Finance' 4.2 0 '2017-12-31' False 64]
         [97 'Person_97' 56.0 38155.0 'HR' 4.3 21 '2018-01-31' False 86]
         [98 'Person_98' 58.0 69384.0 'HR' 3.5 16 '2018-02-28' False 70]
[99 'Person_99' 45.0 77254.0 'HR' 4.3 6 '2018-03-31' False 63]
         [100 'Person 100' 24.0 51918.0 'IT' 3.6 24 '2018-04-30' False 51]]
print("List Equivalent:\n", df.values.tolist())
 → List Equivalent:
         [[1, 'Person_1', 56.0, 38392.0, 'Finance', 3.8, 28, '2010-01-31', True, 77], [2, 'Person_2', national content of the content o
# 2. Extract row and column number of a particular cell based on a criterion
criterion = df['Age'] == 'Ages'
row positions = df.index[criterion].tolist()
col_positions = [df.columns.get_loc('Age')]
print("Row Positions:", row_positions)
print("Column Positions:", col_positions)
       Row Positions: []
       Column Positions: [2]
# 3. Rename a specific column
df.rename(columns={'Name': 'Person_Name'}, inplace=True)
df.head()
```

		ID	Person_Name	Age	Salary	Department	Rating	Experience	Join_Date	Has _.
	0	1	Person_1	56.0	38392.0	Finance	3.8	28	2010-01-31	
	1	2	Person_2	NaN	NaN	NaN	3.2	12	2010-02-28	
	2	3	Person_3	32.0	82256.0	Marketing	2.2	11	2010-03-31	
	3	4	Person_4	25.0	65222.0	Finance	2.7	30	2010-04-30	
	4	5	Person_5	38.0	93335.0	HR	2.0	1	2010-05-31	

Next steps: (Generate code with df

View recommended plots

New interactive sheet

4. Count missing values per column df.isnull().sum()

→	0
ID	0
Person_Name	0
Age	10
Salary	10
Department	10
Rating	0
Experience	0
Join_Date	0
Has_Certification	0
Performance_Score	0

dtype: int64

5. Replace missing values in multiple numeric columns with mean df['Age'] = df['Age'].fillna(df['Age'].mean())

df.head()

→		ID	Person_Name	Age	Salary	Department	Rating	Experience	Join_Date
	0	1	Person_1	56.000000	38392.0	Finance	3.8	28	2010-01-31
	1	2	Person_2	37.588889	NaN	NaN	3.2	12	2010-02-28
	2	3	Person_3	32.000000	82256.0	Marketing	2.2	11	2010-03-31
	3	4	Person_4	25.000000	65222.0	Finance	2.7	30	2010-04-30
	4	5	Person_5	38.000000	93335.0	HR	2.0	1	2010-05-31

Next steps: (Generate code with df

View recommended plots

New interactive sheet

6. Replace a missing value using the Imputer class imputer = SimpleImputer(strategy='mean') numeric_cols = df.select_dtypes(include=['number']).columns df[numeric_cols] = imputer.fit_transform(df[numeric_cols])

df.isnull().sum()

	0
ID	0
Person_Name	0
Age	0
Salary	0
Department	10
Rating	0
Experience	0
Join_Date	0
Has_Certification	0
Performance_Score	0

dtype: int64

df.head()

→		ID	Person_Name	Age	Salary	Department	Rating	Experience	Join _.
	0	1.0	Person_1	56.000000	38392.000000	Finance	3.8	28.0	2010
	1	2.0	Person_2	37.588889	66913.388889	NaN	3.2	12.0	2010-
	2	3.0	Person_3	32.000000	82256.000000	Marketing	2.2	11.0	2010-
	3	4.0	Person_4	25.000000	65222.000000	Finance	2.7	30.0	2010
	4	5.0	Person_5	38.000000	93335.000000	HR	2.0	1.0	2010-

Next steps: Generate code with df View recommended plots New interactive sheet

7. Apply function to existing columns with global variables as arguments
global_var = 10
def custom_function(x, multiplier):
 return x * multiplier
df['Undated Salary'] = df['Salary'] apply(custom function args=(global var

<pre>df['Updated_Salary']</pre>	= df['Salary'	<pre>].apply(custom_</pre>	_function,	args=(global_	_var,))
<pre>df.head()</pre>					

→	ID Persor		Person_Name	Age	Salary	Department	Rating	Experience	Join_
	0	1.0	Person_1	56.000000	38392.000000	Finance	3.8	28.0	2010-
	1	2.0	Person_2	37.588889	66913.388889	NaN	3.2	12.0	2010-
	2	3.0	Person_3	32.000000	82256.000000	Marketing	2.2	11.0	2010-
	3	4.0	Person_4	25.000000	65222.000000	Finance	2.7	30.0	2010-
	4	5.0	Person_5	38.000000	93335.000000	HR	2.0	1.0	2010-

Next steps: Generate code with df View recommended plots New interactive sheet

8. Change column order while keeping all columns sorted
df = df[sorted(df.columns)]
df.head()

→		Age	Department	Experience	${\tt Has_Certification}$	ID	Join_Date	Performa
	0	56.000000	Finance	28.0	True	1.0	2010-01-31	
	1	37.588889	NaN	12.0	False	2.0	2010-02-28	
	2	32.000000	Marketing	11.0	False	3.0	2010-03-31	
	3	25.000000	Finance	30.0	False	4.0	2010-04-30	
	4	38.000000	HR	1.0	False	5.0	2010-05-31	

Next steps: (

Generate code with df

View recommended plots

New interactive sheet

9. Set number of rows & columns displayed
pd.set_option('display.max_rows', 50)
pd.set_option('display.max_columns', 10)
df.head()

₹		Age	Department	Experience	Has_Certification	ID	 Performance_Sc
	0	56.000000	Finance	28.0	True	1.0	
	1	37.588889	NaN	12.0	False	2.0	
	2	32.000000	Marketing	11.0	False	3.0	
	3	25.000000	Finance	30.0	False	4.0	
	4	38.000000	HR	1.0	False	5.0	
	5 rc	ws × 11 colu	mns				

Next steps: (

Generate code with df

View recommended plots

New interactive sheet

10. Create primary key index by combining columns
df['primary_key'] = df['Person_Name'].astype(str) + '_' + df['Age'].astype(str)
df.set_index('primary_key', inplace=True)
df.head()

₹

Age Department Experience Has_Certification

primary_key

Person_1_56.0	56.000000	Finance	28.0	True
Person_2_37.58888888888888	37.588889	NaN	12.0	False
Person_3_32.0	32.000000	Marketing	11.0	False
Person_4_25.0	25.000000	Finance	30.0	False
Person_5_38.0	38.000000	HR	1.0	False

5 rows × 11 columns

Next steps: (Generate code with df

View recommended plots

New interactive sheet

```
# 11. Get row number of nth largest value in a column
n = 5
m=3
row_num = df['Salary'].nlargest(n).index[-1]
print("Row Number of nth largest value:", row_num)

row_num = df['Salary'].nlargest(m).index[-1]
print("Row Number of mth largest value:", row_num)
```

Row Number of nth largest value: Person_19_47.0 Row Number of mth largest value: Person_77_42.0

12. Find position of nth largest value greater than a given value
given_value = 50
filtered_df = df[df['Salary'] > given_value]
nth_largest_row = filtered_df['Salary'].nlargest(n).index[-1]
print("Position of nth largest value > given value:", nth largest row)

Position of nth largest value > given value: Person 19 47.0

13. Get last n rows where row sum > 100
n = 5 # Change as needed
filtered_rows = df[df.select_dtypes(include=[np.number]).sum(axis=1) > 100].tail(n)
print(filtered_rows)

→		Age	Department	Experience	Has Cert	ification	ID		\
_	primary_key		•	•	_				
	Person_96_59.0	59.0	Finance	0.0		False	96.0		
	Person_97_56.0	56.0	HR	21.0		False	97.0		
	Person_98_58.0	58.0	HR	16.0		False	98.0		
	Person_99_45.0	45.0	HR	6.0		False	99.0		
	Person_100_24.0	24.0	IT	24.0		False	100.0		
		Perfor	rmance Score	Person Name	Rating	Salary	Updated	Sala	ry
	primary_key		_	_		-	-	_	-
	Person_96_59.0		64.0	Person_96	4.2	31802.0	3	18020	.0
	Person_97_56.0		86.0	Person_97	4.3	38155.0	3	81550	.0
	Person_98_58.0		70.0	Person_98	3.5	69384.0	6	93840	.0
	Person_99_45.0		63.0	Person_99	4.3	77254.0	7	72540	.0
	Person_100_24.0		51.0	Person_100	3.6	51918.0	5	19180	.0

[5 rows x 11 columns]

14. Create a column with min/max of each row (only for numeric columns)
numeric_df = df.select_dtypes(include=[np.number])
df['min_max_ratio'] = numeric_df.min(axis=1) / numeric_df.max(axis=1)

df.head()

₹

Age Department Experience Has_Certification

primary_key Person_1_56.0 56.000000 Finance 28.0 True Person_2_37.5888888888888 37.588889 NaN 12.0 False Person_3_32.0 32.000000 Marketing 11.0 False 30.0 False Person_4_25.0 25.000000 Finance Person 5 38.0 38.000000 HR 1.0 False

5 rows × 12 columns

Next steps: Generate code with df

View recommended plots

New interactive sheet

```
# Ensure the column exists in your dataset
categorical col = 'Department'
# Apply Label Encoding
label encoder = LabelEncoder()
df['encoded_col'] = label_encoder.fit_transform(df[categorical_col])
# Apply One-Hot Encoding
one_hot = pd.get_dummies(df[categorical_col], prefix='category')
df = pd.concat([df, one_hot], axis=1)
# 16. Normalize columns using MinMaxScaler
scaler = MinMaxScaler()
df[['Age', 'Experience']] = scaler.fit_transform(df[['Age', 'Experience']])
df.head()
\overline{\Rightarrow}
                     Age Department Experience Has_Certification
                                                                         ID ... (
    primary key
    1 56.0
                 0.926829
                              Finance
                                        0.693813
                                                              True -1.714816
    388888888889 0.477778
                                NaN
                                        -0.780424
                                                              False -1.680173
    3 32.0
                 0.341463
                            Marketing
                                        -0.872564
                                                              False -1.645531
    4_25.0
                 0.170732
                              Finance
                                        0.878093
                                                              False -1.610888
    5 38.0
                 0.487805
                                 HR
                                        -1.793963
                                                              False -1.576245
    าทร
 Next steps: (
            Generate code with df
                                View recommended plots
                                                          New interactive sheet
# 17. Normalize columns using Z-score normalization
scaler = StandardScaler()
df[['Experience', 'ID']] = scaler.fit transform(df[['Experience', 'ID']])
print(df.columns)
dtype='object')
# 20. Sort values by a specific column in descending order
df.sort values(by='Experience', ascending=False, inplace=True)
print("Operations completed successfully!")
df.head()
```

Age Department Experience Has_Certification ID ... category_Finance

→ Operations completed successfully!

	Age	Department	Experience	Has_Certification	ID	• • •	category_Finance
primary_key							
Person_86_18.0	0.000000	Finance	1.707351	False	1.229818		True
Person_32_20.0	0.048780	Finance	1.615211	True	-0.640891		True
Person_69_31.0	0.317073	Sales	1.615211	True	0.640891		False
Person_70_40.0	0.536585	Sales	1.615211	False	0.675534		False
Person_93_52.0	0.829268	IT	1.523072	False	1.472317		False
5 rows × 18 column	าร						
Next steps: Generate	e code with	df	recommended	plots New interactive	e sheet		
<pre># 18. Import data f df_url = pd.read_ht print(df_url.head()</pre>	ml(" <u>http</u>	://www.fdic.	gov/bank/ind	dividual/failed/banH	<list.htm< td=""><td><u>L</u>")[0</td><td>]</td></list.htm<>	<u>L</u> ")[0]
	t Nationa rst Bank	aski Saving al Bank of L	indsay c Bank Phil s Bank	Chicago Illin Lindsay Oklah adelphia Pennsylva Sac City I	ois 2861 oma 413	4 2 8	
2 Fulton Ban	. M & Trust (k, Natior wa Trust	ng Institut Millennium B Oo., Duncan, Mal Associat & Savings B Mirst Bank, N	ank January OK October ion April ank Novembe	osing Date Fund So 7 17, 2025 7 18, 2024 8 26, 2024 9 3, 2023 7 28, 2023	10 10 10	ing 548 547 546 545 544	
print(df_url.columr	ıs)						
	g Date',		', 'Cert', ' ascending']	Aquiring Institutio	on',		
<pre># 18th ki 20 questi df_url.sort_values(</pre>				olumn in descending , inplace=True)	order		
print("Operations o	completed	successfull	y!")				
→ Operations com	pleted su	ccessfully!					
				['Bank Name'].nuniqu ency of each unique		Count	of unique values
Unique value of Bank Name The First Nati Silicon Valley Signature Bank Republic First Pulaski Saving Heartland Trifirst Republic First City Ban Citizens Bank	onal Bank Bank Bank dba s Bank State Bar Bank	c of Lindsay n Republic B	1 1 1				

Almena State Bank

Name: count, dtype: int64

 $https://colab.research.google.com/drive/11TI_EfsIDU5A7nUSy9R98Mu6nAPZiYVv\#scrollTo=ib1rjJa4k4j5\&printMode=true$