

Autonomous Mobile Robots

Exercise 6 : Dijkstra's Algorithm and the Dynamic Window Approach for Motion Planning

Daniel Dugas, Rik Bähnemann

Planning Algorithm

Input: Obstacle Map, Start Pose, Goal Pose Output: Feasible Robot Path Algorithm:

- 1. Create distance field with Dijkstra
- 2. While (not at goal):
 - 1. Follow gradient with DWA

- While queue is not empty and not at goal...

(0,0)	(0,1)	(0,2)	(0,3)	(0,4)
(1,0)	(1,1)	(1,2)	(1,3)	(1,4)
(2,0)	(2,1)	(2,2)	(2,3)	(2,4)
(3,0)	(3,1)	(3,2)	(3,3)	(3,4)
(4,0)	(4,1)	(4,2)	(4,3)	(4,4)

Open Closed (2,2)

- Pop front node from queue
- Expand and add new nodes to queue
- Resolve double insertions

?	?	?	?	?
?	1.41	1	1.41	?
?	1	G	1	?
?	1.41	1	1.41	?
?	?	?	?	?

. . .

?	2.41	2	2.41	?
?	1.41	1	1.41	?
?	1	G	1	?
?	1.41	1	1.41	?
?	?	?	?	?

Open

(2,1)

(2,3)

(3,2)

(1,3)

(1,1)

(3,3)

(3,1)

(0,2)

(0,1)

(0,3)

Closed

(2,2)

(1,2)

. .

?	2.41	2	2.41	?
2.41	1.41	1	1.41	?
2	1	G	1	?
2.41	1.41	1	1.41	?
?	?	?	?	?

Open

(2,3)

(3,2)

(1,3)

(1,1)

(3,3)

(3,1)

(0,2)

(2,0)

(0,1)

(0,3)

(1,0)

(3,0)

Closed

(2,2)

(1,2)

(2,1)

Autonomous Systems Lab

- Optimal solution in case of positive edge costs
- $O(|V|\log(|V|) + |E|)$
- Speed up with heuristic (A*)

Recap Dynamic Window Approach

Input: Obstacle Map, Current State, Goal Pose

Output: Next Control Input

Algorithm:

1. Sample feasible inputs

- 2. For all feasible inputs:
 - 1. Compute trajectory over horizon
 - 2. Score trajectory

 $G(v, \omega) = \alpha \text{ heading } (v, \omega) + \beta \text{ dist } (v, \omega) + \gamma \text{ velocity } (v, \omega)$

3. Pick trajectory with best score

Recap Dynamic Window Approach

Local: Heading towards goal

Global: Heading towards gradient

Recap RRT

Input: Obstacle Map, Current State, Goal Pose Output: Feasible Robot Path

Algorithm:

1. Sample random pose

- Try to link random pose to nearest pose in graph.
- 3. Repeat until goal pose is in graph

Extra - Not exam material

Recap Kinodynamic RRT

Input: Obstacle Map, Current State, Goal Pose

Output: Feasible Robot Path

Algorithm:

(Same as RRT, step 2 in linking sample with graph is kinetic/dynamically constrained)

Extra - Not exam material

