FUNDAÇÃO GETÚLIO VARGAS ESCOLA DE MATEMÁTICA APLICADA MESTRADO 2016.1 ÁLGEBRA LINEAR E APLICAÇÕES

Prof Moacyr

Resolução dos Exercícios da Lista $5\,$

KIZZY TERRA

RIO DE JANEIRO MAIO DE 2016

1 Verificação de Conceitos

1. O conjunto F é o subespaço de R^3 gerado pelo vetor $\mathbf{u}=(\mathbf{1},-\mathbf{1},\mathbf{2})$. Determine F^\perp O conjunto F pode ser escrito como $F=\{c.u/c\in\mathbb{R},\ u=(1,-1,2)\}$. Assim para todo vetor $v=(v_1,v_2,v_3)\in F^\perp$ deve ser verdade que:

$$v.(c_1u) = 0 \Rightarrow v_1.c_1 - v_2c_1 + 2v_3c_1 = 0 \Rightarrow v_1 - v_2 + 2v_3 = 0 \Rightarrow v_1 = v_2 - 2v_3$$

Assim, obtemos:

$$F^{\perp} = \left\{ v_2 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + v_3 \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} / v_2, \, v_3 \in \mathbb{R} \right\}$$

ou ainda

$$F^{\perp} = ger\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} -2\\0\\1 \end{pmatrix})$$

2. O conjuto F é o subespaço de \mathbb{R}^3 que contém apenas o vetor nulo, $F=\{0\}$. Determine F^\perp

O conjunto F^{\perp} é formado por todos os vetores de \mathbb{R}^3 ortogonais aos vetores de F, isto é, todos os vetores cujo produto interno com os elementos de F é nulo. Neste caso, F só contém o vetor nulo e portanto $F^{\perp} = \mathbb{R}^3$.

3. O que é um autovalor λ de um operador linear $T: \mathbb{R}^n \to \mathbb{R}^n$? O que é um autovetor correspondente a este autovalor?

Dado um operador linear $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$, um autovalor λ de T é tal que para um dado vetor $x, T(x) = \lambda x$ e x é dito autovetor de T correspondente a λ .

4. Se u = (1, -3) é um autovetor do operador T com autovalor $\lambda = 5$ então v = (10, -30) também é um autovetor de T. Qual é o autovalor correspondente?

O autovalor correspondente a v é o mesmo autovalor $\lambda=5$ associado a u uma vez que v=10u :

$$Au = \lambda u \Longrightarrow A(10u) \Longrightarrow \lambda(10u) \Longrightarrow Av = \lambda v$$

5. Quais são os autovalores e autovetores do operador T dado pela matriz $[T]=\left(\begin{array}{cc} 5 & 0 \\ 0 & -2 \end{array}\right)$

Uma vez que a matriz é diagonal seus autovalores são os elementos da diagonal $\lambda_1=5$ e $\lambda_2=-2$. Seus autovetores, por sua vez, são $u_1=(1,0)$ e $u_2=(0,1)$ associados a λ_1 e λ_2 , respectivamente.

2

2 Exercícios I

1. Assinale verdadeiro ou falso, justificando as afirmativas:

() Uma transformação linear $A:E\to F$ é sobrejetiva se, e somente se, $\dim(N(A))=\dim(E)-\dim(F)$

Lista anterior.

() Para todo operador linear $A:E\to E,$ tem-se $N(A)=Im(A)^\perp$

Contra-exemplo:

 $A: \mathbb{R}^2 \to \mathbb{R}^2$,

$$A = \left[\begin{array}{cc} 1 & -1 \\ 0 & 0 \end{array} \right]$$

$$C(A)=ger\left(egin{array}{c}1\\0\end{array}
ight)$$
e $N(A)=ger\left(egin{array}{c}1\\1\end{array}
ight)$ não são espaços ortogonais.

() O posto de uma matriz A é igual ao posto de A^TA

Verdadeiro.

Usando a fórmula: $posto(AB) = posto(B) - dimN(A) \cap R(B)$ (pg 210 do livro Matrix analysis and applied linear algebra), obtemos:

$$posto(A^T A) = posto(A) - dim(N(A^T) \cap R(A))$$

Pelo teorema fundamental da álgebra linear: $N(A^T) = R(A)^{\perp}$, assim $N(A^T) \cap R(A)^{\perp} = \{0\} \Longrightarrow dim(N(A^T) \cap R(A)^{\perp}) = 0 \Longrightarrow posto(A^TA) = posto(A)$.

() Se u e v são ortogonais e P é uma projeção ortogonal então Pu e Pv são ortogonais

Falso. Podemos encontrar um contra-exemplo para esta afirmação.

Tome dois vetores u e v do \mathbb{R}^2 , tal que é da forma $t\begin{pmatrix}1\\0\end{pmatrix}$ e v $t\begin{pmatrix}0\\1\end{pmatrix}$ e seja P a projeção ortogonal sobre a reta y=x. Se calcularmosPu e Pv obteremos dois vetores no eixo formado pelo vetor $t\begin{pmatrix}1\\1\end{pmatrix}$ e portanto paralelos e não ortogonais.

() O complemento ortogonal de um vetor não nulo $u \in \mathbb{R}^3$ é uma reta

Falso, pois dado um subespaço C de um espaço V, temos que $dim(V) = dim(C) + dim(C^{\perp})$. Fazendo, $V = \mathbb{R}^3$ e C = um vetor não-nulo, então $dim(C^{\perp}) = dim(\mathbb{R}^3) - dim(C) = 3 - 1 = 2$, logo o subespaço C^{\perp} possui dimenão 2. Um subespaço de dimensão 2 em \mathbb{R}^3 é um plano.

2. Enunciado incorreto!

Ao invés de $C(T^{\perp})$ devemos calcular $C(T^{T})$ que ser'á o complemento ortogonal de N(T).

3.

a) Seja w um vetor qualquer de E, podemos escrever:

$$w = proj_F(w) + (w - proj_F(w))$$

Para mostrar que todo vetor w pode ser escrito como w=u+v, onde $u\in F$ e $v\in F^{\perp}$, basta mostrarmos que $proj_F(w)\in F$ e $w-proj_F(w)\in F^{\perp}$.

3

- 1) Da definição de projeção ortogonal sobre um subespaço sabemos eu a projeção de w sobre F é uma combinação linear de vetores de uma base ortonormal de F e portanto esta projeção de w pertence ao subespaço F: $proj_F(w) \in F$.
- 2) Decorre também da construção de uma projeção ortogonal que $(w proj_F(w)) \perp proj_F(w)$. (Isto pode ser conferido geometricamente). Logo, $w - proj_F(w) \in F^{\perp}$.

De 1) e 2) segue que w pode ser escrito como w = u + v, onde $u \in F e v \in F$.

b) Sejam $w \in F$ e $w' \in F^{\perp}$, da definição de complemento ortogonal, obtemos:

$$w.w' = 0 \Rightarrow w \in (F^{\perp})^{\perp} \Rightarrow F \subseteq (F^{\perp})^{\perp}$$
 (1)

Suponha que exista um vetor $x \in (F^{\perp})^{\perp}$ tal que $x \notin F$, do item a) podemos escrever:

$$x = w + w^{\perp}$$
, $tal\ que\ w \in F\ e\ w^{\perp} \in F^{\perp}$

Se $x \in (F^{\perp})^{\perp} e w^{\perp} \in F^{\perp}$, então:

$$0 = x.w^{\perp} = w.w^{\perp} + w^{\perp}.w^{\perp} \Rightarrow 0 = x.w^{\perp} = 0 + w^{\perp}.w^{\perp} \Rightarrow 0 = w^{\perp}.w^{\perp} \Rightarrow w^{\perp} = 0 \Rightarrow x = w + 0 \Rightarrow x \in F(2)$$

De (1) e (2) temos que $F = (F^{\perp})^{\perp}$.

4.

Os vetores para os quais a sua projeção sobre o plano dado é um múltiplo do próprio vetor, isto é, vetores para os quais $Pu=\lambda u$, serão necessariamente os vetores ortogonais ao plano, cuja projeção e nula e os vetores pertencentes ao plano, cuja projeção sobre o plano é o próprio vetor. Logo, os autovalores de P serão 0 e 1. O autovalor 1, por sua vez, terá multiplicidade algébrica e geométrica igual a 2 e estará associdado a dois autovetores lineramente independentes pertencetes ao plano.

O autovetor associado ao autovalor nulo pode ser representado por qualquer vetor ortogonal ao plano o vetor (A, B, C) é um deles.

Para encontrar este dois autovetores LI, basta encontarmos dois vetores ortogonais pertencentes ao plano dado. Um exemplo para estes dois vetores é dado a seguir:

$$u = \left(1, \frac{B}{A}, -\frac{A^2 + B^2}{CA}\right) ev = \left(-\frac{B}{A}, 1, 0\right)$$

A matriz da transformação na base dos autovetores é dada pela matriz diagonal composta pelos autovalores:

$$\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)$$

5.

Uma vez que a matriz A possui dimensão 2, seu polinômio característico é dado por:

$$P_A(\lambda) = \lambda^2 - trago(A).\lambda + det(A) = \lambda^2 - 10\lambda - 75$$

Logo,

$$\lambda_1 = 15 e \lambda_2 = -5$$

Calculando os autovetores $u \in v$ a partir dos autovalores encontrados:

$$Au = \lambda u$$

$$\begin{pmatrix} 11 & -8 \\ -8 & -1 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = 15 \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \Longrightarrow u_1 = -2u_2 \Longrightarrow u = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 11 & -8 \\ -8 & -1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = -5 \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \Longrightarrow 2v_1 = v_2 \Longrightarrow v = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

6.

A mudança de base que diagonaliza A é dada pela base formada pelos autovetores:

$$P_E^{\beta} = \left(\begin{array}{cc} -2 & 1 \\ 1 & 2 \end{array} \right)$$

A matriz diagonal nesta base é a matriz que contém os autovalores de A na diagonal principal:

$$D = \left(\begin{array}{cc} 15 & 0\\ 0 & -5 \end{array}\right)$$

7.

Se A não possui inversa e A é diagonalizável, temos:

$$det(A) = 0(1)$$

$$A = PDP^{-1} \Longrightarrow det(A) = det(P)det(D)det(P^{-1}) \Longrightarrow det(D) = 0$$

pois uma vez que P é inversível (existe $P^{-1})$ então $det(P^{-1}) \neq 0$ e $det(P) \neq 0$.

Se D é uma matriz diagonal então seu determinante é dado pelo produto dos elementos da diagonal principal, os quais são os autovalores de A, portanto para que o determinante de D seja nulo deve existir pelo menos um autovalor λ de A tal que $\lambda=0$.

Parte 2:Seja λ autovalor de B temos:

$$Bx = \lambda x$$

se B é invertível:

$$B^{-1}Bx = B^{-1}\lambda x \Rightarrow x = B^{-1}\lambda x$$

$$\frac{1}{\lambda}x = B^{-1}x$$

$$B^{-1}x = \lambda^{-1}x$$

8.

Sejam λ_1 e λ_2 autovalores distintos de uma transformação A e sejam v_1 e v_2 seus autovetores correspondentes, temos:

$$Av_1 = \lambda_1 v_1 \ (1)$$

$$Av_2 = \lambda_2 v_2 (2)$$

Suponha que v_1 e v_2 não são linearmente independentes, então temos:

$$a_1v_1 + a_2v_2 = 0 \Longrightarrow a_1 \neq 0 \text{ ou } a_2 \neq 0$$

Sem perda de generalidade suponha $a_1 \neq 0$, então podemos escrever:

$$v_1 = -\frac{a_2}{a_1} v_2 \ (3)$$

Substituindo (3) em (1), obtemos:

$$A(-\frac{a_2}{a_1}v_2) = \lambda_1(-\frac{a_2}{a_1}v_2) \Longrightarrow Av_2 = \lambda_1v_2 \Longrightarrow \lambda_1 = \lambda_2(contradição)$$

Logo, se λ_1 e λ_2 são autovalores distintos de uma transformação A e v_1 e v_2 são seus autovetores correspondentes, v_1 e v_2 são linearmente independentes.

9.

Nesta questão é necessário mostrar que se a matriz A é simétrica e positiva definida então ela possui autovalores reais positivos e portanto pode existir uma matriz B tal que $B^2=A=PDP^{-1}$

Os autovalores reais positivos garantem que podemos calcular $D^{\frac{1}{2}}$ então:

$$B = PD^{\frac{1}{2}}P^{-1}$$

Para mostrar que os autovalores de A (positiva definida) são positivos (são reais porque A é simétrica) fazemos:

$$Av = \lambda v$$

$$v^T A v = v^T \lambda v$$

$$\lambda = \frac{v^T A v}{\|v\|^2} \Rightarrow \lambda > 0$$

10.

Calculando o polinômio característico de X, obtemos:

$$P_X(\lambda) = \lambda^2 - traço(X).\lambda + det(X) = \lambda^2 - 2\lambda + 1$$

O polinômio característico possui duas raízes iguais a 1, isto é, a matriz X possui um autolvalor de multiplicidade algébrica 2. A partir destes autovalores e da matriz X não é possível encontrar dois autovetores que sejam linearmente independentes e por essa razão, não existe uma base que diagonaliza X, portanto X não pode ser diagonalizada.