Number Theory Algorithms

Ervin Gegprifti gegprifti.ervin@gmail.com

Abstract

This paper is the documentation for the Euclidean Algorithm module in Number Theory Algorithms mobile application.

Extended Euclidean Algorithm

The Extended Euclidean Algorithm is used to compute integers x, y for ax + by = GCD(a, b) where $a, b \in \mathbb{N}$ and $x, y \in \mathbb{Z}$. The implementation of this algorithm is based on ([1] pg. 16).

```
Algorithm 1: Extended Euclidean Algorithm
  Input: a, b \in \mathbb{N}
  Output: x, y \in \mathbb{Z} for ax + by = GCD(a, b)
  r_{n-2} := a
  r_{n-1} := b
  q_{n-1} := \text{quotient of } r_{n-2}/r_{n-1}
  r_n := \text{remainder of } r_{n-2}/r_{n-1}
  x_{n-2} := 1, x_{n-1} := 0, x_{temp} := x_{n-1}, x_{n-1} := x_{n-2} - x_{n-1} \cdot q_{n-1}, x_{n-2} := x_{temp}
  y_{n-2} := 0, y_{n-1} := 1, y_{temp} := y_{n-1}, y_{n-1} := y_{n-2} - y_{n-1} \cdot q_{n-1}, y_{n-2} := y_{temp}
  while r_n > 0 do
      r_{n-2} := r_{n-1}
       r_{n-1} := r_n
      q_{n-1} := \text{quotient of } r_{n-2}/r_{n-1}
      r_n := \text{remainder of } r_{n-2}/r_{n-1}
      x_{temp} := x_{n-1}
      x_{n-1} := x_{n-2} - x_{n-1} \cdot q_{n-1}
      x_{n-2} := x_{temp}
      y_{temp} := y_{n-1}
       y_{n-1} := y_{n-2} - y_{n-1} \cdot q_{n-1}
      y_{n-2} := y_{temp}
  end
  return x = x_{n-2}, y = y_{n-2}
```

References

[1] Cohen, Henri. A course in computational algebraic number theory. Springer-Verlag, 1996.