Detect model miscalibration via your nearest neighbor

Bernoulli-ims
Aug 14, 2024

Ziang Niu

Collaborators

Anirban Chatterjee

Bhaswar Bikram Bhattacharya

Statistical task (loose): find out whether a trained supervised model $\hat{f}: \mathbb{R}^d \mapsto \{0,1\}$ can produce "reliable" prediction.

Statistical task (loose): find out whether a trained supervised model $\hat{f}: \mathbb{R}^d \mapsto \{0,1\}$ can produce "reliable" prediction.

Statistical task (loose): find out whether a trained supervised model

 $\hat{f}: \mathbb{R}^d \mapsto \{0,1\}$ can produce "reliable" prediction.

Statistical task (loose): find out whether a trained supervised model

 $\hat{f}: \mathbb{R}^d \mapsto \{0,1\}$ can produce "reliable" prediction.

If $w \approx p$, it is a reliable prediction at prediction w.

Hypothesis formulation (classification): For joint distribution $\mathcal{L}_n(\mathbf{Y}, \mathrm{Bern}(\hat{f}(\mathbf{Z})))$, test the null hypothesis of calibration:

Hypothesis formulation (classification): For joint distribution $\mathcal{L}_n(\mathbf{Y}, \mathrm{Bern}(\hat{f}(\mathbf{Z})))$, test the null hypothesis of calibration:

$$H_0: \hat{f}(\mathbf{Z}) = \mathbb{P}[\mathbf{Y} = 1 \mid \hat{f}(\mathbf{Z})]$$
 almost surely.

Hypothesis formulation (classification): For joint distribution $\mathcal{L}_n(\mathbf{Y}, \mathrm{Bern}(\hat{f}(\mathbf{Z})))$, test the null hypothesis of calibration:

$$H_0: \hat{f}(\mathbf{Z}) = \mathbb{P}[\mathbf{Y} = 1 \mid \hat{f}(\mathbf{Z})]$$
 almost surely.

Equivalently,

Hypothesis formulation (classification): For joint distribution $\mathcal{L}_n(\mathbf{Y}, \mathrm{Bern}(f(\mathbf{Z})))$, test the null hypothesis of calibration:

$$H_0: \hat{f}(\mathbf{Z}) = \mathbb{P}[\mathbf{Y} = 1 \mid \hat{f}(\mathbf{Z})]$$
 almost surely.

Equivalently,

$$H_0: \mathbb{P}[\mathbf{X} = 1 | \hat{f}(\mathbf{Z})] = \mathbb{P}[\mathbf{Y} = 1 | \hat{f}(\mathbf{Z})]$$
 almost surely, $\mathbf{X} \sim \mathrm{Bern}(\hat{f}(\mathbf{Z}))$.

Hypothesis formulation (classification): For joint distribution $\mathcal{L}_n(\mathbf{Y}, \mathrm{Bern}(\hat{f}(\mathbf{Z})))$, test the null hypothesis of calibration:

$$H_0: \hat{f}(\mathbf{Z}) = \mathbb{P}[\mathbf{Y} = 1 \mid \hat{f}(\mathbf{Z})]$$
 almost surely.

Equivalently,

$$H_0: \mathbb{P}[\mathbf{X} = 1 | \hat{f}(\mathbf{Z})] = \mathbb{P}[\mathbf{Y} = 1 | \hat{f}(\mathbf{Z})]$$
 almost surely, $\mathbf{X} \sim \mathrm{Bern}(\hat{f}(\mathbf{Z}))$.

Hypothesis formulation (classification): For joint distribution $\mathcal{L}_n(\mathbf{Y}, \mathrm{Bern}(\hat{f}(\mathbf{Z})))$, test the null hypothesis of calibration:

$$H_0: \hat{f}(\mathbf{Z}) = \mathbb{P}[\mathbf{Y} = 1 \mid \hat{f}(\mathbf{Z})]$$
 almost surely.

Equivalently,

$$H_0: \mathbb{P}[\mathbf{X} = 1 | \hat{f}(\mathbf{Z})] = \mathbb{P}[\mathbf{Y} = 1 | \hat{f}(\mathbf{Z})]$$
 almost surely, $\mathbf{X} \sim \mathrm{Bern}(\hat{f}(\mathbf{Z}))$.

$$H_0: \mathbf{X} \mid \mathbf{W} \stackrel{d}{=} \mathbf{Y} \mid \mathbf{W}$$

Hypothesis formulation (classification): For joint distribution $\mathcal{L}_n(\mathbf{Y}, \mathrm{Bern}(\hat{f}(\mathbf{Z})))$, test the null hypothesis of calibration:

$$H_0: \hat{f}(\mathbf{Z}) = \mathbb{P}[\mathbf{Y} = 1 \mid \hat{f}(\mathbf{Z})]$$
 almost surely.

Equivalently,

$$H_0: \mathbb{P}[\mathbf{X} = 1 | \hat{f}(\mathbf{Z})] = \mathbb{P}[\mathbf{Y} = 1 | \hat{f}(\mathbf{Z})]$$
 almost surely, $\mathbf{X} \sim \mathrm{Bern}(\hat{f}(\mathbf{Z}))$.

$$H_0: \mathbf{X} \mid \mathbf{W} \stackrel{d}{=} \mathbf{Y} \mid \mathbf{W}$$

$$\mathbf{W} = \hat{f}(\mathbf{Z})$$
 in calibration test

Hypothesis formulation (classification): For joint distribution $\mathcal{L}_n(\mathbf{Y}, \mathrm{Bern}(\hat{f}(\mathbf{Z})))$, test the null hypothesis of calibration:

$$H_0: \hat{f}(\mathbf{Z}) = \mathbb{P}[\mathbf{Y} = 1 \mid \hat{f}(\mathbf{Z})]$$
 almost surely.

Equivalently,

$$H_0: \mathbb{P}[\mathbf{X} = 1 | \hat{f}(\mathbf{Z})] = \mathbb{P}[\mathbf{Y} = 1 | \hat{f}(\mathbf{Z})]$$
 almost surely, $\mathbf{X} \sim \mathrm{Bern}(\hat{f}(\mathbf{Z}))$.

$$H_0: \mathbf{X} \mid \mathbf{W} \stackrel{d}{=} \mathbf{Y} \mid \mathbf{W}$$

$$\mathbf{W} = \hat{f}(\mathbf{Z})$$
 in calibration test

Regression curve comparison: Consider two regression models
$$X = f(\mathbf{W}) + \varepsilon$$
, $Y = g(\mathbf{W}) + \eta$. $H_0: f = g \Leftrightarrow H_0: \mathbf{X} \mid \mathbf{W} \stackrel{d}{=} \mathbf{Y} \mid \mathbf{W}$.

Regression curve comparison: Consider two regression models
$$X = f(\mathbf{W}) + \varepsilon$$
, $Y = g(\mathbf{W}) + \eta$. $H_0: f = g \Leftrightarrow H_0: \mathbf{X} \mid \mathbf{W} \stackrel{d}{=} \mathbf{Y} \mid \mathbf{W}$.

(Dette et. al. 1998, AoS; Neumeyer et. al. 2003, AoS)

Regression curve comparison: Consider two regression models

$$X = f(\mathbf{W}) + \varepsilon, Y = g(\mathbf{W}) + \eta. H_0: f = g \Leftrightarrow H_0: \mathbf{X} \mid \mathbf{W} \stackrel{d}{=} \mathbf{Y} \mid \mathbf{W}.$$

(Dette et. al. 1998, AoS; Neumeyer et. al. 2003, AoS)

Conditional goodness-of-fit test: Given a conditional distribution f(x | w), we are interested in if the observed data (Y_i, W_i) , i = 1, ..., n fit the distribution well or not. $H_0: \mathbf{X} \mid \mathbf{W} \stackrel{d}{=} \mathbf{Y} \mid \mathbf{W}$

Regression curve comparison: Consider two regression models

$$X = f(\mathbf{W}) + \varepsilon, Y = g(\mathbf{W}) + \eta. H_0: f = g \Leftrightarrow H_0: \mathbf{X} \mid \mathbf{W} \stackrel{d}{=} \mathbf{Y} \mid \mathbf{W}.$$

(Dette et. al. 1998, AoS; Neumeyer et. al. 2003, AoS)

Conditional goodness-of-fit test: Given a conditional distribution $f(x \mid w)$, we are interested in if the observed data (Y_i, W_i) , i = 1, ..., n fit the distribution well or not. $H_0: \mathbf{X} \mid \mathbf{W} \stackrel{d}{=} \mathbf{Y} \mid \mathbf{W}$

(Andrews 1997, Econometrica, Zheng 2000, Econometric Theory)

Regression curve comparison: Consider two regression models

$$X = f(\mathbf{W}) + \varepsilon, Y = g(\mathbf{W}) + \eta. H_0: f = g \Leftrightarrow H_0: \mathbf{X} \mid \mathbf{W} \stackrel{d}{=} \mathbf{Y} \mid \mathbf{W}.$$

(Dette et. al. 1998, AoS; Neumeyer et. al. 2003, AoS)

Conditional goodness-of-fit test: Given a conditional distribution $f(x \mid w)$, we are interested in if the observed data (Y_i, W_i) , i = 1, ..., n fit the distribution well or not. $H_0: \mathbf{X} \mid \mathbf{W} \stackrel{d}{=} \mathbf{Y} \mid \mathbf{W}$

(Andrews 1997, Econometrica, Zheng 2000, Econometric Theory)

Calibration test:

Regression curve comparison: Consider two regression models

$$X = f(\mathbf{W}) + \varepsilon, Y = g(\mathbf{W}) + \eta. H_0: f = g \Leftrightarrow H_0: \mathbf{X} \mid \mathbf{W} \stackrel{d}{=} \mathbf{Y} \mid \mathbf{W}.$$

(Dette et. al. 1998, AoS; Neumeyer et. al. 2003, AoS)

Conditional goodness-of-fit test: Given a conditional distribution $f(x \mid w)$, we are interested in if the observed data (Y_i, W_i) , i = 1, ..., n fit the distribution well or not. $H_0: \mathbf{X} \mid \mathbf{W} \stackrel{d}{=} \mathbf{Y} \mid \mathbf{W}$

(Andrews 1997, Econometrica, Zheng 2000, Econometric Theory)

Calibration test:

(Widmann et. al. 2019, NeurlPS; Widmann et. al. 2021, ICLR) SKCE method

One-sample statistics with $(Y_i, W_i)_{i=1}^n$, e.g. SKCE:

One-sample statistics with $(Y_i, W_i)_{i=1}^n$, e.g. SKCE:

$$nT_{\text{SKCE}} \stackrel{H_0}{\to} \sum_{m=1}^{\infty} \lambda_m (Z_k^2 - 1), Z_k \stackrel{iid}{\sim} N(0,1)$$

One-sample statistics with $(Y_i, W_i)_{i=1}^n$, e.g. SKCE:

$$nT_{\text{SKCE}} \stackrel{H_0}{\rightarrow} \sum_{m=1}^{\infty} \lambda_m (Z_k^2 - 1), Z_k \stackrel{iid}{\sim} N(0,1)$$

Two-sample statistics with $(X_i, Y_i, W_i)_{i=1}^n$, $X_i \sim \mathbb{P}_{\mathbf{Y}_i | \mathbf{W}_i}$, e.g. ECMMD:

One-sample statistics with $(Y_i, W_i)_{i=1}^n$, e.g. SKCE:

$$nT_{\text{SKCE}} \stackrel{H_0}{\to} \sum_{m=1}^{\infty} \lambda_m (Z_k^2 - 1), Z_k \stackrel{iid}{\sim} N(0,1)$$

Two-sample statistics with $(X_i, Y_i, W_i)_{i=1}^n$, $X_i \sim \mathbb{P}_{\mathbf{Y}_i | \mathbf{W}_i}$, e.g. ECMMD:

$$a_n \xrightarrow{T_{\text{ECMMD}}} \stackrel{H_0}{\xrightarrow{\hat{\sigma}_n}} N(0,1)$$

One-sample statistics with $(Y_i, W_i)_{i=1}^n$, e.g. SKCE:

$$nT_{\text{SKCE}} \stackrel{H_0}{\to} \sum_{m=1}^{\infty} \lambda_m (Z_k^2 - 1), Z_k \stackrel{iid}{\sim} N(0,1)$$

Two-sample statistics with $(X_i, Y_i, W_i)_{i=1}^n$, $X_i \sim \mathbb{P}_{\mathbf{Y}_i | \mathbf{W}_i}$, e.g. ECMMD:

$$a_n \xrightarrow{T_{\text{ECMMD}}} \stackrel{H_0}{\xrightarrow{\delta_n}} N(0,1)$$

Intractable distribution
$$\sum_{m=1}^{\infty} \lambda_m (Z_k^2 - 1)$$
 versus "nice" distribution $N(0,1)$.

Resampling requirement: need many resamples to give reliable p-value estimate.

Resampling requirement: need many resamples to give reliable p-value

estimate.

Resampling requirement: need many resamples to give reliable p-value

estimate.

Resampling requirement: need many resamples to give reliable p-value

estimate.

We need a measure for $X \mid W \stackrel{d}{=} Y \mid W$

Kernel and RKHS: $K(x, y) : \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}, \mathcal{H}_K$.

Kernel and RKHS: $K(x, y) : \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}, \mathcal{H}_K$.

Kernel and RKHS: $K(x, y) : \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}, \mathcal{H}_K$.

Kernel and RKHS: $K(x, y) : \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}, \mathcal{H}_K$.

$$(1) K(\cdot, x) \in \mathcal{H}_K;$$

Kernel and RKHS: $K(x, y) : \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}, \mathcal{H}_K$.

$$(1) K(\cdot, x) \in \mathcal{H}_K;$$

$$(2) \langle f(\cdot), K(\cdot, x) \rangle_{\mathcal{H}_K} = f(x), \ \forall f \in \mathcal{H}_K.$$

Kernel and RKHS: $K(x, y) : \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}, \mathcal{H}_K$.

Any positive semidefinite kernel is associated with a unique Hilbert space \mathcal{H}_K satisfying:

$$(1) K(\cdot, x) \in \mathcal{H}_K;$$

(2)
$$\langle f(\cdot), K(\cdot, x) \rangle_{\mathcal{H}_K} = f(x), \ \forall f \in \mathcal{H}_K.$$

Kernel mean embedding: $\mu_{\mathbb{P}}(y) = \mathbb{E}_{X \sim \mathbb{P}}[K(X, y)]$ satisfying $\forall f \in \mathcal{H}_K$, $\langle \mu_{\mathbb{P}}, f \rangle_{\mathcal{H}_K} = \mathbb{E}_{X \sim \mathbb{P}}[f(X)]$.

Kernel and RKHS: $K(x, y) : \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}, \mathcal{H}_K$.

Any positive semidefinite kernel is associated with a unique Hilbert space \mathcal{H}_K satisfying:

$$(1) K(\cdot, x) \in \mathcal{H}_K;$$

(2)
$$\langle f(\cdot), K(\cdot, x) \rangle_{\mathcal{H}_K} = f(x), \forall f \in \mathcal{H}_K$$
.

Kernel mean embedding: $\mu_{\mathbb{P}}(y) = \mathbb{E}_{X \sim \mathbb{P}}[K(X, y)]$ satisfying $\forall f \in \mathcal{H}_K$, $\langle \mu_{\mathbb{P}}, f \rangle_{\mathcal{H}_K} = \mathbb{E}_{X \sim \mathbb{P}}[f(X)]$.

Linear kernel: $K(x, y) = x \cdot y$ and $\mu_{\mathbb{P}}(y) = \mathbb{E}_{X \sim \mathbb{P}}[X] \cdot y$.

Maximum mean discrepancy (MMD, Gretton et al. 2012):

Maximum mean discrepancy (MMD, Gretton et al. 2012):

$$\mathrm{MMD}^2(\mathbf{X}, \mathbf{Y}) \equiv \|\mu_{\mathbb{P}_{\mathbf{X}}} - \mu_{\mathbb{P}_{\mathbf{Y}}}\|_{\mathcal{H}_K}^2 = (\mathbb{E}_{X \sim \mathbb{P}_{\mathbf{X}}}[X] - \mathbb{E}_{Y \sim \mathbb{P}_{\mathbf{Y}}}[Y])^2$$

Maximum mean discrepancy (MMD, Gretton et al. 2012):

$$\mathrm{MMD}^2(\mathbf{X},\mathbf{Y}) \equiv \|\mu_{\mathbb{P}_{\mathbf{X}}} - \mu_{\mathbb{P}_{\mathbf{Y}}}\|_{\mathcal{H}_K}^2 = (\mathbb{E}_{X \sim \mathbb{P}_{\mathbf{X}}}[X] - \mathbb{E}_{Y \sim \mathbb{P}_{\mathbf{Y}}}[Y])^2$$

Expected conditional maximum mean discrepancy (ECMMD):

Maximum mean discrepancy (MMD, Gretton et al. 2012):

$$\mathbf{MMD^2(X,Y)} \equiv \|\mu_{\mathbb{P}_{\mathbf{X}}} - \mu_{\mathbb{P}_{\mathbf{Y}}}\|_{\mathcal{H}_K}^2 = (\mathbb{E}_{X \sim \mathbb{P}_{\mathbf{X}}}[X] - \mathbb{E}_{Y \sim \mathbb{P}_{\mathbf{Y}}}[Y])^2$$

Expected conditional maximum mean discrepancy (ECMMD):

$$ECMMD^{2}(\mathbf{X}, \mathbf{Y} | \mathbf{W}) \equiv \mathbb{E}_{\mathbf{W}}[MMD^{2}(\mathbf{X} | \mathbf{W}, \mathbf{Y} | \mathbf{W})] = \mathbb{E}_{\mathbf{W}}[(\mathbb{E}[\mathbf{X} | \mathbf{W}] - \mathbb{E}[(\mathbf{Y} | \mathbf{W}])^{2}]$$

Maximum mean discrepancy (MMD, Gretton et al. 2012):

$$\mathbf{MMD^2(X,Y)} \equiv \|\mu_{\mathbb{P}_{\mathbf{X}}} - \mu_{\mathbb{P}_{\mathbf{Y}}}\|_{\mathcal{H}_K}^2 = (\mathbb{E}_{X \sim \mathbb{P}_{\mathbf{X}}}[X] - \mathbb{E}_{Y \sim \mathbb{P}_{\mathbf{Y}}}[Y])^2$$

Expected conditional maximum mean discrepancy (ECMMD):

$$ECMMD^{2}(\mathbf{X}, \mathbf{Y} \mid \mathbf{W}) \equiv \mathbb{E}_{\mathbf{W}}[MMD^{2}(\mathbf{X} \mid \mathbf{W}, \mathbf{Y} \mid \mathbf{W})] = \mathbb{E}_{\mathbf{W}}[(\mathbb{E}[\mathbf{X} \mid \mathbf{W}] - \mathbb{E}[(\mathbf{Y} \mid \mathbf{W}])^{2}]$$

Linear kernel $K(x, y) = x \cdot y$ is characteristic with binary outcome X, Y:

Maximum mean discrepancy (MMD, Gretton et al. 2012):

$$\mathrm{MMD}^2(\mathbf{X},\mathbf{Y}) \equiv \|\mu_{\mathbb{P}_{\mathbf{X}}} - \mu_{\mathbb{P}_{\mathbf{Y}}}\|_{\mathcal{H}_K}^2 = (\mathbb{E}_{X \sim \mathbb{P}_{\mathbf{X}}}[X] - \mathbb{E}_{Y \sim \mathbb{P}_{\mathbf{Y}}}[Y])^2$$

Expected conditional maximum mean discrepancy (ECMMD):

$$ECMMD^{2}(\mathbf{X}, \mathbf{Y} \mid \mathbf{W}) \equiv \mathbb{E}_{\mathbf{W}}[MMD^{2}(\mathbf{X} \mid \mathbf{W}, \mathbf{Y} \mid \mathbf{W})] = \mathbb{E}_{\mathbf{W}}[(\mathbb{E}[\mathbf{X} \mid \mathbf{W}] - \mathbb{E}[(\mathbf{Y} \mid \mathbf{W}])^{2}]$$

Linear kernel $K(x, y) = x \cdot y$ is characteristic with binary outcome X, Y:

$$ECMMD^2 = 0$$
 if and only if $X \mid W \stackrel{d}{=} Y \mid W$.

Maximum mean discrepancy (MMD, Gretton et al. 2012):

$$\mathrm{MMD}^2(\mathbf{X},\mathbf{Y}) \equiv \|\mu_{\mathbb{P}_{\mathbf{X}}} - \mu_{\mathbb{P}_{\mathbf{Y}}}\|_{\mathcal{H}_K}^2 = (\mathbb{E}_{X \sim \mathbb{P}_{\mathbf{X}}}[X] - \mathbb{E}_{Y \sim \mathbb{P}_{\mathbf{Y}}}[Y])^2$$

Expected conditional maximum mean discrepancy (ECMMD):

$$ECMMD^{2}(\mathbf{X}, \mathbf{Y} | \mathbf{W}) \equiv \mathbb{E}_{\mathbf{W}}[MMD^{2}(\mathbf{X} | \mathbf{W}, \mathbf{Y} | \mathbf{W})] = \mathbb{E}_{\mathbf{W}}[(\mathbb{E}[\mathbf{X} | \mathbf{W}] - \mathbb{E}[(\mathbf{Y} | \mathbf{W}])^{2}]$$

Linear kernel $K(x, y) = x \cdot y$ is characteristic with binary outcome X, Y:

$$ECMMD^2 = 0$$
 if and only if $X \mid W \stackrel{d}{=} Y \mid W$.

 $ECMMD^2 = 0$ if and only if H_0 is true.

Plug-in estimation given $(X_i, Y_i, W_i)_{i=1}^n$, $X_i \sim \mathbb{P}_{\mathbf{Y}_i | \mathbf{W}_i}$: with any nonparametric estimator for $\mathbb{E}[\mathbf{X} \mid \mathbf{W}]$ and $\mathbb{E}[\mathbf{Y} \mid \mathbf{W}]$, e.g. KNN or kernel regression estimator, the resulting estimate is not \sqrt{n} unbiased:

Plug-in estimation given $(X_i, Y_i, W_i)_{i=1}^n$, $X_i \sim \mathbb{P}_{\mathbf{Y}_i | \mathbf{W}_i}$: with any nonparametric estimator for $\mathbb{E}[\mathbf{X} | \mathbf{W}]$ and $\mathbb{E}[\mathbf{Y} | \mathbf{W}]$, e.g. KNN or kernel regression estimator, the resulting estimate is not \sqrt{n} unbiased:

$$\sqrt{n} \left(\mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} (\hat{\mathbb{E}}[X_i | W_i] - \hat{\mathbb{E}}[Y_i | W_i])^2 \right] - \text{ECMMD}^2 \right) \stackrel{H_0}{\to} \infty$$

Plug-in estimation given $(X_i, Y_i, W_i)_{i=1}^n$, $X_i \sim \mathbb{P}_{\mathbf{Y}_i | \mathbf{W}_i}$: with any nonparametric estimator for $\mathbb{E}[\mathbf{X} | \mathbf{W}]$ and $\mathbb{E}[\mathbf{Y} | \mathbf{W}]$, e.g. KNN or kernel regression estimator, the resulting estimate is not \sqrt{n} unbiased:

$$\sqrt{n} \left(\mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} (\hat{\mathbb{E}}[X_i | W_i] - \hat{\mathbb{E}}[Y_i | W_i])^2 \right] - \text{ECMMD}^2 \right) \stackrel{H_0}{\to} \infty$$

An alternative form of ECMMD: $W \sim \mathbb{P}_W, \, (X,Y), (X',Y') \stackrel{i.i.d.}{\sim} \mathbb{P}_{(X,Y)|W}$

Plug-in estimation given $(X_i, Y_i, W_i)_{i=1}^n$, $X_i \sim \mathbb{P}_{\mathbf{Y}_i | \mathbf{W}_i}$: with any nonparametric estimator for $\mathbb{E}[\mathbf{X} | \mathbf{W}]$ and $\mathbb{E}[\mathbf{Y} | \mathbf{W}]$, e.g. KNN or kernel regression estimator, the resulting estimate is not \sqrt{n} unbiased:

$$\sqrt{n} \left(\mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} (\hat{\mathbb{E}}[X_i | W_i] - \hat{\mathbb{E}}[Y_i | W_i])^2 \right] - \text{ECMMD}^2 \right) \stackrel{H_0}{\to} \infty$$

An alternative form of ECMMD: $W \sim \mathbb{P}_W, \, (X,Y), (X',Y') \stackrel{i.i.d.}{\sim} \mathbb{P}_{(X,Y)|W}$

$$H((x, y), (x', y')) \equiv xx' + yy' - xy' - x'y$$

Plug-in estimation given $(X_i, Y_i, W_i)_{i=1}^n$, $X_i \sim \mathbb{P}_{\mathbf{Y}_i | \mathbf{W}_i}$: with any nonparametric estimator for $\mathbb{E}[\mathbf{X} | \mathbf{W}]$ and $\mathbb{E}[\mathbf{Y} | \mathbf{W}]$, e.g. KNN or kernel regression estimator, the resulting estimate is not \sqrt{n} unbiased:

$$\sqrt{n} \left(\mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} (\hat{\mathbb{E}}[X_i | W_i] - \hat{\mathbb{E}}[Y_i | W_i])^2 \right] - \text{ECMMD}^2 \right) \stackrel{H_0}{\to} \infty$$

An alternative form of ECMMD: $W \sim \mathbb{P}_W, \, (X,Y), (X',Y') \stackrel{i.i.d.}{\sim} \mathbb{P}_{(X,Y)|W}$

$$H((x, y), (x', y')) \equiv xx' + yy' - xy' - x'y$$

$$ECMMD^{2} = \mathbb{E}_{\mathbf{W}}[(\mathbb{E}[\mathbf{X} - \mathbf{Y} | \mathbf{W}])^{2}] = \mathbb{E}_{\mathbf{W}}[\mathbb{E}[H((\mathbf{X}, \mathbf{Y}), (\mathbf{X}', \mathbf{Y}')) | \mathbf{W}]]$$

An intuitive estimator

An intuitive estimator

Nearest neighbor replacement: generate k_n nearest neighbor graph with data $(W_1, ..., W_n)$. $\mathcal{N}(i)$ is the k_n nearest neighbors set of W_i .

Nearest neighbor replacement: generate k_n nearest neighbor graph with data $(W_1, ..., W_n)$. $\mathcal{N}(i)$ is the k_n nearest neighbors set of W_i .

$$\mathbb{E}[H((\mathbf{X}, \mathbf{Y}), (\mathbf{X}', \mathbf{Y}')) | \mathbf{W}_i] \approx \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((\mathbf{X}_i, \mathbf{Y}_i), (\mathbf{X}_j, \mathbf{Y}_j))$$

Nearest neighbor replacement: generate k_n nearest neighbor graph with data $(W_1, ..., W_n)$. $\mathcal{N}(i)$ is the k_n nearest neighbors set of W_i .

$$\mathbb{E}_{\mathbf{W}_i}[\mathbb{E}[H((\mathbf{X}, \mathbf{Y}), (\mathbf{X}', \mathbf{Y}')) | \mathbf{W}_i]] \approx \frac{1}{n} \sum_{i=1}^n \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((X_i, Y_i), (X_j, Y_j))$$

Nearest neighbor replacement: generate k_n nearest neighbor graph with data $(W_1, ..., W_n)$. $\mathcal{N}(i)$ is the k_n nearest neighbors set of W_i .

$$\mathbb{E}_{\mathbf{W}_i}[\mathbb{E}[H((\mathbf{X}, \mathbf{Y}), (\mathbf{X}', \mathbf{Y}')) | \mathbf{W}_i]] \approx \frac{1}{n} \sum_{i=1}^n \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((X_i, Y_i), (X_j, Y_j))$$

Nearest neighbor replacement: generate k_n nearest neighbor graph with data $(W_1, ..., W_n)$. $\mathcal{N}(i)$ is the k_n nearest neighbors set of W_i .

$$\mathbb{E}_{\mathbf{W}_i}[\mathbb{E}[H((\mathbf{X}, \mathbf{Y}), (\mathbf{X}', \mathbf{Y}')) | \mathbf{W}_i]] \approx \frac{1}{n} \sum_{i=1}^n \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((X_i, Y_i), (X_j, Y_j))$$

Nearest neighbor replacement: generate k_n nearest neighbor graph with data (W_1, \ldots, W_n) . $\mathcal{N}(i)$ is the k_n nearest neighbors set of W_i .

$$\mathbb{E}_{\mathbf{W}_i}[\mathbb{E}[H((\mathbf{X}, \mathbf{Y}), (\mathbf{X}', \mathbf{Y}')) | \mathbf{W}_i]] \approx \frac{1}{n} \sum_{i=1}^n \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((X_i, Y_i), (X_j, Y_j))$$

Find 1NN in W space

Nearest neighbor replacement: generate k_n nearest neighbor graph with data $(W_1, ..., W_n)$. $\mathcal{N}(i)$ is the k_n nearest neighbors set of W_i .

$$\mathbb{E}_{\mathbf{W}_i}[\mathbb{E}[H((\mathbf{X}, \mathbf{Y}), (\mathbf{X}', \mathbf{Y}')) | \mathbf{W}_i]] \approx \frac{1}{n} \sum_{i=1}^n \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((X_i, Y_i), (X_j, Y_j))$$

Find 1NN in W space

Nearest neighbor replacement: generate k_n nearest neighbor graph with data $(W_1, ..., W_n)$. $\mathcal{N}(i)$ is the k_n nearest neighbors set of W_i .

$$\mathbb{E}_{\mathbf{W}_i}[\mathbb{E}[H((\mathbf{X}, \mathbf{Y}), (\mathbf{X}', \mathbf{Y}')) | \mathbf{W}_i]] \approx \frac{1}{n} \sum_{i=1}^n \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((X_i, Y_i), (X_j, Y_j))$$

Find 1NN in W space

$$T = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((\mathbf{X}_i, \mathbf{Y}_i), (\mathbf{X}_j, \mathbf{Y}_j))$$

$$T = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((\mathbf{X}_i, \mathbf{Y}_i), (\mathbf{X}_j, \mathbf{Y}_j))$$

Recall

$$T = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((\mathbf{X}_i, \mathbf{Y}_i), (\mathbf{X}_j, \mathbf{Y}_j))$$

Theorem (informal):

Recall

$$T = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((\mathbf{X}_i, \mathbf{Y}_i), (\mathbf{X}_j, \mathbf{Y}_j))$$

Theorem (informal):

• Under H_0 , $\mathbb{E}[T] = 0$.

Recall

$$T = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((\mathbf{X}_i, \mathbf{Y}_i), (\mathbf{X}_j, \mathbf{Y}_j))$$

Theorem (informal):

- Under H_0 , $\mathbb{E}[T]=0$. Under mild conditions, $T\stackrel{\mathbb{P}}{\to} \mathrm{ECMMD}^2(\mathbf{X},\mathbf{Y}\,|\,\mathbf{W})$ if $k_n=o(n/\log(n))$.

$$T = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((\mathbf{X}_i, \mathbf{Y}_i), (\mathbf{X}_j, \mathbf{Y}_j))$$

$$T = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((\mathbf{X}_i, \mathbf{Y}_i), (\mathbf{X}_j, \mathbf{Y}_j))$$

Recall

$$T = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((\mathbf{X}_i, \mathbf{Y}_i), (\mathbf{X}_j, \mathbf{Y}_j))$$

Theorem (informal): Under H_0 , we have

Recall

$$T = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((\mathbf{X}_i, \mathbf{Y}_i), (\mathbf{X}_j, \mathbf{Y}_j))$$

Theorem (informal): Under H_0 , we have

$$\frac{\sqrt{nk_n}T}{\hat{\sigma}_n} \to N(0,1), \text{ if } k_n = o(n^{\delta}) \text{ for some small } \delta > 0.$$

Recall

$$T = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((\mathbf{X}_i, \mathbf{Y}_i), (\mathbf{X}_j, \mathbf{Y}_j))$$

Theorem (informal): Under H_0 , we have

$$\frac{\sqrt{nk_n}T}{\hat{\sigma}_n} \to N(0,1), \text{ if } k_n = o(n^{\delta}) \text{ for some small } \delta > 0.$$

where $\hat{\sigma}_n^2$ is a variance estimate.

Recall

$$T = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((\mathbf{X}_i, \mathbf{Y}_i), (\mathbf{X}_j, \mathbf{Y}_j))$$

Theorem (informal): Under H_0 , we have

$$\frac{\sqrt{nk_n}T}{\hat{\sigma}_n} \to N(0,1), \text{ if } k_n = o(n^{\delta}) \text{ for some small } \delta > 0.$$

where $\hat{\sigma}_n^2$ is a variance estimate.

Highly non-trivial proof:

Recall

$$T = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((\mathbf{X}_i, \mathbf{Y}_i), (\mathbf{X}_j, \mathbf{Y}_j))$$

Theorem (informal): Under H_0 , we have

$$\frac{\sqrt{nk_n}T}{\hat{\sigma}_n} \to N(0,1), \text{ if } k_n = o(n^{\delta}) \text{ for some small } \delta > 0.$$

where $\hat{\sigma}_n^2$ is a variance estimate.

Highly non-trivial proof:

Stein's method for dependency graph + dedicate analysis on $\hat{\sigma}_n!$

A consistent test:

A consistent test:

$$\phi \equiv \mathbf{1}\{ |\sqrt{nk_n}T/\hat{\sigma}_n| \ge z_{1-\alpha/2}\}, \lim \sup_{n \to \infty} \mathbb{E}_{H_0}[\phi] \le \alpha, \lim \inf_{n \to \infty} \mathbb{E}_{H_1}[\phi] = 1$$

A consistent test:

$$\phi \equiv \mathbf{1}\{ |\sqrt{nk_n}T/\hat{\sigma}_n| \ge z_{1-\alpha/2}\}, \lim \sup_{n \to \infty} \mathbb{E}_{H_0}[\phi] \le \alpha, \lim \inf_{n \to \infty} \mathbb{E}_{H_1}[\phi] = 1$$

Computation efficiency: linear comp time in n if k_n is a constant.

A consistent test:

$$\phi \equiv \mathbf{1}\{|\sqrt{nk_n}T/\hat{\sigma}_n| \ge z_{1-\alpha/2}\}, \lim \sup_{n \to \infty} \mathbb{E}_{H_0}[\phi] \le \alpha, \lim \inf_{n \to \infty} \mathbb{E}_{H_1}[\phi] = 1$$

Computation efficiency: linear comp time in n if k_n is a constant.

Easy to control Type-I error: no need to do resampling.

A consistent test:

$$\phi \equiv \mathbf{1}\{ |\sqrt{nk_n}T/\hat{\sigma}_n| \ge z_{1-\alpha/2}\}, \lim \sup_{n \to \infty} \mathbb{E}_{H_0}[\phi] \le \alpha, \lim \inf_{n \to \infty} \mathbb{E}_{H_1}[\phi] = 1$$

Computation efficiency: linear comp time in n if k_n is a constant.

Easy to control Type-I error: no need to do resampling.

Agnostic to hyperparameter: no rate lower bound on k_n .

A consistent test:

$$\phi \equiv \mathbf{1}\{|\sqrt{nk_n}T/\hat{\sigma}_n| \ge z_{1-\alpha/2}\}, \lim \sup_{n \to \infty} \mathbb{E}_{H_0}[\phi] \le \alpha, \lim \inf_{n \to \infty} \mathbb{E}_{H_1}[\phi] = 1$$

Computation efficiency: linear comp time in n if k_n is a constant.

Easy to control Type-I error: no need to do resampling.

Agnostic to hyperparameter: no rate lower bound on k_n .

This is not the end of the story!

Recall the ECMMD test statistic construction:

Recall the ECMMD test statistic construction:

• Given $(Y_1, W_1), ..., (Y_n, W_n)$ and predictive distribution $\operatorname{Bern}(\hat{f}(\mathbf{Z}));$

Recall the ECMMD test statistic construction:

- Given $(Y_1, W_1), \ldots, (Y_n, W_n)$ and predictive distribution $\operatorname{Bern}(\hat{f}(\mathbf{Z}));$
- Sample $(X_i, W_i) \sim \operatorname{Bern}(W_i), \ W_i = \hat{f}(Z_i);$

Recall the ECMMD test statistic construction:

- Given $(Y_1, W_1), \ldots, (Y_n, W_n)$ and predictive distribution $\operatorname{Bern}(\hat{f}(\mathbf{Z}));$
- Sample $(X_i, W_i) \sim \text{Bern}(W_i), W_i = \hat{f}(Z_i);$
- Compute the test statistic T with $(X_1,Y_1,W_1),\ldots,(X_n,Y_n,W_n)$ and standard deviation estimate $\hat{\sigma}_n$.

Recall the ECMMD test statistic construction:

- Given $(Y_1, W_1), \ldots, (Y_n, W_n)$ and predictive distribution $\operatorname{Bern}(\hat{f}(\mathbf{Z}));$
- Sample $(X_i, W_i) \sim \text{Bern}(W_i), W_i = \hat{f}(Z_i);$
- Compute the test statistic T with $(X_1,Y_1,W_1),\ldots,(X_n,Y_n,W_n)$ and standard deviation estimate $\hat{\sigma}_n$.

Sampling $X_i \sim \mathbb{P}_{\mathbf{X}_i | \mathbf{W}_i}$ will induce a random test!

1. Given (Y_i, W_i) , $i=1,\ldots,n$. Construct the nearest neighbor graph using W_1,\ldots,W_n ;

- 1. Given (Y_i, W_i) , $i=1,\ldots,n$. Construct the nearest neighbor graph using W_1,\ldots,W_n ;
- 2. Get M_n samples $(\widetilde{X}_i^{(1)}, W_i)_{i=1,...,n}, ..., (\widetilde{X}_i^{(M_n)}, W_i)_{i=1,...,n}$ from $\mathbb{P}_{X_i|W_i}$

- 1. Given (Y_i, W_i) , $i=1,\ldots,n$. Construct the nearest neighbor graph using W_1,\ldots,W_n ;
- 2. Get M_n samples $(\widetilde{X}_i^{(1)}, W_i)_{i=1,...,n}, ..., (\widetilde{X}_i^{(M_n)}, W_i)_{i=1,...,n}$ from $\mathbb{P}_{X_i|W_i}$

$$T^{(m)} \equiv \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((Y_i, \widetilde{X}_i^{(m)}), (Y_j, \widetilde{X}_j^{(m)})), \widetilde{T} = \frac{1}{M_n} \sum_{m=1}^{M_n} T^{(m)};$$

- 1. Given (Y_i, W_i) , $i=1,\ldots,n$. Construct the nearest neighbor graph using W_1,\ldots,W_n ;
- 2. Get M_n samples $(\widetilde{X}_i^{(1)}, W_i)_{i=1,...,n}, \ldots, (\widetilde{X}_i^{(M_n)}, W_i)_{i=1,...,n}$ from $\mathbb{P}_{X_i|W_i}$

$$T^{(m)} \equiv \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((Y_i, \widetilde{X}_i^{(m)}), (Y_j, \widetilde{X}_j^{(m)})), \ \widetilde{T} = \frac{1}{M_n} \sum_{m=1}^{M_n} T^{(m)};$$

3. Return the test statistic $\widetilde{T}/\widetilde{\sigma}$ with standard deviation estimate $\widetilde{\sigma}$;

- 1. Given (Y_i, W_i) , $i=1,\ldots,n$. Construct the nearest neighbor graph using W_1,\ldots,W_n ;
- 2. Get M_n samples $(\widetilde{X}_i^{(1)}, W_i)_{i=1,...,n}, \ldots, (\widetilde{X}_i^{(M_n)}, W_i)_{i=1,...,n}$ from $\mathbb{P}_{X_i|W_i}$

$$T^{(m)} \equiv \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((Y_i, \widetilde{X}_i^{(m)}), (Y_j, \widetilde{X}_j^{(m)})), \widetilde{T} = \frac{1}{M_n} \sum_{m=1}^{M_n} T^{(m)};$$

3. Return the test statistic $\widetilde{T}/\widetilde{\sigma}$ with standard deviation estimate $\widetilde{\sigma}$;

- 1. Given (Y_i, W_i) , $i=1,\ldots,n$. Construct the nearest neighbor graph using W_1,\ldots,W_n ;
- 2. Get M_n samples $(\widetilde{X}_i^{(1)}, W_i)_{i=1,...,n}, ..., (\widetilde{X}_i^{(M_n)}, W_i)_{i=1,...,n}$ from $\mathbb{P}_{X_i|W_i}$

$$T^{(m)} \equiv \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((Y_i, \widetilde{X}_i^{(m)}), (Y_j, \widetilde{X}_j^{(m)})), \ \widetilde{T} = \frac{1}{M_n} \sum_{m=1}^{M_n} T^{(m)};$$

3. Return the test statistic $\widetilde{T}/\widetilde{\sigma}$ with standard deviation estimate $\widetilde{\sigma}$;

Theorem (informal): Under H_0 , as long as $M_n o \infty$ at any rate we have

- 1. Given (Y_i, W_i) , $i=1,\ldots,n$. Construct the nearest neighbor graph using W_1,\ldots,W_n ;
- 2. Get M_n samples $(\widetilde{X}_i^{(1)}, W_i)_{i=1,...,n}, ..., (\widetilde{X}_i^{(M_n)}, W_i)_{i=1,...,n}$ from $\mathbb{P}_{X_i|W_i}$

$$T^{(m)} \equiv \frac{1}{n} \sum_{i=1}^{n} \frac{1}{k_n} \sum_{j \in \mathcal{N}(i)} H((Y_i, \widetilde{X}_i^{(m)}), (Y_j, \widetilde{X}_j^{(m)})), \ \widetilde{T} = \frac{1}{M_n} \sum_{m=1}^{M_n} T^{(m)};$$

3. Return the test statistic $\widetilde{T}/\widetilde{\sigma}$ with standard deviation estimate $\widetilde{\sigma}$;

Theorem (informal): Under H_0 , as long as $M_n o \infty$ at any rate we have

$$\sqrt{nk_n}\widetilde{T}/\widetilde{\sigma}_n \to N(0,1)$$
, if $k_n = o(n^{\delta})$ for some small $\delta > 0$.

$$(W_i, 1 - W_i) \stackrel{iid}{\sim} \text{Dirichlet}(\rho), \rho \in \{0.1, 0.2, 0.3, 0.4, 0.5\}$$

$$(W_i, 1 - W_i) \stackrel{iid}{\sim} \text{Dirichlet}(\rho), \ \rho \in \{0.1, 0.2, 0.3, 0.4, 0.5\}$$

 $n = 100, \ k_n \in \{15, 25\}, \ M_n = 100$

Classification calibration

$$(W_i, 1 - W_i) \stackrel{iid}{\sim} \text{Dirichlet}(\rho), \ \rho \in \{0.1, 0.2, 0.3, 0.4, 0.5\}$$

 $n = 100, \ k_n \in \{15, 25\}, \ M_n = 100$

Null

Classification calibration

$$(W_i, 1 - W_i) \stackrel{iid}{\sim} \text{Dirichlet}(\rho), \rho \in \{0.1, 0.2, 0.3, 0.4, 0.5\}$$

$$n = 100, k_n \in \{15,25\}, M_n = 100$$

Null

$$Y_i \sim \text{Bern}(W_i), X_i \sim \text{Bern}(W_i)$$

Classification calibration

$$(W_i, 1 - W_i) \stackrel{iid}{\sim} \text{Dirichlet}(\rho), \ \rho \in \{0.1, 0.2, 0.3, 0.4, 0.5\}$$

 $n = 100, \ k_n \in \{15, 25\}, \ M_n = 100$

Null

$$Y_i \sim \text{Bern}(W_i), X_i \sim \text{Bern}(W_i)$$

Alternative

Classification calibration

$$(W_i, 1 - W_i) \stackrel{iid}{\sim} \text{Dirichlet}(\rho), \rho \in \{0.1, 0.2, 0.3, 0.4, 0.5\}$$

$$n = 100, k_n \in \{15,25\}, M_n = 100$$

Null

$$Y_i \sim \text{Bern}(W_i), X_i \sim \text{Bern}(W_i)$$

Alternative

$$Y_i \sim \text{Bern}(W_i - W_i^5), X_i \sim \text{Bern}(W_i)$$

Take-home messages:

Take-home messages:

 Formulate the model calibration test to a conditional two-sample problem and bridge the classical inference literature with calibration problem;

Take-home messages:

- Formulate the model calibration test to a conditional two-sample problem and bridge the classical inference literature with calibration problem;
- Nearest neighbor-based test has statistical and computational advantages;

Take-home messages:

- Formulate the model calibration test to a conditional two-sample problem and bridge the classical inference literature with calibration problem;
- Nearest neighbor-based test has statistical and computational advantages;
- Derandomization is beneficial for the power of the test;

Take-home messages:

- Formulate the model calibration test to a conditional two-sample problem and bridge the classical inference literature with calibration problem;
- Nearest neighbor-based test has statistical and computational advantages;
- Derandomization is beneficial for the power of the test;

Open questions:

Take-home messages:

- Formulate the model calibration test to a conditional two-sample problem and bridge the classical inference literature with calibration problem;
- Nearest neighbor-based test has statistical and computational advantages;
- Derandomization is beneficial for the power of the test;

Open questions:

Is the proposed test powerful against local alternatives?

Take-home messages:

- Formulate the model calibration test to a conditional two-sample problem and bridge the classical inference literature with calibration problem;
- Nearest neighbor-based test has statistical and computational advantages;
- Derandomization is beneficial for the power of the test;

Open questions:

- Is the proposed test powerful against local alternatives?
- What if there are multiple candidate models?

Take-home messages:

- Formulate the model calibration test to a conditional two-sample problem and bridge the classical inference literature with calibration problem;
- Nearest neighbor-based test has statistical and computational advantages;
- Derandomization is beneficial for the power of the test;

Open questions:

- Is the proposed test powerful against local alternatives?
- What if there are multiple candidate models?
- High-stakes application with the proposed method?

Thank you!

Thank you! Questions?