데이터 전처리와 퍼셉트론 구조를 이용한 Hopfield Network 성능향상

이현우

Department of Physics, Inha University, Incheon 22212, Korea

1. Introduction

Q Purpose

Success

Failure, why?

2. Theory

2-1 홉필드 네트워크 (Hopfield network)

$$\mathcal{B} = -\frac{1}{2} \sum_{i,j} J_{ij} S_i S_j \qquad J_{ij} = \frac{1}{p} \sum_{\alpha}^p \xi_i^{(\alpha)} \xi_j^{(\alpha)}$$

$$\Delta B = 2 \sum_{i \neq k} J_{ki} S_k S_j \quad \begin{cases} S_k \to -S_k \\ P_i \to P_i - \Delta P_i \end{cases} \quad \text{when, } \Delta B \leq 0$$

2-2 MNIST database

▶연상 실패는 패턴 아미지의 겹친 영역이 많아서 발생한다.

2-3 이미지 데이터 전처리

➣ 이미지 데이터 전처리

-데이터 기울기 보정 -> 평균 이미지 생성 -> 이미지 외곽 제거 -> 이진화

2-4 퍼셉트론 구조

>> 3개의 패턴 그룹으로 쪼개어 홉필 드 네트워크를 적용했다.

3. Result

4-1 이미지 전처리 결과

4-2 퍼셉트론 구조 결과

	연상 정확도 (%)	연상 실패 (%)	오답 (%)	가장 혼돈한 숫자
0	60	2	38	6
1	96	0	4	7
2	50	0	50	7
3	68	0	32	1
4	46	4	50	9
5	42	0	58	9
6	58	2	40	4
7	70	0	30	9
8	58	0	42	9
9	70	4	26	4

4. Summary

- ❖ 홉필드 네트워크를 이용해 손 글씨를 인식 할 경우 글씨 인식에 문제가 발생한다.
- ❖ 이는 홉필드 네트워크의 연상 기억장치는 패턴의 많은 겹침이 있으면 연상에 실패하는 현상 발생함을 확인 하였다.
- ❖ 이미지 데이터 전처리와 유사 퍼셉트론 구조를 이용하면 손 글씨 인식 정확도를 약 **61.8%**까지 올릴 수 있음을 확인하였다.