UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA

CORSO DI LAUREA IN SCIENZE STATISTICHE ED ECONOMICHE

Prova di STATISTICA 1 del 21 novembre 2018 - Versione III

COGNOME E NOME:

MATRICOLA:

Rispondere ai seguenti quesiti indicando per esteso formule, calcoli, risultati e commenti:

1) Si considerino le variabili S (Numero di punti vendita), X (Numero dipendenti), Y (Fatturato) e Z (Localizzazione), per una popolazione di 10 aziende:

S	3	7	3	3	7	7	5	5	3	7
X	25	54	30	35	48	32	24	9	12	30
Y	20	100	50	50	100	90	30	40	20	10
Z	IT	IT	EST	IT	EST	EST	EST	IT	EST	EST

1.1) Relativamente alla variabile S:

- 1.1a) Si calcoli la media quadratica;
- 1.1b) Si misuri il grado di variabilità con il coefficiente di variazione (CV);
- 1.1c) Si quantifichi il grado di asimmetria tramite l'indice di asimmetria di Fisher;

1.2) Relativamente alla variabile Z:

- 1.2a) si fornisca una opportuna rappresentazione grafica;
- 1.2b) si quantifichi il grado di mutabilità della variabile tramite l'indice di eterogeneità di Gini normalizzato. Si costruisca una tabella di massima eterogeneità.
- **1.3) Relativamente alle variabili X e Y**, le cui modalità vanno aggregate nelle seguenti classi (*chiuse a destra*):

Y	0- 30	30- 60	60- 100	
X	0- 10	10- 30	30- 60	

1.3a) Si costruisca la tabella di distribuzione congiunta (X, Y);

Utilizzando la tabella a doppia entrata di cui al punto 1.3a):

- 1.3b) Si rappresenti graficamente la variabile marginale Y;
- 1.3c) Si calcoli la mediana della variabile marginale X;
- 1.3c) Si quantifichi il grado di connessione con l'indice Chi quadrato normalizzato (χ_N^2) tra le variabili Y e X e lo si interpreti;

2) Utilizzando i valori riportati nella sottostante tabella:

X	20	18	20	20	18
Y	20	22	18	16	24

- 2.1) si rappresenti il diagramma a dispersione di X e Y e la funzione di regressione ipotizzando Y in funzione di X;
- 2.2) si calcolino i parametri "a" e "b" dei minimi quadrati del modello: Y = a + b X;
- 2.3) si calcoli il parametro "c" dei minimi quadrati del modello: Y = c X;
- 2.4) Si calcoli l'errore medio di interpolazione per il modello al punto 2.2) (retta completa)
- 2.5) Senza effettuare calcoli si motivi perché $\eta_{Y|X}^2 < \eta_{X|Y}^2$
- 3) Si dimostri che $Var(a + bX) = b^2 Var(X)$:

Dimostrazione:	

Rispondere ai seguenti quesiti scegliendo l'opzione corretta e motivando opportunamente la risposta:

4) Si completi la seguente tabella affinché $\chi^2 = 40$:

	••••	•	10. 00
X∖Y	10	15	20
18	a	b	С
38	d	e	f

a)
$$a = 15$$
; $b = 5$; $c = 0$; $d = 0$; $e = 15$; $f = 5$

b)
$$a = 15$$
; $b = 10$; $c = 0$; $d = 0$; $e = 0$; $f = 15$

c) nessuna delle precedenti

Motivazione:

- 5) Se il CV(X)=0.1 (coefficiente di variazione) allora CV(X+1) è:
 - a) pari a 0.1
 - b) maggiore di 0.1
 - c) minore di 0.1

Motivazione:

6) Si completi la seguente tabella affinché $\chi_N^2=1$ e $\eta_{Y|X}^2=0$:

X\Y	20	y_2	40
10	a	0	b
15	С	18	d

a)
$$y_2 = 30$$
; $a = 5$; $b = 5$; $c = 0$; $d = 5$

b)
$$y_2 = 25$$
; $a = 18$; $b = 18$; $c = 0$; $d = 0$

c) nessuna delle precedenti

Motivazione:

7) Con riferimento alla seguente tabella a doppia entrata:

X∖Y	10	12	14	16
8	4	0	0	4
12	0	4	4	0

$$a) \eta_{X|Y}^2 = 1$$

b)
$$\rho^2 = 0$$

c) entrambe le precedenti

Motivazione:

UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA

CORSO DI LAUREA IN SCIENZE STATISTICHE ED ECONOMICHE

Prova di STATISTICA 1 del 21 novembre 2018 - Versione IV

COGNOME E NOME:

MATRICOLA.

Rispondere ai seguenti quesiti indicando per esteso formule, calcoli, risultati e commenti:

2) Si considerino le variabili S (Numero di punti vendita), X (Numero dipendenti), Y (Fatturato) e Z (Localizzazione), per una popolazione di 10 aziende:

S	25	23	27	23	27	27	23	25	23	27
X	25	54	30	35	48	32	10	9	12	30
Y	20	100	50	70	100	90	30	40	20	10
Z	EST	IT	EST	IT	EST	EST	EST	IT	EST	EST

1.2) Relativamente alla variabile S:

- 1.1a) Si calcoli la media quadratica;
- 1.1b) Si misuri il grado di variabilità con il coefficiente di variazione (CV);
- 1.1c) Si quantifichi il grado di asimmetria tramite l'indice di asimmetria di Fisher;

1.2) Relativamente alla variabile Z:

- 1.2a) si fornisca una opportuna rappresentazione grafica;
- 1.2b) si quantifichi il grado di mutabilità della variabile tramite l'indice di eterogeneità di Gini normalizzato. Si costruisca una tabella di massima eterogeneità.
- **1.3) Relativamente alle variabili X e Y**, le cui modalità vanno aggregate nelle seguenti classi (*chiuse a destra*):

Y	0- 30	30- 50	50- 100	
X	0- 10	10- 30	30- 60	

1.3a) Si costruisca la tabella di distribuzione congiunta (X, Y);

Utilizzando la tabella a doppia entrata di cui al punto 1.3a):

- 1.3b) Si rappresenti graficamente la variabile marginale Y;
- 1.3c) Si calcoli la mediana della variabile marginale X;
- 1.3c) Si quantifichi il grado di connessione con l'indice Chi quadrato normalizzato (χ_N^2) tra le variabili Y e X e lo si interpreti;

2) Utilizzando i valori riportati nella sottostante tabella:

X	18	20	18	18	20
Y	20	22	18	16	24

- 2.1) si rappresenti il diagramma a dispersione di X e Y e la funzione di regressione ipotizzando Y in funzione di X;
- 2.2) si calcolino i parametri "a" e "b" dei minimi quadrati del modello: Y = a + b X;
- 2.3) si calcoli il parametro "c" dei minimi quadrati del modello: Y = c X;
- 2.4) Si calcoli l'errore medio di interpolazione per il modello al punto 2.2) (retta completa)
- 2.5) Senza effettuare calcoli si motivi perché $\eta_{Y|X}^2 < \eta_{X|Y}^2$
- 3) Si dimostri che $Var(a + bX) = b^2 Var(X)$:

Ī	Dimostrazione:			

Rispondere ai seguenti quesiti scegliendo l'opzione corretta e motivando opportunamente la risposta:

4) Con riferimento alla seguente tabella a doppia entrata:

X\Y	10	12	14	16
8	4	0	0	4
12	0	4	4	0

a)
$$\eta_{X|Y}^2 = 1$$

b)
$$\rho^{2} = 0$$

c) entrambe le precedenti

Motivazione:

5) Si completi la seguente tabella affinché $\chi^2 = 40$:

X\Y	10	15	20
18	a	b	С
38	d	е	f

a)
$$a = 15$$
; $b = 5$; $c = 0$; $d = 0$; $e = 15$; $f = 5$

b)
$$a = 15$$
; $b = 10$; $c = 0$; $d = 0$; $e = 0$; $f = 15$

c) nessuna delle precedenti

Motivazione:

- 6) Se il CV(X)=0.1 (coefficiente di variazione) allora CV(X+1) è:
 - a) pari a 0.1
 - b) maggiore di 0.1
 - c) minore di 0.1

Motivazione:

7) Si completi la seguente tabella affinché $\chi_N^2=1$ e $\eta_{Y|X}^2=0$:

X\Y	20	y_2	40
10	a	0	b
15	С	18	d

b)
$$y_2 = 30$$
; $a = 5$; $b = 5$; $c = 0$; $d = 5$

b)
$$y_2 = 25$$
; $a = 18$; $b = 18$; $c = 0$; $d = 0$

c) nessuna delle precedenti

Motivazione: