Midterm #1 Study Guide Math 181 (Discrete Structures), Spring 2023

1. Sets [§1.1]

- (a) sets of numbers (integers \mathbb{Z} and real numbers \mathbb{R}), set-builder notation, subsets $(A \subseteq B)$
- (b) operations of union $(A \cup B)$, intersection $(A \cap B)$, difference $(A \setminus B)$, complement (A^c)
- (c) representing sets via Venn diagrams
- (d) ordered pairs (x,y) and the (Cartesian) product $X \times Y$ of two sets X and Y

2. Logical propositions [§1.2, 1.3]

- (a) operations of "or" $(p \lor q)$, "and" $(p \land q)$, "not" $(\neg p)$
- (b) truth tables for compound propositions
- (c) conditional a.k.a. implication a.k.a. "if... then..." $(p \to q)$
- (d) biconditionals $(p \leftrightarrow q)$ and logical equivalence (\equiv)
- (e) converse $q \to p$ and contrapositive $\neg q \to \neg p$ of an implication $p \to q$ (contrapositive is logically equivalent to original implication; converse is not!)

3. Logical arguments [§1.4]

- (a) converting an argument from words to symbolic form and vice-versa
- (b) proving validity using truth tables
- (c) proving validity using the rules of inference and logical equivalences
- (d) common forms of invalid arguments a.k.a. fallacies

4. Quantifiers [§1.5, 1.6]

- (a) propositional formulas (P(x)) and domains of discourse (D)
- (b) universal $(\forall x \ P(x))$ and existential $(\exists x \ P(x))$ quantifiers
- (c) DeMorgan's Laws: $\neg(\forall x \ P(x)) \equiv \exists x \ \neg P(x) \text{ and } \neg(\exists x \ P(x)) \equiv \forall x \ \neg P(x)$
- (d) nested quantifiers and order of quantifiers $(\forall x \exists y \ P(x,y) \not\equiv \exists y \forall x \ P(x,y))$

5. Proofs [§2.1]

- (a) two basic mathematical systems: the theory of integers; the theory of sets
- (b) direct proofs for theorems of form " $\forall x_1, \ldots, x_n$ if $P(x_1, \ldots, x_n)$ then $Q(x_1, \ldots, x_n)$ "
- (c) counterexamples to universally quantified statements