Mágneses erőtér

Mágneses erő, ciklotron mozgás, Lorentz-erő, áramvezetőre ható erő, mágneses dipólmomentum, mágneses fluxus, Biot-Svart törvény, áramvezető körül kialakuló mágneses tér Egy helyben álló töltések -> Coulomb-erő (Elektrosztatika)

Mozgó töltések → Coulomb-erő + Mágneses erő (Elektrodinamika)

B mágneses indukcióvektor

$$\mathbf{F} = q\mathbf{v} \times \mathbf{B}$$

$$F = q \cdot v \cdot B \cdot \sin \theta$$

Hogyan mozog a töltött részecske mágneses térben?

30-5 ábra na övevlínost teblő A (a

Homogén mágneses erőtérben a töltött részecskék állandó sebességgel spirális pályán mozognak. A pálya henger palástján helyezkedik el.

Mágneses tükör

Fig. 2.6. Ion orbit and reflection in a converging magnetic field.

Csapdázott részecskék a Föld körül

30-6 ábra

A mágneses palack a benne spirális pályán mozgó töltött részecskéket a széleknél "visszaveri", és ezáltal a részecskéket magába zárja.

Sugárzási övek (Van Allen Övek)

frajectory of

Tendem Mirror Experiment

Lorenzt-erő

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} imes \mathbf{B})$$

Az elektromos és a mágneses erőtér hatása egyesítve

Alkalmazás: Tömegspektroszkópia

Wien-szűrő:

$$F_{E} = F_{B}$$

$$qE = qvB$$

$$V = \frac{E}{B}$$

Alkalmazás: Hall-efektus

GEOMAGNETIC HALL SENSOR 3-AXIS MAGNETOMETER COMPASS AK09911C

PID# 15312

CA\$19.00

Free shipping: On orders over \$120 within BC

4 In Stock

Order now, processed by tomorrow

Quantity

Related products

DIGITAL COMPASS MODULE HMC5883L GY273 3.3V I2C LOGIC

CA\$8.50

BMM150 GEOMAGNETIC, COMPASS SENSOR MODULE

CA\$12.00 EACH

Áramvezető mágneses térben

$$\mathbf{F} = I\left(l \times \mathbf{B}\right)$$

$$d\mathbf{F} = I\left(dl \times \mathbf{B}\right)$$

Feladat (30-4)

Homogén, 3×10^{-3} T indukciójú mágneses erőtérbe helyezett egyenes huzalon 8A erősségű áram folyik. A mágneses erővonalak a huzallal $\theta = 48^{\circ}$ -os szöget zárnak be (30-11 ábra). Mekkora erővel hat a mágneses erőtér az áramvezetőre?

Mágneses dipólmomentum

$$\mu = I \cdot \mathbf{A} \quad \left[Am^2\right]$$

Áramvezető hurok mágneses térben

Áramvezető hurok mágneses térben

Mágneses dipólmomentum

$$egin{aligned} \mu &= I \cdot \mathbf{A} & \left[Am^2
ight] \ \mathbf{M} &= \mu imes \mathbf{B} \end{aligned}$$

30-13 ábra mandmagabi diszdovgi

Az áramvezető hurok síkjára merőleges μ vektor irányát a következő jobbkéz-szabállyal határozzuk meg: a behajlított ujjak az áram irányába mutatnak, a kinyújtott hüvelykujj μ irányát jelzi.

Mágneses fluxus

$$\Phi_{\mathbf{B}} = \iint \mathbf{B} \cdot d\mathbf{A}$$

$$\Phi_{\mathbf{E}} = \iint \mathbf{E} \cdot d\mathbf{A}$$

A mágneses tér forrása

Biot-Savart törvény

$$d{f B}=\Big(rac{\mu_0}{4\pi}\Big)rac{Id{f l} imes{f r}}{r^2}$$

Vákuum mágneses permeabilitása:

$$\mu_0=4\pi\cdot 10^{-7}~rac{Tm}{A}$$

FROM THE MAKERS OF WOLFRAM LANGUAGE AND MATHEMATICA

 $\lim x/(a^2(sqrt(a^2+x^2)))$ as x->inf

 $\lim x/(a^2(sqrt(a^2+x^2)))$ as x->-inf

 $\lim_{x \to \infty} \frac{x}{a^2 \sqrt{a^2 + x^2}} = \frac{1}{a^2}$

Limit
$$\lim_{x \to \infty} \frac{x}{a^2 \sqrt{a^2 + x^2}} = \frac{1}{\underline{a^2}}$$

Vezető körül kialakuló mágneses tér

$$d\mathbf{B} = \Big(rac{\mu_0}{4\pi}\Big)rac{Id\mathbf{l} imes\hat{\mathbf{r}}}{r^2}$$

$$dB=rac{\mu_0}{4\pi}rac{Idx\sin heta}{r^2}$$

$$B=\int_{-\infty}^{\infty}rac{\mu_0}{4\pi}rac{I\sin heta}{r^2}dx$$

• • •

$$B=rac{\mu_0 I}{2\pi a}$$

rikusan veszi körül.

c) A mágneses erővonalak irányát az ábrán látható jobbkézszabállyal lehet megállapítani. Ha az áram a kinyújtott hüvelykujj irányába folyik, akkor a behajlított ujjak a mágneses erővonalak irányába mutatnak. Nincs mágneses monopólus

 (a) Elektromos dipólus. A középpontban az elektromos erővonal az elektromos dipólus-vektorral ellentétes irányú. (b) Köráram, mint mágneses dipólus. A középpontban a mágneses erővonal a mágneses dipólusvektorral azonos irányú.

Nincs mágneses monopólus

A mágneses erővonalak mindig zárt hurkot alkotnak

$$abla \cdot {f B} = 0$$
 vagy ${
m div} {f B} = 0$

