First SEMESTER—B.TECH- Course Work MID-SEMESTER EXAMINATION, January 2023

Course Code-FCMT001

Course Title-Mathematics I

Time: 1:30 hours

Max Marks-25

Note: Attempt all questions. Missing data/information (if any), may be suitably assumed & mentioned in the answer.

Q. No.	Question	Marks	CO
1 (a)	Test the convergence of following series:	2.5	CO1
	$\frac{x}{1.2} + \frac{x^2}{2.3} + \frac{x^3}{3.4} + \dots, x > 0.$		
(p)	Test the convergence of the series:	2.5	CO1
	$\sum_{n=1}^{\infty} \left(\frac{n+1}{n+2}\right)^n . x^n, x > 0.$		
2(a)	Test the convergence of following series:	2.5	CO1
	$\sum [\sqrt{n^4+1} - \sqrt{n^4-1}].$		
(b)	Test the following series for convergence	2.5	CO1
	and absolute convergence:		
	$1 - \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} - \frac{1}{4\sqrt{4}} + \dots$		
3 (a)	If $\tan(\theta + i\phi) = \tan \alpha + i \sec \alpha$, then prove that	2.5	CO2
	$2\theta = n\pi + \frac{\pi}{2} + \alpha.$		
(b)	Prove that	2.5	CO2
	$\sinh^{-1}(\cot x) = \log(\cot x + \csc x).$		
4 (a)	Prove that the value of <i>n</i> -th derivative of $\frac{x^3}{x^2-1}$,	2.5	CO2
	for $x = 0$ is zero, when n is even and $(-n!)$, when n is		
	odd and greater than one.		
48)	If $y = a\cos(\log x) + b\sin(\log x)$, show that	2.5	CO2
	$x^{2}y_{n+2} + (2n+1)xy_{n+1} + (n^{2}+1)y_{n} = 0.$		
5 (a)	Expand $2x^3 + 7x^2 + x - 1$ in powers of $x - 2$,	2.5	CO2
	using Taylor's series.		000
(b)	Expand $\log(1+e^x)$ upto third degree terms using	2.5	CO2
	Maclaurin's series.		

FIRST SEMESTER- B.TECH-Course Work END SEMESTER EXAMINATION, MARCH, 2023

Course Code-FCMT001 Course Title- Mathematics-I

Time- 3:00 hours

Max. Marks- 50

Note:- Attempt all the five questions. Missing data/information (if any), may be suitably assumed & mentioned in the answer.

Q. No.	Questions	Marks	CO
Q1	Attempt any two parts of the following		
12	Test the convergence of the following series: $\frac{1^2 \cdot 2^2}{1!} + \frac{2^2 \cdot 3^2}{2!} + \frac{3^2 \cdot 4^2}{3!} + \dots$	5	CO1
1b	Test the convergence of the following series:	5	CO1
	$\frac{3}{7}x + \frac{3.6}{7.10}x^2 + \frac{3.6.9}{7.10.13}x^3 + \frac{3.6.9.12}{7.10.13.16}x^4 \dots$		
e de	Show that the series $\sum (-1)^n [\sqrt{n^2 + 1} - n]$ is conditionally convergent.	5	CO1
O2	Attempt any two parts of the following		
Q2 2a	If $v = e^{\sin^{-1}x}$, show that	5	CO2
	$(1-x^2)y_{n+2}-(2n+1)xy_{n+1}-(n^2+1)y_n=0.$		
2b	If $y = \cos(m \sin^{-1} x)$, using Leibnitz theorem, find $(y_n)_0$.	5	CO2
30	Using Maclaurin's theorem, expand $\log (x + \sqrt{1 + x^2})$ in ascending powers of x as far as the term x^5 .	5	CO2
Q3	Attempt any two parts of the following	-	
3a/	Show that the pedal equation of the parabola $\frac{2a}{r} = 1 - \cos\theta$ is $p^2 = ar$.	. 5	CO3
	Hence find the radius of curvature of the given parabola.		
3b	Find the angle of intersection of the curves $r = a/(1 + \cos\theta)$ and $r = b/(1 - \cos\theta)$.	5	CO3
36	Find the radius of curvature at the point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ of the curve $x^3 + y^3 = 3axy$.	5	CO3
Q4	Attempt any two parts of the following		
44	Find all the asymptotes of the curve $y^3 - xy^2 - x^2y + x^3 + x^2 - y^2 - 1 = 0.$.5	CO4
40	Find the area of the cardioid $r = a(1 + \cos\theta)$.	5	CO4
4c	The curves $y^2(a+x) = x^2(3a-x)$ revolves about the axis of x. Find the volume generated by the loop.	5	CO4

Q5	Attempt any two parts of the following		
(5a)	For what values of μ , the system of equations	5	CO5
10	x+y+z=1,		
1	$x + 2y + 4z = \mu,$		
	$x + 4y + 10z = \mu^2$		1,
	have a solution and solve them completely in each case.		
5b	Find the eigenvalues and eigenvectors of the matrix	5	CO5
	[2 2 1]		
1	$A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \end{bmatrix}.$		
1	11 2 2		
-		5	COS
59	Show that the matrix	1	COS
-	$A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$		
1000	$A = \begin{bmatrix} 2 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$		
	10 0 -11		
1	satisfies Cayley-Hamilton theorem. Hence find A ⁻¹ .		