

UNIVERSITY of LIMERICK

OLLSCOIL LUIMNIGH

FACULTY of SCIENCE and ENGINEERING Department of Computer Science and Information Systems

Mid-Term Assessment Paper

Academic Year:2021-2022Semester:SpringModule Title:Deep Reinforcement LearningModule Code:CS6482Duration of Exam:1 HourPercent of Total Marks:10Lecturer(s):J.J. CollinsPaper marked out of:10

11:00-12:00 Thur. 24th February 2022 (Week 5)

Instructions to Candidates:

- Answer ALL ten questions.
- All questions carry equal marks.
- NO RED PEN

Name:	 		
ID Number: _	 	 	
Course			

Q1. Describe the Symbolic AI and Machine Learning paradigms, and illustrate the answer with examples.
Symbolic AI is
Machine Learning is
Q2: What is the formula for the update applied to a weight in a hidden layer when performing Back Propagation (BP) in a Multi-Layer Perceptron (MLP)?
Q3: The following code fragments are from Nielsen's implementation of an MLP for MNIST.
L1 #### network.py L2 class Network(object):
L3 definit(self, sizes): L4 self.num_layers = len(sizes) L5 self.sizes = sizes L6 self.biases = [np.random.randn(y, 1) for y in sizes[1:]] L7 self.weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])]
L8 #### test.py L9 import network L10 net = network.Network([784, 30, 10])
What are the dimesnions of the three lists
1. sizes,
2. sizes[1:]
3. zip(sizes[:-1],sizes[1:])

Q4: What is a vanishing gradient? What causes vanishing gradient? And what technique(s) can be used to reduce the impact of vanishing gradients? Include diagram(s) if discussing activation functions.
O5. Evaloin valva the growther of governmentage in Concellat a Net voice a largestica growth as in
Q5: Explain why the number of parameters in GoogleLeNet using Inception modules is significantly less than AlexNet - 6 million v of 60 million. The answer should focus exclusively on the Inception module. Illustrate the answer with a diagram and/or calculations.

Q6: Describe the key concept(s) in ResNet. Include a discussion on the purpose of a kernel of size 1x1 with stride 2. Illustrate the discussion with a diagram.
Q7: Given an input image of dimensions 75 x 100 with 3 channels for RGB. And a convolutional layer with 5x5 kernels stride 1, outputting 200 feature maps of size 75x100. How many parameters in the convolutional layer? Please show your calculations.

Q8: Briefly describe four techniques that can be used to reduce overfitting

1

2

3

4

Q9: Describe the two key concerns addressed in Reinforcement Learning paradigms?

1

2

Q10: What happens in Figure 1 when the number of steps approaches infinity?

Figure 1: Sutton and Barto. Introduction to Reinforcement Learning, 2^{nd} Edition. The MIT Press. 2018