Descomposición Sesgo - Varianza

M.Sc. William Caicedo Torres

Universidad Tecnológica de Bolívar caicedo77@gmail.com

21 de octubre de 2016

Material inspirado en el curso de Caltech "Learning from Data", por Yaser S. Abu Mustafá.

Un Quid Pro Quo en el aprendizaje

La cota VC:

$$P[|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)| > \epsilon] \le 4m_{\mathcal{H}}(2N)e^{-\frac{1}{8}\epsilon^2N}$$
 (Vapnik-Chervonenkis)

- Entre más complejo el conjunto de hipótesis utilizado, menor
 E_{in}.
- Sin embargo, en virtud de la cota VC, menor complejidad significa una mejor oportunidad de generalizar: Menor E_{out}.
- Lo ideal sería tener la complejidad justa, es decir que $\mathcal{H} = \{f\}.$

Cuantificando el Quid Pro Quo

- La aproximación del análisis VC descompone el error fuera del entrenamiento como: $E_{out} \leq E_{in} + \Omega$
- Hay otra forma de descomponer E_{out}: El análisis Sesgo-Varianza.
- Usando esta aproximación, *E_{out}* se compone de:
 - ① Que tan bien aproxima \mathcal{H} a f.
 - ② Que tan fácil es escoger una buena hipótesis h dentro de \mathcal{H} .
- Lo interesante del análisis Sesgo-Varianza es que lo podemos utilizar fácilmente en algoritmos de Regresión usando el Error Cuadrado Medio.

Descomposición Sesgo-Varianza

• Comenzemos con *E_{out}*:

$$E_{out}(g^{(\mathcal{D})}) = \mathbb{E}_{\mathbf{x}} \left[(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}))^{2} \right]$$

$$\mathbb{E}_{(\mathcal{D})} \left[E_{out}(g^{(\mathcal{D})}) \right] = \mathbb{E}_{(\mathcal{D})} \left[\mathbb{E}_{\mathbf{x}} \left[(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}))^{2} \right] \right]$$

$$\mathbb{E}_{(\mathcal{D})} \left[E_{out}(g^{(\mathcal{D})}) \right] = \mathbb{E}_{\mathbf{x}} \left[\mathbb{E}_{(\mathcal{D})} \left[(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}))^{2} \right] \right]$$

Ahora, concentrémonos en:

$$\mathbb{E}_{(\mathcal{D})}\left[\left(g^{(\mathcal{D})}(\mathbf{x})-f(\mathbf{x})\right)^2\right]$$

La Hipótesis Promedio

• Para evaluar $\mathbb{E}_{(\mathcal{D})}\left[(g^{(\mathcal{D})}(x)-f(x))^2\right]$ debemos definir la hipótesis "promedio":

$$\overline{g}(\mathbf{x}) = \mathbb{E}_{(\mathcal{D})}\left[g^{(\mathcal{D})}(\mathbf{x})\right]$$

- Qué es la hipótesis promedio? Imagine muchos datasets $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_k$
- Entonces:

$$\overline{g}(\mathbf{x}) pprox \frac{1}{K} \sum_{k=1}^{K} g^{(\mathcal{D}_k)}(\mathbf{x})$$

• La hipótesis promedio es algo así como la "mejor" hipótesis que puedo encontrar en \mathcal{H} , a partir multiples datasets \mathcal{D}_k

Usando $\overline{g}(x)$ en el análisis

$$\mathbb{E}_{(\mathcal{D})} \left[(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}))^2 \right] = \mathbb{E}_{(\mathcal{D})} \left[(g^{(\mathcal{D})}(\mathbf{x}) - \overline{g}(\mathbf{x}) + \overline{g}(\mathbf{x}) - f(\mathbf{x}))^2 \right]$$

$$= \mathbb{E}_{(\mathcal{D})} \left[(g^{(\mathcal{D})}(\mathbf{x}) - \overline{g}(\mathbf{x}))^2 + (\overline{g}(\mathbf{x}) - f(\mathbf{x}))^2 + 2(g^{(\mathcal{D})}(\mathbf{x}) - \overline{g}(\mathbf{x}))(\overline{g}(\mathbf{x}) - f(\mathbf{x})) \right]$$

$$= \mathbb{E}_{(\mathcal{D})} \left[(g^{(\mathcal{D})}(\mathbf{x}) - \overline{g}(\mathbf{x}))^2 \right] + (\overline{g}(\mathbf{x}) - f(\mathbf{x}))^2$$

Notas: 1. El valor esperado se puede distribuir con respecto a la suma. 2. $\overline{g}(x) = \mathbb{E}_{(\mathcal{D})}\left[g^{(\mathcal{D})}(x)\right]$, por lo que la resta del primer factor del doble producto equivale a cero. 3. $\overline{g}(x) - f(x)$ es constante con respecto a \mathcal{D} , por lo que se puede factorizar fuera del valor esperado.

Sesgo y Varianza

$$\mathbb{E}_{(\mathcal{D})}\left[(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}))^{2}\right] = \underbrace{\mathbb{E}_{(\mathcal{D})}\left[(g^{(\mathcal{D})}(\mathbf{x}) - \overline{g}(\mathbf{x}))^{2}\right]}_{\text{Varianza}} + \underbrace{(\overline{g}(\mathbf{x}) - f(\mathbf{x}))^{2}}_{\text{Sesgo}}$$

Recordemos que,

$$\mathbb{E}_{(\mathcal{D})}\left[E_{out}(g^{(\mathcal{D})})\right] = \mathbb{E}_{\mathbf{x}}\left[\mathbb{E}_{(\mathcal{D})}\left[(g^{(\mathcal{D})}(\mathbf{x}) - f(\mathbf{x}))^{2}\right]\right]$$

Por lo tanto,

$$\mathbb{E}_{(\mathcal{D})}\left[E_{out}(g^{(\mathcal{D})})\right] = \mathbb{E}_{\mathbf{x}}\left[Varianza(\mathbf{x}) + Sesgo(\mathbf{x})\right]$$

El Quid Pro Quo según nuestra descomposición

$$sesgo = \mathbb{E}_{\mathbf{x}}\left[\left(\overline{g}(\mathbf{x}) - f(\mathbf{x})\right)^2\right]$$

$$varianza = \mathbb{E}_{\mathbf{x}}\left[\mathbb{E}_{(\mathcal{D})}\left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \overline{g}(\mathbf{x})\right)^2\right]\right]$$

Ejemplo: Función Seno

$$f: [-1,1] \to \mathbb{R}$$
 $f(x) = sen(\pi x)$

Solo disponemos de 2 ejemplos de entrenamiento Tenemos 2 modelos de de aprendizaje:

$$\mathcal{H}_0: h(x) = \mathbf{b}$$

$$\mathcal{H}_1: h(x) = ax + b$$

Cuál es mejor, \mathcal{H}_0 o \mathcal{H}_1 ?

En un mundo ideal...

Pero solo tenemos 2 ejemplos de entrenamiento!

Sesgo y varianza para \mathcal{H}_0

Sesgo y varianza para \mathcal{H}_1

Y el ganador es...

Lección de hoy

Decida la complejidad del modelo de aprendizaje a utilizar de acuerdo a los datos disponibles, no de acuerdo a la complejidad que ud supone tiene la función blanco!

Muchas gracias!

Preguntas?

