

SY BTech Semester-IV (AY 2022-23)

Computer Science and Engineering (Cybersecurity and Forensics)

Disclaimer:

- a. Information included in these slides came from multiple sources. We have tried our best to cite the sources. Please refer to the <u>references</u> to learn about the sources, when applicable.
- b. The slides should be used only for preparing notes, academic purposes (e.g. in teaching a class), and should not be used for commercial purposes.

Unit II: Mathematical Foundations and Public Key Cryptography

Unit:

Mathematical Foundations and Public Key Cryptography:

Mathematics for Security: Modular Arithmetic, Euler's theorem, Fermat Theorem, Euclidean Algorithm, Miller-Rabin Algorithm, Primality Test, Chinese Remainder Theorem, Discrete Logarithm, Asymmetric Key Cryptography: RSA algorithms. Hash algorithms: MD5, SHA1

9 Hrs

Laboratory: Lab Assignment

Assign No.	Name of Assignment
4	Write a program using JAVA or Python or C++ to implement RSA asymmetric key algorithm.
5	Write a program using JAVA or Python or C++ to implement integrity of message using MD5 or SHA

Number Theory

*** Prime Numbers**

***** Relative Prime Numbers

- Two numbers are called relatively prime if the **greatest common divisor (GCD)** of those numbers is **1**.
- 8 and 15 are relatively prime number.
- The factors of 8 are 1, 2, 4, 8 and the factors of 15 are 1, 3, 5, 15.
- Examples of relatively prime numbers are: (10, 21), (14, 15), (45, 91),

- The greatest common divisor (GCD) of two numbers can be determined by comparing their prime factors and selecting the least powers of the factor.
- For example, the two numbers are 81 and 99.

$$81 = 1 * 9 * 9 = 1 * 3 * 3 * 3 * 3 = 1 * 3^{4}$$

 $99 = 1 * 3 * 33 = 1 * 3 * 3 * 11 = 1 * 3^{2} * 11$

The GCD is the least power of a number in the factors, So, $GCD(81, 99) = 1 * 3^2 * 11^0 = 9$

Modular Arithmetic

- *m mod n*
- The mod with respect to n is $(0, 1, 2, \dots n 1)$.
- Suppose m = 23 and n = 9, then
- $23 \mod 9 = 5$
- For any value of m, the value of m mod 9 is from (0, 1, 2, ... 8).

1. Addition of modular number

The addition of two numbers p and q with same modular base n is:

$$(p \mod n + q \mod n) \mod n = (p + q) \mod n$$

2. Subtraction of modular number

The subtraction of two numbers p and q with same modular base n is:
 (p mod n - q mod n) mod n = (p - q) mod n

3. Multiplication of modular number

The multiplication of two numbers p and q with same modular base n is:
 (p mod n * q mod n) mod n = (p * q) mod n

e.g.
$$p = 11$$
, $q = 15$ and $n = 8$

$$[(11 \mod 8) + (15 \mod 8)] \mod 8 = 10 \mod 8 = 2, (11 + 15) \mod 8 = 26 \mod 8 = 2$$

$$[(11 \mod 8) - (15 \mod 8)] \mod 8 = -4 \mod 8 = 4, (11 - 15) \mod 8 = -4 \mod 8 = 4$$

$$[(11 \mod 8) \times (15 \mod 8)] \mod 8 = 21 \mod 8 = 5, (11 \times 15) \mod 8 = 165 \mod 8 = 5$$

Example 1: Find the value of 7^7 mod 9.

Note:
$$m \wedge a \mod n = m \wedge pq \mod n$$

 $where \ a = p * q = (m^p \mod n)^q \mod n$

$$7^7 \mod 9 = (7^2)^3 * 7 \mod 9$$

= $(7^2 \mod 9)^3 \mod 9 * 7 \mod 9$
 $7^2 \mod 9 = 49 \mod 9 = 4$
 $7^6 \mod 9 = (7^2)^3 \mod 9 = 4^3 \mod 9 = 64 \mod 9 = 1$
 $7^7 = 7^6 * 7 \mod 9 = 1 * 7 \mod 9 = 7$

Example 2: Find the value of 5^117 mod 19.

$$117 = (2^{0} + 2^{2} + 2^{4} + 2^{5} + 2^{6})$$

$$117 = 1 + 4 + 16 + 32 + 64$$

$$5^{117} \mod 19 = 5^{(1+4+16+32+64)} \mod 19$$

$$5^{117} \mod 19 = (5^{1} * 5^{4} * 5^{16} * 5^{32} * 5^{64}) \mod 19$$


```
5^1 mod 19 = 5
```

$$5^2 \mod 19 = 6$$

$$5^8 \mod 19 = 4$$


```
5^32 mod 19 = (5^16 * 5^16) mod 19 = (5^16 mod 19 * 5^16 mod 19) mod 19 5^32 mod 19 = (16 * 16) mod 19 = 256 mod 19
```

5^32 mod 19 = 9

5^64 mod 19 = (**5^32** * **5^32**) mod 19 = (**5^32** mod 19 * **5^32** mod 19) mod 19

5^64 mod 19 = (**9 * 9**) mod 19 = **81** mod 19

 $5^64 \mod 19 = 5$

5^117 mod 19 = (**5^1** * **5^4** * **5^16** * **5^32** * **5^64**) mod 19

5^117 mod 19 = (5^1 mod 19 * 5^4 mod 19 * 5^16 mod 19 * 5^32 mod 19 * 5^64 mod 19) mod 19

5^117 mod 19 = (**5 * 17 * 16 * 9 * 5**) mod 19

5^117 mod 19 = **61200** mod 19 = **1**

 $5^{117} \mod 19 = 1$

Example 3: Find the value of 3^110 mod 9.

Fermat's Little Theorem

 \bullet If p is prime and a is an integer not divisible by p, then . . .

$$a^p \equiv a \pmod{p}$$

 $\mathbf{a}^{p-1} \equiv 1 \pmod{p}$

Hence, $a^{p-1} \mod p = 1$ where, p is prime and GCD (a, p) = 1

- ❖ E.g. $8^{12} \mod 13 = 1 \mod 13 = 1$
- \bullet 8¹⁰³ mod 103 = 8 mod 103 = 8
- * This theorem is useful in public key (RSA) and primality testing.

Example 3: Suppose a = 7 and p = 19 then prove Fermat's Little theorem

Example 4: Compute the value of 12345^23456789 mod 101 using Fermat's theorem


```
Solution By Fermat's Little theorem n^{p-1}=1 \mod p where n=12345 and p=101. 12345^{(101-1)} \mod 101=1 12345^{100} \mod 101=1 Therefore, 12345^{23456789} \mod 101=(12345^{100})^{234567}*12345^{89} \mod 101 =1*12345^{89} \mod 101 =12345^{89} \mod 101 But 12345 \mod 101=23 Therefore, 23^{89} \mod 101 23 \mod 101=23 23 \mod 101=24
```

Therefore, 2389 mod 101

```
23 mod 101 = 23

23^2 mod 101 = 24

23^3 mod 101 = 47

23^4 mod 101 = 71

23^5 mod 101 = 17

23^7 mod 101 = 4

23^{89} mod 101 = (23^7)^{12} 23^5 mod 101

= 4^{12} * 17 mod 101

= 5 * 17 mod 101

= 85
```

Therefore, the value of $12345^{23456789} \mod 101 = 85$.

Fermat's little theorem and its congruence

Suppose a positive integer be p and two integers x and y are congruent mod p.

Mathematically, $x \equiv y \pmod{p}$ if $p \mid (x-y)$

For example:

- i) $5 \equiv 2 \mod 3$
- ii) $23 \equiv -1 \mod 12$

Euler Totient Function ø(n)

- \emptyset (n) = how many numbers there are between 1 and n 1 that are relatively prime to n.
- \emptyset (4) = 2 (1, 3 are relatively prime to 4)
- \emptyset (5) = 4 (1, 2, 3, 4 are relatively prime to 5)
- \emptyset (6) = 2 (1, 5 are relatively prime to 6)
- \emptyset (7) = 6 (1, 2, 3, 4, 5, 6 are relatively prime to 7)
- ❖ This theorem generalizes Fermat's theorem and is an important key to the RSA algorithm.

For prime p,
$$\phi(p) = p - 1$$

e.g.
$$\phi(37) = 36$$

Two prime p, q with
$$p \neq q$$
, $\phi(n) = \phi(p,q) = (p-1) \times (q-1)$ e.g. $\phi(21) = (3-1) \times (7-1) = 2 \times 6 = 12$

e.g.
$$\emptyset(21) = (3-1) \times (7-1) = 2 \times 6 = 12$$

Where 12 integers are [1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20]

* Euler's theorem, for every a and p that are relatively prime:

$$a^{\Phi(p)} \equiv 1 \pmod{p}$$
 i.e. $a^{\Phi(p)} \mod p = 1$

 \bullet In other words, If a and p are relatively prime, with a being the smaller integer, then when we multiply a with itself (p) times and divide the result by p, the remainder will be 1.

The general formula to compute Ø (n)

* For a prime number p, the totient function is $\phi(p) = p - 1$ (because all the numbers less p are relatively prime to p)

Theorem: If p is a prime and a is a positive integer, then

$$\phi(p^a) = p^a - p^{a-1}$$

- **❖** Find Ø (75)?
- **❖** Find ø (200)?

Euclidean Algorithm

- Suppose *p* and *q* are two numbers.
- GCD(p, q) is the largest number that divides evenly both p and q.
- Euclidean algorithm is used to compute the greatest common divisor (GCD) of two integer numbers.
- Euclid theorem: $GCD(p, q) = GCD(q, p \mod q)$

Example:

- 1. Compute GCD (997, 366) using Euclid's algorithm
- 2. Compute GCD (2222, 1234) using Euclid's algorithm.

Compute GCD (997, 366) using Euclid's algorithm

Note: Every time divide the divisor by remainder

$$997 = 2 * 366 + 265$$

$$366 = 1 * 265 + 101$$

$$265 = 2 * 101 + 63$$

$$101 = 1 * 63 + 38$$

$$63 = 1 * 38 + 25$$

$$38 = 1 * 25 + 13$$

$$25 = 1 * 13 + 12$$

$$13 = 1 * 12 + 1$$

$$12 = 12 * 1 + 0$$

$$GCD(997, 366) = 1$$

2. Compute GCD (2222, 1234) using Euclid's algorithm

•
$$2222 = 1 * 1234 + 988$$

 $1234 = 1 * 998 + 246$
 $998 = 4 * 246 + 4$
 $246 = 61 * 4 + 2$
 $4 = 2 * 2 + 0$

$$GCD(2222, 1234) = 2$$

Extended Euclidean Algorithm

• Suppose p and q are two integer numbers. There exist two integers x and y such that xp + yq = GCD(p, q).

Extended Euclidean algorithm is used to find the value of *x* and *y*.

Write the two linear combinations vertically as shown below and apply Euclid's algorithm to get g = GCD(p, q) and the values of x and the y to satisfy the equation

$$xp + yq = g$$
.

$$x = 1.x + 0.y$$

$$y = 0.x+1.y$$

$$r = 1.x + (-z).y$$

• Find integers p and q such that 51p + 36q = 3. Also find the GCD (51, 36)

$$51 = 36(1) + 15$$
 $15 = 51 - 36(1)$
 $36 = 15(2) + 6$ $6 = 36 - 15(2)$
 $15 = 6(2) + 3(GCD)$ $3 = 15 - 6(2)$
 $6 = 3(2) + 0$

- 3 = 15 6(2)
- 3 = 15 [36 15(2)](2)
- 3 = 15(5) 36(2)
- 3 = [51 36(1)](5) 36(2)
- 3 = 51(5) 36(5) 36(2)
- 3 = 51(5) 36(7)
- 3 = 51(5) + 36(-7)
- Therefore, the values of p = 5 and q = -7 and GCD = 3.

Examples:

- 1. Use the extended Euclidean algorithm to find the multiplicative inverse of 77 mod 5.
- 2. Use the extended Euclidean algorithm to find the multiplicative inverse of 35 mod 11.

Chinese Remainder Theorem (CRT)

Chinese Remainder Theorem: If $m_1, m_2, ..., m_k$ are pairwise relatively prime positive integers,

and if $a_1, a_2, ..., a_k$ are any integers, then the simultaneous congruences,

 $x \equiv a_1 \pmod{m_1}, x \equiv a_2 \pmod{m_2}, ..., x \equiv a_k \pmod{m_k}$ have a solution, and the solution is unique modulo M, where $M = m_1 m_2, \cdots, m_k$

Solution To Chinese Remainder Theorem:

- 1. Find $M = m_1 \times m_2 \times ... \times m_k$. This is the common modulus.
- 2. Find $M_1 = M/m_1$, $M_2 = M/m_2$, ..., $M_k = M/m_k$ (Formula: $M_i = M/m_i$)
- 3. Find the multiplicative inverse of $M_1, M_2, ..., M_k$ using the corresponding moduli $(m_1, m_2, ..., m_k)$. Call the inverses $M_1^{-1}, M_2^{-1}, ..., M_k^{-1}$ (Formula: $M_i M_i^{-1} = 1 \mod (m_i)$)
- 4. The solution to the simultaneous equations is

$$x = (a_1 \times M_1 \times M_1^{-1} + a_2 \times M_2 \times M_2^{-1} + \dots + a_2 \times M_2 \times M_2^{-1}) \mod M$$

Note that the set of equations can have a solution even if the moduli are not relatively prime but meet other condition.

Example: Solve the simultaneous congruences $x \equiv 1 \pmod{5}$, $x \equiv 1 \pmod{7}$, $x \equiv 3 \pmod{11}$.

chinese Remainder Theorem. It will defermine a no that will divided by some given divisor leaves given remainder by some given divisor leaves
$x \equiv a_1 \pmod{m_1}$ $x \equiv a_2 \pmod{m_2}$ $x \equiv a_2 \pmod{m_2}$ $x \equiv a_3 \pmod{m_3}$
$a_1 = 1$ $m_1 = 5$ $m_2 = 7$
$\begin{array}{c} a_3 = 3 \\ \Rightarrow \\ x = (M_1 \times_1 a_1 + m_2 \times_2 a_2 + m_3 \times_3 a_3) \pmod{M} \end{array}$
$\Rightarrow M = m_1 \cdot m_2 \cdot m_3$ = 5.7.11
= 385

Mº = M	(Calculation of M, M2, M3)
m;	
	M 385 77 m, 5
M ₂ = 1	$\frac{n}{n_2} = \frac{385}{7} = \frac{55}{7}$
M3 =	M 385 35 M3 11

calculation of x_1, x_2, x_3 $m_1 x_1 \equiv 1 \pmod{m_1}$ $77 x_1 \equiv 1 \pmod{5}$ $2 x_1 \equiv 1 \pmod{5}$ $3 (2x_1 \equiv 1 \pmod{5})$ $6 x_1 \equiv 3 \pmod{5}$ $1x_1 = 3 \pmod{5}$ $1x_1 = 3 \pmod{5}$ $\vdots \times 1 = 3$	TEST Page No. $M_i^*X_i^* \equiv 1 \pmod{m_i^*}$ $(77X_1 \mod 5) = 1$ $(77X$
$M_2X_2 \equiv 1 \pmod{m_2}$ $55 \times 2 \equiv 1 \pmod{7}$ $6 \times 2 \equiv 1 \pmod{7}$	7 8 14 15 21 22 28 29 35 36
$6 (6 \times 2 = 1 \pmod{7})$ $36 \times 2 = 6 \pmod{7}$ $1 \times 2 = 6 \pmod{7}$ $\vdots \times 2 = 6$	

Prof. U. K. Raut, SCET, MITWPU, Pune


```
M_3 \times_8 \equiv 1 \pmod{m_3}
35 \times_3 \equiv 1 \pmod{11}
2 \times_3 \equiv 1 \pmod{11}
6 (2 \times_3 \equiv 1 \pmod{11})
12 \times_3 \equiv 6 \pmod{11}
1 \times_3 = 6 \pmod{11}
1 \times_3 = 6 \pmod{11}
```

```
x = M_1X_1q_1 + M_2X_2q_2 + M_3X_3q_3
= (77 \times 3 \times 1 + 55 \times 6 \times 1 + 35 \times 6 \times 3) (mod 385)
                 (Mod 385)
            1191
       x = 36
              example will be.
   Original
                M6d 5 =
                  mod 7 = )
                 mod 11 = 3
```


Example 2: Solve the simultaneous congruences $x \equiv 6 \pmod{11}$, $x \equiv 13 \pmod{16}$, $x \equiv 9 \pmod{21}$, $x \equiv 19 \pmod{25}$.

Ans: 89469

Example 3: Find the smallest multiple of 10 which has remainder 1 when divide by 3, remainder 6 when divided by 7 and remainder 6 when divided by 11.

Discrete Logarithms

- $2^5 \mod 3 = 2$
- $4^4 \mod 11 = ?$
- $8 = 5^i \mod 13$, Determine i?
- Check, $? = 5^7 \mod 13$, and $? = 5^{11} \mod 13$
- * The inverse problem to exponentiation is to find the **discrete logarithm** of a number modulo m. i.e. to find i such that $\mathbf{a} \equiv \mathbf{b^i} \pmod{\mathbf{m}}$ where, $0 \le i \le (m-1)$
- ❖ This is written as $i = dlog_b a \pmod{m}$
- ❖ if **b** is a primitive root of **m** then it always exists, otherwise it may not.
- * used in Diffe-Hellman and the digital signature algorithm.

- ❖ Primitive Root: If b is a primitive root of m where m is a prime number then b¹ mod m, b² mod m, b³ mod m, b^{m-1} mod m are distinct values.
 - Check 3 is primitive root of 5?
 - Check 4 is primitive root of 5?
 - Check 3 is primitive root of 13?

$a \equiv b^i \pmod{m}$ \rightarrow We have to select value of b so that we will get different value of i

 $b \equiv a^i \pmod{m}$

Power of integers, Modulo 13

Powers of Integers, Modulo 19

a	a^2	a^3	a^4	a^5	a^6	\mathbf{a}^7	a^8	a ⁹	a^{10}	\mathbf{a}^{11}	a^{12}	a ¹³	a^{14}	a ¹⁵	a 16	a^{17}	a^{18}
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	8	16	13	7	14	9	18	17	15	11	3	6	12	5	10	1
3	9	8	5	15	7	2	6	18	16	10	11	14	4	12	17	13	1
4	16	7	9	17	11	6	5	1	4	16	7	9	17	11	6	5	1
5	6	11	17	9	7	16	4	1	5	6	11	17	9	7	16	4	1
6	17	7	4	5	11	9	16	1	6	17	7	4	5	11	9	16	1
7	11	1	7	11	1	7	11	1	7	11	1	7	11	1	7	11	1
8	7	18	11	12	1	8	7	18	11	12	1	8	7	18	11	12	1
9	5	7	6	16	11	4	17	1	9	5	7	6	16	11	4	17	1
10	5	12	6	3	11	15	17	18	9	14	7	13	16	8	4	2	1
11	7	1	11	7	1	- 11	7	1	11	7	1	11	7	1	11	7	1
12	11	18	7	8	1	12	11	18	7	8	1	12	11	18	7	8	1
13	17	12	4	14	11	10	16	18	6	2	7	15	5	8	9	3	1
14	6	8	17	10	7	3	4	18	5	13	11	2	9	12	16	15	1
15	16	12	9	2	11	13	5	18	4	3	7	10	17	8	6	14	1
16	9	11	5	4	7	17	6	1	16	9	11	5	4	7	17	6	1
17	4	11	16	6	7	5	9	1	17	4	11	16	6	7	5	9	1
18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1

Discrete Logarithms mod 19

(a) Discrete logarithms to the base 2, modulo 19

	а	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
i	$\log_{2,19}(a)$	18	1	13	2	16	14	6	3	8	17	12	15	5	7	11	4	10	9

(b) Discrete logarithms to the base 3, modulo 19

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\log_{3,19}(a)$	18	7	1	14	4	8	6	3	2	11	12	15	17	13	5	10	16	9

(c) Discrete logarithms to the base 10, modulo 19

														14				
$\log_{10,19}(a)$	18	17	5	16	2	4	12	15	10	1	6	3	13	11	7	14	8	9

(d) Discrete logarithms to the base 13, modulo 19

a	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\log_{13,19}(a)$	18	11	17	4	14	10	12	15	16	7	6	3	1	5	13	8	2	9

(e) Discrete logarithms to the base 14, modulo 19

а																		18
log _{14,19} (a)	18	13	7	8	10	2	6	3	14	5	12	15	11	1	17	16	4	9

(f) Discrete logarithms to the base 15, modulo 19

а	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\log_{15,19}(a)$	18	5	11	10	8	16	12	15	4	13	6	3	7	17	1	2	14	9

$a \equiv b^i \pmod{m}$

Primality Test: Miller-Rabin Algorithm

- ❖ If we can efficiently test the primality of a number, then we can generate primes fast.
- ❖ Deterministic Test and Probabilistic Test
- * RSA algorithm based on primality test

Miller-Rabin Algorithm

- ❖ Miller-Rabin-Test (n, a) // n is the number; a is the base
- ❖ Find m and k such that: $n 1 = m \times 2^k$ If $k \le 1$, Calculate $T \leftarrow a^m \mod n$ If $(T = \pm 1)$ return "a prime number", otherwise composite number
- If k>1, Calculate T ← T² mod n
 If (T = +1) return "number is composite",
 If (T = -1) return "number is prime",
 else, composite number

3/1/2023

Examples:

- 1. Check (27, 2) is prime or not using Miller Rabin algorithm.
- 2. Check 29 is prime or not using Miller Rabin algorithm.
- 3. Check 221 is prime or not using Miller Rabin algorithm.
- 4. Apply Miller-Rabin Algorithm using base 2 to test whether the number 341 is composite or not.

Public Key Cryptography

Asymmetric Key Encryption: Example

Matrix of Keys

Key details	\boldsymbol{A}	В
	should know	should know
A's private key	Yes	No
A's public key	Yes	Yes
B's private key	No	Yes
B's public key	Yes	Yes

Public-Key Applications

- * can classify uses into 3 categories:
 - encryption/decryption (provide secrecy)
 - digital signatures (provide authentication)
 - key exchange (of session keys)
- * some algorithms are suitable for all uses, others are specific to one

Algorithm	Encryption/Decryption	Digital Signature	Key Exchange
RSA	Yes	Yes	Yes
Elliptic Curve	Yes	Yes	Yes
Diffie-Hellman	No	No	Yes
DSS	No	Yes	No

RSA En/decryption

- ❖ by Ron Rivest, Adi Shamir and Leonard Adleman of MIT in 1977
- ❖ best known & widely used public-key scheme
- ❖ based on property of modular exponentiation
- * key uses large integers (eg. 1024 bits)

RSA Key Setup

- each user generates a public/private key pair by: selecting two large primes at random:
 p, q
- \diamond computing their system modulus $\mathbf{n} = (\mathbf{p} * \mathbf{q})$
- \bullet Compute: $\emptyset(\mathbf{n}) = (\mathbf{p} \mathbf{1})(\mathbf{q} \mathbf{1})$
- * selecting at random the **encryption key** (public) e, where $1 < e < \phi(n)$, $gcd(e,\phi(n)) = 1$
- solve following equation to find decryption key d

$$\mathbf{d} * \mathbf{e} = \mathbf{1} [\mathbf{mod} \ \emptyset(\mathbf{n})] \text{ and } 0 \le \mathbf{d} \le \mathbf{n}$$

- \Rightarrow publish their public encryption key: $PU = \{e, n\}$
- \Leftrightarrow keep secret private decryption key: $PR = \{d, n\}$

- * to encrypt a message M the sender:
 - obtains **public key** of recipient $PU = \{e, n\}$
 - computes Ciphertext : $C = M^e \mod n$, where $0 \le M < n$
- * to decrypt the ciphertext C the owner:
 - uses their private key $PR = \{d, n\}$
 - computes: $M = C^d \mod n$
- ❖ note that the message M must be smaller than the modulus n (block if needed)

Key Generation

Select
$$p, q$$
 p and q both prime, $p \neq q$

Calculate
$$n = p \times q$$

Calcuate
$$\phi(n) = (p-1)(q-1)$$

Select integer
$$e$$
 $\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$

Calculate
$$d = e^{-1} \pmod{\phi(n)}$$

Public key
$$PU = \{e, n\}$$

Private key
$$PR = \{d, n\}$$

Encryption

Plaintext:
$$M \le n$$

Ciphertext:
$$C = M^c \mod n$$

Decryption

Plaintext:
$$M = C^d \mod n$$

Symmetric Encryption	Asymmetric Encryption			
Well-known as secret key encryption	Well-known as public key encryption			
Uses a single key for both encryption and decryption	Uses a different key for encryption and decryption			
Symmetric encryption is fast in execution	Asymmetric Encryption is slow in execution due to the high computational burden			
Size of resulting encrypted text usually same or less than original	Size of resulting encrypted text more than original			
Problem of Key Exchange	No Problem of Key Exchange			
Used for encrypting small or large message	Used for encrypting small message because its computational time is more			
Exemple: DES, 3DES, AES, and RC4	Exemple: Diffie-Hellman, RSA			

Symmetric vs Public-Key

Conventional Encryption	Public-Key Encryption
Needed to Work:	Needed to Work:
 The same algorithm with the same key is used for encryption and decryption. 	One algorithm is used for encryption and decryption with a pair of keys, one for encryption and one for decryption.
The sender and receiver must share the algorithm and the key.	2. The sender and receiver must each have
Needed for Security:	one of the matched pair of keys (not the same one).
 The key must be kept secret. 	Needed for Security:
It must be impossible or at least impractical to decipher a message if no	One of the two keys must be kept secret.
other information is available.	It must be impossible or at least impractical to decipher a message if no
 Knowledge of the algorithm plus samples of ciphertext must be 	other information is available.
insufficient to determine the key.	 Knowledge of the algorithm plus one of the keys plus samples of ciphertext must be insufficient to determine the other key.

Advantages of RSA

- * Can be used for both encryption as well as for digital signature.
- ❖ Trapdoor in RSA is in knowing value of n but not knowing the primes of that are factors of n

Disadvantages of RSA

* To protect the encryption, the minimum number of bits in n should be of 2048 bits.

RSA Example - Key Setup

- 1. Select primes: p = 17 & q = 11
- 2. Calculate $n = pq = 17 \times 11 = 187$
- 3. Calculate $\phi(n) = (p-1)(q-1) = 16 \times 10 = 160$
- 4. Select e: gcd(e,160) = 1; choose e = 7
- 5. Determine d: $de = 1 \mod 160$ and d < 160Value is d = 23 since $23 \times 7 = 161 = 10 \times 160 + 1$
- 6. Publish public key $PU = \{7,187\}$
- 7. Keep secret private key $PR = \{23,187\}$

RSA Example - En/Decryption

- sample RSA encryption/decryption is:
- 8. given message M = 88 (nb. 88 < 187)
- 9. encryption:

$$C = 88^7 \mod 187 = 11$$

10. decryption:

$$M = 11^{23} \mod 187 = 88$$

Example 1: The parameters given are p = 5, q = 17. Find out the possible public keys and private key for RSA algorithm. Also encrypt the message "4".

Example 2: Using RSA algorithm to encrypt the message m = "6" use parameters p = 3, q = 17, e = 7, calculate decryption key.

Message Digest: MD 5 and SHA -1

- ❖ The digest is sometimes called the "hash" or "fingerprint" of the input.
- * Hash value is used to check the integrity of the message.
- ❖ MD5 processes a variable-length message into a fixed-length output of 128 bits.

Simple example: 7391743

Algorithm:

- ❖ Step -1: Padding
- ❖ Step 2: Append length
- ❖ Step 3: Divide the input into 512-bit blocks
- ❖ Step 4: Initialize chaining variables (4 variables)
- ❖ Step 5: Process blocks

Step 1: Padding

- ❖ To make the length of the original message equal to a value, which is 64 bits less than an exact multiple of 512
- * Note: Padding is always added, even if the original message is already 64 bits less than a multiple of 512

Step 2: Append length

- Add a 64-bit binary-string which is the representation of the message's length
- If the original length is greater than 2^{64} , then only **the low-order 64** bits of the length are used.
- Thus, field contains the length of the original message, modulo 2^{64} .

Step 3: Divide the input into 512-bit blocks

Step 4: Initialize MD buffer

- ❖ A four-word buffer (A, B, C, D) is used to compute the message digest.
- ❖ Here each of A, B, C, D is a 32 bit register.

Α	01	23	45	67
В	89	AB	CD	EF
C	FE	DC	BA	98
D	76	54	32	10

Step 5: Process Blocks (or message)

- ❖ Divide the 512- bit block into 16 sub-blocks.
- ❖ Each sub-block undergoes 4 rounds of operations. Total 64 operations are performed.

$$A = B + ((A + Process F(B, C, D) + M_i + K_i) <<< s)$$

❖ There are four possible functions F; a different one is used in each round:

Round	Process F
1	(BANDC)OR((NOTB)AND(D))
2	(B AND D) OR (C AND (NOT D))
3	B XOR C XOR D
4	C XOR (B OR (NOT D))

Constants of MD5

$\begin{array}{llllllllllllllllllllllllllllllllllll$				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$T_1 = d76aa478$	$T_{17} = f61e2562$	$T_{33} = fffa3942$	$T_{49} = f4292244$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$T_2 = e8c7b756$	$T_{18} = c040b340$	$T_{34} = 8771f681$	$T_{50} = 432 aff 97$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$T_3 = 242070db$	$T_{19} = 265e5a51$	15 유명의 기계	$T_{51} = ab9423a7$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$T_4 = c1bdceee$	$T_{20} = e9b6c7aa$		$T_{52} = fc93a039$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$T_5 = f57c0faf$	$T_{21} = d62f105d$		$T_{53} = 655b59c3$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$T_6 = 4787c62a$	$T_{22} = 02441453$	TANKE TANKE TO THE TANKE T	$T_{54} = 8f0ccc92$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$T_7 = a8304613$	$T_{23} = d8a1e681$	All field	$T_{55} = ffeff47d$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$T_8 = fd469501$	$T_{24} = e7d3fbc8$		$T_{56} = 85845dd1$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$T_9 = 698098d8$	$T_{25} = 21e1cde6$		$T_{57} = 6 \text{fa} 87 \text{e} 4 \text{f}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$T_{10} = 8b44f7af$			$T_{58} = \text{fe2ce6e0}$
$T_{12} = 895 \text{cd7be}$ $T_{28} = 455 \text{a}14 \text{ed}$ $T_{44} = 04881 \text{d}05$ $T_{60} = 460 \text{d}05$ $T_{13} = 66901122$ $T_{29} = a9e3e905$ $T_{45} = d9d4d039$ $T_{61} = f70$ $T_{14} = fd987193$ $T_{30} = fcefa3f8$ $T_{46} = e6db99e5$ $T_{62} = bc$ $T_{15} = a679438e$ $T_{31} = 676f02d9$ $T_{47} = 1fa27cf8$ $T_{63} = 2a$ $T_{16} = 49b40821$ $T_{32} = 8d2a4c8a$ $T_{48} = c4ac5665$ $T_{64} = eb$	$T_{11} = ffff5bb1$	$T_{27} = f4d50d87$		$T_{59} = a3014314$
$T_{13} = 6b901122$ $T_{29} = a9e3e905$ $T_{45} = d9d4d039$ $T_{61} = f7$ $T_{14} = fd987193$ $T_{30} = fcefa3f8$ $T_{46} = e6db99e5$ $T_{62} = bc$ $T_{15} = a679438e$ $T_{31} = 676f02d9$ $T_{47} = 1fa27cf8$ $T_{63} = 2a$ $T_{16} = 49b40821$ $T_{32} = 8d2a4c8a$ $T_{48} = c4ac5665$ $T_{64} = eb$	$T_{12} = 895$ cd7be	$T_{28} = 455a14ed$		$T_{60} = 4e0811a1$
$T_{14} = fd987193$ $T_{30} = fcefa3f8$ $T_{46} = e6db99e5$ $T_{62} = bc$ $T_{15} = a679438e$ $T_{31} = 676f02d9$ $T_{47} = 1fa27cf8$ $T_{63} = 2a$ $T_{16} = 49b40821$ $T_{32} = 8d2a4c8a$ $T_{48} = c4ac5665$ $T_{64} = eb$	$T_{13} = 6b901122$			$T_{61} = f7537e82$
$T_{15} = a679438e$ $T_{31} = 676f02d9$ $T_{47} = 1fa27cf8$ $T_{63} = 2a$ $T_{16} = 49b40821$ $T_{32} = 8d2a4c8a$ $T_{48} = c4ac5665$ $T_{64} = eb$	$T_{14} = fd987193$			$T_{62} = bd3af235$
$T_{16} = 49b40821$ $T_{32} = 8d2a4c8a$ $T_{48} = c4ac5665$ $T_{64} = eb$	$T_{15} = a679438e$			$T_{63} = 2ad7d2bb$
	$T_{16} = 49b40821$	The second secon		$T_{64} = eb86d391$
$T_{i} = \lfloor 2^{32} \mid \sin \lambda \rfloor$	$_{i} = \lfloor 2^{32} \mid \sin \lambda \rfloor$		TO SEEDING TO SEE	20

	ROL	ND 1		ROU	ND 2		30.18	E.G.V		ROU	W7.4
1	k s	THE	1	k s	T[I]	77	ks	TUE	1	ks	Tig
0	0.7	d75aa478	16	1.5	f61e2562	32	5 4	fffa3942	48	0 6	f4292244
1	112	e8c7b756	17	6 9	c040b340	33	811	8771f681	48	7 10	432aff97
2	217	242070db	18	11 14	265e5a51	34	1115	5d9d6122	50	1415	ab9423
3	0 22	c1bckeee	19	0 20	e9lo6c7aa	35	14 23	fde5380c	51	5 21	tc930039
1	17	157c0tat	20	5 5	dezñ oso	36	1.4	34b32244	52	125	555b5903
5	112	47876624	71	10.9	02441453	37	4 11	4lxivefaG	73	3 10	Sform 9
б	6 17	#8904613	22	15 14	d8a1e681	38	7.16	f6bb 4 b60	54	10 15	ffeff47d
7	7 22	f:J469501	23	4 20	e7d3fbc8	33	10 23	bebfbc70	z	1 21	35845dd
8	8 7	590056d8	21	9 5	21c1cde6	40	13 4	299b7ec6	56	8 6	61287e41
9	y 12	80447/31	25	14.9	c33707c6	41	0 11	93312/0	57	1510	1c2cc6e0
10	1017	mmsbb1	26	3 14	f4d50d87	42	3 16	04013085	58	5 15	a 3 014314
11	11 22	895cd75e	27	A 20	455a14ed	43	6 23	04861d03	59	13.23	4e0811a
12	127	5b901122	28	13 5	a9e3e900	44	9 4	d9d4d039	60	4 6	f7537e82
13	1312	10987193	29	2.5	fcers-rts	45	12 11	e6db99e5	C1	11 10	bd3af23
14	34.17	26794330	30	7 14	676t02d9	46	15 16	1fa2/cf8	62	215	2ad7d2bt
15	15 22	19510921	=1	12 20	90234683	41	2 23	54955565	ы	S 21	abseds91

Types of Attack on Hashes

- ❖ Preimage: An attacker has an output and finds an input that hashes to that output
- ❖ 2nd Preimage: An attacker has an output and an input x and finds a 2nd input that produces the same output as x
- Collision: An attacker finds two inputs that hash to the same output
- **Length Extension:** An attacker, knowing the length of message M and a digest of M signed by a sender can extend M with an additional message N and can compute the digest of M ∥ N even without the key used to sign the digest of M

Secure Hash Algorithm (SHA)

- ❖ SHA is a modified version of MD5. (Published in 1993)
- \star SHA works any input message less than 2^{64} bits and produces a hash value of 160 bits.
- * SHA is designed to be computationally infeasible to:
 - Obtain the original message
 - Find two message producing the same MD.

	SHA-1	SHA-256	SHA-384	SHA-512
Message digest size	160	256	384	512
Message size	<2 ⁶⁴	<2 ⁶⁴	<2128	<2128
Block size	512	512	1024	1024
Word size	32	32	64	64
Number of steps	80	64	80	80

Algorithm:

- ❖ Step -1: Padding
- ❖ Step 2: Append length
- ❖ Step 3: Divide the input into 512-bit blocks.
- ❖ Step 4: Initialize chaining variables (5 variables)
- ❖ Step 5: Process blocks

Α	01	23	45	67
В	89	AB	CD	EF
C	FE	DC	BA	98
D	76	54	32	10
E	C3	D2	E1	F0

Process each block with A, B, C, D, E

temp = $(A <<<_5) + F + E + K_t + W_t$

E - D

 $C = B <<<_{30}$

B = A

A = temp

Last round: A-E is the digest $\frac{Process\ F\ or\ P}{\underline{M_{\underline{i}}\ or\ W_{\underline{t}}}}$ $\underline{K_{\underline{i}}\ or\ W_{\underline{t}}}$

Round	Process P
1	(b AND c) OR ((NOT b) AND (d))
2	b XOR c XOR d
3	(b AND c) OR (b AND d) OR (c AND d)
4	b XOR c XOR d

Comparison of MD5 and SHA

Point of discussion	MD5	SHA-1
Message digest length in bits	128	160
Attack to try and find the original message given a message digest	Requires 2 ¹²⁸ operations to break in	Requires 2 ¹⁶⁰ operations to break in, therefore more secure
Attack to try and find two messages producing the same message digest	Requires 2 ⁶⁴ operations to break in	Requires 2 ⁸⁰ operations to break in
Successful attacks so far	There have been reported attempts to some extent	No such claims so far
Speed	Faster (64 iterations, and 128-bit buffer)	Slower (80 iterations, and 160-bit buffer)
Software implementation	Simple, does not need any large programs or complex tables	Simple, does not need any large programs or complex tables

Thank You!!!!!!

Examples

- 1. Calculate $(36^{106} \mod 107) \mod 37$.
- 2. If n = 77, find $\Phi(n)$.
- 3. Use the extended Euclidean algorithm to find multiplicative inverse of 77 mod 5.
- 4. What is the value of d if p = 3, q = 11 and e = 7. Use RSA algorithm.
- 5. How many primitive roots the number 15 has? Calculate all possible primitive roots for 15.