Rules for Assigning Oxidation States

1. The oxidation state of an atom in its elemental form is zero; thus, the oxidation states for the following are all 0:

2. The oxidation state of a monatomic cation or anion is the same as the ion's charge; thus:

3. The algebraic sum of oxidation states for the elements in a polyatomic compound or ion must equal the compound's or ion's total charge; thus:

for
$$CH_4$$
, the oxidation state of $C \times 4 + oxidation$ state of $H = 0$

for
$$NO_3^-$$
, the oxidation state of $N \times 3$ + oxidation state of $O = -1$

4. When more than one element is present, the more electronegative element maintains the negative oxidation state; thus:

in CH₄, carbon has a negative oxidation state

5. There are a few elements that have only one or two common oxidation states when not in their elemental form; these are:

hydrogen is always +1 when bound to a more electronegative element, such as in HCl or CH₄, and -1 when bound to a less electronegative element, such as in NaH

alkali metals are always +1

alkaline earths are always +2

oxygen is usually –2, but it is –1 in peroxide, O_2^{2-} , and it is –½ in superoxide, O_2^{-}

6. Other oxidation states almost always can be determined by applying these rules; thus:

the P in
$$PO_4^{3-}$$
 is +5

the P in
$$PCl_3$$
 is $+3$

the P in
$$PH_3$$
 is -3