N ^o de examen	Cédula	Apellido y nombre	Salón

Respuestas

Ej. 1.1	Ej. 1.2	Ej. 2	Ej. 3	Ej. 4	Ej. 5.1
E: 5.2	F: 6.1	E: 6.2	F: 7	E: 0.1	E: 0.2
Ej. 5.2	Ej. 6.1	Ej. 6.2	Ej. 7	Ej. 8.1	Ej. 8.2

Importante

- El examen dura 3h30m.
- Antes del enunciado de cada ejercicio se indica su puntaje. El examen es de 100 puntos en total y se aprueba con 60 puntos o más.
- Solo serán válidas las respuestas indicadas en el cuadro de respuestas. Si la respuesta es ilegible se considera al ejercicio como sin respuesta.
- En cada ejercicio hay una sola opción correcta.
- No se restan puntos por respuesta incorrecta.

Tabla de $\Phi(z)$ (normal estándar)

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9924	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9958	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986

Tabla de χ^2

Probabilidad de cola derecha $P(\chi^2 \ge c)$											
GdL	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001
1	1.32	1.64	2.07	2.71	3.84	5.02	5.41	6.63	7.88	9.14	10.83
2	2.77	3.22	3.79	4.61	5.99	7.38	7.82	9.21	10.60	11.98	13.82
3	4.11	4.64	5.32	6.25	7.81	9.35	9.84	11.34	12.84	14.32	16.27
4	5.39	5.99	6.74	7.78	9.49	11.14	11.67	13.28	14.86	16.42	18.47
5	6.63	7.29	8.12	9.24	11.07	12.83	13.39	15.09	16.75	18.39	20.52
6	7.84	8.56	9.45	10.64	12.59	14.45	15.03	16.81	18.55	20.25	22.46
7	9.04	9.80	10.75	12.02	14.07	16.01	16.62	18.48	20.28	22.04	24.32
8	10.22	11.03	12.03	13.36	15.51	17.53	18.17	20.09	21.95	23.77	26.12
9	11.39	12.24	13.29	14.68	16.92	19.02	19.68	21.67	23.59	25.46	27.88
10	12.55	13.44	14.53	15.99	18.31	20.48	21.16	23.21	25.19	27.11	29.59

Tabla de t Student

	Probabilidad de cola derecha $P(t \ge c)$										
GdL	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001
1	1.00	1.38	1.96	3.08	6.31	12.71	15.89	31.82	63.66	127.32	318.31
2	0.82	1.06	1.39	1.89	2.92	4.30	4.85	6.96	9.92	14.09	22.33
3	0.76	0.98	1.25	1.64	2.35	3.18	3.48	4.54	5.84	7.45	10.21
4	0.74	0.94	1.19	1.53	2.13	2.78	3.00	3.75	4.60	5.60	7.17
5	0.73	0.92	1.16	1.48	2.02	2.57	2.76	3.36	4.03	4.77	5.89
6	0.72	0.91	1.13	1.44	1.94	2.45	2.61	3.14	3.71	4.32	5.21
7	0.71	0.90	1.12	1.41	1.89	2.36	2.52	3.00	3.50	4.03	4.79
8	0.71	0.89	1.11	1.40	1.86	2.31	2.45	2.90	3.36	3.83	4.50
9	0.70	0.88	1.10	1.38	1.83	2.26	2.40	2.82	3.25	3.69	4.30
10	0.70	0.88	1.09	1.37	1.81	2.23	2.36	2.76	3.17	3.58	4.14

FPP de la binomial $Bin(5,\theta)$ para varios valores de θ .

X	0	1	2	3	4	5
$\theta = .1$.590	.328	.073	.008	.000	.000
$\theta = .2$.328	.410	.205	.051	.006	.000
$\theta = .3$.168	.360	.309	.132	.028	.002
$\theta = .4$.078	.259	.346	.230	.077	.010
$\theta = .5$.031	.156	.313	.313	.156	.031
$\theta = .6$.010	.077	.230	.346	.259	.078
$\theta = .7$.002	.028	.132	.309	.360	.168
$\theta = .8$.000	.006	.051	.205	.410	.328
$\theta = .9$.000	.000	.008	.073	.328	.590

Ejercicio 1 (14 puntos, 7 cada parte)

Tres mujeres y tres hombres se disponen al azar (de forma equiprobable) en una fila.

- 1. Calcular la probabilidad de que hombres y mujeres se dispongan alternadamente.
 - **(A)** 1/720
- **(B)** 1/240
- **(C)** 1/20
- **(D)** 1/10
- **(E)** 1/6
- **(F)** 1/2
- 2. Calcular la probabilidad condicional de que el primero de la fila sea hombre, dado que están dispuestos alternadamente.
 - (A) 1/6
- **(B)** 1/5
- **(C)** 1/4
- **(D)** 1/3
- **(E)** 1/2
- **(F)** 2/3

Ejercicio 2 (8 puntos)

Hay una nueva prueba de diagnóstico para una enfermedad que incide en el 0.05 % de la población. La prueba no es perfecta, pero da un resultado positivo para una persona con la enfermedad el 99% de la veces. Sin embargo, resulta positiva en una persona sin la enfermedad el 3% de las veces. Se selecciona una persona al azar de la población y la prueba es positiva.

¿Cuál es la probabilidad condicional de que la persona efectivamente tenga la enfermedad?

- (A) Menor a 1%
- (C) Entre 2% y 10%
- (E) Entre 30% y 50%

- **(B)** Entre 1% y 2%
- **(D)** Entre 10% y 30%
- **(F)** Mayor a 50%

Ejercicio 3 (10 puntos)

Se lanza al azar y de manera uniforme un dardo en el blanco cuadrado $[0,1] \times [0,1]$. Sean X e Y las coordenadas del impacto del dardo en el blanco. Denotamos por $Z = máx\{X,Y\}$.

Hallar la varianza Var(Z).

- (A) 1/18
- **(B)** 1/3
- (**C**) 1/2
- **(D)** 11/18
- **(E)** 2/3
- **(F)** 1

Ejercicio 4 (10 puntos)

Sean X_1, \ldots, X_{16} variables continuas, independientes e idénticamente distribuidas, de esperanza 50 y varianza 9. Sea $S = X_1 + \cdots + X_{16}$ la suma.

Hallar la cota inferior para P(764 < S < 836) dada por la desigualdad de Chebyshev.

- (**A**) 0.11
- **(B)** 0.23
- **(C)** 0.33
- **(D)** 0.66
- (E) 0.89
- **(F)** 0.94

Sea X_1, X_2, \dots, X_n un muestreo aleatorio de X que tiene densidad de probabilidad dada por

$$p(x; \theta) = \frac{1}{\theta^2} x e^{-x/\theta}, \quad 0 < x < \infty, \quad 0 < \theta < \infty.$$

1. Hallar el estimador de máxima verosimilitud $\hat{\theta}$ de θ .

Notación: \bar{X} denota el promedio de X_1, \dots, X_n .

(A) $\frac{1}{2}X_1$

- (C) $\min_{1 \le i \le n} X_i$
- $(\mathbf{E}) \ \bar{X}$

- **(B)** $\max_{1 < i < n} X_i$
- (**D**) $\prod_{i=1}^n X_i$
- $(\mathbf{F}) \frac{1}{2}\bar{X}$

2. Hallar el sesgo de $\hat{\theta}$.

Dato útil: la primitiva de $x^2 \exp\left(-\frac{x}{a}\right)$ es $-ae^{-x/a}\left(2a^2+2ax+x^2\right)$ + cte.

- $(\mathbf{A}) 0$
- **(B)** 1

- (C) θ/n (D) $\theta/2$ (E) θ^2/n (F) θ^2 .

Ejercicio 6 (18 puntos, 9 cada parte)

Sea X la resistencia a la rotura de una barra de acero. Asumimos que X tiene distribución normal de media desconocida μ y varianza conocida $\sigma^2 = 36$. Si la barra se fabrica por el proceso I, entonces $\mu = 50$. Si se utiliza el proceso II, entonces $\mu = 55$. Se dispone de un lote de n barras de acero fabricadas (todas) por uno de estos dos procesos. Para determinar con qué proceso fueron manufacturadas se desea realizar el siguiente test de hipótesis:

$$\begin{cases} H_0: \mu = 50 \\ H_A: \mu = 55 \end{cases}$$

al nivel de significancia $\alpha = 0.05$. La región de rechazo tiene la forma $\{\bar{X} \ge c\}$.

- 1. Hallar c en función de n.
 - (A) $55 + \frac{11.76}{\sqrt{n}}$
- (C) $55 \frac{9.87}{\sqrt{n}}$
- **(E)** $50 + \frac{11.76}{\sqrt{n}}$

- **(B)** $55 \frac{11.76}{\sqrt{n}}$
- **(D)** $50 \frac{9.87}{\sqrt{n}}$
- (**F**) $50 + \frac{9.87}{\sqrt{n}}$
- 2. Hallar *n* para que la potencia del test sea $\pi = 0.8$.
 - (**A**) 2
- **(B)** 9
- **(C)** 18
- **(D)** 35
- **(E)** 112
- **(F)** 523

Ejercicio 7 (7 puntos)

Una moneda tiene probabilidad de cara igual a θ , un parámetro desconocido. Se desea hacer el siguiente test de hipótesis sobre el valor de θ :

$$\begin{cases} H_0: \theta = 0.3 \\ H_A: \theta > 0.3 \end{cases}$$

Suponga que se lanza la moneda 5 veces y se obtienen 3 caras. Calcular el p-valor.

- (**A**) 0.030
- **(B)** 0.132
- **(C)** 0.162
- **(D)** 0.324
- **(E)** 0.837
- **(F)** 0.969

Ejercicio 8 (15 puntos, 9 parte 1 y 6 parte 2)

Se le pide a una persona que escriba una secuencia de 51 dígitos aleatorios. Si la secuencia fuera realmente aleatoria, la probabilidad de que un dígito sea el mismo que el anterior es $p_1 = 1/10$, la probabilidad de que un dígito difiera en exactamente uno del anterior (suponiendo que el 0 y el 9 están a uno de distancia) es $p_2 = 2/10$, y la probabilidad de todas las demás posibilidades es $p_3 = 7/10$.

	Igual al anterior	Dista 1 del anterior	Otra posibilidad	Total
Frecuencia	0	8	42	50

Notar que el total es 50 pues para el primer dígito no tiene sentido la afirmación "es igual o dista uno del anterior".

Probar si la persona ha sido capaz de generar una secuencia realmente aleatoria a través de un test de bondad de ajuste χ^2 con la hipótesis nula:

$$H_0: p_1 = 1/10, p_2 = 2/10, p_3 = 7/10.$$

Usar el nivel de significancia $\alpha = 0.05$.

- 1. Indicar la conclusión correcta.
 - (A) Rechazo H_0 porque $(Q_P)_{\text{obs}} = 1.08$ es menor al valor crítico 7.81.
 - **(B)** No rechazo H_0 porque $(Q_P)_{\text{obs}} = 6.8$ es mayor al valor crítico 5.99.
 - (C) No rechazo H_0 porque $(Q_P)_{\rm obs} = 6.8$ es menor al valor crítico 7.81.
 - (**D**) No rechazo H_0 porque $(Q_P)_{\text{obs}} = 1.08$ es menor al valor crítico 7.81.
 - (E) Rechazo H_0 porque $(Q_P)_{\text{obs}} = 6.8$ es mayor al valor crítico 5.99.
 - (**F**) Rechazo H_0 porque $(Q_P)_{\text{obs}} = 1.08$ es menor al valor crítico 5.99.
- 2. Indicar en qué intervalo se encuentra el p-valor (p):
 - (**A**) p < 0.01
- (C) $0.02 \le p < 0.025$
- **(E)** $0.05 \le p < 0.1$

- **(B)** $0.01 \le p < 0.02$
- **(D)** $0.025 \le p < 0.05$
- **(F)** $0.1 \le p$