Mécanique quantique – L3

Pierre-François Cohadon - Tristan Villain - Qinhan Wang

Oscillations de Rabi quantiques

On s'intéresse dans tout le problème à un système constitué d'un atome à deux niveaux (état fondamental f et état excité e, séparés par une énergie $\hbar\omega_0$) et d'un mode du champ électromagnétique (à la fréquence $\omega_0/2\pi$). Les états propres de l'hamiltonien \hat{H}_0 sont de la forme $|i,n\rangle$ où $i \in \{f,e\}$ et $n \in \mathbb{N}$, avec les énergies propres :

$$\hat{H}_0|f,n\rangle = \left(\left(n + \frac{1}{2}\right)\hbar\omega_0 - \frac{\hbar\omega_0}{2}\right)|f,n\rangle$$
 (1)

$$\hat{H}_0|e,n\rangle = \left(\left(n+\frac{1}{2}\right)\hbar\omega_0 + \frac{\hbar\omega_0}{2}\right)|e,n\rangle.$$
 (2)

n est le **nombre de photons** dans le mode.

L'atome et le champ sont couplés (quand l'atome est dans la cavité) par un hamiltonien \hat{H}_c , dont les seuls éléments de matrice non-nuls sont :

$$\langle f, n+1|\hat{H}_c|e, n\rangle = \langle e, n|\hat{H}_c|f, n+1\rangle = \frac{\hbar\Omega_0}{2}\sqrt{n+1},\tag{3}$$

avec $\Omega_0 \ll \omega_0$.

1 Etats propres du système

- 1. Montrer qu'à l'exception du niveau fondamental, tous les niveaux d'énergie de \hat{H}_0 sont doublement dégénérés. Donner explicitement l'expression des états associés au premier niveau excité, puis au n^{ème} niveau excité.
- 2. Montrer que \hat{H}_c n'a d'élément de matrice non-nul qu'à l'intérieur de chaque doublet dégénéré d'états propres de \hat{H}_0 . Donner explicitement la matrice représentant \hat{H}_c dans le sous-espace associé au nème niveau excité.
- 3. En déduire l'expression exacte des états propres, que l'on notera $|n,\pm\rangle$, et des énergies propres de $\hat{H}=\hat{H}_0+\hat{H}_c$.

2 Oscillation de Rabi

On prépare initialement le système dans l'état $|e,n\rangle$. Il évolue ensuite sous l'effet de \hat{H} .

- 4. Donner l'expression de l'état du système à l'instant t. Quelle est la probabilité de trouver le système à deux niveaux à l'instant t dans l'état $|f\rangle$?
- 5. Montrer que la probabilité de basculement du système à deux niveaux oscille au cours du temps avec une pulsation de Rabi Ω_n que l'on déterminera.

3 Oscillations de Rabi multiples

Le système est initialement dans une superposition cohérente d'états $|e,n\rangle$:

$$|\Psi(t=0)\rangle = \sum_{n} c_n |e, n\rangle.$$
 (4)

- 6. Que représentent les coefficients $|c_n|^2$?
- 7. Donner l'expression de la probabilité $P_{ef}(t)$ de basculement du système à deux niveaux sous l'effet de \hat{H} , et montrer qu'elle peut s'écrire comme une combinaison linéaire des probabilités calculées à la section précédente.
- 8. Montrer qu'en mesurant $P_{ef}(t)$ en fonction du temps d'interaction, on peut remonter aux probabilités $\mathcal{P}(n)$ d'être initialement dans l'état $|e, n\rangle$.

4 Expérience de 1995

Pour cette expérience, les atomes de ⁸⁵Rb sont émis par un four et préparés dans l'état excité. La fréquence de transition atomique est $\omega_0/2\pi \simeq 50$ GHz.

L'expérience est réalisée un très grand nombre de fois, ce qui permet d'évaluer les probabilités $\mathcal{P}(n)$. Le temps d'interaction est contrôlé à travers la vitesse des atomes sélectionnés.

Le système est initialement dans l'état $|e,0\rangle$.

- 9. Donner un ordre de grandeur de la vitesse des atomes.
- 10. Expliquer la courbe expérimentale $P_{ef}(t)$ observée (figure A). Quelle est la fréquence $\Omega_0/2\pi$? Pourquoi parle-t-on d'émission spontanée réversible?

Le système est initialement dans l'état $\sum_{n} c_n |e, n\rangle$.

- 11. Expliquer la forme des courbes observées sur les figures (B), (C) et (D). Que représentent les tirets sur les courbes (a)...(d)?
- 12. Vérifier que les probabilités $\mathcal{P}(n)$ vérifient la loi suivante :

$$\mathcal{P}(n) = \frac{e^{-|\alpha|^2} |\alpha|^{2n}}{n!},\tag{5}$$

avec $|\alpha|^2 = 0.4$, 0.85 et 1.77. On pourra faire un tableau de valeurs ou (mieux) écrire un programme python qui trouve la valeur de $|\alpha|$ qui réalise le meilleur ajustement entre la formule (5) et les résultats expérimentaux.

On verra à la fin du semestre que la formule (5) donne la distribution du nombre de photons dans un **état cohérent**, qui est la description quantique d'un champ microondes classique, injecté dans la cavité.

FIGURE 1 – Evolution de $P_{ef}(t)$ pour différents états initiaux du système, avec les décompositions en composantes de Fourier et les coefficients correspondants.

\mathcal{P} mesurées	Figure β	Figure γ	Figure δ
$\mathcal{P}(0)$	0.69	0.42	0.2
$\mathcal{P}(1)$	0.28	0.35	0.27
$\mathcal{P}(2)$	0.03	0.15	0.25
$\mathcal{P}(3)$	0	0.05	0.13
$\mathcal{P}(4)$	0	0.02	0.1
$\mathcal{P}(5)$	0	0	0.06

Bibliographie:

M. Brune *et al.*, Quantum Rabi Oscillations : A Direct Test of Field Quantization in a Cavity, Phys. Rev. Lett. **76**, 1800 (1996).