

Database Forensic Analysis Through Internal Structure Carving

Ву

James Wagner, Alexander Rasin and Jonathan Grier

Presented At

The Digital Forensic Research Conference **DFRWS 2015 USA** Philadelphia, PA (Aug 9th - 13th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an informal environment. As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to help drive the direction of research and development.

http:/dfrws.org

Database Forensic Analysis through Internal Structure Carving

James Wagner
Dr. Alexander Rasin
Jonathan Grier

- Motivation
 - File carving (for databases)
 - Stochastic analysis
- Results
- Future work

Motivation

- A lot of data lives in databases
- Recovery
 - Rely on "safe" storage (or backups)
 - Inconsistent / commercial
- Monitoring
 - Logs and profiling
 - Inspect DB connections
 - e.g., IBM Guardium

Database Storage

	RID	Name	Position	FavoriteTown
	1	Stan	Professor	Westwood
	2	Ugur	Professor	Providence
Table	3	Tom	Professor	Providence
Rows	4	Alex	Student	Providence
	5	Stan	Professor	Cambridge
	6	Andy	Student	Providence
Logical				

Physical

Indexes and other Structures

Index on Favorite Town

	_
5	
2	
3	
4	
6	4
1	
	2 3 4

RI	O Name	Position	FavoriteTown
1	Stan	Professor	Westwood
2	Ugur	Professor	Providence
3	Tom	Professor	Providence
4	Alex	Student	Providence
5	Stan	Professor	Cambridge
6	Andy	Student	Providence

Logical

Physical

1,1	Cá	ambridge	5	Pr	ovidence
#	2	Providen	се	3	

‡5	Pr	ovidence	4	Pr	ovidence
**	6	Westwoo	od	1	

1	1	Stan	Professor Westwood
#	2	Ugur	Professor Westwood Professor Providence

3	Tom	Professor	Providence Providence
# 4	Alex	Student	Providence

3	5	Stan	Professor	Cambridge
#	6	Andy	Student	Cambridge Providence

- Motivation
 - File carving (for databases)
 - Stochastic analysis
- Results
- Future work

Database Caching Policies

- Motivation
 - File carving (for databases)
 - Stochastic analysis
- Results
- Future work

Architecture

	Oracle	PostgreSQL	SQLite	Firebird	DB2	SQLServer	MySQL	Apache Derby	
Structure Identifier	Yes	No	No Yes					No	
Unique Page ID		Yes					No		
Row Dir. Sequence	Top-to-bottom insertion				Bottom-to-top ins			ertion	
Row Identifier	No Yes				No Y			'es	
Column Count		Yes		No Yes			No	Yes	
Column Sizes	Yes				No Y			es	
Column Directory	No				Yes			lo	
Numbers w/Strings		Yes			No Y		Y	Yes	

DBMS Versions

Hard to get some older DB versions

Different parameters

DDMC V	Testing	Buffer	Page	
DBMS Version	os	Size(MB)	Size(KB)	
Apache Derby 10.10	Linux	400	4	
Apache Derby 10.5	Linux	400	4	
DB2 Express-C 10.5	Linux	400	4	
Firebird 2.5.1	Linux	400	8	
Firebird 2.1.7	Windows	400	8	
MySQL Server 5.1.73	Linux	800	16	
MySQL Server 5.6.1	Windows	800	16	
Oracle 11g R2	Windows	800	8	
Oracle 12c R1	Windows	1200	8	
PostgreSQL 7.3	Linux	400	8	
PostgreSQL 8.4	Linux	400	8	
PostgreSQL 9.3	Windows	800	8	
SQLite 3.8.6	Linux	2	1	
SQLite 3.8.7	Windows	2	1	
SQLServer 2008	Windows	800	8	
Enterprise	(Linux)	800	0	

Recovering Corrupted Data

- An AWS instance + PostgreSQL
 - 1. Load SSBM benchmark data
 - 2. Delete the rows, then delete all Postgres files

	Dama	ge = 0%	Dama	ge = 10%	Dama	ge = 25 %
Dwdate	35	(100%)	31	(88.6%)	20	(57.1%)
Supplier	565	(100%)	455	(80.5%)	326	(57.7%)
Customer	1915	(100%)	1559	(81.4%)	1075	(56.1%)
Part	8659	(100%)	6969	(80.5%)	4864	(56.2%)
Lineorder	115 K	(100%)	104 K	(89.9%)	87 K	(75.2%)
TOTAL	416 K	(100%)	375 K	(89.9%)	312 K	(74.9%)

Data Modification

- DELETE/UPDATE/INSERT
- When is a value really deleted?
- Example
 - Customer table (Phone# column)
 - Indexed Phone#

Row Deletion

	Tab	le	Index		
Event	HDD	RAM	HDD	RAM	
Time ₀	7		✓		
Delete a Phone #	√	X	✓	✓	
Run a few of queries	✓	X	✓		
Many more queries	X		✓		
Rebuild the index	X				
Rebuild the table					

- Motivation
 - File carving (for databases)
 - Stochastic analysis
- Results
- Future work

Future Work

- Column-stores and Key-value stores
- Automated database deconstruction
- Database performance tuning
- Monitoring user behavior (DB cache)
- Independent database audit/verification

