Multi Agent Systems

- Lab 3 - MDP Value and Policy Iteration Analysis

Slides adapted from Reinforcement Learning class by Vien Ngo, University of Stuttgart, 2016

Markov decision process

- A reinforcement learning problem that satisfies the Markov property is called a Markov decision process, or MDP.
- MDP = $\{S, A, T, R, P_0, \gamma\}$.
 - -S: consists of all possible states.
 - A: consists of all possible actions.
 - $-\mathcal{T}$: is a transition function which defines the probability

$$\mathcal{T}(s', s, a) = Pr(s'|s, a).$$

- $-\mathcal{R}$: is a reward function which defines the reward $\mathcal{R}(s,a)$.
- $-\mathcal{P}_0$: is the probability distribution over initial states.
- $-\gamma \in [0,1]$: is a discount factor.

State Value Function

The **value** (expected discounted return – for infinite horizon settings) of a policy π when started in state s:

$$V^{\pi}(s) = \mathbf{E}_{\pi} \{ r_0 + \gamma r_1 + \gamma^2 r_2 + \cdots \mid s_0 = s \}$$

where $0 < \gamma < 1$ is the *discounting* factor

Optimality: policy π^* *is optimal iff*

$$\forall_s: \ V^{\pi^*}(s) = V^*(s) \qquad \text{ where } \ V^*(s) = \max_{\pi} V^{\pi}(s)$$

Bellman Principle of Optimality

$$V^{*}(s) = \max_{a} \left[R(a,s) + \gamma \sum_{s'} P(s' \mid a, s) \ V^{*}(s') \right]$$
$$\pi^{*}(s) = \underset{a}{\operatorname{argmax}} \left[R(a,s) + \gamma \sum_{s'} P(s' \mid a, s) \ V^{*}(s') \right]$$

Value Iteration

Given the Bellman equation

$$V^{*}(s) = \max_{a} \left[R(a, s) + \gamma \sum_{s'} P(s' \mid a, s) \ V^{*}(s') \right]$$

 \rightarrow iterate

$$\forall_s : V_{k+1}(s) = \max_a \left[R(a,s) + \gamma \sum_{s'} P(s'|\pi(s),s) \ V_k(s') \right]$$

stopping criterion:

$$\max_{s} |V_{k+1}(s) - V_k(s)| \le \epsilon$$

Policy Iteration

Value Iteration computes **V*** directly

To **evaluate** a given policy π , one needs to compute V^{π} , that is iterate using π instead of max_a

$$\forall_s: \ V_{k+1}(s) = R(\pi(s), s) + \gamma \sum_{s'} P(s'|\pi(s), s) \ V_k(s')$$

Counts as one iteration

Optimal policy can then be computed in iterative way

Policy Iteration

- 1) Initialise π_0 in a given way (e.g. randomly)
- 2) Iterate
 - Policy Evaluation: compute V^{π_k}
 - Policy Improvement: $\pi_{k+1}(s) = \underset{a \in A}{\operatorname{argmax}} [R(a,s) + \gamma \sum_{s'} P(s'|a,s) V^{\pi_k}(s)]$

Value Iteration variants

Gauss-Seidel Value Iteration

 Standard VI algorithm updates all states at next iteration using old values at previous iteration (each iteration finishes when all states get updated).

Algorithm 1 Standard Value Iteration Algorithm

- 1: while (!converged) do
- 2: $V_{old} = V$
- 3: for (each $s \in S$) do
- 4: $V(s) = \max_a \{R(s, a) + \gamma \sum_{s'} P(s'|s, a) V_{old}(s')\}$ Counts as one iteration
 - Gauss-Seidel VI updates each state using values from previous computation.

Algorithm 2 Gauss-Seidel Value Iteration Algorithm

- 1: while (!converged) do
- 2: for (each $s \in \mathcal{S}$) do
- 3: $V(s) = \max_a \{R(s, a) + \gamma \sum_{s'} P(s'|s, a)V(s')\}$ Counts as one iteration

Value Iteration variants

Prioritised Sweeping

- Similar to Gauss-Seidel VI, but the sequence of states in each iteration is proportional to their update magnitudes (Bellman errors).
- Define Bellman error as $E(s; V_t) = |V_{t+1}(s) V_t(s)|$ that is the change of s's value after the most recent update.

Algorithm 3 Prioritised Sweeping VI Algorithm

```
1: Initialize V_0(s) and priority values H_0(s), \forall s \in \mathcal{S}.
```

- **2**: for $k = 0, 1, 2, 3, \dots$ do
- 3: pick a state to update (with the highest priortiy): $s_k \in \arg \max_{s \in S} H_k(s)$
- 4: value update: $V_{k+1}(s_k) = \max_{a \in \mathcal{A}} \left[R(s_k, a_k) + \gamma \sum_{s'} P(s'|s_k, a_k) V_k(s') \right]$
- 5: for $s \neq s_k$: $V_{k+1}(s) = V_k(s)$ Counts a iteration
- 6: update priority values: $\forall s \in \mathcal{S}, H_{k+1}(s) \leftarrow E(s; V_{k+1})$ (Note: the error is w.r.t the future update).

OpenAl Gym Test Environments

- Three test MDP environments based on Open Al Gym:
 - Taxi-v3
 - 4 locations
 - Pickup passenger at one location and drop him off at another
 - 6 actions: move NORTH, SOUTH, EAST, WEST + PICK_UP + DROP_OFF
 - Rewards: +20 for successful drop-off, -1 per movement, -10 for illegal pick-up or drop-off
 - FrozenLake-v0 (small) and FrozenLake8x8-v0 (larger)
 - · Agent controls movement over a grid
 - Some tiles walkable, some lead agent to fall into water; agent has a start and goal tile
 - Movement of agent with uncertainty (due to slippery ice)
 - Rewards: +1 if agent finds correct path, 0 otherwise

Tasks

- · For each game consider the following values for convergence criteria
 - max iterations: 5*10^5
 - epsilon threshold: 10^-2 or 10^-3
 - Discount factor: 0.9
- Step 1: compute V* using the standard Value Iteration Algorithm
- Step 2: Run the two variants of Value Iteration (Gauss-Seidel VI, Prioritized Sweeping VI)
- **Step 3:** Run 5 instantiations (random policy init each time) for **Policy Iteration** for each game
- For Steps 2 and 3: compute averages of number of iterations until convergence
- Plot convergence graph
 - X axis: number of iterations (NOTE! An iteration is considered an update to a state in the value function, i.e. an update to V(s))
 - Y axis: ||V V*||₂
- Analyze convergence speed properties