Introduction to Artificial Intelligence

COMP307/AIML420

Neural Networks: Tutorial

Dr Fangfang Zhang

fangfang.zhang@ecs.vuw.ac.nz

COMP307/AIML420 Week 4 (Tutorial)

1. Announcements

- Assignment 1 (<u>15%</u>)
- Due on 30th Mar.
- Helpdesk (2 hours)this Thurs.---next Wed.
- Part 1 and Part 2
- Part 3

2. Neural Networks

- Perceptron (Part 3)
- Back Propagation

Neural Networks

- Flexible structure
- Number of inputs
- Number of layers
- Fully/partially connected
- Number of outputs

Depends on the problems!

Ups and downs of Neural Networks

- 1958: Perceptron
- 1969: Perceptron has limitations
- 1980s: Multi-layer perceptron

Do not have a significant difference from DNN today

- 1986: Backpropagation
 Improve the efficiency of NN learning
- 1989: 1 hidden layer is "good enough", why deep?
- 2011: start to be popular
- •

Three steps for learning

- neural networks
- accuracy
- decision tree
- Different dataset
 - --- image data
 - --- text data
 - --- speech data
 - --- tabular data (with numbers)

What we have (classification task):

Dataset (features, labels)

Neural network structure (features=input, labels=output, synapses active function)

$$y_j = \begin{cases} 1, & \text{if } \sum_{i=1}^m w_{ji} x_i + b_j > 0, \\ 0, & \text{otherwise} \end{cases}$$

Active function

- Perceptron learning
 - --- learning weights and bias

- How to get the optimal weights and bias?
 - --- important features may have larger weights
- To simplify notation, we can transform the bias to a weight $w_{j0} = b_j$, where $x_0 = 1$ (dummy feature) always holds

$$y_j = \begin{cases} 1, & \text{if } \sum_{i=1}^m w_{ji} x_i + b_j > 0, \\ 0, & \text{otherwise} \end{cases}$$

$$b_j = w_{j0} \cdot 1 = w_{j0} x_0$$

$$v_j = \begin{cases} 1, & \text{if } \sum_{i=0}^m w_{ji} x_i > 0, \\ 0, & \text{otherwise} \end{cases}$$

dataset

weight

43

51

class

A (1)

B (0)

width

7

24

weighted sum

length

12

1

- 1. Define a dummy feature (for bias)
- 2. Random initialise a set of weights (how many?)
- 3. Get the first instance in the dataset
- 4. Sum up feature values and weights, and get predicted class label along

with active function

$$y_j = \begin{cases} 1, & \text{if } \sum_{i=0}^m w_{ji} x_i > 0, \\ 0, & \text{otherwise} \end{cases}$$

5. Adjust the weights (class labels, i.e., 1, 0)

$$w_i \leftarrow w_i + (d - y)x_i, i = 0, 1, 2, \dots, m$$

d is the desired class label, y is the predicted class label

- d = 1, y = 1 or d = 0, y = 0 (same) nothing
- d = 1, y = 0, d y > 0, increase (different)
- d = 0, y = 1, d y < 0, decrease (different)
- 6. Go to step 4, and use the next instance (until meet the stop criterion)

NN Example

Calculate the outputs of this network (feedforward): to 2dp

I_1	I_2	<i>w</i> ₁₃	<i>w</i> ₁₄	w_{23}	w_{24}	W ₃₅	w ₃₆	w_{45}	<i>w</i> ₄₆	b_3	b_4	b_5	b_6
0.90	-0.20	0.72	-0.31	0.10	-0.92	-0.37	0.43	-0.19	0.78	0.01	0.38	-0.13	0.78

$$Z_3 = w_{13} * I_1 + w_{23} * I_2 + b_3$$

= 0.72*0.90 + 0.10*(-0.2) + 0.01
= 0.64

$$Z_4 = w_{14} * I_1 + w_{24} * I_2 + b_4$$

= (-0.31)*0.90 + (-0.92)*(-0.2)
+ 0.38
= 0.29

- 2. Output of a node:
 - Where φ is the activation function
- 3. Assume φ is the sigmoid function: $O_j = \varphi(z_j) = \frac{1}{1+e^{-z_j}}$

$$z_j = \sum_i w_{ji} x_i + b_j$$

Z_3	0.64
03	0.65
Z_4	0.29
O_4	0.57
Z_5	-0.48
O_5	0.62
z_6	1.50
O_6	0.82

$$O_j = \varphi(z_j) = \frac{1}{1+e^{-z_j}}$$

Class = ?

NNs for (Multi-Class) Classification

Training a Neural Network

Initialise the weights (randomly)

Feedforward

- For each example/instance, calculate the predicted outputs o_z using the current weights
- Calculate the total error $\sum_{z} (d_z o_z)^2$
- $-d_z$ means "desired"
- $-o_z$ means "output" (i.e. what we actually got)
- If the error is small enough, we can stop.
- Otherwise, we use back propagation to adjust the weights to make the error smaller.
 - Uses gradient descent (GD)

Back Propagation (BP) Algorithm

- Improve the efficiency of NN learning
- How to update the weights
- Estimate the <u>contribution (gradient)</u> of each weight to the error, i.e. how much the error will be reduced by changing the weight (gradient)
- Change each weight (simultaneously) proportional to its contribution to reduce the error as much as possible
 - Move in the direction of the steepest gradient
- We calculate the contribution/gradient backwards (from the last/output layer to the first hidden layer)

Notes on BP Algorithm

- 1 Epoch: all input examples (entire training set, batch, ...)
- A target of 0 or 1 cannot reasonably be reached. Usually interpret an output > 0.9 or > 0.8 as '1'
- Training may require *thousands* of epochs. A convergence curve will help to decide when to stop (over-fitting?)

This is a function.
Input vector, output vector

$$f\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}0.62\\0.83\end{bmatrix} \quad f\left(\begin{bmatrix}0\\0\end{bmatrix}\right) = \begin{bmatrix}0.51\\0.85\end{bmatrix}$$

Input

Output

Total Loss

For all training data ...

Total Loss:

Find *a function in function set* that
minimizes total loss L

Find <u>the network</u> parameters θ^* that minimize total loss L

Chain Rule

Case 1
$$y = g(x)$$
 $z = h(y)$

$$\Delta x \to \Delta y \to \Delta z \qquad \frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$$
Case 2
$$x = g(s) \qquad y = h(s) \qquad z = k(x, y)$$

$$\Delta x \to \Delta z \qquad \frac{dz}{ds} = \frac{\partial z}{\partial x} \frac{dx}{ds} + \frac{\partial z}{\partial y} \frac{dy}{ds}$$

Back Propagation (BP) Algorithm

- How big a change should we make to weight w_{i→i}?
 - Make a big change if will improve error a lot (big contribution)
 - Make a small change if there is little effect on error (small contribution)

- β_i is how "beneficial" a change is for node j ("error term")
- When changing $w_{i\rightarrow j}$, the error change should be:
 - Proportional to the output: o_i (larger output = more effect)
 - Proportional to the slope of the activation function at node j: slope;
 - Proportional to error term of j (β_i)

BP Algorithm Implementation

- Initialise all weights (+bias) to small random values
- Until total error is small enough, repeat:
 - For each input example:
 - Feed forward pass to get predicted outputs
 - Compute $\beta_z = d_z o_z$ for each output node
 - Compute $\beta_j = \sum_k w_{j\to k} o_k (1 o_k) \beta_k$ for each hidden node (working backwards from last to first layer)
 - Compute (+store) the weight changes for all weights $\Delta w_{i\to j} = \eta o_i o_j \big(1-o_j\big)\beta_j \text{ (proportional to all 3 factors), Let } \eta \text{ be the learning rate}$
 - Sum up weight changes for all input examples
 - Change weights!

NN Example: Your Turn!

Calculate the new weights and biases (backprop): to 2dp

d_5	d_6	η	β_3	β_4	eta_5	β_6
0	1	1				

<i>w</i> ₁₃	
w_{14}	
w_{23}	
w_{24}	
w_{35}	
<i>w</i> ₃₆	
W ₄₅	
<i>w</i> ₄₆	
b_3	
b_4	
b_5	
b_6	

Useful Formulae: Backprop

• Error term of an output node: $\beta_i = d_i - O_i$

- Error term of a hidden node: $\beta_j = \sum_{k} w_{j \to k} O_k (1 O_k) \beta_k$
 - (For the sigmoid activation function)

- Amount to change a weight: $\Delta w_{i \to j} = \eta O_i O_j (1 O_j) \beta_j$
- Amount to change a bias: $\Delta b_i = \eta O_i (1 O_i) \beta_i$

Summary

- Perceptron
- Back Propagation
- Next week
 - --- Neural Engineering (next Monday)
 - --- Evolutionary Computation (next Tuesday)