2022-2023 春夏《信号分析与处理》回忆卷

简答题 (40分)

- 1.解释CFT与拉普拉斯变换、Z变换与拉普拉斯变换、Z变换与DTFT、Z变换与DFT的关系。
- 2. 给定信号 $x(n) = \left(\frac{5}{3}\right)^n u(-n)$,判断其是能量信号还是功率信号,或者都不是? 说明理由。
- 3. 三个小问:
 - 已知x(t)傅里叶变换后的结果为 $X(\omega)$,给出 $\frac{d^2}{dt^2}x(t-1)$ 傅里叶变换后的结果
 - 给定X(z), 利用终值定理求 $x(\infty)$
 - 求 $x(n) = \sum_{k=0}^{\infty} \delta(n-2k)$ 的单边Z变换
- 4. 给定输入输出关系y(n) = x(n) + x(-n),判断系统是否线性、时不变、因果,说明理由。
- 5. 给定信号 $x(t) = Sa(100t) \cdot cos(200t)$, 要对x(t) * x(2t)采样, 奈奎斯特频率应取多少?
- 6. 给定信号 $x(t) = cos2\pi t + cos8\pi t$, 问经过以下滤波器后信号是否会失真?

7. 给定 $x_1(n) = [1,1,1]$, $x_2(n) = [1,2,3,4,5]$, 求两个序列的线性卷积结果 $y_1(n)$, 并求两个序列L = 5的圆周卷积序列 $y_2(n)$ 中的 $y_2(1)$, $y_2(2)$ 。

计算题 (60分)

- 1. 三个小问:
 - 求信号x(t) = 1 |t|, $-1 \le t \le 1$ 的傅里叶变换结果
 - 取[0,25kHz]为有效频率范围,用FFT进行DFT,要求 $f_0<100Hz$,求FFT的采样点数N,以及采样周期 T_s
 - 对信号进行N点FFT,采样频率为 f_s ,问k=10对应的模拟频率 ω 是多少?
- 2. 给定序列 $x_1(n) = [1,1,2,1]$, $x_2(n) = ?$ (忘了,不影响)
 - 画出 $x_1(n)$ 的4点基2按时间抽取FFT的算法流程图
 - $x_1(n)$ 的DFT结果为 $X_1(k)$, $x_2(n)$ 的DFT结果为 $X_2(k)$, 如果把 $x_1(n)$ 和 $x_2(n)$ 分别当作一个新序列的偶数项和奇数项,得到新序列 $y_1(n)$,其DFT结果为Y(k),用 $X_1(k)$ 和 $X_2(k)$ 表示Y(k)
 - 写出: $x_3(n) = x_1((n-1))_4 R_4(n)$, $x_4(n) = x_1((n))_3 R_3(n)$
 - 第一问已经得到了 $X_1(k)$,请你利用DFT的圆周移位性质求 $x_3(n)$ 的DFT结果
- $3. y(n-1) \frac{10}{3}y(n) + y(n+1) = x(n)$,求系统单位脉冲响应h(n),并判断系统稳定性。
- 4. 给出参数 Ω_p 、 Ω_s 、 α_p 、 α_s , 利用双线性变换法设计巴特沃斯数字低通滤波器。