MST209 2005

1.
$$\frac{x}{y} + 1 = 2x - 1$$
 so $\frac{x}{y} = 2x - 2$ cross multiplying gives **B**.

2. **B**

3.
$$\mathbf{b} - \mathbf{c} = \mathbf{i} - 2\mathbf{j} - 2\mathbf{k}$$
 so $\mathbf{a} \cdot (\mathbf{b} - \mathbf{c}) = 1 - 2 + 2 = 1$

4. **C**

5. Integrating

$$\mathbf{v} = \left(\frac{t^2}{2} - \frac{\sin 2t}{2}\right)\mathbf{i} \text{ and } \mathbf{r} = \left(\frac{t^3}{6} + \frac{\cos 2t}{4} + C\right)\mathbf{i}$$

$$\mathbf{r} = \mathbf{0}$$
 when $t = 0$ so $0 = \frac{1}{4} + C \Rightarrow C = -\frac{1}{4}$

D

- 6. Right hand spring is not extended A
- 7. Block is below datum level so minus. Vertical distance is $d \sin \theta$ so **D**

8.

$$\begin{bmatrix} 2 & 1 & 3 \\ 4 & 0 & 2 \\ -4 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \text{ so } \mathbf{B}$$

9. Using the composite rule **D.**

10.
$$\mathbf{v} = \mathbf{j} + 2t\mathbf{k}$$
. At $t = 1$ $\mathbf{v} = \mathbf{j} + 2\mathbf{k}$ $|\mathbf{v}| = \sqrt{1+4}$ so \mathbf{B}

11.
$$\alpha = \frac{r}{2\sqrt{m(2k)}} > 1 \text{ so } r > 2\sqrt{2mk} \text{ so } \mathbf{D}$$

12. Momentum is $m(u\mathbf{i} + v\mathbf{j}) + 2m(U\mathbf{i} + V\mathbf{j})$ **B**

13.
$$f(-x) = \cos(e^x) \neq \pm f(x)$$
 so C

14.
$$\text{div}\mathbf{F} = 2xy^3z + 2xyz^2 + 2x^3yz$$
 so **B**

15. **C**

16. Using page 26 of Handbook

$$p(x) = \exp\left(\int \frac{2}{x} dx\right) = \exp(2\ln x) = x^2$$

Equation becomes $\frac{d}{dx}(x^2y) = 2x^3$

Integrating $x^2 y = \frac{x^4}{2} + C$

When x = 1 y = 0 so $C = -\frac{1}{2}$

$$y = \frac{x^2}{2} - \frac{1}{2x^2}$$

17. (a)

T = tension N = normal reaction W = weight

(b)
$$\mathbf{W} = -mg\mathbf{i} \quad \mathbf{N} = |\mathbf{N}|\mathbf{i}$$

$$\mathbf{P} = \left| \mathbf{P} \right| \left(\cos \frac{\pi}{6} \mathbf{i} + \sin \frac{\pi}{6} \mathbf{j} \right) = \left| \mathbf{P} \right| \left(\frac{\sqrt{3}}{2} \mathbf{i} + \frac{1}{2} \mathbf{j} \right)$$

$$\mathbf{T} = |\mathbf{T}| \left(-\cos\frac{\pi}{4}\mathbf{i} + \sin\frac{\pi}{4}\mathbf{j} \right) = \frac{|\mathbf{T}|}{\sqrt{2}} \left(-\mathbf{i} + \mathbf{j} \right)$$

(c)

For equilibrium W+N+P+T=0

Resolving in the i-direction

$$-\frac{|\mathbf{T}|}{\sqrt{2}} + \frac{\sqrt{3}|\mathbf{P}|}{2} = 0 \text{ so } |\mathbf{T}| = \sqrt{\frac{3}{2}}|\mathbf{P}|$$

Resolving in the **j**-direction

$$-mg + \left|\mathbf{N}\right| + \frac{\left|\mathbf{P}\right|}{2} + \frac{\left|\mathbf{T}\right|}{\sqrt{2}} = 0$$

$$|\mathbf{N}| = mg - \frac{|\mathbf{P}|}{2} - \frac{|\mathbf{T}|}{\sqrt{2}} = mg - \frac{|\mathbf{P}|}{2} - \frac{\sqrt{3}|\mathbf{P}|}{2}$$

To remain in contact

$$|\mathbf{N}| > 0 \text{ so } m > |\mathbf{P}| \frac{\left(1 + \sqrt{3}\right)}{2g}$$

18.

N + W = 0 as no vertical motion

$$\mathbf{H}_{1} = -k(x-l_{0})\mathbf{i}$$

$$\mathbf{H_2} = -2k \left(3l_0 - x - \frac{l_0}{2} \right) (-\mathbf{i}) = 2k \left(\frac{5l_0}{2} - x \right) \mathbf{i}$$

Newton's second law gives

$$m\ddot{x}\mathbf{i} = \mathbf{H}_1 + \mathbf{H}_2$$

Resolve in i-direction

$$m\ddot{x} = -k(x - l_0) + k(5l_0 - 2x)$$

$$m\ddot{x} + 3kx = 6kl_0$$

19. a)

From Handbook page 49

$$y = x \tan \theta - \frac{x^2 g}{2u^2} \left(1 + \tan^2 \theta \right)$$

When x = d, y = h so

$$h = d \tan \theta - \frac{d^2 g}{2u^2} \left(1 + \tan^2 \theta \right) \quad (1)$$

When x = 2d, y = h so

$$h = 2d \tan \theta - \frac{4d^2g}{2u^2} (1 + \tan^2 \theta)$$
 (2)

 $(1)\times 4$ gives

$$4h = 4d \tan \theta - \frac{4d^2g}{2u^2} (1 + \tan^2 \theta)$$
 (3)

$$(3)-(2)$$
 gives

$$3h = 2d \tan \theta$$
 or $\tan \theta = \frac{3h}{2d}$

b) Substitute into (1)

$$h = \frac{3h}{2} - \frac{d^2g}{2u^2} \left(1 + \frac{9h^2}{4d^2} \right)$$

$$\frac{g}{2u^2} \left(d^2 + \frac{9h^2}{4} \right) = \frac{h}{2}$$

$$u^{2} = \frac{g}{4h} \left(4d^{2} + 9h^{2} \right)$$

20. a) From Handbook page 51

$$q = UA(\theta_{\text{in}} - \theta_{\text{out}})$$
 and $U = \left(\frac{1}{h_{\text{in}}} + \frac{b}{k} + \frac{1}{h_{\text{out}}}\right)^{-1}$

Here $h_{in} = 10$, $h_{out} = 100$, b = 0.01, k = 1

so
$$U = \left(\frac{1}{10} + 0.01 + \frac{1}{100}\right)^{-1} = \left(\frac{12}{100}\right)^{-1} = \frac{100}{12}$$

$$\theta_{\rm in} = 15$$
, $\theta_{\rm out} = 0$, $A = 2$

so
$$q = \frac{100}{12} \times 2 \times 15 = 250 \text{ W}$$

b) From Handbook page 51

$$q = h_{\text{out}} A(\theta_s - \theta_{\text{out}})$$
 where $\theta_s = \text{Temp}$ at outer surface

so
$$250 = 100 \times 2\theta_s$$
 so $\theta_s = 1.25^{\circ} C$

21. a)

b)
$$\mathbf{N} = -|\mathbf{N}|\mathbf{e}_r \quad \mathbf{W} = mg(\cos\theta\mathbf{e}_r - \sin\theta\mathbf{e}_\theta)$$

c) By Newton's second law

$$m\ddot{\mathbf{r}} = \mathbf{N} + \mathbf{W}$$

Using page 59 of Handbook

$$-mR\dot{\theta}^{2}\mathbf{e}_{r}+mR\ddot{\theta}\mathbf{e}_{\theta}=-\left|\mathbf{N}\right|\mathbf{e}_{r}+mg\left(\cos\theta\mathbf{e}_{r}-\sin\theta\mathbf{e}_{\theta}\right)$$

Resolve in the e_r -direction

$$-mR\dot{\theta}^2 = mg\cos\theta - |\mathbf{N}|$$

Resolve in the \mathbf{e}_{a} -direction

$$mR\ddot{\theta} = -mg\sin\theta$$

22. a)

Substitute u = XT into equation giving X''T = XT''

Divide by XT giving
$$\frac{X''}{X} = \frac{T''}{T} = k$$
 a constant

as RHS is a function of *t* only and LHS is a function of *x* only.

So
$$X''-kX=0$$
.

b)

$$u(0,t) = u(\pi,0) = 0 \implies X(0) = X(\pi) = 0$$

If k > 0 i.e $k = \lambda^2$ the equation becomes $X'' - \lambda^2 X = 0$

The solution of which is $X = Ae^{\lambda x} + Be^{\lambda x}$

Fitting the boundary equations

$$0 = A + B$$
 and $0 = Ae^{\lambda \pi} + Be^{-\lambda \pi} \implies A = B = 0$

22 b) (cont)

If k=0 the equation becomes X''=0. The solution of which is X=Ax+B Fitting the boundary conditions 0=B and $0=A\pi \implies A=B=0$. If k<0 i.e. $k=-\omega^2$ the equation becomes $X''+\omega^2X=0$ which has solution $X=A\cos\omega x+B\sin\omega x$. Fitting the boundary conditions 0=A and $0=B\sin\omega\pi$ For non trivial solutions $B\neq 0 \implies \sin\omega\pi=0$ $\omega=n$ where n=1,2,3...

 $B \neq 0 \Rightarrow \sin \omega \pi = 0$ $\omega = n$ where n = 1, 2, 3...so $X = B \sin nx$ where $k = -n^2$ and n = 1, 2, 3...

23. a) M of I of child = 0 so M of I of roundabout together with child = I making the angular momentum = $I\omega$

b) New M of I of child = mR^2 .

Total M of $I = I + mR^2$

Let new angular speed be Ω .

As there are no external forces by conservation of angular momentum

$$(I + mR^2)\Omega = I\omega \implies \Omega = \frac{I\omega}{I + mR^2}$$

c) KE at beginning =
$$\frac{1}{2}I\omega^2$$

K E at end = KE of child + K E of roundabout = $\frac{1}{2}mR^2\Omega^2 + \frac{1}{2}I\Omega^2$

Substituting for Ω gives K E at end

$$=\frac{1}{2}\left(mR^2+I\right)\frac{I\omega^2}{\left(I+mR^2\right)^2}=\frac{I\omega^2}{2\left(I+mR^2\right)}$$

Change in K E =
$$\frac{I\omega^2}{2(I+mR^2)} - \frac{1}{2}I\omega^2$$

= $-\frac{I\omega^2}{2} \left(\frac{mR^2}{I+mR^2}\right)$

24.

From page 26 of Handbook auxiliary equation is

$$\lambda^2 + 2\lambda + 5 = 0$$
 so $\lambda = \frac{-2 \pm \sqrt{4 - 4 \times 5}}{2} = -1 \pm 2i$
and complementary function is $x = e^{-t} (A \cos 2t + B \sin 2t)$

For particular integral (page 27 Handbook) try

$$x = a + b \cos 2t + c \sin 2t$$

$$\frac{dx}{dt} = -2b\sin 2t + 2c\cos 2t$$

$$\frac{d^2x}{dt^2} = -4b\cos 2t - 4c\sin 2t$$

Substituting into the equation gives

$$-4b\cos 2t - 4c\sin 2t - 4b\sin 2t + 4c\cos 2t$$

$$+5a + 5b\cos 2t + 5c\sin 2t = 20 + 17\cos 2t$$

$$5a + (4c + b)\cos 2t + (c - 4b)\sin 2t = 20 + 17\cos 2t$$

Equating coefficients

$$5a = 20 \implies a = 4$$

$$b + 4c = 17$$
 and $c - 4b = 0 \implies 17b = 17$

so
$$b = 1$$
 and $c = 4$

$$x_p = 4 + \cos 2t + 4\sin 2t$$

Adding the two solutions together

$$x = e^{-t} (A\cos 2t + B\sin 2t) + 4 + \cos 2t + 4\sin 2t$$

Fitting the initial conditions

$$\frac{dx}{dt} = e^{-t} \left(-2A\sin 2t + 2B\cos 2t \right)$$

$$-e^{-t} \left(A\cos 2t + B\sin 2t \right) - 2\sin 2t + 8\cos 2t$$

$$x = 5 \text{ when } t = 0 \text{ gives } 5 = A + 4 + 1 \text{ so } A = 0$$

$$\frac{dx}{dt} = 0 \text{ when } t = 0 \text{ gives } 0 = 2B - A + 8 \text{ so } B = -4$$

$$\frac{dx}{dt} = 0 \text{ when } t = 0 \text{ gives } 0 = 2B - A + 8 \text{ so } B = -4$$
$$x = -4e^{-t} \sin 2t + 4 + \cos 2t + 4 \sin 2t$$

25. a) Choose the co-ordinate axis vertically downwards as motion is downwards

R is the air resistance force and **W** is the weight so $\mathbf{R} = -c_2 D^2 v^2 \mathbf{i}$ and $\mathbf{W} = mg\mathbf{i}$.

By Newton's second law $m\mathbf{a} = \mathbf{R} + \mathbf{W}$ Resolving in the **i**-direction

$$ma = -c_2 D^2 v^2 + mg$$

b) For terminal speed a = 0

so
$$mg - c_2 D^2 v_T = 0$$
 giving $v_T = \sqrt{\frac{mg}{c_2 D^2}}$

25. b) (cont)

Using this and $a = v \frac{dv}{dt}$

(Handbook page 32) the equation of motion

becomes
$$mv \frac{dv}{dt} = mg - \frac{mgv^2}{v_T^2}$$

Cancelling m and tidying up gives

$$v\frac{dv}{dx} = -\frac{g}{v_T^2} \left(v^2 - v_T^2 \right)$$

c)

Separating the variables gives

$$\int \frac{v dv}{v^2 - v_T^2} = -\int \frac{g}{v_T^2} dx \text{ as } v_0 > v_T \quad v > v_T$$

Integrating
$$\frac{1}{2} \ln \left(v^2 - v_T^2 \right) = -\frac{g}{v_T^2} x + C$$

$$v = v_0$$
 when $x = 0$ so $C = \frac{1}{2} \ln \left(v_0^2 - v_T^2 \right)$

so
$$\frac{1}{2}\ln(v_0^2 - v_T^2) - \frac{1}{2}\ln(v^2 - v_T^2) = \frac{gx}{v_T^2}$$

or
$$x = \frac{v_T^2}{2g} \ln \left(\frac{\left(v_0^2 - v_T^2\right)}{\left(v^2 - v_T^2\right)} \right)$$

26.

In matrix form the equations are

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 0 \\ 6e^{-t} \end{bmatrix}$$

For eigenvalues

$$\begin{vmatrix} 3 - \lambda & -1 \\ 2 & -\lambda \end{vmatrix} = 0 \text{ or } \lambda^2 - 3\lambda + 2 = 0$$

giving
$$(\lambda - 1)(\lambda - 2) = 0$$

so
$$\lambda = 1$$
 or $\lambda = 2$

For eigenvectors using $\lambda = 1$

$$\begin{bmatrix} 2 & -1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ so } v = 2u \text{ an eigenvector is } \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

For eigenvectors using $\lambda = 2$

$$\begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ so } v = u \text{ an eigenvector is } \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Using page 43 of Handbook

the complementary function is

$$\begin{bmatrix} x \\ y \end{bmatrix} = C_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^t + C_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{2t}$$

For particular integral try $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} e^{-t}$

Substituting into the equation

$$-\begin{bmatrix} a \\ b \end{bmatrix} e^{-t} = \begin{bmatrix} 3 & -1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} e^{-t} + \begin{bmatrix} 0 \\ 6 \end{bmatrix} e^{-t}$$

so -a = 3a - b giving b = 4a

and
$$-b = 2a + 6$$
 giving $6a = -6$

$$\Rightarrow a = -1, b = -4$$

The particular integral is $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 \\ -4 \end{bmatrix} e^{-t}$

General solution is

$$\begin{bmatrix} x \\ y \end{bmatrix} = C_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^t + C_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{2t} - \begin{bmatrix} 1 \\ 4 \end{bmatrix} e^{-t}$$

Using the initial conditions

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = C_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + C_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$
 so

$$C_1 + C_2 = 1$$
 and $2C_1 + C_2 = 4$ giving $C_1 = 3$ and $C_2 = -2$

so
$$x = 3e^t - 2e^{2t} - e^{-t}$$
 $y = 6e^t - 2e^{2t} - 4e^{-t}$

27. a)

As x = 0 the equation for y becomes $\dot{y} = y(B - y)$ which is the logistic equation.

The starting point is between the equilibrium points and so y(B-y) is positive and the population will grow tailing off as it approaches the equilibrium point y = B.

For equilibrium $\dot{y} = \dot{x} = 0$ so that

$$x(y-A) = 0 \implies x = 0 \text{ or } y = A$$

Also
$$y(B-x-y) = 0$$
 so if $x = 0$ then $y = 0$ or $y = B$

If
$$y = A$$
, then $B - x - A = 0$ or $x = B - A$

The equilibrium points (0,0), (0,B) and (B-A,A)

$$u = xy - Ax$$
 so $\frac{\partial u}{\partial x} = y - A$ and $\frac{\partial u}{\partial y} = x$

$$v = By - xy - y^2$$
 so $\frac{\partial v}{\partial x} = -y$ and $\frac{\partial v}{\partial y} = B - x - 2y$

$$\mathbf{J}(B-A,A) = \begin{bmatrix} 0 & B-A \\ -A & -A \end{bmatrix}$$

$$B = \frac{6A}{5} \text{ makes } \mathbf{J} = \begin{bmatrix} 0 & \frac{A}{5} \\ -A & -A \end{bmatrix}$$

For eigenvalues

$$\begin{vmatrix} -\lambda & \frac{A}{5} \\ -A & -\lambda - A \end{vmatrix} = 0 \text{ so } \lambda^2 + A\lambda + \frac{A^2}{5} = 0$$

$$\lambda = \frac{-A \pm \sqrt{A^2 - \frac{4}{5}A^2}}{2} = -\frac{A}{2} \left(1 \pm \frac{1}{\sqrt{5}} \right)$$

Eigenvalues are both real and negative so the point is a stable sink. (Handbook page 47) ii)

$$B = 2A \text{ makes } \mathbf{J} = \begin{bmatrix} 0 & A \\ -A & -A \end{bmatrix}$$

For eigenvalues

$$\begin{vmatrix} -\lambda & A \\ -A & -\lambda - A \end{vmatrix} = 0 \text{ so } \lambda^2 + A\lambda + A^2 = 0$$

$$\lambda = \frac{-A \pm \sqrt{A^2 - 4A^2}}{2} = -\frac{A}{2} (1 \pm \sqrt{3}i)$$

Eigenvalues are complex with negative real part so the point is a stable spiral sink.

b)

$$\Delta \mathbf{H}_1 = -6x\mathbf{i} \quad \Delta \mathbf{H}_2 = -2(y-x)(-\mathbf{i}) = 2(y-x)\mathbf{i}$$

$$\Delta \mathbf{H}_3 = -\Delta \mathbf{H}_2 = -2(y-x)\mathbf{i}$$

c)

 $\mathbf{W} + \mathbf{N} = \mathbf{0}$ for each particle as the motion is horizontal. For the first particle Newton's second law gives $4\ddot{\mathbf{n}} = \Delta \mathbf{H}_1 + \Delta \mathbf{H}_2$ Resolving in the \mathbf{i} –direction

$$4\ddot{x} = -6x + 2y - 2x$$
 or $\ddot{x} = -2x + \frac{y}{2}$

For the second particle $\ddot{y}\mathbf{i} = \Delta \mathbf{H}_3$ Resolving in the \mathbf{i} –direction $\ddot{y} = -2y + 2x$ In matrix form

$$\begin{bmatrix} \ddot{x} \\ \ddot{y} \end{bmatrix} = \begin{bmatrix} -2 & \frac{1}{2} \\ 2 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
 as required.

d)

For eigenvalues

$$\begin{vmatrix} -2 - \lambda & \frac{1}{2} \\ 2 & -2 - \lambda \end{vmatrix} = 0 \text{ so } (2 + \lambda)^2 - 1 = 0$$
or $\lambda^2 + 4\lambda + 3 = 0$ $(\lambda + 3)(\lambda + 1) = 0$

so eigenvalues are -3 and -1Normal mode angular frequencies are

 $\omega = \sqrt{3}$ and $\omega = 1...$

e)

For
$$\lambda = -3 \begin{bmatrix} 1 & \frac{1}{2} \\ 2 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 so $v = -2u$

An eigenvector is $\begin{bmatrix} 1 & -2 \end{bmatrix}^T$

For $\omega = \sqrt{3}$ the components of an eigenvector have different signs so the motion is phase-opposed.

For
$$\lambda = -1$$
 $\begin{bmatrix} -1 & \frac{1}{2} \\ 2 & -1 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ so $v = 2u$

An eigenvector is $\begin{bmatrix} 1 \\ 2 \end{bmatrix}^T$

For $\omega = 1$. the components of an eigenvector have the same sign so the motion is in-phase.

29. a)
$$\nabla \times \mathbf{F} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\alpha xyz - \alpha x & x^2z - 2y & x^2y
\end{vmatrix}$$

$$= \mathbf{i} (x^2 - x^2) - \mathbf{j} (2xy - \alpha xy) + \mathbf{k} (2xz - \alpha xz)$$

$$= (\alpha - 2) xy\mathbf{j} + (2 - \alpha) xz\mathbf{k}$$

b) curl $\mathbf{F} = \mathbf{0}$ when \mathbf{F} is conservative so $\alpha = 2$.

c) Choosing a straight line segment from O to the point (a,b,c) we have

$$\mathbf{r}(t) = at\mathbf{i} + bt\mathbf{j} + ct\mathbf{k} \ (0 \le t \le 1).$$

29 d)

Assuming C is the path above along the path

$$\mathbf{F} = 2at \left(bct^2 - 1\right)\mathbf{i} + \left(a^2ct^3 - 2bt\right)\mathbf{j} + a^2bt^3\mathbf{k}$$

$$\frac{d\mathbf{r}}{dt} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$
so
$$\mathbf{F} \cdot \frac{d\mathbf{r}}{dt} = 2a^2bct^3 - 2a^2t + a^2bct^3 - 2b^2t + a^2bct^3$$

$$= 4a^2bct^3 - 2\left(a^2 + b^2\right)t$$

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^1 \left(4a^2bct^3 - 2\left(a^2 + b^2\right)t\right)dt$$

$$= \left[a^2bct^4 - \left(a^2 + b^2\right)t^2\right]_0^1$$

$$= a^2bc - \left(a^2 + b^2\right)$$

e)

If $\mathbf{F} = -\operatorname{grad} U$ then

$$U(a,b,c) = -\int_{C} \mathbf{F} \cdot d\mathbf{r} = a^{2} + b^{2} - a^{2}bc$$
.

As a, b and c are arbitrary they can be replaced by x, y and z respectively giving $U(x, y, z) = x^2 + y^2 - x^2yz$

$$-\operatorname{grad} U = -\begin{pmatrix} \frac{\partial}{\partial x} (x^2 + y^2 - x^2 yz) \mathbf{i} + \\ \frac{\partial}{\partial y} (x^2 + y^2 - x^2 yz) \mathbf{j} \\ + \frac{\partial}{\partial z} (x^2 + y^2 - x^2 yz) \mathbf{k} \end{pmatrix}$$
$$= -(2x - 2xyz) \mathbf{i} - (2y - x^2 z) \mathbf{j} + x^2 y\mathbf{k}$$
$$= \mathbf{F}$$

30. a)

In cylindrical polars the equation of the sphere is $\rho^2 + z^2 = R^2$ so the volume is given by using Handbook page 70

$$V = \int_{\frac{R}{2}}^{R} \int_{0}^{\sqrt{R^{2}-z^{2}}} \int_{-\pi}^{\pi} \rho d\theta d\rho dz = 2\pi \int_{\frac{R}{2}}^{R} \int_{0}^{\sqrt{R^{2}-z^{2}}} \rho d\rho dz$$

$$= \pi \int_{\frac{R}{2}}^{R} \left[\rho^{2} \right]_{0}^{\sqrt{R^{2}-z^{2}}} dz = \pi \int_{\frac{R}{2}}^{R} R^{2} - z^{2} dz$$

$$= \pi \left[R^{2}z - \frac{z^{3}}{3} \right]_{\frac{R}{2}}^{R} = \pi \left(\frac{2R^{3}}{3} - \left(\frac{R^{3}}{2} - \frac{R^{3}}{24} \right) \right)$$

$$= \frac{\pi R^{3}}{24} \left(16 - 12 + 1 \right) = \frac{5\pi R^{3}}{24}$$

$$I = \int_{B} z dV = \int_{\frac{R}{2}}^{R} \int_{0}^{\sqrt{R^{2}-z^{2}}} \int_{-\pi}^{\pi} z \rho d\theta d\rho dz$$

$$= 2\pi \int_{\frac{R}{2}}^{R} \int_{0}^{\sqrt{R^{2}-z^{2}}} z \rho d\rho dz = \pi \int_{\frac{R}{2}}^{R} \left[z \rho^{2} \right]_{0}^{\sqrt{R^{2}-z^{2}}} dz$$

$$= \pi \int_{\frac{R}{2}}^{R} z R^{2} - z^{3} dz = \pi \left[\frac{z^{2} R^{2}}{2} - \frac{z^{4}}{4} \right]_{\frac{R}{2}}^{R}$$

$$= \pi \left(\frac{R^{4}}{4} - \left(\frac{R^{4}}{8} - \frac{R^{4}}{64} \right) \right) = \frac{\pi R^{4}}{64} (16 - 8 - 1)$$

$$= \frac{9\pi R^{4}}{64}$$

c)

The centre of mass lies on the axis of symmetry i.e. the *z*-axis. Using Handbook page 71 $M = \int \rho_B dV$ and

$$z_G = \frac{\int\limits_B z \rho_B dV}{\int\limits_B \rho_B dV} = \frac{\int\limits_B z dV}{\int\limits_B dV} = \frac{I}{V} \text{ as } \rho_B \text{ is constant.}$$

So
$$z_G = \frac{9\pi R^4}{64} / \frac{5\pi R^3}{24} = \frac{27R}{40}$$

The centre of mass of the object is

$$\left(0,0,\frac{27R}{40}\right).$$