第 106 學年度清華大學普通物理實驗(19)

□預報 或	□結報	課程編號	:	10620 PHYS (020 1)
-------	-----	------	---	--------------------

實驗名稱	RI	鱼	RIC	電路	
員一般石碑	11	7	NLL	100	

系級: 林井山

組 別:__ 學 號: 106031204. 106031209 姓 名: 林暄芝.

組員: 彭慧文

實驗日期: 10 年 5月 千 2日 補作日期: ___年 月 日

預報繳交日期	報告成績	助教簽名欄
結報繳交日期	A	
	THE PERSON NAMED IN	

報告缺失紀錄

一、結果與分析

(一)用示波器觀察電容器的充電及放電現象

1. 示波器並聯 C

$$R = 10k\Omega$$

$$C = 0.1 \mu F$$

υ – υ.τμι					
	$T_{1/2}(ms)$	το	T ₀ 誤差	圖片	
$\frac{T}{2} = 100RC$	0.6	8.656×10^{-4}	13.44%	の	
$\frac{T}{2} = 10RC$	1	1.442× 10 ⁻³	44.26%	Trig'd M Per 0.000s 1 1650	
$\frac{T}{2} = RC$	380×10^{-3}	5.482× 10 ⁻⁴	45.18%	A D STOOM M Pec 0.000s	

$$au_0$$
理論值 = RC = $10 \times 10^3 \times 0.1 \times 10^{-6} = 0.001$
 au_0 實驗值 = $\frac{T_{1/2}}{\ln 2} = \frac{0.6 \times 10^{-3}}{\ln 2} = 8.656 \times 10^{-4}$

$$= \frac{|8.656 \times 10^{-4} - 0.001|}{0.001} \times 100\% = 13.44\%$$

$$au_0$$
誤差 = $\dfrac{\left| au_0$ 實驗值 $- au_0$ 理論值 au au

$$= \frac{|5.482 \times 10^{-4} - 0.001|}{0.001} \times 100\% = 45.18\%$$

2. 示波器並聯 R

(二)用示波器觀察阻尼振盪

$$R = 35\Omega$$

$$R_L=26.3\Omega$$

$$R_{total} = 35 + 26.3 = 61.3\Omega$$

$$R_C$$
實驗值 = 3346.3 Ω

$$C = 0.001 \mu F$$

$$L = 10mH$$

$$T_{1/2} = 42.8 \mu s$$

$$T=21.2\mu s$$

	理論值	實驗值	誤差
τ_0	6.17×10^{-5}	3.26×10^{-4}	81.06%
$\omega_0(\text{rad/s})$	296392.5	316227.8	6.27%
$R_{C}(\Omega)$	3346.3	6324.556	47.09%

$$\begin{split} \tau_0 &= \frac{T_{1/2}}{\ln 2} \\ \tau_0 &= \frac{A_{2.8} \times 10^{-6}}{\ln 2} = 6.17 \times 10^{-5} \\ \tau_0 &= \frac{2L}{R} \\ \tau_0 &= \frac{2}{R} \\ \tau_0 &= \frac{2 \times 10 \times 10^{-3}}{61.3} = 3.26 \times 10^{-4} \\ \tau_0 &= \frac{\left|\tau_0 \right| \Re \left(\frac{1}{R} - \tau_0 \right) \right| \Re \left(\frac{1}{R} \right)}{3.26 \times 10^{-4}} \times 100\% \\ &= \frac{\left|6.17 \times 10^{-5} - 3.26 \times 10^{-4}\right|}{3.26 \times 10^{-4}} \times 100\% = 81.06\% \\ \left(\frac{2\pi}{T}\right)^2 &= \omega_0^2 - \frac{R_{total}^2}{4L^2} \\ \left(\frac{2\pi}{21.1 \times 10^{-6}}\right)^2 &= \omega_0^2 - \frac{61.3^2}{4(10 \times 10^{-3})^2} \\ \omega_0 &= \frac{1}{\sqrt{LC}} \\ \omega_0 &= \frac{1}{\sqrt{LC}} \\ \omega_0 &= \frac{1}{\sqrt{LC}} \\ \omega_0 &= \frac{1}{\sqrt{10 \times 10^{-3} \times 0.001 \times 10^{-6}}} = 316227.8 \text{rad/s} \\ \omega_0 &= \frac{\left|\omega_0 \right| \Re \left(\frac{1}{R} - \omega_0 \right) - \frac{1}{R} + \frac{1$$

(三)以示波器觀察共振現象,並測量線路的諧振頻寬和 Q 值

$1. 100\Omega$

	ω(kHz)	q(V)
	15	18
	25	21.2
	35	38
$q_{max}/\sqrt{2}$	45.62	154
	46	174
	46.5	202
	46.8	216
q _{max}	47	218
	47.8	212
	48.2	190
	48.8	164
$q_{\text{max}}/\sqrt{2}$	49.2	154
Harris	60	33
	70	17
	80	10.5

$$\Delta \omega = 49.2 - 45.62 = 3.58 \text{kHz} = 2\beta$$

$$Q \stackrel{\textstyle d}{=} \frac{\omega_R}{\Delta \omega} = \frac{47}{3.58} = 60.89$$

$2. 10\Omega$

	ω(kHz)	q(V)
	15	17.8
	25	21.4
	35	33.6
$q_{\text{max}}/\sqrt{2}$	46.35	271
	46.5	296
	46.7	336
	46.9	372
q _{max}	47	384
	47.5	372
	47.9	318
	48.3	268
$q_{\text{max}}/\sqrt{2}$	48.5	271
	60	26.8
	70	13.1
	80	8.4

$$\Delta \omega = 48.5 - 46.35 = 2.15 \text{kHz} = 2\beta$$

$$Q \text{ $\acute{\text{d}}$} = \frac{\omega_R}{\Delta \omega} = \frac{47}{2.15} = 178.6$$

二、結果討論

(一)用示波器觀察電容器的充電及放電現象

理論上在 T≒100RC 及 T≒10RC 的誤差都很小,因為其週期夠長,已經充電完成後才開始放電,因此求出的半週期值誤差會很小。但 T≒RC 的週期太短,還沒充電完成就開始放電 (詳見上圖),因此求出的半週期並不是真正的半週期,因為它根本還沒完成一個週期就開始下個動作,所以半週期、時間常數及電位差誤差很大。但我們得到的三個誤差都偏高,有可能是在手動量測半衰期時產生的人為誤差。

(二)用示波器觀察阻尼振盪

 τ_0 、 ω_0 和 R_C 的誤差都偏大,因為這個實驗需要判斷震盪圖形,但其實這是一件很主觀的事,所以誤差會很大。而 R_C 是由 τ_0 和 ω_0 推算出來的,因為誤差傳遞, R_C 的誤差自然會很大。

(三)以示波器觀察共振現象,並測量線路的諧振頻寬和Q值

品質因數Q值 = $\frac{\omega_R}{\Delta\omega}$ = $\frac{47}{3.58}$ = 60.89,品質因數Q為一個線路受阻尼的程度,其值大的時候線路對正弦波選擇很靈敏,共振頻率範圍 $\Delta\omega$ 窄;其值小的時候線路對正弦波選擇較不靈敏,共振頻率範圍 $\Delta\omega$ 寬。

我們在畫圖時選擇的點太過密集,圖形的峰值太尖,看起來有點詭異,應選擇分布平均的繪圖點。

三、問題

1. 試證: RC 乘積的單位為 "時間"的單位。 答:

$$RC = \frac{V}{I} \times \frac{Q}{V} = \frac{Volt}{Coul/_{Time}} \times \frac{Coul}{Volt} = Time$$

2. 在實驗 A 中, 若 T≤RC , 要如何測量 T (1/2)?

答:雖然沒有極大值,但依然可以找到一個座標點 (V_c,t) , V_c max 即為方波電壓

$$\begin{split} g(t) &= g_{max} e^{\frac{-t}{RC}} \\ &\to V(t) = V_{max} e^{\frac{-t}{RC}} \\ &\to \ln \frac{V_{max}}{V_c} = \frac{t}{RC} \\ & = \tau \times \ln \frac{V_c}{V_{max}} \qquad T_{1/2} = RC \times \ln 2 \end{split}$$

3. 試證: 在只有 R 及 L 而沒有 C 的線路上,其鬆弛時間為 L/R,而且 L/R 的單位是時間。

答:
$$L\frac{di}{dt} + iR = \epsilon_0$$

$$i(t) = \frac{\epsilon_0}{R} (1 - e^{\frac{-tR}{L}}) , \quad t = \frac{L}{R} : 為鬆弛時間$$

$$\frac{L}{R} 單位: \frac{Volt}{Coul} \times \frac{Time^2}{Volt \times Time/Coul} = Time$$

4. 在圖 7 的線路中,證明當電容器上的電量為極大值時,線路上的電流為零。

答:
$$g(t) = A_1 \cos \omega t + A_2 \cos \omega t$$
, $q(0) = q_0$
 $I(t) = -\omega A_1 \sin \omega t + A_2 \omega \cos \omega t$, $I(0) = 0$
 $A_1 = q_0$, $A_2 = 0$
 $g(t) = q_0 \cos \omega t$

$$\begin{split} I(t) &= -\omega q_0 \sin \omega t \\ q_{max} \ddot{\mbox{\it fi}} \cos \omega t &= 1 \; , \; \sin \omega t = 0 \end{split}$$

$$\Rightarrow I(t) = 0$$

5. 若將圖 17 的裝置中的 C 拆去,示波器上會顯示何種圖形?請詳細解釋原因 (提示:參考示波器的輸入電路結構)。

答:由於示波器內本身也有電容,所以依然會有震盪產生。

6. 試利用(17)式,由(dq_A/d
$$\omega$$
) $_{\omega=\omega_R}=0$,證明 $\omega_R=({\omega_0}^2-(2\beta)^2)^{1/2}$

答:
$$q_A=\frac{a}{\sqrt{({\omega_0}^2-{\omega^2})^2+4\beta^2{\omega^2}}}$$

$$\frac{dq_A}{d\omega} = 0 = -\frac{1}{2} a \frac{2(-2\omega)(\omega_0^2 - \omega^2) + 4\beta^2 2\omega}{((\omega_0^2 - \omega^2)^2 + 4\beta^2 \omega^2)^{3/2}}$$

$$\rightarrow 2(-2\omega)(\omega_0^2 - \omega^2) + 4\beta^2 2\omega = 0$$

$$\rightarrow \omega^2 = {\omega_0}^2 - 4\beta^2$$

$$\to \omega_R = ({\omega_0}^2 - (2\beta)^2)^{1/2}$$

四、心得

這次實驗做的我們好崩潰,機器上的波永遠的長得很畸形,跟實驗要觀測的樣子 差了十萬八千里。最後還好是助教解救我們於水深火熱之中,不然我們一定會精 神衰弱 QQ~~~

五、參考資料

清大普物實驗室: RC 與 RLC 電路講義