Harvest module in Treeforce package

Harvest of Uneven stands

Monospecific case

Harvest rate

We note H the global harvest rate wich will determine the amount of basal area to be harvested. This rate is defined according to the following rule

$$H = \left\{ \begin{array}{ll} 0 & if(BA_{stand} - BA_{target}) < \Delta BA_{min} \\ min(\frac{BA_{stand} - BA_{target}}{BA_{stand}}, H_{max}) & if(BA_{stand} - BA_{target}) \ge \Delta BA_{min} \end{array} \right\}$$

For example, $\Delta BA_{min} = 3m^2ha^{-1}$, $BA_{target} = 20,25$ or $30m^2ha^{-1}$ (depending on species) and $H_{max} = 0.25$. Note that stand basal area BA_{stand} is computed only considering trees with a dbh above d_{th} (see below).

Harvest Curve

Each tree harvest probability only depends on its diameter (d). There is a minimum diameter of harvest (d_{th}) , harvest probability then increases with diameter until d_{ha} , the harvesting diameter after which harvest probability is high and constant.

We therefore considered the harvesting function (which associates a dbh to an harvesting probability)

$$h(d) = \left\{ \begin{array}{ll} 0 & ifd < d_{th} \\ h_{max} \left(\frac{d - d_{th}}{d_{ha} - d_{th}}\right)^k & ifd_{th} \le d < d_{ha} \\ h_{max} & ifd > d_{ha} \end{array} \right\}$$

The parameter h_{max} can be tuned so that the probability for a large tree to be harvested approaches 1 after several harvesting operations: $h_{max} = 1 - \sqrt[p]{1-p}$

with n the number of harvesting operations.

For example, $d_{th} = 17.5cm$, $d_{ha} = 57.5cm$, p = 0.99, n = 2.

Parameter k defines how much the harvest preferentially selects large trees.

Le chargement a nécessité le package : ggplot2

Harvesting algorithm

The basal area harvested is

$$BA_{harv} = \pi/4 \int_{d_{th}}^{d_{max}} x^2 h(x) \phi(x) dx$$

= $\pi/4 \int_{d_{th}}^{d_{ha}} x^2 h(x) \phi(x) dx + h_{max} \pi/4 \int_{d_{ha}}^{d_{max}} x^2 \phi(x) dx$
= $BA_{th} + BA_{ha}$

with $\phi(x)$ the density function of diameters.

If $BA_{ha} >= H * BA_{stand}$, there is enough large trees (diameter above d_{ha}) so that the harvest will only concern large trees: $BA_{th} = 0$.

We then have two different strategies:

First one is: we adapt h_{max} so that:

$$h_{max}\pi/4 \int_{d_{ha}}^{d_{max}} x^2 \phi(x) dx = H * BA_{stand}$$

Second one is: we adapt d_{ha} so that:

$$h_{max}\pi/4 \int_{d_{ha}}^{d_{max}} x^2 \phi(x) dx = H * BA_{stand}$$

If $BA_{ha} < H * BA_{stand}$, we first harvest BA_{ha} and then compute k such as: $BA_{th} = H * BA_{stand} - BA_{ha}$.

Multispecific case

Abundance-based preference

As in the monospecific case, we define the global harvest rate $H = \frac{BA_{harv}}{BA_{stand}}$.

Here, BA_{stand} is divided between s species: $BA_{stand} = \sum_{i=1}^{s} BA_{stand,i} \ BA_{harv} = \sum_{i=1}^{s} BA_{harv,i}$

We note
$$p_i = \frac{BA_{stand,i}}{BA_{stand}}$$
 and $H_i = \frac{BA_{stand,i} - BA_{harv,i}}{BA_{stand,i}} = f(p_i) * H$

We suppose that harvesting rate increases with abundance (we harvest preferentially trees with the highest proportion), which means f is an increasing function.

By definition,

$$BA_{harv} = \sum_{i=1}^{s} BA_{harv,i} = \sum_{i=1}^{s} BA_{stand,i} * (1 - H_i)$$

= $BA_{stand} \sum_{i=1}^{s} p_i * (1 - f(P_i)H)$
= $BA_{stand} (1 - H)$

So that we have the constraint on f:

$$\sum_{i=1}^{s} p_i (1 - f(p_i)H) = 1 - H \sum_{i=1}^{s} p_i f(p_i) = 1 - H \text{ which is equivalent to }$$

$$\sum_{i=1}^{s} p_i f(p_i) = 1$$

The case $f(p_i) = 1$ works, which leads to $H_i = H$. In that case the harvest rate is the same for every species i.

More broadly,

$$\forall \alpha > 0$$

$$f(p_i) = \frac{p_i^{\alpha - 1}}{\sum_{i=1}^{s} p_i^{\alpha}}$$

For $\alpha = 2$, we for example have

$$f(p_i) = \frac{p_i}{\sum_{i=1}^s p_i^2}$$

Favoured species

In some case, we may want to favour some species compared to others. We note Q the q species we want to favour, and $P_Q = \sum_{i=1}^q p_i$ We first compute the harvest rate H_Q and H_{1-Q} for respectively the favoured/other species.

If $P_Q \ge 0.5$, we take $H_Q = H_{1-Q} = H$ (the species to be favoured are already dominant).

If $P_Q < 0.5$, we compute $H_Q = f(P_Q)H$ and $H_{1-Q} = f(1-P_Q)H$ with $\alpha > 1$. By definition, we will get $H_Q \le H$.

We then apply for each species i the harvest rate $H_i = H_Q$ or $H_i = H_{1-Q}$ depending on which group it belongs to.