* Periodic functions

* Direchlet's condition

$$\frac{1}{12} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots = \frac{\pi^2}{12}$$

$$ii) \frac{1}{12} + \frac{1}{2} + \frac{1}{32} + \frac{1}{42} + \cdots = \frac{\pi^2}{6}$$

ii)
$$\frac{1}{12} + \frac{1}{2} + \frac{1}{32} + \frac{1}{42} + \frac{1}{32} + \frac{1}{42} + \frac{1}{6} = \frac{1}{6}$$

$$- f(\alpha) = \frac{1}{2} + \sum_{n=1}^{\infty} a_n \cos n \alpha + \sum_{n=1}^{\infty} b_n \sin n \alpha = 0$$

$$- \int_{-\infty}^{\infty} \frac{1}{12} dx = \frac{1}{12} \int_{-\infty}^{\infty} \frac$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} dx = \frac{1}{\pi} \left[\frac{x^3}{3} \right]_{-\pi}^{\pi}$$

$$00 = \frac{1}{3\pi} \left\{ \pi^3 - (-\pi)^3 \right\} = \frac{3\pi^3}{3\pi} = \frac{3\pi^2}{3}$$

$$\cos = \frac{2\pi^2}{3}$$

$$an = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$

$$an = \frac{1}{\pi} \int \frac{x^2(s)nnx}{n^2} - (2x) \left[-\frac{csnx}{n^2} \right] + 2 \left(-\frac{sinnx}{n^3} \right] = \frac{1}{\pi}$$

$$an = \frac{1}{\pi} \left[x^2 \left(\frac{sinnx}{n} \right) - (2x) \left(\frac{sinnx}{n^2} \right) + 2 \left(\frac{sinnx}{n^3} \right) \right] = \frac{1}{\pi}$$

$$=\frac{2}{\pi n^2} \left[2\cos nx \right]_{-\pi}^{\pi}$$
 Sin $n\pi = 0$

$$= \frac{2}{\pi n^2} \left[\pi \cos n\pi - (-\pi) \cos n\pi \right] \cos (n\pi) = \cos n\pi$$

$$= \frac{2}{\pi n^2} \left[\pi \cos n\pi - (-\pi) \cos n\pi \right] \cos (n\pi) = \cos (n\pi) = \cos (n\pi)$$

$$an = \frac{2}{\pi} \times \frac{2\pi}{3\pi} \cos \pi = \frac{14(-0)^{2}}{11}$$

$$bn = \frac{1}{\pi} \left[x^2 \left(-\frac{\cos nx}{n^2} \right) - \left(\frac{\cos nx}{n^2} \right) \right] \frac{\pi}{n^2}$$

$$bn = \frac{1}{\pi} \left[\frac{1}{\pi} \cos n\pi - \pi^2 \cos n\pi \right] + 0 + \frac{2}{\pi^3} \left[\cos n\pi - \cos n\pi \right],$$

$$bn = 0$$

Substitute the values as, an
$$\frac{1}{3}$$
 by in (),

$$f(\alpha) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^n \cos nx}{n^2}$$
Putting $x = 0$ in (a), we get
$$f(0) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^n \cos nx}{n^2}$$

$$0 = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^n \cos nx}{n^2}$$

$$0 = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^n \cos nx}{n^2}$$

$$-\frac{\pi^2}{3} = -4 \left[\frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{3^2} - \cdots \right]$$
Putting $x = \pi$ in (b), we get
$$f(\pi) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^n \cos n\pi}{n^2}$$

$$\pi^2 = \frac{1}{3} + \sum_{n=1}^{\infty$$

$$= \frac{1}{\pi} \int_{-1}^{\pi} e^{x} \cos nx dx$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \cos nx + n \sin nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \cos nx + n \sin nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \cos nx + n \sin nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \cos nx + n \sin nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \cos nx + n \sin nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \sin nx + n \cos nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \sin nx - n \cos nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \sin nx - n \cos nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \sin nx - n \cos nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \sin nx - n \cos nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \sin nx - n \cos nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \sin nx - n \cos nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \sin nx - n \cos nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \sin nx - n \cos nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \sin nx - n \cos nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \sin nx - n \cos nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \sin nx - n \cos nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \sin nx - n \cos nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \sin nx - n \cos nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \sin nx - n \cos nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \sin nx - n \cos nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \sin nx - n \cos nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \sin nx - n \cos nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \sin nx - n \cos nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \sin nx - n \cos nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \sin nx - n \cos nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \sin nx - n \cos nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \sin nx - n \cos nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \sin nx - n \cos nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \sin nx - n \cos nx \right) \right]_{\pi}^{\pi}$$

$$= \frac{1}{\pi} \left[\frac{e^{x}}{e^{x}} \left(-i \sin nx - n \cos nx \right) \right]_{\pi$$

Obtain the FS of
$$f(x) = TI - x$$
 in $0 \ge x \ge xT$. Hence deduce that

$$f(x) = TI - x$$
 in $0 \ge x \ge xT$. Hence deduce that

$$f(x) = xT - x = TI$$

$$f(x) = xT - x = TI$$

$$f(x) = xT - xT = TT$$

$$f(x) = xT -$$

8) Obtain the Fouri series to represent 21=2 => L=1 $f(x) = \frac{ao}{3} + \frac{1}{2} ancos(\frac{n\pi x}{1}) + \frac{1}{2} bnsin(\frac{n\pi x}{L})$ f(x) = ao + Zancosniix + Zbnsinniix -(1) $ao = \int \int f(x)dx = \int (2-x^2)dx$ $=\left[\frac{\chi^{2}}{2}-\frac{\chi^{3}}{3}\right]=-\frac{2}{3}$ $a_0 = \int f(a) \cdot \cos(a) x$ = $\int (x-x^2) \cos n\pi x dx$ $= \left\{ \left(x - x^2 \right) \left(\frac{\sin \pi x}{\sin \pi} \right) - \left(1 - 2x \right) \left(\frac{\cos n\pi x}{\sin^2 \pi^2} \right) + \left(-2 \right) \left(\frac{\sin n\pi x}{\sin^2 \pi^2} \right) \right\}.$ $=\frac{1}{12\pi^2}\left[(1-2x)(05011x)\right]_{-1}$ $=-4\frac{\cos n\pi}{2\pi^2}=-4(-1)^{\frac{1}{2}}$ bn= [] f(a) sionmada = 1 (x-x2) sinonadx. $= \sqrt{(x-x^2)(-\frac{\cos n\pi x}{n\pi})} - (1-2x)(-\frac{\sin n\pi x}{n^2\pi^2}) + (-2)(\frac{\cos n\pi x}{n^3\pi^3})$ $= -\frac{1}{2} \left\{ 0 - \left(-\frac{2}{2} \cos n\pi \right) \right\} - \frac{2}{63713} \left(\cos n\pi - \cos n\pi \right)$ pu= 5 (-Dut) f(x)=-1+4 /-10 COSOMA +2 /-100+1 112 / 2020

(3)

of Draw the graph of the in 0) Obtain the F.S for $f(x) = \bar{e}^{\chi}$ in (0,2) $= 2l = 2 \Rightarrow l = 1$ f(x) = au + Zancosniix + > bosinonix - 1) ao = I (Fa)da $= \frac{1}{2} \left[e^{x} dx = -e^{x} \right]_{0}^{2} = -\left(e^{2} - 1 \right) = 1 - \frac{1}{e^{2}} = e^{2} - \frac{1}{e^{2}}$ an = 1 ff (D) cosmarada $=\frac{2}{3}\left[e^{2}\cos n\pi x dx\right]=\frac{e^{2}}{1^{2}+n^{2}\pi^{2}}\left[-\cos n\pi x+n\pi \sin n\pi x\right]^{2}$ $an = \frac{1}{1 + n^2 + 1^2} \left\{ e^2 \cos 2n\pi - 1 \right\} = \frac{e^2 - 1}{e^2 (1 + n^2 \pi^2)}$ pu= -[] f(x) sissomixdx. $=\frac{2}{1+n^2\pi^2}\left[-\sin n\pi x - n\pi \cos n\pi x\right]_0^2$ $=-\frac{n\pi}{1+n^2\pi^2}\left[\frac{e^2\cos n\pi a}{e^2}\right]_0^2=-\frac{n\pi}{1+n^2\pi^2}\left(\frac{1}{e^2}-1\right)$ $bn = \frac{8\pi \pi (e^2 - 1)}{e^2 (1 + 12\pi^2)}$ Sub. in D, we get $f(a) = \frac{e^2 - 1}{2e} + \sum_{n=0}^{\infty} \frac{e^2 - 1}{e^2 / 1 + n^2 \pi^2}$ Cosnit a + Z DT (e2-1) SIDDITA /

Ex! An alternating werent after passing through a lectifier has the form I= (Iosino ta OLO LIT

O FORTILO LOT where To is the maximum werent . Express I as a formier series in (0,277)

Even & odd of Sketch the graph of the function of (x)=1x1

Sketch the graph of the function of (x)=1x1

in -116x4T & obtain uts Fourier seems. Hence deduce that 1 + 1 + 1 + - - = 712

 $f(\alpha) = |-\alpha| = |\alpha|$ in $(-\pi, \pi)$ $f(\alpha) \text{ is an even } f$ f(x)=1x1 : .f(a) is an even in

$$4ex = 4ex = 4ex = 2 fixed$$

$$ao = 2 fex = 2 fixed$$

$$= 2 fex dx = 2 fixed$$

$$= 2 fex dx = 2 fixed$$

$$= 2 fex dx = 2 fixed$$

$$= 2 fixed = 2$$

$$= \frac{2}{\pi n^2} \left[\cos n\pi - \cos 0 \right] = \frac{2}{\pi n^2} \left[(-1)^n - 1 \right]$$

Sub in (), we get
$$f(x) = \frac{\pi}{2} + \sum_{n=1}^{\infty} [-1)^n - 1 \right] \cos nx - (2)$$
put $x = 0$

$$1-(-1)^{n} = 0, \text{ if } n \text{ is even}$$

$$0 = \frac{\pi}{2} - \frac{2}{2} + \frac{1}{2} +$$

Hay Pange series

(a) Expand
$$f(x) = 2x - 1$$
 as a cosine half early Fouries

 $f(x) = \frac{1}{4} + \frac{1}{2} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{2} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(\cos(6\pi x)) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(6\pi x) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(6\pi x) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} \cos(6\pi x) - (1)$
 $f(x) = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} \cos(6\pi x) - (1)$
 $f(x) = \frac{1}{4} + \frac{$

$$= 2 \left[\left(\frac{1}{1} - 2 \right) + \frac{\cos n\pi x}{\cos n\pi} - \left(-1 \right) + \frac{\sin n\pi x}{\cos n\pi} \right] + \left[\left(\frac{3}{2} - \frac{3}{4} \right) + \frac{\cos n\pi x}{\sin n\pi} \right] + \left[\left(\frac{3}{2} - \frac{3}{4} \right) + \frac{\cos n\pi x}{\sin n\pi} \right] + \left[\left(\frac{3}{2} - \frac{3}{4} \right) + \frac{\cos n\pi x}{\sin n\pi} \right] + \frac{1}{12} \left(\frac{3}{12} - \frac{3}{12} \right) + \frac{1}{12} \left(\frac{3}{12} - \frac{3}{12} - \frac{3}{12} \right) + \frac{1}{12} \left(\frac{3}{12} - \frac{3}{12} - \frac{3}{12} \right) + \frac{1}{12} \left(\frac{3}{12} - \frac{3}{12} - \frac{3}{12} - \frac{3}{12} \right) + \frac{1}{12} \left(\frac{3}{12} - \frac{3}{12} - \frac{3}{12} - \frac{3}{12} - \frac{3}{12} \right) + \frac{1}{12} \left(\frac{3}{12} - \frac{3}{$$

Practical Harmonic Analysis

I the twining moment T on the beenkshaft of a steam engine for the crank angle o'us given as follows

			-		-	-					-	
00	.0.	30	60	90	120	150	180	210	240	270	300	330
T			-			8.3		100				

Expand Tas a Fourier series upto to Frest barmonic

$$-- 0 \leq 0 \leq 2\pi \qquad \text{all} \Rightarrow \Gamma = 1$$

0	. T.	(050	Tooso	Si no	Tsino
0	10.		0	0	0
30	2.7	0.866	2.3382	0.5	1-35
60	5.2	0.5	2.6	0.866	4.5032
90	T.0	Ь	0	1	7.0
120	8.1	-0.5	-4.05	0.866	7-0146
150	53	-0.866	-7-1578	0.5	4.15
180	7.9	-1	-7.9	0 ,	0
210	6.8	-0.866	-5.8888	-0.5	-3.4
240	5.5	-0.5	-2.75	-0.866	-4.763
270	4.1	0	0	-1	- 14.01
300	2.6	0.5	1.3	-0.866	-2-2516
360	1.2	0.866	1.0392	-0.5	-0.6
Total	59.4		20.499	2	8.9032

$$a_0 = \frac{1}{6} \times T = \frac{1}{6} (59.4) = 9.9$$
 $a_1 = \frac{1}{6} \times T \cos \theta = \frac{1}{6} (-20.4992) = -3.4165$
 $a_1 = \frac{1}{6} \times T \sin \theta = \frac{1}{6} (8.9032) = 1.4839$
 $a_1 = \frac{1}{6} \times T \sin \theta = \frac{1}{6} (8.9032) = 1.4839$
 $a_1 = \frac{1}{6} \times T \sin \theta = \frac{1}{6} (8.9032) = 1.4839$
 $a_1 = \frac{1}{6} \times T \sin \theta = \frac{1}{6} (8.9032) = 1.4839$
 $a_1 = \frac{1}{6} \times T \cos \theta = \frac{1}{6} (-20.4992) = -3.4165$
 $a_1 = \frac{1}{6} \times T \cos \theta = \frac{1}{6} (-20.4992) = -3.4165$
 $a_1 = \frac{1}{6} \times T \cos \theta = \frac{1}{6} (-20.4992) = -3.4165$

B) Express y as a Fourier series uplo to the third									
parmonia deren the topomind rapide.									
2 0 1 2 3 4 5									
4 4 8 15 7 6 2									
\Rightarrow 0, $\angle \propto \angle 6 \Rightarrow (0.6)$									
$2L=6 \Rightarrow L=3$, $N=6$									
fi = ao + (a1 cos TIX + b15 11/11X) + (acos 21/12 + b2510211X)									
+ (a3 cos 311 x + b3 s10311x)									
7 y y costia ysining yeosana ysinana ycosna ysinin									
0 4 4 0 4 0									
1 8 4 6.928 -4 6.928 -8 0									
2 15 -7.5 12.99 -7.5 -12.99 15 0									
3 7 -7 0 7 0 -7 9.9									
4 6 -3 -5.196 -3 5.196 6 0									
5 2 1 -1.732 -1 -1.732 -2 0									
42 -8.5 12.99 -4.5 -2.598 +8-1 0									
ao = = = = = = = = = = = = = = = = = = =									
$a_1 = \frac{2}{1} \sum_{y \in S} a_1 = \frac{2}{6} (-8.5) = -2.833$									
b1= = = = = = (12.99) = 4.33									
a2 = 2 >4 cos211x = 2(-4.5)=-1.5									
bo = 2 - 74510211x = 2(-2.598)=-0.866									
00 = 2 Fycostra = 2 (8) = 2.66/ , b3 = 0									
$y = 7 + \left(-2.833 \cos \frac{\pi}{3} + 4.33 \sin \frac{\pi}{3}\right) + \left(-1.5 \cos \frac{\pi}{3} - 0.866.5 \sin \frac{\pi}{3}\right)$									
+ (2.667605172)									

B) obtain the constant. term & the first three co-efficient in the fourier cosine skries for y using the foll table 2 0 X 8 7 15 LP $0 \leq \propto \angle 6 \Rightarrow [0,6) \Rightarrow 7 = 6 \Rightarrow \pm 3$ N=6 4 = ap + a1 cosTX + a2 cos2TX + a3 cos3TX - (1) YLOSTIX YLOSTIX 4 COSTIX L 0 4 6-928 -15 7.5 0 -1.732 1 O 42 13.696 -8.5 - 5 $\alpha_1 = \frac{2}{N} \sum_{k=0}^{\infty} y(\cos \pi \alpha) = \frac{2}{6} (13.696) = 4.565$ $a_2 = \frac{2}{7} = \frac{2}{6} (-8.5) = -2.833$ $\alpha_3 = 2 \quad \text{Ty} \cos \pi \alpha = 2(-5) = -1.667$ y=7+4.565 COSTA+(-2.833) COSTA -1.667 COSTA 9) The following lable give the vouldation of a penadic muent A ora a penad T +Sec | 0 | T/6 | T/3 | T/2 | 2T/3 | 5T/6 | T A(app) | 1.98 | 1.30 | 1.05 | 1.30 | -0.88 | -0.25 | 1.98

A(amp) 1.98 1.30 1.05 1.30 1 and of 0.75 amp in the Show that there is a constant part of 0.75 amp in the current A & also obtain the amplitude of the first harmoner

	to .							
	ŧ	A	A LOS 271t	Asin <u>2nt</u>				
	0	1.98	1.98	D				
ř-	7/6	1-3	0.65	-1.125 -				
	7/3	1.05	-0.52	1,29				
4	7/2	1.3	-1.30	0				
	27/3	-0.88	0.44	0.76				
	57/6	-0.25	-0.125	0.216				
	Ŧ							
۲ ـ		4.5	1-125	3.391				
→ OEE O L OC L T N=6								
$\gamma_1 = T \implies L = 1/2$								
If A = OD + CICOSTILE + DISIOTIE								
4	= 0	0 + 04	cos ant + bisir	211t				
$A = \frac{\alpha p}{2} + \alpha r \cos 2\pi t + b r \sin 2\pi t$								
$co = \frac{2}{N} \sum A = \frac{2}{6} (4.5) = 1.5$								
$CU = \frac{7}{11} \times \frac{7}{11} \times \frac{6}{11} \times \frac{2}{11} \times \frac{1}{125} = 0.375$ $CU = \frac{2}{11} \times \frac{7}{11} \times \frac{2}{11} \times \frac{1}{125} = 0.375$ $CU = \frac{2}{11} \times \frac{7}{11} \times \frac{2}{11} \times \frac{1}{125} = 0.375$								
C4 = 1 6 (3.991) = 1.13								
b1 = 2 7 A SI 87 21 = - 6								
A = 0.75 + (0.37500327)								
:. Direct current = 0.75 :. Direct current = 0.75								
:. Direct current = 0.75 Amplitude = $\sqrt{a_1^2 + b_1^2} = \sqrt{(0.315)^2 + (1.13)^2} = 1.19$								
+311)								