Visual Analytics

Communicating data-driven insights through data visualization techniques and useful dashboards

Mikel Madina &

Miren Berasategi

0. Introduction

0.1 Key points

- Data driven: as seen in previous sessions with Professors Onieva and Lorenzo
- **Insights**: the capacity to gain an accurate and deep understanding of something *through*
- Data visualization techniques: to take the user from data to insight
- Dashboards: as situation awareness tools

Tableau Desktop to practice

Section outline

- 0. Introduction: the *why* and the *what for* of visualization
- 1. Graphs: some reminders, idioms to map variables to graphs
- 2. Promote insight: by adding meaningful modifications to graphs
- 3. Dashboards: situation awareness, dos and don'ts
- 4. Epilogue

Practice: build a simple dashboard with online marketing campaign data

0.2 Why use visualization

- Sight is our most developed sense
- The visual system provides a very high-bandwidth channel to our brains
- A significant amount of visual information processing occurs in parallel at the preconscious level
- The human brain is *trained* to identify visual patterns
- Summary statistics have the intrinsic limitation of data loss

0.2 Why use visualization

Anscombe's quartet

-									
	I	II		ı	III	IV			
X	у	x	y	X	у	x	y		
10.0	8.04	10.0 9.14		10.0	7.46	8.0	6.58		
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76		
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71		
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84		
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47		
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04		
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25		
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50		
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56		
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91		
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89		

Property	Value	Accuracy			
Mean of x	9	exact			
Sample variance of x	11	exact			
Mean of y	7.50	to 2 decimal places			
Sample variance of y	4.125	plus/minus 0.003			
Correlation between x and y	0.816	to 3 decimal places			
Linear regression line	y = 3.00 + 0.500x	to 2 and 3 decimal places, respectively			

Anscombe's Quartet

Munzner 2014, p.56

Munzner 2014, p.46

There is a **strong relationship** between the form of the data (the attribute/variable and dataset types) and what kinds of vis[ualization] idioms are effective at displaying it. (...) Don't just draw what you are given; decide what the right thing to show is, create it with a series of **transformations** from the original database, and draw that!

Derived attributes can be directly visually encoded. Munzner 2014, p.52

Practice: meet our sample data

Download and open data.xls: fake data for online marketing goals and tools

from Google Drive or

http://mrn.bz/MUMA2018data

/_	Α		В		С		D		E		F	
1	source	*	quarter	*	spent *	1	visits	*	income 💌	goal	₩	
2	Adwords		201601	01	1000		50000		900		1500	
3	3 Twitter		201601	01	200		8500		1300		1000	
4	Facebook		201601	01	500	0	200	00	800		1500	
5	Adwords		201604	01	1000	0	480	00	1200		1500	
6	Twitter		201604	01	300	0	90	00	1400		1000	
7	Facebook		201604	01	750	0	215	00	1400		1500	
8	8 Adwords		201607	01	1000	0	50000		1500		1500	
9	Twitter		201607	01	400	0	100	00	1000		1000	
10	10 Facebook		201607	01	750	0	23000		200		1500	
11	11 Adwords		201610	01	1000	0	45000		1250		1500	
12	12 Twitter		201610	01	500		11000		1000		1000	
13	3 Facebook		201610	01	1000		25000		2000		1500	
14	Adwords		201701	01	1000	0	500	00	1100		1500	
15	Twitter		201701	01	500	0	85	00	1300		1000	
16	Facebook		201701	01	1000	0	20000		800		1500	
17	Adwords		201704	01	1000	0	480	00	1500		1500	
18	Twitter		201704	01	500	0	90	00	1400		1000	
19	Facebook		201704	01	1000	0	215	00	1400		1500	
20	Adwords		201707	01	1000	0	500	00	1500		1500	
21	Twitter		201707	01	500	0	100	00	1000		1000	
22	Facebook		201707	01	1000	0	230	00	200		1500	
23	Adwords		201710	01	1000	0	450	00	1250		1500	
24	Twitter		201710	01	400	0	1100		1000		1000	
25	Facebook		201710	01	1000	0	250	00	2000		1500	
00												

Tableau Software

Tableau Software

Tableau

- 1. Load data
- 2. Explore the Data Source tab

See the subtle blue/green colour of the variable type icon? Take notice, it is important:

Understanding the difference between the blue and green items in Tableau is (IMHO) the single most important piece of understanding necessary to make Tableau function well.

Tom Brown, Blue things and Green things

1. Graphs

Section outline

- 1. Reminder: variable types
- 2. Mapping variables to graphs
 - Marks
 - Channels, channel types
 - Using marks and channels 3. So, which graph?

Practice: explore dimensions, measures and graph types in Tableau

ABERASTURI;1025880,88 ABETXUKO; 1626, 20 ABEZIA;183184,81 ABORNIKANO;54530,28 ACEBEDO; 13519,09 ACOSTA;64930,00 ADANA;53139,42 AGIÑAGA;314344,94 ALAITZA;75534,95 ALBENIZ;61152,16 ALCEDO;21313,54 ALDA;27922,86 ALEGRIA-DULANTZI;142607 3,93 ALORIA;5211,22 AMARITA;174311,53 AMETZAGA ASPARRENA;41376,28 AMETZAGA ZUIA; 233555, 14 AMURRIO;4348908,77 ANDA;477,65 ANDOIN;21622,76 ANDOLLU;6532,92 ANGOSTINA;65719,04 ANTEZANA;23135,10

1.1 Reminder: variable types

- Quantitative
 - Continuous
 - Discrete
- Qualitative
 - Categorical
 - Ordinal
- Special types
 - time
 - space
 - ...

A question of time

Spatial and time/hour variables are special variable types. **Time variables** are specially complex:

- are there 365 days in every year? 30 days in every month? 24 hours in every day?
- *timezones* make it even more complex to use hours or time of day

Time may be used as a continuous or as a qualitative variable.

- as a qualitative variable, it has a hierarchy: year > month > (week >) day > hour > minute
- but different hierarchies may be necessary: bimonthly publications, multiple work shifts in a day...

1.2 Mapping variables to graphs

Understanding **marks and channels** provides the building blocks for analyzing visual encodings (Munzner 2014, p.95)

1.2.1 Marks

A mark is a basic graphical element in an image

Marks are geometric primitives (Munzner 2014, p.96)

1.2.2 Channels

A visual **channel** is a way to control the appearance of marks

Visual channels control the appearance of marks (Munzner 2014, p.96)

1.2.2 Channels

One and only one attribute/variable should be used per channel.

Multiple channels per attribute are possible (**redundant encoding**), but this approach has limitations.

1.2.2 Channels

The **size** and **shape** channels cannot be used on all types of marks, but most combinations are still possible:

- lines have two *size channels*: length + width
- points refer to location but can be size and shape coded

1.2.3 Channel types

Two kinds of sensory modalities:

- 1. **Identity**: what, where
- 2. **Magnitude**: how much

It does not make sense to ask magnitude questions for shape, color hue. We can ask about magnitudes with length, area or volume; color luminance or saturation; and angle/tilt/slope.

All channels are not equal.

The selection of marks and channels should be guided by the principles of **expressivenes** and **effectiveness**.

Once the most important attributes/variables for the desired insight have been identified, the selection of marks and channels should ensure that they are **encoded** with the highest ranked.

Channels ranked by effectiveness according to data and channel type. Ordered data should be shown with the magnitude channels, and categorical data with the identity channels (Munzner 2014, p.102)

The choice of which attributes/variables to encode with position is the most central choice in visual encoding.

Error rates accross visual channels (Munzner 2014, p.105)

1.3 So, which graph?

Chart Suggestions—A Thought-Starter

A. Abela (2006), Choosing the right chart. Interactive version: Chart chooser

Tableau: let's explore

- Dimensions and measures (remember also blue *vs.* green)
- Encode = drag
- Show me tab

2. Promote insight

Section outline

How can we enable easier insight through data visualization?

- 1. Change default settings
- 2. Make simpler graphs
- 3. Highlight observations
- 4. Add attributes as context
- 5. Add statistical information

Practice: build (not so) basic graphs

2.2 Make simpler graphs

Data-ink is the non-erasable core of the graphic, the non-redundant ink arranged in response to variation in the numbers represented.

2.2 Make simpler graphs

Speaker Deck

Talk by Joey Cherdarchuk

Full Screen

A step-by-step example: Data looks better naked

2.2 Make simpler graphs

More on decluttering:

Nussbaumer, Declutter Your Data Visualizations

Through preattentive attributes:

- they are processed in spatial memory without our conscious action
- make it easier to understand what is represented through a design: saves from consciously processing data

756395068473 658663037576 860372658602 846589107830

FIGURE 4.2 Count the 3s example

Nussbaumer 2015, p.103

756395068473 658663037576 860372658602 846589107830

FIGURE 4.3 Count the 3s example with preattentive attributes

Nussbaumer 2015, p.104

FIGURE 4.4 Preattentive attributes

Source: Adapted from Stephen Few's Show Me the Numbers, 2004.

Nussbaumber 2015, p.105

1. More Americans get news online... 50% of the public now cites source for national and international news , still below television, newspapers and radio. (Report)

More Americans get news online

50% of the public cite the **internet** as a main source for national & international news. This remains below television, but is far above newspapers and radio.

PEW RESEARCH CENTER July 17-21, 2014 Q46. Respondents were allowed to name up to two sources.

Source: http://www.pewresearch.org/fact-tank/2013/10/16/12-trends-shaping-digital-news/ © 2010 - 2016 Cole Nussbaumer Knaflic. All rights reserved.

storytelling data

Nussbaumber, Do you see it? The importance of contrast when communicating with data [video]

2.4 Add variables (as context)

- Adding preexisting variables (in moderation)
- Creating conditional variables from preexisting variables
 - binaries or with few levels are best
 - example of calculated field or variable: weekend date

2.5 Add statistical information

- statistical summaries (mean, variance)
- models

Sparklines (Tufte 2006)

Bulletgraphs (Few 2007)

A standard bullet graph with each of its parts labeled.

Heatmaps (Few 2006)

3. Dashboards

Section outline

- 1. What is a dashboard?
- 2. Common design mistakes
- 3. Key goals in the visual design process
- 4. Example

Practice: layout and format graphs into a dashboard

3.1 What is a dashboard?

Visual display of the most information needed to achieve one or more objectives which fits entirely on a single computer screen so it can be monitored at a glance.

Few 2013

3.1 What is a dashboard?

- Visual display: I see = I understand → insight to
 achieve specific objectives: may require gathering
 information that is otherwise unrelated or disperse
- fits in a single computer screen: it must all be seen at once (short-term memory effect)
- monitored at a glance: doesn't need to provide all the details, but if it doesn't, it should make it as easy and seamless as possible to get to that information

3.2 Common design mistakes

- Exceeding the boundaries of a single screen
- Supplying inadequate context for the data
- Displaying excessive detail or precision
- Choosing a deficient measure
- Choosing inappropriate display media
- Introducing meaningless variety
- Using poorly designed display media

continues...

3.2 Common design mistakes

...continued

- Encoding quantitative data inaccurately
- Arranging the data poorly
- Highlighting important data ineffectively or not at all
- Cluttering the display with useless decoration
- Misusing or overusing color
- Designing an unattractive visual display

3.3 Key goals in the visual design process

From previous section:

- make simpler graphs (declutter)
- highlight observations
- add attributes/variables as context or statistical information

3.3 Key goals in the visual design process

In other words:

- 1. Reduce non-data pixels
- eliminate all unnecessary non-data pixels
- de-emphasize and regularize the non-data pixels that remain
- 2. Enhance data pixels
 - eliminate all unnecessary data pixels
 - highlight the most important data-pixels that remain

3.4 Example

Dashboards in Tableau

Dashboards in Tableau are containers of *sheets* of graphs.

Allow for quite basic but functional formatting.

Tableau: Actions

Some degree of interactivity with Actions: highlight and filter

Tableau: What else?

Calculated fields

• • •

Epilogue

References

Abela, Andrew (2006). Choosing a good chart.

Few, Stephen (2009). Dashboard Design for Real-Time Situation Awareness [White Paper]

— (2013). *Information Dashboard Design*. Analytics Press: **316.763** F **44** s

Kirk, Andy (2016). *Data Visualisation: A Handbook for Data Driven Design*. SAGE: London **316.763** K **63** a

Munzner, Tamara (2015). *Visualization Analysis and Design*. CRC Press: Boca Raton, Florida **316.763** M **92** t

Tufte, Edward R. (1983). *The Visual Display of Quantitative Information*. Graphics Press: California **316.763** T **87** e

Thank you!

This presentation is available at

http://mrn.bz/MUMA2018

Miren Berasategi miren.berasategi@deusto.es

License

Copyright © 2018 University of Deusto

This work (except for the quoted images, whose rights are reserved to their owners) is licensed under the Creative Commons "Attribution-ShareAlike" License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/