

Lecture 4 Review on Digital Logic (Part 3)

Xuan 'Silvia' Zhang
Washington University in St. Louis

http://classes.engineering.wustl.edu/ese461/

Fixed Point Multiplication

- Two Q15 number multiply
 - $Q15 \times Q15 = Q30$
 - 2.30 format, 32 bits, two sign bits
 - MSB: extended sign bit

- need to truncate back to 1.15 format
- left shift by one bit, storing upper 16 bits
- right shift by 15 bits, storing lower 16 bits

Sequential Circuit Analysis

- Design steps
 - word description
 - state diagram
 - state table
 - select flip-flop types
 - input to FF and output
 - verification
- Reverse engineering

Input Equations

- To flip-flops
 - $D_A = A(t)x(t)+B(t)x(t)$
 - $D_B = /A(t)x(t)$ input
- Output y
 - y(t) = /x(t)(B(t) + A(t))

State Table

Inputs of the table Outputs of the table

	Present State	Input	Next State	Output
	A(t) B(t)	x(t)	A(t+1) B(t+1)	y(t)
>	0 0	0	0 0	0
ŏ	0 0	1	0 1	0
(2m+n) rows	0 1	0	0 0	1
	0 1	1	1 1	0
E ,	1 0	0	0 0	1
of FF of inputs	1 0	1	1 0	0
	1 1	0	0 0	1
	1 1	1	1 0	0

State Diagram

Conventions

Mealy Machine

Mealy type output depends on state and input

Example: Elevator Controller

- Description of the controller
 - elevator can be at one of two floors: ground and first
 - one button controls the elevator: up and down
 - two lights floor indicator: red (ground), green (1st)
- State diagram
- State table
- Boolean expressions

Outline

Arithmetic Logic

Sequential Logic

Memory Circuit

Memory Devices and Hierarchy

source: copterj.tumblr.com

source: wikipedia

Static RAM

Applications

- CPU register file, cache, embedded memory, DSP

Characteristics

- 6 transistor per cell, other topologies
- no need to refresh
- access time ~ cycle time
- no charge to leak
- faster, more area, more expensive

SRAM Operation

- Standby
 - word line de-asserted
- Read
 - precharge bit lines
 - assert WL
 - BL rise/drop slightly
- Write
 - apply value to BL
 - assert WL
 - input drivers stronger

SRAM Architecture

source: semiengineering.com

Sense Amplifier: Differential input

Multi-Bank Layout

source: semiengineering.com

DRAM

Applications

- main memory in desktop, laptop, workstation

Characteristics

- 1 transistor and 1 capacitor per bit cell
- need to refresh
- access time < cycle time
- slower, less area, cheaper

DRAM Read

W Sit

- disconnect sense amp
- precharge bit lines
- precharge off
- assert wordline
 - transfer charge from cell to bit-line
- detect by sense amp
 - latch output
- read selected column
 - recharge cell
- de-assert word-line

DRAM Write

W Sit

- select row
- force sense amp to desired value
 - positive feedback
- bit-line to charge cell
- entire row refreshed

Content-Addressable Memory (CAM)

- Associative memory
 - used in high-speed searching application
 - e.g. networking routers

Line No.	Address (Binary)	Output Port
1	101XX	A
2	0110X	В
3	011XX	C
4	10011	D

Simplified routing table

- more power, area, circuitry

CAM Operation

- NOR-based CAM architecture
 - precharge matchlines
 - broadcast search data
 - CAM cell compare, matchline pulled down if mismatch
 - generate search address/location

CAM Circuit

• CAM cell

Binary CAM Cell

Ternary CAM Cell

source: pagiamtzis.com/cam/camintro

Summary

Number Representation

Boolean Logic and Gates

Combinational Logic

Arithmetic Logic

Sequential Logic

Memory Circuit

Review Quiz

- 50 minutes
- Closed Book. No references
- No electronic devices (including calculator)

Outline

More Reviews

Linux Basics

VCS Simulator

Linux Lab

https://linuxlab.seas.wustl.edu/equeue/

- Remote Linux Desktop
 - virtual network computing (VNC)
 - eQUEUE
 - Javascript, Jave Runtime Environment (JRE)

Linux Basics

- GUI
 - file management
 - folder navigation
- Terminal
 - command-line interface
- Introduction to Linux
 - https://www.edx.org/course/introduction-linuxlinuxfoundationx-lfs101x-0

Useful Commands

- Navigation
 - ls, cd, pwd, ln, find, less, more
- Manipulation
 - cat, cp, mv, grep, mkdir, touch
 - chmod, chown
- Check status
 - df, du, quota, uname, history
- Set Environment
 - Unix shell: Bash, C shell (csh, tcsh), etc.
 - source .bashrc
 - module avail

Questions?

Comments?

Discussion?