

#### Lecture Slides for

**INTRODUCTION TO** 

# Machine Learning 2nd Edition

© The MIT Press, 2010

alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2ml2e

**CHAPTER 5:** 

# Multivariate Methods

### Multivariate Data

- Multiple measurements (sensors)
- *d* inputs/features/attributes: *d*-variate
- N instances/observations/examples

$$\mathbf{X} = \begin{bmatrix} X_1^1 & X_2^1 & \cdots & X_d^1 \\ X_1^2 & X_2^2 & \cdots & X_d^2 \\ \vdots & & & & \\ X_1^N & X_2^N & \cdots & X_d^N \end{bmatrix}$$

### Multivariate Parameters

Mean : 
$$E[\mathbf{x}] = \boldsymbol{\mu} = [\mu_1, ..., \mu_d]^T$$

Covariance :  $\sigma_{ij} \equiv \text{Cov}\left(X_i, X_j\right)$ 

Correlatio n: Corr 
$$(X_i, X_j) = \rho_{ij} = \frac{\sigma_{ij}}{\sigma_i \sigma_i}$$

$$\Sigma = \text{Cov}(\mathbf{X}) = E[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T] = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1d} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2d} \\ \vdots & & & & \\ \sigma_{d1} & \sigma_{d2} & \cdots & \sigma_d^2 \end{bmatrix}$$

### Parameter Estimation

Sample mean **m**: 
$$m_i = \frac{\sum_{t=1}^{N} x_i^t}{N}, i = 1,...,d$$

Covariance matrix 
$$\mathbf{S}: s_{ij} = \frac{\sum_{t=1}^{N} (x_i^t - m_i)(x_j^t - m_j)}{N}$$

Correlation matrix 
$$\mathbf{R} : r_{ij} = \frac{S_{ij}}{S_i S_j}$$

# **Estimation of Missing Values**

- What to do if certain instances have missing attributes?
- Ignore those instances: not a good idea if the sample is small
- Use 'missing' as an attribute: may give information
- Imputation: Fill in the missing value
  - Mean imputation: Use the most likely value (e.g., mean)
  - Imputation by regression: Predict based on other attributes

#### Multivariate Normal Distribution



$$\mathbf{x} \sim \mathcal{N}_d(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^T \Sigma^{-1} (\mathbf{x} - \mathbf{\mu})\right]$$

#### Multivariate Normal Distribution

- Mahalanobis distance:  $(x \mu)^T \sum^{-1} (x \mu)$  measures the distance from x to  $\mu$  in terms of  $\sum$  (normalizes for difference in variances and correlations)
- Bivariate: d = 2

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

$$p(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2(1-\rho^2)}(z_1^2 - 2\rho z_1 z_2 + z_2^2)\right]$$

$$z_i = (x_i - \mu_i)/\sigma_i$$

# **Bivariate Normal**





## Independent Inputs: Naive Bayes

• If  $x_i$  are independent, offdiagonals of  $\Sigma$  are 0, Mahalanobis distance reduces to weighted (by  $1/\sigma_i$ ) Euclidean distance:

$$p(\mathbf{x}) = \prod_{i=1}^{d} p_i(x_i) = \frac{1}{(2\pi)^{d/2} \prod_{i=1}^{d} \sigma_i} \exp\left[-\frac{1}{2} \sum_{i=1}^{d} \left(\frac{x_i - \mu_i}{\sigma_i}\right)^2\right]$$

• If variances are also equal, reduces to Euclidean distance

### Parametric Classification

• If  $p(x \mid C_i) \sim N(\mu_i, \Sigma_i)$ 

$$p(\mathbf{x} \mid C_i) = \frac{1}{(2\pi)^{d/2} |\Sigma_i|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^T \Sigma_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i)\right]$$

Discriminant functions

$$g_i(\mathbf{x}) = \log p(\mathbf{x} \mid C_i) + \log P(C_i)$$

$$= -\frac{d}{2} \log 2\pi - \frac{1}{2} \log |\Sigma_i| - \frac{1}{2} (\mathbf{x} - \mu_i)^T \Sigma_i^{-1} (\mathbf{x} - \mu_i) + \log P(C_i)$$

## **Estimation of Parameters**

$$\hat{P}(C_i) = \frac{\sum_t r_i^t}{N}$$

$$\mathbf{m}_i = \frac{\sum_t r_i^t \mathbf{x}^t}{\sum_t r_i^t}$$

$$\mathbf{S}_i = \frac{\sum_t r_i^t (\mathbf{x}^t - \mathbf{m}_i) (\mathbf{x}^t - \mathbf{m}_i)^T}{\sum_t r_i^t}$$

$$g_i(\mathbf{x}) = -\frac{1}{2} \log |\mathbf{S}_i| - \frac{1}{2} (\mathbf{x} - \mathbf{m}_i)^T \mathbf{S}_i^{-1} (\mathbf{x} - \mathbf{m}_i) + \log \hat{P}(C_i)$$

# Different S<sub>i</sub>

Quadratic discriminant

$$g_{i}(\mathbf{x}) = -\frac{1}{2}\log|\mathbf{S}_{i}| - \frac{1}{2}(\mathbf{x}^{T}\mathbf{S}_{i}^{-1}\mathbf{x} - 2\mathbf{x}^{T}\mathbf{S}_{i}^{-1}\mathbf{m}_{i} + \mathbf{m}_{i}^{T}\mathbf{S}_{i}^{-1}\mathbf{m}_{i}) + \log\hat{P}(C_{i})$$

$$= \mathbf{x}^{T}\mathbf{W}_{i}\mathbf{x} + \mathbf{w}_{i}^{T}\mathbf{x} + \mathbf{w}_{i0}$$
where

$$\mathbf{W}_{i} = -\frac{1}{2}\mathbf{S}_{i}^{-1}$$

$$\mathbf{w}_{i} = \mathbf{S}_{i}^{-1}\mathbf{m}_{i}$$

$$\mathbf{w}_{i0} = -\frac{1}{2}\mathbf{m}_{i}^{T}\mathbf{S}_{i}^{-1}\mathbf{m}_{i} - \frac{1}{2}\log|\mathbf{S}_{i}| + \log\hat{P}(C_{i})$$



### Common Covariance Matrix S

Shared common sample covariance S

$$\mathbf{S} = \sum_{i} \hat{P}(C_{i}) \mathbf{S}_{i}$$

Discriminant reduces to

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \mathbf{m}_i)^T \mathbf{S}^{-1}(\mathbf{x} - \mathbf{m}_i) + \log \hat{P}(C_i)$$

which is a linear discriminant

$$g_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + \mathbf{w}_{i0}$$

where

$$\mathbf{w}_{i} = \mathbf{S}^{-1}\mathbf{m}_{i} \quad \mathbf{w}_{i0} = -\frac{1}{2}\mathbf{m}_{i}^{T}\mathbf{S}^{-1}\mathbf{m}_{i} + \log \hat{P}(C_{i})$$

### Common Covariance Matrix S



# Diagonal S

• When  $x_j j = 1,..d$ , are independent,  $\sum$  is diagonal  $p(\mathbf{x}|C_i) = \prod_j p(x_j|C_i)$  (Naive Bayes' assumption)

$$g_i(\mathbf{x}) = -\frac{1}{2} \sum_{j=1}^{d} \left( \frac{x_j^t - m_{ij}}{s_j} \right)^2 + \log \hat{P}(C_i)$$

Classify based on weighted Euclidean distance (in  $s_j$  units) to the nearest mean

# Diagonal S



# Diagonal S, equal variances

 Nearest mean classifier: Classify based on Euclidean distance to the nearest mean

$$g_{i}(\mathbf{x}) = -\frac{\|\mathbf{x} - \mathbf{m}_{i}\|^{2}}{2s^{2}} + \log \hat{P}(C_{i})$$

$$= -\frac{1}{2s^{2}} \sum_{i=1}^{d} (x_{i}^{t} - m_{ij})^{2} + \log \hat{P}(C_{i})$$

 Each mean can be considered a prototype or template and this is template matching

# Diagonal S, equal variances



## **Model Selection**

| Assumption                  | Covariance matrix                                     | No of parameters |
|-----------------------------|-------------------------------------------------------|------------------|
| Shared, Hyperspheric        | $S_i = S = S^2 I$                                     | 1                |
| Shared, Axis-aligned        | $\mathbf{S}_{i}$ = $\mathbf{S}$ , with $s_{ij}$ = $0$ | d                |
| Shared, Hyperellipsoidal    | S <sub>i</sub> =S                                     | d(d+1)/2         |
| Different, Hyperellipsoidal | S <sub>i</sub>                                        | K d(d+1)/2       |

- As we increase complexity (less restricted S), bias decreases and variance increases
- Assume simple models (allow some bias) to control variance (regularization)

# Population likelihoods and posteriors Arbitrary covar. Shared covar. Equal var. Diag. covar. > 20 Lecture Notes for E Alpaydin 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0) X

### Discrete Features

• Binary features:  $p_{ij} = p(x_j = 1 | C_i)$ 

if  $x_i$  are independent (Naive Bayes')

$$p(x \mid C_i) = \prod_{j=1}^{d} p_{ij}^{x_j} (1 - p_{ij})^{(1-x_j)}$$

the discriminant is linear

$$g_{i}(\mathbf{x}) = \log p(\mathbf{x} \mid C_{i}) + \log P(C_{i})$$

$$= \sum_{j} \left[ x_{j} \log p_{ij} + (1 - x_{j}) \log (1 - p_{ij}) \right] + \log P(C_{i})$$
Estimated parameters 
$$\hat{p}_{ij} = \frac{\sum_{t} x_{j}^{t} r_{i}^{t}}{\sum_{t} r_{i}^{t}}$$

### Discrete Features

• Multinomial (1-of- $n_j$ ) features:  $x_j$  in  $\{v_1, v_2, ..., v_{n_j}\}$ 

$$p_{ijk} = p(z_{jk} = 1 | C_i) = p(x_j = v_k | C_i)$$

if  $x_i$  are independent

$$p(\mathbf{x} \mid C_i) = \prod_{j=1}^{d} \prod_{k=1}^{n_j} p_{ijk}^{z_{jk}}$$

$$g_i(\mathbf{x}) = \sum_{j} \sum_{k} z_{jk} \log p_{ijk} + \log P(C_i)$$

$$\hat{p}_{ijk} = \frac{\sum_{t} z_{jk}^{t} r_i^{t}}{\sum_{t} r_i^{t}}$$

# Multivariate Regression

$$r^t = g(x^t \mid w_0, w_1, ..., w_d) + \varepsilon$$

Multivariate linear model

$$W_0 + W_1 X_1^t + W_2 X_2^t + \dots + W_d X_d^t$$

$$E(w_0, w_1, ..., w_d \mid \mathcal{X}) = \frac{1}{2} \sum_{t} [r^t - w_0 - w_1 x_1^t - \cdots - w_d x_d^t]^2$$

Multivariate polynomial model:

Define new higher-order variables

$$z_1 = x_1$$
,  $z_2 = x_2$ ,  $z_3 = x_1^2$ ,  $z_4 = x_2^2$ ,  $z_5 = x_1 x_2$ 

and use the linear model in this new z space

(basis functions, kernel trick: Chapter 13)