Experiment-1:

Implementing CMOS-NAND using DHCH2/3 & Microwind 2.

Objective:

We have to create CMOS-NAD schematic diagram using DHCH2/3 and then run its Verilog file on Microwind2 to generate Layout diagram and finally checking its validation of using Timing diagram on Microwind2.

Theory:

i. Truth Table:

Α	В	Q ₁	Q ₂	Q ₃	Q ₄	Output
0	0	ON	ON	OFF	OFF	1
0	1	ON	OFF	OFF	ON	1
1	0	OFF	ON	ON	OFF	1
1	1	OFF	OFF	ON	ON	0

Table 3.2 Truth table of NAND gate

ii. Schematic Diagram:

Procedure:

- 1. At first creating a Schematic Diagram on DHCH2/3.
- 2. Then save this file as '.sch' format from DHCH2/3.
- 3. Next in the 'File' option of DHCH2/3, choose 'Make Verilog File'.
- 4. Next in Microwind2 'File' option, choose 'Select Foundry' option and set the rule 'CMOS 025.RUL'.
- 5. Finally in Microwind2 'Compile' option, choose 'Compile Verilog File' option and run the '.sch' file that previously saved from DHCH2/3.
- 6. To see the 'Timing Diagram' press 'Run Simulation' option on Microwind2.

Result:

i. Layout Diagram:

ii. Timing Diagram:

