Parallel Computing (CS 633)

January 8, 2024

Preeti Malakar pmalakar@cse.iitk.ac.in

Logistics

- Class hours: MW 3:30 4:45 PM (RM 101)
- Office hour: MTW 5:00 5:30 PM (KD 221)
- https://www.cse.iitk.ac.in/users/cs633/2023-24-2
 - Lectures will be uploaded after every class
- Announcements/uploads on
 - MooKIT
 - Course email alias
- Email to the instructor should always be prefixed with [CS633] in the subject

Grading Policy

Switch OFF All Devices

INDIAN INSTITUTE OF TECHNOLOGY KANPUR ACADEMIC SECTION

No. DOAA/20010-11/Mobile

October 4, 2010

Use of Mobile Phones in Academic Area

The following policy will be followed regarding the usage of Mobile Phones in the Academic Area:

Examinations: Students are not permitted to carry Mobile phones inside the examination hall. The faculty members/invigilators must keep the mobile phones switched off during the conduct of the examination.

Classrooms: Mobile phones are to be switched off in class-rooms both, by students as well as Instructors/ Tutors.

Laboratory/Library/Auditorium: Mobile phones are to be kept in silent mode in laboratories/library /auditorium. In case the individual would like to receive/make a call, they must do so from outside the premises.

The implementation of the above will be overseen by the following:

Examinations. Instructors/Invigilators

Classrooms: Instructors/Tutors

Laboratory: Instructors/Tutors/Officer-in-charge of the Laboratory

Library: Librarian

Auditorium: Facility-in-charge.

Sanjay Mittal

Dean of Academic Affairs

Assignments

- Programming assignments in C
- In a group (group size = 3)
 - Send group member information by Jan 14 to {gsarkar,madhavm}@cse.iitk.ac.in
 - Include clearly names, roll numbers, IITK email-ids
 - Subject of email [CS633 Group]
 - Change in group formation is not allowed
- Mode of submission will be explained in due time

Assignments

- Credit for early submissions (+5 / day)
 - Max credit: +15 / assignment
 - Last date of submission will be considered only
- Score reduction for late submissions (-3 / day)
 - Max 2 late days / assignment
- None of the assignments can be completed in a day!

Plagiarism will NOT be tolerated Use of AI tools is NOT allowed

Lecture 1

Introduction

Multicore Era

Moore's Law (1965)

Number of transistors in a chip doubles every 18 months

"However, it must be programmed with a more complicated parallel programming model to obtain maximum performance."

Trends

[Source: M. Frans Kaashoek, MIT]

35 YEARS OF MICROPROCESSOR TREND DATA

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten Dotted line extrapolations by C. Moore

top500.org (Nov'23)

Rmax **Rpeak** Power (PFlop/s) Rank System Cores (PFlop/s) (kW) 8,699,904 1,194.00 1,679.82 Frontier - HPE Cray EX235a, AMD Optimized 3rd 22,703 Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory **United States** ~ \$600 million ~ 7300 sq. ft. ~ 22 MW power ~ 23000 L water 561.20 442.01 537.21 29,899

green500.org (Nov'23)

Rank	TOP500 Rank	System	Cores	Rmax (PFlop/s)	Power (kW)	Energy Efficiency (GFlops/watts)
1	293	Henri - ThinkSystem SR670 V2, Intel Xeon Platinum 8362 32C 2.8GHz, NVIDIA H100 80GB PCIe, Infiniband HDR, Lenovo Flatiron Institute United States	8,288	2.88	44	65.396
2	44	Frontier TDS - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot- 11, HPE D0E/SC/Oak Ridge National Laboratory United States	120,832	19.20	309	62.684
3	17	Adastra - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot- 11, HPE Grand Equipement National de Calcul Intensif - Centre Informatique National de l'Enseignement Suprieur (GENCI- CINES) France	319,072	46.10	921	58.021

Metric of interest: Performance per Watt

HOME COMPLETE RESULTS GREEN GRAPH500 SUBMISSIONS BE

RANK \$	PREVIOUS \$	MACHINE \$	VENDOR \$	TYPE	\$	NETWORK \$	INSTALLATION \$	LOCATION \$
1	new	Supercomputer Fugaku	Fujitsu	Fujitsu A64FX		Tofu Interconnect D	RIKEN Center for Computational Science (R-CCS)	Kobe Hyogo
2	new	Wuhan Supercomputer	HUST	Kunpeng 920+Tesla A100		Custom	Wuhan Supercomputing Center	Wuhan
3	3	Frontier	HPE	HPE Cray EX235a		Slingshot-11	DOE/SC/Oak Ridge National Laboratory	Oak Ridge TN
4	new	Pengcheng Cloudbrain-II	HUST- Pengcheng Lab- HUAWEI	Kunpeng 920+Ascen 910	d	Custom	Pengcheng Lab	ShenZhen

Top #1 supercomputer

https://www.top500.or g/resources/topsystems/

Making of a Supercomputer

Source: energy.gov

Greenest Data Centre?

Source: MIT TR 06/19

"The 149,000 square foot facility built on a hillside overlooking the UC Berkeley campus and San Francisco Bay will house one of the most energy-efficient computing centers anywhere, tapping into the region's mild climate to cool the supercomputers at the National Energy Research Scientific Computing Center (NERSC) and eliminating the need for mechanical cooling."

BERKELEY LAB OPENS STATE-OF-THE-ART FACILITY FOR COMPUTATIONAL SCIENCE

Wang Hall takes advantage of Lab's hillside location for advanced energy efficiency

NOVEMBER 12, 2015

Contact: Jon Bashor, jbashor@lbl.gov, 510-486-5849

A new center for advancing computational science and networking at research institutions and universities across the country opened today at the Department of Energy's (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab).

Named Shyh Wang Hall, the facility will house the National Energy Research Scientific Computing Center, or NERSC, one of the world's leading supercomputing centers for open science

which serves nearly 6,000 researchers in the U.S. and abroad. Wang Hall will also be the center of operations for DOE's Energy Sciences Network, or ESnet, the fastest network dedicated to science, connecting tens of thousands of scientists as they collaborate on solving some of the world's biggest scientific challenges.

Complementing NERSC and ESnet in the facility will be research programs in applied mathematics and computer science that develop new methods for advancing scientific discovery. Researchers from UC Berkeley will also share space in Wang Hall as they collaborate with Berkeley Lab staff on computer science programs.

Top Supercomputers from India

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
90	AIRAWAT - PSAI - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Infiniband HDR, Netweb Technologies Center for Development of Advanced Computing (C-DAC) India	81,344	8.50	13.17	
163	PARAM Siddhi-AI - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, EVIDEN Center for Development of Advanced Computing (C-DAC) India	41,664	4.62	5.27	
201	Pratyush - Cray XC40, Xeon E5-2695v4 18C 2.1GHz, Aries interconnect , HPE Indian Institute of Tropical Meteorology India	119,232	3.76	4.01	1,353
354	Mihir - Cray XC40, Xeon E5-2695v4 18C 2.1GHz, Aries interconnect , HPE National Centre for Medium Range Weather Forecasting India	83,592	2.57	2.81	955

Supercomputing in India [topsc.cdacb.in, Jul'23]

Sapercompating in maia [topse.eadeb.iii, sar 25]									
1 🥏	Center for Development of Advanced Computing (C-DAC), PUNE	AIRAWAT - PSAI is a NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHZ, NVIDIA A100, INFINIBAND HDR2 More Info OEM:NVIDIA, Bidder:Netweb	81344/2/82	8500	13176				
2	Centre for Development of Advanced Computing(C-DAC),Pune	PARAM SIDDHI is a NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband .consists of 42 nos of NVIDIA DGX A100 nodes, Dual socket populated with More Info	41664/2/42	4619	5267.14				
3	Indian Institute of Tropical Meteorology(IITM),Pune	Cray XC-40 class system with 3315 CPU-only (Intel Xeon Broadwell E5- 2695 v4 CPU) nodes with Cray Linux environment as OS, and connected by Cray Aries interconnect. Total storage More Info OEM:Cray, Bidder:Cray	119232//3315	3763.9	4006.19				
4	National Centre for Medium Range Weather Forecasting (NCMRWF),Noida	Intel Xeon Broadwell E5-2695 v4 CPU) nodes with Cray Linux environment as OS, and connected by Cray Aries interconnect More Info OEM:Cray, Bidder:Cray	83592/2/2612	2570.4	2808.7				
5	PARAM Pravega, IISc, Bangalore	The PARAM Pravega is a heterogeneous and hybrid configuration of Intel Xeon Cascade Lake processors, NVIDIA Tesla V100 with NVLink, Mellanox HDR More Info OEM:ATOS, Bidder:ATOS	29952/2/624	1702	2565				

Source: www.iitk.ac.in

Credit: Ashish Kuvelkar, CDAC

National Supercomputing Mission Sites

Big Compute

Massively Parallel Codes

Climate simulation of Earth [Credit: NASA]

Discretization

Gridded mesh for a global model [Credit: Tompkins, ICTP]

Numerical Weather Models

- Use numerical methods to solve equations that govern atmospheric processes
- Are based on fluid dynamics and depend on observations of meteorological variables
- Are used to obtain nowcast/forecast

Massively Parallel Simulations

Self-healing material simulation [Nomura et al., "Nanocarbon synthesis by high-temperature oxidation of nanoparticles", Scientific Reports, 2016]

Massively Parallel Analysis

[Nomura et al., "Nanocarbon synthesis by high-temperature oxidation of nanoparticles", Scientific Reports, 2016]

Massively Parallel Codes

Cosmological simulation [Credit: ANL]

Massively Parallel Analysis

Computational Science

[Source: Culler, Singh and Gupta]

Big Data

Output Data

Higgs boson simulation Source: CERN

Hurricane simulation Source: NASA

Input Data

[Credit: World Meteorological Organization]

System Architecture Trends

System attributes	2010	2017-2018		2021-2022		
System peak	2 Peta	150-200 Petaflop/sec		1 Exaflop/sec		
Power	6 MW	15 MW		20 MW		
 System memory	0.3 PB	5 PB		32-64 PB		
Node performance	125 GF	3 TF	30 TF	10 TF	100 TF	
Node memory BW	25 GB/s	0.1TB/sec	1 TB/sec	0.4TB/sec	4 TB/sec	Γ
Node concurrency	12	O(100)	O(1,000)	O(1,000)	O(10,000)	
System size (nodes)	18,700	50,000	5,000	100,000	10,000	
Total Node Interconnect BW	1.5 GB/s	20 GB/sec		200GB/sec		
MTTI	days	O(1day)		O(1 day)		

[Credit: Pavan Balaji@ATPESC'17]

I/O trends

NERSC I/O trends [Credit: www.nersc.gov]

Compute vs. I/O trends

Why Parallel?

20 hours

2 hours

Not really

Parallelism

A parallel computer is a collection of processing elements that communicate and cooperate to solve large problems fast.

- Almasi and Gottlieb (1989)

Speedup

Example – Sum of squares of N numbers

Serial

for
$$i = 1$$
 to N

$$sum += a[i] * a[i]$$

O(N)

Parallel

for
$$i = 1$$
 to N/P

collate result

$$O(N/P) +$$

Communication time

Performance Measure

Speedup

$$S_p = \frac{\text{Time (1 processor)}}{\text{Time (P processors)}}$$

Efficiency

$$E_p = \frac{S_p}{P}$$

Parallel Performance (Parallel Sum)

Parallel efficiency of summing 10^7 doubles

#Processes	Time (sec)	Speedup
1	0.025	1
2	0.013	1.9
4	0.010	2.5
8	0.009	2.8
12	0.007	3.6

Ideal Speedup

Issue – Scalability

[Source: M. Frans Kaashoek, MIT]

Scalability Bottleneck

Performance of weather simulation application

Parallelism

A parallel computer is a collection of processing elements that communicate and cooperate to solve large problems fast.

- Almasi and Gottlieb (1989)

Distributed Memory Systems

- Networked systems
- Distributed memory
 - Local memory
 - Remote memory
- Parallel file system

Cluster

Parallel Programming Models

Libraries	MPI, TBB, Pthread, OpenMP,
New languages	Haskell, X10, Chapel,
Extensions	Coarray Fortran, UPC, Cilk, OpenCL,

- Shared memory
 - OpenMP, Pthreads, ...
- Distributed memory
 - MPI, UPC, ...
- Hybrid
 - MPI + OpenMP

This course ...

Large-scale Parallel Computing

Message passing

Parallel algorithms

Designing parallel codes

Performance analysis

Message Passing Paradigm

- Point-to-point (P2P) communications
- Collective communications
- Algorithms
- Performance

Profiling

Parallel I/O

NOT SHARED

Job Scheduling

NODES

USERS

Example of a real supercomputer activity

- Argonne National Laboratory Theta jobs

Supercomputer Activity

Reference Material

- DE Culler, A Gupta and JP Singh, Parallel Computer Architecture:
 A Hardware/Software Approach Morgan-Kaufmann, 1998.
- A Grama, A Gupta, G Karypis, and V Kumar, Introduction to Parallel Computing. 2nd Ed., Addison-Wesley, 2003.
- Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker and Jack Dongarra, MPI - The Complete Reference, Second Edition, Volume 1, The MPI Core.
- Bill Gropp, Using MPI, Third Edition, The MIT Press, 2014.
- Research papers