Мультипликативные функции

Функция $f \colon \mathbb{N} \to \mathbb{Z}$ называется мультипликативной функцией теории чисел, если из HOД(m,n) = 1 следует $f(m \cdot n) = f(m) \cdot f(n)$.

- 1. Докажите мультипликативность следующих трёх функций:
 - (a) d(n) количество всех натуральных делителей числа n;
- (b) $\sigma(n)$ сумма всех натуральных делителей числа n;
- (c) $\varphi(n)$ количество чисел от 1 до n, взаимно простых с n.
- 2. Выразите значения этих функций через каноничекое разложение n.
- 3. **Теорема Эйлера.** Докажите, что $a^{\varphi(n)} \equiv 1 \pmod{n}$ для любых вза-имно простых чисел a и n.
- 4. Функция f мультипликативна. Докажите, что и $\sum_{d|n} f(d)$ тоже.

Порядки

Наименьшее натуральное число d такое, что $a^d \equiv 1 \pmod n$ называется $nopядком\ a$ по модулю n и обозначается $ord_n(a)$. Число a называется $nepвooбpазным\ корнем$ по модулю n, если $ord_n(a) = \varphi(n)$.

- 5. Докажите, что, если $a^m \equiv 1 \pmod{n}$, то $\operatorname{ord}_n(a) \mid m$.
- 6. Докажите равенство $\sum_{d|n} \varphi(d) = n$.
- 7. Докажите, что для каждого простого числа p есть первообразный корень по модулю p и найдите их количество.
- 8. Числа p и q просты и $q \mid a^p b^p$. Докажите, что либо $q \mid a b$, либо $q \equiv 1 \pmod p$.

Лемма об уточнении показателя (LTE lemma)

Пусть p>2 — простое число, целые числа a и b таковы, что $p\mid a-b,$ но p не делит ab, а n — произвольное натуральное число.

- 9. Пусть $p \nmid k$. Докажите равенство $v_p(a^{kn} b^{kn}) = v_p(a^k b^k)$.
- 10. Докажите равенство $v_p(a^{pn} b^{pn}) = v_p(a^n b^n) + 1$.
- 11. LTE lemma, p > 2 Докажите равенство $v_p(a^n b^n) = v_p(a b) + v_p(n)$.
- 12. Пусть числа a, b и n нечётны. Докажите, что $v_2(a^n b^n) = v_2(a b)$.
- 13. LTE lemma, p=2. Пусть числа a и b нечётны, а n чётно. Докажите, что $v_2(a^n-b^n)=v_2(a^2-b^2)+v_2(n)-1$.

Упражнения

- 14. Найдите все натуральные числа n такие, которых найдутся простые p и q, p+2=q, такие, что числа 2^n+p и 2^n+q простые.
- 15. Найдите все натуральные числа n и k такие, что $(n-1)!+1=n^k$.
- 16. Последовательность a_1,a_2,\ldots натуральных чисел определена по следующим правилам: $a_1=1$ и $a_n=5a_{n-1}+3^{n-1}$ при всех $n\geqslant 2$. Найдите наибольшую степень двойки, на которую делится $a_{2^{2019}}$.
- 17. Докажите, что существует бесконечно много натуральных чисел n таких, что по крайней мере одно из чисел $2^{2^n}+1$ и $2018^{2^n}+1$ составное.

Показатели и порядки

- 18. Аня и Боря играют в игру, делая ходы по очереди: за ход разрешается выбрать номер $i \in \{0,1,2,\ldots,p-1\}$, не выбранный никем ранее, и цифру a_i (p>2 фиксированное простое число). Игра заканчивается, когда все номера выбраны. Аня ходит первой и она хочет, чтобы число $M=a_0+10\cdot a_1+10^2\cdot a_2+\ldots+10^{p-1}a_{p-1}$ делилось на p, а Боря пытается ей помешать. Докажите, что Аня может добиться своего.
- 19. Даны последовательности (a_n) натуральных чисел и (p_n) простых чисел такие, что для каждого $n\geqslant 1$ выполнены условия: $p_n|a_n$ и $a_{n+1}=\frac{a_n}{p_n}(p_n^{1009}-1)$. Докажите, что в последовательности a_n найдётся число, кратное 2018.
- 20. Найдите все натуральные числа n такие, что $n^2 \mid 2^n + 1$.
- 21. Существует ли натуральное число n > 1 такое, что $n \mid 2^{n-1} + 1$?
- 22. Бесконечное множество $S \subset \mathbb{N}$ назовём *хорошим*, если для любых трёх попарно различных элементов $a,b,c \in S$ все натуральные делители числа $\frac{a^c-b^c}{a-b}$ принадлежат S. Докажите, что для каждого натурального числа n>1 существует хорошее множество, не содержащее n.
- 23. Докажите, что для любого натурального числа m можно найти m последовательных натуральных чисел n таких, что произведение $(1^3+2018^3)\cdot(2^3+2018^3)\cdot\ldots\cdot(n^3+2018^3)$ не является степенью (выше первой) натурального числа.
- 24. Найдите все натуральные числа n, при которых $\frac{n^{3n-2}-3n+1}{3n-2} \in \mathbb{N}$.
- 25. Дано натуральное число n. Докажите, что для любого нечётного x найдётся y такой, что $y^y \equiv x \pmod{2^n}$.
- 26. Найдите все натуральные числа x,y и простые p такие, что оба числа: $x^{p-1}+y$ и $x+y^{p-1}$ являются степенями числа p.
- 27. Для каждого натурального числа n найдите НОД всех чисел вида $a^n + (a+1)^n + (a+2)^n, a \in \mathbb{N}.$
- 28. Найдите все простые числа p и q такие, что число $3p^{q-1}+1$ делит число 11^p+17^p .
- 29. Найдите все тройки $(a,b,k),\ k\geqslant 2,$ натуральных чисел такие, что число $(a^k+b)(b^k+a)$ является степенью двойки.