Probability and Statistics: Lecture-1

Monsoon-2020

```
by Pawan Kumar (IIIT, Hyderabad) on August 10, 2020
```

- » Table of contents **1. Basic Counting** 2. Sum Rule 3. Set Theory 4. Product Rule
 - 5. Tuples

* counting is a basic task in mathematics

- * counting is a basic task in mathematics
- * Our objective: To tell how many objects are there without actually counting

- * counting is a basic task in mathematics
- * Our objective: To tell how many objects are there without actually counting
- * applications of counting:

- * counting is a basic task in mathematics
- * Our objective: To tell how many objects are there without actually counting
- * applications of counting:
 - * number of steps of an algorithm

- * counting is a basic task in mathematics
- Our objective: To tell how many objects are there without actually counting
- * applications of counting:
 - * number of steps of an algorithm
 - * estimating probability of occurrence of an event (in this course)

- * counting is a basic task in mathematics
- Our objective: To tell how many objects are there without actually counting
- * applications of counting:
 - * number of steps of an algorithm
 - * estimating probability of occurrence of an event (in this course)
 - * proofs such as Pigeon Hole Principle (PHP)

* Ishango Bone is possibly the oldest mathematical artefact still in existence

- Ishango Bone is possibly the oldest mathematical artefact still in existence
- * It is dates back to the Upper Paleolithic period of human history, and is approximately 20,000 years old.

- * Ishango Bone is possibly the oldest mathematical artefact still in existence
- * It is dates back to the Upper Paleolithic period of human history, and is approximately 20,000 years old.
- * The bone is 10 cm long and contains a series of notches, which many scientists believe were used for counting.

* This tablet shows a multiplication table that was created around 2600 BCE in the Sumerian city of Shuruppak

- This tablet shows a multiplication table that was created around 2600 BCE in the Sumerian city of Shuruppak
- * The table has three columns. The dots in the first two columns represent distances ranging from around 6 meters to 3 kilometres. The third column contains the product of the first two

- This tablet shows a multiplication table that was created around 2600 BCE in the Sumerian city of Shuruppak
- * The table has three columns. The dots in the first two columns represent distances ranging from around 6 meters to 3 kilometres. The third column contains the product of the first two
- Sumer was a region of ancient Mesopotamia in the Middle East

Question-2

How many numbers are there between 21 and 31?

Question-2

How many numbers are there between 21 and 31?

Answer

11

Question-2

How many numbers are there between 21 and 31?

Answer

11

Question-3

How many numbers are there between m and n, m < n?

Ouestion-2

How many numbers are there between 21 and 31?

Answer

11

Question-3

How many numbers are there between m and n, m < n?

Answer

m-n+1

Question-1

How many numbers between 33 and 67 are divisible by 4?

» Sum Rule: Statement and Example

Sum Rule

If there are m objects of first type and there are n objects of second type, then there are n+m objects of one of the two types.

» Sum Rule: Statement and Example

Sum Rule

If there are m objects of first type and there are n objects of second type, then there are n+m objects of one of the two types.

Sum Rule Example

How many of the Pizza or Burgers places are there?

» Sum Rule: Statement and Example

Sum Rule

If there are m objects of first type and there are n objects of second type, then there are n+m objects of one of the two types.

Sum Rule Example

How many of the Pizza or Burgers places are there?

Answer

There are 7 Pizzas and there are 5 Burgers, hence, by sum rule, we have 7 + 5 = 12

Example

Example

Example

A piece stays in the bottom left corner of a chessboard. In one move it can move one step to the right or one step up. How many moves are needed to get to the position on the picture?

* There are two types of moves:

Example

A piece stays in the bottom left corner of a chessboard. In one move it can move one step to the right or one step up. How many moves are needed to get to the position on the picture?

* There are two types of moves: move right and move up

Example

- * There are two types of moves: move right and move up
- $\,\,*\,$ To get to the column 4, we need 3 moves to the right

Example

- * There are two types of moves: move right and move up
- $\ast\,$ To get to the column 4, we need 3 moves to the right
- st To get to the row 6, we need 5 moves up

Example

- * There are two types of moves: move right and move up
- * To get to the column 4, we need 3 moves to the right
- * To get to the row 6, we need 5 moves up
- * Applying sum rule: In total, we need 3+5=8 moves

Question

Count all integers from 1 to 10 that are divisible by 2 or by 3

Question

Count all integers from 1 to 10 that are divisible by 2 or by 3

Answer

* There are 5 numbers divisible by 2: 2, 4, 6, 8, 10

Question

Count all integers from 1 to 10 that are divisible by 2 or by 3

Answer

- * There are 5 numbers divisible by 2: 2, 4, 6, 8, 10
- * There are 3 numbers divisible by 3: 3, 6, 9

Question

Count all integers from 1 to 10 that are divisible by 2 or by 3

Answer

* There are 5 numbers divisible by 2: 2, 4, 6, 8, 10

* There are 3 numbers divisible by 3: 3, 6, 9

* Hence, by sum rule, the answer is: 5+3=8

Question

Count all integers from 1 to 10 that are divisible by 2 or by 3

Answer

* There are 5 numbers divisible by 2: 2, 4, 6, 8, 10

* There are 3 numbers divisible by 3: 3, 6, 9

* Hence, by sum rule, the answer is: 5+3=8

Is this correct answer?

Question

Count all integers from 1 to 10 that are divisible by 2 or by 3

Answer

* There are 5 numbers divisible by 2: 2, 4, 6, 8, 10

* There are 3 numbers divisible by 3: 3, 6, 9

* Hence, by sum rule, the answer is: 5+3=8

Is this correct answer? No

Question

Count all integers from 1 to 10 that are divisible by 2 or by 3

Answer

* There are 5 numbers divisible by 2: 2, 4, 6, 8, 10

* There are 3 numbers divisible by 3: 3, 6, 9

* Hence, by sum rule, the answer is: 5+3=8

Is this correct answer? No

Let us count directly: 2,3,4,6,8,9,10, that is the answer is 7

Question

Count all integers from 1 to 10 that are divisible by 2 or by 3

Answer

* There are 5 numbers divisible by 2: 2, 4, 6, 8, 10

* There are 3 numbers divisible by 3: 3, 6, 9

* Hence, by sum rule, the answer is: 5+3=8

Is this correct answer? No

Let us count directly: 2,3,4,6,8,9,10, that is the answer is 7

Caution with Sum Rule

In the rule of sum, no object should belong to both types!

Definition of a Set

A set is a collection of things (called elements).

Definition of a Set

A set is a collection of things (called elements).

Remarks and Examples

* ordering of elements in set does not matter

Definition of a Set

A set is a collection of things (called elements).

- * ordering of elements in set does not matter
- * set of natural numbers $\mathbb{N} = \{1, 2, 3, \dots\}$

Definition of a Set

A set is a collection of things (called elements).

- * ordering of elements in set does not matter
- * set of natural numbers $\mathbb{N} = \{1, 2, 3, \dots\}$
- * Set of integers $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3\}$

Definition of a Set

A set is a collection of things (called elements).

- * ordering of elements in set does not matter
- * set of natural numbers $\mathbb{N} = \{1, 2, 3, \dots\}$
- * Set of integers $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3\}$
- * Set of rational numbers $\mathbb Q$, set of real numbers $\mathbb R$

Definition of a Set

A set is a collection of things (called elements).

- * ordering of elements in set does not matter
- * set of natural numbers $\mathbb{N}=\{1,2,3,\dots\}$
- * Set of integers $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3\}$
- * Set of rational numbers $\mathbb Q$, set of real numbers $\mathbb R$
- $*~[2,3] = \{x: 2 \le x \le 3\}, a \text{ closed} interval on real line}$

Definition of a Set

A set is a collection of things (called elements).

- * ordering of elements in set does not matter
- * set of natural numbers $\mathbb{N} = \{1, 2, 3, \dots\}$
- * Set of integers $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3\}$
- * Set of rational numbers $\mathbb Q$, set of real numbers $\mathbb R$
- * $[2,3] = \{x : 2 \le x \le 3\}$, a closed interval on real line
- $*~(-1,2) = \{ \mathbf{\textit{x}} : -1 < \mathbf{\textit{x}} < 2 \},$ an open interval on real line

Definition of a Set

A set is a collection of things (called elements).

- * ordering of elements in set does not matter
- * set of natural numbers $\mathbb{N} = \{1, 2, 3, \dots\}$
- * Set of integers $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3\}$
- * Set of rational numbers $\mathbb Q$, set of real numbers $\mathbb R$
- * $[2,3] = \{x : 2 \le x \le 3\}$, a closed interval on real line
- $*~(-1,2) = \{x: -1 < x < 2\}$, an open interval on real line
- * $(1,3] = \{x : 1 < x \le 3\}$, a half open/closed interval on real line

* A set A is called subset of a set B if every element of A is also an element of B. It is denoted by $A \subseteq B$

- * A set A is called subset of a set B if every element of A is also an element of B. It is denoted by $A \subseteq B$
- * Two sets A and B are said to be equal if $A \subseteq B$ and $B \subseteq A$

- * A set A is called subset of a set B if every element of A is also an element of B. It is denoted by $A \subseteq B$
- * Two sets A and B are said to be equal if $A \subseteq B$ and $B \subseteq A$
- * A set with no elements is called empty set or null set, denoted by ϕ

- * A set A is called subset of a set B if every element of A is also an element of B. It is denoted by $A \subseteq B$
- * Two sets A and B are said to be equal if $A \subseteq B$ and $B \subseteq A$
- * A set with no elements is called empty set or null set, denoted by ϕ
- * The universal set is the set of all things that we could possibly consider in the context we are studying

- * A set A is called subset of a set B if every element of A is also an element of B. It is denoted by $A \subseteq B$
- * Two sets A and B are said to be equal if $A \subseteq B$ and $B \subseteq A$
- * A set with no elements is called empty set or null set, denoted by ϕ
- * The universal set is the set of all things that we could possibly consider in the context we are studying
 - * every set A is a subset of the universal set

- * A set A is called subset of a set B if every element of A is also an element of B. It is denoted by $A \subseteq B$
- * Two sets A and B are said to be equal if $A \subseteq B$ and $B \subseteq A$
- * A set with no elements is called empty set or null set, denoted by ϕ
- * The universal set is the set of all things that we could possibly consider in the context we are studying
 - * every set A is a subset of the universal set
- * A set S is called countable, if there exists a bijective function

$$f: \mathcal{S} \to \mathbb{N}$$

- * A set A is called subset of a set B if every element of A is also an element of B. It is denoted by $A \subseteq B$
- * Two sets A and B are said to be equal if $A \subseteq B$ and $B \subseteq A$
- * A set with no elements is called empty set or null set, denoted by ϕ
- * The universal set is the set of all things that we could possibly consider in the context we are studying
 - * every set A is a subset of the universal set
- * A set *S* is called countable, if there exists a bijective function

$$f: \mathcal{S} \to \mathbb{N}$$

* The sets \mathbb{N}, \mathbb{Q} are countable

- * A set A is called subset of a set B if every element of A is also an element of B. It is denoted by $A \subseteq B$
- * Two sets A and B are said to be equal if $A \subseteq B$ and $B \subseteq A$
- * A set with no elements is called empty set or null set, denoted by ϕ
- * The universal set is the set of all things that we could possibly consider in the context we are studying
 - * every set A is a subset of the universal set
- * A set *S* is called countable, if there exists a bijective function

$$f: \mathcal{S} \to \mathbb{N}$$

- * The sets \mathbb{N}, \mathbb{Q} are countable
- * A set with finite number of elements is called finite set

- * A set A is called subset of a set B if every element of A is also an element of B. It is denoted by $A \subseteq B$
- * Two sets A and B are said to be equal if $A \subseteq B$ and $B \subseteq A$
- * A set with no elements is called empty set or null set, denoted by ϕ
- * The universal set is the set of all things that we could possibly consider in the context we are studying
 - * every set A is a subset of the universal set
- * A set *S* is called countable, if there exists a bijective function

$$f:\mathcal{S} o\mathbb{N}$$

- * The sets \mathbb{N}, \mathbb{Q} are countable
- * A set with finite number of elements is called finite set
- * A set which is countable and not finite is called countably infinite

* Venn diagrams are useful in analysing the relationship between sets

* Venn diagrams are useful in analysing the relationship between sets

* Venn diagrams are useful in analysing the relationship between sets

* Venn diagram showing subset relationship

* The union of two sets is a set containing all elements that are in A or in B. Here A union B is denoted by $A \cup B$

- * The union of two sets is a set containing all elements that are in A or in B. Here A union B is denoted by $A \cup B$
 - * Example: $\{1,2\} \cup \{2,3\} = \{1,2,3\}$

- * The union of two sets is a set containing all elements that are in A or in B. Here A union B is denoted by $A \cup B$
 - * Example: $\{1,2\} \cup \{2,3\} = \{1,2,3\}$

» Set Operations: Union

- * The union of two sets is a set containing all elements that are in A or in B. Here A union B is denoted by $A \cup B$
 - * Example: $\{1,2\} \cup \{2,3\} = \{1,2,3\}$

* Similarly, we define union of three or more sets as follows

$$A_1 \cup A_2 \cup \cdots \cup A_k = \cup_{i=1}^k A_i$$

» Quiz

* If A and B are countable, then $A \cup B$ is also countable

» Quiz

* Countable union of countable sets is countable

* The union of two sets is a set containing all elements that are in A and in B. Here A intersection B is denoted by $A \cap B$

- * The union of two sets is a set containing all elements that are in A and in B. Here A intersection B is denoted by $A \cap B$
 - * Example: $\{1,2\} \cap \{2,3\} = \{2\}$

- * The union of two sets is a set containing all elements that are in A and in B. Here A intersection B is denoted by $A \cap B$
 - * Example: $\{1,2\} \cap \{2,3\} = \{2\}$

- * The union of two sets is a set containing all elements that are in A and in B. Here A intersection B is denoted by $A \cap B$
 - * Example: $\{1,2\} \cap \{2,3\} = \{2\}$

* Similarly, we define intersection of three or more sets as follows

- * The union of two sets is a set containing all elements that are in A and in B. Here A intersection B is denoted by $A \cap B$
 - * Example: $\{1,2\} \cap \{2,3\} = \{2\}$

* Similarly, we define intersection of three or more sets as follows

$$A_1 \cap A_2 \cap \cdots \cap A_k = \bigcap_{i=1}^k A_i$$

» Set Operations: Complement

* The complement of a set A denoted by A^c is the set of all elements that are in the universal set S, but not in A

» Set Operations: Complement

* The complement of a set A denoted by A^c is the set of all elements that are in the universal set S, but not in A

* The set difference denoted by A - B consists of elements that are in A, but not in B

- * The set difference denoted by A B consists of elements that are in A, but not in B
- * For example, if $A = \{1, 2, 3\}$ and $B = \{3, 5\}$, then $A B = \{1, 2\}$

- * The set difference denoted by A B consists of elements that are in A, but not in B
- * For example, if $A=\{1,2,3\}$ and $B=\{3,5\}$, then $A-B=\{1,2\}$

- * The set difference denoted by A B consists of elements that are in A, but not in B
- * For example, if $A = \{1, 2, 3\}$ and $B = \{3, 5\}$, then $A B = \{1, 2\}$

* Two sets A and B are mutually exclusive or disjoint if they have no shared element, i.e., $A \cap B = \phi$

» Cartesian Product of Sets

Define Cartesian Product of Sets

Cartesian product of two sets $A = \{a_1, a_2, \cdots, a_m\}$ and $B = \{b_1, b_2, \cdots, b_n\}$ denoted by *AtimesB* is defined as follows

$$A \times B = \cup_{i,j} \{(a_i, b_j)\}$$

» Set Theory: Partition of a Set

» Set Theory: Partition of a Set

* A collection of nonempty sets A_1, A_2, \ldots , is a partition of a set A if they are disjoint and their union is A

» Set Theory: Partition of a Set

* A collection of nonempty sets A_1, A_2, \ldots , is a partition of a set A if they are disjoint and their union is A

De Morgan's Lav

- * De Morgan's Law
 - * For any sets A_1, A_2, \ldots, A_n , we have

- * De Morgan's Law
 - * For any sets A_1, A_2, \ldots, A_n , we have

$$(A_1 \cup A_2 \cdots \cup A_n)^c = A_1^c \cap A_2^c \cap \cdots \cap A_n^c$$
$$(A_1 \cap A_2 \cdots \cap A_n)^c = A_1^c \cup A_2^c \cup \cdots \cup A_n^c$$

- * De Morgan's Law
 - * For any sets A_1, A_2, \ldots, A_n , we have

$$(A_1 \cup A_2 \cdots \cup A_n)^c = A_1^c \cap A_2^c \cap \cdots \cap A_n^c$$
$$(A_1 \cap A_2 \cdots \cap A_n)^c = A_1^c \cup A_2^c \cup \cdots \cup A_n^c$$

* Distributive Law

- * De Morgan's Law
 - * For any sets A_1, A_2, \ldots, A_n , we have

$$(A_1 \cup A_2 \cdots \cup A_n)^c = A_1^c \cap A_2^c \cap \cdots \cap A_n^c$$
$$(A_1 \cap A_2 \cdots \cap A_n)^c = A_1^c \cup A_2^c \cup \cdots \cup A_n^c$$

- Distributive Law
 - $*A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

- * De Morgan's Law
 - * For any sets A_1, A_2, \ldots, A_n , we have

$$(A_1 \cup A_2 \cdots \cup A_n)^c = A_1^c \cap A_2^c \cap \cdots \cap A_n^c$$
$$(A_1 \cap A_2 \cdots \cap A_n)^c = A_1^c \cup A_2^c \cup \cdots \cup A_n^c$$

- * Distributive Law
 - $*A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - $* A \cup (B \cup C) = (A \cup B) \cap (A \cup C)$

» Rule of Sum using Set Language

Rule of Sum

If there is a set A with k elements, a set B with n elements and these sets do not have common elements, then the set $A \cup B$ has n + k elements

» Rule of Sum using Set Language

Rule of Sum

If there is a set A with k elements, a set B with n elements and these sets do not have common elements, then the set $A \cup B$ has n + k elements

Rule of sum

Can we apply rule of sum when A and B intersect as follows?

Rule of sum

Can we apply rule of sum when A and B intersect as follows?

Rule of sum

Can we apply rule of sum when A and B intersect as follows?

st If we consider |A|+|B| as in sum rule, then we will be wrong

Rule of sum

Can we apply rule of sum when A and B intersect as follows?

- * If we consider |A| + |B| as in sum rule, then we will be wrong
- * We will count elements that belong to both A and B twice
- $*~|A \cup B| = |A| + |B| |A \cap B|$ (Inclusion-Exclusion Principle)

» Applications of sum rule

Sum rule

Count all integers from 1 to 10 that are divisible by 2 or by 3 $\,$

» Applications of sum rule

Sum rule

Count all integers from 1 to 10 that are divisible by 2 or by 3

* Let us count all the numbers from 1 to 10:

» Applications of sum rule

Sum rule

Count all integers from 1 to 10 that are divisible by 2 or by 3

* Let us count all the numbers from 1 to 10:

* Here 6 is divisible both by 2 and by 3. Hence, rule of sum can't be applied!

Number of Paths

Suppose there are several points connected by arrows. There is a starting point s (called source) and a final point t (called sink). How many different ways are there to get from s to t?

Number of Paths

Suppose there are several points connected by arrows. There is a starting point s (called source) and a final point t (called sink). How many different ways are there to get from s to t?

Number of Paths

Suppose there are several points connected by arrows. There is a starting point s (called source) and a final point t (called sink). How many different ways are there to get from s to t?

* counting can be done recursively

Number of Paths

Suppose there are several points connected by arrows. There is a starting point s (called source) and a final point t (called sink). How many different ways are there to get from s to t?

- * counting can be done recursively
- st for each node count the number of paths from s to this node
 - * sum rule will be used

Product Rule

If there are k object of the first type and there are n object of the second type, then there are $k \times n$ pairs of objects, the first of the first type and the second of the second type

Product Rule

If there are k object of the first type and there are n object of the second type, then there are $k \times n$ pairs of objects, the first of the first type and the second of the second type

Product Rule

If there are k object of the first type and there are n object of the second type, then there are $k \times n$ pairs of objects, the first of the first type and the second of the second type

* Hence, there are $4 \times 3 = 12$ options

» All possible pairs

» All possible pairs

» Rule of Product Using Sets

» Rule of Product Using Sets

Product Rule

If there is a finite set A and a finite set B, then there are $|A| \times |B|$ pairs of objects, the first from A, and the second from B

Tuples

Tuples

How many different 5-symbol passwords can we create using lower case Latin letters only? (the size of the alphabet is 26)

* How many different 1-letter passwords are possible?

Tuples

- * How many different 1-letter passwords are possible?
- * What about 2-letters?

Tuples

- * How many different 1-letter passwords are possible?
- * What about 2-letters?
- * How many different 3-letter words are possible?

Tuples

- * How many different 1-letter passwords are possible?
- * What about 2-letters?
- * How many different 3-letter words are possible?
- * Can you now answer the question above?

Question

Suppose we have a set of n symbols. How many different sequences of length k we can form out of these symbols?

* can apply the same argument as above! (product rule!)

Question

Suppose we have a set of n symbols. How many different sequences of length k we can form out of these symbols?

- * can apply the same argument as above! (product rule!)
- * there are n possibilities to pick the first letter

Question

Suppose we have a set of n symbols. How many different sequences of length k we can form out of these symbols?

- * can apply the same argument as above! (product rule!)
- st there are n possibilities to pick the first letter
- * similarly, There are n possibilities to pick the second letter, and so on...

Question

Suppose we have a set of n symbols. How many different sequences of length k we can form out of these symbols?

- st can apply the same argument as above! (product rule!)
- st there are n possibilities to pick the first letter
- * similarly, There are n possibilities to pick the second letter, and so on...
- * thus, the answer is a product of n by itself k times, that is n^k

Consider the typical vehicle number plate in India

Consider the typical vehicle number plate in India

Consider the typical vehicle number plate in India

KL 07 CP 7235

* the first two letters denote state

Consider the typical vehicle number plate in India

- * the first two letters denote state
- st the following two-digit number stands for district number

Consider the typical vehicle number plate in India

- * the first two letters denote state
- st the following two-digit number stands for district number
- * the following two-letter is RTO series

Consider the typical vehicle number plate in India

- * the first two letters denote state
- st the following two-digit number stands for district number
- * the following two-letter is RTO series
- st the last four digits is the vehicle number ranging from 0000 to 9999

Consider the typical vehicle number plate in India

KL 07 CP 7235

- * the first two letters denote state
- st the following two-digit number stands for district number
- the following two-letter is RTO series
- * the last four digits is the vehicle number ranging from 0000 to 9999

Question

How many vehicles are there?

» Tuples with Restrictions (Combine Sum and Product Rule)

Ouestion

Ouestion

How many integer numbers are there between 0 and 9999 that have exactly one 5 digit?

* Numbers between 0 and 9999 are sequences of digits of length 4

Ouestion

- st Numbers between 0 and 9999 are sequences of digits of length 4
- $\ast\,$ Three digital numbers correspond to sequences starting with 0

Ouestion

- st Numbers between 0 and 9999 are sequences of digits of length 4
- * Three digital numbers correspond to sequences starting with 0
- * We can place the unique 5 at any of four positions

Ouestion

- st Numbers between 0 and 9999 are sequences of digits of length 4
- st Three digital numbers correspond to sequences starting with 0
- * We can place the unique 5 at any of four positions
- st This gives us 4 cases; if we compute the number of sequences in all four cases, we can get the answer by the rule of sum

Ouestion

- * Numbers between 0 and 9999 are sequences of digits of length 4
- * Three digital numbers correspond to sequences starting with 0
- * We can place the unique 5 at any of four positions
- st This gives us 4 cases; if we compute the number of sequences in all four cases, we can get the answer by the rule of sum
- st If we fix 5 in one place, then there are 5 imes5 imes5=125 sequences

Question

- * Numbers between 0 and 9999 are sequences of digits of length 4
- * Three digital numbers correspond to sequences starting with 0
- * We can place the unique 5 at any of four positions
- st This gives us 4 cases; if we compute the number of sequences in all four cases, we can get the answer by the rule of sum
- st If we fix 5 in one place, then there are 5 imes5 imes5=125 sequences
- * There are 4 ways to arrange 5 among 4 places

Question

- * Numbers between 0 and 9999 are sequences of digits of length 4
- * Three digital numbers correspond to sequences starting with 0
- * We can place the unique 5 at any of four positions
- st This gives us 4 cases; if we compute the number of sequences in all four cases, we can get the answer by the rule of sum
- st If we fix 5 in one place, then there are 5 imes 5 imes 5 = 125 sequences
- * There are 4 ways to arrange 5 among 4 places
- $\ast\,$ Hence, there are $4\times125=500$ four digit numbers below 10,000 with exactly one 5

Definition

Tuples of length k without repetitions are called k—permutations

Definition

Tuples of length k without repetitions are called k—permutations

Question

Definition

Tuples of length k without repetitions are called k—permutations

Ouestion

Suppose we have a set of n symbols. How many different sequences of length k we can form out of these symbols if we are not allowed to use the same symbol twice?

Definition

Tuples of length k without repetitions are called k—permutations

Question

Suppose we have a set of n symbols. How many different sequences of length k we can form out of these symbols if we are not allowed to use the same symbol twice?

st Observe that if n < k then there are no k-permutations: there are simply not enough different letters

Definition

Tuples of length k without repetitions are called k—permutations

Ouestion

Suppose we have a set of n symbols. How many different sequences of length k we can form out of these symbols if we are not allowed to use the same symbol twice?

- * Observe that if n < k then there are no k—permutations: there are simply not enough different letters
- * So it is enough to solve the problem for the case $k \leq n$

Definition

Tuples of length k without repetitions are called k—permutations

Ouestion

Suppose we have a set of n symbols. How many different sequences of length k we can form out of these symbols if we are not allowed to use the same symbol twice?

- * Observe that if n < k then there are no k-permutations: there are simply not enough different letters
- * So it is enough to solve the problem for the case $k \leq n$

Definition

Tuples of length k without repetitions are called k—permutations

Ouestion

Suppose we have a set of n symbols. How many different sequences of length k we can form out of these symbols if we are not allowed to use the same symbol twice?

- * Observe that if n < k then there are no k-permutations: there are simply not enough different letters
- * So it is enough to solve the problem for the case $k \leq n$

* Hence there are

$$n \times (n-k) \times \cdots (n-k+1)$$

k-permutations, which is n!/(n-k)!

» Permutation Examples

» Permutation Examples

Question

In how many ways we can arrange n different books in n different bins on shelf?

» Permutation Examples

Question

In how many ways we can arrange n different books in n different bins on shelf?

Answer

Hint: Use previous result with k = n.