Assignment5_Hierarchical Clustering

Ram

11/29/2021

Setting up working directory

```
setwd("C:/Users/ramne/Desktop/ML Assignment/Hierarchical Clustering")
set.seed(123)
```

Loading required libraries.

```
library(cluster)
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
library(dendextend)
##
## -----
## Welcome to dendextend version 1.15.2
## Type citation('dendextend') for how to cite the package.
## Type browseVignettes(package = 'dendextend') for the package vignette.
## The github page is: https://github.com/talgalili/dendextend/
## Suggestions and bug-reports can be submitted at:
https://github.com/talgalili/dendextend/issues
## You may ask questions at stackoverflow, use the r and dendextend tags:
    https://stackoverflow.com/questions/tagged/dendextend
##
##
## To suppress this message use:
suppressPackageStartupMessages(library(dendextend))
## -----
##
## Attaching package: 'dendextend'
## The following object is masked from 'package:stats':
##
##
      cutree
library(knitr)
library(factoextra)
```

```
## Welcome! Want to learn more? See two factoextra-related books at
https://goo.gl/ve3WBa
```

Data Importing cereals dataset

```
library(readr)
cereals<-read.csv("Cereals.csv")
DataFrame <- data.frame(cereals[,4:16])</pre>
```

Data Pre-Processing

To remove any missing value that might be present in the data.

```
OmitMissing <- na.omit(DataFrame)</pre>
```

Data Normalization & Data Scaling:

Normalizing the Data using Scale function.

```
Normalise <- scale(OmitMissing)
```

Using the euclidean distance to measure the distance:

Computing the dissimilarity matrix values by using Dist and the method is Euclidean.

```
d <- dist(Normalise, method = "euclidean")</pre>
```

Perform Hierarchical Clustering using complete linkage.

```
HC <- hclust(d, method = "complete")
plot(HC)</pre>
```

Cluster Dendrogram

d hclust (*, "complete")

Plotting the

dendogram.

```
round(HC$height, 3)
##
    [1]
         0.143
                0.196
                        0.575
                               0.698
                                      0.828
                                              0.904
                                                     1.003
                                                            1.004
                                                                    1.201
                                                                           1.203
## [11]
         1.254
                1.378
                        1.408
                               1.421
                                      1.454
                                              1.463
                                                     1.474
                                                            1.517
                                                                    1.608
                                                                           1.611
                               1.687
## [21]
         1.616
                1.625
                        1.650
                                      1.692
                                              1.720
                                                     1.730
                                                            1.795
                                                                    1.839
                                                                           1.897
## [31]
         1.919
                1.982
                        2.015
                               2.046
                                      2.203
                                              2.224
                                                     2.339
                                                            2.381
                                                                    2.394
                                                                           2.522
## [41]
                        2.579
                2.574
                               2.668
                                      2.682
                                                     2.776
                                                            2.787
                                                                    3.229
                                                                           3.236
         2.563
                                              2.734
## [51]
         3.385
                                                            4.005
                3.451
                        3.510
                               3.535
                                       3.717
                                              3.866
                                                     3.957
                                                                    4.031
                                                                           4.168
                4.779
                        4.839
## [61]
         4.456
                               5.342
                                      5.488
                                              5.920
                                                     6.169
                                                            6.669
                                                                    6.731
                                                                           7.650
## [71]
         7.964
                9.979 10.984
```

Determining Optimal Clusters:

Highliting the clusters directly in dendogram

```
plot(HC)
rect.hclust(HC,
    k = 4, # k is used to specify the number of clusters
    border = "Blue"
)
```

Cluster Dendrogram

d hclust (*, "complete")

We can also use agnes() function to perform clustering.

Performing clustering using agnes() with single, complete, average and ward.

```
HCsingle <- agnes(Normalise, method = "single")
HCcomplete <- agnes(Normalise, method = "complete")
HCaverage <- agnes(Normalise, method = "average")
HCward <- agnes(Normalise, method = "ward")</pre>
```

Now we will compare the agglomerative coefficients for Single, complete, average and ward.

```
print(HCsingle$ac)
## [1] 0.6067859
print(HCcomplete$ac)
## [1] 0.8353712
print(HCaverage$ac)
## [1] 0.7766075
print(HCward$ac)
## [1] 0.9046042
```

The results say that the wards method is the best with the value of 0.904. Plotting the agnes using ward method and Cutting the Dendrogram. We will take k = 4 by observing the distance.

```
pltree(HCward, cex = 0.6, hang = -1, main = "Dendrogram of agnes-Ward")
```

Dendrogram of agnes-Ward

Normalise agnes (*, "ward")

Hierarchical clustering using ward method.

```
HC1 <- hclust(d, method = "ward.D2" )
subgrp <- cutree(HC1, k = 4)
table(subgrp)
## subgrp
## 1 2 3 4
## 3 20 21 30
dataframe <- as.data.frame(cbind(Normalise, subgrp))</pre>
```

To visualiZe the results in scatter plot.

```
fviz_cluster(list(data = Normalise, cluster = subgrp))
```


To check the structure of the clusters and on their stability.

We will partition the data and apply one part to the other part

```
Datapart1 <- OmitMissing[1:50,]
Datapart2 <- OmitMissing[51:74,]</pre>
```

Performing Hierarichal Clustering using agnes() with single, complete, average and ward with partitioned data, plotting dendrogram and then cutting the dendrogram by taking k = 4.

Plot dendogram for the partitioned data.

```
pltree(Award, cex = 0.6, hang = -1, main = "Dendogram of Agnes-Ward")
rect.hclust(Award, k = 4, border = 2:5)
```

Dendogram of Agnes-Ward

scale(Datapart1) agnes (*, "ward")

Using Cutree to divide into groups cluster = 4.

```
c <- cutree(Award, k = 4)
print(c)
                       9 10 11 12 13 14 15 16 17 18 19 20 22 23 24 25 26 27
##
   1 2
28
##
                 3
                    2
                       3
                          4
                             3
                                4
                                   3
                                     2
                                        3
                                           4
                                             4
                                                 3
                                                    3
                                                       2
                                                         4
                                                            2
   1
      2
               3
2
## 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
  2 3 3 3 4 4 2 3 3 3 4 4 4 2 3 4 2 2 2 3 3 2 4
```

Calculating centers to assess the consistency of data.

```
Assess <- as.data.frame(cbind(Datapart1,c))</pre>
Assess[Assess$c==1,]
     calories protein fat sodium fiber carbo sugars potass vitamins shelf
##
weight
## 1
            70
                          1
                                130
                                        10
                                                       6
                                                             280
                                                                        25
                                                                               3
1
            70
                                260
                                        9
                                                       5
                                                             320
                                                                        25
                                                                               3
## 3
                      4
                          1
                                               7
1
## 4
            50
                      4
                          0
                                140
                                        14
                                               8
                                                       0
                                                             330
                                                                        25
                                                                               3
1
##
     cups
             rating c
## 1 0.33 68.40297 1
```

```
## 3 0.33 59.42551 1
## 4 0.50 93.70491 1
c1 <- colMeans(Assess[Assess$c==1,])</pre>
Assess[Assess$c==2,]
##
      calories protein fat sodium fiber carbo sugars potass vitamins shelf
weight
## 2
           120
                      3
                          5
                                15
                                      2.0
                                            8.0
                                                     8
                                                           135
                                                                      0
                                                                            3
1.00
## 8
           130
                      3
                          2
                               210
                                      2.0 18.0
                                                     8
                                                           100
                                                                     25
                                                                            3
1.33
                          2
## 14
           110
                      3
                               140
                                      2.0 13.0
                                                     7
                                                           105
                                                                     25
                                                                            3
1.00
                          3
## 20
                      3
                                     4.0 10.0
                                                     7
                                                           160
                                                                     25
                                                                            3
           110
                               140
1.00
## 23
                      2
                          1
                                                           120
                                                                     25
           100
                               140
                                      2.0 11.0
                                                    10
                                                                             3
1.00
                      3
                          2
                                      5.0 12.0
                                                           200
                                                                            3
## 28
           120
                               160
                                                    10
                                                                     25
1.25
## 29
           120
                      3
                          0
                               240
                                      5.0 14.0
                                                    12
                                                           190
                                                                     25
                                                                            3
1.33
## 35
           120
                      3
                          3
                                75
                                      3.0 13.0
                                                     4
                                                           100
                                                                     25
                                                                             3
1.00
## 42
                          2
                                                           95
                                                                     25
                                                                            2
           100
                      4
                               150
                                      2.0 12.0
                                                     6
1.00
                          3
## 45
           150
                      4
                                95
                                      3.0 16.0
                                                    11
                                                           170
                                                                     25
                                                                            3
1.00
## 46
           150
                      4
                          3
                               150
                                      3.0 16.0
                                                    11
                                                           170
                                                                     25
                                                                            3
1.00
                          2
## 47
                      3
                               150
                                      3.0 17.0
                                                    13
                                                           160
                                                                     25
                                                                            3
           160
1.50
                          2
## 50
                      3
                               220
                                      3.0 21.0
                                                     7
                                                                     25
                                                                            3
           140
                                                           130
1.33
## 52
           130
                      3
                          2
                               170
                                      1.5 13.5
                                                    10
                                                           120
                                                                     25
                                                                            3
1.25
##
             rating c
      cups
## 2 1.00 33.98368 2
## 8 0.75 37.03856 2
## 14 0.50 40.40021 2
## 20 0.50 40.44877 2
## 23 0.75 36.17620 2
## 28 0.67 40.91705 2
## 29 0.67 41.01549 2
## 35 0.33 45.81172 2
## 42 0.67 45.32807 2
## 45 1.00 37.13686 2
## 46 1.00 34.13976 2
## 47 0.67 30.31335 2
```

```
## 50 0.67 40.69232 2
## 52 0.50 30.45084 2
c2 <- colMeans(Assess[Assess$c==2,])</pre>
Assess[Assess$c==3,]
##
      calories protein fat sodium fiber carbo sugars potass vitamins shelf
weight
## 6
            110
                      2
                           2
                                180
                                       1.5 10.5
                                                      10
                                                             70
                                                                       25
                                                                               1
1
## 7
            110
                      2
                           0
                                125
                                           11.0
                                                      14
                                                             30
                                                                       25
                                                                               2
                                       1.0
1
## 9
            90
                      2
                           1
                                200
                                       4.0
                                            15.0
                                                       6
                                                            125
                                                                       25
                                                                               1
1
                           2
                                                                               2
## 11
                      1
                                220
                                            12.0
                                                      12
                                                             35
                                                                       25
            120
                                      0.0
1
## 13
                           3
                                                       9
                                                             45
                                                                       25
                                                                               2
            120
                      1
                                210
                                       0.0
                                            13.0
1
                                180
                                            12.0
                                                      13
                                                                       25
                                                                               2
## 15
            110
                      1
                           1
                                       0.0
                                                             55
1
## 18
            110
                      1
                           0
                                 90
                                       1.0
                                            13.0
                                                      12
                                                             20
                                                                       25
                                                                               2
1
## 19
            110
                      1
                           1
                                180
                                       0.0
                                            12.0
                                                      13
                                                             65
                                                                       25
                                                                               2
1
                      2
                                                                       25
                                                                               2
## 25
            110
                           1
                                125
                                       1.0
                                            11.0
                                                      13
                                                             30
1
## 26
            110
                      1
                           0
                                200
                                       1.0
                                            14.0
                                                      11
                                                             25
                                                                       25
                                                                               1
1
## 30
                                                                               2
            110
                      1
                           1
                                135
                                      0.0
                                            13.0
                                                      12
                                                             25
                                                                       25
1
                      2
                           0
## 31
            100
                                 45
                                       0.0
                                            11.0
                                                      15
                                                             40
                                                                       25
                                                                               1
1
                                                                               2
## 32
                      1
                           1
                                280
                                            15.0
                                                       9
                                                             45
                                                                       25
            110
                                      0.0
1
## 36
            120
                      1
                           2
                                220
                                       1.0
                                            12.0
                                                      11
                                                             45
                                                                       25
                                                                               2
1
## 37
            110
                      3
                           1
                                250
                                       1.5
                                            11.5
                                                      10
                                                             90
                                                                       25
                                                                               1
1
## 38
            110
                      1
                           0
                                180
                                       0.0
                                            14.0
                                                      11
                                                             35
                                                                       25
                                                                               1
1
## 43
                      2
                           1
                                180
                                                      12
                                                                       25
                                                                               2
            110
                                       0.0
                                            12.0
                                                             55
1
## 48
            100
                      2
                           1
                                220
                                       2.0 15.0
                                                       6
                                                             90
                                                                       25
                                                                               1
1
## 49
            120
                      2
                           1
                                190
                                       0.0 15.0
                                                       9
                                                             40
                                                                       25
                                                                               2
1
##
      cups
             rating c
      0.75 29.50954 3
      1.00 33.17409 3
## 7
## 9 0.67 49.12025 3
```

```
## 11 0.75 18.04285 3
## 13 0.75 19.82357 3
## 15 1.00 22.73645 3
## 18 1.00 35.78279 3
## 19 1.00 22.39651 3
## 25 1.00 32.20758 3
## 26 0.75 31.43597 3
## 30 0.75 28.02576 3
## 31 0.88 35.25244 3
## 32 0.75 23.80404 3
## 36 1.00 21.87129 3
## 37 0.75 31.07222 3
## 38 1.33 28.74241 3
## 43 1.00 26.73451 3
## 48 1.00 40.10596 3
## 49 0.67 29.92429 3
c3 <- colMeans(Assess[Assess$c==3,])</pre>
Assess[Assess$c==4,]
      calories protein fat sodium fiber carbo sugars potass vitamins shelf
weight
## 10
             90
                      3
                           0
                                210
                                         5
                                              13
                                                       5
                                                            190
                                                                       25
                                                                               3
1.0
## 12
                           2
                                290
                                         2
                                                            105
                                                                       25
                                                                               1
            110
                      6
                                              17
                                                       1
1.0
## 16
           110
                      2
                           0
                                280
                                         0
                                              22
                                                       3
                                                             25
                                                                       25
                                                                               1
1.0
                                                       2
                                                                               1
## 17
            100
                      2
                           0
                                290
                                         1
                                              21
                                                             35
                                                                       25
1.0
                      2
                           0
                                                       3
## 22
                                220
                                         1
                                              21
                                                             30
                                                                       25
                                                                               3
            110
1.0
                      2
                                                       5
                                                                               3
## 24
                           0
                                190
                                         1
                                              18
                                                                       25
            100
                                                             80
1.0
## 27
            100
                      3
                           0
                                  0
                                         3
                                              14
                                                       7
                                                            100
                                                                       25
                                                                               2
1.0
## 33
            100
                      3
                           1
                                140
                                         3
                                              15
                                                       5
                                                             85
                                                                       25
                                                                               3
1.0
## 34
            110
                      3
                           0
                                170
                                         3
                                              17
                                                       3
                                                             90
                                                                       25
                                                                               3
1.0
## 39
                      2
                           1
                                                                               3
            110
                                170
                                         1
                                              17
                                                       6
                                                             60
                                                                      100
1.0
                                                       9
                                                             95
## 40
            140
                      3
                           1
                                170
                                         2
                                              20
                                                                      100
                                                                               3
1.3
## 41
                      2
                           1
                                260
                                         0
                                              21
                                                       3
                                                             40
                                                                       25
                                                                               2
            110
1.0
                           1
                                         0
                                                       3
                                                                               2
## 44
            100
                      4
                                  0
                                              16
                                                             95
                                                                       25
1.0
                                         3
                                                       2
                                                                       25
                                                                               3
## 51
             90
                      3
                           0
                                              18
                                                             90
                                170
1.0
```

```
cups rating c
## 10 0.67 53.31381 4
## 12 1.25 50.76500 4
## 16 1.00 41.44502 4
## 17 1.00 45.86332 4
## 22 1.00 46.89564 4
## 24 0.75 44.33086 4
## 27 0.80 58.34514 4
## 33 0.88 52.07690 4
## 34 0.25 53.37101 4
## 39 1.00 36.52368 4
## 40 0.75 36.47151 4
## 41 1.50 39.24111 4
## 44 1.00 54.85092 4
## 51 1.00 59.64284 4
c4 <- colMeans(Assess[Assess$c==4,])</pre>
```

Binding the 4 centers.

```
centers <- rbind(c1,c2,c3,c4)</pre>
centers
##
       calories protein
                               fat
                                     sodium
                                                 fiber
                                                           carbo
                                                                    sugars
## c1 63.33333 4.000000 0.6666667 176.6667 11.0000000 6.666667
                                                                  3.666667
## c2 125.71429 3.142857 2.2857143 146.7857 2.8928571 13.892857 8.857143
## c3 110.00000 1.526316 1.0000000 179.4737 0.7368421 12.736842 10.947368
## c4 105.71429 2.857143 0.5000000 182.8571 1.7857143 17.857143 4.071429
##
         potass vitamins
                            shelf
                                    weight
                                                cups
                                                       rating c
## c1 310.00000 25.00000 3.000000 1.000000 0.3866667 73.84446 1
## c2 139.64286 23.21429 2.928571 1.142143 0.6914286 38.13235 2
## c3 50.78947 25.00000 1.631579 1.000000 0.8842105 29.46119 3
## c4 80.00000 35.71429 2.357143 1.021429 0.9178571 48.08120 4
```

Calculating Distance and comparing the record in B with the closest centroid in A

```
d1 <- as.data.frame(rbind(centers[,-14],Datapart2))</pre>
d2 <- get_dist(d1)</pre>
matrix <- as.matrix(d2)</pre>
df1 <-
data.frame(data=seq(1,nrow(Datapart2),1),clusters=rep(0,nrow(Datapart2)))
for(i in 1:nrow(Datapart2)) {
  df1[i,2] <- which.min(matrix[i+4, 1:4])</pre>
}
df1
##
      data clusters
## 1
          1
                    1
          2
## 2
                    4
## 3
```

```
## 4
                    2
                    2
## 5
          5
## 6
          6
                    1
## 7
          7
                    2
## 8
          8
                    2
## 9
          9
                    3
                    3
## 10
         10
                    2
## 11
         11
## 12
                    2
         12
## 13
         13
                    2
## 14
                    3
         14
## 15
                    4
         15
## 16
         16
                    2
## 17
         17
                    3
## 18
         18
                    2
## 19
                    4
         19
## 20
         20
                    4
## 21
         21
                    3
## 22
         22
                    4
## 23
         23
                    4
## 24
         24
                    3
cbind(dataframe$subgrp[51:74], df1$clusters)
##
          [,1] [,2]
    [1,]
                   1
##
             2
                   4
##
    [2,]
             4
##
   [3,]
             4
                   3
                  2
##
   [4,]
             4
                   2
##
   [5,]
             2
             2
                   1
##
   [6,]
             2
                   2
##
   [7,]
                   2
##
   [8,]
             4
                   3
##
             4
   [9,]
## [10,]
             4
                   3
                   2
             4
## [11,]
                   2
## [12,]
             4
                   2
## [13,]
             4
                   3
## [14,]
             3
## [15,]
                   4
             4
             4
                   2
## [16,]
                   3
## [17,]
             4
                   2
## [18,]
             2
## [19,]
             4
                   4
## [20,]
             4
                   4
## [21,]
             3
                   3
## [22,]
                   4
             4
## [23,]
                   4
## [24,]
```

```
table(dataframe$subgrp[51:74] == df1$clusters)
##
## FALSE TRUE
## 12 12
```

From above Results, 12 are True and 12 are False, so we can say the model may be stable.

Selecting the cluster that is best cereal for breakfast, which will have high protein, fiber and low in sugar, sodium.

Choosing the Cluster of Healthy Cereals.

```
newdata <- cereals
newdata_omit <- na.omit(newdata)</pre>
Clust <- cbind(newdata omit, subgrp)</pre>
Clust[Clust$subgrp==1,]
##
                            name mfr type calories protein fat sodium fiber
carbo
                                         C
                                                 70
## 1
                      100% Bran
                                                               1
                                                                     130
                                                                            10
5
## 3
                       All-Bran
                                   Κ
                                         C
                                                 70
                                                               1
                                                                     260
                                                                             9
7
## 4 All-Bran_with_Extra_Fiber
                                         C
                                                           4
                                   Κ
                                                 50
                                                                     140
                                                                            14
8
     sugars potass vitamins shelf weight cups
##
                                                   rating subgrp
## 1
          6
                280
                           25
                                  3
                                          1 0.33 68.40297
                           25
                                  3
## 3
          5
                320
                                          1 0.33 59.42551
                                                                 1
                           25
                                  3
                                          1 0.50 93.70491
## 4
          0
                330
                                                                 1
Clust[Clust$subgrp==2,]
                                           name mfr type calories protein fat
##
sodium
                             100%_Natural_Bran
                                                        C
                                                               120
                                                                          3
                                                                               5
## 2
                                                  Q
15
## 8
                                        Basic 4
                                                  G
                                                        C
                                                               130
                                                                          3
                                                                               2
210
## 14
                                       Clusters
                                                  G
                                                        C
                                                                110
                                                                          3
                                                                               2
140
                            Cracklin'_Oat_Bran
                                                        C
                                                                               3
## 20
                                                                110
                                                                          3
140
                       Crispy Wheat & Raisins
## 23
                                                  G
                                                        C
                                                                100
                                                                          2
                                                                               1
140
## 28 Fruit_&_Fibre_Dates,_Walnuts,_and_Oats
                                                        C
                                                               120
                                                                          3
                                                                               2
160
                                 Fruitful Bran
## 29
                                                  K
                                                        C
                                                               120
                                                                          3
                                                                               0
240
                            Great Grains Pecan
                                                  Ρ
                                                        C
                                                                120
## 35
                                                                          3
                                                                               3
75
```

## 40	Just_Right_Fruit_&_Nut							С		140	3	1
170 ## 42					fe	Q	С		100	4	2	
150		- .				_						
## 45 95		Muesli	i_Raisin	s,_Date	ds	R	С		150	4	3	
## 46	M	luesli_	_Raisins	,_Peach	ns	R	С		150	4	3	
150						.,	_		1.50	_		
## 47 150			М	ueslix_	nd	K	С		160	3	2	
## 50			Nutri-	Grain_A	Almond-Rais	in	K	С		140	3	2
220			_				_					
## 52 170			0	atmea⊥_	_Raisin_Cri	sp	G	С		130	3	2
## 53			Ро	st_Nat.	_Raisin_Br	an	Р	С		120	3	1
200												
## 57 135				Quaker	_Oat_Squar	es	Q	С		100	4	1
## 59					Raisin_Br	an	K	С		120	3	1
210												
## 60 140				Rai	isin_Nut_Br	an	G	С		100	3	2
## 71				Tota]	l_Raisin_Br	an	G	С		140	3	1
190												
			_	-	vitamins s			_	-	_	subg	•
## 2	2.0	8.0	8	135	0	3				33.98368		2
## 8	2.0	18.0	8	100	25	3				37.03856		2
## 14	2.0	13.0	7	105	25	3				40.40021		2
## 20	4.0	10.0	7	160	25	3				40.44877		2
## 23	2.0	11.0	10	120	25	3				36.17620		2
## 28	5.0	12.0	10	200	25	3				40.91705		2
## 29	5.0	14.0	12	190	25	3				41.01549		2
## 35	3.0	13.0	4	100	25	3				45.81172		2
## 40	2.0	20.0	9	95	100	3				36.47151		2
## 42	2.0	12.0	6	95	25	2				45.32807		2
## 45	3.0	16.0	11	170	25	3				37.13686		2
## 46	3.0	16.0	11	170	25	3				34.13976		2
## 47	3.0	17.0	13	160	25	3				30.31335		2
## 50	3.0	21.0	7	130	25	3				40.69232		2
## 52	1.5	13.5	10	120	25	3				30.45084		2
## 53	6.0	11.0	14	260	25	3				37.84059		2
## 57	2.0	14.0	6	110	25	3				49.51187		2
## 59	5.0	14.0	12	240	25	2				39.25920		2
## 60	2.5	10.5	8	140	25	3				39.70340		2
## 71	4.0	15.0	14	230	100	3		1.50	1.00	28.59278		2
Clust[Clust\$	subgr	o== 3 ,]									

name mfr type calories protein fat sodium fiber ## carbo

## 6	Apple_Cinnamon_Cheeri	os	G	С	110	2	2	180	1.5	
10.5 ## 7	Apple_Jacks			С	110	2	0	125	1.0	
11.0			K				_			
## 11 12.0	Cap'n'Crun	ch	Q	С	120	1	2	220	0.0	
## 13	Cinnamon_Toast_Crun	ch	G	С	120	1	3	210	0.0	
13.0										
## 15 12.0	Cocoa_Puf	fs	G	С	110	1	1	180	0.0	
## 18	Corn_Po	ps	K	С	110	1	0	90	1.0	
13.0	_									
## 19	Count_Chocu	la	G	С	110	1	1	180	0.0	
12.0 ## 25	Froot_Loo	ns	K	С	110	2	1	125	1.0	
11.0	1.000_200	75	.`		110	_	-		2.0	
## 26	Frosted_Flak	es	K	С	110	1	0	200	1.0	
14.0 ## 30	Fruity Pebbl	A S	Р	С	110	1	1	135	0.0	
13.0	11 d1ty_1 cbb1	CS	•		110	_	_	133	0.0	
## 31	Golden_Cri	sp	Р	C	100	2	0	45	0.0	
11.0 ## 32	Golden Graha	mc	G	С	110	1	1	280	0.0	
15.0	doruen_drana	IIIS	u	C	110			200	0.0	
## 36	Honey_Graham_O	hs	Q	С	120	1	2	220	1.0	
12.0	Honov Nut Chooni	0.5	_	_	110	2	1	250	1 5	
## 37 11.5	Honey_Nut_Cheeri	os	G	С	110	3	1	250	1.5	
## 38	Honey-co	mb	Р	С	110	1	0	180	0.0	
14.0	Leading Chair		_	6	110	2		100	0.0	
## 43 12.0	Lucky_Char	ms	G	С	110	2	1	180	0.0	
## 48	Multi-Grain_Cheeri	os	G	С	100	2	1	220	2.0	
15.0										
## 49 15.0	Nut&Honey_Crun	ch	K	С	120	2	1	190	0.0	
## 67	Smac	ks	K	С	110	2	1	70	1.0	
9.0										
## 74	Tr	ix	G	С	110	1	1	140	0.0	
13.0 ## 77	Wheaties Honey Go	ld	G	С	110	2	1	200	1.0	
16.0					-					
##	sugars potass vitamin			_	•	_	• .			
## 6 ## 7	10 70 2 14 30 2		1 2		1 0.75 29.50 1 1.00 33.13		3			
## <i>/</i> ## 11	14 36 2		2		1 0.75 18.04		3			
## 13	9 45 2		2		1 0.75 19.82		3			
## 15	13 55 2		2		1 1.00 22.7		3			
## 18		5	2		1 1.00 35.78		3			
## 19		5	2		1 1.00 22.39		3			

## 25	13 30 25	2	1 1.0	0 32.207	58	3		
## 26	11 25 25	1		5 31.4359		3		
## 30	12 25 25	2	1 0.7	5 28.025	76	3		
## 31	15 40 25	1	1 0.8	8 35.252	14	3		
## 32	9 45 25	2	1 0.7	5 23.8040	3 4	3		
## 36	11 45 25	2	1 1.0	0 21.871	29	3		
## 37	10 90 25	1	1 0.7	5 31.072	22	3		
## 38	11 35 25	1	1 1.3	3 28.742	41	3		
## 43	12 55 25	2	1 1.0	0 26.734!	51	3		
## 48	6 90 25	1	1 1.0	0 40.1059	96	3		
## 49	9 40 25	2	1 0.6	7 29.9242	29	3		
## 67	15 40 25	2	1 0.7	5 31.2300	2 5	3		
## 74	12 25 25	2	1 1.0	0 27.753	30	3		
## 77	8 60 25	1	1 0.7	5 36.187	56	3		
Clust	[Clust\$subgrp==4,]							
##	nam	e mfr	type ca	lories p	rotein	fat	sodium	fiber
carbo	Train.		сурс са	то, тез р.	OCCIN	·uc	Jourum	1 1001
## 9	Bran_Che	x R	С	90	2	1	200	4
15	5. d.ie.i.e	, ,	-	50	_	_		•
## 10	Bran_Flake	s P	С	90	3	0	210	5
13			•			Ū		_
## 12	Cheerio	s G	С	110	6	2	290	2
17	550. 25		•			_		_
## 16	Corn_Che	x R	С	110	2	0	280	0
22								
## 17	Corn_Flake	s K	С	100	2	0	290	1
21								
## 22	Crispi	x K	С	110	2	0	220	1
21	•							
## 24	Double_Che	x R	С	100	2	0	190	1
18	_							
## 27	Frosted Mini-Wheat	s K	С	100	3	0	0	3
14	_							
## 33	Grape_Nuts_Flake	s P	С	100	3	1	140	3
15	• – –							
## 34	Grape-Nut	s P	С	110	3	0	170	3
17	·							
## 39	Just_Right_CrunchyNugget	s K	С	110	2	1	170	1
17	_ 0 _ 7_ 00							
## 41	Ki	x G	С	110	2	1	260	0
21								
## 44	Маур	o A	Н	100	4	1	0	0
16	, .							
## 51	Nutrai anain Ubaa	+ 1/	_	00	2	0	170	2

K

K

Q

C

C

90

100

50

3

3

1

170

320

3

1

0

Nutri-grain_Wheat

Product_19

Puffed_Rice

51

54

55

18

20

4.5													
13 ##	E 6			Driftod I	Jboat	0	С	50	2	0	0	1	
10	50			Puffed_I	Mieat	Q	C	שכ	2	О	0		
##	61	Raisin_Squares					С	90	2	0	0	2	
15	01	Naisin_Squares					C	50		U	Ū		
##	62	Rice_Chex					С	110	1	0	240	0	
23	-								_	·			
##	63			Rice_Kri	spies	K	C	110	2	0	290	0	
22													
##	64		9	Shredded_I	Wheat	N	C	80	2	0	0	3	
16					_								
##	65	SI	nredded_	_Wheat_'n	'Bran	N	С	90	3	0	0	4	
19	~	Chas	مادا ما اللم		-i	NI.	_	00	2	0	0	2	
## 20	99	Shred	aded_wne	eat_spoon	_512e	N	С	90	3	0	0	3	
##	68			Snec	ial_K	K	С	110	6	0	230	1	
16	00			эрсс	TUT_K	IX.	•	110	Ü	Ü	230	_	
##	69	Sti	rawberry	/_Fruit_W	heats	N	С	90	2	0	15	3	
15			•	'									
##	70		Tota	al_Corn_F	lakes	G	C	110	2	1	200	0	
21						_							
##	72		al_Whole_0	G	С	100	3	1	200	3			
16 ##	72			Tn	iples	G	С	110	2	1	250	0	
21	/3			11.	ibies	G	C	110	2	1	250	Ø	
##	75			Wheat	Chex	R	С	100	3	1	230	3	
17									_	_		_	
##	76			Whe	aties	G	С	100	3	1	200	3	
17													
##		_	-	vitamins		_	-	_	subgr	-			
##		6	125	25	1			49.12025		4			
##		5	190	25	3			53.31381		4			
##		1	105	25	1			50.76500		4			
## ##		3 2	25 35	25 25	1 1			41.44502 45.86332		4			
##		3	30	25	3			46.89564		4			
##		5	80	25	3			44.33086		4			
##		7	100	25	2			58.34514		4			
##		5	85	25	3			52.07690		4			
##		3	90	25	3			53.37101		4			
##	39	6	60	100	3			36.52368		4			
##		3	40	25	2			39.24111		4			
##		3	95	25	2			54.85092		4			
##		2	90	25	3			59.64284		4			
##		3	45	100	3			41.50354		4			
##		0	15	0	3			60.75611		4			
##		0	50	0	3			63.00565		4			
## ##		6 2	110 30	25 25	3 1			55.33314 41.99893		4 4			
##		3	35	25 25	1			40.56016		4			
ит		,	,,,	23		1.00	1.00	.0.50010		Т			

```
## 64
           0
                  95
                                       0.83 1.00 68.23588
                                                                  4
                                                                  4
## 65
           0
                 140
                             0
                                        1.00 0.67 74.47295
                                   1
           0
                 120
                             0
                                       1.00 0.67 72.80179
                                                                  4
## 66
## 68
           3
                  55
                            25
                                   1
                                       1.00 1.00 53.13132
                                                                  4
           5
## 69
                  90
                            25
                                   2
                                       1.00 1.00 59.36399
                                                                  4
## 70
           3
                  35
                           100
                                   3
                                        1.00 1.00 38.83975
                                                                  4
           3
                                                                  4
## 72
                 110
                           100
                                   3
                                       1.00 1.00 46.65884
## 73
           3
                            25
                                        1.00 0.75 39.10617
                                                                  4
                  60
## 75
           3
                 115
                            25
                                        1.00 0.67 49.78744
                                                                  4
## 76
           3
                            25
                                        1.00 1.00 51.59219
                                                                  4
                 110
                                   1
```

Calculating mean ratings to determine the best cluster.

```
mean(Clust[Clust$subgrp==1,"rating"])
## [1] 73.84446

mean(Clust[Clust$subgrp==2,"rating"])
## [1] 38.26161

mean(Clust[Clust$subgrp==3,"rating"])
## [1] 28.84825

mean(Clust[Clust$subgrp==4,"rating"])
## [1] 51.43111
```

As we can see that the mean ratings for the subgrp==1 is the highest(73.84), it's the best option to choose cluster 1 and the cereals in the cluster 1 for healthy diet.