Hierarchical Bayesian analysis using Stan - From a binary logit to advanced models of bounded rationality

Alina Ferecatu

Rotterdam School of Management, Erasmus University

> The Dutch Stan Meetup November 27th, 2018

Erasmus RSM Alina Ferecatu 1/15

Overview of models

Hierarchical binary logit example

The data

A choice model of buying decisions given price and promotions: 500 consumers with 10 purchase occasions each

The data

A choice model of buying decisions given price and promotions: 500 consumers with 10 purchase occasions each

•	User_ID *	Observation [‡]	Υ \$	Intercept [‡]	Price	Promotion +
1	1	1	1	1	0.4242656054	0.429378508
2	1	2	0	1	0.8425126909	0.274047020
3	1	3	1	1	0.3764421751	0.512474872
4	1	4	1	1	0.9115300649	0.355274114
5	1	5	1	1	0.2585383623	0.127846915
6	1	6	1	1	0.2032627692	0.294366778
7	1	7	1	1	0.2246137869	0.161435480
8	1	8	1	1	0.9146362843	0.506660538
9	1	9	1	1	0.8902309975	0.377715006
10	1	10	1	1	0.2795407828	0.185361522
11	2	1	0	1	0.5262798222	0.636969226
12	2	2	0	1	0.9985261350	0.641892214
13	2	3	0	1	0.9664521548	0.662417121
14	2	4	0	1	0.4240157611	0.409965415
15	2	5	0	1	0.2575837581	0.383950177
16	2	6	1	1	0.9943112358	0.431254078
17	2	7	0	1	0.1853664671	0.063719698
18	2	8	0	1	0.7580353320	0.305855863
19	2	q	0	1	0.0594366395	0.969301577

Erasmus RSM Alina Ferecatu 3/15

 $\Omega \sim LKJcorr(\nu)$

Hierarchical binary logit example

A choice model of buying decisions given price and promotions:

▶ 500 consumers with 10 purchase occasions each

```
data {
                                                     int<lower=1> nvar; // number of parameters in the logit regression
            y_{iit} \sim \mathcal{B}(p_{iit})
                                                     int<lower=0> N: // number of observations
                                                     int<lower=1> nind; // number of individuals
                                                     int<lower=0,upper=1> y[N];
    logit(p_{iit}) \sim \mathcal{N}(x_{iit}\beta_{ii})
                                                      int<lower=1,upper=nind> ind[N]; // indicator for individuals
                                                     row vector[nvar] x[N];
 \beta_i \sim MultiNormal(z_i\delta, \Sigma)
                                                     parameters {
                                                     vector[nvar] delta;
                                                     vector<lower=0>[nvar] tau:
           \delta \sim \mathcal{N}(\delta_0, \sigma)
                                                     vector[nvar] beta[nind];
                                                     corr matrix[nvar] Omega: // Vbeta - prior correlation
Non-conjugate prior
                                                     model {
                                                     to vector(delta) ~ normal(0, 5);
                                                     to_vector(tau) ~ gamma(2, 0.5);
   \Sigma = diag(\tau) \Omega diag(\tau)
                                                     Omega ~ lki corr(2):
        \tau \sim gamma(a,b)
                                                     for (h in 1:nind)
                                                     beta[h]~multi normal(delta, guad form diag(Omega, tau)):
```

for (n in 1:N)

v[n] ~ bernoulli logit(x[n] * beta[ind[n]]);

Consider a model with a diagonal variance-covariance matrix

- Assume our intercept model: $\beta_i \sim \mathcal{N}(\delta, \tau)$
- We can decompose that into: $\mathcal{N}(\delta, \sigma) \stackrel{d}{=} \delta + \tau \mathcal{N}(0, 1)$
- ► The trick applies to other distributions in the location-scale family
- ► The transformation:
 - 1. declare α_i in the parameters block and β_i in the transformed parameters block
 - 2. draw $\alpha_i \sim \mathcal{N}(0,1) \& \tau \sim gamma(a,b)$
 - 3. compute $\beta_i = \delta + \tau \alpha_i$

Noncentered (Re)Parameterization - the multivariate case

- Assume our intercept model: $\beta_i \sim MultiNormal(\delta, \Sigma)$
 - ▶ If Σ_{kk} is small, then β_{ik} needs to fall into a small range, NUTS needs a small step size
 - ▶ If Σ_{kk} is large, then β_{ik} can fall into a wide range, NUTS needs a large step size/ lots of small steps
- ► The transformation:

Overview

- 1. declare α_i in the parameters block and β_i in the transformed parameters block
- 2. draw $\alpha_i \sim \mathcal{N}(0,1) \& \tau \sim gamma(a,b)$
- 3. compute $\beta_i = \delta + \tau \mathbf{L} \alpha_i \sim \mathcal{N}(\delta, \tau^2 \mathbf{L} \mathbf{L}^T)$
- 4. where $\tau \mathbf{L}$ is the Cholesky factor of $\Sigma = \tau^2 \mathbf{L} \mathbf{L}^T$, and τ is the standard deviation of the errors.

Erasmus RSM Alina Ferecatu 6/15

Noncentered (Re)Parameterization - the implementation

HB logit implementation

```
data {
            y_{iit} \sim \mathcal{B}(p_{iit})
    logit(p_{iit}) \sim \mathcal{N}(x_{iit}\beta_{ii})
                                                     parameters {
                                                     matrix[nvar, nind] alpha; // nvar*H parameter matrix
                                                     row vector[nvar] delta;
          \beta_{i} = \delta + \tau \mathbf{L} \alpha_{i}
                                                     vector<lower=0>[nvar] tau:
                                                     cholesky_factor_corr[nvar] L_Omega;
           \alpha_i \sim \mathcal{N}(0,1)
           \delta \sim \mathcal{N}(\delta_0, \sigma)
                                                     transformed parameters{
                                                     row vector[nvar] beta[nind];
                                                     matrix[nind,nvar] Vbeta_reparametrized;
                                                     Vbeta_reparametrized = (diag_pre_multiply(tau, L_Omega)*alpha)'
Non-conjugate prior
                                                     for (h in 1:nind)
        \tau \sim gamma(a,b)
                                                     beta[h]=delta+Vbeta reparametrized[h];
        \Omega \sim LKJcorr(\nu)
                                                    model {
```

7/15 Erasmus RSM Alina Ferecatu

Choice of prior distribution of the variance components

Overview

Figure 1: Choice of prior for the variance τ

Erasmus RSM Alina Ferecatu 8/15

Choice of the LKJ prior distribution

Overview

Figure 2: Choice of LKJ prior

Traceplots of model parameters

Overview

The noncentered reparametrization helps tremendously

Figure 3: Traceplot of δ parameters (after burnin) under the centered (*left*) vs. the noncentered reparametrization (*right*), using package *bayesplot*

Erasmus RSM Alina Ferecatu 10/15

Summary statistics

Effective sample size and convergence properties

\$summary

Overview

```
        mean
        se_mean
        sd
        2.5%
        97.5%
        n_eff
        Rhat

        delta[1]
        -2.0464282
        0.003151008
        0.1725878
        -2.3917852
        -1.7207339
        3000
        1.001876

        delta[2]
        -1.2073192
        0.004632004
        0.2537053
        -1.6928554
        -0.7322237
        3000
        1.002893

        delta[3]
        0.6915687
        0.004494100
        0.2461520
        0.2134696
        1.1791871
        3000
        1.001500
```


Figure 4: Density plot of δ parameters (after burnin) under the noncentered reparametrization, using package *bayesplot*

Individual level parameters

Overview

Most parameters are within the 95% highest density intervals

Figure 5: True values (black dots) and the 80% and 95% highest density intervals for the intercept, for the first 100 consumers

Figure 6: Number of successes: posterior replications vs. true value

Model checking

Overview

850 900 950 1000 1050 1100 Number of switches

Figure 6: Number of successes: posterior replications vs. true value

Figure 7: Switches between buying/ not buying: posterior replications vs. true value

Compute hit rates and MSEs based on posterior replications

Model comparison

Overview

Likelihood-based measures: Leave-one-out cross-validation

Table 1: Model comparison based on LOO-CV, using package loo

	Variance 1	nodel	Full covar	riance model	NCP model	
	Estimate	SE	Estimate	SE	Estimate	SE
elpd_loo	-1874.3	43.1	-1871.9	43.2	-1871.2	43
p_loo	398.6	12.5	364.4	11.8	363.7	11.8
looic	3748.6	86.2	3743.7	86.4	3742.4	86.5

Figure 8: PSIS diagnostic plot, using package loo

github.com/alinafere/Dutch-Stan-Meetup