Ciclo de Palestras LATEX 2ε Introdução ao LATEX 2ε

Rodrigo Smarzaro smarzaro@ufv.br

UFV

25/03/2014

Conteúdo

- Objetivos
- Editores WYSIWYG
 - Motivação
- $oldsymbol{3}$ Introdução ao LATEX $2_{arepsilon}$
 - Histórico
 - Exemplos
 - O que é necessário para começar?
- 4 Links Úteis

Objetivo da apresentação

- Mostrar quais são os problemas/limitações dos processadores de texto convencionais
- Apresentar o TEX e o LATEX $2_{\mathcal{E}}$ e suas vantagens para documentos acadêmicos
- Mostrar quais os componentes necessários para se configurar um ambiente de trabalho LATFX 2ε

Motivação

Situação hipotética 1

Você está escrevendo sua monografia de 150 páginas cheia de **figuras** e **tabelas**. Após passar um dia inteiro ajustando cada figura e tabela na posição correta você percebe que na primeira página de texto há um erro em um parágrafo que, após corrigido, faz com que todas as figuras e tabelas saiam dos seus lugares planejados.

Situação hipotética 2

Na mesma monografia de 150 páginas seu orientador pediu para que você ajustasse vários trechos, o que causou a inclusão ou exclusão de várias citações no texto. Agora você terá que revisar suas referências e o texto para ter certeza que cada citação está nas referências e cada referência possui ao menos uma citação no texto.

Leis do Word (e outros editores WYSIWG²)

- A probabilidade de problemas no arquivo é diretamente proporcional à importância do documento
- A probabilidade de problemas no arquivo é inversamente proporcional ao tempo que falta para o final do prazo
- A probabilidade de problemas no arquivo é diretamente proporcional ao tempo desde a última vez que o arquivo foi salvo
- A probabilidade de jogar o computador pela janela é diretamente proporcional ao número de vezes em que se tem de arrumar a formatação/paginação do arquivo ¹

Alguém se identificou?

¹Adaptado de http://www.andy-roberts.net/writing/latex/benefits

²What You See Is What You Get

Editores WYSIWYG

- Editores WYSIWYG acabam distraindo o autor na preocupação com a formatação
- Autor deve se preocupar com o texto. Imaginem Shakespeare usando o Word e parando para pensar se o título deve ser tamanho 12, 14, negrito...
- Os algoritmos de tipografia sacrificam a qualidade em benefício da velocidade para ajustar o resultado em tempo real para o usuário. A qualidade final do texto é prejudicada.
- A filosofia WYSIWYG acaba fazendo o autor não estruturar o documento de maneira lógica
- Ex. Como você cria um título de capítulo, seção, subseção no Word?

Breve Histórico

- TEX é um programa tipográfico criado por Donald E. Knuth no final dos anos 70
- Knuth estava escrevendo seus livros (The Art of Computer Programming) e não estava satisfeito com a qualidade tipográfica.
- \bullet Knuth criou um que o satisfizesse na qualidade: \to TeX
- Criada especialmente para máxima qualidade tipográfica das fontes e fórmulas matemáticas
- Desde então Knuth oferece um dólar hexadecimal ($100_{16}=2.56_{10}$) para cada erro encontrado no código do TEX (ou em algum de seus livros)

Breve Histórico

- O TEX tinha muita flexibilidade, mas sua sintaxe ainda era em muito "baixo nível"
- Dessa necessidade de simplificar o uso do TEX surgiu o LATEX
- LATEX é um conjunto de macros que são executadas por cima do TEX
- Criada por Leslie Lamport em 1985
- Sua versão mais recente é a LATEX $2_{\mathcal{E}}$
- A versão 3 do LATEX já está em desenvolvimento

Funcionamento do LATEX 2_{ε} : Tipografia

- Tipografia: *Typos* (forma) + *graphein* (escrita) A arte e o processo de criação na composição de um texto³
- No processo tradicional de publicação:
 - O autor produz o texto
 - Um designer planeja o layout (fontes, colunas, margens)
 - O tipógrafo produz a matriz para impressão do documento baseado nas anotações do designer
- Há uma separação clara entre conteúdo e estilo (layout)
- ullet O LATEX $2_{\mathcal{E}}$ tem o papel do designer
- O T_FX tem o papel do tipógrafo

³http://pt.wikipedia.org/wiki/Tipografia

Funcionamento do \LaTeX $2_{\mathcal{E}}$

- O TEX lê um arquivo de entrada (.tex) e produz um arquivo de saída (.dvi - Device Independent File Format)
- Atualmente se utiliza mais o compilador pdfTeX que produz a saída direto em PDF

Por que usar o LATEX 2_{ε} ?

- Gratuito
- Qualidade visual no documento final
- Estabilidade (Vem sendo usado desde os anos 80)
- Portabilidade (Unix, Linux, Windows, MacOS, DOS,...)
- Controle preciso do documento. Nada de editor com "vontade própria"
- Estabilidade no formato do arquivo (texto puro)
 - Sem problemas entre versões como editores convencionais (Word 6×0 ffice 95×0 ffice 97×0 ffice2000, 2007, 2013 ...)
 - Sem pressão por upgrades
 - Sem vírus
 - Sem erros de arquivos corrompidos/ilegíveis (a não ser por falha de hardware)

Por que usar o LATEX 2_{ε} ?

Excelente para textos longos

- Separação entre conteúdo e estilo
- Facilidade na geração de sumário, bibliografia, índices, ...
- Pode separar facilmente um texto longo em vários arquivos para serem gerenciados mais facilmente
- Flexibilidade: Pacotes para diversas finalidades. O CTAN tem 4669 pacotes (em 24/03/2014)
 - Só para se trabalhar com códigos-fonte de linguagens de programação há 44 pacotes diferentes⁴
- Já falei que é gratuito? 🙂

⁴http://www.ctan.org/topic/listing

Exemplos de documentos gerados com LATeX $2 \varepsilon^{-5}$

⁵http://www.slideshare.net/XEmacs/latex-introduction-for-word-users

Exemplos: Fórmulas matemáticas

Código LATEX $2_{arepsilon}$

 $\displaystyle \frac{1}{x}+\displaystyle \frac{1}{y}}{y-z}$

Resultado LATEX 2ε

$$\frac{1}{x} + \frac{1}{y}$$

$$\frac{y}{y-z}$$

Exemplos: Fórmulas matemáticas 2

Código LATEX 2_{ε}

 $\sum_{k=1}^n k^2 = \frac{1}{2} n (n+1)$

Resultado LATEX 2ε

$$\sum_{k=1}^{n} k^2 = \frac{1}{2} n(n+1)$$

Código LATEX 28

 $\int_0^R \frac{2x}{dx} {1+x^2} = \log(1+R^2)$

Resultado L A TEX 2_{ε}

$$\int_0^R \frac{2x \, dx}{1 + x^2} = \log(1 + R^2)$$

Exemplos: Fórmulas químicas

Código L $^{\rm A}$ TEX $2_{\it E}$

```
\chemfig\{A*6(-B-C-D-E-F-)\}
\chemfig\{*6(=-=-=-)\}
```

Resultado LAT $_{\mathsf{F}}$ X $2_{arepsilon}$

Citações e Referências Bibliográficas

- As citações e referências bibliográficas são uma grande dor de cabeça nos documentos acadêmicos
- Gasta-se muito tempo na formatação e verificação das referências
- O $\Delta T_E X 2_{\varepsilon}$ gerencia as referência por meio de um arquivo separado (também em formato texto puro) de entradas bibliográficas
- Podemos facilmente modificar a formatação e estilo das citações e referências de maneira automática
- O padrão entradas bibliográficas do LATEX é chamado bibtex
- Formato praticamente universal. suportado pelos principais periódicos e ferramentas de consulta bibliográfica

Por que não é usado por mais gente se é essa maravilha?

Curva de aprendizado mais lenta

- Necessário um conhecimento básico para se iniciar (Daí o motivo desse curso :-))
- Uma vez que se pegue o jeito há enorme economia de tempo (e paciência)
 - Pode ficar em torno de 2 meses de economia com formatação do texto em uma tese de doutorado⁶

Falta de algumas facilidades

- Corretor ortográfico/gramatical
- Alguns editores para LATEX $2_{\mathcal{E}}$ possuem recursos de verificação ortográfica

¹Peter Flynn, http://www.silmaril.ie/cgibin/blog/

Iniciando com LATEX 2_{ε}

- Primeira coisa, a pronúncia. :-)
 - TEX se fala "Téqui"
 - LATEX se fala "Lá-Téqui" ou "Lei-Téqui"
 - LATEX 2ε se fala "Lá-Téqui-tchu-í" ou "Lei-Téqui-tchu-í"
- Segundo passo: Instalar uma distribuição
- Terceiro Passo: Instalar um editor. Em princípio qualquer editor de texto serve, mas um específico irá facilitar muito o trabalho
- Quarto Passo: começar a usar.

Distribuições LATEX 2_{ε}

- Opções para praticamente todos os S.O.
 - Windows (MiKTeX) http://www.miktex.org/
 - Unix http://tug.org/texlive/
 - Mac http://tug.org/mactex/
- Para o caso do Windows eu recomendo baixar a versão básica do MikTeX.

Recommended Download

Basic MiKTeX 2.9.5105 Installer

Version 2.9.5105, Windows 32-bit

To install a basic TeX/LaTeX system, download and run this installer. MiKTeX has the ability to install needed packages automatically (on-the-fly), i.e., this installer is suitable for computers connected to the Internet

Principais Editores⁸

Freeware TexMaker, TeXnicCenter, TeXWorks, Kile, TeXstudio, ...

Shareware Winedt, MicroIMP, Personal Tex Inc, 3B2, ...

Online ShareLaTeX⁷. Gratuito para uso pessoal. Pago para uso colaborativo (mais de 3 pessoas por projeto)

Sugestões

- TeXstudio. Freeware. code-completion, dicionário português-BR já instalado, visualizador PDF integrado, altamente configurável
- Winedt. Shareware. Um dos mais utilizados. Suporte excelente para macros e outras distribuições diferentes do LATEX 2ε

Para uma comparação de recursos entre vários editores, consulte http://en.wikipedia.org/wiki/Comparison_of_TeX_editors

⁷https://www.sharelatex.com?r=a511fb02&rm=d&rs=b

⁸http://www.tug.org/interest.html

Kit Básico para o $\Delta T_{E}X 2_{\varepsilon}$

- Documentação de referência
 - (Não tão) Pequena Introdução ao \LaTeX 2ε http://mirrors.ctan.org/info/lshort/portuguese-BR/lshortBR.pdf
 - LATEX Wikibook http://en.wikibooks.org/wiki/LaTeX
- Links Úteis
 - CTAN The Comprehensive T_EX Archive Network http://www.ctan.org
 - TEX Users Group http://www.tug.org
 - The LATEX project http://www.latex-project.org/