ECHE 363 Thermodynamics of Chemical Systems Spring 2020 Midterm Exam 1

Name:	
Da	ate:
completely before starting to an credit may be given even for a puestion. If needed, use both sid	
nstructor Use Only:	
	Problem 1
	Problem 2
	Problem 3
	Total:/100

	40 points) Consider a closed rigid container with 10 kg of H_2O at 2 bar. H_2O undergoes a rocess and reaches a final state 10 bar and 400 °C.
6	a. What is the volume (m ³) of the container? (10 points)
t	o. What is the initial temperature (K)? (10 points)
(c. If applicable, what is the initial quality? (10 points)
C	d. What is the heat transferred (Q, Joules) to the system? (10 points)

2. (40 points) Deflategate: Consider the dynamic inflation of a football. For the purpose of this problem, football is modeled as a <u>rigid</u> container that contains vacuum initially. Air (<u>ideal gas</u>) supply is available from a cylinder with a constant pressure of 2 bars and a constant temperature of 300K. You may assume that the CP (specific heat capacity at constant pressure) for air is approximately <u>constant</u>: CP=3.5R, where R is the universal gas constant.

a. The football is <u>adiabatically</u> filled until the pressure inside reaches the inlet pressure of 2 bar. Perform mole and energy balance (15 points).

b. Determine the temperature of air in the football just after it is filled? (25 points)

<i>art</i> : Once it is filled, t mal equilibrium is ac		

e ge of