Link-uri utile

- Grup tutoriat
- Cursurile de la Băețica
- Cursurile de an trecut de la Mincu

Exerciții

Exercițiul 1. Scrieți elementele mulțimii $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$.

Exercițiul 2. Arătați că relația de congruență modulo n este relație de echivalență, folosind definiția.

Exercițiul 3. Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + x$. Găsiți preimaginea lui [6, 12] (mai multe exemple pe acest site).

Exercițiul 4. Fie A și A' submulțimi ale lui T. Arătați că:

- 1. $\chi_{A \cap A'} = \chi_A \cdot \chi_{A'}$
- 2. $\chi_{A\cup A'}=\chi_A+\chi_{A'}-\chi_A\cdot\chi_{A'}$ În particular, dacă A și A' sunt disjuncte avem că $X_{A\cup A'}=\chi_A+\chi_{A'}$.
- 3. $\chi_{A \setminus A'} = \chi_A \cdot (1 \chi_{A'})$

Exercițiul 5. Pe mulțimea \mathbb{C}^* (numere complexe în afară de 0) definim relația \sim cu $z \sim w$ dacă 0, z, și w sunt coliniare. Arătați că \sim este relație de echivalență și găsiți un sistem de reprezentanți.

Exercițiul 6. Fie \sim relația pe $\mathbb{N} \times \mathbb{N}$ definită prin $(a,b) \sim (c,d)$ dacă a+d=b+c. Arătați că \sim este o relație de echivalență și identificați clasele de resturi.

Exercițiul 7. Fie A, B două multimi:

- 1. Dați exemple de funcții $f:A\to B$ cu proprietatea că există $M\subseteq A$ și $N\subseteq A$ astfel încât $f(M\cap N)\subset f(M)\cap f(N)$.
- 2. Dați exemple de funcții $f:A\to B$ cu proprietatea că există $M\subseteq A$ astfel încât $M\subset f^{-1}(f(M))$
- 3. Dați exemple de funcții $f:A\to B$ cu proprietatea că există $P\subseteq B$ astfel încât $f(f^{-1}(P))\subset P$

Exercițiul 8. Dați exemplu de funcții $f, g: \mathbb{N} \to \mathbb{N}$ cu proprietatea că $g \circ f = 1_{\mathbb{N}}$, dar g nu este injectivă, iar f nu este surjectivă.