Lecture 6 — The Expanding Universe

Michael Brodskiy

Professor: J. Blazek

October 21, 2024

- Olber's Paradox: Why is the Sky Dark?
 - Absorbing Matter \rightarrow doesn't work since matter would heat up
 - Finite Size
 - Finite Time (and Finite Speed of Light)
 - Dimming of Light ("redshift")
- Universe had some beginning ("Big Bang") around 13.7 billion years ago
- Some units:

$$1[\text{light year}] = 9.5 \cdot 10^{15} [\text{m}]$$
$$1[\text{yr}] \approx \pi \cdot 10^{7} [\text{s}]$$
$$c \approx 3 \cdot 10^{8} \left[\frac{\text{m}}{\text{s}}\right]$$
$$1[\text{pc}] = 3.26 [\text{light years}]$$

– If $\theta = 1$ [arcsec], then d = 1[pc]

$$1[pc] = 2.1 \cdot 10^5 [AU]$$

- The Cosmological Principle
 - Copernicus: the Sun, not the Earth, is the center of the Universe
 - Cosmological Principle: There is no center to the Universe
 - * The Universe is statistically isotropic (same in all directions) and homogenous (same everywhere)
- Expanding Universe

- All observers see things moving away from them
- Statements are all statistical! Distinguish between structure in the universe and the geometry of the homogenous universe (about 100[Mpc] scales for homogeneity)
- $-\,$ We don't experience the FLRW metric
 - * Homogenous/geometry
 - * Structure