Exercice 1 : Soit $n, p \in \mathbb{N}^*$, soit les matrices élémentaires $E_{i,j} = (\delta_{a,i}\delta_{b,j})_{1\leqslant a\leqslant n, 1\leqslant b\leqslant p}$, $E_{k,\ell} = (\delta_{c,k}\delta_{d,\ell})_{1\leqslant c\leqslant p, 1\leqslant d\leqslant q}$, respectivement de taille $n\times p$ et $p\times q$. Que vaut $E_{i,j}\times E_{k,\ell}$?

Exercice 2: Avec $\mathscr{B} = (1, X, X^2)$, $\mathscr{C} = (1, X)$ et $\varphi : \mathbb{K}_2[X] \to \mathbb{K}_1[X]$, $P \mapsto P' + P - P(X + 1)$, déterminer $\mathrm{Mat}_{\mathscr{B},\mathscr{C}}(\varphi)$.

Exercice 3 : Soit (Ω, P) un espace probabilisé fini, sur lequel on définit deux variables aléatoires X et Y de la manière suivante :

- $\begin{array}{ll} & X \text{ suit la loi binomiale } \mathscr{B} \bigg(2, \frac{1}{2} \bigg) \text{ (de paramètres } n = 2 \text{ et } p = \frac{1}{2}) \, ; \\ & \text{ si } 0 \leqslant i \leqslant 2 \text{, conditionnellement à } [X = i], \, Y \text{ suit la loi uniforme sur } \llbracket 0, i \rrbracket. \\ \text{Déterminer la loi de } Y. \end{array}$

Exercice 4: Donner l'espérance et la variance de chacune des lois usuelles vues en cours.