Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет цифровых трансформаций

Дисциплина:

«Телекоммуникационные системы и технологии»

ПРАКТИЧЕСКАЯ РАБОТА №2

«Работа с адресами IP сетей»

Выполнили:
Гаджиев С. И., Васильков Д. А., Лавренов Д. А. М3304
Проверила:
Дяченко Екатерина Олеговна
(отметка о выполнении)
(подпись)

Санкт-Петербург 2024 г.

Цель работы:

Получить практические навыки по работе с пространством IP-адресов, масками и управления адресацией в IP сетях.

Необходимо:

- 1) Знание двоичной системы счисления и навык по переводу чисел из десятичной в двоичную систему и наоборот.
- 2) Установленная на компьютере среда виртуализации ORACLE Virtual Box с виртуальной машиной Linux (Linux CentOS или Linux Debian)

DEC IP	192	168	170	15	
DEC MASK	255	255 252		0	
BIN IP	11000000	10101000	10101010	00001111	
BIN MASK	11111111	11111111 11111111 11111100		0000000	
	С фоном – а	адрес сети, б	ез фона – адр	ес узла	
BIN IP сети	11000000	10101000	10101000	00000000	
	скопируем часть 0	сетевую част	ь IP и заполн	им узловую	
DEC IP сети	192	168	168	0	
BIN IP	11000000	10101000	10101011	11111111	
	1	оковещания (им узловую ч	• • •	етевую часть	
DEC IP широковещания	192	168	171	255	
Начало диапазона IP-	192	168	168	1	
адресов для узлов	(значение поля узла +1 к ІР адресу сети)				
Окончание диапазона IP-	192	168	171	254	
адресов для узлов	(значение поля узла -1 от IP-адреса широковещания)				

Таблица 1. Пример вычисления адреса

Если имеется сеть, составленная из нескольких локальных сетей, соединенных между собой маршрутизаторами, то нужно каждой из этих локальных сетей назначить отдельную IP-сеть. В случае, если для такой сети выдается большая IP-сеть в управление (например, такую сеть может назначить провайдер Интернет), то эту сеть необходимо разделить с помощью масок на части.

Порядок выполнения работы:

Часть 1.

В работе даны 4 варианта задания (таблица 2). Необходимо сделать все варианты. На приведенной схеме представлена составная локальная сеть. Отдельные локальные сети соединены маршрутизаторами. Для каждой локальной сети указано количество компьютеров. Провайдер выдал IP-сеть (данные о сети представлены в таблице 2). Необходимо установить IPадрес сети и допустимый диапазон адресов. Разделить сеть на части, используя маски. Маску надо выбирать так, чтобы в отделяемой IP подсети было достаточно адресов.

Примечание: порт маршрутизатора, подключенный к локальной сети, имеет IP адрес!

Выделять диапазоны следует, начиная с самой большой сети. Некоторые маски представлены в таблице 3.

Рис. 1 Схема сети

Вар.	IP- адрес из сети	Количество компьютеров в сети				
	маска	Сеть 1	Сеть 2	Сеть 3	Сеть 4	Сеть 5
1	194.85.32.19	10	6	1	18	100
	255.255.255.0					
2	10.12.12.15	25	16	240	117	1
	255.255.254.0					
3	212.24.15.199	7	0	0	11	10
	255.255.255.192					
4	120.13.120.120	5	2	2	1	1
	255.255.255.224					

Маска	Количество двоичных 0	Количество всех адресов в IP сети с такой маской
255.255.255.252	00	4
255.255.255.248	000	8
255.255.255.240	0000	16
255.255.255.224	00000	32
255.255.255.192	000000	64
255.255.255.128	0000000	128

255.255.254.0	0.00000000	512
255.255.255.0	00000000	256
255.255.255.128	0000000	128

Таблица 3. Примеры масок ІР сетей

Вариант 1:

Сеть	Сеть 1	Сеть 2	Сеть 3	Сеть 4	Сеть 5
ІР-сети, маска	194.85.32.160/28	194.85.32.176/28	194.85.32.192/29	194.85.32.128/27	194.85.32.0/25
	255.255.255.240	255.255.255.240	255.255.255.248	255.255.255.224	255.255.255.128
Количество IP адресов в IP-сети	16	16	8	32	128
Начальный и конечный адреса сети, пригодные для адресации портов маршрутизаторов и компьютеров.	194.85.32.161	194.85.32.177	194.85.32.193	194.85.32.129	194.85.32.1
	194.85.32.174	194.85.32.190	194.85.32.198	194.85.32.158	194.85.32.126

Вариант 2:

Сеть	Сеть 1	Сеть 2	Сеть 3	Сеть 4	Сеть 5
ІР-сети, маска	10.12.13.128/27	10.12.13.160/27	10.12.12.0/24	10.12.13.0/25	10.12.13.192/30
	255.255.255.224	255.255.255.224	255.255.255.0	255.255.255.128	255.255.255.252
Количество IP адресов в IP-сети	32	32	256	128	4
Начальный и конечный адреса сети, пригодные для адресации портов маршрутизаторов и компьютеров.	10.12.13.129	10.12.13.161	10.12.12.1	10.12.13.1	10.12.13.193
	10.12.13.158	10.12.13.190	10.12.12.254	10.12.13.126	10.12.13.194

Вариант 3:

Сеть	Сеть 1	Сеть 2	Сеть 3	Сеть 4	Сеть 5
ІР-сети, маска	212.24.15.224/28	212.24.15.248/30	212.24.15.240/29	212.24.15.192/28	212.24.15.208/28
	255.255.255.240	255.255.255.252	255.255.255.248	255.255.255.240	255.255.255.240
Количество IP адресов в IP-сети	16	4	8	16	16
Начальный и конечный адреса сети, пригодные для адресации портов маршрутизаторов и компьютеров.	212.24.15.225	212.24.15.249	212.24.15.241	212.24.15.193	212.24.15.209
	212.24.15.238	212.24.15.250	212.24.15.246	212.24.15.206	212.24.15.222

Вариант 4:

Сеть	Сеть 1	Сеть 2	Сеть 3	Сеть 4	Сеть 5
ІР-сети, маска	120.13.120.96/29	120.13.120.112/29	120.13.120.104/29	120.13.120.120/30	120.13.120.124/30
	255.255.255.248	255.255.255.248	255.255.255.248	255.255.255.252	255.255.255.252
Количество IP адресов в IP-сети	8	8	8	4	4
Начальный и конечный адреса сети, пригодные для адресации портов маршрутизаторов и компьютеров.	120.13.120.97	120.13.120.113	120.13.120.105	120.13.120.121	120.13.120.125
	120.13.120.102	120.13.120.118	120.13.120.110	120.13.120.122	120.13.120.126

Часть 2.

- 1. Запустите виртуальную машину Linux (Centos или Debian). Убедитесь, что из нее доступен Интернет.
- 2. Установите пакет ipcalc, ознакомьтесь с ключами утилиты.
- 3. Проверьте ваше решение с помощью утилиты. Если вы нашли ошибки, исправьте их.

Вариант 1:

Вариант 2:

Вариант 3:

Вариант 4:

Понятийный минимум по работе:

1. ІР адрес

IP-адрес (Internet Protocol address) — это уникальный числовой идентификатор, который назначается каждому устройству в компьютерной сети, использующей протокол IP. Он используется для определения местоположения устройства в сети и для его идентификации.

Формат:

- В IPv4 IP-адрес состоит из 32 бит и обычно записывается в виде четырех десятичных чисел (октетов), разделенных точками, например, 192.168.1.1.
- В IPv6 адрес состоит из 128 бит и записывается в виде восьми групп из четырех шестнадцатеричных цифр, разделенных двоеточиями, например, 2001:0db8:85a3:0000:0000:8a2e:0370:7334.

Типы IP-адресов:

- Статические: фиксированные адреса, которые не меняются.
- **Динамические**: адреса, автоматически назначаемые DHCP-сервером, которые могут изменяться при каждом подключении.

2. mask

Маска подсети (subnet mask) — это 32-битное число, которое используется для деления IP-адреса на две части: сеть и хост. Она определяет, какая часть IP-адреса относится к сети, а какая — к устройству (хосту) внутри этой сети.

Формат:

- Маска подсети также записывается в формате четырех десятичных чисел, например, 255.255.255.0.
- В CIDR (Classless Inter-Domain Routing) формате маска может быть представлена как /N, где N количество бит, отведенных под сеть. Например, 192.168.1.0/24 обозначает, что первые 24 бита адреса используются для сети.

Пример:

Если у вас есть IP-адрес 192.168.1.10 и маска 255.255.255.0, то:

• Сетевая часть: 192.168.1.0 (первая часть)

• **Хостовая часть:** 10 (вторая часть)

3. ІР - сети

IP-сеть — это группа IP-адресов, которая использует общую маску подсети. Все устройства в одной IP-сети могут обмениваться данными напрямую, без необходимости маршрутизации через другие сети.

Сетевые адреса:

• Каждая IP-сеть имеет свой сетевой адрес, который обозначает саму сеть и не может быть присвоен ни одному устройству. Например, в сети с адресом 192.168.1.0/24 сетевой адрес — это 192.168.1.0.

Количество хостов:

• Количество доступных IP-адресов для устройств (хостов) в сети можно вычислить по формуле 2(32–N)–22^{(32 - N)} - 22(32–N)–2, где N — это количество бит, отведенных под сеть (то есть количество единиц в маске подсети). Мы вычитаем 2, потому что один адрес используется для сетевого адреса, а другой — для широковещательного.

4. IP- broadcast

IP-адрес широковещательной рассылки (broadcast address) — это специальный адрес, который используется для отправки сообщений всем устройствам в одной сети одновременно. Это позволяет передавать данные без необходимости указывать конкретные адреса получателей.

Формат:

• Широковещательный адрес вычисляется путем установки всех битов хостовой части IP-адреса в 1. Например, для сети 192.168.1.0/24 широковещательный адрес будет 192.168.1.255.

Пример:

В сети 192.168.1.0/24 все устройства могут принимать сообщения, отправленные на адрес 192.168.1.255. Это полезно для таких операций, как автоматическое обнаружение устройств в локальной сети.

5. Определение границ сети IPv4 по адресу и маске.

Определение границ сети:

Границы сети определяются IP-адресом и маской подсети, которые вместе позволяют определить, какая часть адреса относится к сети, а какая — к устройству в этой сети.

Процесс определения:

- 1. Преобразуйте IP-адрес и маску подсети в двоичную форму.
 - Например, для адреса 192.168.1.10 и маски 255.255.255.0:
 - IP-адрес: 11000000.10101000.0000001.00001010
 - Маска: 11111111.11111111.11111111.00000000
- 2. Выполните побитовую операцию AND между IP-адресом и маской подсети.
 - Результат будет сетевым адресом:
 11000000.10101000.00000001.00001010 (IP)
 1111111.11111111111111111.00000000 (Маска)
 11000000.10101000.00000001.00000000 (Сетевая часть:

192.168.1.0)

3. **Широковещательный адрес** также можно определить, установив все биты хостовой части в 1. В нашем примере это будет:

11000000.10101000.00000001.11111111 (Широковещательный адрес: 192.168.1.255)

Вывод:

- Сетевой адрес: 192.168.1.0
- Широковещательный адрес: 192.168.1.255
- **Хосты в сети:** адреса от 192.168.1.1 до 192.168.1.254 могут быть назначены устройствам в этой сети.