Clustering Neighbourhoods to make Business Decisions

Clustering of Toronto Neighbourhoods

Shardul Kavale - June 11, 2020

Introduction

Different neighbourhoods and different cities are a house to unique venues that define the culture of those places. Some cities and neighbourhoods might be similar in terms of the kind of venues they house. What if we could group these neighbourhoods based on the venues? How would it help investors/Businesses to make decisions?

Problem

Clustering and Grouping similar neighbourhoods, which will provide insights into what kind of venues they have, thereby aiding potential business owners determine the most feasible location to open their business in.

Eg: North York has fewer cafes, thus opening a cafe here would prove to be a wise investment due to minimal competition

Data sources and cleaning

The project works with the data of Torontos's different Boroughs and their postal codes. This table can be found on wikipedia.

Link: https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M

This data table was web scraped using pandas library. After dropping not assigned values a data frame like below was obtained:

Neighborhood	Borough	PostalCode	
Central Bay Street	Downtown Toronto	M5G	0
Hillcrest VIIIage	North York	M2H	1
Farkview Hill, Woodbine Gardens	East York	M4B	2
Scarborough Village	Scarborough	M1J	3
Leaside	East York	M4G	4
Studio District	East Toronto	M4M	5
Wexford, Maryvale	Scarborough	M1R	6
South Steeles, Silverstone, Humbergate, Jamest	Etobicoke	M9V	7
Humber Summit	North York	M9L	8
CN Tower, King and Spadina, Ralway Lands, Har	Downtown Toronto	M5V	9
Malvern, Bouge	Scarborough	M1B	10
Regent Park, Harbourfront	Downtown Toronto	M5A	11

Nominatim Package from geopy.geocoders was used to find the approximate latitudes and longitudes of the neighbourhoods in the city. A table like below was obtained:

Foursquare API has been used to find venues in each Neighbourhood.
The API call is being made in the function besides.

```
def getNearbyVenues(names, latitudes, longitudes, radius=1000):
        venues_list=[]
        for name, lat, lng in sip(names, latitudes, longitudes):
            url = 'https://api.foursquare.com/v2/venues/emplore?solient_id;
                CLIENT ID,
                 CLIENT_SECRET,
                 VERSION,
10
                 lat,
                lngr
                 radius,
13
                 Linit)
14
            results = requests.get(url).json()["response"]['groups'][0]['i
16
            for v in results:
17
                 venues_list.append([
18
                 name,
19
                 lat,
                 Ing,
21
                 v['venue']['name'],
                v['venue']['location']['lat'],
v['venue']['location']['lng'],
22
23
24
                 v['venue']['categories'][0]['name']])
25
        return venues_list
```

The list obtained from the above function is then converted into a Data frame, grouped by neighbourhood and consequently one-hot encoded. This resulting DataFrame is then used to find top 10 most popular venues and converted into a df like below.

	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue	7th Most Common Venue	8th Most Common Venue	9th Most Common Venue	10th Most Common Venue
0	Willowdale East	Coffee Shop	Bank	Japanese Restaurant	Grocery Store	Sandwich Place	Fast Food Rostaurant	Ramen Restaurant	Pizza Place	Middle Eastern Restaurant	Sushi Restaurant
1	Agincourt	Chinese Recourant	Shopping Mail	Cantonese Bestaurant	Restaurant	Hotel	Noodle House	Korean Restaurant	Karaoke Bar	Gas Station	Bank
2	Ancester	Park	Turkish Restaurant	Coffee Shop	Latin American Restaurant	Electronics Store	ttallan Restaurant	Chinese Restaurant	Other Repair Shop	Intersection	Calé
а	Bathurst Manor, Wilson Heights, Downsview North	Athletics & Sports	Gym / Fitness Genter	Mediterranean Restaurant	Sandwich Place	Shoe Store	French Restaurant	Recreation Center	Basketball Gourt	Coffee Shop	Gas Station
4	Bayview Village	Furniture / Home Store	Calé	Coffee Shop	Clothing Store	Bank	Moving Target	Chinese Restaurant	Liquor Store	Fast Food Restaurant	Spa

Clustering Methodology

Kmeans Clustering was used.

In order to determine the number of Clusters, several methods like Elbow method, Silhouette Score, Calinski Harabasz Score, Davies Bouldin Score were used:


```
For n_clusters = 2, silhouette score is 0.16583825540397104)

For n_clusters = 2, calinski harabasz score is 9.505683837331967)

For n_clusters = 2, DB score is 2.547694368883118)

For n_clusters = 3, silhouette score is 0.08359924375283861)

For n_clusters = 3, calinski harabasz score is 6.990768821395474)

For n_clusters = 3, DB score is 3.513492031304846)

For n_clusters = 4, silhouette score is 0.09755031084888124)

For n_clusters = 4, calinski harabasz score is 6.5790465721442315)

For n_clusters = 4, DB score is 2.8980540887379833)
```

Clustering Analysis

Some of the clusters were analyzed to find trends.

Eg Cluster 0 Analysis:

Cluster 0 seems to be a home to a number of restarants

```
In [95]:
             cluster0['3rd Most Common Venue'].value counts()[:5]
Out[95]: Restaurant
                                  5
         Café
         Fast Food Restaurant
                                  3
         Park
                                  2
         Hotel
                                  2
         Name: 3rd Most Common Venue, dtype: int64
In [98]:
           1 cluster0['2nd Most Common Venue'].value counts()[:5]
Out[98]: Café
                            11
         Coffee Shop
                             6
                             3
         Bar
         Hotel
                             3
                             2
         Clothing Store
         Name: 2nd Most Common Venue, dtype: int64
In [96]:
           1 | cluster0['4th Most Common Venue'].value_counts()[:5]
Out[96]: Japanese Restaurant
                                 5
         Gastropub
                                 3
                                 2
         Bar
                                 2
         Park
         Baseball Field
                                 2
         Name: 4th Most Common Venue, dtype: int64
```

Cluster 0 Conclusion

Cluster 0 is defined by the amount of Restaurants, Coffee shops, Fast food and Bars. Almost all of Downtown Toronto Neighborhoods belong to this cluster, which makes sense.

Making Business Decisions

USER PERSONA:

Bob Kenney Director, xyz

Bob owns a chain of Breweries and Bars. He wishes to expand his chain and open a few lounges in Toronto City. He wants to study the city neighborhoods and decide on the best locations to open his businesses in.

Approach:

Defined a function and used it on Toronto Neighbourhoods Data and used it on toronto DataFrame.

Neighbourhoods with no Bars/Pubs in top 10 venues:-

Any of these locations will be a good location to open up a bar/Pub since there would be minimal competitors

vs Map of Toronto Neighbourhoods:

