

CONFORMANCE TEST REPORT FOR HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS

Report No.: SRTC2015-9004(F)-0003

Product Name: GSM quad band mobile phone

Product Model: 1017D

Applicant: TCL Communication Ltd.

Manufacturer: TCL Communication Ltd.

Specification: FCC Part 2.1093

FCC RF Exposure KDB Procedures

IEEE Std 1528-2003

IEEE Std 1528a-2005

FCC ID: 2ACCJB016

The State Radio_monitoring_center Testing Center (SRTC)

No.80 Beilishi Road Xicheng District Beijing, China

Tel: 86-10-68009202 Fax: 86-10-68009205

Executive summary

Test report no.: SRTC2015-9004(F)-0003

Product Model: 1017D

Period of test: 2015.04.21~2015.04.23

Date of report: 2015.04.24

Laboratory: The State Radio_monitoring_center Testing Center (SRTC)

Test has been The tests documented in this report were performed in accordance with FCC 47 CFR Parts 1 & 2, IEEE Std 1528-2003, IEEE Std

with FCC 47 CFR Parts 1 & 2, IEEE Std 1528-2003, IEEE Std 1528a-2005 and following FCC RF exposure KDB procedures:

□ 1528a-2005 and following FCC RF exposure Guidance v05r01

941225 D01 SAR test for 3G devices v02

☐941225 D02 HSPA and 1x Advanced v02r02 ☐941225 D03 SAR Test Reduction GSM GPRS EDGE v01

☐941225 D05 SAK Test Reduction GSM GFR5 EDGI

248227 D01 SAR Meas for 802 11abg v01r02

⊠865664 D01 SAR Measurement 100 MHz to 6 GHz v01r01

⊠865664 D02 SAR Reporting v01r01

Documentation: The documentation of the testing performed on the tested

devices is archived for 5 years at SRTC

Result summary:

Mode	CH/f(MHz)	Power (dBm)	Position	SAR Limit (1g avg) (W/kg)	Reported SAR (1g avg)(W/kg)	Result
GPRS850	189/836.4	30.65	Towards ground	1.6	1.113	PASS

This Test Report Is Issued by:	Checked by:
Ms. Xu Qiaochun	Mr. Li Bin
净込春	基本
Tested by:	Issued date:
Mr. Zhang Wentao	
张文档	2015-04-24

Tables of contents

1. GENERAL INFORMATION	3
1.1 Notes of the test report	3
1.2 Information about the testing laboratory	3
1.3 Applicant's details	3
1.4 Manufacturer's details	3
1.5 Test Details	4
1.6 Maximum Results	4
2. DESCRIPTION OF THE DEVICE UNDER TEST	4
2.1 Wireless Technologies	5
2.2 Picture to demonstrate the required liquid depth	6
3. TEST CONDITIONS	6
3.1 Temperature and Humidity	6
3.2 Test Signal, Frequencies and Output Power	6
3.3 SAR Measurement Set-up	
4. DESCRIPTION OF THE TEST EQUIPMENT	7
4.1 Measurement System and Components	7
4.2 Phantoms	10
4.3 Tissue Simulants	10
5. DESCRIPTION OF THE TEST PROCEDURE	12
5.1 Device Holder	12
5.2 Test positions	12
5.3 Scan Procedure	13
5.4 SAR Averaging Methods	13
6. MEASUREMENT UNCERTAINTY	14
7. RF Output Power Measurement	15
7.1 Manufacturing Tolerance	
7.2 GSM Measurement result	16
8. RF Exposure Conditions	18
8.1 Head Exposure Conditions	18
8.2 Body-worn Accessory Exposure conditions	19
9. SAR Test result	20
9.1 SAR Measurement Variability	25
APPENDIX A: SYSTEM CHECKING SCANS	26
APPENDIX B: MEASUREMENT SCANS	30
APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)	50
APPENDIX D: RELEVANT PAGES FROM DAE REPORT(S)	
APPENDIX E: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)	
APPENDIX F: Test Setup1	

The State Radio_monitoring_center Testing Center (SRTC)
Tel: 86-10-68009202 68009203
Fax: 86-10-68009195 68009205

1. GENERAL INFORMATION

1.1 Notes of the test report

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written permission of The State Radio_monitoring_center Testing Center (SRTC).

The test results relate only to individual items of the samples which have been tested.

1.2 Information about the testing laboratory

Company: The State Radio_monitoring_center Testing Center (SRTC)

No.80 Beilishi Road, Xicheng District, Beijing China Address:

Citv: Beiiina Country or Region: China

Contacted person: Wang Junfeng

Tel: +86 10 68009181 +86 10 68009202 Fax: +86 10 68009195 +86 10 68009205

Email: wangjf@srrc.org.cn / wangjunfeng@srtc.org.cn

1.3 Applicant's details

Company: TCL Communication Ltd.

Address: 5F, E building, No. 232, Liang Jing Road, ZhangJiang

High-Tech Park, Pudong Area, Shanghai, 201203

City: Shanghai Country or Region: P.R.China Grantee Code: 2ACCJ

Contacted person: Houhua.FAN

+86-(0)21 61460666 Tel: Fax: +86-(0)21 61460602 houhua.fan@tcl.com Email:

1.4 Manufacturer's details

Company: TCL Communication Ltd.

5F, E building, No. 232, Liang Jing Road, ZhangJiang Address:

High-Tech Park, Pudong Area, Shanghai, 201203

Shanghai City: Country or Region: P.R.China Contacted person: Houhua.FAN

Tel: +86-(0)21 61460666 +86-(0)21 61460602 Fax: houhua.fan@tcl.com Email:

The State Radio monitoring center Testing Center (SRTC)

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205

1.5 Test Details

Period of test	2015.04.21~2015.04.23
Battery	LI-ION Battery/ BYD/ CAB040000C1
Headsets	JIAYIKANG/ CCB0010A11C7
пеаизеіз	JIAYIKANG/ CCB0010A10C7
State of sample	Production unit
H/W Version	1203_MB_PCB_V0.1
S/W Version	1017D_L3EN_V01_150408_MCP32+32_FM_LATAM_AL
IMEI	359161060005656
	As the information described above, there are two
	different models of headset. The relevant tests have been
Notes	performed in order to verify that the EUT has the worst
Notes	features when exercised by one model. So all the tests
	shown in this test report are performed with the model
	CCB0010A11C7.

1.6 Maximum Results

The maximum reported SAR values for Head configuration and Body Worn configuration are given as follows. The device conforms to the requirements of the standard(s) when the maximum reported SAR value is less than or equal to the limit.

Exposure Position	Frequency Band	1g-SAR Reported Result (W/kg)	Highest 1g-SAR Reported Result (W/kg)	
Head	GSM 850	0.688	0.600	
пеац	GSM 1900	0.278	0.688	
Body	GSM 850	1.113	1.113	
(10mm Gap)	GSM 1900	0.609	1.113	

2. DESCRIPTION OF THE DEVICE UNDER TEST

Device category	production unit
Exposure environment	General population/uncontrolled
Description of the Antenna	The device has an internal antenna.

2.1 Wireless Technologies

Wireless	⊠GSM Band : GSM850/PCS1900
Technology and	
Frequency Bands	Wi-Fi Band: 2.4GHz~2.4835GHz
	Bluetooth Band: 2.4GHz~2.4835GHz
Mode	GSM
	⊠Voice (GMSK)
	⊠GPRS (GMSK)
	☐EDGE (GMSK/8PSK)
	WCDMA
	UMTS Rel. 99 (Voice & Data)
	∐HSDPA (Rel. 5)
	☐HSUPA (Rel. 6)
	☐HSPA+ (Rel.)
	□DC-HSDPA (Rel.)
	Wi-Fi 2.4GHz (802.11b/g/n)
	☐802.11b
	☐802.11g
	☐802.11n (20MHz)
	☐802.11n (40MHz)
	Bluetooth
	□BR(GFSK)
	□EDR(π/4 DQPSK , 8-DPSK)
	□BLE(GFSK)
Duty Cycle	GSM Voice: 12.5%;
	GPRS: 12.5% (1 Slot), 25% (2 Slots), 37.5% (3 Slots), 50% (4 Slots)
	WCDMA: 100%
	Wi-Fi 802.11b/g/n: 100%
	Bluetooth: 32.25% (DH1), 66.68% (DH3), 77.52% (DH5)
GPRS Multi-Slot	☐Class 8 - One Up
Class	☐Class 10 - Two Up
	⊠Class 12 - Four Up
Mobile Phone	Class A - Mobile phones can be connected to both GPRS and
Capability	GSM services simultaneously.
	⊠Class B - Mobile phones can be attached to both GPRS and
	GSM services, using one service at a time.
	☐Class C - Mobile phones are attached to either GPRS or GSM
	voice service. You need to switch manually between services
DTM (Dual	Not Supported
Transfer Mode)	
· · · · · · · · · · · · · · · · · · ·	

2.2 Picture to demonstrate the required liquid depth

The liquid depth in the used SAM phantoms

Liquid depth for SAR Measurement

3. TEST CONDITIONS

3.1 Temperature and Humidity

Ambient temperature (°C)	21.0 to 23.0
Ambient humidity (RH %)	30 to 45

3.2 Test Signal, Frequencies and Output Power

The device was put into operation by using a call tester. Communication between the device and the call tester was established by air link.

The device output power was set to maximum power level for all tests; a fully charged battery was used for every test sequence.

In all operating bands the measurements were performed on lowest, middle and highest channels.

3.3 SAR Measurement Set-up

The system is based on a high precision robot (working range greater than 0.9m), which positions the probes with a positional repeatability of better than ± 0.02mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length =300mm) to the data acquisition unit. A cell controller system contains the power supply, robot controller, teaches pendant (Joystick), and remote control, is used to drive the robot motors.

The PC consists of the Micron Pentium IV computer with Win7 system and SAR Measurement Software DASY5 Professional, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot.

A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. The DAE consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines.

The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection

The robot uses its own controller with a built in VME-bus computer.

4. DESCRIPTION OF THE TEST EQUIPMENT

4.1 Measurement System and Components

The measurements were performed using an automated near-field scanning system, DASY5, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland. The SAR extrapolation algorithm used in all measurements was the 'advanced extrapolation' algorithm.

The following table lists calibration dates of SPEAG components:

Test	Serial	Calibration	Calibration
Equipment	Number	interval	expiry
DAE4	546	1 year	2015.08.13
DAE4	725	1year	2015.10.24
Dosimetric E-field Probe ES3DV3	3127	1 year	2015.08.19
Dosimetric E-field Probe EX3DV4	3708	1 year	2015.10.17
Dipole Validation Kit D835V2	4d023	1 year	2015.10.09
Dipole Validation Kit D1900V2	5d113	1 year	2015.10.13
DASY5 No.1	52.8.7.1137	N/A	N/A
DASY5 No.2	52.8.7.1137	N/A	N/A

Additional test equipment used in testing:

国家/022·巴西州十亿亚州十亿·				
Test Equipment	Model	Serial	Calibration	Calibration
Test Equipment		Number	interval	expiry
Signal Generator	E4428C	MY45280865	1 year	2015.08.20
Signal Generator	SML 03	103514	1 year	2015.08.20
Amplifier	5S1G4	0323472	N/A	N/A
Amplifier	5S1G4	301305	N/A	N/A
Power meter	E4417A	MY45101182	1 year	2015.08.20
Power Sensor	E4412A	MY41502214	1 year	2015.08.20
Power Sensor	E4412A	MY41502130	1 year	2015.08.20
Power meter	E4417A	MY45101004	1 year	2015.08.20
Power Sensor	E9300B	MY41496001	1 year	2015.08.20
Power Sensor	E9300B	MY41496003	1 year	2015.08.20
Communications Test Set	8960	GB43194054	1 year	2015.08.20
Communication Tester	CMU200	114666	1 year	2015.08.20
Network Analyzer	8714ET	US40372083	1 year	2015.08.20
Dielectric Probe Kit	85070D	US33030365	N/A	N/A

Detailed information of Isotropic E-field Probe Type ES3DV3

Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	Calibration certificate in Appendix C
Frequency	10 MHz to 4 GHz;
	Linearity: ± 0.2 dB (30 MHz to 4 GHz)
Optical Surface	± 0.2 mm repeatability in air and clear liquids over diffuse
Detection	reflecting surfaces
Dimensions	Overall length: 337 mm (Tip: 20 mm)
	Tip diameter: 3.9 mm (Body: 12 mm)
	Distance from probe tip to dipole centers: 2.0 mm
Dynamic Range	5 μW/g to > 100 W/kg; Linearity: ± 0.2 dB
Application	General dosimetry up to 4 GHz
	Dosimetry in strong gradient fields
	Compliance tests of mobile phones

Detailed information of Isotropic E-field Probe Type EX3DV4

Betailed information of legitopic E held i 1666 Type Excels i			
Construction	Symmetrical design with triangular core Built-in shieldir against static charges PEEK enclosure material (resistant		
	organic solvents, e.g., DGBE)		
Calibration	Calibration certificate in Appendix C		
Frequency	10 MHz to > 6 GHz		

	Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Optical Surface	± 0.3 mm repeatability in air and clear liquids over diffuse
Detection	reflecting surfaces
Dimensions	Overall length: 337 mm (Tip: 20 mm)
	Tip diameter: 2.5 mm (Body: 12 mm)
	Typical distance from probe tip to dipole centers: 1 mm
Dynamic Range	10 μW/g to > 100 W/kg
	Linearity: ± 0.2 dB (noise: typically < 1 μW/g)
Application	High precision dosimetric measurements in any exposure
	scenario (e.g., very strong gradient fields); the only probe
	that enables compliance testing for frequencies up to 6 GHz
	with precision of better 30%.

4.2 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin headed "SAM Phantom", manufactured by SPEAG. The phantom conforms to the requirements of IEEE 1528 - 2003.

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

The SPEAG device holder (see Section 5.1) was used to position the device in all tests whilst a tripod was used to position the validation dipoles against the flat section of phantom.

4.3 Tissue Simulants

Recommended values for the dielectric parameters of the tissue simulants are given in IEEE 1528 - 2003 and FCC Supplement C to OET Bulletin 65. All tests were carried out using simulants whose dielectric parameters were within \pm 5% of the recommended values. All tests were carried out within 24 hours of measuring the dielectric parameters.

The depth of the tissue simulant was 15.0 ± 0.5 cm measured from the ear reference point during system checking and device measurements.

4.3.1 Tissue Simulant Recipes

The following recipe(s) were used for Head and Body tissue stimulant(s):

835MHz band

Ingredient	Head (% by weight)	Body (% by weight)
Water	41.45	52.50
Sugar	56.00	45.0
Nacl	1.45	1.40
Cellulose	1.00	1.00
Preventol	0.10	0.10

1900MHz band

Ingredient	Head (% by weight)	Body (% by weight)					
Water	44,45	70.17					
DGBE	55.24	29.44					
Nacl	0.31	0.39					

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205

4.3.2 System Checking

The manufacturer calibrates the probes annully. Dielectric parameters of the tissue simulants were measured every day using the dielectric probe kit and the network analyser. A system check measurement was made following the determination of the dielectric parameters of the simulant, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system checking results (dielectric parameters and SAR values) are given in the table below.

Date Tested	System Serial No.	System dipole	T.S. Liquid	SAR measured (normalized to 1W)		measured (normalized		Target (Ref.Value)	Delta (%)	Tolerance (%)
2015.04.21	No.1	D835V2	Head	1g	9.76	9.23	5.74	±10		
2015.04.23	No.2	D835V2	Body	1g	9.12	9.52	4.20	±10		
2015.04.21	No.1	D1900V2	Head	1g	43.20	40.30	7.20	±10		
2015.04.22	No.2	D1900V2	Body	1g	38.68	40.10	3.54	±10		

Plots of the system checking scans are given in Appendix A.

4.3.3 Tissue Simulants used in the Measurements

For the measurement of the following parameters the SPEAG DAKS-3.5 dielectric parameter probe is used, representing the open-ended coaxial probe measurement procedure.

Date Tested	Freq.(MHz)	Liquid parameters	measured	Target	Delta(%)	Tolerance(%)
2015.04.21	Head 835	εr	42.11	41.50	1.47	±5
2015.04.21	Head 635	σ[S/m]	0.91	0.90	1.1	±5
2015.04.23	Pody 925	εr	53.85	55.20	2.45	±5
2015.04.25	Body 835	σ[S/m]	0.98	0.97	1.03	±5
2015.04.21	Head 1900	εr	40.84	40.00	2.10	±5
2015.04.21	пеац 1900	σ[S/m]	1.41	1.40	0.71	±5
2015 04 22	Pody 1000	εr	52.18	53.30	2.10	±5
2015.04.22	Body 1900	σ[S/m]	1.53	1.52	0.66	±5

Fax: 86-10-68009195 68009205

Page number: 11 of 101

5. DESCRIPTION OF THE TEST PROCEDURE

5.1 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the Dasy system.

Device holder supplied by SPEAG

5.2 Test positions

5.2.1 Against Phantom Head

Measurements were made in "cheek" and "tilt" positions on both the left hand and right hand sides of the phantom.

The positions used in the measurements were according to IEEE 1528 - 2003 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

5.2.2 Body Worn Configuration

The device was placed in the SPEAG holder below the flat section of the phantom. The distance between the device and the phantom was kept at the separation distance using a separate flat spacer that was removed before the start of the measurements. And the distance is 10mm. The device was oriented with its antenna facing the phantom since this orientation gives higher results.

5.3 Scan Procedure

First, area scans were used for determination of the field distribution and the approximate location of the local peak SAR values. The SAR distribution is scanned along the inside surface, at least for an area larger than the projection of the handset and antenna. The angle between the probe axis and the surface normal line is recommended but not required to be less than 30°. The SAR distribution is first measured on a 2-D coarse grid. The scan region should cover all areas that are exposed and encompassed by the projection of the handset. It is a 15 mm × 15 mm measurement grid used when two staggered one-dimensional cubic splines are used to estimate the maximum SAR location. Next, a zoom scan, a minimum of 7 x 7x7 points covering a volume of at least 30x30x30mm, was performed around the highest E-field value to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the area scan and again at the end of the zoom scan.

5.4 SAR Averaging Methods

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation.

The interpolation, extrapolation and maximum search routines within DASY5 are all based on the modified Quadratic Shepard's method (Robert J. Renka,"Multivariate Interpolation of Large Sets of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148).

The interpolation scheme combines a least-square fitted function method with a weighted average method. A trivariate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighbouring points by a least-square method. For the zoom scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the quadratics.

In the zoom scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner surface of the phantom.

Fax: 86-10-68009195 68009205

Copyright © SRTC

6. MEASUREMENT UNCERTAINTY

DASY5 Uncertainty Budget								
Error description	Uncertainty value	Prob. Dist.	Div.	(c_i)	(c_i)	Std.Unc (1g).	Std.Unc. (10g)	(vi) Veff
Measurement system								
Probe calibration	±6.0%	N	1	1	1	±6.0%	±6.0%	∞
Axial isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	∞
System detection limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Readout electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Integration time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	∞
RF ambient noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
RF ambient reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Probe positioner	±0.4%	R	$\sqrt{3}$	1	1	±0.2%	±0.2%	∞
Probe positioning	±2.9%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Max.SAR Eval.	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Test Sample Related								
Device holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Power drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	∞
Phantom and Setup								
Phantom uncertainty	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
Liquid conductivity (target.)	±5.0%	R	$\sqrt{3}$	0.64	0.43	±1.8%	±1.2%	∞
Liquid conductivity (mea.)	±2.5%	R	$\sqrt{3}$	0.64	0.43	±0.9%	±0.6%	∞
Liquid Permittivity (target.)	±5.0%	R	$\sqrt{3}$	0.60	0.49	±1.7%	±1.4%	∞
Liquid Permittivity (mea.)	±2.5%	R	$\sqrt{3}$	0.60	0.49	±0.9%	±0.7%	∞
Combined std. Uncertainty						±10.9%	±10.7%	387
Expanded STD Uncertaint	у					±21.7%	±21.4%	

Page number: 14 of 101

7. RF Output Power Measurement

7.1 Manufacturing Tolerance

GSM

GSM 850							
Channel Channel 251 Channel 189 Channel 128							
Tolerance (dBm)	31.0~33.0	31.0~33.0	31.0~33.0				
	GSM 1	900					
Channel	Channel 810	Channel 661	Channel 512				
Tolerance (dBm)	28.0~30.0	28.0~30.0	28.0~30.0				

GSM 850 GPRS								
Channel		Channel 251		128				
1 Txslot	Tolerance (dBm)	31.0~33.0	31.0~33.0	31.0~33.0				
2 Txslot	Tolerance (dBm)	30.0~32.0	30.0~32.0	30.0~32.0				
3 Txslot	Tolerance (dBm)	28.0~30.0	28.0~30.0	28.0~30.0				
4 Txslot	Tolerance (dBm)	26.0~28.0	26.0~28.0	26.0~28.0				

GSM 1900 GPRS								
Channel		810	661	512				
1 Txslot	Tolerance (dBm)	28.0~30.0	28.0~30.0	28.0~30.0				
2 Txslot	Tolerance (dBm)	27.0~29.0	27.0~29.0	27.0~29.0				
3 Txslot	Tolerance (dBm)	25.0~27.0	25.0~27.0	25.0~27.0				
4 Txslot	Tolerance (dBm)	22.0~24.0	22.0~24.0	22.0~24.0				

7.2 GSM Measurement result

Conducted Power

Mode	Mode GSM850(Head) GSM1900(Head) Duty cycle: 1:8(12.5%) Duty cycle: 1:8(12.5%)			•		
Channel	128 189 25		251	512	661	810
Frequency(MHz)	824.2	836.4	848.8	1850.2	1880.0	1909.8
Measured Power(dBm)	32.69	32.78	32.76	29.50	29.39	29.44

GPRS Measured Power

Mode	G	PRS85	0	GPRS1900			
Channel	128	189	251	512	661	810	
Frequency(MHz)	824.2	836.4	848.8	1850.2	1880.0	1909.8	
4Downlink1uplinkPower(dBm)	32.71	32.75	32.74	29.57	29.46	29.47	
3Downlink2uplinkPower(dBm)	30.58	30.65	30.67	28.01	27.79	27.67	
2Downlink3uplinkPower(dBm)	28.62	28.66	28.67	25.31	25.04	24.92	
1Downlink4uplinkPower(dBm)	26.46	26.54	26.59	23.11	22.88	22.78	

GPRS Averaged Power

Mode	GPRS850			GPRS1900		
Channel	128	189	251	512	661	810
Frequency(MHz)	824.2	836.4	848.8	1850.2	1880.0	1909.8
4Downlink1uplinkPower(dBm)	23.68	23.72	23.71	20.54	20.43	20.44
3Downlink2uplinkPower(dBm)	24.56	24.63	24.65	21.99	21.77	21.65
2Downlink3uplinkPower(dBm)	24.36	24.40	24.41	21.05	20.78	20.66
1Downlink4uplinkPower(dBm)	23.45	23.53	23.58	20.10	19.87	19.77

Division Factors (for Measured Power and Averaged Power):

To average the power, the division factor is as follows:

1TX-slot (4Downlink1uplink)= 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots(3Downlink2uplink) = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots (2Downlink3uplink)= 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots (1Downlink4uplink)= 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 2Txslots (3Downlink2uplink) for GPRS.

Page number: 17 of 101

8. RF Exposure Conditions

Refer to the follow picture "Antenna Locations & Separation Distances" for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

8.1 Head Exposure Conditions

For WWAN,

Test Configurations	SAR Required	Note
Left Touch	yes	/
Left Tilt (15°)	yes	/
Right Touch	yes	/
Right Tilt (15°)	yes	/

8.2 Body-worn Accessory Exposure conditions

For WWAN

Test Configurations	SAR Required	Note
Rear	yes	/
Front	yes	/

9. SAR Test result

In order to determine the largest value of the peak spatial-average SAR of a handset, all device positions, configurations, and operational modes should be tested for each frequency band according to Steps 1 to 3 below.

Step 1: The tests should be performed at the channel that is closest to the center of the transmit frequency band.

- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and
- c) All operational modes for each device position in item a) and configuration in item b) in each frequency band, e.g., analog and digital, If more than three frequencies need to be tested (i.e., Nc > 3), then all frequencies, configurations and modes shall be tested for all of the above test conditions.
- Step 2: For the condition providing the highest peak spatial-average SAR determined in Step 1 for each frequency, perform all tests at all other test frequency channels, e.g., lowest and highest frequencies. In addition, for all other conditions (device position, configuration, and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies should be tested as well.

Step 3: Examine all data to determine the largest value of the peak. Note:

- 1. Per KDB 447498 D01v05, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
- Scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
- Reported SAR(W/kg)= Measured SAR(W/kg)* Scaling Factor
- 2. Per KDB 447498 D01v05, for each exposure position, if the highest output channel reported SAR ≤0.8W/kg, other channels SAR testing are not necessary.
- 3. In the report the test position "Mobile phone screen Towards Ground" abbreviated as "TG", and "Mobile phone screen Towards Phantom" abbreviated as "TP".

The measured and reported Head/body SAR values for the test device are tabulated below:

Mode: GSM 850

fL(MHz)=824.2MHz fM(MHz)=836.4MHz fH(MHz)=848.8MHz

SAR Values (Head, 850MHz Band)

Limit of SAR (W/kg) : <1.6W/kg (1g Average)

Test C	Test Case		Measure Conducted	Tune-up	Scaling	Measure Results (W/kg)	Reported Results (W/kg)
position	mode	Ch	Power (dBm)	limit (dBm)	Factor	1g Average	1g Average
Left		L	32.69	33.00			
cheek		М	32.78	33.00	1.05	0.654	0.688
Clieek		Н	32.76	33.00			
Left		L	32.69	33.00			
Tilted		М	32.78	33.00	1.05	0.320	0.337
Tilleu	GSM	Н	32.76	33.00			
Diaht	GSIVI	L	32.69	33.00			
Right cheek		М	32.78	33.00	1.05	0.573	0.603
Crieek		Н	32.76	33.00			
Right Tilted		L	32.69	33.00			
		М	32.78	33.00	1.05	0.319	0.336
Tilled		Н	32.76	33.00			

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205

Mode: GSM850 (GSM/GPRS)

fL(MHz)=824.2MHz fM(MHz)=836.4MHzfH(MHz) = 848.8MHz

SAR Values (body, 850MHz Band

Limit of SAR (W/kg): <1.6W/kg (1g Average)

Test Case		Ch	Measure Conducted Power	Tune-up limit	Scaling Factor	Measure Results (W/kg)	Reported Results (W/kg)
position	mode		(dBm)	(dBm)	racion	1 g Average	1g Average
	GSM	L	32.69	33.00			
	With	М	32.78	33.00	1.05	0.355	0.373
	headset	Η	32.76	33.00			
TG		L	30.58	32.00	1.39	0.756	1.048
	GPRS	М	30.65	32.00	1.36	0.816	1.113
	GFKS	M (repeat)	30.65	32.00	1.36	0.805	1.098
		Ι	30.67	32.00	1.36	0.613	0.833
	GSM	L	32.69	33.00			
	With	М	32.78	33.00	1.05	0.307	0.323
TP	headset	Н	32.76	33.00			
IP		L	30.58	32.00			
	GPRS	М	30.65	32.00	1.36	0.396	0.540
		Ι	30.67	32.00			

Note: The distance between the EUT and the phantom bottom is 10mm.

Page number: 22 of 101

Copyright © SRTC

Mode: GSM1900

fL(MHz)=1850.2MHz fM(MHz)=1880.0MHz fH(MHz)=1909.8MHz

SAR Values (Head, 1900MHz Band)

Limit of SAR (W/kg): <1.6W/kg(1g Average)

Test Case		СН	Measure Conducted		Scaling	Measure Results (W/kg)	Reported Results (W/kg)
position	mode	Сп	Power (dBm)	limit (dBm)	Factor	1g Average	1g Average
Left		L	29.50	30			
cheek		М	29.39	30	1.15	0.217	0.250
CHECK		Н	29.44	30			
Left		L	29.50	30			
Tilted		М	29.39	30	1.15	0.131	0.151
Tilleu	GSM	Η	29.44	30			
Diaht	GSIVI	L	29.50	30			
Right cheek		М	29.39	30	1.15	0.242	0.278
Crieek		Н	29.44	30			
Right Tilted		L	29.50	30			
		М	29.39	30	1.15	0.138	0.159
Tilled		Н	29.44	30			

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205

Copyright © SRTC

Mode: GSM1900 (GSM/GPRS)

fL(MHz)=1850.2MHz fM(MHz)=1880.0MHz fH(MHz)=1909.8MHz

SAR Values (body, 1900MHz Band)

Limit of SAR (W/kg) :<1.6W/kg(1g Average)

Test Case		СН	Measure Conducted	Tune-up limit	Scaling Factor	Measure Results (W/kg)	Reported Results (W/kg)
position	mode		Power (dBm)	(dBm)	racioi	1 g Average	1g Average
	GSM	┙	29.50	30			
	With	М	29.39	30	1.15	0.438	0.504
TG	headset	Н	29.44	30			
16		L	28.01	29			
	GPRS	М	27.79	29	1.32	0.461	0.609
		Ι	27.67	29			
	GSM	L	29.50	30			
	With	М	29.39	30	1.15	0.252	0.290
TP -	headset	Ι	29.44	30			
		L	28.01	29			
	GPRS	М	27.79	29	1.32	0.450	0.595
		Ι	27.67	29			

Note: The distance between the EUT and the phantom bottom is 10mm.

Page number: 24 of 101

9.1 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

9.1.1 The Highest Measured SAR configuration in Each Frequency Band

Frequency band(MHz)	Air interface	Head(w/kg)	Body(w/kg)
850	GSM 850	<0.8 W/kg	>0.8 W/kg
1900	GSM 1900	<0.8 W/kg	<0.8 W/kg

9.1.2 Repeated Measurement Results

SAR Measurement Variability

Freque	ency	T4	Original	First	+	Second
MHz	Ch.	Test Position	SAR (W/kg)	Repeated SAR (W/kg)	The Ratio	Repeated SAR(W/kg)
836.4	189	TG	0.816	0.805	1.014	/

Fax: 86-10-68009195 68009205

Page number: 25 of 101

APPENDIX A: SYSTEM CHECKING SCANS

SYSTEM CHECKING SCANS

835MHz Head

Communication System: UID 0, CW (0); Frequency: 835 MHz

Medium parameters used (extrapolated): f = 835 MHz; σ = 0.909 S/m; ϵ_r = 42.108; ρ = 1000

kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

Probe: EX3DV4 - SN3708; ConvF(8.85, 8.85, 8.85); Calibrated: 10/17/2014;

Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

Electronics: DAE4 Sn546; Calibrated: 8/13/2014

Phantom: SAM 1559; Type: SAM; Serial: 1559

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at Frequencies 835MHz Head/d=15mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Area Scan (10x13x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 3.02 W/kg

System Performance Check at Frequencies 835MHz Head/d=15mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.668 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.55 W/kg

SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.62 W/kg

Maximum value of SAR (measured) = 3.06 W/kg

0 dB = 3.06 W/kg = 4.86 dBW/kg

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205

SYSTEM CHECKING SCANS

835MHz Flat

Communication System: UID 0, CW (0); Frequency: 835 MHz

Medium parameters used (extrapolated): f = 835 MHz; σ = 0.978 S/m; ϵ_r = 53.846; ρ = 1000

kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

• Probe: ES3DV3 - SN3127; ConvF(5.79, 5.79, 5.79); Calibrated: 2014/8/19;

Sensor-Surface: 3mm (Mechanical Surface Detection), z = -3.0, 32.0

Electronics: DAE4 Sn725; Calibrated: 2014/10/24

Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at Frequencies 835MHz Flat/d=15mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Area Scan (7x12x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 2.35 W/kg

System Performance Check at Frequencies 835MHz Flat/d=15mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.940 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.34 W/kg

SAR(1 g) = 2.28 W/kg; SAR(10 g) = 1.49 W/kg

Maximum value of SAR (measured) = 2.66 W/kg

SYSTEM CHECKING SCANS

1900MHz Head

Communication System: UID 0, CW (0); Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; σ = 1.41 S/m; ϵ_r = 40.84; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

Probe: EX3DV4 - SN3708; ConvF(7.87, 7.87, 7.87); Calibrated: 10/17/2014;

Sensor-Surface: 2mm (Mechanical Surface Detection), z = 1.0, 31.0

Electronics: DAE4 Sn546; Calibrated: 8/13/2014

Phantom: SAM 1560; Type: SAM; Serial: 1560

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at Frequencies 1900MHz Head/d=10mm, Pin=250mW, dist=2.0mm (EX-Probe)/Area Scan (9x12x1): Measurement qrid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 13.9 W/kg

System Performance Check at Frequencies 1900MHz Head/d=10mm, Pin=250mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.723 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 20.8 W/kg

SAR(1 g) = 10.8 W/kg; SAR(10 g) = 5.46 W/kg Maximum value of SAR (measured) = 15.8 W/kg

Fax: 86-10-68009195 68009205

Page number: 28 of 101

Copyright © SRTC

SYSTEM CHECKING SCANS

1900MHz Flat

Communication System: UID 0, CW (0); Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.53 \text{ S/m}$; $\epsilon_r = 52.184$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

Probe: EX3DV4 - SN3708; ConvF(7.59, 7.59, 7.59); Calibrated: 2014/10/17;

Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0

Electronics: DAE4 Sn725; Calibrated: 2014/10/24

Phantom: SAM 1660; Type: QD000P40CD; Serial: TP:1660

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at Frequencies 1900MHz Flat/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Area Scan (9x11x1): Measurement

grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 11.7 W/kg

System Performance Check at Frequencies 1900MHz Flat/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 84.714 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 19.2 W/kg

SAR(1 g) = 9.67 W/kg; SAR(10 g) = 4.9 W/kg

Maximum value of SAR (measured) = 12.4 W/kg

0 dB = 12.4 W/kg = 10.93 dBW/kg

APPENDIX B: MEASUREMENT SCANS

GSM (850MHz/Head)

Left Side Cheek 836.4 MHz

Communication System: UID 10021 - DAA, GSM-FDD (TDMA, GMSK); Frequency: 836.6

MHz

Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.98 S/m; ϵ_r = 42.097; ρ = 1000

kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: EX3DV4 SN3708; ConvF(8.85, 8.85, 8.85); Calibrated: 10/17/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn546; Calibrated: 8/13/2014
- Phantom: SAM 1559; Type: SAM; Serial: 1559
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Head-Section Left HSL 850/850GSM Hsl touch M/Area Scan (7x11x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.689 W/kg

Head-Section Left HSL 850/850GSM Hsl touch M/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.712 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.858 W/kg

SAR(1 g) = 0.654 W/kg; SAR(10 g) = 0.467 W/kg

Maximum value of SAR (measured) = 0.692 W/kg

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205

Left Side	Tilt	836.4 MHz
-----------	------	-----------

Communication System: UID 10021 - DAA, GSM-FDD (TDMA, GMSK); Frequency: 836.6

MHz

Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.98 S/m; ϵ_r = 42.097; ρ = 1000

kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

Probe: EX3DV4 - SN3708; ConvF(8.85, 8.85, 8.85); Calibrated: 10/17/2014;

• Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn546; Calibrated: 8/13/2014

Phantom: SAM 1559; Type: SAM; Serial: 1559

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Head-Section Left HSL 850/850GSM Hsl tilt M/Area Scan (7x11x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.331 W/kg

Head-Section Left HSL 850/850GSM Hsl tilt M/Zoom Scan (7x7x7)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.034 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.424 W/kg

SAR(1 g) = 0.320 W/kg; SAR(10 g) = 0.233 W/kg

Maximum value of SAR (measured) = 0.340 W/kg

0 dB = 0.340 W/kg = -4.69 dBW/kg

Fax: 86-10-68009195 68009205

Page number: 31 of 101

Right Side Cheek 836.4 MHz

Communication System: UID 10021 - DAA, GSM-FDD (TDMA, GMSK); Frequency: 836.6

MHz

Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.98 S/m; ϵ_r = 42.097; ρ = 1000

kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

Probe: EX3DV4 - SN3708; ConvF(8.85, 8.85, 8.85); Calibrated: 10/17/2014;

Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0

• Electronics: DAE4 Sn546; Calibrated: 8/13/2014

Phantom: SAM 1559; Type: SAM; Serial: 1559

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Head-Section Right HSL 850/850GSM HSL touch M/Area Scan

(7x11x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.615 W/kg

Head-Section Right HSL 850/850GSM HSL touch M/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.500 V/m; Power Drift = 0.20 dB

Peak SAR (extrapolated) = 0.769 W/kg

SAR(1 g) = 0.573 W/kg; SAR(10 g) = 0.403 W/kg

Maximum value of SAR (measured) = 0.610 W/kg

0 dB = 0.610 W/kg = -2.15 dBW/kg

Right Side	Tilt	836.4 MHz
------------	------	-----------

Communication System: UID 10021 - DAA, GSM-FDD (TDMA, GMSK); Frequency: 836.6

MHz

Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.98 S/m; ϵ_r = 42.097; ρ = 1000

kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: EX3DV4 SN3708; ConvF(8.85, 8.85, 8.85); Calibrated: 10/17/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn546; Calibrated: 8/13/2014
- Phantom: SAM 1559; Type: SAM; Serial: 1559
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Head-Section Right HSL 850/850GSM HSL tilt M/Area Scan (7x11x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.330 W/kg

Head-Section Right HSL 850/850GSM HSL tilt M/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.600 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.420 W/kg

SAR(1 g) = 0.319 W/kg; SAR(10 g) = 0.230 W/kg Maximum value of SAR (measured) = 0.343 W/kg

GSM with headset (850MHz/Flat)

FLAT	TP	836.4 MHz

Communication System: UID 0, Generic GSM (0); Frequency: 836.4 MHz

Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.979 S/m; ϵ_r = 53.843; ρ =

1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: ES3DV3 SN3127; ConvF(5.79, 5.79, 5.79); Calibrated: 2014/8/19;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 2.0, 32.0
- Electronics: DAE4 Sn725; Calibrated: 2014/10/24
- Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Flat-Section MSL 850 TP/850GSM TP M/Area Scan (8x12x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.290 W/kg

Flat-Section MSL 850 TP/850GSM TP M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.206 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.408 W/kg

SAR(1 g) = 0.307 W/kg; SAR(10 g) = 0.218 W/kg

Maximum value of SAR (measured) = 0.326 W/kg

0 dB = 0.326 W/kg = -4.87 dBW/kg

FLAT	TG	836.4 MHz

Communication System: UID 0, Generic GSM (0); Frequency: 836.4 MHz

Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.979 S/m; ϵ_r = 53.843; ρ =

1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: ES3DV3 SN3127; ConvF(5.79, 5.79, 5.79); Calibrated: 2014/8/19;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 2.0, 32.0
- Electronics: DAE4 Sn725; Calibrated: 2014/10/24
- Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Flat-Section MSL 850 TG/850GSM TG M/Area Scan (8x12x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.395 W/kg

Flat-Section MSL 850 TG/850GSM TG M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.427 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.505 W/kg

SAR(1 g) = 0.355 W/kg; SAR(10 g) = 0.251 W/kg

Maximum value of SAR (measured) = 0.385 W/kg

GSM (850MHz with GPRS/Flat)

FLAT	TP	836.4 MHz
FLAT	TP	836.4 MHz

Communication System: UID 0, Generic GSM (0); Frequency: 836.4 MHz

Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.979 S/m; ϵ_r = 53.843; ρ =

1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: ES3DV3 SN3127; ConvF(5.79, 5.79, 5.79); Calibrated: 2014/8/19;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 2.0, 32.0
- Electronics: DAE4 Sn725; Calibrated: 2014/10/24
- Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Flat-Section MSL 850 TP/850GPRS TP M/Area Scan (8x12x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.509 W/kg

Flat-Section MSL 850 TP/850GPRS TP M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.062 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.547 W/kg

SAR(1 g) = 0.396 W/kg; SAR(10 g) = 0.273 W/kg

Maximum value of SAR (measured) = 0.420 W/kg

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205 Page number: 36 of 101

Communication System: UID 0, Generic GSM (0); Frequency: 824.2 MHz

Medium parameters used (extrapolated): f = 824.2 MHz; σ = 0.967 S/m; ϵ_r = 53.87; ρ = 1000

kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

Probe: ES3DV3 - SN3127; ConvF(5.79, 5.79, 5.79); Calibrated: 2014/8/19;

• Sensor-Surface: 4mm (Mechanical Surface Detection), z = 2.0, 32.0

Electronics: DAE4 Sn725; Calibrated: 2014/10/24

Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Flat-Section MSL 850 TG/850GPRS TG L/Area Scan (8x12x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.882 W/kg

Flat-Section MSL 850 TG/850GPRS TG L/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.495 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.00 W/kg

SAR(1 g) = 0.756 W/kg; SAR(10 g) = 0.541 W/kg

Maximum value of SAR (measured) = 0.810 W/kg

0 dB = 0.810 W/kg = -0.92 dBW/kg

Fax: 86-10-68009195 68009205

FLAT	TG	836.4 MHz
------	----	-----------

Communication System: UID 0, Generic GSM (0); Frequency: 836.4 MHz

Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.979 S/m; ϵ_r = 53.843; ρ =

1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

Probe: ES3DV3 - SN3127; ConvF(5.79, 5.79, 5.79); Calibrated: 2014/8/19;

• Sensor-Surface: 4mm (Mechanical Surface Detection), z = 2.0, 32.0

Electronics: DAE4 Sn725; Calibrated: 2014/10/24

Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Flat-Section MSL 850 TG/850GPRS TG M 2/Area Scan (8x12x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.857 W/kg

Flat-Section MSL 850 TG/850GPRS TG M 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.327 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 1.27 W/kg

SAR(1 g) = 0.816 W/kg; SAR(10 g) = 0.552 W/kg

Maximum value of SAR (measured) = 0.932 W/kg

0 dB = 0.932 W/kg = -0.31 dBW/kg

Fax: 86-10-68009195 68009205

Z-Scan at power reference point

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205

Communication System: UID 0, Generic GSM (0); Frequency: 836.4 MHz

Medium parameters used (extrapolated): f = 836.6 MHz; σ = 0.979 S/m; ϵ_r = 53.843; ρ =

1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

Probe: ES3DV3 - SN3127; ConvF(5.79, 5.79, 5.79); Calibrated: 2014/8/19;

• Sensor-Surface: 4mm (Mechanical Surface Detection), z = 2.0, 32.0

Electronics: DAE4 Sn725; Calibrated: 2014/10/24

Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Flat-Section MSL 850 TG/850GPRS TG M/Area Scan (8x12x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.860 W/kg

Flat-Section MSL 850 TG/850GPRS TG M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.742 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 1.23 W/kg

SAR(1 g) = 0.805 W/kg; SAR(10 g) = 0.543 W/kg

Maximum value of SAR (measured) = 0.911 W/kg

0 dB = 0.911 W/kg = -0.40 dBW/kg

Fax: 86-10-68009195 68009205

Page number: 40 of 101

FLAT TG 848.6 MHz

Communication System: UID 0, Generic GSM (0); Frequency: 848.6 MHz

Medium parameters used (extrapolated): f = 848.6 MHz; σ = 0.991 S/m; ϵ_r = 53.817; ρ =

1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

Probe: ES3DV3 - SN3127; ConvF(5.79, 5.79, 5.79); Calibrated: 2014/8/19;

• Sensor-Surface: 4mm (Mechanical Surface Detection), z = 2.0, 32.0

Electronics: DAE4 Sn725; Calibrated: 2014/10/24

Phantom: SAM 1659; Type: QD000P40CD; Serial: TP:1659

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Flat-Section MSL 850 TG/850GPRS TG H/Area Scan (8x12x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.718 W/kg

Flat-Section MSL 850 TG/850GPRS TG H/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 24.457 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.827 W/kg

SAR(1 g) = 0.613 W/kg; SAR(10 g) = 0.434 W/kg

Maximum value of SAR (measured) = 0.653 W/kg

Page number: 41 of 101

GSM (1900MHz/Head)

Left Side	Cheek	1880.0 MHz

Communication System: UID 10021 - DAA, GSM-FDD (TDMA, GMSK); Frequency: 1880 MHz

Medium parameters used: f = 1880 MHz; σ = 1.526 S/m; ϵ_r = 40.934; ρ = 1000 kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: EX3DV4 SN3708; ConvF(7.87, 7.87, 7.87); Calibrated: 10/17/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn546; Calibrated: 8/13/2014
- Phantom: SAM 1560; Type: SAM; Serial: 1560
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Head-Section Left HSL 1900/1900GSM touch M/Area Scan (7x11x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.235 W/kg

Head-Section Left HSL 1900/1900GSM touch M/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.424 V/m; Power Drift = 0.21 dB

Peak SAR (extrapolated) = 0.341 W/kg

SAR(1 g) = 0.217 W/kg; SAR(10 g) = 0.132 W/kg

Maximum value of SAR (measured) = 0.236 W/kg

Fax: 86-10-68009195 68009205

Left Side	tilt	1880 MHz

Communication System: UID 10021 - DAA, GSM-FDD (TDMA, GMSK); Frequency: 1880 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.526$ S/m; $\varepsilon_r = 40.934$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: EX3DV4 SN3708; ConvF(7.87, 7.87, 7.87); Calibrated: 10/17/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn546; Calibrated: 8/13/2014
- Phantom: SAM 1560; Type: SAM; Serial: 1560
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Head-Section Left HSL 1900/1900GSM tilt M/Area Scan (7x11x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.137 W/kg

Head-Section Left HSL 1900/1900GSM tilt M/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.705 V/m; Power Drift = 0.21 dB

Peak SAR (extrapolated) = 0.207 W/kg

SAR(1 g) = 0.131 W/kg; SAR(10 g) = 0.078 W/kg

Maximum value of SAR (measured) = 0.144 W/kg

Fax: 86-10-68009195 68009205

Right Side	Cheek	1880.0 MHz
------------	-------	------------

Communication System: UID 0, Generic GSM (0); Frequency: 1880 MHz

Medium parameters used: f = 1880 MHz; σ = 1.526 S/m; ϵ_r = 40.934; ρ = 1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

Probe: EX3DV4 - SN3708; ConvF(7.87, 7.87, 7.87); Calibrated: 10/17/2014;

Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0

Electronics: DAE4 Sn546; Calibrated: 8/13/2014

Phantom: SAM 1560; Type: SAM; Serial: 1560

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Head-Section Right HSL 1900/1900GSM touch M/Area Scan (7x11x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.236 W/kg

Head-Section Right HSL 1900/1900GSM touch M/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.867 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.367 W/kg

SAR(1 g) = 0.242 W/kg; SAR(10 g) = 0.146 W/kg

Maximum value of SAR (measured) = 0.262 W/kg

0 dB = 0.262 W/kg = -5.82 dBW/kg

Fax: 86-10-68009195 68009205 Copyright © SRTC

Right Side	tilt	1880.0 MHz
Right Side	tiit	1000.0 18172

Communication System: UID 0, Generic GSM (0); Frequency: 1880 MHz

Medium parameters used: f = 1880 MHz; σ = 1.526 S/m; ϵ_r = 40.934; ρ = 1000 kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: EX3DV4 SN3708; ConvF(7.87, 7.87, 7.87); Calibrated: 10/17/2014;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn546; Calibrated: 8/13/2014
- Phantom: SAM 1560; Type: SAM; Serial: 1560
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Head-Section Right HSL 1900/1900GSM tilt M/Area Scan (7x11x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.145 W/kg

Head-Section Right HSL 1900/1900GSM tilt M/Zoom Scan (7x7x7)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.157 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.217 W/kg

SAR(1 g) = 0.138 W/kg; SAR(10 g) = 0.082 W/kg

Maximum value of SAR (measured) = 0.149 W/kg

Fax: 86-10-68009195 68009205

Page number: 45 of 101

GSM with headset (1900MHz/Flat)

Communication System: UID 0, Generic GSM (0); Frequency: 1880 MHz

Medium parameters used: f = 1880 MHz; σ = 1.611 S/m; ϵ_r = 52.016; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.6, 4.6, 4.6); Calibrated: 2014/8/19;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = -3.0, 32.0
- Electronics: DAE4 Sn725; Calibrated: 2014/10/24
- Phantom: SAM 1660; Type: QD000P40CD; Serial: TP:1660
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Flat-Section MSL 1900 TP/1900GSM TP M/Area Scan (8x12x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.444 W/kg

Flat-Section MSL 1900 TP/1900GSM TP M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.679 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.445 W/kg

SAR(1 g) = 0.252 W/kg; SAR(10 g) = 0.147 W/kg

Maximum value of SAR (measured) = 0.280 W/kg

0 dB = 0.280 W/kg = -5.53 dBW/kg

Fax: 86-10-68009195 68009205

Page number: 46 of 101

FLAT TG 1880 MHz

Communication System: UID 0, Generic GSM (0); Frequency: 1880 MHz

Medium parameters used: f = 1880 MHz; σ = 1.611 S/m; ϵ_r = 52.016; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.6, 4.6, 4.6); Calibrated: 2014/8/19;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 2.0, 32.0
- Electronics: DAE4 Sn725; Calibrated: 2014/10/24
- Phantom: SAM 1660; Type: QD000P40CD; Serial: TP:1660
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Flat-Section MSL 1900 TG/1900GSM TG M/Area Scan (8x12x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.429 W/kg

Flat-Section MSL 1900 TG/1900GSM TG M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.514 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.778 W/kg

SAR(1 g) = 0.438 W/kg; SAR(10 g) = 0.236 W/kg

Maximum value of SAR (measured) = 0.482 W/kg

0 dB = 0.482 W/kg = -3.17 dBW/kg

GSM (1900MHz with GPRS/Flat)

FLAT	TP	1880 MHz
FLAT	TP	1880 MHz

Communication System: UID 0, Generic GSM (0); Frequency: 1880 MHz

Medium parameters used: f = 1880 MHz; σ = 1.611 S/m; ϵ_r = 52.016; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE 1528-2003)

DASY Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.6, 4.6, 4.6); Calibrated: 2014/8/19;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 2.0, 32.0
- Electronics: DAE4 Sn725; Calibrated: 2014/10/24
- Phantom: SAM 1660; Type: QD000P40CD; Serial: TP:1660
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Flat-Section MSL 1900 TP/1900GPRS TP M/Area Scan (8x12x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.436 W/kg

Flat-Section MSL 1900 TP/1900GPRS TP M/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.159 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.878 W/kg

SAR(1 q) = 0.450 W/kq; SAR(10 q) = 0.238 W/kq

Maximum value of SAR (measured) = 0.490 W/kg

Copyright © SRTC

Page number: 48 of 101

Communication System: UID 0, Generic GSM (0); Frequency: 1880 MHz

Medium parameters used: f = 1880 MHz; σ = 1.611 S/m; ϵ_r = 52.016; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: ES3DV3 SN3127; ConvF(4.6, 4.6, 4.6); Calibrated: 2014/8/19;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 2.0, 32.0
- Electronics: DAE4 Sn725; Calibrated: 2014/10/24
- Phantom: SAM 1660; Type: QD000P40CD; Serial: TP:1660
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Flat-Section MSL 1900 TG/1900GPRS TG M/Area Scan (8x12x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.418 W/kg

Flat-Section MSL 1900 TG/1900GPRS TG M/Zoom Scan (7x7x7)/Cube

0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.428 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.871 W/kg

SAR(1 g) = 0.461 W/kg; SAR(10 g) = 0.238 W/kg

Maximum value of SAR (measured) = 0.516 W/kg

0 dB = 0.516 W/kg = -2.87 dBW/kg

APPENDIX C: RELEVANT PAGES FROM PROBE CALIBRATION REPORT(S)

ES3DV3 - SN:3127

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 45, 8004 Zurich, Switzerland

C

Accreditation No.: SCS 108

S Schweizenscher Kalibrierdianst Service suisse d'étalonnage Servizio evizzoro di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

SRTC (PTT)

Centificate No. ES3-3127_Aug14

CALIBRATION CERTIFICATE ES3DV3 - SN:3127 Object QA CAL-01-v9, QA CAL-12-v9, QA CAL-23-v5, QA CAL-25-v6 Calibration procedure(s) Calibration procedure for dosimetric E-field probes August 19, 2014 Calibration date. This pateration certificate documents the tracestality to regional standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the closed laboratory facility, environment temperature (22 ± 3)°C and humidity < 70%. Calbridge Equipment used (M&TE critical for calibration)

Primary Standards	ID:	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E44198	GB41293574	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	63-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 cB Attenuator	SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15
Reference 30 dB Attanuator	SN: S5129 (80b)	83-Agr-14 (No. 217-01920)	Apr-15
Reference Probe E930V2	SN: 3013	35-Dac-13 (No. E53-3013_Dec13)	Dec-14.
DAE4	BN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dac-14
Secondary Standards	ID	Check Date (if house)	Schooled Check
RE- generator HP 884BC	U83842U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8763E	U837360585	18-Out-01 (in house check Oct-13)	In house check: Oct-14

	Nama	Function	Signature
Celibrated by	Jelon Kachah	Laboratory Technician	-f-lle
Approved by:	Kalja Poković	Technical Managar	All My
			Issued: August 20, 2014
This celibration certificate	shall not be reproduced except in ful	without written approval of the laborator	The state of the s

Certificate No: ES3-3127_Aug14

Page 1 of 11

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205 Page number: 50 of 101

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerfand

S Schweizenischer Kalibrierdienst
C Service sulsse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Page number: 51 of 101

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multiliteral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z diode compression point

DCP diode compression point
CF crest factor (1/duty_cycle) of the RF signal
A, B, C, D modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 8 = 0 is normal to probe axis

Connector Angle Information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- Techniques". June 2013
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide).
 NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below CorryF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax, y, z; Bx, y, z; Cx, y, z; Dx, y, z; VRx, y, z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy); in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No folerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ES3-3127_Aug14

Page 2 of 11

Fax: 86-10-68009195 68009205 Copyright © SRTC

ES3DV3 - SN:3127

August 19, 2014

Probe ES3DV3

SN:3127

Manufactured: Calibrated: July 11, 2006 August 19, 2014

Calibrated for DASY/EASY Systems [Note: non-compatible with DASY2 system!]

Certificate No: ES3-S127_Aug14

Page 3 of 11

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205 Page number: 52 of 101

E83DV3-SN:3127

August 19, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3127

Basic Calibration Parameters

and the second second	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	1.30	1.27	1.22	± 10.1 %
DCP (mV)	101.8	100.7	102.2	

מוט	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Unc* (k=2)
0	CW	X	0.0	0.0	1.0	0.00	215.4	±3.3 %
0	1600	Y	0.0	0.0	1.0		213.6	
		Z	0.0	0.0	1.0		213.3	
	IEEE 802.11b WiFi 2.4 GHz [DSSS, 1 Mbps)	×	3.38	71.4	20.0	1.87	149.5	±0.7 %
		Y	3.52	72.5	21.0		128,8	
		Z	3.86	74.3	21.4		147.1	
10032- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	X	96.41	99.7	19.2	1.16	129.2	±2.7 %
		Y	29.27	99.8	21.6		130.9	
S		Z	80.98	99.7	19.2		127.4	
10100- CAB	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	X	6.56	67.9	20.0	5.67	140.1	±1.4 %
		Y	6.76	68.9	20.7		144,6	
barran.		Z	6.60	68.2	20.1		139.3	
10108- CAB	LTE-FDD (SC-FDMA, 100% RB, 10 MHz., QPSK)	×	6.49	67.7	20.0	5.80	138.2	±1.4 %
		Y	6.66	68,5	20.7		143.6	
		Z	5.48	67.7	20.1		137.3	L
10154- CAB	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	X	5.16	67.0	19.7	5.75	134.7	±1.2 %
	-	Y	6.31	67.9	20,4		140.5	
Seutenea	A CHARLES WAS A CONTROL WITHOUT DRIVEN ON THE WAS A STATE OF	Z	6.15	67.2	19.8	Lawrence	133.0	
10169- CAB	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	Х	5.19	67.2	20.0	5.73	139.0	±1.2 %
		Y	5.33	68.2	20.9		144.9	
) Description	Victoria in acade acade acade contrata and	Z	5.19	87.5	20.2		137.4	
10175- GAS	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	×	5.19	87.2	20.0	5.72	137.3	±1.2 %
	0.000	Y.	5.28	88.0	20.8		144.0	
ly across	11	Z	5.18	67.5	20.2	I mariana	135.5	
10297- AAA	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, OPSK)	X	6.46	87.5	19.9	5.81	135.6	±1.4 %
100		Y	6.66	88.5	20.7		144.0	
		Z	6.49	67.8	20.1		134.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ES3-3127_Aug14

Page 4 of 11

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205

Page number: 53 of 101

<sup>The unpertendes of NormX,Y,Z do not affect the E²-field uncertainty Inside TSL (see Pages 5 and 6).

Numerical linearization parameter uncertainty not required.

Uncertainty is determined using the mex, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.</sup>

ES3DV3-SN:3127

August 19, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3127

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ⁶	Depth (mm)	Unct. (k=2)
450	43.5	0.87	8.48	6,48	6.48	0.19	2.30	± 13.3 %
750	41.9	0.89	6.31	6.31	6.31	08.0	1.09	± 12.0 %
900	41.5	0.97	5.95	5.95	5.95	0.37	1.87	± 12.0 %
1810	40.0	1.40	4.89	4.89	4.89	0.57	1.39	± 12.0 %
2000	40.0	1.40	4.84	4.84	4.94	0.80	1.17	± 12.0 %
2450	39.2	1.80	4.27	4.27	4.27	0.66	1.38	± 12.0 %
2600	39.0	1.96	4.20	4.20	4.20	0.79	1.33	± 12.0 %

^{*} Frequency validity above 300 MHz of a 100 MHz only applies for DASY v4.4 and higher (see Page 2), iskelf is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvE uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Proquency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvE assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (r and d) can be retained to ± 10% if figure compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of fissue parameters (s and d) is restricted to ± 5%. The uncertainty is the RSS of the ConvE uncontainty for indicated target Salue parameters.

Applied path are determined during estitlation. SPEAG warrants that the remaining deviation due to the boundary effect after componisation is always less then ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 8-6 GHz at any distance larger than half the probe by distance from the boundary.

Certificate No: ES3-3127_Aug14

Page 5 of 11

Fax: 86-10-68009195 68009205

Page number: 54 of 101

ES3DV3-SN:3127

August 19, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3127

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ²	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth c (mm)	Unct. (k=2)
450	58.7	0.94	6.80	6.80	6.80	0.12	1,60	± 13.3 %
750	55.5	0.96	5.93	5.93	5.93	0.27	2.05	± 12.0 %
900	55.0	1.05	5.79	5.79	5.79	0.62	1.30	± 12.0 %
1810	53.3	1.52	4.60	4.60	4.60	0.33	1.99	± 12.0 %
2000	53.3	1.52	4.58	4.58	4.58	0.42	1.91	± 12.0 %
2450	52.7	1.95	4.08	4.08	4.08	0.80	1.15	± 12.0 %
2800	52.5	2.16	3.92	3.92	3.92	0.63	0.94	± 12.0 %

⁹ Fisquency validity above 300 MHz of a 100 MHz only applies for DASY v4.4 and higher [see Fage 2], also it is restricted to ± 50 MHz. The uncertainty is the RSS of the CoroF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 90 and 70 MHz for CoroF assessments of 30, 64, 128, 150 and 200 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

*At frequencies below 3 GHz, the validity of issue parameters (a and a) can be released to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of issue parameters (a and a) is restricted to ± 5%. The uncertainty is the RSS of the CoroF uncertainty for indicated target issue parameters. (a and a) is restricted to ± 5%. The uncertainty is the RSS of the CoroF uncertainty for indicated target issue parameters. (but the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies below 3.8 GHz at any distance larger than half the probation disease from the boundary.

Certificate No: ES3-3127_Aug14

Page 6 of 11

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205

Page number: 55 of 101

ES3DV3- SN:3127

August 19, 2014

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ES3-3127_Aug14

Page 7 of 11

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205 Page number: 56 of 101

August 19, 2014

ES3DV3- SN:3127

Receiving Pattern (φ), 9 = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ES3-3127_Aug14

Page 8 of 11

Page number: 57 of 101

ES3DV3-- 5N:3127

August 19, 2014

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ES3-3127_Aug14

Page 9 of 11

Page number: 58 of 101

ES3DV3- SN:3127 August 19; 2014

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Certificate No: ES3-3127_Aug14

Page 10 of 11

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205

ES3DV3- SN:3127

August 19, 2014

DASY/EASY - Parameters of Probe: ES3DV3 - SN:3127

Other Probe Parameters

Triangular
-17.8
enabled
disabled
337 mm
10 mm
10 mm
4 mm
2 mm
2 mm
2 mm
2 mm

Certificate No: ES3-3127_Aug14

Page 11 of 11

Page number: 60 of 101

EX3DV4 - SN:3708

Calibration Laboratory of Schmid & Partner Engineering AG Zaughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

According by the Swiss Accordination Service (SAS)

The Swiss Accordination Service is one of the signaturies to the EA Multileness Agreement for the recognition of calibration certificates

Client SRTC (Vitec)

Certificate No: EX3-3708_Oct14

Accreditation No.: SCS 108

S

C

S

CALIBRATION CERTIFICATE

Yellow

EX3DV4 SN:3708

Calibration procedure(s)

QA CAL-01 v9, QA CAL-14 v4, QA CAL-23 v5, QA CAL-25 v6

Calibration procedure for dosimetric E-field probes

Calibration date:

October 17, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are pain of the certificate.

All calibrations have been conducted in the closed laboratory facility, environment temperature (22 ± 3)°C and humidity < 70%.

Celeration Equipment used (M&TE critical for calibration)

Primary Standards	1D	Cal Date (Certificate No.)	Scheduled Calibration
Power moter E4419B	G841293874	0S-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr 14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: 95054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Attenuator	SN: S5277 (20x)	93-Apr-14 (No. 217-01919)	Apr-15
Reference 36 dB Attenuator	SN: S5129 (50b)	03-Apr-14 (No. 217-01920)	Apr-15
Reference Probe ES30VZ	SN: 3013	30-Dec-13 (No. ES3-3013 Dec13)	Dec-14
DAE4	SN: 680	13-Dec-13 (No. DRE4-660_Dec13)	Doc-14
Secondary Standards	ID	Check Date (in house)	Schaduled Check
RF generator HP 8648C	US3842U01700	6-Aug-89 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37290585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Name	Function	Signature
Jeton Kastres	Laboratory Technician	+>16
Kerje Pokovic	Technical Manager	Il ly
		laqued: October 20, 2014
	Jeton Kastrasi	Jeton Kantrati Laboratory Technicism

Certificate No: EX3-3708_Oct14

Page 1 of 11

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205 Page number: 61 of 101

Calibration Laboratory of Schmid & Partner Engineering AG aughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Sorvizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating fiquid NORMx,y,z ConvF DCP

sensitivity in free space sensitivity in TSL / NORMx,y,z

dipde compression point crest factor (1/duty_cycle) of the RF signal CF A, B, C, D modulation dependent linearization parameters

Polarization ip o rotation around probe axis

Polarization 3 3 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system. Connector Angle

- Calibration is Performed According to the Following Standards:
 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
 - Techniques*, June 2013
 b) IEC 62209-1, 'Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ser (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 8 = 0 (f \(\sigma \) 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \text{ MHz}$) and inside waveguide using analytical field distributions based on power measurements for $f \ge 800 \text{ MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORMx,y,z \sim ConvF$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from \pm 50 MHz to \pm 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required).

Cartificate No: EX3-3708_Oct14

Page 2 of 11

Fax: 86-10-68009195 68009205

EX3DV4 - SN:3708

October 17, 2014

Probe EX3DV4

SN:3708

Manufactured: Calibrated: July 21, 2009 October 17, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3708_Oct14

Page 3 of 11

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205 Page number: 63 of 101

EX3DV4-SN:3708

October 17, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3708

Basic Calibration Parameters

Basic Calibration Fara	Sunsor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (uV/(V/m) ²) ^A	0.19	0.35	0.44	±10.1%
DCP (mV) ⁸	99.4	101.7	101.1	

UID	ion Calibration Parameters Communication System Name		A dB	B dB√μV	c	D dB	VR mV	Unc ¹ (k=2)
Ö	CW	Х	0.0	0.0	1.0	0.00	138.9	±2.7 %
		Y	0.0	0.0	1.0		146.6	
		2	0.0	0.0	1.0	E-(75%=	143.9	00000
10011+ CAB	UMTS-FDD (WCDMA)	X	3.75	69.6	20.6	2.91	148.5	±0.9 %
SAFYER.		Y	3.63	68.6	19.6		144.1	
		2	4.24	71.8	21.4		134.0	2000
10021- DAB	GSN-FDD (TDMA, GMSK)	Х	13.41	99.7	27.7	9.39	62.7	±2.7 %
-		Y	6.46	84.3	22.3		73.1	
		Z	3.06	71.9	18.1		110.9	(40,625)
10028- DAB	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	3.31	100.0	31.4	3.55	138.7	±2.5 %
-		Y	13.39	99.5	24.7		135.4	
		Z	8.64	98.7	26.6		131.6	35,150
10058- DAB	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	Х	4,39	75.0	24.7	6.52	149.1	±2,2 %
DYAL		Y	4.69	74.7	23.6		130.6	
		Z	5.50	78.2	25.€		132.7	
10062+ CAA	IEEE 802 11 n/h WiFi 5 GHz (OFDM, 6 Mops)	X	10.32	68.6	21.6	8.65	139.6	±2.7 %
	and a	Y	10.09	68.4	21.4		127.5	
		2	10.18	68.8	21.8		125.7	
10097- CAB	UMTS-FDD (HSDPA)	X	4.89	67.8	19.7	3.98	132.4	±0.7.%
-		Y	4.88	67.8	19.3		146.3	
		Z	5.23	69.3	20.2		145.4	
10098- CAB	UMTS-FDD (HSUPA, Subtest 2)	×	4,89	67.8	19.7	3.98	132.6	±0.7 %
-		Y	4.94	68.1	19.5		146.5	
		Z	5.21	69.2	20.2		146.8	
10291- AAB	CDMA2000, RC3, SC65, Full Rate	×	4.24	70.6	21,4	3.46	135.5	±1.2 %
-		Y	3.87	88.1	19.6		128,3	
S.v.ov.		Z	4.40	70.8	21.2	2.50	131.9	40.00
10292- AAB	COMA2000, RC3, SD32, Full Rate	×	4.18	70.7	21.4	3.39	132.3	±0.9 %
		Y	3.89	69.7	19.9		149.5	
		Z	4.42	71.2	21.3		130:4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3708_Oct14

Page 4 of 11

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205

Page number: 64 of 101

^{*} The uncertainties of NormX,Y,Z do not affect the E*-field uncertainty inside TSL (see Pages 5 and 6).

*Numerical invarianties parameter: uncertainty not required.

*Uncertainty a determined using the max, deviation from linear response applying recongular distribution and is expressed for the square of the field value.

EX3DV4-8N;3708

October 17, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3708

Calibration Parameter Determined In Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Dopth G (mm)	Unct. (k=2)
900	41.5	0.97	8.85	8.85	8.85	0.25	1.10	± 12.0 %
1810	40.0	1.40	7.87	7.87	7.87	0.57	0.68	± 12.0 %
2000	40.0	1.40	7.81	7.81	7.81	0.58	0.69	± 12.0 %
5200	36.0	4,66	5.41	5,41	5.41	0.35	1.80	± 13.1 %
5300	35.9	4.76	5.18	5.18	5.18	0.35	1.80	± 13.1 %
5500	35.6	4.98	4.85	4.85	4.85	0.40	1.80	± 13.1 9
5600	35.5	5.07	4.67	4.67	4.67	0.40	1.80	± 13.1 9
5800	35.3	5.27	4.85	4.85	4.85	0.40	1.80	± 13.1 9

Frequency validity above 300 MHz of ± 100 MHz only applies for DASY vil, 4 and higher (see Page 2), clise it is restricted to ± 50 MHz. This uncertainty is the RSS of the Comit functionally at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 28, 40, 50 and 70 MHz for Comit passessments at 30, 64, 128, 150 and 220 MHz respectively, howe 5 GHz frequency validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the velidity of tissue periodicin (e and e) can be released to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the velidity of tissue periodicin (e and e) is restricted to ± 6%. The uncertainty is the RSS of the Comit uncertainty for indicated larget lissue periodicine.

Althor/Displays for determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3708_Oct14

Page 5 of 11

Fax: 86-10-68009195 68009205

Page number: 65 of 101

EX3DV4- SN:3708

October 17, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3708

Calibration Parameter Determined in Body Tissue Simulating Media

t (MHz) ^c	Relative Permittivity	Conductivity (S/m) ^F	CanvF X	ConvF Y	ConvF Z	Alpha ^c	Depth C (mm)	Unct. (k=2)
900	56.0	1.05	8.90	8.90.	8,90	0.80	0.50	± 12.0 %
1810	53.3	1.52	7.59	7.59	7.59	0.64	83.0	± 12.0 %
2000	53.3	1.52	7.66	7.66	7.68	0.73	0.62	± 12.0 %
5200	49.0	5.30	4.49	4.49	4.49	0.45	1.90	± 13.1 %
5300	48.9	5.42	4.31	4.31	4.31	0.45	1.90	± 13.1 %
5500	48.6	5.65	3.93	3.93	3.93	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.78	3.78	3.78	0.50	1.90	± 13.1 %
5800	48.2	6.00	4.14	4 14	4.14	0.50	1.90	± 13.1 %

Frequency velicity above 300 MHz of ± 100 MHz only applies for DASY vis.4 and higher (see Page 2), alse it is restricted to ± 50 MHz. Tho uncordarity is the RBS of the ConvF uncordarity at calibration frequency and the uncordarity for the indicated frequency band. Procuring validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 84, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

*All Enquencies below 3 GHz, the velicity of tissue parameters (a and a) can be relaxed to ± 10% if liquid compensation formula is applied to mocesters SAR values. All Enquencies above 3 GHz, the validity of resule parameters (a and a) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated larger its sale parameters.

*AlphoDingth are determined during calibration. SPEAG warrents that the remaining deviation due to the boundary effect after compensation is strategy less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3 6 GHz at any distance larger than half the probe tip demoter from the boundary.

Certificate No: EX3-3708_Oct14

Page 6 of 11

Fax: 86-10-68009195 68009205

EX3DV4- BN:3708

October 17, 2014

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3708_Oct14

Page 7 of 11

Fax: 86-10-68009195 68009205

Page number: 67 of 101

EX3DV4-SN:3708

October 17, 2014

Receiving Pattern (6), 9 = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3708_Oct14

Page 8 of 11

Page number: 68 of 101

EX3DV4- SN:3708

October 17, 2014

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Cortificate No: EX3-3708_Oct14

Page 9 of 11

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205 Page number: 69 of 101

EX3DV4-SN:3708

October 17, 2014

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Certificate No: EX3-3708_Oct14

Page 10 of 11

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205 Page number: 70 of 101

EX30V4-SN:3706

October 17, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3708

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-4.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	.9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1,4 mm

Certificate No: EX3-3708_Oct14

Page 11 of 11

APPENDIX D: RELEVANT PAGES FROM DAE REPORT(S)

DAE4 - SN:546

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8084 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 Info®speeg.com, http://www.speeg.com

IMPORTANT NOTICE

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the betteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration title.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

TN_BR040315AD DAE4.doc

11,12,2009

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlacher Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Carifornia DAEA-546 Aug 14

Accreditation No.: SCS 108

	ERTIFICATE		
Object	DAE4 - SD 000 D	04 BM - SN: 546	
Calibration procedure(s)	QA CAL-06.v28 Calibration proced	dure for the data acquisition electron	onics (DAE)
Calibration date:	August 13, 2014		
The measurements and the unce	ertainties with confidence pro	anal standards, which realize the physical units obability are given on the following pages and a facility: environment temperature (22 ± 37°C s	are part of the certificate.
Calibration Equipment used (M&	10		00 II 2004 N = 500
nmary Stendards	10.4	Cel Date (Certificate No.)	Scheduled Calibration
nmary Stendards	10		00 11200 3 1 = 520
himary Standards (eithkey Multimeter Type 2001 secondary Standards	ID # SN: 0810278	Cal Date (Certificate No.) 01-Oct-13 (No.19976) Check Date (in house)	Schoduled Calibration Oct-14 Schoduled Check
Inmary Stendards Cetthicy Multimeter Type 2001 Secondary Stendards Auto DAE Calibration Unit	ID # SN: 0810278 ID U SE UWS 053 AA 1001	Cel Date (Certificate No.) 01-Oct-13 (No:13976)	Schaduled Calibration Oct-14
Calibration Equipment used (M& Inmary Standards Cetthkry Multimetur Typo 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # SN: 0810278 ID U SE UWS 053 AA 1001	Cal Date (Certificate No.) 01-Oct-13 (No.13976) Check Date (in house) 07-Jan-14 (in house check)	Scheduled Calibration Oct-14 Scheduled Check In house check: Jan-15
Inmary Stendards Leithky Multimeter Type 2001 Lecondary Stendards Luito DAE Calibration Unit Lalibrator Box V2.1	ID # SN: 0810278 ID II SE UNYS 063 AA 1001 SE UMS 066 AA 1002	Cal Date (Certificate No.) 01-Oct-13 (No.19976) Check Date (in house) 07-Jan-14 (in house check) 07-Jan-14 (in house check)	Schaduled Calibration Det-14 Scheduled Check In house check: Jan-15 In house check: Jan-15
Inmary Stendards Leithky Multimeter Type 2001 Lecondary Stendards Luito DAE Calibration Unit Lalibrator Box V2.1	ID # SN: 0810278 ID II SE UNS 053 AA 1001 SE UMS 066 AA 1002 Name	Cal Date (Certificate No.) 01-Oct-13 (No.19976) Check Date (in house) 07-Jan-14 (in house check) 07-Jan-14 (in house check)	Schaduled Calibration Det-14 Scheduled Check In house check: Jan-15 In house check: Jan-15
Inmery Stendards Leithkry Multimeter Type 2001 Secondary Standards Nulo DAE Calibration Unit	ID # SN: 0810278 ID II SE UNS 053 AA 1001 SE UMS 066 AA 1002 Name	Cal Date (Certificate No.) 01-Oct-13 (No.19976) Check Date (in house) 07-Jan-14 (in house check) 07-Jan-14 (in house check)	Schaduled Calibration Det-14 Scheduled Check In house check: Jan-15 In house check: Jan-15

Certificate No: DAE4-546_Aug14

Page 1 of 5

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205

Page number: 73 of 101

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlacher Kalibriardienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
 result from the performance test and regulre no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for Information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-546_Aug14

Page 2 of 5

Fax: 86-10-68009195 68009205

Page number: 74 of 101

DC Voltage Measurement A/O - Convertor Resolution nominal High Range: 1LSB = 6.1 μ V, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Υ	Z
High Range	405.342 ± 0.02% (k=2)	404.095 ± 0.02% (k=2)	404.193 ± 0.02% (k=2)
Low Range	3.98845 ± 1.50% (k=2)	3.95797 ± 1.50% (k=2)	3.97811 ± 1.50% (k=2)

Connector Angle

to a construct Marine Day (State of Marine) and the construction of the Construction o	400 MW MY 2004 COV
Connector Angle to be used in DASY system	240.0°±1°

Certificate No: DAE4-546_Aug14

Page 3 of 5

Appendix (Additional assessments outside the scope of SCS108)

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199996.94	0.31	0.00
Channel X + Input	20001.92	0.69	0.00
Channel X - Input	-19994.55	6.01	-0.03
Channel Y + Input	199997.25	0.46	0.00
Channel Y + Input	20000.06	-1.05	-0.01
Channel Y - Input	-20001.71	-1.01	0.01
Channel Z + Input	199987.80	-9.08	-0,00
Channel Z + Input	19997.61	-3.49	-0.02
Channel Z - Input	-19999.94	0.93	-0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2001.02	-0.06	+0.00
Channel X + Input	202.01	0.59	0.29
Channel X - Input	-197.99	0.45	-0.23
Channel Y + Input	2002.62	1.58	80.0
Channel Y + Input	200.93	-0.44	-0.22
Channel Y - Input	-199 54	-0.99	0.50
Channel Z + Input	2000.69	-0.15	-0.01
Channel Z + Input	201,05	-0.26	-0.13
Channel Z - Input	-199.61	-0.87	0.44

Common mode sensitivity
 DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	0.75	-0.68
	- 200	1.81	0.57
Channel Y	200	-0.62	-0.84
	- 200	-1.71	-2.16
Channel Z	200	1.95	2.10
	- 200	-3.24	-3.81

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (μV)
Channel X	200		-3.06	-2.70
Channel Y	200	10.17	24	-0.86
Channel Z	200	5.29	6.74	8

Certificate No. DAE4-546_Aug14

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205

Page number: 76 of 101

AD-Converter Values with inputs shorted DASY measurement parameters; Auto Zero Time: 3 sec. Measuring time: 3 sec.

	High Range (LSB)	Low Range (LSB)
Channel X	15837	15567
Channel Y	16153	14673
Channel Z	15909	16637

Input Offset Measurement
 DASY measurement parameters: Auto Zero Time; 3 sec; Measuring time: 3 sec input 10MΩ

iipus roivisa	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	1.05	0.19	1,92	0.35
Channel Y	-0.61	-1.74	1.08	0.46
Channel Z	-0.52	-1.45	0.55	0.35

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for Information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-546_Aug14

Page 5 of 6

Page number: 77 of 101

DAE4 - SN:725

Schmid & Partner Engineering AG

s p e a q

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speeg.com, http://www.speag.com

IMPORTANT NOTICE

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The peckage shall be marked to indicate that a fragile instrument is inside.

E-Stop Fallures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is vold if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

TN_BR040315AD DAE4.doc

11.12.2009

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205 Page number: 78 of 101

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstresse 43, 9004 Zurich, Switzerland

S Schweizerischer Kelibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilisteral Agreement for the recognition of calibration certificates

Client SRTC (Vitec)

Accreditation No.: SCS 108

Calibration procedure for the data acquisition electronics (DAE) Calibration procedure for the data acquisition electronics (DAE) Calibration procedure for the data acquisition electronics (DAE) Calibration date: October 24, 2014 This calibration certificate documents the traccability to national standards, which resize the physical units of measurements (SI), the measurements and the uncertainties with conficence probability are given on the following pages and are part of the cartificate of calibrations have been concluded in the closed laboratory facility, environment lemperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for catherition) Temperature Type 2001 Sinc 0810278 Disc Calibration (Cartificate No.) Scheduled Colloration Secondary Standards ID # Chack Date (in house) Scheduled Colloration Secondary Standards ID # Chack Date (in house) Scheduled Check In house check: Jan-15 In house check: Jan-1	CALIBRATION (CERTIFICATE	10000000000000000000000000000000000000	THE TOTAL
Calibration procedure for the data acquisition electronics (DAE) Calibration date: October 24, 2014 This calibration certificate documents the tracoability to national standards, which restize the physical units of measurements (SI). The measurements and the uncertainties with confecuse probability are given on the following pages and are part of the cartificate and confecusions have been conducted in the closed isboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Caribration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Colloration Selibitely Multimeter Type 2001 SN: 0610278 03-Oct-14 (No:15573) Oct-15 Secondary Standards ID # Check Date (in house) Scheduled Check Auto DAE Calibration Unit SE UWS 053 AA 1001 07-Jan-14 (in house check) In house check: Jan-15 Calibrated by: Function Name Function Signature Find Hainteld: Technical Poproved by: Fin Bominot Deputy Technical Managor F. Amedical Colloration Deputy Technical Managor F. Am	Object	DAE4 - SD 000 D	04 BM - SN: 725	
This calibration certificate documents the traceability to national standards, which resilize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the partitions. All celibrations have been conducted in the closed laboratory facility environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for celibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Celibration Keithley Multimeter Type 2001 SN: 0810278 03-Oct-14 (No:15573) Oct-15 Secondary Standards ID # Check Date (in house) Scheduled Check Auto DAE Calibration Unit SE UWS 053 AA 1001 07-Jan-14 (in house check) In house check: Jan-15 Celibrator Box V2.1 SE UMS 006 AA 1002 07-Jan-14 (in house check) Name Function Signature Celibrated by: Frie Heinfelds Technical Name Function Signature Find Heinfelds Technical Managor Function Deputy Technical Managor Function Deputy Technical Managor Function Deputy Technical Managor Function Deputy Technical Managor Function	Calibration procedure(s)	The state of the s	dure for the data acquisition of	electronics (DAE)
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All collibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for collibration): Primary Standards ID # Calibrate (Certificate No.) Scheduled Collibration Keithley Multimeter Type 2001 SN: 0810278 03-Oct-14 (No:18573) Oct-15 Secondary Standards ID # Chack Date (in house) Scheduled Check Auto DAE Calibration Unit SE UWS 083 AA 1001 07-Jan-14 (in house check) In house check: Jan-15 Calibrator Box V2.1 SE UMS 006 AA 1002 07-Jan-14 (in house check) In house check: Jan-15 Calibrated by: Name Function Signature Calibrated by: Fin Holling Deputy Technical Manager Function	Calibration date:	October 24, 2014		
Primary Standards ID # Call Date (Certificate No.) Scheduled Cellbration Keithley Multimeter Type 2001 SN: 6810278 03-Oct-14 (No:15573) Oct-15 Secondary Standards ID # Check Date (in house) Scheduled Check Auto DAE Calibration Unit SE UWS 053 AA 1001 07-Jan-14 (in house check) In house check: Jan-15 Calibrator Box V2.1 SE UWS 006 AA 1002 07-Jan-14 (in house check) In house check: Jan-15 Calibrator Box V2.1 SE UMS 006 Fin House Check Name Function Signature Calibrated by: Fin Bomhot Deputy Technical Managor Familial	The measurements and the unce	ertainties with confidence pro	obability are given on the following page	es and are part of the certificate.
Selibley Multimeter Type 2001 SN: 0810278 03-Oct-14 (No:19573) Oct-15 Secondary Standards ID # Chack Date (in house) Scheduled Check Auto DAE Calibration Unit SE UWS 053 AA 1001 07-Jan-14 (in house check) In house check: Jan-15 Salibrator Box V2:1 SE UMS 006 AA 1002 07-Jer-14 (in house check) In house check: Jan-15 Dailbrated by: Fine Halmfels Function Signature Poproved by: Fin Bomhot Deputy Technical Managor F. Smith U.S. Secondary Standards Oct-15 Oct-16 Oct-15 Oct-16 Oct-15 Oct-17 Oct-		12		
Secondary Standards ID # Check Date fin house) Scheduled Check Auto DAE Calibration Unit SE UWS 053 AA 1001 07-Jan-14 (in house check) SE UMS 006 AA 1002 07-Jan-14 (in house check) In house check: Jan-15 In house check: Jan-15 Name Function Signature Calibrated by: Pin Halmfelds Technician Approved by: Fin Bomhots Deputy Technical Manager Function		- Linean - L	the second of th	
Auto DAE Calibration Unit SE UWS 053 AA 1001 07-Jan-14 (in house check) SE UWS 056 AA 1002 07-Jan-14 (in house check) In house check: Jan-15 In house check: Jan	The same of the sa	Loss de l'est	W-04-14 (NO.15010)	Odela
Calibrated by: Name Function Signature Calibrated by: Fin Bomhot Deputy Technical Managor Familial	TABLE TO SELECT THE SE			
Calibrated by: Fin Bomhols Technician Approved by: Fin Bomhols Deputy Technical Managor F. Frankfull Technician Technician Technical Managor F. Frankfull Technician Technician Technical Managor F. Frankfull Technical Managor Technical Manag		TOTAL CONTRACTOR OF THE PROPERTY OF THE PROPER		
Calibrated by: Fin Bomholt Deputy Technical Managor F. Grand Mull				
Approved by Pin Bomholt Deputy Technical Managor F. Frankfull				
1 Smithalk	Submitted true	maked at the reservance		Signature
leaued: October 24, 2014	Calibrated by:	maked at the reservance		Signature
This calibration contilicate shall not be reproduced except in full without written approval of the (aboratory,		Enc Heinfeld	Technician	

Certificate No: DAE4-725_Oct14

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlacher Kalibrierdienst Service suisse d'étalonnage C Servizio avizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

data acquisition electronics DAE

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements,
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-725_Oct14

Page 2 of 5

Fax: 86-10-68009195 68009205

Copyright © SRTC

Page number: 80 of 101

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range; 1LSB = 6.1 µV, full range = -100...+300 mV

Low Range: 1LSB = 61 nV, full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Υ	Z
High Range	404.101 ± 0.02% (k-2)	404.861 ± 0.02% (k=2)	404.423 ± 0.02% (k=2)
Low Range	3.93490 ± 1.50% (k=2)	3.98924 ± 1.50% (k=2)	3.96578 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	233.0°±1°

Certificate No: DAE4-725_Oct14

Page 3 of 5

Appendix (Additional assessments outside the scope of SCS108)

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199993.41	-2.75	-0.00
Channel X + Input	20003.77	2,92	0.01
Channel X - Input	-19997.52	3.28	-0.02
Channel Y + Input	199993.22	-3.14	-0.00
Channel Y + Input	20004.18	3.24	0.02
Channel Y - Input	-19997.69	3.10	-0.02
Channel Z + Input	199994.75	-2.02	-0.00
Channel Z + Input	20002.42	1.40	0.01
Channel Z - Input	-20001.12	-0.37	0.00

Low Range	Reading (μV)	Difference (µV)	Error (%)
Channel X + Input	2000.97	-0.01	-0.00
Channel X + Input	201.54	0.13	0.06
Channel X - Input	-198.28	0.27	-0.14
Channel Y + Input	2000.58	-0.45	-0.02
Channel Y + Input	201.04	-0.38	-0.19
Channel Y - Input	-199.32	-0.75	0.38
Channel Z + Input	2001.31	0.40	0.02
Channel Z + Input	200.67	-0.76	-0.38
Channel Z - Input	-199.45	-0.89	0.45
		FOX 10 F. NO. 1	

2. Common mode sensitivity DASY measurement parameters: A

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	11.31	8.06
	- 500	-7.01	-9.50
Channel Y	200	-9.69	-9.97
	-200	10,11	9.43
Channel Z	200	-3.52	-4.05
	- 200	2.43	2.17

3. Channel separation

DASY measurement parameters: Auto Zero Time; 3 sec; Measuring time; 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-8	-1.55	-3.07
Channel Y	200	8.75	84	-0.57
Channel Z	200	4.75	8.31	561

Certificate No: DAE4-725_Oct14

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16151	13758
Channel Y	16212	16763
Channel Z	16108	15252

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec, Measuring time; 3 sec Input $10 M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.69	-0.41	1.57	0.45
Channel Y	-0.29	-1.88	0.96	0.50
Channel Z	-0.52	-1.97	0.94	0.51

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25tA

7. Input Resistance (Typical values for information)

VANOUT	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-725_Oct14

Page 5 of 5

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205

APPENDIX E: RELEVANT PAGES FROM DIPOLE VALIDATION KIT REPORT(S)

D835V2 - SN:4d023

Page number: 84 of 101

Calibration Laboratory of Schmid & Partner Engineering AG Zoughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst Service suisse d'étalonnage C Servizio sviszero di taratura S Swiss Calibration Service

Accredited by the Swas Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

SRTC (Vitec)

Accreditation No.: SCS 108

C-4W-11 D025V2 44022 O-114

CALIBRATION			
Object	D835V2 - SN: 40	1023	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	adure for dipole validation kils a	above 700 MHz
Calibration date:	October 09, 201	4	
This calibration certificate docum	nonts the traceability to nat	ronal standards, which realize the physics	Lurits of measurements (51).
The measurements and the unco	ertainties with confidence p cted in the olosed laborato	inchability are given on the following pages by lacility: anvironment temperature (22 ±	
The measurements and the unional conductions have been conducted (MX.)	erlainties with confidence p ched in the closed laborate TE critical for calibration)	ry lacility: environment tampérature (22 ±	3) 'C and humidity < 70%,
The measurements and the union of the union of the conduction of t	ertainties with confidence p cted in the olosed laborato	ry ladility: environment température (22 ± Cel Date (Certificate No.)	3)°C and humidify < 70%, Scheduled Calibration
The measurements and the union of calibrations have been condu- calibration Equipment used (MX Primary Standards Power mater EPM-442A	eriainties with confidence p chad in the closed laborate TE critical for calibration)	ry lacility: environment tampérature (22 ±	3) 'C and humidity < 70%,
The measurements and the uncom- id calibrations have been condu- tablestion Equipment used (MAX timery Standards tower mater EPIM-942A tower sensor HP 8481A	eriainties with confidence p cted in the closed laborato TE critical for celloration) ID # GB37480704	ry laulity: environment temperature (22 ± Cel Date (Certificate No.) 07-Cct-14 (No. 217-G2020)	SI*C and humidity < 70%, Scheduled Calibration Oct-15
The measurements and the uncommon terms of the uncommon terms of the second terms of t	eriainties with confidence p cted in the closed laborate TE critical for calibration) ID # GB37490704 US37292783	cy lacility: environment temperature (22 ± Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	SinG and humidity < 70%, Scheduled Calibration Oct-15 Oct-15
The measurements and the union All calibrations have been condu- calibration Equipment used (MAX Primary Standards Power sersor HP 8481A Power sensor HP 8481A Power sensor HP 8481A Paderence 20 off Attenuator type-N mismatch combination	erlainties with confidence p ched in the closed laborate TE critical for calibration) ID # GB37490704 US37292783 MY41092317	Oil Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	Scheduled Calibration Oct-15 Oct-15 Oct-15
The measurements and the uncommon All calibration Equipment used (MA Primary Standards Power meter EPM-442A Power sersor HP 8481A Power Sersor Power Powe	eriainties with confidence p chad in the closed laborate TE critical for calibration) ID # GBS7490704 US37292783 MY41092317 SN: 5058 (20k)	Call Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-02021)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15
The measurements and the union All calibrations have been condu- calibration Equipment used (MA Primary Standards Power meter EPM-442A Power sersor HP 8481A Power sersor HP 8481A Paderence 20 dB Attenuator type N mismatch combinetion totarence Probe ES30V3	eriainties with confidence p chad in the closed laborate TE critical for celibration) ID # GB37490704 US37292783 MY41092517 SN: 5058 (20k) SN: 5047.2706327	Cel Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-03918) 03-Apr-14 (No. 217-0391)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Apr-15
The measurements and the uncommon terms of t	eriainties with confidence p chad in the closed laborate TE critical for celloration) ID # GB37490704 US37292783 MY41092517 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01021) 30-Dec-13 (No. 217-01021)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-14
The measurements and the uncommon and calibrations have been conducted (MAX Primary Standards Prower service HP 8481A Prower service Service Standards Service HP 8481 SMT-06	eriainties with confidence p chad in the closed laborato TE critical for calibration) ID # GBS7490704 US37292783 MY41092917 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cel Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ESS-0205 Dec13) 18-Aug-14 (No. DAE4-601_Aug14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Apr-15 Dec-14 Aug-15
The measurements and the unco All calibrations have been condu- Celibration Equipment used (MX Primary Standards Prower meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator type-14 mismatch combination haterance Probe ES3DV3 DAE4	eriainties with confidence p chad in the closed laborate TE critical for calibration) ID # GBS7480704 USS7292783 MY41092917 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cell Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ESS-3205 Dac13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check
The measurements and the uncommon and calibrations have been conducted (MAX Primary Standards Prower service HP 8481A Prower service Service Standards Service HP 8481 SMT-06	entainties with confidence protected in the closed laborate TE critical for cellibration) D # CBS7480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047 2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	Cel Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01021) 30-Dec-13 (No. 217-01021) 30-Dec-13 (No. 225-0205 Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) D4-Aug-99 (in house check Oct-14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15
The measurements and the uncommon to conduct the conduct that the conduct	eriainties with confidence p chad in the closed laborate TE critical for calibration) ID # GB57490704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	Cell Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ESS-0205 Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) D4-Aug-99 (in house check Oct-14) Function	Scheduled Calibration Oct-15 Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Apr-15 Dec-14 Avg-15 Scheduled Check In house offects Oct-16
The measurements and the uncommon and calibrations have been conducted (MAX Primary Standards Prower service HP 8481A Prower service Service Standards Service HP 8481 SMT-06	entainties with confidence protected in the closed laborate TE critical for cellibration) D # CBS7480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047 2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	Cel Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01021) 30-Dec-13 (No. 217-01021) 30-Dec-13 (No. 225-0205 Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) D4-Aug-99 (in house check Oct-14)	Scheduled Calibration Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15

Certificate No: D835V2-4d023_Oct14

Page 1 of 8

Fax: 86-10-68009195 68009205

Page number: 85 of 101

Calibration Laboratory of Schmid & Partner Engineering AG Zaughausstrasse 43, 5004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di faratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swas Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF

N/A

tissue simulating liquid

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d023_Oct14

Page 2 of 8

Fax: 86-10-68009195 68009205

Copyright © SRTC

Page number: 86 of 101

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.9 ± 6 %	0.92 mha/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	- V2/A	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.23 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.52 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.01 W/kg ± 16.5 % (k=2)

Body TSL parameters
The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	1+404	

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.42 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.52 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.59 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.28 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d023_Oct14

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.4 Ω - 0.5 jΩ	
Return Loss	- 27.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.4 Ω - 2.2 jΩ	
Return Loss	- 32.9 dB	

General Antenna Parameters and Design

DOMESTIC STATE OF THE STATE OF		-
Electrical Delay (one direction)	1.389 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 17, 2004

Certificate No: D835V2-4d023_Oct14

Page 4 of 8

Fax: 86-10-68009195 68009205

Page number: 88 of 101

DASY5 Validation Report for Head TSL

Date: 09.10.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d023

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\alpha = 0.92 \text{ S/m}$; $\epsilon_r = 41.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6,22, 6,22, 6,22); Calibrated: 30,12,2013;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA, Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.39 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.48 W/kg SAR(1 g) = 2.34 W/kg; SAR(10 g) = 1.52 W/kgMaximum value of SAR (measured) = 2.73 W/kg

Certificate No: DB35V2-4d023 Oct14

Page 5 of 8

Fax: 86-10-68009195 68009205

Page number: 89 of 101

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-4d023_Oct14

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 09.10.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d023

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\epsilon_r = 54.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.09, 6.09, 6.09); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.09 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.56 W/kg SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 2.83 W/kg

0 dB = 2.83 W/kg = 4.52 dBW/kg

Certificate No: D835V2-4d023_Oct14

Page 7 of 8

Fax: 86-10-68009195 68009205

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-4d023_Oct14

Page B of 8

D1900V2 - SN:5d113

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8884 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizie svizzere di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client SRTC (Vitec)

Certificate No: D1900V2-5d113_Oct14

Accreditation No.: SCS 108

ALIBITATION	CERTIFICATE		
Object	D1900V2 - SN: 5	d113	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	October 13, 2014		
The measurements and the unco	ntainties with confidence p	constitution of the physical unitability are given on the following pages an reliability are given on the following pages an ry facility: environment temperature (22 = 3)°C	d are part of the certificate.
	TE critical for calibration)		
Calibration Equipment used (M&	TE officed for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (M8'		Cal Date (Certificate No.) 07-0m-14 (No. 217-02020)	Oct-15
Calibration Equipment used (M8' Primary Standards Power motor EPM-442A Power sensor HP 8481A	ID # GB37480704 US37292783	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020)	Oct-15 Oct-15
Calibration Equipment used (M8' Primary Standards Power motor EPM-442A Power sensor HP 8481A Power sensor HP 6481A	ID 4 GB37480704 US37292783 MY41092317	Cal Date (Certificate No.) 07-Om-14 (No. 217-02020) 07-Om-14 (No. 217-02020) 07-Om-14 (No. 217-02021)	Oct-15 Oct-15 Oct-15
Calibration Equipment used (M8' Primary Standards Power motor EPM-442A Power sensor HP 8481A Power sensor HF 6481A Reference 20 dB Attonuator	ID # GB37480704 US37292785 MY41092317 SN: 5058 (20k)	Cal Date (Certificate No.) 07-Ost-14 (No. 217-02020) 07-Ost-14 (No. 217-02020) 07-Ost-14 (No. 217-02021) 03-Apr-14 (No. 217-02021)	Oct-15 Oct-15 Oct-15 Apr-15
Calibration Equipment used (M8' Primary Standards Power motor EPM-442A Power sensor HP 8481A Power sensor HP 6481A Reference 20 dB Attorustor Type-N mismatch combination	ID # GB07480704 US37292785 MY41092317 SN: 5056 (20k) SN: 5047.2 / 05327	Cal Date (Certificate No.) 07-Ost-14 (No. 217-02020) 07-Ost-14 (No. 217-02020) 07-Ost-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921)	Oct 15 Cct-15 Cct-15 Apr-15 Apr-15
Calibration Equipment used (M8' Primary Standards Power motor EPM-442A Power sensor HP 8481A Power sensor HP 6481A Reference 20 dB Attorustor Type-N mismatch continuation Reference Probe ES3DV3	ID # GB07480704 US37292788 MY41092317 SN: 5056 (20k) SN: 5047.2 / 05327 SN: 3205	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 00-Oct-13 (No. ES3-3205_Dec13)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-14
Calibration Equipment used (M8' Primary Standards Power motor EPM-442A Power sensor HP 8481A Power sensor HP 6481A Reference 20 dB Attorustor Type-N mismatch continuation Reference Probe ES3DV3	ID # GB07480704 US37292785 MY41092317 SN: 5056 (20k) SN: 5047.2 / 05327	Cal Date (Certificate No.) 07-Ost-14 (No. 217-02020) 07-Ost-14 (No. 217-02020) 07-Ost-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921)	Oct 15 Cct-15 Cct-15 Apr-15 Apr-15
Calibration Equipment used (M8' Primary Standards Power motor EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Americator Type-N mismatch combination Reference Probe ESSDV3 DAE4	ID # GB07480704 US37292788 MY41092317 SN: 5056 (20k) SN: 5047.2 / 05327 SN: 3205	Cal Date (Certificate No.) 07-Ost-14 (No. 217-02020) 07-Ost-14 (No. 217-02020) 07-Ost-14 (No. 217-02020) 07-Ost-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Osc-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-801_Aug14) Check Date (in house)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-14 Aug-15 Schaduled Check
Calibration Equipment used (M8' Primary Standards Power motor EPM-442A Power sensor HP 8481A Power sensor HP 6481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R\$S SMT-06	ID # GB07480704 US37292783 MY41092317 SN: 5056 (20N) SN: 5047.2 / 05327 SN: 3206 SN: 601 ID #	Cal Date (Certificate No.) 07-Ost-14 (No. 217-02020) 07-Ost-14 (No. 217-02020) 07-Ost-14 (No. 217-02020) 07-Ost-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 09-Ost-13 (No. ES3-3206_Dec13) 18-Aug-14 (No. DAE4-801_Aug14) Check Date (in house)	Cct-15 Cct-15 Cct-15 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Cct-16
Calibration Equipment used (M8' Primary Standards Power motor EPM-442A Power sensor HP 8481A Power sensor HP 6481A Reference 20 dB Attoriustor Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator RSS SMT-06	ID # GB07480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5058 (20k) SN: 9047.2 / 05927 SN: 3206 SN: 601	Cal Date (Certificate No.) 07-Ost-14 (No. 217-02020) 07-Ost-14 (No. 217-02020) 07-Ost-14 (No. 217-02020) 07-Ost-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Osc-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-801_Aug14) Check Date (in house)	Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-14 Aug-15 Schaduled Check
Calibration Equipment used (M8' Primary Standards Power motor EPM-442A Power sensor HP 6481A Power sensor HP 6481A Reference 20 dB Attoriustor Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator RSS SMT-06	ID # GB07480704 US37292783 MY41092317 SN: 5056 (20N) SN: 5047.2 / 05327 SN: 3206 SN: 601 ID #	Cal Date (Certificate No.) 07-Ost-14 (No. 217-02020) 07-Ost-14 (No. 217-02020) 07-Ost-14 (No. 217-02020) 07-Ost-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 09-Ost-13 (No. ES3-3206_Dec13) 18-Aug-14 (No. DAE4-801_Aug14) Check Date (in house)	Cct-15 Cct-15 Cct-15 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Cct-16 In house check: Cct-16
Calibration Equipment used (M8' Primary Standards Power motor EPM-442A Power sensor HP 8481A Power sensor HP 6481A Reference 20 dB Attoriustor Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator RSS SMT-06 Network Analyzer HP 8753E	ID # GB07480704 US37292788 MY41092317 SN: 5056 (20k) SN: 5047.2 / 05327 SN: 3205 SN: 601 ID # 100005 US37390565 S4206	Cal Date (Certificate No.) 07-Ost-14 (No. 217-02020) 07-Ost-14 (No. 217-02020) 07-Ost-14 (No. 217-02021) 03-Apr-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 90-Ost-13 (No. E83-3205_Dec13) 19-Aug-14 (No. DAE4-801_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14)	Cct-15 Cct-15 Cct-15 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Cct-16
Calibration Equipment used (M8' Primary Standards Power motor EPM-442A Power sensor HP 8481A Power sensor HP 6481A Reference 20 dB Attenuator Type-1 mismatch combination Reference Probe ESSDV3 DAE4 Secondary Standards RIF generator RSS SMT-06 Network Analyzer HP 8753E	ID # GB07480704 US37292785 MY41092317 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 05327 SN: 3206 SN: 601 ID # 100005 US37390585 S4206	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. E33-3205_Dec13) 19-Aug-14 (No. DAE4-801_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-14) Function	Cct-15 Cct-15 Cct-15 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Cct-16 In house check: Cct-16
Calibration Equipment used (M8' Primary Standards Prower meter EPM-442A Power sensor HP 8481A Power sensor HP 6481A Reference 20 dB Attenuator Type-1 mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator RSS SMT-06 Network Analyzer HP 8753E Calibrated by: Approved by:	ID # GB07480704 US37292785 MY41092317 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.2 / 05327 SN: 3206 SN: 601 ID # 100005 US37390585 S4206	Cal Date (Certificate No.) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. E33-3205_Dec13) 19-Aug-14 (No. DAE4-801_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-14) Function	Cct-15 Cct-15 Cct-15 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Cct-16 In house check: Cct-16

Certificate No: D1900V2-5d113_Oct14

Page 1 of 8

Fax: 86-10-68009195 68009205

Page number: 93 of 101

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étaionnage
Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilleteral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: 01900V2-5d113_Oct14

Page 2 of 8

Tel: 86-10-68009202 68009203 Fax: 86-10-68009195 68009205 Page number: 94 of 101

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mha/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	$39.7 \pm 6~\%$	1.40 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		202

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.3 W/kg ± 17.0 % (k=2)
	A120-40-00-00-01-0-01-0-2-01-0-0	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	5.29.W/kg

Body TSL parameters

The following parameters and calculations were applied:

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.1 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	<0.5 ℃	****	

SAR result with Body TSL

SAR averaged over 1 cm2 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.1 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.34 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.4 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d113_Oct14

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.1 Ω + 7.4 $j\Omega$	
Return Loss	- 22.6 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$46.8 \Omega + 7.4 j\Omega$	
Return Loss	- 21.6 dB	

General Antenna Parameters and Design

r	100 P
Electrical Delay (one direction)	1.200 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	July 24, 2009	

Certificate No: D1900V2-5d113_Oct14

Page 4 of 8

Fax: 86-10-68009195 68009205 Copyright © SRTC

Page number: 96 of 101

DASY5 Validation Report for Head TSL

Date: 13.10.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d113

Communication System: UTD 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.4 \text{ S/m}$; $\epsilon_r = 39.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.06, 5.06, 5.06); Calibrated: 30.12.2013;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- · Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.58 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.29 W/kg Maximum value of SAR (measured) = 12.8 W/kg

0 dB = 12.8 W/kg = 11.07 dBW/kg

Conficate No: D1900V2-5d118_Oct14

Page 5 of 8

Fax: 86-10-68009195 68009205 C

Page number: 97 of 101

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-6d113_Oct14

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 13.10.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d113

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.51$ S/m; $\varepsilon_c = 53.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probc: ES3DV3 SN3205; ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2013;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.88 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.34 W/kg

SAR(1 g) = 10 W/Rg; SAR(10 g) = 5.34 W/RgMaximum value of SAR (measured) = 12.4 W/Rg

0 dB = 12.4 W/kg = 10.93 dBW/kg

Certificate No: D1900V2-5d113_Oct14

Page 7 of 8

Fax: 86-10-68009195 68009205

Page number: 99 of 101

Impedance Measurement Plot for Body TSL

Certificate No: D1900V2-5d113_Oct14

Page 8 of 8

APPENDIX F: Test Setup

Appendix Test Setup

Page number: 101 of 101