PHENIX Measurement of Direct Photon-Triggered Two-Particle Correlations in Heavy Ion Collisions and its Implication for Medium-Induced Energy Loss

Alexandre Lebedev
(Iowa State University)
for the PHENIX collaboration

Two-Particle Correlations

Two-particle correlations provide the opportunity to study QGP properties.

A proxy for jet correlation measurement.

Di-hadron correlations are sensitive to near and away-side QCD interactions.

Direct photon-hadron correlations provide additional benefits:

- Photons are colorless most direct measure of the parton energy. No trigger surface bias.
- Important complement to other jet measurement:
 - Different path length dependence.
 - Different relative contribution from quark vs gluon jets.

New PHENIX results on γ - h^{\pm} correlations at $\sqrt{s_{NN}} = 200$ GeV in d+Au, and Au+Au collisions

The PHENIX Detector

Two central arms covering $\phi \sim \pi/2$ each and $|\eta| < 0$.35

EMCal measures γ and $\pi^0 \rightarrow \gamma\gamma$

Drift Chamber (DC) and Pad Chamber (PC) tracking system measures charged hadrons

Forward Beam-Beam-Counter (BBC) and Zero-Degree-Calorimeter (ZDC) measure centrality classes in p+A and A+A

Direct Photon Measurement in PHENIX

Statistical subtraction

- Used in older Au+Au analyses.
- Subtract decay photons from all photon sample: $Y_{DIR} = (R_{\gamma}Y_{INC} Y_{DEC})/(R_{\gamma}-1)$ See *Phys. Rev. C80 024908* for details.

Isolation cone method

- Provides better uncertainty.
- Used in p+p and d+Au
- New Au+Au vs centrality results use this method.

- Subtract background (mixed events)
- \circ In d+Au we assume no flow, use ZYAM normalization.
- *In Au+Au measured flow is also subtracted.*

Per-trigger yields of hadrons

Proxy for the fraction of the quark's original moment carried by hadrons

$$z_{T} = \frac{p_{T}^{n}}{p_{T}^{\gamma}}$$

For better look at low z_T region we use

$$\xi = \ln(1/z_T)$$

Integrate over ϕ in away-side region to obtain fragmentation function vs ξ

Fragmentation function

Effective jet fragmentation function

$$D_q(z_T) = \frac{1}{N_{evt}} \frac{dN(z_T)}{dz_T}$$

$$I_{AA} = \frac{Y_{AA}}{Y_{pp}} \sim \frac{D_{AA}(zT)}{D_{pp}(z_T)}$$

In d+Au no significant modification compared to p+p

In Au+Au suppression at small ξ and enhancement at large ξ

Transition at $\xi \sim 1.2$

Trigger p_T dependence

Trigger p_T is a proxy for parton p_T

Enhancement is seen only at low p_T Qualitatively similar increase of I_{AA} with ξ is seen in intermediate p_T bin.

Enhancement is seen only for broad integration range at large angles.

Where does the transition occurs?

Transition from suppression to enhancement occurs not at fixed z_T

Models suggest transition at fixed p_T

Medium response in addition to redistribution of lost energy from high p_T hadrons?

Where does the lost energy go?

Enhancement disappears with narrow integration range. Suppression stays the same.

Monotonic increase of enhancement over suppression vs ξ .

Both plots suggest medium response dominated process.

Centrality dependence

Using isolation cone method in Au+Au allowed detailed look at centrality dependence.

$$R_{cone} = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$$

 $E_{TH} = aE_{\gamma} + b.$

Measure $I_{AA} = Y_{AA} / Y_{pp}$ as a function of z_T , for different p_T and centrality.

Purple bands show integration range and mean I_{AA} $z_T \approx 0.3$ is $\xi \approx 1.2$

Study suppression/enhancement with these averages

Average I_{AA} vs centrality

With narrow integration range enhancement is not pronounced.

High z_T range shows statistically significant monotonic increase in suppression with centrality.

Comparison to π^0

Good agreement with single π^0 suppression New result gives better constraint on suppression of high p_T hadrons vs centrality

Conclusions

- γ -h correlations are a powerful tool for studying QCD.
- d+Au collisions show no significant modification of fragmentation function compared to p+p
 - Possible CNM effects are small
- In AuAu enhancement at low z_T (high ξ) and suppression at high z_T (low ξ) is observed.
 - Suppression increases monotonically with centrality
 - Enhancement is largest for broad integration region and for soft hadrons
 - Transition from suppression to enhancement occurs at fixed hadron p_T
 - All this suggests medium response dominated processes.
- More measurements to come from PHENIX: large Au+Au data sets in 2014 and 2016 are currently being analyzed!