

Plan for the next part

Intuition • Problem Symmetry • Parameter sharing Convolution • Example: Edge detection A CNN model Convolution Layers Max Pooling • FC layers A bit of history

What is the problem?

Normal NN

How many parameters in each layer?

Example:

Input: $32 * 32 \approx 1000$

First layer: 100

Only 100,000 parms for 1 layer

- ⇒ Slow training
- **⇒** Overfitting

$$(n_{l-1}+1)\times n_l$$

How can we reduce the params?

1. Locality

2. Symmetry (Param sharing)

$$(n_{l-1}+1)\times n_l$$

Locality

Locality

Locality

Locality: How many are left?

Some of these params may be the same.

Symmetry: How many params?

Let's take a look at this in 2D

Let's take a look at this in 2D

For each node

$$= W_1 + W_2 + W_3 + W_4$$

This is called **Convolution**

$$= W_1 + W_2 + W_3 + W_4$$

Let's take a look at the code

Parameters &

Hyperparameters of convolution