Notação Projeto e Análise de Algoritmos

Pontifícia Universidade Católica de Minas Gerais

Material adaptado dos slides dos professores Felipe Cunha, Anna Izabel Tostes e do Livro do Prof. Ziviani (Projeto de Algoritmos)

Comportamento Assintótico de Funções

- O parâmetro n fornece uma medida da dificuldade para se resolver o problema
- Para valores suficientemente pequenos de n, qualquer algoritmo custa pouco para ser executado, mesmo os ineficientes
- A escolha do algoritmo não é um problema crítico para problemas de tamanho pequeno
- Logo, a análise de algoritmos é realizada para valores grandes de n
- Estuda-se o comportamento assintótico das funções de custo (comportamento de suas funções de custo para valores grandes de n)
- Para entradas grandes o bastante, as constantes multiplicativas e os termos de mais baixa ordem de um tempo de execução podem ser ignorados

Dominação Assintótica

- A análise de um algoritmo geralmente conta com apenas algumas operações elementares
- A medida de custo ou medida de complexidade relata o crescimento assintótico da operação considerada
- **Definição:** Uma função f(n) **domina assintoticamente** outra função g(n) se existem duas constantes positivas c e n_0 tais que, para $n \ge n_0$, temos $|g(n)| \le c \times |f(n)|$

Dominação Assintótica - Exemplo

- Sejam $h_1(n) = (n + 1)^2 e h_2(n) = n^2$
- **Definição:** Uma função f(n) **domina assintoticamente** outra função g(n) se existem duas constantes positivas c e n_0 tais que, para $n \ge n_0$, temos:

$$|g(n)| \le c \times |f(n)|$$

- Quem domina quem?
 - \circ h₁(n) domina h₂(n)?
 - \circ h₂(n) domina h₁(n)?
 - Ambas funções dominam uma a outra?

Dominação Assintótica - Exemplo

Sejam

- $h_1(n) = (n + 1)^2$ e $h_2(n) = n^2$

$$h_2(n) = n^2$$

- **Definição:** Uma função f(n) domina assintoticamente outra função g(n) se existem duas constantes positivas c e n_0 tais que, para $n \ge n_0$, temos: $|g(n)| \le c \times |f(n)|$
- $h_1(n)$ domina $h_2(n)$, pois existe constantes ($C = 1 e n_0 = 0$). Neste caso:

$$|(n^2)| \le |(n+1)^2|$$
 $n \ge 0$

• $h_2(n)$ domina $h_1(n)$, pois existe constantes ($C = 4 e n_0 = 1$). Neste caso:

$$|(n+1)^2| \le 4|(n^2)|$$
 $n \ge 1$

Como Medir o Custo de Execução de um Algoritmo?

Função de Custo ou Função de Complexidade

- T(n) = medida de custo necessário para executar um algoritmo para um problema de tamanho n
- Se T(n) é uma medida da quantidade de tempo necessário para executar um algoritmo para um problema de tamanho n, então T é chamada função de complexidade de tempo de algoritmo
- Se T(n) é uma medida da quantidade de memória necessária para executar um algoritmo para um problema de tamanho n, então T é chamada função de complexidade de espaço de algoritmo

Observação: TEMPO NÃO É TEMPO!

É importante ressaltar que a complexidade de tempo na realidade não representa tempo diretamente, mas o número de vezes que determinada operação considerada relevante é executada.

Custo Assintótico de Funções

- É interessante comparar algoritmos para valores grandes de n
- O custo assintótico de uma função T(n) representa o limite do comportamento de custo quando n cresce
- Em geral, o custo aumenta com o tamanho n do problema

Observação:

Para valores pequenos de n, mesmo um algoritmo ineficiente não custa muito para ser executado

Notação assintótica de funções

- Existem três notações principais na análise de assintótica de funções:
 - Notação O ("O" grande)
 - Notação Ω
 - Notação Θ

Notação O

• f(n) = O(g(n))

Notação O

- A notação O define um limite superior para a função, por um fator constante
- Escreve-se f(n) = O(g(n)), se existirem constantes positivas $c \in n_0$ tais que para $n \ge n_0$, o valor de f(n) é menor ou igual a cg(n).
 - o Pode-se dizer que g(n) é um limite assintótico superior (em inglês, asymptotically upper bound) para f(n)

$$f(n) = O(g(n)), \exists c > 0 e n_0 | 0 \le f(n) \le cg(n), \forall n \ge n_0$$

- Escrevemos f(n) = O(g(n)) para expressar que g(n) domina assintoticamente f(n). Lê-se f(n) é da ordem no máximo g(n).
- Observe que a notação O define um conjunto de funções:

$$O(g(n)) = \{ f : \aleph \to \Re^+ \mid \$c > 0, n_0, 0 \le f(n) \le cg(n), \quad n \ge n_0 \}$$

Notação O: Exemplos

- Seja $f(n) = (n + 1)^2$
 - o Logo $f(n) \in O(n^2)$, quando no = 1 e c = 4, já que

$$(n+1)^2 \le 4n^2$$
 para $n \ge 1$

- Seja $f(n) = n e g(n) = n^2$. Mostre que g(n) não é O(n).
 - Sabemos que f(n) é $O(n^2)$, pois para $n \ge 0$, $n \le n^2$.
 - Suponha que existam constantes c e no tais que para todo $n \ge n_0$, $n^2 \le cn$.
 - o Assim, $c \ge n$ para qualquer $n \ge n_0$.
 - No entanto, n\u00e3o existe uma constante c que possa ser maior ou igual a n para todo n.

Notação O: Exemplos

- Mostre que $g(n) = 3n^3 + 2n^2 + n$ é $O(n^3)$
 - o Basta mostrar que $3n^3 + 2n^2 + n \le 6n^3$ para $n \ge 0$
 - O A função $g(n) = 3n^3 + 2n^2 + n$ é também $O(n^4)$, entretanto esta afirmação é mais fraca que dizer que g(n) é $O(n^3)$

- Mostre que $h(n) = \log_5 n$ é $O(\log n)$
 - \circ O $\log_b n$ difere do $\log_c n$ por uma constante que no caso é $\log_b c$
 - o Como $n=c^{\log_c n}$, tomando o logaritmo base b em ambos os lados da igualdade, temos que $\log_b n = \log_b c^{\log_c n} = \log_c n \times \log_b c$

Notação O: Exemplos

Exemplo

Seja $f(n) = \log_2 n$. É verdade que $f(n) = O(\log_5 n)$?

- Note que $\log_2 n = \frac{\log_5 n}{\log_5 2}$ (mudança de base de logaritmo).
- Então, basta mostrar que $\exists c, n_0$ contantes tal que $\frac{\log_5 n}{\log_5 2} \le c \log_5 n$, para $n \ge n_0$.
- (divide os dois lados por $log_5 n$) Assim, basta escolher $c \ge \frac{1}{\log_5 2}$ e $n_0 \ge 0$.

Podemos generalizar para obter o seguinte resultado:

Teorema (Exercício)

$$\log_b n = O(\log_a n)$$
 para todo $a > 1, b > 1$.

Notação O

- Quando a notação O é usada para expressar o tempo de execução de um algoritmo no pior caso, está se definindo também o limite superior do tempo de execução desse algoritmo para todas as entradas
- Por exemplo, o algoritmo de ordenação por inserção é O(n²) no pior caso
 - Este limite se aplica para <u>qualquer</u> entrada

Notação O

- Tecnicamente é um abuso dizer que o tempo de execução do algoritmo de ordenação por inserção é $O(n^2)$ (i.e., sem especificar se é para o pior caso, melhor caso, ou caso médio)
 - O tempo de execução desse algoritmo depende de como os dados de entrada estão arranjados.
 - O Se os dados de entrada já estiverem ordenados, este algoritmo tem um tempo de execução de O(n), ou seja, o tempo de execução do algoritmo de ordenação por inserção no melhor caso é O(n).
- O que se quer dizer quando se fala que "o tempo de execução é O(n²)" é
 que no pior caso o tempo de execução é O(n²)
 - o u seja, não importa como os dados de entrada estão arranjados, o tempo de execução em qualquer entrada é $O(n^2)$

Operações com a notação O

$$f(n) = O(f(n))$$

$$c \times O(f(n)) = O(f(n)) \ c = constante$$

$$O(f(n)) + O(f(n)) = O(f(n))$$

$$O(O(f(n)) = O(f(n))$$

$$O(f(n)) + O(g(n)) = O(max(f(n), g(n)))$$

$$O(f(n))O(g(n)) = O(f(n)g(n))$$

$$f(n)O(g(n)) = O(f(n)g(n))$$

Operações com a notação O: Exemplos

- Regra da soma O(f(n)) + O(g(n))
 - Osuponha três trechos cujos tempos de execução sejam $O(n), O(n^2)$ e $O(n \log n)$
 - \circ O tempo de execução dos dois primeiros trechos é $\mathrm{O}(\max(n,n^2))$, que é $\mathrm{O}(n^2)$
 - O tempo de execução de todos os três trechos é então

$$O(\max(n^2, \log n))$$
 que é $O(n^2)$

• O produto de $[\log n + k + O(1/n)]$ por $[n + O(\sqrt{n})]$ é

$$n \log n + kn + O(\sqrt{n} \log n)$$

Operações com a notação O: Exemplos

Teorema da Soma

Sejam $\overline{f}(n), \overline{g}(n)$ funções não negativas tais que $\overline{f}(n) = O(f(n))$ e $\overline{g}(n) = O(g(n))$. Então

$$\overline{f}(n) + \overline{g}(n) = O(f(n) + g(n)).$$

Demonstração.

- Pela definição, $\exists c_1, n_1$ tal que $\overline{f}(n) \leq c_1 f(n)$ para $n \geq n_1$.
- Pela definição, $\exists c_2, n_2$ tal que $\overline{g}(n) \leq c_2 g(n)$ para $n \geq n_2$.
- Assim,

$$\overline{f}(n) + \overline{g}(n) \le c_1 f(n) + c_2 g(n)$$

 $\le \max\{c_1, c_2\}(f(n) + g(n))$

para $n \geq \max\{n_1, n_2\}$.

• Portanto, $\overline{f}(n) + \overline{g}(n) \le c(f(n) + g(n))$ para algum $n \ge n_0$.

Notação Ω

• $f(n) = \Omega(g(n))$

Notação Ω

- A notação Ω define um limite inferior para a função, por um fator constante
- Escreve-se $f(n) = \Omega(g(n))$, se existirem constantes positivas c e no tais que para $n \ge n^\circ$, o valor de f(n) é maior ou igual a cg(n)
 - o Pode-se dizer que g(n) é um limite assintótico inferior (em inglês, asymptotically lower bound) para f(n)

$$f(n) = \Omega(g(n)), \exists c > 0 \in n_0 \mid 0 \le cg(n) \le f(n), \forall n \ge n_0$$

• Observe que a notação Ω define um conjunto de funções:

$$W(g(n)) = \{ f : \aleph \to \Re^+ \mid \$c > 0, n_0, 0 \le cg(n) \le f(n), \quad "n \ge n_0 \}$$

Notação Ω

- Quando a notação Ω é usada para expressar o tempo de execução de um algoritmo no melhor caso, está se definindo também o limite (inferior) do tempo de execução desse algoritmo para todas as entradas
- Por exemplo, o algoritmo de ordenação por inserção é $\Omega(n)$ no melhor caso
 - \circ O tempo de execução do algoritmo de ordenação por inserção é $\Omega(\mathsf{n})$
- O que significa dizer que "o tempo de execução" (i.e., sem especificar se é para o pior caso, melhor caso, ou caso médio) é $\Omega(g(n))$?
 - O tempo de execução desse algoritmo é pelo menos uma constante vezes g(n) para valores suficientemente grandes de n

Notação Ω : Exemplos

• Para mostrar que $f(n) = 3n^3 + 2n^2$ é $\Omega(n^3)$ basta fazer c = 1, e então $3n^3 + 2n^2 \ge n^3$ para $n \ge 0$

Notação Θ

• $f(n) = \Theta(g(n))$

Notação Θ

- A notação ⊕ limita a função por fatores constantes
- Escreve-se f(n) = Θ(g(n)), se existirem constantes positivas c1, c2 e no tais que para n ≥ no, o valor de f(n) está sempre entre c1g(n) e c2g(n) inclusive
- Neste caso, pode-se dizer que g(n) é um limite assintótico firme (em inglês, asymptotically tight bound) para f(n)

$$f(n) = \Theta(g(n)), \exists c_1 > 0, c_2 > 0 \text{ e } n_0 \mid 0 \text{ f } c_1 g(n) \text{ f } f(n) \text{ f } c_2 g(n), \text{ " } n \text{ } 3 \text{ } n_0$$

Observe que a notação Θ define um conjunto de funções:

$$Q(g(n)) = \{ f : \aleph \to \Re^+ \mid \$c_1 > 0, c_2 > 0, \ n_0, 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \ "n \ge n_0 \}$$

Notação Θ: Exemplo

- Mostre que $\frac{1}{2}n^2 3n = \Theta(n^2)$
- Para provar esta afirmação, devemos achar constantes c₁ > 0, c₂ > 0, n₀
 > 0, tais que:

$$c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2$$

- para todo n ≥ n_o
- Se dividirmos a expressão acima por n² temos:

$$c_1 \le \frac{1}{2} - \frac{3}{n} \le c_2$$

$$\lim_{n \to \infty} \left(\frac{1}{2} - \frac{3}{n}\right)$$

Notação Θ: Exemplo

Notação ⊕: Exemplo

- A inequação mais a direita será sempre válida para qualquer valor de $n^3 1$ ao escolhermos $c_2 \ge \frac{1}{2}$
- Da mesma forma, a inequação mais a esquerda será sempre válida para qualquer valor de $n \ge 7$ ao escolhermos $c_1 \le \frac{1}{14}$
- Assim, ao escolhermos $c_1 = 1/14$, $c_2 = 1/2$ e $n_0 = 7$, podemos verificar que

$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

- Note que existem outras escolhas para as constantes c₁ e c₂, mas o fato importante é que a escolha existe
- Note também que a escolha destas constantes depende da função $\frac{1}{2}n^2 3n$
- Uma função diferente pertencente a $\Theta(n^2)$ irá provavelmente requerer outras constantes

Exercício

• Usando a definição formal de Θ , prove que $6n^3 \neq \Theta(n^2)$.

Exercício

• Usando a definição formal de Θ , prove que $6n^3 \neq \Theta(n^2)$.

We can also use the formal definition to verify that $6n^3 \neq \Theta(n^2)$. Suppose for the purpose of contradiction that c_2 and n_0 exist such that $6n^3 \leq c_2n^2$ for all $n \geq n_0$. But then dividing by n^2 yields $n \leq c_2/6$, which cannot possibly hold for arbitrarily large n, since c_2 is constant.

Intuitively, the lower-order terms of an asymptotically positive function can be ignored in determining asymptotically tight bounds because they are insignificant for large n. When n is large, even a tiny fraction of the highest-order term suffices to dominate the lower-order terms. Thus, setting c_1 to a value that is slightly smaller than the coefficient of the highest-order term and setting c_2 to a value that is slightly larger permits the inequalities in the definition of Θ -notation to be satisfied. The coefficient of the highest-order term can likewise be ignored, since it only changes c_1 and c_2 by a constant factor equal to the coefficient.

Notações: Propriedades

- Reflexividade:
 - o f(n) = O(f(n)).
 - o $f(n) = \Omega(f(n))$.
 - o $f(n) = \Theta(f(n))$.
- Simetria:
 - o $f(n) = \Theta(g(n))$ se, e somente se, $g(n) = \Theta(f(n))$.
- Simetria Transposta:
 - o f(n) = O(g(n)) se, e somente se, $g(n) = \Omega(f(n))$.
- Transitividade:
 - Se f(n) = O(g(n)) e g(n) = O(h(n)), então f(n) = O(h(n)).
 - Se $f(n) = \Omega(g(n))$ e $g(n) = \Omega(h(n))$, então $f(n) = \Omega(h(n))$.
 - Se $f(n) = \Theta(g(n))$ e $g(n) = \Theta(h(n))$, então $f(n) = \Theta(h(n))$.

Notações: Relações Úteis

•
$$\log_b n = O(\log_a n)$$
 [a, b > 1]

•
$$n^b = O(n^a)$$

•
$$b^n = O(a^n)$$

•
$$\log b n = O(n^a)$$

$$\lceil a > 1 \rceil$$

•
$$n^b = O(a^n)$$

•
$$n! = O(n^n)$$

•
$$n! = \Omega(2^n)$$

•
$$\lg(n!) = \Theta(n \lg n)$$

Notações: Relações Úteis

Quais as notações mais indicadas para expressar a complexidade de casos específicos de um algoritmo, do algoritmo de modo geral e da classe de algoritmos para o problema?

Casos específicos:

- o ideal é a notação Θ , por ser um limite assintótico firme.
- o A notação O também é aceitável e bastante comum na literatura.
- \circ Embora possa teoricamente ser usada, a notação Ω é mais fraca neste caso e deve ser evitada para casos específicos.

Algoritmo de forma geral:

- Se o algoritmo comporta-se de forma idêntica para qualquer entrada, a notação Θ é a mais precisa (lembre-se que $f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n))$).
- Se os casos melhor e pior são diferentes, a notação mais indicada é a O, já que estaremos interessados em um limite assintótico superior.
- O pior caso do algoritmo deve ser a base da análise.

Para uma classe de algoritmos:

O Neste caso estamos interessados no limite inferior para o problema e a notação deve ser a Ω .

Limites do Algoritmo de Ordenação por Inserção

- O tempo de execução do algoritmo de ordenação por inserção está entre $\Omega(n)$ e $O(n^2)$
- Estes limites são assintoticamente os mais firmes possíveis
 - O Por exemplo, o tempo de execução deste algoritmo não é $\Omega(n^2)$, pois o algoritmo executa em tempo $\Theta(n)$ quando a entrada já está ordenada

Funções de Custo (nº de comparações): Algoritmo de Ordenação por Inserção

(n° de elementos a serem ordenados)

Funções de Custo e Notações Assintóticas: Algoritmo de Ordenação por Inserção

Pior Caso:

$$c_{ ext{Pior Caso}}(n) = rac{n^2}{2} + rac{n}{2} - 1 = rac{oldsymbol{O}}{oldsymbol{\Theta}} \ (\ n^2\)$$

Caso Médio:

$$c_{\mathsf{Caso\ Médio}}(n) = rac{n^2}{4} + rac{3n}{4} - 1 = egin{array}{c} O \ \Theta \end{array} \left(\begin{array}{c} n^2 \end{array}
ight)$$

Melhor caso:

$$c_{\mathsf{Melhor\;Caso}}(n) = n-1 \qquad = egin{array}{c} O \ \ominus \ \Omega \end{array} \left(egin{array}{c} n \end{array}
ight)$$

indica a notação normalmente usada para esse caso.

Teorema

• Para quaisquer funções f(n) e g(n),

$$f(n) = \Theta(g(n))$$

se e somente se,
$$f(n) = O(g(n))$$
, e

$$f(n) = \Omega(g(n))$$

Mais sobre notação assintótica de funções

- Existem duas outras notações na análise assintótica de funções:
 - Notação o ("O" pequeno)
 - Notação ω
- Estas duas notações não são usadas normalmente, mas é importante saber seus conceitos e diferenças em relação às notações O e Ω , respectivamente

Notação o

- O limite assintótico superior definido pela notação O pode ser assintoticamente firme ou não
 - o Por exemplo, o limite $2n^2 = O(n^2)$ é assintoticamente firme, mas o limite não é $2n = O(n^2)$
- A notação o é usada para definir um limite superior que não é assintoticamente firme
- Formalmente a notação o é definida como:

$$f(n) = o(g(n))$$
, para qualquer $c > 0$ e $n_0 \mid 0 \le f(n) < cg(n), \forall n \ge n_0$

• Exemplo, $2n = o(n^2)$ mas $2n^2 \neq o(n^2)$

Notação o

- As definições das notações O e o são similares
 - o A diferença principal é que em f(n) = o(g(n)), a expressão $0 \le f(n) < cg(n)$ é válida para todas constantes c > 0
- Intuitivamente, a função f(n) tem um crescimento muito menor que g(n) quando n tende para infinito.
 - Isto pode ser expresso da seguinte forma:

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$$

Alguns autores usam este limite como a definição de o

Notação ω

- Por analogia, a notação ω está relacionada com a notação Ω da mesma forma que a notação o está relacionada com a notação O
- Formalmente a notação ω é definida como:

$$f(n) = \omega(g(n))$$
, para qualquer $c > 0$ e $n_0 \mid 0 \le cg(n) < f(n), \forall n \ge n_0$

- Por exemplo, $\frac{n^2}{2} = \omega(n)$, mas $\frac{n^2}{2} \neq \omega(n^2)$
- A relação $f(n) = \omega(g(n))$ implica em:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

se o limite existir!