Energía Cinética Angular

Alejandro A. Torassa

Licencia Creative Commons Atribución 3.0 (2014) Buenos Aires, Argentina atorassa@gmail.com

Resumen

Este trabajo presenta una ecuación alternativa para calcular la energía cinética angular de una partícula que describe un movimiento circular.

Energía Cinética Angular

La energía cinética angular de una partícula A de masa m_a , está dada por:

$$1/2 m_a (\mathbf{r} \times \mathbf{v}_a)^2$$

donde \mathbf{r} es un vector posición que es constante en magnitud y dirección y \mathbf{v}_a es la velocidad de la partícula A.

Si la partícula A tiene una velocidad angular ω_a y como $\mathbf{v}_a = \omega_a \times \mathbf{r}_a$, se obtiene:

$$1/2 m_a (\mathbf{r} \times (\boldsymbol{\omega}_a \times \mathbf{r}_a))^2$$

Si el vector posición ${\bf r}$ es paralelo a la velocidad angular ω_a , entonces se deduce:

$$1/2 m_a \mathbf{r}_a^2 (\mathbf{r} \cdot \boldsymbol{\omega}_a)^2$$

Finalmente, como $m_a \mathbf{r}_a^2$ es el momento de inercia I_a de la partícula A, se tiene:

$$1/2 I_a (\mathbf{r} \cdot \boldsymbol{\omega}_a)^2$$