Probabilités et statistiques

8 mars 2016

Table des matières

1	\mathbf{Pro}	babilités discrètes	3
2	Inté	égrale de Lebesgue	4
3	Var	iables aléatoires réelles	5
	3.1	Calculs de lois	5
4	Loi	forte des grands nombres	6
	4.1	Evénements indépendants	6
	4.2	Variables aléatoires réelles indépendantes	6
	4.3	Lemme fondamental de la convergence presque sûre	6
5	Vecteurs aléatoires		7
	5.1	Notions et propriétés	7
	5.2	Application à l'indépendance	9
	5.3		9
	5.4		9
		5.4.1 Espérance d'un vecteur aléatoire	9
		-	9
	5.5	Fonctions caractéristiques	11
	5.6	Vecteurs gaussiens	13
6	Théorème limite centrale 15		
	6.1	Convergence en loi	15
	6.2	Enoncé du théorème de limite central	18
7	Sta	tistiques	19

Introduction

Probabilités discrètes

Chapitre 2 Intégrale de Lebesgue

Variables aléatoires réelles

3.1 Calculs de lois

Proposition 3.1. Soit $X : \Omega \to \mathbb{R}$ une variable aléatoire réelle de loi P_X . Soit $\mu : \mathcal{B}(\mathbb{R}) \to [0,1]$ une probabilité tel que, pour toute fonction $h : \mathbb{R} \to \mathbb{R}$ mesurable positive,

$$E(h(X)) = \int_{\mathbb{R}} h(x)d\mu \tag{3.1}$$

Alors $\mu = P_X$.

$$D\acute{e}monstration.$$

Exercice 3.1. Soit X une variable aléatoire réelle. Calculer la loi de Y pour les cas suivants.

- $X \sim \mathcal{N}(0,1) \ et \ Y := X^2.$
- $-X \sim \mathcal{U}([0,1]) \ et \ Y := \max(X, -X).$
- $-X \sim \mathcal{C} \stackrel{\text{def}}{et} \stackrel{\text{for }}{Y} := \frac{1}{X}.$

Loi forte des grands nombres

- 4.1 Evénements indépendants
- 4.2 Variables aléatoires réelles indépendantes
- 4.3 Lemme fondamental de la convergence presque sûre

Vecteurs aléatoires

Dans ce chapitre, on considère (Ω, \mathcal{A}, P) un espace de probabilité. Rappelons que $P:(\Omega, \mathcal{A}) \to [0, 1]$.

5.1 Notions et propriétés

Rappelons qu'une variable aléatoire réelle n'est qu'une fonction mesurable de l'espace mesurable (Ω, \mathcal{A}) dans l'espace mesurable $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Définition 5.1. Un vecteur aléatoire X dans \mathbb{R}^d est un d-uplet (X_1, \dots, X_d) de variable aléatoire réelle.

On note
$$X = (X_1, \cdots, X_d)$$
.

Il en découle immédiatement la proposition suivante.

Proposition 5.2. $X = (X_1, \dots, X_d)$ est un vecteur aléatoire ssi $X : (\Omega, \mathcal{A}) \to (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ est mesurable.

$$D\'{e}monstration.$$

Nous définissons alors naturellement la loi d'un vecteur aléatoire.

Définition 5.3. Soit $X = (X_1, \dots, X_d)$ un vecteur aléatoire.

On définit la loi de X, noté P_X comme la fonction

$$P_X: (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d)) \to [0, 1] \tag{5.1}$$

$$A \to P_X(A) \tag{5.2}$$

 $o \hat{u}$

$$P_X(A) := P(X^{-1}(A)) \tag{5.3}$$

$$:= P(\{\omega \in \Omega \mid X(\omega) \in A\}) \tag{5.4}$$

$$:= P(X \in A) \tag{5.5}$$

On utilisera plus souvent la notation $P(X \in A)$. On note alors $X \sim P_X$.

Proposition 5.4. Soit $X = (X_1, \dots, X_d)$ un vecteur aléatoire.

Alors P_X est une probabilité sur l'espace $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$.

 $D\'{e}monstration.$

Comme nous avons fait pour les variables aléatoires réelles dans le chapitre 3, nous allons discerner deux types de vecteurs aléatoires.

Définition 5.5. Soit $X = (X_1, \dots, X_d)$ un vecteur aléatoire.

- 1. On dit que X est (un vecteur aléatoire) discret si sa loi est discrète.
- 2. On dit que X est (un vecteur aléatoire) continue si sa loi est continue.

Définition 5.6. Soit $X = (X_1, \dots, X_d)$ un vecteur aléatoire. Les lois des X_k , $1 \le k \le d$, sont appelées **les lois marginales**, et la loi de X est appelée **loi conjointe**.

Proposition 5.7. Soit $X = (X_1, \dots, X_d)$ un vecteur aléatoire. Soit $A \in \mathcal{B}(\mathbb{R}^d)$. Alors

$$P_{X_k}(A) = P_X(\overbrace{\mathbb{R} \times \cdots \times \mathbb{R}}^{k-1 \text{ fois}} \times A \times \overbrace{\mathbb{R} \times \cdots \times \mathbb{R}}^{d-k \text{ fois}})$$
(5.6)

 $D\'{e}monstration.$

Corollaire 5.8. Soit X = (X, Y) un vecteur aléatoire discret.

Alors, les assertions suivantes sont équivalentes.

- 1. $X \perp Y$.
- 2. les produits des probabilités des lois marginales donnent la loi conjointe.

$$D\'{e}monstration.$$

Nous pouvons alors généraliser le théorème du transfert vu dans le cas des variables aléatoires réelles.

Théorème 5.9 (Théorème du transfert). Soit $X = (X_1, \dots, X_d)$ un vecteur aléatoire. Soit $h : (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d)) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ mesurable.

Alors:

$$\int_{\Omega} h(X)dP = \int_{\mathbb{R}^d} h(x)dP_X(x)$$
(5.7)

5.2 Application à l'indépendance

5.3 Calcul de loi

5.4 Espérance et covariance

5.4.1 Espérance d'un vecteur aléatoire

Définition 5.10. Soit $X = (X_1, \dots, X_d)$ un vecteur aléatoire intégrable. **L'espérance de** X est le d-uplet réel $E(X) := (E(X_1), \dots, E(X_d))$.

Proposition 5.11. Soient $X = (X_1, \dots, X_d)$ un vecteur aléatoire intégrable de (Ω, \mathcal{A}) dans $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ et $A \in M_{d' \times d}(\mathbb{R})$

Alors Y := AX est un vecteur aléatoire intégrable de (Ω, \mathcal{A}) dans $(\mathbb{R}^{d'}, \mathcal{B}(\mathbb{R}^{d'}))$ et E(Y) = A.E(X).

 $D\'{e}monstration.$

5.4.2 Matrice de covariance d'un vecteur aléatoire

Définition 5.12. Soient X et Y deux variables aléatoires de carré intégrable. La covariance de X et Y, notée Cov(X,Y), est définie par

$$Cov(X,Y) = E((X - E(X))(Y - E(Y)))$$
 (5.8)

Proposition 5.13. Soient X, Y et Z trois variables aléatoires de carré intégrable, et deux réels a et b.

- 1. Cov(X,X) = Var(X)
- 2. Cov(X,Y) = E(XY) E(X)E(Y)
- 3. Cov(X,Y) = Cov(Y,X)
- 4. Cov(aX + bY, Z) = aCov(X, Z) + bCov(Y, Z)
- 5. $|Cov(X,Y)| \le \sqrt{Var(X)}\sqrt{Var(Y)}$

 $D\'{e}monstration.$

Proposition 5.14. Soient X_1, \dots, X_d des variables aléatoires réelles de carré intégrable.

Alors

$$Var(X_1 + \dots + X_d) = \sum_{i=1}^{d} Var(X_i) + 2 \sum_{1 \le i \le k \le d} Cov(X_j, X_k)$$
 (5.9)

Démonstration.

Définition 5.15. Soient X, Y deux variables aléatoires réelles. On dit que X et Y sont non corrélés si Cov(X, Y) = 0.

Remarque. Soient X, Y deux variables aléatoires réelles.

Alors, les assertions suivantes sont équivalentes.

- 1. X et Y sont non corrélés
- 2. E(XY) = E(X)E(Y)
- 3. Var(X + Y) = Var(X) + Var(Y).

Remarque. Soient X, Y deux variables aléatoires réelles.

1. $Si X \perp Y \ alors X \ et Y \ sont \ non \ corrélés.$

Définition 5.16. Soit $X = (X_1, \dots, X_d)$ un vecteur aléatoire de carré intégrable.

On appelle matrice de covariance de X la matrice K_X donnée par

$$(Cov(X_i, X_k))_{1 \le i,k \le d}$$

On a $K_X \in M_d(\mathbb{R})$.

Proposition 5.17. Soit $X = (X_1, \dots, X_d)$ un vecteur aléatoire de carré intégrable.

- 1. K_X est une matrice carrée, symétrique, avec les variances des X_k sur sa diagonale.
- 2. K_X diagonale ssi les X_k sont deux à deux indépendants.

 $D\'{e}monstration.$

Lemme 5.18. Soit $X = (X_1, \dots, X_d)$ un vecteur aléatoire de carré intégrable.

Alors
$$K_X = E((X - E(X))(X - E(X))^t).$$

 $D\'{e}monstration.$

Proposition 5.19. Soit $X = (X_1, \dots, X_d)$ un vecteur aléatoire de carré intégrable.

Soit $A \in M_d(\mathbb{R})$.

Alors Y := A.X (resp. Y = X.A) est de carré intégrable et $K_Y = K_{A.X} = A.K_X.A^t$ (resp $K_Y = K_{X.A} = A^t.K_X.A$)

Définition 5.20. Une matrice carrée $M \in M_d(\mathbb{R})$ est dite **semi-définie** positive si pour tout $a \in \mathbb{R}^d$, $a^t.M.a \geq 0$.

Proposition 5.21. Soit $X = (X_1, \dots, X_d)$ un vecteur aléatoire de carré intégrable.

Alors K_X est semi-définie positive.

$$D\acute{e}monstration.$$

Théorème 5.22. Soit $\mu \in \mathbb{R}^d$ et K une matrice $d \times d$ symétrique, semi-définie positive.

Alors il existe un vecteur aléatoire $X=(X_1,\cdots,X_d)$ tel que $E(X)=\mu$ et $K_X=K$.

$$D\'{e}monstration.$$

5.5 Fonctions caractéristiques

On souhaite caractériser les lois d'un vecteur aléatoire comme nous l'avons déjà fait avec les variables aléatoires dans le chapitre 3.

Nous souhaitons donner des critères permettant de déterminer quelle loi suit un vecteur aléatoire donné.

Définition 5.23. Soit $X : \Omega \to \mathbb{R}$ une variable aléatoire.

On définit la fonction caractéristique de X par

$$\phi_X : \mathbb{R} \to \mathbb{C} : t \to \phi_X(t) = E(e^{itX})$$
 (5.10)

$$= \int_{\Omega} e^{itX} dP \tag{5.11}$$

$$= \int_{\mathbb{R}} e^{itx} dP_X \tag{5.12}$$

Remarque. 1. 5.12 est une intégrale complexe. On a donc

$$\int_{\mathbb{R}} e^{itx} dP_X = \int_{\mathbb{R}} \cos(tx) + i \int_{\mathbb{R}} \sin(tx)$$
 (5.13)

- 2. ϕ_X est mesurable, et e^{itx} est bornée, donc pour toute variable aléatoire réelle, ϕ_X existe.
- 3. Si $X \sim \rho$ où ρ est une densité, alors $\phi_X(t) = \int_{\mathbb{R}} e^{itx} \rho(x) dx$

Exemple 5.1. 1. Bernouilli
$$\mathcal{B}(1,p): \phi_X(t) = (1-p) + pe^{it}$$

- 2. Binomiale $\mathcal{B}(n,p) : \phi_X(t) = ((1-p) + pe^{it})^n$
- 3. Poisson $\mathcal{P}(\lambda)$: $\phi_X(t) = e^{\lambda(e^{it}-1)}$
- 4. Exponentielle $e(\lambda): \phi_X(t) = \frac{\lambda}{\lambda it}$
- 5. $Cauchy: \phi_X(t) = e^{-|t|}$.
- 6. Uniforme: $\phi_X(t) = \frac{e^{itb} e^{ita}}{it(b-a)}$

Proposition 5.24. *1.* $\phi_X(0) = 1$

- 2. $|\phi_X(t)| \le 1$
- 3. ϕ_X est continue
- 4. $\phi_{aX+b}(t) = e^{itb}\phi_X(at)$

Théorème 5.25. Soit X une variable aléatoire. Alors :

- 1. Si $X \sim \mathcal{N}(0,1)$, alors $\phi_X(t) = e^{-\frac{t^2}{2}}$.
- 2. Si $X \sim \mathcal{N}(\mu, \sigma^2)$, alors $\phi_X(t) = e^{it\mu \frac{\sigma^2 t^2}{2}}$.

Théorème 5.26. Soient X et Y deux variables aléatoires réelles. On a

$$X \stackrel{\mathcal{L}}{=} Y \Leftrightarrow \phi_X = \phi_Y \tag{5.14}$$

En d'autres termes, deux variables aléatoires suivent la même loi si et seulement si leur fonction caractéristique sont égales.

Théorème 5.27. Soient X et Y deux variables aléatoires réelle tel que $X \perp Y$. Alors

$$\phi_{X+Y}(t) = \phi_X(t) \,\phi_Y(t) \tag{5.15}$$

Proposition 5.28. 1. $E(|X|) < \infty$, alors $\phi_X \in C^1$ et $E(X) = -i\phi_X'(0)$.

2. Si
$$E(|X|^n) < \infty$$
, alors $\phi_X \in \mathcal{C}^n$ et $E(X^n) = (-i)^n \phi_X^{n'}(0)$.

Généralisons maintenant la définition de fonction caractéristique aux vecteurs aléatoires.

Définition 5.29. Soit $X = (X_1, \dots, X_d)$ un vecteur aléatoire. On définit **la** fonction caractéristique de X comme la fonction

$$\phi_X: \mathbb{R}^d \to \mathbb{C} \tag{5.16}$$

$$u = (u_1, \dots, u_d) \to E(e^{i(u_1 X_1 + \dots + u_d X_d)})$$
 (5.17)

Théorème 5.30. Soient X_1, \dots, X_d d variables aléatoires réelles.

Posons
$$X = (X_1, \cdots, X_d)$$
.

Alors, les assertions suivantes sont équivalentes

1. Pour tout $u = (u_1, \dots, u_d) \in \mathbb{R}^d$, $\phi_X(u) = \phi_{X_1}(u_1) \dots \phi_{X_d}(u_d)$ (5.18)

2. Les X_i sont indépendants.

5.6 Vecteurs gaussiens

Définition 5.31. Une variable aléatoire X est dite **gaussienne** si $X \sim \mathcal{N}(\mu, \sigma^2)$ où $\sigma^2 \geq 0$ avec $\mathcal{N}(\mu, 0) = \delta_{\mu}$.

On dit que X est dégénérée si $X \sim \delta_{\mu}$, ie $\sigma = 0$.

Définition 5.32. Un vecteur aléatoire $X = (X_1, \dots, X_d)$ est **gaussien** si toute combinaison linéaire réelle des X_i est gaussienne ie pour tout $a_1, \dots, a_d \in \mathbb{R}$, $\sum_{i=1}^d a_i X_i$ est gaussienne.

Remarque. Si $X = (X_1, \dots, X_d)$ est un vecteur gaussien, alors chaque X_i est gaussienne. La réciproque étant fausse si nous n'avons pas l'indépendance.

Proposition 5.33. Soit $X = (X_1, \dots, X_d)$ un vecteur aléatoire.

- 1. Si X est gaussien, alors pour toute matrice $A \in M_d(\mathbb{R})$, le vecteur aléatoire $Y := AX^t$ est gaussien.
- 2. Si les X_k sont iid de loi gaussienne, alors X est gaussien.

Remarque. Deux variables aléatoires X, Y suivant une loi $\mathcal{N}(0, 1)$ ne forment jamais un vecteur aléatoire (X, Y) gaussien.

Théorème 5.34. Soit $M \in M_d(\mathbb{R})$ symétrique définie semi-positive. Alors il existe un vecteur gaussien X tel que $K_X = M$ et $E(X) = \mu$.

Proposition 5.35. Soit $X \sim \mathcal{N}(\mu, K)$ un vecteur gaussien. Les assertions suivantes sont équivalentes.

- 1. X a une densité.
- 2. K est inversible.
- 3. K est définie positive.

De plus, la densité de X est donnée par

$$\rho(x) = \frac{1}{\sqrt{2\pi}^d} \frac{1}{\sqrt{\det(K)}} e^{\frac{-1}{2}(x-\mu)K^{-1}(x-\mu)^t}$$
 (5.19)

pour tout $x \in \mathbb{R}^d$ si $X = (X_1, \dots, X_d)$.

Proposition 5.36. La fonction caractéristique d'un vecteur gaussien $X = (X_1, \dots, X_d)$ est donné par

$$\phi_X(u) = e^{iuE(X)^t - \frac{1}{2}uK_Xu^t} \tag{5.20}$$

pour tout $u \in \mathbb{R}^d$.

Corollaire 5.37. La loi d'un vecteur gaussien est déterminée par son espérance et sa matrice de covariance.

Démonstration. En effet, la fonction caractéristique permet de définir la loi. Comme la fonction caractéristique est déterminée par la matrice de covariance et l'espace du vecteur gaussien, nous avons que la loi est déterminée par ces deux dernières.

Exemple 5.2. Soient $X \sim \mathcal{N}(0,2)$ et $Y \sim \mathcal{N}(1,3)$ deux variables aléatoires indépendantes.

Posons Z = (X, Y).

On a Z qui est un vecteur gaussien car X et Y sont indépendants, et X et Y sont des variables aléatoires gaussiennes..

On a alors E(Z) := (E(X), E(Y)) = (0, 1) et

$$K_Z = \begin{pmatrix} Var(X,X) & Cov(X,Y) \\ Cov(Y,X) & Var(Y,Y) \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$
 (5.21)

On en déduit que $Z \sim \mathcal{N}(E(Z), K_Z) = \mathcal{N}((0, 1), \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}).$

Proposition 5.38. Soit $X = (X_1, \dots, X_d)$ un vecteur aléatoire tel que $X \sim \mathcal{N}(\mu, K)$.

Alors
$$Y := AX^t$$
 $(A \in M_{d' \times d}(\mathbb{R}))$ suit la loi $\mathcal{N}(A\mu^t, AKA^t,)$.

Théorème 5.39. Soit $X = (X_1, \dots, X_d)$ un vecteur aléatoire gaussien. Les assertions suivantes sont équivalentes.

- 1. Les X_k sont indépendants.
- 2. Les X_k sont non-corrélés deux à deux.
- 3. K_X est diagonale.

Théorème limite centrale

6.1 Convergence en loi

Définition 6.1. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires réelles et soit X une autre variable aléatoire réelle.

On dit que X_n converge en loi vers X si pour toute fonction $f: \mathbb{R} \to \mathbb{R}$ continue et bornée, on a

$$\int_{\mathbb{R}} f(x)dP_{X_n} \to \int_{\mathbb{R}} f(x)dP_X \tag{6.1}$$

On dit aussi que X_n converge en distribution ou converge faiblement ou encore converge étroitement vers X.

Remarque. Si $f(x) = e^{itx}$, on obtient

$$\int_{\mathbb{R}} e^{itx} dP_{X_n} \to \int_{\mathbb{R}} e^{itx} dP_X \tag{6.2}$$

C'est-à-dire

$$\phi_{X_n}(t) \to \phi_X(t) \tag{6.3}$$

Donc, si X_n converge en loi vers X, alors la suite ϕ_{X_n} converge simplement vers ϕ_X .

Remarque. 1. Les variables aléatoires X_n ne sont pas forcément définies sur un même Ω . Nous ne regardons que la loi à travers l'intégrale. Cela différencie cette notion de convergence par rapport aux autres car les autres demandaient que les variables de la suite soient définies sur le même Ω . 2. L'ensemble des fonctions continues bornées de \mathbb{R} dans \mathbb{R} , noté $\mathcal{C}_b(\mathbb{R})$ forment un espace de Banach.

Remarque. On a X_n converge en loi vers X ssi pour toute fonction $f \in \mathcal{C}_b(\mathbb{R})$

$$\int_{\Omega} f(X_n) dP_{X_n} \to \int_{\Omega} f(X) dP_X \tag{6.4}$$

ou de manière équivalente, en se rappelant la définition d'espérance d'une variable aléatoire réelle

$$E(f(X_n)) \to E(f(X))$$
 (6.5)

Quel est le lien entre la convergence en loi et les autres?

Proposition 6.2. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires réelles et X une autre variable aléatoire réelle.

Si X_n converge en loi vers X, alors X_n converge en probabilité vers X.

$$D\'{e}monstration.$$

Remarque. La réciproque est fausse. En effet, si on prend la suite $X_n = (-1)^n$ où X est une variable aléatoire réelle de loi normale centrée réduite, alors X_n converge en loi vers X ainsi que -X. Or, la limite de la converge en proba est unique.

En particulier, nous venons de remarquer à travers cet exemple que la limite d'une suite qui converge en loi n'est pas unique.

On obtient quand même quelque résultat pour des convergences spécifiques.

Proposition 6.3. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires réelles et c une constante.

Si X_n converge en loi vers c, alors X_n converge en probabilité vers c.

$$D\acute{e}monstration.$$

Donnons une équivalence lorsque nous travaillons avec des variables aléatoires réelles discrètes.

Proposition 6.4. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires réelles discrètes et X une autre variable aléatoire réelle discrète.

Alors, les assertions suivantes sont équivalentes.

1. X_n converge en loi vers X.

2. pour tout $k \in \mathbb{N}$, $P(X_n = k) \to P(X = k)$ Démonstration.

Nous avons remarqué précédemment que si une suite X_n convergeait en loi vers X, alors la suite des fonctions caractéristiques des X_n convergeait simplement vers la fonction caractéristique de X.

En réalité, la condition est suffisante, et nous obtenons donc le théorème suivant.

Théorème 6.5 (Paul-Lévy). Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires réelles et X une autre variable aléatoire réelle.

Alors, les assertions suivantes sont équivalentes.

- 1. X_n converge en loi vers X.
- 2. la suite des fonctions caractéristiques ϕ_{X_n} convergent simplement vers ϕ_X , la fonction caractéristique de X.

 $D\'{e}monstration.$

Donnons une autre équivalence, mais par rapport aux fonctions de répartition.

Théorème 6.6. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires réelles et X une autre variable aléatoire réelle **tel que** F_X **est continue**.

Alors, les assertions suivantes sont équivalentes.

- 1. X_n converge en loi vers X.
- 2. la suite des fonctions de répartition F_{X_n} convergent simplement vers F_X , la fonction de répartition de X.

 $D\'{e}monstration.$

Cependant, nous pouvons restreindre l'hypothèse de continuité en certains points.

Proposition 6.7. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires réelles et X une autre variable aléatoire réelle tel que X_n converge en loi vers X.

- 1. Si F_X est continue en x, alors $P(X_n \le x) \to P(X \le x)$.
- 2. Si F_X est continue en x, alors $P(X_n < x) \to P(X < x)$.
- 3. Si F_X est continue en a et b, alors $P(X_n \in [a,b]) \to P(X \in [a,b])$.

En particulier, on a les assertions suivantes qui sont équivalentes, découlant de cette proposition et de la précédente.

- 1. X_n converge en loi vers X.
- 2. pour tout $a, b \in \mathbb{R}$, $P(X_n \in [a, b]) \to P(X \in [a, b])$.

6.2 Enoncé du théorème de limite central

Théorème 6.8. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires réelles iid. Posons $E(X_n) = \mu$, $Var(X_n) = \sigma^2$ et

$$S_n = \sum_{i=1}^n X_n \tag{6.6}$$

Alors, la suite

$$\widetilde{S}_n := \frac{S_n - n\mu}{\sigma\sqrt{n}} \tag{6.7}$$

converge normalement vers $\mathcal{N}(0,1)$, la loi normale centrée réduite.

Chapitre 7
Statistiques