Santiago José BENAVIDES

s-benavides.github.io

email: Santiago.Benavides@warwick.ac.uk

Office B1.15, Department of Mathematics Zeeman Building, University of Warwick Gibbet Hill Road, Coventry, CV4 7AL, UK

Dated: July 27, 2022

EMPLOYMENT AND RESEARCH EXPERIENCE

University of Warwick, Coventry, UK

Feb. 2022-Present

Research Fellow in the Mathematics Institute

Supported by the Simons collaboration on Revisiting the Turbulence Problem using Statistical Mechanics

EDUCATION

Massachusetts Institute of Technology (MIT), Cambridge, USA

PhD candidate, Department of Earth, Atmospheric and Planetary Sciences (EAPS)

GPA: 4.9/5

Focus: Nonlinear Dynamics in Geosciences Advisors: Glenn R. Flierl & J. Taylor Perron

École Normale Supérieure (ENS) rue d'Ulm, Paris, France

2015-2016

Masters ENS-ICFP in Macroscopic Physics and Complexity

mention Très Bien

Advisor: Alexandros Alexakis

The University of Texas at Austin

2010-2015

Bachelor of Science in Physics (Option: Honors Physics)

GPA: 3.9628/4

Bachelor of Science in Mathematics (Option: Honors Mathematics)

Dean's Scholars Honors Program

Graduation Distinction: Dean's Honored Graduate (Top 1%) and Highest Honors (Top 4%)

PUBLICATIONS

- 11. **Benavides, S. J.,** Deal, E., Venditti, J. G., & Perron, J. T., "Intermittency properties of a novel lattice model of bed load sediment transport," (*In Preparation*).
- 10. **Benavides, S. J.,** Burns, K. J., Gallet, B., & Flierl, G. R., "Effective drag in rotating, poorly conducting plasma turbulence," (*Submitted to the Astrophysical Journal*). https://arxiv.org/pdf/2203.04992.pdf
- 9. **Benavides, S. J.,** Deal, E., Venditti, J. G., Bradley, R., Zhang, Q., Kamrin, K., & Perron, J. T., "How fast or how many? Sources of sediment transport intermittency," (*In preparation for submission to Geology*).
- 8. Deal, E., Venditti, J. G., **Benavides, S. J.**, Bradley, R., Zhang, Q., Kamrin, K., & Perron, J. T., "Grain shape effects in bed load sediment transport," (*Under Review at Nature*). https://doi.org/10.31223/X55033
- 7. Zhang, Q., Deal, E., Perron, J. T., Venditti, J. G., **Benavides, S. J.**, Rushlow, M., & Kamrin, K., "Fluid-driven transport of round sediment particles: from discrete simulations to continuum modeling," *JGR: Earth Surface*, 127, e2021JF006504 (2022).

https://doi.org/10.1029/2021JF006504

6. **Benavides**, **S. J.**, Burns, K. J., Gallet, B., Cho, J. Y-K. & Flierl, G. R., "Inverse cascade suppression and shear layer formation in MHD turbulence subject to a guide field and misaligned rotation," *Journal of Fluid Mechanics*, Volume 935, A1, (2022).

https://www.doi.org/10.1017/jfm.2021.968

- 5. **Benavides, S. J.,** Deal, E., Rushlow, M., Venditti, J. G., Zhang, Q., Kamrin, K., & Perron, J. T., "The impact of intermittency on bed load sediment transport," *Geophysical Research Letters*, 49, e2021GL096088 (2022). https://doi.org/10.1029/2021GL096088
- 4. Alexakis, A., Pétrélis, F., **Benavides, S. J.**, & Seshasayanan, K., "Symmetry breaking in a turbulent environment," *Phys. Rev. Fluids* **6**, 024605 (2021). https://doi.org/10.1103/PhysRevFluids.6.024605
- 3. **Benavides, S. J.**, & Flierl, G. R., "Two-dimensional partially ionized magnetohydrodynamic turbulence," *Journal of Fluid Mechanics*. Volume 900, A28, (2020). https://doi.org/10.1017/jfm.2020.500
- 2. **Benavides, S. J.**, & Alexakis, A., "Critical transitions in thin layer turbulence," *Journal of Fluid Mechanics*, Volume 822, pg. 364-385 (2017). https://doi.org/10.1017/jfm.2017.293

Mentioned in feature article: Ecke, R. E. "From 2D to 3D in Fluid Turbulence: Unexpected Critical Transitions." *Journal of Fluid Mechanics*, Volume 828, pg. 1-4 (2017). https://doi.org/10.1017/jfm.2017.507

1. Seshasayanan, K., **Benavides, S. J.**, & Alexakis, A., "On the edge of an inverse cascade," *Phys. Rev. E.* Volume 90, 051003(R) (2014). http://dx.doi.org/10.1103/PhysRevE.90.051003

SCIENTIFIC EXPERIENCE

Participant in summer school at the Center for Computational Astrophysics The Flatiron Institute (Simons Foundation), New York, New York

Theme: "Multiscale Modeling of Astrophysical and Space Plasmas" Summer 2019

Participant and speaker at workshop of Les Houches School of Physics, France

Theme: "New Challenges in Turbulence Research V" April 2019

Guest Student at Geophysical Fluid Dynamics Summer School WHOI, Woods Hole, Massachusetts

Theme: Atmosphere, Ocean, and Climate Fluid Dynamics Summer 2014

HONORS AND AWARDS

Future Investigators in NASA Earth 2020-2021

and Space Science and Technology (FINESST) fellowship (\$45,000)

MIT

Jule Charney Prize (\$12,000) **2016-2019**

Robert R Shrock Graduate Fellowship (\$78,350)

2016

ENS

ENS-ICFP Scholarship (\$10,000)

2015-2016

TEACHING EXPERIENCE

Teaching Assistant at Massachusetts Institute of Technology

12.810: "Dynamics of the Atmosphere" (Graduate)

Spring 2021

Overall rating in subject evaluation: 6.6/7

Mentor for MIT's Undergraduate Research Opportunities Program

Directly mentoring two undergraduates on original research projects

Summer 2020

Teaching Assistant at Massachusetts Institute of Technology

12.820: "Turbulence in the Atmosphere and Ocean" (Graduate Course)

Spring 2020

Teaching Assistant at Massachusetts Institute of Technology

12.800: "Fluid Dynamics of the Atmosphere and Ocean" (Graduate)

Overall rating in subject evaluation: 6.7/7

Fall 2019

Undergraduate Teaching Assistant at the University of Texas at Austin

P S 303: "Introductory Physical Science I: Mechanics and Heat."

Fall 2013

SERVICES AND OUTREACH

Participant in the Application Mentorship Program (EAPS, MIT)

Fall 2020-Fall 2022

Mentoring future applicants, e.g. with personal statements.

https://sites.google.com/view/eaps-student-advisory-council/application-assistance

Member of Graduate Student Advisory Committee (GSAG)

to the faculty search committee

Spring 2020

Member of the Diversity Council (EAPS, MIT)

Department-wide committee, including faculty and staff

Fall 2019-Fall 2020

Creator and runner of Student Seminar (EAPS, MIT)

Department wide, weekly seminar for students

Fall 2018-Spring 2020

Seminars given:

How can we study extreme events efficiently?

Epidemic processes in complex networks

Atmospheric Predictability

Knots and their surprising connections to fluids and turbulence

Collective and critical phenomena in living systems

Fall 2020

Spring 2020 Fall 2019

Spring 2019

Fall 2018

ADDITIONAL SKILLS

Programming: Python, Fortran, git. Languages: Spanish (fluent), French (fluent, but limited), Russian (limited)