Eine Woche, ein Beispiel 8.17 tropical hypersurface

Ref:

https://arxiv.org/abs/1311.2360

How to draw these tropical curves: https://mathoverflow.net/questions/328342/how-to-draw-tropical-curves https://ntiggemann.github.io/coding.html#Plotting_tropical_curves

$$K$$
 valued field $X \subseteq A_K^2$ variety

$$x \in X(K)$$
 $\Rightarrow -v(x) \in Trop(X)$
 $Y \subseteq X$ $\Rightarrow Trop(Y) \subset Trop(X)$

If we want compatability of
$$v(x)$$
 with \oplus , then we should define $u \oplus v = \min(u, v)$.
Usually tropical people don't do this, they want

"addition of positive number should go up".

We respect the conventions.

$$v(x+y) \ge \min(v(x), v(y))$$

$$v(xy) = v(x) + v(y)$$

$$v(0) = +\infty$$

$$u \oplus' v = min(u, v)$$

$$u \otimes' v = u + v$$

$$+ \infty \quad T = |R \cup 1 + \infty|$$
read from bottom

$$u \oplus v = max(u,v)$$

 $u \otimes v = u + v$
 $-\infty$
read from above

in calculation

Relation with Newton polygon

E.g.

Rmk.
$$p=(x,y) \in l_0 \iff l_p="xu+y" passes through $(-k, \frac{ab'-a'b}{a-a'})$$$

$$\left(-k, \frac{ab-a'b}{a-a'}\right)$$

better point of view

A special valuation of z may be seen as a kind of projection.

You can then read the value as though from the markings of a graduated cylinder.

It is curious that mathematicians read numbers from unexpected angles, rather than from the usual horizontal view.

1+52+52

When the two values meet and rest at the very bottom among all values, we have the possibility that v(f)=+\infty.

This happens when the gaze brings the two points into perfect alignment; the negative of the slope of this sightline is v(z).

That line is exactly the lower convex edge of the Newton polygon.

Left for future copy

