

09/007045

28. 10. 99

T/NL 99 / 00624

KONINKRIJK DER

NEDERLANDEN

NL 99 | 624
Bureau voor de Industriële Eigendom

EJU
#46
7/26/01
JC

REC'D	11 NOV 1999
WIPO	PCT

Hierbij wordt verklaard, dat in Nederland op 8 oktober 1998 onder nummer 1010269,
ten name van:

STICHTING ENERGIEONDERZOEK CENTRUM NEDERLAND

te Petten en

GEMEENSCHAPPELIJK CENTRUM VOOR ONDERZOEK PETTEN

te Petten

een aanvraag om octrooi werd ingediend voor:

"Werkwijze voor het bekleden van een dragerplaat en MCFC-cel voorzien van een dergelijke
dragerplaat",

en dat de hieraan gehechte stukken overeenstemmen met de oorspronkelijk ingediende stukken.

Rijswijk, 28 oktober 1999.

De Directeur van het Bureau voor de Industriële Eigendom,
voor deze,

A.W. van der Kruk.

**PRIORITY
DOCUMENT**
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

1010269

- 8 OKT. 1998

Uittreksel

Werkwijze voor het bekleden van een niet-geoxideerde RVS-dra-
gerplaat alsmede MCFC-brandstofcelstapel voorzien van een zo beklede
5 separatorplaat. Aan de anodezijde van deze dragerplaat wordt eerst
een diffusieafsluitlaag gevuld door een nikellaag aangebracht.
Deze diffusieafsluitlaag bestaat uit titaanoxide en de hechting
tussen titaanoxide en de dragerplaat kan verbeterd worden door het
voorzien in een hechtlaag.

YII

Werkwijze voor het bekleden van een dragerplaat
en MCFC-cel voorzien van een dergelijke dragerplaat.

De onderhavige uitvinding heeft betrekking op een werkwijze
5 voor het bekleden van een niet-geoxideerde roestvast stalen drager-
plaat met een elektrisch geleidende corrosiewerende bekleding, om-
vattende het opbrengen van een diffusieafsluitlaag met een titaan-
verbinding, gevolgd door het aanbrengen van een nikkellaag. Een
10 dergelijke werkwijze is bekend uit het Duitse Offenlegungsschrift
19523637. Aan het zich aan de anodezijde bevindende deel van de
brandstofcel worden hoge eisen gesteld. Enerzijds moet dit in staat
zijn de via de anode-zijdige gasverdeelinrichting toegevoerde stroom
af te voeren. Anderzijds moet dit voldoende corrosiebestendig zijn
15 om aan de thans gestelde eisen van levensduur te voldoen. Op dit
moment is een levensduur van enkele tienduizenden uren vereist. Door
het agressieve milieu resulterende uit carboonaatmateriaal, hoge
temperatuur en de verhoudingsgewijs lage potentiaal aan de anode,
wordt deze zijde van de separatorplaat bijzonder zwaar belast.

Om de corrosieproblemen te vermijden wordt in het boven genoemde
20 Duitse Offenlegungsschrift voorgesteld om op de roestvast stalen
separatorplaat aan de anodezijde een bekleding aan te brengen be-
staande uit een titaannitridelaag waarop een nikkellaag aangebracht
is. Deze nikkellaag voorziet in bescherming, maar voorkomen dient te
worden dat het basismateriaal uit het RVS in het nikkel diffundeert.
25 Immers waargenomen is dat de sterke resterende nikkellaag
door een dergelijk diffusieproces aanzienlijk afneemt en binnen
10.000 uur de resterende nikkellaag losbreekt van de RVS-laag en de
cel snel niet werkzaam wordt. De dikte van de titaannitridelaag ligt
30 volgens het Duitse Offenlegungsschrift 19523637 bij voorkeur tussen
0,5 en 5 μm . Verondersteld wordt dat door contact met het carboonaat-
materiaal het titaannitride omgezet wordt naar titaanoxide. Gebleken
is echter dat dit oxide een groter volume heeft en daardoor plaat-
lijker de nikkellaag wegdrukt. Bovendien is gebleken dat een zo ver-
kregen titaanoxidelaag niet dicht is en aantasting van het basis-
35 materiaal daardoor niet voorkomen kan worden.

In het Duitse Offenlegungsschrift 4030943 wordt een anode be-
schreven opgebouwd uit poreus nikkel en titaanoxide. Bij contact met
lithiumcarboonaat ontstaat lithiumtitanaat, hetgeen de bevochtiging

82

afgebeeld uitvoeringsvoorbeeld verduidelijkt worden, waarbij de verschillende delen niet op dezelfde schaal weergegeven zijn. Daarbij toont:

Fig. 1 schematisch in dwarsdoorsnede een deel van een MCFC-cel
5 nabij de separatorplaat volgens de uitvinding; en

Fig. 2 in detail in dwarsdoorsnede een deel van een separator-
plaat gericht naar de anode.

In fig. 1 is een deel van een MCFC-cel getoond voorzien van een separatorplaat 7 waarop een anode-zijdige gasverdeelinrichting 4 10 aansluit waartegen stroomcollector 8 ligt waarop een anode 5 aan-sluit. Zowel de anode als de corrugatie kunnen uit nikkelmateriaal bestaan. De anode bestaat meer in het bijzonder uit nikkel met 10 gew.% Cr.

In fig. 2 is de separatorplaat 7 in detail afgebeeld. Deze be-
15 staat uit een drager van RVS materiaal, zoals 3 AISI 310 met een dikte van bijvoorbeeld 0,5 mm. Daarop is een hechtlaag 6 aangebracht van een metaalchroomaluminimumyttriumlegering zoals NiCrAlY. De dikte daarvan is ongeveer 40-60 µm. Dit hechtlaagmateriaal kan in poeder-
20 vormige toestand opgebracht worden door uit te gaan van een NiCrAlY poeder met een deeltjesgrootte tussen 10 en 45 µm wat met HVOF spuittechniek opgebracht wordt.

Een dergelijke hechtlaag wordt aangebracht om voor verschil in uitzettingscoëfficiënt tussen roestvast staal en de titaanoxidelaag te compenseren. Alvorens een dergelijke hechtlaag aan te brengen op 25 het roestvast stalen dragermateriaal kan dit roestvast staalmate- riaal opgeruwd worden met enige in de stand der techniek bekende wijze. Bijvoorbeeld vindt opruwen plaats door middel van gritten met AL2O3 gritpoeder.

Vervolgens is met de high velocity oxygen flame sproeitechniek 30 daarop een titaanoxidelaag aangebracht met een dikte liggend tussen 40 en 50 µm. Deze laag is met 2 aangegeven. Daarbij wordt uitgegaan van een poeder met een deeltjesgrootte tussen 5 en 20 µm. Dit poeder kan eventueel gedoteerd worden met een vijfwaardig ion in het bij-
35 zonder met niobium of tantaal. Aan niobium wordt de meeste voorkeur gegeven. De porositeit van de titaanoxidelaag is typisch 2%. Daarop is een nikkellaag 3 aangebracht op enige in de stand der techniek bekende wijze met een dikte die eveneens tussen 25 en 50 µm ligt. Ook hier wordt bij voorkeur HVOF-spuitechniek toegepast.

Bij proeven onder corrosieve omstandigheden met de potentiaal aangelegd op de anode zoals deze in gebruik te verwachten valt, is na 3.000 uur geen wezenlijke aantasting van het RVS basismateriaal waargenomen bij een temperatuur van ongeveer 650°C. Op grond hiervan 5 kan worden geëxtrapoleerd dat een levensduur groter dan 40.000 uur haalbaar is.

Hoewel de uitvinding hierboven aan de hand van een voorkeurs-uitvoering beschreven is, dient begrepen te worden dat daaraan wijzigingen aangebracht kunnen worden die voor degenen bekwaam in de 10 stand der techniek direct voor de hand liggend zijn na het lezen van bovenstaande beschrijving en liggen binnen het bereik van de bijgevoegde conclusies.

Conclusies

1. Werkwijze voor het bekleden van een niet-geoxideerde roestvast stalen dragerplaat met een elektrisch geleidende corrosiewerende bekleding, omvattende het opbrengen van een diffusieafsluitlaag met een titaanverbinding, gevolgd door het aanbrengen van een nikellaag, met het kenmerk, dat die titaanverbinding titaanoxide omvat.
2. Werkwijze volgens conclusie 1, waarbij ten minste een van die opgebrachte lagen een dikte van ten minste 25 μ heeft.
3. Werkwijze volgens een van de voorgaande conclusies, waarbij voor het opbrengen van titaanoxide een hechtlaag op de dragerplaat aangebracht wordt.
4. Werkwijze volgens conclusie 3, waarbij die hechtlaag NiCrAlY omvat.
5. Werkwijze volgens een van de voorgaande conclusies, waarbij ten minste een van die lagen door High Velocity Oxygen Flame sproei-en opgebracht wordt.
6. Carbonaatbrandstofcelstapel omvattende een aantal cellen met elk een kathode, anode en elektrolyt, waarbij die cellen gescheiden zijn door een separatorplaat, waarbij die separatorplaat een dragerplaat uit roestvast staal omvat aan de anodezijde bekleed met een diffusieafsluitlaag omvattende titaanoxide voorzien van een nikellaag.
7. Brandstofcel volgens conclusie 6, waarbij die titaanoxide-laag en/of nikellaag een dikte van ten minste 25 μ heeft.
8. Brandstofcel volgens conclusie 6 of 7, waarbij tussen die roestvast stalen dragerplaat en die titaanoxidelaag een hechtlaag aangebracht is.
9. Brandstofcel volgens conclusie 8, waarbij die hechtlaag NiCrAlY omvat.

1010269

Fig 1

Fig 2

10a

