Flink快速上手

1. Flink简介

1.1什么是Flink

Apache Flink 是一个分布式大数据处理引擎,可对有限数据流和无限数据流进行有状态计算。可部署在各种集群环境,对各种大小的数据规模进行快速计算。

1.2Flink的历史

早在 2008 年,Flink 的前身已经是柏林理工大学一个研究性项目, 在 2014 被 Apache 孵化器所接受,然后迅速地成为了 ASF(Apache Software Foundation)的顶级项目之一。阿里基于Flink搞出了Blink,并在国内进行推广,让Flink火了起来

1.3 流处理和批处理

- 批处理的特点是<mark>有界、持久、大量</mark>,批处理非常适合需要访问<u>全套记录</u>才能完成的计算工作,一 般用于离线统计。
- 流处理的特点是<u>无界、实时</u>,流处理方式无需针对整个数据集执行操作,而是对通过系统传输的 每个数据项执行操作,一般用于<u>实时统计</u>。

1.4 大数据流处理引擎

框架	优点	缺点		
Storm	低延迟	吞吐量低、不能保证exactly- once、编程API不丰富		
Spark Streaming	吞吐量高、可以保证exactly-once、编 程API丰富	延迟较高		
Flink	低延迟、吞吐量高、可以保证exactly- once、编程API丰富	快速迭代中		

1.5 Flink对比Spark

Spark就是为离线计算而设计的,在Spark生态体系中,不论是流处理和批处理都是底层引擎都是Spark Core,**Spark Streaming将微批次小任务不停的提交到Spark引擎,从而实现准实时计算,SparkStreaming只不过是一种特殊的批处理而已**。

Spark SQL

Spark Streaming MLlib (machine learning) GraphX (graph)

Apache Spark

Flink就是为实时计算而设计的,Flink可以同时实现批处理和流处理,**Flink将批处理(即有有界数据)视作一种特殊的流处理**。

APIs & Libraries	CEP Event Processing	Table Relational		FlinkML Machine Learning	Gelly Graph Processing	Table Relational		
	DataStream API Stream Processing			DataSet API Batch Processing				
Core	Runtime Distributed Streaming Dataflow							
Deploy	Local Clus Single JVM Standalor						2	

2. Flink架构体系

2.1 Flink中的重要角色

• JobManager:

也称之为Master,用于协调分布式执行,它们用来调度task,协调检查点,协调失败时恢复等。 Flink运行时至少存在一个master,如果配置高可用模式则会存在多个master,它们其中有一个 是leader,而其他的都是standby。

• TaskManager:

也称之为Worker,用于执行一个dataflow的task(或者特殊的subtask)、数据缓冲和data stream 的交换,Flink运行时至少会存在一个worker。JobManager和TaskManager可以直接在物理机上启动,或者通过像YARN这样的资源调度框,TaskManager连接到JobManager,通过RPC通信告知自身的可用性进而获得任务分配。

• TaskManager与Slots:

每一个TaskManager(worker)是一个JVM进程,它可能会在独立的线程上执行一个或多个subtask。为了控制一个worker能接收多少个task,worker通过task slot来进行控制(一个worker至少有一个task slot)。·

每个task slot表示TaskManager拥有资源的一个固定大小的子集。假如一个TaskManager有三个slot,那么它会将其管理的内存分成三份给各个slot。资源slot化意味着一个subtask将不需要跟来自其他job的subtask竞争被管理的内存,取而代之的是它将拥有一定数量的内存储备。需要注意的是,这里不会涉及到CPU的隔离,slot目前仅仅用来隔离task的受管理的内存。

通过调整task slot的数量,允许用户定义subtask之间如何互相隔离。如果一个TaskManager一个slot,那将意味着每个task group运行在独立的JVM中(该JVM可能是通过一个特定的容器启动的),而一个TaskManager多个slot意味着更多的subtask可以共享同一个JVM。而在同一个JVM进程中的task将共享TCP连接(基于多路复用)和心跳消息。它们也可能共享数据集和数据结构,因此这减少了每个task的负载。

Task Slot是静态的概念,是指TaskManager具有的并发执行能力,可以通过参taskmanager.numberOfTaskSlots进行配置,而并行度parallelism是动态概念,即TaskManager运行程序时实际使用的并发能力,可以通过参数parallelism.default进行配置。也就是说,假设一共有3个TaskManager,每一个TaskManager中的分配3个TaskSlot,也就是每个TaskManager可以接收3个task,一共9个TaskSlot,如果我们设置parallelism.default=1,即运行程序默认的并行度为1,9个TaskSlot只用了1个,有8个空闲,因此,设置合适的并行度才能提高效率。

● 程序与数据流 Flink程序的基础构建模块是 流(streams)与 转换(transformations)(需要注意的是,Flink的DataSet API所使用的DataSets其内部也是stream)。一个stream可以看成一个中间结果,而一个transformations是以一个或多个stream作为输入的某种operation,该 operation利用这些stream进行计算从而产生一个或多个result stream。在运行时,Flink上运行 的程序会被映射成streaming dataflows,它包含了streams和transformations operators。每一个dataflow以一个或多个sources开始以一个或多个sinks结束。dataflow类似Spark的DAG,当然特定形式的环可以通过iteration构建。在大部分情况下,程序中的transformations跟 dataflow中的operator是一一对应的关系,但有时候,一个transformation可能对应多个 operator。

task与operator chains

出于分布式执行的目的,Flink将operator的subtask链接在一起形成task,每个task在一个线程中执行。将operators链接成task是非常有效的优化:它能减少线程之间的切换和基于缓存区的数据交换,在减少时延的同时提升吞吐量。链接的行为可以在编程API中进行指定

2.2 无界数据流与有界数据流

无界数据流:无界数据流有一个开始但是没有结束,它们不会在生成时终止并提供数据,必须连续处理无界流,也就是说必须在获取后立即处理event。对于无界数据流我们无法等待所有数据都到达,因为输入是无界的,并且在任何时间点都不会完成。处理无界数据通常要求以特定顺序(例如事件发生的顺序)获取event,以便能够推断结果完整性。

有界数据流:有界数据流有明确定义的开始和结束,可以在执行任何计算之前通过获取所有数据来处理有界流,处理有界流不需要有序获取,因为可以始终对有界数据集进行排序,有界流的处理也称为批处理。

Flink在实现流处理和批处理时,在Flink它从另一个视角看待流处理和批处理,可以都认为是流处理,只不过是有界或无界而已。**Flink是完全支持流处理,也就是说作为流处理看待时输入数据流是无界的;批处理被作为一种特殊的流处理,只是它的输入数据流被定义为有界的**。基于同一个Flink运行时(Flink Runtime),分别提供了流处理和批处理API,而这两种API也是实现上层面向流处理、批处理类型应用框架的基础。

2.3 Flink编程模型

DataStream API: 实时计算编程APIDataSet API: 离线计算编程API

● Table API: 带Schema的DataStream或DataSet, 可以使用DSL风格的语法

● SQL: 使用SQL查询可以直接在Table API定义的表上执行

3. Flink环境搭建

- 修改flink-conf.yaml
- 修改slaves

master -> StandaloneSessionClusterEntrypoint

worker -> TaskManagerRunner

4. Flink快速入门

4.1 初始化quickstart项目

curl https://flink.apache.org/q/quickstart-scala.sh | bash -s 1.6.3

4.2 Flink运行模型

Flink的程序主要由三部分构成,分别为**Source、Transformation、Sink**。<u>Source主要负责数据的</u>读取,Transformation主要负责对属于的转换操作,Sink负责最终数据的输出。

5. Finlk Source

在Flink中,Source主要负责数据的读取

5.1 基于File的数据源

- 一列一列的读取遵循TextInputFormat规范的文本文件,并将结果作为String返回。
 - readTextFile

```
val env = StreamExecutionEnvironment.getExecutionEnvironment
val inputStream = env.readTextFile(args(0))
inputStream.print()
env.execute("hello-world")
```

5.2 基于Socket的数据源

从Socket中读取信息,元素可以用分隔符分开。

socketTextStream

```
val inputStream = env.socketTextStream("localhost", 8888)
```

5.3 基于集合的数据源

从集合中创建一个数据流,集合中所有元素的类型是一致的。

fromCollection(seq)

```
val list = List(1,2,3,4,5,6,7,8,9)
val inputStream = env.fromCollection(list)
```

fromCollection(Iterator)

```
val iterator = Iterator(1,2,3,4)
val inputStream = env.fromCollection(iterator)
```

fromElements(elements:_*)

从一个给定的对象序列中创建一个数据流,所有的对象必须是相同类型的。

```
val lst1 = List(1,2,3,4,5)
val lst2 = List(6,7,8,9,10)
val inputStream = env.fromElement(lst1, lst2)
```

generateSequence(from, to)

从给定的间隔中并行地产生一个数字序列。

```
val inputStream = env.generateSequence(1,10)
```

7. Flink Transformation

在Flink中,Transformation主要负责对属于的转换操作,调用Transformation后会生成一个新的DataStream

7.1 map

val env = StreamExecutionEnvironment.getExecutionEnvironment

```
val inputStream = env.generateSequence(1,10)
val mappedStream = inputStream.map(x => x * 2)
```

7.2 flatMap

```
val flatMappedStream = inputStream.flatMap(_.split(" "))
```

7.3 filter

```
val inputStream = env.generateSequence(1,10)
val filtered = inputStream.filter(x % 2 == 0)
```

7.4 connect

DataStream,DataStream 转换成 ConnectedStreams: 连接两个保持他们类型的数据流,两个数据流被Connect之后,只是被放在了一个同一个流中,内部依然保持各自的数据和形式不发生任何变化,两个流相互独立。

```
val stream1 = env.fromCollection(List("a","b","c","d"))
val stream2 = env.fromCollection(List(1,2,3,4))
val streamConnect = stream1.connect(stream2)
streamConnect.map(x=>println(x), y=>println(y))
```

7.5 split

DataStream 转换成 SplitStream:根据某些特征把一个DataStream拆分成两个或者多个DataStream。

7.6 select

SplitStream 转换成 DataStream: 从一个SplitStream中获取一个或者多个DataStream。

7.7 union

DataStream 转换成 DataStream:对两个或者两个以上的DataStream进行union操作,产生一个包含所有DataStream元素的新DataStream。

7.8 keyBy

DataStream 转换成 KeyedStream: 输入必须是Tuple类型,逻辑地将一个流拆分成不相交的分区,每个分区包含具有相同key的元素,在内部以hash的形式实现的。

7.9 reduce

KeyedStream 转换成 DataStream:一个分组数据流的聚合操作,合并当前的元素和上次聚合的结果,产生一个新的值,返回的流中包含每一次聚合的结果,而不是只返回最后一次聚合的最终结果。

7.10 fold

KeyedStream 转换成 DataStream:一个有初始值的分组数据流的滚动折叠操作,合并当前元素和前一次折叠操作的结果,并产生一个新的值,返回的流中包含每一次折叠的结果,而不是只返回最后一次折叠的最终结果。

7.11 aggregations

KeyedStream转换成DataStream: 分组数据流上的滚动聚合操作。min和minBy的区别是min返回的是一个最小值,而minBy返回的是其字段中包含最小值的元素(同样原理适用于max和maxBy),返回的流中包含每一次聚合的结果,而不是只返回最后一次聚合的最终结果。

```
keyedStream.sum(0)
keyedStream.sum("key")
keyedStream.min(0)
keyedStream.max(0)
keyedStream.max(0)
keyedStream.max("key")
keyedStream.minBy(0)
keyedStream.minBy(0)
keyedStream.minBy("key")
keyedStream.maxBy(0)
keyedStream.maxBy(0)
```

在2.3.10之前的算子都是可以直接作用在Stream上的,因为他们不是聚合类型的操作,但是到2.3.10 后你会发现,我们虽然可以对一个无边界的流数据直接应用聚合算子,但是它会记录下每一次的聚合结果,这往往不是我们想要的,其实,reduce、fold、aggregation这些聚合算子都是和Window配合使用的,只有配合Window,才能得到想要的结果。

7. Flink Sink

在Flink中,Sink负责最终数据的输出

7.1 print

打印每个元素的toString()方法的值到标准输出或者标准错误输出流中。或者也可以在输出流中添加一个前缀,这个可以帮助区分不同的打印调用,如果并行度大于1,那么输出也会有一个标识由哪个任务产生的标志。

7.2 writeAsText

将元素以字符串形式逐行写入(TextOutputFormat),这些字符串通过调用每个元素的toString()方法来获取。

7.3 writeAsCsv

将元组以逗号分隔写入文件中(CsvOutputFormat),行及字段之间的分隔是可配置的。每个字段的值来自对象的toString()方法。

7.4 writeUsingOutputFormat

自定义文件输出的方法和基类(FileOutputFormat),支持自定义对象到字节的转换。

7.5 writeToSocket

根据SerializationSchema 将元素写入到socket中。

8. Time与Window

8.1 flink中涉及的时间

- Event Time: 是事件创建的时间。它通常由事件中的时间戳描述,例如采集的日志数据中,每一条日志都会记录自己的生成时间,Flink通过时间戳分配器访问事件时间戳。
- Ingestion Time: 是数据进入Flink的时间。
- Processing Time: 是每一个执行基于时间操作的算子的本地系统时间,与机器相关,默认的时间属性就是Processing Time。

8.2 Window

8.2.1 Window概述

streaming流式计算是一种被设计用于处理无限数据集的数据处理引擎,而无限数据集是指一种不断增长的本质上无限的数据集,而window是一种切割无限数据为有限块进行处理的手段。Window是无限数据流处理的核心,Window将一个无限的stream拆分成有限大小的"buckets"桶,我们可以在这些桶上做计算操作。

8.2.2 Window类型

Window可以分成两类:

● CountWindow:按照指定的数据条数生成一个Window,与时间无关。

• TimeWindow: 按照时间生成Window。

对于TimeWindow,可以根据窗口实现原理的不同分成三类:滚动窗口(Tumbling Window)、滑动窗口(Sliding Window)和会话窗口(Session Window)。

● 滚动窗口 (Tumbling Windows)

将数据依据固定的窗口长度对数据进行切片。

特点:时间对齐,窗口长度固定,没有重叠。

滚动窗口分配器将每个元素分配到一个指定窗口大小的窗口中,滚动窗口有一个固定的大小,并且不会出现重叠。例如:如果你指定了一个5分钟大小的滚动窗口,窗口的创建如下图所示:

适用场景:适合做BI统计等(做每个时间段的聚合计算)。

● 滑动窗口 (Sliding Windows)

滑动窗口是固定窗口的更广义的一种形式,滑动窗口由固定的窗口长度和滑动间隔组成。

特点:时间对齐,窗口长度固定,有重叠。

滑动窗口分配器将元素分配到固定长度的窗口中,与滚动窗口类似,窗口的大小由窗口大小参数来配置,另一个窗口滑动参数控制滑动窗口开始的频率。因此,滑动窗口如果滑动参数小于窗口大小的话,窗口是可以重叠的,在这种情况下元素会被分配到多个窗口中。

例如,你有10分钟的窗口和5分钟的滑动,那么每个窗口中5分钟的窗口里包含着上个10分钟产生的数据,如下图所示:

适用场景:对最近一个时间段内的统计(求某接口最近5min的失败率来决定是否要报警)。

● 会话窗口 (Session Windows)

由一系列事件组合一个指定时间长度的timeout间隙组成,类似于web应用的session,也就是一段时间没有接收到新数据就会生成新的窗口。

特点:时间无对齐。

session窗口分配器通过session活动来对元素进行分组,session窗口跟滚动窗口和滑动窗口相比,不会有重叠和固定的开始时间和结束时间的情况,相反,**当它在一个固定的时间周期内不再收到元素,即非活动间隔产生,那个这个窗口就会关闭**。一个session窗口通过一个session间隔来配置,这个session间隔定义了非活跃周期的长度,当这个非活跃周期产生,那么当前的session将关闭并且后续的元素将被分配到新的session窗口中去。

8.3 Window API

8.3.1 Count Window

Count Window根据窗口中相同key元素的数量来触发执行,执行时只计算元素数量达到窗口大小的key对应的结果**。

注意: CountWindow的window_size指的是相同Key的元素的个数,不是输入的所有元素的总数。

● 滚动窗口

默认的CountWindow是一个滚动窗口,只需要指定窗口大小即可,当元素数量达到窗口大小时,就会触发窗口的执行。

```
// 这里的5指的是5个相同key的元素计算一次
val streamWindow = streamKeyBy.countWindow(5)
```

● 滑动窗口

滑动窗口和滚动窗口的函数名是完全一致的,只是在传参数时需要传入两个参数,一个是window_size,一个是sliding_size。

下面代码中的sliding_size设置为了2,也就是说,每收到两个相同key的数据就计算一次,每一次计算的window范围是5个元素。

```
// 当相同key的元素个数达到2个时,触发窗口计算,计算的窗口范围为5
val streamWindow = streamKeyBy.countWindow(5,2)
```

8.3.2 TimeWindow

TimeWindow是将指定时间范围内的所有数据组成一个window,一次对一个window里面的所有数据进行计算。

● 滚动窗口

Flink默认的时间窗口根据Processing Time 进行窗口的划分,将Flink获取到的数据根据进入Flink的时间划分到不同的窗口中。

```
val streamWindow = streamKeyBy.timeWindow(Time.seconds(5))
// 执行聚合操作
val streamReduce = streamWindow.reduce(
   (a, b) => (a._1, a._2 + b._2)
)
```

时间间隔可以通过Time.milliseconds(x), Time.seconds(x), Time.minutes(x)等其中的一个来指定。

● 滑动窗口 (SlidingEventTimeWindows)

滑动窗口和滚动窗口的函数名是完全一致的,只是在传参数时需要传入两个参数,一个是window_size,一个是sliding_size。

下面代码中的sliding_size设置为了2s,也就是说,窗口每2s就计算一次,每一次计算的window范围是5s内的所有元素。

```
// 引入滚动窗口
val streamWindow = streamKeyBy.timeWindow(Time.seconds(5), Time.seconds(2))

// 执行聚合操作
val streamReduce = streamWindow.reduce(
    (a, b) => (a._1, a._2 + b._2)
)
```

时间间隔可以通过Time.milliseconds(x), Time.seconds(x), Time.minutes(x)等其中的一个来指定。

8.3.3 Window Reduce

WindowedStream 转换成 DataStream:给window赋一个reduce功能的函数,并返回一个聚合的结果。

```
// 引入时间窗口
val streamWindow = streamKeyBy.timeWindow(Time.seconds(5))
val streamReduce = streamWindow.reduce(
   (a, b) => (a._1, a._2 + b._2)
)
```

9. EventTime与Window

9.1 EventTime的引入

在Flink的流式处理中,绝大部分的业务都会使用eventTime,一般只在eventTime无法使用时,才会被迫使用ProcessingTime或者IngestionTime。

如果要使用EventTime, 那么需要引入EventTime的时间属性, 引入方式如下所示:

val env = StreamExecutionEnvironment.getExecutionEnvironment
// 从调用时刻开始给env创建的每一个stream追加时间特征

env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

9.2 Watermark

9.2.1 基本概念

我们知道,流处理从事件产生,到流经source,再到operator,中间是有一个过程和时间的,虽然大部分情况下,流到operator的数据都是按照事件产生的时间顺序来的,但是也不排除由于网络、背压等原因,导致乱序的产生,所谓乱序,就是指Flink接收到的事件的先后顺序不是严格按照事件的Event Time顺序排列的。

那么此时出现一个问题,一旦出现乱序,如果只根据eventTime决定window的运行,我们不能明确数据是否全部到位,但又不能无限期的等下去,此时必须要有个机制来保证一个特定的时间后,必须触发window去进行计算了,这个特别的机制,就是Watermark。

Watermark是一种衡量Event Time进展的机制,它是数据本身的一个隐藏属性,数据本身携带着对应的Watermark。

Watermark是用于处理乱序事件的,而正确的处理乱序事件,通常用Watermark机制结合window 来实现。

数据流中的Watermark用于表示timestamp小于Watermark的数据,都已经到达了,因此,window的执行也是由Watermark触发的。

Watermark可以理解成一个延迟触发机制,我们可以设置Watermark的延时时长t,每次系统会校验已经到达的数据中最大的maxEventTime,然后认定eventTime小于maxEventTime-t的所有数据都已经到达,如果有窗口的停止时间等于maxEventTime-t,那么这个窗口被触发执行。

有序流的Watermarker如下图所示: (Watermark设置为0)

乱序流的Watermarker如下图所示: (Watermark设置为2)

当Flink接收到每一条数据时,都会产生一条Watermark,这条Watermark就等于当前所有到达数据中的maxEventTime - 延迟时长,也就是说,Watermark是由数据携带的,一旦数据携带的Watermark比当前未触发的窗口的停止时间要晚,那么就会触发相应窗口的执行。由于Watermark是由数据携带的,因此,如果运行过程中无法获取新的数据,那么没有被触发的窗口将永远都不被触发。

上图中,我们设置的允许最大延迟到达时间为2s,所以时间戳为7s的事件对应的Watermark是5s,时间戳为12s的事件的Watermark是10s,如果我们的窗口1是1s~5s,窗口2是6s~10s,那么时间戳为7s的事件到达时的Watermarker恰好触发窗口1,时间戳为12s的事件到达时的Watermark恰好触发窗口2。

9.2.2 Watermark的引入

```
val env = StreamExecutionEnvironment.getExecutionEnvironment

// 从调用时刻开始给env创建的每一个stream追加时间特征
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
val stream = env.readTextFile("eventTest.txt").assignTimestampsAndWatermarks(
    new BoundedOutOfOrdernessTimestampExtractor[String](Time.milliseconds(200)) {
    override def extractTimestamp(t: String): Long = {
        // EventTime是日志生成时间,我们从日志中解析EventTime
        t.split(" ")(0).toLong
    }
})
```

9.3 EvnetTimeWindow API

当使用EventTimeWindow时,所有的Window在EventTime的时间轴上进行划分,也就是说,在Window启动后,会根据初始的EventTime时间每隔一段时间划分一个窗口,如果Window大小是3秒,那么1分钟内会把Window划分为如下的形式:

```
[00:00:00,00:00:03)
[00:00:03,00:00:06)
...
[00:00:57,00:01:00)
```

如果Window大小是10秒,则Window会被分为如下的形式:

```
[00:00:00,00:00:10)

[00:00:10,00:00:20)

...

[00:00:50,00:01:00)
```

注意,窗口是左闭右开的,形式为: [window_start_time,window_end_time)。

Window的设定无关数据本身,而是系统定义好了的,也就是说,Window会一直按照指定的时间间隔进行划分,不论这个Window中有没有数据,EventTime在这个Window期间的数据会进入这个Window。

Window会不断产生,属于这个Window范围的数据会被不断加入到Window中,所有未被触发的Window都会等待触发,只要Window还没触发,属于这个Window范围的数据就会一直被加入到Window中,直到Window被触发才会停止数据的追加,而当Window触发之后才接受到的属于被触发Window的数据会被丢弃。

Window会在以下的条件满足时被触发执行:

| watermark时间 >= window end time;

│在[window_start_time,window_end_time)中有数据存在。

我们通过下图来说明Watermark、EventTime和Window的关系。

9.3.1 滚动窗口(TumblingEventTimeWindows)

// 获取执行环境

```
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
// 创建SocketSource
val stream = env.socketTextStream("localhost", 8888)
// 对stream进行处理并按key聚合
val streamKeyBy = stream.assignTimestampsAndWatermarks(
  new BoundedOutOfOrdernessTimestampExtractor[String](Time.milliseconds(3000)) {
   override def extractTimestamp(element: String): Long = {
      val sysTime = element.split(" ")(0).toLong
      println(sysTime)
      sysTime
    }}).map(item => (item.split(" ")(1), 1)).keyBy(0)
// 引入滚动窗口
val streamWindow =
streamKeyBy.window(TumblingEventTimeWindows.of(Time.seconds(10)))
// 执行聚合操作
val streamReduce = streamWindow.reduce(
  (a, b) \Rightarrow (a._1, a._2 + b._2)
// 将聚合数据写入文件
streamReduce.print
// 执行程序
env.execute("TumblingWindow")
```

结果是按照Event Time的时间窗口计算得出的,而无关系统的时间(包括输入的快慢)。

9.3.2 滑动窗口(SlidingEventTimeWindows)

```
// 获取执行环境
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
// 创建SocketSource
val stream = env.socketTextStream("localhost", 11111)
// 对stream进行处理并按key聚合
val streamKeyBy = stream.assignTimestampsAndWatermarks(
    new BoundedOutOfOrdernessTimestampExtractor[String](Time.milliseconds(0)) {
        override def extractTimestamp(element: String): Long = {
            val sysTime = element.split(" ")(0).toLong
```

```
println(sysTime)
sysTime
}).map(item => (item.split(" ")(1), 1)).keyBy(0)

// 引入滚动窗口

val streamWindow = streamKeyBy.window(SlidingEventTimeWindows.of(Time.seconds(10), Time.seconds(5)))

// 执行聚合操作

val streamReduce = streamWindow.reduce(
    (a,b) => (a._1, a._2 + b._2)
)

// 将聚合数据写入文件
streamReduce.print
// 执行程序
env.execute("TumblingWindow")
```

7.3.3 会话窗口(EventTimeSessionWindows)

相邻两次数据的EventTime的时间差超过指定的时间间隔就会触发执行。如果加入Watermark,那么当触发执行时,所有满足时间间隔而还没有触发的Window会同时触发执行。

```
// 获取执行环境
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
// 创建SocketSource
val stream = env.socketTextStream("localhost", 11111)
// 对stream进行处理并按key聚合
val streamKeyBy = stream.assignTimestampsAndWatermarks(
  new BoundedOutOfOrdernessTimestampExtractor[String](Time.milliseconds(0)) {
    override def extractTimestamp(element: String): Long = {
     val sysTime = element.split(" ")(0).toLong
     println(sysTime)
     sysTime
    }}).map(item => (item.split(" ")(1), 1)).keyBy(0)
// 引入滚动窗口
val streamWindow =
streamKeyBy.window(EventTimeSessionWindows.withGap(Time.seconds(5)))
// 执行聚合操作
val streamReduce = streamWindow.reduce(
  (a, b) \Rightarrow (a._1, a._2 + b._2)
)
// 将聚合数据写入文件
streamReduce.print
// 执行程序
```