ME414 - Estatística para Experimentalistas Parte 21

Notas de aula produzidas pelos professores **Samara Kiihl**, **Tatiana Benaglia** e **Benilton Carvalho** e modificadas pela Profa. **Larissa Avila Matos**

Testes Chi-Quadrado: Aderência e Independência

Muitas vezes, a informação da amostra coletada tem a estrutura de dados categorizados, ou seja, cada membro da população pode assumir um entre k valores de uma ou mais características estudadas.

Muitas vezes, a informação da amostra coletada tem a estrutura de dados categorizados, ou seja, cada membro da população pode assumir um entre k valores de uma ou mais características estudadas.

Dessa forma, o conjunto de dados consiste em frequências de contagens para essas categorias.

Muitas vezes, a informação da amostra coletada tem a estrutura de dados categorizados, ou seja, cada membro da população pode assumir um entre k valores de uma ou mais características estudadas.

Dessa forma, o conjunto de dados consiste em frequências de contagens para essas categorias.

Esse tipo de dados ocorre com frequência nas áreas sociais e biomédicas.

Muitas vezes, a informação da amostra coletada tem a estrutura de dados categorizados, ou seja, cada membro da população pode assumir um entre k valores de uma ou mais características estudadas.

Dessa forma, o conjunto de dados consiste em frequências de contagens para essas categorias.

Esse tipo de dados ocorre com frequência nas áreas sociais e biomédicas.

O objetivo aqui é estudar dados agrupados em categorias múltiplas e veremos isso através de dois tipos de testes:

- Teste de Aderência (ou Bondade de Ajuste); e
- Teste de Independência.

Teste de Aderência: considere uma população na qual cada membro assume qualquer um de k possíveis valores. Iremos verificar quão adequado uma amostra obtida dessa população se ajusta a um modelo de probabilidade proposto.

Teste de Aderência: considere uma população na qual cada membro assume qualquer um de k possíveis valores. Iremos verificar quão adequado uma amostra obtida dessa população se ajusta a um modelo de probabilidade proposto.

Teste de Independência: considere uma população na qual cada membro é classificado de acordo com duas características distintas. Com os dados de uma amostra dessa população, iremos verificar se essas duas características podem ser consideradas independentes.

Teste de Aderência: considere uma população na qual cada membro assume qualquer um de k possíveis valores. Iremos verificar quão adequado uma amostra obtida dessa população se ajusta a um modelo de probabilidade proposto.

Teste de Independência: considere uma população na qual cada membro é classificado de acordo com duas características distintas. Com os dados de uma amostra dessa população, iremos verificar se essas duas características podem ser consideradas independentes.

Duas características serão independentes se a classificação de um membro da população de acordo com uma característica não interfere na probabilidade de classificação em relação à segunda característica desse mesmo membro.

Teste de Aderência: considere uma população na qual cada membro assume qualquer um de k possíveis valores. Iremos verificar quão adequado uma amostra obtida dessa população se ajusta a um modelo de probabilidade proposto.

Teste de Independência: considere uma população na qual cada membro é classificado de acordo com duas características distintas. Com os dados de uma amostra dessa população, iremos verificar se essas duas características podem ser consideradas independentes.

Duas características serão independentes se a classificação de um membro da população de acordo com uma característica não interfere na probabilidade de classificação em relação à segunda característica desse mesmo membro.

Na aula de hoje iremos focar em Testes de Aderência.

Uma determinada marca de geladeira é vendida em cinco cores diferentes e uma pesquisa de mercado quer avaliar a popularidade das várias cores.

Uma determinada marca de geladeira é vendida em cinco cores diferentes e uma pesquisa de mercado quer avaliar a popularidade das várias cores.

As frequências abaixo são observadas para uma amostra de 300 vendas feitas num semestre.

Uma determinada marca de geladeira é vendida em cinco cores diferentes e uma pesquisa de mercado quer avaliar a popularidade das várias cores.

As frequências abaixo são observadas para uma amostra de 300 vendas feitas num semestre.

Suponha que seja de interesse testar a hipótese das cinco cores serem igualmente populares.

Uma determinada marca de geladeira é vendida em cinco cores diferentes e uma pesquisa de mercado quer avaliar a popularidade das várias cores.

As frequências abaixo são observadas para uma amostra de 300 vendas feitas num semestre.

Suponha que seja de interesse testar a hipótese das cinco cores serem igualmente populares.

Vendas das cinco cores das geladeiras da marca W.

Cor	marrom	creme	vermelho	azul	branco	total
Frequência	88	65	52	40	55	300

Modelo Multinomial

Para acomodar dados como no Exemplo 1, precisamos estender o modelo Bernoulli de forma que os resultados possam ser classificados em mais de duas categorias. Esse modelo é chamado de **distribuição** multinomial.

Para acomodar dados como no Exemplo 1, precisamos estender o modelo Bernoulli de forma que os resultados possam ser classificados em mais de duas categorias. Esse modelo é chamado de **distribuição** multinomial.

Modelo Multinomial

Para acomodar dados como no Exemplo 1, precisamos estender o modelo Bernoulli de forma que os resultados possam ser classificados em mais de duas categorias. Esse modelo é chamado de **distribuição** multinomial.

Modelo Multinomial

- \blacksquare O resultado de cada amostra pode ser classificado em uma de k respostas denotadas por $1, 2, \ldots, k$.
- **2** A probabilidade da amostra assumir o valor $i \in p_i, i = 1, 2, \dots, k$, com

$$\sum_{i=1}^{k} p_i = 1.$$

3 As observações são independentes.

Considere uma amostra de uma população que consiste de elementos em diversas categorias, por exemplo, k valores possíveis.

Considere uma amostra de uma população que consiste de elementos em diversas categorias, por exemplo, k valores possíveis.

Denotaremos por n_1, n_2, \ldots, n_k , com $\sum_{i=1}^k n_i = n$ as frequências e p_1, p_2, \ldots, p_k as probabilidades.

Considere uma amostra de uma população que consiste de elementos em diversas categorias, por exemplo, k valores possíveis.

Denotaremos por n_1, n_2, \ldots, n_k , com $\sum_{i=1}^k n_i = n$ as frequências e p_1, p_2, \ldots, p_k as probabilidades.

A distribuição conjunta de n_1, n_2, \dots, n_k é chamada de distribuição multinomial e tem função de probabilidade dada por:

$$f(n_1, n_2, \dots, n_k) = \frac{n!}{n_1! \dots n_k!} p_1^{n_1} p_2^{n_2} \dots p_k^{n_k},$$

em que
$$\sum_{i=1}^k n_i = n \text{ e com } \sum_{i=1}^k p_i = 1.$$

Se designarmos a componente n_1 como "sucesso" e juntarmos as demais numa mesma que designamos "fracasso", a variável aleatória n_1 é o número de sucessos em n ensaios de Bernoulli, ou seja, $n_1 \sim Bin(n,p_1)$.

Se designarmos a componente n_1 como "sucesso" e juntarmos as demais numa mesma que designamos "fracasso", a variável aleatória n_1 é o número de sucessos em n ensaios de Bernoulli, ou seja, $n_1 \sim Bin(n,p_1)$.

Portanto, $\mathbb{E}(n_1) = np_1$, $Var(n_1) = np_1(1 - p_1)$.

Se designarmos a componente n_1 como "sucesso" e juntarmos as demais numa mesma que designamos "fracasso", a variável aleatória n_1 é o número de sucessos em n ensaios de Bernoulli, ou seja, $n_1 \sim Bin(n,p_1)$.

Portanto,
$$\mathbb{E}(n_1) = np_1$$
, $Var(n_1) = np_1(1 - p_1)$.

Analogamente aplicando o mesmo argumento a cada n_i temos:

$$\mathbb{E}(n_i) = np_i$$
 e $Var(n_i) = np_i(1-p_i)$.

Se designarmos a componente n_1 como "sucesso" e juntarmos as demais numa mesma que designamos "fracasso", a variável aleatória n_1 é o número de sucessos em n ensaios de Bernoulli, ou seja, $n_1 \sim Bin(n,p_1)$.

Portanto,
$$\mathbb{E}(n_1) = np_1$$
, $Var(n_1) = np_1(1 - p_1)$.

Analogamente aplicando o mesmo argumento a cada n_i temos:

$$\mathbb{E}(n_i) = np_i$$
 e $Var(n_i) = np_i(1 - p_i)$.

Iremos usar o valor esperado de n_i nos testes que veremos a seguir.

Objetivo: Testar quão adequado é assumir um modelo probabilístico para descrever um determinado conjunto de dados.

Objetivo: Testar quão adequado é assumir um modelo probabilístico para descrever um determinado conjunto de dados.

Exemplo: Vocês já devem ter visto em alguma aula de Biologia o seguinte:

Objetivo: Testar quão adequado é assumir um modelo probabilístico para descrever um determinado conjunto de dados.

Exemplo: Vocês já devem ter visto em alguma aula de Biologia o seguinte:

Objetivo: Testar quão adequado é assumir um modelo probabilístico para descrever um determinado conjunto de dados.

Exemplo: Vocês já devem ter visto em alguma aula de Biologia o seguinte:

3 genótipos (categorias): AA, Aa e aa.

Em uma certa população, 100 descendentes foram estudados, fornecendo a tabela a seguir:

Em uma certa população, 100 descendentes foram estudados, fornecendo a tabela a seguir:

Genótipo	AA	Aa	aa	Total
Frequência Observada	26	45	29	100

Em uma certa população, 100 descendentes foram estudados, fornecendo a tabela a seguir:

Genótipo	AA	Aa	aa	Total
Frequência Observada	26	45	29	100

Objetivo: Verificar se o modelo genético proposto (Equilíbrio de Hardy-Weinberg) é adequado para essa população.

Se o modelo teórico for adequado, a freqüência esperada de descendentes para o genótipo AA, dentre os 100 indivíduos, pode ser calculada por:

$$100 \times P(AA) = 100 \times \frac{1}{4} = 25.$$

Se o modelo teórico for adequado, a freqüência esperada de descendentes para o genótipo AA, dentre os 100 indivíduos, pode ser calculada por:

$$100 \times P(AA) = 100 \times \frac{1}{4} = 25.$$

Da mesma forma para o genótipo Aa:

$$100 \times P(Aa) = 100 \times \frac{1}{2} = 50.$$

Se o modelo teórico for adequado, a freqüência esperada de descendentes para o genótipo AA, dentre os 100 indivíduos, pode ser calculada por:

$$100 \times P(AA) = 100 \times \frac{1}{4} = 25.$$

Da mesma forma para o genótipo Aa:

$$100 \times P(Aa) = 100 \times \frac{1}{2} = 50.$$

E para o genótipo aa:

$$100 \times P(aa) = 100 \times \frac{1}{4} = 25.$$

Podemos expandir a tabela de frequências dada anteriormente com as frequências esperadas sob o modelo teórico:

Podemos expandir a tabela de frequências dada anteriormente com as frequências esperadas sob o modelo teórico:

Genótipo	AA	Aa	aa	Total
Frequência Observada	26	45	29	100
Frequência Esperada	25	50	25	100

Podemos expandir a tabela de frequências dada anteriormente com as frequências esperadas sob o modelo teórico:

Genótipo	AA	Aa	aa	Total
Frequência Observada	26	45	29	100
Frequência Esperada	25	50	25	100

Pergunta: Podemos afirmar que os valores observados estão suficientemente próximos dos valores esperados, de tal forma que o modelo genético teórico é adequado a esta população?

Podemos expandir a tabela de frequências dada anteriormente com as frequências esperadas sob o modelo teórico:

Genótipo	AA	Aa	aa	Total
Frequência Observada	26	45	29	100
Frequência Esperada	25	50	25	100

Pergunta: Podemos afirmar que os valores observados estão suficientemente próximos dos valores esperados, de tal forma que o modelo genético teórico é adequado a esta população?

O procedimento que responde esse tipo de pergunta é chamado de teste de bondade de ajuste ou teste de aderência.

Considere uma tabela de freqüências, com $k \geq 2$ categorias de resultados:

Categorias	1	2	 k	Total
Frequência Observada	O_1	O_2	 O_k	n

Considere uma tabela de freqüências, com $k \geq 2$ categorias de resultados:

Categorias	1	2	 k	Total
Frequência Observada	O_1	O_2	 O_k	n

Sendo O_i o total de indivíduos observados na categoria $i, i = 1, 2, \dots, k$.

Considere uma tabela de freqüências, com $k \geq 2$ categorias de resultados:

Categorias	1	2	 k	Total
Frequência Observada	O_1	O_2	 O_k	n

Sendo O_i o total de indivíduos observados na categoria $i, i = 1, 2, \dots, k$.

Seja p_i a probabilidade associada à categoria $i, i = 1, 2, \dots, k$.

Considere uma tabela de freqüências, com $k \geq 2$ categorias de resultados:

Categorias	1	2	 k	Total
Frequência Observada	O_1	O_2	 O_k	\overline{n}

Sendo O_i o total de indivíduos observados na categoria $i, i = 1, 2, \dots, k$.

Seja p_i a probabilidade associada à categoria $i, i = 1, 2, \dots, k$.

O objetivo do teste de aderência é testar as hipóteses

 $H_0: p_1 = p_{01}, \ldots, p_k = p_{0k}$

 H_a : existe pelo menos uma diferença,

sendo p_{0i} a probabilidade da categoria i sob o modelo teórico e $\sum_{i=1}^{k} p_{0i} = 1$.

Se E_i é o total de indivíduos esperados na categoria i, quando a hipótese nula H_0 é verdadeira, então:

Se E_i é o total de indivíduos esperados na categoria i, quando a hipótese nula H_0 é verdadeira, então:

$$E_i = n \times p_{0i}, \quad i = 1, 2, \dots, k.$$

Se E_i é o total de indivíduos esperados na categoria i, quando a hipótese nula H_0 é verdadeira, então:

$$E_i = n \times p_{0i}, \quad i = 1, 2, \dots, k.$$

Então, expandindo a tabela de freqüências original, temos

Categorias	1	2	 k	Total
Frequência Observada	O_1	O_2	 O_k	n
Frequência Esperada	E_1	E_2	 E_k	n

Para quantificar quão distante os frequências observadas estão das frequências esperadas, usamos a seguinte estatística:

Para quantificar quão distante os frequências observadas estão das frequências esperadas, usamos a seguinte estatística:

Estatística do Teste:

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} = \sum_{i=1}^k \frac{(n_i - np_{0i})^2}{np_{0i}}.$$

Para quantificar quão distante os frequências observadas estão das frequências esperadas, usamos a seguinte estatística:

Estatística do Teste:

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} = \sum_{i=1}^k \frac{(n_i - np_{0i})^2}{np_{0i}}.$$

Se H_0 é verdadeira: $\chi^2 \sim \chi^2_{k-1}$.

Para quantificar quão distante os frequências observadas estão das frequências esperadas, usamos a seguinte estatística:

Estatística do Teste:

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} = \sum_{i=1}^k \frac{(n_i - np_{0i})^2}{np_{0i}}.$$

Se H_0 é verdadeira: $\chi^2 \sim \chi^2_{k-1}$.

Em outras palavras, se H_0 é verdadeira, a v.a. χ^2 segue uma distribuição aproximadamente Qui-quadrado com k-1 graus de liberdade.

Para quantificar quão distante os frequências observadas estão das frequências esperadas, usamos a seguinte estatística:

Estatística do Teste:

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} = \sum_{i=1}^k \frac{(n_i - np_{0i})^2}{np_{0i}}.$$

Se H_0 é verdadeira: $\chi^2 \sim \chi^2_{k-1}$.

Em outras palavras, se H_0 é verdadeira, a v.a. χ^2 segue uma distribuição aproximadamente Qui-quadrado com k-1 graus de liberdade.

Condição: Este resultado é válido para n grande e para frequências esperadas maiores ou iguais a 5.

Calcular o valor-de-p ou encontrar o valor crítico.

Calcular o valor-de-p ou encontrar o valor crítico.

Valor-de-p: $P(\chi^2_{k-1} \ge \chi^2_{obs})$, em que χ^2_{obs} é o valor da estatística do teste calculada a partir dos dados.

Calcular o valor-de-p ou encontrar o valor crítico.

Valor-de-p: $P(\chi^2_{k-1} \ge \chi^2_{obs})$, em que χ^2_{obs} é o valor da estatística do teste calculada a partir dos dados.

Valor Crítico: Para um nível de significância α , encontrar o valor crítico χ^2_{crit} na tabela Chi-quadrado tal que $P(\chi^2_{k-1} \ge \chi^2_{crit}) = \alpha$.

Conclusão: Rejeitamos H_0 se

valor-de-p
$$\leq \alpha$$
 ou $\chi^2_{obs} \geq \chi^2_{crit}$.

Tabela da Distribuição Chi-Quadrado

Tabela IV: Distribuição Qui-Quadrado

Fornece o quantil χ^2_p em função do nº de g.l. v (linha) e de p = P($\chi^2 \le \chi^2_p$) (coluna). χ^2 tem distribuição qui-quadrado com v g.l.

v\p	0,005	0,010	0,025	0,050	0,100	0,250	0,500	0,750	0,900	0,950	0,975	0,990	0,995
1	0,000	0,000	0,001	0,004	0,016	0,102	0,455	1,323	2,706	3,841	5,024	6,635	7,879
2	0,010	0,020	0,051	0,103	0,211	0,575	1,386	2,773	4,605	5,991	7,378	9,210	10,597
3	0.072	0,115	0,216	0,352	0.584	1,213	2,366	4,108	6,251	7,815	9,348	11,345	12,838
4	0,207	0,297	0,484	0,711	1,064	1,923	3,357	5,385	7,779	9,488	11,143	13,277	14,860
5	0,412	0,554	0,831	1,145	1,610	2,675	4,351	6,626	9,236	11,070	12,833	15,086	16,750
6	0,676	0.872	1,237	1,635	2,204	3,455	5,348	7,841	10,645	12,592	14,449	16,812	18,548
7	0,989	1,239	1,690	2,167	2,833	4,255	6,346	9,037	12,017	14,067	16,013	18,475	20,278
8	1,344	1,646	2,180	2,733	3,490	5,071	7,344	10,219	13,362	15,507	17,535	20,090	21,955
9	1,735	2,088	2,700	3,325	4,168	5,899	8,343	11,389	14,684	16,919	19,023	21,666	23,589
10	2,156	2,558	3,247	3,940	4,865	6,737	9,342	12,549	15,987	18,307	20,483	23,209	25,188
11	2,603	3,053	3,816	4,575	5,578	7,584	10,341	13,701	17,275	19,675	21,920	24,725	26,757
12	3,074	3,571	4,404	5,226	6,304	8,438	11,340	14,845	18,549	21,026	23,337	26,217	28,300
13	3,565	4,107	5,009	5,892	7,042	9,299	12,340	15,984	19,812	22,362	24,736	27,688	29,819
14	4,075	4,660	5,629	6,571	7,790	10,165	13,339	17,117	21,064	23,685	26,119	29,141	31,319
15	4,601	5,229	6,262	7,261	8,547	11,037	14,339	18,245	22,307	24,996	27,488	30,578	32,801
16	5,142	5,812	6,908	7.962	9,312	11,912	15,338	19,369	23,542	26,296	28,845	32,000	34,267
17	5,697	6,408	7,564	8,672	10,085	12,792	16,338	20,489	24,769	27,587	30,191	33,409	35,718

Voltando no exemplo da Genética.

Voltando no exemplo da Genética.

Hipóteses:

 H_0 : o modelo proposto é adequado

 H_a : o modelo proposto não é adequado.

Voltando no exemplo da Genética.

Hipóteses:

 H_0 : o modelo proposto é adequado

 H_a : o modelo proposto não é adequado.

Que de forma equivalente, podem ser escritas como:

$$H_0:$$
 $p_1 = 1/4, p_2 = 1/2, p_3 = 1/4$

 H_a : ao menos umas das desigualdades não verifica,

sendo
$$p_1 = P(AA), p_2 = P(Aa) e p_3 = P(aa).$$

A tabela seguinte apresenta os valores observados e esperados (calculados anteriormente).

Genótipo	AA	Aa	aa	Total
Frequência Observada	26	45	29	100
Frequência Esperada	25	50	25	100

A tabela seguinte apresenta os valores observados e esperados (calculados anteriormente).

Genótipo	AA	Aa	aa	Total
Frequência Observada	26	45	29	100
Frequência Esperada	25	50	25	100

Estatística do Teste:

$$\chi_{obs}^2 = \sum_{i=1}^3 \frac{(O_i - E_i)^2}{E_i} = \frac{(26 - 25)^2}{25} + \frac{(45 - 50)^2}{50} + \frac{(29 - 25)^2}{25}$$
$$= 0.04 + 0.5 + 0.64 = 1.18.$$

Sob H_0 , a estatística $\chi^2 \sim \chi_2^2$. Veja que os graus de liberdade é o número de categorias menos 1. Então o valor-de-p é dado por:

valor-de-p =
$$P(\chi_2^2 \ge \chi_{obs}^2) = P(\chi_2^2 \ge 1.18) = 0.554$$
.

Sob H_0 , a estatística $\chi^2 \sim \chi_2^2$. Veja que os graus de liberdade é o número de categorias menos 1. Então o valor-de-p é dado por:

valor-de-p =
$$P(\chi_2^2 \ge \chi_{obs}^2) = P(\chi_2^2 \ge 1.18) = 0.554$$
.

Para um nível de significância $\alpha=0.1,$ olhando na Tabela Qui-Quadrado, o valor crítico é: $\chi^2_{crit}=7.779.$

Sob H_0 , a estatística $\chi^2 \sim \chi_2^2$. Veja que os graus de liberdade é o número de categorias menos 1. Então o valor-de-p é dado por:

valor-de-p =
$$P(\chi_2^2 \ge \chi_{obs}^2) = P(\chi_2^2 \ge 1.18) = 0.554$$
.

Para um nível de significância $\alpha=0.1,$ olhando na Tabela Qui-Quadrado, o valor crítico é: $\chi^2_{crit}=7.779.$

Conclusão: Para $\alpha=0.1$, como valor-de-p= 0.554 > 0.1, não rejeitamos a hipótese H_0 , isto é, essa população segue o modelo genético proposto.

Ou como $\chi^2_{obs}=1.18 < 7.779=\chi^2_{crit},$ não rejeitamos a hipótese $H_0.$

Voltando aos dados do exemplo das cores da geladeira, cujas componentes têm frequências multinomiais, a hipótese nula especifica que as cinco cores são igualmente populares. Ou seja,

$$H_0: p_1 = p_2 = \ldots = p_k = 1/5$$

 H_a : existe pelo menos uma diferença.

Voltando aos dados do exemplo das cores da geladeira, cujas componentes têm frequências multinomiais, a hipótese nula especifica que as cinco cores são igualmente populares. Ou seja,

$$H_0: p_1 = p_2 = \ldots = p_k = 1/5$$

 H_a : existe pelo menos uma diferença.

Componente	marrom	creme	vermelho	azul	branco	total
Frequência Observada	88	65	52	40	55	300

Voltando aos dados do exemplo das cores da geladeira, cujas componentes têm frequências multinomiais, a hipótese nula especifica que as cinco cores são igualmente populares. Ou seja,

$$H_0: p_1 = p_2 = \ldots = p_k = 1/5$$

 H_a : existe pelo menos uma diferença.

Componente	marrom	creme	vermelho	azul	branco	total
Frequência Observada	88	65	52	40	55	300

Como as probabilidades das componentes na hipótese nula são todas iguais, as frequências esperadas também serão todas iguais, ou seja,

$$E_i = n \times \frac{1}{5} = 300 \times \frac{1}{5} = 60, \quad i = 1, 2, 3, 4, 5.$$

Componente	marrom	creme	vermelho	azul	branco	total
Frequência Observada	88	65	52	40	55	300
Frequência Esperada	60	60	60	60	60	300
$\frac{(O-E)^2}{E}$	13.07	0.42	1.07	6.67	0.42	21.63

Componente	marrom	creme	vermelho	azul	branco	total
Frequência Observada	88	65	52	40	55	300
Frequência Esperada	60	60	60	60	60	300
$\frac{(O-E)^2}{E}$	13.07	0.42	1.07	6.67	0.42	21.63

Estatística do Teste:

$$\chi^{2} = \sum_{i=1}^{5} \frac{(O_{i} - E_{i})^{2}}{E_{i}} = 13.07 + 0.42 + 1.07 + 6.67 + 0.42$$
$$= 21.63.$$

Olhando na tabela Qui-quadrado com 4 graus de liberdade, para $\alpha = 0.05$, o valor crítico é $\chi^2_{crit} = \chi^2_{4.0.05} = 9.488$.

Conclusão: Para $\alpha = 0.05$, como $\chi^2_{obs} = 21.63 > 9.488 = \chi^2_{crit}$, rejeitamos a hipótese de que as cinco cores são igualmente populares.

Entre os americanos, 41% tem sangue do tipo A, 9% tem sangue tipo B, 4% tipo AB e 46% tem sangue tipo O.

Em uma amostra aleatória de 200 pacientes americanos com câncer de estômago, 92 pacientes têm sangue do tipo A, 20 do tipo B, 4 do tipo AB e 84 do tipo O.

Tipo	A	В	AB	О	total
Frequência Observada	92	20	4	84	200

Essas frequências observadas trazem evidência contra a hipótese de que a distribuição do tipo sanguíneo dos pacientes é igual à distribuição dos tipos sanguíneos na população geral americana? Use nível de significância $\alpha=0.05$.

 $H_0: p_1 = 0.41, p_2 = 0.09, p_3 = 0.04, p_4 = 0.46$

 $H_0: p_1 = 0.41, p_2 = 0.09, p_3 = 0.04, p_4 = 0.46$

Tipo	A	В	AB	О	total
Frequência Observada	92	20	4	84	200
Frequência Esperada	82	18	8	92	200
$\frac{(O-E)^2}{E}$	1.22	0.22	2	0.7	4.14

$$H_0: p_1 = 0.41, p_2 = 0.09, p_3 = 0.04, p_4 = 0.46$$

Tipo	A	В	AB	О	total
Frequência Observada	92	20	4	84	200
Frequência Esperada	82	18	8	92	200
$\frac{(O-E)^2}{E}$	1.22	0.22	2	0.7	4.14

Estatística do Teste:
$$\chi^2 = \sum_{i=1}^4 \frac{(O_i - E_i)^2}{E_i} = 4.14.$$

Conclusão: Como $\chi^2_{obs}=4.14\leq 7.815=\chi^2_{3,0.05}$, não temos evidência para rejeitar a hipótese nula.

Portanto, concluímos que não há discrepância significativa entre o que foi observado e a distribuição sanguínea da população americana.

Figura: (Esquerda) Cruzamento de ervilhas puramente amarelas e puramente verdes e (Direta) cruzamento de ervilhas híbridas (Direita)

Mendel fez o cruzamento de 8023 ervilhas híbridas e o resultado foram 6022 ervilhas amarelas e 2001 ervilhas verdes. Teoricamente, cada cruzamento deve resultar em ervilha amarela com probabilidade 3/4 e verde com probabilidade 1/4.

$$H_0: p_1 = 3/4 e p_2 = 1/4$$

Mendel fez o cruzamento de 8023 ervilhas híbridas e o resultado foram 6022 ervilhas amarelas e 2001 ervilhas verdes. Teoricamente, cada cruzamento deve resultar em ervilha amarela com probabilidade 3/4 e verde com probabilidade 1/4.

$$H_0: p_1 = 3/4 e p_2 = 1/4$$

Tipo	Amarela	Verde	total
Frequência Observada	6022	2001	8023
Frequência Esperada	6017.25	2005.75	8023
$\frac{(O-E)^2}{E}$	0.004	0.011	0.015

Estatística do Teste:
$$\chi^2 = \sum_{i=1}^2 \frac{(O_i - E_i)^2}{E_i} = 0.015.$$

Estatística do Teste:
$$\chi^2 = \sum_{i=1}^2 \frac{(O_i - E_i)^2}{E_i} = 0.015.$$

Conclusão: Como $\chi^2_{obs} = 0.015 \le 3.841 = \chi^2_{1,0.05}$, não temos evidência para rejeitar a hipótese nula. Concluímos que não há discrepância significativa entre o que foi observado e a hipótese nula.

Leituras

- Ross: capítulo 13.
- OpenIntro: seção 6.3

