Aula 16: Sumário

- Extremos condicionados: método dos multiplicadores de Lagrange.
- Exemplos.
- Exercícios.

Aula 16: Extremos condicionados - métdo dos multiplicadores de Lagrange

Teorema 6: Sejam D aberto em \mathbb{R}^n e $f:D\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ continuamente diferenciável em D (i.e. com derivadas parciais contínuas). Se $p_0=(x_0,y_0,z_0,\dots)\in D$ é um extremante local da função $f(x,y,z,\dots)$ condicionado à restrição $g(x,y,z,\dots)=k$, então p_0 satisfaz um dos sistemas:

$$\begin{cases} \nabla g(p_{\scriptscriptstyle 0}) \neq \vec{0} \\ \nabla f(p_{\scriptscriptstyle 0}) = \lambda \nabla g(p_{\scriptscriptstyle 0}) \end{cases} \quad \text{ou} \quad \begin{cases} \nabla g(p_{\scriptscriptstyle 0}) = 0 \\ g(p_{\scriptscriptstyle 0}) = k \end{cases}$$

Geometricamente: No caso de n=2, se $\nabla g(p_0) \neq \vec{0}$ e $\nabla f(p_0) \neq \vec{0}$, então p_0 é um ponto onde a curva de nível de f é tangente à curva restrição g(x,y)=k.

Se $\nabla(g) \neq \vec{0}$, as condições acimas são equivalentes a encontrar os pontos críticos da função lagrangiana $L(x,y;\lambda) = f(x,y) - \lambda h(x,y)$, em que h(x,y) = g(x,y) - k.

Aula 16: Método dos multiplicadores de Lagrange - demonstração

Se p_0 é um extremante de $f(x,y,z,\dots)$ condicionado à restrição $g(x,y,z,\dots)=k$, então $g(p_0)=k$.

(n=2): A restrição determina $N_g(k) = \{(x,y) \mid g(x,y) = k\} = \text{uma curva de nível } k \text{ de } g.$

(n=3): A restrição determina $N_g(k)=\{(x,y,z)\mid g(x,y,z)=k\}=$ superfície de nível k de g.

Em qualquer dos casos, seja $\gamma(t)=(x(t),y(t),z(t),\ldots)$ uma qualquer curva em $N_g(k)$ que

passe por p_0 , isto é, $g(\gamma(t))=k$ e $p_0=\gamma(t_0)$.

Como $p_0=\gamma(t_0)$ é extremante local da função $f_{|_{N_g(k)}}$, em particular é também um extremante local da função real de variável real $f(\gamma(t))=F\circ\gamma(t)$, pelo que p_0 é um ponto estacionário (crítico): $\frac{df(\gamma(t))}{dt}=0 \ \Leftrightarrow \ \nabla f(p_0)\cdot\frac{d\gamma}{dt}=0.$

Por outro lado, $g(\gamma(t))=k$, pelo que $\frac{g(\gamma(t))}{dt}=\frac{d\,k}{dt}=0 \,\Leftrightarrow\, \nabla g(p_{_0})\cdot \frac{d\gamma}{dt}=0.$

Como γ é qualquer, podemos tomar aquelas em que $\frac{d\gamma}{dt} \neq 0$, pelo que se $\nabla f(p_0)$ e $\nabla g(p_0)$ não são vectores nulos, serão perpendiculares ao espaço (reta, plano,etc) tangente em p_0 gerado pelos diferentes vectores $\frac{d\gamma}{dt} \neq 0$ originários das várias curvas γ tomadas; logo serão paralelos, ou seja, serão linearmente dependentes.

Aula 6: Exemplos (Luiza Cantão)

max e min f(x,y) = xy min f(x,y) = 3x + 4y sujeito à $g(x,y) = \frac{x^2}{8} + \frac{y^2}{2} = 1$.

Aula 4: Exercícios 1

- 1 Determine os extremos de f(x,y)=2x+2y sugeito à restrição $x^2+y^2=1$.
- **2** Determine os extremos de f(x,y)=xy sugeito à restrição $3x^2+y^2=6$.
- **3** Determine os extremos de $f(x,y)=x^2y$ sugeito à restrição $x^2+y^2=1$.
- (4) Considera a função real de duas variáveis reais definida pela expressão $f(x,y):=x^2+rac{y^2}{2}$.
 - (a) Determina e classifica os pontos críticos de f.
 - (b) Justifica a existência de extremos absolutos de f restrita ao conjunto definido pelas desigualdades $y-x^2 \ge -1$ e $y+x^2 \le 1$. Calcula-os, assim como os respetivos extremantes absolutos, indicando também quais são maximizantes e quais são minimizantes.

Aula 16: Exercícios 3 (folha4)

- 2. Determine os extremantes da função f(x, y, z) = xyz sujeita à condição $x^2 + \frac{y^2}{12} + \frac{z^2}{3} = 1$.
- 3. Determine o ponto do plano 2x + y + 3z = 6 mais próximo da origem.
- 4. Determine o ponto da reta de interseção dos planos x + y + z = 2 e x + 3y + 2z = 12 que esteja mais próximo da origem.
- 5. Determine os extremantes absolutos da função $f(x, y, z) = x^2 + y^2 + z^2$ sujeita à condição 3x 2y + z 4 = 0.
- 8. Determine os extremos absolutos das seguintes funções f nos domínios D indicados:
 - (a) f(x,y) = x + y, $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1 \land x + y \ge 1\}$.
 - (b) $f(x,y) = x^2 + 2x + y^2$, $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4 \land x \ge -1\}$.