Hypothesis testing: a review

Aldo Solari Statistical Inference II PhD in Economics and Statistics University of Milano-Bicocca

Deterministic proof by contradiction

- 1. Assume a proposition, the opposite of what you think about, i.e. the opposite conclusion of your theorem
- 2. Write down a sequence of logical steps/math
- 3. Derive a contradiction
- 4. Conclude that the proposition is false (which implies that the theorem is true)

Stochastic proof by contradiction

- 1. Set H_0 (the proposition)
- 2. Collect data (which is random)
- 3. Derive an apparent contradiction (i.e. if H_0 is true, then this data is very weird)
- 4. Hence we reject H_0 ; this is called a "discovery"

Hypothesis testing is stochastic because we might make errors: *Type I* (false discoveries) and *Type II* (missed discoveries)

Assume we have a coin and we conjecture that it is biased. In this case we can test

$$H_0$$
: Coin is fair $(\pi = 1/2)$
 H_1 : Coin is biased $(\pi \neq 1/2)$

The probability distribution of Y = "the number of heads in 100 trials" under H_0 is Binomial($n = 100, \pi = 1/2$). After tossing the coin n = 100 times, we get y = 65 heads and n - y = 35 tails

- Is this enough to reject H_0 ?
- To determine this we calculate a *p*-value associated with our observed data assuming the null hypothesis
- A p-value is "the probability of seeing what you saw or something more extreme - given that H_0 is true"
- Small p-values imply an unexpected outcome, given that H_0 is
- true - So if p = 0.0018 then either H_0 isn't true or we are really unlucky and saw this data

Suppose that in n=10000 trials we get y=5001 heads and n-y=4999 tails. Can we conclude that the coin is fair by testing $H_0: \pi=1/2$ against $H_1: \pi \neq 1/2$?

Exact binomial test

data: 5001 and 10000
number of successes = 5001, number of trials
= 10000, p-value = 0.992
alternative hypothesis:
true probability of success is not equal to 0.5
95 percent confidence interval:
0.4902514 0.5099486
sample estimates:
probability of success
0.5001

Lack of evidence to reject H_0 does not imply that H_0 is true.

source: xkcd

Suppose that we conjecture that the coin is fair. What about testing

$$H_0$$
: Coin is biased $(\pi \neq 1/2)$
 H_1 : Coin is fair $(\pi = 1/2)$

What about this one?

$$H_0: \pi \in [0, 0.49] \cup [0.51, 1]$$

 $H_1: \pi \in (0.49, 0.51)$

Simple significance test

- Suppose available data y and a null hypothesis H₀ that fully specifies the distribution of Y
- Choose a **test statistic** T = t(Y), large (or extreme) values of which indicate a departure from H_0
- Then if $t_{obs} = t(y)$ is the observed value of *T* we define

$$p_{\rm obs} = P_0(T \ge t_{\rm obs})$$

where P_0 is the probability under H_0

p-value null distribution

- p_{obs} = 1 − $F_0(t_{\text{obs}})$, where $F_0(t) = P_0(T \le t)$ is the null cdf of T, supposed to be continuous and invertible
- One interpretation of $p_{\rm obs}$ stems from the corresponding random variable $P=1-F_0(T)$
- The null distribution of *P* is Uniform(0,1): for any $u \in (0,1)$

$$P_0(P \le u) = P_0(1 - F_0(T) \le u)$$

$$= P_0(1 - u \le F_0(T))$$

$$= P_0(F_0^{-1}(1 - u) \le T)$$

$$= 1 - F_0(F_0^{-1}(1 - u)) = u$$

One- and two-sided tests

- Suppose that we have a test statistic T with continuous distribution, extreme (small and large) values of which indicate a departure from H_0
- Calculate

$$p_{\text{obs}}^- = P_0(T \le t_{\text{obs}}), \quad p_{\text{obs}}^+ = P_0(T \ge t_{\text{obs}})$$

- The *p*-value is

$$p_{\rm obs} = 2\min(p_{\rm obs}^-, p_{\rm obs}^+)$$

– Note that $P^-=1-P^+$ and $P^+\stackrel{H_0}{\sim} U(0,1)$. Then

$$Q = \min(1 - P^+, P^+) \stackrel{H_0}{\sim} U(0, 1/2)$$

thus
$$P = 2Q \stackrel{H_0}{\sim} U(0, 1)$$

Discrete null distribution

– Suppose we want to test $H_0: \mu=2$ by $T\sim {\sf Poisson}(\mu)$ and we observe $t_{\sf obs}=3$

$$p_{
m obs}^{+} = {
m P}_0(T \ge t_{
m obs}) = \sum_{t=t_{
m obs}}^{\infty} rac{\mu^t e^{-\mu}}{t!}$$
 $p_{
m obs}^{-} = {
m P}_0(T \le t_{
m obs}) = \sum_{t=0}^{t_{
m obs}} rac{\mu^t e^{-\mu}}{t!}$

- With discrete null distribution, p_{obs} is $q_{\text{obs}} = \min(p_{\text{obs}}^-, p_{\text{obs}}^+)$ plus the achievable p-value from the other tail of the distribution nearest to but not exceeding q_{obs}

Example: sign test

- A random sample Y_1, \ldots, Y_n arises from an unknown continuous distribution F
- The null hypothesis H_0 asserts that F is symmetric around 0, i.e. $H_0: F(-y) + F(y) = 1$
- Under H_0 , all points y and -y have equal probability and

$$T = \sum_{i=1}^{n} \mathbb{1}\{Y_i > 0\} \stackrel{H_0}{\sim} \text{Binomial}(n, 1/2)$$

 Tests where the null hypotheses itself is formulated in terms of arbitrary distributions are called **nonparametric** or **distribution-free** tests


```
binom.test(x=13, n=15, p=0.5, alternative="two.sided")
```

Exact binomial test

```
data: 13 and 15
number of successes = 13,
number of trials = 15,
p-value = 0.007385
alternative hypothesis:
true probability of success is not equal to 0.5
95 percent confidence interval:
0.5953973 0.9834241
sample estimates:
probability of success
             0.8666667
```

Example: adequacy of Poisson model

- Null hypothesis $H_0: Y_1, \ldots, Y_n$ i.i.d. Poisson(μ)
- The sufficient statistic is $S = \sum_{i=1}^{n} Y_i$, so we examine the conditional distribution of the data given S = s. This density is zero if $\sum_{i=1}^{n} y_i \neq s$ and is otherwise

$$\frac{s!}{\prod_{i=1}^n y_i!} \frac{1}{n^s}$$

i.e., is a multinomial distribution with s trials each giving a response equally likely to fall in one of n cells

- The test statistic may be the dispersion index $\sum_{i=1}^{n} (Y_i - \bar{Y})^2 / \bar{Y} \stackrel{H_0}{\approx} \chi_{n-1}^2$ or the number of zeros

Example: von Bortkiewicz's horse-kicks data

Deaths	0	1	2	3	4
Frequency	109	65	22	3	1

Dispersion index = 199.3

exact p-value = 0.505 (B = 5000), approximated p-value = 0.48

Example: Kolmogorov-Smirnov test

- The null hypothesis H_0 asserts that the random sample Y_1, \ldots, Y_n is from a known continuous distribution F_0
- We can compare F_0 with the empirical distribution function

$$\hat{F}(y) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \{ Y_i \le y \}$$

– A classic test for H_0 is based on the Kolmogorov-Smirnov statistic

$$T = \|\hat{F} - F_0\|_{\infty} = \sup_{y} |\hat{F}(y) - F_0(y)|$$

– Kolmogorov (1933, Giornale dell'Istituto Italiano degli Attuari) showed that under H_0 for any c>0

$$\lim_{n \to \infty} P\left(T > \frac{c}{\sqrt{n}}\right) = 2\sum_{i=1}^{\infty} (-1)^{k+1} \exp(-2k^2c^2)$$

 Often referred as **goodness-of-fit** test, but is actually testing for lack-of-fit

Example: Kolmogorov-Smirnov test (con'd)

- We can avoid asymptotic approximations by using a Monte Carlo method
- To compute the *p*-value we can generate B independent sets of data from the null distribution F_0 , calculating the corresponding statistics T^b and

$$p_{\text{obs}} = \frac{1 + \sum_{b=1}^{B} \mathbb{1}\{T^{b} \ge t_{\text{obs}}\}}{1 + B}$$

 If the parameters of *F* are determined from the data, the resulting test is only approximate

 H_0 : height differences are $N(\hat{\mu} = 2.6, \hat{\sigma}^2 = 4.7^2)$

p-value = 0.447 (B = 1000)

Likelihood-based tests

Figure 6.2. Three asymptotically equivalent ways, all based on the log likelihood function of testing null hypothesis $\theta = \theta_0$: W_E , horizontal distance; W_L vertical distance; W_U slope at null point.

Wald
$$W_E = [\hat{\theta} - \theta_0]^2 i(\theta_0)$$

Likelihood ratio
$$W_L = 2\{l(\hat{\theta}) - l(\theta_0)\}$$

Score
$$W_U = [U(\theta_0; Y)]^2 i^{-1}(\theta_0)$$

Example: Student t test

- Let Y_1, \ldots, Y_n be a normal random sample with mean μ and variance σ^2
- Suppose that $H_0: \mu = \mu_0$
- log likelihood for y_1, \ldots, y_n is

$$l(\mu, \sigma^2) = -\frac{1}{2} \left\{ n \log \sigma^2 + \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \mu)^2 \right\}$$

- The likelihood ratio statistic is

$$W_L = 2\{\max_{\mu,\sigma^2} l(\mu,\sigma^2) - \max_{\sigma^2} l(\mu_0,\sigma^2)\} = n\log\left(1 + \frac{T^2}{n-1}\right)$$

where
$$T = (\bar{Y} - \mu_0)/(S^2/n)^{1/2} \stackrel{H_0}{\sim} t_{n-1}$$

Example: Permutation two-sample test

- Let $Y_1, \ldots, Y_k \overset{i.i.d.}{\sim} F$ and $Y_{k+1}, \ldots, Y_n \overset{i.i.d.}{\sim} G$ be independent random samples of size k and n-k
- Consider the null hypothesis $H_0: F = G$
- Under H_0 , the sufficient statistic is the set of order statistics of the combined set of observations and all n! permutations of the data are equally likely, i.e.

$$(Y_1,\ldots,Y_n)\stackrel{d}{=}(Y_{\pi(1)},\ldots,Y_{\pi(n)}) \quad \forall \pi$$

Permutation *p*-value

$$P_0(T \ge t_{\text{obs}}|Y_{(1)}, \dots, Y_{(n)}) = \frac{1}{n!} \sum_{\pi} \mathbb{1}\{T^{\pi} \ge t_{\text{obs}}\}$$

 In randomization tests, the basis of the procedure is the randomization used in allocating the units to the groups

Relation with two-decision problem

- In the treatment of testing as a two-decision problem, the choice lies between rejecting or not rejecting the null hypothesis
- In this we fix the probability of rejecting H_0 when it is true (probability of type I error) at **level** α , aiming to maximize the **power**, i.e. the probability of rejecting H_0 when false (1—probability of type II error)
- This amounts to setting in advance a threshold α for $p_{\rm obs}$
- It demands the explicit formulation of the **alternative** hypothesis H_1

Hypothesis testing

- The decision procedure is called the **test** of H_0 against H_1
- Suppose we have data *Y* distributed according to P_{θ} with $\theta \in \Theta$
- About θ we formulate the null hypotheses $H_0: \theta \in \Theta_0$ with $\Theta_0 \subseteq \Theta$. The alternative hypothesis is $H_1: \theta \in \Theta_1$ with (usually) $\Theta_1 = \Theta \setminus \Theta_0$.
- A hypothesis that completely determines the distribution of *Y* is called **simple**; otherwise is **composite**
- A test $\phi = \phi(Y)$ assigns to each possible value y one of these two decisions

$$\phi: \mathcal{Y} \mapsto \{0, 1\}$$

where 1 denotes the decision of rejecting H_0 and 0 denotes the decision of not rejecting H_0 , and thereby partition the sample space \mathcal{Y} into two complementary regions \mathcal{Y}_0 and \mathcal{Y}_1

Size and power function

– It is required to bound the probability of Type I error at α

$$P_{\theta}(\phi = 1) \le \alpha \quad \forall \ \theta \in \Theta_0$$

where

$$\sup_{\theta \in \Theta_0} P_{\theta}(\phi = 1)$$

is the size of the test

- Subject to this condition, it is desired to maximize the power

$$P_{\theta}(\phi = 1) \quad \theta \in \Theta_1$$

- Considered as a function of θ for all $\theta \in \Theta$, this probability is called the **power function** of the test and is denoted by $\beta(\theta)$

p-value

- Usually for varying α , the rejection regions $\mathcal{Y}_1(\alpha)$ and $\mathcal{Y}_1(\tilde{\alpha})$ are nested in the sense that

$$\mathcal{Y}_1(\alpha) \subseteq \mathcal{Y}_1(\tilde{\alpha}) \quad \text{if } \alpha \leq \tilde{\alpha}$$

 When this is the case, the *p*-value is defined as the smallest significance level at which the hypothesis would be rejected for the given observation:

$$p_{\text{obs}} = \inf\{\alpha \in (0,1) : y \in \mathcal{Y}_1(\alpha)\}\$$

Neyman-Pearson lemma

- Let f_0 and f_1 denote the probability densities of Y specified under H_0 and H_1 , respectively, i.e. $H_0: f = f_0$ vs $H_1: f = f_1$
- The Neyman-Pearson lemma states that the **most powerful test** of size α has critical region

$$\mathcal{Y}_1 = \left\{ y \in \mathcal{Y} : \frac{f_1(y)}{f_0(y)} \ge t_{\alpha} \right\}$$

determined by the likelihood ratio

Example: UMP test

- Let $Y_1, \ldots, Y_n \overset{i.i.d.}{\sim} N(\mu, 1)$, and suppose that we are testing $\mu \leq \mu_0$ against $\mu > \mu_0$. Suppose we reject the null if \bar{Y} exceed some constant t_0 .
- The size of this test is

$$\begin{split} \sup_{\mu \leq \mu_0} \mathrm{P}_{\mu}(\bar{\mathrm{Y}} \geq t_{\alpha}) &= \mathrm{P}_{\mu_0}(\bar{\mathrm{Y}} \geq t_{\alpha}) \\ &= \mathrm{P}_{\mu_0}\left(\frac{\bar{\mathrm{Y}} - \mu_0}{\sqrt{1/n}} \geq \frac{t_{\alpha} - \mu_0}{\sqrt{1/n}}\right) \\ &= \Phi\left(\frac{\mu_0 - t_{\alpha}}{\sqrt{1/n}}\right) \end{split}$$

- For a test of size α , we must choose $t_{\alpha} = \mu_0 + \frac{z_{1-\alpha}}{\sqrt{n}}$ and the critical region is

$$\left\{ (y_1,\ldots,y_n): \bar{y} \geq \mu_0 + \frac{z_{1-\alpha}}{\sqrt{n}} \right\}$$

Example: UMP test (cont'd)

- The power function of the test is

$$\beta(\mu_1) = P_{\mu_1}(\bar{Y} \ge t_\alpha) = \Phi(z_\alpha + \delta)$$

where $\delta = \sqrt{n}(\mu_1 - \mu_0)$

– The likelihood ratio for testing $\mu=\mu_0$ against $\mu=\mu_1$ is

$$\frac{f_1(Y)}{f_0(Y)} = \exp\left[\frac{1}{2}(2n\bar{Y}(\mu_1 - \mu_0) - \mu_1^2 + \mu_0^2)\right]$$

- If $\mu_1 > \mu_0$, this is monotone increasing in \bar{Y} , and so the critical region rejects H_0 when $\bar{Y} \geq t_{\alpha}$
- It follows that this test is most powerful for any $\mu_1 > \mu_0$ and so is **uniformly most powerful** (UMP)

Example: UMPU test

- Likewise, the test defined by the critical region

$$\left\{ (y_1,\ldots,y_n): \bar{y} \leq \mu_0 + \frac{z_\alpha}{\sqrt{n}} \right\}$$

is UMP for testing $\mu \ge \mu_0$ against $\mu \le \mu_0$

- Suppose now that we wish to test $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$. The critical region

$$\left\{(y_1,\ldots,y_n): \bar{y} \leq \mu_0 + \frac{z_\alpha}{\sqrt{n}}\right\} \cup \left\{(y_1,\ldots,y_n): \bar{y} \geq \mu_0 + \frac{z_{1-\alpha}}{\sqrt{n}}\right\}$$

has size 2α , and no uniformly more powerful test exists for the two-sided alternative. It can be proved that is UMPU

- A test ϕ of $H_0: \theta \in \Theta_0$ against $H_1: \theta \in \Theta_1$ is **unbiased** of size α if $\sup_{\theta \in \Theta_0} P_{\theta}(\phi = 1) = \alpha$ and $P_{\theta}(\phi = 1) \geq \alpha$ for all $\theta \in \Theta_1$
- A test which is uniformly most powerful amongst the class of all unbiased tests is uniformly most powerful unbiased

Example: Locally most powerful test

- Local alternative where $f_0(y) = f(y; \theta_0)$ and $f_1(y) = f(y; \theta_1)$ with $\theta_1 = \theta_0 + \epsilon$ for small ϵ

$$\frac{f_1(Y)}{f_0(Y)} = \frac{f(Y; \theta_0 + \epsilon)}{f(Y; \theta_0)}$$

$$= \frac{1}{f(Y; \theta_0)} \left\{ f(Y; \theta_0) + \epsilon \frac{df(Y; \theta_0)}{d\theta_0} + \ldots \right\}$$

- A locally most powerful critical region has form

 $\approx 1 + \epsilon U(\theta_0)$

$$\{(y_1,\ldots,y_n): u(\theta_0) \geq i(\theta_0)^{1/2}z_{1-\alpha}\}$$

where $i(\theta_0)$ is the Fisher information

Example: location parameter of a Cauchy distribution

– Let Y_1, \ldots, Y_n be i.i.d. in the Cauchy distribution

$$\frac{1}{\pi[1+(y-\theta)^2]}$$

– For the null hypothesis $H_0: \theta = \theta_0$ the score from Y_1 is

$$U_1(\theta_0) = \frac{2(Y_1 - \theta_0)}{1 + (Y_1 - \theta_0)^2}$$

and the information from a single observation is

$$\mathit{i}_1(\theta_0) = \frac{1}{2}$$

- The test statistic is thus

$$U(\theta_0) = 2\sum_{i=1}^{n} \frac{(Y_i - \theta_0)}{1 + (Y_i - \theta_0)^2}$$

and under H_0 has zero mean and variance n/2

Example: UMPI test

- Let Y_1, \ldots, Y_n be a random sample from the m-variate normal distribution $N_m(\mu, \Sigma)$, and suppose that we are testing $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$.
- If Σ is unknown and n > m, we can use the Hotelling T^2 statistic

$$T^{2} = n(\bar{Y} - \mu_{0})'S^{-1}(\bar{Y} - \mu_{0})$$

where
$$S = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})(Y_i - \bar{Y})'$$

– Under H_0 , T^2 follows a Hotelling's T-squared distribution

$$T_{m,n-1}^2 = \frac{m(n-1)}{n-m} F_{m,n-m}$$

where $F_{m,n-m}$ is the F-distribution with parameters m and n-m

Example: UMPI test (cont'd)

- No UMP test exists for this problem. It can be proved that the Hotelling T^2 test is the most powerful test in the class of tests that are invariate to full rank linear transformations (UMPI)
- The T^2 statistic is invariant to full rank linear transformations

$$X = AY + b$$

with $A_{m \times m}$ non-singular

- The Hotelling T^2 statistic is a generalization of Student t statistic, i.e. for m=1, $T^2=(t)^2$

Example: UMP test

- Let $Y_1, \ldots, Y_n \stackrel{i.i.d.}{\sim} N(\mu, 1)$,
- Suppose we want to test $H_0: \mu \in (-\infty, -\Delta] \cup [\Delta, \infty)$ against $H_1: \mu \in (-\Delta, \Delta)$ for some pre-specified $\Delta > 0$
- Consider the test statistic

$$T = n\bar{Y}^2 \sim \chi_1^2(n\mu^2)$$

which rejects for small values, where $\chi^2_{\nu}(\lambda)$ is a non-central Chi-squared distribution with ν degree of freedom and noncentrality parameter λ

Example: UMP test (cont'd)

- Since

$$\sup_{\mu \in (-\infty, -\Delta] \cup [\Delta, \infty)} \mathbf{P}_{\mu}(T \le t_{\alpha}) = \mathbf{P}(\chi_{1}^{2}(n\Delta^{2}) \le t_{\alpha})$$

the critical region of size α is given by

$$\mathcal{Y}_1 = \{(y_1, \ldots, y_n) : -\sqrt{t_\alpha/n} \leq \bar{y} \leq \sqrt{t_\alpha/n}\}$$

where t_{α} is the α quantile of $\chi_1^2(n\Delta^2)$

- It can be proved that this test is UMP

Relation with interval estimation

Essentially confidence intervals, or more generally confidence sets, can be produced by testing every possible value θ in Θ and taking all those values not 'rejected' at level α , say, to produce a $1-\alpha$ level interval or region

Confidence intervals

– If the density of Y depends on a scalar parameter θ , we define an upper bound for θ at confidence level $1-\alpha$ to be a function $\bar{\theta}_{\alpha}=\bar{\theta}_{\alpha}(Y)$ such that

$$P_{\theta}(\theta \leq \bar{\theta}_{\alpha}) \geq 1 - \alpha \quad \forall \theta \in \Theta$$

- Lower confidence bounds may be defined analogously
- An equi-tailed $(1-2\alpha)$ confidence interval for θ is $[\underline{\theta}_{\alpha}, \bar{\theta}_{\alpha}]$

Duality between tests and confidence intervals

For each $\theta_0 \in \Theta$, let $\mathcal{Y}_0(\theta_0)$ be the acceptance region of a test of size α for testing $\theta = \theta_0$

Theorem

The set of values of θ not rejected by the test

$$S(Y) = \{ \theta \in \Theta : Y \in \mathcal{Y}_0(\theta) \}$$

contains the true parameter with probability at least $1-\alpha$

Proof.

By definition of S(Y), $\theta \in S(Y)$ if and only if $Y \in \mathcal{Y}_0(\theta)$, and hence

$$P_{\theta}(\theta \in S(Y)) = P_{\theta}(Y \in \mathcal{Y}_0(\theta)) \ge 1 - \alpha \quad \forall \ \theta \in \Theta$$

Example: ratio of normal means

- Given two independent sets of random variables from normal distributions of unknown means μ_1 and μ_2 and variance 1
- We first reduce by sufficiency to the sample means y

 ₁, y

 ₂
 Suppose that the parameter of interest is θ = μ₂/μ₁. Consider
 - Suppose that the parameter of interest is $\theta = \mu_2/\mu_1$. Consider the null hypothesis $H_0: \theta = \theta_0$

$$\frac{Y_2 - \theta_0 Y_1}{\sqrt{1/n_2 + \theta_0/n_1}} \stackrel{H_0}{\sim} N(0, 1)$$

- We now form a $1-\alpha$ level confidence region by taking all those values of θ_0 that would not be rejected at level α in this test

$$\left\{\theta \in \mathbb{R}: \frac{(\bar{Y}_2 - \theta \bar{Y}_1)^2}{1/n_2 + \theta/n_1} \le c_{1-\alpha}\right\}$$

where $c_{1-\alpha}$ is the $1-\alpha$ quantile of χ_1^2

- Thus we find the limits for θ as the roots of a quadratic equation
- If there are no real roots, all values of θ are consistent with the data at the level in question