

ATTEMPTED REPRODUCTION OF SUPER-TML METHOD

Giles Strong

3rd CMS ML Workshop, CERN - 06/19

giles.strong@outlook.com

twitter.com/Giles C Strong

Amva4newphysics.wordpress.com

github.com/GilesStrong

INTRODUCTION

- SuperTML: Two-Dimensional Word Embedding for the Precognition on Structured Tabular Data, March 2019, Sun et al., arxiv.org/abs/1903.06246
- Claims to get state of the art performance on the <u>Higgs ML Kaggle</u>
 <u>challenge</u> (simplified example of typical HEP search with strong baselines by both physicists and data scientists)
- Method is somewhat counter-intuitive
- Can their result be reproduced?

- In machine learning, transfer learning is the process of taking a model which has been trained to perform a given task on a certain dataset and using it as the basis for another model which acting on a different dataset or task
- Provided the data or task are similar enough, transfer learning is likely to provide faster convergence since many similar features will have already been learnt
- It can also mean that a more powerful model can be used on a new dataset, than would otherwise be possible given the amount of training data

- Transfer learning has a variety of common applications for certain data types:
 - Images: <u>classification</u>, <u>segmentation</u>, <u>super-resolution</u>
 - Text classification
- E.g. <u>U-Net</u>:
 - Can replace encoding path with pretrained model (e.g. ResNet)
 - Only need to learn decoder from scratch
 - Much quicker & easier to train than learning both parts from scratch

- Creation of the pre-trained models is normally done using a large, varied dataset, e.g. <u>Imagenet</u> and <u>Wikitext</u>
- The key point isn't that the models learn to perform a certain task well, but that in learning to perform the task they also learn task-agnostic features which are applicable to a variety of tasks, e.g.
 - Feature maps for corners, edges, textures, eyes
 - Language grammar and vocabulary

- Transfer learning for images and text is relatively easy due to:
 - The way the fields has evolved to use models which can accept a variety of input data
 - CNNs run kernels across images and adaptive max-pooling ensures the dense layers always receive their expected tensor dimension
 - RNNs can accept variable length sequences by using padding and sequence-end tokens
 - The data is all of the same format with similar meanings, i.e. pixel values or numerical tokens

convolution + pooling layers

- Tabular data, however, can vary in terms of:
 - Numbers of features
 - Feature meaning, e.g. jet mass has a very different meaning to electron phi-angle
 - Whether the feature is continuous or categorical
- Applying a pretrained model to tabular data would require the same input features to used meaning that a commonly applicable model cannot be trained for all possible tabular datasets *

	0	1	2	3	4	5	6	7	8	9	 199990
DER_mass_MMC	0.000000	0.000000	-0.495402	-0.290969	0.004018	-0.558619	0.000000	-0.608672	-0.343132	-0.309240	 0.456663
DER_mass_transverse_met_lep	1.523702	1.189569	0.156354	-1.104284	0.123241	-1.125802	0.544919	-1.215558	-0.460711	-1.303386	 -0.528099
DER_mass_vis	2.541261	-0.258774	-0.444344	-0.113654	0.248634	-0.822503	-0.658087	-0.391398	-0.370366	-0.104825	 0.662791
DER_pt_h	-0.897464	-0.221461	3.283327	-0.835715	-0.154502	3.329116	0.672514	-0.027650	-0.042241	-0.903871	 1.161695
DER_deltaeta_jet_jet	0.000000	0.000000	-0.409734	0.000000	0.000000	-0.168039	-0.662337	0.000000	0.000000	0.000000	 0.931357
DER_mass_jet_jet	0.000000	0.000000	-0.467449	0.000000	0.000000	-0.048026	-0.677771	0.000000	0.000000	0.000000	 0.037653
DER_prodeta_jet_jet	0.000000	0.000000	0.122037	0.000000	0.000000	0.036664	0.787169	0.000000	0.000000	0.000000	 -0.395505
DER_deltar_tau_lep	1.797767	-0.350543	-2.087338	1.000298	-0.115392	-2.133346	0.352354	0.628401	0.006018	1.105093	 -0.616366
DER_pt_tot	-0.808410	-0.531032	-0.797119	-0.633325	-0.097937	1.058797	2.484876	1.657872	-0.633012	-0.826575	 1.081469
DER_sum_pt	-0.739397	-0.498472	2.602965	-0.797298	-0.250211	2.461114	-0.117803	-0.807528	-0.286888	-0.768555	 0.864952
DER_pt_ratio_lep_tau	1.061345	-0.270989	1.156173	-0.642004	-0.157196	-0.306550	-0.263877	-0.792543	-0.390710	-0.773578	 -1.190821
DER_met_phi_centrality	-0.999251	-0.441209	1.211129	-1.077175	0.659791	0.805586	1.291568	1.171748	1.291568	-1.069634	 0.265978
DER_lep_eta_centrality	0.000000	0.000000	-0.865579	0.000000	0.000000	-0.579713	-1.148939	0.000000	0.000000	0.000000	 1.356158
PRI_met_sumet	-0.874380	-0.805011	1.101020	-0.827281	0.329617	2.581124	1.525718	-0.646100	-0.549804	-1.294556	 0.287222
PRI_jet_all_pt	-0.745191	-0.336127	1.991812	-0.745191	-0.424295	2.419050	0.158949	-0.745191	-0.160587	-0.745191	 0.771600
PRI_tau_px	0.367290	0.895332	1.750334	-0.713812	-0.422239	2.355970	-0.328423	-0.738359	-0.281934	-0.863724	 2.599004
PRI_tau_py	-0.061403	-0.018709	0.738016	-0.865355	0.590245	-0.955789	-0.582495	-0.628173	0.079096	-1.124600	 0.616154
PRI_tau_pz	-0.921071	-0.565094	0.212954	0.446815	-0.055135	-0.549117	-0.188430	-0.613286	-0.041830	0.575070	 -0.965968
PRI_jet_subleading_px	0.000000	0.000000	-0.604195	0.000000	0.000000	0.875979	0.956430	0.000000	0.000000	0.000000	 -0.725265
PRI_jet_subleading_py	0.000000	0.000000	0.059578	0.000000	0.000000	-0.762735	-0.133058	0.000000	0.000000	0.000000	 -0.302338
PRI_jet_subleading_pz	0.000000	0.000000	-0.313236	0.000000	0.000000	-0.435841	-0.204145	0.000000	0.000000	0.000000	 -0.209193
PRI_jet_leading_px	0.000000	0.987067	-2.310585	0.000000	0.590479	-2.939375	-0.043377	0.000000	0.416243	0.000000	 -0.027400

,

^{*} A possible limited use in HEP could be pretraining a model on Delphes and refining on GEANT

SUPER TML

- SuperTML: Two-Dimensional Word Embedding for the Precognition on Structured Tabular Data, March 2019, Sun et al., arxiv.org/abs/1903.06246
- Proposes to transform tabular data into images by printing feature values as text on black backgrounds, either with fixed font-size or varying font-size with feature importance
- Pretrained CNNs can then be refined to perform the desired task as normal

Tabular data Image folder

Features	F1	F2	F3	F4	Label			
& Label Samples						2D-Embedding	$V_{1,1}$ $V_{1,2}$ $V_{1,4}$	V _{2,1} V _{2,2}
Sample_1	V _{1,1}	V _{1,2}	V _{1,3}	V _{1,4}	L_1	2D-Embedding	V _{1,3} V _{1,4} L1_0001.jpg	V _{2,3} V _{2,4} ↑L2_0002.jpg
Sample_2	$V_{2,1}$	$V_{2,2}$	$V_{2,3}$	$V_{2,4}$	L_2	2D-Embedding	V _{3,1} V _{3,2}	
Sample_3	V _{3,1}	V _{3,2}	V _{3,3}	V _{3,4}	L_3		V _{3,3} V _{3,4}	:
						·	L3_0003.jpg	1.1
							:	
								$V_{n,1}$ $V_{n,2}$
Sample_n	$V_{n,1}$	$V_{n,2}$	$V_{n,3}$	$V_{n,4}$	L_n	2D-Embedding		V _{n,3} V _{n,4} Ln 000n.jpg

EXPERIMENTS

- The paper considers four datasets:
 - Iris: classification of iris species using data of their petals and sepals
 - Wine: classifying wine types by their properties
 - Adult: predicting whether someone earns more then \$50,000 based on personal data
 - Higgs ML: Maximising the Approximate Median Significance for Higgs boson discovery in the di-tau channel using final-state properties
- In each case, the authors claim to beat the previous state of the art
- Of greatest interest to us is the Higgs ML score, where they claim an AMS of 3.979 (c.f. winning score 3.806)

HIGGS ML SOLUTION

- Their best solution uses:
 - 224x224 images
 - Fixed font-size
 - Squeeze-Excitation Net 154 (foundation of winning entry of Imagenet 2017)
 - SE block is effectively a plugin for architectures which learns weights for every feature map, rather than treating them all equally.
- Given the huge difference between their result and the winning solution, and the somewhat counter-intuitive method, it is necessary to see whether it can be reproduced

MODEL TRAINING

- Models trained in <u>Fastai</u> (PyTorch wrapper)
- Images adjusted to account for Imagenet channel means and standard deviations
- Unweighted categorical cross-entropy
- Final dense layer of pretrained model removed and replaced with two dense layers with two output nodes
- Two step process:
 - First only the final two dense layers are trained (4 epochs with <u>I-cycle policy</u>, LR set using <u>LR finder</u>)
 - Next, the entire network is trained (4 epoch I-cycle, LR set using LR finder, and scaled according to layer depth (discriminative LR))

INITIAL ATTEMPT

- Settings:
 - 224x224 images
 - Equal font-size
 - ResNet34
- Surprisingly, it seemed to learn something
- Validation AMS around 3
- Test AMS around 2.75
 - N.B. Test set checked each time; we're trying to confirm a result rather than develop a model
- Train-time about 47 minutes
- Data size: 13 GB

109.103	61.177
76.580	59.290
0.000	0.000
0.000	3.135
17.427	121.710
0.553	1.414
0.000	228.919
43.801	31.262
-30.680	103.040
-50.113	2.026
70.045	0.000
0.000	0.000
27.755	20.293
-25.913	32.415
41.500	1.000

VAL. PREDICTION DISTRIBUTION

- Looks relatively smooth
- Clustered not flat or scattered

ENCODING CONSIDERATIONS

- Taking numerical information and encoding it as an abstract representation (written digits) and requiring the model to reinterpret the text pixels back into numerical information seems inefficient
- The features could instead be encoded as blocks of pixels with the same intensity
- This can be achieved by:
 - Standardising and normalising data (set mean to zero and standard deviation to one)
 - Passing values through a sigmoid (soft-clamps values between zero and one)
 - Timesing values by 255 and converting to integer

PIXEL ENCODING

- To be as similar as possible to text approach, blocks set to be thin rectangles in two columns
- Data was quicker to produce and file size dropped to 9 GB
- Large improvements to both validation and test AMS: 3.62, 3.3 respectively
- Also tried data augmentation by randomly varying pixel intensity, but it didn't improve

SE-NET 50

- Moved to using the smallest squeeze-excitation pretrained model, SE-net
 50
- Model size meant batch size had to be halved train-time \rightarrow 2.3 hours
- Validation AMS of 3.71
- Public : Private AMS: 3.35 : 3.48

SE-NET 154

- Moved to using the same model they used
- Again, batch-size had to be reduced
- Train-time = 12 hours
- Validation AMS of 3.72
- Public : Private AMS at cut around 3.5

FURTHER DATA CONSIDERATIONS

- Unlike Imagenet data, there's no way the data here can contain more information by increasing the resolution beyond a certain point
- Stride-2 (halves data dimensions) convolutions in pretrained model, however, can mean that performance can still degrade
- Still, interesting to see whether the resolution can be reduced below the common size of 224

SMALLER IMAGES

- This rectangles changed to approximate squares
- Image size reduced to 56x56
- Data size \rightarrow 3.1 GB
- Moved back to SE-net 50
- Was able to move to larger batch size (512), train-time \rightarrow 15 minutes
- Slight performance drop:
 - Validation AMS 3.66
 - Test AMS between 3.3 3.5
- Have also tried balancing data classes by copying signal data once - provides slight improvements

FEATURE ORDERING

- Feature ordering has a heavy impact on performance; randomising order yields very different trainings
- Default order works well:
 - High-level features are sequential
 - As are 3-momenta for each particle
- Paper doesn't say how they order features
- Ordering by permutation importance seems to be a reliable method
- Hypothesis: training is easier (possible)
 when filters can cover several important
 features at the same position

DER mass transverse met lep	DER mass MMC	PRI tau px	DER mass vis	DER pt ratio lep tau	PRI met py
DER deltar tau lep	PRI met px	DER met phi centrality	PRI lep pz	PRI tau py	DER sum pt
PRI met pt	PRI met sumet	PRI tau pz	DER pt h	DER pt tot	PRI lep px
PRI jet leading pz	PRI jet leading px	PRI jet leading Py	DER deltaeta jet jet	PRI jet all pt	DER lep eta centrality
DER mass jet jet	DER prodeta jet jet	PRI jet subleading pz	PRI jet subleading px	PRI jet subleading py	PRI jet num

FEATURE ORDERING

- Possible downside of ordering all features is the potential limitation of the NN to utilise low-level information (importance computed by Random Forests)
- Alternative:
 - Order high-level features
 - Prescribe low-level ordering maximising filter overlap between final-state
 3-momenta
- Rough testing seems to indicate similar performance compared to ordering all features

DER mass transverse met lep	DER mass MMC	DER pt ratio lep tau	DER mass vis	DER deltar tau lep	DER sum pt
DER pt h	DER met phi centrality	DER pt tot	DER deltaeta jet jet	DER lep eta centrality	DER prodeta jet jet
DER mass jet jet	PRI lep px	PRI lep pz	PRI met px	PRI met py	PRI met sumet
PRI met pt	PRI tau px	PRI tau py	PRI tau pz	PRI jet all pt	PRI jet num
PRI jet leading px	PRI jet leading py	PRI jet leading pz	PRI jet subleading px	PRI jet subleading py	PRI jet subleading pz

CURRENT STATUS

- Have tried a variety of encoding methods and models and have not been able to recover their 3.979 score
- Github repo with solutions available here:
 https://github.com/GilesStrong/SuperTML HiggsML Test
- Running solutions requires a high capacity GPU (e.g. Nvidia 1080 Ti)

POSSIBLE EXPLANATIONS - TEST SIZE

- Could the result be obtained on a smaller reweighted test set?
- Paper text is inconsistent:
 - Section I says the test size is 550,000 events (full Kaggle set)
 - Section 3.4 states the size test size is 55,000 events
- Splitting and reweighting the test data into 10 random subsamples and checking the AMSs at the chosen cut finds that a maximum AMS of 3.94 public and 3.67 private can be achieved using senet 154

POSSIBLE EXPLANATIONS - MAXIMISE AMS ON TEST SET

- Could the paper have maximised the AMS on the test set?
- Entrants were required to provide Boolean class predictions for test data,
 i.e. signal/background cut had to be chosen using validation data
- However the paper uses the <u>CERN OpenData version</u> which allows the AMS to be optimised on the test set
- Again, splitting the test data and allowing the AMS to be optimised each time shows a maximum public: private AMS of 5.79: 3.87 can be achieved

DISCUSSION

- The paper method (text encoding) seems questionable:
 - How should numbers be rounded?
 - Do other numeral systems work?
- Presumably the inefficiency of the data transforming is offset by the benefits of transfer learning
 - But what does it really learn on Imagenet which is useful to be transferred?
 - Very little: training from scratch gets to about the same performance in same number of epochs
- Encoding as pixel intensities seems experimentally to be better than text
- Current reimplementation performance does not indicate improvements

 over traditional methods

DISCUSSION

• If the claimed improvement is realised, the method would allow the benefits of transfer learning to be applied to most data analysis work at CERN

However:

- Best performance (so far) takes much longer to achieve compared to traditional methods, and requires specialised hardware
- Data storage requirements are much higher (but images could be generated on demand)
- Size and train-time can be reduced at cost of performance (reducing the benefit compared to easier to implement methods), but useful for tuning setup quickly ²⁶