

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

A DERIKA BINTANGAN BINTAN KETALA KANA SIA KANA BERKA BERKA BERKA BINTA BINTA BINTA BINTAN ANTA KANA BINTAN ANTA

(43) International Publication Date 4 December 2003 (04.12.2003)

PCT

(10) International Publication Number WO 03/100030 A2

(51) International Patent Classification7:

- (21) International Application Number: PCT/US03/06196
- (22) International Filing Date: 27 February 2003 (27.02.2003)
- (25) Filing Language:

English

C12N

(26) Publication Language:

English

(30) Priority Data: 60/361,128

27 February 2002 (27.02.2002) U

- (71) Applicant (for all designated States except US): PHASE-1 MOLECULAR TOXICOLOGY, INC. [US/US]; Suite 100, 2904 Rodeo Park Drive East, Santa Fe, NM 87505 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): KIER, Larry: [US/US]; 3121 Pueblo Sapawe, Santa Fe, NM 87507 (US). NOLAN, Timothy, D. [US/US]; 2491 Sawmill Road,

Apartment #308, Santa Fe, NM 87505 (US). SANKAR, Usha [US/US]; 28 Palmer Drive, Wayne, NJ 07470 (US). DERBEL, Maher [US/US]; Biogen, Inc., Clinical Science and Technology, 14 Cambridge Center, Cambridge, MA 02142 (US).

- (74) Agents: ROBERTS, Jon, L. et al.; Roberts Abokhair & Mardula, LLC, Suite 1000, 11800 Sunrise Valley Drive, Reston, VA 20191 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

[Continued on next page]

(54) Title: KIDNEY TOXICITY PREDICTIVE GENES

(57) Abstract: The invention provides kidney toxicity predictive genes which can be used to predict kidney toxicity in response to one or more agents.

WO 03/100030 A2

WO 03/100030 A2

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

 without international search report and to be republished upon receipt of that report

SPECIFICATION

KIDNEY TOXICITY PREDICTIVE GENES

Cross Reference to Other Patent Applications

[01] This application claims priority from U.S. provisional application Serial No. 60/361,128 titled "Kidney Toxicity Predictive Genes", on February 27, 2002, which is hereby incorporated by reference in its entirety.

Reference to a Sequence Listing and Tables

This application contains a gene sequence listing and four tables submitted on a compact disc whose file name is "Tables for Burning", created on February 27, 2003, containing 5 files and is herein incorporated by reference in its entirety. The five files are (a) a gene sequencing Table 32 (403 KB), in Microsoft® Word®, (b) Table 38 (785 KB) in Microsoft Excel®, (c) Table 39 (957KB) in Excel, (d) Table 40 (992 KB) in Excel, and (e) Table 45 (57KB) in Excel.

Background of the Invention

This invention is the field of toxicology. More specifically, it relates to kidney toxicity predictive genes and the methods of using such genes to predict kidney toxicity. Molecular biology and genomics technologies have potential to create dramatic advances and improvements for the science of toxicology as for other biological sciences. See, for example, MacGregor, et al. *Fund. Appl. Tox.* 26:156-173, 1995; Rodi et al., *Tox. Pathology* 27:107-110, 1999; Cunningham et al., *Ann. N.Y. Acad. Sci.* 919: 52-67, 2000; Pritchard et al., *Proc. Natl. Acad. Sci. USA* 98:13266-13271, 2001; and Fielden and Zacharewski, *Tox. Sciences* 60: 6-10, 2001.

The advantage of these technologies is that they can provide massive amounts of parallel information and that this information concerns processes and events occurring at the molecular level. This level of information is in dramatic contrast to conventional safety assessment toxicology that, to a large extent, currently relies on subjective evaluation (e.g., in-life observations of behavior, observations of gross abnormalities at necropsy and histopathological examination of stained tissue slides using a microscope). These current methodologies may be largely subjective and in some cases such as histopathological evaluation, they require someone with a high degree of training, experience and skill to make competent evaluations. Furthermore, many of the methodologies require access to organs and tissues that necessitates either killing laboratory animals or surgery to obtain tissue specimens.

Recently, there have been some initial efforts to apply molecular biology and [04] genomics technologies to toxicology. Some efforts have involved application of gene expression measurements. See, for example, U.S. Patent 6,228,589 and WO 01/05804. Analysis of the data has yielded interesting observations of gene expressions that appear to correlate with some toxic effects or mechanisms. See, for example, Mueller et al. Environmental Health Perspectives 106(5): 277-230 (1998). However, there has been very little published work in toxicology so far that applies rigorous analytical and statistical techniques to the massive amounts of data available from genomics technologies. The observations, so far, have tended to be phenomenological and focused on individual gene responses rather than determining the generally applicable capabilities of patterns of gene expression to predict toxic effects (see, for example, studies of gene expression altered by exposure to kidney toxicants in Bartosiewicz et al., J. Pharm. Exp. Ther. 297: 895-905, 2001; Lieberthal, Curr. Opin. Nephrol. Hypertens 7:289-295, 1998; Huang et al., Tox. Sciences 63: 196-207, 2001). Even in the larger field of biological sciences, these types of analyses are just beginning to be evidenced in the literature (e.g., Golub et al., Science 286: 531-537, 1999).

[05] What is needed are genes and predictive models, which are capable of predicting toxicity response.

Brief Summary of the Invention

[06] The invention provides kidney toxicity predictive genes and predictive models which are useful to predict toxic responses to one or more agents.

In one aspect, the invention provides methods of predicting kidney toxicity in an individual exposed to an agent which include the steps of: (a) obtaining a biological sample from an individual treated with the agent or treating a biological sample obtained from an individual with the agent or treating *in vitro* cultured cells or explants with the agent; (b) obtaining a gene expression profile from the biological sample or *in vitro* cultured cells or explants; and (c) using the gene expression profile from the biological sample or cells treated with the agent as a test set and a database of gene expression profiles and toxicity classifications as a training set and using kidney toxicity predictive genes and a Predictive Model to determine whether the agent will induce kidney toxicity in the individual or would be predicted to produce kidney toxicity following *in vivo* exposure.

[08] In one embodiment, the predictive model utilizes expression profiles from sets of kidney toxicity predictive gene(s) selected from Combination 6, *infra*, wherein the set is one or more kidney toxicity predictive gene(s). In other embodiments, the predictive model utilizes expression profiles from sets of one or more kidney toxicity predictive gene(s) selected from Combination 5, 4, 3, 2, or 1, wherein the set is one or more kidney toxicity predictive gene(s).

In another aspect, the invention provides methods for determining the presence or absence of a no-observable effect level (NOEL) of an agent by the steps of: (a) obtaining biological samples from individuals treated with the agent at different dose levels or treating a biological sample obtained from an individual with different dose levels of the agent or treating *in vitro* cultured cells or explants with different dose levels of the agent; (b) obtaining gene expression profiles of the samples; and (d) using the gene expression profile from the biological samples as a test set and a database of gene expression profiles and toxicity classifications as a training set and

using kidney toxicity predictive genes and a Predictive Model to determine or predict whether and at which dose levels the agent will induce kidney toxicity. In one embodiment, the predictive model utilizes expression profiles from sets of kidney toxicity predictive gene(s) selected from Combination 6, *infra*, wherein the set is one or more kidney toxicity predictive gene(s). In other embodiments, the predictive model utilizes expression profiles from sets of one or more kidney toxicity predictive gene(s) selected from Combination 5, 4, 3, 2, or 1, wherein the set is one or more kidney toxicity predictive gene(s).

[10] In another embodiment, the predictive genes and models may be used with an *in vitro* system to identify *in vitro* systems that can be used to accurately predict *in vivo* toxicity and to use the identified in vitro systems to accurately predict *in vivo* toxicity.

In another aspect, the invention provides methods of identifying a kidney toxicity predictive gene in an individual including the steps of: (a) providing a set of candidate toxicity predictive genes; (b) evaluating said genes for their predictive performance with at least one training and test set of data in a predictive model to identify genes which are predictive of kidney toxicity; and (c) testing the performance of predictive genes for their ability to predict kidney toxicity for different training and test sets of data, for prediction of accurate compared to random classification and prediction of test data external to the data used to derive the predictive genes. in one embodiment, the candidate toxicity predictive genes are rat toxicity genes.

In another aspect, the invention provides methods for determining the presence or absence of a no-observable effect level (NOEL) of an agent by the steps of: (a) obtaining biological samples from individuals treated with the agent at different dose levels or treating a biological sample obtained from an individual with different dose levels of the agent or treating *in vitro* cultured cells or explants with different dose levels of the agent; (b) obtaining gene expression profiles of the samples; and (d) using the gene expression profile from the biological samples as a test set and a database of gene expression profiles and toxicity classifications as a training set and

using kidney toxicity predictive genes and a Predictive Model to determine or predict whether and at which dose levels the agent will induce kidney toxicity. In one embodiment, the predictive model utilizes expression profiles from sets of kidney toxicity predictive gene(s) selected from Combination 6, *infra*, wherein the set is one or more kidney toxicity predictive gene(s). In other embodiments, the predictive model utilizes expression profiles from sets of one or more kidney toxicity predictive gene(s) selected from Combination 5, 4, 3, 2, or 1, wherein the set is one or more kidney toxicity predictive gene(s).

- [13] In another aspect, the invention provides a computer program product which includes a set of kidney toxicity predictive genes derived from mining a database having a plurality of gene expression profiles indicative of toxicity. in one embodiment, the set of kidney toxicity predictive genes includes at least one toxicity predictive gene from combination 6, 5, 4, 3, 2, or 1 list.
- [14] In another aspect, the invention provides a library of information about kidney toxicity predictive genes produced by the methods disclosed herein.
- [15] In another aspect, the invention provides an integrated system for predicting kidney toxicity comprising: an array reader modified to read gene expression profiles from biological samples exposed to a test agent, operably linked to a computer comprising a database file having a plurality of kidney toxicity predictive genes.

BRIEF DESCRIPTION OF THE DRAWINGS

[16] Figure 1 is a flow diagram illustrating the identification of kidney toxicity predictive genes. The pathway is given for discovery of kidney toxicity predictive genes using the database of expression array data (Rat CT array) and toxicity data for kidney samples from rats treated with various compounds (see Table 1). Gene with expressions correlating with pathology were determined using a variety of correlation statistics (see for example Tables 2 and 3). Predictive model used was

the GeneSpring Predict Parameter Value model that employs a K-nearest neighbor model.

- [17] Figure 2 is a graph which shows the percent of overall correct calls as a function of the number of predictivity genes using histopathology correlating genes (Pearson measure) as the input gene list with Training and Test Set A. The percent of overall correct calls is presented as a function of the number of kidney toxicity predictivity genes. The input genes list consisted of 66 genes that showed a statistically significant correlation with the histopathology scores using Pearson's correlation measure (r-value >0.4). Training and Test Set A was used with other model values of 10 nearest neighbors and a p-value ratio cutoff of 0.5. An optimum gene number of 49 was observed (lowest number of genes giving the highest percent overall calls) for this case.
- evaluated for performance. Performance of predictive model is evaluated using 6 sets of training and test data (Rat CT expression array data). The training and test sets have accurate classification assignments (histopathology "yes" or "no" for each sample) or random classifications assignments ("yes" and "no" randomly assigned to samples). The K-nearest neighbor model is used with input being lists of predictive genes, as indicated, and the training and test set data. Four different measures of prediction are considered as indicated.
- [19] Figure 4 is a graph that shows the cumulative predictive performance of Combo 6 genes. The mean, minimum and maximum percent accuracy for 6 training and test sets are presented for Combo 6 genes that were used cumulatively in the order given in Table 14.
- [20] Figure 5 is a graph that shows the cumulative predictive performance of Combo 5 genes. The mean, minimum and maximum percent accuracy for 6 training and test sets are presented for Combo 5 genes that were used cumulatively in the order given in Table 14.

- [21] Figure 6 is a graph that shows the cumulative predictive performance of Combo 4 genes. The mean, minimum and maximum percent accuracy for 6 training and test sets are presented for Combo 4 genes that were used cumulatively in the order given in Table 14.
- [22] Figure 7 shows the k-means and tree cluster analysis of Combo 6 genes.
- [23] Figure 8 shows the Wards cluster analysis of Combo 6 gene set.
- [24] Figure 9 shows a scanned autoradiogram of a Western blot of serum samples from 8 animals probed with antibodies to clusterin and insulin-like growth factor binding protein 1. Sample information is indicated in the figure. The figure also presents transcriptional differential expression levels of the insulin-like growth factor binding protein 1 gene observed in kidney samples from these animals.

BRIEF DESCRIPTION OF THE TABLES

- [25] Table 1 lists the compounds, dose levels, kidney pathology and abbreviations in the database.
- [26] Table 2 lists genes whose expression at 24h directly correlates with kidney tubular necrosis at 72h, ranked by Pearson correlation coefficient.
- [27] Table 3 lists genes whose expression at 24h inversely correlates with kidney tubular necrosis at 72h, ranked by Spearman correlation coefficient.
- [28] Table 4 lists the distribution of compounds in individual training and test sets for 24 hour kidney data.
- [29] Table 5 lists the predictive genes for 24 hour expression data.
- [30] Table 6 lists the randomly selected gene subsets from 24 hour combo all (216 genes).

[31] Table 7 lists the randomly selected gene subsets from 24 h combo 6 gene set (28 genes).

- [32] Table 8 lists the randomly selected gene subsets from 24 h combo 5 gene set (25 genes).
- [33] Table 9 lists the randomly selected gene subsets from 24 h combo 4 gene set (23 genes).
- [34] Table 10 lists the randomly selected gene subsets from array genes excluding combo all set.
- [35] Table 11 lists the kidney toxicity individual sample prediction values for 24 hour data predictive genes (combined list and subsets).
- [36] Table 12 lists the kidney toxicity compound-dose prediction values for 24 hour data predictive genes (combined list and subsets).
- [37] Table 13 lists the kidney toxicity compound prediction values for 24 hour data predictive genes (combined list and subsets).
- [38] Table 14 lists the order of genes used for cumulative analysis of predictive performance of predictive combo gene sets.
- [39] Table 15 lists the individual gene predictions for combo 6.
- [40] Table 16 lists the individual gene predictions for combo 5.
- [41] Table 17 lists kidney toxicity individual sample prediction values for 24 hour data with random gene subsets.
- [42] Table 18 lists the comparison of predictivity for true kidney toxicity classification and random classification using combo gene sets and random subsets and 24 hour data.
- [43] Table 19 lists the distribution of compounds in individual training and test

sets for 6 hour kidney data.

[44] Table 20 lists the genes whose expression at 6 hours directly correlates with kidney tubular necrosis at 72 hours, ranked by Pearson correlation coefficient.

- [45] Table 21 lists the genes whose expression at 6 hours inversely correlates with kidney tubular necrosis at 72 hours, ranked by Spearman correlation coefficient.
- [46] Table 22 lists the genes whose expression at 6 hours is predictive of kidney toxicity at 72 hours.
- [47] Table 23 lists the kidney toxicity compound-dose prediction values for 6 hour data predictive genes (combined list and subsets).
- [48] Table 24 lists the distribution of compounds in individual training and test sets for the 72 hour kidney data.
- [49] Table 25 lists the genes whose expression at 72 hours directly correlates with kidney tubular necrosis at 72 hours, ranked by Pearson correlation coefficient.
- [50] Table 26 lists the genes whose expression at 72 hours inversely correlates with kidney tubular necrosis at 72 hours, ranked by Spearman correlation coefficient.
- [51] Table 27 lists the genes whose expression at 72 hours is predictive of kidney toxicity at 72 hours.
- [52] Table 28 lists the kidney toxicity compound-dose prediction values for 72 hour data predictive genes (combined list and subsets).
- [53] Table 29 lists the predictive performance of various models.
- [54] Table 30 lists the logistic discrimination coefficients.
- [55] Table 31 lists the prediction of kidney toxicity for samples external to database.
- [56] Table 32 lists the genes predictive for kidney tubular necrosis, sequences,

and accession numbers.

[57] Table 33 lists the kidney predictive genes (376 genes) organized by time point and combo category.

- [58] Table 34 lists the RCT genes (ESTs) predictive for kidney tubular necrosis: best homology matches.
- [59] Table 35 lists the genes that are predictive at all three time points.
- [60] Table 36 lists the genes that are the most predictive across the time points.
- Known to be secreted. The genes are from the table listing all the kidney predictive genes at the three time points 6, 24 and 72 hours. The protein products are easier to access since they are secreted into body fluids and are thus more amenable to be quantified. Therefore these proteins could be monitored in body fluids of subjects such as humans and toxicity predictions could be made.
- [62] Table 38 lists the expression data for the 6 hour timepoint.
- [63] Table 39 lists the expression data for the 24 hour timepoint.
- [64] Table 40 lists the expression data for the 72 hour timepoint.
- [65] Table 41 lists the predictive performance of predictive genes organized by occurrence on training/test set lists (combo number) and time point.
- [66] Table 42 lists the summary output of the predictive computer software product.
- [67] Table 43 lists the detailed output of the predictive computer software product.
- [68] Table 44 lists protein marker candidate identification information that includes the gene name, % correct calls, average fold induction for negative histopathology samples, and average fold induction for positive histopathology samples.

[69] Table 45 lists input data used for the predictive computer program product.

DETAILED DESCRIPTION OF THE INVENTION

This invention relates to methods of predicting whether an agent or other stimulus is capable of inducing kidney toxicity in a recipient organism using predictive molecular toxicology analysis. In particular, the invention provides methods of predicting kidney toxicity that comprise analyzing gene and/or protein expression across a number of kidney toxicity biomarkers disclosed herein for patterns of expression that correlate with and are predictive of kidney tubule necrosis in the recipient organism. This endpoint is significant because mortality in patients is high for acute renal failure and tubular necrosis is associated with many causes such as ischemia, endotoxemia or exposure to nephrotoxins (Ueda et al., *Am. J. Med.* 108: 403-415, 2000).

[71] The invention is based, in part, upon the discovery that modulated transcriptional regulation of relatively small sets of certain genes in response to a test agent can accurately predict the occurrence of kidney toxicity observed at later time points.

[72] Provided herein are multiple sets of kidney toxicity biomarkers which are useful in the practice of the kidney toxicity prediction methods of the invention. In particular, applicants have identified 376 kidney toxicity biomarkers that demonstrate utility in predicting kidney toxicity outcomes. These biomarkers have been thoroughly characterized for their predictive performance, individually as well as in various combinations or subsets thereof. In addition, various optimized subsets of the kidney toxicity biomarkers of the invention are disclosed, which sets have also been thoroughly characterized for predictive performance using the methods of the invention. Among the subsets of kidney toxicity genes provided herein are several which demonstrate prediction accuracies in the vicinity of 95%.

[73] The invention is further described by way of the experimental examples provided herein. These examples demonstrate that small sets of genes (i.e., in some instances, as few as 2 or 3 biomarker genes) may be used to accurately predict kidney toxicity. For example, as further described in the Examples, analysis of mRNA expression of only a few genes can provide an accurate indication of whether a test agent will or will not induce kidney toxicity.

- [74] The predictive capacity of the methods of the invention have been verified by (a) comparisons with random classifications, and (b) predictions using data external to the database used to identify the kidney toxicity biomarkers. Moreover, the methods of the invention are capable of distinguishing between agent dose levels which induce toxicity (typically higher doses) and those doses that are non-toxic. This latter feature is an essential component of meaningful toxicological evaluation..
- I. General Techniques: The practice of the present invention will employ, [75] unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, biochemistry, nucleic acid chemistry, and immunology, which are well known to those skilled in the art.. Such techniques are explained fully in the literature, such as, Molecular Cloning: A Laboratory Manual, second edition (Sambrook et al., 1989) and Molecular Cloning: A Laboratory Manual, third edition (Sambrook and Russel, 2001), (jointly referred to herein as "Sambrook"); Current Protocols in Molecular Biology (F.M. Ausubel et al., eds., 1987, including supplements through 2001); PCR: The Polymerase Chain Reaction, (Mullis et al., eds., 1994); Harlow and Lane (1988) Antibodies, A Laboratory Manual, Cold Spring Harbor Publications, New York; Harlow and Lane (1999) Using Antibodies: A Laboratory Manual Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (jointly referred to herein as "Harlow and Lane"), Beaucage et al. eds., Current Protocols in Nucleic Acid Chemistry John Wiley & Sons, Inc., New York, 2000) and Casarett and Doull's Toxicology The Basic Science of Poisons, C. Klaassen, ed., 6th edition (2001).
- [76] II. Definitions: Unless otherwise defined, all terms of art, notations and other

scientific terminology used herein are intended to have the meanings commonly understood by those of skill in the art to which this invention pertains. In some cases, terms with commonly understood meanings are defined herein for clarity and/or for ready reference, and the inclusion of such definitions herein should not necessarily be construed to represent a substantial difference over what is generally understood in the art. The techniques and procedures described or referenced herein are generally well understood and commonly employed using conventional methodology by those skilled in the art, such as, for example, the widely utilized molecular cloning methodologies described in Sambrook et al., Molecular Cloning: A Laboratory Manual 2nd edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. As appropriate, procedures involving the use of commercially available kits and reagents are generally carried out in accordance with manufacturer defined protocols and/or parameters unless otherwise noted.

"Toxic" or "toxicity" refers to the result of an agent causing adverse effects, usually by a xenobiotic agent administered at a sufficiently high dose level to cause the adverse effects.

[78] As used herein, the terms "kidney toxicity biomarker" and "kidney toxicity predictive gene" are used interchangeably and refer to a gene whose expression, measured at the RNA or protein level can predict the likelihood of a kidney toxicity response with accuracy significantly better than would occur by chance. In one embodiment, the kidney toxicity response is tubular necrosis. In other embodiments, the kidney toxicity response can be other toxicity manifestations that elicit similar detectable gene expression changes. These could include other forms of tubular injury, glomerular toxicity and papillary injury.

[79] A "toxicological response" refers to a cellular, tissue, organ or system level response to exposure to an agent. At the molecular level, this can include, but is not limited to, the differential expression of genes encompassing both the up- and down-regulation of expression of such genes at the RNA and/or protein level; the up- or down-regulation of expression of genes which encode proteins associated with

response to and mitigation of damage, the repair or regulation of cell damage; or changes in gene expression due to changes in populations of cells in the tissue or organ affected in response to toxic damage.

- [80] An "agent" or "compound" is any element to which an individual can be exposed and can include, without limitation, drugs, pharmaceutical compounds, household chemicals, industrial chemicals, environmental chemicals, other chemicals, and physical elements such as electromagnetic radiation.
- [81] The term "biological sample" as used herein refers to substances obtained from an individual. The samples may comprise cells, tissue, parts of tissues, organs, parts of organs, or fluids (e.g., blood, urine or serum). Biological samples include, but are not limited to, those of eukaryotic, mammalian or human origin.
- [82] "Sample" is defined for the purposes of prediction as a biological sample and the gene expression data for that sample. Each sample comes from an individual animal. A toxicity classification may also be associated with the sample.
- "Gene expression" as used herein refers to the relative levels of expression and/or pattern of expression of a gene. In some embodiments, the expression refers to a toxicity gene or toxic response gene. In other embodiments, the expression is of a toxicity predictive gene.
- "Gene expression profile" refers to the relative levels of expression of multiple different genes measured for the same sample. Gene expression profiles may be measured in a sample, such as samples comprising a variety of cell types, different tissues, different organs, or fluids (e.g., blood, urine, spinal fluid, sweat, saliva or serum) by various methods including but not limited to microarray technologies and quantitative and semi-quantitative RT-PCR (e.g., Taqman™) techniques, as well as techniques for measuring expression of proteins.
- [85] "Individual" refers to a vertebrate, including, but not limited to, a human, non-human primate, mouse, hamster, guinea pig, rabbit, cattle sheep, pig, chicken, and dog.

As used herein, the terms "hybridize", "hybridizing", "hybridizes" and the like, [86] used in the context of polynucleotides, are meant to refer to conventional hybridization conditions, such as hybridization in 50% formamide/6X SSC/0.1% SDS/100 µg/ml ssDNA, in which temperatures for hybridization are above 37 degrees Celsius and temperatures for washing in 0.1X SSC/0.1% SDS are above 55 degrees Celsius, and preferably to stringent hybridization conditions. Nucleic acids will hybridize will depend upon factors such as their degree of complementarity as well as the stringency of the hybridization reaction conditions. Stringent conditions can be used to identify nucleic acid duplexes with a high degree of complementarity. Means for adjusting the stringency of a hybridization reaction are well-known to those of skill in the art. See, for example, Sambrook, et al., "Molecular Cloning: A Laboratory Manual," Second Edition, Cold Spring Harbor Laboratory Press, 1989; Ausubel, et al., "Current Protocols In Molecular Biology," John Wiley & Sons, 1996 and periodic updates; and Hames et al., "Nucleic Acid Hybridization: A Practical Approach," IRL Press, Ltd., 1985. In general, conditions that increase stringency (i.e., select for the formation of more closely-matched duplexes) include higher temperature, lower ionic strength and presence or absence of solvents; lower stringency is favored by lower temperature, higher ionic strength, and lower or higher concentrations of solvents.

In the context of amino acid sequence comparisons, the term "identity" is used to express the percentage of amino acid residues at the same relative position which are the same. Also in this context, the term "homology" is used to express the percentage of amino acid residues at the same relative positions which are either identical or are similar, using the conserved amino acid criteria of BLAST analysis, as is generally understood in the art. Further details regarding amino acid substitutions, which are considered conservative under such criteria, are provided.

[88] III. Identification of Kidney Toxicity Biomarkers

A. Generation of Toxicology Gene Expression Biomarkers: The kidney toxicity biomarkers described herein were initially identified utilizing a database

generated from large numbers of *in vivo* experiments, wherein the differential expression of approximately 700 rat genes, measured at various time points, in response to multiple toxic compounds inducing various specific toxic responses, as visualized through microscopic histopathological analysis, was quantified, as described in pending United States Patent Application filed January 29, 2002 (serial number not yet assigned). This quantitative gene expression data, as well as corresponding histopathological information, was then subjected to an analytical approach specifically designed to identify genes which not only correlated with the observed histopathology, but also demonstrated an ability to be used in a model capable of accurately predicting the occurrence of the toxic response associated with the observed histopathology. A complete description of this identification process is presented in the Examples. A flow diagram illustrating how the kidney toxicity biomarkers of the invention were identified is presented in Figure 1.

[89] In addition to the database described and utilized herein, other toxicology gene expression databases may be generated using techniques well known in the art, and used to identify additional kidney toxicity biomarkers, which may also be employed in the practice of the kidney toxicity prediction methods of the invention. Such databases may be generated with test compounds capable of inducing various pathologies indicative of a toxic response in the kidney and/or other organs or systems, over different time periods and under different administration and/or dosing conditions, including without limitation kidney tubule necrosis, glomerular necrosis, glomerular sclerosis and papillary injury. An example of compounds, dose levels, kidney toxicity classifications and histopathology scores used in the Examples which follow is provided in Table 1.

[90] Such databases may be generated using organisms other than the rat, including without limitation, animals of canine, murine, or non-human primate species. In addition, such databases may incorporate data derived from human clinical trials and post-approval human clinical experiences. Various methods for detecting and quantitating the expression of genes and/or proteins in response to

toxic stimuli may be employed in the generation of such databases, as are generally known in the art. For example, microarrays comprising multiple cDNAs or oligonucleotide probes capable of hybridizing to corresponding transcripts of genes of interest may be used to generate gene expression profiles. Additionally, a number of other methods for detecting and quantitating the expression of gene transcripts are known in the art and may be employed, including without limitation, RT-PCR techniques such as TagMan®, RNAse protection, branched chain, etc.

- [91] Databases comprising quantitative gene expression information preferably include qualitative and quantitative and/or semi-quantitative information respecting the observed toxicological responses and other conventional toxicology endpoints, such as for example, body and organ weights, serum chemistry and histopathology observations, histopathology scores and/or similar parameters.
- B. Identification of Correlating Genes: For the purpose of identifying candidate predictive genes, the database preferably includes histopathology scores for each animal which has been exposed to one or more agent(s). These scores can be assigned based on actual histopathology observations for the tissue and animal or on the basis of effects observed for other animals treated with the same agent and dose level. The scores are numerical scores that reflect the occurrence and severity of histopathological changes. These scores can be adjusted to have similar range to gene expression changes. For example, a score of 1 could be assigned to samples with no changes and scores of 28 assigned to increasingly severe changes. Because the scores are numerical, they are suitable for use with a variety of statistical correlation and similarity measures.
- [93] An example of a histopathology scoring system is provided in Example 1. Referring to Figure 1, histopathology scores may be utilized to identify genes which correlate with the observed toxicological response, using any number of statistical correlation and similarity analysis techniques, including without limitation those techniques described or employed in Example 1 (e.g., Pearson, Spearman, change, smooth, distance etc.). Such correlating genes may be used as predictive gene

candidates. Examples of genes whose expression at 24 hours after treatment correlates with histopathology observed at 72h are detailed in Tables 3 and 4. In one embodiment, the correlating gene lists as well as the entire array gene list are used as input gene lists in the GeneSpring[™] Predictive Model (otherwise known hereafter as "Predictive Model").

- [94] (C) Class Prediction and Classification: Statistical analysis of the database of gene expression profiles can be effected by utilizing commercially available software programs. In one embodiment, GeneSpring™ (Version 4.1, Silicon Genetics, Redwood City, CA) is used. Other software programs which can be used for statistical analysis include, without limitation, SAS software packages (SAS Institute Inc., Cary, NC) and S-PLUS® software (Insightful Corporation, Seattle, WA)
- [95] Using GeneSpring[™] software, class predictions can be made from the genes in the database, as detailed in Example 1, using one or more training and test sets. In one embodiment, six training sets and six test sets are obtained, as shown in Example 1 (Table 4). Kidney toxicological classifications are entered for the samples in each training and test set. Toxicological classifications can be defined by various pathologies. In one embodiment, the toxicity is defined as kidney tubular necrosis observed 72 hours after treatment with an agent. However, toxicity can manifest in other nephropathologies such as glomerular necrosis or papillary injury.
- [96] Once the training sets have been selected, then predicted classifications of the test set samples are obtained by using k-nearest neighbor (or knn) voting procedure. The class of each of the knn is determined and the test sample is assigned to the class with the largest representation after adjusting for the proportion of classifications in the training set. In one embodiment, adjustments are made to account for different proportions of classes in the training set.
- [97] Toxicity can also be observed at various time points after exposure to an agent and is not limited to only 72 hour after treatment. A skilled toxicologist can determine the optimal time after exposure to an agent to observe pathology by either what has been disclosed in the art or a stepwise experimentation with time

increments, for example 2, 4, 6, 12, 18, 24, 36, 48 hours post-exposure or even longer time increments, for example, days, weeks, or months after exposure to the agent.

- [98] (D) Identification of Predictive Genes: Figure 1 describes the overall process used to identify kidney toxicity predictive genes. In one embodiment, this process was run independently for each time point.
- [99] The number of genes that are to be used in the Predictive Model can be varied, for example 50, 40, 30, 20, 10, 5, 2, or 1 gene(s) can be used. In a preferred embodiment, at least 50 genes are used.
- [100] An optimal gene list is generated that generates the best predictive accuracy with the lowest number of genes used. Figure 2 shows an exemplary profile for an optimal gene list.
- [101] In one embodiment, optimum gene lists for all input gene lists are combined for each training and test set and then these combined lists for all six training and test sets are merged to create an aggregate list of predictive genes. The aggregate list can then be subdivided to smaller lists of genes based on the number of times that the genes occurred on the predictive gene lists for each individual training or test set. These are designated herein as Combo 6, 5, 4, 3, 2, or 1 lists. The genes that were predictive in all 6 training and test sets are designated as Combo 6 and the genes that were predictive in 5 of 6 training and test sets are designated as Combo 5 and so forth. Table 32 presents gene names, accession numbers and sequence information for the kidney toxicity predictive genes found by analysis of the database in the manner described above. Each of these genes has been demonstrated to contribute to predictive performance for at least one input gene list and training/test set and one time point. Table 33 lists the kidney toxicity predictive genes organized by time point and Combo Class. Table 34 lists homologous genes for the RCT sequences that were identified by BLAST search using the GenBank NR database as the target database.

[102] The predictive genes can also be categorized by their occurrence as predictive at different time points. Table 35 lists 53 genes that are on the combined predictive lists of all three time points tested. This list is derived from the list of all the predictive genes measured at 6, 24 and 72 hours that predicted kidney tubular necrosis at 72 hours. Genes that are predictive at multiple time points can be further grouped by their Combo ranking. Table 36 lists 23 genes that are the most predictive across the three time points tested. This list is a subset of the list of 53 genes that are predictive across all three time points 6, 24 and 72 hours. The criteria for inclusion in this table were that the gene be a member of the highest combinations, viz., combinations 6, 5 or 4 in at least 2 out of three time points. The gene expression data of the genes in Table 36 could be expected to be very highly predictive of kidney tubular necrosis. Further, since the predictive strength of these genes is very high across the 3 time points tested, it could be expected that gene expression data derived from these genes even at time points not tested such as any time points falling between 6 and 72 hours or any other time point would be very highly predictive of tubular necrosis. These specific genes could be useful in cases where the dose route or pharmacokinetic properties of a compound may alter the kinetics of predictive gene expression changes.

- IV. Evaluation of Predictive Genes for Kidney Toxicity: The predictive genes are evaluated for predictive performance as shown in Figure 3. For each gene list prediction, a table of data was generated using the Predictive Model which included: the test set containing information about the actual call (*i.e.*, "yes" or "no" for kidney toxicity), the predicted call (*i.e.*, "yes" or "no" for kidney toxicity), and the P-value cutoff ratio. Expression data that can be used with the K-nearest neighbor model and predictive genes to enable one skilled in the art to make predictions are given in Tables 38-40.
- [104] The combined list of predictive genes or alternatively, Combo 6, 5, 4, 3, 2, or 1 list or subsets thereof was used as input into the Predictive Model. As another verification of the predictive abilities of the genes found to be predictive for kidney toxicity, random lists of genes were generated and also used as input into the

Predictive Model. Example 2 describes the evaluation of the predictive performance of the kidney toxicity predictive genes.

[105] Predictive performance may also be assessed using data from different time points after exposure to the agent. In one embodiment, 24 hour expression data is used. In another embodiment, 6 hour expression data is used, as described in Examples 3 and 4. In another embodiment, 72 hour expression data is used, as described in Example 5 and 6. As shown in Table 41, predictive capability for 24 hour expression data has a high accuracy rate (*i.e.*, 90% accuracy) when the entire predictive gene list is used.

Table 41 Predictive Performance of Predictive Genes Organized by Occurrence on Training/Test Set Lists (Combo number) and Time Point

Time Point	Gene Set	Number of Genes	Accuracy**	Geometric Mean**
24 h	Combo All	216	0.915 (0.861-0.945)	0.810 (0.720-0.884)
24 h	Combo 6	28	0.921 (0.867-0.955)	0.837 (0.660-0.953)
24 h	Combo 5	25	0.896 (0.829-0.929)	0.821 (0.684-0.870)
24 h	Combo 4	23	0.882 (0.829-0.929)	0.776 (0.700-0.925)
24 h	Combo 3	19	0.839 (0.778-0.911)	0.740 (0.562-0.892)
24 h	Combo 2	45	0.733 (0.641-0.821)	0.552 (0.343-0.663)
24 h	Combo 1	76	0.787 (0.667-0.884)	0.645 (0.355-0.782)
6h	Combo All	176	0.719 (0.571-0.793)	0.610 (0.420-0.750)
6h	Combo 6	15	0.747 (0.567-0.800)	0.542 (0.000-0.800)
6h	Combo 5	16	0.536 (0.330-0.700)	0.480 (0.400-0.650)
6h	Combo 4	19	0.731 (0.607-0.875)	0.584 (0.400-0.740)
6h	Combo 3	21	0.635 (0.330-0.830)	0.514 (0.350-0.630)
6h	Combo 2	38	0.607 (0.350-0.830)	0.402 (0.000-0.600)
6h	Combo 1	67	0.588 (0.420-0.820)	0.509 (0.390-0.630)
72 h	Combo All	225	0.882 (0.643-0.974)	0.747 (0.500 -0.913)
72 h	Combo 6	16	0.808 (0.607-0.902)	0.601 (0.000-0.869)
72 h	Combo 5	27	0.742 (0.429-0.921)	0.616 (0.452-0.803)
72 h	Combo 4	23	0.828 (0.500-0.917)	0.607 (0.000-0.839)
72 h	Combo 3	33	0.705 (0.357-0.902)	0.414 (0.000-0.649)
72 h	Combo 2	41	0.661 (0.357-0.868)	0.412 (0.000-0.690)
72 h	Combo 1	90	0.783 (0.536-0.941)	0.572 (0.000-0.896)

^{**} Means and ranges are given for 6 training and test sets. Unit of prediction was the animal and the predictive classification was for kidney tubular necrosis observed at 72 hours after treatment. Standard prediction measures were used as defined in Materials and Methods of Example 1. These include:

Accuracy =Proportion of total number of predictions that are correct Geometric mean=Performance measure that takes into account proportion of positive and negative cases

- [106] Somewhat lower predictive accuracies were observed for the 6h and 72 h data but the prediction was still quite significant. In general, selecting genes from Combo list 6 for use in prediction of kidney toxicity yields higher average accuracy than using genes from Combo list 5 which in turn yields higher average accuracy rates than Combo 4 and so forth for Combo lists 3, 2, and 1. All of the combo lists as well as Combo All list had significantly higher accuracy than using random classifications.
- [107] Predictive performance may also be assessed using subsets of genes from the different Combo lists. As indicated in Examples 2, 4 and 6 randomly selected subsets of the Combo gene lists had very good predictive performance (accuracy better than 80% and approaching 90%) and even individual genes had mean predictive accuracies that were significant (for example, greater than 80%). Cumulative performance of subsets of 24 h data is presented in Figures 4-6. In one embodiment, using 3 genes from Combo list 6 yields about 90% accuracy. However, using different Combo lists may require more genes to reach the same accuracy level, e.g., 8 genes from Combo 5 list, 13 genes from Combo 4 list.
- [108] V. Use of kidney toxicity predictive genes: The kidney toxicity predictive genes disclosed herein and kidney toxicity predictive genes identified by using methods disclosed herein are useful for predicting kidney toxicity in response to exposure to one or more agents.
- [109] The discovery that relatively small sets of different genes have predictive value permits flexible application of these discoveries. The choice of how many and which genes to use can be tailored to a variety of different purposes. Very good predictivity is observed for sets of a few genes (for example as few as three genes of the 24 hour Combo 6 set have mean prediction accuracy of about 90%). These small sets may be particularly advantageous in applications where measurement of

only a few RNA species has considerable advantages in terms of sample processing logistics, speed and cost. These applications would include relatively high throughput screens for predictive capability. An example of this would be an early screen using small samples of primary cells or cultured cell lines that can be processed with automated robotic equipment for treatment and isolation of RNA followed by efficient technologies for measuring expression of a few RNA species such as branched chain technology or RT-PCR. The use of larger numbers of predictive genes provides for redundancy and consequent greater accuracy and precision. Applications using larger numbers of predictive genes might be tests of candidates at later stages of commercial development. An example would be later stages of preclinical development of a therapeutic candidate where in vivo samples can be obtained and more comprehensive methods such as microarray measurement of gene expression are appropriate. The larger gene sets can also include different subsets of genes which may offer more insight into potential mechanisms of toxicity and the ability to have refined predictions of long term toxic consequences such as chronic, irreversible toxicity or carcinogenicity.

- [110] Some members of the kidney toxicity predictive genes may also be suitable for prediction of toxicity in other organs or may be preferable for predicting toxicity for wider ranges of timepoints or treatment routes or regimens. As an example of the latter, some of the predictive genes are observed at three different timepoints after treatment. These genes may be useful for prediction in cases where the samples come from treatment protocols that have different measurement timepoints or routes of administration than those employed for the database or where the toxicokinetics for a particular agent are known or suspected to be different from those in the database.
- In one embodiment, the agent is an agent for which no expression profile has been assessed or stored in the database or library. An animal, e.g., rat, is dosed with such an agent and the gene expression profile(s) is the test set for the Predictive Model. The training set which is used in the Predictive Model in this case can be the entire database of sample array data because the test set data is not present in the

database. As described in Example 8, the prediction can be made with accuracy without requiring the use of histopathology scores for the test set as part of the input into the Predictive Model.

- In another embodiment the agent is an agent present in the database but is used at a different dose level or with a different treatment protocol than used in the database. The training set which is used in the Predictive Model in this case can be the entire database of sample array data because the test set data is not present in the database. As described in Example 8, the prediction can be made with accuracy without requiring the use of histopathology scores for the test set as part of the input into the Predictive Model.
- [113] In another embodiment, the exposure time of the agent is not 6, 24, or 72 hours or repeat dosing protocols are used. In this case, the skilled artisan can use the toxicity predictive genes from surrounding time points to extrapolate the predicted toxicity without undue experimentation. For example, if the individual has been exposed to the agent for 12 hours, then predictive genes from 6 and 24 hours timepoints are used as guidelines for extrapolating possible predicted toxicity.
- In another embodiment, the kidney predictive genes and predictive model can be used to determine the presence or absence of a no-observable toxicity effect level (NOEL). An agent can be used at different treatment levels and expression profiles obtained for each treatment level. The predictive genes and predictive model can be used to determine which dose levels elicit a response that is predicted to be toxic and which dose levels are not toxic. In contrast to conventional endpoints for determining no-effect levels, the use of expression data, predictive genes and predictive models applies a number of quantitative endpoints and criteria instead of subjective endpoints and criteria. This permits more rigorous and precisely defined determination of no effect levels.
- [115] In another embodiment, the kidney toxicity predictive genes can be used to detect toxic effects that may be manifested as long lasting or chronic consequences such as irreversible toxicity or carcinogenesis. The predictive genes and model can

be applied to databases where classifications of training and test set samples are made with respect to actual or putative endpoints such as irreversible toxicity or carcinogenicity.

In another embodiment, the predictive genes can be used in a variety of [116] alternative models to predict kidney toxicity. Some of these models do not require the direct use of data in a database but use functions or coefficients derived from the database. In another embodiment, the predictive genes and models may be used to evaluate in vitro systems for their ability to reflect in vivo toxic events and to use such in vitro systems for predicting in vivo toxicity. Expression profiles for predictive genes can be created from candidate in vitro assays using treatments with agents of known in vivo toxicity and for which in vivo data on gene expression are available. The expression data and predictive models of this invention can be used to determine whether the in vitro assay system has predictive gene expression responses that accurately reflect the in vivo situation. Large sets of predictive genes as described in this invention can be tested in such models for their suitability and performance with the candidate in vitro systems. This is a superior and novel tool for evaluating and optimizing in vitro systems for their ability to reflect and accurately predict in vitro responses.

In another embodiment, measurement of the expression levels of the proteins coded for by the predictive genes can be used in conjunction with predictive models to predict kidney toxicity. Among the full set of kidney toxicity predictive genes are various genes known to encode cell surface, secreted and/or shed proteins. This enables the development of methods for predicting toxicity using protein biomarkers. Example 11 presents a process by which candidate protein biomarker genes may be selected from biomarker genes identified from transcription expression. For example, as disclosed in Table 37, there are 23 genes in the master predictive set which are known to encode secreted proteins. As disclosed in Table 43, predictive protein marker candidates may also be selected by categorizing a number of other parameters related to the predictive performance and potential use as protein markers. In Example 11, the utility of this concept has been demonstrated

by testing for serum protein levels of one of the identified biomarkers, insulin-like growth factor binding protein 1. The serum protein levels of this biomarker parallel the kidney transcription levels and distinguish kidney toxic from non-toxic treatments. Thus, in another aspect of the present invention, kidney toxicity predictive assays which detect the expression of one or more of said predictive proteins may be developed. Such assays may have several advantages, such as:

- (1)Ability to use archived tissue specimens such as preserved or embedded tissues that are not suitable for measurement of RNA expression
- (2) Ability to examine predictive protein expression in tissue slides using *in situ* labeling and microscopic observation. This is useful for detecting toxicity predictive signals occurring in very small subpopulations of cells.
- (3) Ability to detect protein markers in specimens that can be readily obtained with little or no invasiveness (e.g., blood, urine, sweat, saliva).
- (4) Reduction in animal use in laboratory studies such that no sacrifice of animals necessary to obtain tissue specimens when toxicity prediction can be made with specimens that can be obtained without animal sacrifice or surgery.
- (5) Application for human use where tissue specimens cannot be obtained or are only obtained with great difficulty.
- [118] In another embodiment, the identified predictive genes can be considered as potential therapeutic targets when the genes are involved in toxic damage or repair responses whose expression or functional modification may attenuate, ameliorate or eliminate disease conditions or adverse symptoms of disease conditions.
- [119] In another embodiment, the predictive genes can be organized into clusters of genes that exhibit similar patterns of expression by a variety of statistical procedures commonly used to identify such coordinately expression patterns.

Common functional properties of these clustered genes can be used to provide insight into the functional relationship of the response of these genes to toxic effects. Common genetic properties of these genes (e.g., common regulatory sequences) may provide insight into functional aspects by revealing known or novel similarities in the coding region of the genes. The presence of common known or novel signal transduction systems that regulate expression of the genes can also lead to insight as to the functional properties of the genes. The presence of common known or novel regulatory sequences in the identified predictive genes can also be used to identify toxicity predictive genes that are not present in the current Rat CT array. This can be accomplished by someone skilled in the art who can analyze sequence databases for common regulatory sequences.

- In yet another embodiment, the kidney toxicity predictive genes can be used to predict toxicity responses in other species, for example, human, non-human primate, mouse, hamster, guinea pig, rabbit, cattle, sheep, pig, chicken, and dog. Some members of the kidney toxicity predictive genes may also be more suitable for prediction of toxicity in species other than the species used to derive the database (rat in the case of the examples provided). One method for identification of such genes is that would be available to someone skilled in the art would be to examine DNA sequence databases to determine whether orthologous sequences to the predictive genes exist in the target species and how close the orthologous sequences are to the predictive gene sequences. One of skill in the art can examine the orthologous sequences for similarity in amino acid coding regions and motifs as well as for similarities in regulatory regions and motifs of the gene.
- In another embodiment, kidney toxicity predictive genes or gene sequences are used for screening other potential toxicity predictive genes or gene sequences in other species or even within the same species using methods known in the art. See, for example, Sambrook *supra*. Gene sequences which hybridize under stringent conditions to the kidney toxicity predictive gene sequences disclosed herein are selected as potential toxicity predictive genes. Gene sequences which hybridize to the kidney toxicity predictivity gene of this invention can show homology to the kidney

toxicity predictivity genes, preferably at least about 50%, 60%, 70%, 80%, or 90% identical to the kidney toxicity predictivity genes disclosed herein. It is understood that conservative substitutions of amino acids are possible for gene sequences which have some percentage homology with the kidney toxicity predictive gene sequences of this invention. A conservative substitution in a protein is a substitution of one amino acid with an amino acid with similar size and charge. Groups of amino acids known normally to be equivalent are: (a) Ala, Ser, Thr, Pro, and Gly; (b) Asn, Asp, Glu, and Gln; (c) His, Arg, and Lys; (d) Met, Glu, Ile, and Val; and (e) Phe, Tyr, and Trp.

- It is also understood that the toxicity predictive genes can be used as guides to predicting toxicity for agents that have been administered via different routes (, intravenous, oral, dermal, inhalation, I, etc.) from the routes that were used to generate the database or to identify the toxicity predictive genes. Furthermore, the invention is not intended to be limiting to agents that have been administered at different dosages than the agents that were used to generate the database or to identify the toxicity predictive genes.
- [123] Data described in the examples were generated using the microarray technology disclosed in the Examples. However, the invention is not dependent on using this particular platform. Other similar gene expression analysis technologies may be incorporated in the practice of this invention. These can include, but are not limited to, other arrays containing the predictive genes, RT-PCR (e.g., TaqMan®), branched chain technology, RNAs protection or any other method which quantitatively detects the expression of RNA polynucleotides. The invention can be practiced using these other technologies by generating a database of expression measurements for the predictive genes using samples such as those used in the database described in Example 1. This database can then be used in a model such as the K-nearest neighbor model or can be used to develop any of a number of other models.
- [124] The following Examples are provided to illustrate but not to limit the invention

in any manner.

EXAMPLES

- [125] Example 1 Discovery of Kidney Toxicity Predictive Genes from 24 Hour Expression Data. Materials and Methods:(A) Database of Compounds and Kidney Toxicity: Compounds and treatments list used to construct the kidney database are given in Table 1. This table also provides the evaluation of the kidney toxicity observed as kidney tubular necrosis in samples collected 72 hours after treatment.
- [126] (B) Database of Animal Experiments: Sprague Dawley rats Cri:CD from Charles River, Raleigh, NC were divided into treated rats that receive a specific concentration of the compound (see Table 1) and the control rats that only received the vehicle in which the compound is mixed (e.g., saline).
- [127] At specified timepoints (6h, 24h and 72h) after administration (intraperitoneal route) of the compound, a set number of rats (usually 3 control and 3 treated) were euthanized and tissues collected. Each rat was heavily sedated with an overdose of CO2 by inhalation and a maximum amount of blood drawn. Exsanguination of the rat by this drawing of blood kills the rat. The method of collecting the tissues is very important and ensures preserving the quality of the mRNA in the tissues. The body of the rat was then opened up and prosectors rapidly removed the tissues (including kidney) and immediately placed them into liquid nitrogen. All of the organs/tissues were completely frozen within 3 minutes of the death of the animal to ensure that mRNA did not degrade. The organs/tissues were then packaged into well-labeled plastic freezer quality bags and stored at -80 degrees until needed for isolation of the mRNA from a portion of the organ/tissue sample.
- [128] (C) Isolating DNA/RNA from animal tissues or cells: Total RNA was isolated from kidney tissue samples using the following materials: Qiagen RNeasy midi kits, 2-mercaptoethanol, liquid N₂, tissue homogenizer, dry ice Samples were kept on ice when specified.

[129] If a tissue needed to be broken, then the tissue sample was placed on a double layer of aluminum foil which was then placed within a weigh boat containing a small amount of liquid nitrogen. The aluminum foil was folded around the tissue and then struck by a small foil-wrapped hammer to administer mechanical stress forces.

- [130] About 0.15-0.20 g of kidney tissue was weighed out and placed in a sterile container. To preserve integrity of the RNA, all tissues were kept on dry ice when other samples were being weighed. A RLT (Qiagen®) buffer buffer was added to the sample to aid in the homogenization process. The tissue was homogenized using commercially available homogenizer (IKA Ultra Turrax T25 homogenizer) with the 7 mm microfine sawtooth shaft and generator (195 mm long with a processing range of 0.25 ml to 20 ml, item # 372718). After homogenization, samples were stored on ice until all samples were homogenized. The homogenized tissue sample was spun to remove nuclei thus reducing DNA contamination. The supernatant of the lysate was then transferred to a clean container containing an equal volume of 70% EtOH in DEPC treated H₂O and mixed. RNA was isolated by putting the supernatant through an RNeasy spin column, washed, and subsequently eluted. Small quantities of remaining DNA were removed by use of DNase enzyme during the RNA isolation procedure following the instructions provided by Qiagen and alternatively by lithium chloride (LiCI) precipitation following the RNA isolation. The isolated RNA pellet was stored in Rnase-free water or in an RNA storage buffer (10 mM sodium citrate), Ambion Cat #7000. The RNA amount was then quantitated using a spectrophotometer.
- [131] (D) Rat 700 CT chip: Gene expression data was generated from a microarray chip that has a set of toxicologically relevant rat genes which are used to predict toxicological responses. The rat 700 CT gene array is disclosed in U.S. applications 60/264,933; 60/308,161; and pending application filed on January 29, 2002 that claims priority to 60/264,933 and 60/308,161 [Attorney docket 40074-2000600].
- [132] (E) Microarray RT reaction: Fluorescence-labeled first strand cDNA probe was made from the total RNA or mRNA isolated from kidneys of control and treated

PCT/US03/06196

rats. This probe was hybridized to microarray slides spotted with DNA specific for toxicologically relevant genes. The materials needed are: total or messenger RNA, primer, Superscript II buffer, dithiothreitol (DTT), nucleotide mix, Cy3 or Cy5 dye, Superscript II (RT), ammonium acetate, 70% EtOH, PCR machine, and ice.

- [133] The volume of each sample that would contain $20\mu g$ of total RNA (or $2\mu g$ of mRNA) was calculated. The amount of DEPC water needed to bring the total volume of each RNA sample to $14 \mu l$ was also calculated. If RNA was too dilute, the samples were concentrated to a volume of less than $14 \mu l$ in a speedvac without heat. The speedvac must be capable of generating a vacuum of 0 Milli-Torr so that samples can freeze dry under these conditions. Sufficient volume of DEPC water was added to bring the total volume of each RNA sample to $14 \mu l$. Each PCR tube was labeled with the name of the sample or control reaction. The appropriate volume of DEPC water and $8 \mu l$ of anchored oligo dT mix (stored at -20°C) was added to each tube.
- [134] Then the appropriate volume of each RNA sample was added to the labeled PCR tube. The samples were mixed by pipeting. The tubes were kept on ice until all samples are ready for the next step. It is preferable for the tubes to kept on ice until the next step is ready to proceed. The samples were incubated in a PCR machine for 10 minutes at 70°C followed by 4°C incubation period until the sample tubes were ready to be retrieved. The sample tubes were left at 4°C for at least 2 minutes.
- The Cy dyes are light sensitive, so any solutions or samples containing Cydyes should be kept out of light as much as possible (e.g., cover with foil) after this point in the process. Sufficient amounts of Cy3 and Cy5 reverse transcription mix were prepared for one to two more reactions than would actually be run by scaling up the following:
- [136] For labeling with Cy3

 8 ul 5x First Strand Buffer for Superscript II

 4 ul 0.1 M DTT

 2 ul Nucleotide Mix

 2 ul of 1:8 dilution of Cy3 (e.g.,, 0.125mM cy3dCTP).

WO 03/100030

2 ul Superscript II

[137] For labeling with Cy5

8 ul 5x First Strand Buffer for Superscript II
4 ul 0.1 M DTT
2 ul Nucleotide Mix
2 ul of 1:10 dilution of Cy5 (e.g.,, 0.1mM Cy5dCTP).
2 ul Superscript II

- [138] About 18 μ I of the pink Cy3 mix was added to each treated sample and 18 μ I of the blue Cy5 mix was added to each control sample. Each sample was mixed by pipeting. The samples were placed in a DNA engine (PTC-200 Petier Thermal Cycler, MJ Research) for 2 hours at 45°C followed by 4°C until the sample tubes were ready to be retrieved.
- [139] In addition to the desired cDNA product, the completed RT reaction contained impurities that must be removed. These impurities included excess primers, nucleotides, and dyes. The primary method of removing the impurities was by following the instructions in the QIAquick PCR purification kit (Qiagen cat#120016).
- ethanol precipitation and resin bead binding. The samples from DNA engine were transferred to Eppendorf tubes containing 600 µl of ethanol precipitation mixture and placed in –80°C freezer for at least 20-30 minutes. These samples were centrifuged for 15 minutes at 20800 x g (14000 rpm in Eppendorf model 5417C) and carefully the supernatant was decanted. A visible pellet was seen (pink/red for Cy3, blue for Cy5). Ice cold 70% EtOH (about 1 ml per tube) was used to wash the tubes and the tubes were subsequently inverted to clean tube and pellet. The tubes were centrifuged for 10 minutes at 20800 x g (14000 rpm in Eppendorf model 5417C), then the supernatant was carefully decanted. The tubes were air dried for about 5 to 10 minutes, protected from light. When the pellets were dried, they were resuspended in 80 ul nanopure water. The cDNA/mRNA hybrid was denatured by heating for 5 minutes at 95°C in a heat block and flash spun. Then the lid of a "Millipore MAHV"

N45" 96 well plate was labeled with the appropriate sample numbers. A blue gasket and waste plate (v-bottom 96 well) was attached. About 160 μl of Wizard DNA Binding Resin (Promega cat#A1151) was added to each well of the filter plate that was used. Probes were added to the appropriate wells (80 μl cDNA samples) containing the Binding Resin. The reaction is mixed by pipeting up and down ~10 times. The plates were centrifuged at 2500 rpm for 5 minutes (Beckman GS-6 or equivalent) and then the filtrate was decanted. About 200 μl of 80% isopropanol was added, the plates were spun for 5 minutes at 2500 rpm, and the filtrate was discarded. Then the 80% isopropanol wash and spin step was repeated. The filter plate was placed on a clean collection plate (v-bottom 96 well) and 80 μl of Nanopure water, pH 8.0-8.5 was added. The pH was adjusted with NaOH. The filter plate was secured to the collection plate and after 5 minutes was centrifuged for 7 minutes at 2500 rpm.

- [141] (F) Purification of Cy –Dye Labeled cDNA: To purify fluorescence-labeled first strand cDNA probes, the following materials were used: Millipore MAHV N45 96 well plate, v-bottom 96 well plate (Costar), Wizard DNA binding Resin, wide orifice pipette tips for 200 to 300 μ l volumes, isopropanol, nanopure water. It is highly preferable to keep the plates aligned at all times during centrifugation. Misaligned plates lead to sample cross contamination and/or sample loss. It is also important that plate carriers are seated properly in the centrifuge rotor.
- The lid of a "Millipore MAHV N45" 96 well plate was labeled with the appropriate sample numbers. A blue gasket and waste plate (v-bottom 96 well) was attached. Wizard DNA Binding Resin (Promega cat#A1151) was shaken immediately prior to use for thorough resuspension. About 160 μl of Wizard DNA Binding Resin was added to each well of the filter plate that was used. If this was done with a multi-channel pipette, wide orifice pipette tips would have been used to prevent clogging. It is highly preferable not to touch or puncture the membrane of the filter plate with a pipette tip. Probes were added to the appropriate wells (80 μl cDNA samples) containing the Binding Resin. The reaction is mixed by pipeting up and down ~10 times. It is preferable to use regular, unfiltered pipette tips for this step.

The plates were centrifuged at 2500 rpm for 5 minutes (Beckman GS-6 or equivalent) and then the filtrate was decanted. About 200 μ l of 80% isopropanol was added, the plates were spun for 5 minutes at 2500 rpm, and the filtrate was discarded. Then the 80% isopropanol wash and spin step was repeated. The filter plate was placed on a clean collection plate (v-bottom 96 well) and 80 μ l of Nanopure water, pH 8.0-8.5 was added. The pH was adjusted with NaOH. The filter plate was secured to the collection plate with tape to ensure that the plate did not slide during the final spin. The plate sat for 5 minutes and was centrifuged for 7 minutes at 2500 rpm. Replicates of samples should be pooled.

- (G) Dry-down Process: Concentration of the cDNA probes is preferable so that they can be resuspended in hybridization buffer at the appropriate volume. The volume of the control cDNA (Cy-5) was measured and divided by the number of samples to determine the appropriate amount to add to each test cDNA (Cy-3). Eppendorf tubes were labeled for each test sample and the appropriate amount of control cDNA was allocated into each tube. The test samples (Cy-3) were added to the appropriate tubes. These tubes were placed in a speed-vac to dry down, with foil covering any windows on the speed vac. At this point, heat (45°C) may be used to expedite the drying process. Samples may be saved in dried form at -20°C for up to 14 days.
- [144] (H) Microarray Hybridization: To hybridize labeled cDNA probes to single stranded, covalently bound DNA target genes on glass slide microarrays, the following material were used: formamide, SSC, SDS, 2 μm syringe filter, salmon sperm DNA (Sigma, cat # D-7656), human Cot-1 DNA (Life Technologies, cat # 15279-011), poly A (40 mer: Life Technologies, custom synthesized), yeast tRNA (Life Technologies, cat # 15401-04), hybridization chambers, incubator, coverslips, parafilm, heat blocks. It is preferable that the array is completely covered to ensure proper hybridization.
- [145] About 30 µl of hybridization buffer was prepared per cDNA sample (control rat cDNA plus treated rat cDNA). Slightly more than is what is needed should be

made since about 100 μ l of the total volume made for all hybridizations can be lost during filtration.

 Hybridization Buffer:
 for 100 μl:

 • 50% Formamide
 50 μl formamide

 • 5X SSC
 25 μl 20X SSC

 • 0.1% SDS
 25 μl 0.4% SDS

[146] The solution was filtered through 0.2 μ m syringe filter, then the volume was measured. About 1 μ l of salmon sperm DNA (10mg/ml) was added per 100 μ l of buffer.

[147] Alternatively, the hybridization buffer was made up as:

 Hybridization Buffer:
 for 101 μl:

 • 50% Formamide
 50 μl formamide

 • 10X SSC
 50 μl 20X SSC

 • 0.2% SDS
 1 μl 20% SDS

- The solution was filtered through 0.2 μm syringe filter, then the volume was measured. One microliter of salmon sperm DNA (9.7mg/ml), 0.5 μl Human Cot-1 DNA (5 μg/μl), 0.5 μl poly A (5 μg/μl), 0.25 μl Yeast tRNA (10 μg/μl) was added per 100 μl of buffer. The hybridization buffers were compared in validation studies and there was no change in differential gene expression data between the two buffers.
- Materials used for hybridization were: 2 Eppendorf tube racks, hybridization chambers (2 arrays per chamber), slides, coverslips, and parafilm. About 30 μl of nanopure water was added to each hybridization chamber. Slides and coverslips were cleaned using N₂ stream. About 30 μl of hybridization buffer was added to dried probe and vortexed gently for 5 seconds. The probe remained in the dark for 10-15 minutes at room temperature and then was gently vortexed for several seconds and then was flash spun in the microfuge. The probes were boiled or placed in a 95 °C heat block for 5 minutes and centrifuged for 3 min at 20800 x g (14000 rpm, Eppendorf model 5417C). Probes were placed in 70 °C heat block. Each probe remained in this heat block until it was ready for hybridization.

[150] About 25 μl was pipeted onto a coverslip. It is highly preferable to avoid the material at the bottom of the tube and to avoid generating air bubbles. This may mean leaving about 1 μl remaining in the pipette tip. The slide was gently lowered, face side down, onto the sample so that the coverslip covered that portion of the slide containing the array. Slides were placed in a hybridization chamber (2 per chamber). The lid of the chamber was wrapped with parafilm and the slides were placed in a 42°C humidity chamber in a 42°C incubator. It is preferable to not let probes or slides sit at room temperature for long periods. The slides were incubated for 18-24 hours.

- [151] (I) Post-Hybridization Washing: To obtain only single stranded cDNA probes tightly bound to the sense strand of target cDNA on the array, all non-specifically bound cDNA probe should be removed from the array. Removal of all nonspecifically bound cDNA probe was accomplished by washing the array and using the following materials: slide holder, glass washing dish, SSC, SDS, and nanopure water. Six glass buffer chambers and glass slide holders were set up with 2X SSC buffer heated to 30-34°C and used to fill up glass dish to 3/4th of volume or enough to submerge the microarrays. The slides were placed in 2X SSC buffer for 2 to 4 minutes while the cover slips fall off. The slides were then moved to 2X SSC, 0.1% SDS and soaked for 5 minutes. The slides were transferred into 0.1X SSC and 0.1% SDS for 5 minutes. Then the slides are transferred to 0.1X SSC for 5 minutes. The slides, still in the slide carrier, were transferred into nanopure water (18 megaohms) for 1 second. To dry the slides, the stainless steel slide carriers were placed on micro-carrier plates and spun in a centrifuge (Beckman GS-6 or equivalent) for 5 minutes at 1000 rpm.
- [152] (J) Scanning slides: The washed and dried hybridized slides were scanned on Axon Instruments Inc. GenePix 4000A MicroArray Scanner and the fluorescent readings from this scanner converted into quantitation files (.gpr) on a computer using GenePix software.
- [153] II. Array Data, Normalization and Transformation: GeneSpring™ software

(Version 4.1, Silicon Genetics) was used for statistical analyses including identification of genes expressions correlating with histopathology scores, K-means and tree cluster analysis, and predictive modeling using the K-means nearest neighbor (Predict Parameter Values tool).

Microarray data were loaded into GeneSpringTM software for analysis as GenePix files as above. Initially, set A training set compounds (see Table 4) data from one microarray was used per animal. Next, set A test set compounds (see Table 4) replicate arrays for each animal were combined into one GenePix file. Specific data loaded into GeneSpringTM software included gene name, GenBank ID control channel mean fluorescence and signal channel mean fluorescence. Expression ratio data (ratio of signal to control fluorescence) were normalized using the 50th percentile of the distribution of all genes and control channel. Ratio data were excluded from analysis if the control channel value was <0. For analysis of correlations and predictive values gene expression ratios were transformed as the log of the ratio.

[155] Correlation with Histopathology Scores: Histopathology scores for each animal (assigned on a compound-dose basis as indicated in Table 1) were entered with gene expression data by using the GeneSpringTM 'Drawn Gene' function.

Correlations between the histopathology scores and gene expression were conducted with the distance measures listed below:

standard smooth positive and negative correlation positive and negative correlation positive correlation positive correlation positive and negative correlation positive and negative correlation positive and negative correlation positive correlation

[156] These correlation or similarity measures are standard statistical correlation measures that are described in the GeneSpring Advanced Analysis Techniques Manual (Release Data March 13, 2001, Silicon Genetics). Where both positive and negative correlations were obtained combined positive and negative correlating gene lists were also created.

IV. Class Prediction: The Predict Parameter Values tool in GeneSpring™ software was used for kidney toxicity class prediction. The following is a summary of the procedure used in the GeneSpring predictive software. This is described in GeneSpring Advanced Analysis Techniques Manual (Release Data March 13, 2001, Silicon Genetics) with additional information supplied by Silicon Genetics and a statistical expert. The prediction tool relies on standard statistical procedures that can be implemented in a variety of statistical software packages.

- [158] (IV)(A) Gene Selection: The first step is variable selection of genes to be used for prediction. This entails taking a single gene and a single class (e.g., kidney toxicity) and creating a contingency table. In the table below, columns 1 through N of the table each represent one possible cutoff point based on the gene expression level (ratio of signal/control) for that class. The number of possible cutoffs is less than or equal to the total number of samples for the class (e.g., A). It is possibly less than the total number, since there may be ties in gene expression level. Hence, N, M, and X may or may not be distinct. In the example, an n-class problem is illustrated, where x and y entries are the class counts at that gene expression cutoff level, for that specific gene and class, either above ("a") or below ("b") the cutoff. "Class1" is the set of all samples (above or below) the cutoff for Class1, and "!Class1" are all those not in Class1 (above or below) the cutoff, and similarly for the other classes. The class totals in the training set are the total class marginals used to compute Fisher's exact test.
- For a specific gene, and for each class, the best p-value as calculated by Fisher's Exact Test for independence between one of the pair of columns (e.g., 1a and 1b) and the actual class totals (e.g., A) is used to score the gene (-ln(p) = the score) for that class. Thus, there are N (or, M, Q etc.) contingency tables, where the best score of the N tables is used for that class and gene. If there is a wide disparity between the above and below counts in either the a or b column (this is a two-sided Fisher's Exact Test), the smaller the p-value and the higher the score.
- [160] The genes per class are rank ordered by the most discriminating (highest)

score. The predictivity list is composed of the most discriminating genes per class. Namely, genes are combined that best discriminate class 1 with those that best discriminate class 2 and so on. The genes are selected in rotation of the highest score per class. Duplicate genes are ignored in the rotation and not added to the list, the gene with the next highest score is taken.

The training samples now have only the gene list garnered from the above procedure. As an example, where once the training samples may have had an initial list of 200 genes per sample, they now have only a subset composed of the gene list, for example, 50 (the number of predictivity genes specified) that are selected from the initial list by the gene selections procedure. Thus, each sample is a vector of 50 normalized expression ratios. Since the selection of genes is done in rotation, the list contains 25 genes for one class, and 25 for the other class. The matrix below illustrates the basic features of this gene selection process.

Gene 1	1a	1b	 Na	Na	
Class	Expression above	Expression below	 Expression above	Expression below	Actual Class Totals (Marginals)
Class1	x1.1a	x1.1b	 x1.Na	x1.Nb	Α
!Class1	y1.1a	y1.1b	 y1.Na	y1.Nb	В
Gene 1	1	. 2	 М		
Class2	x1.2a	x1.2b	 x1.Ma		С
!Class2	y1.2a	y1.2b	 y1.Ma		D
	. •	•	•		
Gene 1	1	2	 Qa	Qb	
Classn	x1.na	x1.nb	 x1.Qa	x1.Qb	X
!Classn	y1.na	yl.nb	 y1.Qa	yl.Qb	Y

[162] After the genes to be used in the training set have been selected, the test set is classified based on the *k*-nearest neighbor (*knn*) voting procedure. Using just those genes in the gene list, for each sample in the test set of samples, the *k* nearest neighbors in the training set are found with the Euclidean distance. The class in which each of the *k* nearest neighbors is determined, and the test set sample is assigned to the class with the largest representation in the *k* nearest neighbors after

adjusting for the proportion of classes in the training set.

- [163] For example, in a two-class problem, let there be 30 samples of class 1 and 60 samples of class 2 in the training set. With k = 9 say it can be determined that 7 of the nearest neighbors to a sample from the testing set are in class 1. The sample can then be classified as being a member of class 1. If another sample from the test set has a total of 4 nearest neighbors in class 1, after adjusting for the proportion, this sample would be assigned to class 1 rather than class 2, even though the majority vote suggests assignation to class 2.
- [164] VI. Decision Threshold: The decision threshold is a mechanism to help clearly define the class into which the sample will fall, and can be set to reject classification if the voting is very close or tied. (Thus, *k* can be even for two-class problems without worrying about the tie problem.) A *p*-value is calculated for the proportion of neighbors in each class against the proportions found in the training set, again using Fisher's exact test, but now a one-sided test.
- [165] For example, let k = 11, if the proportion of neighbors of class 1 in the test set is 6/11, and the proportion of class 1 in a 100 sample training set is 0.4, the p-value calculated is 0.29 (half the two-sided test). If the proportion in the training set is 0.1, the p-value is 0.004. The smaller the p-value the greater the likelihood that the sample from the testing set belongs to that class.
- [166] A *p*-value ratio (P-value) is set as a way of setting the level of confidence in individual sample predictions based on the ratio of *p*-values for the best class (lowest *p*-value) versus the second best class (second lowest *p*-value). For example, if the P-value is set at 0.5 and the ratio of *p*-values for a particular sample is 0.6, then the predictive model will not make a call for that sample.
- [167] VII. Training and Test Data Sets: Data were each separated into 6 training and test sets. The first training and test set was created by allocating one set of data as a training set (Set A training set) and another set of data as a test set (Set A test set). Other training and test sets were created by randomly distributing the

compounds into the sets. This was accomplished by assigning random numbers to lists of compounds that are negative and positive for histopathology, sorting by random number, and then dividing the sorted lists into a specific number of training and test sets. The training and test set assignments are presented in Table 4.

- [168] VIII. Kidney Toxicology Classification: Kidney toxicity classifications were entered for training and test set as a parameter column. Toxicity, as defined by observation of kidney tubular necrosis in the kidney at 72 hours after treatment, was entered as a "yes" or "no" for each animal in a compound-dose group. Additionally, a parameter column for random histopathology classification was designated. This was done by randomly assigning the same number of "yes" and "no" calls to the individual animals.
- [169] IX. Prediction Output and Initial Data Processing: The "Predict Parameter Value" tool of GeneSpring was used with each of the training and test sets to generate predictions of histopathology classifications of the test sets. Unless otherwise specified a nearest neighbor setting of 10 (default) and P-value ratio cutoff of 0.5 was used. The number of genes used to predict was varied with standard numbers of 50, 40, 30, 20, 10, 5, 2 and 1 genes used. For each number of genes the numbers of correct calls, incorrect calls and non-calls were recorded. Non-calls are cases where no prediction was made because the P-value ratio exceeded the specified P-value ratio cutoff. Calculations were made for overall percent correct calls (number of correct classifications/number or samples), percent correct calls of called samples (number of correct classifications/number of samples with calls) and percent of called samples (samples with calls/number of samples).
- [170] For each input list and optimal number of predictive genes (lowest number of genes giving a maximum overall percent of correct calls) additional information was recorded that included the list of specific genes in the optimum predictive set.
- [171] X. Results: Expression array data were first examined for the existence of genes whose expression correlated with histopathology scores. Table 1 presents a list of the compounds and dose levels along with the kidney histopathology

classification and histopathology severity scores used for this analysis. For each distance measure the probability was adjusted in increments of 0.05 until at least 50 correlating genes were obtained. Lists of correlating genes were obtained using the distance measures described in Materials and Methods. Example sets of correlating genes are provided in Tables 2 and 3.

The correlating gene lists as well as the entire array gene list were provided as input lists to the GeneSpring Predict Parameter value tool (described in Materials and Methods) that employs a K-means nearest neighbor (*knn*) predictive model. These lists as well as the entire array gene list were used for each of the six training and test sets defined in Materials and Methods to generate predictions of histopathology classifications of the test sets. Input genes for the Predict Parameter Value feature included all 700 genes in the GenePix file (the rat CT Array) which was disclosed in a currently pending application (serial number [Attorney docket no. 40074-2000600]) filed on January 29, 2002, as well as smaller lists of genes whose expressions correlated with histopathology by the correlation measures described previously. The number of genes used to predict are varied with standard numbers of 50, 40, 30, 20, 10, 5, 2 and 1 genes used. The specified number of predictive genes was varied to obtain an optimum number of predictive genes. Figure 2 presents a typical profile for obtaining an optimum gene list.

merged to create one aggregate list of predictive genes. Each gene on this aggregate list has predictive value for at least one of the training and test sets because it was observed to contribute to an optimum predictivity for a specific training/test set. The aggregate list was subdivided into smaller lists of genes based on the number of times a gene was predictive for an individual training or test set. For example, if 6 training and test sets were used, genes that were predictive in all 6 training and test sets were designated as Combo (combination) 6. Genes that were predictive in only 5 of 6 training and test sets were designated as Combo 5, etc. A list of predictive genes organized by their occurrence in the separate training and test sets is presented in Table 5.

[174] Example 2 Predictive Properties and Evaluation of Predictive Genes from 24 Hour Expression Data

- (A) Materials and Methods: The database used was as described in Example 1.
- [175] (B) Array data, normalization procedures and transformations used in these analyses are as described in Example 1. Table 39 presents 24 hour gene expression data for the predictive genes. These data can be used with a k-means nearest neighbor prediction model (as available in GeneSpring or other statistical software packages) to make predictions as described in this example.
- [176] (C) The Predict Parameter Values tool in GeneSpring[™] software was used for kidney toxicity class prediction. A description of this tool and the statistical procedures used is provided in Example 1.
- [177] (D) The training and test data sets used are those described in Table 4.
- [178] (E) Kidney toxicology classifications used are described in Table 1. In this analysis randomized classifications (same number of "yes" and "no" classifications distributed randomly among the samples) were used.
- [179] (F) Prediction Output and Initial Data Processing: For each gene list prediction used for evaluation a table of data generated by the Predict Parameter Values tool in GeneSpringTM software was saved which provided for each sample in the test set the actual call ("yes" or "no" for kidney toxicity), the predicted call ("yes", "no" or no call for kidney toxicity) and the P-value cutoff ratio. This set of data was used to calculate predictive performance measures provided below.
- [180] (G) Measures of prediction used for these analyses are generally accepted prediction measures for information about actual and predicted classifications done by a classification system (Venables and Ripley, *Modern Applied Statistics with S-Plus*, 3rd edition, Springer, 1994 and Kubat and Matwin, *Proc. 14th International Conference on Machine Learning*, 1997). Results from predictions of a two class case can be described as a two-class matrix:

		Predicted			
		Negative	Positive		
Actual	Negativ e	a	b		
	Positive	С	d		

- [181] Standard terms used for prediction are:Accuracy, which is the proportion of total number of predictions that are correct is calculated as: (a+d)/(a+b+c+d).
- [182] False positive rate is the proportion of negative cases that are incorrectly classified as positive is calculated as: b/a+b.
- [183] False negative rate is the proportion of positive cases that are incorrectly classified as negative is calculated as: c/c+d.
- [184] Geometric-mean is the performance measure that takes into account proportion of positive and negative cases (Kubat et al., *ibid*) is calculated as: the square root of TP*TN, where TP=true positive rate (d/c+d) and TN=true negative rate (a/a+b). In those cases where no prediction was made because the p-value ratio exceeded the cutoff-value (generally 0.5), the non-call was considered to be incorrect.
- [185] (H) Subsets of randomly selected genes were prepared from the predictive gene sets to test whether such subsets would have predictive value. Assignments of genes to these subsets are presented in Tables 6-10.
- [186] (I) Prediction results for 24 hour expression data using genes identified as predictive are presented in Table 11. These data indicate a very high accuracy in predicting kidney toxicity. Mean accuracy exceeded 0.9 (90% accuracy) for the entire predictive gene list (Combo All) and the Combo 6 gene subset and 0.8 (80% accuracy) for the Combo 5 and 4 subsets. As expected, the predictive performance of the gene sets increased from the lowest occurrence gene list (Combo 1) to the highest occurrence gene list (Combo 6).
- [187] Because these predictions were conducted with multiple training/test set combinations, it is possible to obtain an indication of the variability in prediction rates

and robustness of the prediction capabilities of these gene sets. For the Combo All and Combo 6, 5 and 4 gene sets there was very good predictivity for all training/test sets of data with over 0.8 accuracy as a minimum value for any one training and test set. False positive prediction rates were generally low with means less than 0.1 for Combo All and Combo 6, 5 and 4. Because the proportion of negative classifications was much higher than the proportion of positive (toxic) classifications in these sample sets the false negative rates would be expected to be higher than the false positive rates and this was observed to be the case. Although the false negative rates were higher than the false positive rates, there was still very good prediction of positive responses with mean false negative rates of about 0.3 for Combo All, Combo 6, Combo 5 and Combo 4 gene sets. The geometric mean was used as an indication of predictive performance that includes consideration of the proportion of positive and negative classifications. All gene sets gave geometric mean measures >0.5 and three gene sets (Combo All, Combo 6 and Combo 5) had mean measures >0.8.

[188] In these analyses, in cases where no prediction was made because the p-value ratio exceeded the cutoff-value (generally 0.5), the non-call was considered to be incorrect.

Prediction results for 24 hour expression data using genes identified as predictive and the predicting unit is compound-dose are presented in Table 12. This prediction unit is probably the most relevant for toxicology prediction. The performance of the genes in predicting compound-dose toxicity is even better than predictions on an individual animal basis. These data indicate a very high accuracy in predicting kidney toxicity. Mean accuracy exceeded 0.9 (90% accuracy) for the entire predictive gene list (Combo All) and Combo 6, 5, 4 and 3 gene lists. As expected, the predictive performance of the gene sets increased from the lowest occurrence gene list (Combo 1) to the highest occurrence gene list (Combo 6). Accuracy was better than 0.8 (80%) for the Combo 2 and Combo 1 lists. Variability in accuracy was low for most of the gene lists with >0.8 minimum accuracy for any single training and test set observed for the Combo All and Combo 6, 5, 4 and 3 gene lists. Particularly noteworthy on the compound-dose level prediction is the low

false-negative rate observed for Combo All, Combo 6 and Combo 5 gene lists. The mean false negative rate was about 0.2 or less for these gene lists. As observed on an individual animal basis the false-positive rate was very low for all gene sets with mean rates of <0.12 for all gene sets.

- [190] One noteworthy feature of the predictive ability is the ability to distinguish between effects of a compound at different dose levels. Two compounds, gancyclovir and cyclophosphamide, produced kidney toxicity at the high dose but not at the low dose. The predictive gene sets, particularly the Combo All, Combo 6 and Combo 5 sets, accurately predicted toxicity at the high dose level, but not at the low dose level.
- [191] Prediction results for 24 hour expression data using genes identified as predictive and the predicting unit is compound are presented in Table 13. In terms of predicting toxicity of compounds the predictive capability was excellent with no compounds missed using the Combo 6 and Combo 5 gene sets and very low false positive rates for all of the gene sets.
- [192] Cumulative performance for the Combo gene lists was examined by adding genes one at a time in an order based on predictive weight as calculated by GeneSpring software. This order (and predictive weight) were different for each training set so a mean weight was used to obtain a single gene order for the predictive sets tested. The gene order is presented in Table 14.
- [193] Cumulative predictive performance for the Combo 6, Combo 5 and Combo 4 predictive gene sets are presented in Figures 4-6.
- [194] The cumulative performance data clearly indicate that very good predictive performance can be achieved with small subsets of the Combo gene sets. For Combo 6, the accuracy reached a plateau level of about 90% at 3 genes. For Combo 5, a similar plateau level was reached with about 8 genes and for Combo 4 the plateau level was reached with about 13 genes. This illustrates the increased predictive power of small sets of genes rather than single genes. The increased

number of genes required to reach a predictive performance plateau of the different Combo sets is consistent with the hierarchy of performance prediction in the Combo sets.

- [195] Tables 15 and 16 show the level of predictive accuracy of individual genes of Combo 6 and Combo 5 (The top combo subsets with the highest levels, 92.1% and 89.6%, respectively, of predictive accuracy on an individual sample basis) for 24 hour kidney data.
- These tables show that overall, individual genes of both combo groups did not perform as well as the whole combination, as the average predictive accuracy of individual genes of Combo 6 was 67.7% and for Combo 5 was 62.7%. The table also shows that while some of the individual genes of both Combos gave a moderate to good level of predictive accuracy (as high as 79.7% for Combo 6 and as high as 75.6% for Combo 5), the predictive accuracy of individual genes never exceeded the predictive accuracy of the whole combination. The data further support the cumulative gene predictivity conclusion that small subsets of genes have superior predictive power compared to individual genes.
- [197] In order to assess the performance of subsets of genes, predictive performance was evaluated for subsets of genes randomly selected from the total combined predictive list (Combo All) and the top Combo sets (as defined in Materials and Methods). Prediction results for 24 hour expression data using randomly selected subsets of genes are presented in Table 17.
- predictive power. The predictive performance, as indicated by several measures including accuracy and geometric mean, increased in parallel with the predictive power of the gene set from which the genes were selected. The predictive power also generally increased as the number of randomly collected genes increased. In the case of the Combo 4, 5 and 6 sets, the 15 gene random subset had predictive performance that was close to that of the entire gene set.

[199] Table 18 compares prediction accuracy for correct classification of kidney toxicity and for the same proportion of positive and negative toxicity calls randomly assigned to the samples (random classification). For each gene set or subset predictions were made using the same six training/test sets as for the other prediction analyses. Additionally, sets of genes were randomly chosen from the array which were not identified on the list of 216 predictive genes at 24 hour (Example 1, Table 10).

It is clear from these data that the predictions with accurate classification are much better than predictions with randomized classification. This means that the predictive results are not simply due to chance and large data sets but are due to significant, meaningful predictive association between the gene expression of the predictive genes and the kidney toxicity. The accuracy numbers for the gene sets selected from a list of all genes on the array minus the predictive genes are much lower than the Combo predictive lists and the random subsets of these predictive lists. This also verifies the predictive power of the identified predictive genes. The fact that the predictive numbers from these subsets are somewhat higher for accurate than random classification is likely due to some residual predictivity in these genes that is not very substantial.

Example 3: Discovery of Kidney Toxicity Predictive Genes from 6 Hour Expression Data: (A) Materials and Methods: Compounds and treatments list used to construct the kidney database are given in Example 1. This table also provides the evaluation of the kidney toxicity observed as kidney tubular necrosis in samples collected 72 hours after treatment. The database is described in detail in Example 1. This Example analyzes expression data from samples collected 6 hours after treatment. Array data, normalization and transformation procedures used were as described in Example 1. Procedures and methods for obtaining gene lists correlating with histopathology scores were as described in Example 1 with scores as in Example 1. The Predict Parameter Values tool in GeneSpring™ software used for kidney toxicity class prediction is described in detail in Material and Methods of Example 1.

- [202] (B) Training and Test Data Sets:Data were each separated into 6 training and test sets. The first training and test set was created by allocating one set of data as a training set (Set A training set) and another set of data as a test set (Set A test set). Other training and test sets were created by randomly distributing the compounds into the sets. This was accomplished by assigning random numbers to lists of compounds that are negative and positive for histopathology, sorting by random number, and then dividing the sorted lists into a specific number of training and test sets. The training and test set assignments are presented in Table 19.
- [203] (C) Kidney toxicity classifications were entered for training and test set as a parameter column. Toxicity, as defined by observation of kidney tubular necrosis in the kidney at 72 hours after treatment, was entered as a "yes" or "no" for each animal in a compound-dose group. Additionally, a parameter column for random histopathology classification was designated. This was done by randomly assigning "yes" and "no" calls to the individual animals. The total number of "yes" and "no" calls was maintained the same as in the correct classification, so that the proportion of "yes" and no calls was the same in all the training and test sets.
- (D) Prediction Output and Initial Data Processing: The "Predict Parameter Value" tool of GeneSpring was used with each of the training and test sets to generate predictions of histopathology classifications of the test sets. Unless otherwise specified a nearest neighbor setting of 10 (default) and P-value ratio cutoff of 0.5 was used. The number of genes used to predict was varied with standard numbers of 50, 40, 30, 20, 10, 5, 2 and 1 genes used. For each number of genes the numbers of correct calls, incorrect calls and non-calls were recorded. Non-calls are cases where no prediction was made because the P-value ratio exceeded the specified P-value ratio cutoff. Calculations were made for overall percent correct calls (number of correct classifications/number or samples), percent correct calls of called samples (number of correct classifications/number of samples with calls) and percent of called samples (samples with calls/number of samples).
- [205] For each input list and optimal number of predictive genes (lowest number of

genes giving a maximum overall percent of correct calls) additional information was recorded that included the list of specific genes in the optimum predictive set.

[206] (E) Results: Expression array data were first examined for the existence of genes whose expression correlated with histopathology scores. Materials and Methods of Example 1 presents a list of the compounds and dose levels along with the kidney histopathology classification and histopathology severity scores used for this analysis. For each distance measure the probability was adjusted in increments of 0.05 until at least 50 correlating genes were obtained. Lists of correlating genes were obtained using the distance measures described in Materials and Methods. Example sets of correlating genes are provided in Tables 20 and 21. The correlating gene lists as well as the entire array gene list were provided as input lists to the GeneSpring Predict Parameter value tool (described in Materials and Methods) that employs a K-means nearest neighbor (knn) predictive model. These lists as well as the entire array gene list were used for each of the six training and test sets defined in Materials and Methods to generate predictions of histopathology classifications of the test sets. Input genes for the Predict Parameter Value feature included all 700 genes in the GenePix file (the rat CT Array) as well as smaller lists of genes whose expressions correlated with histopathology by the correlation measures described previously. The number of genes used to predict are varied with standard numbers of 50, 40, 30, 20, 10, 5, 2 and 1 genes used. The specified number of predictive genes was varied to obtain an optimum number of predictive genes.

After this was done for all 6 training and test sets, all gene lists were then merged to create one aggregate list of predictive genes. Each gene on this aggregate list has predictive value for at least one of the training and test sets because it was observed to contribute to an optimum predictivity for a specific training/test set. The aggregate list was subdivided into smaller lists of genes based on the number of times a gene was predictive for an individual training or test set. For example, if 6 training and test sets were used, genes that were predictive in all 6 training and test sets were designated as Combo (combination) 6. Genes that were predictive in only 5 of 6 training and test sets were designated as Combo 5, etc.

[208] A list of predictive genes organized by their occurrence in the separate training and test sets is presented in Table 22.

- [209] Example 4 Predictive Properties and Evaluation of Predictive Genes from 6
 Hour Expression Data: (A) Materials and Methods: The database used was as
 described in Example 1. Array data, normalization procedures and transformations
 used in these analyses are as described in Example 1. Table 38 presents 6 hour
 gene expression data for the predictive genes. These data can be used with a kmeans nearest neighbor prediction model (as available in GeneSpring or other
 statistical software packages) to make predictions as described in this example. The
 Predict Parameter Values tool in GeneSpringTM software was used for kidney toxicity
 class prediction. A description of this tool and the statistical procedures used is
 provided in Example 1.
- [210] (B) Training and Test Data Sets: The training and test data sets used are those described in Table 19.
- [211] (C) Kidney Toxicology Classification: Kidney toxicology classifications used are described in Example 1. In this analysis randomized classifications (same number of "yes" and "no" classifications distributed randomly among the samples) were used.
- [212] (D) Prediction Output and Initial Data Processing: For each gene list prediction used for evaluation a table of data generated by the Predict Parameter Values tool in GeneSpring™ software was saved which provided for each sample in the test set the actual call ("yes" or "no" for kidney toxicity), the predicted call ("yes", "no" or no call for kidney toxicity) and the P-value cutoff ratio. This set of data was used to calculate predictive performance measures provided below.
- [213] (E) Prediction Measures: Measures of prediction used for these analyses are generally accepted prediction measures for information about actual and predicted classifications done by a classification system (Venables and Ripley, *ibid* and Kubat and Matwin, *ibid*). Results from predictions of a two class case can be described as

PCT/US03/06196

a two-class matrix as described above.

- [214] (F) Results: Prediction results for 6 hour expression data using genes identified as predictive and the predicting unit is compound-dose are presented in Table 23. This prediction unit is probably the most relevant for toxicology prediction. The performance of the genes in predicting compound-dose toxicity is even better than predictions on an individual animal basis.
- [215] These data indicate some accuracy in predicting kidney toxicity. Mean accuracy exceeded 0.7 (70% accuracy) for the entire predictive gene list (Combo All) and Combo 6 and 5 gene lists. As expected, the predictive performance of the gene sets generally increased from the lowest occurrence gene list (Combo 1) to the highest occurrence gene list (Combo 6) with the exception of the Combo 5 list. Mean false negative values were in the range of 0.4-0.6 as were the geometric mean measures.
- Example 5 Discovery of Kidney Toxicity Predictive Genes from 72 Hour Expression Data: (A) Materials and Methods: Compounds and treatments list used to construct the kidney database are given in Example 1. This table also provides the evaluation of the kidney toxicity observed as kidney tubular necrosis in samples collected 72 hours after treatment. The Database is described in detail in Example 1. This Example analyzes expression data from samples collected 6 hours after treatment. Array data, normalization and transformation procedures used were as described in Example 1. Procedures and methods for obtaining gene lists correlating with histopathology scores were as described in Example 1 with scores as in Example 1. The Predict Parameter Values tool in GeneSpring[™] software used for kidney toxicity class prediction is described in detail in Material and Methods of Example 1.
- [217] (B) Training and Test Data Sets: Data were each separated into 6 training and test sets. The first training and test set was created by allocating one set of data as a training set (Set A training set) and another set of data as a test set (Set A test set). Other training and test sets were created by randomly distributing the

compounds into the sets. This was accomplished by assigning random numbers to lists of compounds that are negative and positive for histopathology, sorting by random number, and then dividing the sorted lists into a specific number of training and test sets.

The training and test set assignments are presented in the following Table 24.

- entered for training and test set as a parameter column. Toxicity, as defined by observation of kidney tubular necrosis in the kidney at 72 hours after treatment, was entered as a "yes" or "no" for each animal in a compound-dose group. Additionally, a parameter column for random histopathology classification was designated. This was done by randomly assigning "yes" and "no" calls to the individual animals. The total number of "yes" and "no" calls was maintained the same as in the correct classification, so that the proportion of "yes" and no calls was the same in all the training and test sets.
- (D) Prediction Output and Initial Data Processing: The "Predict Parameter Value" tool of GeneSpring was used with each of the training and test sets to generate predictions of histopathology classifications of the test sets. Unless otherwise specified a nearest neighbor setting of 10 (default) and P-value ratio cutoff of 0.5 was used. The number of genes used to predict was varied with standard numbers of 50, 40, 30, 20, 10, 5, 2 and 1 genes used. For each number of genes the numbers of correct calls, incorrect calls and non-calls were recorded. Non-calls are cases where no prediction was made because the P-value ratio exceeded the specified P-value ratio cutoff Calculations were made for overall percent correct calls (number of correct classifications/number or samples), percent correct calls of called samples (number of correct classifications/number of samples with calls) and percent of called samples (samples with calls/number of samples).
- [220] For each input list and optimal number of predictive genes (lowest number of genes giving a maximum overall percent of correct calls) additional information was recorded that included the list of specific genes in the optimum predictive set.

- (E) Results: Expression array data were first examined for the existence of [221] genes whose expression correlated with histopathology scores. Materials and Methods of Example 1 presents a list of the compounds and dose levels along with the kidney histopathology classification and histopathology severity scores used for this analysis. For each distance measure the probability was adjusted in increments of 0.05 until at least 50 correlating genes were obtained. Lists of correlating genes were obtained using the distance measures described in Materials and Methods. Example sets of correlating genes are provided in Tables 25-26. The correlating gene lists as well as the entire array gene list were provided as input lists to the GeneSpring Predict Parameter value tool (described in Materials and Methods) that employs a K-means nearest neighbor (knn) predictive model. These lists as well as the entire array gene list were used for each of the six training and test sets defined in Materials and Methods o generate predictions of histopathology classifications of the test sets. Input genes for the Predict Parameter Value feature included all 700 genes in the GenePix file (the Rat CT Array) as well as smaller lists of genes whose expressions correlated with histopathology by the correlation measures described previously. The number of genes used to predict are varied with standard numbers of 50, 40, 30, 20, 10, 5, 2 and 1 genes used. The specified number of predictive genes was varied to obtain an optimum number of predictive genes.
- After this was done for all 6 training and test sets, all gene lists were then merged to create one aggregate list of predictive genes. Each gene on this aggregate list has predictive value for at least one of the training and test sets because it was observed to contribute to an optimum predictivity for a specific training/test set. The aggregate list was subdivided into smaller lists of genes based on the number of times a gene was predictive for an individual training or test set. For example, if 6 training and test sets were used, genes that were predictive in all 6 training and test sets were designated as Combo (combination) 6. Genes that were predictive in only 5 of 6 training and test sets were designated as Combo 5, etc.
- [223] A list of predictive genes organized by their occurrence in the separate training and test sets is presented in Table 27.

- Example 6: Predictive Properties and Evaluation of Predictive Genes from 72 Hour Expression Data: (A) Materials and Methods: The Database used was as described in Example 1. Array data, normalization procedures and transformations used in these analyses are as described in Example 1. Table 40 presents 72 hour gene expression data for the predictive genes. These data can be used with a k-means nearest neighbor prediction model (as available in GeneSpring or other statistical software packages) to make predictions as described in this example. The Predict Parameter Values tool in GeneSpringTM software was used for kidney toxicity class prediction. A description of this tool and the statistical procedures used is provided in Example 1. The training and test data sets used are those described in Example 1.
- [225] (B) Kidney Toxicology Classification: Kidney toxicology classifications used are described in Example 1. In this analysis randomized classifications (same number of "yes" and "no" classifications distributed randomly among the samples) were used.
- [226] (C) Prediction Output and Initial Data Processing: For each gene list prediction used for evaluation a table of data generated by the Predict Parameter Values tool in GeneSpring™ software was saved which provided for each sample in the test set the actual call ("yes" or "no" for kidney toxicity), the predicted call ("yes", "no" or no call for kidney toxicity) and the P-value cutoff ratio. This set of data was used to calculate predictive performance measures provided below.
- [227] (D) Prediction Measures: Measures of prediction used for these analyses are generally accepted prediction measures for information about actual and predicted classifications done by a classification system (Venables and Ripley, *ibid* and Kubat and Matwin, *ibid*). Results from predictions of a two class case can be described above.
- [228] (E) Results: Prediction results for 72 hour expression data using genes identified as predictive and the predicting unit is compound-dose are presented in Table 28. This prediction unit is probably the most relevant for toxicology prediction.

The performance of the genes in predicting compound-dose toxicity is even better than predictions on an individual animal basis.

- These data indicate a high accuracy in predicting kidney toxicity. Mean accuracy exceeded 0.85 (85% accuracy) for the entire predictive gene list (Combo All) and 0.8 (80% accuracy) for the Combo 6 and 4 subsets. False positive prediction rates were generally low for Combo All (mean less than 0.1) as well as the other Combos except Combo 2 (means 0.138 0.228). Because the proportion of negative classifications was much higher than the proportion of positive (toxic) classifications in these sample sets the false negative rates would be expected to be higher than the false positive rates and this was observed to be the case. The geometric mean was used as an indication of predictive performance that includes consideration of the proportion of positive and negative classifications. Combo All, Combo 6, Combo 5, and Combo 4 gave geometric mean measures >0.6.
- [230] Example 7 Alternate Models for Predicting Kidney Toxicity: (A) Materials and Methods: The database used for evaluation of these models was the 24 hour expression data for kidney samples described above. Expression data was for the Combo 6 set of predictive genes as described herein. Due to heteroscedasticity (*i.e.*, the variance increases proportionately more than the mean increases) of the gene expression ratio data, a log transformation of the data is often considered. In general untransformed data was used but for some models log transformed data was used for comparison. Six training and testing sets were used that are the same as described in Example 1.
- [231] (B) Predictive Modeling: The predictive task with the kidney toxicology gene expression data is a two-class classification problem, where the two classes of possible responses are defined by either kidney toxicity histopathology (*yes*) or absence of kidney toxicity histopathology (*no*). This is an uneven class problem in that the class of yes responses is roughly 20 percent of the data or less in the database tested. A discrimination function is used to classify a training set. This function is cross-validated with a testing set, often repeatedly to quantify the mean

and variation of the classification error. There are numerous common discrimination functions, and a comparative study of the performance of these functions is useful in determining the best classifier. Additional measures are then used to compare the performance of the classifiers. Since the classes are of significantly uneven sizes, use a geometric mean measure (*GMM*) was used to compare models, namely, the square root of the product of the true positives and the true negatives.

[232] Common discrimination methods are Fisher's linear discriminant, quadratic discriminant (mahalanobis distance), *k*-nearest neighbors (*knn*), logistic discriminant (MacLachlan, 1992), classification trees (or more generally known as recursive partitioning) (Breiman et al., 1984; Clark and Pregibon, 1993; Quinlan and Kaufman, 1988), and neural network classifiers (Ripley, 1996). Most are formula-based such as linear and quadratic discriminant, whereas others are rule-based, such as recursive partitioning, or algorithmically based, such as *knn. knn* is also database dependent in that a database containing training set is needed to perform nearest neighbor search and classification.

evaluated. As an extension of the k-means nearest neighbor (*knn*) model a simple hybrid classifier was designed and tested, using the *knn* results, to transform the *knn* model into a database independent model. This model is termed a *centroid* model. The centroid model uses the correctly identified test data results from *knn* and locates a centroid of the subset of *k* samples that are of the same class for each correctly identified test data, a sample is assigned the class of its nearest centroid.

[234] In addition to the *knn* and centroid models described above, tree, centroid, logistic, and neural network models were employed. The neural network is a simple, feed-forward network, allowing skip layers, and with an entropy fitting criterion. Linear classifiers perform poorly with respect to this data and quadratic classifiers perform modestly, so their results are not presented.

(D) Cross Validation of the Models: Six training and testing sets were used to [235] cross-validate knn. Gene selection ranking was then performed on each training set. A number of different gene sets were used for each of the six sets and the best GMM value was chosen to represent the performance of the model. Trees were pruned via ten-fold internal cross-validation (i.e., using subsets of the training set) for each training set, and then the tree was used to predict the testing set. A GMM was thus calculated for each testing set. Trees perform the gene selection via pruning, and anywhere from one to five genes were selected for each tree. The centroid model is five-fold cross-validated using random subsets of the testing set. The mean of the GMM of each of the validation runs is used as the performance measure. The top five discriminating genes are used in the centroid models. The logistic discrimination uses a stepwise backwards selection process to determine the gene set during the training phase. Three to six genes are typically selected via this process. A single performance is then obtained using the corresponding testing set. A neural network is trained on each training set and then validated on the corresponding testing set. All 28 genes in the data set are used with the neural network model.

WO 03/100030

- [236] (E) Results: Model performance is presented in Table 29. The knn model performed the best overall. If the best common gene selection is used, knn is still the best, though the performance mean is more in line with the logistic and centroid models. Logistic and centroid models perform the next best overall, and either could be used successfully with a less than 25 percent misclassification error, if a database independent solution is preferred. Log transformations of the data produced mixed results when used with logistic and neural network models, suggesting that such a transformation has little impact. Tree and neural network models perform the poorest respectively on average; however, all of the models perform well for this type of data on at least some of the training and testing pairs, with the equivalent of a less than 20 percent misclassification error. The knn, centroid and neural network models could be improved by a more thorough gene selection scheme.
- [237] Table 30 presents logistic discrimination coefficients derived from this analysis. These coefficients may be used in a logistic discriminant model to obtain

predictions of kidney toxicity when expression\values for the indicated genes are determined using appropriate samples and an appropriate microarray expression detection system such as the Rat CT array used to develop the Database.

- [238] Similarly, the classification model for all of the data using a classification tree in S-Plus software provided the following rule for predicting toxicity: if Gadd45 < 1.474 AND Tissue inhibitor of metalloproteinases 1 < 1.786, then "No" (not toxic), otherwise "Yes" Toxic.
- [239] For this model and rule, the internal performance with the entire database was a total 7 of 241 samples were misclassified, with a misclassification error 0.03. A total of 2 of 38 of the yes class (toxic) are misclassified and 5 of 203 no class (not toxic) are misclassified. This is equivalent to a 0.053 and 0.025 misclassification error, respectively. The geometric mean performance measure is 0.961267. This model rule can be applied to obtain predictions of kidney toxicity when expression values for the indicated genes are determined using appropriate samples and an appropriate microarray expression detection system such as the Rat CT array used to develop the Database.

References

- Discriminant Analysis and Statistical Pattern Recognition,
 Geoffrey J. McLachlan, Wiley Series in Probability and Mathematical
 Statistics, 1992.
- Classification and Regression Trees, L. Breiman, J. H. Friedman,
 R. A. Olshen, C. J. Stone, Chapman & Hall, 1984.
- "Tree-based Models" by Linda A. Clark and Daryl Pregibon,
 Chapter 9 of Statistical Models in S, John M. Chambers and Trevor J.
 Hastie, eds. Chapman & Hall Computer Science Series, 1993.
- 4. *C4.5: Programs for Machine Learning*, J. Ross Quinlan, Morgan Kaufmann, 1988.

Pattern Recognition and Neural Networks, B.D. Ripley,
 Cambridge University Press, 1996.

- Example 8 Use of Predictive Genes to Predict Kidney Toxicity for Samples External to the Database: (A) Materials and Methods: (A)(1) Animal Treatment and Tissue Harvest: Male Sprague-Dawley rats in groups of 3 were treated by intraperitoneal injection with test compounds (cephalosporidine, 1500 mg/kg and cisplatin, 20 mg/kg) or only with the vehicle in which the compound was mixed. At specified timepoints (6h and 24h) the rats were euthanized and tissues collected. Kidney tissues were immediately placed into liquid nitrogen and frozen within 3 minutes of the death of the animal to ensure that mRNA did not degrade. The tissues were sent blinded to be evaluated. The organs/tissues are then packaged into well-labeled plastic freezer quality bags and stored at —80 degrees until needed for isolation of the mRNA from a portion of the organ/tissue sample.
- [241] (A)(2) Gene Expression Measurement: Isolation of RNA, preparation of cDNA labeled probes and hybridizations procedures were as described in Example 1 Materials and Methods. Probes were hybridized to the rat CT Chip which is the same array as used for the database.
- [242] (B) Data Analysis: Array data from the samples was loaded into GeneSpring software using the same procedures as used for the database. No kidney toxicity parameters were entered for these samples. The Predict Parameter Value tool was used to make toxicity predictions using different Combo Gene sets from the 24 hour data and the entire database as the training set. Other values used were 10 nearest neighbors and a p-value ratio cutoff of 0.5.
- [243] (C) RESULTS: Table 31 presents predictions for samples that were external to the database used to derive the predictive genes. The samples were kidney samples from replicate animals treated with cephaloridine and cisplatin. One of these compounds (cisplatin) is also represented in the database (at a different dose

level) and the other compound, cephaloridine, is not in the database. Histopathology conducted on the kidney samples verified that these treatments induced kidney tubular necrosis. Each of the Combo gene sets correctly predicted that these samples had expression patterns indicative of kidney toxicity.

- [244] These results demonstrate clearly that the discovered sets of predictive genes in conjunction with the database and K-means nearest neighbor model can accurately predict toxicity from microarray data that is external to the database.

 Because the database consists mostly of non-toxic samples the prediction of toxicity for these samples is significantly different from what would be expected from chance. It is also noteworthy that three different sets of predictive genes are capable of making accurate predictions.
- [245] Example 9 Clustering Analysis to Identify Coordinantly Behaving Subset of Predictive Genes
 - (A) Materials and Methods
 - (A)(1) Gene Expression Data: Gene expression data used for cluster analysis were the 24 hour kidney expression data of the 28 genes of the Combo 6 predictive gene set. These data are shown in Table 39.
- [246] (B) Cluster Analysis: Cluster analysis tools used in these analyses included K-means and gene tree features of GeneSpring software and Wards clustering algorithm in S-Plus statistical analysis software.
- [247] (C) Results: Figure 7 presents combined results of K-means and gene-tree hierarchical clustering analysis. Combo 6 (28 genes) was clustered using K-means (number of cluster 10, maximum iteration 100, similarity measure Pearson) and Gene tree (separation ratio 0.5, minimum distance 0.001, similarity measure Pearson). The k-means clusters are colored according to the corresponding set 1 to set 10. The gene names on the display from top to bottom correspond to left to right cluster bars.
- [248] Wards cluster analysis results are shown in Figure 8. Cluster tree for Combo

6 genes are shown with the best cut line indicating 7 clusters. Gene names corresponding to numbers are indicated in tabular form below the diagram.

[249] Example 10. Use of Expression Profiles of Predictive Genes in a Computer Program Product to Predict Renal Toxicity

(A) Materials and Methods

(A1) Overview of Computer Program Product: A computer program product produces a prediction of the occurrence of a kidney toxicity using input gene expression data from test samples. The model and data for the computer program have been primarily validated using Phase-1 Rat CT arrays and Phase-1 Rat CT expression data in the Phase-1 TOXBank database as described in previous examples. In other embodiments, expression data from other expression platforms (such as TaqMan using Syber Green technology) may also be used in the computer program product. Those skilled in the art are capable of developing and validating scaling factors to adjust for differences in differential gene expression sensitivity and responsiveness among different platforms used in the computer program product.

[250] The computer program product uses the Predictive Model as described in the previous examples. The computer program product contains an encrypted training data set that includes differential gene expression values and an endpoint classification for each sample in the training set. The computer program product samples are from the same timepoint (e.g., gene expression measured at 24 hours after dosing) and the classification is binary for the specific endpoint (e.g., kidney tubular necrosis or no kidney tubular necrosis). The computer program product also contains encrypted lists of the Combo sets of predictive genes (also called Predictagen sets). Inputs to the Predictive Model of the computer program product are the *k* value for number of nearest neighbors and the type of distance measure to

PCT/US03/06196

WO 03/100030

be used in the model. Data inputs for the Predictive Model include the Combo list(s) of predictive genes and training set as encrypted "plug-in" files and specification of a test data file(s) that has expression data.

- The initial prediction is made after calculating the probability that the [251] tabulated votes are different from the proportion of votes in the training set for each classification. A statistical test (hypergeometric mean distribution) is run for each classification and p-values are calculated. The classification prediction would be that class that has the highest p-value. A classification cutoff procedure is used that uses the p-value ratio (1 - p_0/p_1 where p_0 is the p-value for the not predicted class and p₁ is the p-value for the predicted class). If the p-value ratio does not exceed a specified cutoff value (input to the computer program product by the user) then a prediction is not made. The Prediction Machine can be used with multiple Predictagen sets with the classifications, p-values and p-value ratios calculated as above. In this case an overall prediction is made by combining the predictions of the individual Predictagen sets. Each Predictagen set is weighted by a performance number. The overall certainty for this combined prediction is calculated by a paired value t-test using the p-value ratio and (1-p-value ratio) for each Predictagen set as a pair of values. The certitude is 1-p where p is the value for the paired value t-test.
- [252] (A2) Computer Program Product Input: Encrypted training data is included as a plug-in module for the software. User input includes specification of encrypted Predictagen gene lists and samples for prediction (files with gene expression data). Additional specifications are distance measure to be used in the knn model (currently Euclidean), number of neighbors and a certitude cutoff (p-value ratio cutoff).
- [253] (A3) Program Operation: The program is executed as follows. First, on the Prediction tab the 'Load Predictagens' button is clicked on to load the desired predictagen(s). In this example, the 24 hour kidney Predictagen is loaded. Next, a predictagen in the Predictagen sets list box is highlighted and the 'Make Predictor' button is clicked on (in this example, 24 hour kidney). If necessary, the predictor is highlighted and the 'Configure' button is clicked on to set parameter values. Next, the

PCT/US03/06196

WO 03/100030

'Load Samples' button is clicked on. Sample data is loaded as text files in the format shown in Table 44. Samples from the Samples list box using the left mouse button are then selected, and the CTRL key is simultaneously selected to make multiple selections. In this example, 3 kidney samples from rats treated with 25 mg/kg paraquat and 3 kidney samples from rats treated with 80 mg/kg phenobarbital are selected. The samples were treated and processed for gene expression analysis as described in the previous examples. The 'Add to predictor' button is then clicked on, and the 'Predict' button is then clicked on to generate the program's output.

- [254] On the Output tab, the 'Summary', 'Detail', or 'Full' radio buttons are selected to control the amount of information displayed about the prediction. The 'Tabular Report' checkbox is checked to put the output in a format that can be loaded into Excel as tab-delimited text. The 'Save', 'Copy', 'Print', and 'Clear' buttons are selected to save the output, copy the output to the clipboard, print the output, or clear the output window prior to another prediction.
- [255] (A4) Computer Program Product Output: The summary view displays sample information, the call (kidney tubular necrosis or negative), and the overall certitude. The detail view presents the individual calls and 1-p-value ratio for each Predictagen, in addition to summary view information. The full view presents, for each sample and Predictagen gene list, the specific nearest neighbors and their classification (votes) along with the hypergeometric mean p values for each classification. At the end of this information detail view information is presented.
- [256] (B) Test Data: Table 43 displays the test set of gene expression data used to generate predictions. The table shows the correct classification of kidney samples that have histopathology (kidney tubular necrosis) or no histopathology.
- [257] (C) Results: Table 42 displays the summary output of the computer program after loading. Two out of three of the paraquat samples (sample #s 16477 and 16479) were correctly predicted for rat kidney tubular necrosis (with certitudes of 0.472 and 0.796). Three out of three of the phenobarbital samples were correctly predicted as negative for kidney tubular necrosis. Table 43 displays the detailed

output of the computer program, which shows the individual performances of the 24 hour kidney Combo sets and the overall certitude score.

[258] Example 11 Selection and Validation of Protein Biomarker Candidates. Protein marker candidates can be selected from biomarker genes using a number of parameters. Table 44 presents biomarker genes sorted in order of their mean individual gene predictive performance (percent correct calls) for all genes exhibiting ≥ 60% percent correct calls. Each gene was then evaluated for evidence whether it codes for a protein. This is clearly a key criterion for a protein marker. The next parameters evaluated were the relative transcriptional response in toxic versus nontoxic samples. If protein levels are proportional to RNA levels then these columns indicate the relative potential magnitude of the protein marker in toxic and non-toxic samples. The better marker candidates should be those genes exhibiting the larger differences in RNA expression. A number of additional criteria can be considered included protein MW, occurrence of the protein in tissues other than the target tissue and availability of antibodies which will recognize the protein. One important criterion may also be whether the protein is secreted. The last column in Table 44 indicates that 3 of the proteins are known to be secreted. Table 37 lists proteins known to be secreted derived from the total list of predictive genes. The property of secretion may be useful in identification of proteins which could be biomarkers in serum or possibly other matrices such as urine or saliva.

Protein markers can be rapidly evaluated by testing for levels of the identified marker candidates using any of a number of analytical techniques for measuring specific protein levels such as Western blots or ELISA assays. Samples for analysis may be selected from a tissue bank such as that described in Example 1. Selection for analysis would include samples from toxic treatments and samples from non-toxic treatments. Quantitative protein marker data can be analyzed using the same approaches described in Example 2 for evaluation and validation of predictive performance of the protein markers.

[260] Experimental data demonstrating application of this concept and

identification and validation of a protein marker were developed using antibodies to clusterin and insulin-like growth factor binding protein 1. These genes were selected from the list of genes on Table 44 based on available antibodies. Insulin-like growth factor binding protein 1 is known to be secreted. Serum sample protein from four pairs of animals (2 pairs treated with non-toxic compounds and 2 pairs treated with kidney-toxic compounds were analyzed using Western blot methods known to those skilled in the art. The Western blot was probed with antibodies to insulin-like growth factor binding protein 1 and clusterin.

- [261] A scanned autoradiogram of results is presented in Figure 9. Clusterin appeared to be approximately equal abundance in the samples. Insulin-like growth factor binding protein 1 protein levels clearly appeared to be proportional to the gene expression levels observed in kidneys of these animals and were clearly elevated in the kidney-toxic treatments compared to the non-toxic treatments. The insulin-like growth factor binding protein 1 protein levels in serum were correlative at the individual animal level with the transcription factor signals. These data clearly indicate that predictive markers identified through transcript measurement and analysis can also be predictive protein markers.
- [262] It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes to the same extent as if each individual publication, patent or patent application were specifically and individually indicated to be so incorporated by reference.

Dose Level 15mgkg 60mgkg 13 mg/kg 50 mg/kg 250 mg/kg	Abbreviation ANIT 15 ANIT 60 5-FU 13	Kidney* Tubular Necrosis no	Score**
15mgkg 60mgkg 13 mg/kg 50 mg/kg	ANIT 15 ANIT 60	Tubular Necrosis no	
60mgkg 13 mg/kg 50 mg/kg	ANIT 60		4 i
13 mg/kg 50 mg/kg			1
50 mg/kg	5-FU 13	no	11
		no	11
250 mg/kg	5-FU 50	no	1
	APAP 250	no	11
1000 mg/kg	APAP 1000	no	1
5 mg/kg	AMPB 5	no	11
20 mg/kg	AMPB 20	no	1
50 mg/kg	AZA 50	по	1
200 mg/kg	AZA 200	no	1
0.25 ml/kg	BEN 250	no	1
1 ml/kg	BEN 1000	no	1
30 mg/kg	BAP 30	no	1
	BRB 200	no	1
	BRB 800	no	1
	BUS 14	no	1
	CAD 1	no	1
	CAD 2	no	1
	CAD 4	yes (6h)	3
		no	1
		no	1
		no	1
		yes	3
		yes	5
		no	1
	CHLOR 30	no	1
	CIS 2.5	yes	6
		yes	8
		no	1
	CLO 250	no	1
	CLOZ 45	no	1
		no	1
	CMC 30	no	1
		yes	2
		no	1
			1
			1
		 	1
	<u> </u>		1
			1
			1
	1000 mg/kg 5 mg/kg 20 mg/kg 50 mg/kg 200 mg/kg 0.25 ml/kg 1 ml/kg	1000 mg/kg APAP 1000 5 mg/kg AMPB 5 20 mg/kg AMPB 20 50 mg/kg AZA 50 200 mg/kg AZA 200 0.25 ml/kg BEN 250 1 ml/kg BEN 1000 30 mg/kg BAP 30 0.2 ml/kg BRB 200 0.8 ml/kg BRB 800 14 mg/kg BUS 14 1 mg/kg CAD 1 2 mg/kg CAD 2 4 mg/kg CAD 4 0.25 ml/kg CCL4 250 1 ml/kg CCL4 250 1 ml/kg CCL4 1000 16 mg/kg CAR 16 0.25 ml/kg CHCL3 250 0.5 ml/kg CHCL3 500 8 mg/kg CHLOR 8 30 mg/kg CHLOR 30 2.5 mg/kg CIS 10 75 mg/kg CLO 250 45 mg/kg CLOZ 180 30 mg/kg CHCX 2 25 mg/kg CHCX 2 25 mg/kg CHEX 0.5 2 mg/kg CHEX 0.5	1000 mg/kg APAP 1000 no 5 mg/kg AMPB 5 no 20 mg/kg AMPB 20 no 50 mg/kg AZA 50 no 200 mg/kg AZA 200 no 0.25 ml/kg BEN 250 no 1 ml/kg BEN 1000 no 30 mg/kg BAP 30 no 0.2 ml/kg BRB 200 no 0.8 ml/kg BRB 800 no 14 mg/kg BUS 14 no 1 mg/kg CAD 1 no 2 mg/kg CAD 2 no 4 mg/kg CAD 4 yes (6h) 0.25 ml/kg CCL4 250 no 1 ml/kg CCL4 1000 no 16 mg/kg CAR 16 no 0.25 ml/kg CHCL3 250 yes 0.5 ml/kg CHCL3 500 yes 8 mg/kg CHLOR 30 no 2.5 mg/kg CLO 250 no 75 mg/kg CLO 250 no 45 mg/kg CLO

12 mg/kg	DOX 12	no	1
40 mg/kg	ERY 40	no	1
160 mg/kg	ERY 160	no	11
0.1 mg/kg	EST 0.1	no	1
0.4 mg/kg	EST 0.4	no	1
2.5 ml/kg	ETH 2500	no	1
50 mg/kg	GAN 50	no	1
200 mg/kg	GAN 200	yes	3
38 mg/kg	GEN 38	no	1
150 mg/kg	GEN 150	no	1
250 mg/kg	HYD 250	yes	2
1000 mg/kg	HYD 1000	yes	4
50 mg/kg	ISON 50	no	1
200 mg/kg	ISON 200	no	1
20 mg/kg	KETO 20	no	1
80 mg/kg		no	1
2 mg/kg		yes	4
8 mg/kg		yes	8
1.3 mg/kg		no	1
5 mg/kg		no	1
45 ml/kg		no	1
180 mg/kg	NAL 180	no	1
20 mg/kg	PBARB 20	no	1
		no	1
20 mg/kg		no	1
80 mg/kg		no	1
5 ml/kg		no	1
38 mg/kg		no	1
150 mg/kg		no	1
25 mg/kg		no	1
100 mg/kg		no	1
20 mg/kg		no	1
75 mg/kg		no	1
		no	11
200 mg/kg		no	1
50 mg/kg		yes	2
150 mg/kg		yes /	4
25 mg/kg		no	1
100 mg/kg	THEO 100	no	1
	40 mg/kg 160 mg/kg 0.1 mg/kg 0.4 mg/kg 2.5 ml/kg 50 mg/kg 200 mg/kg 38 mg/kg 150 mg/kg 250 mg/kg 200 mg/kg 200 mg/kg 200 mg/kg 200 mg/kg 20 mg/kg 20 mg/kg 80 mg/kg 2 mg/kg 8 mg/kg 1.3 mg/kg 1.3 mg/kg 45 ml/kg 180 mg/kg 20 mg/kg 80 mg/kg 20 mg/kg 20 mg/kg 38 mg/kg 150 mg/kg 20 mg/kg 30 mg/kg 5 ml/kg 5 ml/kg 5 ml/kg 5 ml/kg 30 mg/kg 5 ml/kg 30 mg/kg 5 mg/kg 150 mg/kg 20 mg/kg 20 mg/kg 25 mg/kg 100 mg/kg 20 mg/kg 50 mg/kg 50 mg/kg	40 mg/kg ERY 40 160 mg/kg ERY 160 0.1 mg/kg EST 0.1 0.4 mg/kg EST 0.4 2.5 ml/kg ETH 2500 50 mg/kg GAN 50 200 mg/kg GAN 200 38 mg/kg GEN 38 150 mg/kg GEN 150 250 mg/kg HYD 250 1000 mg/kg HYD 1000 50 mg/kg ISON 50 200 mg/kg ISON 50 200 mg/kg ISON 50 200 mg/kg KETO 20 80 mg/kg KETO 20 80 mg/kg KETO 80 2 mg/kg LPS 2 8 mg/kg LPS 2 8 mg/kg LPS 8 1.3 mg/kg MET 1.3 5 mg/kg MET 5 45 ml/kg NAL 45 180 mg/kg NAL 180 20 mg/kg PBARB 20 80 mg/kg PBARB 80 20 mg/kg PHEN 20 80 mg/kg PHEN 80 5 ml/kg PEG 5000 38 mg/kg PUR 38 150 mg/kg PUR 38 150 mg/kg QUIN 150 20 mg/kg STRZ 20 75 mg/kg STRZ 20 75 mg/kg TAM 50 200 mg/kg TAM 50 200 mg/kg TAM 50 50 mg/kg TET 50 150 mg/kg TET 50 150 mg/kg THEO 25	40 mg/kg ERY 40 no 160 mg/kg ERY 160 no 0.1 mg/kg EST 0.1 no 0.4 mg/kg EST 0.4 no 2.5 ml/kg ETH 2500 no 50 mg/kg GAN 50 no 200 mg/kg GAN 200 yes 38 mg/kg GEN 38 no 150 mg/kg GEN 150 no 250 mg/kg GEN 150 no 250 mg/kg HYD 250 yes 1000 mg/kg HYD 1000 yes 50 mg/kg ISON 50 no 20 mg/kg ISON 200 no 20 mg/kg KETO 20 no 80 mg/kg KETO 80 no 20 mg/kg KETO 80 no 2 mg/kg LPS 2 yes 8 mg/kg LPS 8 yes 1.3 mg/kg MET 1.3 no 5 mg/kg MET 5 no 45 ml/kg NAL 45 no 180 mg/kg PBARB 20 </td

^{*} Values in parentheses indicate that array data are only available for indicated time points

points

** Histopathology tubular necrosis severity scores. 1= not remarkable; 2 and higher indicate histopathology of increasing severity

Table 2 List of Genes, Whose Expression at 24h Directly Correlates with Kidney Tubular Necrosis at 72h, Ranked by Pearson Correlation Coefficient

Correlation Coefficient
0.692123
0.6542049
0.6465685
0.6218616
0.6188912
0.610469
0.5927494
0.5900929
0.5799504
0.5752138
0.5744045
0.5633063
0.561974
0.5537873
0.5526743
0.5508332
0.5458164
0.5432356
0.5432082
0.5429754
0.5399542
0.5396944
0.5390609
0.5375005
0.5359658
0.5295026
0.5272409
0.5255124
0.5235234
0.5214936
0.521281
0.5141034
0.5105499
0.5068002
0.4949505
0.493831
0.4927958
0.483781
0.4823461

c-myc	0.4734444
RCT-60	0.4707905
Beta-actin, sequence 2	0.4689375
Canalicular multispecific organic anion transporter	0.459423
MHC class I antigen RT1.A1(f) alpha-chain	0.458286
Calgranulin B1	0.4560673
Osteopontin	0.4508689
Complement component C3	0.4491239
Ubiquitin conjugating enzyme (RAD 6 homologue)	0.446513
RCT-152	0.4463049
Alpha-fibrinogen	0.4461847
RCT-293	0.4419801
Organic cation transporter 3	0.4411987
Keratinocyte growth factor	0.4402586
RCT-24	0.4377164
RCT-18	0.4342767
RCT-241	0.4299609
RCT-138	0.4268714
DNA topoisomerase I	0.4262425
RCT-149	0.4230694
RCT-192	0.4214455
RCT-127	0.4187711
RCT-126	0.4119079
RCT-258	0.4112586
RCT-91	0.4109416
Ceruloplasmin	0.402974
Vacuole membrane protein 1	0.400575

Table 3 List of Genes, Whose Expression at 24h Inversely Correlates with Kidney Tubular Necrosis at 72h, Ranked by Spearman Correlation Coefficient

	Correlation
Gene	Coefficient
RCT-42	-0.25083
Membrane bound cytochrome b5	-0.25275
RCT-132	-0.25352
RCT-99	-0.25374
Four repeat ion channel	-0.25412
RCT-62	-0.25524
RCT-137	-0.25548
AT-1	-0.25881
UDP-glucuronosyltransferase 2B	-0.26029
Calgranulin B4	-0.26618
Methylacyl-CoA racemase alpha	-0.26791
Cyclin D1	-0.27006
Organic anion transporting polypeptide 1	-0.27038
Cystatin C	-0.27304
Matrin F/G	-0.27305
RCT-181	-0.27455
RCT-25	-0.27625
RCT-143	-0.27626
RCT-93	-0.28389
Protein tyrosine phosphatase alpha	-0.28421
RCT-79	-0.28485
Caspase 2	-0.28686
Vascular endothelial growth factor	-0.28716
Glutathione S-transferase Ya	-0.28785
Senescence marker protein-30	-0.29192
RCT-178	-0.29272
Organic anion transporter K1	-0.29329
RCT-256	-0.2943
25-DX	-0.29444
RCT-22	-0.29564
Sarcoplasmic reticulum calcium ATPase	-0.2974
RCT-280	-0.29749
RCT-148	-0.30758
Arginosuccinate synthetase 1	-0.30894
RCT-142	-0.31028
RCT-260	-0.31039
Apoptosis-regulating basic protein	-0.31798
Organic anion transporter 3	-0.32302
Ornithine aminotransferase	-0.32748
Hemoglobin alpha 1 chain (alternate clone)	-0.33449

Cytochrome 1 430 2113		
Selenoprotein P	Cytochrome P450 2A3	-0.33951
Selenoprotein P -0.34685 Cytochrome P450 2C23 -0.34696 Pancreatic secretory trypsin inhibitor type II (PSTI-II) -0.34712 RCT-38 -0.34982 Iron-responsive element-binding protein -0.3572 RCT-10 -0.36278 Epidermal growth factor -0.36487 Sodium/glucose cotransporter 1 -0.36594 Calgranulin B2 -0.36604 Cytochrome c oxidase subunit II -0.36678 RCT-89 -0.37036 Acyl-CoA dehydrogenase, medium chain -0.37526 RCT-39 -0.37793 RCT-34 -0.37992 Malate dehydrogenase, cytosolic -0.38206 D-dopachrome tautomerase -0.38497 RCT-87 -0.3857 Pancreatic secretory trypsin inhibitor type II (PSTI-II) (alternate clone) -0.4004 RCT-101 -0.40144 RCT-69 -0.40543 Thiopurine methyltransferase -0.41248 Very long-chain acyl-CoA synthetase -0.41248 Fatty acyl-CoA oxidase -0.42391 RCT-287 -0.4351 Dimethylarginine dimethylaminohydrolase -0.44238	Hemoglobin alpha 1 chain	
Cytochrome P450 2C23 -0.34696 Pancreatic secretory trypsin inhibitor type II (PSTI-II) -0.34712 RCT-38 -0.34982 Iron-responsive element-binding protein -0.3572 RCT-10 -0.36278 Epidermal growth factor -0.36487 Sodium/glucose cotransporter 1 -0.36594 Calgranulin B2 -0.36604 Cytochrome c oxidase subunit II -0.36678 RCT-89 -0.37036 Acyl-CoA dehydrogenase, medium chain -0.3793 RCT-39 -0.37793 RCT-34 -0.37992 Malate dehydrogenase, cytosolic -0.38206 D-dopachrome tautomerase -0.38497 RCT-87 -0.38497 Pancreatic secretory trypsin inhibitor type II (PSTI-II) (alternate clone) -0.4004 RCT-101 -0.40144 RCT-69 -0.40543 Thiopurine methyltransferase -0.41035 Very long-chain acyl-CoA synthetase -0.41248 Fatty acyl-CoA oxidase -0.42391 RCT-287 -0.4351 Dimethylarginine dimethylaminohydrolase -0	Selenoprotein P	-0.34685_
Pancreatic secretory trypsin inhibitor type II (PSTI-II) -0.34712 RCT-38 -0.34982 Iron-responsive element-binding protein -0.3572 RCT-10 -0.36278 Epidermal growth factor -0.36487 Sodium/glucose cotransporter 1 -0.36594 Calgranulin B2 -0.36604 Cytochrome c oxidase subunit II -0.36678 RCT-89 -0.37036 Acyl-CoA dehydrogenase, medium chain -0.37526 RCT-39 -0.37793 RCT-34 -0.37992 Malate dehydrogenase, cytosolic -0.38206 D-dopachrome tautomerase -0.38497 RCT-87 -0.3857 Pancreatic secretory trypsin inhibitor type II (PSTI-II) (alternate clone) -0.4004 RCT-101 -0.40144 RCT-69 -0.40543 Thiopurine methyltransferase -0.41035 Very long-chain acyl-CoA synthetase -0.41248 Fatty acyl-CoA oxidase -0.42391 RCT-287 -0.4351 Dimethylarginine dimethylaminohydrolase -0.44238 RCT-182 -0.44238 RCT-291 -0.4606		
RCT-38	Pancreatic secretory trypsin inhibitor type II (PSTI-II)	-0.34712
RCT-10		-0.34982
RCT-10	Iron-responsive element-binding protein	-0.3572
Sodium/glucose cotransporter 1 -0.36594		-0.36278
Sodium/glucose cotransporter 1 -0.36594 Calgranulin B2 -0.36604 Cytochrome c oxidase subunit II -0.36678 RCT-89 -0.37036 Acyl-CoA dehydrogenase, medium chain -0.37526 RCT-39 -0.37793 RCT-34 -0.37992 Malate dehydrogenase, cytosolic -0.38206 D-dopachrome tautomerase -0.38497 RCT-87 -0.3857 Pancreatic secretory trypsin inhibitor type II (PSTI-II) (alternate clone) -0.4004 RCT-101 -0.40144 RCT-69 -0.40543 Thiopurine methyltransferase -0.41035 Very long-chain acyl-CoA synthetase -0.41248 Fatty acyl-CoA oxidase -0.42391 RCT-287 -0.4351 Dimethylarginine dimethylaminohydrolase -0.4413 RCT-182 -0.44238 RCT-291 -0.4606	Epidermal growth factor	-0.36487
Calgranulin B2 -0.36604 Cytochrome c oxidase subunit II -0.36678 RCT-89 -0.37036 Acyl-CoA dehydrogenase, medium chain -0.37526 RCT-39 -0.37793 RCT-34 -0.37992 Malate dehydrogenase, cytosolic -0.38206 D-dopachrome tautomerase -0.38497 RCT-87 -0.3857 Pancreatic secretory trypsin inhibitor type II (PSTI-II) (alternate clone) -0.4004 RCT-101 -0.40144 RCT-69 -0.40543 Thiopurine methyltransferase -0.41035 Very long-chain acyl-CoA synthetase -0.41248 Fatty acyl-CoA oxidase -0.42391 RCT-287 -0.4351 Dimethylarginine dimethylaminohydrolase -0.4413 RCT-182 -0.44238 RCT-291 -0.4606		-0.36594
Cytochrome c oxidase subunit II -0.36678 RCT-89 -0.37036 Acyl-CoA dehydrogenase, medium chain -0.37526 RCT-39 -0.37793 RCT-34 -0.37992 Malate dehydrogenase, cytosolic -0.38206 D-dopachrome tautomerase -0.38497 RCT-87 -0.3857 Pancreatic secretory trypsin inhibitor type II (PSTI-II) (alternate clone) -0.4004 RCT-101 -0.40144 RCT-69 -0.40543 Thiopurine methyltransferase -0.41035 Very long-chain acyl-CoA synthetase -0.41248 Fatty acyl-CoA oxidase -0.42391 RCT-287 -0.4351 Dimethylarginine dimethylaminohydrolase -0.44238 RCT-182 -0.44238 RCT-291 -0.4606		-0.36604
RCT-89 -0.37036 Acyl-CoA dehydrogenase, medium chain -0.37526 RCT-39 -0.37793 RCT-34 -0.37992 Malate dehydrogenase, cytosolic -0.38206 D-dopachrome tautomerase -0.38497 RCT-87 -0.3857 Pancreatic secretory trypsin inhibitor type II (PSTI-II) (alternate clone) -0.40004 RCT-101 -0.40144 RCT-69 -0.40543 Thiopurine methyltransferase -0.41035 Very long-chain acyl-CoA synthetase -0.41248 Fatty acyl-CoA oxidase -0.42391 RCT-287 -0.4351 Dimethylarginine dimethylaminohydrolase -0.4413 RCT-182 -0.44238 RCT-291 -0.4606		-0.36678
RCT-39		
RCT-39 -0.37793 RCT-34 -0.37992 Malate dehydrogenase, cytosolic -0.38206 D-dopachrome tautomerase -0.38497 RCT-87 -0.3857 Pancreatic secretory trypsin inhibitor type II (PSTI-II) (alternate clone) -0.40004 RCT-101 -0.40144 RCT-69 -0.40543 Thiopurine methyltransferase -0.41035 Very long-chain acyl-CoA synthetase -0.41248 Fatty acyl-CoA oxidase -0.42391 RCT-287 -0.4351 Dimethylarginine dimethylaminohydrolase -0.4413 RCT-182 -0.44238 RCT-291 -0.4606	Acyl-CoA dehydrogenase, medium chain	-0.37526
Malate dehydrogenase, cytosolic -0.38206 D-dopachrome tautomerase -0.38497 RCT-87 -0.3857 Pancreatic secretory trypsin inhibitor type II (PSTI-II) (alternate clone) -0.40004 RCT-101 -0.40144 RCT-69 -0.40543 Thiopurine methyltransferase -0.41035 Very long-chain acyl-CoA synthetase -0.41248 Fatty acyl-CoA oxidase -0.42391 RCT-287 -0.4351 Dimethylarginine dimethylaminohydrolase -0.4413 RCT-182 -0.44238 RCT-291 -0.4606		
D-dopachrome tautomerase -0.38497 RCT-87 -0.3857 Pancreatic secretory trypsin inhibitor type II (PSTI-II) (alternate clone) -0.40004 RCT-101 -0.40144 RCT-69 -0.40543 Thiopurine methyltransferase -0.41035 Very long-chain acyl-CoA synthetase -0.41248 Fatty acyl-CoA oxidase -0.42391 RCT-287 -0.4351 Dimethylarginine dimethylaminohydrolase -0.44238 RCT-182 -0.44238 RCT-291 -0.4656	RCT-34	
D-dopachrome tautomerase -0.38497 RCT-87 -0.3857 Pancreatic secretory trypsin inhibitor type II (PSTI-II) (alternate clone) -0.40004 RCT-101 -0.40144 RCT-69 -0.40543 Thiopurine methyltransferase -0.41035 Very long-chain acyl-CoA synthetase -0.41248 Fatty acyl-CoA oxidase -0.42391 RCT-287 -0.4351 Dimethylarginine dimethylaminohydrolase -0.4413 RCT-182 -0.44238 RCT-291 -0.4606	Malate dehydrogenase, cytosolic	-0.38206
Pancreatic secretory trypsin inhibitor type II (PSTI-II) (alternate clone) -0.40004 RCT-101 -0.40144 RCT-69 -0.40543 Thiopurine methyltransferase -0.41035 Very long-chain acyl-CoA synthetase -0.41248 Fatty acyl-CoA oxidase -0.42391 RCT-287 -0.4351 Dimethylarginine dimethylaminohydrolase -0.4413 RCT-182 -0.44238 RCT-291 -0.4606		0.00
RCT-101		
RCT-101 -0.40144 RCT-69 -0.40543 Thiopurine methyltransferase -0.41035 Very long-chain acyl-CoA synthetase -0.41248 Fatty acyl-CoA oxidase -0.42391 RCT-287 -0.4351 Dimethylarginine dimethylaminohydrolase -0.4413 RCT-182 -0.4606 RCT-291 -0.4606	Pancreatic secretory trypsin inhibitor type II (PSTI-II) (alternate clone)	
Thiopurine methyltransferase -0.41035 Very long-chain acyl-CoA synthetase -0.41248 Fatty acyl-CoA oxidase -0.42391 RCT-287 -0.4351 Dimethylarginine dimethylaminohydrolase -0.4413 RCT-182 -0.44238 RCT-291 -0.4600		-0.40144
Very long-chain acyl-CoA synthetase -0.41248 Fatty acyl-CoA oxidase -0.42391 RCT-287 -0.4351 Dimethylarginine dimethylaminohydrolase -0.4413 RCT-182 -0.44238 RCT-291 -0.4606	RCT-69	
Very long-chain acyl-CoA synthetase -0.41248 Fatty acyl-CoA oxidase -0.42391 RCT-287 -0.4351 Dimethylarginine dimethylaminohydrolase -0.4413 RCT-182 -0.44238 RCT-291 -0.4606	Thiopurine methyltransferase	-0.41035
Fatty acyl-CoA oxidase -0.42391 RCT-287 -0.4351 Dimethylarginine dimethylaminohydrolase -0.4413 RCT-182 -0.44238 RCT-291 -0.4606		
RCT-287 -0.4351 Dimethylarginine dimethylaminohydrolase -0.4413 RCT-182 -0.44238 RCT-291 -0.4603		
RCT-182 -0.44238 RCT-291 -0.4606		
RCT-182 -0.44238 RCT-291 -0.4606	Dimethylarginine dimethylaminohydrolase	
KC1-271		
3-hydroxyisobutyrate dehydrogenase -0.48712	RCT-291	
	3-hydroxyisobutyrate dehydrogenase	-0.48712

Table 4 Distribution of Compounds* in Individual Training and Test Sets for 24 Hour Kidney Data

Training and Test Set A

Training Set A	Training Set A	Test Set A	Test Set A
Negative**	Positive	Negative	Positive
AMPB	CIS	ANIT	CHCL3
AZA	HYD	5-FU	CPHOS
CAD	LPS	APAP	GAN
CHLOR	TET	BEN	
CLO		BAP	
CYCA		BRB	
DEX		BUS	
DIF		CCL4	
DOX		CAR	
ERY		CLOZ	
EST		CMC	
ETH		CHEX	
GEN		DMN	
MET		ISON	
PHEN		KETO	
PUR		NAL	
TAM		PBARB	
TET		PEG	
		QUIN	
		STRZ	
		THEO	

Training and Test Set 1

Training Set 1 Negative	Training Set 1 Positive	Test Set 1 Negative	Test Set 1 Positive
AMPB	CPHOS	5-FU	CHCL3
ANIT	GAN	APAP	CIS
AZA	LPS	BEN	HYD
BAP	TET	BRB	
CAD		BUS	
CAR		CLOZ	
CCL4		CMC	
CHEX		DIF	
CHLOR		DMN	
CLO		DOX	
CYCA		ERY	
DEX		ETH	

EST	NAL	
GEN	PEG	
ISON	PUR	
KETO	STRZ	
KETO MET	TAM	
PBARB		
PHEN		
QUIN		
THEO		

Training and Test Set 2

Training Set 2 Negative	Training Set 2 Positive	Test Set 2 Negative	Test Set 2 Positive
AMPB	CHCL3	5-FU	CPHOS
APAP	CIS	ANIT	LPS
AZA	GAN	BRB	TET
BAP	HYD	CAD	
BEN		CHEX	
BUS		CHLOR	
CAR		CLOZ	
CCL4		CMC	
CLO		DEX	
CYCA		DMN	
DIF		GEN	
DOX		NAL	
ERY		PUR	
EST		QUIN	
ETH		STRZ	
ISON		TAM	
KETO		THEO	
MET			
PBARB			
PEG			
PHEN			1

Training and Test Set 3

Training Set 3 Negative	Training Set 3 Positive	Test Set 3 Negative	Test Set 3 Positive
ANIT	CHCL3	5-FU	CPHOS
APAP	CIS	AMPB	LPS
BEN	GAN	AZA	TET
BUS	HYD	BAP	
CAD		BRB	
CAR		CCL4	
CHLOR		CHEX	
CLO		CYCA	

CLOZ	DIF	
CMC	DOX	
DEX	ERY	
DMN	GEN	·
EST	ISON	
ETH	PBARB	
KETO	PHEN	
MET	PUR	
NAL	STRZ	
PEG		
QUIN		
TAM		
THEO		

Training and Test Set 4

Training Set 4	Training Set 4	Test Set 4	Test Set 4 Positive
Negative	Positive	Negative	CDYCO
5-FU	CHCL3	AMPB_	CPHOS
APAP	CIS	ANIT	HYD
BEN	GAN	AZA	LPS
CAR	TET	BAP	
CHEX		BRB	,
CHLOR		BUS	
CLO		CAD	
CLOZ		CCL4	
CMC		DEX	
CYCA		ERY	
DIF		EST	
DMN		ETH	
DOX		KETO	
GEN		PBARB	
ISON		QUIN	
MET		TAM	
NAL		THEO	
PEG			
PHEN			
PUR			
STRZ			

Training and Test Set 5

Training Set 5	Training Set 5	Test Set 5	Test Set 5 Positive
Negative	Positive	Negative	

AZA	CPHOS	5-FU	CHCL3
BAP	GAN	AMPB	CIS
BRB	HYD	ANIT	TET
BUS	LPS	APAP	
CAR		BEN	
CHEX		CAD	
CHLOR		CCL4	
CLO		CMC	
CLOZ		DEX	
CYCA		ERY	
DIF		EST	
DMN		ETH	
DOX		GEN	
KETO		ISON	
NAL		MET	
PBARB		QUIN	
PEG		THEO	
PHEN			
PUR			
STRZ			
TAM			<u> </u>

^{*} For abbreviations please see Table 1 (Compound, Dose, Abbreviation, etc.)

** Negative= Compounds that did not elicit histopathology (score=1) Positive= Compounds that did elicit histopathology (score of 2 or greater)

Table 5 Predictive Genes for 24 Hour Expression Data

Gene Name	Combination Category*
(OS -: Learned protein I 6 (alternate alone 1)	6
60S ribosomal protein L6 (alternate clone 1)	6
Alpha-tubulin	6
Calpactin I heavy chain	6
Cathepsin L	6
Cathepsin L, sequence 2	6
CDK108	6
Clusterin	
c-myc	6
Dynein light chain 1	6
Gadd153	6
Gadd45	6
Insulin-like growth factor binding protein 1	6
PAR interacting protein	6
RCT-109	6
RCT-144	6
RCT-145	6
RCT-152	6
RCT-158	6
RCT-198	6
Vacuole membrane protein 1	6
RCT-24	6
RCT-241	6
RCT-271	6
RCT-68	6
Ribosomal protein L13A	6
Ribosomal protein S8	6
Tissue inhibitor of metalloproteinases-1	6
Uncoupling protein 2	6
60S ribosomal protein L6	5
Alpha-fibrinogen	5
Beta-actin, sequence 2	5
Beta-tubulin, class I	5
Canalicular multispecific organic anion transporter	5
Carbonic anhydrase III, sequence 2	
Carbonic annydrase III, sequence 2	5
Heme binding protein 23	5
IgE binding protein	
Keratinocyte growth factor	
MHC class I antigen RT1.A1(f) alpha-chain	5 5 5
Multidrug resistant protein-3	<u> </u>
Osteopontin	5
RCT-126	
RCT-179	5

DCT 192	
RCT-182	5
Calgranulin B1	5
RCT-258	
RCT-274	5
RCT-49	5
RCT-50	5
RCT-60	5
Proliferating cell nuclear antigen gene	5
Ribosomal protein S9	5
Thymosin beta-10	5
Zinc finger protein	5
Preproalbumin, sequence 2 (alternate clone 1)	4
ATP-stimulated glucocorticoid-receptor translocation promoter (Gyk)	4
CD44 metastasis suppressor gene	4
Ceruloplasmin	4
Connexin-32	4
Epidermal growth factor	4
Ferritin H-chain	4
Hypoxanthine-guanine phosphoribosyltransferase	4
Interleukin-1 beta	4
Matrix metalloproteinase-1	4
Multidrug resistant protein-1	4
Organic cation transporter 3	4
Pancreatic secretory trypsin inhibitor type II (PSTI-II)	4
RCT-138	4
RCT-180	4
RCT-240	4
RCT-287	4
RCT-293	
RCT-38	4
Pyruvate kinase, muscle	4
Ref-1	4
Superoxide dismutase Mn	4
Ubiquitin conjugating enzyme (RAD 6 homologue)	4
Pancreatic secretory trypsin inhibitor type II (PSTI-II) (alternate clone)	3
Annexin V	
Aspartoacylase	3
Calreticulin	3
Cathepsin S	3 3
Dimethylarginine dimethylaminohydrolase	3
Ecto-ATPase	
Methylacyl-CoA racemase alpha	
p53	3
RCT-10	3
RCT-149	3
RC1-147	<u> </u>

D CVD 100	
RCT-192	3
RCT-196	3
RCT-22	3
RCT-256	3
Ubiquitin D (Ubd)	3
RCT-34	3
RCT-8	3
RCT-89	3
Activin receptor type II	2
Casein-alpha	2
CDK102	2
Cellular nucleic acid binding protein (CNBP)	2
Complement component C3	2
Defender against cell death-1	2
DNA topoisomerase I	2
Elongation factor-1 alpha	2
Fatty acyl-CoA oxidase	2
Fetuin beta (Fetub)	2
Glucose transporter 1	2
Glycine methyltransferase	2
Histidine-rich glycoprotein	2
Hypoxia-inducible factor 1 alpha	2
Insulin-like growth factor binding protein 3	2
Malate dehydrogenase, cytosolic	2
N-hydroxy-2-acetylaminofluorene sulfotransferase (ST1C1)	2
Organic anion transporter 3	2
Organic anion transporting polypeptide 1	2
Ornithine aminotransferase	2
RCT-127	2
RCT-155	2
RCT-162	2
Calgranulin B4	2
Calgranulin B5	2
RCT-242	2
RCT-244	2
RCT-246	2
RCT-260	2
RCT-280	The second secon
RCT-291	2 2 2 2
RCT-292	2
RCT-42	2
RCT-84	2
RCT-88	2
RCT-91	2
RCT-92	2
L	

	2
Proteasome activator 28 alpha	
Ribosomal protein L27	2
Selenoprotein P	2
Senescence marker protein-30	2
Stathmin	2
Thioredoxin-1 (Trx1)	2
Vascular cell adhesion molecule 1 (VCAM-1)	2
Vesicular monoamine transporter (VMAT)	2
14-3-3 zeta	1
Acyl-CoA dehydrogenase, medium chain	1
Adrenodoxin reductase	1
Alcohol dehydrogenase 1	1
Alpha-2-macroglobulin	1
Arginosuccinate synthetase 1	1
Bcl-2	1
Calnexin	1
Carbonyl reductase	1
Cholesterol esterase	1
Cytochrome P450 14DM	1
Cytochrome P450 2A3	1
Cytochrome P450 2C11	1
Cytochrome P450 2C23	i
	1
DNA binding protein inhibitor ID2	1
eIF-4E	1
Equilbrative nitrobenzylthioinosine-sensitive nucleoside transporter	1
Fibrinogen gamma chain	1
Gamma-glutamyl transpeptidase	1
Glucose-6-phosphate dehydrogenase	<u></u>
Glucose-regulated protein 78	1 .
Heme oxygenase	1
HMG CoA reductase	1
Iron-responsive element-binding protein	1
Low density lipoprotein receptor	1
Macrophage inflammatory protein-1 alpha	1
Macrophage metalloelastase	1
Mitogen activated protein kinase (P38)	<u>l</u>
Monocyte chemotactic protein receptor (CCR2)	1
Mullerian inhibiting substance	1
Na/K ATPase alpha-1	1
N-cadherin N-cadherin	1
Nerve growth factor receptor	1
Organic anion transporter K1	1
Organic cation transporter 2	1
Peroxisomal multifunctional enzyme type II	1
Peroxisome proliferator activated receptor alpha	1
retoxisome prometator activated receptor alpha	

RCT 165	1
RCT 252	1
RCT-101	1
RCT-111	1
Protein O-mannosyltransferase 1 (Pomt1)	1
RCT-129	1
Apoptosis-regulating basic protein	1
RCT-140	1
RCT-147	1
RCT-153	1
RCT-164	1
RCT-166	1
RCT-18	1
RCT-181	1
RCT-185	1
RCT-206	1
RCT-220	1
RCT-221	1
Inositol polyphosphate multikinase (lpmk)	1
RCT-268	1
RCT-276	1
RCT-279	1
RCT-31	1
RCT-36	1
RCT-43	1
RCT-61	1
RCT-72	1
RCT-76	1
Renal organic anion transporter	1
Retinoid X receptor alpha	1
Retinol dehydrogenase type III	1
Retinol-binding protein (RBP)	1
Sarcoplasmic reticulum calcium ATPase	
Sulfotransferase K2	1
Superoxide dismutase Cu/Zn	1
T-cell cyclophilin	1
Thiol-specific antioxidant (natural killer cell-enhancing factor B)	1
Thiopurine methyltransferase	1
Thrombin receptor (PAR-1)	1

^{*} Combination category is the number of training/test set gene list occurrences.

Table 6 Randomly Selected Gene Subsets from 24 H Combo All (216 Genes)*

Rand 5 (1)	Rand 5 (2)
CDK108	Preproalbumin, sequence 2 (alternate clone 1)
Ferritin H-chain	Adrenodoxin reductase
Histidine-rich glycoprotein	RCT-111
RCT-182	RCT-198
Inositol polyphosphate multikinase (lpmk)	RCT-206

Rand 10 (1)	Rand 10 (2)
Cathepsin S	Bcl-2
Cellular nucleic acid binding protein (CNB	P)Cytochrome P450 2A3
Cholesterol esterase	Defender against cell death-1
DNA binding protein inhibitor ID2	Ferritin H-chain
DNA topoisomerase I	MHC class I antigen RT1.A1(f) alpha-chain
Iron-responsive element-binding protein	RCT-221
RCT-126	RCT-267
Apoptosis-regulating basic protein	RCT-287
RCT-211	RCT-49
RCT-88	Tissue inhibitor of metalloproteinases-1

Rand 15 (1)	Rand 15 (2)
Cellular nucleic acid binding protein (CNBP)	Glucose transporter 1
Gamma-glutamyl transpeptidase	Organic anion transporter K1
Glucose transporter 1	Pancreatic secretory trypsin inhibitor type II (PSTI-II)
Glucose-regulated protein 78	RCT-111
Hypoxia-inducible factor 1 alpha	RCT-127
Multidrug resistant protein-3	RCT-152
Organic cation transporter 3	RCT-214
Peroxisomal multifunctional enzyme type II	RCT-240
RCT-126	RCT-274
RCT-242	RCT-279
RCT-280	RCT-292
RCT-287	RCT-34
RCT-88	RCT-8
Retinol dehydrogenase type III	T-cell cyclophilin
Superoxide dismutase Cu/Zn	Vesicular monoamine transporter (VMAT)

^{*} Genes were randomly selected from the Combo All list of predictive genes (216 genes) assigning a random number to each gene, sorting by the random number and selecting the appropriate number of sorted genes.

Table 7 Randomly Selected Gene Subsets from 24 H Combo 6 Gene Set (28 Genes)*

Rand 5 (1)	Rand 5 (2)
Calpactin I heavy chain	Cathepsin L, sequence 2
Clusterin	RCT-152
Dynein light chain 1	RCT-271
RCT-109	RCT-68
Ribosomal protein L13A	Tissue inhibitor of metalloproteinases-1

Rand 10 (1)	Rand 10 (2)
Alpha-tubulin	Cathepsin L
Cathepsin L	PAR interacting protein
Cathepsin L, sequence 2	RCT-144
с-тус	RCT-198
Dynein light chain 1	Vacuole membrane protein 1
Gadd153	RCT-24
RCT-109	RCT-241
RCT-152	RCT-271
RCT-198	Ribosomal protein L13A
Tissue inhibitor of metalloprotein	nases-1 Uncoupling protein 2

Rand 15 (1)	Rand 15 (2)
60S ribosomal protein L6 (alternate clone 1) 60S ribosomal protein L6 (alternate clone 1)
Calpactin I heavy chain	Cathepsin L
Cathepsin L	Cathepsin L, sequence 2
CDK108	Dynein light chain 1
Clusterin	Gadd153
Dynein light chain 1	Insulin-like growth factor binding protein 1
Gadd153	PAR interacting protein
Gadd45	RCT-109
RCT-109	RCT-145
RCT-152	RCT-152
Vacuole membrane protein 1	RCT-198
RCT-241	RCT-24
RCT-68	RCT-241
Tissue inhibitor of metalloproteinases-1	RCT-68
Uncoupling protein 2	Tissue inhibitor of metalloproteinases-1

* Genes were randomly selected from the Combo All list of predictive genes (216 genes) assigning a random number to each gene, sorting by the random number and selecting the appropriate number of sorted genes.

Table 8 Randomly Selected Gene Subsets from 24 H Combo 5 Gene Set (25 genes)*

Rand 5 (1)	Rand 5 (2)
Canalicular multispecific organic anion	transporter Beta-tubulin, class I
IgE binding protein	Heme binding protein 23
RCT-211	Osteopontin
RCT-258	RCT-211
Zinc finger protein	RCT-60

Rand 10 (1)	Rand 10 (2)
Beta-actin, sequence 2	60S ribosomal protein L6
Beta-tubulin, class I	Beta-tubulin, class I
Carbonic anhydrase III, sequence 2	Carbonic anhydrase III, sequence 2
IgE binding protein	IgE binding protein
MHC class I antigen RT1.A1(f) alpha-c	hain MHC class I antigen RT1.A1(f) alpha-chain
RCT-126	Multidrug resistant protein-3
RCT-258	RCT-182
RCT-50	RCT-274
RCT-60	RCT-50
Ribosomal protein S9	Ribosomal protein S9

Rand 15 (1)	Rand 15 (2)		
Beta-actin, sequence 2	Alpha-fibrinogen		
Canalicular multispecific organic anion transporte	er Carbonic anhydrase III, sequence 2		
Carbonic anhydrase III, sequence 2	Heme binding protein 23		
Heme binding protein 23	IgE binding protein		
IgE binding protein	Keratinocyte growth factor		
Keratinocyte growth factor	Multidrug resistant protein-3		
Multidrug resistant protein-3	RCT-126		
Osteopontin J	RCT-179		
RCT-179	RCT-182		
RCT-211	RCT-258		
RCT-258	RCT-274		
RCT-60	RCT-49		
Proliferating cell nuclear antigen gene	RCT-60		
Ribosomal protein S9	Ribosomal protein S9		
Zinc finger protein * Genes were randomly selected from the Combo All line	Thymosin beta-10		

^{*} Genes were randomly selected from the Combo All list of predictive genes (216 genes) assigning a random number to each gene, sorting by the random number and selecting the appropriate number of sorted genes.

Table 9 Randomly Selected Gene Subsets from 24 H Combo 4 Gene Set (23 genes)*

Rand 5 (1)	Rand 5 (2)
Hypoxanthine-guanine phosphoribosylt	ransferase Hypoxanthine-guanine phosphoribosyltransferase
Matrix metalloproteinase-1	Multidrug resistant protein-1
Multidrug resistant protein-1	Pancreatic secretory trypsin inhibitor type II (PSTI-II)
RCT-240	RCT-38
RCT-293	Ref-1

Rand 10 (1)		
ATP-stimulated glucocorticoid-receptor translocation promoter (Gyk)		
Ceruloplasmin		
Matrix metalloproteinase-1		
RCT-138		
RCT-240		
RCT-293		
RCT-38		
Pyruvate kinase, muscle		
Superoxide dismutase Mn		
Jbiquitin conjugating enzyme (RAD 6 homologue)		

Rand 10 (2)
Organic cation transporter 3
Preproalbumin, sequence 2 (alternate clone 1)
ATP-stimulated glucocorticoid-receptor translocation promoter (Gyk)
Ceruloplasmin
Iypoxanthine-guanine phosphoribosyltransferase
Aultidrug resistant protein-1
RCT-180
RCT-240
RCT-287
yruvate kinase, muscle

Rand 15 (1)
Preproalbumin, sequence 2 (alternate clone 1)
ATP-stimulated glucocorticoid-receptor translocation promoter (Gyk)
CD44 metastasis suppressor gene
Epidermal growth factor
Hypoxanthine-guanine phosphoribosyltransferase
Interleukin-1 beta

Matrix metalloproteinase-1	
Multidrug resistant protein-1	
Organic cation transporter 3	
RCT-180	
RCT-240	
RCT-38	
Pyruvate kinase, muscle	
Superoxide dismutase Mn	
Ubiquitin conjugating enzyme (RAD 6 homologue)	

Rand 15 (2)
Preproalbumin, sequence 2 (alternate clone 1)
ATP-stimulated glucocorticoid-receptor translocation promoter (Gyk)
CD44 metastasis suppressor gene
Connexin-32
Epidermal growth factor
Matrix metalloproteinase-1
Multidrug resistant protein-1
Organic cation transporter 3
Pancreatic secretory trypsin inhibitor type II (PSTI-II)
RCT-287
RCT-293
Pyruvate kinase, muscle
Ref-1
Superoxide dismutase Mn
Ubiquitin conjugating enzyme (RAD 6 homologue)

^{*} Genes were randomly selected from the Combo All list of predictive genes (216 genes) assigning a random number to each gene, sorting by the random number and selecting the appropriate number of sorted genes.

Table 10 Randomly Selected Gene Subsets from Array Genes Excluding Combo All Set*

Rand 5 (1)	Rand 5 (2)	
Argininosuccinate lyase	{ RCT-247}	
	Inter-alpha-inhibitor H4 heavy chain (Itih4)	
RCT-115 RCT-37	RCT-290	
RCT-9	RCT-96	
Phosphoglycerate kinase	Very long-chain acyl-CoA dehydrogenase	

Rand 10 (1)	Rand 10 (2)	
AT-1	Aryl sulfotransferase	
Cellular retinoic acid binding protein 2	BAK	
Ornithine decarboxylase	Cyclooxygenase 2	
Peroxisomal 3-ketoacyl-CoA thiolase 1	L-gulono-gamma-lactone oxidase	
RCT-107	Metallothionein 1	
RCT-117	Osteoactivin	
RCT-130	RCT-12	
RCT-134	Protein kinase C alpha	
RCT-137	Putative membrane fatty acid transporter	
RCT-175	RAC protein kinase beta	

Rand 15 (1)	Rand 15 (2)		
Adrenomedullin	Alpha 1-antitrypsin		
AT-4	BAK		
Calpain 2	Bile salt export pump (sister of p-glycoprotein)		
Cyclin G	C4b-binding protein		
Cytochrome P450 17A	Choline kinase		
Endogenous retroviral sequence, 5' and 3' LTR	Cyclin dependent kinase 2		
NADPH cytochrome P450 oxidoreductase	Extracellular-signal-regulated kinase 1		
Paraoxonase 1	Glutathione S-transferase P1		
RCT-102	Histone 2A		
RCT-143	RCT-25		
RCT-208	RCT-57		
RCT-225	RCT-66		

RCT-253	RCT-7
RCT-52	RCT-87
Urate oxidase	Poly(ADP-ribose) polymerase

* Genes were randomly selected from the entire array list of genes excluding the Combo All 216 predictive genes by assigning a random number to each gene, sorting by the random number and selecting the appropriate number of sorted genes.

Table 11 Kidney Toxicity Individual Sample Prediction Values for 24 Hour Data Predictive Genes (Combined List and Subsets)

	Number			Prediction Measure*	
Gene Set	of Genes	Accuracy**	False Positive**	False Negative**	Geometric Mean**
Combo All	216	0.915 (0.861-0.945)	0.046 (0.012-0.108)	0.310 (0.200-0.467)	0.810 (0.720-0.884)
Combo 6	28	0.921 (0.867-0.955)	0.062 (0.031-0.108)	0.300 (0.050-0.533)	0.837 (0.660-0.953)
Combo 5	25	0.896 (0.829-0.929)	0.073 (0.044-0.122)	0.269 (0.200-0.467)	0.821 (0.684-0.870)
Combo 4	23	0.882 (0.829-0.929)	0.087 (0.010-0.145)	0.325 (0.000-0.467)	0.776 (0.700-0.925)
Combo 3	19	0.839 (0.778-0.911)	0.127 (0.054-0.215)	0.358 (0.133-0.667)	0.740 (0.562-0.892)
Combo 2	45	0.733 (0.641-0.821)	0.215 (0.113-0.349)	0.586 (0.400-0.867)	0.552 (0.343-0.663)
Combo 1	76	0.787 (0.667-0.884)	0.171 (0.054-0.322)	0.464 (0.333-0.867)	0.645 (0.355-0.782)

- * Prediction measures are given as means and range of values (in parentheses) for six training/test sets using 24 hour array data and gene lists. Unit of prediction was the animal and the predictive classification was for kidney tubular necrosis observed at 72 hours after treatment.
- ** Standard prediction measures were used as defined in Materials and Methods. These include:

Accuracy False positive rate positive =Proportion of total number of predictions that are correct =Proportion of negative cases that are incorrectly classified as

False negative rate negative

=Proportion of positive cases that are incorrectly classified as

negative Geometric mean

=Performance measure that takes into account proportion of positive and negative cases

Table12 Kidney Toxicity Compound-Dose Prediction Values for 24 Hour Data Predictive Genes (Combined List and Subsets)

Gene Set	ene Set Number of Genes Acc		Prediction Measure* False Positive**	False Negative**	Geometric Mean**	
Combo All	216	0.932 (0.889- 0.950)	0.048 (0.000- 0.097)	0.206 (0.000- 0.500)	0.859 (0.688- 0.967)	
Combo 6	28	0.950 (0.889- 1.000)	0.041 (0.000- 0.065)	0.161 (0.000- 0.400)	0.894 (0.749- 0.973)	
Combo 5	25	0.945 (0.861-1.000)	0.041 (0.000- 0.097)	0.189 (0.000- 0.400)	0.878 (0.736- 0.984)	
Combo 4	23	0.909 (0.889- 0.950)	0.059 (0.000- 0.107)	0.378 (0.000- 0.600)	0.751 (0.622-0.945)	
Combo 3	19	0.915 (0.892-0.974)	0.067 (0.030- 0.125)	0.200 (0.000- 0.500)	0.857 (0.688- 0.985)	
Combo 2	45	0.849 (0.757- 0.892)	0.105 (0.061- 0.188)	0.489 (0.167-1.000)	0.608 (0.000- 0.868)	
Combo 1	76	0.847 (0.778- 0.895)	0.117 (0.053- 0.194)	0.408 (0.167- 0.750)	0.712 (0.487- 0.863)	

^{*} Prediction measures are given as means and range of values (in parentheses) for six training/test sets using 24 hour array data and gene lists. Unit of prediction was compound-dose level and the predictive classification was for kidney tubular necrosis observed at 72 hours after treatment. Prediction for compound-dose was based on a majority of individual animal calls. In cases where there were an equal number of opposing calls or no calls a no-call was assigned to the compound-dose level.

^{**} Standard prediction measures were used as defined in Materials and Methods. As described in Materials and Methods in cases where no prediction was made because the p-value ratio exceeded the cutoff-value (generally 0.5) the non-call was considered to be incorrect.

Table 13 Kidney Toxicity Compound Prediction Values for 24 Hour Data Predictive Genes (Combined List and Subsets)

Gene Set	Number of Genes	Accuracy**	Prediction Measure* False Positive**	False Negative**	Geometric Mean**
Combo All	216	0.944 (0.900-1.000)	0.057 (0.000-0.118)	0.056 (0.000-0.333)	0.941 (0.797-1.000)
Combo 6	28	0.968 (0.950-1.000)	0.037 (0.000-0.059)	0.000 (0.000-0.000)	0.981 (0.970-1.000) .
Combo 5	25	0.968 (0.950-1.000	0.037 (0.000-0.059)	0.000 (0.000-0.000)	0.981 (0.970-1.000)
Combo 4	23	0.921 (0.875-0.950)	0.047 (0.000-0.118)	0.278 (0.000-0.667)	0.816 (0.563-0.970)
Combo 3	19	0.928 (0.850-0.950)	0.077 (0.048-0.176)	0.056 (0.000-0.333)	0.931 (0.797-0.970)
Combo 2	45	0.881 (0.750-0.950)	0.086 (0.048-0.235)	0.333 (0.000-1.000)	0.706 (0.000-0.970)
Combo 1	76	0.904 (0.850-1.000)	0.067 (0.000-0.118)	0.278 (0.000-0.667)	0.810 (0.563-1.000)

- * Prediction measures are given as means and range of values (in parentheses) for six training/test sets using 24 hour array data and gene lists. Unit of prediction was the compound and the predictive classification was for kidney tubular necrosis observed at 72 hours after treatment. Compounds were considered toxic if any compound-dose level for that compound was predicted as toxic.
- ** Standard prediction measures were used as defined in Materials and Methods. As described in Materials and Methods in cases where no prediction was made because the p-value ratio exceeded the cutoff-value (generally 0.5) the non-call was considered to be incorrect.

Table 14 Order of Genes Used for Cumulative Analysis of Predictive Performance of Predictive Combo Gene Sets*

Combo 6 Gene Set
Gadd45
Gadd153
Clusterin
Cathepsin L
PAR interacting protein
Tissue inhibitor of metalloproteinases-1
Insulin-like growth factor binding protein 1
Cathepsin L, sequence 2
Dynein light chain 1
RCT-68
Calpactin I heavy chain
Alpha-tubulin
60S ribosomal protein L6 (alternate clone 1)
Vacuole membrane protein 1
RCT-241
RCT-144
RCT-271
RCT-24
RCT-145
Uncoupling protein 2
с-тус
CDK108
Ribosomal protein S8
RCT-152
RCT-158
Ribosomal protein L13A
RCT-109
RCT-198

Combo 5 Gene Set	
RCT-182	
Carbonic anhydrase III, sequence 2	
RCT-258	
60S ribosomal protein L6	
RCT-274	

Multidrug resistant protein-3
Osteopontin
Beta-actin, sequence 2
Beta-tubulin, class I
Zinc finger protein
Canalicular multispecific organic anion transporter
Keratinocyte growth factor
Alpha-fibrinogen
Ribosomal protein S9
RCT-60
RCT-179
Thymosin beta-10
Proliferating cell nuclear antigen gene
IgE binding protein
RCT-211
RCT-49
RCT-50
Heme binding protein 23
MHC class I antigen RT1.A1(f) alpha-chain
RCT-126

Combo 4 Gene Set
Pancreatic secretory trypsin inhibitor type II (PSTI-II)
RCT-240
Epidermal growth factor
Matrix metalloproteinase-1
RCT-287
Connexin-32
ATP-stimulated glucocorticoid-receptor translocation promoter (Gyk)
Superoxide dismutase Mn
Pyruvate kinase, muscle
Ferritin H-chain
Multidrug resistant protein-1
RCT-293
Interleukin-1 beta
Organic cation transporter 3
Preproalbumin, sequence 2 (alternate clone 1)
CD44 metastasis suppressor gene
Ubiquitin conjugating enzyme (RAD 6 homologue)

RCT-38
Ref-1
Ceruloplasmin
Hypoxanthine-guanine phosphoribosyltransferase
RCT-138
RCT-180

* Genes are listed in the order in which they were used for cumulative analysis of predictive performance

Table 15 Individual Gene Predictions: Combo 6

Gene Name	Overall Correct Calls					
	Mean	s.d.	min	max		
60S ribosomal protein L6 (alternate clone 1)	71.4%	6.6%	60.2%	80.4%		
Alpha-tubulin	65.2%	9.7%	54.6%	78.6%		
Calpactin I heavy chain	62.5%	8.2%	50.0%	73.2%		
Cathepsin L	76.0%	4.6%	70.9%	83.3%		
Cathepsin L, sequence 2	76.7%	6.3%	67.3%	83.9%		
CDK108	58.7%	25.5%	20.4%	82.1%		
Clusterin	75.3%	10.8%	55.6%	84.9%		
c-myc	67.7%	10.1%	55.2%	80.2%		
Dynein light chain 1	74.6%	4.4%	69.4%	80.2%		
Gadd153	70.8%					
Gadd45	69.9%	11.1%	61.2%	91.1%		
Insulin-like growth factor binding protein 1	67.4%	5.3%	61.9%	74.6%		
PAR interacting protein	66.4%	8.9%	53.3%	75.9%		
RCT-109	69.8%	4.3%	61.2%	72.3%		
RCT-144	58.4%	32.8%	9.3%	91.3%		
RCT-145	76.2%			89.7%		
RCT-152	64.9%	22.7%	20.4%			
RCT-158	67.6%	3.9%	61.3%	72.2%		
RCT-198	66.1%	8.3%	55.3%	78.1%		
Vacuole membrane protein 1	60.8%	21.3%	40.0%			
RCT-24	65.4%	11.1%	50.9%			
RCT-241	79.9%	6.4%				
RCT-271	57.2%	15.2%	37.3%	76.8%		
RCT-68	64.5%	8.5%	56.2%	79.5%		
Ribosomal protein L13A	55.8%	15.4%	27.0%			
Ribosomal protein S8	58.5%	18.8%	20.4%			
Tissue inhibitor of metalloproteinases-1	74.0%	11.7%	56.5%			
Uncoupling protein 2	73.7%	4.4%				
Average Individual Combo 6	67.7%	11.4%	51.3%	80.9%		
Minimum Individual Combo 6	55.8%	3.9%	9.3%	70.5%		
Maximum Individual Combo 6	79.9%	32.8%	73.3%	92.1%		

Table 16 Individual Gene Predictions: Combo 5

Gene Name	Overall	Correct (Calls	<u> </u>
	Mean	s.d.	min	max
60S ribosomal protein L6	75.6%	5.3%	69.1%	82.1%
Alpha-fibrinogen	62.2%	19.6%	27.6%	80.4%
Beta-actin, sequence 2	65.8%	23.2%	19.0%	81.0%
Beta-tubulin, class I	58.4%	20.5%	21.9%	74.6%
Canalicular multispecific organic anion transporter	59.7%	6.9%	52.8%	69.1%
Carbonic anhydrase III, sequence 2	59.2%	23.7%	22.9%	81.8%
Heme binding protein 23	55.8%	24.9%	8.7%	76.8%
IgE binding protein	60.0%	22.2%	15.9%	77.3%
Keratinocyte growth factor	63.2%	6.8%	55.2%	70.6%
MHC class I antigen RT1.A1(f) alpha- chain	54.0%	9.8%	40.0%	66.4%
Multidrug resistant protein-3	66.8%	5.1%	60.7%	73.8%
Osteopontin	75.3%	21.0%	33.3%	88.4%
RCT-126	47.0%	9.1%	39.0%	61.9%
RCT-179	67.2%	10.1%	56.3%	85.7%
RCT-182	49.9%	29.4%	21.3%	86.6%
RCT-211	55.9%	8.0%	45.6%	67.5%
RCT-258	72.5%	15.1%	42.9%	82.7%
RCT-274	69.8%	9.0%	58.3%	83.3%
RCT-49	61.2%	19.2%	27.0%	79.4%
RCT-50	58.2%	16.6%	25.7%	72.3%
RCT-60	64.7%	12.1%	43.7%	78.6%
Proliferating cell nuclear antigen gene	70.5%	11.9%	52.4%	84.9%
Ribosomal protein S9	72.9%	9.4%	59.0%	83.9%
Thymosin beta-10	67.8%	7.9%	59.1%	82.5%
Zinc finger protein	55.0%	14.7%	35.2%	78.6%
Average Combo 5	62.7%	14.5%	39.7%	78.0%
Minimum Individual Combo 6	47.0%	5.1%	8.7%	61.9%
Maximum Individual Combo 6	75.6%	29.4%	69.1%	88.4%

Table 17 Kidney Toxicity Individual Sample Prediction Values for 24 Hour Data with Random Gene Subsets

Gene Set	Random Subset*		Prediction Measure**		
	Subset	Accuracy***	False Positive***	False Negative***	Geometric Mean***
Combo	5 (1)	0.581 (0.324-	0.416 (0.180-	0.453 (0.350-	0.556 (0.374-
All			0.700)	0.5330	0.658)
Combo	5 (0)	0.651 (0.476-	0.334 (0.155-	0.489 (0.300-	0.542 (0.227-
All	5 genes (2)	0.812)	0.578)	0.933)	0.712)
Combo -	10 (1)	0.740 (0.593-	0.239 (0.099-	0.375 (0.200-	0.681 (0.591-
All	10 genes (1)	0.875)	0.441)	0.533)	0.842)
Combo	10 (0)	0.836 (0.786-	0.101 (0.031-	0.278 (0.000-	0.630 (0.250-
All	10 genes (2)	0.929)	0.172)	0.533)	0.804)
Combo	1.5 (1)	0.823 (0.718-	0.167 (0.072-	0.278 (0.000-	0.763 (0.644-
All	15 genes (1)	0.884)	0.349)	0.533)	0.913)
Combo	15 (0)	0.790 (0.713-	0.153 (0.031-	0.522 (0.400-	0.633 (0.535-
All	15 genes (2)	0.911)	0.269)	0.650)	0.719)
Combo	411.046	0.915 (0.861-	0.046 (0.012-	0.310 (0.200-	0.810 (0.720-
All	All 216 genes	0.945)	0.108)	0.467)	0.884)
			<u> </u>		
		0.799 (0.713-		0.317 (0.000-	0.733 (0.645-
Combo 6	5 genes (1)	0.845)	0.177 (0.078-0.33)	0.533)	0.862)
		0.757 (0.629-	0.222 (0.082-	0.336 (0.133-	0.713 (0.616-
Combo 6	5 genes (2)	0.902)	0.367)	0.550)	0.857)
		0.893 (0.861-	0.073 (0.031-	0.300 (0.200-	0.805 (0.744-
Combo 6	10 genes (1)	0.944)	0.118)	0.400)	0.878)
	4.0 (2)	0.872 (0.806-	0.096 (0.031-	0.317 (0.150-	0.784 (0.740-
Combo 6	10 genes (2)	0.929)	0.157)	0.400)	0.847)
		0.910 (0.886-	0.043 (0.010-	0.350 (0.267-	0.787 (0.710-
Combo 6	15 genes (1)	0.955)	0.086)	0.467)	0.852)
		0.914 (0.883-	0.050 (0.000-	0.292 (0.200-	0.819 (0.718-
Combo 6	15 genes (2)	0.964)	0.075)	0.467)	0.862)
		0.921 (0.867-	0.062 (0.031-	0.300 (0.050-	0.837 (0.660-
Combo 6	All 28 genes	0.955)	0.108)	0.533)	0.953)
		0.704 (0.591-	0.289 (0.108-	0.383 (0.050-	0.646 (0.539-
Combo 5	5 genes (1)	0.841)	0.489)	0.533)	0.697)
		0.797 (0.750-	0.164 (0.072-	0.400 (0.200-	0.702 (0.609-
Combo 5	5 genes (2)	0.884)	0.237)	0.600)	0.847)
		0.805 (0.718-	0.164 (0.090-	0.392 (0.250-	0.702 (0.493-
Combo 5	10 genes (1)	0.848)	0.277)	0.733)	0.791)
Connoc 3		0.864 (0.838-	0.102 (0.072-	0.333 (0.200-	0.772 (0.700-
Combo 5	10 genes (2)	0.902)	0.129)	0.467)	0.843)
Combo 5	15 genes (1)	0.900 (0.864-	0.095 (0.027-	0.150 (0.000-	0.874 (0.805-

		0.937)	0.167)	0.333)	0.914)
Combo 5	15 (2)	0.867 (0.829-	0.104 (0.045-	0.292 (0.200-	0.794 (0.684-
Combo 5	15 genes (2)	0.929)	0.144)	0.467)	0.8420
Combo 5	All 25 genes	0.896 (0.829-	0.073 (0.044-	0.269 (0.200-	0.821 (0.684-
COIIIOO 3	All 23 genes	0.929)	0.122)	0.467)	0.870)
Combo 4	5 genes (1)	0.807 (0.680-	0.167 (0.082-	0.361 (0.200-	0.724 (0.686-
Como 4	J genes (1)	0.873)	0.325)	0.467)	0.777)
Combo 4	1 5 50000 (2)	0.710 (0.648-	0.290 (0.189-	0.333 (0.050-	0.669 (0.403-
Contro 4	5 genes (2)	0.764)	0.356)	0.800)	0.801)
Combo 4	10 genes (1)	0.807 (0.705-	0.138 (0.062-	0.522 (0.350-	0.626 (0.350-
Collido 4		0.884)	0.256)	0.867)	0.751)
Combo 4	4 10 genes (2)	0.809 (0.741-	0.166 (0.103-	0.367 (0.000-	0.716 (0.605-
Conido 4		0.839)	0.229)	0.533)	0.878)
Combo 4	15 comes (1)	0.843 (0.800-	0.122 (0.021-	0.403 (0.000-	0.706 (0.601-
Comoo 4	15 genes (1)	0.911)	0.217)	0.600)	0.885)
Combo 4	15 genes (2)	0.854 (0.800-	0.114 (0.021-	0.356 (0.050-	0.744 (0.589-
Control 4	13 genes (2)	0.920)	0.181)	0.600)	0.8820
Combo 4	All 22 games	0.882 (0.829-	0.087 (0.010-	0.325 (0.000-	0.776 (0.700-
Contou 4	All 23 genes	0.929)	0.145)	0.467)	0.925)

- * Randomly selected sets of genes derived from the Combo sets.
- * Prediction measures are given as means and range of values (in parentheses) for six training/test sets using 24 hour array data and random subsets of genes. Unit of prediction was the animal and the predictive classification was for kidney tubular necrosis observed at 72 hours after treatment.
- ** Standard prediction measures were used as defined in Materials and Methods. As described in Materials and Methods in cases where no prediction was made because the p-value ratio exceeded the cutoff-value (generally 0.5) the non-call was considered to be incorrect.

Table 18 Comparison of Predictivity for True Kidney Toxicity Classification and Random Classification Using Combo Gene Sets and Random Subsets and 24h data

		Accuracy	_		_		_		Ac	CL.	racy		
Gene List*	Correct	Č	lassific	at	ion**	_			_	Classifi	CE	ation**	
	Gene Subset*	Mean	Ť	Min	Ī-	Max	Γ		Mean	Γ	Min.	Ī-	Max.
			T	 	T		Г			T		t	
Combo All	All Genes	0.911	7	0.861	-	0.945	5		0.173	1	0.024	-	0.304
	5 genes (1)	0.581	1	0.324	-	0.778	í		0.265	í	0.076	-	0.381
	5 genes (2)	0.651	7		-	0.813	5		0.240	r	0.093	٠.	0.429
	10 genes (1)	0.740	7			0.875			0.237	17	0.157	-	0.384
	10 genes (2)	0.836	ì			0.929			0.225	ì	0.065	-	0.304
	15 genes (1)	0.823	7	0.718	-	0.884	-		0.252	ì	0.074	-	0.384
	15 genes (2)	0.790	(0.713	-	0.911	Ď		0.228	Ì	0.102	-	0.397
			Ť		T		Ť			Ť		T	
Combo 6	All Genes	0.921	7	0.867	-	0.955)		0.203	1	0.102	-	0.393
	5 genes (1)	0.799	(0.713	-	0.845)		0.238	(0.076	-	0.429
	5 genes (2)	0.757	(0.629	-	0.902)		0.223	1	0.093	-	0.446
	10 genes (1)	0.893	(0.861	-	0.944)		0.225	1	0.037	-	0.473
	10 genes (2)	0.872	(0.806	Ŀ	0.929)		0.207	(0.074	-	0.473
	15 genes (1)	0.910	(0.886	-	0.955)		0.224	(0.086	-	0.545
	15 genes (2)	0.914	(0.883	•	0.964)		0.229	(0.056	-	0.429
Combo 5	All Genes	0.896	(0.929			0.258	(0.157	-	0.348
	5 genes (1)	0.704	(0.591	-	0.841)		0.263	(0.176	-	0.357
	5 genes (2)	0.797	\leq	0.750	-	0.884)		0.279	(0.074	-	0.446
	10 genes (1)	0.805	(0.718	-	0.848)		0.227	(0.105	-	0.381
	10 genes (2)	0.864	(0.838	Ŀ	0.902)		0.254	(0.046	-	0.460
	15 genes (1)	0.900	(0.864	-	0.937)		0.264	(0.148	ŀ	0.336
	15 genes (2)	0.867	(0.829	-	0.929)		0.223	(0.093	Ŀ	0.339
			L		L		Ц			Ц			
Combo 4	All Genes	0.882	(0.929				L			0.348
	5 genes (1)	0.807	\mathbb{L}		•	0.873	_		0.199	(0.130	-	0.321
	5 genes (2)	0.710	Ц		_	0.764	-		0.253	Ľ	0.165	<u> -</u>	0.393
	10 genes (1)	0.807	Ц		-	0.884	-		0.246	Ц	0.111	ŀ	0.393
	10 genes (2)	0.809	Ĺ		_	0.839)		0.239	(0.139	Ŀ	0.411
	15 genes (1)	0.843	Ţ	0.800	-	0.911)		0.203	Ľ	0.056	Ŀ	0.366
	15 genes (2)	0.855	(0.800	-	0.920)		0.191	Ц	0.037	ŀ	0.402
<u> </u>	411.0		Ļ		L		Ļ			Ц	2 1 12	L	
Combo 3	All Genes	0.839	1	0.778	Ľ	0.911	4	 	0.242	Ц	0.148	Ŀ	0.295
0	A 11 G	0.700	_	0.644	H	0.05:	ļ	\longmapsto	0.011	H	0.555	L	0.010
Combo 2	All Genes	0.733	7	0.641	Ŀ	0.821	4	├	0.240	Щ	0.056	٦	0.349
Comba	4".0	0.707	Ļ	0.00=	L	0.007	Ų	\longmapsto	0.000	H	0.000	L	0.004
Combo 1	All Genes	0.787	L	0.667	Ŀ	0.884	4		0.220	Ц	0.083	-	0.321
All Desert	E (4)	0.050	Ļ	0.000	L	0.55	Ų		0.004	Ļļ	0.000	L	0.040
All-Pred	5 genes (1)	0.372	(0.500				Ŋ		_	0.242
	5 genes (2)	0.355	Ţ	_	_	0.518			0.258	Ц	0.102	٦	0.429
	10 genes (1)	0.565	Ĺ			0.661			0.208	Ц	0.130	٦	0.268
	10 genes (2)	0.541 0.502	(0.380		0.696		L	0.246	Ц	0.171	-	0.375

* For Combo lists all genes were used or random subsets. All-Pred used genes randomly selected from genes that were present on the array but not in the predictive list.

** Accuracy = proportion of the total number of predictions that are correct. Non-calls are counted as incorrect predictions. Accuracy was calculated for correct classifications of kidney toxicity assigned to the samples and for randomized classifications in the same proportions as the correct classifications. Values presented are the mean accuracy values for 6 training/test sets with minimum and maximum accuracy values.

Table 19 Distribution of Compounds* in Individual Training and Test Sets for 6 Hour Kidney Data

Training and Test Set A

Set A Train	Set A Train	Set A Test	Set A Test
Negative**	Positive	Negative	Positive
AMPB	CAD	ANIT	CHCL3
AZA	CIS	5-FU	CPHOS
CHLOR	HYD	APAP	GAN
CLO	LPS	BEN	
CYCA	TET	BAP	
DEX		BRB	
DIF		BUS	
DOX		CCL4	
ERY		CAR	
EST		CLOZ	
ETH		CMC	
GEN		CHEX	
MET		DMN	
PHEN		ISON	
PUR		KETO	
TAM		NAL	
TET		PBARB	
		PEG	
		QUIN	
		STRZ	

Random Training and Test Set 1 (Randomly assigned)

Training Set 1 Negative	Training Set 1 Positive	Test Set 1 Negative	Test Set 1 Positive
ANIT	CAD	5-FU	CHCL3
APAP	CIS	AMPB	CPHOS
AZA	GAN	BRB	LPS
BAP	HYD	BUS	
BEN	TET	CCL4	
CAR		CHLOR	
CHEX		CYCA	
CLO		ERY	
CLOZ		EST	
CMC		ETH	
DEX		ISON	
DIF		MET	· · · · · · · · · · · · · · · · · · ·
DMN		STRZ	

		
DOX		
GEN		
KETO		
NAL		
PBARB		
PEG		
PHEN		
PUR		
QUIN		
TAM		

Random Training and Test Set 2 (Randomly assigned)

Training Set 2 Negative	Training Set 2 Positive	Test Set 2 Negative	Test Set 2 Positive
APAP	CHCL3	5-FU	CAD
AZA	CPHOS	AMPB	CIS
BUS	HYD	ANIT	GAN
CAR	LPS	BAP	
CCL4	TET	BEN	
CHLOR		BRB	
CLO		CHEX	
CLOZ		CMC	
DEX		CYCA	
DOX		DIF	
EST		DMN	
ETH		ERY	
GEN		ISON	
KETO			
MET			
NAL			
PBARB			
PEG			
PHEN			
PUR			
QUIN			
STRZ			
TAM			

Random Training and Test Set 3 (Randomly assigned)

m · · · · · · ·	60 · · · · · · · · · · · · · · · · · · ·	TD -+ C-+ 2	Track Cak 2 Decisions I
Training Set 3	Training Set 3	Test Set 3	Test Set 3 Positive
Training Dot 3	2142112118	20200	

Negative	Positive	Negative	
AMPB	CAD	5-FU	HYD
ANIT	CHCL3	APAP	LPS
AZA	CIS	BAP	TET
BEN	CPHOS	BRB	
BUS	GAN	CAR	
CCL4		CLOZ	
CHEX		DEX	
CHLOR		DIF	
CLO		DMN	
CMC		ERY	
CYCA		KETO	
DOX		MET	
EST		PEG	
ETH			
GEN			
ISON			
NAL			
PBARB			
PHEN			
PUR			
QUIN			
STRZ			
TAM			

Random Training and Test Set 4 (Randomly assigned)

Training Set 4 Negative	Training Set 4 Positive	Test Set 4 Negative	Test Set 4 Positive
ANIT	CAD	5-FU	CIS
APAP	CHCL3	AMPB	CPHOS
AZA	GAN	CAR	TET
BAP	HYD	CHEX	
BEN	LPS	CHLOR	
BRB		CLO	
BUS		CMC	
CCL4		DEX	
CLOZ	·	GEN	
CYCA		ISON	
DIF		QUIN	
DMN		STRZ	
DOX		TAM	
ERY			
EST			

ETH	
KETO	
MET	
NAL	
PBARB	
PEG	
PHEN	
PUR	

Random Training and Test Set 5 (Randomly assigned)

Training Set 5 Neg	Training Set 5 Pos	Test Set 5 Neg	Test Set 5 Pos
5-FU	CAD	AMPB	HYD
APAP	CHCL3	ANIT	LPS
AZA	CIS	CCL4	TET
BAP	CPHOS	CHEX	
BEN	GAN	CHLOR	
BRB		CLO	
BUS	-1:	CLOZ	
CAR		DIF	
CMC		DMN	
CYCA		GEN	
DEX		ISON	
DOX	,	NAL	
ERY		PHEN	
EST			
ETH			
KETO			
MET			
PBARB			
PEG			
PUR			
QUIN			
STRZ			
TAM			

- For abbreviations please see Table 1 (Compound, Dose, Abbreviation, etc.)
 Negative= Compounds that did not elicit histopathology (score=1) Positive= Compounds that did elicit histopathology (score of 2 or greater)

Table 20 List of Genes, Whose Expression at 6 h Directly Correlates with Kidney Tubular Necrosis at 72h, Ranked by Pearson Correlation Coefficient

Gene	Combination (No. of Occurrences)
Alpha-tubulin	6
Calreticulin	6
Cathepsin L	6
c-H-ras	6
Cyclin E	6
Gadd153	6
Gadd45	6
Glyceraldehyde 3-phosphate dehydrogenase	6
ID-1	6
Insulin-like growth factor binding protein 1	6
Multidrug resistant protein-3	6
RCT-111	6
RCT-12	6
14-3-3 zeta	5
ADP-ribosylation factor-like protein ARL184	5
Aldehyde dehydrogenase 2	5
Beta-tubulin, class I	5
Decorin	5
Epidermal growth factor	5
Gamma-glutamyl transpeptidase	5
Heme binding protein 23	5
Na/K ATPase alpha-1	5
RCT-103	5
RCT-221	5
RCT-50	5
Pyruvate kinase, muscle	5
Ribosomal protein L13A	5
Superoxide dismutase Mn	5
Thymosin beta-10	5
Tryptophan hydroxylase	5
Zinc finger protein	5
alpha-1,2-fucosyltransferase	4
Aquaporin-3 (AQP3)	4
Cathepsin L, sequence 2	4
Endogenous retroviral sequence, 5' and 3' LTR	4
Hypoxanthine-guanine phosphoribosyltransferase	4
Interferon related developmental regulator IFRD1 (PC4)	4

Interleukin-1 beta	4
Macrophage inflammatory protein-2 alpha	4
Peroxisomal 3-ketoacyl-CoA thiolase 2	4
RCT-102	4
RCT-109	4
RCT-144	4
RCT-24	4
Inositol polyphosphate multikinase (lpmk)	4
RCT-49	4
Protein tyrosine phosphatase alpha	4
Thiol-specific antioxidant (natural killer cell-	
enhancing factor B)	4
Uncoupling protein 2	4
RCT-139	3
Bcl-2	3
Calpactin I heavy chain	3
c-fos	3
Connexin-32	3
Cytochrome P450 1A1	3
Ecto-ATPase	3
Heme oxygenase	3
Hepatocyte growth factor receptor	3
Integrin beta1	3
N-cadherin	3
N-hydroxy-2-acetylaminofluorene sulfotransferase	
(ST1C1)	3
Ornithine decarboxylase	3
RCT-147	3
RCT-182	3
RCT-228	3
RCT-240	3
RCT-245	3
RCT-277	3
RCT-43	3
RCT-83	3
Stathmin	3
Alpha-1 microglobulin/bikunin precursor (Ambp)	2
Aspartoacylase	2
Colony-stimulating factor-1	2
Equilbrative nitrobenzylthioinosine-sensitive	
nucleoside transporter	2
Ferritin H-chain	2
Glutathione S-transferase Yb2 subunit	2
IgE binding protein	2
Macrophage metalloclastase	2

h	
Malate dehydrogenase, cytosolic	2
Matrix metalloproteinase-1	2
MHC class I antigen RT1.A1(f) alpha-chain	2
Monoamine oxidase A	2
NADPH cytochrome P450 reductase	2
RCT-108	2
RCT-127	2
Apoptosis-regulating basic protein	2
RCT-14	2
RCT-146	2
RCT-151	2
RCT-166	2
RCT-179	2
RCT-180	2
Calgranulin B	2
RCT-211	2
RCT-251	2
RCT-274	2
RCT-281	2
Voltage-dependent anion channel 2 (Vdac2)	2
RCT-60	2
RCT-76	2
RCT-80	2
Phosphatidylethanolamine-binding protein	2
PTEN/MMAC1	2
Sterol carrier protein 2	2
Thioredoxin-1 (Trx1)	2
Thioredoxin-2 (Trx2)	2
Tissue inhibitor of metalloproteinases-1	2
Transferrin	2
Hemoglobin alpha 1 chain (alternate clone)	1
60S ribosomal protein L6 (alternate clone 1)	i
Acetylcholine receptor epsilon	-
Aldehyde dehydrogenase 1	i
Alpha-1 acid glycoprotein	i
Alpha-fibrinogen	1 1
Apolipoprotein CIII	1 1
Argininosuccinate lyase	1
ATP-stimulated glucocorticoid-receptor	
translocation promoter (Gyk)	1
Calbindin-D (9K)	1
Carbamyl phosphate synthetase I	1
Caspase 7	
	1
CD44 metastasis suppressor gene	1
Cholesterol 7-alpha-hydroxylase (P450 VII)	11

c-jun	1 1
c-myc	1
Cyclin dependent kinase 4	1
Cytochrome c oxidase subunit IV	1
Cytochrome P450 2C11	1
DNA topoisomerase I	1
	1
Dynein light chain 1	i
Focal adhesion kinase (pp125FAK)	1
Gamma-actin, cytoplasmic	-
Hemoglobin alpha 1 chain	1
Hepatocyte nuclear factor 4	
Hypoxia-inducible factor 1 alpha	1
Intracellular calcium-binding protein (MRP8)	1
Jagged 1	1
Major basic protein 1	1
Methylacyl-CoA racemase alpha	1
Multidrug resistant protein-2	11
Na/H antiporter (APNH1)	11
NADP-dependent isocitrate dehydrogenase,	1 1
cytosolic	1
NGF-inducible anti-proliferative putative secreted	1
protein (PC3)	1
Ornithine aminotransferase	1
PAR interacting protein	1
Peroxisome assembly factor 2	1
RCT-142	1
RCT-148	1
RCT-153	1
RCT-177	1
RCT-194	1
RCT-198	1
	1
RCT-205	1
RCT-214	1
RCT-246	
RCT-268	1
RCT-28	1
RCT-280	1
RCT-40	1
RCT-53	1
RCT-59	1
RCT-61	1
RCT-64	1
RCT-66	1
RCT-68	1
RCT-74	1

RCT-94	1
Phosphoglycerate kinase	1
Retinoid X receptor alpha	1
Sarcoplasmic reticulum calcium ATPase	1
Serotonin transporter (SERT)	1
Superoxide dismutase Cu/Zn	1
Thymidylate synthase	1
Transitional endoplasmic reticulum ATPase	1
Very long-chain acyl-CoA synthetase	1
VL30 element	1

Table 21 List of Genes, Whose Expression at 6 h Inversely Correlates with Kidney Tubular Necrosis at 72h, Ranked by Spearman Correlation Coefficient

- C	Correlation
- Gene	Coefficient
RCT-229	-0.35021
T-cell cyclophilin	-0.35156
Phosphoglycerate kinase	-0.35228
NADP-dependent isocitrate dehydrogenase, cytosolic	-0.35233
Senescence marker protein-30	-0.35299
RCT-102	-0.35413
Alpha-1 acid glycoprotein	-0.35452
RCT-41	-0.35839
Protein tyrosine phosphatase alpha	-0.36371
Cytochrome P450 2B1/2B2	-0.36443
CCR-5	-0.36576
RCT-218	-0.37234
RCT-30	-0.37235
RCT-245	-0.37273
Thymidylate synthase	-0.37344
Cytochrome c oxidase subunit I (alternate clone)	-0.37359
Malate dehydrogenase, cytosolic	-0.37368
RCT-260	-0.37504
RCT-128	-0.37762
RCT-55	-0.37788
Cytochrome P450 2A3	-0.38623
RCT-29	-0.38647
Transforming growth factor-beta3	-0.38899
Vesicular monoamine transporter (VMAT)	-0.3894
Adrenomedullin	-0.38953
RCT-28	-0.39362
RCT-83	-0.39619
RCT-155	-0.39701
RCT-98	-0.39733
Iron-responsive element-binding protein	-0.4082
Mullerian inhibiting substance	-0.40974
Inositol polyphosphate multikinase (lpmk)	-0.41105
Sarcoplasmic reticulum calcium ATPase	-0.41428
Na/H antiporter (APNH1)	-0.41496
Maspin	-0.41712
Osteoactivin	-0.42233
Empty	-0.4236
Cytochrome P450 1A1	-0.42401
RCT-246	-0.42616

Protein kinase C alpha	-0.43582
Cyclin D1	-0.43742
Caveolin-3	-0.44097
RCT-3	-0.44517
RCT-69	-0.4463
RCT-80	-0.44717
RCT-194	-0.4479
Carbamyl phosphate synthetase I	-0.44845
RCT-119	-0.45514
Selenoprotein P	-0.45557
RCT-112	-0.46143
Hepatocyte nuclear factor 4	-0.46336
Macrophage metalloelastase	-0.46368
RCT-74	-0.46524
Decorin	-0.46894
RCT-139	-0.47817
Very long-chain acyl-CoA synthetase	-0.48218
Hepatocyte growth factor receptor	-0.48369
RCT-270	-0.48392
RCT-182	-0.48529
Histone 2A	-0.51079
Phospholipase D	-0.51088
Fatty acyl-CoA oxidase	-0.5219
RCT-268	-0.52288
Gamma-actin, cytoplasmic	-0.54554
Aquaporin-3 (AQP3)	-0.5821
Epidermal growth factor	-0.62877

Table 22 List of genes whose expression at 6 hours is predictive of kidney toxicity at 72 hours

Gene	Combination (No. of Occurrences)	
Alpha-tubulin	6	
Calreticulin	6	
Cathepsin L	6	
с-Н-газ	6	
Cyclin E	6	
Gadd153	6	
Gadd45	6	
Glyceraldehyde 3-phosphate dehydrogenase	6	
ID-1	6	
Insulin-like growth factor binding protein 1	6	
Multidrug resistant protein-3	6	
RCT-111	6	
RCT-12	6	
14-3-3 zeta	5	
ADP-ribosylation factor-like protein ARL184	5	
Aldehyde dehydrogenase 2	5	
Beta-tubulin, class I	5	
Decorin	5	
Epidermal growth factor	5	
Gamma-glutamyl transpeptidase	5	
Heme binding protein 23	5	
Na/K ATPase alpha-1	5	
RCT-103	5	
RCT-221	5	
RCT-50	5	
Pyruvate kinase, muscle	5	
Ribosomal protein L13A	5	
Superoxide dismutase Mn	5	
Thymosin beta-10	5	
Tryptophan hydroxylase	5	
Zinc finger protein	5	
alpha-1,2-fucosyltransferase	4	
Aquaporin-3 (AQP3)	4	
Cathepsin L, sequence 2	4	
Endogenous retroviral sequence, 5' and 3' LTR	4	
Hypoxanthine-guanine	4	
phosphoribosyltransferase	4	
Interferon related developmental regulator IFRD1 (PC4)	4	
Interleukin-1 beta	4	
		

Macrophage inflammatory protein-2 alpha	4
Peroxisomal 3-ketoacyl-CoA thiolase 2	4
RCT-102	4
RCT-109	4
RCT-144	4
RCT-24	44
Inositol polyphosphate multikinase (lpmk)	4
RCT-49	4
Protein tyrosine phosphatase alpha	4
Thiol-specific antioxidant (natural killer cell-	4
enhancing factor B)	4
Uncoupling protein 2	4
RCT-139	3
Bcl-2	3
Calpactin I heavy chain	3
c-fos	3
Connexin-32	3
Cytochrome P450 1A1	3
Ecto-ATPase	3
Heme oxygenase	3
Hepatocyte growth factor receptor	3
Integrin beta1	3
N-cadherin	3
N-hydroxy-2-acetylaminofluorene	
sulfotransferase (ST1C1)	3
Ornithine decarboxylase	3
RCT-147	3
RCT-182	3
RCT-228	3
RCT-240	3
RCT-245	3
RCT-277	3
RCT-43	3
RCT-83	3
Stathmin	3
Alpha-1 microglobulin/bikunin precursor	
(Ambp)	2
Aspartoacylase	2
Colony-stimulating factor-1	2
Equilbrative nitrobenzylthioinosine-sensitive	
	2
nucleoside transporter	2
Ferritin H-chain	2
Glutathione S-transferase Yb2 subunit	2
IgE binding protein	2
Macrophage metalloelastase	1 4

Malate dehydrogenase, cytosolic	2
Matrix metalloproteinase-1	2
MHC class I antigen RT1.A1(f) alpha-chain	2
Monoamine oxidase A	2
NADPH cytochrome P450 reductase	2
RCT-108	2
RCT-127	2
Apoptosis-regulating basic protein	2
RCT-14	2
RCT-146	2 2
RCT-151	2
RCT-166	2
RCT-179	2
RCT-180	2
Calgranulin B	2
RCT-211	2
RCT-251	2
RCT-274	2
RCT-281	2
Voltage-dependent anion channel 2 (Vdac2)	2
RCT-60	2
RCT-76	2
RCT-80	2
Phosphatidylethanolamine-binding protein	2
PTEN/MMAC1	2
Sterol carrier protein 2	2
Thioredoxin-1 (Trx1)	2
Thioredoxin-2 (Trx2)	2
Tissue inhibitor of metalloproteinases-1	2
Transferrin	2
Hemoglobin alpha 1 chain (alternate clone)	1
60S ribosomal protein L6 (alternate clone 1)	1
Acetylcholine receptor epsilon	1
Aldehyde dehydrogenase 1	1
Alpha-1 acid glycoprotein	1
Alpha-fibrinogen	1
Apolipoprotein CIII	1
Argininosuccinate lyase	1
ATP-stimulated glucocorticoid-receptor	1
translocation promoter (Gyk)	1
Calbindin-D (9K)	1
Carbamyl phosphate synthetase I	1
Caspase 7	1
CD44 metastasis suppressor gene	1
Cholesterol 7-alpha-hydroxylase (P450 VII)	1
<u> </u>	L

	1
c-jun	1
c-myc	1
Cyclin dependent kinase 4	1
Cytochrome c oxidase subunit IV	1
Cytochrome P450 2C11	1
DNA topoisomerase I	1
Dynein light chain 1	1
Focal adhesion kinase (pp125FAK)	1
Gamma-actin, cytoplasmic	11
Hemoglobin alpha 1 chain	1
Hepatocyte nuclear factor 4	1
Hypoxia-inducible factor 1 alpha	1
Intracellular calcium-binding protein (MRP8)	1
Jagged 1	1
Major basic protein 1	1
Methylacyl-CoA racemase alpha	1
Multidrug resistant protein-2	1
Na/H antiporter (APNH1)	1
NADP-dependent isocitrate dehydrogenase,	1
cytosolic	1
NGF-inducible anti-proliferative putative	1
secreted protein (PC3)	ı
Ornithine aminotransferase	1
PAR interacting protein	1
Peroxisome assembly factor 2	1
RCT-142	1
RCT-148	1
RCT-153	1
RCT-177	1
RCT-194	1
RCT-198	1
RCT-205	1
RCT-214	1
RCT-246	1
RCT-268	1
RCT-28	1
RCT-280	1
RCT-40	1
RCT-53	1
RCT-59	1
RCT-61	1
RCT-64	1
RCT-66	1
RCT-68	i
RCT-74	1
1.0. /7	<u> </u>

RCT-94	1
Phosphoglycerate kinase	1
Retinoid X receptor alpha	1
Sarcoplasmic reticulum calcium ATPase	1
Serotonin transporter (SERT)	11
Superoxide dismutase Cu/Zn	1
Thymidylate synthase	1
Transitional endoplasmic reticulum ATPase	1
Very long-chain acyl-CoA synthetase	11
VL30 element	1

^{*} Combination category is the number of training/test set gene list occurrences.

Table 23 Kidney Toxicity Compound-Dose Prediction Values for 6 Hour Data Predictive Genes (Combined List and Subsets)

	Number	Prediction Measure*			
Gene Set	of Genes	Accuracy**	False Positive**	False Negative**	Geometric Mean**
Combo All	176	0.719 (0.571-0.793)	0.258 (0.12-0.45)	0.442 (0.167-0.8)	0.61 (0.42-0.75)
Combo 6	15	0.747 (0.567-0.8)	0.217 (0.08-0.48)	0.489 (0.167-1.0)	0.542 (0-0.8)
Combo 5	16	0.536 (0.33-0.7)	0.473 (0.2-0.76)	0.469 (0.2-0.8)	0.48 (0.4-0.65)
Combo 4	19	0.731 (0.607-0.875)	0.224 (0.05-0.4)	0.525 (0.2-0.8)	0.584 (0.4-0.74)
Combo 3	21	0.635 (0.33-0.83)	0.348 (0.04-0.68)	0.514 (0.17-0.8)	0.514 (0.35-0.63)
Combo 2	38	0.607 (0.35-0.83)	0.358 (0.04-0.68)	0.63 (0.4-1.0)	0.402 (0-0.6)
Combo 1	67	0.588 (0.42-0.82)	0.406 (0.11-0.64)	0.497 (0.2-0.8)	0.509 (0.39-0.63)

Table 24 Distribution of Compounds* in Individual Training and Test Sets for 72 Hour Kidney Data

Training and Test Set A

Training Set A	Training Set A	Test Set A	Test Set A Positive
Negative**	Positive	Negative	
AMPB	CIS	ANIT	CHCL3
AZA	HYD	5-FU	CPHOS
CAD	LPS	APAP	GAN
CHLOR	TET	BEN	
CLO		BAP	
CYCA		BRB	
DEX		BUS	
DIF		CCL4	
DOX		CAR	
ERY		CLOZ	
EST		CMC	
ETH		CHEX	
GEN		DMN	
MET		ISON	
PHEN		KETO	
PUR		NAL	
TAM		PBARB	
TET		PEG	
		QUIN	
		STRZ	
		THEO	

Training Set 1 Negative	Training Set 1 Positive	Test Set 1 Negative	Test Set 1 Positive
AMPB	CPHOS	5-FU	CHCL3
ANIT	GAN	APAP	CIS
AZA	LPS	BEN	HYD
BAP	TET	BRB	
CAD ·		BUS	
CAR		CLOZ	
CCL4		CMC	
CHEX		DIF	
CHLOR		DMN	
CLO		DOX	
CYCA		ERY	
DEX		ETH	

EST	NAL	
GEN	PEG	
ISON	PUR	
KETO	STRZ	
MET	TAM	
PBARB		
PHEN		
QUIN		
THEO		

Training and Test Set 2

Training Set 2 Negative	Training Set 2 Positive	Test Set 2 Negative	Test Set 2 Positive
AMPB	CHCL3	5-FU	CPHOS
APAP	CIS	ANIT	LPS
AZA	ĞAN	BRB	TET
BAP	HYD	CAD	
BEN		CHEX	
BUS		CHLOR	
CAR		CLOZ	
CCL4		CMC	
CLO		DEX	
CYCA		DMN	
DIF		GEN	
DOX		NAL	
ERY		PUR	
EST		QUIN	
ETH		STRZ	
ISON	·	TAM	
KETO		THEO	
MET			
PBARB			
PEG			
PHEN			

Training Set 3 Negative	Training Set 3 Positive	Test Set 3 Negative	Test Set 3 Positive
ANIT	CHCL3	5-FU	CPHOS
APAP	CIS	AMPB	LPS
BEN	GAN	AZA	TET
BUS	HYD	BAP	
CAD		BRB	

CAR	CCL4	
CHLOR	CHEX	
CLO	CYCA	
CLOZ	DIF	
CMC	DOX	
DEX	ERY	
DMN	GEN	
EST	ISON	
ETH	PBARB	
KETO	PHEN	
MET	PUR	
NAL	STRZ	
PEG		
QUIN		
TAM		
THEO		·

Training Set 4 Negative	Training Set 4 Positive	Test Set 4 Negative	Test Set 4 Positive
5-FU	CHCL3	AMPB	CPHOS
APAP	CIS	ANIT	HYD
BEN	GAN	AZA	LPS
CAR	TET	BAP	
CHEX		BRB	
CHLOR		BUS	
CLO		CAD	
CLOZ		CCL4	
CMC		DEX	
CYCA		ERY	
DIF		EST	
DMN		ETH_	
DOX		KETO	
GEN		PBARB	
ISON		QUIN	
MET		TAM	
NAL		THEO	
PEG			
PHEN			
PUR			
STRZ			

Training Set 5 Negative	Training Set 5 Positive	Test Set 5 Negative	Test Set 5 Positive
AZA	CPHOS	5-FU	CHCL3
BAP	GAN	AMPB	CIS
BRB	HYD	ANIT	TET
BUS	LPS	APAP	
CAR		BEN	
CHEX		CAD	
CHLOR		CCL4	
CLO		CMC	
CLOZ		DEX	
CYCA		ERY	
DIF		EST	
DMN		ETH	
DOX		GEN	
KETO		ISON	
NAL		MET	
PBARB		QUIN	
PEG		THEO	
PHEN			
PUR			
STRZ			
TAM			

<sup>For abbreviations please see Table 1 (Compound, Dose, Abbreviation, etc.)
Negative= Compounds that did not elicit histopathology (score=1)</sup> Positive= Compounds that did elicit histopathology (score of 2 or greater)

Table 25 List of Genes, Whose Expression at 72 h Directly Correlates with Kidney Tubular Necrosis at 72h, Ranked by Pearson Correlation Coefficient

	Correlation
Gene	Coefficient
Clusterin	0.6981305
RCT-274	0.665856
Gadd153	0.6007961
Multidrug resistant protein-1	0.5731272
Alpha-tubulin	0.5714773
Dynein light chain 1	0.5593824
Multidrug resistant protein-3	0.5498183
Beta-tubulin, class I	0.5419734
Tissue inhibitor of metalloproteinases-1	0.5197937
CD44 metastasis suppressor gene	0.511474
Thymosin beta-10	0.5042843
Calpactin I heavy chain	0.4974941
Alpha-fibrinogen	0.4904063
RCT-207	0.4767162
RCT-127	0.4754919
Uncoupling protein 2	0.461348
Beta-actin, sequence 2	0.4559092
MHC class I antigen RT1.A1(f) alpha- chain	0.4462703
IgE binding protein	0.444906
Ceruloplasmin	0.4436448
c-myc	0.442725
RCT-24	0.4374066
Insulin-like growth factor binding protein	0.4345538
RCT-50	0.4314294
Cyclin G	0.4260349
RCT-12	0.419707
RCT-59	0.4164921
Zinc finger protein	0.4164407
Alpha-1 microglobulin/bikunin precursor (Ambp)	0.4004037
Complement component C3	0.3995206
RCT-49	0.3986999
Liver fatty acid binding protein	0.3981068
Monocyte chemotactic protein receptor (CCR2)	0.3974403
RCT-240	0.3924163
RCT-126	0.3918833
<u></u>	

RCT-241	0.3856618
Integrin beta-4	0.3792303
RCT-267	0.3748433
Emerin	0.3741759
Glyceraldehyde 3-phosphate dehydrogenase	0.3684493
Vascular cell adhesion molecule 1 (VCAM-1)	0.3678838
Ribosomal protein L13A	0.3664144
Hypoxanthine-guanine phosphoribosyltransferase	0.3659874
Suppressor of cytokine signaling 3	0.3630873
Activating transcription factor 3	0.3625623
Major acute phase protein alpha-1	0.3620322
Major basic protein 1	0.3614528
RCT-258	0.3607649
RCT-293	0.3592598
RCT-138	0.3578431
Alanine aminotransferase	0.3506821

Table 26 List of Genes, Whose Expression at 72 h Inversely Correlates with Kidney Tubular Necrosis at 72h, Ranked by Spearman Correlation Coefficient

Gene	Correlation
Gene	Coefficient
RCT-42	-0.25083
Membrane bound cytochrome b5	-0.25275
RCT-132	-0.25352
RCT-99	-0.25374
Four repeat ion channel	-0.25412
RCT-62	-0.25524
RCT-137	-0.25548
AT-1	-0.25881
UDP-glucuronosyltransferase 2B	-0.26029
RCT-214	-0.26618
Methylacyl-CoA racemase alpha	-0.26791
Cyclin D1	-0.27006
Organic anion transporting polypeptide 1	-0.27038
Cystatin C	-0.27304
Matrin F/G	-0.27305
RCT-181	-0.27455
RCT-25	-0.27625
RCT-143	-0.27626
RCT-93	-0.28389
Protein tyrosine phosphatase alpha	-0.28421
RCT-79	-0.28485
Caspase 2	-0.28686
Vascular endothelial growth factor	-0.28716
Glutathione S-transferase Ya	-0.28785
Senescence marker protein-30	-0.29192
RCT-178 .	-0.29272
Organic anion transporter K1	-0.29329
RCT-256	-0.2943
25-DX	-0.29444
RCT-22	-0.29564
Sarcoplasmic reticulum calcium ATPase	-0.2974
RCT-280	-0.29749
RCT-148	-0.30758
Arginosuccinate synthetase 1	-0.30894
RCT-142	-0.31028
RCT-260	-0.31039
Apoptosis-regulating basic protein	-0.31798
Organic anion transporter 3	-0.32302

Ornithine aminotransferase	-0.32748
Hemoglobin alpha 1 chain (alternate clone)	-0.33449
Cytochrome P450 2A3	-0.33951
Hemoglobin alpha 1 chain	-0.34347
Selenoprotein P	-0.34685
Cytochrome P450 2C23	-0.34696
Pancreatic secretory trypsin inhibitor type II (PSTI-II)	-0.34712
RCT-38	-0.34982
Iron-responsive element-binding protein	-0.3572
RCT-10	-0.36278
Epidermal growth factor	-0.36487
Sodium/glucose cotransporter 1	-0.36594
RCT-212	-0.36604
Cytochrome c oxidase subunit II	-0.36678
RCT-89	-0.37036
Acyl-CoA dehydrogenase, medium chain	-0.37526
RCT-39	-0.37793
RCT-34	-0.37992
Malate dehydrogenase, cytosolic	-0.38206
D-dopachrome tautomerase	-0.38497
RCT-87	-0.3857
Pancreatic secretory trypsin inhibitor type II (PSTI-II) (alternate clone)	-0.40004
RCT-101	-0.40144
RCT-69	-0.40543
Thiopurine methyltransferase	-0.41035
Very long-chain acyl-CoA synthetase	-0.41248
Fatty acyl-CoA oxidase	-0.42391
RCT-287	-0.4351
Dimethylarginine dimethylaminohydrolase	-0.4413
RCT-182	-0.44238
RCT-291	-0.4606
3-hydroxyisobutyrate dehydrogenase	-0.48712

Table 27 List of genes whose expression at 72 hours is predictive of kidney toxicity at 72 hours

•	Combinations
Gene	(No of
	Occurrences)
Alanine aminotransferase	6
Alpha-tubulin	6
Beta-actin, sequence 2	6
Beta-tubulin, class I	6
Gadd153	6
Glyceraldehyde 3-phosphate dehydrogenase	6
Insulin-like growth factor binding protein 1	6
Integrin beta-4	6
Major basic protein 1	6
MHC class I antigen RT1.A1(f) alpha-chain	6
Monocyte chemotactic protein receptor (CCR2)	6
Multidrug resistant protein-3	6
RCT-211	6
RCT-24	6
RCT-240	6
RCT-274	6
Alpha-fibrinogen	5
Calpactin I heavy chain	5
CD44 metastasis suppressor gene	5
Ceruloplasmin	5
c-myc	5
Dynein light chain 1	5
Emerin	5
Hypoxanthine-guanine phosphoribosyltransferase	5
IgE binding protein	5
Liver fatty acid binding protein	5
Major acute phase protein alpha-1	5
Multidrug resistant protein-1	5
RCT-12	5
RCT-127	5
RCT-182	5
RCT-293	5
RCT-49	5
RCT-50	5
RCT-59	5
Ribosomal protein L13A	5
Suppressor of cytokine signaling 3	5
Thymosin beta-10	5

Tissue inhibitor of metalloproteinases-1	5
	5
Uncoupling protein 2	
Pancreatic secretory trypsin inhibitor type II (PSTI-	4
II) (alternate clone)	4
14-3-3 zeta	4
Activating transcription factor 3	
Alpha-1 microglobulin/bikunin precursor (Ambp)	4
Clusterin	4
Complement component C3	4
Cyclin dependent kinase 4	4
Fatty acyl-CoA oxidase	4
Gadd45	4
Na/K ATPase alpha-1	4
Notch 1	4
Pancreatic secretory trypsin inhibitor type II (PSTI-	4
II)	
RCT-126	4
RCT-138	4
RCT-207	4
RCT-241	4
RCT-267	4
RCT-68	4
Stathmin	4
Superoxide dismutase Mn	4
Thrombomodulin	4
Vascular cell adhesion molecule 1 (VCAM-1)	4
Zinc finger protein	4
25-hydroxyvitamin D3-1 alpha-hydroxylase	3
3-hydroxyisobutyrate dehydrogenase	3
3-methyladenine DNA glycosylase	3
Annexin V	3
Bax (alpha)	3
Carbonyl reductase	3
Caspase 2	3
c-jun	3
Cyclin G	3
Cytochrome P450 2C23	3
D-dopachrome tautomerase	3
	3
Dimethylarginine dimethylaminohydrolase	3
DNA binding protein inhibitor ID2	3
Ecto-ATPase	
Epidermal growth factor	3
Interleukin-10	3
Macrophage inflammatory protein-2 alpha	3
NADPH cytochrome P450 oxidoreductase	3

WO 03/100030

RCT-101	3
RCT-109	3
RCT-146	3
RCT-155	3
RCT-192	3
RCT-212	3
RCT-258	3
RCT-287	3
RCT-291	3
RCT-296	3
RCT-87	3
Preproalbumin	3
RAD	3
Thioredoxin-2 (Trx2)	3
Very long-chain acyl-CoA synthetase	3
25-DX	2
Activin receptor type II	2
Aldehyde dehydrogenase, microsomal	2 2
Cathepsin L, sequence 2	2
Cathepsin S	2
CCR-5	2
CXCR4	2
Cyclin D1	2
Cyclin dependent kinase 2	2
Cyclooxygenase 2	2
Cytochrome c oxidase subunit II	2
Cytochrome P450 1A1	2
Diacylglycerol kinase zeta	2
E-selectin	2
Glucose-6-phosphate dehydrogenase	2
ID-1	2
Malate dehydrogenase, cytosolic	2
Monoamine oxidase B	2
Myelin basic protein	2
Organic anion transporter K1	2
RCT-10	2
RCT-141	2
RCT-145	2
RCT-215	2
RCT-237	2
RCT-271	2
RCT-34	2
RCT-39	2
RCT-6	2
RCT-66	2

RCT-69	2
RCT-89	2
RCT-92	2
Phosphatidylethanolamine-binding protein	2
Prostaglandin H synthase	2
Selenoprotein P	2
Senescence marker protein-30	2
Sodium/glucose cotransporter 1	2
Thiol-specific antioxidant (natural killer cell-	2
enhancing factor B)	2
Thiopurine methyltransferase	2
Tissue factor	2
RCT-171	1
Hemoglobin alpha 1 chain (alternate clone)	1
3-beta-hydroxysteroid dehydrogenase (HSD3B1)	1
60S ribosomal protein L6	1
Acyl-CoA dehydrogenase, medium chain	1
ADP-ribosylation factor-like protein ARL184	1
Aldehyde dehydrogenase 2	1
Aryl hydrocarbon receptor	1
Aspartoacylase	1
Calcineurin-B	1
Calreticulin	1
Carbonic anhydrase III, sequence 2	1
Cathepsin L	1
Cellular nucleic acid binding protein (CNBP)	1
c-H-ras	1
Connexin-32	1
Cystatin C	1
Cytochrome P450 1B1	1
Cytochrome P450 2B1/2B2	1
Cytochrome P450 2C11	1
DNA topoisomerase I	1
Ferritin H-chain	1
Gamma-glutamyl transpeptidase	1
Glutathione S-transferase mu-2	1
Glycine methyltransferase	1
Heme oxygenase	1
Hemoglobin alpha 1 chain	1
Hepatocyte nuclear factor 4	1
Interferon related developmental regulator IFRD1	
(PC4)	1
Interleukin-1 beta	1
Interleukin-18	1
Iron-responsive element-binding protein	1

Drawin and Inspections 1	1
Matrix metalloproteinase-1	
Methylacyi-CoA racemase alpha	1
Monoamine oxidase A	1
Mx1 protein	11
Na/H antiporter (APNH1)	11
N-cadherin	1
N-hydroxy-2-acetylaminofluorene sulfotransferase (ST1C1)	1
Organic anion transporter 3	1
Organic anion transporter 5 Organic anion transporting polypeptide 1	1
Ornithine aminotransferase	i
	i
Osteopontin RCT 165	i
	1 1
RCT-128	1
Apoptosis-regulating basic protein	1
RCT-137	
RCT-143	11
RCT-148	1
RCT-149	1
RCT-161	11
RCT-166	1
RCT-179	1
RCT-180	1
RCT-181	11
RCT-193	1
RCT-197	1
Vacuole membrane protein 1	1
RCT-22	1
.RCT-228	1
RCT-242	1
RCT-244	1
RCT-26	1
RCT-260	1
RCT-264	i
RCT-280	1
RCT-284	1
RCT-288	1
RCT-295	1
RCT-38	1
RCT-45	i
RCT-62	1
RCT-64	1
RCT-99	1
	1
Poly(ADP-ribose) polymerase	1
Protein tyrosine phosphatase alpha	1 1

Pyruvate kinase, muscle	1
Ribosomal protein S8	1
Ribosomal protein S9	1
Sarcoplasmic reticulum calcium ATPase	1
Thioredoxin-1 (Trx1)	1
Tryptophan hydroxylase	1
UDP-glucuronosyltransferase	1
Urokinase plasminogen activator receptor	1
Vascular endothelial growth factor	1

^{*} Combination category is the number of training/test set gene list occurrences.

Table 28 Kidney Toxicity Compound-Dose Prediction Values for 72 Hour Data Predictive Genes (Combined List and Subsets)

	Number	I	Prediction		
Gene Set	of Genes	Accuracy**	False Positive**	False Negative**	Geometric Mean**
Combo All	225	0.882 (0.643-0.974)	0.086 (0-0.364)	0.361 (0.167-0.75)	0.747 (0.500 - 0.913)
Combo 6	16	0.808 (0.607-0.902)	0.166 (0-0.455)	0.444 (0.167-1.0)	0.601 (0-0.869)
Combo 5	27	0.742 (0.429-0.921)	0.228 (0.026-0.591)	0.486 (0.333-0.75)	0.616 (0.452-0.803)
Combo 4	23	0.828 (0.5-0.917)	0.138 (0-0.545)	0.486 (0.25-1.0)	0.607 (0-0.839)
Combo 3	33	0.705 (0.357-0.902)	0.226 (0.027-0.591)	0.722 (0.5-1.0)	0.414 (0-0.649)
Combo 2	41	0.661 (0.357-0.868)	0.288 (0.031-0.591)	0.681 (0.333-1.0)	0.412 (0-0.690)
Combo 1	90	0.783 (0.536-0.941)	0.179 (0.027-0.455)	0.500 (0.167-1.0)	0.572 (0-0.896)

- * Prediction measures are given as means and range of values (in parentheses) for six training/test sets using 72 hour array data and gene lists. Unit of prediction was the animal and the predictive classification was for kidney tubular necrosis observed at 72 hours after treatment.
- ** Standard prediction measures were used as defined in Materials and Methods. As described in Materials and Methods In these analyses cases where no prediction was made because the p-value ratio exceeded the cutoff-value (generally 0.5) the non-call was considered to be incorrect.

Table 29 Predictive Performance of Various Models

		Mod						
Models			Testin	g Sets				
1/100015	Set 1	Set A	Set 3	Set 2	Set 5	Set 4	Mean	
KNN (Log Trans)	0.92489	0.878164	0.86155	0.850047	0.952774	0.739369	0.867799	
Logistic	0.828702	0.60604	0.851969	0.803219	0.74162	0.802773	0.772387	
Centroid	0.863092	0.892898	0.61051	0.596941	0.849274	0.762296	0.762502	
Nnet (Log Trans)	0.831605	0.83795	0.676123	0.722401	0.703167	0.663883	0.739188	
Logistic (Log Trans)	0.826518	0.603062	0.847566	0.753487	0.625389	0.551093	0.701186	
Tree	0.537733	0.879581	0.921401	0.794245	0.544671	0.516398	0.699005	
Nnet	0.769916	0.83395	0.565445	0.714419	0.667083	0.607362	0.693029	
Mean	0.797494	0.790235	0.76208	0.747823	0.726283	0.663311		
Performance Measu	Performance Measure = Geometric Mean of the True Positives and True Negatives							
Best Performance in	n Bold							
Centroid values are av	veraged over	5 runs					<u> </u>	

Table 30 Logistic Discrimination Coefficients

	Absolute Value of Coefficient	Coefficient
PAR interacting.protein	3948.7722	3948.7722
RCT-145	1756.2178	-1756.2178
Gadd153	1502.4772	1502.4772
Ribosomal protein L13A	1497.8289	-1497.8289
Alpha tubulin	1060.1632	1060.1632
Cathepsin L sequence 2	821.1935	821.1935
RCT 271	564.5671	-564.5671
c-myc	514.0376	-514.0376
Uncoupling protein 2	483.928	483.928

Table 31 Prediction of Kidney Toxicity for Samples External to Database

Predicting Gene Set*	Treatment	Animal	Prediction	P-Value Ratio	Prediction Values** No Votes	No P- Value	Yes Votes	Yes P Value
Combo 6	Cephaloridine 1500 mg/kg i.p. 24 h	501	yes	0.000	0	1	10	0
Combo 6	Cephaloridine 1500 mg/kg i.p. 24 h	506	yes	0.000	0	1	10	0
Combo 6	Cephaloridine 1500 mg/kg i.p. 24 h	508	yes	0.000	0	1	10	0
Combo 6	Cisplatin 20 mg/kg i.p. 24 h	602	yes	0.000	2	1	8	0
Combo 6	Cisplatin 20 mg/kg i.p. 24 h	603	yes	0.000	0	1	10	0
Combo 6	Cisplatin 20 mg/kg i.p. 24 h	604	yes	0.000	0	1	10	0
Combo 5	Cephaloridine 1500 mg/kg i.p. 24 h	501	yes	0.001	4	1	6	0.001
Combo 5	Cephaloridine 1500 mg/kg i.p. 24 h	506	yes	0.000	1	1	9	0
Combo 5	Cephaloridine 1500 mg/kg i.p. 24 h	508	yes	0.000	2	1	8	0
Combo 5	Cisplatin 20 mg/kg i.p. 24 h	602	yes	0.208	7	0.945	3	0.197
Combo 5	Cisplatin 20 mg/kg i.p. 24 h	603	yes	0.208	7	0.945	3	0.197
Combo 5	Cisplatin 20 mg/kg i.p. 24 h	604	yes	0.001	4	1	6	0.001
Combo 4	Cephaloridine 1500 mg/kg i.p. 24 h	501	yes	0.000	1 .	1	9	0
Combo 4	Cephaloridine 1500 mg/kg i.p. 24 h	506	yes	0.000	2	1	8 .	0
Combo 4	Cephaloridine 1500 mg/kg i.p. 24 h	508	yes	0.000	0	1	10	0
Combo 4	Cisplatin 20 mg/kg i.p. 24 h	602	yes	0.010	5	0.999	5	0.01
Combo 4	Cisplatin 20 mg/kg i.p. 24 h	603	yes	0.000	1	1	9	0
Combo 4	Cisplatin 20 mg/kg i.p. 24 h	604	yes	0.000	1	1	9	0
Combo 3	Cephaloridine 1500 mg/kg i.p. 24 h	501	yes	0.001	4	1	6	0.001
Combo 3	Cephaloridine 1500 mg/kg i.p. 24 h	506	yes	0.208	7	0.945	3	0.197
Combo 3	Cephaloridine 1500 mg/kg i.p. 24 h	508		0.606	8	0.803	2	0.487
Combo 3	Cisplatin 20 mg/kg i.p. 24 h	602	yes	0.208	7	0.945	3	0.197
Combo 3	Cisplatin 20 mg/kg i.p. 24 h	603	yes	0.001	4	1	6	0.001
Combo 3	Cisplatin 20 mg/kg i.p. 24 h	604	yes	0.055	6	0.99	4	0.055
Combo 2	Cephaloridine 1500 mg/kg i.p.	501	yes	0.000	3	1	7	0

			·		<u> </u>			
	24 h							
Combo 2	Cephaloridine 1500 mg/kg i.p. 24 h	506	yes	0.000	3	1	7	0
Combo 2	Cephaloridine 1500 mg/kg i.p. 24 h	508	yes	0.000	3	1	7	0
Combo 2	Cisplatin 20 mg/kg i.p. 24 h	602	yes	0.010	5	0.999	5	0.01
Combo 2	Cisplatin 20 mg/kg i.p. 24 h	603	yes	0.000	3	1	7	0
Combo 2	Cisplatin 20 mg/kg i.p. 24 h	604	yes	0.000	2	1	8	0
Combo 1	Cephaloridine 1500 mg/kg i.p. 24 h	501	yes	0.000	1	1	9	- 0
Combo 1	Cephaloridine 1500 mg/kg i.p. 24 h	506	yes	0.000	1	1	9	0
Combo 1	Cephaloridine 1500 mg/kg i.p. 24 h	508	yes	0.000	3	1	7	0
Combo 1	Cisplatin 20 mg/kg i.p. 24 h	602	yes	0.001	4	1	6	0.001
Combo 1	Cisplatin 20 mg/kg i.p. 24 h	603	yes	0.000	3	11	7	0
Combo 1	Cisplatin 20 mg/kg i.p. 24 h	604	yes	0.000	3	1	7	0

- * All genes used for Combo Gene Lists.
- ** Prediction values are output from prediction program. Values include prediction (yes=kidney toxicity predicted, no=no kidney toxicity predicted), numbers of yes and no votes from 10 nearest neighbors, the p-value for the no and yes votes and the p-value ratio for the predicted class over the not predicted class. A p-value ratio cutoff of 0.5 was used

Table 33 Kidney Predictive Genes (376 genes) Organized by Time Point and Combo Category*						
Gene	6h	24h	72h			
60S ribosomal protein L6 (alternate clone 1)	Combo 1	Combo 6	Not Found			
RCT-171	Not Found	Not Found	Combo 1			
Preproalbumin, sequence 2 (alternate clone 1)	Not Found	Combo 4	Not Found			
Hemoglobin alpha 1 chain (alternate clone)	Combo 1	Not Found	Combo 1			
Pancreatic secretory trypsin inhibitor type II (PSTI-II)						
(alternate clone)	Not Found	Combo 3	Combo 4			
14-3-3 zeta	Combo 5	Combo 1	Combo 4			
RCT-139	Combo 3	Not Found	Not Found			
25-DX	Not Found	Not Found	Combo 2			
25-hydroxyvitamin D3-1 alpha-hydroxylase	Not Found	Not Found	Combo 3			
3-beta-hydroxysteroid dehydrogenase (HSD3B1)	Not Found	Not Found	Combo 1			
3-hydroxyisobutyrate dehydrogenase	Not Found	Not Found	Combo 3			
3-methyladenine DNA glycosylase	Not Found	Not Found	Combo 3			
60S ribosomal protein L6	Not Found	Combo 5	Combo 1			
Acetylcholine receptor epsilon	Combo 1	Not Found	Not Found			
Activating transcription factor 3	Not Found	Not Found	Combo 4			
Activin receptor type II	Not Found	Combo 2	Combo 2			
Acyl-CoA dehydrogenase, medium chain	Not Found	Combo 1	Combo 1			
ADP-ribosylation factor-like protein ARL184	Combo 5	Not Found	Combo 1			
Adrenodoxin reductase	Not Found	Combo 1	Not Found			
Alanine aminotransferase	Not Found	Not Found	Combo 6			
Alcohol dehydrogenase 1	Not Found	Combo 1	Not Found			
Aldehyde dehydrogenase 1	Combo 1	Not Found	Not Found			
Aldehyde dehydrogenase 2	Combo 5	Not Found	Combo 1			
Aldehyde dehydrogenase, microsomal	Not Found	Not Found	Combo 2			
Alpha-1 acid glycoprotein	Combo 1	Not Found	Not Found			
Alpha-1 microglobulin/bikunin precursor (Ambp)	Combo 2	Not Found	Combo 4			
alpha-1,2-fucosyltransferase	Combo 4	Not Found	Not Found			
Alpha-2-macroglobulin	Not Found	Combo 1	Not Found			
Alpha-fibrinogen	Combo 1	Combo 5	Combo 5			
Alpha-tubulin	Combo 6	Combo 6	Combo 6			
Annexin V	Not Found	Combo 3	Combo 3			
Apolipoprotein CIII	Combo 1	Not Found	Not Found			
Aquaporin-3 (AQP3)	Combo 4	Not Found	Not Found			
Argininosuccinate lyase	Combo 1	Not Found	Not Found			
Arginosuccinate synthetase 1	Not Found	Combo 1	Not Found			
Aryl hydrocarbon receptor	Not Found	Not Found	Combo 1			
Aspartoacylase	Combo 2	Combo 3	Combo 1			
ATP-stimulated glucocorticoid-receptor translocation promoter (Gyk)	Combo 1	Combo 4	Not Found			
Bax (alpha)	Not Found	Not Found	Combo 3			
Bcl-2	Combo 3	Combo 1	Not Found			
Beta-actin, sequence 2	Not Found	Combo 5	Combo 6			
Beta-tubulin, class I	Combo 5	Combo 5	Combo 6			

Calbindin-D (9K)	Combo 1	Not Found	Not Found
Calcineurin-B	Not Found	Not Found	Combo 1
Calnexin	Not Found	Combo 1	Not Found
	Combo 3	Combo 6	Combo 5
Calpactin I heavy chain Calreticulin	Combo 6	Combo 3	Combo 1
Canalicular multispecific organic anion transporter	Not Found	Combo 5	Not Found
	Combo 1	Not Found	Not Found
Carbamyl phosphate synthetase I		Combo 5	Combo 1
Carbonic anhydrase III, sequence 2	Not Found		Combo 3
Carbonyl reductase	Not Found	Combo 1	
Casein-alpha	Not Found	Combo 2	Not Found
Caspase 2	Not Found	Not Found Not Found	Combo 3 Not Found
Caspase 7	Combo 1		Combo 1
Cathepsin L	Combo 6	Combo 6	
Cathepsin L, sequence 2	Combo 4	Combo 6	Combo 2
Cathepsin S	Not Found	Combo 3	Combo 2
CCR-5	Not Found	Not Found	Combo 2
CD44 metastasis suppressor gene	Combo 1	Combo 4	Combo 5
CDK102	Not Found	Combo 2	Not Found
CDK108	Not Found	Combo 6	Not Found
Cellular nucleic acid binding protein (CNBP)	Not Found	Combo 2	Combo 1
Ceruloplasmin	Not Found	Combo 4	Combo 5
c-fos	Combo 3	Not Found	Not Found
Cholesterol 7-alpha-hydroxylase (P450 VII)	Combo 1	Not Found	Not Found
Cholesterol esterase	Not Found	Combo 1	Not Found
c-H-ras	Combo 6	Not Found	Combo 1
c-jun	Combo 1	Not Found	Combo 3
Clusterin	Not Found	Combo 6	Combo 4
c-myc	Combo 1	Combo 6	Combo 5
Colony-stimulating factor-1	Combo 2	Not Found	Not Found
Complement component C3	Not Found	Combo 2	Combo 4
Connexin-32	Combo 3	Combo 4	Combo 1
CXCR4	Not Found	Not Found	Combo 2
Cyclin D1	Not Found	Not Found	Combo 2
Cyclin dependent kinase 2	Not Found	Not Found	Combo 2
Cyclin dependent kinase 4	Combo 1	Not Found	Combo 4
Cyclin E	Combo 6	Not Found	Not Found
Cyclin G	Not Found	Not Found	Combo 3
Cyclooxygenase 2	Not Found	Not Found	Combo 2
Cystatin C	Not Found	Not Found	Combo 1
Cytochrome c oxidase subunit II	Not Found	Not Found	Combo 2
Cytochrome c oxidase subunit IV	Combo 1	Not Found	Not Found
Cytochrome P450 14DM	Not Found	Combo 1	Not Found
Cytochrome P450 1A1	Combo 3	Not Found	Combo 2
		Not Found	Combo 1
Cytochrome P450 1B1	Not Found	140t F Outld	
Cytochrome P450 1B1 Cytochrome P450 2A3	Not Found Not Found	Combo l	Not Found
Cytochrome P450 2A3	Not Found	Combo 1	Not Found

D-dopachrome tautomerase	Not Found	Not Found	Combo 3
Decorin	Combo 5	Not Found	Not Found
Defender against cell death-1	Not Found	Combo 2	Not Found
Diacylglycerol kinase zeta	Not Found	Not Found	Combo 2
Dimethylarginine dimethylaminohydrolase	Not Found	Combo 3	Combo 3
DNA binding protein inhibitor ID2	Not Found	Combo 1	Combo 3
DNA topoisomerase I	Combo 1	Combo 2	Combo 1
Dynein light chain 1	Combo 1	Combo 6	Combo 5
Ecto-ATPase	Combo 3	Combo 3	Combo 3
eIF-4E	Not Found	Combo 1	Not Found
Elongation factor-1 alpha	Not Found	Combo 2	Not Found
Emerin	Not Found	Not Found	Combo 5
Endogenous retroviral sequence, 5' and 3' LTR	Combo 4	Not Found	Not Found
Epidermal growth factor	Combo 5	Combo 4	Combo 3
Equilbrative nitrobenzylthioinosine-sensitive nucleoside			
transporter	Combo 2	Combo 1	Not Found
E-selectin	Not Found	Not Found	Combo 2
Fatty acyl-CoA oxidase	Not Found	Combo 2	Combo 4
Ferritin H-chain	Combo 2	Combo 4	Combo 1
Fetuin beta (Fetub)	Not Found	Combo 2	Not Found
Fibrinogen gamma chain	Not Found	Combo 1	Not Found
Focal adhesion kinase (pp125FAK)	Combo i	Not Found	Not Found
Gadd153	Combo 6	Combo 6	Combo 6
Gadd45	Combo 6	Combo 6	Combo 4
Gamma-actin, cytoplasmic	Combo 1	Not Found	Not Found
Gamma-glutamyl transpeptidase	Combo 5	Combo 1	Combo 1
Glucose transporter 1	Not Found	Combo 2	Not Found
Glucose-Combo 6-phosphate dehydrogenase	Not Found	Combo 1	Combo 2
Glucose-regulated protein 78	Not Found	Combo 1	Not Found
Glutathione S-transferase Yb2 subunit	Combo 2	Not Found	Combo 1
Glyceraldehyde 3-phosphate dehydrogenase	Combo 6	Not Found	Combo 6
Glycine methyltransferase	Not Found	Combo 2	Combo 1
Heme binding protein 23	Combo 5	Combo 5	Not Found
Heme oxygenase	Combo 3	Combo 1	Combo 1
Hemoglobin alpha 1 chain	Combo 1	Not Found	Combo 1
Hepatocyte growth factor receptor	Combo 3	Not Found	Not Found
Hepatocyte nuclear factor 4	Combo 1	Not Found	Combo 1
Histidine-rich glycoprotein	Not Found	Combo 2	Not Found
HMG CoA reductase	Not Found	Combo 1	Not Found
Hypoxanthine-guanine phosphoribosyltransferase	Combo 4	Combo 4	Combo 5
Hypoxia-inducible factor 1 alpha	Combo 1	Combo 2	Not Found
ID-1	Combo 6	Not Found	Combo 2
IgE binding protein	Combo 2	Combo 5	Combo 5
Insulin-like growth factor binding protein 1	Combo 6	Combo 6	Combo 6
Insulin-like growth factor binding protein 3	Not Found	Combo 2	Not Found
	Combo 3	Not Found	Not Found
Integrin betal Integrin beta-4			
	Not Found	Not Found	Combo 6
Interferon related developmental regulator IFRD1 (PC4)	Combo 4	Not Found	Combo 1
Interleukin-1 beta	Combo 4	Combo 4	Combo 1

Interleukin-10	Not Found	Not Found	Combo 3
Interleukin-18	Not Found	Not Found	Combo I
Intracellular calcium-binding protein (MRP8)	Combo 1	Not Found	Not Found
Iron-responsive element-binding protein	Not Found	Combo 1	Combo 1
Jagged 1	Combo 1	Not Found	Not Found
Keratinocyte growth factor	Not Found	Combo 5	Not Found
Liver fatty acid binding protein	Not Found	Not Found	Combo 5
Low density lipoprotein receptor	Not Found	Combo 1	Not Found
Macrophage inflammatory protein-1 alpha	Not Found	Combo 1	Not Found
Macrophage inflammatory protein-2 alpha	Combo 4	Not Found	Combo 3
Macrophage metalloelastase	Combo 2	Combo 1	Not Found
Major acute phase protein alpha-1	Not Found	Not Found	Combo 5
Major basic protein 1	Combo 1	Not Found	Combo 6
Malate dehydrogenase, cytosolic	Combo 2	Combo 2	Combo 2
Matrix metalloproteinase-1	Combo 2	Combo 4	Combo 1
Methylacyl-CoA racemase alpha	Combo 1	Combo 3	Combo 1
MHC class I antigen RT1.A1(f) alpha-chain	Combo 2	Combo 5	Combo 6
Mitogen activated protein kinase (P38)	Not Found	Combo 1	Not Found
Monoamine oxidase A	Combo 2	Not Found	Combo 1
Monoamine oxidase B	Not Found	Not Found	Combo 2
Monocyte chemotactic protein receptor (CCR2)	Not Found	Combo 1	Combo 6
Mullerian inhibiting substance	Not Found	Combo 1	Not Found
Multidrug resistant protein-1	Not Found	Combo 4	Combo 5
Multidrug resistant protein-2	Combo 1	Not Found	Not Found
Multidrug resistant protein-3	Combo 6	Combo 5	Combo 6
Mx1 protein	Not Found	Not Found	Combo 1
Myelin basic protein	Not Found	Not Found	Combo 2
Na/H antiporter (APNH1)	Combo 1	Not Found	Combo 1
Na/K ATPase alpha-1	Combo 5	Combo 1	Combo 4
NADP-dependent isocitrate dehydrogenase, cytosolic	Combo 1	Not Found	Not Found
NADPH cytochrome P450 oxidoreductase	Not Found	Not Found	Combo 3
NADPH cytochrome P450 reductase	Combo 2	Not Found	Not Found
N-cadherin	Combo 3	Combo 1	Combo 1
Nerve growth factor receptor	Not Found	Combo 1	Not Found
NGF-inducible anti-proliferative putative secreted			
protein (PC3)	Combo 1	Not Found	Not Found
N-hydroxy-2-acetylaminofluorene sulfotransferase			01-1
(ST1C1)	Combo 3	Combo 2	Combo 1
Notch 1	Not Found	Not Found	Combo 4
Organic anion transporter 3	Not Found	Combo 2	Combo 1
Organic anion transporter K1	Not Found	Combo 1	Combo 2
Organic anion transporting polypeptide !	Not Found	Combo 2	Combo 1
Organic cation transporter 2	Not Found	Combo 1	Not Found
Organic cation transporter 3	Not Found	Combo 4	Not Found
Ornithine aminotransferase	Combo 1	Combo 2	Combo 1
Ornithine decarboxylase	Combo 3	Not Found	Not Found
Osteopontin	Not Found	Combo 5	Combo 1
p53	Not Found	Combo 3	Not Found
Pancreatic secretory trypsin inhibitor type II (PSTI-II)	Not Found	Combo 4	Combo 4

PAR interacting protein	Combo 1	Combo 6	Not Found
Peroxisomal 3-ketoacyl-CoA thiolase 2	Combo 4	Not Found	Not Found
Peroxisomal multifunctional enzyme type II	Not Found	Combo 1	Not Found
Peroxisome assembly factor 2	Combo 1	Not Found	Not Found
Peroxisome proliferator activated receptor alpha	Not Found	Combo 1	Not Found
RCT 165	Not Found	Combo 1	Combo 1
RCT 252	Not Found	Combo 1	Not Found
RCT-10	Not Found	Combo 3	Combo 2
RCT-101	Not Found	Combo 1	Combo 3
RCT-102	Combo 4	Not Found	Not Found
RCT-103	Combo 5	Not Found	Not Found
RCT-108	Combo 2	Not Found	Not Found
RCT-109	Combo 4	Combo 6	Combo 3
RCT-111	Combo 6	Combo 1	Not Found
Protein O-mannosyltransferase 1 (Pomt1)	Not Found	Combo 1	Not Found
RCT-12	Combo 6	Not Found	Combo 5
RCT-126	Not Found	Combo 5	Combo 4
RCT-127	Combo 2	Combo 2	Combo 5
RCT-128	Not Found	Not Found	Combo 1
RCT-129	Not Found	Combo 1	Not Found
Apoptosis-regulating basic protein	Combo 2	Combo 1	Combo 1
RCT-137	Not Found	Not Found	Combo I
RCT-138	Not Found	Combo 4	Combo 4
RCT-14	Combo 2	Not Found	Not Found
RCT-140	Not Found	Combo 1	Not Found
RCT-141	Not Found	Not Found	Combo 2
RCT-142	Combo 1	Not Found	Not Found
RCT-143	Not Found	Not Found	Combo 1
RCT-144	Combo 4	Combo 6	Not Found
RCT-145	Not Found	Combo 6	Combo 2
RCT-146	Combo 2	Not Found	Combo 3
RCT-147	Combo 3	Combo 1	Not Found
RCT-148	Combo 1	Not Found	Combo 1
RCT-149	Not Found	Combo 3	Combo 1
RCT-151	Combo 2	Not Found	Not Found
RCT-152	Not Found	Combo 6	Not Found
RCT-153	Combo 1	Combo 1	Not Found
RCT-155	Not Found	Combo 2	Combo 3
RCT-158	Not Found	Combo 6	Not Found
RCT-161	Not Found	Not Found	Combo 1
RCT-162	Not Found	Combo 2	Not Found
RCT-164	Not Found	Combo 1	Not Found
RCT-166	Combo 2	Combo 1	Combo 1
RCT-177	Combo 1	Not Found	Not Found
RCT-179	Combo 2	Combo 5	Combo 1
RCT-18	Not Found	Combo 1	Not Found
RCT-180	Combo 2	Combo 4	Combo 1

Combo 3	Combo 5	Combo 5
Not Found		Not Found
Not Found	Combo 3	Combo 3
Not Found	Not Found	Combo 1
Combo 1	Not Found	Not Found
Not Found	Combo 3	Not Found
Not Found	Not Found	Combo 1
Combo I	Combo 6	Not Found
Not Found	Combo 6	Combo 1
Combo 1	Not Found	Not Found
Not Found	Combo 1	Not Found
Not Found	Not Found	Combo 4
Combo 2	Not Found	Not Found
Combo 2	Combo 5	Combo 6
Not Found	Not Found	Combo 3
Combo 1	Combo 2	Not Found
Not Found	Combo 2	Combo 2
Not Found	Combo 3	Combo 1
Not Found	Combo 1	Not Found
Combo 5	Combo I	Not Found
Combo 3	Not Found	Combo 1
Not Found	Not Found	Combo 2
Combo 4	Combo 6	Combo 6
Combo 3	Combo 4	Combo 6
Not Found	Combo 6	Combo 4
Not Found	Combo 2	Combo 1
Not Found	Combo 2	Combo 1
Combo 3	Not Found	Not Found
Combo 1	Combo 2	Not Found
Combo 2	Not Found	Not Found
Not Found	Combo 3	Not Found
Not Found	Combo 5	Combo 3
Combo 4	Combo 1	Combo 1
Not Found	Combo 2	Combo 1
Not Found	Not Found	Combo 1
Not Found	Combo 3	Combo 4
Combo 1	Combo 1	Not Found
Not Found	Combo 6	Combo 2
Combo 2	Combo 5	Combo 6
Not Found	Combo 1	Not Found
Combo 3	Not Found	Not Found
Not Found	Combo 1	Not Found
Combo 1	Not Found	Not Found
Combo 1	Combo 2	Combo 1
Combo 2	Not Found	Not Found
Not Found	Not Found	Combo 1
Not Found	Combo 4	Combo 3
	Not Found Not Found Not Found Combo 1 Not Found Combo 1 Not Found Combo 1 Not Found Combo 1 Not Found Combo 2 Combo 2 Not Found Combo 1 Not Found Combo 3 Not Found Combo 3 Not Found Not Found Combo 3 Not Found Not Found Not Found Combo 4 Combo 3 Not Found Combo 3 Combo 1 Combo 2 Not Found Not Found Not Found Not Found Combo 2 Not Found Not Found Not Found Not Found Combo 1 Not Found	Not Found Combo 3 Not Found Not Found Combo 1 Not Found Not Found Combo 3 Not Found Combo 3 Not Found Not Found Combo 1 Combo 6 Not Found Combo 6 Not Found Combo 1 Not Found Combo 1 Not Found Not Found Combo 2 Not Found Combo 2 Combo 5 Not Found Combo 2 Not Found Combo 2 Not Found Combo 3 Not Found Combo 1 Combo 3 Not Found Combo 5 Combo 1 Combo 5 Combo 1 Combo 6 Combo 6 Combo 7 Not Found Combo 1 Combo 8 Not Found Combo 1 Combo 9 Not Found Combo 1 Combo 1 Combo 1 Combo 1 Combo 1 Combo 2 Not Found Combo 1 Combo 3 Not Found Combo 4 Combo 6 Combo 4 Not Found Combo 6 Combo 3 Not Found Combo 2 Not Found Combo 1 Combo 2 Not Found Combo 1 Combo 2 Combo 3 Not Found Combo 2 Combo 3 Not Found Combo 1 Combo 1 Combo 2 Combo 1 Combo 1 Combo 2 Not Found Not Found Not Found Combo 3 Not Found Combo 3 Not Found Combo 1 Combo 1 Combo 1 Not Found Combo 3 Not Found Combo 1 Not Found Combo 1 Not Found Combo 3 Not Found Combo 1 Not Found Combo 1 Not Found Combo 1 Not Found Combo 3 Not Found Combo 1 Not Found

RCT-291	Not Found	Combo 2	Combo 3
RCT-292	Not Found	Combo 2	Not Found
RCT-293	Not Found	Combo 4	Combo 5
Voltage-dependent anion channel 2 (Vdac2)	Combo 2	Not Found	Combo I
RCT-296	Not Found	Not Found	Combo 3
RCT-31	Not Found	Combo 1	Not Found
RCT-34	Not Found	Combo 3	Combo 2
RCT-36	Not Found	Combo 1	Not Found
RCT-38	Not Found	Combo 4	Combo 1
RCT-39	Not Found	Not Found	Combo 2
RCT-40	Combo 1	Not Found	Not Found
RCT-42	Not Found	Combo 2	Not Found
RCT-43	Combo 3	Combo 1	Not Found
RCT-45	Not Found	Not Found	Combo 1
RCT-49	Combo 4	Combo 5	Combo 5
RCT-50	Combo 5	Combo 5	Combo 5
RCT-53	Combo 1	Not Found	Not Found
RCT-59	Combo 1	Not Found	Combo 5
RCT-6	Not Found	Not Found	Combo 2
RCT-60	Combo 2	Combo 5	Not Found
RCT-61	Combo 1	Combo 1	Not Found
RCT-62	Not Found	Not Found	Combo 1
RCT-64	Combo 1	Not Found	Combo 1
RCT-66	Combo 1	Not Found	Combo 2
RCT-68	Combo 1	Combo 6	Combo 4
RCT-69	Not Found	Not Found	Combo 2
RCT-72	Not Found	Combo 1	Not Found
RCT-74	Combo 1	Not Found	Not Found
RCT-76	Combo 2	Combo 1	Not Found
RCT-8	Not Found	Combo 3	Not Found
RCT-80	Combo 2	Not Found	Not Found
RCT-83	Combo 3	Not Found	Not Found
RCT-84	Not Found	Combo 2	Not Found
RCT-87	Not Found	Not Found	Combo 3
RCT-88	Not Found	Combo 2	Not Found
RCT-89	Not Found	Combo 3	Combo 2
RCT-91	Not Found	Combo 2	Not Found
RCT-92	Not Found	Combo 2	Combo 2
RCT-94	Combo 1	Not Found	Not Found
RCT-99	Not Found	Not Found	Combo 1
Phosphatidylethanolamine-binding protein	Combo 2	Not Found	Combo 2
Phosphoglycerate kinase	Combo I	Not Found	Not Found
Poly(ADP-ribose) polymerase	Not Found	Not Found	Combo 1
Preproalbumin	Not Found	Not Found	Combo 3
Proliferating cell nuclear antigen gene	Not Found	Combo 5	Not Found
Prostaglandin H synthase	Not Found	Not Found	Combo 2
Proteasome activator 28 alpha	Not Found	Combo 2	Not Found
Protein tyrosine phosphatase alpha	Combo 4	Not Found	Combo 1

PTEN/MMACI	Combo 2	Not Found	Not Found
Pyruvate kinase, muscle	Combo 5	Combo 4	Combo 1
RAD	Not Found	Not Found	Combo 3
Ref-1	Not Found	Combo 4	Not Found
Renal organic anion transporter	Not Found	Combo 1	Not Found
	Combo 1	Combo 1	Not Found
Retinoid X receptor alpha	Not Found	Combo 1	Not Found
Retinol dehydrogenase type III		Combo I	Not Found
Retinol-binding protein (RBP) Ribosomal protein L13A	Not Found Combo 5	Combo 6	Combo 5
		Combo 2	Not Found
Ribosomal protein L27	Not Found Not Found	Combo 2 Combo 6	Combo 1
Ribosomal protein S8 Ribosomal protein S9	Not Found	Combo 5	Combo 1
Sarcoplasmic reticulum calcium ATPase	Combo 1	Combo 1	Combo 1 Combo 2
Selenoprotein P	Not Found	Combo 2	
Senescence marker protein-30	Not Found	Combo 2	Combo 2
Serotonin transporter (SERT)	Combo 1	Not Found	Not Found
Sodium/glucose cotransporter l	Not Found	Not Found	Combo 2
Stathmin	Combo 3	Combo 2	Combo 4
Sterol carrier protein 2	Combo 2	Not Found	Not Found
Sulfotransferase K2	Not Found	Combo 1	Not Found
Superoxide dismutase Cu/Zn	Combo 1	Combo 1	Not Found
Superoxide dismutase Mn	Combo 5	Combo 4	Combo 4
Suppressor of cytokine signaling 3	Not Found	Not Found	Combo 5
T-cell cyclophilin	Not Found	Combo 1	Not Found
Thiol-specific antioxidant (natural killer cell-enhancing factor B)	Combo 4	Combo 1	Combo 2
Thiopurine methyltransferase	Not Found	Combo 1	Combo 2
Thioredoxin-1 (Trx1)	Combo 2	Combo 2	Combo 1
Thioredoxin-2 (Trx2)	Combo 2	Not Found	Combo 3
Thrombin receptor (PAR-1)	Not Found	Combo 1	Not Found
Thrombomodulin	Not Found	Not Found	Combo 4
Thymidylate synthase	Combo 1	Not Found	Not Found
Thymosin beta-10	Combo 5	Combo 5	Combo 5
Tissue factor	Not Found	Not Found	Combo 2
Tissue inhibitor of metalloproteinases-1	Combo 2	Combo 6	Combo 5
Transferrin	Combo 2	Not Found	Not Found
Transitional endoplasmic reticulum ATPase	Combo 1	Not Found	Not Found
Tryptophan hydroxylase	Combo 5	Not Found	Combo 1
Ubiquitin conjugating enzyme (RAD 6 homologue)	Not Found	Combo 4	Not Found
UDP-glucuronosyltransferase	Not Found	Not Found	Combo 1
Uncoupling protein 2	Combo 4	Combo 6	Combo 5
Urokinase plasminogen activator receptor	Not Found	Not Found	Combo 1
Vascular cell adhesion molecule 1 (VCAM-1)	Not Found	Combo 2	Combo 4
Vascular endothelial growth factor	Not Found	Not Found	Combo 1
Very long-chain acyl-CoA synthetase	Combo 1	Not Found	Combo 3
Vesicular monoamine transporter (VMAT)	Not Found	Combo 2	Not Found
VL30 element	Combo I	Not Found	Not Found
Zinc finger protein	Combo 5	Combo 5	Combo 4
Ente triger protein	Compo 2	Como 3	COMO 4

* A Combo entry number indicates that the gene was on the predictive list for that time point and the number of occurrences of that gene on optimal combined training/test set lists. "Not Found" indicates that the gene was not on the optimal combined list for that time point.

Table 34 RCT genes (ESTs) Predictive for Kidney Tubular Necrosis: Best Homology Matches

Gene Name	Homology
RCT-10	Rattus norvegicus methylmalonate semialdehyde dehydrogenase gene (Mmsdh)
RCT-101	no significant homology found
RCT-102	Mouse pentylenetetrazol-related mRNA PTZ-17 (3'UTR of E3.1)
RCT-103	no significant homology found
RCT-108	no significant homology found
RCT-109	Rattus norvegicus nesprin-1 mRNA
RCT-111	Mus musculus B lymphoid kinase (Blk)
RCT-12	no significant homology found
RCT-126	Homo sapiens, clone MGC:9483 IMAGE:3919901, mRNA
RCT-127	no significant homology found
RCT-128	Mus musculus angiopoietin-related protein 3 (Angptl3)
RCT-129	Mus musculus Nedd4 WW binding protein 4 (N4wbp4-pending), mRNA
RCT-137	Mus musculus adult male tongue cDNA
RCT-138	Mus musculus DAP10 (Dap10) gene
RCT-139	no significant homology found
RCT-14	Rat brain nicotinic receptor alpha 7 subunit
RCT-140	Mouse 13 days embryo head cDNA, RIKEN full-length enriched library, clone:3100001I08
RCT-141	Mus musculus proteoglycan 3 (megakaryocyte stimulating factor, articular superficial zone protein) (Prg4)
RCT-142	Mus musculus 18 days embryo cDNA, RIKEN full-length enriched library, clone:1190008J14
RCT-143	Homo sapiens NADH dehydrogenase (ubiquinone) Fe-S protein 8 (23kD) (NADH-coenzyme Q reductase) (NDUFS8)
RCT-144	Mus musculus, similar to nucleolar protein (KKE/D repeat), clone IMAGE:3491448, mRNA, partial cds.
RCT-145	Mus musculus 10 day old male pancreas cDNA, RIKEN full-length enriched library, clone:1810014B19, full insert sequence
RCT-146	Mus musculus 8 days embryo cDNA, RIKEN full-length enriched library, clone:5730458E20
RCT-147	Rattus norvegicus clone RP31-188L2
RCT-148	Mus musculus adult male kidney cDNA, RIKEN full-length enriched library, clone:0610010B16
RCT-149	Mouse mRNA fragment for serum amyloid A (SAA) 3 protein
RCT-151	Mus musculus, Similar to sphingomyelin phosphodiesterase 1, acid lysosomal, clone MGC:11522 IMAGE:3964394

DOT 150	Mus musculus, eukaryotic translation elongation factor 1 beta 2, clone
RCT-152	MGC:6763 IMAGE:3600850, mRNA, complete cds.
RCT-153	Mouse adult male cerebellum cDNA, RIKEN full-length enriched library, clone:1500015I13
RCT-155	Mus musculus type XV collagen mRNA
RCT-158	Rattus norvegicus cyclin-dependent kinase inhibitor 1B
RCT-161	Mus musculus adult male spleen cDNA, RIKEN full-length enriched library, clone:0910001D19
RCT-162	Mus musculus, clone IMAGE:3501507
RCT-164	Mus musculus adult male testis cDNA, RIKEN full-length enriched library, clone:4932443D16
RCT-165	Mus musculus adiponutrin (Adpn-pending), mRNA
RCT-166	Mus musculus, Similar to glutathione S-transferase theta 1, clone MGC:6769 IMAGE:3601446
RCT-171	no significant homology found
RCT-177	Mus musculus, Similar to peroxisomal delta3, delta2-enoyl-Coenzyme A isomerase, clone MGC:5644 IMAGE:3591615
RCT-179	Rat nucleolar protein B23.2 mRNA
RCT-18	no significant homology found
RCT-180	Mus musculus B-cell receptor-associated protein 37 (Bcap37
RCT-181	Mus musculus adult male testis cDNA
RCT-182	Rattus norvegicus glb mRNA for diacetyl/L-xylulose reductase
RCT-185	no significant homology found
RCT-192	Mus musculus 18 days embryo cDNA, RIKEN full-length enriched library, clone:1110033J19
RCT-193	no significant homology found
RCT-194	Mus musculus ectodermal-neural cortex 1 (Enc1)
RCT-196	Homolous to Mus musculus 12 days embryo head cDNA, RIKEN full-length enriched library, clone:3010001M15
RCT-197	Rattus norvegicus Protein kinase, interferon-inducible double stranded RNA dependent (Prkr), mRNA
RCT-198	Mus musculus adult male kidney cDNA
RCT-205	no significant homology found
RCT-206	Homo sapiens, clone IMAGE:3867552
RCT-207	Mus musculus Ran binding protein 5 mRNA, partial cds
RCT-211	Mus musculus adult male kidney cDNA, RIKEN full-length enriched library, clone:0610009C22
RCT-212	Mus musculus nuclear localization signal protein absent in velo-cardio- facial patients (Nlvcf)

RCT-214	Mus musculus putative NAD(P)H steroid dehydrogenase mRNA
RCT-215	Mus musculus RAB/Rip protein mRNA
RCT-22	Mus musculus, clone MGC:19042 IMAGE:4188988, mRNA
RCT-220	no significant homology found
RCT-221	no significant homology found
RCT-228	no significant homology found
RCT-237	M.musculus mRNA for low density lipoprotein receptor
RCT-24	Mus musculus, tubulin alpha 8, clone MGC:28850 IMAGE:4507364, mRNA,
RCT-240	Mus musculus, clone MGC:7041
RCT-241	Mus musculus oncostatin receptor (Osmr), mRNA
RCT-242	Rattus norvegicus B-cell translocation gene 2, anti-proliferative(Btg2),
RCT-244	Mus musculus RIKEN cDNA 2810408B13 gene
RCT-245	no significant homology found
RCT-246	no significant homology found
RCT-251	no significant homology found
RCT-252	Mus musculus EH-domain containing 3 (Ehd3),
RCT-256	Mus musculus, Similar to betaine-homocysteine methyltransferase 2, clone MGC:19186 IMAGE:4235455
RCT-258	Mus musculus, clone MGC:6139 IMAGE:3487295, mRNA
RCT-260	Mus musculus adult male hippocampus cDNA, RIKEN full-length enriched library, clone:2900024P20
RCT-264	Mus musculus sodium-sulfate cotransporter (Nas1) gene
RCT-268	Mouse adult male liver cDNA, RIKEN full-length enriched library, clone:1300017J02
RCT-271	Homlogous to Mus musculus, clone MGC:27581 IMAGE:4489072, mRNA
RCT-274	Rattus norvegicus Clusterin (Clu)
RCT-276	Homo sapiens KIAA1224 protein
RCT-277	no significant homology found
RCT-279	no significant homology found
RCT-28	no significant homology found
RCT-280	Mus musculus carbohydrate (keratan sulfate Gal-6) sulfotransferase 1 (Chst1)
RCT-281	Mus musculus, Similar to TNF-induced protein, clone MGC:11714
RCT-284	Homo sapiens complement component C1q receptor (C1QR), mRNA
RCT-287	Mus musculus adult male kidney cDNA clone:0610010I20
RCT-288	no significant homology found
RCT-291	no significant homology found
RCT-292	Rattus norvegicus 2'5' oligoadenylate synthetase-2
RCT-293	Mus musculus 18 days embryo cDNA, RIKEN full-length enriched library, clone:1110021C22
RCT-296	Mus musculus corticosteroid binding globulin (Cbg)

RCT-31	Mouse 10, 11 days embryo cDNA, RIKEN full-length enriched library, clone:2810437P06
RCT-34	no significant homology found
RCT-36	no significant homology found
RCT-38	Mus musculus betaine-homocysteine methyltransferase 2 (Bhmt2) mRNA,
RCT-39	no significant homology found
RCT-40	Rattus norvegicus Cathepsin C (dipeptidyl peptidase I) (Ctsc)
RCT-42	Mus musculus STAT5B (Stat5b)
RCT-43	no significant homology found
RCT-45	Mus musculus Nedd4-binding brain specific protein BEAN mRNA, partial cds
RCT-49	No match with score above 200
RCT-50	Mus musculus fibroblast growth factor regulated protein 2
RCT-53	no significant homology found
RCT-59	no significant homology found
RCT-6	sdpr=serum deprivation response [mice, NIH3T3 cells, mRNA, 2909 nt]
RCT-60	Mouse, Similar to tyrosyl-tRNA synthetase, clone MGC:19350
RCT-61	no significant homology found
RCT-62	no significant homology found
RCT-64	no significant homology found
RCT-66	M.musculus mRNA for low density lipoprotein receptor
RCT-68	Rattus norvegicus nucleosome assembly protein mRNA
RCT-69	Mus musculus, RIKEN cDNA 0610033L19 gene, clone MGC:25463 IMAGE:4458296
RCT-72	no significant homology found
RCT-74	no significant homology found
RCT-76	no significant homology found
RCT-8	Messenger RNA for rat preproalbumin
RCT-80	no significant homology found
RCT-83	no significant homology found
RCT-84	no significant homology found
RCT-87	Mus musculus adult male tongue cDNA
RCT-88	no significant homology found
RCT-89	no significant homology found
RCT-91	no significant homology found
RCT-92	no significant homology found
RCT-94	Rattus norvegicus Glutamate receptor, metabotropic 5 (Grm5)
RCT-99	no significant homology found

^{*} Homologies are given from BLAST searches using the Phase 1 RCT sequence as the query sequence and GenBank NR database as the target sequence database. The best BLAST homology sequence observed is given. In general, no significant homology

indicates that no BLAST match was observed with a BIT score >100. BLAST searches in this category were conducted as recently as February, 2002.

Table 35 Fifty-three Genes that are Predictive at all Three Time Points

Gene	6h	24h	72h
Alpha-tubulin	Combo 6	Combo 6	Combo 6
Aspartoacylase		Combo 3	
Beta-tubulin, class I		Combo 5	
Calpactin I heavy chain		Combo 6	
Calreticulin		Combo 3	
Cathepsin L		Combo 6	
Cathepsin L, sequence 2	Combo 4	Combo 6	Combo 2
CD44 metastasis suppressor gene			Combo 5
c-myc			Combo 5
Connexin-32		Combo 4	
Cytochrome P450 2C11		Combo 1	
DNA topoisomerase I			Combo 1
Dynein light chain 1			Combo 5
Ecto-ATPase	Combo 3	Combo 3	Combo 3
Epidermal growth factor			Combo 3
Ferritin H-chain		Combo 4	
Gamma-glutamyl transpeptidase		Combo 1	
Heme oxygenase		Combo 1	
Hypoxanthine-guanine phosphoribosyltransferase			Combo 5
IgE binding protein			Combo 5
Insulin-like growth factor binding protein 1			Combo 6
Interleukin-1 beta			Combo 1
Malate dehydrogenase, cytosolic			Combo 2
Matrix metalloproteinase-1		Combo 4	
Methylacyl-CoA racemase alpha	Combo 1	Combo 3	Combo 1
MHC class I antigen RT1.A1(f) alpha-chain			Combo 6
Multidrug resistant protein-3			Combo 6
Na/K ATPase alpha-1	Combo 5	Combo 1	Combo 4
N-cadherin			Combo 1
N-hydroxy-2-acetylaminofluorene sulfotransferase	† · · · · · ·		Combo 1
(ST1C1)			
Ornithine aminotransferase	30 L.S.		Combo 1
RCT-109			Combo 3
RCT-127			Combo 5
Apoptosis-regulating basic protein			Combo 1
RCT-166			Combo 1
RCT-179			Combo 1
RCT-180			Combo 1
RCT-182			Combo 5
RCT-211			Combo 6
RCT-24			Combo 6
RCT-240	Combo 3	Combo 4	Combo 6

RCT-280	Combo 1 Combo 2 Combo 1
RCT-49	Combo 4 Combo 5 Combo 5
RCT-50	Combo 5 Combo 5 Combo 5
RCT-68	Combo 1 Combo 6 Combo 4
Ribosomal protein L13A	Combo 5 Combo 6 Combo 5
Sarcoplasmic reticulum calcium ATPase	Combo 1 Combo 1 Combo 1
Stathmin	Combo 3 Combo 2 Combo 4
Superoxide dismutase Mn	Combo 5 Combo 4 Combo 4
Thymosin beta-10	Combo 5 Combo 5 Combo 5
Tissue inhibitor of metalloproteinases-1	Combo 2 Combo 6 Combo 5
Uncoupling protein 2	Combo 4 Combo 6 Combo 5
Zinc finger protein	Combo 5 Combo 5 Combo 4

Table 36 Twenty-three Genes that are the most predictive across the time points

Gene	6h	24h	72h
Alpha-tubulin	Combo 6	Combo 6	Combo 6
Beta-tubulin, class I	Combo 5	Combo 5	Combo 6
Cathepsin L	Combo 6	Combo 6	Combo 1
Cathepsin L, sequence 2	Combo 4	Combo 6	Combo 2
c-myc	Combo 1	Combo 6	Combo 5
Epidermal growth factor	Combo 5	Combo 4	Combo 3
Hypoxanthine-guanine phosphoribosyltransferase	Combo 4	Combo 4	Combo 5
IgE binding protein	Combo 2	Combo 5	Combo 5
Insulin-like growth factor binding protein 1	Combo 6	Combo 6	Combo 6
Interleukin-1 beta	Combo 4	Combo 4	Combo 1
Multidrug resistant protein-3	Combo 6	Combo 5	Combo 6
RCT-211		Combo 5	
RCT-24		Combo 6	
RCT-240	Combo 3	Combo 4	Combo 6
RCT-49	Combo 4	Combo 5	Combo 5
RCT-50	Combo 5	Combo 5	Combo 5
RCT-68		Combo 6	
Ribosomal protein L13A		Combo 6	
Superoxide dismutase Mn		Combo 4	
Thymosin beta-10	Combo 5	Combo 5	Combo 5
Tissue inhibitor of metalloproteinases-1		Combo 6	
Uncoupling protein 2			Combo 5
Zinc finger protein	Combo 5	Combo 5	Combo 4

Table 37	Kidney Toxicity Predictive Genes Whose Protein Products Are Known to be Secreted
	Ceruloplasmin
	Colony-stimulating factor-1
	Complement component C3
	Cystatin C
	Epidermal growth factor
	Ferritin H-chain
	Fibrinogen gamma chain
	Interleukin-1 beta
	Interleukin-10
	Interleukin-18
	Keratinocyte growth factor
	Macrophage inflammatory protein-1 alpha
	Macrophage inflammatory protein-2 alpha
	Major acute phase protein alpha-1
	Mullerian inhibiting substance
	NGF-inducible anti-proliferative putative secreted protein (PC3)
	Pancreatic secretory trypsin inhibitor type II (PSTI-II)
	T-cell cyclophilin
	Thioredoxin-1 (Trx1)
	Tissue factor
	Tissue inhibitor of metalloproteinases-1
	Transferrin
	Vascular endothelial growth factor

Sample	Slide Number	Tissue	Dose	Time	Prediction	Certitude
paraquat	16477	Rat Kidney	25 mg/kg	24h	Kidney Tubular Necrosis	0.472
paraquat	16478	Rat Kidney	25 mg/kg	24h	Negative	0.999
paraquat	16479	Rat Kidney	25 mg/kg	24h	Kidney Tubular	0.796

					Necrosis	
phenobarbital	11494	Rat Kidney	80 mg/kg	24h	Negative	0.999
phenobarbital	11495	Rat Kidney	80 mg/kg	24h	Negative	0.999
phenobarbital	11496	Rat Kidney	80 mg/kg	24h	Negative	0.999

Table 43 Detailed Output of Predictive Computer Software Product

Predictagen	Performance	Kidney Tubular	
Necrosis	<u>Negative</u>		
24hKidneyCombol.txt	1.000		0.752
24hKidneyCombo2.txt	1.000		
24hKidneyCombo3.txt	1.000		0.752
24hKidneyCombo4.txt	1.000	0.584	
24hKidneyCombo5.txt	1.000	0.997	
24hKidneyCombo6.txt	1.000	0.977	

Predictagen	Performance	Kidney Tubular	
Necrosis	Negative	_	
24hKidneyCombo1.txt	1.000		0.752
24hKidneyCombo2.txt	1.000		0.752
24hKidneyCombo3.txt	1.000		0.752
24hKidneyCombo4.txt	1.000		0.752
24hKidneyCombo5.txt	1.000		0.752
24hKidneyCombo6.txt	1.000		0.752

Sample paraquat 16479 RatKidn	ney 25mg/kg 24h 503r#3	134
Predictagen	Performance	Kidney Tubular
Necrosis	Negative	
24hKidneyCombo1.txt	1.000	0.752
24hKidneyCombo2.txt	1.000	
24hKidneyCombo3.txt	1.000	
24hKidneyCombo4.txt	1.000	0.882
24hKidneyCombo5.txt	1.000	0.997
24hKidneyCombo6.txt	1.000	0.999
Prediction: Kidney Tubular Nec	rosis with certitude 0.79	06

Sample phenobarbital 11494 Ra	tKidney 80mg/kg 24h H	375#2634	
Predictagen	Performance	Kidney Tubular	
Necrosis	Negative		
24hKidneyCombol.txt	1.000		0.752

Prediction: Negative with certit	ude 0.999	
24hKidneyCombo6.txt	1.000	0.752
24hKidneyCombo5.txt	1.000	0.752
24hKidneyCombo4.txt	1.000	0.752
24hKidneyCombo3.txt	1.000	0.752
24hKidneyCombo2.txt	1.000	0.752

Sample phenobarbital 11495 Rat	tKidney 80mg/kg 24h H	375#2635
Predictagen	Performance	Kidney Tubular
Necrosis	Negative	
24hKidneyCombol.txt	1.000	0.752
24hKidneyCombo2.txt	1.000	0.752
24hKidneyCombo3.txt	1.000	0.752
24hKidneyCombo4.txt	1.000	0.752
24hKidneyCombo5.txt	1.000	0.752
24hKidneyCombo6.txt	1.000	0.752
Prediction: Negative with certitu	ide 0.999	

Predictagen	Performance	Kidney Tubular
Necrosis	Negative	
24hKidneyCombo1.txt	1.000	0.752
24hKidneyCombo2.txt	1.000	0.752
24hKidneyCombo3.txt	1.000	0.752
24hKidneyCombo4.txt	1.000	0.752
24hKidneyCombo5.txt	1.000	0.752
24hKidneyCombo6.txt	1.000	0.752
Prediction: Negative with certiti	ude 0.999	

Table 44. Protein Marker Candidate Identification

Gene Name	Mean Overall Correct Calls*	Codes for Protein	Avg Neg FI**	Avg Pos FI**	Secreted
	Mean				
Phase-1 RCT-241	79.9%	yes?	-0.02	0.85	
Cathepsin L, sequence 2	76.7%	yes	0.08	1.19	
Phase-1 RCT-145	76.2%	yes?	-0.01	0.41	
Cathepsin L	76.0%	yes	0.10	1.40	
60S ribosomal protein L6	75.6%	yes	-0.06	0.75	
Clusterin	75.3%	yes	-0.02	0.48	

Osteopontin	75.3%	yes	-0.08	0.04	T
Dynein light chain 1	74.6%	7	-0.06		
Tissue inhibitor of metalloproteinases-	1 74.0%		0.08		
Uncoupling protein 2	73.7%		-0.07		- / · · · -
Ribosomal protein S9	72.9%		-0.03		
Phase-1 RCT-258	72.5%	yes?	-0.02		
(Ribosomal protein L6)	71.4%	yes	0.00	0.58	
Gadd153	70.8%	yes	0.08	0.38	
Proliferating cell nuclear antigen gene	70.5%	yes	-0.06		
Gadd45	69.9%	yes	0.03	0.12	
Phase-1 RCT-274	69.8%	?	0.03		
Phase-1 RCT-109	69.8%	?	0.00	0.78	
Thymosin beta-10	67.8%	yes	-0.02	0.46	↓
c-myc	67.7%			0.49	
Phase-1 RCT-158	67.6%	yes	0.14	0.59	
Insulin-like growth factor binding	07.070	yes?	0.01	0.27	
protein 1	67.4%	yes	0.11	1 07	
Phase-1 RCT-179	67.2%	yes?	0.11	0.62	yes
Multidrug resistant protein-3	66.8%	yes	0.03		
PAR interacting protein	66.4%	yes	0.03	0.37	
Phase-1 RCT-198	66.1%	?	0.01	0.37	
Beta-actin, sequence 2	65.8%	yes	0.03		
Phase-1 RCT-24	65.4%	?	0.01	0.05	
Alpha-tubulin	65.2%		0.12	0.03	ļ
Phase-1 RCT-152	64.9%	yes yes?		0.05	
Phase-1 RCT-60	64.7%	?	-0.05	0.73	
Phase-1 RCT-68	64.5%	7	0.05	0.23	
Keratinocyte growth factor	63.2%		0.06	0.32	
Calpactin I heavy chain	62.5%	yes	0.07		yes
Alpha-fibrinogen	62.2%	yes	0.06	0.62	
Phase-1 RCT-49	61.2%	yes	0.09	2.29	
Phase-1 RCT-199		?	-0.02	0.37	
gE binding protein	60.8%	yes?	-0.03	0.08	
	60.0%	yes	-0.07	0.75	

^{*}Mean Percent Accuracy for six training/test sets for individual gene predictive performance.

^{**}Mean fold induction relative to 0= no induction for expression in kidney samples treated with nontoxic treatments (Neg FI) or treatments producing kidney toxicity (Pos FI)

Gene	paraquat, 16477, Rat	paraquat, 16478, Rat	paraquat, 16479, Rat	phenobarbital, 11494, Rat	phenobarbital, 11494, Rat phenobarbital, 11495, Rat phenobarbital, 11496, Rat	phenobarbital, 11496, Rat
	603r #3132	Noting, 23 ingray, 24 it. 603r #3133	Northy, 23 mg/ng, 24 h, 503r #3134	Namey, 60 mg/kg, 24 m, H375 #2634	Numery, 60 mg/ng, 24 n. H375 #2635	Natary, 60 mg/kg, 24 n, H375 #2638
14-3-3 zeta	1.08	1.08	57	17	8	27
17-beta hydroxysteroid dehydrogenase, type 2	1.66	£.	157	÷	124	-1.15
22kDa Integral peroxisomal membrane protein	1.05	20.	÷.	-121	124	-1.2
25-DX	1.01	124	1.14	-1.19	101	8:
25-hydroxyvitamin D3-1 alpha-hydroxytase	1.17	1.19	1.19	1.07	•	1.01
3-beta-hydroxysteroid dehydrogenase (HSD3B1)	-127	-1.13	1.83	3.1	-1.01	-
3-hydroxyisobutyrate dehydrogenase	-1.37	1.2	1.23	20.1	1.13	6 0:1
3-methykadenine DNA ghycosylase	,	2	1.19	2	1.17	2.
60S nbosomal protein L6	1.03	20.	1.18	-1.12	1.01	1.02
8-exeguanine DNA giyoosylase	-1.01	4.	÷	1:08	7	1.06
Acetyl-CoA carbonylase	-1.6	÷	1.48	-1.82	-1.4	-1.39
Acatylcholine receptor epsiton	3.5	÷.15	-1.48	-1.07	-1.09	1.08
Activating transcription factor 3	26.1	÷	1.03	-	1.13	1.06
Activin receptor type il	=	50.1	÷.	-1.08	-1.19	-1.01
Acyl-CoA dehydrogenase, medium chain	-1.13	8.	-1.07	1.12	1.01	1.05
Adenine nucleotide translocator 1	₹ ¦-	÷	.	-1.08	-	1,03
ADP-ribosylation factor-fike protein ARL184	1.15	=	1.17	-1.05	-1.11	1.01
Agrenodoxin reductase	101	1.04	÷.	-1.02.	1.01	10.1-
Adrenomedullin	2.1.02	÷	5.53	1.03	•1.03	£,08
Affatoxin B1 aldehyde reductase	-1.35	-1.21	1.05	-1.28	8.	1.01
Alanine arrinotransferase	1.04	1.06	1.09	1:1	-1.07	1.11
Alcohol dehydrogenase 1	1.31	1.28	1.14	39.1	1.14	1.11
Aldehyde dehydrogenase 1	-1.13	-1.06	7	7.32	-1.06	-1.15
Aldehyde dehydrogenase 2	-1.05	÷	5	1.01	-	7
Adehyde cehydrogenase, microsomal	-1.09	-1.02	÷.	1.08	8.	1.11
Alpha 1 - inhibitor III	-1.22	1.09	2	-1.11	-1.07	5.
Alpha 1-antitypsin	-1.25	-1.13	-1.12	8.	1.08	1.03
Apha-t acid glycoprotein	1.07	8	-1.11	1.03	-	8
Alpha-1 microglobulin/bikunin precursor (Ambp)	50.1	÷.	2.	2.	٣	10.1-
alpha-1.2-fucosytuansterase	-1.08	-	2.	-1.07	-1.07	1.12
Alpha-2-macroglobulin	1.03	7	-	1.99	1.03	1.1
Alpha-2-macroglobulin, sequence 2	1.2	1.33	124	1.02	1.06	1.09
Alpha-2-nticroglobulin	1.17	10.1	1.07	8.	-1.01	1.01
Alpha-fetoprotein	-1.12	£0.1-	÷	-	-1.06	1.07
Alpha-fibrinogen	57.4	2.36	4.97	3 6.1	1.21	1.11
Apha-prothymosin	- !	\$	1.18	3.5	-1.08	- :
Alpha-tubulin	123	. 8	<u>۔</u> ئخ	-1.83	÷.	8
Annexin V	22.	∓ .	2	124		1.19
Apolipoprotein All	12	1.15	1.1	121	: -	1.38
Applipoprotein C1	-1.15	1.08		-1.14	2.	1.08
Apolipoprotein CIII	12	1.18	1.1	1.06	1.18	1.25
Apolipoprotein E	1.38	<u>1</u>	7 .	1.13	=	7
Aquaporin-2	8:	5,5	58 :	1.06	-1.13	1.1
Aquaponn-3 (AQP3)	5.5	8	E: :	2	8:	30.
Argininosuccinate lyase	1.12	8	1.16	1.17	1.36	1.16
Arginosuccinate synthetase 1	5.1.	-1.07	2 1	8.	9.16	60'3
Anyl hydracarbon receptor	-1.03	÷.	÷.	- -	1.11	1.02
Aryl sulforransferase	-1.14	8.	-1.05	1.39	1.26	1.13
Anytsuffatase B	-1.04	1.85	.05	1.07	1.09	

Table 45

1/13

Aspartate arrangtanase, mitochondrial	8	104		5	1.04	1 03
Asoantoacytasa	1.76	5	9	61 1-	.1.15	9
ATP-stimulated discoordicald-recentor transforation ommuter (Cyki	77 :	×	36	2] =	ļ -
ATPace inhibitor fest mitochoodial IE1 notain.	2	1 2	27.1	50	2	, <u>c</u>
Ann	31.1-	3.5		77.	3 19	3 8
	97.	- -	: :: :::::::::::::::::::::::::::::::::			8 :
Ray (africa)	25	/ 50	9 5	? E		Š
Bd-2	88	13	8	<u> </u>	101-	1.12
80-14	-1.16	97:	ā	101	-	-
Bets-actin	1.18	12	22	1.06	1.18	35.1
Beta-actin, sequence 2	-1.17	-1.15	29.	8.	1.06	80.1
Betz-alanine synthese	1.07	1.19	•1.09	1.11	1.57	1.11
Beta-tubulin, class I	1.38	1.17	8	1.01	-1.09	-
Betains homocysteins methytransferase (BHMT)	262	1.83	1.17	124	1.65	1.18
Bile salt export purto (sister of p-glycoprotein)	1.15	75	1.15	1.08	1.27	3.05
Billrubin UDP-glucuronosytransterase isozyme 1	ži.	8 5	8	8 :	8.	1.13
Bitwertin reductase	2	1.09	8. 5	ξ.	P 3	8 8
BACAI	97.	90.	1.13	- :	3 0.	3
C-er0 B-2	1.03	8.	8.	87.	8.	8 8
		5 5	5 5	5.5	B. 8	8 5
	- 31	1.12	2 2	90	3 5	8
	9	2	5	-1.12	-	8
C-reactive protein	901	2	1.13	10.	-1.07	8
C4b-binding protein	2	-1.12	7	-1.03	-1.08	8
Caltindin D (9K)	1.16	8	•	20.1	202	1.01
Calcineum-B	121	1,14	1.23	1.14	1.51	1.14
Calnexin	1.1	1.02	8	1.28	1.16	1.53
Calpactin I heavy chain	8:	1.18	1.76	1.13	1.86	
Catpain 2	-1.07	÷.04	1.01	1.02	-1.08	÷
Cafreticulin	1.12	1.18	12	1.19	1.15	<u>2</u>
Canalicular multispecific organic anion transporter	1.56	5 21	8.	101-	4.	.
Carparnyl phosphate synthetase i	21.62	÷.:	-1.16	÷.	÷.62	-
Carbonic anhydrase it	-1.45	-1,3	-1.25	1.13	1.24	91.1
Carbonic anthydrase III	1.59	. 28.	-1.93	-123	-2.12	-1.15
Carbonic arhydrasa III, sequence 2	41.14	-1.07	-1.21	ឆ្ម	8.	1.23
Carbonyl reductase	50.1	5	101	30.1	-1.09	8 5
Carreine pairtitoy-CoA transferase	1.25	3 5	51.15	<u> </u>	7.1	9 8
	. 70:1-	2.5	9 : -		1 11	3 6
	10:1	8 5	20. 1.	4 F		1.05
Casoase 3	41.	10.	-1.17	86.	97	1.07
Caspase 6	1.1	1.1	=	-1.08	1.05	1.0
Caspase 7	-1.13	-1.06	÷	50.	30,1	-
Catalase	1.29	4.	1.17	-	1,33	1.40
Catechol-O-methyltransferase	1.21	1.2	1.03	8.1	2.14	1.17
Cathepsin B	-1.16	÷.	8.	1.19	1.23	1.46
Cathepsin L	1.86	8	2.85	8.5	1.12	8 2
Cathepsin L., sequence 2	80 ;	1.43	242	-1.16	8. 8	5 5
Cathersin S	E.	21	1.45	8.	9	3 ;
Caveolin-3		.1.13	-1.16	3.1.	10.T	5.73
CCR5	90'-	B0:1-	-1.15	,	8.1.	9 9
CO44 metastasis suppressor gene	1.19	 1	22	F. C.	- ;	3 :
Cdc2-related protein kinase (NCJK)	8.		87.		5.	<u> </u>
COKIGE	3 , 1	5.13	81.1.		5:	3
COKIUS Con to a conference and belong the conference of the confer	9/:-	8 5	3 5	8 E		3
Celiular muserc acta caraing protein (Christ)	3	<u> </u>	3		•	}

Callular ratinole acid binding protain 2		77		9	2	:
Cendoplasmin	70.	. 4	8 8	3.5		
Cholesterul 7-alona-hodmydasa (PAS) VIII		1 -				
Cholesterol esterase			2 -	5 5	\$ £	3
Choline kinase	12	8		. 59	8 2	8
Ciliary neurotrophic factor	1.01	8	8	60	201	8
Clustarin	1.54	1.25	1.55	8.	1.09	- 23
Coffin	1.02	1.07	1.17	1.8	-1.06	2
Collagen type il ,	1.31	-1.19	127	5.	-1.07	1.01
Colomy-stimulating factor-1	-1.08	-1.06	1.01	8.	÷.	-1.09
Complement component C3	8 7	5.	1.08	5.1-	8.	-
Complement ractor (CPI)	85.	90,1-	1.01	2.	8 ·	2
Contransin-like protease inhibitor (CPt-21)	8.7	1.13	2.5	3.5	8.5	6 5
CTP phosphocholine cytidyhttransferase	851	81.1	571	<u>*</u>	¥ 5	3 =
CXCF4		8	8 5	.101	3 7	: 5
Cyclin D1	19.1-	1.28	8.1	1.00	8	8
Cyclin D3	1.02	· •	10.1	8.	104	-
Cyclin dependent kinase 2	-	10.1	9.1.0	51.0	¥0.1-	20.1
Cyclin dependent kinase 4	10.1-	1.09	50.	8.	1.07	.
Cycin E	-1.01	2 .83	2	7	101-	÷.
Cyclin G	8	1.08	1.15	 8:	Į.	1.12
Cyclin-dependent kinasse 4 imbitor PZ/kip1	- 1	5	8	8:	-123	= :
Cyclooxygenase 2	50°-	8.	97.08	F	1.01	3
Cystatin C	-1.36	87	8 <u>1</u> :		F.F.	5
Cychrome coadase subusit	7	14.1-	£	3.5	8.7	- :
Conclumns conduse subunit IV	7C.1.	9 . 7.	9 8	8.5	2.5	3 :
Cytochrome P-450Md	5	111	3 5	8 5	90	5
Cytochrome P450 11A1	! -	. <u>.</u>	8 5	1.65	71.1	1.15
Cytochrome P450 14DM	-	1.03	1,14] =	1.0	5
Cytochrome P450 17A	1,17	-1.05	=======================================	5 .	-1.06	1.08
Cytochrome P450 1A1	5.02	1.02	-1.12	1.07	10.1	-1.03
Cytochrome P450 1A2	7	21.08	¥.	1.07	1.01	50.
Cytochrome P450 1B1	10.	1.05	÷.09	8 :	101	1.07
Cytochrome P450 2A3	12:	1.17	8. .	1.31	1.07	- 1
Cymchrone P450 2B1/2B2	20:1	8 .	8:	£	21.12	3
Cytochrome P450 2011	35.	80:	##: 0 + +	3. ÷	1 2	2
Cytochrome P450 2C23	101	19	2 2	25.		3
Cytochrome P450 2C39	1.09	8	<u> </u>] _	-	90.
Cytochrome P450 2D18	1.08	1.13	. 71.1	-1.01	1.1	÷.08
Cytochrome P450 2E1	521	1.26	126	87	3 .1	2 .
Cytochrome P450 3A1	1.1	-1.03	8 :	101	-1.06	1.07
Cytochome P450 4A1	153	B-7:	Z :	. T.3	1.61	3
Cytocriome P450 4A1, 50-mer	87.	3 2	<u> </u>	Z .	8. 5	2 5
Decorie	21.1	7 7	Ò.	10:	1.0	5 -
Defender against cell death-1	1.13	1 2	5 5	2 2	80	3
Deoxycytidine kinase	901-	103	ā	-101	1.13	1.03
Diacylghycerol kinase zeta	1.12	12	8	101	10.1	60.
Diazepam binding inhibitor	1.13	÷	- 28	1.07	-1.09	1.08
Dimethylarginine dimethylaminohydrolase	-1.58	4.1.	÷.	1.07	-1.14	-1.15
Disulfide isomerase related protein (ERp72)	1.17	1.02	::	##	1.01	1.12
DNA binding protein inhibitor ID2	8.	1.12	80.	7 .	1.18	£ 3
DNA polymerase beta	2	1.07	1.1	-1.07	201	8
DNA topoisomerase 1	1.06	4.17	1.01	<u>8</u> .	1.09	B.

Doparnine receptor 02		-1.16	-1.08	106	8		8
Doparnine transporter		-1.08	8:		-	1.02	3 5
Oynamin-1 (D100)		1.06	3 .	1.06	1.06	-1.06	8
Oynem ugra chain 1		7	121	121	-1.09	-1.06	9
E-selectin		1.08	-1.08	.1.12	1.05	1.05	8
Ecto-ATPase		1.67	1.43	1.6	1.09	-1.07	90.1
37.10		1.04	-1.07	1.03	-1.01	20.7	7
Elongation factor-1 alpha		20.	1.02	7	1.03	1.08	1.17
Endonsous estraires semanos 6, and 21.	<u> </u>	1.19		8	1.03	1.04	Ξ
Endothelin converting enzyme		<u> </u>	197	131		8.	<u>.</u>
Endothelin-1		2	<u> </u>	5.5	- 5	S. 5.	X
Enotase alpha	•	1.28	-1.16	8 7	1.14	101	9 5
Enoyl CoA hydratase (mitochondrial)		2	1.17	1.17	127	1.14	13
Epidermal growth factor		328	-2.85	-2.56	-1.26	-1.3	5
Epithelial sodium channel alpha subunit (alp	(alpha-ENaC)	_	-	. 8	9.1-	10.1	8
Epoxide mydrolase #2		1.12	1.1		-121	-	\$
Equipment introoping into sing-sensitive	IVe nucleoside transporter	60°	-1.13	- T	-1.13	101	1.1
Feltones accorded		-2.14	28 :	289	1.37	1.13	 5.
Extracellular-signal mondated binses 4		8 5	1.14	3 :	8.	90.1	÷
F1.ATPase hata enhunit		8 .	3.	;;	-1.08	8.7	1.07
Farnesol recentive		٠. د د	7	8. ·	= !	1.12	
Fas antiden		2 2	¥ \$	7 5	9.5	7	9 !
Fath acid symbols				ř	97	1.14	1.37
Fatty acyt-CoA oxidase		8	E .	40.	3 2	2 ·	3 5
Ferritin H-chain		1.1	1 23	, 56	8 8	3 4	3 5
Feltuin-like protein (IRL685)		20.	6.	3	17.	8	117
Fibrinogen gamma chain		1.91	1.43	88.1	8	-	8
Focal adhesion linase (pp125FAK)		-1.14	÷.09	4.0	8.1	1.03	\$
Four repeat ion channel		8	90.1	1.14	1.17	1.14	1.9
Ga00153		1.17	90.	1.15	-	5 .	<u> </u>
Garage and Advanced		2 !	97.7	ជ	-1.08	1.03	1.04
Garma-chitamid transcontidate		1.24	7	1.45	5.1. 2.1.	98	1.07
Gan incline monthern phanes and a pain	10101	8	21.12	20.T	10.1-	- !	7
Gurokinasa	nega i (djol.)	8	89:- -	5.5	5.7	8.5	÷. ;
Glucase transporter 1		. <u>e</u>	3 5	3 3	7	80.5	<u> </u>
Glucose transporter 2		S	22.	15.	701	3 %	3 5
Glucose-6-phosphate dehydrogenase		1.48	. 2	. E	101-	100	50
Glucose-regulated protein 78		128	1.21	1.49	1	8.	1.28
Glucosylogramide synthase	•	-	=	1.02	-1.28	27	-1.15
Giutamine synthetase		-1.18	5 0.	7 0.	1.07	10.1	-
Cinations advises		Ξ:	8 1	1.15	1.12	1.28	= :
Glutathione S-transferase alpha subunit		- 5	2	5.7	29°	.0.	Ŗ:
Glutathione S-transferase mu-2		127	2.55	8 5	\$ X	81.1	<u> </u>
Glutathione S-transferase P1		1.37	3	208	1.13	8	3 5
Glutathioner S-transferase theta-1		.123	4.11	-1.03	-1.15	2.	ã
Giutathione S-transferase Ya		-1.16	50.1	10.1	5 8.1	126	1.29
Circattuone synthetase		1.14	<u>주</u> :	1.12	£.	1.41	<u>.</u> 8
Chaine math the actions	id.5@	K	<u>د</u> ز	127	2	-	1.07
Houring monyaideland and		90:	707	-1.12	<u> </u>	13	8
Herne binding contain 23		\$.	 	<u> </u>	÷ ;	8 :	-1.16
Hame oxygenase		9 5	5.1. 2.8.	g :	-1.26	6.	<u> </u>
Hemoglobin alpha 1 chain		3 2	<u> </u>	÷ 1	÷ ÷	\$1. 61.	3 P.
				1	!	!	!

3
_
3

	,	;	!	•	,	,
Наторахи	1.11	9.5	8	20.5	1.01	85
Hapauc libase	9	87.	X	8:	3.	2
Hepatocyle growth factor receptor	1.04	1.11	1.12	-1.11	87.	-1.16
Hepatocyte nuclear factor 4	-1.53	47.	8	ដ្	1.24	
High affinity lige receptor gamma chain (FCENIgamma)	-1.41	i is	171	8 0.	8.	- T
Histidine-rich glycoprotein	.55	1.57	3	27	1.18	3.
Historie 2A	-123	-1.5	27	F. :	-: - :	27 .
HMG CoA reductase	80.	3	90		30.1	3 , !
HMG-CoA synthase, cytosolic	-1.17	F. 5	121	- :	1.06 2.0	. 20
FING-COA symmase, mitochondral	a. •	8:	<u>.</u>	3 9	8 5	8 5
Hydroxysoerdid surrorransease a	97.	Ξ;	- :	<u>s</u> :	3 8	9 8
Hypoxamune-guarane prosprontoosymansterase	9.	<u>.</u>	3 5	3: :	8 8	g 4
Hypoxia-inducible factor 1 alpha	9.5	97.	2. 5	<u> </u>	3 -	9 9
	90:	<u>.</u>	<u> </u>	3 5		3 5
ige binding protein	8 5	8 8	8. 8	8 9	3 5) Y
IND-8	20.1-	3.5	3 5	3 7	8.	3 5
Institute like grown racks outling prouding	7 .	¥ 5	3 5	+ • • • • • • • • • • • • • • • • • • •	97.	3 5
Institute of the factor circuit, protein 3) (1)	3 5	÷ :	0	5	<u> </u>
Installative consultation bindion protein &	50	2 2		9.7-	<u> </u>	2
Insufinitie anowth factor i	-1.26	123	8	59.	1.18	-1,12
Insulfactive prowch factor I, expn 6	1.08	90	1.15	2	121.	-1.11
Infection beta-4	8.	1,02	60.	1.08	-1.06	¥.
Integrin beta 1	1.67	1.61	1.8	1.07	1.1	1.2
Inter-alpha-inhibitor H4 heavy chain (IUM)	-1.08	-1.13	-1.08	-1.01	1.04	. 8
Interferon gamma	-1.06	10	1.04	-1.26	-1.05	1.07
Interferon inducible protein 10	1.04	-1.07	÷.	ជ	1.08	89. .
Interferon related developmental regulator IFRD1 (PC4)	1.33	1 .8	1.17	-1.09	3.6	1.07
Interleukir-1 beta	1.01	2 .	3	-	8.1 8.1	5
Interleukin-10	-1.03	10.1	- 8	8	-1.15	
Interleukin-18	1.08	20.	8	10.1-	8:	<u>.</u>
Interfaukin-6	3.6	- :	89.	6. 8	10.1-	
Intracellutar calcium-binding protein (MRP14)	50.7	£. 5	70.1	Z :	÷ .	7
Intracellular calcium-binding protein (MRP8)	8 3	3	5.5	7.7	1.3	<u>;</u> -
Iron-responsive element-canding protein	90.	9 5	<u> </u>	- 6,		. 2
MINE A CONTRACT TO THE PROPERTY OF THE PROPERT	5.5	? -		17.	2 2	7
Min Success acutation protein misses	<u> </u>	<u>:</u> =	. 4	. t.	į -	59.1
XAI1 metactasis suppressor pene (CDS)	-1.07	1.07	.1.9	1.17	1.08	1.17
Keratinocyte growth factor	3.	8.1	207	-1.14	1.04	<u>1</u> 0
L-gulono-gamma-lactone oxidase	-1.08	-1.09	-1.05	1,02	1.03	•1.08
Lactate dehydrogenase-B	-1.45	-1.24	-1.24	S	90:1	5.5
Lecitivi:cholesterol acytransferase	8.	-;-	-1.12	 2:	8.	3 ;
Leptin receptor (fathy)	21.1	£ .	1.17	= ;	8	1.1
Lipopolysaccharide binding protein	90.	90	90.	4.1.	9 ,	<u> </u>
Lipoprotein lipase		24	8	2 ·		
Liver fatty acid binding protein	: :	8 5	<u> </u>	3 5	3 5	3 5
Low density approven receptor	41.1.	3 5	3 -	90	8	·
Lysy syludysad	102	1.19	114	=======================================	2	121
Macmohane inflammatory protein-1 alpha	8	<u>-</u>	8	50.1	1.1	1.06
Macrobage inflammatory protein-2 alpha	1.21	1.1	1.18	1.02	-	-1.03
Macrophage metalloelastase	-1.07	-1.11	1.22	1.06	-1.02	5.
Major acute phase protein alpha-1	2.04	1.41	55.1	-	-	1.01
Major basic protein 1	1.02	50.1	1.03	-1.13	-1.11	-1.13
Malate dehydrogenase, cytosotic	-1.59	-1.42	-1.37	8:	1.08	.o.
Malic enzyme	-1.51	1.4	5.	Ŧ	÷.	121

MAP kinase kinase	8	9		3		1,00
Masoin	3	8	, O	5 ;	3 ;	3
g		3:	8.5	50.7	27.0	3
Matrix metalliorometrics.		- 107	1.24	90.1-	29.1-	<u>5</u>
371	21.1	52.	1.27	-1.3	1.08	-1.14
Membrane bound constraine M.	8	1.28	8 7	-1.07	1.05	<u>8</u>
Metallothiopain 1	2 6	<u> </u>	1.1	91.1-	1.06	1:01
Methylacy-CoA racemase amba	\$.75 5.73	2.16	2.75	7,1	2	.127
Methylenetetrahydrofolate reductase	90	5.5	¥ ;	7.	8.	8
MHC class 1 antigen RT1.A1(f) alpha-chain	8.5	5 E	1.5	5 8	29: E	6.
MHC class it amigen RT1.8-1 beta-chain	-1.05	75		117	117	
Mitagen activated protein larase (P38)	10.1	90,	107		5 5	
Monoamine oxidase A	-1,03	1.01	-	20	8	3 5
Monoamine oxidase B	1.15		-1.12	<u> </u>	1.1	3
Monocyte chemotactic protein receptor (OCR2)	ž.	5.1.	20.	1.06	-1.04	1.02
Mullerian inhibiting substance	-1.14	-1.09	-121	1.06	9.1	1.06
Nutliang resistant protein-1	12	8 .	1.13	1.01	1.09	1.01
Mutidang resistant protein-2	=	-	20.1	-1.09	50:1	-1.08
Municipal resistant protein-3	នុ	1.19	52.	10,1-	1.06	1.08
Mult. romaegue (MLR1)	70.	3	80.	.	1.00	1.06
wat program	10.1	-1.21	-1.42	1.11	-1.06	8
Myelin basic protein	-1.07	<u> </u>	\$	% :	-1.26	.1.26
	10.1	8	1.01	10.1-	8.1	1.07
Many or or a control to the sum of the sum o	121-	-1.17	-12	60° -	7	-1.09
New American States (APART)	27.	8:	<u>z</u> .	3	7	•1.08
NACH SACHTON THE SACRESS	B :	3 5	.1.26	1.2	1.18	123
denough	-1.75	-1.07	8 ·	1.08	90.1-	1.03
NADDH marchings 0450 and combined the combined to the combined	9	9/1-	2 9. ;	88.	#:	-1.24
NADPH CAphrone DASS and when the	5	= 5	8.	X	1.11	8
NADPH originate oxidered research (DT-discharges)	± 5	A .	 	7	1.18	1.13
Name around factor recentor	8 5	8.:	5 6	127	ZĮ.	= :
Neurofibromin (NF) tumor suppressor)	3 5	- 5	8 8	51.12	5.5	<u> </u>
Neuronal cell adhesion molecule (NrCAM)	2 -	3 5	1.71	3 -	3 3	3 8
Neuropeptide Y	6	112	12.1	. 2	10.17	1.03
Neutral endopeotidase 24.11 (enkenhafinase)	-182	-153	5.5	4 4	7	5 5
NGF-inducible anti-proliferative putative secreted protein (PC3)	3	1.24	7.	2 2	5 -	8 -
NIPK	8	98	101	2		8
Notch 1	50.1	1.07	8	5	8	8
Nucleoside diphosphate kinase beta isoform	-1.12	1.1	3.	1.11	-1.13	98
Nucleosome assembly protein	1.31	1.15	121	-1.13	87°F	-1.01
Octamer binding protein 1	8.	1.09	÷.	1.06	1.02	1.02
Organic anion transporter 3	3.5	-1.12	<u>구</u>	•	70 F	1.1
Organic prior transportion motorcation 1	3 5	27.5	E. S	90.	1.09	1.18
Omanic casing an appropriate 1	67.	21.1.	5 1	8:	70.1-	;
Organic Cation transporter 3	? ?	5	27	IO. 1	/0.1-	70.
Organic cause an expense of	• I	5 ;	E1.1	1.11		
Omithing decarbondage	3. t.	R 2	<u> </u>	ρ: -	8.5	17.7
Osteoactivin		3 5	200	. ·	3:	<u> </u>
Osteopontin	3	87	3 2	21:- 21:-	2	3 C
Oxygen regulated protein 150	28	2	5	2		
DSq.	10.1	<u> 5</u>	51.1	3 5	20 -	2 2
psscoc	101	1.0	20.	20.	901-	3
p70 ribosomal protein S6 kinase alpha-1	1.42	7	1.4	10.	1.03	1.0.1
Pancreatic secretory trypsin inhibitor type II (PSTI-II)	1.51	-1.25	÷.	1.07	1.08	-1.07
PAR interacting protein	121	-	1.29	-1.09	-1.07	-1.13

Paraoxonase 1	-1.15	-1.03	-1.16	-1.03	-1.09	8
Peroxisomai 3-ketoscyt-CoA thiolase 1	1.45	1.51	5 .	1.02	121	
Peroxisornal 3-ketoacyf-CoA iniciase 2	1.61	5.7	1.38	1.1	1.29	8.
Peroxisomal asyl-CoA ciddase	1.75	3 .	1.61	1.16	1.47	<u>2</u> .
Peroxisomal multifunctional enzyme type II	-1.07	=	1.24	123	1.26	1.19
Peroxecme assembly factor 1	121		-	2 0.0	1.12	1.85
Peroxsome assertiby ractor 2	1.25	121	123	8		8.
Peroxisome proliferator activated receptor alpha	1.14	1.14	1.08	60.	125	1.28
retoussume promerator activated receptor garnina Phase-1 RCT 165	- 5	B. 5	5. 5. 5. 5.	= :	8.	Ξ,
Phase 1 RCT 252	200	107	7 -	<u>.</u> 5	<u> </u>	- =
Phase-I RCT-10	-1.38 -1.38	-12	-	3	1.12	901
Phase-I RCT-101	-	5.	1.04	1.09	1.16	1.16
Phase-1 RCT-102	-1.5	-1.48	-1.59	1.28	7	1.12
Phase-1 RCT-103	8.1-	3 .	-1.07	131	-1.69	-1.13
Prase-I HCT-106	80.5	-1.06	20.	10.1-	-1.14	-1.09
Present ACT-107	50.7	7	. 7	- !	1.13	<u>ਦ</u> ਬ
Phase 1 BOT-108	5 ·	3 .	8.5	1.57	8	1.18
Phase-1 RCT-110	ž -	- 117	1.43	27.7	T. 7	1.1
Phase-1 RCT-111	20.	8	80	2 7	3	
Phase-1 RCT-112	•	-1.12	-1.19	6.	- 60:	1.13
Phase-1 RCT-113	-1.05	101	-1.09	10.	25.	1.14
Phase-1 RCT-114	-1.09	-1.07	-1.17	÷	1.07	1.08
Phase-1 RCT-115	1,01	10.1	5.6	_	1.12	-1.05
Phase-1 RCT-116	1.01	1.01	.i.	1.0.1	-1.02	-1.08
Phase 1 RCT-117	.08 .08	1.07	-1.05	=	1.46	1.05
Phase-1 RCT-118	- !	÷.	5.5	1 0.	-1.25	-1.17
Phase-1 RCT-119	90.	-1.15	-1.28	8	\$	1.12
Prisse I MCI-12	5 5	8 8	5;	F		÷ .
Phase 1 RCT. 122	20.1-	3 5	; -	8 2	3: -	87.
Phase: RCT:123	2 5	3 5	- 5-	<u> </u>	5 -	3 5
Phase I RCT-125	1.12	201-	11.1.		3 5	1.5
Phase-1 RCT-126	27	1.2	1.16	12	761	10.1
Phase-1 RCT-127	1,17	-	- 00	-1.01	1.11	1.08
Phase-1 RCT-128	2.	-	-1.07	-	1.8	-1.06
Phase-1 RCT-129	1.01	-1.03	30.1	27	1.07	1.1
Phase-I RCT-13	20.	1.41	1.21	-1.72	1.15	1.29
Present MC1-130	9.1.08	25.5	= !	¥;	F. F.	90.5
Phase-I RCT-131	2.13 2.13	58.5	5. 1. 2. 1.	T. F.	3 5	1.16
] =	. 5	121	<u> </u>	3 5	
Phase-1 RCT-134	10,1-	50.	1.01	1.07	1.12	1.07
Phase-1 ACT-136	8.1	-1.06	÷.05	-1.06	1.01	-
Prase RCT-137	₹ <u>₹</u>	F.7	1.49	97	8.	2.
Prase KCI-138	89.7- 99.7-	- - -	1.16	÷ .	90	-1.14
Phase-1 BCT-140	3 8	8 8	3 8	¥ .	200	3 2
	55.	3 2	1.5	- 5	3 5	5 2
Phase 1 RCT-142	27 T	127	121	9	1.	1.07
Phase-1 RCT-143	191.	-1.48	\$5.1-	8	1.04	1.01
Phase-1 RCT-144	30.1	-1.06	12	-1.14	-1,19	-1.15
Phase-1 RCT-145	1.15	1.83	1.23	29.	-1.03	-1.01
Phase-1 RCT-146	- }	-1.07	8.	1.01	-1.05	1.01
Phase-I RCT-147	60.	3	9. .	÷.	-1.86	8. •
Phase-1 RCT-148	1.03	1.09	-1.07	1.03	1.15	1.05

3.

Phase-t RCT-149	1.77	<u>.</u>	1.15	-1.09	1.09	10.1-
· ·	97.	8	8		90'	12 · · ·
	41.7	3 :	 	8.5	3 5	- 201
			5.) 	. 25	8.
Prase 1 RCT : 153	77.1. 77.1.	- 6	7 -	5	8 5	8 8 7 °
Phase 1 RCT-154	1.07	80	5 2	S	8 E	S 5
Phase-1 RCT-155	Ŧ	2.	1.15	70.1-	8	1.07
Phase 1 RCT-156	1.04	5.83	-	-1.07	52	8.5
Phase-1 RCT-158		1.35	528	2.5	3 .	90.1
Prase HC 1-160	8.1		-1.08	_	20.	1.06
Preset RC -161	<u> </u>	8.5	82	8.	1.07	. 8.
Dhase 1 DCT 464	60:	51.1		2 .	6	8.
Pringse-1 PCT-168	ē.	8	5 .	1.17	:	8
Phase-1 RCT-168		4:1- 4:1-	- 3	<u> </u>	9:19	÷ ;
Phase-1 RCT-169	7 7		Q P	ž. <u>-</u>	5.5	8.5
Phase-1 RCT-17	ā	1.19	101	80	2	28
Phase-1 RCT-170	-1.08	1.03	-1.16	÷	St.1-	-1.28
Prisse 1 RCT-173	-1.37	7	-1.38	-1.06	-1.03	1.1
Frase-1 RC1-174	1.9	÷.98	-1.01	=	50.1	1.01
Phase-1 RCT-175	-1.46	-1.3	-123	1 .06	97.	1.13
Phase-1 RCT-176	1.8	-1.01	20.	=	1.18	1.1
Prase-1 RCI-177	90:1	1.08	1.15	-1.14	-1.07	1.07
Prase-1 MC 178	7.1.	1.13	9; ;	8	8	-2.05
Present MC(-178	SI.3	1.1	87	1.1	<u>6</u>	8.
Description 190	4	gr	7.5	1.08		70.
Phase 1 BCT 181	57.	Ę:	1.23	2.5	8. 5	8.
Phase 1 DCT 183	1.7.	- 5		8.	8 ;	8.
Phase-1 BCT-184	- i	8/1:	797	8	. 5	7 .
Phase 1 RCT-185	3 2	5. £	3 5	3.5	3 5 5	87.
Phase-1 RCT-187	3 -	1.14	9.1-	3 2	9	901
Phase-1 RCT-188	-1.13	-111	1.08	1.03	2.	1.07
Phase-1 RCT-189	1.31	1.24	52,	1.26	1.14	1.03
Phase-1 RCT-191	1.25	27	1.12	3.	1.06	1.01
Prase-1 RCI-182	11.1-	20.	8	80.	1.13	1.15
Dane - Dollas	27.1	3 .1.	÷ ;	5 .	8	÷ .
Phase 1 RCT-195		- 5	3 3	- 70	5 5	8 8
Phase-1 RCT-196	8		1.19	5 -	5	90
Phase 1 RCT-197	-4.1	-1.09	101	-1.07	8.	- S
Phase-1 RCT-198	7	÷.	1.18	-1.01	5.	54.
Phase-1 RCT-199	. 27	1.64	201	10.1	10.1	- -
Phase HCT-2	8	1.03	90	-1.06	10.1	-1.15
Hase-1 ACT-20	Ŧ:	-1.06	÷	8.	20.	101
F1836-1 FC 1-202	::- ::-	B).L-	101	1.01	1.07	1.01
Phase I RCT-204	10.1	1.07	ន្ទ	ដ្ រួ	8.5	8. 5
Phase 1 BCT-208	97.	0 ;	5;	20.5	ā §	÷ •
Phase 1 RCT-207	27.		. .	3 5	<u> </u>	
Phase-1 RCT-208	1.12	501	3 2	3 5	<u>}</u> -	1.13
Phase-1 RCT-209	15.1	2	8	8		171
Phase 1 RCT-21	1.04	2.	2	1.01	1.17	-1.19
Phase-1 RCT-211	10.1-	20.1	1.06	-1.17	10.1-	-1.14
Phase-1 RCT-212	1.08	101-	1.0	_	10.	8.
Phase-1 RCT-213	-1.09	-1.02	1.03	-1.06	-1.07	1.

Phase-1 RCT-214	20.1-	-101	-1.1	1.09	1.05	7
Phase 1 RCT-215	1.05	- ,	8:	1.11	901	:: 8 :1:
Phase-1 RCT-216	1.06	104	1.1	1.02	1.01	1.06
Phase-1 RCT-218 ·	-1.01	-1.14	1.26	1.04	1.04	3
Phase-1 RCT-219	5.62	-1.11	-1.13	 20'-	•	1.02
Phase 1 RCT-22	-1.18	÷.	-1.12	1.86	-1.18	\$
Phase-1 RCT-220	-1.06	8.	2.05	1.0	8.	8
Prose RCI-ZZI	1.03	8	8	-124	123	1.16
71236 I KC 1-222	ğ.,	-1.83	8	- {	8 :	207
FIRST RCITED	- ;		-1.15	3.08	3.5	ğ ;
Phase BCL238	8 5	1.15 3	21.	20 F.	57.	
Phase-1 RCT-229	5 7	116	35.5	200	. 11	3 5
Phase-1 RCT-230	90	8	ā	9	:	3
Phase-1 RCT-231	1.11	8	87	8.1	1.06	1.14
Phase-1 RCT-233	1.07	-1.09	-1.06	1.02	1.02	-1.1
Phase-1 RCT-235	-1.07	20.	101	-1.18	-1.16	1.18
Phase-1 RCT-238	1.02	101	÷.05	1.07		8.
Phase-1 RCT-237	1.13	÷	÷	1.05	3.5	1.07
Phase 1 RCT-239	1.12	1.01	\$	<u>.</u>	£.	-1.13
Phase-1 RCT-24	35.1	1.14	133	-	2 .8	7
Phase-1 RCT-240	1.04	1.05	-	1.11	10.1	5.5
Phase-1 RCT-241	35,1	<u>2</u> 2.	1.57	-1.01	1.05	1 8
Phase-1 RCT-242	28.	1.31	1.88	1.04	1.06	-1.12
Phase-1 RCT-243	-1.05	÷	10.1	-1.02	4.03	90.
Phase-1 RC i-244	-1.14	20.	2 .0	1.08	-1.01	93,1
Phase-1 RCT-245	1.01	97.	-1.13	1.17	-	1.1
Phase-1 RCT-246	1.07	-1.07	1.	-	10.1	1.07
Phase-1 RCT-248	1.05	3	1.1.	-1.07	1.06	= -
Phase-1 RCT-25	-1,3	-1.15	· 1.13	1.05	1.05	8.
Phase-1 RCT-251	2	9.	-1.17	-	1.06	1.12
Phase-1 ACT-253	-1.41	-1.12	21	1.09	1.16	7.5
Phase-1 RCT-255	8:	÷:	1.15	-1.07	1.01	g; ;
Phase-1 RCT-256	2.1.00	8.	8 7	1.01	10.1	5
F1856-1 RC 1-238	1.13	8 3	7.7	100	ž: ;	3 :
Phase-1 MC 1-258	3.	5.5	5 7		5 5	7 6
Dh::41 DCT-26	501.	2. L.	12.1.	5 5	3 =	3 -
Phase-1 RCT-261		8	5	1 2	1.03	-
Phase-1 RCT-262	101	1.14	1.18	101-	262	3
Phase-1 RCT-263	29.	_	8	1.02	1.06	1.05
Phase-1 RCT-264	1.04	-1.07	÷.08	 20.1.	. 20.	÷.
Phase-1 RCT-266	-	20.1	¥0.÷	28.1	÷.8	1.0
Phase-1 RCT-267	1.19	-1.07	8.	-1.07	1.12	1.18
Phase-1 RCT-268	5.5	8:	-1.19	20.	1.08	= !
Phase-1 RCT-27	1.28	1.13	=	-1.13	-1.17	6.5
Phase-1 RC1-270	-1.16	-1.14	1.13	- ;	g.,	<u> </u>
1/2-1-0/1 1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	9 9	- 5	8 5	8 8	- •	<u>:</u> -
Photo-1 RCT-274	1 63	12	5.5	3 5	. 1.	-1.18
Phase 1 RCT-276	3 5	3 5	£ 5		2	107
Phase-1 RCT-277	1.07	8	9		101	1.03
Phase-1 RCT-278	2	90	101-	-1.07	-1.11	-1.06
Phase-1 RCT-279	-1.06	-1.13	-1.17	1.06	-1.06	89.
Phase-1 RCT-28	1.03	5.	-1.07	5.1	-	1.04
Phase-1 RCT-280	1.8	•	•1.08	_	30,1	1.12
Phase-1 RCT-281	-1.07	5.1.	-1.	2 7-	-1.13	\$
			•			

	,	;				
Phase BCT 200		-1.18	1.17	701-	8	2
Phase-1 BCT:294		3 5	87.	2	:	3 5
Phase-19CT-285		181			ġ	3 8
Prese-1 RCT-236	<u> </u>	8.	8 5	501	3 -	9 -
Phase-I RCT-287	-1.01	-1.01	8	1.06	8.	8
Phase-1 RCT-288	1.01	2.	1.08	1.03	23.	1.01
Phase-1 RCT-289	1.03	101	·	-1.01	1.05	1.1
Prince I PCT 200	87	-1.16	-1.18	∓ }	8	÷ :
Mass-1 RCT-201	124	1.15	5.5 	90, 50		8.
Phase-1 RCT-292	į ÷	8 7	¥ 5	3 3	<u>3</u> -	3 5
Phase-1 RCT-293 ·	4.	1.34	1.51	-	-1.15	3
Phase-1 RCT-294	1.08	-1.13	-12	1.07	1.1	58
Phase-1 RCT-286	20.	1.01	1.06	1.07	97.	1.08
Phase-1-PCT-297	<u>5</u> 5	8.5	8.8	8.8	87.	90.
Phase-1 RCT-3	10.	90.	8 T	6.0	86	2 6
Phase-1 RCT-30	1.01	2.02	-1.13	1.02	1.03	8
Phase-1 RCT-31	-1.3	1.26	-1.15	19.	•	8
Present ACT-32	2.0	25.	5. 2.	-1.08	10.1	-
Please I BCT.34	50.	8 5	- :	8 3	1.07	<u>5</u> 5
Prase-1 RCT-33	21 15	112	27.0	3 -	<u>8</u> -	<u> </u>
Phase 1 PCT-36	307	1.05	133	: 5	. 2	3 6
Phase-i RCT-37	1.45	4.1-	1.4	-1.16	1.07	0
Phase-1 RCT-38	-1.19	-1.04	-1.24	1.06	1.04	1.13
Phase-1 PCT-39	1.16	1.16	1.03	-1.08	123	8.
Phase-1 RCT-40	1,01	4.17	121	-1.18	τ:	2
Prese-1 HC1-41	-1.07	9. 1	ឌុ	1.01	1.03	1.12
Present HCT-42	۳. د	7.07	87.5	= :	1.13	<u>.</u> 2 ;
Prose-1 RCT-45	<u> </u>		3. 5	107	8.5	3 5
Phase-1 ACT-47	-	. 133	90	183	81.	
Phase-1 RCT-48	-1.23	-1.07	1.1	1,12	1.07	Ξ
Phase-1 RCT-49	1.7	=	7	-1.14	1.02	-1.16
Phase-1 RCT-50	1.96	1.36	1.91	1.03	-1.01	1.01
Prase RCT-51	20.	-1.09	-1.14	÷ ;	10.1	<u> </u>
Phase-1 BCT-S3	07.1-					5 5
Phase-1 RCT-54	•	3	8	8.	1.07	8
Phase-1 RCT-55	1.08	. 101	1,11		÷.	2
Phase-1 RCI-58 Phase-1 BCT-57	8 E	97.	90°.	2 2		5 8 8
Phase-1 RCT-58	907	108	20.	71.	11	1.19
Phase-1 RCT-59	121	1.06	90.1-	90.1	121	Ξ
Phase-1 RCT-6	-1.12	-1.08	4.1	-1.06	-1.06	5.
Phase-I RCT-50	1.07	29:	1.09	8 :	- . 01	5
Phase-I RCT-62	9 8 7 7	= =	77.7	22.1.24	-	3 5
Phase-1 RCT-63	3	101	8	1.17	-1.18	-
Phase-1 RCT-64	-1.16	_	-1.1	1.06	1.08	5
Phase-1 RCT-66	12	=	1.16	1.25	1.37	7
Phase-1 RCT-66	1.12	-	1.12	8.	101	2
Phase-1 RCT-67	<u>ਦ</u> :	101	÷ :	1.03	27.	= ;
Phase-1 RCT-68	1.37	1.16	3 .	7	8.	3
Mase-1 RCT-69	1.1	1.13	1.13	-1.16	-1.13	5

Phase I ROT-7	2.5	7.08	8	5	i lg	:
Phase-1.RCT-70.	2	7	į	3 5	20.1	<u>+</u> •
Phase-1 RCT-71	2	. 5		ì	O	. ;
Phase 1 RCT-72	=======================================			<u> </u>	337	; ;
Phase-1 RCT-73		7	7 5	9 5		3.5
Phase-1 RCT-74	5	- T	1,00	8 8	AT .	3.5
Phase-1 RCT-75	E	2	•	¥ ;	10°	90.
Phase-1 RCT-76	8	3 6		5 5	4	
Phase 1 RCT-77	-1.19	-1.15	8	1.0) T
Phase-1 RCT-78	71.	-1.37	2	57	. 7	5 5
Phase-1 RCT-79	-1.06	\$	1.08	8	-	3 5
Phase 1 ACT-8	-1.16	-1.13	÷.	-1.12	10.1-	101-
Masse-i ACI-40	25	. .	-1.13	1.0	26.1	1.1
F1836-1.HC1-81	10.1	3	-1.08	-1.06	1.08	1.07
	5	* 1.7	÷	-1.01	1.01	-1.08
	2	-1.13		-	t.08	÷.08
Change of the contract of the		1.05		÷.	1.09	
Phase : 807.83	9 :	F. 5.	2	£. 5	1.01	1.07
Phase-1 ACT-88	1.50	ST:	* 8	5 5	- 3	2 3
Phase-1 RCT-89	1.13	1.16	86.	<u>9</u>	70.7	8 .
Phase-1 RCT-9	201	-	8 7		10.1. 8.1.	- 5
Phase-1 RCT-90	1.06	-1.19	-127	20		7 -
Phase-1 RCT-91	-1.02	50,	101	-109	901-	- 6
Phase-1 RCT-32	1.09	-1.07	8.	9] -	8
Phase-1 RCT-93	-1.13	-1.17	-1.24	3	. <u>3</u>	8 8
Phase-1 RCT-94	10.1	101-	1.1	-	8	÷
Phase-1 RCT-95	÷	28.	8.1	1.1-	-124	. DB
Phase-1 HC 1-96	1.08	1.06	8.	8.5	1.06	1.05
Present RCT-97	8.	1.02	1.01	1.06	-	1.02
Priese-1 Pricise	= !	1.16	1.25	1.09	1.15	123
Principlication of hydroxytage	£ ;	99.	٠. دي	1.1	1.16	1.07
Prospicately entangement of the protect December 1997	7.5		3 !	1.07	1.14	1.17
Phoenholinges D	7 5	. :	-1.07	F. 0	1.09	.03
Dim1 Anthonorems	5.	- ::	-1.15	- ;	83.	3
Poly(ADP-three) mormorase	5 2	3 5	8. 5	 	1.09	5.08
Preproatburdn	<u> </u>	3 7	8 5	2 E	<u>-</u> -	2 5
Preproalburan, sequence 2	80		? -	3 5		5 5
Presertiin-1	-1.15	7.1	17.	. .	21.1-	8
Proliferating cell nuclear antigen gene	-	5.	1.07	5	1.03	90.
Prostagiandin H synthase	. 8	20	-1.06	1.1	£.7	1.05
Proteasome activator 28 apha	-1.15	5 .	12.	-1.07	-1.04	-1.07
Protein Masse Cabbs	3 8	8 3	5	8	16.1	8
Profession friends C. Peters	3 5	20.1-	ጉ }	8	50:	90
Profesio America abosehatese states	3 5	8 3	2.51	÷.	1.28	7.14
Profesio tymeine obserbatases recentar two D	8 -	5 :	3 3	20.	807	80.1- 80.1-
PTENMMAC:		7 T	8 5); ;	3.	
Putative membrane fathy acid transporter	2 2	8 -) i	¥ \$	3. *	3:
Pyruvate kinase, muscle	×	=======================================	3 -	3 5	54.47	? Y
RAC protein kinase beta	8	1.13	20	20	2	3 2
PAD	-	1.03	10.1	15	8	1.14
Rel-1	121	=	1.28	1.07	8.1	1.09
Renal organic anion transporter	<u> </u>	다. 당.	1.38	1.03	1.16	53.
Retinoid X receptor alpha	5.68	2.5	1.01	1.01	1.06	•
Retinal dehydrogenase type III	1.01	-1.05	1.06	129	1.04	1.07

Retinal-binding protein (RBP)	-	1 53	9	•			
Ribosomal protein L13	2		2 2	-	1 7 1	:	2 :
Ribosomal protein L13A	į	- :	3	5 6		!	2
Ribosomal nmining 27		- :	97.	3			3
Photograph Americ C17	1.1.	2 ·	90:	3			÷.
	11.1-	51.15	8.	8.	10 -		59.
	60°	7.7	1.15	<u>5</u>	1.01		.8
	8	10	1.06	1.33	-1.46		2
S-adenosymetrionine decarboxylase	-1.15	8.	-1.07	9.	1.08		5.
S-206mosy/methonine synthetase	8.	1.06	-1.06	1.36	1.55		35.
Sarcopiasmic reticulum calcium ATPase	201-	8.	-1.09	1.1	801		1.14
Scavenger receptor class B type I	1.09	8	8	-	20		2
Schlaten	8	7.7	1 5	. 5	20 87		3 :
Selengrotein P	5	, ta	7	\$			2 5
Senescance marker protein-30	21.0	1.1.	4	3 :	1.24		7.7
Secution transmoder (SEBT)	4 5	7	0.1.	7.1	Pi :		28
Coding Air and	3 27	17:	-1.17	8.	.		÷.8
	-1.13	3	5.5	1.56	1.23		1.15
Societavgrucose contansporter 1	-1.4	-1.28	1.00	÷.	. 1.12		
Sorbital defrydrogenase	-1.19	97	-1.05		1.37		1.39
Stallman	-1.14	7	-1.02	-1.15	1.1.		8
Steanyl-CoA desaturase, fiver	-5.31	-3.34	4 .38	1.00	. F		7
Stem cell factor	-1.63	.1.29	-1 48	-	7		2
Sterol carrier protein 2	161	į .	2	٤.	15		5 5
Sulfotransferase K2	25.0	. 6		<u> </u>	2:-		3 3
Superoxide dismetase Cu/7n		13		2 5	8.		?
Surgaridae Meridaea Ma	7 :	57.1.	4 1.1.	7	121		8
Commence of watering along the	3.	8.	1.07	89	1.12		5
Symptotics of cytomic agricuing 5	1.14	=		1.05	10.1		<u>.</u> 8
	80.	-1.11	1.14	• 1.06	1.04		- 8
	7	-1.2	. 5	-1.18	-1.07		5
I cr-oeta receptor type II	-1.06	<u>.</u> 8	1.89	-t.01			=
I fitol-specific anticoddant (natural killer cell-enhancing factor B)	-101	-	1.06	÷.	-1.09		-1.03
Thiopurine methytransferase	7	2 6.	1.02	7	-121		-12
Thioredoxin-1 (Trx1)	1.16	1.18	1.27	-1.12	-1.12		1.03
Thiomedoxin-2 (Tn.2)	.127	-1.13	70.1-	1.14	1.14		1.14
Thrombin receptor (PAR-1)	2	1.09	7	60:	-		1.25
Тиотротофиіл	1.13	1.14	27.1	20.	1.03		58.
Thymidylate synthase	1.02	1.01	201-	8	- 109		-
Thymosin beta-10	1.06	70.	1.06	2	121-		1.29
Tissue factor	1.08	1.09	1.19	1.16	201		1.07
Tissue factor pathway inhibitor	1.08	8	÷	8	161		=
Tissue inhibitor of metalloproteinases-1	. 7.1	1.18	133	7	5		8
Tissue inhibitor of metalloproteinases-3	601-	8	81-	107	901-		8
Tissue plasminogen activator	1.13	7	1.15	60.	7		7
Transferrin	28.1	1.71	18	124	100		Ŧ
Transforming growth factor-beta3	-1.04	90:	20.	8	8		60
Transitional endoplasmic reticulum ATPase	1.06	<u>1.</u>	1,14	1.02	8		1.06
Transthyretin	\$	1.07	،	8	-1.12		5.
Tryptophan hydroxytase	-1.15	1.07	-1,18	8	8.		1.01
Tyrosine arrinotransferase	10.1-	1.04	-1.03	5	-1.12		7
Tyrosine hydroxylase	-1.13	5.	-1.09	-1.01	1.03		2
Tyrosine protein kinase receptor (UFO)	10.1-	5	1.08	1.08	9.7		-1.01
Ubiquitin conjugating enzyme (RAD 6 homologue)	2	-1.08	1.12	1.23	151-		1.16
UDP-glucuronosyttransferase	1.25	1.07	2.03	-1,41	25.		7
UOP-glucuronosyttransferase 1A6	1.37	1,41	1.63	1.03	10.1-		1.1
UDP-glucuronosyftransferase 28	F. 1.31	1.25	2:	-1.4	20.1-		-1.19
Uncoupling protein 2	-12	• 00	1.06	-1.18	-124		-1.14
Urate oxidase	1.14	1.17	1.08	7	1.16		1.16
Urokinase plasminogen activator receptor	- 20	8.	1.08	-1.01	-1.12		-1.08

2001 2001 2001 2001 2001 2001 2001 2001	÷ 5
--	-----

1.1.2 1.02 1.1.4 1.1.4 1.1.3	2522-5	21.15 21.15 21.15 21.16 1.06
--	--------	--

11.										
8 2 0 0	<u> </u>	1.12	121	9.0	- 5	8	8	5 5	Ξ	2

109-109-1158	10.	<u> </u>	124	8 6	12.12	8 -	1.19	÷ 5 5	2 2 2 2 3 3 5 5 5 5 5 5 5 5
--------------	-----	----------	-----	-----	-------	-----	------	-------	--

2	ğ	ğ	55	형	1.75	80.	24.	1.17	7	<u>6</u> .	8	1.37	8	1.11	1.35	8	90.	20.	101	5	83	5
-	÷	÷		÷		÷	-	٣	_	₹	7	,7	-	7	7	7	7	_	7	-	₹	7

1.13	8.	8	1.18	29.	7	1.12	1.71	1.02	13	1.06	121	38	Ξ:	1.14	÷	1.17	3.6	8	1.01	-1.06	55.	8
_	_	_	_	•		•	_	-		_	٠	•		•	٠	-	•	•	_	٠	•	•

	i •					
•						
į	8	E				

Very long-chain acy-CoA dehydrogena. Very long-chain acy-CoA dehydrogena. Very long-chain acy-CoA dehydrogena. Visy dehront warf Lange moralin (Phase-1 RCT 100) (Phase-1 RCT 100) (Phase-1 RCT 110) (Phase-1 RCT 110) (Phase-1 RCT 110) (Phase-1 RCT 120) (Phase-1 RCT 120) (Phase-1 RCT 120) (Phase-1 RCT 247) (Phase-1 RCT 247) (Phase-1 RCT 255) (Phase-1 RCT 275) (Phase-1 RCT 275)

	•	3

Compound-Dase	ANT 15 ANTT 15	ANIT 15	ANIT 60	ANIT 60	ANT 60	\$ 61074	50.13	570.13	S-D-25	35 SS SS	seuso Yo	P 250 AP	A 250 V	94 022 9A	APAP 250 APAP 250 APAP 250 APAP 1000 APAP 1000	AP 1000 A	APAP 1000	.:
•	¥	<u> </u>	1643	1882	ã	ğ	Ē	2	ğ	ã	ğ	2121	2212	22	. 2131	21.2	200	
Come Name	8	8	8	2	8	2	5	5	8	8	8	5	5	5	8	2	•	
Herie ozygenese	0.9524674 1.0618	18 1,0630	M 212824	5 1.068833	1.0786357	1,05 19869	1,2028391	3800471 1.	7202843 3.6	134046	1.1049639 8.0	21 1/82/0	7 288570	7,688029	3.608621	.400000	S. 569237	
Otherhions Stransferase mu-2	0.9919809 0.9546	65 0.5960	SC 0.86715.	2 0.969724	1.1053034	12678597	0821775	7765322	3016446 1.3	758965 0.	409629	041872 1.1	493978	1757369	2,711638 2	18/0000	4.2887754	
Trypicohan Indrawytee	1.0053156 1.05135		1.004	1,023,037	1.1228007	0.9961812	0383888	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	21712	084844 0.0	587701 1.2	199487	746007	1507304	2.185003	200	0044782	
Calvatoutin	1.0530781 1.19646	1,1860	25 1.199254	6 1,0804573	1,1631722	0.9896867	1.3160553 1	7785746 1	2.165877 1.0	172618	100005 1.8	21 659020	1 1,7950	1 1002398	1187708	7237401	- SA16337	
Apha-1 microglobelishbousin precures (Ambs) . Heroranthine massins should also be about	1.0054732 1.02735 0.0447464 0.0469	253 Q.8527	1.005 1.005	4 1,0373187	1.0547423	1.0664563	0 28108001	. 1773 12.	20 M2020	2000	075757 1.0	11 825	1,080214	0.009469	Z11996	1.063058	9913078	
other	0.970866 1.0226	1.0648	002200	6 0.064298	1,0581517	1.072208	1.00415	.B464317 1.		290061	200	118251 0.0	76200	1962173	10046571	000000	00000	
Thioreducin-1 (Trt.)	Q.757629 0.6167	20000	12 0.758741	9057500	0.9423516	1,0200131	7.6920562	4945057 Q.	1712522 0.7	BOSO02 0.7	514834 1.0	46284	19450654 0	0 152110	900000	0215130	1.0269739	
Cathorin L. source 2	1.10/3662 1.333 1.0401488 0.0002			7 10787001	1 191048	0.0050000	0 40008	774677		20/20 74/70	101057 12			22000		500246		
Seperaride dismutase Ne	1.1554063 1.25475	11170	124174	5 1203045	1.2854906	1.1708563	2905000	7281843 1.	71 281 151	284746 0.5	662842 1.4	041497 1.1	1104436	2216386 1	1054801	144.22	2025391	
ADD-Mondation feetings for certain ADI 184	0.9757109 0.87340	7 C C C C C C C C C C C C C C C C C C C	200 G. 909760	3 0.967887	0.654048	0.6724408	18469656 0	7138806 1.	27 27 27	457490 0.2	22200 12	200464	1	1907186	90878787	1066738	1.15290	,
D-1	0.9148644 0.852	0000 CE	26 0.5786K	1.0172116	1.0157784	1.1226871	0.838/81 0.6290659	704477	1.1563944 0.2	100689 0.5	287469 1.1 889975 1.3	2000000 1.1	1.224629 t.	1621736 1	1.00453	2696916	E 100 C	
Endogenous retroviral sequence, S and S LTR-	1.1400081 1.10402	282 0.9282	TASS 1.052477	1,019290		0.7767557	12137886 0	R285861 1.	225845	500742 1.(373105 1.	945041 1.2	297524	7396394 2	2457385	1277220	8094369	
Campen L. Pynysta kines, munde	0.9609549 0.86598 1.1882527 1.2090	118 0.6785	41 0.963662 54 1.10744	8 0.847774	1.000000	1.051456	3.7960488 0	SSAUDOT 1	2004508 0.0	763031 1.0	0.08239	£29762 1.1	535697 1.3	2010348 0	2000000	.0040744	211001175	
Apha-toutin	1.1545337 1.2566	1,2006	1.13000	6 1.131786	1.1096295	0.8613440	18459447	5801743	20 400 000	365965	0.1 578270	19603	797561	1000000	30000	2405208	1.0097132	
Neathern	1.0715794 1.05884	10168	177 1.00498	2 1,0096434	1.033217	_	0.883552 0	9226968 0	201161 0.7	120156	720248 0.8	964153 0.8	.1 885757	0624729	9390824	0.094381	1,0475281	
meneron reason covergenema regularoz (FCA) Phase I RCT-180	0.8775647 0.91228	22 0.0074 0.00 0.0085	COS C. BARRING	5 1.0861243	1 0456243	1.060174	0.9714807 1	6720ct	5362148 2.1	342358 0.1 976738 0.1	8221818 0.9 9103121 12	9470315 0.0 2676198 1.0	06787809 0.	2008009	0.756270	2119485	2460042	
Aldehyde dehydrogenese 2	1,4368	9271.1	207	12401007	1,3820716	1,0527891	0.0485482	0015134	1012001	173467	ď		556789	1540046	7927200	9845685	1.118208	
Please 1 RCT 48	0.9117502 0.8903	108 0.8507	115 0.01138	2 0.96244	0.00061	12438333	3,074,002,8	- '		-		71 91123161	200637 0.	6846691 0	0.0023224	0046628	1.1616628	
NACON CONTRACT IN TAKE	0.9504338 0.8588518	77777	114 Q.BORZOS	0.952395		0.9619279		0.000140	902X22	0.85397061 0.5	1.1 52228	211414		780,000	27.29	969690	2024/202	
Installable growth factor binding protein 1	1.1745285 1.0656304	1.025800	1.1445109	9 1.1878775		0.8519211	1.2112389	SCISAGS 1	-	2010245	079604 1.0		1172800 1.	(335842		6134459	4.902089	
Please 1 RCT-127	3	06 0,9190	57 0.80142			-	0.990098.0	Ë	-	0	9753692 0.9	11 115000	ACS613 D.	1467273	12121	1.135105	1.2794747	
Phase-1 PCT-148	1.2683874 0.9983X	227. BO	757.07.	9 0.9781835	1.1278517	1,0511687	0.5801826	.0547906 Q.	0.0000000000000000000000000000000000000	0 89000S	0.772774 0.8	B16532 0.	0 0 0	8047969	1.060602	19435067	1.1482135	
Phase-t RCT-162	0.8332462 0.89198	61 0.9517	A8 0.81018;	9 0.9091264	1.0267823	1,0731192	7613713	4781914 Q.	227055	220022	788362 0.	7780	228573	0285207	0.000749	8595994	0.0005488	
Madridung resistant protein-3	1.0233845 1.0232.1	59 0.9450	71 1.025633	8 0.9858697	1.0476992	0.8743808	18785723	225AU56 0.	2004005 1.C	.0618155	M28475 1.0	11 1529/2	1.0065700.1	0130209	BOSSESS	0.0962178	1.0502309	
17-beta hydroxysteroid dehydrogenese, type 2	1,1206277 0,9767	1 1803	X7240.1	1,0027383	1.1538872	0.8752837	3.9864478	2114098	1924281	902683 0	00 00 00 00 00 00 00 00 00 00 00 00 00	200	0.076211 0.	628959	BOOKSIB	0.0450439	0.7978696	
Matters dehydrogenese, o/medic Phanes RCT-131	0.8500468 0.7785	20000	728 0.80137	7 1.0063511	0.0465203	1.2394569	1.6377333	1 200724		052015 0.	461541 1.1	700006	0.00000	9179745	741710	1250520	0.6560054	
Aldehyda dehydrogenese 1	0.9036258 1.0626	98 0.9438	1.07080	4 0.995760	0.9922017	1.1382686	1.0845432	S100000 0.	5869148 0.0	458138 0.7	243300 0.8	77030	0.85849	9800127	0.4287273	6311093	0.0719079	
NADP-dependent inocitate detydrogenase, cytosofic	0,7873656 1,06128	12041	S7 0.78190	0.834297	0.0418160	0.7903096	10534551	0.631517 0.	M14484 0.3	176399 0.0	220482 1.2	222	B44345 1.	0028788	9/0/63/0	6820434	0.6627704	
Asperbechase	0.7400767 0.65913	17 0.661210a	04 0.87864	0.8126927	0.7438048	0.7835888	7451069	7916745 0	150173	2 52 52 52 52 52 52 52 52 52 52 52 52 52	524562 1	191716	117886 1	748288	6856748	9044592	0.6312263	
Zinc finger protein	1.1592768 6.99100	0.101	=	9 1,0363508		1.110318	1.0768011	0.854932 1.	9167039	1 101110	976603 1.1	458206 1.0	800435	0667982	1.0003306	162911	9.0895118	
Phase 1 RCT-144	1.0124385 0.967	100 1.0197	710701 57	- :	1.0436516	1.0962119	1.018772	7705413 1.	1.1 CORASET 1.1	943585 0.5	070977 1.	204288 1.0	0 170031 0	3942165	0.907572	0.858194	1.0074413	
As institution of general control of the second of the sec	1.0028542 1.0178192	22.0722	2000000	2 0.8083694	, .	1.3389338	0.022/20	8568204	785000 0.7	232373 0.5	102315 0.6	812538 O.E	8050675 0	107202	0.8561402	0.7378141	0.999999	
Epidermal growth factor	0.9483832 0.6202	14 0.8742	06 0.65256	-	0.7822628	1.0062578	0.62718	4104485 0.	9025392 0.5	322154 0.	347800 0.0	070734 0.5	_		-	.6177445	0.5290863	
Phase i RCT-83	0.962496 0.65541	480.084	208 0.86912	8 0.8965754 7 0.064494	•	0.9002148	1.9610006 1	1. 6015000	2127769 1.5	467223 0.5	302836 1.2	900637 0.5	581574 1.	1325258	2027536	.0189434	1.0020487	
Methylacyf-CoA racemane alpha	0.80223804 0.85981	2010201	0.8630	106773961	0.0020291	0.901204	7,7616835	0.392660	(8081519 Q.)	2007	568574 1.3	27 000000	274218 1.	0627265	1,516551	200000	0.5984565	
Decorfn	0.9182779 0.66690	2570115	15 0.641065	8 0.0628315	0	1.0181954	0.778625 0	5884288 0.	1.1 B27825	874242 0.	564175 0.8	\$15927 1.0	•	_	1,8064299	0130083	0.7535685	
Cometing	1.0706388 1.1958	119 0.0014038	1.124487	0.88580	= ;	00000	0776398		600000	348659	748457 0.7	718275 0.5		22.1802	0.6347856	7862208	207170	
Traus intribitor of metalloproteinase-1	0.9623817.1.1192390	3 2	1007201	1,0652590	, -	1,0002707	0001566	2548622 1.	1.0 13000C10.1	250534	016521 1.1	1900165	.1562142 1.	0.031630	1,1216216	1.02167	22100801	
Perceionne assembly factor 2	1.0061858 0.96277	W 0.9183237	27 0.94896	0.0631963	ø	1,1701748	Ξ	16572292 1	1000236 1.0	CATART 0.7	7768135 0.9	20 705725	3881141 1.	0828880	1859684	1753907	1.3886048	
Physical FCT-142 Fordienthin nimberraffliciensing sensitiva sentings in concess	0.8843154 0.88700	7	KING O'NHIN	2 0.9542501	0.8213199	0.9088235	1.7862842 Q	5584047 0.	9778001 0.0	774845 0.7	856049 1.0	21 22000	0862144 0	0445923	(005822)	0821380	0.786233	
Phase 1 RCT-12	1,2137514 1,12919	72 1.0962	1,29654	1,020,151	1.1882277	0.9011722	1.148965 1	2596275 1	108162	491965	1.027/	406788 1.0	516707	200624	1736215	2550061	1.0719828	
20 Control of the con	0.9647506 1.08512	147 1.5301	1.00830	1,079120	1,0306479	0.0229755	2498776	7757632 t.	1065542	070000	015622 1.1	506112 1.0	136778	1318577	5444988	3344891	1291265	
GaddiSi	1,1787856 1,31697	747	21 1,48085	7 1251948	1.4005861	1.1364352	0739603	0000071	25555	2 05230	011629 1.0	004478 1.0	597422	0835486	1.000574	.0659587	1,3050115	
cha	1.1560002 1.223	12745	38 1.37578	1,3200054	1,3105412	1.459088	0.9538100 1	1718884 1.	D662487 1.6	139600 1	042681 0.9	780216 0.5	1 221.23	1218120	1.1442858	1,0383264	0.9547784	
Phase 1 MCT-102 Bata-tubulin, class I	0.6955174 0.81475 1.15474131 1.24650	2002	12.154	6 12631088 112087	0.7474004	0.74409	1.0626173 0	0 900181.	3610292 0.5 2027813 1.1	467851 O.	1372402 0.0	10451	250678 0.	6516091	14776	7653708	1.75.27.72	
N-hydroxy-2-acetylecritrofluorene authorsredense (ST 1C1)	1.1939598 0.9719	174 0.980B	11.178Z	7 0.9823800	1,0428284	1.0547594	1.0014462	1 1/2/12/20	0780619 1.5	0.000	659691 1.	100205	177204 1	0770050	7900634	0761298	38115822	
Phase I RCT-24	1.1855778 1.28600	M7 1.3238	40 1.28059	6 12013813	1.1197009	0.811123	0.9628119	3194435 1.	3083764 1.	1 982580	417803 1.3	765178 1.1	101000	273/272	2300634	6618141	2448774	
Page 1 ACT-13	0.7455422 0.72421 1.0040307 1.07952	28 0.8125	25 Q./SUR	7 0,8810685 9 1,0953485	1 0651916	11415657	0.6108001 0	6255241 0.	5000364 0.7	7,565,6	102525	500000 O	A SAME A	0620290	1945-095	0796261	0.6771000	
Introcellular calcium-blading protein (MRPII)	1.0048066 1.173	71 1.00E2	S7 1.0284K	4 0.6925231	1,000879	0.990828	0546843	2435914 0.	1770618 1.2	02220	120713	408067 1.0	711922 1.	0050646	2213101	0205283	0000002	

160 X

Independent integrals near a live promise and a live cell-achieved by the specific anticulant (nahmal kilder cell-achieved by the specific anticulant (nahmal kilder cell-achieved by the specific anticulant protein 2 Pheses | RCT 28 Phese | RCT 24 Phese | RCT 24 Phese | RCT 24 Phese | RCT 24 Phese | RCT 28 Phese | RCT 28

8

tie Auconomor come	O BRITISAN																		
	902.00					_							1.1651309	CONTAINS (GB567850	0.9034610	0.6967492	0.9145039	
			7/707			-							1,000000	1227751	.967169	0.82254.0	000000	O RS78406	
	0.9191002		0.9715608										1 OMATION	* * * TROAT		00740640			
doptaemic redoulum ATPuse	1.1090207		1.1550751																
Dorder (SERT)	0 99A47RM		O BRRDATT											00				212/30	
	1 0481007		* 0065677												.0860541	0.0560067	0.07.73	0.017.00.0	
													0.0073600	0.6745	2000045	0.9428504	0.9015138	0.9073281	
	202020				-	_							0,600,007	25774895	2015125	0.6448312	0.4651401	0.3625311	
ne actor : orbus	0.9413736		0.7296161			-						_	0.8552498	2512341	7738431	0.7835508	0.8028058	0.00000	
	1,1855674		1.2888454			_						_	0.6912186	67/28550	2005250	1.0675720	200000	14444	
3	0.8966902		0.9003368			_							DOSTRUR.	200	7967640		1000		
	0,7435029		1.1781606			_	_						TRADES.	717.00		1			
	1.1007008	1,1285443	1.1240412	1.217278	1,1407125 1	1.2851488 1	1.2062762	1.0109462	-	1,5310171	2 9130514	0241787	000000	0.0500	1001140			0.000000	
	0.8044401		8750478			-	-												
the Universe	0.8825281		O DESMENDS		-								1000	9/00/00/	5	200	0.074.5050	0.784630	
9	0.8754884		O TREADS										1.1460000	/81 V		0.7364311	0.675.7	0.7156634	
the 1 others					-								1,0614923	0.984515	90450	0.8463590	0.8071218	0.754.7829	
						-	_					-	0.6206031	0.61003063 0	1.4404067	0.8953077	0.4567458	0.3702079	
	0.0541287		1.0063568		_		_						1.0688072	1.01072	1000000	0.0480052	C 96949577	1444535	
recommendate process	- 5000 P		1.00000			•							1.4806386	0001250	81/28/30	1 6371244	1.400000	0 2047PM	
	0.9868783		1,0022506		_	_							1,006154	T. Carrette	87.46000		20.00		
Ung factor-1	C.0439774		0.8356.035		-											10.00		701107	
Ggen FT1.A1(f) alpha-chain	1.4796251		1.3561847												1000	0.001000		0.500	
· · · · · · · · · · · · · · · · · · ·	7.776.21						-						137.5	100000	.1904113	3609725	12571827	12801316	
	0.0000											_	0,0717648 (1.0272840	.0145907	1.0045169	1.027.75%	0.8521446	
			1.0011544									•	0.6321024	0. 1021829.0	16782255	1,0083752	0.8483129	0.7884443	
	0.7309836		0.B438455		_	•	_						1,0284828	0.0046925	BD8684B	0.7005778	0.8535658	O TROSALI	
8	0.0075572		0.871682		_	_	_					_	0.6261206	7359419	7459614	0.00700108	O Descriptor	0.84498917	
-	0.8445808		0.8746137		_	_	•					_	0.8777231	8288504	MARKET	ACCOUNTS O	0.04484000	D DEGLESS?	
8	0.9570128		0.680937		•	•	_						100000	0540044	2231000	200700			
	0.0000545		D. ASTOCKS 1		_	_							0.011206	0.000013	10010	O ACCRECAS	0.705.0011	5005100	
(CANADA)	1.0261996		2227236.0		-	-	•						0.0220	0147610	9				
sphe-hydroxylese (PASO VII)	1.0068302		0.734633		-	-							00000					0.0000	
Neer factor 4	1,730078		1447511			-							2000000	/7/	9	1.0622668	0.655	008	
	200000											_	DESCRIPTION OF	S TENERS		0.8000648	0.0057356	20000	
and Cod meritations			0.0000.13			•						•	0.9171045	1.10652		1.0506412	0.9639030	1,106/000	
	1000		7/2/2		_		•					•	0.6874264	.8562352 0	19435740	0.664621	0.9292435	0.7555130	
3	22/80		. 1335442		•	•	•					•	3.0443583	0435854	2257601	1.2416864	1.1846883	1.0708318	
in man	0.6254628		0.8622284		•	_	_					•	0.0000572	9681914	0.836838	0.6281212	0.9606485	0.00073000	
	-		2,8753153		_	-						-	0079700	ACRESSED O	SOCOPHI	O GREETER	0.0077894	0 6241057	
	0835180		TRATING .			-													

2500 02525440 0350000 0257004 1,170020 1,000127 1,0070429 1,55001 1,0070429 1,007042 1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (1902)
1.75 (. 88 28 2.87177 0.019187 0.004409 0.3821100 10.00420 0.322110 10.00420 0.3222110 10.00420 0.3221110 10.00420 0.3222110 10.00420 0.3222110 10.00420 0.3222110 10. 41 11000053 2.0010014 0.0201647 1.301000011 1.30100001 1.30100001 1.30100001 1.3010001 1.3010001 1.3010001 1.3010001 1.3010001 1.3010001 1.3010001 1.3010001 1.3010001 1.301001 1.3010001 1.3010 0.040709 | 0.000144 | 0.00144 | 0.00144 | 0.00144 | 0.00144 | 0.00144 | 0.00144 | 0.00144 | 0.00144 | 0.001620 | 0.00144 | 0.001620 | 0.001620 | 0.00144 | 0.001620 | 0.00144 | 0.001620 | 0.00144 | 0.001620 | 0.00144 0.00705507 0.0070510 0.007

į

ŝ

2021 0.022043 0.022043 0.022024 0.0220224 0.022024 0.022024 0.022024 0.022024 0.022024 0.022024 0.0220

Ş

| March | 1988 | 2027 GARGARGA D 710ARZO GARGARG CARGARGA 1111154 GARGARGA 11107105 114105 CARGARGA CARGARGA 1111154 GARGARGA 11107105 CARGARGA 11107105 CARGARGA 11107105 CARGARGA 11107105 CARGARGA 11107105 CARGARGA CA

Š

| Colored Colo | CHANCA | C

Š

| 177 | 0.045275 | 0.000118 | 1.0152625 | 1.015100 | 1.000401 | 1. | 100 0.09153421 0.0919739 (1,040172 0.0918739 (1,04

\$

g

| Column | C

ŝ

PCT/US03/06196

WO 03/100030

| Charge | C

828

Cettle 38

| CHANGE | C

g

| Company | Comp

g

702.1500 50.2753	,	2.0501528	1.4041628	0.9006778	1,048341	0.8320802	0.8993125	0.500000	0.5073845	0.8048085	0.9714516	0.00000	5456042	0.530352	0.0066832	1.0070003	0.9053063	CONTRACT.	0.90039	1.0710591	0.9792485	2676658	. M. 6.50	1.108054	0.8889968	0.8272635	1.0484852	0.8197858	0.787736	0.6017965	1,0593886	740074	022202	0.0751957	0.725877	2247556	0.9484179	1.0105984	1.256530	0.9984451	1,00,2403	0.9970374	0.965302	0.9815672	1,000141	0.8874918	1 0159609	0.8689155	0.9770424	0.9915555	0.750281	1,09760.1
2525	•	3,2760567	1,242831	1.0028292	0.0014677	0.6785766	0.9435921		0.6319413	0.8862270	0.9657269	1029141	1723623	0.6070563	0.0806580	0.9190679	0.6891553	1.510012/	0.87579.0	1,0851978	1.0196688	1.1227918	0.30006.30	1,2007454	0.9102745	0.8076478	1.1590633	0.726.20	0.6906787	0.7515072	0.4029951	0 7404041	1,0705258	0.0524045	0.8104868	1,1663332	1.0122397	0.989128	1.5705662	0.9899364	1,0141232	0.87738	0.8012541	0.9586945	0.9691958	1,0417211	1 000000	0.7855841	1.0148283	0.972924	0.7780454	1.0132674
1828	•	2.1940025	1.2071235	0.963676	25200	0.6205185	0.9566199	20	0,7762700	0.842828	0.9324794	0.9988172	4360404	0.0803428	1,0007219	1,018653	200		0.6059082	1.0945588	1.0141808	1.2127		1,05650	0.8773558	0.7805263	0.9600678	0.3012123	0.7805109	0.73ZT.737	0.6669221	0.7728557	1,085624	0.0216583	0.7366921	1,0871923	00000	0.9028343	0.6787451	0.935624	1.0284898	0.8062848	0.8403398	0.8440235	1.1405455	0.0759648	1.0150068	0.7471425	1.0842675	1.1125195	0.7399836	1.01366202
200 CASS -	_ E	1,6896998	1.6275385	1.000348	1,4916068	0.7656227	0.9086679		0.6257641	0.0207796	0.6527872	0.7850512	1 6527.048	0.5218700	1,1198774	0.0024395	0.8223438	2000	0.8522517	0.9870582	0.7799609	2.7980466	2,000/34	300057	0.7850397	0.8149287	0.9681546	1.080123	0.678034	0.6511077	0.915892	1.0713648	1,0057046	0.895631	0.8704116	13173147	1072086	0,7768719	1 67 1784	0.8705853	1,1631662	1,0355146	0.7507222	1.1880671	1.1578565	1.0678177	1.3345474	0.5713427	0.8596689	0.7949496	0.7856212	0.95084.7 1.0536394
200	Į.	4.9616073	PA7074	1.2969089	750055	0.6373086	0.9761423	1.4672016	0.0654646	1.0378016	0.752337	0.7283837	2056255	0.8588558	1.1490198	0,6961363	0.8961383	1,6151328	17778	1.1630353	0.8039748	2.5890715	4.5635406	3808745	0.8715563	0.7798424	0.0578356	0.3450017	0.6289215	0.6103006	0.4185283	1.003842	1.0276071	0.9704450	0.9600563	1,3691077	1556781	0.8196605	0.622200	0.8380466	1.080514	10464227	0.7125152	1,0450645	1.0845499	1.2041984	22294080	0.5328904	1,0706061	0.7654311	0.906739	1.247058
2007350 2007361	į	2.5168612	12952781	0.8739692	200000	0.7757864	0.9570887	1.0031963	0.7641222	0.8386996	0.5180306	0.8069879	1 2352 147	0.6581839	0.9835218	0.975744	0.775244	000000	300.00	1,0000034	0.874984	1,8505644	7727562	0.9722853	0.6388444	0.5618928	0.9485404	0.7520/52/	0.6711629	0.5650562	0.6234447	1.3194096	1,5384681	1,0426826	0.6700313	0.94867	10167859	0.9042569	1.024050	0.9032737	0.9294871	1,0372626	0.7673228	230625800	12221627	1.1516865	1,575178	0.5053033	1.1965404	1,009245	0.6656013	121954
25. 25. 25.	Į	2.876671	24456234	0.933255	1.0846219	1 2074783	0,9267865	1,000011	1,0010016	0.9741.074	0.6735622	0.9083768	131900	0.9801796	0.8923896	1.0459709	0.9909035	7.725659	1007407	1,075.2839	0,9163506	3.0196836	1,0072979	1205390	1011088.0	1,D148821	1.219968	0.9063339	0.7715807	0.9713444	0.6430686	1.1316581	1210267	0.8949959	1.0532053	0.9008145	O GROSEON	0.8984627	0.7105679	0.5459784	1.0206282	1.4007480	0.8838534	0.9617248	1,0104694	0.8031408	0.9568112	0.55219950	0.9568882	1007001	0.8441568	0.953874
25. 25. 25.	į	4.75022	1.597444	1,0117941	0.0546300	0,9789578	0.9756405	7211270.1	1.080678	0.9319683	0.9514470	0.0047515	115241	1.0155636	1.0035408	1.034878	0.8660100	7.45.25.0	0.8321228	1,0863565	0.8764383	1.5786096	O. HZKKICZ V	1.0032027	0.9001556	0.9408068	1.1258834	0.0256353	0.7822417	0.7602264	0.8956354	0.926888	1.1287396	0.8823834	0.8490681	1.1310403	1751454	0.8828278	0.7818391	0.9170005	1.0662385	1.3761322	0.9740047	1.0665025	0.966345	0.944598	0.00000	0.8784364	0.9631447	1,0095225	0.8636961	1.0478306
9.01.528 19.00 19.00	į	6.057526	1.5025750	0.9785523	0.0000000	0.825061	0.8881332	0.8862401	1,0002407	0.9412825	1.0006962	0.0515947	1 437 1005	1,624,963	1,1413500	0.842272	0.9175715	2222	1 0472574	1,2528152	0.9485149	1.5680738	1.526212	1,2801545	0.8804921	0.848248	1.1046965	0.9790969	0.6544412	0.7808619	0.5043275	0.9481081	1 1972733	0.9513973	0.9372388	0.808988	0.9796642	0.9701084	0.7195855	0.9450567	0.9503939	1,0403552	0,7399003	0.947495	0.970661	1.1642373	0.9742548	0.5794564	0.9514381	0.9425398	0.7823833	1,080082
	Ļ	1.1819419	1.0134461	3 0.9641933	0.7260501	5 0.797.155	0.9069639	1.0812814	1,5204695	1 0.970782	1,0445337	7. 1.00HB744	A1787051	1.6160642	8 1.0216358	0.0655004	0.9373974	0.940371	0.0015728	7 1.1143300	1.2276644	0.9=64839	2 0.9719709	1.0128622	3 0.6894876	7 0.8872938	0.8564372	0.009732	4 0.7900149	3 0.7906364	0.4652362	0.0835147	3 0.9603164 8 0.9890369	0.9624808	1.0165651	5 0.740577	0.7914460	0.8542433	1 0.6296305	2 1 2484413	1,1614478	7 1.0255005	1 0.7432212	7 0.8417722	4 0.9437151	3 1.0235279	3 0.6602868	5 0.8749804	6 0.6405557	3 0.65665+7 7 0.8426029	2 0.7688013	3 0.9470026 4 1.2624029
9. 9. 18	į	1.1514977	2 1.025113E	5 0,934158	3 0.5801488	9 0.764229	7 0.8487500	S 1.04(1803)	1,418	1 0.933522	1.1255901	5 0.9621407	0.000000	3 1.71712	5 0.96782	8 0.923026	1.116263	200000	1 00027	1,000001	2 1.129701	2 0.78449	0.0315428	2 1.13466	3 0.962875	4 1,003704	6 0.758332	X211280 5	2000000	2747260	0.914046	0.715337	A 1.125985	1.076476	1.144651	3 0.864419	6 1.253059 6 0.974050	7,000,00	S 1.112280	\$ 0.94ZZZ8	1.063737	2 1.006424	6 0.8988CS	0.758400	8 0.713026	7 0.907625	6 0.651711	9 1.100086	9000850 P	1 0.851238	0.877395	4 0.909574.
3 3 8	Ł	1.123154	22 0.790716	38 0.953953	25 0.613822	S 0.818237	17 0.962757	1.00072	7 1,549000	1112201	38 1.242208	37 0.980587 10 1 1677967	73 13946	1350056	1,178620	0.09720	0.99066	0.00000	1045481	1.054992	22 1.1123	0.002940	10099800 2/ CE 100998	1.002581	7520.1	52 0.893471	65 0.791125	13 1.003628	5 2.073505	51 0.885178	73 0.02193	2000	124214	20154	32 1.041386	49 0.782571	89 0.880237 02 1.007129	96 0.9021G	117430	19 0.986569	1,08713	12 1.150271 59 0.896049	25 0.8235	22,0880 10	11 0.775872	37 0 DOG467	19 0.965764	1,0125.07	23 0.629857	S 0 8465 K	63 0.698016	34 0.917530 64 1.125300
25 TAN 26	8	04 0.725977	97 0.906590	02 1.20C3E	7. 1.02367.	14 0.6M750C	15 0.94934	77 1.00159	51 1.19821.	28 1.19797	53 0.944980	10736	M7 0 94521	1.03388	26 0.96149	1.19887	23 1.07672	M2 0.00530	1201	1,1223	559 1.076162	79 1.00696	7/0907		73 1,00063	117 0.8367	790087 97	559 1.11614 ME 1.71050	22 1.0830	22 1.28652	174 1,11671	26 1.12523	M7 1 25070	9690670 96	73 0.85033	36 0.84844	A 1.36316	Z8 0.94262	113 0.87606	34 0.94686	08 0.98656	70027	7582.1 857	A 0.78911	02220	181 0.7988	12010	00 0.81477	755750 181	197 0.923550 171 1.12944	59 0.95670	23 0.90905 23 0.90905
17 17 12 12 12 12 12 12 12 12 12 12 12 12 12	8	913 0.8243	180 1.11877	312 1.12129	27 0.02123	171 0.74641	102.0 0.07281	1,1023	2000.1	553 1.15398	284 0.69691	173 0.9626G	105 0 4500	015 1.01306	525 0.84672	223 0.9608	154 1.0674	062 0.97516	72.1	154	489 0.95085	156 1,3053	727 0.09539	146 0.81656	101307	291 0.8404	190 0.7061	24763146	1251	316 1.134	177 1.198	168 1.011	711111117	573 0.8830	039 0.96258	435 0.67960	200 0 000	556 0.98037	302 1.18543	072 0 7662	160 1,002	2005 1 2005	959 1.11216	2540 092	808 0.6873	715 1.0988	1.0207	127 0.94510	067 0.7486	000 0.9720. 214 1.01980	486 0.8986	585 0.63013 289 0.9150
2 24	ş	MC36.0 9624	25 0.574B	1.005	215 0,0051(102 0.74	569 1.1150	1271 09851	212 1 225	309 1.1122	1001 580	207 0.8718	201 103	100	196 1.100	647 0.9632	171 1.0766	0.000	254 11545	1.0882	10604	673 1,0649	7000.1	1/200	774 0 PESA	2238 0.8629	727		1077	8206 0.9626	127 1.1653	81860 977	1066 0.5400 1017 10147	91001	923 0.B814	1.083	272.1	201 1.0115	AOS 0.8005	844 0.8859	148 0.9231	172 1225	147 1.1338	020 1.0630	466 0.775	1148 1.2836	10051	6220 0.2289	430 0.8782	973 1,0405	10153	1004 0.978 1405 0.9536
8 - S	8	BESK 0.8018	MC20 0.9672	165 0.9653		0.170	1187 0.8510	814 1,0130		10001 5991	078 12450	1065 0.9952	7.18 1.78.07	1,1413	20162 0.9405	1879 0.9457	200	100		186 1.2013	DCCD 1,0590	183 0.8631	2080 0380 300 0380 300 0380		284 1,0130	1125 1.2812	673 0.7142	200 + 07	7877	1.210	1026 0 950	583 0.7087	20/01 0/00	515	1745 1.0421	1234 1.2901	1737.1 1737.1	2210,1 151	1357 0.0071	100 0941	1,0456	135 13318 1371	114 1.1917	79670	2536 0.7041	1221		000 OBK10	7777	1451 0.6631 1491 0.9201	11.106	1765 1.0431 1218 0.9807
141 141 141	8	5077 0.9024	2561 C.590	2802 0.9668	1363 0.578 776 776	0056 0.788	1151 Q.B70	761 037	1306 1.171	1,106	9090 1.2021	1575 0.956:	744	102	0558 Q.797.	5017 0.94S	20.		1910	7828 1.330	1778	5.00Z	200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4579 1.169	8943 L.1SB	8181 0.782	2001 2287	0737 1.288	7682 0.98	2808 1.234	5908 0.880	3000 1 102 5011 1 2 1 8	2011	2967 1.064	9649 1.0800	7280 0.827L	3382 0.691	7168 1.152	1291 0.901	7221 1.066	06298 1.8028 2154 1.468	3674 1.206	2900 0.665	8085 0.70	1,027	7873 1.147	7865 1.011	7421 0.000	1213 0.863 RIPLE D.7051	1820 1.067	3175 1.034 1167 1.064
27 17 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8	920.1 6277	3366 1.086	9027 1.00g	2002	7664 1,090	4325 1.075	200.0	200	27.1 239	5922 1.2773	5713 1.012	1878 1.716	9415 0.980	3134 0.852	1.12	100		7301 8187	1,086	1406 1,062	7.50 IPM	707 500	225	-	0823 1.246	520 1.035	2003	A10.1 2.107	9317 0.930	10371 0.891	9629 1.024	20.	1874 0.981	6347 1.020	871.1	700.	371. 5365	916 1216	8122 0.588	7000 0.961	7813 1.280 PAST 1.447	2007 1012	3002 0.000	2001	6075 1.080	100	1446 0.767	296 0 507	8731 Q.B13 8743 Q.B43	1097 0.963	19847 0.980 15381 0.980
31142 75 - 31142 7	٤	0.9415914 0.697777	1000 1.061 1.061	30134 . 1.130		7385 1.192	MI 174	18108 0.940	20106 0.835	170001 251	1002	200	2017 1.120 2018 1.701	27.0	71483 Q.861	5743	2282 0.852	20 20 20 20 20 20 20 20 20 20 20 20 20 2		1007	19713 0.952	8308	20040 0.055	20018 0.980	9607 1,026	1918 1.060	1746 0.990	10024 1.148	200.	MS45 0.969	19457 0.957	2758 0.963	15612 0.947 1111 E1830	7104 0.82	23914 1.130	1.28	1000 0 EST	0804 1.000	2258 0.670	206.0 1992	4684 0.83B	24491 1.112 USQL 1.043	2004 0.927	70574 1.052	2072 1.13	7853 1.020	70.0	7228 0.644	120	14747 1.047 2411 1.11	M386 0.86	0.9065165 0.9670 1.0501284 0.9535
יני. וניו	2	79424 0.947	2745 O.DM	120	DZ 1 52100	CE27 0.57	58873 1.217	26783 0.78	25712 0.00	34306 1.100	01045 O.70	08847 0.97	27.24	26213	71982 0.66	70'1 98990	34728 1.12	200	2725	1000	98868 O.BZ	87074 1.36	107	22616 O.BM	73706 0.86	29957 0.786	26359 1.06	74060 1.14	20000	51711 0.90	7.0 81781	27.	21.2	S1716 Q.E.	41804 1.05	2022	18786 0.6187 10000 0.784	14469 0.9E	S2814 0.888	37.1	94208 0.837	2212 0.900 20045 1.11	120 9000	111	7.0007	\$5742 1.15	11864	57.78 0.36	81246 1.16	11964 0.91 09704 1.16	62073 0.72	78807 1.05
SINC 20 SINC 72- SINC 1721 1731	ş	84296 2.49	25716 2.44	74715 1.17	21.13	2 222	20020 120	MARK 0.88	13672 1.31	110606 1.21	15606 194	8:	11500 0001	221 57062	71.1 51817	20662 2.10	A5065 0.82	787.87	57.369	27.1 587.95	23548 1,30	17583 1.21	3690	58079 0.78	120088 1.21	ACO 82300A	28901 1.06	28082 1.06	20765 O.SE	37052 0.00	0001 0.90	2002	200 2 0.5	287.28	62.0 10675	21.558 1.45	A1481 055	06755 0.90	91085 0.71	01095 0.87	9078	73708 0.98	74288 0.84	90204 1.06	14262 0.98	9.0 57800	56.7 58000	050 00780	117202 2.84	184352 0.00 179609 2.10	116074 0.78	8 1.0225672 1.243113 0 1 0.9474638 0.9178807 1
23	Ę	38572 1.16	3434S4 1.20	903800 1.05	1.10 CORRES	310071	21 9252	200	114067 0.67	125465 1.11	1.1		A COMPAN	155000 0.67	121138 0.81	X50002 1.20	200	S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	200615	108/2	399618 0.94	22172	766906 1.2	20197	2. CERT 1.00	338852 0.98	350450	39641 0.90 146506 0.90	7.0 20791	150713 1.24	14606	200	201 251000	100747 1.12	201 1.00	562237 1.24	200 (See 10.00)	183285 0.97	0.05895	19787	XXXX 0.84	200 11254	354199 0.88	100 857	11.000	956252 1.24	201272	346322 0.4	1.1	070963 0.80 102615 1.24	397012 0.90	0.0000000 1.00 0.0000000 0.94
51 ST1	٤	0003901 1.07	581685 1.2	71 505110	207.00	21 77210	A1 789110	190729 Q.R	187167 1.0	.1 792890	D12342 0.8	43004 1.0	970912 1.4C	251843 0.8	1.1 8772	967953 1.4	136276 1.0	01 /2000	343022	11.1 625028	650058 1.11	23222	267464 1.G	201 122110	11 197400	814707 0.B.	6.0 622239	000257 0.8	25176 0.65	001046 1.21	572963 1.2.	148356 1.3	20 SECTION 1.5	715622 1.2	002198 1.1	Allersta 1.0	7514.97 0.02	559541 1.00	513407 1.18 moses o 72	570711 1.18	252102 0.8	014359 Q.B.	522140 0.94	0.5627	70356	1.1 885719	D81945 1.G	189CS O.	714808 1.6.	1910461 4.8 095458 1.5	097467 0.6	1,1548139 1,00 0,7965507 0,00
-	8	•	. :	8.0	2 6	5	2.	2	<u>.</u>	7	7	S .		. "	0.7	7	= :	9 .	<u> </u>	8	0.8	<u> </u>	n 6	3 0	4	3	õ		- 6	3	9		2 5	: 3	-	5 7.	9 6	5	7	. 6	0	5 5	9	0.0	: :	6	2 6		2,5	5 -		58

27/30

| 1,176.00 | 1,170.00

Ş

| 13 | 124 |

| Control | Cont

DAMESTICO DALISTORIO GARGINALO CONTROLO CONTROLO

	1	ā.		į						. 3									
	ANET 15" "ANIT	15. Am	T18 AL	4 81	₹ 80 F	17 60 S	2 5 2	₹ 5	2 23	28 \$	35.7	3 23			APAP 250 AP		APAP 1000 A	A moor GK	·S BAT
Arimal Nember Kitmer Toxicity Cassification	, Ş	3	3 8	2	5 5 5	8201	1827 58	8	<u>.</u> 5	ğ	\$ \$ 2		212 <i>7</i> 50	2 2 2 2 3 3 3 3 3	2 2 2 3 3 3 4	2137	2 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8	; ;
		!	!																
	1.0083885 1.03	0.1 8728	506124	0.844784 0.	0445788 0	0.9135912 1	1413072 0	92611926	4442	2000044	1.000781	0.9242568	18851431	LOCHERO O	. BSD4618 1	10017663	1,06761	2171901	1,68602502
their	1.1534562 0.95	1607 0.0	10 M20C7	1 987157		2088829 2	3718363	0,61900	750000	087780	.9668391	0.848984	0767578	1,0690.17	1 91016/0	1750841	00051500	0.9665787	18430491
	1.0708737 0.96	19091	99160	1.04735	0 404.4	9786906 2	0 78236290.	9079788	7319584	8085908	0.0050630	0.0170046	1 8062038	7820384	0.704668	1910090	0.8140482	2506428	3.8409912
	1,0001662 0,82	51272 0.9	940509	2002	0 5955382	2 022020	2005300	100000	11520	70007	3.8252746	0.6000381	1052084	2010718	2007	9116415	0.8727506	0.6007.64	1,162073
	0.9681690 0.98	56331 0.9	0 052399	788018 0	812280	0622500	1943686 0	0643867	B15446 C	TEN 120	1,6843071	0.6672545	3.8696686	0.945053 0	113874	1248504	0.9000999	1.0795771	0672950
LISA .	28.0 6062228.0	9000	0 066900	1996975	0459400	9442000	1591016	1496565	17900171	9827388	0.7612318	0.6896446	2820833	2443780	0046535	1263051	1.1428059	1.2143849	1.4301461
theulin-like growth hector binding pestain 1	10457808 0.94			11505	199021	792.50		2	0.00000	1222	721377	7/15/18/0	1967	01007		21.00	1.050/831	0.0000109	OCCUPANT OF THE PARTY OF THE PA
The channel	0.347,3080 1.00	22704 10	250000	ASDED6	3664256	1067824	9451804	COST	270720	2756021	132664	1.107409	1,513046	3300441	0.00000	0178361	1,2357590	0.6396196	1330158
	1.4068886 1.03	8.0 6280	730016 1.	BADBSAS 1.	9509175 0	3.6459478 2	0656092 0	9844287	0805927	9166585	0.8095229	0.8625838	0.7248383	6884638	5307606	1.1005505	0.7167559	0.6700488	1.9100024
	0.1 5680900.1	22770 0.0	1. 1011101	1346460	2199053	3.685614	2.121943 0	9896913	- KS41785 (18800452	0.6248028	0.5977021	000000	0.007185	2020000	790000	0.6366163	0.9196726	0.996950
Physe 1 RCT-50	0.8095808.0	91203 0.8	50000	0153468 0	2057656	187731	7783614	2001563	8000	11/8968	De16222	349444	2,0081164	27,00282	2.880228	1459774	1.496132	1.1611578	0.8636912
ate dehydrogenese	38375 0.7	ð	1 151522	2	1,117303	9150112	8200048	1351000	9668053	9250408	0.9059801	0.7048835	1.3858128	338625	8577822	0.0520419	1.4518087	0.0325179	1,4982818
Beta-actin, sequence 2	35755 0.8	531372	200	0.801275	0000245	9240658	1,100057	1,00134S	8399639	8607972	0.0472847	0.706.228	1.274418	1.1640465	2687722	7155817	1.014628	0.7390485	1,371372
Dynam light chain 1	0.0000000000000000000000000000000000000	20000.	0 0000	98/1/80	O STREETS OF O	CHOCOLO		7045440		0.000171	012510	0.0000000	PAOCSOS	770941	1707741	7706776	0.6737960	0.7126751	00146208
Eco-ATPase	97849		1720621	Ξ	0618324	920020	190098	282520	3943027	9648672	0.0136636	0.7789876	1.0120053	1.0054382	0768215	1.257835	0.9815636	0.9694559	1,0903143
Multidrug resistant protein-1	1.0790264 1.18	17018	0.96397	396265	2221681 1	0643659 (19451531	3030846 (981198	1119639	1.1486464	1.0063475	1.1210845	0.9667378	1469414	3,0973432	1,0366713	1.1005427	1.1324006
Bax (elpha)	0.8651192 0.96	77989 0.9	436366	3909408	2187587 1	0167780	0589254	3390346	1,007100.0	0767848	0672018	1.1307778 3.780813	20000	012262616	2731988	1.1061265 5.8971744	0.7871233	0.7864124	0 9694871
Contract mulicipae	THE PROPERTY OF	50078		186280		201000	10000	CONTRACTOR	10000	870486	77.250	0.7363050	0.000	10679404	9800166	1.0798796	0.9412658	1,116613	1,25,0062
CD44 restautasis ruppressor pera	1.0275102 0.94	58294 - 0	151134 -	7114838	1201897	D654714	10277594	9900908	7878200	1,700000	1627.10.0	0.94S3749	0.9141075	0.9007029	9446135	0.9068358	0.9963007	0.9274852	1,0151283
MHC class I antigen RT1.A1(f) etpha-chain	0.9784.191 1.14	35960 1.0	18-16828 1.	1263787	1.42852 1	2332091	\$304,005.1	99.72700	.4527180	4028208	1 209,4634	1 491 1551	1.2528875	1,2202318	1234161	1.0219513	1.2008523	1.0042708	0.9155023
Phase-1 RCT-12	0.9193758 1.0	25.5	1301947	1000000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	258551	8787878	0547256	5000	22572	1.0610013	150.00	1.1911001	1.1077015 COUTTAIN	7,100456	00077400	1,081180.1	0.809177	
Interestor-10 RAD	0.6505666 0.96	31652 G.S	3 04078	1965178	2000715	9570538	2281828	0695411	2027083	1330664	1.00000	1.1721416	1.0607097	7915080	2073171	0678912	1.1135305	1,012285	130,6074
Preggoalbanin	1,118641 1.00	91672 0.3	1907122 1	100065	5655082	4250727	4608147	0.762465	3000318	.6334207	0.9564024	1,11626.5	1.0077940	0.9400983	7306255	0.5688051	1,0203238	0.9627344	1.4569523
Liver fatty acid binding protein	1.0220712 1.00	52643 1.0	1036634 0.	9844514	0122544	8361617	0420446	8227502	3804788	0.970656	1.0090942	12057725	1.0047147	0.9903142	0.950386	0.39384.54	0.906945	1.0066637	1.1969295
Trasue inhibitor of metalloproteinasse-1	1,054,0681 0.90	80130	- 1		1903858	0082123	621288	1000000	3029402	18513772	0.9299621	0.00000	0.007003	20000	670065	2674165	2813730	1,228306	1 2654058
Monocyte chemotock: protein receipt (TCP2)	1,0694242 0.88	,	0000	1 207.101	146230	9996808	97.00	807002	5547011	1,758525	1.104027	1.2401636	1.4064324	1.1222633	1.1514628	1.2811686	1.1224941	1.1356972	1,1375668
Emerin	1,0000626 1,00	51949 1	77/100	1 722720.	1280427	0030427	2903447	9896596	2065199	1.1204038	1.0135090	78222	1,017145	0.9775629	0056553	1.0700763	1.0620915	0.062185	0.8305596
Cylin	1.0102096 1.19	54277 1.0	1234862 t.	3074965 1	1680832	1565201	115027	6826995	20911802	4740572	1.1174035	1.563B168	1.1466078	1,1780004	8212781.1	1.7495605	1.263838	225/362	8/2/9050
	200 100 100 100 1	277	00000	200	0.0000	8621785	000000	017940B	0106841	ROBBE	0001000	0.650.7729	0.853125	9630534	22423	0.653413	0.8572696	0.6852191	340500
Oyctin dependent kinase 4	0.9807874 0.94	S.0 14012	0 0704100	7706165 0	9750309	0210559	0145711	2811886	0.0000	30224033	1,1045717	0.7628718	1,2381100	137Z3394	3913956	0.9667493	1,8126668	1 034728	1,0115359
North I	1.0452219 1.17	71171 1.0	0453451 1.	3290853	3117996 1	1136463	2357964	4200016	915348	5000000	1,0245909	1.1700668	1.2821498	1.0974748	1594400	1.1808603	1.1172879	1.1202642	0.8507331
Phase-I RCT-24	0.9578361 0.88	06282	0513817 1.	1229162	7109182	1996535	B262896	9896325	1561396	1,1741389	1,112,1152	1,0901338	1,631166	1.0411477	7825720	1,053297	1.258008	1.350188	1733553
Ohrosa-Gohombale debelmonese	1,1274889 0.97	1000	022034	2004557	1,373,45	7115766	3,213356	5257859	1.201244	19090164	0.000	0.8437639	0.96.08 14	0.9346763	961740	0.0051006	0236725	1.0240878	1,1782235
Chatterin	1.0480553 1.16	01572 1.0	200303	1.78087.	4056317	0.850488	5606439	1/291867	1178630.	0.867825	0.8816901	0.6572792	1.2144011	0.9747211	16312314	0.6000316	0.9542517	0.7456221	1,2195666
Phese : RCT-211	1.050021 1.07	21812 1.0	1 995398	1857234	2635837	0625783	0741576	1.001912	62777	29491472	0.5659058	1.051714	1.34.3187	1.079(3,000)	1840836	1.446212	767164	1000	0.9732635
Physics RCT-145	0.0823824 0.90	20019 0.5	200	1 9150519	0251638	5008000	C572008.	2712588	1222170	3.9599424	0.9418144	0.6064911	1.1085349	1,00000,1	0.9539144	1.0880377	1.0233216	1.06006001	0.9707398
Phase-1 RCT-296	0.9723589 0.90	23881 0.6	200000	002231	9732600	9383424	E745740.	8468399	0124632	19052385	0.8353897	1.2033801	0.6348655	0.626258	755527	0.5018764	0.6133962	0.6307133	1.0453262
Gardotti. Alaba. 1 milandado da Bailinaria sance mass (Ambro).	0.046384 1.00	27080 0.5	0 005020	0671398 0	929928	0000000	2641066	107470	O. SECRETA	00000	1 1445147	1 0749002	3671004	1 0400862	7805026	0.5917074	1,2108153	100700	1.1681527
Calmingh	0.0413220 1.00	1 1	1	22/22	2385506	1155349	121 MSB	780154	1,006521	1,451288	19033	1.1847500	2.2283081	1.8588547	2.497278	0.0045626	1.8246394	1,4280553	1.1111625
Phase t RCT-59	76925 0.	3617905 0.5	9254848 0.	9963002 0	9442364	1052306	3538430	1843068	7877785	0.0165825	0.0437472	1,2801973	0.0956232	0.0008223	7523146	1.24773	0.9059239	100700	0.776378
Superticide dismutase Min	1.0951505 1.0	37806 1.2	267056 1	1 691982	422784	2887780	2.02823	1220457	.9516878	1.0117964	1.0197492	0.8673223	1,3190164	1.4545219	1202251	0.7008190	1,2740500	1.1397824	0.000
Settemen Third-coacific antioxidant (natural titler cell-enhancing factor (6)	1.0757072 0.68	90000	0036197 1	0805198	0680973	20108	9647522	1,00000	1804081	0.8108949	0.600232	0.6114311	1.310028	2284822	183804	0.6200530	1.0404708	0.9040622	1,369,296
Tapaure (actor	0.9638561 0.90	07131 1.0	3406Z38 1.	0735480 0	2007708	6782876	9659184	7097907	9176219	0.66023	0.6357906	0.6079471	1.1268066	1.0222716	1.0716290	1.0204661	1.015255	0.9473738	1,105167
14-3-3 rets	0.9551469 0.90	21617 1.1	0 00000	9064801	1008001	0029746	. DE25594	2362009	70000	1 1671597	0.9307357	1.4800611	1.000.78	0.963507	1.007662	1.0228531	1 0070641	1.1377509	1.1549221
Cyclodalygenuse a	0.9704282 1.00	222	003001	1 /509101	9690290	1216212	109668	.0001006	20707.0	1,9554674	0.0041568	0.8189681	1.0846772	1.0286977	20172944	1.1196215	1.0838883	1.1078092	1.2529415
Ribosomal protein Se	1,1238037 0.99	0 95851	998433 0.	7888506	9665574	0.994587	0242193	.0498325	0.806378	0.90C30242	0.9073324	0.8229631	1.0012833	0000000	0.9070628	0.9671149	1.0295572	1,0658674	0.8857866
Phase-1 PCT-66	1.00360351 1.10	23318 1.0	22/0/31		CD/DISS	Commen	2/61/19/2	1,665,0016	207.00	Captain C	0.000000	0.000000	2006072	200000	1.18577	1,200.57	1 0452158	1 0042697	1,198313
Cathegain 3	0.9966788 0.73	32055	300343	0231675	A16804	0.963574	0.610694	1,8638144	7413110	0.0961775	0.783023	0.5467551	1.049499	0.9060731	18799634	0.7157815	0.9134294	0.9901751	0.9389157
E-selection	0.9688898 0.96	21564 0.0	2112	9954708 C	Spattered C	6890153	4172902	7801785	2140058	0.9682051	0.8779221	1.2197955	0.9012556	0.00480899	78125428	1.1130142	1.0221114	175705	1.0530474
Oyclin dependent langes 2	1.0286056 1.06	10 212	170 THE PART 1	1416623	982125	0.0000	7700007	11047451	20000	0.024428	0.9609409	90000	0.96236	1.0116166	072624	0.001470	0.8729014	0.9780878	1.6780003

¥

| March | Marc

| The control of the 0.0077521 0.007779 0.

8 0.910705 G.T700000 0.00000000000000000000000000000
0.000000000000000000000000000000000000
1.4690 1.4594 1.1542 1.1542 1.1542 1.1543 1.
0.000.000.000.000.000.000.000.000.000.
0.0507020 0.0507020 0.050701 0.050701 0.050701 0.050701 0.050701 0.05070 0.050
1,2000418 0,8571298 0,867504 0,7055072 0,062503 0,0167201 0,0167201 1,14672255
0.9450073 0.9450073 0.9452774 0.046288 0.0457290 0.0457294 0.04572
1 1 20276.0 ACCORD. 1 20176.0 ACCORD. 1 20276.0
1,0109422 1,0109422 1,0109422 1,120942
1.01 70408 1.01 85055 1.1 8202507 0.0552748 0.0552748 1.11 10005 0.05529 0.05529 1.11 1005 0.05529 0.05529 1.11 1005 0.05529 1.11 1005 0.05529
0.3201053 0.1687942 0.1687942 0.4102123 0.6-59917 2.0774088 1.09-40848 1.09-40848 1.4785222 0.655748
1,205,4178 1,205,4274 1,027,4278 1,072,4279 1,1885149 1,1885149 1,485,427 1,286,121 1,085,120 1,085,00
0.0045735 0.7069725 0.7069727 0.147579 0.001789 0.001789 0.001789 0.001789 0.001789 0.001789
0.0001419 0.0400020 0.0400020 0.077081 0.077081 0.000031.1 0.000031.1 0.000031.1 0.000031.1 0.000031.1
0.0001465 1.0422102 0.6721638 1.0676382 1.1452615 0.7962508 0.000025 1.1006025 1.1006025
1,054459 1,0453928 1,2208703 0,564742 0,565703 1,1656703 1,1656703 1,1438648 1,1438648 1,1438648 1,1438648 1,0318703 1,0318703 1,0318703 1,0318703 1,0318703
201 10121220 201 202020 201
conditions feature and condition of Property
■ 1.11 = 4

è

ş

| Charge | C 0.202020 | 0.002020 |

ŧ

6000 0.0000000 1.0000000 1.0000000 1.0000000 1.000000 1.000000 1.000000 1.0000000 1.000000 1.000000 1.000000 1. | Committee | Comm ٤ 8 ž , 8 3 8 1.19997 1.2000.00 1.2000.0

12/4

| Column | C | 1,000,000 | 1,00 1.007026 0 105020 0 1

Ş

| Comment | Comm 80000 (200000 (100000

17/44

| 1,000,000 | 1,000,000 | 1,000,000 | 1,000,100 | 1,00 | Colored | Colo | Column | C

ž

77,02

21/44

223 CARROLLE LORANIZE LITZENS LIZZENS CARROLS GERTANS CARROLS CARROLS CARROLLE CONTROLS CARROLS INCREMENT LIZZENS CARROLS CARR | 1.255 | 1.25 | Comparison | Com

| Column | C 1,07377 1,0737

7

| Coloniaria | Control | Coloniaria | Coloni

71/12

3.8956561	1.5165004	0.7477049	0.9051868	3.7308642	1 6002029	0.7105189	1,2465305	1,0146156	1.022/4975	0.6307443
_		_	_	_	_	3.9064266				-
_	12126201	-	•	•		2041998	_		•	1,6500702
•	1.0017446 1	_		_		1.8585858.0		_	_	_
•	_	-	•		_	3.5206AS7 C	•	_	_	
•	•	••	_	_	•	16144BG C	•	_	•	-
3506515 (2061150	1,1927188	0.6452233	, 8194S38 (0.6012689 (.683031S	2013052	,8418891 (0.9695	7346061
0.0635015	0.740254	-	2529818	1870220.	12180246 (0.2154052 (LECAGOTO 1	2448614 (A.71650208	1,85225478
2276043	5987336	3852175	9720353	1.6171676	1.5214128	720002Y	7812000	.022673	.8455622	1,1528366
18024781	3,6164414	B778102.1	1.7267842	1,713417	1.1326112	1.3461768	1,5854251	1.4141478	1,7463152	1,0032013
1.7769084	1,25,75084	20000	1.2622.730	0.8987429	0.2450586	0.31463	1.5043997	O. PH.ZDESS	1,2874461	0.9965736
0.0079196	0.0662741	1,2215709	1.6324917	1.06853962	0.3001433	0.3363000	0.9611103	1.651374	0.0703130	1.0532846
0.93779	1,7699054.	1,2328200	0,7792803	1,12012	2,10002.0	0.7253016	0.9525304	0.849340	1,065721	1.0108622
0.8982767	L2100129.	1.0751673	0.3166743	0.9667528	13100128	1,325,4885	1,0169902	1.0044078	0.9677861	1.003284
1.116919	1,174505	4.0075085	0.878534	1,0004674	0.6002819	0.8062580	1.0606702	1.0736024	0.9078483	1,0604047
_	1.122827					0.5158612				
						0.2030879				
0.968258	1.1723673	3,8075385	0.7961056	0.9656728	0.7245758	0.6922377	0.900631	0.9652207	0.0784170	0.9542679
1.1426726	1.2824483	0.8341307	1.0037374	0.73706	1,123,6265	1,126346	1,3353115	0.8126717	0.9804300	1.0841578
1.1367018	1,335,508	1,0438367	0.7227257	0.4506369	0.550000	0.5858355	1,365064	0.656666	1.0619085	0.7291519
1.1574755	1.4433333	1.155283	1.1719253	0.7470848	1 0.6225647	0.6570156	1,1091289	0.7086251	1.1568426	10,0606621
1 0.924044	1.0790768	1.0285071	1.0262071	1 0.804464	1 0.5004886	S 0.67404295 (1,055788	3 0.9162734	3 0.0001116	1 0.9157236
\$ 1.0144451	1.0965124	1.250627	3 1.138CSG	3 0.9257785	1 0.9737623	4 0.9067705 Q	3 0,000005	7 1.0601394	3 0.9803028	1 0.9969438
SEC.	5	b	71000	55649	Š	100	6151G	42416.	1000	88 88 88

į

\$

ş

PCT/US03/06196

WO 03/100030

2

Table 46

PCT/US03/06196

WO 03/100030

100

Ł

OHČL3 800 150 2266 | 14.00 | 144.00 | 144.00 | 144.00 | 145.0 | 1 | Columber 8

Š

0.6194409 0.623407 0.1523605 0.1523605 0.153606 0.6237068 0.623708 0.623617 0.623718
0.000000000000000000000000000000000000
0,6314903 1,09593789 0,0759905 0,759905 0,2519003 0,251905 1,0072392 1,1023154 0,8278053
0,7840532 0,00030303 1,00050303 1,00050303 0,811623 0,9179023 1,110526 0,9179023 1,110526
0.007203 0.007203 0.007203 1.0140303 1.040343 0.027203 1.040343 1.040343
0.85278-0 0.87278-0 0.87278-0 0.87280-0 0.87280-0 0.87280-0 0.87280-0 0.87280-0 0.87280-0 0.87280-0 0.87280-0 0.87280-0 0.87280-0
0.0245803 1.0213024 0.0202584 1.000003 1.1000100 1.1000100 1.10004003 1.10004003 1.10004003
0.0172308 1.271727 2.0227147 2.0227147 2.0227147 1.107346
9 1.0146524 9 0.9909015 9 0.9209066 9 0.9209066 2 0.736462 5 1.07253786 7 1.079654 2 1.104674 8 1.0745647
25 1.2131338 51 1.2131338 51 7.00051939 51 7.00051939 52 0.3116235 52 0.3116235 54 0.41639 56 1.102114
11 0.602478 17 0.9033055 12 0.1067817 12 0.1067817 13 0.6774259 14 0.6671478 15 0.66774259 16 0.66774259 17 0.774229 18 0.60774259
26 0.0043031 77 0.007707 14 1.105772 97 0.000473 92 0.559727 94 0.45973 44 0.451174 55 0.0078142 56 0.0078142
15. 1.0763356 15. 1.677371 15. 1.477311 15. 1.6781697 15. 0.6676372 15. 0.6676373 15. 0.6676473 15. 0.6676473
100 0.0234077 400 1.1550385 247 0.6597034 244 0.8910057 274 0.4896495 577 0.4896495 687 0.4896495 688 0.687371 429 0.6169537 229 0.6169537
224 1,0002402 224 1,0002402 224 1,0002402 235 236 2,00024 235 236 2,00024 235 235 235 235 235 235 235 235 235 235
232 1,11224, 232 1,117224, 232 1,117224, 232 2, 2327172
1189 0.8780114 1084052 20820 2
7712 1.0863169 557 1.0446864 7482 0.7704070 7484 0.7704070 7484 1.0049874 7481 1.0049874 7481 1.0049878 7481 1.004988
25.00 (1.01.77) 2 (1.00.77) 2
220 0.500052 2008 0.5746548 2008 0.574674 2008 0.507547 2009 0.507547 2009 1.000504 2009 1.000504 2009 1.000504 2009 1.000504 2009 1.000504
1,252-20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.
2001 1200000 10000000000000000000000000
7889 1,776 7889 1,376 5005 1,276 5106 0,061 1,620 1,680 1,721 1,081 1,171 0,680

121	28	8218	300	288		100	2001	82		13.	100	2000	3 5	2005	223	ğ	2 2 2	7000	5	727	33025	63478	200	20.55	12123	13000	1676	96776	12.0	17168	96890	87407	9730	30406	42.62	100	150021	37.00	13615	36802 4045	84.069	988	113386	10164	175318	31212		158	6 EEEE	ļ
85 5 8 8	1.079	51 1.080	250	25	8 2	2 2	57 1.514	5.70	3 3 5 8	3	<u> </u>	35	3 9	126	8	121	1.00	221 45	20.0		2	2		9	1.0	121	200	17.1	100	612 154	27.	70.		3	25 to	273 0.62	B.O. B.	201 784	941 29	7.0 CT	200	219 1.60	95	25.	1.0	2	<u> </u>	9	98	i
	1,2863	1,41494	27.5	0.8722	0.83989	1.1687.1	5.78894	12152	1.01142	2.9740	1,4600	2	200	2	0.0710	9		3.65	1.0228	1828	1.0816	2000	200		213	1,0567	2000	1.137	1.1686	7280	2 1.154	1.0461	1.1551	7 29854	200.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.108	201	1,338	1,3381	0.0187	5 0.8580	3	0.00	200	6.7017	4 0.39cz	8	100.0	i
. 15. 15.	1,173851	5344834	700007	2.8003485	2244563	.1641909	1,4493398	2 9640694		1,7241541	12766438	2.4812432	, 200.2	549505	1,6000341	7160947	XXXII.	2,74063	1,318625	Socretical Control	Tacas.	1.154338	1.610600	1 286567	3.654025	0.97670	1.469431	4.42636	1,484497	20.02	2,065621	977250	0.672682	3.495427	0.659067	1,568069	0402	0.0250	0.929852	5,85599	0.612275	0.075647	7,50024	1.041256	1.152966	1,900634	0.365921	1000	1,11323	
2 × ×	182284	2450330	747454	7062342	: 0.000E	STACT8	282497	172882	278787	2840513	173220	9110357	20029	216511	2103998	1919196	0110575	4180003	1043453	78500	1,105/13	1,400071	1,09900	700000	2734486	1,330075	250025	117432	9901622	7,000	1033206	1772207	1960738	521155	0825789	288400	5300000	25.72	1752479	2253070	20077	6787716	1875.0051 REDUKT	1.026763	2944589	7852830	7417854	1153656	3.0525663	
5 ¥ 8	1, 602,01	790845 1.	1 117413	100021	344102 1.	2000	900150	195615	201	20162	7 62869 1	0 625510	90808	132772	20000	746280 0	1000	05257	135514 1	1 1000	0.000	915068	517522	8110778	100700	238063	613479	180530	867758	2002/4	527826	156036	2371841 (3 102228	1151614	290762	D87679	4506787	21500512	575157	300634	00220	9289650	900000	\$162581	2851020	7200049	7521200	9750590	9046704	
5 £	2000	1.1 78822	35316 0.8 20 24 0.8	27505 1.0	2155 0.9	2000	87548 0.8	0.1	28087 0.7	2013	15305 2.0	81342 Q	82082	08067 2.0	22556 0.0		51355 0.8	21.22	77 023857	0.18030	13681	BAC303 2.2	04500	21 (2017)	1000	17 19975	01220	10000	1,18090	127.36	9	946963 0	148574 1.	201163 2.	1 00000	1 186.00	043783 1.	00727 0.	0 51270	734814	17482	469715 0.	15169 1.	542165	1 840078	0 636310	zarez o	960265	040207 1	
8 8 8 1	MS 1 800	395 0.80	2010	174 0.86	101	250	00.1 1.70	121 0511	27.7	200	121 5000	2631 0.88	623	1604	300 000	7169	151 151	3307 1.48	8908 1.42	200	8364 124	227 1.10	27.12	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2	7496 1.42	200	91 1907	22 578	12	2.1 BSSX	20 DE	23647 2.5	18874 2.19	37016 1.2	73562 0.9	1.3		1000	9732 2.5	2002	7.0 5800	01 5152	21 ST 15	00058 1.0	22 1083 20 11 053	71374 0.5	3 2 2	73804	
8 1 1	11697	12 0.949	121	1000 45	3	2080	53 0.888	\$21.1 85	0.00 K		2 0.890	9760 00	80.09	200.00	8 1.15	5 1.85	8 : 2 :	985	87 1244	80.1		131.120	14 1.096	77	7	57 0.860	8 3		22 1 25	5 5 5 1		74 0.5	2021 202	17.	20.0	264 1.15	586	8 5	10.	271 039		761 Q.77	50	980	980 831	25 25 26 27 28 28	20.00	35 35 35 35	711 987	2
84 20 24 20	1 1245	1.10438	1.41550	100	1,08720	10077	1.03190	1,2582	1.26893	18157	1,101.01	1.04558	2385	1.46708	0.08050	1.02054	1.48661	181	1,31264	1.04466	107313	1.1400	1.17413	9	9	3.0046	1.133	13/2	1,2296	1.4658	1,2086	\$ 0.574.6	1.1953	4.159	1 0.997S	7 0 9665	0.9840	3 0.9630	1,2297	00.00		2 0.9407	0.9184	2 1.11Um	1 0,9147	7 0.8808 5 0.9057	1,0144	2 C 200	1.3172]
CVM 200	Second	1.0715422	2081802	22.18.1	1.7844707	1.0585909	7.25800	1,152144	2,7014462	1,005/5004	1,1003658	1.0622256	1.1994207	1.10655040 1.5852692	0.0043724	1253817	1.455867	90157-01	1.37021	1.426907	789687	1.10526	1291786	0.967382	3.662708	1.25289	1286371	469633	1,421323	2.292847	1.119045	1,682776	1.507491	7 90678	1.107175	0.196229	1,11660	1.121340	354774	1.450822	0.853783	1.004.371	1.151184	0.859980	1,009112	1.155543 0.964841	1.166408	1.017001	1,35000	1,2000
8 <u>%</u>	2707170	3390588	22122	117070	1700002	802020	2048251	3466485	7396296	9621150	0923564	5347542	9544225	1706783	150.50	4854562	1.644792	73067	4237556	1,500279	71007	750049	\$700728	1,446625	1896214	4912056	3961229	AGO A 702	123002	1606081	9496549	5.0113406	22.00	185215	7472518	0620785	0.0065478	1,842,8576	5.031215	0.7412196	1.6487268	1.1176497	0.7345402	1.909097	0.6248487	0.7537569 1.0212618	1.0737929	0.9883008 1.072523	13531746	1.1107343
000 C 000 F 000 F 000 F		974547 2	1812758 1	08780	MD4548 2	0.04722	700	282563 2	2 107000	146572	5921782	1 8781850	568737	12675	087207	D44.56.52 1	1989000	27.70.10	9685535	2505392	184249	125130	1673956	1212	0003112	5399965	10201	27233	0009165	4938527	2276894	8150846	0876909	202020	0174813	9151205	2571008	1,20803.3	100649	8052183	10156191	580065	0.943522	2.481065	0.712572	1415695	16STT7.2	19950641	18100300	10978760
252 F	00000	1. 88588	10037	31124	207094 3.0	20406	170176	142530	2 2 2 2		20000	1 23821	190256		5000	092543	497674 1.		0.75790	304471	242408	1700	757538 1.	636191	319063	40020	1 155053	144862	1555	200608	0 001238	800045	1013782 1	381281 K25202 S	201.00	1,20115 0	600000	2005	70000	005384 0	M11667 1	1152767	1027422	1575548	219038	457686	1811542	7674049 0	9099968	9841084
- 8		772 2.00	2		17.	21 918	1357	0110 1.5	3.6	2	1916	21 222	9137 52	900	357	5. 138	77		9	8717 2.1	7 7	5565	5778 1.1	2134 12	12	72 125	3463 1.0	1207 1.8 10 1.0 10 1.0	1188 1.1	2000	27.6	11 521	2002	2741 1275	7.000	38362 7406	1000	2024 05	27.00	122	2	5000	15561 0.3	94314 7188	57802 0.5	00017 00078	70222	28431 0.	97629 0.	<u>2</u> 2
55 E	0	1.955	1,406	2285	2 2.766	1214	21815	11971	222	1 202	235	177	3.16	1.852	47 1.515	62 1.768	1.554	<u> </u>	1301	27 1.15	56 1.35 1.35 1.15 1.15 1.15 1.15 1.15 1.15	2.13	2	52 0000	2000	25.	22.52	3 5	25.	2	27.1.47.	12.	20 2040	37 1.86	1.00	28.	2	57.1 675	573 92. 30.81	7.0 (2)	2	2	ME 0.78	2 E	20	501 740 513 501	3	3 5 5 8	82.1	181 Q.77
₹ 82		2,85342	0.62943	2.626313	4.13072	1,7169	1.6194	2,0517	2.14842	916	100	130	8.4653	0.58	1875	1.96963	1.03352	. 0020	1.55748	0.67644	2047	244511	1.11611	0.80534	1,007	2,123	1,60907	1.41333	19433	1,20871	23000	1,0422	2,4044	975478	9	1.0448	0.6290	2.1885	2007	0.0547	2.3656	2,2584	0.8749	25.0	0.870	1,0465	27.0	1.1861	0.0448	6.00
MYO 250 1221		1084538	0801467	27067	.6508743	278742	27.20	3087818	2882334	1,0007	2.678914	1883542	4,741895	790000	51800813	.7625818	1,4722801	770024	1.1573068	1.43631	1.3916822 1.0078508	2558772	1,2109168	1,4591706	0.9565056	2.5486784	1.6448845	13348727	2.092201	1.2053819	2546148	4,7067516	271628	1.594557	760628.1	1.8157430	0.804035	2757629	1,500,780	0.691645	1,808143	1,89081	0.605009	A.022277	0.908648	1.278198	1,61064	1.007025	1,16901.1	1,176220
CPHOS 100 H 2158 748		2629678	9009172	1.00053	5219950	2787873	2.00	BASES	1,616356	0281764	2020072	1,302885	4.338489	2270661	8001118	6798813	1, 126833	1,157847	227228	.0006839	2390533	0000	0.973188	9464223	0.000020200	000000	0010248	0.0191181	1,0675041	1878170.1	3409712	6017019	2485347	1553948	2556823	1 0666921	0.9186603	1,4368705	25000000	0846969	1.12063	0.9900000	1,214758	1,5494689	0.9288222	1.0585809	1,7502738	0.9711368	0.8817835	0.9188848
CPHOS 100 CP 2158 ye ye		7162	20000	215489	223020	27913	2000	250046	130635	5	2002	71902	215839	045489	20170	945066	407071	917882	706748	015743	200005	606773	666573	90109	27052	441291	774084	07900	31815	M16298	999090	161967	746941	531613	£7841	27270	1900341	072315	296800	230462	270286	1819867	227.254	79100.	1176659	91,75200	3851771	07727003	9715466	990098
	. ;		3.	5 5 5 5	5	90.	3	. S	146 23	200		! 3	5. 176	7.5		2	213 1.1	2 ; 3 !	13	285	-1	20,	357	¥4 0.0	7 :		20	9	100	272	2	8 22	136	787	; -	98		2	9	200	36		0	151	3 E	3 5	: 2		20	0647 0.
CPHOS 100 2157		1.3174	1.0	0.8729	200	0.0190	7	190	1,2840	0.5072		25.	1,4755	1.1398		1,3715	1 0.6817		959	0.9651		0.765	7520.0	0.947	0.964	0.00	980	0.0	10.00	1.5167	1.046	1,0601	1 052	0.737	2 2	307	1.061	2 1.615	7	95	10000	1236	1002	20.0	0.870	1213	3	200	9	906.0 8.
55 57 57 57 57 57 57 57 57 57 57 57 57 5		1.6780474	3,974767	1,1059067	1.0001877	2,0025012		1.90782	3,2891562	2,413835	00/0	6.61590	224347	1.667426	2.07.511.2		7.744799	1.611590	1 200002	2.627347	3.051058	071067	40502	1.977243	1.300761	1.06741	231686	1,705690	2.151150	2.354700	1.046318	1.065489	3.652250	1,220130	1,303456	1.564363	1,702.58	2.569191	1.17272	12.84905	1,718822	0.817280	1.412855	1.2903	1,68554	1.56617	0.50005	1.12620	1.0785	0.877637
R		1,636311	71.745.00	3.085486	9735784	1,000,000	7421465	1388897	3055663	3047263	200	0.748363	2213807	64773 64	2747953	1003854	\$411253	7131003	2000	2.047852	2.9892658	2587502	3080027	7272700	3139007	0000073	2518394	22222	7687166	3632166	0503884	9755256	3,6356192	1,22214	2600930	\$507054	171948	2,5596561	1382719	2.606709	1.724942	0.62445	9	1.2362.1	6204023	5996854	.5678244	1,1175041	7.422	3.9800225
25 28 E		2,9681764	2.1905484 3.			1.1753029	2	2000	84200	2007	1.702732	176.6	3.2022336 2	1.5382735	7 7 7 7 7 7	1000	7.0823 7	95050	2000	13067	11374 2		9724	20722	182/511	700012	71170	296791	22807	730543	138395	345366	2.1020763	581986	204250	969099	1.1047865 1	67870	746128	1,130279	825205	483691 201000	342894	616963	527880	1 3452053	1,0667147	0.5783217	1.0278032	312247
25 SS 25 SE		707	738 2.19	9	Ş	131 1.17	(77 /m)		23 6.71	190		7	1151 3.20	1		218	5814 3.15	200		, v	2 205	7		Z 1 2827	22	2013 2.07	1	17		272	1561	2848 1.2 1414 4.3	7624 2.1	12 12	2077	7704 1.2	1.1 8888 1.1	125	9768 2.3	7 7 7	0114 2.8	2464 1.0	100	9651 3.6	100 M	1.2729463 1.3	206	0.8795605 0.5	91	1.1
CIS2.		24154637	1.5691	101.1	30.5	12 0.9636131		24108	14 2.5300	3		2,080	37 2,360	1.068		0806	20 2.136	287 1 482	2752	19 1.0862	57 1.160	1		39 1.049	35 1.586	31 1.745	3 2 2	36 0.979	68 - 020	1,304	1817	255	28 1,0267624	1,090	2302	20 1.0757704	2000	0.00	1.604	50 3202312	202.1.760	8	8	198 2.24	200 000	22 22	3	20.00	100 P	302 1.00
23 25 24 24		3.0074043	1.383436	0.899804	1.828	1.04440	3000	75157	3,3265	2.39402	2.1337	2.2	3.70809	2.2052968	233677	20087	1.50946	1.28336	70.40	1.1958019	1.15106	1.000	7.60	1.42370	1.54833	1.2720	1 91074	1,34864	0,7027868	1.6124	1,4011256	31464	1 1248128	1 0.95738	10196	1,3005620	1.000	08897	1.01402	1.05003	1.647	2 2.05364	1.029621	1 2.8894496	2 1.02621	Ñ	1.1924	3 0.9809467		1.07091
CHOLISM CISES		1,0858551	3,1663535	1.942258	100032	1,0012212		1914408	4.573383	2.5002377	2.8071088	2.5676432	1,6349011	1.3595378	234622	1 277854	2,1680079	1,2257162	14.62151	1.257525	1.910461	1.4053968	1 0785304	37,640898	1.8217632	3.9846507	1.0564015	1,0244542	1.0425072 0.8726808	1,4727134	1.520113	0.9699041	1.6645375	1.114007	7 000012	0.8382564	1.022000	1,611870	4.62808	0.996378	473319	1.941522	0.988109	1,25567.1	0.977800	2.134701	116306	1.2540230	105467	11,4270
5 H S	•	_	••				•																																											

22 1.157778 0.040778 0.0581825 0.057718 0.05789 0.0578 | 10.000000 | 10.00000 1,1007779 10 (1985) 10 (19 86 CANTONIO CONTRACTOR CANTONIO CA

| 1,000, 2.52570 0.52521 1.52522 0.544007 0.52522 1.525423 0.5257 1.525424 0.5257 0.525200 0.525424 0.5257 0.525200 0.525424 0.5257 0.525200 0.525424 0.5257 0.525200 0.525424 0.5257 0.525200 0.525424 0.5257 0.52520 0.52542 0.5257 0.52520 0.52542 0.5257 0.52520 0.52542 0.5257 0.52520 0.5

Table to

PCT/US03/06196

| 1000000.0 | 0.04440. | 1.45250. | 1.45250. | 1.47720. | 1.45610. | 1.47120. | 1.45250. | 1.47120. | 1.45250. | 1.47120. | 1.45250. | 1.47120. | 1.45250.

WO 03/100030

+3q

\$

| 1,200.000 | 1,10

A 1797077 0 AGASSA 0 AGASSA 1070050 1 AGASSA 0 AGASSA 1070078 0 AGASSA 0 AG

Ŧ.

	Artinal Restrict Artinal Restrict Grave Turinity Chautheaton Grave Name Grave Harrie COXION COXION Please I RCT : 145 Free I RCT : 145	<u>3</u> 8	5 2 2	3 8	38	26 5	ž :	ž Š	24	8	8	2	2124 2 m 21 37621 1.1607	2	E	5 24	=
Column C	Grave Tuniny ClearReston Graves Nation Consistent COKido Plans I RCT : 15		•	7812409		2			-	8	•		on 17621 1.1607		E		2
Control Cont	Gover Name Planse RGT 271 CON (108 CON (108 Planse RGT 145 Planse RGT 145 Planse RGT 145												J7621 1.1507				
Company Comp	OXION TO THE PROPERTY OF THE P	DATASTAN O PRINCIPLE					ቌ			ADES 0.880.		30					7
Common	Aphenoun Phase I RCT - 145 Phase I RCT - 159 Phase I RCT - 159	12280 1 056221				đ	30914 0.816			7653 0.780		1,042	4167 Q.7701	329 0.97571			0.82820
Third Control Contro	Prase-1 PCT-145 Prase-1 PCT-149 Prase-1 PCT-149		1,1630546		258546 1.12	ø	•		9802 0.747	2002 0.735	MB12 0.74	19891 0.78	2629 0296	0.00			1.188
1,000,100,100,000,000,000,000,000,000,0	Phone : RCT : 199	1,0279119 0,940044	9			33678 0.86	15291 0.63			9 4	•			7000			1,500.17
1,000 1,00		0.6563015 0.91662				700019 4.8	MAC 0012			9		200 1000		216 0.0277		_	
Comparison Com	Plane 1 RCT-24	13107817 114788	-		_	1771 124	217 1 5120	22:7 1.353	121.1 2370	8024 0.686	12308 1.23	-					
Company Comp	beside-the prout factor binding probability	0.001 7782880			_		75863 0.97.	76801 1.063	15682 0.998	6733 O.SS	70800 0.67L	_					، نے
Company Comp	Phase-1 RCT-158	0.9721703 0.019225	0.6623627	1.6376379 Q.E		242696 0.09	64007 0.68L	WY1. 98905			30288 1.07	ರ ಅ					3.17631.
Commany Comm	Chathaith	12197728 1.17484.	1.02152.2			216963 0.96	00636 0.63	22017 0.74	MSC7 0.56	20012 0.52	2017	o c					
1,00001 1,00	Ribosomd protein L13A	0,9920444 0,878210	0.6430399			0.05	100	Exerce Contraction	X163 0.874		2000 0.50 2000 0.50		7001	_			2
1,00000 1,000000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,0	Uncoupling protein 2	1.0554836 0.95385.	0.9576294			200	78427 0.000	MODEL 0 ///	1180 MC18		200	100 0 00 000	MAZE 0 952M				0.8557
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	Please I RCT-100	0.0713422 0.02262	1000000				2000	000	200 0736	27.0 6990	36007 0.01		_	_			1.14175
Charable	LISELIS INTUDION OF INCOMPORTABLES 1	1.1506204 1.00701.	7 0 0776005		181749 1.0	718885 0.98	80277 0.94	2177 0.8		26.0 7.092	X3011 1.00X	26368 1.33		_			1.48300
17.771 17.772 1	Contractor Learners 2	0.0758115 1.05606	78 0.9083174		074533 1.24	478488 0.94		19601 0.94		700.1 80CBT	20062 1.26	11.1 722427		_	_		27.23
17.77 17.78 17.7	(Ribosomal centrals L6)	0.6638146 0.88053	41 0.83294	1,1691328	.0e0975 0.8.		_	12965 0.76		47624 0.5B.	57408 0.87.	34008 0.87		_			1.075
17.000 17.00	Capacifa I haavy chain	£31728 1.00760.	22 0.8962902	1.1553947 0.5				51365 0.74	E2814 0.7K	38784 0.78	36663 1.00			_			1 66165
Cartier Cart	Cathepain L	0.8345183 1.02894	88 0.8622821	1,4460501 1.1				4806 0.96	13750 0.89	5010x 0.81	16003 0.97			-			0.00112
1,11,110 1,11,110	Dynamin tight chain 1	0.9574159 0.94435	73 0.9007645	0.9962578 Q1				16CM 0.05	71174 0 977	7845 0.00							1,5253
Commission Com	outle O-1446	1.517.513 1.30.51 8.58.51 101.57.51	7100200					91527 0.65	50.1 1050	20 0 024				•			1,78537
1,000,000 1,00	September 1				_	•		53042 0.61	44005 0.8	19458 1.08	-			_	-		1.1946
0.001101 0.000010 0.000001	Phone 1 RCT-241	91900.1 7008020.1	12 1.0421149			0		WZ877 0.91;	35081 0.9C	33804 0.78	0			-	٠.		1.510
1,000.00 1,000.00	Phase-1 RCT-198	0.9911342 0.85989	75 0.965637B			UT7622 3.8	P0724 0 94	12809 0.82	10685 0.99	250 98060	34626 0.96	200577 1.02					
CHINGS C	PAR interacting protein	1.1045637 1.01242				746915 0.	2275 0.94	90979 C.97	70764 0.94	96		18.30 00010	7827 0 000				9250
Chargest	Phase-1 RCT-152	0.8780445 0.80328				7,618 07		2000		KSK1 0.02		85014 0.30	15276 0.948				1,04808
CHINGS C	Ribosomal protein 38	0.04306/4 0.77263		100077		•	78617 0.74	7252	12567 0.72	75.00 0.71	74006 0.86	55.0 92,000	1,004				1.2527
0.077131 0.077192 1.020202 0.020202 1.02020 0.020202 0.02710 0.027202 0.027202 1.020202 0.027203 0.027203 0.027202 0.02720 0.027202 0.027202 0.027202 0.027202 0.027202 0.027202 0.0272	Carbonic anthorizae III. sequence 2	0.8629254 0.94508	0.829884	0.0629785			201 208MO.	42858 1.49	96176 0.85	40.1 81070	54978 1.18	20172	201 0224			9 0	
1231000 1155220 125220	Kersthocyte growth factor	0.6275028 1.02368	0.8955855	1,4350294				23162 0.97	S528 092	92.0	2600 0000	70 01000					10834
047777 0 078100 0 080000 0 080	Phase-1 RCT-274	MES11.1 +006162.1	0.987248	1.1468875 0.			5142549 D.72	Sesson and	9 0		2000 170	ACON 1.08	20625 1.084				1.27506
Control Cont	Heme binding protein 23		0.7828111	0 60000			M1899 1 13	200	2762 0.87	7130 1.12	51262 1.06	13098	110,1 67100	3156 0.9691			0.70897
11451179 0.002210 0.000220	Printed - P.U 182		0.000004	1.4080061 0.1			102078 0.68	76520 Q.76	21117 0.70	28425 0.59	12311 0.6	180858 0.95	20017 0.726	GEES 0.8294			0.62074
1,000.00 1,000.00	Sos recognist protein L6		0.8552043	1,0556244 1.1		11966XZ 0.7-	57.0 CZ 1901	1705Z 0.04	64914 0.79	91026	59102 0.63	34146 0.95	72870 G75210	1071	191 0.914063	٠ •	
0.0017131 0.0000000 1.0000000 1.000000 0.0000000 0.000000 0.000000 0.000000	Canalicular multispacific organic arion transporter		1,046191	3,0801115			752755 1.14	124	16815 1.12	38843 122	26811 1.06	20 1000	178861 1.1GA	12.00 12.00 12.00	73 1.4002/		12220
0.940455 0.000413 0.770000 0.000414 0.700505 0.000505 0.000404 0.000405	Phese-1 RCT-179	0.6933703 0.69838	0.8308787	1.1500568	0500508 0.5			2,00000	2157A 1 000	75000 0.65	26574 1.30	70543 1.40	57778	70011 2900	383 1,318182		1.14211
1,10,720 1,0,0,10,10 1,0,0,10,10 1,0,0,10,10 1,0,0,10,10 1,0,0,10,10 1,0,0,10,10 1,0,0,10,10 1,0,0,10,10 1,0,0,1	Phase-1 RCT-So	- 0	0 7785755	1 37698	M99974 1D			2808 0.62	9008	61344 0.84		175424 Q.EE	3227.2 1.026	1012 1,0109	106 0.85g277		1,1508
1,002.02 0,000.01 0,000.02 0,000.00 0,000.01 0,000.00 0,000.01	Properties out nuclear amount pare	> 0	1007644	0.6913822	1358394 0.6	1427863 0.9	185ECT 0.95	65553 1.03	83862 1.0	21849 0.86		506749 1.0E	280 WZZZ	5184 1.0617	734 0.947965		n
1,02021 0,000019 1,0000000 1,0000000 1,0000000 1,0000000 1,000000 1,000000 1,00000	Phene-1 RCT-236			1.0326168	0116708 0.9	96796\$1 0.9	390515 0.86	139445 0.91	16206 0.96	88615 0.85	200499 0.81	62000 0.8	M4013 0.957	9465 0.9090			-
1,1250973 1,125194 1,025097 1,125090			0.9015983	1.1065883		9920368 1.0	220015 0.97	•		25.0 /CCM	-	70643	15053 0.945	1,005			-
1,000.00 1,000.00	i.		77.7.000	1.2840067 1.		01 727388	200 910301	15825 0.82	20.1	26078 0.80		7,9008	M1591 0.964	1.0714			_
	•		1,0177659	2891649	0751452 1.1	21 5052571	2.1 ACCOUNT	167519 1.07	11.1244 1.17	11.1 00272		706844 1.	119207 1.20	5685 1.2622			- (
14000001 1220171 1220771 122070 122071 125070 125071 125070	Phase-t RCT-126		107 1.6058546	1.5274404	4780302	41.138577 1.8		1.64		200073 0.92			378061 0.7	7461 0.5472			•
1,000:17 1,000:16 1,007:16 1,070:16 1,07	MHC class I artigan RT1.AI(f) alpha-chain	1 4230307 1,30281	127 1.2526701	3024955	2855072 1.0	8,1 25,125,0		DECOM 0 67	31104 0.78	00000		10.00	MO3516 1.09K	1772 1.080			5 0.7305
0.0000000 0.04811344 0.48176714 (1778871 0.4800000 0.5900000 0.04000000 0.0400000 0.0400000 0.0400000 0.0400000 0.0400000 0.0400000 0.0400000 0.0400000 0.0400000 0.0400000 0.0400000 0.0400000 0.040000 0.0400000 0.0400000 0.0400000 0.0400000 0.0400000 0.0400000 0.0400000 0.0400000 0.0400000 0.0400000 0.0400000 0.0400000 0.0400000 0.0400000 0.0400000 0.040000 0.04000000 0.040000000 0.04000000 0.040000000 0.04000000 0.04000000 0.04000000 0.04000000 0.0400000000	Thympoin beta-10	10001 1 0001	,	57.007	11 91/9022	60 0375361	57812 0.0		000 19500	33471 0.98		726148 0.9.	547785 Q.BS.	M26.0 1703			2000
Conception Concession Conception Con	Historial protein Se		. •	1,0738973	BBG2862 0.5	3500381 0.7	57228 0.63		ZZ656 0.74	29529 0.60		-	2	4343 1.252			1.1844
0.0057700 0.1000001 0.005704 1.12520 0.0105204 0.17520 0.0105204 0.17520 0.010520 0.0105204 0.010520 0.0105204 0.010520 0.0105204 0.010520 0.0105204 0.010520 0.0105204 0.010520 0.0105204 0.010520 0.0105204 0.010520 0.0105204 0.010520 0.0105204 0.010520 0.0105204 0.010520 0.0105204 0.010520	Phase 1 RCT-49	0.9436491 0.93905	•	1 2889522	7.1 1690050	0.0 9299000	486233 0.82		۰.								20000
0.0515-079 0.0015-027 0.0006020 1.0006020 0.000503 0.0015-023 0.05	Zinc Enger protein			1,3306451 1.	1236363	1.1 7 1490083 0.8	20 0250 O.Y.		- 0			-					7 0.61OK
022210 0500266 0777015 11140350 01002624 10201004 01010555 01017550 0107550 0107510 01075104 0115004 0115004 0120050 1200501 1	Percentage secretary trypian emission type in (P31141)			1 0383067		902081 0.6				74720 0.50	-			_			0.837
0.007311 (1.000001 0.001100) (1.000000 1.0000000 1.000000 1.000000 1.000000 1.0000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 1.000000 1.000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.00000000	Ubjectito conjugativa enzyme (RAD 6 homologue)		386 0.8770115	1,1115638	9162248 1.0	CZ81049 0.9			78253 0.85								1.2164
1-400001 1-20000 1-200	Phase-1 RCT-287		941 0.9814138	1.0144768		96337795 0.8			1000								
0.554477 0.7220144 0.8291844 0.9004200 0.6004200 0.6004214 0.6005420 0.6005420 0.6005424 0.60054	Multiding resistant protein-1		2005001	1.1467358					5045 1.07				9	-			1.2434
1005159 0111107 012214 1206100 0116249 1200017 012274 0125704 0157020 1057020 012570 0125017 0	Photo-1 RCT-293		•		694SSS3 0.E	•	_	_				•	Ξ.	- , - ,			0.0003
0.013274 0.0700047 0.0701624 0.07017 0.04017 0	Cardoptamin	-			0158838 1.	0			_				201684 1.18 VALLEY 0.92*	WOLL O SOL	404 0 91534		2
0.42719-0 - 42294-0 40229-0 402429-1 17426-0 60018-1 1.04019-0 60020-0 4220-0 5224-0 5227-0 5000-0 11018-0 60020-0 1018-0	Matrix evertelloproteinage 1		o c				775550 0 0 0	25.00 0.00 25.00 36.00 3			727.00	90 1755	13848Z 0.92	7212 0.945	70,000,000		10,697
12000001 12000001 12000001 12131042 12331042 12300001 0.00000142 0.010001 0.0100001 0.0000001 0.00000001 0.00000001 0.00000000	CD44 metastasia suppressor gene		jo		9 0	d	505279 0.00	N2053 0.64	110.00	M.O 80828	258872 1.0	\$24004 Q.7	2623SB 0.94	1001 2003	-	73 0.6694BC	1.30Ed
1000001 1.44428 1000001 1.44428 0.040000 0.40000 0.40000 0.400000 0.400000 0.400000 0.400000 0.400000 0.400000	Branch Botton	_	1,17299	-	-	2524576 0.8	207134 Q.7	195314 1.CC	131342 0.97	748797 0.L	Ξ	191865 0.9	200 000	17249 0.9631	011 0.92755	7020	1.0037
	Design bises made		Ξ	1.4434228	0569055 1.	1819817 Q.	748086 0.6	BA7622 0.8.	SE112 0.75	710437 O.E.	200 C200 0.8	7.0 877280	1902/25 0/84	25765 0,7962	0.80270	3 0.688021	2000

Bleam i Deft Sant		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																
Constitution 2	0.984502	1,1006488	1.0474783	0.9023437	9018084	1001100	1450025 11137707-	1137701-1	-	24764 50	2.002d/13 1.00	0.0 5/8/8/0.1	1.00404080 0.99	0.9387744 0.55		0.05178494 0.05	0.3541408	0.667976
ATP-stimulated glucocartoole-receptor translocation premoter (Gyt)	0.6832654	0.9480800	0.9048582	0.7590959	.9056451		34.7767		-			0.8974804	1.181673 1.2	1.2272680 1.00				9644662
Present RCT-180		0.9294386	0.9888739	0.8439063	0.9634518		1.0044055 1.0845944					-	•					0.784149
Honer and the Autorities of participation of the Committee of the Committe	0.000000	0.0712072		200000			OCCUPATION OF COLUMN AND ADMINISTRATION OF CO		0.99191908	•								806255
Epidemal group factor	0 9756857		0.00	770785			O SECTION O	THE PERSON	CANCEL OF	9 6	CONTROL OF	0.052447 1.0		D. HOUSEARCH 1. OF				220895
Intertegative 1 bets		0.8186405		0.9157544			1.0978988	1.0013977				80 KYW	0.6567104 0.9		O GROUND OF			707
	0.0439391	0.0722156	0.6254843	1.1751602	0.8426019	1.0301524	9458401 1	1.1010622 0.		1.0146571 1.2	238012 1.10	1.1055070 1.1	1.1742620 1.24			71 802882871	1.0524520	6025.243
Partie Della		0.9401965	.	0.9140853		_	_	0875606 0		782547 0.8	204773 0.00	975486 0.9	0.9606491 0.84	6676477 0.89				PE23294
Cathoda S	0.8717312	0.0850000	0.6417430	1674294	0.0007012		2712201	0.951313 1.	1.06259855 1.0	1.0180846 0.8	0.6563400 0.80	2075		0.7725815 0.81		0.9549249 0.1	0.6187512 Q.	0.9226339
Cubyticulin		1,2280271	1,100,003				1,48807 0	20711725	1000	01.00230	080718 1.2	706283 1.5	21 90812/51	-		-		
(PSTA)		47165771	0.8382011					Litezans C	0.600427 0.1	0.8190818 1.1		0.8541459 1.0		1.0094874 0.81		0.63776861 0.4		0.5500794
Dheer Dr.T. nea		D 7508781	277.20				0.0372962 1.	1440748 0.	1501206 1.	619737 0.8	0.8627718 0.P	(222)		25601 0.92			_	PMS187
Phone : PCT-149	1.0460205	1 0707754	0654777	1 0507000	1000150	0.0000000	0.00001251 1	0906665	1329432 1.(0370804	1.070143 1.00	20 77007	0.6563401		0.9821548 0.9			0.7711021
Phase I RCT-34		0.9124560	0.8080921				0.9118745 0	0 8748734 0			200	2000		DOCUMENT TO				
Dimethylargeiste dimethylaminotydollase	0.6557196	Q715442	0.6572737		Ξ				_		2.1 7817878.	324862 0.6					0.845025 0.	70887
Ecth-All-base	0.9294831	10041844	0.9798939			•		1.0748997 1.	1					٠.				24977904
Photos (SCI-10	0.9122858	12000001	0.9195026	0.0072485	ADVESTOR A	1000001	1.1256824	1742808			•		1.2849027 1.1	-	0621472 1.00		O.Prissess O.	0.9476365
Phase 1 RCT-267	1.1671433	1.1513968	0.9137306	0.0633647				0.782002	0.6222467 0.3	O TREETIES OF			, A	1.10071				0 0 0 0 0 0
P.	0.858881	0.9584460	0.8637323	1,0725291	_	Ξ		0.8548138 0.	0			_	0.9005322			0.02707560		1042043
Methythcyt-CoA cacamasa alpha	0.7862900	0.9210541	0.8622879			_			_								_	0.0533918
Maran Ort. 100	1.0828228	0.0658750	0.7867467	0.0047772			0.7344904 0	0 0	6			_		1.1840745 1.27	_		_	0.8716419
Please : RCT-4	0.0777000	0.0000013	7			0.745675		0.24120	0.9207421 0.		O SECONDEZ O SE	_		•	.			1.0724834
Asparbacylese	0.8407949	0.6316390	0.6463913		0.6286973	_	0.9129138	0.86362		0.6967601 0.7		0.0670256 1.4	1 612117	STRONG LA	3442744	1.0321/8 1.1	0.0000124	0.072078
Phase 1 RCT-91	0.6534557	0.8188317		0.6553043														0.6621701
Glucose transporter 1	1.0786198	1,0240045		1.1673131				0.9652591				_	200384	384588 0.90				0.9149671
Elongation factor-1 alpha	0.6622562	0.9523633		1,0169599		_			.0 575728.	326573 0.6	_	_	0.8607062 0.92	0.9258836 1.16	1.1656331.1		0.9450853 1.	1,0470001
Maldte dehydrogensee, cytosolic	0.7924177	0,6397926		0.6000344	0.8344147		0.8697846 1			1.1111650 1.1	1856E3 0.R		1.1012163 1.0	21460 1.00				0.690796
Prise HCI-127	0.9425408	0.8973748		11000			9012596 0	_		12524 0.8	597471 0.60	0.6710668 0.	0.968868 1.0	194042 1.01				£150.5
Statement Statement	0.9637336	1.0295299	78847	18/00/00	1.0164527		0 21313		0.0136658 0.1	612881 0.8	2000		513714 0.02					0.8000977
Physoxia-enducable factor 1 above	0.906902	0.8(13729		0 0000		0.0543068.0	0.7053000	0.00/605		1.1001006 0.9	0.1552275	0.0721484 1.0		1.0051377 1.11	0.007000	0.6766237 0.0	0.6622069	0.0000111
Phase 1 ACT-44	1.0793662	0.9280233		0.9873312			0440015 0			172236	180726 1 00		78076 07					700000
Phase 1 RCT-250	0.9166065	0,9566329	0.9465156	0.895,1906	0.9479471	_				1,0469743 1.2			60 165.09	0.9608919 1.03				9486423
Phase-1 ACT-291	1.0120981	1.0011141	0.0058518			_		.0002007	1.025448 1.0		_			0.8637754 0.90		-	_	0.9028018
DNA tepocaconemiae i	1.0246735	0.9902374	0.0481461	_		_	0.0000024 1.			8600951 0.0								2216649
Caycord medylduratectuse	0.9502476	1,1186261	086289		0676065			-	_	1.0675243	1.240906 0.8							1.1647803
Oranic actor transconting solutions at a consistent and consistent	1 07 508 16	0.00000	A 1000.00			O. SCHOOLS		1 2521220	1.00/3248		- (1.1	8.0 5000 O.B	0.9025083		۰.	0 000000	0.034.3844
Complement component Ca		1.019630	1,0880	0.8704553		-								A3845 0.91	0.912778 0.6	0.6290756 Q.		0.7786374
Phase I PCT-42		0.9313728	300000	0.8984969		Ξ			0,8085854 0.9									0.6367901
Phase I PCT 48	0.9187542	0.9472989	0.88535	0.8927728			_	0685942	1,09513 1,0	1.0792967 1.					0.9476267 0.8			1256738
Organic anion transmonter 3	0.944.0017	O TROKESTO	7,046,000	077/570		0.4596274 0			0.6407007 0.0	0.0027446 0.5		0.60774.50 0.6		1.19010H3 1.15			0.5478485 0.00	0.4402724
Phase I RCT-02	0.9696282	15068680	9810222	0.8290789	0.8283063	_	100001	10016681			1710985 102		0.000000	•		O REPORTED		0.6535909
Phase 1 RCT-814	0.9106568	0.91514	19651478				0104865 0						1.0527304 1.0			Ū	_	0.9049213
Phase I RCT 2/2	1.0201367		0.9581462	1,95757	1.1214739	1.269042 0	0.9495697 0.	0.6367774 0.			0.9794194 0.0		0.9858446 0.82		-			7108820
Phase 1877-169		001166	0 675478						O EXPENSES OF	0.7736227 0.7	5 0				TO STATE OF	Operation of	Carolege I.	2000
COKIE			0.5998154				-				4		Q1 90020	3	_			00,000
Fathy scyt-CoA oxidase											_		0.73564S7 0.84	0.8491406 0.99	_	-	-	3914785
Defender against call death-1			0.9238454	0.0066136	0.0388723		_	0.7853425 O.		•	₫.		27965 11		_	_		0.9471560
Shooned contain 27	0.3046201	0.00 CANADA	41000			0.8766429 Q	0.9624327		1.0138230 0.1						٠,			0000073
Thioractourie-1 (Tox t)		0.766301	0.750447				2 2/2/27			0.7614900 0.8	0.8283178 Q.0	CONTRACT CO		0.000,000,000,000,000,000,000,000,000,0	0.0000000000000000000000000000000000000	0.742007	O STRONGS OF	2000
Febrin-file protein (IPL 685)	0.9641607	1.0660528	1.0799764				9657872 0				6		1.0180495 0.91					1196554
Vesicular monosmine transporter (VALAT)	0.9952105		0.978113		_		1,2812059 1.					_	1.1281222 0.94	0.9638235 0.92	-			0.6543062
Protessorms activator 25 alpha	0.8855950	0.0000763	0.6480872	_	-			Ξ.					72411 O.B		٠.		-	6120073
Phone : BCT-215	176660	0.00	1000	10000		0.000000	T.0062304 Q	_	1.00030050 0.0	0.0612627 0.9	٠.	1.9800008 0.6 . oe72072 1.3	0.65044C37 0.05	•	O.D1656863 O.B.			201010
Histoline-rich phoopsotein	0.9275352	1.021239	0.9657103	1 628536	0.902284			1.0073411			1,0000287		1071BH 0.68	0.6394753 1.07		0.6701869 1.3	_	257000
Setemptrotem P	0.6258389	0.6498643	0.7140566					_						_	_	o	_	3923515
Caservelphs	1.0657897	1.0726774	1,0567572	1.000406		0.0431464 1				- '	-						-	0.9036826
Phone : RCT-244	0 0007777	0.0108823	0.000000	O RECORDS	0.000,000		0.72/8669 0.0	0.8543746 0.0	0.0000000000000000000000000000000000000	0.0022461 0.0	0.6060656 0.7	0.7777771	0,754/800 Q.S.	1171844 120		1002644		20070
Vascular cell achesion molecule 1 (VCAN-1)	1.0595653	1.0618637	1.0468549	_								_			0.0221707 0.8		0.0003631	0766748
Insulin-like growth factor binding protein 3			1,1438029				_	Ξ.	o					_				0.5665339
Prese HCT-246	0.8742401	0.9040836	0.0624181	0.7571049		0.0387229	٠.					1.0246923 0.9	0.8734272 0.8	0.9508854 0.90	0.9032303 0.8	0.8696941 0.5	0.9670652 0.	20,03
	O. DOUBLAND		U.Merus gray		0.050/065	7400100	C.Seraera	O.918458	Section 1	1.0467475 0.7	O. PUEDEZIES G.E			_			-	0.7704008

		- 6	0 -	3		6 -	6	9 6	9	- 8	3	6 -	2	7 5	2		-	5		Ž	Ξ.	3	ě	3 :		9	3 3	=	3	8	3 5	-	3	3	- S	3	2 6	9	3 =	3	5 7	9	3 8	9	3 8		3 8	2 8	3
	1.4621134	0.0152491	0.858a777		1.2016608			1.1652945	0.9241739	0.6774067	0.5558185	0.0756064	-	0.94065		۰.	-	0.8360623	0.9670184	1.5766765	0.9316112	0.9014157	÷.	0.0072864	1.0558976	0.9036042	0.9799904	-	0.6242884	1.0706378	0.862273	1.1147629	0.9400921	-	0.0045000		٠-	110004		_	-	0.94424	~ ~	- 0	3 0	0.9806103	1.015984	0.0042029	1.007031
	1.2100472	2.6463678	1.0721088	1.055674	2.0044305	1.1634016	1,0914953	1.0667338	0.8435080	0.9110618	0.5270405	0.7877112	1,0867395	1.156366	1. SA16232	0.7055764	1,6175085	0.0646586	1,01426	1.2075622	0.0012256	0.9220623	0.9851223	0.9600090	0.9732972	0.8766637	1.000661	1.1403554	0.8330045	1,022118	1.1213842	1.1269041	0.8036829	0.8826542	1 1477554	1.0465176	1.0504534	1.0125672	1.0769635	1.1976207	0.0206748	0.9567983	0.8891083	1.000037	0.7281695	0.0273225	1,0056241	0.0167134	0.9818715
	534353	0.946174	1.0427850	0.042228	2.280839	1.0769426	0.941683	0.880193	0.9084611	0.00104.0	0.3315664	0.5806345	0	1.0636412	-	0.8219879	1,7997984	0.7709647	1.105073	1.5080791	0.6287186	1.084130	1206442	0.6100140	0.5713056	0.6531957	0.9628289	0.8561067	0.8453037	1,0062878	1.0504508	1,2845050	0.9857438	1.0579623	13460807			_						1,004312		0.0244506	1.0607617	0.0501622	1,008021
	1,6708462	0.6720313	1.1704319			1.3465913	0.7734107	0.0013916	1.4783077	0.8965137	0.9891004	1,0100000	0.9694605	1656895	0.9477081	1.1580708	1.0190948	0.8548251	1,0250.1	1.1501772	0.9281255	1.1808457	1.1770456	1.1078738	1,0003708	0.6784467	0.984225	0.6228733	0.6707358	0.967348	0.9515800	1,123	1,001023	0.950968	1.642856	1.0002387	1.0819569	0.0847224	0.9096736	0.0153453	0.0228159	0.8163471	0.7314847	0.99823886	1,0291620.1	0.0846034	1.0218072	1.0606978	1,3362515
. 0.000	1.2462128	9	•	0.6962917	•		٠.			0.90397902	0		1.0860769		ø	0.965234	0.7827824	0.0604855	•	-	0.7562508	3429612	1.2253882	1.1460489	0.9089745	0.792BCC4	1,1156173	0.7165223	0.7108231	1.156473	0.0136872	1.0097801	0.6982515	1.089554	1,3026144	1.0542428	1.2211174	0.7514782	0.0465818	0.7383214	0.8570857	0.7390407	0.8142387	0.0053767	0.9218922	0.9058538	0.914.0967	1.1060245	2019769
	1.9100347	. 6	-	•		1,430829	0.7410392	0.900000	2605096	0.9275577	0.1762651	1.0394622	1.0842943	1,067877	1.0763475	1.0477121	1,1061615	1,0443068	1 0652016	1.1631772	10152101	1.0<0.3895	1.1067294	0.8536268	0.987078	0.790427	1.0225010	0.8826758	0.7708741	0.9722746	0.8744411	1.1772416	1.0819502	1.0840834	1.5410751	1.0581088	1.0043365	0.9423253	0.8479884	0.6642249	0.8288040	0.7438039	1,0647481	0.9941313	0.9288753	0.9460825	0.897505	1.0646687	1,6366703
	1.900142	0.9270015	1.1374162	045722	0.8493625	1.7426810	0.7606176		- '	-	0.2958658	-	1,02820.1	1.1507753	1.0246394	0.75358	1.126106	1.0685162	1.175507	1.195512	1.132156	0.9666285	1.1334378	0.0619624	0.9270535	0.8704580	1.0315902	0.9103884	0.7020902	0.7570862	0.7886239 0.8088404	1,228739	1.0104551	1.1813482	0.925/801	1.0171342	0.9647489	0.7967801	0.8600071	0.6821381	0.7942818	0.847083	0.6323622	0.0643322	0.8117049	1.0104023	1.0737488	1.0722753	1.3561998
	2.2020578	0.6964678	1,632207	0.0645753	1,4490953	1.1652027	0.7778539	1.0621865	0.9040219	1.0177207	0.2763648	-	-	1.1080507	0.6661512	0.8273402	1.1734515	0.8868987	1.0224208	1.1642198	0.9231763	0.9417306	1.0981742	0.8001012	0.9949476	0.9855128	0.9941088	0.9437841	0.8768063	1,0195683	0.9504040	1,1113967	0.8984445	1.1949904	1.0501727	0579256	1.0571304	1.0619001	1,1042389	0.5857376	1,0735883	0.7690324	0.9103174	1.0824412	0.988593	0.8740500	0.9073518	12851707	1,5452130
*********	1.5690874	1.025778	1.1702377	1.1872284	1.2253966	1.3940078	0.0772561	0.0000013	1.1351712	0.9968478	0.269533	1.1378472	0.8067341	1.105016	1.3805715	0.8135598	1.3755362	0.9782925	2222	1,087,3841	7,000,000	1,1419164	1.1420462	0.6964706	09171351	0.8735205	0.9600367	0.7246253	1 1011 570	0.762111	0.7257317	1,4251206	1.0111487	1.091577	0.6744258	1.0133898	1,0000137	0.907081	1.0491622	0.5340743	0.0250622	0.0062513	0.0151941	0.00000055	0.0588169	0.0253200	1.0561977	1.0004014	1,3704247
10100000	0.9911465	1,0725187	1.004/6457	0.8780041	0,73157	1.0078303	1.1525564	0209020	0.7852966	0.9162771	0.7045159 0.0004545	0.0046307	1.1065063	1,199618	0.8520256	0.9180518	0.9669415	12/1305	1.1200105	1.2927BCM	0.6962130	0.8421781	0.8381967	208021	0.9563461	0.0225460	0.9756131	0.6661550	1 0000000	0.9535619	0.9023404	1,3112125	1.1271214	0.9633822	0.0000525	0.9925	1,07070.1	0.8291502	0.8751842	1.2819207	0.0294700	1.2136245	0.7807662	0.5139751	12519178	0.8312227	0.91721	1.0638962	1.0424912
1 ONCODES	1.2105318	0.9742255	1,200037	1.0052873	0.8057888	1.1886352	0.9163186	0.9248345	0.0000000	0.969-0752	1.012887	0.0000078	1.1621257	1.1484781	1.089773	0.6362873	1.0625798	1.1058873	1,082576	1.0512463	0.876798	0.0963415	0.8832988	1.0603787	0.9075726	1,076102	0.9514417	1,012295	1 1446230	0.9567426	0.6911643	1.2996708	1.1272428	0.0319527	0.9825797	1.0889073	1.025526	0.8147541	1.0635614	1.3975304	0.9434857	1.043729	0.945084	0.8205509	0.950945	0.0620138	0.9589237	1.0788828 0.0077087	1.4140022
1 20077244	115,000	. 0	1.2175119	0	0.7988904	,	1.1285585	1.023789	20071700	3	0.695259			0.8951007	0.9458773	0.9260247	1.0828232	10012014	1.1085271	4062675	0.0075441	0.9114253	0.9023783	0.9258232	0.9483964	0.9021408	0.6780943	0.9179601	10162472	0.8547302	0.6258352	1,9885187	1,015150,1	0.712945	1.0606706	1,0143344	1.0778282	0.8958291	1.0427216	1.2514363	0.7326811	1,4410535	0.8117556	0.6330462	1,229,000	0.84079	0.8195284	1.0782086	1.1678785
1 1304441	130430	1 2522442	1.2205005	1.3749186	1.0912923	1.1197328	0.070478	0.9561498	2000	0.9089624	2.1680202	1.0160874	1.0650203	1.3361607	1.0963886	0.6516376	1,003468	107780	1,2300237	0.9253046	0.9509117	1.0059682	1.0805769	0.0446595	0.0729820	1 043757	1.0855839	0.8387248	1.0508138	0.9965659	0.8078517	1.1940546	10176448	1,0384359	0.6537909	1.0013738	0.9904817	0.8797039	0.712725	1,0365283	0.746258	1.1139003	0.9306569	0.8292431	1.2651031	1.0158316	1.057632	1.1656363	1.0033406
	: 8 :	: \$ 1	2 21	5 3	E :	В	<u> </u>	2	2 2	2 25	22	2 2	3 9	2 2	21	2 2	3	3 9	r	21 12	9 2	1	R z		M :	1 1	1 2	9 1	2 9	2		b 1	9	= :		6	• 13					44		0 1	10			h 10	

\$2,000,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0

.

7 m

101

| Company | Comp 1. 1992 P. 199

PCT/US03/06196

WO 03/100030

13.61

1.1.2.1.5.7.5.9.7. | Colonidade | Col

	0736189 0736787.	6501042	7140808	0.993108	0157956 15294226	.6912748	8100945	. 8216484	8527029	7052413	1044940	2084307	1.2408878	0.00000001	0.9006199	0.6862317	5890736	0.0057489	0.6253187	0.9255713	0.0046101	0.6169092	0.6748925	1.2662538	0.8194749	0.547662	1.0171043	0.0462533	14167499	1.9044977	1.557909	10292528	1.020745	0,007447	1,3709702	0.5345701	0.6768708	1.1850643	0.9012787	0.4692992	0.9950038	0.9830109	0.9676209	1.0310047
8	1 25278 0 122578 0 607789	0 960768	0.006719 0	196901	443976 G	1783471	23007	1805794	750247	920788	2083408	176802	275077	0.9503719	19551947	2502013	9118979	.084062	8718611	72000	1905777	5,000	8875345	87775	0.050025	265117	1813023	0010723	000000	2590100	1.418049	2100028	1090243	2161804	6862848	1091361	TTST257	7100101	6755735	720210	7052504	.0999912	725727	.0671533
8	2000	10 MS90	1127 12			7530	9888	18881	70000	1,1 27.00	9590	2882	24349	00128 0.	16456 0	31662	- 0 CESCS	13178	1001	20118	BIENI L	98	00000	22457	2246	0 60100	13007	13200		1 150901	41400	92.70	250062	1222	ST.	850575 0	0 050/22	890614 0	5000	1 1981	1202	CE0102	90576	472643
8	00 0.000 157 0.761 10.00	201 130 130 130	20. 20.		201 201	728 1.21	200 200 200 200 200 200 200 200 200 200	91.1	848 0.09 484	8	0.0	90	916 0.94	2067	120	X 128	1 2 2	1.31	2. C	198	748 0.90		20.	20 - 20 S	12.	2007	20.	1422 0.9	200	5181 0.9	200	3011 0.K	2821 0.9	1062 1.1	1601	1.1	7455 1.1	8545 0.B	5168 0.9	4.1	2080 1.3 14675 0.7	5617	1396 0.3	1146 1.0
5	1,9007	8 1.157E	0.0202	100	0.4472	1.0813	867	90		1	2		18 0.686	31 1.356	50.1	11 145.6	25 1.10	1.13		2	41 1.208		20 1,165	25. 25.	9	14 0.669 m	200	582 1 282		F. 1.	5.50	85.73	20	20.00	125	2000	100	101 98	198	727 89	26.00	20.0	245 0.905	14.
8	1,07271	1,067136	1.013050	1.6501	1.50524	1,605050	0.96980	1200	5.15070	1,31808	1,1446	1000	1,02141	1,31622	0.6789	1.6375	1 00676	3 1,20616	500	72021.1	131386	1000	7 1.16783	7 102503	7979	1,0055	1.25160	9 0.85646	0.7640 0.7640 0.7640	2 1.8735	2 2	25065.	1.0192	0.81601	7000	221011 0	9 0.7965	10.0262	1.600	1.2541	7000	1 0.8825	50 1.00 EX	2 1.785
9	0.668133 0.0688133	1.1310100	0.64855	1349841	0.43733	1,131810	2.4606227	1.581974	1,141292	1,489087	1.19127	201107	1.096722	1.215674	1.001963	1.381931	1 18912	1,220041	0.615857	0.98022	2.143590		1,641906	1,056973	125300	0.84C22	1,7250	196530	1,006380	2.06563	131054	1.516994	1,131945	0.00273	1,08001	12214	0.80831	1,41631	2.47	1,12088	1.6569	0.86569	0.000	3,5153
•	875221.1 875221.1	4113438	0207832	432173	7,9000097	427224	12814364	2965.07	12700731	1,5388838	1,4730344	2110/104	0.7141216	1.0978648	0.9914071	1,6022290.1	- 25020	1.6228088	1,015186	1.6000284	0.7940622	1,502378	1,38067.1	0.9874542	1,2192201	1,298102	0.629000	0.8779869	0.7003615	1,552253	1.0050538	1.0757730	1,0549529	0.8312767	0.8788433	1.51401	0.9115696	1,743073	1,303566	1.306289	1 475055	79084	1.628449	1,31007
5	2578721	220723	1.0263091	1.0458573	1.2847525	1.2178967	1.074502	1.0016444	1.0622008	1,1130254	1.1567411	127721	1.0781142	0.9119657	1,070161	1.1641588	200	1,2390565	1.1429673	1.0816806	0,9005715	221736	1,3682238	1,12272	1,1244897	1.0006552	1.006/1/7	1,0507591	0.0626801	1.155284	20000	1,0000000	1.200547	1,0346872	0.9730217	0.0606628	1.0622511	1,1570496	1.0617858	1.1689188	1.0781653	0.9229114	1,0806433	1,0420808
2	1.4049975	1.0027101	1.0907279	1,0756152	1.0051144	1.295019	1.244115	0.8556114	1.0001519	1.555227	1.4255777	1.1146973	0.6777.20	0.8242243	0.000512	1,3651166	0.9696753	1.578771	1.0341963	11006353	1,3026305	12142972	1.30487	1,0272685	1,1265275	1,243870	0.741167	0.9445421	1,038084	1.4613951	1.1288276	0.6805545	04500	1.1354006	1,300075	1.0404103	0.902745	1.4702069	0.7846194 1.0440637	1,6165831	1.0411385	1.1481676	1.2804539	1.051386
2	12473722	1.0652867	0.0003415	1,1156515	1.1412063	2871263	1,2150724	1.1298207	1.1369906	1,2929063	1,165301	1.1847177	0.856117	1 2861574	0.0000	1.2144912	0.9485921	1200557	0.8378591	1.201024	1.700.1	1.3670718	1.60180	11941723	1.1805005	0.9282242	1 301413	1.0987648	1.1291134	1,1307090	1,170(6)	1.03330045	0.9762378	1,3226749	1.01626887	0.0532524	1.0542684	1.0272527	1.1554309	1.0200208	1,0051063	1,0822929	1.178844	1.1672290
2	1.2450316	1.0667432	0.9614257	1.1005281	1,49030050	1.1786271	1675078	1.0609418	1.1144432	1,028177	1,2900572	1.0810146	0.9760656	1.0844293	1 0017829	1,1174386	1.0350272	1.257823	1.2443917	0.0000077	1.0063246	11535196	1.7197465	1.1446972	1 2486318	0.9938452	0.8625439	1,000637	0.0420655	1.1290714	1.0632877	1,101862	1.028728	1,1300544	1,1408458	0.938673	1 124635	1.0056460	0.6503892	1.5162823	1,236915	1.0087312	1.132976	1.1469824
٤	1.045579	72927	0.9693398	1.0569721	0.9030485	1.022431	1,0322142	1.1642729	1.0756251	1.0080549	1.0259829	1.0265113	0.9496701	0.9566605	1,0042380	1.1237800	1.0190004	1.1529062	0.6265622	0.7807407	0.9909666	1.0563735	1.2977811	1.0791608	0.8717213	0.6284292	0.9148459	1.0811160	1.0790306	0.9916401	1.0075134	3,008447	1.1422007	1.1636212	1.1057945	1.22006	3 1.0665262 3 1.0665262	1.0000454	S 0.838008	0.940654	0.902296	1.091669	0.959050	2 1.006011;
5	0.056S717 0.7880857	022220	0.9097724	1.1001082	0.9639046	1.0447238	0.9894427	1,208007	1,2280231	0.9993458	0.9513055	0.951763	1,2065491	1.0698433	1.0557859	1.1384527	0.9716639	1.0251681	1.1882217	0.7710198	0.8290044	0.974148	0.9035678	0.9178206	1.052925	1.1496296	0.908215	1,113520	1.1814574	1,262226	0.007335	1.079856	1.364724	1.03204	70200	7 0.784581	0.964221	1.020726	3 122278	0.831203	262100'1 2	7 0.507864	4 0.88778	3 03451UC 8 1,214468
5	0.9624907	0.9116074	0.9042678	1,1103412	0.6779145	0.972206	0.0152815	0.0216156	0.958841	1.0102963	1.0506442	0.0954578	149.00	0.9984052	1.1849847	0.978030	0.9275979	0.7737196	1,0590502	0.957094	0.875965	1,080958	0.0205412	0.925618	1.067288	1238529	1.100020	1.067975	2100000	0.995795	0.00730	0.97803	25550	7620%670	0.990902	0.737376	0.94654	080001	9 1.20898	1.104028	1.041877	0.368093	6 0.805914	0.836547 8 1.07756
5	0.904694	0.9456744	1.0482845	1.1278154	0,7764211	0.9699138	0.7057812	1.1678007	0.8482351	0.8845402	1.1100511	0.7165451	1229657	1.150112	1.18700	0.9051015	0.8823806	0.705369	0.9083816	0.952929	0.956198	0.984224	0.631816	0.85000	1.130029	0.847381	1.104229	5 1.048513	0.90441	3 1.052086	0.950784	5 0.678080	1 2180061	1,099046	2 1.062594	0.716400	2 0.084775	7 0.92362	7,254647	7 1.365289	1,13678	11 0.842943 12 1.112813	5 0.809621	6 0.765 4 24
2	0.0029018	1.1502055	1,0224013	1,0265800	0.9556558	0.8710961	0.8108394	11640531	1,0061537	0.6851605	0.9692278	O SEEDS CO	1.0627	1,046634	1.1269292	0.7848914	0.9500697	0.506108	0.754310	1,0145/04	0.6164137	0.7408498	0.731463	0.750027	1.1878021	0.62300	1,100067	1,700383 10,98652X	0.783735	0.087786	1.026517	1 0.019081	0.045057	0.777183	1.02382	1 0.588780	0.728701	0.054527	7 1,357099	2 0.806444	2 1.015418	0 0.664419	2 0.578728	3 0.019502 0 0.800086
2	0.0613704	0.9835132	1,0217012	1.108073	0.9250364	1.01118	0.7100490	1 0075691	0.9938367	1.0499003	1.0271298	1.0508008	1.2081851	0.969026	1.1066109	0.7850066	1,0001419	0.807420	0.038261	1.457163	0.624750	1,0055212	0.9000666	0.006885	1.064353	1.10469	0.963578	1,136257	0.967018	1,001406	9 0.065140	7.1199627	0.940384	7 0.650114	3 0.086316	5 0.62200	36311636	0.692077	1.069783	1 0.671903	0.969601	0.874190 4 1.006844	9 0.625600	2 0.894602 9 1.10414
2	0.7469957	0.0140465	1.0838494	0.9378266	0.7664351	0.9884071	0.9172250	0.0834745	0.9660217	0.6517703	1,7072	0.740518	1 247855	0.8983591	1.211660	0.9401497	0 9496304	0.057.00	0.8842452	0.64239	1 2582254	1,025,000	0.963010	1,010844	0.931553	1.065128	1.1096	0.700505	0.98241	1,080158	0.831076	0.88289	0.940258	0.9870	1,038001	8212800	1.05041	277720.1	1,320819	0.000534	1,064095	1 0.810254	8 0.798133	0.042344 2 1.323168
} ` 2	0.7538459	0.7542407	1 2457369	1.2405611	1.09/1362	11/20/711	1,127855	1,24545380	1.1865022	1,037,0657	1,192,7911	0.9710227	0.652500	0.9096608	1.3050413	1,0597752	0.0023501	0.94674.7	0.7879942	0.9032048	0.9751785	0.9257306	0.6744781	0.6541573	1.1349901	1.0804665	1,5292485	0.966202	1.813538	1,515206	1.1591507	0.9152100	1.118633	1.002749	1,067801	0.742327	0.785780	104508	1.549411	1.13944	0.860454	0282501	1.063363	1,172061
}	1.1470797	0.8730137	0.9764822	1.2745206	1,4396930	1.2340178	1.1957712	1,2140731	1.267413	1.2920836	1.5216672	1.1729497	0.64222	0.960672	1,2299002	0.9955961	1.1000647	10277363	0,7868022	0.8220095	10198251	0.6041606	0.9728123	0.525212	0.9431418	1.514682	0.6626915	0.8830411	1.00	20523484	1,222013	0.8696218	1,1772	0.7883200				1,2354131	1.293979					1,356236
}	1,131766	0.7478997	1,0604767	2492763	122.59	0.7430841	1,210654	1,438116	225	1.3790722	1.3681608	1,2793005	0.6411244	0.9223604	1.0061325	11100115	1,1737006	0.9571963	0.7924624	0.0565656	1.1608357	1,0360831	0.822832	0.611996	1.0727021	1,170055				2021628	1,3907552	0.904507	1.2852249				_			278721 1		1.0778515	0.98185-0	1.1058577
} 2	0.7607367	1.1404296	1,100249	0.7407368	0.7987558	1,0582736	0.8470481		0.9710452	1,2187618	0.8504188	1.1860034	1.0495192	0.8647479	1,048021		1.0053328	1,029925	0.9289690	1.0155135	1.284977	0.9430018	0.6276811	0.9896271	1.0505255	1,0005000		0.8133478		1.122011	1.100356	0.8004243		1.0910065						6 0.7226824		1 0.8162441		7 0.7378086 9 0.8342549
} ?	1.1064484	0.9013703	0.90947	1.6948724	12214104	0.6481929	2050430			1.0788953			0.6265727	0.0500652	1,2713903	2005550	1,0641519	0.7980544	0.6313689	0.9885145	0.9102069	1.3573345	0.8100377	0.7840846	1,1119064	1.7897312	0.6062434	1.362188	- 14	1.4080315	1,3051225				1.0084713		7 0.6656782	0.6052391			2 0.607522			
; ;	1.4251305	1.0619964	0.9946572	0.6780653	0.692016	1.0895112	0.8401593	0.9467008	1,0549525	1.6574404	0.0781818	1.6946107	1,0931047	0.9964604	1.0315101	0.9065239	1.0682107	1.2457778	1.1626501	0.9407509	1.31.39090	1.314012	2.810983	1.1967422	0.9531948	1,143822	0.9026673	1,01774	0.9589115	1.1234375	1.1984704	0.8438205	0.9596289	0.9100123	1.237375	1.0655401	1.104422	1222	1.0184338	1.039147	1.178056.	1 0378543	1.0151864	0.7805054

14.5

3 7	7900	Z 73	12	00,700	8 8	1015		207	19081	120	5	27568		1980	5007		95968	55.15	1000	557	87078	2002	30.00	75.120	12087	9 20	705807	27.20	87878	90908	2 6 2 6 3 6	707	38805	201	19521		18265		70414	2448	2002	46985	2000	5,0	20 E	99100	35048	6000
8 8 8	8	7.	2 2	9.	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.00		25.	07.0.70	5	1 2	90 1.38	4 6	3	21 0.65	200	50	20.0		1	2	1.1	35	12	0.0	8 8 F 2	5 1.8	95	2 2	691	. O	20	2	1 2	= :	1 8 2 4	863 0.97		115 0.98	8	3 6	7	2 2	8	117 0.00	3		20.
2 2 2 3 8 8	75400	1.36029	0.68265	0.85381	9,000	1.48830		2885	1.02120	0.0014	7.17	1.22851	1.000	90	0.698	2.0082	1 250	0.9955	10.0	0.7607	0.0168	0,690		2	1,3629	2 2	1.1727	1.0753	2616	0.710	28	2 3007	0.0828	0.9230	0.9975	6.07	1.0.9871	8 8	7	0.7877	101	1.065	2 3	68080	0.000	0.6802	0.0556	Į.
8 X	000000	2859738	8019242	9458137	1.028549 6615792	02200789	1001001	4057204	0009900	18500276 0718001	200200	7878820.	9001170	0000	,0146217	752176	2971412	905366	SPECIAL S	2006482	7605500	.B078756	0787428	.5637036	241 1690	3.8470862 1.106946	(17500.	0.9719263	2,36236	3,628.7962	2000	1,72787.1	969702	34646.1	1.056962	060622	1.000247	1,065004	1236751	.6853843	105050	988888	316074	0.9557502	1.0060E31	981310	0.993114	1.21570
ទីខ្	740135	585457	000516	12828	075080	12777	100,100	196961	206235	734216	, is	750970	195682	0.0241	121862	28282	34000	202722	18224	20200	244552	104277	CCA568	305.488	765142	1.0787	99779	180615	198259	145699	72722	896709	5535742	2454088 2454088	339025	5953161	180597	0058303	8265992	122210	178694	080000	9076227	113474	2002318	7254	2013724	.162138
, N	25 A	5027 1.2	7245 1.0 8688 0.9	7.00	5636 476 1	3695 12	20 25 0.5	720	8481 0.8	200	180	122	128	200	001100	27 7 7		- 0150	275	20/3	3	3666	200		17	5 75 75 8 2 75 8 3 75 8	222	16129	2 20 2	0 9952	200	3	1 91829	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.	72507	31024	0 29003	200	97047 0.		777	2	35001	7 7 100	, 28 8 8 8 8	0.00	14528
	100	1,065	3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	24 0.62	12 0.961	1.187		8	10 0.89	0.00		120	180 61		080	3	9	201	92.0	700 700	551 0.74	107	7.	25.	AL 0.78	128 Q.75	93	708 1.18	2 T	200 0.50	48 0.97	2	22.1 25E	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	781 1.23	413 1.17	764 1.14	= = = = = = = = = = = = = = = = = = =		115 0.7		01.1 710	1	780 052	200	12	20 25	2
8 8	21.01	1,0360	0.46137	222	12044	0.663	0.9402	0.718	9 0.6478	0.9264	0.00	1.3066	6 0.6814	0.9686	7 0.7053	0.0416	5005	7 1.2685	7 1.4163	1 0.9726	2	1.6180	3 1.0572	4 0.9019	8 0.4118	1.1928	50	2 0.5308	0 1.013/ 2 0.6999	5 1.5062	0.7040	0.572	19 0.7964	20 0.74 0.74 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.4	B 0.9520	12461	1.085	200	2 2 3	3.6242	1070	1279	200 1	1.465	0.796	18	1000	787
añ Z	· Demecon	1,124050	1,084036	1.014093	0.901466	0.9000	0.9071	0.968233	0.887388	0.919236	0 808443	1,003000	1.00688	0.045769	97.0	2,192107	1 020020	0.902020	1,001	1.063792	0.65028	0.76807.0	1.139598	0.00000	0.948051	0.814196	0.901830	1.056853	1,119/61	0.947927	0.969482	1,286,000	1 19807	300003.1 5000009.0	0.85758K	0.00255	1.07502	2	1000	0.660900	0.906312	1.06745	1.25904	2000	0.000		0.67467	1,14657
3 3 3	11470ms	1426561	9823295	074606	0074002	9141448	7	8493978	8884804	710136	2000/21-	1075976	0.699306	0748584	6199239	054320		8078588	8741104	. 1006682	10000	0163534	3578463	277868	7387672	1,319408	725527	2215030	1727677	0.628155	10521706	7827388	1439558	0021230	\$107700	0172700.	1564362	1128150	8247169	9207028	2016043	9602019	2422851	1,7821757	3055212	10300001	3.9811416	1,1387247
8 ¥ 9 × 8	0	797.24	508217 0	2000	100465 1	-	2	2000	771417 0	1187	917170	530112	694972	100,000	204178	501397	2000	810230	550552	5999		546113	27775	00024	123344	12447	100000	453097	1005374	759792	1000	713617	1846502	1656256 1053986	977606	100000	100478	1039860	MOMBILE OF	1682228	1807381	171.05	2629291	7,1282778	9	0763515	970000	0175482
\$ 8	200	5838 1.0	1,150	760 1.2	0078 QE	25	20 12	4216 0.8	000	2126 0.0		1,000	0.1	7417	27.00	1.1		7590	755BH 0.9	222		X242 1.1	0 58992	277.C	900	S3422 1.2	2777	90808		30456 0.5	90858 0.00		3564B 1.0	53680 1. (715)	56438 1.	52763	65897 1.	50601	21636	72286 0.	25125	36850	77815		27.53	500 500 500 500 500 500 500 500 500 500	1 7980	3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 8	900	5	16 1 16	8	72.0	100	20.0		1.052	28	17.2 L.1	90	200 52		80	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		12 0.95	158 0.85	1. 15 1. 15 1. 15		25.0	707		29.0	20.5	220 024	72 1.27			200 0.90	5 13 8 18	17	22 1. 22 E. 25 E.	900	121 1.10	75.	1.04		380 0.75		3	986	20 20 20 20 20 20 20 20 20 20 20 20 20 2	5	2 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	250] [[8]
g- E-e		0.77.28	0.86108	0.9663	1.0054	1,1462	11350	2	0.4166	0.8470	1000	800	0.7783	0.9448	155	1277		1,000	3 O.B439	1.0764	0.0778	9.83	0.9236	0.0589	0.9149	0.7564	0.787	20807	0.9810	1.835	0.0830	0.00	5 1.0069	0.8773	6 0.9662	7 0.0415	0.000	1.0750	20.00	3 0.4801	2 0.8462	2 0.6568	1,2517	4 0.8164	0 1.1240	2 0.975. 1 0.975.	0.890	0.9121
823 HT. 08 25. 08	0	0.8718973	1,010587	1.1680413	1.042002	1,5516791	1.000280	0.65897	0.639484	Q 7772	200000	720082	0.7430612	0.928772	0.78773	1.29417	0.757775	1,085824	0.724817	2.863118	0.00000	0.617776	1,030672	0.631340	1,350016	0.77690	0.726262	0.844649	1.08842	401145	0.654531	0.78270	1,981462	1,000	0.834.986	1.027963	0.95036	0.748880	1,04161	0.964088	0.748139	0.00	1,807175	0.61305.0	0.779036	0.652094	0.505.00	950050
2 12 12 12 12 12 12 12 12 12 12 12 12 12		0.639178	2.8971085	62701680	1,00020	0.9705447	1,8433379	0.0144890	0.9791483	0.0037872	CARAGE T	0.9623967	1.0051476	1,0001708	0.928891	1,2350963	0.040650	0.9744990	0.9445924	1.0286489	0.0004623	0.9015830	0.B402624	0.9707218	0.8390903	0.8371884	1.011871	1.0098035	0798205	1.200012	0.9078808	0 8254735	0.0658854	0.9242728	0.9995217	1.0690523	1.0045823	1,0478429	0.9847888	7270228.0	0.9001953	0.9082623	1.1878071	1.2095334	1.1062822	1.0744513	1.016942	0.6601001
		857700	1984732	1672784	0215700	1623279.	4762291	8070714	9006756	18504272	7508057	2417401	7489489	3153834	3,5890124	1,0087798	2000	1.046086	1.00296	200776625	0652007	3659723	3.5248669	75774	0.6144561	1,0067539	0.945454	0.9874308	0.8701102	1.0096739	0.8045411	0.9009555	1.1628093	0.7831922	0.9287621	0.866558.8	1.0745068	1,1514206	1,0496999	0.8929611	0.8101078	1.1807636	0.9762075	1.0636742	1.0020477	1 0712945	0.8514257	0.9029607
20 25 5 20 25 5 5 5 5		01210	9755500 1	1424678	1808704	75,000,00	2957302	7324608	7,00895	1.144041	201273100	808818	8524909	0.905389	7710404	9059990	2000000	0503000	1.110951	1,001730	70000	1784698	7519416	1998254	200003	2158037	0166745	1534672	80200	1538179	16617254	7120440	16813196	5572865	8277018	8080529	2525111	1859024	1.044919	9008796	7486759	0.0000000	0000000	7811268 0168041	1,990067	2.8104288	7100019	1.5812Z73
5. 5. 5.		2000	442794 0	810	7010501	1475544 0	1 250550	0.000000000000000000000000000000000000	7433063	0475938	0 909090	644579	B575462 0	28750	9844631	0.022811.0	00625280	1212127	254609	0133006	177672	2021084	6531067 0	2000	705022	2889743		9175335	0695239	9736455	3448629	20001521	88428	9810698	9941988	0106302	0851121	4151458	0.980692	6088543	9096044	0.814433	.0073413	1702946	235230	0671720	0132817	.0201137 .00003447
1 5 E		282051	104829	2027	742048	1,00615 1.	379109 0.	616397 0.	S4211	1. 80522.0	20466 ±	084995	0.00000	88888	137724 0.	255861 0.	21872	90528	532044	128165 1	226802	465878	005746 0	- 480084 - 480084	65-667	1.99944	0 600000	0 52725	544618 1	731164 0	1 166806	17577921	6218	959025	759418 0	0 1105821	M.51658 0	804498	2000	0 957.08	0 181890	20000	1 /1//20	113848 1	204116	1021311 1	90000	2000000
		6.61	4282 0.8	2020	60 1903	0.1 2017	K718 1.0	9836 0.8	i i	3806 0.9	6000		200	80 80 0.0 10 0.0	2 7 7 7	50 0502	197	200	1.1	11495 1.0	97	250	1 18291			22906	11560 20 20 20 20	31704	91658 0.S	0 88289 0 1 90869	0 96829	20 88000		9	100	1.1	2000	27. 24.22	98250	0 64 60 E	0 05/22	20069 0.2	73022 0.	17628	80079	02960	98	2 5205
183	!		114 1.107		1,057	2000	20 0.945	M 0.874	0.00	284 0.963	5	21.21	159 Q.B1	175 0.95	700	226 0.85	27.5	200	20.1	950 919	 		317 0.82	127		167 1.28	890 L98		55	372 0.82	478 0.97	616 0.97	785	59.	112 0.85	765 1.22	976 976 976 976	83	282	92	157 0.90	651 1.11 Ge 0.84	581 0.02	557 0.82	1 2 2 2 2 2	82.18	25	824 0.97 785 0.69
EST &		10169	1.16025		1.0071	1878	_	0.0460	0.5976	0.9134	1,0695		0.8967	1,100		1.1265	1.122	75780	100	1.0154	10590		0.0440	60000	0.000	1,3328	27900	7558.0	7 0.988	1 0412	2 0.8572	0.9418	960	3 0.8144	70280	1779.0	3 0.7322	1,3738	2 1.1405	7101.1	7 0.8174	2000	1.232	3 1.0762	101	2000	A 0.9207	1 0.735 1 0.735
ERY 160	,	0.7586129	0.7297921	1013175	0.9697680	1,258885	0.4412484	0.568020	0.6894676	0.6200604	0.8542348	20076	0.656902	0.8152784	0.6349704	1.120783	1.0569752	11208775	0.729153	1.068349	0.711873	0.786613	0.000415	1,3107850	0.78497	0.881510	0.690642	1.2438518	1.088998	0.703669	1,062034	O Grando	1 231072	1,12209	1 0050147	1.07284	0.616073	0.8748349	0.852508	0.921657	0.852785	0.904276	0.789260	0.848194	1.0455391	0.9105378	0.737125	0.0621154
ة م		25/0/15	7241275	D062764	7855733	1717/02	KG7251	151000E	2948	61 BZ843	1,2047,836	12418799	7405647	0.94673589	1,212,412 0,675,580	90590ZZ	O. SESDECT	1655070	780090	0100651	6449711	0.746670	7751679	1667053	CAMP 22	7018017	986.3912 17.01.11	2054663	0258188	(S) (Q2 15	1238427	0.6760679	1112982	1,2199763	2007	1,275708	7620647	2023	8653838	0.840618	0.833388	0.67842	956809	9904561	1.0516125	1,1408485	0687137	0.7226789
ERY 160 ERY 160 ERY 160 EST 3 334 336 339 31 31 31 31 31 31	!	0.6204555 0.5170759	0 72555	7867	6 0.7569813 0.7655730	1 200Z	0.9156595 1.3	0.7481387 0.1	2000	0 18120	1.7559421		0 95600	1.0401004 0.1		17449 1.	1.086273 0.0	1.0675408 0.1	344	1, 70227	124451	0.7402/23 0.	173909 0.	1200	20021	W2418 0.	28622	2 1,2295990 1,2054663 1	160565	141888 1.	100084	0.9624455 0.	79812	1.2948076 1.	NAME OF	1.8600802	20020	25000	147918 0	0.7242368	0.654157	0.6477308	1.1790181 0.	0.8721255 Q.	0.8623022 1.	1,2045414 1,	1924	0.8654259 0.
1	!	8 69 8 69 8 69	900 000	7. C	145 0.75	7 S	18:0 620	476 0.74	28.0 050	A31 0.85	1.7	9	082 0.7	1812 1.04	20 B	164	25	6	25.0.62	1848 0.90	1144 O.04	244 0.63	7596 0.50	6.0 757		1307 0.84	232	202 1.25	7803	5045 1.4	70.1	9492 0.9	2647 0.94	1983	150 CO	2.212584 1.8600802	24.00 20.00 20.00 20.00	3476 0.6	924 0.8	۰	1996	6671 0.6 7760 0.7	1.0	2460 0.8	2057 0.8	1963 1.2	200	80 8500 0056 0.8
¥ 63			A 0.8048333	0.5828	3 0.8554	20102	\$ 0.6840	14 0.5624676	9 0.7874	8 0.7904	30	12 0.05 May 200 51	0.487	4 0.5919812	24 0.5419716	1,4024	2 0.7%	THE OWNERS OF	0.608	13 1,090646	15 0.3048144	7/20 9	3 0.55	0.760	5 C C C S	8 0.51	200	07 1.5355202	220	37 - 24:	74 0.542	59 0.999482	2 2 2	21 1.6534665	0.307835 01 7.4577807	22.27	270 E	19	% 0.465	75 0.2714459	42 0.4771996	54 0.4914671 (E 0.91	39 O.812	750000000 57	49 0.7791863	10000000	22 1.228222 54 09 1.0600056
E 45 15 15 15 15 15 15 15 15 15 15 15 15 15		0.7729500	0.7936044	0.9006178 0.7770478	0.621034	1.0247794	0.67606	0.5062654	0.694791	0.64172	0.8504735	0.786720	0.80320	0.9102344	0.73846	1.44624	0.900000	A 81814	0.72046	0.905581	0.68929	0.0443786	0.5505975	0.8125224	0.26567	0.69606	0.71152	1,2873607	0.7628711	88109	1.00765	0 85416	2690	1,7020421	7.000	2,3653622	0.56971	0.72	0.87820	0.6342675	0.84666	0.7643854	0.82654	0.97821	0,43/25/12	6:18	0.96839	0,8653532
																																	, .	•					•									

. 1

| 12,000, 12,0

₹

37,44

192		1.2252288	.000000	0.9588018	A 600000	0,9651707	TORNER O	0.9007340	0.9067651	O. BEREZESO	1 0254442	1.197361	1.1138484	0.9770835	1.1360469	0.9054699	0.8530011	1,0149499	1.0459497			1 003000	1,0454312	0.0059443	1.5670272	200	7471000	1 1662567	0.0050202	1,0319145	C19550173	1,040000	1,0194459	1,169954	1.0062966	1,1099782	1.080900	0.9451578	1122400	0.8670129	0.00000	0.8677290	1.0294815	1.0126210	1,0041470	1.0007412	120005	2301260	0.948983	1.044102	0.6761936	0.9054467
		2046138	1.56283	1,0684011	90230586	9877896	0.103000	0.0004.07	121734	1,067,4907		1.0795841	1,4334712	1.0974709	1,0063171	75.7576	0.7781003	1.1604764	1,0240134	(A) (E)	0 0055007	100000	1000063	0.8668989	0.9064376	2415085	STATE OF THE PERSON NAMED IN	0.9897381	0.77253	1,139014	1254572	0.9181910	0.9211598	12452193	1,1191512	1,1810088	12251565	0.874783	2512852	1,0696078	1.058317	0.8706697	1,1446005	1.1871355	1.132532	0.9842572	38827	0.7690122	1.0728384	0.9296039	1.0625894	0.9980074
282		.0442094	1100001	8162920	9	9000094	1,050634	5716908	ACCORDA	785817) DE SE	0.76778	042850	9911190	910778	200	0.795287	1,005522	1037314	0.000.00		108214	0630034	.1029062	1027620.	.0640843	0,442783	0797186	6730879	1,006234	0456338	804671	19163617	0077180	1.1364705	1631657	1.6513221	0.000175	9002300	1,9097143	1.081348	1.0067577	0.072333	0494023	200100	CONTRACTOR OF THE PERSON OF TH	2204622	18525384	0.000040	0184833	1.0808313	1,0875071
38	Ę	1444884 1	3070231	1 701 1828	1,020,13	1652641	70012304	478685	1 8001800	6,600,643	9044440	915900	80000843	. 9102010.	0820413	7775073	0,716261	1,054907	9438448	20.00	OK 28.785	220020	19596267	3900056	1.9465267	.5866500	0.05000	0000	10752964	1.8192327	1.138464	1,00000	16358H62	0696952	70000	1000	2718788	0128029	2418078	19116025	0.000000	19254839	19296093	0.92.0016	3918125	1,9968359	221523	17895942	1,001/788	9791799	2.9900999	2552579.
2 2 2 2	8	1.26427 1	7106519 1	0 650000	9198014	8906862	112215	O BESSOR	1230620	0051921	1444577	DESCRIPTION OF	1255080 1	0147454 1	1517824		9602376	0647928	8846798 0	201053	05000	2017	0.65221	9230762	0.919773 0	22.887.2	2000	9198769	020214	0.11110	2451818	0627753	1287238	1679902	0445023	08780	2022315	1169708	1047531	.0620407	24115	5121018	1482404	112224	20201920	1.080544	3124068	0.910903	SHAME	1533065	0.906186	7521567
28. 28.	2	9116729	OATERAS -	9567141 0.	9151537 0.	B024342 0.	1 625110	17471	1 0259999	9455280	0 910190	70402	3044500	1 9965390	1 10000	2011172	8600048	1 9850910	9853962 0	2000	0.650000	0.000000	752770	0 7828700.	.0667062	9168676	.0000014	0.000	1 (365138)	1 2896900	2121729 1	678070	624288	1 11511722	0262749	21211	0.613838 1	6731473	0.070021	.8949055 0	0.884282	STT2828	1885000	D 87.8475 O	1 1080780.	1955725	7505725	8488746	0.091903	6431795	1,6745923	06.15222
, # #	2	1148619 0.	154273	0061667 0	ESO1046 0.	0 787.00	1000000	4521421	SECRETAR O	0.0000	MODES OF	0778364	1001180	A358114 1	1 55,0990	10000	0 509,000.	1 (738) 1	0 1752050	967740		757879	10768	0 5589090	1 2888218	1721667 0	9653450	0.0821754	8544713	1 5057896	1 /110/20	149648	5778297 0	0016052 0	2906771	063300	2284520	9024454	1818718	6362368 0	1.131102	2670545	0057600	1.014898 1	0.979296	9765624	114300	8779920	786775	1535658	7495400	1 5815250
\$ \$3	8	8841108 1.	700000	1,19971	0671063 0.	1 29900	2490604	0000000	3418741 0.	DACTOR	0 612521	000121	0 116100.	0314195 0	1 222578	2007	50.00	0477154 0	0 734000	2022	Contract	200700	720024	0148192 1	6746362 0	2259615		744200	0.38000	4551713 0	1979812 1	o social	0000024	1381647 1	0 719006	978717	3561091	2264169	0.722756	JZ65271 0	0132696	9089222	6528573	7498119	0730724	2022508	0448573	27621B4 0	2727267	1.020712	3329600	0700156
8	8	7635472 0.	2281738	0 220746	177194 -	0 1527231	200000	3102301	2391102	1964442	2007	0 99830	807798	1 7929500	0713088 0	2450729	0 0280	1 8087878	1 2210280	9436322	1.184542	200100	2002	1468934	4660598 0	1443182	0.156661	1 600001/1	5087884	47196175	0740423	0.0000000	0384619	1.236205 1	0.646997 0	818170	5291101	1419538 1	7080217	1237458	7860513 0	1632520	8712762 0	.7812058 0	227/200	7808057	0124623	7484221	1.327824	2396295	2380512	A501547
i zi	9	00000000	0.174473 0.	1561258 0.	127184 1.	9436095	3471928	6150000 1	0830292 1	590000	2007.00	07750	7	1 5151900	1058515	1 1 1 1 1 1	9606394	9239627 0	. BECESTOR 1	0.75472		· HOTELER	22,4612	0489181	9061759 0	2369819	200023	0 277279	9050741	1481562 1	1 0390700	OCCUPACION OF	1675503	7884485	9401018	O ALMOST	100001	1045028	7800067	0012200	1.0500c1 0	3069654	0704721	2130731	4072837	0101810	4531478	2001646	1058642	9770036	2810708	20000001
	9	1.	2005.200 8447.487 0.	2241009 1.	07270	9650766 0.	10000	0 0000	3206137 1	200002	812/28	2000	124801	2458255 1	1,306324	- 500077	B78672	0 670100.1	1204156 1	723		274074	21705	1 2077100	3951644 0	1620822	022527	2462708	0440497	3311242 1	8228628	TOTAL CO.	0307369	0 5003000	0314063 0	0626297	1001371	3646243	0.02729	1 2200697	9171034	1275322	1.076256	1660653	11000	0.002435	4140054	17/1362	2100786	2771210.	3008230	ACTOTOR.
Š	8	5795565	7571024 0.	1196444	9751902	948610H 0	3501355	9537295	188783 1	102129	PATIONS 1	19000	881957	1438075 1	3102071	972979	0307026	0260781	2283385 1	179641	2040502	253636	2630017	(20100)	0045215 0	3614205	2785536-1		ARRESCE O	1.085492 1	8756052 0	CTORES	9354961	788A659 0	1 2221596 1	A LINGSON	2181495 1	06x8378	0.005485	1282039	0.884717	201152	9617485	200005	20120	1003167	ACTATION O	2085300	1136098 1	1214702 1	1 906163	1.162197
ž	8	1 2800080	2380019 L	1728414	Dependence of	3388546 0	3000742	00 STANDOOD	1821/81	115871	122251		7,000	1504405	4910644	/802	1 7998960	1378896 1	8138545 1	0600002	272774	0.000710	44.00	905290	9800136	0638658	1282822	NACON .	0 878781	1317941	0 590069	2443659	0.793379	7866402 0	9864518 0	107260	4007005	1201021	1962573	2125063 1	9969054	1.180814	9095958	2486248	102500	2010466	. 074.257.10.	0701921	0685778 1	1800778	3158907	7467033
2 12 12 12 12 12 12 12 12 12 12 12 12 12	2	1490909 1	0.000020	9909948	224504	0872899 1	2441474	0 1050786	1 995059	1,014641	1001707	000000	100068	9063964 1	0100489		0815952	1021301	2105247 0	0.957561	19116	0 0001100	0.007594	1000	1032052 0	1 81/5096	9711362	9002309	A70136	1 202100	0524182 0	2017136	18964877	9048111 0	6664332	9190920	1000	1151604	3682888	19487495	0 5098500	0.881592	870621	805208	1 150031	1.020998	2010121	7227837	1.8830254	0.981379	17478053	1.039664
2 S2	2	1 9605522	02262	9753949	BACKES O	1353030	0.54242	1,041740	9999999	9412038	9116712	0.0000000	1,142057	9042299	1296298	2007000	8558280	O456947	6000000	9002389		20/4/20	2774	251300	6596208	1,041349	9019742	1261221	70000	1,0001227	22,0993	A SECTION	95158	6402104	19846854	77777	72/10	1.022346	757261627	9500000	9628520	22000	10213022	7106553	1909100	0530488	0000000	7651389	1044843	. Gruere.	16847891	.0711284 .0146917
	5	0134016 1	1 80C1810.	0 627/280	840478	.0151445 1	18236249	0007427	0 0353800	0.020206	2000	CACAMO.	952588	8621708.0	1.280253	70.061687	78055	1 2281825	1.196461.1	0.837951	198961	200000	0.100000	0105770	0.0000529	18143672	0118124 0	500000000000000000000000000000000000000	OCCUPATION OF THE PARTY OF THE	7861513	1372867	11/2000	0 1017090	0.8218576	0.077030	1.0100968	0006546	1136283	1005101	1,044423	202278	3,8469957 (.0306165	3.7105046	3701446	1,0055284	2541461	100000	0774859	0.9651731	8788858	1.0638765
	-	1238347	1255087	0130708	8804283	1500584	200100	078250	0.914207	10986117	6000172	1 2/8/2207	9124486	9507192	3152922	2000000	282825	0449674	1.130318	0585707	0.000	200000	ODENESS	0606818	8522843	9643817	0.967887	9154405	9010000	010	1273569	0087028	0305965	0.6652244	10137981	1,088027	7899080	1121027	1,205251	1,056871	0/28579	19514685	.0842375	1.6781222	1407063	3,8259492	1907961	1.0946281	1,1321396	1,0429505	0.845286	0.9250806
	2	1 8953263	0.0000000000000000000000000000000000000	18014083	0.0000000000000000000000000000000000000	1.002500.1	1,920654	1524466	16250581	0844805	19404656	0452529	10902886	0.6776679	0510310	2877188	1.2760123	0403564	2244562	1.6351169	0.8629512		207041	02725	1,368665	0.9457271	1.0429884	0.7267805	C 1207CE.	0.0677195	1451422	97575	0.873522	1612791	9/B\$Y\$80	000000	1.01028010	1.1122019	2671086	0.9839588	1,0743647	0.0259658	1,0223184	0.7750816	72/00/00	1.0285534	9007	0.8420483	\$1990CZ5:0	92CY0860	0,7631925	0.9744450
	2	7207469	275028	2271622	1,022001	7271908.1	27.734.50	(0)(0)(0)	7909057	0418580	1,0606364	2700	080080	0.0417	1624596	20024178	2/9/2	. 6445081	1,21,20197	1,000,0744	3815718	90//90	A 70CAGG	1,7245161	.99772063	3.0815562	1.0226.ES	942368	2000000	7405156	1.1682297	27835819	77.192.0	9782208	3.8501986	20057260	1.067878	1.1527852	A525782	0.9730529	1.1022982	0.9905065	0.9167585	0.7725563	1406245	0.9643314	2162040	1,0217363	0.8771947	0.6273418	0.6620912	0.9674678
2 S		3290900	1.000647	0.8081227	2000	.5003985	220002	0.007068	1580904	0.684572	7	902/506	710075	10000039	19295188	2000	0 78228	9598.28	3,9781619	2,8080872	1,5100963	C08053)	0.007	100000	0.8654272	7386882	2431865	0.6267523	/2002.1	1.3962219	0.8844504	1.0900854	0.9048566	1238605	0778788	0.9147349	1,232,7081	1.0601476	1.4397402	1.146531	1.0296851	0461315	0.9307587	1,1709857	0.0066263	1.0506334	0.7101600	0.8052891	0.6360762	0.9125397	1.3163289	0.6089756 1.2506842
¥ .	5	0 1220223 12034961	4645064	0.983364	000000	19181304	.5601879	0000714	27.576.00	10000	2581878	1000228	1484018	117259	5501055	20202	7807651	0.74107	2804900	.0085411	2725782	/099/990/		0.0001339	6178953	0.7005718	15210854	6740224	7405555	78946	2 0.721276	251464	7750162	3846223	0211210	1618833	2.140802	.0481986	0688265	1,52,7268	1,8996212	2480714	9469731	9000864	1460377	27827363		1.787855	0.6053279	14023867	1 0409545	0.732167 5.2800084
Į.	8	220223	1 5227188	0039495	000000	1246274	1,5251568	9061129	2421542	7026829	717001	7757677	1968751	5258057	18543447	207100	27165001	3156264	19624145	1.6888571	1,45628	7207		062651	MCM884	1.0179018	1.1618598	1811544	/0000000	22/10/52	382145	1280083	7362635	1,302.307	1008583	2007	3832980	2014718	1.1615423	.1024523	1.0264189	1662965	0.9663163	12776891	775720	7866967	5250075	0.678001	0.816085	0.9718624	1.5177674	0.7221665 1.1467263
3 5	5	3468210	1120021	0.9567805	0.009057	CE18220.	16000273	1626296	CTEATO	7280805 (200075	.0194263	1 622816	2946363	0.9041573	101/10	7560454	2874105	1,000000.	L BOSSTRS	200	1708621	201000	0720598	1007704	8/20022	1983678	0.704602		1411372	1.3077715	1186:	1,5507462	1560547	0128520	0.6247362	0.9311378	2005743	0.9617978	1.0077744	1.0217549	1704404	1.0260425	300082	0441078	1.2245561	0.7276004	0.9627216	0.9005594	1.0210424	1,3851024	1.128652
3	5	1.0160284 1	0.952294	0.6703156 0	0.000	1,1967384 1	1,2162739 0	1 567177	1.974.7741	0.705644S C	1.0856172		2778791	0.9848805	0.0665002	1.1565754	100255	0.925647	0.8697701	0.8773976	1.1023323	0.0870477	O. School of	0.6911022	0.8883474	1.0980064	0.5967407	221725	1.1336336	0.8043632	11469671	0.8896975	0.6840080	1.0656774	0.9583905	0.945148	CONTRACT C	1.2890662	1,172864	0.7912077	1.007722	1.0407128	0.9564573	1,2101659	0.000000	0.9539042	1.1263634	0.5356804	0.7506901	0.6816121	0.9761882	0.6589921
٧	=	•	-	- '		-		-	_	_	•	•		_	-									_	-								_				-															

77/57

| 1,000.000 | 1,00 8 (1202001 (100201 (170404 (17

352	,	1.0123568	0.7625194	0.9241868	1,214333	1.1573464	0.9497075	0.4627912	Q.7204741	0.7317966	0.000000	1 4970257	0.9006232	1.04661659	0.9647504	905200	0.940708	71099690	1.0671348	1,00400,1	0.0813635	101.1	0.9690528	1.0715772	1,0750046	0.7881729	0.74270	7470477	0.8694726	1.1861511	0.9676113	0.7868452	1,0436254	0.928263	0.7250200	0.82159	10206454	0.973353	1,3713828	0.063678	1.0228181	0.0526415	1,2200699	0.5282689	1,0080153	1,1768805	1.2387511	1741622	0.8238323	0.8675608	0.8461013	0.794333	1,0235504
98	•	0.9169606	0.0001000	7007000	1.0605429	1.1191501	1,2521958	0.63A2967	0.7750422	0.5482081	U.Seezate	TOTAL OF	0.9791685	0.9039213	0.8712012	1,044101	0.717785	1 3801 192	0.8558381	0.9400876	1.0767442	1.0126631	0.948855	1.0241401	700738	1.208028	2000	0 730KAOR	1,3089636	0.8570802	0.8284536	0.0060770	0 900036	1.0624727	0.6963063	0.6914631	1.001.72	0.06623000	0.8000799	0.0410233	0.0699607	1,0196868	0.8724867	0.7455400	0.6421249	1.045333	1,3477804	0.9700832	1.0944897	0.4389526	0.3701195	0.7511562	0.7444863
2545	2	1.0341635	1 0465488	0.8351782	0.8480644	0.9354499	0.962583	0.6261465	0.780372	0.8459007	0.0000000	0.000	1.0053723	0.6458201	0.9228229	1.Dekson	0.0000	10171491	0.8710311	1.0089461	0.9057157	0.9429249	0.9052228	0.9574990	0.9063471	0.0075695	0.756153	0.7001	0.9144039	0.0414755	0.7387311	1.086745	1.1841021	0.6515277	0.8842201	0.9403524	1.0160660	1,1308016	1,2598100	1.1996696	0.0082587	0.626236	1 0778616	0.6489722	0.6225834	0.9964519	1.2137858	0.0655282	0.8801462	0.9009187	0.9367105	0.0677748	1.1252873
7		0.742244	Change	0.9420283	0.7536200	0.9702135	1,2020148	0.0678224	0,6015428	0.8889622	20921	27.5	0.0839542	0.0679847	0.0674788	1125627	0.8007707	1.0118948	0.6581333	1.0142659	0.9253806	0.0003949	0.8460472	0,0120511	0.6730165	1.083847	0.8626156	1,000,000	0.0139553	0.9686492	0.8008753	1.1523508	1,127,3029	0.9164649	0.6700363	0.599409	0,91767	0.0920633	1.48662	1,1490713	0.042267	0.8062225	1 075470	0.7530585	0.8160318	0.903186	1,3337668	1.120911	0.7472508	0.9119260	0.955141	0.9223360	1.1490573
8	2	0.8270289	177770	1.0835550	0.8250813	0.9788467	1.2111671	0.9130802	1.4167771	1.0800364	1.114.51.55	0.722.00	0.9620156	1,4247712	0.6830938	0.9730966	1.016.00	0 6274757	1.0637676	1.0417783	1,0005780	0.0246828	0.8362623	0.9924007	1,7305269	0.623062	1.8514102	2000	0.8646218	0.82×3521	0.9989542	0.6419227	0.7080264	1.2401116	1,2275500	0.8086272	0.0074560	0.80155	1,102453	0.6559756	0.9400068	0.8971887	0.0476057	1,1614858	1.0214895	0.9009719	1,0228738	7,000,00	1.0980823	0.9672585	0.9624062	0.8418056	1.405050
R	8	0.7244437	0.7272028	0.979789	0.7484778	0.8312116	12120130	0.9458418	1.259600	1,0242633	1,0866029	2200734	0.0859674	1.2484522	0.8931659	0.847408	2000	1470251	1.0596002	27.7	1.0056572	0.0679100	0.9621284	0.7977207	1,2256697	0.7675606	1,5262747	1.1.27.16.1	0.6536712	0.724529	0.9126898	0.8680653	0.77577.0	1.153980	1.1621676	0.8106308	1.1762500	0.9261676	1,2709838	0.9557167	0.9887174	0.8544711	1.0596277	1,100947	0.896364	0.9001687	1,245736	1.2546112	\$18815	0.764868	0.71570S	00/5280	1.28190
8	2	0.6544834	0.0550773	1.000000	0.9427159	1,0677474	0.0845513	0.6692463	1,206252	1.1291077	1029622		0.0573716	0.605766	0.8331002	0.6786548	0.700070	1205500	0.8749474	1.0678018	1.0500745	O CARCOCO	0.8789118	0.7835418	0.9077055	0.9625023	0.9855966	1.0001731		0.8594427	0.837325	1.0806897	0.0072	1,395262	1.3264652	0.9001952	1.0536577	0.913170	1,606456	1,1980740	1,114639	0.8604153	1,137151	0.894582	0.670256	0.625657	1,302020	1.073025	7 0.960362	0.742572	3 1.023388	6 0.929123	1 0.981341
8	2	0.9690383	0.778260	1,0467100	0.6541358	1,0096753	1,078,0097	10540082	1,0261198	1.4095891	12134815	30003	A 0781900	1,1000165	0.6961517	0.8537885	1.4076389	4061713	0.9047572	0.9060832	1.0849527	1.1336/05	0.001524	0.8580371	0,9896212	0.80024	.524008	.07.00	1.162551.1	0.7615302	0.886089	- 0.027432	1.0224653	1.4014.0	1.3278905	0.6375418	0.00256	1,08780-0	1,339658	0.96576	085720	0.745088	1.143413	0.9639147	0.842773	0.874110	1.10472	7 1.207186	0.806154	8 0.754350	0 1.028801: 0.084788	1.022485	1.1826
22	5	0.9638169	0.6366129	1,000,000	0.67786581	0.0919534	0.0002778	1.0512639	1.1867355	1.0381806	1.0095618	1.0876567	0.000000	0.8308949	0.9646919	0.8738612	1.1004223	0.4087506	0.8666215	1.1400539	1,0235822	0.638444	1161457	122733	1,2130533	0.6005300	1.0008074	1236218	0.900007	0.9685124	1,0551351	0.9440513	1.054510	1,08237	1,350081	0.923331	0.842922	1.051058	0.699635	0.637046	0.924162	0.964370	1.058060	1,061390	1.045198	0.994420	0.735946	1.031277	1.208271	8 0.898614	0.999831	BCX77438	1.088308
2	8	0.5856005	0.8724083	0.5056465	0.8796963	1.025973	1.0506759	0.9678513	1.0206391	1.2254983	1.2073015	1.4224865	O DOTTO SEE	0.8867645	0.9235186	0.8851396	1.1375707	975066	0.8974877	1.007749	0.955556	3.97838	0.0585094	0.8073025	1.013862	0.8423018	1.1034002	2222190	1.1686510	0.6420446	0.651031	0.891823	0.9690462	1.39006	1,389946	5 0.8651487	1,163570	1.114778	1.383964	1,02768	1 2404051	7 0.815162	5 1.161120	1.154272	6 0.019145	0.806408	5 1.013516	9 1.244370	7 0.908894	4 0.784369	7 0.969110	031500.0	2 0.942688
4	8	1.0556386	1.0005522	0.000	000	0.8780846	0.9245015	1.5089034	1.058504	1,2523156	1.1609037	1.1963907	22820	10277858	1.0638058	1,2538148	1,0002657	1,308280	11000	1.0427486	0.9462724	1,326900	1 1 606750	1.307521	1,330681	0.7659076	0.966230	1.150007	1,21348	13105617	1.1394100	1 0.99787	1.147128	1,000,000	2 0.904612	1.0449902	0.007162	2 0.873330	200	1.048409	5 1.111026	1064381	1.164894	2 1.0191455 8 0.658901	1.14489	5 1.043762	8 1.092075	8 1.12258	7 1.6960-Ja 8 0.916734	9 1,335813	B 0.945792	5 0.72317	7 1,307885
145	8	0.7283191	0.7575648	8002	72200	1,0867381	0.811456	1.9528624	1,5659614	1,3050591	2.018124	1,3499616	22/12/2	1 20380235	1,3037351	1,4787820	7.2962		0.00013	0.892986	1.0770887	1.522	1.043673	1,601470	1,5252871	0.7213914	1.1890631	2000	1.123202	1.004300	3 1.4098002	3 0.928039	1.382962	1.054002	1,270064	7512137	7 0.994475	5 0.904063	7 0.970974 8 0.896460	0.847396	4 2110214 4 1087775	6 1,338213	2 1.482537	4 1017487	1.434869	1.167945	0.909714	5 1.47841	L. (CM3) 1 A	2 124990	1,171025	0.694886	7 1.296380
1	8	0.8682947	1.0263.96	0.7851548	27828	1,0361812	0.4615004	1721780	1,1986545	0.9741498	0.8166369	1.0806551	22200	1,695755	1.2501530	0.92296790	1.484290	1.40875	0.007.007	1.14377	3 1,1024301	127814	1.02529	23,680	708067	7 0.7769065	1.3665106	1.494515	1.092034	1 100000	E952121 1	1.042920	5 1.315210	1.35187	5 0.68899	0.99563	0 1.02m222	8 0.004245	7 0 742755	6 0.661225	5 1.102863 6 0.888747	1.120353	79067	2.04674	9 1,239635	1.11531 7 - 260750	9 0.931006	6 1.169855	23/12/13/13/13	1.22808	73 1,045670	0.06967	3 0.823073
1336	8	1.1554983	1.0045519	0.6251080	0.9424886	0.9621157	1.063736	1 015046	0.8399751	0.957745	0.9986441	0.948274	1.00622	1 483764	1,058398	1.144696	262797	761/02/	ASCIDENT OF		1.07282X	1.100787	20.012/13	20000	1.207674	1.227105	1.234060	1.361417	347286	0.875.00	0.894513	5 0.961048	0.824829	1.13081.1 2.0.834882	0 0.760054	0.99630	1.146776	2 1.524045	1,111741	1.263807	3 1.004200	1 0.045100	0.919202	5 0.943138	5 0.84071	0.897538	1.17844	1.008021	5 0.878190 4 0.929630	9 0.971072	A 0.97047	3 1 080802	7 1.53974
255	8	1,0787619	0.987426	0.9901718	0.0000000	1,0864150	1.0547594	1040466	0.6744846	1,004527	1 0,9675581	1,083300	20043	1,07005	0.0441042	3 1,0066335	2007	1157240	777777	0.0000	1,005437	1.040695	X 7.500.0	0001000	0.046.95	5 1.371470	\$ 1,227135	7 0,902,405	1,35754	06/201	C 94028	2 1,008710	1 0.924521	7 0.02553	4 0.774589	7500860	0.000184	2 0,501645	11207811	7 0.946578	2 0.828236	0.880778	1.08039	0.888823	2 0.909136	9 0.941878	1,025963	8 1.067635	27/82/0 H	10002191	B668C1.1 H	11 0.88600	71 0.900390
ğ	ş	0.9062194	0.948569	1.18518	0.862723	1,016404	1.06458	1 1520	1120656	0.962920	1,002/31	1.009821	1,120075	1.046346	1,798271	3 1.065444	1.477720	1.182152	2000 C 0 0	55350	1.002310	\$ 0.921812	0.603366	0 0,00,007	190870	5 1.061858	1.211084	1,131465	1.216535	0.0207	1 0.85293	8 1.05042	5 0.900252	7 1.023450	2 0.833780	5 1.080Z77	0.074508	7 1,184510	200001	8 0.935741	6 0.961707	2000	1 0.83038	4 0.87850 1 0.654181	A 0.90106	755150	0.99762	6 1.150731	19 0.64068 19 0.64068	1 0.90706	302204	7 G.00407.	1.22457
3	8	1.1131950	1.1060084	0.984827	1.000000	1,025581	1,070712	2000	1.001706	1.165922	5 1.144558	1.0882	3 1.154063	1.104624	0.8856154	1,092040	1.033410	1,186863	2 1.018043	11026	1,059418	8 0.55908	9 1.006855	1.081482	1 00577	7 0.910397	018201 0	5 1.053793	1.22984	0.9782	1.025487	3 0.972925	1.042764	9 1.341530	7 0.990062	2 1.061933	1 0.066277	1.036917	1,052547	1.07777	1.159754	6 1.074696	1 1 022729	1.051307	1.02376	9 1.14320	109496	1.21775	2 0.981351	7 0.92106	7 0.98411	22 0.66524 10 1.09738	1.16940
2		1.101289	1.051270	0.05236236	1 013960	1,006065	1,196962	790390	0.7007	0.988874	5 0.963300	1 0.99238	1,115717	3 1.128088	9 0.955314	1.06609	1.09421	0.990336	7 1.508546	101182	4 0.958545	0.933444	1.016284	2 0.635364	A D 761782	0 1.415905	7 1.008061	5 0.91981	1,320441	2 1.0416KB	7 0.481875	0.977773	0.904389	1.12029	2 1.006346	2 0.957G3	0.00020	1.22944	7.1.00	1.15600	0.926465	0.94486	NO 0.953104	24.0000.0 BK	20 0.85845K	15 0.93324	1.26268	1,1707	0.72036	17 0.88778	0.80639	18 0.6ZZ04.	1.05672
į	6	1.096573	1.129226	1.14411	0.00000	5 0,970091	1,079441	7.535.680	111000	27.70.	1.053162	5 1,056790	1.116575	7 0.914441	ACM780.0	9 0.063686	4 0.963448	1.165728	000000	4 1 040123	29 0,920367	0.000000	2 0.952778	0.914231	0.00000	9 1.154108	2 0.968028	9 1.1367BB	3 1.50877PH	9109000	2 0 91276	2 1.075015	1 0.67706	1,30944	9 0.878412	3 1 05042	2 0.901429	1.02085	3 1,04595	062107	71217	2150.0 EX	31 0.96985	15 0.95781	20 0.80286	1,02941	75.17550	121273	98.00	2017	N 1,00615	L 0.97963	1.04799
9032	ē		3 0.984549	5 0.055633	0.871804	0.677805	0.897133	0.041530	7 0811108	2 0.0266902	8 0.688097	6 0.915093	2 0.956473	104224	7 0978391	1.105043	7 1,006078	1,02874	7 0.020152	1.0300	6 1.082588	8 0.964812	2 0.89510	8 0.9651366	1 20434	3 0.438641	8 0.967840	9 0.847862	6 1,0663413	3 0.84060		9 1.0048062	4 1.026027	1.010817	6 1.00178	1,0205313	08759	1.02677	Z 0.88331	1.14797	0.7742166	0.001160	6 0.96044	20050 - 12 20050 - 12 20050 - 12	2 0.38814	S 0.86609	5 C.Beco	11 1.09382	51 0.9784728	0.8808	17670.0 87	37 0.65451 2 0.65451	0.95827
200	٤	1.021038	0.904689	0.862105	3027/20	0.616753	0.97343	1.10725	00000	0.9008552	3 0.795641	0.926830	0.995980	1.0804803	100001	1.0487428	1.1744177	4 0.9466314	2 0.9866827	0.0000	8 1.0524595	8 0.989258	5 0.918073	2 0.9263218	1.0201300	1.025286	6 1.104170	1 0.941337	6 1.0348556	3 0.9367653	4 0 999977	1,0062	5 1 063307	9 0.9966958	100756	8 9978263	5 1.024420	7 0.952418	5 0.976447	1 1,1001624	9 0.6242938	0.0022	9 0.9636616	1.11007	2629/160 Z	0.040130	5 1,0074385	1956151 6	19 0 6866951	15 1 0863590	1 1025178	10057907	0.853900
1	8	1.1745144	0.9289964	0.835700	1.031044	0,917124	1.005303	0.657084	0.00000	0.9578415	3 0,673888	0.9159592	3.0.993586	0.079511	C O GARACTER	1.131222	0.906522	0.90045	0.874950	0.90944	1.0021716	0.969382	9 0.851305	0.992745	2 1 164077	1.2578616	8 0.0273256	2 1,006532	5 0.8051418	5 0.057354	4 0057014	1 0.965642	9 0.931812	1.0152853	2.7020.1	5 1 0016588	5 1.007238	2 1.0238007	1 0.84833	2 1.06707	8 0,0610489	2 1.07362K	0.663029	1.13746	2 0.99273C	8 0.8451308	3 0,9449165	7 1.0613339	1,2298108	0.73561	\$ 0.90035	S 0.72842:	7 1.145449
202	5	0.9795418	0.838055	1.0405982	1.02120	0.958047	0.9937621	1.074544	0.700C.	0.9285430	0.9074100	0.894205	1.38705	1 0782553	1000	1.18/0272	1,3800051	0.954455	0.0796162	0.970281	0.9524359	0.972358	5 0.834842	0.9450670	20070200	0.965918	1,30535	1.0598782	1,044767	0.928686	0 342042	1,04,7014	575000373	1.1359278	2500.1	5 1 0271175	3,09562	1.128682	7 0.997314	0 1.0178082	6 0.659785	6 1.052388 1 0 RKC398	0.0585091	5 1.040840	0.9530382	0.877542	0.9481973	7 1.199637	2 0.9717034	7 0.986975	0 1 02790	2 0.952737	9.3541676
S	S	20.9568185	0.9747291	0.662696	1.063022	0.9645080	1,0135783	200082	776007	0.8728967	0.8884114	0.829A184	0.90677	0.9997324	0.0000	1.0277770	0.766383	0,749704	0.00000	0.972766	1.134017	0.669783	0.962414	0.854019	100000	1018870	0.770570	0.766365	1,008594	0.630141	0.00000	1,0091914	21603870	1,131061	0.864058	0 966625	1.005578	0.904172	0.779207	1,0534,1	110000	1,012097	0.9098094	1.067552	0.554957	0.735948	1 0187907	0.800300	0.991686	0.9289632	0.943420	0.069228	0.0657238

Ř

720 - 0.005505 0.0100000 0.0110000 0.0110000 0.005517 1.00500 0.005517 1.0 80 0877070 0101789 0347291 1122299 018020 01901180 01901180 0190180 0347701 10190290 0190180 0 | 11122221 | 11122221 | 11

Ŧ

0.00002677 1.027781 0.026728 1.0366729 1.036573 1.0365445 0.060723 0.086473 0.08673 1.027148 1.025639 0.055044 0.055039 0.05573 1.026729 0.05729 1.036729 1.

PCT/US03/06196

WO 03/100030

| CAMERIA | CAME

į

0.0020203 0.0020 | Column | C

36/4

| March | Marc | March | Marc

| 1,3791917 | 1,37 | NEW | 19679 | 120

ğ

288

PCT/US03/06196

WO 03/100030

Ĭ

PCT/US03/06196

150.0521 02.704827 | 0.007702 0.007020 0.007020 0.004020

WO 03/100030

12.201 (1972) 2.004019 (1924) 1.004019 (1924) 2.004019 (1924)

į

1.0875697 0.8186318 1.0043858 0.0270489

What is claimed is:

14

[c1] A method of predicting the kidney toxicity in an individual to an agent, comprising the steps of:

obtaining a biological sample from an individual treated with the agent;

measuring the expression of one or more kidney toxicity predictive genes in the sample, wherein the genes are selected from the group consisting of the genes corresponding to the partial gene sequences in Table 32, thereby generating a test expression profile; and

using the test expression profile with a set of reference expression profiles in a Predictive Model to determine whether the agent will induce kidney toxicity in the individual.

- [c2] The method according to claim 1, wherein the expression of the kidney toxicity predictive gene is measured at the RNA level.
- [c3] The method according to claim 1, wherein the expression of the kidney toxicity predictive gene is measured at the protein level.
- [c4] The method according to claim 2, wherein the genes corresponding to the partial gene sequences are members of 24 hour Combo All.
- [c5] The method according to claim 2, wherein the genes corresponding to the partial gene sequences are members of 24 hour Combo 6.
- [c6] The method according to claim 2, wherein the genes corresponding to the partial gene sequences are members of 24 hour Combo 5.

[c7] The method according to claim 2, wherein the genes corresponding to the partial gene sequences are members of 24 hour Combo 4.

- [c8] The method according to claim 2, wherein the genes corresponding to the partial gene sequences are members of 24 hour Combo 3.
- [c9] The method according to claim 2, wherein the genes corresponding to the partial gene sequences are members of 24 hour Combo 2.
- [c10] The method according to claim 2, wherein the genes corresponding to the partial gene sequences are members of 24 hour Combo 1.
- [c11] The method according to claim 3, wherein the genes corresponding to the partial gene sequences are members of 24 hour Combo All.
- [c12] The method according to claim 3, wherein the genes corresponding to the partial gene sequences are members of 24 hour Combo 6.
- [c13] The method according to claim 3, wherein the genes corresponding to the partial gene sequences are members of 24 hour Combo 5.
- [c14] The method according to any of the preceding claims 1-13, wherein the expression of at least one gene is measured.
- [c15] The method according to any of the preceding claims 1-13, wherein the expression of at least five genes is measured.
- [c16] The method according to any of the preceding claims 1-13, wherein the expression of at least ten genes is measured.
- [c17] The method according to any of the preceding claims 1-13, wherein the expression of at least fifteen genes is measured.
- [c18] The method according to claim 2, wherein the genes corresponding to the partial gene sequences are members of 6 hour Combo All.

[c19] The method according to claim 2, wherein the genes corresponding to the partial gene sequences are members of 6 hour Combo 6.

- [c20] The method according to claim 2, wherein the genes corresponding to the partial gene sequences are members of 6 hour Combo 4.
- [c21] The method according to claim 3, wherein the genes corresponding to the partial gene sequences are members of 6 hour Combo All.
- [c22] The method according to claim 3, wherein the genes corresponding to the partial gene sequences are members of 6 hour Combo 6.
- [c23] The method according to claim 3, wherein the genes corresponding to the partial gene sequences are members of 6 hour Combo 4.
- [c24] The method according to any of the preceding claims 18-23, wherein the expression of at least one gene is measured.
- [c25] The method according to any of the preceding claims 18-23, wherein the expression of at least five genes is measured.
- [c26] The method according to any of the preceding claims 18-23, wherein the expression of at least ten genes is measured.
- [c27] The method according to any of the preceding claims 18-23, wherein the expression of at least fifteen genes is measured.
- [c28] The method according to claim 2, wherein the genes corresponding to the partial gene sequences are members of 72 hour Combo All.
- [c29] The method according to claim 2, wherein the genes corresponding to the partial gene sequences are members of 72 hour Combo 6.
- [c30] The method according to claim 2, wherein the genes corresponding to the partial gene sequences are members of 72 hour Combo 5.

[c31] The method according to claim 2, wherein the genes corresponding to the partial gene sequences are members of 72 hour Combo 4.

- [c32] The method according to claim 2, wherein the genes corresponding to the partial gene sequences are members of 72 hour Combo 3.
- [c33] The method according to claim 2, wherein the genes corresponding to the partial gene sequences are members of 72 hour Combo 1.
- [c34] The method according to claim 3, wherein the genes corresponding to the partial gene sequences are members of 72 hour Combo All.
- [c35] The method according to claim 3, wherein the genes corresponding to the partial gene sequences are members of 72 hour Combo 6.
- [c36] The method according to claim 3, wherein the genes corresponding to the partial gene sequences are members of 72 hour Combo 4.
- [c37] The method according to any of the preceding claims 28-36, wherein at least one gene is used.
- [c38] The method according to any of the preceding claims 28-36, wherein at least five genes are used.
- [c39] The method according to any of the preceding claims 28-36, wherein at least ten genes are used.
- [c40] The method according to any of the preceding claims 28-36, wherein at least fifteen genes are used.
- [c41] The method according to any one of claims 1-13, 18-23, or 28-36, wherein the partial gene sequences correspond to rat genes.
- [c42] The method according to any one of claims 1-13, 18-23, or 28-36, wherein the partial gene sequences correspond to dog genes.

[c43] The method according to any one of claims 1-13, 18-23, or 28-36, wherein the partial gene sequences correspond to non-human primate genes.

- [c44] The method according to any one of claims 1-13, 18-23, or 28-36, wherein the partial gene sequences correspond to human genes.
- [c45] The method according to claim 41, wherein the agent is administered at different dose levels to determine the presence or absence of a no-observable effect level.
- [c46] The method according to claim 42, wherein the agent is administered at different dose levels to determine the presence or absence of a no-observable effect level.
- [c47] The method according to claim 43, wherein the agent is administered at different dose levels to determine the presence or absence of a noobservable effect level.
- [c48] The method according to claim 44, wherein the agent is administered at different dose levels to determine the presence or absence of a no-observable effect level.
- [c49] A method of predicting the kidney toxicity of an agent using an in vitro system, comprising the steps of:
 obtaining a biological sample from in vitro cultured cells or explants treated with the agent;
 measuring the expression of one or more kidney toxicity predictive genes in the sample, wherein the genes are selected from the group consisting of the genes corresponding to the partial gene sequences in Table 32, thereby generating a test expression profile; and using the test expression profile with a set of reference expression profiles in a Predictive Model to determine whether the agent will induce kidney toxicity.

[c50] The method according to claim 49, wherein the expression of the kidney toxicity predictive gene is measured at the RNA level.

- [c51] The method according to claim 49, wherein the expression of the kidney toxicity predictive gene is measured at the protein level.
- [c52] The method according to claim 50, wherein the genes corresponding to the partial gene sequences are members of 24 hour Combo All.
- [c53] The method according to claim 50, wherein the genes corresponding to the partial gene sequences are members of 24 hour Combo 6.
- [c54] The method according to claim 50, wherein the genes corresponding to the partial gene sequences are members of 24 hour Combo 5.
- [c55] The method according to claim 50, wherein the genes corresponding to the partial gene sequences are members of 24 hour Combo 4.
- [c56] The method according to claim 50, wherein the genes corresponding to the partial gene sequences are members of 24 hour Combo 3.
- [c57] The method according to claim 50, wherein the genes corresponding to the partial gene sequences are members of 24 hour Combo 2.
- [c58] The method according to claim 50, wherein the genes corresponding to the partial gene sequences are members of 24 hour Combo 1.
- [c59] The method according to claim 51, wherein the genes corresponding to the partial gene sequences are members of 24 hour Combo All.
- [c60] The method according to claim 51, wherein the genes corresponding to the partial gene sequences are members of 24 hour Combo 6.
- [c61] The method according to claim 51, wherein the genes corresponding to the partial gene sequences are members of 24 hour Combo 4.

- [c62] The method according to any of the preceding claims 50-61, wherein the expression of at least one gene is measured.
- [c63] The method according to any of the preceding claims 50-61, wherein the expression of at least five genes is measured.
- [c64] The method according to any of the preceding claims 50-61, wherein the expression of at least ten genes is measured.
- [c65] The method according to any of the preceding claims 50-61, wherein the expression of at least fifteen genes is measured.
- [c66] The method according to claim 50 wherein the genes corresponding to the partial gene sequences are members of 6 hour Combo All.
- [c67] The method according to claim 50, wherein the genes corresponding to the partial gene sequences are members of 6 hour Combo 6.
- [c68] The method according to claim 50 wherein the genes corresponding to the partial gene sequences are members of 6 hour Combo 4.
- [c69] The method according to claim 51, wherein the genes corresponding to the partial gene sequences are members of 6 hour Combo All.
- [c70] The method according to claim 51, wherein the genes corresponding to the partial gene sequences are members of 6 hour Combo 6.
- [c71] The method according to claim 51 wherein the genes corresponding to the partial gene sequences are members of 6 hour Combo 4.
- [c72] The method according to any of the preceding claims 66-71, wherein the expression of at least one gene is measured.
- [c73] The method according to any of the preceding claims 66-71, wherein the expression of at least five genes is measured.

- [c74] The method according to any of the preceding claims 66-71, wherein the expression of at least ten genes is measured.
- [c75] The method according to any of the preceding claims 66-71, wherein the expression of at least fifteen genes is measured.
- [c76] The method according to claim 50, wherein the genes corresponding to the partial gene sequences are members of 72 hour Combo All.
- [c77] The method according to claim 50, wherein the genes corresponding to the partial gene sequences are members of 72 hour Combo 6.
- [c78] The method according to claim 50, wherein the genes corresponding to the partial gene sequences are members of 72 hour Combo 5.
- [c79] The method according to claim 50, wherein the genes corresponding to the partial gene sequences are members of 72 hour Combo 4.
- [c80] The method according to claim 50, wherein the genes corresponding to the partial gene sequences are members of 72 hour Combo 3.
- [c81] The method according to claim 50, wherein the genes corresponding to the partial gene sequences are members of 72 hour Combo 1.
- [c82] The method according to claim 51, wherein the genes corresponding to the partial gene sequences are members of 72 hour Combo All.
- [c83] The method according to claim 51, wherein the genes corresponding to the partial gene sequences are members of 72 hour Combo 6.
- [c84] The method according to claim 51, wherein the genes corresponding to the partial gene sequences are members of 72 hour Combo 4.
- [c85] The method according to any of the preceding claims 76-84, wherein the expression of at least one gene is measured.

- [c86] The method according to any of the preceding claims 76-84, wherein the expression of at least five genes is measured.
- [c87] The method according to any of the preceding claims 76-84, wherein the expression of at least ten genes is measured.
- [c88] The method according to any of the preceding claims 76-84, wherein the expression of at least fifteen genes is measured.
- [c89] The method according to any one of claims 50-61, 66-71, or 76-84, wherein the partial gene sequences correspond to rat genes.
- [c90] The method according to any one of claims 50-61, 66-71, or 76-84, wherein the partial gene sequences correspond to dog genes
- [c91] The method according to any one of claims 50-61, 66-71, or 76-84, wherein the partial gene sequences correspond to non-human primate genes.
- [c92] The method according to any one of claims 50-61, 66-71, or 76-84, wherein the partial gene sequences correspond to human genes.
- [c93] The method according to claim 89, wherein the agent is administered at different dose levels to determine the presence or absence of a no-observable effect level.
- [c94] The method according to claim 90, wherein the agent is administered at different dose levels to determine the presence or absence of a no-observable effect level.
- [c95] The method according to claim 91, wherein the agent is administered at different dose levels to determine the presence or absence of a no-observable effect level.
- [c96] The method according to claim 92, wherein the agent is administered at

different dose levels to determine the presence or absence of a noobservable effect level.

- [c97] A computer program product for predicting kidney toxicity from a test sample expression profile, comprising:
 an encrypted training data set;
 encrypted lists of genes selected from the group consisting of the genes corresponding to the partial gene sequences in Table 32, to be used with the training set, and
 a Predictive Model that uses said training set, said lists of genes, and said test sample expression profile to predict the kidney toxicity of the test sample.
- [c98] The computer program product of claim 97, wherein the encrypted lists of genes comprise the 24 hour Combo 6, 24 hour Combo 5, 24 hour Combo 4, 24 hour Combo 3, 24 hour Combo 2, and 24 hour Combo 1 gene lists.
- [c99] The computer program product of claim 97, wherein the encrypted lists of genes comprise the 6 hour Combo 6, 6 hour Combo 5, 6 hour Combo 4, 6 hour Combo 3, 6 hour Combo 2, and 6 hour Combo 1 gene lists.
- [c100] The computer program product of claim 97, wherein the encrypted lists of genes comprise the 72 hour Combo 6, 72 hour Combo 5, 72 hour Combo 4, 72 hour Combo 3, hour Combo 2, and 72 hour Combo 1 gene lists.
- [c101] The computer program product of claim 97, wherein the prediction is made through the calculation of a certitude score.
- [c102] A method for mining genes predictive for kidney toxicity, comprising the steps of: collecting expression levels of a plurality of candidate toxicity predictive genes among a multiplicity of samples; defining a group of samples to be a training set; defining another group of samples to be a test set;

optionally generating additional training and test sets; and selecting a set of genes which are predictive of kidney toxicity based on evaluating the training and test sets in a Predictive Model.

- [c103] The method according to claim 102, wherein the expression levels are stored as a database on an electronic medium.
- [c104] An integrated system for predicting kidney toxicity, comprising:

 means for measuring gene expression profiles of kidney predictive genes
 from biological samples exposed to the test agent; and
 a computer system operably linked to said means that is capable of
 implementing a predictive model.

Figure 1

O verall Percent Correct Calls vs. Number of Predictor Genes Test and Training Set A--HistoCorrelating Genes (Pearson)

Figure 2

Evaluation of Predictive Genes for Kidney Toxicity

Evaluated Gene Lists

Combo All and Combo Sets

Individ. genes in best Combo sets

Randomly selected subsets

Cumulative genes in Combo sets

Subsets of "non-predictive" genes

6 different training/test sets (same as for identification)

Training Set 1 Set 2.....Set 6

Test Set 1 Set 2.....Set 6

Accurate and random classifications

Predictive Model (KNN)

Predictive Performance

(means and ranges for 6 different training/test sets)

Prediction Units-Sample, Cpd-Dose, Cpd

Accuracy—proportion of correct classifications

False positive—proportion of incorrect classifications for negative samples

False negative—proportion of incorrect classifications for positive samples

Geometric Mean—measure of predictive performance that considers proportion of pos. and neg. samples

Comparison of accuracy for accurate and random classification

Figure 3

Cumulative Percent Accuracy Combo 6 Gene List

Figure 4

Cumuative Percent Accuracy Combo 5 Gene List

Figure 5

Cumulative Percent Accuracy Combo 4 Gene List

Figure 7

Figure 8

Cluster Number	Clustering with 7 Groups
	Group 1
1	Phase.1.RCT.271
2	CDK108
	Group 2
4	Phase.1.RCT.145
6	Phase.1.RCT.144
17	Ribosomal.protein.L6
18	Ribosomal.protein.S8
27	Phase.1.RCT.152
	Group 3
5	Vacuole membrane protein 1
24	Phase.1.RCT.241
	Group 4
8	Insulin.like.growth.factor.binding.protein.1
14	Tissue.inhibitor.of.metalloproteinases.1
15	Phase.1.RCT.68
18	Calpactin.I.heavy.chain
16	Cathepsin.L.sequence.2
19	Cathepsin.L
	Group 5
9	Phase.1.RCT.158
21	c.myc
22	Gadd45
26	PAR.interacting.protein
23	Gadd153
	Group 6
3 7	Alpha,tubulin
	Phase.1.RCT.24
	C
11	Group 7
20	Clusterin
12	Ribosomal.protein.L13A
11	Uncoupling.protein.2
13	Phase 1.RCT.109
26	Dynein.light.chain.l
	Phase.1.RCT.198

Figure 8 (continued)

Animal	Treatment	Kidney	IGFBP-1
	·	Tox.	Diff. Expression
144	polyethylene glycol – 5 mLl/kg	No	1.22
146	polyethylene glycol - 5 mL/kg	No	1.16
354	LPS—8 mg/kg	Yes	18.13
355	LPS—8 mg/kg	Yes	5.14
2234	ketoconazole—80 mg/kg	No	-1.04
2236	ketoconazole—80 mg/kg	No	-1.07
2354	chloroform—0.5 mL/kg	Yes	1.93
2356	chloroform—0.5 mL/kg	Yes	8.86

Figure 9

Table 32 Genes Predictive for Kidney Tubular Necrosis, Sequences, and Accession Numbers

Gene Name	Accession Number	Sequence
14-3-3 zeta	D17615	TGGNGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATT CGCCCTTCGCGGGATCCAAAAAGCAGCAGATGGCTCGAGAATACAGAGAGAAGATCGAGACGGAG CTGAGGGACATCTGCAACGACGTACTGTCTCTTTTTGGAAAAGTTCTTGATCCCCAATGCTTCGCA GCCAGAAAGCAAAGTCTTCTATTTGAAAATGAAGGGTGACTACTACCGCTACTTGGCTAGGTTG CTGCTGGTGATGACAAGAAAGGAATTGTGGACCAGTCACAGCAAGCA
25-DX	U63315	TGCGATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCG CCCTTACACACACAGTGGCCCCAAATGGTCAATGTACTAAGAATGAAGAGAGAG
25-hydroxyvitamin D3-1 alpha- hydroxylase	AB001992	GCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCG CCCTTAACTAACAGCCCCAGGCAGCCTGGGCAGGGATCCCCCACTGATCCTTCCATGCTTACAGT GTTCACTGACAGCTGTCTAAGCATCCATTGCAGCACAAACTAAGTGACTGTGCACCTGGTCTGCA CCTGGTCTGCACCTGGTTGCGTCTCTGCCTGACCATGTGAGCTCTTTTAAGAAAGA
3-beta- hydroxysteroid dehydrogenase (HSD3B1)	AA923963	NGCCAAGCTAAAATTAACCCTCACTAAAGGGAATAAGCTNGCGNCCCGCAANGNTATTTNTTTNA TANTTTTTTNNNTTAAAGCCATTACAATATTTATTGCTTTATAAATCAATGAGATATAACCAAAG CAGGATGTGATTTAGGACTTGAAGAGGAACAGAAAAGTAATACTCAGCTCTAAGTGACAGGAAAAT TGTCATTGCTGAAGCCTTTGGTCACAGCAGCTGAGGCACAACTACCTGTGTCTCTCTGGACAGGG GATTAGGGAAGAAAGCTTGTGGACTAGCAAGGCTTCCAGTGAAGTCATAAAAGACATAGAGTTAGA GTCTGTGTCAAAAGAGGGATCAGGACCTGGATTGTGCCTGTCCTAGCTGGAGGACCTGGTAA CACCCAGAACCACATCCTTGCCCCCTTTCTGTCACTGAGACTTTTGTCCAGTGTCTCCCTGTGC TGCTCCACTAGTGTCCCGATCCACTCCGAGGTTTTCTGCTTGGCTTCCCCAGCTGACAAGTGG CACATAGCCCAGATCTCTCTGAGCTTTCTTGTAGGAGAAAGTGAACTTGCTATTTGACAGTGTG CCAAGTGGCAGTTAAAGGGTGGCCTATAGTTGTAAAATCCTCGTGCCGAATTCTTGGCCTCGAGG GCCAAATTCCCTATAGTGAGTATTTAAATTCGTAATCATAGAG

		A DESCRIPTION OF THE PROPERTY
	\Box	CCNNNNCTATGACATGATTACGAATTTACTACGACTCACTATAGGGGAATTTGGCCCTCGAGGCCA
3-hydroxyisobutyrate dehydrogenase		
g .		
is t		
/droxyisobutyr dehydrogenase		
2 2		
- 권율	8	
8'S	- 1	
<u> ភ</u> ឌ		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	l l	AATGGTTTCCACTGACTAGCCCAGTTGACCTTTACTTTA
두	i	ATTGAGCACTCTGATCAGGATATTTTATTTTACTCTTGCTTTACAATAAAACCAM
٠		
<u> </u>		
3-methyladenine DNA glycosylase		
thyladenine glycosylase		GTGGCATGTTCATGAAACCTGGAACTCTGTACGTTAAGAGCACTAGAGCCATTGGAGGGCCT AATGTCTCCAGTCAAGGGGCTGGGGCTTGTGTCTTGCTAAGAGCACTAGAGCCATTGGAGGGCCT
1,13	2	AATGTCTCCAGTCAAGGGGCTGGGGCTTGTGTCTCTTAGGACC
မွန်မ	64	AATGTCTCCAGTCAAGGGGCTGGGGCTTGTGTGTGTGTGT
co la	x56420	
ት ት		
7,6	1	
Ĕ	l '	TGTGGTGGCGGCAGCCCGCATAGGTATTGGGATCCAACTCGGNACCAANCTTGATGCATANCTTG
m		GGATTCTATATGGCACCTAAAAACTTGGNGAATATGGGATACT
	L	GGATTCTATATGGCACCTAAAAACTTGGCAGGGGGGGGGG
		ANCEGGCCCTCTAGATGCATGCTCGAGCGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCCT
		I
7	l	
E 3	1	I
9 c	3	I
દ્વે∴ટ્વે	ΙŻ	I ~~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
60S ribosomal protein L6	X87107	ACCTGACTGATGCTTACTTCAAGAAGAAGCCACTTCGCAAGCCCAGGCATCAGGAGGGTGAGATC
, J	1 ^	ACCTGACTGATGCTTACTTCAGAAGAAGCCACTTCACAAAGCTGTGGGA
, O. C.	1	ACCTGACTGATGCTTACTTCAAGAAGAAGTTACAGAGCAGCGAAAGGCTGATCAGAAAGCTGTGGA TTCGACACAGAGAAGGAAGAAATTACAGAGCAGCGAAAGGCTGATCAGAAAGCTGTGGCA
l	Į.	TTCGACACAGAGAAGAATACGAAATTACAGACTTCAGGGCTACCTGCTTGCANGGCCACTCGCAGATTTTGCCAAAGATCAAAAGCTGTCCCCCAGCTTCAGGGCTACCTGCTTGCANGGCCA
	1	Invaced America Concrete Concr
	+	I TO THE STATE OF THE PROPERTY AND COLORED FOR A COLORED FOR THE PROPERTY OF T
_	1	1 co-co-comorody year of year of the contract of the cont
7	1	
7 9 E	1	CCAAGACAAAGGTTCACGAACAAGAAGAAGAAAAGGTCCTTGCTACCGTCACAAAAACAGTT
60S ribosomal protein L6 (alternate clone	1	CCAAGACAAAGGTTGAGAAGAAGAAGAAGAAAGAAAGAAA
8 7 7	18	CCAAGACAAAGGTTGAGAAGAAGAAGAAGAAGATTCGAAAAAATGCCTAGGTATTACCCTAC GGTGGGGACAAGAACGGTGGCACCCGGGTGGTGAAGCTTCGAAAAATGCCTAGGTATTACCCTAC
85.0	X87107	
252	8	
l Zgë	1~	
% ⁰ -8	1	
۱ ۳ ٪	1	AGTTCCTCTGCGTAGGACACACCAGAAGTTTGTCATCGCAAGAAGAAGAAGCCACTTCGCAAGCCCCAGGAGGTAAAATTCCCAAACACCTGACTGA
		AGGGTAAAATTCCCAAACACCTGACTGATGCTTAGT
		CATTAGGANGGTGAGA
	7	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC
1 b	1	
Ä	ı	
į ξ	1	
ĕ	4	GACCAGGAAGCCACTGGAGAACTGTCTACGGTTCTACGCTCATCTTCCTTGGAGGTTACCCTGTTTTTTGGGCAGCGTTGGTGCTCTTCAGCGTCGGTTCTACGCTCATCTTCCTTC
_ <u> 8</u>	1 2	CTGTTTTTGGGCAGCGTTGGTGCTCTTCAGCGACCATGAGCCTGCACCAGGACCCAGGACCCACCAAGCCAAGCATGAGCCTGCACCAGGACCCAGGACCCAGGACCCAGGACCCAGGACCCAGGACCCAGACCAAGAACAATAAATTTGGTTTGTG
l al	1 =	TCAACCAAGTTCCTGATCTTCCCTACCACCATGATAATCTCCTTCTCTCTC
oline r epsilon	NM_017194	TCAACCAAGTTCCTGATCTCCCCTACCCAAAAAAACAGGCTGCTGACAATAAATCTGGTTTGTG. CTCATCCCCACCCCCAAGAAAGAGATTTTGAAAACAGGCTGCTGACAATAAATCTGGTTTTTCC
2 9	Σ	ACTTGCAAAANNNANANNNANNANAAANANAANNANNTTCTCGCGGCCGCAAGCTTATTCC
1 71	2	
1 ×		
Ϋ́	1	
etylo		CCCCACCCGATCCCTTCCAACAGTTGCGCANCCTGAATGGCGAATGGGACNCNCCCTGTACG
Acetylcholine receptor epsilon		TGGCGTTACCCAACTTAATCGCCTTGCAGCACCCTGAATGGCGAATGGGACNCNCCCTGTACGCCCGCACCCGATCCCCTTCCAACAGTTGCGCANCCTGAATGGCGAATGGGACNCNCCCTGTACGCNCA

Activating transcription factor	M63282	AGCTATGNCCATGATTACGCCAAGCTATTTAGGTGCCACTATAGAATACTCAAGTATGCATCAAG TTGGTACCGAGCTCGGATCCACTAGTAACGGCCGCAGTGTGCTGGAATTCGCCCTTTGCGGCTGA CAACATCCCTCCTAGGGAAGATGGAGTGAGAACATTCATCATTGAAGTTGTCCAATGGCCAGGGT ATGCTTTCTAGAAACTATGCTGTTCTGTCCTAGACTGACT
Activin receptor type II	848190	CATCTAGAGGGCCCAATTCGCAA TGNGGAATTGGGCCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATT TGNGGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATAGAAGAACATGCTGGGA CCCCTTCGCGGGATCCACACGCAGGAATGGCAATGCTCTGTGAAACGATAGAAGAATTACTCAGATGCAAAGAC TCATGATGCAGAAGCCAGGTTATCAGCTGGATGTTAGCTGAAAAGAATTACTCAGATGCAAAATGTTGACTTT CCTCCCAAAGAATCTAGTCTATGATGTTGCACCATCTGTCCACACTGAGAATCGGGCTCTCGAA CTGGAGCTGCTAAGGAAACTGCTTAGTTTATTTTCTGTGTGAAAATGAGTAGGTGCCTCC GGGACACGTATGCAAGCACCCCCTTGTGGAAAACCATGGATTGGAAACTTCCTGCAGCGTCTGCA ACACGGATATGAAGGGGGTCTAAGGGGAAACTGCGAACTGTAAAGAACTTCTGAAAACTTACACG AAGAATGTGGCCCTCTCCAAATCAAGGATCTTTTGGACCTGGCTAATCAAGTAAGCTTGGCCAAG GGCGAATTCCAGCACACTGGCGGCCGTTACTAGTGGATCCGAGCTCGGTACCAAGCTTGATGCAT AGCTTGAGTATTCTATAGTGCACCTA
Acyl-CoA dehydrogenase, medium chain	AA925220	TTAAGATTTTCCAGAAGTTTTTAGTTTTAATAATGGGAGAAAATGCATATAAACTTTTTTACTC TTTTTGCAATACAAGGGAAATATAATCAAAATTATGAAACAGCTCAGCACAGAAATGCTCTCTT CACAGTGTGATGGGTCCAATCCGCCACATTCCTCAGTGTCTGTGTAGAATCCTGAGTTCTTTCGT GACAGGCTACCTTTCTTGTCACTTGAATGAGCATTAGAACTCAGGGTATTTCTCCATCTCAAGT GATCAAGGAGCAAATTAACACAATTCGGGGCCAAGGACTGACCACTCACT
ADP-ribosylation factor-like protein ARL184	AA817697	GGTGACAGCCCTCCTCCGAGGAGCAGCAGTGGGCAGCAGCAGCAGCAGCAGGTCACGGTGGGGTT GGGAATGTTAGTCTGGCCAGCTGGTGCTTATCCCTCCGGCTGGTGTCTCGGATGAGGACACGGACCT AGACAGTGAGCTGGGACACTGAAGAAGCTCAGTCGCCAGTAAAGACACGACTGGAAATGTCATCG AGGAGCCAGTCGATGCCAGGCAGCAGGTCCTCCCCTGTAACAGCACTTGCAGCCTTCGATGCGCCA GTGGTGGCTGCGGATGCAGCTCTAGAGCCTCCTGAATACAGGACAGTGCTCCAG GCAGGTCCTGCTTGTTGGCAAAGATGAGAGGGTCGCTCCAGCCAG
Adrenodoxin reductase	NM_024153	ATTNTGNCATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAAT TCGGCACGAGGCCTGCGCTCAGCACTAAGGAGTCACTGTTAGCTGTTCTGCCGGCGGGTTGCTCT TCTCAGCCATGGCTCCTCGCTGCTGGCGTGGAGCTCGCCGGGGTTCGCCG CTTCCCTCCAGGAGCACTCCGACCCCTGGCTTCTGCAAGAAGTTCTCCACACAGGAGAAACCCC TCAGATCTGTGTGGTCGCAGTGGCCCAGCTTCTTACACAGCCCAACACTTGTTGAAGCAC CACCCGGGCCCACGTAGACATCTATGAGAAGCAGCTCGTCCCCTTCGGCCTGGTGCGCTTTGGTG TGGCACCTGACCATCCTGAAGTAAAGAATGTCATCAACACATTTTACACAGACAG

		THE ASSESSMENT OF THE PROPERTY
		TGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTC
Alanine aminotransferase		
	ı	
		######################################
a a	4	
Alanine otransfe	D10354	
88	유	
걸	ā	CCTCAAGTGCAGCTGCCCTTGAAAGCGGTGCATGGCATCTGCGCTTGTGCCCGGGAGTGGCTTTGGGC
Š		GTTCTTCTGCCTGTGCCTCCTGGAAGAGACTGCCGCTCTGCCCCCATGGAGAAACTGCGGCTTGCAA AGCAGGAGGGCACCTATCATTTCCGGATGACCATTCTGCCCCCCATGGAGAAACTGCGGCTTCCAAAC
Ē		AGCAGGAGGGCACCTATCATTTTCCGGATGACCATACCATACCATACCAGCTTCCGTACCAAAC
		AGCAGGAGGCACCTATCATTTCCGGATGACCATCACTAGTGGATCCGAGCTCGGTACCAAAC GCTTGGCCAANGGCGAATTCAACACACTGCGGNCGNTACTAGTGGATCCGAGCTCGGTACCAAAC
l		TTGATGCATAGCTTGAGTATTCTATAGNGN
		TAGGTGACACTATAGAATACTCAAGCTATGCATCAAGCTTGGACCGAGCTCGGATCCACTAGTAC
		Lacacacaca comencementa amainen entre entre entre esta de la comencia del la comencia de la comencia del la comencia de la comencia del la comencia de la comencia de la comencia del la comencia de la comencia de la c
-		Is compared concomprede contracts and representative for the contract of the c
ø		I_ ~~~ ~~~ * ~ * ~ * ~ * ~ * ~ * ~ * ~ *
Alcohol dehydrogenase	_	Indiana and anomanda accomera acaema acaema anon a accomera in CAGGAAGTTCTCAGGAGATGACTO
2 6	X15327	CCACTGACTGTATCAACCCTCAAGACTACCCATAGCCTTTGATACCATGACTTCTGCCCTGTTA ATGGAGGGGTGGACTTTCATTTGAAGTCATTGGCCGTCTTGATACCATGACTTCTGCCCTATAGCCTTTGATGCATGC
9 9	2	ATGGAGGGGTGGACTTTTCATTTGACTCATTCCTACTGCCCAAAGCCTCTC
Alcohol drogena	五	ATGGAGGGTGGACTTTCATTTGAGGGTGATTGTCGGGGTGCCTCCCAGTGCCCAAAGCCTCTC
7 %	1	AGCTGCCATTCAGCATGCGGTGTAGGACGCACCTGGAAAGGAGCAATATTCGGCGGGTTTAAGA
ē		GTAAAGATGCCGTCCCCAAACTTGTCGCTGACTTCATGGCTAAGAAGTTTCCGTTGGAGCCGCTCGAC
•		ATTACTCATGAAGCTTGGCCAAGGGCGAATTCTGCAGATATCCATCACACTGGCGGCCGCTCGAC
	1	CAMCCAMCTACACCCCCCAATTCTCCAA
	-	Is as a majorgon a compared a more a acretice two meager the GGATCCACTTAGTAACGGCCGCCAGTC
	ł	AGAATACTCAAGCTATGCATCAAGTTGGTAGGAGGAGTGTGGAGCGGGCTAAGAAATACGTTC
-		TGTTGGAATTCGCCCTTCGCGGATCCTGTTAGGACATGACAAGGAGCAACATGCTAAI TAGGAGATCCTCTGGACTCAGGAATAAGTCAAGGTCCTCAGATTGACAAGGAGCAACATGCTAAI
	Į.	TAGGAGATCCTCTGGACTCAGGAATAAGTCAAGGTCCTCAAAGTCACTCCAGGACGCTCCAGGACGCTCCAGGACGACGCTCCAGGACGACGACGACGACGACGACGACGACGACGACGAC
Aldehyde dehydrogenase		TAGGAGATCCTCTGGACTCAGGAAAAAAGAAGAAGGCGCCAAACTGGAGTGTGGTGGAGGACGCTC
Aldehyde rdrogenas	l %	GGGGAACAAAGGCTTCTTTGTCCAGCCTACAGTCTTCTCCAATGTGACCGATGAGATGCGCATTC
g g	Š	I
9 G	X23995	
ጟፚ፟	1~	in-man amamamamagacacacacacacacacacacacacacacac
뵯	1	
ซั	1	TCCAGTGCCCATTTGGTGGGTTCAAGATGTCTGGAAACTGGCGGCCGCTCGAGCATGCAT
	ŀ	
		GGCCCAATTC GCGAATTGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGC
	i i	GCGAATTGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGATGCTTACTTCATC
	1	CCTTACAAGAAGGGGCGAAGCTGCTGTGCGGTGGGGGCGCCGCAGACCGTGGTTACTTCAT
~	l	To accordance and accordance and accordance and accordance and accordance and accordance accordance and accorda
Aldehyde dehydrogenase	٠.	In ome a meeta cameeree a a arme a a cace arme a general General General General Additional Colors
Aldehyde ydrogenas	7	I accompagned of comprehensive a a according to the comprehensive according to the comprehens
₹ 5	X14977	and a compact a compact and a a compact and
a 0	1 4	Imana an moment of the Control of th
ŢÐ	×	
~ ≩		CGGTCACCGTCAAAGTGCCACAGAAGACTCGTAAATTCCAGCACACCACCACCACCACCACCACCACCACCACCACC
e	ł	CAAAAACCCAACAAGATCCTGAGAAAGCCACACCACCACCACCACCACCACCACCACCAC
_	1	ACTGGCGGCCGTTACTAGTGGATCCGAGCTCGGTACCAAGCTTTGATGCATAGCTTGAGTATTC
		ATATGGCACCTAA
	1	GCCAATGANTCGTTCTTGATACNTCATACAATACANTTCAGACAGCTTCAACGGGTGGAACAGG
	1	Instructions and appropriate transfer of a action of the contraction o
Aldehyde dehydrogenase, microsomal		I- magneda a doda amoa ca cononco acontro Cacotto Accide Cale Cale Cale Cale Cale Cale Cale Cal
	ı	GGCCACACAGATCTCTCGCCACATCCCCGTGTAGCCATGTTAGGGTCTGACAGAGAATGCTGC
	V	GGCCACACAGATCTCTCCCACATCCCCACATGTTAGCCCCCCCTCACCCTCACCGCTAC
	AA956846	CCGCTTGCTCAGGTGCGCTTCTGGCCATCCCATCGCTTCAGTGTGCCCCCTCAGCTCACGGTAC
		CTCCAACAACCCTGCCCCATGAGTTCTGAAGCCTCATGTCTAATAACCCCCCTTTCACTACAGC
	9	ACAGCTCCATGCTAAGATCTGTAGGAATCTCTCTAAGATTTCAAAAGTAAATTTTTTTT
	₹	TGCTGTGAAAATAAGCAGATTTATCCTGAAGACCTATATAACATTCAAATCGAGGGTCTCGAGC
<u></u> <u></u>	1	- Longue compande on the party of the party
Ō	1	GGGCTCCGGAATCTTCTGCCCTCGGGCTCTGGCCTGAATTCTTGGCCTCGAGGGCCAI
		IRRECT CORRECT TO TRECT TO TO THE TOTAL TO
	ı	TTCCCTATAGTGAGTCGTATTAAATTCGTAATCATGTCATA

Alpha-1 acid glycoprotein		ATGCNGGCCTAAGGATCCTTCTTGGTCTCCTTCTTAGTCTCCTTCTCCAGCTCCAGTGCTGNTTN TGATGCTCACTGCACTTATCCTTTGTCCAGTCGACAAATACGATTTCTGATTCATCCATGCCCAC ATCTTTGACAGCCTGCTGGAATATTTTCCCGCAGCTCTGGGGACAAGTCTGGCTTTTTAGCATAGA AGGACAGCCCCCGGTTCTCATCTGTCAGGTTAAAGGCAAGCATGAAGGTCCCATGTTTCTTCAGC ACTATCAAATGGGCAAAGATTTTCACTGCTCCTGCACACTTGGATAAGGTCCCATTCTCTCTG GACTCCTAGATGGGTGAAGTTATAGACACACTGGTCGTCTGTGTGTCTGAAACTCCCGAAGTTCAA TTGTGTCGTTTATCAAGTTGGGGGTAAAGGTAAAAAATATTCCGTCTGAGAGCCATTTCAGGGT TTGAACACGGGGTCTCGGAAAACTGCTCCCATGTAAAACCATTTGTCTGAGAGCCATTTCAGCGT CTCATTGGTAATAGGTATAGCCTAGGGTGATGTTGGCAGGTTCTGAGACCCTCCCAACAAGG GCAGGAGGCTCAAAAACGACAAGAACCATTGTCCGCAAGACCCTCCTGTGCCGAATTCT TGGCCTCGAGGGCCAAATTCCCTATAGTGAGTCGTATTAAATTCGTAATCATGTCATA
Alpha-1 microglobulin/bikunin precursor (Ambp)	AI043784	AGCNNCNCCNCCCCTTGCACGCCATGNTTCCTTCTNTCCTGGGAAGGTGGTTTACTCATGCCTG AGCTTCCNTTCCTNTCCAATACCCTTATTGTGACAATGAGATGCTAACACACAGAATGCTAGGAA ATGACAGCTTGTTTTATTGGGTCCAGATCATCTAAGCTGGACTGCACAGTGACGGACCGTGGCTA ACGCTCTGGCTTGCAGACCGGCTCCTTCAACTGCGTGTTAGCTCCTCGTACCCATCACCAGGGACT CCACAGTACTCCTTGCACTCCTTCTCAGAGTAGAACTTGTTGCCGTTGCCTTTGCAGCCCCCATA GATGAATTGGATGCACTTCCCTTGCGCTGCATCAAATGCCCAGAGTTCTTGCAAAGGCTCGCAGG GGCCTTGGACTATGGGGAGATTGCAGGCCGCTATTGTCCGGCACGTCTGCAGGCATTCCTTCTCG GAGGCGAAGTTGTTACCATTGCCTAGGCAGCCGCATACTGGAAGGCTCTGCAGGCCATTGAGGGC GCCATTGTAGTAATACTTCTGCTGCATCCCCAGGCAGGACCTTCTGAGTAGTTGAGCTGGCAGG AGTCTTCTTTCTTGAGGGTCCCAGTTATGAGTGGCTCACCCTCGTGCCGAATTCTTTGGCCTCGAG GGCCAAATTCCCTATAGTGAGTCGTATTAAATTCGTAATCATTA
alpha-1,2- fucosyltransferase	AB015637	CGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGC CCTTCGCGGGATCCTTGGCCCCAGAGAAACTTCAAAGACTTTTATTTA
Alpha-2- macroglobulin	302635	GCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCG GCGAATTGGGCCGCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCG CCCTTGCCGACTGTGCCTGGGGATTACACCGTGAAGGTGACAGGAGAGGCTGTGTCTACCTCCA GACATCCTTGAAATACAGTGTTCTCCCGAGAGAGGAGGAGTTCCCCTTCAGCTGGTGTGACAGA CTCTGCCTGGGACATGTGAAGATCCAACATGGCAATTCTGACGTGAAGATGTCCGGCTTCAT TACACTGGAAGCCGTTCTGAATCCAACATGGCAATTTGCATGAAGATGGTGCCGAACAGAAGTCAGCA CCCCTTGAAACCAACAGTGAAAAATGCTTGAAAGATCTGTGCATGTGAGCCGAACAGAAGTCAGGA ATAACCATGTCTTGATTTACCTGGATAAGGTGTAAATCAGACGTGAAAGTTACTATGAGAA AGAAGATATTCCAATAAGAGACCTGAAGCCAGCCGTAGTGAAAGTCTACGATTACTATGAGAA AGATGAGTTTGCAGTTGCAAAAATACAGCGCTCCCTGCAAGGGCGAATTCCAGCACACTGGCGGCC GTTACTAGTGGATCCGAGCTCGGTACCAAGCTTGATGAAATTCTATAGTGTCACC TAAATAGCTTGGCGTAATCATGGGCATAGCTTGTGAAATTG
Alpha-fibrinogen	x86561	TAAATAGC 1 163CG 1AXCCATGS CATGS CATGS CATGATAGGA ATTTGGCCCTCGAGGCCAAGAAT TCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAAT TCTATGACATGAC

		TO THE PROPERTY OF THE PROPERT
Alpha-tubulin	J00798	GGGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCG CCCTTGCGCGGATCCTGATGTGTCCCCAAAGATGTCAATGCTGCCATTGCCACCATCAAGACCA AGCGCAGCATCCAGTTTGTGGACTGGTGCCCCACTGGCTTCAAGGTTGGCATTAATTA
Annexin V	M21730	GTGAATTGGCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGC CCTTATCGCGGGATCCGGGGGACGGATGAAGAGAAGTTCATCACCATCCTTGGGACACGCAGTGT GTCTCATTTAAGAAGAGTTTGACAAGTACATGACAATATCAGGATTTCAGATTGAGGAAACCA GTCTCATTTAAGAAGAGTGTTTGACAAGTACATGACAATATCAGGATTTCAGATTTCGAAGC TTGACCGAGAGACCTCAGGGAACTTGGAGAACTTACTCTGGCTGTCGTGAAGTCTATTCGGAGC ATACCTGCCTACCTTGCAGAGACCCTCTACTATGATGAAGGGTGCTGCTGGGACGGAGGATTAAGA CCTCATCAGAGTCATAGTGTCGAGGAGTGAGTTGATCTTGTTTAACATCAGGAAGGA
Apolipoprotein CIII	J02596	GCAAACCGCTTCTCCCGGGGCGTTGGCCGATTCATTAATGCAGTGGCACGACAGGTTTCCCGACT GAAAAGCGGGCAGTGAGCGCAACGCAA
Apoptosis-regulating basic protein	AF304429	TCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAAT TCGGCACGAGGGCTTCACCGCCAACAGCACGGCCATGGCTGGAGCTCTGGTGCGCAAAGCAGCGG ACTATGTCCGGAGCAAGGACTTCCCGGGACTATCTCATGAGTACGCACTTCTGGGGCCCAGTTGCC AACTGGGGTCTCCCCATTGCTGCTATCAATGACATGAAGAAATCTCCAGAGATTATCAGTGGCG GATGACTTTCGCCCTCTGTTGCTATTCTCTGACATTCATGAGATTTGCCTACAAAGGAAGACCCC GAAACTGGCTTCTGTTTGCGTGCCATGTGACAAACGAAGTCGCTCAGCTCATTCAAGGAGGAGACGAC CTTATCAACTACGAGATGAGTAAGCGCCACTGCATGACAAGAATAGTCGTGCTGAGGGGAA AACACGGAAGACTACTTTAATGACCATGCCAACATTATTGACTAGACAAAATCCCCAAAACCAA CCTCTCGGCTGCCTTATCAATGCTAAACTTTATTTTGTCTTCATCAGGAGTAGTTCAAAAATATGCA
Aquaporin-3 (AQP3)	AI045067	CAACTGTTGGAAAGGGGGATCGGGGNGGNCCTNTTCGTTATTACGCCAACTGGCGAAAGGGGGAT GTGTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGG CCAGTGCCAAGNTAAAATTAACCCTCCCTAAAGGGAATTAGCGCGCGGCGGAGATTTTTTTNT TTTTANTTTTTTTTTTTTTTTTTTT

		OCCUPACA A
Argininosuccinate lyase	3978	CTCTTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAA ITCGGCACGAGGCTGGTCCACTAACTCCAGGGACTGTGGGACAGAGAACAAACA
Arginosuccinate synthetase 1	M36708	ACT TO TIGG TO AND TO TAKE TO THE TOTAL
Aryl hydrocarbon receptor	000600	NANNTTNAAGGTAANGGCCCTCTAGATGCTGCTCGATCGGCCGNCAGTGTNATGGATATCTGCCAGT AATTCGCCCTTGGCCAAGCTTAGCAGCAGTCTGAAGGTGGCCAATGCTCAAGTCTGCCGAGT AGGCTTCATTTAAAATGCTCGGACTCTGAAACTTGCTTAGGAACGCCTGGGAGCCTGGAATCTCA GGGCTGTACTGCATCTGGTCCACAGGGGTGTGCTGAGGCCTTGCACTTTATCCCGTGTTTTTGGT GGCCCCAGCGTAGTACACCTGAGACACATGACTTCTAAATTAAAAGCGTTAGGGTGTAGGGATCGT TTTCANGAACTTGTAAACAACTGACAAAGTCTTCTAAATTAAAAGCGTTAGGGTATGACTGT TCAAAAATCCCTTCCAGGGAAAGTCCAACTGTGTACCCTTTGGAATGTTCTGGTAGCAATGACTGGT TGCAGGGAGCAAAGTTCTGTGTGTAANGCATACTGTCCACTNTGACTTGTAGGGAAACTCCTGTG
Aspartoacylase	NM_024399	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC TATGACATGATTACGAATTTAATACGACTCACTTAGATCTAAACTTGGAAACTTTTCTCAGA GGCACGAGGAGAGCTCTGTATTTTTCACTTCTCACTTAGATCTAAACTTGGAAACTTTTCTCAGA AGTTAAGTGTCCTTTGACCTCCTCTTCTGAATTGCAGAAACCAGACCAGACTTTTGGTATTTGG TAAAATGACTTCTTGTGTTGCTGAAGAACCTATTAAAAAAGATTGCCATCTTCGAGGGACTCATG GAAATGAACTGACTGGAGTGTTTCTAGTTACCACCCAAGAGCGGTGGAGAAGTGCACCAGATACAT GGACTGGAACTGAACCGTGTTTTTGACCTTGAAAATCTTAGCAAAGAGATGTCTGAAGATTTGC CGTATGAAGTGAGAAGGCCTCAAGAAAATAAATCACTTATTTGGTCCAAAAAATAGTGATGATGCC CGTATGAAGTGAGAAGGCCTCATAACACTACTTCTAACATGGGTTGCACTCTTATTCTTGAGGA TTCCAGGAATGACTTTTTTAATCCAGATGTTTCACATATTTAAGACCTGCATGGCTCCATTACCT GCTCTGTTTACCTCATCGAGCCATCCTTCCTCAAAGGGGGGGG
ATP-stimulated glucocorticoid- receptor translocation promoter (GVK)		TATGACATGATTACGAATTTAATACGACTCACTATAGGGGAATTTGGCCCTCGAGGCCAAGAATTCGCCCTAGACACAAGATTCGCACTAGATGATGATGATGATGATGATGATGATGATGATGATGA
Bax (alpha)	9625911	CTCAAGTTATGCATCAAGTTTGGTACCGAGTTGGATCCACTAGTAACGGCCGCAGTGTGCLGAAT TCGCCCTTCGCGGAATTCGGGGCCTTTTTGTTACAGGGTTTCATCCAGGATCAGAAGAAGAT GGCTGGGGAGACACCTGAGCTGACCTTGGAGCAGCCGCCCCAGGACGCATCCACCAAGAAGCTGA GCGAGTGTCTCAGGCGAATTGGCGATGAACTGGACAACAACATGGAGCTGCAGAGGATTGCT GCGAGTGTCTCAGGCGAATTGCCGATGACTTCTTCCGTGTGGCAGCTAACATGTTTTGCAGACGG

		TTGCGAATTGGGCCCTCTAGATGCATGCTCGAGCCGCCGCCAGTGTGATGGATATCTGCAGAATT
B⊂1-2	L14680	CGCCCTTCGCGGAATTCCAGCCTGAGAGCAACGCTGGGCCTGGCCTCAGCCCTGTGCCACCTGT AGGACGTCGCCTCTACGCCCCTTGTCGCCAACGCTGGGCCTGCGCTCAGCCCTGTGCCACCTTGT AGGACGTCGCCTCCGCCGGGCTGGGGATGACTTCTCTCGTCGCTACCGTCGCGACTTTGCAG AGATGTCCAGTCAGCTGCACCTGACGCCCTTCACCGCGAGGGGACGCTTTGCCACGGTGGTGGAT AGATCTTCAGGGATGGGGTGAACTGGGGGAGATTGTGGCCTTCTTTGAGTTCGGTGGATGACTT GTGTGTGGAGAGCGTCAACAGGGAGATGTCACCCCTGGTGGACAACATCGCTCTGTGGATGACTG GTGTTGTAGACCGGCATCTGCACACCTGGATCCAGGATAACGGAGGCTGGGATGCCTTTGTGGAA AGTACCTGAACCGGCATCTGCACACCTGGATCCCTGGCTGCTCTCTGAAGACAAAGCTTGG CTATATGGCCCCAGCATGCGACCTCTGTTTGATTTCTCCTGGCTGTCTCTGAAGACAAAGCTTGATG CCAAGGGCGAATTNCAACACACTGGCNGGCCGTACTAGTGGATCCAACTCGGTACCAACTTGATG CCATACTTGAGT
Beta-actin, sequence 2	V01217	ACGAGGCAGGATTNAAAAACTGGAACGGTGAAAGGCGACGTTTTTTTTTT
Beta-tubulin, class I	AB011679	CTCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAAATCGTGCACATCCAGGCCGGA TTCGGCACGAGGAATTATTACAGTAAACCGTAGCCATGAGGGAAATCGTGCACATCCAGGCCGGA CAGTGTGGCAACCAGATCGGTGCTAAGTTCTGGGAGGTGATAAGCGATGAACACGGCATCGACCC CACCGGCACCTACCACGGAGACAGCGACTTGCAGCTGGACCGAATCTCTGTGTACTACAATGAAG CTACAGGTGGCAAGTATGTCCCTCGAGCTATCTTAGTGGATCTAGAACCCGGGACTATCGACTCC GTTCGCTCAGGTCCTTTTGGCCAGATCTTCAGACCGGACAACTTTGTTTTTTGCTCAGTCTGAGGC AGGCAACAACTGGGCTAAGGGTCACTACACAGAGGGAGCTGAGCTGACCCACTCGCTGGGT TGGTGCGGAAGGAGGCGGAGAGCTGTGACTCACAAAGGCTTCAGCTGACCCGACCG GGAGGCACGGGCTCTGGCATGGGCACCCTGCTCATCAGCAAAGATTCGAGAAGAATACCCCGACCG GGAGGCACGGGCTCTGGCATGGGCACCCTGCTCATCAGCAAAGATTCGAGAAGAATACCCCCGACCG
Calbindin-D (9K)	J02954	TGCGAATTGGGCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTAGAGAGAG
Calcineurin-B	45550.1	ACACTATAGAATACTCAAGCTATGCATCAAGCTTGGINCCGAGCTCGAGCTCGAGCTCGAGCTCAAGCAAATGTGCTCA GCCAGTGTGCTGGAATTCGCCCTTCGCGGGATCCTGAGGCGAGTTACCCTTTTGGAAATGTGCTCA GCCAGTGTGCTGGATGAGAATTAAAAGGCTAGGAAAGAGTTCAAGAAGCTTGACTTGGACAACTC CACTTCGATGCTGAGAGAGTTCATGTCTCTGCCTGAGTTACAACGGAACCCTTTAGTACAGC TGGTTCTTTGAGGAGGAGTCATGTCTCTGCGGAAAGCTTCAAAGAATTCATTGAAGGA GGGTCATAGATATATTCGACACAGAGGGAAAAGAAGTTGAGGTTCGCTTTCCGTATCTACGA GTCTCTCGGTTCAGTGTCAAAGGCGATAAGGAACAGAAGTTGAGGTGTTGAAGATGATGGTGGGCA CATGGATAAAGACGGCTATATTTCCAATGGAGAGCTCTTCCAGGTGTTGAAGACCATAAAAGC ACAACCTGAAAGATACGCAGTTACAGCAGATTCTGCTGTTGTAGGTGGCCTAGATATCCACAAAAA GGGGACGGGAGAATATCCTTTGAGGAGTTCTGTGCTGTTGTAGGTGGCCTACACACTGGCGGCCCCTC
Calgranulin B		ATCAATGTTTTCCATCAGTACTCTAGGAAGTATGGACATCCTGACACCC ORACATGAAAATCTCC CAAAGAAATGGTGAATAAGGACTTGCCAAATTTTCTGAAGAGGGAGAAAAGAAATGAAATCTCC CAAAGAAATGGTGAATAAGGACCTGGACACAAACCAGGACAAATCAACTGTCCTTTTGAGGAGCGTATG TAAGAGACATCATGGAGACCTTTTGCCTGTCATGAGAACTGCTGATGAGAACCAACC

Calnexin		CTATAGAATACTCAAGCTTATGCATCAAGCTTGGTACCGAGCTCGGATCCACTAGTACCGGCCGC CAGTGTGCTGGAATTCGCCCTTCGCGGGATCCCCAGATTTCTTTGATGACCTGGAACCTTTTAGG ATAACTCCTTTCAGCGCTATTGGTTTGGAGCTCGGTCCATGACATCCGACATCTTTTTTTGACAA CTTTATCATTAGTGGTGACCGAAGAGTAGTTGATGACGGCCAATGATGATGGGGCCTGAAGA AAGCTGCTGATGGGGCTGCAGAGCCAGGTGTAGTGGGGCAGATGCTGAGGCAGCTGAAAGAGCGT CCATGGCTTTGGGTGGTCACATTCTGACTGTAGCGTTGCCAGTGTCCTTGTGATCCTCTTCTG CTGTTCTGGAAAGAAACAGTCCAATGCTATGGAGTACCAGAAGAACAGATGCTCCCCAGCCAG
Calpactin I heavy chain	MM_019905	ACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTCGGCA CGAGGCTAGGGAGGCTCTCTGCAATAGGTGCCCGGCCCAGCTTTTTTTT
Calreticulin	D78308	TGGGGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATT CGCCCTTCGCGGGATCCTGATGACCCCACAGATTCCAAGCCTGAGGACTGGGACAAGCCAGAGCA CATCCCTGACCCTGATGCTAAGAAGCCTGAGGACTGGGACAGCAAGCCAGACC CACCAGTGATTCAAAATCCTGAATACAAGGGCGAATGGAAGCCACGTCAAATTGACAACCCAGAT TACAAGGGTACCTGGATACACCCAGAGATTGACAATCCTCCAAGTCTCGCAATATCTA TGCCTATGATAGTTTTGCTGTACTGGGCTTAGACCTCGGCAGGTCAAGTCTGGCACATTTTTG ACAACTTCCTCATCACCAATGATGAGGCCTATGCAGAGGAGTTTGGCAATGAGACCTGGGTGTC ACCAAGGCTGCAGAAGCAGATGAAGGACAAGCAGGATTAAGGAGCCTTAAGGAAGAAGA AGAAGACAGAAGCGTAAAGAGGAAGAGAGCCGAGGATAAAGAGGATGAGGAAGCTTGGCCAA GGGCGAATTCCAGCACACTGGCGCCCTTACTAGTGATCCGAGCTCGGTACCAAACTTGATGCA TAGCTTGAGTATTCTATAGTGTCACCTAAATAGCTTGGCGTA
Canalicular multispecific organic anion transporter	D86086	NTGNCNATGATTACGCCAAGCTATTTAGGTGACACTATAGAATACTCAAGCTATGCATCAAAGCT TGGTACCGAGCTCGGATCCACTAGTAACGCCCGCCAGTGTGCTGGAATTCGCCCTTTAGATGTTG CCTCCATTGGACTGCACGACCTTCGAGAGAGGCTGACCATCATTCCCCAGGACCCCATTTTGTTC TCGGGGAGTCTGAGGATGAATCTCGACCCTTTCAACAAATATTCAGATGAGGAGGTTTGGAGGGC CCTGGAGTTGGCTCACCTCAGATCCTTTGTGTCTCGCCCTACAGCTTGGTTTGTTATCCGAAGTGA CAGAGGGTGGTCACAACCTGAGCATAGGGCAGAGGCAGCTCCTATGCCTGGGCAGGGCTGTGTT CGAAAATCCAAAATCCTGGTCCTGGATGAAGCCACGGCTGCAGTGGATCTCGAGACAGAC
Carbamyl phosphate synthetase I	M12335	CTCAACGCCAACATGTTCCTGCCACCCCAGTGGCTTGCCATCTCAGGAAGGA
Carbonic anhydrase III, sequence 2	AB030829	CTAACCCAGAAGCATGAATTTCACACCTAACCTTTTTAATAACTACCTTTTCTAAAAAA

		TO THE PROPERTY OF THE PROPERT
Carbonyl reductase	X84349	TGCGAATTGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCG CCCTTTGACCCCACCCC
Casein-alpha	01/005	TTATCACATGATTACGAATTTGAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAAT TCGGCACGAGGCCAGCTTCTCTCACCCTACTCTTTGGGTTCAAGATCTTAGCAACCATGAAACTTC TCGGCACGAGGCCAGCTTCTCTCACCCTACTCTTGGGTTCAAGATCTTAGCAACCATGAAACTTC TTATCCTCACCTGCCTCGTCGNTGCTGCTCTTGCTCTGCCTAGAGCTCATCGTAGAAATTGCAGTC AGCAGTCAAACTCAGCAAGAGAATAGCAGCAGCAGGAACAGGAAACTTCTGACAGAACAGG ATAATGAAATCAAGGATAACTATGGACTCATCAGCTGAGGAACAAGCAATGCCAAGTGCTCAGGAA GATTCCTCCTCAAGCAGCTCATCAAGCGAGGAATCCAAGGATGCTATTCCCAGTGCTACTGAGCA GAAAAACATTGCAAACAAAGAAATCCAACCGATGCACCCTGGAACAGCTTCAGAGAACAGTTA AATACAGCCAACTTCTCCAGCAAGCTTCACTGGCCCAGCAAGCTTCCCTGGCACAGCAAGC TCGCCAGCAAGCTCCCTGGCCCAGCAACCTTCCTGGCACAGCAAGCTTCCCTGGCACAGCAAGC TTCCCTGGCACAGCAAGCTTCCCTGGNACAGCAAGCTTCCCTGGCACNAGAAACATCATCCAAGN AC
Caspase 2	U77933	GCCTCTTGACCGTGATGTTGATGAAGTAAGTCTTCTGTACCTCCTTAGGATGGCATCATGTTGGT CCTTGTGCTTACTGCAGGTTGTAATGGCACGTTTCACTTGCTCCCTCC
Caspase 7	AF072124	TTGGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCCCAGTGTGATGGATATCTGCAGAAT TCGCCCTTCGCGGAATTCGATGCAGGATCTGCTTAGACGAGCCTCTGAAGAGGACCACAGCAACT CAGCCTGCTTCGCCTGCTGCTGAGCCACGGAGAAGAGAA
Cathepsin L	X00697	GAATTGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCC CTTATCGCGGGATCCGATCTAGGCAATCAGGGCTGTAATGGAGCCTGATGGATTTTGCTTTCCA GTACATTAAGGAAAATGGAGGTCTGGACTCAGAGGAGTCTTATCCCTATGAAGCAAAGGATGGAT
Cathepsin L, sequence 2	\$85184	GACCTCGACCATGGGGTTCTGGTGGTTGGCTATGGTTATGAAGGAACAGATTCAAATAAGGATAA ATACTGGCTTGTCAAAAACAGCTGGGGTAAAGAATGGGTATGGATGG

Cathepsin S	L03201	GAATGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCC TTGGTACATTGAGCTCCCCTTCGGCGATGAAGAAGCTCTGAAAGAAGCAGTGGCCACTAAAGGGC CTGTCTCTGTGTGCATCGACGCCAGCCATTCCTCCTTCTTCCTCTACCAAAGTGGTGTCTATGAT GACCCCTCCTGTACCGAGAATGTGAATCATGGTGTTCTCGTGGTTGGCTATGGAACTCTTGATGG GAAAGACTACTGGCTTGTGAAAAAACAGTTGGGGCCTTCACTTTGGTGATCAAGGATATATTCGGA TGGCGAGAAATAACAAAAAATCACTGCGGGATTGCTAGCTA
		CAGCACACTGGCGGGCGTTACTAGTGGATCCGAGCTCGGACCAAGCTTGATGCATAGCTTGAGTA TTCTATAGTGTCCCTAAATAGCTTGGCGTAATCATGGNCATAGCTGGTTCCTGTGTAAAAT CACCACCTGCGATCCACCTAGAACCGNCCCGGCCAGTGGCTGGAATTCGCCCTTCGGTCCACA
CCR-5	077350	GGAGACCAGGAGTTTCTACTGGTTTATGAACTAGGTTGAGTTTTGTGTATCACTTAGTTTTTTA GGAGACCAGGAGGTTGCTGCTGGTTTATGAACTAGGTTGAGTTTTTTTATAGAGGACCAGGAAGTTTCTACTGTTTTTAGAAAAGAAATTAATATAGAGGGCCTAAGGTACGTG CATTGTTTTAATATTTTATTT
CD44 metastasis suppressor gene	M61875	TGNGAATTGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCG CCCTTATCGCCGGATCCGTGCATTTGGTGAACAAGGAACCAACAGAGACTCCGGACCAGTTTAT GACAGCTGATGAGACCCGGAATCTGCAGAGTGTGGATATGAAGATTGGGGTGTAGTGCC ACTAACTTGAAAAGACAACAACTTGGAGACATGTCATTACTGGGAGCTGGGACCCTTAACAGAT GCAATGTGCTACTGATTATTTTTATTGGGGATTATTTTGGGCATAAAATTTCCTTTTTTTT
CDK102	Y17321	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGCCCCAACTTCCTAATGGATGCAGATAAACACAGTGTACAGATTTTTGATAAATCACC GTAATAAGTATTTAGACTAGGGGTTAAAGCTCTGGTTTTTTAGAATTCTTAAGATCATCTTGTTGA AAAGTAGTTATGAAGCTAGGGCTTGGTGACAGACCACCATGGGATCCCAGCACTCAACAGGCAGAT CTTAGTTCAAGGTCGGTCTACATAGCAAGTTCCAGACCACCCAC
CDK108	Y17328	TCTTNACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGCAGTGCTGTATGTGGACTCCCGGGAGGCTGCCCTAAAGGAGTCAGGAGATGTTCT GTTGTCAGGGGCTGACATCTTTGCTGAGCTTGGAGAAGTTCAGGAGCCGAGCCTGCATACT GTGAGAAGACCACGGTGTTCAAGTCTTTGGGGATGGCGAGGAGCCTGGTCGCAGCCAAATTA GTGTACGATTCGTGGTCATCTGGCAAGTGAGCAGAAGGAGCTGTGCTGGTAGTGACGTCA CGGCTCAAACGCTGGCTCAGTGTCTAGATCAAAGGAGCCTAGTCCCCAGTGAACGGAGTGAGA GTCACTCATAAAGTATTGACATCCCTTGTTTTGTGTTTTGTGTTCTCTGAAATAAAT

Cellular nucleic acid binding protein (CNBP)	D45254	GCTATGCCATGATTACGCCAAGCTATTTAGGTGNCCTATAGAATACTCAAGCTATGCATCAAGCT TGGTCCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTGGAATTCGCCCTTATCGCGGATC CCCCAGGCCAGTGAGCTTTACTTGCAGTGTAAAAGGAGGAAAGGGGTGGAAAAAAAA
Ceruloplasmin	L33869	GANAACCGTTCGTATAAANCCNTGCTCGANTCGGCCGGCAGNGTGATGGATCTNNGCAGANTTCG CCCTTATNGNGGGANCCCAACCGAGGATCNAGTCAACNGATCTNTATNTTGGGCTAGGGAGGCCC ATTGATTGATCNTTGGAAATCTNANGTGNAAGTTTTCANTCCTAAANNGAANATGNATTTCTCCC TTCTGTTNCTANNACCTTGNTTACAANGNTTCCTTGNCACTCTNNATGAGTANCGNCAGTNCNTA CATTTGGANCNCNGCTGGNNNANAGNTTTCCTCTCACAACNATGGNACNCATANANNGGNGANTA AACCGCACC
c-fos	x06769	TCCAGGGAAAGGATATAGGCAAAATTCGCNCTTATCGCGGGATCCGNGTTTCTACGCNNATAAAC GAGGGGTCATTCCTTCTNTTCCAAGTAGNGCNTCNCTGNCGGGNGGCAANCNTTTCCTNCTTAGN ATTCCCCAAGATGACNTCCTTTCTCNAGCATGGGNTTCNCCNGTCTCNCCCACAGGATTTTTTGGC GCAGATCTGCNGGTNTCTAGTGCCATTTTTATCNNATTGGTGCANCTATTTCTANCAGCCAANAC TGCAGTGGCTGGNGCNGCNCACTCTGGTCTCNNCNGTGGCCCCATCGCAGACNAGAGCGCCCCAT CCTTCGGNCNTCCCCACCCCGTCGCCGGGNGCTTAGNCCATANNGNNAGTGGTGAANNCNATGTC AGGCAGCAGCNCANAGCATCGGCAGAAGGGCAAAGTAGAGCAGCTATNTCCTGAAGAGAAGA
Cholesterol 7-alpha- hydroxylase (P450 VII)	305509	GAAATTGNGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGC CCTTCATAGCTGGGGCCAGAGCTTCATCACTTTCAGAAAGCAATGTCCTTTGTATTTATT
Cholesterol esterase	L46791	AATACTCAAGCTATGCATCAAGCTTGGTCCGAGTTCGGATCCACTAGAACGGCCGCCAGTGTGTN GAATTCGCCCCTTCGCGGGATCTTGGAAGTCCTACCCAACACTGAAAATCTCTGAGAAAATGATT CCAGTGGTTGCTGAGAAGTACTTCGGAGGGACAGATGACCCTGCCAAAAGGAAAGACCTGTTCCA GGACTTGGTTGCAGATGTGATATTTTGGTGTCCCATCAGTGATGGTGTCTCGAAGCCACAGAGATG CTGGAGCCCCCACCTTCATGTATGAATTTGAGTATCGCCAAGCTTTTTATCAGCCATGAGGCCC AAGACAGTGATCGGAGACCATGGTGATGAACTCTTCTCAGTATTTTGGATCTCCATTTTTAAAAGA TGGTGCCTCAGAAGAGGAGCCAATCTCAGCAAAATGGTGATGAAATACTGGGCCAACTTTGCTC GGAATGGGAGCCCTAATGGGGAAGGCTGCCCCATTGGCCAGAATATGACCAGAAGGAAG

C-H-ras	M13011	CCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCCTTATCCAG CTGATCCAGAACCATTTTGTGGACGAGTATGATCCACTATAGAGGACTCCTACCGGAAACAGGT AGTCATTGATGGGGAGACGTGTTTACTGGACATCTTAGACACAGGTCAAGAAGAGTATAGTG AGTCATTGATGGGGAGACCATCATCACTCAGCAGGGGAGGGCTCCTCTGTGTATTTGCCATCAACAACACC CAATGCTGGAGACATCCATCAGTACAGGGAGCAGATCAAGCGGGTGAAAGATTCAGATGATGT GCCAATGGTGCTGGTGGGCAACAAGTGTGACCTGGCCGCTCGCACTGTTGAGTCTCGGCAGGCCC AGGACCTTGCCGCAGCTATGGCATCCCCTACATTGAAACATCAGCCAAGACCCGGCAGGGTGTG GAGGATGCCTTCTACACACTAGTACGTGAGATTCGGCAGCATAAACTCGCGAAACTCGACCACCT TGATGAGAGTGGCCCTGGCTGCATGAGCTCCAAGTGTGTGT
c-jun	X17163	GCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCG CCCTTATCGCGGGATCCTCGTTCCTCCAGTCCGAGAGTGGCGCCTACGGCTACAGTAACCCTAAG ATTCTGAAGCAGAGCATGACCTTGACCCTGGCCGACCCGGTGGGCAATCTGAAGCCGCACCTCCG AGCCAAGAACTCGGACCTTCTCACGTCGCCCGACGTCGGCTCAAGCTGGCGTCGCCGAGC TGGAGCGCCTGATCATCCAGTCCAG
Clusterin	M64723	GAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCC CTTCGCGGGATCCACCAGGCTCAACAGGCCATGGACGTCCAGCTCCATAGCCCAGCTTTACAGTT CCCGGATGTGGATTTCTTAAAAGAAGGTGAAGATGACCGCACAGTGTGCAAGGAGATCCGCCATA ACTCCACAGGATGCCTGAAGATGAAGGGCCAGTGTGAGAAGTGCCAAGAGATCTTGTCTGTGGAC TGTTCGACCAACAATCCTGCCCAGGCTAACCTGCGCCAGGAGGCTAAACCACTCGCTCCAGGTGGC TGAGAGGCTGACCCAGCAGTACAACGACTGCTTCATTCCCTCCAGGTGGCCATCCCTGCTCAACAGTCTCAACACCT CATCCCTGCTGGAACAGCTGAACGACCAGTTCAGCTGGTTCCCAGCTGGCTAACCTCACACAG TCGTGTCACTGAGGTGGTGAAGCTCCACAGTGACAACCCATTCTTCTGACTCAGAAGTCCCCTC ACGGGCGAATTCCAGCAGTGAAGCTGTTTGACTCTAACACCTTTTGGCC AAGGGCGAATTCCAGCACACTGGCGGCCGGTACTAGTGGATCCGACCAAGCTTGATGC ATAGCTTGAGTATTCTATATGTC
с-тус	x01023	NTNCNNANGNGCCCTNTANATGCTGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCG CCCTTCGCGGGATCCTGGAGAAGAGGCAAACCCCTGCCAAGAGGTCCGAGTCAGGGTCATCCCCA TCAAGAGGCCACAGCAAACCTCCACACAGCCCACTGGTCCTCAAGAGGTGCCATGTCTCTACTCA CCAGCACAATTATGCAGCACCCCCCTCCACAAGGAAGGACTATCCGGCTGCCAGGAGGGCCAAGT TGGACAGTGGCAGGGTCCTGAAACAGATCAGCACACACAC
Colony-stimulating factor-1	M84361	TAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCCTTATCGCGGAAT TCGTCTGTGGTGACCTGGGCATGGGTGACAGGGCTCTTACTTGCTCCTTGGTCTCTTTATGCTGC TGCCCCGCCTCCCCCCTTTCCTGCCCTCCCTGGCTACTGGGTCGCTAATCTTCAGGCCATGGAT CCGGAGAGAGTGGTCTATAGGCTCCACCAGGCCCTTCCTGAGACAACAGAGGGGTGAGGACAC TGGAGACTTTCCCGTGGGGCTTACTTAGCCTTCTAGTTACAGACTATTTCCACACTAGAAAATAC GTATTTTTAAATAGAAGAAAAACACAGAAACAAAAGGCATTCCCTACCCCTCCATCTTAA ACATACATTATTAAAGACAGAAGAAAATCCAACCCATTGCAAGAGGCTCTTTGTGGGTGCCTG GTTGCATAAGAACAGGAGGCCCCCAAACCCACCTTTGGAGCTTCCTGCACAGGAACCCCTTCT TCCCTCCAAGAAAGCTCAGAGGGAGCCCCAAACCCACCTTTGGAGCCCAAGGGCGAATTCCAGCACACTGG CGGCCGTTACTAGTGGATCCGAGCTCGGTACCAAACTTGATGCATACTTGAGTATTCTATAGTGN CACCTAAATAGCTTGGCGTAATCATGGCAT

Complement component C3	X52477	AATTGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCCT TATCGCGGGATCCGGACTTATCAGCCGGGGTCGGTCAAGGTCTACTACTACAATCTAGAGG TATCGCGGGATCCGGACTTATCCACCCGGAGAAGGACGATGGAATGCTAGCCACAAT AGTCATGCACCCGGTTCTATCATCCGGAGAAGGACGATGGAATGCTGAGCAAGCTAGGTCAGCCTGAA GAAATGTGCCGCTGTGCCGAGGAACTGCTTCATGCATCAGTCACGAGCCAAGCTAACGACGA TGAACGACTAGACAAGGCTTGTGAGCCTGGAGTGGACTACAAGACCAAGCCAAGCTCA TAGAGCTGTCGGATGATTTTGATGAGTACATCATGACCATCGAGCAGGTCATCAAGTCAGGCTCA GATGAGGTGCAGGAAGGAACGAAGGTTCATCAGCCACGTCAAGTGCAGAAACGCCCTAAAA GCTGCAGAAAGGGAAGCAGTACCTCATGTGGGGCCTCTCCTCCGACCTCTGGGGAGAAAAGCCCA ATACCAGCTATATCATTGGGAAGGACACGTGGTGGAGCAAGCTTGGCCAAAAAGGCCAAATTCCA GCACACTGGCGGCCCGTTCTAGTGGATCCGAGCTCGAGCTTGATGCATACTTGAGTATTCT ATATGGCACCTAAATAACT TGCGAATTGGCCCTCTAGATGCATGCTCGAGCGCCGCCAGTGTGATGGATATCTGCAGAATTCCG TGCGAATTGGCCCTCTAGATGCATGCTTCGAGCGGCCGCCAGTTGATGGATATCTGCAGAATTCCG
Connexin-32	X04070	CCCTTCAGGCCTCTGCCTCCTAGGGATTACTCCAGGGGGGGG
CXCR4	030610	TATCAGATAGANCGTAACTGNTNNACTGCAGNNGCGTNAANTTACTTCANNATTAANNNANGAAA NNAGNNGANNGNCTAACNGGNAAAACNNGTCNNGAANNNANGTCACTCANNATTAANNNANGAAA NNAGNNGANNGNCTAACNGGNAAAACNNGTCNNGAANNTACGNCTNGNANNCNNNGACAGCNCCG NNTNAGNGGNAGCNTNNNGCGCNNTGATNNAGTGAAANTACGNCCATNNCCNCNNN NCNGNACNTNNANATTGNGTNANCNNANNGNNGTCNNGCAATNANNTCCGANCGATNGTNGAGAA TTCAANNNNAGTNNNNANCNNCGNGGTCTANAGAGNTGNNAAANANNGNAGNNNGTGCCCCCCNGCNACHAACNAAANNNATNNNGNNAGCTNNANTANCCTGCNNGAGANC GTANTNTCTNNGCNGGTCCAAACNAAANNNATNNNGNNAGCCNCNNCNCNGNNGNNGNCNANACGAA GGNCNTCAAGNGNGGATGGAATATNNNCANNGGATTTCCNGCCCCTTNNANAGNNTCCATCCATTNT CNTTCCAAGNNGNGATGGAATATNNNCANNGGATTTCCNGCCCCTTNNANAGNNTCCATCCATTNT TCGCCCAATNTTNACCCAAAGGGGNCGGGCNNANGANNTCTTNTTGGCCCGCCTTTTCCCCANNCA GCCTTTTTGGATGGTGGTTTNCAGTTNCNGGACANCATGGTGGGTTTCATNCTGCCNNGGCATTN GCCTTTTTGGATGGTGTTTCAGTTACTTCAAGCTGTCACGNNTGCAAGGGCCCCCNGGNAG GTCATCCTNTCCTGTTACTGCATCATCATCTTCAAGCTGTCACGNNTGCAAGGATCTGGTTNGAN ACGTGGGGATCNGCATCGANTCCTTCATCCTTTTTGGAGGTCATCAAGCAAGGATGTAGATTNAAN ACGTGGGGATCNCAGTGGATGTTCCATCACGGGGGCCCTCGCCTTGCTTCCACTGTTGCAGTGAA AGCGTCGTGCCNCNAGTGGATGTTCCATCACGGGGGNCCTCGCCTTGCTTCCACTGTTGCAGTGAA AGCGTCGTGCCNCNAGTGGATGTTCCATCACGGGGGCCCAAATACCACAGAGAAGATTCCATCATCACGGGCCCAAATACCACAGCAAGCA
Cyclin D1	214014	GCCCTCTAGATGCATGCTCNAGCGGCCGCCAGNG TGATGGATGCTTGGGACATAGCATCACAGC GAATTCCTGCTGGGGACATCCTGTCATGCTGGGCCTTCATTTGATCTGGGACATAGCATGCC AGTCAGGGCAACTGTGTTCTGTTAGTTATCAATATTGTTACTTGTAGCGGCCTGTTGTGCATGCC ACCATGCTGCTGGACCCGGAGAGATTTGTTCTGAGGTCTCTGGTGCATCATTTAATCTGTTAGGTT ACCATGCTTCTGTTTTGTGTTACTCACAGCATTGTGCTAATGTAAAGCCAGCC
Cyclin dependent kinase 2		AGTTGGTACCGAGTTGGNATCCCACTAGTANCGGCCNGCCAGTGGTGACCCTCTGGTACCGA GCGGGATCCCNTTTGGAGTCCCTGTCCGTACTTACACTCATGAGGTGGTGACCCTCTGGTACCGA GCACCGGAGATTCTTCTGGGCTGCAAGTACTACTCCACAGCCGTGGACATCTGAGATTGACCAACTCT CATCTTTGCCGAATGGTGACCCGCAGGGCCCTATTCCCTGAGACTCTCGAGATTACTTCTATGCCT TCCGGATCTTTCGGGACTCTGGGGACCCCAGATGAGGTGTTTAGCCAAGGTTGTGCCTCCCTGGA GATTATAAGCCAAGTTTCCCCAAGTGGCCTCGCAGGATTTTAGCAAAGCGAATTTCAGCCA TGAAGACGGACGGAGCTTGTTATCTCAAATGCTGCACTATGACCCCAACAAGCGGATTTCAGACTCTGA AAGCAGCCCTGGCTCACCCTTTCTCCAGGATGTGACTAAACCAGTGCCCCACCTTCGACTCTGA TGTCCTTCCCAAAGCCCTCTCACCTGTGGTCTGACCTGAGCCTCGAGCATGCACTAGAGG GCCCAAAAAGGGCGAATTCTGCAGATATCCATCACACTGGCGGCCGCTCGAGCATGCAT

Cyclin dependent kinase 4	11007	TTGGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTC GCCCTTCGCGGGATCCAGGATCTGATGCGCCAGTTTCTAAGCGGCCTAGATTTCCTTCATGCAAA CTGCATTGTTCACCGGGACCTGAAGCCAGAGAACATTCTAGTGACAAGTAATGGGACAGTTAAGC TGGCCGACTTTGACCTAGCCAGAATCTACAGCTACCAGATGGCCCTCACGCCTGTGGTTGTTACG CTCTGGTACCGGGCTCCTGAAGTTCTTCTGCAGTCTACATATGCAACGCCTGTGGATATGTGGAG TGTTGGCTGTATCTTCGCAGAGATGTTTCGCCGGAAGCCTCTCTTCTTGTGGAACTCTGAGGCTG ACCAGCTGGGCAAAATCTTTGATCTCATTGGATTGCCTCCAGAAGACGACTGGCCTCGAGAGGTC TCTCTTCCTCGAGGAGCCTTTTCCCCCAGAGGACCCTCGCCAGTGCAGTCAGT
Cyclin B	D14015	TENGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTC GCCCTTCGCGGGATCCTGGAACTGATGATGATGAAGGCCCCTTAAGTGGCGTTCAAGCCCCCTGAC CATTGTGTCCTGGCTGAATGTTTATGTCCAAGTGGCCTAACGACACACGGAGAAGTGCTGA TGCCTCAGTACCCACAGCAGGTCTTCGTGCAAATCGCAGAGCTTTTAGACCTGTGCGTCCTGGAT GTTGGCTGCTTAGAATTTCCTTATGGTGTCCTCGCTGCCTCTGCTTTGTATCATTTTTCCTCTGTT GGAGTTGATGCAGAAGGTCTCAGGTTATCAGTGGTATATAGAGAAGTGTGTCAAGTGGATGC TTCCATTCGCCATGGTTATCCGGAGATGGGAAGTTCCAAGCACTTCCGGGAGGTTCCC ATGGAAGACTCCCACAACATCCAGGCCCACACCAACAGCTTGGACTTGCTGGACAAAGCCCAAGC AAAGAAAGCCATATTGTCAGAACAAAAATAGGATTTCTCCTCCTTCGAGTGGAAACTTGGCCAAG GGCGAATTNCANCACACTGGCGGGCGGTACTAATGGATNCCAGCTCGGACCAAACTTGATGCATA ACTTGAGTATTCTAT
cyclin 6	x70871	GNNTTCCNNGGGGATGGATATNTGCAGAATTCGCCNNNATCCNCGGGATCCNATGGCCTCAGGAA TNACNGCAAGACTCCCAGGTCTTNTNAAAGNCAGAGATTTCCGGAGNCCTAACTCAGTNATGGGC TTNGACACANAAACATTTTCCCTTTGCTGTGAATTTTACTGCAGAGATTGGTTGTCTAAAATAAG GACAGGNGAGCATCTCGGATGTGTCGGCCTTGAGNNGTNTTATTTGGCTGTGGAATNNATTNA AGAGGNAAGGNANTGTCCCNGCTGGCNNACTTNNTTNTGNTCCGNATNAGNCNGTANNAGTTCNCA GTTTCAGACGTGATNAGAATGCAAAAAGATTGTGTTNNANANAGTGTGNTTGCANAGTCNAAGCTA TTACNNCCTTCCANTTTCTNCAGNTCTATCANTCCCTCATTNGGGAGCCCNTGCCATTTGAAAGG AGNNACNNTNNGAATTNTGANAGNGTACNAGCCCTNNTNAAGGNGTGCCACNGCNGGATCATATT TTCTAAGNCAAAGCCNTCTGNGATGGNNCTNGCGATCATTNNTTTGGAGATCCAANCNGTNCAGT ATGTGNAGNNCACNGAAGGAGNANNATGTNTTCAAGCNCATTCCCAGATAAGTGGCCNGTATNTN NCCTTCTGGCAAGAGCCNGNNTCCTAGTGTCTTCCGAGATCTTCNTATCCGAGTGGCGCNNGNT NNNNANNNNNN
Cyclooxygenase 2	004300	GCGAATTGGCCCTCTAGATGCATGCTCGAGCGGCCAGTGTGATGGATATCTGCAGAATTCGC CCTTCGCGGGATCCGTTGCTGGGGGAAGGAATGTTCCAATCGCTGTACAAGCAGTGGCAAAGGCC TCCATTGACCAGAGCAGAG
Cystatin C	X16957	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGGCGGAACCATGGCCAGCCCGCTGCGCTCCTTGATGCTACTGCTGGCCGCCAGCACCACCCCGCGTTGTTGTTGGTGCTACTGCTGGCCGCGTGGCCTGGCCCTGGCCCTGGCCCGCGAGGCCAGCAGAGCCAGCAGCCCCCGCGATTGTTGGGAGCACAACAACAACAACAACAACAACAACAACAACAA

Cytochrome c oxidase subunit II	M64496	CCGGCTCGTATGTTGGGGGAATTGTGAGCGNATACCAATTTCACNCAGNAACCAGCTATGNCCAT GATTACGCCAAGCTATTTAGGTGACACTATAGAATACTCAAGCTATGCATCAAGCTTGGTACCGA GCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTGGAATTCGCCCTTCACACAAGCACAATAGAC GCCCATGAAGTAGAAACAATTTGAACAATTCTCCCAGCTGTCATTCTTATTCTAATTGCCCTTCC CTCCCTACGAATTCTATACATAATAGACCAGATTAATAACCCAGTTCTAACAGTAAAAACTATAG GACACCAATGATACTGAAGCTATGAATATACTGACTATAAAGACCTATGCTTTGACTCCTACATA ATCCCAACCAATGACCTAAAACCAGGTGAACTTCGTCTATTAGAAGTTGATTAATACTGGGTAGTCTT ACCAATAGAACTTCCAATTCGTATACTAATCTCGAAGAGACGTCCTGCACTCATGAGCCATCC CTTCACTAGGGTTAAAAACCAGCCAATCCCCGGCCGCCTAAACCAAGCTACAGTCACATCAAAC CGACCAGGTCTATTCTAT
Cytochrome c oxidase subunit IV	6	AACACGANTATNGNNTINTNTAGNGTACNNNTINANNGNAGNANTATANATATANATAGACACGANAANNGNACNGNAANTCGCGN CTNCGAAANNGNACNGNANGNTANNGAAGCCNAGCANTTNACTTGAAGACNCNCGNAANTCGCGN NGGTNTAAACCTNANNGNNNNTAAAANNANGNTAATAANTANNNAGGNNNCTNGNTAGGANGNA GNNANCNTNGAGTNANATATATTTTTNGNGNANTNNANACGTNGAANGACTNANNGNCCGTGAAAA TNANNTGTGAATNATCAAANGANCANCCTTCANNGANCNANANANTGNANATTTANCTCCAAGNT NNGNATNAAAGGTTGNGTCCNNNGCTCNGGATNCNTCTTAGTAAGGGCCCNCCACATGGAGTGTTNTA AATTNGCCCTTATCANGGGATCCANTANAATNCGGGTGTGCCTTAGGCCACATGGGAGTGTTNTA AANAGTGAAGANTATGTCTCCNCGTNATATGNTGATCGGGCNGTGNCNACCCCTNGCNTGATGTG GCNCACGTCAANGTTNATGTCTGCCAGCCAAAAGGCCNNTAAGNAGAAGGAGAAGNCCCAGTGGA GCAGCCTTTCCAGGNNTNAAAAGTCCAATTGTNCCGCATCCAGTTNANCGAGAGCTTNGCTCAG ATNAACAAGGGCACCAATGAGTGGAAGACANTGGTGGCCTTGCCCTCATACCTTTNATCGTGN TGCGCTTGTGCTGATCTGGGAGAAAGACCTACGTGTANGGCCCGTCCCTCATACCTTTNATCGTGN
Cytochrame P450 14DM	D55681	GCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCG CCCTTCAGGACATCAGGTGTGTTTCTCCAACTGTCAATCAA
Cyto- chrome P450 1A1	X00469	TCTGGTCCTCAGCATCTCCAGGCTTAGACTGTCCTGGATGCTCACCAGAC
Cytochrome P450	U09540	NGGTGACACTATAGAATACTCAAAGNTATGCATCAAGCTTGGTACCGAGCTCGGATCCACTAGTA ACGGCCGCCAGTGTGCTGGAATTCGCCCTTATCGCGGGATCCAGCGGAAACCAAGTGGCCTGAAG GTGAGGCGGGCTTACCAATTCATGGCTCCTCACCGGCCAGCAGCTGGAGATCCTGAAGTATTTTG AAATTGAAGAGTAACAGGGCCCCAAGGAATTTGCATACTGTTCCCCCCTCACCCCCATTAAACACA TGCACACAAATCAGCATGTGTGTACAGCTATCCAACAAAATATTTCAGTAACTCTGCCTTTTTGG GTCAATTTGAAAGGGAACTTCTATGTGCAGAAATTGGCCCCATAGGAAACCACAGTAAGCAGAGG CTTAGGATATATATTTTCAAGATTCAAAGAAGTGATTTAAGTGTAAAATATAAAGAGCAGAAATT CTACCAAGAGACAAATGAGGCCACTCCCTTGTGGCCCTGGACGAGGTTTTCTTTC
Cyto- chrome P450 2A3	M33190	ATATATATTCAAAGGTAGAGCCAGAGAAGGGGGAAATA

Cyto- chrome P450 2B1/2B2	M19972	CAACATACCAGATCTGCTTCTCAGCTCGGTGATCCGGCTGAGGCAGCCAT
Cyto- chrome P450 2C11	U33173	ACTCTCTAAGCTCTCATCTGTAATGTCTCTTCTGAGGGTCCTGTCTACTT
Cytochrome P450 2C23	X55446	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGGCCAAAGTTCATGAGGAACTTGACCGTGTGATTGGACGCCACCAACCCCCCAGCAT GGAAGGACAAGATGAAGCTGCCTTATACCGATGCTGTATTGCATGAGATTCAAAGATACATCACTC TCCTTCCTTCCAGTCTGCCCCATGCTGTGGTCCAGGACAAAATTCAGAGACTATGTCATCCCC AAGGGTACTACTGTACTCCCGATGCTGTCTTCCGTCATGCTAGAAAAGGAGTTTGGCAACCC AGAGAAGTTTGATCCAGGACACTTTCTGGATAAAAATGGCTGCTTCAAGAAGACACATCTTTG TTCCCTTCCC
D-dopachrome tautomerase	NM_024131	TCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAAT TCGGCACGAGGCTCCCGTGTTCCTTTTCTGGAACCTCAACTGGCTCCACTGCTCTCTCGGTC AGTTACCGTTTGCGATCCCTTCTCTACATGCCGTTCGTTGGATTGGAAACAAAC
Decorin	X59859	ANNNCNTCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCC AAGAATTCGGCACGAGGCTCGGATACATCCGCATCTCAGACACCAACATAACTGCTATTCCTCAA GGTCTGCCCACTTCTATCAGTGAACTGCATCTGGATGCCAACATAACTGCTATTCCTCAA GGTCTGCCCACTTCTATCAGTGAACTGCATCTGGATGGCAACAACAACACCGTTGATGG CAGCCTGAAAGGAATGTTCATATTTGTCTAAGCTGGGTTTGAGCTTCAATAGCATCACCGTTGTTGG AAAATGGCAGTCTGGCTAATTGTTCCTCATCTGAGGGAGCTCCACTTGGACAACAACAACACCTC AGAGTGCCTGCTGGCCACAGCATAAATATGTCCAGGTCGTCTACCTTCATAACAACAACAC CCCGGAAGTTGGGCAGCATGACTTCTGCCTCCCTTCATACCAGACTAGGAAGACTTCCTACACTG CCGTGAGTCTTTATAGCAACCCTGTCCGGTATTGGCAAATTCACCCACACACCTCTCAGATGTTC TTCGGGCGCTCTACCATTCAACTTCGGAACTACAAGAACACCTCATTTTTATAAT CGGGAACAAAAAAACCAATCTGTCAATATTTATGCTAAAAAAAA
Defender against cell death-1	Y13336	AGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGC CCTTCGCGGGATCCATGTCGGCGTCGGTAGTGTCCGTCATCTCCCGGTTCCTGAGGAGTACTTG AGCTCCACTCCA

Diacylglycerol kinase zeta	8588	GAAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGC CCTTAAGGGGACCATGGATCAACGAGGACACTACCAGAGGACTAGAGCTTTCCTTGCCCATCTC ACTGCCACATTCCTGTCAGATGGCTATGGGGGGACCCTGTCACAGGGAAGGAGCCCGTGCCACC ACTGCCACATTCCTGTCAGATCGTAGGGCTGGACTCTAAGGAGCTGGACTCTCACCTGTCCCTGGTT CCCTGAGAAGCCGTTCAGATCTAGGGCTGGACTGGGTCCCTCTCACCTGTCCCTCAC TCATGGGGAACAGGAAACAAGCTGGGCTGACTCAGGGAGGCCTTCTCAGCAGGACTTTCTAAAG CCACCTGATGGAATGGCTGGACAGCTCAGTCAGGGTGCCTTAGCCCTCCTCTCTTCTAACCCCACACAC CTTGGGCATCCCAGAAACTCAAGAGCCTGCTGTTTTCCTGCCCGTGCCCTGCTTGGCACCTA CCCTGGTGATCCCTCATGCACCCAGTCATTTCATT
Dimethylarginine dimethylaminohydrolase	NM_022297	TTCTNAGAACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGA ATTCGGCACGAGGATGATTTATTACAATCATCTCCTCAATAGACACACTATTTATT
DNA binding protein inhibitor ID2	D10863	NACATTITCACACAGNANCAGCTATGCCCATGATTACGCCAAGCTATTTAGGTGACACTATAGAA TACTCAAGCTATGCATCAAGCTTGGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCT TACTCAAGCTATGCATCAAGCTTGGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCT GGAATTCGCCCTTCGCGGGATCCATGAAAGCCTTCAGTCCGGTGAGCGACCCAGATCAGTCTGCT CTGCGGACCACAGCTTGGGCATCTCCAAGCTCAAGGAACTGGTGCCCCAGCACAAGA AGGTGACCAAGATGGAAATCCTGCAGCACGTCATCGATTATATCTTTGGACCTGCAGATCAGCCCG GACTCGCACCCACTATCGTCAGCCTGCACCACCAGAACCTGGACAGAACCAAACGTCCAGGAC GCCGCTGACCACCCTGAACACGGACATTAGCTCTTGCAGGCCTTGACTCACACTG AGCTTATGTCGAATGACAGCAAAAAGCTTGGCCAAGGGCGAATTCTGCAGATATCCATCACACTG GCGGCCGCTCGAGCATGCATCTAGAGGGCCCAATTCGCA
DNA topoisomerase I	AF140782	AATTGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGATATCTGCAGAATTCGCCCT TATCGCGGGATCCTGCAGCAGCAGCTTTAAAGAGCTCACAGCCCCTGATGAGAATGTACCAGCAAA GATTCTATCTTATAACCGTGCCAATCGCGCTGTTGCAATTCTTTGTAACCAGCAGGGCGCCAC CAAAGACCTTTGAGAAGTCAATGATGAACTTGCAGTCTAAGATTGATGCCAAGAAAGA
Dymein light chain 1	1166461	AGNGAGGCTTGATCAGCGAGCTTCTAGCATTTAGGTGACACTTATAGAATAGGGCCCTCTAGATG CATGCTCGAGCGGCGCGGATATCGAATTCGCCCTTCGCGGGATCCCTGTCGCCTCTGCACGCCCTCGAGCGCCCCAGCACCTTCCCTAGAATCCACGCAGCAGCCGCCAGCACCTTCCCTAGGAGCTCGCAGCAGCAGCAGCAGCACCAGCACCAGGACTCGGTAACCATG TGCGACCGGAAGGCGGTGATCAAAAATGCAGACATGTCGGAAGAGAGTGCAACAGGACTCGGTGGA GTGCGCTACTCAGGCGTTGGAGAAAGTACAACATAGAGAAGGATATCGCGGCCCATATCAAGAAGG AGTTTGACAAGAAGTACAACCCCACCTGGCACTGCATCGTGGGCCGGAACTTCGGTAGCTACATC ACACACGAGACCAAACACTTCATCTTCTACCTGGGTCAGGTGGCCATTCTCCTGTTCAAATC TGGTTAATAGCATGGACTGTGCCAAACACCCAGTGATCCAAAAAACAAGGACTGCATCCTAA ATTCCAAATACCAGAGACTTGGCCAAGGCCTTGCTAAGGGAACACCTCGTTTGAATCTGTGTG TTTTGTACAGGGCACAAGCTTGGCCAAGGGCGAATTCCAGCACCTGGCGCCCGTTACTAGTGGA TCCGAGCTCGGTACCAAGCTTGGCCTCAA

Ecto-ATPase	Y11835	TGTGAATTCGGGCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATT CGCCCTTACATCAGCTTCTGAGCCGTGGTTACCACTTCGATGAGCGCTCCTTCAGAGAAGTGGTC TTCCAAAAGAAGCCTGCAGACACGGCTGTCGGCTGGGCGCTGGGCTACATGCTGAATTTGACTAA CCTGATTCCTGCCGACCTCCCCGGACTACGCAAGGGCACCCACTTCAGCTCCTGGGTCCGCTCTC CTGCTGCTCTTCACAGTCCTGATCTTGGCGGCGCTGGTCCTGCTCCTGCCCAGGATTCCAGGTC TCAGCCTGTGACTCAGGGTGAGGTCCATTCGGAGTGGGACTTTTTTTT
eIF-4E	66	NNNNNNNNNTTCTACATGATTACGANTTTAATACGACTCACTATAGGGGAATTTGGCCCTCGAG GCCAAGAATTCGGCACGAGGGCCGCAATGTTTTTTTTTT
Elongation factor-1 alpha	X61043	CACTATAGAATACTCAAGCTATGCATCAAGCTTGGNCCGAGCTCGATCCACTAGTACCGGCCGC CAGTGTGTTGGAATTCGCCCTTTGAAGCTTTTGAGTGAAGCTCTGCCTGGGACAATGTAGCGTT CAACGTAAAGAACGTGTCTGTCAAAGACGTTAGACGTGCAATGTTGCTGGGACAGCAAAAATG ACCCACCAATGGAAGCAGCTGGCTTCACTGCTCAGGTGATTATCCTGAACCATCCAGGCCAGATC AGTGCTGGCTATGCCCCTGTTCTGGACTGCACACGGCCCACATAGCATGCAAGTTTGCCGAGCT TAAAGAGAAGATCGATCGTCGTTCTGGTAAGAAGCTGGAAGATGGCCCCAAATTCTTGAAGTCTG GTGATGCTGCCATTGTTGACATGGTCCCTGGCAAGCCCATGTTGTTGAAGCTTCTCTGACTAC CCTCCACTTGGTCGTTTTTGCTGTCGTGACATGAGGCAGACAGTTGCTGTGGGTGCATCAAAGC CGTGGACAAGAAGAGCTCAAGAGCTCGAAAGTCACCAAAAGCTCAGAAAGCTA AATGAATATTATCCCTAACACCTGCCACCCCAGTCTTAATCAAAGGGCGAATTCTGCAGATATCC ATCACACTGGCGGCCGCTCGAGCATGCATCTAGAGGGCCCAATTCGC
Emerin	NM_012948	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGGCTTCCTCTGCTAGGCTCCGAGCTGTTTTCTTGGGCCCTGTGTATAGGTGCCG GCCGCCCCTGGCGTTCAACACCGCTTCCAGGTGCCGGCCG
Endogenous retroviral sequence, 5. and 3. LTR	D90005	TTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGCACTGACAGAAGCACATGGGTGGAGGAAAGACCTCTGCGACTGGCTGATTGAT

		COLUMN A COUNTY OF THE ACCUTTY OF THE ACCUTANCE OF
		ATGCCATGATTACGCCAAGCTATTTAGGTGNCACTATAGAATACTCAAGCTATGCATCAAGCTTG
	ı	ATGCCATGATTACGCCAAGCTATITAGGTGNCACIAITAGGTGTGGAATTCGCCCTTAAGGGCCTCAG GTACCGAGCTCGGATCCACTAGTAACGGCCGCCCAGTGTGTGCTGGAACTCGCCCTTAAGGGCCTCAG GTACCGAGCTCGGATCCACTAGTAACGTGAACAAGAAGGTACCGAAGGTGA
Epidermal growth factor	i	GTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTAGAAGCAGAAGGTACCGAAGGTGA ACCTGCCCCAGCAAACAGAGCCAGTTCCGTAGAAACTGGAGCAGACAGA
8	1	ACCTGCCCAGCAAACAGAGCCAGTTCCGTAGAAACTGATACTCGTACTCCTGTCTCCACGGCTAATC AATAGCAAACCAGGCTGAAGGGTGGTAGAGCGGCAGACTGCATAGCCTCGACTTCTGCTTCTT
92	۲,	AATAGCAAACCAGGCTGAAGGGTGGTAGAGCGCAGATAGCTGCATAGCCTCGACTTCTTTACTGCTTCAGGCTCAGGGTCCTGAAGATAACTGCATAGCTGCATAGCTGCATAGCCTCGACATACTCAGAAACCGAAGT
4º	8	ACTGCTCAGGGTCCTGAAGATAACTGCATAGCTGCATAGTGGAGAAAAATCATCAGAAACCGAAGT GCTTCAAGCAGTCCCGTTGAAGACGATCAAAAAGAGAAGTGGACTGTTGGGCTCTTTTCCTTGTTGT
rmal g factor	U04842	GCTTCAAGCAGTCCCGTTGAAGACGATCAAAAGAGACACTGTTGGGCTCTTTTCCTTGTTGT CAAGACGTTCACGTGTTGTAAGCTGTGTCTTCTTCCTTGTTGATTGCACAGAGATGATATGAT
er f	ויי	CAAGACGTTCACGTGTTGTAAGCTGTGTTCTTCTTCTTTGATTGCACAGTAGATATGATT CTCAGAAGAAATGGGTTAAAGCAGGCGATCATATGCTTCAACATTATAGATGCTGCTAAGATACACT
1 3 1		CTCAGAAGAAATGGGTTAAAGCAGGCGATCATATGCTGGAACATTATAGATGCTGCTAAGATACACT CTACATAGATCTTAGCTCACTCTCACGGAAAGGCTGGAACATTATAGATGCTGCTAAGATACACT CTACATAGATCTTAGCTCACTCACGGAAAGGCTGGAACACTTGCAGATATCCATCACACTGGCGGC
	. 1	CONNECTED COCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOC
Į i		
	\vdash	
		TTATGACATGATTACGAATTTAATACGACTCACTATAGGAATTTCAAGGTATCCAGGCCTAGAGG CGGCACGAGGGGCACACTGTGTCCCTAGCAATCAGGCACCCTCCAAAGGTATCCAGGCCTAGAGG CGGCACGAGGGGCACACTGAGGACACCGCATGAGGCTTTGCTGGTC
so	l .	CGGCACGAGGGCACACTGTCCCTAGCAATCAGCACGGACACCCGCTGAAGCTTTGCTGGTC TTTTATCCGAGTCCCTAGGCCCAAGTGCGCCATGGTCGCCTGCAGGGTTGTTTATCC
a ii a ii		TTTTATCCGAGTCCCTAGGCCCAAGTGCGCCTATGAGGTCCTGGTCGCCTGCAGGGTTGTGTTTATCC ATTGCAGCCTGGTCAGGACAGCCGCTGGTTGCCTCCTCTTTTAAGCATGATGTC
Equilbrative obenzylthioi ne-sensitive nucleoside transporter	7	ATTGCAGCCTGGTCAGGACAGCCGCTGGTTGCCGTCCTCCTCTTTAAGCATGATGTCCCCTGCTGATGCTCCAATGTGAAGCAGCACCACTACCTGCCTACCTCGCAGCCTTCGCATGTG
Sit th	AP015304	CCCTGCTGATGCTCTGCAATGTGAAGCAGCACCAC LAC LGCCTCGCCAGCCTCTGCATGTG TGGTTCATCACCTTCATGGCCGCCTTTGCCTTCTCCAATGGCTACCTCGCAACACTTCTTTC
19 2 2 9 6	1 =	
E C S C E	ĕ	
E S o S L	1~	
# <u>2</u> 5	1.	
Equilbrative nitrobenzylthioinosi ne-sensitive nucleoside transporter	1	
L "		GGACCTCTGAGGATGGACTTGGGATTGGGGTCATATTTATCAGCAGTTTTTGAACAGACAAATTTCT GTTCCAGTATTGTCACAGGGATAAATAATATTTATCAGCAGTTTTTGAACAGACAAATTTCT
	Γ	GTTCCAGTATTGTCACAGGGATAAATAATATTATTATCACAGTTATGGCTAGGGGTGTCATT
۱ ـ	i	GTTCCAGTATTGTCACAGGGATAAATAATATTTTCCCACATCTCAGGTTATGGCTAGGGGTGTCATT ATTTCTATCTTGGAAAAAAAAAGGCAAATTTGCCACACATCTCAGGTTATCCCTGTGGATTTGGTG
B-selectin	1~	
ŭ	L25527	ATGGTTCAAATCCTGCTGAGTATTACATGGTAAGCCTTGGCATTGAGTCCAGCATAATGTCCGTT GCCTCTGAAGTATTCTTGAACATTGTGTTCTGTGTCCTGGCATTGAGTCCAGCAAAGGTAAGGT
1 4	25.	GCCTCTGAAGTATTCTTGAACATTGTGTTCTGTGTCCTGTGGCCCATCACAAGGCAAAGGT ATTCTTAGTTCAGTGCAAAAAGACTTAAAAAGTCAGAATCCTGTGGCCCATCACAAGGCAAAGGT ATTCTTAGTTCAGTGCAAAAAAGACTTAAAAAAAGAATCAGAATTATATTCTGCAATAAACCTATTTTCAAGA
l ŭ	13	
ங்	1	
l .	1	
	+	
ı	1	GNGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCAGATAGTGCAGGCCCTGGGGAGTTTCTCCTT CCCTTATCGCGGGATCCTCGTTGAAGATGGCTGAAAAAACGGCCCCTTCAGA
1	1	CCCTTATCGCGGGATCCTCGTTGAAGATGCTGAAGATACGAGGCGGTGAAACGGCCCCTTCAGA GCTGAGAGCCGGCTCTGTGGTGAGCCCCTAGAGCAGCCTTACGAGAGCCGCTCTATAAAT
Fatty acyl-CoA oxidase	1	
ه تـ	۱ ۸	
cy acyl- oxidase	302752	
i sign	18	TGGCCTTGAACTCTGATCCTCACAACCTGGTAAAACCTGGGGGAGATGATTGTAACATTAAGTCTGTG TGGCTGATCGGAGCTCTTTATTCTTAAAAGCACACTGGGGAGATGATTGTAACATTAAGTCTGTAG
ેઇ	ت ا	
Ĭ,	1	TCTGTGGCATTCGCATTGTGAGAGCAGTTCCTTAGAACACCTCCGGGTCATCGACACAAGCCTTAAAA TGAAAACGATGTCGACGCCTGACATGAAATCACAACCCTCCGGGTCATCGAACTCGCAACTCGGTACCAAGCTT
i ii		TGAAAACGATGTCGACGCCTGACATGAAATCACAACCCTCCGGTCCCAACTCGGTACCAAGCTT GCTTAAGGGCGAATTCCAGCACACTGGCCGGCCGTTCTAGTGGATCCCAACTCGGTACCAAGCTT
1	ı	
	┸	
	1	TTTGGCCAAGCTTTCACATGGCCTTGGGGATTCAGGGGGCTCCCATCTTGCGTAAGTTGGTCAC TGCTTGTCAAAGAGATATTCTGCCATGCCA
	ı.	TGCTTGTCAAAGAGATATTCTGCCATGCCAGATTCAGGGTAATGCGTCTCAATGAAGTCACGTGGTCACCCAGTTCTTTAATGGATTTCACCTGCTCATTCAGGTAATGCGTCATTGATTG
g	1	GTGGTCACCCAGTTCTTTAATGGATTCACACTGTCTCAAACTGATTCACTCCACTC
1 P	١	ATA ACTAGGGATCATTCTTGTCAGTAGCCAGTTTGTGAAGTTCCAGTAGCCCCCTTT
=	0000	TTTTCCAAGTGCAGTGCACTCCATTCCAGCTTTCTGCAGCTTCATCAGTTTCTCAGCAT
.5	1 8	TTTTCCAAGTGCAGTGCACACTCCATTGCATTCACTGGTTCTGCAGCTTCATCAGCATTCTCAGCATCATCATCATCAGCATCATCATCAGCATCATCATCAGCATCATCATCAGCATCATCATCAGGCCACATCATCATCAGGCCACATCATCATCAGGCCACATCATCATCAGGCCACATCAGGCCACATCAGCAGGCCACATCATCAGGCCACAGGCCACATCAGGCCACAGGCCACATCAGGCCACAGGCCACATCAGGCCACAGCACAGGCCACATCAGGCCACAGGCCACAGGCCACAGGCCACAGGCCACAGGCCACAGGCCACAGCACAGGCACAGGCAG
i ii		CTTTATATTCTGCAGGAAGATTCGTCCACCTCGCTGGTTCTTCAGGGCCACATCATCC GCTCCCTCTCTCATGAGATTGATGGAGAAAGTATTTGGCAAAGTTCTTCAGGGCCACATCATCC GCTCCCTCTCTCATGAGATTGATGGAGAAAGTATTTGGCAAAGTTCTTCAGGGTTGATCTGGCG
1 1	ı	
Ferritin H-chain	-	
1 -	-	GAGCTCGGTACCAAGCTTGAGCATAGCTTGAGTATTCTATAGTGTCAGGTAT
- (1	ATCATGGNCATAGCN

		TCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAAT
ĝ		TCGGCACGAGGTACCCAGTCTCAGGACAGCTGTTCACTCCAGGCCTCCGACTCTGAGCCCGTTG
(Petub)		GTCTTTGCCAAGGTTCACTGATTAAAAGTCCCGGGGTCCCTCCTCAACGCTTTAAAAAAGACTGTC
Pe	48	ACTGTGTCGTGCGAGTTTTTCGAATCTCAGGACCAGGTCCCTGGAGGTGAGAACCCTGCTGATAC
	34	CCAAGATGCTAAGAAACTCCCTCAGAAAAACACAGCCCCTACCAGCTCACCCTCCATAACTGCAC
Petuin beta	05334	CAAGAGGATCTATCCAACACCTCCCTGAGCAGGAGGGGGAGCCTGAAGACTCCAAGGGAAAGAGTCCT
ě	٥	GAGGAACCCTTTCCTGTGCAGCTGGATCTAACCACAAACCCACAGGGTGACACACTGGATGTCTC
2	ξ	CTTCCTCTACCTGGAGCCTGAGGAAAAGAACTGGTGGTCCTGCCTTTCCCTGGGAAGGAA
ii	~	CTTCTTACTGGAGCTGAGGAAAAAAAAATGGTGGTCCTGCCTTTCCCTGGAAAGAACAAC
ğ		GCTCCCTGAGTGCCCGGGGCCCGAAAAGCAAAGAACCCCCTGATGCTCCCCGCTGAGACTCACT
Y.		AGCAGGGTTCCACGGGGTACGGTCCCCTGCAGTAGATGGGAGGTGGTGGGCATTGGGAANGCACA
		GACAATCAAATGTAGACCGGCTAATAAAGTGTGT
		GTATGCATCAAGCTNGGTACCGAGCTCGGATCCACTAGAACGGCCNGCCAGTGTGCTGGAATTCG
		CCCTTCGCGGGATCCTTGGGCTGGGCAATGAGAAGATTCATCTGATAAGCATGCAGTCCACCATC
8		CCATACGCACTGAGAATACAGCTCAAAGACTGGAGTGGCAGGACCAGCACCGCGGACTATGCCAT
gamma	l l	GTTCAGGGTGGGTCCTGAATCCGACAAATACCGCCTGACCTATGCCTACTTCATTGGCGGAGATG
	4	CCGGGGATGCCTTCGACGGCTACGATTTTGGTGATGATCCCAGTGACAAGTTTTTCACATCCCAC
Fibrinogen chain	100734	AACGGCATGCACTTCAGTACCTGGGACAATGACAACGACAAGTTCGAAGGCAACTGTGCTGAGCA
हुन । इस्	8	AACGCA IGCAC I CAGIAC I GGGACAA IGAA COORCCCA COOLA ITCCA COORTINITACIACIA
Š	יי	GGATGGATCTGGCTGGTGGATGAACAAGTGTCACGCTGGCCACCTCAATGGAGTTTATTACCAAG
H	1	GTGGCACTTACTCCAAGTCATCTACTCCTAACGGTTATGACAATGGCATTATTTGGGCCACCTGG
1 2		AAAACCCGCTGGTATTCCATGAAGGAAACCACCATGAAGATAATTCCCTTCAACAGACTCTCCAT
	l	TGGAAAGCTTGGCCAAGGGCGAATTCTGCAGATATCCATCACACTGGCGGCCGCTCGAGCATGCA
		TCTAGAGGCCCAATTCGCA
	П	TTGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGCCGCCAGTGTGATGGATATCTGCAGAATT
l _		CGCCCTTATCGCGTCTAGATGCCCTTTGGGAGATCTTCTCTAGCATTCCACCAGCAGCAGGAAG
<u> </u>		TAACCTTGTCCTCGGTCGCCCGCACTCACAGCTCCAACTGATGACAGCTAGCT
2 E		TGTATAAGTTTAACTACTTATACATGGTTTTGATTCTGTTATTTTTCTAAATAGTGTTCAGAAAA
adhesion (pp125FAK)	12	CTCTGGATCCAAAATGTGGCATTTTTCTGAGAATGAAGATTGTACATTAAGAAGCTTTTAAAATA
482	3	CTCTGGATCCAAAA1GGGCATTTTTCTGAGAAGAA1GAAGAA1GAAAAAGATTTTAAGAAGCTTTTCAA
ă C	2	TACTTGGTGTTCAAATTGGGATGTATGTTCCTAGAAGTGGTAATTCATACTGACCATGACTTCGA
Focal	E020777	ATTGGAAGAGAGTGTCTGAGGAGGGAGGGCTCCCAAGACACTGAGACTGGCTATCCTTCCT
ប្តីនួ	~	AGAATTCCTGTCCAGACTGAATTGCAATATGCTAATCTCATTTATAGAGAAAGTGCATAAAAGCT
25		ATATTTTGAAGAATGAGTGGTTTCAAAAGAAACTTCTGCCCTCCCT
*		CACACTGGCGGCCGTTACTAGTGGATCCGAGCTCGGGACCAACTTGATGCATAACTTGGAGTATT
1		CTATAAGTGNCCCTAAAATAGCTTGGCGTAATCN
	1	GGGNTCCACTAGTANCGGCCNGCCAGTGTGCTGGAATTCGCCCTTATCGCGGATCCNTGAGTCTC
1		TGCCTTTCGCCTTTGAGACAGTGTCCAGCTGGNAGCTGGAAGCNTGGTATGAGGATCTGCAGGAG
	Į.	GTCCTGTCCTCAGATGAAATTGGGGGCACCTATATCTCATCCCCAGGAAACGAAGAGGAAGAATC
	l	AAAAACCTTCACTACTCTTGACCCTGCATCCCTAGCTTGGCTGACTGA
1	ı	AAAAACTICATIACTCTIGACCTIGACTICACTIGACTIG
[E	4	AGGTCACAAGCACCTCCCAAAGCCCTCGCTCTCCAGATTCCAGTCAGAGTTCTATGGCTCAGGAG
#	1 8	GAAGAAGAGGAAGATCAAGGAAGAACTAGGAAACGGAAACAGAGTGGTCAGTGCGCAGCCCGGGC
3add153	J36994	TGGGAAACAGCGCATGAAGGAGAAGGAGCAGGAGAATGAGAGGAAAGTGGCACAGCTTGCTGAAG
3	"	AGAACGAGCGGCTCAAGCAGGAAATCGAGCGCCTGACCAGGGAGGTAGAGACCACACGGCGGGCT
1	ł	CTGATCGACCGCATGGTCAGTCTGCACCAAGCATGAACTGTTGGCATCACCTCCTGTCTCTCT
1	i	CCCGGAGTGTACCCAGCACCATCACGCCAGTGCCAAGCATGTAATCTCCAGTGCACATGCTGAGG
l	ı	AGGAAGCTTGGCCAAAAGGGCGAATTCTGCAGATATCCATCACACTGGCGGCCGCTCGAGCATGC
	Ι.	TTTAGGGGNCCAATC
	┼	TTNGGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATT
i	1	
	1	CGCCCTTCGCGTCTAGAGACTTTGGAGGAATTCTCGGCCGCAGAGCAGAAGATCGAAAGGATGGA
1	1	CACGGTGGGCGATGCCCTGGAGGAAGTGCTCAGCAAGGCTCGGAGTCAGCGCACCATAACTGTCG
	1 .	GCGTGTACGAGGCAGCCAAGCTGCTCAACGTAGACCCGGACAACGTGGTCCTGTGCCTGCC
5.5	12	GCGGATGAAGATGACGACCGGGACGTGGCTCTGCAGATCCATTTCACCCTCATTCGTGCTTTCTG
Gadd45	132591	TTGCGAGAACGACATCAACATCCTGCGGGTCAGCAACCCGGGTCGGCTGGCAGAGCTGTTGCTAC
1 8	13	TGGAGAACGACAAGAGCCCCGCTGAGAGCGGGGGGCGCTGCGCAGACCCCGGACTTACACTGTGTG
Ī .		CTGGTGACGAACCCACATTCATCACAATGGAAGGATCCTGCCTTAAGTCAACTTATTTGTTTTTG
		CCGGGAAAGTCGCTACATGGATCAGTGGGTGCCAGTGATTAATCTCCCCGAACGGTGATTCAAGC
ļ	ı	TTGGCCAAGGCGAATTNCAACACACTGCGGGCGGTACTATGGATCCAACTCGGACCAACTTGATG
		TTGGCCAAGGCGAATTNCAACACACTGCGGGCGGTACTATGGATCCAACTCGGACCAACTTGATG

Gamma-actin, cytoplasmic	X52815	CTTTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAA TTCGGCACGAGGGATTTGCCCTGGCAAATGTACACACCTCATGCTAGCCTCATGAAACTGGAATA AGCCTTTGAAAAGAAATTTGTCCTTGAAGCTTGTATCTGATATCAGCACTGGATCGTAGAACTTG TTGCTGATTTTTGACCTTGTATTCAAGTTAACTGTTCCCTTGGTATTAACCAACAGCACTTCC AGGATTTCCCGAGGCTGGCAAGGGTTCCTGAACTAGTTACCACTTCTTTTCCTTGCCAGTCTAACA GGGTGGGAAAGTCCGAGCCCTTAGGACCCAGTTTCTGTTCTGGTTTTTCCCTCCTGACCTCCATG GGTTGTTACTTGCCTTGAGTTGGGAACGTTTTGCATCGACACCTGTAAATGATTCATCCTTTTAA TTTATGTAAGGTTTTTGTACTCAATTCTTTAAGAAATGACAAATTTTGGTTTTCTACTGTTCAGT GAGAACATTAGGCCCCCAGCAACACGTCATTGTGTAAAGAAATAAAAGTGCTGCAGTAACNNCN TAAAAANNCCANCNNAAACNNANAAACCNATTGCGGCCGCAAGCTTATTCCCTTTTAGNGANGGGT TAATTTTAGCTTTTGGCNCTGGCCGCCGTTTTTACAACGTCNGNGACTGGNNAAAN
Gamma-glutamyl transpeptidase	M33821	GATNANTTCAAGCTCGNCCAANTTCACCAACCAGTTTGGGGTAGCGCCCTCACCANCCAACTTCA TCAAGNCAGGTAAGCANCCGCTTTCATCCATGTGCCCCTCAATCATCGTGGATAAGAACGGCAAG GTTCGGATGGTGGTTGGAGCCTCGGAAGGTACCCAGATCACCACGTCTGTTGCACTGGCCATCAT CAACAGCCTGTGGTTCGGGTATGATGTGAAGAGAGCTGTGGAGGAGCCCCGTCTTCACAACCAGC TTTTGCCCAATACCACAACAGTAGAGAAAAATATTGATCAGGTGGACTGCAGGTCTGAAGACT CGGCACCACCATACAGAGGTCACACCCGACTTCATCGCTGTGGTTCAGGCCGTCAAGCTTGGCCA AGGGCGAATTCTGCAGATATCCATCACACTGGCGTGCCGCTCGAGCATCTAGAGGGCCCGT TCANCAGGTAACAAA
Glucose transporter	M13979	TGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTC GCCCTTATCGCGGGATCCTGGGCACCTTTCTTCAGTCAGCAATGAAGTCCAGAAGAATATTCAGG ACTTTGATGGCTCCAGAATTTTTAATGAAAGCAAGACTGTTGCTCAGATCTATTCAGATAAGCAG CAGATTTTATAATTTTTTTATTACTGATTTGTTATTATTTTTTTT
Glucose-6- phosphate dehydrogenase	X07467	GCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCCTTGCGC GGATCCTGGCATGTTCTTCAACCCTGAGGAGTCTGAGCTGGACCTAACCTATGGCAACAGATACA AGAATGTGAAGCTCCCTGATGCCTATGAACGCCTCATCCTGGATGTCTTCTGTGGGAGCCAAATG CACTTTGTCCGTAGTGATGAACTCAGGGAAGCCTGGCGTATCTTCACACCATTGCTGCACAAGAT TGATCGAGAGAAGCCCCAGCCCATCCCGTATGTCTATGGCAGAGGCGAGTCCCACAGAGGCAGATG AGCTGATGAAGAGAGAGGCTTCCAGTATGAGGGAAGCTTGGCCAAGGGCAGATTCCAGCACACT GGCGGCCGTTACTAGTGGATCCGAGCTCGGTACCAAGCTTGATGATAACTTGAGTATTCTATAG TGTCACCTAAATAGCTTGGCGTAATCATGGTCATAGCTTTCTGTGAAATTGTTATCCGCT CACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGA GCTAACTCACACTTAATTGCGTTGCG
Glucose-regulated protein 78	M14050	GAATNGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCC TTNGCGGGANCCCTGACTGGAATCCCTCCTGCTNCCCGTGGGGTACCCCANATTGNANNCACCTT NGANATACATGTGAATGGNATTCNTNGAGTGGCANNTGAAGACANAGGGACAGGNAACANNNACN NANTCACCATCACCAATGACCAAAACCGCCTGACCCCTGAANAAATTGAAAGGATGGTCAGTGAC GCCGANAANTNNGCTGAGGANGACNAAANGCTCANAGAGGCGCATNGACACGANGAATGAATTGGA AAGCTATGCTTACTCTTTAAGAACCANATCCGGANATNAAGAGANGCTGGGAGGTAAGCTGNCT NCTGAANATAANNAGACCATGGAGAAAGCTGTAGAGGAAAAGATCGAATGGCTGGAAAGCCACCA GGATGCAGACATTGAACACTNTAAAGCTNNNAAGATNGAACTAGACNANATTGTTCANCCAATTA TGAGCAAACTCTATNGAAGTGGACGCCCTCCCCCAACTGGGGANGAAGAAGCTTGGCCCAGGGCG AATTCCATCACACTGGCNGGCGGTACTATTGGATCGATCCAACCTGANGCATAGCTTGA GTNTTCTATNNTG

		TWO AS A SECOND CONTROL OF THE PARTY OF THE
Glutathione S- transferase Yb2 subunit	590	TTNCGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGCCAGCACGATGCCTATGACACTGGGTTACTGGGACATCCGTGGGCTGGCT
Glyceraldehyde 3- phosphate dehydrogenase	M17701	AATTGGCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCCT TCGCGGGATCCATCCTGCACCACCACTGCTTAGCCCCCTGGCCAAGGTCATCCATGACAACTT TCGCGGGATCCATCCTGCACCACCACCACTGCCATCACTGCCACCACCACACACTTCGCATCCACTCACT
Glycine methyltransferase	NM_017084	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGCAGCCTTTGACAAGTGGGTCATTGAAGAAGCCAACTGGTTGACTCTGGACAAAAGAT GTGCCAGCAGGAGATGGCTTTGACGCTGTCATCTGCCTTGGGAACAGTTTTGCTCACCTGCCGGA CAGCAAAGGTGACCAGGAGTGAGCACCGGCTGGCGCTAAAGAACATCGCAAGCATGGTGCGGCCCG GGGACGACACTCTACCACCACCACCAACCACCAACACACCACGGCTCTCAGCACCCCCA GGGAAGACATCTACTATAAGAGTGACCTACCAAGAACATTACGACGTCCAGGTGCTGACAGTAAA CAACAAAGCTCACATGGTAACCCTGGACTACACAGTGCAGGTGCCAGGTGCTGGCAGAGATGGCG CTCCTGGCTTCAGTAAGTTTCGGCTCTTTACTACCCACACTGTTTTGCGCGTCTTTCACGAGTTC GTCCAAGAAGCCTTTGGGGGCAGGTGCCAGCACACGGTCCTGGGTGACTTCAAGCCTTACAGGCC CGGCCAGGCCTACGTTCCCTGCTACTTCATCCACGTGCTCAAGAANACAGGCTGANCCTGGCTNC NGCTTCCACCCTAANAACATCCCTACCACAGATATTGCAGANAT
Heme binding protein 23	D30035	CATTGAAACGGNNNCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATT CGCCCTTCGCGGGATCCCAAAGCCACGGCTGTTATGCCCGATGGACAATNCAAAGATATCAGCCT AAGTGATTACAAAGGAAAATATGTTGTATTCTTTTTTTACCCTCTTGACTTTACTTTTGTGTGTC CCACGGAGATCATTGCTTTCAGTGATAGAGCNGAANAATTTAAGAAACTCAACTGCCAAGTGATT GGAGCTTCTGTGGATNNTCACTTCTGTCATCTGGCATGGATTAACACACCCCAANAAACAAGAAGG ATTGGNACCCATGAACATTCCCTTGGTATCAGATCCCAAGCGCACCATTGCTCANGATTATGGAG TCTTAAAAGCTGATGAAGGTATCNTCTTTCANGGGCCTNTTTATTATTGATGATAAAGGTATCCT TCNCANATTAACCGATAAATGATCTTTCTGTTGGGG
Heme oxygenase	NM_012580	TTNTGACATGATTCGAATNNAANACCGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGACCCGCTACCTGGGTGACCTCTCAGGGGGTCAGGTCCTGAAGAAGATTGCGCAGA AGGCCATGGCCTTGCCAAGCTCTGGGGAAGGCCTGGCTTTTTTCACCTTCCCGAGCATCGACAAC ACCCACCAAGTTCAAACAGCTCTATCGTGCTCGCATGAACACTCTGGGAGTGACCCCCGAGGTCAA GCACAGGGTGACAGAAGAGGCTAAGACCGCCTTCCTGCCTCAACATTGAGCTGTTTGAGGAGCTGC AGGCACTGCTGACAGAGGAACACAAAGACCGACTCCTGCGATGAGACCCCCCGAGGAAAATCC CAGATCAGCACTAGTTCATCCCAGACACCGCTCCTGCGATGGGTCCTCACACTCAGTTTCCTGTT GGCGACCGTGGCAGTGGGAATTTATGCCATGTAAATGCAGTGTTGGCCCCCAGAGGCTGTGAACT CTGTCTCATGTAGCCTTCTCTCTCAGAGGGAAATCTTGCCTGGCTCTTTTTCTTTGGGCCTCTA AGAAAGCTTTTGGGGTTCCTCGCCCCCTTCCTGTGTCNTTCCTTTTTCTTTGGAATGGAA
Hemoglobin alpha 1 chain	NM 013096	GNNNCTATNTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGC CAAGAATTCGGCACGAGGCAGGAAGCAATCATGTGCTCTCTCT

Hemoglobín alpha 1 chain (alternate clone)	NM_013096	CTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGGGCCTCAGGAAGCAATCATGGTGCTCTCTGCAGATGACAAAACCAACATCAAGAAC TGCTGGGGGAAGATTGGTGGCCATGGTGGTGAATATGGCGAGGAGGCCCTACAGAGGATGTTCGC TGCCTTCCCCACCACCACAAGACCTACTTCTCTCACATTGATGTAAGCCCCGGCTCTGCCCAGGTCA AGGCTCACGGCAAGAAGGTTGCTGATGCCTTGGCCAAAGCTGCAGACCACGTCGAAGACCTGCCT GGTGCCCTGTCCACTCTGAGCGACCTGCATGCCCACAAACTGCGTTGGATCCTGTAACTTCAA TGCACGCCTCTCTGGCTGCTGGTGACCTTGGCTTGCCACCACCCTGGAGATTTCACACCCGCCA TGCACGCCTCTCTGGACAAATTCCTTGCCTCTGTGAGCACTTGTCTGACCTCCAAGTACCGTTAA GCCGCCTCCTGCGGGCTTGCCTTCTGACCAGGCCCTTCTTCCCTCCC
Hepatocyte growth factor receptor	98196X	GCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCG CCCTTATCGCGGGATCCCTTCAAGTACTAAGGGCATGAAATATCTTGCCAGCAAAAAGTTTGTCC ACAGAGACTTAGCTGCAAGAAACTGCATGTTGGATGAAAAATTCACTGNCAAGGGTGCTGATTTC GGTCTTGCCAGAGACATGTACGACAAAAAGTATTATAGCGTCCACAACAAAAAACGGGTGCGAAACAT ACCGGTGAAGTGGATGGCTTTTGGAGGAGTCTGCAGACGCAAAAAGTTCACCACAAGTCAGACGTGT GGTCCTTCGGTGTGCTTCTCTGGGAGCTCATGACGAGAGGCCCCTCCTTATCCTGACGTGAAC ACATTTGATATCACTATATACCTGTTGCAAGGCAGAAGACTCTTGCAACCAGAGTACTGTCCAGA CGCCTTGTATGAAGTGATGCTAAAAATGCTGGCACCCCAAAGCAGAAATGCGCCCATCGTTTTCTG AACTGGTCTCCAGGATATCCTCAATCTTCTCCACTTTCATTGGCGAGCACTATGTCAAGCTTGGC CAAAAAGGCGAATTCCAGCACACTGGCGGCGGTACTAGTGGATCCGAGCTCCGG
Hepatocyte nuclear factor 4	D10554	GCGAATTGGGCCCTCTAGATGCATGCTCGAGCGCCGCCAGTGTGATGGATATCTGCAGAATTCG CCCTTATCGCGGGATCCCTGCGGTCACAGGTGCAGGTGAGCCTGGAGGATTACATCAACGACCGG CAGTATGACTCTCGGGGTCGTTTTGGAGAGCTGCTGCTCCTGCCCACTCTGCAGAGCATTAC CTGGCAGATGATCGAGCAGATCCAGTTCATCAAGCTCTTTGGCATGGCCAAGATTGACAACCTGC TGCAGGAGATGCTGCTTGGAGGGTCTGCCAGTGACGCCCCCCCC
Histidine-rich glycoprotein	AF194029	CACCCTCATGGNCAGCATCCCCATGGACACCACCCCCATGGTCACCATCCTCATGGTGACCATCC CCATGGACACCACCCCCATGGACATGATTTCCTTGACTATGGACCATCCTCATGGTGACCATCA GCCAAGAACTCAAGGGTCAAGTATCATCGGGGACATGGTCCACCACCGACACCACCACCAATA AGGGCCAGGTAAAGGACTCTTTCCTTTINCACCAACCAAATCGGATATGTCTACCGACTCCCTC CACTGAATGTAGGTGAAGTTCTCACTCCTCCTGAAGCCAATTTGCCATCTTTCTT
HMG CoA reductase	X55286	GGGGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTC GCCCTTCGCGGGATCCTGGTTTGTGAAGCTGTCATTCCAGCCAAGGTGGTGAGAGAAGTATTAAA GACGACTACGGAAGCTATGGTTGACGTAAACATTAACAAGAATCTTGTGGGCTCTGCCATGGCTG GTAGCATAGGAGGCTACAACGCCCATGCTGCCAACATCGTCACTGCCATCTACATTGCATGTGGC CAGGATGCAGCACAGAATGTGGGGAGTTCAAACTGTATACGTTAATGGAAGCAAGTGGTCCCAC AAATGAAGACTTATACATCAGCTGTACCATGCCGTCTATAGAGATCGGAACCGTGGTGGTGGAG CCAACCTTCTACCTCAGCAAGCCTGCCTGCAGATGCTAGGTGTTTCAAGGGGCGTGCAAAGACAAT CCTGGAGAAAATGCACGGCAGCTTGCCCGAATTGTGTGTG
Hypoxanthine-guanine phosphoribosyltransf erase	X62085	GAATTGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCC CTTCGCGGGATCCTGCTGAAGATTTGGAAAAGGTGTTTATTCCTCATGGACTGATTATGACAGG ACTGAAAGACTTGCTCGAGATGTCATGAAGGAGATGGAGGCCATCACATTGTGGCCCTCTGTG GCTGAAGGGGGGCTATAAGTTCTTTGCTGACCTGTGATCAGATTACATTAAAGCGCTGAATAGAAATA ACGGGGGACATAAAAGTTATTGGCTGAGATTTTATCAGACTTGAAGCTACTGTAAATGACAGTCATTGAT CGTTGAAGATATAATTGACACTGGTAAAACAATGCAGATTTTCCTTGGAAAGAAGTCTTTGAT GCCCCAAAATGGTTAAGGTTGCAAGCTTGCTGGTGAAAAGGACTCTTGGATACAG GCCCCAAAATGGTTAAGGTTGCAAGCTTGCTGGTGAAAAGGACCTCTCGAAAGTGTTTGGATACAG GCCAGACTTTGTTGGATTTGAAATTCCAGACAAGTTTTGTTGGATATGCCCTTGACGCAGGCC AAGGGCGAATTCCAGACACTGGCGGNCGTACTAGTGGATCCGAGCTCGGACCAAGCTTGATGCAT

		OF THE PROPERTY OF THE PROPERT
e)	- 1	GCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCG
		CCCTTATGCCAGATCACAGCACATTCACAGCTCCCCAGCATTTCACCAATGCATTGCTGTAGTGT
<u> </u>		CGTTTAAAATGCACCTTTTTATTTATTTATTTTTTGGTGAGGGAGTTTGTCCCTTATTGAATTATT
Hypoxia-inducible factor 1 alpha		TTTAATGAAATGCCAATATAATTTTTTTAAGAAGGCAGTAAATCTTCATCATGATGATAGGCAGTT
ୂ ହୁଁ "	30	GAAAATTTTTTACTCATTTTTTCATGTTTTACATGAAAATAATGCTTTGCCAGCAGTACATGGT
i i	57	AGTCACAATTGCACAATATATTTTCTTAAAAATACCAGCAGTTACTCATGCATATATTCTGCATT AGTCACAATTGCACAATATATTTTCTTAAAAATACCAGCAGTTACTCATCATCATCATCATCATCATCATCATCATCATCA
ia	AF057308	TATGAAACTAGTTTTTAAGAAGAAACTTTTTTTTGGCCTATGGAATTGTTAAGCCTGGATCATGAT
poxia- factor	^	GCTGTTGATCTTATAATGATTCTTAAACTGTATGGTTTCTTTATATGGGTAAAGCCATTTACATG
£,33		ATATAGAGAGATATGCTTATATCTGGAAGGTATATGGCATTTATTT
. . .		GAAGTTATCTGGTGTTTCTTTACTTTACCGGCTCAAAAGAAAACAGTCCCTATGAAGGGCGAATT
		CCAGCACACTGCGGG
		GGATTTCGCCCTTATCGNGGGATCCAAAGCGTTGCCATCTCGCGCTTGCGCTTGGNACGNCGCCT
		GCCCCCCTTGCTGGGACGAACAGGCAGGTGAACGTTCTGCTCTACGACATGAACGGCTGCTACT
		CACGCCTCAAGGAGCTGGTGCCTACCCTGCCTCAGAACCGCAAAGTGAGCAAGGTGGAGATACTG
	7	CAGCATGTTATCGACTACATCAGGGACCTGCAGCTGGAGCTGAACTCTGAGTCTGAAGTCGCGAC
ID-1	010862	CGCCGGAGGCCGGGGCTCCGGGCCCCGCTCAGCACCCTGAACGGCGAGATCAGTGCCT
	١×	TGGCGGCCGAGGCGGCATGTTCCAGCCGACGACCGCATCTTGTGTCGCTGAGGCGGCGCACTG
	-	AGGAACCAGATGGACTCCAGCCCTTCAGGAGGCAAGAGGAAAAAAAA
	ŀ	GCAACCCGGGGAAAGACACTACCGCGGCCACCGGAACTCTTCAACGAATCTGCAGATTTCCATCATCATCATCATCATCATCATCATCATCATCA
ĺ		GTTGATCAACGGAGTCTCGCCCTCTCCAAGCTTGGCCAAAGGGCGAATTCTGCAGATATCCATCA
	Щ	CACTGGCGGCCGCTCGAGCATGCATCTAGAGGGCCNGTTTTCCAA
_ :	1	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC
녍	1	GGCACGAGGGGAGCACTAACCAGGAAAATGGCAGACGGCTTCTCGCTTAATGATGCCTTAGCTGG
Ž,		CTCCGGAAACCCAAACCTCAAGGATGGCCTGGTGCATGGGGGAACCAGCCTGGGGCAGGAGGCT
ř	32	ACCCAGGGGCCTCCTATCCTGGGGCCTACCCAGGACAGGCTCCTCCAGGGGGTTATCCTGGACAG
	031832	GCTCCTCCTAGTGCCTATCCGGGCCCAACTGGCCCTAGTGCTTATCCTGGCCCAACTGCCCCTGG AGCTTATCCTGGCCCAACTGCCCCCGGAGCCTTCCCAGGGCAACCTGGGGGACCTGGAGCCTACC
IgE binding protein	l۳	AGCTTATCCTGGCCCAACTGCCCCGGAGCCTTCCCAGGGCAACCTGGGACCACTGACAGTG CCAGTGCTCCTGGGGCCTATCCTGCTACTGGCCCCTATGGTGCCCCGACTGGACCACTGACAGTG
밑	ξ	CCCTACGATATGCCCTTGCCTGGAGGAGTCATGCCTCGCATGCTGATCACAATCATGGCACAGT
ă	Z	GAAGCCCAACGCAAACAGTATCACTCTGAATTTCAAGAGAGGGAACGACATCGCCTTCCACTTTA
띮	ı	ACCCCCGCTTCAATGAGAACAGAAGAGGGTCATCCGTGTGCAACACGAAGCAGGACAATTAACT
∺	i	GGGGAANGGAAAAAAGACAG
<u> </u>	₩-	NCNNNCGACTCCCANNTCTTATATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTT
ø,	1	NCNNNCGACTCCCANNTCTTATATGACATGATTACGACTATAGCTCATTTCTTCTCTCCCATT GGCCCTCGAGGCCAAGAATTCGGCACGAGGGAACTGACTATAGCTCATTTCTTCTCTCTC
polyphosphate .nase (Ipmk)	ł	TTGTGGGAGTGAGTTTCAAGTGATAATTACTAGAAACCTTTCAGTTTTTACCTTTTTTTT
党員	ı	TATTGACTTGTTACCTGGGTGTGATTCAGGAACTCTCAGGCTCATCTGGTGAACACTATTTTGAA
ğĦ		TATTGACTIGTTACCIGGGIGIGATICAGGAATCAACTATATACAAGGAATTCNGAAACTCGAGCTCTGGG TCTTAAGAGGCAGTTTGAGATGGTATCAACTTATATACAAGGAATTCNGAAACTCGAGCTCTGGG
] §	8	CACACCAGCTCAGGAAAGTCTTTGCTCTACCGCTGTTTTAAACATTTCAGAAGCCAGCATCCTGC
as of	AY014898	CCCTCCGACCACTANGNTTTGTCTGAATAAAACAGGAAGTGATTCTTATCCCTGGTTCTCAGGGA
A.S.	S	AGGGATTAGCATTCAGTTCTTGTTTACATTTTTACTAACTGCTGCCCTCTTTGTGNTACTTT
당共	I ~	GTGCTCTTTGTTGACATGATCAACTCNTATTGTGATGNAAGCAACCTGNGGGCANGCGTTCAGGT
##		COCCOCOCOCOCOCOCOCOCO A ACCADACTICA CAPTITUCCOCOTTT TGGGTNGAAAGAGGCCATGTGTNUCTA
Inositol polyp multikinase	1	GCCCNAAGCCNAATGTGGAACCACNCCCGANAATTTAAAGAAAATAAANNCAAAATGNAGGCNGG
Ä	1	TTN
	╄	TTGGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAAT
ء ا	1	TCGCCCTTCGCGGGATCCGGAGCCTCGACCTCTGCATGCCCTCACCCGTGGCCAGGGAGCCTGTG
growth ding 1	i	TCGCCCTTCGCGGGATCCGGAGCCTCGACCTCTCCCGCTTCTCAGCATGAAGAGGCAAAGGCT TACTAGAACCTGCCGCACCGCCACGAGCAGCTTGTCCGGTTCTCAGCATGAAGAGGCAAAGGCT
sulin-like grow factor binding protein 1	1	GCTGTGGCCTCTGAGGATGAGCTTGCCGAGAGCCCAGAGATGACAGAGGAACAGCTGCTGGATAG
	L _	CTTCCACCTCATGGCCCCATCCCGTGAGGACCAGCCCATCCTGTGGAATGCCATTAGCACCTACA
A G L	16768M	CCACCATCCCCCCCCCCCCCACATCACTCACCTCCAAGAAATGGAAGGAGCCCTGCCAACGGGAACTC
11.73	68	TATAAAGTGTTAGAGAGATTAGCTGCCGCTCAACAGAAAGCAGGAGATGAGATCTACAAATTTTA
1 5 5 K	ĮΣ	TO TO COLD A A CTICCA A CA A CA A TO CATTOTATCA CAGCAAA CAGTGCGAGACATCTCTGGATGGAG
T S S	1	IN A COMOCICOMORE TRACEMONTATION AND A TOTAL PROPERTY OF THE CONTRACT OF THE C
Insulin-like factor bin protein	1	AAGGGCGAATTCCAGCACACTGGCGGCCGGTACTAGTGGATCCGAGCTCGGTACCAACTTGATGC
l A	1	ATAGCTTGAGTATTCTATAGTGNCACCTAAATAGCTTGG
		WINGCITOUGITICIALUGIONOCOTTERITION

		GCGAATTGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCG
Insulin-like growth factor binding protein 3	M33300	CCTTCGCGGGATCCCTGAAGGCGCTGCTGAATGGCCGGGAAACACCACTGAGTCTGAGGAGG CAGCAACCTGAGTGCCTACCTCCCCTCC
Integrin betal	2309	TTGTGAATTGGCCCTCTAGATGCATGCTCGAGCGCCCCCAGTGCAACCTGTGAGACCTGT GCCCTTCGGATCCGCTTGTAAGTGCACAGATCCCAAGTTCCAAGGGCCAACCTGTGAGACCTGT GCCCTTCGGATCCGCTTGTAAGTGCACAGAGCATCCCAATTCAAGTGCAGAGCCTTCAATAAAGG CAGACCTGCCTTGGTGTCTGCAGGAGCTGCCCATTTCAACCTCACTAAAGTGGAAACCAGGG AGAAAAAAAGACACGTGTACACAGGAGTGGACCCTGTGACCCACTGCAAGGAAAGGACATTGATGAC AGAAGTTGCCCAGCCTGTGCAGGTGAACAGCAACGGTGAAGCTCACGTGCATGTTGTGAGAC TGCTGGTTCTATTTCACCTACTCAGTGAACAGCAACGGTGAAGCTCACGTGCATGTTCCCGAATTGTTC TCCAGACTGTCCTACTGGTCCCGACATCATCCCCAATTGTAGCAGGCGTGGATCAGACAGGAGGGAATTT TTATTGGCCTTGCCTCGCTGCTGATTTGGAAACTTTTAATGATAATTCATGACAGGAGGGAATTT GCTAAATTTGAAAAGGAGAAAATGAATGCCAAGTGGAACACGGGTGAAAATCCTAAGCTTTGATG AGGGCGAATTCCAACACACTGGCGGCCGTTACTAGTGGATCCGAGCTCGGTACCAAACTTTGATG CATACTTGAGTATTCTATANTGTCACCTAAATAGCTTGGCGTAAATCN
Integrin beta-4	06009U	NCCCTCTTTGAAAANCGNTTCGTATACATCCATGCTCNAGCGGAACGACAGTGNGATGGATATCT GCAGAATTNTNCCTTATCGCGGGATCCCGGTTCCTGGCCTCAGTGAGAACGTTCCTTACAAGNTN AAGGTGCATGCCCGGACAACAGNAGGGCTNTGNACCCCANCGTNAGGGTATCATCNCCATCGANT NTCATGATGGAGNCCCCTTNCCACAGATNG
Interferon related developmental regulator IFRD1 (PC4)	NM_019242	AACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTCGGC ACGAGGGTGATGATGAAACATGAGGAATTGCTGCTGGCGGAATCTTTGGCACTTCTGTTTGAATTG ACGAGGGTGATGATGAAACACGGGATTTTCCAACAGAAACTGTTAAATTCGGTCCTGAGCGCAT GCCAGAGGAATGGAGGGTCAAAAAGCACCCTATGACACGTTTAAAGAGGCTCTTGGATCAGGGA TGCAGTACCACTTGCAGACAAATGAATTCCTTCGCAATGTATTTTGAGCTCGGACCCCCTGTGATG CTCGATGCTGCAACACTTAAAACCATGAAGATTCCTCGTTTTGAAAGGCATTTATATAAACTCTGC AGCTTTCAAAGCTCGAACAAAAGCCCGAAGCAAATGCCGAGATAAGAGAGCAGATGTTGGAGAAT TCTTCTAGATGTCTGACTTTGATGTCTGTTTTCTAATTTCTTCTTTATTATTTTTTTT
Interleukin-1 beta	M98820	GCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAATGCATGATGATATATCCTCTCTCT
Interleukin-10	102026	TCCAAG GCGAATTGGGCCCTCTAGATGCATGCTCGAGCGCCCCAGTGTGATGGATATCTGCAGAATTCG GCGAATTGGGCCCTCTAGATGCATGCTCCAGCCCCAGTGTGATGATATCTGCAGAATTCG CCCTTATCGCGGGATCCCAGGGCTGCCTTCAGTCAAGTATCTACCACCTGCCCCCGACCAAGGGTT TTACCACTGCAGTCCAGTGCCTCCGGGGACCGTTGCTATCGAAAGAAGAAGTATGAGGCAGACATGTG AGAGGGAACAAGAACCCATCTCTCTGGGGATCCTGTATGGAAAGAAGTATGAGGCAGACACACAC

	_	
Interleukin-18	AJ222813	GCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCG CCCTTATCGCGGGATCCTGGCTGCAATACCAGAAGAAGGCTCTTGTGTCAACTTCAAAGAAATGG CCCTTATCGCGGGATCCTGGCTGCAATACCAGAAGAAGAGCTCTTGTGTCAACTTCAAGAAATGG TGTTTATTGACAACACACTTTACCTTATACCTGAAGATAATGAGACTTCTCTCTC
		AGCTTGATGCATAGCTTGAGTATTCTATAGTGCACCTAAATAGCTTGG
Intracellular calcium-binding protein (MRP8)	118891	TATGANTGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTCG GCACGAGGCTGGTATAAAAGGGAATCACCATGCCTCTACAGGGATGACTTCAGGAAAATGGTCA GCACGAGGCTGGTATAAAAAGGGAATCACCATGCCCTCTACAGGGATGACTTCAGGAAAATGGTCA CTACTGAGTGCCCTCAGTTTGTGCAAGAATAAAAATACCGAAAGCTTGTTCTAAAGAATTGGACGTC AATAGTGACAACGCACAAGGAGTAACAGAGCTTCTGGCCTGGGCTGGGCCTTTGGATATGTCTA CAGAATAAAGTCGTCATATCTTANGAAAAAAAAAAAAAAA
Iron-responsive element-binding protein	NPC 017321	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGGGGAAGACCTTCCAGGCCGTGATGAGGTTCGACACCGATGTGAGGCTCACTTACTT
Jagged 1	L38483	TGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTC GCCCTTATCGCGGGATCCATAGGCTTCTTCCCCTGGGAATACTGATGGATTTTTTTT
Keratinocyte growth factor	x56551	GCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCG CCCTTATCGCGGGATCCTGCTTCCACCTCGTCTGTCTTGTGGGCACCATATCTTTAGCTTGCAAT GACATGAGTCCAGAGCAGACGGCCACGAGCGTGAACTGTTCTAGCCCCGAGCGACACACGAGAAG TTATGACTACATGGAAGGAGGGATATAAGGGTGAGGAGATGTTCTGTCGCACCCAGTGGTACC TGAGGATTGACAAACGAGCCAAAGTTGAAAGGGACCCAGGAGATGGAAAGCTAACATCATG GAAATCAGGACTGGCAGTTGGAATTGTGGCAATCAAAGGGGTGGAAAGTGAATACTATCTTGC CATGAACAAAGAAGGAAGCTCTATGCAAAGAAAGAATGCAATGAGAACTTCAAAGAAC TGATTCTGGAAAACCATTACAACACCTATGCATCAGCTAAATGGACACACAGCGGAGGGGAAATG TTCGTGGCCTTAAATCAAAAGGGGCTTCCTGTCAAAGGAAGCTTGCCAAAGGCGAATTTCANCA CACTGGNGGGCGTTCTATNGGATCCNGCTCTGNCCCCNCTNGATGCATATCTNGAGNATTCTATA TGGN

		TO COORDINATION OF THE COO
Liver fatty acid binding protein	V01235	TIGMNATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTC GCCCTTAGTACCAAGTGCAGAGCCAAGAGAACTTTGAGCCCTTCATGAAGGCGATGGGTCTGCCT GAGGACCTCATCCAGAAAGGGAAGGACATCAAGGGGGTGTCAGAAATCGTGCATGAAGGGAAGAA AGTCAAACTCACCATCACCTATGGGTCCAAGGTGATCCACAATGAGTTCACCTTGGGGAGGAGT GCGAACTGGAGACCATGACTGGGGAAAAGGTCAAGGCAGTGGTTAAGATGAGGGTGACAAATAAA ATGGTGACAACTTTCAAAGGCATAAAGTCCGTGACTGATTCAATGGAGACAAATCACCAATAC CATGACACTGGGTGAAGGCCGAATTCCAGCACACTGGCGCCGTTACTAGTGGATCCGAGCTCGG TACCAAACTTGATGCATAGCTTGAGTATTCTATAGTGTCCCAAAATAGCTTGGCGTAATCATGG TCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACCAGCCCGGAAG CATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTACTCCATTAATTGCGTTGCGCTCCTTG CCCTTTTCAGTCNGGAAACCTTG
Low density lipoprotein receptor	X13722	GCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCG CCCTTATCGCGGAATTCGACATGGCTGGCAGAGGGGACGAGGTGCAGCGCACGGTGTGGGGTTC TTGTCCATCTTCCTCCCCCATTGCACTGGTGGCCCCCCTTGTCTTCGGGGCCACCGTGTGTGGAG GAACTGGCGGCTGAGGAACATTAACAGCATAAACTTTGACAACCCAGTCTACCAGAAGACCACGG AGGACGAGATCACATTTGCCGCAGCCAGGATGGCTATACCTACC
Macrophage inflammatory protein-l alpha	U22414	GCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCG CCCTTATCGCGGGATCCTGGCGCTCTGGAACGAAGTCTTCTCAGCGCCATATGGAGCTGACACCC CGACTGCCTGCTGCTTCTCCTATGGACGGCAAATTCCACGAAAATTCATTGCTGACTATTTTGAG ACCAGCAGCCTCTGCTCCCAGCCGGGTGTCATTTTCCTGACCAAGAGAAACCGGCAGATCTGCGC TGACCCCAAAGAGACCTCGGGTCCAAGAATACATCACTGAGCTGGAACTAAATGCCTGAGATTAGA GGCAGCAAGGAACCCCCCAAACCTCCGTGGGCCCCGTGTAGAGCAGGGGCTTTGAGCCCCAGAACAT TCCTGCCACCTGCAAATCTCCCCTCCTATAAGCTGTTTTGCTGCCAAGTAGCCACTCCAGGGAC TCTTCACTTGAATTTTTATTTAATTTTAATCCTATTGATTTAATATTATATTTTATTTTATTTTATTTTATTTTATTTT
Macrophage inflammatory protein-2 alpha	U45965	CCGCCAGTGTGTGGAATTCGCCTTTGNCGGATCCGCCAGCTCCTCAATGCTGTACTGGTCCTTGC TCCTCCTGCTTGCCACCAACCATCAGGGACAGGTGAGACTCGAGGCTGACATTCTTGGAGGAGC CTCAGGTGGGCGAGCCATGCCCAGGCCCTCTGACCCACTCTCTTCTCCTACAGGGGTTGTTGTG GCCAGTGAGCTGCGCTGTCAATGCCTTGACGACCCTACCAAAGGTTGACTTTCAAGAACATCCAG AGCTTGACGGTGACCCCTCCAGGACCCCACTGCGCCCAGACAGA
Macrophage metalloelastase	x98517	CCAGCTTGGGACCGAGCTGGGATCCACTAGAACCGGCCGCCAGTGTGCTGGAATTCGCCCTTTTG GGAGTCCAGCCACCAAACATTACTTCAATTTCTTCCATGTGGCCAACTATCCCATCTGGTATTCA AGCTGCTTATGAAATTGGAGGCAGAAATCAACTTTTTCTTTTTTAAAGATGAGAAGTACTGGTTAA TAAACAACTTGGTACCAGAGCCACACTATCCCAGAAGCATACATTCTCTGGGCTTCCCTGCATCT GTAAAGAAGATTGATGCAGCTGTCTTTGATCCACTTCGCCCAAAAGGTCTATTTCTTTGTGGATTAA ACAATATTGGAGGTACGATGTAGAGGCAGAACTCATGGACGTGCTTACCCCAAGCTGATTTCTTA CACACTTCCCAGGAATCAGGCCAAAAATTGATGAGCTCTTATTTCAAAAGGCACTACTACATC TTCCAAGGAGCCTACCAATTGGAATATGACCCCTTACTGCATCGTGTCACCAAAACATTGAGCAG TACGAGCTGGTTCGGTTGTTAGGAAGAAAAAGGGCGAATTCTGCAGATATCCATCACACTGGCGGC CGCTCGAGCATGCATCTAGAGGGCCAATTCGC

Major acute phase protein alpha-1		GTTGGTACCGAGCTCGGATCCACTAGTACGGNCGCCAGTGTGCTGNAATTCGCCCTATCGCGGGA TCCACACAATTGCTGGCTTCTCACAGAGCTGTGACCTTTATCCAGGAGATGGTTTGTTT
Major basic protein	D50568	GCGAATTGGCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGC CCTTATCGCGGGATCCTGTCCCTGGAGGAGGAGGAGGAGGAGAGAGGAGGAGAAGAAGGTTCTGGAAG TGAAGGTGCTCTTGGAAATGAAGGAGCTGTCTCAGGTCAGGATGACAGATGAGAACCTTCAGT GCCCCAAGGAGGAGACACAACGAGTCTGATGGGTGACTCTGGATTCAAGACTGGTCGCTACCTC CTAGTCAGGAGGCCTGAGGTGCTTTAACAAAGCTCAGTTTGTCTCGCGAGCTGCTACCGGGCAC CCTTGCCTCCATCCACAGTTTCAGTGTTAACTTCCGAATCCAGTCCTTTGTCAGGGGAATCAACC AGGGTCAAGTCTGGATTGGAGGCAGGATTGTGGCTGGGTGCCTACAACGCTTCCGATGGATT GGAAGCTCTTTGGAATTTTGCATACTGGGCTGCTGCGAGCCTCCGCGGCGTGCAGATG TGTGACCCTGTGTACCCGAGGAGGCCACTGGCGCGCGTTTTCTAGTAGGATCCAAACTTG GCCNAAAAGGGCGAAATTCCACCACACTGGCGGGGCCGTTTNCTAGTNGGATCCCCAANCTTCGGT ACCCAAC
Malate dehydrogenase, cytosolic	AF093773	TCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGCCCTCGAGGCCAAGAAT TCGGCACGAGGCCTCGTGCCCCCAAGGAGAACTTCAGTTGCCTGACTCGATTGGAC CACAACCGAGCCAAAATCTCAAATTGCTCTTAAACTCGGTGTAACCGCTGATGATGTAAAAAATGT CATTATCTGGGGAAAATCATTCATCAACCCAGTATCCAGATGTCAATCATGCCAAGGTGAAATTGC AAGGAAAAGAAGTTGGTGTATGAAGCCCTCAAAGACACGACAGCTGGCTCAAAGGAGATTCATC ACGACTGTGCAGAGAGGTGGTGCTGCTTCATCAAGGCTCGGAAGCTGCCAAGTGCATGTCTGC TGCGAAGGCCATCTCGGACCACATCAGAGACATCTGGTTTGGAACCCCGGAGGGCGAGTTCGTG CGGATGGGCGTAATCTCTGATGGCAACTCCTATGGTGTCCCTGATGACCTGCTCTACCCT GTCGTGATCAAGAATAAGACCTGGAAGTTTGTTGAAGGCCTCCCCATTAACGACTTCTCCCTG GAAGATGGACCTGACAGCAAAGGACTGACCGAGGAAAACGACTTTTGAGTTTCTCCCT CGCATGACTACACAGTCGTTTGACGTCAGCAAACAN
Matrix metalloproteinase-1	X91785	TTGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATT CGCCCTTATCGCGGGATCCGGTACTGCAGTGGGCCTTGCTGTCTTCTTTTAGACGCCATGGG ACACCCAAGCGACTGCTTTACTGCCAGCGTTCACTGCTGGACAAGGTCTGACCCCACCACTGGC CCACCCGCTTCTACCACAAGGACTTTGCCTCCTCCGAAGGCAGTGGCAGCCGGTGGTGGCAGGTG GGCTGTTCTACCACAAGGACTTTCCTCCCTTCAGCCCTCCCT
Methylacyl-CoA racemase alpha	NM_012816	CTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGATAAAAATGGCTGTCCTCTGAGGCATTCTAGAGCTCACTTAAAAGGGGTGTTCAA TTTGCTGTCCTTGGTGCAGGTGCCTGTCAAAGATTGGCAGAGCGGTGAGAACCCATACCCTCC CCTGAACCTCCTGGCCGACTTTGGTGGCGGTGGCCTCATGTGCACATTGGGCATTTTGCTGGCTC TCTTCGAACGCACGCGGTCTGGCCTAGGGCAGGTCATTGATGACATGGTGGAACGCAC TACTTAAGTACTTTCCTGTGGAAAACTCAGGCCATGGGTCGTGGGCACAGCCTCGAGGGCAAAA CCTGTTAGATGGCGGGGCACCTTTCTACACAACCTACAAGACCGCAGATGGGGATTCATGGCTG TAGGTGCAATAGAACCCCAGTTCTACACACCTGCTTAAAGGACTTGGACTTGAGTCTGAGGAA CTCCCCAGCCAGATGAGCATAGAAGATTGGCCAGAAATGAAGAAATTTGCAGATGTTTTGC AAGGAAGACTAAGGCAGAGTGGTGCCAGATCTTTGACGGACAGA

MC class I antigen RII.Al(!) alpha- chain	_	TCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAAT TCGGCACGAGGCATAAATGACATAGGTTTCCATGTTGGAGTCGGTGGATAGAGAAGCCTCCCATC TCTGGGTAAGCGGCTCAGGCAGCCCCTCATGCTCCACACGCCATGTGTAATTCTGCTCCTTCCCA AGTGGCACCACCACAGATGCCCACTTCTGGAAGGTTCCATCCCCTGCAGGCCTGGTCTCCACAAG CTCCATGTCCTGGGTCAGGTCCTCCCCATTCAACTGCCAGCTCAGGAGATGTCAGCAGGGTAGA AGCCCAGGGCCCACCTCAGGGTGACATCACCTTCAGGTCTGGGGTGAAGGGTCACATGTGCC TTTGGGGGATCTAAGCGCAGCAGCGTCTCCTTCCCGTGCTCCAGGTATCTGCGGAGCCACTCCAC GCACGTGCCCTCCAGGTAGGCCCTGAGTCTCTCTGCAACACCAGCCCGATCCCACTTGTTCCGGG TGATCTGTGCCGCAAAGTCCGCCGCGTCCACGTCTTCAGGTCTTCATTCA
Mitogen activated protein kinase (P38)	U73142	CCCAGTGTGCTGGAATTCGCCCTTCGCGGGATCCTTAAATTTCAGGCACTTTGTGCTATATGAGG ACCCATATATTTAAAGCTTTTTGTGCAGTAAGAAAGTGTAAAGCCAATTCCAGTGTTGGACGAAA ACCCATATATTTAAAGCTTTTTGTGCAGTAAGAAAGTGTAAAGCCAATTCCAGTGTTGGACGAAA CAGGTCTCGGTATTTAGGTCAAGGTGTCTCCATTCTCTATCAGTGCAGAGACATGCAGCCTTCACCGCCT GGCAGGGTAGGACCCTGCATCATCTGGAGCCCAGAAGGAGGCCGACTGGCCAGGCCTTCACCGCCT CAGTATGCAGCTCCAGCTTTATTTTAT
Monoamine oxidase A	000688	TGGTGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGATATCTGCAGAATT CGCCCTTCGCGGGATCCGAGAAGAACTGGTGTGAGGAGCAGTACTCCGGGGGCTGCTACACAGCC TACTTCCCTCCTGGTATCATGACCCAGTATGGAAGGGTGATTCGCCAGCCA
Monoamine oxidase B	M23601	GTGATCAAGCGAGCTNTAGCATTTAGGTGNCACTATAGAATAGGGCCNTNTAGATGCATGTTCGA GCGCCCGCGATATCGAATTCGCCTTTCGCGGGATCCATTTGGCAGCCAGAACCAGAATCTGTGGA TGTCCCAGCAAGACCCATTACCAACACCTTCCTGAAGAGACACTTTGCCTTCTGTACCAGGTCTA CTAAAGCTGCTTGGATTGACCACCATCTTGTCAGCAACAGCTCTTGGTTTCCTGGCCCACAAAAA GCGTCTGTTTGTACGTTTCTAAAGATGGGCTTTAGGACCATATCCACAGGTTTCTCATTCAGTGT GTCACAAAAGCTTTTGGAAGGAGTTGGGATAAAAATCTGACAAAGGTGCAGAGATTATGAGTGA GAAAGCACAGTAACTTGGTCTCCATTTTGGCTATCTTTTAGCATCGCTGTGGTCCACTCATTTTC AACTTTCCTGCACTCTGAATATTGAGAACAGATACACAGGCTCTCTCACAACCTACCT
Monocyte chemotactic protein receptor (CCR2)	U77349	GCGAATTGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGC CCTTATCGCGGGATCCTGATCAGCATACTTGTGGCCCTTATTTTCCAACAATCTGGAAGAATTTC CAAACAATAATGAGGAATATCTTGAGTTTGATCCTGCCCCTACTTGTCATGGTCATCTGCTACTC AGGAATCCTCCACACCCTGTTTTCGCTGATGGAATAGAAAAAAAGAGGCATAGGGCTTGAGGCTCA TCTTTGCCATCATGATTGTCTACTTTCTCTTCTGGACTCCATACAATATTGTTCTTTCCTGACC ACCTTCCAGGAATTCTTGGGAATGAGTAACTGTTGGTTGACATGCACTTAGACCAGGCCATGCA GGTGACAGAGGCTCTTGGAATGACACACTGCTGCGTTAATCCTATCATTTACGCCTTTGTTGGTG AGAAGTCCCGAAGGTATCTCTCCATATTTTTCAGAAAGCACATTGCCAAAAATCTCTGCAAACAA TGCCCAGTTTTCTATAGGGAGACAGCAGACCCGAGTGAGAAGCTTTGGCCAAGGGCGAATTCCAGC ACACTGGCNGGCCGNTACTAGTGGATCCGAGCTCGGNNCCCANCTTTGAN

Mullerian inhibiting substance	898336	TATGACATGATTACGAATTNANTACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGACAGGGACAGATGGCCTGTGCGCGCTGCGCGAGCTGAGCGTGGACCTTCGAGCAGA GCGCTCAGTGCTCATCCCGGAGACCTACCAAGCCAACAACTGCCAAGGCGCCTGTGCATGGCCAC AGTCGGACCGTAACCCACGGTACGGGAACCACGTGGTGCTGCTGCTGCTAAAAATTGCAGGCACGCGG GCCGCCCTGGGTCGCCTGCCCTGTGTGCCCCACTGCCTAACACGGCAAGCTGCTCATCAGCCT GTCGGAGGAGCACATCAGCGCGCACCACGTGCCCAACATGTGGCTACCGAATGCGGCTGCCGGT GATGTCCGCCCTACCCCATCCCCCGTGTCCCCAGTCAGCCCCCAATAAAGATTAGCAAGCA
Multidrug resistant protein-1	M81855	GAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCC GAATTGGGGCATCCTGGAACAGTGTTTCTAGATGGCAAAGAAATAAAGCAACTCAATGTCCAGTGG CTTCGCGGGCATCCTGGAACAGTGTTTCTAGATGGCAAAGAAATAAAGCAACTCAATGTCCAGTGG CTCCGCGCCCACCTGGGCATTGTGTCCCAGGAGCCCATCCTGTTTGACTGCAGCATCGCCAAGAAC CATTGCCTACGGAGACAACAGCCGTGTCGTGT
Multidrug resistant protein-2	L15079	ATCCCATGGCCGACCAGTGTTCCTCGATGGTCAGNAAGCAAAGAACTCAATGTCCAGGGTCCG AGCTCACTTTGGCATTGTGTCCCAGAAGCCCATCCTGTTTGACTGCAGCATCGCCGAGAACATCG CCTACGAGACANCAGCCGTGTCGTGTCTCAGGATGAGATTGTGAGGCGGCCAAGGAGGCCAACAT CCACCCCTTCATTGAGACACTGCCCCAAAAGTATGAAACAAGAGTAGGAGACAAGCCTCGGGTCCTA TCTCTGGAGGCCAGAAACAGAGGATTGCTATCGCCCGAGCCCTCATCAGACAGCCTCGGGTCCTA CTGCTGGATGAAGCCACGTCGGCTTTGGACACTGAGAGTGAAAAGGTCGTCCAGGAAGCGCTGGA CAAAGCCAGGGAAGGCCGCACTGCATTGTATCGCCCACCCCTCTCCACCATCCAGAACGCAG ACTTGATCGTGGTGATCGACAACGGCAAGGTCAAGGAGAAGCTTGGCCAAGGGCGAATTCTGCAG ACTTGATCGTGGTGATCGACAACGGCAAGGTCAAGGAGAAGCCTTGGCCAAGGGCGAATTCTGCAG ACTTGATCGTGGTGATCGACACGCTCGAGCATGCATTCTAGANGCCCGGNTACNAGNAAGNNCAN
Multidrug resistant protein-3	AF072816	GGGGCGAATTGGGCCTCTAGATGCATGCTCGAGCGCCCCAGTGTGATGGATATCTGCAGAAT TCGCCCTTCGCGGGATCAGATCTTCATTGACGGGCTCAATGTGGCACAATTTGGCCTCCATGACC TGCGTTCACACACCATCATCCCTCAGGACCCCCATCCTGTTCTCGGGCACGCTGCGCATGAAC CTCGATCCCTTTGGCCGTTACTCGGACGCGGACATCTCGAGGACCCTGGAGCTATCCCACCTGAG TGCATTTGTGAGCAGCCAGCCGACAGGCCTGGATTTTCAGTGCTCTGAGGGTGGGATAATCTCA GTGTTGGCCAGAGGCAGCTCGTGTGCCTAGCCCGAGCCCTGCTCCGAAAGAGCCGTGTCCTGGTT TTAGACGAGGCCACCGCTGCCATTGACCTGGAGACTGATCATCCAGGGTACCATCCGTAC CCAGTTTGAAGACTGCACTGTACTGACCATCGCCCACCGGCTCAACAATCATGGACTACAACC GGGTCCTGGTCTTGGACAAAGGAGTAGTAGCTGAATTTGATTCTCCAGTAAACCTCATTTGCAGCT GAAGCTTGGCCAAGGGCGAATTCCAGCACACCTGGCCGCCTTACTAGTGGATCCGACTCGGTACC AACCTTGCATAA
Mx1 protein	NM 017028	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC TATGACATGATTACGAATTTAATACGACTCACCAGGGAGGCTCACAACCGCATCTCCAGCCACATTCC GGCACGAGGCAGCATCTGAATGCCTACCGCCAGGAGGCTCACAACCGCATCTCCAGCCACTTCACCACTACCAGTATTTCATCTTGAAGATGTTTGCTGAGAAGGGCATGCTCCAGC TCCTGCAGGACAAGGATTCCTGCAGCTGGCCCAAGCTCAGCCAAAGTCAACACCAAATTCCCTGG AGATTCCTGAAGGAGCAGCTTGCCAGGCCCAAGCTCAGCCAAAGTCCCTGGC TTAAGCTGGCCCTGTCCTTTTCCTGTCTCTCTGGATAATTCAGGGACAGAAGGGCTCCTGCC TTCCCTTCAGCTAACCACTACCCTTTATCCTATTATAAATATTAGTTCTAAGATGTAAGGAGCT TTCTGTTCACTCTGAGATGATAAAGAGAAAAGAGATTCTCAAAACTCAGCAATTAGATGAGTAGGA GAAGCCACTTTGCTGATAAGACAATAGCTTCAGTCTGAGTACCATTCCTATTCACCATATCCTCA TTTTTAGAACCCTGCCAGGAACAAATATTTGCTGAACAAATGGGCCATGATGTTTGGGAGCTTCCT ATAGCATTTCTTAATAAACTACNTTTCTATGGAAANNGGGGGGGGGG

Myelin basic protein	M25889	PTTGAGAATCGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAAT TCGCCCTTATCGCGGAATTCCCTCACAGCGACACGGATCCAAGTACTTGGCCACAGCAAGTACCA TGGACCATGCCCGGCATGGCTTCCTCCCAAGGCACACAGAGACACGGGCATCCTTGACTCCATCGGG CGCTTCTTTAGCGGTGACAGGGGTGCGCCCAAGCGGGGCTCTGGCAAGGACTCACACACA
Na/H antiporter (APNH1)	98340	CNAANGEGNATTAAATTTGGNAACCCAAGGTTTTTCCNACCCCCCCNNTTTTAAANCCCNNCCNN CNAANGEGNATTAAATTTGGNAACCCAAGGTTTTTTCNACCCCCCCCCNNTTTTTAAANCCCNNCCNN GGCCNAAATNAANTNANCCCCCNAAAAANGNAAAANCNTTCNNCCCCCANTTTTTTTTTT
Na/K ATPase alpha-1	M14511	TANCENINE ANNEGECCETCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCCT TCGGTTTCCTGCCCTTTCACCTGTTGGGCATCCGAGAGACCTGGGATGACCGCTGGATCAATGAT GTGGAGGACAGCTACGGGCAGCAGTGGACCTACGAGCAGAGAAGATTGTGGAGTTCACCTGCCA CACGGCCTTCTTTGTCAGTATCGTGGTAGTGCAGTGGGCTGACTTTGATATCTCTCAAGACCAGAA GGAATTCTGTCTTCCAGCAGGGAATGAAGAACAAGATCTTAATATTTGGCCTTTTGAAGACCA GCTCTTGCTGGTTTCCTGTCCTACTGCCTTGGATGGGTGCAGCCCTTAGGATGTATCACCAGCAGAA ACCTACTTGGTGGTTCTGTGCCTTCCCCTACTCCTTCTCATCTTCGTGTATGACGAGGTGCGAA AGCTCATCATCAGGCGAACGCCCTGGGGGGGGTGGAGAAAGCTACTACTACTAGCCCACTGCC CTGCACGCCGTGGAACATTGTGCCACACACTGCACCTTACCCCTAAGGGCGAATTCCAGCACACTG CGGCCGTTACTAGTGGATCCGAGCTCGGTACCAAGCTTGATGCATAGGTTTCATTATAGTG NCACCTAAATAGCTGGCGTAATCATGGGCATAGCTGTTNCTGTGAA
NADP-dependent isocitrate dehydrogenase, cytosolic	L35317	TCTCNTATGACATGATTACGAATTTAATACGACTCACTATACGGAATTTGGCCCTCGAGGCCAAG AATTCGCCACGAGGGGAAGGTTTTTTTAATTGTATTTTACTGTGTAATAGCAGTCTAGGAATTGT AATTCGCCACGAGGGGAAGGTTTTTTTAATTGTATTTTACTGTGTAATAGCACTAGGAATTGT GTTAGTATCTGTTCACAATTAACTGTCACTTTTTCTTTGCTCTAATGTAAATGACCAAAATCACA AATGCTCCAAGGGTGAACAATCACTACACTA
NADPH cytochrome P450 oxidoreductase	M10068	NGNGNGTTGCCGGNANGNNGTNNCCNTNGNGANCNANGATGANAAAAAAAGNGNGTNNCNGAGG NGNGNGNTTGCCGGNANGNNGTNNCCNTNGNGANCNANNANNCAGNANNGGAGAGCCGN NGGNNYTNNGAGAGACNNCNACACNAANNAAAGNGTCCGTCGCCAGCNNCGCCCCAGTMNNCGC CNCCGGAAAACNNNGGAGCGCNNNGGTANGACNGCNGTCGNGGCAGGCCGGCCCNGGTGGNAGC CNCCGGAAAACNNNGGAGCGCNNAGTCNCGGGANCANNGNNGGGGGNCCCNGACCNACNAGGGNTCA AANCTCCANAATTTCGNCCNNAGTCNCGGGANCANNGNNGGGGGNCCCNGACCNACNAGGNTCA NTNTTAGAAAGAAGAAANAAGAATNCCGANGTTNAGNAAGATTTCAAAACAACGGGCCCCACN CGTCAAAGNAGAAGCAGCTTNGTGGAAAAGAATNAANAAAACGGGAAAGGAANCNNTATNGTANT NTATGGCTCCCAGACGGGAACCGNTGAGGAGTTTTTNCAACCGGCTGTNCAAAGGAATGNCCNCC CGCTACAGATCGACGGGAACCCGCAGACCCTGAAGAGTATGACTTGNNCGNCCTGAGCAGCCT CGCTACAGATCGACAAGTCCCCTGGTAGTCTTCTGCATGGCCACATACGGAGAGGGGCGAACCCCAC GGACAATGCGCAGGACTTCTATGACTGGCTGCAGGAGACTTCACTGGGGTCAAGT TTGCTGTATTTGGTCTTGGGAACAAGACCTATGAGCACTTCAATGCCATGGCAAGTTGGAC CAGCGGCTGGAGNAGCTTGGCCCCAGCGCATCTTTGAGTTGGCCTTGTTGATGATGACGGGAA CTTGGAAGAGGATTTCATCACGTGGAGGGAGCAGTTCTTGGCCAGCTGTTGCGAGTTCTTTTGGG TAGAAGCCACTGGGGAGAGTCCAGCAGTTCTTCGCCAGTTTTTTGGGG

		TO SCHOOL STATE OF THE STATE OF
NADPH cytochrome P450 reductase	M12516	GGCAANTAGAAGGCACAGTCGAGGCTGATCAGCGAGCTCTAGCATTTAGGTGACACTATAGAATA GGGCCTCTAGATGCATGCTCGAGGCGCCGCGATATCGAATTCGCCCTTCGCGGGATCCAGGAAC CGGCCCTCTAGATGCATGCTCGAGGCGCCCCGGCATATCGAATTCGCCCTTTCAGTTCCGCTTG CAGCAGGCGAGAATGCCGCGCCCCTGGTACCCATGTTCGTGCGCAAATCTCAGTTCCGCTTG CCTTTCAAGTCCACCACACCTGTCATCATGGTGGGCCCCGGCACTGGGATTGCCCCTTTCATGGG CTTCATCCAGGAACGAGCTTGGCTTCGAGAGCAAGGAGAGAGA
N-cadherin	AF097593	CCGTTACTAGIGGATCCGACTCGAGCGCCCCCAGTGTGATGGATATCTGCAGAATTCG GCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGACAGAGGGCCTATCCACGC CCCTTGGAGCCTGATGCCATCCAAACCTGTGGGAATCAGACGGGAGAGGCCTATCCACGC TGAGCCACAGTATCCAGTCCGATCCGCAGCCCCACCCCTGGGGATATTGGGGACTTCATTAATG AGGGCCTTAAAGCTGCTGACAATGACCCCACGGCGCCACATATGACTCCCCAGCAGCGGGGGGA TATGAGGGCAGCGGCTCCACGGCTGGCTCTTGAGCTCTCTAACTCCTCCAGCAGCGGGGGGA CCAGGACTATGACCTGAATGACTGGGGACCCGCTTCAAGAAGCTTGGCCGACATGTATGGTG GTGGTGATGACTGAACGGCAGGACGGACTTGGCTTTTTGGACACGTATGAACAGTTTCACCTGATA TTCCCAAAAAGCATACAGAAGCTTAGGCTTTAACTCTGTAGTCCACTAGCACCGTGCTTGCT
Nerve growth factor receptor	X05137	GCGATTGGGCCTTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGC GCGATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGC GCGATTGAAGCTGCCCCCAGAAGACTACAGTGCAAAAGACAGAC
NGF-inducible anti- proliferative putative secreted protein (PC3)	M60921	TTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAGAAAAAAAA
N-hydroxy-2- acetylaminofluorene sulfotransferase (ST1C1)	AT030692	GGGCCGCAAGCTTATTCGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGCTTACTATTACTTCTCAAGAATGAATAAAATGCTGCCTGACCCTGGTACCCTGGGA GAATACATTGAACAGTTCAAAGCTGGAAAAGTGCTGTGGGGCTCCTGGTATGACCATGTAAAGGG ATGGTGGGATGTGAAAGACCAACACCGTATTCTGTATCTCTTCTATGAAGACATGAAAAGAGAC CTAAAAAGAGAAATTAAGAAGATAGCAAAAATTCCTGGAAAAAGACATATCAGAGGAAGTTCTTAAT AAAATCATCTACCACACCTCCTTTGATGTAATGAAGGAAAACCCAATGGCCAACTATACCACTCT ACCCTCCAGTATCATGGACCACTCTATATCTCCTTTCATGAGGAAAGGGATGCCTGGAGACTGGA AGAACTACTTTACTGTGGCACAAAGTGAGGATTTTGATGAAGACTACCGGAGAAGATTCCTG AGCAATATTACCTTCCGCACAGAGATCTGAGAGCAGTGAGGAAGAGGGAAGCCCTAGATTTCCAT ACTATATGCTTTAGCTATTTGAGCTTCCATTCCTGAGTTTTTTTATTGTCCTGNGATACTATTTCAT CAAATGNAAATCAGACCTTCCACACTAGGTGATTATTCTTATTGATACC

Notch 1	X57405	ACTCAAGTATGCATCAAGGTTGGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTCTGGA ATTCGCCCTTATCGCGGGATCCCTGGGTCGGAGCTTCCTGAGCGGGAGCCCAGCCAG
Organic anion transporter 3		TTGGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGTATCTGCAGAAT TCGCCCTTCGCGGGATCCGCATCCGGTCATCAGGAAATTCATCTGCAGTCCTTGGGGTTATGTAAA AAAGGCCCTGAGTGTGCTAATAAACTACATACTTTTTAATCATGTCAGTAAATTGGCAGTTTCAT CTACTCGATCACAGCCATACCTGGGTATATGGTTCTTCTGAGGTGTATCAAGCCTGAAGAGAAGT CTACTCGGATTGGATT
Organic anion transporter K1	D79981	TGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTC GCCCTTGTCACCAGGAAACTCGTCCGCAGTCCTGGGGCTGTTAATAAAGGCCCCGAGTGCACCA ACAAGCTGCAGTACCTTTTAATACTATCAGGATTTCTCAGTATCCTCTACTCATTCGCAGCCATA CCTGGATACATGGTTTTTCTGAGGTGTATCAAGTCTGAAGAGAAGTCACTTGGGATTGGAATACA TGCGTTTTGCATAAGAGTATTTGCTGGCATTCCAGCACCTATTTACTTTGGAGCTTTGATAGACA GAACCTGTTTACACTGGGGAACTCAGAAATTGTGCGCCAGGGGCTGCAGGATGTATGATATA AATAGCTTCAGGCGCATTTACCTTGGGATGTCTGCAGCTCTAAGAGGATCAAGCTATCCCTGC ATTTGTTATTGTAATACTTACAAGGAAGTTCTCTCTTCCTGGGAAAATCAACTCTTCAGAAATGG AAATTGCAGAGATGAAGCTCACAGAGAAGGAAAGCCAGTGCACAGATGTCAAGCTTTGCCAAGG GCGAATTCCACACACACCTTACTAGTGGATCCGAGCTCGGACCAAGCTTGACATAGCT TGAGTATTCTATAGGNCACCTAAN
Organic anion transporting polypeptide 1	L19031	ATAGAATACTCAAGCTATGCATCAAGTTGGTCCGAGCTCGGATCCACTAGTACCGGCCGCAGTGT GCTGGAATTCGCCCTTCGCGGGATCCAACTCGTCTGCAGTCCTGGTCTTGTAAAAAAAGGTCCT GAGTGTGCCAACAGGGCTGCAGTACTTTTTAATCTTAACAATAATTATCAGTTTCATCTACTCACT TACAGCCATACCTGGGTACATGGTTTTTTTTGAGGTGTCAAGTCTGAAGAGAAGTCACTTGGAG TTGGATTACATACATTTTGCATAAGAGTATTTGCTGGTATTCCCGCACCTGTTTACTTCGGCGCT TTGATAGACAGAACCTGTTTACATTGGGGAACCCTGAAATGTGGTCAGCGAGGGGCATGCAGGAT GTATGACATAAACAGTTTCAGGCACATTTACCTGGGGTTGCCTATAGCACTAAGAGGATCAAGCT ATCTGCCTGCCTTCTTCATTCTGATACTTGTGAGGAAATTCCAGTTTCCCGGGGACATTGACTCT TCAGCAACTGATCATACAGAGATGATCCTCGGAGAGAAGCCAACGAGACACCAAGAGTGACAAGG TTGGCCAAGGGCGAATTCTGCAGATATCCATCACACTGGCGGCCGCTCGAGCATGCAT
Organic cation transporter 2	D83044	GAATTGGGCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCCTTATCGCGGGATCCTTGTTGTTGTTGTTCTCCTCCATGTTGACATTGGCGGCATCATCACGCCTTATCGCGGGATCCTTGGTTGCTCTCCTCCATGTTGTACTTTGCTGTGTTCCTTTCCTCGTCTACCGTCTCACGGACATCTGGATGAGATTCCCACTGGTTGTTTTTTTCCTGTGGTTGCTTGC

Pancreatic secretory trypsin inhibitor type II (PSTI-II)	1	GNNNNCTNCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGC CAAGAATTCGGCACGAGGGCATGAGAAGACCCCAGTGAGCGAGAAAGGTCACCAAGTGCTGTAGTG GGTCCCTGGTGGAAAGACGGCCATGTTTCTCTGCTCTG
Pancreatic secretory trypsin inhibitor type II (PSTI-II) (alternate clone)	M27883	CAAGAATTCGGCACGAGGCTGAAGAGAAGCACCCTGCACAGTTCTTCTGAGTTTTAGCAGGT CTACAACCATGAAGGTAGCAATTATCTTTCTTCTCAGTGCTTTGGCCCTGGTTTTAGCAGGT CTACAACCATGAAGGTAGTTGGGAAAAAGGCTAATTGCCCTAATTACACTTTTTTTT
PAR interacting protein	U83590	CTATGACACATCCCCCTAGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGGCTTTCTTGGGCATGCTTCAAGGCAAGCAGAAGCTGCAGCCACAGAGCTTGCATC AAGGGAATCACTCGTCTGGCTCCAGTCGCCTCTACGATCTCTACTGCAGGCCATGAACTTGCTT GGAGTGCAGCGTCCAAAGTCAGAAAAGAAGAAGAATGTGAAGAGAGCGAAAAGCTAAAAT CTGAGGGTACCAAAGCGGAAGAAAAAGAAGGATTCTTGCCAGAGACCAAGAAGCGAAAACTTAAAT CTGAGGGTACCACTCAGAAAAGAAA
Peroxisomal 3- ketoacy1-CoA thiolase 2	M32801	GAACCAGCTATGCCATATTACGCCAAGCTATTTAGGTGCACTATAGAATACTCAAGCTATACGTCATC AAGTTGGTACCGAGCTCGGATCCACTAGTAACGGCCCCCCCC
Peroxisomal multifunctional enzyme type II	NM 024392	TACATGATTACTACTTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTCGCCAAGAATTCGCCAAGAATTCGCCAAGAATTCCAACAACTCCAACAACTCCAAGGCCATGACTCCAAGAAGCAATCAGCCAAAGCCAAAGACAAGAACAAAGAATCAAAAAAAA

Peroxisome assembly factor 2	D63673	TTNGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGCCCCCAGTGTGATGGACGGAGTTGTGTC TCAGCTCTTAGCTGAGCTG
Peroxisome proliferator activated receptor alpha	M88592	TTGNGATTGCGCCCTCTAGAGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCG CCCTTGCGCGGATCCTACGGCAATGGCTTCATCACCCGAGAGTTNCTAAAGAACCTGAGGAAGCC ATTCTGCGACATCATGGAACCCAAGTTTGACTTCGCTATGAANTTCAATGCCCTNNAACTGGATG ACAGTGACATTTGCCTTTNTGNGGCTGCTNTNATTNGCTGTGGANATCANGCCTGGCCTTTTAAC ATAGGATACATTNNNAAGTTNCA
RCT-10		TCTCTANNACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGA ATTCGGCACGAGGCAGGATAACACCAACGCCAGGCCTTCACTTGTTCTCCATACTTCTCTACGGT TTTTGAGGTTAACTGTTGTTAAGTGTGAAGTGTTTGCCTAGAATAAGAGCTTAGAACTGTCTTCT AACAATTCTTTTCTGATGACTTGGAGGGGCAACGTAGGGGCCAGATCTTGCAATCACTGAAACTGT TCATCCTCTGAGCCTCAATTATAGCCCTCCACCAGTCCCCACCTATCAAACATGTAACCTAGTT TTACTTATCCCAGCATGGTGATGACTGCTTTTCTTCTCAAGATACCACTTTCTTCATGGCCACTATT AACTTCTATCCATTTCTTGCTCTTCATAAAATACTTCTCAAGGTACCTCAGGATGAAGTGATAAGTT AGCTTTTTGTTACATGTGCCATTCTTCATGGTTTGCCTCAACAATCATTAAACCAATACTCTAGC CATTAATTCAGATACAAAATAAATCCTTAGACAAAATATTTCACAAATTGGTTTTTGACCCAGAAAT CAAAGGATCTCCAATCCTGAAAGTGAATAGACTCTTTGCCTTAAGTAGCCTTACCTATTATTTGCA AAATATGTTATTCTTTCTTTTTTTTTT
RCT-101		CTCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAA TTCGGCACGAGGACCCTGCCCATAACCTTTCCTCTGGTCCTTCTTCCTCTGTCTTCCTCCCC ATCTTTGTACCTGTTCTCCTGTCCTG
RCT-102		TTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGTGAAGATGAAAAGCAAAACAACCTTTTTGATAAGCAAGGTATAGATTTTACATTT TTGTCCTTGCTCCCAATGAAATGGATAAACAAAAATAAAATCTGACAATGCCGTCTCTTCACGGA ATGTTGTTGTGTTAGCCGGACTGAAAGCCCACCTTAATTTTTATATAACGTCTTTAGCTCTTCCT TTGACAGGGCAGGCCTTGTTCTGACTGTTTTGCGCTTCTGACTGTTTAGACACCCAATGACGCATGC ACTGTCCCTCCTTTCTCTCTTTGCCTCTTGGCCTGAGTTTCTTTGTCATCCTCCCTACCCC CACCTCTGTTAGGGTAGATATATCAGCTATGTAAATAGAGCAAAGGAAACGGTATTGTGCATTTGT GGCATTTACGNAGAGTTGCAGTTGTACGCTGCTGAAAACGCANGCTTTTTTGTAACATGTGGTCCT TCCATAAGTACCCNATGTATTTTAGNCTATTTTAGTCGTATTTGNTCNATAAAATATGCAAGCTA TANGGTAAACANANAACAAANAAAAANACCNTTGCGGCCGCCAAGCTTATTCCCTTTAATGAG GGGTTAAATTTTAGCTTGGGCCTGGCCGCCGCCAAGCTTTATTCCCTTTTAATGAG

	TEMPOR COCCUTTO AGAINST
RCT-103	TTATNACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGCTCCGCTTCCCGCTTCCTGCGGTCCTTCGTTTTGAGACAATGTTTCATTATT CGGCACGAGGCTCCGCTTCCCGCTTCCTGCGGTCCTTCGTTTTGAGACAATGTTTCATTATT TAGTGCTAACTGGACCAGAACTCCTGGTGTGGAACAGCTTCCAGTTCACAGATCTTCCGA TCTCTGCCTCTCCAGGGCTGGGATTTTCTTTAAAAAAAAA
RCT-108	TCGGCACGAGGGGCCCAAAGGFFFFFTTTTTTTTTTTTTT
RCT-109	TCTCAAAGTGATTTTTCCCAAGNATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAAT TCTCAAAGTGATTTTTCCCAAGNATACGACTCACTATAGGGAATTTGTCTTCATGGTCTTCT TCGGCACGAGGGAGAAGCTACTAGGCATGTCAAGCAGTCAGCAGGAAGAACACACA GCAGATGAGGTGACACGTCGGGGTCAGTGAGTCCTACATCAGGAAGAAGTACCCCAAACAGCAC GAAATCGGTCCACAAAAGGTGGCTCCGATTCCTCCTTCTCAACCACGCCAGGCCAGCACGTC GAGATTTCTTGTTCCGGGTCCTCAGGGCAGCAAGAAGACTACAGCTGTGCCCTCTCCAACAACTTTGC GGACTCACCTCCCGTGTACCCATATCGGAAGAAGACTACAGCTGTGCCCTCTCAACAACTTTGC CAGATCGTTCCATCCCATGCTCAGATATACCAACGGTCCTCCCCCTCTGAAGCAAGC
RCT-111	AAGTCTTGGGCCC AATCCCCAANCCCCGGAAGGTAAGTTTTAACCCAATCCTTTTTTGTGTNACATTCAAGGAATGNA GGGCACAAGAGCAGTTAAGTAACTTTGCCCCAAAGGCACAGGCAGG
RCT-12	GCTCCAGGCTACGCATCACCTCAGGCTCACCTATAGGGAATTTGGCCCTCGAGGCCAAGAA CNTTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAA TTCGGCACGAGGCTGAATTCAGGTCACCTCAATGATAAGTCTTCGACTTGCCCCAATGTTAGTCC TGCATTCCTAGCTCTTAAGAGATGCAATGACACTTACTGGCTCATTCTTGTCAAGTTGGATGCGG TAGCGGGAGATGAAGGTGGGTTTTCCTGTTCTGTCCACCATCAGTAGAAGGCCATTGAAGCCCCA GAAGCACAGCCCCGGCACGAGGACAACACCTGAGGCACATGGATCTTTTCTTCTGTTGA GGTACCACAGTGGCTCACCAGGAAGGAAAATGAACAAGTCACTAAGTGTCTGTATTTGTTCTGTCT CTCACTGTTCAAGTCCTAGCTATGGAACCTGAACAAGTCACTAAGTGTCTGTATTTGTTCTGTCT TGTCTGTCTCTGTCCCCTTTGCACCGTGTGTGTGTGTGTG
RCT-126	TTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT TTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGCGACTGACTATGTGGATGAGATCAAAAAGATCTCCCCCAAAGGAGTAGACATCGT CATGGACCCTCTGGGTGGGTCGGACACTGCGAAGGGCTACCACCTTCTCAAACCCATGGCCAGC TTGTCACTTACGGAATGGCCAACCTGCTGACGGGCCCCAAGCGGAACCGAGCTGTTGTGCGG ACCTGGTGGAATCAGTTCAGT

128 RCT-127	NTMNNTCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCC AAGAATTCGGCACGAGGCTGTTTGTGGTGTAGGGACAATGGCGCCATTGTTCTTCGCGTCTTCAA AGCAGTTTCCAGAGGAAACAAAGATGGCGGGGAGCTCAAAGCATCCGAGAGAATTCGTGAAGGGA GGAAAGTTGCTTAAAACTTGACCATGTTAAAGTTCTTACTCCTGGCACGTCATGATACTTTCTGC CAGCAGTGAATGCCAGCCCATTGAGATGCCCGTCCTCTGGGAAGCTCCTGGAGCAGAAATGCATG GCCAGTGAGAGGAGACTTCTTGCGAAGGAAAACTGGATGTGATGTTCAGAAAAAAGCAGACAC AAGAAGCAAATACAGAGTATTAGTACTGGGATGTTTGAGATGGGTCTGCATGGCCCTTGCTGTG TCCCTCTTAAACTGTCTAGTGGATGGGACAGCATCTGGTATGGCCTGCAGAGGTTAAGGCCTTGTGT ATACCTTTTGAAGGCTCTATGTTAATGTATGACAGAGTGTTCTATTCTGGGAAGGTTATGGGTGA GCTGAGGATACAACTTTACAGACTAGCACAATGAGTGTACAATTACTGTAAAAAAAGGCAGTTCAC ATTTTTATTGGTTATGAATTGNTTCCTTATTCATCCAACAGTGATCACTTTGGGAGGACAAGAATTC GGCACATGAATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGACAAGAATTC GGCACGAGGATACTATTAGACCCAGCAGCTCTCAAGTGTTTAATGTCTACCTAACCCAAACGAATCA GGCACTCCACGGACATTAATTCAACACCGGAAAGATTCTGGTTGGGCCTTGAGAAACGTTGGGA AAACTACGAAAAGGGTTTTGGGAGGCTTGATGGAGAATTCTGGCCCTAGAGAAGATCTACC CTATAGTCAAACAGTCTAACTACATCTTACGACTCACAAGACTTCACAGAAGAAGATCTACC CTATAGTCAAACAGTCTAACTACATCTTACGACTCACAGAGCTCCACAAGAACTTCAACCAAACGACCACAAGCAC
RCT-128	TATGCTGAATATTCCTTTCATCTGGGCAATCATGAAACCAACTACACGCTACATGTGGCTGAGAT TGCTGCCAATATCCCTGAGGCCCTACCAGAACACAGAGACCTGATGTTTTCTACATGGGATCACA GAGCAAAGGGACAGCTCTACTGTCCAGAAAGTTATTCAGGTGGCTGGTTGGT
RCT-129	TTATGACATGATTATGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGGTGATGGTGATGATCACGTGCCTGTGAGCCACTAGAAGCTGTCAGCCCGCT CCTTCATCAGCCGACACAGCCAGGCCCGGAGGAGGAGACGACGGAGGA
RCT-137	TTATGACATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGGTGATCTCGGTTCGTCGCCACCATGGGGAAGCGACAGCACCAGAAGGACAAGATG TACATCACCTGTGCAGAGTACACTCATTTCTATGGTGGCAGGAAGCCAGATATCACACAGACAAG TTTTCGCCGCTTACCTTTTGACCATTGCAGTCTCTCTCTC
RCT-138	TCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAAT TCGGCACGAGGGTCTGGCCCACCATGGGGGCCCAGAGCCCTCCTGGTGCTTTCTGTTCCTTCTG TCCTCCTGACTGTGGGAGGATTAAGTCCCGTACAGGCCCAGAGTGGTAAGCCATAACACCCCTGG TCTTTCTCTCTCTCCAAGATTTCCTCAGGCTACCCCTTTTCCTTCTAGGTCTCTCTC

	GNGCTAAGNNTATGACATGATTACGAATTTAATACGACTCACTATANNGAATTTGGCCCTCGAGG
RCT-139	CCAAGAATTCGGCACGAGGAAAGGTTTTTTTTTTTTTTT
RCT-14	CNNNCTNNNTCTATGACATGATTACGAATTTAATACGACTCACTATAGGAATTTGGCCCTCGAG GCCAAGAATTCGGCACGAGGATTAGGCACGCCCCGGAGTGGGCAAAGACCTGGCACGAAGGCACT CTTGCACATGCGCACACAGTTAACTTCCTGAAAGGAAGTCGGCTGGCGCGGCGGAGGCCAGCGCC ATCTTGTAATGGCAAAAGCTATCCCGGCTTTCCACGTGGGGCACAGTGGAAGCCAGCC
RCT-140	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGACCGGGAAGCCCCAGCCTGTGATGGTAACTTGGGTGAGAGTCGATGACGAAATGCC TCAACATGCCGTTCTGTCTGGGCCGAATCTGTTCATCAATAACCTAAACAAAAACAGACAATGGTA CTTACCGCTGTGAGGCTTCCAACACAGTGGGGAAAGCTCATTCAGACTATATGCTGTATGTA
RCT-141	ATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTCG GCACGAGGAAACAAACTCCAAACTCTGAAACAGCTGAAGTGAATCCAGCTCATGAAGATGCAGAT GGAGGTGAAGGAGAAAAACCTCTGATTCCCAGGCCCCCTGTGCTATCCCCCCACTGCTGTTCCAGG AACCGATCTCTTGGTTGAGAGACTCAATCCAGGCATTAACATCCATC
RCT-142	TCTCCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAG AATTCGGCACGAGGCTCCTGGGGGTACTTCCTATGAGAGATACGAGTGCTACAAGGTTCCAGAAT GGTGCTTAGATTACTGGCATCCTTCTGAGAAAGCAGTGTATCCTGATTACTTTTCCAAGAGAGA CAGTGGAAGAAACTGAGGATGTGGAGCTTGGCTCCTGGCAGAAGAAGCATTGCCCCCATTGT GCTGGATGGTATTATGACTGAAGCTTTGCCTCCTGCCAGAAGAAGGCAGCGCACTGTTCCATGC GGTGGCATATTGTGACCAGACCTCGGGAACGGCCCACATAGAGACAGGCACCGCACTGTTCATGC TTGCAAGTGAGAGTTACAGAACACATTCACACTTGCCCTAATAAAAGTAACTAGAGACCANNNAA NAAAGAANNAAAAAAAAAAAAAAAAA

RCT-143	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGTGATGTACCGCCTGAGCTCGTCAGTGCTCCCCGGGCCTTGGCCCAGGCCATGCGC ACAGGACATCTTAATGGCCAAAGCCTTCATAGCAGTGCAGTGGCCGCTACGTACAAGTATGTGAA TATGAAGGCACAGGAACTTGATGTGGACATGAAGTCTGCGACTGACAGTGCAGCTCGGATTCTGA TGTGGACAGAACTCTTCCGAGGCCTGGGCATGACCCTAAGCTACCTCTTTCGGGAGCCCGCCACC ATCAACTACCCCTTTGAGAAGGGCCCACTGAGTCCGCGTGTGGGGAGCATGCACTGCGCG CTACCGTCTGGGGAGGAGCGTTGCATCGCCTGCAAGCTCTGTGAGGCCATCTGTCCTGCACAGG CCATCACCATTGAGGCTGAGCCAAGAGCCAGGAGCGCCGCCGGACTACACGCTATGACATTGAC ATGACCAAGTGTATCTACTGGGTTTCTGCCAGGAAGCCTGCCCTGTTGACGCTATCGTGGAGGG CCCCAACTTTTGAGTTCTCCACCGAGACGCATGAGGAGTTGCTGTACAACAAGGAGAAACTACTC AACNATGGTGGACA
RCT-144	TTATNANATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGGATTCCCCCTTCAGGAGGTAAATGAAAAACCTAAGAAGAAAAAGCTAAAACCCCA GGAAACCCTACAGGAAAATGGAATGG
RCT-145	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGGCCGAACCTCGCGGGGGGGGAAGCCGCGAGATGGACACCCCTCCGCTCTCAGACTC GGACTCCGGGTCGGATGAGTGCCTGGCCTCAGATCAAGAGTTGCAGGATGCGTTTTCCCGCGGAC TCCTAAAGCCAGGCCTCAATGTCGTGCTAGAGAAGCCGAAGAAGGCCGTGAATGACGAGTGGCTCAAAGCAGTGCTTGAATTCAAACGGATCTGAGTTGAAAGCTCGAAGTAGACCCT GGGTCCTGTGCCTGAAGCCAGTGAAACTCAGTCAACACCCCAGAACAAGGACCAGAAGAAAAAGGTG TTAATCCAGAAGACGACTTCCAGAGGAAATGAGTTTCTACCGCCAGGCCCAGGCTGCTTGCT
RCT-146	GGGGGGGTCTCNANATGATTCGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCA AGAATTCGGCACGAGGGACATCTGTAGCTGGGGAGTCAGTTAANGTGGTCTCTTCCTGCGCGAAC ATGGTTCGGACCAAAGCAAACTACGTCCNGGGAGCCTACAGNNNAGTGGTGGCTTCTCAAGCCCC TAGGAAGGTGGCTTGGCT
RCT-147	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGCTCAAATGTATTTATTTAAGTCTGAGCCTTCCTT
RCT-148	TTTTTTTTTTTTTTTTTTTTTTTTTTGAGGAAAGGTTCAGCATTTTATTTCTTGGTGCTTCCAGGA GCTCACTTAAGAATGGCACAAACAACAAGCAAGCTAGTAGTGAGATACTGCTCTGCAGTTCTCGA TGGTCTCATCATGGCCTTGGAGAGTTGGGACCCAGAGCAGAGCGAAGCTAGGCTCCTCAGAAGGA GGACCCCGACTGTGGAGGAAGGCCTTTAGGGCTAGCCTTCAGATCCAGATGTCAGAACTGCAATC ACCCCTGGGTAACGAAGCTCATGAGCCAGTGCTGGCCCAAGAGGCTCTTTCCCAAAGTCCACCA GAAAGTTGGGGTTCAACTTCAGCCCTCCATTTGCTGTATCTACATCAATTTGCAGCATCACAGAG CCTTCCCTAATGAGATTAGGGTAAAACTGCTTGTCCCAGGCGCTGTACAGTGATGTAGTGACGTA AAGACGCTTCCCATCTAAGCTGAGCTG

RCT-149	CTCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAA
	TTCGGCACGAGGGGCGCCCTACTCGGACATGAGAAAGGCCAACTGGAAAAACTCAGACAAATAC
	TTCCATGCTCGGGGGAACTATGATGCCGCCCGAAGGGGTCCTGGGGAGCCTGGGCTGCTAAAGT
	CATCAGTGATGCCAGAGAGGGTATTCAGAGATTAACAGGACACGGAGCAGAGGACTCAAGAGCTG
	ACCAGTTTGCCAACAAGTGGGGCCGGAGTGGCAAAGACCCCAACCACTTTCGACCTGCTGGTCTG
	CCCAGGAAATACTGAATTTTCTCTTCATGTTCCCGGGCGCACAGCCCCCCAAGGAAAGGGGC
	AATTACTGAGTTGAGTTATTTCCTAAAACCTGGATCCCTAAACATCCCAATGTGCTGAATAAATG
	CTTGTGAAATGCANNANANNNAAAAAAAAAANNAAANAAAAAAAAAA
	TGAGCGGCCGCAAGCTTATTCCCTTTAGTGAGGGTTAATTTTAGCTTGGCACTGGCCGTCGTTTT
	ACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCANATCCCCCTT
ľ	TTGCCAGCTGGCGTAATACCGAANAGGCCCGCCCCGATCGCCCTTCCCACAGTTG
	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC
i i	GGCACGAGGGCCTGTTGAAAGGGCTGGGCCCCGCCGGCCCTTTTGAAATGGTGTACTGGACAGGA
	GACATCCCTGCCCATGATGTCTGGCAACAGTCTCGACAAGATCAGCTGAGGGCCCTGAACACCAT
_	CACAGACCTCGTGAGGAAGTTCTTGGGCCCTGTACCGGTGTACCCTGCTGTGGGCAACCATGAGA
RCT-151	GTACTCCTGTCAATGGCTTCCCTCCCCCCTTCATAAAGGGAAACCAGTCTTCACAATGTCTTTAT
	GAAGCCATGGCCAAGGCATGGGAACCCTGGTTACCAGCTGACGCCCTTCACACCCTGGTCTACCG
Į į	CATGAGGGCTGATGAGCAGCTCTTCCAGACCTTCTGGTTTCTCTACCATAAGGGCCACCCAC
	CAGAGCCCTGCGGCACACCCTGCCGCCTGGCCACTCTGTGTGCCCAGCTCTCAGCACGTGCAGAC
l .	AGCCCTGCTCTGTGTCGCCACTTGATGCCCAATGGGAGCCTCCCAGATGCCCATAGCTTGTGGTC
i	ACGGCCCTGCTGTGCTAGTGTGGGAAAAGTTCACATATTAGCAAAGGGATGGAT
	CGCTGATCTACCTGAGGCAAANCTTTCNGGGAAGGAGGGGGGGGGG
	TCCNAAGTGATTNTGCCNANAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC
1	GGCACGAGGATGGGTTTCGGAGACCTGAAAACCCCCGCCGGCCTCCAGGTGCTCAACGATTACCT
1	GGCGGACAAGAGCTACATTGAGGGGTACGTGCCATCACAAGCCGATGTGGCAGTATTTGAAGCAA
	GGCGGCAAGAGCTACATTGAGGGGTACGTGCCATCACAAGCCGATGTGGCAGTATTTGAAGGAA
RCT-152	TCTCTGGTCCACCACCGCTGACCTGTGTCATGCTCTGCGTTGGTATAATCATATCAAATCTTAC
1 7	GAAAAAGAAAAGGCCAGCTTGCCGGGAGTGAAGAAATCTTTGGGCAAGTATGGCCCTGTCAGTGT
§	GGCAGATACCACAGGAAGTGGAGCAGCAGATGCTAAAGACGATGATGACATTGATCTCTTCGGAT
"	CTGATGATGAGGAGAAAGTGAAGAGCGCAAAGAGGCTACGAGAAGAACGCCTTGCTCAGTATGAG
1	TCAAAGAAAGCTAAAAAGCCTGCAGTTGTTGCGAAGTCTTCCATCTTGTTAGATGTGAAGCCTTG GGACGATGAGACAGACATGACGAAACTTGAGGAGTGTGTCCGAAGCATTCAAGCGGACGGCTTGG
1	
1	TGTGGGGCTCCTCTAAATTGGTTCCAGTGGGATACGGAATTAAAAAGCTTCAAATACAGTGTGTA
1	GTTTGAAGATGATAAGGTTGGAACAGATATGCTGGAAANANCANATTACTGCTTTTT
	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC
	GGCACGAGGGATGTAAAAGAAGCCATAAGAAGGCTGCCTGAGAACCTTTATAATGACAGAATGTT
	TCGAATTAAGAGAGCCCTAGACCTGTCTATGCGGCATCAGATCTTGCCTAAGGATCAGTGGACAA
1 8	AATATGAGGAGGACAAATTCTACCTTGAACCCTATCTGAAAGAGGTTATTCGGGAAAGAAA
RCT-153	AGAGAAGAGTGGGCGAAGAAGTGATCGTGTAGTTAAGATCTGTGGGTGCGCCTGGTCTCACCCTA
Ė	TTTTATGACATTGTTTCAACCTGAATCACAACTTAAGAATCATTTGCTCTACACATGCCTCACTT
, ž	TAAATAAATGTCTATTATAACCGTAAAAAAAAAAAAAAA
1	CTTATTCCCTTTAGTGAGGGTTAATTTTAGCTTGGCACTGGCCGTCGTTTTACAACGTCGGGACT
ı	GGNAAACCCTGGCGTTACCCAACTTAATCGCCTTGCANCACATCCCCCTTTCCCAGNTGGCGTAA
1	TANCNAANAGCCCGCCCGATCGCCCTTTCCCAACAGTTGCGCNAGCCTGAATGNCNAATGGGAAC
L	NCNCCCTNTANCGGCGCNTTAAGCCGGCNGGNGGNGNTGGGCCCCCCCCCTGNCCCCC
	NCTCNTAACATGATTACGCATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAA
	TTCGGCACGAGGATTACGAGAGACCTGTTCTGCACCTGGTTGCTCTCAACACGCCGGTGGCTGGG
	GACATCCGAGCAGATTTCCAGTGTTTCCAGCAGGCCAGGGCTGCAGGACTACTGTCCACCTTCCG
5	AGCGTTTCTGTCATCACACTTGCAGGATCTCTCCACAGTTGTGCGGAAGGCAGAGAGATTCAGTC
RCT-155	TTCCAATTGTGAACCTCAAGGGCCAAGTGCTTTTTAACAACTGGGACTCAATATTTTCTGGTGAT
į ė	GGAGGTCAATTCAATACACACATTCCGATATACTCCTTTGATGGTCGGGACGTGATGACTGATCC
N 28	TTCCTGGCCGCAGAAGGTTGTTTGGCACGGCTCCAACCCCCACGGTGTCCGCCTCGTGGACAAGT
1	ACTGTGAAGCCTGGCGAACCACGGACATGGCAGTAACAGGATTTGCCTCCCCACTGAGCACAGGG
1	AAGATTCTGGACCAGAAAGCATATAGCTGTGCTAATAGGCTAATCGTTCTGTGCATCGAAAACAG
	TTTCATGACAGACGCAAGGGAAGTGATAACCTCCCCATGGTTCTTAAAAGAATATTCTAATATTT
	CTTATGTGAAAAGTTGACACTGNAATCTAAAAAANNNNANNNN
L	10. 111 0. CIBBRIO. 101010. CIBBRIO. COMBRIANTINIA MATERIA COMBRIANTINIA

RCT-158	ANGACATGATTACGAATTTAATACGACTCACTATAGGGGAATTTGGCCCTCGAGGCCAAGAATTC
	GGCACGAGGGCAACCAGGGTCTAGCAAAGAGGGGCTACGGANACAGACAGACATTTTAAGT
	TTTCCAAAGAATCATCACCTTCTGCCGCAGGTCGCTTCCTCATCCCTGGACACAGCTCCGCTAAC
	CCANCCGGACTGTCTGACGAGTCAGGCATTTGGTCCACCAAATGCCGGTCCTCANAGTTTGCCTG
	AGACCCAATTGAAGGCACCGCCTGGCGGCTCCCGCTGACATCCAAGCTCTCCTGCGCCGCCACCT
	TGCAGGCGCTCTTGGGGGGGCGCGGGGGTCTGTAGTAGAACTCGGGCAAGCTGCCCCTCTCCACC
	TCCTGCCACTCGTATCTGCCCTCCAGGGGCTTATGATTCTGAAAGTCGAAATTCCACTTGCGCTG
	GCTCGCTTCCATATCTCGGCAGTGCTTCTCCAAGTCCCGGGTTAATTCTTCATGATTGACCG
	GGCCGAANAAGTTTCTGCANGCGGAAGGCTTGGGTTGCTCGGTTTGTCTGGCGTTCATCCGCTCC
	AGGCTCGGGCTCCGTTANACACTCTCACGTTTGACATCTTCCTCCCCGGGCGGGNGTGGACACCG
	CCTCTNCTCTCCGAAAAAAAAAAAAAAAAAAAAAAAAAAA
	TCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAAT
	TCGGCACGAGGGAGCCACTGGGTAACCTGGCCAGCAACCTTCTCTGAAGCTGAATCAAAAACTAA
	ATAGGAGAATATGGCAAGTGCAGACTGGGGATATGAAAGCAAAAATGGTCCTGACCAATGGAGCA
-	AACTATATCCCATTGCCAATGGAAACCACCAGTCTCCTATTGATATTAAAACCAGCGAAGCCAAA
91	CATGATTCCTCTCGAAACCAGTCAGCGTCTCCTACAATCCTGCAACTGCCAAAGAAATTGTTAA
2	TGTGGGACATTCTTTCCATGTAGTTTTTGATGACAGTAGCAACCAGTCAGT
RCT-161	CTCTTGCTGATAGCTATCGGCTCACCCAGTTCCATTTTCACTGGGGCAACTCAAACGACCATGGC
I "	
	TCTGAACACCCGTGGATGGAGCCAAATATTCTGGAGAGCTTCACTTAGTTCACTGGAATTCAGC
	CAAGTACTCCAGTGCTGCAAGCCATCTCGAAGGCTGATGGGCTGGCAATCATTGGGGTTTTGA
i	TGAANGGTGGGTCCAGCCAACCCNAACCTGCANAAAGTACTGGATGCCCTAANCTCAGTTAAAAC
	TAANGGAAAACNANCCCCATTCNCCAATTTTGACCTTCCAGTCTCCTTCCTT
1	ATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTCG
l	GCACGAGGAATTTAAGCATATTAGTCAGCGGAGAAGCTTCGGCGAGCAGAAGTGGACTTGGAGCG
	CGTGCGGGTGTGGTACAAGCTGGACGAGCTGTTTGAGCAGGAACGTAATGTTCGCACAGCCATGA
l ~	CCAACAGAGCAGGATTGCTTGCCCTGATGCTGCACCAAACCATCCAACACGATCCACTTACTACC
16	GACCTTCGCTCTAGTGCTGACCGCTGAAAGTCACCAGCCCAGAGCCTCTCAGCCCTGCATTCAGT
RCT-162	CAGGGAGGGCTCTGCATTTCAGCTCGCTCTTCCTCCGTTCATCTGTTTATTCTACCACCCTTAG
l ģ	TTTTCTTCTTACCATCCATGTTTTGGCTTCTGTTTGCCCTTATCAGAAGGGTCTCTGCTTTCCCT
_	TTGTCTCCTCCCATAGTCAGTGCTGGGTGAAAGTCAAGTTTACTCAGCCTTGCCTATACCCTCC
	CCCAAAATAAACAGGTTTTGTTAATAAAATTTTGAACAAGAATAAAAAAAA
	CCCAAATAAACAGGTTTGTTAATAAATTTTGAACAGAATAAAAAAAA
	ACAATTGCGGCCGCAAGCTTATTCCCTTTAGNGANGGTTAATTTTACTTGGCACTGGCCGTCGTT
	TTACAACGTCGTGGACTGGGAAAAACCTGGCGGTTACCCAACTTAATCGCCTTGC
l	NNCNAATCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCC
1	AAGAATTCGGCACGAGGATCTTACTGCCCAGTTGTTCTGGCATTCGAAAAAAGGACTGTAGACTA
	TGGTCTAATGTTCAAGGATGTGGATGGACAGGACTGTGGAAAATAGTGAGAAACTGGTTCTCCGC
6	TGGAGGAAGTAGGGTTAGGTTTAGGACCTTTGCAAGTGGGGGTCAGGCACACCACCAGGAACAGC
RCT-164	TCCTTCGATAAATAAACAGTTATCACATTCCCACAACAACCTAAACACAGACTACCTCTTCCCT
5	TACCAGATCTGCTAAGCTGTGAGGTTCTAAGAGGTCTGAGTGTTGTTTAAACTTTTGGAGATG
~	GTTTTTCATTATAACAATTCAAGCCAGACATTTGAAAGTGACTGTTCTTATAGTGTCCCCAAGTC
1	TACTAACTGAGGGCCCACCTTCTAGTTTCTAGTTGCACTTCTGAAATCCCATGTTTTGTTTG
i	GGACCTGAGTTTGGTGGCTTTTTAAAATACAGATGAGATCAATTTATCCGACTTCATGAGTNATCC
	TNCATTCTCTCGAGAAAAANCTGATTTCNATGTNAATTAATTGTACTATGACC
 	
I	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC
1	GGCACGAGGATTAAAGACAGGGGGGGCTACCTGAACAAAGTCTGCAACCTCCTGCCCATTAGGAT
I	CCTGTCCTACATCTTGCTGCCCTGCACTCTGCCCGTGGAGTCGGCCATCGCTGCAGTCCACAGGC
RCT-165	TGGTGATGTGGCTCCCTGATATCCATGAAGATATCCAGTGGCTACAGTGGGCAACATCCCAGGTG
	TGTGCCCGAATGACCATGTGCCTGCTCCCCTCTACCAGATCCAGAGCATCCAAGGATAACCATCA
	AACACTCAAGCATGGATATCACCCATCTCTCCACAAACCCCAAGGCAGCTCTGCCGGTTTGTAAA
≥	TTGCTGGTCTCCGTGCTTCCGATGAACTTGGGCATTCTCCCTGTGGATGGTTCCAGGAGAGGCCA
I	TAGCTGAAGGCACTCTGCCTTCCACCCCAAGTCCAGTTTGACCTTTATCTAGAGCAACAGTGTCT
	AGATGATAGGTGGGTGGGGGGTGCTGTCTCTCTGTTTCCCTCTGGGAAGGGTTCTGTTAACTTTT
	GGAGGCAGCTAGGAAATTTCTCTTCAGGAGCTGAGCCTGTGCAGCTGCCCCCTTGGTGCTGTGTG
	GTAACCTCATTGC
	OTANGOTORITOC

	CTTCANATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC
RCT-166	GGCACGAGGCGCCGTTGCAGCTGCTTCTGCCTCTGTCCACCGAGGCAGTTCACCCGAGGCCGAGCTCTGCAGCCGACCT TCCGAGGTCTGCCAGCGGGCTACTTCCCACAGCCTCCGCCATGGGTCTCTACCTGGACCT GATGTCCCAGCCCTGCCGTGCCG
RCT-171	CTATGACATGATTACGAATTNATACGACTCACTATAGGGGAATTTGGCCCTCGAGGCCAAGACTT CGGCACGAGGCTTTCCATCCATATTACCACCCTTGGTTATTTCCCAAGCCACCCCCTCTA CTGTTACCAAACCCACCCTGATTCCCAAAAGCCACCTGGATTACCACCACAAATCTTCCACTNCTTTC CTGTTACCAAACCCACCCTGATTCCCAAAAGCCACTGGATTATACCACGCTGATTCCTTTAATGA TAACTGTNTATTGCTATTATGCTTAGGTTCAGCATTCGCAAAAGGTAACAAAGGCAAAAGCT TCAAGTCCTCTCCACAAAGAGACTGGCAACCTTATCTGCAAAAGGTAACAAAGGCAAAAGCT CTGAATGGTTTGGGAATGAACACTCCCAAAAAAAAACCTTTGCGGCCGCAAGCTTATTCCCTT TTCAGCAGTCATGTCCTCTGTACAACGTCCAAAAAAAAACCTTTTGCGGCCGCAAGCTTGTTTAGCTTGGGAAAACCT GGCGTTACCCAACTTAATCGCCTTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAANA GGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGGAATGGCGAACGCCCCCTGT AACCCCCCATTAACCCCCTTCCCCAACAGTTGCGCAGCCTGGAATGGCGAACGCCCCCTGT AACCCCCCATTAACCCCCTTCCCCAACAGTTGCGCAGCCTGGAATGGCGAACGCCCCCTGT AACCCCCCATTAACCCCCTTCCCCACGCTGGTGGGTGGGT
RCT-177	CCMNNNNNCTCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGA GGCCAAGAATTCGGCACGAGGGAAGCCCTCGGGGAGGAGAACGCTCTGTTTCGTTTTCTTTC
RCT-179	TCCTCATAANATGATTACNAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGA ATTCGGCACGAGGGTTCTGCGGAACAGTAGGCAGTTGTTTTCCGTCCG
RCT-18	TTATGACATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT TTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGAGATTATACGCCCTGGGAATGGCTGCCCCAAAACTGAAATCATTTTCTGGACCAA GGCCACGAGAAAGCTATATGTGTGAATCCTACTGCCAGATGGTTACCAAAAGTATTAAAATTTGTCC GAAGCAGAAGTATTACTTCAACTCCCCAAGCTCCAGTGAGTAAGAAAAGAGCTGCCTGAAGCCAC TGTCACCCCAAAAGAACCTGCACCTTTCTTAATCCCTGGTATTTAGTTAAAAGAAAAAAAT CCTGCAGTAGCTGAGAGAAAATAACTTCCCTCTACAAACACGGCTGTAGATTAAAAGAAAAAAAT CCTGCAGTAGCTGAGAGGAGACACTCGAGCTCCTTCCCATACTCAACCCATATTCTTGTTCCTTA AGGGAGGATATTTTCGAGCAGGCATTTAGTGACAAGCCACTTTGGTAATAGACCTGTTGTTTAGT GTTAAACTATCCTAGACCTAGAGGAATAAAAGCATACATGTCGAATCTGAACCATAGCTCCTACT AACAAGAGGTTTATGAGATGGACTTCAGTTAGTTTGCACCCTTGCAAAAATCAGGCTTCCAGAAT AGTTTCCAGAAAGTCCCTAAGAAGCAGCGCATTACCAGCCTAAGGNGANGCAGAGCAGGTCTCC NTTAGAGAGAATCTTCTGGAGGGAAATAATGNTTN

RCT-180	TCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAAT TCGGCACGAGGGTGGTGGCCAAGTTCAACGCCTCACAGCTCATTACCCAGCGGGCTCAGGACT CTGTTGATCCGAAGAGAGCTGACAGAGCGTGCCAAGGACTTCAGCCTCATCCTGGACGATGTAGC TATCACAGAGCTAAGCTTCAGCCGAGAGTACACAGCTGCTGTAGAAGCCAAACAAGTGGCCCAGC AGGAAGCCCAGAGGGCCCAGTTTTTGGTGGAGAAAGCAAAGCAACACAAGAAGATTGTG CAGGCTGAGGGGGAGCCGAGCTGCTAAGATGCTTGGAGAAGCACTGAGCAAGAATCCTGGCTA TATCAAGCTCCGAAAGATCCGGGCTGCCCAGAACATCTCTAAAACGATCGCCACATCACAGAACC GGATCTATCTCACAGCTGACAACCTTGTGCTGAATCTGCAGGATGAAACGTTTACTCGGGGAAGT GACAGCCTCATTAAGGGTAAGAAGTGAGTGTGGACATCAAGAACCCCCACCACAGAGAAGTTGG CACACTTCTCCAGTTTGGAGGGCCAGCTTAGGGGGTCAAGCATACCCCANCCCTGACCCAAGCA TCATGNGATGGATTCTTCTGTATCTGCTCTTTGGGATTAANGGAAACTGAAGAC
RCT-181	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGCTGAACATCTACGTGCCACCGTGCGCTGGGATTACCAGCCAG
RCT-182	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGGTGAATGTCTCCAGCCAGGCCTCCCAGCGTGCACTGACCAACCA
RCT-185	NCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAAT TCGGCACGAGGGAATTTAAGCTCCAGCAGACCAGCTGCCTGAAGAAGGACTGGAAAAAAGCCGGAG TGTACAATCAAACCAAATGGGAGGAGGCGGAAATGCCTGGCCTGCATCAAACTGGACCCCAAGGG TAAAGTTCTAGGCCGGATGGTCCACTGCCCAATACTGAAGCAAGGGCCTCAGCAGGAGCCTCAGG AATCCCAGTGCAGTAAGATAGCACAGGCCGGCAAGGACTCCCGCATCTACTTCTTCCCTGGCAG TTTGCCTTCTCAGGGCTCTACAAATCAAAT
RCT-192	CTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGGGTTTCCGCTTGCTGCTCCGCCATGGCTCGCGGTCCCAAGAAACACCTGAAGCGTG TGGCGGCCCCACGTCACTGGATGCTGGACAAACTGACCGGCGTGTTCGCGCCCCGGCCATCTGCC GGCCCGCACCGCCTGCGGATGCCTGCCGCCATCTTCCTGAGGAATAGGCTCAAGTACGC TCTGACCGGCGATGAGGTGAAGAAGATCTGCATGCACGCCTCATTAAGGTCGACGGCAAGGTCA GAACCGATGTGGCTACCCAGCTGGCTTCATGGATGTCATCAGCATAGACAAGAGGGTGAGAAC TTCCGCCTGGTCTACGACACCAAGGGCCGCTTCGCGGTGCACCGCATCACGCCCGAGGAGGCCAA GTACAAGCTGTGCAAGGTAGGAAGGTCTTCGTGGGTACCAAGGGCATCCCGCACCTCGTGACGC ACGACCGCGAACCATCCGCTACCCTGACCGCTCATCAAGGTCAACGACACCGTGCAGATCTCGC TAGACAGCGGCAAAATCACCGATGCCATCAAGTTTGATACCGGCAACCTTGTGAACCGCAACCGGCCAACCTGGGCCCAACCCGGCAACCTCGGCAACCCGCGAACCATCCGCAACCCGAACCCGAACCCGAACCCGAACCCGAACCCGAACCCGAACCCGAACCCGAACCCGAACCCGAACCCGCAACCCGAACCCGAACCCGAACCCGAACCCGAACCCAACCCGAACCCAACCCGAACCCAACCCGAACCCAACCCGAACCCAACCCGAACCCAACCCGAACCCAACCCGAACCCAACCCGAACCCAACCCGAACCCAACCCAACCCGAACCCAACCCGAACCCAACCCGAACCCAACCAACAAAA

	The second secon
RCT-193	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC
	GGCACGAGGTTTTTTTTTTAACTTTTAAAGAAAATACTTTATTACATCATGAAAAAGGTATCCAA
	CAACTAGATTCATACTTGCTTGAATCTATAAAAACAAACA
	TCATTAGACTGTATGTGGGGTCATGTTCCACATGGGAACAGAGGGCACAAGGGCTTCTAAGTAT
	TGCACAGTCTTGAAAAAAAAAAAAAGGAGTTGGGAGGAGAAGATCACATGATACTGGGAACGTCT
	CACATTATGAGAAACTACCAAGAAACATTCGAAAAGAAAACCCTCTGTTTCTACAGTAGCTTTAG
	TCTGCAGTTCTTGGAATGACTATTCCATTGAAGACATCTTAGTAACAGGAAGCTTCGTTTGAGCA
	ATCCCATGTGCAAATATTAATAGGAAAATATATAAAATAAAAACCTTTGCGGCCGCAAGCTTAT
	TCCCTTTAGTGAGGGTTAATTTTAGCTTGGCACTGGNCGTCGTTTTACAACGTCCTGACTGGGAA
	AACCCTGGCGTTACCCAACTTAATCCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATA
	GCGAAAGAGGCCCCCACCGATCGCCCTTCCAACAGTTGCGCAACCTGAATGGCGAATGGGACGCG
	NCCTGTANCGGCGCAATTAAACNCGGNGGGGTGNGGNG
	TATGACATGATTACGAATTNAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC
	GGCACGAGGGTACCAGCGTAAGCCACGACAAGCTTCCTAAGGTTCAGTGTTATGACCAGTGTGAA
	AACAGATGGACAGTTCCAGCCACCTGTCCCCAGCCCTGGCGTTACACAGCCGCAGCTGTGCTGGG
	GAACCAGATTTTTATCATGGGTGGGGATACAGAATTCTCAGCCTGCTCTGCTTACAAGTTCAACA
94	GTGAAACTTACCAGTGGACCAAGGTAGGAGACGTGACAGCCAAGCGCATGAGCTGCCATGCCGTG
RCT-194	GCCTCCGGGAACAAGCTTTACGTGGTTGGAGGATACTTCGGCATTCAGCGCTGCAAGACGTTGGA
ि है ।	CTGTTACGATCCGACTTTAGATGTGTGGAACAGCATAACCACGGTTCCCTACTCTCTGATCCCTA
×	CCGCGTTCGTCAGCACCTGGAAACACCTGCCTTCCTAATGCAGAGCAAACCAAGGAGGAGCACGAG
	TGAGCTCACTCTGACACACACGAGATGTCGTTTCTGCTCTGAAGAAGGCAAGTTTAATGAAGAGA
	AAGAAAAAAAAAAAAGTGAGCGGCCGCAAGCTTATTCCCTTTAATGANGGTTAATTTTACTTT
	GGCACTACCCGTCGTTTACAACGTCGTNGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGC
	CTTTGCA
	TTTTTTTTTTAAAAACTGAATAATCATGTATGGTTTATTTA
96	ACAATAAAACGTCTCCATAACTAAGGAGTGATATGCCATGTATTTTCTCAAAATTTTGTATTGAG
Ť	TATTTTATTAATGTCATTTGCTGTTCAAGTAACACCTACTGCTTTTTCTGATAATGGGAAGAAAA
RCT-196	AACATAAAGACAGGAAAAAGCTACTACCCCCAACAGGAAGTCAAGGGACAATTGGGCGTTTGTTC
×	TTTTGTAGAGGCAGTCTCAACTCTTTACTTCCTTCCTGCTTCAGGGCCACGTGGTTATGGCCTGC
	AGCGCTGGAGAAATCTCGGGTACAAGCACGTCTCGGATGTGATACCTGTTCAGAATCCAGCTT
	AGAAATCGTTCCAAGCCAAGCCATACCCTCCGTGAGGACATGTACCATATTTTCTCTG
	TTCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAA
	TTCGGCACGAGGGGAGGTGCCTTCTGTGTTCTAGCCTTGGTGATCTTAGCAACTTTAAGCCTGTC
	AACAATATCTGATTTTAAGAATGTAGCAGTGTGGGAAGATGGTCATGGACCTTTAGATGTCTCAG
97	GAACTGAAAGTTCAGAGACATCTAAACCACCACGTCTCACACCACCATGATCCTGATGAACTCAA
RCT-197	CGGCTGCGATGAACTCAACTGCTGCACCCATTCGTTCCCAGCAAATAGGAGAGAAATTAATT
៦	GTTACTAATAACATGACTGTTCCAGAAAAGCCCCCCCTTTGGGAAAGTTTTGTTTAGCATGATT
~	CAGAATAGTAGTGACTCTTAGAAAGATCATGGATAAGTTCCAACAAGTTGAGCAAATTTATCAAG
	AGTTAACTAGAAGGAAAGAGAAACTAACATTGAGCAAGAAACGAAAGAAA
	CAAAAGTTTCCTTTTTATTCTGAGGGCCCATAGAGTTTAAACTTTATTAAAATAAAGGTAAATGT
	TAAATGTATATCTGGGTACCCACAAGTCTGGTAGTATAACTGCAGNTTTCTAAACTATTGTTTGC
	GGCTGAGAA
	TTNACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTCG
	GCACGAGGGGAAGGAAGGAGCTGGTGGTGGCCGAGACAGTGGAAGAAGTGAAAAAAGCACCTG
	TTTTGGTGTGTCCACCCTTACGAAGCCGAGCATACACACCCCCAGTGATCTCCAGAGTCGCTTG
ایس	GAATCTCATATTAAAGAAGTTCTTGGGTTCATCTCTTCCTAATAATTGGCAAGATATCTCCCTGG
RCT-198	ATGATGGACATGTGAAGTTCAGACTCCTAGCAAATTTAGCTGATGACTTAGGCCATGCAGTACCT
į,	AACTCCAGGCTTCACCAAATGTGCAGGGTCAGAGATGTTCTTGATTTCTATAATGTTCCTGTTCA
ညွှ	AGACAGATCTAAATTTGATGAACTCATTGCTAGTAATTTACCTCCCAATTTGAAAATCAGTTGGA
	ATTACTGAGCAGTCCAGTCAGAACACAGTGAGATCATTCTCATTCTCATTGGGTGACTGAC
	GCGAACTTTGTGAGATGTTACCTATTAGAACTTGGTTCAGAACTTCCTTTTTTTT
	CCTTGGAGAAGACACATTTTTTTTCTCTCTGGAGCATCCACAAAGAAAACATTATCACATTTGC
	TAAAGCTATTTATCCCCAATAAAATCAAGTCTTGGTAATTATGAAAACATTCTTATTCCTGGTAT
	ATAGTCAGGGTTGTTGAGAGGACANAAAGTGGTAACATGN

RCT-205	CAACNNCNNCCONTTATGNCATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCC TCGAGGCCAAGAATTCGGCACGAGGTGTGTGTGTGTAACTGGATCAGCAGCATGTGTTCCAGTCATG GTTGACCTTAGCAGACATTAGCAGGATTAACACTGGAGGGAAACAAAGAAGCAAAATAAAT
RCT-206	AGAATTCGGCACGAGGCAGATAAATGCAGGCCAGAAAGGCTGCTGCCGCCGCCGCCGCCACCACCACCACCACCACCACCACCA
RCT-207	TTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGTCATGTGCGATGCTCTCATCAAGGCCATTGGCACGGAGCCTGACTCAGACGTCTT CTCGGAAATAATGCACTCCTTTGCTAACNGCATTGAANNGANGGGAGATGGGNGTCTCAACAATG AACACTTCNAGGAACTGGGAGGTATACTGAAGGCGAAGCTCGAGGAACATTTCAAAAATCAANAG TTGCGGCAAGTTAAAAGACAAGATGAAGACTACGACGAACAGGTTGAANAGTCNCTACAAGATGA ANATGATAATGATGTTTATATACTGACTAAAGTCTCANATATTTTACACTCAATATTCAGTANCT ACAAANAAAAGGTGTTGCCGNGGTTTGAACAGCTGCTCCCATTAATTGTCAACCTGATTTTGTCCA CATAAACCCTGGCCANACANACAATGGGGATTGNGCATCTTCGATGATATCATANANCACTGTAG TCCAGCTTCATTTAAGTATGCAGAATATTTCTTAAGGCCAATGCTCCAGTATGTAT
RCT-211	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GCCACGAGGAGAAGAAGCCGCGAGGACGACCCCCGGACGCACCAAACCCGTGCCCCCTGTAAACCC GTGCTCAGCGCCGACGTCCCCTGCCGCCGCCATGCCCAAAGGAAATGCTGAAGGGGATGCTAAACCC GTGCTCAGCGCCGACGTCCCCTGCCGCCGCCAAAGGAAATGCTGAAGGGGATGCTAAACCTGCT CCTCCAAAGCCAAGGTGAAGGACGAGCCACAGAGAAGATCTGCAAAGGGAGAGAGGTACCCAAGGG GAAGAAGCCGGAAGCCCAAGCCTAAAAAGGCCCCTGCAAAGAAGGGAGAGAGA
RCT-212	ATGTCATTGTACCTGCTTCAAGGGGCNTGGTAGTTAGGGACAGCGGTGTGTAATGTGGCCCTTCT TTCTCAAAGGGGAATAGGCTGGTGTCCCGCTTTATGGTTCGGCATAGAGCTCTGTAGACTCAAGT TTCAGCTGTTCCAGGGCTTCCTGGTGGCCTTCCAGCATGGCTCTGATGGCGTCCCTCCATCTC ATGCTCCTGCTGCTTATACAGTGCCCACCTCTTCAGCAGAAGAGCTCTCCGCTCACTCTTCCTCA AAAGAATGCTCCTCCTGAGGTCGCTGTCTTGATTTATCCAAGAACCTCACAGAGGGTAATAAAATC TTCAATAGGAACCAGTTCTTGGGAGGCTCTTTCCAGTTTTCGGATCCTTTTTCAAGCGATCCT TTGCTGCTTGATCCTTTCTAGGGTCTACCTTCTTCTTCCTCGTAGAGGTTCAGCCTCTCATGGGG ATGAGCTCCCAGAAGGACAGCAAGGAAGCTCTCTTGTGGTGGTTGTCTGACCTGTCCTGGCAGGT TCCTGGGATCCAGCTCCGAGGTCGCAGAGCCCGCGCAGCACACACA

RCT-214	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC
	GGCACGAGGGTTTCTTCTGAGCTGCATGCCCCTTGCTGGTTAGATGACAGCATACTTGACTCCCT
	CTATGATATTGGAGTGACAACAACAGGAGACATTTCTCCCAGAATAGCATTGGACTTCTCAGGC
	AGACTCACAGTCTACTGTTTTGGTCTTTCTCTCTCCCCCCTACTTCTGTCTCCTGGGTTCATT
	ATCAGAAAGATAATACTAAAGTGAAAGCTTTGTTTAAGGTCTTAAAAATTGAAGAAAATCAGAAA
	TTGTAAAGACAGTAAGACTTCAGACATACATTTTATAAGATCACAGTACAATAGTTAGAAGTACT
	GATGAGTGTATTCCCAATCCCTGGTCCCTAAGGCTAAATCCACTGCTTGTTCCTTGCTCCCTCGT
	ATACTCTCAAGGTCTCTTTCAAAGATGGTTGCAGTGTTTGTCTCCATTGTTTTTCCATAAAGTAT
	TTCCATTTAAAAAAAAAAAAAAAAAAGTGAGCGGCCGCAAGCTTATTCCCTTTAGTGAGGGTT
	AATTTTAGCTTGGCACTGGNCGTCGTTTTACAACGTCGTGACTGGGAAAAACCTGGCGGTACCCA
	ACTTAATCGCCTTGCAGCACATNCCCTTTCGCCAGCTGGNGGTAATAACGAANAGGNCCCCACCG
	ATCC
	ATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTCG
i i	GCACGAGGGTAATTTTGGAGGTTTCCCCACAGCAAGTCACTCTCCTTTTCAGCCCCAAACTACAG
	GTGGAAGTGCTGGATCAGTAAATGCTAATTTTGCTCATTTTGATAACTTCCCCAAATCCTCCAGT
S	GCTGATTTTGGATCCTTCAGTACATCCCAGAGTCATCAGACAGCATCAACTGTTAGTAAAGTTTC
RCT-215	AACAAACAAAGCTGGTTTACAGACAGCAGACAAATATGCGGCACTTGCTAATTTAGACAATATCT
į.	TCAGTGCTGGGCAAGGAGGTGATCAAGGGAGTGGTTTTGGGACCACCGGTAAAGCTCCTGTTGGT
윒	TCTGTGGTTTCAGTTCCCAGTCATTCAAGTGCATCTTCTGACAAGTATGCAGCCCTGGCAGAGTT
	AGACAGCGTGTTCAGTTCTGCAGCCACCTCCAATAATGCGTACACATCCACCAGTAATGCTAGCA
	GCAGTGTCTTTGGAACAGTGCCTGTGGGTGCCTCTCCTCAGACACAGCCTGCTTCAAGTGGGCCT
	GCTCCATTTGGAGCTACGCCTTCTACGAATCCATTTGTTGCTGCTACTGGTCCCGTCTGCANCGT
	CATCTACAAATTCATTTCAGACCAATGCCAAAAGGANCAACAGCGGCAACCTT
	TCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAAT
l i	TCGGCACGAGGTCGGGCTACATGTGGGAAATTTGCCCTAACTACCGAGTCAGGAGTGATTGGCTC
	TGAGTAAGGCCCAGAAGCTCCCTTGGGTCCCAAACCCCAGGCACTGGCTGCCTCTTGGTCCTGCT
l I	GACTCTTCTCCTAACCCCAGCCACTTAATTTTCTCTGTTGTTCCCTCGAACACACGGAAGCTG
22	
RCT-22	TTGATGAATCCTTTTCTTTGCTGTGCCAAGGCAGGTCAGAAGCAGATCAATGGATAAGGGCAAGG
<u>8</u>	TGTCCCGAGGAGCCAGCTGTCCTTCCTCCTCTTTAGACCTCCACAGGGACAGACCTGATTTATT
1	TATTTTGGTTTAAAAAAAAAAAAAAAAAAAAAAAACNTTGCGGCCGCAAGCTTATTCCCTTTAGT
i	GAGGGTTAATTTTAGCTTGGCACTGGCGTCGTTTTACAACGTCGTGACTGGGAAACCCTGGCGT
	TACCCAACTTAATCGCCTTGCACACATCCCCCTTTCGCCAGCTGGCGTAATAACCGAAAAAGCCC
	GCACCGATCGCCCTTCCCAACAGTTGCGCAACCTGAATGGCGAAATGGGACGCCCCTGTACGGC CATTAANCCCGGCGGNTGTGGTGGTTTNCCCCCACCNGTGAC
	CTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT
1	CGGCACGAGGGTGTAGTACCTGTAGGGAGTACGGCCTCTCAGAACACTCAGGTTCTTTATAAACT
l 1	TTGTCTTGGTTTTAAGAGAAAAGGAATGTCAGTGTAATGCTCTGGAGGCAGAGGCAGGC
RCT-220	CTGGGGGTTCAAGGACAGCTTGGTCTTCATAGCAAGTTCCAAGCTGTACAGGGCTACGCTGTAAG
-2	ACCTGACCCAAAAACAGCAAACAAGAAGGAAGGAAGAGAAAATAGTATCTAGAGATGGAACCAAC
ដ	TGATGCAGCAGCAGTGGCGTGGGGTTTCCAGACTCAGAAATTTCTTCTTTTTCTAATTCTTAAGGA
P5	CATTTGGTTTCCATGCTAACCTTTCCCCTGACACAGACTTAAAAGATCTGCAACAAGGGGAGGCG
	CTTTCTCTTTAGAATGTAGAGAGGAGGAATTTGTTTTTATTTTAACTATTAAATCATGATAAA
	CTGACTGCTGAGACTTCCTTAGAAGTATTTTGTACAGAAGAGAAGAACCCTCCTG
	GAGCGGCCCAGGTAGGTAAGTCTGTGCTGTACACAGCACCTCTCTGCCTCTTCCACTGCTGTGTC
	ACCCT
	TTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT
	CGGCACGAGGCTAACCCTGTCCACGCTCCTGCCTGCAACCCTCTCCCTGCTTGGCACAGTCGAGG
	AGGAAGATGCTCTTTGCCTATCCCAGCTGCACCCTGGCTTCCTGCTCAAGGGAAGTGAGCACCCC
덮	ACTTCCTGTGCTAGTTAGTGCCTGATTCTCTGGGTGAGTCCCCGGGCGGACTCCCTCAGCCCCTT
RCT-221	TCTCTGGTACAGTGGTGTCCGCCCGACTGCCTCCTGTAACCCCATCTTCTAAGCCATCAATTTTA
ģ.	TGTTACTATATTGCCCTTTGTGGGGTGGGAGAGGGATCTCCTGGCTCTGCGACTTGCCCCTTTGC
RC	CGAATAGTTACTGTTCTTGACTTGAAGAGAAGCAACGTGTGGGGACCTCCCCACTGCCCCAGCCC
	AGACTTCTTCGGAAGGGTTGGAAGTTGCTAGACAAATCAGAATGTAGAAGGTGGAGGATTCTGAG
	GAGGAGGCAGAAATTCTGACTGGGGAGGTATANGTTGGGTCCTCTGCCTCCCACGGCTGCAANG
	TGTGTCTGACCTCTGGAGCTCAGCCCCTCCCCCCTTTCTCTCAGTGCTGACAAGATGTCNATAA
	ACTTATTTCATACAATTAAAAAAAAAAA
	bee a vec a v a cutuouu i tururururururu

RCT-228	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGACTTAGTGATACTGTGAGCCTCACTGTGAGTGCTGGGAACCAAACCCTGGTCCTC TAGAGAGTAGCAAGTGCTCCTGACCACTGAACTATTTCCTGGCCTCCCCACAAATATTTTTAAGT GATGTGATAACAGTTGTAGTCTGTTGCTCTTAGATGATCATGAAATGGTCCAGTGTTGAATACAC AAGTAGGTAAAAGGAGTAGAAGGGATGAGGTGTGATGCCTGCAACCCCAGCACGT GGGAGACAGAGACTCAGCAGTTACAAGGCAGCTCCACGGGATGAGGAGCTCAAAAGCA GCCAAAAATAAATGAACTTTTAAAAGAAAAAAAGTACATATTTGGACAGAGAAAAAAATGTT TTCCCATCTCTTGGATTTGCAAAGCATGGGTGTGTTTTGAGCCGTGAAGTACTCCAGGTGGAGGA CGGAAGTGTTGCCTTGTTCCTCCTCTCTGGGCCGTTAAAACAGGCCTCCTGTTC TCAATTATTCCAGCTCTTTTTTTTTT
RCT-237	TTTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAAT TCGGCACGAGGCTTGGGGTCAGCAGCTGCCAATGACTGATGACTCCTCATGCCTTTGCCAAAACG TCACCCGTTCCTGGAGGGACAAGCCTGAGCCGCCATTCCCCCTTAATATTTATGAAGTGCCTGAG ACATCTGCTTGCCTCAGGAGTCCTGGCCTGTGCCGTGTAAGTGTCCTGCTCAGGGGTGGCC ATTGAGACTTCCGTTCATGCCCAGCCCCTACTGTCCATGGGAGATTTGCACTTCACGTCTCTG GCGCACTTTTCCCGTTGGGCACCCACGTGGCCCGCGTCTTACTCTCTAGGTTGCACTGTTTGGTG GTTTTGATGGAACCTCCGGCCAGAGGTGGCCCCGAATCACTACAGAAGACAATTGCCA GGCCCCAAGCACCCATTGCCTTCTCCGGTGCTGGCAGATCTCAGGGCCTCGTTTTTTTT
RCT-24	GTTAGNTTINANATGATTACGAATTTAATACGACTCACTATATGGGAATTTGGCCCTCGAGGCCA AGAATTCGGCACGAGGCTGATATTGAGCGCCCCACCTATACCAACCTCAATCGCCTCATCAGCCA GATTGTCTCCTCCATCACGGCCTCTCTCCGCTTTGATGGAGCCCTCAACGTGGACCTCACAGAGT TCCAGACCAACCTGGTACCCCCGAATCCACTTCCCGCTGGTCACTTACGCACCCCATCGTC TCTGCCGAGAAAGCCTACCACGAGCAGCTGTCTGTGGCAGAGATAACCAGCTCTTGCTTCGAGCC CAACAGCCAGATGGTGAAATGTGACCCACGTCACGCAAATACATGGCTGCTGCTACTACC GTGGTGATGTGGTACCCAAGGATGTGAATGTCGCCATTGCTGCCATCAAGACCAAGAGAAACTATT CAGTTTGTTGACTGGTGCCACAGGCTTCAAGGTGGGCATTAACTACCAGCCACCTACTGTCGT GCCAGGAGGAGACCTGGCCAAAGTCCAGCGAGCAGTATGCATGC
RCT-240	TTTTTTTTTTTTTTTTTTTTCTTCGGAGCTGGGACCGAAGTGCTCTACCACTGAGCTAAATCC CCAACCCCTCACCGTTACATTTTGTGTGGAGCATCAGTCGCGTGCCTGAGGGTCTTGCCTATAGA GTCTGTGGTCATCCTGTTGGCCAACAGGTATTCCTTTTGTTGGACCAATTGCATTTCCATCTCT CTGTGGTGTGATGGAGGTGTGAGTCCTGGATGTAAGTGCGAAGAGTCCACTGTGGAATGGTTGCT AACATCCACTTTAGCTAAAATCTCATAATACAGCAAATAAAACACTGGGGTTATTATGCCCACTA TCAACATTATCAGACAGCTGTCCACCAACCCATCCCCCAGTCTGCGCCGTAATATGGATCCTTT CGGTGAACGCTTTTGTTATCAGGCTCAAATCGGACCTGTTGTGCTGTTAAGGCGACACTACTTC ATTCAGGTTCTCCTTCTTGGTGTCTGTACACTTGACTATTTGCTCTATGTCGCG
RCT-241	TCNTNACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGGGAGCATGCTGACCTTATTAGTCAGGCTCGCCCTGATTGTAGTACCCCTGAGCTT GCCCTAGGGTAGACGCCAGTCATTTCACAGAGCCCACCTACTCAGAACTGCACAACACGGCTCTG GTCCTGGGATTTTGGTTTGCAGTGAGAAGAAACATCTTCGTGTAAACTTGACCTCACGCTTAAT AGTTTAAGGGTGAAAACAAGTGGATCAGATGTGTGATGATGCACAAGAGACTGATTGCTTTTA TTGTATAGATTTATCACATTTAATGGAGAGAGTTACAAACTAGACTTTGGCCATACCTTGAAATGA GAACTTGTAGTCACTGATAAAGTACAAAGAACTCTCTTCGTGTCTACACTAAACCAGAGA TGTAGAAATGGAGGAGGCTCTTCACAGGTCTCCCACTGTCTAGCTTATGGCAGTAAACCAGGA GAGCAAAGAGCTCCACGCTTACTCCAGGTGACTCTACCCTGTTCAACAGACTTCATTCTTCTT TAGTTGTTGACTACCTCAGAAGAAGAAAAAGGACATTTCACAGAGTGATGCCTTTTACACATAA TATACCCCCCACACACACACACACCCCTGTAACTAGAAGG

	THE ACT OF THE PARTY OF THE PAR
RCT-242	CATTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAA TTCGGCACGAGGGACCGAGAGCTGTGGATCGTTGAAGCAAAGCTGTGAATCGCTCCAGATGGTCCCTG TTCGGCACGAGGGACCGAGAGCTGTGGATCGTTAAAATCTG
	TTCGCACGAGGGACCGAGAGCTGTGGGTTGAAGCAAAGCTGCTTCATCTTCATCTTAAATCTG
	TTCGGCACGAGGACCGAGAGCTGTGGGTTTTTTTTTTTT
	TGTTCTGTCCACACACAGGTCCCGGCTTTANAAATGGCAGAACCACAGAGCTGGACTGTTGAGCAGGCCTTTCCTCACTGCCCGTGTTCACTTTANAAATGGCAGAACCACAGAGCTGGACTGTTCACAAAGGTTAC
	TTCCTCACTGCCCGTGTTCACTTANATAAGTTTGTAAGCTATTCCGACAGAANAGACAAAGGTTAC
	GTCTCTCTCATTAAATAAAATTAAGTAAAACTTTTT TGATTGTACAATAGCGCTTTTATATGGAAGACTGTACAGCTTTTATGGACAAATGTAAAACTTTTT TGATTGTACAATAGCGCTCTCCAA
	TO A TO A CONTROL OF THE PROPERTY OF THE PROPE
	In accompany CCCCCCCCNTTA A ACCCCGGGGGGGGG
	Towns To the Control of the Control
ŧ.	
l	I
_	1
RCT-244	
7	
ទួ	
<u> </u>	
	ATGTGCTTTTATCTTATTTGTTTTCAATGCAATTACAACTACTCTGTACAACTGGCAGTAAATT TTAGTGTATATCAGCATTTGAAACACAGCCCTATTACAACTACTCTGTACAACTGGCAGTAAAATT
į	TTAGTGTATTTTTTTAAAAGCTCCACATGGTGAATAGTTG
	TCTGTTAATTTTTTAAAAGCTCCACATGGTGATTTATTTTTTTT
	TCTTTATGACATGATTACGAATTTAATACGACTCACTATAGGGTAAGGCTCAGGTTTTCCTCCA ATTCGGCACGAGGTTTTTTTTTT
	ATTCGGCACGAGGTTTTTTTTTTTTTTTTTTTTTTTTTT
	ATTCGGCACGAGGTTTTTTTTTCTCAACTGAGGTTTTCTCTTCCCAAATGACTCTAGCCTGTGT
'n	GGTCCGTCTGATGGGGGCAGTTCTCAACTGAGGTTCACCCAACTAACACAGAATCCATGA AAAGTTGACATGAAAACTAGCCTGAACAATCACTCAGTTCACCAACTAACACACTGAATCCATGC
4.	TCCCTATCCACACACTAAAGAAACTAGAGAGAGAGACCAGATTTGGGATAGAGTTGCCTGCC
RCT-245	
엁	I III III AAA AAA AAAAAAAAAAAAAAAAAAAA
	AAAAAAAACCTTTGCGGCCCGCAAGCTTATTCCCTTTAGTGAGGGTTTAATTTTAATTAA
	I MACAGAGA CAMPATA CANCETCATA CANCATA CATA CATA CATA CATA CATA C
	THE TAX TO THE TAX TO A TOTAL A TRACE A COLOR TO THE TAX
	I IIII
	I I I I I I I I I I I I I I I I I I I
46	
3CT-246	
ដ	
œ	
	I IIII IIII AGATATEE AMMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
	TTCTGGGTTTTACTTCCTGTTCCCACATTCATASAAAAAAAAAA
	CTTCCAACGGGGGTGTCTCAATTAAAAAAAAAAAAAAAA
	CCTTTAATGAGGGGTAATTTTAGCTTGGCACTG
	CCTTTAATGAGGGTAATTTTAGCCCCCCCCCCCCCCCCC
25.	
l ;	
RCT-251	
l	
İ	AGCATCCAAAGGCCTTTTATATTTTGGTATTTTGAAAGATCAGATAAGGAGTCGGAA GTCTTAATCTCCAAGTTCCAGACTTAACAGACATGTACTTTAAAGATCAGATAAGGAGTCGGAA
l	GTCTTAATCTCCAAGTTCCAGACTTAACAGACTTC
	I KITTI AATGGACTGGTAACC

RCT-252	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGGGCCAATACTCTACTGGCAAGACCACCTTCATCAGGTACCTGCTGGAACAGGATTT TCCAGGCATGAGGATTGGGCCTGAGCCAACCACTGATTCCTTCATAGCAGTGATGCAGGGAGATG
	TGGAGGGGATCATCCCTGGGAACGCCCTGGTGGTGGATCCGAAGAAACCCTTCAGAAAGCTCAAC GCCTTCGGCAATGCCTTCTTGAACAGGTTTGTGTGTGCGCAGCTGCCCAACGCTGTTCTAGAAAG
	TATCAGTGTCATCGACACCCGGGGATCCTCTCTGGTGAGAAACAGAGGATCAGCCGAGGGTATG
	ATTTTGCTGCTGTCCTCGAATGGTTTGCTGAGCGGGTGGACCGAATCATCCTGCTCTTTGACGCC
	CACAAGCTTGACATCTCTGATGAGTTCTCAGAAGTCATCAAGGCCCTCAAGAACCACGAGGATGC AGGATCAGCTGCAGGCCCAGGACTTCAGCAAATTCCAACCACTGAAGAGCAAGCTGCTAGAAGTG
	GTTGATGACATGCTGGCCCATGACATTGCCCAGCTCATGGTGCTGGTACGCCAGGAAAAGACCCA
	CGGCCTGTTCAGATGGTGAANGGCGGAGCATTTTGANGGAACCCTCCAAGGGCCCTTTGGGCATG
	GGCTTT
	TCTCNTAANATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAA
í I	TTCGGCACGAGGAATTGAGTGACATATCACTCCTGAGTATGCCCACTAGATGCGGTGGAGATGCA
	GAGGCATCCGGACCCCACGCCCCACCCCTCACACACACTTACTCTCTGCCTAGTAATGCCA
RCT-256	CAGAGCTTCCATCCCATCCAAAGGTCATCAGGCATGGCTATCAGTTGGCTCTCAGGGTGGATTT
	GACATTCTCAGATGATTAGAAGTTGGCAAGAAGCAACCTTGGTGAATAACTCTGGTGTCTAAACT CTGTACTTGAGTTACAGTCTCAGTAGAGGAGACGCCAAAGCTGTTGCGAGTGACGGCAGGATTAT
<u>ي</u>	TGAACAGTCATGATGCTTGGCTTTCAAAGGCGATTATCGCTTTAAGGTCTTAGAATTAGTAAGTG
ł	CATCTTTATAACCAGGCATAGCTAGATCATAAACTACTGATGGCCAAGGACCATAGAACGTGCTT
1	CTTACCTTCCTCTAGTTAGCATTACGACAAACATAATCACCAACGCTCAGGGAAACACTTGCT
1	GATTCAAGTAAAATGCATGAACCTTGGAAGACCTTTCTAGAAGTCAGAGATCAAGTTCATCTTGN
	TCTAGCACTTTCCACATTCATGTTTGGGTTGTATGCTGCGCCCTAN
1 1	TNATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT
1 1	CGGCACGAGGACCAGTCAGGGAAGAATGTGATGGTGGAGCCCCATCGGCATGAAGGAGTCTTTAT
1 _ 1	CTGTCGCGGAAAGGAGGATGCCCTTGTCACAAAGAATCTGGTTCCTGGAGAATCTGTGTATGGAG AGAAGAGAGTCTCTATCTCCGAAGGAGATGACAAAATTGAGTACCGAGCCTGGAACCCCTTCCGC
32	TCCAAGCTGGCCGCAGCAATCCTGGGTGGCGTAGACCAGATCCACATCAAGCCGGGGGCCAAGGT
RCT-258	GCTCTACCTTGGGGCAGCCTCAGGCACCGCGTCTCCCACGTGTCTGACATTGTTGGCCCGGATG
≥	GTCTGGTCTACGCAGTTGAGTTCTCCCACCGCTCTGGCCGTGACCTCATCAACTTGGCCAAGAAG
1 1	AGGACCAACATTATTCCTGTAATTGAAGATGCTCGGCACCCACACAAATACCGCATGCTTATTGC
1	AATGGTGGATGTCATCTTTGCCGATGTGGCCCAGCCAGACCCAAACCCGAATTGTGGCCCTGAATG
	CCCACACCTTCCTGCGGAATGGANGACACTTTGTGATTTCCATTAANGGCCAACTGCATTGATTC
<u> </u>	CACAGCCTCAACANAANCTGTGTTTGCATCTGAAGTGAAAA
1 1	GGGGGTGAACATACAAGAAGGTTGNTGTCCTTTGCACANAAAAATTTTGTTTGAAACTGTGANTG
	GNGAGTACACGAGTTTTCTCTAACCAGTCACCACACTTCTGAAATAACGCGTGCTAACATTCAAC TGATAAAGGGACCGTCCCCTTGGGTAAAGTGTCAAGCAGGGTTAAATATGTATAATAGACAAGCA
RCT-260	CCATGAGGAATCTGCTCCTGCTCGATGGGTCTGTGTCTCAATGTCCNTGTGTACCCTCTTTTTGT
	GCAAGTTGATTACATGGTTTTTGGCTGACTCCAAAAGCACATGGTCACAAGACAAACATTTTTTTT
%	TTAAAAAACATTCTCATGAATGATTTATCTACAGTACGGTTTCTAATACACAACGATCCTTCTTT
1 1	ATTGCTGAAACTGGTGGTACTTAAGTGTCTCCTTTCCTT
1	CAGTCCACCAACTCTTTCAAACCTAAAGTCTCCTGTCACAGATGACAGGATGCAGAAGAGACCTG
	CTGGGATCGGCTTTTGCAACCTGTGCTGCAGCCTTCGCCCTCCTTGGGTGTGAAGTTGAT
	CTANNCCNTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCC
J 1	AAGAATTCGGCACGAGGCATCTCGAGCAGAGAGCCTGTTTCCAGCACCCGTTCTCCTACCACCAA
1 1	GTCACACTCGTGGCTGGCACAGAGAAGGTGCTCACTGTTTGCTTGTTCAGACCGCGTCACCAAAA CATGGAAAACTCATTGAGTTTAATATTCTGGGCTTAACAGACTGATTATTTTCAGGAGCAAACTG
8	AAGGATATTCGTAAGTATGCTGAAGTGACAGGTGGAGAACAATTCCCATTAATTA
7	TTATTCCACTTAATAATGATGAGATGCAAATAAGACCAACCA
RCT-264	AGTATAATGTATAGAAAAAGCACAAAGTATTACCATTCCTTCAGCTTCGAACAAGACCATGATCA
	ACATCAAAGGACAACCTATAGCCCAAGACATGTGCCTGTCTGCACTCCAGGCTTGCTT
j i	TACGGATGATGAGAGGGAGTGGCAATAAAACCAAAACAGTGGAAAACCACAAGGAGAAAGCGACG
j	ATACACCAAAAGCGTAATTGAGGAGCTTCATGCCTGAGCAGGTGCTTCAACANTTCCCCCTCACT
	CTCAGGCAGAAGTTAATAACCAGCTGGGATTAATATTTCTCTACCTCATCATCATCTTACCTACTGG
	CTCAGANAGAACÇAACGCTGGTTAAAAATAAATCTCATTTTTATTGGTTTN

	OCCUPATION OF THE PROPERTY OF
RCT-268	ATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTCG GCACGAGGGGCTGTTCTCCAGGAAAGATAAGGTTGACTTTGTCCAAAGAATGCTCTTCAACCAAC
RCT-271	CTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGCACATTTCTTCAGTCATCATGGAGAAGGTCGGCACTACCACTACGATACCACCCC AGACACAGTGGAGTATCTCGGCTACTTCTCGCCTGCACAGTTCCTCTACCGAATTGACCAGCCCA AGACACAGTGGAGTATCTCGGCTACTTCTCGCCTGCTGCTTGATTAGGGAAAAATTGGTTAGC TAAGGTTATATTGCTAACCCAGCAATTGACAGTAATTAAAAAATATAGTAGGACCAAAGAGAGAG
RCT-274	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGCGCAGAGCCAAGTCCTAGATGCTATGCAGGACAGCCTTCACTCGGGCGTCTGG CATCATAGATACGCTTTTCCAGGACCGGTTTTCTTCACCCATGAGCCCCAGGACATCCACCATTTCT CCCCCATGGGCTTCCCACAAGCGGCCTCATTTCTTGTACCCCAAGTCCCCGCTTGGTCCGCAGC CTCATGCCTCTCTCCCACTACGGGCCTCTGAGCTTCCACAACATGTTCCAGCCTTTCTTT
RCT-276	ANNINIGNINCCNCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTC GAGGCCAAGAATTCGGCACGAGGCTGACCCGTGTGCAGAGGCATTTTCGTTCCCTTTGTCTTTA TTTCTACCTACACGTACTATTTACCTTCCGTGTCCTAGCCCTGCCACCTGTGTATTTTTGGGGTG CTATGGAAACAATGAAGGAGAACGGGGGTTTCAGAAGAAAATTGTAACCAAATTCATATGCTTTG TATAAGTTTTTGATATCATGATCACAGGTGATTCACACGCATACACATCACACACA
RCT-277	TTCTATGACATGATTACGAATTTAATACGACTCACTATACGGAATTTGGCCCTCGAGGCCAAGAA TTCGGCACGAGGCTGAGAATCTGTATTGTGGTGTATAAAGTGTCTTCCTAAGAGCAGTAAAAGGA CAAATTAAGCAGACTTTCTTTTCAAGCTTATGACTTAGATTCTTTTAGAAATATAGTTCTTAATC TTTAAAGATGAGATTCTAAGCCTAGAATTTTAAACCACATTTTATTATGGTGGCTTACTGATCTC AAATTTTCTACAATTTTGGTTTTTTTAGACTTAAAAACAGCTAAACCAAACCTTCCTT

ATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGA GCACGAGGGTGTGACTGGTGGAAGCAGCCTTTCTTTTATTATCCAAACCTTCTGCC ACCATATCTCCTTTAGTACCAACTTCAAACACCTTTTCTGCTTTTATTTTCAGTTTCTAC GTTTTTTTCTGAGTCTTACTTTCTCACTGAAACTTTTGTTTCCTCATGATAAGGTACCCT CACCTCCCCTTCCCCCCCCCC	ATTCG CACTGA
	SATTTT TGTTGT TGCTGG
CACCTCCCTTCCCCCCCCCCCAGAGCACAGCTCACTGGCCGCTTCAAGCCTTGTCTTTGTTTG	CTAACT VAAACA PGGATT SCCGGC
ATCTCTGGCTGAATAATTGGGAAAANATTCTTCTAAGCGNGGGGAA CNNTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCC	777777
TTCGCACGAGGGAATTCAGCCTCGCGGACGCTGTCATTTCATTTTGAAGTTCCTTTTC AGTTGACCTGAAATCTTTATCACAGTAATAAACTCTTTAATCGGTTTTTTAATATTATATATTATAT TCCCTTTGTTTACAGTTACTCTATATGGCATTGTGCAATGTTTCATTGACTCCTTGTTTA	STTTGA ACTGAT
CCTGTTTTCTATTCTTTGGAATCCTTTCTTGGTGACAGAATTTTGTAAAATTGTATACTA	ACCTTC
CCTGTTTTCTATTCTTTGGAATCCTTTCTTGGTGACAGAATTTTGTAAAATTGTATACTA GAGGACCCCCATTGTCAGAAGATTCTATTTTCCAGAGTCAGGGCACTTGTTAGTCACCGAG GCATTTCANCAGTTTGCAGAAGAAGTGATTTGAATGGACAGCTGCAAGTGAGACAGCCTA	FACCCA
2 GCATTTCANCAGTTTGCAGAAGAAGTGATTTGAATGGACAGCTGCAAGTGAGACAGCCTA GAAGAGATGAAACACTCACTTCACT	AGACGT
CCTTGGACAGCGGATGTACCAGGNCTGGCCCAGCGGGATCCTGCNAAGGCTGAACATGAA	AGAGCT
ATGAAGAGTACCAGTTGGNGATANATGGGGGAACCCCNGGGCCNAGNTTGGGTTTCGATG AGAAATGGTNCAGANAATGGAGGANCATTCCGATTCTGGCTTACTGG	TCACA
ATCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCC	AAGAA
TTCGGCACGAGGTCCTCCCACGCCATCTGCGCATCCTTCTTGCCCTTGTCCACTCCCT	TTCCT
CCTGCCTCTTTCTGCCCCTGAAATTTGCACTATGTCTCTGGAGGGGAACACTGGGCAGAG GTGATGTGGGGTTACAGCCCCCCACCCCA	GGCGT
GGACAATGTTTACAGGCACCCAGTCACACATTCACGTGTGCACACAGGCACACGACGAC	AGGCAC
f: CCCAGCACATAGCTTGTAGTTTTTGCAATTGTCTTCTCCAGGTAATAGGATGGACACAA	AGGGGC
CACACCCCCAGTTTAAGAAAAGAGTCCATCCCAACCCCTGCTCCTCCCCTGGAGCCCCTGCCCTGCTCCTCCCTGAGGTGAGCAGGGTTTTACTGTGAGGTGAAA	CAGGG
TTACTTTCTATTTGGTTTGTGGTGAGCTTGTCTGAGTCTTGTGTGTCTACCCCT	CAGACC
AGTAATGGCTAATGAATCTTAGAAATTTCTGATTGATCTTGGGGTCCCTCTGTGATATTT	CTTTG
TGCCCAAAAGATATTAAAAAAAAGACCAAAATATGTGAAT CTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAA	C
CGGCACGAGGTTGGATGAAGAGAACATATGAGCTTGTGAGAGAAGACCGTGACCAGCAG	CGATT
ITTTGTGACGTGGAGCACTGCTGACTCATAAAGGGAAGACAGAGAATCTTTTAGAGATCGC	ATGTT
TTTCAGAAAGGCTTGGCCCCATACAGCCTGTTGTTGTTGGACATTCATAGTAGAACTCCT GCTTGTTGTATTTGAAAGAAAAAAAAGCATATTGCTAAAAAAATCTGGCTGAAAATAC TGAATGGCAGGATGTGGGAAAAAATGGATGGTTGGTCATTCAGATGTCTAGTGATACAAAG	GTGTG
TGAATGCAGGATGTGGGAAAAATGGATGGTCATTCAGATGTCTAGTGATACAAAG	CITAA
TGAGTGTGGCCCCAAGCGCTGGCACTTGCTGTTTTTAGGGGAATCGTATTGGTGGCACA	TTGGA
TATTTCTAATATGTATTAAAGCTGTGTATCTTGACTCACCTTTATCCTTTGCTATGTCTG CTCTCTTAAAATGCCAAGAACCTCTCTTTTGCTGTCATCGATCCTTTGGAAACAATTTTG	CCTAT
TTAGTTACAGGTTGTCATTGACCTTTAGGAATTAAATCTGAGGGGT	CLICI
TNCTAACATGATTACGANTTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAA	GAATT
CGGCACGAGGGGTTACTCCATTCAAAATAACATACTTTGAAAGCAAGTATAGGAAAGCCT TATTATTTTTCTTAGCTTCCCCATTGTCTGAATTGGGAAAACAGGAAAGCATTGCTT	TTTCC
CACCTGCAAAATGGTTTAATGCCCCTGCATAGTTCCATATCTTTCAACAATAGATTTAGC	ATGGG
AATCTAAACTAGACACCCTGAGAACATCTGTCCTGTCCCCAGCTCCTAAACCCAGGCTTT	GATTA
TGTGTGGCTTGTGAATCCTATCAACCAAAACAGGGGGACAGACA	TACCC
GGGACCCTGGAGCTTTCATCCTTCCCATCTTACTTGCAGGGCGGCAAGTGGCTCCTCTTT	GCATT
TTACCGAGCCCCCTCCAAGCTTAAGTTCATTTGCGGATCAGGGATTAAGCCTGGAATTG	TCTTG
TCCCTGGTGTCAGGGGTTATTGTAAAATGGTAGTAATCTCACCCCAAGCCCTCAGTAAGA AATATTTAAAAAATATGNGCATTTGNAATCTGGTTCTGGATCCTGGAACTGTGGGCTGNT	ACATA
AGGAGTGGACTTTAATCTTCTAGTGAATATTGCCCACTTTGNGGGAACTGTGGGCTGNT	CANGC

RCT-287	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGCCAAAACCTGACGGACAGATCAGTTTTGACCTCTTATCCTCTGTGGCTCTGAGTGG
	TACTAATCATGAACATGACCAGCCAGCACATTTAACCTTGAAGGATGACAGCATACCTGTTAATA
	GAAATCTGTCAATATATGATGGGCCTGAGCAGCGATTCTGCCCTGCAGGAGTTTATGAATTTGTT
	CCTCTGGAACAAGGTGATGGATTTCGGTTACAGATAAATGCTCAGAACTGTGTGCATTGTAAAAC
	ATGTGATATCAAAGACCCAAGTCAAAATATTAACTGGGTGGTCCCAGAAGGTGGAGGAGGACCTG
	CTTACAATGGCATGTAAAGCCCAAGTGCCTCCACTTACTGGCACACTTGACAGCCAGTTTCTAGA
	ATACTGTAAATGCCAAACTAACCTCCCATATGTTTGGATAACTTCTGAACAGCAGTTTCTAGA
	AAACACTGAAGTAAAAAAACTTTGTATCTAACGTCCCATAAAATCATGAAAAATATTTGTCATTAATA
	AAACACTGAAGTAAAAAAAAAAAAAAAAAAAAATCTCGCGGCCGCAAGCTTATTCCTTTAGTG
,	AGGGTTAATTTTAGCTTGGCCTGGCCGTCGTTTTTCAACGTCC
	TCCTNATNAGATGATNACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCAAGAA
	TTCGGCACGAGGAATTAAAACTATATAAATAAGAATAATAGAAAATAAGTTAAGGAAATAAACAG
	TAGTAAAACACCTCTGGTTTATCAAACGTTTAATCATAGAAGGAAACCCTGATGTCACTTTCTTT
80	ACGTATGACTCTGTGAAGGAATGTAATGGTACATTACAATAGGAGCTAATGTTTTAAATGTGTAC
28	AGTAGTGAAATAATTAACAATAAACTGGAGTTCAAAATGCCAGTCAATGTAAGTACATTCTATGA
RCT-288	TGGGGCTTTGAAAGTGTTTATTCCATGAAGCAATTCTACAAAGAACATTGATGAGCAATATGGGT
22	AAACTGTTTGGAAGGTGCTGGGCAAATAACTGGAATTGTCTAAGTGGCTTCACCGCACTGTACCA
	GAAACATATTCTGAAAGTCAGATCCATCAGTGCTCACTGTGCTGCCGAACTTCACAGTAATTTAC
	TTTACTGTTGTGAAAATAAACATCGCTCTTGTAAACTGTGGTGTTAACATTTTTTCTAAAATGT
	AAAGGAGGCATTCTTTTTACAAAAGAGAAATGCTTTATCTTTCAGAAAAAAAA
	ATTGCTTCTCTT
	GTCATCTTCAGCTATGCAGTGAATATGAGGCCAGTCTGGACTACAGGAAACCNTGTATTGGACAG
	AGCTAGAAGATCATACAATCAGGAATATGAGGCCAGTCTGGACTACAGGAAACCNTGTATTGGACAG
	AACTCGAAAGAACATCAAATTCGGAATGGTCTAGTTTTAGTGGTGTCTGTTGGAACATTTTTGTAGA
7	GCGGCTCTAAGATGACATTTAAAACGAAAATACTGCTGACTTTAAAAAGGGAGGAAAATATGGAA
25	AGTTACATGTAATAAACCAATTAAGAGGTAGTGTTGGGGCTGCCTCTACACAGTGCCACGTTCTG
RCT-291	GCCAAGAATGTTCTCTACTCATTTAAGGTCAGTTCCAGTACAGTCAGAATCCAACTGCCTCATGA
~ .	CCTCCTCTGCCACTTCACTCACATATAACTAAAGCATGACAAACACTATGGTCCTGAAAAAGTGTG
	AAATCTACTGTCTGTTTCATGTGCTTATAAAAAATCAACTCCCCTGTGTATCCCACACGCTCCAG
1	ATTCAGTTGTCCAAATCAGTCCAGAATTTCAGAGGAACACACCTCGTGCCGAATTCTTGGCCTCG
İ	AGGGCCAAATTCCCTATAGGAGTCGTATTAAATTCGNATCANGTNAATCNNNNG
	TCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAAT
ł	TCGGCACGAGGCACGTACTAAGCAGACCGCTCGAAAGTCCACGGGCGGCAAAGCCCCGCGCAAGC
	AGCTCGCCACCAAGGCCGCCGCAAGAGCGCTCCGGCCACCGGCGGCGTGAAGAAGCCCCACCGC
I ~ .	TACCGTCCCGGCACCGTGGCTCTGCGCGAGATCCGGCGCTACCAGAAGTCCACCGAGCTGCTGAT
53	CCGCAAGCTGCCGTTCCAGCGCCTGGTGCGCGAAATCGCGCAGGACTTCAAGACCGACC
RCT-292	TCCAGAGCTCGGCGTCATGGCCCTTCAGGAGGCCAGCGAGGCCTACCTTGTGGGTCTGTTTGAG
l &	GACACCAACCTGTGCGCCATCCACGCCAAGCGTGTGACCATCATGCCCAAGGACATCCAGCTGGC
	CCGCCGCATTCGTGGAGAGAGAGCTTAAACGGTCCTACGAGCAGTTAACCCAAAGGCTCTTTTCA
	GAGCCACACNANTNNATNANTAGNAANNNNAANAAAACAATTGCGGCCGCAAGCTTATTCCCTTT
l	AGTGAGGGTTAATTTTACTTGGCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCTGGC
. /	GTTACCCAATTTATCCCTTGCAGCACATCCCCCTTTCGCCAGCTGGNGTAATAAC
	GNNNTGTCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCC
	AAGAATTCGGCACGAGGCCTCGCTCCTCAACTTGGCAAAAATGCCTACAGAGACTGAGAGATGCA
l .	TCGAGTCCCTGATTGCTGTTTTCCAGAAGTACAGTGGGAAAGGATGGAAATAGCTGTCATCTCCC
RCT-293	AAAACTGAGTTCCTTCCTTCATGAACACGGAGCTGGCCGCCTTCACGAAGAACCAGAAGGACCC
	CGGTGTCCTCGACCGCATGATGAAGAAGCTGGACCTCAACAGTGATGGGCAGCTAGATTTCCAAG
	AGTTTCTCAACCTTATTGGTGGCTTAGCTATAGCATGCCATGAGTCCTTCCT
	AAGCGTATCTAACCCTCTCCATTCCCTTCCAGCCACCAAGTCATCGCCTCCTCCACTCCTTCCCC
	CATCCACACCTGCACTGAGCCCACCACCACCTACCACACATGCAGCCCACGCCTGACAGGGAAAAT
	AAAACAATGTCATTTTTTTTAAATGTAAAAAAAAAAAAA
	GCTTATTCCCTTTAGTGAGGGTTAATTTTAGCTTGGCACTGGCCGNCGTTT

	THE STREET OF STREET ST
RCT-296	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGATAACATTAATCTTTTTTAACAAAAAATATGGTCACTTTATCTAAACCCATCCTATCC CCAAGTTTAACCAGGATAAGCTATTTTCATTGCCAAACTATCTTATTCTCACACCCTTTCTGTTCT GATTTTCTGATATTCCTCCCTGTAAATCTGAATAAATTCAGCAAGTAATAACAATGCCAACATTT AAATAATGTTTTCTTGAAAGGAATCATCCAGGGAATACCTTTCCCTCTAACTTCTTTTACTTCAC CCTGAACAGGCAGGTGAACCTTAACATCCCGAAATTCTCCATATCTGATACCTATGACCTTAAAG ACATGCTGGAAGACCTGAACATTAAGGACTTCACCAACCA
RCT-31	TCTATNACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAAT TCGGCACGAGGGAACGTTGTCTTCACATGTTTTTACAGGATGAAATCATAGATAAAAAGCTATACT CCATCTAAAATAAGACATGCCTGAGTTTGGCAAGAAGAGGCAAACCCCAAGACCATGAATGA
RCT-34	ACTAAANNAANNCTCNTATGACNTGNTNACGAATTTAATACGACTCACTATAGGGAATTTGNGCC CTCGAGGCCAAGAATTCGGCACGAGGCAAAAGAAACTACAAATCCTAGATTCGTCTGAATATACA GACTCAGAGAATATTTAGTTTCATCTGAAAAGGAAAACCTTTTCCNTCTATGTACACCAAGAGCT CTGTCAAATGTCTGCTCTCCATTACCACCTGTCTGACCTCTGCTGAGAACAGTCGTCAGTCA
RCT-36	TTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGGCGCGCGGGGGAGCGTGCCCACGGGACTGTTGGGCCGAAGTCTACCTGGTTTTAG AACGATCCAAAGAAATGGCAGGAATGCATTCACTGTATTCCTCTTTCTAGCCCTGCTCCAGATCT CTCACAATGAACTGCTACCCGCAAACAATTTATAGTACTCAATGGCAGACATCTGCTCCCCA AACGACGGTTGGCTGAGGACTCTAACATGCCCCAACTGTGCACACCTCCTCTTTAGATTAAA CCTCAAGGGCTCCCTTCAGCTGAGTGCAATGTGTCTCTACCAAGAGATCTCCAGGGTTTGCA GGGAGTTTAAGGTCAATGTGATTTTCAATATGGAGCTAAGGAGAAATGACACAAATTTAGTCA TGCCTTCTATATACACACACCCTATGAGCAAAAAAAAAA
RCT-38	TNATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGGTCCTTCCCTATCAAAGCCAGATGCTTGAGAAGCCATGAAAGAGACCTCTGAAGT GACAGAAAGGAGGAAACAGCCTCAAGCCCCATCTGGATCTTCCTGGCTGCTGCTCCTCAGCCCGT TCTTCTGGCTGTTGAGCATCGATGAGCTGTCGTCCCTTCCAATTGAGTGACATATCACTCCTAGG TATGCCCACTAGATGCGGTGGAGATGCAGAGGCATCCGGACCCCACCCCCCCC

	TAADAACA COO SOO SOO SOO SOO SOO SOO SOO SOO SOO
RCT-39	TCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAAT TCGGCACGAGGGTAAAACTGGCCAGGCTCATGTACAAGAAAAGACATGGTCCTCTATGGTTGTCT GAAACTCCTGGGGAGCCCTGGAAACCTTGTAGAGGGCACTGGGGACCCTCATTATATACAGAAGT CACTGATGTGGACAAAGCTGGATACAGCTATGACCAGGCTGGAGGGACAAGAAGCAAAGGGGTAG GTAAAAGAGCTCATGGTGTCAACTGCAGACAAGCCAAGTTGTAGATCCTGGTCAGCACCACAGA GACTTAGTCTAGAAATCCCTCCAGGATGCCTGGATACCTGTCACCACTGACCTCAGATGAGGG CCTGCTGTGGGACTGTGGTCCTTGGAAATCACTACCTCTTGACGACCCAGGCACAACGGCATTA CGTCATTCTGTTCTCATTCATATTGTTTGCTCATGGTCAAGTTTGCCCATGACTTTGGTAGGTGT CTTGAGCATTGGCTTTTTGGGGAATGGGGGGGACCGTTGGGAGCACAACAATTTTGT CCCCCAGACTGTCTTCATTTTTTGGATGAGAGTAAACACTCTTTCCACATGGCCTTTTTTTT
RCT-40	NTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGAAAGATCCAGTCACTGGGTTAGACTACTGGATTGTCAAGAACAGCTGGGGCTCTC CGGCACGAGGAAGATCCAGTCACTGGGTTAGACTACTGATTGTCAAATACAGCTATTA AATGGGGTGAGAGTGCCTACTCCCGAATCCGCAGGAACTGATGAATGTGCAATTGAGGTATA GCCATGGCAGCCATACCGATTCCTAAATTGTAGGACCTTACCAGTGTCCCATACAGCTTTTT ATTATTCACAGGGTGATTTAGTCACAGGCTGGAGACTTTTACAAAGCAATATCAGAAGCTTACCA CTAGGTACCCTTAAAGAATTTTGCCCTTAAGTTTAAAACAATCCTTGATTTTTTTT
RCT-42	TINNININTININGNININTCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGG CCCTCGAGGCCAAGAATTCGGCACGAGGGTGGGTGGACCACCCCTGGTAGTTCTGGGAACTATA AGAGAGCAAGCAAGCAATGGGGAGGAGCAAGCCAGTAAGCAGCATCCCTCCATGGCCTC TGCATCAGCTCCTGCCACCAGGTTCCTGCTTTGGTTTGG
RCT-43	GGCACGAGGCAACAGAACCCAAAGAGGATGCTTTCCGGAAGCTTTTCCGCTTCTACAGGCAGAGC CGGCGGGGTACGGCGGACCTAGGAGCGGTCATCGACTTCTCAGAGGCTCACGTGACTCAGAGCCC GAAGCCCGGCGTGCCCAAGGTGGTCAGATTCCCTCTGAACGTGTCCTCAGTGACTGAGCATGATA CCTCTAGGGCAGGACTTCAACCTGCCTGGAGACACCTCTCCCAGCTGTCCTCCCTAGCGGATCAT TGCTTGAGCCCTGTTCTGTGGAAGACTGCCAGGGTGTTGTCCTTTAGAACCCATGGAGGAGCC AAAAAGAGACATTACTGCAGATGTTTGTCCATCTCACTAGAACCCATGAAGACGA AAAAAGAGACATTACTGCAGATGTTTTAGGGGACTCTCTGGTTGCCTCACACAGGGGCAGGAA GAACTCACCTGTCATGCTTCTGCCTTTGGGCTCATCTTANAGCATAAACTGAGTTTGTCCAGANAA AACTCACCTGCCCAGTTCTTACCTTTATTANGCATAAACTGAGTTTGTCCAGANAA
RCT-45	TINITINACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGCCAGGCTACCCTGTCTCCTCCAGGCACACAGGTGCACACACA

RCT-49	TTATCCATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGGTGAGGTCTCTCGTGGTTACGATAGGTCTCTCCCTGTGATATTCATTTGCAGAT GGCTGGACTGATCAAGCAGTACAGAATGGAGGTCGGAGGGAG
RCT-50	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGGCAATCATGGCTCCGGGTTGGCCGCGCCTCTGCCGCAGCTCCTCGTGTTGGGATT CGGCTTGGTGTTGATACGCGCCACGGCCGGGGAGCAAGCA
RCT-53	ATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTCG GCACGAGGATTTATTTACTTTATGTATGTGAGTACACTGTTGCTATCTTCAGACACACCAGAAGA AGAGGGCATCAGATCCCATTACAGATGGTTGTGAGCCACCAAGTGGTTGCTGGGATTTGAACTCA GGACCTCTGGAAGGGCAGTCAGTGTTCCTAACCGCTGAGCCATCCCTCCAGCCCCAGCCTGTTTT TATGGAAGTGATTCTCAACTCATGGGTCATGACCCCTTTGGGGGTTAAATGACCCTTTCACATAT CAAATATCAAATCAA
RCT-59	CCNNNTTCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCC AAGAATTCGCCACGAGGCAAGATGGTGCCTCGGGGGCCTGAGGGAGCTCACAGGAACTGAGCAGTG ACTGGTCCTTTCCCAGTATTGAATACTGAGCCCCTGTGGGTGTCGAAGCACTTAGTGGGTCTGGC CCCAACCCCAAACACCCCTGTTTCTGTAACACCCTGAGCTGGACTGTTTATCTTTAGCCGGGAGA ACATGTATTTTGGTCCCTTCCCT
RCT-6	TTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGTGCTAGCCCTAGAGAGCAGTGCTCACTTCAGACCAACCA

	TA A DA A DA
RCT-60	TCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAAT
	Improve an anagonamon on a coccoca a coccoca a correscitatification (CAGGCCCAAGAAGAAGACCCCCAAGAAGAAGCCCCCAAGAAG
	1
À	I
Ď	IA_AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
~ I	ACCGGTCTGGACTGCTGAAAGGAGACGGAGTGCCTGGGCTAAGGATCTTGCCTTGCAGCAAACA GCTCATCCCGCCTGGCTGAAAGGAGACGGAGTGCCTGGGCTAAGGATCTTGCCTTGCAGCAAACA
	GCTCATCCCGCCTGGCTGAAAGGAGACGGAGTGCGGTTTCAATAGAACCCACAGAAAAAG GCTCTACCTTCTTCCCTTGGCAGCTGACTTGAGAAATCTGGTTTCAATAGAACCCACAGAAAAAAG
	GCTCTACCTTCTCCCTTGGCAGCTGACTTGAGAAATCTGGTTTTTTCCTGC
	GCTCTACCTTCCCTTGGCAGCTGACATACCCTGGTTCCCAAGATTCCATGGGGTTTTNCCTGC
	In comomn comomn compact TCACAMCTCNTCCCTGGTCTGGGCTAATTACAGCTTC
	TO THE TRANSPORT OF THE PROPERTY OF THE PROPER
1	
	I TO DO SO TO THE PROPERTY OF
ਜ਼	TTCTGTGTGCGGTGAGGGGTTCCCGAAAGATCCTCTGGTCCAGGTCTACTTCTGGTCTTT ACGGGNGATTGTGCAAAGNTCAGCACGGCANAGCATCCTCTGGTCCAGGTCTCACTTCTGCTCTTT ACGGGNGATTGTGCAAAGNTCAGCACGGCANAGCATCCTCTGGTCCAGGTCTCACTTCTACTATATTCACANAAACTTAATT
RCT-61	ACGGGNGATTGTGCAAAGNTCAGCACAGCANAACATCCTCTGGTCTTTTTGAGANAAACTAAT
ស	ACGGGNGATTG TG AAAGN TCAGCACGACAAAAAAAAAAAAAAGAGAAAGATGTTTTGAGANAAACTAAT TATTGAAGACAAACATTCNCCANTAAAGAAAAAAAAAAAA
Ř	TATTGAAGACAAACATTCNCCANTAAAATTTTTTGGCCTATTAAGGTTCCCCTAGTTAGNACTCNATT
	I PARTICIONE E MOCHINO E ENCOMENE E ACCIDIO E EN ENCOMENCIA DE LA CACACACACACACACACACACACACACACACACACA
	CAAAANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCCTGNCGTNACCCCA ATTTTANCTTGGCCCTGNCGTCTTTACAACGTCGNGACTGGGAAAACCCTGNCGTNACCCCA
	COMPA ACCCCCCTTCCA CCACACCCCCC
	To the same and a control and control carrier and carrier and carr
	ATGACATGATTACGAATTTAATACGACTCACTATTCAGCAGCATTCTGTGACTTGGGATTCATTC
	GCACGAGGATTCCCAAAACTGAGTGGCCCCLIAITCAGCAGCATCACCAAGGTCTCTTACAAGCT
	GCACGAGGATTCCCAAAACTGAGTGGCCCCTTTTTTTTTT
~	AGATTCACGTGCTGTAGTCTGAAGACCTTTTTTGTTTGTT
. φ	
RCT-62	
₩ .	I — — — — — — — — — — A CONTONO CONTOC
	1 Iomas s a amoundamente are are the following the following state of the following state o
	I
	GGACCTGAAGCACCACATTAAATTTTGAACTATAAAAGGGAAAACTGGAAGTTCTTCTGNATTGC ATTATGAATTTATTCCTAAAAATATACNAATGTAAAAGGGAAAACTGGAAGTTCTTCTGNATTGC
	ATTATGAATTATTCTAAAAATATATATATATATATATATA
	ATAAGTAAGTTCANAATTCTCTGGGGGAAAACCATNAAG
	CTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT
	I GOOD OF COMMON COMPONED A COMPO
	1 1 cmcccmccccmcmcmccccabactcabactcacatcatcatcatcatcatcatatatat
	I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
42	1
ĭ	AGGCCCATGTGGTTCGCACTCAGTCCCTAGGCATCCAAGCAGGGGCCAAAAATGATTCCC
RCT-64	AACGTCTTTTGTAATGAGGCTTATTAGACTTTTTGTTCTTCAAGTGGCCCCAGTAGGGCAGGA
F.	TCTTTTTCTTTCTCAAGAGAATAAAATGACATTTGTTCTTCAAGAGGCTTGGATACGC
	CAGCCATCTTATGGACAGGCTATCTCCAGAGGTACAGGGGGAATGGATAGGAGGCTTGGATACGC
	CAGCCATCTTATGGACAGGCTATCTCCGGACTCCGGGGCTCTGTAAGCCCTTTCTTCCCAAGTGGACTCGGCTGGCAGAGACCAACTGCCTCGGACTCCGGGGCTCTGTAAGCCCTTTCTTCCCAAGTGGACTGCCTAGCATGAGTGGC
	GCCAACACTGGGCCTTCACTCCATGCCTCCTGCAGACTGGCCACCCTCATGGTACCATGAGTGGC
	COD COD
	TO THE TOTAL CONTROL OF A THE ATTACK ACTION OF THE TACK CONTROL OF
	TCTATGACATGATTACGAATTTAATACGACTCACAGAGGCAGAGGCAAACACACAC
	TCGGCACGAGGAGCACTTTGCTTTAATCCACAGCAGAAACGAAACGAAATCCCATAATCCAGG
	TCGGCACGAGGAGCACTTTGCTTTAACATCTAAAAACCAAAAGAAATCCCATAATCCAGGGCCAGCCTGGGCTACATAATCCAGC
RCT-66	
l é	I logs gamamamaamamaccaaccaccaccacattiilicactgtatatticaaggataggacacacaca
, S	
	I I I I I I I I I I I I I I I I I I I
	-
	CTGTGTGTTTGCTTTGGGGGTGGGAACTGCTTTTTGAAAACTTAAAANNNNNNACNNCNNNNNNCI AGAATGTCTTGCTGTGATGGATTAAATTCCTTTTTGAAAACTTAAAANNNNNNNACNNCNNNNNNCI
1	
	AGAATGTCTTGCTGTGATGGATTAAATTCCTTTTTGTTTG

TATTACATGATTACGATTTATATACGACTCACTTATAGAGAAAGAA		THE STATE OF THE PROPERTY OF T
GGCACGAGGTTGATAGAATCAGTTAGGTCTGTAGAGGAAGGA		TATTACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC
GCTAGGTCGCTAGGTCCCAACTCTAGGTCGTCTTCCGGCAGTTACCGCTTACCGCGTACGATCAATTAT GCTAGGTCGCTCAGTCTCTGGTTCTCCTGGGAGATTTTCATCATTAGCTATTCAGCAATCATTTCAG GAAAACCAACTGTTGAACCATATTTGGGTAGCTGTTTCTTTC		GGCACGAGGTTGATAGAATCAGTAAGTTTCTAAGGGAAAGGAAATTGATATTTTGCAGACCAATT
GCTCAGGTCGCTGCAGTCTGGTTCTCCTGGGGGATTTCATCAGTACTATTGGATACAACTGTTTCAGCAAACCAGTTGAGACCAAATTTGGGTAGAGTTGCTTTCTTCCTTGAGGAACCAAACTGTTTCAGCAAACCAAATTTGGGTTAGAATTTAGAGAACCAGATTTAAACCAAATTTGGTTAGAATTTAAGAAAAATTGTGTTTAAGAAAAAA		Image and a concorder of a concord a concorder concorder concorder acceptance of the c
GAAAACCACTGTTGAACATATTTGGATAGCTGTTTCTTTC	89	Icomes consciences encreasement references and artificate ATGTAGCTATTGGATACAATTATT
CTGGTAGAACAGGTTGAAGCCCGCCTTCATTAGCTTTGCTTTAGTTTATATTAGCACATATTTTAAGCACTAGGTAGTTTTAAGCATATTTTAAGCACTATTTTAAGCACTATTTTAAGCACTATAACTAAAAAGTCAACTCATTAATTA		ICA A A COCA A COCONTICA A CAMANDATOCCA CONACCOCTOTOTOCCO TO CONTICO TAGAGA ACCARAGO TO COLOR
GCTGGGATTTTTTAGGCATTTTTATGTTTTCATGCATTAACAAAAGTCAACTCATGCTTATAGG AAGGTGAACAAACCATAGGTTCTTTCTGTGTANGGCTTAATAGTATATGTATATGTAACTCATGCTTGAAAGTT AAGCTCATTAATGACATCTTTCTTTTTGTGTANGGCTTACTTCCTTGGAAAAGATGA AATATACATTAATGAACTTTTTTTTTT	į.	OMOGINA CA A CACCIVICA A CICCICCICCTICC ATTACCTGTGCTTTCCGTTATGTTTAGAGGGATGCAC
GCTGGGATTTTTTAGGCATTTTTATGTTTTCATGCATTAACAAAAGTCAACTCATGCTTATAGG AAGGTGAACAAACCATAGGTTCTTTCTGTGTANGGCTTAATAGTATATGTATATGTAACTCATGCTTGAAAGTT AAGCTCATTAATGACATCTTTCTTTTTGTGTANGGCTTACTTCCTTGGAAAAGATGA AATATACATTAATGAACTTTTTTTTTT	ે છું [CTGGTAGAACAGGTTAAGAACAGATCATAAGAATCTCAGTAAGATCATACTTAATA
AAGGTGAACAAACCTAGGTTCTCTTCAGACGTTAATCATATATTTATT		AGGCACGACATCATTCAGGAAGGAAAAAT TOTGGTAACAAAAACAAAACTCATCCTTATAGC
AACTCCATTATGACATCTTTTCTTTTGGTANGGCTACCTTCCTTTTCTTTT		GCTGAGATTTTTAAGGCATTTTTATGTTTTAATGATTTTAATGTTTTAATGTTTTAATGTTTTTAATGTTTTTAATGTTTTAATGTTTTAATGTTTTAATGTTTTAATGTTTTAATGTTTTAATGTTTTAATGTTTTAATGTTTTAATGTTTTTAATGTTTAATGTTTTAATGTTTAATGTTTAATGTTTAATGTTTAATGTTTAATGTTTAATGTTTAATGTTTAATGTTTTAATGTTAATGTT
TATGACATGATTAGACCTATTTTGAGTTTTCTGTTLGGGGGGGGGG		AAGGTGAACAAACCCTAGGTTCTCTTCAGACGTTAATGATTAAT
TATGACATGATTAGGAATTTAATACGACTCACTATAGGGAATTTGGCCTCGAGGCCAAGATTCCCT GGGGACGGGAGAGGAGGAGGACTCTTCCTATGCTCACAACCATCATGCTTACTTCCCT GGGGCCTCCAAGTGACTGCCTTGTTGAGTGGATTTCACATAGCTTAACTATGGCTTTCTCT TTTTTAGAAAAATGGAATCTCGGATACAATATTTTAACAAAACTGACTATTGTTTTTTTT	•	AACCTCCATTAATGACATCTTTTCTTTGTGGTANGGCCTACCTTCTGCTTTCCTGGAAAAGATGA
TATGACATGATTAGGAATTTAATACGACTCACTATAGGGAATTTGGCCTCGAGGCCAAGATTCCCT GGGGACGGGAGAGGAGGAGGACTCTTCCTATGCTCACAACCATCATGCTTACTTCCCT GGGGCCTCCAAGTGACTGCCTTGTTGAGTGGATTTCACATAGCTTAACTATGGCTTTCTCT TTTTTAGAAAAATGGAATCTCGGATACAATATTTTAACAAAACTGACTATTGTTTTTTTT	1	AATATACATCATTTGAACCTATTTTGAGTTTTCTGTTGGGGGGGG
GGCACGAGGGTGAAGGAGGATCTGTTCCATAGCTACACACCATATGTTCACTTTGACTTTGACCT GGGGGCCTCCAAGTGAGCTGCCTTGTTGAGGGATTTCACATTAGCTTACTTTTGACTTTGTA TTTTTAGAAAAATGAATCTCGGATACAAATATTTTAAATCACAATTAGTTTTTGTA GCTTTGATTGATGATCACACAGTCACTCCGGATGATTTTTTAATACCACAATGAGCAACACTTT AACATTGTGAGCACACAGCAAGAATGAGAATTAGAGCATTTTTTAATACCACAATGAGCAACACTCAAAAAATATTTTAAATACCACACTTGAAAGAGCTCCCGAAAAAAAA		TRANSPORCE CONTRACTOR AND TRANSPORCE CONTRACTOR CONTRAC
GGGGGCCTCCAAGTGAGTCCGGTTTGATTGATTTTAAACAAAC		ICCON CONCOURANT CONCONTRACTOR TO A TRACTOR
TTTTTAGAAAATGGATTCTGGATACAATATTTTAAACACAACTAGCTATAGGCACTGATAGACCTTGATGATCTCTGAGGTCACTCGGGGATGATTTTTAATACGCAGATCAGAGCAGACGTAACAATTCTGAGACACAACACAACACACAC		Icoccoccomoca a concacemente recalled a concentration of the concentrati
GCTTTGATTGATGCTCTGAGGTCATCTCGGGATGATTTTTTATACCGCAGATGAGGCTGT AACATTGTGAGCACACAGAGAATAGGGCTGTTTTTATTGCAAGCAGCCGCTGTGGCTGAA AACATTGTGAGCACACAGAGAATAGGGCTGTTTTAGTGCAAGCAGCCGCTGTGGCTGAA CAGATTCTGCGGCACTGCGTAAGTGCCCTGGAGGTTTGAGAGGCCACCCGAAGGTTGAACAATTTTAGAGGCTTTTTAGTGTTTTTTACAGAAGCTGTAACAAATATTACTGACTG	l	Immonda A A A A A A A A A A A A A A A A A A A
AACATTGTGAGCACCAGAGTCAAGAATGAGGCTGTTGTTAGTGCAGGCCCCCGGAAGGTTGCCACTCGGATCTTGCCGCCACTCGGTAAGTGCCCTCTGGAGGTTTGAGAGGCCACCCGGAAGGTTGAGAGGCTTTCAAGTTATTTTTTTT	66	THE TAXABLE PROPERTY OF THE PR
AAGTAGTGGTTGGTGACTTTTAGCAGAACCTGAGAAAATTAAAGAAATGGTTTGAGAGTCTTT CTCTGGTTTTCCTTTCTTAGCAGAAGCTGTAACAAATATTACTGACTG		GCTTTGATTGATGCTCTGAGGTCACTCCTGTTGTTTAGTGCAAGCAGCCGCTGTGGCTGAA
AAGTAGTGGTTGGTGACTTTTAGCAGAACCTGAGAAAATTAAAGAAATGGTTTGAGAGTCTTT CTCTGGTTTTCCTTTCTTAGCAGAAGCTGTAACAAATATTACTGACTG	ទ្ធ	AACATTGTGAGCACACAAGTCAAAAATGAAGCTGTCAGAGGCCACCCGGAAGGTGGAGGTTC
CTCTGCTTTTCTGTTTTTTACAGAAGCTGTAACAATATTACTGACTTGTCACTTTTTTACAGAAG TTAGTGTTTTCCTCTTCCTAGTAAAGAGCTGCAAGGGAACAGTCTTTACCACTAAAAAAAA	"	CAGATTCTGCGGCCACTGCGTAAGTGCCCTGGGAGATTGAAGACGCTCTTTTGAGAAGTCTTTTTT
TTAGTGTTTTCCTCTTCCTAGTAAAAGAACTCCAAGGGAACASTCTTATACAC ATAATACAAAAAAAAAAAAAAAAA		AAGTAGTGGTTGGTGACTTTTAGCAGAATTCATGAGAAAAAATTAATAAAAAAAA
ATCATATCACCATATTTTGGTTTTACACCAATAAAATATACCTGGAAAACCCCAAGAATTC TATGACCATGATTACGACTATATACGACTCACTATAGGGATTTTGGCCCTCGAGGCCAAGAATTC GCCACGAGCCTCAGACACTGAGGATTTGAAATAAGGCCTGGAGTAATACCAGTCTTCAGTAAC CATAGGCCCAGCCAGAGACCTGTGGTGGTTCAGCCACAGCAGGGCTGGGCAGAAAACCCCTCTG AGCTGCCAAAGCTTGTAAGTGCCAAGTAAGCCCCTTTCCCCCAGCATGCTCTGGCCAAAGCTGTAAGTGCCAAGTGTCCCCTTCCCCAAAGCTGTCCCCAAAGCTGTTAAGTGCCCTCCCCTTTCCCCAATGATGGTGCCCAGCCTG GGGCTGGCCCACATATGACGAGTAGAAGGCCGCTTGCCCAATGATGGTGCCCACCCCTT CCATTTCCCCTAATGGCTCTCCCCACAAGTTTCAAGACTGACATTTCAAGGCAGCTCTCA GGACTGCCATTTTTTTTTT		CTCTGCTTTTCTGTTTTTACAGAAGCTGTAACAAATATTACTGACTG
TATGACATGATTACACATTTAATACGACTCACTATAGGCAATTTGCCCTGAGGCCAAGAATTC GGCACGAGGCTCAGACACTGAGGATTGGAAATAAGGCCTGGAGTAATACCCAGTCTTCAGTAAC CATAGGCCCAGCCACAGACCTGTGGTGTTCAGCCACACCAGGGGCTGGCAGAAAACCCCTCTG AGCTGCCAAAGCTTGTAAGTGCCAAGTAAGCCCCTTTCCTCCCAGCATGCTTGGCTCAGAGGGGT TGGCCTGCCCTGACCACCTTTCTCAGTGCCTTCCCTATGCTTCCCCAATGATGGTGCCCAGCCTG GGGCTGGCCCACATATGCCAAGTATGAAGGCCCCTTGATGAAAGAGGGCAGGCTCCCACTCCCTT CATTTCCCCTAATGGTGCTGCCTCCCCACAAGTTTCAAGACGAGCTCCACTCCCTT GGGCTGGCCCACATATGCCAGTATGAAAGAGGCCCCTGGATGAAAGAGGGCAGCACCTTCAAAAGTCTTTCATACACCTGTGGGTTTAGCTTTTTTATATTTTTAAGTCACAACTTTGATA CAAAAGTCTTTCACTGCTTGAATTTAGCTTTCTAATTCACACACCTTGAAAC TTGTAGCATGTAACCAAGCCAGTTGGTTACTCTGGAAATGGGACACACCCCAGAACCCTTGATA AACACTTGCGTCCAATAATAACACCTTGGAAATTGGCCCCCAGGCCAAGAAAT CCGCACAGAGCCAACTTTTTTCCAGAGATTTCCCCCAGAACCCCTGAGTTTGAACAATTCACTATCA AACACTTGCGCCACAAGCACCACCAAGCCCAAGGCCACAAGCACCAC		TTAGTGTTTTCCTCTAGTAAAGAGACTGCAAGGGAACAGTCTTTATCACATAATTCTAAAA
TATGACATGATTACAATTTAATACGACTCACTATAGGCAATTTGCCCTGAGGCCAAGAATAC GGCACGAGGCTCAGACACTGAGGATTGGAAATAAGGGCCTGGAGTAATACCCAGTCTTCAGTAAC CATAGGCCCAGCCACAGACCTGTGGTGTTCAGCCACACCAGGGGCTGGCAGAAAACCCCTCTG AGCTGCCAAAGCTTGTAAGTGCCAAGTAAGCCCCTTTCCTCCCAGCATGCTCTGGCTGAAAGGGGT TGGCCCTGCCCT	ł	ATCATATCACCATATTTTTGGTTTTACACCAATAAATATACTTGAAAACCCAAAAAAA
GGCACGAGGCTCAGACACTGAGGATTGGAAATAAAGGGCTTGAATACCAGTCTTAGTAAA CATAGGCCAGAGACCTGTGGTGGTTCAGCCACACGAGGGCTGGGCAGAAAACCCCTCTG AGCTGCCAAAGCTTTAAGTGCCAAAGTAAGCCCTTTCCTCCAGCATGCTCTGGCCAAAGGGGT TGGCCTGCCCTGACACCTTCTCAGTGCCTTTCCTCCAGCATGCTCTGGCCAAAGGGGT GGGCTGGCCCACACATTCCAGTGCCTCTCCCTATGGTTCCCAATGATGGTGCCCAGCCTG CGGCTGGCCCACATATGCCAGTATGAAGGCCCCTGGATGAAGAGGGCAGCTCCCATCCCTT CATTTCCCCTAATGGGTGCTGCCCCCACAAGTTTCAAGACGAGCAGCTCCCACCCTTCA GGACTGCCATTTTTCCTACACCTGTGGGTTTAGCTTTTTATTTTTTTAAGTCACAACTTTGATA CAAAAGTGTTTCTACTCGTTGAATTTAGCTTTTTAATTCACACACCTGGAAGCAGCAACT TGTAGCATTAAACCAAGCCAGTTGGTTACTCTGGAAATTGGCACCTGGAGGCCAAGAATT CGGCACGAGGCAACTTTTTCCGGAAATTGGAAATTGGCCCTCCAAGAATT CGGCACGAGGCAACTTTTTTCCGAGAATACTAGGAAATTCGCCTCAGAGCCAAGAATT CCGGCACGAGGCAACTTTTTTCCGAGAATACTAGCACCCAGAGCCCACCACAAGTCCTCCCCAT ATACCTTTTGTCCCCTCAGGGGATTGCTTCCAAAAATACCACCAAGTCCTCTCATGACCAAAACTG CCACTCAGAGAGGCTTCTCCCAAAAAAACTGCCCAAAGTCCTCTCATGAACTAAACTG GAACATTCAATTTCTTCAGAGGCTCTTCCAAAAAATGGCTCAAGCAAAATTTTCTCAACG TCACTTCAAATAAAAAGTCATTTTTTCCAAAAAAATGGCTCAGCAAAGCAAAATTTTCTCAACGT CCAAACTTAAACTTTTTTTAGAGGGTTTTAACACATTTTTTCAAAAAATTTTCTCAACGT CCAAACTTATTCCCTTTAGAGGGGTTTAATTTTTAAAAAAAA		TRANSA CANSANTER CCA ANTERNA TACGA CTCA CTATAGGGGAATTTGGCCCTCGAGGCCAAGAATTC
CATAGGCCAGGAGACCTGTGGTGTTCAGCCACAGCAGGCTGAGAGAGGGT AGCTGCCAAAGCTTGTAAGTGCCAAGTAAGCCCCTTTCCTCCCAGCATGCTCTGGCTGAAGGGGT TGGCCTGCCTGACACCTTCTCAGTGCCTCTCCTATGCTTCCCAATGATGGTGCCAGCCTG GGGCTGGCCCTGACACCTTCTCAGTGCCTCCCTATGCTTCCCCAATGATGGTGCCCAGCCTG GGGCTGGCCCCACAATTCCCAGTATGAAGGCCGCCTGGATGAAGAGGGCAGGCTCCCACCCTCCT CATTTCCCCTAATGGTGCTGGCCTCCCCACAAGTTTCAAGACTGACATTTCAAGGCAGCTCTCA GGACTGCCATTTTCTCTACACCTGTGGGTTTAGCTTTCAAGACTGACATTCAAGACTACACCTTGATA CAAAAGTGTTTCTATCTTACTGGTTTAACTTAGCTTTAGTATTTTTTAAGTCACACCTGGAAGCAGCACAT TGTAGCATGATAACCAAGCCAGTTGGTTACTCTGGAAATGGGACAGTATGATGCCATCCCATGTTG ACACCTTGCGATCCAATAAAACAACGCTGGAATTC CCGCACGAGGCAAGACTTTTTTCCGAGAATTCCCCACACCCCAGGTTTCAATGCCACACCCATTCA ACACCTTGGAAGGCATGATTTACTCCCCACACCACA	Į l	I GOOD CONCOCTICACACACTICACCATTICCALATALACGCCCTGGAGTAATACCCAGTCTTCAGTAGC
AGCTGCCAAAGCTTGTAAGTGCCAAGTAAGCCCCTTTCCTCCAGGCTTCTGGCCTGAAGGGCTG TGGCCCTGCCCT		I ONDACCCCA CCCA CACACACTCCTCCTCCTTCACCCACAGCAGGGGCTGGGCAGAAAACCCCTCTG
TGGCCTGCCCTGACACCTTCTCAGTGCTCTCCCTATGCTTCCCCAATGTGTGCCCACTCCTT GGGCTGGCCCACATATGCCAGTATGAAGGCCGCTGGATGAAGAGGCTGCCACTCCCTT GGGCTGGCCCACATATGCCAGTATGAAGGCCGCTGGATGAAGAGGCTGCACTCCCTT GGGCTGGCCCACATTTTCTCACACCTGTGGTTTAGCTTTCAAGACTGACATTTCAAGGCAGCTCCAC GGACTGCCATTTTCTCTACACCTGTGGTTTAGCTTTTTTTT	l i	INCOMOCON NACOMPORNA ACPOCO NACENA ACCOCOPTECCTCCCAGCATGCTCTGGCTGAAGGGGT
GGGCTGGGCCCATATGCCAGTATGAAGGCCGCCTTGAATAAAAGCAGCAGCTTCCACTTCA CATTTCCCCTAATGGGTGCTGCCCCCACAAGTTTCAAGACAGCTAGCATTTCAAGGCAGCTCTCA GGACTGCCATTTTCTCTACACCTGTGGGTTTTAGCTTTTTTTT	2	AGC TOCCAGO CONTOUR ACTOC TOCCATOC TATGCTTCC CCAATGATGCTGCCCAGCCTG
GGACTGCCATTTTCTCTACACCTGTGGGTTTAGCTTTTGTATTTTTAAGTCACAACTTTGATA CAAAAGTGTTTCTATCTTACTGGTTGAATTTAGCTTACTAATTCACACACCTGGAAGCAGCAACT TGTAGCATGTAACCAAGCCAGTTGGTTACTCTTGGAAATTGGCACACCTGGAAGCAGCACT TGTAGCATGTAACCAAGCCAGTTGGTTACTCTTGGAAATTGGCCCTCGAGGCCAAGAATT CTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CCGCACGAGGCACTTTTTCCCGAGATATCCGCCAGACCCCTGAGTTTGAACAATTCCACTATCA ATACTTTTGTCCCCTCAGGCGATGGTTTGCCTGCAAAATCCGCTCAGTGGTGAGCCTAGTGCACCAAGGAACCCCCCCC	1 2	TGGCCTGCCCTGAACACCTCTCAAGACCCCCTTGATGAAGAGGGCAGGCTCCCACTCCCTT
GGACTGCCATTTTCTCTACACCTGTGGGTTTAGCTTTTGTATTTTTAAGTCACAACTTTGATA CAAAAGTGTTTCTATCTTACTGGTTGAATTTAGCTTACTAATTCACACACCTGGAAGCAGCAACT TGTAGCATGTAACCAAGCCAGTTGGTTACTCTTGGAAATTGGCACACCTGGAAGCAGCACT TGTAGCATGTAACCAAGCCAGTTGGTTACTCTTGGAAATTGGCCCTCGAGGCCAAGAATT CTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CCGCACGAGGCACTTTTTCCCGAGATATCCGCCAGACCCCTGAGTTTGAACAATTCCACTATCA ATACTTTTGTCCCCTCAGGCGATGGTTTGCCTGCAAAATCCGCTCAGTGGTGAGCCTAGTGCACCAAGGAACCCCCCCC	្រ	GGGCTGGGCCCACATATGCCCACGACGACGACGACACTTCA AGACTGACATTTCA AGGCAGCTCTCA
CAAAAGTGTTTCTATCTTACTGGTTACTTTAGCTTACTCACACACCTGGAACCACACT TGTAGCATGTAACCAAGCCAGTTGGTTACTCTGGAAATGGACAGTATGATGCATCCCATGTTG AACACTTGCGTCCNATNAAACAACGCTGGAATT CTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CCGCCACGAGGCAACTTTTTTCCCGAGATATCCGCCAGACCCCTGAGTTTGAACAATTCCACTATCA ATACTTTTGTCCCCTCAGGCGATGGTTTGCCTGCAAAATCCGCTCAGTGGTAGACCCTGCTCATTG ACACCTGAGAAGGCATCGTCCCCAATAACTAGCCAGGTGGACCAAGGAACCCGGCTCCCAT TCCCAGCAATGGGACCCATCGCGGAACCATCGGCACCAAGGAACCCGGTCCTCATAACTTG CCACTGCAGCCTAGGAGGGTTGTTTCCCAAAAAATTGGCTCAGTAATGTTCTCTAAACTTG GAACATTCAATTTCTTCAGAGGCTCTTCCAAAAAATGGCTCAGCAACGCAAATGTTTCTCATCCT TCAATATGCAGGATAATTTTTGGGGTTTGAACGTTAATTTTTCATAGATGTTATTTTTAAAAG TATCCAAATAAAAGTCATTTATTTTACTATTTNNNNNNAANAANAAAAAAGTTTTTTCCAAATAAAAGTCTTTTACAACGT CGCAAGCTTATTCCCTTTAGNGAGGGGTTAATTTTTAGCTTGGCACTGGCCGTCGTTTTACAACGT ANCNGAGANNNNTNNTCACATGATTACGATTAATTTAGCATGCACTCACTATAGGGGAATTTTGGCCCACCCA	1 -	CATTICCCCTAATGGGTGCTGGCCTCCCCAAAAGTTCATTTTTTTT
TGTAGCATGTAACCAAGCCAGTTGGTTACTCTGGAAATGGACCAGTATGATGCATCCCATGTTG AACACTTGCGTCCNATNAAACAACGCTGGAATTC CTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGCAACTTTTTCCGAGATATCCGCCAGACCCCTGAGTTTGAACAATTCCACTATCA ATACTTTTGTCCCCTCAGGCGATGGTTTGCCTGCAAAATCCGCTCAGTGGTAGCCTGCTCATTG ACACCTGAGAAGGCATGCTCTCCCAATAACTAGCCAGGTGGACCAAGGAACCCGGCTCCCCAT TCCCAGCAATGGGACCCATCGCGGAACCATCAGCAAGGAACCCAAGGAACCCGGCTCCCCAT CCACTGCAGCCTAGGAGGGTTGTTCCCAAAAAATAGGCTCAACGCAAATGCTCTGTAAACTTG GAACATTCAATTCTTCAGAGGCTCTTCCAAAAAAATGGCTCAGCAACGCAAATGTTTCTCATCCT TCAATATGCAGGATAATTTTTGGGGTTTGAACGTTAATTTTTCATAGATGTGTATTTTTTAAAAG TATCCAAATAAAAGTCATTTATTTTACTATTTNNNNNNAANAAANAAAAAAAAA		GGACTGCCATTTTCTCTACACCTGTGGGTTAGCTTAGTTTAGTACACACCTGGAAGCAGCAACT
ACACTTGCGTCCNATNAAACAACGCTGGAATTC CTATGACATGATTACGAATTTAATACCACTATATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGCACTTTTTTCCGAGATATCCGCCAGACCCCTGAGTTTGAACAATTCCACTATCA ATACTTTTGTCCCCTCAGGCGATGGTTTGCCTGCAAAAATCCGCTCAGTGGAGCCTGCTCATTG ACACCTGAGAAGGCATGACTCCTCCCAATAACTAGCCAGGTGGACCAAGGAACCCGGCTCCCCAT TCCCAGCAATGGGACCCATCGCGGAACCATCGGCACCCAAGTCCTCTCATGACTCAAAGT CCACTGCAGCCTAGGAGGGTTGTTTCCCAGAAGAAAGGGATATAGGCTAATGCTCTGTAAACTGG GAACATTCAATTTCTTCAGAGGCTCTTCCAAAAAAATTGCTCAGCAAACGCAAATGTTTCTCATCCT TCAATATGCAGGATAATTTTTGGGGTTTGAACGTTAATTTTTCATAGATGTTATTATTTTGAAAG TATCCAAATAAAAGTCATTTATTTTACATTTTNNNNNNAANAAANAAAAAAAACTT CGCAAGCTTATTCCCTTTAGNGAGGGGTTAATTTTAGCTCCACTTAGGGGGAATTTGGCCCT CGCAGCCTAGAAAAAAAAAA		CAAAAGTGTTTCTACCTGGTTGAATTTAGCTTACCAATTCAACACCATCCCATCCTTG
CTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGCAACTTTTTTCCGAGATATCCGCCAGACCCCTGAGTTTGAACAATTCCACTATCA ATACTTTTGTCCCCTCAGGCGATGGTTTGCCTGCAAAATCCGCTCAGTGGTGAGCCTGCTCATTG ACACCTGAGAAGGCATGACTCCTCCCAATAACTAGCCAGGTGGACCAAGGAACCCGGCTCCCCAT TCCCAGCAATGGACCATCGCGGAACCATCGGCACCCACCAAGTCCTCTCATGAACTGG CCACTGCAGCCTAGGAGGGTTGTTTCCCAGAAGAAAGGGATATAGGCTAATGCTCTGTAAACTGG GAACATTCAATTTCTCAGAGGCTCTTCCAAAAAATGGCTCAGCAACGCAAATGTTTCTCATCCT TCAATATGCAGGATAATTTTGGGGTTTGAACGTTAATTTTCATAGATGTTATTTTTAAAG TATCCAAATAAAAGTCATTTATTTTACTATTNNNNNNAANAANAAAAAAAAAA	1	TGTAGCATGTAACCAAGCCAGTTGGTTACTCTGGAAATGGGACAGTATGATGCCATCCCATGTTACTCTGGAAATGGGACAGTATGATGCCATCCCATGTTACTCTGGAAATGGGACAGTATGATGCCATCCCATGTTACTCTGGAAATGGGACAGTATGATGCCATCCCATGTTACTCTGGAAATGGGACAGTATGATGCCATCCCATGTTACTCTGGAAATGGGACAGTATGATGCCATCCCATGTTACTCTGGAAATGGGACAGTATGATGCCATCCCATGTTACTCTGGAAATGGGACAGTATGATGCCATCCCATGTTACTCTGGAAAATGGGACAGTATGATGCCATCCCATGTTACTCTGGAAAATGGGACAGTATGATGCCATCCCATGTTACTCTGGAAAATGGGACAGTATGATGCCATCCCATGTTACTCTGGAAAATGGGACAGTATGATGCCATCCCATGTTACTCTGGAAAATGGGACAGTATGATGCCATCCCATGTTACTCTGGAAAATGGGACAGTATGATGCCATCCCATGTTACTCTGGAAAATGGGACAGTATGATGCCATCCCATGTTACTCTGGAAAATGGGACAGTATGATGATGATGCCATCCCATGTTACTCTGGAAAATGGGACAGTATGATGATGCCATCCCATGTTACTCTACTA
CGGCACGAGGCAACTTTTTTCCGAGATATCCGCCAGACCCCTGAGTTTGACAATTCCACTATCA ATACTTTTGTCCCCTCAGGCGATGGTTTGCCTGCAAAATCCGCTCAGTGTAGCCAGTCTCATTG ACACCTGAGAAGGCATGACTCCCCAATAACTAGCCAGGTGACCAGGCACCCGGTCCCCAT TCCCAGCAATGGACCATCGCGGAACCATCGCCACCAAGTCCTCTCATGACCAAAGT CCACTGCAGCCTAGGAGGGTTTTCCCAGAAGAAAGGGATATAGGCTAATGCTCTGTAAACTGG GAACATTCAATTTCTTCAGAGGCTCTTCCAAAAAATGGCTCAGCAACGCAAATGTTTCTCATCCT TCAATATGCAGGATAATTTTGGGGTTTGAACGTTAATTTTTCATAGATGTTATTTTTGAAAG TATCCAAATAAAAGTCATTTATTTTACTATTNNNNNNAANAANNAAANAAAAAGTTGTGCGC CGCAAGCTTATTCCCTTTAGNGAGGGGGTTAATTTTAGCTTGGCACTGGCCGTCGTTTTACAACGT CGMGACT ANCNGAGANNNNTNNTCACATGATTACGNATTNAATACGACTCACTATAGGGGAATTTGGCCCT CGAGGCCAAGAATTCGGCACGAGGCGCTTGCCTAGCAAGTGCAAGGGCCCTGGGTTCGGTCCCCAG CTCTGAAAAAAAAAA		AACACTTGCGTCCNATNAAACAACGCTGGAATTC
ATACTTTGTCCCTCAGGCGATGGTTTGCCTGCAAAATCCGCTCAGTGGTGAGCCTCATTG ACACCTGAGAAGGCATCCCCAATAACTAGCCAGGTGACCAAGAACCCGGCTCCCAT TCCCAGCAATGGACCCATCGGAACCACCCACCAAGTCCTCTCATGACTCAAAGT CCACTGCAGCCTAGGAGGGTTTTCCCAGAAGAAAATGGCTCAATATGCTCTGTAAACTGG GAACATTCAATTCTTCAGAGGCTCTTCCAAAAAATGGCTCAGCAACGCAAATGTTTCTCATCCT TCAATATGCAGGATAATTTTTTTACTATTNNNNNNAANAANNAAANAAAAAGTTGTGCGC CGCAAGCTTATTCCCTTTAGNGAGGGGTTAATTTTTGATAGCCCGTCGTTTTACAACGT CGGAGCT ANCNGAGANNNNTTNNTCACATGATTACGNATTNAATACGACTCACTATAGGGGAATTTGGCCCT CGAGGCCAAGAATTCGGCACGAGGCGCTTGCCTAGCAAGTGCAAGGCCCTAGGGTCCCCAG CTCTGAAAAAAAAAA		CTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT
ATACTTTGTCCCTCAGGCGATGGTTTGCCTGCAAAATCCGCTCAGTGGTGAGCCTCATTG ACACCTGAGAAGGCATCCCCAATAACTAGCCAGGTGACCAAGAACCCGGCTCCCAT TCCCAGCAATGGACCCATCGGAACCACCCACCAAGTCCTCTCATGACTCAAAGT CCACTGCAGCCTAGGAGGGTTTTCCCAGAAGAAAATGGCTCAATATGCTCTGTAAACTGG GAACATTCAATTCTTCAGAGGCTCTTCCAAAAAATGGCTCAGCAACGCAAATGTTTCTCATCCT TCAATATGCAGGATAATTTTTTTACTATTNNNNNNAANAANNAAANAAAAAGTTGTGCGC CGCAAGCTTATTCCCTTTAGNGAGGGGTTAATTTTTGATAGCCCGTCGTTTTACAACGT CGGAGCT ANCNGAGANNNNTTNNTCACATGATTACGNATTNAATACGACTCACTATAGGGGAATTTGGCCCT CGAGGCCAAGAATTCGGCACGAGGCGCTTGCCTAGCAAGTGCAAGGCCCTAGGGTCCCCAG CTCTGAAAAAAAAAA	1	CGGCACGAGGCAACTTTTTTCCGAGATATCCGCCAGACCCCTGAGTTTGAACAATTCCACTATCA
ACACCTGAGAAGGCATGACTCCTCCCAATAACTAGCCAGGTGGACCCAAGGACCCGGTTCCCCAT TCCCAGCAATGGGACCCATCGCGGAACCATCGCCACCACCACCAACGACCTCTCATGACTCAAAGT CCACTGCAGCCTAGGAGGGTTTTCCCCAGAAGAAAAGGGGATATAGGCTAATGCTCTGTAAACTGG GAACATTCAATTTCTTCAGAGGCTCTTCCCAAAAAAATGGCTCAGCAACGCAAATGTTTCTCATCCT TCAATATGCAGGATAATTTTTTGGGGTTTGAACGTTAATTTTTCATAGATGTTATTATTTTGAAAG TATCCAAATAAAAGTCATTTATTTTACTATTNNNNNNAANAANNAAANAAAAAAGTTGTGCGC CGCAAGCTTATTCCCTTTAGNGAGGGGTTAATTTTAGCTTGGCACTGGCCGTCGTTTTACAACGT CGNGACT ANCNGAGANNNNNTNNTCACATGATTACGNATTNAATACGACTCACTATAGGGGAATTTGGCCCT CGAGGCCAAGAATTCACGCAGAGGCGCTTGCCTAGCAAGTGCAAGGCCCTGGGTTCCGTCCCAG CTCTGAAAAAAAAAA		lama communemente come a carcal recept recep
TCCCAGCAATGGGACCCATCGCGGAACCATCGGCACCCACACCAAGTCCTCATGACTCAAGATT CCACTGCAGCCTAGGAGGGTTTTCCCAGAAGAAGAGGATATAGGCTAATGCTTGTAAACTGG GAACATTCAATTTCTTCAGAGGCTCTTCCCAAAAAAATGGCTCAGCAAACGCAAATGTTTCTCATCCT TCAATATGCAGGATAATTTTTGGGGTTTGAACGTTAATTTTTCATAGATGTGTATTATTTTGAAAG TATCCAAATAAAAGTCATTTATTTTACTATTNNNNNAANAAANAAAAAAAAGTTGTGCGGC CGCAAGCTTATTCCCTTTAGNGAGGGGTTAATTTTAGCTTGGCACTGGCCGTCGTTTTACAACGT CGNGACT ANCNGAGANNNNNTNNTCACATGATTACGNATTNAATACGACTCACTATAGGGGAATTTGGCCCT CGAGGCCAAGAATTCGGCACGAGGCGCTTGCCTAGCAAGTGCAAGGCCCTGGGTTCGGTCCCCAG CTCTGAAAAAAAAAA		I IN CARCOMON CANCER CONTRANCE CONTRANCE CONTRANCE AND ACTUAL CONTRANCE CONT
CCACTGCAGCCTAGGAGGGTTGTTTCCCAGAAGGAAAAGGGCTAATGGCTAATGCTCTGTAAACTGG GAACATTCAATTTCTCAGAGGCTCTTCCAAAAAATGGCTCAGCAACGCAAATGTTTCTCATCCT TCAATATGCAGGATAATTTTGGGGTTTGAACGTTAATTTTTCATAGATG TATCCAAATAAAAGTCATTTATTTTACTATTTNNNNNAANAAANNAAAN	4.	I ROCCO ACCO ACCO ACCO ACCO ACCO ACCO ACC
GAACATTCATTTCTCASASGGTTTGAACGTTAATTTTTCATAGATGTGTATTATTTTGAAAG TCAATATGCAGGATAATTTTTGGGGTTTGAACGTTAATTTTTCATAGATGTGTATTATTTTGAAAG TATCCAAATAAAAGTCATTTATTTTACTATTNNNNNAANAAANNAAAN	Ļ	CONCOURCE TRACE TO CONTROL TO THE CO
TCAATATGCAGGATAATTTTGGGGTTTGAACGTTAATTTTCATAGATGTGTATTATTTGAAAG TATCCAAATAAAAGTCATTTATTTTACTATTNNNNNNAANAAANAAAAAAAAGTTGTGCGC CGCAAGCTTATTCCCTTTAGNGAGGGGTTAATTTTAGCTTGGCACTGGCCGTCGTTTTACAACGT CGGAGACT ANCNGAGANNNNYTNNTCACATGATTACGNATTNAATACGACTCACTATAGGGGAATTTGGCCCT CGAGGCCAAGAATTCGGCACGAGGCGCTTGCCTAGCAAGTGCAAGGCCCTGGGTTCGGTCCCCAG CTCTGAAAAAAAAAA	½	LONDON DE TOUR DE LA CACACACACACACACACACACACACACACACACACA
TATCCAAATAAAAGTCATTTATTTTACTATTNNNNNAANAAANNAAAAAAGTGGCGC CGCAAGCTTATTCCCTTTAGNGAGGGGTTAATTTTAGCTTGGCACTGGCCGTCGTTTTACAACGT CGGAACT ANCNGAGANNNNTTNNTCACATGATTACGNATTNAATACGACTCACTATAGGGGAATTTGGCCCT CGAGGCCAAGAATTCGGCACGAGGCGCTTGCCTAGCAAGTGCAAGGCCCTGGGTTCGGTCCCCAG CTCTGAAAAAAAAAA	i	GAACATICATICTICATAGO ACCOTTA ATTITTC ATAGATGTGTATTATTTTGAAAG
CGCAAGCTTATTCCCTTTAGNGAGGGGTTAATTTTAGCTTGGCACTGCCGTCGTTTTACAACGT CGNGACT ANCNGAGANNNNYTNNTCACATGATTACGNATTNAATACGACTCACTATAGGGGAATTTGGCCCT CGAGGCCAAGAATTCGGCACGAGGCGCTTGCCTAGCAAGTGCAAGGCCCTGGGTTCGGTCCCCAG CTCTGAAAAAAAAAA		TCAATATGCAGGATAAT TTGGGGTT CTATTGANANANA ANA AAAAAAAAAAAAAAAAAAAAAAA
CGNGACT ANCNGAGANNNNTNNTCACATGATTACGNATTNAATACGACTCACTATAGGGGAATTTGGCCCT CGAGGCCAAGAATTCGGCACGAGGCGCTTGCCTAGCAAGTGCAAGGCCCTGGGTTCCGTCCCAG CTCTGAAAAAAAAACAAAAAAAAAA		TATCCAAATAAAAGTCATTTATTTACTATTACTATTACCACCTCCACCTCCTTTTTACAACGT
ANCNGAGANNNNTUNTCACATGATTACGNATTNAATACGACTCACTATAGGGGAATTTGGCCCT CGAGGCCAAGAATTCGGCACGAGGCGCTTGCCTAGCAAGTGCAAGGCCCTGGGTTCGGTCCCAG CTCTGAAAAAAAAAA		
CGAGGCCAAGAATTCGGCACGAGGCGCTTGCCTAGCAAGGCCCTGGGTTCGGTCCCCAGCCTCCT CTCTGAAAAAAAAAA		CGNGACT
CGAGGCCAAGAATTCGGCACGAGGCGCTTGCCTAGCAAGGCCCTGGGTTCGGTCCCCAGCCTCCT CTCTGAAAAAAAAAA		ANCNGAGANNINNTINTCACATGATTACGNATTNAATACGACTCACTATAGGGGAATTTGGCCCT
CTCTGAAAAAAAAAAAAAAAAAAAAACAAAACTTCTGTAANTAGTTGGATTTAGGCCCCACTCCT CAGCACTGTGAGATGAATTCACGTCATTTATGTTTCACAGNGTTTTTGGAAAGCATAGCAT	1	CCACCCCAACAATTCCCCACCACCCCTTGCCTAGCAAGTGCAAGGCCCTGGGTTCGGTCCCCAG
CAGCACTGTGAGATGAATTCACGTCATTTATGTTTCACAGNGTTTTTGGAAAGCATAGCTTGTAAA CATCAGTTATACTACTTCTTGATGACTTCATGTAACCTTCGAAGTTAACGNGAAGCGATGCTTCA TCTTTGCTCCGNAAACTCCAGTCACTGTTTTCNCATTAAAACCTGTAAANAGCNANACGGNGAAAN NAGAAGAAAAAAAAAAAAA	1	COMMON A A A A A A A A A A A A A A A A A A A
CATCAGTTATACTACTTCTTGATGACTTCATGTAACCTTCGAAGTTAACGNGAAGCGATGCTTCA TCTTTGCTCCGNAAACTCCAGTCACTGTTTTCNCATTAAACCTGTAAANAGCNANACGGNGAAAN NAGAAGAAAAAAAAAAAA	l	CACCACTCTCACATCAATTCACCTCATTTATGTTTCACAGNGTTTTTGGAAAGCATAGCTTGTAA
TCTTTGCTCCGNAAACTCCAGTCACTGTTTTCNCATTAAACCTGTAAANAGCNANACGGGAAAAN NAGAAGAAAAAAAAAAGGTGGGGCGGCCGCAAGCTTATTCCCTTTANTGAGGGGTANTTTT TAGCTTGGNACTGGCGNCGTTTTTACAACGNCGTGANTGGGAAAACCCTGGCGTTACCCAACTTA ATCNCCTTGNACAACACCTTTCNCCAGCTGGCGNTAATAACCNAAAAGGCCCCACCGATCG	76	I CAMCACHIANACHACHTCHTCATCACTCATCTAACCTTCGAAGTTAACGNGAAGCGATGCTTCA
NAGARGARAAAAAAAAAAAAAAAAAGTGGGGCGCCGCGCGTTTCCCAACTTA TAGCTTGGCACTGCGCGTTTTACAACGNCGTGGCGNTAATAACCCTGGCGTTACCCAACTTA ATCNCCTTGNACAACATCCCCCTTTCNCCAGCTGGCGNTAATAACCNAAAAGGCCCCACCGATCG	1 6	THE TREE TO BE A A CONTROL OF THE TOTAL AND THE TREE TO A CONTROL OF THE TOTAL AND THE
TAGCTTGGNACTGGCCGNCGTTTTACAACGNCGTGANTGGGAAAACCCTGGCGTTACCCAACTTA ATCNCCTTGNACAACATCCCCCTTTCNCCAGCTGGCGNTAATAACCNAAAAGGCCCCACCGATCG	I %	INTO A CAAAAAAAAAAAAAAAAAAAAAAAAAAAATTCCCTTTANTGAGGGTANTTT
ATCNCCTTGNACAACATCCCCCTTTCNCCAGCTGGCGNTAATAACCNAAAAGGCCCCACCGATCG		THE COMPANY OF THE PROPERTY OF A CONFORT AND THE CONTROL OF THE CO
CCCTTCCAACACTTCCCNCACCCTGAATCGNCAAATGGGACNCNCCCTGTAANCGNCCCCATTA		TAGE TIGGINAL TIGGICANTE TAGE CONTRACTOR OF THE TIGGICAL TO THE TIGGICAL TIGGICAL TO THE TIGGICAL TIGG
CCCTTCCCAACAGTTGCCNCAGCCTGAATGGNCAAATGGGACNCNCCCTGTAANCGNCCCCATTACACACTTGCCCAGNCCCCAAACCCCTTACACCCCTTACACCCCAGNCCCCAGNCCCCAAACCAAA	1	ATCNCCTTGNACAACATCCCCCTTTCNCCAGCTGGGGTAATAACCTCTTAANCCCCCCTTAANCCCCCCTTAANCCCCCCTTAANCCCCCCCC
AACCCCNNCGGGNTGNGGGNGGTTACCCCGCAAGCNTGACCGCTTACNCTTGCCCAGNCCC		CCCTTCCCAACAGTTGCCNCAGCCTGAATGGNCAAATGGNCAACAGCCTGTAAATGGNCCCCAACAGCTGCCCAACAGCTGAATGGNCAACAGCCCAACAGCCCCCAACAGCCCCAACAA
	L	AACCCCNNCGGGNTGNGGGNGGTTACCCCGCAAGCNTGACCGCTTACNCTTGCCCAGNCCC

RCT-8	CTAANNCTAANNTTTTNACATGATTACGAATTTAATACGACTCACTATAGGGGAATTTGGCCCTC
	GACCCCAACAATTCCCCACGAGGGGGGGGGTATGGATTCCAAAACGCCGTTCTGGTTCGATACACCC
	acaaaccaccaccaccacccaacccaacccacaccacaca
	ACCAAGTGTTGTACCCTTCCTGAAGCTCAGAGACTGCCCTGTGTGNGAAGACTATCTGTCTGCCA
	TCCTGAACCGTCTGTGTGTGCTGCATGAGAAGACCCCCAGTGAGCGANAAGGTCACCAAGTGCTGT
	ATTGGGTCCCTGGTGGAAAGACNGCCATGTTTCTCTGCTCTG
ည် ၂	ATTGGGTCCCTGGTGGAAAGACNGCCATGTTCTCTGCTCTG
	CAAAGAGTTTAAAGCTGAGACCTTCACCTTCCACTCTGATATCTGCACACTCCCAGACAAGGAGA
i	AGCAGATAAAGAANCAAACNGCTCTCGCTGAGCTGGTGAAACACAAGCCCNAGGGCCCAGAAGAT
į	CANCTGAANACGGTGGATGGGTGACTTCGCAAAATTCGTGGACAAGTGGTTCCAAGGCTGTCNAC
1	a a accama a chechtrocoloctgaggggccaaacctttgttgctagaancnaaaaanccttaacc
- 1	TTA A A CA CATCA CAACCATCTCAGGNTACCCTNGAGAAAAAAAAAAAAAACCTTGANTAN
	CTTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAAT
1	TCGGCACGAGGGTTGTGCCTGATGGCTGACAGAAAACAAGCAGGAGAAATATACACAAGGGCTGC
1	TCGGCACGAGGGTTGTGCCTGATGGCTGACAGAAAAAAAA
	TTCTAGACTGTTCAGAGGAAGTTAGGTGGCTGACTGACCGAACGGTAACGAACG
	AGTATGGCCACGAACAGATCAACACCTGCTCCTTCCTGCCATACCTCAAAGTGTTAAATACAAGG
RCT-80	GAATTCAAAGCAGTTCATGTCATCATCACGTCTATCCAGAATCTTTCAATTTAAAAATTCTTCTT
Ŕ	CCTPTTTTATCACTTTTCACTTTTTTCATCTTTCATCTTCATCTTTATCACCTTTCATCTTCATCTTTATCACGTATGA
¥	TO A TO A CONTINUE TACK A TAKE A A A A CONTINUE A A CONTINUE A A A A A A A A A A A A A A A A A A A
	A A A A A A A A A A A A A A CATTGCGCCCGCAAGCTTATTCCCTTTAGTGAGGGTTAATTTTAGCTTG
	CCACTCCCCCCCCCTTTTTACAACCTCCTCACTCGCAAAAACCCTGGCGTTACCCAACTTAATCGCCT
	TGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATANCGAANANGNCCCCACCCGATCGCCCTTCC
	TIGAGCACATCCCCTTTCCCCAGCTGGCCCAGC
	AACAGTTGCGCAACCTGAATGGCGAATGGGGACC
	TATGACATGATTACCAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAAATT
	CGGCACGAGGTGATTATTGTGATGGAAATTCTCTTTGTACCACCTTAAATTAGTTTGTTAATCCA
	AAGTGGAGGAAGACAGCAATAAAATGAATCCAAGTTTAAAAATGGGAAGACATAGGGTAAGAGCT
	I COCONATORNA A A COCCATOCATOCOCOTOCOTOCOTOCOTOCOCOCOCOCOC
RCT-83	I CARACATUTCA CCARCUTTCCTTA ACCTTACTTTTCACARACTCAAAAAATCCTTTAAAGGGCATAGG
ė, i	I AND AND ANTICATION AND ATTACK ATTACK AND A
22	AAAACAGGACACCCTTAGATTTTCCACCTATTCGTAACATGGACGCTGGAACTCACAGGAGAGCT
'	GTCTGTGGTTCCACAAACATCATATTTTTTGGTGAGTGACTGTGTTGTGATTACAGAGCAAGAA
	GTAAGGCTCTCCAGGCAGTGATGGCTACTTCAGGTATGACTACCATGAAAGACTATGTGGAATTT
į į	CTTTTACCTTTGGAAATGTTTGAAAAGCTAGTAAAAAGAATTAGGGAATTTAAAATTTCANGGGA
1	
	AAAATATG
	TNATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT
	CCCCACCACAAAACTCACCATGCCCTACCTATGAAGAGACCAACAGGTACCGTCTTGTATGC
	ATAGAGTAAGCCCAGGTAGTTTTTAAAGTACCCTTCCGTGTGACTACCGTTGTCGTTCGCAAAGC
τ,,	TGAGAATAAAAAGTTGTTCATTATGTCTGGAAAGGAGTCGAGTTTTGTCCTGTGAGCATGTCGGG
🌣	CTAAGAAGAACATCAGGGCTCCCACTAAGGTTATCTTCCCGCTGACAAACCGTAAGGGAGCCATC
RCT-84	GGAGCTCACAACCAAATTGTTCTCTGTGGAATGAAGCTAGTGCCAGCCTGTGGCTTTCGGGCTCA
N N	GGAGCTCACAACCAAATTGTTCTCTGTGGAATGAAGCTAGCT
1	GCAGGAGCTAGGGTAAGGNAAGTGTCTTGGTACATTTCAATGCTGTTGCTTACTAAAGGTTTTTAA
	CCCCACACGCACTTGCGTGCGCGCGCGCGCACACACACAC
	GCAGTCTGGTTTGGCTTTTGAGTTTGCCTTCTGNCAGCCACTAAGGTCACATGTTGTC
	TTTTCCTCTACTCCACATTACATCCCTANAGGNCCNCATATGGACTCCTCCGTTTCCATTTCGGAN
	CATACANAANGNCAGAGGGTTTTTGGTTTNGGTTGGNTTTTCCTTTAAAAA
	TTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT
i	CGGCACGAGGCCAAACTGCACAGAGGGGAAATCAAGCTGAATTCTGAGCTGGACTTAGATGACTC
1	CGGCACGAGGCCAAACTGCACAGAGGGGAAATCAAGCTGAATTCTGAAACTGGCTATTTTGGGAAGCATTTTAGAGAAAGTTTGCCTTCTCCAACGCTCTTTGCCTCTCAGTGAAACTGGCTATTTTGGGAAG
	CATTTTAGAGAGTTTGCCTTCTCCAACGCTCTTTGCCTCTCTCAACGCTCTTTAAAACGCTCTTTGCAAAA
7	CAACACTGGACAAATTTATTGAGTCTATTCAGTCCATCCCAGAGGCTTTAAAAGCTGGGAAGAAA
RCT-87	GTCAAACTGTCTCATAAAGAAGTTATGCAGAAAATGGGTGAGCTCTTTGCCCTCAGGCATCGAAT
l s	In a a come a come a converge are a concea c
25	I TTTTACCACACACCCTCCCACTTCCTCAGCATCACTCGAAGAGTTAAGGTCATGAATGA
I [∝]	
‴	I CAACACMCCAMCCAACMAACACACCTAATCCCCCAATCACCTCAATGAGAAGCGAGCG
, ac	I CAACACMCCAMCCAACMAACACACCTAATCCCCCAATCACCTCAATGAGAAGCGAGCG
	CAACACTGCATGGAACTAACAGACCTAATGCGCAATCACCTCAATGAGAAGCGAGCG
	I CAACACMCCAMCCAACMAACACACCTAATCCCCCAATCACCTCAATGAGAAGCGAGCG

RCT-88	TTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGCTCCTGGGTTCCCAGTCTGAGCTTTCCAGGGAATTTGATGCTTCACAGGCACTGCTA CATACTGCTGAGGGAAACATGTCCTGCGTGACTTTACTGGGAAAATTTCCTAGCAAAAAATTTTGTG CCTGATTTCCTCTGGACGTGTGCTGAATAGACTTCCACAAGAGTTGTGCACACACA
RCT-89	TTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGTGTTCCTCTGAAATTCTGGACTGATTTGGACAACTGAATCTGGACGTGTGGG ATACACAGGGGAGTTGATTTTTTATAAGCACATGAAACAGACAG
RCT-91	TCTATGACATGATTACGAATTTAATACGAATCACTATAGGGAATTTGGCCCTCGAGGCCAAGAAT TCGGCACGAGGCTTTGCTCCAGCATGGCTGCCTTAGGGACCTGGCTATCCATAGGTGTCCGGAGG TTGCACAGTAGTGCAGTGGCGGGGCCGGCAGCCAGTGGCGACTCCAGCAAGGGCTGGCT
RCT-92	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGTGCCTACCCGGTCTCATTGTTCATGACTGCATATCATTAGCGCGCTTCAAAGGTGT TCATATTTTCGAAGATCTGGGGGGGTTTTTTTTCTATATCGCAGGATATTTTTTGTACATGCTTAGAG ACCTCATTCAGTTGATAATCCCAACATTGTTTGTCATCCTTAAATCATGAGAGTAAACCCAAGTA TGACAAATTAAAAGAAAACTCTAGTCTTTCTAAATTTTGTCTTAGTCTTTGTCTTCAACTCATTGC ACTGCCAGCATTGCTCTCACCTAAGGACGAACCACTCCTCCTCATTCCTTGTCTTCAACTCATGC ATTTGTAAATGATGCTGGCAACCTACATGAACAGACAACATTGTCTCTTGCCTCTGGACAGCCCT TACCAGCTGGTCTCATCTTCCTGCATGGCCACCCCTAGTGATCGAACCTCAGGTANCATAGCAC AACGTGAAGTTGTAGTCTGTTGAGCCTCCCATACCAATGAGAAAAGAAGCTTTGGAATTCCAGTT TTCTGAGATTCTGGTAGTACCTTCATATTTCATGTTGTAGACATTTGAAACTGNGGTAAACTTTA
RCT-94	TTCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAA TTCGGCACGAGGAAACAGTTTATTTTAATATATATAAATACTGTTATTTTTGAGCCTCTTTGGCAT GTAGGAGTTCCGGGTCTCAATGTATATTCCGTGGTGTATATGATTCAGGAAAGAAA

RCT-99		TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGGATCTCAGTATTTAAACTGTTCCTCAATTTTGTGAGGCTGTTTGGAAATAACCCG CCTCTGATGCTGTTGGTATGCAAGGCAGCGGTGCTTACACAATATTTCCTGTGCTCTCCAGAGAC GATGGACTGATTTCCTGACACTACTCTCCCTTCACTTCCGTGGTTACCTTGAGTCTTGACTTACA AGTGCCCACGATGGGTGTAGCCTTTATTAAACAGATCGTGTATTCTGATCTCTCGCTGCAGCCAC AGTGCAGCTCCCTATAAACCTGCAGCCCAAACCATTTGTATCAGGCATCACCTACTAACACAGAC GTGCGCGGCTTTTCTGCATCAATTGCTGTGACGGTTCAGAATGTTGGTATACAAGAAGGAATAGA AAACTGATAAGGTTTTAAATAATCTGTAATTTCAATCTTTTTTTT
Phosphatidylethanolamine- binding protein	NM_017236	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGCTGAAGTGGGAGCGGCCCCAGCACGCCCTGAGGGTCGACTACGGCT GGACGAGGCTGAAGTGGGAGCGCCCCAGCACCCCTGAGGGTCGACTACGGCGAGTAACGGT GGACGAGCTGGGCAAAGTGCTGACGCCCACCCAGGTCATGAATAGACCAAGCACGCATTTCATGGG ATGGCCTTGATCCTGGGAAGCTCTACACCCTGGTCCTCACCAGACCCCGATGCTCCCAGCAGAAG GACCCCAAAATTCAGGGAGTGGCACCACTTCCTGGTGGTCAACATGAAGGCCAACGACATTAGCAG TGGCACTGTCCTCTCCGAATACGTGGGCTCCGGACCTCCCAAAGACACAGGTCTGCACCGCTACG TCTGGCTGGTGTATGAGCAGGAGCAGCCTCTGAACTGTAACAGACCACCTTCAGCAACAAGTCT GGAGACAACCGCGGCAAGTTCAAGGTGGAGTCCTTCCGCAAGAAGTACCACCTGGGAGCCCCGGT GGCCGGCACGTTCCTAGACAGTGGAATGACTCTTGTGCCCAAGCTGCATGATCAGCTGGCTG
Phosphoglycerate Kinase	M31788	TTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCCTT ATCGCGGGATCCTGTTGGGGTATTTGAATGGAAAGCCTTTGCCAGGGAACCAAGTCCCTCATGG ATGAGGTGGTGAAAGCCACGTCTAGGGGCTGCATCACTATCATAGGAGGCGGAGACACCGCCACT TGCTGTGCCAAATGGAACACAGAGGATAAAGTCAGCCATGTGAGCACTGGGGGCGCGCCAGTCT AGAGCTCCTGGAAGGTAAAGTCCTTCCTGGGGTGGATGCTCTCAGCAATGTTTAGTATTTTCCTG CCTTTGGTTCCTGTGCACAGCCCCCTAAGTCGACCTAGTGTTTTCCGCATCTCCATTTGGTGTTAG TGCAGCTAGTGGCCAAGACGCAGCACCAGGAACCCTAAGCAGCTCACACACA
Poly(ADP-ribose) polymerase	U94340	GTTATTTAGGTGNCACTATAGAATACTCAAGTTATGCATCAAGTTGGTACCGAGCTCGGATCCAC TAGTACCGGCCGCCAGTGTGCTGGAATTCGCCCTTCGCGGGATCCGCACAATGCCTATGACCTGG AAGTGATAGACATCTTTAAGATAGACGAGAGGGAGAGAGCCAACGCTACAAGCCCTTCAGGCAG CTTCACAACCGGAGACTGCTGTGGCACGGGTCCAGGACCAACTTCGCAGGCATCCTGTCACA GGGTCTGCGGATAGCCCCACCTGAAGCACCTGTGACAGGCTACATGTTTGGGAAAGGAATCTACT TTGCTGATATGGTGTCCAAAAGTGCGAACTACTGCCACACGTCTCAGGGAGACCGATTGGCTTA ATACTGTTGGGAGAAGTTGCCCTTGGAAACATGTACGAGCTCAAGCATGCTTCTCACATCAGCAA GTTACCCAAGGGCAAGCACAGTGTCAAAAGGTTTGGCAAAACGTCCGCCCCTGACCCTTCGGCCAGCA TCACCCTGGATGGTGTAGAGGTTCCGCTGGGAACAGGGATTCCGTCTGGTGTTAATGACACCTGC CTGCTGTATAACGAGAAGCTTGGCCAAGGGCGAATTCTGCAGATATCCATCACACTGGCGCCCC TCGAGCATGCATCTAGAGGGCCCAATT
Preproalbumin	V01222	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGCCCACTAGCCTCTGGCACAATGAAGTGGGTAACCTTTCTCCTCCTCCTCTTCATC TCCGGTTCTGCCTTTTCCAGGGGTGTTTTCGCCGAGAAGCACAAGAGTGAGATCGCCCATCG GTTTAAGGACTTAGGAGAACAGCATTTCAAAGGCCTAGTCCTGATTGCCTTTTCCCAGTATCTCC AGAAATGCCCATATGAAGAGCATATCAAATTGGTGCAGAAGTAACAGACTTTGCAAAAACATGT GTCGCTGATGAGAATGCCGAAAACTGTGACAAGTCCATTCACACTCTCTTCGGAGACAAGTTATG CGCCATTCCAAAGCTTCGTGACAACTACGGTGAACTGGCTGACTGCTGCAAAACAAGAGCCCG AAAGAAACGAGTGTTTCCTGCAGCACAAAGATGACAACCCCCAACCTGCCACCCTTCCAGAGGCCG GAGGCTGAGGCCATGTGCACCTCCTTCCAGGAGAACCACGCTTTCTGGGACACTATTTGCA TGAAGTTGCCAGGAGACACTCCTTATTTCTATGCCCCAGAACTCTTTACTATGCTGAGAAATACA ATGAGGTTCTGACCCAGTGCTGCCAGAGTCTGACAA

Preproalbumin, sequence 2 (alternate clone 1)	V01222	TTCTGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGTCTGTCTCCCCATCCTGAACCGTCTGTGTGTG
Proliferating cell nuclear antigen gene	Y00047	CNCAAGCTATGCATCAAGCTTGGTACCGAGCTCGGATCCACTTAGAAACGGCCCGCCAGTGTGCT GGAATTCGCCCTTCGCGGGATCCGGGGCTGAAGATAATGCGTGATACCTTAGCANTAGTATTTGA AGCACCAAATCAAGAGAAAGTTTCAGACTATGAGATGAAGTTAATGGACTTAGACGTTGAGCAAC TTGGAATCCCAGAACAGGAGTACAGCTGCGTAGTAAAGATGCCATCTGGTGAATTTGCACGTATA TGCCGGGACCTTAGCCATATTGGAGATGCTGTGGTGACCTCCTGTGCAAAGGACGGGGTGAAGTT TTCTGCGAGTGGGAGCTTGGCAATGGGAACATTAAGTTGTCCCAGACAAGCAATGTTGATAAAG AAGAGGAAGCTGTGCTATAGAGATGAATGAGCCAGTTCAGCTAACTTTTTGCTCTGAGGTACCTG AACTTTTTCACAAAAGCCACTCCACT
Prostaglandin H synthase	018060	TGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTC GCCCTTCGCGGGATCCGTGGACTACGGTGTCGAGGCACTGGTGGATGCCTTCTCACGCCAGAGGG CTGGCCGGATTGGTGGGGGTAGGAACTTTGACTACCATGTTCTGCATGTGGCCGAGGATGTCATC AAGGAGTCCCGAGAAATGCGCCTGCAGTCCTTCAATGAATACCGAAAGAGGTTTGGCCTGAAGCC TTACACTTCTTTCCAGGAGTTCACAGGAGAGAAGAGGATGGCCGCTGAGTTGGAGAGCCTATATG GTGACATCGATGCTTTAGAGTTCTACCCGGGGCTGATGCTGGAGAAGTGCCAGCCCAACTCCCTC TTTGGGGAGAGCATGATAGAGATGGGGGCTCCTTTCTCCCTCAAGGGCCTCCTAGGGAATCCCAT CTGTTCCCCAGAGTACTGGAAACCCAGCACATTCGTGTGTTGTGGGTTTCAACATCGTTAACA CAGCCTCACTGAAGAACTGGTCTGCCTCAACACCAAGACCTGCCCCTATGTCTNCTTCCGTGTG CCAGATAAGCTTGGCCAAGGGCGAATTCCAGCACACTGGCGGCCGNTACTAGTGATCCGAGCTC GGTACCAACTTGATGCATAGCTTGA
Proteasome activator 28 alpha	D45249	GAATCGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCC TTGGGACGAAGACGACAAAGGTCCTCCCTGTGGTCCAGTGAACTGCAATGAGAAGATTGTGGTCC TCCTGCAACGCCTAAAGCCCGAGATCAAGGATGTCATTGAGCAACTCAACCTGGTTACTACCTGG TTGCAGCTACAGATACCTCGGATAGAGGATGGGAATAATTTTTGGCGTGGCTGTCCAGGAAAAGGT GTTTGAGCTGATGACCAGCCTTCATACCAAGCAGAGCTTCCAAACGCAAACGCAGATCTCTAAGTACT TCTCCGAGAGGGGTGATGCCGTGGCCAAAGCAGCCAAGCCATGTGGGTGATTATCGGCAG CTGGTGCATGAGCTGGACGAGGCGGAATACCAGGAGATCCGGCTGATGGTCATTGAGAATCCTTAA CGCTTATGCTGTGTTATATGACATCATCCTGAAGAACTTTGAGAAGCTCAAGAAGCCCCGTGGAG AGACAAAGGGGATGATCAAGGGCGAATTCCAGCACACTGGCGCCGGTACTAGTGGATCCCNAGC TCGGTACCAAGCCTTGATGNATAGCTTNGAGTATTCTATTAGTGTCACCCTAAATAGNTTTGGCN
Protein O- mannosyltransferase 1 (Pomtl)	NM_053406	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGGTTTGCCGTCAGAACGCAGGTGTTGTGAAAGCCACCGCTAATTCAAAGCAAAAATG GGAAAGGAAA

		GCTATGCATCAAGTTGGTCCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTGGAATTCGC
Protein tyrosine phosphatase alpha	L01702	CCTTATCGCGGGATCCTGCAGAGGCCACACATGGTCCAGACACTGGAACAGTATGAATTCTGCTACAAGGTGATACAGGTACAAGGGGACAACTACAAGTGACAGGGGACAACAAGGGGACAACAAGAGGAGAACAGGAGAACAGGAGAACAGGAGAACAGGAGAACAGGCCCACAGACAGACAGAGAGAACAGCCTTTAAATATTTTGTAATATTCTGTTTTTGTTATATATA
PTEN/MMAC1	AF017185	GCGAATTGGGCCCTCTAGATGCATGCTCGAGCGCCCCCAGTGTGATGGATATCTGCAGAATTCG GCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCGCAACTTGCAATTCCCAGAATTCG CCCTTATCGCGGGATCCCTATTCCAATGTTCAGTGGCGGAACTTGCAATCCCCAGTTTGTGGTCT GCCAGCTAAAGGTGAGGATCTACTCCTCCAACTCAGGACCCACGCGGCGGAGGACAAGCTCATG GCCAGCTAAAGGTTCCCTCAGCCATTGCCTGTGTGTGACAAAGTAGAGTTCTTCCACAAACA GAACAAGATGCTCAAAAAAGGACAAAATGTTTCACTTTTGGGTAAATACGTTCTCTAACAGGAC CAGAGGAAACCTCAGAAAAAAGTGGAAAATGTTCTTTGTGATCAGGAAATCGATAGCATTTTGA AGTATAAGAGCGTGCGGATAATGACAAGGAGTATCTCTCCAACAATTTTAAGGTGAAATTATACTTTA CAAAACAAAA
Pyruvate kinase, muscle	M24361	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGCCATGATTGACTACACTATAGGGAATTTGCCATCTTACCACTTTGCAGTT GGCACGAGGCGCATCAGCACCTGATTGCCCGAGAGGCCACCACAGAAGCTTGCCGCCGTGGTT ATTCGAGGAACTCCGCCGCCTGGCGCCCATTACCAGCCCCCACAGAAGCTGCCGCCGTGGGGC CCGTGGAGGCCTCTTCAAGTGCTGCAGTGGGCCCATTATCGTGCTCACCAAGTCTGCAGAC GCTCACCAAGTGGCCCGGTACCGCCCAAGGGCTCCTATCATTGCTGTAACGATGCCGAATCCCCAGAC AGCCCGCCAGGCCCATCTGTACCGTGGCATCTTCCCTGTGTGTAAGGATGCCGTACTGGATG CCTGGCTGAGGACGTTGATCTTCGTGTGAACTTGGCCATGAATGTTGGCAAGGCCGAAGCTTC TTCAAGAAAGGAGATGTGGTCATTGTGCTGACTGACTCTTCTTGCTTTCACCAACAC CATGCGTGTANTGCCTGTACCATGATGATCCTCTGGAGCTTCTCTTCT
RAD	U12187	GNGAATTGGGCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCCTTCGCGGGATCCCAGGGCACACATATGACCGTTCTATCACTGTGAGAGAAGAAGACATCACCCTTCGCGGGATCCCAGGGCACACATATGACCGTTCATCACTTGGAGAAGAAGACATCACCATTCAATAGGTCTATGACCACTTGAGAAACCCTCAGAACCGGGATGCATATGTCATTGTTACTCAATAACGGACAAGGCAGCTTTGAGAAAGCCTCAGAACCGGGATCCAGCTGCGGGGGCACGCAGACAGA
Ref-1	D44495	GNATNTGCTCCACNANAATANAANGATGNANCNTAANNANAATTTAGCAANNATATANNNNNGNC GNATNTGCTCCACNANAATANAANGATGNANCNTAANNANAATTTAGCAANNATATANNNNNGNC NTNGANNNNNNANANNNNTTCCAGTGNNGATGGAATATTNTGCAANAATNTCGCCCNTTAATCG CNGGGATCCCGAAANAACCCAAGTCCGAANCCAGAAGACCAAAANNANTAAGGGGNCANCAAAAN AAAATTTAGAAGGAGNCCNCAAGGAAAAGGGCCCTTGTCNTGTATGAGGACCCTTCAAAATATGCTCCTTGGAATNGGGATGGG CTTCGAGCCTAGGATAAAAAAGAAAGCATTGGATTTGGTAAAGGAAGAAGCACCAGAATNTTGTG CCTCCAAGAGACCAAATGCTCAGAGAACAGACTTCCCGGCTGAACTGCAAGAGCGTGCCTGGACT CACCCATCAGTACTGGTCAGCCCCATCAGACAAGAAGAACATGATCAAGAAGGCCGGGTGA TTGTGGCGTCAAAGTCTCTTTATGGCATTGGTGAGGAAAAAATATGTCAAGAAGGCCGGGTGA TTGTGGCTGAATTTGAGTCCTTTATCTTGGTAACAGCCTATGTTCCGAACGCAGGAAGGGGTCTG GTAAGACTGGAGTACCGACAGCGGATGGGATG

_		
Renal organic anion transporter	AF008221	TECGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTC GCCCTTCGCGGATCCATCCAGGTGATTTTCGGTGCCGTGGACCTGCCAAGTTTGTATGCTT GCCTTCGCGGATCCATCCAGGGGCGCCGGCCTGCACAGATGGCCTCCCTAGCTGCAGGCATCT CCTAGTCATCAACTCCATGGGGCGCCGGCCTGCACAGATCGCCCCCTCCTTGCTGGCAGGCA
Retinoid X receptor alpha	L06482	GCGAATTGGGCCCTCTAGATGCATGCTCGAGCGCCGCCAGTGTGATGGATATCTGCAGAATTCG CCCTTCGCGGAATTCCTTGTGGAGTGGCCAAGAGGATCCCACACTTTTCTGAGCTGCCCCTGGA CGACCAGGTCATCCTCCTCGGGCAGGCTGGAACGAGCTGCTCCTTCTCCCACCGCT CCATAGCTGTGAAAGACGGCATCCTCCTGGCCACCGGCCTGCACGTACACAGGAACAGCGCTCAC AGTGCTGGGGTGGGCGCCATCTTTGACAGGGTGCTAACGGAGCTGGTGTCGAAGATGCGTGACAT GCAGATGGACAAGACCGAGCTTGCTTCTCGCGCCCATTGTCCTCTTCAACCCTGACTCTAAGG GGCTCTCCAACCCTGCTGAGGTGGAGGCGCTGAGGAGAAGGTGTATGCATCACTAGAAGCGTAC TGCAAACACAAGTACCCTGAGCAGCCGGGCAGGTTTGCCAAGCTGCTCCCGCTGCCTGACT GCCAATCCATTGGGCTCAAGTGCCTGGACACCTGTTCTTCTTCAAGCTCATCGGGGAAAGCTTGGC CAAGGGCGAATTCCAGCACACTGGCGGGCGTTACTAGTGGATCCGAGCTCCGGTACCAAACTTGAT GCAATCCTTGAGTA
Retinol dehydrogenase type III	U33501	GNNNNNNCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCC AAGAATTCGGCACGAGGGCCTTCTCAGACTCCCTCAGGAGGGAG
Retinol-binding protein (RBP)	AA858962	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGCGTTTCTCTGGGCTCTGGTATGCCATCGCCAAAAAAGGATCCCGAGGGTCTCTTTTT GCAAGACAACATCATCGCTGAGTTTTCTGTGGACGACGAGGGTCATATGAGCGCTACAGCCAAGG GACGAGTCCGTCTTCTGAGCAACTGGGAAGTGTGTGCAGACATGTGGGCACTTTCACAGACACA GAAGATCCTGCCAAGTTCAAGATGAAGTACTGGGGTGTAGCCTCCTTTCTCCAGCAGGAAACGA TGACCACTGGATCATCGATACGACTACGACACCTTCGCTTGCAGTACTCCTGCCGCCTGCAGA ATCTGGATGGCACCTTGCAGACAGCTACTCCTTTTGTGTTTTTCTCGTGACCCCAATGGCCTGACC CCGGAGACACGGAGGCTGGTGAGGCAGCGACAGGAGGCTGTGCCTAGAGAGAG
Ribosomal protein L13A	X68282	GGGAATTGCCCTCTAGATGCATGCTCGAGCGGCCCAGTGTGATGGATATCTGCAGAATTCGC CCTTCGCGGAATTCCATTGTGGCCAAGCAGGTACTGCTGGGCCGAAAGGTGGTGGTTGTACGCTG TGAGGGCATCAACATTTCTGGAAATTTCTACAGAAACAAGTTAAAGTATCTGGCCTTTCTCCGAA AGCGGATGAACACCAACCCGTCTCGAGGCCCCTACCACTTCCGAGCCCCAAGCCGCATTTTTTTGG CGCACTGTGCGAGGCATGCTGCCGCACAAGAACAAAAAGAGGCCAGGCTGCCCTGGAACGCCTCAA AGGTTTGGATGGGATCCCTCCACCCTATGACAAGAAAAAGCGGATGGTGCTCCTTTTGCCCTCA AGGTTGTGCGGAAGCCTACCAGAAAGTTTGCTTACCTGGGGCGTCTGGCTCATGAGGTCGG TGGAAGTACCAGGCAGTGACAGCTACTCTGGAGGAAAACGGAAAAGACCAAAGATCCATTA CCGGAAGAAAAGACAGCAAAAGAAAAACGGAAAAGATCCATTA CCGGAAGAAAAGACACTTGAGGCTAAGGAAACGGCAGAAAAGATTGGAAAAAACCTGGC CAAGGGCGAATTCCAGCACACTGGCGGCCGNTACTAGTGGATCCGAGCTCGGTACCAACTTGATG CATAGCTTGAGTATT
Ribosomal protein L27	NM_022514	CNTINTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGA ATTCGGCACGAGGGCCTGCTGCTCGTCGAAATGGGCAAGTTTATGAAACCCGGGAAAGTGGT GCTGGTCCTGGCTGGACGCTACTCCGGACGCAAAGCCGTCATCGTAAAGAACATTGATGATGGCA CCTCCGACCGCCCTTACAGCCATGCCCTGGTGGCTGGAATTGACCGCTATCCCAGAAAAGTGACA GCTGCCATGGGCAAGAAGAAGATCGCCAAGCGATCCAAGATCAAGTCCTTTGTGAAAAGTTTATAA CTACAACCACCTCATGCCCACAAGGTACTCTGTGGATATCCCCTTGGACAAAAACTGTTGTCAACA AGGATGTGTTCAGAGACCCAGCACTGAAACGCAAGGCCAGGCGGAGGCCAAGGTCAAGTTTTAGA GAGCGATACAAGACAGGGAAGAACAAATGGTTTTTCCAGAAGCTTCGCTTTTAGATGTATTTTTG TTTTCGTCATTACAAAAATAAAAAAATANTAAAAAAAAAA

		TCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAAT
protein S8	031706	TCGGCACGAGGGAAGCTTTGCGCTTCCTCTTTCCAGCCAG
Riboscmal pr	NM_031	GTTGTACTCGCAAAACAAGGATCATTGATGTTGTCTACAATGCATCCAATAACGAGCTTGTCCGC ACCAAGACCCTGGTGAAGAACTGCATTGTGCTTATTGACAGCACACCGTACCGACAGTGGTACGA GTCCCACTATGCACTGCCCCTGGGCCGCAAGAAGGGGGCCAAGCTGACTCCTGAGGAGGAAGAGA TTTTAAACAAAAAACGATCAAAGAAAATTCAGAAGAAATATGATGAAAAGGAAAAAGAATGCCAAA ATCAGCAGTCTTCTGGAGGAGCAGTTCCAGCANGGCAAGCTTTCTCGCCTGTATTGCCTCAAGAA
RTI		CAGGCCAGTGTGGCAGANCAGATGGCTATGTGCTCNAANGCAANGAGCTGGAGT
rotein S9	0.0	AGCTATTTAGGTGNCACTATAGAATACTCAAGCTATGCATCAAGTTTGGTACCGAGCTCGGATCC ACTAGTAACGGCCGCCAGTGTGTTGGAATTCGCCCTTCGCGGAATTCTATGTGACCCCACGGAGA CCCCTCGAGAAATCGCGTCTCGACCAGGAGCTAAAGTTGATTGGAGAGTTATGGGCTCCGGAACAA ACGTGAGGTGTGGAGGGTCAAATTTACCCTGGCGAAGATTCGTAAGGCTGCCCGGGAGCTGTTGA CGCTGGACGAGAAAGATCCTCGGCGTCTGTTTGAAGGCAACGCTCTGCTGAGACGACTTGTTCGA
Riboscmal protein	x66370	ATTGGGGTGCTGGATGAGGGCAAGATGGAGCTGGATTACATTCTGGGCCTGAAGATTGAGGATTT CTTGGAGAGAAGGCTGCAGACCCAGGTCTTTAAGCTGGGCCTGGCCAAATCTATTCACCATGCCC GTGTGCTCATCCGCCAACGTCACATCAGGGTCCGCAAGCAGGTGGTGAACATTCCATCTTTCATT GTTCGCCTGGACTCTCAGAAGCACATTGACTTCTCCCTCC
		GCTCGAGCATGCATCTAGAGGGCCCAATTCACAA GGAATAGGCCCNCNNGATGATGCTCGAGCGGCCNCCAGTGTGATGGATATCTGCAGAATTCGCCC
Sarcoplasmic reticulum calcium ATPase	X15635	TTTGCAGAAATGTAAGGGTGTTCGGGTGCGTGCATGTGCGTTGTTAGCAACACACTCTTCCAGCCC TCTGCATGACTGAGCTTGGGGAAAGAGAAATAGAACAGCCCCCAGCTCACTGTGTGATGTGAGG AAATGTGTATTACAAGTGGGGTTTTAGCTGTTGAGTCAAAATAATAACAAGTGTACAATTTAGCA TAAGGAATCGGAGAGCCTCTCCAGAGAAGTCGGTTTCTTTGCTGCAAGAAGAATGAGGTTCTGAA CCCTTATCCAAGAACAGAAGCCATCAGCCAAGTCTCCACATTTCTCTGCAAAATGTTGTAGCCTC TATAACTGNATGATAGTGNAATGCATGCCTTCAGTTGTAAGTGGCCCAGATCGCGCTTCAAN
	`	TTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGGGCAAGTGAAGGCTTGCAACTTTCACTTGCCCAGAGGAAGCTCTGACGAAGGGGA
Selenoprotein P	NM_019192	TGCATAAACCAGCTCCTGTGTAAGTTATCTGAGGAGTCTGGGGCAGCTACCAGTAGCTGCTGCTGCTGCTGCTGCCGACACCCCATATTTGAGAAGTCAGGATCTGCAATCACTTGACAGTGTGCCGAAAACCCTCCATCCTGTAGCAGGGGCTTTTCGCGGAGGAGAAGTCATTGAATCCTGTCAATGTAGATCACCTCCAGCTGCCTGACACAGTCAGCATGTAAGCCCCCACAGAAGCCAGCC
Senescence marker protein-30	x69021	GAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCC CTTATCGCGGGATCCCCAAGGGTCCTTGTACTCCCTTCTTCCTGATCACAGTGTGAAGAAATACT TTGACCAAGTGGATATCTCCAATGGTTTGGATTGGTCCCTGGACCATAAAATCTTCTACTACATT GACAGCCTGTCCTACACTGTGGATGCCTTTGACTATGACCTGCCAACAGGACAGATTTCCAACCG CAGAACTGTTTACAAGATGGAAAAAGATGAACAAATCCCAGATAGAATGTGCATTGATGTTGAGG GGAAGCTTGGGGTGGCCTGTTACAATGGAGGAAGAGTAATTCGCCTAGATCCTGAGACAGGGAAA
Senescen		AGACTGCAAACTGTGAAGTTGCCTGTTGATAAAACAACTTCATGCTGCTTTGGAGGGAAGGATTA CTCTGAAATGTACGTGACATGTGCCAGGGATGGGAT
Serotonin transporter (SERT)	M79450	GNCACTATAGAATACTCAAGCTATGCATCAAGCTTGGTACCGAGCTCGGATCCACTAGTAACGGC CGCCAGTGTGCTGGAATTCGCCCTTTGGACATCCGCATGAATGCTGTGTAACACACCCTGGAGAG GACACCTCTTCCCAGCCACCTCTCTCAGCTCTGAAAAGCCCCACTGGACTCCTCCCCTCTAAGCC AAGCCTGATGAAGACACGGTCCTAACCACTATGGTGCCCAGACTCTTGGACTGCCACCTCTTCGAC TTTCCGTGGACTCTCAGACATGCTACCACATTCGATGGTGACACCACTAGCTTCAGGTTTAGAATTA ACGTCAGGGAGTGGAAGGAGGATGAACGCCACCAGTCATCACCTACCATCTGTTAGCTTCTAA AGCCTTCAATGTTCATGATACATAAACCACCTAAGAGAAAACAGAGATGTCTTGCTAGCCATAT ATATTTTCTCGGTAGCATAGAATTCTATAGCTGGAATCCCCTCTAGAACCCACCTGTAACCCACCTGCTG CTGTGAGGGTTAAGGATAGAATTCTATAGCTGGAATTCCCTAGAACCCTGTAACCCACGTGCTG CTGTGAGGGTTAAGGAGGGAAGGTAAGGGCGAATTCTGCAGATATCCATCACACTGGCGGCCGCTC GAGCATGCATCTAGAGGGCCCCAATTCGC

		AATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCC
Sodium/glucose cotransporter 1	1	AATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGCACACACA
		TTGAAGGGGTGCTTCAGGAAGGCATATGATGATCCGGGGAGAGAACATGTCCAAAATCCTGAAAG
	.	CACGGTCCATGATCACCAGGTGCTTTAGGGACCACTTCTTCGACAGAGGCTACTGTGAAGTAACC
		ACTCCAACACTGGTGCAGACACAGGTGGAAGGTGGGGCCACACTCTTCAAGCTTGACTATTTTTGG
	10	GGAAGAAGCATTTTTGACCCAGTCCTCACAGCTGTACCTGGAGACCTGCCTTCCAGCCCTGGGAG
50 8	016101	ATGTTTTTTGCATAGCCCAGTCTTACAGGGCTGAACAGTCCAGGACACGAAGGCATCTGGCTGAG
i Si	1 7	TTCACTCACCTCCAAGCCGAGTGTCCTTTCCTGACCTTCGAGGACCTCCTGAGCCGTCTAGAGGC
l ii a	-	-CTCTCTCTTCTCTCTCACCTAACGGCGAATTCCAGCACACTGGCGGCCGTTACTAGTGGATCCG
। द्वर		ACCTCCCTACCAACCTTCATCCATACCTTCACTATTCTATAGTGTCACCTAAATAGCTTGGCGTA
" "		ATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTTCACACAACATACGAA
		CCGGAACATAAAGTGTAAAAGCTGG
	\vdash	TCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAAT
		TCGGCACGAGGCAGGCGGCTCGGACTGAGCAGGGCTTTCCTTGCCAGTGGATTGTGTAGAGTGTA
		CAGCCAGTCTCTTGTCTTCTGTCCAACATGGCATCTTCTGATATTCAGGTGAAAGAGCTGGAGAA
		CAGCCAGTCTCTTGTCTTCTGTCCACATGGCATCTATCAACAACAACATCTCCCCAGT
4	99	GCGTGCTTCCGGCCAGGCTTTTGAGCTGATTCTCAGCCCTCGATCAAAAGAATCTGTCCCCGAGT
j j	ΙĒ	TCCCCCTTTCCCCCCCAAAGAAGAAGAAGTCTTTCCCTGGAGGAAATTCAGAAGAAATTAGAAGC
5	١Ħ	TGCAGAAGAAGACGCAAGTCTCATGAAGCAGAAGTCTTGAAGCAGCTCGCTGAGAAGCGGGAGC
Stathmin	NM_017166	ATGAAAAAGAAGTGCTCCAGAAAGCCATTGAGGAGAACAACAACTTCAGCAAAATGGNAGAGGAG
w	Ź	AAACTGACCCACAAAATGGAGGCTAACAAAGAGAACCGGGAGGCGCAAATGGCTGCCAAGCTGGA
	1	lcccmmcccacacacacacacacacacaGTGAAGAGAGAAGAACAAAGAATCCAAAGACCCCGI
	1	CGGACGAGACCGAGGCTGACTAAGTTGTTCCGAGAACTGACTTTCTCCCGACCCCTTCCTAAATA
		TTCANAGACTGTACTGGNGCAG
	1	TGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTC
i .		cccctratcccccatcctctccaccacaatttaggccttggaggagctgctgttgtcaccctct
ы	•	ACAGAATGGGTTTTCCCGAAGCTGCCAGCTCCTTCAGAACGCACCAGATTTCAGCTGCTCCCACC
Sterol carrier protein 2	1	AGCTCTGCAGGGGATGGATTCAAGGCAAATCTCATTTTTAAGGAAATCGAGAAGAAGCTTGAAGA
75		GGAAGGGGAAGAGTTCGTGAAGAAAATCGGTGGCATTTTTGCCTTCAAAGTGAAGGATGGCCCCG
erol car protein	M34728	GGGGCAAAGAAGCTACGTGGGTGGTGGACGTGAAGAACGGCAAAGGATCGGTGCTTCCGGATTCA
75	34	GATAAGAAGCTACGTGGACAATCACCATGGCTGACTCAGACTTGCTGGCTTTGATGACTGGTAA
ខ្ពុជ	Œ	GATAAGAAGGCTGACTGCACAATCACCATGGCTGACTCAGACTTGCCGGTAACATGGGCTTGGCCA AATGAACCCTCAGTCGGCCTTCTTTCAAGGTAAACTGAAAATTGCCGGTAACATGGGCTTGGCCA
9 2		TGAAACTGCAAAGCCTGCAGCTTCAGCCGGACAAAGCTAAGCTGGAAAGAGTCCCTTTGGCTCG
ັນ	ŀ	TGAACTGCAAGCCTGCAGCTTCAGCCGGACAAGCTAAGCTAAGCTACCAACCA
1	1	AGGGCCAAAGGGCGAATTCCAGCACACTGGCGGCCGTTACTAGTGGATCCGAGCTCGGTACCAAA
		CTTTGATGCATAGCTTGAGTATTCTATAGTGTCACCTAAATAGCTTGGCGTAATC
		TNTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAAT
Sulfotransferase K2	AJ238392	TCGGCACGAGGCTTCTGCCCTTGAGGTATCCAGGTACCATTGTGCACTGAGCAGGACTGAAAAGA
ų v		ACAAAGTTTATTCTGGAACTAAACCTTCTTCCCTGAGACATCATGGCCCTGGCCCCAGAATTGAG
as		CAGACAGACAAAACTGAAAGAGGTCGCAGGGATCCCACTGCGGGATTCAACTGTCGACAACTGGA
er		GTCAGATTCAGACCTTCAAGGCGAAGCCAGATGACCTCCTCATCTGTACTTACCCTAAATCAGGG
Sf.		Incancantication acanamication accompanda and accompand accompanda
l ä		la a crame ampe a ca crea ca ca crett tratte a cree concerned accompany of the contract of the
1 3	4	ACAAAGCCAATGCGATGCCAGCTCCAAGGATATTAAGGACCCATCTTCCCACTCAGCTGCTGCCA
≗		Iccorommences of a a coal action and action and action and action and action and action and action and action and action and action and action and action and action and action and action and action action and action act
g		TTCCTTCTACCACTTCTACAGAATGTGCCAGGTGCTCCCCCAATCGANGCACCTGGAATGAGTATT
Ñ	1	TTGAAACCTTCATCAATGGAAAAGTAAGTTGTGGATC
	╄	AATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCC
ų ,	1	TTCGCGGGATCCGTGCAGGGCGTCATTCACTTCGAGCAGAAGCGAAAGCGGTGAACCAGTTGTGGT
88	1	TTCGCGGGATCCGTGCAGGGCGTCATTCACTTCACTACAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAG
i i	M21060	GTCAGGACAGATTACAGGATTAACTGAAGGCGAGCATGGGTTCCATGTCCATCAATATGGGGACA
S		ATACACAAGGCTGTACCACTGCAGGACCTCATTTTAATCCTCACTCTAAGAAACATGGCGGTCCA
1 5 5		GCGGATGAAGAGAGCCATGTTGGAGACCTGGGCAATGTGGCTGCTGGAAAGGACGGTGTGGCCAA
ide di		TGTGTCCATTGAAGATCGTGTGATCTCACTCTCAGGAGAGCATTCCATCATTGGCCGTACTATGG
្ដ្រី		TGGTCCACGAGAAACAAGATGACTTGGGCAAAGGTGGAAATGAAGAAGTACAAAGACTGGAAAT
ŏ	1	CCTCCAACCCCTTGCCTTGTGGTGATTGGGATTGCCCAAAAGCTTGGCCAAGGGCGAATTCC
Superoxide dismutase Cu/Zn		laccacacrecececetracragregareegagereegareeAagerreaargerragerra
ŀ		TTCTATAGTGGCACCTAAATAGCTTGGCGTAATCATGGGCATAGCTGTTCCTGNGGGAAATTGGT
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	ATCCGCTCACAATTCACACAACATACNANCCGGAAGCATAAAGTGNAAAGC
L		WT. C.C.G. C. C.C.W. 17 1 C.C.C. C.C.W. C.C.C. C.C.C. C.C.C.C.C.C

		TO THE TOTAL THE TOTAL CONTROL OF THE TOTAL CONTROL OF THE TOTAL OF TH
Superoxide dismutase Mn	Y00497	TTTNTGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAAT TCGCCCTTATCGCGGGATCCACAAGCACAGCCTCCCTGACCTGCCTTACGACTATGGCGCGCTGG AGCCGCACATTAACGCGCAGATCATGCAGCTGCACCACAGCAAGCA
Suppressor of cytokine signaling 3	AF075383	ATTATAGAATACTCAAGTTATGCATCAAGCTTGGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTGGAATTCGCCCTTATCGCGGGGATCCGTGCCCGCTTTTGACTGTGTACTCAAGTTGGCAGTGTGCCCGGAATTCGCCCCTTATCGTGTACTCAAGTTGGCACCACTACATGCCGCCCCCCCC
T-cell cyclophilin	M19533	GANANNCNACAANNANGGNNANNGAGGNNIGNNINNNNCNITCCCAGTGTGATGGATATCTGCAGA ATTCGGCCCTTATCGCGGGATCCCCTGTTCGAGCTGTTTGCAGNCAAAGTTCCAAAGACAGCAGA AAACTTTCGTGCTTTGAGCACTGGGGAGAAAGGATTTGGCATATAAAGGGTTCCTCCTTTCACAG AATTATTCCAGGATTCATGTGCCAGGGTGGTGACTTCACACGCCATAATGGCACTTGGCAAGT CCATCTACGGAGAGAAATTTGAGGATGAGAACTTCATCCTGAAGCATACAGGTCCTGGCATCTTG TCCATGGCAAATGCTGGACCAAACACAAATGGTTCCCAGTTTTTTTATCTGCACTGCCAAGACTGA GTGGCTGGATGGCAAGCATGTGGTCTTTGGGAAGGTGAAAGAAGCCATGAGCATTGTGGAAGCCA TGGAGCGTTTTTGGGTCCAGGAATGGCAAGACCAGCAAGAATCACCATCTCCGACTGTGGACAA CTCTAATTTCTTTGACTTGCGGGCATTTTACCCATCAAACCATTCCTTCTGTAGCTCAGGAGAGC ACCCCCCACCANNININGNNATNA
Thiol-specific antioxidant (natural killer cell-enhancing factor B)	006099	TTCCAGTGTGATGGATATCTGCAGAATTNGCCCTTTCCGAAAGATAGGCTGCNAGGTGCTGGGAG TGTCTGTGGACTCTCAGTTCACCCACCTGGCCTGG
Thiopurine methyltransferase	AF120100	GAGACCCAAGCTTGGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTGGAATTCGCC CTTATCGCGGGATCCGACTGAGAGTGTTTTTTCCCGCTCTGTGGAAAAGCCATTGAGATGAAATCG CTTATCGCGGGATCCGACTGAGAGTGTTTTTTCCCGCTCTGTGGAAAAGCCATTGAGATGAAATTGG TTCGCAGACCGGGGCCACACTGTAGTTGGTGTAGAAATCAGTGAAATTGGGGTGCCAAAGTGTTTA TGCAGAACAGAA
Thioredoxin-1 (Trx1)	X14878	gncnaaaanggttataatgaaagtagtgaataatgataaaaaaagggtanaattaatattttcatt gtcatntataatcanaggcagttgggtatagactctcncncanttcataggntatttttgnaaan taaaaaagnnacaggttttnacgnnntggagctggtnncactttccagagcatgattagncnaac tccgtaatagtggcttcgagcttttccttgttagcaccagagnactccccaaccttttgaccctt tanatananctgnaaggtcggcatgcatttgctcacagtcngcancaacatcctggcagtcatcc acgtggtacttcaagnaacaccacattggaatacntgtcacagagggaatgaaagagggcttgatcattttgcaaggtccacaccaccgtggcagagaagtccactaccacatagcttgtctcccgcagc ggccanggcctcctgaaaagcttccntgctctcgatcagcttcnccattttggctgttgcggggaggaggaccncacgagtttcgcagaaacccgatggaaatgg

		TO STATE OF THE PROPERTY OF TH
Thioredoxin-2 (Trx2)	U73525	NACNTAANAANGAATAANGNGGGAAAGATCAATANNNGNCNNNNTTCCAGTGNGATGGATAT CNGCAGAATTCGCCCTMTATCGCGGGATCTTCTGCATCCTCTGCTCACACTGCCGGGAGATGGC CNGCAGAATTCGCCCTMTATCGCGGGATCTTCTGCATCCCTCAGGAAGCCTCCTCAGGGTGTGT TNAGCGGCTTCTCCTGAGGAGGCTTCCTGACCCTCAGTCATCTCCAGGAAGCCTCCTCAGGGTGTGT GGGCTTCCCTCACCTCTACGAGCCTGCAGACCCCTCNGTACAATGCTGTGTGTCTAANNGGAACA CCCAGCCCTGCCCGGACATTTCACGCCACCAGAGTCTTTCAACACCTTTAACGTCCAGGATGG ACCTGACTTTCAANACAGAGTTGTCAACAGTGAGACACCGTTGTCGTGGACTTTCATGCACAGT GGTATGGCCCTGCAAGATCCTAGGACCTCGGTCAGAGAAGATGGTAGCCAAACAGCACGGGAAG GTGGTGATGGCCAAAGTGGACATTGACGATCACACAGACCTTGCCATTGAGTACGAGGTGTCTGC TGTGCMTACCGNGCTGGCCATCAAGAACGGGGANGTGGGGACAAGTTTGTGGGATCAAGGCGAAG NCCNNNNGTNTCAA
Thrombin receptor (PAR-1)	M81642	GCGAATTGGGCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCG GCGAATTGGGCCCTCTAGATGCATGCTCGACCGCCCCCAGTGTGATGGATATCTGCAGAATTCG CCCTTATCGCGGGATCCACGTCCTCCTGATTGTGCACTACCTGCTCCTCCCGACAGTCCTGCAC CAGAGACGCCTATTTTGCTTACCTCCTCTGCGTCTGCGTGAGCAGCAGTGAGCACCATTTTGTTGCTGCAG CCCTTGATTTACTACTATGCCTCCTCCGAGTGCCAGAAGCACCTTTACAGCATAAGATGGATACCT AGAAAGCTCTGATTCCAACAGTTGCAACAGCACCGGCCAGCTGATGCCCAGTAAGATGACTACCT GCTCTAGCCACCTGAATAATACAATAC
Thrombomodulin	AF022743	TTGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATT TTGCGAATTGGGGATCCTGTGACCCCAACTCCCCAAGCTTTTGTCAATGCCCTGAGGGCTTCA CGCCCTTATCGCGGGATCCTGTGACCCCAACTCCCCAAGCTTTTGTCAATGCCCTGAGGGCTTCA TCCTGGACGAGGGTTCCATATGCACAGACATTGATGAGTGCAGTCAAGGCGAATGCCTCACCAAT GAATGTCGAAACCTTCCTGGCTCCTATGAGTGCATCTCAGGAGCATTGACACAGCCCTTGCTGGCAAG ACCCATCAAGCAATCCGACGGTAGTCTCTTCGACAGTTCCCCTTTTGCAAGACCAATGCACTCT GGTGTGCTCATTGGGATCTCCATTGCCAGCCTGTCCCTGGTGGCGCTTTTTGGCGCTTCTTTG TCACCTGCGCAAGAAGCAGGGCACTGCTCGCGCAGAGCTGCACACTCCTTCAGCCA AGGAGGTAGTACTGCAGCACTGAGGACTGATCGACGACTCGGGGCCAATAAGGGCGA AATTCCANCACACTGGCGGNCGTTACTAGTGGGA
Thymidylate synthase	L12138	TTGGCGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAAT TCGCCCTTCGCGGGATCCGACAGGAAGGAGCCTGGGCCCAGTTTATGGATTCCAGTGGAGACAT TTTGGAGCAGACTACAAAGATATGGATTCAGATTACTCGGGTCAAGGAGTAGACCAGCAGCAAAA AGTGATTGACACCATCAAAACCAACCCCGATGACAGAAGAATCATCATGTGTGCCTGGAACCCAA AAGATCTTCCCCTGATGGCACTGCCTCCTTGCCATGCCCTTCTAATTTATGTGGTGAATTGC GAGCTGTCTTGCCAGCTTACAGGAGATTACAGGAGTTTGGGTGTGCCCTTCAACATTTC CAGCTATGCTCTGCTGACCTACATGATTGCACATATCACGGGCCTGCAGCCGGGTGATTTTTTTCTCC ATACTTTGGGAGATGCACACTTTATCTGAATCATATTGAGCCACTGAAAATTCAGCTACGGGA GAACCAAGACCTTTCCCAAAGCTCAGAATCCTCCGAAAAGTTGAGACAATCGAAAGCTTGGCCAA AGGCGAATTCCAGCACACTGGCGCCCTTTACTAGTGGATCCGACTCGGTACCAAGCTTGATGCAT AGCTTGAGTATTCTATAGTGNCACCTAAATTAGCTTGN
Thymosin beta-10	M17698	NTTGTGGGAATTGTGAGCGGATACCATTTTCACACAGGAAACAGTTATGCCATGATTACGCCAAG CTATTTAGGTGACACTATAGAATACTCAAGCTATGCATCAAGCTTGGTACCGAGCTCGGATCCAC TAGTAACGGCCGCCAGTGTGCTGGAATTCGCCCTTCGCGGGATCCGGAGCACCGACCTCGGAACGAGAACCACGAGATCCACGAGTTGTAAGAAAATGGCAGACAAGCCGGACATGGGGGAAATCGCCAG CTTCGATAAGGCCAAGCAAAAAAACCGGGGACACGAGAAGAACACCCTGCCGACCAAAAGAG CCATTGAACAGGAAAAGAGGAGTGAAATCTCCTAAAAGCCTAGGAAGATTTCCCCCACCCC TTCATCTCCGAGAACCCCTCGTGATGTGGAGGAAGACCCCTGCAAGATGGACGAGCCACA AGCTGCACTGTGAACCCGGCCCTCCGCGCCGATGCCACCGGCCCGTGGGTCTCTGAAGGGGACC CCCCCACTAATCGGACTGCCAAATTTCACCGGTTTGCCCAGGGATATTATAAGCTTGGCCAAGGG CGAATTCTGCAGATATCCATCACACTGGCGGCCGCTCGAGCATCTAGAGGGCCCAATTCAC

		200000000000000000000000000000000000000
Tissue factor	U07619	CCAAGCTATTTAGGTGCACTATAGAATACTCAAGCTATGCATCAAGCTTGGTACCGAGCTCGGAT CCACTAGTAACGGCCGCCACTGTGCTGGAATTCGCCCTTATCGCGGGATCCGGAACTGTGGAGT TTGCTCCTAGCTCAGAAAGACTCCCTTCATGGCCTGTCATTCCAGCTAATGCTTTGATTCCAACA CTAGCATCTGTCACTTTAGGACATACTGAACGGTACAAATTGATCAACACTACAGCACTTTTGC ACAAAGCTTAAGATTGTGTATTCTACACGCGGGAAGACACTAGGGTTGAGGAGTGATGCCATGAGACCATTGGAGAACCTTTCGTAAAACCATAGGCT TCAGAACAGGAAAGTGGGATTTGGGTGGCTTTTCGAAAACTTTTCGTAAATCGGTATTT CGGTTTTTGTTTTTCCTTCTACTAGGTACTTTTGGAAAGTTACTTTCGTAAATCGGTATTT TGAGAACAGGATATTTCTGCTTAGGGACATCCTTGTGATTTTATTACAACTTTAGCACTT TTAAATGCAGGATATTTCTGCTTGGGACACCCTTGTGATTTTATTACAACTTAGCACTT TAACTGACAATGATGGGGATTGAACACTCGAGGGCCAATTCTCCAGAATATCCATCACAC TGGCGGCCCCCTCGAGCATCCATTAGAGGGCCCCAATTCCC
Tissue inhibitor of metalloproteinases-1	U06179	CCAAGTGTGTTGGAATTCGCCCTTATCGCGGGATCCATCTCTGGCCTCTGGCATCCTCTTGTTGC TATCATTGATAGCTTCCAGTAAAGCCTGTAGCTGTGCCCCAACCCACAGACAG
Transferrin	NM_017055	CTCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAA TTCGGCACGAGGGTGACCTGTGTATTGGCCCAGCAAAATGTGCTCCGAACAACAGAGGGGGATAT TTCGGCACGAGGGTGACCTGTTATTGGCCCAGCAAAATGTGCTCCGAACAACAGAGGAGGGATAT AATGGTTATACAGGGGCTTTCCAGTGCCTCGTTGAGAAGGAGCCTAACGATCTGAAGCAGGAAG GACTGTCCTGGAAAACACGAACGGAAAGAACACTGCTGCACTGCACCTGCACCTG ACTTCCAGCTGCTGTGCCCTGATGGTACCAAGAAGCAGTTAACCAGGTTAGCCACTGTGCT GCCCAAGCTTCCAAACCATGTTGTGGTCTCACGAAAAGAAGAAGCCTGCACTGGCAATTTCTTTTTTTCC GGACTGCCCAGAAGGATTTATTTTGGAAACGTGACAAGGACTGCACTGGCAATTTCTATTTTCTAGAAACGT ACCACATATGAAGAGCTTCTTAGAAGAGATACTTCCAGAAGGT AACCTCACGACTCCTAGAAGCCTGCACTTTCCACAAAAGTTAAAATCCAAGAAGTGGGTGCCACT GTGGTGGAGGAGGATGCCCCCGTGGATCCATGGGC
Transitional endoplasmic reticulum ATPase	AI059675	CNCAAAANNNANANNTTNGGNAAACCAGGGTTTTTNCCNNNCCCNNNTTTTNAAAACCNNNCC NNGGCCNAANTAAAANTNACCCCCCCNAAAANNAAAAANNTNNGNCCCCNNGGGGNTTTTTTTT TTTTTTTTTTTTT
Tryptophan hydroxylase	X53501	GANNGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCC TTATCGCGGGATCCAGGATTGGAGCACGTGTGGTGTCAGCAGTGTAGCCTTGGCATAAGCAGTTG TATAAACTTTTCATTACTGTAACAAAGTGTCAGAGACAATCAGCTTATAAAGAGGAAAAAGTTTGT TTTGGGTGTTATGGTCCATTAGACGTCGTTCCTGTGGTTTAAGCCAGTGGAAACAAGGCATGA TGAGAGAATGTGGCAGAGCAAACTTCATAAAGGATGGAAAGAGAAAAAAGTGAAGGGTTTAGAGAA AGAAGAAGAGAGAG
Ubiquitin conjugating enzyme (RAD 6 homologue)	M62388	TTGNGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATT TCGNGAATTGGGCCCTCTAGATGCATGCTCGAGCGGCCTCAGTGGATGCAAGAGAGACCCACCTG CGCCCTTCGCGGGATCCGTAGGAGGCTCATGCGGGATTTCAAGCGATTGCAAGAGGACCCACCTG TGGGGGTCAGTGGTGCACCATCTGAAAACAACATCATGCAGTGGAACGCAGTTATATTTTGGACCA GAAGGGACACCCTTTGAAGATGGTACTTTAAACTAGTAATAGAATTTTCTGAAGAATATCCAAA TAAACCACCAACCGTTAGGTTTTTATCCAAAATGTTTCATCCAAATGTGTATGCTGACGGCAGCA TATGCTTAGACATCCTGCAGAACCGATGGAGCCCCACGTACGACGTCTCCTCCATCTTAACTTCA ATTCAGTCTCTGTTGGATGAGCCGAATCCAAACAGTCCGGCCAATAGCCAAGCACACGCTTTA TCAGGAAAACAAACGGGAGTATGAGAAGAGGGTTTCGGCCATTGTTGACCAAGGCTGGAATGACT CATAATAGACACCTGGTCTGTCCACCTTTCCATCGTCGTTGTAAGCTTGGCCAAGGGCGAATTC CAGCACACTGGCGGCCGTTACTAGTGGATCCGAGCTCGGTACCAAGCTTGATGCATAGCTTGAGT ATTCTATAGTGCACCTAAATAGCTTGGCGTAA

Ubiquitin D (Ubd)	NM_053299	TCTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAAT TCGGCACGAGGAGCTACTCACATATAAGCAGACATGAGGACTCTTTTCTCACTCGGCCTCTGACT GCAGACATGGCTTCCTGCGTCTGTGTTGTCCGTTCGGAGCCATTGACAC GCAGACATGGCTTCCTGCGTCTGTGTTGTCCGTTCGGAGCAATGGCCATTAATGACCTTTGACAC CACCATGAGTGACAAAGTGAAGAAAATCAATGAGCATATTAGGTCCCAAACCAAGGTCTCTGTGC AGGACCAGATCCTTCTGCTAGACTCCAAGATCCTCAAGCCCCATAGAGCGTTGTCATCTTATGGG ATTGACAAGGAAAACACTATCCACCTCACCCTAAAGGTGGTGAAGCCCAGTGATGAAGAACCAGCT CTTGTCTCTGGTGGAGTCGGGCGACGAGGGGCAAAGGCACCTCCTTCGAGTTCGAAGATCCAGCT CCGTGGCCCAGGTGAAGGAAATGATCGAGAATGTGACCGCTGTGCCTCCCAAGAAGCAGATCGTG AATTGCAATGGAAAGAGCCTGGAAGATGGAAAGATCATGGCCGACTACAACATCAAGAGTGGTAG TTTGCTCTTTCTCACAGCGCACTGCATTGGGGGGTGACTACGAGTGGATGAGAACTCC AAAACCCGACTTCCTTTAATCAATTACCAATTGCATCTTTTAGTGATATAAAAAAAA
UDP-glucuronosyltransferase	X00156	ANNININININITICTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCG AGGCCAAGAAATTCGGCACGAGGCTAAACCCTTGCCCAAGGATATGGAAGATTTTGTCCAGAGCT CTGGAGAGCATGGCGTGGTGGTTTTCTCTGGGGTCAATGGTCAGCAGCATGACAGAAAAAG GCCAATGCAATTGGATGGGCCCTTGCCCAGATTCCACAAAAGGTTCTTTTGGAAAATTTGATGCAA AACCCAGCAACCTTAGGACCCAATACCAGAGTCTACAAAGGGCTTCCCCAGAATGACCTCCTTG GTCATCCAAAAACCAAAGCCTTTGTAACTCATGGTGGAGCCAATGGTGTCTATGAGGCCATCTAT CATGGAATCCCTATGGTTGGCATTCCTATGTTTGGAGAACTACATGATAACATTGCCCACATGGT GGCCAAAGGAGCAGCTGTTACACTGAATATCAGGACAATGTCAAAGTCAGATTTGTTCAATGCAC TAAAGGAAATAAACAATCCATTCTATAAAAAAAAATGCTGTTGTGTTCAACCATTCACCAT GACCAACCTATGAAGCCCCTGGACAAGGCTGTCTTCTGGATTGAGTTTGTCAACCAT
Uncoupling protein 2	AB006613	NGGGGAATTGGGCCCTCTAGATGCATGCTCGAGCGCCGCCAGTGTGATGGATATCTGCAGAATT CGCCCTTCGCGGAATTCTGGCAGGAGCACCACAGGTGCCCTGGCTGTGGCTGTGGCCCAACCTAC AGATGTGGTAAAGGTCCGCTTCCAGGCCCAGGCCCGGGCTGGCGGTGGTCGGAGATACCAGAGCA CTGTCGAAGCCTACAAGACCATTGCACGAGAGGAAGGGATCCGGGGCCTCTGGAAAGGAACCTCT CCCAATGTTGCCCGAAATGCCATTGTCAACTGTACTGAGCTGGTGACCTATGACCTATCAACAA TACTCTCCTGAAAGCCAACCTCATGACAGACGACCTCCTTGCCATTCACTATGACTTCTGGGG CGGGCTTCTGCACCACGTCATTGCCTCCCCCATTGATGTGGTCAAGACGAGATATATGAACTCT GCCTTGGGCCAGTACCACAGCGGCCGCCACTGTGCCTTGGCATGCTCCGGAAGGAGGGGCCCCG AGCCTTCTACAAGGGGTTCATGCCTTCCTCCGCTTGGGATCCTGGAACGTAAAGCTTGGCC AAGGGCGAATTCCAGCACACTGGCGGCCGTTACTAGTGGATCCGGAGCCAACTTGATGCA TAACTTGAGTATTCTATAGTGGCA
Urokinase plasminogen activator receptor	AF007789	GCGAATTGGGCCCTCTAGATGCATGCTCGAGCGCCGCCAGTGTGATGGATATCTGCAGAATTCG CCCTTATCGCGGGATCCACCACCGAATGGCTTCCAATGTTACAGCTGTGAGGGAACAGCACCTT TGGATGTTCCTACGAAGAGACGTCCCTCATTGACTGCCGGGGACCAATGAATCAGTGCTTGGAGG CTACAGGCTTAGATGTGCTGGGAAACCGGAGTTACACCGTAAGAGGCTGCGCACGGCTTCCTGG TGCCAAGGTTCCCACGTGGCCGACTCCATCCAGACCCACGTCAACCTCTCTATCTCCTCTGAA TGGCAGTGGCTGTAACCGCCCTACAGGGGGCGCCCCCGGGCCAGGCCTCATCTTATCCTCAA TTGCCTCCCTGCTCCTGACCCTCAGACTGTGGGCCATCCTCTTGGACCTGAATCCTGAGCCGT CTGCCTCGCTGGCCGAGGACTTTTGACCTCCCCTCTCTCT
Vacuole membrane protein 1	AP411216	TATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATTC GGCACGAGGAAATTAGCAGAGAGTTTTTATCTGCAGAAGTTAGCGTGGTGGAGCCTGCCT

		GAATTGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCC
		GAATTGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGCCTACAAAAA
Vascular cell adhesion molecule 1 (VCAM-1)		TTCGCGGGATCCGAACTGCAGCCTCTTTCTCAAAATACAACACTCTCCTTCATGGCTACAAAAAT
		GGAAGATTCCGGCATTTATGTATGTGAAGGGATTAATGAGGCTGGAATTAGCAAAAAATCAGTTG
		AACTGATTATCCAAGGCTCTTCGAAGGACATACAGCTTACAGCCTTCCCATCTAAGAGCGTCAAA
cular con mole (VCAM-1	88	GAGGGAGACACTGTCATTATCTCCTGTACTTGTGGAAGTGTGCCCGAAATATGGATAATTCTGAA
Vascular esion mo (VCAM-	M84488	AAAGAAAGTCAAGACAGGAGACATGGTGCTAAAGTCTGTTAATGGCTCGTACACCATCCGCAAGG
មិនស្ព	9	lcacaccrecacearecceeacrataceacreteaatcGTAAACCGAAGTCGCCTCGCAGTTGCGAT
ပ္သင့္သ	_	Incommunication of the communication of the communi
es (₿₳₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼₼
듄		CGAATTCCAGCACACTGGCGGCCGTTACTAGTGGATCCGAGCTCGGACCAAGNTGNTGCATAGCT
ď		TGAGTATTCTATAGTGNCACCTAAA
	┝	GCGAATTGGCCCTCTAGATGCATGCTCGAGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCGC
		CCTTATCGCCGGATCCAGAGAGAGCTTCCTGCAGCATAGCAGATGTGAATGCAGACCAAAGAAA
endothelial h factor		GATAGAACAAAGCCAGAAAATCACTGTGAGCCTTGTTCAGAGCGGAGAAAGCATTTGTTTG
or G	1	GATAGAACAAAGCCAGAAAATCACTGTGAGCCTTTTCCAACCCAGCCAG
	AF062644	AGATCCGCAGACGTGTAAATGTTCCTGCAAAAACACAGACTCGCGTTGCAAGGCGAGGCAGCTTG
g g		AGTTAAACGAACGTACTTGCAGATGTGACAAGCCAAGGCGGTGAGCCAGGCTGCAGGAAGGA
8 7	2	TCCCTCAGGGTTTCGGGAACTAGACCTCTCACCGGAAAGACCGATTAACCATGTCACCACCACAC
	잁	CACCATCGTCACCGTCGACAGAACAGTCCTTAATCCAGAAAGCCTGACATGAAGGGAGGAAGC
Vascular growt	^ ا	TTGGCCAAAAGGGCGAATTCCAGCACACTGGCGGCCGTTACTAGTGGATCCGAGCTCGGTACCAA
88	1	GCTTGATGCATAGCTTGAGTATTCTATAGTGTCACCTAAATAGCTTGGCGTAATCATGGTCATAG
S	l	CTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAA
>	•	GTGTA A AGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGT
	_	ITCCTC ATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGA
ō.	ı	ATTCCCCACACCTACATTTTCTTCAAGAAGTGAATGTTTACGGTGTGCCCGTGCCAGGTCATGA
28	1.	AGGTCGCATCGGGATGGCCTCGATCAAGATGAAAGAAAACTACGAGTTCAATGGAAAGAAA
e di	D85100	TTCAGCACATCTCGGAGTACCTGCCCAGTTACTCGAGGCCTCGGTTCCTGAGAATACAAGATACC
មិញ 🖰		ATTGAGATCACCGGGACTTTTAAACACCGCAAAGTGACCCTGATGGAAGAGGGGCTTTAACCCCTC
Very long-chain acyl-CoA synthetase		ATTGAGATCACCGGGACTTTTAAACACCGCAAAGTGACACAGAAAAAACATACGTGCCCATGACTGAGG
5 %		AGTCATCAAAGATACCTTGTATTTCATGGATGACACCTCTGAATGTTGCCTGGCTCCTAACACTTC
75		CAGAAAGAAACACAATAGGCCTAGCATAGCCCCTTCACATGTAATCCAACTTTAACTTGATTA
የជ		CAGAAAGAAACACAATAGGCCTAGCATAGCCCCTTCACATGTTAATCCAACTTTTTTTT
\$ 5		AAGGTTATAGGTGTGATTTTTCCTAGGAAATTATTCATTTAAAGGAAATTATTTTTTCTA
) B		TTGGTTTTTATTAATTACACCAGAACGTTTGCAAGTAAAAAGATTTAAAGTCACTTATTTTTCAA
		TGTGCACCTGCCATTTGTCCTTGCAAACTTAACTTCTTGGAGAGAG
		TGATTACCCCCAAGCTATTAGGTGCCCTATAGAATACTCAAGCTATGCATCAAGCTTGGTACCG
82	L00603	AGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTGGAATTCGCCCTTATCGCGGGATCCGGCAG
E E		AGGAGAGAATCCAAATGCTGCTTTCTTTATATAAATGCTTGATGGTCTTCTTGGGTGAGAACAA
85		AACGTTATGCACTTTAAACAGTCAAGGTTAAGTATGATGTGGTTTATCAAATCCGGCTCATGTTC
8 .		Trace a bace accompropace of Catalanter Cata
# 5		CACCTCATCTCACTCTTTTTTCTAGAGATTTGTTAATTTTGAGTTGCTGTTATTTTTTAGACTCC
ar ort		Imala a accentente ananca atenaga a argada terreta caca cala caca a contra caca caca a contra caca caca caca caca caca caca caca c
4 6		ICTOTOTO A CONCENTRATO TO A COTTANTO CAGTO TO CONTROL T
l Sign		In a b a CC a TCT a C a a CCCTCTCTCTCTCTTACTCCATCATCTCTCCCTGCCTCGCTAGAACAATGTTCCTAA
Vesicular monoamine transporter (VMAT)		GCACGACAACACTGATCGATAAGCTTGGCCAAAGGGCGAATTCTGCAGATATCCATCACACTGGC
) > "		GGCCGCTCGAGCATCCTAGAGGGCCCAATTC
	╂	TCTTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAA
	1	TTCGGCACGAGGTTTTTTTTTTTTTTCAGTCTCTCTCGCATCTTCCTCTTCAGTGGACCTCTC
ļ.	1	TCCTCTAGATTCCCTTCTTGTTTTCTCACCATCCCACGTGAGATGCTTGTTAGTAACTGTTACAG
ñ	M91235	TCCTCTAGATTCCCTTCTTGTTTTCTCACCATCCACCACCACAAAACTTGTTAGTAGTACACACCACCACAAAAACAACCACCACAAAAACAACCACCACA
[E		ATCTTCTTTACCACTGAGGAAAGACAGAATCCTGCTAGAGGCCCAGAAAGAA
5		ATGGAAGGCTCCTGACTGTTGACTTCAATGCCCCTGAAGGTAGGGAGTGCTCCAGGTCTGCCCCC
1 4		AGGCTCCGAGGGTGGGTCTCCTAGGGGCTGGAAAATGCCCCACCAATCTGGCTAAGATAAGGAAA
0		GGATATGAAGAGAAAGTTACAGAAACTTGAAGGGTAAAGCTAAGTCACTGAGAGAGTTATTGTAA
VL30 element		ICTTCCACAAAATAACTTCATCCCTGCTTCAGGGTCTGTGCAGAAAAGTGGACAGCACCTAATA
		CCTGTDCDDGDGGAGAGAGACTGAAAAAAAAAAAGAAAGAAAGAAAGAAAG
	1	GACAGGAAAAAAAAAAAAAAAAAAACACATGCGGNCGCAAGCTTATTCCCTTTAATGANGGTTAAT
I	1	TTTACTTGGCNCTGGNCGCGTTTTTCAACGTCGTGACTGGG

PCT/US03/06196

WO 03/100030

Voltage-dependent anion channel 2 (Vdac2)	NM_031354	CTATGACATGATTACGAATTTAATACGACTCACTATAGGGAATTTGGCCCTCGAGGCCAAGAATT CGGCACGAGGGTCTCCTTCACTTCGCCCTCCAGCCGCGGTGGCTGCAGCGCAACTTCCAGATAGC GGAGTGGCCTCAGCTGCGAGCCGAGC
Zinc finger protein	AP001417	TGGGACCTGCCATCCATGGGTCACCCGTNTTTGGNTACGGGGGGGGGG