

Module #6 - EMR

010 - Ocean Thermal Energy Conversion OTEC

- Sun on oceans →
 - the water at the surface is warmer
 - the water at a deeper location is cooler.
 - tropical climates :
 - Surface temperatures can reach 28°C
 - Deeps temperature: 4°C about 1 km below water.
- Ocean is a heat engine
 - Carnot efficiency (max possible efficiency)

$$\eta_{\text{th,max}} = 1 - \frac{T_L}{T_H} = 1 - \frac{(4+273) \text{ K}}{(28+273) \text{ K}} = 0.080 \text{ or } 8.0\%$$

Actual OTEC system : 3%

- OTEC systems involve very large devices
- Example
 - If you want a power output of 100 kW
 - For a 3% efficiency, the heat transfer in the cycle must be up to 3300 kW
 - With a classical heat exchanger, an exchange surface of 440 m² is necessary.
- Two basic design can be used for OTEC sytems
 - Open system : Claude cycle
 - Closed system : Anderson cycle

Open system – Claude cycle

Open system – Claude cycle

Open system – Claude cycle

- warm surface water at around 27 $^{\circ}$ C enters the system (1) at saturation pressure (X1=0).
- A valve allows to diminish the pressure down to the evaporator pressure, below the saturation pressures causing a partial vaporization of the water.
- The evaporator now contains a mixture of water and steam of very low vapor quality (0<X2<1), X2<<1.
- ▼ The steam is separated from the water as saturated vapor (X3=1).
- ▼ The remaining water is saturated (X4=0) and is discharged to the ocean.
- The saturated steam expands in a special low pressure turbine.
- Since the turbine exhaust is to be discharged back into the ocean, a direct contact condenser is used to mix the exhaust with cold water (drem the deeps), which results in a near-saturated water (X7=0).
- That water is now discharged back to the ocean.

Closed system – Anderson cycle

CLOSED (ANDERSON) CYCLE

Closed system – Anderson cycle

- Closed system Anderson cycle
 - Closed-cycle plants operate on a closed Rankine cycle with a fluid that has a low boiling temperature.
 - The working fluid is fully vaporized (evaporator) by the warm surface water.
 - The vapor expands in the turbine before condensing by transferring its heat to the cool deep water flowing through the condenser
 - The condensed working fluid is pumped to the evaporator to complete the closed cycle.