

Development of a Climatology of Vertically Complete Wind Profiles from Doppler Radar Wind Profiler Systems

BJ Barbre'
Jacobs ESSSA
7 January 2015

Outline

- Introduction
- Doppler Radar Wind Profiler (DRWP) descriptions
- Data quality control (QC) process
- Wind profile splicing technique
- Validation analyses
- Sample size and subsets
- Summary

Introduction

- Impact of winds to space launch vehicle.
 - Design and certification.
 - Day-of-launch (DOL) steering commands.
 - Altitudes where greatest sensitivities exist typically range from roughly 8-14 km.
- NASA has incorporated the use of the 50-MHz DRWP.
 - Discrete profiles and profile combinations (e.g., triplets).
 - DRWP's advantages over balloon-based systems.
 - DRWP archive contains a larger sample size.
 - DRWP archive provides flexibility for assessing trajectory changes due to winds.
 - DRWP profiles mitigate balloon rise time and drift.
 - Issue: Some applications require knowledge of winds and wind changes at low altitudes, and the 50-MHz DRWP does not sample altitudes below 2.7 km.
- This paper describes the method used to generate vertically complete profiles using the 50- and 915-MHz DRWP systems at the United States Air Force Eastern Range (ER).

DRWP Descriptions

- Signal return through Bragg Scatter.
- Winds computed from radial velocities.
- Differences between 50-MHz and 915-MHz DRWP systems.
 - Multiple 915-MHz DRWP systems exist.
 - Different time and altitude ranges and intervals.
 - Different period of record: Concurrent POR 4/2000 through 12/2009
- Archive non-QC'ed data from the ER.

	KSC 50-MHz	ER 915-MHz
Period of Record	08/1997-12/2009	04/2000-12/2010
Approximate Sampling Rate	3-5 minutes	12-15 minutes
Approximate Altitude Range	2,500-18,500 m	200-6,100 m
Approximate Altitude Interval	145 m	100 m

QC Process

50-MHz DRWP

Automated checks

- Filled in time gaps with missing data
- Initial screening of vertical beam
- DRWP internal shear and meteorological shear
- Vertical velocity, spectral width
- "Unrealistic" values
- First Guess Propagations
- Small-median test, Isolated datum
- Rain / convection flags
- Missing oblique beam signal or noise

915-MHz DRWP

- Determined validity of generating QC'ed archive.
- Automated checks
 - Filled in time gaps with missing data
 - Number of vertical and oblique beam consensus records
 - "Unrealistic" values
 - Vertical velocity, signal-to-noise ratio
 - Rain / convection flags
 - Meteorological shear
 - Small-median test, Isolated datum
- QC based off literature and data examination.
- Developed analogous manual QC process for each system.
 - Side lobes, ground clutter, convection-contaminated data removal.
 - Removed data based on user-specified thresholds of a variable.

QC Process

- Developed separate Graphical User Interfaces for each system.
- Automated saving of images and logs.
- Enabled comparison with concurrent rawinsonde data.
- Provides means to scrutinize QC process and add data.
- One must QC both archives before splicing profiles.
- Most time-consuming process in database development.

Splicing Technique: Individual Profiles

- Preprocess individual 50- and 915-MHz DRWP input profiles.
 - Interpolate to 50-m intervals.
 - Remove excessively large gaps.
- Do input profiles overlap?
 - Yes: Fair wind components.
 - No: Interpolate wind components.
- Filter spliced profile to 300-m wavelength.
 - Consistent spectral content.
 - 50-MHz DRWP Nyquist wavelength.
- Perform shear checks.

Splicing Technique: Composite Profile

- Up to five profiles can exist at a given time.
- Composite boundary layer (BL) profile.
 - Increase sample size.
 - Allows one to select a single profile to represent the BL.
- Derive consensus average of the five individual spliced profiles.
 - Applied algorithm independently at each altitude.
 - Process favors the 915-MHz DRWPs closest to the 50-MHz DRWP and coast.
- Invoke shear checks and filter.

Validation Analyses

- Performed analyses as a check to the splicing and QC process.
- Examined wind shear and wind change statistics versus altitude.
- Verified suspect results.
- Re-generated database if analyses produced anomalies.

Sample Size and Subsets

- Roughly 25,000-30,000 complete profiles per month.
- All data at all timestamps are stored for various applications.
- Subsets
 - 4,000 seasonal 1-hr triplets for Space Launch System (SLS) trajectory assessments.
 - 2,000 seasonal 1-hr quintuplets to examine launch window effects.
 - Wind pairs to support NASA's Launch Services Program (LSP).
 - 2,000 seasonal profiles including winds from a local 500-ft tower for ground wind analyses.

Summary and Forward Work

- Developed an archive of vertically complete profiles from the KSC and ER DRWP network for space vehicle design.
- Subsets have been generated to support SLS loads and trajectory assessments and applications of interest to LSP.
 - Different altitude requirements influence sample size.
 - Other subsets can be generated for numerous applications.
- Forward work
 - Incorporate QC and splicing algorithms for use during DOL.
 - Reduced uncertainty in DOL loads and trajectory assessments due to winds.
 - Allow for go / no-go decision making closer to launch.
 - Winds used in DOL assessments will be more representative of vehicle ascent environments.
 - Document process in a peer-reviewed journal.
 - Periodically update archive.

References

- [1] Barbré Jr., R.E., 2012: Quality Control Algorithms for the Kennedy Space Center 50-MHz Doppler Radar Wind Profiler Winds Database. *J. Atmos. Oceanic Technol.*, **29**, 1731–1743.
- [2] Decker, R. K. and R. E. Barbré Jr. 2011: Quality Control Algorithms and Proposed Integration Process for Wind Profilers Used by Launch Vehicle Systems. Paper presented at the 15th Conference on Aviation, Range, and Aerospace Meteorology. American Meteorological Society. Los Angeles, California. 3 Aug 2011.
- [3] Carr, F.H., P. L. Spencer, C. A. Doswell, and J. D. Powell. 1995: A Comparison of Two Objective Analysis Techniques for Profiler Time—Height Data. *Mon. Wea. Rev.*, **123**, 2165–2180.
- [4] Merceret, F. J.: 1997. Rapid Temporal Changes of Midtropospheric Winds. J. Appl. Meteor., 36, 1567–1575.
- [5] Lambert, W. C., F. J. Merceret, G. E. Taylor, and J. G. Ward: 2003. Performance of Five 915-MHz Wind Profilers and an Associated Automated Quality Control Algorithm in an Operational Environment. *J. Atmos. Oceanic Technol.*, **20**, 1488–1495.
- [6] Murri, D.G.: 2011. Doppler Radar Profiler for Launch Winds at the Kennedy Space Center (Phase 1a). NASA/TM-2011-217321. NESC-RP-11-00692. NASA / LaRC / NESC. Hampton, VA.
- [7] Barbré, R. E., "Characteristics of the Spliced KSC Doppler Radar Wind Profiler Database". Jacobs ESSSA Group Analysis Report. ESSSA-FY13-1935. November 2013.
- [8] Decker, R. K. and R. E. Barbré Jr. 2014: Temporal Wind Pairs for Space Launch Vehicle Capability Assessment and Risk Mitigation. Journal of Spacecraft and Rockets. doi http://arc.aiaa.org/doi/abs/10.2514/1.A33000.
- [9] Decker, R. K., R. E. Barbre, Jr., R. Leach, J. R. Walker, and J. C. Brenton. Assimilation of Wind Profiles from Multiple Doppler Radar Wind Profilers for Space Launch Vehicle Applications. Paper presented at the 19th Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface. American Meteorological Society. Phoenix, Arizona. 8 Jan 2015.

