Khoa Công nghệ Thông tin và Truyền thông

Nội dung

- Bài toán Kiểm định Giả thuyết Bài toán Kiểm định Miền tiêu chuẩn
- 2 Kiểm định cho một Mẫu Kiểm định cho Trung bình Kiểm định cho Tỉ lệ Kiểm định cho Phương sai
- Kiểm định cho hai Mẫu So sánh hai Trung bình So sánh hai Tỉ lệ

- 1 Bài toán Kiểm định Giả thuyết
 - Bài toán Kiểm định Miền tiêu chuẩn
- 2 Kiểm định cho một Mẫu
- 3 Kiểm định cho hai Mẫu

- 1 Bài toán Kiểm định Giả thuyết Bài toán Kiểm định
- 2 Kiểm định cho một Mẫu
- 3 Kiểm định cho hai Mẫu

Ví dụ thực tế

- Một chuỗi cửa hàng cà phê X sau khi ra mắt sản phẩm đầu tiên rất thành công với 70% phản hồi tích cực từ khách hàng.
 Ông chủ tiếp tục muốn cho ra mắt công thức tiếp theo với hy vọng cũng sẽ đạt được thành công như lần trước.
- Ông ấy đặt giả thuyết rằng 70% tất cả khách hàng cũng sẽ yêu thích sản phẩm mới này và tiến hành khảo sát để kiểm chứng.

Ví dụ thực tế

- Một chuỗi cửa hàng cà phê X sau khi ra mắt sản phẩm đầu tiên rất thành công với 70% phản hồi tích cực từ khách hàng.
 Ông chủ tiếp tục muốn cho ra mắt công thức tiếp theo với hy vọng cũng sẽ đạt được thành công như lần trước.
- Ông ấy đặt giả thuyết rằng 70% tất cả khách hàng cũng sẽ yêu thích sản phẩm mới này và tiến hành khảo sát để kiểm chứng.
- Ông ta cho thử miễn phí trên 100 khách hàng ngẫu nhiên và nhận được 67 ý kiến tích cực. Với kết quả trên, ông ta hơi nghi ngờ về giả thuyết của mình.
- Nếu kết quả càng xa con số 70%, sự nghi ngờ càng lớn và nếu vượt quá một ngưỡng nào đó, giả thuyết kia sẽ phải bị bác bỏ. Liệu có cách nào để cụ thể hóa kết quả khảo sát và kết luận của ông chủ cửa hàng này không?

 Giả thuyết thống kê là một phát biểu về tính chất của quần thể.

- Giả thuyết thống kê là một phát biểu về tính chất của quần thể.
- Bài toán kiếm định giả thuyết thống kê xuất hiện khi chúng ta cần đưa ra kết luận về hai giả thuyết trái ngược nhau thông qua việc khảo sát.

- Giả thuyết thống kê là một phát biểu về tính chất của quần thể.
- Bài toán kiểm định giả thuyết thống kê xuất hiện khi chúng ta cần đưa ra kết luận về hai giả thuyết trái ngược nhau thông qua việc khảo sát.
- Kiếm định giả thuyết thống kê là một quy trình để xác minh xem có thể chấp nhận một giả thuyết thống kê hay không dựa trên mẫu số liệu quan sát được từ quần thể.

Mô hình hóa

Với tình huống thực tế trên, ta có hai giả thuyết như sau:

- Giả thuyết H₀ (null hypothesis): tỉ lệ khách hàng thích sản phẩm mới bằng 70% (được giả sử là đúng).
- Đối thuyết H₁ (alternative hypothesis): tỉ lệ khách hàng thích sản phẩm mới không bằng 70% (được giả sử là không đúng).

Một số ví dụ

1. Trong một phiên tòa xét xử bị cáo X, các giả thuyết cần kiểm định là

 $H_0: X$ vô tội, $H_1: X$ có tội.

Môt số ví du

1. Trong một phiên tòa xét xử bị cáo X, các giả thuyết cần kiếm đinh là

$$H_0: X$$
 vô tội, $H_1: X$ có tội.

2. Sau khi phân tích báo cáo tài chính từ hai công ty A và B, một nhà đầu tư cần quyết định

 H_0 : đầu tư vào công ty A, bỏ qua công ty B,

 H_1 : đầu tư vào công ty B, bỏ qua công ty A.

Bài toán kiểm định tham số

Giả sử θ là tham số chưa biết của quần thể.

- Giả thuyết H_0 : $\theta = \theta_0$.
- Dối thuyết
 - $H_1: \theta \neq \theta_0$, i.e., Kiểm định hai phía (two-sided test).
 - H_1 : $\theta < \theta_0$, i.e., Kiểm định một phía (left-tail test).
 - H_1 : $\theta > \theta_0$, i.e., Kiểm định một phía (right-tail test).

Ví dụ

• Để kiểm tra rằng tốc độ kết nối Internet trung bình là 54 Mbps, ta dùng kiểm định hai phía với H_0 : $\mu=$ 54 và H_1 : $\mu\neq$ 54, với μ là tốc độ mạng trung bình của tất cả các lần kết nối.

Ví dụ

- Để kiểm tra rằng tốc độ kết nối Internet trung bình là 54 Mbps, ta dùng kiểm định hai phía với H_0 : $\mu=$ 54 và H_1 : $\mu\neq$ 54, với μ là tốc độ mạng trung bình của tất cả các lần kết nối.
- Tuy nhiên, nếu ta nghi ngờ tốc độ kết nối *thấp hơn* 54 Mbps, ta có thể tiến hành *kiểm định một phía* với H_0 : $\mu=$ 54 và H_1 : $\mu<$ 54.

Nguyên lý quyết định

Dựa trên mẫu số liệu thu được, ta cần phải lựa chọn một trong hai quyết định:

- Bác bỏ giả thuyết H_0 để ủng hộ H_1 .
- ullet Chấp nhận H_0 và không ủng hộ H_1 .

Nguyên lý quyết định

Dựa trên mẫu số liệu thu được, ta cần phải lựa chọn một trong hai quyết định:

- Bác bỏ giả thuyết H_0 để ủng hộ H_1 .
- Chấp nhận H_0 và không ủng hộ H_1 .

Nguyên lý chung:

"Nếu một biến cố xảy ra với xác suất rất nhỏ thì trong một hay một vài phép thử, biến cố đó sẽ không xảy ra."

Nguyên lý quyết định

Dựa trên mẫu số liệu thu được, ta cần phải lựa chọn một trong hai quyết định:

- Bác bỏ giả thuyết H_0 để ủng hộ H_1 .
- Chấp nhận H_0 và không ủng hộ H_1 .

Nguyên lý chung:

"Nếu một biến cố xảy ra với xác suất rất nhỏ thì trong một hay một vài phép thử, biến cố đó sẽ không xảy ra."

Áp dụng cho thống kê:

"Nếu *một tính chất* xảy ra với xác suất rất nhỏ thì trong một hay một vài *mẫu lấy ngẫu nhiên* từ quần thể, các mẫu đó sẽ không có tính chất này."

Các bước chính - sketch

- Bước 1. Lập giả thuyết H_0 : $\theta = \theta_0$ và H_1 (được xác định tùy thuộc vào loại kiểm định).
- Bước 2. Chọn thống kê kiểm định T.
- Bước 3. Từ mẫu số liệu, T, và một tham số α (được định nghĩa sau), xác định xem $T(\theta_0)$ có thuộc một miền $S(\alpha)$ hay không.
- Bước 4. Nếu $T(\theta_0) \in S(\alpha)$, bác bỏ H_0 .

Các bước chính - sketch

- Bước 1. Lập giả thuyết H₀: θ = θ₀ và H₁ (được xác định tùy thuộc vào loại kiểm định).
- Bước 2. Chọn thống kê kiểm định T.
- Bước 3. Từ mẫu số liệu, T, và một tham số α (được định nghĩa sau), xác định xem $T(\theta_0)$ có thuộc một miền $S(\alpha)$ hay không.
- Bước 4. Nếu $T(\theta_0) \in S(\alpha)$, bác bỏ H_0 .

Nhận xét

Miền $S(\alpha)$ được dùng để đo tỉ lệ các mẫu có tính chất H_1 trên tất cả các mẫu lấy từ quần thể, i.e., xác suất để H_1 xảy ra với giả sử H_0 đúng cho cả quần thể.

- 1 Bài toán Kiểm định Giả thuyết Bài toán Kiểm định Miền tiêu chuẩn
- 2 Kiểm định cho một Mẫu
- 3 Kiểm định cho hai Mẫu

Miền tiêu chuẩn

Định nghĩa 1

Một miền S được gọi là miền tiêu chuẩn (hay miền bác bỏ - rejection region) cho bài toán kiểm định giả thuyết H_0 với đối thuyết H_1 nếu:

- Kết quả khảo sát nằm trong miền S, ta sẽ bác bỏ H₀ để ủng hộ H₁.
- Kết quả khảo sát nằm ngoài miền S, ta sẽ chấp nhận H_0 và không ủng hộ H_1 .

Miền tiêu chuẩn

Định nghĩa 1

Một miền S được gọi là miền tiêu chuẩn (hay miền bác bỏ - rejection region) cho bài toán kiểm định giả thuyết H_0 với đối thuyết H_1 nếu:

- Kết quả khảo sát nằm trong miền S, ta sẽ bác bỏ H₀ để ủng hộ H₁.
- Kết quả khảo sát nằm ngoài miền S, ta sẽ chấp nhận H_0 và không ủng hộ H_1 .

Ví du trên

Nếu kết quả khảo sát nằm ngoài khoảng 65% đến 75% thì ta bác bỏ H_0 , ngược lại ta sẽ chấp nhận H_0 .

Hai loại sai lầm

Quy tắc quyết định

Thực tế Kết luận	H₀ đúng	H_1 đúng
Bác bỏ <i>H</i> ₀	Sai lầm loại I	Quyết định đúng
Chấp nhận H ₀	Quyết định đúng	Sai lầm loại II

Hai loai sai lầm

Quy tắc quyết định

Thực tế Kết luận	H₀ đúng	H_1 đúng
Bác bỏ <i>H</i> ₀	Sai lầm loại I	Quyết định đúng
Chấp nhận H ₀	Quyết định đúng	Sai lầm loại II

Nhận xét

- Nếu ta luôn chấp nhận H₀ thì sẽ không mắc Sai lầm loại I nhưng sẽ khiến cho xác suất mắc Sai lầm loại II cao nhất.
- Nếu ta luôn bác bỏ H₀ thì sẽ không mắc Sai lầm loại II nhưng sẽ khiến cho xác suất mắc Sai lầm loại I cao nhất.

Như vậy, không thể đồng thời làm triệt tiêu cả hai loại sai lầm.

Nguyên lý chung để tìm miền tiêu chuẩn

- Ta cần tìm miền S sao cho xác suất mắc cả hai loại sai lầm là nhỏ nhất.
- Trong thực tế, người ta sẽ khống chế xác suất mắc Sai lầm loại I không vượt quá $\alpha \in (0,1)$, và từ đó sẽ chọn miền tiêu chuẩn S sao cho xác suất mắc Sai lầm loại II là nhỏ nhất.
- Khi đó, α được gọi là mức ý nghĩa của bài toán kiểm định.
- Ta thường chọn mức ý nghĩa $\alpha \in \{0.05, 0.02, 0.01\}$.

Nguyên lý chung để tìm miền tiêu chuẩn

- Ta cần tìm miền S sao cho xác suất mắc cả hai loại sai lầm là nhỏ nhất.
- Trong thực tế, người ta sẽ khống chế xác suất mắc Sai lầm loại I không vượt quá $\alpha \in (0,1)$, và từ đó sẽ chọn miền tiêu chuẩn S sao cho xác suất mắc Sai lầm loại II là nhỏ nhất.
- Khi đó, α được gọi là mức ý nghĩa của bài toán kiểm định.
- Ta thường chọn mức ý nghĩa $\alpha \in \{0.05, 0.02, 0.01\}$.

Nhận xét

Việc khống chế α tương đương với giả sử H_0 đúng.

Miền tiêu chuẩn - ví du

Hình 1: Miền chấp nhận và miền bác bỏ (right-tail-test).

Miền bác bỏ H_0

CMCU

Thống kê

- 1 Bài toán Kiểm định Giả thuyết
- Wiểm định cho một Mẫu Kiểm định cho Trung bình Kiểm định cho Tỉ lệ Kiểm định cho Phương sai
- 3 Kiểm định cho hai Mẫu

- 1 Bài toán Kiểm định Giả thuyết
- Wiểm định cho một Mẫu Kiểm định cho Trung bình Kiểm định cho Tỉ lệ Kiểm định cho Phương sai
- 3 Kiểm định cho hai Mẫu

Kiểm định khi biết Phương sai σ^2

Phương sai đã biết

Giả sử X có phân bố chuẩn $\mathcal{N}(\mu, \sigma^2)$ với σ^2 đã biết, (x_1, \dots, x_n) là một mẫu số liệu từ quần thể.

- Giả thuyết H_0 : $\mu = \mu_0$.
- Thống kê kiểm định $Z_0 = rac{ar{x} \mu_0}{\sigma/\sqrt{n}}$

Đối thuyết	Tiêu chuấn bác bỏ H_0 ở mức ý nghĩa $lpha$
H_1 : $\mu \neq \mu_0$	$ Z_0 >z_{\alpha/2}$
$H_1: \mu > \mu_0$	$Z_0>z_{\alpha}$
$H_1: \mu < \mu_0$	$Z_0 < -z_{\alpha}$

Ví dụ

Ví du 1

Điểm thi môn Toán của 10 sinh viên một trường đại học được ghi lại như sau

75 64 75 65 72 80 71 68 78 62

Giả sử điểm thi tuân theo phân bố chuẩn $\mathcal{N}(\mu, \sigma^2)$ với $\sigma^2 = 36$. Với mức ý nghĩa 5%, hãy cho biết điểm thi trung bình môn Toán của sinh viên trường này là 70 có đúng không?

Ví dụ (tiếp)

Lời giải gồm 6 bước

- 1. Tham số cần ước lượng là điểm trung bình môn Toán, μ .
- 2. Lập giả thuyết và đối thuyết

$$H_0$$
: $\mu = 70$, H_1 : $\mu \neq 70$.

- 3. Kích thước mẫu n=10, trung bình mẫu $\bar{x}=71$, độ lệch chuẩn $\sigma=6$.
- 4. Mức ý nghĩa $\alpha = 0.05$ nên $z_{\alpha/2} = z_{0.025} = 1.96$.
- 5. Thống kê kiểm định

$$Z_0 = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{71 - 70}{6 / \sqrt{10}} = 0.5270.$$

6. Do $|Z_0| < z_{\alpha/2}$ nên ta không bác bỏ H_0 để ủng hộ H_1 . Vậy ta có căn cứ để kết luận điểm trung bình của sinh viên là 70.

Kiểm định khi cỡ mẫu lớn

Cỡ mẫu lớn

Giả sử ta có một mẫu (x_1, \ldots, x_n) với cỡ mẫu $n \ge 30$.

- Giả thuyết H_0 : $\mu = \mu_0$.
- Thống kê kiểm định $Z_0 = rac{ar{x} \mu_0}{s/\sqrt{n}}$

Đối thuyết	Tiêu chuẩn bác bỏ H_0 ở mức ý nghĩa $lpha$
H_1 : $\mu \neq \mu_0$	$ Z_0 >z_{\alpha/2}$
$H_1: \mu > \mu_0$	$Z_0>z_{\alpha}$
$H_1: \mu < \mu_0$	$Z_0 < -z_{\alpha}$

Ví dụ

Ví du 2

Một nhà máy mì chính ghi trọng lượng trên bao bì mỗi gói là 2 kg. Để kiểm tra thông tin này, người ta lấy mẫu ngẫu nhiên gồm 100 gói thì thấy trọng lượng trung bình là 2002 g và độ lệch mẫu 5 g. Với mức ý nghĩa $\alpha=0.05$, hãy cho biết trọng lượng các gói mì chính có đúng như ghi trên bao bì hay không?

Ví dụ (tiếp)

- 1. Tham số cần kiểm định là μ (g).
- 2. Lập giả thuyết cần kiểm định

$$H_0$$
: $\mu = 2000$, H_1 : $\mu \neq 2000$.

- 3. Ta có n = 100, $\bar{x} = 2002$, s = 5.
- 4. Mức ý nghĩa $\alpha = 0.05$ nên $z_{\alpha/2} = z_{0.025} = 1.96$.
- 5. Thống kê kiểm định: $Z_0 = \frac{2002 2000}{5/\sqrt{100}} = 4$.
- 6. Do $|Z_0|>z_{0.025}$ nên ta bác bỏ H_0 : $\mu=2000$ để ủng hộ H_1 : $\mu\neq2000$ ở mức ý nghĩa 0.05.

Vậy ta có cơ sở để kết luận rằng trọng lượng mỗi gói mì chính không giống như in trên bao bì.

CMCU

Kiểm định khi cỡ mẫu nhỏ

Cỡ mẫu nhỏ

Giả sử quần thể X có phân bố chuẩn $\mathcal{N}(\mu,\sigma^2)$ với σ chưa biết. Mẫu số liệu thu thập được có cỡ nhỏ n<30.

- Giả thuyết H_0 : $\mu = \mu_0$.
- Thống kê kiểm định $T_0 = rac{ar{x} \mu_0}{s/\sqrt{n}}$

Đối thuyết	Tiêu chuẩn bác bỏ H_0 ở mức ý nghĩa $lpha$
$H_1: \mu \neq \mu_0$	$ T_0 > t_{lpha/2,n-1}$
$H_1: \mu > \mu_0$	$T_0 > t_{\alpha,n-1}$
$H_1: \mu < \mu_0$	$T_0 < -t_{lpha,n-1}$

với $t_{a,n-1}$ thỏa mãn P $(T_{n-1} > t_{a,n-1}) = a$.

Bảng giá trị của Phân bố t

n/α	0.5	0.4	0.3	0.2	0.1	0.05	0.02	0.01	0.001
5	0.7267	0.9195	1.1558	1.4759	2.0150	2.5706	3.3649	4.0321	6.8688
6	0.7176	0.9057	1.1342	1.4398	1.9432	2.4469	3.1427	3.7074	5.9588
7	0.7111	0.8960	1.1192	1.4149	1.8946	2.3646	2.9980	3.4995	5.4079
8	0.7064	0.8889	1.1081	1.3968	1.8595	2.3060	2.8965	3.3554	5.0413
9	0.7027	0.8834	1.0997	1.3830	1.8331	2.2622	2.8214	3.2498	4.7809
10	0.6998	0.8791	1.0931	1.3722	1.8125	2.2281	2.7638	3.1693	4.5869
11	0.6974	0.8755	1.0877	1.3634	1.7959	2.2010	2.7181	3.1058	4.4370
12	0.6955	0.8726	1.0832	1.3562	1.7823	2.1788	2.6810	3.0545	4.3178
13	0.6938	0.8702	1.0795	1.3502	1.7709	2.1604	2.6503	3.0123	4.2208
14	0.6924	0.8681	1.0763	1.3450	1.7613	2.1448	2.6245	2.9768	4.1405
15	0.6912	0.8662	1.0735	1.3406	1.7531	2.1314	2.6025	2.9467	4.0728
16	0.6901	0.8647	1.0711	1.3368	1.7459	2.1199	2.5835	2.9208	4.0150
17	0.6892	0.8633	1.0690	1.3334	1.7396	2.1098	2.5669	2.8982	3.9651
18	0.6884	0.8620	1.0672	1.3304	1.7341	2.1009	2.5524	2.8784	3.9216
19	0.6876	0.8610	1.0655	1.3277	1.7291	2.0930	2.5395	2.8609	3.8834
20	0.6870	0.8600	1.0640	1.3253	1.7247	2.0860	2.5280	2.8453	3.8495

Bảng 1: Bảng giá trị của $t_{\alpha/2,n}$.

IQ

Số liệu sau đây ghi lại IQ của 10 sinh viên

112 116 115 120 118 125 118 113 117 121

Giả sử rằng chỉ số IQ có phân bố chuẩn $\mathcal{N}(\mu,\sigma^2)$, hãy kiểm định các giả thuyết sau với mức ý nghĩa $\alpha=0.05$.

- (a) H_0 : $\mu = 115$ và H_1 : $\mu \neq 115$.
- (b) H_0 : $\mu = 115$ và H_1 : $\mu > 115$.
- (c) H_0 : $\mu = 120$ và H_1 : $\mu < 120$.

Ví dụ (tiếp)

- 1. Tham số cần kiểm định là chỉ số IQ trung bình μ .
- 2. Lập giả thuyết cần kiểm định

$$H_0$$
: $\mu = 115$, H_1 : $\mu \neq 115$.

- 3. Các tham số n = 10, $\bar{x} = 117.5$, $s^2 = 14.944$.
- 4. Mức ý nghĩa $\alpha = 0.05$, nên $t_{\alpha/2,n-1} = t_{0.025,9} = 2.262$.
- 5. Thống kê kiểm định $T_0 = \frac{\bar{x} \mu_0}{s/\sqrt{n}} = \frac{117.5 115}{\sqrt{14.944}/\sqrt{10}} = 2.045$.
- 6. Do $|T_0| < t_{0.025,9}$ nên chúng ta không bác bỏ H_0 để ủng hộ H_1 với mức ý nghĩa $\alpha = 0.05$. Nói cách khác, ta kết luận chỉ số IQ trung bình là 115 dựa trên mẫu gồm 10 số liệu.

- 1 Bài toán Kiểm định Giả thuyết
- Wiểm định cho một Mẫu Kiểm định cho Trung bình Kiểm định cho Tỉ lệ Kiểm định cho Phương sai
- 3 Kiểm định cho hai Mẫu

Kiểm đinh cho Tỉ lê

Giả sử ta quan tâm đến p là tỉ lệ các cá thể có tính chất A nào đó của quần thể X. Đặt $f_n = \frac{n_A}{n}$, với n_A là số cá thể của mẫu có tính chất A. Ta muốn so sánh p với giá trị p_0 cho trước.

Kiểm định cho p

- Giả thuyết H_0 : $p = p_0$.
- Thống kê kiểm định $Z_0 = rac{f_n p_0}{\sqrt{p_0(1-p_0)/n}}$

Đối thuyết	Tiêu chuấn bác bỏ H_0 ở mức ý nghĩa $lpha$
$H_1: p \neq p_0$	$ Z_0 > z_{\alpha/2}$
$H_1: p > p_0$	$Z_0>z_{\alpha}$
$H_1: p < p_0$	$Z_0 < -z_{\alpha}$

Ví du 3

Một nhà máy sản xuất thiết bị động cơ ô-tô. Khách hàng yêu cầu rằng tỉ lệ lỗi ở khâu sản xuất không vượt quá 0.05 và nhà máy này phải chứng minh được tỉ lệ này với mức ý nghĩa $\alpha=0.05$. Họ lấy một mẫu ngẫu nhiên gồm 200 thiết bị và thấy có 4 thiết bị lỗi. Các số liệu này có chứng minh được cho khách hàng không?

Ví dụ (tiếp)

- 1. Tham số cần kiểm định là tỉ lệ sản phẩm lỗi p.
- 2. Lập giả thuyết kiểm định H_0 : p = 0.05 và H_1 : p < 0.05.
- 3. Các tham số n = 200, $f_n = 4/200 = 0.02$.
- 4. Mức ý nghĩa $\alpha = 0.05$ nên $z_{\alpha} = z_{0.05} = 1.645$.
- 5. Thống kê kiểm định $Z_0 = \frac{f_n p_0}{\sqrt{p_0(1 p_0)/n}} = \frac{0.02 0.05}{\sqrt{0.05 \cdot 0.95/200}} = -1.947.$
- 6. Do $Z_0<-z_{\alpha}$ nên ta bác bỏ H_0 để ủng hộ H_1 . Nhà máy trên đã đủ căn cứ chứng minh cho khách hàng.

Áp dụng

Bài tập

Đảng Cộng hòa tuyên bố 45% cử tri sẽ bỏ phiếu cho Donald Trump, đại diện đảng này. Một nhà thống kê khảo sát 200 cử tri thấy có 80 người nói sẽ bỏ phiếu cho Trump. Với mức ý nghĩa $\alpha=0.05$, hãy kiểm định xem dự đoán trên của đảng Cộng hòa có đúng không?

- 1 Bài toán Kiểm định Giả thuyết
- 2 Kiểm định cho một Mẫu Kiểm định cho Trung bình Kiểm định cho Tỉ lệ Kiểm định cho Phương sai
- 3 Kiểm định cho hai Mẫu

Kiếm định cho Phương sai

Kiếm định cho σ^2 của phân bố chuẩn

Cho X_1, \ldots, X_n là một mẫu ngẫu nhiên từ một quần thể có phân bố chuẩn $\mathcal{N}(\mu, \sigma^2)$.

- Giả thuyết H_0 : $\sigma = \sigma_0$.
- Thống kê kiểm định $\chi_0^2 = \frac{(n-1)s^2}{\sigma_s^2}$

$$1 \left| \chi_0^2 = \frac{(n-1)s^2}{\sigma_0^2} \right|$$

Đối thuyết	Tiêu chuẩn bác bỏ H_0 ở mức ý nghĩa $lpha$
H_1 : $\sigma \neq \sigma_0$	$\chi_0^2 > c_{lpha/2,n-1}^2$ hoặc $\chi_0^2 < c_{1-lpha/2,n-1}^2$
$H_1: \sigma > \sigma_0$	$\chi_0^2 > c_{\alpha,n-1}^2$
H_1 : $\sigma < \sigma_0$	$\chi_0^2 < c_{1-\alpha,n-1}^2$

với $c_{a,n-1}^2$ thỏa mãn $P(\chi_{n-1}^2 > c_{a,n-1}^2) = a$.

Bảng giá trị

n/a	0.995	0.99	0.975	0.95	0.05	0.025	0.01	0.005	0.0025
5	0.4117	0.5543	0.8312	1.1455	11.0705	12.8325	15.0863	16.7496	18.3856
6	0.6757	0.8721	1.2373	1.6354	12.5916	14.4494	16.8119	18.5476	20.2494
7	0.9893	1.2390	1.6899	2.1673	14.0671	16.0128	18.4753	20.2777	22.0404
8	1.3444	1.6465	2.1797	2.7326	15.5073	17.5345	20.0902	21.9550	23.7745
9	1.7349	2.0879	2.7004	3.3251	16.9190	19.0228	21.6660	23.5894	25.4625
10	2.1559	2.5582	3.2470	3.9403	18.3070	20.4832	23.2093	25.1882	27.1122
11	2.6032	3.0535	3.8157	4.5748	19.6751	21.9200	24.7250	26.7568	28.7293
12	3.0738	3.5706	4.4038	5.2260	21.0261	23.3367	26.2170	28.2995	30.3185
13	3.5650	4.1069	5.0088	5.8919	22.3620	24.7356	27.6882	29.8195	31.8831
14	4.0747	4.6604	5.6287	6.5706	23.6848	26.1189	29.1412	31.3193	33.4260
15	4.6009	5.2293	6.2621	7.2609	24.9958	27.4884	30.5779	32.8013	34.9496
16	5.1422	5.8122	6.9077	7.9616	26.2962	28.8454	31.9999	34.2672	36.4557
17	5.6972	6.4078	7.5642	8.6718	27.5871	30.1910	33.4087	35.7185	37.9461
18	6.2648	7.0149	8.2307	9.3905	28.8693	31.5264	34.8053	37.1565	39.4221
19	6.8440	7.6327	8.9065	10.1170	30.1435	32.8523	36.1909	38.5823	40.8850
20	7.4338	8.2604	9.5908	10.8508	31.4104	34.1696	37.5662	39.9968	42.3357

Bảng 2: Bảng giá trị cho $c_{a,n}^2$.

CMCU

Thống kê

Ví dụ 4

Để kiểm tra chất lượng việc đóng chai nước tự động, một nhà máy sản xuất đồ uống thực hiện lấy mẫu 20 chai nước và đo thể tích, thấy phương sai mẫu là 0.0153. Nếu phương sai của thể tích nước trong chai vượt quá 0.01 thì điều đó có nghĩa rằng việc đóng nước đang có vấn đề. Giả sử rằng thể tích nước đóng chai có phân bố chuẩn, với mức ý nghĩa $\alpha=0.05$, từ mẫu đã chọn, hãy kiểm định về việc đóng nước tự động của công ty.

Ví dụ (tiếp)

- 1. Tham số cần kiểm định là phương sai của thể tích nước trong chai σ^2 .
- 2. Lập giả thuyết kiểm định H_0 : $\sigma^2 = 0.01$ và H_1 : $\sigma^2 > 0.01$.
- 3. Các tham số n = 20, $s^2 = 0.0153$.
- 4. Với mức ý nghĩa $\alpha = 0.05$, ta có $c_{0.05,19}^2 = 30.14$.
- 5. Thống kê kiểm định

$$\chi_0^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{19 \cdot 0.0153}{0.01} = 29.07.$$

6. Do $\chi^2_0 < c^2_{0.05,19}$ nên ta không bác bỏ H_0 ở mức ý nghĩa $\alpha=0.05$. Vậy có đủ cơ sở để kết luận việc đóng chai tự động ở nhà máy này không có vấn đề gì.

Áp dụng

Bài tập

Do đường kính của 12 sản phẩm của một dây chuyền sản xuất, nhà kiểm định tính được s=0.3. Biết rằng nếu độ biến động của các sản phẩm lớn hơn 0.2 thì dây chuyền phải dừng lại để điều chỉnh. Với mức ý nghĩa $\alpha=0.05$, nhà kiểm định có kết luận gì?

- 1 Bài toán Kiểm định Giả thuyết
- 2 Kiểm định cho một Mẫu
- 3 Kiểm định cho hai Mẫu So sánh hai Trung bình So sánh hai Tỉ lệ

- 1 Bài toán Kiểm định Giả thuyết
- 2 Kiểm định cho một Mẫu
- 3 Kiểm định cho hai Mẫu So sánh hai Trung bình So sánh hai Tỉ lê

Bài toán so sánh hai Trung bình

- Giả sử hai quần thể X,Y có phân bố chuẩn tương ứng là $\mathcal{N}(\mu_X,\sigma_X^2)$ và $\mathcal{N}(\mu_Y,\sigma_Y^2)$.
- Dựa trên số liệu đã quan sát được từ hai quần thể này, ta muốn so sánh hai giá trị trung bình μ_X và μ_Y .

Bài toán so sánh hai Trung bình

- Giả sử hai quần thể X,Y có phân bố chuẩn tương ứng là $\mathcal{N}(\mu_X,\sigma_X^2)$ và $\mathcal{N}(\mu_Y,\sigma_Y^2)$.
- Dựa trên số liệu đã quan sát được từ hai quần thể này, ta muốn so sánh hai giá trị trung bình μ_X và μ_Y .

Bài toán Kiểm đinh

- Giả thuyết H_0 : $\mu_X = \mu_Y$.
- Đối thuyết
 - $H_1: \mu_X \neq \mu_Y$. Kiểm định hai phía.
 - H_1 : $\mu_X > \mu_Y$. Kiểm định một phía.
 - H_1 : $\mu_X < \mu_Y$. Kiểm định một phía.

Trường hợp I: Phương sai đã biết

Giả sử hai phương sai σ_X^2, σ_Y^2 đã biết, các cỡ mẫu là n_X, n_Y và các trung bình mẫu là \bar{x}, \bar{y} .

Đã biết Phương sai

- Giả thuyết H_0 : $\mu_X = \mu_Y$.
- Thống kê kiểm định $Z_0 = \frac{\bar{x} \sqrt{\sigma_v^2}}{\sqrt{\sigma_v^2}}$

$$Z_0 = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}}$$

Đối thuyết	Tiêu chuẩn bác bỏ H_0 ở mức ý nghĩa $lpha$
$H_1: \mu_X \neq \mu_Y$	$ Z_0 >z_{\alpha/2}$
$H_1: \mu_X > \mu_Y$	$Z_0>z_{lpha}$
H_1 : $\mu_X < \mu_Y$	$Z_0 < -z_{\alpha}$

So sánh hai công thức sơn

Một nhà phát triển sản phẩm muốn so sánh hai công thức sơn: công thức I là công thức chuẩn, công thức II có thêm thành phần làm khô nhanh. Theo các kết quả nghiên cứu trước đó, thời gian sơn khô có độ lệch chuẩn là 8 phút và không có sự thay đổi khi thêm thành phần mới. 10 mẫu được sơn bằng công thức I và 10 mẫu được sơn bằng công thức II theo thứ tự ngẫu nhiên. Thời gian khô của hai mẫu là $\bar{x}_I = 121$ phút và $\bar{x}_{II} = 112$ phút. Nhà phát triển có thể rút ra kết luận gì về việc sử dụng thành phần mới với mức ý nghĩa $\alpha = 0.05$?

Ví dụ (tiếp)

- 1. Ta muốn so sánh hai giá trị trung bình μ_I và μ_{II} .
- 2. Lập giả thuyết kiểm định H_0 : $\mu_I = \mu_{II}$ và H_1 : $\mu_I > \mu_{II}$.
- 3. Ta có $n_I = n_{II} = 10$, $\sigma_I = \sigma_{II} = 8$.
- 4. Mức ý nghĩa $\alpha = 0.05$ nên $z_{\alpha} = 1.645$.
- 5. Thống kê kiểm định

$$Z_0 = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}} = \frac{121 - 112}{\sqrt{\frac{8^2}{10} + \frac{8^2}{10}}} = 2.52.$$

6. Do $Z_0>z_{\alpha}$ nên ta bác bỏ H_0 và ủng hộ H_1 với mức ý nghĩa $\alpha=0.05$. Vậy có cơ sở để kết luận việc thêm thành phần mới giúp sơn khô nhanh hơn.

Trường hợp II.1: Phương sai chưa biết

Chưa biết Phương sai, cỡ mẫu lớn

Giả sử $n_X, n_Y \geq 30$, chưa biết σ_X, σ_Y . Gọi s_X, s_Y là các độ lệch mẫu.

- Giả thuyết H_0 : $\mu_X = \mu_Y$.
- Thống kê kiểm định $Z_0 = -$

$$Z_0 = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{s_X^2}{n_X} + \frac{s_Y^2}{n_Y}}}$$

Đối thuyết	Tiêu chuẩn bác bỏ H_0 ở mức ý nghĩa $lpha$
$H_1: \mu_X \neq \mu_Y$	$ Z_0 >z_{\alpha/2}$
$H_1: \mu_X > \mu_Y$	$Z_0 > z_{\alpha}$
$H_1: \mu_X < \mu_Y$	$Z_0 < -z_{\alpha}$

Trường hợp II.2: Phương sai chưa biết

Chưa biết Phương sai, cỡ mẫu nhỏ

Giả sử $n_X < 30$ hoặc $n_Y < 30$, hai mẫu có phân bố chuẩn với độ lệch chuẩn $\sigma_X = \sigma_Y$ chưa biết.

• Giả thuyết H_0 : $\mu_X = \mu_Y$.

• Thống kê kiểm định T_0

$$T_0 = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{(n_X - 1)s_X^2 + (n_Y - 1)s_Y^2}{n_X + n_Y - 2}} \sqrt{\frac{1}{n_X} + \frac{1}{n_Y}}}$$

Đôi thuyêt	\mid Tiêu chuân bác bỏ H_0 ở mức ý nghĩa $lpha$
$H_1: \mu_X \neq \mu_Y$	$ T_0 > t_{\alpha/2,n_X+n_Y-2}$
H_1 : $\mu_X > \mu_Y$	$T_0 > t_{\alpha,n_X+n_Y-2}$
H_1 : $\mu_X < \mu_Y$	$T_0 < -t_{\alpha,n_X+n_Y-2}$

IQ

Chỉ số IQ trung bình của 9 đứa trẻ ở quận A là 107 với độ lệch mẫu 10. Chỉ số IQ trung bình của 12 đứa trẻ ở quận B là 112 với độ lệch mẫu là 9. Một nhà quản lý nói chỉ số IQ trung bình của trẻ ở hai quận là bằng nhau. Hãy kiểm tra khẳng định này với mức ý nghĩa $\alpha=0.05$.

Tiêu chuẩn kiểm định t-test theo cặp

Giả sử ta muốn so sánh hai trung bình μ_X, μ_Y khi mẫu số liệu được thu thập theo cặp dạng $(X_1, Y_1), \ldots, (X_n, Y_n)$. Đặt $D_i = X_i - Y_i, \ i = 1, \ldots, n$. Giả sử D_1, \ldots, D_n đều có phân bố chuẩn $\mathcal{N}(\mu_D, \sigma_D^2)$, với $\mu_D = \mu_X - \mu_Y$.

t-test theo cặp

• Giả thuyết H_0 : $\mu_D = \Delta_0$.

ullet Thống kê kiểm định $egin{aligned} T_0 = rac{\overline{D} - \Delta_0}{s_D/\sqrt{n}} \end{aligned}$

Đối thuyết	Tiêu chuấn bác bỏ H_0 ở mức ý nghĩa $lpha$
H_1 : $\mu_D \neq \Delta_0$	$ T_0 >t_{lpha/2,n-1}$
H_1 : $\mu_D > \Delta_0$	$T_0 > t_{lpha,n-1}$
H_1 : $\mu_D < \Delta_0$	$T_0 < -t_{\alpha,n-1}$

Hai phương pháp

Một bài báo trên Journal of Strain Analysis (1983, Vol. 18, No. 2) đã so sánh một số phương pháp để dự đoán sức mạnh cắt cho dầm thép tấm. Hai trong số các phương pháp này là Karlruhe và Lehigh với số liệu được cho trong bảng sau

Karlruhe	1.186	1.151	1.322	1.339	1.200	1.402	1.365
Lehigh							
D	0.125	0.159	0.259	0.277	0.135	0.224	0.328

Với mức ý nghĩa $\alpha=0.05$, hãy kiểm tra xem có sự khác biệt nào (theo trung bình) giữa hai phương pháp không?

Ví dụ (tiếp)

- 1. So sánh sự khác biệt theo trung bình của hai phương pháp: $\mu_D=\mu_1-\mu_2.$
- 2. Giả thuyết kiểm định: H_0 : $\mu_D=0$ và H_1 : $\mu_D\neq 0$.
- 3. Ta có n = 7, $\overline{D} = 0.215$, $s_D = 0.077$.
- 4. Mức ý nghĩa $\alpha = 0.05$ nên $t_{\alpha/2,n-1} = t_{0.025,6} = 2.447$.
- 5 Thống kê kiểm định

$$T_0 = \frac{\overline{D} - \Delta_0}{s_D/\sqrt{n}} = \frac{0.215 - 0}{0.077/\sqrt{7}} = 7.38.$$

6. Do $|T_0| > t_{\alpha/2,n-1}$ nên ta bác bỏ H_0 để ủng hộ H_1 ở mức ý nghĩa $\alpha = 0.05$. Vậy có đủ căn cứ để kết luận có sự khác biệt giữa hai phương pháp (ở mức ý nghĩa $\alpha = 0.05$).

Áp dụng

Bài tập

Trước và sau Tết, người ta ghi lại giá của một mặt hàng X tại 8 cửa hiệu như sau

Cửa hiệu	1	2	3	4	5	6	7	8
Trước Tết	95	109	99	98	105	99	109	102
Sau Tết	98	105	99	99	109	105	115	110

Với mức ý nghĩa $\alpha=0.05,$ kiểm định xem có khuynh hướng tăng giá nào của mặt hàng này sau Tết không?

- 1 Bài toán Kiểm định Giả thuyết
- 2 Kiểm định cho một Mẫu
- 3 Kiểm định cho hai Mẫu So sánh hai Trung bình So sánh hai Tỉ lê

So sánh hai Tỉ lệ

Dựa trên hai mẫu số liệu quan sát được từ hai quần thể X và Y, ta muốn so sánh p_X, p_Y là tỉ lệ các cá thể có cùng tính chất A của hai quần thể này.

Bài toán so sánh Tỉ lệ

- Giả thuyết H_0 : $p_X = p_Y$.
- Dối thuyết
 - $H_1: p_X \neq p_Y$. Kiểm định hai phía.
 - $H_1: p_X > p_Y$. Kiểm định một phía.
 - $H_1: p_X < p_Y$. Kiểm định một phía.

Tiêu chuẩn kiểm định

Giả sử n_X, n_Y là cỡ các mẫu lấy từ quần thể X, Y, k_X, k_Y là số các cá thể có tính chất A trong các mẫu, và f_X, f_Y là tần suất các cá thể có tính chất A trong các mẫu.

Tiêu chuẩn kiểm đinh

Giả sử n_X, n_Y là cỡ các mẫu lấy từ quần thể X, Y, k_X, k_Y là số các cá thể có tính chất A trong các mẫu, và f_X , f_Y là tần suất các cá thể có tính chất A trong các mẫu.

So sánh hai Tỉ lê

• Giả thuyết H_0 : $p_X = p_Y$.

• Thống kê kiểm định
$$Z_0 = rac{f_X - f_Y}{\sqrt{f(1-f)\left(rac{1}{n_X} + rac{1}{n_Y}
ight)}}$$
, với

$$f = \frac{k_X + k_Y}{n_X + n_Y}$$

Đối thuyết	Tiêu chuấn bác bỏ H_0 ở mức ý nghĩa $lpha$
$H_1: p_X \neq p_Y$	$ Z_0 >z_{\alpha/2}$
$H_1: p_X > p_Y$	$Z_0>z_{lpha}$
$H_1: p_X < p_Y$	$Z_0 < -z_{\alpha}$

Tình trạng bỏ học

Điều tra tình trạng bỏ học của học sinh ở hai vùng nông thôn A và B, ta thu được số liệu như sau:

- Vùng A: điều tra 1900 em có 175 em bỏ học.
- Vùng B: điều tra 2600 em có 325 em bỏ học.

Có ý kiến cho rằng tình trạng học sinh bỏ học ở vùng A ít phố biến hơn ở vùng B. Với mức ý nghĩa 5%, hãy cho biết ý kiến đó đúng hay sai?

End of Chapter 5