AI for Math 数学形式化抽象代数期末考试

姓名:	_ 学校:	分数:

时间: 120 分钟 满分: 110 分, 总分不超过 100 分

所有的环都假设含有乘法单位元 1, 且所有的环同态都将 1 映到 1.

All rings contain a multiplicative unit 1, and all ring homomorphisms are assumed to send 1 to 1.

判断题 判断下述命题是否正确。在下表中填写 T (正确) 或 F (错误) (15 分)

1	2	3	4	5	
6	7	8	9	10	
11	12	13	14	15	

1. 对群 G 的子群 H, 若 H 的中心化子是整个 G, 则 H 是 G 的中心的子群.

Let H be a subgroup of G. If the centralizer of H is the entire group G, then H is a subgroup of the center of G.

2. 循环群 \mathbf{Z}_6 包含同构于 \mathbf{Z}_3 的子群.

The cyclic group \mathbf{Z}_6 contains a subgroup isomorphic to \mathbf{Z}_3 .

3. 若 a 是群 G 的元素, 则它的交换化子 $C_G(a)$ 是交换群.

If a is an element of a group G, then its centralizer $C_G(a)$ is an abelian group.

4. 若 G 是 256 阶的群, 则 G 是可解的.

Let G be a group of order 256. Then G is a solvable group.

5. 若 K 是 H 的特征子群, H 是 K 的特征子群, 则 K 是 G 的特征子群. 这里, 一个子群 H 被称作是特征的, 若对 G 的任意自同构 σ , 都有 $\sigma(H) = H$.

Let K be a characteristic subgroup H and H be a characteristic subgroup of G. Then K is a characteristic subgroup G. Recall that a subgroup H is characteristic if for any automorphism σ of G, $\sigma(H) = H$.

6. 一个无扭 **Z**-模是自由的.

A torsion free **Z**-module is free.

7. 若 G 是群, H 和 K 是其正规子群, 则 HK 也是 G 的正规子群.

Let G be a group and H and K be its normal subgroup. Then HK is a normal subgroup of G.

8. 令 $\varphi(n)$ 是 Euler φ -函数, 则 $\varphi(p^5) = p^4(p-1)$.

Let $\varphi(n)$ be the Euler φ -function. Then $\varphi(p^5) = p^4(p-1)$.

9. 域是主理想整环.

Field is a PID.

10. 次数为 n 的多项式 f(x) 的分裂域 E/F 的扩张次数至多为 n!.

The dimension of a splitting field E/F of a polynomial f(x) of degree n is at most n!.

11. $X^3 - X + 1$ 在模 3 后是可约的多项式.

 X^3-X+1 reduces modulo 3 to a reducible polynomial.

12. 一个判别式 d=0 的三次实多项式有三个不同的实根.

A cubic real polynomial with discrimiant d = 0 has three distinct real roots.

13. **Q** 的域扩张 $\mathbf{Q}(\sqrt{2},\sqrt{3})$ 不是本源的.

The extension $\mathbf{Q}(\sqrt{2}, \sqrt{3})$ over \mathbf{Q} is not primitive.

14. 令 R 是含幺环, 则所有自由 R-模都有基.

Let R be a ring with unit. Every free R-module has a base.

15. 令 R 是环, I 是 R 的理想, 则 I 是 R-模.

Let R be a ring and I be an ideal of R. Then I is a R-module.

Grading table

T/F	Easy ques.	Examples	1	2	3	4	5	Total
/15	/20	/15	/15	/15	/10	/10	/10	/110

简单题目 Quick questions $(5 分 \times 4 = 20 分)$

(1) 令 H 是 G 的正规子群, $\pi:G\to G/H$ 是自然同态. 若 $\phi:G\to K$ 是同态, 且 "分解经过" π , 即存在映射 $\psi:G/H\to K$ 满足 $\phi=\psi\circ\pi$. 求证 ψ 是群同态.

Let H be a normal subgroup of G and $\pi:G\to G/H$ the natural homomorphism. Suppose further that $\phi:G\to K$ is a homomorphism such that the map ϕ "factors through" π , namely, there exists a map $\psi:G/H\to K$ such that $\phi=\psi\circ\pi$. Prove that ψ is a homomorphism of groups.

(2) 令 G 是阶至少为 3 的有限群, (即 $|G| \ge 3$). 求证 G 包含至少 3 个不同的共轭类. 注意, 上述陈述对于无限群不成立. 也就是说, 存在只包含两个共轭类的无限群.

Let G be a finite group of order at least 3, (i.e., $|G| \ge 3$). Show that G has at least 3 distinct conjugacy classes.

Remark that this statement is not true for infinite groups. That is, there exist infinite groups with exactly two conjugacy classes.

(3) 请证明, 若 N 是有限群 G 的正规子群, 且 (|N|, |G|/|N|) = 1, 则 N 是 G 的特征子群.

Prove that if N is a normal subgroup of the finite group G and (|N|, |G|/|N|) = 1 then N is a characteristic subgroup of G.

(4) 请求出自由 **Z**-模 **Z**⁽³⁾ 中由 $f_1 = (1,0,-1)$, $f_2 = (2,-3,1)$, $f_3 = (0,3,1)$ 和 $f_4 = (3,1,5)$ 生成的子模的基.

Find a base for the submodule of the free **Z**-module $\mathbf{Z}^{(3)}$ generated by $f_1=(1,0,-1)$, $f_2=(2,-3,1), f_3=(0,3,1)$ and $f_4=(3,1,5)$.

举例 Examples $(4 分 \times 5 = 20 分)$

无需证明你的例子或者答案满足要求,只需要清楚叙述你的例子或者答案。

(1) 给出一个群 G, 使得 $G \times G$ 的子群不止有 $\{(e,e)\}$, $\{e\} \times G$, $G \times \{e\}$, 和 $G \times G$.

Give an example of a group G such that $G \times G$ contains a subgroup other than $\{(e,e)\}$, $\{e\} \times G$, $G \times \{e\}$, and $G \times G$.

(2) 给出一个有限非交换群 G 的例子, 使得 G 的所有子群都是正规子群.

Give an example of a finite non-abelian group G such that every subgroup of G is a normal subgroup.

(3) 给出一个是唯一分解整环但不是主理想整环的环的例子.

Give an example of UFD which is not PID.

(4) 给出一个扭 **Z**-模的例子.

Give an example of torsion **Z**-module.

(5) 给出一个 Galois 扩张, 使得其 Galois 群同构于 $\mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/4\mathbf{Z}$. Give an example of Galois extension whose Galois group is isomorphic to $\mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/4\mathbf{Z}$.

证明题一 (15 分) 分类所有的 50 阶群.

Classify groups of order 50.

证明题二 $(15 \ \beta) \ \diamondsuit \ \xi = e^{2i\pi/15} \in \mathbf{C}$.

- (1) 找出 ξ^3 在 \mathbf{Q} 上的极小多项式.
- (2) 求出 $Gal(\mathbf{Q}(\xi)/\mathbf{Q})$.
- (3) 找出满足 $[F : \mathbf{Q}] = 2$ 的 $\mathbf{Q}(\xi)$ 的子域 F 的数量.
- (4) 是否存在 4 次多项式 $P(X) \in \mathbf{Q}[X]$, 使得 $\mathbf{Q}(\xi)$ 是 P(X) 在 \mathbf{Q} 上的分裂域? Let $\xi = e^{2i\pi/15} \in \mathbf{C}$.
- (1) Find the minimal polynomial of ξ^3 over **Q**.
- (2) Determine $Gal(\mathbf{Q}(\xi)/\mathbf{Q})$.
- (3) Find the number of subfields $F \subset \mathbf{Q}(\xi)$ satisfying $[F : \mathbf{Q}] = 2$.
- (4) Does there exist a polynomial $P(X) \in \mathbf{Q}[X]$ of degree 4 such that $\mathbf{Q}(\xi)$ is the splitting field of P(X) over \mathbf{Q} ?

证明题三 $(10 \ \mathcal{G})$ 令 $f(X) = X^4 - X^2 - 1 \in \mathbf{Q}[X]$.

- (1) 找到 $\mathbf{F}_3[X]$ 中所有的首一 2 次不可约多项式.
- (2) 证明 $f(X) \mod 3$ 是 $\mathbf{F}_3[X]$ 中的不可约多项式. Let $f(X) = X^4 X^2 1 \in \mathbf{Q}[X]$.
- (1) Determine all monic irreducible polynomial of degree 2 in $\mathbf{F}_3[X]$.
- (2) Prove that $f(X) \mod 3$ is irreducible in $\mathbf{F}_3[X]$.

证明题四 (10 分)

假设群 G 在集合 X (可能是无限集) 上作用, H 是群 G 中指数有限的子群. 对 $x \in X$, 用 H_x 和 G_x 分别表示群 H 和 G 在 x 处的稳定子群.

- (1) 证明: H 在 X 上有有限个轨道.
- (2) 证明: 如果群 H 在 X 上的作用是传递的, 且对某 $x \in X$ 有 $H_x = G_x$, 则 H = G.
- (3) 证明: 如果 H 是一个正规子群, 则指数 $[G_x:H_x]$ (不管有限与否) 不依赖于 x 的选取.

Suppose that G is a group acting transitively on a set X (which may be infinite) and that H is a finite index subgroup of G. For $x \in X$, write H_x and G_x for its stabilizers in H and G, respectively.

- (1) Show that H has finitely many orbits on X.
- (2) Show that, if the action of H on X is transitive and for some $x \in X$, $H_x = G_x$; then H is all of G.
 - (3) Show that if H is normal, then $[G_x: H_x]$ (finite or not) is independent of x.

证明题五 $(10 \, \text{分}) \, \diamondsuit \, f(X) = X^4 - X^2 - 1 \in \mathbf{Q}[X].$

- (1) 求出 $Gal(K/\mathbf{Q})$, 这里 K 是 f 在 \mathbf{Q} 上的分裂域. (回忆: 若 $f(X) = X^4 + bX^3 + cX^2 + dX + e$, 则其三次预解式为 $g = X^3 cX^2 + (bd 4c)X b^2e + 4ce d^2$.)
- (2) 求出 K/\mathbf{Q} 全部中间域的数量 (包含 K 和 \mathbf{Q}). Let $f(X) = X^4 - X^2 - 1 \in \mathbf{Q}[X]$.
- (1) Determine $Gal(K/\mathbf{Q})$, where K is the splitting field of f over \mathbf{Q} . (Recall: if $f(X) = X^4 + bX^3 + cX^2 + dX + e$, then its cubic resolvent is $g = X^3 cX^2 + (bd 4c)X b^2e + 4ce d^2$.)
- (2) Count the number of intermediate fields of K/\mathbf{Q} (including K and \mathbf{Q}).