Разбор КР по Линейным отображениям.

Чепелин Вячеслав

Содержание

1	Задание 1.	2
2	Задание 2.	3
3	Задание 3.	4
4	Задание 4.	5
5	Информация о курсе	6

1 Задание 1.

Это задание в целом на понимание того, как работают функции.

<u>1.</u> В пространстве трехмерных геометрических векторов $\mathcal{A}\overline{x} = \overline{x} \times \overline{a}$, где $a = (1, -1, 2)^T$. Найти матрицу оператора \mathcal{A} в базисе b, найти $\mathcal{K}erA$ и $\operatorname{Im} A$. $b_1 = (1, 1, 1)^T$, $b_2 = (1, 2, 3)^T$, $b_3 = (1, 3, 6)^T$.

Решение:

Мы можем плясать от определения матрицы оператора. Для этого нам надо посчитать $\mathcal{A}b_i$, но нам надо не забыть перевести отображение в базис b(так как обычно мы считаем в базисе пространства).

$$\mathcal{A}b_1 = \begin{pmatrix} 3 \\ -1 \\ -2 \end{pmatrix}, \, \mathcal{A}b_2 = \begin{pmatrix} 7 \\ 1 \\ -3 \end{pmatrix}, \, \mathcal{A}b_3 = \begin{pmatrix} 12 \\ 4 \\ -4 \end{pmatrix}$$

Замечу, что это произведение в обычном базисе V_3 . Поэтому каждый вектор мы должны еще перевести его в x'. Это можно например сделать с помощью обратной матрицы $x' = T^{-1}x$. Посчитаем обратную, она нам понадобится еще во втором (более простом) решении.

$$T^{-1} = (T)^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{pmatrix}^{-1} = \begin{pmatrix} 3 & -3 & 1 \\ -3 & 5 & -2 \\ 1 & -2 & 1 \end{pmatrix}$$

Тогда
$$b_1' = \begin{pmatrix} 10 \\ -10 \\ 3 \end{pmatrix}, b_2' = \begin{pmatrix} 15 \\ -10 \\ 2 \end{pmatrix}, b_3' = \begin{pmatrix} 20 \\ -8 \\ 0 \end{pmatrix}$$

Ранг этой системы векторов 2, так что мы нигде не ошиблись. Поставим эти векторочки столбиками в матрицу и получим матрицу

Второ решение состоит в том, что мы могли пойти по-другому пути и посчитать матрицу в исходном базисе e_1, e_2, e_3 , а потом воспользоваться формулой замены базиса $A' = T^{-1}AT$.

Подставим e_1, e_2, e_3 получим:

$$\mathcal{A}e_1 = \begin{pmatrix} 0 \\ -2 \\ -1 \end{pmatrix}, \mathcal{A}e_2 = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}, \mathcal{A}e_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

Зная T и T^{-1} получаем тот же ответ.

Так вот, теперь давайте найдем Ker и Im. Можно воспользоваться только что найденными векторами и выбрать 2 из них. Так же, чтобы найти Ker мы можем просто взять наш вектор a.

2 Задание 2.

<u>1.</u> Доказать, что матрица ${\mathcal A}$ - матрица о.п.с. Найти спектральное разложение ${\mathcal A}$ и вычислить с его помощью $\exp A$.

$$\mathcal{A} = \begin{pmatrix} -4 & -3 & 0 \\ 12 & 7 & 2 \\ 0 & 2 & -2 \end{pmatrix}, \lambda_1 = -1, \lambda_2 = 0$$
 - собственные числа A .

Решение:

Для начала найдем еще одно собственное число(или кратность). Для этого вспомним формулу $tr\mathcal{A}$ или $\det A$ через собственные числа.

$$trA = trA = -4 + 7 + -2 = 1 = \lambda_1 + \lambda_2 + \lambda_3 = -1 + 0 + \lambda_3 \Leftrightarrow 1 = -1 + \lambda_3 \Leftrightarrow \lambda_3 = 2$$

Откуда мы нашли третью λ . Если вдруг вы забыли это, то считаете характеристический. В данном случае $\chi(t)=-t^3+t^2+2t=-t(t-2)(t+1)$

Вспомним теорему, что $1 \le \gamma(\lambda) \le \alpha(\lambda)$. То есть $\gamma(\lambda_i) = 1$ для данных λ , откуда $\sum_{\lambda} \gamma(\lambda) = n = 3 = \dim V$, то есть в данном случае это о.п.с.

Теперь посчитаем спектральное разложение. Буду считать его не в тупую, а через разложение единицы.

$$\frac{1}{x(x+1)(x-2)} = \frac{\alpha_1}{x} + \frac{\alpha_2}{(x+1)} + \frac{\alpha_3}{(x-2)}$$

Считая разложение на простые дроби получаем: $\alpha_1 = -\frac{1}{2}, \alpha_2 = \frac{1}{3}, \alpha_3 = \frac{1}{6}.$

Интересный факт. \mathcal{A} уже сам считается проектором на V_0 , так что его считать нам не надо.

$$P_1 = \frac{1}{3}(\mathcal{A} - 2\varepsilon)(\mathcal{A})$$

$$P_2 = E - P_1 - P_0$$

Зная это уже легко досчитывается сами проекторы. $A = \sum_{\lambda} \lambda P_{\lambda}$.

А функция считается еще проще $A = \sum_{\lambda} e^{\lambda} P_{\lambda}$

3 Задание 3.

<u>1.</u> Найти $\chi, \varphi, \lambda, \alpha, \gamma, m, V_{\lambda}, K_{\lambda}$. Подобна ли матрица диагональной, если нет выписать Жорданову форму.

$$A = \begin{pmatrix} 4 & 6 & -15 \\ 1 & 3 & -5 \\ 1 & 2 & -4 \end{pmatrix}$$

Решение:

Давайте найдем собственные числа. Как мы знаем из теоремы Виета:

$$\begin{cases} \lambda_1 + \lambda_2 + \lambda_3 = trA = 3\\ \lambda_1 \cdot \lambda_2 \cdot \lambda_3 = \det A = 1 \end{cases}$$

Если заметить, то у нас одно собственное число = 1. Откуда сразу получаем характеристический $\chi(t) = -(t-1)^3$. Теперь давайте найдем m(1). Заметим, что он не равен одному. Максимум он может быть равен трем. Посмотрим на $(\mathcal{A} - \varepsilon)^2$. Ой это ноль, откуда m(1) = 2. Откуда из вычислений получаем, что $\gamma(2) = 2$. Матрица у нас сразу не диагональная.

 V_{λ} найдем как обычно K_{λ} в данном случае равен V. $\varphi = (t-1)^{m(1)} = (t-1)^2$. Отсюда уже можно понять Жорданову форму.

4 Задание 4.

Оно настолько очевидное из теории, что я не знаю, что сюда писать

5 Информация о курсе

Поток — y2024.

Группы М3138-М3139.

Преподаватель — Кучерук Екатерина Аркадьевна.

Данный разбор сделан не в коммерческих целях, я не хочу никого обидеть, я просто пишу конспекты для себя плак плак

