

LM3886

Overture™ オーディオ・パワーアンプ・シリーズ

高性能 68W オーディオ・パワーアンプ (ミュート機能付き)

概要

LM3886 は高性能オーディオ・パワーアンプで、0.1%以下の全高 調波歪 (THD + N) で、20Hz ~ 20kHz の帯域で、4 負荷へ 68W、8 負荷へ 38W の連続平均電力を出力する能力を備え ています。

SPiKeTM プロテクション (Self Peak Instantaneous Temperature (Ke)) 回路により、ディスクリートやハイブリッドのアンプより優れたダイナミック SOA (Safe Operating Area) 保護を行います。SPiKeプロテクションは、過電圧、低電圧、さらに、電源への短絡、熱暴走、瞬間的温度上昇等を含む過負荷に対して、出力が保護されていることを意味します。

LM3886 は、2.0 µV (代表値)の低ノイズ・フロアで、92dB (min) 以上のすぐれたSN比を実現します。定格負荷への定格出力で、オーディオ周波数の全域にわたって、0.03%の非常に低い THD + N を示し、IMD (SMTPE) は、0.004%という、すぐれた線形性を持ちます。

特長

 V_{CC} = \pm 28V で、4 負荷に対して、68W の連続平均出力電力

 $V_{\rm CC}$ = \pm 28V で、8 負荷に対して、38W の連続平均出力電力

 $V_{\rm CC}$ = \pm 35V で、8 負荷に対して、50W の連続平均出力電力

135W 瞬間ピーク出力電力

SN比 92dB

ミュート機能

内部の電流制限回路による、グラウンド、電源への短絡に対する出力保護

誘導性負荷によるトランジェントに対する出力の過電圧保護 $|V_{EE}|$ + $|V_{CC}|$ 12V のとき、内部バイアスがかからないようにして、ターンオンとターンオフ時のトランジェントを除去する、低電圧電源保護

11 ピン TO-220 パッケージ 広電源電圧範囲: 20V ~ 94V

アプリケーション

コンポーネント・ステレオ ミニ・コンポ アクティブ・スピーカ サラウンド用アンプ ハイ・エンド・ステレオ TV

代表的なアプリケーション

*設計条件等により必要となります。

FIGURE 1. Typical Audio Amplifier Application Circuit

OvertureTM と SPiKeTM はナショナル セミコンダクター社の商標です。

ピン配置図

Plastic Package (Note 11)

Top View
Order Number LM3886T
or LM3886TF
See NS Package Number TA11B for
Staggered Lead Non-Isolated
Package or TF11B for
Staggered Lead Isolated Package

2 /W

絶対最大定格 (Note 4、5)

電源電圧 |V + | + |V - |

電源電圧 |V + | + |V - |

差動入力電圧 (Note 15)

(無信号時)

(信号入力時)

同相入力電圧範囲

消費電力 (Note 6) ESD 定格 (Note 7)

出力電流

本データシートには軍用・航空宇宙用の規格は記載されていません。 関連する電気的信頼性試験方法の規格を参照下さい。

ん。 リード温度 エパッケ・

94V

84V

60V

内部制限

+ 150

125W

3000V

 $(V^+ \sim V^-)$

ただし | V + | + | V - | 80 V

T パッケージ (ハンダ付け、10 秒) + 260 保存温度範囲 - 40 ~ + 150

熱抵抗 T パッケージ

> JC 1 /W JA 43 /W

JA TF パッケージ JC

動作定格 (Note 4、5)

温度範囲 - 20 T_A + 85 電源電圧 |V ⁺ | + |V ⁻ | 20V ~ 84V

電気的特性 (Note 4、5)

最大接合部温度 (Note 8)

特記のない限り、V $^+$ = + 28V、V $^-$ = - 28V、 $I_{\rm MUTE}$ = - 0.5mA、 $R_{\rm L}$ = 4 です。 リミット値は $T_{\rm A}$ = 25 で適用されます。

			LM:	Units (Limits)	
Symbol	Parameter	Typical (Note 9)	Limit (Note 10)		
V + + V -	Power Supply Voltage (Note 13)	18	20 84	V (min) V (max)	
A_{M}	Mute Attenuation	115	80	dB (min)	
P _O (Note 3)	Output Power (Continuous Average)	THD + N = 0.1% (max) f = 1 kHz; $f = 20 kHz V^+ = V^- = 28V, R_L = 4 V^+ = V^- = 28V, R_L = 8 V^+ = V^- = 35V, R_L = 8$	68 38 50	60 30	W (min) W (min) W
Peak P _O	Instantaneous Peak Output Power	2	135		W
THD + N	Total Harmonic Distortion Plus Noise	$60W$, $R_L = 4$, $30W$, $R_L = 8$, 20 Hz f 20 kHz $A_V = 26 \text{ dB}$	0.03 0.03		% %
SR (Note 3)	Slew Rate (Note 12)	$V_{IN} = 2.0Vp-p$, $t_{RISE} = 2 \text{ ns}$	19	8	V/µs (min)
I + (Note 3)	Total Quiescent Power Supply Current	$V_{CM} = 0V, V_o = 0V, I_o = 0A$	50	85	mA (max)
V _{OS} (Note 2)	Input Offset Voltage	$V_{CM} = 0V, I_0 = 0 \text{ mA}$	1	10	mV (max)
I_{B}	Input Bias Current	$V_{CM} = 0V$, $I_0 = 0$ mA	0.2	1	µA (max)
I _{OS}	Input Offset Current	$V_{CM} = 0V, I_o = 0 \text{ mA}$	0.01	0.2	μA (max)
I _o	Output Current Limit	$ V^{+} = V^{-} = 20V$, $t_{ON} = 10$ ms, $V_{O} = 0V$	11.5	7	A (min)
V _{od} (Note 2)	Output Dropout Voltage (Note 14)	$ V^+ - V_O $, $V^+ = 28V$, $I_o = +100 \text{ mA}$ $ V_O - V^- $, $V^- = -28V$, $I_o = -100 \text{ mA}$	1.6 2.5	2.0 3.0	V (max) V (max)
PSRR (Note 2)	Power Supply Rejection Ratio	$V^{+} = 40V \text{ to } 20V, V^{-} = -40V,$ $V_{CM} = 0V, I_{o} = 0 \text{ mA}$ $V^{+} = 40V, V^{-} = -40V \text{ to } -20V,$ $V_{CM} = 0V, I_{o} = 0 \text{ mA}$	120 105	85 85	dB (min)
CMRR (Note 2)	Common Mode Rejection Ratio	V^{+} = 60V to 20V, V^{-} = - 20V to - 60V, V_{CM} = 20V to - 20V, I_{o} = 0 mA	110	85	dB (min)
A _{VOL} (Note 2)	Open Loop Voltage Gain	$ V^+ = V^- = 28V, R_L = 2k$, $V_O = 40V$	115	90	dB (min)
GBWP	Gain-Bandwidth Product	$ V^{+} = V^{-} = 30V$ $f_{O} = 100 \text{ kHz}, V_{IN} = 50 \text{ mVrms}$	8	2	MHz (min)

電気的特性 (Note 4、5)(つづき)

特記のない限り、V $^+$ = + 28V、V $^-$ = - 28V、 I_{MUTE} = - 0.5mA、 R_L = 4 です。 リミット値は T_A = 25 で適用されます。

			LM	Units		
Symbol	Parameter	Conditions	Typical (Note 9)	Limit (Note 10)	(Limits)	
e _{IN} (Note 3)	Input Noise	IHF A Weighting Filter R _{IN} = 600 (Input Referred)	2.0	10	μV (max)	
SNR	Signal-to-Noise Ratio	P _O = 1W, A-Weighted, Measured at 1 kHz, R _S = 25	92.5		dB	
		P _O = 60W, A-Weighted, Measured at 1 kHz, R _S = 25	110		dB	
IMD	Intermodulation Distortion Test	60 Hz, 7 kHz, 4:1 (SMPTE) 60 Hz, 7 kHz, 1:1 (SMPTE)	0.004 0.009		%	

Note 1: 動作は 84V まで保証されますが、熱条件が適切でない場合、SPIKe プロテクション回路により、歪みが悪くなる場合があります。詳細は、アプリケーション情報を参照してください。

Note 2: DC テスト。テスト回路#1を参照。

Note 3: AC テスト。テスト回路#2を参照。

Note 4: 特記のない限り、すべての電圧は、GND ピン(pin7)を基準にして測定されます。

Note 5: 絶対最大定格とは、IC に破壊が発生する可能性のある制限値をいいます。動作定格とは IC が動作する条件を示し、特定の性能リニット値を保証する ものではありません。電気的特性では、AC、DC のリニット値が示され、特定のテスト条件で保証されます。このことは、デバイスが動作定格内にあると仮 定しています。リニット値が規定されていないパラメータは、保証されませんが、代表値(Typical)は、デバイスのパラメータを示す指標になります。

Note 6: 25 以上のケース温度では、最大接合部温度 $T_J=150$ と、接合部 - ケース間熱抵抗 $_{JC}=1.0$ /W (T パッケージ)、 $_{JC}=2.0$ /W (T パッケージ)、 $_{JC}=2.0$ /W (T パッケージ) でディレーティングしなければなほせん。アプリケーション情報の熱に関する考慮事項を参照下さい。

Note 7: ESD は人体モデルに基づき 100pF のコンデンサから、1.5k を通し各端子に放電させます。

Note 8: 最大動作接合部温度は150 ですが、瞬間安全動作領域温度は250 です。

Note 9: 代表値は、25 で測定され、標準の値です。

Note 10: リミット値は、ナショナルセミコンダクター社の平均出荷品質レベル (AOQL) で保証されます。

Note 11: LM3886T は、TA11B パッケージで供給され、非絶縁パッケージです。LM3886 をサーマル・コンパウンドだけで、ヒートシンクに接続する場合は、デバイスのタブとヒートシンクは V ^{*}電位になります。サーマル・コンパウンドにマイカ・ワッシャを使うと _{CS} (ケース - シンク) は増加しますが、ヒートシンクは V ^{*}電位から絶縁されます。

Note 12: フィードバックの補償回路はクローズド・ループ・レスポンスの帯域を制限します。したがって、スルーレードは広域のロールオフのため減少します。フィードバック補償回路を使用しないと、スルーレードは大きくなります。

Note 13: 低電圧ロックアウト回路をディスエーブルするため、V ⁻電位は少なくともグラウンド電位を基準に - 9V 以上なくてはなりません。

Note 14: 出力ドロップアウト電圧は、電源電圧から、クリップ電圧をひいた値です。 代表的な性能特性のクリップ電圧 vs 電源電圧のグラフを参照下さい。

Note 15: 差動入力電圧の絶対最大定格値は、電源電圧 V^+ = + 40V、 V^- = - 40V での値です。

テスト回路 #1 (DC テスト回路)

テスト回路 #2 (AC テスト回路)

単一電源回路

* 設計条件等により必要となります。

FIGURE 2. Typical Single Supply Audio Amplifier Application Circuit

等価回路 (excluding active protection circuitry)

外付け部品の説明 (Figure 1、2)

	部品	機能説明						
1.	R _{IN}	アンプの入力端子の電圧レベルを設定することにより、ボリューム・コントロールとして機能します。						
2.	R_A	単電源動作のための DC バイアス電圧と非反転入力端子のバイアス電流を供給します。						
3.	C_A	バイアス・フィルタを構成します。						
4.	C	単電源動作のためのアンプの入出力の AC カップリングを行います。						
5.	R_{B}	低電圧ロックアウト回路がオフのとき、低入力インピーダンスのため、パワーダウン時に、負荷へ流れ込むおそれのある電流が、アンプの非反転入力より入り込むのを防ぎます。この現象は、電源電圧が 1.5V より低いとき起きます。						
6.	C _C (Note 16)	出力トランジスタの擬似飽和発振を避けるため、高域で、ゲイン (アンプの帯域幅)を落とします。このコンデンサは、蛍光燈などから生じる EMI スイッチング・ノイズも抑えます。						
7.	Ri	$ m R_{fl}$ とともに AC ゲインを設定する反転入力抵抗。						
8.	Ci	フィードバック・コンデンサ。 DC でユニティ・ゲインを設定します。						
	(Note 16)	$f_c = 1/(2 R_i C_i)$ で、低域のポール (ハイパスのロールオフ)も設定。						
9.	R_{f1}	Ri とともに AC ゲインを設定するフィードバック抵抗。						
10.	R _{f2} (Note 16)	高域で、 R_{fl} 、 R_i および、 C_f とともに低 AC ゲインを設定する、フィードバック抵抗。次の高域のポール (ローパスのロールオフ)を設定します。						
		$f_c = [R_{f1} R_{f2} (s + 1/R_{f2}C_f)]/[(R_{f1} + R_{f2})(s + 1/C_f(R_{f1} + R_{f2}))]$						
11.	C _f (Note 16)	高域で AC ゲインを下げるため、 R_{f1} および R_{f2} とともに働く補償コンデンサ。						
12.	$R_{\mathbf{M}}$	ミュート機能をターンオフするために、8 ピンから 0.5mA 引くためのミュート抵抗。						
		R_M は次式を使って計算 : R_M $(V_{EE} $ - 2.6V)/I8 ただし、I8 $0.5~mA$ 。ミュート・アッテネーション vs ミュート電流のカーブを参照して下さい。						
13.	$C_{\mathbf{M}}$	ミュート時のターンオン・ターンオフの大きな時定数を設定するミュート・コンデンサ。						
14.	R _{SN} (Note 16)	C _{SN} とともに、高周波発振を除去するポールをつくることによって出力段を安定化させます。						
15.	C _{SN} (Note 16)	R_{SN} とともに、高周波発振を除去するポールをつくることによって出力段を安定化させます。 $f_c = 1/(2 \ R_{SN}C_{SN})$						
16.	L (Note 16)	R で大きな容量性負荷をデカップリングし、容量性負荷による直列共振回路の Q を下げるため、高周波で L は高インピーダンスになります。他方、R を短絡してオーディオ信号を負荷へ通すため、低周波では、L は低インピーダンス						
17.	R (Note 16)	になます。						
18.	C _S	電源のフィルタおよびバイパスとして働きます。						
19.	S1	開いているとき、音楽がアンプへ入力されるのをミュートするミュート・スイッチ。						
1).	D1	NUAL CALLOCAL DEVILLE AND ACT OF THE ACT OF THE AND ACT OF THE ACT O						

Note 16: アプリケーションによって使用するオプション部品です。詳細は、アプリケーション情報のセクションを参照して下さい。

オプション外付け部品の相互作用

オプション外付け部品は、帯域幅を狭くし、望ましくない高周波発振を除去する機能を持っていますが、それらが相互に作用すると、望ましくない影響を与えることがあります。そのリアクタンスがお互いに近接している部品では、相互作用が起きることがあります。一例としては、カップリング・コンデンサ C_C と補償コンデンサ C_f が挙げられます。これら2つの部品は特定の周波数では低インピーダンスとして働き、信号を入力から出力へカップリングします。これらの部品を使って設計するときには、通常部品の機能に十分注意して下さい。

Figure 2に示されていて、上で説明されている、オプション外付け部品は単電源と両電源の両方の電源構成で適用できます。

代表的な性能特性

Safe Area

SPiKe Protection Response

Supply Current vs Supply Voltage

Pulse Thermal Resistance

Pulse Thermal Resistance

Supply Current vs Output Voltage

Pulse Power Limit

Pulse Power Limit

Supply Current vs Case Temperature

Input Bias Current vs Case Temperature

Clipping Voltage vs Supply Voltage

Clipping Voltage vs Supply Voltage

THD + N vs Frequency

THD + N vs Frequency

THD + N vs Frequency

THD + N vs Output Power

THD + N vs Output Power

THD + N vs Output Power

THD + N vs Output Power

THD + N Distribution

Output Power vs Load Resistance

Max Heatsink Thermal Resistance (/W) at the Specified Ambient Temperature () Maximum Power Dissipation vs Supply Voltage

T _A = 25°C	40	50	60	70	80	90	100	110	T _C , °C	P_{D} , W	
1.3	1.0								90	50 -	4Ω 8Ω,
1.6	1.2	1.0							96	45	732
1.9	1.6	1.3	1.1						102	40 -	60 ·
2.4	1.9	1.7	1.4	1.1					108	35	
3.0	2.5	2.1	1.8	1.5	1.1				114	30 -	
3.8	3.2	2.8	2.4	2.0	1.6	1.2			120	25	
5.1	4.3	3.8	3.3	2.8	2.3	1.8	1.3		126	20 -	
7.1	6.1	5.5	4.8	4.1	3.5	2.8	2.1	1.5	132	15	
11.3	9.8	8.8	7.8	6.8	5.8	4.8	3.8	2.8	138	10 -	
											- 0 10 20 30 40 50 60 70 80 90 V _{CC} , V ⁺ + V ⁻

Note: The maximum heat sink thermal resistance values, ϕ_{SA} , in the table above were calculated using a $\phi_{CS} = 0.2$ /W due to thermal compound.

Power Dissipation vs Output Power

Power Dissipation vs Output Power

Output Power vs Supply Voltage

IMD 60 Hz, 4:1

IMD 60 Hz, 7 kHz, 4:1

IMD 60 Hz, 7 kHz, 4:1

IMD 60 Hz, 1:1

IMD 60 Hz, 7 kHz 1:1

IMD 60 Hz, 7 kHz, 1:1

Mute Attenuation vs Mute Current

Mute Attenuation vs Mute Current

Large Signal Response

Power Supply Rejection Ratio

Common-Mode Rejection Ratio

Open Loop Frequency Response

アプリケーション情報

一般的機能

ミュート機能: LM3886 のミュート機能は、デバイスの 8 ピンから流れる電流を 0.5mA 以下にすることで、音楽信号がアンプへ送られるのをミュートすることができます。これは、代表的アプリケーションに示されるように、負電源電圧を基準にして選ばれた抵抗 R_M と、スイッチとともに使われます。このスイッチは (開いているとき)8 ピンから V への電流を遮断して、LM3886 をミュート・モードにします。8 ピンからの電流対減衰比に関しては、代表的な性能特性のセクションのミュート減衰とミュート電流の関係のグラフを参照して下さい。抵抗 R_M は次式で計算されます。

 $R_{M} (|V_{EE}| - 2.6V)/I8$

ただし、I8 0.5 mA

低電圧プロテクション:システムの電源投入時、低電圧プロテクション回路は、LM3886をターンオンする前に、電源とそれに対応するコンデンサがそれらの最終値の近くまで立ち上がる余裕を与え、DC 出力スパイクが発生しないようにします。電源遮断時には、電源は先前に、LM3886の出力をグラウンドまで落として、トランジェントが起きないようにします。

過電圧保護: LM3886 は、出力電流を約 11A(ピーク) に制限し、内部クランプ・ダイオードを使用しないで、電圧クランプを行う 過電圧保護回路を内蔵しています。しかし、クランプ効果は全く

同じで、出力トランジスタは、交互に大きな電流スパイクをシンクするように設計されています。

SPiKe 保護: LM3886 の、パワー・トランジスタ・アレイは、瞬間ピーク温度のストレスから保護されています。 代表的な性能特性 のセクションの Safe Area のグラフに、SPiKe 保護回路がイネーブルされないデバイス動作領域が示されています。 Safe Area のグラフの右の波形が、ダイナミック保護がイネーブルされたとき、どのように波形を歪むかを示しています。

熱保護: LM3886 は、デバイスへの長期的熱ストレスを防ぐための優れた熱保護機構を備えています。ダイの温度が 165 に達すると、LM3886 はシャットダウンします。ダイの温度が約 155 に下がると、再び動作を開始しますが、温度が再度上昇し始めると、165 で再びシャットダウンします。したがって、異常状態が一時的なものであれば、デバイスを相対的に高い温度まで熱することができますが、継続的な場合は、デバイスがシュミット・トリガのようにサーマル・シャットダウンの温度リミットの 165 と 155 のあいだを巡回します。これにより、熱サイクルによる IC へのストレスを大幅に減らし、他方、継続的異常状態での信頼性を改善します。

ダイの温度は直接ヒートシンクに依存するので、**熱に関する考慮事項**のセクションで論じられているように、正常な動作中にサーマル・シャットダウンが起きないように選びます。コストとスペースの制約のもとで可能な最良のヒートシンクを使えば、半導体パワー・デバイスの長期信頼性が向上します。

熱に関する考慮事項

ヒートシンク

ハイパワー・オーディオ・アンプのヒートシンクは、通常の環境状態で、熱保護回路が動作しないようなレベルにダイの温度を保つために選択します。ヒートシンクは、規定の電源電圧と負荷で、ICの最大損失電力を消費するように選ばなければなりません。

高電力のパルスが 100ms お先長い場合、ヒートシンクを使わなければ、ケース温度は急激に上昇します。したがって、パッケージの底部の中心で測定したケース温度は、ヒートシンクと IC のヒートシンクへの接続に依存します。オーディオ・アンプのヒートシンクのデザインに関しては、**正しいヒートシンクの選択**のセクションを参照して下さい。

半導体メーカーは、特定のアンプの設計でどのヒートシンクが使われるか管理はできませんが、ヒートシンクの決定で必要なパラメータと方法をシステム設計者へ伝えることができます。これを念頭に置いた上で、システム設計者はデバイスの周囲温度を知り電源電圧、規定負荷、望みの出力パワーのレベルを選ばなければなりません。これらのパラメータは、ナショナルセミコンダクター社によって示される、最大接合部温度と IC の熱抵抗に加えて、知る必要のあるものです。

システム設計者の役に立つように、**代表的な性能特性**のセクションに、アンプの設計に必要な最大熱抵抗の正確な数値が得られる、最大電力消費と電源電圧の関係のグラフが示してあります。このデータは JC = 1 /W および CS = 0.2 /W をもとに計算してあります。 CS の値が異なる、オーディオ・アンプの設計のためにヒートシンクの選択することに関するセクションも示されています。 IC 内で最大電力を消費するためには、ヒートシンクのような、放熱する、低い熱抵抗のデバイスを接続する必要があることに注意して下さい。したがって、システム設計者が、ヒートシンクの計算にゆどりを持たせることが必要です。ルールとして、ヒートシンクの熱抵抗が低ければ低いほど、消費できる電力量は大きくなります。これはもちろん、システムのコストと寸法の条件に左右されます。ヒートシンクは商品化されており、定格に関してはそれらのメーカーに問い合わせて下さい。

パッケージとヒートシンクのあいだのサーマル・ドロップを最小にするため、IC との適切な接続が必要です。過度の温度ロスなしに、熱をパッケージの底部の中心からフィンへ伝えるために、ヒートシンクはパッケージの下に金属部を十分持っていなければなりません。

パッケージをヒートシンクへ実装するとき、ウェイクフィールドのタイプ 120 やサーマロイのサーマコートのようなサーマル・グリースを使うべきです。このグリースがなければ、熱抵抗は 0.5 /W より良くなることはなく、おそらくもっとずっと悪くなります。このグリースがあれば、パッケージとヒートシンクのあいだの全平坦度が 0.005 インチ以下と仮定すれば、熱抵抗は、0.2 /W 以下になるでしょう。接続用のねじに適当なトルクを与えることが重要であり、トルクはヒートシンクのメーカーの仕様書から決定することができます。

V をヒートシンクから絶縁する必要があれば、絶縁ワッシャが必要です。酸化ベリリウム、電解アルミ、あるいはマイカのような硬いワッシャの場合は、両面にサーマル・コンパウンドが必要です。2 ミルのマイカ・ワッシャがもっとも多く使われ、コンパウンドとの境界抵抗は約0.4 /Wになります。

シリコンゴムのワッシャも入手できます。 サーマル・コンパウンドなしで、0.5 /W 程度の熱抵抗が得られます。経験上、これらのゴム・ワッシャは劣化するので、IC が取り外せるのであれば、取り替えなければなりません。

最大電力損失の決定

IC パッケージでの電力損失は非常に重要なパラメータで、最適な出力電力を得るには、完全な理解が必要です。最大電力損失 (P_D) の計算が正しくないと、不適切なヒートシンクを使い、サーマル・シャットダウン回路が動作し、出力電力を制限してしまいます。

電源電圧、定格負荷、および出力電力が与えられれば、そのアンプの設計の最大と平均の IC での消費電力を正確に計算するのに、次式を使うことができます。これらの式は、代表的な性能特性のセクションの電力損失と出力電力の関係のグラフに相当します。

式 (1) は IC の最大電力損失を示し、式 (2) と (3) は異なった形式で表現した平均 IC 電力消費を例示します。

$$P_{DMAX} = V_{CC}^{2/2} {}^{2}R_{L}$$
 (1)

ただし、 V_{CC} は全電源電圧。

$$P_{DAVE} = (V_{Opk}/R_L)[V_{CC}/ - V_{Opk}/2]$$
 (2)

ただし、 V_{CC} は全電源電圧で V_{Opk} = V_{CC}

$$P_{DAVE} = V_{CC} V_{Opk} / R_L - V_{Opk}^2 / 2R_L$$
 (3)

ただし、 V_{CC} は全電源電圧。

正しいヒートシンクの選択

与えられた電源電圧、定格負荷、および定格出力電力に対する、最大 IC 電力損失がわかったら、ヒートシンクの最大熱抵抗 (/W)を計算することができます。この計算には式 (4)を使い、熱の流れのパラメータは電流の性質に類似しているということを基礎にしています。

LM3886T の熱抵抗 _{JC}(接合部からケース)の代表値は 1 /W であり、**ヒートシンク**のセクションで説明されているように、サーマロイのサーマコート熱コンパウンドを使うと、約 0.2 /W の熱抵抗 _{CS} (ケースからヒートシンク) が得られることも知られています。

下図を参照すると、ダイ(接合部)から外側の空気(周囲)への熱抵抗は3つの熱抵抗の和であることが示されています。これらのうちの2つ、 JCと CS は既知の値です。熱の流れ(電力消費)は電流に類似しており、温度降下は電圧降下に類似しているので、LM3886からの電力消費は次のようになります。

$$P_{DMAX} = (T_{Jmax} - T_{Amb})/_{JA}$$

ただし、_{JA} = _{JC} + _{CS} + _{SA}

しかし、アプリケーションの P_{DMAX} 、 $_{JC}$ 、および $_{SC}$ は既知の値なので、 $_{SA}$ を求める式にすると、次のようになります。

 $SA = [(T_{Jmax} - T_{Amb}) - P_{DMAX} (J_C + C_S)]/P_{DMAX}$ (4) 以前述べたように、SA の値は、システム設計者のアンプのアプリケーションと、それに対応するパラメータに依存することに注意して下さい。オーディオ・アンプが動作する周囲温度が通常の 25 より注高ければ、他の条件が同等だとして、ヒートシンクの熱抵抗は小さくする必要があります。

最大ヒートシンク熱抵抗を決めるとき、式 (1)と式 (4) だけが必要です。もちろん、これは、システムのデザイナーが、定格負荷を特定のパワー出力レベルでドライブするのに必要な電源電圧と、半導体メーカーから与えられたパラメータを知っていることを前提にしています。これらのパラメータは、接合部からケースへの熱抵抗 $_{\rm JC}$ 、 $T_{\rm Jmax}$ = 150 、推奨されているサーマロイのサーマコート熱コンパウンド抵抗 $_{\rm CS}$ です。

SN 比

SN 比の測定は、測定された数値の解釈に間違いが多く見られます。ひとつのアンプがもうひとつのアンプよりずっと静かに聴こえても、不適切なテスト方法のため、それらは測定上同等に見えることがあります。IC での設計とディスクリート・アンプの設計を比較するときに、よく起こります。ディスクリート・トランジスタ・アンプは、高周波でゲインが落ちることが多く、したがって、以下に示されているように、ノイズに対して小さな帯域幅をもちます。

IC は、大きな開ループゲインを持っており高調波歪みを低くし、周波数応答を改善するために、大きなフィードバック・ループゲインを可能にしています。この広い帯域幅を測定時に考慮しないと、誤った SN 比の測定へ導くことがあります。上の代表的例では、帯域幅の違いは対数メモリでは小さく見えますが、帯域幅での1桁(200kHz対 2MHz)は、SN 比で10dBの理論上の差になります(ホワイト・ノイズはシステムの帯域幅の2乗根に比例します)。

オーディオ・アンプを比較するには、ウェイティング・フィルタ (Note 17) を使って、オーディオ帯域幅でのノイズの大きさを測定する必要があります。 ウェイティング・フィルタは、周波数スペクトルに対する人間の平均的聴覚を補償するため、周波数応答を変えます。 ウェイティング・フィルタは同時に前のパラグラフで論じたように、帯域幅の制限も行います。

ノイズのフィルタリングにくわえて、メータのタイプが異なると、ノイズの測定値も異なります。メータの応答には次のものがあります:

- 1. RMS 値
- 2. 平均応答
- 3. ピーク値
- 4. 擬似ピーク値

論理的ノイズ解析は、RMS を基礎にした計算から導かれますが、 実用的測定は ARM (平均応答メーター)テスト装置によって得られます。

Note 17: CCIR/ARM: 実用的ノイズ測定方法 ; Ray Dolby、David Robinson および Kenneth Gundry、AES Preprint No.1353 (F-3)。

代表的 SN 比の数値は、ノイズ測定で通常使われている A ウェイト・フィルタに対して示されます。 すべての重みづけフィルタの形は似ており、下に示されているように、グラフのピークは通常 3kHz ~ 7kHz で領域に存在します。

電源のバイパス

LM3886 はすぐれた電源除去特性をもち、安定化電源を必要としません。しかし、発振を防ぐには、すべてのオペアンプとパワーオペアンプは、パッケージの近くに、短いリードの低インピーダンスのコンデンサで、電源のラインをバイパスしなければなりません。電源のバイパスが不適切だと、"モーターボーティング"として知られる低周波の発振や、高周波での不安定性として現れます。これらの不安定性は、低周波の変動を吸収するのに使われる大きなタンタル又は電解コンデンサ(10µF以上)および電源ラインを通した高周波のフィードバックを防ぐための小さなセラミック・コンデンサ(0.1µF)を使った複数のバイパスによって除かれます。

適切なバイパスがなされないと、負荷電流の半波成分である電源 ラインの電流は、内部回路にフィードバックされることがあります。 この信号は高周波で低ひずみを生じるので、470µF以上の電解 コンデンサを使い、パッケージの端子のところで電源をバイパスす る必要があります。

リード線のインダクタンス

パワーオペアンプは、容量性負荷が重いとき、特に出力リード線のインダクタンスに対して敏感になります。入力へのフィードバックは直接出力端子からとり、負荷と共通となるインダクタンスを最小にしなければなりません。

リード線のインダクタンスは電源に電圧サージを引き起こすこともあります。電源へのリード線が長いと、出力が短絡されたとき、リード線にエネルギーが蓄えられます。このエネルギーは、短絡状態が取り除かれたとき、電源バイパス・コンデンサに戻されることがあります。このトランジェントは、IC の近くのバイパス・コンデンサのサイズを大きくすることにより減らすことが出来ます。少なくとも20μFのバイパスがあれば、リード長が2フィートを超えなければ(>1μHのリード・インダクタンス)、この電圧サージは問題になりません。電源とグラウンドのリード線をより合わせると、このサージを最小にすることができます。

レイアウト、グラウンド・ループおよび安定性

LM3886 は、閉ループゲインが 10 以上で安定するように設計されています。 しかし、ハイパワー・アンプでよく問題になるように、LM3886 は、ある条件では発振することがあります。 これは通常、PC ボードのレイアウトや入出力カップリングが関係しています。

レイアウトを設計するとき、負荷グラウンド、出力補償用グラウンド、および低レベル(フィードバックと入力)グラウンドを別々のパスでボードの共通グラウンド・ポイントへ戻すことが重要です。そうしないと、グラウンドを流れる大電流がグラウンド・ラインに電圧を発生させ、それが入力で実効的に信号として振る舞うことがあり、高周波発振あるいは過度のひずみを引き起こします。出力補償用部品と 0.1 μF の電源デカップリング・コンデンサをできるだけLM3886 の近くに置き、PC ボードのパターンの抵抗とインダクタンスを減らします。同じ理由で、グラウンドへの帰還パスはできるだけ短くします。

一般的に、高速の大電流回路では、不適切なグラウンドからあらゆる種類の問題が発生することがありますが、これらの問題も、すべてのグラウンドを別々に共通のポイントへ戻すことによって避けることができます。グラウンド信号を分離して共通のグラウンド・ポイントへ戻さないと、グラウンド・ループを形成することがあります。

"グラウンド・ループ"という用語は、2 つのグラウンド・ポイントのあいだに電位差があるグラウンド・システムの状態を指すのに使われます。理想的にはグラウンドはグラウンドですが、そのためには、抵抗成分がゼロのグラウンド用の導体が必要です。現実の世界のグラウンドのリード線は抵抗を有しているので、それらを流れる電流は電圧降下を引き起こします。2 つのグラウンド帰還ラインが同じパスの異なったポイントに結線されると、それらのあいだに電

圧降下が生じます。下の最初の図は、正の入力グラウンドと負荷のグラウンドが同じリード線を介して電源のグラウンド・ポイントへ戻されている、共通グラウンドの例を示しています。リード線抵抗 R₂を付加すると、その結果、下に示すように 2 点間に電位差が生します。

負荷電流 I_L は入力バイアス電流 I_L お光はるかに大きくなるので、 V_I は出力電圧に直接追従します。 つまり位相が合います。 したがって、非反転入力に現れる電圧は実効的に正のフィードバックとなり、 回路は発振することがあります。 そのようなデバイスがひとつだけならば、 R_I と R_2 の値は十分小さく、無視できますが、通常は、いくつかのデバイスでシステムが構成されます。他のデバイスのグラウンドパスであれ、その位相が合っている場合は、同じようにフィードバックされて、不安定性の原因となります。 位相のずれたグラウンド・ループも問題が多く、ゲインや位相のエラーの原因になります。 ほとんどのグラウンド・ループの問題は、実現するのは難しい場合もありますが、シングルポイントのグラウンド・システムを使うことによって解決されます。下の3番目の図はシングルポイントのグラウンド・システムの例です。

ほとんどのグラウンド・ループの問題は、実現するのは難しい場合 もありますが、シングルポイントのグラウンド・システムを使うことに よって解決されます。下の3番目の図はシングルポイントのグラウン ド・システムの例です。

シングルポイント・グラウンドは、可能なかぎり、すべての部品とすべての回路に適用すべきです。PC ボードの設計で、シングルポイント・グラウンドを守られないことがよくあります。それは、回路が大きなグラウンド領域で取り囲まれている場合、デバイスをすぐ近くのグラウンド部分に接続するのは簡単な方法だからです。最後のルールとして、太いリード線か幅の広いパターンを使って、すべてのグラウンドパスの抵抗とインダクタンスを小さくします。

時々、(アンテナとして機能する)出力リード線の電流が空気を通してアンプの入力とカップリングして、高周波発振を引き起こすこ

とがあります。これは、通常、入力源のインピーダンスが高いとき、 あるいは入力のリード線が長いとき起きます。この問題は、(50pF から 500pF の) 小さなコンデンサ C_C を、LM3886 の入力端子に 付加することにより、取り除くことができます。外付け部品の説明 のセクションの部品の相互作用を参照して下さい。

ほとんどのパワー・アンプにとって、大きな容量性の負荷を効果的 にドライブするのは難しく、通常、発振したり、矩形波に対する応 答でリンギングを生じたりします。LM3886の出力を、直列抵抗な しに直接コンデンサに接続すると、そのコンデンサが約 0.2 µF より 大きいとき、矩形波に対する応答でリンギングを生じます。 スピー カ・ケーブルが長く、大きな容量性負荷が予想される場合、高周 波時の低インピーダンスからアンプを保護するのによく使う方法 は、0.7µH のインダクタと並列につないだ 10 の抵抗を通して、 負荷をカップリングさせることです。**代表的なアプリケーション**に 示されているような、インダクタ - 抵抗の組み合わせは、高周波で 高い出力インピーダンスが得られ、それにより10 抵抗で容量性 負荷からデカップリングし、直列共振回路の Q を下げることにより、 アンプへのフィードバックを負荷から分離します。この LR の組み 合わせは、低周波では低い出力インピーダンスが得られ、それに より10 抵抗を短絡し、アンプが直列 RC 負荷(長いスピーカ・ ケーブルによる大きな容量性負荷)を直接ドライブすることを可能 にします。

一般的なオーディオ・パワーアンプの設計

オーディオアンプの設計を始めるとき、システム設計者は、通常、 次のパラメータのいくつかを決めています。

入力レベル 定格出力電力

最大電源電圧 帯域幅

入力インピーダンス 負荷インピーダンス

出力電力と負荷インピーダンスにより電源条件は決まりますが、ア プリケーションによっては、最大電源電圧が限定されていることが あります。もし電源に制限があれば、デバイスの電流制限値を越 えない、アンプが望みの出力電力を供給できるような、負荷イン ピーダンスを選びます。いずれにせよ、出力信号の振幅と電流は 次の式で得られます (ただし、 P_O は平均出力パワー)。

$$V_{\text{opeak}} = \sqrt{2 R_{\text{L}} P_{\text{O}}}$$
 (5)

$$I_{\text{opeak}} = \sqrt{(2 P_0)/R_L} \tag{6}$$

最大電源電圧を決めるのに、次のパラメータを考慮しなければな リません。 ドロップアウト電圧 (LM3886 では 4V) をピーク出力電 圧 V_{opeak} へ加え、電源電圧を決めます。 $(I_{opeak}$ での電源電圧) 無負荷時の電圧は電源のレギュレーションにより決まりますが、こ れは通常 15%高くなます。電源電圧は高い AC ライン条件でも 10%上昇します。したがって、最大電源電圧は次式から求められ

最大電源電圧 ± (V_{opeak} + Vod)(1 + レギュレーション)(1.1)(7) 入力感度と出力電力から、下に示されているように、必要な最小 ゲインを決めます。

$$A_{V} \geq (\sqrt{P_{0}R_{L}})/(V_{IN}) = V_{orms}/V_{inrms}$$
 (8)

通常、利得は20から200のあいだに設定します;40Wで8 の オーディオ・アンプでは、それぞれ 894mV と89mV の感度になり ます。 高ゲインのアンプは大きな出力電力が得られ、すぐれたダ イナミック特性を持ちますが、高ゲインに起因する短所もあります。 入力を基準にしたノイズ・フロアが増加し、したがって、SN 比が 悪化します。ゲインの増加にともない、パワー帯域幅の減少もあ り、フィードバックが減少し、そのためアンプが非線形成分に対し て十分速く応答できなくなります。この非線形成分に対する応答 性の低下により、THD + N が悪加します。

入力インピーダンスは R_{IN} によって設定します。 この値が大きいと、 ボードのレイアウトの問題と出力の DC オフセットを引き起こします。 フィードバック抵抗 R_{f1} の値は相対的に大きな値 (10k ~ 100k) を選びフィードバック抵抗 Ri は標準的オペアンプの構成利得の等 式を使って計算します。ほとんどのオーディオ・アンプは非反転ア ンプ構成で設計します。

40W/4 のオーディオアンプの設計

設定:

出力電力 40W 負荷インピーダンス 4 入力レベル 1V (max) 入力インピーダンス 100k 帯域幅 20Hz ~ 20kHz ± 0.25dB

式 (5)と式 (6)から:

40W/4 $V_{\text{opeak}} = 17.9V$ $I_{\text{opeak}} = 4.5A$

したがって、必要な電源は: ± 21.0V @ 4.5A

15%のレギュレーションと高い AC ライン電圧では、式(7)を使っ て、電源電圧は±26.6Vとなります。ここで、出力電力と電源電 圧の関係をチェックし、低い THD + Nを維持しながら、デバイス から必要な出力電力が得られることを確認します。又、電力損失 と電源電圧の関係をチェックし、デバイスが内部の電力損失を発 散できることも確認します。同時に、熱抵抗の低い、比較的大き なヒートシンクで設計するのも重要です。詳細については、代表 的な性能特性 のグラフと熱に関する考慮事項のセクションを参 照して下さい。

式 (8) から得られる最小ゲインは: A_V 12.6

れる0.25dB よ 注良い値です。 したがって、

ゲイン13を選択すると(非反転アンプ)、感度は973mVとなります。

R_{IN} を 100k にすると、必要な入力インピーダンスが得られます が、Figure 1 に示されている 10k のポテンショメータと直列に追 加の入力インピーダンスを置かないかぎり、" ボリューム・コントロー ル " ができなくなります。 100k の抵抗を追加すると、必要な最 小入力インピーダンスが得られます。

出力の低 DC オフセットのために、R_{f1} = 100k とします。Ri(非 反転アンプ)について解くと次のようになります。

 $Ri = R_{f1}/(A_V - 1) = 100k/(13 - 1) = 8.3 k$;8.2 k を使います。 帯域幅についての条件は、ポール、つま) - 3dB 周波数で表し ます。ポールから 5 倍離れると、0.17dB 下がり、これは必要とさ

 $f_{I} = 20Hz/5 = 4Hz$

 $f_{H} = 20kHz \times 5 = 100kHz$

ここで、デバイスの利得帯域幅積が、100kHz の - 3dB ポイント まで、設計されたゲインを得られることを確認します。 LM3886 の 最小 GBWP は、このため重要になります。

GBWP $A_V \times f3dB = 13 \times 100kHz = 1.3MHz$

GBWP = 2.0MHz (min) (LM3886 使用時)

低周波ロールオフ・コンデンサ Ci について解くと、次の値が得られます。

Ci $1/(2 \text{ Rif}_{I}) = 4.85 \,\mu\text{F}; 4.7 \,\mu\text{F}$ を使います。

用語の定義

入力オフセット電圧:ゼロ出力電圧と電流を得るのに、2 つの等 しい抵抗を通して、入力端子間に与えなければならない電圧の絶 対値

入力バイアス電流:出力電圧と電流がゼロのとき、2 つの入力電流の平均の絶対値。

入力オフセット電流: 出力電圧と電流がゼロのとき、2 つの入力電流の差の絶対値。

入力同相電圧範囲(あるいは入力電圧範囲): アンブが動作可能な入力端子の電圧の範囲。特記のない限リスペックは、同相電圧範囲の全体で保証されてはいないことに注意して下さい。

同相信号除去: 入力同相電圧範囲の、ピーク・ツー・ピーク電 圧における入力オフセット電圧の変化に対する比。

電源電圧変動除去:電源電圧の変化に対する入力オフセット電圧の変化の比。

待機時電源電流:無負荷で、出力電圧と電流がゼロのとき、アンプの動作に必要な電源電流。

スルーレート: 大振幅のステップ信号が入力に印加されたときの、内部的に制限される出力電圧の変化率。

クラス B のアンプ: それぞれ入力サイクルの 180 ずつを 2 つの 出力デバイスで交互に出力します。オーディオ・パワー・アンプの最も一般的タイプです。LM3886 は擬似 AB タイプのアンプです。

クロスオーバ歪み: クラス B のアンプの出力段で生じる歪み。不適当なバイアス電流の時、入力サイクルがゼロ・クロッシング・ポイントを通過するとき、出力が入力に応答しないデッド・ゾーンが生じる場合があります。さらに、IC の場合、出力 PNP デバイスの不適当な周波数応答がターンオン遅延を引き起こし、高いオーディオ周波数で、ゼロ・クロッシングポイントを通過する負方向の信号でクロスオーバ歪みを生じることがあります。

THD + N: Total Harmonic Distortion plus Noise (全高調波歪み+ノイズ)は、基本周波数を帯域除去(ノッチ)フィルタで除去し、高調波とノイズ(残りの全エネルギー)を測定する、測定技法を指します。

信号対雑音比 (SN 比): 無信号時に出力される、システムの出力ノイズ・レベルに対する、システムの出力信号レベルの比。出力の基準信号は規定されるか、あるいは、規定された歪みのレベルで測定されます。

連続平均出力電力: 定格負荷へ、定格帯域幅の全域で、定格最大全高調波歪みで供給できる、ワット(あるいは dBW) で表示した、最小サイン波連続平均出力電力。

ミュージック・パワー: 測定中にアンプの電源が低下しない程度に短い信号を使うか、あるいは、高品質の電源を使って測定した、アンプのピーク出力パワー。この測定法 (IHF 規格) は、通常の音楽プログラムでは、アンプの電源の低下は少ないと仮定しています。

ピーク・パワー: 一般的に参照される、負荷へ供給できるアンプの出力電力を指します。デバイスの最大電圧スイングによって規定されます。

ヘッドルーム: 実際の信号の動作レベル(通常は、特定の電源電圧で、定格負荷で、定格 THD + N のとき)と、クリッピング歪みが生じる直前のレベルのあいだのマージンで、デシベルで表示されます。

大信号電圧利得: 出力を零からいずれかのスイングのリミットまでドライブするのに必要な差動入力電圧に対する、出力電圧スイングの比。出力スイングのリミットは、電源電圧から、規定された擬似飽和電圧を差し引いたものです。熱の影響を最小にするため、短いパルスが測定信号として使われます。

出力電流リミット: 固定出力電圧で、入力をオーバードライブしたときの出力電流。SPiKe 保護回路が起動すると、時間とともに、リミット電流は低下します。

出力飽和スレッショルド (クリッピング・ポイント): 規定された入力ドライブに対する出力スイングのリミット値。出力がスイングしていく側の電源電圧を基準にして測定します。

出力抵抗: 出力ゼロ付近での、出力電流の変化に対する出力電圧の変化の比。

電力損失定格: 保護回路を起動することないに、規定された時間のあいだ消費できる電力損失。100ms を超える時間の損失はIC そのものよりた、IC パッケージに接続するヒートシンクによって決まます。

熱抵抗:パッケージの底部の中央部で測定したケース温度を基準にした、単位内部電力損失当たりのピーク接合部温度の上昇(単位は/W)。

DC 熱抵抗は、ひとつの出力トランジスタが連続して動作しているときに適用されます。 AC 熱抵抗は、出力トランジスタが十分高い周波数で交互に動作しており、したがって、いずれのトランジスタのピーク能力も越していないときに適用されます。

パワー帯域幅: オーディオ・アンプのパワー帯域幅は、アンプの電圧利得が、負荷と出力パワーに対して規定された、フラットバンド電圧利得の 0.707 以下に下がらない周波数範囲です。

パワー帯域幅も、アンプが定格出力より3dB低い出力電力で、規定された歪みのレベルが得られる周波数によって測定されます。たとえば、THD + N 0.25%で、定格60Wのアンプの場合、そのアンプが30Wを供給していて、0.25%のひずみが得られる上限と下限の周波数の差によって、そのパワー帯域幅が測定されます。

利得帯域幅積: 利得帯域幅積は、オペアンプの高周波での特性を予測する一つの方法です。利得帯域幅積は、開ループ利得の特性曲線が、この周波数で、ユニティ・ゲインを通過する、つまり交差するので、ユニティ・ゲイン周波数あるいはユニティ・ゲイン・クロス周波数と呼ばれることがあります。 つまり、 次のような 関係があります。

$$A_{CL1} \times f_1 = A_{CL2} \times f_2$$

ユニティ・ゲインで $(A_{CL1}$ = 1 つま \mathfrak{I} (0 dB)) fu = fi = GBWP と 仮定すると、次のようになります。

GBWP =
$$A_{CL2} \times f2$$

これは、アンプの fu (GBWP) がわかれば、任意の周波数の開ループ利得を見出すことができることを意味します。これは、デバイスの GBWP が知られていると仮定すると、閉ループ利得の 3dB ポイントを決めるための、すぐれた等式でもあります。次のページのグラフを参照して下さい。

バイアンプリフィケーション: オーディオ周波数のスペクトルを2つの部分に分けて、別々のウーファとツイータをドライブするのに、別々のパワー・アンプを使う技法。アンプのクロスオーバ周波数は通常500Hzから1600Hzの間です。"バイアンピング"には、特定の音圧レベルを生じさせるのに、より小さなパワーのアンプですみ、周波数スペクトルのある部分のオーバドライブが他の部分に影響することにより生じるひずみの効果を減少させる利点があります。

C.C.I.R./A.R.M.:

Literally: International Radio Consultative Committee

Average Responding Meter

これは、ドルビー B タイプのノイズ・リダクション・システムのための重みづけをしたノイズ測定法を指します。 ノイズの聴覚への主観的影響の度合いと強い相関をもつ測定結果が得られるフィルタ特性が使われます。このフィルタを使用した測定は、得られる結果がノイズ源のスペクトリルに依存するので、重みづけなしのノイズ測定と一定の変換率で関係づけることは必ずしもできません。

S.P.L.: Sound Pressure Level 通常、0.0002 µBars (およそ聴覚のしきいレベル)の圧力レベルに校正されたマクロフォンとメータの組み合わせで測定されます。

S.P.L. = 20 Log 10P/0.0002 dB

ただし、Pはマイクロバール表示のR.M.S. 音圧です。

(1 Bar = 1 気圧= 14.5 lb/in² = 194 dB S.P.L.)

外形寸法図 特記のない限りinches (millimeters)

Order Number LM3886T NS Package Number TA11B

Order Number LM3886TF NS Package Number TF11B

生命維持装置への使用について

弊社の製品はナショナル セミコンダクター社の書面による許可なくしては、生命維持用の装置またはシステム内の重要な部品として使用することはできません。

- 1. 生命維持用の装置またはシステムとは (a) 体内に外科的に使用されることを意図されたもの、または (b) 生命を維持あるいは支持するものをいい、ラベルにより表示される使用法に従って適切に使用された場合に、これの不具合が使用者に身体的障害を与えると予想されるものをいいます。
- 2. 重要な部品とは、生命維持にかかわる装置またはシステム内のすべての部品をいい、これの不具合が生命維持用の装置またはシステムの不具合の原因となりそれらの安全性や機能に影響を及ぼすことが予想されるものをいいます。

ナショナル セミコンダクター ジャパン株式会社

本社 / 〒 135-0042 東京都江東区木場 2-17-16

TEL.(03)5639-7300

技術資料(日本語/英語)はホームページより入手可能です。

その他のお問い合わせはフリーダイヤルをご利用下さい。

http://www.national.com/JPN/

0120-666-116