(19) 世界知的所有権機関 国際事務局

L 1918 BENTALD IN 1880 BENTA DERN BENTA 1880 BENK IN DIE BENTA BENTA BENTA HERE HERE BENTA BENTA BENTA BENTA H

(43) 国際公開日 2005年9月29日(29.09.2005)

PCT

(10) 国際公開番号 WO 2005/091214 A1

(51) 国際特許分類7:

G06N 5/00

(21) 国際出願番号:

РСТ/ЈР2005/003916

(22) 国際出願日:

2005年3月7日(07.03.2005)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2004-079026 2004年3月18日(18.03.2004)

(71) 出願人(米国を除く全ての指定国について): 株式会 社デンソーアイティーラボラトリ (DENSO IT LAB-ORATORY, INC.) [JP/JP]; 〒1500002 東京都渋谷区渋 谷3-12-22 渋谷プレステージ6 F Tokyo (JP). 独 立行政法人産業技術総合研究所 (NATIONAL INSTI-TUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY) [JP/JP]; 〒1008921 東京都千代田区 霞が関1丁目3番1号 Tokyo (JP).

- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 水野 伸洋 (MIZUNO, Nobuhiro) [JP/JP]; 〒1500002 東京都渋谷 区渋谷3-12-22 渋谷プレステージ6 F 株式会 社デンソーアイティーラボラトリ内 Tokyo (JP). 岩崎 弘利 (IWASAKI, Hirotoshi) [JP/JP]; 〒1500002 東京都 渋谷区渋谷3-12-22 渋谷プレステージ6F株 式会社デンソーアイティーラボラトリ内 Tokyo (JP). 本村 陽一 (MOTOMURA, Yoichi) [JP/JP]; 〒1350064 東京都江東区青海 2-4 1-6 独立行政法人産業技 術総合研究所内 Tokyo (JP).
- (74) 代理人: 大野 聖二, 外(OHNO, Seiji et al.); 〒1006036 東京都千代田区霞が関3丁目2番5号霞が関ビル 36階 大野総合法律事務所 Tokyo (JP).

[続葉有]

(54) Title: VEHICLE INFORMATION PROCESSING SYSTEM, VEHICLE INFORMATION PROCESSING METHOD, AND **PROGRAM**

(54) 発明の名称: 車両用情報処理システム、車両用情報処理方法およびプログラム

. CONTENT PROVIDING DEVICE ... CONTENT INFORMATION MODEL A

... CONTROL UNIT
... MODEL DECISION UNIT
... BAYESIAN LEARNING UNIT
... BAYESIAN DEDUCTION UN
... RESPONSE TRANSMISSIOI
... PRESENTATION UNIT

(57) Abstract: An information processing system includes a content providing device (20) providing a content appropriate for a user. The content providing device (20) includes: a model storage unit (40) containing a plurality of different models according to the user attribute; a model decision unit (34) for selecting a model in accordance with the user attribute from a plurality of models stored in the model storage unit (40); a Bayesian deduction unit (30) for reading out the model decided by the model decision unit (34) from the model storage unit (40) and using the read out model to obtain the content appropriate for the user through probability deduction; and a presentation unit (22) for presenting the content obtained by the Bayesian deduction unit (30) to the user. Moreover, the content providing device (20) includes a Bayesian learning unit (32) for learning models by using a user response to the content received from the operation unit (24). Thus, it is possible to accurately obtain and present an appropriate presentation object.

- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護 が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ,

BY, KG, KZ, MD, RU, TJ, TM), $\exists -\Box \gamma \land (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).$

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(57) 要約: 情報処理システムは、ユーザに適したコンテンツを提供するコンテンツ提供装置(20)を有する。コンテンツ提供装置(20)は、ユーザの属性に応じて異なる複数のモデルを記憶したモデル記憶部(40)と、モデル記憶部(40)に記憶された複数のモデルからユーザの属性に応じたモデルを選択するモデル決定処理部(34)と、モデル決定処理部(34)によって決定されたモデルをモデル記憶部(40)から読み出し、読み出したモデルを用いてユーザに適したコンテンツを確率推論により求めるベイジアン推論部(30)と、ベイジアン推論部(30)により求めたコンテンツをユーザに提示する提示部22とを備える。また、コンテンツ提供装置(20)は、操作部(24)から受け付けたコンテンツに対するユーザのレスポンスを用いてモデルの学習を行うベイジアン学習部(32)を有する。これにより、適切な提示対象を精度良く求めて提示できる。