Zadanie 1

Treść

Przeprowadź dowód poprawności algorytmu Kruskala, który przyrównuje ciąg krawędzi drzewa wybranych przez algorytm Kruskala z ciągiem krawędzi minimalnego drzewa spinającego (otrzymanego przez jakiś algorytm optymalny). W dowodzie nie powołuj się na własności typu *cut property* czy *cycle property*.

Algorytm Kruskala

Niech G=(V,E) będzie grafem spójnym, ważonym, gdzie wagi krawędzi są nieujemne, opisane funkcją $c:E\to\mathbb{R}^+_0$. Algorytm Kruskala znajduje minimalne drzewo rozpinając (MST) dla G w następujący sposób:

- 1. Zainicjalizuj zbiór krawędzi MST jako pusty: $T = \emptyset$.
- 2. Utwórz listę wszystkich krawędzi E' z grafu G.
- 3. Posortuj krawędzie na liście E' w kolejności niemalejącej według ich wag c(e). Niech posortowana lista krawędzi to $(e_1,e_2,...,e_m)$, gdzie m=|E|.
- 4. Dla każdej krawędzi e_i z posortowanej listy (od i = 1 do m):
 - Jeśli dodanie krawędzi e_i do zbioru T nie tworzy cyklu w grafie $(V, T \cup \{e_i\})$, dodaj krawędź e_i do T.
- 5. Zbiór T zawiera krawędzie minimalnego drzewa rozpinającego grafu G.

Dowód

Niech T będzie drzewem wynikowym algorytmu Kruskala dla grafu G, a M niech będzie minimalnym drzewem rozpinającym grafu G o największej liczbie wspólnych krawędzi z T.

Załóżmy nie wprost, że $T \neq M$. Rozpatrzmy $e_i = (v,u)$ ($1 \leq i \leq m$) będące najlżejszą krawędzią taką że $e_i \in E_T \land e_i \notin E_M$. Wtedy w M istnieje inna ścieżka S z v do u, taka że |S| > 1. Zatem w S istnieje e_j ($1 \leq j \leq m$), takie że $e_j \in E_M \land e_j \notin E_T$ (w przeciwnym przypadku istniałby cykl w T).

Rozpatrzmy przypadki:

1. $c(e_i) < c(e_j)$:

2. $c(e_i) = c(e_i)$:

Wtedy usuwamy e_j z M i dodajemy e_i uzyskując $M'=\left(V,\left(E_M\setminus\left\{e_j\right\}\right)\cup\left\{e_j\right\}\right)$, zatem zarówno M jest MST jak i M'.

3. $c(e_i) > c(e_i)$:

Wtedy e_j było rozpatrywane przed e_i i nie zostało dodane do T. Czyli e_j tworzyło cykl w T. Oznacza to, że istnieje jakieś e_k (k < j i $c(e_k) \le c(e_j) < c(e_i)$), takie że $e_k \in T \land e_k \notin M$. Mamy sprzeczność z założeniem wyboru e_i , bo założyliśmy, że e_i jest najlżejszą dostępną krawędzią. $\mathcal I$

Co dowodzi poprawności algorytmu Kruskala.