What is claimed is:

A method of forming a polymeric component, comprising:
 providing a primary extrusion in a solid state;
 zone heating at least one portion of the primary extrusion to create a molten zone
 within the at least one portion, leaving surrounding portions of the primary

compressing the at least one portion between a pressing unit and a die cavity until the at least one portion takes the shape of the pressing unit and die cavity and forms a solid state section molded feature integral with the primary extrusion.

2. The method of claim 1 the step of providing a primary extrusion, further comprising:

extrusion in a solid state; and

heating a polymeric compound and forcing the heated compound through an orifice to form a heated extrusion; and

cooling the heated/extrusion to form a primary extrusion in a solid state.

- 3. The method of claim 1 further comprising: aligning the zone heating and compression steps in an off-line operation; and forming the section molded portion in the off-line operation.
- 4. The method of claim 2 further comprising:
 aligning the heating, cooling, zone heating and compressing steps in an in-line operation; and forming the polymeric component in the in-line operation.
- 5. The method of claim 1 the step of zone heating at least one portion, further comprising:

- applying zone heating of the type selected from the group consisting of:
 convection heating, radiant heating, conduction heating, infrared heating, and
 induction heating.
- 6. The method of claim 1 further comprising: providing a section mold unit having at least one pressing unit and at least one die cavity for forming a section molded feature integral to the primary extrusion; and aligning the at least one molten zone with a corresponding die cavity of the section mold in preparation of compressing the molten zone.
- 7. The method of claim 6, further comprising:

 providing the die cavity to be comprised of a split die having a combined shape

 corresponding to the outer shape of a barbed projection to be section molded

 from the primary extrusion, and

 providing the pressing unit to be comprised of an upper mandrel having a shape

 corresponding to the inner shape of the barbed projection; and

 raising the mandrel and separating the split die to release the polymeric

 component.
- 8. The method of claim 1, further comprising: clamping the solid state portion of the primary extrusion to stabilize the primary extrusion prior to compressing the molten zone.
- 9. The method of claim 1 the step of zone heating at least one portion, including: simultaneously zone heating a plurality of portions along the length of the primary extrusion to simultaneously create a plurality of molten zones, leaving the surrounding portions of the primary extrusion in a solid state; providing a section mold having a plurality of die cavities and pressing units; and aligning each portion having a molten zone with a corresponding die cavity of the section mold.

- 10. The method of claim 6, further comprising:

 providing a section mold unit having a plurality of identical die cavities and pressing units.
- 11. The method of claim 6, further comprising:

 providing a section mold unit having a plurality of dies cavities and pressing units

 and wherein at least one die cavity and pressing unit define a section mold

 feature shape different from at least one other die cavity and pressing unit.
- 12. The method of claim 1 the step of zone heating at least one portion, including: zone heating a first portion of the primary extrusion to create a molten zone within the first portion, while leaving the remaining portion of the primary extrusion in a solid state;

providing a section mold having a directive and pressing unit, the die cavity and pressing unit;

aligning the molten zone of the first portion with the die cavity;

compressing the first portion between the pressing unit and die cavity until the first portion takes the shape defined by the die cavity and pressing unit and forms a solid state integral with the primary extrusion;

advancing the primary extrusion;

zone heating a second portion of the primary extrusion to create a molten zone within the second portion, leaving the surrounding portion of the primary extrusion in a solid state;

aligning the molten zone of the second portion with the die cavity; and compressing the second portion between the pressing unit and the die cavity until the second portion takes the shape defined by the die cavity and pressing unit and forms a solid state integral with the primary extrusion.

13. A polymeric component, comprising: a primary extrusion; and

- 14. The polymeric component of claim 13 further comprising:
 the primary extrusion formed by heating a polymeric compound and forcing the
 heated compound through an orifice to form a heated extrusion; and
 cooling the heated extrusion to form the primary extrusion in a solid state.
- 15. The polymeric component of claim 13 further comprising:

 the section molded portion being compressed into the die cavity by a pressing unit having a corrugated shape and the die cavity having a shape corresponding to a corrugated shape.

The polymeric component of claim 13 further comprising:
the primary extrusion being formed at least in part by thermoplastic material
selected from the group consisting of: polyethylene, soft or rigid TPE, nylon,
ABS/PVC.

- A polymeric component, comprising:

 a primary extrusion of co-extruded material, wherein the primary extrusion
 includes at least one thermoplastic material; and
 at least one section molded portion formed in the portion of the primary extrusion
 - at least one section molded portion formed in the portion of the primary extrusion formed from thermoplastic material and extending from the primary extrusion and integral with the primary extrusion, the section molded portion capable of interconnection with an aperture in a portion of a mating structure and having suitable rigidity to retain the primary extrusion relative to the structure.
 - 18. The polymeric component of claim 17 further comprising:

- 19. The polymeric component of claim 17 further comprising:
 the primary extrusion being formed from a layered co-extrusion, each layer formed of thermoplastic material.
- 20. The polymeric component of claim 17 further comprising:
 the primary extrusion being formed from a C-shaped cross section in which a
 portion of the cross-section is formed from thermoplastic material.