Overview on Automatic Tuning of Hyperparameters

Alexander Fonarev

http://newo.su

Outline

- Introduction to the problem and examples
- Introduction to Bayesian optimization
- Overview of surrogate models
- Additional modifications
- Existing implementations

Hyperparameter examples

- Tree depth decision trees
- Regularization coefficient linear models
- Gradient descend step size neural networks
- Normalization coefficient data preprocessing

Examples of problems

- Training of the ranking in Yandex days
- Parameters in NNs tens

Popular and easy approaches

- Experience of experts
- Grid search
- Random search
- Manual coordinate-descend

Gradient-free and global optimization

- Genetic algorithms
- Simulated annealing
- Response surfaces
- etc

Stochastic functions

How to optimize such functions?

How to choose the next point to evaluate?

Brochu, Eric, Vlad M. Cora, and Nando De Freitas. "A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning." arXiv preprint arXiv:1012.2599 (2010).

Probability of improvement

Acquisition function

Hutter, Frank, Jörg Lücke, and Lars Schmidt-Thieme. "Beyond Manual Tuning of Hyperparameters." 2015. Shahriari, Bobak, et al. "Taking the Human Out of the Loop: A Review of Bayesian Optimization." 2015.

Different acquisition strategies

Built surrogate

Probability of improvement (PI) $PI(x) = P(f(x) \ge f(x^+) + \xi)$

Expected improvement (EI) $EI(x) = \mathbb{E}(\max\{0, f(x) - f(x^+) - \xi\})$

Upper Confidence Bound (UCB) $UCB(x) = \mathbb{E}f(x) + \nu\sigma(x)$

Comparison of acquisition functions

Common algorithm

- 1. Initial design evaluate the black box in some points
- 2. Adaptive design
 - a) Build a surrogate
 - b) Find the argmax of Expected Improvement
 - c) Evaluate the black box in this point
 - d) Go to step 2

How to perform the initial design?

- Best from previous experiments
- Ask for experts
- Random
- Grid
- Several optimal design criteria

Types of surrogates

- Gaussian Processes (GP)
- Tree of Parzen Estimators (TPE)
- Sequential Model-based Algorithm Configuration (SMAC)

Gaussian Process (GP)

Tree of Parzen Estimators (TPE)

Estimates p(y) and p(x|y) instead of p(y|x). The core idea — nonparametric density approximations of x.

Reminder: Random Forest

Not robust (has high variance)

Reminder: Random Forest

Average of slightly different trees:

Sequential Model-based Algorithm Configuration (SMAC)

- Mean in each point prediction of RF
- Variance in each point variance of predictions of separate trees from RF

How to find the maximum of EI?

Use global optimization. Some options:

- Random search
- Genetic algorithms
- Simulated annealing
- Response surfaces

Parallelization

- Batch
- Asynchronous adaptive design

What else?

- Data structures for fast optimum search
- Cold start problem
- Different parameters require different learning time
- Labels transformation
- Different parameter types

Open source implementations

Package	License	URL	Language	Model
SMAC Hyperopt Spearmint Bayesopt	Academic non-commercial license. BSD Academic non-commercial license. GPL	http://www.cs.ubc.ca/labs/beta/Projects/SMAC https://github.com/hyperopt/hyperopt https://github.com/HIPS/Spearmint http://rmcantin.bitbucket.org/html	Java Python Python C++	Random forest Tree Parzen estimator Gaussian process Gaussian process
PyBO MOE	BSD Apache 2.0	https://github.com/mwhoffman/pybo https://github.com/Yelp/MOE	Python Python / C++	Gaussian process Gaussian process

Hutter, Frank, Jörg Lücke, and Lars Schmidt-Thieme. "Beyond Manual Tuning of Hyperparameters." 2015.

How to evaluate method?

- Use real data
- Use synthetic data

Comparison of different approaches

		SMAC		Spearmint		TPE	
Experiment	#evals	Valid. loss	Best loss	Valid. loss	Best loss	Valid. loss	Best loss
branin (0.398) har6 (-3.322)	200 200	0.655 ± 0.27 -2.977 ±0.11	0.408 -3.154	$\begin{array}{c} 0.398 \pm 0.00 \\ \mathbf{-3.133} \pm 0.41 \end{array}$	0.398 -3.322	0.526 ± 0.13 -2.823 ± 0.18	0.422 -3.039
Log.Regression LDA ongrid SVM ongrid	100 50 100	8.6 ± 0.9 $\underline{1269.6}\pm2.9$ $\underline{24.1}\pm0.1$	7.7 1266.2 24.1	$\begin{array}{ c c }\hline \textbf{7.3} \pm 0.2 \\ \underline{1272.6} \pm 10.3 \\ \underline{24.6} \pm 0.9\end{array}$	7.0 1266.2 24.1	$\begin{array}{c c} 8.2 \pm 0.6 \\ \underline{1271.5} \pm 3.5 \\ \underline{24.2} \pm 0.0 \end{array}$	7.5 1266.2 24.1
HP-NNET convex HP-NNET convex	100 200		17.0 15.2	20.6±0.3 20.0±0.9	20.1 17.3	$\begin{array}{c c} 19.5 \pm 1.6 \\ \hline 18.5 \pm 1.4 \end{array}$	17.4 16.2
HP-NNET MRBI HP-NNET MRBI	100 200	$\underline{51.5} \pm 2.8$ $\underline{48.3} \pm 1.80$	46.1 46.1	$\begin{array}{c c} 52.2 \pm 3.3 \\ \hline 51.4 \pm 3.2 \end{array}$	46.5 46.5	$ \begin{array}{c} $	47.3 46.9
HP-DBNET convex HP-DBNET convex	100 200		14.5 14.0	$\begin{array}{c} 20.74 \pm 6.9 \\ 17.45 \pm 5.6 \end{array}$	15.5 14.6	$\begin{array}{c} 17.29 \pm 1.7 \\ 16.1 \pm 0.5 \end{array}$	15.3 15.3
Auto-WEKA	30h	27.5 ±4.9	22.3	40.64±7.2	31.9	35.5±2.9	28.8
Log.Regression 5CV HP-NNET convex 5CV HP-NNET MRBI 5CV	500 folds 500 folds 500 folds	$ \begin{array}{r} 8.1 \pm 0.2 \\ \hline 18.2 \pm 1.5 \\ \hline 47.9 \pm 0.7 \end{array} $	7.8 16.9 47.2	$\begin{array}{c c} 8.2 \pm 0.1 \\ 23.0 \pm 5.0 \\ 52.8 \pm 5.1 \end{array}$	7.9 19.7 46.6	8.9 ± 0.5 20.9 ± 1.3 50.8 ± 1.4	8.1 18.6 48.2

Terminology

- Bayesian optimization
- Reinforcement learning
- Surrogate model
- Kriging

What else?

- Data structures for fast optimum search
- Cold start problem
- Different parameters require different learning time
- Labels transformation

Summary

- We usually need to optimize stochastic functions
- Surrogate model should be fit to the data
- Several good implementations already exist
- Random search is much better than you thought!

Thank you!

Alexander Fonarev