9. Esercizi di riepilogo

Riassumendo per studiare il carattere della serie $\sum_{k=1}^{\infty} a_k$

- 1) controllare se il temine generico a_k è infinitesimo: se lo è procedere, altrimenti concludere che la serie non converge;
- 2) verificare che non rientri tra le serie di cui si conosce il comportamento come la serie geometrica, la serie telescopica, la serie armonica, la serie armonica generalizzata.
- 3) se la serie è a termini positivi, applicare i metodi del confronto, confronto asintotico, ordine di infinitesimo, rapporto, radice (se sono tutti negativi mettere il segno meno fuori del simbolo di sommatoria e controllare la serie risultante a termini positivi).
- 4) se la serie è a termini con segno non costante o alterno, studiare la assoluta convergenza con i criteri già elencati in 3), se la serie è a termini con segno alterno si può applicare per la semplice convergenza il criterio di Leibnitz.

Esercizi

(gli esercizi con asterisco sono avviati)

Studiare la convergenza delle seguenti serie, giustificando le conclusioni:

*1.
$$\sum_{k=1}^{\infty} \frac{k+2}{k\sqrt{k}+1}$$

$$2. \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^2}$$

3.
$$\sum_{k=1}^{\infty} (-1)^{k-1} \frac{k}{(k+1)^2}$$

$$4. \ \sum_{k=2}^{\infty} \frac{1}{(\log k)^k}$$

*5.
$$\sum_{k=1}^{\infty} cosk \cdot e^{-k}$$

*6.
$$\sum_{k=3}^{\infty} \frac{\log(k)}{\sqrt{2k+k^2}}$$

*7.
$$\sum_{k=1}^{\infty} \frac{\cos k}{(k+1)!}$$

*8.
$$\sum_{k=1}^{\infty} \frac{1}{3k + logk}$$

*9.
$$\sum_{k=1}^{\infty} \frac{1}{(4+x)^k}$$

10.
$$\sum_{k=1}^{\infty} e^{-k^2+4k}$$

11.
$$\sum_{k=1}^{\infty} (-1)^k \frac{k^2+1}{k^2+k+2}$$

*12.
$$\sum_{k=2}^{\infty} \frac{1}{k^2 + 9k + 20}$$

*13.
$$\sum_{k=1}^{\infty} \frac{\sin\left(k\frac{\pi}{2}\right)}{k^3}$$

*14.
$$\sum_{k=1}^{\infty} \frac{1}{k^4} \sin^4 \frac{1}{k}$$

*15.
$$\sum_{k=0}^{\infty} \left(\sqrt{k^3 + 3} - \sqrt{k^3} \right)$$
 *16. $\sum_{k=1}^{\infty} (-1)^k \frac{\sqrt[3]{k}}{2k - \sqrt[3]{k}}$

*16.
$$\sum_{k=1}^{\infty} (-1)^k \frac{\sqrt[3]{k}}{2k - \sqrt[3]{k}}$$

L. Mereu – A. Nanni Serie numeriche

*17
$$\sum_{k=1}^{\infty} \frac{5k^3 + k}{k^4}$$

*18.
$$\sum_{k=1}^{\infty} \left(1 + \frac{1}{k}\right)^{\frac{k}{2}}$$

*19.
$$\sum_{k=0}^{\infty} \frac{1}{4^k+5}$$

20.
$$\sum_{k=1}^{\infty} (-1)^k \frac{1}{k \log(k+1)}$$

21.
$$\sum_{k=1}^{\infty} (1 - \frac{1}{2k})^{k^2}$$

* 22.
$$\sum_{k=1}^{\infty} \frac{1}{\frac{k}{\sqrt{k}}}$$

23.
$$\sum_{k=1}^{\infty} \frac{1}{\sqrt[4]{(k+3)^3}}$$

*24.
$$\sum_{k=4}^{\infty} \frac{1}{k^2 - 5k + 6}$$

*25.
$$\sum_{k=1}^{\infty} (-1)^k \left(\frac{3}{8}\right)^k \cdot k$$

*26.
$$\sum_{k=1}^{\infty} (-1)^k \left(\sqrt{k+2} - \sqrt{k} \right)$$

*27.
$$\sum_{k=2}^{\infty} \log \frac{k-1}{k}$$

28.
$$\sum_{k=1}^{\infty} (-1)^k \frac{(0,3)^k}{k}$$

*29.
$$\sum_{k=1}^{\infty} (-1)^k \frac{arctgk}{e^k}$$

*30.
$$\sum_{k=1}^{\infty} (-1)^k \frac{(k!)^2}{(2k+3)!}$$

*31.
$$\sum_{k=1}^{\infty} \frac{k^4}{(\log 4)^k}$$

32.
$$\sum_{k=1}^{\infty} \frac{1}{3^k} \left(\frac{k+2}{k} \right)^k$$

*33.
$$\sum_{k=1}^{\infty} \frac{k sin^2 \left(k \frac{\pi}{6}\right)}{3^k}$$

34.
$$\sum_{k=1}^{\infty} (-1)^k \frac{(10)^{3k}}{(k+3)!}$$

*35.
$$\sum_{k=1}^{\infty} (-1)^k \arctan \frac{1}{k}$$

Soluzioni

- *1. S. a termini positivi, diverge per confronto asintotico con $\sum_{k=1}^{\infty} \frac{1}{k}$;
- 2. S. a segni alterni, converge assolutamente;
- 3. S. a segni alterni, converge semplicemente, ma non assolutamente;
- 4. S. a termini positivi converge (criterio della radice);
- *5. S. converge assolutamente, poichè $|(cosk)e^{-k}| < e^{-k}$, per confronto con $\sum_{k=1}^{\infty} e^{-k}$ serie geometrica convergente di ragione $\frac{1}{e} < 1$;
- *6. S. a termini positivi, diverge per confronto asintotico con $\sum_{k=3}^{\infty} \frac{\log k}{k}$ divergente, essendo, per $k \geq 3$, $\frac{\log k}{k} > \frac{1}{k}$;
- *7. S. converge assolutamente per confronto con $\sum_{k=1}^{\infty} \frac{1}{(k+1)!}$ serie convergente per il criterio del rapporto ;

L. Mereu – A. Nanni Serie numeriche

*8. S. a termini positivi, diverge per confronto asintotico con $\sum_{k=1}^{\infty} \frac{1}{k}$, serie armonica divergente;

- *9 S. serie geometrica di ragione $q=\frac{1}{4+x}$; per x<-5 V x>-3 converge con somma $S=\frac{1}{x+3}$; per $-4< x \le -3$ diverge positivamente; $-5 \le x < -4$ indeterminata;
- 10. S. a termini positivi, converge (criterio della radice); 11. S. a segni alterni, irregolare;
- *12. S. serie telescopica $\frac{1}{k^2+9k+20} = \frac{1}{k+4} \frac{1}{k+5}$, converge con somma $S = \frac{1}{6}$;
- *13. S. converge assolutamente per confronto, in quanto $\left|\frac{\sin\left(k\frac{\pi}{2}\right)}{k^3}\right| \leq \frac{1}{k^3}$, essendo $\sum_{k=1}^{\infty} \frac{1}{k^3}$ una serie armonica convergente ;
- *14. S. converge per confronto con $\sum_{k=1}^{\infty} \frac{1}{k^4}$, serie armonica convergente ;
- *15. S. a termini positivi, converge, essendo $\left(\sqrt{k^3+3}-\sqrt{k^3}\right)=\frac{3}{\left(\sqrt{k^3+3}+\sqrt{k^3}\right)}$ un infinitesimo per $k\to\infty$ di ordine $\frac{3}{2}>1$;
- *16. S. a segni alterni, converge semplicemente, essendo $\left\{\frac{\sqrt[3]{k}}{2k-\sqrt[3]{k}}\right\}$ decrescente e infinitesima, ma non converge assolutamente essendo $\frac{\sqrt[3]{k}}{2k-\sqrt[3]{k}}$ infinitesimo di ordine $\frac{2}{3}$ < 1 per $k \to \infty$;
- *17. S. a termini positivi, diverge per confronto asintotico con $\sum_{k=1}^{\infty} \frac{1}{k}$ serie armonica divergente;
- *18. S. diverge positivamente, il termine generico non è infinitesimo, poichè $\lim_{k\to\infty}\left(1+\frac{1}{k}\right)^{\frac{k}{2}}=\sqrt{e}$;
- *19. S. a termini positivi converge per confronto, essendo $\frac{1}{4^k+5} < \frac{1}{4^k}$, e $\sum_{k=1}^{\infty} \frac{1}{4^k}$ serie geometrica convergente di ragione $\frac{1}{4} < 1$;
- **20. S.** converge semplicemente, ma non assolutamente; **21. S.** converge (criterio della radice);
- *22. S. a termini positivi diverge positivamente, il termine generico non è infinitesimo $\lim_{k\to\infty}\frac{1}{^k\!\sqrt{k}}=1\;;$
- **23. S.** a termini positivi diverge positivamente, ordine di infinitesimo $\frac{3}{4}$;
- *24.S. serie telescopica $\frac{1}{k^2-5k+6} = \frac{1}{k-3} \frac{1}{k-2}$, converge con somma S=1;

L. Mereu – A. Nanni Serie numeriche

*25. S. a segni alterni, converge assolutamente, infatti, applicando il criterio della radice

$$\lim_{k \to +\infty} \frac{3}{8} \sqrt[k]{k} = \frac{3}{8} < 1;$$

- *26. S. a segni alterni, converge semplicemente, perché $\left\{\left(\sqrt{k+2}-\sqrt{k}\right)\right\} = \left\{\frac{2}{(\sqrt{k+2}+\sqrt{k})}\right\}$ è decrescente e infinitesima; ma non converge assolutamente (confronto con $\sum_{k=1}^{\infty}\frac{1}{\sqrt{k}}$ divergente);
- *27. S. serie a termini negativi, cambiando segno $\sum_{k=2}^{\infty} -log \frac{k-1}{k}$ diverge per confronto con la serie armonica divergente $\sum_{k=2}^{\infty} \frac{1}{k}$, infatti $\lim_{k \to +\infty} -k \ log \frac{k-1}{k} = \lim_{k \to +\infty} log \left(1 \frac{1}{k}\right)^{-k} = log e = 1;$
- 28. S. a segni alterni, converge assolutamente con il criterio della radice;
- *29. S. a segni alterni, converge assolutamente essendo $\frac{arctgk}{e^k} < \frac{\pi}{2} \cdot \frac{1}{e^k}$ e $\sum_{k=1}^{\infty} \left(\frac{1}{e}\right)^k$ una serie geometrica convergente di ragione $\frac{1}{e}$;
- *30.S. a segni alterni, converge assolutamente, infatti, applicando il criterio del rapporto, si ha

$$\lim_{k \to +\infty} \frac{((k+1!))^2}{(2k+5)!} \cdot \frac{(2k+3)!}{(k!)^2} = \lim_{k \to +\infty} \frac{(k+1)^2}{(2k+5)(2k+4)} = \frac{1}{4}$$

- *31. S. a termini positivi, converge con il criterio del rapporto $\lim_{k\to+\infty}\frac{(k+1)^4}{(\log 4)^{k+1}}\cdot\frac{(\log 4)^4}{(k)^4}=\frac{1}{\log 4}<1$;
- 32. S. a termini positivi, converge con il criterio della radice;
- *33. S. converge, poichè $\frac{k sin^2\left(k\frac{\pi}{6}\right)}{3^k} \le \frac{k}{3^k}$ e $\sum_{k=1}^{\infty} \frac{k}{3^k}$ converge per il criterio della radice;
- 34. S. a segni alterni, converge assolutamente con il criterio del rapporto;
- *35.S. a segni alterni, converge semplicemente in quanto $\left\{arctg\,\frac{1}{k}\right\}$ è decrescente e infinitesima, ma non è assolutamente convergente per confronto asintotico con $\sum_{k=1}^{\infty}\frac{1}{k}$, serie armonica divergente, in quanto $\lim_{k\to +\infty}\frac{arctg\frac{1}{k}}{\frac{1}{k}}=1$, ricordando che $\lim_{x\to 0}\frac{arctgx}{x}=1$.