CORRIGÉ DE L'EXAMEN DU 14/01/2020

Questions de cours (3 points)

1. Soit $(X_n)_{n\geq 1}$ une suite de v.a.r. i.i.d. de carré intégrable, d'espérance μ et de variance $\sigma^2>0$. Alors, on a la convergence en loi

$$\frac{(X_1 + \ldots + X_n) - n\mu}{\sigma\sqrt{n}} \xrightarrow[n \to \infty]{(loi)} Z \sim \mathcal{N}(0, 1).$$

2. On a par définition

$$Z = \frac{X_1 + \dots + X_n}{n},$$

avec n=1000 et X_1,\ldots,X_n i.i.d. de loi $\mathcal{B}(\frac{1}{2})$. En particulier,

$$\mathbb{E}[Z] = \frac{1}{2} \quad \text{et} \quad \text{Var}(Z) = \frac{1}{4000}.$$

L'inégalité de Bienaymé-Tchebychev appliquée à Z donne pour tout $\varepsilon>0$,

$$\mathbb{P}(Z \notin]0.5 - \varepsilon, 0.5 + \varepsilon[) \leq \frac{1}{4000\varepsilon^2}.$$

Pour que le membre droit soit égal à 0.1, il faut prendre $\varepsilon=0.05$. Ainsi, l'intervalle cherché est]0.45,0.55[.

Exercice 1 (5 points)

1. Pour une v.a.r. discrète X, on a toujours $\sum_{x\in \mathrm{Im}(X)}\mathbb{P}(X=x)=1$. Ici cela donne

$$2(p+q+r) = 1.$$

2. Pour une v.a.r. discrète X, on a $\mathbb{E}[X] = \sum_{x \in \mathrm{Im}(X)} x \mathbb{P}(X = x)$. Ici cela donne

$$\mathbb{E}[X] = p(1+6) + q(2+5) + r(3+4) = \frac{7}{2}.$$

3. Calculons d'abord le moment d'ordre 2 de X:

$$\mathbb{E}\left[X^{2}\right] = p(1^{2} + 6^{2}) + q(2^{2} + 5^{2}) + r(3^{2} + 4^{2})$$
$$= 12p + 4q + \frac{25}{2}.$$

On en déduit que $Var(X) = \mathbb{E}[X^2] - \mathbb{E}^2[X] = 12p + 4q + \frac{1}{4}$.

4. On calcule aisément :

$$\mathbb{P}(A) = 2p$$

$$\mathbb{P}(B) = p + q + r = 0.5$$

$$\mathbb{P}(C) = p + q + r = 0.5$$

$$\mathbb{P}(A \cap B) = p$$

$$\mathbb{P}(A \cap C) = p$$

$$\mathbb{P}(B \cap C) = p + r = 0.5 - q$$

$$\mathbb{P}(A \cap B \cap C) = p.$$

Ainsi, on a toujours $\mathbb{P}(A\cap B)=\mathbb{P}(A)\mathbb{P}(B)$ et $\mathbb{P}(A\cap C)=\mathbb{P}(A)\mathbb{P}(C)$. De plus, l'égalité $\mathbb{P}(B\cap C)=\mathbb{P}(B)\mathbb{P}(C)$ est équivalente à q=0.25, tandis que l'égalité $\mathbb{P}(A\cap B\cap C)=\mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$ est équivalente à p=0. On conclut que les événements A,B,C sont indépendants si et seulement si (p,q,r)=(0,0.25,0.25).

Exercice 2 (6 points)

- 1. La fonction $t\mapsto e^{-e^{-t}}$ est une fonction de répartition car elle est croissante (comme composée de deux fonctions décroissantes), continue (comme composée de deux fonctions continues) et de limites 0 et 1 en $-\infty$ et $+\infty$.
- 2. Pour tout n > 1 et tout $t \in \mathbb{R}$, on a

$$F_{Z_n}(t) = \mathbb{P}\left(Z_n \le t\right)$$

$$= \mathbb{P}\left(\bigcap_{i=1}^n \{X_i \le t + \ln n\}\right)$$

$$= \prod_{i=1}^n \mathbb{P}(X_i \le t + \ln n)$$

$$= \mathbf{1}_{(t>-\ln n)} \left(1 - \frac{e^{-t}}{n}\right)^n$$

$$= \mathbf{1}_{(t>-\ln n)} e^{n\ln\left(1 - \frac{e^{-t}}{n}\right)},$$

où l'on a utilisé l'indépendance de X_1, \ldots, X_n à la troisième ligne, et la fonction de répartition de la loi $\mathcal{E}(1)$ à la quatrième ligne.

3. En utilisant l'équivalent $\ln(1-h) \sim h$ lorsque $h \to 0$, on en déduit que

$$F_{Z_n}(t) \xrightarrow[n\to\infty]{} e^{-e^{-t}} = F_Z(t),$$
 (1)

pour tout $t \in \mathbb{R}$, ce qui montre la convergence en loi $Z_n \to Z$.

4. Pour tout t > 0, on peut écrire par stricte décroissance de $t \mapsto -\ln t$

$$F_{e^{-Z}}(t) = \mathbb{P}(e^{-Z} \le t) = \mathbb{P}(Z \ge -\ln t) = 1 - F_Z(\ln(1/t) -) = e^{-t},$$

où la dernière égalité utilise le fait que F_Z est continue. Comme d'autre part on a trivialement $F_{e^{-Z}}(t)=0$ pour $t\leq 0$, on en déduit que $e^{-Z}\sim \mathcal{E}(1)$.

5. La question 3 assure que pour toute fonction $h: \mathbb{R} \to \mathbb{R}$ continue et bornée,

$$\mathbb{E}[h(Z_n)] \xrightarrow[n\to\infty]{} \mathbb{E}[h(Z)].$$

En particulier, pour tout $t \in \mathbb{R}$, on peut prendre $h(x) = \cos(te^{-x})$ ou $h(x) = \sin(te^{-x})$ pour obtenir que

$$\mathbb{E}[\cos\left(te^{-Z_n}\right)] \xrightarrow[n\to\infty]{} \mathbb{E}[\cos\left(te^{-Z}\right)]$$

$$\mathbb{E}[\sin\left(te^{-Z_n}\right)] \xrightarrow[n\to\infty]{} \mathbb{E}[\sin\left(te^{-Z}\right)].$$

Comme e^{-Z} suit une loi $\mathcal{E}(1)$, on sait que

$$\mathbb{E}[\cos(te^{-Z})] + i\mathbb{E}[\sin(te^{-Z})] = \Phi_{e^{-Z}}(t) = \frac{1}{1 - it} = \frac{1 + it}{1 + t^2}.$$

En identifiant les parties réelles et imaginaires, on en déduit que les deux limites cherchées sont $1/(1+t^2)$ et $t/(1+t^2)$, respectivement.

Exercice 3 (6 points)

1. Comme X,Y sont indépendantes et que $\Phi_X(t) = \Phi_Y(t) = e^{-t^2/2}$, on peut écrire

$$\Phi_Z(t) = \mathbb{E}\left[e^{it\frac{X+Y}{2}}\right] = \mathbb{E}\left[e^{it\frac{X}{2}}\right]\mathbb{E}\left[e^{it\frac{Y}{2}}\right] = \Phi_X\left(\frac{t}{2}\right)\Phi_Y\left(\frac{t}{2}\right) = e^{-t^2/4}.$$

On en déduit que $Z \sim \mathcal{N}(0,1/2)$, et le même argument montre que $W \sim \mathcal{N}(0,\frac{1}{2})$.

2. On a Z + W = X, et on en déduit que

$$Var(Z+W) = Var(X) = 1.$$

D'autre part, la question précédente montre que $Var(Z) = Var(W) = \frac{1}{2}$. Ainsi,

$$Var(Z + W) = Var(Z) + Var(W),$$

ce qui montre que $\mathrm{Cov}(Z,W)=0.$ Attention, cela ne prouve pas que $Z \perp \!\!\! \perp W!$

3. Comme X - Z = Z - Y = W, on obtient

$$U = \frac{W^2}{2} + \frac{W^2}{2} = W^2.$$

4. En particulier, on en déduit que pour tout t > 0,

$$F_U(t) = \mathbb{P}(W^2 \le t) = \mathbb{P}\left(W \in \left[-\sqrt{t}, \sqrt{t}\right]\right) = \int_{-\sqrt{t}}^{\sqrt{t}} f_W(u) du.$$

où $f_W(u) = e^{-u^2}/\sqrt{\pi}$ est la densité de la loi $\mathcal{N}(0,1/2)$. Comme cette fonction est paire, on obtient bien l'expression de $F_U(t)$ proposée dans le cas t>0. D'autre part, il est clair que $F_U(t)=0$ pour $t\leq 0$, ce qui conclut la preuve.

5. À l'aide du changement de variable $x=u^2$, on obtient

$$F_U(t) = \mathbf{1}_{]0,\infty[}(t) \int_0^t \frac{e^{-x}}{\sqrt{\pi x}} dx = \int_{-\infty}^t f(x) dx,$$

avec $f(x)=\mathbf{1}_{]0,\infty[}(x)\frac{e^{-x}}{\sqrt{\pi x}}$. Cette fonction est, à une constante multiplicative près, la densité de la loi $\Gamma(1/2,1)$ qui est donnée par

$$x \mapsto \mathbf{1}_{]0,\infty[}(x) \frac{e^{-x}}{\Gamma(1/2)\sqrt{x}}.$$

Comme ces deux fonctions sont des densités de probabilités, on a forcément $\Gamma(1/2) = \sqrt{\pi}$, et l'on conclut que $U \sim \Gamma(1/2, 1)$.