# Genetické programování v platformově nezávislém programovacím jazyce Genetic programming in platform free programming language

2015 Zdeněk Gold

# Tuto stránku nahradíte v tištěné verzi práce oficiálním zadáním Vaší diplomové či bakalářské práce.

Souhlasím se zveřejněním této bakalářské práce dle požadavků čl. 26, odst. 9 *Studijního a zkušebního řádu pro studium v bakalářských programech VŠB-TU Ostrava*.

Zde vložte text dohodnutého omezení přístupu k Vaší práci, chránící například firemní know-how. Zde vložte text dohodnutého omezení přístupu k Vaší práce, chránící například firemní know-how. A zavazujete se, že

- 1. o práci nikomu neřeknete,
- 2. po obhajobě na ni zapomenete a
- 3. budete popírat její existenci.

A ještě jeden důležitý odstavec. Konec textu dohodnutého omezení přístupu k Vaší práci.

| V Ostravě 16. dubna 2009 | +++ |
|--------------------------|-----|
|                          |     |

Prohlašuji, že jsem tuto bakalářskou práci vypracovala samostatně. Uvedla jsem všechny literární prameny a publikace, ze kterých jsem čerpala.

V Ostravě 16. dubna 2009 + ++++



#### **Abstrakt**

Genetické programování a vůbec, genetické algoritmy jako pojem vznikly už před x lety a sklízí velké oblibě ve všech oblastech, která staví na inženýrských postupech.

Klíčová slova: genetický algoritmus, genom, populace, stochastický, evoluce

#### **Abstract**

This is English abstract. This is English abstract. This is English abstract. This is English abstract. This is English abstract.

**Keywords:** typography, LATEX, master thesis

## Seznam použitých zkratek a symbolů

DVD – Digital Versatile Disc

TNT – Trinitrotoluen

OASIS - Organization For The Advancement Of Structured Infor-

mation Systems

HTML – Hyper Text Markup Language

# Obsah

| 1  | Úvod                                                                                         | 5                      |
|----|----------------------------------------------------------------------------------------------|------------------------|
| 2  | Evoluční algoritmy 2.1 Přehled algoritmů                                                     | <b>6</b>               |
| 3  | Implementace frameworku                                                                      | 7                      |
| 4  | Ukázky sazby4.1Ukázka nadpisů4.2Sazba definic, vět atd4.3Výpisy programů4.4Obrázky a tabulky | 8<br>8<br>8<br>9<br>10 |
| 5  | Závěr                                                                                        | 14                     |
| 6  | Reference                                                                                    | 15                     |
| Př | ílohy                                                                                        | 15                     |
| A  | Grafy a měření                                                                               | 16                     |

## Seznam tabulek

| 1 | Pokusná tabulka                          | 12 |
|---|------------------------------------------|----|
| 2 | Experimental Files — Detailed Statistics | 13 |

## Seznam obrázků

| 1 | Pokusný obrázek – absolutní velikost | 10 |
|---|--------------------------------------|----|
| 2 | Pokusný obrázek – relativní velikost | 10 |
| 3 | Pokusný obrázek – otočený naležato   | 11 |
| 4 | Nějaký graf                          | 17 |

| Seznam výpisů zdrojového kódu |
|-------------------------------|
|-------------------------------|

| 1 | Program v jazyce Java                              | 9  |
|---|----------------------------------------------------|----|
|   | Program v jazyce Java, načtený z externího souboru |    |
| 3 | Program v Pascalu                                  | 10 |

# 1 Úvod

Tento text je ukázkou sazby diplomové práce v La pomocí třídy dokumentů diploma. Pochopitelně text není skutečnou diplomovou prací, ale jen ukázkou použití implementovaných maker v praxi. V kapitole 4 jsou ukázky použití různých maker a prostředí. V kapitole 5 bude "jako závěr". Zároveň tato kapitola slouží jako ukázka generování křížových odkazů v La prostředí.

# 2 Evoluční algoritmy

### 2.1 Přehled algoritmů

V této podkapitole si představíme seznam nejzákladnějších algoritmů, které patří do množiny evolučních algoritmů a nalezly si řadu využití v inženýrské praxi i ve světě jako takovém.

### 2.1.1 Genetický algoritmus

Genetický algoritmus GA je historicky prvním algoritmem, který byl kdy navržen.

### 3 Implementace frameworku

V této kapitole je nastíněna struktura frameworku s evolučními algoritmy, možnost použití a rozšíření v praxi.

#### 3.1 Mutace

Mutace je jeden z evolučních operátorů, použitý v řadě algoritmů jako je např. Genetický algoritmus, Diferenciální evoluce, aj.

Reprezentace operátoru mutace je v knihovně JEvolutionCore v podobě generického rozhraní MutateFunction v balíčku org.evolution.function. Třídy implementující toto rozhraní musí definovat obsah metody mutate, která náhodně vybere řešení s pravděpodobností p a malinko změní hodnotu (hodnoty) v řešení.Knihovna má předdefinované 3 základní druhy mutací:

- Standardní mutace mutace s pravděpodobností p pro výběr řešení, u kterého dojde ke změně jedné náhodně vybrané hodnoty genomu
- Vícebodová mutace mutace s pravděpodobností p pro výběr řešení, u kterého dojde ke změně 1-n náhodně vybraných hodnot genomu
- Nahodilá mutace mutace s pravděpodobností p pro náhodnou změnu napříč všemi hodnotami vybraných řešení

Standardní mutace je definovaná ve třídě StandardMutateFunction a její použití je především u Genetického algoritmu v základní podobě. Obecně je vhodná u řešení, s malou dimenzí, protože změna náhodně vybrané jedné hodnoty ještě udrží různorodost populace a algoritmus tak nestagnuje.

### 4 Ukázky sazby

#### 4.1 Ukázka nadpisů

Toto je nadpis podsekce, generováno makrem \subsection.

#### 4.1.1 subsection

#### 4.1.1.1 paragraph

**4.1.1.1.1 subparagraph** Ale tak hluboko se asi stejně nikdo nedostane.

#### 4.2 Sazba definic, vět atd.

Určitě se bude hodit prostředí pro sazbu definice jako je definice binárního vyhledávacího stromu, viz definice 4.1.

**Poznámka 4.1** Následující definice a věty nedávají dohromady příliš smysl. Jsou tu jen pro ukázku.

**Definice 4.1** Binární strom je struktura definovaná nad konečnou množinou uzlů, která:

- neobsahuje žádný uzel,
- je složena ze tří disjunktních množin uzlů: kořene, binárního stromu zvaného levý podstrom a binárního stromu tzv. pravého podstromu.

Pak by se taky mohla hodit nějaká věta a k ní důkaz.

**Věta 4.1** Průměrná časová složitost neúspěšného vyhledání v hashovací tabulce se separátním zřetězením je  $\Theta(1+\alpha)$ , za předpokladu jednoduchého uniformního hashování.

**Důkaz.** Za předpokladu jednoduchého uniformního hashování se každý klíč k hashuje se stejnou pravděpodobností do libovolného z m slotů tabulky. Průměrný čas neúspěšného hledání klíče k je proto průměrný čas prohledání jednoho z m seznamů. Průměrná délka každého takového seznamu je rovna faktoru naplnění  $\alpha = n/m$ . Tudíž lze očekávat, že budeme nuceni prozkoumat  $\alpha$  prvků. Z toho plyne, že celkový čas pro neúspěšné hledání (plus navíc konstantní čas pro výpočet h(k)) je  $\Theta(1+\alpha)$ .

#### Příklad 4.1

Mějme napsat funkci, která spočítá uzly ve stromu. Předpokládejme, že binární strom je definován způsobem uvedeným v definici 4.1 na straně 8. Naše úloha se výrazně zjednoduší uvědomíme-li si její rekurzivní charakter a předpokládáme, že aktuální uzel je R.

ullet Je-li R prázdný strom (tj. R=NULL), pak počet jeho uzlů je pochopitelně nula. Tím máme problém vyřešen.

V opačném případě víme, že ve stromu určitě jeden uzel existuje (R) a počty uzlů v levém a pravém podstromu se dají určit obdobným způsobem rekurzivně. To znamená, že počet uzlů ve stromu s kořenem R je 1+pocet\_uzlu(A)+pocet\_uzlu(B)

Počty uzlů pro jednotlivé podstromy se předávají jako výsledky volání funkcí prostřednictvím zásobníku programu, nejsou tudíž potřeba žádné pomocné proměnné.

**Poznámka 4.2** Program z příkladu 4.1 pochopitelně chybí, ale můžete se podívat třeba na program uvedený ve výpisu 1.

#### 4.3 Výpisy programů

Tato diplomová práce má nastaven výchozí jazyk Java, jak je vidět z výpisu 1. Výpis kódu 1 zároveň demonstruje možnost přímého vložení zdrojového kódu programu do textu práce. Druhou možností je načtení zdrojového kódu programu z externího souboru, viz výpis 2. Pokud potřebujeme změnit programovací jazyk pro konkrétní výpis kódu, můžeme jeho to provést přímo v záhlaví prostředí lstlisting. Výpis 3 je v jazyku Pascal. Všimněte si zvýraznění klíčových slov.

**Poznámka 4.3** Pro správnou sazbu je třeba pro odsazování používat tabulátory, nikoliv mezery.

Výpis 1: Program v jazyce Java

```
public class MyClass
{
   public int MyMethod(int a, int b)
   {
      while (a != b)
      {
        if (a < b)
            b -= a;
      else
            a -= b;
    }
}</pre>
```



Obrázek 1: Pokusný obrázek – absolutní velikost



Obrázek 2: Pokusný obrázek – relativní velikost

```
Výpis 2: Program v jazyce Java, načtený z externího souboru

procedure X(i : integer; var x : real);
begin
    x := i + 3;
end;
```

Výpis 3: Program v Pascalu

### 4.4 Obrázky a tabulky

A ještě si můžeme zkusit vysázet obrázek. Obrázek 1 má určenu absolutní velikost, zatímco obrázek 2 je určen relativně vůči šířce textu.



| q     | $\delta(q,0)$ | $\delta(q,1)$ |
|-------|---------------|---------------|
| $q_0$ | $q_1$         | $q_0$         |
| $q_1$ | $q_1$         | $q_2$         |
| $q_2$ | $q_1$         | $q_0$         |

Tabulka 1: Pokusná tabulka

A ještě zkusíme vysázet několik tabulek, ale jen kvůli seznamu tabulek v úvodu. Tabulka 1 představuje jednoduchou tabulku, která se svou šířkou pohodlně vejde do šířky textu. Velké tabulky, stejně jako obrázky, můžeme vysázet naležato. Ukázkou velké, komplikované tabulky 1 je tabulka 2.

<sup>&</sup>lt;sup>1</sup>Pokud, ale píšete práci česky, měly by být tabulky také česky – mě se jen nechtěla předělávat do češtiny.

| File                      | bible.txt  | .txt    | worl          | world.txt  | law.txt    | txt     | latimes.txt | s.txt   |
|---------------------------|------------|---------|---------------|------------|------------|---------|-------------|---------|
| Language                  | English    | lish    | Eng           | English    | Czech      | ch      | English     | ish     |
| Format                    | Plain text | text    | Plair         | Plain text | Plain text | text    | SGML        | II.     |
| Size of file [bytes]      | 4047392    |         | 2473400       |            | 64573143   |         | 498360166   |         |
| Number of tokens          | 1532262    | 100%    | 684767        | 100%       | 19432898   | 100%    | 161254928   | 100%    |
| Number of words           | 766131     | 20%     | 342383        | 20%        | 9716449    | 20%     | 20099202    | 43.885% |
| Number of nonwords        | 766131     | 20%     | 342384        | 20%        | 9716449    | 20%     | 80619289    | 49.995% |
| Number of controls        |            |         |               |            |            |         | 9869572     | 6.12%   |
| Number of unique tokens   | 13791      | 100%    | 23564         | 100%       | 250570     | 100%    | 529482      | 100%    |
| Number of unique words    | 13744      | %659.66 | 23082         | 97.955%    | 246266     | 98.282% | 524280      | 99.018% |
| Number of unique nonwords | 47         | 0.341%  | 482           | 2.045%     | 4304       | 1.718%  | 3079        | 0.582%  |
| Number of unique controls |            |         |               |            |            |         | 2123        | 0.401%  |
| Word average frequency    | 55.743     |         | 14.833        |            | 39.455     |         | 134.978     |         |
| Nonword average frequency | 16300.66   |         | 710.34        |            | 2257.539   |         | 26183.595   |         |
| Control average frequency |            |         |               |            |            |         | 4648.88     |         |
| Minimal length of word    | I          |         | 1             |            | 1          |         | 1           |         |
| Maximal length of word    | 18         |         | 27            |            | 41         |         | 28          |         |
| Minimal length of nonword | 1          |         | $\overline{}$ |            | 1          |         | 1           |         |
| Maximal length of nonword | 4          |         | 26            |            | 700        |         | 253         |         |
| Minimal length of control |            |         |               |            |            |         | 8           |         |
| Maximal length of control |            |         |               |            |            |         | 132         |         |

Tabulka 2: Experimental Files — Detailed Statistics

## 5 Závěr

Tak doufám, že Vám tato ukázka k něčemu byla. Další informace najdete v publikacích [1, 2].

Jiří Dvorský

### 6 Reference

- [1] Goossens, Michel, The LaTeX companion, New York: Addison, 1994.
- [2] Lamport, Leslie, *Lambort Etels: a document preparation system: user's guide and reference manual,* New York: Addison-Wesley Pub. Co., 1994.

# A Grafy a měření

Tohle je příloha k práci. Většinou se sem dávají grafy, tabulky, které by vzhledem ke svému počtu překážely v textu diplomky.



Obrázek 4: Nějaký graf