

Seminar for Statistics

Department of Mathematics					
Bachelor Thesis	placeholder				

placeholder

placeholder

Submission Date: placeholder

Adviser: placeholder

Abstract

The intent of this work is to compare The EM algorithm to a MLE approach in the case of multivariate normal mixture models using the Cholesky decomposition. The EM algorithm is widely used in statistics and is proven to converge, however in pathological cases convergence slows down considerably. MLE doesn't have this particular error, but is computationally costly. The Cholesky decomposition cuts down the necessary parameters almost in half....

methods(not done) results(not done)

CONTENTS

${\bf Contents}$

1 Introduction to normal mixture models 1.1 choice of notation						
2	placeholder	5				
	Bibliography	6				

List of Figures

LIST OF TABLES								
List	of Tables							
1.1	Table of Parameters		3					

Chapter 1

Introduction to normal mixture models

here intro to normal mixtures

A good and thorough introductory book is the work of McLachlan and Peel 2000 and the reader is encouraged to study that to learn in depth about normal mixtures. We will here give a short overwiev of normal mixtures to fix notation and nomenclature.

Let $\mu \in \mathbb{R}^p$, $\Sigma \in \mathbb{R}^{p \times p}$ and $\phi(\mu, \Sigma)$ be the normal distribution with mean μ and covariance matrix Σ .

Normal mixture model are designed for situations where we assume that a given dataset originates from more than one population of explaining variables.

$$\boldsymbol{Y}_1,\ldots,\boldsymbol{Y}_n$$

Definition 1.0.0.1. Suppose we have a random sample $Y_1, ..., Y_n$ with probability density function $Y_j \sim f(y_j)$ on \mathbb{R}^p We assume that the density $f(y_j)$ of Y_j can be written in the form

$$f(y_j) = \sum_{i=1}^K \pi_i \phi_i(y_i)$$

The π_i are called the component densities of the mixture.

explain in scetch EM algo

explain idea to use parameter optimizer instead, EM has pathological insufficiencies, like 'getting stuck' for many iterations. we hope we need less iterations, and as concequence less time. 'special' idea: using cholesky decomp.

1.1 choice of notation

describe difference in notation between ceuleux & govaert and our covariance matrix decomposition.

explanation for the volume, shape and orientation descriptors

make clear that the models can not be translated one to one to ldlt model make nice table(maybe sideways to account for parameter list)

count													$1 + pK + K \frac{p(p-1)}{2}$	$K + pK + K\frac{p(p-1)}{2}$
parameters													$\lambda, d_{i,k}, l_{i,j,k} \ j > i - 1 + pK + K \frac{p(p-1)}{2}$	$\lambda_k, d_{i,k}, l_{i,j,k} \ j > i K + pK + K \frac{p(p-1)}{2}$
$_{\perp}TQT$	same as $C\&G$						don't exist						$lpha oldsymbol{L}_k oldsymbol{D}_k oldsymbol{L}_k^ op$	$lpha_koldsymbol{L}_koldsymbol{D}_koldsymbol{L}_k^ op$
count	1	K	1+p	K + p	1 + pK	K + pK	$1 + p + p^2$	$1 + pK + p^2$	$K + p + p^2$	$K + pK + p^2$	$1 + p + Kp^2$	$K + p + Kp^2$	$1 + pK + Kp^2$	$\alpha_k, \lambda_i, q_{i,j,k} K + pK + Kp^2$
parameters	α	α_k	$lpha, \lambda_i$	$lpha_k, \lambda_i$	$lpha, \lambda_{i,k}$	$lpha_k, \lambda_{i,k}$	$\alpha, \lambda_i, q_{i,j}$	$lpha, \lambda_{i,k}, q_{i,j}$	$lpha_k, \lambda_i, q_{i,j}$	$\alpha_k, \lambda_{i,k}, q_{i,j}$	$lpha, \lambda_i, q_{i,j,k}$	$lpha_k, \lambda_i, q_{i,j,k}$	$lpha, \lambda_i, q_{i,j,k}$	$lpha_k, \lambda_i, q_{i,j,k}$
orientation	ı	ı	coordinate axes	coordinate axes	coordinate axes	coordinate axes	ednal	ednal	ednal	ednal	variable	variable	variable	variable
$_{ m shape}$	ednal	ednal	ednal	ednal	variable	variable	ednal	variable	ednal	variable	equal	ednal	variable	variable
volume	ednal	variable	ednal	variable	ednal	variable	ednal	ednal	variable	variable	ednal	variable	equal	variable
$oldsymbol{\Sigma}_k$ C&G	$\alpha m{I}$	$lpha_k m{I}$	$\Delta \Delta$	$lpha_k \mathbf{A}$	$lpha oldsymbol{\Lambda}_k$	$lpha_k \mathbf{\Lambda}_k$	$lpha oldsymbol{Q} oldsymbol{V} oldsymbol{Q}$	$lpha oldsymbol{Q} oldsymbol{\Lambda}_k oldsymbol{Q}^{ op}$	$lpha_k oldsymbol{Q} oldsymbol{\Lambda} oldsymbol{Q}^{ op}$	$lpha_k oldsymbol{Q} oldsymbol{\Lambda}_k oldsymbol{Q}^ op$	$lpha oldsymbol{Q}_k oldsymbol{\Lambda} oldsymbol{Q}_k^ op$	$lpha_k oldsymbol{Q}_k oldsymbol{\Lambda} oldsymbol{Q}_k^{ op}$	$lpha oldsymbol{Q}_k oldsymbol{\Lambda}_k oldsymbol{Q}_k^ op$	$lpha_k oldsymbol{Q}_k oldsymbol{\Lambda}_k oldsymbol{Q}_k^ op$
Model	EII	VII	EEI	VEI	EVI	VVI	EEE	EVE	VEE	VVE	EEV	VEV	EVV	VVV

Chapter 2

placeholder

placeholder

6 placeholder

Bibliography

- Bar, F. and H. Meier (2001). Title of the article. Journal where the article has been published volume of the journal, 12–77.
- Hampel, F. R. (1985). The breakdown points of the mean combined with some rejection rules. *Technometrics* 27(2), 95–107.
- Stahel, W. and S. Weisberg (1991). Directions in Robust Statistics and Diagnostics, 2 vol. N. Y.: Springer-Verlag.

8 BIBLIOGRAPHY

Declaration of Originality

The signed declaration of originality is a component of every semester paper, Bachelor's thesis, Master's thesis and any other degree paper undertaken during the course of studies, including the respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their courses.

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it in my own words. Parts excepted are corrections of form and content by the supervisor .

supervisor.							
Title of work (in block letters):							
Authored by (in block letters): For papers written by groups the names	of all authors are required.						
Name(s):	First name(s):						
Muster	Student						
With my signature I confirm that • I have committed none of the information sheet.	forms of plagiarism described in the Citation etiquette						
 I have documented all methods I have not manipulated any dat	하는 그 이 전에 마음이 하면 하는 것이 없는 사람들이 되었다. 그 사람들이 얼마를 하는 것이 되었다.						
 I have mentioned all persons where I am aware that the work may	no were significant facilitators of the work. be screened electronically for plagiarism. d the guidelines in the document <i>Scientific Works in</i>						
Place, date:	Signature(s):						
Zunich August 19th 2	009 bla						

For papers written by groups the names of all authors are required. Their signatures collectively guarantee the entire content of the written paper.