

Oxford Cambridge and RSA Examinations

General Certificate of Secondary Education

Mathematics C (Graduated Assessment) HIGHER TIER TERMINAL PAPER – SECTION B

1966/2343B (H)

Specimen Paper 2003

Additional materials:

Tracing paper Geometrical instruments Scientific or Graphical Calculator

Candidate Name	Centre Number		Candidate Number	

INSTRUCTIONS TO CANDIDATES

- Write your name, Centre number and candidate number in the boxes above.
- Answer all the questions.
- Write your answers, in blue or black ink, in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- There is a space after most questions. Use it to do your working. In many questions marks will be given for correct working even if the answer is incorrect.

INFORMATION FOR CANDIDATES

- You are expected to use a calculator in Section B of this paper.
- The number of marks is given in brackets [] at the end of each question or part question.
- The total mark available for this Section is 50.

For Examiners' Use			
Section B			

FORMULA SHEET: HIGHER TIER

Volume of prism = (area of cross section) \times length

In any triangle ABC

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Area of triangle =
$$\frac{1}{2}ab \sin C$$

Volume of sphere = $\frac{4}{3}\pi r^3$

Surface area of sphere =
$$4 \pi r^2$$

Volume of cone = $\frac{1}{3}\pi r^2 h$

Curved surface area of cone = πrl

The Quadratic Equation

The solution of
$$ax^2 + bx + c = 0$$
 where $a \ne 0$, area given by $x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$

13 (a) Calculate $100 - \sqrt{5 \times 5.12 - 9.6}$.

(a) ______ [1]

(b) Calculate the following.

The sum of the cube of 12.5 and the square of 4.5 is divided by the difference between 2.54 and the reciprocal of 2.5

14 The equation $x^3 - 2x - 1 = 0$ has a solution between 1 and 2.

Use trial and improvement to find the solution correct to two decimal places. You must show your trials.

$$x = \underline{\qquad \qquad [4]}$$

The diagram shows the end, ABCD, of a shed. The shed is standing on horizontal ground.

(a) Calculate the area of ABCD.

(a)	m^2	[6]

(b) Calculate the angle CD makes with the horizontal.

16	The	rate of in	vested some money in a savir nterest was fixed at 7% per an added at the end of each year.	num.			
			the third year there was £36				
	How	much d	id Mrs Bates invest?				
					£	3	[3]
17	(a)		ars ago the population of Japa pulation is now 1.1983×10^8 .	an was 1.15×10^8 .			
		Calcula	nte the percentage increase in	the population.			
					(a)		[2]
	(b)	The tab	ble shows the populations of t	hree countries.			
			Country	Population			
			France	6·12×10 ⁷			
			Finland	7·24×10 ⁶			
			U.S.A.	2·16×10 ⁸			
			Calculate the total population Give your answer to a reasona				
					(b)(i)		[2]
		(ii) T	The area of France is 213 000	square miles.	. , , ,	_	
		(Calculate the average number	of people per square i	mile in France.		
					(ii)		[2]

18 The diagram shows a vertical flagpole of height *h* metres, standing on horizontal ground.

Calculate the height, h, of the flagpole.

h =	m	[5]
	5	

The table shows the distribution of the ages, x years, of 100 passengers on a flight from Heathrow airport.

Age (x years)	Number of	
	passengers	
$0 \leq x \leq 20$	14	
$20 \le x < 40$	24	
$40 \le x < 50$	36	
$50 \le x < 60$	21	
$60 \le x < 70$	5	
$70 \le x$	0	

Draw a histogram to illustrate these data.

Mark and label the scale on the vertical axis.

[4]

20 Simplify $\frac{3x^2-5x-2}{3x^2-12}$.

A driving test examiner knows from experience that, if learners have lessons with a driving school, the probability they will pass the test is 0.6. Otherwise the probability they will pass the test is 0.1.

80% of those she examines have had lessons with a driving school.

(a) Show clearly that the probability a learner driver, chosen at random, will pass the test is 0.5.

[2]

(b) The examiner tests three learner drivers.

Calculate the probability that exactly one of these passes the test.

22 In an experiment, it is thought that x and y are connected by a formula of the type

$$y = \frac{a}{x^2} + b$$
.

Some values of *x* and *y* are given in the following table.

x	1	2	3
y	21	$7\frac{1}{2}$	5

By drawing a suitable graph, find the values of a and b.

[2]

$$a =$$
_____ [1]

$$b =$$
 [1]

4

23 An American medical college keeps a record of the number of applications it receives each year.

It has a target of 350 applications per year.

This diagram shows the number of applications above or below the target.

(a) Use the diagram to complete these statements.

The **next** year that applications will begin increasing will be _____ [1]

The **next** year that applications will be greater than the target will be _____ [1]

The expected number of applications in the year 2001 is _____ [1]

(b) The data can be modelled as

$$n = -p\cos(qt)$$

where n = the number of applications,

t = the time in years, with 1990 as year 0,

and p and q are constants.

Find approximate values for p and q.

(b)
$$p =$$
______ [1]

$$q = \underline{\hspace{1cm}}$$
 [1]