Large Language Models

Scaling Laws

ELL881 - AIL821

Sourish Dasgupta

Assistant Professor, DA-IICT, Gandhinagar https://daiict.ac.in/faculty/sourish-dasgupta

LLMs: Scaling Laws

Kaplan Scaling Laws at a glance:

	Power Law	Scale (tokenization-dependent)		
ĺ	$\alpha_N = 0.076$	$N_{\rm c} = 8.8 \times 10^{13} \ {\rm params} \ ({\rm non\text{-}embed})$		
ĺ	$\alpha_D = 0.095$	$D_c = 5.4 \times 10^{13}$ tokens		
_	$\alpha_C = 0.057$	$C_c = 1.6 \times 10^7 \text{ PF-days}$		
	$\alpha_C^{\rm min} = 0.050$	$C_{\rm c}^{ m min}=3.1 imes10^{8}$ PF-days		
=	$\alpha_B = 0.21$	$B_* = 2.1 \times 10^8$ tokens		
-	$\alpha_S = 0.76$	$S_{\rm c}=2.1 \times 10^3 { m steps}$		

					10.001
Parameters	Data	Compute	Batch Size	Equation	$\alpha_C^{\min} = 0.050$
N	∞	∞	Fixed	$L(N) = (N_c/N)^{-1}$	$\alpha_B = 0.21$
∞	D	Early Stop	Fixed	$L\left(D\right) = \left(D_{c}/D\right)^{\alpha_{D}} \qquad \alpha_{S} = 0.76$	
Optimal	∞	C	Fixed	$L(C) = (C_{\rm c}/C)^{\alpha_C}$ (naive)	
$N_{ m opt}$	$D_{ m opt}$	C_{\min}	$B \ll B_{\rm crit}$	$L\left(C_{\min}\right) = \left(C_{\text{c}}^{\min}/C_{\min}\right)^{\alpha_C^{\min}}$	
N	D	Early Stop	Fixed	$L(N, D) = \left[\left(\frac{N_c}{N} \right)^{\frac{\alpha_N}{\alpha_D}} + \frac{D_c}{D} \right]$	ap
N	∞	S steps	В	$L(N,S) = \left(\frac{N_c}{N}\right)^{\alpha_N} + \left(\frac{1}{S_{\min}}\right)^{\alpha_N}$	$\frac{S_c}{n(S,B)}$

Is there any other alternative law?

Turns out there is!

Chinchilla (Hoffman) Scaling Law

The Chinchilla (Hoffman) Scaling Law

Loss
$$(N_T, D) = \frac{N_c}{N_T^{\alpha}} + \frac{D_c}{D^{\beta}} + E$$
 $L(N, D) = 1.69 + \frac{406.4}{N^{0.34}} + \frac{410.7}{D^{0.28}}$

$$N_{opt}(C) = G(C/6)^{a} \quad D_{opt}(C) = G^{-1}(C/6)^{b}$$
 where
$$G = \left(\frac{\alpha A}{\beta B}\right)^{\frac{1}{\alpha + \beta}} \quad a = \frac{\beta}{\alpha + \beta} \quad b = \frac{\alpha}{\alpha + \beta}$$

Fitting the constants, yields: $\alpha pprox \beta$

i.e. equal scaling of N and D.

Sourish Dasgupta

Chinchilla Scaling Law vs. Kaplan Scaling Law

Chinchilla: $N_T^* \propto C_T^{0.50}$.

• if model increases 8x, dataset must increase 5x

VS.

Fitting the constants, yields: lphapproxeta

i.e. equal scaling of N and D.

$$N_T = N_E + N_{\setminus E},$$

$$N_E = (h + v)d,$$

$$C_T = 6N_T D = 6(N_E + N_{\setminus E})D,$$

$$E+N_{\setminus E}, \qquad C_T=6N_TD=0$$
 $C_{\setminus E}=6N_{\setminus E}D.$

The (revised) Chinchilla Scaling Law

$$L(N, D) = 1.82 + \frac{514.0}{N^{0.35}} + \frac{2115.2}{D^{0.37}}$$

$$L(N,D) = 1.69 + \underbrace{\frac{406.4}{N^{0.34}} + \underbrace{\frac{410.7}{D^{0.28}}}_{}^{}$$

Is it a problem with our point-of-view?

LLMs "seems" to get more intelligent with the following:

Motivation: Not all metrics score same (Emergence Score)

Is your accuracy metric non-linear or discontinuous?

Power Law in play!

$$\mathcal{L}_{CE}(N) = \left(\frac{N}{c}\right)^{t} = -\log \hat{p}_{v^*}(N)$$

$$\hat{p}_{v^*}(N) = \exp\left(-(N/c)^{\alpha}\right)$$

Problem with Non-linear Measure: Eg.: Exact string match

if all K+1 digits in model's output are correct otherwise

$$\hat{p}_{v^*}(N) = \exp\left(-(N/c)^{\alpha}\right)$$

Accuracy(N) $\approx p_N(\text{single token correct})^{\text{num. of tokens}}$

Sourish Dasgupta

Change of perspective: Measure: Edit distance

- 1 if all K+1 digits in model's output are correct
- O otherwise

$$\hat{p}_{v^*}(N) = \exp\left(-(N/c)^{\alpha}\right)$$

Edit Distance(N)
$$\approx L \left(1 - p_N(\text{single token correct})\right)$$

Problem with **Discontinuous** Measure: Eg.: MCG

Task: Choose one of two

- if highest probability mass on correct option
- otherwise

$$\hat{p}_{v^*}(N) = \exp\left(-(N/c)^{\alpha}\right)$$

Change of perspective: Measure: Brier Score

Task: Choose one of two

- 1 if all K+1 digits in model's output are correct
- O otherwise

$$\hat{p}_{v^*}(N) = \exp\left(-(N/c)^{\alpha}\right)$$

Brier Score = (1 - probability mass on correct option)²

Prediction: Power Law ys. Near-Linear counterpart

Results on GPT3.5/3: Task: 2-digit integer multiplication

Does the claim work for Google BIG-BENCH benchmark?

Key Takeaways

- Want to predict without the theatrics? Choose a <u>metric that's "soft"</u>
 (in the continuous sense)
- There's <u>no sudden jump</u> in reality ("most" can be predicted on a near-linear scale)
- Do we really need the power law of scale? Maybe not!

