$$\int_0^a \frac{1}{x^p} dx \frac{\text{convg. } p < 1}{\text{divg. } p \ge 1}$$
 (1)

$$\int_{0}^{a} \frac{1}{x^{P}} dx \frac{\text{convg. } p < 1}{\text{divg. } p \ge 1}$$

$$\int_{1}^{\infty} \frac{1}{x^{P}} dx \frac{\text{convg. } p > 1}{\text{divg. } p \le 1}$$
(2)

For $f(x) \leq g(x)$, where 0 < x < m, if $I_f = \int_0^1 f(x) dx$ $I_g = \int_0^1 g(x)$, then; (a) if I_g convg., then I_f is too, and (b) if I_g digv., then I_f is too.

EXAMPLE $\int_0^1 \frac{4+\sin x}{x\sqrt{x}} \ dx \le \int_0^1 \frac{2}{x^{3/2}} \ dx$

EXAMPLE $\int_0^1 \frac{\sin x}{x\sqrt{x}} dx$

$$\sin x \sim x \implies \frac{\sin x}{x\sqrt{x}} \sim \frac{1}{\sqrt{x}}$$

$$\lim_{x \to 0^+} \left(\frac{\sin x}{x\sqrt{x}} \div \frac{1}{\sqrt{x}} \right) = 1$$

EXAMPLE $\int_a^\infty \frac{x \arctan x}{(1+x^2)^2} dx$

 $\arctan x \le \pi/2 \text{ as } x \to \infty.$

$$\int_{a}^{\infty} \frac{x \arctan x}{(1+x^{2})^{2}} dx \le \frac{\pi}{2} \int_{a}^{\infty} \frac{x}{(1+x^{2})^{2}} dx$$
$$= \frac{\pi}{2} \int_{0}^{\infty} \frac{0.5 d(1+x^{2})}{(1+x^{2})^{2}}$$
$$\Rightarrow \text{ convg.}$$

Knowing that it is convergent, we can evaluate it with integration by parts; $u = \arctan x$

EXAMPLE $\int_{\pi/2}^{\pi} \frac{1}{\sin x} \ dx$

$$\int_{\pi/2}^{\pi} \frac{1}{\sin x} dx = \begin{pmatrix} x = \pi - t & x = \pi \implies t = 0 \\ dx = -dt & x = \frac{\pi}{2} \implies t = \frac{\pi}{2} \end{pmatrix}$$
$$= -\int_{\frac{\pi}{2}}^{\pi} \frac{1}{\sin t} dt = \int_{0}^{\frac{\pi}{2}} \frac{1}{\sin t} dt$$
$$\frac{1}{\sin t} \sim \frac{1}{t} \text{ when } t \to 0^{+}$$
$$\therefore \text{ divergent by comparison.}$$