

Aprendizaje Autónomo (AA) Individual

Unidad 1

Tema:

Primer acercamiento a la construcción de algoritmos con estructuras secuenciales en pseudocódigo.

Docente:

Dr. Lopez Faican Lissette Geoconda

Carrera:

Computación

Estudiante Responsable:

Angulo Torres Yimmy Onner

Curso:

Primer Ciclo

Fecha:

15-10-2025

Asignatura:

Teoría de la Programación

Objetivo de la práctica:

Familiarizar al estudiante con la herramienta PSeInt y desarrollar su primer algoritmo en pseudocódigo, aplicando estructuras secuenciales básicas.

Análisis del Problema:

Enunciado del Ejercicio:

Un estudiante desea calcular su Índice de Masa Corporal (IMC) para saber si su peso está dentro de lo normal.

El IMC se calcula con la siguiente fórmula: $imc = \frac{Peso}{(Altura)^2}$

Datos de Entrada:

- > El peso (kg).
- La altura (m).

Proceso:

Salida:

> El valor del imc de la persona.

Desarrollo del Algoritmo:

```
Algoritmo sin_titulo
 2
        //Declaracion de Variables
 3
        Definir peso Como Real;
        Definir altura Como Real;
        Definir imc Como Real;
        //Entrada de datos
        Escribir "Ingrese su peso especifico (en kg):";
        Escribir "Ingrese su altura especifica (en m)";
11
12
        Leer altura;
13
        //Proceso
14
        imc=peso/(altura) 12;
15
16
        //Salida por pantalla
        Escribir "El valor de indice de Masa Corporal (IMC) es:", imc;
17
18
19
    FinAlgoritmo
20
```

Validación del Algoritmo:

Datos de Entrada		Proceso	Salida
peso	altura	imc=\frac{Peso}{(Altura)^2}	resultado
40	1.78	12.6246	12.6246
70	1.50	31.1111	31.1111
80	1.80	24.6913	24.6913

Reflexión Crítica:

El empleo del **pseudocódigo** favorece la precisión y el orden en la elaboración de programas, al describir de manera secuencial las acciones que debe ejecutar el sistema. Su sintaxis simple y cercana al lenguaje natural facilita el aprendizaje y la adaptación hacia lenguajes de programación más complejos, como Python, C++ o Java. Además, sirve para planificar, evaluar y anticipar errores antes de la codificación, incrementando la eficiencia y la claridad en la resolución de problemas. Asimismo, favorece la colaboración entre programadores y el aprendizaje de los fundamentos de la programación.