Foundations Test 2

Clark Saben Foundations of Mathematics

April 26, 2023

1

Theorem 1. Given $a \in \mathbb{Z}$, if $5 \mid 2a$ then $5 \mid a$

Proof. Let $a \in \mathbb{Z}$ such that $5 \mid 2a$. This can be written as 2a = 5k for some $k \in \mathbb{Z}$. Now we consider,

$$a = 6a - 4a$$

= $3(2a) - 2(2a)$
= $3(5k) - 2(5k)$ Using hypothesis
= $5(3k - 2k)$

Since $3k - 2k \in \mathbb{Z}$, this implies that $5 \mid a$.

Theorem 3. For all $n \in \mathbb{N}, 1 \cdot 2 + 2 \cdot 3 + \cdots + n(n+1) = \frac{n(n+1)(n+2)}{3}$

Proof. Let $n \in \mathbb{N}$. We proceed by induction.

Base Case: n = 1

$$1 \cdot 2 = \frac{1(1+1)(1+2)}{3}$$
$$1 \cdot 2 = \frac{1(1+1)(1+2)}{3}$$
$$2 = \frac{1(2)(3)}{3}$$
$$2 = \frac{6}{3}$$
$$2 = 2$$

Inductive Hypothesis: Assume that $1 \cdot 2 + 2 \cdot 3 + \cdots + k(k+1) = \frac{k(k+1)(k+2)}{3}$ for some integer k. Inductive Step: We must show that $1 \cdot 2 + 2 \cdot 3 + \cdots + k(k+1) + (k+1)(k+2) = \frac{(k+1)(k+2)(k+3)}{3}$. This can be simplified on the right hand side such that it can be restated as,

$$1 \cdot 2 + 2 \cdot 3 + \dots + k(k+1) + (k+1)(k+2) = \frac{k(k+1)(k+2)}{3}$$

$$= \frac{(k^2 + 2k + k + 2)(k+3)}{3}$$

$$= \frac{k^3 + 3k^2 + 2k^2 + 6k + k^2 + 3k + 2k + 6}{3}$$

$$= \frac{k^3 + 6k^2 + 11k + 6}{3}$$

We begin by adding (k+1)(k+2) to both sides of the equation in the inductive hypothesis to get $1 \cdot 2 + 2 \cdot 3 + \cdots + k(k+1) + (k+1)(k+2) = \frac{k(k+1)(k+2)}{3} + (k+1)(k+2)$. It can be then shown that,

$$1 \cdot 2 + 2 \cdot 3 + \dots + k(k+1) + (k+1)(k+2) = \frac{k(k+1)(k+2)}{3} + (k+1)(k+2)$$

$$= \frac{k(k+1)(k+2) + 3(k+1)(k+2)}{3}$$

$$= \frac{(k^2 + k)(k+2) + 3(k^2 + 3k + 2)}{3}$$

$$= \frac{k^3 + 2k^2 + k^2 + 2k + 3k^2 + 9k + 6}{3}$$

$$= \frac{k^3 + 3k^2 + 2k + 3k^2 + 9k + 6}{3}$$

$$= \frac{k^3 + 6k^2 + 11k + 6}{3}$$

This is the same as the equation we got in the inductive step. Therefore, by process of induction, for all $n \in \mathbb{N}$, $1 \cdot 2 + 2 \cdot 3 + \cdots + n(n+1) = \frac{n(n+1)(n+2)}{3}$.

Theorem 4. Let $a, b, c \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $a \equiv_n b$ then $ac \equiv_n bc$

Proof. Let $a, b, c \in \mathbb{Z}$ and $n \in \mathbb{N}$. Let $a \equiv_n b$. Then by definition 7.79 there exists an integer k such that a - b = nk. It can be shown that by multiplying each side of the equation by c that ac - bc = nkc. Since kc is an integer, $ac \equiv_n bc$ by definition 7.79.

2

Theorem 5. For all integers $n \ge 0, 24 \mid (5^{2n} - 1)$.

Proof. Let $n \in \mathbb{Z}$ such that $n \geq 0$. We proceed by induction.

Base Case: n = 0

$$5^{2(0)} - 1 = 24k$$
$$5^{0} - 1 = 24k$$
$$1 - 1 = 24k$$
$$0 = 24k$$

which is true for all $k \in \mathbb{Z}$.

Inductive Hypothesis: Assume that $24 \mid (5^{2k} - 1)$ for some integer k. This can be restated as $5^{2k} - 1 = 24k$ for some integer k.

Inductive Step: We must show that $24 \mid (5^{2(k+1)} - 1)$. First, by multiplying each side of the inductive hypothesis by 5^2 we get,

$$5^{2} \cdot (5^{2k} - 1) = 24k \cdot 5^{2}$$
$$5^{2k+2} - 5^{2} = 24k \cdot 5^{2}$$

Secondly, we can then replace 5² with 25 on the left hand side to yield,

$$5^{2k+2} - 25 = 24k \cdot 5^2$$

We then make the -25 into -1-24 which yields,

$$5^{2k+2} - 24 - 1 = 24k \cdot 5^2$$

Next, we add over the -24 from the left hand side to yield,

$$5^{2k+2} - 1 = 24k \cdot 5^2 + 24$$

Finally, factoring out the 24 from the right hand side of the equation yields,

$$5^{2k+2} - 1 = 24(k5^2 + 1)$$

Since $k5^2 + 1$ is an integer, we have shown that $24 \mid (5^{2(k+1)} - 1)$. Therefore, by process of induction, for all integers $n \geq 0, 24 \mid (5^{2n} - 1)$.

Theorem 6. For all integers x, if $x^2 - 6x + 5$ is even, then x is odd.

Proof. Let x be an integer such that $x^2 - 6x + 5$ is even. We proceed by contraposition.

Contrapositive: If x is even, then $x^2 - 6x + 5$ is odd.

Let x be an even integer. Then by definition 2.1 there exists an integer k such that x = 2k. We can then substitute 2k for x in $x^2 - 6x + 5$ to yield,

$$(2k)^{2} - 6(2k) + 5 = 4k^{2} - 12k + 5$$
$$= 2(2k^{2} - 6k + 2) + 1$$

By definition 2.1, $2(2k^2 - 6k + 2)$ is an even integer. Therefore, $x^2 - 6x + 5$ is odd when x is even. Therefore, by contraposition, for all integers x, if $x^2 - 6x + 5$ is even, then x is odd.

Theorem 7. Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $12a \not\equiv_n 12b$ then $a \nmid b$.

Proof. Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. For sake of contradiction, suppose $12a \not\equiv_n 12b$ and $n \mid 12$. By definition 2.1, there exists an integer k such that 12 = nk. By multiplying each side by (a - b) we get,

$$12(a-b) = nk(a-b)$$
$$12a - 12b = n(ka - kb)$$

which is a contradiction because this would mean by definition 7.79 that $12a \equiv_n 12b$. Therefore, if $12a \not\equiv_n 12b$ then $a \nmid b$.

Theorem 8. For all $a, b \in \mathbb{Z}$, if a is even and b is odd, then 6 does not divide $a^2 + b^2$.

Proof. Let $a, b \in \mathbb{Z}$ such that by definition 2.1, there exists an integers k, l such that a = 2k and b = 2l + 1. For the sake of contradiction, suppose that $6 \mid (a^2 + b^2)$. It can be shown that,

$$a^{2} + b^{2} = (2k)^{2} + (2l + 1)^{2}$$
$$= 4k^{2} + 4l^{2} + 4l + 1$$
$$= 2(2k^{2} + 2l^{2} + 2l) + 1$$

where $2k^2 + 2l^2 + 2l$ is an integer. Therefore, by definition 2.1, $a^2 + b^2$ is odd. This would imply that there exists an integer m such that, $(a^2 + b^2) = 6m$, which can be rewritten as,

$$\frac{(a^2+b^2)}{6}=m$$

Since $a^2 + b^2$ is odd, this implies m is not an integer, which is a contradiction. Therefore, for all $a, b \in \mathbb{Z}$, if a is even and b is odd, then 6 does not divide $a^2 + b^2$.

4

Theorem 10. If A,B are sets, then $A \cap (B \setminus A) = \emptyset$

Proof. 6. Let A, B be sets.

- 12. Suppose, for the sake of contradiction,
- 3. that $A \cap (B \setminus A) \neq \emptyset$.
- 5. Hence, there exists an $x \in A \cap (B \setminus A)$.

- 9. By the definition of intersection,
- 1. $x \in A$ and $x \in B \setminus A$.
- 7. By the definition of set difference,
- 11. $x \in B$ and $x \notin A$.
- 8. All together, this implies that $x \in A$
- 2. and $x \notin A$,
- 10. which is a contradiction.
- 4. Therefore, $A \cap (B \setminus A) = \emptyset$.