# Impacto de Estações Meteorológicas na Produtividade Agrícola: Uma Aplicação de Diferenças em Diferenças com

Tratamento Escalonado

Daniel Cavalli
Orientador: Prof. Romero Rocha

Instituto de Economia Universidade Federal do Rio de Janeiro

2025

## Sumário

- Introdução
- Revisão da Literatura
- Metodologia
- A Dados
- 6 Resultados
- **6** Testes de Robustez
- Mecanismos e Discussão
- 3 Limitações e Pesquisa Futura
- O Conclusões

## Motivação

- A agricultura brasileira enfrenta o desafio de aumentar a produtividade em contexto de crescente variabilidade climática
- Informação meteorológica precisa emerge como insumo produtivo crítico
- Lacuna na literatura: ausência de evidências causais sobre o impacto econômico da expansão da infraestrutura meteorológica
- Instalação escalonada de estações (2000-2019) oferece experimento natural

#### Questão Central

Qual é o impacto causal da instalação de estações meteorológicas sobre o PIB agropecuário?

# **Objetivos**

## Objetivo Geral:

 Estimar o efeito causal da instalação de estações meteorológicas sobre a produtividade agrícola

## **Objetivos Específicos:**

- 1. Aplicar metodologia adequada para tratamento escalonado
- Quantificar o retorno econômico da infraestrutura
- 3. Analisar a dinâmica temporal dos efeitos
- 4. Validar robustez dos resultados

# Contribuição Principal

Primeira evidência causal rigorosa do impacto econômico de estações meteorológicas na agricultura brasileira

# Canais de Impacto da Informação Meteorológica

#### Literatura Internacional:

- Mavi & Tupper (2004): três dimensões de impacto
  - Planejamento estratégico
  - Decisões táticas
  - Resiliência sistêmica
- Weiss (2000): ajustes finos nas práticas
- Rijks (2000): ganhos econômicos potenciais

#### Contexto Brasileiro:

- Monteiro (2009): oscilações meteorológicas determinam produção
- Carvalho et al. (2015): impacto climático na cana-de-açúcar
- Vianna & Sentelhas (2016): otimização via modelos agrometeorológicos

## Gap Identificado

Estudos existentes são predominantemente descritivos ou baseados em correlações

### O Problema do DiD Tradicional com Tratamento Escalonado

### Two-Way Fixed Effects (TWFE) tradicional:

$$Y_{it} = \alpha_i + \lambda_t + \beta D_{it} + \epsilon_{it}$$

#### Problemas identificados:

- Usa unidades já tratadas como controles
- Confunde efeitos heterogêneos no tempo
- Pode gerar pesos negativos
- Estimativas potencialmente enviesadas



Figura: Tratamento Escalonado

## Solução

Metodologia de Callaway & Sant'Anna (2021) para DiD com múltiplos períodos

# Arcabouço de Callaway & Sant'Anna (2021)

## Abordagem em três etapas:

- 1. Estimação de ATT(g,t)
  - ullet Efeito para grupo g no período t
  - Comparação com unidades ainda não tratadas

## 2. Agregação dos efeitos

- Efeito médio geral:  $\theta_{sel}^{O}$
- Event study:  $\theta_{es}^{bal}(e)$

#### 3. Inferência robusta

- Bootstrap multiplicativo
- Clustering ao nível da microrregião

## **Estimador Doubly Robust**

Combina modelagem do resultado e ponderação por probabilidade inversa, permanecendo consistente se pelo menos um modelo estiver correto

# Estratégia de Identificação

### Definição do Tratamento:

- Instalação da primeira estação meteorológica automática na microrregião
- $G_i$  = ano da primeira estação
- $G_i = 0$  se nunca tratada

## Variável Dependente:

$$Y_{it} = \ln(1 + \mathsf{PIB}\_\mathsf{Agro}_{it})$$

#### Covariáveis:

- Log da área plantada
- Log da população
- Log do PIB per capita
- Log da densidade estadual de estações

## Grupo de Controle:

- "Not-yet-treated"
- Maximiza eficiência estatística

## Pressuposto Central

Tendências paralelas condicionais entre tratados e controles

# Por que Cana-de-Açúcar?

#### Relevância Econômica:

- 3º maior produtor mundial
- Presente em 490 microrregiões
- R\$ 52 bilhões em valor de produção (2023)

#### Características Técnicas:

- Alta sensibilidade climática
- Ciclo produtivo longo (12-18 meses)
- Janelas críticas de plantio/colheita

### Vantagens Metodológicas:

- Dados completos e confiáveis
- Produção contínua no período
- Distribuição geográfica ampla
- Variação temporal na adoção de estações

## **Implicação**

Cultura ideal para identificar impactos de informação meteorológica

# Construção do Dataset

#### Fontes de Dados:

- INMET: 610 estações meteorológicas
- IBGE: PIB municipal e população
- PAM-IBGE: produção de cana-de-açúcar
- Período: 2003-2023

#### Unidade de Análise:

- Microrregiões (490 produtoras)
- Agregação de dados municipais
- Painel balanceado: 10.290 obs



Figura: Distribuição Temporal do Tratamento

## **Transparência**

Código completo disponível em: github.com/danielcavalli/tcc-ie-ufrj-2024

# Resultado Principal

$$ATT = 0.082 (8,2\%)$$

EP = 0.032, p = 0.0103 IC 95%: [0.0194; 0.1448]

| Especificação   | ATT   | P-valor |
|-----------------|-------|---------|
| Doubly Robust   | 0,082 | 0,010   |
| IPW             | 0,094 | 0,003   |
| Regression      | 0,066 | 0,030   |
| Sem covariáveis | 0,110 | 0,000   |
| Never-treated   | 0,080 | 0,026   |

#### Interpretação:

- Aumento de 8,2% no PIB agropecuário
- Equivalente a 2+ anos de crescimento típico
- Robusto a diferentes especificações
- Economicamente significativo

## **Implicação**

Retorno econômico supera amplamente os custos de instalação (R\$ 223 mil/estação)

# Magnitude Econômica do Impacto

## Impacto por Microrregião:

- PIB agro médio: R\$ 580 milhões/ano
- Ganho de 8,2%: R\$ 47,6 milhões/ano
- Payback: < 6 meses</li>

#### Projeção Nacional:

- 351 microrregiões tratadas
- Ganho agregado: R\$ 16,7 bilhões/ano
- 139 microrregiões sem estações
- Potencial não realizado: R\$ 6,6 bilhões/ano

#### Análise Custo-Benefício

- Custo médio por estação: R\$ 223 mil
- Retorno anual: R\$ 47,6 milhões
- Taxa de retorno: 213x ao ano

#### Conclusão

Subinvestimento histórico representa oportunidade perdida de R\$ 6,6 bilhões anuais

# Event Study - Dinâmica Temporal

#### Event Study: Impacto das Estações Meteorológicas no PIB Agropecuário

Efeito ao longo do tempo relativo à instalação



# Tendências Paralelas - Validação Visual

#### Parallel Trends and Treatment Effects: Agricultural GDP

Evolution by adoption cohort (normalized at t=-1)



#### Testes Placebo

## 3. Randomização Múltipla:

## 1. PIB Não-Agropecuário:

- ATT = 0.015 (p = 0.427)
- Não significativo
- Confirma especificidade setorial

## 2. Randomização Única:

- ATT = -0.024 (p = 0.485)
- Tratamento aleatório não gera efeitos



- 50 simulações
- P-valor empírico < 0,01</li>

#### Conclusão

## Análise de Sensibilidade



#### Mecanismos de Transmissão

#### Canais identificados na literatura:

- 1. Otimização do calendário agrícola
  - Timing de plantio e colheita
  - Baseado em previsões precisas
- 2. Gestão hídrica eficiente
  - Ajuste de irrigação
  - Redução de desperdício
- 3. Redução de perdas
  - Antecipação a eventos extremos
  - Medidas preventivas

#### Processo de Difusão

- Aprendizado gradual
- Integração às decisões
- Ffeitos de rede

#### **Evidência**

Padrão temporal consistente com adaptação tecnológica

# Implicações para Políticas Públicas

#### **Contexto Atual:**

- Dez/2024: MAPA anuncia R\$ 49 milhões
- 220 novas estações
- R\$ 223 mil/estação

#### Nossa Evidência:

- Retorno de 8,2% no PIB agro
- Benefícios superam custos
- 29% das microrregiões sem estações

## Recomendações:

- 1. Expansão estratégica
  - Priorizar áreas não cobertas
  - Foco em regiões produtoras

## 2. Integração de dados

- Sistemas como AGRITEMPO
- Acesso facilitado

## 3. Capacitação

- Uso efetivo das informações
- Assistência técnica

# Urgência

Atrasos na implementação representam perdas econômicas significativas

# Limitações do Estudo

## Limitações Identificadas:

- 1. Desbalanceamento de covariáveis
  - Mitigado pelo DR
  - Diferenças observáveis
- 2. Composição dos pesos
  - Coortes iniciais: 50.8%
  - Sem dominância extrema
- 3. Heterogeneidade não observada
  - Tamanho de propriedade
  - Nível educacional

#### Direções Futuras:

- 1. Modelagem espacial
  - Spillovers explícitos
  - Dependência espacial
- 2. Dados de alta frequência
  - Mensais/trimestrais
  - Eventos climáticos
- 3. Análise por cultura
  - Impactos diferenciados
  - Outras culturas além da cana

# Apesar das Limitações

Resultados robustos fornecem primeira evidência causal rigorosa

# Conclusões Principais

#### 1. Evidência Causal Pioneira

- Primeira quantificação rigorosa do impacto
- ATT = 8.2% (p = 0.010)
- Efeito economicamente significativo

### 2. Validação Metodológica

- Superioridade do DiD escalonado
- Importância de métodos adequados
- Modelo para futuras aplicações

#### 3. Implicações Práticas

- Justifica expansão da rede
- Alternativa à expansão da fronteira agrícola
- Estratégia de adaptação climática

## Mensagem Final

Investimento em informação meteorológica é estratégia custo-efetiva para aumentar produtividade agrícola sustentavelmente

## Referências Principais I

- CALLAWAY, B.; SANT'ANNA, P. H. Difference-in-differences with multiple time periods. *Journal of Econometrics*, v. 225, n. 2, p. 200-230, 2021.
- GOODMAN-BACON, A. Difference-in-differences with variation in treatment timing. Journal of Econometrics, v. 225, n. 2, p. 254-277, 2021.
- MAVI, H. S.; TUPPER, G. J. Agrometeorology: principles and applications of climate studies in agriculture. CRC Press, 2004.
- MONTEIRO, J. E. (Ed.). Agrometeorologia dos cultivos: o fator meteorológico na produção agrícola. Brasília: INMET, 2009.
- SANT'ANNA, P. H.; ZHAO, J. Doubly robust difference-in-differences estimators. Journal of Econometrics, v. 219, n. 1, p. 101-122, 2020.
- SUN, L.; ABRAHAM, S. Estimating dynamic treatment effects in event studies with heterogeneous treatment effects. *Journal of Econometrics*, v. 225, n. 2, p. 175-199, 2021.

# Obrigado!

Daniel Cavalli daniel.cavalli@ie.ufrj.br

Código disponível em: github.com/danielcavalli/tcc-ie-ufrj-2024

## Backup: Análise de Poder Estatístico





Linha vermelha = efeito observado (8.3%); Linha cinza = poder de 80%

• Para o efeito de 8,2%: poder de 92,1% ( $\alpha = 0.05$ )

# Backup: Processo de Integração dos Dados

#### Fontes de Dados:

- INMET: 610 estações meteorológicas
- IBGE: PIB municipal e população
- PAM-IBGE: Produção agrícola detalhada

#### Plataforma de Integração:

- Google BigQuery + basedosdados
- Acesso unificado às bases públicas
- SQL otimizado para grandes volumes

### Pipeline de Processamento:

- 1. Extração via API Python
- 2. Agregação município → microrregião
- 3. Validação cruzada de mapeamentos
- 4. Tratamento de dados faltantes
- 5. Construção do painel balanceado

#### **Dataset Final**

490 microrregiões  $\times$  21 anos = 10.290 obs 0% de valores faltantes

# Backup: Heterogeneidade Regional

| Região       | ATT      | EP      | N Tratadas |
|--------------|----------|---------|------------|
| Norte        | 0,095    | (0,041) | 8          |
| Nordeste     | 0,076**  | (0,035) | 45         |
| Centro-Oeste | 0,091*** | (0,028) | 22         |
| Sudeste      | 0,083*** | (0,024) | 48         |
| Sul          | 0,089**  | (0,038) | 8          |

- Efeitos positivos em todas as regiões
- Magnitude similar (7,6% a 9,5%)
- Maior precisão em regiões com mais observações
- Sugere validade externa dos resultados

# Backup: Detalhes da Implementação Computacional

#### Software e Pacotes:

- R 4.5.0 + pacote did v2.1.2
- Python 3.11 + basedosdados
- Google BigQuery API
- Sistema renv para reprodutibilidade

#### Especificações Técnicas:

- Bootstrap: 1.000 replicações
- Clustering: nível microrregião
- Inferência: bandas uniformes.

#### Escolhas Metodológicas:

- Estimador: Doubly Robust
- Controle: not-yet-treated
- Covariáveis: pré-tratamento
- Agregação: balanceada (event study)

#### Validações:

- Convergência do bootstrap
- Estabilidade numérica
- Sensibilidade a outliers