Maximum Depth of Biriary Tree

Maximum Ferm & Durey We
Ley Edec;
The maxemum depth is simply:
max depth = 1 + max (depth of left white, depth of right subtree, If the node is null, the depth is o. Otherwise, recursively calculate depths for left and right subtrees.
If the node is null the depth is O.
Otherwise, recursively calculate depths for left and right subtrees.
Approaches:
1. Recursive DFS (Top-down):
· Base case: if soof is mull, setuen o.
· Recursively compute depths of left and right subtrees.
· Pecursively compute depths of left and right subtrees. · Return 1+ max (left Depth, right Depth). 2. Iterative BFS (Level order):
2. Iterative BFS (Level order):
Traverse level by level using a queue.
· Count levels until quau is empty.
· Depth = number of levels.
,
(Complicity) Vine: D(N) - visit each node once.
· Vine: D(N) - visit each node once.
· frace. O(H) for recursion (H=height) or O(N) for BFS queue
(worst cox).