COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor Lecture 17

SUMMARY

Last Class: Low-Rank Approximation, Eigendecomposition, PCA

- For any symmetric square matrix A, we can write $A = V\Lambda V^T$ where columns of V are orthonormal eigenvectors.
- Can approximate data lying close to in a k-dimensional subspace by projecting data points into that space.
- Can find the best k-dimensional subspace via eigendecomposition applied to $\mathbf{X}^T\mathbf{X}$ (PCA).
- Measuring error in terms of the eigenvalue spectrum.

This Class: SVD and Applications

- SVD and connection to eigenvalue value decomposition.
- Applications of low-rank approximation beyond compression.

1

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices.

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with rank $(\mathbf{X}) = r$ can be written as $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$.

- **U** has orthonormal columns $\vec{u}_1, \ldots, \vec{u}_r \in \mathbb{R}^n$ (left singular vectors).
- **V** has orthonormal columns $\vec{v}_1, \dots, \vec{v}_r \in \mathbb{R}^d$ (right singular vectors).
- Σ is diagonal with elements $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$ (singular values).

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with rank $(\mathbf{X}) = r$ can be written as $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$.

- **U** has orthonormal columns $\vec{u}_1, \dots, \vec{u}_r \in \mathbb{R}^n$ (left singular vectors).
- **V** has orthonormal columns $\vec{v}_1, \dots, \vec{v}_r \in \mathbb{R}^d$ (right singular vectors).
- Σ is diagonal with elements $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$ (singular values).

The Singular Value Decomposition (SVD) generalizes the eigendecomposition to asymmetric (even rectangular) matrices. Any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ with rank $(\mathbf{X}) = r$ can be written as $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$.

- **U** has orthonormal columns $\vec{u}_1, \dots, \vec{u}_r \in \mathbb{R}^n$ (left singular vectors).
- **V** has orthonormal columns $\vec{v}_1, \dots, \vec{v}_r \in \mathbb{R}^d$ (right singular vectors).
- Σ is diagonal with elements $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$ (singular values).

The 'swiss army knife' of modern linear algebra.

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$:

$$\mathbf{X}^T\mathbf{X} =$$

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$:

$$\boldsymbol{X}^T\boldsymbol{X} = \boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^T\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T$$

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$:

$$\mathbf{X}^T \mathbf{X} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^T \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T$$

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$:

$$\mathbf{X}^T \mathbf{X} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^T \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T$$
 (the eigendecomposition)

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$:

$$\mathbf{X}^T \mathbf{X} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^T \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T$$
 (the eigendecomposition)

Similarly: $XX^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$.

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$:

$$\mathbf{X}^T \mathbf{X} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^T \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T$$
 (the eigendecomposition)

Similarly:
$$\mathbf{X}\mathbf{X}^T = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T\mathbf{V}\mathbf{\Sigma}\mathbf{U}^T = \mathbf{U}\mathbf{\Sigma}^2\mathbf{U}^T$$
.

The right and left singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^T\mathbf{X}$ and the gram matrix $\mathbf{X}\mathbf{X}^T$ respectively.

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$:

$$\mathbf{X}^T \mathbf{X} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^T \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T$$
 (the eigendecomposition)

Similarly:
$$\mathbf{X}\mathbf{X}^T = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T\mathbf{V}\mathbf{\Sigma}\mathbf{U}^T = \mathbf{U}\mathbf{\Sigma}^2\mathbf{U}^T$$
.

The right and left singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^T\mathbf{X}$ and the gram matrix $\mathbf{X}\mathbf{X}^T$ respectively.

So, letting $\mathbf{V}_k \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_1, \dots, \vec{v}_k$, we know that $\mathbf{X}\mathbf{V}_k\mathbf{V}_k^T$ is the best rank-k approximation to \mathbf{X} (given by PCA).

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$:

$$\mathbf{X}^T \mathbf{X} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^T \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T$$
 (the eigendecomposition)

Similarly: $XX^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$.

The right and left singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^T\mathbf{X}$ and the gram matrix $\mathbf{X}\mathbf{X}^T$ respectively.

So, letting $\mathbf{V}_k \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_1, \dots, \vec{v}_k$, we know that $\mathbf{X}\mathbf{V}_k\mathbf{V}_k^T$ is the best rank-k approximation to \mathbf{X} (given by PCA).

What about $\mathbf{U}_k \mathbf{U}_k^\mathsf{T} \mathbf{X}$ where $\mathbf{U}_k \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_1, \dots, \vec{u}_k$?

Writing $\mathbf{X} \in \mathbb{R}^{n \times d}$ in its singular value decomposition $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$:

$$\mathbf{X}^T \mathbf{X} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^T \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T$$
 (the eigendecomposition)

Similarly: $XX^T = U\Sigma V^T V\Sigma U^T = U\Sigma^2 U^T$.

The right and left singular vectors are the eigenvectors of the covariance matrix $\mathbf{X}^T\mathbf{X}$ and the gram matrix $\mathbf{X}\mathbf{X}^T$ respectively.

So, letting $\mathbf{V}_k \in \mathbb{R}^{d \times k}$ have columns equal to $\vec{v}_1, \dots, \vec{v}_k$, we know that $\mathbf{X}\mathbf{V}_k\mathbf{V}_k^T$ is the best rank-k approximation to \mathbf{X} (given by PCA).

What about $\mathbf{U}_k \mathbf{U}_k^\mathsf{T} \mathbf{X}$ where $\mathbf{U}_k \in \mathbb{R}^{n \times k}$ has columns equal to $\vec{u}_1, \dots, \vec{u}_k$?

Exercise: $\mathbf{U}_k \mathbf{U}_k^T \mathbf{X} = \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^T$

The best low-rank approximation to X:

$$\mathbf{X}_k = \operatorname{arg\,min}_{\operatorname{rank} - k} \, \mathbf{B} \in \mathbb{R}^{n \times d} \, \| \mathbf{X} - \mathbf{B} \|_F$$
 is given by:

$$\mathbf{X}_k = \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T = \mathbf{U}_k \mathbf{U}_k^T \mathbf{X} = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^T$$

The best low-rank approximation to X:

$$\mathbf{X}_k = \operatorname{arg\,min}_{\operatorname{rank} - k} \, \mathbf{B} \in \mathbb{R}^{n \times d} \, \| \mathbf{X} - \mathbf{B} \|_F$$
 is given by:

$$\mathbf{X}_k = \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T = \mathbf{U}_k \mathbf{U}_k^T \mathbf{X} = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^T$$

Correspond to projecting the rows (data points) onto the span of \mathbf{V}_k or the columns (features) onto the span of \mathbf{U}_k

The best low-rank approximation to X:

 $\mathbf{X}_k = \operatorname{arg\,min}_{\operatorname{rank} - k} \, \mathbf{B} \in \mathbb{R}^{n \times d} \, \| \mathbf{X} - \mathbf{B} \|_F$ is given by:

$$\mathbf{X}_k = \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T = \mathbf{U}_k \mathbf{U}_k^T \mathbf{X} = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^T$$

Correspond to projecting the rows (data points) onto the span of V_k or the columns (features) onto the span of U_k

The best low-rank approximation to X:

$$\mathbf{X}_k = \operatorname{arg\,min}_{\operatorname{rank} - k} \, \mathbf{B} \in \mathbb{R}^{n \times d} \, \| \mathbf{X} - \mathbf{B} \|_F$$
 is given by:

$$\mathbf{X}_k = \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T = \mathbf{U}_k \mathbf{U}_k^T \mathbf{X} = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^T$$

Correspond to projecting the rows (data points) onto the span of V_k or the columns (features) onto the span of U_k

The best low-rank approximation to X:

 $\mathbf{X}_k = \operatorname{arg\,min}_{\operatorname{rank} - k} \underset{\mathbf{B} \in \mathbb{R}^{n \times d}}{\operatorname{ln}} \|\mathbf{X} - \mathbf{B}\|_F$ is given by:

$$\mathbf{X}_k = \mathbf{X} \mathbf{V}_k \mathbf{V}_k^T = \mathbf{U}_k \mathbf{U}_k^T \mathbf{X} = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^T$$

Correspond to projecting the rows (data points) onto the span of \mathbf{V}_k or the columns (features) onto the span of \mathbf{U}_k

Л

• Let $\vec{v}_1, \vec{v}_2, \ldots, \in \mathbb{R}^d$ be orthonormal eigenvectors of $\mathbf{X}^T \mathbf{X}$.

- Let $\vec{v}_1, \vec{v}_2, \ldots, \in \mathbb{R}^d$ be orthonormal eigenvectors of $\mathbf{X}^T \mathbf{X}$.
- Let $\sigma_i = \|\mathbf{X}\vec{v}_i\|_2$ and define unit vector $\vec{u}_i = \frac{\mathbf{X}\vec{v}_i}{\sigma_i}$.

- Let $\vec{v}_1, \vec{v}_2, \ldots, \in \mathbb{R}^d$ be orthonormal eigenvectors of $\mathbf{X}^T \mathbf{X}$.
- Let $\sigma_i = \|\mathbf{X}\vec{v}_i\|_2$ and define unit vector $\vec{u}_i = \frac{\mathbf{X}\vec{v}_i}{\sigma_i}$.
- Exercise: Show $\vec{u}_1, \vec{u}_2, \ldots$ are orthonormal.

- Let $\vec{v}_1, \vec{v}_2, \ldots, \in \mathbb{R}^d$ be orthonormal eigenvectors of $\mathbf{X}^T \mathbf{X}$.
- Let $\sigma_i = \|\mathbf{X}\vec{v_i}\|_2$ and define unit vector $\vec{u_i} = \frac{\mathbf{X}\vec{v_i}}{\sigma_i}$.
- Exercise: Show $\vec{u}_1, \vec{u}_2, \dots$ are orthonormal.
- This establishes that $\mathbf{X}\mathbf{V} = \mathbf{U}\mathbf{\Sigma}$ and that \mathbf{V} and \mathbf{U} have the required properties to show $\mathbf{X} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T$.

- Let $\vec{v}_1, \vec{v}_2, \ldots, \in \mathbb{R}^d$ be orthonormal eigenvectors of $\mathbf{X}^T \mathbf{X}$.
- Let $\sigma_i = \|\mathbf{X}\vec{v}_i\|_2$ and define unit vector $\vec{u}_i = \frac{\mathbf{X}\vec{v}_i}{\sigma_i}$.
- Exercise: Show $\vec{u}_1, \vec{u}_2, \dots$ are orthonormal.
- This establishes that XV = UΣ and that V and U have the required properties to show X = UΣV^T.
- To see rest of the details, see https://math.mit.edu/ classes/18.095/2016IAP/lec2/SVD_Notes.pdf

APPLICATIONS OF LOW-RANK APPROXIMATION

Rest of Class: Examples of how low-rank approximation is applied in a variety of data science applications.

APPLICATIONS OF LOW-RANK APPROXIMATION

Rest of Class: Examples of how low-rank approximation is applied in a variety of data science applications.

 Used for many reasons other than dimensionality reduction/data compression.

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix).

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

7

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

X	Movies								
	5			1	4				
Users		3					5		
					4				
		5							5
	1			2					

Solve:
$$\mathbf{Y} = \underset{\text{rank} - k}{\operatorname{arg \, min}} \sum_{\substack{\mathsf{B} \text{ observed } (j,k)}} \left[\mathbf{X}_{j,k} - \mathbf{B}_{j,k} \right]^2$$

Consider a matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ which we cannot fully observe but believe is close to rank-k (i.e., well approximated by a rank k matrix). Classic example: the Netflix prize problem.

Y	Movies									
	4.9	3.1	3	1.1	3.8	4.1	4.1	3.4	4.6	
Users	3.6	3	3	1.2	3.8	4.2	5	3.4	4.8	
	2.8	3	3	2.3	3	3	3	3	3.2	
	3.4	3	3	4	4.1	4.1	4.2	3	3	
	2.8	3	3	2.3	3	3	3	3	3.4	
	2.2	5	3	4	4.2	3.9	4.4	4	5.3	
	1	3.3	3	2.2	3.1	2.9	3.2	1.5	1.8	

Solve:
$$\mathbf{Y} = \underset{\text{rank} - k}{\text{arg min}} \sum_{\substack{\mathsf{B} \text{ observed } (i,k)}} [\mathbf{X}_{j,k} - \mathbf{B}_{j,k}]^2$$

Under certain assumptions, can show that \mathbf{Y} well approximates \mathbf{X} on both the observed and (most importantly) unobserved entries.

ENTITY EMBEDDINGS

Dimensionality reduction embeds d-dimensional vectors into $k \ll d$ dimensions. But what about when you want to embed objects other than vectors?

ENTITY EMBEDDINGS

Dimensionality reduction embeds d-dimensional vectors into $k \ll d$ dimensions. But what about when you want to embed objects other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network

ENTITY EMBEDDINGS

Dimensionality reduction embeds d-dimensional vectors into $k \ll d$ dimensions. But what about when you want to embed objects other than vectors?

- Documents (for topic-based search and classification)
- Words (to identify synonyms, translations, etc.)
- Nodes in a social network

Usual Approach: Convert each item into a high-dimensional feature vector and then apply low-rank approximation.

EXAMPLE: LATENT SEMANTIC ANALYSIS

EXAMPLE: LATENT SEMANTIC ANALYSIS

• If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^T\|_F$ is small, then on average,

$$\mathbf{X}_{i,a} \approx (\mathbf{Y}\mathbf{Z}^T)_{i,a} = \langle \vec{y}_i, \vec{z}_a \rangle.$$

• If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^T\|_F$ is small, then on average,

$$\mathbf{X}_{i,a} \approx (\mathbf{Y}\mathbf{Z}^T)_{i,a} = \langle \vec{y}_i, \vec{z}_a \rangle.$$

• I.e., $\langle \vec{y_i}, \vec{z_a} \rangle \approx 1$ when doc_i contains $word_a$.

• If the error $\|\mathbf{X} - \mathbf{Y}\mathbf{Z}^T\|_F$ is small, then on average,

$$\mathbf{X}_{i,a} pprox (\mathbf{Y}\mathbf{Z}^T)_{i,a} = \langle \vec{y_i}, \vec{z_a} \rangle.$$

- I.e., $\langle \vec{y_i}, \vec{z_a} \rangle \approx 1$ when doc_i contains $word_a$.
- If doc_i and doc_j both contain $word_a$, $\langle \vec{y_i}, \vec{z_a} \rangle \approx \langle \vec{y_j}, \vec{z_a} \rangle \approx 1$.

If doc_i and doc_j both contain $word_a$, $\langle \vec{y_i}, \vec{z_a} \rangle \approx \langle \vec{y_j}, \vec{z_a} \rangle \approx 1$

If doc_i and doc_j both contain $word_a$, $\langle \vec{y_i}, \vec{z_a} \rangle \approx \langle \vec{y_j}, \vec{z_a} \rangle \approx 1$

Another View: Each column of **Y** represents a 'topic'. $\vec{y_i}(j)$ indicates how much doc_i belongs to topic j. $\vec{z_a}(j)$ indicates how much $word_a$ associates with that topic.

• Just like with documents, $\vec{z_a}$ and $\vec{z_b}$ will tend to have high dot product if $word_a$ and $word_b$ appear in many of the same documents.

- Just like with documents, $\vec{z_a}$ and $\vec{z_b}$ will tend to have high dot product if $word_a$ and $word_b$ appear in many of the same documents.
- In an SVD decomposition we set $\mathbf{Z}^T = \mathbf{\Sigma}_k \mathbf{V}_K^T$.
- The columns of V_k are equivalently: the top k eigenvectors of X^TX .

- Just like with documents, $\vec{z_a}$ and $\vec{z_b}$ will tend to have high dot product if $word_a$ and $word_b$ appear in many of the same documents.
- In an SVD decomposition we set $\mathbf{Z}^T = \mathbf{\Sigma}_k \mathbf{V}_K^T$.
- The columns of V_k are equivalently: the top k eigenvectors of X^TX . The eigendecomposition of X^TX is $X^TX = V\Sigma^2V^T$.

- Just like with documents, $\vec{z_a}$ and $\vec{z_b}$ will tend to have high dot product if $word_a$ and $word_b$ appear in many of the same documents.
- In an SVD decomposition we set $\mathbf{Z}^T = \mathbf{\Sigma}_k \mathbf{V}_K^T$.
- The columns of V_k are equivalently: the top k eigenvectors of X^TX . The eigendecomposition of X^TX is $X^TX = V\Sigma^2V^T$.
- The best rank-k approximation of $\mathbf{X}^T\mathbf{X}$ is

$$\underset{\text{rank } -k}{\operatorname{arg \, min}} \|\mathbf{X}^T \mathbf{X} - \mathbf{B}\|_F = \mathbf{V}_k \mathbf{\Sigma}_k^2 \mathbf{V}_k^T = \mathbf{Z} \mathbf{Z}^T$$

LSA gives a way of embedding words into k-dimensional space.

• Embedding is via low-rank approximation of $\mathbf{X}^T\mathbf{X}$: where $(\mathbf{X}^T\mathbf{X})_{a,b}$ is the number of documents that both $word_a$ and $word_b$ appear in.

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of $\mathbf{X}^T\mathbf{X}$: where $(\mathbf{X}^T\mathbf{X})_{a,b}$ is the number of documents that both $word_a$ and $word_b$ appear in.
- Think about $\mathbf{X}^T\mathbf{X}$ as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between $word_a$ and $word_b$.

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of $\mathbf{X}^T\mathbf{X}$: where $(\mathbf{X}^T\mathbf{X})_{a,b}$ is the number of documents that both $word_a$ and $word_b$ appear in.
- Think about $\mathbf{X}^T\mathbf{X}$ as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between $word_a$ and $word_b$.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of w words, in similar positions of documents in different languages, etc.

LSA gives a way of embedding words into k-dimensional space.

- Embedding is via low-rank approximation of $\mathbf{X}^T\mathbf{X}$: where $(\mathbf{X}^T\mathbf{X})_{a,b}$ is the number of documents that both $word_a$ and $word_b$ appear in.
- Think about $\mathbf{X}^T\mathbf{X}$ as a similarity matrix (gram matrix, kernel matrix) with entry (a, b) being the similarity between $word_a$ and $word_b$.
- Many ways to measure similarity: number of sentences both occur in, number of times both appear in the same window of w words, in similar positions of documents in different languages, etc.
- Replacing X^TX with these different metrics (sometimes appropriately transformed) leads to popular word embedding algorithms: word2vec, GloVe, fastText, etc.

Note: word2vec is typically described as a neural-network method, but it is really just low-rank approximation of a specific similarity matrix. *Neural word embedding as implicit matrix factorization*, Levy and Goldberg.