$$a_1(1260)$$

$$I^{G}(J^{PC}) = 1^{-}(1^{++})$$

See also our review under the $a_1(1260)$ in PDG 06, Journal of Physics **G33** 1 (2006).

a₁(1260) MASS

VALUE (MeV)	EVTS		DOCUMENT ID		TECN	COMMENT
1230±40 OUR ESTIMATE						
$1255 \pm 6^{+7}_{-17}$	420k		ALEKSEEV	10	COMP	190 $\pi^- Pb \to \pi^- \pi^- \pi^+ Pb^-$
ullet $ullet$ We do not	use the f	ollov	wing data for av	erage	s, fits, li	mits, etc. • • •
$1243 \pm 12 \pm 20$		1	AUBERT	07 AU	BABR	10.6 $e^+e^- \rightarrow \rho^0 \rho^{\pm} \pi^{\mp} \gamma$
1230-1270	6360	2	LINK	07A	FOCS	$D^0 \rightarrow \pi^-\pi^+\pi^-\pi^+$
1203± 3		3	GOMEZ-DUM.	.04	RVUE	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu_{\tau}$
$1330\!\pm\!24$	90k		SALVINI	04	OBLX	$\overline{p}p \rightarrow 2\pi^+ 2\pi^-$
$1331 \pm 10 \pm 3$	37k	4	ASNER	00	CLE2	10.6 $e^+e^- \to \tau^+\tau^-$,
						$ au^- ightarrow ~\pi^- \pi^0 \pi^0 u_{ au}$
$1255 \pm 7 \pm 6$	5904		ABREU	98G	DLPH	
$1207\pm~5\pm~8$	5904		ABREU	98G	DLPH	e^+e^-
$1196\pm~4\pm~5$	5904	7,8	ABREU	98G	DLPH	e^+e^-
1240 ± 10			BARBERIS	98 B		450 $pp \to p_f \pi^+ \pi^- \pi^0 p_S$
$1262 \pm 9 \pm 7$		5,9	ACKERSTAFF	97 R	OPAL	$E_{\rm cm}^{\it ee}=$ 88–94, $ au ightarrow 3\pi au$
$1210 \pm 7 \pm 2$		6,9	ACKERSTAFF	97R	OPAL	$E_{\mathrm{cm}}^{ee} = 88-94, \ au ightarrow 3\pi \nu$
$1211\pm 7^{+50}_{-0}$		6	ALBRECHT	93 C	ARG	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$
1121± 8			ANDO	92	SPEC	$8 \pi^- p \rightarrow \pi^+ \pi^- \pi^0 n$
1242 ± 37		11	IVANOV	91	RVUE	$\tau \rightarrow \pi^+\pi^+\pi^-\nu$
1260 ± 14		12	IVANOV	91	RVUE	$\tau \rightarrow \pi^+\pi^+\pi^-\nu$
1250± 9		13	IVANOV	91	RVUE	$\tau \rightarrow \pi^{+}\pi^{+}\pi^{-}\nu$
1208 ± 15			ARMSTRONG	90	OMEG	$300.0pp \rightarrow pp\pi^{+}\pi^{-}\pi^{0}$
1220 ± 15			ISGUR	89	RVUE	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$
1260 ± 25		15	BOWLER	88	RVUE	
$1166 \pm 18 \pm 11$			BAND	87	MAC	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$
$1164 \pm 41 \pm 23$			BAND	87	MAC	$ au^+ ightarrow \ \pi^+ \pi^0 \pi^0 u$
1250 ± 40		14	TORNQVIST	87	RVUE	
1046 ± 11			ALBRECHT	86 B	ARG	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$
$1056 \pm 20 \pm 15$			RUCKSTUHL	86	DLCO	
$1194 \pm 14 \pm 10$			SCHMIDKE	86	MRK2	
1255 ± 23		4.0	BELLINI	85	SPEC	40 $\pi^- A \to \pi^- \pi^+ \pi^- A$
1240 ± 80			DANKOWY	81	SPEC	$8.45 \pi^- p \rightarrow n3\pi$
1280 ± 30			DAUM	81 B		63,94 $\pi^- p \rightarrow p3\pi$
1041 ± 13		17	GAVILLET	77	HBC	$4.2 \ K^- p \rightarrow \Sigma 3\pi$
1	_					

 $^{^1\}text{The }\rho^\pm\,\pi^\mp$ state can be also due to the $\pi(1300).$

² Using the Breit-Wigner parameterization; strong correlation between mass and width. ³ Using the data of BARATE 98R. ⁴ From a fit to the 3π mass spectrum including the $K\overline{K}^*(892)$ threshold.

 $^{^{5}}$ Uses the model of KUHN 90.

$a_1(1260)$ WIDTH

VALUE (MeV)			DOCUMENT ID		TECN	COMMENT
250 to 600 OUR I	ESTIM	ATE				
$367 \pm 9^{+}_{-} \begin{array}{c} 28 \\ 25 \end{array}$	420k		ALEKSEEV	10	COMP	190 $\pi^- Pb \to \pi^- \pi^- \pi^+ Pb'$
• • • We do not	use the	e follov	wing data for av	erage	s, fits, li	mits, etc. • • •
410± 31± 30 520-680 480± 20	6360	19	AUBERT LINK GOMEZ-DUM.	07A	FOCS	10.6 $e^{+}e^{-} \rightarrow \rho^{0} \rho^{\pm} \pi^{\mp} \gamma$ $D^{0} \rightarrow \pi^{-} \pi^{+} \pi^{-} \pi^{+}$ $\tau^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-} \nu_{\tau}$
$580\pm~41$	90k		SALVINI	04		$\overline{p}p \rightarrow 2\pi^{+}2\pi^{-}$
460± 85	205		DRUTSKOY	02	BELL	$B \rightarrow D^{(*)} K^- K^{*0}$
$814\pm~36\pm~13$	37k	22	ASNER	00	CLE2	10.6 $e^+e^- \to \tau^+\tau^-$,
450± 50	22k		AKHMETSHIN	99E		$_{\pi}+_{\pi}{\pi}0_{\pi}0$
570 ± 10			BONDAR	99	RVUE	$e^+e^- ightarrow~4\pi$, $ au ightarrow~3\pi u_{ au}$
$587 \pm 27 \pm 21$	5904		ABREU	98G	DLPH	e^+e^-
$478\pm3\pm15$	5904		ABREU	98G	DLPH	e^+e^-
$425\pm\ 14\pm\ 8$	5904	27,28	ABREU	98G	DLPH	e^+e^-
400 ± 35			BARBERIS	98 B		$450 pp \rightarrow p_f \pi^+ \pi^- \pi^0 p_s$
$621 \pm 32 \pm 58$			ACKERSTAFF		OPAL	$E_{cm}^{ee} = 88-94, \ au ightarrow 3\pi \nu$
$457 \pm 15 \pm 17$		26,29	ACKERSTAFF	97 R	OPAL	$E_{cm}^{ee} = 88 – 94$, $ au ightarrow 3\pi au$
$446 \!\pm\! 21 \!+\! 140 \\ -\! 0$		26	ALBRECHT	93 C	ARG	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$
$239\pm~11$			ANDO	92	SPEC	$8 \pi^- p \rightarrow \pi^+ \pi^- \pi^0 n$
$266\pm\ 13\pm\ 4$		30	ANDO	92	SPEC	$8 \pi^- p \rightarrow \pi^+ \pi^- \pi^0 n$
465^{+228}_{-143}		31	IVANOV	91	RVUE	$\tau \rightarrow \pi^+ \pi^+ \pi^- \nu$
298 ⁺ 40 - 34			IVANOV	91	RVUE	$\tau \rightarrow \pi^+ \pi^+ \pi^- \nu$
488± 32		33	IVANOV	91	-	$ au o \pi^+ \pi^+ \pi^- u$
430 ± 50			ARMSTRONG	90		$300.0pp \rightarrow pp\pi^{+}\pi^{-}\pi^{0}$
$420\pm~40$			ISGUR	89		$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$
396 ± 43		35	BOWLER	88	RVUE	
$405\!\pm75\!\pm25$			BAND	87	MAC	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$
$419 \pm 108 \pm 57$			BAND	87	MAC	$\tau^+ \rightarrow \pi^+ \pi^0 \pi^0 \nu$

 $^{^6}$ Uses the model of ISGUR 89. 7 Includes the effect of a possible a_1^\prime state.

⁸ Uses the model of FEINDT 90. ⁹ Supersedes AKERS 95P.

⁹ Supersedes AKERS 95P.
10 Average and spread of values using 2 variants of the model of BOWLER 75.
11 Reanalysis of RUCKSTUHL 86.
12 Reanalysis of SCHMIDKE 86.
13 Reanalysis of ALBRECHT 86B.
14 From a combined reanalysis of ALBRECHT 86B, SCHMIDKE 86, and RUCKSTUHL 86.
15 From a combined reanalysis of ALBRECHT 86B and DAUM 81B.
16 Uses the model of BOWLER 75.
17 Produced in K⁻ backward scattering.

521± 27	ALBRECHT	86 B	ARG	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$
$476^{+132}_{-120} \pm 54$	RUCKSTUHL	86	DLCO	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$
$462\pm56\pm30$	SCHMIDKE	86	MRK2	$\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$
292± 40	BELLINI	85	SPEC	40 $\pi^- A \to \pi^- \pi^+ \pi^- A$
380 ± 100				$8.45 \pi^- p \rightarrow n3\pi$
300± 50				63,94 $\pi^- p \rightarrow p3\pi$
230± 50	³⁷ GAVILLET	77	HBC	4.2 $K^-p \rightarrow \Sigma 3\pi$

¹⁸ The $\rho^{\pm}\pi^{\mp}$ state can be also due to the π (1300).

a₁(1260) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$\pi^{+}\pi^{-}\pi^{0}$	
Γ_2^-	$\pi^{0}\pi^{0}\pi^{0}$	
Γ ₃	$(ho\pi)_{S-wave}$	seen
Γ_4	$(ho\pi)_{D-wave}$	seen
_	$(\rho(1450)\pi)_{S-wave}$	seen
-	$(ho(1450)\pi)_{D-wave}$	seen
,	$\sigma\pi$	seen
	$f_0(980)\pi$	not seen
Γ_9	$f_0(1370)\pi$	seen
	$f_2(1270)\pi$	seen
Γ_{11}	$K\overline{K}^*(892) + \text{c.c.}$	seen
Γ ₁₂	$\pi\gamma$	seen

 $^{^{19}}$ Using the Breit-Wigner parameterization; strong correlation between mass and width.

²⁰ Using the data of BARATE 98R.

From a fit of the K^-K^{*0} distribution assuming $m_{a_1} = 1230$ MeV and purely resonant production of the K^-K^{*0} system.

²² From a fit to the 3π mass spectrum including the $K\overline{K}^*$ (892) threshold.

 $^{^{23}}$ Using the $a_1(1260)$ mass of 1230 MeV.

²⁴ From AKHMETSHIN 99E and ASNER 00 data using the $a_1(1260)$ mass of 1230 MeV.

 $^{^{25}}$ Uses the model of KUHN 90. 26 Uses the model of ISGUR 89. 27 Includes the effect of a possible a_1^\prime state.

²⁸ Uses the model of FEINDT 90. ²⁹ Supersedes AKERS 95P.

³⁰ Average and spread of values using 2 variants of the model of BOWLER 75.

³¹ Reanalysis of RUCKSTUHL 86.

³² Reanalysis of SCHMIDKE 86.

 $^{^{33}}$ Reanalysis of ALBRECHT 86B.

 $^{^{34}}$ From a combined reanalysis of ALBRECHT 86B, SCHMIDKE 86, and RUCKSTUHL 86. 35 From a combined reanalysis of ALBRECHT 86B and DAUM 81B.

³⁶ Uses the model of BOWLER 75.

 $^{^{37}}$ Produced in K^- backward scattering.

a₁(1260) PARTIAL WIDTHS

$\Gamma(\pi\gamma)$					Γ ₁₂
VALUE (keV)	DOCUMENT ID		TECN	COMMENT	
640±246	ZIELINSKI	84C	SPEC	$200 \pi^+ Z \rightarrow Z3\pi$	

D-wave/S-wave AMPLITUDE RATIO IN DECAY OF $a_1(1260) \rightarrow \rho \pi$

 VALUE
 DOCUMENT ID
 TECN
 COMMENT

 - 0.062 \pm 0.020 OUR AVERAGE
 Error includes scale factor of 2.3. See the ideogram below.

 - 0.043 \pm 0.009 \pm 0.005
 LINK
 07A
 FOCS
 $D^0 \rightarrow \pi^- \pi^+ \pi^- \pi^+$

 - 0.14 \pm 0.04 \pm 0.07
 38 CHUNG
 02
 B852
 18.3 $\pi^- p \rightarrow \pi^+ \pi^- \pi^- p$

 - 0.10 \pm 0.02 \pm 0.02
 39,40 ACKERSTAFF
 97R
 OPAL
 $E_{\rm cm}^{ee} = 88-94$, $\tau \rightarrow 3\pi\nu$

 - 0.11 \pm 0.02
 39 ALBRECHT
 93C
 ARG
 $\tau^+ \rightarrow \pi^+ \pi^+ \pi^- \nu$

⁴⁰ Supersedes AKERS 95P.

D-wave/*S*-wave AMPLITUDE RATIO IN DECAY OF $a_1(1260)
ightarrow
ho\pi$

$a_1(1260)$ BRANCHING RATIOS

 $^{^{38}}$ Deck-type background not subtracted.

³⁹ Uses the model of ISGUR 89.

```
\Gamma((\rho\pi)_{D-\text{wave}})/\Gamma_{\text{total}}
                                                                                                           \Gamma_{4}/\Gamma
VALUE (units 10^{-2})
                                               DOCUMENT ID
                                                                    TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                           <sup>41</sup> ASNER
                                                                         CLE2 10.6 e^+e^- \to \tau^+\tau^-,
                                 37k
1.30 \pm 0.60 \pm 0.22
\Gamma((\rho(1450)\pi)_{S-wave})/\Gamma_{total}
                                                                                                           \Gamma_5/\Gamma
VALUE (units 10^{-2})
                                               DOCUMENT ID
                                                                       TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                 37k <sup>41,42</sup> ASNER
0.56 \pm 0.84 \pm 0.32
                                                                   00 CLE2 10.6 e^+e^- \rightarrow \tau^+\tau^-
\Gamma((\rho(1450)\pi)_{D-wave})/\Gamma_{total}
                                                                                                           \Gamma_6/\Gamma
VALUE (units 10^{-2})
                                               DOCUMENT ID
                                                                         TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                 37k <sup>41,42</sup> ASNER
                                                                  00 CLE2 10.6 e^+e^- \rightarrow \tau^+\tau^-
2.04 \pm 1.20 \pm 0.28
                                                                                        \tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu_{\tau}
\Gamma(\sigma\pi)/\Gamma_{\text{total}}
VALUE (units 10^{-2})
                                               DOCUMENT ID TECN COMMENT
                                EVTS
• • • We do not use the following data for averages, fits, limits, etc. • • •
seen
                                               CHUNG
                                                                         B852
                                                                                    18.3 \pi^- p \rightarrow
                                                                         CLE2 10.6 \ e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}, \ \tau^{-} \rightarrow \pi^{-} \pi^{0} \pi^{0} \nu_{\tau}
                                 37k 41,43 ASNER
18.76 \pm 4.29 \pm 1.48
\Gamma(f_0(980)\pi)/\Gamma_{\text{total}}
                                                                                                           \Gamma_8/\Gamma
                                               DOCUMENT ID TECN COMMENT
VALUE (units 10^{-2}) EVTS
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                   00 CLE2 10.6 e^+e^- \rightarrow \tau^+\tau^-, \tau^- \rightarrow \pi^-\pi^0\pi^0\nu_{\tau}
                                               ASNER
not seen
                                 37k
\Gamma(f_0(1370)\pi)/\Gamma_{\text{total}}
                                                                                                           \Gamma_9/\Gamma
                                              DOCUMENT ID TECN COMMENT
VALUE (units 10^{-2}) EVTS
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                  00 CLE2 10.6 e^+e^- \rightarrow \tau^+\tau^-, \tau^- \rightarrow \pi^-\pi^0\pi^0\nu_{\tau}
                                 37k 41,44 ASNER
7.40 \pm 2.71 \pm 1.26
\Gamma(f_2(1270)\pi)/\Gamma_{\text{total}}
                                                                                                         \Gamma_{10}/\Gamma
VALUE (units 10^{-2}) EVTS
                                              DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                  00 CLE2 10.6 e^+ e^- \rightarrow \tau^+ \tau^-, \ \tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu_{\tau}
                                 37k 41,45 ASNER
1.19 \pm 0.49 \pm 0.17
```

	(1 1 1 1		<i>y</i> ,	,	()	
$\Gamma(K\overline{K}^*(892) + c.c.)$	$/\Gamma_{ ext{total}}$				Γ ₁₁ /Γ	
$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT	
• • • We do not use th	e following	data for averages	s, fits,	limits,	etc. • • •	
$2.2 \!\pm\! 0.5$	2255	⁴⁶ COAN	04	CLEO	$ au^- ightarrow {\it K}^- \pi^- {\it K}^+ u_ au$	
8 to 15	205	⁴⁷ DRUTSKOY	02	BELL	$B \to D^{(*)} K^- K^{*0}$	
$3.3 \pm 0.5 \pm 0.1$	37k	⁴⁸ ASNER	00	CLE2	10.6 $e^+e^- \rightarrow \tau^+\tau^-$,	
2.6±0.3		⁴⁹ BARATE	99R	ALEP	$\tau^{-} \xrightarrow{\pi^{-} \pi^{0} \pi^{0} \nu_{\tau}} \tau \xrightarrow{K \overline{K} \pi \nu_{\tau}}$	
$\Gamma(\sigma\pi)/\Gamma((\rho\pi)_{S-wav})$	ve)				Γ_7/Γ_3	
VALUE	<u>EVTS</u>	DOCUMENT ID			COMMENT	
• • • We do not use th	e following	data for averages	s, fits,	limits,	etc. • • •	
$0.06\ \pm0.05$	90k	SALVINI	04		$\overline{p}p \rightarrow 2\pi^{+}2\pi^{-}$	
~ 0.3	28k	AKHMETSHIN	√ 99E	CMD2	$1.05 – 1.38 e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$	
0.003 ± 0.003		⁵⁰ LONGACRE	82	RVUE	π'π π'π	
$\Gamma(\pi^0\pi^0\pi^0)/\Gamma(\pi^+\pi^0)$	$-\pi^{0})$				Γ_2/Γ_1	
<u>VALUE</u>		DOCUMENT ID				
• • • We do not use th						
< 0.008	90	⁵¹ BARBERIS	01	450 pp	$p \rightarrow p_f 3\pi^0 p_s$	
41 From a fit to the Da						
42 Assuming for ρ (1450						
43 Assuming for σ mas	s and widt	h of 860 and 880	MeV	respectiv	vely.	
⁴⁴ Assuming for $f_0(137)$ ⁴⁵ Assuming for $f_2(127)$	(1) mass ai	nd width of 1275	and 1	85 MeV	respectively.	
46 Using structure fu	nctions f	rom KUHN 92	and	DECKE	FR 93A and B($ au^ ightarrow$	
⁴⁶ Using structure functions from KUHN 92 and DECKER 93A and B($\tau^- \to K^- \pi^- K^+ \nu_{\tau}$) = (0.155 \pm 0.006 \pm 0.009)% from BRIERE 03.						
47 From a comparison to ALAM 94 assuming purely resonant production of the K^-K^{*0} system.						
48 From a fit to the 3π	mass spec	ctrum including th	ne K	(892)	threshold.	
⁴⁹ Assuming $a_1(1260)$	dominance	e and taking B($ au$ -	$ ightarrow a_1$	(1260) ı	$_{ au}$) from BUSKULIC 96.	
⁵⁰ Uses multichannel A	Aitchison-E	Bowler model (BC	OWLE	R 75).	Uses data from GAVIL-	
LET 77, DAUM 80, 51 Inconsistent with ob	and DANI		- and	f ₂ (1270))	
medialatent with ob	oci vations	51 5 h, 10(1510) h	, and	12(1210	ij ii decay iiiodes.	

a₁(1260) REFERENCES

				,	
ALEKSEEV 10	-	PRL 104 241803	M.G. Alekseev <i>et al.</i>	(COMPASS	
AUBERT 07	7AU	PR D76 092005	B. Aubert <i>et al.</i>	(BABAR	Collab.)
LINK 07	7A	PR D75 052003	J.M. Link et al.	(FNAL FOCUS	Collab.)
PDG 06	6	JP G33 1	WM. Yao et al.	` (PDG	Collab.)
COAN 04	4	PRL 92 232001	T.E. Coan et al.	(ČLEO	Collab.)
GOMEZ-DUM 04	4	PR D69 073002	D. Gomez Dumm, A. F	Pich, J. Portoles	,
SALVINI 04	4	EPJ C35 21	P. Salvini et al.	(OBELIX	Collab.)
BRIERE 03	3	PRL 90 181802	R. A. Briere et al.		Collab.)
CHUNG 02	2	PR D65 072001	S.U. Chung et al.	(BNL E852	Collab.)
DRUTSKOY 02	2	PL B542 171	A. Drutskoy et al.		Collab.)
BARBERIS 01	1	PL B507 14	D. Barberis et al.	•	,
ASNER 00	0	PR D61 012002	D.M. Asner et al.	(CLEO	Collab.)
AKHMETSHIN 99	9E	PL B466 392	R.R. Akhmetshin et al.	(Novosibirsk ČMD-2	Collab.)
BARATE 99	9R	EPJ C11 599	R. Barate et al.	` (ALEPH	Collab.)
BONDAR 99	9	PL B466 403	A.E. Bondar et al.	(Novosibirsk CMD-2	
				•	,
HTTD.//DD	\C I	DL COV	Da = 6	Crostad: E/20/20	17 17.20
HTTP://PD	ا.U	_DL.GUV	Page 6	Created: 5/30/20	11 11:20

ABREU BARATE BARBERIS ACKERSTAFF BUSKULIC AKERS ALAM ALBRECHT DECKER ANDO KUHN IVANOV ARMSTRONG FEINDT KUHN ISGUR BOWLER BAND TORNQVIST ALBRECHT RUCKSTUHL SCHMIDKE BELLINI ZIELINSKI LONGACRE	96 95P 94 93C 93A 92 92 91 90 90 89 88 87 86 86 86 85	PL B426 411 EPJ C4 409 PL B422 399 ZPHY C75 593 ZPHY C70 579 ZPHY C67 45 PR D50 43 ZPHY C58 61 ZPHY C58 61 ZPHY C56 661 ZPHY C56 661 ZPHY C49 563 ZPHY C48 213 ZPHY C48 445 PR D39 1357 PL B209 99 PL B198 297 ZPHY C36 695 ZPHY C33 7 PRL 56 2132 PRL 57 527 SJNP 41 781 Translated from YAF 41 PRL 52 1195 PR D26 82	M. Feindt J.H. Kuhn et al. N. Isgur, C. Morningstar, M.G. Bowler H.R. Band et al. N.A. Tornqvist H. Albrecht et al. W. Ruckstuhl et al. W.B. Schmidke et al. D. Bellini et al. 1223. M. Zielinski et al. R.S. Longacre	ayoun, W. Beusch (WA76 Coll.) (HAMB) (MPIM) C. Reader (OXF) (MAC Collab.) (HELS) (ARGUS Collab.) (DELCO Collab.) (Mark II Collab.) (ROCH, MINN, FNAL) (BNL)
_		PRL 52 1195	M. Zielinski <i>et al.</i> R.S. Longacre J.A. Dankowych <i>et al.</i> C. Daum <i>et al.</i> (