

Forecasting Bioactivity: Predictive Models for Drug Discovery

Meet the Team

Joerg Bentzien
Director Computational
Chemistry

Polina Vanyukov Assoc. Director, Enterprise Analytics

Shinichiro Wachi
Principal Scientist
Research

Tiffney Aina
Computer Science & Neuroscience
Brown University

Alex Lapadat
Neuroscience
Amherst College

Blair Kuzniarek
Neuroscience and Computer Science
Northeastern University

Ha Dong
Neuroscience, Physics & Mathematics
Amherst College

Ray Qin
Computer Science & Biology
Smith College

TABLE OF CONTENTS

Objective

challenge summary, project tasks, intended impact

Data Preprocessing & Analysis

data source, engineering, cleaning, and filtering

ML Model & Results

model architecture, feature selection, optimization

Conclusion

interpretations, what we learned, next steps

OBJECTIVES

CHALLENGE S MARY

Generate **predicti** for many ioa depoints ting serotonin (5-HT) and dopamine

MAIN TECHNICAL

Use **molecular** pridiscovery an

HOW?

of for drug

REAL-LIFE IMPACT

Streamline the drug discovery producing costs, and improving decision-making in early-stages.

Structural Analysis

Machine Learning

Automation

Use different features (SMILES & molecular fingerprints) for similarity and property predictions.

Random Forest
Regression with
Python &
Scikit-Learn to
predict bioactivity.

Automate the code to make the tool easier to deploy for application to other datasets.

Data Source & Features

SETTLED ON A SAMPLE DATABASE

- 5 assays and 5 bioactivity tables
- 5-HT1a, 5-HT2a, 5-HT2b, 5-HT2c and D2
- approx. 100.000 compounds, extracted from ChEMBL 34 Dataset.

encodes the arrangement of atoms, bonds, and connectivity in a linear string

effectiveness of a compound in interacting with a target

log-transformed
bioactivity (e.g., IC50,
EC50), where higher
values indicate stronger
activity

RELATED COLUMNS IN TABLE

Molecule AlogP Compound ChEMBL ID Key	Smiles	Standard Type	Standard Relation			pChEMBL Value	Assay ChEMBL ID	Assay Description			Tissue ChEMBL ID
194 CHEMBL301242 5.54 5	O=C(NCCCCN1CCN(c2cccc(Cl)c2Cl)CC1)c1cccc2c1-c1	IC50	¥	35.6	nM	7.45	CHEMBL827419	Mitogenic stimulation or antagonism of 30 nM q	BAO_0000219	cell- based format	None

DATA PREPROCESSING

DATA ANALYSIS

Visualize the distribution of pChEMBL values

Outlier Detection using IQR and Z-score

103 Key Value Identification (lowest and highest pChEMBL values)

Tanimoto Similarity Across Endpoints ECFP6

Do our datasets cover similar chemical space?

T-SNE plot shows
molecular similarity of
ECFP6 fingerprint across
five datasets, using
Tanimoto Similarity.

The datasets have **shared** chemical space, with some **unique** clusters.

^{*}each color indicates a different dataset

Training – Baseline model

We trained a RandomForestRegressor on our five datasets using two sets of features:

Input:

- ECFP6 Fingerprint
- 1613 2D Mordred Descriptors

Output: pChEMBL Value - Normalized Potency

Training parameters:

- n estimators=100
- train:test = 9:1

Experiment 1: Model optimization

In additional to our baseline model ($n_estimators=100$, train:test = 8:2), we trained RF with a five-fold cross-validation and hyperparameter-optimization.

Experiment 2: Explore another feature generation method

What is Mordred?

A novel, promising descriptor calculator library for QSAR

- Easy installation and usage, open-source.
- Twice as fast as the well-known PaDEL-Descriptor.
- Works with other descriptor libraries (RDKit) or cheminformatics tools.
- Easy calculation for large molecules.

We used 2D features: structural and topological properties.

Such as ABCIndex, EStates, BCUT, acid-base properties, bond count, aromaticity, atom count, etc.

Descriptor list										
#	module	name	constructor	dim	description					
1	ABCIndex	ABC	ABCIndex ()	2D	atom-bond connectivity index					
2		ABCGG	ABCGGIndex ()	2D	Graovac-Ghorbani atom-bond connectivity index					
3	AcidBase	nAcid	<pre>AcidicGroupCount ()</pre>	2D	acidic group count					
4		nBase	BasicGroupCount ()	2D	basic group count number of all					
772	<u>BondCount</u>	nBonds	BondCount ('any', False)	2D	bonds in non- kekulized structure					
773		nBondsO	BondCount ('heavy', False)	2D	number of bonds connecting to heavy atom in non- kekulized structure					
774		nBondsS	BondCount ('single', False)	2D	number of single bonds in non- kekulized structure					
775		nBondsD	BondCount ('double', False)	2D	number of double bonds in non- kekulized structure					

Results: Baseline ECFP6 model

$$ext{Relative Width} = rac{ ext{CI Width}}{ ext{Predicted Value}} imes 100$$

5-HT1A: $R^2 = 0.6557$

 $5-HT2A: R^2 = 0.6557$

D2: $R^2 = 0.6585$

'Mean Relative Width': 0.28, 'Median Relative Width': 0.29, 'Standard Deviation': 0.017 'Mean Relative Width': 0.34, 'Median Relative Width': 0.34, 'Standard Deviation': 0.043 'Mean Relative Width': 0.33, 'Median Relative Width': 0.32, 'Standard Deviation': 0.045

Actual Values

Morderd

with hyper_opt

Actual Values

- ECFP6 (With Hyperopt)
- DESCRIPTORS (Without Hyperopt)
- DESCRIPTORS (With Hyperopt)

Conclusion:
RandomForest with
hyperparameter
optimization and Mordred
descriptors did not
improve performance

- ECFP6 (Without Hyperopt)
- ECFP6 (With Hyperopt)
- DESCRIPTORS (Without Hyperopt)
- DESCRIPTORS (With Hyperopt)

Conclusion:
RandomForest with
hyperparameter
optimization and Mordred
descriptors did not
improve performance

without hyper_opt

with hyper_opt

- ECFP6 (Without Hyperopt)
- ECFP6 (With Hyperopt)
- DESCRIPTORS (Without Hyperopt)
- DESCRIPTORS (With Hyperopt)

Conclusion:
RandomForest with
hyperparameter
optimization and Mordred
descriptors did not
improve performance

Why?

Hyperparamter Optimization

 our preselected values for the GridSearch were not optimal

Mordered Descriptors

 ECFP6 is more targeted toward capturing the structural features, while mordred descriptors are broader but less specialized. (like weight, polarity, etc)

```
def hyperparameter_optimization(X_train, y_train):
    """Optimize hyperparameters for RandomForestRegressor
    param_dist = {
        'n_estimators': randint(50, 200),
        'max_depth': [None, 10, 20, 30, 40, 50],
        'min_samples_split': [2, 5, 7, 10],
        'min_samples_leaf': [1, 2, 4],
        'max_features': ['sqrt', 'log2', None]
    }
```


Baseline Results Summary

Predictive Accuracy

- Strong R² (0.66) values confirm the utility of Random Forest + ECFP6 for pChEMBL prediction.
- Endpoint 1A shows the highest reliability for serotonin receptor bioactivity.

Prediction Confidence

- Narrow Cls in 1A ensure precise predictions for compound prioritization.
- Slightly wider Cls in 2A/D2 indicate variability but remain statistically robust.

Future Steps

Automation:

- make the process accessible and efficient
- Input data → automatic output
- No need for manual filtering or feature selection

Larger sample:

Expand from Top 10 to Top 100 Assay
 ChEMBL IDs

ChemProp:

- PyTorch-based framework for training and evaluating message-passing neural networks (MPNNs)
- User-friendly molecular property prediction

```
database_path = "C:\\Users\\lapad\\Alkermes\\All_Receptors.db"
endpoint_name = "BioactivityD2"

df = load_data_from_database(database_path, endpoint_name)

standard_types = ['IC50', 'EC50', 'pIC50', 'pEC50']

# Run the function
results = analyze_standard_types(df, standard_types)
```


How we made it work?

Lessons and Future Directions from our Team Members

Alex Lapadat: BTTAI and our Alkeres project were incredible experiences - I gained a strong foundation in machine learning, applied it to neuroscience, all while overcoming challenges as a junior, and developing valuable skills for my future research career in biostatistics.

Tiffney Aina: I learned how big of a role **data engineering** plays. It became clear that building a model is not merely a matter of inputting data and obtaining results. Instead, it requires a deep understanding of the **underlying assumptions**, the quality of the data, and the context in which the model operates.

Blair Kuzniarek: I learned the importance of accurately interpreting data to make effective decisions. I also gained an understanding of how clear communication and proactive organization ensure team alignment and smooth progress.

Ray Qin: I learned how different data cleanup/selection methods can result in very different ML model prediction and accuracy. It is important to understand the specific topic that the model is predicting on, for a comprehensive consideration when building and improving the model.

Ha Dong: It was an amazing experience where I was able to learn how drug discovery is practiced in an industry environment. The level of scientific rigor, attention to details, and problem-solving strategy Alkermes scientists taught us will definitely come in handy in my future research.

Thank You!

BTTAI Program Organizers: For providing this incredible learning opportunity, and hosting the Maker Days where we got to learn so much!

Joerg, Polina and Shin: For your guidance and expertise for the past 5 months, your patience and optimism!

Divya, our TA: For your advice for our presentation and your understanding!

And to our audience, as well!