

Mathématiques et Calcul 1

Contrôle continu n°3 — 8 janvier 2019 durée: 2h30

Tout document interdit. Les calculatrices et les téléphones portables, même prévus à titre d'horloge, sont également interdits.

MERCI DE BIEN INDIQUER VOTRE GROUPE DE TD SUR VOTRE COPIE

Tous les exercices sont indépendants.

Exercice 1.

- (1) Calculer le module et l'argument de $u = \frac{\sqrt{6} i\sqrt{2}}{2}$ et de v = 1 i.
- (2) En déduire le module et l'argument de $\frac{u}{v}$.

Exercice 2.

Trouver les racines complexes du polynôme $P = X^3 - 3X^2 + 4X - 2$.

Exercice 3. Calculer les limites suivantes, lorsqu'elles existent :

$$(1) \lim_{x \to 0} \frac{4 \operatorname{Arctan}(\cos x) - \pi}{\tan x} \qquad (2) \lim_{x \to 0} \frac{x \ln(1+x) - \sin(x^2)}{x^3} \qquad (3) \lim_{x \to 0} \frac{\sqrt{\ln(\operatorname{ch} x)}}{x}$$

Exercice 4.

- (1) Calculer le développement limité à l'ordre 3 en 0 de $\frac{1}{1 + \exp(t)}$.
- (2) Soit $f(x) = \frac{1}{1 + \exp(\frac{1}{x})}$. Montrer qu'au voisinage de $+\infty$ sa courbe représentative admet une asymptote dont on donnera l'équation, et préciser la position de la courbe par rapport à son asymptote.

Exercice 5. Étant donnés 3 nombres réels x_1, x_2, x_3 , on considère la fonction f définie sur \mathbb{R} par

$$f(t) = x_1 \cos(4t) + x_2 \cos(2t) + x_3.$$

- (1) On suppose qu'il existe des valeurs de x_1 , x_2 et x_3 telles que $f(t) = \cos^4(t)$ pour $t \in \{0, \frac{\pi}{2}, \frac{\pi}{4}\}$. Écrire sous forme matricielle le système linéaire vérifié par les inconnues x_1 , x_2 et x_3 .
- (2) Déterminer les valeurs de x_1 , x_2 et x_3 en résolvant le système linéaire de la question 1 par la méthode du pivot de Gauss.
- (3) Retrouver le résultat de la question 2 en linéarisant $\cos^4(t)$ à l'aide de la formule d'Euler.

Exercice 6. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = \ln(\ln(x))$.

- (1) Trouver le domaine de définition de f, noté \mathcal{D}_f .
- (2) Montrer que f est dérivable sur \mathcal{D}_f et calculer f'.
- (3) À l'aide du théorème des accroissement finis, montrer que

$$\forall k \ge 2, \quad \frac{1}{(k+1)\ln(k+1)} \le \ln(\ln(k+1)) - \ln(\ln(k)) \le \frac{1}{k\ln k}.$$

(4) En déduire que

$$\forall n \ge 2, \quad \sum_{k=2}^{n} \frac{1}{(k+1)\ln(k+1)} \le \ln(\ln(n+1)) - \ln\ln(2) \le \sum_{k=2}^{n} \frac{1}{k\ln k}.$$

(5) En déduire un encadrement de $u_n = \sum_{k=2}^n \frac{1}{k \ln k}$, puis un équivalent de u_n . Que vaut $\lim_{n \to +\infty} u_n$?

Exercice 7. Soient a et b deux réels strictement positifs. On considère les deux suites (u_n) et (v_n) définies par $u_0 = a$, $v_0 = b$ et les récurrences

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{u_n + v_n}{2}, \quad v_{n+1} = \frac{2}{\frac{1}{u_n} + \frac{1}{v_n}}.$$

- (1) Montrer par récurrence que $u_n > 0$ et $v_n > 0$ pour tout $n \in \mathbb{N}$.
- (2) Exprimer $u_{n+1} v_{n+1}$ en fonction de u_n et v_n . En déduire que $v_n \leq u_n$ pour tout $n \geq 1$.
- (3) Calculer $u_{n+1}-u_n$ en fonction de u_n et v_n . En déduire que $(u_n)_{n\geqslant 1}$ est décroissante.
- (4) Montrer de même que $(v_n)_{n\geq 1}$ est croissante.
- (5) Montrer que les suites (u_n) et (v_n) sont convergentes, puis qu'elles ont la même limite (notée L).
- (6) Exprimer $u_{n+1}v_{n+1}$ en fonction de u_n et v_n . En déduire l'expression explicite de L en fonction de a et b.
- (7) En déduire que $\frac{2}{\frac{1}{a} + \frac{1}{b}} \leqslant \sqrt{ab} \leqslant \frac{a+b}{2}$ (inégalité des 3 moyennes).

Exercice 8. Soient $a_1, a_2, \ldots a_n$ des réels tous distincts. On note $D = \mathbb{R} \setminus \{a_1, a_2, \ldots a_n\}$ et on considère l'espace vectoriel E des fonctions définies sur D. On considère également le polynôme $Q_0 = (X - a_1)(X - a_2) \ldots (X - a_n)$.

- (1) Quel est le degré de Q_0 ?
- (2) Montrer que $F = \left\{ x \mapsto \frac{P(x)}{Q_0(x)}, \ P \in \mathbb{R}_{n-1}[X] \right\}$ est un sous-espace vectoriel de E.
- (3) Montrer que F est de dimension n et exhiber une base de F.
- (4) Soit $f = \sum_{i=1}^{n} \lambda_i b_i$, où $b_i(x) = \frac{1}{x a_i}$. Calculer, pour tout j, $\lim_{x \to a_j} (x a_j) f(x)$.
- (5) En déduire que $(b_i)_{1 \leq i \leq n}$ est libre, puis que c'est une base de F.
- (6) Montrer qu'il existe des réels $\lambda_1, \lambda_2, \dots, \lambda_n$ tels que

$$\forall x \in D, \quad \frac{x^n}{(x - a_1)(x - a_2)\dots(x - a_n)} = 1 + \sum_{i=1}^n \frac{\lambda_i}{x - a_i}.$$