Boosting Dialog Response Generation

Wenchao Du

Language Technologies Institute
Carnegie Mellon University
wenchaod@cs.cmu.edu

Alan W Black

Language Technologies Institute
Carnegie Mellon University
awb@cs.cmu.edu

Boosting Dialog Response Generation

- Introduction
 - Seq2Seq suffers from "dull response" problem
 - reinforcement learning, GAN, penalizing dull responses
 - Boosting (1997) and assembling, having been studied in image generation (also suffered missing model problem) and machine translation (2017)
 - Boosting: Iteratively train multiple models; reweight according to previous error; combine models

Preliminaries

Standard Seq2Seq, MLE

Decoding objective base on

mutual information of x and y

Reward-Augmented Maximum Likelihood (RAML)

$$\log p(y \mid x) = \sum_{i=1}^{n} \log p(y_i \mid y_1 \dots y_{i-1}, x) \quad (1)$$

$$MMI(x, y) = \log p(y \mid x) - \lambda p(y)$$
 (2)

$$s(y \mid y^*; \tau) = \frac{1}{Z(y^*, \tau)} \exp\{r(y, y^*)/\tau\}$$
 (3)

Objective : Minimize the KL Divergence

$$\sum_{x,y^*} D_{KL}(s(y \mid y^*) \mid\mid p(y \mid x)) = -\sum_{x,y^*} \sum_{y} s(y \mid y^*) \log p(y \mid x) + const$$

Preliminaries

Density estimate of each iteration in boosting

$$q_T = h_T^{\alpha_T} q_{T-1} = \frac{\prod_{t=1}^T h_t^{\alpha_t}}{Z_T}$$
 (5)

if at each iteration, the model can optimize the distribution of this form:

$$d_t \propto (\frac{p}{q_t})^{\beta_t} \tag{6}$$

- 1. Assume the sources are uniformly distributed (均匀分布)
- 2. This paper **extend** this assumption to the exponential payoff distribution (3)

Then, KL divergence decrease:

$$D_{KL}(P || Q_t) \le D_{KL}(P || Q_{t-1})$$
 (7)

Design

$$d_t(x,y) \propto \left(\frac{p(x,y)}{q_t(x,y)}\right)^{\beta_t} \frac{D_t(y)}{1 - D_t(y)} \tag{9}$$

- (6) 式中可知,数据权值与response perplexity成反比; Generic response sometimes has high perplexity; Frequently generated.
- Adopt a rule-based discriminator
 - GAN-like approach is not suitable, as negative samples are too few.
 - Maintain a list of most frequently generated responses.
 - Sim(x, y): n-gram overlap with $n \ge 4$
 - Our discriminator: , c = 0
 - Data weight at round t:

Design

- Model Combination
 - Heuristics
 - Generate candidate responses from single best model using beam search.
 - Score the candidate by all models.
 - The one with highest average score is chosen.

Experiments and Evaluation

Dataset: Persona Dataset (2018)

Figure 1: Quantitative results. X-axis is for iteration and y-axis for metrics. The numbers at iteration 1 represent the base models.

Model	Win	Loss	Tie
MLE	$37.6 \pm 6.4\%$	$17.6 \pm 4.0\%$	$44.8 \pm 6.4\%$
MMI	$36.0 \pm 9.2\%$	$16.8 \pm 6.8\%$	$47.2 \pm 8.8\%$
RAML	$44.8\% \pm 10.8\%$	$16.8 \pm 4.8\%$	$38.4 \pm 12.4\%$

Table 1: Human evaluation results. "Win" stands for the boosted model winning.

Context	my family lives in alaska. it is freezing down there.		
Human	i bet it is oh i could not		
Baseline	what do you do for a living		
Boosted	do you live near the beach? i live in canada		

Table 2: Examples of generated responses from baseline sequence-to-sequence model and its boosted counterpart.

Result Analysis

- Boosting drastically improves performance, far better than bootstrapping. BLEU fluctuated in a tight range, while ROUGE-L suffered from boosting a little.
- Diversity of the response is significantly improved.
- Qualitative evaluation shows boosting models beat base models.

Conclusion

- We novelly combine boosting and RAML for response generation.
- Combining boosting with MMI gives some of the most diversified results.
- This method can improve diversity without harming the quality of the responses, and the quality may be better than base models.

Learning Compressed Sentence Representations for On-Device Text Processing

Dinghan Shen^{1*}, Pengyu Cheng^{1*}, Dhanasekar Sundararaman¹
Xinyuan Zhang¹, Qian Yang¹, Meng Tang³, Asli Celikyilmaz², Lawrence Carin¹

Duke University ² Microsoft Research ³ Stanford University

dinghan.shen@duke.edu

Introduction

- Sentence embeddings require large storages or memory footprint. It is computationally expensive to retrieve semantically-similar sentences.
- In mobile devices, only a relatively tiny memory footprint and low computational capacity are typically available.
- This paper's method: binarizing the continuous sentence embeddings, using three alternative strategies. 2% performance drop while reduces 98% storage requirement.
- This paper found that the Hamming distance between the binary code can measure the relatedness between a sentence pair even **better** than cosine similarity between continuous embeddings.

Binarized embeddings

- Memory efficient, relative to discrete embeddings.
- Fast retrieval based on a Hamming distance calculation.
- Previous work focuses on word-level, this paper works on extracting binarized embeddings at the sentence-level.

Proposed Approach

- **f(x)**, continuous embeddings extracted by the encoder.
- Target: find a transformation g, which can convert f(x) to highly informative binary sentence representations. Four strategies:
 - Hard Threshold
 - Random Projection
 - Principal Component Analysis
 - Autoencoder Architecture

Hard Threshold

- Suppose that h, b denote continuous and binary sentence embeddings respectively.
- Suppose s is the hard threshold, L is the dimension of h, for i = 1, 2, ..., L:

$$b^{(i)} = \mathbf{1}_{h^{(i)}>s} = \frac{\operatorname{sign}(h^{(i)} - s) + 1}{2}, \quad (1)$$

- Each dimension is converted to 0 or 1
- Lost information.

Random Projection

- Simple applying a random projection over pre-trained continuous representation.
- Initialize the value of the resulting binary representations matrix Wi,j uniformly (D denotes the dimension of W):

$$W_{i,j} \sim \text{Uniform}(-\frac{1}{\sqrt{D}}, \frac{1}{\sqrt{D}}),$$
 (2)

 Then apply hard threshold operation to binarize it into compact form. D can be set arbitrarily.

Principal Component Analysis (PCA)

- PCA can reduce the dimensionality of pre-trained embeddings.
- A set of sentences $\{x_i\}_{i=1}^N$, and their corresponding continuous embeddings $\{h_i\}_{i=1}^N \subset \mathbb{R}^L$, learn a projection to reduce dimensions.
- After centralizing $h_i = h_i \frac{1}{N} \sum_{i=1}^N h_i$, the matrix H, has a singular value decomposition (SVD), $H = U\Lambda V^T$, The first D rows can be used as projection of W. Then apply the hard threshold operation.

Autoencoder architecture

Extract useful features

$$b^{(i)} = \mathbf{1}_{\sigma(W_i \cdot h + k^{(i)}) > s^{(i)}}$$

$$= \frac{\operatorname{sign}(\sigma(W_i \cdot h + k^{(i)}) - s^{(i)}) + 1}{2}, \quad (3)$$

Reconstruct the original continuous embedding with linear transformation.

$$\hat{h}^{(i)} = W_i' \cdot b + k'^{(i)}, \tag{4}$$

Reconstruction loss:

The mean square error of h

$$\mathcal{L}_{rec} = \frac{1}{D} \sum_{i=1}^{D} (h^{(i)} - \hat{h}^{(i)})^2,$$
 (5)

This objective **imposes** the binary vector b to encode more information from h,

Autoencoder architecture

- Target: To preserve similarity information of the original embeddings and improve the binary embedding's semantic-preserving property.
- Define a semantic-preserving regularizer as:

$$\mathcal{L}_{sp} = \sum_{\alpha,\beta,\gamma} \max\{0, l_{\alpha,\beta,\gamma}[d_h(b_\alpha,b_\beta) - d_h(b_\beta,b_\gamma)]\},$$

$$(6)$$

$$l_{\alpha,\beta,\gamma} = 1 \text{ if } d_c(h_\alpha,h_\beta) \ge d_c(h_\beta,h_\gamma) \text{ -1 otherwise}$$

• Entire objective function $\mathcal{L} = \mathcal{L}_{rec} + \lambda_{sp} \mathcal{L}_{sp}$

Figure 1: Proposed model architectures: (a) direct binarization with a hard threshold s; (b) reducing the dimensionality with either a random projection or PCA, followed by a binarization step; (c) an encoding-decoding framework with an additional semantic-preserving loss.

Experiment

- Using InferSent as the continuous embeddings
- Sentence encoder: bidirectional LSTM architecture with max-pooling operation over hidden units.
- Train on Stanford Natural Language Inference (SNLI) and MultiNLI datasets.

Result

Model	Dim	MR	CR	SUBJ	MPQA	SST	STS14	STSB	SICK-R	MRPC
Continuous (dense) sentence embeddings										
fastText-BoV	300	78.2	80.2	91.8	88.0	82.3	.65/.63	58.1/59.0	0.698	67.9/74.3
SkipThought	4800	76.5	80.1	93.6	87.1	82.0	.29/.35	41.0/41.7	0.595	57.9/66.6
SkipThought-LN	4800	79.4	83.1	93.7	89.3	82.9	.44/.45	-	-	-
InferSent-FF	4096	79.7	84.2	92.7	89.4	84.3	.68/.66	55.6/56.2	0.612	67.9/73.8
InferSent-G	4096	81.1	86.3	92.4	90.2	84.6	.68/.65	70.0/68.0	0.719	67.4/73.2
Binary (compact) sentence embeddings										
InferLite-short	256	73.7	81.2	83.2	86.2	78.4	0.61/-	63.4/63.3	0.597	61.7/70.1
InferLite-medium	1024	76.3	83.2	87.8	88.4	81.3	0.67/-	64.9/64.9	0.642	64.1/72.0
InferLite-long	4096	77.7	83.7	89.6	89.1	82.3	0.68/-	67.9/67.6	0.663	65.4/ 72.9
HT-binary	4096	76.6	79.9	91.0	88.4	80.6	.62/.60	55.8/53.6	0.652	65.6/70.4
Rand-binary	2048	78.7	82.7	90.4	88.9	81.3	.66/.63	65.1/62.3	0.704	65.7/70.8
PCA-binary	2048	78.4	84.5	90.7	89.4	81.0	.66/.65	63.7/62.8	0.518	65.0/ 69.7
AE-binary	2048	78.7	84.9	90.6	89.6	82.1	.68/.66	71.7/69.7	0.673	65.8/70.8
AE-binary-SP	2048	79.1	84.6	90.8	90.0	82.7	.69/.67	73.2/70.6	0.705	67.2 /72.0

Table 1: Performance on the test set for 10 downstream tasks. The STS14, STSB and MRPC are evaluated with Pearson and Spearman correlations, and SICK-R is measured with Pearson correlation. All other datasets are evaluated with test accuracy. InferSent-G uses Glove (G) as the word embeddings, while InferSent-FF employs FastText (F) embeddings with Fixed (F) padding. The empirical results of InferLite with different lengths of binary embeddings, *i.e.*, 256, 1024 and 4096, are considered.

Nearest Neighbor Retrieval

Hamming Distance (binary embeddings)	Cosine Similarity (continuous embeddings)				
Query: Several people are sitting in a movie theater.					
A group of people watching a movie at a theater.	A group of people watching a movie at a theater.				
A crowd of people are watching a movie indoors.	A man is watching a movie in a theater.				
A man is watching a movie in a theater.	Some people are sleeping on a sofa in front of the television.				
Query: A woman crossing a busy downtown street.					
A lady is walking down a busy street.	A woman walking on the street downtown.				
A woman is on a crowded street.	A lady is walking down a busy street.				
A woman walking on the street downtown.	A man and woman walking down a busy street.				
Query: A well dressed man standing in front of piece of artwork.					
A well dressed man standing in front of an abstract fence painting.	A man wearing headphones is standing in front of a poster.				
A man wearing headphones is standing in front of a poster.	A man standing in front of a chalkboard points at a drawing.				
A man in a blue shirt standing in front of a garage-like structure	A man in a blue shirt standing in front of a garage-like structure				
painted with geometric designs.	painted with geometric designs.				
Query: A woman is sitting at a bar eating a hamburger.					
A woman sitting eating a sandwich.	A woman is sitting in a cafe eating lunch.				
A woman is sitting in a cafe eating lunch.	A woman is eating at a diner.				
The woman is eating a hotdog in the middle of her bedroom.	A woman is eating her meal at a resturant.				
Query: Group of men trying to catch fish with a fishing net.					
Two men are on a boat trying to fish for food during a sunset.	There are three men on a fishing boat trying to catch bass.				
There are three men on a fishing boat trying to catch bass.	Two men are trying to fish.				
Two men pull a fishing net up into their red boat.	Two men are on a boat trying to fish for food during a sunset.				

Table 2: Nearest neighbor retrieval results on the SNLI dataset. Given a a query sentence, the left column shows the top-3 retrieved samples based upon the hamming distance with all sentences' binary representations, while the right column exhibits the samples according to the cosine similarity of their continuous embeddings.

Conclusion

- Among the four distinct strategies to convert pre-trained continuous sentence embeddings into binarized form, the regularized autoencoder augmented with semanticpreserving loss exhibits the best empirical results.
- Random projection or PCA transformation require no training, but demonstrate competitive embedding quality.
- The nearest-neighbor sentence retrieve further validate this framework.