

IMD0033 - Probabilidade Aula 13 - Análise Exploratória de Dados II

Ivanovitch Silva Outubro, 2018

Agenda

- Estudo de caso: analisando filmes
- Motivação: enviesamento de dados
- Gráfico de barra & personalização
- Gráficos de dispersão & personalização

Atualizar o repositório

git clone https://github.com/ivanovitchm/imd0033_2018_2.git

Ou

git pull

Estudo de caso: avaliando filmes

IMDB

Rotten Tomatoes

Fandango

Enviesamento de dados

Conjunto de dados

	FILM	RT_user_norm	Metacritic_user_nom	IMDB_norm	Fandango_Ratingvalue	Fandango_Stars
0	Avengers: Age of Ultron (2015)	4.3	3.55	3.90	4.5	5.0
1	Cinderella (2015)	4.0	3.75	3.55	4.5	5.0
2	Ant-Man (2015)	4.5	4.05	3.90	4.5	5.0
3	Do You Believe? (2015)	4.2	2.35	2.70	4.5	5.0
4	Hot Tub Time Machine 2 (2015)	1.4	1.70	2.55	3.0	3.5

https://github.com/fivethirtyeight/data/tree/master/fandango

WEAPONS OF MATH DESTRUCTION

IOW BIG DATA INCREASES INCOUALITY

AND THREATENS DEMOCRACY

CATHY O'NEIL

O.NEIL

N S UF / N D I T J U B /

Gráfico de barra

Criando as barras I

Criando as barras II

fig, ax = plt.subplots()

```
# Positions of the left sides of the 5 bars. [0.75, 1.75, 2.75, 3.75, 4.75]
from numpy import arange
bar positions = arange(5) + 0.75
# Heights of the bars. In our case, the average rating for the first movie
 in the dataset.
num cols = ['RT user norm', 'Metacritic user nom', 'IMDB norm', 'Fandango Ra
tingvalue', 'Fandango Stars']
bar heights = norm reviews[num cols].iloc[0].values
ax.bar(bar positions, bar heights)
```

Configurando os eixos

```
tick positions = range(1,6)
ax.set xticks(tick positions)
num_cols = ['RT_user_norm', 'Metacritic_user_nom', 'IMDB_norm', 'Fandango_Ra
tingvalue', 'Fandango Stars']
                                                                Average User Rating For Avengers: Age of Ultron (2015)
ax.set xticklabels(num cols)
ax.set xticklabels(num cols, rotation=90)
```


Rating Source

Barras horizontais

Barras horizontais

```
bar_widths = norm_reviews[num_cols].iloc[0].values
bar_positions = arange(5) + 0.75
ax.barh(bar_positions, bar_widths, 0.5)
```

```
tick_positions = range(5) + 1
num_cols = ['RT_user_norm', 'Metacritic_user_nom', 'IMDB_norm', 'Fandango_Ra
tingvalue', 'Fandango_Stars']
ax.set_yticks(tick_positions)
ax.set_yticklabels(num_cols)
```


Gráficos de dispersão

Trocando os eixos

Vocês concordam com a conclusão final descrita no notebook?

