Notes du module de grammaires lexicalisées

Hugo Mougard

16 septembre 2013

Table des matières

Table d	les matières	1
0.1	Grammaires lexicalisées	1
0.2	Forme normale de Greibach	1
	Traduction en automate à piles :	2
	Transformation en forme normale de Greibach:	3

0.1 Grammaires lexicalisées

Une grammaire lexicalisée est une grammaire dont toutes les règles contiennent au moins un terminal.

0.2 Forme normale de Greibach

Concerne les langages propres (sans ϵ) dont les grammaires (propres elles aussi, ou réduites) sont sous la forme

$$V \rightarrow XV^*$$

où X est terminal et V non-terminal.

Par exemple, voici une grammaire lexicale :

$$\begin{split} S &\rightarrow aST \mid bUU \mid a \\ T &\rightarrow bT \mid cSCU \mid cTU \\ U &\rightarrow aU \mid bC \\ C &\rightarrow c \end{split}$$

Et l'arbre de parsing de la phrase abbcabcbcacabc en utilisant cette grammaire :

On peut aussi « inverser » la grammaire pour la centrer sur les terminaux :

$$\begin{array}{l} a \longrightarrow S \\ aST \longrightarrow S \\ aU \longrightarrow U \\ bUU \longrightarrow S \\ bT \longrightarrow T \\ bC \longrightarrow U \\ cSCU \longrightarrow T \\ cTU \longrightarrow T \\ c \longrightarrow C \end{array}$$

Traduction en automate à piles :

En utilisant la grammaire inversée ci-dessus, on peut produire le tableau ci-dessous :

	S	T	U	C
a	3		U	
	ST			
b	UU	T	С	
c	SCU			ε
	TU			

Le tableau se lit, par exemple pour la case (a, S): on peut dépiler S si on lit a et qu'on empile ϵ ou T puis S.

Exemple d'exécution :

 \rightarrow lit b

```
bande : abb, pile S \rightarrow lit a \rightarrow bande : bb, dépile S, empile ST, pile ST \rightarrow lit b \rightarrow bande : b, dépile S, empile UU, pile UUT
```

Transformation en forme normale de Greibach :

→ bande : #, dépile U, empile C, pile CUT

Tout d'abord, il faut noter quels sont les problèmes :

- les règles produisant ε ne sont pas tolérées (on vise une grammaire propre)
- les règles récursives à gauche ne sont pas tolérées

Voici maintenant l'algorithme pour transformer les règles récursives à gauche en règles récursives à droite :

Pour tout V_i non terminal, on introduit V_i ' puis, on transforme tout règle de la forme :

$$\begin{split} & V_{j} \longrightarrow V_{i}m_{1} \mid V_{i}m_{2} \mid ... \mid V_{i}m_{p} \mid w_{1} \mid w_{2} \mid ... \mid w_{q} \\ & \text{en} \\ & V_{j} \longrightarrow w_{1}V_{i}{'} \mid w_{2}V_{i}{'} \mid ... \mid w_{q}V_{i}{'} \\ & \text{et} \\ & V_{i}{'} \longrightarrow m_{1}V_{i}{'} \mid m_{2}V_{i}{'} \mid ... \mid m_{p}V_{i}{'} \mid m_{1} \mid m_{2} \mid ... \mid m_{p} \\ & \text{Exemple}: \\ & A \longrightarrow BC \\ & B \longrightarrow AB \mid a \\ & C \longrightarrow AC \mid b \end{split}$$