CSE 311 HW8

Rohan Mukherjee

March 8, 2023

1. (a) Let $a,b,c\in\mathbb{Z}^+$ be arbitrary positive integers. Suppose that $(a,b)\in R$ and $(b,c)\in R$. By the definition of being in R, we see that there exists integers $k,l\in\mathbb{Z}$ so that $\frac{a}{b}=2k$, and $\frac{b}{c}=2l$. We notice that, because $b\neq 0$,

$$\frac{a}{c} = \frac{\frac{a}{b}}{\frac{c}{b}} = \frac{2k}{\frac{1}{2l}} = 4kl$$
$$= 2(2kl)$$

As $2kl \in \mathbb{Z}$, $\frac{\alpha}{c}$ is an even integer. We see that by the definition of being in R, $(\alpha, c) \in R$, so R is indeed a transitive relation.

(b) We notice that $(4,2) \in R$, as $\frac{4}{2} = 2$ which is of course an even integer, but as the description of the problem states, $(2,4) \notin R$.

- 2. (a) Let X, Y be arbitrary subsets of the naturals of size 2. Then $X = \{x_1, x_2\}$ for some $x_1 < x_2$ (it is not \leq because then the set could potentially have only one element), and similarly $Y = \{y_1, y_2\}$ with $y_1 < y_2$. Suppose $X \leq Y$ and $Y \leq X$. Because $X \leq Y$, we have that $x_1 \leq y_1$, and $x_2 \leq y_2$. Similarly, because $Y \leq X$, we have that $y_1 \leq x_1$ and that $y_2 \leq x_2$. Because \leq is antisymmetric, we see that both $x_1 = y_1$ and that $x_2 = y_2$.
 - (c) No. For example, the smaller element of X could be less than the smaller element of Y, while the larger element of X is greater than the larger element of Y. For example, take $X = \{1, 4\}$, and $Y = \{2, 3\}$. As the larger element of X is larger than the larger element of Y, X $\not\preceq$ Y. Similarly, as the smaller element of Y is larger than the smaller element of X, we see that Y $\not\preceq$ X, so we see that \preceq is **not** a total order by counterexample (we just have to find one counterexample because we are disproving a \forall statement).
 - (d) Consider $X = \{1, 2\}$, $Y = \{-1, 3\}$, and $Z = \{0, 1\}$. Because the largest element of X is less than the largest element of Y, we have that $X \leq Y$. Because the smaller element of Y is less than the smaller element of Y, we have that $Y \leq Z$. But as the smaller element of Y is strictly greater than the smaller element of Y, and the larger element of Y is strictly greater than the larger element of Y. So we see our relation is not transitive by counterexample (once again, this is a Y statement, so we just have to find one counterexample).

- 5. (a) Let the domain of discourse be integers for the rest of this problem. We see that $TWIN PRIME(x) := PRIME(x) \land (PRIME(x+2) \lor PRIME(x-2))$.
 - (b) $\forall N \exists x > N \text{ (TWIN PRIME}(x)).$

(c)

$$\neg(\forall \mathsf{N} \; \exists \mathsf{x} > \mathsf{N} \; (\mathsf{TWIN} - \mathsf{PRIME}(\mathsf{x}))) \equiv \exists \mathsf{N} \neg (\exists \mathsf{x} > \mathsf{N} \; (\mathsf{TWIN} - \mathsf{PRIME}(\mathsf{x}))$$
$$\equiv \exists \mathsf{N} \; \forall \mathsf{x} > \mathsf{N} \; (\neg \mathsf{TWIN} - \mathsf{PRIME}(\mathsf{x}))$$

(d) There is an integer so that every integer larger than it is not a twin prime.

- 6. (a) $\forall x \forall y ([Rational(x) \land \neg Rational(y)] \rightarrow \neg Rational(x + y))$.
 - (b) $\exists x \exists y ([Rational(x) \land \neg Rational(y)] \land Rational(x + y)).$
 - (c) Suppose by way of contradiction that there were two real numbers x,y where x is rational, y is irrational, and x+y is rational. Because x is rational, there are integers a,b where $b \neq 0$ so that $x = \frac{a}{b}$. Similarly, as x+y is rational, there are integers c,d where $d \neq 0$ so that $x+y=\frac{c}{d}$. By plugging in these values, we notice that

$$\frac{a}{b} + y = \frac{c}{d}$$

$$y = \frac{c}{d} - \frac{a}{b}$$
 (Rearrange)
$$y = \frac{bc - da}{db}$$
 (Combine fractions)

As $bc - da \in \mathbb{Z}$, $db \in \mathbb{Z}$, and as $d \neq 0$, and $b \neq 0$, $db \neq 0$, we see that by definition y is rational, which is a contradiction.

7. The author didn't assume the negation of the claim properly. He should've started with "Suppose both L_1 and L_2 are irregular and that $L_1 \cap L_2$ is regular." (The negation of $p \to q$ is $p \land \neg q$). Instead, assuming that the original statement can be written as $p \to q$, he assumed $p \to \neg q$, and showed that claim to be false. So, assuming his proof is correct, the negation of $p \to \neg q$ should be true, which the negation of this is going to be $p \land q$, which is definitely NOT equivalent to $p \to q$.

6

8. This assignment took me around 3.5 hours to complete. I don't have any comments.

9. Assume by way of contradiction that $S = \{a^{311}b^{311}b^mc^m \mid m \geqslant 0\}$ was regular (rearrange the given set a little bit). Then the pumping lemma applies. So there exists a $p \in \mathbb{Z}$ so that every string w with length greater than p can be divided into three parts, w = xyz, with the length of xy not larger than p, the length of y not smaller than 1, and $\forall i \in \mathbb{N}$ $xy^iz \in S$. y may be in one of four places:

Case 1: y is in the $a^{311}b^{311}$ part of the string. Then y is of the form a^kb^l for some $k, l \ge 0$ but not both zero. If $k \ne 0$, xy^2z has 311+k a's, so therefore it can't be in S. If k=0, then y is of the form b^l with $l \ge 1$. We notice that xy^2z is of the form $a^{311}b^{311+l}b^mc^m$, after rearrangement, which clearly isn't in S because the number of b's is $311+m+l \ne 311+m$ because $l \ne 0$.

Case 2: y is in the b^{311+m} part. Then y is of the form b^{1} for some $l \neq 0$, and we see that the last part of the previous case applies, so this too is impossible.

Case 3: y is in the c^m part. Then y is of the form c^l for some $l \neq 0$. Clearly then $xy^2z = a^{311}b^{311}b^mc^{m+l}$. We notice that $m+l+311 \neq 311+m$, as $l \neq 0$, so the number of b's is not 311 more than the number of c's, which is again a contradiction. Finally,

Case 4: y is in the $b^m c^m$ part. Then y is of the form $b^k c^l$, where $k, l \neq 0$ (the above cases handled where they were already 0). We see that $xy^2z = a^{311}b^{311}b^{311-k}b^kc^lb^kc^lc^{311-l}$. This shows that there would be a b after a c, which is of course not in S. As these were the only four cases, we see that S cannot possibly be regular.

I found that using the regular method with $S=\{a^{311}b^{311}b^{\mathfrak{m}}\mid \mathfrak{m}\geqslant 0\}$ would be a lot simpler of a proof.

10. We define function ends from the set of all regex to the set of all regex as follows.

 $\operatorname{ends}(\varepsilon) = \varepsilon$, $\operatorname{ends}(\emptyset) = \emptyset$, and $\operatorname{ends}(\alpha) = \alpha \cup \varepsilon$. Then we define it structurally by, given regular expressions A, B, $\operatorname{ends}(AB) = \operatorname{ends}(A)B \cup \operatorname{ends}(B)$, $\operatorname{ends}(A \cup B) = \operatorname{ends}(A) \cup \operatorname{ends}(B)$, and finally $\operatorname{ends}(A^*) = \operatorname{ends}(A)A*$. Now, for a regular language L, we know there exists a regular expression R for it. Let $P(L) := \operatorname{ends}(L)$ is recognized by $\operatorname{ends}(R)$. We start by proving the base cases.

The ends of the language that recognizes only the empty set is also empty, so $P(\emptyset)$ is true. The ends of the language that recognizes only ε is also just the language that include ε , because if it was something non- ε in Σ^* , then it would already not be recognized. And clearly if it is ε then it is recognized. Finally, ends of the language that recognizes α is just going to be α and ε , because we could add an α to ε . Suppose A, B are arbitrary languages and suppose P(A), P(B). I tried finishing this, but I couldn't really figure out how to word this correctly. I do believe the bulk of the problem was finding the recursive definition of ends, so I am happy enough with this attempt.