Quiz-1

1. Question 2 points

Suppose f and g are injective functions $[0,1] \to [0,1]$ with $g(x) \neq 0$ for all $x \in [0, 1]$. Which of the following function(s) is injective on [0, 1]? Check all that apply.

e.g. if
$$f(x) = 1 - g(x)$$

then $(f+g)(x) = 1 + x$
 $f+g$
in which case $f+g$
is not injective

e.g. if
$$f(x) = 1 - g(x)$$
,
then $(f+g)(x) = 1 + x$

$$f+g$$
in which case $f+g$
is not injective
$$f = g$$

Option 1

Option 2

 $f \circ g$

Option 3

Option 4

06/12/2021, 13:02 Quiz-1

> 2. Question 2 points

Let X be a finite set, and $f: X \to X$ be a function. Pick the correct alternative(s). Check all that apply.

Always tome!

f-inj & X finite $\Rightarrow |f(x)| = |x|$

=> f-suijective, and hance f-bijective

Option 1

Option 2

f - s while f - s while f - s while f - s f

f - surjective \Rightarrow f - injective \Rightarrow f - injective \Rightarrow since X is finite.

None of the above

Option 3

Option 4

3. Question 2 points

Let X be an *infinite* set, and $f: X \to X$ be a function. Pick the correct alternative(s). Check all that apply.

Always take $f: [0,1] \rightarrow [0,1]$ $f - \text{ bijective } \Rightarrow f - \text{ injective } f - \text{ injective } \Rightarrow f - \text{ bijective }$ Then f-injective but not surjective

Option 1

None of the above

Question 4. 2 points

There is a bijective function $f:(0,1)\to(0,\infty)$ Mark only one oval.

06/12/2021, 13:02 Quiz-1

> 5. Question 2 points

Suppose $f : \mathbb{Z} \to \mathbb{Z}$ satisfies f(m+n) = f(m) + f(n) for all $m, n \in \mathbb{Z}$, and $f(3) \neq 0$. Then f is injective. • f(0) = f(0+0) = f(0) + f(0)Mark only one oval.

=> f(0) = 0 0 = f(0) = f(1-1) = f(1) + f(-1)

False

Thus, if $n \in \mathbb{N}$, then f(n) = f(1) = f(1).

Now, f(m) = f(n) = f(n) = f(1) = f(1)Thus, if $n \in \mathbb{N}$, then f(n) = f(1) = f(1)and f(n) = f(n) = f(1) = f(1) f(n) = f(1) = f(1) = f(1) f(n) = f(n) = f(n) = f(n) = f(n) f(n) = f(1) = f(1) f(n) = f(1) = f(1) f(n) = f(1) = f(1) f(n) = f(n) = f(1) f(n) = f(1) = f(1) f(n) = f(1) = f(1) f(n) = f(1) = f(1)Suppose $f: \mathbb{Z} \to \mathbb{Z}$ satisfies f(m+n) = f(m) + f(n) for all f(n) = f(n).

6. Question

and $f(3) \neq 0$. Then f is surjective.

Mark only one oval.

$$f: \mathcal{H} \rightarrow \mathcal{H}$$
, given by $f(m) = 2m$, then

 $f(m+n) = 2(m+n) = 2m + 2n = f(m) + f(n)$
 $f(3) = 6 \neq 0$

But f is not swijechive. 2 points

7. Question

> Suppose I and J are nonempty intervals. Then possible value(s) of $|I \cap J|$ are Check all that apply.

$$M_0 \leftarrow I = (0,1), J = (2,3)$$
 $M_1 \leftarrow I = (0,1), J = [1,2)$
 $M_2 \leftarrow I = (0,1), J = [1,2)$
 $M_3 \leftarrow I = (0,1), J = (\frac{1}{2},2)$

Then $InJ = (\frac{1}{2},1)$.

If INJ is finit then | Inj | = 0 001 1. since if a, btINJ with acb, then (a,b) & InJ. => | I n T | = 00.

06/12/2021, 13:02 Quiz-1

8. Question 2 points

Suppose $f: X \to X$ is injective and $g: X \to X$ is bijective. Pick the correct alternative(s). Check all that apply.

06/12/2021, 13:02 Quiz-1

9. Question 2 points

Let x and y be arbitrary rationals, and z and w be arbitrary irrationals. Pick the correct alternative(s).

Check all that apply.

z + w is irrational

$$Z=1+\sqrt{2}$$
, $W=1-\sqrt{2}$,
then $Z+W=2 \in \mathbb{Q}$

yz is irrational

$$y=0, z=\sqrt{2}$$
,
then $yz=0 \in \mathbb{Q}$.

Option 1

Option 2

zw is rational

$$Z=\sqrt{2}$$
, $w=\sqrt{3}$, then
 $Zw=\sqrt{6} \leftarrow ivvalion$

x + w is irrational

if
$$z+w=q\in Q$$
, then
 $w=q-z\in Q$,
which is impossible

Option 3

Option 4

06/12/2021, 13:02 Quiz-1

10. Question 2 points

Let $n_1 < n_2 < \cdots$ be an arbitrary sequence of natural numbers. Which of the following statements may *not* be correct? Check all that apply.

This content is neither created nor endorsed by Google.

Google Forms