

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS

Probabilidad 1 Tarea 4

PRESENTA

Carlos Emilio Castañon Maldonado	319053315
José Camilo García Ponce	319210536
Claudio Naim De La Cruz Márquez	318151645
Moisés Abraham Lira Rivera	319029930

PROFESOR

Jaime Vázquez Alamilla

AYUDANTES

Miguel Angel Fernández Castresana Brian Pérez Gutiérrez

Probabilidad 1

Tarea 4

1 Considérese una variable aleatoria X con función de densidad $f_X(x) = 2(1x)I_{(0,1)}(x)$. Calcular $\mathbb{E}((X+10)^2)$ y $\mathbb{E}(\frac{1}{1+X})$

Ayudante

2 Considérese una variable aleatoria con función de densidad $f_x(x) = \frac{x}{2}\mathbb{I}_{[0,2]}(x)$ **Determina** $\mathbb{E}(|\mathbb{X} - \mathbb{E}(\mathbb{X})|)$

Como podemos observar tenemos una función usada en una variable aleatoria, así que podemos hacer uso de la ley del estadístico inconsciente:

$$\mathbb{E}(|\mathbb{X} - \mathbb{E}(\mathbb{X})|) = \int_0^2 \left| x - \int_0^2 \frac{x^2}{2} \, dx \right| \left(\frac{x}{2}\right) \, dx$$

Resolvemos $\int_0^2 \frac{x^2}{2} dx$

$$\int_0^2 \frac{x^2}{2} \ dx = \frac{1}{2} \int_0^2 x^2 \ dx = \frac{1}{2} \left(\frac{x^3}{3} \right|_0^2 \right) = \frac{1}{2} \left(\frac{2^3}{3} - \frac{0^3}{3} \right) = \frac{1}{2} \left(\frac{2^3}{3} \right) = \frac{1}{2} \left(\frac{8}{3} \right) = \frac{4}{3}$$
 Por lo que, lo que nos queda de calcular nos queda como:

$$\int_{0}^{2} \left| x - \frac{4}{3} \right| \frac{x}{2} dx = \frac{1}{2} \int_{0}^{2} \left| x - \frac{4}{3} \right| x dx = \frac{1}{2} \int_{0}^{\frac{4}{3}} \left(\frac{4}{3} - x \right) x dx + \frac{1}{2} \int_{\frac{4}{3}}^{2} \left(x - \frac{4}{3} \right) x dx$$
$$= \frac{1}{2} \cdot \frac{32}{81} + \frac{1}{2} \cdot \int_{\frac{4}{3}}^{2} \left(x - \frac{4}{3} \right) x dx$$

A lo que resolvemos la ultima integral de forma que:

Aplicamos un cambio de variable en donde $u=x-\frac{4}{3}$ y du=dx lo cual nos deja nuevos limites $u=2-\frac{4}{3}=\frac{2}{3}$ $u=\frac{4}{3}-\frac{4}{3}=0$

$$= \int_0^{\frac{2}{3}} u(u+\tfrac{4}{3}) \; du = \int_0^{\frac{2}{3}} (u^2+\tfrac{4u}{3}) \; du = \int_0^{\frac{2}{3}} u^2 \; du + \int_0^{\frac{2}{3}} \tfrac{4u}{3} \; du = \int_0^{\frac{2}{3}} u^2 \; du + \tfrac{4}{3} \int_0^{\frac{2}{3}} u \; du$$

$$= \left(\frac{u^3}{3}\Big|_0^{\frac{2}{3}}\right) + \frac{4}{3}\left(\frac{u^2}{2}\Big|_0^{\frac{2}{3}}\right) = \left(\frac{u^3}{3}\Big|_0^{\frac{2}{3}}\right) + \left(\frac{2u^2}{3}\Big|_0^{\frac{2}{3}}\right) = \left(\frac{1}{3}\left(\frac{2}{3}\right)^3 - \frac{0^3}{3}\right) + \left(\frac{2}{3}\left(\frac{2}{3}\right)^2 - \frac{2*0^2}{3}\right)$$

$$= \left(\frac{1}{3}\left(\frac{2}{3}\right)^{3}\right) + \left(\frac{2}{3}\left(\frac{2}{3}\right)^{2}\right) = \left(\frac{8}{81}\right) + \left(\frac{8}{27}\right) = \frac{32}{81}$$

$$= \frac{1}{2} \cdot \frac{32}{81} + \frac{1}{2} \cdot \int_{\frac{4}{3}}^{2} \left(x - \frac{4}{3} \right) x \, dx = \frac{1}{2} \cdot \frac{32}{81} + \frac{1}{2} \cdot \frac{32}{81} = \frac{32}{81}$$

3 Considérese una variable aleatoria X con función de densidad

$$fx(x) \begin{cases} \frac{1 - \frac{||x - \alpha||}{\beta}}{\beta} & x \in (\alpha - \beta, \alpha + \beta) \\ 0 & x \notin (\alpha - \beta, \alpha + \beta) \end{cases}$$

Con $\alpha \in \Re \vee \beta > 0$

Probar que fX efectivamente es función de densidad y graficarla.

Para probar que es una función de densidad, tenemos que ver que cumplan las propiedades:

$$f(x) \ge 0$$

$$\int_{-\infty}^{\infty} fx(x)dx = 1$$

Para la primera, tenemos que hacerlo por casos.

Si $\alpha > 0$ y $\beta > 0$, entonces para $(\alpha - \beta) > 0$ si $\alpha > \beta$ y si $\beta > \alpha$ entonces $(\alpha - \beta) \le 0$

Para $(\alpha + \beta) > 0$ si $\beta > \alpha$, y en el caso contrario en el que α es un numero negativo mas grande que β , $-\alpha > \beta$ entonces $(\alpha + \beta) \leq 0$. Entonces $f(x) \geq 0$

2

Para la propiedad dos tenemos que:
$$\int_{-\infty}^{\infty} f(x) dx = 1 = \int_{\alpha-\beta}^{\alpha+\beta} \frac{1-\left\|\frac{x-\alpha}{\beta}\right\|}{\beta} \text{ Resolviendo la integral quedaria como:}$$

 $\int_{lpha-eta}^{lpha+eta} rac{1-\left\|rac{x-lpha}{eta}
ight\|}{eta}$ aplicando lineralidad $=rac{1}{eta}\int 1dx-rac{1}{eta\|eta\|}\int \|x-lpha\|\,dx$ resolviendo las integrales tenemos: $\int 1 dx = x$, $\int \|x - \alpha\| \, dx$ sustituyendo $u = x - \alpha$ entonces $\int \|u\| \, du = \frac{u\|u\|}{2} = \frac{(x-\alpha)\|x-\alpha\|}{2}$, reemplazando todo quedaria como: $=\frac{1}{\beta}\int 1 dx - \frac{1}{\beta\|\beta\|}\int \|x - \alpha\| \, dx = \frac{x}{\beta} - \frac{(x-\alpha)\|x-\alpha\|}{2\beta\|\beta\|}$ Ahora solo queda evaluar para comprobar que da 1.

$$F(b) - F(a) = F(\alpha + \beta) - F(\alpha - \beta)$$

Para ello tenmos que:
$$F\left(b\right) = \frac{\alpha+\beta}{\beta} - \frac{([\alpha+\beta]-\alpha)\|[\alpha+\beta]-\alpha\|}{2\beta\|\beta\|} = \frac{\alpha}{\beta} + 1 - \frac{(\beta)\|\beta\|}{2\beta\|\beta\|} = \frac{\alpha}{\beta} + 1 - \frac{\beta}{2\beta} \cdot \frac{\|\beta\|}{\|\beta\|} = \frac{\alpha}{\beta} + 1 - \frac{1}{2}$$

Ahora para $F(a)=F\left(\alpha-\beta\right)$ Sustituybendo tenemos: $\frac{\alpha-\beta}{\beta}-\frac{([\alpha-\beta]-\alpha)\|[\alpha-\beta]-\alpha\|}{2\beta\|\beta\|}=\frac{\alpha}{\beta}-1$ $\frac{-\beta\|-\beta\|}{2\beta\|-\beta\|} = \frac{\alpha}{\beta} - \left(-\frac{1}{2}\right) = \frac{\alpha}{\beta} + \frac{1}{2}$ y entonces quedaria como:

$$F(\alpha + \beta) - F(a - \beta) = F\left(\frac{\alpha}{\beta} + \frac{1}{2}\right) - F\left(\frac{\alpha}{\beta} - \frac{1}{2}\right) = 1$$

Encontrar la función de distribución FX.

Sabiendo que la funcion distribucion es la integral de la funcion densidad, quedaria como:

$$F(x) \begin{cases} \frac{x}{\beta} - \frac{(x-\alpha)\|x-\alpha\|}{2\beta\|\beta\|} & x \in (\alpha-\beta, \alpha+\beta) \\ 0 & x \notin (\alpha-\beta, \alpha+\beta) \end{cases}$$

Encontrar la esperanza y varianza de X.

La esperanxa se representa como:

$$E(x) = \int_{-\infty}^{\infty} x \cdot f(x) dx$$

$$\int x dx \cdot \int f(x) dx \, \, \forall \, \int x dx = \int x dx = \frac{x}{2} \int f(x) dx = \frac{x}{\beta} - \frac{(x-\alpha)\|x-\alpha\|}{2\beta \|\beta\|}$$

$$\int_{\alpha-\beta}^{\alpha+\beta} \frac{x^2}{2} = \frac{(\alpha+\beta)^2}{2} - \frac{(\alpha-\beta)^2}{2} = 2\alpha\beta$$

y quedaria como: $E(x) = 2\alpha\beta$

Ahora la varianza que se representa como:
$$\sigma^2 = V(x) = \int_{-\infty}^{\infty} x^2 \cdot f(x) dx - \mu^2 \text{ Siendo: } \int_{\alpha-\beta}^{\alpha+\beta} x^2 = \frac{x^3}{3} = \frac{(\alpha+\beta)^3}{3} - \frac{(\alpha-\beta)^3}{3} = \frac{6\alpha^2\beta + 2\beta^3}{3} \text{ Sustituyendo lo demas nos queda: } \\ \sigma^2 = \frac{6\alpha^2\beta + 2\beta^3}{3} \cdot 1 - 4\alpha^2\beta^2$$

4 (La paradoja de San Petesburgo). En 1728, Nicolás Bernoulli planteó la paradoja de San Petesburgo. De acuerdo con esta historia, un casino de San Petesburgo estaba dispuesto a ofrecer cualquier tipo de juego siempre que la dirección del casino pudiera establecer el precio de la entrada que se paga por participar. Se propone el siguiente juego: suponga que alguien lanza una moneda balanceada repetidamente y se reciben 2^n pesos si cae cara en el n-ésimo lanzamiento. Sea X la ganancia del jugador

Ayudante

5 Considérese una variable aleatoria X tal que para $0 , <math>\mathbb{P}(X = 1) = p$, $\mathbb{P}(X = k + 1) = p$ $(1p) * \mathbb{P}(X = k)$ para k = 1, 2, ... y $\mathbb{P}(X = x) = 0$ para cualquier x que no sea un entero positivo. Calcular $\mathbb{E}(X)$

Ayudante

6 Sea Y una variable aleatoria con media $\mu>0$ y varianza $\sigma^2>0$. Para que valor de a>0se minimiza (a) $\mathbb{E}((Y-a)^2)$ y (b) $\mathbb{E}((aY-\frac{1}{a})^2)$

Antes de empezar notemos algunas cosas Sabemos que $\mathbb{E}(X) = \mu > 0$ y que $Var(X) = \mathbb{E}(Y^2) - (\mathbb{E}(Y))^2 > 0$, por lo tanto $\mathbb{E}(Y^2) > \mathbb{E}(Y) > 0$

(a)
$$\mathbb{E}((Y-a)^2)$$
 $\mathbb{E}((Y-a)^2) = \mathbb{E}(Y^2-2aY+a^2)$ $= \mathbb{E}(Y^2) - \mathbb{E}(2aY) + \mathbb{E}(a^2) = \mathbb{E}(Y^2) - 2a\mathbb{E}(Y) + a^2$, por las propiedades de $\mathbb{E}(X)$ $= a^2 - 2a\mathbb{E}(Y) + \mathbb{E}(Y^2) = (a - \mathbb{E}(Y))^2 - \mathbb{E}(Y^2) + \mathbb{E}(Y^2)$ Por lo tanto $\mathbb{E}((Y-a)^2) = (a - \mathbb{E})^2$, ahora tomemos a $\mathbb{E}(Y)$ como y Para minimizar primero saquemos los puntos críticos $\frac{d}{da}(a-y)^2 = 2(a-y)*1 = 2(a-y)$ Ahora $2(a-y)=0$, entonces $a-y=0$, por lo tanto $a=y$ es el punto critico Usemos la prueba de la segunda derivada $\frac{d}{da}(a-y)=2$, por lo tanto $a=y$ es un mínimo Entonces $a=y$, por lo tanto el valor de $a=\mathbb{E}(Y)$

(b)
$$\mathbb{E}((aY-\frac{1}{a})^2)$$
 $\mathbb{E}((aY-\frac{1}{a})^2)=\mathbb{E}(a^2Y^2-2Y+\frac{1}{a^2})$ $=\mathbb{E}(a^2Y^2)-\mathbb{E}(2Y)+\mathbb{E}(\frac{1}{a^2})=a^2\mathbb{E}(Y^2)-2\mathbb{E}(Y)+\frac{1}{a^2}$, por las propiedades de $\mathbb{E}(X)$ Por lo tanto $\mathbb{E}((aY-\frac{1}{a})^2)=a^2\mathbb{E}(Y^2)-2\mathbb{E}(Y)+\frac{1}{a^2}$, ahora tomemos a $\mathbb{E}(Y)$ como y y a $\mathbb{E}(Y^2)$ como y

Para minimizar primero saquemos los puntos críticos

Ahora $2za-2y+\frac{1}{q^2}=2za-\frac{2a}{a^4}=2za-\frac{2}{a^3}$ Ahora $2za-\frac{2}{a^3}=0$, entonces $2za^4-2=0$, luego $2za^4=2$, posteriormente $a^4=\frac{1}{z}$ Luego $a^2=\pm\frac{1}{\sqrt{z}}$, por lo tanto $a=\pm\frac{1}{\sqrt{\sqrt{z}}}$ por lo tanto $a=\pm\frac{1}{\sqrt{\sqrt{z}}}$ y a=0 son los puntos críticos

$$\frac{d}{da} = 2za - \frac{2}{a^3} = 2z + \frac{6a^2}{a^6} = 2z + \frac{6}{a^4}$$

Usemos la prueba de la segunda derivada $\frac{d}{da} = 2za - \frac{2}{a^3} = 2z + \frac{6a^2}{a^6} = 2z + \frac{6}{a^4}$ Revisemos los puntos críticos, recordemos que para ser mínimo f''(a) > 0 $a_1 = +\frac{1}{\sqrt{\sqrt{z}}}, \text{ entonces } 2z + \frac{6}{(+\frac{1}{\sqrt{\sqrt{z}}})^4} = 2z + \frac{6}{\frac{1}{z}}, \text{ ahora notemos que } 2z + \frac{6}{\frac{1}{z}} > 0, \text{ ya que } 1$

 $\mathbb{E}(Y^2) = z > 0, \text{ entonces es mínimo} \\ a_2 = -\frac{1}{\sqrt{\sqrt{z}}}, \text{ entonces } 2z + \frac{6}{(-\frac{1}{\sqrt{\sqrt{z}}})^4} = 2z + \frac{6}{\frac{1}{z}}, \text{ ahora notemos que } 2z + \frac{6}{\frac{1}{z}} > 0, \text{ ya que } 2z + \frac{6}{z} > 0$

 $\mathbb{E}(Y^2) = z > 0$, entonces es mínimo $a_3=0$, entonces $2z+\frac{6}{(0)^4}$, esto se indefine, por lo tanto no es mínimo

Entonces tenemos que a debe ser $\pm \frac{1}{\sqrt{\sqrt{z}}}$ para minimizar, pero el problema quiere que a>0, entonces $a = +\frac{1}{\sqrt{\sqrt{z}}}$, para minimizar

7 Sea X una variable aleatoria tal que $\mathbb{E}(X)=2$, $\mathbb{E}(X^3)=9$ y $\mathbb{E}((X-2)^3)=0$ Calcule Var(X)

Sabemos lo siguiente $\mathbb{E}(X)=2, \mathbb{E}(X^3)=9$ y $\mathbb{E}((X-2)^3)=0$

Ahora veamos lo siguiente

 $\mathbb{E}((X-2)^3) = \mathbb{E}(X^3 - 3X^2(2) + 3X(2)^2 - (2)^3)$, esto usando que $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

 $=\mathbb{E}(X^3-6X^2+12X-8)=\mathbb{E}(X^3)-\mathbb{E}(6X^2)+\mathbb{E}(12X)-\mathbb{E}(8)$, usando las propiedades de $\mathbb{E}(X)$

 $=\mathbb{E}(X^3)-6\mathbb{E}(X^2)+12\mathbb{E}(X)-8$, por las propiedades de $\mathbb{E}(X)$

Ahora reemplazamos los valores que ya conocemos $\mathbb{E}((X-2)^3) = 9 - 6\mathbb{E}(X^2) + 12(2) - 8 = 0$

Entonces, $9 + 24 - 8 + 6\mathbb{E}(X^2) = 25 - 6\mathbb{E}(X^2) = 0$

Por lo tanto $-6\mathbb{E}(X^2) = -25$, por consiguiente $\mathbb{E}(X^2) = \frac{25}{6}$

Ahora con esto ya podemos calcular la varianza

 $Var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$ $Var(X) = \frac{25}{6} - (2)^2 = \frac{1}{6}$

8 Sea X una variable aleatoria con función de densidad

$$f_x(x) = c \left(\frac{1}{4}\right)^x I_{0,1,2,...}(x)$$

- a) Determinar el valor de c para que f_x sea función de densidad.
- b) Encontrar la función generadora de momentos, $m_x(t)$

Solución:

Para encontrar c veamos que:

$$\sum_{x=0}^{\infty} c \left(\frac{1}{4}\right)^x = 1$$

Como es una serie geométrica recordemos que:

$$\sum_{x=0}^{\infty} ar^x = \frac{a}{1-r}$$

Resolviendo tenemos que:

$$\frac{c}{1-\frac{1}{4}} = \frac{4}{3}c$$

$$\frac{4}{3}c = 1$$

$$c = \frac{3}{4}$$

Ahora encontremos la función generadora de momentos. Recordemos que:

$$m_X(t) = \sum_{x=0}^{\infty} e^{tx} f_X(x)$$

Sustituyendo $f_X(x)$ y c

$$m_X(t) = \sum_{x=0}^{\infty} e^{tx} \cdot \frac{3}{4} \left(\frac{1}{4}\right)^x$$

$$m_X(t) = \frac{3}{4} \sum_{x=0}^{\infty} e^{tx} \cdot \left(\frac{1}{4}\right)^x$$

$$m_X(t) = \frac{3}{4} \sum_{x=0}^{\infty} \left(e^t \cdot \frac{1}{4} \right)^x$$

Recordemos que:

$$\sum_{x=0}^{\infty} a^x = \frac{1}{1-a}$$

con a < 1

Así:

$$m_X(t) = \frac{3}{4} \frac{4}{4 - e^t} \operatorname{con} e^t < 4$$

$$m_X(t) = \frac{3}{4 - e^t} \operatorname{con} e^t < 4$$

9 Si X tiene una función de densidad dada por $\mathbb{P}(X=0)=\mathbb{P}(X=2)=p$ y $\mathbb{P}(X=1)=1-2p$, para $0 \le p \le \frac{1}{2}$, ¿para qué valor de p se maximiza la varianza de X?

Como X es discreta, entonces calculemos la función generadora de momentos así:

$$m_X(t) = \sum_{x=0}^{2} e^{tx} \mathbb{P}(X = x)$$

$$= e^{t0} \mathbb{P}(X = 0) + e^{t1} \mathbb{P}(X = 1) + e^{t2} \mathbb{P}(X = 2) = 1p + e^{t}(1 - 2p) + e^{2t}(p)$$

Ahora calculemos $\mathbb{E}(X)$ y $\mathbb{E}(X^2)$

$$\frac{d}{dt}1p + e^t(1-2p) + e^{2t}(p) = 0 + e^t(1-2p) + e^{2t}2p$$
 Ahora $\lim_{t\to 0}e^t(1-2p) + e^{2t}2p$

Como la función es continua en 0, entonces evaluamos en t=0, $e^0(1-2p)+e^{2*0}2p=$

$$1*(1-2p) + 1*2p = 1 - 2p + 2p = 1 = \mathbb{E}(X)$$

$$\frac{d}{dt}e^{t}(1-2p) + e^{2t}2p = e^{t}(1-2p) + e^{2t}4p$$

Ahora $\lim_{t\to 0} e^t (1-2p) + e^{2t} 4p$

Como la función es continua en 0, entonces evaluamos en t=0, $e^0(1-2p)+e^{2*0}4p=$ $1 * (1 - 2p) + 1 * 4p = 1 - 2p + 4p = 1 + 2p = \mathbb{E}(X^2)$

Entonces
$$Var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = (1+2p) - (1)^2 = 1-1+2p = 2p$$

Para maximizar primero saquemos los puntos críticos

$$\frac{d}{dp}2p = 2$$

Por lo tanto no hay puntos criticos, entonces para maximizar tomemos el valor de p más grande que tengamos

Por lo tanto el valor de $p=\frac{1}{2}$, para maximizar

10 Sea X una variable aleatoria con función de densidad de probabilidad dada por

$$f_X(x) = \frac{2}{3^x} I_{\{1,2,3,\dots\}}(x)$$

$f_X(x) = rac{2}{3^x} I_{\{1,2,3,\ldots\}}(x)$ ¿Cuál es la probabilidad de que X sea par?

Notemos que $\mathbb{P}(X=x)=\frac{2}{3^x}$, y que $\mathbb{P}(\mathsf{par})=1-\mathbb{P}(\mathsf{impar})$ Entonces veamos quien es $\mathbb{P}(\mathsf{impar})=\mathbb{P}(1)+\mathbb{P}(3)+\mathbb{P}(5)+\dots$ $\mathbb{P}(\mathsf{impar})=\frac{2}{3^1}+\frac{2}{3^3}+\frac{2}{3^5}+\dots=\frac{2}{3}+\frac{2}{27}+\frac{2}{243}+\dots$ Ahora observemos algo que pasa, $\mathbb{P}(\mathsf{impar})=(\frac{2}{3}*1)+(\frac{2}{3}*\frac{1}{9})+(\frac{2}{3}*\frac{1}{81})+\dots=(\frac{2}{3}*(\frac{1}{9})^0)+(\frac{2}{3}*(\frac{1}{9})^1)+(\frac{2}{3}*(\frac{1}{81})^2)+\dots$

Por lo tanto $\mathbb{P}(\text{impar}) = \sum_{n=0}^{\infty} \frac{2}{3} * (\frac{1}{9})^x = \frac{2}{3} \sum_{n=0}^{\infty} \frac{1}{9}^x$

Por lo tanto $\mathbb{P}(\text{Impar}) = \sum_{x=0}^\infty \frac{1}{3} \cdot (\frac{1}{9})^x - \frac{1}{3} \sum_{x=0}^\infty 9$ Recordemos que $\sum_{x=0}^\infty a^x = \frac{1}{1-a}$, con |a| < 1, por lo tanto ya que $|\frac{1}{9}| < 1$, tenemos que que

$$\mathbb{P}(\text{impar}) = \tfrac{2}{3} \sum_{x=0}^{\infty} \frac{1}{9}^{x} = \frac{2}{3} (\frac{1}{1-\frac{1}{9}})$$

$$\mathbb{P}(\text{impar}) = \frac{6}{9}(\frac{1}{\frac{8}{9}}) = \frac{\frac{6}{9}}{\frac{8}{9}} = \frac{6}{8} = \frac{3}{4}$$

 $\begin{array}{l} \mathbb{P}(\mathsf{impar}) = \frac{6}{9}(\frac{1}{\frac{8}{9}}) = \frac{\frac{6}{9}}{\frac{8}{9}} = \frac{6}{8} = \frac{3}{4} \\ \mathsf{Regresando} \ \mathsf{al} \ \mathsf{inicio} \ \mathsf{tenemos} \ \mathsf{que} \ \mathbb{P}(\mathsf{par}) = 1 - \mathbb{P}(\mathsf{impar}) \\ \mathsf{Entonces} \ \mathbb{P}(\mathsf{par}) = 1 - \frac{3}{4} = \frac{1}{4} \end{array}$

11 Dada la función de densidad:

$$f_x(x) = \begin{cases} 0 & si \quad x \in (-\infty, -1) \cup (0.1) \cup (3, \infty) \\ x^2 & si \quad x \in [-1, 0] \\ x^2 - 2x + 1 & si \quad x \in [1, 2] \\ x^2 - 6x + 9 & si \quad x \in [2, 3] \end{cases}$$

Calcular $\mathbb{E}(X)$ y Var(X)Solución:

Para calcular $\mathbb{E}(X)$ recordemos que:

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f_x(x) \, dx$$

Así:

$$\mathbb{E}(X) = \int_{-1}^{0} x \cdot x^{2} dx + \int_{1}^{2} x \cdot (x^{2} - 2x + 1) dx + \int_{2}^{3} x \cdot (x^{2} - 6x + 9) dx$$

Simplificando tenemos que:

$$\mathbb{E}(X) = \int_{-1}^{0} x^3 dx + \int_{1}^{2} x^3 - 2x^2 + x dx + \int_{2}^{3} x^3 - 6x^2 + 9x dx$$

Resolviendo las integrales:

$$\mathbb{E}(X) = \frac{x^4}{4} \Big|_{-1}^{0} + \frac{x^4}{4} \Big|_{-1}^{2} - 2\frac{x^3}{3} \Big|_{1}^{2} + \frac{x^2}{2} \Big|_{1}^{2} + \frac{x^4}{4} \Big|_{2}^{3} - 6\frac{x^3}{3} \Big|_{2}^{3} + 9\frac{x^2}{2} \Big|_{2}^{3}$$

Evaluando:

$$\mathbb{E}(X) = \frac{0^4}{4} - \frac{(-1)^4}{4} + \frac{2^4}{4} - \frac{1^4}{4} - 2(\frac{2^3}{3} - \frac{1^3}{3}) + \frac{2^2}{2} - \frac{1^2}{2} + \frac{3^4}{4} - \frac{2^4}{4} - 6(\frac{3^3}{3} - \frac{2^3}{3}) + 9(\frac{3^2}{2} - \frac{2^2}{2})$$

$$\mathbb{E}(X) = -\frac{1}{4} + \frac{7}{12} + \frac{3}{4}$$

$$\mathbb{E}(X) = \frac{13}{12}$$

Para calcular Var(X) recordemos que:

$$Var(X) = \mathsf{E}(X^2) - (\mathbb{E}(X))^2$$

De este modo veamos que:

$$\mathbb{E}(X^2) = \int_{-1}^0 x^2 \cdot x^2 \, dx + \int_1^2 x^2 \cdot (x^2 - 2x + 1) \, dx + \int_2^3 x^2 \cdot (x^2 - 6x + 9) \, dx$$

$$\mathbb{E}(X^2) = \int_{-1}^0 x^4 \, dx + \int_1^2 x^4 - 2x^3 + x^2 \, dx + \int_2^3 x^4 - 6x^3 + 9x^2 \, dx$$

Resolviendo las integrales tenemos que:

$$\mathbb{E}(X^2) = \frac{x^5}{5} \Big|_{-1}^0 + \frac{x^5}{5} \Big|_{1}^2 - 2\frac{x^4}{4} \Big|_{1}^2 + \frac{x^3}{3} \Big|_{1}^2 + \frac{x^5}{5} \Big|_{2}^3 - 6\frac{x^4}{4} \Big|_{2}^3 + 9\frac{x^3}{3} \Big|_{2}^3$$

Evaluando tenemos que:

$$\mathbb{E}(X^2) = \frac{1}{5} + \frac{31}{30} + \frac{17}{10}$$
$$\mathbb{E}(X^2) = \frac{44}{15}$$

Veamos el valor de $(\mathbb{E}(X))^2$, sustituyendo tenemos que:

$$(\mathbb{E}(X))^2 = (\frac{13}{12})^2 = \frac{169}{144}$$

De este modo:

$$Var(X) = \mathsf{E}(X^2) - (\mathbb{E}(X))^2 = \frac{44}{15} - \frac{169}{144} = \frac{1267}{720}$$

12 Si X tiene una función de densidad dada por $\mathbb{P}(X=0)=\mathbb{P}(X=2)=p$ y $\mathbb{P}(X=1)=12p$, para $0\leq p\leq \frac{1}{2}$, ¿para qué valor de p se maximiza la varianza de X?

Como X es discreta, entonces calculemos la función generadora de momentos así:

$$\begin{split} m_X(t) &= \sum_{x=0}^2 e^{tx} \mathbb{P}(X=x) \\ &= e^{t0} \mathbb{P}(X=0) + e^{t1} \mathbb{P}(X=1) + e^{t2} \mathbb{P}(X=2) = 1p + e^t(1-2p) + e^{2t}(p) \\ \text{Ahora calculemos } \mathbb{E}(X) \text{ y } \mathbb{E}(X^2) \\ &\frac{d}{dt} 1p + e^t(1-2p) + e^{2t}(p) = 0 + e^t(1-2p) + e^{2t}2p \\ \text{Ahora } \lim_{t \to 0} e^t(1-2p) + e^{2t}2p \\ \text{Como la función es continua en } 0, \text{ entonces evaluamos en } t = 0, e^0(1-2p) + e^{2*0}2p = 1 * (1-2p) + 1 * 2p = 1 - 2p + 2p = 1 = \mathbb{E}(X) \\ &\frac{d}{dt} e^t(1-2p) + e^{2t}2p = e^t(1-2p) + e^{2t}4p \\ \text{Ahora } \lim_{t \to 0} e^t(1-2p) + e^{2t}4p \end{split}$$

Como la función es continua en 0, entonces evaluamos en t = 0, $e^0(1 - 2p) + e^{2*0}4p = 1*(1-2p) + 1*4p = 1-2p+4p = 1+2p = <math>\mathbb{E}(X^2)$

Entonces $Var(X)=\mathbb{E}(X^2)-(\mathbb{E}(X))^2=(1+2p)-(1)^2=1-1+2p=2p$ Para maximizar primero saquemos los puntos críticos

 $\frac{d}{dp}2p = 2$

Por lo tanto no hay puntos criticos, entonces para maximizar tomemos el valor de p más grande que tengamos

Por lo tanto el valor de $p=\frac{1}{2}$, para maximizar

13 Demostrar que si $m_X(t)$ es la función generadora de momentos de una variable X, entonces (a) $\frac{d}{dt}Ln(m_X(t))\Big|_{t=0}=\mathbb{E}(X)$ y (b) $\frac{d^2}{dt^2}Ln(m_X(t))\Big|_{t=0}=Var(X)$

Ayudante

14 Sea X una variable aleatoria con función generadora de momentos $m_X(t)=e^{3t+t^2}$. ¿Cuánto vale Var(X)?

Solución:

Calculemos entonces $m_X'(t)$

$$m_X'(t) = e^{3t+t^2} \cdot (3+2t)$$

Cuando $t \rightarrow 0$

$$m_X'(0) = e^{3(0)+(0)^2} \cdot (3+2(0))$$

$$m_X'(0) = 1 \cdot 3 = 3$$

Por lo tanto, $\mathbb{E}(X) = 3$

Calculemos $m_X''(t)$ pero antes reescribamos $m_X'(t) = e^{3t+t^2} \cdot (3+2t)$ como $m_X'(t) = m_X(t) \cdot (3+2t)$

De este modo tenemos que:

$$m_X''(t) = m_X(t) \cdot 2 + ((3+2t) \cdot m_X'(t))$$

$$m_X''(t) = 2 \cdot e^{3t + t^2} + ((3 + 2t) \cdot m_X'(t))$$

Cuando $t \rightarrow 0$

$$m_X''(0) = 2 \cdot e^{3(0) + (0)^2} + ((3 + 2(0)) \cdot m_X'(0))$$

 $m_X''(0) = 2 + (3 \cdot 3) = 11$

Por lo tanto, $\mathbb{E}(X^2) = 11$

Así la $Var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$ es:

$$Var(X) = 11 - 9 = 2$$

15 Conteste:

a) Si X es una variable aleatoria tal que $\mathbb{E}(X)=3$ y $\mathbb{E}(X^2)=13$, use la desigualdad de Chebyshev para determinar una cota inferior para $\mathbb{P}(-2 < X < 8)$

Recordamos la desigualdad de Chebyshev de la forma:

$$\mathbb{P}|[X - \mu| < r] \ge 1 - \frac{\sigma}{r^2}$$

A lo que notamos que para poder aplicarla debemos de obtener Var(X) por lo que:

$$\begin{array}{l} Var(X) = \sigma^2 = \mathbb{E}[X^2] - \mu^2 = 13 - 3^2 = 13 - 9 = 4 \\ \mathbb{P}(-2 < X < 8) = \mathbb{P}(-5 < X - 3 < 5) = \mathbb{P}[|X - 3| < 5] \end{array}$$

$$\mathbb{P}(-2 < X < 8) = \mathbb{P}(-5 < X - 3 < 5) = \mathbb{P}[|X - 3| < 5]$$

Así tenemos que $\mathbb{P}[|X-3|<5]\geq 1-\frac{4}{25}$ por lo que la cota inferior sera $\frac{21}{25}$

b) Sea X una variable aleatoria con función de densidad de probabilidad dada por:

$$f_X(x) = \frac{1}{8}I_{\{-1\}}(x) + \frac{6}{8}I_{\{0\}}(x) + \frac{1}{8}I_{\{1\}}$$

Para k=2 evaluar $\mathbb{P}(|X-\mu_X|\geq k\sigma_X)$ $(con\ \mu_X=\mathbb{E}(X))$ Compare cota dada por la desigualdad de Chebyshev.

Primero calculamos la esperanza:

$$\mu = \sum_{x} x f X(x) = -1 * \frac{1}{8} + 0 * \frac{6}{8} + 1 * \frac{1}{8} = 0$$

A lo que procedemos a calcular la varianza:

$$\sigma^2 = \sum_{x} (x - \mu)^2 fX(x) = 1 * \frac{1}{8} + 0 * \frac{6}{8} + 1 * \frac{1}{8} = 0.25$$

Entonces $\sigma^2 = 0.25 \longrightarrow \sigma = \sqrt{0.25} \longrightarrow \sigma = 0.5$

A lo que ahora podemos hacer lo siguiente:

$$\mathbb{P}(|X - \mu| \ge k\sigma) = \mathbb{P}(|X - 0| \ge 2 * 0.5) = 1 - \mathbb{P}(|X| < 0.5) = 1 - \mathbb{P}(0.5 < X < 0.5) = 1 - \mathbb{P}(X = 0) = 1 - \frac{6}{8} = \frac{1}{4}$$

c) Suponga que X es una variable aleatoria con media y varianza igual a 20. ¿Qué se puede decir de $\mathbb{P}(0 \le X \le 40)$?

$$\mathbb{P}(0 \le X \le 40) = \mathbb{P}(-20 \le X - 20 \le 20)$$

 $= \mathbb{P}(-20 \le X - \mathbb{E}(X) \le 20) = \mathbb{P}(|X - \mathbb{E}(X)| \le 20)$, usando los valores que ya conocemos

Usando la desigualdad de Chebyshev obtenemos que $\mathbb{P}(|X-\mathbb{E}(X)|\leq 20)\geq 1-\frac{\sigma^2}{r^2}$ Sustituyendo los valores que conocesmo $\mathbb{P}(|X-\mathbb{E}(X)|\leq 20)\geq 1-\frac{20}{20^2}=1-\frac{1}{20}$ Por lo tanto $\mathbb{P}(0 \le X \le 40) \ge \frac{19}{20}$

16 Diga si las siguientes afirmaciones son verdaderas o falsas. Demuestre o dé un contraejemplo

Ayudante

17 Sea X una variable aleatoria con función de densidad

$$f_X(x) = \frac{1}{2}e^{-|x|}I_{\mathbb{R}}(x)$$

(a) Probar que si $t \in (1,1)$, entonces la función generadora de momentos está dada por $m_X(t) = \frac{1}{1-t^2}$

Para esto calculemos $m_X(t)$, y sabemos que esto es $E(e^{tx}) = \int_{-\infty}^{\infty} e^{tx} f_X(x) \, dx = \int_{-\infty}^{\infty} e^{tx} \frac{1}{2} e^{-|x|} \, dx$

Así que empecemos a calcular $E(e^{tx})$

$$\int_{-\infty}^{\infty} e^{tx} \frac{1}{2} e^{-|x|} dx = \frac{1}{2} \int_{-\infty}^{\infty} e^{tx} e^{-|x|} dx = \frac{1}{2} \int_{-\infty}^{\infty} e^{tx - |x|} dx$$

Como tenemos un valor absoluto hacemos lo siguiente $\frac{1}{2}\int_{-\infty}^{\infty}e^{tx-|x|}\,dx=\frac{1}{2}(\int_{-\infty}^{0}e^{tx+x}\,dx+\frac{1}{2}e^{tx+x}\,dx)$

$$\begin{split} &\int_0^\infty e^{tx-x}\,dx)\\ &\frac{1}{2}(\int_{-\infty}^0 e^{tx+x}\,dx+\int_0^\infty e^{tx-x}\,dx)=\frac{1}{2}(\int_{-\infty}^0 e^{x(t+1)}\,dx+\int_0^\infty e^{x(t-1)}\,dx)\\ &\frac{1}{2}(\int_{-\infty}^0 e^{x(t+1)}\,dx+\int_0^\infty e^{x(t-1)}\,dx)=\frac{1}{2}(\frac{1}{t+1}\int_{-\infty}^0 e^u\,dx+\frac{1}{t-1}\int_0^\infty e^v\,dx)\text{, con los cambios de variables }u=x(t+1)\text{, }du=(t+1)dx\text{ y }v=x(t-1)\text{, }dv=(t-1)dx\text{, no cambiamos los limites, ya que regresaremos el valor de }u\text{ y }v \end{split}$$

$$\begin{split} &\frac{1}{2}(\frac{1}{t+1}\int_{-\infty}^{0}e^{u}\,dx+\frac{1}{t-1}\int_{0}^{\infty}e^{v}\,dx)=\frac{1}{2}(\frac{1}{t+1}(e^{u}\Big|_{-\infty}^{0})+\frac{1}{t-1}(e^{v}\Big|_{0}^{\infty}))\\ &=\frac{1}{2}(\frac{1}{t+1}(e^{x(t+1)}\Big|_{-\infty}^{0})+\frac{1}{t-1}(e^{x(t-1)}\Big|_{0}^{\infty}))=\frac{1}{2}(\frac{1}{t+1}(e^{0(t+1)}-e^{-\infty(t+1)})+\frac{1}{t-1}(e^{\infty(t-1)}-e^{0(t-1)}))\\ &=\frac{1}{2}(\frac{1}{t+1}(1-0)+\frac{1}{t-1}(0-1))=\frac{1}{2}(\frac{1}{t+1}-\frac{1}{t-1}), \ \text{con}\ t+1>0\ \text{y}\ t-1<0\\ &=\frac{1}{2}(-\frac{2}{t^{2}-1})=\frac{1}{2}(\frac{2}{1-t^{2}})=\frac{1}{1-t^{2}}, \ \text{con}\ -1< t\ \text{y}\ t<1 \end{split}$$
 Por lo tanto vemos que si esta bien

(b) Encontrar la esperanza de X

Como ya tenemos $m_X(t)$ podemos sacar el primer momento que sera $\mathbb{E}(X)$, para esto tenemos que hacer $\frac{d}{dt}m_X(t)$ y a eso hacemos que $t\longrightarrow 0$

Entonces
$$\frac{d}{dt}m_X(t) = \frac{d}{dt}\frac{1}{1-t^2} = \frac{d}{du}\frac{1}{u}(\frac{d}{dt}u)$$
, donde $u = 1 - t^2$

Entonces
$$\frac{d}{dt}m_X(t) = \frac{d}{dt}\frac{1}{1-t^2} = \frac{d}{du}\frac{1}{u}(\frac{d}{dt}u)$$
, donde $u = 1-t^2$
Por lo tanto $\frac{d}{dt}m_X(t) = -\frac{1}{u^2}(-2t) = -\frac{1}{(1-t^2)^2}(-2t) = \frac{2t}{(t^2-1)^2}$

Ahora saquemos el limite $\lim_{t \to 0} \frac{2t}{(t^2-1)^2}$

Como la función es continua en 0, entonces solo evaluamos en t=0, $\frac{2*0}{(0^2-1)^2}=0$ Por lo tanto $\mathbb{E}(X) = 0$

18 El número de crímenes seriales reportados diariamente en la ciudad de New York es una variable aleatoria X con media 2 y varianza 4.

Utilice la desigualdad de Chebyshev para obtener una cota para $\mathbb{P}(X \ge 10)$

Aplicando la desigualdad de Chebyshev tenemos:

$$\mathbb{P}(|X-2| \ge 10) \le \frac{4}{10^2} = \frac{4}{100}$$

 \therefore La cota para $\mathbb{P}(X \geq 10)$ es $\frac{4}{100}$

19 Sean a1, a2, ..., an números positivos. Se definen

$$a_A = \frac{1}{n} \sum_{i=1}^n a_i,$$

$$a_G = (\prod_{i=1}^n a_i)^{\frac{1}{n}}$$

$$\mathbf{y} \ a_H = rac{1}{rac{1}{n}(rac{1}{a_1} + rac{1}{a_2} + \ldots + rac{1}{a_n})}$$
,

como las medias aritmética, geométrica y armónica, respectivamente. Usando la desigualdad de Jensen, demuestre que

$$a_H \le a_G \le a_A$$

Ayudante

- 20 Sea X una variable aleatoria no negativa con media 25. ¿Qué puede decir de las siguientes cantidades?
 - a) $\mathbb{E}(X^3)$
 - b) $\mathbb{E}(\sqrt{X})$
 - c) $\mathbb{E}(log(X))$
 - d) $\mathbb{E}(e^{-x})$

Solución:

Para resolver los incisos utilizaremos la desigualdad de Jensen. De este modo recordemos lo siguiente:

a) Si g(x) es una función convexa, entonces:

$$\mathbb{E}[g(x)] \ge g[\mathbb{E}(x)]$$

b) Si g(x) es una función cóncava. entonces:

$$\mathbb{E}[g(x)] \le g[\mathbb{E}(x)]$$

Veamos si nuestras funciones son convexas o cóncavas.

Para X^3 veamos que la función de $(-\infty,0)$ es cóncava hacia abajo (cóncava) y de $(0,\infty)$ es cóncava hacia arriba (convexa), por lo que:

- a) De $(-\infty,0)$ se cumple que $\mathbb{E}[X^3] \geq [\mathbb{E}(x)]^3 \to \mathbb{E}[X^3] \geq [25]^3 = 15625$
- b) De $(0,\infty)$ se cumple que $\mathbb{E}[X^3] \leq [\mathbb{E}(x)]^3 \to \mathbb{E}[X^3] \leq [25]^3 = 15625$

Para \sqrt{X} veamos que la función es cóncava hacia abajo (cóncava) por lo que se cumple que $\mathbb{E}[\sqrt{X}] \leq \sqrt{[\mathbb{E}(x)]} \to \mathbb{E}[\sqrt{X}] \leq \sqrt{25} = 5$

Para log(X) veamos que la función es cóncava hacia abajo (cóncava) por lo que se cumple que $\mathbb{E}[log(X)] \leq log[\mathbb{E}(x)] \rightarrow \mathbb{E}[log(X)] \leq log[25] = 1.397940009$

Para e^{-x} veamos que la función es cóncava hacia arriba (convexa) por lo que se cumple que $\mathbb{E}[e^{-x}] \geq e^{-[\mathbb{E}(x)]} \to \mathbb{E}[e^{-x}] \geq e^{-[25]}$