Método del gradiente:

Queremos resolver el problema

Ax = b

en forma iterativa para A similtica. I definida positiva,

En 1 variable ax=6 azo

(=> ax-b=0

que es la derivada de

 $g(x)=a\frac{x^2}{2}-bx$

huego, si x & minimo (aro = b no time max pero si min) dele ser g'(x*)=0 = 0 ax-b=0

Dada g(x), para buscar un munimo en forma iterat vo

Mas generalmente, de de AERUXM nométrice y definide portiva A=PDPt con dii >0 +i Para resolver A x = b lo vamos a pensor como encontrar el nuímimo de

Venus que son son equivalente.

Teorema: x° es solución de Ax=b 0-2 x° es el valor unimo de g(x).

Dem:

Dado $x \in \mathbb{R}^n$, $v \neq 0$, $v \in \mathbb{R}^n$, considerams $f_{1}(s) = g(x + s v) \qquad s \in \mathbb{R}$ $= \frac{1}{2} (x + s v)^{t} \Delta (x + s v) - b^{t} (x + s v)$

$$= \frac{1}{2} \left[x^{t} A x + S x^{t} A N + S N^{t} A X + S N^{t} A N \right] - b^{t} x - S b^{t} N$$

$$= \frac{1}{2} \sum_{x=1}^{2} x^{t} A x + 5 \left[\frac{1}{2} x^{t} A x + \frac{1}{2} x^{t} A x - \frac{1}{$$

que es una cuadrática en la variable S

R. Como A s deb + NTANDO => h true minimo eu s*: h (s*)=0 $h(s) = s n^t A n + \frac{1}{2} \left[x A n + n^t A x \right] - b^t n$ (xtAN) = NtAX
= NtAX
A similar co => f(s)= S Nt A N+ Nt (AX-b) huego, 5* = - Nt. (4 x-b) nt A N

Supon gamos que $Ax^* = b$, entonces si construimos la cuadrática con este x^* y $x \neq 0$ cualquiera, tenemos que el ruimos se alcauza en

$$S^* = -N^{t} \left(\overrightarrow{A} \times -b \right) = 0$$

$$N^{t} A N$$

=D h(s) > h(o)
$$\forall$$
 s (y fara cualquier $N\neq 0$)

$$\Rightarrow g(x^*+sv) > g(x^*) \forall s y \forall v$$

$$=$$
 Dado $y \in \mathbb{R}^n$, $y \neq x^*$, sea $N = y - x^*$ $y \leq 1$

=b
$$g(y) = g(x^{*} + y - x^{*}) > g(x^{*})$$

Redprocamente, ni x": g(y)?g(x")

Ty G R", entonces

$$g(x^{n}+sN) > g(x^{n}) + s \in \mathbb{R}$$

$$+N \in \mathbb{R}^{n}$$

$$+(s) + (o) + v \neq 0$$

$$=>0=h^{2}(0)=v^{+}(Ax^{+}-b)$$
 $+ N\neq 0$
 $+ Ax^{*}-b=0 + Ax^{*}=b$

OBS:
$$g(x) = \frac{1}{2}x^{t}A \times -b^{t}X$$

$$\frac{\partial g}{\partial x_{i}}(x) = \lim_{S \to \infty} g(x+s) = -g(x)$$

$$\frac{\partial g}{\partial x_{i}}(x) = \lim_{S \to \infty} g(x+s) = -g(x)$$

$$\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int$$

$$= \underbrace{x^{t}C_{i}(A) - b_{i}}_{F_{i}(A). X} = \underbrace{(A \cdot X - b)_{i}}_{A}$$

Se puede vor directo que g(x)

tendré min y que un x^* a valor min de g FD $Vg(x^*) = Ax^*b = 0$ $Ax^* = b$.

Entonics pance bessear x^{*} sol de $A \times = b$ con A sim y deb +bus caremos mun de $g(x) = \frac{1}{2} x^{t} A x - b^{t} x$

Queuemos definir una iteración

XK+1 = XK+ tKH NK+1

para algun tour skulduicción.

de manera que $g(x_{k+1}) \leq g(x_k)$.

Es dear, gueremos tER, NER": N70 g(xk+ t. s) < g(xk) y esos seran el trety victi suscados. Vina vez determinade la dui cais N por Londe nos mureremos, vimos que el t* que hace minimo el valor g(xx+t.v) viene dads por t= - NT. (4x-b) ntAN

Es deur, para cada NK+11 nos convince usar la iteración

 $\frac{\chi_{k+1} = \chi_k - \chi_{k+1}(A\chi_k - b)}{\chi_{k+1} + \chi_{k+1}} \cdot \chi_{k+1} \cdot \chi_{k+1}$ $\frac{\chi_{k+1} = -\chi_{k+1}(A\chi_k - b)}{\chi_{k+1} + \chi_{k+1}} \cdot \chi_{k+1} \cdot \chi_{k+1}$ $\frac{\chi_{k+1} = -\chi_{k+1}(A\chi_k - b)}{\chi_{k+1}(A\chi_k - b)} \cdot \chi_{k+1} \cdot \chi_{k+1}$

Le que reste difframmen , que de origen a los distintos métodos es como elegir le dué cerón vik en cada paso.

Sademos que en cada x, la dirección de más nápido decrecimiento es - $\nabla g(x)$.

Como estamos buscando un mulnimo
resulta razanash entres usar en
cada paso esa dirección de susquede.

A este metodo se la conoce como
metodo de descenso más rápido o
metodo de del gradiente.

El algoritus gueda dado por XKH = XK + TKH NKHI con $N_{kH} = -V_g(x_k) f^{t_{kH}} = -\langle N_{kH}| \Delta x_{kH} \rangle$ $= \frac{\langle N_{kH}| \Delta x_{kH} \rangle}{\langle N_{kH}| \Delta x_{kH} \rangle}$ Como Tgo)= Ax-b=P ni llamamos TK=b-AxK=-Tg(xu) con lo cual $V_{k+1} = \Gamma_k = b - A \times_k \quad f \quad t_{k+1} = \frac{\langle \Gamma_{k+1} \Gamma_{k} \rangle}{\langle \Gamma_{k+1} A \Gamma_{k} \rangle}$ XKHI= XK + TK TK. TK

Supergamos fara emperou que $A = \lambda \operatorname{Id}_{2x2}$ con $\lambda > 0 = 1$ la solución X^{X} de $\lambda X^{X} = b$ es $X^{X} = \frac{1}{\lambda}b = \frac{1}{\lambda}\begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix}$ Las auvas de ruivel de y son

 $\delta(x) = \frac{1}{2} x^t \lambda x - b^t x = ate$

$$\frac{\lambda}{2} \left(x_1^2 + x_2^2 \right) - b_1 x_1 - b_2 x_2 = de$$

$$\frac{\lambda}{2} \left(x_1 - \frac{b_1}{\lambda} \right)^2 + \left(x_2 - \frac{b_2}{\lambda} \right)^2 = de$$
Son wrong con centro $\frac{1}{1} (b_1, b_2)$

En cuolquier Xo que comience, salemos que Xo está enla cuma de minel 9(xo). I que la dui cará de mas rapido crecimiento viene deda por

$$N = -Pg(x_0) = b - \lambda x_0.$$

Además, como estamos en una circumferencia salemos que $- \nabla g(x_0) = b - \lambda x_0$ true la dirección del rayo que une x_0 con el centro $\frac{b}{\lambda}$.

Veamos que efectivamente on

$$N_0 = - \nabla_g(x_0) = -\lambda x_0 + b$$

$$\frac{y}{\sqrt{t_0}} = -\frac{\sqrt{t_0}}{\sqrt{t_0}} \left(\frac{A \times b}{A \times b} \right) \quad \text{como } A = \lambda Id$$

$$-6 \quad to = (\lambda x_0^t - b^t)(\lambda x_0 - b) = 1$$

$$(\lambda x_0^t - b^t)(\lambda x_0 - b)$$

$$-D \times_{1} = \times_{0} + \frac{1}{1} \left(-\lambda_{\infty} + b \right) = \frac{b}{1} \text{ es}$$
la solución buseada.

¿ Esto funcionará para una matriz A cualquiera?

tomemos ahora

y queremos buscar con el meltodo de descenso del gradiente descripto anteriormente la volución de 4x=(3)(que todos salemos dese ser (6) 3)

Definimo

$$S(x) = \frac{1}{2} \times^{t} A \times -(o_{i}o) \times = \frac{1}{2} \times^{t} A \times$$

y bus cames un mínimo (de nuero todos sabemos que es el (0,0) i) usando la iteración

donde
$$N_{kH} = -Vg(x_k) = -Ax_k$$

Venus que $g(x) = \frac{1}{2}(x_1x_2)\begin{pmatrix} 1 & 0 \\ 0 & Y_2 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

$$=\frac{1}{2}\left(x_{1}^{2}+\frac{1}{2}x_{2}^{2}\right)$$

In ête caso les curos de ruinel elipses

$$\times_1^2 + \frac{1}{2} \times_2^2 = de$$

El algorithmo hará
algo aní (zig-zag) El algoritmo hará algo an (zig-zag) Ver Strang pag 348-149

le manera que eleque al cero en menos pasos?

El proslema es que, en las elipses, el gradiente <u>no</u> es un rayo que une el punto con el centro de la elipse.

. Como encentrar esas direcciones?

$$= \frac{x_1}{\sqrt{a}} (va_10) + \frac{y_1}{\sqrt{b}} (o_1b)$$

$$(x_1) = (x_1, y_1)$$

$$= (x_1, y_1)$$

(x1,31) TD (x2,32) <=> (x1,31)B T (x2,35)B

Con la cual n'esternos en eu a curra de ninel de ax²+ 5y² y queremos morenos en una dirección que sea un rays al centro, necesitamos movernos jos una due ción N que sea "perpendicular a la tangente segun el p.i inducido from le materiz A". Es un p.i.

(x17) A = x Ay. Se dice que x e j son A-conjugados o A-ortogonales si <x,y>A=0 la idea en este caro será la signiente:

Comentamos con Xo y N \$ \$0 un rector cualquiera

$$X_1 = X_0 + t_1 N_1$$
, con $t_1 = \frac{N_1 t_1}{N_1 t_1} \left(\frac{A_1 x_0 - b}{A_1 x_0} \right)$

huezo consideramo $N_2 \neq 0$: $\langle N_1, N_2 \rangle_A = 0$

$$x_2 = x_1 + t_2 v_2$$
, con $t_2 = -v_2 (Ax_1 - b)$
 $v_2^{t} A v_2$

 $Ax_2 = Ax_1 + t_2 Ax_2$ $= Ax_0 + t_1 Ax_1 + t_2 Ax_2$

Ax2-b= Axo-b+t₁ A
$$N_1$$
+t₂A N_2
 V_1 , V_2 -b > = $\langle N_1, A_{N_0} \rangle$
 V_1 , V_2 -b > = $\langle N_1, A_{N_0} \rangle$
 V_1 , V_2 > = $\langle N_1, A_{N_0} \rangle$

Recordando

 V_1 = $-N_1$ *(V_2) = $\langle N_1, A_{N_0} \rangle$

No queda

 $\langle N_1, A_{N_1} \rangle$ = $\langle N_1, A_{N_0} \rangle$

No queda

 $\langle N_1, A_{N_2} \rangle$ = 0 ($V_2 \perp N_1$)

De la nuisma manera (V_2)

No queda

 $\langle N_2, A_{N_2} \rangle$ = 0 ($V_2 \perp N_2$)

Como $\langle N_1, N_2 \rangle$ = 0 podemo

prosan que fr, N2 y son una base de R2 (conjento l.i). Veames eso: Sean d, B: dr, +pr2 =0 + 2AN, + BAN2 = 0 3 < N1, AAN, + BAN2>=0 => < < \s\, \AN\ >+p < \s\, \AN\ >=0 d. < v, Av, > =0 >0 ga fru Aes dif t y Nj ≠0 => X=0. => B=0

Luepo for, N2 y es un conjunto li.

Theamo (Ax2-6, N, >=0 & (Ax2-6, N2)=0 donde 1, 1, 12 5 oon base de 1R D A-X2-b=0 Este methodo se conoce comp Métrodo de direcciones conjugados.

Consiste en la signification de l'inche de l'inche de consideran

[711-, 9n y n direcciones

A- conjugadas y no nulas.

Ejeraiaio. Si 4911., 3m} son

rectores A- conjungación no melo = 2911, 9 n y es un conjunto li. (Le hice antes para n=2).

Vale el nguinte teorema: Sea A una matir simetrica y deb + y sean (q11, qny em conjunto de rectores A- conjugados y no nulos. Para cualquier x° ER, la iteración

 $x_{k} = x_{k-1} + t_{k} + q_{k}$ $con \quad t_{k} = - \left(\frac{q_{k} \cdot Ax_{k-1} - b}{\sqrt{q_{k} \cdot Ax_{k}}} \right)$

con k=1, n converge à la solución x* de Ax=b en a Go

sumo n pasos. Es decir Axn=b. Demiver Burden (pag 357). Problemai es muz sensible à los virones. y haz que calcular a priori los 171. 9 m²s OBS: Si definimos $\Gamma_k = b - A \times_k$

se time que (r, N; >=0 + j=1,.., k.

Deur: misma idea de la hecho en \mathbb{R}^2 , por inducción.