基于 ARM Cortex-M3 处理器与 FPGA 的实时人脸检测 SOC 软件配置手册 V1.0

项目源代码访问: https://github.com/WalkerLau/DetectHumanFaces

目录

V1.5.4 软	《件配置手册	1
第一章	Keil 设置	3
1.1	Options for target	3
第二章	Vivado ip 设置	8
2.1	添加文件	8
2.2	AHB-Lite to AXI Bridge	9
2.3	AXI Interconnect RTL	10
2.4	MIG	11
2.5	Clk_200M	19
2.6	Sys_pll	22
2.7	Video_pll	24
2.8	Write fifo	26
2.9	Read fifo	29
2.10	Block memory	32
2.11	Floating-point-add	35
2.12	Floating-point-comp	38
2.13	Floating-point-sub.	41
第三章	串口	44

第一章 Keil 设置

1.1 Options for target

Command Items	User Command		Stop on Exi	S
Before Compile C/C++ File				
Run #1		~	Not Specified	
Run #2		7	Not Specified	
Before Build/Rebuild				
Run #1		~	Not Specified	
Run #2		~	Not Specified	
After Build/Rebuild				
 ✓ Run #1	fromelf -cvf .\objects\minSOC.axfvhx32x1	~	Not Specified	
Run #2	fromelf -cvf .\objects\minSOC.axf -o disasm.txt	3	Not Specified	
Run 'After-Build' Conditionally				

fromelf -cvf .\objects\minSOC.axf --vhx --32x1 -o minSOC.hex fromelf -cvf .\objects\minSOC.axf -o disasm.txt

第二章 Vivado ip 设置

2.1 添加文件

主要是添加由 keil 编译得到的 hex 可执行文件 (minSOC.hex), 并设置为 memory initialization files。

2.2 AHB-Lite to AXI Bridge

2.3 AXI Interconnect RTL

2.4 MIG

Pin Compatible FPGAs

Pin Compatible FPGAs include all devices with the same package and speed grade as the target device. Different FPGA devices with the same package do not have the same bonded pins. By selecting Pin Compatible FPGAs, MIG will only select pins that are common between the target device and all selected devices. Use the default XDC in the par folder for the target part. If the target part is changed, use the appropriate XDC in the compatible_ucf folder. If a Pin Compatible FPGA is not chosen now and later a different FPGA is used, the generated XDC may not work for the new device and a board spin may be required. MIG only ensures that MIG generated pin out is compatible among the selected compatible FPGA devices. Unselected devices will not be considered for compatibility during the pin allocation process.

A blank list indicates that there are no compatible parts exist for the selected target part and this page can be skipped.

Note that different parts in the same package will have different internal package skew values. De-rate the minimum period appropriately in the Controller Options page when different parts in the same package are used. Consult the User Guide for more information.

Target FPGA: xc7s50-fgga484 -1	
Pin Compatible FPGAs	
∨ □ 🖺 spartan7	
∨ 🔲 🖿 7s	
☐	
xc7s100-fgga484	

Memory Selection Select the type of memory interface. Please refer to the User Guide for a detailed list of supported controllers for each FPGA family. The list below shows currently available interface(s) for the specific FPGA, speed grade and design entry chosen. Select the controller type: DDR3 SDRAM DDR2 SDRAM

Pin/Bank Selection Mode	
New Design: Pick the optimum banks for a new design	
Fixed Pin Out: Pre-existing pin out is known and fixed	

选择 Read XDC/UCF, 读取 DDR 约束文件(ddr3.ucf),然后按 validate,然后下一步:

	Signal Name	Bank Number		Byte Number		Pin Number		IO Standard	
1	ddr3_dq[0]	All Banks	~	Select Byte	~	Select Pin	~		
2	ddr3_dq[1]	All Banks	~	Select Byte	~	Select Pin	~		
3	ddr3_dq[2]	All Banks	~	Select Byte	~	Select Pin	~		
4	ddr3_dq[3]	All Banks	~	Select Byte	~	Select Pin	~		
5	ddr3_dq[4]	All Banks	~	Select Byte	~	Select Pin	~		
6	ddr3_dq[5]	All Banks	~	Select Byte	~	Select Pin	~		
7	ddr3_dq[6]	All Banks	~	Select Byte	~	Select Pin	~		
8	ddr3_dq[7]	All Banks	~	Select Byte	~	Select Pin	~		
9	ddr3_dq[8]	All Banks	~	Select Byte	~	Select Pin	~		
10	ddr3_dq[9]	All Banks	~	Select Byte	~	Select Pin	~		
11	ddr3_dq[10]	All Banks	~	Select Byte	~	Select Pin	~		
12	ddr3_dq[11]	All Banks	~	Select Byte	~	Select Pin	~		
13	ddr3_dq[12]	All Banks	~	Select Byte	~	Select Pin	~		
14	ddr3_dq[13]	All Banks	~	Select Byte	~	Select Pin	~		
15	ddr3_dq[14]	All Banks	~	Select Byte	~	Select Pin	~		
16	ddr3_dq[15]	All Banks	~	Select Byte	~	Select Pin	~		
17	ddr3_dq[16]	All Banks	~	Select Byte	~	Select Pin	~		
18	ddr3_dq[17]	All Banks	~	Select Byte	~	Select Pin	~		
19	ddr3_dq[18]	All Banks	~	Select Byte	~	Select Pin	~		
20	ddr3_dq[19]	All Banks	~	Select Byte	~	Select Pin	~		
21	ddr3_dq[20]	All Banks	~	Select Byte	~	Select Pin	~		
22	ddr3_dq[21]	All Banks	~	Select Byte	~	Select Pin	~		
23	ddr3_dq[22]	All Banks	~	Select Byte	~	Select Pin	~		
24	ddr3_dq[23]	All Banks	~	Select Byte	~	Select Pin	~		
25	ddr3 da[24]	ΔII Ranks	~	Select Rute	~	Select Pin	~		

默认,下一步:

System Signals Selection

Select the system pins below appropriately for the interface. Customization of these pins can also be made in the XDC after the design is generated. For more information see <u>UG586 Bank and Pin rules</u>.

System Clock and Reference Clock pin selections will not be visible if the 'No Buffer' option was selected in the FPGA Options page.

System Signals

These signals may be connected internally to other logic or brought out to a pin.

- sys_rst: This input signal is used to reset the interface.
- init_calib_complete: This signal indicates that the interface has completed calibration and memory initialization and is ready for commands. LOC constraint will be generated in XDC for Example design only based on "Pin Number" selection below.
- error: This output signal indicates that the traffic generator in the Example Design has detected a data mismatch. This signal does not exist in the User Design.

Signal Name	Bank Number	Pin Number	
sys_rst	Select Bank •	No connect	*
init_calib_complete	Select Bank •	No connect	*
tg_compare_error	Select Bank •	No connect	*

总结,下一步:

接受协议,下一步:

Micron Technology, Inc. Simulation Model License Agreement

PEASE READ THIS SIMULATION MODEL LICENSE AGREEMENT ("AGREEMENT") FROM MICRON TECHNOLOGY, INc. ("MIT") CAREFULLY BEFORE INSTALLING OR USING THIS SIMULATION MODE, (THE "MODEL") AS USEN THE MICROSET, IN SIMULATION MODE, THE MACRATIC THE MODEL AGREEMENT THE TERMS AND CONDITIONS OF THIS AGREEMENT, IF YOU DO NOT AGREE WITH THE TERMS AND CONDITIONS OF THIS AGREEMENT, IF YOU DO NOT AGREE WITH THE TERMS AND CONDITIONS OF THIS AGREEMENT, IF YOU DO NOT AGREE WITH THE TERMS AND CONDITIONS OF THIS AGREEMENT, IF YOU DO NOT AGREE WITH THE TERMS AND CONDITIONS OF THIS AGREEMENT, IF YOU DO NOT AGREE WITH THE TERMS AND CONDITIONS OF THIS AGREEMENT, IF YOU DO NOT AGREE WITH THE TERMS AND CONDITIONS OF THIS AGREEMENT, IF YOU TO NOT AGREE WITH THE TERMS AND CONDITIONS OF THIS AGREEMENT, IF YOU TO NOT AGREE WITH THE TERMS AND CONDITIONS OF THE AGREEMENT, IF YOU TO NOT AGREE WITH THE TERMS AND CONDITIONS OF THIS AGREEMENT, IF YOU TO NOT AGREE WITH THE TERMS AND CONDITIONS OF THE AGREEMENT AND THE AGREEMENT A

一直下一步直接到 generate, 完成 ddr IP 的创建。

2.5 Clk_200M

king Options Outpu	ut Clocks Port Ren	naming MMCM	Settings Sum	mary	
	,				
nary Input Clock Attrib	utes				
Input Clock Frequence	cy (MHz)		50.000		
Clock Source			Single_ended_clo	ck_capable_pin	
Jitter			0.010		
Primitive Instantiated Divide Counter: 1 Mult Counter: 20.000					
Divide Counter: 1 Mult Counter: 20.000 Clock Phase Shift: No	one				
Divide Counter: 1 Mult Counter: 20.000 Clock Phase Shift: No Clock Wiz O/p Pins	one Source	Divider Value	Tspread (ps)	Pk-to-Pk Jitter (ps)	
Divide Counter: 1 Mult Counter: 20.000 Clock Phase Shift: No	one	Divider Value 5.000	Tspread (ps)	Pk-to-Pk Jitter (ps) 142.107	Phase Error (ps)
Divide Counter: 1 Mult Counter: 20.000 Clock Phase Shift: No Clock Wiz O/p Pins	one Source			· · · · · · · · · · · · · · · · · · ·	
Divide Counter: 1 Mult Counter: 20.000 Clock Phase Shift: No Clock Wiz O/p Pins clk_out1	Source MMCM CLKOUT0	5.000	OFF	142.107	164.985
Divide Counter: 1 Mult Counter: 20.000 Clock Phase Shift: No Clock Wiz O/p Pins clk_out1 clk_out2	Source MMCM CLKOUT0 MMCM CLKOUT1	5.000	OFF OFF	142.107 192.113	164.985 164.985
Divide Counter: 1 Mult Counter: 20.000 Clock Phase Shift: No Clock Wiz O/p Pins clk_out1 clk_out2 clk_out3	Source MMCM CLKOUT0 MMCM CLKOUT1 OFF	5.000 20 OFF	OFF OFF	142.107 192.113 OFF	164.985 164.985 OFF
Divide Counter: 1 Mult Counter: 20.000 Clock Phase Shift: No Clock Wiz O/p Pins clk_out1 clk_out2 clk_out3 clk_out4	Source MMCM CLKOUT0 MMCM CLKOUT1 OFF OFF	5.000 20 OFF OFF	OFF OFF OFF	142.107 192.113 OFF OFF	164.985 OFF OFF

2.6 Sys_pll

2.7 Video_pll

2.8 Write fifo

2.9 Read fifo

2.10 Block memory

Component Name blk_mem_gen_0 Basic Port A Options Port B Options Other Options Summary Information Memory Type: Dual Port ROM Block RAM resource(s) (18K BRAMs): 10 Block RAM resource(s) (36K BRAMs): 49 Total Port A Read Latency: 1 Clock Cycle(s) Total Port B Read Latency (From Rising Edge of Read Clock): 1 Clock Cycle(s) Address Width A: 16 Address Width B: 16

2.11 Floating-point-add

nponent Name floatin	g_point_add		
eration Selection	Precision of Inputs	Optimizations	Interface Options
rchitecture Optimiza	tions		
High Speed			
O Low Latency			
nplementation Optim	izations		
приементаціон Орцін	iizations		
DSP Slice Usage			
○ No Usage	•		
○ Medium U			
Full Usag			
0			
No Usage = Logic of			
Medium Usage = 1			
Full Usage = 2 x DS Primitive Usage = 1			
_			
Block Memory Us	age		
No Usage	à		
Full Usag	e		

2.12 Floating-point-comp

2.13 Floating-point-sub

Component Name floating	g_point_sub		
Operation Selection	Precision of Inputs	Optimizations	Interface Options
Architecture Optimiza	tions		
High Speed			
O Low Latency			
Implementation Optim	izations		
DSP Slice Usage			
○ No Usage			
O Medium U	Isage		
Full Usage	е		
No Usage = Logic o	only		
Medium Usage = 1			
Full Usage = 2 x DS Primitive Usage = 1			
Block Memory Us	age		
No Usage			
Full Usage	е		
			V

第三章 串口

