(a и b — постоянные) удовлетворяет уравнению Лапласа

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$

3308. Доказать, что если функция $u=u\left(x,y\right)$ удовлетворяет уравнению Лапласа (см. задачу 3307), то функция

$$v = u\left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^3}\right)$$

также удовлетворяет этому уравнению.

3309. Показать, что функция

$$u = \frac{1}{2a\sqrt{\pi t}}e^{-\frac{(x-b)^2}{4a^2t}}$$

 $(a\ n\ b\ --$ постоянные) удовлетворяет уравнению тепло-проводности

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}.$$

3310. Доказать, что если функция u = u(x, t) удовлетворяет уравнению теплопроводности (см. задачу 3309), то функция

$$v = \frac{1}{a\sqrt{t}} e^{-\frac{x^2}{4a^2t}} u\left(\frac{x}{a^2t}, -\frac{x}{a^4t}\right) (t > 0)$$

также удовлетворяет этому уравнению.

3311. Доказать, что функция

$$u=\frac{1}{r}$$

где $r = \sqrt{(x-a)^2 + (y-b)^2 + (z-c)^2}$, удовлетворяет при $r \neq 0$ уравнению Лапласа

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial u^2} + \frac{\partial^2 u}{\partial z^2} = 0.$$

3312. Доказать, что если функция u=u (x, y, z) удовлетворяет уравнению Лапласа (см. задачу 3311), то функция

$$v = \frac{1}{r} u \left(\frac{k^2 x}{r^2}, \frac{k^2 y}{r^2}, \frac{k^2 z}{r^2} \right),$$

где k — постоянная и $r = \sqrt{x^2 + y^2 + z^2}$, также удовлетворяет этому уравнению.