Sistemi Elettronici per Automazione e Robotica

LEZIONE Nº 10

- Convertitori D to A
- Convertitore PAM a partitore
 - Convertitori A to D
- Comparatore
- Convertitore FLASH
- Convertitore a conteggi
- Convertitore a inseguimento
- Convertitore ad approssimazioni successive (SAR) di solito usato in Microcontrollori per automotive, avionica, etc.
- Convertitori a doppia rampa

D (Digital) to A (Analog) Converter (DAC)

D (Digital) to A (Analog) Converter (DAC) PAM (Pulse Amplitude Modulation)

Notazione posizionale (es N = 4 bit)

$$X = 1011 \Rightarrow a_3 a_2 a_1 a_0 \Rightarrow a_3 \cdot 2^3 + a_2 \cdot 2^2 + a_1 \cdot 2^1 + a_0 \cdot 2^0$$

Può rappresentare una tensione (Vx in volt)

$$V_X = V_R \cdot X = V_R \cdot (a_3 \cdot 2^3 + a_2 \cdot 2^2 + a_1 \cdot 2^1 + a_0 \cdot 2^0)$$

- es. se X=1011 e $V_R=0.5V \rightarrow Vx=5.5V$
- es. se X=0011 e V_R =0.5 $V \rightarrow Vx$ =1.5V
- DAC di tipo PAM genera un segnale analogico con ampiezza modulata Vx dal valore del codice digitale X
- Si può realizzare utilizzando un sommatore analogico pesato con OpAmp a N rami

Esempio Sommatore pesato a N=2 ingressi (pesi dipendono da R0, R1 e R2)

$$I_1 = \frac{V_1}{R_1} \quad I_2 = \frac{V_2}{R_2} \qquad I_0 = I_1 + I_2 \qquad V_U = R_0 \cdot I_0$$

DAC PAM a N=4 bit (quindi N=4) rami con pesi diversi scalati di fattore 2 (da MSB a₃ a LSB a₀ la resistenza cresce ogni volta x 2)

Nota: il $-V_R$ in questa slide corrisponde in modulo a 2^3 volte (ovvero – V_R = - 4 V nel circuito) il V_R =0.5 V indicato in slide 5.3

Osservazioni

- Per N = 12 bit la resistenza più grossa vale 2048 (2^{N-1}) volte la resistenza più piccola
- Problemi a realizzare resistenza cosi diverse con la stessa precisione
- Nei circuiti integrati si riesce a fare due resistenze uguali con elevata precisione ma garantire il valore assoluto non è facile in circuiti a basso costo su larghi volumi come è il caso dell'automotive
- Le resistenze di valore elevato si realizzano male in circuiti integrati

SEP 5.6

A (Analog) to D (Digital) Converter (ADC)

Vari tipi di convertitori A/D

SEP 5.8

Comparatore

- E' un amplificatore operazionale (OpAmp) ad anello aperto (senza reazione, ma ovviamente va alimentato)
 - → Non vale CCV ma se

Comparatore

- Un comparatore di fatti è un convertitore Analogico-Digitale a 1 bit (spesso alimentato tra V_{EE}=0V e V_{CC}=5V)
- In un microcontrollore per automotive di solito è integrato almeno un comparatore in cui la soglia di confronto viene dall'esterno oppure puo essere generata internamente nel microcontrollore

Convertitore FLASH

SEP 5.11

Convertitore FLASH a N=3 bit

- Rete di 2^N resistenza uguali (8 resistenze per N=3 bit) viene usata per creare le soglie necessarie nei confronti:
- Se es. Val=8V le soglie sono X/8*Val con X=1,....7 e si hanno soglie 1V, 2V, 3V,....7V in quanto range dinamico [0V, 8V] viene diviso in 8=2³ intervalli di quantizzazione di ampiezza 8V/8=1V
- Rete di 2^N-1=7 comparatori (realizzati con 7 OpAmp ad anello aperto che lavorano in parallelo) che confrontano segnale analogico da convertire Vin on ognuna delle soglie

Convertitore FLASH a N=3 bit

- A uscita di 2^N-1comparatori ho codice digitale termometrico W₇ W₆ W₀ su 2^N-1=7 bit che è ridondante (ne basterebbero N=3 bit X₂ X₁ X₀)
- Blocco codificatore di priorità è un circuito digitale che mappa il codice digitale termometrico a 7 bit

 $\begin{aligned} &W_7W_6\dots W_0\\ &\text{in un codice compatto posizionale s 3 bit}\\ &X_2X_1X_0\end{aligned}$

Tabella di Conversione del Codificatore di priorità

Tabella di verità

W ₇	W ₆	W ₅	W ₃	W ₃	W ₂	W_1	X ₂	X ₁	X ₀
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0	1
0	0	0	0	0	1	1	0	1	0
0	0	0	0	1	1	1	0	1	1
0	0	0	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	0	1
0	1	1	1	1	1	1	1	1	0
1	1	1	1	1	1	1	1	1	1

Convertitore FLASH

- Vantaggi: tutti i confronti sono fatti in parallelo e dunque convertitore Flash è veloce perché esegue le operazioni in un ciclo
- Svantaggi: complessità del circuito cresce molto al crescere di N richiedendo 2^N-1comparatori e 2^N resistenze (es N=20 bit sono oltre 1 milione di R e 1 Milione di OpAmp). Inoltre a causa difficoltà a garantire prestazioni uguali tra tanti componenti resistenze e OpAmp più sale numero di bit N e più aumentano imprecisioni

Convertitore ADC a conteggio

- Usa 1 comparatore invece di 2^N-1 comparatori come nel Flash ma ci mette 2^N cicli per convertire un dato invece di 1 come nel Flash
- Usa un contatore (circuito digitale) a N bit che all'arrivo del fronte in salita del segnale di Clock (clk) si incrementa da 0000 a 0001 a 0010 etc. fino a 1111 e poi riprende ciclicamente da 0000
- Usa convertitore DAC integrato a N bit per creare le soglie (es. DAC PAM presentato il slide 5.4)
- Usa una porta logica (circuito digitale) AND che genera
 1 in uscita se tutti gli ingressi valgono 1 altrimenti vale
 0 (funge da porta di enable del clock)
- Vin = ingresso analogico da convertire

Schema ADC a conteggio

- SOC = Star Of Convertion
- EOC = End Of Convertion

Forme d'onda

Forme d'onda 2

Osservazioni

- Necessita di ingresso stabile durante tutto il tempo di conversione
 - deve essere presente un S-H (sample & hold)

 Tempo massimo di conversione (legato al valore massimo) 2^N cicli di clock

Convertitore A to D a inseguimento

Elementi necessari

- 1. Segnale di Clock
- 2. Convertitore D/A
- 3. Contatore UP/DOWN
- 4. Comparatore

Schema

Forme d'onda

Osservazione

- Non è strettamente necessario il S H
- Tempo massimo di conversione (legato al valore massimo) 2^N cicli di clock
- Da una conversione alla successiva, occorre un tempo minore rispetto al caso precedente
- Se il segnale, fra un ciclo di clock e il successivo, varia meno di un "gradino", il segnale U/D è la conversione $\Sigma \Delta$ a un bit

Convertitore A to D ad approssimazioni successive (SAR)

Struttura come ADC a conteggio ma con un circuito intelligente che implementa strategia SAR invece di un semplice contatore

Convertitore A to D ad approssimazioni successive (SAR)

Stategia

- Si parte attribuendo a Vx il valore V_M/2
- se $V_i > V_M/2$ si passa a $V_M/2 + V_M/4$
- − se V_i < V_M/2 si passa a V_M/4
 - Si procede così per n passi

Strategia per N = 4

Schema

 Tempo di conversione per N bit => N cicli di clock (più lento del ADC Flash che ci mette 1 ciclo ma più veloce di ADC a conteggio che ci mette 2^N cicli)

Convertitore A/D a doppia rampa

Forme d'onda

Per t = t₂ Q_n commuta per la prima volta da 1 a 0

$$T_{A} = 2^{N} \cdot T_{CK} \qquad v_{K} = -\int_{t_{1}}^{t_{2}} V_{X} \cdot dt - \int_{t_{2}}^{t_{3}} V_{R} \cdot dt = 0$$

$$T_{A} \cdot V_{X} = T_{B} \cdot |V_{R}| \qquad V_{X} = \frac{T_{B}}{T_{A}} |V_{R}| = \frac{n_{2}}{2^{N}} |V_{R}|$$

Convertitore a Rampa

- Sistema di conversione lento
- Utilizzato negli strumenti di misura
- Elevata precisione
- La tensione incognita viene integrata nell'intervallo T_A
- Eventuali disturbi a valor medio nullo non hanno effetto
- Fornisce il valor medio di V_x nell'intervallo T_A
- T_A è dell'ordine di 0.5 s

Conclusioni sui convertitori A/D

Conclusioni

- Convertitori D to A
- Convertitore PAM a partitore
 - Convertitori A to D
- Comparatore
- Convertitore FLASH
- Convertitore a conteggi
- Convertitore a inseguimento
- Convertitore ad approssimazioni successive (SAR) di solito usato in Microcontrollori per automotive
- Convertitori a doppia rampa