Repères intermédiaires

Dans le plan:

- o l'axe des abscisses (x) est dans le prolongement du lien
- · l'axe des ordonnées (y) est perpendiculaire à l'axe des abscisses

Repères intermédiaires

Dans l'espace : règle de Denavit-Hartenberg :

- Articulations rotoïdes :
 - Le repère de la base suit généralement la règle de la table

 Pour le repère de l'outil, l'axe des z est généralement dans le prolongement de l'outil, y dans le sens des dents de la main (par exemple) et x perpendiculaire

Repères intermédiaires

Dans l'espace : règle de Denavit-Hartenberg :

- Articulations rotoïdes :
 - L'axe des z est dans l'axe de rotation du joint rotoïde. La direction est déterminée via la règle de la main droite qui dit que la rotation positive se fait dans le sens anti-horloger.
 - · L'axe des x doit être perpendiculaire à l'axe des z_{i-1} (repère précédent). Plusieurs cas sont à considérer :
 - z_{i-1} et z_i ne sont pas coplanaires : une possibilité, la ligne la plus courte entre z_{i-1} et z_i

Repères intermédiaires

Dans l'espace : règle de Denavit-Hartenberg :

- Articulations rotoïdes :
 - L'axe des x doit être perpendiculaire à l'axe des z_{i-1} (repère précédent). Plusieurs cas sont à considérer :
 - z_{i-1} et z_i sont parallèles : infinité de solutions. On prend généralement x_i qui passe par l'origine du repère précédent
 - z_{i-1} croise z_i : infinité de solutions mais en général, on prend le x_i dans le sens positif du x_{i-1} si possible

L'axe des y est placé via la règle de la main droite (pouce = axe z, index = axe x et majeur = axe y)

Paramètres de Denavit-Hartenberg : Repères intermédiaires

Dans l'espace : règle de Denavit-Hartenberg :

- Articulations prismatiques :
 - L'axe z est choisi pour être dans le sens positif de la translation
 - Les positions de x et y sont déterminées de la même méthode que le joint rotoïde

Repères intermédiaires

Exercices: Attribuer les repères aux différents joints

Dans le plan:

•
$$\operatorname{Rot}_{\mathsf{z},\theta} \colon \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
• $\operatorname{Trans}_{\mathsf{z},\mathsf{d}} \colon \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d \\ 0 & 0 & 1 \end{bmatrix}$
• $\operatorname{Trans}_{\mathsf{x},\mathsf{a}} \colon \begin{bmatrix} 1 & 0 & 0 & \alpha \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
• $\operatorname{Rot}_{\mathsf{x},\mathsf{a}} \colon \begin{bmatrix} 1 & 0 & 0 & \alpha \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
• $\operatorname{Rot}_{\mathsf{x},\mathsf{a}} \colon \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \cos\alpha & -\sin\alpha & 0 & 0 \\ 0 & \sin\alpha & \cos\alpha & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$

$$T = Rot_{z,\theta} * Trans_{z,d} * Trans_{x,a} * Rot_{x,\alpha} =$$

$$\begin{bmatrix} \cos \theta & -\sin \theta \cos \alpha & \sin \theta \sin \alpha & a \cos \theta \\ \sin \theta & \cos \theta \cos \alpha & -\cos \theta \sin \alpha & a \sin \theta \\ 0 & \sin \alpha & \cos \alpha & d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} R & P \\ 0 & \dots & 0 \end{bmatrix} = \text{la transformation homogène}$$

$$(R = \text{rotation}, P = \text{position},$$

$$T = \text{transformation})$$

Paramètres de Denavit-Hartenberg : étapes

- Attribuer les axes z à chaque joint du robot.
- Attribuer le restant des axes (x et y) pour chaque joint du robot.
- Attribution des paramètres (a, α d, θ) :
 - La distance a se mesure selon l'axe des x et représente la longueur du lien.
 - La rotation α est l'angle entre z_{i-1} et z_i.
 - La distance d est mesurée le long de l'axe z_{i-1} et c'est la distance entre l'origine o_{i-1} et l'intersection entre x_i et z_{i-1}. Si c'est un joint rotoïde : valeur constante.
 - L'angle θ est mesuré entre x_{i-1} et x_i. Si c'est un joint prismatique, alors l'angle est constant.
- Création de la table de D-H

Links	a_i	$\alpha_{\rm i}$	d_i	θ_{i}
1	a_1	α_1	d_1	θ_1
i	a_i	$\alpha_{\rm i}$	d_i	$\theta_{\rm i}$

Calcul de chaque matrice selon cette formule :

$$T = Rot_{z,\theta} * Trans_{z,d} * Trans_{x,a} * Rot_{x,\alpha} = \begin{bmatrix} \cos \theta & -\sin \theta \cos \alpha & \sin \theta \sin \alpha & \alpha \cos \theta \\ \sin \theta & \cos \theta \cos \alpha & -\cos \theta \sin \alpha & \alpha \sin \theta \\ 0 & \sin \alpha & \cos \alpha & d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Calcul de la transformée T en multipliant les matrices entre elles.

Exemple 1

[cos θ	$-\sin\theta\cos\alpha$	$\sin\theta\sin\alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cosα	d
0	0	0	1

Links	a _i	a_{i}	d _i	Θ_{i}

La distance a se mesure selon l'axe des x et représente la longueur du lien.

La rotation α est l'angle entre z_{i-1} et z_i .

La distance d est mesurée le long de l'axe z_{i-1} et c'est la distance entre l'origine o_{i-1} et l'intersection entre

x_i et z_{i-1}. Si c'est un joint rotoïde, alors il aura une valeur constante.

Exemple 1

[cos θ	$-\sin\theta\cos\alpha$	$\sin\theta\sin\alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cosα	d
0	0	0	1

Links	a _i	$\alpha_{\rm i}$	d _i	Θ_{i}

Longueurs des deux liens : a1 et a2 (rien selon les z), des rotations selon les z : théta 1 et théta 2 :

La distance a se mesure selon l'axe des x et représente la longueur du lien.

La rotation α est l'angle entre z_{i-1} et z_i .

La distance d est mesurée le long de l'axe z_{i-1} et c'est la distance entre l'origine o_{i-1} et l'intersection entre

x, et z,1. Si c'est un joint rotoïde, alors il aura une valeur constante.

Exemple 1

[cos θ	$-\sin\theta\cos\alpha$	$\sin\theta\sin\alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cosα	d
Lo	0	0	1

Links	a _i	a_{i}	d _i	Θ_{i}
1	\mathbf{a}_1	0	0	Θ_1

Longueurs des deux liens : a1 et a2 (rien selon les z), des rotations selon les z : théta 1 et théta 2 :

La distance a se mesure selon l'axe des x et représente la longueur du lien.

La rotation α est l'angle entre z_{i-1} et z_i .

La distance d est mesurée le long de l'axe z_{i-1} et c'est la distance entre l'origine o_{i-1} et l'intersection entre

x, et z,1. Si c'est un joint rotoïde, alors il aura une valeur constante.

Exemple 1

[cos θ	$-\sin\theta\cos\alpha$	$\sin\theta\sin\alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cosα	d
0	0	0	1

Links	a _i	$\alpha_{\rm i}$	d _i	Θ_{i}
1	a ₁	0	0	Θ_1
2	$\mathbf{a_2}$	0	0	Θ_2

Longueurs des deux liens : a1 et a2 (rien selon les z), des rotations selon les z : théta 1 et théta 2 :

La distance a se mesure selon l'axe des x et représente la longueur du lien.

La rotation α est l'angle entre z_{i-1} et z_i .

La distance d est mesurée le long de l'axe z_{i-1} et c'est la distance entre l'origine o_{i-1} et l'intersection entre

x, et z,1. Si c'est un joint rotoïde, alors il aura une valeur constante.

Exemple 1

[cos θ	$-\sin\theta\cos\alpha$	$\sin\theta\sin\alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cos a	d
L o	0	0	1

Links	a _i	a_{i}	d _i	Θ_{i}
1	$\mathbf{a_1}$	0	0	Θ_1
2	a ₂	0	0	Θ_2

Nous aurons donc les deux matrices suivantes .

La distance a se mesure selon l'axe des x et représente la longueur du lien.

La rotation α est l'angle entre z_{i-1} et z_i .

La distance d est mesurée le long de l'axe z, et c'est la distance entre l'origine o, et l'intersection entre

x_i et z_{i-1}. Si c'est un joint rotoïde, alors il aura une valeur constante.

Exemple 1

[cos θ	$-\sin\theta\cos\alpha$	$\sin\theta\sin\alpha$	$a \cos \theta$
	$\cos \theta \cos \alpha$		
0	$\sin \alpha$	cosα	d
0	0	0	1

Links	a _i	a_{i}	d _i	Θ_{i}
1	\mathbf{a}_1	0	0	Θ_1
2	$\mathbf{a_2}$	0	0	Θ_2

Nous aurons donc les deux matrices suivantes .

$$A_1 = \begin{bmatrix} c_1 & -s_1 & 0 & a_1c_1 \\ s_1 & c_1 & 0 & a_1s_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix};$$

La distance a se mesure selon l'axe des x et représente la longueur du lien.

La rotation α est l'angle entre z_{i-1} et z_i .

La distance d est mesurée le long de l'axe z_{i-1} et c'est la distance entre l'origine o_{i-1} et l'intersection entre

x, et z,1. Si c'est un joint rotoïde, alors il aura une valeur constante.

Exemple 1

[cos θ	$-\sin\theta\cos\alpha$	$\sin\theta\sin\alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cosα	d
0	0	0	1

Links	a _i	$\alpha_{\rm i}$	d _i	Θ_{i}
1	\mathbf{a}_1	0	0	Θ_1
2	$\mathbf{a_2}$	0	0	Θ_2

Nous aurons donc les deux matrices suivantes.

$$A_1 = \begin{bmatrix} c_1 & -s_1 & 0 & a_1c_1 \\ s_1 & c_1 & 0 & a_1s_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; \quad A_2 = \begin{bmatrix} c_1 & -s_1 & 0 & a_1c_1 \\ s_1 & c_1 & 0 & a_1s_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix};$$

La distance a se mesure selon l'axe des x et représente la longueur du lien.

La rotation α est l'angle entre z_{i-1} et z_i .

La distance d est mesurée le long de l'axe z_{i-1} et c'est la distance entre l'origine o_{i-1} et l'intersection entre

x, et z,1. Si c'est un joint rotoïde, alors il aura une valeur constante.

Exemple 1

	$-\sin\theta\cos\alpha$	$\sin\theta\sin\alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cosα	d
0	0	0	1

Links	a _i	$\alpha_{\rm i}$	d _i	Θ_{i}
1	a ₁	0	0	Θ_1
2	$\mathbf{a_2}$	0	0	Θ_2

Nous aurons donc les deux matrices suivantes.

$$A_1 = \begin{bmatrix} c_1 & -s_1 & 0 & a_1c_1 \\ s_1 & c_1 & 0 & a_1s_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix};$$

$$A_2 = \begin{bmatrix} c_2 & -s_2 & 0 & a_2 c_2 \\ s_2 & c_2 & 0 & a_2 s_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

La distance a se mesure selon l'axe des x et représente la longueur du lien.

La rotation α est l'angle entre z_{i-1} et z_i .

La distance d est mesurée le long de l'axe z_{i-1} et c'est la distance entre l'origine o_{i-1} et l'intersection entre

x_i et z_{i-1}. Si c'est un joint rotoïde, alors il aura une valeur constante.

Exemple 1

[cos θ	$-\sin\theta\cos\alpha$	$\sin\theta\sin\alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	a sinθ
0	$\sin \alpha$	cosα	d
L o	0	0	1

Links	a _i	$\alpha_{\rm i}$	d _i	Θ_{i}
1	\mathbf{a}_1	0	0	Θ_1
2	$\mathbf{a_2}$	0	0	Θ_2

Nous aurons donc les deux matrices suivantes .

$$A_{1} = \begin{bmatrix} c_{1} & -s_{1} & 0 & a_{1}c_{1} \\ s_{1} & c_{1} & 0 & a_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \times A_{2} = \begin{bmatrix} c_{2} & -s_{2} & 0 & a_{2}c_{2} \\ s_{2} & c_{2} & 0 & a_{2}s_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

La distance a se mesure selon l'axe des x et représente la longueur du lien.

La rotation α est l'angle entre z_{i-1} et z_i .

La distance d est mesurée le long de l'axe z_{i-1} et c'est la distance entre l'origine o_{i-1} et l'intersection entre

x_i et z_{i-1}. Si c'est un joint rotoïde, alors il aura une valeur constante.

Exemple 1

[cos θ	$-\sin\theta\cos\alpha$	$\sin\theta\sin\alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cosα	d
0	0	0	1

Links	a _i	$\alpha_{\rm i}$	d _i	Θ_{i}
1	\mathbf{a}_1	0	0	Θ_1
2	$\mathbf{a_2}$	0	0	Θ_2

Nous aurons donc les deux matrices suivantes.

$$A_{1} = \begin{bmatrix} c_{1} & -s_{1} & 0 & a_{1}c_{1} \\ s_{1} & c_{1} & 0 & a_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \times A_{2} = \begin{bmatrix} c_{2} & -s_{2} & 0 & a_{2}c_{2} \\ s_{2} & c_{2} & 0 & a_{2}s_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{02} = \begin{bmatrix} c_{1+2} & -s_{1+2} & 0 & a_1c_1 + a_2c_{1+2} \\ s_{1+2} & c_{1+2} & 0 & a_1s_1 + a_2s_{1+2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Exemple 2

x1

 $\Theta 1$

$\cos \theta$	$-\sin\theta\cos\alpha$	$\sin\theta\sin\alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cosα	d
Lo	0	0	1

Links	a _i	$a_{\rm i}$	d _i	Θ_{i}

La distance a se mesure selon l'axe des x et représente la longueur du lien.

La rotation α est l'angle entre z_{i-1} et z_i .

La distance d est mesurée le long de l'axe z_{i-1} et c'est la distance entre l'origine o_{i-1} et l'intersection entre x_i et z_{i-1}. Si c'est un joint rotoïde, alors il aura une valeur constante.

Exemple 2

x1

 $\Theta 1$

cos θ	$-\sin\theta\cos\alpha$	$\sin\theta\sin\alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cosα	d
Lo	0	0	1

Links	a _i	$a_{\rm i}$	d _i	Θ_{i}
1	0	0	$\mathbf{d_1}$	Θ_1

La distance a se mesure selon l'axe des x et représente la longueur du lien.

La rotation α est l'angle entre z_{i-1} et z_i .

La distance d est mesurée le long de l'axe z_{i-1} et c'est la distance entre l'origine o_{i-1} et l'intersection entre x_i et z_{i-1}. Si c'est un joint rotoïde, alors il aura une valeur constante.

Exemple 2

x1

 $\Theta 1$

$\cos \theta$	$-\sin\theta\cos\alpha$	$\sin\theta\sin\alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cosα	d
Lo	0	0	1

Links	a _i	$a_{\rm i}$	d _i	Θ_{i}
1	0	0	$\mathbf{d_1}$	Θ_1
2	0	-90	$\mathbf{d_2}$	0

La distance a se mesure selon l'axe des x et représente la longueur du lien.

La rotation α est l'angle entre z_{i-1} et z_i .

La distance d est mesurée le long de l'axe z_{i-1} et c'est la distance entre l'origine o_{i-1} et l'intersection entre x_i et z_{i-1}. Si c'est un joint rotoïde, alors il aura une valeur constante.

Exemple 2

x1

 $\theta 1$

$\cos \theta$	$-\sin\theta\cos\alpha$	$\sin\theta\sin\alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cosα	d
Lo	0	0	1

Links	a _i	$a_{\rm i}$	d _i	Θ_{i}
1	0	0	$\mathbf{d_1}$	Θ_1
2	0	-90	$\mathbf{d_2}$	0
3	0	0	\mathbf{d}_3	0

La distance a se mesure selon l'axe des x et représente la longueur du lien.

La rotation α est l'angle entre z_{i-1} et z_i .

La distance d est mesurée le long de l'axe z_{i-1} et c'est la distance entre l'origine o_{i-1} et l'intersection entre x_i et z_{i-1}. Si c'est un joint rotoïde, alors il aura une valeur constante.

	$-\sin\theta\cos\alpha$	$\sin\theta\sin\alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cos a	d
0	0	0	1

Links	a _i	$a_{\rm i}$	d _i	Θ_{i}
1	0	0	$\mathbf{d_1}$	Θ_1
2	0	-90	$\mathbf{d_2}$	0
3	0	0	d_3	0

cos θ	$-\sin\theta\cos\alpha$	$\sin\theta\sin\alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cosα	d
0	0	0	1

Links	a _i	a_{i}	d _i	Θ_{i}
1	0	0	$\mathbf{d_1}$	Θ_1
2	0	-90	$\mathbf{d_2}$	0
3	0	0	d_3	0

	$-\sin\theta\cos\alpha$	$\sin\theta\sin\alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cos a	d
0	0	0	1

Links	a _i	$a_{\rm i}$	d _i	$\Theta_{\rm i}$
1	0	0	$\mathbf{d_1}$	Θ_1
2	0	-90	$\mathbf{d_2}$	0
3	0	0	\mathbf{d}_3	0

$\cos \theta$	$-\sin\theta\cos\alpha$	$\sin\theta\sin\alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cos a	d
0	0	0	1

Links	a _i	$a_{\rm i}$	$\mathbf{d_i}$	Θ_{i}
1	0	0	$\mathbf{d_1}$	Θ_1
2	0	-90	$\mathbf{d_2}$	0
3	0	0	\mathbf{d}_3	0

$$A_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix};$$

$$\begin{bmatrix} \cos \theta & -\sin \theta \cos \alpha & \sin \theta \sin \alpha & a \cos \theta \\ \sin \theta & \cos \theta \cos \alpha & -\cos \theta \sin \alpha & a \sin \theta \\ 0 & \sin \alpha & \cos \alpha & d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Links	a _i	$a_{\rm i}$	$\mathbf{d_i}$	Θ_{i}
1	0	0	$\mathbf{d_1}$	Θ_1
2	0	-90	$\mathbf{d_2}$	0
3	0	0	\mathbf{d}_3	0

$$A_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix};$$

$$\begin{bmatrix} \cos \theta & -\sin \theta \cos \alpha & \sin \theta \sin \alpha & a \cos \theta \\ \sin \theta & \cos \theta \cos \alpha & -\cos \theta \sin \alpha & a \sin \theta \\ 0 & \sin \alpha & \cos \alpha & d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Links	a _i	$a_{\rm i}$	d _i	Θ_{i}
1	0	0	$\mathbf{d_1}$	Θ_1
2	0	-90	$\mathbf{d_2}$	0
3	0	0	d_3	0

$$A_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix};$$

$$A_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Exemple 2

91

cos θ	$-\sin\theta\cos\alpha$	$\sin \theta \sin \alpha$	
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cos a	d
0	0	0	1

Links	a _i	$a_{\rm i}$	d _i	$\Theta_{\rm i}$
1	0	0	$\mathbf{d_1}$	Θ_1
2	0	-90	d ₂	0
3	0	0	d_3	0

$$A_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

cos θ	$-\sin\theta\cos\alpha$	$\sin \theta \sin \alpha$	$a \cos \theta$
$\sin \theta$	$\cos \theta \cos \alpha$	$-\cos\theta\sin\alpha$	$a \sin \theta$
0	$\sin \alpha$	cos a	d
0	0	0	1

Links	a _i	$a_{\rm i}$	d _i	Θ_{i}
1	0	0	$\mathbf{d_1}$	Θ_1
2	0	-90	$\mathbf{d_2}$	0
3	0	0	d_3	0

$$T_{03} = \begin{bmatrix} c_1 & 0 & -s_1 & -s_1 d_3 \\ s_1 & 0 & c_1 & c_1 d_3 \\ 0 & -1 & 0 & d_1 + d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Exercices:

