Low-Skill Domestic Outsourcing and Healthcare Costs

Sean Bassler
University of Minnesota

June 28, 2023

Two Increasing Trends

Low-Skill Domestic Outsourcing

Price of Medical Care

Question and Hypothesis

- Question Why is low-skill domestic outsourcing increasing?
- Hypothesis
 - Anti-discrimination laws force firms to offer all employees the same health plans.
 - Firms outsource low-skill workers to skirt this law.
 - Over time, price of medical care ↑
 - → Cost of health plans high-skill workers want ↑
 - → Laws cause relative price of in-house low-skill workers ↑
 - → Low-skill domestic outsourcing ↑

Evidence: admin services has low health plan costs

This Paper

- Question What % of the increase in low-skill domestic outsourcing was caused by the rising price of medical care?
- **Theory** Main mechanism:

This Paper

- Question What % of the increase in low-skill domestic outsourcing was caused by the rising price of medical care?
- **Theory** Main mechanism:

$$\underbrace{\mathsf{Laws} + \mathsf{firm} \ \mathsf{workforce} \ \mathsf{composition}}_{\mathsf{exogeneous}} \ \to \ \underbrace{\mathsf{compensation} \ \mathsf{packages} \ \to \ \mathsf{outsourcing}}_{\mathsf{endogenous}}$$

- Empirics Support + discipline main mechanism.
- **Computation Laws +** \uparrow price of medical care \longrightarrow over **50%** of the trend.

Contributions

- 1. First to study the link between healthcare costs and domestic outsourcing.
- 2. New model with this link.
- 3. Quantify the model, show the effect is large.

Technology and Preferences

Time is static. 3 types of agents.

- 1. Workers Exogenous in skill $s \in \mathcal{S}$. Inelastic labor. Normal preferences.
- 2. Traditional firms indexed by j.

$$y_j = \left(\Pi_{s \in \mathcal{S}} \mathbf{n}_{js}^{\varphi_{js}}\right)^{\nu}$$
, $\mathbf{n}_{js} = \left(\underbrace{n_{js}^{\frac{\theta_s - 1}{\theta_s}}}_{\text{in-house}} + \alpha_{js}^{1/\theta_s} \underbrace{l_{js}^{\frac{\theta_s - 1}{\theta_s}}}_{\text{outsourced}}\right)^{\frac{\theta_s}{\theta_s - 1}}$.

3. Outsourcing firms - One for each skill level. Technology: $L_s = n_{os}$.

Traditional Firms in Equilibrium

- Compensation packages = wages w_{js} and health plans a_{js} .
- Anti-discrimination constraint must offer all in-house workers same health plan.
- Free movement of labor firms must match a worker's best outside option \tilde{v}_s .

Traditional Firms Problem

$$\begin{split} V_{j}\big(\{p_{os},\tilde{v}_{s}\}_{s}\big) &= \max_{\{n_{js},l_{js},a_{js},w_{js}\}_{s}} y\big(\{n_{js},l_{js}\}_{s}\big) - \sum_{s \in \mathcal{S}} \big(\underbrace{(w_{js}+a_{js})n_{js}}_{\text{in-house}} + \underbrace{p_{os}l_{js}}_{\text{outsourcing expenditure}}\big) \\ s.t. &\quad a_{js} = a_{js'} \quad \forall s,s' \in \mathcal{S} \\ &\quad \underbrace{v(w_{js},a_{js};p_{m})}_{\text{worker's indirect}} \geq \tilde{v}_{s} \quad \forall s \in \mathcal{S} \end{split}$$

Traditional Firms Problem

$$\begin{split} V_{j}\big(\{p_{os},\tilde{v}_{s}\}_{s}\big) &= \max_{\{n_{js},l_{js},a_{js},w_{js}\}_{s}} y\big(\{n_{js},l_{js}\}_{s}\big) - \sum_{s \in \mathcal{S}} \big(\underbrace{(w_{js}+a_{js})n_{js}}_{\text{in-house}} + \underbrace{p_{os}l_{js}}_{\text{outsourcing}}\big) \\ &s.t. \quad a_{js} = a_{js'} \quad \forall s,s' \in \mathcal{S} \\ &\underbrace{v(w_{js},a_{js};p_{m})}_{\text{worker's indirect}} \geq \tilde{v}_{s} \quad \forall s \in \mathcal{S} \end{split}$$

- $a_{js} = a_{js'}$ prevents firm from offering all workers cheapest package that yields \tilde{v}_s .

utility function

Outsourcing Firms Problem

$$V_{os}ig(p_{os}, ilde{v}_sig) = \max_{n_{os}, a_{os}, w_{os}} p_{os} n_{os} - (w_{os} + a_{os}) n_{os}$$
 $s.t.$ $\underbrace{vig(w_{os}, a_{os}; p_mig)}_{ ext{worker's indirect}} \ge ilde{v}_s$

- Law has no effect because outsourcing firm uses only 1 skill level.
- Offers cheapest package that yields \tilde{v}_s .

Outsourcing Firms Problem

$$V_{os}(p_{os}, \tilde{v}_s) = \max_{n_{os}, a_{os}, w_{os}} p_{os} n_{os} - (w_{os} + a_{os}) n_{os}$$
 $s.t. \quad \underbrace{v(w_{os}, a_{os}; p_m)}_{ ext{worker's indirect}} \ge \tilde{v}_s$
 $volume volume vol$

- Law has no effect because outsourcing firm uses only 1 skill level.
- Offers cheapest package that yields \tilde{v}_s .
- Outsourcing firms have pay lower prices for labor than traditional firms.

Optimal Outsourced Labor

- Recall traditional firm technology:

$$y_j = (\Pi_{s \in \mathcal{S}} \mathbf{n}_{js}^{\varphi_{js}})^{\nu}, \quad \mathbf{n}_{js} = (\underbrace{n_{js}^{\frac{\theta_s - 1}{\theta_s}}}_{\text{in-house}} + \alpha_{js}^{1/\theta_s} \underbrace{l_{js}^{\frac{\theta_s - 1}{\theta_s}}}_{\text{outsourced}})^{\frac{\theta_s}{\theta_s - 1}}.$$

- α_{is} = weight on outsourced labor.
- θ_s = elasticity of subs between in-house and outsourced labor.
- Optimality implies

$$\underbrace{\frac{l_{js}}{n_{js}}}_{\text{outsourced over in-house labor}} = \alpha_{js} \underbrace{\left(\frac{w_{js} + a_{js}}{w_{os} + a_{os}}\right)^{\theta_s}}_{\text{compensation costs relative to the outsourcing firm's}}.$$

Outsourcing in an economy without the anti-discrimination laws

- Outsourcing and traditional firms offer cheapest compensation packages possible.

$$\underbrace{\frac{l_{js}}{n_{js}}}_{\text{outsourced over in-house labor}} = \alpha_{js}$$

- Trends in price of medical care do not affect outsourcing.

Outsourcing in an economy with the anti-discrimination laws

- Assume utility is CES, complements.
- Suppose the price of medical care $p_m \uparrow$
 - → Health plan high-skill workers want ↑
 - \rightarrow Health plan $a_i \uparrow \Longrightarrow$ cost of in-house high-skill $(w_{jh} + a_i) \downarrow$
 - ightarrow Consequently, cost of in-house low-skill $(w_{il}+a_i)\uparrow \Longrightarrow$ low-skill outsourcing \uparrow

What about trends in demand for high skill labor φ_{jh} ?

- Recall technology $y_j = (\Pi_{s \in \mathcal{S}} \mathbf{n}_{is}^{\varphi_{js}})^{\nu}$.
- $\varphi_{ih} \uparrow$ has similar effect on low-skill domestic outsourcing as $p_m \uparrow$.

What about trends in demand for high skill labor φ_{jh} ?

- Recall technology $y_j = (\Pi_{s \in \mathcal{S}} \mathbf{n}_{is}^{\varphi_{js}})^{\nu}$.
- $\varphi_{ih} \uparrow$ has similar effect on low-skill domestic outsourcing as $p_m \uparrow$.
- Suppose $\varphi_{ih} \uparrow$
 - \rightarrow Demand for high-skill workers at firm $j \uparrow$
 - \rightarrow Health plan $a_j \uparrow \Longrightarrow$ cost of in-house high-skill $(w_{jh} + a_j) \downarrow$
 - ightarrow Consequently, cost of in-house low-skill $(w_{jl}+a_j)\uparrow \Longrightarrow$ low-skill outsourcing \uparrow

What about trends in demand for high skill labor φ_{jh} ?

- Recall technology $y_j = (\Pi_{s \in \mathcal{S}} \mathbf{n}_{js}^{\varphi_{js}})^{\nu}$.
- $\varphi_{jh} \uparrow$ has similar effect on low-skill domestic outsourcing as $p_m \uparrow$.
- Suppose $\varphi_{jh} \uparrow$
 - \rightarrow Demand for high-skill workers at firm $j \uparrow$
 - \rightarrow Health plan $a_j \uparrow \Longrightarrow$ cost of in-house high-skill $(w_{jh} + a_j) \downarrow$
 - \rightarrow Consequently, cost of in-house low-skill $(w_{jl} + a_j) \uparrow \Longrightarrow$ low-skill outsourcing \uparrow
- Mechanism implies: across industries, positive relationship between
 - 1. High-skill share of labor expenditure.
 - 2. Outsourcing share of low-skill labor expenditure.

Cross-Sectional Industry Data

- Skills ← Group occupations into terciles by average compensation.
- OEWS: Wages w_{js} and in-house employment n_{js}
- ASM and SAS: Health plans a_j

Cross-Sectional Industry Data

- Skills ← Group occupations into terciles by average compensation.
- OEWS: Wages w_{js} and in-house employment n_{js}
- ASM and SAS: Health plans a_i
- Input Output: Outsourcing Expenditure $p_{os}l_{js}$, ie:
 - Subindustries of Admin and Professional Services = outsourcing industries.
 - Map sub-industries to skill levels using employment shares.
 - i.e. janitorial services → low-skill.

Main Mechanism has Empirical Support

- Recall: positive relationship btw high-skill share and low-skill outsourcing share.
- Support in data:

	low-skill outsourcing exp low-skill labor exp
high-skill exp total labor exp	0.973***
	(0.113)
Observations	128
R^2	0.371
·	

Standard errors in parentheses

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Accounting Exercise

- Calibrate the model to 1975, then change the following:
 - 1. Add the anti-discrimination law.
 - 2. Increase the price of medical care to its 2012 value.
 - 3. Increase the high-skill weight φ_{high} to match change in skill wage premium $\frac{\bar{w}_{high,t}}{\bar{w}_{low,t}}$.
- Compare outsourcing rates in each counterfactual economy.

The <u>interaction</u> between the laws + rising price of medical care is key

Rise in Low-Skill Domestic Outsourcing, 1975-2012

	Δ p.p.	% explained
Data:	10.6	
Model:		
Price of medical care ↑ alone	0	0
Law alone	2.6	24.1
Law + price of medical care ↑	6.0	56.1

Increase in demand for high-skill is not a driving force

Rise in Low-Skill Domestic Outsourcing, 1975-2012

	Δ p.p.	% explained
Data:	10.6	
Model:		
Demand for high-skill \uparrow alone	0	0
Law alone	2.6	24.1
Laws + demand for high-skill ↑	2.6	24.2

- \uparrow demand for high-skill \longrightarrow firm increases high-skill wages instead of health plans.

Removing the anti-discrimination laws increases utility

Counterfactual: Removing the anti-discrimination laws

	Sk	Skill		
	Low Hig			
$\%\Delta$ Utility $ ilde{v}_s$	19.2	9.8		

Removing the anti-discrimination laws increases utility

Counterfactual: Removing the anti-discrimination laws

Skill	
Low	High
19.2	9.8
25.6	-23.9
-20.0	104.6
	Low 19.2 25.6

Removing the anti-discrimination decreases wage inequality

	Ratio, high- to low-skill
Economy	Wage $rac{E[w_{jh}]}{E[w_{jl}]}$
Baseline	4.8
Remove anti-discrimination laws	2.9

Removing the anti-discrimination decreases wage inequality

Ratio, high- to low-skill	
Wage $\frac{E[w_{jh}]}{E[w_{jl}]}$	Utility $rac{ ilde{v}_h}{ ilde{v}_l}$
4.8	3.1
2.9	2.9
	Wage $\frac{E[w_{jh}]}{E[w_{jl}]}$

Removing the tax advantage of employer health plans increases utility

Counterfactual: Removing the tax advantage of employer health plans

	SF	SKIII	
	Low	High	
$\%\Delta$ Utility v_s	15.8	3.7	

CLU

Removing the tax advantage of employer health plans increases utility

Counterfactual: Removing the tax advantage of employer health plans

CI 111

	Skill		
	Low	High	
$\%\Delta$ Utility v_s	15.8	3.7	
$\%\Delta$ Wage $E[w_{js}]$	8.9	3.2	
$\%\Delta$ Health Plan $E[a_{js}]$	-8.5	-13.5	

Removing tax advantage slightly decreases inequality

	Ratio, high- to low-skill	
Economy	Wage $\frac{E[w_{jh}]}{E[w_{jl}]}$	Utility $rac{ ilde{v}_h}{ ilde{v}_l}$
Baseline	4.8	3.1
Remove health plan tax advantage	4.5	2.8

Conclusion

- Novel theory, supported by data.
- Law + price of medical care $\uparrow \longrightarrow 56\%$ of the low-skill domestic outsourcing \uparrow .
 - Law + demand for high-skill $\varphi_h \uparrow \longrightarrow$ not a driver.
- Repealing the anti-discrimination law:
 - Increases utility.
 - Decreases wage inequality.
 - Slightly decreases utility inequality.

Next Step

- Job Market.

Worker Problem

$$v(w_{js}, a_{js}; p_m) = \max_{c,m} u(c, m_1 + m_2)$$

 $s.t. \ c + p_m m_1 (1 + \gamma) \le w_{js} (1 - T)$
 $p_m m_2 \le a_{js}$

- T is tax on wages
- γ captures the fact workers face higher prices than firms for health care.
- T > 0 or $\gamma > 0$ is necessary so that $a_{js} > 0$.

Summary of Parameters and Moments

Parameter	Description	Value	Moment	Model	Data
Normalized					
p_m	Price of medical care	1			
z	Efficiency	1			
N_s	Mass of workers of skill s	1			
External					
η	Elast. of subs., goods vs medical care	0.11			
ψ	Weight on goods in utility	0.81			
γ	% more workers pay for medical care out of pocket	0.1			
ν	Returns to scale, traditional firms	0.95			
θ_l	Elast. of subs., low-skill, in vs outsourced	3.26			
φ_{js}	Skill weights		Expenditure shares		
MDE					
α_I	Weight on low-skill outsourced labor in production	0.08	% of low-skill outsourced	0.14	0.14

Key Parameter: Elasticity of Sub, in vs out, θ_l

- Recall:

$$\frac{l_{js}}{n_{js}} = \alpha_{jl} \left(\frac{w_{js} + a_{js}}{w_{os} + a_{os}} \right)^{\theta_s}$$

- Regression:

$$\log \frac{p_{ol}l_{jl}}{n_{jl}} = \theta_l \log (w_{jl} + a_j) + \underbrace{(1 - \theta_l) \log p_{ol}}_{\text{constant}} + \underbrace{\log \alpha_{jl}}_{\text{shifter}} + \underbrace{\epsilon_{js}}_{\text{error}}$$
outsourcing expenditure
$$\stackrel{\cdot}{\cdot} \text{in-house employees}$$

- Control for shifter: IT expenditure and non-low-skill outsourcing expenditure.

Result: $\theta_{low} = 3.258$. Positive, large, statistically significant

	(1)	(2)
	Low-skill ou	t expnd per low-skill emp
Low-skill compensation package cost	5.509***	3.258***
IT expnd per employee		0.400***
Non-low-skill out expnd per employee		0.828***
Observations	127	125
R^2	0.304	0.735

All variables are in logs. * p < 0.10, ** p < 0.05, *** p < 0.01

Justification for firms offering one health plan

- Data: 1993 Robert Wood Johnson Foundation Employer Health Insurance Survey
- Plan id, employer id, and employer premiums.
- 22,000 plans, 15,000 employer.
- Variance decomposition of employer paid premiums:

$$\underbrace{Var(x_{ij} - \bar{x})}_{\text{Total dispersion}} = \underbrace{Var(x_{ij} - \bar{x}_j)}_{\text{Within firm}} + \underbrace{Var(\bar{x}_j - \bar{x})}_{\text{Between firm}}$$

- 83% of the total variation of single plan employer premiums is between firms.
- 86% of the total variation of family plan employer premiums is between firms.