- 3. Positive Semi-definiteness: Recall that a n-by-n real symmetric matrix K is called positive semi-definite (p.s.d. or $K \succeq 0)$ iff for every $x \in \mathbb{R}^n$, $x^T K x \geq 0$.
 - (a) Show that $K \succeq 0$ if and only if its eigenvalues are all nonnegative.
 - (b) Show that $d_{ij} = K_{ii} + K_{jj} 2K_{ij}$ is a squared distance function, *i.e.* there exists vectors $u_i, v_j \in \mathbb{R}^n$ $(1 \le i, j \le n)$ such that $d_{ij} = ||u_i u_j||^2$.
 - (c) Let $\alpha \in \mathbb{R}^n$ be a signed measure s.t. $\sum_i \alpha_i = 1$ (or $e^T \alpha = 1$) and $H_\alpha = I e\alpha^T$ be the Householder centering matrix. Show that $B_\alpha = -\frac{1}{2}H_\alpha DH_\alpha^T \succeq 0$ for matrix $D = [d_{ij}]$.
- (d) If $A \succeq 0$ and $B \succeq 0$ $(A, B \in \mathbb{R}^{n \times n})$, show that $A + B = [A_{ij} + B_{ij}]_{ij} \succeq 0$ (elementwise sum), and $A \circ B = [A_{ij}B_{ij}]_{ij} \succeq 0$ (Hadamard product or elementwise product).

(a). $\stackrel{?}{=}$ given $\stackrel{?}{\downarrow}$ is P.S. d.

 λ and u is the eigenvalue and eigenvector of k. $ku = \lambda u$ (uto) ... $u^{T}ku = u^{T}\lambda u = \lambda u^{T}u > 0$ since $u^{T}u = ||u||^{2} > 0$ $= > \lambda > 0$.

" \in " given $\lambda \ge 0$, k is real and symmetric

 $\begin{array}{ll} \text{orthogonal matrix } Q \,, & Q^T k \, Q = \, \Lambda \,, & \Lambda \text{ is diagonal matrix} \\ &= \left(\stackrel{\Lambda}{\cdot} \cdot \cdot \cdot _{\Lambda} \right) \\ &\stackrel{\cdot}{\cdot} \cdot k = \, Q \Lambda \, Q^T = \, Q \left(\stackrel{\Lambda_1}{\cdot} \cdot \cdot _{\Lambda} \right) \, Q^T \end{array}$

for $\forall x \in \mathbb{R}^n$ $\forall x \in \mathbb{R}^n$

 $x^{2}kx = \lambda x^{2}+\cdots + \lambda x^{2}x^{2} > 0 => k > 0$

(b). $d_{ij} = ||u_{i} - v_{j}||^{2} = (u_{i} - v_{j})^{T} (u_{i} - v_{j}) = u_{i}^{T} u_{i} - u_{i}^{T} v_{j} - v_{j}^{T} u_{i}^{T} + v_{j}^{T} v_{j}^{T}$ $= u_{i}^{T} u_{i} + v_{j}^{T} v_{j}^{T} - v_{i}^{T} v_{j}^{T}$

notice $k = Q \wedge Q^T = Q \wedge^{\frac{1}{2}} \wedge^{\frac{1}{2}} Q^T = (\Lambda^{\frac{1}{2}} Q^T)^T \wedge^{\frac{1}{2}} Q^T = B^T B$

Let Ui= Ber Vj=Bej

we have $kin + kjj - 2kij = [|Ui - Vj|]^2$

cc) dij = kii + kjj - 2kij

=> D = diag(k) et + e diag(k) -2k

diag(k)= (ku)

for
$$\forall x \neq 0$$
. $\chi' \mathcal{B}_{\lambda} \chi = \pm \chi' \mathcal{T} + \lambda D \mathcal{H}_{\lambda} \chi = -\pm (\mathcal{H}_{\lambda} \chi)^{T} D \mathcal{H}_{\lambda} \chi$

$$= -\pm (\mathcal{H}_{\lambda} \chi)^{T} \left[\operatorname{diag}(k) e^{T} + e \operatorname{diag}(k) - 2k \right] + \lambda \mathcal{I} \chi$$

$$\operatorname{consider} \quad \mathcal{H}_{\lambda} \chi = \left(\mathbf{I} - \lambda e^{T} \right) \chi$$

$$\operatorname{consider} \quad \mathcal{H}_{\lambda} \chi = \left(\mathbf{I} - \lambda e^{T} \right) \chi$$

$$\operatorname{consider} \quad \mathcal{H}_{\lambda} \chi = \left(\mathbf{I} - \lambda e^{T} \right) \chi$$

$$= \chi^{T} \left(\mathbf{I} - e \lambda^{T} \right) \operatorname{diag}(k) e^{T} \left(\mathbf{I} - \lambda e^{T} \right) \chi$$

$$= \chi^{T} \left(\mathbf{I} - e \lambda^{T} \right) \operatorname{diag}(k) \left(e^{T} - e^{T} \right) \chi = 0$$

$$\left(\mathcal{H}_{\lambda} \chi \right)^{T} e \operatorname{diag}(k) + \lambda \chi^{T} \chi = \chi^{T} \left(\mathbf{I} - e \lambda^{T} \right) e \operatorname{diag}(k) \left(\mathbf{I} - \lambda e^{T} \right) \chi = 0$$

$$\therefore \chi^{T} \mathcal{B} \chi = \left(\mathcal{H}_{\lambda} \chi \right)^{T} \left(\mathcal{H}_{\lambda} \chi \right) \chi = \chi^{T} \mathcal{A} \chi + \chi^{T} \mathcal{B} \chi \geqslant 0 \Rightarrow \Lambda^{T} \mathcal{B} \geqslant 0.$$

$$\operatorname{cd} \mathcal{A} \varphi \mathcal{B} \chi = \chi^{T} \operatorname{diag} \left(\mathcal{A} \mathcal{D}_{\lambda} \mathcal{B}^{T} \right) \geqslant 0$$

$$\chi^{T} \mathcal{A} \varphi \mathcal{B} \chi = \chi^{T} \operatorname{diag} \left(\mathcal{A} \mathcal{D}_{\lambda} \mathcal{B}^{T} \right) \geqslant 0$$

- 4. Distance: Suppose that $d: \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$ is a distance function.
 - (a) Is d^2 a distance function? Prove or give a counter example.
 - (b) Is \sqrt{d} a distance function? Prove or give a counter example.

Proof (a) Let
$$d(x,y) = |x-y|$$
 $d^{2}(x,y) = |x-y|^{2}$
Let $x = 0$ $y = 2$ $z = 1$
 $d^{2}(x,z) = 25 > d^{2}(x,y) + d^{2}(y,z) = 4+ 9 = 13$
 $d^{2}(x,z) = 3$ is not a distance function.

(b) Id is a distance function.

because Jot can be written in the form of Schoenberg Transformation.