Aalto Yliopisto

 $\operatorname{SCI-C0200}$ - Fysiikan ja matematiikan menetelmien studio

Tietokoneharjoitus 1: Johdatus matemaattiseen mallintamiseen

Elli Kiiski

Sisällys

1	Teh	ıtävä A: Matlab-pelleilyä
	1.1	Komentoja
	1.2	Vektorilaskutoimituksia
	1.3	Parittomien lukujen vektori
	1.4	Funktion kuvaaja
2	Teh	ıtävä B: Latex-pelleilyä
	2.1	Ensimmäinen dokumentti
	2.2	Kertymäfunktio
	2.3	Diffistä
	2.4	Taikaa
	2.5	Kuva kuvaajasta
3	Kot	itehtävä: Osakeanalyysi
	3.1	Osakekurssien ja DJIA-indeksin aikasarjat
	3.2	Hajontakuviot

1 Tehtävä A: Matlab-pelleilyä

1.1 Komentoja

- Funktio eig palauttaa sille parametrina annetun matriisin ominaisarvot pystyvektorina. Jos komentoa yrittää käyttää muulle kuin neliömatriisille, tulostuu virheilmoitus.
- Komento clear all puolestaan poistaa muistista kaikki muuttujien ja välitulosten arvot eli tyhjentää Workspacen.

1.2 Vektorilaskutoimituksia

$$a = [1 \ 2 \ 3] ja b = [1 \ 5 \ 9].$$

- a*b' = 38
- a'*b = $\begin{bmatrix} 1 & 5 & 9 \\ 2 & 10 & 18 \\ 3 & 15 & 27 \end{bmatrix}$
- a.*b = $\begin{bmatrix} 1 & 10 & 27 \end{bmatrix}$
- a.*a = $\begin{bmatrix} 1 & 4 & 9 \end{bmatrix}$
- a.^2 = $\begin{bmatrix} 1 & 4 & 9 \end{bmatrix}$

1.3 Parittomien lukujen vektori

Vektori $\begin{bmatrix} 1 & 3 & 5 & \dots & 97 & 99 \end{bmatrix}$ saadaan a
ikaan helposti komennoilla

- v = [1:2:99]
- v = linspace(1,99,50)

1.4 Funktion kuvaaja

- Komennolla hold on useat kuvaajat saa näkymään koordinaatistossa samanaikaisesti.
- Komento close all sulkee kaikki auki olevat figure-ikkunat.

2 Tehtävä B: Latex-pelleilyä

2.1 Ensimmäinen dokumentti

Yhtälö voidaan kirjoittaa tekstin sekaan:

$$(a+b)^2 = a^2 + b^2 + 2ab$$

Yhtälö numeroituna:

$$(a+b)^2 = a^2 + b^2 + 2ab (1)$$

2.2 Kertymäfunktio

Tässä normaalijakauman kertymäfunktio, wau!

$$\phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{\frac{-t^2}{2}} dt \tag{2}$$

2.3 Diffistä

Ja vielä vähän diffiksiä:

$$\frac{d}{dt}x(t) = ax(t) - bx(t)y(t) \tag{3}$$

$$\frac{d}{dt}y(t) = -py(t) + qx(t)y(t) \tag{4}$$

2.4 Taikaa

Komennolla magic (3) saadaan matriisi

$$\begin{bmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{bmatrix} \tag{5}$$

Matriisi (5) on taikaneliö!

2.5 Kuva kuvaajasta

Kuvassa 1 taitavasti MATLABilla plotattu kuvaaja cos(2x)-funktiosta.

Kuva 1: Nätti kosini-käyrä.

3 Kotitehtävä: Osakeanalyysi

3.1 Osakekurssien ja DJIA-indeksin aikasarjat

Kuvassa 2 näkyy allekkain IBM:n ja Microsoftin osakkeiden arvojen vaihtelut 2.1.2013 alkaen 9.8.2013 asti, sekä DJIA-indeksin arvo samalla aikavälillä.

Kuvaajien perusteella Microsoftin osakekurssi näyttäisi seuranneen loppua lukuun ottamatta hyvinkin tarkasti DJIA-indeksiä. IBM:n osakkeen arvot sen sijaan ovat vaihdelleet varsin eri tahtiin ja suuntiin kuin kahden muun arvot.

Kaikista kuvaajista on huomattavissa notkahdus noin 75. päivän kohdalla, joskin IBM:n tapauksessa se on paljon dramaattisempi kuin esim. DJIA-indeksin kuvaajassa.

3.2 Hajontakuviot

Kuvassa 3 on puolestaan käsittelyssä olevien arvojen hajontakuvioita edelleen samalta aikaväliltä.

Hajontakuvioista positiivista korrelaatiota on havaittavissa oikeastaan vain Microsoftin osakkeen arvon ja DJIA-indeksin arvon välillä. Muissa kahdessa tapauksessa korrelaatiota ei näyttäisi juuri olevan niin positiivista kuin negatiivistakaan.

Pearsonin korrelaatiokerrointen laskeminen vahvistaa havainnon:

- corr(ibm, djia) = -0.0944
- corr(microsoft, djia) = 0.8400
- corr(ibm, microsoft) = -0.2014

Näistä ainoastaan corr(microsoft, djia) eroaa merkittävästi nollasta, mikä tarkoittaa, että korrelaatiota on olemassa. Mielenkiintoinen seikka on myös se miten IBM:n osakkeen arvo korreloi pikemmin negatiivisesti muiden arvojen kanssa, vaikkakaan ei merkittävästi.

Kuva 2: IBM:n ja Microsoftin osakekkeiden sekä DJIA-indeksin arvojen vaihtelut aikavälillä 2.1.2013-9.8.2013.

Kuva 3: IBM:n ja Microsoftin osakekkeiden sekä DJIA-indeksin arvojen välisiä hajontakuvioita aikavälillä 2.1.2013-9.8.2013.