DAFTAR ISI

DAFT	AR ISI	i
DAFT	AR TABEL	ii
DAFT	AR GAMBAR	ii
BAB 1	. PENDAHULUAN	1
1.1	Latar Belakang	1
1.2	Rumusan Masalah	2
1.3	Tujuan	2
1.4	Luaran yang Diharapkan	2
1.5	Kegunaan/manfaat	2
BAB 2	. TINJAUAN PUSTAKA	2
2.1 Air 1	Kontaminasi Polutan Tak Kasatmata (Mikroplastik dan Mikroba) da Minum Kemasan	
2.2	Solusi yang Pernah Diajukan	3
2.3	Degradasi Mikroplastik dan Mikroba oleh Fotokatalis	3
2.4	Fotokatalis TiO ₂ Berbentuk <i>Nanotube Arrays</i> (TNTAs)	4
BAB 3	. TAHAP PELAKSANAAN	4
3.1	Metode dan Model Pelaksanaan	4
3.2	Rancangan Alat	6
3.3	Cara Kerja Alat	7
3.4	Keunggulan inovasi	8
BAB 4	. BIAYA DAN JADWAL KEGIATAN	8
4.1	Anggaran Biaya	8
4.2	Jadwal Kegiatan	8
DAFT	AR PUSTAKA	9
LAMI	PIRAN	11
Lam	piran 1. Biodata Ketua dan Anggota serta Dosen Pendamping	11
Lam	piran 2. Justifikasi Anggaran Kegiatan	22
Lam	piran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas	24
Lam	piran 4. Surat Pernyataan Ketua Pelaksana	25
Lam	piran 5. Gambaran Teknologi yang Akan Dikembangkan	26

DAFTAR TABEL

Tabel 4.1 Anggaran Biaya Keseluruhan	8
Tabel 4.2 Jadwal Kegiatan	
DAFTAR GAMBAR	
Gambar 3.1 Metode Pelaksanaan Kegiatan	6
Gambar 3.2 Ilustrasi Rancangan Alat Produk	7
Gambar 5.1 Gambaran Detil Produk Botol Penghancur Polutan Tak Kasatmata	
dalam Air Minum yang Akan Dikembangkan	26

BAB 1. PENDAHULUAN

1.1 Latar Belakang

Plastik adalah bahan yang terbuat dari polimer sintesis maupun semisintesis. Sebagai barang yang sangat sering digunakan dalam keseharian, tren produksi plastik global per tahun terus meningkat hingga 368 juta metrik ton pada 2019 (Statista, 2021). Namun, plastik cenderung terakumulasi dalam bentuk limbah karena sifatnya yang sulit terdegradasi. Setiap tahunnya, ada sekitar 8 juta metrik ton plastik yang berakhir di lautan (Jambeck *et al.* 2015).

Pencemaran plastik dalam bentuk mikroplastik menimbulkan masalah yang lebih serius dan mengkhawatirkan. Mikroplastik merupakan plastik dengan ukuran mulai dari 5 mm hingga 1 mikron yang tak kasatmata. Mikroplastik dapat berasal dari manufaktur langsung oleh industri, maupun dari pelapukan atau fragmentasi limbah plastik oleh alam yang membuat ukurannya semakin kecil dari waktu ke waktu.

Mikroplastik yang sampai dan terakumulasi di dalam tubuh manusia diduga dapat menimbulkan masalah serius. Mikroplastik dapat mengadsorpsi kontaminan beracun seperti *Polychlorobiphenyls* (PCBs) dan *bisphenol* A (BPA) yang dapat menganggu sistem hormonal manusia (Pinson *et al.* 2017), serta DEHP yang diduga berpotensi merusak sistem endokrin dan menyebabkan kanker.

Beberapa penelitian membuktikan bahwa mikroplastik sudah masuk ke manusia melalui air minum kemasan. Penelitian yang dilakukan oleh Kosuth et al. (2018) membuktikan kontaminasi mikroplastik dalam tap water, bir, serta garam dapur komersial. Penelitian oleh Mason et al. (2018) membuktikan kontaminasi mikroplastik pada botol air minum kemasan dalam skala global. Peneliti menguji 259 sampel botol air minum dari 11 merk yang dijual di sembilan negara, termasuk Indonesia. Hasilnya cukup mengejutkan, yaitu 93% sampel botol minum sudah terkontaminasi dengan mikroplastik, dengan konsentrasi rata-rata 325 partikel mikroplastik/L dan konsentrasi mikroplastik maksimum yang terdeteksi mencapai 10.390 partikel mikroplastik/L. Lebih lanjut, systematic review yang ditulis oleh Danopoulos et al. (2020) menunjukkan bahwa kontaminasi mikroplastik dalam air minum, baik pada tap water maupun pada botol minum sudah cukup signifikan. Selain mikroplastik, polutan tak kasatmata yang mungkin berada dalam air minum adalah mikroba yang dapat menyebabkan infeksi saluran cerna, keracunan, serta penyakit berbahaya lainnya (Wijono 2020). Keberadaan polutan tak kasatmata dalam air minum kemasan menjadi penting untuk dipertimbangkan mengingat konsumsi air minum merupakan salah satu kebutuhan utama manusia.

Fotokatalis ternyata dapat dimanfaatkan untuk mendegradasi mikroplastik serta mikroba dalam air (Nabi *et al.* 2020; Foster *et al.* 2011). Dengan memanfaatkan energi foton, suatu fotokatalis dapat membentuk *reactive oxygen species* (ROS) serta radikal hidroksil yang dapat dimanfaatkan untuk memutus rantai polimer mikroplastik serta mendisinfeksi mikroba. Melatarbelakangi ini, kami mengajukan rancangan produk dalam bentuk botol penghancur polutan tak

kasatmata dalam air minum (mikroplastik dan mikroba). Produk ini berbasis teknologi fotokatalisis menggunakan TiO₂ (titania) berbentuk *nanotube arrays* yang akan dilapiskan pada dinding botol bagian dalam.

1.2 Rumusan Masalah

- 1. Bagaimana konsep pembuatan prototip botol yang dapat mendegradasi polutan tak kasatmata (mikroplastik dan mikroba) dalam air minum?
- 2. Bagaimana tahap penggunaan prototip botol yang dapat mendegradasi polutan tak kasatmata (mikroplastik dan mikroba) dalam air minum?

1.3 Tujuan

- 1. Mendapatkan prototip botol yang dapat mendegradasi polutan tak kasatmata (mikroplastik dan mikroba) dalam air minum.
- 2. Mendapatkan tahap penggunaan yang efektif dari botol yang dapat mendegradasi polutan tak kasatmata (mikroplastik dan mikroba) dalam air minum

1.4 Luaran yang Diharapkan

Luaran yang diharapkan dari kegiatan ini adalah sebagai berikut:

- 1. Prototip atau produk fungsional dari botol yang dapat mendegradasi polutan tak kasatmata (mikroplastik dan mikroba) dalam air minum.
- 2. Laporan kemajuan kegiatan dan laporan akhir.
- 3. Publikasi dalam bentuk *draft* paten dan/atau artikel ilmiah mengenai produk ini.

1.5 Kegunaan/manfaat

Kegiatan ini diharapkan dapat menghasilkan rancangan prototip botol minum berbasis teknologi fotokatalisis untuk mendegradasi polutan tak kasatmata dalam air minum. Prototip ini diharapkan dapat berkontribusi dalam mengatasi permasalahan keseharian bagi masyarakat, terutama yang terkait dengan tercemarnya air minum kemasan yang selama ini tidak disadari. Selain itu, kegiatan ini diharapkan dapat digunakan sebagai referensi untuk perkembangan ilmu pengetahuan dan teknologi, serta pengembangan atau penyempurnaan produk serupa untuk penelitian selanjutnya.

BAB 2. TINJAUAN PUSTAKA

2.1 Kontaminasi Polutan Tak Kasatmata (Mikroplastik dan Mikroba) dalam Air Minum Kemasan

Kontaminasi mikroplastik dalam air minum kemasan dapat berasal dari limpasan limbah industri tekstil, kosmetik, serta *wastewater treatment plants* (WWTP). Murphy *et al.* (2016) mengestimasi ada sekitar 65 juta partikel mikroplastik dilepaskan dari WWTP setiap harinya. Selain itu, mikroplastik juga

dapat berasal dari fragmentasi limbah plastik di perairan. Sebagai salah satu fasilitas dalam penyedia air minum, *Drinking Water Treatment Plants* memiliki kontribusi yang besar terhadap adanya kontaminasi mikroplastik dalam air minum kemasan. Beberapa komponen yang ada dalam pabrik air minum terbuat dari plastik yang apabila terdegradasi dan tererosi dapat berkontribusi terhadap adanya mikroplastik dalam air minum (Mintenig *et al.* 2019). Lebih lanjut, baik botol maupun tutup botol minum yang terbuat dari plastik juga dapat menjadi sumber mikroplastik (Oßmann *et al.* 2018; Schymanski *et al.* 2018).

Hasil penelitian Amelia (2019) membuktikan bahwa bakteri juga dijumpai dalam air minum kemasan. Amelia menguji 16 sampel dari 8 merek air minum dalam kemasan yang diproduksi di kota Batam. Hasilnya, 8 sampel mengandung bakteri diantaranya *Klebsiella* sp., *Enterobacter*, *Pseudomonas* sp., dan *Salmonela* sp. Kontaminasi bakteri dalam air minum kemasan dapat terjadi apabila proses pengolahan air kurang sempurna.

2.2 Solusi yang Pernah Diajukan

Solusi yang telah diterapkan untuk mengatasi polusi mikroplastik dalam air kebanyakan berada pada skala industri seperti insinerasi dan ozonasi, walaupun metode ini membutuhkan energi yang tinggi dan cenderung mahal. Solusi lain yang dapat diterapkan adalah menggunakan ultrafiltrasi, koagulasi, serta *reverse osmosis* (Uheida *et al.* 2020). Akan tetapi, teknik tersebut masih menyisakan residu mikroplastik serta rentang ukuran yang dapat disaring juga terbatas. Sementara itu, pada aplikasi praktisnya, terdapat produk *lifestraw*, yakni sedotan berbasis mikrofiltrasi *hollow membrane* dengan pori-pori 0,02 mikron yang dapat menyaring bakteri dan impuritas partikel dalam air, termasuk mikroplastik. Namun, ukuran porinya yang sangat kecil dapat membatasi laju alir air yang melewati *filter* sehingga membuat air sulit untuk diminum. Disamping itu, Teknik ini juga masih menyisakan residu mikroplastik yang masih berpotensi mencemari air minum.

Teknologi yang berbasis degradasi untuk menghancurkan mikroplastik menjadi komponen tak berbahaya (CO₂ dan air) seperti fotokatalisis masih minim diterapkan, terutama yang dibuat dalam bentuk prototip/produk praktis untuk air minum.

2.3 Degradasi Mikroplastik dan Mikroba oleh Fotokatalis

Fotokatalis adalah semikonduktor yang dapat mempercepat reaksi kimia saat diaktivasi oleh radiasi foton (cahaya). Ketika foton dengan energi yang sama dengan atau lebih besar dari energi celah pita (*band-gap*) fotokatalis terabsorpsi, elektron (e-) pada pita valensi tereksitasi ke pita konduksi, meninggalkan *hole* (h⁺) di pita valensi. Elektron yang sampai ke permukaan fotokatalis dapat mereduksi oksigen ambien (O₂) yang teradsorpsi di permukaan fotokatalis untuk membentuk anion superoksida (O₂•-), sedangkan *holes* dapat memproduksi radikal hidroksil (OH•) dengan mengoksidasi molekul air yang teradsorpsi di permukaan fotokatalis.

Spesi reaktif (radikal hidroksil dan anion superoksida) yang dihasilkan sangat reaktif dan dapat memineralisasi senyawa organik (Ohama dan Dionys 2011).

Spesi reaktif yang dihasilkan tersebut dapat dimanfaatkan untuk mendegradasi mikroplastik. Mekanisme degradasi polietilena (sebagai komponen mikroplastik) menjadi karbon dioksida dan air oleh fotokatalis telah diusulkan pula oleh Liang *et al.* (2013). Penelitian degradasi beberapa jenis mikroplastik dengan fotokatalis sudah dilakukan, seperti degradasi mikroplastik polipropilena (Uheida *et al.* 2020), mikroplastik polistirena (Nabi *et al.* 2020), mikroplastik polietilena (Fadli 2020; Maulana 2020), serta mikroplastik poliamida (Lee *et al.* 2020). Selain untuk degradasi mikroplastik, spesi reaktif yang dihasilkan fotokatalis juga dapat dimanfaatkan untuk disinfeksi mikroba yang mencakup bakteri, fungi, alga, protozoa, dan virus (Foster *et al.* 2011). Pada bakteri, disinfeksi oleh fotokatalis berlangsung karena rusaknya membran dan dinding sel bakteri.

2.4 Fotokatalis TiO₂ Berbentuk *Nanotube Arrays* (TNTAs)

Titania merupakan fotokatalis yang banyak diteliti karena sifatnya yang tidak beracun, relatif stabil terhadap cahaya, serta kemampuan fotokatalitiknya yang tinggi. TNTAs merupakan salah satu struktur nano dari Titania. Ketika ukuran partikel menjadi kecil (skala nano), sifat elektronik seperti transfer elektron, modifikasi permukaan juga berubah sehingga akan lebih efektif dalam aplikasinya (Ratnawati dan Slamet 2012). Dari berbagai bentuk *nanotube* yang ada, semikonduktor TNTAs merupakan bentuk yang paling banyak diminati (Roy *et al.* 2011). Hal ini dikarenakan TNTAs mempunyai luas permukaan spesifik yang tinggi, efek penyerapan foton serta *transport* elektron yang lebih baik, serta biaya pembuatannya yang murah (Prakasam *et al.* 2007).

Dengan metode anodisasi yang sederhana pada plat Titanium (Ti) dalam larutan elektrolit, dapat dihasilkan TNTAs yang terimobilisasi pada plat Ti. Dengan demikian, aplikasinya akan lebih praktis dibandingkan dengan katalis titania berbentuk serbuk. Oleh karena itu, rancangan prototip botol dalam usulan ini akan menggunakan TiO₂ dalam bentuk morfologi *nanotube arrays* (TNTAs)

BAB 3. TAHAP PELAKSANAAN

3.1 Metode dan Model Pelaksanaan

Mengingat masih adanya masa pandemi, kegiatan akan dilaksanakan melalui konsep blended, yaitu kombinasi antara online (daring) dan offline (luring). Kegiatan seperti koordinasi dan komunikasi sesama tim atau dosen pendamping akan dilaksanakan secara online menggunakan internet. Berhubung dalam usulan kegiatan ini terdapat tahapan pembuatan prototip, akan ada kegiatan yang dilaksanakan secara offline seperti konstruksi alat dan uji performa prototip. Akan tetapi, kegiatan offline akan dilaksanakan tanpa kontak fisik dan tetap dengan memperhatikan protokol kesehatan secara ketat. Tahapan pelaksanaan kegiatan ini adalah sebagai berikut:

1. Pengumpulan data sekunder

Data sekunder yang diperlukan untuk rancangan awal prototip akan dikumpulkan melalui studi literatur yang diperoleh dari skripsi, tesis, disertasi, artikel jurnal ilmiah maupun prosiding, internet, dan sumber-sumber informasi lainnya.

2. Penyusunan desain teknis

Desain teknis prototip dilakukan dengan menyintesis TNTAs di laboratorium. Parameter-parameter yang digunakan untuk sintesis TNTAs seperti pemilihan suhu, voltase, dan waktu sintesis akan menggunakan kondisi optimum berdasarkan studi literatur. Rincian sintesis TNTAs adalah sebagai berikut:

- Pre-treatment plat Ti dengan kertas amplas dan *chemical polishing* dengan larutan HNO₃, HF, dan air.
- Preparasi alat dan bahan yang diperlukan untuk sintesis TNTAs, yakni plat Ti, plat platina (Pt), *power supply* DC, penjepit, *magnetic stirrer*, larutan amonium florida (NH₄F), larutan gliserol, dan akuades.
- Sintesis TNTAs dengan metode anodisasi dengan cara menghubungkan kabel dari *power supply* ke plat Ti (sebagai anoda) dan plat Pt (sebagai katoda). Jarak antara plat Ti dan plat Pt akan dijaga sebesar 1 cm.
- Plat Ti dan plat Pt dicelupkan kedua plat tersebut ke dalam larutan elektrolit yang terdiri dari gliserol, NH₄F, dan akuades. Setelah itu, power *supply* dinyalakan dengan tegangan 50V dan anodisasi dilangsungkan selama 2 jam, sembagi diaduk dengan *magnetic stirrer*.
- TNTAs yang telah tumbuh di atas plat Ti akan dikalsinasi di dalam *furnace* pada 500°C selama 3 jam untuk mengubah struktur TNTAs yang masih amorf menjadi struktur kristal anatase.

3. Pembuatan produk

Pembuatan produk akan dimulai dengan memesan *custom* botol dengan dimensi yang menyerupai desain awal. Kemudian, TNTAs yang sudah disintesis akan disambungkan ke dinding botol. Setelah itu, komponen pendukung lainnya seperti sumber foton (cahaya) akan dirangkai menyerupai desain awal.

4. Pengujian keandalan produk

Pengujian kinerja produk akan dilakukan melalui pengujian degradasi mikroplastik serta pengujian disinfeksi bakteri di laboratorium, dengan mematuhi protokol kesehatan. Namun, mula-mula TNTAs yang telah berhasil disintesis akan dijustifikasi terlebih dahulu morfologinya dengan karakterisasi. Pengujian degradasi mikroplastik akan menggunakan *polyethylene scrub* sebagai sampel mikroplastik dengan metode gravimetri untuk mengukur *mass loss* per waktunya. Pengujian disinfeksi mikroba akan menggunakan sampel *Escherichia coli* dengan metode *total plate count*.

5. Evaluasi atau prediksi penerimaan masyarakat

Jika dimungkinkan, prediksi penerimaan masyarakat terhadap produk akan dilakukan dengan menyebar survei melalui *google form* secara *online* setelah pengujian keandalan produk selesai.

Gambar 3.1 Metode Pelaksanaan Kegiatan

3.2 Rancangan Alat

Ilustrasi rancangan alat/produk ditunjukkan pada gambar 3.2, yaitu botol berbahan dasar *stainless steel*. Alat yang akan dirancang akan memiliki dasar botol yang dapat dilepas agar memudahkan pencucian botol. Selain itu, pada dinding botol akan dilapiskan TNTAs yang terimobilisasi pada plat Ti yang berfungsi untuk degradasi mikroplastik. Untuk mengaktifkan fotokatalis TNTAs, pada bagian

bawah tutup botol akan terdapat lampu UV-C sebagai sumber foton (Cahaya) sekaligus untuk membantu disinfeksi mikroba. Dalam rangka memperoleh sumber foton yang lebih baik, lampu UV-C akan dirangkai menjulur ke bawah botol. Di bagian atas tutup botol akan dipasang panel surya mini, sehingga daya tahan baterai untuk mengaktifkan lampu lebih tahan lama dan produk bersifat lebih ramah lingkungan. Gambar ptototip yang lebih rinci dapat dilihat di lampiran 5.

Gambar 3.2 Ilustrasi Rancangan Alat Produk

3.3 Cara Kerja Alat

Cara kerja dari alat/produk ini adalah sebagai berikut:

- 1. Pengguna membuka tutup botol bagian atas.
- 2. Pengguna mengisi air minum ke dalam botol.
- 3. Pengguna menutup tutup botol bagian atas hingga rapat.
- 4. Pengguna menekan tombol *switch* untuk menyalakan lampu UV-C, kemudian menunggu beberapa saat
- 5. Dengan bantuan foton dari lampu UV-C, TNTAs dapat membentuk *Reactive Oxygen Species* (ROS) dari reaksi oksidasi H₂O maupun reduksi O₂ yang terlarut dalam air. ROS yang dihasilkan dapat mendegradasi mikroplastik (dengan menyerang rantai polimer mikroplastik) serta dapat mendisinfeksi mikroba dalam air.
- 6. Pengguna mematikan lampu UV-C pada tutup botol, kemudian mengonsumsi air minumnya.
- 7. Saat tidak digunakan, botol dapat dijemur di tempat yang terkena sinar matahari untuk mengaktifkan kinerja panel surya.

3.4 Keunggulan inovasi

Keunggulan inovasi produk ini adalah sebagai berikut:

- 1. Dapat mendegradasi mikroplastik menjadi senyawa yang tidak berbahaya (CO₂ dan H₂O) serta dapat mendisinfeksi mikroba.
- 2. Tidak menggunakan bahan kimia beracun saat proses penghancuran polutan tak kasatmata berlangsung.
- 3. Baterai untuk menyalakan lampu UV-C lebih tahan lama karena pada produk ini akan terdapat panel surya mini.

BAB 4. BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Tabel 4.1 Anggaran Biaya Keseluruhan

No	Jenis Pengeluaran	Biaya (Rp)
1	Sewa dan jasa	Rp2.550.000
2	Bahan Habis Pakai	Rp4.590.000
3	Transport lokal	Rp425.000
4	Lain-lain	Rp1.855.000
	Jumlah	Rp9.420.000

4.2 Jadwal Kegiatan

Tabel 4.2 Jadwal Kegiatan

No	Jenis Kegiatan		Bulan			Person Penanggung
110	Jems Regiatan	1	2	3	4	-jawab
1	Pengumpulan data sekunder					Yuwendi
2	Penyusunan desain teknis					Yuwendi
3	Pembuatan produk					Calvin
4	Pengujian keandalan produk					Reynaldi
5	Evaluasi atau prediksi penerimaan masyarakat					Calvin
6	Pembuatan laporan					Reynaldi

DAFTAR PUSTAKA

- Amelia, F. 2019. Identifikasi bakteri coliform pada air minum dalam kemasan (AMDK) yang diproduksi di kota Batam. Simbiosa. 15(1):85–92.
- Danopoulos, E., Twiddy, M. dan Rotchell, J. M. 2020. Microplastic contamination of drinking water: A systematic review. *PLOS ONE*. 15(7):1–3.
- Fadli, M. H. 2020. Sintesis komposit Ag/TiO₂/RGO (reduced graphene oxide) untuk degradasi polutan mikroplastik dalam air. *Skripsi*. Universitas Indonesia.
- Foster, H. A., Ditta, I. B., Varghese, S. dan Steele, A. 2011. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. *Applied Microbiology and Biotechnology*. 90(6): 1847–1868.
- J. Lee, Busquets, R., I. Choi, S. Lee, J. Kim dan Campos, L. C. Photocatalytic degradation of polyamide 66; Evaluating the feasibility of photocatalysis as a microfibre-targeting technology. *Water.* 12(12): 3551.
- Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R. dan Law, K. L. 2015. Plastic waste inputs from land into the ocean. *Science*. 347:768-771.
- Kosuth, M., Mason, S. A. dan Wattenberg, E. V. 2018. Anthropogenic contamination of tap water, beer, and sea salt. *PLOS ONE*. 13(4):1–18.
- Mason, S. A., Welch, V. dan Neratko, J. 2018. Synthethic polymer contamination in bottled water. *Frontiers in Chemistry*. 6(407):1–11.
- Maulana, D. A. 2020. Sintesis nano-komposit Ag/TiO₂ untuk aplikasi degradasi mikroplastik polietilena dalam air. *Skripsi*. Universitas Indonesia.
- Mintenig, S. M., Löder, M. G. J., Primpke, S. dan Gerdts, G. 2019. Low numbers of microplastics detected in drinking water from ground water sources. *Science of The Total Environment*. 648:631–635.
- Murphy, F., Ewins, C., Carbonnier, F., dan Quinn, B. 2016. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. *Environmental Science & Technology*. 50(11):5800-5808.
- Nabi, I., Bacha, A., Kejian Li, Hanyun Cheng, Tao Wang, Yangyang Liu, Ajmal, S., Yang Yang, Yiqing Feng dan Liwu Zhang. 2020. Complete photocatalytic mineralization of microplastic on TiO₂ nanoparticle film. *iScience*. 23(7): 101326 –101365.
- Oßmann, B. E., Sarau, G., Holtmannspötter, H., Pischetsrieder, M., Christiansen, S. H. dan Dicke, W. 2018. Small-sized microplastics and pigmented particles in bottled mineral water. *Water Research* 141: 307–316.

Ohama, Y. dan Gemert, D. V. 2011. *Application of titanium dioxide photocatalysis to construction materials*. Springer. Japan.

Pinson, A., Franssen, D., Gérard, A., Parent, A. dan Bourguignon, J. 2017. Neuroendocrine disruption without direct endocrine mode of action: Polychlorobiphenyls (PCBs) and bisphenol A (BPA) as case studies. *Comptes Rendus Biologies*. 340(9-10):432-438.

Prakasam, H. E., Shankar, K., Paulose, M., Varghese, O. K. dan Grimes, C. A. 2007. A new benchmark for TiO₂ nanotube array growth by anodization. *The Journal of Physical Chemistry C*. 111(20):7235-7241.

Ratnawati dan Slamet. 2012. Potensi titania nanotube array dan aplikasinya dalam produksi hidrogen dan pengolahan liimbah. J*urnal Kimia dan Kemasan*. 34(2):249-262.

Roy, P., Berger, S. dan Schmuki, P. 2011. TiO₂ nanotubes: Synthesis and applications. *Angewandte Chemie International Edition*. 50(13): 2904-2939.

Schymanski, D., Goldbeck, C., Humpf, H. dan Fürst, P. 2018. Analysis of microplastics in water by micro-Raman spectroscopy: release of plastic particles from different packaging into mineral water. *Water Research*. 129(2018):154–62.

Statista. 2021. Production of plastics worldwide from 1950 to 2019 (in million metric tons). URL: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/. Diakses tanggal 15 Januari 2021.

Uheida, A., Mejía, H. G., Abdel-Rehim, M., Hamd, W. dan Dutta, J. 2020. Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system. *Journal of Hazardous Materials*. 406 (2021): 124299–124310.

W. Liang, Y. Luo, S. Song, X. Dong dan X. Yu. 2013. High photocatalytic degradation activity of polyethylene containing polyacrylamide grafted TiO₂. *Polymer Degradation and Stability*. 98(9):1754-1761.

Wijono, S. E. 2020. *Inilah mengapa air minum isi ulang kerap bermasalah*. URL: https://www.klikdokter.com/info-sehat/read/3397131. Diakses tanggal 23 Februari 2021.

LAMPIRAN

Lampiran 1. Biodata Ketua dan Anggota serta Dosen Pendamping

A. Biodata Ketua

A. Identitas diri

1.	Nama Lengkap	Calvin Santoso
2.	Jenis Kelamin	Laki – laki
3.	Program Studi	Teknik Kimia
4.	NIM	1806233423
5.	Tempat dan Tanggal Lahir	Jakarta, 15 Agustus 2000
6.	Alamat E-mail	Calvinsantoso1234@gmail.com
7.	Nomor Telepon/HP	081380525696

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	IMTK FTUI (Ikatan Mahasiswa Teknik Kimia)	Staff Sosial Mahasiswa	2019
2	IATMI SM UI (Ikatan Ahli Teknik Perminyakan Indonesia)	Staff Eksternal	2019
3	KAPA FTUI	Anggota	2018
4	TIS FTUI (Technique Informal School)	BPH Pengajaran	2020

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
			and the same of the same

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawahkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Jakarta, 26 Februari 2021

Ketua Tim.

Calvin Santoso

B. Biodata Anggota ke-1

A. Identitas diri

1.	Nama Lengkap	Reynaldi
2.	Jenis Kelamin	Laki – laki
3.	Program Studi	Teknik Kimia
4.	NIM	1806199846
5.	Tempat dan Tanggal Lahir	Tangerang, 9 November 2000
6.	Alamat E-mail	reynaldibdm240@gmail.com
7.	Nomor Telepon/HP	081382626603

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	Aksioma FTUI (Aksi Sosial Mahasiswa)	Perwakilan DTK	2018
2	Pemira FTUI (Pemilihan Raya)	Kepala bidang Sarana & Prasarana	2018
3	PSB Genap DTK (Pelepasan Sarjana Baru)	Kepala bidang Sarana & Prasarana	2019
4	TRUST Depok (The Real Ultimate Student)	Project Officer Seminar Pendidikan	2019
5	IMTK FTUI (Ikatan Mahasiswa Teknik Kimia)	Staff bidang IPTEK	2019
6	SPE UI SC (Society of Petroleum Engineers)	Staff bidang Study Research	2019
7	Chem-E-Car UI	Anggota tim Canopus	2020- Sekarang
8	AIChE UI SC (American Institute of Chemical Engineers)	Kepala bidang Akademis	2021 - sekarang

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Tangerang, 26 Februari 2021

Anggota Tim,

Reynaldi

C. Biodata Anggota ke-2

A Identitas diri

1.	Nama Lengkap	Yuwendi
	Jenis Kelamin	Laki – laki
	Program Studi	Teknik Kimia
	NIM	1706038531
	Tempat dan Tanggal Lahir	Ciledug, 29 Juni 1999
_	Alamat E-mail	yuu.wendi@gmail.com
7	Nomor Telepon/HP	081212800720

B. Kegiatan Kemahasiswaan Yang Sedang/Pemah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1	IMTK FTUI (Ikatan Mahasiswa Teknik Kimia)	Staff Bidang Akademis dan Keprofesian	2018
2	Desa Binaan KMBUI (Keluarga Mahasiswa Buddhis Universitas Indonesia)	Panitia Desain dan PJ Materi	2018

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Mahasiswa Berprestasi Akademis Teknik Kimia	BEM FTUI 2019	2019
2	Juara 3 Innovation Product	Bioleague 2019 (SBE UISC 2019)	2019

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Ciledug, 26 Februari 2021 Anggota Tim,

Yuwendi

D. Biodata Dosen Pendamping

Identitas diri

1.	Nama Lengkap	Prof. Dr. Ir. Slamet, M.T.	
2.	Jenis Kelamin	Laki-laki	
3.	Program Studi	Teknik Kimia	
4.	NIP/NIDN	0004056605	
5.	Tempat dan Tanggal Lahir	Kebumen, 4 Mei 1966	
6.	Alamat E-mail	slamet@che.ui.ac.id	
7.	No. Telepon/HP	08128351803	

B. Riwayat Pendidikan

	S1	S2	S3
Nama Institusi	UGM	UI	UI
Jurusan/ Prodi	Teknik Kimia	Teknologi gas dan katalis, Teknik Metalurgi	Fotokatalisis
Tahun Masuk-Lulus	1985 - 1990	1994 - 1996	2000 - 2004

C. Rekam Jejak Tri Dharma PT

C.1. Pendidikan / Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	SKS
1	Pengolahan Gas Bumi	Wajib	3
2	Peristiwa Perpindahan	Wajib	3
3	Teknik Reaksi Kimia 1	Wajib	3
4	Teknik Reaksi Kimia 2	Wajib	3
5	Teknologi Fotokatalisis	Pilihan	3
6	Teknik Reaksi Kimia Lanjut (S2)	Wajib	3

C.2. Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
1	Pengembangan Nanokomposit	UI	2019
	Berbasis Titania dan Pengolahan		
	Berbagai Jenis Limbah Menjadi		
	Produk Ramah Lingkungan		
2	Sintesis Fotoanoda Berbasis	Ristekdikti	2019
	Tittania Nanotube dengan Dopan		
	Nitrogen untuk Degradasi		
	Amoniak dan Produksi H2 secara		
	Simultan		

No	Judul Penelitian	Penyandang Dana	Tahun
3	Pengembangan Katalis Heterogen	Universitas	2019
	Berbasis Titania untuk Produksi	Indonesia	
	H ₂ Dan Surfaktan MES		• • • •
4	Aplikasi Nanopartikel Fotokatalis	Universitas	2018
	untuk Produksi Biodiesel,	Indonesia	
	Detergen dan Bahan Alas Kaki		
5	Pembuatan Produk Pembersih	Universitas	2018
	Ramah Lingkungan Berbasis	Indonesia	
	Bahan Hayati dengan Penambahan		
	Nanopartikel Fotokatalis		
6	Pengembangan Implan Gigi Anti	Ristekdikti	2018
	Bakteri Berbasis Ti-6Al-4V		
	Termodifikasi dengan TiO ₂		
7	Nanotubes Berdopan Logam	D' (1 1917)	2010
7	Kombinasi Zeolit Alam dengan	Ristekdikti	2018
	TiO ₂ Sebagai Material Adsorben		
	Fotokatalitik Terintegrasi (AFT) untuk Degradasi Polutan Gas NH ₃		
	Sisa Metabolisme		
8	Rekayasa Cleaning Agent	Ristekdikti	2018
	Nanofluida Multifungsi dan		
	Ramah Lingkungan Berbasis		
	Minyak Sawit		
9	Rekayasa Cleaning Agent	Ristekdikti	2017
	Nanofluida Multifungsi dan		
	Ramah Lingkungan Berbasis		
	Minyak Sawit		
10	Pengembangan Implan Gigi Anti	Ristekdikti	2017
	Bakteri Berbasis Ti-6Al-4V		
	Termodifikasi dengan TiO ₂		
11	Nanotubes Berdopan Logam Kombinasi Zeolit Alam dengan	Ristekdikti	2017
11	TiO ₂ Sebagai Material Adsorben	KISUKUIKU	2017
	Fotokatalitik Terintegrasi (AFT)		
	untuk Degradasi Polutan Gas NH ₃		
	Sisa Metabolisme		

No	Judul Penelitian	Penyandang Dana	Tahun
12	Pembuatan Detergen Multifungsi	Internal Perguruan	2017
	Ramah Lingkungan Berbasis	Tinggi	
	Bahan Hayati dengan Penambahan		
	Nanopartikel Fotokatalis		
13	Pengaruh Modifikasi Material	Internal Perguruan	2017
	Implan Gigi Berbasis Titanium	Tinggi	
	Terhadap Sifat Anti Bakteri dan		
	Biokompatibilitas		
14	Rekayasa Cleaning Agent	Pemerintah	2017
	Nanofluida Multifungsi Dan		
	Ramah Lingkungan Berbasis		
	Minyak Sawit		
15	Kombinasi Adsorpsi –	Ristekdikti	2016
	Fotokatalisis dengan Komposit		
	Carbon nanotube - Titania		
	Nanotube Untuk Pengolahan		
4 -	Limbah Pabrik Pulp dan Kertas		001.5
16	Rekayasa Detergen Generasi Baru	Ristekdikti	2016
	Ramah Lingkungan Berbasis		
1.5	Nanofluida Titania	D' . 1 111 .	2015
17	Prototipe Alat Pengolahan Limbah	Ristekdikti	2016
	Cair Industri Farmasi dengan		
	Teknologi Advance Oxidation		
	Process (Fotokatalisis, Ozonasi		
	Katalitik dan Ozonasi Non		
10	Katalitik) Rengambangan Implan Gigi Anti	Diotaledilet	2016
18	Pengembangan Implan Gigi Anti Bakteri Berbasis Ti-6Al-4V	Ristekdikti	2016
	Termodifikasi dengan TiO ₂ Nanotubes Berdopan Logam		
19	Prototipe Alat Pengolahan Limbah	Ristekdikti	2015
17	Cair Industri Farmasi dengan	KISUKUIKII	2013
	Teknologi Advance Oxidation		
	Process (Fotokatalisis, Ozonasi		
	Katalitik dan Ozonasi Non		
	Katalitik)		
	ixaminin)		

No	Judul Penelitian	Penyandang Dana	Tahun
20	Sintesis Komposit Titania	Pemerintah	2015
	Nanotube (TiNT)/Carbon		
	Nanotube (CNT)/Fe ₃ O ₄ untuk		
	Aplikasi Pengolahan Limbah		
	Industri Migas		
21	Rekayasa Detergen Generasi Baru	Ristekdikti	2015
	Ramah Lingkungan Berbasis		
	Nanofluida Titania		
22	Kombinasi Adsorpsi –	Ristekdikti	2014
	Fotokatalisis dengan Komposit		
	Carbon nanotube - Titania		
	Nanotube Untuk Pengolahan		
2.2	Limbah Pabrik Pulp dan Kertas		6011
23	Sintesis Komposit TiO ₂ Nanotube	Pemerintah	2014
	(TNT) – Batu Apung untuk		
	Aplikasi Fotodegradasi Limbah		
2.4	Industri Migas	D' (1 111 (2014
24	Penanganan Limbah Cair Industri	Ristekdikti	2014
	Tekstil Indonesia Menggunakan		
	Teknologi Foto-bio-degradasi		
	Untuk Menyediakan Air Bersih		
	dan Meningkatkan Kualitas Hidup Masyarakat		
25	Optimalisasi dan Pra-	Pemerintah	2013
23	Komersialisasi Alat Perangkap	rememman	2013
	Nyamuk Multi-Fungsi Berbasis		
	Nano-Fotokatalisis		
26	Penanganan Limbah Cair Industri	Ristekdikti	2013
	Tekstil Indonesia Menggunakan		
	Teknologi Foto-bio-degradasi		
	Untuk Menyediakan Air Bersih		
	dan Meningkatkan Kualitas Hidup		
	Masyarakat		
27	Optimalisasi dan Pra-	Ristekdikti	2013
	Komersialisasi Alat Perangkap		
	Nyamuk Multi-Fungsi Berbasis		
	Nano-Fotokatalisis		
28	Produksi Hidrogen dari Limbah	Ristekdikti	2013
	Industri Turunan Biomassa dengan		
	Katalis TiO ₂ Berbasis <i>Nanotube</i>		

No	Judul Penelitian	Penyandang Dana	Tahun
29	Penanganan Limbah Cair Industri	Pemerintah	2013
	Tekstil Indonesia Menggunakan		
	Teknologi Foto-Bio-Degradasi		
	untuk Menyediakan Air Bersih dan		
	Meningkatkan Kualitas Hidup		
	Masyarakat		

C.3. Pengabdian Kepada Masyarakat

No	Judul Pengabdian Kepada Masyarakat	Penyandang Dana	Tahun
1	Narasumber pada Workshop Penulisan	Universitas Indonesia	2018
	Workshop Penulisan Proposal PKM untuk		
	PIMNAS, Fakultas Ilmu		
	Administrasi, Universitas		
	Indonesia, Depok		
2	Narasumber pada	Universitas Indonesia	2018
	Workshop Penulisan		
	Proposal PKM di		
	Departemen Teknik		
	Kimia, Universitas		
	Indonesia, Depok		
3	Narasumber pada	Universitas	2018
	Pelatihan Penalaran bagi	Sultan Ageng Tirtayasa	
	Mahasiswa dan Pelatihan		
	Pembimbingan PKM		
	Tahun 2018 di Universitas Sultan		
	Ageng Tirtayasa, Serang,		
	Banten		
4	Narasumber	Universitas Muhammadiyah	2018
	Pengembangan Prodi S2	Jakarta	2010
	Teknik Kimia & Kuliah		
	Tamu (Tema: Peran &		
	Aplikasi Katalisis		
	Heterogen) di Universitas		
	Muhammadiyah Jakarta		
5	Reviewer Money Internal	Universitas Indonesia	2018
	PKM Universitas		
	Indonesia		

No	Judul Pengabdian Kepada Masyarakat	Penyandang Dana	Tahun
6	Narasumber (invited speaker) pada Seminar Nasional Riset Terapan, Universitas Serang Raya, Serang	Universitas Serang Raya	2017
7	Reviewer Seleksi Internal Proposal PKM UI 2017	Universitas Indonesia	2017
8	Tim Reviewer Seminar Nasional Integrasi Proses, Universitas Sultan Ageng Tirtayasa Cilegon	Universitas Sultan Ageng Tirtayasa Cilegon	2017
9	Reviewer Nasional Monev Eksternal DIKTI Program Kreativitas Mahasiswa	DIKTI	2017
10	Staf Ahli – Evaluasi Unit Gas Sweetening di PT PERTAMINA Subang	PT PERTAMINA ~ UPPM Teknik Kimia FTUI	2017
11	Reviewer Money Internal Program Kreativitas Mahasiswa UI	Direktorat Kemahasiswaan Universitas Indonesia	2016
12	Reviewer "Coaching Clinic" Program Kreativitas Mahasiswa Bidikmisi Angkatan 2013	Direktorat Kemahasiswaan Universitas Indonesia	2015
13	Instruktur Pelatihan "Gas Sweetening"	PT LNG Badak - P2M Teknik Mesin FTUI	2015
14	Pengembangan dan Aplikasi Teknologi Fotobioremediasi untuk Mewujudkan Green City di Indonesia	Ristekdikti	2014

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenamya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-KC.

Depok, 17 Februari 2021 Dosen Pendamping,

Prof. Dr. Ir. Slamet, M.T.

Lampiran 2. Justifikasi Anggaran Kegiatan

Jenis Pengeluaran	Volume	Harga	Nilai (Rp)
		Satuan (Rp)	
1. Sewa dan Jasa			
a. Biaya uji karakterisasi FE-SEM	1 sampel	600.000	600.000
b. Jasa perbengkelan	1 kali	350.000	350.000
c. Biaya pulsa dan internet (untuk 3 orang)	4 bulan	75.000	300.000
d. Biaya uji coba produk (FTIR, UV-Vis DRS)	3 sampel	200.000	600.000
e. Biaya uji coba produk (disinfeksi mikroba)	2 sampel	350.000	700.000
	SUBT	TOTAL (Rp)	2.550.000
2. Bahan Habis Pakai	Volume	Harga Satuan (Rp)	Nilai (Rp)
a. Plat Titanium (Ti)	1 kg	700.000	700.000
b. Platinized Ti Mesh	1 buah	300.000	300.000
c. Kertas saring Whatman (Quantitative)	1 pak	450.000	450.000
d. Gliserol	2 L	200.000	200.000
e. Amonium florida for analysis	250 g	1.200.000	1.200.000
f. Akuades	20 L	125.000	125.000
g. Mikroplastik polyethylene scrub	200 g	40.000	40.000
h. Swab test antigen	3 kali	200.000	600.000
i. Masker medis	2 box	50.000	100.000

j. Hand sanitizer	3 botol	25.000	75.000
k. HNO3	0,5 L	300.000	300.000
l. HF	0,5 L	500.000	500.000
	ГОТАL (Rp)	4.590.000	
3. Transport Lokal	Volume	Harga Satuan (Rp)	Nilai (Rp)
a. Perjalanan karakterisasi	2 kali	62.500	125.000
b. Ongkos kirim bahan	6 Kali	50.000	300.000
	ГОТАL (Rp)	425.000	
4. Lain-lain	Volume	Harga Satuan (Rp)	Nilai (Rp)
a. Lampu UV-C	1 pasang	150.000	150.000
b. Papan sirkuit cetak	1 buah	20.000	20.000
c. Panel surya mini	1 buah	35.000	35.000
d. Gelas beker	4 buah	50.000	200.000
e. Pipet ukur beserta filler	2 buah	120.000	240.000
f. Oven	1 buah	600.000	600.000
g. Baterai rechargable	1 buah	50.000	50.000
h. Tombol switch on/off	1 buah	40.000	40.000
i. Charging module	1 buah	20.000	20.000
j. Botol Stainless Steel Custom	1 buah	500.000	500.000
	1.855.000		
	9.420.000		

Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas

No	Nama / NIM	Program	Bidang Ilmu	Alokasi	Uraian Tugas
110	INama / INM	Studi	Didding Illiu	Waktu	Ofaian Tugas
		Studi		(jam /	
				-	
				minggu	
)	
1	Calvin Santoso/ 1806233423	Teknik Kimia	Fotokatalisis	25	 Mendesain rancang bangun prototip Merancang prototip Melakukan prediksi penerimaan masyarakat
2	Reynaldi/ 1806199846	Teknik Kimia	Fotokatalisis	20	 Preparasi alat dan bahan Melakukan pengujian degradasi mikroplastik Menulis laporan akhir
3	Yuwendi/ 1706038531	Teknik Kimia	Fotokatalisis	20	 Mengumpulkan data sekunder Melakukan pengujian disinfeksi mikroba Melakukan sintesis dan karakterisasi TNTAs

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertandatangan di bawah ini:

Nama : Calvin Santoso
NIM : 1806233423
Program Studi : Teknik Kimia

Fakultas : Teknik

Dengan ini menyatakan bahwa proposal PKM-KC saya dengan judul Botol Penghancur Polutan Tak Kasatmata dalam Air Minum (Mikroplastik dan Mikroba) yang diusulkan untuk tahun anggaran 2021 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

Jakarta, 26 Februari 2021

Yang menyatakan,

Calvin Santoso

NIM. 1806233423

Lampiran 5. Gambaran Teknologi yang Akan Dikembangkan

Lampu UV-C submersible

Gambar 5.1 Gambaran Detil Produk Botol Penghancur Polutan Tak Kasatmata dalam Air Minum yang Akan Dikembangkan

Botol yang akan dirancang menggunakan material berbahan *stainless steel* karena sifatnya yang tahan korosi dan lebih aman dibandingkan bahan plastik, sebab *stainless steel* tidak menyebabkan *leaching* bahan kimia ketika terpapar panas dan cahaya. Bagian bawah tutup botol dirancang dapat dilepas agar memudahkan pembersihan botol secara menyeluruh. TNTAs sebagai fotokatalis dirancang menempel di bagian dalam dinding botol, tepatnya di dekat dasar botol agar dapat terus berkontak dengan air minum. Selain sebagai sumber foton untuk TNTAs, lampu UV-C juga turut berperan dalam disinfeksi mikroba. ROS yang dihasilkan dari proses fotokatalisis dapat mendegradasi mikroplastik serta disinfeksi mikroba tak kasatmata yang mungkin berada dalam air minum, sehingga pengguna dapat terhindar dari potensi penyakit akibat akumulasi mikroplastik jangka panjang maupun penyakit akibat kontaminasi mikroba. Tidak hanya terbatas pada botol kecil, teknologi ini juga berpotensi diaplikasikan ke wadah penampung air minum yang lebih besar.