Московский авиационный институт Вычислительная математика и программирование

математический анализ

I CEMECTP

Лектор: Юрий Иванович Битюков

Содержание

1	Действительные числа и их свойства. Принцип Архимеда. Грани число-	
	вых множеств. Теорема о существовании точных граней	2
2	Леммы, связанные с полнотой множества действиетльных чисел: о вло-	
	женных отрезках, о конечном покрытии, о предельной точке	3
3	Мощность множества. Счетность множества рациональных чисел	4
	3.1 Мощность множества	4
	3.2 Счетность множества рациональных чисел	4
4	Предел последовательности. Общие свойства предела. Арифметические	
	свойства сходящихся последовательностей. Предельный переход в нера-	
	венствах. Бесконечно малые и бесконечно большие последовательности,	
	их свойства	4
5	Критерий существования предела монотонной последовательности	5
6	Подпоследовательности. Теорема Больцано-Вейерштрасса. Верхний и ниж	<u>-</u>
	ний пределы последовательностей	5
7	Критерий Коши сходимости последовательностей	5

1 Действительные числа и их свойства. Принцип Архимеда. Грани числовых множеств. Теорема о существовании точных граней

Аксиома (о непрерывности множества \mathbb{R}). Пусть $\mathbf{X} \neq \emptyset$, $\mathbf{Y} \neq \emptyset$ - подмножества множества \mathbb{R} и для $\forall x \in \mathbf{X}$ и $\forall y \in \mathbf{Y}$ выполняется $x \leq y$. Тогда $\exists c \in \mathbb{R} : x \leq c \leq y, \forall x \in \mathbf{X}, \forall y \in \mathbf{Y}$.

Определение. Пусть $\mathbf{X} \subset \mathbb{R}$. Множество \mathbf{X} называется ограниченным сверху (снизу), если $\exists c \in \mathbb{R} : x \leq c \ (x \geq c), \ \forall x \in \mathbf{X}$.

Если множество ограничено и сверху, и снизу \Rightarrow это ограниченное множество. (картинка 1)

Определение. Пусть $\mathbf{X} \subset \mathbb{R}$ и \mathbf{X} ограничено сверху (снизу). Наименьшее (наибольшее) из чисел, ограничивающих сверху (снизу) множество \mathbf{X} , называется верхней (нижней) гранью множества \mathbf{X} .

Обозначается $\sup X$ ($\inf X$). (картинка 2)

Теорема 1.1 (Вейерштрасс - о существовании верхней и нижней грани). Если $\mathbf{X} \neq \emptyset$ и ограничено сверху (снизу), то существует единственная верхняя (нижняя) грань.

Доказательство. Пусть $\mathbf{Y} = \{y : y \in \mathbb{R}, y \text{ ограничивает сверху}\} \neq \emptyset$, так как \mathbf{X} ограничено сверху. Тогда для $\forall x \in \mathbf{X}$ и $\forall y \in \mathbf{Y}$ (так как y ограничивает сверху \mathbf{X}) выполняется $x \leq y \Rightarrow$ по аксиоме непрерывности $\mathbf{R} \; \exists \beta \in \mathbf{R} : x \leq \beta \leq y$.

Так как $x \leq \beta, \forall x \in \mathbf{X}$, то β ограничивает сверху \mathbf{X} .

Так как $\beta \leq y, \forall y \in \mathbf{Y}$, то β - наименьшее из чисел, ограничивающих сверху $\mathbf{X} \Rightarrow \beta = \sup \mathbf{X}$.

Доказательство единственности верхней грани: Пусть β и $\hat{\beta}$ - верхние грани ${f X}$.

- 1. β и $\hat{\beta}$ ограничивают сверху;
- $2. \ \beta \leq \hat{\beta};$
- 3. $\hat{\beta} \leq \beta$.

Теорема 1.2 (Принцип Архимеда). Для любого действительного числа β существует натуральное число $n: \beta < n$.

 $\ \ \, \mathcal{A}$ оказательство. Предположим, что не существует натурального числа $n>\beta \Rightarrow \forall n\in \mathbb{N} \ \Rightarrow \ n\leq \beta \Rightarrow \mathbb{N}$ ограничено сверху \Rightarrow по теореме Вейерштрасса $\exists \alpha=\sup \mathbb{N} \Rightarrow \alpha\leq \beta$; так как $\alpha=\sup \mathbb{N} \Rightarrow \exists n>\alpha-1, n\in \mathbb{N}; \hat{n}+1>\alpha$, но $\hat{n}+1\in \mathbb{N} \Rightarrow \alpha$ не ограничивает сверху \Rightarrow противоречие.

ПМИ МАИ, осень 2022

2 Леммы, связанные с полнотой множества действиетльных чисел: о вложенных отрезках, о конечном покрытии, о предельной точке

Теорема 2.1 (Коши-Кантор - принцип вложенных отрезков). Пусть дана последовательность отрезков $I_1 \supset I_2 \supset ... \supset I_n...$ (... $I_n \subset ... \subset I_2 \subset I_1$). Тогда существует число $c \in \mathbb{R} : c \in \mathbf{I_k}, \forall k = 1, 2, 3...$ ($c \in \bigcap \mathbf{I_k}$).

Доказательство. Пусть $\mathbf{I_k} = [a_k; b_k], k = 1, 2..., \mathbf{X}$ — множество ; $\mathbf{X} = \{a_k : k \in \mathbb{N}\} \neq \emptyset$, $\mathbf{Y} = \{b_k : k \in \mathbb{N}\} \neq \emptyset$. Тогда $a_k \leq b_m, \forall k, m \in \mathbb{N}$. Действительно, если $\exists k, m \in \mathbb{N}$: $a_k > b_m \Rightarrow a_m \leq b_m < a_k \leq b_k \Rightarrow I_k = [a_k; b_k]$ и $I_m = [a_m; b_m]$ не пересекаются. Но это невозможно, так как если m > k, то $I_m < I_k$; если m < k, то $I_m > I_k$.

Итак, предположение неверно $\Rightarrow a_k \leq b_m, \forall k, m \in \mathbb{N}$.

Итак, $\mathbf{X} = \{a_k\} \neq \varnothing, \mathbf{Y} = \{b_m\} \neq \varnothing.$

 $a_k \leq b_m \forall k, m \Rightarrow$ по аксиоме непрерывности $\exists c \in \mathbb{R} : a_k \leq c \leq b_m, \forall k, m \in \mathbb{N} \Rightarrow a_k \leq c \leq b_k \Rightarrow c \in \mathbf{I_k}, \forall k.$

Определение. Семейство множеств $\mathbf{X} = \{\mathbf{U}_{\alpha}\}_{\alpha \in \mathbf{A}}$ называется покрытием множества \mathbf{Y} , если $\mathbf{Y} \subset \bigcup \mathbf{U}_{\alpha}$.

Теорема 2.2 (Борель-Лебег). Из любого покрытия отрезка числовой прямой интервалами можно выделить конечное покрытие.

Доказательство. Пусть I = [a;b] - отрезок. $\mathbf{X} = \{\mathbf{U}_{\alpha}\}_{\alpha \in \mathbf{A}}$ - покрытие I, то есть $I \subset \bigcup \mathbf{U}_{\alpha}$. $\mathbf{U}_{\alpha} = (x_{1\alpha}; x_{2\alpha})$ - интервалы числовой прямой.

Обозначим множество $\mathbf{M} = \{x : x \in [a; b] \text{ и } [a; x] \text{ покрывается конечным семейством интервалов из } \mathbf{X} \}.$

- 1. $\mathbf{M} \neq \emptyset$, так как $a \in \mathbf{M}$, так как $[a;b] \subset \bigcup \mathbf{U}_{\alpha} \Rightarrow \exists \hat{\alpha} : a \in \mathbf{U}_{\alpha} \Rightarrow [a;a] \subset \mathbf{U}_{\hat{\alpha}}$.
- 2. $\mathbf{M} \subset [a;b] \Rightarrow \mathbf{M}$ ограничено. Следовательно, $\exists \beta = \sup \mathbf{M} \leq b$.

Так как $\beta \in [a;b] \Rightarrow \exists \alpha': \beta \in \mathbf{U}_{\alpha'} = (x';x'')$. $x' < \beta \Rightarrow \sup \mathbf{M} \Rightarrow \exists \hat{x} \in \mathbf{M}: x' < \hat{x} \leq \beta \Rightarrow [a;x']$ покрывается конечным семейством интервалов: $\mathbf{U}_{\alpha_1}, \mathbf{U}_{\alpha_2}, ..., \mathbf{U}_{\alpha_k}$

 $[a;\hat{x}] \subset \bigcup \mathbf{U}_{\alpha} \Rightarrow [a;b] \subset \mathbf{U}_{\alpha_1} \cup \mathbf{U}_{\alpha_2} \cup ... \cup \mathbf{U}_{\alpha_k} \cup \mathbf{U}_{\alpha'} \Rightarrow \beta \in \mathbf{M} \Rightarrow$ если предположить, что $\beta < b$, то $\{\mathbf{U}_{\alpha_1}, \mathbf{U}_{\alpha_2}, ..., \mathbf{U}_{\alpha_k}, \mathbf{U}_{\alpha'}\}$ покрывает $\forall [a:\hat{x}]$, где $\hat{x} \in (\beta;x'') \Rightarrow \hat{x} \in \mathbf{M}$ и $\hat{x} > \beta$ противоречие тому, что $\beta = \sup \mathbf{M}$.

Определение. Любой интервал (a;b), содержащий точку x_0 , называется окрестностью этой точки и обозначается $\mathbf{U}(x_0)=(a;b)$.

Определение. Точка x_0 называется предельной точкой множества $\mathbf{X} \subset \mathbb{R}$, если для $\forall \mathbf{U}(x_0), \mathbf{U}_{x_0} \cap \mathbf{X}$ - бесконечное множество.

Теорема 2.3 (Больцано-Вейерштрасс). Всякое бесконечное ограниченное непустое множество $\mathbf{X} \subset \mathbb{R}$ имеет предельную точку.

Доказательство. Так как **X** - ограниченное множество, оно ограничено сверху и снизу, то есть $\exists a, \exists b: a \leq x \leq b, \forall x \in \mathbf{X} \Rightarrow \mathbf{X} \subset [a;b]$.

Предположим, что \mathbf{X} не имеет предельных точек $\Rightarrow \forall x \in [a;b]$ не является предельной точкой $\mathbf{X} \Rightarrow \exists \mathbf{U}(x)$ - окрестность: $\mathbf{U}(x) \cap \mathbf{X}$ - конечное множество $\Rightarrow [a;b] \subset \mathbf{U}(x), x \in [a;b] \Rightarrow$ по теореме Бореля-Лебега существует конечное покрытие $\{\mathbf{U}(x_1),\mathbf{U}(x_2),...,\mathbf{U}(x_n)\}: \mathbf{X} \subset [a;b] \bigcup \mathbf{U}(x_i)$, но $\mathbf{U}(x_i) \cap \mathbf{X}$ - конечное множество $\Rightarrow \mathbf{X}$ - конечное, но, по условию, \mathbf{X} - бесконечное \Rightarrow противоречие.

3 Мощность множества. Счетность множества рациональных чисел

3.1 Мощность множества

Определение. Множество **X** называется равномощным множеству $\mathbf{Y}(\mathbf{X} \sim \mathbf{Y})$, если существует взаимнооднозначное отображение $f: \mathbf{X} \to \mathbf{Y}$, так и однозначное отображение $f^{-1}: \mathbf{Y} \to \mathbf{X}$. Введенное отношение $\mathbf{X} \sim \mathbf{Y}$ является отношением эквивалентности.

Определение. Класс эквивалентности, которому принадлежит данное множество, называется мощностью этого множества. Если $\mathbf{X} \sim \mathbb{N}$, то оно называется счётным.

3.2 Счетность множества рациональных чисел

Определение. Множества, равномощные множеству натуральных чисел, называются счётными. $\mathbf{X} \sim \mathbb{N} \Rightarrow \exists f: \mathbb{N} \to \mathbf{X}$ - взаимнооднозначное $\Rightarrow \forall x \in \mathbf{X} \ \exists n: f(n) = x$. Обозначают $x_n = f(n)$.

Теорема 3.1. Множество [0;1] не является счетным.

Доказательство. Множество ???

4 Предел последовательности. Общие свойства предела. Арифметические свойства сходящихся последовательностей. Предельный переход в неравенствах. Бесконечно малые и бесконечно большие последовательности, их свойства

Определение. Число A называется пределом числовой последовательности $\{x_n\}_{n\in\mathbb{N}}$, если для $\forall \epsilon>0 \exists n_\epsilon\in\mathbb{N}: \forall n>n_\epsilon\Rightarrow |x_n-A|<\epsilon.$

- 5 Критерий существования предела монотонной последовательности
- 6 Подпоследовательности. Теорема Больцано-Вейерштрасса. Верхний и нижний пределы последовательностей
- 7 Критерий Коши сходимости последовательностей

Теорема 7.1. Последовательность $\{X_n\}_{n\in\mathbb{N}}$ имеет предел \Leftrightarrow она фундаментальна, то ecmb $\forall \epsilon > 0 \; \exists n \in \mathbb{N} : \forall n, m > n_{\epsilon} \;$ выполняется $|x_n - x_m| < \epsilon$.

Доказательство. Туда: Пусть $\exists \lim_{n \to \infty} x_n = A \Rightarrow \forall \epsilon > 0 \ \exists n_{\epsilon} \in \mathbb{N} : \forall n > n_{\epsilon} \ |x_n - A| < \frac{\epsilon}{2} \Rightarrow$ $\forall n, m > n_{\epsilon} \Rightarrow |x_n - x_m| = |(x_n - A) + (A - x_m)| \le |x_n - A| + |x_n - A| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$ Oбратно: Пусть $\{x_n\}_{n\in\mathbb{N}}$ фундаментальна, то есть $\forall \epsilon>0$ $\exists n_{\epsilon}\in\mathbb{N}^{2}: \forall n,m>n_{\epsilon}\Rightarrow$ $|x_n - x_m| < \epsilon.$

- 1. Докажем, что $\{x_n\}_{n\in\mathbb{N}}$ ограничена. Пусть $\epsilon=1$ по уравнению выше $\exists n_1 \in \mathbb{N} : \forall n,m>n_1 \Rightarrow |x_n-x_m|<1; m=n_1+1 \Rightarrow$ $\forall n > n_1; |x_n| = |(x_n) - x_{n_1+1} + x_{n_1+1}| \le |x_n - x_{n_1+1}| + |x_{n_1+1}| < 1 + |x_{n_1+1}|.$ $M = max(|x_1|, |x_2|, ..., |x_{n_1}|, 1 + |x_{n_1+1}|).$
- 2. Есть предел: $\alpha_n = \inf\{x_n, x_{n+1}, x_{n+2}, \ldots\} = \inf_{k \geq n} x_k; \ \beta_n = \sup\{x_n, x_{n+1}, x_{n+2}, \ldots\} = \max\{x_n, x_{n+1}, x_{n+2}, \ldots\}$ $\sup x_k; \ \alpha_n \le \alpha_{n+1}; \beta_n \le \beta_{n+1}.$

Получаем систему вложенных отрезков $[\alpha_n; \beta_n] \supset [\alpha_{n+1}; \beta_n + 1]$. По теореме Коши-Кантора, $\exists A \in [\alpha_n; \beta_n], \forall n \ \alpha_n \leq A \leq \beta_n, \forall n.$ Если $k \leq n$, то $x_k \ in\{x_n, x_{n+1}, ...\} \Rightarrow \alpha_n \leq n$

$$x_k \le \beta_n \Rightarrow \begin{cases} \alpha_n \le A \le \beta_n \\ \alpha_n \le x_n \le \beta_n \end{cases} \Rightarrow |A - x_n| \le \beta_n - \alpha_n$$

По уравнению выше для $\forall \epsilon > 0 \ \exists n_{\epsilon} \in \mathbb{N} : \forall n, m > n_{\epsilon} \Rightarrow |x_n - x_m| < \frac{\epsilon}{3}$.

Пусть $m=n_{\epsilon}+1 \Rightarrow x_{n_{\epsilon}+1}-\frac{\epsilon}{3} < x_k < x_{n_{\epsilon}+1}+\frac{\epsilon}{3}, \forall k>n_{\epsilon}$ Тогда при $\forall n>n_{\epsilon} \Rightarrow$ $\beta_n - \alpha_n < \epsilon \Rightarrow \lim_{n \to \infty} x_n = A.$