Data Mining

18.06.2021

Fakultät für Ingenieurwissenschaften Bereich Elektrotechnik und Informatik C. Werner, J. Prothmann www.hs-wismar.de

Gliederung

- 1 Vorverarbeitung
- 2 Entscheidungsbäume
- 3 Cluster
- 4 Implementierung
 - 4.1 Entscheidungsbäume
 - 4.2 Cluster

Vorverarbeitung

Rohdatensatz

1	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
2	female	group B	bachelor's degree	standard	none	72	72	74
3	female	group C	some college	standard	completed	69	90	88
4	female	group B	master's degree	standard	none	90	95	93
5	male	group A	associate's degree	free/reduced	none	47	57	44

Bild 1: Rohdatensatz

Datenvorverarbeitung

Bild 2: Knime Workflow zur Vorverarbeitung

Bild 3: Vorverarbeitete Daten

Entscheidungsbäume

Decision Tree Learner

- Standardknoten von Knime
- Zielattribut: nominal
- Entscheidungsfindungsattribute: nominal, numerisch
- Qualitätsmaße für Splitberechnung:
 - □ Gini-Index
 - Gain-Ratio
- Pruning möglich

SimpleCart

- Weka-Knoten
- Erzeugung von Binärbäumen
- Pruning möglich
- Je höher der Informationsgehalt eines Attributs in Bezug auf die Zielgröße, desto weiter oben im Baum findet sich dieses Attribut.

Bild 4: CART Tree Beispiel

J48

- Weka-Knoten
- C4.5 Algorithmus von J. Ross Quinlan
- Ähnlich zu CART, jedoch kein Binärbaum
- Deutlich breiter und weniger tief als CART
- Pruning möglich

NBTree

- Weka-Knoten
- Hybridalgorithmus aus Entscheidungsbaum- und Naive-Bayes-Klassifikatoren
- "klassische" Knoten
- Blätter enthalten Naive-Bayes'sche Klassifikatoren

Bild 5: NB Tree Beispiel

REPTree

- Weka-Knoten
- basiert auf C4.5 Algorithmus
- Generierung unter Berücksichtigung von:
 - Informationsgewinn
 - Varianz

LMT

- Weka-Knoten
- Blätter: lineare Regressionsfunktionen
- stufenweiser Anpassungsprozess
- Automatische Auswahl relevanter Attribute

DecisionStump

- Weka-Knoten
- einstufiger Entscheidungsbaum
- Vorhersage anhand des Wertes eines Eingabe-Features
- Knoten: Schwellenwert
- Blätter: Werte unterhalb und oberhalb des Schwellenwerts
- Einsatz als "schwache Lerner" (z.B. Gesichtserkennung)

J48Graft

- Weka-Knoten
- nutzt den C4.5++ Algortihmus
- Verbesserung durch "all-tests-but-one-partition" (ATBOP)
- Reduzierte Rechenzeit
- Reduzierte Komplexität des Baums

BFTree

- Weka-Knoten
- Best-First-Entscheidungsbaum
- "beste" Knoten zuerst expandieren
- "beste" Knoten: maximalen Reduktion der Unreinheit (z.B. Gini-Index)
- resultierende Baum nur in Reihenfolge unterschiedlich

RandomTree

- Weka-Knoten
- zufällig ausgewählte Attribute an den Knoten
- kein Pruning

RandomForest

- Weka-Knoten
- Kombination von Baumprädiktoren
- Abhängigkeit jedes Baumes von Werten eines Zufallsvektors
- Zufallsvektor: unabhängig und besitzt gleiche Verteilung für alle Bäume im 'Wald'

Cluster

Cluster

- kMeans
- Dichtebasiertes Clustern
- Hierarchisches Clustern

kMeans Algortihmus

- 3 Schritte: 1. Initialisierung, 2. Zuordnung, 3. Aktualisierung
- Wiederholen von Schritt 2 und 3 bis Abbruchbedingung erreicht
- kMeans Knoten ist in Auslieferungsversion von KNIME enthalten
- Keine dynamische Anzahl an Cluster
- Abbruchbedingung entweder max Iterationen oder Schritt 2 und 3 bringen keine Änderungen mehr
- Distanzberechnung mit euklidischer Distanz (Lineare Distanz von 2 Punkten im Raum)

Dichtebasiertes Clustern

- DBSCAN Knoten in KNIME
- Density-Based Spatial Clustering of Applications with Noise
- Unterteilung der Daten in 3 Kategorien: Core Punkte, Border Punkte, Noise Punkte
- Clusterbildung durch verbinden von Core Punkten
- Punkte innerhalb der Core Punkte Distanz z\u00e4hlen zum Cluster, alle au\u00dferhalb sind Noise

Bild 6: DBSCAN Algorithmus

Hierarchisches Clustern

- Sowohl Build-In Knoten als auch WEKA Extension
- Berechnen der Punktdistanzen durch diverse Distanzmaße (Euklidische-, Manhatten-, ...-Distanz)
- Beide Knoten sind agglomerativ (bottom-up): Iterative Bildung von großen Clustern aus bestehenden
- Darstellung in Dendrogrammen

Silhouettenkoeffizient

- Berechnet die Qualität von Clustern
- Berechnet für jede Zeile wie gut das ausgewählte Cluster passt
- Reichweite von -1 bis 1 \rightarrow je höher der Wert, desto besser die Clusterung

$$S(o) = \left\{ egin{array}{ll} 0 & ext{wenn } o ext{ einziges Element von } A ext{ ist} \ rac{ ext{dist}(B,o) - ext{dist}(A,o)}{ ext{max} \{ ext{dist}(A,o), ext{dist}(B,o) \}} & ext{sonst} \end{array}
ight.$$

Bild 7: Formel Silhouettenkoeffizient

Implementierung

Gesamtworkflow Entscheidungsbäume

Bild 8: Gesamtworkflow

Vorverarbeitung

Entscheidungsbäume

Cluster

Implementierung

Ermittlung der Accuracys

- Knoten zur Eingabe von:
 - vorherzusagender Spalte
 - Trainingsdatenaufteilung
- Extrahierung der Accuracys und Anzeige in Balkendiagramm

Bild 9: Ermittlung der Accuracys

Metaknoten 'getPredictionAccuracy'

- Aufteilung in Trainings und Testdaten
- Extrahierung der Accuracys

Bild 10: Inhalt des Metaknoten 'getPredictionAccuracy'

Metaknoten 'getAccuracys'

- Metaknoten für verschiedene Entscheidungsbäume
- Gleiche Trainings- und Testmenge
- Zusammenführung der Accuracys in eine Tabelle

Bild 11: Inhalt des Metaknoten 'getAccuracys'

Beispielhafter 'getAccuracyWeka*' Knoten

- Lerner
- Vorhersage
- Scoring
- Extahierung der Accuracy

Bild 12: Inhalt des Metaknoten 'getAccuracyWekaSimpleCart'

Accuracy Chart

Bild 13: Balkendiagramm für 'gender' und Trainingssatz von 70%

Bild 14: Implementierung des kMeans Algorithmus in KNIME

Bild 15: Ergebnisse der kMeans Clusterung in KNIME

RowID 11	Mean Silhouette Coefficient				
KOWID	Mean Simodette Coemcient	RowID	↓↑	Mean Silhouette Coefficient	
cluster_1	0.23250713131400805	cluster_4		0.285934358318074	
cluster_7	0.3003979971435271				
cluster 5	0.3647558863935451	cluster_1		0.27698431365825305	
Cidstel_5	0.3047333003333431	cluster_2		0.3747220515647596	
cluster_2	0.33663805036620026				
cluster_0	0.3491567522765088	cluster_3		0.3362331798056654	
Cluster_0	0.5491507522705000	cluster_7		0.3519141075987184	
cluster_4	0.29479048752917436	_			
aluster 6	0.00074660706070405	cluster_5		0.30796418885837923	
cluster_6	0.29271663786378105	cluster 0		0.2716289533585836	
cluster_3	0.2868838307286652	_			
	0.00005440005500004	cluster_6		0.2845174544293571	
Overall	0.30065149235523864	Overall		0.30354359857262203	

Bild 16: Random Cluster Initialisierung

Bild 17: First k Rows CLuster Initialisierung

Bild 18: Beste Clusterleistung und first-k-rows

00, 0 100 90 80 Writing 70 math

Bild 19: Erster Clusterung

Bild 20: Beste Clusterung

Bild 21: Implementierung des DBSCAN Algorithmus in KNIME

RowID ↓↑	Mean Silhouette Coefficient
Cluster_0	0.6915721844630638
Noise	0
Overall	0.6908806122786022

Bild 22: Clusterbewertung DBSCAN

Vorverarbeitung 0000 Entscheidungsbäume 00000000000 Cluster

Implementierung

Bild 24: Iris Datensatz DBSCAN

Bild 25: Implementierung des WEKA Hierarchichen Clusterer in KNIME

Bild 26: Dendrogramm Hierarchischer Clusterer

