Hydrocarbons on the Icy Satellites of Saturn

Dale P. Cruikshank NASA Ames

Paris Workshop May, 2010

Saturn's Satellites and Ring Structure

Spectral Maps of Enceladus

Hyperion Composition Map Color code:

Blue = H_2O band depth Red = CO_2 band depth Green = 2.42 μm band Yellow = $CO_2 + 2.42$ μm Magenta = $H_2O + CO_2$

Cruikshank et al. 2007. Nature 448, 54.

Cassini VIMS spectra of Phoebe and Iapetus

Varieties of CO_2 on Saturn's Satellites Variations in v_3

Compared to pure CO_2 ice at $\lambda = 4.628 \mu m$, CO_2 is shifted to shorter wavelengths and the band is broadened. Phoebe's CO_2 is <u>not</u> shifted.

Hyperion conclusion: Wavelength and band shape matched with Prasad clathrate, Ehrenfreund & Mastrapa/Sandford 1:1:1 mixtures, and Chaban et al. $CO_2 \cdot 2H_2O$ calculations.

=> CO₂ is complexed with H₂O and/or other molecules

Lab spectra needed for clathrates with verified structure

Chaban theoretical spectrum

The *ab initio* calculation of one CO₂ with two H₂O molecules (plotted as a Gaussian with the VIMS resolution element) fits the Hyperion data well.

Calculations with two levels of molecular theory.
Chaban et al. 2007, Icarus

Laboratory Work

- Optical constants in extended wavelength regions
 - Ices in different phases, organic solids (synthetic and natural)
- Ice mixtures--spectroscopy
 - Matrix isolated hydrocarbons and nitriles
 - Clathrates and other complexes
 - Other mixtures
- Organic solids
 - Analysis and optical constants for complex macromolecular carbonaceous materials (synthetic tholins, meteoritic organic materials (soluble and insoluble)
- Nanoscale metal particles
 - Optical and scattering properties
- Special circumstances
 - Irradiated materials and mixtures
 - Irradiated ice and organic solids mixtures
 - Surface reactions on ice grains

The End