ИСПОЛЬЗУЕМЫЕ ТЕХНОЛОГИИ

Язык программирования: Python 3.8+ GUI-фреймворк: PySide6 (Qt for Python)

АРХИТЕКТУРА ПРИЛОЖЕНИЯ

Приложение состоит из трёх основных классов:

ColorConverter — статический класс с алгоритмами преобразования:

- rgb_to_xyz(r, g, b) преобразование RGB в XYZ
- xyz_to_rgb(x, y, z) преобразование XYZ в RGB с проверкой на выход за границы
- xyz_to_lab(x, y, z) преобразование XYZ в LAB
- lab_to_xyz(L, a, b) преобразование LAB в XYZ

ColorModelWidget — виджет для каждой цветовой модели, содержащий три поля ввода (QDoubleSpinBox) и три ползунка (QSlider) для каждой компоненты. Реализует синхронизацию между полями и ползунками через сигналы.

ColorConverterApp — главное окно приложения (наследует QMainWindow), управляющее всем интерфейсом. Создаёт три экземпляра ColorModelWidget для RGB, XYZ и LAB. При изменении значений в одной модели автоматически пересчитывает и обновляет две другие через ColorConverter.

РЕАЛИЗАЦИЯ АЛГОРИТМОВ ПРЕОБРАЗОВАНИЯ

$RGB \rightarrow XYZ$

Алгоритм включает четыре этапа:

- 1. Нормализация RGB из диапазона [0, 255] в [0, 1]
- 2. Gamma correction для каждого канала по стандарту sRGB:
 - Если значение ≤ 0.04045: channel / 12.92
 - о Иначе: ((channel + 0.055) / 1.055)^2.4
- 3. Умножение на матрицу преобразования D65: X = $0.4124564 \cdot R + 0.3575761 \cdot G + 0.1804375 \cdot B$ Y = $0.2126729 \cdot R + 0.7151522 \cdot G + 0.0721750 \cdot B$ Z = $0.0193339 \cdot R + 0.1191920 \cdot G + 0.9503041 \cdot B$
- 4. Масштабирование на 100 для диапазона [0, 100]

$XYZ \rightarrow RGB$

Обратное преобразование с использованием обратной матрицы, обратной gamma correction и проверкой на выход за границы [0, 255]. При выходе значений за допустимый диапазон применяется clipping (ограничение) и выводится предупреждение.

$XYZ \rightarrow LAB$

- 1. Нормализация на референсные значения D65: x = X / 95.047, y = Y / 100.000, z = Z / 108.883
- 2. Применение нелинейной функции f(t):
 - \circ Если t > $(6/29)^3$: f(t) = $t^{(1/3)}$

- \circ Иначе: f(t) = t/(3·(6/29)²) + 4/29
- 3. Вычисление LAB: L = $116 \cdot f(y) 16$ a = $500 \cdot (f(x) f(y))$ b = $200 \cdot (f(y) f(z))$

 $LAB \rightarrow XYZ$

Обратное преобразование через вычисление промежуточных значений из LAB, применение обратной функции $f_{inv}(t)$ и денормализацию с умножением на референсные значения D65.