Notes for Probability and Stochastic Process

©Author: Zhan Cheng E-Mail: zhanc113003@gmail.com Textbook: ISBN 978-7-5635-4537-7

Notes for Probability and Stochastic Process

Chapter 1:Events and Their Probabilities

- 1.1 Experiment, Sample Space and Random Event
 - 1.1.1 Basic Definations
 - 1.1.2 Events as Sets
- 1.2 Probabilities Defined on Events
 - 1.2.1 Classical Probability
 - 1.2.2 Geometric Probability
 - 1.2.3 The Frequency Interpretation of Probability
- 1.3 Conditional Probabilities
 - 1.3.1 The Defination of Conditional Probability
 - 1.3.2 The Multiplication Rule
 - 1.3.3 Total Probability Formula
 - 1.3.4 Baye's Theorem
- 1.4 Independence of Two Events
 - 1.4.1 Independence of Two Events and Several Events
 - 1.4.2 Bernoulli Trials

Chapter 1:Events and Their Probabilities

1.1 Experiment, Sample Space and Random Event

1.1.1 Basic Definations

 $\it Random\ experiment$ has three characteristics: Reapeatability, Predictability, Uncertainty. And it can be denoted by $\it E$, here is an example:

 E_1 : Determintation of the sex of a newborn child.

Each possible outcome is called an *sample point* or *elementary event* ω . The set of all possible outcomes of E is known as the *sample space* Ω . Here is an example about Ω_1 corresponding to E_1 :

For E_1 : $\Omega_1 = \{g, b\}$, where the outcome g means that the child is a girl and b that it is a boy

Any subset of the Ω is known as an **random event** or **event** A,B,C,\cdots . We say that A occurs when the outcome of the experiment lies in A. Those events must occur in the experiment are called the **inevitable events** S. Those could not happen anytime are said to be **impossible events** \emptyset .

1.1.2 Events as Sets

The relationships and operations between random events could be described in term of set theory.

Let Ω be the sample space of the random experiment E and $A,B,A_i (i=1,2,\cdots)$ be the random events of E.

- 1. $A \subset B$: if event A occurs, then B occurs
- 2. $A \cup B$: either A or B occurs
- 3. $A \cap B$ or AB: both A and B occur
- 4. A B: A occurs but B does not occur

Common operations of the events are not listed, but there are two important formulas to remember:

$$A - B = A - AB = A\overline{B}$$
$$A \cup B = A \cup \overline{A}B$$

1.2 Probabilities Defined on Events

1.2.1 Classical Probability

A random experiment E is $\emph{classical}$ if:

- (i): E contains only different limited basic events.
- (ii): all outcomes are equally likely to occur.

If $\Omega = \{\omega_1, \omega_2, \cdots, \omega_n\}$, we define the probability of event A as

$$P(A) = \frac{\#A}{\#\Omega}$$

where #A means the number of all possible outcomes of event A, $\#\Omega$ means the number of all possible outcomes of sample space $\P(\emptyset) = 0$

For classical random experiment E, the probability has the following properties:

- (1) for every event $A, P(A) \ge 0$,
- $(2)P(\Omega) = 1,$
- (3) for every finite sequence of n disjoint events A_1, A_2, \dots, A_n ,

$$P(igcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i).$$

We just skip that proof.

1.2.2 Geometric Probability

A random experiment E is $\emph{geometric}$ if:

- (i) : the sample space is a measurable region, i.e. $0 < L(\Omega) < \infty$, and
- (ii): the probability of every event has nothing to do with its position and shape.

In this case, we define the probability of event A as

$$P(A) = \frac{L(A)}{L(\Omega)}$$

and $P(\emptyset) = 0$

For geometrical random experiment E, the probability has the following properties:

- (1) for every event $A, P(A) \ge 0$,
- $(2)P(\Omega) = 1,$
- (3) for every finite sequence of n disjoint events A_1, A_2, \dots, A_n ,

$$P(igcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i).$$

We skip that proof as well.

1.2.3 The Frequency Interpretation of Probability

Let $f_n(A)$ be the times that A occurs. The ration

$$F_n(A)=rac{f_n(A)}{n}$$

is said to be the $\it frequency$ of event $\it A$ in the n trials.

If n is large enough, the probability of event A will be approximated by $F_n(A)$

For a random experiment ${\it E}$, the frequency has the following properties:

- (1) for every event $A, F_n(A) \geq 0$,
- $(2)F_n(\Omega) = 1,$
- (3) for every finite sequence of n disjoint events A_1, A_2, \dots, A_n ,

$$F_n(igcup_{i=1}^n A_i) = \sum_{i=1}^n F_n(A_i).$$

We skip the part of σ -algebra because it is too hard \odot

1.3 Conditional Probabilities

1.3.1 The Defination of Conditional Probability

Given two events A and B with P(B)>0, the **conditional probability of** A **given** B is

$$P(A|B) = \frac{P(AB)}{P(B)}$$

If P(B) > 0, then P(A|B) is also a probability, that is

- (1) for every event $A, P(A|B) \ge 0$,
- $(2)P(\Omega|B) = 1,$
- (3) for every finite sequence of countable disjoint events A_1, A_2, \dots, A_n ,

$$P(igcup_{i=1}^{\infty}A_i|B)=\sum_{i=1}^{\infty}P(A_i|B).$$

Some fomulas:

$$P(\overline{A}|B)=1-P(A|B)$$
 if $A\subset B$, then $P(C-A|B)=P(C|B)-P(A|B)$ and $P(A|B)\leq P(C|B)$
$$P(A\cup C|B)=P(A|B)+P(C|B)-P(AC|B)$$

1.3.2 The Multiplication Rule

Assume that P(B) > 0. Then

$$P(AB) = P(B) \cdot P(A|B)$$

Or if P(A) > 0, Then

$$P(AB) = P(A) \cdot P(B|A)$$

Suppose that A_1,A_2,\cdots,A_n are events satisfying $P(A_1A_2\cdots A_{n-1})>0$. Then

$$P(A_1A_2\cdots A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1A_2)\cdots P(A_n|A_1A_2\cdots A_{n-1})$$

1.3.3 Total Probability Formula

Let Ω denote the sample space of some experiment. In events $P(B_1B_2\cdots B_n)$ are said to form a **partition** of Ω if these events satisfy:

- $(1)B_1, B_2, \cdots, B_n$ are disjoint and
- $(2)\bigcup_{i=1}^n B_i = \Omega$

Suppose that the events B_1, B_2, \cdots, B_n form a partition of the sample space Ω and $P(B_i) > 0$ for $i = 1, 2, \cdots, n$. Then, for every event A in Ω

$$P(A) = \sum_{i=1}^n P(B_i) P(A|B_i)$$

1.3.4 Baye's Theorem

Let the events B_1, B_2, \cdots, B_n form a partition of the sample space Ω such that $P(B_i) > 0$ for $i = 1, 2, \cdots, n$, and let A be an event such that P(A) > 0. Then for $i = 1, 2, \cdots, n$,

$$P(B_i|A) = \frac{P(B_i)P(A|B_i)}{\sum_{j=1}^{n} P(B_j)P(A|B_j)}$$

1.4 Independence of Two Events

1.4.1 Independence of Two Events and Several Events

Two events A and B are $\emph{independent}$ if

$$P(AB) = P(A)P(B)$$

Three events A,B and C in the sample space S of a random experiment are said to be **mutually independent** if

$$P(AB) = P(A)P(B)$$

$$P(BC) = P(B)P(C)$$

$$P(AC) = P(A)P(C)$$

$$P(ABC) = P(A)P(B)P(C)$$

Events A, B and C are said to be **pairwise independent** if the first three equations hold.

1.4.2 Bernoulli Trials

A **Bernoulli experiment** E is such kind of random experiment, the outcome of which can be classified in but one of two mutually exclusive and exhaustive ways, mainly, success and failure

A sequence of Bernoulli trials E_n occurs when a Bernoulli experiment is performed serveral independent times so that the probability of success, say, p, remains the same from trial to trial

The outcomes of E_n are the 2^n sequences of lenth n. The number of outcomes of E_n that contain a exactly k times is given by the binomial coefficient

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

The probability that the outcome of an experiment that consists of n Bernoulli trials has k success and n-k failures is given by:

$$P_n(k) = inom{n}{k} p^k q^{n-k}$$