HOMEWORK 1 – Q4

MINGLANG XIE z5228006 4. You are in an orchard which has a quadratic shape of size 4n by 4n with equally spaced trees. You purchased apples from n^2 trees which also form a square, but the owner is allowing to choose such a square anywhere in the orchard. You have a map with the number of apples on each tree. Your task is to choose such a square which contains the largest total number of apples and which runs in time $O(n^2)$. Note that the brute force algorithm would run in time $O(n^4)$. (20 points)

Solution:

First, for M[0][0:n] (total number of apples of first row of first n^2 trees), we can computer it (name as T[0][1]) in $O(n^2)$ by simply iterating the matrix. Then for each $i \geq n$, we have T[row][i] = T[row][i-1] - M[row][i-n+1] + M[row][i]. Follow this algorithm to compute the whole matrix into a two dimension array $(3n+1\ by\ 4n)$, so we can compute each subsequent S[i] in O(1) time, giving an $O(n^2)$ algorithm.

Second, for T[0:n][0] (first n^2 trees), we can compute it in

 $O(n^2)$ by simply iterating. Then, for each $j \ge n$, we have S[j] = S[j-1] - T[row][j-n+1] + T[row][j], so we compute each subsequent S[j] in O(1) time, and find out the largest total number of apples, giving an $O(n^2)$ algorithm.

	row n	terms					
col n term	M[1][1]	M[1][2]	 •••	•••	•••		M[1][4n]
	M[2][1]	M[2][2]	 •••	•••	•••		M[2][4n]
	•••	•••	 •••	•••	•••		
	•••	•••	 			•••	
	•••	•••	 •••	•••	•••		
	M[4n][1]		 				M[4n][4n]

Calculation each n terms by first add up each row n terms, then add each col n term, it would form a n^2 trees that we want to calculate.