

THE BIFACTOR PACKAGE

Marcos Jiménez ¹ Francisco J. Abad ¹ Eduardo Garcia-Garzon ² Luis E. Garrido ³ ⁴ Vithor R. Franco

¹ Universidad Autónoma de Madrid, Spain ² Shakers, Spain ³ Pontificia Universidad Católica Madre y Maestra, Dominican Republic ⁴ Universidade São Francisco, Brazil

Available methods: Bifactor Analyses and beyond

Simple Models Complex Models

Confirmatory Bi-factor

CFA functions

cfast(data, model, estimator, ...)

model: Specify any kind of model and constraint estimator: ML, ULS, GLS, DWLS

Exploratory Bi-factor

Multiple General Factors (Exploratory)

EFA functions

efast(data, nfactors, estimator, rotation, projection, ...) bifactor(data, nfactors, estimator, projection, ...) rotate(lambda, rotation, projection, ...)

estimator: ML, ULS, GLS, DWLS

rotation: Oblimin, Geomin, Target, Crawford-Ferguson, Bi-quartimin, Bi-geomin, etc. projection: Orthogonal, Oblique, Partially Oblique (New rotation only in bifactor!)

Proper model identification

The Partially Oblique Manifold

A square matrix Φ is parametrized as $\mathbf{X}^{\top}\mathbf{X}$ to ensure positive semi-definiteness but specific cells in Φ are constrained to be zero.

Constrained Optimization on Manifolds

The Role of the Partially Oblique Rotation in EFA

- In **Bifactor models**, the general factors must be **uncorrelated** with the specific factors to obtain an interpretable solution.
- In Multitrait-Multimethod designs, the trait factors must be uncorrelated with the method factors.
- The rotate function achieves these goals thanks to the partially oblique rotation.

covariance matrix of latent variables is not positive definite

- Using the **cfast** function, no warning messages will pop up for confirmatory factor analyses!
- With the **partially oblique manifold**, the matrices will always be, at least, positive semidefinite.

Extremely Fast and Accurate Convergence

Polychorics estimation

polyfast(X, cores, ...)

- Thousands of times faster than popular alternatives thanks to its C++ implementation.
- Estimation of the correlations between hundreds of variables in very few seconds.
- Even faster if **parallelizing** with the cores argument.
- No need for smoothing. The solution is always, at least, positive semidefinite.
- Use the function parallel for **fast parallel analysis** with polychorics.

EFA estimation

efast(data, nfactors, estimator, rotation, projection, cores, ...)

- Very fast rotation thanks to Newton-based optimization routines and their C++ implementation.
- Arbitrary number of random starts to **avoid local minima** in the rotation.
- Parallelization of the random starts with the cores argument.
- No Heywood cases.
- Great documentation and examples.

Additional Features and Next Developments

Additional Features

- SEM features: Multigroup estimation (invariance) and correlated errors for both confirmatory and exploratory models.
- Robust standard errors to non-normality and population error.
- Mixed rotations: In EFA, different rotation criteria can be combined or applied to different items and factors.
- Fit indices, reliability, and indeterminacy values available for all fitting functions.
- Simulation of realistic and complex structures with population error with the sim_factor function.

RoadMap

- Expanding the cfast and efast functions to the SEM and ESEM frameworks: latent regressions, outcomes, predictors, etc.
- Creating utilities and apps to visualize the model and its parameter estimates, fit, predictions, etc.
- Developing new rotation criteria for bifactor modeling.
- Developing a new projection method to conduct Partial Invariance in EFA (i.e., for specific loadings).
- Submitting to CRAN.

