1. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{21x^2 + 10} - \sqrt{-29x} = 0$$

- A. $x_1 \in [-0.72, -0.71]$ and $x_2 \in [-1.4, 0.4]$
- B. All solutions lead to invalid or complex values in the equation.
- C. $x_1 \in [0.65, 0.67]$ and $x_2 \in [0, 1.3]$
- D. $x \in [-0.69, -0.66]$
- E. $x \in [-0.72, -0.71]$
- 2. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{20x^2 + 36} - \sqrt{-61x} = 0$$

- A. $x_1 \in [-3.8, -1]$ and $x_2 \in [-3.8, 0.2]$
- B. $x \in [-1.4, 0.2]$
- C. $x \in [-3.8, -1]$
- D. $x_1 \in [-0.2, 1]$ and $x_2 \in [2.25, 4.25]$
- E. All solutions lead to invalid or complex values in the equation.
- 3. Choose the graph of the equation below.

В.

6232-9639

C.

D.

E. None of the above.

4. What is the domain of the function below?

$$f(x) = \sqrt[6]{-9x + 8}$$

A. $[a, \infty)$, where $a \in [0.95, 1.35]$

B. $(-\infty, a]$, where $a \in [0.97, 1.67]$

C. $[a, \infty)$, where $a \in [0.56, 0.99]$

D. $(-\infty, a]$, where $a \in [0.02, 1.1]$

E. $(-\infty, \infty)$

5. Choose the graph of the equation below.

$$f(x) = -\sqrt{x-8} - 6$$

A.

В.

С.

E. None of the above.

6. Choose the equation of the function graphed below.

A.
$$f(x) = -\sqrt{x+10} + 7$$

B.
$$f(x) = \sqrt{x - 10} + 7$$

C.
$$f(x) = \sqrt{x+10} + 7$$

D.
$$f(x) = -\sqrt{x - 10} + 7$$

E. None of the above

7. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{-2x+2} - \sqrt{-9x-7} = 0$$

A. $x_1 \in [-1.16, -0.17]$ and $x_2 \in [-6, 6]$

B.
$$x_1 \in [-1.42, -1.05]$$
 and $x_2 \in [-6, 6]$

C. All solutions lead to invalid or complex values in the equation.

D.
$$x \in [-1.42, -1.05]$$

E.
$$x \in [0.48, 0.82]$$

8. Solve the radical equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\sqrt{-5x + 5} - \sqrt{8x - 8} = 0$$

- A. All solutions lead to invalid or complex values in the equation.
- B. $x \in [-1.23, 0.77]$
- C. $x \in [1, 4]$
- D. $x_1 \in [1, 4]$ and $x_2 \in [1, 2]$
- E. $x_1 \in [1, 4]$ and $x_2 \in [1, 2]$
- 9. What is the domain of the function below?

$$f(x) = \sqrt[8]{9x+6}$$

A.
$$(-\infty, a]$$
, where $a \in [-2.53, -1.09]$

B.
$$[a, \infty)$$
, where $a \in [-1.98, -1.19]$

C.
$$(-\infty, \infty)$$

D.
$$(-\infty, a]$$
, where $a \in [-0.9, -0.6]$

E.
$$[a, \infty)$$
, where $a \in [-1.45, 0.18]$

10. Choose the equation of the function graphed below.

A.
$$f(x) = \sqrt{x+6} - 7$$

B.
$$f(x) = -\sqrt{x-6} - 7$$

C.
$$f(x) = -\sqrt{x+6} - 7$$

D.
$$f(x) = \sqrt{x-6} - 7$$

E. None of the above