# **Pymaceutical Visualization**

Type *Markdown* and LaTeX:  $\alpha^2$ 

```
In [1]: # Dependencies and Setup
    import matplotlib.pyplot as plt
    from matplotlib.pyplot import figure
    import pandas as pd
    import numpy as np
    from collections import Counter
    import scipy.stats as st
    from scipy.stats import linregress

# Study data files
    mouse_metadata_path = "data/Mouse_metadata.csv"
    study_results_path = "data/Study_results.csv"
```

```
In [2]: # Read the mouse data and the study results
    mouse_metadata = pd.read_csv(mouse_metadata_path)
    study_results = pd.read_csv(study_results_path)

# Combine the data into a single dataset
    merged_data = pd.merge(mouse_metadata, study_results, how='outer', on="Mous
    # Display the data table for preview
    pd.set_option("display.max_rows", None, "display.max_columns", None)
    display(merged_data)
```

|   | Mouse<br>ID | Drug<br>Regimen | Sex  | Age_months | Weight<br>(g) | Timepoint | Tumor Volume<br>(mm3) | Metastatic<br>Sites |
|---|-------------|-----------------|------|------------|---------------|-----------|-----------------------|---------------------|
| 0 | k403        | Ramicane        | Male | 21         | 16            | 0         | 45.000000             | 0                   |
| 1 | k403        | Ramicane        | Male | 21         | 16            | 5         | 38.825898             | 0                   |
| 2 | k403        | Ramicane        | Male | 21         | 16            | 10        | 35.014271             | 1                   |
| 3 | k403        | Ramicane        | Male | 21         | 16            | 15        | 34.223992             | 1                   |
| 4 | k403        | Ramicane        | Male | 21         | 16            | 20        | 32.997729             | 1                   |
| 5 | k403        | Ramicane        | Male | 21         | 16            | 25        | 33.464577             | 1                   |
| 6 | k403        | Ramicane        | Male | 21         | 16            | 30        | 31.099498             | 1                   |
| 7 | k403        | Ramicane        | Male | 21         | 16            | 35        | 26.546993             | 1                   |
| 8 | k403        | Ramicane        | Male | 21         | 16            | 40        | 24.365505             | 1                   |
| 9 | k403        | Ramicane        | Male | 21         | 16            | 45        | 22.050126             | 1                   |

Merging tables using Mouse ID as a primary key allows all data to be displayed on 1 table

This duplicate mouse was found by searching for multiple pairs of mouse ID's and timepoints, which could only exist in the case of a duplicated result.

```
In [6]: # Create a clean DataFrame by dropping the duplicate mouse by its ID.
    cleaned_df = merged_data[merged_data['Mouse ID'].isin(duplicate_mice)==Fals
    display(cleaned_df)
```

|   | Mouse<br>ID | Drug<br>Regimen | Sex  | Age_months | Weight<br>(g) | Timepoint | Tumor Volume<br>(mm3) | Metastatic<br>Sites |
|---|-------------|-----------------|------|------------|---------------|-----------|-----------------------|---------------------|
| 0 | k403        | Ramicane        | Male | 21         | 16            | 0         | 45.000000             | 0                   |
| 1 | k403        | Ramicane        | Male | 21         | 16            | 5         | 38.825898             | 0                   |
| 2 | k403        | Ramicane        | Male | 21         | 16            | 10        | 35.014271             | 1                   |
| 3 | k403        | Ramicane        | Male | 21         | 16            | 15        | 34.223992             | 1                   |
| 4 | k403        | Ramicane        | Male | 21         | 16            | 20        | 32.997729             | 1                   |
| 5 | k403        | Ramicane        | Male | 21         | 16            | 25        | 33.464577             | 1                   |
| 6 | k403        | Ramicane        | Male | 21         | 16            | 30        | 31.099498             | 1                   |
| 7 | k403        | Ramicane        | Male | 21         | 16            | 35        | 26.546993             | 1                   |
| 8 | k403        | Ramicane        | Male | 21         | 16            | 40        | 24.365505             | 1                   |
| 9 | k403        | Ramicane        | Male | 21         | 16            | 45        | 22.050126             | 1                   |

```
In [7]: # Checking the number of mice in the clean DataFrame.
    cleaned_mouse_count = len(pd.unique(cleaned_df['Mouse ID']))
    print(cleaned_mouse_count)
```

248

# **Summary Statistics**

|                 | Mean Tumor<br>Volume (mm3) | Median Tumor<br>Volume (mm3) | Variance in<br>Tumor Volume<br>(mm3) | Standard Dev. of<br>Tumor Volume<br>(mm3) | SEM of Tumor<br>Volume (mm3) |  |
|-----------------|----------------------------|------------------------------|--------------------------------------|-------------------------------------------|------------------------------|--|
| Drug<br>Regimen |                            |                              |                                      |                                           |                              |  |
| Capomulin       | 40.675741                  | 41.557809                    | 24.947764                            | 4.994774                                  | 0.329346                     |  |
| Ceftamin        | 52.591172                  | 51.776157                    | 39.290177                            | 6.268188                                  | 0.469821                     |  |
| Infubinol       | 52.884795                  | 51.820584                    | 43.128684                            | 6.567243                                  | 0.492236                     |  |
| Ketapril        | 55.235638                  | 53.698743                    | 68.553577                            | 8.279709                                  | 0.603860                     |  |
| Naftisol        | 54.331565                  | 52.509285                    | 66.173479                            | 8.134708                                  | 0.596466                     |  |
| Placebo         | 54.033581                  | 52.288934                    | 61.168083                            | 7.821003                                  | 0.581331                     |  |
| Propriva        | 52.320930                  | 50.446266                    | 43.852013                            | 6.622085                                  | 0.544332                     |  |
| Ramicane        | 40.216745                  | 40.673236                    | 23.486704                            | 4.846308                                  | 0.320955                     |  |
| Stelasyn        | 54.233149                  | 52.431737                    | 59.450562                            | 7.710419                                  | 0.573111                     |  |
| Zoniferol       | 53.236507                  | 51.818479                    | 48.533355                            | 6.966589                                  | 0.516398                     |  |

display(summary\_df)

In [9]: # Generate a summary statistics table of mean, median, variance, standard d
# Using the aggregation method, produce the same summary statistics in a si
agg\_summary = cleaned\_df.groupby('Drug Regimen').agg({'Tumor Volume (mm3)':
agg\_summary.head(10)

Out[9]:

|              | Tumor Volume (mm3) |           |           |          |          |  |  |
|--------------|--------------------|-----------|-----------|----------|----------|--|--|
|              | mean               | median    | var       | std      | sem      |  |  |
| Drug Regimen |                    |           |           |          |          |  |  |
| Capomulin    | 40.675741          | 41.557809 | 24.947764 | 4.994774 | 0.329346 |  |  |
| Ceftamin     | 52.591172          | 51.776157 | 39.290177 | 6.268188 | 0.469821 |  |  |
| Infubinol    | 52.884795          | 51.820584 | 43.128684 | 6.567243 | 0.492236 |  |  |
| Ketapril     | 55.235638          | 53.698743 | 68.553577 | 8.279709 | 0.603860 |  |  |
| Naftisol     | 54.331565          | 52.509285 | 66.173479 | 8.134708 | 0.596466 |  |  |
| Placebo      | 54.033581          | 52.288934 | 61.168083 | 7.821003 | 0.581331 |  |  |
| Propriva     | 52.320930          | 50.446266 | 43.852013 | 6.622085 | 0.544332 |  |  |
| Ramicane     | 40.216745          | 40.673236 | 23.486704 | 4.846308 | 0.320955 |  |  |
| Stelasyn     | 54.233149          | 52.431737 | 59.450562 | 7.710419 | 0.573111 |  |  |

**Zoniferol** 53.236507 51.818479 48.533355 6.966589 0.516398

### **Bar and Pie Charts**

<matplotlib.axes.\_subplots.AxesSubplot at 0x7fe7424f78d0>

#### **Measurements Taken**

| Regimen   |     |
|-----------|-----|
| Capomulin | 230 |
| Ramicane  | 228 |
| Ketapril  | 188 |
| Naftisol  | 186 |
| Zoniferol | 182 |
| Stelasyn  | 181 |
| Placebo   | 181 |
| Ceftamin  | 178 |
| Infubinol | 178 |
| Propriva  | 148 |
|           |     |



Most medications are within ~10 measurements of 180, while three have a significant difference. Capomulin and Ramicane are measured near 230 times, while Propriva is measured 148 times.

```
In [11]: # Generate a pie plot showing the distribution of female versus male mice u
piechart = cleaned_df['Sex'].value_counts().plot(figsize=(8,8), kind='pie')
```





### **Quartiles, Outliers and Boxplots**

```
In [13]: # Calculate the final tumor volume of each mouse across four of the treatme
# Capomulin, Ramicane, Infubinol, and Ceftamin
# Start by getting the last (greatest) timepoint for each mouse
max_timepoint = cleaned_df.groupby('Mouse ID').max()['Timepoint']
timepoints_df = pd.DataFrame(max_timepoint)
timepoint_merge = pd.merge(timepoints_df, cleaned_df, on=('Mouse ID','Timep
#use list of the desired medications to create df of final tumor volumes
regimens = ['Capomulin', 'Ramicane', 'Infubinol', 'Ceftamin']
filtered_timepoints = timepoint_merge.loc[timepoint_merge['Drug Regimen'].i
filtered_timepoints = filtered_timepoints.rename(columns={"Timepoint": "Fin
# Merge this group df with the original dataframe to get the tumor volume a
display(filtered_timepoints)
```

|    | Mouse<br>ID | Final<br>Timepoint | Drug<br>Regimen | Sex    | Age_months | Weight<br>(g) | Final Tumor<br>Volume (mm3) | Metastatic<br>Sites |
|----|-------------|--------------------|-----------------|--------|------------|---------------|-----------------------------|---------------------|
| 0  | a203        | 45                 | Infubinol       | Female | 20         | 23            | 67.973419                   | 2                   |
| 1  | a251        | 45                 | Infubinol       | Female | 21         | 25            | 65.525743                   | 1                   |
| 3  | a275        | 45                 | Ceftamin        | Female | 20         | 28            | 62.999356                   | 3                   |
| 6  | a411        | 45                 | Ramicane        | Male   | 3          | 22            | 38.407618                   | 1                   |
| 7  | a444        | 45                 | Ramicane        | Female | 10         | 25            | 43.047543                   | 0                   |
| 10 | a520        | 45                 | Ramicane        | Male   | 13         | 21            | 38.810366                   | 1                   |
| 11 | a577        | 30                 | Infubinol       | Female | 6          | 25            | 57.031862                   | 2                   |
| 12 | a644        | 45                 | Ramicane        | Female | 7          | 17            | 32.978522                   | 1                   |
| 13 | a685        | 45                 | Infubinol       | Male   | 8          | 30            | 66.083066                   | 3                   |
| 19 | b128        | 45                 | Capomulin       | Female | 9          | 22            | 38.982878                   | 2                   |

Generate a box plot of the final tumor volume of each mouse across four regimens of interest

<matplotlib.axes.\_subplots.AxesSubplot at 0x7fe742695b70>



### **Line and Scatter Plots**

```
In [15]: Frut treatments into a list for for loop (and later for plot labels)
        F Create empty list to fill with tumor vol data (for plotting)
        umor_vol0 = []
         umor_vol1 = []
         umor_vol2 = []
         umor vol3 = []
        Ecalculate the IQR and quantitatively determine if there are any potential
         Locate the rows which contain mice on each drug and get the tumor volume
         umor vol0 = filtered timepoints.loc[filtered timepoints['Drug Regimen']==re
         umor vol1 = filtered timepoints.loc[filtered timepoints['Drug Regimen'] == re
         umor vol2 = filtered timepoints.loc[filtered timepoints['Drug Regimen']==re
         umor vol3 = filtered timepoints.loc[filtered timepoints['Drug Regimen']==re
         ap vol = tumor vol0.tolist()
         am vol = tumor vol1.tolist()
         nf_vol = tumor_vol2.tolist()
         ef vol = tumor vol3.tolist()
         oxplot_df = pd.DataFrame({"Capomulin:":cap_vol,
                                 "Ramicane:":ram_vol,
                                  "Infubinol:":inf_vol,
                                  "Ceftamin:": cef vol})
         calculating quantiles of final tumor volumes
         01 = np.quantile(cap vol, 0.25)
        03 = np.quantile(cap vol, 0.75)
         QR0 = Q03 - Q01
        atlier01 = Q01-(IQR0*1.5)
        outlier02 = Q03+(IQR0*1.5)
         formatting for neat print statements
        utlier01 formatted = "{:.3f}".format(outlier01)
         utlier02 formatted = "{:.3f}".format(outlier02)
         process for Ramicane
        11 = np.quantile(ram vol, 0.25)
        13 = np.quantile(ram vol, 0.75)
         QR1 = Q13 - Q11
         utlier11 = Q11-(IQR1*1.5)
        outlier12 = Q13+(IQR1*1.5)
         utlier11_formatted = "{:.3f}".format(outlier11)
        utlier12 formatted = "{:.3f}".format(outlier12)
         process for infubinol
        21 = np.quantile(inf vol, 0.25)
        23 = np.quantile(inf vol, 0.75)
         QR2 = Q23 - Q21
        outlier21 = Q21-(IQR2*1.5)
        utlier22 = Q23+(IQR2*1.5)
         utlier21 formatted = "{:.3f}".format(outlier21)
        utlier22 formatted = "{:.3f}".format(outlier22)
         process for ceftamin
        931 = np.quantile(cef vol, 0.25)
        933 = np.quantile(cef vol, 0.75)
         QR3 = Q33 - Q31
         utlier31 = Q31-(IQR3*1.5)
        utlier32 = Q33+(IQR3*1.5)
```

```
outlier31 formatted = "{:.3f}".format(outlier31)
utlier32_formatted = "{:.3f}".format(outlier32)
   # Determine outliers using upper and lower bounds
ap outliers = []
am outliers = []
nf_outliers = []
ef outliers = []
append outliers to list based on being above/below +/- 1.5~\mathrm{x} IQR
or x in cap vol:
   if x < int(outlier01) or x > int(outlier02):
       cap_outliers.append(x)
or y in (ram_vol):
   if y < int(outlier11) or y > int(outlier12):
       ram outliers.append(y)
or i in inf vol:
   if i < int(outlier21) or i > int(outlier22):
       inf outliers.append(i)
or z in (cef_vol):
   if z < int(outlier31) or z > int(outlier32):
       cef outliers.append(z)
print outlier bounds and outlier count
rint("For Capomulin, outliers in final tumor volume are below " + str(outli
rint("For Ramicane, outliers in final tumor volume are below " + str(outlie
rint("For Infubinol, outliers in final tumor volume are below " + str(outli
rint("For Ceftamin, outliers in final tumor volume are below " + str(outlie
```

For Capomulin, outliers in final tumor volume are below 20.705 (mm3) and above 51.832 (mm3). There are 0 in the set.

For Ramicane, outliers in final tumor volume are below  $17.913 \, (mm3)$  and a bove  $54.307 \, (mm3)$ . There are 0 in the set.

For Infubinol, outliers in final tumor volume are below  $36.833 \, (mm3)$  and above  $82.741 \, (mm3)$ . There are 0 in the set.

For Ceftamin, outliers in final tumor volume are below  $25.355 \, (mm3)$  and a bove  $87.666 \, (mm3)$ . There are 0 in the set.

```
In [16]: # Generate a line plot of tumor volume vs. time point for a mouse treated w
#generate a df containing only capomulin info
capo = ['Capomulin']
capo_df = cleaned_df.loc[cleaned_df['Drug Regimen'].isin(capo)]
#use an id from a mouse that went all the way to the highest timepoint(45)
capo_id = ['s185']
single_capo_df = capo_df.loc[cleaned_df['Mouse ID'].isin(capo_id)]
#display(single_capo_df)
#use matplotlib
fig=plt.figure()
ax=plt.axes()
plt.title("Tumor Volume vs Timeframe For Mouse s185")
plt.xlabel("Time Point")
plt.ylabel("Tumor Vol (mm3)")
plt.plot(single_capo_df['Timepoint'], single_capo_df['Tumor Volume (mm3)'])
```

Out[16]: [<matplotlib.lines.Line2D at 0x7fe742d356d8>]



<matplotlib.axes.\_subplots.AxesSubplot at 0x7fe742d67a90>



# **Correlation and Regression**

In [18]: # Calculate the correlation coefficient and linear regression model # for mouse weight and average tumor volume for the Capomulin regimen

```
In [76]: x_values = avg_vol_df['Weight (g)']
    y_values = avg_vol_df['Tumor Volume (mm3)']
    (slope, intercept, rvalue, pvalue, stderr) = linregress(x_values, y_values)
    regress_values = x_values * slope + intercept
    line_eq = "y = " + str(round(slope,2)) + "x + " + str(round(intercept,2))
    plt.figure(figsize=(12,6))
    plt.scatter(x_values,y_values)
    plt.plot(x_values,regress_values,"r-")
    plt.annotate(line_eq,(6,10),fontsize=7,color="red")
    plt.ylabel=('Average Tumor Volume')
    plt.xlabel=('Mouse Weight (g)')
    correlation = y_values.corr(x_values)
    plt.show()
    print("The correlation coefficient is " + str(correlation) +".")
```



The correlation coefficient is 0.9505243961855271.

In [ ]: