Dynamic documents in R

Making tables in R Markdown

2021-06-04

Working with descriptive tables

```
descriptives <- diabetes %>%
  filter(!is.na(glyhb)) %>%
  mutate(
    diabetic = case_when(
        glyhb >= 6.5 ~ "Diabetic",
        glyhb < 6.5 ~ "Healthy",
        NA ~ NA_character_
    ),
    bmi = (weight / height^2) * 703
) %>%
  group_by(diabetic) %>%
  summarise(n = n(), across(c(glyhb, bmi, age), mean, na.rm = TRUE))
```

Descriptive statistics table

Standard tibble display

descriptives

Descriptive statistics table

Standard tibble display

descriptives

Useful in console, but less so for reports or presentation

Visual R Markdown tables

Visual R Markdown tables

Your turn 1

Using Visual R Markdown, create a markdown table that represents these data:

The Physicians' Health Study enrolled over 22,000 male physicians to study the effect of low-dose aspirin on myocardial infarctions (heart attacks). Of those who took aspirin, 129 had heart attacks, while 10,898 did not. Of those who took the placebo, 239 had heart attacks and 10,795 did not.

knitr::kable()

kable() creates formatted tables from rectangular objects (data.frames, matrices, and tibbles)

kable(descriptives)

diabetic	n	glyhb	bmi	age
Diabetic	65	9.886615	30.80235	58.43077
Healthy	325	4.730400	28.38114	44.44308

Formats include pipe ('|'), HTML (html), LaTeX (latex), and reStructuredText (rst)

kable(): underlying structure

Simple and pipe work in most output document formats

```
knitr::kable(x = descriptives, format = "pipe")
|diabetic | n| glyhb| bmi| age|
|:-----|----|-----|
|Diabetic | 65| 9.886615| 30.80235| 58.43077|
|Healthy | 325| 4.730400| 28.38114| 44.44308|
```

kable() options: column names

Supply a vector of new names with col.names argument

```
kable(descriptives,
  col.names = c("Diabetes Status", "N", "A1c", "BMI", "Age")
)
```

Diabetes Status	N	A1c	BMI	Age
Diabetic	65	9.886615	30.80235	58.43077
Healthy	325	4.730400	28.38114	44.44308

kable() options: number format

Use digits for decimal place

```
kable(descriptives,
    digits = 1
)
```

diabetic	n	glyhb	bmi	age
Diabetic	65	9.9	30.8	58.4
Healthy	325	4.7	28.4	44.4

kable() options: add caption

Add caption with caption argument

```
kable(descriptives,
   caption = "Descriptive statistics"
)
```

Table: Descriptive statistics

diabetic	n	glyhb	bmi	age
Diabetic	65	9.886615	30.80235	58.43077
Healthy	325	4.730400	28.38114	44.44308

Your turn 2

Using the tidy() function from broom, turn response_model and marker_model into dataframes, binding them together with bind_rows()

Turn the resulting dataframe into a table using kable()

Set the eval **chunk option to** TRUE

Knit

Your turn 2

models <- bind_rows(tidy(response_model), tidy(marker_model))
kable(models)</pre>

term	estimate	std.error	statistic	p.value
(Intercept)	-1.4862242	0.6202284	-2.3962530	0.0165637
age	0.0193911	0.0114681	1.6908683	0.0908620
stageT2	-0.5414264	0.4400027	-1.2305071	0.2185073
stageT3	-0.0595348	0.4504203	-0.1321761	0.8948450
stageT4	-0.2310863	0.4482284	-0.5155549	0.6061653
(Intercept)	0.8336800	0.2497219	3.3384338	0.0010317
trtDrug B	-0.2009397	0.1290364	-1.5572330	0.1212427
stageT2	0.3841096	0.1734658	2.2143255	0.0281131
stageT3	0.2838452	0.1895362	1.4975777	0.1360653
stageT4	0.1987877	0.1818389	1.0932073	0.2758227
age	-0.0004592	0.0044877	-0.1023233	0.9186185

gtsummary

Create publication-ready analytic and summary tables

Good support for wide variety of output formats

Built on the larger gt package

Creates a cross-tabulation of two categorical variables

```
library(gtsummary)
tbl_cross(
  data,
  row = x,
  col = y
)
```

```
table_data <- diabetes %>%
  mutate(
    # create diabetic category based on A1c and calculate bmi
    diabetic = case_when(
        glyhb >= 6.5 ~ "Diabetic",
        glyhb < 6.5 ~ "Healthy",
        NA ~ NA_character_
    ), bmi = (weight / height^2) * 703
) %>%
  select(diabetic, age, gender, bmi)
```

```
tbl_cross(table_data, row = diabetic, col = gender)
```

tbl_cross(table_data, row = diabetic, col = gender)

	geno	gender		
Characteristic	female	male	Total	
diabetic				
Diabetic	36	29	65	
Healthy	192	133	325	
Unknown	6	7	13	
Total	234	169	403	

tbl_cross() output

	gender		
Characteristic	female	male	Total
diabetic			
Diabetic	36	29	65
Healthy	192	133	325
Unknown	6	7	13
Total	234	169	403

gtsummary uses the labelled package to create labels

```
library(labelled)
var_label(table_data$diabetic) <- "Diabetes Status"
var_label(table_data$diabetic)</pre>
```

gtsummary uses the labelled package to create labels

```
library(labelled)
var_label(table_data$diabetic) <- "Diabetes Status"
var_label(table_data$diabetic)</pre>
```

```
## [1] "Diabetes Status"
```

Set multiple variable lables with list()

```
var_label(table_data) <- list(
  gender = "Gender",
  diabetic = "Diabetes Status"
)</pre>
```

tbl_cross(table_data, diabetic, gender)

	Gend	Gender		
Characteristic	female	male	Total	
Diabetes Status	;			
Diabetic	36	29	65	
Healthy	192	133	325	
Unknown	6	7	13	
Total	234	169	403	

Your turn 3

Create a contingency table of trial (a dataset from gtsummary) using tbl_cross(): set trt to the rows and response to the columns.

Add a p-value with add_p()

Knit

Your turn 3

```
trial %>%
  tbl_cross(row = trt, col = response) %>%
  add_p()
```

	Tumor Response				
Characteristic	0	1	Unknown	Total	p-value ¹
Chemotherapy Treatment					0.7
Drug A	67	28	3	98	
Drug B	65	33	4	102	
Total	132	61	7	200	
¹ Fisher's exact test					

tbl_summary()

Calculates descriptive statistics

tbl_summary()

Calculates descriptive statistics

Can split calculations by groups (i.e. categorical or dichotomous variables)

tbl_summary()

Calculates descriptive statistics

Can split calculations by groups (i.e. categorical or dichotomous variables)

Sensible defaults; easily customized

```
var_label(table_data) <- list(
  gender = "Gender",
  diabetic = "Diabetes Status",
  age = "Age",
  bmi = "BMI"
)

tbl_summary(table_data)</pre>
```

Characteristic	$N = 403^{1}$				
Diabetes Status					
Diabetic	65 (17%)				
Healthy	325 (83%)				
Unknown	13				
Age	45 (34, 60)				
Gender					
female	234 (58%)				
male	169 (42%)				
BMI	28 (24, 32)				
Unknown	6				
¹n (%); Median (IQR)					

Automatically adds header:

- Characteristic =variable
- N = nrow(diabetes)

Characteristic	N = 403 ¹			
diabetic				
Diabetic	65 (17%)			
Healthy	325 (83%)			
Unknown	13			
age	45 (34, 60)			
gender				
female	234 (58%)			
male	169 (42%)			
bmi	28 (24, 32)			
Unknown	6			
¹n (%); Median (IQR)				

Missing = Unknown

Characteristic	N = 403 ¹			
diabetic				
Diabetic	65 (17%)			
Healthy	325 (83%)			
Unknown	13			
age	45 (34, 60)			
gender				
female	234 (58%)			
male	169 (42%)			
bmi	28 (24, 32)			
Unknown	6			
¹n (%); Median (IQR)				

Source note lists summary statistics:

- Median = median(var)
- IQR = IQR(var)

Characteristic	N = 403 ¹	
diabetic		
Diabetic	65 (17%)	
Healthy	325 (83%)	
Unknown	13	
age	45 (34, 60)	
gender		
female	234 (58%)	
male	169 (42%)	
bmi	28 (24, 32)	
Unknown	6	
¹n (%); Median (IQR)		

tbl_summary(): variable levels

Variable levels are indented

```
table(table_data$diabetic)

### Diabetic Healthy
### 65 325

table(table_data$gender)

### ### female male
### 234 169
```

Characteristic	N = 403 ¹	
Diabetes Status		
Diabetic	65 (17%)	
Healthy	325 (83%)	
Unknown	13	
Age	45 (34, 60)	
Gender		
female	234 (58%)	
male	169 (42%)	
ВМІ	28 (24, 32)	
Unknown	6	
¹n (%); Median (IQR)		

tbl_summary(): split by groups

Split the summary table by a grouping variable

```
table_data %>%
  select(diabetic, age, gender, bmi) %>%
  tbl_summary(by = diabetic)
```

Missing values removed		
Characteristic	Diabetic, N = 65 ¹	Healthy, N = 325 ¹
Age	59 (51, 65)	41 (32, 55)
Gender		
female	36 (55%)	192 (59%)
male	29 (45%)	133 (41%)
BMI	30 (26, 33)	27 (23, 32)
Unknown	2	4
¹ Median (IQR); n (%)		

tbl_summary(): digits

Change number formats with digits

```
table_data %>%
  select(diabetic, age, gender, bmi) %>%
  tbl_summary(
    by = diabetic,
    digits = all_continuous() ~ 1
)
```

Characteristic	Diabetic, N = 65 ¹	Healthy, N = 325 ¹		
age	59.0 (51.0, 65.0)	41.0 (32.0, 55.0)		
gender				
female	36 (55%)	192 (59%)		
male	29 (45%)	133 (41%)		
bmi	29.9 (26.4, 33.2)	27.5 (23.4, 31.8)		
Unknown	2	4		
¹Median (IQR); n (%)				

tbl_summary(): missing_text

Rename missing value label with missing_text

```
table_data %>%
  select(diabetic, age, gender, bmi) %>%
  tbl_summary(
    by = diabetic,
    missing_text = "(Missing)"
)
```

Characteristic	Diabetic, N = 65 ¹	Healthy, N = 325 ¹		
age	59 (51, 65)	41 (32, 55)		
gender				
female	36 (55%)	192 (59%)		
male	29 (45%)	133 (41%)		
bmi	30 (26, 33)	27 (23, 32)		
(Missing)	2	4		
¹Median (IQR); n (%)				

tbl_summary(): tests & p-values

Add tests and p-values (with one function!)

```
table_data %>%
  select(diabetic, age, gender, bmi) %>%
  tbl_summary(by = diabetic) %>%
  add_p()
```

p-value column added

		•		
Characteristic	Diabetic, N = 65 ¹	Healthy, N = 325 ¹	p-value ²	
Age	59 (51, 65)	41 (32, 55)	<0.001	
Gender			0.6	
female	36 (55%)	192 (59%)		
male	29 (45%)	133 (41%)		
BMI	30 (26, 33)	27 (23, 32)	0.003	
Unknown	2	4		
¹ Median (IQR); n (%)				
² Wilcoxon rank sum test; Pearson's Chi-squared test				

tests included in footnote

```
tbl_summary(
  table_data,
  statistic = list(all_continuous() ~ "{mean} ({sd})")
)
```

Supply statistic arguments in list() (separate with ~)

```
tbl_summary(
  table_data,
  statistic = list(all_continuous() ~ "{mean} ({sd})")
)
```

Access variables by name or type (all_continuous(), all_categorical(), all_dichotomous(), etc.)

```
tbl_summary(
  table_data,
  statistic = list(all_continuous() ~ "{mean} ({sd})")
)
```

Access statistic with curly brackets (i.e. {mean}, {sd}, etc.). See ?tbl_summary for options

Characteristic	$N = 403^{1}$			
Diabetes Status				
Diabetic	65 (17%)			
Healthy	325 (83%)			
Unknown	13			
Age	47 (16)			
Gender				
female	234 (58%)			
male	169 (42%)			
BMI	29 (7)			
Unknown	6			
¹n (%); Mean (SD)				

Add other elements to table

Function	Description
add_p()	add p-values to the output comparing values across groups
add_overall()	add a column with overall summary statistics
add_n()	add a column with N (or N missing) for each variable
add_difference()	add column for difference between two group, confidence interval, and p-value
add_stat_label()	add label for the summary statistics shown in each row
add_stat()	generic function to add a column with user-defined values
add_q()	add a column of q values to control for multiple comparisons

gtsummary functions to format table

Description
update column headers
update column footnote
update spanning headers
update table caption/title
bold variable labels
bold variable levels
italicize variable labels
italicize variable levels
bold significant p-values

Create a summary table of trial by the trt variable.

Modify the label for grade to say "Tumor Grade"

Add an overall column and a p-value

Modify the table to use Mean (SD) and n (%) via the statistic argument: list(all_continuous() ~ "{mean} ({sd})", all_categorical() ~ "{n} ({p}%)")

Bold the labels

Modify the header with modify_spanning_header(c("stat_1", "stat_2") ~ "**Treatment Received**")

```
trial %>%
  tbl_summary(
   by = trt,
  label = grade ~ "Tumor Grade",
  statistic = list(
    all_continuous() ~ "{mean} ({sd})",
    all_categorical() ~ "{n} ({p}%)"
  )
  ) %>%
  bold_labels() %>%
  modify_spanning_header(
   c("stat_1", "stat_2") ~ "**Treatment Received**"
) %>%
  add_overall() %>%
  add_p()
```

		t Received	red .	
Characteristic	Overall , $N = 200^{1}$	Drug A , N = 98 ¹	Drug B , N = 102 ¹	p-value ²
Age	47 (14)	47 (15)	47 (14)	0.7
Unknown	11	7	4	
Marker Level (ng/mL)	0.92 (0.86)	1.02 (0.89)	0.82 (0.83)	0.085
Unknown	10	6	4	
T Stage				0.9
T1	53 (26%)	28 (29%)	25 (25%)	
T2	54 (27%)	25 (26%)	29 (28%)	
T3	43 (22%)	22 (22%)	21 (21%)	
T4	50 (25%)	23 (23%)	27 (26%)	
Tumor Grade				0.9
I	68 (34%)	35 (36%)	33 (32%)	
II	68 (34%)	32 (33%)	36 (35%)	
III	64 (32%)	31 (32%)	33 (32%)	
Tumor Response	61 (32%)	28 (29%)	33 (34%)	0.5
Unknown	7	3	4	
Patient Died	112 (56%)	52 (53%)	60 (59%)	0.4
Months to Death/Censor	19.6 (5.3)	20.2 (5.0)	19.0 (5.5)	0.14

¹ Mean (SD); n (%)

² Wilcoxon rank sum test; Pearson's Chi-squared test

Other tbl_summary() arguments

See the other options with ?tbl_summary()

Argument	Description
label	specify the variable labels printed in table
type	specify the variable type (e.g. continuous, categorical, etc.)
statistic	change the summary statistics presented
digits	number of digits the summary statistics will be rounded to
missing	whether to display a row with the number of missing observations
missing_text	text label for the missing number row
sort	change the sorting of categorical levels by frequency
percent	print column, row, or cell percentages
include	list of variables to include in summary table

tbl_regression()

```
model_data <- diabetes %>% mutate(bmi = (weight / height^2) * 703)
glyhb_model <- lm(glyhb ~ bmi + age, data = model_data)
tbl_regression(glyhb_model)</pre>
```

tbl_regression()

```
model_data <- diabetes %>% mutate(bmi = (weight / height^2) * 703)
glyhb_model <- lm(glyhb ~ bmi + age, data = model_data)
tbl_regression(glyhb_model)</pre>
```

Characteristic	Beta	95% CI ¹	p-value	
bmi	0.04	0.01, 0.08	0.006	
age	0.05	0.03, 0.06	<0.001	
¹ CI = Confidence Interval				

tbl_regression(): variable labels

Add labels just like tbl_summary()

```
var_label(model_data) <- list(
   bmi = "BMI",
   glyhb = "A1c",
   age = "Age"
)
glyhb_model <- lm(glyhb ~ bmi + age, data = model_data)
tbl_regression(glyhb_model)</pre>
```

tbl_regression(): variable labels

Add labels just like tbl_summary()

```
var_label(model_data) <- list(
  bmi = "BMI",
  glyhb = "A1c",
  age = "Age"
)
glyhb_model <- lm(glyhb ~ bmi + age, data = model_data)
tbl_regression(glyhb_model)</pre>
```

Characteristic	Beta	95% CI ¹	p-value	
BMI	0.04	0.01, 0.08	0.006	
Age	0.05	0.03, 0.06	<0.001	
¹ CI = Confidence Interval				

tbl_regression(): other options

Argument	Description
label	modify variable labels in table
exponentiate	exponentiate model coefficients
`include	names of variables to include in output. Default is all variables
show_single_row	By default, categorical variables are printed on multiple rows. If a variable is dichotomous and you wish to print the regression coefficient on a single row, include the variable name(s) here.
conf.level	confidence level of confidence interval
intercept	indicates whether to include the intercept
estimate_fun	function to round and format coefficient estimates
pvalue_fun	function to round and format p-values
tidy_fun	function to specify/customize tidier function

tbl_regression(): Model statistics

Add model statistics from broom::glance()

```
tbl_regression(glyhb_model) %>%
  add_glance_source_note()
```

tbl_regression(): Model statistics

Add model statistics from broom::glance()

tbl_regression(glyhb_model) %>%
 add_glance_source_note()

Characteristic	Beta	95% Cl ¹	p-value
BMI	0.04	0.01, 0.08	0.006
Age	0.05	0.03, 0.06	<0.001

¹CI = Confidence Interval

R² = 0.132; Adjusted R² = 0.127; Sigma = 2.06; Statistic = 28.9; p-value = <0.001; df = 2; Log-likelihood = -821; AIC = 1,650; BIC = 1,666; Deviance = 1,617; Residual df = 381; No. Obs. = 384

tbl_regression(): other add options

Function	Description
add_global_p()	adds the global p-value for a categorical variables
add_glance_source_note()	adds statistics from glance() as source note
add_vif()	adds column of the variance inflation factors (VIF)
add_q()	add a column of q values to control for multiple comparisons

tbl_regression(): format options

```
tbl_regression(glyhb_model) %>%
  add_glance_source_note() %>%
  bold_p() %>%
  bold_labels()
```

tbl_regression(): format options

```
tbl_regression(glyhb_model) %>%
  add_glance_source_note() %>%
  bold_p() %>%
  bold_labels()
```

Characteristic	Beta	95% CI ¹	p-value
ВМІ	0.04	0.01, 0.08	0.006
Age	0.05	0.03, 0.06	<0.001

¹CI = Confidence Interval

R² = 0.132; Adjusted R² = 0.127; Sigma = 2.06; Statistic = 28.9; p-value = <0.001; df = 2; Log-likelihood = -821; AIC = 1,650; BIC = 1,666; Deviance = 1,617; Residual df = 381; No. Obs. = 384

tbl_regression(): modify caption

```
tbl_regression(glyhb_model) %>%
  add_glance_source_note() %>%
  bold_p() %>%
  bold_labels() %>%
  modify_caption("**Association of BMI and A1c adjusted for age**")
```

tbl_regression(): modify caption

```
tbl_regression(glyhb_model) %>%
  add_glance_source_note() %>%
  bold_p() %>%
  bold_labels() %>%
  modify_caption("**Association of BMI and A1c adjusted for age**")
```

Association of BMI and A1c adjusted for age

Characteristic	Beta	95% CI ¹	p-value
ВМІ	0.04	0.01, 0.08	0.006
Age	0.05	0.03, 0.06	<0.001

¹CI = Confidence Interval

R² = 0.132; Adjusted R² = 0.127; Sigma = 2.06; Statistic = 28.9; p-value = <0.001; df = 2; Log-likelihood = -821; AIC = 1,650; BIC = 1,666; Deviance = 1,617; Residual df = 381; No. Obs. = 384

Create a regression table for response model; exponentiate the output with exponentiate = TRUE

Add a global P-value

Add the model statistics via add_glance_source_note()

Italicize the variable levels

Merge the table you just made with marker_table using tbl_merge()

```
response_table <- response_model %>%
  tbl_regression(
    exponentiate = TRUE
) %>%
  add_global_p() %>%
  add_global_p() %>%
  italicize_levels()

marker_table <- marker_model %>%
  tbl_regression() %>%
  add_global_p()

both_tables <- list(response_table, marker_table)
tbl_merge(both_tables)</pre>
```

	Table 1			Table 2		
Characteristic	OR ¹	95% CI ¹	p-value	Beta	95% Cl ¹	p-value
Age	1.02	1.00, 1.04	0.087	0.00	-0.01, 0.01	>0.9
T Stage			0.6			0.2
T1	_	_		_	_	
T2	0.58	0.24, 1.37		0.38	0.04, 0.73	
ТЗ	0.94	0.39, 2.28		0.28	-0.09, 0.66	
T4	0.79	0.33, 1.90		0.20	-0.16, 0.56	
Chemotherapy Treatment						0.12
Drug A				_	_	
Drug B				-0.20	-0.46, 0.05	

¹OR = Odds Ratio, CI = Confidence Interval

Null deviance = 229; Null df = 182; Log-likelihood = -112; AIC = 234; BIC = 250; Deviance = 224; Residual df = 178; No. Obs. = 183

A bookdown output format, e.g.

bookdown::html_document2

A bookdown output format, e.g. bookdown::html_document2

A table caption (caption = "Table title", modify_caption())

A bookdown output format, e.g. bookdown::html_document2

A table caption (caption = "Table title", modify_caption())

A named code chunk ({r chunk-name})

A bookdown output format, e.g. bookdown::html_document2

A table caption (caption = "Table title", modify_caption())

A named code chunk ({r chunk-name})

Reference with \@ref(tab:chunk-name)

Modify the YAML header to use bookdown::html_document2 as the output

Add a caption to the merged table above using modify_caption()

Reference that table below using this format: \@ref(tab:name-of-chunk)

```
tbl_merge(both_tables) %>%
  modify_caption(
    "Regression models of participant markets and response"
)
```

Regression	modale of	narticinant	markate an	d rachanca

		Table 1			Table 2		
Characteristic	OR ¹	95% CI ¹	p-value	Beta	95% CI ¹	p-value	
Age	1.02	1.00, 1.04	0.087	0.00	-0.01, 0.01	>0.9	
T Stage			0.6			0.2	
T1	_	_		_	_		
T2	0.58	0.24, 1.37		0.38	0.04, 0.73		
T3	0.94	0.39, 2.28		0.28	-0.09, 0.66		
T4	0.79	0.33, 1.90		0.20	-0.16, 0.56		
Chemotherapy Treatment						0.12	
Drug A				_	_		
Drug B				-0.20	-0.46, 0.05		

¹ OR = Odds Ratio, CI = Confidence Interval

Null deviance = 229; Null df = 182; Log-likelihood = -112; AIC = 234; BIC = 250; Deviance = 224; Residual df = 178; No. Obs. = 183

In Table 1, we show two regression models: a linear model of participant markets and a logistic regression model of participant response.

gtsummary: Output formats

Print Engine	Function	HTML	PDF	RTF	Word
<u>gt</u>	as_gt()	(ii)	Â	Ŕ	
kable	<pre>as_kable()</pre>	\odot	<u>··</u>	\odot	\odot
flextable	<pre>as_flex_table()</pre>	(i)	(1)		(i)
kableExtra	<pre>as_kable_extra()</pre>	(i)	(1)		
huxtable	<pre>as_hux_table()</pre>	(i)	(F)	(T)	(T)
<u>tibble</u>	<pre>as_tibble()</pre>				

Also check out the gt package!

"construct a wide variety of useful tables with a cohesive set of table parts"

Parts of a gt Table TITLE **TABLE HEADER SUBTITLE** SPANNER COLUMN LABEL **STUB** COLUMN COLUMN STUBHEAD LABEL **HEAD** COLUMN COLUMN LABELS LABEL LABEL LABEL **ROW GROUP LABEL ROW LABEL CELL** CELL **CELL TABLE STUB BODY** CELL **CELL CELL ROW LABEL** CELL **CELL** CELL SUMMARY LABEL **FOOTNOTES TABLE FOOTER SOURCE NOTES**

Resources

R Markdown Cookbook: Tables: A series of recipes using kable() and friends

gtsummary Website: Many vignettes to learn more about gtsummary

gt Website: Vignettes and a short course on learning gt