La(s) hoja(s) de Chema

1. Espacios métricos

Definición 1.1 δ : $M \times M \rightarrow \mathbb{R}$ es una métrica o **distancia** si cumple que

- $\delta(x, y) > 0$ si $x \neq y$, o $\delta(x, x) = 0$
- $\delta(x, y) = \delta(y, x)$
- $\delta(x, z) \le \delta(x, y) + \delta(y, z)$

Ejercicio 1.1 Por inducción, la desigualdad triangular se puede generalizar a: $\delta(p^1, p^n) \leq \delta(p^1, p^2) + \cdots + \delta(p^{n-1}, p^n)$

Teorema 1.4 Si $M' \subset M$ y existe el espacio métrico (M, δ) , entonces también existe (M', δ) , y se llama **métrica inducida** por (M, δ) .

Definición 1.5 Sean $(M, \delta), (M', \delta')$ y $g: M \rightarrow M'$. Se dice que g conserva las distancias si $\delta'(g(x), g(y)) = \delta(x, y) \ \forall \ x, y \in M$. Si además g es biyectiva, entonces es una **isometría**.

Teorema 1.7 Si existen (M, δ) , (M', δ') , (M'', δ'') y $g: M \to M'$ y $h: M \to M'$ son isometrías, entonces $h \circ g$ y g^{-1} también son isometrías.

Definición 1.8 La composición de isometrías forma un **grupo** pues

- $(g \circ h) \circ i = g \circ (h \circ i)$
- Si $g \in \text{Isom}(M)$ entonces $g^{-1} \in \text{Isom}(M)$
- La isometría identidad, $id_M \in Isom(M)$

Definición 1.12 Si (M, δ) , para $a, b \in M$ se llama **segmento** de extremos a y b y se representa por [a, b] al conjunto $[a, b] = \{x \in M \mid \delta(a, x) + \delta(x, b) = \delta(a, b)\}$. Asimismo, $x, y, z \in M$ están alineados si (x < y < z) $y \in [x, z]$.

Ejercicio 1.5 Para $\sigma \in \{1, -1\}$ y $\tau \in \mathbb{R}$, la aplicación $f(x) = \sigma x + \tau$ es una isometría para $(\mathbb{R}, d_{\mathbb{R}})$

Page intentionally left in blank

2. Axiomas para la geometría euclidiana plana

Axioma P1 Si tenemos el conjunto \mathbb{P} , denominado **plano**, y la aplicación $d : \mathbb{P} \times \mathbb{P} \to \mathbb{R}$ llamada **distancia**, entonces(\mathbb{P} , d) es un espacio métrico.

Definición 2.2 Una **recta** $r \subset \mathbb{P}$ satisface

- *r* contiene al menos dos puntos.
- Para toda terna de puntos *A*, *B*, *C*, están alineados si están en *r*.

Axioma P2 \mathbb{P} contiene al menos tres puntos no alineados; y por dos puntos distintos, A y B de \mathbb{P} pasa una recta, r_{AB} .

Definición 2.6 / Teorema 2.7 Dos rectas se cortan si sólo tienen un punto en común, y si no tienen ningún punto en común, entonces se denominan **paralelas**, y se denota por $a \parallel b$. Dos rectas, o se cortan o son paralelas.

⚠ **Axioma P3** Para toda recta $r \subset \mathbb{P}$ existe una biyección $\gamma : r \to \mathbb{R}$ tal que $|\gamma(X) - \gamma(Y)| = |x - y| = d(X, Y) \forall X, Y \in r$

Observación 2.8 Si $A, B \in r$ son distintos, entonces existe un punto $M \in r : d(A, M) = d(M, B)$ que denotamos por medio[A, B] y se llama **punto medio**. Asimismo sólo existe un punto $B \in r$ tal que B = medio[A, M].

Observación 2.9 Si r es una recta y $P \in r$, entonces r se puede dividir en dos **semirrectas**, que son los conjuntos $\{X \in r \mid \gamma(X) > \gamma(P)\}$ y $\{X \in r \mid \gamma(X) < \gamma(P)\}$.

Axioma P4 Para toda recta $r \subset \mathbb{P}$ hay dos subconjuntos H^1 y H^2 , denominados **semiplanos** de r, que verifican:

- $\blacksquare H^1 \cup H^2 = \mathbb{P} r$
- Si $X, Y \in H^i$ entonces $[X, Y] \subset H^i$
- Si $X \in H^1$ y $Y \in H^2$ entonces $[X, Y] \cap r \neq \emptyset$.

Definición 2.15 Sean P,Q,R no alineados, entonces el triángulo $\triangle \{P,Q,R\}$, o $\triangle PQR$ está formado por los segmentos [P,Q], [Q,R], [P,R], llamados lados, y los vértices P,Q,R.

Teorema 2.16 [Axioma de Pasch]a Dado un triángulo $\triangle PQR$ y una recta r; si r corta a [P,Q], entonces o corta a [P,R] o a [Q,R].

Definición 2.17 = 1.5 Una **isometría** en \mathbb{P} es una biyección $g: \mathbb{P} \to \mathbb{P}$ que cumple que $d(g(X), g(Y)) = d(X, Y) \ \forall \ X, Y \in \mathbb{P}$.

Teorema 2.18 Si $A, B \in \mathbb{P}$ y $g \in \text{Isom}(\mathbb{P})$ entonces g([A, B]) = [g(A), g(B)] y $g(r_{AB}) = r_{g(A)g(B)}$

Axioma P5 Si $A_1, A_2 \in \mathbb{P}$ y $B_1, B_2 \in \mathbb{P}$ son dos pares de puntos que cumplen $d(A_1, A_2) = d(B_1, B_2)$ entonces existe $g \in \text{Isom}(\mathbb{P})$ tal que $g(A_i) = B_i$. Se dice que esos pares de puntos son **congruentes**.

Axioma P6 Para toda recta r existe una isometría σ llamada **reflexión** tal que

- $\sigma(X) = X \iff X \in r$
- $\sigma \circ \sigma = Id$

Definición 2.23 / Teorema 2.25 / Corolario 2.30

Una recta l es **ortogonal** a r si para todo $S \in l$ y para todo par de puntos A, B que cumple que M = medio[A, B], de modo que $l \cap r = M$, entonces se da que d(A, S) = d(S, B). Se denota $l \perp_M r$. En estas condiciones, $l = \{X \in \mathbb{P} \mid d(S, A) = d(S, B)\}$, se denomina **mediatriz** de [A, B].

Lema 2.21 Si σ_r entonces, para todo X, medio $[X, \sigma_r(X)] \in r$.

Observación 2.24 Si $l \perp r$ y $g \in \text{Isom}(\mathbb{P})$ entonces $g(l) \perp g(r)$.

Teorema 2.26 Si $l, r \subset \mathbb{P}$ cortan en M y σ_l, σ_r son dos reflexiones de l y r, entonces se cumple que $l \perp_M r \iff r \perp_M l \iff \sigma_r(l) = l \iff \sigma_l(r) = r$.

Teorema 2.27 / 2.29 Para toda recta r y todo punto $S \in \mathbb{P} - r$, existe una recta l ortogonal a r, que pasa por S. Si r es una recta, y $M \in r$, entonces existe l tal que $l \perp_M r$.

Axioma P7 Para toda recta *r* y todo punto *P* existe

sólo una recta **paralela** a r que pase por P.

Teorema 2.31/2.33 Si $a \perp l$ y $b \perp l$ entonces $a \parallel b$. Sean $a \parallel b$. Entonces, para todo $A \in a$, la única recta $l \perp_A a$ también es ortogonal a b.

Teorema 2.32 Las rectas parallelas forman una relación de recurrencia.

- Reflexividad: $a \parallel a$
- Simetría: $a \parallel b \rightarrow b \parallel a$
- Transitividad $a \parallel b$ y $b \parallel c \rightarrow a \parallel c$

Ejercicio 2.6 Sean $A, B \in r$, $A \neq B$. Para todo t, existe un único $P_t \in r$ que cumple $d(P_t, A) = |t|$ y $d(P_t, B) = |t - d(A, B)|$. En definitiva, la posición de P_t está sólamente determinada por las distancias $d(A, P_t)$ y $d(P_t, B)$.

3. Isometrías del plano

Definición 3.1 Para una aplicación $\phi : \mathcal{M} \to \mathcal{M}$, $P \in \mathcal{M}$ es un **punto fijo** de ϕ si $\phi(P) = P$; y $\mathcal{D} \subset \mathcal{M}$ es un **subconjunto invariante** de ϕ si $\phi(\mathcal{D}) = \mathcal{M}$.

Lema 3.2 Si $g \in \text{Isom}(\mathbb{P})$ y $A \neq B$ son dos puntos fijos de g, entonces todo $X \in r_{AB}$ es punto fijo de g.

Definición 3.3 Si $g, g' \in \text{Isom}(\mathbb{P})$, g y g' son **conjugadas** si existe una isometría h tal que $gh = hg' \iff g = hg'h^{-1}$.

Teorema 3.4 Un punto P es fijo de g sii $h^{-1}(P)$ es un punto fijo de g'. Es decir

Demostración. Si $h^{-1}(P)$ es punto fijo de g', entonces $g'(h^{-1}(P)) = h^{-1}(P)$. Por tanto, $g(P) = hg'h^{-1}(P) = hh^{-1}(P) = P$, luego g(P) = P.

Ejemplo 3.5 Una reflexión sobre *r* cumple que

- $\sigma_r \circ \sigma_r = \mathrm{id}_{\mathbb{P}} \ \mathrm{y} \ \sigma_r(X) = X \iff X \in r \ (Axioma P6)$
- $\sigma_r(H^1) = H^2$ y viceversa.
- X y $\sigma_r(X)$ se encuentran en una recta ortogonal a r.

Teorema 3.9 Llamamos ρ una **rotación** a una isometría que tiene un punto fijo C. Para toda recta a pasando por C existen dos rectas b, b' únicas tales que $\rho = \sigma_b \sigma_a = \sigma_a \sigma_{b'}$.

Ejercicio 3.1 Llamamos τ una **traslación** a una isometría que no tiene puntos fijos y deja una recta c invariante, es decir, $\tau(c)=c$. entonces para toda recta $a\perp c$ existen dos rectas $b,b'\perp c$ que cumplen $\tau=\sigma_b\sigma_a=\sigma_a\sigma_{b'}$. Además, si $\tau(l)=l$, entonces $l\parallel c$.

Ejercicio 3.2 Si $\mathcal{R}_P(\mathbb{P}) = \{g \in \text{Isom}(\mathbb{P}) \mid g \text{ es rotación de centro } P\} \cup \{id_{\mathbb{P}}\} \text{ entonces}$

- Si a es una recta que pasa por P, entonces $g^{-1} = \sigma_a g \sigma_a$.
- gh = hg para todo $g, h \in \mathcal{R}_P(\mathbb{P})$.
- Para $X \in \mathbb{P} \{P\}$ y g(X) = h(X) entonces g = h.

Ejercicio 3.3 Si *h* es una isometría

- Si $g \in \mathcal{R}_P(\mathbb{P})$ entonces $hgh^{-1} \in \mathcal{R}_{h(P)}(\mathbb{P})$
- Si r es una recta entonces $h\sigma_r h^{-1} = \sigma_{h(r)}$

Ejercicio 3.3 Si a, b son rectas en \mathbb{P}

- \bullet $\sigma_a \sigma_b \sigma_a = \sigma_{a(b)}$
- $\bullet \ \sigma_a \sigma_b = \sigma_b \sigma_a \iff a \perp b$

Ejemplo 3.12 Sean a, b tales que $a \perp_P b$. Entonces la rotación es de 180° y se llama **reflexión central** si se denota como σ_P . Cumple las siguientes propiedades.

- $\sigma_P \sigma_P = id_P$
- Para todo X, $\sigma_P(X)$ es el único punto que cumple $P = \text{medio}[X, \sigma_P(X)]$.
- σ_P es independiente de la elección de rectas $a \perp b$.

Teorema 3.13 Las rectas $r y \sigma_P(r)$ son paralelas.

Ejemplo 3.14 Una **reflexión con deslizamiento** ϕ es una composición de una reflexión σ_c y una

traslación τ : $\phi = \tau \sigma_c$. ϕ deja invariante sólo la recta c, y no tiene ningún punto invariante.

Teorema 3.15 Una isometría solo puede pertenecer a una de las de la tabla, y es una combinación de un número par o impar de reflexiones σ :

	Con puntos fijos	Sin puntos fijos
par	ho	au
impar	σ	ϕ

Teorema 3.16 Si g, g' son isometrías conjugadas, tienen la misma paridad.

4. Ángulos

Definición 4.1 Sean r, l dos rectas con un punto V en común. Sean \overline{r} y \overline{l} dos semirrectas determinadas por V en r y l. El par $\{\overline{l}, \overline{r}\}$ es un **ángulo**. V es el vértice del ángulo y \overline{l} y \overline{r} son los lados del ángulo. El ángulo se designa por $\angle\{\overline{l}, \overline{r}\}$ o, si no hay lugar a confusión, $\angle V$. Así, por ejemplo, dado un triángulo $\triangle PQR$, $\angle P$ es el ángulo formado por P con [P,Q] y [P,R].

Observación 4.4 Si r = l, y \overline{r}_1 y \overline{r}_2 son las semirrectas determinadas por V, entonces, en estas circunstancias, el ángulo $\angle \{\overline{r}_1, \overline{r}_2\}$ se denomina **ángulo llano** y $\angle \{\overline{r}_1, \overline{r}_1\}$ se denomina **ángulo nu-lo**.

Definición 4.5 Un ángulo $\angle\{\bar{l}, \bar{r}\}$ y un ángulo $\angle\{\bar{l}', \bar{r}'\}$ son **congruentes** si existe una isometría g tal que $g(\{\bar{l}, \bar{r}\}) = \{\bar{l}', \bar{r}'\}$. Todos los ángulos que son congruentes forman una **clase de congruencia** de ángulos. Empleando la notación de vértices, la congruencia se denota como $\angle A = \angle B$.

Observación 4.6/4.8 Si $\angle\{\overline{l}, \overline{r}\}$ tiene vértice V y $\angle\{\overline{l}', \overline{r}'\}$ tiene vértice V', y g es una isometría tal que $g(\{\overline{l}, \overline{r}\}) = \{\overline{l}', \overline{r}'\}$, entonces g(V) = V'. Asimismo, si existe una isometría h que hace h(V) = V', entonces $h(\{\overline{l}, \overline{r}\}) = \{\overline{l}', \overline{r}'\}$.

Ejemplo 4.9 Consideramos las rectas $a \neq b$ que cortan en V, con sus respectivas semirrectas $\overline{a}_1, \overline{a}_2, \overline{b}_1, \overline{b}_2$. Consideramos $\angle \{\overline{a}_1, \overline{b}_1\}$ y elegimos los puntos $A \in \overline{a}_1, B \in \overline{b}_1$ a igual distancia, d(V, A) = d(V, B). Existe una recta $l \perp r_{AB}$ que pasa por V (**Teorema 2.25/2.29**, que denominamos **bisectriz**. La bisectriz l cumple que $\sigma_l(A) = B, \sigma_l(\overline{a}_1) = \overline{b}_1$ y viceversa. Además, si \overline{l} es la semirrecta que corta a [A, B], entonces $\angle \{\overline{a}_1, \overline{l}\} = \angle \{\overline{b}_1, \overline{l}\}$.

Teorema 4.11 Sean a, b que cortan en V. El ángulo $\angle \{\overline{a}_1, \overline{b}_1\}$ es congruente con $\angle \{\overline{a}_2, \overline{b}_2\}$ y se denominan **ángulos opuestos por el vértice**.

Teorema 4.13/Definición 4.23 Sean $l \perp_V r y l' \perp_{V'} r'$. Entonces $\angle \{\bar{l}, \bar{r}\} y \angle \{\bar{l}', \bar{r}'\}$ son congruentes. En este caso, los ángulos $\angle \{\bar{l}, \bar{r}\} y \angle \{\bar{l}', \bar{r}'\}$ son **ángulos rectos**. Un ángulo es **agudo** si es menor que un recto, y **obtuso** si es mayor.

Definición 4.15 Si $\angle \{\overline{l}, \overline{r}\}$ no es ni nulo ni llano, y H_l^1 es el semiplano que contiene a \overline{r} , y H_r^1 es el semiplano que contiene a \overline{l} , entonces el ángulo $\angle \{\overline{l}, \overline{r}\}$ y $\angle \{\overline{l}, \overline{r}\}$ viene determinado como el conjunto $H_l^1 \cap H_r^1$.

Teorema 4.18 [De la barra transversal] Sea $\angle\{\overline{l}, \overline{r}\}\$ con vértice V y sean $L \in \overline{l}, R \in \overline{r}$. Una semirrecta $\overline{s}, V \in \overline{s}$ está dentro de $\angle\{\overline{l}, \overline{r}\}$ sii corta a $[L, R] - \{L, R\}$.

Definición 4.19 (Comparación de ángulos) Dados $\angle \{\overline{a}, \overline{b}\}$ y $\angle \{\overline{c}, \overline{d}\}$, se dice que $\angle \{\overline{a}, \overline{b}\}$ es menor que $\angle \{\overline{c}, \overline{d}\}$, $\angle \{\overline{a}, \overline{b}\} \prec \angle \{\overline{c}, \overline{d}\}$, si existe una isometría g tal que $g(\overline{a}) = \overline{c}$ y que $g(\overline{b})$ está en el interior de $\angle \{\overline{c}, \overline{d}\}$

Teorema 4.21 Si existen 4 ángulos tales que $\angle \{\overline{a}, \overline{b}\} = \angle \{\overline{a}', \overline{b}'\}$ y $\angle \{\overline{c}, \overline{d}\} = \angle \{\overline{c}', \overline{d}'\}$, y $\angle \{\overline{a}, \overline{b}\} < \angle \{\overline{c}, \overline{d}\}$, entonces $\angle \{\overline{a}', \overline{b}'\} < \angle \{\overline{c}', \overline{d}'\}$.

Teorema 4.22 Dados $\angle \{\overline{a}, \overline{b}\}$ y $\angle \{\overline{c}, \overline{d}\}$, entonces $\angle \{\overline{a}, \overline{b}\} \prec \angle \{\overline{c}, \overline{d}\}$, $\angle \{\overline{a}, \overline{b}\} = \angle \{\overline{c}, \overline{d}\}$, o $\angle \{\overline{a}, \overline{b}\} \succ \angle \{\overline{c}, \overline{d}\}$.

Definición 4.25 Sea $\angle \{\overline{a}, \overline{c}\}$ con vértice V y \overline{b} una semirrecta en el interior de $\angle \{\overline{a}, \overline{c}\}$. Entonces $\angle \{\overline{a}, \overline{c}\}$ es la **suma** de $\angle \{\overline{a}, \overline{c}\}$ y $\angle \{\overline{a}, \overline{b}\}$, o $\angle \{\overline{b}, \overline{c}\}$ = $\angle \{\overline{a}, \overline{b}\} + \angle \{\overline{b}, \overline{c}\}$

Definición 4.26 Para tres ángulos $\angle U$, $\angle V$, $\angle W$, decimos que $\angle V = \angle U + \angle W$ si existe una descomposición $\angle V = \angle \{\overline{a}, \overline{c}\}$, $\angle U = \angle \{\overline{a}, \overline{b}\}$, $\angle W = \angle \{\overline{b}, \overline{c}\}$.

Definición 4.28 Dado $\triangle PQR$, el lado [R,Q] y el ángulo $\angle P$ son **opuestos**.

Definición 4.29 / Teorema 4.30 Un triángulo **isósceles** tiene dos lados congruentes. Si $\triangle PQR$ es isósceles y [P,Q] es congruente con [P,R], existe una reflexión σ tal que $\sigma(P) = P, \sigma(Q) = R, \sigma(R) = Q$, la bisectriz de $\angle P$. Esa isometría que deja invariante el triángulo se denomina **simetría**.

Definición 4.34 / **Teorema 4.35** Un triángulo es **equilátero** si todos sus lados son congruentes. En este caso hay una rotación ρ tal que $\rho(P) = Q, \rho(Q) = R, \rho(R) = P$.

Definición 4.39 Sean $a \parallel b$ y c una recta que corta a a en A y a b en B. El par de ángulos $\angle A$, $\angle B$ de la figura son ángulos **alternos-internos**.

Esta obra está bajo una licencia Creative Commons "Reconocimiento-NoCommercial-NoDerivs 3.0 España".

