WS 2010/11

Klausur am 26.03.2011:

Aufgabenstellungen

Die Lösungen aller Aufgaben müssen Sie begründen.

Aufgabe 1

Beweisen Sie mit vollständiger Induktion, dass $n^2 > n+1$ für alle $n \in \mathbb{N}$ mit $n \ge 2$ gilt.

[8 Punkte]

Aufgabe 2

Sei
$$A = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & -1 \end{pmatrix} \in M_{33}(\mathbb{R})$$
. Berechnen Sie die zu A inverse Matrix.

[6 Punkte]

Aufgabe 3

Sei
$$n \in \mathbb{N}$$
, und sei \mathbb{K} ein Körper. Für alle $A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \in \mathcal{M}_{nn}(\mathbb{K})$ sei

 $\operatorname{Spur}(A)$ definiert durch $\operatorname{Spur}(A) = \sum_{i=1}^{n} a_{ii}$, also die Summe der Diagonalelemente von A.

- 1. Beweisen Sie, dass $V_n = \{A \in M_{nn}(\mathbb{K}) \mid \text{Spur}(A) = 0\}$ ein Unterraum von $M_{nn}(\mathbb{K})$ ist.
- 2. Bestimmen Sie eine Basis von $V_2 = \{A \in M_{22}(\mathbb{K}) \mid \operatorname{Spur}(A) = 0\}.$

 $[4 + 8 = 12 \ Punkte]$

Aufgabe 4

Sei V ein endlich erzeugter \mathbb{K} -Vektorraum, und sei $a_0 \in \mathbb{K}$ fest gewählt. Sei $f_{a_0} : V \to V$ definiert durch $f_{a_0}(v) = a_0 v$ für alle $v \in V$.

- 1. Beweisen Sie, dass f_{a_0} linear ist.
- 2. Bestimmen Sie die Dimension von Kern (f_{a_0}) und von Bild (f_{a_0}) .

 $[2 + 8 = 10 \ Punkte]$

Klausuraufgaben MG KL

Aufgabe 5

Begründen Sie, warum Sie bei der Berechnung des folgenden Grenzwertes die Regel von de l'Hospital anwenden dürfen, und berechnen Sie den Grenzwert:

$$\lim_{x \to 3} \frac{x^3 - 27}{x - 3}$$

[4 Punkte]

Aufgabe 6

Sei $f:[0,1]\to\mathbb{R}$ definiert durch $f(x)=\sqrt{x(1-x)}$ für alle $x\in[0,1]$. Bestimmen Sie alle $x\in[0,1]$, bei denen Minima oder Maxima vorliegen.

[10 Punkte]

Aufgabe 7

Bestimmen Sie den Grenzwert der Reihe $\sum_{n=1}^{\infty} (\frac{1}{3^n} + \frac{1}{n(n+1)}).$

Hinweis: Möglicherweise ist folgende Gleichung hilfreich: $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$.

[12 Punkte]

Aufgabe 8

Untersuchen Sie, ob die Reihe $\sum_{n=1}^{\infty} \frac{n}{17^n}$ konvergiert.

[6 Punkte]

Aufgabe 9

Seien A, B, C, D Atome. Überführen Sie

$$\neg(A \vee \neg C \to \neg B) \vee (C \wedge B \to D)$$

schrittweise in eine Negations- und diese dann in eine disjunktive Normalform mit möglichst wenig Konjunktionen.

Erläutern Sie stichwortartig die jeweils vorgenommenen Äquivalenzumformungen, und benennen Sie Ihre Ergebnisse.

[12 Punkte]

Klausuraufgaben MG KL

Funktion	Definitionsbereich	Stammfunktion
$x \mapsto x^n, n \in \mathbb{N}_0$	\mathbb{R}	$x \mapsto \frac{1}{n+1}x^{n+1}$
$x \mapsto x^{-n}, n \in \mathbb{N}, n \ge 2$	$\mathbb{R}\setminus\{0\}$	$x \mapsto \frac{1}{-n+1} x^{-n+1}$
$x \mapsto x^{-1}$	$(0,\infty)$	$x \mapsto \ln(x)$
$x \mapsto x^{-1}$	$(-\infty,0)$	$x \mapsto \ln(-x)$
$x \mapsto x^{\alpha}, \alpha \in \mathbb{R}, \alpha \neq -1$	$(0,\infty)$	$x \mapsto \frac{1}{\alpha + 1} x^{\alpha + 1}$
$x \mapsto \frac{1}{1+x^2}$	\mathbb{R}	$x \mapsto \arctan(x)$
$x \mapsto \frac{1}{\sqrt{1-x^2}}$	(-1,1)	$x \mapsto \arcsin(x)$
$x \mapsto \exp(x)$	\mathbb{R}	$x \mapsto \exp(x)$
$x \mapsto a^x, a > 0, a \neq 1$	\mathbb{R}	$x \mapsto \frac{1}{\ln(a)}a^x$
$x \mapsto \cos(x)$	\mathbb{R}	$x \mapsto \sin(x)$
$x \mapsto \sin(x)$	\mathbb{R}	$x \mapsto -\cos(x)$
$x \mapsto \frac{1}{\cos^2(x)}$	$((k-\frac{1}{2})\pi,(k+\frac{1}{2})\pi),k\in\mathbb{Z}$	$x \mapsto \tan(x)$
$x \mapsto \frac{1}{\sin^2(x)}$	$(k\pi,(k+1)\pi),k\in\mathbb{Z}$	$x \mapsto -\cot(x)$