Matrices

Definition 2.2.19 Let $A = (a_{ij})$ be $m \times n$. Then the transpose of \mathbf{A} , $\mathbf{A}^{\mathrm{T}} = (a_{ii})$ is $n \times m$.

Remark 2.2.21 Let $A = (a_{ij})$. It is symmetric if $a_{ij} = a_{ji}$ where for all i, j.

Theorem 2.2.22 Let A be $m \times n$. Let c be a scalar.

- $1. \ (\boldsymbol{A}^{\mathrm{T}})^{\mathrm{T}} = \boldsymbol{A}.$
- 2. If **B** is $m \times n$, then $(\mathbf{A} + \mathbf{B})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} + \mathbf{B}^{\mathrm{T}}$.
- 3. $(c\mathbf{A})^{\mathrm{T}} = c\mathbf{A}^{\mathrm{T}}$.
- 4. If **B** is $n \times p$, then $(AB)^{T} = B^{T}A^{T}$.

Definition 2.3.2 Let A be $n \times n$. It is invertible there exists a $n \times n$ **B** such that AB = I and BA = I. By Theorem 2.3.5, B is uniquely defined by A. By Theorem 2.4.12, we only need to verify either one of AB = I or BA = I.

Theorem 2.3.9 Let A, B be two invertible matrices of the same size. Let c be a scalar.

- 1. cA is invertible, $(cA)^{-1} = \frac{1}{2}A^{-1}$.
- 2. \mathbf{A}^{T} is invertible, $(\mathbf{A}^{\mathrm{T}})^{-1} = (\mathbf{A}^{-1})^{\mathrm{T}}$.
- 3. A^{-1} is invertible, $(A^{-1})^{-1} = A$.
- 4. AB is invertible, $(AB)^{-1} = B^{-1}A^{-1}$.

Remark Let A, B, \dots, Z be invertible matrices. Then

$$(\boldsymbol{A}\boldsymbol{B}\cdots\boldsymbol{Z})^{-1}=\boldsymbol{Z}^{-1}\cdots\boldsymbol{B}^{-1}\boldsymbol{A}^{-1}$$

Definition 2.4.3 A square matrix is an elementary matrix if it can be obtained from I with a single ero. Elementary matrices are invertible and their inverses are also elementary matrices.

Determinants

Theorem 2.4.14 Let A, B be two square matrices of the same order. If A is singular, then AB and BA are singular.

Definition 2.5.2 The determinant of a $n \times n$ square matrix **Theorem 2.5.25** If A is invertible, then A^{-1} \boldsymbol{A} is defined as:

$$\det(\mathbf{A}) = \begin{cases} a_{11} & \text{if } n = 1\\ a_{11}A_{11} + a_{12}A_{12} + \dots + a_{1n}A_{1n} & \text{if } n > 1 \end{cases}$$

$$A_{ij} = (-1)^{i+j} \det(\boldsymbol{M_{ij}})$$

where M_{ij} is a $(n-1) \times (n-1)$ matrix obtained from A by deleting the *i*th row and *j*th column. The scalar value A_{ij} is called the (i, j)-cofactor of A.

Theorem 2.5.8 If A is triangular, then det(A) is the product of diagonal entries along A.

Theorem 2.5.10 If **A** is a square matrix, then det(A) = $\det(\boldsymbol{A}^{\mathrm{T}}).$

Theorem 2.5.15 Let A, B be square matrices of the same order.

- 1. If B is obtained from A by multiplying one row of A by a constant k, then $det(\mathbf{B}) = k \det(\mathbf{A})$.
- 2. If B is obtained from A by interchanging two rows of A, then $det(\mathbf{B}) = -det(\mathbf{A})$.
- 3. If B is obtained from A by adding a multiple of one row of A to another row, then det(B) = det(A).
- 4. Let E be an elementary matrix of the same size as A. Then $det(\mathbf{E}\mathbf{A}) = det(\mathbf{E}) det(\mathbf{A})$.

Remark 2.5.18 By Theorem 2.5.10, Theorem 2.5.15 holds for eco.

Theorem 2.5.22 Let A, B be square matrices of order n. and c a scalar. Then

- 1. $\det(c\mathbf{A}) = c^n \det(\mathbf{A})$.
- 2. $\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A})\det(\mathbf{B})$.
- 3. If **A** invertible, then $\det(\mathbf{A}^{-1}) = \frac{1}{\det(\mathbf{A})}$.

Definition 2.5.24 The adjoint of a square matrix A is defined as:

$$\operatorname{adj}(\boldsymbol{A}) = (A_{ij})_{n \times n}^{\mathrm{T}}$$

where A_{ij} is the (i, j)-cofactor of A.

 $\frac{1}{\det(\boldsymbol{A})} \operatorname{adj}(\boldsymbol{A}).$

Theorem 2.5.27 (Cramer's Rule) Suppose Ax = b is a linear system where \mathbf{A} is $n \times n$. Let \mathbf{A}_i be the matrix obtained from A, by replacing the *i*th column of A by b. If A is invertible, then the system has only one solution

$$oldsymbol{x} = rac{1}{\det(oldsymbol{A})} egin{pmatrix} \det(oldsymbol{A_1}) \ \det(oldsymbol{A_2}) \ \vdots \ \det(oldsymbol{A_n}) \end{pmatrix}$$

Vector Spaces

Definition 3.2.3 Let $S = \{u_1, u_2, \dots, u_k\}$ be a set of vectors in \mathbb{R}^n . Then the set of all linear combinations of $u_1, u_2, \cdots, u_k,$

$$\{c_1 u_1 + c_2 u_2 + \cdots + c_k u_k \mid c_1, c_2, \cdots, c_k \in \mathbb{R}\}$$

is the linear span of S, and is denoted by span(S).

Theorem 3.2.10 Let $S_1 = \{u_1, u_2, \dots, u_k\}$ and $S_2 =$ $\{v_1, v_2, \cdots, v_m\}$. Then $\operatorname{span}(S_1) \subset \operatorname{span}(S_2) \Leftrightarrow \operatorname{each} u_i$ is a linear combination of v_1, v_2, \cdots, v_m . We verify by ensuring the following augmented matrix is consistent:

Definition 3.3.1 Let V be a subset of \mathbb{R}^n . Then V is a subspace of \mathbb{R}^n if V = span(S), where $S = \{u_1, u_2, \cdots, u_k\}$ for some vectors $u_1, u_2, \cdots, u_k \in \mathbb{R}^n$.

Remark 3.3.8 A subspace is alternatively defined as a nonempty subset of \mathbb{R}^n that is closed under vector addition and scalar multiplication.

Definition 3.4.2 Let $S = \{u_1, u_2, \dots, u_k\}$ be a set of vectors in \mathbb{R}^n . Consider the equation

$$c_1\boldsymbol{u_1} + c_2\boldsymbol{u_2} + \dots + c_k\boldsymbol{u_k} = \mathbf{0}$$

where c_1, c_2, \cdots, c_k are variables. Then

1. S is a linearly independent set and u_1, u_2, \cdots, u_k are said to be linearly independent if the above equation has only the trivial solution.

trivial solutions.

Definition 3.5.4 Let $S = \{u_1, u_2, \dots, u_k\}$ be a subset of a vector space V. Then S is a basis for V if S is linearly independent. dent and S spans V.

Theorem 3.6.1 Let V be a vector space which has a basis with k vectors. Then

- 1. any subset of V with more than k vectors is always linearly dependent;
- 2. any subset of V with less than k vectors cannot span V.

Definition 3.6.3 The dimension of a vector space V, denoted by $\dim(V)$, is defined to be the number of vectors in a basis for V. In addition, we define the dimension of the zero space to be zero.

Theorem 3.6.7 Let V be a vector space of dimension k and $S \subseteq V$. TFAE:

- 1. S is a basis for V.
- 2. S is linearly independent and |S| = k.
- 3. S spans V and |S| = k.

Theorem 3.6.9 Let U be a subspace of a vector space V.

- 1. $\dim(U) \leq \dim(V)$.
- 2. If $U \neq V$, then $\dim(U) < \dim(V)$.
- 3. If $\dim(U) = \dim(V)$, then U = V.

Notation Let $S = \{v_1, v_2, \dots, v_k\}$ so that V = span(S) and $T = \{ \boldsymbol{w_1}, \boldsymbol{w_2}, \cdots, \boldsymbol{w_k} \}$ so that $W = \operatorname{span}(T)$. Then

$$V + W = \operatorname{span}(S \cup T)$$

Exercise 3.43 Let V and W be subspaces of \mathbb{R}^n . Then

$$\dim(V+W) = \dim(V) + \dim(W) - \dim(V \cap W)$$

2. S is a linearly dependent set and u_1, u_2, \dots, u_k are said Algorithm Let S be a linearly independent set, consisting of Discussion 3.7.2 (Excerpt) Let $S = \{u_1, u_2, \dots, u_k\}$ and to be linearly dependent if the above equation has non-vectors from \mathbb{R}^n . Let |S| < N. To extend a basis S to \mathbb{R}^n ,

- 1. Form a matrix A using the vectors in S as rows
- 2. Reduce \boldsymbol{A} to a row-echelon form \boldsymbol{R}
- 3. Identify non-pivot columns
- 4. For each non-pivot column, pick a vector from the standard basis of \mathbb{R}^n such that the '1' is exactly at the position of the non-pivot column
- 5. $S \cup (\text{vectors obtained in Step 4})$ is a basis for \mathbb{R}^n .

Transition Matrices

Definition 3.5.8 Let $S = \{u_1, u_2, \dots, u_k\}$ be a basis for a vector space V, and let $v \in V$. By Theorem 3.5.7, v is expressed uniquely as a linear combination

$$\boldsymbol{v} = c_1 \boldsymbol{u_1} + c_2 \boldsymbol{u_2} + \dots + c_k \boldsymbol{u_k}$$

and c_1, c_2, \dots, c_k are the coordinates of v relative to the basis

$$(\boldsymbol{v})_S = (c_1, c_2, \cdots, c_k) \in \mathbb{R}^k$$

is the coordinate vector of v relative to the basis S.

Remark 3.5.10 Let S be a basis for a vector space V.

- 1. For any $\boldsymbol{u}, \boldsymbol{v} \in V$, $\boldsymbol{u} = \boldsymbol{v} \Leftrightarrow (\boldsymbol{u})_S = (\boldsymbol{v})_S$.
- 2. For any $v_1, v_2, \dots, v_r \in V$ and $c_1, c_2, \dots, c_r \in \mathbb{R}$,

$$(c_1 \boldsymbol{v_1} + c_2 \boldsymbol{v_2} + \dots + c_r \boldsymbol{v_r})_S$$

= $c_1(\boldsymbol{v_1})_S + c_2(\boldsymbol{v_2})_S + \dots + c_r(\boldsymbol{v_r})_S$

Notation 3.7.1 Sometimes, it is more conveient to write the coordinate vector in the form of a column vector. Thus we define

$$[\boldsymbol{v}]_S = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{pmatrix}$$

and it is also the coordinate vector of v relative to S. Note the difference in notation from Definition 3.5.8.

 $T = \{v_1, v_2, \dots, v_k\}$ be two bases for a vector space V. Since they are both bases, then we can write each u_i as a linear combination of v_1, v_2, \cdots, v_k , i.e.

$$u_1 = a_{11}v_1 + a_{21}v_2 + \cdots + a_{k1}v_k$$

 $u_2 = a_{12}v_1 + a_{22}v_2 + \cdots + a_{k2}v_k$
 \vdots
 $u_k = a_{1k}v_1 + a_{2k}v_2 + \cdots + a_{kk}v_k$

Then

$$m{P} = egin{pmatrix} a_{11} & a_{21} & \cdots & a_{k1} \ a_{12} & a_{22} & \cdots & a_{k2} \ dots & dots & dots \ a_{1k} & a_{2k} & \cdots & a_{kk} \end{pmatrix} \ = egin{pmatrix} [m{u_1}]_T & [m{u_2}]_T & \cdots & [m{u_k}]_T \end{pmatrix}$$

is the transition matrix from S to T, and for every $\boldsymbol{w} \in V$,

$$[\boldsymbol{w}]_T = \boldsymbol{P}[\boldsymbol{w}]_S$$

Remark Alternatively, we can do the following to find P.

$$egin{pmatrix} \left(oldsymbol{v_1} & oldsymbol{v_2} & \cdots & oldsymbol{v_k} \mid oldsymbol{u_1} \mid oldsymbol{u_2} \mid \cdots \mid oldsymbol{u_k}
ight) \ & \overset{ ext{GJE}}{\longrightarrow} \left(egin{bmatrix} & oldsymbol{I} & oldsymbol{P} & oldsymbol{p} & oldsymbol{v_1} & oldsymbol{P} & oldsymbol{0} & \cdots & oldsymbol{0} \ 0 & \cdots & 0 & oldsymbol{0} & \cdots & 0 \end{array}
ight)$$

There may or may not be zero rows at the bottom of the augmented matrix after GJE.

- 1. If $u_1, u_2, \dots, u_k, v_1, v_2, \dots, v_k \in \mathbb{R}^m$ where m > k, then there are zero rows. Just take the square matrix bounded to the right by the augmented line and the number of
- 2. If $u_1, u_2, \dots, u_k, v_1, v_2, \dots, v_k \in \mathbb{R}^k$ then there are no zero rows.

Vector Spaces of Matrices

Definition 4.1.2 Let $A = (a_{ij})$ be $m \times n$. The row space of A is the subspace of \mathbb{R}^n spanned by the rows of A. The column space of A is the subspace of \mathbb{R}^m spanned by the columns of A.

Theorem 4.1.17 Let A and B be row equivalent matrices. Then the row space of A and the row space of B are identical, i.e. elementary row operations preserve the row space of a matrix.

Theorem 4.1.11 Let A and B be row equivalent matrices. Then

- 1. A given set of columns of A is linearly independent if and only if the set of corresponding columns of B is linearly independent.
- 2. A given set of columns of A forms a basis for the column space of A if and only if the set of corresponding columns of B forms a basis for the column space of B.

Theorem 4.1.16 Let A be $m \times n$. Then

the column space of
$$\mathbf{A} = {\mathbf{A}\mathbf{u} \mid \mathbf{u} \in \mathbb{R}^n}$$

Hence a system of linear equations Ax = b is consistent if and only if b lies in the column space of A.

Theorem 4.2.1 The row space and column space of a matrix have the same dimension.

Definition 4.2.3 The rank of a matrix is the dimension of its row space (or column space). We denote the rank of a ma- $\operatorname{trix} \mathbf{A}$ by $\operatorname{rank}(\mathbf{A})$. Note that $\operatorname{rank}(\mathbf{A})$ is equal to the number of nonzero rows as well as the number of pivot columns in a row-echelon form of A.

Remark 4.2.5

- 1. For a $m \times n$ matrix A, rank $(A) < \min\{m, n\}$. If equal, then \boldsymbol{A} has full rank.
- 2. A square matrix \mathbf{A} has full rank if and only if det $\mathbf{A} \neq 0$.
- 3. $rank(\mathbf{A}) = rank(\mathbf{A}^{T})$ because the row space of \mathbf{A} is the column space of A^{T} .

Theorem 4.2.8 Let **A** be $m \times n$, and **B** be $n \times p$. Then

$$rank(\mathbf{AB}) \le min\{rank(\mathbf{A}), rank(\mathbf{B})\}$$

Definition 4.3.1 Let **A** be $m \times n$. The solution space of Ax = 0 is the null space of A.

Theorem 4.3.4 Let A be a matrix with n columns. Then

$$rank(\boldsymbol{A}) + nullity(\boldsymbol{A}) = n$$

Theorem 4.3.6 Suppose Ax = b has a solution v. Then the solution set of the system is given by

 $M = \{ \boldsymbol{u} + \boldsymbol{v} \mid \boldsymbol{u} \text{ is an element of the null space of } \boldsymbol{A} \}$

Exercise 4.22 Let A be $m \times n$ and P be an invertible matrix Theorem 5.2.4 Let S be an orthogonal set of nonzero vecof order m. Then $rank(\mathbf{P}\mathbf{A}) = rank(\mathbf{A})$.

Exercise 4.23 Let **A** and **B** be two matrices of the same size. Then

$$rank(\boldsymbol{A} + \boldsymbol{B}) \le rank(\boldsymbol{A}) + rank(\boldsymbol{B})$$

Exercise 4.25 Let A be $m \times n$.

- 1. null space of $\mathbf{A} = \text{null space of } \mathbf{A}^{T} \mathbf{A}$
- 2. $\operatorname{nullity}(\boldsymbol{A}) = \operatorname{nullity}(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A})$
- 3. $\operatorname{rank}(\boldsymbol{A}) = \operatorname{rank}(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A})$

Orthogonality

Definition 5.1.2 Let $\boldsymbol{u} = (u_1, u_2, \dots, u_n)$ and $\boldsymbol{v} =$ (v_1, v_2, \cdots, v_n) be two vectors in \mathbb{R}^n .

1. The dot product (or inner product) of \boldsymbol{u} and \boldsymbol{v} is

$$\boldsymbol{u} \cdot \boldsymbol{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

2. The norm (or length) of \boldsymbol{u} is

$$||u|| = \sqrt{u \cdot u} = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}$$

Vectors of norm 1 are called unit vectors.

3. The distance between \boldsymbol{u} and \boldsymbol{v} is

$$d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}||$$

= $\sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_n - v_n)^2}$

4. The angle between \boldsymbol{u} and \boldsymbol{v} is

$$\cos^{-1}\left(\frac{oldsymbol{u}\cdotoldsymbol{v}}{||oldsymbol{u}||\,||oldsymbol{v}||}\right)$$

The angle is well defined because $-1 \le \frac{u \cdot v}{||u|| ||v||} \le 1$.

Remark 5.1.3 Let $u, v \in \mathbb{R}^n$. Then $u^{\mathrm{T}}v = u \cdot v = uv^{\mathrm{T}}$.

Definition 5.2.1

- 1. Two vectors \boldsymbol{u} and \boldsymbol{v} in \mathbb{R}^n are orthogonal if $\boldsymbol{u} \cdot \boldsymbol{v} = 0$.
- 2. A set S of vectors in \mathbb{R}^n is called orthogonal if every pair of distinct vectors in S are orthogonal.
- 3. A set S of vectors in \mathbb{R}^n is called orthonormal if S is orthogonal and every vector in S is a unit vector.

tors in a vector space. Then S is linearly independent.

Definition 5.2.5

- 1. A basis S for a vector space is called an orthogonal basis if S is orthogonal.
- 2. A basis S for a vector space is called an orthonormal basis if S is orthonormal.

Theorem 5.2.8

1. If $S = \{u_1, u_2, \dots, u_k\}$ is an orthogonal basis for a vector space V, then for any \boldsymbol{w} in V,

$$w = rac{w \cdot u_1}{u_1 \cdot u_1} u_1 + rac{w \cdot u_2}{u_2 \cdot u_2} u_2 + \cdots + rac{w \cdot u_k}{u_k \cdot u_k} u_k$$

i.e.
$$(w)_S = \left(\frac{w \cdot u_1}{u_1 \cdot u_1}, \frac{w \cdot u_2}{u_2 \cdot u_2}, \cdots, \frac{w \cdot u_k}{u_k \cdot u_k}\right).$$

2. If $T = \{v_1, v_2, \dots, v_k\}$ is an orthonormal basis for a vector space V, then for any vector \boldsymbol{w} in V.

$$\boldsymbol{w} = (\boldsymbol{w} \cdot \boldsymbol{v_1})\boldsymbol{v_1} + (\boldsymbol{w} \cdot \boldsymbol{v_2})\boldsymbol{v_2} + \cdots + (\boldsymbol{w} \cdot \boldsymbol{v_k})\boldsymbol{v_k}$$

i.e.
$$(\boldsymbol{w})_T = (\boldsymbol{w} \cdot \boldsymbol{v_1}, \boldsymbol{w} \cdot \boldsymbol{v_2}, \cdots, \boldsymbol{w} \cdot \boldsymbol{v_k}).$$

Remark Declare two orthonormal bases S and T, with S = $\{u_1, u_2, \cdots, u_k\}$ and $T = \{v_1, v_2, \cdots, v_k\}$. By Discussion 3.7.2,

$$P = ([u_1]_T \quad [u_2]_T \quad \cdots \quad [u_k]_T)$$

is the transition matrix from S to T. By Theorem 5.2.8.2, we can write P in the following manner:

$$P = \begin{pmatrix} u_1 \cdot v_1 & u_2 \cdot v_1 & \cdots & u_k \cdot v_1 \\ u_1 \cdot v_2 & u_2 \cdot v_2 & \cdots & u_k \cdot v_2 \\ \vdots & \vdots & & \vdots \\ u_1 \cdot v_k & u_2 \cdot v_k & \cdots & u_k \cdot v_k \end{pmatrix} = C_S^{\mathrm{T}} C_T$$

where C_S , C_T are matrices whose columns are vectors from S, Trespectively. Also note that $P^{T} = P^{-1}$ so the transition matrix from T to S can easily be found.

Definition 5.2.10 Let V be a subspace of \mathbb{R}^n . A vector $\boldsymbol{u} \in \mathbb{R}^n$ is orthogonal to V if \boldsymbol{u} is orthogonal to all vectors in V. **Definition 5.2.13** Let V be a subspace of \mathbb{R}^n . Every vector $u \in \mathbb{R}^n$ can be written uniquely as u = n + p such that n is orthogonal to V, and $\boldsymbol{p} \in V$. The vector \boldsymbol{p} is the (orthogonal) projection of \boldsymbol{u} onto V.

Theorem 5.2.15 Let V be a subspace of \mathbb{R}^n , and w a vector in \mathbb{R}^n . If $\{u_1, u_2, \dots, u_k\}$ is an orthogonal basis for V, then

$$rac{w\cdot u_1}{u_1\cdot u_1}u_1+rac{w\cdot u_2}{u_2\cdot u_2}u_2+\cdots+rac{w\cdot u_k}{u_k\cdot u_k}u_k$$

is the projection of \boldsymbol{w} onto V.

Theorem 5.2.19 Let $\{u_1, u_2, \dots, u_k\}$ be a basis for a vector space V. Let

$$egin{aligned} v_1 &= u_1 \ v_2 &= u_2 - rac{u_2 \cdot v_1}{v_1 \cdot v_1} v_1 \ &dots \ v_k &= u_k - rac{u_k \cdot v_1}{v_1 \cdot v_1} v_1 - rac{u_k \cdot v_2}{v_2 \cdot v_2} v_2 - \cdots - rac{u_k \cdot v_{k-1}}{v_{k-1} \cdot v_{k-1}} v_{k-1} \end{aligned}$$

Then $\{u_1, u_2, \dots, u_k\}$ is an orthogonal basis for V. We can normalize the vectors if we want an orthonormal basis.

Theorem 5.3.2 Let V be a subspace in \mathbb{R}^n . If u is a vector in \mathbb{R}^n and \boldsymbol{p} is the projection of \boldsymbol{u} onto V, then

$$d(\boldsymbol{u}, \boldsymbol{p}) \le d(\boldsymbol{u}, \boldsymbol{v})$$
 for all $\boldsymbol{v} \in V$

i.e. p is the best approximation of u in V.

Theorem 5.3.8 Let Ax = b be a linear system where A is $m \times n$. Let **p** be the projection of **b** onto the column space of \boldsymbol{A} . Then

$$||\boldsymbol{b} - \boldsymbol{p}|| \le ||\boldsymbol{b} - \boldsymbol{A}\boldsymbol{v}||$$
 for all $\boldsymbol{v} \in V$

i.e. u is a least squares solution to Ax = b if and only if Au=p.

Theorem 5.3.10 Let Ax = b be a linear system. Then u is a least squares solution to Ax = b if and only if u is a solution is denoted by E_{λ} . to $\mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x} = \mathbf{A}^{\mathrm{T}} \mathbf{b}$.

Definition 5.4.3 A square matrix A is orthogonal if $A^{-1} =$ $\boldsymbol{A}^{\mathrm{T}}$.

- 1. **A** is orthogonal.
- 2. The rows of **A** form an orthonormal basis for \mathbb{R}^n .
- 3. The columns of **A** form an orthonormal basis for \mathbb{R}^n .

Exercise 5.7 Let W be a subspace of \mathbb{R}^n . Define $W^{\perp} =$ $\{\boldsymbol{u} \in \mathbb{R}^n \mid \boldsymbol{u} \text{ is orthogonal to } W\}$. Then W^{\perp} is a subspace of \mathbb{R}^n . From HW3, W and W^{\perp} are disjoint and $W + W^{\perp} = \mathbb{R}^n$.

Eigenvalues and Eigenvectors

Definition 6.1.3 Let A be a square matrix of order n. Let $\boldsymbol{u} \in \mathbb{R}^n$ be a non-zero column vector. If $\boldsymbol{A}\boldsymbol{u} = \lambda \boldsymbol{u}$ for some scalar λ , then u is an eigenvector of A associated with the eigenvalue λ .

Definition 6.1.6 Let A be a square matrix of order n. The equation $\det(\lambda I - A) = 0$ is the characteristic equation of A. The polynomial $\det(\lambda \mathbf{I} - \mathbf{A})$ is the characteristic polynomial of

Theorem 6.1.8 Let A be $n \times n$. TFAE:

- 1. **A** is invertible.
- 2. $\mathbf{A}\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 3. RREF of \boldsymbol{A} is the identity matrix.
- 4. A can be expressed as a product of elementary matrices.
- 5. $\det(\mathbf{A}) \neq 0$.
- 6. The rows of **A** form a basis for \mathbb{R}^n .
- 7. The columns of **A** form a basis for \mathbb{R}^n
- 8. $\operatorname{rank}(\mathbf{A}) = n$ (i.e. $\operatorname{nullity}(\mathbf{A}) = 0$).
- 9. 0 is not an eigenvalue of A.

Theorem 6.1.9 If A is triangular, the eigenvalues of A are the diagonal entries of A.

Definition 6.1.11 Let A be a square matrix of order n and λ an eigenvalue of A. Then the solution space of $(\lambda I - A)x = 0$ is the eigenspace of A associated with the eigenvalue λ and it

Definition 6.2.1 A square matrix A is diagonalizable if there exists an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix.

Theorem 5.4.6 Let **A** be a square matrix of order n. TFAE: **Theorem 6.2.3** Let **A** be a square matrix of order n. Then \boldsymbol{A} is diagonalizable if and only if \boldsymbol{A} has n linearly independent eigenvectors.

> Remark 6.2.5.2 Suppose the characteristic polynomial of the matrix \mathbf{A} can be factorized as

$$\det(\lambda \mathbf{I} - \mathbf{A}) = (\lambda - \lambda_1)^{r_1} (\lambda - \lambda_2)^{r_2} \cdots (\lambda - \lambda_k)^{r_k}$$

where $\lambda_1, \lambda_2, \dots, \lambda_k$ are distinct eigenvalues of \boldsymbol{A} . For each eigenvalue λ_i ,

$$\dim(E_{\lambda_i}) \leq r_i$$

and **A** is diagonalizable if and only if for each i, dim $(E_{\lambda_i}) = r_i$. Note that r_i is called the multiplicity of eigenvalue λ_i .

Theorem 6.2.7 Let A be a square matrix of order n. If Ahas n distinct eigenvalues, then \mathbf{A} is diagonalizable.

Example 6.2.11.2 Let $a_n = a_{n-1} + a_{n-2}$, where $a_0 =$ $0, a_1 = 1$. Then

$$\begin{pmatrix} a_n \\ a_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a_{n-1} \\ a_n \end{pmatrix}$$

Let
$$\boldsymbol{x_n} = \begin{pmatrix} a_n \\ a_{n+1} \end{pmatrix}$$
 and $\boldsymbol{A} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$. Then

$$x_n = Ax_{n-1} = A^2x_{n-2} = \cdots = A^nx_0 = A^n\begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Then diagonalize A to obtained closed form for x_n and thus a_n .

Definition 6.3.2 A square matrix **A** is orthogonally diagonalizable if there exists an orthogonal matrix P such that $P^{T}AP$ is a diagonal matrix.

Theorem 6.3.4 A square matrix is orthogonally diagonalizable if and only if it is symmetric.

Linear Transformations

Definition 7.1.1 A linear transformation is a mapping T: $\mathbb{R}^n \to \mathbb{R}^m$ of the form

$$T\left(\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}\right) = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n \end{pmatrix}$$

where a_{ij} are scalars. In particular, if n = m, T is also called a Let A be the standard matrix for T. Then linear operator on \mathbb{R}^n . We can rewrite the formula of T as

$$T\left(\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}\right) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

The matrix $(a_{ij})_{m \times n}$ above is called the standard matrix for T.

Remark If we can express T(v) = Av for all $v \in \mathbb{R}^n$, then it is a linear transformation.

Theorem 7.1.4 Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.

- 1. $T(\mathbf{0}) = \mathbf{0}$.
- 2. If $u_1, u_2, \dots, u_k \in \mathbb{R}^n$ and $c_1, c_2, \dots, c_k \in \mathbb{R}$, then

$$T(c_1\boldsymbol{u_1} + c_2\boldsymbol{u_2} + \dots + c_k\boldsymbol{u_k})$$

= $c_1T(\boldsymbol{u_1}) + c_2T(\boldsymbol{u_2}) + \dots + c_kT(\boldsymbol{u_k})$

Definition 7.1.10 Let $S: \mathbb{R}^n \to \mathbb{R}^m$ and $T: \mathbb{R}^m \to \mathbb{R}^k$ be linear transformations. The composition of T with S, denoted by $T \circ S$, is a linear transformation from \mathbb{R}^n to \mathbb{R}^k such that

$$(T \circ S)(\boldsymbol{u}) = T(S(\boldsymbol{u})) \text{ for } \boldsymbol{u} \in \mathbb{R}^n$$

Let **A** and **B** be the standard matrices for S and T. Then the **Remark** $A^{T}Ax = A^{T}b$ is consistent. Let **A** be $m \times n$. standard matrix for $T \circ S$ is BA.

Definition 7.2.1 Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. The range of T is the set of images of T, i.e.

$$R(T) = \{T(\boldsymbol{u}) \mid \boldsymbol{u} \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$$

Let \mathbf{A} be the standard matrix for T. Then

$$R(T)$$
 = the column space of A

Definition 7.2.5 Let T be a linear transformation with standard matrix A. The dimension of R(T) is the rank of T, and $rank(T) = rank(\mathbf{A}).$

Definition 7.2.7 Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. The kernel of T is the set of vectors whose image is the zero vector in \mathbb{R}^m , i.e.

$$\operatorname{Ker}(T) = \{ \boldsymbol{u} \mid T(\boldsymbol{u}) = \boldsymbol{0} \} \subseteq \mathbb{R}^n$$

$$Ker(T) = the null space of A$$

Definition 7.2.10 Let T be a linear transformation with standard matrix \mathbf{A} . The dimension of Ker(T) is the nullity of T, and nullity(T) = nullity(A).

Theorem 7.2.12 If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation.

$$rank(T) + nullity(T) = n$$

Remark Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation. Let u_1, u_2, u_3 be vectors in \mathbb{R}^3 . Given

$$T(u_1) = v_1$$
 $T(u_2) = v_2$ $T(u_3) = v_3$

If u_1, u_2, u_3 form a basis for \mathbb{R}^3 , then we can find A:

$$egin{aligned} Aegin{pmatrix} oldsymbol{u_1} & oldsymbol{u_2} & oldsymbol{u_3} \end{pmatrix} = egin{pmatrix} oldsymbol{v_1} & oldsymbol{v_2} & oldsymbol{v_3} \end{pmatrix} ig(oldsymbol{u_1} & oldsymbol{u_2} & oldsymbol{u_3} \end{pmatrix}^{-1} \ & A = egin{pmatrix} oldsymbol{v_1} & oldsymbol{v_2} & oldsymbol{v_3} \end{pmatrix} ig(oldsymbol{u_1} & oldsymbol{u_2} & oldsymbol{u_3} \end{pmatrix}^{-1} \end{aligned}$$

Otherwise, there is insufficient information to determine A. A similar approach works for \mathbb{R}^n .

Miscellaneous

- 1. By Theorem 4.1.16, it is consistent if $\mathbf{A}^{\mathrm{T}}\mathbf{b} \in \text{column space}$ of \boldsymbol{A} .
- 2. By rank-nullity, rank($\mathbf{A}^{\mathrm{T}}\mathbf{A}$) = n nullity($\mathbf{A}^{\mathrm{T}}\mathbf{A}$).
- 3. By Exercise 4.25, nullity $(\mathbf{A}^{\mathrm{T}}\mathbf{A}) = \text{nullity}(\mathbf{A})$.
- 4. By rank-nullity, nullity(\mathbf{A}) = $n \text{rank}(\mathbf{A})$.
- 5. By Remark 4.2.5, $rank(\mathbf{A}) = rank(\mathbf{A}^{T})$.
- 6. Combining 2-5, $\operatorname{rank}(\mathbf{A}^{\mathrm{T}}\mathbf{A}) = \operatorname{rank}(\mathbf{A}^{\mathrm{T}})$.

7. Let $v \in \text{column space of } A^{T}A$. Then $v = A^{T}Au =$ $\mathbf{A}^{\mathrm{T}}\mathbf{w} \in \text{column space of } \mathbf{A}^{\mathrm{T}}$. Thus

column space of $A^{\mathrm{T}}A \subseteq \text{column space of } A^{\mathrm{T}}$

8. Combining 6 and 7,

column space of $A^{T}A = \text{column space of } A^{T}$

9. Since $\mathbf{A}^{\mathrm{T}}\mathbf{b} \in \text{column space of } \mathbf{A}^{\mathrm{T}}$, then also $\mathbf{A}^{\mathrm{T}}\mathbf{b} \in \text{col-}$ umn space of $\mathbf{A}^{\mathrm{T}}\mathbf{A}$.

Theorem Let u, v be eigenvectors belonging to different eigenspaces of a square matrix A.

- 1. \boldsymbol{u} and \boldsymbol{v} are linearly independent.
- 2. If A is symmetric, then u is orthogonal to v.

Proof of 1. (Exercise 6.22)

- 1. Let u, v be associated with distinct eigenvalues λ, μ respectively.
- 2. Assume otherwise that u and v are linearly dependent.
- 3. Then $\mathbf{v} = k\mathbf{u}$ for some scalar k.
- 4. Then $\mathbf{A}\mathbf{v} = \mu\mathbf{v} = k\mu\mathbf{u} = k\frac{\mu}{\lambda}\mathbf{A}\mathbf{u} = \frac{\mu}{\lambda}\mathbf{A}\mathbf{v}$.
- 5. Then $\frac{\mu}{\lambda} 1 = 0$, i.e. $\lambda = \mu$.
- 6. Hence contradiction with line 2.

Proof of 2. (Exercise 6.26)

- 1. Let u, v be associated with distinct eigenvalues λ, μ respectively.
- 2. Then we have $\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$ and $\mathbf{A}\mathbf{v} = \mu \mathbf{v}$.
- 3. Then, $\mathbf{v} \cdot \mathbf{A} \mathbf{u} = \mathbf{A} \mathbf{u} \cdot \mathbf{v} = (\mathbf{A} \mathbf{u})^{\mathrm{T}} \mathbf{v} = \mathbf{u}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{v} = \mathbf{u} \cdot \mathbf{A}^{\mathrm{T}} \mathbf{v} =$
- 4. $\mathbf{v} \cdot \mathbf{A}\mathbf{u} = \mathbf{v} \cdot (\lambda \mathbf{u}) = \lambda(\mathbf{v} \cdot \mathbf{u}) = \lambda(\mathbf{u} \cdot \mathbf{v})$
- 5. $\mathbf{u} \cdot \mathbf{A} \mathbf{v} = \mathbf{u} \cdot (\mu \mathbf{v}) = \mu(\mathbf{u} \cdot \mathbf{v}).$
- 6. Combining 3-5, $\lambda(\boldsymbol{u}\cdot\boldsymbol{v})=\mu(\boldsymbol{u}\cdot\boldsymbol{v})$.
- 7. Then, $(\lambda \mu)(\boldsymbol{u} \cdot \boldsymbol{v}) = 0$
- 8. Since $\lambda \neq \mu$, then $\boldsymbol{u} \cdot \boldsymbol{v} = 0$.

Remark By Remark 5.1.3, we can regard dot product as matrix multiplication.