Step 1: Import necessary libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_iris
from sklearn.model selection import train test split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification report, confusion matrix, accuracy
# Step 2: Load the Iris dataset
iris = load iris()
# Create a DataFrame
df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
df['species'] = iris.target
df['species_name'] = df['species'].apply(lambda x: iris.target_names[x])
# Show first 5 rows
df.head()
```

		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	species	species_name	11.	
	0	5.1	3.5	1.4	0.2	0	setosa		
	1	4.9	3.0	1.4	0.2	0	setosa		
	2	4.7	3.2	1.3	0.2	0	setosa		
	3	4.6	3.1	1.5	0.2	0	setosa		

```
# Step 3: Visualize the dataset
sns.pairplot(df, hue='species_name', palette='Set2')
plt.show()
```



```
# Step 4: Prepare training and testing data
X = df[iris.feature names]
y = df['species']
X train, X test, y train, y test = train test split(X, y, test size=0.2, rando
# Step 5: Train a classifier (Random Forest)
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
<del>_</del>
                                    (i) (?)
            RandomForestClassifier
     RandomForestClassifier(random state=42)
# Step 6: Make predictions and evaluate
y pred = model.predict(X test)
print("Accuracy:", accuracy_score(y_test, y_pred))
print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred))
print("\nClassification Report:\n", classification_report(y_test, y_pred, targ
→ Accuracy: 1.0
     Confusion Matrix:
      [[10 0 0]
      [0 9 0]
      [ 0 0 11]]
```

Classification	Report: precision	recall	f1-score	support
setosa	1.00	1.00	1.00	10
versicolor	1.00	1.00	1.00	9
virginica	1.00	1.00	1.00	11
accuracy			1.00	30
macro avg	1.00	1.00	1.00	30
weighted avg	1.00	1.00	1.00	30

Step 7: Predict on new flower data
new_sample = [[5.1, 3.5, 1.4, 0.2]] # Example: Sepal Length, Sepal Width, Peta]
prediction = model.predict(new_sample)
print(f"\nPredicted species: {iris.target_names[prediction[0]]}")

Predicted species: setosa
/usr/local/lib/python3.11/dist-packages/sklearn/utils/validation.py:2739:
 warnings.warn(

