Choosing the right statistical test

1. t-test

- Purpose: To compare the means of two groups.
- Use When:
 - You have **two independent groups** and want to compare their means.
 - You have a continuous variable (e.g., height, weight, salary) and a binary categorical variable (e.g., male/female, treatment/control).
 - The data is normally distributed and has similar variances in both groups.

Types of t-tests:

- One-sample t-test: Compares the mean of a sample to a known value or population mean.
 - Ex. Testing if the average height of a group is 170 cm.
- Independent t-test: Compares the means of two independent groups.
 - Ex. Compare the average test scores between males and females.
- Paired t-test: Compares means from the same group at different times (e.g., before/after).
 - Ex. Compare blood pressure before and after treatment for the same patients.

2. ANOVA (Analysis of Variance)

- Purpose: To compare the means of three or more groups.
- Use When:
 - You have more than two groups (three or more) and want to test if their means are different.
 - The **dependent variable** is **continuous**, and the independent variable is **categorical** with more than two levels.
 - The data is **normally distributed**, and variances are **equal** across the groups.

Types of ANOVA:

- One-way ANOVA: Compares the means of three or more independent groups (single independent variable).
 - Ex. Compare the average salary of employees based on three different departments (HR, Sales, Marketing).

- **Two-way ANOVA**: Compares the means of groups based on two independent variables (factors) and checks for interaction between them.
 - Compare the test scores based on teaching methods and gender.

3. Chi-Square Test

- Purpose: To examine if there is an association or independence between two categorical variables.
- Use When:
 - You have categorical data (nominal or ordinal) and want to test the association between two variables
 - The data is in the form of **counts or frequencies** (e.g., number of people in each category).

Types of Chi-Square Tests:

- Chi-Square Test of <u>Independence</u>: Tests if two categorical variables are independent (no association).
 - Ex. Examine if there is an association between gender (male/female) and smoking status (smoker/non-smoker).
- Chi-Square Goodness-of-Fit Test: Tests if a sample data matches an expected distribution.
 - Ex. Test if a die is fair by comparing the frequency of each number rolled to the expected uniform distribution.

Quick Guide to Choose the Test:

- 1. If your data is categorical:
 - Chi-Square (Goodness-of-Fit or Test of Independence).
- 2. If your data is continuous:
 - · t-test for comparing two groups.
 - ANOVA for comparing three or more groups.
 - Paired t-test for repeated measures or matched pairs.

Choose the Right Test

For Continuous Data:

Question	Test	Example
Compare means of two groups.	Independent t-test	Compare test scores of two schools.
Compare means of paired groups.	Paired t-test	Compare pre-test and post-test scores.
Compare means of three or more groups.	ANOVA	Compare test scores of three teaching methods.
Test for correlation.	Pearson's correlation	Is there a relationship between height and weight?

For Categorical Data:

Question	Test	Example
Test for independence between two categorical variables.	Chi-Square Test of Independence	Is there a relationship between gender and voting preference?
Test if observed frequencies match expected frequencies.	Chi-Square Goodness- of-Fit Test	Does the distribution of colors in a bag of candies match the expected distribution?
Compare proportions of two groups.	Z-test for proportions	Do two groups have different success rates?

Decision Tree for Choosing a Test

- 1. What is your data type?
 - Continuous
 - Categorica
- 2. For Continuous Data:
 - Are you comparing **two groups**?
 - Yes: Use t-test.
 - Independent groups: Independent t-test.
 - Paired groups: Paired t-test.
 - No: Are you comparing three or more groups?
 - Yes: Use ANOVA.
 - No: Are you testing for a **relationship**?
 - Yes: Use **Pearson's correlation**.
- 3. For Categorical Data:
 - Are you testing for **independence** between two variables?
 - Yes: Use Chi-Square Test of Independence.
 - No: Are you testing if observed frequencies match expected frequencies?

- Yes: Use Chi-Square Goodness-of-Fit Test.
- No: Are you comparing **proportions**?
 - Yes: Use **Z-test for proportions**.

Summary Table

Data Type	Question	Test	
Continuous	Compare two groups.	Independent t-test.	
Continuous	Compare paired groups.	Paired t-test.	
Continuous	Compare three or more groups.	ANOVA.	
Continuous	Test for a relationship.	Pearson's correlation.	
Categorical	Test for independence.	Chi-Square Test of Independence.	
Categorical	Test goodness-of-fit.	Chi-Square Goodness-of-Fit Test.	
Categorical	Compare proportions.	Z-test for proportions.	

Key Takeaways

- Continuous Data: Use t-tests, ANOVA, or correlation.
- Categorical Data: Use Chi-Square tests or Z-tests for proportion

Python Code for Common Statistical Tests

Test	Use Case	Function	Python Code
Independent t- test	Compare means of two independent groups.	scipy.stats. ttest_ind	python from scipy.stats import ttest_ind t_stat, p = ttest_ind(group1, group2)
Paired t-test	Compare means of paired/matched groups.	scipy.stats. ttest_rel	python from scipy.stats import ttest_rel t_stat, p = ttest_rel (pre, post)
One-Way ANOVA	Compare means of three or more groups.	scipy.stats. f_oneway	<pre>python from scipy.stats import f_oneway f_stat, p = f_oneway (group1, group2, group3)</pre>

Test	Use Case	Function	Python Code
Chi-Square (Independence)	Test association between two categorical variables.	scipy.stats. chi2_contingency	python from scipy.stats import chi2_contingency chi2, p, dof, expected = chi2_contingency(observed_table)
Chi-Square (Goodness-of- Fit)	Test if observed frequencies match expected frequencies.	scipy.stats. chisquare	python from scipy.stats import chisquare chi2, p =
Pearson's Correlation	Test linear relationship between two continuous variables.	scipy.stats. pearsonr	python from scipy.stats import pearsonr corr, p = pearsonr (x, y)
Z-Test for Proportions	Compare proportions of two independent groups.	statsmodels.stats.proportion.proportions_ztest	python from statsmodels.stats.proportion import proportions_ztest stat, p = proportions_ztest([success1, success2], [n1, n2])

- chi2, **p, dof, expected=** chi2_contingency(observed_table)
 - We get 4 values in chi2_contingency()

1. Independent t-test

```
from scipy.stats import ttest_ind

# Sample data for two independent groups
group1 = [25, 30, 35, 40, 45] # Group A
group2 = [30, 35, 40, 45, 50] # Group B

# Perform t-test
t_stat, p_value = ttest_ind(group1, group2)
print(f"T-statistic: {t_stat:.4f}, P-value: {p_value:.4f}")
```

2. Paired t-test

```
from scipy.stats import ttest_rel

# Paired data (before and after)
pre = [25, 30, 35, 40, 45] # Before treatment
```

```
post = [30, 35, 40, 45, 50] # After treatment

# Perform paired t-test
t_stat, p_value = ttest_rel(pre, post)
print(f"T-statistic: {t_stat:.4f}, P-value: {p_value:.4f}")
```

3. One-Way ANOVA

```
from scipy.stats import f_oneway

# Sample data for three groups
group1 = [25, 30, 35, 40, 45] # Group A
group2 = [30, 35, 40, 45, 50] # Group B
group3 = [35, 40, 45, 50, 55] # Group C

# Perform ANOVA
f_stat, p_value = f_oneway(group1, group2, group3)
print(f"F-statistic: {f_stat:.4f}, P-value: {p_value:.4f}")
```

4. Chi-Square Test of Independence

```
from scipy.stats import chi2_contingency

# Contingency table (observed frequencies)
observed = [[30, 20], # Row 1
        [25, 35]] # Row 2

# Perform Chi-Square test
chi2_stat, p_value, dof, expected = chi2_contingency(observed)
print(f"Chi2-statistic: {chi2_stat:.4f}, P-value: {p_value:.4f}")
```

5. Chi-Square Goodness-of-Fit Test

```
from scipy.stats import chisquare

# Observed and expected frequencies
observed = [30, 20, 25, 35]
expected = [25, 25, 25, 25]

# Perform Chi-Square test
chi2_stat, p_value = chisquare(observed, expected)
print(f"Chi2-statistic: {chi2_stat:.4f}, P-value: {p_value:.4f}")
```

6. Pearson's Correlation

```
from scipy.stats import pearsonr

# Sample data
x = [25, 30, 35, 40, 45]
y = [50, 55, 60, 65, 70]

# Compute correlation
corr, p_value = pearsonr(x, y)
print(f"Correlation: {corr:.4f}, P-value: {p_value:.4f}")
```

7. Z-Test for Proportions

```
from statsmodels.stats.proportion import proportions_ztest

# Success counts and sample sizes
success = [30, 40] # Successes in Group 1 and Group 2
nobs = [100, 100] # Total observations in each group

# Perform Z-test
stat, p_value = proportions_ztest(success, nobs)
print(f"Z-statistic: {stat:.4f}, P-value: {p_value:.4f}")
```

Key Takeaways

- Use t-tests for comparing means of 2 groups.
- Use **ANOVA** for comparing means of 3+ groups.
- Use Chi-Square for categorical data (independence or goodness-of-fit).
- Use **Pearson's correlation** for linear relationships between continuous variables.
- Use **Z-test for proportions** to compare proportions between groups.