BOAST

Performance Portability Using Meta-Programming and Auto-Tuning

Frédéric Desprez ¹, Brice Videau ^{1,3}, Kevin Pouget ¹, Luigi Genovese ², Thierry Deutsch ², Dimitri Komatitsch ³, Jean-François Méhaut ¹

 1 INRIA/LIG - CORSE, 2 CEA - L $_{\odot}$ Sim, 3 CNRS

Workshop CCDSC October 6, 2016

Scientific Application Portability

Case Study

Limited Portability

Introduction

- Huge codes (more than 100 000 lines), Written in FORTRAN or C++
- Collaborative efforts
- Use many different programming paradigms (OpenMP, OpenCL, CUDA, ...)

But Based on Computing Kernels

- Well defined parts of a program
- Compute intensive
- Prime target for optimization

Kernels Should Be Written

- In a portable manner
- In a way that raises developer productivity
- To present good performance

HPC Architecture Evolution

Very Rapid and Diverse, Top500:

Introduction

- Sunway processor (TaihuLight)
- Intel processor + Xeon Phi (Tianhe-2)
- AMD processor + nVidia GPU (Titan)
- IBM BlueGene/Q (Sequoia)
- Fujitsu SPARC64 (K Computer)
- Intel processor + nVidia GPU (Tianhe-1)
- AMD processor (Jaguar)

Tomorrow?

- ARM + DSP?
- Intel Atom + FPGA?
- Quantum computing?

How to write kernels that could adapt to those architectures? (well maybe not quantum computing...)

Related Work

- Ad hoc autotuners (usually for libraries):
 - Atlas [6] (C macro processing)
 - SPIRAL [4] (DSL)
 - ...

Introduction)

- Generic frameworks using annotation systems:
 - POET [7] (external annotation file)
 - Orio [3] (source annotation)
 - BEAST [1] (Python preprocessor based, embedded DSL for optimization space definition/pruning)
- Generic frameworks using embedded DSL:
 - Halide [5] (C++, not very generic, 2D stencil targeted)
 - Heterogeneous Programming Library [2] (C++)

- Kernel optimization workflow
- Usually performed by a knowledgeable developer

- Compilers perform optimizations
- Architecture specific or generic optimizations

- Performance data hint at source transformations
- Architecture specific or generic hints

- Multiplication of kernel versions and/or loss of versions
- Difficulty to benchmark versions against each-other

BOAST Workflow

- Meta-programming of optimizations in BOAST
- High level object oriented language

BOAST Workflow

- Generate combination of optimizations
- C, OpenCL, FORTRAN and CUDA are supported

BOAST Workflow

- Compilation and analysis are automated
- Selection of best version can also be automated

BOAST Architecture

Example: Laplace Kernel from ARM

```
void laplace (const int width,
 1
                  const int height,
 3
                  const unsigned char src[height][width][3],
 4
                        unsigned char dst[height][width][3]){
 5
      for (int j = 1; j < height-1; j++) {
 6
        for (int i = 1; i < width -1; i++) {
 7
          for (int c = 0: c < 3: c++) {
 8
            int tmp = -src[j-1][i-1][c] - src[j-1][i][c] - src[j-1][i+1][c]
9
                      - src[j ][i-1][c] + 9*src[j ][i][c] - src[j ][i+1][c]\
10
                      - src[j+1][i-1][c] - src[j+1][i][c] - src[j+1][i+1][c];
            dst[i][i][c] = (tmp < 0 ? 0 : (tmp > 255 ? 255 : tmp));
11
12
13
14
15
```

- C reference implementation
- Many opportunities for improvement
- ARM GPU Mali 604 within the Montblanc project

Example: Laplace in OpenCL

```
kernel laplace (const int width.
 1
                    const int height,
 3
                    global const uchar *src,
 4
                    global
                                 uchar *dst){
 5
      int i = get_global_id(0);
 6
      int j = get_global_id(1);
      for (int c = 0: c < 3: c++) {
 8
        int tmp = -src[3*width*(j-1) + 3*(i-1) + c]
 9
                  - src[3*width*(j-1) + 3*(i) + c]
                  - src[3*width*(i-1) + 3*(i+1) + c]
10
                  - src[3*width*(i ) + 3*(i-1) + c]\
11
12
                + 9*src[3*width*(j ) + 3*(i ) + c]\
13
                  - src[3*width*(j) + 3*(i+1) + c]
14
                  - src[3*width*(i+1) + 3*(i-1) + c]
15
                  - src[3*width*(j+1) + 3*(i) + c]
16
                  - src[3*width*(j+1) + 3*(i+1) + c];
        dst[3*width*j + 3*i + c] = clamp(tmp, 0, 255);
17
18
      }
19
```

- OpenCL reference implementation
- Outer loops mapped to threads
- 1 pixel per thread

Example: Vectorizing

```
kernel laplace (const int width,
                    const int height,
3
                    global const uchar *src.
                    global
                                 uchar *dst){
5
       int i = get_global_id(0);
       int j = get_global_id(1);
7
       uchar16 v11 = vload16( 0, src + 3*width*(i-1) + 3*5*i - 3 );
       uchar16 v12_ = vload16( 0, src + 3*width*(j-1) + 3*5*i
9
       uchar16 v13_ = vload16(0, src + 3*width*(j-1) + 3*5*i + 3);
10
       uchar16 v21 = vload16( 0, src + 3*width*(i ) + 3*5*i - 3 );
       uchar16 v22_ = vload16( 0, src + 3*width*(j ) + 3*5*i
11
12
       uchar16 v23 = vload16( 0, src + 3*width*(i ) + 3*5*i + 3 );
13
       uchar16 v31_ = vload16( 0, src + 3*width*(j+1) + 3*5*i - 3);
       uchar16 v32 = vload16( 0, src + 3*width*(i+1) + 3*5*i
14
15
       uchar16 v33 = vload16(0, src + 3*width*(i+1) + 3*5*i + 3);
16
       int16 v11 = convert_int16(v11_);
17
       int16 v12 = convert int16(v12):
18
       int16 v13 = convert int16(v13):
       int16 v21 = convert_int16(v21_);
19
20
       int16 v22 = convert int16(v22):
21
       int16 v23 = convert_int16(v23_);
22
       int16 v31 = convert_int16(v31_);
23
       int16 v32 = convert_int16(v32_);
24
       int16 v33 = convert_int16(v33_);
25
       int16 res = v22 * (int)9 - v11 - v12 - v13 - v21 - v23 - v31 - v32 - v33:
26
             res = clamp(res, (int16)0, (int16)255);
27
       uchar16 res_ = convert_uchar16(res);
28
       vstore8(res_.s01234567, 0, dst + 3*width*j + 3*5*i);
       vstore8(res_.s89ab, 0, dst + 3*width*j + 3*5*i + 8);
29
30
       vstore8(res .scd.
                               0, dst + 3*width*j + 3*5*i + 12);
       dst[3*width*i + 3*5*i + 14] = res .se:
31
32
     7-
```

- Vectorized OpenCL implementation
- 5 pixels instead of one (15 components)

Example: Synthesizing Vectors

```
1    uchar16 v11_ = vload16( 0, src + 3*width*(j-1) + 3*5*i - 3 );
2    uchar16 v12_ = vload16( 0, src + 3*width*(j-1) + 3*5*i - 3 );
3    uchar16 v13_ = vload16( 0, src + 3*width*(j-1) + 3*5*i + 3 );
4    uchar16 v21_ = vload16( 0, src + 3*width*(j - 1) + 3*5*i - 3 );
5    uchar16 v22_ = vload16( 0, src + 3*width*(j - 1) + 3*5*i - 3 );
6    uchar16 v23_ = vload16( 0, src + 3*width*(j - 1) + 3*5*i - 3 );
7    uchar16 v31_ = vload16( 0, src + 3*width*(j + 1) + 3*5*i - 3 );
8    uchar16 v32_ = vload16( 0, src + 3*width*(j+1) + 3*5*i - 3 );
9    uchar16 v33_ = vload16( 0, src + 3*width*(j+1) + 3*5*i - 3 );
```

Becomes

```
1  uchar16 v11_ = vload16( 0, src + 3*width*(j-1) + 3*5*i - 3 );
2  uchar16 v12_ = uchar16( 0, src + 3*width*(j-1) + 3*5*i + 3 );
3  uchar16 v12_ = uchar16( v11_.s3456789a, v13_.s56789abc );
4  uchar16 v21_ = vload16( 0, src + 3*width*(j ) + 3*5*i - 3 );
5  uchar16 v22_ = vload16( 0, src + 3*width*(j ) + 3*5*i + 3 );
6  uchar16 v22_ = uchar16( v21_.s3456789a, v23_.s56789abc );
7  uchar16 v31_ = vload16( 0, src + 3*width*(j+1) + 3*5*i - 3 );
8  uchar16 v32_ = uchar16( 0, src + 3*width*(j+1) + 3*5*i + 3 );
9  uchar16 v32_ = uchar16( v31_.s3456789a, v33_.s56789abc );
```

- Reducing the number of loads since the vector are overlapping
- Synthesizing loads should save bandwidth
- Could be pushed further

Example: Reducing Variable Size

```
int16 v11 = convert int16(v11):
    int16 v12 = convert_int16(v12):
    int16 v13 = convert int16(v13):
    int16 v21 = convert int16(v21):
    int16 v22 = convert_int16(v22_);
    int16 v23 = convert_int16(v23):
    int16 v31 = convert int16(v31):
    int16 v32 = convert_int16(v32):
    int16 v33 = convert_int16(v33_);
10
    int16 res = v22 * (int)9 - v11 - v12 - v13 - v21 - v23 - v31 - v32 - v33;
11
          res = clamp(res, (int16)0, (int16)255);
```

Becomes

```
short16 v11 = convert_short16(v11_);
    short16 v12 = convert_short16(v12_);
    short16 v13 = convert short16(v13):
    short16 v21 = convert short16(v21):
    short16 v22 = convert_short16(v22_);
    short16 v23 = convert short16(v23):
    short16 v31 = convert short16(v31):
    short16 v32 = convert short16(v32):
9
    short16 v33 = convert_short16(v33_);
10
    short16 res = v22 * (short)9 - v11 - v12 - v13 - v21 - v23 - v31 - v32 - v33:
11
            res = clamp(res, (short16)0, (short16)255);
```

Using smaller intermediary types could save registers

Example: Optimization Summary

- Very complex process (several other optimizations could be applied)
- Intimate knowledge of the architecture required
- Numerous versions to be benchmarked
- Difficult to test combination of optimizations:
 - Vectorization,
 - Intermediary data type,
 - Number of pixels processed,
 - Synthesizing loads.
- Can we use BOAST to automate the process?

Example: Laplace Kernel with BOAST

- Based on components instead of pixel
- Use tiles rather than only sequence of elements
- Parameters used in the BOAST version:
 - x component number: a positive integer
 - y component number: a positive integer
 - vector_length: 1, 2, 4, 8 or 16
 - temporary size: 2 or 4
 - synthesizing loads: true or false

Example: ARM results

Image Size	Naive (s)	Best (s)	Acceleration	BOAST (s)	Acceleration	
768×432	0.0107	0.00669	×1.6	0.000639	×16.7	
2560×1600	0.0850	0.0137	×6.2	0.00687	×12.4	
2048×2048	0.0865	0.0149	×5.8	0.00715	×12.1	
5760×3240	0.382	0.0449	×8.5	0.0325	×11.8	
7680×4320	0.680	0.0747	×9.1	0.0581	×11.7	

Optimal parameter values:

• x component number: 16 y component number: 1

• vector length: 16 • temporary size: 2 synthesizing loads: false

Close to what ARM engineers found

Example: Performance Portability

Image Size	BOAST ARM (s)	BOAST Intel	Ratio	BOAST NVIDIA	Ratio
768 × 432	0.000639	0.000222	×2.9	0.0000715	×8.9
2560×1600	0.00687	0.00222	×3.1	0.000782	x8.8
2048×2048	0.00715	0.00226	x3.2	0.000799	x8.9
5760×3240	0.0325	0.0108	×3.0	0.00351	×9.3
7680×4320	0.0581	0.0192	×3.0	0.00623	×9.3

- Optimal parameter values (Intel 17 2760, 2.4 GHz):
 - x component number: 16
 - y component number: 4..2
 - vector length: 8
 - temporary size: 2
 - synthesizing loads: false

- Optimal parameter values nVidia (GTX 680):
 - x component number: 4
 - y component number: 4
 - vector length: 4
 - temporary size: 2
 - synthesizing loads: false

Performance portability among several different architectures.

Case Study **Real Applications** A Parametrized Generator

Real Applications: BigDFT

- Novel approach for DFT computation based on Daubechies wavelets
- Fortran and C code, MPI, OpenMP, supports CUDA and OpenCL
- Reference is hand tuned code on target architecture (Nehalem)
- Toward a BLAS-like library for wavelets

Real Applications: SPECFEM3D

- Seismic wave propagation simulator
- SPECFEM3D ported to OpenCL using BOAST
 - Unified code base (CUDA/OpenCL)
 - Refactoring: kernel code base reduced by 40%
 - Similar performance on NVIDIA Hardware
 - Non regression test for GPU kernels
- On the Mont-Blanc prototype:
 - OpenCL+MPI runs
 - Speedup of 3 for the GPU version

Conclusions

- BOAST v1.0 is released
- BOAST language features:
 - Unified C and FORTRAN with OpenMP support,
 - Unified OpenCL and CUDA support,
 - Support for vector programming.
- BOAST runtime features:
 - Generation of parametric kernels,
 - Parametric compilation,
 - Non-regression testing of kernels,
 - Benchmarking capabilities (PAPI support)

Perspectives

- Find and port new kernels to BOAST (GYSELA)
- Couple BOAST with other tools:
 - Parametric space pruners (speed up optimization),
 - Binary analysis (guide optimization, MAQAO),
 - Source to source transformation (improve optimization),
 - Binary transformation (improve optimization).
- Improve BOAST:
 - Improve the eDSL to make it more intuitive,
 - Better vector support,
 - Gather feedback.

Introduction

Bibliography

	Hartwig Anzt, Blake Haugen, Jakub Kurzak, Piotr Luszczek, and Jack Dongarra.
	Experiences in autotuning matrix multiplication for energy minimization on gpus. Concurrency and Computation: Practice and Experience, 27(17):5096–5113, 2015. cpe.3516.
	Jorge F. Fabeiro, Diego Andrade, and Basilio B. Fraguela. Writing a performance-portable matrix multiplication. Parallel Comput., 52(C):65–77, February 2016.
	Albert Hartono, Boyana Norris, and Ponnuswamy Sadayappan. Annotation-based empirical performance tuning using Orio. In Proceedings of the 23rd IEEE International Parallel & Distributed Processing Symposium, Rome, Italy, 2009. Also available as Preprint ANL/MCS-P1556-1008.
	Markus Püschel, José MF Moura, Bryan Singer, Jianxin Xiong, Jeremy Johnson, David Padua, Manuela Veloso, and Robert W Johnson. SPIRAL: A generator for platform-adapted libraries of signal processing algorithms. International Journal of High Performance Computing Applications, 18(1):21–45, 2004.
	Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe. Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines. ACM SIGPLAN Notices, 48(6):519–530, 2013.
9	R. Clint Whaley and Antoine Petitet. Minimizing development and maintenance costs in supporting persistently optimized BLAS. Software: Practice and Experience, 35(2):101–121, February 2005.
	Qing Yi, Keith Seymour, Haihang You, Richard Vuduc, and Dan Quinlan. POET: Parameterized optimizations for empirical tuning. In Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International, pages 1–8. IEEE, 2007.