#### Компьютерное Зрение Лекция №3, осень 2022

# Обработка изображений







## План лекции

- Гистограммы
- Выравнивание цвета
- Бинаризация изображений
- Морфологические операции
- Пирамиды

## Гистограммы

Гистограмма фиксирует распределение уровней серого на изображении

Как часто на изображении встречается каждый уровень серого



## Гистограммы

Гистограммы могут показывают локальную характеристику о распределении интенсивности изображения







Count: 10192 Min: 9 Mean: 133.711 StdDev: 55.391

Max: 255 Mode: 178 (180)





Count: 10192 Mean: 104.637 StdDev: 89.862

Min: 11 Max: 254 Mode: 23 (440)

# Гистограммы



# Выравнивание цвета





# Линейная коррекция яркости

Хотим изменить распределение значений пикселей с помощью преобразования **T**:



Линейное преобразование:

$$T = f^{-1}(y) = (y - y_{\min}) * \frac{(255 - 0)}{(y_{\max} - y_{\min})}$$



# Нелинейная коррекция яркости







# Гамма коррекция

$$Y = c * X^{\gamma}$$











#### Адаптивная нормализация гистограмм

Алгоритм нормализации гистограмм изображений — contrast limited adaptive histogram equalization (CLAHE)



# Бинаризация изображений



# Алгоритм Оцу

Метод Оцу ищет порог, уменьшающий дисперсию внутри класса: «полезный» и «фоновый».

Эффективным и равнозначным получается максимизация дисперсии между классами:

$$\sigma_b^2(t) = \sigma^2 - \sigma_w^2(t) = \omega_1(t)\omega_2(t)[\mu_1(t) - \mu_2(t)]^2$$



# Морфологические операции

Операция расширения (🕀)



# Морфологические операции

Операция сужения (🔾)



# Морфологические операции

#### **1.Открытие** (A o $B=(A \ominus B) \oplus B$ )



#### 2. Закрытие (A • $B=(A \bigoplus B) \bigoplus B$ )



3. Градиент



Morphological Gradient

# Пирамиды изображений



Для подвыборки мы берем каждый второй пиксель из исходного изображения и создаем новое изображение в два раза меньшего размера.



Субдискретированные изображения

Достигается эффект масштабирования изображений!

# Пирамиды Гаусса

Может варьировать значение сигмы в распределении Гаусса и получать изображения по шкале размытий — **октаву пирамиды**. **^** 





#### Заключение

• Изучили гистограммы изображений и методы выравнивания контрастности и цветокоррекции изображений

• Познакомились с морфологическими операциями

• Рассмотрели пирамиды изображений