Stat 346 Homework 6

Nathan Jarus

Apr. 3, 2014

- 1 Problem 1
- 1.1 Part a

Math Salaries Correlation Matrix The CORR Procedure

4 Variables: salary quality experience publications

Simple Statistics							
Variable N Mean Std Dev Sum Minimum Maxim							
salary	24	39.50000	5.47429	948.00000	30.10000	52.90000	
quality	24	5.35833	1.29142	128.60000	3.10000	8.00000	
experience	24	24.95833	11.22295	599.00000	5.00000	47.00000	
publications	24	5.98750	1.30361	143.70000	3.50000	8.30000	

Pearson Correlation Coefficients, N = 24						
	salary quality experience publications					
salary	1.00000	0.66710	0.85856	0.55820		
quality	0.66710	1.00000	0.46695	0.32276		
experience	0.85856	0.46695	1.00000	0.25375		
publications	0.55820	0.32276	0.25375	1.00000		

17:57 Wednesday, April 2, 2014 1

1.2 Part b

Math Salaries Simple Regression

The REG Procedure

Model: MODEL1

Dependent Variable: salary

Number of Observations Read	24
Number of Observations Used	24

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	1	306.73233	306.73233	17.64	0.0004		
Error	22	382.52767	17.38762				
Corrected Total	23	689.26000					

Root MSE	4.16985	R-Square	0.4450
Dependent Mean	39.50000	Adj R-Sq	0.4198
Coeff Var	10.55657		

Parameter Estimates							
Variable	le DF Parameter Estimate Standard Error t Value Pr						
Intercept	1	24.34766	3.70666	6.57	<.0001		
quality	1	2.82781	0.67327	4.20	0.0004		

Math Salaries
Simple Regression

The REG Procedure

Model: MODEL2

Dependent Variable: salary

Number of Observations Read	24
Number of Observations Used	24

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	1	508.06883	508.06883	61.69	<.0001		
Error	22	181.19117	8.23596				
Corrected Total	23	689.26000					

Root MSE	2.86984	R-Square	0.7371
Dependent Mean	39.50000	Adj R-Sq	0.7252
Coeff Var	7.26541		

Parameter Estimates						
Variable DF Parameter Estimate Standard Error t Value Pr						
Intercept	1	29.04785	1.45400	19.98	<.0001	
experience	1	0.41878	0.05332	7.85	<.0001	

Math Salaries Simple Regression

The REG Procedure

Model: MODEL3

Dependent Variable: salary

Number of Observations Read	24
Number of Observations Used	24

Analysis of Variance						
Source DF Sum of Squares Mean Square F Value Pr >						
Model	1	214.76157	214.76157	9.96	0.0046	
Error	22	474.49843	21.56811		·	

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Corrected Total	23	689.26000			

Root MSE	4.64415	R-Square	0.3116
Dependent Mean	39.50000	Adj R-Sq	0.2803
Coeff Var	11.75734		

Parameter Estimates					
Variable	le DF Parameter Estimate Standard Error t Value Pr				Pr > t
Intercept	1	25.46502	4.54765	5.60	<.0001
publications	1	2.34405	0.74284	3.16	0.0046

$$salary = 24.34766 + 2.82781 quality$$
 (1)

$$salary = 29.04785 + 0.41878 experience$$
 (2)

$$salary = 25.46502 + 2.34405 publications \tag{3}$$

1.3 Part c

Math Salaries Multiple Regression

The REG Procedure

Model: MODEL1

Dependent Variable: salary

Number of Observations Read	
Number of Observations Used	24

Analysis of Variance					
Source DF Sum of Squares Mean Square F Value P				Pr > F	
Model	3	627.81700	209.27233	68.12	<.0001
Error	20	61.44300	3.07215		

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Corrected Total	23	689.26000			

Root MSE	1.75276	R-Square	0.9109
Dependent Mean	39.50000	Adj R-Sq	0.8975
Coeff Var	4.43735		

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	98.334%	Confidence Limits
Intercept	1	17.84693	2.00188	8.92	<.0001	12.61649	23.07737
quality	1	1.10313	0.32957	3.35	0.0032	0.24203	1.96423
experience	1	0.32152	0.03711	8.66	<.0001	0.22456	0.41848
publications	1	1.28894	0.29848	4.32	0.0003	0.50908	2.06880

$$salary = 17.84693 + 1.10313 quality + 0.32152 experience + 1.28894 publications$$
 (4)

1.4 Part d

The regression coefficients are all smaller in MLR than they were in SLR. This is due to each variable having to explain less of the variation in salary as they are all taken into account.

1.5 Part e

	Quality	Experience	Publications
H_0	$b_1 = 0$	$b_2 = 0$	$b_3 = 0$
H_a	$b_1 \neq 0$	$b_2 \neq 0$	$b_3 \neq 0$
Test Statistic	$\frac{b_1}{sb_1}$	$\frac{b_2}{sb_2}$	$\frac{b_3}{sb_3}$
DoF	23	23	23
p-value	0.0032	< 0.0001	0.0003

Each variable has >95% likelyhood that it has a significant linear relationship with the result variable.

1.6 Part f

The Bonferonni procedure for a family of 3 variables and a 95% family confidence interval gives us an individual confidence interval of 98.333%, meaning $\alpha = 0.01666$.

	Estimate	Confidence	Limits
Intercept	17.84693	12.61649	23.07737
Quality	1.10313	0.24203	1.96423
Experience	0.32152	0.22456	0.41848
Publications	1.28894	0.50908	2.06880

1.7 Part g

For a mathematician with a quality index of 5.4, a publication index of 6.0, and 17 years of experience, we would predict a salary of \$37003. There is a 95% probability that the salary is between \$33219 and \$40787.

1.8 Part h

We would use the narrower of the two intervals generated by the Bonferonni and Scheffe methods.

1.9 Part i

On average, such a mathematician would make \$37003, with 95% of such mathematicians' salaries falling in the interval (\$36027, \$37979).

1.10 Part j

	Adjusted R^2
Quality	0.4198
Experience	0.7252
Publications	0.2803
Multiple	0.8975

Since the multiple linear regression has the highest adjusted \mathbb{R}^2 value, it best explains the variation in salary.

1.11 Part k

Figure 1.11 shows no trend between residuals and predicted values, indicating that the constant variance assumption holds.

Figures 1.11, 1.11, and 1.11 show no overall trends between the predictor variables and salary, indicating that the constant variance and linearity assumptions hold.

Figure 1.11 shows a relatively straight normal probability plot, indicating that the normal distribution of errors holds.

17:57 Wednesday, April 2, 2014 1

Math Salaries Residuals vs. Predicted Salary

17:57 Wednesday, April 2, 2014 1

Math Salaries Residuals vs. Quality

17:57 Wednesday, April 2, 2014 1

Math Salaries Residuals vs. Experience

17:57 Wednesday, April 2, 2014 1

Math Salaries Residuals vs. Publications

Math Salaries Normal Probability

17:57 Wednesday, April 2, 2014 1

