アルゴリズム論2

第 8 回: Arrangement (2)

関川 浩

2016/11/02

概要

- Arrangement の概要 (前回)
- Arrangement の応用 (今回)
- Arrangement の構成 (次回)

- 1 双対性
 - 双対変換の定義
 - 双対変換の性質

- ② 双対性を通した arrangement の応用
 - 点の配置
 - 貫通直線
 - 凸包
 - 点集合の分割

- 1 双対性
- ② 双対性を通した arrangement の応用

双対変換の定義

 $\mathcal{H} \stackrel{\mathrm{def}}{=} \{\pi \mid \pi \text{ は } \mathbb{R}^d \text{ 内の垂直ではない超平面} \}$ $(\pi \text{ が垂直} \stackrel{\mathrm{def}}{=} \pi \text{ は } x_d \text{ 軸と平行な直線を含む})$

定義 1 (双対変換)

双対変換 $\mathcal{D}: \mathbb{R}^d \longrightarrow \mathcal{H}, \mathcal{D}: \mathcal{H} \longrightarrow \mathbb{R}^d$ (逆変換も同じ記号)

- 点 $P(p_1,\ldots,p_d)\in\mathbb{R}^d$ に対し $\mathcal{D}(P)\subset\mathbb{R}^d\colon$ 超平面 $x_d=2p_1x_1+\cdots+2p_{d-1}x_{d-1}-p_d$
- ・ 超平面 $\pi \subset \mathbb{R}^d$: $x_d = \eta_1 x_1 + \dots + \eta_{d-1} x_{d-1} + \eta_d$ に対し $\mathcal{D}(\pi) = \left(\frac{\eta_1}{2}, \dots, \frac{\eta_{d-1}}{2}, -\eta_d\right) \in \mathbb{R}^d$

注意

- $\mathcal{D}(\mathcal{D}(P)) = P$, $\mathcal{D}(\mathcal{D}(\pi)) = \pi$
- 係数の 2 や 1/2 は応用 (Voronoi 図など) を考慮

双対変換の性質 (1/5)

命題1

P: \mathbb{R}^d 内の点

 π : \mathbb{R}^d 内の垂直ではない超平面

(1) 接続関係の保存 $P \in \pi \iff \mathcal{D}(\pi) \in \mathcal{D}(P)$

(2) 順序の保存

点 P が超平面 π の上 (下) にある

 \iff 点 $\mathcal{D}(\pi)$ が超平面 $\mathcal{D}(P)$ の上 (下) にある

例

 \mathbb{R}^2 内の直線 l 上の 3 点は以下のものに対応

- ullet l が y 軸と平行ではないとき, 1 点で交わる \mathbb{R}^2 内の 3 直線
- \bullet l が y 軸と平行なとき, \mathbb{R}^2 内の平行な 3 直線

双対変換の性質 (2/5)

(左)
$$P(1,1)$$
 と l : $y = x - 1$
(右) $\mathcal{D}(P)$: $y = 2x - 1$ と $\mathcal{D}(l)$: $(1/2,1)$

双対変換の性質 (3/5)

証明

$$(p_1,\ldots,p_d)$$
: P の座標 $x_d=\eta_1x_1+\cdots+\eta_{d-1}x_{d-1}+\eta_d$: π の方程式, とする

(1)
$$P \in \pi \iff p_d = \eta_1 p_1 + \dots + \eta_{d-1} p_{d-1} + \eta_d$$

 $\iff -\eta_d = 2p_1 \cdot (\eta_1/2) + \dots + 2p_{d-1} \cdot (\eta_{d-1}/2) - p_d$
 $\iff \mathcal{D}(\pi) \in \mathcal{D}(P)$

(2) 点
$$P$$
 が超平面 π の上 (下) にある
$$\iff p_d > (<) \ \eta_1 p_1 + \dots + \eta_{d-1} p_{d-1} + \eta_d$$

$$\iff -\eta_d > (<) \ 2p_1 \cdot (\eta_1/2) + \dots + 2p_{d-1} \cdot (\eta_{d-1}/2) - p_d$$

$$\iff \land \mathcal{D}(\pi) \text{ が超平面 } \mathcal{D}(P) \text{ の上 } (\Gamma) \text{ にある}$$

双対変換の性質 (4/5)

定義 $2(\pi^+, \pi^-)$

$$\mathbb{R}^d$$
 内の超平面 π : $x_d = \eta_1 x_1 + \dots + \eta_{d-1} x_{d-1} + \eta_d$ に対し
$$\pi^+ \stackrel{\text{def}}{=} \{ (p_1, \dots, p_d) \in \mathbb{R}^d \mid p_d > \eta_1 p_1 + \dots + \eta_{d-1} p_{d-1} + \eta_d \}$$

$$\pi^- \stackrel{\text{def}}{=} \{ (p_1, \dots, p_d) \in \mathbb{R}^d \mid p_d < \eta_1 p_1 + \dots + \eta_{d-1} p_{d-1} + \eta_d \}$$

補題 1 (1/2)

$$S = \{P_1, \dots, P_n\} \subset \mathbb{R}^d$$
: n 点の集合 $\mathcal{H} = \mathcal{D}(S)$

- (1) 垂直ではない超平面 π が線形独立な P_{i_1}, \ldots, P_{i_d} を含む $\iff \mathcal{D}(\pi)$ が $\mathcal{A}(\mathcal{H})$ の頂点
- (2) 垂直ではない超平面 π にある S の点からなる affine 空間が k-flat $\iff \mathcal{D}(\pi)$ が $\mathcal{A}(\mathcal{H})$ の (d-k-1)-face に含まれる

双対変換の性質 (5/5)

補題 1 (2/2)

- (3) 点 P が $\mathcal{A}(\mathcal{H})$ のある cell の内部に含まれる
 - $\iff \mathcal{H}_a = \{\pi \in \mathcal{H} \mid P \in \pi^-\} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathcal{D}(P)$ が S を $\mathcal{D}(\mathcal{H}_a)$ と $\mathcal{D}(\mathcal{H} \setminus \mathcal{H}_a)$ に分ける (このとき, P を含む cell は P を $\mathcal{D}(\mathcal{H}_a)$ と $\mathcal{D}(\mathcal{H} \setminus \mathcal{H}_a)$ に分割するという)
- (4) $\mathcal{A}(\mathcal{H})$ 内の cells $c_1 \neq c_2$ が \mathcal{H} の同じ分割を与える \iff 任意の $\pi \in \mathcal{H}$ に対して $c_1 \subset \pi^+$ (π^-) かつ $c_2 \subset \pi^-$ (π^+)
- (5) Arrangement $\mathcal{A}(\mathcal{H})$ が単純
 - \iff S の k 個の点を含む垂直ではない (k-1)-flat がただ一つ存在し, S のどの (d+1) 個の点も同一の超平面上にない $(2 \le k \le d)$

- ① 双対性
- ② 双対性を通した arrangement の応用

双対性を通した arrangement の応用

平面上の点集合に関する問題

↓ 双対変換で点を直線に変換

直線の arrangement に関する問題

点集合のままではうまく解けない問題が簡単に解けることがある そういった問題をいくつか紹介

- 点の配置
- 貫通直線
- 凸包
- 点集合の分割

点の配置 (1/7)

- \bullet $P_1, \ldots, P_n \in \mathbb{R}^2$
- Q_i : P_i を l に射影した点 (i = 1, ..., n)

原点を中心に l を反時計回りに回転させる

- y 軸と重なる状態からスタートし
- 再び y 軸に重なるまで π 回転

問題

このとき, Q_i は l 上, どのような順序で並ぶか?

- いつ点の順序が変化するか
- \bullet 現れる順序は全部で何通りか (一般に n! より少ない)

点の配置 (2/7)

点 P_1 , P_2 , P_3 , P_4 の直線 l への射影

点の配置 (3/7)

例

$$P_1 = (-1, 2), P_2 = (0, -1), P_3 = (1/2, -1), P_4 = (1, 1)$$

順序変化の様子 (添字のみ記述)

- 点 Q_i と Q_j の順序が変わる \iff 直線 l と Q_iQ_j が直交
- ullet 3 点以上が同一直線上になければ, 現れる順序は $rac{n(n-1)}{2}$ 通り

点の配置 (4/7)

$$P_i$$
: (p_{i1}, p_{i2}) $(i \neq j \text{ のとき } p_{i1} \neq p_{j1} \text{ を仮定})$

直線
$$P_i P_j \stackrel{\mathcal{D}}{\longleftrightarrow} \mathcal{D}(P_i)$$
 と $\mathcal{D}(P_j)$ の交点

直線
$$P_iP_j$$
: $y=a_{ij}x+b_{ij}$ とすると
$$p_{i2}=a_{ij}p_{i1}+b_{ij} \text{ かつ } p_{j2}=a_{ij}p_{j1}+b_{ij}$$
 $\mathcal{D}(P_i):y=2p_{i1}x-p_{i2},\ \mathcal{D}(P_j):y=2p_{j1}x-p_{j2}$ より

$$\mathcal{D}(P_i)$$
 と $\mathcal{D}(P_j)$ の交点: $(a_{ij}/2, -b_{ij}) = \mathcal{D}(P_i P_j)$

点の配置 (5/7)

$$S=\{P_1,\ldots,P_n\}$$
 とする $\mathcal{D}(S)=\{\mathcal{D}(P_1),\ldots,\mathcal{D}(P_n)\}$ の arrangement $\mathcal{A}(\mathcal{D}(S))$ は、単純なら $\frac{n(n-1)}{2}$ 個の交点をもつ

以下の二つは一致

- $\mathcal{A}(\mathcal{D}(S))$ において直線 x=a と交わる $\mathcal{D}(P_i)$ の順番
- ullet S を直線 y=(-a/2)x 上に射影して得られる点の順序

点の配置 (6/7)

(左) 元の点集合

(右) 元の点集合と双対な直線の arrangement

点の配置 (7/7)

直線 l を y 軸と重なる状態から再び y 軸と重なるまで原点中心に 反時計回りに回転

 $\iff y = (-a/2)x$ の a が ∞ から $-\infty$ まで減少

双対変換した先では:

- $\mathcal{D}(P)$ の交点を x=a が通過するとき順序が変化
- Arrangement $\mathcal{A}(\mathcal{D}(S))$ 上の交点は高々 n(n-1)/2 個
- 交点が n(n-1)/2 個 \iff Arrangement が単純

よって, 順序が一番変わるのは:

Arrangement が単純, その交点の x 座標がすべて異なるとき $\iff S$ の二点を結ぶ直線の傾きがすべて異なるとき

貫通直線 (1/4)

問題 (貫通直線)

 $s_1, \ldots, s_n \subset \mathbb{R}^2$: 線分

- s_1, \ldots, s_n のすべてと交叉する直線が引けるか?
- 引けるなら、そのような直線 (貫通直線という) を 1 本求めよ

貫通直線 (2/4)

- y 軸に平行な直線はないものとする (もしあれば、原点中心に全体をわずかに回転すればよい)
- 直線 $\mathcal{D}(A_i)$ を, $\mathcal{D}(A_i)\cap\mathcal{D}(B_i)$ を中心として反時計回りに回転すると, 直線 $\mathcal{D}(A_i)$ が通過する楔型の領域 W_i ができる
- $P \in W_i \iff$ 直線 $\mathcal{D}(P)$ は s_i と交わる したがって、

 s_1, \ldots, s_n すべてと交叉する直線が存在 $\Longleftrightarrow W_1 \cap \cdots \cap W_n \neq \emptyset$

 $W_1 \cap \cdots \cap W_n$ の計算は (分割統治法により) $O(n \log n)$ で可能

貫通直線 (3/4)

(左) 線分 s と直線 l (右図点 P(1,1) の双対)

(右) 線分 s の両端点の双対による楔型と点 P

貫通直線 (4/4)

参考: 貫通直線と関連した問題で, 以下が成立

定理

 $S: \mathbb{R}^2$ 内の y 軸に平行な線分の有限集合

以下の二条件は同値

- 任意の $s_1, s_2, s_3 \in S$ に対して s_1, s_2, s_3 すべてと交叉する直線が 存在
- S に属するすべての線分と交叉する直線が存在

凸包 (1/2)

$$S = \{P_1, \dots, P_n\} \subset \mathbb{R}^2$$

S の凸包 $\stackrel{
otagin{subarray}{c}
otagin{suba$

上(下)側 envelope:

x 座標を固定したとき, 最大値 (最小値) を取る直線からなる 折れ線関数 $f_M(x)$ ($f_m(x)$)

$$f_M(a) = \begin{pmatrix} i = 0 & x = a & \mathcal{D}(P_i) & (i = 1, \dots, n) & \mathcal{O} \\ \hat{\nabla} & \hat{\nabla} &$$

$$f_m(a) = \begin{pmatrix} i = 1, \dots, n \end{pmatrix}$$
 の
交点の y 座標の中で最小の値

Envelope 上の点 ←→ 凸包の支持直線

Envelope の頂点 ←→ 凸包の頂点 (2 本の支持直線の交点)

凸包 (2/2)

(左) 入力点の集合 S と凸包 (右) Arrangement $\mathcal{D}(S)$

点集合の分割 (1/2)

S: ℝ² 内の点の有限集合

Arrangement $\mathcal{A}(\mathcal{D}(S))$ の, ある cell に含まれる点P に対してP を通り y 軸に平行な直線 l を引く

点 P より上で l が k 本の arrangement の直線と交わる

 \iff Arrangement の直線中, 点 P より上にあるものは k 本

 \iff 元の平面で S 中の k 点より上に直線 $\mathcal{D}(P)$, S 中の (n-k) 点より下に直線 $\mathcal{D}(P)$ が存在

 $\Longrightarrow S$ を k 個と (n-k) 個に分ける直線が得られる

点集合の分割 (2/2)

(左) 点集合 S と直線 $\mathcal{D}(P)$

(右) $\mathcal{D}(S)$, 点 P, および点 P を通る y 軸と平行な直線 l