《概率论与数理统计》期中考试

- 一、 从一批产品中依次取 4 次,每次 1 件,记事件 A_k ={第k次取得正品},用它们表示下述事件:
 - (1) 4件中没有1件是次品
 - (2) 4件中恰有1件是次品
 - (3) 4件中至少有1件是次品
 - (4) 4件中至多有3件是次品
 - (5) 4件中都是次品
- 二、在 10 件产品中有 6 件一等品, 4 件二等品, 从中任取 3 件, 求下述事件概率:
 - (6) 所取3件中有1件一等品
 - (7) 所取的 3 件全是一等品
 - (8) 所取的 3 件全是二等品
 - (9) 所取的 3 件全是一等品或二等品
 - (10) 所取的 3 件中既有一等品又有二等品
- 二、假设有两箱同种零件,第一箱内装50件,其中10件是一等品;第二箱内装30件,其中18件一等品,现从两箱中随意地挑出一箱,然后从该箱中随机地取出两个零件(取出的零件均不放回),求:
- (1) 先取出的零件是一等品的概率
- (2) 在先取出的零件是一等品的条件下,第二次取出的零件仍然是一等品的概率

三、设随机变量 $X \sim E(\frac{1}{2})$,令随机变量 $Y = e^{-2X}$,证明 $Y \sim U(0,1)$.

四、设测量误差 $X \sim N(0, 10^2)$,现进行 50 次独立测量,求误差绝对值超过 19.6 的次数不小于 3 的概率。

附表一 泊松分布函数表
$$\left(F(k) = \sum_{i=0}^{k} \frac{\lambda^{i}}{i!} e^{-\lambda}\right)$$

k λ	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.5	2.0	2.5	3.0
0	0.9048	0.8187	0.7408	0.6703	0.6065	0.5488	0.4966	0.4493	0.4066	0.3679	0.2231	0.1353	0.0821	0.0498
1	0.9953	0.9825	0.9631	0.9384	0.9098	0.8781	0.8442	0.8088	0.7725	0.7358	0.5578	0.4060	0.2873	0.1991
2	0.9998	0.9989	0.9964	0.9921	0.9856	0.9769	0.9659	0.9526	0.9371	0.9197	0.8088	0.6767	0.5438	0.4232
3	1.0000	0.9999	0.9997	0.9992	0.9982	0.9966	0.9942	0.9909	0.9865	0.9810	0.9344	0.8571	0.7576	0.6472
4		1.0000	1.0000	0.9999	0.9998	0.9996	0.9992	0.9986	0.9977	0.9963	0.9814	0.9473	0.8912	0.8153
5				1.0000	1.0000	1.0000	0.9999	0.9998	0.9997	0.9994	0.9955	0.9834	0.9580	0.9161
6							1.0000	1.0000	1.0000	0.9999	0.9991	0.9955	0.9858	0.9665
7										1.0000	0.9998	0.9989	0.9958	0.9881
8											1.0000	0.9998	0.9989	0.9962
9												1.0000	0.9997	0.9989
10													0.9999	0.9997
11													1.0000	0.9999
12														1.0000

五、设二维随机变量(X,Y)的概率密度函数为

$$f(x,y) = \begin{cases} Ae^{-x}, & 0 < y < x < +\infty \\ 0, & else \end{cases}$$

求:

- (1) 常数 A;
- (2) (X,Y)关于 X 和 Y 的边缘概率密度函数 $f_X(x)$, $f_Y(y)$;
- (3) X和Y是否相互独立? 为什么?
- (4) 条件概率密度函数 $f_{X|Y}(x|y)$, $f_{Y|X}(y|x)$;
- (5) $\mathbb{R}^{2}P\{X+Y<1\}, P\{X<2|Y=1\};$
- (6) $mathrew{max}P{min}{X,Y} < 1, P{max}{X,Y} ≥ 1;$
- (7) (X,Y)的分布函数F(x,y);
- (8) Z = X + Y的概率密度函数 $f_Z(z)$.

六、设二维随机变量(X,Y)的概率分布为:

Y X	-1	0	1
-1	0.2	0	0.2
0	0.1	а	0.2
1	0	0.1	b

其中a,b为常数,且 $P\{X \le 0 | Y \le 0\} = 0.5$,记随机变量 $Z = X + Y, \bar{x}$:

- (1) *a,b*的值;
- (2) X和Y的边缘分布律
- (3) X和Y是否相互独立? 为什么?
- (4) **Z**的分布律
- (5) $P{Y = Z}$
- (6) X、Y分别的期望和方差
- (7) X和Y的协方差

七、为确保设备正常运转,需要配备适当数量的维修工人,现有同类型设备 300 台,各台工作相互独立,每台发生故障的概率都是 0.01.在正常情况下,一台设备出故障时一人即能处理,问至少应配备几名维修工人,才能以 99%的把握保证设备出故障时维修工人能及时处理故障?

附表一 泊松分布函数表
$$\left(F(k) = \sum_{i=0}^{k} \frac{\lambda^{i}}{i!} e^{-\lambda}\right)$$

k λ	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.5	2.0	2.5	3.0
0	0.9048	0.8187	0.7408	0.6703	0.6065	0.5488	0.4966	0.4493	0.4066	0.3679	0.2231	0.1353	0.0821	0.0498
1	0.9953	0.9825	0.9631	0.9384	0.9098	0.8781	0.8442	0.8088	0.7725	0.7358	0.5578	0.4060	0.2873	0.1991
2	0.9998	0.9989	0.9964	0.9921	0.9856	0.9769	0.9659	0.9526	0.9371	0.9197	0.8088	0.6767	0.5438	0.4232
3	1.0000	0.9999	0.9997	0.9992	0.9982	0.9966	0.9942	0.9909	0.9865	0.9810	0.9344	0.8571	0.7576	0.6472
4		1.0000	1.0000	0.9999	0.9998	0.9996	0.9992	0.9986	0.9977	0.9963	0.9814	0.9473	0.8912	0.8153
5				1.0000	1.0000	1.0000	0.9999	0.9998	0.9997	0.9994	0.9955	0.9834	0.9580	0.9161
6							1.0000	1.0000	1.0000	0.9999	0.9991	0.9955	0.9858	0.9665
7										1.0000	0.9998	0.9989	0.9958	0.9881
8											1.0000	0.9998	0.9989	0.9962
9												1.0000	0.9997	0.9989
10													0.9999	0.9997
11													1.0000	0.9999
12														1.0000

随堂小测:设二维随机变量(X,Y)的概率密度函数为

$$f(x,y) = \begin{cases} 2 - x - y, & 0 \le x \le 1, 0 \le y \le 1, \\ 0, & else \end{cases}$$

- (1) 判别X与Y是否相互独立,是否不相关;
- (2) 求D(X + Y).