Course Code	Course	Teaching Scheme (Contact Hours)			Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Total
ITC404	Automata Theory	03			03			03

Course	Course	Examination Scheme						
Code	Name	Theory Marks					Pract. /Oral	Total
		Internal assessment		End	Term Work			
		Test1	Test 2	Avg.	Sem. Exam	Term work	Tract./Oral	Total
ITC404	Automata Theory	20	20	20	80			100

Course Objectives:

Sr. No.	Course Objectives					
The cours	The course aims:					
1	To learn fundamentals of Regular and Context Free Grammars and Languages.					
2	To understand the relation between Regular Language and Finite Automata and machines.					
3	To learn how to design Automata's as Acceptors, Verifiers and Translators.					
4	To understand the relation between Regular Languages, Contexts free Languages, PDA and					
	TM.					
5	To learn how to design PDA as acceptor and TM as Calculators.					
6	To learn applications of Automata Theory.					

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy		
On suc	cessful completion, of course, learner/student will be able to:			
1	Explain, analyze and design Regular languages, Expression and Grammars. L2, L			
2	Design different types of Finite Automata and Machines as Acceptor, Verifier and Translator.	L6		
3	Analyze and design Context Free languages and Grammars.	L4, L6		
4	Design different types of Push down Automata as Simple Parser.	L6		
5	Design different types of Turing Machines as Acceptor, Verifier, Translator and Basic computing machine.	L6		
6	Develop understanding of applications of various Automata. L6			

Prerequisite: Basic Mathematical Fundamentals: Sets, Logic, Relations, Functions.

DETAILED SYLLABUS:

Sr.	Module	Detailed Content	Hours	CO
No.				Mapping

0	Prerequisite	Basic Mathematical Fundamentals: Sets, Logic, Relations, Functions.	02	-
I	Introduction and Regular Languages	Languages: Alphabets and Strings. Regular Languages: Regular Expressions, Regular Languages, Regular Grammars, RL and LL grammars, Closure properties Self-learning Topics: Practice exercise on Regular Expressions. Identify the tools also.	05	CO1
II	Finite Automata	Finite Automata: FA as language acceptor or verifier, NFA (with and without ε), DFA, RE to NFA, NFA to DFA, Reduced DFA, NFA-DFA equivalence, FA to RE. Finite State Machines with output: Moore and Mealy machines. Moore and Mealy M/C conversion. Limitations of FA. Self-learning Topics: Practice exercise on FA and NFA	09	CO2
III	Context Free Grammars	Context Free Languages: CFG, Leftmost and Rightmost derivations, Ambiguity, Simplification and Normalization (CNF & GNF) and Chomsky Hierarchy (Types 0 to 3) Self-learning Topics: Practice numerical or exercise on CFG	08	CO3
IV	Push Down Automata	Push Down Automata: Deterministic (single stack) PDA, Equivalence between PDA and CFG. Power and Limitations of PDA. Self-learning Topics: List the examples of PDA.	05	CO4
V	Turing Machine	Turing Machine: Deterministic TM, Variants of TM, Halting problem, Power of TM. Self-learning Topics: Practice numerical of TM.	07	CO5
VI	Applications of Automata	Applications of FA, CFG, PDA & TM. Introduction to Compiler & Its phases. Self-learning Topics: Case study on any one compiler.	03	CO2,CO 3, CO4,CO 5, CO6

Text books

- 1. J.C.Martin, "Introduction to languages and the Theory of Computation", TMH.
- 2. Kavi Mahesh, "Theory of Computation A Problem Solving Approach", Wiley India
- 3. A. V. Aho, R. Shethi, Monica Lam , J.D. Ulman , "Compilers Principles, Techniques and Tools ",Pearson Education.

References

- 1. John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, "Introduction to Automata Theory, Languages and Computation", Pearson Education.
- 2. Daniel I.A. Cohen, "Introduction to Computer Theory", John Wiley & Sons.
- 3. Vivek Kulkarni," Theory of Computation", Oxford University.
- 4. N.Chandrashekhar, K.L.P. Mishra, "Theory of Computer Science, Automata Languages & Computations", PHI publications.
- 5.J. J. Donovan, "Systems Programming", TMH.

Online References:

Sr. No.	Website Name		
1.	https://www.nptel.ac.in		
2.	https://online.stanford.edu		
3.	https://www.coursera.org/		

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 willbe compulsory and should cover maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered

.