Lab 8

Adam Orr

October 20, 2017

Section: 91973 Friday 9am

Question 1

Script

```
# a. Estimate the mean turning angle and calculate its exact 95% confidence
# interval.
setwd("~/code/biometry-lab/lab8")
turning <- read.csv('turning.csv')</pre>
turning <- turning$angle #turn list into vector</pre>
#estimate the mean
(xbar <- mean(turning))</pre>
s <- sd(turning)
n <- length(turning)</pre>
se <- s / sqrt(n)
df \leftarrow n - 1
#calculate exact confidence interval
critvals <- qt(c(0.025,.975), df = df) #get vector of critical values
(ci <- xbar + se * critvals) #since one critical value is positive and
#the other negative, this is equivalent to xbar +/- se * critvals
# b. Test the hypothesis that people tend to turn in one direction more on
# average than the other direction. That is, test whether the mean turning angle
# differs from zero. Carry out the test "by hand" in R, calculating each step
# yourself. Explicitly carry out the five steps of hypothesis testing presented
# in lecture. Clearly state your conclusion, along with the essential
# statistical information in parentheses, including the name of the test, value
# of the t statistic, the degrees of freedom, and the P value).
#step 1 - hypotheses
\#h0: mean = 0
#ha: mean != 0
#step 2 - alpha
\#alpha = 0.05
#step 3 - define test statistic
\# t = (xbar - null) / se
#step 4 - calculate test statistic
null <- 0
(t <- (xbar - null)/se)</pre>
```

```
#step 5 - calculate the p-value and make a conclusion (p \leftarrow 2 * (1 - pt(abs(t), df)))

#We fail to reject the null hypothesis that the mean equals zero with an alpha #of 0.05 (t-test: t = -0.288, df = 13, p = 0.778)

# c. Repeat the test using R's t.test function. Make sure that your answers from # part b match those given by t.test.

t.test(turning)
```

Output

```
# a. Estimate the mean turning angle and calculate its exact 95% confidence
# interval.
#estimate the mean
```

[1] -0.135

#calculate exact confidence interval

```
## [1] -1.1463515 0.8763515
```

```
# b. Test the hypothesis that people tend to turn in one direction more on
# average than the other direction. That is, test whether the mean turning angle
# differs from zero. Carry out the test "by hand" in R, calculating each step
# yourself. Explicitly carry out the five steps of hypothesis testing presented
# in lecture. Clearly state your conclusion, along with the essential
# statistical information in parentheses, including the name of the test, value
# of the t statistic, the degrees of freedom, and the P value).

#step 1 - hypotheses
#h0: mean = 0
#ha: mean != 0

#step 2 - alpha
#alpha = 0.05

#step 3 - define test statistic
# t = (xbar - null) / se
#step 4 - calculate test statistic
```

[1] -0.2883763

#step 5 - calculate the p-value and make a conclusion

[1] 0.7776054

```
#We fail to reject the null hypothesis that the mean equals zero with an alpha #of 0.05 (t-test: t = -0.288, df = 13, p = 0.778)

# c. Repeat the test using R's t.test function. Make sure that your answers from # part b match those given by t.test.
```

##

```
## One Sample t-test
##
## data: turning
## t = -0.28838, df = 13, p-value = 0.7776
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -1.1463515 0.8763515
## sample estimates:
## mean of x
## -0.135
```

Answers

Question 2

Script

```
# a. Import the data into R and estimate the mean difference in number of
# species between areas upstream and downstream of a tributary. Calculate a 95%
# confidence interval for the estimate.
tributaries <- read.csv('tributaries.csv')</pre>
d <- tributaries$upstream - tributaries$downstream</pre>
#estimate the mean
(xbar <- mean(d))
s \leftarrow sd(d)
n <- length(d)
se <- s / sqrt(n)
df <- n - 1
#calculate exact confidence interval
critvals \leftarrow qt(c(0.025,.975), df = df) #get vector of critical values
(ci <- xbar + se * critvals) #since one critical value is positive and
#the other negative, this is equivalent to xbar +/- se * critvals
# b. Carry out (by hand) a test of the hypothesis that the number of species
# differs between upstream and downstream locations. Be sure to clearly state
# null and alternative hypotheses and to give a full statement of the
# conclusions of your test.
#step 1 - hypotheses
#h0: d = 0
\#ha: d != 0
#step 2 - alpha
\#alpha = 0.05
#step 3 - define test statistic
\# t = xbar_d / se_d
#step 4 - calculate test statistic
```

```
(t <- (xbar/se))

#step 5 - calculate the p-value and make a conclusion
(p <- 2 * (1 - pt(abs(t),df)))

#We reject the null hypothesis that the mean difference between the number of
#species is 0 with an alpha of 0.05 (paired t-test: t = -2.2669, df = 14, p =
#0.0398)

# c. Perform the same test using R's t.test function.
t.test(tributaries$upstream, tributaries$downstream, paired = T)</pre>
```

Output

```
# a. Import the data into R and estimate the mean difference in number of # species between areas upstream and downstream of a tributary. Calculate a 95% # confidence interval for the estimate. #estimate the mean
```

[1] -1.8

#calculate exact confidence interval

```
## [1] -3.50301491 -0.09698509
```

```
# b. Carry out (by hand) a test of the hypothesis that the number of species
# differs between upstream and downstream locations. Be sure to clearly state
# null and alternative hypotheses and to give a full statement of the
# conclusions of your test.

#step 1 - hypotheses
#h0: d = 0
#ha: d != 0

#step 2 - alpha
#alpha = 0.05

#step 3 - define test statistic
# t = xbar_d / se_d

#step 4 - calculate test statistic
```

[1] -2.26693

#step 5 - calculate the p-value and make a conclusion

[1] 0.03976278

```
#We reject the null hypothesis that the mean difference between the number of #species is 0 with an alpha of 0.05 (paired t-test: t = -2.2669, df = 14, p = #0.0398)

# c. Perform the same test using R's t.test function.
```

##

Paired t-test

```
##
## data: tributaries$upstream and tributaries$downstream
## t = -2.2669, df = 14, p-value = 0.03976
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.50301491 -0.09698509
## sample estimates:
## mean of the differences
## -1.8
```

Answers

Question 3

Script

```
# a. Read this data into R and use it to estimate mean drinking time for each
# treatment (straight and curved).
beer <- read.csv('beer.csv')</pre>
#straight glass mean
(xbar_straight <- mean(beer$Straight))</pre>
#curved glass mean
(xbar_curved <- mean(beer$Curved))</pre>
# b. Calculate the pooled sample variance. Use it to calculate the 95%
# confidence intervals of the mean drinking time for each treatment.
nstraight <- length(beer$Straight)</pre>
ncurved <- length(beer$Curved)</pre>
s2_pooled <- (sum((beer$Straight - xbar_straight)^2) + sum((beer$Curved - xbar_curved)^2))/(nstraight +
se_diff <- sqrt(s2_pooled/nstraight + s2_pooled/ncurved)</pre>
df <- nstraight + ncurved - 2
critvals \leftarrow qt(c(0.025,.975), df = df) #get vector of critical values
(ci_straight <- (xbar_straight + se_diff * critvals))</pre>
(ci_curved <- (xbar_curved + se_diff * critvals))</pre>
# c. Why is it better to use the pooled variance rather than the separate sample
# variances for each treatment?
#Since a t-test assumes that both population standard deviations are equal, by
#using more samples to estimate the the standard deviation increases the
#precision of the estimate.
# d. Make an error bar plot showing the two estimates and their confidence
# intervals. Based on your inspection of these intervals, does it seem likely
# that the mean drinking times are different for the two glass shapes?
library('gplots')
plotCI(c(xbar_straight,xbar_curved),
       uiw = (critvals[2]*se_diff),
```

```
xaxt="n",
       yaxt="n",
       xlab = "Glass Type",
       xlim = c(0.5, 2.5),
       ylim = c(2,20),
       ylab = "Time to consume beer (minutes)")
axis(1, at = c(1,2), labels = c("Straight", "Curved"))
axis(2, at = seq(2,20,2))
#Based on a visual inspection, it seems that the mean drinking times are
#different, though there is a slight overlap of the intervals.
# e. Now estimate the difference in mean drinking time between the two
# treatments and calculate a 95% confidence interval for this difference.
(xbar <- xbar_straight - xbar_curved)</pre>
(ci_diff <- xbar + critvals * se_diff)</pre>
# f. Carry out a t-test of the hypothesis that the mean drinking time differs
# between the two groups. Be sure to clearly state null and alternative
# hypotheses and to give a full statement of the conclusions of your test.
#step 1 - hypotheses
#h0: xbar_straight = xbar_curved
#ha: xbar_straight != xbar_curved
#step 2 - alpha
\#alpha = 0.05
#step 3 - define test statistic
\# t = xbar\_diff / se\_p
#step 4 - calculate test statistic
(t <- (xbar/se_diff))</pre>
\#step\ 5 - calculate the p-value and make a conclusion
(p \leftarrow 2 * (1 - pt(abs(t),df)))
#We reject the null hypothesis that the mean minutes to finish a beer in a
#straight glass is equal to the mean minutes to finish a beer in a curved glass
#with an alpha of 0.05 (two-sample t-test: t = 3.577, df = 18, p = 0.0022)
# g. Perform the same test using R's t.test function.
t.test(beer$Straight, beer$Curved, alternative = 't', var.equal = TRUE)
```

Output

```
# a. Read this data into R and use it to estimate mean drinking time for each # treatment (straight and curved).
#straight glass mean
```

```
## [1] 14.913
```

#curved glass mean

[1] 7.624

b. Calculate the pooled sample variance. Use it to calculate the 95% # confidence intervals of the mean drinking time for each treatment.

[1] 10.6313 19.1947

[1] 3.342299 11.905701

c. Why is it better to use the pooled variance rather than the separate sample
variances for each treatment?
#Since a t-test assumes that both population standard deviations are equal, by
#using more samples to estimate the the standard deviation increases the
#precision of the estimate.
d. Make an error bar plot showing the two estimates and their confidence
intervals. Based on your inspection of these intervals, does it seem likely
that the mean drinking times are different for the two glass shapes?

Attaching package: 'gplots' ## The following object is masked from 'package:stats': ## ## lowess

Glass Type

#Based on a visual inspection, it seems that the mean drinking times are #different, though there is a slight overlap of the intervals.

e. Now estimate the difference in mean drinking time between the two # treatments and calculate a 95% confidence interval for this difference.

[1] 7.289

[1] 3.007299 11.570701

```
# f. Carry out a t-test of the hypothesis that the mean drinking time differs
# between the two groups. Be sure to clearly state null and alternative
# hypotheses and to give a full statement of the conclusions of your test.

#step 1 - hypotheses
#h0: xbar_straight = xbar_curved
#ha: xbar_straight != xbar_curved

#step 2 - alpha
#alpha = 0.05

#step 3 - define test statistic
# t = xbar_diff / se_p

#step 4 - calculate test statistic
```

[1] 3.576527

 $\#step\ 5$ - calculate the p-value and make a conclusion

[1] 0.002156914

#We reject the null hypothesis that the mean minutes to finish a beer in a #straight glass is equal to the mean minutes to finish a beer in a curved glass #with an alpha of 0.05 (two-sample t-test: t=3.577, df=18, p=0.0022) # g. Perform the same test using R's t.test function.

```
##
## Two Sample t-test
##
## data: beer$Straight and beer$Curved
## t = 3.5765, df = 18, p-value = 0.002157
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 3.007299 11.570701
## sample estimates:
## mean of x mean of y
## 14.913 7.624
```

Answers