Ideal Nozzle Simulation Inputs:

a: 0.05 meter ** 2 / kilogram

n: 0.65 m: -0.2

Oxidiser:

Initial Volume: 0.41 liter Initial Mass: 0.71 lbs

Injector Mass Flow Rate: 0.027 kilogram / second

Number of Injectors: 1 Ideal O/F Ratio: 4.83 External Temp: 70 degF Time Step: 0.01 second

Simulation Results:

Total Burn Time: 11.72 second

Impulse: 1243.33 newton * second Average Thrust: 106.09 newton

Motor: J106

Nozzle Results:

Suggested Throat Diameter: 0.172 inch Suggested Exit Diameter: 0.391 inch Suggested Diffuser Length: 0.408 inch

Fuel Grain

Port Length: 13.4 inch

Fuel Density: 3.96 kilogram / meter ** 3

Grain Diameter: 1.75 inch Initial Port Diameter: 1.0 inch Final Port Diameter: 1.584 inch

average port diameter (inch) vs time (second)

average regression rate (inch / second) vs time (second)

average total mass flow rate (kilogram / second) vs time (second)

average total mass flux (kilogram / inch ** 2 / second) vs time (second)

inlet mach vs time (second)

inlet velocity (mph) vs time (second)

nozzle exit area (inch ** 2) vs time (second)

nozzle exit diameter (inch) vs time (second)

nozzle exit mach vs time (second)

nozzle exit velocity (mph) vs time (second)

nozzle nozzle diffuser length (inch) vs time (second)

nozzle star mach vs time (second)

nozzle star pressure (pound_force_per_square_inch) vs time (second)

+2.19226អូខ្លួzle star velocity (mph) vs time (second) 0.0007 nozzle star velocity (mph) 0.0006 -0.0005 -0.0004 -0.0003 -0.0002 -0.0001 10 12 time (second)

nozzle throat diameter (inch) vs time (second)

nozzle thrust (newton) vs time (second)

oxi fuel ratio vs time (second)

oxidiser mass (kilogram) vs time (second)

oxidiser mass flow rate (kilogram / second) vs time (second)

