MBR0540T1G, NRVB0540T1G, MBR0540T3G, NRVB0540T3G

Schottky Power Rectifier, Surface Mount,

0.5 A, 40 V, SOD-123 Package

The Schottky Power Rectifier employs the Schottky Barrier principle with a barrier metal that produces optimal forward voltage drop-reverse current tradeoff. Ideally suited for low voltage, high frequency rectification, or as a free wheeling and polarity protection diodes in surface mount applications where compact size and weight are critical to the system. This package provides an alternative to the leadless 34 MELF style package.

Features

- Guardring for Stress Protection
- Very Low Forward Voltage
- Epoxy Meets UL 94 V-0 @ 0.125 in
- Package Designed for Optimal Automated Board Assembly
- AEC-Q101 Qualified and PPAP Capable
- NRVB Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements
- All Packages are Pb–Free*

Mechanical Characteristics

• Device Marking: B4

• Polarity Designator: Cathode Band

• Weight: 11.7 mg (approximately)

· Case: Epoxy Molded

- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C max. for 10 Seconds
- ESD Rating:
 - ♦ Human Body Model = 3B
 - ♦ Machine Model = C

ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 0.5 AMPERES, 40 VOLTS

SOD-123 CASE 425 STYLE 1

MARKING DIAGRAM

B4 = Device Code M = Date Code • = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
MBR0540T1G	SOD-123 (Pb-Free)	3,000/Tape & Reel (8 mm Tape, 7" Real)
NRVB0540T1G	SOD-123 (Pb-Free)	3,000/Tape & Reel (8 mm Tape, 7" Real)
MBR0540T3G	SOD-123 (Pb-Free)	10,000/Tape & Reel (8 mm Tape, 13" Real)
NRVB0540T3G	SOD-123 (Pb-Free)	10,000/Tape & Reel (8 mm Tape, 13" Real)

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ON

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MBR0540T1G, NRVB0540T1G, MBR0540T3G, NRVB0540T3G

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	40	V
Average Rectified Forward Current (At Rated V_R , $T_C = 115$ °C)	Io	0.5	Α
Peak Repetitive Forward Current (At Rated V _R , Square Wave, 20 kHz, T _C = 115°C)	I _{FRM}	1.0	А
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	5.5	А
Storage/Operating Case Temperature Range	T _{stg} , T _C	-55 to +150	°C
Operating Junction Temperature	T _J	-55 to +150	°C
Voltage Rate of Change (Rated V _R , T _J = 25°C)	dv/dt	1000	V/µs

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance – Junction-to-Lead (Note 1) Thermal Resistance – Junction-to-Ambient (Note 2)	R _{tjl} R _{tja}	118 206	°C/W

- 1. Mounted with minimum recommended pad size, PC Board FR4.
- 2. 1 inch square pad size (1 X 0.5 inch for each lead) on FR4 board.

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Va	Unit	
Maximum Instantaneous Forward Voltage (Note 3)	V _F	T _J = 25°C	T _J = 100°C	V
(i _F = 0.5 A) (i _F = 1 A)		0.51 0.62	0.46 0.61	
Maximum Instantaneous Reverse Current (Note 3)	I _R	T _J = 25°C	T _J = 100°C	μΑ
$(V_R = 40 \text{ V})$ $(V_R = 20 \text{ V})$		20 10	13,000 5,000	

^{3.} Pulse Test: Pulse Width \leq 250 μ s, Duty Cycle \leq 2.0%.

Figure 1. Typical Forward Voltage

Figure 2. Maximum Forward Voltage

MBR0540T1G, NRVB0540T1G, MBR0540T3G, NRVB0540T3G

Figure 3. Typical Reverse Current

Figure 4. Maximum Reverse Current

Figure 5. Current Derating

Figure 6. Forward Power Dissipation

Figure 8. Typical Operating Temperature Derating*

r(t) = thermal impedance under given conditions,

Pf = forward power dissipation, and

Pr = reverse power dissipation

This graph displays the derated allowable T_J due to reverse bias under DC conditions only and is calculated as $T_J = T_{Jmax} - r(t)Pr$, where r(t) = Rthja. For other power applications further calculations must be performed.

^{*} Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_J therefore must include forward and reverse power effects. The allowable operating T_J may be calculated from the equation: $T_J = T_{Jmax} - r(t)(Pf + Pr)$ where

MBR0540T1G, NRVB0540T1G, MBR0540T3G, NRVB0540T3G

Figure 9. Thermal Response Junction to Lead

Figure 10. Thermal Response Junction to Ambient

SOD-123 CASE 425-04 ISSUE G

DATE 07 OCT 2009

SOLDERING FOOTPRINT*

SCALE 10:1

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.94	1.17	1.35	0.037	0.046	0.053
A1	0.00	0.05	0.10	0.000	0.002	0.004
b	0.51	0.61	0.71	0.020	0.024	0.028
С			0.15			0.006
D	1.40	1.60	1.80	0.055	0.063	0.071
Е	2.54	2.69	2.84	0.100	0.106	0.112
HE	3.56	3.68	3.86	0.140	0.145	0.152
L	0.25			0.010		
θ	0°		10°	0°		10°

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present.

STYLE 1: PIN 1. CATHODE 2. ANODE

DOCUMENT NUMBER:	98ASB42927B	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOD-123		PAGE 1 OF 1	

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative