Cryptography Lecture 13

Arkady Yerukhimovich

October 9, 2024

Outline

1 Lecture 12 Review

2 Hash Functions (Chapters 5.1, 5.2)

3 Other Applications of Hash Functions (Chapters 5.3, 5.6)

Lecture 12 Review

- Review of MAC domain extension
- Authenticated encryption

Outline

Lecture 12 Review

2 Hash Functions (Chapters 5.1, 5.2)

3 Other Applications of Hash Functions (Chapters 5.3, 5.6)

Domain Extension for MAC (Try 4)

Starting Point

- Let $m=m_1||m_2||\cdots||m_\ell$, where each m_i is n bits
- Let $\Pi' = (Gen', Mac', Verify')$ be an *n*-bit MAC

Include random message identifier in each block:

- Parse m as $m_1||m_2||\cdots||m_{4\ell}$ with each m_i of length n/4
- $r \leftarrow \{0,1\}^{n/4}$ message id
- Compute $t_i = \mathsf{Mac}_k'(r||4\ell||i||m_i)$

The Problem:

This requires

- $|t| = 4\ell n$ bits
- 4ℓ calls to PRF

Question: Can we do domain extension more efficiently?

Another Way to Authenticate Long Messages

What if we could take a *digest* of a long message?

$$m = m_1 ||m_2|| \qquad \dots \qquad ||m_\ell \downarrow \downarrow H(m)$$

and, then compute $t = Mac_k(H(m))$

Question

What properties would we need from H for this to be a secure Mac?

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ かくで

A hash function is a function $H:\{0,1\}^* \to \{0,1\}^\ell$

Arkady Yerukhimovich Cryptography October 9, 2024 7 /

A hash function is a function $H: \{0,1\}^* \to \{0,1\}^{\ell}$

• compresses long inputs into short (fixed-length) digests

Arkady Yerukhimovich Cryptography October 9, 2024 7 / 2

A hash function is a function $H: \{0,1\}^* \to \{0,1\}^{\ell}$

• compresses long inputs into short (fixed-length) digests

Security:

A hash function is a function $H:\{0,1\}^* \to \{0,1\}^\ell$

• compresses long inputs into short (fixed-length) digests

Security:

• Second pre-image resistance: Given m and H(m), can't find m' with same hash

A hash function is a function $H:\{0,1\}^* \to \{0,1\}^\ell$

• compresses long inputs into short (fixed-length) digests

Security:

- Second pre-image resistance: Given m and H(m), can't find m' with same hash
- Collision resistance: Hard to find m, m' s.t. H(m) = H(m').

A More Formal Definition

(Keyed) Hash function with output length $\ell(n)$:

A More Formal Definition

(Keyed) Hash function with output length $\ell(n)$:

- $Gen(1^n)$: Outputs a key s
- H(s,x): $H^s(x)$ takes input $x \in \{0,1\}^*$ and outputs $H^s(x) \in \{0,1\}^{\ell(n)}$

A More Formal Definition

(Keyed) Hash function with output length $\ell(n)$:

- $Gen(1^n)$: Outputs a key s
- H(s,x): $H^s(x)$ takes input $x \in \{0,1\}^*$ and outputs $H^s(x) \in \{0,1\}^{\ell(n)}$

Let $\Pi = (\mathsf{Gen}, H)$ be a (keyed) hash function with output length ℓ . Consider the following game between an adversary $\mathcal A$ and a challenger:

$$\mathsf{Hash} - \mathsf{Coll}_{\mathcal{A},\Pi}(n)$$

Let $\Pi = (\mathsf{Gen}, H)$ be a (keyed) hash function with output length ℓ . Consider the following game between an adversary $\mathcal A$ and a challenger:

$\mathsf{Hash} - \mathsf{Coll}_{\mathcal{A},\Pi}(n)$

ullet The challenger chooses $s \leftarrow \mathsf{Gen}(1^n)$ and sends it to $\mathcal A$

Let $\Pi = (\mathsf{Gen}, H)$ be a (keyed) hash function with output length ℓ . Consider the following game between an adversary $\mathcal A$ and a challenger:

$\mathsf{Hash} - \mathsf{Coll}_{\mathcal{A},\Pi}(n)$

- ullet The challenger chooses $s \leftarrow \mathsf{Gen}(1^n)$ and sends it to $\mathcal A$
- \mathcal{A} outputs two strings (x, x')

Let $\Pi = (\mathsf{Gen}, H)$ be a (keyed) hash function with output length ℓ . Consider the following game between an adversary $\mathcal A$ and a challenger:

$\mathsf{Hash} - \mathsf{Coll}_{\mathcal{A},\Pi}(n)$

- ullet The challenger chooses $s \leftarrow \mathsf{Gen}(1^n)$ and sends it to $\mathcal A$
- \mathcal{A} outputs two strings (x, x')
- We say that $\operatorname{Hash} \operatorname{Coll}_{\mathcal{A},\Pi}(n) = 1$ (i.e., \mathcal{A} wins) if $H^s(x) = H^s(x')$.

Let $\Pi = (\mathsf{Gen}, H)$ be a (keyed) hash function with output length ℓ . Consider the following game between an adversary \mathcal{A} and a challenger:

$\mathsf{Hash} - \mathsf{Coll}_{\mathcal{A},\Pi}(n)$

- ullet The challenger chooses $s \leftarrow \mathsf{Gen}(1^n)$ and sends it to $\mathcal A$
- \mathcal{A} outputs two strings (x, x')
- We say that $\operatorname{\mathsf{Hash}}-\operatorname{\mathsf{Coll}}_{\mathcal{A},\Pi}(n)=1$ (i.e., \mathcal{A} wins) if $H^s(x)=H^s(x')$.

Definition: A hash function $\Pi = (Gen, H)$ is *collision resistant* if for all PPT \mathcal{A} it holds that

$$\Pr[\mathsf{Hash} - \mathsf{Coll}_{\mathcal{A},\Pi}(n) = 1] \leq \mathsf{negl}(n)$$

Let $\Pi = (\mathsf{Gen}, H)$ be a (keyed) hash function with output length ℓ . Consider the following game between an adversary $\mathcal A$ and a challenger:

$\mathsf{Hash} - \mathsf{Coll}_{\mathcal{A},\Pi}(n)$

- ullet The challenger chooses $s \leftarrow \mathsf{Gen}(1^n)$ and sends it to $\mathcal A$
- \mathcal{A} outputs two strings (x, x')
- We say that $\operatorname{\mathsf{Hash}}-\operatorname{\mathsf{Coll}}_{\mathcal{A},\Pi}(n)=1$ (i.e., \mathcal{A} wins) if $H^s(x)=H^s(x')$.

Comparison to a PRF:

Let $\Pi = (\mathsf{Gen}, H)$ be a (keyed) hash function with output length ℓ . Consider the following game between an adversary $\mathcal A$ and a challenger:

$\mathsf{Hash} - \mathsf{Coll}_{\mathcal{A},\Pi}(n)$

- The challenger chooses $s \leftarrow \mathsf{Gen}(1^n)$ and sends it to $\mathcal A$
- \mathcal{A} outputs two strings (x, x')
- We say that $\operatorname{Hash} \operatorname{Coll}_{\mathcal{A},\Pi}(n) = 1$ (i.e., \mathcal{A} wins) if $H^s(x) = H^s(x')$.

Comparison to a PRF:

• The key s is given to A (in PRF key had to be secret)

Let $\Pi = (\mathsf{Gen}, H)$ be a (keyed) hash function with output length ℓ . Consider the following game between an adversary $\mathcal A$ and a challenger:

$\mathsf{Hash} - \mathsf{Coll}_{\mathcal{A},\Pi}(n)$

- The challenger chooses $s \leftarrow \mathsf{Gen}(1^n)$ and sends it to $\mathcal A$
- \mathcal{A} outputs two strings (x, x')
- We say that $\operatorname{\mathsf{Hash}}-\operatorname{\mathsf{Coll}}_{\mathcal{A},\Pi}(n)=1$ (i.e., \mathcal{A} wins) if $H^s(x)=H^s(x')$.

Comparison to a PRF:

- ullet The key s is given to ${\cal A}$ (in PRF key had to be secret)
- No oracle is necessary, A has s, so can compute $H^s(\cdot)$

Comparison to a MAC:

Let $\Pi = (\mathsf{Gen}, H)$ be a (keyed) hash function with output length ℓ . Consider the following game between an adversary $\mathcal A$ and a challenger:

$\mathsf{Hash} - \mathsf{Coll}_{\mathcal{A},\Pi}(n)$

- The challenger chooses $s \leftarrow \mathsf{Gen}(1^n)$ and sends it to $\mathcal A$
- \mathcal{A} outputs two strings (x, x')
- We say that $\operatorname{\mathsf{Hash}}-\operatorname{\mathsf{Coll}}_{\mathcal{A},\Pi}(n)=1$ (i.e., \mathcal{A} wins) if $H^s(x)=H^s(x')$.

Comparison to a PRF:

- The key s is given to A (in PRF key had to be secret)
- No oracle is necessary, $\mathcal A$ has s, so can compute $H^s(\cdot)$

Comparison to a MAC:

• Given $y = H^s(m)$, hard to find m' that hashes to y

Let $\Pi = (\mathsf{Gen}, H)$ be a (keyed) hash function with output length ℓ . Consider the following game between an adversary $\mathcal A$ and a challenger:

$\mathsf{Hash} - \mathsf{Coll}_{\mathcal{A},\Pi}(n)$

- ullet The challenger chooses $s \leftarrow \mathsf{Gen}(1^n)$ and sends it to $\mathcal A$
- \mathcal{A} outputs two strings (x, x')
- We say that $\operatorname{\mathsf{Hash}}-\operatorname{\mathsf{Coll}}_{\mathcal{A},\Pi}(n)=1$ (i.e., \mathcal{A} wins) if $H^s(x)=H^s(x')$.

Comparison to a PRF:

- The key s is given to A (in PRF key had to be secret)
- No oracle is necessary, A has s, so can compute $H^s(\cdot)$

Comparison to a MAC:

- Given $y = H^s(m)$, hard to find m' that hashes to y
- But, since s is public, any party can produce $(m', y' = H^s(m'))$

Hash functions used in practice are a bit different:

Arkady Yerukhimovich Cryptography October 9, 2024 11 /

Hash functions used in practice are a bit different:

• Output length is fixed (e.g., 256-bits), not a function of n

Arkady Yerukhimovich Cryptography October 9, 2024 11 / 27

Hash functions used in practice are a bit different:

- Output length is fixed (e.g., 256-bits), not a function of n
- Usually used unkeyed

Hash functions used in practice are a bit different:

- Output length is fixed (e.g., 256-bits), not a function of n
- Usually used unkeyed
- Still generally believed to be collision resistant

Hash functions used in practice are a bit different:

- Output length is fixed (e.g., 256-bits), not a function of n
- Usually used unkeyed
- Still generally believed to be collision resistant

For now, we will stick to the asymptotic definition

A hash function maps arbitrary length strings to $\ell(n)$ length strings:

Arkady Yerukhimovich Cryptography October 9, 2024 12 / 27

A hash function maps arbitrary length strings to $\ell(n)$ length strings:

• There are more possible inputs than outputs, collisions must occur

Arkady Yerukhimovich Cryptography October 9, 2024 12 /

A hash function maps arbitrary length strings to $\ell(n)$ length strings:

- There are more possible inputs than outputs, collisions must occur
- If hash cuts input in half: $H:\{0,1\}^{2\ell} \to \{0,1\}^{\ell}$, then $2^{2\ell}$ values mapped to 2^{ℓ} boxes, so there are very many collisions

Arkady Yerukhimovich Cryptography October 9, 2024 12 / 27

A hash function maps arbitrary length strings to $\ell(n)$ length strings:

- There are more possible inputs than outputs, collisions must occur
- If hash cuts input in half: $H:\{0,1\}^{2\ell} \to \{0,1\}^{\ell}$, then $2^{2\ell}$ values mapped to 2^{ℓ} boxes, so there are very many collisions
- How many values do I need to try before I find such a collision?

A hash function maps arbitrary length strings to $\ell(n)$ length strings:

- There are more possible inputs than outputs, collisions must occur
- If hash cuts input in half: $H:\{0,1\}^{2\ell} \to \{0,1\}^{\ell}$, then $2^{2\ell}$ values mapped to 2^{ℓ} boxes, so there are very many collisions
- How many values do I need to try before I find such a collision?

Birthday Paradox

A hash function maps arbitrary length strings to $\ell(n)$ length strings:

- There are more possible inputs than outputs, collisions must occur
- If hash cuts input in half: $H:\{0,1\}^{2\ell} \to \{0,1\}^{\ell}$, then $2^{2\ell}$ values mapped to 2^{ℓ} boxes, so there are very many collisions
- How many values do I need to try before I find such a collision?

Birthday Paradox

How many people do you need before you expect two to have same birthday?

A hash function maps arbitrary length strings to $\ell(n)$ length strings:

- There are more possible inputs than outputs, collisions must occur
- If hash cuts input in half: $H:\{0,1\}^{2\ell} \to \{0,1\}^{\ell}$, then $2^{2\ell}$ values mapped to 2^{ℓ} boxes, so there are very many collisions
- How many values do I need to try before I find such a collision?

Birthday Paradox

How many people do you need before you expect two to have same birthday?

• Tempting to say 365, but this is wrong.

A hash function maps arbitrary length strings to $\ell(n)$ length strings:

- There are more possible inputs than outputs, collisions must occur
- If hash cuts input in half: $H:\{0,1\}^{2\ell} \to \{0,1\}^{\ell}$, then $2^{2\ell}$ values mapped to 2^{ℓ} boxes, so there are very many collisions
- How many values do I need to try before I find such a collision?

Birthday Paradox

- Tempting to say 365, but this is wrong.
- Consider all pairs of people (p_i, p_i) for $i \neq j$

A hash function maps arbitrary length strings to $\ell(n)$ length strings:

- There are more possible inputs than outputs, collisions must occur
- If hash cuts input in half: $H:\{0,1\}^{2\ell} \to \{0,1\}^{\ell}$, then $2^{2\ell}$ values mapped to 2^{ℓ} boxes, so there are very many collisions
- How many values do I need to try before I find such a collision?

Birthday Paradox

- Tempting to say 365, but this is wrong.
- Consider all pairs of people (p_i, p_i) for $i \neq j$
- There are $\binom{n}{2} = \frac{n(n-1)}{2} = O(n^2)$ such pairs

A hash function maps arbitrary length strings to $\ell(n)$ length strings:

- There are more possible inputs than outputs, collisions must occur
- If hash cuts input in half: $H:\{0,1\}^{2\ell} \to \{0,1\}^{\ell}$, then $2^{2\ell}$ values mapped to 2^{ℓ} boxes, so there are very many collisions
- How many values do I need to try before I find such a collision?

Birthday Paradox

- Tempting to say 365, but this is wrong.
- Consider all pairs of people (p_i, p_i) for $i \neq j$
- There are $\binom{n}{2} = \frac{n(n-1)}{2} = O(n^2)$ such pairs
- For a pair, $Pr[bday_i = bday_j] = 1/365$

A hash function maps arbitrary length strings to $\ell(n)$ length strings:

- There are more possible inputs than outputs, collisions must occur
- If hash cuts input in half: $H:\{0,1\}^{2\ell} \to \{0,1\}^{\ell}$, then $2^{2\ell}$ values mapped to 2^{ℓ} boxes, so there are very many collisions
- How many values do I need to try before I find such a collision?

Birthday Paradox

- Tempting to say 365, but this is wrong.
- Consider all pairs of people (p_i, p_i) for $i \neq j$
- There are $\binom{n}{2} = \frac{n(n-1)}{2} = O(n^2)$ such pairs
- For a pair, $Pr[bday_i = bday_i] = 1/365$
- After 365 pairs (28 people), expect a collision

A hash function maps arbitrary length strings to $\ell(n)$ length strings:

- There are more possible inputs than outputs, collisions must occur
- If hash cuts input in half: $H:\{0,1\}^{2\ell} \to \{0,1\}^{\ell}$, then $2^{2\ell}$ values mapped to 2^{ℓ} boxes, so there are very many collisions
- How many values do I need to try before I find such a collision?

Birthday Paradox

How many people do you need before you expect two to have same birthday?

- Tempting to say 365, but this is wrong.
- Consider all pairs of people (p_i, p_j) for $i \neq j$
- There are $\binom{n}{2} = \frac{n(n-1)}{2} = O(n^2)$ such pairs
- For a pair, $Pr[bday_i = bday_i] = 1/365$
- After 365 pairs (28 people), expect a collision
- Generally, $O(2^{\ell/2})$ for output length ℓ need ℓ large enough

Arkady Yerukhimovich Cryptography October 9, 2024 12 / 27

Building a Hash Function

How to build a hash function:

Arkady Yerukhimovich Cryptography October 9, 2024 13 / 27

Building a Hash Function

How to build a hash function:

- ullet Start with a compression function $h^s:\{0,1\}^{\ell'} o \{0,1\}^{\ell}$
 - Defined only for a fixed $\ell' > \ell$
 - We will see examples later in the course

Arkady Yerukhimovich

Building a Hash Function

How to build a hash function:

- Start with a compression function $h^s: \{0,1\}^{\ell'} \to \{0,1\}^{\ell}$
 - Defined only for a fixed $\ell' > \ell$
 - We will see examples later in the course
- ullet Extend domain from ℓ' -bit strings to arbitrary bit strings
 - This is what we will do now

ullet Let $h^s:\{0,1\}^{2\ell} o \{0,1\}^\ell$ be a compression function

<□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ullet Let $h^s:\{0,1\}^{2\ell} o \{0,1\}^\ell$ be a compression function
- $\bullet \ \ \mathsf{Given \ input} \ x \in \{0,1\}^L$

- ullet Let $h^s:\{0,1\}^{2\ell} o \{0,1\}^\ell$ be a compression function
- $\bullet \ \ \mathsf{Given \ input} \ x \in \{0,1\}^L$
- Break x into ℓ-bit blocks

- ullet Let $h^s:\{0,1\}^{2\ell} o \{0,1\}^\ell$ be a compression function
- Given input $x \in \{0,1\}^L$
- Break x into ℓ -bit blocks
- Add length L as last block

- ullet Let $h^s:\{0,1\}^{2\ell} o \{0,1\}^\ell$ be a compression function
- Given input $x \in \{0,1\}^L$
- Break x into ℓ-bit blocks
- Add length L as last block
- Compute $H^s(x)$ as in the figure above

Proof of Collision Resistance:

Arkady Yerukhimovich

Proof of Collision Resistance: Show collision in H^s gives collision in h^s .

Proof of Collision Resistance: Show collision in H^s gives collision in h^s .

Suppose
$$x=(x_1,\ldots,x_B)$$
 and $x'=(x'_1,\ldots,x'_B)$ collide $(H^s(x)=H^s(x'))$

Proof of Collision Resistance: Show collision in H^s gives collision in h^s .

Suppose
$$x=(x_1,\ldots,x_B)$$
 and $x'=(x'_1,\ldots,x'_B)$ collide $(H^s(x)=H^s(x'))$

• Case 1: $L \neq L'$

Proof of Collision Resistance: Show collision in H^s gives collision in h^s .

Suppose
$$x=(x_1,\ldots,x_B)$$
 and $x'=(x'_1,\ldots,x'_B)$ collide $(H^s(x)=H^s(x'))$

- Case 1: $L \neq L'$
 - $h^s(z_B||L) = h^s(z'_{B'}||L')$, but $L \neq L'$ collision

Proof of Collision Resistance: Show collision in H^s gives collision in h^s .

Suppose
$$x=(x_1,\ldots,x_B)$$
 and $x'=(x'_1,\ldots,x'_B)$ collide $(H^s(x)=H^s(x'))$

- Case 1: $L \neq L'$
 - $h^s(z_B||L) = h^s(z'_{B'}||L')$, but $L \neq L'$ collision
- Case 2: L = L'

(ロト 4 個 ト 4 差 ト 4 差 ト) 差 · かくで

Proof of Collision Resistance: Show collision in H^s gives collision in h^s .

Suppose
$$x=(x_1,\ldots,x_B)$$
 and $x'=(x'_1,\ldots,x'_B)$ collide $(H^s(x)=H^s(x'))$

- Case 1: $L \neq L'$
 - $h^s(z_B||L) = h^s(z'_{B'}||L')$, but $L \neq L'$ collision
- Case 2: L = L'
 - ullet Find largest index where inputs to h^s are different

◄□▶◀圖▶◀불▶◀불▶ 불 ∽٩

Proof of Collision Resistance: Show collision in H^s gives collision in h^s .

Suppose
$$x = (x_1, \dots, x_B)$$
 and $x' = (x'_1, \dots, x'_B)$ collide $(H^s(x) = H^s(x'))$

- Case 1: $L \neq L'$
 - $h^s(z_B||L) = h^s(z'_{B'}||L')$, but $L \neq L'$ collision
- Case 2: L = L'
 - ullet Find largest index where inputs to h^s are different
 - Such index must exist since $x \neq x'$

→□▶→□▶→□▶→□▶
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□

Proof of Collision Resistance: Show collision in H^s gives collision in h^s .

Suppose
$$x = (x_1, \dots, x_B)$$
 and $x' = (x'_1, \dots, x'_B)$ collide $(H^s(x) = H^s(x'))$

- Case 1: $L \neq L'$
 - $h^s(z_B||L) = h^s(z'_{B'}||L')$, but $L \neq L'$ collision
- Case 2: I = I'
 - Find largest index where inputs to h^s are different
 - Such index must exist since $x \neq x'$
 - At this index, you have two different inputs to h^s that produce same output - collision

15 / 27

Building blocks

- $\Pi = (Gen, Mac, Verify)$: Secure MAC for $\ell(n)$ -bit messages
- $\Pi_H = (Gen_H, H)$: CRHF with output length $\ell(n)$

Building blocks

- $\Pi = (Gen, Mac, Verify)$: Secure MAC for $\ell(n)$ -bit messages
- $\Pi_H = (Gen_H, H)$: CRHF with output length $\ell(n)$

Construct $\Pi' = (Gen', Mac', Verify')$:

Building blocks

- $\Pi = (Gen, Mac, Verify)$: Secure MAC for $\ell(n)$ -bit messages
- $\Pi_H = (Gen_H, H)$: CRHF with output length $\ell(n)$

Construct $\Pi' = (Gen', Mac', Verify')$:

• $\operatorname{Gen}'(1^n)$: Choose $k \leftarrow \operatorname{Gen}(1^n)$, $s \leftarrow \operatorname{Gen}_H(1^n)$. Output k' = (k, s)

Building blocks

- $\Pi = (Gen, Mac, Verify)$: Secure MAC for $\ell(n)$ -bit messages
- $\Pi_H = (Gen_H, H)$: CRHF with output length $\ell(n)$

Construct $\Pi' = (Gen', Mac', Verify')$:

- $\operatorname{Gen}'(1^n)$: Choose $k \leftarrow \operatorname{Gen}(1^n)$, $s \leftarrow \operatorname{Gen}_H(1^n)$. Output k' = (k, s)
- $\operatorname{Mac}_{k'}'(m)$: Recall that k' = (k, s), Output $t = \operatorname{Mac}_k(H^s(m))$

Building blocks

- $\Pi = (Gen, Mac, Verify)$: Secure MAC for $\ell(n)$ -bit messages
- $\Pi_H = (Gen_H, H)$: CRHF with output length $\ell(n)$

Construct $\Pi' = (\mathsf{Gen}', \mathsf{Mac}', \mathsf{Verify}')$:

- $\operatorname{Gen}'(1^n)$: Choose $k \leftarrow \operatorname{Gen}(1^n)$, $s \leftarrow \operatorname{Gen}_H(1^n)$. Output k' = (k, s)
- $\operatorname{Mac}_{k'}'(m)$: Recall that k' = (k, s), Output $t = \operatorname{Mac}_k(H^s(m))$
- Verify'_{k'}(m, t): Output 1 if $t = Mac_k(H^s(m))$

Hash-and-MAC

Construct $\Pi' = (Gen', Mac', Verify')$:

- $\operatorname{Gen}'(1^n)$: Choose $k \leftarrow \operatorname{Gen}(1^n)$, $s \leftarrow \operatorname{Gen}_H(1^n)$. Output k' = (k, s)
- $\operatorname{Mac}_{k'}(m)$: Recall that k' = (k, s), Output $t = \operatorname{Mac}_k(H^s(m))$
- Verify'_{k'}(m, t): Output 1 if $t = Mac_k(H^s(m))$

Hash-and-MAC

```
Construct \Pi' = (Gen', Mac', Verify'):
```

- $\operatorname{Gen}'(1^n)$: Choose $k \leftarrow \operatorname{Gen}(1^n)$, $s \leftarrow \operatorname{Gen}_H(1^n)$. Output k' = (k, s)
- $\operatorname{Mac}_{k'}(m)$: Recall that k' = (k, s), Output $t = \operatorname{Mac}_k(H^s(m))$
- Verify'_{k'}(m, t): Output 1 if $t = Mac_k(H^s(m))$

Hash-and-MAC

Construct $\Pi' = (Gen', Mac', Verify')$:

- $\operatorname{Gen}'(1^n)$: Choose $k \leftarrow \operatorname{Gen}(1^n)$, $s \leftarrow \operatorname{Gen}_H(1^n)$. Output k' = (k, s)
- $\operatorname{Mac}_{k'}(m)$: Recall that k' = (k, s), Output $t = \operatorname{Mac}_k(H^s(m))$
- Verify'_{k'}(m, t): Output 1 if $t = Mac_k(H^s(m))$

Proof Sketch: Suppose ${\mathcal A}$ forges a valid t on $m^* \notin Q$

• Case 1: $\exists m \in Q \text{ s.t. } H^s(m^*) = H^s(m)$

Hash-and-MAC

Construct $\Pi' = (Gen', Mac', Verify')$:

- $\operatorname{Gen}'(1^n)$: Choose $k \leftarrow \operatorname{Gen}(1^n)$, $s \leftarrow \operatorname{Gen}_H(1^n)$. Output k' = (k, s)
- $\operatorname{Mac}_{k'}(m)$: Recall that k' = (k, s), Output $t = \operatorname{Mac}_k(H^s(m))$
- Verify $'_{k'}(m,t)$: Output 1 if $t = \text{Mac}_k(H^s(m))$

- Case 1: $\exists m \in Q \text{ s.t. } H^s(m^*) = H^s(m)$
 - Then (m, m^*) is a collision in H

Hash-and-MAC

Construct $\Pi' = (Gen', Mac', Verify')$:

- $\operatorname{Gen}'(1^n)$: Choose $k \leftarrow \operatorname{Gen}(1^n)$, $s \leftarrow \operatorname{Gen}_H(1^n)$. Output k' = (k, s)
- $\operatorname{Mac}_{k'}(m)$: Recall that k' = (k, s), Output $t = \operatorname{Mac}_k(H^s(m))$
- Verify $'_{k'}(m,t)$: Output 1 if $t = \text{Mac}_k(H^s(m))$

- Case 1: $\exists m \in Q \text{ s.t. } H^s(m^*) = H^s(m)$
 - Then (m, m^*) is a collision in H
- Case 2: $\forall m \in Q, H^s(m^*) \neq H^s(m)$

Hash-and-MAC

Construct $\Pi' = (Gen', Mac', Verify')$:

- $\operatorname{Gen}'(1^n)$: Choose $k \leftarrow \operatorname{Gen}(1^n)$, $s \leftarrow \operatorname{Gen}_H(1^n)$. Output k' = (k, s)
- $\operatorname{Mac}_{k'}(m)$: Recall that k' = (k, s), Output $t = \operatorname{Mac}_k(H^s(m))$
- Verify $'_{k'}(m,t)$: Output 1 if $t = \text{Mac}_k(H^s(m))$

- Case 1: $\exists m \in Q \text{ s.t. } H^s(m^*) = H^s(m)$
 - Then (m, m^*) is a collision in H
- Case 2: $\forall m \in Q$, $H^s(m^*) \neq H^s(m)$
 - Let $H^s(Q) = \{H^s(m) | m \in Q\}$

Hash-and-MAC

Construct $\Pi' = (Gen', Mac', Verify')$:

- $\operatorname{Gen}'(1^n)$: Choose $k \leftarrow \operatorname{Gen}(1^n)$, $s \leftarrow \operatorname{Gen}_H(1^n)$. Output k' = (k, s)
- $\operatorname{Mac}_{k'}(m)$: Recall that k' = (k, s), Output $t = \operatorname{Mac}_k(H^s(m))$
- Verify $'_{k'}(m,t)$: Output 1 if $t = \text{Mac}_k(H^s(m))$

- Case 1: $\exists m \in Q \text{ s.t. } H^s(m^*) = H^s(m)$
 - Then (m, m^*) is a collision in H
- Case 2: $\forall m \in Q, H^s(m^*) \neq H^s(m)$
 - Let $H^s(Q) = \{H^s(m) | m \in Q\}$
 - Then, $H^s(m^*) \notin H^s(Q)$

Hash-and-MAC

Construct $\Pi' = (Gen', Mac', Verify')$:

- $\operatorname{Gen}'(1^n)$: Choose $k \leftarrow \operatorname{Gen}(1^n)$, $s \leftarrow \operatorname{Gen}_H(1^n)$. Output k' = (k, s)
- $\operatorname{Mac}_{k'}(m)$: Recall that k' = (k, s), Output $t = \operatorname{Mac}_k(H^s(m))$
- Verify'_{k'}(m, t): Output 1 if $t = Mac_k(H^s(m))$

- Case 1: $\exists m \in Q \text{ s.t. } H^s(m^*) = H^s(m)$
 - Then (m, m^*) is a collision in H
- Case 2: $\forall m \in Q$, $H^s(m^*) \neq H^s(m)$
 - Let $H^s(Q) = \{H^s(m) | m \in Q\}$
 - Then, $H^s(m^*) \notin H^s(Q)$
 - But, then A has forged valid tag on new message $H^s(m^*)$

Outline

Lecture 12 Review

2 Hash Functions (Chapters 5.1, 5.2)

3 Other Applications of Hash Functions (Chapters 5.3, 5.6)

Arkady Yerukhimovich Cryptography October 9, 2024 18 / 27

Properties of Hash Functions

- Produce short digest of long strings (e.g., files, etc.)
- Collision resistant hard to find two strings that have same hash
- H(x) uniquely identifies an item x

Arkady Yerukhimovich Cryptography October 9, 2024 19 / 27

Properties of Hash Functions

- Produce short digest of long strings (e.g., files, etc.)
- Collision resistant hard to find two strings that have same hash
- H(x) uniquely identifies an item x

Applications of unique identifiers:

Properties of Hash Functions

- Produce short digest of long strings (e.g., files, etc.)
- Collision resistant hard to find two strings that have same hash
- H(x) uniquely identifies an item x

Applications of unique identifiers:

• Fingerprinting – store H(x) where x is a virus

Arkady Yerukhimovich Cryptography October 9, 2024 19 / 27

Properties of Hash Functions

- Produce short digest of long strings (e.g., files, etc.)
- Collision resistant hard to find two strings that have same hash
- H(x) uniquely identifies an item x

Applications of unique identifiers:

- Fingerprinting store H(x) where x is a virus
- Deduplication check if two files (e.g., in cloud storage) are the same

19 / 27

Properties of Hash Functions

- Produce short digest of long strings (e.g., files, etc.)
- Collision resistant hard to find two strings that have same hash
- H(x) uniquely identifies an item x

Applications of unique identifiers:

- Fingerprinting store H(x) where x is a virus
- Deduplication check if two files (e.g., in cloud storage) are the same
- Peer-to-peer file sharing Use H(file) as unique identifier

How to use a password:

User creates password pwd when registering for site

Arkady Yerukhimovich Cryptography October 9, 2024 20 / 27

How to use a password:

- User creates password pwd when registering for site
- Site stores (ID, pwd) on server

How to use a password:

- User creates password pwd when registering for site
- 2 Site stores (ID, pwd) on server
- When logging in, user enters pwd', server compares it to pwd

How to use a password:

- User creates password pwd when registering for site
- Site stores (ID, pwd) on server
- 3 When logging in, user enters pwd', server compares it to pwd

We have a problem

- Server stores all users' passwords
- If this file is stolen, A can impersonate any user

How to use a password:

- User creates password pwd when registering for site
- 2 Site stores (ID, pwd) on server
- When logging in, user enters pwd', server compares it to pwd

We have a problem

- Server stores all users' passwords
- ullet If this file is stolen, ${\cal A}$ can impersonate any user

Can we protect passwords even if password file is stolen?

How to use a password:

1 User creates password pwd when registering for site

21 / 27

How to use a password:

- User creates password pwd when registering for site
- ② Site computes H(pwd), stores (ID, H(pwd)) on server

How to use a password:

- User creates password pwd when registering for site
- 2 Site computes H(pwd), stores (ID, H(pwd)) on server
- **3** When logging in, user enters pwd', server computes H(pwd') and checks password file

How to use a password:

- User creates password pwd when registering for site
- ② Site computes H(pwd), stores (ID, H(pwd)) on server
- **3** When logging in, user enters pwd', server computes H(pwd') and checks password file

Pros:

- Passwords not stored in clear
- ullet ${\cal A}$ who steals password file only gets hashes of passwords

How to use a password:

- User creates password pwd when registering for site
- 2 Site computes H(pwd), stores (ID, H(pwd)) on server
- **3** When logging in, user enters pwd', server computes H(pwd') and checks password file

Pros:

- Passwords not stored in clear
- ullet ${\cal A}$ who steals password file only gets hashes of passwords

Cons:

- ullet ${\cal A}$ can build big list of hashed passwords
- ullet When ${\cal A}$ gets files of hashed passwords, can see if any on the list

How to use a password:

- User creates password pwd when registering for site
- 2 Site computes H(pwd), stores (ID, H(pwd)) on server
- **1** When logging in, user enters pwd', server computes H(pwd') and checks password file

Pros:

- Passwords not stored in clear
- ullet ${\cal A}$ who steals password file only gets hashes of passwords

Cons:

- ullet ${\cal A}$ can build big list of hashed passwords
- ullet When ${\cal A}$ gets files of hashed passwords, can see if any on the list
- Recovering password of any user is good enough

How to use a password:

- User creates password *pwd* when registering for site
- 2 Site computes H(pwd), stores (ID, H(pwd)) on server
- **3** When logging in, user enters pwd', server computes H(pwd') and checks password file

Pros:

- Passwords not stored in clear
- ullet ${\cal A}$ who steals password file only gets hashes of passwords

Cons:

- \bullet A can build big list of hashed passwords
- When A gets files of hashed passwords, can see if any on the list
- Recovering password of any user is good enough
- Hashing is very fast Billions of hashes / second

October 9, 2024

21 / 27

Cryptography

How to use a password:

1 User creates password pwd when registering for site

How to use a password:

- User creates password pwd when registering for site
- ② Site chooses salt $s \leftarrow \{0,1\}^n$, computes H(s||pwd) and stores (ID, s, H(s||pwd))

How to use a password:

- User creates password pwd when registering for site
- ② Site chooses salt $s \leftarrow \{0,1\}^n$, computes H(s||pwd) and stores (ID, s, H(s||pwd))
- **3** When logging in, user enters pwd', server finds s, computes H(s||pwd') and checks password file

How to use a password:

- User creates password pwd when registering for site
- ② Site chooses salt $s \leftarrow \{0,1\}^n$, computes H(s||pwd) and stores (ID, s, H(s||pwd))
- **3** When logging in, user enters pwd', server finds s, computes H(s||pwd') and checks password file

Pros:

ullet s is long and random, can't be predicted by ${\cal A}$

How to use a password:

- User creates password pwd when registering for site
- ② Site chooses salt $s \leftarrow \{0,1\}^n$, computes H(s||pwd) and stores (ID, s, H(s||pwd))
- **3** When logging in, user enters pwd', server finds s, computes H(s||pwd') and checks password file

Pros:

- ullet s is long and random, can't be predicted by ${\cal A}$
- ullet If ${\mathcal A}$ builds list of hashed passwords, it'll be useless if s is wrong

How to use a password:

- User creates password pwd when registering for site
- ② Site chooses salt $s \leftarrow \{0,1\}^n$, computes H(s||pwd) and stores (ID, s, H(s||pwd))
- **3** When logging in, user enters pwd', server finds s, computes H(s||pwd') and checks password file

Pros:

- ullet s is long and random, can't be predicted by ${\cal A}$
- ullet If ${\mathcal A}$ builds list of hashed passwords, it'll be useless if s is wrong
- s is unique per user, so even if he constructs list after seeing s, he can only attack one user

How to use a password:

- User creates password pwd when registering for site
- ② Site chooses salt $s \leftarrow \{0,1\}^n$, computes H(s||pwd) and stores (ID, s, H(s||pwd))
- **3** When logging in, user enters pwd', server finds s, computes H(s||pwd') and checks password file

Pros:

- ullet s is long and random, can't be predicted by ${\cal A}$
- ullet If ${\mathcal A}$ builds list of hashed passwords, it'll be useless if s is wrong
- s is unique per user, so even if he constructs list after seeing s, he can only attack one user

Takeaway

Always use a salt

The Goal

- Client wants to store files x_1, \ldots, x_n on server
- When he later retrieves file, wants to be sure it wasn't modified

The Goal

- Client wants to store files x_1, \ldots, x_n on server
- When he later retrieves file, wants to be sure it wasn't modified

Try 1: Client stores
$$h_1 = H(x_1), h_2 = H(x_2), ..., h_n = H(x_n)$$

The Goal

- Client wants to store files x_1, \ldots, x_n on server
- When he later retrieves file, wants to be sure it wasn't modified

Try 1: Client stores
$$h_1 = H(x_1), h_2 = H(x_2), ..., h_n = H(x_n)$$

• Pro: Can quickly verify each file, by recomputing $H(x_i)$

The Goal

- Client wants to store files x_1, \ldots, x_n on server
- When he later retrieves file, wants to be sure it wasn't modified

Try 1: Client stores
$$h_1 = H(x_1), h_2 = H(x_2), ..., h_n = H(x_n)$$

- Pro: Can quickly verify each file, by recomputing $H(x_i)$
- Con: Client has to store *n* items

The Goal

- Client wants to store files x_1, \ldots, x_n on server
- When he later retrieves file, wants to be sure it wasn't modified

Try 1: Client stores
$$h_1 = H(x_1), h_2 = H(x_2), ..., h_n = H(x_n)$$

- Pro: Can quickly verify each file, by recomputing $H(x_i)$
- Con: Client has to store *n* items

Try 2: Client stores
$$h = H(x_1||x_2||\cdots||x_n)$$

The Goal

- Client wants to store files x_1, \ldots, x_n on server
- When he later retrieves file, wants to be sure it wasn't modified

Try 1: Client stores
$$h_1 = H(x_1), h_2 = H(x_2), ..., h_n = H(x_n)$$

- Pro: Can quickly verify each file, by recomputing $H(x_i)$
- Con: Client has to store *n* items

Try 2: Client stores
$$h = H(x_1||x_2||\cdots||x_n)$$

ullet Pro: Only ℓ bits of storage needed on client

The Goal

- Client wants to store files x_1, \ldots, x_n on server
- When he later retrieves file, wants to be sure it wasn't modified

Try 1: Client stores
$$h_1 = H(x_1), h_2 = H(x_2), ..., h_n = H(x_n)$$

- Pro: Can quickly verify each file, by recomputing $H(x_i)$
- Con: Client has to store *n* items

Try 2: Client stores
$$h = H(x_1||x_2||\cdots||x_n)$$

- ullet Pro: Only ℓ bits of storage needed on client
- Con: Must download all files to verify even a single one

The Goal

- Client wants to store files x_1, \ldots, x_n on server
- When he later retrieves file, wants to be sure it wasn't modified

Try 1: Client stores
$$h_1 = H(x_1), h_2 = H(x_2), ..., h_n = H(x_n)$$

- Pro: Can quickly verify each file, by recomputing $H(x_i)$
- Con: Client has to store *n* items

Try 2: Client stores
$$h = H(x_1||x_2||\cdots||x_n)$$

- ullet Pro: Only ℓ bits of storage needed on client
- Con: Must download all files to verify even a single one

Question: Can we get solution that achieves both?

- Low storage on the client
- Low communication to verify a file is correct

Arkady Yerukhimovich Cryptography October 9, 2024 23 / 27

Merkle Tree

• C has files x_{000}, \ldots, x_{111} , computes $H_{000} = H(x_{000}), \ldots$

4□ > 4□ > 4 = > 4 = > = 90

- C has files x_{000}, \ldots, x_{111} , computes $H_{000} = H(x_{000}), \ldots$
- C computes $H_{00} = H(H_{000}, H_{001}), H_{01} = H(H_{010}, H_{011}), ...$

- 4 ロト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕 Q (C)

- C has files x_{000}, \ldots, x_{111} , computes $H_{000} = H(x_{000}), \ldots$
- C computes $H_{00} = H(H_{000}, H_{001}), H_{01} = H(H_{010}, H_{011}), ...$
- C does the same for all levels: $H_0 = H(H_{00}, H_{01}), H_R = H(H_0, H_1)$

25 / 27

- C has files x_{000}, \ldots, x_{111} , computes $H_{000} = H(x_{000}), \ldots$
- C computes $H_{00} = H(H_{000}, H_{001}), H_{01} = H(H_{010}, H_{011}), ...$
- C does the same for all levels: $H_0 = H(H_{00}, H_{01}), H_R = H(H_0, H_1)$
- ullet C stores value H_R at the root and uploads all files to S

Arkady Yerukhimovich Cryptography October 9, 2024 25 / 27

ullet C has H_R , downloads x_{001} and wants to check it's correct

- C has H_R , downloads x_{001} and wants to check it's correct
- S sends C all sibling hashes along the path to root: H_{000} , H_{01} , H_1

- C has H_R, downloads x₀₀₁ and wants to check it's correct
- S sends C all sibling hashes along the path to root: H_{000} , H_{01} , H_{1}
- C computes H_{001} and can now recompute up to H_R (has both inputs for every node in path)

- C has H_R , downloads x_{001} and wants to check it's correct
- S sends C all sibling hashes along the path to root: H_{000} , H_{01} , H_1
- C computes H_{001} and can now recompute up to H_R (has both inputs for every node in path)
- C checks that computed value is equal to H_{R_1} accepts if so

Arkady Yerukhimovich Cryptography October 9, 2024 26 / 27

Merkle Tree Facts

Allows verified outsourced storage

Merkle Tree Facts

- Allows verified outsourced storage
- ullet C only needs to store a single hash value, H_R

Merkle Tree Facts

- Allows verified outsourced storage
- C only needs to store a single hash value, H_R
- Proof consists of $O(\log n)$ hash values