Bachelor Thesis

Jonathan Ulmer

May 2, 2024

Contents

1	The Cahn-Hilliard equation	1
2	Baseline multi-grid solver	4
3	Numerical evaluation	12
4	Relaxed problem	17
5	AI	26
6	Technical details	27
7	References This thesis follows reproducible research philosophy in that we prove	2 8

This thesis follows reproducible research philosophy, in that we provide all relevant code in the same file as the writing itself. We then use this file to generate exports to html and PDF, as well as extract the code to be used independently. Further details on execution and reading of the original source provided in org-mode format is provided in 6

1 The Cahn-Hilliard equation

The Cahn-Hilliard(CH) equation is a partial differential equation (PDE) solving the state of a two-phase fluid[2]. The form of the CH equation used in this thesis is

$$\partial_t \phi(x,t) = \nabla \cdot (M(\phi) \nabla \mu)$$

$$\mu = -\varepsilon^2 \Delta \phi + W'(\phi)$$
(1)

where, ϕ is a phase-field variable representing the different states of the fluids through an interval I = [-1, 1]

$$\phi = \begin{cases} 1 & , \phi = \text{phase } 1 \\ -1 & , \phi = \text{phase } 2 \end{cases}$$

 ε is a positive constant correlated with boundary thickness and μ is the chemical potential[2].

In this thesis we assume $M(\phi) \equiv 1$, simplifying the CH equation used in [2] [1].

The advantages of the CH approach, as compared to traditional boundary coupling, are for example: "explicit tracking of the interface" [2], as well as "evolution of complex geometries and topological changes [...] in a natural way" [2]. In practice it enables linear interpolation between different formulas on different phases.

1.1 Derivation from paper

1.1.1 The free energy

The authors in [2] define the CH equation using the **Ginzburg-Landau** free energy equation:

$$E^{\text{bulk}} = \int_{\Omega} \frac{\varepsilon^2}{2} |\nabla \phi|^2 + W(\phi) \, dx \tag{2}$$

where $W(\phi)$ denotes the Helmholtz free energy density of mixing [2] that we approximate it in further calculations with $W(\phi) = \frac{(1-\phi^2)^2}{4}$ as in [1]. Additionally $\nabla \phi$ represents the change in phase-field.

The chemical potential, μ , then follows as the variational derivation of the free energy 2.

$$\mu = \frac{\delta E_{bulk}(\phi)}{\delta \phi} = -\varepsilon^2 \Delta \phi + W'(\phi)$$

1.1.2 Derivation of the CH equation from mass balance

The paper [2] motivates us to derive the CH equation as follows:

$$\partial_t \phi + \nabla \cdot J = 0 \tag{3}$$

where J is mass flux. The equation 3 then ensures continuity of mass Using the no-flux boundary conditions:

$$J \cdot n = 0 \qquad \partial \Omega \times (0, T) \tag{4}$$

$$\partial_n \phi = 0 \qquad \qquad \partial \Omega \times (0, T) \tag{5}$$

conservation of mass follows see[2].

$$\frac{d}{dt} \int_{\Omega} \phi = \int_{\Omega} \frac{\partial \phi}{\partial t} dV$$

$$= -\int_{\Omega} \nabla \cdot J \ dV$$

$$= \int_{\partial \Omega} J \cdot n \ dA$$

$$= 0$$
(6)

Therefore mass is conserved over time, as shown in 6. We define the mass flux, J, as the gradient in chemical potential as follows

$$J = -\nabla \mu \tag{7}$$

This results in the CH equation as stated in 1.

$$-\nabla \mu = 0$$

$$\partial_n \phi = 0 \tag{8}$$

i.e. no flow leaves and potential on the border doesn't change. In order to show the CH equation's consistency with thermodynamics we take the time derivation of the free energy 2 and we show that it decreases in time.

$$\frac{d}{dt}E^{bulk}(\phi(t)) = \int_{\Omega} (\varepsilon^{2}\nabla\phi \cdot \nabla\partial_{t}\phi + W'(\phi)\partial_{t}\phi) dx$$

$$= \int_{\Omega} (\varepsilon^{2}\nabla\phi + W'(\phi))\partial_{t}\phi dx$$

$$= \int_{\Omega} \mu\partial_{t}\phi dx$$

$$= \int_{\Omega} \mu \cdot \Delta\mu dx$$

$$= -\int_{\Omega} \nabla\mu \cdot \nabla\mu dx + \int_{\partial\Omega} \mu\nabla\phi_{t} \cdot n dS$$

$$\stackrel{\partial_{n}\phi=0}{=} -\int_{\Omega} |\nabla\mu|^{2} dx, \qquad \forall t \in [0, T)$$

2 Baseline multi-grid solver

As baseline for numerical experiments we use a two-grid method based on the finite difference method defined in [1].

2.1 The discretization of the CH equation:

It discretizes the phase-field ϕ , and chemical potential μ , into grid-wise functions ϕ_{ij} , μ_{ij} and defines the partial derivatives $D_x f_{ij}$, $D_y f_{ij}$ using the differential quotients:

$$D_x f_{i+\frac{1}{2}j} = \frac{f_{i+1j} - f_{ij}}{h} \qquad D_y f_{ij+\frac{1}{2}} = \frac{f_{ij+1} - f_{ij}}{h}$$
(9)

For ∇f , $\nabla \cdot \nabla f$ then follows:

$$\nabla_d f_{ij} = (D_x f_{i+1j}, \ D_y f_{ij+1}) \tag{10}$$

$$\Delta_d f_{ij} = \frac{D_x f_{i+\frac{1}{2}j} - D_x f_{i-\frac{1}{2}j} + D_y f_{ij+\frac{1}{2}} - D_y f_{ij-\frac{1}{2}}}{h} = \nabla_d \cdot \nabla_d f_{ij}$$
 (11)

The authors in [1] further adapt the discretized phase-field by the characteristic function of the domain Ω in order to satisfy the boundary conditions:

$$G(x,y) = \begin{cases} 1, & (x,y) \in \Omega \\ 0, & (x,y) \notin \Omega \end{cases}$$

To simplify the notation for discretized derivatives we use the following abbreviations:

Math:

•
$$\Sigma_G f_{ij} = G_{i+\frac{1}{2}j} f_{i+1j}^{n+\frac{1}{2},m} + G_{i-\frac{1}{2}j} f_{i-1j}^{n+\frac{1}{2},m} + G_{ij+\frac{1}{2}} f_{ij+1}^{n+\frac{1}{2},m} + G_{ij-\frac{1}{2}} f_{ij-1}^{n+\frac{1}{2},m}$$

•
$$\Sigma_G = G_{i+\frac{1}{2}j} + G_{i-\frac{1}{2}j} + G_{ij+\frac{1}{2}} + G_{ij-\frac{1}{2}}$$

Code:

- discrete_weigted_neigbour_sum(i,j,...)
- neighbours_in_domain(i,j,G)

```
function neighbours_in_domain(i, j, G, len, width)
  (
     G(i + 0.5, j, len, width)
     + G(i - 0.5, j, len, width)
```

```
+ G(i, j + 0.5, len, width)
+ G(i, j - 0.5, len, width)
)

end
function discrete_G_weigted_neigbour_sum(i, j, arr, G, len, width)
(
    G(i + 0.5, j, len, width) * arr[i+1, j]
    + G(i - 0.5, j, len, width) * arr[i-1, j]
    + G(i, j + 0.5, len, width) * arr[i, j+1]
    + G(i, j - 0.5, len, width) * arr[i, j-1]
)
end
```

We can then write the modified Laplacian $\nabla_d(G\nabla_d f_{ij})$ as:

$$\nabla_d \cdot (G\nabla_d f_{ij}) = \frac{\sum_G f_{ij} - \sum_G \cdot f_{ij}}{h^2}$$

We use this modified Laplacian to deal with boundary conditions. Our abbreviations simplify separating implicit and explicit terms in the discretization. The authors in [1] then define the discrete CH equation adapted for the domain as:

$$\frac{\phi_{ij}^{n+1} - \phi_{ij}^{n}}{\Delta t} = \nabla_d \cdot (G_{ij} \nabla_d \mu_{ij}^{n+\frac{1}{2}})$$

$$\mu_{ij}^{n+\frac{1}{2}} = 2\phi_{ij}^{n+1} - \varepsilon^2 \nabla_d \cdot (G_{ij} \nabla_d \phi_{ij}^{n+1}) + W'(\phi_{ij}^n) - 2\phi_{ij}^n$$
(12)

and derive a numerical scheme from this implicit equation.

2.2 Simplifications

The authors in [1] modelled the phase-field problem for complex shaped domains. Even tough this work uses rectangular domains, we simplify the adaptation of the algorithm by the domain indicator function, as well as 0 padding, in order to correctly include the boundary conditions of the CH equation. Therefore, the internal representation of the adapted algorithm considers phase-field $,\phi$, and chemical potential field $,\mu$, as two-dimensional arrays with the shape (N_x+2,N_y+2) in order to accommodate padding. Where N_x and N_y are the number of steps in x-/y-direction, respectively. Hence, we implement the discrete domain function as:

$$G_{ij} = \begin{cases} 1, & (i,j) \in [2, N_x + 1] \times [2, N_y + 1] \\ 0, & \text{else} \end{cases}$$

```
function G(i, j, len, width)
   if 2 <= i <= len + 1 && 2 <= j <= width + 1
      return 1.0
   else
      return 0.0
   end
end</pre>
```

We derive the iteration operator $L(\phi^{n+1}, \mu^{n+\frac{1}{2}}) = (\zeta^n, \psi^n)$ as in [1].

$$L\begin{pmatrix} \phi_{ij}^{n+1} \\ \mu_{ij}^{n+\frac{1}{2}} \end{pmatrix} = \begin{pmatrix} \frac{\phi_{ij}^{n+1}}{\Delta t} - \nabla_d \cdot (G_{ij} \nabla_d \mu_{ij}^{n+\frac{1}{2}}) \\ \varepsilon^2 \nabla_d \cdot (G \nabla_d \phi_{ij}^{n+1}) - 2\phi_{ij}^{n+1} + \mu_{ij}^{n+\frac{1}{2}} \end{pmatrix}$$

This operator follows from 12 by separating implicit and explicit terms L and $(\zeta_{ij}^n, \psi_{ij}^n)^T$, respectively.

$$\begin{pmatrix} \zeta^n \\ \psi^n \end{pmatrix} = \begin{pmatrix} \frac{\phi_{ij}^n}{\Delta t} \\ W'(\phi_{ij}^n) - 2\phi_{ij}^n \end{pmatrix}$$

Due to being explicit, we know everything needed to calculate $(\zeta_{ij}^n, \psi_{ij}^n)^T$ at the beginning of each time step. We compute those values once and store them in the solver.

Furthermore, as it enables a Newton iteration, we derive its Jacobian with respect to the current grid point $(\phi_{ij}^{n+1}, \mu_{ij}^{n+\frac{1}{2}})^T$:

$$DL\begin{pmatrix} \phi \\ \mu \end{pmatrix} = \begin{pmatrix} \frac{1}{\Delta t} & \frac{1}{h^2} \Sigma_G \\ -\frac{\varepsilon^2}{h^2} \Sigma_G - 2 & 1 \end{pmatrix}$$

2.3 V-cycle approach

The numerical method proposed in [1] consists of a V-cycle multi-grid method derived from previously stated operators. Specificly we use a two-grid implementation consisting of

- 1. a GauSS-Seidel relaxation for smoothing.
- 2. restriction and prolongation methods between grids $h \leftrightarrow H$.
- 3. a Newton iteration to solve $L(x,y)_H = L(\bar{x},\bar{y}) + (d_h,r_h)$.

The V-cycle of a two-grid method using pre and post smoothing is then stated by:

```
function v_cycle!(grid::Array{T}, level) where T <: solver
    solver = grid[level]
    #pre SMOOTHing:
    SMOOTH!(solver, 40, true)

d = zeros(size(solver.phase))
    r = zeros(size(solver.phase))

# calculate error between L and expected values
    for I in CartesianIndices(solver.phase)[2:end-1]</pre>
```

```
d[I], r[I] = [solver.xi[I], solver.psi[I]] .- L(solver, I.I...,
        → solver.phase[I], solver.potential[I])
    end
   restrict_solver!(grid[level], grid[level+1])
    solver = grid[level+1]
    solution = deepcopy(solver)
   d_large = restrict(d, G)
    r_large = restrict(r, G)
    u_large = zeros(size(d_large))
    v_large = zeros(size(d_large))
    #Newton Iteration for solving smallgrid
    for i = 1:300
        for I in CartesianIndices(solver.phase)[2:end-1, 2:end-1]
            diffrence = L(solution, I.I..., solution.phase[I],
            \rightarrow solution.potential[I]) .- [d_large[I], r_large[I]] .-
            \rightarrow L(solver, I.I..., solver.phase[I], solver.potential[I])
            #diffrence = collect(L(solution, I.I...)) .- collect(L(solver,
            → I.I...))
            #diffrence = [d_large[I] , r_large[I]]
            local ret = dL(solution, I.I...) \ diffrence
            u_large[I] = ret[1]
            v_large[I] = ret[2]
        solution.phase .-= u_large
        solution.potential .-= v_large
    u_large = solver.phase .- solution.phase
    v_large = solver.potential .- solution.potential
    solver = grid[level]
    solver.phase .+= prolong(u_large , G)
    solver.potential .+= prolong(v_large, G)
    SMOOTH! (solver, 80, true)
end
```

So let's take a closer look at the internals, namely the phase field after pre-SMOOTHing $\bar{\phi}$, the phase residuals of $\left[L(\bar{\phi_{ij}}, \bar{\mu_{ij}}) - (\zeta_{ij}, \psi_{ij})\right]_{ij \in \Omega}$ and the result of the Newton iteration on coarsest level.

After a few iterations, V-cycle exhibits the following behavior:

Figure 1: internal state during one V-cyclce

images/iteration.gif

2.4 Test data

For testing and later training we use a multitude of different phase-fields, notably an assortment of randomly placed circles, squares, and arbitrary generated values.

```
using Random
function testdata(gridsize , blobs , radius ,norm;rng=MersenneTwister(42))
rngpoints = rand(rng,1:gridsize, 2, blobs)
M = zeros(gridsize,gridsize) .- 1
```

```
for p in axes(rngpoints , 2)
   point = rngpoints[:, p]
   for I in CartesianIndices(M)
        if (LinearAlgebra.norm(point .- I.I , norm) < radius)
            M[I] = 1
        end
   end
end
M
end</pre>
```


Figure 2: Examples of different phase-fields used as the initial condition in this work.

2.5 SMOOTH operator

The authors [1]derived Gauss-Seidel Smoothing from:

$$L\begin{pmatrix} \phi_{ij}^{n+1} \\ \mu_{ij}^{n+\frac{1}{2}} \end{pmatrix} = \begin{pmatrix} \zeta_{ij}^n \\ \psi_{ij}^n \end{pmatrix}$$

solved for ϕ, μ . SMOOTH consists of point-wise GauSS-Seidel relaxation, by solving L for $\overline{\phi}, \overline{\mu}$ with the initial guess for ζ^n, ψ^n .

$$SMOOTH(\phi_{ij}^{n+1,m}, \mu_{ji}^{n+\frac{1}{2},m}, L_h, \zeta^n, \psi^n)$$
(13)

and we implement it as

```
function SMOOTH!(
    solver::T,
    iterations,
    adaptive
) where T <: Union{multi_solver, adapted_multi_solver ,</pre>
\rightarrow gradient_boundary_solver}
    for k = 1:iterations
        old_phase = copy(solver.phase)
         for I in CartesianIndices(solver.phase)[2:end-1, 2:end-1]
             i, j = I.I
             bordernumber = neighbours_in_domain(i, j, G, solver.len,
             \hookrightarrow solver.width)
             coefmatrix = dL(solver, i,j )
             b =
                  Г
                      (
                          solver.xi[i, j]
                          discrete_G_weigted_neigbour_sum(
                               i, j, solver.potential, G, solver.len,
                               \hookrightarrow solver.width
                          solver.h^2
                     ),
                          solver.psi[i, j]
                          (solver.epsilon^2 / solver.h^2)
                          discrete_G_weigted_neigbour_sum(
                               i, j, solver.phase, G, solver.len,
                               \,\hookrightarrow\,\, \text{solver.width}
                      )
                 ]
             res = coefmatrix \ b
             solver.phase[i, j] = res[1]
             solver.potential[i, j] = res[2]
        end
```


2.6 **TODO** explicit alternative

$$\frac{\phi_{ij}^{n+1} - \phi_{ij}^{n}}{\Delta t} = \nabla_{d} \cdot (G_{ij} \nabla_{d} \mu_{ij}^{n+\frac{1}{2}})$$

$$\mu_{ij}^{n+\frac{1}{2}} = 2\phi_{ij}^{n+1} - \varepsilon^{2} \nabla_{d} \cdot (G_{ij} \nabla_{d} \phi_{ij}^{n}) + W'(\phi_{ij}^{n}) - 2\phi_{ij}^{n}$$
(14)

3 Numerical evaluation

The analytical CH equation conserves mass 3 and the free energy E_{bulk} , 2 decreases in time, i.e. consistence with the second law of thermodynamics. Therefore, we use discrete variants of those concepts as necessary conditions for a "good" solution. Furthermore, since E_{bulk} is closely correlated with chemical potential, μ , we evaluate this difference as quality of convergence.

3.1 Experiments

```
<<init>>
using JLD2
using DataFrames
var"W_prime#61"(x) = -x * (1 - x^2)
results = jldopen("experiments/iteration.jld2")["result"]
n = size(results.solver , 1)
pbar = ProgressBar(total = 10 * n)
energy = zeros(0)
massbalance = zeros(0)
anim = @animate for res in eachrow(results)
   push!(energy , bulk_energy(res.solver))
   push!(massbalance , massbal(res.solver.phase))
   p0 = heatmap(res.solver.phase , clim =(-1,1) , framestyle=:none ,
   → legend=true, lims=(1, size(res.solver.phase , 1)) ,
   → aspect_ratio=:equal, title = "phasefield" )
  p1 = heatmap(res.solver.potential , framestyle=:none , legend=true,
   → lims=(1,size(res.solver.phase , 1)), aspect_ratio=:equal, title =
   → "potential" )
   current_range = (res.experiment -1)*64 +1
   p3 = plot( 1:res.iteration, (massbalance
   \rightarrow , xlim=(1,64), title = "Mass change")
   p2 = plot(1:res.iteration ,

→ energy[current_range:current_range+res.iteration-1], xlim=(1,64),

    title = "Bulk energy")

   plot(p0,p1,p2,p3)
end
gif(anim , "images/behaviour.gif" , fps = 10)
```

images/behaviour.gif

3.2 Energy evaluations

As discrete energy measure we use:

$$E^{\text{bulk}} = \sum_{i,j \in \Omega} \frac{\varepsilon^2}{2} |G\nabla \phi_{ij}|^2 + W(\phi_{ij}) dx$$
$$= \sum_{i,j \in \Omega} \frac{\varepsilon^2}{2} G_{i+\frac{1}{2}j} (D_x \phi_{i+\frac{1}{2}j})^2 + G_{ij+\frac{1}{2}} (D_y \phi_{ij+\frac{1}{2}})^2 + W(\phi_{ij}) dx$$

Figure 3: behaviour of energy E_{bulk} over time for one initial condition ϕ_0

3.3 Mass balance

Instead of a physical mass we use the average of ϕ over the domain Ω written as:

$$\frac{1}{|\Omega|} \int_{\Omega} \phi \ dx \tag{15}$$

We calculate this balance as:

$$b = \frac{\sum_{i,j \in \Omega} \phi_{ij}}{|\{(i,j) \in \Omega\}|}$$

such that b=1 means there is only phase 1, $\phi\equiv 1$, and b=-1 means there is only phase 2, $\phi\equiv -1$.

```
function massbal(arr)
  num_cells= *((size(arr).-2)...)
  return sum(arr[2:end-1, 2:end-1])/num_cells
  end
```


Figure 4: behaviour of phase change over time for one initial condition ϕ_0

3.4 TODO stability

3.4.1 stability of a sub iteration v-cycle

in order to evaluate convergence we observe the change in phase

$$\|\phi^n - \phi^{n+1,m}\|_{Fr} \tag{16}$$

where $\|\cdot\|_{Fr}$ represents a Frobenious norm over the tensors representing $\phi^{n}, \phi^{n+1,m}$. In addition we track the change of bulk energy:

$$\frac{d}{dt}E^{bulk} = -\int_{\Omega} |\nabla \mu|^2 \ dx \tag{17}$$

discetized as follows:

$$\Delta E^{bulk} = -\sum_{ij\in\Omega} |\nabla_d \mu|^2 \tag{18}$$


```
using LaTeXStrings
<<setup-grid>>
original_grid = testgrd
n = 100
m = 8
```

```
i_0 = 1
pbar = ProgressBar(total =n * m)
energy = zeros(0)
energy_pot = zeros(0)
change = zeros(0)
p0,p1,p2= [plot() for i=1:3]
for t = 1:m
set_xi_and_psi!(original_grid[1])
energy = zeros(0)
energy_pot = zeros(0)
change = zeros(0)
for j in 1:n
    update(pbar)
    old_solver = deepcopy(original_grid[1])
    v_cycle!(original_grid, 1)
    push!(energy , bulk_energy(original_grid[1]))
    push!(change , norm(original_grid[1].phase - old_solver.phase))
    push!(energy_pot , bulk_energy_potential(original_grid[1]))
    end
if t < 2
continue
end
```

3.4.2 stability under refinment in time

we test the bahaviour unter refinement in time by successively subdeviding the original time interval [0, T] in finer parts

3.4.3 stability under refinement in space

we test convergence in space by succesivly subdividing our grid into finer meshes

4 Relaxed problem

In effort to decrease the order of complexity, from fourth order derivative to second order, we propose an elliptical relaxation approach, where the relaxation variable c is the solution of the following elliptical PDE:

$$-\Delta c^{\alpha} + \alpha c^{a} = \alpha \phi^{\alpha}, \tag{19}$$

Figure 5: behavior of the baseline solver while solving the time interval $T = [0, 10^{-2}]$ with increasing number of timesteps

where α is a relaxation parameter. We expect to approach the original solution of the CH equation 1 as $\alpha \to \infty$. This results in the following relaxation for the classical CH equation 1:

$$\partial_t \phi^{\alpha} = \Delta \mu$$

$$\mu = \varepsilon^2 \alpha (c^{\alpha} - \phi^{\alpha}) + W'(\phi)$$
(20)

It requires solving the elliptical PDE each time-step to calculate c.

Bemerkung. We obtain a simpler approach in the numerical solver, with the drawback of having more variables. However those are independent.

As ansatz for the numerical solver we propose:

$$\frac{\phi_{ij}^{n+1,\alpha} - \phi_{ij}^{n,\alpha}}{\Delta t} = \nabla_d \cdot (G_{ij} \nabla_d \mu_{ij}^{n+\frac{1}{2},\alpha})
\mu_{ij}^{n+\frac{1}{2},\alpha} = 2\phi_{ij}^{n+1,\alpha} - \varepsilon^2 a(c_{ij}^{n+1,\alpha} - \phi_{ij}^{n+1,\alpha}) + W'(\phi_{ij}^{n,\alpha}) - 2\phi_{ij}^{n,\alpha}$$
(21)

This approach is inspired by 12 adapted to the relaxed CH equation 21. We then adapt the multi-grid solver proposed in 2 to the relaxed problem by replacing the differential operators by their discrete counterparts as defined in 10, and expand them .

4.1 Elliptical PDE:

In order to solve the relaxed CH equation we solve the following PDE in each time step:

$$-\nabla \cdot (G\nabla c^{\alpha}) + \alpha c^{\alpha} = \alpha \phi^{\alpha}$$

Similarly to the first solver we solve this PDE with a finite difference scheme using the same discretization as before.

4.1.1 Discretization

The discretization of the PDE expands the differential operators in the same way and proposes an equivalent scheme for solving the elliptical equation 19.

$$-\nabla_{d} \cdot (G_{ij}\nabla_{d}c_{ij}^{\alpha}) + \alpha c_{ij}^{\alpha} = \alpha \phi_{ij}^{\alpha}$$

$$\Rightarrow$$

$$-(\frac{1}{h}(G_{i+\frac{1}{2}j}\nabla c_{i+\frac{1}{2}j}^{\alpha} + G_{ij+\frac{1}{2}}\nabla c_{ij+\frac{1}{2}}^{\alpha})$$

$$-(G_{i-\frac{1}{2}j}\nabla c_{i-\frac{1}{2}j}^{\alpha} + G_{ij-\frac{1}{2}}\nabla c_{ij-\frac{1}{2}}^{\alpha})) + \alpha c_{ij}^{\alpha} = \alpha \phi_{ij}^{\alpha}$$

$$\Rightarrow$$

$$-\frac{1}{h^{2}}(G_{i+\frac{1}{2}j}(c_{i+1j}^{\alpha} - c_{ij}^{\alpha})$$

$$+G_{ij+\frac{1}{2}}(c_{ij+1}^{\alpha} - c_{ij}^{\alpha})$$

$$+G_{i-\frac{1}{2}j}(c_{i-1j}^{\alpha} - c_{ij}^{\alpha})$$

$$+G_{ij-\frac{1}{2}}(c_{ij-1}^{\alpha} - c_{ij}^{\alpha})) + \alpha c_{ij}^{\alpha} = \alpha \phi_{ij}^{\alpha}$$

As before we abbreviate $\Sigma_G c_{ij}^\alpha = G_{i+\frac{1}{2}j} c_{i+1j}^\alpha + G_{i-\frac{1}{2}j} c_{i-1j}^\alpha + G_{ij+\frac{1}{2}} c_{ij+1}^\alpha + G_{ij-\frac{1}{2}} c_{ij-1}^\alpha$ and $\Sigma_G = G_{i+\frac{1}{2}j} + G_{i-\frac{1}{2}j} + G_{ij+\frac{1}{2}} + G_{ij-\frac{1}{2}}$. Then the discrete elliptical PDE can be stated as:

$$-\frac{\sum_{G} c_{ij}^{\alpha}}{h^{2}} + \frac{\sum_{G} c_{ij}^{\alpha}}{h^{2}} c_{ij}^{\alpha} + \alpha c_{ij}^{\alpha} = \alpha \phi_{ij}^{\alpha}$$
 (22)

1. Proposal2 solver solving 22 for c_{ij}^{α} then results in.

$$\left(\frac{\Sigma_G}{h^2} + \alpha\right) c_{ij}^{\alpha} = \alpha \phi_{ij}^{\alpha} + \frac{\Sigma_G c_{ij}^{\alpha}}{h^2}$$

and can be translated to code as follows

```
function elyps_solver!(solver::T, n) where T <:</pre>
→ Union{relaxed_multi_solver , adapted_relaxed_multi_solver}
    for k in 1:n
       for i = 2:(solver.len+1)
            for j = 2:(solver.width+1)
                bordernumber = neighbours_in_domain(i, j,G,
                \hookrightarrow solver.len, solver.width)
                solver.c[i, j] =
                        solver.alpha * solver.phase[i, j] +
                        discrete_G_weigted_neigbour_sum(i, j,
                        → solver.c, G, solver.len, solver.width) /
                        ) / (bordernumber / solver.h^2 + solver.alpha)
            end
        end
    end
end
```

4.2 Relaxed PDE as operator L

We reformulate the discretization 21 in terms of the relaxed operator L as follows:

$$L\begin{pmatrix} \phi^{n+1,\alpha} \\ \mu^{n+\frac{1}{2},\alpha} \end{pmatrix} = \begin{pmatrix} \frac{\phi_{ij}^{n+1,m,\alpha}}{\Delta t} - \nabla_d \cdot (G_{ji} \nabla_d \mu_{ji}^{n+\frac{1}{2},m,\alpha}) \\ \varepsilon^2 \alpha (c^\alpha - \phi_{ij}^{n+1,m,\alpha}) - 2\phi_{ij}^{n+1,m,\alpha} - \mu_{ji}^{n+\frac{1}{2},m,\alpha} \end{pmatrix}$$

and its Jacobian:

$$DL\begin{pmatrix} \phi \\ \mu \end{pmatrix} = \begin{pmatrix} \frac{1}{\Delta t} & \frac{1}{h^2} \Sigma_G \\ -\varepsilon^2 \alpha - 2 & 1 \end{pmatrix}$$

4.3 SMOOTH operator

Correspondingly the SMOOTH operation expands to:

$$SMOOTH(\phi_{ij}^{n+1,m,\alpha},\mu_{ji}^{n+\frac{1}{2},m,\alpha},L_h,\zeta^{n,\alpha},\psi^{n,\alpha})$$

$$-\frac{\Sigma_G}{h^2} \overline{\mu_{ji}^{n+\frac{1}{2},m,\alpha}} = \frac{\phi_{ij}^{n+1,m,\alpha}}{\Delta t} - \zeta_{ij}^{n,\alpha} - \frac{\Sigma_G \mu_{ij}}{h^2}$$

$$\varepsilon^2 \alpha \overline{\phi_{ij}^{n+1,m,\alpha}} + 2\phi_{ij}^{n+1,m,\alpha} = \varepsilon^2 \alpha c_{ij}^{n,\alpha} - \overline{\mu_{ji}^{n+\frac{1}{2},m,\alpha}} - \psi_{ij}^{n,\alpha}$$
(23)

We then solve directly for the smoothed variables, $\overline{\mu_{ij}^{n+1,m,\alpha}}$ and $\overline{\phi_{ij}^{n+1,m,\alpha}}$. This was not done in the original paper [1] because the required system of linear equations in the paper [1] was solved numerically. We simplify the relaxed system in one-dimension, and solve explicitly:

$$\varepsilon^{2}\alpha(\phi^{\alpha}) + 2\phi^{\alpha} = \varepsilon^{2}\alpha c^{\alpha} - \frac{h^{2}}{\Sigma_{G}}(\frac{\phi^{\alpha}}{\Delta t} - \zeta_{ij}^{n} - \frac{1}{h^{2}}\Sigma_{G}\mu_{ij}) - \psi_{ij}$$

$$\Longrightarrow$$

$$\varepsilon^{2}\alpha(\phi^{\alpha}) + 2\phi^{\alpha} + \frac{h^{2}}{\Sigma_{G}}\frac{\phi^{\alpha}}{\Delta t} = \varepsilon^{2}\alpha c^{\alpha} - \frac{h^{2}}{\Sigma_{G}}(-\zeta_{ij}^{n} - \frac{1}{h^{2}}\Sigma_{G}\mu_{ij}) - \psi_{ij}$$

$$\Longrightarrow$$

$$(\varepsilon^2 \alpha + 2 + \frac{h^2}{\Sigma_G \Delta t}) \phi^{\alpha} = \varepsilon^2 \alpha c^{\alpha} - \frac{h^2}{\Sigma_G} (-\zeta_{ij}^n - \frac{\Sigma_G \mu_{ij}}{h^2}) - \psi_{ij}$$

 \Longrightarrow

$$\phi^{\alpha} = \left(\varepsilon^2 \alpha c^{\alpha} - \frac{h^2}{\Sigma_G} (-\zeta_{ij}^n - \frac{\Sigma_G \mu_{ij}}{h^2}) - \psi_{ij}\right) \left(\varepsilon^2 \alpha + 2 + \frac{h^2}{\Sigma_G \Delta t}\right)^{-1}$$

```
function SMOOTH!(
    solver::T,
    iterations,
    adaptive
```

```
) where T <: Union{relaxed_multi_solver , adapted_relaxed_multi_solver}</pre>
   for k = 1:iterations
       old_phase = copy(solver.phase)
       for I in CartesianIndices(solver.phase)[2:end-1, 2:end-1]
           i, j = I.I
           bordernumber = neighbours_in_domain(i, j, G, solver.len,
           → solver.width)
           solver.phase[I] = (solver.epsilon^2 * solver.alpha *
           - discrete_G_weigted_neigbour_sum(i,j,solver.potential , G
              , solver.len , solver.width) / solver.h^2 ) -
              solver.psi[I]) / (solver.epsilon^2 * solver.alpha + 2 +
              solver.h^2 / (bordernumber*solver.dt))
           #since the solver still needs the potetential we calculate it
           solver.potential[I] = (solver.phase[I]/solver.dt -
           \,\,\hookrightarrow\,\, solver.potential , G , solver.len ,

    solver.width)/solver.h^2) * (-solver.h^2/bordernumber)

       end
       if adaptive && LinearAlgebra.norm(old_phase - solver.phase) <</pre>
           #println("SMOOTH terminated at $(k) successfully")
           break
       end
   end
end
```

4.4 The relaxed V-cycle approach

As the difference between both methods is abstracted away in the operators, the relaxed V-cycle is identical to the original counterpart. Therefore we reuse the original V-cycle in the 2.3. The only additional step is solving the elliptical equation as following:

```
<<setup-relaxed-grid>>
pbar = ProgressBar(total = 1000)
anim = @animate for t in 1:100
    set_xi_and_psi!(testgrd[1])
    elyps_solver!(solver , 1000)
```


Figure 6: effect of the relaxed SMOOTH operator, and additional solving of the elliptical problem, for different values of alpha

```
for j in 1:10
    v_cycle!(testgrd, 1)
    update(pbar)
    end
    heatmap(testgrd[1].phase , clim =(-1,1) , framestyle=:none )
end
gif(anim , "images/iteration_relaxed2.gif" , fps = 10)
```

4.5 Test

4.6 rate of convergence

4.6.1 convergence of a sub iteration v-cycle

4.6.2 convergence unter refinment in time

we test the bahaviour unter refinement in time by succesivly subdeviding the original time interval [0,T] in finer parts

4.6.3 convergence under refinement in space

we test convergence in space by succesivly subdividing our grid into finer meshes

4.7 Comparison

```
<<setup-comparison>>
n = 100
m = 100
pbar = ProgressBar(total = n*m)
anim = @animate for i in 1:n
    set_xi_and_psi!(original_grid[1])
    set_xi_and_psi!(relaxed_grid1[1])
    set_xi_and_psi!(relaxed_grid2[1])
    set_xi_and_psi!(relaxed_grid3[1])
    elyps_solver!(relaxed_grid1[1], 1000)
    elyps_solver!(relaxed_grid2[1], 1000)
    elyps_solver!(relaxed_grid3[1], 1000)
    for j in 1:m
        v_cycle!(original_grid, 1)
        v_cycle!(relaxed_grid1, 1)
        v_cycle!(relaxed_grid2, 1)
        v_cycle!(relaxed_grid3, 1)
        update(pbar)
    p0 = heatmap(original_grid[1].phase , clim =(-1,1) , framestyle=:none
    p1 = heatmap(relaxed_grid1[1].phase , clim =(-1,1) , framestyle=:none,
    \hookrightarrow title="alpha=1e3" )
    p2 = heatmap(relaxed_grid2[1].phase , clim =(-1,1) , framestyle=:none,

    title="alpha=1e4" )

    p3 = heatmap(relaxed_grid3[1].phase , clim =(-1,1) , framestyle=:none,

    title="alpha=1e5" )

    plot(p0,p1,p2,p3)
gif(anim , "images/comparison.gif" , fps = 10)
```

images/comparison.gif

Furthermore we expect the approximation for ϕ_{ij}^{n+1} to converge.

$$||\phi_{ij}^{n+1} - \phi_{ij}^{n+1,\alpha}|| \to 0$$
 (24)

In practice we observe the following behaviour:

```
<<init>>
using JLD2
using Distributed
JULIA_NUM_THREADS = 24
M = jldopen("data/test-phasefield.jld2")["M"]
original_grid = testgrid(multi_solver, M, 2)
alphas = 0:1e3:2e5
function alpha_error(alpha::Number , solution::Array )
    test_solver = testgrid(relaxed_multi_solver, M, 2, alpha=)
    set_xi_and_psi!(test_solver[1])
    elyps_solver!(test_solver[1], 1000)
    for j in 1:100
        v_cycle!(test_solver , 1)
    end
return norm(test_solver[1].phase - solution)
set_xi_and_psi!(original_grid[1])
for j in 1:100
    v_cycle!(original_grid, 1)
end
print("finished original v_cycle")
tasks = []
for alpha in alphas
   t = Threads.@spawn alpha_error(alpha , original_grid[1].phase)
    push!(tasks , (alpha=alpha , task = t))
end
results = @show [(alpha=t.alpha, error=fetch(t.task)) for t in tasks]
p=plot(results)
savefig(p, "images/alpha-error.svg")
```


in all cases the difference to the original solver is apparent. Furthermore we observe a optimal value of α at approximately $7.5*10^5$ we explain this with our observations done for the Smoothing operator, where for small and large values of α the relaxed approach ironically results in restricted behaviour. Empirical this is to be expected as. for large values of alpha the elliptical equation approaches ϕ and for small values the elliptical solver does not converge.

5 AI

We propose a data motivated alternative to the elliptical PDE in the relaxed CH equation 21. We propose there to be a better solution then the discrete result of 19. We define "better" as minimizing:

$$||\phi^{n+1} + \frac{1}{\alpha}\nabla \cdot (G\nabla\phi^{n+1}) - c||_{Fr}$$
(25)

in the Frobenious norm $||\cdot||_{Fr}$ and implement our loss function accordingly

We calculate the expected value $\phi^{n+1} + \frac{1}{\alpha}\nabla \cdot (G\nabla \phi^{n+1})$ before training and use it as \hat{y}

Executing... 64f93dab

5.1 proposal CNN

```
using Flux

model = Chain(
    ConvTranspose((5,5) , 1=>5; stride=1),
    ConvTranspose((5,5) , 5=>1; stride=1),
)
```

5.2 training

```
opt_state = Flux.setup(Adam() , model)
train!(model , train_set , opt_state) do m , x , y
    lossfn(m(x) , y)
    end
```

6 Technical details

We are writing this thesis in org-mode file format.

7 References

References

- [1] Jaemin Shin, Darae Jeong, and Junseok Kim. "A conservative numerical method for the CahnHilliard equation in complex domains". In: Journal of Computational Physics 230.19 (2011), pp. 7441-7455. ISSN: 0021-9991. DOI: https://doi.org/10.1016/j.jcp.2011.06.009. URL: https://www.sciencedirect.com/science/article/pii/S0021999111003585.
- [2] Hao Wu. "A review on the CahnHilliard equation: classical results and recent advances in dynamic boundary conditions". In: *Electronic Research Archive* 30.8 (2022), pp. 2788–2832. DOI: 10.3934/era.2022143. URL: https://doi.org/10.3934%2Fera.2022143.