Sprawozdanie z laboratorium Teorii Optymalizacji

Imię i nazwisko	Jacek Gołda
Temat ćwiczenia	Metody zmiennej metryki
Data i godzina wykonania ćwiczenia	6 kwietnia 2016, 14:00

1 Wstęp

Celem laboratorium było zbadanie metod zmiennej metryki, w szczególności porównanie efektywności i wyników ich działania.

2 Ćwiczenie 3

Treść zadania:

Zaobserwować działania różnych metod zmiennej metryki dla funkcjonału:

$$Q(x_1, x_2) = x_1^2 + a \cdot x_2^2$$

Wybierając kolejno $a=1,\,a=20n,\,a=12n$

Za parametr n przyjęto wartość 4.

Rozwiązanie:

2.1 Rozwiązanie analityczne

Zauważono, że funkcjonał celu jest sumą dwóch wyrażeń nieujemnych, zerujących się w zerze. Wynika stąd, że minimum funkcjonału będzie osiągane w punkcie $\hat{x} = [0, 0]^T$ i wartość minimalna funkcji będzie wynosiła 0.

2.2 Rozwiązanie numeryczne

W celu zrealizowania rozwiązania numerycznego, konieczne było zmodyfikowanie funkcji obliczających wartość funkcjonału celu i gradientu funkcjonału celu. Gradient obliczono za pomocą toolboxu do obliczeń symbolicznych. Zmodyfikowano również pliki, w których te funkcje były wywoływane (dodano argument a do wywołań) — nie zamieszczono tych plików w sprawozdaniu, ponieważ niewiele by do niego wnosiły)

Listing 1: Wartość funkcjonału celu

```
function [q,x]=koszt(a, x,z,d)

if nargin==3, x=x+z;
elseif nargin==4, x=x+z*d;
end
q=x(1)^2+a*x(2)^2;
```

Listing 2: Gradient funkcjonału celu

```
function g=gradie(a, x)
g=[2*x(1)
2 * a * x(2)];
```

Ponownie wykorzystano funkcje służące do rysowania poziomic funkcjonału celu i kolejnych przybliżeń znalezionych przez algorytm (pojedynczego rozwiązania). Zostały one napisane podczas poprzednich laboratoriów, znajdują się w poprzednim sprawozdaniu, nie zamieszczano ich ponownie w tym sprawozdaniu.

Następnie napisano skrypt minimalizujący funkcjonał i rysujący rozwiązania:

```
clear all;
close all;
clc
diary('wyjscie_z_konsoli');
diary on
n = 4;
for par=0:5
fprintf('\tMetoda dla parametru %d\n', par)
% DLA WSPOLCZYNNIKA a = 1
a = 1;
fprintf('a = %d\n', a)
% rysowanie poziomic
[x1, x2] = meshgrid(-20:0.01:20, -20:0.01:20);
q = x1.^2 + a * x2 .^ 2;
poziomice = [0.01, 10, 100, 250, 400];
w_x0 = [20, 0;
        -15, -15;
        0, 20];
figureHandle = figure;
figureHandle = rysujMape(figureHandle, x1, x2, q, poziomice);
for i=1:size(w_x0, 1)
    x0 = w_x0(i, :);
    zmenad
    figureHandle = rysujRozwiazanie(figureHandle, x_rozw);
    display(sprintf('ilosc iteracji (lacznie z x0) to: %d', size(x_rozw, 2)));
print('-depsc2',sprintf('wykres_n_%d_a_1.eps', par))
% DLA WSPOLCZYNNIKA a = 80 (20n)
a = 20*n;
fprintf('a = %d\n', a)
% rysowanie poziomic
[x1, x2] = meshgrid(-20:0.01:20, -3:0.01:3);
q = x1.^2 + a * x2.^2;
poziomice = [0.01, 10, 100, 250, 400];
w_x0 = [20, 0;
        15, -5;
```

```
0, 7;
        -20, -0.5];
figureHandle = figure;
figureHandle = rysujMape(figureHandle, x1, x2, q, poziomice);
for i=1:size(w_x0, 1)
    x0 = w_x0(i, :);
    zmenad
    figureHandle = rysujRozwiazanie(figureHandle, x_rozw);
    display(sprintf('ilosc iteracji (lacznie z x0) to: %d', size(x_rozw, 2)));
print('-depsc2', sprintf('wykres_n_%d_a_80.eps', par))
% DLA WSPOLCZYNNIKA a = 48;
a = 12*n;
fprintf('a = %d\n', a)
% rysowanie poziomic
[x1, x2] = meshgrid(-10:0.01:10, -2:0.01:2);
q = x1.^2 + a * x2.^2;
poziomice = [0.01, 3, 10, 30, 70, 100];
w_x0 = [10, 0;
        -10, -5;
        7, 20];
figureHandle = figure;
figureHandle = rysujMape(figureHandle, x1, x2, q, poziomice);
for i=1:size(w_x0, 1)
    x0 = w_x0(i, :);
    zmenad
    figureHandle = rysujRozwiazanie(figureHandle, x_rozw);
    display(sprintf('ilosc iteracji (lacznie z x0) to: %d', size(x_rozw, 2)));
print('-depsc2', sprintf('wykres_n_%d_a_48.eps', par))
end
diary off
```

Dla kolejnych wartości współczynników a badano następujące punkty początkowe:

Współczynnik a	x_1	x_2
	20	0
1	-15	-15
	0	20
	20	0
80	15	-2.5
00	0	2.5
	-20	-0.5
	10	0
48	-10	-1.5
40	7	1.5

Uzyskano następujące wyniki:

Metoda Davidona - Fletchera - Powella

Metoda Wolfe'a - Broydena - Davidona

Metoda Broydena - Fletchera - Goldfarba - Shanno

Metoda Pearsona 1

Metoda Pearsona 2

Metoda McCormicka

Z wykresów można wyciągnąć następujące wnioski:

- 1. Gdy poziomice są okręgami, wszystkie algorytmy znajdują minimum w pierwszej iteracji bez względu na dobór punktu początkowego, ponieważ dla dowolnego punktu początkowego pierwsza wyznaczona prosta przechodzi przez punkt w którym znajduje się minimum i w efekcie algorytm kończy pracę po pierwszej iteracji.
- 2. W przypadku kiedy zbiory poziomicowe są elipsami, dobór punktu początkowego jest bardzo istotny. Jeżeli punkt początkowy znajdzie się na osi elipsy, minimum zostanie znalezione w pierwszej iteracji (oczywiście w praktyce dobór takiego punktu początkowego jest nierealny wymagałby znajomości położenia minimum). W przeciwnym wypadku algorytm wykonuje więcej iteracji. Tutaj zaczynają być widoczne różnice pomiędzy algorytmami: pierwsze

trzy sprawują się bardzo dobrze, wykonując trzy iteracje w przypadku takiego punktu początkowego. Drugi algorytm Pearsona wykonuje 5 iteracji, czyli nieco więcej, a algorytm McCormicka wyczerpuje limit 10 iteracji, więc nie wiadomo, czy zakończył pracę w wyniku znalezienia minimum, czy w wyniku wyczerpania liczby iteracji. Przez ogląd można stwierdzić, że w trzech z czterech przypadków zakończył pracę w wyniku wyczerpania liczby iteracji. W jednym przypadku nie da się tego sprawdzić tylko przez ogląd wykresów.

3 Ćwiczenie 4

Treść zadania:

Badanie porównawcze gradientowych metod optymalizacji Badanie porównawcze metod zmiennej metryki przeprowadzić dla funkcjonału:

$$Q(x_1, x_2) = 6x_1^2 + 6x_1x_2 + x_2^2 + 4.5(e^{x_1} - x_1 - 1) + 1.5(e^{x_2} - x_2 - 1)$$

Przyjąć, że norma gradientu w punkcie zatrzymania algorytmu ma być nie większa niż 0.001. Pole obserwacji graficznej: $|x_1| \leq 3, |x_2| \leq 3$. Punkt startowy: (-3,3) (dla metody największego spadku wypróbować też punktu (-3,1)). Maksymalna liczba iteracji: 20. Maksymalny czas obserwacji: 7 minut.

Wszystkie wartości x_1 , x_2 przesunięte są o 3n

Za parametr n przyjęto wartość 4.

3.1 Rozwiązanie numeryczne

Ponownie zmodyfikowano funkcje obliczające wartość funkcjonału celu i jego gradientu (ponownie skorzystano z toolboxu do obliczeń symbolicznych). Korzystano z plików zmodyfikowanych przy okazji poprzedniego ćwiczenia, stąd nadal przekazywany jest parametr a, jednak jest on ignorowany. Skorzystano również z funkcji rysujących poziomice funkcjonału celu i kolejne przybliżenia rozwiązania optymalnego wykorzystywane w poprzednim zadaniu.

Listing 3: Wartość funkcjonału celu

```
function [q,x]=koszt(a, x,z,d)

if nargin==3, x=x+z;
elseif nargin==4, x=x+z*d;
end

n = 4;
x1 = x(1) - 3 * n;
x2 = x(2) - 3 * n;

q=6*x1 ^2 + 6*x1*x2 + x2 ^ 2 + ...
    4.5*(exp(x1) - x1 - 1) + ...
    1.5 * (exp(x2) - x2 - 1);
```

Listing 4: Gradient funkcjonału celu

```
function g=gradie(a, x)

n = 4;
x = x - 3 * n;
x1 = x(1);
x2 = x(2);
```

```
g = [12*x1 + 6*x2 + (9*exp(x1))/2 - 9/2 
6*x1 + 2*x2 + (3*exp(x2))/2 - 3/2];
```

Skorzystano ze zmodyfikowanej wersji funkcji do opracowywania wyników. Obecnie zwraca ona różnicę pomiędzy rozwiązaniem optymalnym, a bieżącym przybliżeniem.

Listing 5: Funkcja opracowująca wyniki

```
function [argumenty, wartosci] = opracuj(arg, wart)
  ilosc_iteracji = size(arg, 2);
  ostatni_argument = [12;12];
  modul_x = arg - ostatni_argument * ones(1, ilosc_iteracji);
  argumenty = sqrt(modul_x(1, :) .^ 2 + modul_x(2, :) .^ 2);
  argumenty = argumenty';
  ostatnia_wartosc = 0;
  wartosci = wart - ostatnia_wartosc * ones(1, ilosc_iteracji);
  wartosci = wartosci';
end
```

Napisano skrypt służący do rozwiązywania zadania.

```
clear all;
close all;
clc
% wspolczynnik wystepujacy w zadaniu
n = 4;
a = 0;
wartosci_poziomic = [
    0.01,
    1,
    5,
    12,
    25,
    48,
    90
    ];
[z1, z2] = meshgrid(9:0.01:15, 9:0.01:15);
x1 = z1 - 3*n;
x2 = z2 - 3*n;
q = 6 * x1 .^2 + 6 * x1 .* x2 + x2 .^2 + ...
    4.5 * (exp(x1))
                      - x1 - 1) + \dots
    1.5 * (exp(x2) - x2 - 1);
% METODA Davidona Fletchera Powella
% rysowanie poziomic
figureHandle = figure;
figureHandle = rysujMape(figureHandle, z1, z2, q, wartosci_poziomic);
% wywolanie metody
x0 = [9; 15];
par = 0;
zmenad
% opracowanie wynikow
[modul_x, roznica_q] = opracuj(x_rozw, q_rozw);
dfp = [(1:length(modul_x))', modul_x, roznica_q, grad_rozw'];
```

```
% rysuj punkty i linie
figureHandle = rysujRozwiazanie(figureHandle, x_rozw);
display(sprintf('ilosc iteracji to: %d', size(x_rozw, 2) - 1));
print -depsc2 'wykres_dfp.eps'
% METODA Wolfe'a Broydena Davidona
% rysowanie poziomic
figureHandle = figure;
figureHandle = rysujMape(figureHandle, z1, z2, q, wartosci_poziomic);
% wywolanie metody
x0 = [9; 15];
par = 1;
zmenad
% opracowanie wynikow
[modul_x, roznica_q] = opracuj(x_rozw, q_rozw);
wbd = [(1:length(modul_x))', modul_x, roznica_q, grad_rozw'];
figureHandle = rysujRozwiazanie(figureHandle, x_rozw);
display(sprintf('ilosc iteracji to: %d', size(x_rozw, 2) - 1));
print -depsc2 'wykres_wbd.eps'
\% METODA Broydena Fletchera Goldfarba Shanno
% rysowanie poziomic
figureHandle = figure;
figureHandle = rysujMape(figureHandle, z1, z2, q, wartosci_poziomic);
% wywolanie metody
x0 = [9; 15];
par = 2;
zmenad
% opracowanie wynikow
[modul_x, roznica_q] = opracuj(x_rozw, q_rozw);
bfgs = [(1:length(modul_x))', modul_x, roznica_q, grad_rozw'];
% rysuj punkty i linie
figureHandle = rysujRozwiazanie(figureHandle, x_rozw);
display(sprintf('ilosc iteracji to: %d', size(x_rozw, 2) - 1));
print -depsc2 'wykres_bfgs.eps'
% METODA Pearsona 1
% rysowanie poziomic
figureHandle = figure;
figureHandle = rysujMape(figureHandle, z1, z2, q, wartosci_poziomic);
% wywolanie metody
x0 = [9; 15];
par = 3;
zmenad
% opracowanie wynikow
[modul_x, roznica_q] = opracuj(x_rozw, q_rozw);
p1 = [(1:length(modul_x))', modul_x, roznica_q, grad_rozw'];
```

```
% rysuj punkty i linie
figureHandle = rysujRozwiazanie(figureHandle, x_rozw);
display(sprintf('ilosc iteracji to: %d', size(x_rozw, 2) - 1));
print -depsc2 'wykres_p1.eps'
% METODA Pearsona 2
% rysowanie poziomic
figureHandle = figure;
figureHandle = rysujMape(figureHandle, z1, z2, q, wartosci_poziomic);
% wywolanie metody
x0 = [9; 15];
par = 4;
zmenad
% opracowanie wynikow
[modul_x, roznica_q] = opracuj(x_rozw, q_rozw);
p2 = [(1:length(modul_x))', modul_x, roznica_q, grad_rozw'];
% rysuj punkty i linie
figureHandle = rysujRozwiazanie(figureHandle, x_rozw);
display(sprintf('ilosc iteracji to: %d', size(x_rozw, 2) - 1));
print -depsc2 'wykres_p2.eps'
% METODA McCormicka
% rysowanie poziomic
figureHandle = figure;
figureHandle = rysujMape(figureHandle, z1, z2, q, wartosci_poziomic);
% wywolanie metody
x0 = [9; 15];
par = 5;
zmenad
% opracowanie wynikow
[modul_x, roznica_q] = opracuj(x_rozw, q_rozw);
m = [(1:length(modul_x))', modul_x, roznica_q, grad_rozw'];
% rysuj punkty i linie
figureHandle = rysujRozwiazanie(figureHandle, x_rozw);
display(sprintf('ilosc iteracji to: %d', size(x_rozw, 2) - 1));
print -depsc2 'wykres_m.eps'
```

Uzyskano następujące wyniki:

Ilości wykonywanych iteracji zestawiono w tabeli:

Metoda	Ilość iteracji
Davidona - Fletchera - Powella	7
Wolfe'a - Broydena - Davidona	7
Broydena - Fletchera - Goldfarba - Shanno	7
Pearsona 1	8
Pearsona 2	8
McCormicka	10

Kolejne wartości odległości od rozwiązania optymalnego, a także różnic wartości funkcji celu bieżącego przybliżenia i rozwiązania optymalnego przedstawiono w tabelkach:

Metoda Davidona - Fletchera - Powella

Numer iteracji	Odległość od minimum	Różnica wartości funkcji celu	Moduł gradientu
1.0000	4.2426	42.3523	27.7978
2.0000	0.9455	0.9209	27.7978
3.0000	0.7695	0.4572	3.5051
4.0000	0.1024	0.0189	1.5666
5.0000	0.0324	0.0007	0.7222
6.0000	0.0295	0.0005	0.0692
7.0000	0.0000	0.0000	0.0411
8.0000	0.0000	0.0000	0.0002

Metoda Wolfe'a - Broydena - Davidona

Numer iteracji	Odległość od minimum	Różnica wartości funkcji celu	Moduł gradientu
1.0000	4.2426	42.3523	27.7978
2.0000	0.9455	0.9209	27.7978
3.0000	0.7694	0.4572	3.5051
4.0000	0.1031	0.0191	1.5678
5.0000	0.0325	0.0007	0.7252
6.0000	0.0296	0.0005	0.0698
7.0000	0.0000	0.0000	0.0412
8.0000	0.0000	0.0000	0.0002

Metoda Broydena - Fletchera - Goldfarba - Shanno

Numer iteracji	Odległość od minimum	Różnica wartości funkcji celu	Moduł gradientu
1.0000	4.2426	42.3523	27.7978
2.0000	0.9455	0.9209	27.7978
3.0000	0.7694	0.4572	3.5051
4.0000	0.1030	0.0190	1.5677
5.0000	0.0325	0.0007	0.7253
6.0000	0.0296	0.0005	0.0697
7.0000	0.0000	0.0000	0.0412
8.0000	0.0000	0.0000	0.0002

Wszystkie trzy powyższe metody sprawdziły się równie dobrze i najlepiej ze wszystkich — zakończyły pracę w wyniku znalezienia minimum. Wykonały po 7 iteracji (pierwsza to punkt startowy). Końcowa wartość odległości od minimum nie jest większa niż 10^{-4} .

Metoda Pearsona 1

Numer iteracji	Odległość od minimum	Różnica wartości funkcji celu	Moduł gradientu
1.0000	4.2426	42.3523	27.7978
2.0000	0.9455	0.9209	27.7978
3.0000	0.7697	0.4575	3.5051
4.0000	0.6118	0.2976	1.5677
5.0000	0.5322	0.2015	1.5463
6.0000	0.0359	0.0033	0.9806
7.0000	0.0296	0.0005	0.3228
8.0000	0.0057	0.0001	0.0348
9.0000	0.0001	0.0000	0.0500

Metoda Pearsona 2

Numer iteracji	Odległość od minimum	Różnica wartości funkcji celu	Moduł gradientu
1.0000	4.2426	42.3523	27.7978
2.0000	0.9455	0.9209	27.7978
3.0000	0.7753	0.4637	3.5051
4.0000	0.0019	0.0000	1.5664
5.0000	0.0009	0.0000	0.0187
6.0000	0.0008	0.0000	0.0013
7.0000	0.0001	0.0000	0.0016
8.0000	0.0000	0.0000	0.0008
9.0000	0.0000	0.0000	0.0001

Metody zakończyły pracę po 8 iteracjach — o jedną więcej niż powyższe. Również zatrzymały się w wyniku znalezienia minimum. W przypadku pierwszej metody Pearsona widać, że znalezione przez nią przybliżenie jest dalej od rozwiązania optymalnego niż w przypadku poprzednich metod. Druga metoda Pearsona sprawdziła się znacznie lepiej — znalazła tak dobre rozwiązanie jak poprzednie metody, lecz poświęciła na to jedną iterację więcej.

Metoda McCormicka

Numer iteracji	Odległość od minimum	Różnica wartości funkcji celu	Moduł gradientu
1.0000	4.2426	42.3523	27.7978
2.0000	0.9455	0.9209	27.7978
3.0000	0.8125	0.5068	3.5051
4.0000	0.4920	0.3237	1.5605
5.0000	0.1787	0.0233	2.5938
6.0000	0.1622	0.0162	0.4547
7.0000	0.1262	0.0114	0.2300
8.0000	0.1162	0.0111	0.3122
9.0000	0.1155	0.0111	0.3778
10.0000	0.1055	0.0067	0.3830
11.0000	0.0704	0.0040	0.1367

Ponownie najgorzej sprawdziła się metoda McCormicka. Wykorzystała wszystkie 10 iteracji. Jak widać z wartości w tabelce, ostatnie znalezione rozwiązanie jest znacznie dalej od minimum niż w przypadku pozostałych metod.

4 Ćwiczenie 5

Treść zadania:

"Dolina bananowa" Rossenbrocka. Wyznaczyć minimum funkcji:

$$Q(x_1, x_2) = 30n(x_2 - x_1^2)^2 + (1 - x_1)^2$$

na mapę poziomic doliny nanieść punkty pośrednie poszczególnych kroków.

Za parametr n przyjęto wartość 4.

Rozwiązanie:

4.1 Rozwiązanie analityczne

Zauważono, że funkcja składa się z dwóch nieujemnych wyrażeń. Po przyrównaniu ich do zera, uzyskano, że minimum będzie znajdować się w punkcie $\hat{x} = [1, 1]^T$

4.2 Rozwiązanie numeryczne

Zmodyfikowano funkcje obliczające wartość funkcji celu i gradientu:

Listing 6: Wartość funkcjonału celu

```
function [q,x]=koszt(a, x,z,d)

if nargin==3, x=x+z;
elseif nargin==4, x=x+z*d;
end

n = 4;
x1 = x(1);
x2 = x(2);
q=30 * n * (x2 - x1 .^ 2 ) .^ 2 + (1 - x1 ).^ 2;
```

Listing 7: Gradient funkcjonału celu

```
function g=gradie(a, x)

n = 4;
x1 = x(1);
x2 = x(2);

g=[2*x1 - 120*n*x1*(- x1^2 + x2) - 2
30*n*(- 2*x1^2 + 2*x2)];
```

Zadanie rozwiązano bardzo zbliżonym skryptem, jak zadanie poprzednie. Zmodyfikowano jedynie wartości, dla których rysowane są poziomice i punkty początkowe. Nie zamieszczono skryptu, ponieważ nie wnosiłby dużo do sprawozdania.

W przypadku wszystkich metod jako punkt początkowy obrano punkt $x_0 = [-1, -1]^T$

Uzyskano następujące wyniki:

Ilości wykonywanych iteracji zestawiono w tabeli:

Metoda	Ilość iteracji
Davidona - Fletchera - Powella	10
Wolfe'a - Broydena - Davidona	9
Broydena - Fletchera - Goldfarba - Shanno	10
Pearsona 1	9
Pearsona 2	9
McCormicka	9

Pomimo iż niektóre metody skończyły pracę przed wyczerpaniem limitu iteracji, to wyniki są nadal dość dalekie od rozwiązania optymalnego. Analogiczne informacje, jak w poprzednim zadaniu zaprezentowane są w tabelkach poniżej:

Metoda Davidona - Fletchera - Powella

Numer iteracji	Odległość od minimum	Różnica wartości funkcji celu	Moduł gradientu
1	2,82842712474619	484	1076,89182372233
2	1,56235577613490	23,8005713984897	1076,89182372233
3	1,32721629044590	0,783983815415468	118,077711229242
4	1,12666196279059	$0,\!487107668801515$	1,73108666754834
5	1,05755146213142	$0,\!448651700842871$	4,78837021386479
6	1,04977583212975	$0,\!376196899280944$	7,47900733956953
7	0,887350286678641	0,262702433953182	0,975740016772635
8	0,699091086115679	$0,\!170893813659188$	5,01388492407929
9	0,656781114089060	$0,\!115883469916943$	7,06902378321218
10	0,656337903730479	$0,\!114293816475259$	1,38484308644274
11	0,498694673904113	0,0719286135144581	0,425647297102391

Algorytm uzyskał dość dobry wynik, bardzo zbliżony do wyniku drugiego algorytmu Pearsona, ale w odróżnieniu od niego wykorzystał wszystkie możliwe iteracje (w tabelce znajduje się 11 wierszy, ponieważ uwzględniony jest również punkt początkowy). Algorytm Pearsona skończył o jedną iterację wcześniej.

Metoda Wolfe'a - Broydena - Davidona

Numer iteracji	Odległość od minimum	Różnica wartości funkcji celu	Moduł gradientu
1	2,82842712474619	484	1076,89182372233
2	1,56235577613490	23,8005713984897	1076,89182372233
3	1,32721631666988	0,783983811103343	118,077711229242
4	1,12664285029944	$0,\!487082897335934$	1,73108776187775
5	0,915120680964819	0,303798103847217	4,78826041952040
6	0,910871548608057	$0,\!256184082833977$	6,75446817586009
7	0,739342957682910	$0,\!170518629410032$	0,722651311859129
8	0,524848827318402	0,0930870522788360	4,85746936726612
9	0,523860366590557	0,0680718630856001	6,22269057804578
10	0,355533471769559	0,0357759380346189	0,292351230046323

Metoda Broydena - Fletchera - Goldfarba - Shanno

Numer iteracji	Odległość od minimum	Różnica wartości funkcji celu	Moduł gradientu
1	2,82842712474619	484	1076,89182372233
2	1,56235577613490	23,8005713984897	1076,89182372233
3	1,32719968168200	0,783986700429827	118,077711229242
4	1,13783224721679	$0,\!502577723926761$	1,73041611258292
5	0,934992024542521	$0,\!322687038598867$	4,91423816115789
6	0,930334486072714	$0,\!270788032178845$	6,95376064267518
7	0,759643171522079	$0,\!181419758739935$	0,753620254571319
8	0,550285671527806	$0,\!102548550076324$	4,87754533834599
9	0,526247085186151	0,0691505162739285	6,35754680257711
10	0,525883815094522	0,0686711451982404	0,794989633683640
11	0,371105208681140	0,0391804930552318	0,315935908843947

Powyższe algorytmy uzyskały dość zbliżone do siebie wyniki, jednocześnie są to dwa najlepsze wyniki (najbliżej rozwiązania optymalnego) spośród badanych algorytmów. Przy tym algorytm Wolfe'a-Broydena-Davidona jest o tyle lepszy, że wykonał o jedna iteracje mniej.

Metoda Pearsona 1

Numer iteracji	Odległość od minimum	Różnica wartości funkcji celu	Moduł gradientu
1	2,82842712474619	484	1076,89182372233
2	1,56235577613490	23,8005713984897	1076,89182372233
3	1,32721575941531	0,783982706775743	118,077711229242
4	1,32721575940639	0,783982706756263	1,73108460838949
5	1,32721575939529	0,783982706735531	1,73108460836919
6	1,16389512192093	0,538428456418052	1,73108460828526
7	0,978417362102525	0,364986997248831	5,06441787656064
8	0,978417362039734	0,364986996964280	7,24225307048185
9	0,972793487004333	$0,\!304981519552937$	7,24225305604503
10	0,802861244851049	$0,\!207343253854669$	0,825953446513685

Algorytm uzyskał znacznie gorszy wynik niż pozostałe algorytmy. Skończył pracę o jedną iterację przed limitem.

Metoda Pearsona 2

Numer iteracji	Odległość od minimum	Różnica wartości funkcji celu	Moduł gradientu
1	2,82842712474619	484	1076,89182372233
2	1,56235577613490	23,8005713984897	1076,89182372233
3	1,32726454472140	0,784084563827515	118,077711229242
4	1,01410665001646	0,354045678838106	1,73127383758946
5	1,00961313835233	0,337575575545219	3,57302166841712
6	0,853117394435998	$0,\!238097316520924$	0,917202047893591
7	0,621932228549685	$0,\!128906420590032$	4,92158666347841
8	0,649278569570144	0,125084450502630	6,32158489105394
9	0,648013813403266	$0,\!110920508312337$	4,35539449880906
10	0,478781689589754	0,0657437983801014	0,400622197615117

Metoda McCormicka

Numer iteracji	Odległość od minimum	Różnica wartości funkcji celu	Moduł gradientu
1	2,82842712474619	484	1076,89182372233
2	1,56235577613490	23,8005713984897	1076,89182372233
3	1,36418816060472	0,867272253971135	118,077711229242
4	1,19986223863766	0,587748528378136	1,85394347159581
5	1,18892258180060	0,544299400249260	4,99848676049245
6	1,15559170383891	$0,\!512212164679975$	1,35036716190224
7	1,15459642348630	$0,\!512179774064815$	3,77912997223911
8	1,15459484125259	$0,\!512179773970197$	3,90369865321640
9	1,14638129540016	$0,\!486729249379637$	3,90389802638026
10	1,12199816063951	0,465682078997954	1,25097347741906

Ponownie najgorszy wynik uzyskał algorytm McCormicka. Wykonał jedną iterację mniej, niż dopuszczalny limit. Wynik jest znacznie niższej jakości niż w przypadku pozostałych algorytmów — znalezione rozwiązanie suboptymalne jest niecałe 3 razy dalej od najlepszego znalezionego rozwiązania przez algorytmu przy tej samej liczbie iteracji.

5 Wnioski

W trakcie laboratorium zbadano metody zmiennej metryki: metodę Davidona - Fletchera - Powella, metodę Wolfe'a - Broydena - Davidona, metodę Broydena - Fletchera - Goldfarba - Shanno, pierwszą metodę Pearsona, drugą metodę Pearsona i metodę McCormicka.

W pierwszym zadaniu zbadano działanie metod dla funkcjonału będącego formą kwadratową. W sytuacji, gdy zbiory poziomicowe funkcjonału celu były okręgami, wszystkie metody znajdowały minimum w pierwszej iteracji. W sytuacji,

gdy współczynnik a był różny od jedynki i w konsekwencji zbiory poziomicowe były elipsami, algorytmy potrzebowały większej liczby iteracji. Metody: Davidona - Fletchera - Powella, Wolfe'a - Broydena - Davidona, Broydena - Fletchera - Goldfarba - Shanno i pierwsza metoda Pearsona potrzebowały trzech iteracji, podczas gdy druga metoda Pearsona do znalezienia minimum potrzebowała pięciu iteracji. Metoda McCormicka wyczerpała limit dziesięciu iteracji, a mimo to w trzech przypadkach nawet przez ogląd wykresu można było stwierdzić, że metoda była dość daleko od znalezienia minimum.

Lokalizacja punktu początkowego ponownie okazała się istotnym czynnikiem dla efektywności algorytmu. W przypadku form kwadratowych, których zbiory poziomicowe były elipsami, a nie okręgami, znajdowano rozwiązanie w pierwszej iteracji tylko wtedy, gdy punkt początkowy został zlokalizowany na którejś z osi elipsy. W przeciwnym wypadku do znalezienia minimum konieczna była większa liczba iteracji.

W czwartym i piątym zadaniu porównano efektywność algorytmów. Algorytmy wykonały zbliżoną liczbę iteracji — dziewięć albo dziesięć. Dziesieć iteracji jest limitem, więc w takiej sytuacji nie wiadomo, czy zadziałało kryterium stopu związane z maksymalną liczbą iteracji, czy z osiągnięciem minimum.

Ponownie kiepski efekt osiągnęła metoda McCormicka. Znalezione przez nią rozwiązanie suboptymalne w zadaniu piątym było niecałe 3 razy bardziej oddalone od rozwiązania optymalnego niż najlepsze znalezione innymi algorytmami rozwiązanie suboptymalne.

W piątym zadaniu dość dobrze sprawdziły się algorytmy Wolfe'a - Broydena - Davidona i Broydena - Fletchera - Goldfarba - Shanno. Rozwiązania suboptymalne znalezione przez te algorytmy były oddalone o około 0.36 od rozwiązania optymalnego — jest to najlepszy wynik spośród badanych algorytmów.

Nieco gorszy efekt dało zastosowanie algorytmów Davidona - Fletchera - Powella i drugiej metody Pearsona. Odległość od rozwiązania optymalnego wyniosła około 0.48. Kolejna była pierwsza metoda Pearsona z odległością około 0.8 od rozwiązania optymalnego.