

ESTRUCTURA DE LA MATÈRIA QUÍMICA 2N BATX

electromagnètic correspon aquesta radiació?

EXERCICIS

ALBA LÓPEZ VALENZUELA
CORRECCIONS I TRADUCCIÓ: EDUARD CREMADES

Espectre electromagnètic
Calcula la velocitat d'una ona la longitud d'ona i freqüència de la qual són 17.4 cm i 87.4 Hz, respectivament. Solució: 15.2 m/s
Calcula l'energia associada a un fotó de longitud d'ona 487 nm. Calcula el seu nombre d'ona. Solució: $E = 4.08 \times 10^{-19} \text{J}; \bar{\nu} = 2.05 \times 10^6 \text{m}^{-1}$
En l'espectre d'emissió de l'àtom d'hidrogen s'observa una línia a 486 nm. Calcula, per a aquesta llum, l'energia que porta associada un fotó i un mol de fotons.
<i>Solució:</i> $E = 4.09 \times 10^{-19} \text{ J/fotó}; E = 2.46 \times 10^5 \text{ J/mol}$
[Grau en Química, UNEX] L'oïda humana és sensible a ones sonores amb freqüències compreses entre els 15 Hz i 20 kHz.
La velocitat del so en l'aire és de 343 m/s. Calcula les longituds d'ona corresponents a aquestes freqüències. Solució: $\lambda_1=23$ m; $\lambda_2=0.017$ m
5 La longitud d'ona de la llum verda d'un semàfor se centra en 522 nm. Quina és la freqüència de la radiació? Solució: $\nu = 5.75 \times 10^{14} \; \mathrm{Hz}$
Quina radiació es propaga amb una major velocitat en el buit: els raigs X o les ones de ràdio?
El color blau del cel resulta de la dispersió de la llum del Sol per les molècules d'aire. La llum blava té una freqüència d'uns 7.5×10^{14} Hz. a) Calcula la longitud d'ona associada a aquesta radiació i b) calcula l'energia en joules d'un fotó individual
associat a aquesta radiació.
Solució: a) $\lambda = 400 \text{ nm}$; b) $E = 4.97 \times 10^{-19} \text{ J}$
Calcula l'energia (en Joules) de: a) un fotó la longitud d'ona del qual és 5×10^4 nm (regió infraroja) i b) un fotó la longitud d'ona del qual és de 5×10^{-2} nm (regió de raigs X).
Solució: a) $E = 3.98 \times 10^{-21} \text{ J}$; b) $E = 3.98 \times 10^{-15} \text{ J}$
Model atòmic de Bohr
9 La primera línia de la sèrie de Balmer es troba a una longitud d'ona de 656.3 nm. Quina és la diferència d'energia entre els
dos nivells implicats en l'emissió que provoca la línia de l'espectre? Solució: $E = 3.03 \times 10^{-19} \text{J}$
La línia més intensa de l'espectre de l'àtom de sodi té una longitud d'ona de 589 nm. Calcula el corresponent nombre d'ona i l'energia de la transició implicada en electronvolt per fotó i en kJ/mol.
Solució: $\bar{\nu} = 1.7 \times 10^6 \mathrm{m}^{-1}; E = 203 \mathrm{kJ/mol}; E = 2.11 \mathrm{eV/fotó};$
Calcula la longitud d'ona de la radiació emesa corresponent a la segona línia de la sèrie de Lyman. A quina zona de l'espectre

[Grau en Farmàcia, UCAM] Quina és la longitud d'ona (en nanòmetres) d'un fotó emès durant la transició des de l'estat n_f =5 a l'estat n_f =2. [Grau en Química, UNEX] En quina zona de l'espectre se situa aquesta emissió?, a quina sèrie espectral correspondria aquesta transició? $Datos: R_{\rm H} = 1.097 \times 10^7 \, {\rm m}^{-1} = 2.18 \times 10^{-18} \, {\rm J}; b = 6.62 \times 10^{-34} \, {\rm J} \, {\rm s}$

Solució: $\lambda = 434$ nm; visible, Balmer

A l'espectre d'emissió de l'àtom d'hidrogen apareix una línia a 102.5 nm. Sabent que aquesta transició electrònica pertany a la sèrie de Lyman, a quina línia d'aquesta sèrie espectral correspon aquesta longitud d'ona?

Solució: La segona

Solució: $\lambda = 122 \text{ nm}$; UV

La segona línia de la sèrie de Balmer té una longitud d'ona en el buit de 4861.3 Angstrom (Å). Calcula: a) L'energia dels fotons que corresponen a aquesta línia, en joules i en electronvolts; b) El valor de la constant de Rydberg.

Solució: a) $E = 4.09 \times 10^{-19} \text{ J} = 2.56 \text{ eV}$; b) $R_{\text{H}} = 2.18 \times 10^{-18} \text{ J} = 1.097 \times 10^7 \text{ m}^{-1}$

Quan mesuren els radis de les tres primeres òrbites de l'electró en l'àtom d'hidrogen segons el model atòmic de Bohr? Quant val l'energia de les mateixes òrbites? ($a_0 = 0.529 \,\text{Å}; E_0 = -13.6 \,\text{eV}$).

$$Soluci\'on: r_1 = 0.529 \, \text{Å}; \, r_2 = 2.116 \, \text{Å}; \, r_3 = 4.761 \, \text{Å}; \, E_1 = -13.6 \, \text{eV}; \, E_2 = -3.4 \, \text{eV}; \, E_3 = -1.51 \, \text{eV}$$

- 16 L'electró de l'àtom d'hidrogen, que es trobava en el seu nivell fonamental, absorbeix un fotó d'energia. Contesta:
 - a) En què inverteix l'electró aquesta energia?
 - b) Suposa que l'electró es troba ara en el tercer nivell d'energia. Quina és la longitud d'ona de la radiació emesa quan torna al nivell fonamental?
 - c) Per què diem que és radiació emesa?
 - d) En quina zona de l'espectre apareixeria aquesta radiació?

...... Fracassos de la mecànica clàssica. Efecte fotoelèctric.

[Grau en Química, UNEX] L'energia requerida per extreure un electró d'un àtom determinat és 3.44×10^{-18} J. L'absorció d'un fotó de longitud d'ona desconeguda ionitza a l'àtom i produeix un electró de velocitat $1.03 \times 10^6 \, \mathrm{ms}^{-1}$. Calcula la longitud d'ona de la radiació absorbida.

Solució:
$$\lambda = 5.07 \times 10^{-8} \text{ m}$$

[18] [Grau en Farmàcia, UCAM] La funció de treball del metall cesi (energia necessària per alliberar els electrons del metall) és de 3.42×10^{-19} J. a) Calcula la freqüència mínima de llum requerida per alliberar electrons del metall (ν_0). b) Calcula l'energia cinètica de l'electró expulsat si s'utilitza llum de frequència $1.00 \times 10^{15} \, \mathrm{s}^{-1}$ per irradiar el metall.

Solució:
$$v_0 = 5.16 \times 10^{14} \text{ Hz}; E_c = 3.21 \times 10^{-19} \text{ J}$$

[Grau en Química, UNEX] La funció de treball (ϕ) pel mercuri és 7.22 × 10⁻¹⁹ J. a) Quina és la freqüència mínima que ha de tenir la llum per provocar l'emissió de fotoelectrons de la superfície del mercuri?, b) es podria utilitzar llum visible per tal propòsit?

Solució:
$$v_0 = 1.09 \times 10^{15} \text{ Hz}$$
; no (275 nm)

[Grau en Química, UNEX] El treball d'extracció del zinc és 4.3 eV. Si s'il·lumina una làmina d'aquest metall amb una radiació de 5×10^{15} Hz, calcula: a) l'energia cinètica màxima dels electrons emesos; b) la freqüència llindar del zinc.

Solució: a)
$$E_{\rm c} = 2.63 \times 10^{-18} \, \rm J; b) \, \nu_0 = 1.04 \times 10^{15} \, \rm Hz$$

Un electró viatja a 2 × 10⁶ m/s. Calcula la seva energia cinètica. Calcula la longitud d'ona, el nombre d'ones i la freqüència. Calcula l'energia de la radiació associada en kJ.

Solució:
$$E_{\rm c} = 1.82 \times 10^{-18} \, \rm J$$
; $\lambda = 3.64 \times 10^{-10} \, \rm m$; $\bar{\nu} = 2.75 \times 10^9 \, \rm m^{-1}$; $\nu = 5.49 \times 10^{15} \, \rm Hz$; $E = 3.64 \times 10^{-15} \, \rm kJ$

Calcula la longitud d'ona de la "partícula" en els següents casos i comenta les diferències: a) La pilota del servei més ràpid en el tennis que és d'uns $62 \,\mathrm{m/s}$. La pilota de tennis té una massa de $6 \times 10^{-2} \,\mathrm{kg}$. b) Un electró que es mou a $62 \,\mathrm{m/s}$.

Solució: a)
$$\lambda = 1.78 \times 10^{-34}$$
 m; b) $\lambda = 1.17 \times 10^{-5}$ m

[Grau en Química, UNEX] Un experiment de difracció requereix electrons amb una longitud d'ona de 0.45 nm. Calcula la velocitat dels electrons.

Solució:
$$v_e = 1.62 \times 10^6 \text{ m/s}$$

La posició d'un electró es pot determinar amb una precisió de 0.01 Å. En tal cas, calcula la indeterminació per la mesura simultània de la velocitat de l'electró.

Solució:
$$\Delta v_e = 5.79 \times 10^7 \text{ m/s}$$

En el sistema atòmic es determina la posició d'un electró amb una precisió de 5 pm. Quina serà la màxima precisió amb la qual podem conèixer simultàniament la velocitat d'aquest electró, suposant que la seva massa es coneix amb un error negligible?

Solució:
$$\Delta v_e = 1.16 \times 10^7 \,\mathrm{m/s}$$

Què és un orbital atòmic? És el mateix que òrbita?

- Un element té 12 protons i 12 neutrons en el nucli. Quina és la seva massa atòmica aproximada? Quants electrons posseeix? Quin element és?
- El magnesi es troba a la naturalesa com a mescla de 3 isòtops amb massa atòmica 23.985, 24.986 i 25.986, l'abundància dels quals és del 78.7 %, 10.2 % i 11.1 %, respectivament. Calcula la massa mitjana ponderada de l'àtom de magnesi.

Solució: $M_{\rm ar} = 24.31$ uma

[Grau en Enologia, UNEX] El pes atòmic del Ga és 69.72 uma. Els dos isòtops d'aquest element que es troben a la naturalesa tenen les següents masses: ⁶⁹Ga = 68.9257 uma; ⁷¹Ga = 70.9249 uma. Determina el percentatge de cadascun dels isòtops.

Solució: 40 % y 60 %

L'element X té una configuració electrònica 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p¹. a) Quin és el seu nombre atòmic?; b) X es presenta com una mescla de ⁶⁹X i ⁷¹X, què signifiquen els números 69 i 71?; c) Si les proporcions naturals dels dos són 60 % i 40 %, respectivament calcula la massa atòmica de X.

Solució: c) $M_{\rm at}$ = 69.8 uma

- [31] Escriu amb anotacions normal, simplificada i orbital les configuracions electròniques de l'estat fonamental del nitrogen, coure, estany, ceri, or, or(I), molibdè i crom.
- Escriu la configuració electrònica dels següents elements: Cu, Ag, Cr, Pm, Ac, Cm, Sb, La.
- Escriu la configuració electrònica completa del sofre (Z=16), calci (Z=20), mercuri (Z=80) i pal·ladi (Z=46), que és diamagnètic. Quin tipus d'elements són?
- [34] El nombre atòmic d'un element és 73. Els àtoms d'aquest element són paramagnètics o diamagnètics?
- 35 El ferro té electrons desaparellats?
- [36] Les configuracions electròniques que es mostren a continuació són incorrectes. Explica els errors que s'han comès en cadascuna i escriu-les correctament: a) 13 Al = 1 s 2 2 s 2 2 p 4 3 s 2 3 p 3 ; b) 9 F = 1 s 2 2 s 2 2 p 6 ; c) 19 K = 1 s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 1 .
- [37] Les configuracions electròniques se solen escriure en el seu estat fonamental (estat basal). Un àtom pot absorbir un quàntum d'energia i promoure algun dels seus electrons a un orbital de major energia. Quan això ocorre es diu que l'àtom està en un estat excitat. A continuació tens algunes configuracions electròniques d'àtoms excitats. Identifica aquests àtoms i escriu la seva configuració electrònica en l'estat fonamental: a) 1 s² 2 s² 2 p² 3 d¹; b) 1 s² 2 s² 2 p⁶ 4 s¹; c) [Ne] 3 s² 3 p⁴ 3 d¹.
- 38 Escriu amb notació orbital la configuració electrònica de l'àtom de sodi en el seu primer estat excitat.
- Escriu les configuracions electròniques dels següents ions en estat fonamental: a) Li^+ , b) H^- , c) N^{3-} , d) F^- , e) S^{2-} , f) Al^{3+} , g) Se^{2-} , h) Br^{-} , i) Rb^{+} , j) Sr^{2+} i k) Sn^{2+} .
- Defineix electrons de valència. Pels elements representatius, el nombre d'electrons de valència d'un element és igual al nombre del seu grup. Demostra que això és cert pels següents elements: Al, Sr, K, Br, C, P i S.
- 41 Quin significat té dir que dos ions o un àtom i un ió són isoelectrònics? Quines de les següents espècies són isoelectròniques entre si: C, Cl⁻, Mn²⁺, B⁻, Ar, Zn, Fe³⁺ i Ge²⁺.
- [Grau en Ciència i Tecnologia dels Aliments, UNEX] A continuació es donen les configuracions electròniques d'alguns elements: Li: 1 s² 2 p¹, Ne: 1 s² 2 s¹ 2 p⁷, F: 1 s² 2 s² 2 p⁶, Mg: 1 s² 2 s² 2 p⁶ 3 s², S: 1 s² 2 s² 2 p⁶ 3 s² 3 p³ 3 d¹. Raona per a cadascuna si representa: a) Un estat normal d'energia, un estat excitat o un estat impossible. b) Un àtom neutre, un ió positiu o un ió negatiu.

