1. DATA SET -

Game of Thrones Dataset -

dataset of a famous TV show

- 2. URL: https://www.kaggle.com/bakar31/game-of-thronesgot
- 3. No of Instances 73

No of Attributes - 10

Datatype -

```
In [8]:
         1 #attribute types
          2 # the first 3 are integer type, next 5 are object type(string) and next 2 are float
          3 df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 73 entries, 0 to 72
        Data columns (total 10 columns):
         # Column
                                     Non-Null Count Dtype
                                    73 non-null int64
         0 No. overall
            No. in season
                                     73 non-null
                                                      int64
         1
         2
             Season
                                      73 non-null
                                                      int64
            Title
                                     73 non-null
         3
                                                      object
         4 Directed by
                                    73 non-null
                                                      object
            Written by 73 non-null
Novel(s) adapted 73 non-null
Original air date 61 non-null
                                                      object
         5
                                                      object
                                                      object
         8 U.S. viewers(millions) 70 non-null
                                                      float64
         9 Imdb rating
                                                      float64
                                     73 non-null
        dtypes: float64(2), int64(3), object(5)
        memory usage: 5.8+ KB
```

Missing Values -

```
In [9]:
          2 #null values
          3 df.isnull().sum()
Out[9]: No. overall
                                   0
        No. in season
                                   0
        Season
                                   0
        Title
                                   0
        Directed by
                                   0
        Written by
                                   0
        Novel(s) adapted
                                   0
        Original air date
                                  12
        U.S. viewers(millions)
                                   3
        Imdb rating
                                   0
        dtype: int64
```

4. Language Chosen for Implementation - Python

5. a)

Mean, Median (50%), Mode, Std, variance -

```
In [55]: 1 df.describe()
2
```

Out[55]:

	No. overall	No. in season	Season	U.S. viewers(millions)	Imdb rating
count	59.000000	59.000000	59.000000	59.000000	59.000000
mean	36.355932	5.203390	4.135593	6.422203	8.832203
std	21.300609	2.857414	2.177135	2.858102	1.012413
min	1.000000	1.000000	1.000000	2.200000	4.000000
25%	19.500000	3.000000	2.000000	4.050000	8.700000
50%	35.000000	5.000000	4.000000	6.590000	8.900000
75%	53.500000	8.000000	6.000000	7.810000	9.400000
max	73.000000	10.000000	8.000000	13.610000	9.900000

In [11]: 1 df[['Title','Directed by','Written by','Novel(s) adapted','Original air date']].describe()
Out[11]:

	Title	Directed by	Written by	Novel(s) adapted	Original air date
count	73	73	73	73	61
unique	73	20	5	6	61
top	"Breaker of Chains"	David Nutter	David Benioff & D. B. Weiss	A Storm of Swords	3-May-15
freq	1	9	51	20	1

b) Boxplot, Scatter Plot

Boxplot -

Boxplot visualizes the distribution of each column and shows if outliers are present.

Scatterplot -

Scatterplot represents the scattered distribution of one variable on another variable.

```
In [63]:

1 import seaborn as sns
2 import matplotlib.pyplot as plt
3 for i in ['No. overall', 'No. in season', 'Season', 'U.S. viewers(millions)', 'Imdb rating']:
4 sns.boxplot(df[i])
5 plt.show()

1 import seaborn as sns
2 import matplotlib.pyplot as plt
3 for i in ['No. overall', 'No. in season', 'Season', 'U.S. viewers(millions)', 'Imdb rating']:
4 sns.boxplot(df[i])
6 plt.show()

1 import seaborn as sns
2 import matplotlib.pyplot as plt
3 for i in ['No. overall', 'No. in season', 'Season', 'U.S. viewers(millions)', 'Imdb rating']:
4 sns.boxplot(df[i])
6 plt.show()

1 import seaborn as sns
2 import matplotlib.pyplot as plt
3 for i in ['No. overall', 'No. in season', 'Season', 'U.S. viewers(millions)', 'Imdb rating']:

1 import seaborn as sns
2 import matplotlib.pyplot as plt
3 for i in ['No. overall', 'No. in season', 'Season', 'U.S. viewers(millions)', 'Imdb rating']:

2 import seaborn as sns
3 for i in ['No. overall', 'No. in season', 'Season', 'U.S. viewers(millions)', 'Imdb rating']:

2 import seaborn as sns
3 for i in ['No. overall', 'No. in season', 'Season', 'U.S. viewers(millions)', 'Imdb rating']:

2 import seaborn as sns
3 for i in ['No. overall', 'No. in season', 'Season', 'U.S. viewers(millions)', 'Imdb rating']:

2 import seaborn as sns. overall', 'No. in season', 'Season', 'U.S. viewers(millions)', 'Imdb rating']:

2 import seaborn as sns. overall', 'No. in season', 'Season', 'U.S. viewers(millions)', 'Imdb rating']:

2 import seaborn as sns. overall', 'No. in season', 'Season', 'U.S. viewers(millions)', 'Imdb rating']:

2 import seaborn as sns. overall', 'No. in season', 'Season', 'U.S. viewers(millions)', 'Imdb rating', 'Im
```

C) Any two Visualisation techniques -

Pie chart -

The directors of each episode of the show are grouped to visualize the share of each directors in the show.

```
# visualization Technique
plt.figure(figsize=(10,10))
grouped=df.groupby('Directed by').count()['Imdb rating']
grouped.plot(kind='pie')
plt.title('Pie Chart')
In [50]:
                      plt.show()
                                                                                         Pie Chart
                                                                   D. B. Weiss Brian Kirk
                                                                                                         Alik Sakharov
                                                  Daniel Minahan
                                                                                                                             Alex Graves
                                    Daniel Sackheim
                                   David Benioff
                 David Benioff & D. B. Weiss
                                                                                                                                                 Alan Taylor
                             David Nutter
                                                                                                                                                    Tim Van Patten
                                                                                                                                                  Neil Marshall
                              David Petrarca
                                                                                                                                             Miguel Sapochnik
                                       Jeremy Podeswa
                                                                                                                                Michelle MacLaren
                                                                                                         Michael Slovis
Matt Shakman
                                                                      Mark Mylod
```

Histogram -

Histogram is drawn for the IMDB ratings column so that , the range an the no. of values between the range are visualized.

6. Handling Missing Values

- Original air date and U.S. viewers(millions) consists of missing values. Since the 'Original air date' is categorical we added a new category for the missing values in the column as 'missing'.

For the 'U.S. viewers(millions)' the column is numerical, so the missing values are filled with median.

```
In [19]: 1 df.isnull().sum()
Out[19]: No. overall
                                    0
         No. in season
                                    0
         Season
                                    0
         Title
         Directed by
                                    0
         Written by
                                    0
         Novel(s) adapted
                                    0
         Original air date
                                   12
         U.S. viewers(millions)
         Imdb rating
                                    0
         dtype: int64
          1 df['Original air date']=df['Original air date'].fillna('missing')
In [20]:
           2 df['U.S. viewers(millions)']=df['U.S. viewers(millions)'].fillna(df['U.S. viewers(millions)'].median())
In [21]: 1 df.isnull().sum()
Out[21]: No. overall
         No. in season
                                   0
         Season
                                   0
         Title
                                   0
         Directed by
                                   0
         Written by
         Novel(s) adapted
         Original air date
                                   0
         U.S. viewers(millions)
                                   0
         Imdb rating
         dtype: int64
```

7. Normalization technique

- The normalization technique used is Standardization using Standard Scaler
- subtracting each value with mean and dividing by standard deviation.


```
In [22]:
           1 from sklearn.preprocessing import StandardScaler
           3 scale=StandardScaler()
           4 df1=df[['No. overall','No. in season','Season','U.S. viewers(millions)','Imdb rating']]
           5 df1=scale.fit_transform(df1)
In [23]:
          1 normalized_df=pd.DataFrame(df1,columns=['No. overall','No. in season','Season','U.S. viewers(millions)','Imdb rating'])
          1 normalized_df.head()
In [24]:
Out[24]:
                                    Season U.S. viewers(millions) Imdb rating
             No. overall No. in season
          0 -1.708484 -1.495765 -1.472543
                                                     -1.515978
                                                                0.282259
          1 -1.661026
                         -1.138932 -1.472543
                                                     -1.523118
                                                               -0.034740
          2 -1.613569
                        -0.782099 -1.472543
                                                     -1.437434
                                                               -0.140406
          3 -1.566111
                         -0.425266 -1.472543
                                                     -1.433864
                                                               -0.034740
                          -0.068434 -1.472543
                                                     -1.387452
             -1.518653
                                                               0.282259
```