

Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

ASA
A75U64

File Copy

ARM-W-33

82-308-004

Evaluation of Various
Cottons (Gossypium spp.) for
Resistance to Lygus hesperus Knight

U.S. Department of Agriculture
Agricultural Research Service
Agricultural Reviews and Manuals • ARM-W-33 / September 1982

A copy of this publication is available upon request from the U.S. Department of Agriculture, Cotton Research Station, 17053 Shafter Avenue, Shafter, Calif. 93263.

This paper contains the results of research only. Mention of pesticides does not constitute a recommendation for use, nor does it imply that the pesticides are registered under the Federal Insecticide, Fungicide, and Rodenticide Act as amended. The use of trade names in this publication does not constitute a guarantee, warranty, or endorsement of the products by the U.S. Department of Agriculture.

International Standard Serial Number (ISSN) 0193-3760

Agricultural Research Service, Agricultural Reviews and Manuals, Western Series, No. 33, September 1982

Published by Agricultural Research Service (Western Region), U.S. Department of Agriculture, Oakland, Calif. 94612

ABSTRACT

A diverse collection of cottons (*Gossypium* spp.) was subjected to various tests in a search for sources of resistance to the plant bug *Lygus hesperus* Knight. Tests included fruit counts on field plantings exposed to lygus bugs versus those protected from lygus bug attack; field cage evaluations of gross population increase in relation to genotype; and greenhouse determinations of survival, growth rate, and oviposition nonpreference by lygus bugs when confined to individual genotypes. When compared with the commercial cultivar standard, Acala SJ-1 and SJ-2, most of the entries were significantly or numerically more susceptible to this pest. Several entries were significantly more resistant by one or more test methods.

KEYWORDS: *Lygus hesperus*, *Gossypium* spp., cotton, pest resistance, Lygus bug, antibiosis, nonpreference, tolerance, genotype, plant resistance.

ACKNOWLEDGMENTS

We thank the following research scientists for allowing us to utilize their genetic stocks in our program: J. L. Baker, L. Barton, L. S. Bird, H. B. Cooper, K. M. El-Zik, H. Gregg, D. C. Hess, J. D. Hicks, Jr., D. Hill, P. E. Hoskinson, J. N. Jenkins, J. E. Jones, J. L. Lambright, M. J. Lukefahr, C. W. Manning, G. Meyer, W. R. Meredith, Jr., C. A. Moosberg, L. Ray, C. Roberts, F. W. Self, E. L. Turcotte, L. M. Verhalen, J. B. Weaver, and F. D. Wilson.

CONTENTS

	Page
Introduction.....	1
Experimental procedures.....	2
Methods of greenhouse no-choice screening.....	2
Methods of field no-choice screening: evaluation of cotton geno- types by their effect on lygus bug gross population increase....	3
Methods of field free-choice screening: evaluation of cotton genotypes by the effect of lygus bugs on boll population.....	4
Results and discussion.....	5
Laboratory no-choice screening.....	5
Field no-choice screening.....	6
Field free-choice screening.....	6
Summary.....	7
Literature cited.....	7
Tables.....	9
Glossary.....	29

EVALUATIONS OF VARIOUS COTTONS (*GOSSYPIUM* spp.)
FOR RESISTANCE TO *LYGUS HESPERUS* KNIGHT¹

By John H. Benedict, Angus H. Hyer, Thomas F. Leigh,
and Ward M. Tingey²

INTRODUCTION

The plant bug *Lygus hesperus* Knight, is the most destructive insect pest of cotton in the San Joaquin Valley of California (Falcon et al. 1971).³ This insect has a wide range of native and cultivated plant hosts. As the native hosts on uncultivated lands mature, and the weed and crop hosts are harvested, the bugs move into cottonfields where they may persist for the remainder of the season.

This pest has developed resistance to several insecticides (Leigh et al. 1977). In addition, all organophosphorous compounds currently registered for application on cotton are broad-spectrum materials that reduce populations of naturally occurring beneficial arthropods. At times, this stimulates outbreaks of insect and mite pests that normally occur at subeconomic levels (Eveleens et al. 1972). The most important of these secondary pests in the San Joaquin Valley are spider mites, *Tetranychus* spp.; bollworms, *Heliothis zea* (Boddie); cabbage loopers, *Trichoplusia ni* (Hübner); and beet armyworms, *Spodoptera exigua* (Hübner).

The identification and utilization of cotton types more resistant to attack by *L. hesperus* than our present cultivars would provide an ideal method by which to reduce pesticide use. It would also be an excellent complement to natural

¹We thank the Rockefeller Foundation for support, in part, administered through a project entitled "Development of Insect Resistance in Cotton to Minimize Use of Insecticides for Control of the Bollworm, *Heliothis zea* (Boddie), and Tobacco Budworm, *Heliothis virescens* (Fabricius)."

²Benedict is assistant professor, Department of Entomology, Texas A&M University; Hyer is research agronomist and plant breeder for this project, USDA Cotton Research Station, Shafter, Calif.; Leigh is entomologist and project leader for the Cotton Pest Management-Plant Resistance Project, Department of Entomology, University of California, Davis; and Tingey is assistant professor, Department of Entomology, Cornell, University, New York.

³The year in italic, when it follows the author's name, refers to Literature Cited, p. 7.

biological control of secondary pests. This avenue of pest control would be relatively long term, low cost, and consistent with sound environmental principles.

Heritable characters that provide pest resistance have been found in cotton species (Maxwell et al. 1972, Schuster and Maxwell 1976, Wilson and Wilson 1975). Plant characters identified as resistant to one insect species have frequently demonstrated resistance to other species. Based on this knowledge, we designed experiments to evaluate cottons, many of which were known to carry some form of insect resistance, for their effect on *L. hesperus*. Additional studies were conducted to (1) screen various collections of genetic material for new sources of resistance, (2) identify the mechanism(s) of resistance, and (3) field test cottons containing known factors of resistance to *L. hesperus*.

This bulletin is an itemization and summary of the results obtained in all evaluation and screening experiments for which our program yielded meaningful results. Such documentation should be of value to other research workers who undertake plant resistance programs on cotton as they may wish to eliminate more susceptible types from their programs and/or compare data with ours to draw generalizations from their own research.

EXPERIMENTAL PROCEDURES

Seeds of more than 600 different cottons have been obtained from various sources. Two commercial cultivars from the California breeding program were selected as standards for comparison--Acala SJ-1 for 1973 and Acala SJ-2 for 1974 through 1976. Both standards were entered into several experiments to permit thorough comparison.

Methods of Greenhouse No-Choice Screening

Growth Rate and Survival

Plants for the greenhouse experiments were grown by the methods of Tingey et al. (1973) in 954-ml plastic food containers. Tests were carried out when the plants had grown sufficiently to produce four to six sympodial branches with the desired size of squares. To maintain this growth, large squares were removed periodically.

The procedures used in studies of nymphal growth and survival screening were essentially the methods of Tingey et al. (1975). Briefly, at 3 days post-eclosion, nymphs of *L. hesperus* were individually confined to a sympodial branch terminal possessing two or three intact floral buds. Cellulose dialysis tubing cages, 4.8 cm in diameter and 15.2 cm long, were used to enclose one square (floral bud) approximately 3 days preanthesis and one or two squares in earlier stages of development. Dialysis tubing was used because of its light weight, transparency, and permeability to water vapor. A polyurethane foam disk, 5.2 cm in diameter and 2.5 cm thick, was slit radially for attachment to the sympodial branch and used to close one end of the cage. One nymph was placed in the open

end of the cage, which was then folded twice and held closed with a paper clip. After 7 days of confinement, survival and weight were recorded for each nymph. Three nymphs were caged on separate sympodial branches of each plant. The average weight of these three individuals was considered a replicate of cotton genotype; eight replicates represented a genotype.

The response of *L. hesperus* to each experimental genotype was compared with that of the standard commercial Acala cultivar, using analysis of variance and the LSD method ($P=.10$). Growth data were transformed to $\bar{X}+.25$ or $\bar{X}+.5$ to satisfy the assumptions of such analysis. The data presented in tables 1 through 4⁴ are retransformed values.

Oviposition and Egg Survival

Oviposition nonpreference and egg survival were measured as one parameter, "nymphal emergence" by the methods of Tingey et al. (1973). Using cotton organdy sleeve cages, 20 cm wide by 24 cm long, each plant terminal was enclosed. The cage ends were fitted with Velcro strips to exclude predators and parasites and to retain lygus bugs within the bag. During 1972-74, three females per cage were used. They were removed at the end of 24 h, and the bags were resealed and left on the plants for 10 days. At the end of that period, the terminals were clipped from the plant and taken to the laboratory where the nymphs were counted. During 1975-76, six females per cage were used, and bugs and bags were removed at the end of 24 h. These plants were isolated from one another on greenhouse tables. After a 6-day incubation period, the plants were shaken over white paper and nymphs were counted daily until there was no further hatch--usually about 5 days. Each plant was considered a replicate, and eight replicates represented a genotype. The data were statistically analyzed using analysis of variance (ANOVA) and the least significant difference (LSD) test.

Growth rates, survival, and nymphal emergence rates on the standards varied with time of year and the particular greenhouse used. This is due in part to differences in day length and variations in greenhouse temperature. This variation with time of testing is considered to be responsible for the differences in the growth rates and emergence when comparing data between two or more groups since each group was tested at a different time of the year.

Methods of Field No-Choice Screening: Evaluation of Cotton Genotypes by their Effect on Lygus Bug Gross Population Increase

Individual cotton plants were enclosed in organdy cages. The cages were sealed with Velcro strips at the top and bottom and suspended from a wire support. To prevent entrance of predators and mites, the plant mainstem was wrapped, first with cotton, and then covered with a layer of cotton organdy,

⁴All tables follow the text, beginning on page 9.

following which the Velcro-lined cage opening was sealed around the cotton and fastened on both sides of the mainstem with plastic clothespins. Each cage was considered a replicate, with each genotype replicated 12 times.

To remove predators and mites, the cage area was first sprayed with chlordimeform⁵ (0.45 kg ai/379 L). Two days later, plants were caged. Plants and cages were then thoroughly saturated from within the cage using tepp⁶ (0.23 kg ai/379 L), resealed for 4 days, then again thoroughly saturated from within using tepp. Four days later, five female and two male *L. hesperus* were placed in each cage. These field cage populations were allowed to increase for 30 days, at which time the plant was cut at the base leaving the cage on the plant. Caged plants were then placed in a 56- by 120-cm tall drum, and the bugs were anesthetized with chloroform vapor. The bugs were then removed from the cage, counted, and recorded. Data were analyzed utilizing ANOV (analysis of variance) on transformed data, log (X+.5), and means were separated by the LSD test (P=.10).

Methods of Field Free-Choice Screening: Evaluation of Cotton Genotypes by the Effect of Lygus Bugs on Boll Production

Three experiments were conducted in the field in 1976 with 29, 40, and 41 genotypes. In each experiment, infested plots and check plots were planted in separate randomized blocks with three replications for experiment 1 and two replications for experiments 2 and 3. For each experiment, the infested and control plots lay parallel to each other but were separated by 16 rows (16 m) of buffer cotton. Each plot was one row wide (1 m) by 6.1 m long.

In infested plots, the test genotypes were planted in two adjacent rows. These were bordered on each side by a single row of the glandless G8160 genotype. These, in turn, were bordered by a row of safflower. Thus, the planting configuration was two rows of safflower, one row of glandless G8160 cotton, two rows of test cottons, one row of glandless G8160, two more rows of safflower, one row of G8160, two rows of test cottons, and so forth. Glandless G8160 and safflower were used in the infested plots to enhance lygus bug buildup. The infested plots were sprayed early in June with malathion⁷ (1.12 kg ai/ha) to remove natural enemies of lygus bugs. Further stimulation of lygus bug numbers was accomplished by collecting lygus bugs from alfalfa with a tractor mounted vacuum machine (Stern et al. 1965) and releasing them into infested plots at night. This was done on two occasions. In addition, glandless border rows were sprayed with sucrose at the rate of 20 kg/ha (100 gm/L of water, applied to 182.9 m of row) using a compressed air sprayer. Studies done by Butler (1968) in Arizona and by ourselves (unpublished data) indicate that sucrose applications to cotton arrest the movement of *L. hesperus* and increase their numbers.

⁵N'-(4-chloro-o-tolyl)-N,N-dimethylformamidine.

⁶Tetraethyl pyrophosphate.

⁷Diethyl mercaptosuccinate S-ester with O,O-dimethyl phosphorodithioate.

Control test cottons were planted in single row plots without the alternate safflower or glandless genotype interplants. They were treated with methamidophos⁸ or acephate⁹ at 0.560 kg ai/ha whenever lygus bug counts exceeded 5 per 50 sweeps. Chlordimeform was applied again in June to both control and infested plots to prevent spider mite outbreaks.

All open bolls were counted on each plot in the infested and control blocks after defoliation at season's end. Comparisons of the number of bolls found in the infested plots with the control for each genotype were utilized as the measure of resistance.

RESULTS AND DISCUSSION

Laboratory No-Choice Screening

A total of 179 cotton selections from various genetic collections and breeder sources were evaluated for resistance to *L. hesperus* in greenhouse experiments. Growth rate, survival, and combined ovipositional nonpreference-egg survival parameters are reported in tables 1 through 4. When compared with the standard Acala cultivars, 27 of these genotypes were found significantly more resistant for at least one parameter, while 54 were significantly more susceptible to *L. hesperus*. Two genotypes demonstrated resistance as both reduced growth rate and survival and one as reduced growth rate and oviposition nonpreference.

Although not statistically significant, a number of additional selections ranked better than the standards. Some of these may carry useful levels of resistance, but will require further evaluation.

The three types of tests measured the impact of the various cotton genotypes on *L. hesperus* physiology and egg-laying preference, which reflects antibiosis and nonpreference, respectively. As with most resistance factors, the mechanism of resistance was not immediately apparent; however, we found that in one experiment the very pilose UCD #23 (SA-117 pilose) reduced nymphal growth rate while it enhanced oviposition rate (tables 1 and 4). In other experiments, trends for pilose were similar, though not significant. While not significant, the pilose entry UCD #618 (TM-1) yielded similar reduction in growth rate and a significant increase in oviposition. We suspect that plant hairs of pilose genotypes interfere with nymphal mobility, as reported by Smith et al. (1975) for pink bollworms, and feeding. Conversely, growth rate and survival on smooth cottons, UCD 86 and 617 (D_2 smooth and TM-1 smooth, respectively), increased when compared with the standard Acala cottons or pilose types.

⁸O,S-dimethyl phosphoramidothioate.

⁹O,S-dimethyl acetylphosphoramidothioate.

Trichome density also appears to have a great influence on *L. hesperus* preference for egg laying. Female *L. hesperus* were found to deposit more eggs on hairy SA-117 and TM-1 Pilose cotton than on smooth D₂ and TM-1 normal cotton. As with other characters for resistance, the response of *L. hesperus* to the smooth and/or pilose character is greatly influenced by other background features. Our research suggests that the oviposition nonpreference for smooth cottons may compensate for their greater susceptibility to nymphal survival and growth.

Field No-Choice Screening

Three isogenic or near isogenic pairs of cotton, thought to differ only in the presence or absence of extra floral nectaries (Meyer and Meyer 1960) were tested for gross population increase. They were found to exhibit varying degrees of resistance (table 5), which is probably due to differences in background characters among Stoneville, Acala, and Deltapine cottons. The nectaryless Acala and Stoneville isolines suppressed *L. hesperus* population growth more than their respective nectaried isolines. While similar results were expected with the Deltapine, there was no significant difference. The most resistant lines appear to be the nectaryless Acala cottons.

Field Free-Choice Screening

Using boll counts at the end of the season as a measure of resistance should reflect the cumulative effect of the three types of resistance--antibiosis, nonpreference, and tolerance. They may also indicate escape and compensatory fruiting by the plant. In using this method, cottons that have a great ability to replace squares (flower buds) lost to lygus bug feeding would appear resistant. This compensation should be distinguished from deterred damage through some other resistance mechanism. Further testing is required to determine the nature of resistance for cottons found to be most fruitful (resistant) in these experiments. Since the measure of resistance used in these tests (tables 6 to 8) is the ratio of the number of bolls in infested plots to that in the check plots (I/C), the larger this ratio, the greater the relative level of resistance.

Of the 110 entries tested in the three experiments reported here, only 15 had significantly fewer bolls in the infested plots than in the check plots. In general, a 20 percent reduction in boll number was needed for significant differences to be detected. More refined experimental methods would probably detect smaller differences. Boll reduction in infested plots versus check plots of the test standard (Acala SJ-2) varied only from 1 to 8 percent. This small loss, which was less than expected, may have been due to the effects of compensatory fruiting.

SUMMARY

Cotton lines carrying heritable characters to resist attack by *L. hesperus* have been identified and quantified in no-choice and free-choice situations. The smooth character reduced egg laying by about 30 percent, depending upon background, but increased growth rate and survival. Conversely, the pilose character increased egg laying but decreased growth rate and survival. The nectariless character appears outstanding as a source of resistance to *L. hesperus*. Based on population buildup, nectariless cotton appears to suppress population increase by about 30 percent (table 6) when in the Acala background.

Unknown sources of chemical resistance were identified by reduced growth rates and/or increased survival encountered on certain cotton lines. When these chemicals are identified and/or methods are devised for screening crosses in breeding stock, these too could be used to increase the resistance of commercial varieties--including a glandless variety.

LITERATURE CITED

- Butler, G. D., Jr.
1968. Sugar for the survival of *Lygus hesperus* on alfalfa. *Journal of Economic Entomology* 61:854-855.
- Eveleens, K. G., R. Van den Bosch, and L. E. Ehler.
1972. Secondary outbreak indication of beet armyworm by experimental insecticide applications in cotton in California. *Environmental Entomology* 2:497-503.
- Falcon, L. A., R. Van den Bosch, J. Gallagher, and A. Davidson.
1971. Investigation of the pest status of *Lygus hesperus* in cotton in central California. *Journal of Economic Entomology* 64:56-61.
- Leigh, Thomas F., Charles E. Jackson, Paul F. Wynholds, and Jesus M. Cota.
1977. Toxicity of selected insecticides applied topically to *Lygus hesperus*. *Journal Economic Entomology* 70:42-44.
- Maxwell, F. G., J. N. Jenkins, and W. L. Parrott.
1972. Resistance of plants to insects. *Advances in Agronomy* 24:187-265.
- Meyer, J. R., and V. G. Meyer.
1960. Origin and inheritance of nectariless cotton. *Crop Science* 1:167-169.
- Schuster, M. F., and F. G. Maxwell.
1976. Resistance to twospotted spider mite in cotton. *Mississippi Agriculture and Forest Experiment Station Bulletin No. 821*, 13 p.
- Smith, R. L., R. L. Wilson, and F. D. Wilson.
1975. Resistance of plant hairs to mobility of first-instars of the pink bollworm. *Journal of Economic Entomology* 68:679-683.

- Stern, V. M., E. J. Dietrick, and A. Mueller.
1965. Improvements on self-propelled equipment for collecting, separating, and tagging mass numbers of insects in the field. *Journal of Economic Entomology* 58:949-953.
- Tingey, W. M., T. F. Leigh, and A. H. Hyer.
1973. Three methods of screening cotton for oviposition nonpreference by lygus bugs. *Journal of Economic Entomology* 66:1312-1314.
-
1975. *Lygus hesperus*: growth, survival, and egg laying resistance of cotton genotypes. *Journal of Economic Entomology* 68:28-30.
- Wilson, R. L., and F. D. Wilson.
1975. A laboratory evaluation of primitive cotton (*Gossypium hirsutum* L.) races for pink bollworm resistance. U.S. Department of Agriculture, Agricultural Research Service, Western Region, ARS-W-30, 9 p.

Table 1.—Growth, survival and emergence of *Lygus hesperus* nymphs in no-choice greenhouse tests. U.S.
Cotton Research Station, Shafter, Calif., 1973

UCD No.	Genotype	Group 1			Nymphs/ female
		Growth ¹	Survival ²	Emergence ¹	
237	Acala SJ-1 (Test Standard)	0.43	73	6.1	
121	N0097 TSA(66)9 African	.41	67	7.5	
122	Tanguis 3807	.14*	47*	6.8	
123	TX 27 x M8 (1-21)	.29	80	6.5	
124	TX 44 <i>Gossypium hirsutum punctatum</i> (Chiapas, Mexico)	.26*	93	4.7	
125	Pima S-4 (<i>G. barbadense</i>)	.14*	73	6.9	
126	Deltapine 14 normal bract (H7100C & H7112B) N	.54	87	7.9	
127	Deltapine 14 Frego bract (H7099A & H7109C) F	.50	93	11.1*	
128	SA33 Hopi	.66*	93	9.9*	
129	X771Y5g	.60	93	4.3	
130	Acala 1517V	.56	93	11.1*	
131	247-1-6 (High gossypol, glabrous, nectariless)	.30	40*	5.4	
133	TX 116 <i>G. hirsutum latifolium</i> (Guatemala)	.41	60	4.1	
134	TX 466 <i>G. hirsutum latifolium</i>	.29	67	2.8*	
135	TX 110 <i>G. barbadense</i> (Guatemala)	.07*	67	5.7	
136	H7020-1 (Triple Hybrid, bulkcross #2, 1952)	.49	93	13.8*	
140	H7033-4 (Pima S-1 x <i>G. barbadense</i> RNR 2x AxTE 1 gs, F ₄)	.40	87	6.6	
141	H2015 (Nectariless Acala)	.52	53	4.7	
540	G8160 (Glandless Acala)	.50	93	10.6	
CV (percent)		8.8	31.4	22.5	

See footnotes at end of table.

Table 1.--Growth, survival and emergence of *Lygus hesperus* nymphs in no-choice greenhouse tests. U.S. Cotton Research Station, Shafter, Calif., 1973--Continued

UCD No.	Genotype	Group 2		Mg/day	Percent	Nymphs/ female
		Growth ¹	Survival ²			
237	Acala SJ-1 (Test Standard)			0.63	75	7.3
17	<i>G. arboreum</i> (A ₂ -15)			.47	75	6.8*
23	SA-117 Pilose			.30*	50	10.8
86	D ₂ Smooth Leaf, glandless			.81	58	2.4*
108	TX 542 H ₁ H ₁			.66	92	6.3
109	TX 423 H ₂ H ₂			.66	67	--
137	H7021-2 (Triple Hybrid, bulkcross #2, 1952)			.53	58	7.1
138	H7023-1 (Triple Hybrid, bulkcross #2, 1952)			.48	92	3.5*
142	M8 x TX 27 (1-21-6-10)			.59	68	3.4*
143	HG 6-1-1-144 (High gossypol)			.53	58	3.4*
144	Hopi NM 59-581			.55	67	6.9
145	SLP #1			.72	75	4.3
146	Stoneville 7A nectariless			.40*	75	4.2
147	Ba you SM-6			.60	100	4.7
148	T 254-24-14 (9-55-1) X-Factor			.46	33*	5.2
149	T 254-24-14 (9-55-7) X-Factor			.44	67	5.8
150	Atrophied bract (320551, 1968)			.52	83	2.9*
151	H7001-1 (Tanguis x Acala 4-42 ⁴ BC)			.48	100	5.6
152	H7003-1 (Tanguis x Acala 4-42 ² BC)			.76	83	4.4
154	H7026-1 (Acala 4-42 x Tanguis F7)			.49	92	5.4
156	H7046-1 (Axite 1 "gs" x 12302) x (4-42 x Tanguis)F ₅			.40*	83	5.4
CV (percent)		9.5	32.7	28.8		

Group 3

237	Acala SJ-1 (Test Standard)	.58	75	5.7
250	SA-16 heavy spot clean yellow anther	1.01*	83	3.5
251	SA-18 Arkansas 17 (yellow anther)	.85*	75	4.3
260	SA-42 Clarkdale red	.72	83	5.4
264	SA-53 Cook 912 Pope Clean Seed	.98*	92	3.0
272	SA-72 Mars Rose Cluster	.61	58	4.3
278	SA-85 Black Arm Resistant x 16 (Fine)	.65	42	4.9
299	SA-166 M.U. 8B VA 7-44	.74	75	3.8
303	SA-177 Arkansas Clean Seed VA 8-12	.52	100	2.8
324	SA-253 Coker's Clevewilt 3	.76	100	1.6
327	SA-269 Cook's 144-68	.81*	83	7.0
352	SA-373 Express 432	.80*	92	2.0
353	SA-378 Stoneville x Hopi 11-1-1-4	.75	75	8.9
376	SA-451 Coker 100 Wilt	.84*	83	4.6

CV (percent)

6.8 32.9 34.1

Group 4

237	Acala SJ-1 (Test Standard)	.19	58	9.1
168	T859	.13	67	4.5
226	G8628 Gd (Acala 4-42-77 glanded)	.15	67	9.6
227	G8628 Gs (Acala 4-42-77 glandless)	.29	83	9.1
228	Stoneville 7A Frego bract	.18	83	8.4
229	Stoneville 7A (normal bract)	.33	42	7.2
232	G1831 Gd (Acala SJ-1 glanded)	.24	50	9.2
233	G1831 Gs (Acala SJ-1 glandless)	.26	100*	11.7

CV (percent)

8.0 35.0 26.1

See footnotes at end of table.

Table 1.—Growth, survival and emergence of *Lygus hesperus* nymphs in no-choice greenhouse tests. U.S. Cotton Research Station, Shafter, Calif., 1973—Continued

UCD No.	Genotype	Group 5		Nymphs/ female
		Growth ¹	Survival ²	
237	Acala SJ-1 (Test Standard)	0.12	75	10.5
36	TX 14 <i>G. hirsutum richmondi</i> (Oaxaco, Mexico)	--	--	7.7
37	TX 18 <i>G. hirsutum richmondi</i> (Chiapas, Mexico)	--	--	8.2
42	TX 239 <i>G. hirsutum latifolium</i> (Guatemala)	--	--	9.2
180	Acala P18C	.22	58	6.1
378	SA 460 Deltapine 14 (44-51)	.13	58	8.2
429	SA 710 Arkansas 3	.11	58	9.7
464	SA 968 Saenz Pena 61	.12	58	8.0
470	SA 1035 SLS 1000	.13	58	10.0
474	SA 1053 108F	--	--	9.4
482	SA 1083 A.M. 7	.27*	42	9.4
483	SA 1085 CB 3031	.09	67	6.9
486	N0095 RSA (G8) 32 African	--	--	8.7
487	Acala SJ-2	.20	50	10.0
488	Acala SJ-3	.39*	58	10.5
489	Acala SJ-4	.18	67	10.3
CV (percent)		6.8	42.8	26.1

Group 6

237	Acala SJ-1 (Test Standard)	7.3		
181	Delcot 277	.22	75	7.8
182	Deltapine 16	.36*	58	7.8
496	DES-HERB 16	.33	92	8.8
497	DES-HERB 277	.10*	83	12.2
498	DES-HAMS 16	.16	92	10.9
499	DES-HAMS 277	.09*	67	6.8
500	DES-HAF 16	.12	58	9.5
501	DES-HAF 277	.22	83	8.4
502	DES-TOM 16	.12	75	7.9
503	DES-TOM 277	.18	58	10.0
504	DES-ANOM 16	.40*	83	8.4
505	DES-ANOM 277	.27	58	7.3
506	DES-ARB 16	.25	92	10.0
507	DES-ARB 277	.15	58	9.2
508	DES-BARB 16	.37*	83	9.0
509	DES-BARB 277	.37*	83	12.1
510	DES-LONG 16	.39*	83	6.9
511	DES-LONG 277	.05*	33*	9.6
6	<i>G. thurberi</i>	.08*	83	13.0
193	TX 144 <i>G. hirsutum punctatum</i> (Guatemala)	--	--	2.9*
202	TX 308 (Guerrero, Mexico)	--	--	7.9
		--	--	3.7

CV (percent)

6.7 33.1 26.3

See footnotes at end of table.

Table 1.--Growth, survival and emergence of *Lygus hesperus* nymphs in no-choice greenhouse tests. U.S. Cotton Research Station, Shafter, Calif., 1973--Continued

UCD No.	Genotype	Group 7			Group 8		
		Mg/day	Percent	Nymphs/ female	Growth ¹	Survival ²	Emergence ¹
237	Aca la SJ-1 (Test Standard)	0.35	58	10.1			
491	Pima S-4	.21	42	6.6			
492	72-4054 (Glandless Pima)	.36	75	8.6			
493	72-4056 (Glandless Pima)	.41	83	6.7			
494	72-4058 (Glandless Pima)	.46	92*	9.1			
495	72-4062 (Glandless Pima)	.45	83	6.8			
CV (percent)		10.5	31.4	22.4			
<hr/>							
237	Aca la SJ-1 (Test Standard)	.33	58	8.3			
39	TX 36 <i>G. hirsutum latifolium</i> (Chiapas, Mexico)	.92*	75	8.3			
162	N6072	.45	75	14.5			
196	TX 375 <i>G. hirsutum latifolium</i> (Paraguay)	.38	83	13.1			
252	SA 19 Aca la 37 (yellow another)	.34	67	12.4			
285	SA 108 Aca la short sympodia	.42	67	8.3			
295	SA 155 Hindi Weed RA 8-24	.36	83	11.6			
349	SA 357 Mexican B.B.	.66*	50	13.0			
350	SA 358 Mexican	.70*	83	11.3			
356	SA 389 Aca la 911 Pl-1	.61*	92	10.2			
426	SA 675 green linted pigmentation	.41	100	10.1			
444	SA 895 S.I. x Spears Green	.42	75	11.9			
481	SA 1082 Timok 811	.52*	92	11.5			
CV (percent)		7.7	31.3	18.5			

Group 9

237	Acala SJ-1 (Test Standard)	.41	83	15.3
293	SA 143 Mexican Naked UA 3-3	.58	83	16.3
301	SA 171 Acala Okra VA 2-4	.70	83	14.9
320	SA 238 Acala 1064 (New Mexico)	.53	78	15.5
321	SA 240 Acala Red Okra	.32	75	13.6
331	SA 281 Hopi Moencopi	.58	67	11.9
343	SA 333 Uganda B31	.56	100	19.3
366	SA 421 Mexican Acala Clean Seed	.42	67	7.8*
374	SA 442 Acala Young's	.53	67	14.8
375	SA 445 Acala N 28-5	.66	75	15.0
433	SA 848 White Gold Wilt	.48	83	12.3
446	SA 903 PI 1944833 KP 28	.39	83	18.2
447	SA 904 PI 194831 B 181	.41	67	14.5
448	SA 905 PI 194832 BP52, MB2	.54	83	14.7

CV (percent)

9.0 35.1 14.7

Group 10

237	Acala SJ-1 (Test Standard)	.34	75	--
168	T859	.30	83	--
180	Acala P18C	.40	83	--
226	G8628 Gd (Acala 4-42-77 glanded)	.34	83	--
227	G8628 Gs (Acala 4-42-77 glandless)	.33	83	--
228	Stoneville 7A Frego bract	.35	75	--
229	Stoneville 7A (normal bract)	.25	67	--
232	G1831 Gd (Acala SJ-1 glanded)	.34	50	--
233	G1831 Gs (Acala SJ-1 glandless)	.56*	83	--
310	SA 203 <i>G. barbadense</i> Tashkent	.08*	75	--
378	SA 460 Deltapine 14 (44-51)	.40	100	--
464	SA 968 Saenz Pena 61	.29	67	--
487	Acala SJ-2	.21	75	--
488	Acala SJ-3	.25	89	--
489	Acala SJ-4	.37	67	--

CV (percent)

7.2 35.1

See footnotes at end of table.

Table 1.—Growth, survival and emergence of *Lygus hesperus* nymphs in no-choice greenhouse tests. U.S. Cotton Research Station, Shafter, Calif., 1973—Continued

UCD No.	Genotype	Growth ¹	Survival ²	Emergence ¹
Group 11				
Nymphs/ female				
237	Aca la SJ-1 (Test Standard)	—	—	8.0
540	G8160 (Glandless Aca la)	—	—	10.8
162	N6072	—	—	6.7
180	Aca la P18C	—	—	8.2
238	H1016 (Nectariless Aca la)	—	—	6.7
512	Auburn 623A RNR	—	—	10.2
CV (percent)				
26.0				

¹Original data transformed to $(x + 0.25)^{1/2}$ or $(x + 0.5)^{1/2}$ and statistically analyzed using analysis of variance (ANOVA). Retransformed means reported here.

²Original data statistically analyzed using ANOV.

*Significantly different from test standard at 10-percent probability level.
Note: Dashes indicate genotypes that were not entered into these lists.

Table 2.—Growth, survival and emergence of *Lygus hesperus* nymphs in no-choice greenhouse tests. U.S.
Cotton Research Station, Shafter, Calif., 1974

UCD No.	Genotype	Group 1		Survival ¹	Emergence ¹
		Growth ¹	CV (percent)		
487	Acala SJ-2 (Test Standard)	0.40		92	14.9
513	DPL 16 ³ x TX 25 BC	.56*		90	15.5
514	DPL 16 ³ x TX 495 BC	.72*		89	16.8
515	DPL 16 ³ x TX 195 BC	.69*		86	14.7
516	DPL 16 ³ x TX 25 BC	.51		94	14.5
517	DPL 16 ³ x TX 59 BC	.67*		75	16.2
518	DPL 16 ³ x TX 113 BC	.50		92	16.7
538	DPL 16 Nectariless	.66*		50	12.6
		12.4		32.2	14.5
		Group 2			
487	Acala SJ-2 (Test Standard)	.45		67	6.5
519	DPL 16 ³ x TX 201 BC	.44		100	7.0
520	DPL 16 ³ x TX 69 BC	.48		94	5.3
521	DPL 16 ³ x TX 88 BC	.45		77	3.9
522	DPL 16 ³ x TX 91 BC	.39		94	4.1
523	DPL 16 ³ x TX 87 BC	.48		94	5.2
524	DPL 16 ³ x TX 223 BC	.53		92	6.8
539	DPL 16	.67*		75	4.7
		CV (percent)			
		13.1		30.4	28.6

Table 2.--Growth, survival and emergence of *Lygus hesperus* nymphs in no-choice greenhouse tests. U.S.
Cotton Research Station, Shafter, Calif., 1974--Continued

UCD No.	Genotype	Group 3		Group 4	
		Mg/day	Percent	Mg/day	Percent
487	Aca la SJ-2 (Test Standard)	0.50	100	•26	90
525	DPL 16 ³ x TX 80 BC	•37	81	•34	81
526	DPL 16 ³ x TX 66 BC	•55	100	•36	86
527	DPL 16 ³ x TX 100 BC	•50	69	•24	80
529	DPL 16 ³ x TX 75 BC	•47	72	•33	85
530	DPL 16 ³ x TX 158 BC	•66	71	•23	50
531	DPL 16 ³ x TX 209 BC	•54	81	•30	82
	CV (percent)	15.5	37.6	19.2	36.2
			37.9		32.2
487	Aca la SJ-2 (Test Standard)	7.9		7.9	
532	DPL 16 ³ x TX 78 BC	3.6		3.6	
533	DPL 16 ³ x TX 223 BC	9.6		9.6	
534	DPL 16 ³ x TX 25 BC	9.3		9.3	
535	DPL 16 ³ x TX 84 BC	9.4		9.4	
536	Stoneville 7A Nectariless	6.9		6.9	
537	Stoneville 7A	5.9		5.9	

¹Original data transformed to $(x + 0.25)^{\frac{1}{2}}$ or $(x + 0.5)^{\frac{1}{2}}$ and statistically analyzed using analysis of variance (ANOVA). Retransformed means reported here.

²Original data statistically analyzed using ANOV.

*Significantly different from test standard at 10-percent probability level.

Table 3.—Growth, survival and emergence of *Lygus hesperus* nymphs in no-choice greenhouse tests. U.S. Cotton Research Station, Shafter, Calif., 1975

UCD No.	Genotype	Group 1		Group 2	
		Growth ¹	Survival ^{1,2}	Growth ¹	Survival ^{1,2}
		Mg/day	Percent	Mg/day	Nymphs/ female
487	Aca 1a SJ-2 (Test Standard)	0.36	83	75	13.7
516	DPL 16 ³ x TX 25 BC	.46	79	92	12.7
521	DPL 16 ³ x TX 88 BC	.58*	85	100	16.1
524	DPL 16 ³ x TX 223 BC	.44	85	90	12.5
536	Stoneville 7A Nectariless	.42	77	100	13.0
537	Stoneville 7A	.46	83	90	12.5
538	DPL 16 Nectariless	.56*	83	87	10.5
539	DPL 16	.61*	92	85	12.6
	CV (percent)	15.3	27.9	20.6	20.5
487	Aca 1a SJ-2 (Test Standard)	.39	75	75	11.2
525	DPL 16 ³ x TX 80 BC	.54*	92	92	13.7
526	DPL 16 ³ x TX 66 BC	.51	87	100	14.7*
527	DPL 16 ³ x TX 100 BC	.72*	100	100	11.6
529	DPL 16 ³ x TX 75 BC	.66*	90	90	11.2
530	DPL 16 ³ x TX 158 BC	.66*	87	87	6.9*
531	DPL 16 ³ x TX 209 BC	.66*	85	85	6.8*
535	DPL 16 ³ x TX 84 BC	.61*	93	93	8.7
	CV (percent)	14.6	20.5	14.0	14.0

Table 3.--Growth, survival and emergence of *Lygus hesperus* nymphs in no-choice greenhouse tests. U.S.
Cotton Research Station, Shafter, Calif., 1975--Continued

UCD No.	Genotype	Group 3			Survival ²	Emergence Nymphs/ female
		Growth ¹	Mg/day	Percent		
487	Aca La SJ-2 (Test Standard)					
13	CAL 2	0.52		73	5.2	
15	Triple Hybrid 386-30	.50		79	6.3	
44	Carver 3-1-10	.70*		83	6.1	
514	DPL 16 ³ x TX 495 BC	.57		90	7.3	
528	DPL 16 ³ x TX 106 BC	.69*		87	5.9	
541	Aca La SJ-5	.57		96	6.9	
36	TX 14 G. <i>hirsutum richmondi</i> (Oaxaca, Mexico)	.64		96	6.5	
		--		--	5.6	
CV (percent)			12.4	21.0	20.6	
Group 4						
487	Aca La SJ-2 (Test Standard)					
224	M8 (hirsute)	.39		83	6.7	
517	DPL 16 ³ x TX 59 BC	.47		71	7.3	
518	DPL 16 ³ x TX 113 BC	.35		79	7.6	
522	DPL 16 ³ x TX 91 BC	.44		54	5.6	
532	DPL 16 ³ x TX 78 BC	.44		60	6.7	
534	DPL 16 ³ x TX 25 BC	.47		79	6.2	
540	G8160 (Glandless Aca La)	.39		77	7.5	
		.50		71	9.3	
CV (percent)			15.9	43.1	18.6	

Group 5

487	Acala SJ-2 (Test Standard)	--	--	7.3
496	DES-HERB 16	--	--	7.6
498	DES-HAMS 16	--	--	5.0
499	DES-HAMS 277	--	--	3.2
501	DES-HAF 277	--	--	7.2
506	DES-ARB 16	--	--	6.2
510	DES-LONG 16	--	--	6.7
519	DPL 16 ³ x TX 201 BC	--	--	6.1

CV (percent) 23.1

Group 6

487	Acala SJ-2 (Test Standard)	.34	58	6.3
124	TX 44 <i>G. hirsutum punctatum</i> (Chiapas, Mexico)	.69*	48	8.5
131	247-1-6 (High gossypol, glabrous, nectariless)	.44	33*	7.1
148	T254-24-14 (9-55-1) X-Factor	.38	21*	6.6
181	Delcot 277	.48	69	7.4
252	SA 19 Acala 37 (yellow anther)	.59*	81	7.0
310	SA 203 <i>G. barbadense</i> Tashkent	.34	65	6.7
483	SA 1085 CB 3031	--	--	9.4

CV (percent) 16.2 53.6 17.6

¹Original data transformed to $(x + 0.25)^{\frac{1}{2}}$ or $(x + 0.5)^{\frac{1}{2}}$ and statistically analyzed using analysis of variance (ANOVA). Retransformed means reported here.

²Original data statistically analyzed using ANOV.

*Significantly different from test standard at 10-percent probability level.

Note: Dashes indicate genotypes that were not entered into these lists.

Table 4.—Growth, survival and emergence of *Lygus hesperus* nymphs in no-choice greenhouse tests. U.S. Cotton Research Station, Shafter, Calif., 1976

UCD No.	Genotype [†]	Growth [‡]	Survival [§]	Emergence [¶]
Group 1				
Nymphs/ female				
487	Acala SJ-2 (Test Standard)	0.34	79	5.7
17	<i>G. arboreum</i> (A2-15)	.46*	75	4.4
23	SA 117 Pilose	.38	87	11.4*
86	D ₂ Smooth Leaf, glandless	.63*	87	6.6
310	SA 203 <i>G. barbadense</i> Tashkent	.26	71	6.1
616	Texas Marker-1 (normal pilosity)	.44	79	7.0
617	Texas Marker-1 (smooth)	.50*	87	5.9
618	Texas Marker-1 (H ₂ , very pilose)	.34	87	9.4*
CV (percent)		15.5	27.6	19.4
Group 2				
Nymphs/ female				
487	Acala SJ-2 (Test Standard)	.29	87	6.3
131	247-1-6 (High gossypol, glabrous, nectariless)	.33	92	3.6*
148	T254-24-14 (9-55-1) X-factor	.26	87	7.4
149	T254-24-14 (9-55-7) X-factor	.22	92	7.7
567	Lambright GL-5 (glandless)	.43*	96	5.3
568	Lambright GL-N (glandless, nectariless)	.35	100	6.9
613	HG-BR-8-N (High gossypol, nectariless, hirsute)	.36	100	5.7
614	HG-6-1-N (High gossypol, nectariless, hirsute)	.36	100	5.8
CV (percent)		15.2	13.0	21.1

Group 3

487	Acala SJ-2 (Test Standard)	.20	87	5.5
352	SA 373 Express 432	.30	87	5.4
485	Stoneville 213	.24	83	4.6
536	Stoneville 7A Nectariless	.29	83	6.3
537	Stoneville 7A	.26	96	7.5
581	H4016 (Acala SJ-1 Nectariless)	.18	79	7.0
610	Stoneville 731N (nectariless)	.28	87	7.4
611	H4006 (Acala SJ-1 Nectariless)	.24	83	7.3

CV (percent)

14.2 22.2 20.7

Group 4

487	Acala SJ-2 (Test Standard)	.27	92	5.8
489	Aca la SJ-4	.31	92	3.6
525	DPL 16 ³ x TX 80 BC	.38	75	5.4
527	DPL 16 ³ x TX 100 BC	.39	83	4.5
530	DPL 16 ³ x TX 158 BC	.44	87	5.4
531	DPL 16 ³ x TX 209 BC	.38	92	5.6
532	DPL 16 ³ x TX 78 BC	.40	83	4.7
615	T6892 (Verticillium Wilt Resistant)	.36	92	5.6

CV (percent)

12.8 21.3 24.2

See footnotes at end of table.

Table 4.--Growth, survival and emergence of *Lygus hesperus* nymphs in no-choice greenhouse tests. U.S.
Cotton Research Station, Shafter, Calif., 1976--Continued

UCD No.	Genotype	Group 5		
		Growth ¹	Survival ²	Emergence ¹
487	Aca La SJ-2 (Test Standard)	0.28	71	4.8
504	DES-ANOM 16	*.39*	92	5.4
518	DPL 16 ³ x TX 113 BC	.29	87	3.9
515	DPL 16 ³ x TX 195 BC	*.39*	87	5.3
603	DPL 16 ³ x TX 158 BC	.33	87	3.9
605	OR-37-72	*.44*	92	6.7
606	ORH-55-73	.37	87	5.2
609	Bulgaria 3279	.30	87	4.6
CV (percent)		13.5	21.4	32.7

¹Original data transformed to $(x + 0.25)^{\frac{1}{2}}$ or $(x + 0.5)^{\frac{1}{2}}$ and statistically analyzed using analysis of variance (ANOVA). Retransformed means reported here.

²Original data statistically analyzed using ANOV.

*Significantly different from test standard at 10-percent probability level.

Table 5.--Mean number of *Lygus hesperus* Knight in no-choice field cages on various nectaried and nectariless lines, U.S. Cotton Research Station, Shafter, Calif., 1976¹

UCD No.	Genotype	Mean bugs per cage ²
581	H4016 (Acala SJ-1 nectariless)	25.3a
611	H4006 (Acala SJ-1 nectariless)	28.1ab
539	DPL-16 (nectaried)	33.5ab
237	Acala SJ-1 (nectaried)	38.3 b
536	Stoneville 7A Nectariless	39.6 b
538	DPL-16 Nectariless	42.2 b
537	Stoneville 7A (nectaried)	65.7 c
Mean for nectariless lines		33.0*
Mean for nectaried lines		43.9

¹Analysis of variance performed on log ($x + 0.5$) data. Means reported are retransformed.

²Means followed by the same letter are not significantly different at $P = 0.1$ level based on mean separation by LSD of log ($x + 0.5$) data.

*The mean for all nectariless lines is significantly different ($P = 0.5$) from the mean for all nectaried lines.

Table 6.--Mean total bolls counted in *Lygus hesperus* Knight Check (C) and Infested (I) plots, and the boll count ratio (I/C) of 29 cotton genotypes, U.S. Cotton Research Station, Shafter, Calif., 1976

UCD No.	Genotype	Check	Infested	Ratio I/C
515	DPL 16 ³ x TX 195 BC	579	584	1.01
353	SA 378 (Stoneville 7A x Hopi 11-1-1-4)	486	487	1.00
483	SA 1085 CB 3031	435	431	.99
309	SA 202 Marshall	581	574	.99
537	Stoneville 7A	570	550	.96
480	SA 1080, 942	555	525	.95
531	DPL 16 ³ x TX 209 BC	606	569	.94
123	TX 27 x M8 (1-21)	611	565	.93
349	SA 357 Mexican B.B.	341	315	.93
516	DPL 16 ³ x TX 25 BC	711	662	.93
418	SA 631 CB 2540	456	423	.93
179	Triple Hybrid 149	436	404	.93
520	DPL 16 ³ x TX 69 BC	592	547	.92
517	DPL 16 ³ x TX 59 BC	648	594	.92
487	Acala SJ-2 (Test Standard)	537	494	.92
535	DPL 16 ³ x TX 84 BC	628	574	.91
131	247-1-6 (High gossypol, glabrous, nectariless)	1045	947	.91
409	SA 590 Sealand 7 Yellow Flower	584	527	.90
524	DPL 16 ³ x TX 223 BC	676	611	.90
382	SA 478 Green Brown 7 (Nankeen)	590	522	.89
228	Stoneville 7A Frego bract	693	607	.88
324	SA 253 (Coker's Clevewilt 3)	573	505	.88
536	Stoneville 7A Nectariless	621	540	.87
142	M8 x TX 27 (1-21-6-10)	395	344	.87
527	DPL 16 ³ x TX 100 BC	693	565*	.81
540	G8160 (Glandless Acala)	532	420*	.79
521	DPL 16 ³ x TX 88 BC	685	529*	.77
529	DPL 16 ³ x TX 75 BC	736	553*	.75
148	T254-24-14 (9-55-1) X-Factor	478	321*	.67

*Boll number in infested plots is significantly ($P = .10$) less than that in the check plots. LSD 10 percent = 103.

Table 7.--Mean total bolls counted in *Lygus hesperus* Knight Check (C) and Infested (I) plots and the boll count ratio (I/C) of 40 cotton genotypes, U.S. Cotton Research Station, Shafter, Calif., 1976

UCD No.	Genotype	Check	Infested	Ratio I/C
150	Atrophied bract (320551, 1968)	284	402	1.42
515	DPL 16 ³ x TX 195 BC	467	624*	1.34
504	DES-ANOM 16	591	742*	1.25
581	H4016 (Acala SJ-1 Nectariless)	377	468	1.24
507	DES-ARB 277	555	673	1.21
228	Stoneville 7A Frego bract	580	675	1.16
505	DES-ANOM 277	573	613	1.07
502	DES-TOM 16	658	681	1.03
509	DES-BARB 277	517	522	1.01
613	HG-BR-8-N (High gossypol, nectariless, hirsute)	772	769	1.00
496	DES-HERB 16	704	707	1.00
242	TX 404 (Hopi N. Mex. 1239)	853	846	.99
541	Acala SJ-5	507	490	.97
609	Bulgaria 3279	448	436	.97
518	DPL 16 ³ x TX 113 BC	686	661	.96
487	Acala SJ-2 (Test Standard)	517	491	.95
614	HG-6-1-N (High gossypol, nectariless, hirsute)	588	555	.94
605	OR-37-72	467	435	.93
501	DES-HAF 277	620	580	.93
506	DES-ARB 16	671	627	.93
497	DES-HERB 277	620	563	.91
503	DES-TOM 277	620	566	.91
606	ORH-55-73	574	514	.90
508	DES-BARB 16	694	626	.90
136	H7020-1 (Triple Hybrid bulkcross #2, 1952)	273	246	.90
491	PIMA S-4 (G1 ₂ G1 ₂ G1 ₃ G1 ₃)	450	394	.88
500	DES-HAF 16	586	519	.88
489	Acala SJ-4	540	474	.88
532	DPL 16 ³ x TX 78 BC	677	589	.87
504	DES-ANOM 16	672	577	.86
151	H7001-1 (Tanguis x Acala 4-42 ⁴ 8C)	683	586	.86
488	Acala SJ-3	540	451	.83
603	DPL 16 ³ x TX 158 BC	797	655	.82
498	DES-HAMS 16	743	592*	.80
310	SA 203 <i>G. barbadense</i> Tashkent	1021	810*	.79
611	H4006 (Acala SJ-1 nectariless)	719	557*	.77
540	G8160 (Glandless Acala)	583	443	.76
124	TX 44 <i>G. hirsutum punctatum</i> (Chiapas, Mexico)	849	595*	.70
122	Tanguis 3807	1321	757*	.57
180	Acala P18C	729	337*	.46

*Boll number in infested plots is significantly ($P = .10$) different from that in the check plots. LSD 10 percent = 143.

Table 8.--Mean total bolls counted in *Lygus hesperus* Knight Check (C) and Infested (I) plots and the boll count ratio (I/C) of 41 cotton genotypes, U.S. Cotton Research Station, Shafter, Calif., 1976

UCD No.	Genotype	Check	In- fest ed	Ratio I/C
563	Paymaster 131 x 144 glandless	433	554	1.28
562	Rex Smoothleaf 69-1 glandless	453	566	1.25
544	C-S gs 74-703 glandless	504	590	1.17
559	Gregg 45E Glandless	477	523	1.10
575	G4078 glandless	524	572	1.09
553	Stoneville 418 G1 glandless	571	614	1.07
558	Lyman 18-74 glandless	462	474	1.03
577	G0126 Acala glandless	497	507	1.02
567	Lambright GL-5 (glandless)	436	443	1.02
487	Acala SJ-2 Glanded (Test Standard)	599	595	.99
557	Lyman-BR-74C glandless	461	450	.98
554	La. 68-29 (HxFxA) glandless	652	636	.98
549	Lankart 57 Glandless	453	436	.96
569	g 966 glandless	609	586	.96
551	Auburn M Glandless	599	576	.96
579	Acala 63-74 glandless	428	403	.94
542	1-756 glandless	663	617	.93
550	Stardel Glandless	700	637	.91
546	Stoneville 7A Glandless	660	592	.90
564	Paymaster 160 x 131 glandless	532	478	.90
571	g 800 glandless	614	543	.88
561	Lockett 22-9 glandless	586	511	.87
548	Coker 100A Glandless	638	557	.87
540	G8160 Glandless Acala	605	521	.86
547	DPL-SL Glandless	587	502	.86
612	Lockett 22-6 glandless	581	492	.85
560	Rogers GL6 glandless	520	437	.84
568	Lambright GL-N (glandless, nectariless)	572	482	.84
543	C-S gs. 711, 71-704 glandless	763	626	.82
573	Pima 73-4137 glandless	638	507	.80
574	G4069 glandless	505	397	.79
572	g 845 glandless	683	530	.78
545	Pope Glandless	615	475	.77
570	g 1015 glandless	569	430	.75
565	McNair 3051 glandless	503	379	.75
555	51F092 Glandless Parrott	626	471	.75
552	Stoneville 519 G1 glandless	657	483*	.74
578	Acala 63-69 glandless	471	338	.72
576	G4093 Acala glandless	538	363*	.67
228	Stoneville 7A Frego bract	738	467*	.63
556	M73-076 glandless	582	367*	.63

*Boll number in infested plots is significantly ($P = .10$) less than that in the check plots. LSD 10 percent = 157.

GLOSSARY

Antibiosis... A toxic or other direct detrimental effect of one organism on another.

Dialysis tube... A tube made of semipermeable cellophane membrane.

Genotype... The genetic constitution of an organism; a group or organisms with the same genetic makeup; a line, strain or cultivar.

Glandless... Devoid of the small lysigenous pigment glands normally found on cotton plants.

Isogenic... Differing genetically only at one locus.

Isolines... Lines that are isogenic.

Nectariless... Devoid of leaf and extra floral nectaries.

Nonpreference... The behavior of insects when they avoid or exhibit negative reactions to a plant of a host species; a resistance trait that induces such behavior.

Pilose... With long, soft, spreading hairs; densely covered with hairs; hairy.

Preatthesis... Prior to dehiscence of the anthers or pollen shedding.

Sympodial... Fruiting branch made up of successive secondary axes each of which represents one fork of a dichotomy the other fork of which is suppressed entirely.

Tolerance... Ability of a plant to withstand infestation and to support insect populations that would severely damage susceptible plants.

Trichome... A plant hair thrice divided.

U. S. DEPARTMENT OF AGRICULTURE

SCIENCE and EDUCATION ADMINISTRATION

WESTERN REGION

1333 BROADWAY, SUITE 400

OAKLAND, CALIFORNIA 94612

OFFICIAL BUSINESS

PENALTY FOR PRIVATE USE, \$300

POSTAGE AND FEES PAID
U. S. DEPARTMENT OF
AGRICULTURE
AGR 101

PRINTED MATTER

Return the mailing label(s) to above address if:

- Your name or address is wrong (indicate corrections, including ZIP)
- You receive duplicate copies (include labels from all copies received)
- You do NOT wish to continue receiving this technical series