

Noise Qiskit Lab

Bit-flip Noise

- Given this circuit, apply both the ideal and the noisy circuits.
- Measure the state fidelity between the ideal circuit and the noisy one.

Correction Using the Three-qubit Bit-Flip

Repetition Code

$ \psi angle$ After Bit-flip	M_{a_0}	M_{a_1}	Recovery	$\ket{\psi}$ After Recovery
$\alpha 000\rangle + \beta 111\rangle$	0	0	$I \otimes I \otimes I$	$\alpha 000\rangle + \beta 111\rangle$
$\alpha 001\rangle + \beta 110\rangle$	0	1	$I \otimes I \otimes X$	$\alpha 000\rangle + \beta 111\rangle$
$\alpha 100\rangle + \beta 011\rangle$	1	0	$X \otimes I \otimes I$	$\alpha 000\rangle + \beta 111\rangle$
$\alpha 010\rangle + \beta 101\rangle$	1	1	$I \otimes X \otimes I$	$\alpha 000\rangle + \beta 111\rangle$

Note:

$$\alpha = \beta = \frac{1}{\sqrt{2}}$$

Phase-flip Noise

- Given this circuit, apply both the ideal and the noisy circuits.
- Measure state fidelity between the ideal circuit and the noisy one.

Correction Using the Three-qubit Bit-Flip

Repetition Code

$ \psi angle$ After Noisy Channel	M_{a_0}	M_{a_1}	Recovery	$\ket{\psi}$ After Recovery
$\alpha +++\rangle+\beta \rangle$	0	0	$I \otimes I \otimes I$	$\alpha +++\rangle+\beta \rangle$
$\alpha ++-\rangle+\beta +\rangle$	0	1	$I \otimes I \otimes Z$	$\alpha +++\rangle+\beta \rangle$
$\alpha -++\rangle+\beta +\rangle$	1	0	$Z \otimes I \otimes I$	$\alpha +++\rangle+\beta \rangle$
$\alpha +-+\rangle+\beta -+-\rangle$	1	1	$I \otimes Z \otimes I$	$\alpha +++\rangle+\beta \rangle$

Note:

$$\alpha = \beta = \frac{1}{\sqrt{2}}$$