

Theoretical Mechanics IPSP

Jürgen Vollmer, Universität Leipzig

13.2. Flight of a dumbbell

We explore the flight of a dumbbell under the influence of gravity g in our three-dimensional space. The dumbbell is idealized as two particles of masses m_1 and m_2 . The positions $q_1(t)$ and $q_2(t)$ will be kept at an approximately constant distance ℓ_{\star} by a bar of negligible mass. We denote the center of mass of the dumbbell as Q and the relative coordinate as $\ell = q_2 - q_1$.

a) Center of mass

We express the relation between (Q, ℓ) and the positions $q_i, i \in \{1, 2\}$ as $q_i = Q + \alpha_i \ell$. Determine the real numbers $\alpha_i, i \in \{1, 2\}$.

Solution:

The definition of the center of mass $oldsymbol{Q}$ and of the distance vector $oldsymbol{\ell}$ provide

$$egin{aligned} \left(m_1+m_2
ight)oldsymbol{Q} &= m_1\left(oldsymbol{Q}+lpha_1oldsymbol{\ell}
ight) + m_2\left(oldsymbol{Q}+lpha_2oldsymbol{\ell}
ight) = \left(m_1+m_2
ight)oldsymbol{Q} + \left(m_1lpha_1+m_2lpha_2
ight)oldsymbol{\ell} \ &= -\left(oldsymbol{Q}+lpha_1oldsymbol{\ell}
ight) + \left(oldsymbol{Q}+lpha_2oldsymbol{\ell}
ight) = \left(-lpha_1+lpha_2
ight)oldsymbol{\ell} \end{aligned}$$

such that

$$egin{aligned} 1 &= -lpha_1 + lpha_2 & \Rightarrow lpha_2 = 1 + lpha_1 \ 0 &= m_1 \, lpha_1 + m_2 \, lpha_2 = m_1 \, lpha_1 + m_2 \, (1 + lpha_1) \ &= (m_1 + m_2) \, lpha_1 + m_2 \ &\Rightarrow lpha_1 = -rac{m_2}{m_1 + m_2} \ &\Rightarrow lpha_2 = rac{m_1 + m_2}{m_1 + m_2} + lpha_1 = rac{m_1}{m_1 + m_2} \end{aligned}$$

b) Kinetic and potential energy

Show that the kinetic energy and the potential energy of the dumbbell have the form

$$T = rac{M}{2} \, \dot{oldsymbol{Q}}^2 + rac{\mu}{2} \, \dot{oldsymbol{\ell}}^2 \, , \ V = -M oldsymbol{g} \cdot oldsymbol{Q} + \Phi(oldsymbol{\ell})$$

where $\Phi(\ell)$ is a potential that generates the force fixing the distance of the masses to the value of about ℓ_{\star} How do M and μ depend on m_1 and m_2 ? Solution:

Kinetic energy:

$$\begin{split} T &= \frac{m_1}{2} \; \dot{\boldsymbol{q}}_1^2 + \frac{m_2}{2} \; \dot{\boldsymbol{q}}_2^2 = \frac{m_1}{2} \left(\dot{\boldsymbol{Q}} - \frac{m_2}{m_1 + m_2} \, \dot{\boldsymbol{\ell}} \right)^2 + \frac{m_2}{2} \left(\dot{\boldsymbol{Q}} + \frac{m_1}{m_1 + m_2} \, \dot{\boldsymbol{\ell}} \right)^2 \\ &= \frac{m_1 + m_2}{2} \; \dot{\boldsymbol{Q}}^2 + \frac{2}{2} \left(-\frac{m_1 \, m_2}{m_1 + m_2} + \frac{m_2 \, m_1}{m_1 + m_2} \right) \; \dot{\boldsymbol{Q}} \cdot \dot{\boldsymbol{\ell}} + \frac{1}{2} \left(\frac{m_1 \, m_2^2}{(m_1 + m_2)^2} + \frac{m_2 \, m_1^2}{(m_1 + m_2)^2} \right) \; \dot{\boldsymbol{\ell}}^2 \\ &= \frac{m_1 + m_2}{2} \; \dot{\boldsymbol{Q}}^2 + \frac{1}{2} \; \frac{m_1 \, m_2}{m_1 + m_2} \; \frac{m_2 + m_1}{m_1 + m_2} \, \dot{\boldsymbol{\ell}}^2 \end{split}$$

such that

$$M = m_1 + m_2$$
 and $\mu = \frac{m_1 \, m_2}{m_1 + m_2}$

1 of 4 20/07/2022, 09:46

Potential energy:

$$V = -m_1 oldsymbol{g} \cdot oldsymbol{q}_1 - m_2 oldsymbol{g} \cdot oldsymbol{q}_2 + \Phi(\ell) = -oldsymbol{g} \cdot ig(m_1 oldsymbol{q}_1 + m_2 oldsymbol{q}_2ig) + \Phi(\ell) = -oldsymbol{g} \cdot ig(M oldsymbol{Q}ig) + \Phi(\ell)$$

c) Conservation laws

Show that

$$\ddot{m{Q}} = m{q}$$

How does the trajectory of the center of mass of the dumbbell look like when the dumbbell is thrown at time t_0 from a position Q_0 with a velocity V_0 ?

Solution:

The Langrangian takes the form

$$\mathcal{L} = rac{M}{2} \; \dot{oldsymbol{Q}}^2 + rac{\mu}{2} \; \dot{oldsymbol{\ell}} \; ^2 + M oldsymbol{g} \cdot oldsymbol{Q} - \Phi(\ell)$$

Consequenly, we find for the component Q_i of $oldsymbol{Q}$

$$M\,\ddot{Q}_i = rac{\mathrm{d}}{\mathrm{d}t}rac{\partial \mathcal{L}}{\partial \dot{Q}_i} = rac{\partial \mathcal{L}}{\partial Q_i} = M\,g_i$$

where g_i is the *i*th component of g. Division by M and collecting the components into a vector provides the expression above. The center of mass follows the trajectory of free flight of a point particle in a gravitational field,

$$oldsymbol{Q}(t) = oldsymbol{Q}(t_0) + \dot{oldsymbol{Q}}(t_0) \left(t - t_0
ight) = oldsymbol{Q}_0 + oldsymbol{V}_0 \left(t - t_0
ight) + rac{oldsymbol{g}}{2} \left(t - t_0
ight)^2$$

d) Center-of-mass motion

Show that

$$\mu \, \ddot{\ell} = -\hat{\ell} \, \, rac{\mathrm{d}\Phi(\ell)}{\mathrm{d}\ell} \quad \mathrm{with} \quad \hat{\ell} = rac{\ell}{\ell} \, .$$

Solution:

We derive the EOM for the component ℓ_i of ℓ by starting from the Euler-Lagrange equation

$$\mu\ddot{\ell}_i = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{\ell}_i} = \frac{\partial \mathcal{L}}{\partial \ell_i} = -\frac{\partial \ell}{\partial \ell_i} \; \frac{\mathrm{d}\Phi(\ell)}{\mathrm{d}\ell}$$

with

$$\ell = \sqrt{\sum_j \ell_j^2} \quad \Rightarrow \quad rac{\partial \ell}{\partial \ell_i} = rac{\sum_j 2\,\ell_j rac{\partial \ell_j}{\partial \ell_i}}{2\,\sqrt{\sum_k \ell_k^2}} = rac{\ell_i}{\ell}$$

e) Relative motion in spherical coordinates

Show that the energy $E=\mu \dot{m\ell}^2/2+\Phi(\ell)$ and the angular momentum $m L=\mu m\ell imes \dot{m\ell}$ are constants of the motion of the dumbbell.

Solution:

energy:

$$\frac{\mathrm{d}E}{\mathrm{d}t} = \mu \, \dot{\boldsymbol{\ell}} \cdot \ddot{\boldsymbol{\ell}} + \frac{\mathrm{d}\ell}{\mathrm{d}t} \, \frac{\mathrm{d}\Phi(\ell)}{\mathrm{d}\ell} = -\dot{\boldsymbol{\ell}} \cdot \hat{\boldsymbol{\ell}} \, \frac{\mathrm{d}\Phi(\ell)}{\mathrm{d}\ell} + \frac{\boldsymbol{\ell} \cdot \dot{\boldsymbol{\ell}}}{\ell} \, \frac{\mathrm{d}\Phi(\ell)}{\mathrm{d}\ell} = 0$$

angular momentum:

$$rac{\mathrm{d}m{L}}{\mathrm{d}t} = \mu\,\dot{m{\ell}}\, imes\dot{m{\ell}}\,+\mu\,\dot{m{\ell}}\, imes\ddot{m{\ell}} = \mu\,\dot{m{\ell}}\, imes\left(-\hat{m{\ell}}\,\,rac{\mathrm{d}\Phi(\ell)}{\mathrm{d}\ell}
ight) = m{0}$$

since the cross product vanishes for parallel vectors.

f) Parameterization of relative motion

Discuss the evolution of $\boldsymbol{\ell}$ in terms of spherical coordinates (r,θ,ϕ) that are chosen such that initially $\boldsymbol{\ell}$ and $\dot{\boldsymbol{\ell}}$ lie in the equatorial plane, $\theta=\pi/2$ of the coordinate system:

- Show that ϕ is a cyclic coordinate. How is the associated conservation law $\mu \ell^2 \dot{\phi}$ related the L?
- Show that $\theta = \pi/2$ is a fixed point of the θ dynamics. How is this fixed point related to the conservation of L?

Solution:

In polar coordinates the vector $\boldsymbol{\ell}$ and its time derivative $\dot{\boldsymbol{\ell}}$ take the form

$$egin{aligned} oldsymbol{\ell} &= \ell \ \hat{oldsymbol{r}}(heta,\phi) \ \dot{oldsymbol{\ell}} &= \dot{\ell} \ \hat{oldsymbol{r}}(heta,\phi) + \ell \ \dot{oldsymbol{ heta}} \ \hat{oldsymbol{ heta}}(heta,\phi) + \ell \ \sin heta \ \dot{oldsymbol{\phi}}(heta,\phi) \end{aligned}$$

such that the resulting contribution to the kinetic energy takes the form

$$rac{\mu}{2}\,\dot{m\ell}^{\,2} = rac{\mu}{2}\,ig(\dot{\ell}^{\,2} + \ell^2\,\dot{ heta}^{\,2} + \ell^2\,\sin^2 heta\,\dot{\phi}^{\,2}ig)$$

The angle ϕ is a cyclic coordinate such that

$$L = \mu \, \ell^2 \, \dot{\phi} = \mathrm{const}$$

Here, L is the absolute value of the angular momentum L. The $\overline{\mathrm{EOM}}$ for heta takes the form

$$\mu\,\ell^2\,\ddot{ heta} = rac{\mathrm{d}}{\mathrm{d}t}rac{\partial\mathcal{L}}{\partial\dot{ heta}} = rac{\partial\mathcal{L}}{\partial heta} = \mu\,\ell^2\,\sin heta\,\cos heta\,\dot{\phi}^2 = rac{L^2}{2\,\mu\,\ell^2}\,\sin(2 heta)$$

In the admissible range $0 \le \theta \le \pi$ this dynamics has fixed points for $\theta \in \{0, \pi/2, \pi\}$. Hence, the initial condition of $\boldsymbol{\ell}$ selects a fixed point of the θ dynamics such that $\theta = \pi/2$ for all times. The motion proceeds in the equatorial plane of our coordinate system, and the direction of \boldsymbol{L} remains vertical to this plane. The EOM for ℓ takes the form

$$\mu\ddot{\ell} = rac{\mathrm{d}}{\mathrm{d}t}rac{\partial\mathcal{L}}{\partial\dot{\ell}} = rac{\partial\mathcal{L}}{\partial\ell} = \mu\ell\,\dot{ heta}^2 + \mu\ell\,\sin heta\,\dot{\phi}^2 - rac{\mathrm{d}\Phi(\ell)}{\mathrm{d}\ell} = rac{L^2}{\mu\,\ell^3} - rac{\mathrm{d}\Phi(\ell)}{\mathrm{d}\ell}$$

Here we used that $\dot{\theta}=0$, $\sin\theta=1$, and $\dot{\phi}=L/(\mu\ell^2)$. Henceforth, we assert that the right-hand side of this equation vanishes such that $\dot{\ell}=\ddot{\ell}=0$. In this case the dynamics of $\dot{\phi}$ is solved by

$$\phi(t)=\phi_0+rac{L}{\mu\ell^2}\left(t-t_0
ight)$$

where the integration constants ϕ_0 are L are determined by the initial conditions.

g) Solution of the equation of motion

Provide the position of the masses $q_1(t)$ and $q_2(t)$ for the initial conditions provided in c), some fixed Ω , and ℓ_0 .

Solution:

The initial conditions for $q_1(t_0)$, $q_2(t_0)$ and their velocities provide the angular momentum

$$m{L} = \mu \left(m{q}_2(t_0) - m{q}_1(t_0)
ight) imes \left(\dot{m{q}}_2(t_0) - \dot{m{q}}_1(t_0)
ight)$$

The length of this vector provides the constant rotation frequency $\dot{\phi} = |L|/\mu\ell^2$. It orientation defines a plane, and $\hat{r}(\pi/2, \phi(t))$ defines a direction in that plane. The angle ϕ will be measured with respect to the initial orientation of ℓ such that

$$oldsymbol{\ell} = \ell \ \hat{oldsymbol{r}}(\pi/2, (t-t_0) \ \dot{\phi})$$

and consequently

$$egin{aligned} m{q}_1 &= m{Q}(t) - rac{m_2}{M}m{\ell}(t) = m{Q}_0 + m{V}_0 \ (t-t_0) + rac{m{g}}{2} \ (t-t_0)^2 - rac{m_2}{M} \ \ell \ \hat{m{r}}(\pi/2, (t-t_0) \ \dot{m{\phi}}) \ m{q}_2 &= m{Q}(t) + rac{m_1}{M} m{\ell}(t) = m{Q}_0 + m{V}_0 \ (t-t_0) + rac{m{g}}{2} \ (t-t_0)^2 + rac{m_1}{M} \ \ell \ \hat{m{r}}(\pi/2, (t-t_0) \ \dot{m{\phi}}) \end{aligned}$$

1)

Here, ℓ_{\star} is the length of the bar, when no forces are acting, and the potential counteracts centrifugal forces such that ℓ always takes a value very close to ℓ_{\star} .

Discussion

Mohammed Zakaria Hasan AL-Obaidi, 2022/01/22 02:40, 2022/01/22 02:40

3 of 4 20/07/2022, 09:46

sheet:portfolio:20_lagrange:20_flying-dumbbell:solution [Theoretica...

In practice, a well-built dumbbell would have equal masses on both ends. Can we make that assumption for this problem (m1=m2)?

Thanks, Mohammed

Jürgen Vollmer, 2022/01/23 17:42

No: as discussed in the question hour the present version also accounts for drum sticks and similar objects.

Seyed-Mostafa Moussavi, 2022/01/24 21:28, 2022/01/24 23:34

Hello dear all

Sorry for the late comment. Now I'm going over the questions. Is it better to say:

" $\Phi(\ell)$ is a potential that will generate the force fixing the distance of the masses to the value ℓ_{\star} "?

I mean Φ has different values depending on the independent variable ℓ (i.e. the length of the bar) and has a minimum value at a special length that we call it ℓ_{\star} (i.e. the unstretched length of the bar).

Regards

S.M Moussavi

Jürgen Vollmer, 2022/01/24 23:39

This is indeed a clear way to put it. I introduced ℓ_\star and added a footnote that is explicitly describing what ℓ_\star refers to.

 $sheet/portfolio/20_lagrange/20_flying-dumbbell/solution.txt \cdot Last\ modified: 2022/02/17\ 10:56\ by\ eliastone and the sheet/portfolio/20_lagrange/20_flying-dumbbell/solution.txt \cdot Last\ modified: 2022/02/17\ 10:56\ by\ eliastone and the sheet/portfolio/20_lagrange/20_flying-dumbbell/solution.txt \cdot Last\ modified: 2022/02/17\ 10:56\ by\ eliastone and the sheet/portfolio/20_lagrange/20_flying-dumbbell/solution.txt \cdot Last\ modified: 2022/02/17\ 10:56\ by\ eliastone and the sheet/portfolio/20_lagrange/20_flying-dumbbell/solution.txt \cdot Last\ modified: 2022/02/17\ 10:56\ by\ eliastone and the sheet/portfolio/20_lagrange/20_flying-dumbbell/solution.txt \cdot Last\ modified: 2022/02/17\ 10:56\ by\ eliastone and the sheet/portfolio/20_lagrange/20_flying-dumbbell/solution.txt \cdot Last\ modified: 2022/02/17\ 10:56\ by\ eliastone and the sheet/portfolio/20_lagrange/20_flying-dumbbell/solution.txt \cdot Last\ modified: 2022/02/17\ 10:56\ by\ eliastone and the sheet/portfolio/20_lagrange/20_flying-dumbbell/solution.txt \cdot Last\ modified: 2022/02/17\ 10:56\ by\ eliastone and the sheet/portfolio/20_lagrange/20_flying-dumbbell/solution.txt \cdot Last\ modified: 2022/02/17\ 10:56\ by\ eliast\ mod$

4 of 4 20/07/2022, 09:46