uc3m Universidad Carlos III de Madrid

Máster Universitario en Ciencias Actuariales y Financieras

Asignatura: Análisis de Series Temporales

MODELIZACION Y COSTE DEL SEGURO DE VIDA EN COREA DEL SUR DEL AÑO 2024

Trabajo realizado por:

Víctor Mérida Martínez

TABLA DE CONTENIDOS

MODELIZACION EDAD 45 (LINEAS 211 – 299)	3
MODELIZACION EDAD 46 (LINEAS 305 – 395)	
MODELIZACION EDAD 47 (LINEAS 400 – 484)	
MODELIZACION EDAD 48 (LINEAS 493 – 587)	9
MODELIZACION EDAD 49 (LINEAS 591 – 681)	11
MODELIZACION EDAD 50 (LINEAS 685 – 775)	13
MODELIZACION EDAD 51 (LINEAS 778 – 868)	15
MODELIZACION EDAD 52 (LINEAS 872 – 960)	17
MODELIZACION EDAD 53 (LINEAS 965 – 1053)	19
TABLAS RESUMEN	21

MODELIZACION EDAD 45 (LINEAS 211 – 299)

Primero, deseamos determinar si el proceso es estacionario en media utilizando los procedimientos más empleados en la industria actuarial: Dickey-Fuller, KPSS y Phillips-Perron. Como se muestra en las líneas 218-226, al aplicar la diferenciación una vez, logramos la estacionariedad, excepto en el test de KPSS, que podría indicar heterocedasticidad. No queremos aplicar una segunda diferenciación, ya que esto duplicaría los errores y empeoraría la estimación.

Continuamos con la especificación ARIMA siguiendo la aproximación de Box y Jenkins, donde seleccionaremos los posibles candidatos para llevarlos a la siguiente fase (líneas 236-237).

A partir de las autocorrelaciones simples y parciales, podemos inferir los posibles modelos candidatos: ARIMA (1,1,0), ARIMA (2,1,0), ARIMA (0,1,1) y ARIMA (3,1,0). De estos, el modelo ARIMA (1,1,0) parece ser el más idóneo.

La siguiente fase consiste en evaluar los criterios de información para determinar la calidad del modelo en la predicción de datos futuros, lo que nos proporciona la siguiente información:

AIC	BIC
-1375.279	-1370.370
-1374.116	-1366.753
-1370.226	-1362.863
-1375.279 -1374.116 -1370.226 -1367.686	-1362.777

Estos resultados, obtenidos en la línea 259 y correspondientes al orden de los modelos ARIMA mencionados anteriormente, revelan que los dos mejores modelos según los criterios AIC/BIC son ARIMA (1,1,0) y ARIMA (2,1,0), los cuales avanzan a la siguiente fase.

La fase más importante, que determina el modelo ARIMA a proponer, es la de significatividad y diagnóstico. El modelo ARIMA (1,1,0) nos muestra que (línea 265):

```
Diagnosys_Problems Coef_no_sign. Incorrelacion p.value Normalidad p.value "0" "0.803845235887028" "0.966432715505157" Esperanza nula "SI"
```

Y la ARIMA (2,1,0) nos muestra que (línea 269):

```
Diagnosys_Problems Coef_no_sign. Incorrelacion p.value Normalidad p.value
"1" "0.809667193980297" "0.127500615132544"
Esperanza nula
"SI"
```

La función `diagnosys_phase` (líneas 12 - 104) analiza tanto la significatividad de las estimaciones como la validez de las hipótesis fundamentales relativas a los residuos (diagnóstico del modelo). Por una parte, bajo las hipótesis de Gauss-Markov, se examina la significatividad. Por otra parte, se evalúa la incorrelación de los residuos mediante la prueba de Ljung-Box, la normalidad con la prueba de Cramer-Von Mises, y la esperanza nula si la media de los residuos es significativamente grande en comparación con la distribución Normal (0,1).

Por tanto, tenemos una razón adicional para elegir el modelo ARIMA (1,1,0) como nuestro candidato preferido, ya que no presenta problemas en la fase de diagnóstico y significatividad, mientras que el modelo ARIMA (2,1,0) muestra un coeficiente no significativo.

Finalmente, evaluamos la heterocedasticidad mediante el contraste de Breusch-Pagan, obteniendo los siguientes resultados (líneas 279-295): el modelo ARIMA (1,1,0) se muestra homocedástico, mientras que el modelo ARIMA (2,1,0) presenta homocedasticidad.

MODELIZACION EDAD 46 (LINEAS 305 – 395)

Primero, deseamos determinar si el proceso es estacionario en media utilizando los procedimientos más empleados en la industria actuarial: Dickey-Fuller, KPSS y Phillips-Perron. Como se muestra en las líneas 312-320, al aplicar la diferenciación una vez, logramos la estacionariedad, excepto en el test de KPSS, que podría indicar heterocedasticidad. No queremos aplicar una segunda diferenciación, ya que esto duplicaría los errores y empeoraría la estimación.

Continuamos con la especificación ARIMA siguiendo la aproximación de Box y Jenkins, donde seleccionaremos los posibles candidatos para llevarlos a la siguiente fase (líneas 330-331).

A partir de las autocorrelaciones simples y parciales, podemos inferir los posibles modelos candidatos: ARIMA (1,1,0), ARIMA (2,1,0), ARIMA (0,1,1) y ARIMA (3,1,0). De estos, el modelo ARIMA (1,1,0) parece ser el más idóneo.

La siguiente fase consiste en evaluar los criterios de información para determinar la calidad del modelo en la predicción de datos futuros, lo que nos proporciona la siguiente información:

AIC	BIC
-1369.060	-1364.151
-1368.323	-1360.960
-1363.299	-1355.936
-1362.813	-1364.151 -1360.960 -1355.936 -1357.904

Estos resultados, obtenidos en la línea 353 y correspondientes al orden de los modelos ARIMA mencionados anteriormente, revelan que los dos mejores modelos según los criterios AIC/BIC son ARIMA (1,1,0) y ARIMA (2,1,0), los cuales avanzan a la siguiente fase.

La fase más importante, que determina el modelo ARIMA a proponer, es la de significatividad y diagnóstico. El modelo ARIMA (1,1,0) nos muestra que (línea 360):

```
Diagnosys_Problems Coef_no_sign. Incorrelacion p.value Normalidad p.value
"0" "0.441628981012912" "0.400790480297061"
Esperanza nula
"SI"
```

Y la ARIMA (2,1,0) nos muestra que (línea 365):

```
Diagnosys_Problems Coef_no_sign. Incorrelacion p.value Normalidad p.value "1" "0.615131031003465" "0.47714592570828" Esperanza nula "SI"
```

La función `diagnosys_phase` (líneas 12 - 104) analiza tanto la significatividad de las estimaciones como la validez de las hipótesis fundamentales relativas a los residuos (diagnóstico del modelo). Por una parte, bajo las hipótesis de Gauss-Markov, se examina la significatividad. Por otra parte, se evalúa la incorrelación de los residuos mediante la prueba de Ljung-Box, la normalidad con la prueba de Cramer-Von Mises, y la esperanza nula si la media de los residuos es significativamente grande en comparación con la distribución Normal (0,1).

Por tanto, tenemos una razón adicional para elegir el modelo ARIMA (1,1,0) como nuestro candidato preferido, ya que no presenta problemas en la fase de diagnóstico y significatividad, mientras que el modelo ARIMA (2,1,0) muestra un coeficiente no significativo.

Finalmente, evaluamos la heterocedasticidad mediante el contraste de Breusch-Pagan, obteniendo los siguientes resultados (líneas 369 - 391): el modelo ARIMA (1,1,0) se muestra homocedástico, mientras que el modelo ARIMA (2,1,0) presenta homocedasticidad.

MODELIZACION EDAD 47 (LINEAS 400 – 484)

Primero, deseamos determinar si el proceso es estacionario en media utilizando los procedimientos más empleados en la industria actuarial: Dickey-Fuller, KPSS y Phillips-Perron. Como se muestra en las líneas 403-413, al aplicar la diferenciación una vez, logramos la estacionariedad, excepto en el test de KPSS, que podría indicar heterocedasticidad. No queremos aplicar una segunda diferenciación, ya que esto duplicaría los errores y empeoraría la estimación.

Continuamos con la especificación ARIMA siguiendo la aproximación de Box y Jenkins, donde seleccionaremos los posibles candidatos para llevarlos a la siguiente fase (líneas 423-424).

A partir de las autocorrelaciones simples y parciales, podemos inferir los posibles modelos candidatos: ARIMA (1,1,0), ARIMA (2,1,0), ARIMA (0,1,1) y ARIMA (0,1,2). De estos, el modelo ARIMA (1,1,0) parece ser el más idóneo.

La siguiente fase consiste en evaluar los criterios de información para determinar la calidad del modelo en la predicción de datos futuros, lo que nos proporciona la siguiente información:

AIC	BIC
-1371.339	-1366.430
-1369.367	-1362.004
-1367.395	-1362.486
-1371.339 -1369.367 -1367.395 -1366.847	-1359.484
1500.017	13331101

Estos resultados, obtenidos en la línea 446 y correspondientes al orden de los modelos ARIMA mencionados anteriormente, revelan que los dos mejores modelos según los criterios AIC/BIC son ARIMA (1,1,0) y ARIMA (2,1,0), los cuales avanzan a la siguiente fase.

La fase más importante, que determina el modelo ARIMA a proponer, es la de significatividad y diagnóstico. El modelo ARIMA (1,1,0) nos muestra que (línea 453):

```
Diagnosys_Problems Coef_no_sign. Incorrelacion p.value Normalidad p.value
"0" "0.859112584570976" "0.855155500940477"
Esperanza nula
"SI"
```

Y la ARIMA (2,1,0) nos muestra que (línea 458):

```
Diagnosys_Problems Coef_no_sign. Incorrelacion p.value Normalidad p.value
"1" "0.857886196720129" "0.241255722380158"
Esperanza nula
"SI"
```

La función `diagnosys_phase` (líneas 12 - 104) analiza tanto la significatividad de las estimaciones como la validez de las hipótesis fundamentales relativas a los residuos (diagnóstico del modelo). Por una parte, bajo las hipótesis de Gauss-Markov, se examina la significatividad. Por otra parte, se evalúa la incorrelación de los residuos mediante la prueba de Ljung-Box, la normalidad con la prueba de Cramer-Von Mises, y la esperanza nula si la media de los residuos es significativamente grande en comparación con la distribución Normal (0,1).

Por tanto, tenemos una razón adicional para elegir el modelo ARIMA (1,1,0) como nuestro candidato preferido, ya que no presenta problemas en la fase de diagnóstico y significatividad, mientras que el modelo ARIMA (2,1,0) muestra un coeficiente no significativo.

Finalmente, evaluamos la heterocedasticidad mediante el contraste de Breusch-Pagan, obteniendo los siguientes resultados (líneas 462-484): el modelo ARIMA (1,1,0) se muestra homocedástico, mientras que el modelo ARIMA (2,1,0) presenta heterocedasticidad.

MODELIZACION EDAD 48 (LINEAS 493 – 587)

Primero, deseamos determinar si el proceso es estacionario en media utilizando los procedimientos más empleados en la industria actuarial: Dickey-Fuller, KPSS y Phillips-Perron. Como se muestra en las líneas 498-508, al aplicar la diferenciación una vez, logramos la estacionariedad, excepto en el test de KPSS, que podría indicar heterocedasticidad. No queremos aplicar una segunda diferenciación, ya que esto duplicaría los errores y empeoraría la estimación.

Continuamos con la especificación ARIMA siguiendo la aproximación de Box y Jenkins, donde seleccionaremos los posibles candidatos para llevarlos a la siguiente fase (líneas 236-237).

A partir de las autocorrelaciones simples y parciales, podemos inferir los posibles modelos candidatos: ARIMA (1,1,0), ARIMA (1,1,1), ARIMA (1,1,2) y ARIMA (2,1,1). De estos, el modelo ARIMA (1,1,0) parece ser el más idóneo.

La siguiente fase consiste en evaluar los criterios de información para determinar la calidad del modelo en la predicción de datos futuros, lo que nos proporciona la siguiente información:

AIC	BIC
-1356.240	-1351.331
	-1350.048
-1358.858	-1349.041
-1358.097	-1348.280

Estos resultados, obtenidos en la línea 541 y correspondientes al orden de los modelos ARIMA mencionados anteriormente, revelan que los dos mejores modelos según los criterios AIC/BIC son ARIMA (1,1,0) y ARIMA (1,1,1), los cuales avanzan a la siguiente fase.

La fase más importante, que determina el modelo ARIMA a proponer, es la de significatividad y diagnóstico. El modelo ARIMA (1,1,0) nos muestra que (línea 548):

```
Diagnosys_Problems Coef_no_sign. Incorrelacion p.value Normalidad p.value "0" "0.803391280782593" "0.762451808044807" Esperanza nula "SI"
```

Y la ARIMA (1,1,1) nos muestra que (línea 553):

```
Diagnosys_Problems Coef_no_sign. Incorrelacion p.value Normalidad p.value "0" "0.416490633448514" "0.985007890872779" Esperanza nula "SI"
```

La función `diagnosys_phase` (líneas 12 - 104) analiza tanto la significatividad de las estimaciones como la validez de las hipótesis fundamentales relativas a los residuos (diagnóstico del modelo). Por una parte, bajo las hipótesis de Gauss-Markov, se examina la significatividad. Por otra parte, se evalúa la incorrelación de los residuos mediante la prueba de Ljung-Box, la normalidad con la prueba de Cramer-Von Mises, y la esperanza nula si la media de los residuos es significativamente grande en comparación con la distribución Normal (0,1).

Por tanto, los dos modelos han pasado la fase de diagnosis (sin todavía haber comprado la homocedasticidad) sin de momento tener ningún error.

Finalmente, evaluamos la heterocedasticidad mediante el contraste de Breusch-Pagan, obteniendo los siguientes resultados (líneas 557-579): el modelo ARIMA (1,1,0) se muestra homocedástico, mientras que el modelo ARIMA (1,1,1) presenta homocedástico.

Como los dos modelos han tenido un comportamiento similar en su estudio concluimos que, por razones de mejor BIC, seleccionamos el modelo ARIMA (1,1,0) como la opción predilecta.

MODELIZACION EDAD 49 (LINEAS 591 – 681)

Primero, deseamos determinar si el proceso es estacionario en media utilizando los procedimientos más empleados en la industria actuarial: Dickey-Fuller, KPSS y Phillips-Perron. Como se muestra en las líneas 596-606, al aplicar la diferenciación una vez, logramos la estacionariedad, excepto en el test de KPSS, que podría indicar heterocedasticidad. No queremos aplicar una segunda diferenciación, ya que esto duplicaría los errores y empeoraría la estimación.

Continuamos con la especificación ARIMA siguiendo la aproximación de Box y Jenkins, donde seleccionaremos los posibles candidatos para llevarlos a la siguiente fase (líneas 616-617).

A partir de las autocorrelaciones simples y parciales, podemos inferir los posibles modelos candidatos: ARIMA (1,1,0), ARIMA (1,1,1), ARIMA (1,1,2) y ARIMA (2,1,1). De estos, el modelo ARIMA (1,1,0) parece ser el más idóneo.

La siguiente fase consiste en evaluar los criterios de información para determinar la calidad del modelo en la predicción de datos futuros, lo que nos proporciona la siguiente información:

AIC	BIC
-1358.339	-1353.430
-1360.491	-1350.673
-1357.391	-1350.028
-1354.592	-1344.775

Estos resultados, obtenidos en la línea 639 y correspondientes al orden de los modelos ARIMA mencionados anteriormente, revelan que los dos mejores modelos según los criterios AIC/BIC son ARIMA (1,1,0) y ARIMA (1,1,1), los cuales avanzan a la siguiente fase.

La fase más importante, que determina el modelo ARIMA a proponer, es la de significatividad y diagnóstico. El modelo ARIMA (1,1,0) nos muestra que (línea 646):

```
Diagnosys_Problems Coef_no_sign. Incorrelacion p.value Normalidad p.value "0" "0.909293239965745" "0.872646996834624" Esperanza nula "SI"
```

Y la ARIMA (1,1,1) nos muestra que (línea 651):

```
Diagnosys_Problems Coef_no_sign. Incorrelacion p.value Normalidad p.value "0" "0.955463118627725" "0.795360463043849" Esperanza nula "SI"
```

La función `diagnosys_phase` (líneas 12 - 104) analiza tanto la significatividad de las estimaciones como la validez de las hipótesis fundamentales relativas a los residuos (diagnóstico del modelo). Por una parte, bajo las hipótesis de Gauss-Markov, se examina la significatividad. Por otra parte, se evalúa la incorrelación de los residuos mediante la prueba de Ljung-Box, la normalidad con la prueba de Cramer-Von Mises, y la esperanza nula si la media de los residuos es significativamente grande en comparación con la distribución Normal (0,1).

Por tanto, los dos modelos han pasado la fase de diagnosis (sin todavía haber comprado la homocedasticidad) sin de momento tener ningún error.

Finalmente, evaluamos la heterocedasticidad mediante el contraste de Breusch-Pagan, obteniendo los siguientes resultados (líneas 655 - 677): el modelo ARIMA (1,1,0) se muestra homocedástico, mientras que el modelo ARIMA (1,1,1) presenta homocedástico.

Como los dos modelos han tenido un comportamiento similar en su estudio concluimos que, por razones de mejor BIC, seleccionamos el modelo ARIMA (1,1,0) como la opción predilecta.

MODELIZACION EDAD 50 (LINEAS 685 – 775)

Primero, deseamos determinar si el proceso es estacionario en media utilizando los procedimientos más empleados en la industria actuarial: Dickey-Fuller, KPSS y Phillips-Perron. Como se muestra en las líneas 690-700, al aplicar la diferenciación una vez, logramos la estacionariedad, excepto en el test de KPSS, que podría indicar heterocedasticidad. No queremos aplicar una segunda diferenciación, ya que esto duplicaría los errores y empeoraría la estimación.

Continuamos con la especificación ARIMA siguiendo la aproximación de Box y Jenkins, donde seleccionaremos los posibles candidatos para llevarlos a la siguiente fase (líneas 710-711).

A partir de las autocorrelaciones simples y parciales, podemos inferir los posibles modelos candidatos: ARIMA (1,1,0), ARIMA (1,1,1), ARIMA (1,1,2) y ARIMA (2,1,1). De estos, el modelo ARIMA (1,1,0) parece ser el más idóneo.

La siguiente fase consiste en evaluar los criterios de información para determinar la calidad del modelo en la predicción de datos futuros, lo que nos proporciona la siguiente información:

AIC	BIC
-1346.753	-1341.844
-1347.235	-1339.872
-1347.468	-1337.651
-1347.381	-1337.564

Estos resultados, obtenidos en la línea 733 y correspondientes al orden de los modelos ARIMA mencionados anteriormente, revelan que los dos mejores modelos según los criterios AIC/BIC son ARIMA (1,1,0) y ARIMA (1,1,1), los cuales avanzan a la siguiente fase.

La fase más importante, que determina el modelo ARIMA a proponer, es la de significatividad y diagnóstico. El modelo ARIMA (1,1,0) nos muestra que (línea 740):

```
Diagnosys_Problems Coef_no_sign. Incorrelacion p.value Normalidad p.value "0" "0.491572491044974" "0.978095666231839" Esperanza nula "SI"
```

Y la ARIMA (1,1,1) nos muestra que (línea 745):

```
Diagnosys_Problems Coef_no_sign. Incorrelacion p.value Normalidad p.value "1" "0.605971096278565" "0.664749652149212" Esperanza nula "SI"
```

La función `diagnosys_phase` (líneas 12 - 104) analiza tanto la significatividad de las estimaciones como la validez de las hipótesis fundamentales relativas a los residuos (diagnóstico del modelo). Por una parte, bajo las hipótesis de Gauss-Markov, se examina la significatividad. Por otra parte, se evalúa la incorrelación de los residuos mediante la prueba de Ljung-Box, la normalidad con la prueba de Cramer-Von Mises, y la esperanza nula si la media de los residuos es significativamente grande en comparación con la distribución Normal (0,1).

Por tanto, tenemos una razón adicional para elegir el modelo ARIMA (1,1,0) como nuestro candidato preferido, ya que no presenta problemas en la fase de diagnóstico y significatividad, mientras que el modelo ARIMA (1,1,1) muestra un coeficiente no significativo.

Finalmente, evaluamos la heterocedasticidad mediante el contraste de Breusch-Pagan, obteniendo los siguientes resultados (líneas 749-771): el modelo ARIMA (1,1,0) se muestra homocedástico, mientras que el modelo ARIMA (1,1,1) presenta heterocedasticidad.

MODELIZACION EDAD 51 (LINEAS 778 – 868)

Primero, deseamos determinar si el proceso es estacionario en media utilizando los procedimientos más empleados en la industria actuarial: Dickey-Fuller, KPSS y Phillips-Perron. Como se muestra en las líneas 783-793, al aplicar la diferenciación una vez, logramos la estacionariedad, excepto en el test de KPSS, que podría indicar heterocedasticidad. No queremos aplicar una segunda diferenciación, ya que esto duplicaría los errores y empeoraría la estimación.

Continuamos con la especificación ARIMA siguiendo la aproximación de Box y Jenkins, donde seleccionaremos los posibles candidatos para llevarlos a la siguiente fase (líneas 803-804).

A partir de las autocorrelaciones simples y parciales, podemos inferir los posibles modelos candidatos: ARIMA (1,1,0), ARIMA (1,1,1), ARIMA (1,1,2) y ARIMA (2,1,1). De estos, el modelo ARIMA (1,1,0) parece ser el más idóneo.

La siguiente fase consiste en evaluar los criterios de información para determinar la calidad del modelo en la predicción de datos futuros, lo que nos proporciona la siguiente información:

BIC
-1335.579
-1331.981
-1329.604
-1329.021

Estos resultados, obtenidos en la línea 826 y correspondientes al orden de los modelos ARIMA mencionados anteriormente, revelan que los dos mejores modelos según los criterios AIC/BIC son ARIMA (1,1,0) y ARIMA (1,1,1), los cuales avanzan a la siguiente fase.

La fase más importante, que determina el modelo ARIMA a proponer, es la de significatividad y diagnóstico. El modelo ARIMA (1,1,0) nos muestra que (línea 833):

```
Diagnosys_Problems Coef_no_sign. Incorrelacion p.value Normalidad p.value "0" "0.298521820318177" "0.81469674843881" Esperanza nula "SI"
```

Y la ARIMA (1,1,1) nos muestra que (línea 838):

```
Diagnosys_Problems Coef_no_sign. Incorrelacion p.value Normalidad p.value "1" "0.490170116911867" "0.424726998260011" Esperanza nula "SI"
```

La función `diagnosys_phase` (líneas 12 - 104) analiza tanto la significatividad de las estimaciones como la validez de las hipótesis fundamentales relativas a los residuos (diagnóstico del modelo). Por una parte, bajo las hipótesis de Gauss-Markov, se examina la significatividad. Por otra parte, se evalúa la incorrelación de los residuos mediante la prueba de Ljung-Box, la normalidad con la prueba de Cramer-Von Mises, y la esperanza nula si la media de los residuos es significativamente grande en comparación con la distribución Normal (0,1).

Por tanto, tenemos una razón adicional para elegir el modelo ARIMA (1,1,0) como nuestro candidato preferido, ya que no presenta problemas en la fase de diagnóstico y significatividad, mientras que el modelo ARIMA (1,1,1) muestra un coeficiente no significativo.

Finalmente, evaluamos la heterocedasticidad mediante el contraste de Breusch-Pagan, obteniendo los siguientes resultados (líneas 842-864): el modelo ARIMA (1,1,0) se muestra homocedástico, mientras que el modelo ARIMA (1,1,1) presenta heterocedasticidad.

MODELIZACION EDAD 52 (LINEAS 872 – 960)

Primero, deseamos determinar si el proceso es estacionario en media utilizando los procedimientos más empleados en la industria actuarial: Dickey-Fuller, KPSS y Phillips-Perron. Como se muestra en las líneas 877-887, al aplicar la diferenciación una vez, logramos la estacionariedad, excepto en el test de KPSS, que podría indicar heterocedasticidad. No queremos aplicar una segunda diferenciación, ya que esto duplicaría los errores y empeoraría la estimación.

Continuamos con la especificación ARIMA siguiendo la aproximación de Box y Jenkins, donde seleccionaremos los posibles candidatos para llevarlos a la siguiente fase (líneas 897-898).

A partir de las autocorrelaciones simples y parciales, podemos inferir los posibles modelos candidatos: ARIMA (1,1,0), ARIMA (1,1,1), ARIMA (1,1,2) y ARIMA (2,1,1). De estos, el modelo ARIMA (1,1,0) parece ser el más idóneo.

La siguiente fase consiste en evaluar los criterios de información para determinar la calidad del modelo en la predicción de datos futuros, lo que nos proporciona la siguiente información:

AIC	BIC
-1326.183	-1321.275
-1324.486	-1317.123
-1324.180	-1314.362
-1323.018	-1321.275 -1317.123 -1314.362 -1313.201

Estos resultados, obtenidos en la línea 920 y correspondientes al orden de los modelos ARIMA mencionados anteriormente, revelan que los dos mejores modelos según los criterios AIC/BIC son ARIMA (1,1,0) y ARIMA (1,1,1), los cuales avanzan a la siguiente fase.

La fase más importante, que determina el modelo ARIMA a proponer, es la de significatividad y diagnóstico. El modelo ARIMA (1,1,0) nos muestra que (línea 927):

```
Diagnosys_Problems Coef_no_sign. Incorrelacion p.value Normalidad p.value "0" "0.571602177785641" "0.733990897974332" Esperanza nula "SI"
```

Y la ARIMA (1,1,1) nos muestra que (línea 932):

```
Diagnosys_Problems Coef_no_sign. Incorrelacion p.value Normalidad p.value "1" "0.809667193980297" "0.127500615132544" Esperanza nula "SI"
```

La función `diagnosys_phase` (líneas 12 - 104) analiza tanto la significatividad de las estimaciones como la validez de las hipótesis fundamentales relativas a los residuos (diagnóstico del modelo). Por una parte, bajo las hipótesis de Gauss-Markov, se examina la significatividad. Por otra parte, se evalúa la incorrelación de los residuos mediante la prueba de Ljung-Box, la normalidad con la prueba de Cramer-Von Mises, y la esperanza nula si la media de los residuos es significativamente grande en comparación con la distribución Normal (0,1).

Tenemos una razón adicional para elegir el modelo ARIMA (1,1,0) como nuestro candidato preferido, ya que no presenta problemas en la fase de diagnóstico y significatividad, mientras que el modelo ARIMA (1,1,1) muestra un coeficiente no significativo.

Finalmente, evaluamos la heterocedasticidad mediante el contraste de Breusch-Pagan, obteniendo los siguientes resultados (líneas 936-960): el modelo ARIMA (1,1,0) se muestra homocedástico, mientras que el modelo ARIMA (1,1,1) presenta homocedasticidad.

MODELIZACION EDAD 53 (LINEAS 965 – 1053)

Primero, deseamos determinar si el proceso es estacionario en media utilizando los procedimientos más empleados en la industria actuarial: Dickey-Fuller, KPSS y Phillips-Perron. Como se muestra en las líneas 970-980, al aplicar la diferenciación una vez, logramos la estacionariedad, excepto en el test de KPSS, que podría indicar heterocedasticidad. No queremos aplicar una segunda diferenciación, ya que esto duplicaría los errores y empeoraría la estimación.

Continuamos con la especificación ARIMA siguiendo la aproximación de Box y Jenkins, donde seleccionaremos los posibles candidatos para llevarlos a la siguiente fase (líneas 990-991).

A partir de las autocorrelaciones simples y parciales, podemos inferir los posibles modelos candidatos: ARIMA (1,1,0), ARIMA (1,1,1), ARIMA (1,1,2) y ARIMA (2,1,1). De estos, el modelo ARIMA (1,1,0) parece ser el más idóneo.

La siguiente fase consiste en evaluar los criterios de información para determinar la calidad del modelo en la predicción de datos futuros, lo que nos proporciona la siguiente información:

AIC	BIC
-1314.257	-1309.349
-1312.259	-1304.896
-1312.363	-1302.545
-1311.671	-1301.854

Estos resultados, obtenidos en la línea 1013 y correspondientes al orden de los modelos ARIMA mencionados anteriormente, revelan que los dos mejores modelos según los criterios AIC/BIC son ARIMA (1,1,0) y ARIMA (1,1,1), los cuales avanzan a la siguiente fase.

La fase más importante, que determina el modelo ARIMA a proponer, es la de significatividad y diagnóstico. El modelo ARIMA (1,1,0) nos muestra que (línea 1020):

```
Diagnosys_Problems Coef_no_sign. Incorrelacion p.value Normalidad p.value "0" "0.993745384994591" "0.529698540943248" Esperanza nula "SI"
```

Y la ARIMA (1,1,1) nos muestra que (línea 1025):

```
Diagnosys_Problems Coef_no_sign. Incorrelacion p.value Normalidad p.value "O" "0.993745384994591" "0.64146085061534" Esperanza nula "SI"
```

La función `diagnosys_phase` (líneas 12 - 104) analiza tanto la significatividad de las estimaciones como la validez de las hipótesis fundamentales relativas a los residuos (diagnóstico del modelo). Por una parte, bajo las hipótesis de Gauss-Markov, se examina la significatividad. Por otra parte, se evalúa la incorrelación de los residuos mediante la prueba de Ljung-Box, la normalidad con la prueba de Cramer-Von Mises, y la esperanza nula si la media de los residuos es significativamente grande en comparación con la distribución Normal (0,1).

Por tanto, los dos modelos han pasado la fase de diagnosis (sin todavía haber comprado la homocedasticidad) sin de momento tener ningún error.

Finalmente, evaluamos la heterocedasticidad mediante el contraste de Breusch-Pagan, obteniendo los siguientes resultados (líneas 1029 - 1051): el modelo ARIMA (1,1,0) se muestra homocedástico, mientras que el modelo ARIMA (1,1,1) presenta homocedástico.

Como los dos modelos han tenido un comportamiento similar en su estudio concluimos que, por razones de mejor BIC, seleccionamos el modelo ARIMA (1,1,0) como la opción predilecta.

TABLAS RESUMEN

A continuación, se presentará una tabla resumen en la cual se mostrarán las ideas principales para cada una de las edades. Estas incluyen: mortalidad esperada, coste esperado, VaR99 y TVaR99 de la mortalidad y del coste, así como el Capital Económico del coste (líneas 1061 - 1249). Para ello, se ha calculado la distribución de mortalidad de cada una de las edades para el año 2024, considerando el número de personas en cada cartera y la suma asegurada individual para el coste. Finalmente, el Capital Económico se ha derivado de los cálculos mencionadas anteriormente.

La tabla resumen para cada una de las edades es la siguiente:

	ARIMA	Mortalidad Esperada	VaR Mortalidad	TVaR Mortalidad	Coste Esperado	VaR Coste	TVaR Coste	Capital Economico
Año 45	ARIMA(1,1,0)	0,001315	0,001498	0,001525	592.855	675.708	687.832	82.853
Año 46	ARIMA(1,1,0)	0,001395	0,001588	0,001616	865.810	985.491	1.002.690	119.681
Año 47	ARIMA(1,1,0)	0,001315	0,001610	0,001638	977.774	1.184.343	1.204.769	206.569
Año 48	ARIMA(1,1,0)	0,001536	0,001744	0,001774	751.279	852.883	867.473	101.604
Año 49	ARIMA(1,1,0)	0,001573	0,001778	0,001808	1.275.039	1.441.321	1.465.593	166.282
Año 50	ARIMA(1,1,0)	0,001620	0,001839	0,001872	458460	520.570	529.560	62.110
Año 51	ARIMA(1,1,0)	0,001698	0,001925	0,001959	748.720	849.076	863.714	100.356
Año 52	ARIMA(1,1,0)	0,001799	0,002046	0,002082	930.909	1.058.907	1.077.880	127.998
Año 53	ARIMA(1,1,0)	0,001913	0,002178	0,002217	223.853	254.876	259.445	31.023

La tabla resumen para el modelo completo se ha conseguido, asumiendo independencia, sumando todos los valores de cada una de las edades (líneas 1256 – 1262):

Modelo	Coste Esperado	VaR Coste	TVaR Coste	Capital Económico
completo	6.824.699	7.823.175	7.958.956	998.476