Problem 4: a). Since data set D is linear separable, exist a hyperplane ママオ+P Such that. $(\vec{x}, y) \in D, y = 1$ $(\vec{x}, x) \in D, y = -1$ $(\vec{x}, y) \in D, y = -1$ Therefore, let it be the positive sample which is closed to VII to, let Tis be the negative sample which is closed to 277+P. let Pros = VTTi+P Pucy = VTTy+P From definition of linear separable, Pros > 0 > Puncy, therefore exist

M > 0 S.t Ppos-N > Pmey-N.

For some value of M, we have $\sqrt{7}+P-M=0$ separate D for both Ti; and Ti; and the distance from Ti; and Ti; to $\sqrt{7}+P-M=0$ is the same. So we have: $||\vec{\nabla}^T\vec{n}|+P-M|$ $||\vec{\nabla}^T\vec{n}|+P-M|$ $||\vec{\nabla}^T\vec{n}|+P-M|$ $||\vec{\nabla}^T\vec{n}|+P-M|$ $||\vec{\nabla}^T\vec{n}|+P-M|$ $||\vec{\nabla}^T\vec{n}|+P-M|$

Ppos - 1 = - (Pueg - 1)
1 = Ppos - Pueg With min (777+P-11) = Pos-Pineg

Max (77-47-4) = - Pros-Pueg

Therefor, $y(\vec{y},\vec{\eta}+P-N) \ge \frac{p_{pos}-p_{ueg}}{p_{os}-p_{ueg}}$ for all $(\vec{\eta},y) \in D$ Since $p_{pos}=p_{ueg}$, $N=\frac{p_{pos}-p_{ueg}}{p_{os}-p_{ueg}}$, it becomes, $y(\vec{w},\vec{\eta}+\theta) \ge 1-S$, $\forall (\vec{\eta},y) \in D$ where $\vec{w}=\frac{\vec{y}}{\eta}$, $\theta=\frac{p-N}{\eta}$, and S with optimal solution S=0.