Etapa 3 – Justificación Técnica

1. Enfoque General

La arquitectura propuesta responde a los desafíos de una institución financiera moderna que requiere procesamiento mixto de datos (streaming y batch), detección de fraude en tiempo casi real, y analítica avanzada de clientes.

Se adopta un diseño serverless y desacoplado, aprovechando los servicios nativos de Google Cloud Platform (GCP) para garantizar escalabilidad automática, alta disponibilidad, seguridad granular y control de costos.

2. Justificación de Componentes

a. Ingesta de Datos

- **Pub/Sub** Recibe eventos de transacciones de tarjetas en tiempo casi real, soportando alto throughput y baja latencia (<50 ms). Su modelo publish/subscribe desacopla productores y consumidores, garantizando resiliencia en alto tráfico.
- Cloud Storage actúa como landing zone para cargas batch diarias (maestros y catálogos), ofrece durabilidad y versionamiento a bajo costo.
- Cloud Composer (Airflow) orquesta las cargas y validaciones de integridad, permitiendo auditoría y dependencias entre tareas ETL.

b. Procesamiento de Datos

- Dataflow (Apache Beam) procesa flujos en streaming y batch en un entorno unificado. Se justifica por su autoscaling, tolerancia a fallos y compatibilidad con ventanas temporales necesarias para analizar patrones de fraude.
- Los pipelines incluyen validaciones de esquema y reglas de calidad, así como enriquecimiento con datos de clientes y comercios desde BigQuery.
- Los errores se canalizan a un **DLQ** (**Dead Letter Queue**) en Pub/Sub, cumpliendo el principio de líneas de defensa en calidad de datos.

c. Almacenamiento y Analítica

- **BigQuery** centraliza los datos en capas raw, staging, curated y bi, ofreciendo almacenamiento columnar con separación entre cómputo y datos.
- **BI Engine y Looker Studio** permiten consultas interactivas sobre dashboards ejecutivos de KPIs de fraude, operaciones y segmentación de clientes.
- La arquitectura soporta partitioning por fecha y clustering por customer_id, optimizando desempeño y costo de consulta.

d. Machine Learning (ML)

- Vertex AI gestiona el ciclo del modelo: entrenamiento, registro y despliegue.
 - o Workbench / AutoML acelera la experimentación con datasets en BigQuery.
 - o Model Registry garantiza trazabilidad y versionamiento.
 - Endpoints online ofrecen inferencia con latencia P95 < 200 ms, habilitando alertas en tiempo casi real.

• Esta integración asegura coherencia entre training y serving mediante el uso de un Feature Store (opcional).

e. Integración y Consumo de Resultados

- **Cloud Run** implementa un microservicio stateless que orquesta solicitudes al endpoint de Vertex AI y publica resultados o alertas de fraude en Pub/Sub.
- Este diseño **minimiza la latencia de red**, facilita despliegues continuos y expone un servicio REST seguro mediante IAM y políticas de red (VPC Service Controls).

f. Gobierno, Seguridad y Operación

- **Cloud IAM** aplica el principio de mínimo privilegio segmentando dominios (Fraude, BI, ML).
- Cloud KMS encripta datos en tránsito y reposo.
- Data Catalog documenta linaje y metadatos, fortaleciendo trazabilidad y gobierno.
- Cloud Logging / Monitoring genera las métricas y alertas proactivas.
- Budgets & Alerts permiten controlar y prevenir el gasto operativo.

3. Flujo de Datos y Latencias

- Flujo Streaming (fraude):
 - $Pub/Sub \rightarrow Dataflow \rightarrow Vertex\ AI\ Endpoint \rightarrow BigQuery\ (fraud\ scoring) \rightarrow Pub/Sub\ (alertas)$
 - Latencia end-to-end: \leq 500 ms (P95).
- Flujo Batch (analítica):
 - $Cloud\ Storage \rightarrow Composer \rightarrow BigQuery \rightarrow Looker\ Studio$
 - o Procesamiento diario con SLA D+1.
- Cada paso incluye validaciones automáticas, control de esquema y métricas.

4. Riesgos y Mitigaciones

Riesgo	Impacto	Mitigación
Altas de transacciones	Aumento de latencia o	Autoscaling en Pub/Sub y Dataflow; DLQ
	pérdida de eventos	para reprocesos
Cambios de esquema en fuentes	Fallas en ingesta	Validación en Dataflow y versionamiento
		en BigQuery
Data drift del modelo de fraude	Degradación de	Retraining periódico en Vertex AI;
	precisión	monitoreo de drift
Exceso de costos por consultas BI	Costo no controlado	Particionamiento, alertas de presupuesto y
<u> </u>		caching con BI Engine
Accesos no autorizados	Riesgo de fuga de	IAM granular, KMS, auditorías y VPC
	datos	Service Controls

5. Beneficios Clave

- Latencia controlada: detección de fraude en menos de 500 ms.
- Elasticidad y resiliencia: servicios serverless escalan automáticamente.
- Gobierno robusto: trazabilidad, auditoría y control de accesos.
- Eficiencia operativa: automatización completa de pipelines.
- Costo optimizado: pago por uso y control presupuestario granular.