第五周作业参考

王睿、贺维易

2023年4月11日

目录

1	第五	周作业		
	1.1	4月4	日布置的作业	
		1.1.1	教材习题 P114:21,26(1),34	
		1.1.2	补充习题 1,2,3,4,5	
	1.2	4月6	日布置的作业	
		1.2.1	教材习题 P115:25,27,29,31(1),32,35(2)(3)(4)	

一点说明

- (i) 作业讲义部分题过程可能有省略。如对作业仍有疑问可以在群里或答疑课上讨论。
- (ii) 作业讲义会随时间更新。
- (iii) 请及时核对自己在 BB 系统里的分数,如有问题请向对应的助教反馈。
- (iv) 附录里的内容仅供有兴趣的同学参考,有可能涉及之后才会学习或课外的知识,不要求在现阶段掌握。
- (v) 讲义最好用电脑打开, 文档内置了链接功能, 复习或查看指定的作业很方便。

成绩说明:成绩公式为

$$score = \begin{cases} 10 - k \cdot \max\{n - n_0, 0\} & \text{ 未迟交} \\ 5 & \text{ 迟交} \end{cases}$$

其中 n 为错题数, n_0 为容忍度;k 为系数,取决于当周作业的题量。第五周不考虑补充题共 15 题,n=15,考虑到一些同学出现了计算失误、笔误、抄错题目等等情况, $n_0=3$;k=0.5。对于一些不严格的证明,助教也会酌情给分。也意味着作业得到满分不代表作业没有问题,请认真查看自己的作业。

上述评分标准对每个助教都成立。

1 第五周作业

1.1 4月4日布置的作业

1.1.1 教材习题 P114:21,26(1),34

习题 1 (教材习题 21). 求以下排列的逆序数,并指出其奇偶性:

- (1)(6,8,1,4,7,5,3,2,9); (2)(6,4,2,1,9,7,3,5,8);
- (3)(7,5,2,3,9,8,1,6,4).

解. 逆序数的定义参考书中 P92 定义 4.3.2、这里给出逆序数的计算是从排列的左向右数的。

$$(1)\tau(s) = 5 + 6 + 0 + 2 + 3 + 2 + 1 + 0 + 0 = 19.$$

$$(2)\tau(s) = 5 + 3 + 1 + 0 + 4 + 2 + 0 + 0 + 0 = 15.$$

$$(3)\tau(s) = 6+4+1+1+4+3+0+1+0=20.$$

习题 2 (教材习题 26(1)). 设 $A, B \in n$ 阶方阵, $\lambda \in \mathcal{B}$ 证明: $(1)(\lambda A)^* = \lambda^{n-1} A^*$;

证明. 此题可以直接从伴随矩阵的定义来证明。矩阵 **A** 的伴随矩阵 **A*** 满足 $(A^*)_{ji} = A_{ij}$,其中 $A_{ij} = (-1)^{i+j} A \begin{pmatrix} 1 & 2 & \cdots & (i-1)(i+1) & \cdots & n \\ 1 & 2 & \cdots & (j-1)(j+1) & \cdots & n \end{pmatrix}$ 为元素 a_{ij} 的代数余子式。这里特别区别了 **A** 和 A,以表明代数余子式不是矩阵而是数。

$$A\begin{pmatrix} 1 & 2 \cdots (i-1)(i+1) \cdots n \\ 1 & 2 \cdots (j-1)(j+1) \cdots n \end{pmatrix} = \begin{vmatrix} a_{11} & \cdots & a_{1,j-1} & a_{1,j+1} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{i-1,1} & \cdots & a_{i-1,j-1} & a_{i-1,j+1} & \cdots & a_{i-1,n} \\ a_{i+1,1} & \cdots & a_{i+1,j-1} & a_{i+1,j+1} & \cdots & a_{i+1,n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{n,j-1} & a_{n,j+1} & \cdots & a_{nn} \end{vmatrix}$$

对 λA 而言,相当于把矩阵 A 的每个元素都乘 λ 倍,即

$$(\lambda \mathbf{A}) \begin{pmatrix} 1 \ 2 \cdots (i-1)(i+1) \cdots n \\ 1 \ 2 \cdots (j-1)(j+1) \cdots n \end{pmatrix} = \begin{vmatrix} \lambda a_{11} & \cdots & \lambda a_{1,j-1} & \lambda a_{1,j+1} & \cdots & \lambda a_{1n} \\ \vdots & \vdots & \vdots & & \vdots \\ \lambda a_{i-1,1} & \cdots & \lambda a_{i-1,j-1} & \lambda a_{i-1,j+1} & \cdots & \lambda a_{i-1,n} \\ \lambda a_{i+1,1} & \cdots & \lambda a_{i+1,j-1} & \lambda a_{i+1,j+1} & \cdots & \lambda a_{i+1,n} \\ \vdots & & \vdots & & \vdots \\ \lambda a_{n1} & \cdots & \lambda a_{n,j-1} & \lambda a_{n,j+1} & \cdots & \lambda a_{nn} \end{vmatrix}$$

$$= \lambda^{n-1} \mathbf{A} \begin{pmatrix} 1 \ 2 \cdots (i-1)(i+1) \cdots n \\ 1 \ 2 \cdots (j-1)(j+1) \cdots n \end{pmatrix}$$

因此

$$(\lambda \mathbf{A})_{ji}^{*} = (\lambda A)_{ij} = (-1)^{i+j} (\lambda \mathbf{A}) \begin{pmatrix} 1 \ 2 \cdots (i-1)(i+1) \cdots n \\ 1 \ 2 \cdots (j-1)(j+1) \cdots n \end{pmatrix}$$
$$= (-1)^{i+j} \lambda^{n-1} \mathbf{A} \begin{pmatrix} 1 \ 2 \cdots (i-1)(i+1) \cdots n \\ 1 \ 2 \cdots (j-1)(j+1) \cdots n \end{pmatrix} \Rightarrow (\lambda \mathbf{A})^{*} = \lambda^{n-1} \mathbf{A}^{*}$$
$$= \lambda^{n-1} A_{ij} = (\lambda^{n-1} \mathbf{A}^{*})_{ji}$$

在完成伴随矩阵有关问题的时候,矩阵、行列式、数之间的关系一定要清晰。

习题 3 (教材习题 34). 证明:初等矩阵具有以下性质:

- $(1)\boldsymbol{T}_{ij}(\lambda)\boldsymbol{T}_{ij}(\mu) = \boldsymbol{T}_{ij}(\lambda + \mu)$
- (2) 当 $i \neq q$ 且 $j \neq p$ 时, $T_{ij}(\lambda)T_{pq}(\mu) = T_{pq}(\mu)T_{ij}(\lambda)$

$$(3)D_i(-1)S_{ij} = S_{ij}D_i(-1) = T_{ji}(1)T_{ij}(-1)T_{ji}(1)$$

证明. (1)

$$(1)T_{ij}(\lambda)T_{ij}(\mu) = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & \lambda & & \\ & & & \ddots & & \\ & & & 1 & & \\ & & & & \ddots & \\ & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & & & & \\ & 1 & & \mu & & \\ & & \ddots & & & \\ & & & 1 & & \\ & & & & \ddots & \\ & & & 1 & & \lambda + \mu & \\ & & & \ddots & & \\ & & & & 1 & & \\ & & & & \ddots & \\ & & & & 1 & & \\ & & & & \ddots & \\ & & & & & 1 \end{pmatrix}$$

(2) 本题只要与第一问相同,使用矩阵的形式表达也可简单地证明。这里用数学符号形式地证明:

$$\begin{split} \boldsymbol{T}_{ij}(\lambda) &= \boldsymbol{I} + \boldsymbol{\lambda}_{ij}, \boldsymbol{T}_{pq}(\mu) = \boldsymbol{I} + \boldsymbol{\mu}_{pq} \\ \boldsymbol{T}_{ij}(\lambda) \boldsymbol{T}_{pq}(\mu) &= (\boldsymbol{I} + \boldsymbol{\lambda}_{ij}) \left(\boldsymbol{I} + \boldsymbol{\mu}_{pq} \right) = \boldsymbol{I} + \boldsymbol{\lambda}_{ij} + \boldsymbol{\mu}_{pq} + \boldsymbol{\lambda}_{ij} \boldsymbol{\mu}_{pq} = \boldsymbol{I} + \boldsymbol{\lambda}_{ij} + \boldsymbol{\mu}_{pq} \\ &= \boldsymbol{I} + \boldsymbol{\lambda}_{ij} + \boldsymbol{\mu}_{pq} + \boldsymbol{\mu}_{pq} \boldsymbol{\lambda}_{ij} = \left(\boldsymbol{I} + \boldsymbol{\mu}_{pq} \right) (\boldsymbol{I} + \boldsymbol{\lambda}_{ij}) = \boldsymbol{T}_{pq}(\mu) \boldsymbol{T}_{ij}(\lambda) \end{split}$$

其中 λ_{ij} 表示在第 i 行 j 列处有元素 λ 、其余位置为 0 的矩阵, $\lambda_{ij}\mu_{pq} = \mathbf{0}$ 是由于 $j \neq p$; $\mu_{pq}\lambda_{ij} = \mathbf{0}$ 是由于 $q \neq i$ 。

(3) 这里展示第三种方法,可以借助矩阵对矩阵的作用以及被作用矩阵的任意性来证明矩阵相等。考

虑要证明的每一项都是 $m \times m$ 的矩阵, 对 $m \times n$ 矩阵 A 的作用, 将 A 分块成行向量, 参考书 P103, 有

$$\begin{aligned} \boldsymbol{D}_{i}(-1)\boldsymbol{S}_{ij}\boldsymbol{A} &= \boldsymbol{D}_{i}(-1)\boldsymbol{S}_{ij}\left(\boldsymbol{\beta}_{1}\ \cdots\ \boldsymbol{\beta}_{i}\ \cdots\ \boldsymbol{\beta}_{j}\ \cdots\ \boldsymbol{\beta}_{m}\right)^{T} \\ &= \boldsymbol{D}_{i}(-1)\left(\boldsymbol{\beta}_{1}\ \cdots\ \boldsymbol{\beta}_{j}\ \cdots\ \boldsymbol{\beta}_{i}\ \cdots\ \boldsymbol{\beta}_{m}\right)^{T} \\ &= \left(\boldsymbol{\beta}_{1}\ \cdots\ -\boldsymbol{\beta}_{j}\ \cdots\ \boldsymbol{\beta}_{i}\ \cdots\ \boldsymbol{\beta}_{m}\right)^{T} \\ \boldsymbol{S}_{ij}\boldsymbol{D}_{j}(-1)\boldsymbol{A} &= \boldsymbol{S}_{ij}\boldsymbol{D}_{j}(-1)\left(\boldsymbol{\beta}_{1}\ \cdots\ \boldsymbol{\beta}_{i}\ \cdots\ \boldsymbol{\beta}_{j}\ \cdots\ \boldsymbol{\beta}_{m}\right)^{T} \\ &= \boldsymbol{S}_{ij}\left(\boldsymbol{\beta}_{1}\ \cdots\ \boldsymbol{\beta}_{i}\ \cdots\ -\boldsymbol{\beta}_{j}\ \cdots\ \boldsymbol{\beta}_{m}\right)^{T} \\ &= \left(\boldsymbol{\beta}_{1}\ \cdots\ -\boldsymbol{\beta}_{j}\ \cdots\ \boldsymbol{\beta}_{i}\ \cdots\ \boldsymbol{\beta}_{m}\right)^{T} \\ \boldsymbol{T}_{ji}(1)\boldsymbol{T}_{ij}(-1)\boldsymbol{T}_{ji}(1)\boldsymbol{A} &= \boldsymbol{T}_{ji}(1)\boldsymbol{T}_{ij}(-1)\boldsymbol{T}_{ji}(1)\left(\boldsymbol{\beta}_{1}\ \cdots\ \boldsymbol{\beta}_{i}\ \cdots\ \boldsymbol{\beta}_{j}\ \cdots\ \boldsymbol{\beta}_{m}\right)^{T} \\ &= \boldsymbol{T}_{ji}(1)\left(\boldsymbol{\beta}_{1}\ \cdots\ -\boldsymbol{\beta}_{j}\ \cdots\ \boldsymbol{\beta}_{j}\ +\boldsymbol{\beta}_{i}\ \cdots\ \boldsymbol{\beta}_{m}\right)^{T} \\ &= \boldsymbol{T}_{ji}(1)\left(\boldsymbol{\beta}_{1}\ \cdots\ -\boldsymbol{\beta}_{j}\ \cdots\ \boldsymbol{\beta}_{j}\ +\boldsymbol{\beta}_{i}\ \cdots\ \boldsymbol{\beta}_{m}\right)^{T} \\ &= \left(\boldsymbol{\beta}_{1}\ \cdots\ -\boldsymbol{\beta}_{j}\ \cdots\ \boldsymbol{\beta}_{i}\ \cdots\ \boldsymbol{\beta}_{m}\right)^{T} \end{aligned}$$

因此可知 $\forall n, A \in F^{m \times n}, D_i(-1)S_{ij}A = S_{ij}D_j(-1)A = T_{ji}(1)T_{ij}(-1)T_{ji}(1)A$ 。由于 A 的任意性,(可取 n = 1,构造 m 个单位向量即可证明),可得 $D_i(-1)S_{ij} = S_{ij}D_j(-1) = T_{ji}(1)T_{ij}(-1)T_{ji}(1)$.

1.1.2 补充习题 1,2,3,4,5

习题 4 (补充习题 1). 设矩阵 A 形如

$$\begin{pmatrix} 1 & & & & \\ & & \ddots & & \\ & & & \ddots & \\ & & & \ddots & \\ a_0 & a_1 & \cdots & a_{n-2} & a_{n-1} \end{pmatrix}$$

求 $\det(\lambda \mathbf{I}_n - \mathbf{A})$, 其中 $\lambda \in F$ 为标量。

解.

$$\det(\lambda \mathbf{I}_n - \mathbf{A}) = \begin{vmatrix} \lambda & -1 \\ & \lambda & -1 \\ & & \ddots & \ddots \\ & & \lambda & -1 \\ -a_0 & -a_1 & \cdots & -a_{n-2} & \lambda - a_{n-1} \end{vmatrix}$$

设行列式为 Δ_n ,按第一列展开,有

$$\Delta_{n} = \begin{vmatrix} \lambda & -1 \\ & \lambda & -1 \\ & & \ddots & \ddots \\ & & \lambda & -1 \\ -a_{0} & -a_{1} & \cdots & -a_{n-2} & \lambda - a_{n-1} \end{vmatrix} = \lambda \begin{vmatrix} \lambda & -1 \\ & \ddots & \ddots \\ & & \lambda & -1 \\ -a_{1} & \cdots & -a_{n-2} & \lambda - a_{n-1} \end{vmatrix} - a_{0}(-1)^{n+1} \begin{vmatrix} -1 \\ \lambda & -1 \\ & \ddots & \ddots \\ & & \lambda & -1 \end{vmatrix}$$
$$= \lambda \Delta_{n-1} - a_{0}(-1)^{n+1}(-1)^{n-1} = \lambda \Delta_{n-1} - a_{0}$$
$$\Delta_{n-i} = \lambda \Delta_{n-i-1} - a_{i}, \Delta_{2} = \begin{vmatrix} \lambda & -1 \\ -a_{n-2} & \lambda - a_{n-1} \end{vmatrix} = \lambda(\lambda - a_{n-1}) - a_{n-2} = \lambda \Delta_{1} - a_{n-2}$$

$$\Rightarrow \Delta_n = \lambda \Delta_{n-1} - a_0 = \lambda(\lambda \Delta_{n-2} - a_1) - a_0$$

$$= \lambda^2 \Delta_{n-2} - \lambda a_1 - a_0$$

$$= \cdots$$

$$= \lambda^{n-1} \Delta_1 - \sum_{i=0}^{n-2} \lambda^i a_i$$

$$= \lambda^{n-1} (\lambda - a_{n-1}) - \sum_{i=0}^{n-2} \lambda^i a_i = \lambda^n - \sum_{i=0}^{n-1} \lambda^i a_i$$

习题 5 (补充习题 2). 在这里,验证 *Laplace* 展开定理的一个特殊形式 (有困难的同学可以参考教材上的定理 4.3.1)。设 A 为 n 阶方阵, $1 < k \le n$,对任意的 $1 \le i < j \le n$,记 D_{ij} 为 A 删去 1,k 行,并删去第 i,j 列后得到的 n-2 阶方针的行列式。证明:

$$\det \mathbf{A} = \sum_{1 \le i < j \le n} (-1)^{1+k+i+j} \begin{vmatrix} a_{1i} & a_{1j} \\ a_{ki} & a_{kj} \end{vmatrix} D_{ij}$$

证明. A 对第一行展开有

$$\det \mathbf{A} = \sum_{p=1}^{n} a_{1p} (-1)^{1+p} \mathbf{A} \begin{pmatrix} 2 \cdots (k-1) \ k \ (k+1) \cdots n \\ 1 \ 2 \cdots (p-1) (p+1) \cdots n \end{pmatrix}$$

$$\mathbf{A} \begin{pmatrix} 2 \cdots (k-1) \ k \ (k+1) \cdots n \\ 1 \ 2 \cdots (p-1) (p+1) \cdots n \end{pmatrix}$$
 为矩阵 \mathbf{A} 去掉第一行与第 p 列的行列式,继续对
$$\mathbf{A} \begin{pmatrix} 2 \cdots (k-1) \ k \ (k+1) \cdots n \\ 1 \ 2 \cdots (p-1) (p+1) \cdots n \end{pmatrix}$$
 按第 $k-1$ 行(对应 \mathbf{A} 的第 k 行)展开,有
$$\mathbf{A} \begin{pmatrix} 2 \cdots (k-1) \ k \ (k+1) \cdots n \end{pmatrix} - \sum_{p=1}^{p-1} a_{1p} (-1)^{k-1+q} \mathbf{A} \begin{pmatrix} 2 \cdots (k-1) \ k \ (k+1) \cdots n \end{pmatrix}$$

$$A \begin{pmatrix} 2 \cdots (k-1) \ k \ (k+1) \cdots n \\ 1 \ 2 \cdots (p-1)(p+1) \cdots n \end{pmatrix} = \sum_{q=1}^{p-1} a_{kq} (-1)^{k-1+q} A \begin{pmatrix} 2 \cdots (k-1) \ (k+1) \cdots n \\ 1 \ 2 \cdots (q-1)(q+1) \cdots (p-1)(p+1) \cdots n \end{pmatrix} + \sum_{q=p+1}^{n} a_{kq} (-1)^{k-1+q-1} A \begin{pmatrix} 2 \cdots (k-1) \ (k+1) \cdots n \\ 1 \ 2 \cdots (p-1)(p+1) \cdots (q-1)(q+1) \cdots n \end{pmatrix}$$

按照题中记号, 可记为

$$A\begin{pmatrix} 2\cdots(k-1) & k & (k+1)\cdots n \\ 1 & 2\cdots(p-1)(p+1)\cdots n \end{pmatrix} = \sum_{q=1}^{p-1} a_{kq}(-1)^{k-1+q} D_{pq} + \sum_{q=p+1}^{n} a_{kq}(-1)^{k-1+q-1} D_{pq}$$

代回 A 对第一行展开的表达式,有

$$\det \mathbf{A} = \sum_{p=1}^{n} a_{1p} (-1)^{1+p} \left[\sum_{q=1}^{p-1} a_{kq} (-1)^{k-1+q} D_{pq} + \sum_{q=p+1}^{n} a_{kq} (-1)^{k-1+q-1} D_{pq} \right]$$

$$= \sum_{p,q=1,q

$$= \sum_{p,q=1,q

$$= \sum_{p,q=1,q

$$= \sum_{p,q=1,q$$$$$$$$

习题 6 (补充习题 3). (本题要求所有同学都完成)在这里,再考虑 Laplace 展开定理的另外一种特殊形式.事实上, Laplace 展开定理的(复杂)证明就是以讨论形如这样的结果开始的。对于下面的分块矩阵,证明相应的行列式公式,其中 $\mathbf{A} \in F^{m \times m}, \mathbf{D} \in F^{n \times n}, \mathbf{C} \in F^{n \times m}, \mathbf{B} \in F^{m \times n}$.

$$(i) \det \begin{pmatrix} A & O \\ O & I_n \end{pmatrix} = \det A \qquad (ii) \det \begin{pmatrix} I_m & O \\ C & D \end{pmatrix} = \det D$$
 $(iii) \det \begin{pmatrix} A & O \\ C & D \end{pmatrix} = \det A \det D = \det \begin{pmatrix} A & B \\ O & D \end{pmatrix}$

(提示:在前两小问里分别对最后一行和第一行作展开,在第三小问里可以利用前两小问的矩阵的乘法.第三小问的公式要求熟记.)

证明. (i) 的证明是容易的:对最后一行/列展开,则除了第m+n行m+n列元素为1,其余元素都为0,因此

$$\det \begin{pmatrix} A & O \\ O & I_n \end{pmatrix} = 1 \times \det \begin{pmatrix} A & O \\ O & I_{n-1} \end{pmatrix} + 0 \times \cdots = \det \begin{pmatrix} A & O \\ O & I_{n-1} \end{pmatrix}$$

不断重复这一过程,则有

$$\det \begin{pmatrix} A & O \\ O & I_n \end{pmatrix} = \det \begin{pmatrix} A & O \\ O & I_{n-1} \end{pmatrix} = \cdots \det \begin{pmatrix} A & O \\ O & I_1 = 1 \end{pmatrix} = \det \begin{pmatrix} A \end{pmatrix} = \det A$$

(ii) 的证明与 (i) 类似, 只不过变为对第一行做展开, 依然有

$$\det \begin{pmatrix} \boldsymbol{I}_{m} & \boldsymbol{O} \\ \boldsymbol{C} & \boldsymbol{D} \end{pmatrix} = 1 \times \det \begin{pmatrix} \boldsymbol{I}_{m-1} & \boldsymbol{O} \\ \boldsymbol{C'}_{n \times m-1} & \boldsymbol{D} \end{pmatrix} + 0 \times \dots = \det \begin{pmatrix} \boldsymbol{I}_{m-1} & \boldsymbol{O} \\ \boldsymbol{C'}_{n \times m-1} & \boldsymbol{D} \end{pmatrix}$$

不断重复这一过程,则有

$$\det \begin{pmatrix} \boldsymbol{I}_{m} & \boldsymbol{O} \\ \boldsymbol{C} & \boldsymbol{D} \end{pmatrix} = \det \begin{pmatrix} \boldsymbol{I}_{m-1} & \boldsymbol{O} \\ \boldsymbol{C'}_{n \times m-1} & \boldsymbol{D} \end{pmatrix} = \cdots \det \begin{pmatrix} \boldsymbol{I}_{1} = 1 & \boldsymbol{O} \\ \boldsymbol{C'}_{n \times 1} & \boldsymbol{D} \end{pmatrix} = \det \boldsymbol{D}$$

(iii) 的证明可以参考教材 P93 例 4.3.5, 或参考 20230406 讲义, 假设 $\det A \neq 0$, 以及

$$\det \begin{pmatrix} A & O \\ C & D \end{pmatrix} = \det \begin{pmatrix} I & O \\ -CA^{-1} & I \end{pmatrix} \begin{pmatrix} A & O \\ C & D \end{pmatrix} = \det \begin{pmatrix} A & O \\ O & D \end{pmatrix} = \det A \det D$$

$$\det \begin{pmatrix} A & B \\ O & D \end{pmatrix} = \det \begin{pmatrix} A & B \\ O & D \end{pmatrix} \begin{pmatrix} I & -A^{-1}B \\ O & I \end{pmatrix} = \det \begin{pmatrix} A & O \\ O & D \end{pmatrix} = \det A \det D$$

对 $\det \mathbf{A} = 0$ 的情况使用微扰法讨论。还可以对 m 使用归纳法,从 m = 1 开始讨论证明。

习题 7 (补充习题 4). 设 $\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$, 求 \mathbf{A} 的所有 2 阶代数余子式之和。

解. A 的所有 2 阶代数余子式可以——对应到 A^* 中的所有元素。想要将 A^* 中的所有元素加和,可以 考虑

$$\sum_{i,j=1}^{3} A_{ij} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

可以注意到 $\begin{pmatrix} 1 & 1 \end{pmatrix}$ 位于矩阵 $oldsymbol{A}$ 的第一行,可以联想到利用矩阵及其伴随矩阵的性质,即

$$AA^* = \det(A)I, \det(A) = 1 \Rightarrow AA^* = I$$

利用矩阵分块,将 A 按行分为 $\alpha_1,\alpha_2,\alpha_3$,有

$$egin{pmatrix} egin{pmatrix} oldsymbol{lpha}_1 \ oldsymbol{lpha}_2 \ oldsymbol{lpha}_3 \end{pmatrix} oldsymbol{A}^* = egin{pmatrix} oldsymbol{lpha}_1 oldsymbol{A}^* \ oldsymbol{lpha}_2 oldsymbol{A}^* \ oldsymbol{lpha}_3 oldsymbol{A}^* \end{pmatrix} = oldsymbol{I}$$

取等式两边对应的第一行, 即得

$$\boldsymbol{lpha}_1 \boldsymbol{A}^* = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \boldsymbol{A}^*$$

代回求和的式子,有

$$\sum_{i,j=1}^{3} A_{ij} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \mathbf{A}^* \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 1$$

习题 8 (补充习题 5). 设 A 为一个 n 阶反对称方阵. 若 n 为奇数, 验证 A^* 是一个对称矩阵; 若 n 为偶数, 验证 A^* 是一个反对称矩阵。

证明. 利用伴随矩阵的定义即可。矩阵 ${m A}$ 的伴随矩阵 ${m A}^*$ 满足 $({m A}^*)_{ji} = A_{ij}$,其中 $A_{ij} = (-1)^{i+j}{m A} \begin{pmatrix} 1 \ 2 \cdots (i-1)(i+1) \cdots n \\ 1 \ 2 \cdots (j-1)(j+1) \cdots n \end{pmatrix}$ 为元素 a_{ij} 的代数余子式。对于 n 阶反对称方阵 ${m A}$,满足 ${m A}^T = -{m A}, a_{ij} = -a_{ji}$ 。本题要证明 ${m A}^*$ 是对称或反对称矩阵,即要求观察 $({m A}^*)_{ji} = A_{ij}$ 与 $({m A}^*)_{ij} = A_{ji}$

之间的关系。余子式前面的系数 $(-1)^{i+j}$ 相同,因此只需观察余子式 $\mathbf{A} \begin{pmatrix} 1 & 2 & \cdots & (i-1)(i+1) & \cdots & n \\ 1 & 2 & \cdots & (j-1)(j+1) & \cdots & n \end{pmatrix}$ 与 $\mathbf{A} \begin{pmatrix} 1 & 2 & \cdots & (j-1)(j+1) & \cdots & n \\ 1 & 2 & \cdots & (i-1)(i+1) & \cdots & n \end{pmatrix}$ 。

$$A\begin{pmatrix} 1 & 2 & \cdots & (i-1)(i+1) & \cdots & n \\ 1 & 2 & \cdots & (j-1)(j+1) & \cdots & n \end{pmatrix} = \begin{vmatrix} a_{11} & \cdots & a_{1,j-1} & a_{1,j+1} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i-1,1} & \cdots & a_{i-1,j-1} & a_{i-1,j+1} & \cdots & a_{i-1,n} \\ a_{i+1,1} & \cdots & a_{i+1,j-1} & a_{i+1,j+1} & \cdots & a_{i+1,n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{n1} & \cdots & a_{n,j-1} & a_{n,j+1} & \cdots & a_{nn} \end{vmatrix}$$

$$A\begin{pmatrix} 1 & 2 & \cdots & (j-1)(j+1) & \cdots & n \\ 1 & 2 & \cdots & (i-1)(i+1) & \cdots & n \end{pmatrix} = \begin{vmatrix} a_{11} & \cdots & a_{1,i-1} & a_{1,i+1} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{j-1,1} & \cdots & a_{j-1,i-1} & a_{j-1,i+1} & \cdots & a_{j-1,n} \\ a_{j+1,1} & \cdots & a_{j+1,i-1} & a_{j+1,i+1} & \cdots & a_{j+1,n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{n1} & \cdots & a_{n,i-1} & a_{n,i+1} & \cdots & a_{nn} \end{vmatrix}$$

$$= (-1)^{n-1} \begin{vmatrix} -a_{11} & \cdots & -a_{1,i-1} & -a_{1,i+1} & \cdots & -a_{1n} \\ \vdots & \vdots & & \vdots & & \vdots \\ -a_{n1} & \cdots & -a_{n,i-1} & -a_{j+1,i+1} & \cdots & -a_{j-1,n} \\ -a_{j+1,1} & \cdots & -a_{j+1,i-1} & -a_{j+1,i+1} & \cdots & -a_{j-1,n} \\ -a_{j+1,1} & \cdots & -a_{n,i-1} & -a_{n,i+1} & \cdots & -a_{nn} \end{vmatrix}$$

$$= (-1)^{n-1} \begin{vmatrix} a_{11} & \cdots & a_{i-1,1} & a_{i+1,1} & \cdots & a_{n} \\ \vdots & \vdots & & \vdots & & \vdots \\ -a_{n1} & \cdots & a_{i-1,1} & a_{i+1,j-1} & \cdots & a_{n,j-1} \\ a_{1,j+1} & \cdots & a_{i-1,j+1} & a_{i+1,j+1} & \cdots & a_{n,j-1} \\ \vdots & & \vdots & & & \vdots \\ a_{1n} & \cdots & a_{i-1,n} & a_{i+1,n} & \cdots & a_{nn} \end{vmatrix}$$

$$= (-1)^{n-1} A\begin{pmatrix} 1 & 2 & \cdots & (i-1)(i+1) & \cdots & n \\ 1 & 2 & \cdots & (j-1)(i+1) & \cdots & n \end{pmatrix}$$

因此

$$A_{ij} = (-1)^{n-1} A_{ji}$$

当 n 为奇数时, $A_{ij}=A_{ji}$, \mathbf{A}^* 是一个对称矩阵; 若 n 为偶数, $A_{ij}=-A_{ji}$, \mathbf{A}^* 是一个反对称矩阵。 \square

1.2 4月6日布置的作业

1.2.1 教材习题 P115:25,27,29,31(1),32,35(2)(3)(4)

习题 9 (教材习题 25). 设 $A \in m \times n$ 矩阵, $B \in n \times m$ 矩阵, 证明:

$$\det(oldsymbol{I}_n - oldsymbol{B}oldsymbol{A}) = \detegin{pmatrix} oldsymbol{I}_m & oldsymbol{A} \ oldsymbol{B} & oldsymbol{I}_n \end{pmatrix} = \det(oldsymbol{I}_m - oldsymbol{A}oldsymbol{B})$$

证明. 注意到,只需对矩阵 $\det \begin{pmatrix} I_m & A \\ B & I_n \end{pmatrix}$ 打洞:

$$egin{pmatrix} egin{pmatrix} I_m & 0 \ -B & I_n \end{pmatrix} egin{pmatrix} I_m & A \ B & I_n \end{pmatrix} = egin{pmatrix} I_m & A \ 0 & I_n - BA \end{pmatrix}$$

两边同时取行列式得到第一个等式 (可参考补充习题 3), 同理:

$$egin{pmatrix} egin{pmatrix} m{I}_m & -m{A} \ 0 & m{I}_n \end{pmatrix} egin{pmatrix} m{I}_m & m{A} \ m{B} & m{I}_n \end{pmatrix} = egin{pmatrix} m{I}_m - m{A} m{B} & m{0} \ m{B} & m{I}_n \end{pmatrix}$$

两边同时取行列式得到第二个等式,至此我们证明了结论。

习题 10 (教材习题 27). 设方阵 $m{A}$ 的逆矩阵 $m{A}^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 3 \end{pmatrix}, 求 m{A}^*.$

解. 因为 \boldsymbol{A} 可逆,直接由公式 $\boldsymbol{A}^{-1} = \frac{1}{\det(\boldsymbol{A})} \cdot \boldsymbol{A}^*$,现在只需求 $\det(\boldsymbol{A})$. 而 $\det(\boldsymbol{A}) \det(\boldsymbol{A}^{-1}) = 1$, $\det(\boldsymbol{A}^{-1}) = 2$, 代入计算可得

$$m{A}^* = egin{pmatrix} rac{1}{2} & rac{1}{2} & rac{1}{2} \ rac{1}{2} & 1 & rac{1}{2} \ rac{1}{2} & rac{1}{2} & rac{1}{2} \end{pmatrix}$$

习题 11 (教材习题 29). 设 n 阶方阵 A 的每行、每列元素之和都是 0, 证明: A^* 的所有元素都相等.

证明. 我们证明 $A_{ij} = A_{ik}, i, j, k = 1, 2, \dots, n$

将矩阵 A 划去第 i 行,将得到的矩阵记为 $(\alpha_1, \dots, \alpha_n)$., α_i 为 n-1 维列向量,且有 $\alpha_1 + \dots + \alpha_n = \mathbf{0}$. 于是

$$A_{ij} = (-1)^{i+j} \det(\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_{j-1}, \boldsymbol{\alpha}_{j+1}, \dots, \boldsymbol{\alpha}_n)$$

$$= (-1)^{i+j} \det(\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_{j-1}, \boldsymbol{\alpha}_{j+1}, \dots, \boldsymbol{\alpha}_{n-1}, -(\boldsymbol{\alpha}_1 + \dots + \boldsymbol{\alpha}_{n-1}))$$

$$= (-1)^{i+j} \sum_{m=1}^{n-1} \det(\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_{j-1}, \boldsymbol{\alpha}_{j+1}, \dots, \boldsymbol{\alpha}_{n-1}, -\boldsymbol{\alpha}_m)$$

$$= (-1)^{i+j} \det(\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_{j-1}, \boldsymbol{\alpha}_{j+1}, \dots, \boldsymbol{\alpha}_{n-1}, -\boldsymbol{\alpha}_j)$$

$$= (-1)^{i+j+1} \cdot (-1)^{n-j-1} \det(\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_{n-1})$$

$$= (-1)^{n+i} \det(\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_{n-1})$$

与 j 无关,故 $A_{ij} = A_{ik}$, A^* 的每一行相等,同理每一列也相等,即 A^* 的所有元素都相等。 下面用秩给出另一个更简单的解法: A 的每行元素之和是 0,即有:

$$A \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = \mathbf{0}$$

齐次方程有非零解,故 $\det(\mathbf{A}) = 0$, $\operatorname{rank}(\mathbf{A}) \leq n - 1$.

参考习题 39 的结论, 当 $rank(\mathbf{A}) \leq n-2$ 时, $rank(\mathbf{A})^* = 0$, 即 $\mathbf{A}^* = \mathbf{0}$, 显然 \mathbf{A}^* 的所有元素都相等.

当
$$\operatorname{rank}(\boldsymbol{A}) = n - 1$$
 时, $\operatorname{rank}(\boldsymbol{A})^* = 1$,即 $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{0}$ 的基础解系只有一个向量 $\begin{pmatrix} 1\\1\\\vdots\\1 \end{pmatrix}$.

又因为 $\mathbf{A}\mathbf{A}^* = \det(\mathbf{A})\mathbf{I}_n = \mathbf{0}$,所以 \mathbf{A}^* 的每一列都是 $\mathbf{A}\mathbf{x} = \mathbf{0}$ 的解,即每一列都是 $\begin{pmatrix} 1\\1\\\vdots\\1 \end{pmatrix}$ 的倍数,所

以 A^* 的每一列元素相等.

同理由 A 的每列元素之和是 0 可知 A^* 的每一行元素相等。综上 A^* 的所有元素都相等.

习题 12 (教材习题 31). 用 Cramer 法则求解下列线性方程组:

(1)
$$\begin{cases} x_1 - x_2 + x_3 = 3 \\ x_1 + x_2 + 4x_3 = 5 \\ x_1 + 3x_2 + 9x_3 = 7 \end{cases}$$
 (2)
$$\begin{cases} 2x_1 + x_2 - 5x_3 + x_4 = 8 \\ x_1 - 3x_2 - 6x_4 = 9 \\ 2x_2 - x_3 + 2x_4 = -5 \\ x_1 + 4x_2 - 7x_3 + 6x_4 = 0 \end{cases}$$

解. 直接由 Cramer 法则求解即可,这里仅给出答案:

(1)
$$\begin{cases} x_1 = 3 \\ x_2 = \frac{1}{3} \\ x_3 = \frac{1}{3} \end{cases}$$
 (2)
$$\begin{cases} x_1 = 3 \\ x_2 = -4 \\ x_3 = -1 \\ x_4 = 1 \end{cases}$$

习题 13 (教材习题 32). 设 x_0, x_1, \dots, x_n 及 y_0, y_1, \dots, y_n 是任给实数,其中 $x_i (0 \le i \le n$ 两两不等. 证明: 存在唯一的次数不超过 n 的多项式 p(x),满足 $p(x_i) = y_i, i = 0, 1, \dots, n$.

证明. 本题利用了 Vandermonde 行列式的性质.

不妨设多项式 p(x) 的次数为 n, 即设 $p(x) = a_0 + a_1 x + \cdots + a_n x^n$. 则有

$$\begin{cases} a_0 + a_1 x_0 + \dots + a_n x_0^n = y_0 \\ a_0 + a_1 x_1 + \dots + a_n x_1^n = y_1 \\ \vdots \\ a_0 + a_1 x_n + \dots + a_n x_n^n = y_n \end{cases}$$

将上式视为以 a_0, \cdots, a_n 为未知数的线性方程组, 所以有系数矩阵:

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{pmatrix}$$

其行列式为 $\prod_{0 \le j < i \le n} (x_i - x_j) \ne 0$ (因为 x_i 两两不等). 上述线性方程组有唯一解,即多项式 p(x) 的系数是唯一的。

事实上,本题证明了插值多项式的存在唯一性.

习题 14 (教材习题 35). 计算下列矩阵的逆矩阵:

$$(2)\begin{pmatrix} 1 & 4 & -1 & -1 \\ 1 & -2 & -1 & 1 \\ -3 & 3 & -4 & -2 \\ 0 & 1 & -1 & -1 \end{pmatrix} (3)\begin{pmatrix} & & & 1 \\ & & 1 & 1 \\ & & \ddots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix} (4)\begin{pmatrix} & & & \mathbf{A}_1 \\ & & & \mathbf{A}_2 \\ & & \ddots & & \\ \mathbf{A}_k & & & \end{pmatrix}.$$

解. (2) 用 4×4 单位矩阵进行扩展:

做行变换,将虚线左侧变为单位阵,最终得到:

$$\begin{pmatrix}
1 & 0 & 0 & 0 & \frac{1}{7} & \frac{3}{14} & -\frac{3}{14} & \frac{1}{2} \\
0 & 1 & 0 & 0 & \frac{2}{7} & -\frac{1}{14} & \frac{1}{14} & -\frac{1}{2} \\
0 & 0 & 0 & 1 & -\frac{1}{14} & -\frac{5}{14} & -\frac{1}{7} & 0 \\
0 & 0 & 0 & 1 & \frac{5}{14} & \frac{2}{7} & \frac{3}{14} & -\frac{3}{2}
\end{pmatrix}$$

逆矩阵在增广矩阵右侧,即

$$\begin{pmatrix} \frac{1}{7} & \frac{3}{14} & -\frac{3}{14} & \frac{1}{2} \\ \frac{2}{7} & -\frac{1}{14} & \frac{1}{14} & -\frac{1}{2} \\ -\frac{1}{14} & -\frac{5}{14} & -\frac{1}{7} & 0 \\ \frac{5}{14} & \frac{2}{7} & \frac{3}{14} & -\frac{3}{2} \end{pmatrix}$$

(4) 同理用单位阵进行扩展

将第 i 行 $\times (-1)$ 加到从第 i+1 行到第 n 行的每一行, $i=1,\cdots n-1$,得到

$$\begin{pmatrix}
0 & \cdots & 0 & 1 & 1 & 0 & \cdots & 0 \\
0 & \cdots & 1 & 0 & -1 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
1 & \cdots & 0 & 0 & 0 & \cdots & -1 & 1
\end{pmatrix}$$

最后交换行,将左侧变为单位阵

逆矩阵在增广矩阵右侧, 即

$$\begin{pmatrix} 0 & 0 & \cdots & -1 & 1 \\ 0 & \cdots & -1 & 1 & 0 \\ \vdots & \vdots & 1 & 0 & \vdots \\ -1 & 1 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

(4) 同理用单位阵进行扩展

$$\left(egin{array}{c|cccc} & A_1 & I & & & & \ & A_2 & & \ddots & & & \ & \ddots & & & & \ddots & \ & A_k & & & & I \end{array}
ight)$$

因为 A_i 可逆,用 A_i^{-1} 乘以每个分块,再做交换行将左侧变为单位阵,得到

逆矩阵在增广矩阵右侧, 即

$$egin{pmatrix} & & & A_k^{-1} \ & & & \ddots & \ & A_1^{-1} & & & \ A_1^{-1} & & & \end{pmatrix}$$

致谢

感谢各助教对本文档的校对工作和内容补充,感谢申伊卫老师以及同学对助教工作的支持。