Species	Concentration (count)	kon	k _{off}	reference
CB	'CBhi', 0.99e-6 i.e. 1/2 of total CB molarity	CBhi = 1.1e7	CBhi = 2.607	[3]
	(1.98*10e-6)	$CBhi_Ca = 1.1e7$	$CBhi_Ca = 2.607$	
	'CBlo', 0.99e-6 i.e. 1/2 of total CB molarity	CBlo = 8.7e7	CBlo = 35.76	
	(1.98*10e-6)	$CBlo_Ca = 8.7e7$	CBlo_Ca = 35.76	
PV	'PV', 4.55e-6			[5]
CR	'CRTT', 0.1976e-6 # 4/5 of total CR concentration	kon_T = 1.8e6	$koff_T = 53$	[2]
	(2 pairs of cooperative sites)	$kon_R = 3.1e8$	$koff_R = 20$	
	'CRind', 0.494e-6 # 1/5 of total CR	$kon_ind = 7.3e6$	$koff_ind = 252$	
CaM	'CaM_NtNt', 0.5 * 57.82e-6	$KonT_N = 7.7e8$	$KoffT_N = 1.6e5$	[4]
	'CaM_CtCt', 0.5 * 57.82e-6	KonR_N =	$KoffR_N = 2.2e4$	
		3.2e10	$KoffT_C = 2.6e3$	
		$KonT_C = 8.4e7$	$KoffR_C = 6.5$	
		$KonR_C = 2.5e7$		
SERCA	1000*1e12 m-2	kcst=17147e6	cst=8426.3	[7],[8]
		kcst=17147e6	kcst=8426.3	. 376 3
			kcst=250	
P-type VDCC	2 – 237 in 25 approximately equal steps	Calculated with	Calculated with the	[15]
		the parameters	parameters described	
		described in	in reference	
		reference		
PMCA	180 μm ⁻²	k1_pmca = 1.5e8	k2_pmca = 15	[6]
		k3_pmca = 12	$kl_pmca = 4.3$	

References

- [1] I. Bucurenciu, A. Kulik, B. Schwaller, M. Frotscher, and P. Jonas, "Nanodomain Coupling between Ca2+ Channels and Ca2+ Sensors Promotes Fast and Efficient Transmitter Release at a Cortical GABAergic Synapse," *Neuron*, 2008.
- [2] G. C. Faas, B. Schwaller, J. L. Vergara, and I. Mody, "Resolving the fast kinetics of cooperative binding: Ca2+ buffering by calretinin," PLoS Biol., 2007.
- [3] U. V. Nägerl, D. Novo, I. Mody, and J. L. Vergara, "Binding kinetics of calbindin-D(28k) determined by flash photolysis of caged Ca2+," *Biophys. J.*, 2000.
- [4] G. C. Faas, S. Raghavachari, J. E. Lisman, and I. Mody, "Calmodulin as a direct detector of Ca2+ signals," *Nat. Neurosci.*, 2011.
- [5] S. H. Lee, B. Schwaller, and E. Neher, "Kinetics of Ca2+ binding to parvalbumin in bovine chromaffin cells: Implications for [Ca2+] transients of neuronal dendrites," *J. Physiol.*, 2000.
- [6] T. M. Bartol et al., "Computational reconstitution of spine calcium transients from individual proteins," Front. Synaptic Neurosci., 2015.
- [7] T. Doi, S. Kuroda, T. Michikawa, and M. Kawato, "Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje cells," *J. Neurosci.*, 2005.
- [8] G. Antunes and E. De Schutter, "A stochastic signaling network mediates the probabilistic induction of cerebellar long-term depression," *J. Neurosci.*, 2012.
- [9] B. G. Wilhelm et al., "Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins," Science (80-.)., 2014.
- [10] I. Hepburn, W. Chen, S. Wils, and E. De Schutter, "STEPS: Efficient simulation of stochastic reaction-diffusion models in realistic morphologies," *BMC Syst. Biol.*, 2012.
- [11] R. P. Sammons, C. Clopath, and S. J. Barnes, "Size-Dependent Axonal Bouton Dynamics following Visual Deprivation In Vivo," *Cell Rep.*, 2018.
- [12] Y. Hara, C. S. Park, W. G. M. Janssen, M. Punsoni, P. R. Rapp, and J. H. Morrison, "Synaptic characteristics of dentate gyrus axonal boutons and their relationships with aging, menopause, and memory in female rhesus monkeys," *J. Neurosci.*, 2011.
- [13] A. Minelli, P. Castaldo, P. Gobbi, S. Salucci, S. Magi, and S. Amoroso, "Cellular and subcellular localization of Na+-Ca2+ exchanger protein isoforms, NCX1, NCX2, and NCX3 in cerebral cortex and hippocampus of adult rat," *Cell Calcium*, 2007.
- [14] A. Lörincz, B. Rózsa, G. Katona, E. S. Vizi, and G. Tamás, "Differential distribution of NCX1 contributes to spine-dendrite compartmentalization in CA1 pyramidal cells," Proc. Natl. Acad. Sci. U. S. A., 2007.
- [15] H. Anwar, S. Hong, and E. De Schutter, "Controlling Ca 2+-activated K + channels with models of Ca 2+ buffering in purkinje cells," *Cerebellum*, 2012.
- [16] S. Nadkarni, T. M. Bartol, C. F. Stevens, T. J. Sejnowski, and H. Levine, "Short-term plasticity constrains spatial organization of a hippocampal presynaptic terminal," *Proc. Natl. Acad. Sci. U. S. A.*, 2012.