

Clare, Ian, Qingyi, Wan Xian

Pesky Problem

According to the Centers for Disease Control and Prevention (CDC), West Nile virus (WNV) is the leading cause of mosquito-borne disease in the United States. Cases of WNV usually occurs from the start of summer until the end of autumn. Since 2004, the Public Health department of Chicago has been running a surveillance and control program on the trends of WNV cases and the population of Culex Mosquito in the city. As part of the mosquito control plan, pesticides are sprayed in areas of the city with a high influx of WNV cases.

Understanding the Problem

West Nile Virus

- Spread to humans through infected mosquitos
- 80% of infections do not develop symptoms
- 20% of infections develop fever with other symptoms such as headache, body aches, joint pains, vomiting, diarrhea or a rash
- 0.67% of infections develop a severe illness that affects the central nervous system, which may lead to death
- No vaccine or medication available to treat WNV

West Nile Virus Transmission Cycle

Understanding the Problem

Chicago

- City in the state of Illinois
- Population: 2.7 million (Singapore: 5.7 million)
- Area of approx. 600km² (Singapore: 728km²)
- WNV was first identified in Sept 2001, in 2 dead crows
- First human case was reported in 2002
- In 2006, mosquito control efforts were put in place as an elevated risk of WNV infection was identified

Our Mission

We are a team of data scientist from the Disease and Treatment Agency.

Our mission is to:

- Develop a machine learning (ML) classification model that predicts the probability of the presence of WNV. With a good prediction model, the agency will be able to allocate resources efficiently and arrange insecticide spraying in high transmission areas.
- Do a cost-benefit analysis of insecticide spraying in previous years. With a good analysis, the agency will be able to convince stakeholders to retain the insecticides spraying regime as part of its mosquito control plan.

O1 Data Cleaning & EDA

Modeling & Evaluation

O3 Cost Benefit Analysis

04 Insights & Recommendations

Data Cleaning & EDA

Data Description

Dataset	2007	2008	2009	2010	2011	2012	2013	2014
Train	1		1		1		1	
Test		1		1		1		1
Weather	1	1	1	1	1	1	1	1
Spray					1		1	

Data Cleaning

Train/Test

Change 'Date' datetype to datetime

Spray

- Drop rows with null value
- Drop duplicates

Weather

- Change 'Date' datetype to datetime
- Drop 'Water1' & 'CodeSum' (50% missing values)
- Fill null values
 - Impute with mean
 - Impute with values from Station 1
- Average weather statistics between weather stations 1 and 2

EDA - Train/Test Dataset

EDA - Train Dataset

- 1) Culex Pipiens/Restuans
- 2) Culex Pipiens
- 3) Culex Restuans
- 4) Culex Territans
- 5) Culex Salinarius
- 6) Culex Tarsalis
- 7) Culex Erraticus
- 8) Unspecified Culex

EDA - Train Dataset

- Imbalance dataset
 - 5% of records are WNV Present
 - o 95% of records are WNV Absent

EDA - Train Dataset

- Peak month for mosquitoes with WNV is August
- For year 2009 & 2011, the general population of WNV vector mosquitoes are much lower than that of 2007
- However, the figures spike upwards in 2013

EDA - Spray Dataset

Timeline of sprayed locations

date=2011-08-29

2011-08-29 2013-07-17 2013-08-08 2013-08-16 2013-08-29

Locations sprayed on each date

Modeling & Evaluations

Models

Train Data is extremely imbalanced

- About 5% records are present with WNV
- Remaining 95% records are absent of WNV

Methodology

- Resampling methods
 - SMOTE
 - Random Over Sampling/Random Under Sampling
- Model algorithms
 - Naive Bayes
 - Random Forest
 - k-Nearest Neighbors
 - Gradient Boosting

Key Evaluation Metrics

- F1 score
- ROC AUC score

Models

Model Algorithm	Resampling method		
Naive Bayes (Baseline)	Random Over Sampler		
Random Forest	SMOTE		
Random Forest	Random Under Sampler		
k-Nearest Neighbors	SMOTE		
k-Nearest Neighbors	Random Under Sampler		
Gradient Boosting	SMOTE		
Gradient Boosting	Random Under Sampler		

Baseline - Naive Bayes + ROS

F1 Score (Train)	0.10
F1 Score (Test)	0.11
ROC AUC	0.75
Precision	0.06
Recall	1.00
Average Precision	0.11

Baseline performed fairly

 Predicted a huge proportion of traps as WNV Present

Model Metrics so far

	Model	Resampling method	F1 (Train)	F1 (Test/Hold-Out)	ROC AUC	Precision	Recall	Average Precision	
	Naive Bayes (Baseline)	Random Over Sampler	0.10	0.11	0.75	0.06	1.00	0.11	
	Random Forest	SMOTE	0.27	0.24	0.80	0.17	0.40	0.20	
	Random Forest	Random Under Sampler	0.22	0.20	0.80	0.12	0.71	0.20	
1	kNN	SMOTE	0.22	0.21	0.73	0.14	0.41	0.12	
	kNN	Random Under Sampler	0.18	0.18	0.74	0.10	0.68	0.11	
	Gradient Boosting	SMOTE	0.30	0.26	0.81	0.19	0.41	0.21	
	Gradient Boosting	Random Under Sampler	0.22	0.21	0.80	0.12	0.75	0.19	

Gradient Boosting + Random Under Sampler

- Small difference in F1 scores
- High ROC AUC score

Chosen - Gradient Boosting + RUS

F1 Score (Train)	0.22
F1 Score (Test)	0.21
ROC AUC	0.80
Precision	0.12
Recall	0.75
Average Precision	0.19

Chosen model performed well

- Predicted 75% of traps with WNV correctly
- Predicted 29% of traps without WNV wrongly

Cost Benefit Analysis

Spraying Locations

By Dates

Locations sprayed on each date

By Clusters

spray

West Nile Virus In Chicago: 29-08-2011 to 05-09-2013

West Nile Virus In Chicago: 2011-08-24 (2 weeks before 2011-09-07 spray)

West Nile Virus In Chicago: 2011-09-21 (2 weeks after 2011-09-07 spray)

West Nile Virus In Chicago: 2013-07-25 (2 weeks before 2013-08-08 spray)

West Nile Virus In Chicago: 2013-08-22 (2 weeks after 2013-08-08 spray)

trap

trap with WMV

West Nile Virus In Chicago: 2013-08-22 (2 weeks before 2013-09-05 spray)

West Nile Virus In Chicago: 2013-09-19 (2 weeks after 2013-09-05 spray)

Pesticide Effectiveness (by Cluster)

2011 2013

Overall, effective in reducing number of mosquito

Compare Pesticide Effectiveness in 2011 & 2013

Using cluster 9 as an example:

<u>2011</u>

2013

2013

- Increased frequency.
- More timely. Spraying before peak of mosquito breeding.

Compare Pesticide Effectiveness in 2011 & 2013

2013

- Increased frequency
- More timely. Spraying before peak of mosquito breeding.
- Greater coverage

Pesticide Effectiveness - Cost Savings

Cost of Each Positive Human Case

- Medical costs
- Indirect cost due to lost productivity
- \$39,000 per positive case on average (source)

Year	Mosquito Reduced	Estimated Human Cases Reduced	Estimated Cost Savings (\$)		
2011	135	0.4	13,700		
2013	1362	4.3	166,500		

04

Insights & Recommendations

Conclusions

Best model

- Gradient Boosting + Random Under Sampler
- F1 score = 0.21, AUC = 0.8

Working with Imbalanced Dataset

- Preprocessing: Resampling techniques (undersampling, oversampling)
- Choice of Algorithm: Tree based algorithm tends to perform better
- Metrics: F1 score, AUC instead of accuracy score

Insights and Recommendations

Maximise benefits of pesticide

- Increase coverage
- Increase frequency
- Optimise timing, push forward the spraying dates before peak of mosquito breeding (~July)

Minimise excessive spraying

 Use model to generate predictions, target areas that are predicted to have virus

Next Steps

Better data for modelling

- **More balanced**: More records of traps with WNV present
- More features:
 - Air humidity
 - CO2 concentration
 - Distance to nearby water bodies
- Better record-keeping:
 - Same trap, same date, 1 record instead of multiple records
 - Include time for each record

THANK YOU

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik