代数学方法 (第一卷) 勘误表

李文威

2019-11-18

以下页码等信息参照高等教育出版社 2019 年 1 月出版之《代数学方法》第一卷, ISBN: 978-7-04-050725-6. 这些错误将在新版一并改正.

- ◇ **第 12 页, 倒数第 8 行** 原文 也可以由稍后的无穷公理保证. 更正 也可以划入稍后的无穷公理. 感谢王东瀚指正.
- ◇第 16 页, 定义 1.2.8 原文 若传递集 α 对于 ϵ 构成良序集, 则称 α 为序数. 更正 若 传递集 α 对于 x < y $\stackrel{\text{EV}}{\Leftrightarrow}$ $x \in y$ 成为良序集, 则称 α 为序数. 感谢王东瀚指正.
- **◇ 第 16 页, 倒数第 5 行 原文** 于是有 $\gamma \in \gamma$, 这同偏序的反称性矛盾. **更正** 于是 有 $\gamma \in \gamma$, 亦即在偏序集 (α, \leq) 中 $\gamma < \gamma$, 这同 < 的涵义 (≤ 但 \neq) 矛盾. 感谢王东 瀚指正.
- \diamond 第 19 页, 倒数第 5 行原文 $a_{\alpha} \notin C_{\alpha}$ 更正 $a_{\alpha} \notin \{a_{\beta}\}_{\beta < \alpha}$ 感谢胡旻杰指正
- ◆ 第 42 页, 倒数第 2 行
 原文
 … 同构、Z(…) ≃…
 更正
 … 同构 Z(…) ≃…
 感谢王
- ◇第54页最后 更正 图表微调成

兴许更易懂. 感谢熊锐提供意见.

- ◇ **第 94 页, 习题 5 倒数第 2 行 原文** Yang-Baxter 方程. **更正** 杨-Baxter 方程.
- \diamond 第 116 页, 第 5 行
 原文
 $\bar{H} \subseteq N_{\bar{G}}(\bar{H})$ 更正
 $\bar{H} \subseteq N_{\bar{G}}(\bar{H})$
- **◇ 第 126 页, 第 6 行 原文** (…)ⁿ_{i=0} 更正 (…)ⁿ⁻¹_{i=0}
- ◇ 第 149 页, 第 3 行 CRing 表交换环范畴. 另外此行应缩进.
- **第 205 页, 第 7 行** 原文
 M 作为 R/ann(M)-模自动是无挠的.
 更正
 M 作为

 R/ann(M)-模的零化子自动是 $\{0\}$.
 感谢戴懿韡指正.
- **◇第220页** 本页出现的 Bil(◆ × •; •) 都应该改成 Bil(•, •; •), 以和 216 页的符号保持一致.
- **◇第230页,第13行 原文** 萃取处 **更正** 萃取出
- **◇ 第 235 页底部** 图表中的垂直箭头 f_i, f_{i-1} 应改为 ϕ_i, ϕ_{i-1} .
- ◇ 第 237 页, 命题 6.8.5 证明最后两行 原文 故 $(v) \Rightarrow (i);$ 更正 故 $(iv) \Rightarrow (i);$

- **⋄第247頁,第6—7行 原文** 其长度记为 n + 1. **更正** 其长度定为 n.
- **⋄第311页, 命题 8.3.2 证明第4行** 更正 分别取...... 和 \overline{F}' | E' .
- ◇ 第 315 页, 倒数第 2 行原文deg $f(X^p) = pf(X)$ 更正deg $f(X^p) = p \deg f(X)$ 感谢杨历指正.
- **◇ 第 317 页, 倒数第 13 行** (出现两次) **原文** $\prod_{i=1}^{n}$... 更正 $\prod_{m=1}^{n}$...
- \diamond 第 359 页,倒数第 2 行 $\overline{\mathbb{R}}$ $\in A_F$ 更正 $\in A_E$ 感谢杨历指正.
- **⋄ 第 360 页, 证明** 将所有 χ (···) = 1 改成 χ (···) = 0, 以确保与之前的惯例一致. 感谢 杨历指正.

⋄第 395–396 页, 引理 10.5.3 的证明 从第 395 页倒数第 3 行起 (即证明第二段), 修改如下:

置 $f_k = \sum_{h \geq 0} c_{k,h} t^h$. 注意到 $\lim_{k \to \infty} \|f_k\| = 0$, 这确保 $c_h := \sum_{k \geq 0} c_{k,h}$ 存在. 我们断言 $f := \sum_{h \geq 0} c_h t^h \in K \langle t \rangle$ 并给出 $\sum_{k=0}^{\infty} f_k$.

对任意 $\epsilon > 0$, 取 M 充分大使得 $k \ge M \implies \|f_k\| < \epsilon$, 再取 N 使得当 $0 \le k < M$ 而 $h \ge N$ 时 $|c_{k,h}| < \epsilon$. 于是

$$h \geq N \implies \left(\forall k \geq 0, \; |c_{k,h}| \leq \epsilon \right) \implies |c_h| \leq \epsilon,$$

故 $f := \sum_{h>0} c_h t^h \in K(t)$. 其次, 在K(t)中有等式

$$f - \sum_{k=0}^M f_k = \sum_{h \geq 0} \left(c_h - \sum_{k=0}^M c_{k,h} \right) t^h = \sum_{h \geq 0} \left(\sum_{k > M} c_{k,h} \right) t^h,$$

从丽
$$f = \sum_{k=0}^{\infty} f_k$$

感谢高煦指正.

◇第417页,最后一行 它被刻画为对...