基礎数 (毎)	第8回小テスト 追試	学籍番号		jm .	r in it	氏名	
	きだす経過をできるだけ丁寧に記 答も減点の対象とする。	述すること	.説明が不十分	な場合は流	或点する.	X TILL	
(3) 最終的に遵き	出した答えを右側の四角の中に記	スサト				F - 3	

- 1 次の問に答えなさい. (各点)
 - (1) $f(x) = x^2 3$ に対し、 $x = -\frac{1}{2}$ から x = 1 までの平均変化率を求めなさい。

(4) 問題と解答は http://www.math.sie.dendai.ac.jp/hiroyasu/2010/bmed.html で公開する.

(1) 2

(2) $\lim_{x\to 2} \frac{x^2 - x - 2}{x^2 - 4}$ を求めなさい.

=
$$\lim_{x\to 2} \frac{(x-2)(x+1)}{(x+2)(x-2)} = \lim_{x\to 2} \frac{x+1}{x+2} = \frac{3}{4}$$

- (2) 3
- (3) $f(x) = 3x^2 x 3$ の x = -1 のおける微分係数 f'(-1) を定義にしたがって計算しなさい.

(省略)

(4) $f(x) = x^2 - x + 3$ の導関数 f'(x) を定義にしたがって計算しなさい。

(省略)

(5) $y = x^3 + 3x^2 - 2x + 1$ の x = -1 における接線の傾きを求めなさい。

$$(x^3 + 3x^2 - 2x + 1)' = 3x^2 + 6x - 2$$

 $x = -12 / + 1$; $3 - 6 - 2 = -5$

(5) -5

(6) 関数 $f(x) = 2x^4 + x^3 - 4x^2 - 2x + 10$ の導関数を求めなさい.

f(a) = 8 x 3+3x - 8x-2			
	0 - 5 + 101		

2 次の微分係数を求めなさい。(各 8 点)

(1)
$$f(x) = x^3 - 2x^2 + x + 5$$
 に対し、 $f'(\frac{1}{3})$

$$f(x) = 3x^{2} - 4x + 1$$

$$f(\frac{1}{3}) = \frac{1}{3} - \frac{4}{3} + 1 = -1 + 1 = 0$$

(3) $f(x) = 3x^2 - x - 3$ に対し、f'(-1)

3 関数 $f(x) = 2x^3 + ax^2 - 4x + 3$ が x = 2 のまわり (近傍) で減少関数となる さい。(8点)

f(2) < 0

| 4 | 関数 $f(x) = -2x^3 + 9x^2 - 12x - 5$ の極値を求めなさい (極値を与える x の値も明記すること). (8点)

$$f(x) = -8x^{2} + 18x - 12$$

$$= -6(x^{2} - 3x + 2)$$

$$= -6(x - 1)(x - 2)$$

$$f(1) = -2 + 9 - 12 - 5 = -18$$

極小値

記すること). (12点)

$$f(m = 3x^{2} + 12x + 9)$$

$$= 3(x^{2} + 4x + 3)$$

$$= 3(x + 1)(x + 3)$$

$$(2x + 1) = 0 \implies x = -3, -1$$

