Text Classification Classification & Evaluation

Ayoub Bagheri

Outline

- Text classification
- Algorithms
- Evaluation

Bag-of-Words representation

Doc1: Text mining is to identify useful information.

Doc2: Useful information is mined from text.

Doc3: Apple is delicious.

Document-Term matrix (DTM):

	text	information	identify	mining	mined	is	useful	to	from	apple	delicious
Doc1	1	1	1	1	0	1	1	1	0	0	0
Doc2	1	1	0	0	1	1	1	0	1	0	0
Doc3	0	0	0	0	0	1	0	0	0	1	1

Text classification

- Supervised learning: Learning a function that maps an input to an output based on example input-output pairs.
 - infer a function from labeled training data
 - use the inferred function to label new instances

- Human experts annotate a set of text data
 - Training set

Document	Class
Email1	Not spam
Email2	Not spam
Email3	Spam
	•••

Applications

- Assigning subject categories, topics, or genres
- Spam detection
- Authorship identification
- Age/gender identification
- Language Identification
- Sentiment analysis

Quiz?

- Which one **is not** a text classification task? (less likely to be)
 - Author's gender detection from text
 - Finding about the smoking conditions of patients from clinical letters
 - Grouping similar news articles
 - Classifying reviews into positive and negative sentiment

Simple pipeline

Preparing data

- Text pre-processing
- Data splitting
 - Training
 - Validation (development)
 - to tune the hyperparameters
 - Test
- Text representation

K-fold cross validation

https://scikitlearn.org/stable/modules/ cross_validation.html

How to classify this document?

Text Classification: definition

- Input:
 - a document d
 - a fixed set of classes $C = \{c_1, c_2, ..., c_l\}$
- Output: a predicted class $c \in C$

Classification Algorithms

Hand-coded rules

- Rules based on combinations of words or other features
- Accuracy can be high: If rules carefully refined by expert
- But building and maintaining these rules is expensive
- Data/Domain specifics

Supervised Machine Learning

- Input:
 - a document d
 - a fixed set of classes $C = \{c_1, c_2, ..., c_l\}$
 - A training set of m hand-labeled documents $(d_1, c_1), ..., (d_m, c_m)$
- Output:
 - a learned classifier *y:d* → *c*

Outline

- Naïve bayes
- Logistic regression
- Support-vector machines
- K-nearest neighbors
- Neural networks
- Deep learning

K-nearest neighbor

Naïve Bayes

y(

great	2
love	2
recommend	1
laugh	1
happy	1
• • •	• • •

Bayes' rule

For a document d and a class C

$$P(c \mid d) = \frac{P(d \mid c)P(c)}{P(d)}$$

Learning naïve Bayes

$$c_{MAP} = \underset{c|C}{\operatorname{argmax}} P(c \mid d)$$

MAP is "maximum a posteriori" = most likely class

$$= \underset{c \mid C}{\operatorname{argmax}} \frac{P(d \mid c)P(c)}{P(d)}$$

Bayes Rule

$$= \underset{c \mid C}{\operatorname{argmax}} P(d \mid c) P(c)$$

Dropping the denominator

Learning naïve Bayes

$$c_{MAP} = \underset{c \mid C}{\operatorname{argmax}} P(d \mid c) P(c)$$

Document d represented as features x1..xn

$$= \underset{c \mid C}{\operatorname{argmax}} P(x_1, x_2, \square, x_n \mid c) P(c)$$

Could only be estimated if a very, very large number of training examples was available.

We can just count the relative frequencies in a corpus

Learning naive Bayes

·Simply use the frequencies in the data

$$\hat{P}(c_{j}) = \frac{doccount(C = c_{j})}{N_{doc}}$$

$$\hat{P}(w_{i} | c_{j}) = \frac{count(w_{i}, c_{j})}{\overset{\circ}{\text{acount}(w, c_{j})}}$$

$$\frac{\hat{P}(w_{i} | c_{j}) = \frac{count(w_{i}, c_{j})}{\overset{\circ}{\text{acount}(w, c_{j})}}$$

Neural networks, "deep learning"

- Compositional approach to curve-fitting;
- "Biologically inspired" (but don't take that too seriously);
- Sound cool.

Neural network

Neural network

"Hidden" nodes:

Example:

$$h_1 = f(w_{11}x_1 + w_{12}x_2)$$

Output:

$$y = f(w_{21}h_1 + w_{22}h_2 + \dots + w_{25}h_5)$$

"Activation function":

- RElu f(z) =

What makes a neural net "deep"?

Neural Network Deep Learning Input Layer Hidden Layer Output Layer

Keep doing

$$z = g^{(n_h)}(g^{(\dots)}(g^{(2)}(g^{(1)}(\mathbf{x})))$$

then $y \approx f(z)$.

Deep learning

- Output of each hidden layer is input to subsequent one
- Allow representation learning by building complex features out of simpler ones
- Go deep: exponential advantages, less overfitting
- Aggressive parameterization + aggressive regularization
- Compositional: efficient parametrization
- Learn relevant features: "End-to-end"

Different architectures

- By adjusting the arrows, layers, and activation functions, you can create models that are tailored to specific data, e.g.
- Convolutional (CNN): images, text, sound
- Recurrent (RNN): time series, text
- Graph (GNN): networks

•

Deep learning in practice

- Good places to start:
 - https://keras.rstudio.com/
- ISLR Chapter 10

Chollet (R/Python version)

Evaluation

No free lunch

"Any two optimization algorithms are equivalent when their performance is averaged across all possible problems"

(Wolpert & MacReady)

Low

Confusion matrix

Accuracy

 Accuracy is a valid choice of evaluation for classification problems which are well balanced and not skewed.

Precision and recall

Precision: % of selected items that are correct
 Recall: % of correct items that are selected

- Precision is a valid choice of evaluation metric when we want to be very sure of our prediction.
- Recall is a valid choice of evaluation metric when we want to capture as many positives as possible.

relevant elements

How many selected items are relevant?

How many relevant items are selected?

Source: https://en.wikipedia.org/wiki/F-score

A combined measure: F

 A combined measure that assesses the P/R tradeoff is F measure (weighted harmonic mean):

$$F = \frac{1}{2 \frac{1}{P} + (1 - 2) \frac{1}{R}} = \frac{(b^2 + 1)PR}{b^2 P + R}$$

- The harmonic mean is a very conservative average
- People usually use balanced F1 measure
 - i.e., with β = 1 (that is, α = $\frac{1}{2}$): $F = \frac{2PR}{(P+R)}$

Practical Multiclass text classification of 20newsgroups articles.

Questions?