Planche 1.

Question de cours. Soit (f_n) une suite de fonctions continue en un point a d'un intervalle I. On suppose que (f_n) converge uniformément vers f. Montrer que f est continue en a.

Exercice 1. On pose $F(x) = \sum_{n \geq 0} \frac{(-1)^n}{n+x}$. Montrer que F est définie pour x > 0. Montrer que F y est C^1 . Montrer que F(x) + F(x+1) = 1/x. Montrer que $F(x) \sim 1/(2x)$ en $+\infty$.

Planche 2.

Question de cours. Montrer que ζ est C^{∞} .

Exercice 1. On pose $f_n(x) = \frac{x}{n(1+x^n)}$ sur $[0, +\infty[$. Montrer que la suite de fonction converge uniformément vers 0 sur $[0, +\infty[$.

Planche 3.

Question de cours. Énoncer le théorème de Fubini pour les sommes doubles.

Exercice 1. On pose $S(x) = \sum_{n \geq 1} \frac{1}{n + n^2 x}$. Montrer que S est définie pour x > 0. Montrer que S y est continue. Calculer la limite en $+\infty$ et trouver un équivalent en $+\infty$.