UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2008 question paper

9702 PHYSICS

9702/04

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper	
	GCE A/AS LEVEL – May/June 2008	9702	04	

Section A

1 (a) (i) angle (subtended) at centre of circle B1 by an arc equal in length to the radius (of the circle) **B1** [2] (ii) angle swept out per unit time / rate of change of angle M1 [2] by the string Α1 (b) friction provides / equals the centripetal force **B1** $0.72 W = md\omega^2$ C1 $0.72 \ mg = m \times 0.35 \omega^2$ $\omega = 4.49 \, (\text{rad s}^{-1})$ C1 $n = (\omega/2\pi) \times 60$ **B1** $= 43 \text{ min}^{-1} \text{ (allow 42)}$ **A1** [5] centripetal force increases as r increases (c) either centripetal force larger at edge M1 so flies off at edge first A1 [2] $(F = mr\omega^2 \text{ so edge first} - treat as special case and allow one mark)$ 2 (a) molecule(s) rebound from wall of vessel / hits walls **B1 B1** change in momentum gives rise to impulse / force (many impulses) averaged to give constant force / pressure the molecules are in random motion or **B1** [3] **(b) (i)** $p = \frac{1}{3} \rho < c^2 >$ C1 $1.02 \times 10^5 = \frac{1}{3} \times 0.900 \times \langle c^2 \rangle$ $\langle c^2 \rangle = 3.4 \times 10^5$ C1 $c_{\rm RMS} = 580 \; {\rm m \; s^{-1}}$ **A1** [3] (ii) either $\langle c^2 \rangle \propto T$ or $\langle c^2 \rangle = 2 \times 3.4 \times 10^5$ C1 $c_{RMS} = 830 \text{ m s}^{-1} \text{ (allow 820)}$ [2] **A1** (c) c_{RMS} depends on temperature (alone) **B**1

B1

[2]

so no effect

		gc c	•	GCE A/AS LEVEL – May/June 2008	0702	1 apci	
				GUE A/AS LEVEL - May/June 2008	9702	04	
3	(a)	(i)	amp	litude = 0.5 cm		A1	[1]
		(ii)	perio	od = 0.8 s		A1	[1]
	(b)	(i)		2π / T 7.85 rad s ⁻¹		C1	
			corre	ect use of $v = \omega \sqrt{(x_0^2 - x^2)}$ $7.85 \times \sqrt{(\{0.5 \times 10^{-2}\}^2 - \{0.2 \times 10^{-2}\}^2)}$		B1	
			(if ta 3.6 <u>-</u>	3.6 cm s^{-1} t		A1	[3]
		(ii)		15.8 cm		A1	[1]
	(c)	(i)	àmp	tinuous) loss of energy / reduction in litude (from the oscillating system) sed by force acting in opposite direction to the motion /	friction /	B1	
				ous forces		B1	[2]
		(ii)	line	e period / small increase in period displacement always less than that on Fig.3.2 <i>(ignore i</i> c <u>progressively</u> smaller	first T/4)	B1 M1 A1	[3]
4	(a)			ne moving unit positive charge nity to the point		M1 A1	[2]
	(b)	(i)	x =	18 cm		A1	[1]
		(ii)	(3.6 q =	$V_{\rm B} = 0$ $\times 10^{-9}$) / $(4\pi\varepsilon_0 \times 18 \times 10^{-2}) + q$ / $(4\pi\varepsilon_0 \times 12 \times 10^{-2}) = 0$ -2.4×10^{-9} C of $V_{\rm A} = V_{\rm B}$ giving 2.4×10^{-9} C scores one mark))	C1 C1 A1	[3]
	(c)	ford	ce =	ngth = (-) gradient of graph charge \times gradient / field strength or force ∞ gradient gest at $x = 27$ cm		B1 B1 B1	[3]
5	(a)	at $t = 1.0$ s, $V = 2.5$ V energy = $\frac{1}{2}CV^2$ $0.13 = \frac{1}{2} \times C \times (8.0^2 - 2.5^2)$ $C = 4500 \mu\text{F}$		C1 C1 M1 A0	[3]		
	(b)			o capacitors in series in all branches of combination ed into correct parallel arrangement		M1 A1	[2]

Mark Scheme

Page 3

Syllabus

Paper

	Page 4			Mark Scheme	Syllabus	Paper	r
				GCE A/AS LEVEL – May/June 2008	9702	04	
6	(a)	parallel ((to the field)		B1	[1]
	(b)		2.1 > F =	ue = $F \times d$ $\times 10^{-3} = F \times 2.8 \times 10^{-2}$ 0.075 N of 4.5 cm scores no marks)		C1 A1	[2]
		(ii)	zero			A1	[1]
	(c)	0.07	5 =	$N(\sin\theta)$ $B \times 0.170 \times 4.5 \times 10^{-2} \times 140$ $\times 10^{-2} \text{ T} = 70 \text{ mT}$		C1 M1 A0	[2]
	(d)		-	uced) <u>e.m.f.</u> is proportional to / equal to <u>rate of o</u> gnetic) flux (linkage)	change of	M1 A1	[2]
		(ii)	char	ige in flux linkage = BAN = $0.070 \times 4.5 \times 10^{-2} \times 2.8 \times 10^{-2}$ = 0.0123 Wb turns	10 ⁻² × 140	C1	
			(Not	ced e.m.f = $0.0123 / 0.14$ = 88 mV e: This is a simplified treatment. A full treatment aging of B $\cos\theta$ leading to a $\sqrt{2}$ factor)	ent would involve the	C1 A1	[3]
7	(a)	char	ge is	quantised / discrete quantities		B1	[1]
	(b)		•	llel so that the electric field is uniform / constant contal so that either oil drop will not drift sidew or field is vertical	vays	B1	ro1
				or electric force is equal to v	weignt	B1	[2]
		. ,	$q \times 8$	= mg 350 / (5.4 × 10 ⁻³) = 7.7 × 10 ⁻¹⁵ × 9.8 4.8 × 10 ⁻¹⁹ C <u>and is negative</u>		C1 C1 A1	[3]
	(c)			hanges by 1.6×10^{-19} C between droplets / integer on electron is 1.6×10^{-19} C	egral multiples	M1 A0	[1]
8	(a)	mon	since momentum before combining is zero momenta must be equal and opposite after equal momenta so photon energies equal			B1 B1 B1	[3]
	(h)	$E = mc^2$			C1		
	(10)	=	9.1 8.1	$ imes 10^{-31} imes (3.0 imes 10^8)^2$ $9 imes 10^{-14}$ (J) $19 imes 10^{-14}$) / (1.6 $ imes 10^{-13}$)		C1	
				1 MeV		A1	[3]

Page 5	Mark Scheme	Syllabus	Paper	
	GCE A/AS LEVEL – May/June 2008	9702	04	

Section B

9	(a) blocks labelled sensing device / sensor / transducer processor / processing unit / signal conditioning	B1 B1	[2]
	(b) (i) two LEDs with opposite polarities (ignore any series resistors) correctly identified as red and green	M1 A1	[2]
	(ii) correct polarity for diode to conduct identified hence red LED conducts when input (+)ve or vice versa	M1 A0	[1]
10	large / strong (constant) magnetic field nuclei rotate about direction of field / precess radio frequency / r.f. pulse causes resonance in nuclei , nuclei absorb energy (1)	B1 B1	
	(pulse) is at the Larmor frequency on relaxation / nuclei de-excite emit (pulse of) r.f. detected <u>and</u> processed non-uniform field (superimposed) allows for position of nuclei to be determined and for location of detection to be changed (1)	B1 B1 B1 B1	
	(B6 plus any two extra details, 1 each, max 2)	B2	[8]
11	(a) (i) frequency of carrier wave varies in synchrony with <u>displacement</u> of information signal	M1 A1	[2]
	 (ii) 1. zero (accept constant) 2. upper limit 530 kHz lower limit 470 kHz changes upper limit → lower limit → upper limit at 8000 s⁻¹ 	B1 B1 B1 B1	[1] [3]
	(b) e.g. more radio stations required / shorter range more complex electronics larger bandwidth required (any two sensible suggestions, 1 each)	B2	[2]
12	(a) (i) picking up of signal in one cable from a second (nearby) cable	M1 A1	[2]
	(ii) random (unwanted) signal / power that masks / added to / interferes with / distorts transmitted signal (allow this mark in (i) or (ii))	B1 B1	[2]
	(b) if P is power at receiver, $30 = 10 \lg(P / (6.5 \times 10^{-6}))$ $P = 6.5 \times 10^{-3}$ W loss along cable = $10 \lg(\{26 \times 10^{-3}\} / \{6.5 \times 10^{-3}\})$ = 6.0 dB length = $6.0 / 0.2 = 30 \text{ km}$	C1 C1 C1 C1 A1	[5]