Curs 6

Logica de ordinul I - sintaxa

Limbaj de ordinul I ${\cal L}$
\square unic determinat de $ au = (R,F,C,\mathit{ari})$
Termenii lui \mathcal{L} , notați $Trm_{\mathcal{L}}$, sunt definiți inductiv astfel:
orice variabilă este un termen;
orice simbol de constantă este un termen;
\square dacă $f \in \mathbf{F}$, $\mathit{ar}(f) = n$ și t_1, \ldots, t_n sunt termeni, atunci $\mathit{f}(t_1, \ldots, t_n)$ este termen.
Formulele atomice ale lui ${\mathcal L}$ sunt definite astfel:
\square dacă $R \in \mathbb{R}$, $ar(R) = n$ și t_1, \ldots, t_n sunt termeni, atunci $R(t_1, \ldots, t_n)$ este formulă atomică.
Formulele lui $\mathcal L$ sunt definite astfel:
orice formulă atomică este o formulă
\square dacă $arphi$ este o formulă, atunci $\lnot arphi$ este o formulă
\Box dacă φ și ψ sunt formule, atunci $\varphi \lor \psi$, $\varphi \land \psi$, $\varphi \to \psi$ sunt formule
dacă ve este o formulă și v este o variabilă atunci \vee avec sunt formule

Semantica

Pentru a stabili dacă o formulă este adevărată, avem nevoie de o interpretare într-o structură!

Cuprins

Logica de ordinul I - semantica(recap.)

2 Variabile libere. Variabile legate. Enunțuri

Forma Skolem

Logica de ordinul I - semantica(recap.)

Structură

Definiție

- O structură este de forma $A = (A, \mathbf{F}^A, \mathbf{R}^A, \mathbf{C}^A)$, unde
 - □ A este o mulțime nevidă
 - □ $\mathbf{F}^{\mathcal{A}} = \{ f^{\mathcal{A}} \mid f \in \mathbf{F} \}$ este o mulțime de operații pe A; dacă f are aritatea n, atunci $f^{\mathcal{A}} : A^n \to A$.
 - □ $\mathbf{R}^{\mathcal{A}} = \{R^{\mathcal{A}} \mid R \in \mathbf{R}\}$ este o mulțime de relații pe A; dacă R are aritatea n, atunci $R^{\mathcal{A}} \subseteq A^{n}$.
 - $\square \mathbf{C}^{\mathcal{A}} = \{ c^{\mathcal{A}} \in \mathcal{A} \mid c \in \mathbf{C} \}.$
 - \square A se numește universul structurii A.
 - \Box f^A (respectiv R^A , c^A) se numește interpretarea lui f (respectiv R, c) in A.

Structură

$$\mathcal{L}_1: \mathbf{R} = \{<\}, \ \mathbf{F} = \{s, +\}, \ \mathbf{C} = \{0\} \ \text{cu ari}(s) = 1, \ \text{ari}(+) = \text{ari}(<) = 2.$$

$$\mathcal{N} = (\mathbb{N}, \textit{s}^{\mathcal{N}}, +^{\mathcal{N}}, <^{\mathcal{N}}, 0^{\mathcal{N}})$$
 unde

- \square $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \quad s^{\mathcal{N}}(n):=n+1,$
- \square + $^{\mathcal{N}}$: $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$, + $^{\mathcal{N}}(n, m) := n + m$,
- $\square <^{\mathcal{N}} \subseteq \mathbb{N} \times \mathbb{N}, <^{\mathcal{N}} = \{(n, m) \mid n < m\},$
- \square $0^{\mathcal{N}} := 0$

Modelarea unei lumi

```
Presupunem că putem descrie o lume prin:

o mulțime de obiecte
funcții
relații
unde
funcțiile duc obiecte în obiecte
relațiile cu n argumente descriu proprietățile a n obiecte
```

Modelarea unei lumi

Exemplu

Să considerăm o lume în care avem cutii:

☐ Putem descrie lumea folosind objecte

$$O = \{base, a, b, c, d, e\}.$$

□ Putem descrie ce obiect se află deasupra altui obiect folosind un predicat binar on:

$$on = \{(e, c), (c, a), (e, d), (d, b), (a, base), (b, base)\}$$

Sursa exemplului: https://www.inf.ed.ac.uk/teaching/courses/lp/

Structură

Exemplu

Lumea în care avem cutii.

- \square Limbajul \mathcal{L}
 - \square $\mathbf{R} = \{on\}$
 - \square $\mathbf{F} = \emptyset$
 - \Box $\mathbf{C} = \emptyset$
 - \square ari(on) = 2
- □ O structură *A*:
 - \square $A = \{base, a, b, c, d, e\}$
 - \square $\mathbf{F}^{\mathcal{A}} = \emptyset$.
 - \Box $\mathbf{C}^{\mathcal{A}} = \emptyset$.
 - $\mathbb{R}^{A} = \{on^{A}\}, \text{ unde } on^{A} = \{(e, c), (c, a), (e, d), (d, b), (a, base), (b, base)\} \subseteq A^{2}.$

Fie $\mathcal L$ un limbaj de ordinul I și $\mathcal A$ o ($\mathcal L$ -)structură.

Definiție

O interpretare a variabilelor lui ${\mathcal L}$ în ${\mathcal A}$ este o funcție

$$I: V \rightarrow A$$
.

Fie $\mathcal L$ un limbaj de ordinul I și $\mathcal A$ o ($\mathcal L$ -)structură.

Definiție

O interpretare a variabilelor lui $\mathcal L$ în $\mathcal A$ este o funcție

$$I: V \rightarrow A$$
.

Definiție

Inductiv, definim interpretarea termenului t în A sub $I(t_I^A)$ prin:

- \square dacă $t = x_i \in V$, atunci $t_i^A := I(x_i)$
- \square dacă $t = c \in \mathbf{C}$, atunci $t_1^A := c^A$
- lacksquare dacă $t=f(t_1,\ldots,t_n)$, atunci $t_I^{\mathcal{A}}:=f^{\mathcal{A}}((t_1)_I^{\mathcal{A}},\ldots,(t_n)_I^{\mathcal{A}})$

Definim inductiv faptul că o formulă este adevărată în ${\cal A}$ sub interpretarea / astfel:

Definim inductiv faptul că o formulă este adevărată în $\mathcal A$ sub interpretarea $\mathit I$ astfel:

$$\square A, I \models P(t_1, \ldots, t_n) \text{ dacă } P^A((t_1)_I^A, \ldots, (t_n)_I^A)$$

Definim inductiv faptul că o formulă este adevărată în $\mathcal A$ sub interpretarea $\mathit I$ astfel:

- $\square \mathcal{A}, I \vDash P(t_1, \ldots, t_n) \text{ dacă } P^{\mathcal{A}}((t_1)_I^{\mathcal{A}}, \ldots, (t_n)_I^{\mathcal{A}})$
- $\ \ \Box \ \mathcal{A}, \mathit{I} \vDash \neg \varphi \ \mathsf{dac\check{a}} \ \mathcal{A}, \mathit{I} \not\vDash \varphi$

Definim inductiv faptul că o formulă este adevărată în $\mathcal A$ sub interpretarea I astfel:

- $\square A, I \models P(t_1, \ldots, t_n)$ dacă $P^A((t_1)_I^A, \ldots, (t_n)_I^A)$
- $\square \ \mathcal{A}, I \vDash \neg \varphi \ \mathsf{dac} \ \mathcal{A}, I \not\vDash \varphi$
- $\ \ \square \ \mathcal{A}, \mathit{I} \vDash \varphi \lor \psi \ \mathsf{dac\check{a}} \ \mathcal{A}, \mathit{I} \vDash \varphi \ \mathsf{sau} \ \mathcal{A}, \mathit{I} \vDash \psi$

Definim inductiv faptul că o formulă este adevărată în $\mathcal A$ sub interpretarea I astfel:

- $\square A, I \models P(t_1, \ldots, t_n) \text{ dacă } P^A((t_1)_I^A, \ldots, (t_n)_I^A)$
- $\square \ \mathcal{A}, I \vDash \neg \varphi \ \mathsf{dac} \ \mathcal{A}, I \not\vDash \varphi$
- $\square \mathcal{A}, I \vDash \varphi \lor \psi \text{ dacă } \mathcal{A}, I \vDash \varphi \text{ sau } \mathcal{A}, I \vDash \psi$
- $\ \Box \ \mathcal{A}, \mathit{I} \vDash \varphi \wedge \psi \ \mathsf{dac\check{a}} \ \mathcal{A}, \mathit{I} \vDash \varphi \ \mathsf{ și } \ \mathcal{A}, \mathit{I} \vDash \psi$

Definim inductiv faptul că o formulă este adevărată în $\mathcal A$ sub interpretarea I astfel:

- $\square A, I \models P(t_1, \ldots, t_n) \text{ dacă } P^A((t_1)_1^A, \ldots, (t_n)_1^A)$
- $\square \mathcal{A}, I \vDash \neg \varphi \text{ dacă } \mathcal{A}, I \not\vDash \varphi$
- $\square \mathcal{A}, I \vDash \varphi \lor \psi \text{ dacă } \mathcal{A}, I \vDash \varphi \text{ sau } \mathcal{A}, I \vDash \psi$
- $\square \ \mathcal{A}, I \vDash \varphi \land \psi \ \mathsf{dac} \ \mathcal{A}, I \vDash \varphi \ \mathsf{si} \ \mathcal{A}, I \vDash \psi$
- $\square \ \mathcal{A}, I \vDash \varphi \rightarrow \psi \ \mathsf{dac} \ \mathcal{A}, I \not\vDash \varphi \ \mathsf{sau} \ \mathcal{A}, I \vDash \psi$

Definim inductiv faptul că o formulă este adevărată în \mathcal{A} sub interpretarea I astfel:

- $\square A, I \models P(t_1, \ldots, t_n) \text{ dacă } P^A((t_1)_1^A, \ldots, (t_n)_I^A)$
- $\square \mathcal{A}, I \vDash \neg \varphi \text{ dacă } \mathcal{A}, I \not\vDash \varphi$
- $\square \mathcal{A}, I \vDash \varphi \lor \psi \text{ dacă } \mathcal{A}, I \vDash \varphi \text{ sau } \mathcal{A}, I \vDash \psi$
- \square $A, I \vDash \varphi \land \psi$ dacă $A, I \vDash \varphi$ și $A, I \vDash \psi$
- $\square \ \mathcal{A}, I \vDash \varphi \rightarrow \psi \ \mathsf{dac} \ \mathcal{A}, I \not\vDash \varphi \ \mathsf{sau} \ \mathcal{A}, I \vDash \psi$
- \square $A, I \models \forall x \varphi$ dacă pentru orice $a \in A$ avem $A, I_{x_i \leftarrow a} \models \varphi$
- $\square A, I \vDash \exists x \varphi \text{ dacă există } a \in A \text{ astfel încât } A, I_{x_i \leftarrow a} \vDash \varphi$

unde pentru orice
$$a \in A$$
, $I_{x \leftarrow a}(y) = \begin{cases} I(y) & \text{dacă } y \neq x \\ a & \text{dacă } y = x \end{cases}$

- \square O formulă φ este adevărată într-o structură \mathcal{A} , notat $\mathcal{A} \models \varphi$, dacă este adevărată în \mathcal{A} sub orice interpretare.
 - Spunem că \mathcal{A} este model al lui φ .
- \square O formulă φ este adevărată în logica de ordinul I, notat $\vDash \varphi$, dacă este adevărată în orice structură.

Exemplu

Fie limbajul \mathcal{L} cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu ari(s) = ari(P) = 1.

Exemple

Fie limbajul \mathcal{L} cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu ari(s) = ari(P) = 1.

Fie structura $\mathcal{N}=(\mathbb{N}, s^{\mathcal{N}}, P^{\mathcal{N}}, 0^{\mathcal{N}})$ unde $0^{\mathcal{N}}:=1$ și

- \square $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n):=n^2$
- \square $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{n \mid n \text{ este impar } \}$

Exemple

Fie limbajul \mathcal{L} cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu ari(s) = ari(P) = 1.

Fie structura $\mathcal{N}=\left(\mathbb{N}, \textit{s}^{\mathcal{N}}, \textit{P}^{\mathcal{N}}, 0^{\mathcal{N}}\right)$ unde $0^{\mathcal{N}}:=1$ și

- \square $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n):=n^2$
- \square $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{n \mid n \text{ este impar }\}$

Demonstrați că $\mathcal{N} \vDash \forall x (P(x) \rightarrow P(s(x))).$

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.

Fie structura
$$\mathcal{N}=\left(\mathbb{N}, \textit{s}^{\mathcal{N}}, \textit{P}^{\mathcal{N}}, 0^{\mathcal{N}}\right)$$
 unde $0^{\mathcal{N}}:=1$ și

$$\square$$
 $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n) := n^2$

$$\square$$
 $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{ n \mid n \text{ este impar } \}$

Demonstrați că
$$\mathcal{N} \vDash \forall x (P(x) \rightarrow P(s(x)))$$
.

Fie $I: V \to \mathbb{N}$ o interpretare. Observăm că

$$\mathcal{N}, I \vDash P(x)$$
 dacă $P^{\mathcal{N}}(I(x))$, adică

Exemple

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.

Fie structura
$$\mathcal{N}=\left(\mathbb{N}, \textit{s}^{\mathcal{N}}, \textit{P}^{\mathcal{N}}, 0^{\mathcal{N}}\right)$$
 unde $0^{\mathcal{N}}:=1$ și

$$\square$$
 $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n):=n^2$

$$\square$$
 $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{ n | n \text{ este impar } \}$

Demonstrați că $\mathcal{N} \vDash \forall x (P(x) \rightarrow P(s(x)))$.

Fie $I:V\to\mathbb{N}$ o interpretare. Observăm că

 $\mathcal{N}, I \vDash P(x)$ dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \vDash P(x)$ dacă I(x) este impar.

Exemplu

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.

Fie structura
$$\mathcal{N}=(\mathbb{N}, s^{\mathcal{N}}, P^{\mathcal{N}}, 0^{\mathcal{N}})$$
 unde $0^{\mathcal{N}}:=1$ și

$$\square$$
 $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n) := n^2$

$$\square$$
 $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{ n \mid n \text{ este impar } \}$

Demonstrați că
$$\mathcal{N} \vDash \forall x (P(x) \rightarrow P(s(x))).$$

Fie $I:V\to\mathbb{N}$ o interpretare. Observăm că

$$\mathcal{N}, I \vDash P(x)$$
 dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \vDash P(x)$ dacă $I(x)$ este impar.

$$\mathcal{N}, I \vDash \forall x (P(x) \rightarrow P(s(x)))$$
 dacă

Exemplu

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.

Fie structura
$$\mathcal{N}=\left(\mathbb{N}, \textit{s}^{\mathcal{N}}, \textit{P}^{\mathcal{N}}, 0^{\mathcal{N}}\right)$$
 unde $0^{\mathcal{N}}:=1$ și

$$\square$$
 $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n) := n^2$

$$\square$$
 $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{ n \mid n \text{ este impar } \}$

Demonstrați că
$$\mathcal{N} \vDash \forall x (P(x) \rightarrow P(s(x)))$$
.

Fie $I:V \to \mathbb{N}$ o interpretare. Observăm că

$$\mathcal{N}, I \vDash P(x)$$
 dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \vDash P(x)$ dacă $I(x)$ este impar.

$$\mathcal{N}, I \vDash \forall x (P(x) \to P(s(x))) \text{ dacă}$$

$$\mathcal{N}, I_{x \leftarrow n} \vDash P(x) \rightarrow P(s(x))$$
 oricare $n \in N$

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.

Fie structura
$$\mathcal{N}=\left(\mathbb{N}, \textit{s}^{\mathcal{N}}, \textit{P}^{\mathcal{N}}, 0^{\mathcal{N}}\right)$$
 unde $0^{\mathcal{N}}:=1$ și

$$\square$$
 $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n) := n^2$

$$\square$$
 $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{ n \mid n \text{ este impar } \}$

Demonstrați că
$$\mathcal{N} \vDash \forall x (P(x) \rightarrow P(s(x)))$$
.

Fie
$$I:V \to \mathbb{N}$$
 o interpretare. Observăm că

$$\mathcal{N}, I \vDash P(x)$$
 dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \vDash P(x)$ dacă $I(x)$ este impar.

$$\mathcal{N}, \mathit{I} \vDash orall x(\mathit{P}(\mathit{x})
ightarrow \mathit{P}(\mathit{s}(\mathit{x})))$$
 dacă

$$\mathcal{N}, I_{x \leftarrow n} \vDash P(x) \rightarrow P(s(x))$$
 oricare $n \in N$

$$\mathcal{N}, I_{x \leftarrow n} \not\models P(x) \text{ sau } \mathcal{N}, I_{x \leftarrow n} \models P(s(x)) \text{ oricare } n \in N$$

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$. Fie structura $\mathcal{N} = (\mathbb{N}, s^{\mathcal{N}}, P^{\mathcal{N}}, 0^{\mathcal{N}})$ unde $0^{\mathcal{N}} := 1$ și $\mathbb{N} \to \mathbb{N}$, $s^{\mathcal{N}}(n) := n^2$ $\mathbb{N} \to \mathbb{N}$, $p^{\mathcal{N}} = \{n \mid n \text{ este impar }\}$ Demonstrați că $\mathcal{N} \models \forall x (P(x) \to P(s(x)))$. Fie $I: V \to \mathbb{N}$ o interpretare. Observăm că $\mathcal{N}, I \models P(x)$ dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \models P(x)$ dacă $I(x)$ este impar. $I(x) \mapsto I(x) \mapsto$

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$. Fie structura $\mathcal{N} = (\mathbb{N}, s^{\mathcal{N}}, P^{\mathcal{N}}, 0^{\mathcal{N}})$ unde $0^{\mathcal{N}} := 1$ și $\mathbb{N} \to \mathbb{N}$, $s^{\mathcal{N}}(n) := n^2$ $\mathbb{N} \to \mathbb{N}$, $s^{\mathcal{N}}(n) := n^2$ Demonstrați că $\mathcal{N} \models \forall x (P(x) \to P(s(x)))$. Fie $I: V \to \mathbb{N}$ o interpretare. Observăm că $\mathcal{N}, I \models P(x)$ dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \models P(x)$ dacă $I(x)$ este impar. $I(x) \mapsto I(x) \mapsto I(x) \mapsto I(x) \mapsto I(x)$ oricare $I(x) \mapsto I(x) \mapsto I(x)$ oricare $I(x) \mapsto$

Exemple

Fie limbajul
$$\mathcal{L}$$
 cu $\mathbf{F} = \{s\}$, $\mathbf{R} = \{P\}$, $\mathbf{C} = \{0\}$ cu $ari(s) = ari(P) = 1$.

Fie structura
$$\mathcal{N}=(\mathbb{N},s^{\mathcal{N}},P^{\mathcal{N}},0^{\mathcal{N}})$$
 unde $0^{\mathcal{N}}:=1$ și

$$\square$$
 $s^{\mathcal{N}}: \mathbb{N} \to \mathbb{N}, \ s^{\mathcal{N}}(n) := n^2$

$$\square$$
 $P^{\mathcal{N}} \subset \mathbb{N}$, $P^{\mathcal{N}} = \{n \mid n \text{ este impar }\}$

Demonstrați că
$$\mathcal{N} \vDash \forall x (P(x) \rightarrow P(s(x)))$$
.

Fie
$$\mathit{I}:\mathit{V} \to \mathbb{N}$$
 o interpretare. Observăm că

$$\mathcal{N}, I \vDash P(x)$$
 dacă $P^{\mathcal{N}}(I(x))$, adică $\mathcal{N}, I \vDash P(x)$ dacă $I(x)$ este impar.

$$\mathcal{N}, I \vDash \forall x (P(x) \rightarrow P(s(x)))$$
 dacă

$$\mathcal{N}, I_{x \leftarrow n} \vDash P(x) \rightarrow P(s(x))$$
 oricare $n \in N$

$$\mathcal{N}, I_{x \leftarrow n} \not\models P(x) \text{ sau } \mathcal{N}, I_{x \leftarrow n} \models P(s(x)) \text{ oricare } n \in N$$

$$I_{x \leftarrow n}(x)$$
 nu este impar sau $I_{x \leftarrow n}(s(x))$ este impar oricare $n \in \mathbb{N}$ n este par sau n^2 este impar oricare $n \in \mathbb{N}$

ceea ce este întodeauna adevărat.

Logica de ordinul I - semantică

- O structură este de forma $\mathcal{A}=(A,\mathbf{F}^{\mathcal{A}},\mathbf{R}^{\mathcal{A}},\mathbf{C}^{\mathcal{A}})$, unde
 - ☐ A este o mulţime nevidă
 - □ $\mathbf{F}^{A} = \{ f^{A} \mid f \in \mathbf{F} \}$ este o mulțime de operații pe A; dacă f are aritatea n, atunci $f^{A} : A^{n} \to A$.
 - $□ R^{A} = \{R^{A} \mid R \in R\} \text{ este o multime de relații pe } A;$ dacă R are aritatea n, atunci $R^{A} \subseteq A^{n}$.
 - $\square \mathbf{C}^{\mathcal{A}} = \{ c^{\mathcal{A}} \in A \mid c \in \mathbf{C} \}.$
- O interpretare a variabilelor lui $\mathcal L$ în $\mathcal A$ ($\mathcal A$ -interpretare) este o funcție $\mathit I: V \to A$.

Inductiv, definim interpretarea termenului t în A sub I notat t_I^A .

Inductiv, definim când o formulă este adevărată în \mathcal{A} în interpretarea I notat $\mathcal{A}, I \vDash \varphi$. În acest caz spunem că (\mathcal{A}, I) este model pentru φ .

- O formulă φ este adevărată într-o structură \mathcal{A} , notat $\mathcal{A} \vDash \varphi$, dacă este adevărată în \mathcal{A} sub orice interpretare. Spunem că \mathcal{A} este model al lui φ .
- O formulă φ este adevărată în logica de ordinul I, notat $\vDash \varphi$, dacă este adevărată în orice structură. O formulă φ este validă dacă $\vDash \varphi$.
- O formulă φ este satisfiabilă dacă există o structură \mathcal{A} și o \mathcal{A} -interpretare I astfel încât \mathcal{A} , $I \vDash \varphi$.

Consecință logică

Definiție

O formulă φ este o consecință logică a formulelor $\varphi_1, \ldots, \varphi_n$, notat

$$\varphi_1,\ldots,\varphi_n\vDash\varphi$$
,

dacă pentru orice structură ${\cal A}$

dacă
$$\mathcal{A} \vDash \varphi_1$$
 și . . . și $\mathcal{A} \vDash \varphi_n$, atunci $\mathcal{A} \vDash \varphi$

Consecință logică

Definiție

O formulă φ este o consecință logică a formulelor $\varphi_1, \ldots, \varphi_n$, notat

$$\varphi_1,\ldots,\varphi_n\vDash\varphi$$
,

dacă pentru orice structură ${\cal A}$

dacă
$$\mathcal{A} \vDash \varphi_1$$
 și . . . și $\mathcal{A} \vDash \varphi_n$, atunci $\mathcal{A} \vDash \varphi$

Problemă semidecidabilă!

Nu există algoritm care să decidă mereu dacă o formula este sau nu consecință logică a altei formule în logica de ordinul I!

Formule echivalente

 \square Fie φ și ψ două formule. Notăm prin

$$\varphi \bowtie \psi$$

faptul că $\vDash \varphi \leftrightarrow \psi$, adică φ și ψ au aceleași modele.

Exemplu

Dacă P este un simbol de relație de aritate 1 și x și y sunt variabile distincte, atunci

$$\forall x P(x) \exists \forall y P(y)$$
 şi $P(x) \exists P(y)$

Validitate și satisfiabilitate

Propoziție

Dacă φ este o formulă atunci

 φ este validă dacă și numai dacă $\neg \varphi$ nu este satisfiabilă.

Demonstrație

Exercițiu!

Validitate și satisfiabilitate

Propoziție

Dacă φ este o formulă atunci

 φ este validă dacă și numai dacă $\neg \varphi$ nu este satisfiabilă.

Demonstrație

Exercițiu!

Vom arăta că pentru a verifica validitatea/satisfiabilitatea este suficient să ne uităm la o singură structură.

Fie φ o formulă și $\mathit{Var}(\varphi)$ mulțimea variabilelor care apar în φ .

Orice apariție a unei variabile x într-o formula $\forall x \varphi$ sau $\exists x \varphi$ se numește legată. Celelalte apariții se numesc libere.

Fie φ o formulă și $Var(\varphi)$ mulțimea variabilelor care apar în φ .

Orice apariție a unei variabile x într-o formula $\forall x \varphi$ sau $\exists x \varphi$ se numește legată. Celelalte apariții se numesc libere.

Exemplu

Fie limbajul \mathcal{L}_r cu un singur simbol de relație R de aritate 2.

$$\forall y (\forall y (R(y,x) \lor R(y,z)) \rightarrow \forall x R(x,y))$$

Fie φ o formulă și $Var(\varphi)$ mulțimea variabilelor care apar în φ .

Orice apariție a unei variabile x într-o formula $\forall x \varphi$ sau $\exists x \varphi$ se numește legată. Celelalte apariții se numesc libere.

Exempli

Fie limbajul \mathcal{L}_r cu un singur simbol de relație R de aritate 2.

$$\forall y (\forall y (R(y,x) \lor R(y,z)) \rightarrow \forall x R(x,y))$$

- \square Prima aparitie a lui x este liberă,
- \square dar a doua apariție a lui x este legată de apariția lui $\forall x$.

Fie φ o formulă și $Var(\varphi)$ mulțimea variabilelor care apar în φ .

Orice apariție a unei variabile x într-o formula $\forall x \varphi$ sau $\exists x \varphi$ se numește legată. Celelalte apariții se numesc libere.

Exemplu

Fie limbajul \mathcal{L}_r cu un singur simbol de relație R de aritate 2.

$$\forall y (\forall y \underline{(R(y,x) \vee R(y,z))} \rightarrow \forall x \underline{R(x,y)})$$

- Prima aparitie a lui x este liberă,
- \square dar a doua apariție a lui x este legată de apariția lui $\forall x$.
- \square Primele două apariții ale lui y sunt legate de a doua apariție a lui $\forall y$,
- \square iar a treia apariție a lui y este legată de prima apariție a lui $\forall y$.

Fie φ o formulă și $Var(\varphi)$ mulțimea variabilelor care apar în φ .

Orice apariție a unei variabile x într-o formula $\forall x \varphi$ sau $\exists x \varphi$ se numește legată. Celelalte apariții se numesc libere.

Exemplu

Fie limbajul \mathcal{L}_r cu un singur simbol de relație R de aritate 2.

$$\forall y (\forall y \underline{(R(y,x) \vee R(y,z))} \rightarrow \forall x \underline{R(x,y)})$$

- □ Prima aparitie a lui x este liberă,
- \square dar a doua apariție a lui x este legată de apariția lui $\forall x$.
- \square Primele două apariții ale lui y sunt legate de a doua apariție a lui $\forall y$,
- \square iar a treia apariție a lui y este legată de prima apariție a lui $\forall y$.
- □ z este liberă.

- \square O formulă φ este în formă rectificată dacă:
 - 1 nici o variabilă nu apare și liberă și legată
 - 2 cuantificatori distincți leagă variabile distincte

- \square O formulă φ este în formă rectificată dacă:
 - 1 nici o variabilă nu apare și liberă și legată
 - 2 cuantificatori distincți leagă variabile distincte
- \square Pentru orice formulă φ există o formulă φ^r în formă rectificată astfel încât $\varphi \bowtie \varphi^r$.

- \square O formulă φ este în formă rectificată dacă:
 - 1 nici o variabilă nu apare și liberă și legată
 - 2 cuantificatori distincți leagă variabile distincte
- \square Pentru orice formulă φ există o formulă φ^r în formă rectificată astfel încât $\varphi \bowtie \varphi^r$.
- ☐ Intuitiv, forma rectificată a unei formule se obține prin redenumirea variabilelor astfel încât să nu apară conflicte.

- \square O formulă φ este în formă rectificată dacă:
 - nici o variabilă nu apare și liberă și legată
 - 2 cuantificatori distincți leagă variabile distincte
- \square Pentru orice formulă φ există o formulă φ^r în formă rectificată astfel încât $\varphi \bowtie \varphi^r$.
- □ Intuitiv, forma rectificată a unei formule se obține prin redenumirea variabilelor astfel încât să nu apară conflicte.

Exemplu

$$\forall x P(x) \land \exists x \forall y R(x, y) \land S(x)$$

- \square O formulă φ este în formă rectificată dacă:
 - 1 nici o variabilă nu apare și liberă și legată
 - 2 cuantificatori distincți leagă variabile distincte
- \square Pentru orice formulă φ există o formulă φ^r în formă rectificată astfel încât $\varphi \bowtie \varphi^r$.
- □ Intuitiv, forma rectificată a unei formule se obține prin redenumirea variabilelor astfel încât să nu apară conflicte.

Exempli

$$\forall x P(x) \land \exists x \forall y R(x, y) \land S(x) \ \exists \ \forall x P(x) \land \exists x_1 \forall y R(x_1, y) \land S(x_2)$$

- \square O formulă φ este în formă rectificată dacă:
 - nici o variabilă nu apare și liberă și legată
 - 2 cuantificatori distincți leagă variabile distincte
- \square Pentru orice formulă φ există o formulă φ^r în formă rectificată astfel încât $\varphi \bowtie \varphi^r$.
- □ Intuitiv, forma rectificată a unei formule se obține prin redenumirea variabilelor astfel încât să nu apară conflicte.

Exempli

$$\forall x P(x) \land \exists x \forall y R(x, y) \land S(x) \ \exists \ \forall x P(x) \land \exists x_1 \forall y R(x_1, y) \land S(x_2)$$

În continuare vom presupune că toate formulele sunt în formă rectificată.

Fie φ o formulă și $\mathit{Var}(\varphi)$ mulțimea variabilelor care apar în φ .

 \square Variabilele libere ale unei formule φ sunt variabilele care nu sunt cuantificate.

Fie φ o formulă și $Var(\varphi)$ mulțimea variabilelor care apar în φ .

- \Box Variabilele libere ale unei formule φ sunt variabilele care nu sunt cuantificate.
- □ Mulțimea $FV(\varphi)$ a variabilelor libere ale unei formule φ poate fi definită prin inducție după formule:

```
\begin{array}{lcl} FV(\varphi) & = & Var(\varphi), & \operatorname{dac\check{a}} \varphi \text{ este formul\check{a} atomic\check{a}} \\ FV(\neg\varphi) & = & FV(\varphi) \\ FV(\varphi \circ \psi) & = & FV(\varphi) \cup FV(\psi), & \operatorname{dac\check{a}} \circ \in \{\to, \lor, \land\} \\ FV(\forall x \varphi) & = & FV(\varphi) - \{x\} \\ FV(\exists x \varphi) & = & FV(\varphi) - \{x\} \end{array}
```

Fie φ o formulă și $Var(\varphi)$ mulțimea variabilelor care apar în φ .

- \square Variabilele libere ale unei formule φ sunt variabilele care nu sunt cuantificate.
- □ Mulţimea $FV(\varphi)$ a variabilelor libere ale unei formule φ poate fi definită prin inducţie după formule:

```
\begin{array}{lcl} FV(\varphi) & = & Var(\varphi), & \operatorname{dac\check{a}} \varphi \text{ este formul\check{a} atomic\check{a}} \\ FV(\neg\varphi) & = & FV(\varphi) \\ FV(\varphi \circ \psi) & = & FV(\varphi) \cup FV(\psi), & \operatorname{dac\check{a}} \circ \in \{\to, \lor, \land\} \\ FV(\forall x \varphi) & = & FV(\varphi) - \{x\} \\ FV(\exists x \varphi) & = & FV(\varphi) - \{x\} \end{array}
```

 \square O variabilă $v \in Var(\varphi)$ care nu este liberă se numește legată în φ .

Fie φ o formulă și $Var(\varphi)$ mulțimea variabilelor care apar în φ .

- \Box Variabilele libere ale unei formule φ sunt variabilele care nu sunt cuantificate.
- □ Mulțimea $FV(\varphi)$ a variabilelor libere ale unei formule φ poate fi definită prin inducție după formule:

```
\begin{array}{lcl} FV(\varphi) & = & Var(\varphi), & \operatorname{dac\check{a}} \varphi \text{ este formul\check{a} atomic\check{a}} \\ FV(\neg\varphi) & = & FV(\varphi) \\ FV(\varphi \circ \psi) & = & FV(\varphi) \cup FV(\psi), & \operatorname{dac\check{a}} \circ \in \{\to, \lor, \land\} \\ FV(\forall x \varphi) & = & FV(\varphi) - \{x\} \\ FV(\exists x \varphi) & = & FV(\varphi) - \{x\} \end{array}
```

- \square O variabilă $v \in Var(\varphi)$ care nu este liberă se numește legată în φ .
- ☐ Un enunț este o formulă fără variabile libere.

Fie φ o formulă și $Var(\varphi)$ mulțimea variabilelor care apar în φ .

- \square Variabilele libere ale unei formule φ sunt variabilele care nu sunt cuantificate.
- □ Mulţimea $FV(\varphi)$ a variabilelor libere ale unei formule φ poate fi definită prin inducţie după formule:

```
\begin{array}{lcl} FV(\varphi) & = & Var(\varphi), & \operatorname{dac\check{a}} \varphi \text{ este formul\check{a} atomic\check{a}} \\ FV(\neg\varphi) & = & FV(\varphi) \\ FV(\varphi \circ \psi) & = & FV(\varphi) \cup FV(\psi), & \operatorname{dac\check{a}} \circ \in \{\to, \lor, \land\} \\ FV(\forall x \varphi) & = & FV(\varphi) - \{x\} \\ FV(\exists x \varphi) & = & FV(\varphi) - \{x\} \end{array}
```

- \square O variabilă $v \in Var(\varphi)$ care nu este liberă se numește legată în φ .
- ☐ Un enunț este o formulă fără variabile libere.
- □ Pentru orice structură \mathcal{A} și orice enunț φ , o \mathcal{A} -interpretare I nu joacă niciun rol în a determina dacă \mathcal{A} , $I \vDash \varphi$.

Exemplu

Fie limbajul \mathcal{L}_r cu un singur simbol de relație R de aritate 2.

Care din următoarele formule sunt enunțuri?

- $\forall x \forall y (R(x, y) \lor R(x, z))$
- $\forall x \forall y (R(x, y) \lor \forall z R(x, z))$

Exemplu

Fie limbajul \mathcal{L}_r cu un singur simbol de relație R de aritate 2.

Care din următoarele formule sunt enunțuri?

- $\forall x \forall y R(x, y) \text{enunt}$
- $\forall x \forall y (R(x,y) \lor R(x,z))$
- $\forall x \forall y (R(x,y) \lor \forall z R(x,z)) enunt$

Enunțuri

Fie φ o formulă și $FV(\varphi) = \{x_1, \dots, x_n\}.$

Propozitie

Pentru orice structură ${\cal A}$ avem

$$\mathcal{A} \vDash \varphi$$
 dacă și numai dacă $\mathcal{A} \vDash \forall x_1 \cdots \forall x_n \varphi$.

Enunțuri

Fie φ o formulă și $FV(\varphi) = \{x_1, \dots, x_n\}.$

Propozitie

Pentru orice structură A avem

$$\mathcal{A} \vDash \varphi$$
 dacă și numai dacă $\mathcal{A} \vDash \forall x_1 \cdots \forall x_n \varphi$.

Demonstrație

Exercițiu!

A verifica validitatea unei formule revine la a verifica validitatea enunțului asociat.

- □ Substituţiile înlocuiesc variabilele libere cu termeni.
- □ O substituție aplicată unui termen întoarce un alt termen.

- ☐ Substituțiile înlocuiesc variabilele libere cu termeni.
- O substituție aplicată unui termen întoarce un alt termen.
- ☐ Ce se întâmpla când aplicăm o substituție unei formule?

- ☐ Substituțiile înlocuiesc variabilele libere cu termeni.
- O substituție aplicată unui termen întoarce un alt termen.
- ☐ Ce se întâmpla când aplicăm o substituție unei formule?
 - □ Fie φ formula $P(z, z) \land \exists y (\neg P(x, y))$

- □ Substituțiile înlocuiesc variabilele libere cu termeni.
- O substituție aplicată unui termen întoarce un alt termen.
- ☐ Ce se întâmpla când aplicăm o substituție unei formule?
 - □ Fie φ formula $P(z, z) \land \exists y (\neg P(x, y))$

- □ Substituțiile înlocuiesc variabilele libere cu termeni.
- O substituție aplicată unui termen întoarce un alt termen.
- ☐ Ce se întâmpla când aplicăm o substituție unei formule?

Atenție! substituțiile afectează satisfiabilitatea formulei.

- ☐ Substituțiile înlocuiesc variabilele libere cu termeni.
- O substituție aplicată unui termen întoarce un alt termen.
- ☐ Ce se întâmpla când aplicăm o substituție unei formule?
 - □ Fie φ formula $P(z, z) \land \exists y (\neg P(x, y))$

Atenție! substituțiile afectează satisfiabilitatea formulei.

□ Fie φ o formulă și t_1, \ldots, t_n termeni care nu conțin variabile din φ . Notăm $\varphi[x_1/t_1, \ldots, x_n/t_n]$ formula obținută din φ substituind toate aparițiile libere ale lui x_1, \ldots, x_n cu t_1, \ldots, t_n .

$$\varphi[x_1/t_1,\ldots,x_n/t_n] = \{x_1 \leftarrow t_1,\ldots,x_n \leftarrow t_n\}\varphi$$

Forma prenex

O formulă prenex este o formulă de forma

$$Q_1 x_1 Q_2 x_2 \dots Q_n x_n \varphi$$

unde $Q_i \in \{\forall, \exists\}$ pentru orice $i \in \{1, \dots, n\}$, x_1, \dots, x_n sunt variabile distincte și φ nu conține cuantificatori.

Forma prenex

O formulă prenex este o formulă de forma

$$Q_1x_1 Q_2x_2 \dots Q_nx_n \varphi$$

unde $Q_i \in \{\forall, \exists\}$ pentru orice $i \in \{1, ..., n\}$, $x_1, ..., x_n$ sunt variabile distincte și φ nu conține cuantificatori.

Exemplu

Fie R este un simbol de relație de aritate 2. Formula

$$\forall x \exists y \forall z ((R(x,y) \vee \neg R(x,z)) \wedge R(x,x))$$

este în formă prenex.

$$\neg\exists x \neg \varphi \quad \exists \quad \forall x \varphi$$

$$\neg \forall x \neg \varphi \quad \exists \quad \exists x \varphi$$

$$\neg\exists x \varphi \quad \exists \quad \forall x \neg \varphi$$

$$\neg \forall x \varphi \quad \exists \quad \exists x \neg \varphi$$

$$\neg\exists x \neg \varphi \quad \forall x \varphi \qquad \forall x \varphi \wedge \forall x \psi \quad \forall x (\varphi \wedge \psi)$$

$$\neg \forall x \neg \varphi \quad \forall x \varphi \wedge \forall x \psi \quad \forall x (\varphi \wedge \psi)$$

$$\exists x \varphi \vee \exists x \psi \quad \forall x (\varphi \vee \psi)$$

$$\neg \exists x \varphi \quad \forall x \neg \varphi$$

$$\neg \forall x \varphi \quad \forall x \neg \varphi$$

$$\neg\exists x \neg \varphi \quad \forall x \varphi \qquad \forall x \varphi \wedge \forall x \psi \quad \forall x (\varphi \wedge \psi) \\
\neg \forall x \neg \varphi \quad \forall \exists x \varphi \qquad \exists x \varphi \vee \exists x \psi \quad \forall \exists x (\varphi \vee \psi) \\
\neg \exists x \varphi \quad \forall \forall x \neg \varphi \qquad \forall x \forall y \varphi \quad \forall \forall x \varphi \\
\neg \forall x \varphi \quad \forall \exists x \exists y \varphi \quad \forall \exists x \exists x \varphi$$

 $\begin{tabular}{lll} \square Se înlocuiesc \rightarrow $\mathfrak{s}\mathfrak{i}$ \leftrightarrow : \\ & \varphi \rightarrow \psi & \mbox{H} & \neg \varphi \lor \psi \\ & \varphi \leftrightarrow \psi & \mbox{H} & (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi) \\ & \end{tabular}$

$$\neg\exists x \neg \varphi \quad \mathsf{H} \quad \forall x \varphi \qquad \qquad \forall x \varphi \wedge \forall x \psi \quad \mathsf{H} \quad \forall x (\varphi \wedge \psi)$$

$$\neg \forall x \neg \varphi \quad \mathsf{H} \quad \exists x \varphi \qquad \qquad \exists x \varphi \vee \exists x \psi \quad \mathsf{H} \quad \exists x (\varphi \vee \psi)$$

$$\neg \exists x \varphi \quad \mathsf{H} \quad \forall x \neg \varphi \qquad \qquad \forall x \forall y \varphi \quad \mathsf{H} \quad \forall y \forall x \varphi$$

$$\neg \forall x \varphi \quad \mathsf{H} \quad \exists x \neg \varphi \qquad \qquad \exists x \exists y \varphi \quad \mathsf{H} \quad \exists y \exists x \varphi$$

$$\forall x \varphi \vee \psi \quad \mathsf{H} \quad \forall x (\varphi \vee \psi) \text{ dacă } x \notin FV(\psi)$$

$$\forall x \varphi \wedge \psi \quad \mathsf{H} \quad \forall x (\varphi \wedge \psi) \text{ dacă } x \notin FV(\psi)$$

$$\exists x \varphi \vee \psi \quad \mathsf{H} \quad \exists x (\varphi \vee \psi) \text{ dacă } x \notin FV(\psi)$$

$$\exists x \varphi \wedge \psi \quad \mathsf{H} \quad \exists x (\varphi \wedge \psi) \text{ dacă } x \notin FV(\psi)$$

Exemplu

$$\varphi = \forall x \neg (\exists y R(x, y) \rightarrow \exists x R(x, y))$$

Exemplu

$$\varphi = \forall x \neg (\exists y R(x, y) \to \exists x R(x, y))$$

$$\exists x \neg (\exists v R(x, v) \to \exists z R(z, y))$$

Exemplu

$$\varphi = \forall x \neg (\exists y R(x, y) \rightarrow \exists x R(x, y))$$

$$\exists x \neg (\exists v R(x, v) \rightarrow \exists z R(z, y))$$

$$\exists x \neg (\neg \exists v R(x, v) \lor \exists z R(z, y))$$

Exemplu

$$\varphi = \forall x \neg (\exists y R(x, y) \rightarrow \exists x R(x, y))$$

$$\exists \forall x \neg (\exists v R(x, v) \rightarrow \exists z R(z, y))$$

$$\exists \forall x \neg (\neg \exists v R(x, v) \lor \exists z R(z, y))$$

$$\exists \forall x (\exists v R(x, v) \land \neg \exists z R(z, y))$$

Exemplu

$$\varphi = \forall x \neg (\exists y R(x, y) \rightarrow \exists x R(x, y))$$

$$\exists x \neg (\exists v R(x, v) \rightarrow \exists z R(z, y))$$

$$\exists x \neg (\neg \exists v R(x, v) \lor \exists z R(z, y))$$

$$\exists x \neg (\neg \exists v R(x, v) \land \neg \exists z R(z, y))$$

$$\exists x \neg (x, y) \land \neg (x, y) \land \neg (x, y) \land \neg (x, y)$$

Exempli

$$\varphi = \forall x \neg (\exists y R(x, y) \rightarrow \exists x R(x, y))$$

$$\exists x \neg (\exists v R(x, v) \rightarrow \exists z R(z, y))$$

$$\exists x \neg (\neg \exists v R(x, v) \lor \exists z R(z, y))$$

$$\exists x \neg (\neg \exists v R(x, v) \land \neg \exists z R(z, y))$$

$$\exists x \neg (\neg \exists v R(x, v) \land \neg \exists z R(z, y))$$

$$\exists x \neg (\neg \exists v R(x, v) \land \neg \exists z R(z, y))$$

$$\exists x \neg (\neg \exists v R(x, v) \land \neg \exists z R(z, y))$$

$$\exists x \neg (\neg \exists v R(x, v) \land \neg \exists z R(z, y))$$

Exemplu

$$\varphi = \forall x \neg (\exists y R(x, y) \rightarrow \exists x R(x, y))
\exists \forall x \neg (\exists v R(x, v) \rightarrow \exists z R(z, y))
\exists \forall x \neg (\neg \exists v R(x, v) \lor \exists z R(z, y))
\exists \forall x (\exists v R(x, v) \land \neg \exists z R(z, y))
\exists \forall x \exists v (R(x, v) \land \neg \exists z R(z, y))
\exists \forall x \exists v (R(x, v) \land \neg \forall z \neg R(z, y))
\exists \forall x \exists v \forall z (R(x, v) \land \neg R(z, y))$$

Teorema de formă prenex

Pentru orice formulă φ există o formulă φ^* în formă prenex astfel încât $\varphi \vDash \varphi^*$ și $FV(\varphi) = FV(\varphi^*)$.

Teorema de formă prenex

Pentru orice formulă φ există o formulă φ^* în formă prenex astfel încât $\varphi \bowtie \varphi^*$ și $FV(\varphi) = FV(\varphi^*)$.

Demonstrație

Demonstrăm prin inducție după structura formulei φ .

Teorema de formă prenex

Pentru orice formulă φ există o formulă φ^* în formă prenex astfel încât $\varphi \bowtie \varphi^*$ și $FV(\varphi) = FV(\varphi^*)$.

Demonstrație

Demonstrăm prin inducție după structura formulei φ .

 $\hfill\Box$ φ este formulă atomică.

Atunci φ este în formă prenex, deci $\varphi^* := \varphi$.

Teorema de formă prenex

Pentru orice formulă φ există o formulă φ^* în formă prenex astfel încât $\varphi \bowtie \varphi^*$ și $FV(\varphi) = FV(\varphi^*)$.

Demonstrație

Demonstrăm prin inducție după structura formulei φ .

- $\square \varphi$ este formulă atomică.
 - Atunci φ este în formă prenex, deci $\varphi^* := \varphi$.
- $\square \varphi = \forall x \psi.$

Teorema de formă prenex

Pentru orice formulă φ există o formulă φ^* în formă prenex astfel încât $\varphi \bowtie \varphi^*$ și $FV(\varphi) = FV(\varphi^*)$.

Demonstrație

Demonstrăm prin inducție după structura formulei φ .

- φ este formulă atomică.
 - Atunci φ este în formă prenex, deci $\varphi^* := \varphi$.
- $\square \varphi = \forall x \psi.$
 - Conform ipotezei de inducție, există o formulă ψ^* în formă prenex astfel încât $\psi \vDash \psi^*$ și $FV(\psi) = FV(\psi^*)$.

Teorema de formă prenex

Pentru orice formulă φ există o formulă φ^* în formă prenex astfel încât $\varphi \vDash \varphi^*$ și $FV(\varphi) = FV(\varphi^*)$.

Demonstrație

Demonstrăm prin inducție după structura formulei φ .

- $\hfill\Box$ φ este formulă atomică.
 - Atunci φ este în formă prenex, deci $\varphi^* := \varphi$.
- $\square \varphi = \forall x \psi.$

Conform ipotezei de inducție, există o formulă ψ^* în formă prenex astfel încât $\psi \vDash \psi^*$ și $FV(\psi) = FV(\psi^*)$.

Definim $\varphi^* := \forall x \psi^*$.

Demonstrație (cont.)

$$\square \varphi = \neg \psi.$$

Demonstrație (cont.)

Demonstrație (cont.)

 $\square \varphi = \neg \psi.$

Conform ipotezei de inducție, există o formulă $\psi^* = Q_1 x_1 \dots Q_n x_n \psi_0$ în formă prenex astfel încât $\psi \bowtie \psi^*$ și $FV(\psi) = FV(\psi^*)$. Notăm $\forall^c = \exists$, $\exists^c = \forall$ și definim

$$\varphi^* := Q_1^c x_1 \dots Q_n^c x_n \neg \psi_0.$$

Atunci φ^* este în formă prenex, $\varphi^* \boxminus \neg \psi^* \boxminus \neg \psi = \varphi$ și $\mathit{FV}(\varphi^*) = \mathit{FV}(\psi^*) = \mathit{FV}(\psi) = \mathit{FV}(\varphi)$.

Demonstrație (cont.)

 \qed $\varphi=\psi\vee\chi$ și, conform ipotezei de inducție, există formulele în formă prenex

$$\psi^* = Q_1 x_1 \dots Q_n x_n \psi_0, \quad \chi^* = S_1 z_1 \dots S_m z_m \chi_0$$
 astfel încât $\psi \vDash \psi^*$, $FV(\psi) = FV(\psi^*)$, $\chi \vDash \chi^*$ și $FV(\chi) = FV(\chi^*)$.

Demonstrație (cont.)

 \qed $\varphi=\psi\vee\chi$ și, conform ipotezei de inducție, există formulele în formă prenex

$$\psi^* = Q_1 x_1 \dots Q_n x_n \psi_0, \quad \chi^* = S_1 z_1 \dots S_m z_m \chi_0$$
 astfel încât $\psi \vDash \psi^*$, $FV(\psi) = FV(\psi^*)$, $\chi \vDash \chi^*$ și $FV(\chi) = FV(\chi^*)$. Definim

$$\varphi^* := Q_1 x_1 \dots Q_n x_n S_1 z_1 \dots S_m z_m (\psi_0 \vee \chi_0).$$

Definim

Demonstrație (cont.)

 $\square \varphi = \psi \lor \chi$ și, conform ipotezei de inducție, există formulele în formă prenex

.
$$\psi^* = Q_1 x_1 \dots Q_n x_n \psi_0, \quad \chi^* = S_1 z_1 \dots S_m z_m \chi_0$$
 astfel încât $\psi \vDash \psi^*$, $FV(\psi) = FV(\psi^*)$, $\chi \vDash \chi^*$ și $FV(\chi) = FV(\chi^*)$. Definim

$$\varphi^* := Q_1 x_1 \dots Q_n x_n S_1 z_1 \dots S_m z_m (\psi_0 \vee \chi_0).$$

Atunci φ^* este în formă prenex, $FV(\varphi^*) = FV(\varphi)$ și

$$\varphi^* \vDash \psi^* \lor \chi^* \vDash \psi \lor \chi = \varphi.$$

Deoarece φ a fost în formă rectificată, echivalența \exists este justificată de următoarele proprietăți:

$$\forall x \varphi \lor \psi \vDash \forall x (\varphi \lor \psi) \text{ dacă } x \notin FV(\psi)$$
$$\exists x \varphi \lor \psi \vDash \exists x (\varphi \lor \psi) \text{ dacă } x \notin FV(\psi)$$

Fie \mathcal{L} un limbaj de ordinul.

Skolemizarea este o procedură prin care se elimină cuantificatorii existențiali din formule de ordinul întâi în formă normală prenex, prin introducere de noi simboluri de funcții/constante, numite simboluri de funcții/constante Skolem.

Fie \mathcal{L} un limbaj de ordinul.

Skolemizarea este o procedură prin care se elimină cuantificatorii existențiali din formule de ordinul întâi în formă normală prenex, prin introducere de noi simboluri de funcții/constante, numite simboluri de funcții/constante Skolem.

În continuare φ este un enunț în formă prenex:

$$\varphi = Q_1 x_1 Q_2 x_2 \dots Q_n x_n \theta,$$

unde $n \in \mathbb{N}$, $Q_1, \ldots, Q_n \in \{\forall, \exists\}$, x_1, \ldots, x_n sunt variabile distincte două câte două și θ este formulă liberă de cuantificatori.

Fie \mathcal{L} un limbaj de ordinul.

Skolemizarea este o procedură prin care se elimină cuantificatorii existențiali din formule de ordinul întâi în formă normală prenex, prin introducere de noi simboluri de funcții/constante, numite simboluri de funcții/constante Skolem.

În continuare φ este un enunț în formă prenex:

$$\varphi = Q_1 x_1 Q_2 x_2 \dots Q_n x_n \theta,$$

unde $n \in \mathbb{N}$, $Q_1, \ldots, Q_n \in \{\forall, \exists\}$, x_1, \ldots, x_n sunt variabile distincte două câte două și θ este formulă liberă de cuantificatori.

Vom asocia lui φ un enunț universal φ^{sk} într-un limbaj extins $\mathcal{L}^{sk}(\varphi)$.

☐ Un enunț se numește universal dacă conține doar cuantificatori universali.

Fie φ enunț în formă prenex. Definim φ^{sk} și $\mathcal{L}^{\mathit{sk}}(\varphi)$ astfel:

- \square dacă φ este liberă de cuantificatori, atunci $\varphi^{\mathit{sk}} = \varphi$ și $\mathcal{L}^{\mathit{sk}}(\varphi) = \mathcal{L}$,
- \square dacă φ este universală, atunci $\varphi^{\mathit{sk}} = \varphi$ și $\mathcal{L}^{\mathit{sk}}(\varphi) = \mathcal{L}$,

Fie φ enunț în formă prenex. Definim φ^{sk} și $\mathcal{L}^{sk}(\varphi)$ astfel:

- \square dacă φ este liberă de cuantificatori, atunci $\varphi^{sk}=\varphi$ și $\mathcal{L}^{sk}(\varphi)=\mathcal{L}$,
- \square dacă φ este universală, atunci $\varphi^{sk} = \varphi$ și $\mathcal{L}^{sk}(\varphi) = \mathcal{L}$,
- □ dacă $\varphi = \exists x \psi$ atunci introducem un nou simbol de constantă c și considerăm $\varphi^1 = \psi[x/c]$, $\mathcal{L}^1 = \mathcal{L} \cup \{c\}$.

Fie φ enunț în formă prenex. Definim φ^{sk} și $\mathcal{L}^{sk}(\varphi)$ astfel:

- \square dacă φ este liberă de cuantificatori, atunci $\varphi^{\mathit{sk}} = \varphi$ și $\mathcal{L}^{\mathit{sk}}(\varphi) = \mathcal{L}$,
- \square dacă φ este universală, atunci $\varphi^{sk} = \varphi$ și $\mathcal{L}^{sk}(\varphi) = \mathcal{L}$,
- □ dacă $\varphi = \exists x \psi$ atunci introducem un nou simbol de constantă c și considerăm $\varphi^1 = \psi[x/c], \ \mathcal{L}^1 = \mathcal{L} \cup \{c\}.$
- \Box dacă $\varphi = \forall x_1 \dots \forall x_k \exists x \psi$

Fie φ enunț în formă prenex. Definim φ^{sk} și $\mathcal{L}^{sk}(\varphi)$ astfel:

- \square dacă φ este liberă de cuantificatori, atunci $\varphi^{sk} = \varphi$ și $\mathcal{L}^{sk}(\varphi) = \mathcal{L}$,
- \square dacă φ este universală, atunci $\varphi^{\mathit{sk}} = \varphi$ și $\mathcal{L}^{\mathit{sk}}(\varphi) = \mathcal{L}$,
- □ dacă $\varphi = \exists x \psi$ atunci introducem un nou simbol de constantă c și considerăm $\varphi^1 = \psi[x/c], \ \mathcal{L}^1 = \mathcal{L} \cup \{c\}.$
- □ dacă $\varphi = \forall x_1 ... \forall x_k \exists x \psi$ atunci introducem un nou simbol de funcție f de aritate k și considerăm $\mathcal{L}^1 = \mathcal{L} \cup \{f\}$,

$$\varphi^1 = \forall x_1 \dots \forall x_k \, \psi[x/f(x_1 \dots x_k)]$$

Fie φ enunț în formă prenex. Definim φ^{sk} și $\mathcal{L}^{\mathit{sk}}(\varphi)$ astfel:

- \square dacă φ este liberă de cuantificatori, atunci $\varphi^{sk} = \varphi$ și $\mathcal{L}^{sk}(\varphi) = \mathcal{L}$,
- \square dacă φ este universală, atunci $\varphi^{\mathit{sk}} = \varphi$ și $\mathcal{L}^{\mathit{sk}}(\varphi) = \mathcal{L}$,
- □ dacă $\varphi = \exists x \psi$ atunci introducem un nou simbol de constantă c și considerăm $\varphi^1 = \psi[x/c]$, $\mathcal{L}^1 = \mathcal{L} \cup \{c\}$.
- □ dacă $\varphi = \forall x_1 ... \forall x_k \exists x \psi$ atunci introducem un nou simbol de funcție f de aritate k și considerăm $\mathcal{L}^1 = \mathcal{L} \cup \{f\}$,

$$\varphi^1 = \forall x_1 \dots \forall x_k \, \psi[x/f(x_1 \dots x_k)]$$

În ambele cazuri, φ^1 are cu un cuantificator existențial mai puțin decât φ . Dacă φ^1 este liberă de cuantificatori sau universală, atunci $\varphi^{sk}=\varphi^1$. Dacă φ^1 nu este universală, atunci formăm $\varphi^2,\varphi^3,\ldots$, până ajungem la o formulă universală și aceasta este φ^{sk} .

Fie φ enunț în formă prenex. Definim φ^{sk} și $\mathcal{L}^{\mathit{sk}}(\varphi)$ astfel:

- \square dacă φ este liberă de cuantificatori, atunci $\varphi^{sk} = \varphi$ și $\mathcal{L}^{sk}(\varphi) = \mathcal{L}$,
- \square dacă φ este universală, atunci $\varphi^{sk} = \varphi$ și $\mathcal{L}^{sk}(\varphi) = \mathcal{L}$,
- □ dacă $\varphi = \exists x \psi$ atunci introducem un nou simbol de constantă c și considerăm $\varphi^1 = \psi[x/c], \ \mathcal{L}^1 = \mathcal{L} \cup \{c\}.$
- □ dacă $\varphi = \forall x_1 ... \forall x_k \exists x \psi$ atunci introducem un nou simbol de funcție f de aritate k și considerăm $\mathcal{L}^1 = \mathcal{L} \cup \{f\}$,

$$\varphi^1 = \forall x_1 \dots \forall x_k \, \psi[x/f(x_1 \dots x_k)]$$

În ambele cazuri, φ^1 are cu un cuantificator existențial mai puțin decât φ . Dacă φ^1 este liberă de cuantificatori sau universală, atunci $\varphi^{sk}=\varphi^1$. Dacă φ^1 nu este universală, atunci formăm $\varphi^2,\varphi^3,\ldots$, până ajungem la o formulă universală și aceasta este φ^{sk} .

Definiție

 φ^{sk} este o formă Skolem a lui φ .

Exemplu

Fie P un simbol de relație de aritate 1 și $\varphi = \exists x P(x)$. Atunci

$$\varphi^1 =$$

Exemplu

Fie P un simbol de relație de aritate 1 și $\varphi = \exists x P(x)$. Atunci

$$\varphi^1 = (P(x))[x/c] = P(c),$$

unde c este un nou simbol de constantă.

Exemplu

Fie P un simbol de relație de aritate 1 și $\varphi = \exists x P(x)$. Atunci

$$\varphi^1 = (P(x))[x/c] = P(c),$$

unde c este un nou simbol de constantă. Deoarece φ^1 este un enunț liber de cuantificatori, rezultă că $\varphi^{sk} = \varphi^1 = P(c)$.

Exemplu

Fie P un simbol de relație de aritate 1 și $\varphi = \exists x P(x)$. Atunci

 $(a^1 - (P(y)))y/d$

$$\varphi^1 = (P(x))[x/c] = P(c),$$

unde c este un nou simbol de constantă. Deoarece φ^1 este un enunț liber de cuantificatori, rezultă că $\varphi^{sk} = \varphi^1 = P(c)$.

Exemplu

Fie R un simbol de relație de aritate 3 și $\varphi = \exists x \forall y \forall z R(x, y, z)$. Atunci

$$\varphi^1 =$$

Exemplu

Fie P un simbol de relație de aritate 1 și $\varphi = \exists x P(x)$. Atunci

$$\varphi^1 = (P(x))[x/c] = P(c),$$

unde c este un nou simbol de constantă. Deoarece φ^1 este un enunț liber de cuantificatori, rezultă că $\varphi^{sk} = \varphi^1 = P(c)$.

Exempli

Fie R un simbol de relație de aritate 3 și $\varphi = \exists x \forall y \forall z R(x, y, z)$. Atunci

$$\varphi^1 = (\forall y \forall z R(x, y, z))[x/c] = \forall y \forall z R(c, y, z),$$

unde c este un nou simbol de constantă.

Exemplu

Fie P un simbol de relație de aritate 1 și $\varphi = \exists x P(x)$. Atunci

$$\varphi^1 = (P(x))[x/c] = P(c),$$

unde c este un nou simbol de constantă. Deoarece φ^1 este un enunț liber de cuantificatori, rezultă că $\varphi^{sk} = \varphi^1 = P(c)$.

Exempli

Fie R un simbol de relație de aritate 3 și $\varphi = \exists x \forall y \forall z R(x, y, z)$. Atunci

$$\varphi^1 = (\forall y \forall z R(x, y, z))[x/c] = \forall y \forall z R(c, y, z),$$

unde c este un nou simbol de constantă. Deoarece φ^1 este un enunț universal, rezultă că $\varphi^{sk} = \varphi^1 = \forall y \forall z \, R(c, y, z)$.

Exemplu

Fie P un simbol de relatie de aritate 2 și $\varphi = \forall y \exists z P(y, z)$. Atunci

$$\varphi^1 =$$

Exemplu

Fie P un simbol de relatie de aritate 2 și $\varphi = \forall y \exists z P(y, z)$. Atunci

$$\varphi^1 = (\forall y P(y, z))[z/f(y)] = \forall y P(y, f(y))$$

unde f este un simbol nou de funcție unară.

Exempli

Fie P un simbol de relatie de aritate 2 și $\varphi = \forall y \exists z P(y, z)$. Atunci

$$\varphi^1 = (\forall y P(y, z))[z/f(y)] = \forall y P(y, f(y))$$

unde f este un simbol nou de funcție unară. Deoarece φ^1 este un enunț universal, rezultă că $\varphi^{sk}=\varphi^1=\forall y\,P(y,f(y)).$

Exempli

Fie $\mathcal L$ un limbaj și $P,R\in\mathbf R$, $f\in\mathbf F$, ari(P)=ari(R)=2 și ari(f)=1. Determinați forma Skolem pentru:

$$\varphi := \forall y \exists z \forall u \exists v (R(y,z) \land P(f(u),v)).$$

Exemplu

Fie \mathcal{L} un limbaj și $P,R\in\mathbf{R},\ f\in\mathbf{F},\ ari(P)=ari(R)=2$ și ari(f)=1. Determinați forma Skolem pentru:

$$\varphi := \forall y \exists z \forall u \exists v (R(y, z) \land P(f(u), v)).$$

$$\varphi^{1} = \forall y (\forall u \exists v (R(y, z) \land P(f(u), v)))[z/g(y)])$$

$$= \forall y \forall u \exists v (R(y, g(y)) \land P(f(u), v)),$$
unde g este un nou simbol de functie unară

Exemplu

Fie \mathcal{L} un limbaj și $P,R\in\mathbf{R},\ f\in\mathbf{F},\ ari(P)=ari(R)=2$ și ari(f)=1. Determinați forma Skolem pentru:

$$\varphi := \forall y \exists z \forall u \exists v (R(y,z) \land P(f(u),v)).$$

$$\varphi^1 = \forall y (\forall u \exists v (R(y,z) \land P(f(u),v)))[z/g(y)])$$

$$= \forall y \forall u \exists v (R(y,g(y)) \land P(f(u),v)),$$
 unde g este un nou simbol de funcție unară
$$\varphi^2 =$$

Exempli

Fie \mathcal{L} un limbaj și $P, R \in \mathbf{R}$, $f \in \mathbf{F}$, ari(P) = ari(R) = 2 și ari(f) = 1. Determinați forma Skolem pentru:

$$\varphi := \forall y \exists z \forall u \exists v (R(y,z) \land P(f(u),v)).$$

$$\varphi^{1} = \forall y (\forall u \exists v (R(y,z) \land P(f(u),v)))[z/g(y)])$$

$$= \forall y \forall u \exists v (R(y,g(y)) \land P(f(u),v)),$$
unde g este un nou simbol de funcție unară
$$\varphi^{2} = \forall y \forall u (R(y,g(y)) \land P(f(u),v))[v/h(y,u)]$$

$$= \forall y \forall u (R(y,g(y)) \land P(f(u),h(y,u))),$$
unde h este un nou simbol de funcție binară.

Exempli

Fie \mathcal{L} un limbaj și $P,R\in\mathbf{R},\ f\in\mathbf{F},\ ari(P)=ari(R)=2$ și ari(f)=1. Determinați forma Skolem pentru:

$$\varphi := \forall y \exists z \forall u \exists v (R(y,z) \land P(f(u),v)).$$

$$\varphi^{1} = \forall y (\forall u \exists v (R(y,z) \land P(f(u),v)))[z/g(y)])$$

$$= \forall y \forall u \exists v (R(y,g(y)) \land P(f(u),v)),$$
unde g este un nou simbol de funcție unară
$$\varphi^{2} = \forall y \forall u (R(y,g(y)) \land P(f(u),v))[v/h(y,u)]$$

$$= \forall y \forall u (R(y,g(y)) \land P(f(u),h(y,u))),$$
unde h este un nou simbol de funcție binară.

Deoarece φ^2 este un enunț universal, rezultă că $\varphi^{sk} = \varphi^2 = \forall y \forall u (R(y, g(y)) \land P(f(u), h(y, u))).$

Teorema de formă Skolem

Fie φ un enunț în formă prenex.

- $\blacksquare \models \varphi^{\mathit{sk}} \to \varphi, \ \mathsf{deci} \ \varphi^{\mathit{sk}} \vDash \varphi \ \mathsf{in} \ \mathcal{L}^{\mathit{sk}}(\varphi).$

Teorema de formă Skolem

Fie φ un enunț în formă prenex.

- $\blacksquare \models \varphi^{sk} \to \varphi, \text{ deci } \varphi^{sk} \vDash \varphi \text{ în } \mathcal{L}^{sk}(\varphi).$

Demonstrație [schiță]

Folosind următoarele proprietăți

$$\vdash \varphi(x/t) \to \exists x \varphi$$

$$\vdash \varphi \text{ implic} \exists \vdash \forall x \varphi \text{ și}$$

$$\vdash \forall x (\varphi \to \psi) \to (\forall x \varphi \to \forall x \psi)$$
putem demonstra că $\vdash \varphi^1 \to \varphi, \vdash \varphi^2 \to \varphi^1$, etc.

Teorema de formă Skolem

Fie φ un enunț în formă prenex.

- $\blacksquare \models \varphi^{sk} \to \varphi$, deci $\varphi^{sk} \models \varphi$ în $\mathcal{L}^{sk}(\varphi)$.

Demonstrație [schiță]

Folosind următoarele proprietăți

$$\models \varphi(x/t) \to \exists x \varphi$$

$$\models \varphi \text{ implică} \models \forall x \varphi \text{ și}$$

$$\models \forall x (\varphi \to \psi) \to (\forall x \varphi \to \forall x \psi)$$
putem demonstra că
$$\models \varphi^1 \to \varphi, \models \varphi^2 \to \varphi^1, \text{ etc.}$$

"⇐" Se aplică (1).
"⇒" exercitiu.

Observație

În general, φ și $\varphi^{\it sk}$ nu sunt logic echivalente ca enunțuri în $\mathcal{L}^{\it sk}(\varphi)$.

Observație

În general, φ și φ^{sk} nu sunt logic echivalente ca enunțuri în $\mathcal{L}^{sk}(\varphi)$.

Exemplu

Fie $\mathcal{L} = \{R\}$ unde R este simbol de relație de aritate 2 și $\varphi = \forall v_1 \exists v_2 R(v_1, v_2)$.

Atunci $\varphi^{\it sk} =$

Observație

În general, φ și φ^{sk} nu sunt logic echivalente ca enunțuri în $\mathcal{L}^{sk}(\varphi)$.

Exemplu

Fie $\mathcal{L} = \{R\}$ unde R este simbol de relație de aritate 2 și $\varphi = \forall v_1 \exists v_2 R(v_1, v_2)$.

Atunci $\varphi^{sk} = \forall v_1 R(v_1, f(v_1))$ (unde f este un nou simbol de funcție unară) și $\mathcal{L}^{sk}(\varphi) = \{f, R\}$.

Observație

În general, φ și φ^{sk} nu sunt logic echivalente ca enunțuri în $\mathcal{L}^{sk}(\varphi)$.

Exemplu

Fie $\mathcal{L} = \{R\}$ unde R este simbol de relație de aritate 2 și $\varphi = \forall v_1 \exists v_2 R(v_1, v_2)$.

Atunci $\varphi^{sk} = \forall v_1 R(v_1, f(v_1))$ (unde f este un nou simbol de funcție unară) și $\mathcal{L}^{sk}(\varphi) = \{f, R\}$.

Fie $\mathcal{L}^{sk}(\varphi)$ -structura $\mathcal{A}=(\mathbb{Z},<,f^{\mathcal{A}})$, unde $f^{\mathcal{A}}(n)=n-1$ pentru orice $n\in\mathbb{Z}$.

Observație

În general, φ și φ^{sk} nu sunt logic echivalente ca enunțuri în $\mathcal{L}^{sk}(\varphi)$.

Exemplu

Fie $\mathcal{L} = \{R\}$ unde R este simbol de relație de aritate 2 și $\varphi = \forall v_1 \exists v_2 R(v_1, v_2)$.

Atunci $\varphi^{sk} = \forall v_1 R(v_1, f(v_1))$ (unde f este un nou simbol de funcție unară) și $\mathcal{L}^{sk}(\varphi) = \{f, R\}$.

Fie $\mathcal{L}^{sk}(\varphi)$ -structura $\mathcal{A} = (\mathbb{Z}, <, f^{\mathcal{A}})$, unde $f^{\mathcal{A}}(n) = n-1$ pentru orice $n \in \mathbb{Z}$. Atunci $\mathcal{A} \models \varphi$, deoarece pentru orice număr întreg m există un număr întreg n astfel încât m < n.

Observație

În general, φ și φ^{sk} nu sunt logic echivalente ca enunțuri în $\mathcal{L}^{sk}(\varphi)$.

Exemplu

Fie $\mathcal{L} = \{R\}$ unde R este simbol de relație de aritate 2 și $\varphi = \forall v_1 \exists v_2 R(v_1, v_2)$.

Atunci $\varphi^{sk} = \forall v_1 R(v_1, f(v_1))$ (unde f este un nou simbol de funcție unară) și $\mathcal{L}^{sk}(\varphi) = \{f, R\}$.

Fie $\mathcal{L}^{sk}(\varphi)$ -structura $\mathcal{A}=(\mathbb{Z},<,f^A)$, unde $f^A(n)=n-1$ pentru orice $n\in\mathbb{Z}$. Atunci $\mathcal{A}\vDash\varphi$, deoarece pentru orice număr întreg m există un număr întreg n astfel încât m< n. Pe de altă parte, $\mathcal{A}\not\vDash\varphi^{sk}$, deoarece pentru orice $n\in\mathbb{Z}$, avem că $n\geq f^A(n)=n-1$.

Logica de ordinul I

- ☐ Cercetarea validității poate fi redusă la cercetarea satisfiabilității.
- □ Cercetarea satisfiabilității unei formule poate fi redusă la cercetarea satisfiabilității unui enunț în forma Skolem.

Vom arăta că pentru a verifica validitatea/satisfiabilitatea este suficient să ne uităm la o singură structură.

Pe săptămâna viitoare!