Homework 3

1. Suppose that we have a portfolio of m loans. The loss of the portfolio in a year may be modeled as follows:

$$L = \Pr\left\{\sum_{i=1}^{m} L_i \cdot 1_{\{X_i \ge \delta_i\}}\right\},\,$$

where L_i is the loss given default and X_i is a default indicator for i = 1, ..., m. For simplicity, we assume that $L_i, i = 1, ..., m$ are constants.

The critical issue for modeling the loan portfolio loss is the modeling of the default dependence of the loads. Under the t-copula model, we let

$$X_i = \frac{\rho Z_0 + \sqrt{1 - \rho^2} Z_i}{\sqrt{\chi_d^2 / d}},$$

where Z_0, Z_1, \ldots, Z_m are independent standard noraml random variables, χ_d^2 is an independent chi-squared random variable with d degrees of freedom.

Let m = 100, $L_i = 1$ and $\delta_i = 1.7$ for all i = 1, 2, ..., m. Furthmore, we let d = 5 and $\rho = 0.5$. Develop at least **three** variance-reduction techniques to estimate $\Pr\{L \ge 10\}$, and compare their variance-reduction ratios to a crude Monte Carlo estimator.