ННГУ им. Н. И. Лобачевского, ВШОПФ Лабораторная работа "Осциллограф"

Цели работы:

- 1. Изучить принцип работы осциллографа и его устройство.
- 2. Определить чувствительность электронно-лучевой трубки.
- 3. Получить осциллограммы при различном соотношении частот сигнала и развёртки.
- 4. Исследовать частотные свойства вертикального усилителя и оценить его линейность.
- 5. Получить фигуры Лиссажу при различной величине n отношения частоты входного сигнала k частоте контрольного сигнала, где $n = \{1, 2, 3, 4\}$.

Приборы и оборудование: осциллограф типа CI-I (ЭО-7); генератор низкочастотных сигналов ГЗ-109 (класс точности 2,5).

Теоретическая часть

1. Контрольный вопрос

Над электронами, вылетевшими с катода, под действием ускоряющего поля совершается работа:

$$A = U_{yc\kappa}.e = \frac{m_e V_0^2}{2}$$

отсюда найдём продольную, относительно трубки, скорость:

$$V_0^2 = \frac{2U_{yc\kappa} e}{m_e}$$

К вертикальным пластинам ЭЛТ прикладывается исследуемое напряжение, которое создает поле с напряжённостью:

$$E = \frac{U_{uccn.}}{d}$$

Электрическое поле воздействует на пролетающие между пластинами электроны и по второму закону Ньютона придаёт им ускорение:

$$a_y = E \frac{e}{m_e} = \frac{U_{uccn.}e}{d m_e}$$

Под воздействием отклоняющего поля, за время пролёта мимо пластин, электроны приобретают скорость:

$$V_1 = a_y \cdot \tau = \frac{Eel}{m_e V_0} = \frac{U_{uccn.}el}{m_e V_0 d}$$

Считая, что на пути от пластин до экрана скорость электрона постоянная, получаем смещение:

$$h = V_1 \cdot \tau_1 = \frac{U_{uccn.}elL}{m_e V_0^2 d} = \frac{1}{2} \cdot \frac{Ll}{U_{vck.}d} \cdot U_{uccn.}$$

Отсюда:

$$\chi = \frac{h}{U_{om\kappa n}} = \frac{1}{2} \cdot \frac{Ll}{U_{vc\kappa} \cdot d}$$

2. Синхронизация.

Для получения неподвижной осциллограммы должно выполняться условие $mT_p = nT_u$, где m и n — целые числа.

Практическая часть

1. Определение чувствительности вертикального и горизонтального каналов осциллографа:

Для измерения чувствительности вертикального и горизонтального каналов, была получена зависимость отклонения луча от напряжения при ослаблении 1:1 и частоте генератора 1000 Гц.

$$\chi = \frac{h}{2\sqrt{2}U}$$

У-канал Усиление по X-min, по Y-max	U,B	0,009	0,012	0,015	Максимальное
	h,мм	28	36	46	значение
	χ,мм/В	1099	1060	1084	шкалы, В
	χ среднее, мм/В	1081,00	0,15		
Х-канал	U,B	0,9	1,2	1,5	Максимальное
	h,мм	48	65	81	значение
Усиление по Y-min,	χ,мм/В	18,86	19,15	19,09	шкалы, В
по Х-тах	χ среднее, мм/В	19,03			1,5

Класс точности вольтметра – 2,5

Погрешность измерений:

$$\Delta U = \frac{h}{100} U_{max}$$

Погрешность сетки: $\Delta h = 1$ мм — половина цены деления

Погрешность косвенных измерений:

$$\Delta \chi = \left(\frac{\Delta h}{h} + \frac{\Delta U}{U}\right) \chi$$

Для вертикального канала:

$$\Delta U = \frac{2.5}{100} \times 15 \times 10^{-2} B = 3.75 \times 10^{-3} B$$

$$\Delta \chi_{Y1} = \left(\frac{1}{28} + \frac{3,75 \times 10^{-4}}{9 \times 10^{-3}}\right) \times 1099 \approx 85,04 \frac{MM}{B}$$

$$\Delta \chi_{Y2} = \left(\frac{1}{36} + \frac{3,75 \times 10^{-4}}{12 \times 10^{-3}}\right) \times 1060 \approx 62,57 \frac{MM}{B}$$

$$\Delta \chi_{Y3} = \left(\frac{1}{46} + \frac{3,75 \times 10^{-4}}{15 \times 10^{-3}}\right) \times 1084 \approx 50,66 \frac{MM}{B}$$

$$\Delta \chi_{Y} = \frac{\Delta \chi_{Y1} + \Delta \chi_{Y2} + \Delta \chi_{Y3}}{3} = \frac{85,04 + 62,57 + 50,66}{3} = 66,09 \frac{MM}{B}$$
$$\chi_{Y} = (1081,00 \pm 66,09) \frac{MM}{B}$$

Для горизонтального канала:

$$\Delta U = \frac{2.5}{100} \times 1.5 B = 3.75 \times 10^{-2} B$$

$$\Delta \chi_{X1} = \left(\frac{1}{48} + \frac{3.75 \times 10^{-2}}{0.9}\right) \times 18.86 \approx 1.17 \frac{MM}{B}$$

$$\Delta \chi_{X2} = \left(\frac{1}{65} + \frac{3,75 \times 10^{-2}}{1,2}\right) \times 19,15 \approx 0,89 \frac{MM}{B}$$

$$\Delta \chi_{X3} = \left(\frac{1}{81} + \frac{3,75 \times 10^{-2}}{1,5}\right) \times 19,09 \approx 0,71 \frac{MM}{B}$$

$$\Delta \chi_{x} = \frac{\Delta \chi_{x1} + \Delta \chi_{x2} + \Delta \chi_{x3}}{3} = \frac{1,17 + 0,89 + 0,71}{3} = 0,92 \frac{MM}{B}$$

$$\chi_X = (19,03 \pm 0,92) \frac{MM}{B}$$

2. Изучение работы развертки:

Получение осциллограммы напряжения с генератора при $nf_p = mf_c$:

5)
$$\frac{m}{n} = \frac{3}{4}, f_p = 120 \, \Gamma \mu, f_c = 80 \, \Gamma \mu$$

3. Наблюдение срыва синхронизации при изменении частоты генератора:

эт таолодение ерыва еникропизадии при изменении паетоты генератора.						
n/m	Амплитуда синхронизации	$-\Delta f$, Гц	+ Δf , Гц	Δf_{cp} , Гц		
1	2	2	9	5,5		
1	9	20	20	20		
1/2	2	1	1	1		
	9	2	1	1,5		
2	2	20	13	16,5		
	9	40	30	35		

При включённой синхронизации, если $nf_p \ge mf_c$ — картинка бежит влево;

 $nf_p \le mf_c$ — картинка бежит вправо.

4. Оценка послесвечения трубки:

$$f$$
=83 Γ y , $\tau = \frac{1}{83}$ =0,012 (c)

5. Оценка линейности вертикального канала усиления:

э. Оценка ли	неиности вер	ликального ка	нала усиления.		
Усиление					
C	U, B	3	4	5	
O	h, мм	8	10	12	
O	U, B	3	4	5	
Ø	h, мм	9	12	15	
10	U, B	3	4	5	
10	h, мм	11	13	16	

6. Оценка частотных свойств вертикального усилителя (U = const)

f, Гц	1×10^2	2×10^2	1×10^3		11 2 111 1	2×10^2	1 × 10 ⁵	2×10^2
h, мм	1 / /	26	27	27	20	14	5	3

Вывод

- Было изучено устройство осциллографа и принцип его работы
- Была установлена чувствительность вертикального и горизонтального каналов
- Были получены осциллограммы напряжений при $nf_p = mf_c$ Было установлено время послесвечения трубки: $\tau = 0.012\,c$ Были получены фигуры Лиссажу