

Structural Analysis and Visualization of Social Network

Marina Ananyeva

National Research University Higher School of Economics

March 30, 2017

- Network Source and Preprocessing
- Network Summary
 - Node/edge attributes
 - Order, size, layout
 - Degree distribution, diameter, Cluster Coefficient
- Structural Analysis
 - Degree/Closeness/Betweenness centralities
 - Comparison of PageRank and centralities
 - Assortative Mixing according to node attributes
 - Node similarity
 - The closest similar random graph
- Community Detection
 - Clique search
 - Results of detection algorithms
 - Incremental algorithm

Network Source and preprocessing

Source: *vk.com*

Data access: via VK API requests

Unweighted undirected graph.

The network is egocentric.

Preprocessing:

- 'Deactivated' users were manually deleted from the dataset

- Decoding (e.g. city code into name: '0' -> 'Moscow')

Network Summary

Node Attributes:

- First Name
- Last Name
- Sex
- City
- Birthday date

Edge attributes: None (weight, relationship)

Order: 341 (nodes)

Size: 3302 (edges)

Degree distribution

Average clustering coefficient: 0.5

Average path length: 2.9

Radius: 4

Diameter: 7

Network layout

Interpretation

Centralities and PageRank

- Degree centrality identifies those friends who share with me a lot of other friends.
- Closeness centrality shows the closest friends who indirectly know my other friends (the length of the shortest paths between the node and all other nodes in the graph).
- Betweenness centrality helps to see those who connect diverse groups with each other

	Degree	Closeness	Betweenness	PageRank
1	Ksenia Soborova (0.27)	Ksenia Soborova (0.48)	Dasha Ukolova (0.348)	Ksenia Soborova (0.01)
2	Roman <u>Ustvancev</u> (0.22)	Valery Okunev (0.475)	Olga <u>Ivanova</u> (0.082)	Dasha Ukolova (0.009)
3	Sofia <u>Leleka</u> (0.21)	Dasha Ukolova (0.466)	Valery Okuney (0.07)	Dana Smoliakova (0.001)
4	Anton Akhiev (0.21)	Roman <u>Ustyancev</u> (0.463)	Ksenia Soborova (0.07)	Roman Ustyancev (0.001)
5	Marat Amirov (0.19)	Sofia <u>Leleka</u> (0.46)	Dana Smoliakova (0.065)	Sofia Leleka (0.001)

Assortativity Mixing and Structural similarity

Clique search

- Largest clique
- Max edges: 162

Community detection*: step by step

^{*} via igraph.community_fastgreedy

Thank you!

Any questions?

