FIT I 045: Algorithms and Programming Fundamentals in Python Lecture 10

Acknowledgment: Some of the slides are prepared by staff at Monash College

COMMONWEALTH OF AUSTRALIA Copyright Regulations 1969 WARNING

Objectives

- Formulate assertions about program states
- Demonstrate that truth of certain assertions is unchanged (invariant) by program (specifically by a loop)
- Relate invariants to computational problem to demonstrate correctness of algorithm

Covered learning outcomes:

3 - Analyse the behaviour of programs and data structures

Concrete goal:

convince ourselves that Prim's algorithm is correct

Programs with simple flow are easy to recognise as correct

```
def number_of_days(month, year):
    if month == 2:
        if is_leap_year(year):
            return 29
        else:
            return 28
    elif month in THIRTY_DAYS_MONTH:
        return 30
    else:
        return 31
```

```
def valid_date(day, month, year):
    if month not in VALID_MONTHS:
        return False
    elif day not in range(1, number_of_days(month, year)):
        return False
    else:
        return True
```

...but is this really computing a spanning tree?

```
def spanning tree(graph):
    """Input : adjacency matrix of graph
       Output: adj. mat. of spanning tree of graph"""
    n = len(graph)
    tree = empty graph(n)
    conn = \{0\}
    while len(conn) < n:</pre>
        found = False
        for i in conn:
            for j in range(n):
                if j not in conn and graph[i][j]==1:
                     tree[i][j] = 1
                     tree[j][i] = 1
                     conn = conn.add(j)
                     found = True
                     break
            if found:
                break
    return tree
```

Decomposition helps but loops with re-assignments/mutation remain tricky

```
def extension(c, g):
    """I: connec. vertices (c), graph (g)
    O: extension edge (i, j)"""
    n = len(g)
    for i in vertices:
        for j in range(n):
            if j not in c and g[i][j]:
                 return i, j
```

values behind
names change
all the time

Outline

- Assertions and invariants
- Analysing Insertion Sort
- Analysing Min Index Selection
- Analysing Prim's Algorithm

Cutting the Chocolate Block

A chocolate block is divided into squares by horizontal and vertical grooves. The object is to cut the chocolate block into individual pieces.

Assume each cut is made on a **single piece** along a groove. How many cuts are needed?

How many cuts does it take to divide the following block into squares?

Quiz time (https://flux.qa)

Clayton: AXXULH

Malaysia: LWERDE

B. 3

c. 24

D. 23

E. None of the above

How many cuts does it take to divide a 100 X 50 block of chocolate?

- A. 5000
- B. 4999
- c. 4900
- D. 4950
- E. None of the above

What is the relationship between cuts and number of pieces?

What is the relationship between cuts and number of pieces?

1 cut2 pieces

2 cuts 3 pieces

Statement

"number of pieces equals number of cuts plus one"

...holds throughout cutting process

Let's bring this concept into the world of programs

```
cut = ... #some arbitrary cutting strategy
pieces = [(m, n)]
num_cuts = 0
while len(pieces) < n*m:
    cut(pieces)
    num_cuts += 1</pre>
```

Example cutting strategy (we know it doesn't matter)

```
def cut_first_possible(pieces):
    for i in range(pieces):
        m, n = pieces[i]
        m, n = max(m,n), min(m,n)
        if m > 1:
            pieces.pop(i)
            pieces.append[(m-1,n), (1,n)]
            break
```

Let's analyse this program by stating assertions

```
cut = ... #some arbitrary cutting strategy
pieces = [(m, n)]
num_cuts = 0
while len(pieces) < n * m:
    cut(pieces)
    num_cuts += 1
    https://goo.gl/Mkvzjm</pre>
```

An assertion is a logical statement on a program (execution) state.

Let's analyse this program by stating assertions

```
cut = ... #some arbitrary cutting strategy
pieces = [(m, n)]
num_cuts = 0
#PRC: len(pieces) == num_cuts + 1
while len(pieces) < n * m:
    cut(pieces)
    num_cuts += 1</pre>
Example:
loop precondition
```

An assertion is a logical statement on a program (execution) state.


```
cut = ... #some arbitrary cutting strategy
pieces = [(m, n)]
num_cuts = 0
#PRC: len(pieces) == num_cuts+1
while len(pieces) < n*m:
    #len(pieces) == num_cuts+1
    cut(pieces)
    num_cuts += 1</pre>
```

An assertion is a logical statement on a program (execution) state.

An assertion is a logical statement on a program (execution) state.

10 cut = cut_first_best 11 m, n = 6, 4 12 pieces = [(m, n)] 13 num_cuts = 0 → 14 while len(pieces) < n*m: 15 cut(pieces)</pre>

Instruction pointer

→ 16 num_cuts += 1

An assertion is a logical statement on a program (execution) state.

10 cut = cut_first_best 11 m, n = 6, 4 12 pieces = [(m, n)] 13 num cuts = 0

- → 14 while len(pieces)<n*m:
 - 15 cut(pieces)
- → 16 num_cuts += 1


```
cut = ... #some arbitrary cutting strategy
pieces = [(m, n)]
num_cuts = 0
#PRC: len(pieces) == num_cuts + 1
while len(pieces) < n * m:
    #len(pieces) == num_cuts + 1
    cut(pieces)
    num_cuts += 1
    loop body
#len(pieces) == num_cuts + 1</pre>
```

An assertion is a logical statement on a program (execution) state.

Loop invariant is an assertion maintained by loop body

```
cut = ... #some arbitrary cutting strategy
pieces = [(m, n)]
num_cuts = 0
#PRC: len(pieces) == num_cuts + 1
while len(pieces) < n * m:
    #INV: len(pieces) == num_cuts + 1
    cut(pieces)
    num_cuts += 1
    #INV: len(pieces) == num_cuts + 1</pre>
```

An assertion is a logical statement on a program (execution) state.

A loop invariant is an assertion inside a loop that is true every time it is reached by the program execution.

```
cut = ... #some arbitrary cutting strategy
pieces = [(m, n)]
num_cuts = 0
#PRC: len(pieces) == num_cuts + 1
while len(pieces) < n * m:
    cut(pieces)
    num_cuts += 1
    #INV: len(pieces) == num_cuts + 1</pre>
```


An assertion is a logical statement on a program (execution) state.

A loop invariant is an assertion inside a loop that is true every time it is reached by the program execution.

We want invariants at end of loop that together with loop exit condition "turn into" desired post-condition.

[Furia et al., 2014: Loop invariants: analysis, classification, and examples]

```
cut = ... #some arbitrary cutting strategy
pieces = [(m, n)]
num_cuts = 0
#PRC: len(pieces) == num_cuts + 1
while len(pieces) < n * m:
    cut(pieces)
    num_cuts += 1
    #INV: len(pieces) == num_cuts + 1

#EXC: len(pieces) == n * m</pre>
loop exit
condition
```

An assertion is a logical statement on a program (execution) state.

A loop invariant is an assertion inside a loop that is true every time it is reached by the program execution.

We want invariants at end of loop that together with loop exit condition "turn into" desired post-condition.

[Furia et al., 2014: Loop invariants: analysis, classification, and examples]

```
cut = ... #some arbitrary cutting strategy
pieces = [(m, n)]
num_cuts = 0
#PRC: len(pieces) == num_cuts + 1
while len(pieces) < n * m:
    cut(pieces)
    num_cuts += 1
    #INV: len(pieces) == num_cuts + 1
#EXC: len(pieces) == n * m
#POC: num cuts == n * m - 1</pre>
```

An assertion is a logical statement on a program (execution) state.

A loop invariant is an assertion inside a loop that is true every time it is reached by the program execution.

We want invariants at end of loop that together with loop exit condition "turn into" desired post-condition.

[Furia et al., 2014: Loop invariants: analysis, classification, and examples]

We are interested in loop invariants that together with **loop exit** condition "turn into" desired post-condition.

[Furia et al., 2014: Loop invariants: analysis, classification, and examples]

Outline

- Assertions and invariants
- Analysing Insertion Sort
- Analysing Min Index Selection
- Analysing Prim's Algorithm

Does Insertion Sort always create sorted list?

Situation at start of execution

Loop initialisation

?	?	?	?								?
0	i=1	2	3								n-1

What is true at this point?

Insertion procedure extends sorted range by one

Insertion procedure extends sorted range by one

1st
? ? ? ? ...
0 i=1 2 3 ...

? ? ? ? ...
0 i=1 2 3 ...

... n-1

insert(1, lst)

? ? ? ? ...
0 i=1 2 3 ...

... n-1

Idea: generalise assertions so that they become stronger every iteration!

These general assertions seem much more useful

But are they preserved by general loop iteration?

Let's assume first assertion is true

?	?	?	?				?	?				?
0	1	2	3				i-1	j				n-1

Then loop body ensures second assertion

Which in turn implies first assertion in next iteration!

Thus these assertions are loop invariants!

What happens at end of loop?

```
lst
                    k-1
                                  i-2
    insert(n-1, lst)
  def insertion sort(lst):
      """accepts: list 1st of length n of comp. elements
         postcon: 1st has same elements as on call but
                                                          // // //
                   is sorted
      for i in range(1, len(lst)):
          #I: lst[i] sorted
          insert(i, lst)
          #I': lst[i+1] sorted
      \#EXC: i = n-1
```

Loop exit condition and invariant imply desired post condition

```
lst
                    k-1
    insert(n-1, lst)
  def insertion sort(lst):
      """accepts: list 1st of length n of comp. elements
         postcon: 1st has same elements as on call but
                                                          // // //
                  is sorted
      for i in range(1, len(lst)):
          #I: lst[i] sorted
          insert(i, lst)
          #I': lst[i+1] sorted
      \#EXC: i = n-1
      #POC: lst[:n] sorted
```

Outline

- Assertions and invariants
- Analysing Insertion Sort
- Analysing Min Index Selection
- Analysing Prim's Algorithm

Recap: what is min index trying to do (formally)?

```
def min_index(lst):
    """accepts: list of length n>0 of comp. elements
    returns: ?
    """
    k = 0
    for i in range(1, len(lst)):
        if lst[i] < lst[k]:
            k = i
    return k</pre>
```

Quiz time (https://flux.qa)

Clayton: AXXULH

Malaysia: LWERDE

Recap: what is min index trying to do (formally)?

Does min index function always yield index of minimum value?

Situation before reaching loop statement

First iteration of loop

What is true at this point?

Effect of conditional statement

Effect of conditional statement

In both cases: k is min index among the small index set {0, I}

This suggests general pattern

This suggests general pattern

Let's consider general loop iteration

Assume first assertion is true

Effect of conditional statement

Conditional statement ensures second assertion

Which in turn assures first assertion in next iteration

What happens at end of loop?

Again loop exit condition and invariants imply desired post cond.

```
def min index(lst):
       """accepts: list of length n>0 of comp. elements
          returns: index k in range(n) such that
                    for all j in range(n), lst[k] <= lst[j]"""</pre>
       k = 0
       for i in range(1, len(lst)):
           #I: for all j in range(i): lst[k]<=lst[j]</pre>
           if lst[i] < lst[k]: k = i
           #I': for all j in range(i+1): lst[k]<=lst[j]</pre>
       \#EXC: i = n-1, \#POC: for j in range(n): lst[k] <= lst[j]
       return k
lst
     lst[i] < lst[k]:
       k = i
                      Χ
```

Outline

- Assertions and invariants
- Analysing Insertion Sort
- Analysing Min Index Selection
- Analysing Prim's Algorithm

Prim's algorithm: does it always produce spanning tree?

```
def spanning_tree(graph):
    """input: graph given as adj. matrix
    output: spanning tree of graph"""
    tree = empty_graph(len(graph))
    con = {0}
    while len(con) < len(graph):
        i, j = extension(con, graph)
        tree[i][j], tree[j][i] = 1, 1
        con.add{j}
return tree</pre>
```

Let us visualise generic input

```
def extension(con, g):
    """input: vertices con connected in g
    output: edge (i,j) of g with i in
        con and j not in con"""
    ...
```

```
def spanning_tree(graph):
    """input: graph given as adj. matrix
    output: spanning tree of graph"""
    tree = empty_graph(len(graph))
    con = {0}
    while len(con) < len(graph):
        i, j = extension(con, graph)
        tree[i][j], tree[j][i] = 1, 1
        con.add{j}
return tree</pre>
```



```
def extension(con, g):
    """input: vertices con connected in g
    output: edge (i,j) of g with i in
        con and j not in con"""
    ...
```

```
def spanning_tree(graph):
    """input: graph given as adj. matrix
    output: spanning tree of graph"""
    tree = empty_graph(len(graph))
    con = {0}
    while len(con) < len(graph):
        i, j = extension(con, graph)
        tree[i][j], tree[j][i] = 1, 1
        con.add{j}
return tree</pre>
```



```
def extension(con, g):
    """input: vertices con connected in g
    output: edge (i,j) of g with i in
        con and j not in con"""
    ...
```

```
def spanning_tree(graph):
    """input: graph given as adj. matrix
    output: spanning tree of graph"""
    tree = empty_graph(len(graph))
    con = {0}
    while len(con) < len(graph):
        i, j = extension(con, graph)
        tree[i][j], tree[j][i] = 1, 1
        con.add{j}
return tree</pre>
```



```
def extension(con, g):
    """input: vertices con connected in g
    output: edge (i,j) of g with i in
        con and j not in con"""
    ...
```

```
def spanning_tree(graph):
    """input: graph given as adj. matrix
    output: spanning tree of graph"""
    tree = empty_graph(len(graph))
    con = {0}
    while len(con) < len(graph):
        i, j = extension(con, graph)
        tree[i][j], tree[j][i] = 1, 1
        con.add{j}
return tree</pre>
```



```
def extension(con, g):
    """input: vertices con connected in g
    output: edge (i,j) of g with i in
        con and j not in con"""
    ...
```

```
def spanning_tree(graph):
    """input: graph given as adj. matrix
    output: spanning tree of graph"""
    tree = empty_graph(len(graph))
    con = {0}
    while len(con) < len(graph):
        # con is connected in tree
        i, j = extension(con, graph)
            tree[i][j], tree[j][i] = 1, 1
            con.add{j}
    return tree</pre>
```



```
def extension(con, g):
    """input: vertices con connected in g
    output: edge (i,j) of g with i in
        con and j not in con"""
    ...
```

```
def spanning_tree(graph):
    """input: graph given as adj. matrix
    output: spanning tree of graph"""
    tree = empty_graph(len(graph))
    con = {0}
    while len(con) < len(graph):
        # con is connected in tree
        i, j = extension(con, graph)
        tree[i][j], tree[j][i] = 1, 1
        con.add{j}

return tree</pre>
```



```
def extension(con, g):
    """input: vertices con connected in g
    output: edge (i,j) of g with i in
        con and j not in con"""
    ...
```



```
def extension(con, g):
    """input: vertices con connected in g
    output: edge (i,j) of g with i in
        con and j not in con"""
    ...
```

```
def spanning_tree(graph):
    """input: graph given as adj. matrix
    output: spanning tree of graph"""
    tree = empty_graph(len(graph))
    con = {0}
    while len(con) < len(graph):
        # con is connected in tree
        i, j = extension(con, graph)
        tree[i][j], tree[j][i] = 1, 1
        con.add{j}
return tree</pre>
```



```
def extension(con, g):
    """input: vertices con connected in g
    output: edge (i,j) of g with i in
        con and j not in con"""
    ...
```

```
def spanning_tree(graph):
    """input: graph given as adj. matrix
    output: spanning tree of graph"""
    tree = empty_graph(len(graph))
    con = {0}
    while len(con) < len(graph):
        # con is connected in tree
        i, j = extension(con, graph)
        tree[i][j], tree[j][i] = 1, 1
        con.add{j}
    # con is connected in tree
return tree</pre>
```


Assume con is connected at start of arbitrary loop iteration

```
def extension(con, g):
    """input: vertices con connected in g
    output: edge (i,j) of g with i in
        con and j not in con"""
    ...
```

```
def spanning_tree(graph):
    """input: graph given as adj. matrix
    output: spanning tree of graph"""
    tree = empty_graph(len(graph))
    con = {0}
    while len(con) < len(graph):
        # con is connected in tree
        i, j = extension(con, graph)
        tree[i][j], tree[j][i] = 1, 1
        con.add{j}
        # con is connected in tree
    return tree</pre>
```


Extension edge bridges connected to not yet connected

```
def extension(con, g):
    """input: vertices con connected in g
    output: edge (i,j) of g with i in
        con and j not in con"""
    ...
```

```
def spanning_tree(graph):
    """input: graph given as adj. matrix
    output: spanning tree of graph"""
    tree = empty_graph(len(graph))
    con = {0}
    while len(con) < len(graph):
        # con is connected in tree
        i, j = extension(con, graph)
        tree[i][j], tree[j][i] = 1, 1
        con.add{j}
        # con is connected in tree

return tree</pre>
```


Extension edge bridges connected to not yet connected

```
def extension(con, g):
    """input: vertices con connected in g
    output: edge (i,j) of g with i in
        con and j not in con"""
    ...
```

```
def spanning_tree(graph):
    """input: graph given as adj. matrix
    output: spanning tree of graph"""
    tree = empty_graph(len(graph))
    con = {0}
    while len(con) < len(graph):
        # con is connected in tree
        i, j = extension(con, graph)
        tree[i][j], tree[j][i] = 1, 1
        con.add{j}
        # con is connected in tree
    return tree</pre>
```


After adding extension edge to tree j is also connected

```
def extension(con, g):
    """input: vertices con connected in g
    output: edge (i,j) of g with i in
        con and j not in con"""
    ...
```

```
def spanning_tree(graph):
    """input: graph given as adj. matrix
    output: spanning tree of graph"""
    tree = empty_graph(len(graph))
    con = {0}
    while len(con) < len(graph):
        # con is connected in tree
        i, j = extension(con, graph)
        tree[i][j], tree[j][i] = 1, 1
        con.add{j}
        # con is connected in tree

return tree</pre>
```


Invariant: con is connected

```
def extension(con, g):
    """input: vertices con connected in g
    output: edge (i,j) of g with i in
        con and j not in con"""
        ...
```

```
def spanning_tree(graph):
    """input: graph given as adj. matrix
    output: spanning tree of graph"""
    tree = empty_graph(len(graph))
    con = {0}
    while len(con) < len(graph):
        #I: con is connected in tree
        i, j = extension(con, graph)
            tree[i][j], tree[j][i] = 1, 1
            con.add{j}
        #I: con is connected in tree
return tree</pre>
```


Is this enough to conclude desired post condition?

```
def extension(con, g):
    """input: vertices con connected in g
    output: edge (i,j) of g with i in
        con and j not in con"""
    ...
```

```
def spanning_tree(graph):
    """input: graph given as adj. matrix
    output: spanning tree of graph"""
    tree = empty_graph(len(graph))
    con = {0}
    while len(con) < len(graph):
        i, j = extension(con, graph)
        tree[i][j], tree[j][i] = 1, 1
        con.add{j}
    #I: con is connected in tree
    #EXC: len(con) == len(graph)
return tree</pre>
```


No. Can conclude that tree connected, but could contain cycle

```
def extension(con, g):
    """input: vertices con connected in g
    output: edge (i,j) of g with i in
        con and j not in con"""
    ...
```

```
def spanning tree(graph):
    """input: graph given as adj. matrix
       output: spanning tree of graph"""
    tree = empty graph(len(graph))
    con = \{0\}
    while len(con) < len(graph):</pre>
        i, j = extension(con, graph)
        tree[i][j], tree[j][i] = 1, 1
        con.add{j}
        #I: con is connected in tree
    #EXC: len(con) == len(graph)
    #POC: tree connected
return tree
```


What should or second invariant be?

```
def extension(con, g):
    """input: vertices con connected in g
    output: edge (i,j) of g with i in
        con and j not in con"""
    ...
```

```
def spanning_tree(graph):
    """input: graph given as adj. matrix
    output: spanning tree of graph"""
    tree = empty_graph(len(graph))
    con = {0}
    while len(con) < len(graph):
        i, j = extension(con, graph)
        tree[i][j], tree[j][i] = 1, 1
        con.add{j}
    #I1: con is connected in tree
    #I2: ?
return tree</pre>
```


Need to guarantee that we never add a cycle to tree

```
def extension(con, g):
    """input: vertices con connected in g
    output: edge (i,j) of g with i in
        con and j not in con"""
    ...
```

```
def spanning_tree(graph):
    """input: graph given as adj. matrix
    output: spanning tree of graph"""
    tree = empty_graph(len(graph))
    con = {0}
    while len(con) < len(graph):
        i, j = extension(con, graph)
        tree[i][j], tree[j][i] = 1, 1
        con.add{j}
    #I: con is connected in tree
        # tree does not contain cycle
return tree</pre>
```


Observation: extension edge never creates cycle with edges in tree

```
def extension(con, g):
    """input: vertices con connected in g
    output: edge (i,j) of g with i in
        con and j not in con"""
    ...
```

```
def spanning_tree(graph):
    """input: graph given as adj. matrix
    output: spanning tree of graph"""
    tree = empty_graph(len(graph))
    con = {0}
    while len(con) < len(graph):
        # tree does not contain a cycle
        i, j = extension(con, graph)
        tree[i][j], tree[j][i] = 1, 1
        con.add{j}
        #I1: con is connected in tree
        # tree does not contain a cycle
return tree</pre>
```


Invariant 2: tree does not contain a cycle

```
def extension(con, g):
    """input: vertices con connected in g
    output: edge (i,j) of g with i in
        con and j not in con"""
    ...
```

```
def spanning_tree(graph):
    """input: graph given as adj. matrix
    output: spanning tree of graph"""
    tree = empty_graph(len(graph))
    con = {0}
    while len(con) < len(graph):
        i, j = extension(con, graph)
        tree[i][j], tree[j][i] = 1, 1
        con.add{j}
    #I1: con is connected in tree
    #I2: tree does not contain cycle
return tree</pre>
```


Now we know tree is connected and without cycle at loop exit

```
def extension(con, g):
    """input: vertices con connected in g
    output: edge (i,j) of g with i in
        con and j not in con"""
    ...
```

```
def spanning tree(graph):
    """input: graph given as adj. matrix
       output: spanning tree of graph"""
    tree = empty graph(len(graph))
    con = \{0\}
    while len(con) < len(graph):</pre>
        i, j = extension(con, graph)
        tree[i][j], tree[j][i] = 1, 1
        con.add{j}
        #I1: con is connected in tree
        #I2: tree does not contain cycle
    #EXC: len(con) == len(graph)
return tree
```


...in other words: tree must be a spanning tree!!

```
def extension(con, g):
    """input: vertices con connected in g
    output: edge (i,j) of g with i in
        con and j not in con"""
    ...
```

```
def spanning tree(graph):
    """input: graph given as adj. matrix
       output: spanning tree of graph"""
    tree = empty graph(len(graph))
    con = \{0\}
    while len(con) < len(graph):</pre>
        i, j = extension(con, graph)
        tree[i][j], tree[j][i] = 1, 1
        con.add{j}
        #I1: con is connected in tree
        #I2: tree does not contain cycle
    #EXC: len(con) == len(graph)
    #POC: tree is spanning tree of graph
return tree
```


What have we learnt?

- Use assertions about execution state to reason about programs
- Loop invariants can be used to analyse behaviour of loopy control flows
- Look for invariants that turn into desired post-condition when loop exit condition is true

Coming Up

- Computational complexity
- Search
- More invariants