Examenul de bacalaureat național 2014 Proba E. c) Matematică *M_şt-nat* Simulare pentru elevii clasei a XI-a

Barem de evaluare și de notare

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$36^2 = 4x$	2p
	x = 324	3p
2.	(x+a)+a=x pentru orice număr real x	3 p
	a = 0	2 p
3.	$-x+2=\frac{1}{2}$	3р
	$x = \frac{3}{2}$	2p
4.	Numărul submulțimilor cu cel mult 3 elemente ale mulțimii M este $C_4^0 + C_4^1 + C_4^2 + C_4^3 =$	2p
	$=2^4-1=15$	3 p
5.	$m_d = -2$ și $m_h \cdot m_d = -1 \Rightarrow m_h = \frac{1}{2}$, unde h este dreapta care trece prin punctul A și este	
	perpendiculară pe dreapta d	2p
	h: x-2y-8=0	3p
6.	$\sin^2 x + \cos^2 x = 1 \Rightarrow \sin x = \frac{2}{7}$	2p
	$\sin 2x = 2\sin x \cdot \cos x = \frac{12\sqrt{5}}{49}$	3p

SUBIECTUL al II-lea

(30 de puncte)

1.a)	x y 1	
	$AC: \begin{vmatrix} 0 & 2 & 1 \end{vmatrix} = 0$	2 p
	$AC: \begin{vmatrix} 0 & 2 & 1 \\ 6 & 8 & 1 \end{vmatrix} = 0$	_
	AC: x - y + 2 = 0	3 p
b)	$\begin{bmatrix} 0 & 2 & 1 \end{bmatrix}$	
	$\begin{vmatrix} 3 & 5 & 1 \end{vmatrix} = 0 + 24 + 12 - 30 - 6 - 0 =$	3 p
	6 8 1	
	$=0 \Rightarrow$ punctele A, B şi C sunt coliniare	2 p
c)	$\begin{bmatrix} 0 & 2 & 1 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 2 & 1 \\ 0 & 0 & 1 \\ 3 & 5 & 1 \end{bmatrix} = 6 \Rightarrow \mathcal{A}_{AOB} = 3$	2 p
	3 5 1	
	3 5 1	
	$\begin{vmatrix} 0 & 0 & 1 \end{vmatrix} = 6 \Rightarrow \mathcal{A}_{BOC} = 3 \Rightarrow \mathcal{A}_{AOB} = \mathcal{A}_{BOC}$	3 p
	6 8 1	

2.a)	$2A = \begin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix}$	2p
	$2B = \begin{pmatrix} 8 & 6 \\ 4 & 2 \end{pmatrix}$	2p
	$2A + 2B = \begin{pmatrix} 10 & 10 \\ 10 & 10 \end{pmatrix}$	1p
b)	$A - B = \begin{pmatrix} -3 & -1 \\ 1 & 3 \end{pmatrix}$	1p
	$B - A = \begin{pmatrix} 3 & 1 \\ -1 & -3 \end{pmatrix}$	1p
	$(A-B)\cdot (B-A) = \begin{pmatrix} -8 & 0 \\ 0 & -8 \end{pmatrix} = -8I_2$	3p
c)	$A \cdot X = \begin{pmatrix} a+2 & b+6 \\ 3a+4 & 3b+12 \end{pmatrix}, \ X \cdot B = \begin{pmatrix} 4a+2b & 3a+b \\ 10 & 6 \end{pmatrix}$	2p
	$ \begin{pmatrix} a+2 & b+6 \\ 3a+4 & 3b+12 \end{pmatrix} = \begin{pmatrix} 4a+2b & 3a+b \\ 10 & 6 \end{pmatrix} \Rightarrow a=2 \text{ si } b=-2, \text{ deci } X = \begin{pmatrix} 2 & -2 \\ 1 & 3 \end{pmatrix} $	3 p

SUBIECTUL al III-lea

(30 de puncte)

SUBJECT OF ALTITICES		uncte)
1.a)	$\lim_{x \to e} f(x) = \lim_{x \to e} \left(\ln \frac{x}{x + e} \right) =$	2p
	$=\ln\frac{1}{2}$	3p
b)	$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} \left(\ln \frac{x}{x+e} \right) =$	2p
	$=-\infty \Rightarrow$ dreapta de ecuație $x=0$ este asimptotă verticală la graficul funcției f	3 p
c)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\ln \frac{x}{x+e} \right) = \ln \left(\lim_{x \to +\infty} \frac{1}{1 + \frac{e}{x}} \right) =$	3p
	$= \ln 1 = 0 \Rightarrow$ ecuația asimptotei spre $+\infty$ la graficul funcției f este $y = 0$	2p
2.a)	f este continuă în $x = 2 \Rightarrow \lim_{\substack{x \to 2 \ x < 2}} f(x) = \lim_{\substack{x \to 2 \ x > 2}} f(x) = f(2)$	2p
	$4 - a = -4 \Rightarrow a = 8$	3p
b)	$x \in (-\infty, 2]$ și $f(x) = 0 \Rightarrow x = 6$ nu convine	2p
	$x \in (2, +\infty)$ și $f(x) = 0 \Rightarrow x^2 = 8 \Rightarrow x = -2\sqrt{2}$ nu convine, $x = 2\sqrt{2}$ convine	3 p
c)	$x \in (-\infty, 2]$ și $f(x) = x - 6 \Rightarrow f(x) < 0$	1p
	$x \in (2, 2\sqrt{2})$ și $f(x) = x^2 - 8 \Rightarrow f(x) < 0$; $f(2\sqrt{2}) = 0$	2 p
	$x \in (2\sqrt{2}, +\infty)$ și $f(x) = x^2 - 8 \Rightarrow f(x) > 0$	2p