Rush Hour

By Ebner, Lamplmair, Mayer

01

A* Algorithm

A* implementation Rush Hour

- Finding the best possible solution to reach the goal
- Minimize f(n) = g(n) + h(n)
- Use Open and Closed List
- Open List: Java Priority Queue
- Closed List: Set
- Costs for each move is 1 (=depth)

A* implementation Rush Hour

- Checking if current state = Goal
 - Yes => End
- Else add Node to closed list / remove from open list
- Expand node
 - Get the cost of the expanded nodes
 - Node on close list -> ignore Node
 - Node on open list
 - Check if costs are better
 → add better node on
 open list

02

Heuristics

Our Heuristics

Admissible and Consistent

"An admissible heuristic never overestimates the cost to reach the goal."

ADMISSIBLE

"A consistent heuristic never overestimates the distance from any neighboring node to the goal, plus the cost of reaching that neighbor."

CONSISTENT

Cars don't block if..

they have same orientation

Cars don't block if..

- they have same orientation
- Their X-position <= end of goal car

Cars are **blocking** if...

- Their X-position > x of goal car
- Their Y-position + size > y of goal car
 AND
 Their Y-position <= y of goal car

- 1. Checking for blocking cars
- 2. Checking if this car get block too
 - a. Repeat until no blocking
- 3. Move car
 - a. Repeat until the main car can drive
- 4. Check again for blocking cars
 - a. Do Step 2

- 1. Checking for blocking cars
- 2. Checking if nearest car get block too
 - a. Repeat until no blocking
- 3. Move car
 - a. Repeat until the main car can drive
- 4. Check again for blocking cars
 - a. Do Step 2

- 1. Checking for blocking cars
- 2. Checking if this car get block too
 - a. Repeat until no blocking
- 3. Move car
 - a. Repeat until the main car can drive
- 4. Check again for blocking cars
 - a. Do Step 2

- 1. Checking for blocking cars
- 2. Checking if this car get block too
 - a. Repeat until no blocking
- 3. Move car
 - a. Repeat until the main car can drive
- 4. Check again for blocking cars
 - a. Do Step 2

- 1. Checking for blocking cars
- 2. Checking if this car get block too
 - a. Repeat until no blocking
- 3. Move car
 - a. Repeat until the main car can drive
- 4. Check again for blocking cars
 - a. Do Step 2

- 1. Checking for blocking cars
- 2. Checking if this car get block too
 - a. Repeat until no blocking
- 3. Move car
 - a. Repeat until the main car can drive
- 4. Check again for blocking cars
 - a. Do Step 2

Blocking Blocking Heuristic

- 1. Checking for blocking cars
- 2. Checking if this car get block too
 - a. Repeat until no blocking
- 3. Move car
 - a. Repeat until the main car can drive
- 4. Check again for blocking cars
 - a. Do Step 2

- 1. Checking for blocking cars
- 2. Checking if this car get block too
 - a. Repeat until no blocking
- 3. Move car
 - a. Repeat until the main car can drive
- 4. Check again for blocking cars
 - a. Do Step 2

- 1. Checking for blocking cars
- 2. Checking if this car get block too
 - a. Repeat until no blocking
- 3. Move car
 - a. Repeat until the main car can drive
- 4. Check again for blocking cars
 - a. Do Step 2

- 1. Checking for blocking cars
- 2. Checking if this car get block too
 - a. Repeat until no blocking
- 3. Move car
 - a. Repeat until the main car can drive
- 4. Check again for blocking cars
 - a. Do Step 2

Blocking Blocking Heuristic

- 1. Checking for blocking cars
- 2. Checking if this car get block too
 - a. Repeat until no blocking
- 3. Move car
 - a. Repeat until the main car can drive
- 4. Check again for blocking cars
 - a. Do Step 2

- 1. Checking for blocking cars
- 2. Checking if this car get block too
 - a. Repeat until no blocking
- 3. Move car
 - a. Repeat until the main car can drive
- 4. Check again for blocking cars
 - a. Do Step 2

- 1. Checking for blocking cars
- 2. Checking if this car get block too
 - a. Repeat until no blocking
- 3. Move car
 - a. Repeat until the main car can drive
- 4. Check again for blocking cars
 - a. Do Step 2

- Both the blocking and the advanced heuristic are consistent
- All blocking cars need at least one move to get out of the way
- Never overestimates the real costs

Distance to Goal

- Checking the distance to the goal
- Moves goal car and check if the distance = 0
- Not admissible because the distance could be more than steps needed

Blocking Distance

- Combination of Distance & Blocking Blocking
- Not admissible

03

Analysis

Comparison

l	- 1	Zero			Blocking			Distance			Advanced				AdvancedDi			tance			
name		nodes o	dpth	br.fac	noo	des	dpth	br.fac		nodes	dpth	br.fac		nodes	dpth	br.fac		nodes	dpth	br.fac	
	+			+					+				+				+				
Jam-1	- 1	11589	8	3,066	68	829	8	2,857		9561	9	2,625		991	8	2,196		959	8	2,186	
Jam-2		24081	8	3,378	4(044	8	2,663		11407	9	2,681		2643	9	2,248		1570	8	2,340	
Jam-3		7731	14	1,788	40	059	14	1,699		4249	15	1,639		3688	14	1,686		3410	15	1,613	
Jam-4		3203	9	2,301	12	281	9	2,057		2707	9	2,255		409	9	1,781		206	9	1,627	
Jam-5		21390	9	2,888	50	075	9	2,433		15724	11	2,284		668	9	1,896		398	9	1,774	
Jam-6		15992	9	2,791	65	567	9	2,510		12786	11	2,239		2287	10	2,025		2465	11	1,901	
Jam-7	-	52493	13	2,202	201	143	13	2,035		24401	14	1,955		19262	13	2,027		18272	13	2,018	

- Heuristics using the Distance are performing good but are not admissible.
- Our Advanced Heuristic performed way better than the Blocking (and Zero)

Analysis

- The more cars clustered in one spot, the harder it was for the algorithm to get to a solution
- Clusters were detected and resolved with more ease by humans
 - o E.g. 7, 14, 24

The more intricate blocking dependencies were, the harder it was for the human eye and mind
to have an overview over the situation as only a few moves could be thought through before
moving

Analysis

• The influence of the heuristics on the expanded nodes decreases with increasing puzzle difficulty.