Date of Birth 1969-10-10

Sex Male

Physician **Dr. Carla Bird**

Institution Lee-Ramirez

Tumor specimen: source Leukemia CollectedDate 2023-08-10 ReceivedDate 2023-08-13 TumorPercentage 37%

Normal specimen: source Blood CollectedDate 2023-08-12 ReceivedDate 2023-08-13

GENOMIC VARIANTS

Somatic - Potentially Actionable

variant allele fraction

PRKCA

c.1387G>C p.D463H Spliceregionvariant-GOF

24.12%

JAK2

c.2792A>G p.M929I Nonsense-GOF

27.28%

Somatic - Biologically Relevant

FGFR1

c.1966A>G p.K656E Nonsense-GOF

25.83%

Germline - Pathogenic

No Germline - Pathogenic variants were found in the limited set of genes on which we report.

Pertinent Negatives

FGFR2 IDH1

TOP2A

IMMUNOTHERAPY MARKERS

Tumor Mutational Burden

Microsatellite Instability Status

9 m/Mb

5%

Stable

Equivocal

High

FDA-APPROVED THERAPIES, Current Diagnosis

KRAS G12C Inhibitors

Sotorasib

NCCN, Consensus, Non-Small Cell Lung Cancer

MSK OncoKB, Level 1 KRASp.G12C G12C-GOF

FDA-APPROVED THERAPIES, Other Indications

KRAS G12C Inhibitors

Sotorasib

NCCN, Consensus, Non-Small Cell Lung Cancer

MSK OncoKB, Level 1

KRASp.G12C G12C-GOF

ADDITIONAL INDICATORS

			_	
	Intav	Arabia	Dragn	Acie.
٠.	Jillav	OI able	Progn	U3I3

NCCN, Consensus, Non-Small Cell Lung Cancer KRASp.G12C Gain-of-function

CLINICAL TRIALS

A Study of VS-6766 v. VS-6766 + Defactinib in Recurrent G12V, Other KRAS and BRAF Non-Small Cell Lung Cancer

Phase 2 City, state - x mi KRAS mutation

A Phase 1/2 Study of MRTX849 in Patients With Cancer Having a KRAS G12C Mutation KRYSTAL-1

Phase 1/2 City, state - x mi KRAS mutation STK11 mutation

First-in-human Study of DRP-104 (Sirpiglenastat) as Single Agent and in Combination With Atezolizumab in Patients With Advanced Solid Tumors. (NCT04471415)

Phase 1/2 City, state - x mi NFE2L2 mutation STK11 mutation

VARIANTS OF UNKNOWN SIGNIFICANCE

Somatic	Mutation effect	Variant allele fraction
HSP90B1	c.3113A>G p.I66T Spliceregionvariant-LOF NM_001011645	8.77% -
BLM	c.2207_2212delinsTAGATTC p.Y736fs*4 Nonsense-GOF NM_001011645	15.44% —
PHF6	c.3113A>G p.R225X Nonsense-LOF NM_001011645	8.08%
MYCN	c.131_132delinsTT p.P44L Frameshift-GOF NM_001011645	1.52%
KLF1	c.892G>C p.M39L Missensevariant(exon2)-GOF NM_001011645	5.52%
PTCH1	c.3583A>T p.T1195S Frameshift-GOF NM_001011645	3.41%
Germline	Mutation effect	Condition
NOTCH1	c.7398_7399insAGGGACCG p.G1196D Nonsense-GOF NM_001011645	realize
KLF1	c.892G>C p.M39L Stopgain-LOF NM_001011645	deal

LOW COVERAGE REGIONS

SDHB

SOMATIC VARIANT DETAILS - POTENTIALLY ACTIONABLE

PRKCA

c.1387G>C p.D463H Spliceregionvariant-GOF

VAF: 24.12%

FAT1 encodes a transmembrane protein involved in tumor suppressor signaling. FAT1 protein can regulate transcriptional activity by sequestering beta-catenin, thereby preventing it from entering the nucleus. Loss of function mutations and copy number loss of FAT1 are associated with cancer progression.

c.2792A>G p.M929I Nonsense-GOF

VAF: 27.28%

TP53 encodes a protein that is a transcription factor that regulates the expression of genes involved in cell cycle arrest, apoptosis, and DNA repair. TP53 is a tumor suppressor gene that is mutated in many cancers. Mutations in TP53 are associated with cancer progression.

SOMATIC VARIANT DETAILS - BIOLOGICALLY RELEVANT

FGFR1

c.1966A>G p.K656E Nonsense-GOF

VAF: 25.83%

FAT1 encodes a transmembrane protein involved in tumor suppressor signaling. FAT1 protein can regulate transcriptional activity by sequestering beta-catenin, thereby preventing it from entering the nucleus. Loss of function mutations and copy number loss of FAT1 are associated with cancer progression.

CLINICAL HISTORY

Diagnosed on 2023-08-10

Electronically signed by Carla Bird

CLIA number 14D2114007 Date Signed/Reported 2023-08-16

Laboratory Medical Director Dr. Kevin Thompson ID # 9846 Pipeline version 3.2.0