Homework 3-4

First Name: Last Name: Red ID#:

Q1. Is the following distributive law valid? $A \oplus BC = (A \oplus B)(A \oplus C)$ Prove your answer.

Q2. Which of the following statements are always true? Justify your answers.

(a) If
$$A + B = C$$
, then $AD' + BD' = CD'$

(b) If
$$A'B + A'C = A'D$$
, then $B + C = D$

(c) If
$$A + B = C$$
, then $A + B + D = C + D$

(d) If
$$A + B + C = C + D$$
, then $A + B = D$

Q3. Given $F_1 = \sum m(0,4,5,6)$ and $F_2 = \sum m(0,3,6,7)$ find the minterm expression for $F_1 + F_2$. State a general rule for finding the expression for $F_1 + F_2$ given the minterm expansions for F_1 and F_2 . Prove your answer by using the general form of the minterm expansion.

Q4. A combinational circuit has four inputs (A, B, C, D) and three outputs (X, Y, Z). XYZ represents a binary number whose value equals the number of 1's at the input. For example if ABCD = 1011, then XYZ = 011.

Find the minterm expansions for X,Y, and Z.

Q5. A half adder is a circuit that adds two bits to give a sum and a carry. Complete the truth table for a half adder, and implement the half adder using only two gates. Then design a circuit which finds the negative number of a 4-bit positive input number in 2's complement format. For example, if a positive number is ABCD in 2's complement format, then the corresponding negative number would be A'B'C'D'+1. Use four half adders and any additional gates for your implementation.