Лямбда-исчисление

Лямбда-исчисление, синтаксис

$$\Lambda ::= (\lambda x. \Lambda) |(\Lambda \Lambda)| x$$

Мета-язык:

- Мета-переменные:
 - A...Z мета-переменные для термов.
 - x, y, z мета-переменные для переменных.
- Правила расстановки скобок аналогичны правилам для кванторов:
 - Лямбда-выражение ест всё до конца строки
 - Аппликация левоассоциативна

Пример

- ▶ $a b c (\lambda d.e f \lambda g.h) i \equiv ((((a b) c) (\lambda d.((e f) (\lambda g.h)))) i)$
- ▶ $0 := \lambda f.\lambda x.x;$ $(+1) := \lambda n.\lambda f.\lambda x.n f (f x);$ $(+2) := \lambda x.(+1) ((+1) x)$

Альфа-эквивалентность

$$FV(A) = \begin{cases} \{x\}, & A \equiv x \\ FV(P) \cup FV(Q), & A \equiv P Q \\ FV(P) \setminus \{x\}, & A \equiv \lambda x.P \end{cases}$$

Примеры:

- $ightharpoonup M := \lambda b. \lambda c. a \ c \ (b \ c); \ FV(M) = \{a\}$
- $N := x (\lambda x.(x (\lambda y.x))); FV(N) = \{x\}$

Определение

 $A =_{\alpha} B$, если и только если выполнено одно из трёх:

- 1. $A \equiv x$, $B \equiv y$, $x \equiv y$;
- 2. $A \equiv P_a Q_a$, $B \equiv P_b Q_b$ и $P_a =_{\alpha} P_b$, $Q_a =_{\alpha} Q_b$;
- 3. $A \equiv (\lambda x.P)$, $B \equiv (\lambda y.Q)$, $P[x := t] =_{\alpha} Q[y := t]$, где t не входит в A и B.

Определение

$$L = \Lambda / =_{\alpha}$$

Альфа-эквивалентность, пример

- 1. $A \equiv x$, $B \equiv y$, $x \equiv y$;
- 2. $A \equiv P_a Q_a$, $B \equiv P_b Q_b$ in $P_a =_{\alpha} P_b$, $Q_a =_{\alpha} Q_b$;
- 3. $A \equiv (\lambda x. P)$, $B \equiv (\lambda y. Q)$, $P[x := t] =_{\alpha} Q[y := t]$, где t не входит в A и B.

Лемма

$$\lambda a.\lambda b.a\ b =_{\alpha} \lambda b.\lambda a.b\ a$$

Доказательство.

Бета-редукция

Интуиция: вызов функции.

λ -выражение	Python
$\lambda f.\lambda x.f x$	<pre>def one(f,x): return f(x)</pre>
$(\lambda x.x \ x) \ (\lambda x.x \ x)$	(lambda x: x x) (lambda x: x x)
	<pre>def omega(x): return x(x); omega(omega)</pre>

Определение

Терм вида $(\lambda x.P)$ Q — бета-редекс.

Определение

 $A \rightarrow_{\beta} B$, если:

- 1. $A \equiv (\lambda x.P) \ Q, \ B \equiv P \ [x := Q]$, при условии свободы для подстановки;
- 2. $A\equiv (P\ Q),\ B\equiv (P'\ Q'),$ при этом $P\to_{\beta} P'$ и Q=Q', либо P=P' и $Q\to_{\beta} Q';$
- 3. $A \equiv (\lambda x.P)$, $B \equiv (\lambda x.P')$, $\mu P \rightarrow_{\beta} P'$.

Бета-редукция, пример

Пример

$$(\lambda x.x \ x) \ (\lambda n.n) \rightarrow_{\beta} (\lambda n.n) \ (\lambda n.n) \rightarrow_{\beta} \lambda n.n$$

Пример

$$(\lambda x.x \ x) \ (\lambda x.x \ x) \rightarrow_{\beta} (\lambda x.x \ x) \ (\lambda x.x \ x)$$

Нормальная форма

Определение

Лямбда-терм N находится в нормальной форме, если нет Q: $N
ightarrow_{eta} Q$.

Пример

В нормальной форме: $\lambda f. \lambda x. x$ ($f(f \lambda g. x)$)

Пример

Не в нормальной форме (редексы подчёркнуты): $\lambda f.\lambda x.(\lambda g.x)$ (f (f x))

$$(\underbrace{(\lambda x.x) (\lambda g.x) (I (I x))}_{(\lambda x.x) (\lambda x.x)}) (\underbrace{(\lambda x.x) (\lambda x.x)}_{(\lambda x.x)})$$

Определение

 $(widtharpoonup_{eta})$ — транзитивное и рефлексивное замыкание $(widtharpoonup_{eta})$.

Булевские значения

$$T:=\lambda x.\lambda y.x\ F:=\lambda x.\lambda y.y$$
 Тогда: $Or:=\lambda a.\lambda b.a\ T\ b:$ $Or\ F\ T=\underbrace{((\lambda a.\lambda b.a\ T\ b)\ F)}_{\beta}\ T\rightarrow_{\beta}(\lambda b.F\ T\ b)\ T\rightarrow_{\beta}F\ T\ T=\underbrace{(\lambda x.\lambda y.y)}_{\beta}T\ T\rightarrow_{\beta}(\lambda y.y)}_{\beta}T$

Чёрчевские нумералы

$$f^{(n)}(x) = \begin{cases} x, & n = 0 \\ f(f^{(n-1)}(x)), & n > 0 \end{cases}$$

Определение

Чёрчевский нумерал $\overline{n}=\lambda f.\lambda x.f^{(n)}(x)$

Пример

$$\overline{3} = \lambda f.\lambda x.f(f(f(x)))$$

Инкремент: $Inc = \lambda n.\lambda f.\lambda x.n f(f(x))$

$$(\lambda n.\lambda f.\lambda x.n f (f x)) \overline{0} = (\lambda n.\lambda f.\lambda x.n f (f x)) (\lambda f'.\lambda x'.x') \rightarrow_{\beta} \dots \lambda f.\lambda x.(\lambda f'.\lambda x'.x') f (f x) \rightarrow_{\beta} \dots \lambda f.\lambda x.(\lambda x'.x') (f x) \rightarrow_{\beta} \dots \lambda f.\lambda x f x = \overline{1}$$

Декремент:
$$Dec = \lambda n.\lambda f.\lambda x.n (\lambda g.\lambda h.h (g f)) (\lambda u.x) (\lambda u.u)$$

Упорядоченная пара и алгебраический тип

Определение

 $Pair(a, b) := \lambda s.s \ a \ b$ $Fst := \lambda p.p \ T$ $Snd := \lambda p.p \ F$

Пример

 $Fst(Pair(a,b)) = (\lambda p.p \ T) \ \lambda s.s \ a \ b \twoheadrightarrow_{\beta} (\lambda s.s \ a \ b) \ T \twoheadrightarrow_{\beta} a$

Определение

InL L := $\lambda p.\lambda q.p$ L InR R := $\lambda p.\lambda q.q$ R Case t f g := t f g

Теорема Чёрча-Россера

Теорема (Чёрча-Россера)

Для любых термов N, P, Q, если N $\twoheadrightarrow_{\beta}$ P, N $\twoheadrightarrow_{\beta}$ Q, и P \neq Q, то найдётся $T: P \twoheadrightarrow_{\beta} T$ и $Q \twoheadrightarrow_{\beta} T$.

Теорема

Если у терма N существует нормальная форма, то она единственна

Доказательство.

Пусть не так и $N \twoheadrightarrow_{\beta} P$ вместе с $N \twoheadrightarrow_{\beta} Q$, $P \neq Q$. Тогда по теореме Чёрча-Россера существует $T \colon P \twoheadrightarrow_{\beta} T$ и $Q \twoheadrightarrow_{\beta} T$, причём $T \neq P$ или $T \neq Q$ в силу транзитивности $(\twoheadrightarrow_{\beta})$

Бета-эквивалентность, неподвижная точка

Пример

 $\Omega = (\lambda x.x~x)~(\lambda x.x~x)$ не имеет нормальной формы: $\Omega
ightarrow_{eta} \Omega$

Определение

 $(=_{eta})$ — транзитивное, рефлексивное и симметричное замыкание (\to_{eta}) .

Теорема

Для любого терма N найдётся такой терм R, что $R =_{\beta} N R$.

Доказательство.

Пусть $Y = \lambda f.(\lambda x.f(x x))(\lambda x.f(x x))$. Тогда R := Y N:

$$Y N =_{\beta} (\lambda x.N(x x)) (\lambda x.N(x x)) =_{\beta} N((\lambda x.N(x x)) (\lambda x.N(x x)))$$

Интуиционистское И.В. (натуральный, естественный вывод)

▶ Формулы языка (секвенции) имеют вид: $\Gamma \vdash \alpha$. Правила вывода:

Аксиома:
$$\frac{\text{посылка 1}}{\text{заключение}} \frac{1}{\Gamma, \alpha \vdash \alpha}$$
 (аннотация)

Правила введения связок:

$$\frac{\dot{\Gamma}, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta} \qquad \frac{\Gamma \vdash \alpha}{\Gamma \vdash \alpha \lor \beta}, \frac{\Gamma \vdash \beta}{\Gamma \vdash \alpha \lor \beta} \qquad \frac{\Gamma \vdash \alpha}{\Gamma \vdash \alpha \& \beta}$$

Правила удаления связок:

Пример доказательства:
$$\frac{A \& B \vdash A \& B}{A \& B \vdash B} \text{ (удал&)} \qquad \frac{A \& B \vdash A \& B}{A \& B \vdash A} \text{ (акс.)}$$
$$A \& B \vdash B \& A \text{ (введ&)}$$

Эквивалентность натурального и гильбертовского выводов

Определение

$$|\alpha|_{\perp} = \left\{ \begin{array}{ll} X, & \alpha \equiv X \\ |\sigma|_{\perp} \star |\tau|_{\perp}, & \alpha \equiv \sigma \star \tau \\ |\sigma|_{\perp} \to \bot, & \alpha \equiv \neg \sigma \end{array} \right. \qquad |\alpha|_{\neg} = \left\{ \begin{array}{ll} X, & \alpha \equiv X \\ |\sigma|_{\neg} \star |\tau|_{\neg}, & \alpha \equiv \sigma \star \tau \\ A \& \neg A, & \alpha \equiv \bot \end{array} \right.$$

Теорема

- 1. $\Gamma \vdash_n \alpha$ тогда и только тогда, когда $|\Gamma|_{\neg} \vdash_h |\alpha|_{\neg}$.
- 2. $\Gamma \vdash_h \alpha$ тогда и только тогда, когда $|\Gamma|_\perp \vdash_n |\alpha|_\perp$.

Доказательство.

Индукция по структуре

Просто-типизированное лямбда-исчисление

Определение

Импликационный фрагмент интуиционистской логики:

$$\frac{\Gamma,\varphi \vdash_{\to} \psi}{\Gamma,\varphi \vdash_{\to} \varphi} \qquad \frac{\Gamma,\varphi \vdash_{\to} \psi}{\Gamma \vdash_{\to} \varphi \to \psi} \qquad \frac{\Gamma \vdash_{\to} \varphi \qquad \Gamma \vdash_{\to} \varphi \to \psi}{\Gamma \vdash_{\to} \psi}$$

Теорема

Если $\Gamma \vdash \alpha$, то $\Gamma \vdash_{\rightarrow} \alpha$.

Доказательство.

Определим модель Крипке:

- ▶ миры замкнутые множества формул: $\alpha \in \Gamma$ т.и.т.т. $\Gamma \vdash_{\rightarrow} \alpha$,
- ▶ порядок (⊆),
- ightharpoonup $\Gamma \Vdash X$ т.и.т.т. $X \in \Gamma$.

Из корректности моделей Крипке следует, что что если $\Gamma \vdash \alpha$, то $\Gamma \Vdash \alpha$. Требуемое следует из того, что $\Gamma \Vdash \alpha$ влечёт

$\Gamma \Vdash \alpha$ т.и.т.т. $\Gamma \vdash_{\rightarrow} \alpha$

Индукция по структуре α .

- $ightharpoonup lpha \equiv X$. Утверждение следует из определения;
- - ▶ Пусть $\Gamma \Vdash \varphi \to \psi$. То есть, $\Gamma \subseteq \Delta$ и $\Delta \Vdash \varphi$ влечёт $\Delta \Vdash \psi$. Возьмём Δ как замыкание $\Gamma \cup \{\varphi\}$. Значит, $\Gamma \vdash_{\to} \varphi$ и, по индукционному предположению, $\Delta \Vdash \varphi$. Тогда $\Delta \Vdash \psi$. По индукционному предположению, $\Delta \vdash_{\to} \psi$. То есть, $\Gamma, \varphi \vdash_{\to} \psi$, откуда

$$\frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta}$$

▶ Пусть $\Gamma \vdash_{\to} \varphi \to \psi$. Проверим $\Gamma \Vdash \varphi \to \psi$. Пусть $\Gamma \subseteq \Delta$ и пусть $\Delta \Vdash \varphi$.

По индукционному предположению, $\varphi \in \Delta$. То есть, $\Delta \vdash_{\rightharpoonup} \varphi$ и $\Delta \vdash_{\rightharpoonup} \varphi \to \psi$. Тогда

$$\frac{\Delta \vdash_{\rightarrow} \varphi \quad \Delta \vdash_{\rightarrow} \varphi \rightarrow \psi}{\Delta \vdash_{\rightarrow} \psi}$$

По индукционному предположению, $\Delta \Vdash \psi$, отчего $\Gamma \Vdash \varphi \to \psi$.

Просто-типизированное лямбда-исчисление

Определение

Просто-типизированное лямбда-исчисление (по Карри). Типы:

$$au:=lpha|(au o au)$$
. Язык: Г \vdash А : $arphi$

$$\frac{\Gamma, x : \varphi \vdash x : \varphi}{\Gamma, x : \varphi \vdash x : \varphi} \ x \notin \Gamma \qquad \frac{\Gamma, x : \varphi \vdash A : \psi}{\Gamma \vdash \lambda x . A : \varphi \to \psi} \ x \notin \Gamma \qquad \frac{\Gamma \vdash A : \varphi \qquad \Gamma \vdash BA : \varphi}{\Gamma \vdash BA : \varphi}$$

Пример: тип чёрчевских нумералов

Пусть $\Gamma = f : \alpha \to \alpha, x : \alpha$

$$\frac{ \frac{\Gamma \vdash x : \alpha}{\Gamma \vdash f : \alpha} \xrightarrow{Ax} \frac{\Gamma \vdash f : \alpha \to \alpha}{App} \xrightarrow{\Gamma \vdash f : \alpha \to \alpha} \xrightarrow{Ax} \frac{}{App} }{ \frac{\{f : \alpha \to \alpha, x : \alpha\}}{f : \alpha \to \alpha \vdash \lambda x. f \ (f \ x) : (\alpha \to \alpha)}} \xrightarrow{\lambda} \frac{}{\vdash \lambda f. \lambda x. f \ (f \ x) : (\alpha \to \alpha) \to (\alpha \to \alpha)} \lambda$$

Изоморфизм Карри-Ховарда

λ -исчисление	исчисление высказываний
Выражение	доказательство
Тип выражения	высказывание
Тип функции	импликация
Упорядоченная пара	Конъюнкция
Алгебраический тип	Дизъюнкция
Необитаемый тип	Ложь

Изоморфизм Карри-Ховарда: отрицание

Определение

Ложь (\bot) — необитаемый тип; failwith/raise/throw: $\alpha \to \bot$; $\neg \varphi \equiv \varphi \to \bot$ Например, контрапозиция: $(\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$

$$\frac{\overline{\Phi \vdash a : \alpha} \ Ax}{\Phi \vdash f : a \to \beta} \frac{Ax}{App} \frac{\overline{\Phi \vdash n : \beta \to \bot}}{\overline{\Phi \vdash n : \beta \to \bot}} \frac{Ax}{App}$$

$$\frac{f : \alpha \to \beta, n : \beta \to \bot, a : \alpha \vdash n (f \ a) : \bot}{f : \alpha \to \beta, n : \beta \to \bot \vdash \lambda a^{\alpha}.n (f \ a) : \neg \alpha} \frac{\lambda}{f : \alpha \to \beta \vdash \lambda n^{\beta \to \bot}.\lambda a^{\alpha}.n (f \ a) : \neg \beta \to \neg \alpha} \lambda$$

$$\frac{f : \alpha \to \beta \vdash \lambda n^{\beta \to \bot}.\lambda a^{\alpha}.n (f \ a) : \neg \beta \to \neg \alpha}{\lambda f^{\alpha \to \beta}.\lambda n^{\beta \to \bot}.\lambda a^{\alpha}.n (f \ a) : (\alpha \to \beta) \to (\neg \beta \to \neg \alpha)} \lambda$$

Снятие двойного отрицания: $((\alpha \to \bot) \to \bot) \to \alpha$, то есть $\lambda f^{(\alpha \to \bot) \to \bot}$.? : α .

f угадывает, что передать $x:\alpha\to \bot.$ Тогда надо по f угадать, что передать x.

Исчисление по Чёрчу и по Карри

Определение

Просто-типизированное лямбда-исчисление по Карри.

$$\frac{\Gamma, x : \varphi \vdash x : \varphi}{\Gamma, x : \varphi \vdash x : \varphi} \times \notin \Gamma \qquad \frac{\Gamma, x : \varphi \vdash A : \psi}{\Gamma \vdash \lambda x . A : \varphi \to \psi} \times \notin \Gamma \qquad \frac{\Gamma \vdash A : \varphi \qquad \Gamma \vdash \varphi}{\Gamma \vdash BA : \varphi}$$

Просто-типизированное лямбда-исчисление по Чёрчу.

$$\frac{\Gamma, x : \varphi \vdash x : \varphi}{\Gamma, x : \varphi \vdash x : \varphi} \times \notin \Gamma \qquad \frac{\Gamma, x : \varphi \vdash A : \psi}{\Gamma \vdash \lambda x^{\varphi} . A : \varphi \to \psi} \times \notin \Gamma \qquad \frac{\Gamma \vdash A : \varphi}{\Gamma \vdash BA}$$

Пример

по карри	The hep by	
$\lambda f.\lambda x.f(fx):(\alpha \to \alpha) \to (\alpha \to \alpha)$	$\lambda f^{\alpha \to \alpha} . \lambda x^{\alpha} . f(f x) : (\alpha \to \alpha) -$	
$\lambda f.\lambda x.f(f(x)): (\beta \to \beta) \to (\beta \to \beta)$	$\lambda f^{\beta \to \beta} . \lambda x^{\beta} . f(f(x)) : (\beta \to \beta) \to \beta$	

Πο Υέρυν

Комбинаторы S,K

Определение

Комбинатор — лямбда-терм без свободных переменных

Определение

$$S := \lambda x.\lambda y.\lambda z.x \ z \ (y \ z), \ K := \lambda x.\lambda y.x, \ I := \lambda x.x$$

Теорема

Пусть N — некоторый замкнутый лямбда-терм. Тогда найдётся выражение C, состоящее из комбинаторов S,K, что N = $_{\beta}$ C

Пример

$$\dot{K} := \dot{\lambda} x^{\alpha} . \lambda y^{\beta} . x \qquad \alpha \to \beta \to \alpha
S := \lambda x^{\alpha \to \beta \to \gamma} . \lambda y^{\alpha \to \beta} . \lambda z^{\alpha} . x z (y z) \qquad (\alpha \to \beta \to \gamma) \to (\alpha \to \beta) \to \alpha$$

$$I =_{\beta} S K K$$

Дальнейшее развитие: изоморфизм Карри-Ховарда и вокруг него

Исчисление второго порядка

Напомним о порядках:

Порядок	Объекты	Пример
0 (И.В.)	Атомарные	Р
1 (И.П. 1)	Множества	$\{x P(x)\}$
2 (И.П. 2)	Множества множеств	$\{P \forall t.t>0\rightarrow P(t)\}$

- ightharpoonup Можно заменить схемы аксиом на аксиомы: orall a. orall b. a
 ightarrow b
 ightarrow a
- Острый угол: импредикативность (формулы могут говорить о себе). Что такое «предикат»? Произвольное выражение, а подстановка буквальная замена текста? Тогда каково [p(p)] при $p(x) = x(x) \to \bot$? Нужна точная формализация.
- ▶ Самый простой вариант: переменные второго порядка только булевские пропозициональные переменные.

$$\llbracket orall p.Q
rbracket = \left\{egin{array}{ll} \mathsf{M}, & \llbracket Q
rbracket^{p:=\mathsf{M}} = \llbracket Q
rbracket^{p:=\mathsf{H}} = \mathsf{M} \\ \mathsf{Л}, & \mathsf{иначe} \end{array}
ight.$$

Изоморфизм Карри-Ховарда для логики второго порядка

Типы и значения, зависящие от типов.

- ▶ Что такое $T: \forall x.x \rightarrow x$? template <class x> class T { x f (x); }
- ▶ Что такое $T: \exists x.\tau(x)$? Абстрактный тип данных: interface T $\{\tau\}$; f(T x)

Зависимые типы

- Рассмотрим код int n; cin >> n; int arr[n]; Каков тип arr?
- ightharpoonup sizeof(arr) = $n \cdot \text{sizeof(int)}$
- ightharpoonup $arr = \Pi n^{int}.int[n]$
- ► Аналогично, printf(const char*, ...) капитуляция.
- ▶ Есть языки, где тип выписывается (например, Идрис).

Прямолинейное: доказательства в коде

- ▶ Div2: (1: int) -> (even 1) -> int
- ▶ even 1 что это?

$$even(x) ::= \begin{cases} EZ, & x = 0 \\ EP(even(y)), & x = y'' \end{cases}$$

- ▶ Div2 10 (EP (EP (EP (EP EZ)))))
- A если Div2 p? В общем случае сложно. Plus2: (1: int) -> (p: even 1) -> (1+2, even (1+2)) = (1+2, EP p)

Интереснее: доказательства утверждений

Hатуральные числа: Nat ::=0|suc Nat,

func pmap A B :

$$a+b=\left\{ egin{array}{ll} a, & b=0 \ \mathrm{suc}\ (a+c), & b=\mathrm{suc}\ c \end{array}
ight.$$

```
(f : A -> B) {a a' : A} (p : a = a') : f a = f a' =>
...

func +-comm (n m : Nat) : n + m = m + n
| 0, 0 => idp
| suc n, 0 => pmap suc (+-comm n 0)
| 0, suc m => pmap suc (+-comm 0 m)
| suc n, suc m => pmap suc (+-comm (suc n) m *>
pmap suc (inv (+-comm n m)) *> +-comm n (suc m))
```

Что ещё

- Гомотопическая теория типов...
- ▶ Метод резолюций и рядом Prolog, SMT-солверы,...
- ▶ Можно пытаться совмещать (F*, ...)