Assignment - 01

0 1
The total number of 3 digit numbers = ux3x2 = 24
Note repetition is not allowed in this
case.
D Singleton Seto- It Contains only one element. It is denoted
by
Void Set -: It's set not a element
present. px £3
O Ame A multiset is an umordered collection of element.
B In this Set element repeated. (EX) → {1,1,m,m,n,n, S,S,Y}
DATE A &B = Symme + ric D. set's. = (AVB) - (ANB)
A B

04		6
9 Am C	Consider a relation P on the S I is given by P= E(a,b) ENXI I division of b3.	?€£ V:
v yes	S this is 9 see that	0
1	486	
to R	relation R is a Eq. b, c3 for every (a,b) (b, c) bel R we have (a,c) ER.	
of s	Power set any given set s is the set of all su and is demoted by PCS	ibsels
Ex	$\Rightarrow S = \begin{cases} 5, 7 & 93 \\ P(A) = 2^{m} & \rightarrow 2^{3} \end{cases}$	-
las in a		}
$(3) \rightarrow$	Subset	
1	ANB = BNA	
Solve To	B = SN: HEA and HEB)	
Ci	order is mox preserved in case	0 T Set,
1	$A = \{1, 2, 3\}$ $B = \{3, 4, 2\}$	
€ 2	133 = {2,33 Proved	

DATE PAGE No.

AUBUC = |AI+|BI+ |CI-|ANB|- |ANB |- |BAC) + IANBACI 81,2,33 53, 4, 53 54,5,63 + 184,5,631 - 1833 84,531 + = 152,2,34,5,63 52 8 84, 5, 63 (AUB) = CAVBUC) we take an arbitary KEANBAC XEANBAC CT XEAN XEBN XEC KEAN KEB KEANB. Thus We receive A DBDC nnB

Bijective = one to ome = anto F(X) = 2x+1 Let XI, X2 ER and let US assume F(K1) = F(K2) 2x+1 = 2x2+1 K1 = K2 Hence we have f(KI) = f(K2) one-one CMIECHVE - 00 LX C00 ORXTILO 00 L F (W) LOD we know that 4 FUNCE OP So, the co-Domain of FCS R, but the range of F is [1 00], So FCW is not SURJECTIVE > Hence for not bijectivest

 $p^2 = 4m^2 - 2$
n 0 10 110 99+
from and 1) and 2) we get
 $29^2 = um^2$
 $9^2 = 2m^2$
 $\mathcal{L} = 2m^2$
a ² is a multiple of 2 a is a mn of 2
q is a mm of 2
Lactor 2:
 Hence p, a Common factor 2.
To in an incretional Mympher.
 J2 is an irradional number.