1. Sea S_n el grupo simétrico de n-letras. Demuestre que $A_n extleq S_n$

Preliminares

Lema 1

Sea G un grupo y N un subgrupo de G. Son equivalentes las siguientes afirmaciones:

- 1. aN = N a para cada $a \in G$.
- 2. Para cada a, $b \in G$ se tiene $ab \in N$ implica $ba \in N$.
- 3. $aNa^{-1} = \{ana^{-1} \text{ tal que } n \in \mathbb{N}\} \subseteq \mathbb{N}$ para cada $a \in \mathbb{G}$.
- 4. $aNa^{-1} = N$ para cada $a \in G$.

Lema 2

- 1. una permutación par ∘ una permutación par es una una permutación par
- 2. una permutación par o una permutación impar es una permutación impar
- 3. una permutación impar o una permutación par es una permutación impar
- 4. una permutación impar o una permutación impar es una permutación par

Demostración

Sabemos que los σ son pares o bien impares

caso 1

sea σ una permutación par entonces $\sigma = ((a_1a_n)(a_1a_{n-1}...(a_1a_3)(a_1a_2))$ consideremos pues a $\sigma^{-1} = ((a_1a_2)^{-1}(a_1a_3)^{-1}...(a_1a_{n-1})^{-1}(a_1a_n)^{-1}$ puesto que $(ab)^{-1} = b^{-1}a^{-1}$ pero tambien sabemos que cualquier transposición es el inverso de si misma por lo tanto $\sigma^{-1} = ((a_1a_2)(a_1a_3)...(a_1a_{n-1})(a_1a_n)$ y como el número de transposiciones de σ^{-1} nunca cambia entonces σ^{-1} es par y sea cualesquiera $\tau \in A_n$ por tanto τ es par y por lema $2 \ \sigma \circ \tau$ es par y $\sigma \circ \tau \circ \sigma^{-1}$ es par por tanto $\sigma \circ \tau \circ \sigma^{-1} \subseteq A_n$ y por lema $1 \ \sigma A_n = A_n \sigma$ para σ par

caso 2

sea σ una permutación impar entonces $\sigma=((a_1a_n)(a_1a_{n-1}...(a_1a_3)(a_1a_2))$ consideremos pues a $\sigma^{-1}=((a_1a_2)^{-1}(a_1a_3)^{-1}...(a_1a_{n-1})^{-1}(a_1a_n)^{-1}$ puesto que $(ab)^{-1}=b^{-1}a^{-1}$ pero tambien sabemos que cualquier transposición es el inverso de si misma por lo tanto $\sigma^{-1}=((a_1a_2)(a_1a_3)...(a_1a_{n-1})(a_1a_n)$ y como el número de transposiciones de σ^{-1} nunca cambia entonces σ^{-1} es impar y sea cualesquiera $\tau\in A_n$ por tanto τ es par y por lema 2 $\sigma\circ\tau$ es impar y $\sigma\circ\tau\circ\sigma^{-1}$ es par por tanto $\sigma\circ\tau\circ\sigma^{-1}\subseteq A_n$ y por lema 1 $\sigma A_n=A_n\sigma$ para σ impar

por caso 1 y caso 2 $\sigma A_n = A_n \sigma$ para cada $\sigma \in S_n$