Interpolation and Autocorrelation

HES 505 Fall 2022: Session 17

Matt Williamson

Objectives

By the end of today you should be able to:

- Distinguish deterministic and stochastic processes
- Define autocorrelation and describe its estimation
- Articulate the benefits and drawbacks of autocorrelation
- Leverage point patterns and autocorrelation to interpolate missing data

Description vs. process?

- Vizualization and the detection of patterns
- The challenge of geographic data
- Implications for analysis

Inequality in the United States: Quintiles of Gini Index by County: 2006–2010. The greater the Gini index, the more unequal a county's income distribution is.

Patterns as realizations of spatial processes

- A **spatial process** is a description of how a spatial pattern might be *generated*
- Generative models
- An observed pattern as a *possible realization* of an hypothesized process

Deterministic vs. stochastic processes

• Deterministic processes: always produces the same outcome

$$z = 2x + 3y$$

Results in a spatially continuous field

```
1 x <- rast(nrows = 10, ncols=10, xmin = 0, xmax=10,
2 values(x) <- 1
3 z <- x
4 values(z) <- 2 * crds(x)[,1] + 3*crds(x)[,2]</pre>
```

Deterministic vs. stochastic processes

 Stochastic processes: variation makes each realization difficult to predict

$$z = 2x + 3y + d$$

- The *process* is random, not the result (!!)
- Measurement error makes deterministic processes appear stochastic

```
1 x <- rast(nrows = 10, ncols=10, xmin = 0,
2 values(x) <- 1
3 fun <- function(z){
4 a <- z
5 d <- runif(ncell(z), -50,50)
6 values(a) <- 2 * crds(x)[,1] + 3*crds(x)[,
7 return(a)
8 }
9
10 b <- replicate(n=6, fun(z=x), simplify=FAI
11 d <- do.call(c, b)</pre>
```

Deterministic vs. stochastic processes

Expected values and hypothesis testing

- Considering each outcome as the realization of a process allows us to generate expected values
- The simplest spatial process is Completely Spatial Random (CSR) process
- First Order effects: any event has an equal probability of occurring in a location
- **Second Order** effects: the location of one event is independent of the other events

From Manuel Gimond

Generating expectations for CSR

- We can use quadrat counts to estimate the expected number of events in a given area
- The probability of each possible count is given by:

$$P(n,k) = \binom{n}{x} p^k (1-p)^{n-k}$$

• Given total coverage of quadrats, then $p = \frac{\frac{\alpha}{x}}{a}$ and

$$P(k, n, x) = {n \choose k} \left(\frac{1}{x}\right)^k \left(\frac{x-1}{x}\right)^{n-k}$$

Tobler's Law

'everything is usually related to all else but those which are near to each other are more related when compared to those that are further away'.

Waldo Tobler

Spatial autocorrelation

From Manuel Gimond

(One) Measure of autocorrelation

• Moran's I

$$I(d) = \frac{\sum_{i}^{n} \sum_{j \neq i}^{n} w_{ij} (x_{i} - \overline{x}) (x_{j} - \overline{x})}{S^{2} \sum_{i}^{n} \sum_{j \neq i}^{n} w_{ij}}$$

Moran's I: An example

- Use **spdep** package
- Estimate neighbors
- Generate weighted average

```
1 set.seed(2354)
2 # Load the shapefile
3 s <- readRDS(url("https://github.com/mgimond/Data/raw/gh-pages
4
5 # Define the neighbors (use queen case)
6 nb <- poly2nb(s, queen=TRUE)
7
8 # Compute the neighboring average homicide rates
9 lw <- nb2listw(nb, style="W", zero.policy=TRUE)
10 #estimate Moran's I
11 moran.test(s$HR80,lw, alternative="greater")</pre>
```

```
Moran I test under randomisation

data: s$HR80
weights: lw

Moran I statistic standard deviate = 1.8891, p-value = 0.02944
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance
0.136277593 -0.015151515 0.006425761
```


Moran's I: An example

```
1 M1 <- moran.mc(s$HR80, lw, nsim=9999, alte
2
3
4
5 # Display the resulting statistics
6 M1</pre>
```

Monte-Carlo simulation of Moran I

```
data: s$HR80
weights: lw
number of simulations + 1: 10000

statistic = 0.13628, observed rank = 9575, p-
value = 0.0425
alternative hypothesis: greater
```


The challenge of areal data

- Spatial autocorrelation threatens *second order* randomness
- Areal data means an infinite number of potential distances
- \bullet Neighbor matrices, W, allow different characterizations

Interpolation

Interpolation

- Goal: estimate the value of z at new points in x_i
- Most useful for continuous values
- Nearest-neighbor, Inverse Distance Weighting, Kriging

Nearest neighbor

- find i such that $|\mathbf{x_i} \mathbf{x}|$ is minimized
- The estimate of z is z_i

```
1 data(meuse)
 2 r <- rast(system.file("ex/meuse.tif", package="terra"))</pre>
    sfmeuse <- st as sf(meuse, coords = c("x", "y"), crs=crs(r))</pre>
   nodes <- st make grid(sfmeuse,</pre>
                             cellsize = 25.
                             what = "centers")
    dist <- distance(vect(nodes), vect(sfmeuse))</pre>
    nearest <- apply(dist, 1, function(x) which(x == min(x)))
    zinc nn <- sfmeuse$zinc[nearest]</pre>
   preds <- st as sf(nodes)</pre>
   preds$zn <- zinc nn</pre>
   preds <- as(preds, "Spatial")</pre>
   gridded(preds) <- TRUE</pre>
   preds.rast <- rast(preds)</pre>
16 r.resamp <- resample(r, preds.rast)</pre>
17 preds.rast <- mask(preds.rast, r.resamp)</pre>
```


Weight closer observations more heavily

$$\hat{z}(\mathbf{x}) = \frac{\sum_{i=1}^{i=1} W_i z_i}{\sum_{i=1}^{i=1} W_i}$$

where

$$\mathbf{w}_{i} = |\mathbf{x} - \mathbf{x}_{i}|^{-\alpha}$$

and $\alpha > 0$ ($\alpha = 1$ is inverse; $\alpha = 2$ is inverse square)

- terra::interpolate provides flexible interpolation methods
- Use the gstat package to develop the formula

Kriging

- Previous methods predict z as a (weighted) function of distance
- Treat the observations as perfect (no error)
- If we imagine that z is the outcome of some spatial process such that:

$$z(\mathbf{x}) = \mu(\mathbf{x}) + \epsilon(\mathbf{x})$$

then any observed value of z is some function of the process $(\mu(\mathbf{x}))$ and some error $(\epsilon(\mathbf{x}))$

• Kriging exploits autocorrelation in $\epsilon(\mathbf{x})$ to identify the trend and interpolate accordingly

Autocorrelation

- Correlation the tendency for two variables to be related
- **Autocorrelation** the tendency for observations that are closer (in space or time) to be correlated
- **Positive autocorrelation** neighboring observations have ε with the same sign
- **Negative autocorrelation** neighboring observations have ε with a different sign (rare in geography)

Ordinary Kriging

• Assumes that the deterministic part of the process $(\mu(\mathbf{x}))$ is an unknown constant (μ)

$$z(\mathbf{x}) = \mu + \epsilon(\mathbf{x})$$

* Specified in call to variogram and gstat as y~1 (or some other constant)

```
1 v <- variogram(log(zinc)~1, ~x+y, data=meuse)
2 mv <- fit.variogram(v, vgm(1, "Sph", 300, 1))
3 gOK <- gstat(NULL, "log.zinc", log(zinc)~1, meuse, locations=~x+y, model=mv
4 OK <- interpolate(r, gOK, debug.level=0)</pre>
```

Ordinary Kriging

- Assumes that the deterministic part of the process $(\mu(\mathbf{x}))$ is now a function of the location \mathbf{x}
- Could be the location or some other attribute
- Now y is a function of some aspect of x

```
1 vu <- variogram(log(zinc)~elev, ~x+y, data=meuse)
2 mu <- fit.variogram(vu, vgm(1, "Sph", 300, 1))
3 gUK <- gstat(NULL, "log.zinc", log(zinc)~elev, meuse, locations=~x+y, model
4 names(r) <- "elev"
5 UK <- interpolate(r, gUK, debug.level=0)</pre>
```



```
1 vu <- variogram(log(zinc)~x + x^2 + y + y^2, ~x+y, data=meuse)
2 mu <- fit.variogram(vu, vgm(1, "Sph", 300, 1))
3 gUK <- gstat(NULL, "log.zinc", log(zinc)~x + x^2 + y + y^2, meuse, location
4 names(r) <- "elev"
5 UK <- interpolate(r, gUK, debug.level=0)</pre>
```


- relies on autocorrelation in $\epsilon_1(\mathbf{x})$ for \mathbf{z}_1 AND cross correlation with other variables $(\mathbf{z}_{2...i})$
- Extending the ordinary kriging model gives:

$$\mathbf{z}_1(\mathbf{x}) = \mathbf{\mu}_1 + \boldsymbol{\epsilon}_1(\mathbf{x})$$

$$\mathbf{z}_2(\mathbf{x}) = \mathbf{\mu}_2 + \mathbf{\epsilon}_2(\mathbf{x})$$

* Note that there is autocorrelation within both z_1 and z_2 (because of the ϵ) and cross-correlation (because of the location, \mathbf{x})

• Process is just a linked series of gstat calls

```
gCoK <- gstat(NULL, 'log.zinc', log(zinc)~1, meuse, locations=~x+y)
gCoK <- gstat(gCoK, 'elev', elev~1, meuse, locations=~x+y)
gCoK <- gstat(gCoK, 'cadmium', cadmium~1, meuse, locations=~x+y)
coV <- variogram(gCoK)
coV.fit <- fit.lmc(coV, gCoK, vgm(model='Sph', range=1000))

coK <- interpolate(r, coV.fit, debug.level=0)</pre>
```


A Note about Semivariograms

- **nugget** the proportion of semivariance that occurs at small distances
- **sill** the maximum semivariance between pairs of observations
- range the distance at which the sill occurs
- experimental vs. fitted variograms

A Note about Semivariograms

Fitted Semivariograms

