

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Μάθημα: "ΘΕΩΡΙΑ ΔΙΚΤΥΩΝ ΚΑΙ ΚΥΚΛΩΜΑΤΩΝ" (6° εξάμηνο)

Ακαδ. Έτος: 2019-20

Διδάσκοντες: Κ. Τζαφέστας, Ν. Μαράτος, Γ. Κιόκες

3η Σειρά Ασκήσεων

Άσκηση 3.1

Για το κύκλωμα του Σχήματος 1 (όπου $G_1 - G_5$ ωμικές αγωγιμότητες και $C_1 - C_3$ πυκνωτές):

- (α) Να σχεδιασθούν ο $I \gamma$ ράφος και ο $V \gamma$ ράφος, και να γραφούν σε μητρική μορφή οι εξισώσεις της τροποποιημένης μεθόδου κόμβων με χρήση δύο γράφων.
- (β) Αν $G_2 = G_3 = G_5 = G$, να ευρεθεί η συνάρτηση μεταφοράς $G(s) = V_{out}(s)/J(s)$ του κυκλώματος.
- (γ) Αν $G_2 = G_3 = G_5 = G$, να εξετασθεί η ευστάθεια του κυκλώματος: Πότε είναι το κύκλωμα ευσταθές; Πότε εκτελεί αμείωτες ταλαντώσεις και ποιά η συχνότητά τους;
- (δ) Αν $G=G_1=G_2=G_3=G_4=G_5=1Ω^{-1}$, $C_1=C_2=1F$, $C_3=2F$, A=3, και J(t)=5+3sin(2t), να ευρεθεί η απόκριση $V_{out}(t)$ του κυκλώματος στην ημιτονική μόνιμη κατάσταση (H.M.K.).
- (ε) Για τις παραπάνω τιμές στοιχείων να σχεδιαστεί το ασυμπτωτικό διάγραμμα Bode κέρδους της G(s).

Σχήμα 1

Άσκηση 3.2

Για το κύκλωμα του ακόλουθου Σχήματος 2:

- (α) Να επιλεγεί ένα κανονικό δένδρο, να προσδιορισθούν οι καταστάσεις και να γραφούν οι εξισώσεις κατάστασης του κυκλώματος.
- (β) Αν είναι $R_1 = R_2 = R_3 = R_4 = 1\Omega$ και $C_1 = C_2 = C_3 = 1$ F, να εξετασθεί η ευστάθεια του κυκλώματος συναρτήσει του κέρδους k. Είναι δυνατόν να εκτελεί το κύκλωμα αμείωτες ταλαντώσεις;
- (γ) Αν, επιπλέον, είναι k=0, να υπολογισθεί η απόκριση μηδενικής εισόδου του κυκλώματος, αν E(t)=0, $V_{C_1}(0)=2V$, $V_{C_2}(0)=V_{C_3}(0)=0$.

Σχήμα 2

Άσκηση 3.3

Για το κύκλωμα του Σχήματος 3:

- (α) Να σχεδιαστούν Ι-γράφος, V-γράφος και να γραφούν οι εξισώσεις της τροποποιημένης μεθόδου κόμβων με χρήση δυο γράφων.
- (β) Να βρεθεί η συνάρτηση μεταφοράς G(S)=Vout(s)/E(s) του κυκλώματος.
- (γ) Δίνονται οι τιμές των στοιχείων R1=R2=R3=R4=R5=R6=1Ω και C1=2F, C2=1F. Αν Ε(t) =10 u(t) Volt να υπολογισθεί η χρονική απόκριση Vout (t) του κυκλώματος.
- (δ) Για τις τιμές των παθητικών στοιχείων του ερωτήματος (γ) να σχεδιαστεί το ασυμπτωτικό διάγραμμα Bode κέρδους της G(s).

Ασκηση 3.4

Να σχεδιαστούν τα διαγράμματα Bode κέρδους και φάσης των παρακάτω συναρτήσεων μεταφοράς:

(a)
$$\frac{10s(40+2s)}{(1+0.1s)(1+0.4s)}$$
, (b) $\frac{s^2+2s+2}{s^2+4s+4}$

ΠΡΟΘΕΣΜΙΑ ΠΑΡΑΔΟΣΗΣ: ΠΕΜΠΤΗ 11/6/2020

- Υποβολή της εργασίας: Αποκλειστικά ηλεκτρονικά μέσω του συστήματος υποβολής εργασιών στο mycourses σε μορφή αρχείου PDF έως την ημερομηνία παράδοσης. Για οποιαδήποτε διευκρίνηση αποστείλατε email στο <u>gkiokes@iccs.gr</u>.
- Για την άσκηση 3.3 για το (α) ερώτημα μπορείτε να χρησιμοποιήσετε απευθείας το αποτέλεσμα από την 2^η σειρά ασκήσεων (Άσκηση 2.2) εφόσον την έχετε παραδώσει.
- Στις παραπάνω ασκήσεις, όπου δεν αναφέρεται διαφορετικά, υποθέτουμε μηδενικές *αρχικές συνθήκες* (αρχική φόρτιση πυκνωτών).