## Zener Diode as a Voltage Regulator

November 28, 2020

2

**Zener Diode as a Voltage Regulator:** When the Zener diode is in reverse biased mode or reverses break down region then we can operate the Zener diode as a voltage regulator.

Contents —

## V-I Characteristics of Zener Diode

The V-I characteristic curve of the Zener diode is shown below.



From V-I characteristic curve we can observe that the Zener diode has a region in its reverse bias characteristic where a constant negative voltage appears regardless of the value of the current flowing through the diode.

The voltage remains constant even with a large change in current. This ability of a Zener diode to control itself can be used to regulate or stabilize the voltage source against supply or load variation. Due to this property Zener diode being operated in the breakdown region can be used as a voltage regulator.

## Illustration of Zener Diode as a Voltage Regulator

Consider a given circuit,



Here, V<sub>s</sub>=Source voltage

R<sub>s</sub>= Resistor to limit the reverse current through Zener

diode

R<sub>I</sub> =load resistance

V<sub>z</sub>= Zener voltage and zener current

I<sub>Z</sub>= Zener current

When the voltage across the load  $R_L$  is less than the breakdown voltage  $V_z$  then the Zener diode does not conduct any current.

Here, voltage  $V_s$  and resistor  $R_s$  are selected in such a way that the Zener diode operates in the breakdown region.

For load voltage  $(V_{out})$  greater than Zener voltage  $V_z$  the Zener diode will operate in the breakdown region.

Now, the supply current  $I_s$  is divided into  $I_z$  and  $I_L$ .

$$I_S = I_Z + I_L \dots (i)$$

For a Zener diode operating in a breakdown region voltage,  $V_z$  remains almost constant even though the current  $I_z$  may change significantly.

With the increase in  $V_s$ , Is increases. Since  $R_L$  is constant and  $V_{out}$  being equal to  $V_z$ ,  $I_L$  is also constant.

So, from equation (i) we can observe that increase in  $I_s$  will be compensated by an increase in  $I_z$ .

Now the Zener voltage becomes,

$$V_Z = V_S - I_S R_S \dots (ii)$$

When  $V_s$  increases  $I_sR_s$  also increases this makes Zener voltage  $V_z$  almost constant. As the voltage across RL is equal to  $V_z$ . So,  $V_{out}$  also remains constant. Hence, Zener diode operating in the breakdown region acts as a voltage regulator.