Probability

Aditya Tripathy Dept. of Electrical Engg., IIT Hyderabad. January 29, 2025

Outline

Table Of Contents

Problem

Defining the random variables

CDF of binomial distribution

Simulating random bits with known bias

Problem

Problem Statement

A coin is tossed twice, what is the probability that atleast one tail occurs?

Defining the random variables

Formulate in terms of bernoulli

Let Y be the random variable representing the number of tails. Y can be represented as the sum of two bernoulli random variables, X_1, X_2 ,

$$Y = X_1 + X_2 (3.1)$$

The Bernoulli R.V is defined as,

$$X_i = \begin{cases} 0 & \text{Outcome is Heads} \\ 1 & \text{Outcome is Tails} \end{cases}$$
 (3.2)

PMF of bernoulli

The PMF of Bernoulli R.V is given by,

$$p_X(n) = \begin{cases} p & n = 0\\ 1 - p & n = 1 \end{cases}$$
 (3.3)

Z-transform to compute binomial PMF

Using properties of Z transform of PMF on eq. (0.1),

$$M_Y(z) = M_{X_1}(z) M_{X_2}(z)$$
 (3.4)

$$M_{X_1}(z) = \sum_{k=-\infty}^{\infty} p_{X_1}(k) z^{-k} = p + (1-p) z^{-1}$$
 (3.5)

$$M_{X_2}(z) = \sum_{k=-\infty}^{\infty} p_{X_2}(k) z^{-k} = p + (1-p) z^{-1}$$
 (3.6)

$$M_Y(z) = (p + (1-p)z^{-1})^2$$
 (3.7)

$$= \sum_{k=-\infty}^{\infty} {}^{2}C_{k} p^{2-k} (1-p)^{k} z^{-k}$$
 (3.8)

$$p_Y(n) = {}^{2}C_n p^{2-n} (1-p)^n$$
 (3.9)

Final PMF of Binomial distribution

Substituting
$$p = \frac{1}{2}$$
,

$$p_Y(n) = {}^2C_n\left(\frac{1}{2}\right)^2 \tag{3.10}$$

CDF of binomial distribution

CDF as a sum of PMF

Using eq. (0.9) the CDF (Cumulative Distribution Function) is given by:

$$F_X(n) = \sum_{k=-\infty}^{n} {}^{2}C_k \left(\frac{1}{2}\right)^2 =$$

$$\begin{cases}
0 & x < 0 \\
{}^{2}C_0 \left(\frac{1}{2}\right)^2 = \frac{1}{4} & 0 \le x < 1 \\
{}^{2}C_1 \left(\frac{1}{2}\right)^2 + {}^{2}C_0 \left(\frac{1}{2}\right)^2 = \frac{3}{4} & 1 \le x < 2 \\
{}^{2}C_2 \left(\frac{1}{2}\right)^2 + {}^{2}C_1 \left(\frac{1}{2}\right)^2 + {}^{2}C_0 \left(\frac{1}{2}\right)^2 = 1 & x >= 2
\end{cases}$$
(4.1)

Back to the problem

$$Pr(X \ge 1) = 1 - F_X(1)$$

$$= 1 - \frac{1}{4} = \frac{3}{4}$$
(4.2)

Simulating random bits with known

bias

Random bits

To run a simulation we need to generate random numbers with uniform probability, which is done as shown below(Algorithm taken from OpenSSL's random_uniform.c):

- 1. Generate 1byte(8 bits) of entropy using OpenSSL/rand.h.
- 2. Scale down this number in the range [0, 255] to [0, 1]by dividing by 255.
- 3. Return 0 if the scaled down number is less than p and return 1 otherwise.

PMF of random variable

Figure 1: Probability Mass Function

CDF of random variable

Figure 2: Cumulative Distribution Function

Generating Binomial distribution for higher n

Figure 3: Generating binomial distribution from bernoulli