戸 题目

PO L1 ftoi 文件上传

题目编号 713-319

ftoi(附加题)

本题为附加题,通过与否不计入P0课下通过条件。

提交要求

使用Logisim进行组合逻辑设计,要求输入一个16位的单精度浮点数(符合IEEE-754标准),输出该浮点数的整数部分(包含符号),用32位二进制符号数表示。具体说明如

1 下:

IEEE-754 标准中一个半精度16位浮点数的表示方法:

$$V_{float} = (-1)^S imes M imes 2^E$$

利用这种浮点数表示方法进行编码后的值可以分为4类,如下图所示

1. Normalized

s \neq 0 & \neq 11111 fraction

2. Denormalized

3. Infinity

4. NaN

- S代表最高位符号位,由sign[15]位编码,规定S=sign;
- E代表指数,由图中exponent[14:10]域编码,规定**补码E=exponent-01111_2**

$$M = egin{cases} 1 + frac, exponent
eq 0 (Normalized) \ frac, exponent = 0 (Denormalized) \end{cases}$$

Normalized例子:

**

Denormalized例子:

模块端口定义如下:

信号名	方向	描述
float[15:0]		16位半精度浮点数(IEEE-754标准)
int[31:0]	0	该浮点数的整数部分(带符号),用32位符号数的补码来表示,超出表示范围则取低32位。 第3类Infinity和第4类NaN为了 简化直接输出0即可

- 必须严格按照模块的端口定义
- 文件内模块名: ftoi
- 测试电路:

