ANFIS Architecture

Rule Set:

IF
$$(x_1 \text{ is } A_1) \text{ AND } (x_2 \text{ is } B_1) \text{ THEN } f_1 = p_1 x_1 + q_1 x_2 + r_1$$
IF $(x_1 \text{ is } A_2) \text{ AND } (x_2 \text{ is } B_2) \text{ THEN } f_2 = p_2 x_1 + q_2 x_2 + r_2$
...

Layers: ©Copyright 2002 by Piero P. Bonisson

ANFIS-Visualized (Example for n = 2)

ANFIS (Adaptive Neuro-Fuzzy Inference System)

©Copyright 2002 by Piero P. Bonissone

Layer 1: Calculate Membership Value for Premise Parameter

Output O_{1,i} for node i=1,2

$$O_{1,i} = \mu_{A_i}(x_1)$$

Output O_{1,i} for node i=3,4

$$O_{1,i} = \mu_{B_{i-2}}(x_2)$$

where

A is a linguistic label (small, large, ...)

$$\mu_{A}(x_{1}) = \frac{1}{1 + \left| \frac{x_{1} - c_{i}}{a_{i}} \right|^{2b}}$$

Node output: membership value of input

Layer 1 (cont.): Effect of changing Parameters {a,b,c}

Layer 2: Firing Strength of Rule

• Use T-norm (min, product, fuzzy AND, ...)

$$O_{2,i} = w_i = \mu_{A_i}(x_1)\mu_{B_i}(x_2)$$
(for i=1,2)

Node output: firing strength of rule

©Copyright 2002 by Piero P. Bonissone

Layer 3: Normalize Firing Strength

 Ratio of ith rule's firing strength vs. all rules' firing strength

$$O_{3,i} = \overline{w}_i = \frac{w_i}{w_1 + w_2}$$

$$(for i=1,2)$$

Node output: Normalized firing strengths

©Copyright 2002 by Piero P. Bonissone

Layer 4: Consequent Parameters

Takagi-Sugeno type output

$$O_{4,i} = \overline{w_i} f_i = \overline{w_i} (p_i x_1 + q_i x_2 + r_i)$$

Consequent parameters {p_i, q_i, r_i}

Node output: Evaluation of Right Hand Side Polynomials

©Copyright 2002 by Piero P. Bonissone

Layer 5: Overall Output

$$O_{5,1} = \sum_{i} \overline{w}_{i} f_{i} = \frac{\sum_{i} w_{i} f_{i}}{\sum_{i} w_{i}}$$

- Note:
 - Output is <u>linear</u> in consequent parameters p,q,r.

$$= \frac{w_1}{w_1 + w_2} f_1 + \frac{w_2}{w_1 + w_2} f_2$$

$$= \overline{w_1} (p_1 x_1 + q_1 x_2 + r_1) + \overline{w_2} (p_2 x_1 + q_2 x_2 + r_2)$$

$$= (\overline{w_1} x_1) p_1 + (\overline{w_1} x_2) q_1 + (\overline{w_1}) r_1 + (\overline{w_2} x_1) p_2 + (\overline{w_2} x_2) q_2 + (\overline{w_2}) r_2$$

Node output: Weighted Evaluation of RHS Polynomials

©Copyright 2002 by Piero P. Bonissone

ANFIS Network

©Copyright 2002 by Piero P. Bonissone