## Group 11 Final Presentation

Tom Tribe, Ken MacIver, Jundi Yang, Mei Huang

2022-10-11

Group 11: Diamonds Dataset



# Group Members (photos)



## Group Members (name, email, ORCID)

#### Tom Tribe

- tom.tribe2016@gmail.com
- **>** 0000-0002-5002-8066

#### Ken Maclver

- ▶ ken.maciver68@gmail.com
- 0000-0001-8999-4598

#### Jundi Yang

- ▶ ivyli112358@gmail.com
- 0000-0003-0888-9564

### Mei Huang

- huangmei139@gmail.com
- 0000-0003-2401-0679

### The Diamonds dataset

- ► This large dataset has 53940 rows (diamonds) of ten variables (approx 540,000 values)
- Slow to process!
- There are seven numeric variables and three categorical variables
- We selected diamonds because it was conceptually simple to understand what each variable was measuring, and to have the opportunity to use the analytical techniques taught in STAT394 with a large dataset

### The Variables

#### red font = categorical variable

- carat: the diamond's weight
- cut: a measure of quality (4 levels)
- color: a measure of colour quality (7 levels)
- clarity: a measure of clearness (6 levels)
- x: length in mm
- y: width in mm
- z: depth in mm
- depth: total depth percentage
- table: width of top of diamond relative to widest point
- price: the price of the diamond in US dollars

(List adapted from list at kaggle.com).

## Summary of Numeric Variables

|             | carat | depth | table | price   | X      | у     | z     |
|-------------|-------|-------|-------|---------|--------|-------|-------|
| sample size | 53940 | 53940 | 53940 | 53940   | 53940  | 53940 | 53940 |
| minimum     | 0.20  | 43.00 | 43.00 | 326.00  | 0.00   | 0.00  | 0.00  |
| first       | 0.40  | 61.00 | 56.00 | 950.00  | 4.71   | 4.72  | 2.91  |
| quartile    |       |       |       |         |        |       |       |
| median      | 0.70  | 61.80 | 57.00 | 2401.00 | 5.70   | 5.71  | 3.53  |
| mean        | 0.80  | 61.75 | 57.46 | 3932.80 | 5.73   | 5.73  | 3.54  |
| third       | 1.04  | 62.50 | 59.00 | 5324.25 | 6.54   | 6.54  | 4.04  |
| quartile    |       |       |       |         |        |       |       |
| maximum     | 5.01  | 79.00 | 95.00 | 18823.0 | 0.74   | 58.90 | 31.80 |
| IQR         | 0.64  | 1.50  | 3.00  | 4374.25 | 5 1.83 | 1.82  | 1.13  |
| standard    | 0.47  | 1.43  | 2.23  | 3989.44 | 1.12   | 1.14  | 0.71  |
| deviation   |       |       |       |         |        |       |       |
| skewness    | 1.12  | -0.08 | 0.80  | 1.62    | 0.38   | 2.43  | 1.52  |
| kurtosis    | 4.26  | 8.74  | 5.80  | 5.18    | 2.38   | 94.21 | 50.08 |

# Cateogrical Summary

|     | C     | ut  | Fair | God   | d V  | ery Goo | d  | Prem | ium   | ldeal |      |
|-----|-------|-----|------|-------|------|---------|----|------|-------|-------|------|
|     | Cou   | nt  | 1610 | 496   | 0    | 1208    | 2  | 13   | 791 2 | 1551  |      |
| _   | Color |     | J    | 1     | H    | l       | G  | F    | Е     | D     | _    |
|     | Count | 2   | 808  | 5422  | 8304 | 1129    | 2  | 9542 | 9797  | 6775  | -    |
| Cla | arity | l1  | . S  | 12    | SI1  | VS2     | V  | S1 ' | VVS2  | VVS1  | IF   |
| Cc  | ount  | 741 | 919  | 94 13 | 3065 | 12258   | 81 | 71   | 5066  | 3655  | 1790 |

### Pairs Plot



Figure 1: Pairs plot

### Normal QQ Plots



Figure 2: Normal QQ Plots

### Correlation Plot



Figure 3: Correlation Plot

## Price by Cateogrical



Figure 4: Price by Categorical

### Leading Question 1

- How can we best predict diamond price using the other variables?
- We intend to use the following techniques to investigate this question:
- Stepwise Regression, Principal Components Analysis, Principal Components Regression

### Multiple Regression

- Starting with the full model we used a stepwise regression procedure to find the best model for predicting diamond price.
- According to AIC the best model was:
- ▶ price ~ carat + cut + color + clarity + depth + table + x
- ► All variables excluding y and z are significant in the model
- ▶ The 'best' model had an Adjusted R<sup>2</sup> of 91.98%

## Regression Assumptions



Figure 5: Regression Diagnostics

## Principal Components Analysis: Screeplot



Figure 6: PCA Screeplot

## Principal Components Analysis: Eigenvectors



Figure 7: Plot of EigenVectors

# **Biplot**



Figure 8: PCA Biplot

### Principal Components Regression

- ► We conducted a Principal Components Regression with diamond price as the response variable
- ► The PCA excluding price was almost identical to the original PCA
- ▶ We were able to explain over 80% of the variation in price using just the first two principal components as predictors
- A more parsimonious model!

# Summary of Models Predicting Diamond Price

| Model         | No. of Predictors | Adjusted R <sup>2</sup> |
|---------------|-------------------|-------------------------|
| Full Model    | 9                 | 0.9198                  |
| Best Model    | 7                 | 0.9198                  |
| Numeric Model | 7                 | 0.8592                  |
| Two PC        | 2                 | 0.8092                  |
| All PC        | 6                 | 0.8695                  |

## Leading Question 2 . . . and the issues we encountered. . .

- ► The diamonds dataset includes 280 interactions between different levels of the categorical variables
- Our second leading question was to investigate if we could classify the diamonds data more simply using analytical techniques such as LDA and CA

### Problems encountered

- ▶ Despite a correlation of 0.9216, 'carat' was not a great predictor of 'price'
- LDA did not work with the full dataset