## 1. Nocions bàsiques de cristal·lografia

| Notació de plans                                                                                       |                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Distància interplanar entre plans paral·lels<br>amb índexs de Miller (h k l) per a un<br>sistema cúbic | $d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$                                                                                                     |
| Relacion                                                                                               | s d'utilitat                                                                                                                                     |
| Volum de qualsevol cel·la unitat                                                                       | $V = a \cdot b \cdot c(1 - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma + 2 \cdot \cos \alpha \cdot \cos \beta \cdot \cos \gamma)^{\frac{1}{2}}$ |
| Superfície d'un triangle regular                                                                       | $S = \frac{\sqrt{3}}{4}a^2$                                                                                                                      |
| Superfície d'un hexàgon regular                                                                        | $S = 6\frac{\sqrt{3}}{4}a^2$                                                                                                                     |
| Volum d'un prisma hexagonal                                                                            | $V = \left[6\frac{\sqrt{3}}{4}a^2\right]1,663a$                                                                                                  |
| Estructura cúbica simple                                                                               | $R = \frac{a}{2}$                                                                                                                                |
| Estructura cúbica centrada a les cares                                                                 | $R = \frac{a\sqrt{2}}{4}$                                                                                                                        |
| Estructura cúbica centrada al cos                                                                      | $R = \frac{a\sqrt{3}}{4}$                                                                                                                        |
| Hexagonal                                                                                              | $R = \frac{a}{2}$                                                                                                                                |
| Densitat reticular lineal (d <sub>I</sub> )                                                            | $d_l = rac{n^{ m o}\ punts\ reticulars}{longitud\ segment}$                                                                                     |
| Densitat reticular planar (d <sub>s</sub> )                                                            | $d_s = rac{n^{ m o}\ punts\ reticulars}{{ m à}rea\ pla}$                                                                                        |
| Densitat reticular volumètrica (d <sub>r</sub> )                                                       | $d_r = rac{n^{ m o}\ punts\ reticulars}{volum\ cel\cdot la}$                                                                                    |
| Factor d'empaquetament                                                                                 | $F_e = rac{volum\ ocupat\ per\ les\ esferes}{volum\ cel\cdot la}$                                                                               |
| Espai disponible                                                                                       | $F_H = 1 - F_e$                                                                                                                                  |
| F <sub>e</sub> estructura cúbica simple (CS)                                                           | $F_{CS} = \frac{V_{1 \text{ àtom}}}{V_{cel \cdot la}} = \frac{\frac{4}{3}\pi R^3}{(2R)^3} = 0,5236$                                              |
| F <sub>e</sub> estructura cúbica centrada al cos (BCC)                                                 | $F_{BCC} = \frac{V_{2 \text{ àtoms}}}{V_{cel \cdot la}} = \frac{2 \cdot \frac{4}{3} \pi R^3}{\left(\frac{4R}{\sqrt{3}}\right)^3} = 0,68$         |

| F <sub>e</sub> estructura cúbica centrada a les cares (FCC)                                    | $F_{FCC} = \frac{V_{4 \text{ àtoms}}}{V_{cel \cdot la}} = \frac{4 \cdot \frac{4}{3} \pi R^3}{\left(\frac{4R}{\sqrt{2}}\right)^3} = 0,74$                      |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F <sub>e</sub> estructura hexagonal (HCP)                                                      | $F_{HCP} = \frac{V_{6 \text{ àtoms}}}{V_{cel \cdot la}} = \frac{6 \cdot \frac{4}{3} \pi R^3}{\left(\frac{6\sqrt{3}}{4} (2R)^2\right) \cdot 1,633(2R)} = 0,74$ |
| Difracció de raigs X                                                                           |                                                                                                                                                               |
| Llei de Bragg  λ: longitud d'ona dels raigs X  θ: angle de difracció (2θ) n: ordre de reflexió | $n\lambda = 2d_{hkl}\sin\theta$                                                                                                                               |
| Determinació d'estructures per raigs X                                                         | $\tan 2\theta = \frac{D}{2L}$                                                                                                                                 |

2. Defectes i imperfeccions

| Defectes de punt                                                                                                                                                                                                           |                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Nombre de vacants                                                                                                                                                                                                          |                                              |
| N: nombre total de llocs ocupats pels àtoms. $N = \frac{N_A \rho}{A}$ . N <sub>A</sub> : nombre d'Avogadro. A: pes atòmic. Q <sub>V</sub> : energia requerida per a la formació d'una vacant. T: temperatura absoluta (K). | $N_{v} = N^{\left(\frac{-Q_{v}}{kT}\right)}$ |
| k: constant de Boltzmann = 1,38-10 <sup>-23</sup> J/âtoms-K o 8,62-10 <sup>-5</sup> eV/àtoms-k. O constant dels gasos R = 8,31 J/mol-k                                                                                     |                                              |

## 3. Mecanismes de difusió

| Difusió en estat estacionari                                                                                                                                                                                                      |                                                                                                                            |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| Densitat de flux (velocitat de transferència                                                                                                                                                                                      | _                                                                                                                          |  |
| de massa)                                                                                                                                                                                                                         | $J = \frac{1}{A} \frac{dM}{dt} \left[ kg/m^2 \cdot s; \text{ àtoms}/m^2 \cdot s \right]$                                   |  |
| A: àrea a través de la qual té lloc la difusió.                                                                                                                                                                                   |                                                                                                                            |  |
| Gradient de concentració                                                                                                                                                                                                          | $\nabla \phi = \frac{\partial \phi}{\partial x} = \frac{dC}{dx} = \frac{\Delta C}{\Delta x} = \frac{C_A - C_B}{x_A - x_B}$ |  |
| Primera llei de Fick                                                                                                                                                                                                              | $J = -D\frac{dC}{dx}$                                                                                                      |  |
| D: coeficient de difusió (m²/s)                                                                                                                                                                                                   | $J = -D \frac{dx}{dx}$                                                                                                     |  |
| Difusió en estat no estacionari                                                                                                                                                                                                   |                                                                                                                            |  |
| Segona llei de Fick                                                                                                                                                                                                               | $\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left( D \frac{\partial C}{\partial x} \right)$               |  |
| Segona llei de Fick (D independent)                                                                                                                                                                                               | $\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$                                                      |  |
| Factors que afecten a la difusió                                                                                                                                                                                                  |                                                                                                                            |  |
| Temperatura en els coeficients de difusió                                                                                                                                                                                         |                                                                                                                            |  |
| Do: factor preexponencial (factor de freqüència) independent de la T. [m²/s] Qo: energia d'activació per a la difusió. [J/mol o eV/àtom] R: constant dels gasos. [8,31 J/mol·k o 8,62·10° eV/àtom·k] T: temperatura absoluta. [K] | $D = D_0^{\left(\frac{-Q_d}{RT}\right)}$                                                                                   |  |

## 4. Conductors, semiconductors i aïllants

| Propietats dels metalls                                                                                                                                                                          |                                                            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|
| Llei d'Ohm                                                                                                                                                                                       | $I = \frac{\Delta V}{R}$                                   |  |
| Resistència                                                                                                                                                                                      | $R = \rho \frac{l}{A}$                                     |  |
| Resistivitat ( $\rho$ )                                                                                                                                                                          | $\sigma = \frac{1}{\rho}$                                  |  |
| Variació de la conductivitat (σ) amb la                                                                                                                                                          |                                                            |  |
| temperatura                                                                                                                                                                                      | $\rho = \rho_0 \left[ 1 + \alpha (T - T_0) \right]$        |  |
| Mòdul de Young (elasticitat)                                                                                                                                                                     | $\Delta\sigma$                                             |  |
| $\sigma$ : tensió exercida sobre l'àrea de la secció transversal de l'element. $\epsilon$ : deformació unitària entesa com la relació entre el canvi de longitud respecte a la longitud inicial. | $E = \frac{\Delta \sigma}{\Delta \varepsilon}$             |  |
| Tensió                                                                                                                                                                                           | $\sigma = \frac{F}{A}$                                     |  |
| Deformació unitària                                                                                                                                                                              | $\varepsilon = \frac{\Delta l}{l_0} = \frac{l - l_0}{l_0}$ |  |
| Empaquetaments metàl·lics                                                                                                                                                                        |                                                            |  |
| Densitat cristal-lina CS                                                                                                                                                                         | $ ho_{CS} = rac{MA}{N_{av}V_T}$                           |  |
| Densitat cristal·lina BCC                                                                                                                                                                        | $\rho_{BCC} = \frac{2 \cdot MA}{N_{av} V_T}$               |  |
| Densitat cristal·lina FCC                                                                                                                                                                        | $ ho_{FCC} = rac{4 \cdot MA}{N_{av} V_T}$                 |  |
| Densitat cristal·lina HCP                                                                                                                                                                        | $\rho_{HCP} = \frac{6 \cdot MA}{N_{av} V_T}$               |  |

## 5. Solucions sòlides i aliatges

| Especificació de la composició |                                                                       |  |
|--------------------------------|-----------------------------------------------------------------------|--|
| Percentatge en pes (C)         | $C_1 (\%) = \frac{m_1}{m_1 + m_2} \cdot 100$                          |  |
| Percentatge atòmic (C')        | $C_1'(\%) = \frac{n_1}{n_1 + n_2} \cdot 100$                          |  |
| Diagrames de fase              |                                                                       |  |
| Fase líquida                   | $W_L = \frac{S}{R+S} = \frac{C_{\alpha} - C_{O}}{C_{\alpha} - C_{L}}$ |  |
| Fase sòlida                    | $W_{\alpha} = \frac{R}{R+S} = \frac{C_O - C_L}{C_{\alpha} - C_L}$     |  |

