Machine Learning Basics

ESM5205 Learning from Big Data | Sep 11, 2019

Seokho Kang

Review: AI, Machine Learning, and Deep Learning

Machine Learning

- Tom Mitchell (Professor at CMU)'s definition of "learning"
 - A computer program is said to <u>learn</u> from experience E
 with respect to some class of tasks T
 and performance measure P,
 if its performance at tasks in T, as measured by P,
 improves with experience E.
- A "machine learning algorithm" is an algorithm that is able to learn from data
 - Machine Learning = Learning from E in form of Data

Machine Learning

Unsupervised Learning

- (in general) Unlabeled dataset $D = \{x_1, x_2, ..., x_n\}$, where each data point $x_i \in R^d$ contains d features $x_i = (x_{i1}, ..., x_{id})$
- To find useful properties/patterns of the structures of the dataset
- e.g., clustering, density estimation, one-class classification, association analysis, etc...

Supervised Learning

- (in general) Labeled dataset $D = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$, where each x_i is associated with a label y_i .
- Input variables: x_{i1} , ..., x_{id} (d features), output variable: y (label)
- To find a functional relationship between input and output variable $\hat{y} = f(x)$ from the dataset
- To use input variables to predict unknown or future values of output variable.
- e.g., classification (categorical label), regression (continuous label), etc...

Classification vs Regression

Binary vs Multi-class Classification

Multi-label Classification

How to find the model f?

- A learning algorithm defines a hypothesis space \mathcal{H} , the set of all possible functions that the learning algorithm can generate.
- Supervised learning is to find a hypothesis f in $\mathcal H$ that best approximates the unknown true function f^* given a finite number of training instances.

Formal Setup of Supervised Learning

- Given a (training) dataset $D = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$ such that $x_i = (x_{i1}, ..., x_{id}) \in \mathbb{R}^d$ is the *i*-th input vector of the *d* input variables and y_i is the corresponding label of the output variable.
- We seek a function f that predicts the output y from the input x: $\hat{y} = f(x; \theta)$, where θ is the **parameter** of the model.
 - Loss function $L(y, f(x; \theta))$: penalizing errors in prediction for a data point (x, y).
 - e.g., squared loss $L(y, f(x; \theta)) = (y f(x; \theta))^2$
 - Cost function $J(\theta)$: typically, a sum of loss functions L over the training set + some regularizer Ω

$$J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{(\boldsymbol{x}_i, \boldsymbol{y}_i) \in D} L(\boldsymbol{y}_i, f(\boldsymbol{x}_i; \boldsymbol{\theta})) + \Omega(\boldsymbol{\theta})$$

• **Training** is to find the optimal parameter $m{ heta}^*$ that minimizes the cost function $J(m{ heta})$

Supervised Learning Algorithms

Regression

- Linear Regression
- K-Nearest Neighbors
- Decision Tree
- Neural Network
- Support Vector Regression
- ...

Classification

- Logistic Regression
- K-Nearest Neighbors
- Decision Tree
- Neural Network
- Support Vector Machine
- ...

- Given a (training) dataset $D = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$ such that $x_i = (1, x_{i1}, ..., x_{id}) \in \mathbb{R}^{d+1}$ is the *i*-th input vector of the *d*+1 input variables and $y_i \in \mathbb{R}$ is the corresponding label of the output variable.

 the first entry is always set to "1"
- The output of linear regression (prediction of y) : $\hat{y} = f(x) = \mathbf{w}^T x$, where $\mathbf{w} = (w_0, w_1, ..., w_d)$ is a vector of parameters.
 - w_1 , ..., w_d are called "coefficients" or "weights"
 - w_0 is called "intercept" or "bias"
- **Training**: To find the optimal parameter \mathbf{w}^* that minimizes the training error (cost function)

Here we use squared loss $L(y, \hat{y}) = (\hat{y} - y)^2$

$$J(\mathbf{w}) = MSE_{train} = \frac{1}{n} \sum_{(x_i, y_i) \in D} (\widehat{y}_i - y_i)^2 = \frac{1}{n} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2$$

- X, y are matrix representation of D

Training: To find the optimal parameter w* that minimizes the training error
 → an optimization problem

$$MSE_{train} = \frac{1}{n} \sum_{(x_i, y_i) \in D} (\hat{y}_i - y_i)^2 = \frac{1}{n} ||\mathbf{X}\mathbf{w} - \mathbf{y}||^2$$

 \blacktriangleright how? set the gradient to 0 \rightarrow a closed-form solution (normal equation)

$$\nabla_{\mathbf{w}} \text{MSE}_{\text{train}} = \frac{1}{n} \nabla_{\mathbf{w}} ||\mathbf{X}\mathbf{w} - \mathbf{y}||^2 = 0$$
...
...

$$\mathbf{w}^* = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$

- The trained model $f(x) = \mathbf{w}^{*T} x$

- Probabilistic Interpretation of Linear Regression
 - Assume $y \sim \mathcal{N}(\hat{y}, \sigma^2)$, $\hat{y} = \mathbf{w}^T x$

$$p(y|\mathbf{x}; \mathbf{w}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\|y - \mathbf{w}^T \mathbf{x}\|^2}{2\sigma^2}\right)$$
p.d.f. of $N(\hat{y}, \sigma^2)$

• Maximum Likelihood Estimation (with respect to \hat{y})

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmax}} \prod_{(\mathbf{x}_i, \mathbf{y}_i) \in D} p(y_i | \mathbf{x}_i; \mathbf{w}) = \underset{\mathbf{w}}{\operatorname{argmax}} \sum_{(\mathbf{x}_i, \mathbf{y}_i) \in D} \log p(y_i | \mathbf{x}_i; \mathbf{w})$$
$$= \underset{\mathbf{w}}{\operatorname{argmax}} - \frac{n}{2} \log 2\pi\sigma^2 - \frac{1}{2\sigma^2} \sum_{(\mathbf{x}_i, \mathbf{y}_i) \in D} ||y_i - \mathbf{w}^T \mathbf{x}_i||^2$$

- **Example** (univariate case): $\hat{y} = f(x_1) = w_1 \cdot x_1$
 - The training set consists of ten data points
 - A single parameter (w_1) is determined such that the line $y = w_1 \cdot x_1$ comes as close as possible to passing through all training data points
 - The trained model f minimizes the mean squared error on the training set

Generalization

- Using "Linear Regression", we trained the model f by minimizing the **training error** (the error on the training set D)
- The model f must perform well on new, previously unseen data points, which is called **Generalization**.
- To evaluate generalization performance, we use a **test set** $D^{(\text{test})}$ consisting of $n^{(\text{test})}$ data points that were collected separately from the training set D.
- We want the **generalization error**, a.k.a. **test error** (the error on the test set) to be low as well.

$$MSE_{test} = \frac{1}{n^{(test)}} \sum_{\substack{(\mathbf{x}_i, \mathbf{y}_i) \in D^{(test)}}} (\widehat{y}_i - y_i)^2 = \frac{1}{n^{(test)}} \|\mathbf{X}^{(test)}\mathbf{w} - \mathbf{y}^{(test)}\|^2$$

- The factors determining how well a machine learning algorithm will perform are its ability to:
 - 1. Make the training error small.
 - 2. Make the gap between training and test error small
- Overfitting: the gap between the training error and test error is too large.
- Underfitting: the model is not able to obtain a sufficiently low error value on the training set.
- We can control whether a model is more likely to overfit or underfit by altering the capacity.

• Example: in Regression...

• **Example:** in Classification...

- How to control the **capacity** of a learning algorithm? : One way is to control the **hypothesis space** \mathcal{H}
- **Example**: polynomial regression with different degree
 - An univariate linear regression model (polynomial degree=1)

$$\hat{y} = w_0 + w_1 x$$

A quadratic regression model (polynomial degree=2)

$$\hat{y} = w_0 + w_1 x + w_2 x^2$$
 x^2 : square of x

A polynomial regression model (polynomial degree=9)

$$\hat{y} = w_0 + \sum_{i=1}^{9} w_i x^i$$
 x^i : i-th power of x

Increase the polynomial degree \rightarrow broaden the hypothesis space ${\mathcal H}$

→ increase the (representational) capacity

After training the models with different capacities (different polynomial degree)
using the same training dataset.

- So, the typical relationship between capacity and error
 - Underfitting (training and test error are both high), when capacity is too small
 - Overfitting (the gap between training and test error is high), when capacity is too large

- The optimal capacity depends on data*
 - As the training data size increases, the optimal capacity increases.

Regularization

- How to avoid overfitting when using a learning algorithm with large hypothesis space?
 - : One is to give a preference for one solution over another in its hypothesis space.
- Regularization: Any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error
 - **Example**: adding a penalty called a **regularizer** $\Omega(\mathbf{w})$ to the cost function

$$J(\mathbf{w}) = MSE_{train} + \lambda \Omega(\mathbf{w})$$

Regularization

- Example: Weight decay $(\Omega(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{w}$, a.k.a. L2 regularization) for linear regression \rightarrow Ridge regression
 - λ controls the strength of our preference for small parameters \rightarrow reduced fluctuation

$$J(\mathbf{w}) = MSE_{\text{train}} + \frac{\lambda}{2}\mathbf{w}^{\text{T}}\mathbf{w} = \frac{1}{n}\|\mathbf{X}\mathbf{w} - \mathbf{y}\|^{2} + \frac{\lambda}{2}\mathbf{w}^{\text{T}}\mathbf{w}$$

- Example: L1 regularization $(\Omega(\mathbf{w}) = ||\mathbf{w}||_1)$ for linear regression
 - → Lasso regression
 - λ controls the strength of our preference for small parameters

+ sparsity → reduced fluctuation

$$J(\mathbf{w}) = MSE_{train} + \lambda ||\mathbf{w}||_1 = \frac{1}{n} ||\mathbf{X}\mathbf{w} - \mathbf{y}||^2 + \lambda ||\mathbf{w}||_1$$

Regularization

- Example: Weight decay $(\Omega(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{w})$ for polynomial regression with degree=9
 - $\lambda = 0 \rightarrow$ no preference (overfitting, as before)
 - larger $\lambda \rightarrow$ the weights **w** become smaller
 - Too large $\lambda \rightarrow \mathbf{w} \cong \mathbf{0}$ (underfitting)

Hyperparameters and Validation Sets

- Most machine learning algorithms have **hyperparameters** that control the algorithm's behavior (*e.g.*, capacity, preference, optimization, etc.).
 - Linear regression has no hyperparameter
 - In the previous example (Polynomial regression with weight decay), λ and the polynomial degree are hyperparameters
- It is not appropriate to choose **hyperparameters** based on the training set
 - If learned on the training set, they choose the maximum possible model capacity, resulting in overfitting.
 - Hyperparameters are set before training begins, whereas parameters are derived via training.
- So, we need a validation set, which consists of data points that were not observed during training → validation error (the error on the validation set)

Training, Validation, and Test

- Training set: to learn the parameters of the model
- Validation set: to choose the hyperparameters of the model
- Test set: for final evaluation of the generalization error of the model (How well will our model perform with new data that were not observed during training and validation?)

"must be disjoint!"

Training, Validation, and Test

Example of a Modeling Procedure:

- Suppose that we have a dataset of 10,000 data points, and we consider 100 hyperparameter candidates.
- Split the data into training, validation, and test sets
 - 60% → training set
 - 10% → validation set
 - 30% → test set
- For each hyperparameter candidate,
 - Train a model on the training set.
 - Evaluate a model on the validation set.
- Choose the best one with the minimum validation error.
- Finally, evaluate the best one on the test set.

Cross-Validation

- But, what if the original dataset is too small?
- K-fold Cross-Validation
 - 1. Split the dataset into *K* nonoverlapping subsets
 - 2. (from i=1 to K) On the i-th run, the i-th subset is used as the test set, the rest of the dataset is used as the training/validation set
 - 3. The test error is estimated by averaging test error across the K runs

Cross-Validation

- Leave-One-Out Cross-Validation
 - K-fold Cross-Validation with K=the number of data points
- Nested Cross-Validation (Double Cross-Validation)
 - Outer CV: (Training/Validation) vs Test
 - Inner CV:Training vs Validation

Supervised Learning Algorithms

Regression

- Linear Regression
- K-Nearest Neighbors
- Decision Tree
- Neural Network
- Support Vector Regression
- ...

Classification

- Logistic Regression
- K-Nearest Neighbors
- Decision Tree
- Neural Network
- Support Vector Machine
- ..

- Given a (training) dataset $D = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$ such that $x_i = (1, x_{i1}, ..., x_{id}) \in \mathbb{R}^{d+1}$ is the *i*-th input vector of the *d*+1 input variables and $y_i \in \{0,1\}$ is the corresponding label of the output variable.
- Logistic Regression: Extends the idea of linear regression to situation where the output variable is binary (y = 0 or 1)
- The output of logistic regression (prediction of y)

:
$$\hat{y} = f(x) = \sigma(\mathbf{w}^T x) = \frac{1}{1 + \exp(-\mathbf{w}^T x)}, \hat{y} \in [0,1]$$

What are parameters? What are hyperparameters?

Training: To find the optimal parameter w* that minimizes the training error (cost function) → here we use "cross-entropy" loss

$$J(\mathbf{w}) = \frac{1}{n} \sum_{(x_i, y_i) \in D} L(y_i, \hat{y}_i) = \frac{1}{n} \sum_{(x_i, y_i) \in D} [-y_i \log \hat{y}_i - (1 - y_i) \log(1 - \hat{y}_i)]$$
what if $y_i = 0$? $y_i = 1$?

how? gradient descent! (no closed-from solution)

Repeat the following until convergence

$$\mathbf{w} \coloneqq \mathbf{w} - \epsilon \nabla_{\mathbf{w}} J(\mathbf{w})$$

$$\Rightarrow w_j \coloneqq w_j - \epsilon \frac{\partial}{\partial w_j} J(\mathbf{w}), \forall w_j \in \mathbf{w}$$

$$\epsilon \text{ is the learning rate}$$

- The trained model $f(x) = \sigma(\mathbf{w}^{*T}x)$

$$L(y, \hat{y}) = -y \log \sigma(z) - (1 - y) \log(1 - \sigma(z)),$$
 where $\hat{y} = \sigma(z), z = \mathbf{w}^T \mathbf{x} = w_0 + w_1 x_1 + \dots + w_d x_d$

$$\frac{\partial L(\mathbf{w})}{\partial w_i} = \frac{\partial L(\mathbf{w})}{\partial z} \frac{\partial z}{\partial w_i} = (\hat{y} - y)x_j$$

$$\frac{\partial L(\mathbf{w})}{\partial z} = -y \frac{\partial \log \sigma(z)}{\partial z} - (1 - y) \frac{\partial \log(1 - \sigma(z))}{\partial z}$$

$$= -y \frac{1}{\sigma(z)} \frac{\partial \sigma(z)}{\partial z} - (1 - y) \frac{-1}{1 - \sigma(z)} \frac{\partial \sigma(z)}{\partial z}$$

$$= -y \frac{1}{\sigma(z)} \sigma(z) (1 - \sigma(z)) - (1 - y) \frac{-1}{1 - \sigma(z)} \sigma(z) (1 - \sigma(z))$$

$$= -y + \sigma(z) = \hat{y} - y$$

$$\frac{\partial z}{\partial w_j} = \frac{\partial (w_0 + w_1 x_1 + \dots + w_d x_d)}{\partial w_j} = x_j$$

- Probabilistic Interpretation of Logistic Regression
 - Assume $y \sim Bernoulli(\hat{y})$, $\hat{y} = \sigma(\mathbf{w}^T \mathbf{x})$

$$p(y = 1|x; \mathbf{w}) = \sigma(\mathbf{w}^T x) = \frac{1}{1 + \exp(-\mathbf{w}^T x)}$$

$$p(y = 0|x; \mathbf{w}) = 1 - \sigma(\mathbf{w}^T x) = \frac{\exp(-\mathbf{w}^T x)}{1 + \exp(-\mathbf{w}^T x)}$$

$$\nabla$$

$$p(y|x; \mathbf{w}) = (\sigma(\mathbf{w}^T x))^y (1 - \sigma(\mathbf{w}^T x))^{1-y}$$
p.f. of Bernoulli(\hat{\hat{y}})

• Maximum Likelihood Estimation (with respect to \hat{y})

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmax}} \log \prod_{(x_i, y_i) \in D} p(y_i | \mathbf{x}_i; \mathbf{w}) = \underset{\mathbf{w}}{\operatorname{argmax}} \sum_{(x_i, y_i) \in D} \log p(y_i | \mathbf{x}_i; \mathbf{w})$$
$$= \underset{\mathbf{w}}{\operatorname{argmax}} \sum_{(x_i, y_i) \in D} [y_i \log \sigma(\mathbf{w}^T \mathbf{x}) + (1 - y_i) \log(1 - \sigma(\mathbf{w}^T \mathbf{x}))]$$

k-Nearest Neighbors

- Given a (training) dataset $D = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$ such that $x_i = (x_{i1}, ..., x_{id}) \in \mathbb{R}^d$ is the *i*-th input vector of the *d* input variables and y_i is the corresponding label of the output variable.
- k-Nearest Neighbors is an instance-based learning algorithm that does not require
 any training of models.
- For a test data point $\pmb{x}_{ ext{new}}$
 - 1. Compute distance from x_{new} to each data point in D (distance measure)
 - 2. Identify k nearest neighbors of x_{new} , $kNN(x_{\text{new}}) = \{(x_{(1)}, y_{(1)}), ..., (x_{(k)}, y_{(k)})\} \subset D$
 - 3. Use labels of the nearest neighbors to predict \hat{y}_{new} (weighting scheme)
 - e.g) voting or weighted voting for classification, averaging or weighted averaging for regression.

What are parameters? What are hyperparameters?

k-Nearest Neighbors

For Classification,

Voting:
$$\hat{y} = \underset{j}{\operatorname{argmax}} \sum_{\left(x_{(i)}, y_{(i)}\right) \in kNN(x)} I(y_{(i)} = j)$$

Weighted Voting: $\hat{y} = \underset{j}{\operatorname{argmax}} \sum_{\left(x_{(i)}, y_{(i)}\right) \in kNN(x)} w(x_{(i)}, x) I(y_{(i)} = j)$

For Regression,

Averaging:
$$\hat{y} = \frac{1}{k} \sum_{(x_{(i)}, y_{(i)}) \in kNN(x)} y_{(i)}$$

Weighted Averaging:
$$\hat{y} = \frac{1}{\sum_{\left(x_{(i)}, y_{(i)}\right) \in kNN(x)} w(x_{(i)}, x)} \sum_{\left(x_{(i)}, y_{(i)}\right) \in kNN(x)} w(x_{(i)}, x) y_{(i)}$$

 $w(x_{(i)}, x)$ is a weight function (hyperparameter, not learned) e.g., inverse of Euclidean distance $\frac{1}{\|x_{(i)}-x\|_2}$

k-Nearest Neighbors

In Regression...

In Classification...

- Binary Classification Problem
 - Many possible hyperplanes that separates the training data

- Given a (training) dataset $D = \{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$ such that $x_i =$ $(x_{i1}, ..., x_{id}) \in \mathbb{R}^d$ is the *i*-th input vector of the *d* input variables and $y_i \in \{-1, +1\}$ is the corresponding label of the output variable.
- SVM looks for the maximum-margin hyperplane $w^Tx + b = 0$ between positive $(y_i = +1)$ and negative $(y_i = -1)$ data points
 - Margin: 2/||w||
 - Prediction $\hat{y} = f(x) = \text{sign}(w^T x + b)$

 H_2 : $\mathbf{w}^T \mathbf{x} + b = +1$

Hard-margin formulation

: Do not allow any errors, no training points fall between H₁ and H₂

$$\min J(\mathbf{w}, b) = \frac{1}{2} \mathbf{w}^T \mathbf{w} \longleftarrow \text{maximize the margin}$$

subject to $y_i(\mathbf{w}^T \mathbf{x}_i + \mathbf{b}) \ge 1$, $\forall i \leftarrow$ all training data points are outside the margin

What are parameters?
What are hyperparameters?

Soft-margin formulation

: Allow some errors by introducing slack variables $\xi_i \geq 0$

$$\max(0,1-y(\mathbf{w}^T\mathbf{x}+b)) = \max(0,1-y(\mathbf{w}^T\mathbf{x}+b))$$

$$\min J(\mathbf{w},b,\xi_i) = \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum_i \xi_i \qquad \begin{array}{c} \text{minimize empirical risk (hinge loss)} \\ \text{trade-off hyperparameter } C \end{array}$$

subject to
$$y_i(\mathbf{w}^T \mathbf{x}_i + \mathbf{b}) \ge 1 - \xi_i$$
, but some are not $\xi_i \ge 0$, $\forall i$

most training data points are outside the margin, but some are not

What are parameters? What are hyperparameters?

Soft-margin formulation

: Introducing Lagrangian multiplier $\alpha \ge 0$, $\mu \ge 0$ (Wolfe duality)

$$L_P = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} \xi_i - \sum_{i} \alpha_i \{y_i(\mathbf{x}_i \cdot \mathbf{w} + b) - 1 + \xi_i\} - \sum_{i} \mu_i \xi_i$$

Karush-Kuhn-Tucker(KKT) conditions

$$\begin{split} \frac{\partial L_P}{\partial w_\nu} &= w_\nu - \sum_i \alpha_i y_i x_{i\nu} = 0 \\ \frac{\partial L_P}{\partial b} &= -\sum_i \alpha_i y_i = 0 \\ \frac{\partial L_P}{\partial \xi_i} &= C - \alpha_i - \mu_i = 0 \\ y_i(\mathbf{x}_i \cdot \mathbf{w} + b) - 1 + \xi_i &\geq 0 \\ \xi_i &\geq 0 \\ \alpha_i &\geq 0 \\ \mu_i &\geq 0 \\ \alpha_i \{y_i(\mathbf{x}_i \cdot \mathbf{w} + b) - 1 + \xi_i\} = 0 \\ \mu_i \xi_i &= 0 \\ \end{split} \right\} \quad \textit{Complementary slackness conditions}$$

Soft-margin formulation

: Dual Problem (Quadratic Programming) → Use a QP Solver!

usually, $O(n^3)$ complexity what if n is very large?

$$\max L(\alpha_i) = \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^T x_j$$

subject to
$$\sum_{i} \alpha_{i} y_{i} = 0$$
$$0 \leq \alpha_{i} \leq C, \forall i$$

Convex optimization

→ Global optimum is guaranteed

Soft-margin formulation

: After obtaining the optimal parameters \mathbf{w}^* , b^* , how?

$$\mathbf{w}^* = \sum_{i=1}^n \alpha_i y_i x_i$$

 $\{(\boldsymbol{x}_i, \boldsymbol{y}_i) | \alpha_i = 0\}$

$$b^* = \frac{1}{y_{sv}} - \mathbf{w}^{*T} \mathbf{x}_{sv} = \frac{1}{y_{sv}} - \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i^T \mathbf{x}_{sv}$$

 $\{(\boldsymbol{x}_i, \boldsymbol{y}_i) | \alpha_i = C\}$

The trained model

, where
$$(x_{sv}, y_{sv}) \in \{(x_i, y_i) | 0 < \alpha_i < C\}$$

- $f(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{*T}\mathbf{x} + b^*) = \operatorname{sign}(\sum_{(\mathbf{x}_i, \mathbf{y}_i) \in D} \alpha_i y_i \mathbf{x}_i^T \mathbf{x} + b^*)$
- Let $D_{SV} = \{(x_i, y_i) \in D \mid \alpha_i > 0\}$, then $f(x) = \text{sign}(\sum_{(x_i, y_i) \in D_{SV}} \alpha_i y_i | x_i^T x^T + b^*)$ (sparse solution)

 $\{(x_i, y_i) | 0 < \alpha_i < C\}$

what are support vectors?

- SVM for Non-linear Classification: Kernel Trick
 - : Use a function φ that maps the data into a higher dimensional space.
 - Replace x_i by $\varphi(x_i)$
 - **Example**: $\varphi(x_1, x_2) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$

SVM for Non-linear Classification: Kernel Trick

: If there is a "kernel function" k that defines inner products in the transformed space, such that $k(x_i, x_j) = \varphi(x_i)^T \varphi(x_j)$, then we don't have to know φ at all, but use k instead.

- Replace $oldsymbol{x}_i^T oldsymbol{x}_j$ by $k(oldsymbol{x}_i, oldsymbol{x}_j)$
- Not all functions can be kernels (Mercer's theorem)

why do we need to solve a dual problem instead of a primal problem? (e.g., the number of parameters when using the RBF kernel.)

Examples of Kernel functions

- Linear Kernel $k(x, x') = x^T x'$
- Polynomial Kernel $k(x, x') = (1 + x^T x')^p$
- Tanh Kernel $k(x, x') = \tanh(a + bx^Tx')$
- RBF Kernel $k(x, x') = \exp(-\gamma(x x')^2)$

 most popular, maps the data into infinite dimensional space
 - * Automatic Relevance Determination

If we use a kernel, what are parameters and hyperparameters?

^{*} Multiple Kernel Learning

Soft-margin formulation

: Dual Problem (Quadratic Programming) → Use a QP Solver!

usually, $O(n^3)$ complexity what if n is very large?

$$\max L(\alpha_i) = \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j k(\mathbf{x}_i, \mathbf{x}_j)$$

subject to
$$\sum_{i} \alpha_{i} y_{i} = 0$$
$$0 \leq \alpha_{i} \leq C, \forall i$$

Convex optimization

→ Global optimum is guaranteed

Soft-margin formulation

 $\{(\boldsymbol{x}_i, \boldsymbol{y}_i) | \alpha_i = 0\}$

: After obtaining the optimal parameters \mathbf{w}^* , b^* ,

$$\mathbf{w}^* = \sum_{i=1}^n \alpha_i y_i \varphi(\mathbf{x}_i) \qquad b^* = \frac{1}{y_{sv}} - \mathbf{w}^{*T} \mathbf{x}_{sv} = \frac{1}{y_{sv}} - \sum_{i=1}^n \alpha_i y_i k(\mathbf{x}_i, \mathbf{x}_{sv})$$

The trained model

, where
$$(x_{sv}, y_{sv}) \in \{(x_i, y_i) | 0 < \alpha_i < C\}$$

-
$$f(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{*T}\varphi(\mathbf{x}) + b^*) = \operatorname{sign}(\sum_{(\mathbf{x}_i, \mathbf{y}_i) \in D} \alpha_i y_i k(\mathbf{x}_i, \mathbf{x})) + b^*)$$

- Let
$$D_{SV} = \{(x_i, y_i) \in D \mid \alpha_i > 0\}$$
, then $f(x) = \text{sign}(\sum_{(x_i, y_i) \in D_{SV}} \alpha_i y_i k(x_i, x) + b^*)$ (sparse solution)

 $\{(\boldsymbol{x}_i, \boldsymbol{y}_i) | \alpha_i = C\}$

 $\{(x_i, y_i) | 0 < \alpha_i < C\}$

what are support vectors?

Hyperparameters of SVM

Practical Guideline when using SVM with RBF Kernel

We recommend a "grid-search" on C and γ using cross-validation. Various pairs of (C, γ) values are tried and the one with the best cross-validation accuracy is picked. We found that trying exponentially growing sequences of C and γ is a practical method to identify good parameters (for example, $C = 2^{-5}, 2^{-3}, \ldots, 2^{15}, \gamma = 2^{-15}, 2^{-13}, \ldots, 2^3$).

A Practical Guide to Support Vector Classification

Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin

Department of Computer Science
National Taiwan University, Taipei 106, Taiwan
http://www.csie.ntu.edu.tw/~cjlin
Initial version: 2003 Last updated: May 19, 2016

Abstract

The support vector machine (SVM) is a popular classification technique. However, beginners who are not familiar with SVM often get unsatisfactory results since they miss some easy but significant steps. In this guide, we propose a simple procedure which usually gives reasonable results.

LIBSVM -- A Library for Support Vector Machines

Chih-Chung Chang and Chih-Jen Lin

- Version 3.23 released on July 15, 2018. It conducts some minor fixes.
- 🗪 LIBSVM tools provides many extensions of LIBSVM. Please check it if you need some functions not supported in LIBSVM.
- We now have a nice page LIBSVM data sets providing problems in LIBSVM format.
- A practical quide to SVM classification is available now! (mainly written for beginners)
- We now have an easy script (easy.py) for users who know NOTHING about SVM. It makes everything automatic--from data scaling to parameter selection.
- The parameter selection tool grid,py generates the following contour of cross-validation accuracy. To use this tool, you also need to install python and gnuplet.

Fast Training of SVM

- Main weakness of SVM: its high training complexity
 - Time complexity: O(n³)
 - Space complexity: $O(n^2)$, where n is the number of training data points

Reducing the complexity

- Strategy 1: Improving the efficiency of QP solving
 - Efficient gradient descent, Chunking, Sequential Minimal Optimization (SMO), ...
- Strategy 2: Reducing the number of training data points: Shrinking
 - Eliminating non-support vectors early during or before the optimization process
 - Clustering technique, Filtering, Expected margin, ...
- Strategy 3: Closed-form solution (without QP)
 - Least-Squares Support Vector Machine (lacks sparseness → sparse approximation)
- Strategy 4: Use something else
 - Tree ensembles, Neural network with SGD, ...

SVM and Neural Network

SVM

- Deterministic (Global optimum)
- Good Generalization Properties based on Structural Risk Minimization
- Hard to learn learned in batch mode using QP
- Non-linearity by kernel functions

Neural Network

- Non-deterministic (Local optima)
- Good Generalization but doesn't have strong mathematical foundation (Empirical Risk Minimization)
- Can easily be learned in incremental fashion
- Non-linearity by multiple layers of non-linear activation functions

SVM and Neural Network

SVM

$$: f(\mathbf{x}) = \operatorname{sign}\left(\sum_{(\mathbf{x}_i, \mathbf{y}_i) \in D_{SV}} \alpha_i \mathbf{y}_i \ \mathbf{x}_i^T \mathbf{x} + b^*\right)$$

Neural Network

- No. hidden units ∽ No. support vectors
- Activation function ∽ Kernel function
- No. hidden layers = 1
- But, different training procedure

Multi-class Classification with SVM

For a c-class classification problem,

- One-Against-One Approach

: c(c-1)/2 SVMs are trained for all possible class pairs.

: A test data point is classified based on majority voting by c(c-1)/2 SVMs

- One-Against-Rest Approach

: c base classifiers are trained, each of which separates one class from the remaining classes.

: A test data point is classified as the class whose corresponding SVM gives the highest score.

No-free-lunch Theorem

* No-free-lunch Theorem

- The "no-free-lunch theorem" for machine learning (Wolpert, 1996)
 : No machine learning algorithm is universally better than any other on every task.
- The goal of machine learning research is not to seek a universal learning algorithm
 or the absolute best learning algorithm.
- We must design our machine learning algorithms to perform well on a specific task.

