This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

-CYCLOALKENONE DERIVATES
EP0994100
2000-04-19
AKIYAMA TOSHIHIKO (JP); INA SHINJI (JP); NODA KYOJI (JP); TAKAHAMA AKANE (JP); YAMANA KENJIROU (JP)
NIKKEN CHEMICALS CO LTD (JP)
<u> WO9858901</u>
EP19970950410 19971225
WO1997JP04857 19971225; JP19970181884 19970624
C07C225/20; C07D215/12; C07D213/38; A61K31/135; A61K31/44; A61K31/47
C07C225/22, C07D211/86, C07D213/38, C07D215/12, C07D295/10A5, C07D307/20
□ <u>US6235736</u>
<u>US3969409</u> ; <u>WO9412461</u> ; <u>WO9508534</u> ; <u>WO9429277</u> ; <u>WO9503794</u>
2 // 1

Abstract

A 3-anilino-2-cycloalkenone derivative of the formula (I): wherein, R1 represents a C1 to C8 alkyl group, which may have a substituent, except for a methyl group, a C3 to C7 cycloalkyl group, a 3-tetrahydrofuryl group, an 2-indanyl group, etc., R2 represents a C1 to C4 alkyl group, R3 represents a hydrogen atom, a C1 to C5 alkyl group, which may have a substituent, a C3 to C7 cycloalkyl group, etc., R4 represents a hydrogen atom, a C1 to C5 alkyl group, which may have a substituent, a halogen atom, etc., R5, R6, R7, and R8 independently represent a hydrogen atom, a C1 to C5 alkyl group, which may have a substituent, etc., X represents -(CR11R12)n-, wherein n is 0 to 2, R11 and R12 independently represent a hydrogen atom, a C1 to C5 alkyl group, which may have a substituent, etc. or -NR13-wherein R13 represents a hydrogen atom or a C1 to C5 alkyl group, which may have a substituent, and its optical isomers or their pharmaceutically acceptable salts or their hydrates or solvates.

Data supplied from the esp@cenet database - 12

世界知的所有権機関 国際事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C07C 225/20, C07D 215/12, 213/38, A61K 31/135, 31/44, 31/47

(11) 国際公開番号 A1 WO98/58901

(43) 国際公開日

1998年12月30日(30.12.98)

CA, US, 欧州特許 (AT, BE, CH, DE, DK, ES,

(21) 国際出願番号

PCT/JP97/04857

JР

(22) 国際出願日

1997年12月25日(25.12.97)

(30) 優先権データ

特願平9/181884

1997年6月24日(24.06.97)

添付公開書類

(81) 指定国

国際調査報告書

FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(71) 出願人 (米国を除くすべての指定国について) 日研化学株式会社(NIKKEN CHEMICALS CO., LTD.)[JP/JP] 〒104 東京都中央区築地5丁目4番14号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

稲 真嗣(INA, Shinji)[JP/JP]

山名研司郎(YAMANA, Kenjiro)[JP/JP]

野田恭二(NODA, Kyoji)[JP/JP]

高濱あかね(TAKAHAMA, Akane)[JP/JP]

秋山敏彦(AKIYAMA, Toshihiko)[JP/JP]

〒330 埼玉県大宮市北袋町1丁目346番地

日研化学株式会社 大宮研究所内 Saitama, (JP)

(74) 代理人

弁理士 石田 敬, 外(ISHIDA, Takashi et al.)

〒105 東京都港区虎ノ門三丁目5番1号 虎ノ門37森ビル

青和特許法律事務所 Tokyo, (JP)

(54)Title: 3-ANILINO-2-CYCLOALKENONE DERIVATES

(54)発明の名称 3-アニリノ-2-シクロアルケノン誘導体

(57) Abstract

3-anilino-2-cycloalkenone derivatives represented by general formula (I), optical isomers thereof, pharmaceutically acceptable salts thereof, or hydrates or solvates of these: wherein R₁ represents optionally substituted C_{1.4} alkyl (excluding methyl), cycloalkyl, 3-tetrahydrofuryl, 2-indanyl, etc.; R₂ represents C_{1.4} alkyl; R₃ represents H, optionally substituted C_{1.5} alkyl, C_{3.7} cycloalkyl, etc.; R₄ represents H, optionally substituted C_{1.5} alkyl, c_{3.7} cycloalkyl, etc.; R₄ represents H, optionally substituted C_{1.5} alkyl, alogeno, etc.; R₅, R₆, R₇ and R₄ each independently represents H, optionally substituted C_{1.5} alkyl, etc.; and X represents

substituted $C_{1.5}$ alkyl, etc.; and X represents -($CR_{11}R_{12}$)_n - (where n is 0 to 2, and R_{11} and R_{12} each independently represents H, optionally substituted $C_{1.5}$ alkyl, etc.) or -NR₁₃ - (where R_{13} represents H or optionally substituted $C_{1.5}$ alkyl).

(57)要約

式(1):

$$\begin{array}{c|c}
R_{2}O & & & & \\
R_{1}O & & & & \\
R_{3} & R_{5} & R_{6}
\end{array}$$
(I)

【式中、R」は置換基を有してもよいC」~C。のアルキル基(ただしメチル基を除く)、C。~C,のシクロアルキル基、3-テトラヒドロフリル基、2-インダニル基等を表し、R。はC」~C。のアルキル基を表し、R。はH、置換基を有してもよいC」~C。のアルキル基、C。~C,のシクロアルキル基等を表し、R。はH、置換基を有してもよいC」~C。のアルキル基、ハロゲン原子等を表し、R。、R。、R。、およびR。は、それぞれ独立してH、置換基を有してもよいC」~C。のアルキル基等を表し、Xは一(CR」R」2)。-(式中、nは0~2、R」1およびR」2はそれぞれ独立してH、置換基を有してもよいC」~C。のアルキル基等を表す)または一NR」3-(式中、R」3はH、置換基を有してもよいC」~C。のアルキル基を表す)を表す〕で表される3-アニリノ-2-シクロアルケノン誘導体、その光学異性体もしくはそれらの医薬上許容される塩またはこれらの水和物もしくは溶媒和物。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

明細書

3-アニリノー2-シクロアルケノン誘導体

技術分野

本発明はホスホジエステラーゼ(PDE)IV阻害作用を有する新 規な3-アニリノ-2-シクロアルケノン誘導体に関する。

背景技術

気道平滑筋の弛緩および炎症細胞の機能の調節には、細胞内セカンドメッセンジャーであるcAMPが関与しており、このcAMPはホスホジエステラーゼ(PDE)によって分解され不活性な5.-AMPとなる。PDEによる分解を抑制することによりcAMPの濃度を上昇させれば、気管支拡張作用および抗炎症作用が得られ、喘息のごとき炎症性疾患に対する治療効果を示すものと考えられる〔Eur.Respir.J.,7,579(1994)〕。現在までに、PDEは5種類のアイソザイム(PDEI~V)に分類されており、それらの分布状態は組織に応じて異なっている〔Trends Pharmacol.Sci.,12,19(1991)〕。これは、PDEの各アイソザイムに対する特異的な阻害剤が、様々な組織中において相異なるcAMPの上昇をもたらす可能性を示唆している。

PDEアイソザイムのうちIV型の特異的な阻害剤は、炎症細胞の機能を抑制することが報告され〔Thorax, 46, 512(1991))、喘息〔J. Pharmacol. Exp. Ther. , 266, 306(1993))、皮膚炎〔Br. J. Pharmacol., 112, 332(1994)〕等の炎症性疾患、多発

性硬化症〔Nature Medicine, 1,244(1994)〕やリューマチ〔Clin. Exp. Immunol., 100,126(1995)〕等の自己免疫疾患に有用と考えられている。また、PDEのうちIV型のみを阻害することによってテオフィリン等の非選択的PDE阻害剤でみられる心臓等の副作用を低減することができると考えられる。PDEIVに特異的な阻害作用を有する化合物としては、下記式のロリプラム(特開昭50-157360号公報)が知られている。

これ以外にも、PDEIVに特異的な阻害を示す化合物が公知であるが(WO94/10118号公報、WO94/12461号公報、特開平5-117259号公報、特開平7-101861号公報、WO95/03794号公報、WO95/08534号公報等)、現在までに臨床上適用されるには至っておらず、更に有用な化合物の開発が望まれている。

式(IV):

(式中、Rは水素原子またはメチル基を表す)で表される化合物が知られている [Tetrahedron Letters, 25, 5023(1984)]が、この化合物の生理活性に関する記載はない。特開昭49-85050号公報には、式(V):

で表される化合物が、鎮痛、鎮静、解熱、精神安定、抗けいれん作用等の中枢神経系に対する薬理作用および血糖値低下作用を有するものとして記載されているが、PDEIVの阻害作用に関する記載はない。

発明の開示

従って、本発明は、PDEIV阻害作用を有する新規な化合物を提供することを目的とする。

本発明に従えば、式(I):

$$R_{2}O$$
 R_{4}
 X
 R_{8}
 R_{7}
 $R_{1}O$
 $R_{1}O$
 $R_{2}O$
 R_{4}
 R_{5}
 R_{6}
 R_{7}
 R_{7}

〔式中、R:は置換基を有してもよいC:~C:のアルキル基(ただし置換基を有しないメチル基を除く)、C:~C:のシクロアルキル基、3ーテトラヒドロフリル基またはインダニル基を表し、R:はC:~C・のアルキル基を表し、R:は水素原子、置換基を有してもよいC:~C:のアルキル基、C:~C・のシクロアルキル基またはアシル基を表し、R・は水素原子、置換基を有してもよいC:~C:のアルキル基、C:~C:のアルキル基、C:~C:のアルキル基、ハロゲン原子、式(11):

$$\begin{array}{c} R_{9} \\ N-C- \\ R_{10} \\ H_{2} \end{array}$$
 (II)

(式中、R。およびR」。は、それぞれ独立して、C」~C。のアルキル基を表す)で表される基または式([[[]):

(式中、nは2~6の整数を表すが、一つのCH2基は酸素原子、窒素原子および硫黄原子の中から選ばれた1個のヘテロ原子で置換することができる)で表される基を表し、R。、R、およびR。は、それぞれ独立して、水素原子、置換基を有してもよいフェニル基を表し、Xは一(CR11R12)。一(式中、R11はそれぞれ独立して水素原子、置換基を有してもよびR12はそれぞれとして水素原子、置換基を有してもよいC1~C。のアルキル基を表し、nは0~2の整数を表す)は一NR13一(式中、R13は水素原子または置換基を有してより、のアルキル基を表す)で表される3~アニリノー2~シクロアルケノン誘導体、その光学異性体もしくはそれらの医薬上許容される塩またはこれらの水和物もしくは溶媒和物が提供される。

発明を実施するための最良の形態

本発明者らはPDEIV阻害作用を有する新規な化合物を開発すべく探索の結果、前記の3-アニリノ-2-シクロアルケノン誘導体が強いPDEIV阻害作用を有し、気管支拡張作用および抗炎症作用を有することを見出し、本発明を完成するに至った。

以下に本発明を詳細に説明する。

上記一般式(I)のR」としては、C」~C。の直鎖もしくは分岐鎖アルキル基(例えばメチル基、エチル基、プロピル基、イソプ

ロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、1,1-ジメチルプロピル基、n-ヘ キシル基、1-メチルペンチル基、1,1-ジメチルブチル基、n - ヘプチル基、 n - オクチル基)が挙げられ、これらは置換基(例 えば、ハロゲン原子;水酸基;ニトロ基;シアノ基;アミノ基;カ ルボキシル基;シクロアルキル基;ハロアルキル基;カルバモイル 基;アルコキシ基;アルキルカルボニル基;酸素原子、窒素原子、 硫黄原子の中から選ばれた1個以上のヘテロ原子を含有してもよい アリール基等)を有していてもよく、置換基を有するC1~C。の アルキル基としては、例えばシクロプロピルメチル基、(1-フェ ニルシクロプロピル)メチル基、(1-メチルシクロプロピル)メ チル基、シクロプチルメチル基、シクロペンチルメチル基、シクロ ヘキシルメチル基、ベンジル基、フェネチル基、3-フェニルプロ ピル基、4-フェニルプチル基、1-ナフチルメチル基、2-ナフ チルメチル基、2-(1-ナフチル)エチル基、2-(2-ナフチ ル) エチル基、2-インダニルメチル基、2-(2-インダニル) エチル基等が挙げられるが、ここで、置換基を有しないメチル基は R」より除かれる。さらにR」としては、C。~C、シクロアルキ ル基(例えばシクロプロピル基、シクロブチル基、シクロペンチル 基、シクロヘキシル基、シクロヘプチル基等)、C。~C10のビシ クロアルキル基 (rel (1R, 2R, 4S) ビシクロ [2. 2. 1] ヘプター2-イル基等]、3-テトラヒドロフリル基またはイン ダニル基が挙げられる。R1として好ましくは、C4~C。のアル キル基、C。~C,のシクロアルキル基、C。~C。のビシクロア ルキル基、置換基として、フェニル基、ナフチル基、インダニル基 または置換基を有してもよい C 。 ~ C , のシクロアルキル基を有す る-C 1 ~ C 5 のアルキル基、 3 - テトラヒドロフリル基もしくはイ

ンダニル基が挙げられ、更に好ましくは、シクロペンチル基、シクロヘキシル基、シクロプロピルメチル基、シクロペンチルメチル基、2-(2-4) エチル基、1 (1 R, 2 R, 4 S) ビシクロ [2.2.1] ヘプター2ーイル基または2ーインダニル基が挙げられる。

R。としては、C」~C。の直鎖または分岐鎖アルキル基(例えばメチル基、エチル基、nープロピル基、イソプロピル基、nープチル基、secープチル基、tープチル基等)が挙げられ、好ましくはメチル基またはエチル基、更に好ましくはメチル基が挙げられる。

R。としては、Cı~C。の直鎖もしくは分岐鎖アルキル基(例 えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基等) が挙げられ、これらは置換基(例えばハロゲン原子;水酸基;二ト ロ基;シアノ基;アミノ基;カルボキシル基;シクロアルキル基: ハロアルキル基;カルバモイル基;アルコキシ基;アルキルカルボ ニル基;酸素原子、窒素原子、硫黄原子の中から選ばれた1個以上 のヘテロ原子を含有してもよいアリール基等)を有していてもよく 、置換基を有するC」~C。のアルキル基としては、例えばベンジ ル基、フェネチル基、3-フェニルプロピル基、4-フェニルプチ ル基、5-フェニルペンチル基、1-ナフチルメチル基、2-ナフ チルメチル基、2-ピリジルメチル基、3-ピリジルメチル基、4 - ピリジルメチル基、フリルメチル基、チアゾリルメチル基、2-キノリルメチル基等が挙げられる。更にR。としては、水素原子、 C。~C、のシクロアルキル基(シクロプロピル基、シクロプチル 基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等) またはアシル基(例えばフォルミル基、アセチル基、プロピオニル

基、ベンブイル基等)が挙げられる。R。として好ましくは、水素原子;C」~C。のアルキル基;C。~Cュのシクロアルキル基または酸素原子、窒素原子、硫黄原子の中から選ばれた1個以上のヘテロ原子を含有してもよいアリール基を置換基として有してもよいC」~C。のアルキル基が挙げられ、更に好ましくは水素原子、メチル基、プロピル基、ペンチル基、シクロペンチル基、2-ピリジルメチル基、3-ピリジルメチル基、4-ピリジルメチル基、ベンジルメチル基、1-ナフチルメチル基、2-ナフチルメチル基またはアセチル基が挙げられる。

R、としては水素原子、C」~C。の直鎖もしくは分岐鎖アルキル基(メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、secーブチル基、tーブチル基、ペンチル基等)が挙げられ、これらは置換基(ハロゲン原子;水酸基;二トロ基;シアノ基;アミノ基;カルボキシル基;シクロアルキル基;ハロアルキル基;カルバモイル基;アルコキシ基;アルキルカルボニル基;酸素原子、産素原子、硫黄原子の中から選ばれた!個以上のヘテロ原子を含有してもよいアリール基等)を有していてもよい。さらにR、としては、ハロゲン原子(塩素原子、臭素原子、ヨウ素原子等)、下記一般式([[]) または下記一般式([[[]) の基が挙げられる。

上記式(II)のR。およびR、としては、それぞれ独立してC、 ~C。の直鎖もしくは分岐鎖アルキル基(例えばメチル基、エチル 基、プロピル基、イソプロピル基、ブチル基、sec‐プチル基、 tープチル基、ペンチル基等)が挙げられ、上記式(II)の基の具体例としては、1-アゼチジンメチル基、1-ピロリジンメチル基、1-ピロリジンメチル基、1-ピペリジンメチル基、1-ピペラジンメチル基、モルフォリノメチル基等が挙げられる。

上記一般式(III)のnは2~6の整数を表し、また一つのCH2 基は酸素原子、窒素原子、硫黄原子の中から選ばれた1個以上のヘテロ原子で置換することができる。R、として好ましくは、水素原子、ハロゲン原子、C1~C2のアルキル基、ジメチルアミノメチル基、モルフォリノメチル基またはベンジル基が挙げられる。

Rs、R。、R、およびR。としては、それぞれ独立して、水素原子、C、~C。の直鎖もしくは分岐鎖アルキル基(例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、secーブチル基、tーブチル基、ペンチル基等)またはフェニル基(フェニル基、4ーメチルフェニル基、4ークロロフェニル基等)が挙げられ、C、~C。のアルキル基およびフェニル基は置換基(例えばハロゲン原子:水酸基;ニトロ基;シアノ基;アミノ基;カルボキシル基;アルキル基;シロアルキル基;カルボニル基;アルキル基;アルキルカルボニル基;酸素原子、定素原子、硫黄原子の中から選ばれた1個以上のヘテロ原子を含有してもよいアリール基等)を有していてもよい。R。、R。、R、およびR。として好ましくは、水素原子またはメチル基が挙げられる。

Xは-(CR₁₁R₁₂)。-(式中、R₁₁およびR₁₂はそれぞれ独立して水素原子、置換基を有してもよいC₁~C₅のアルキル基、置換基を有してもよいフェニル基を表し、nは0~2の整数を表す)または、-NR₁₃-〔式中、R₁₃は水素原子、C₁~C₅の直鎖もしくは分岐鎖アルキル基(例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、t-ブチル基

、ペンチル基等)が挙げられ、置換基(例えばハロゲン原子;水酸基;ニトロ基;シアノ基;アミノ基;カルボキシル基;シクロアルキル基;カルバモイル基;アルコキシ基;アルキルカルボニル基;酸素原子、硫黄原子の中から選ばれた1個以上のヘテロ原子を含有してもよいアリール基等)を有していてもよく、置換基を有するアルキル基の例としては、ベンジル基、フェニルプロピル基、4ーフェニルプチル基、5ーフェニルペンチル基、ピリジルメチル基、フリルメチル基、チアゾリルメチル基が挙げられる。Xとして好ましくは、一(CRil Ril) nーとしてnが0または1(nが1の場合、RilおよびRil として好ましくはそれぞれ独立して水素原子、メチル基)の場合、もしくはーNRil としてRilが水素原子、Ci ~C。アルキル基またはベンジル基の場合が挙げられる。

上記式(I)で表される具体的な化合物としては、後述の実施例で製造される化合物が挙げられる。

上記一般式(I)の化合物は不斉炭素原子を有しているものもあり、これらは光学異性体が存在する。この光学異性体も本発明に含まれる。また上記一般式(I)の化合物およびその光学異性体の塩も本発明に含まれ、その塩としては、薬理学的に許容され得る塩が好ましく、例えば塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、リン酸塩等の無機酸塩、およびシュウ酸塩、マレイン酸塩、フマル酸塩、乳酸塩、リンゴ酸塩、クエン酸塩、酒石酸塩、安息香酸塩、メタンスルホン酸塩、pートルエンスルホン酸塩等の有機酸塩が挙げられる。

さらに、本発明には、上記一般式(I)の化合物、その光学異性体およびそれらの塩の水和物および溶媒和物も含まれ、溶媒和物の溶媒としては、メタノール、エタノール、イソプロパノール、ブタ

ノール、アセトン、酢酸エチル、クロロホルム等が挙げられる。 上記一般式 (I) の化合物は、公知の方法(特開昭 4 9 - 8 5 0 5 0 号公報)で製造することができる。製造方法の例を下記の反応 図にて説明する。

製造方法1

上記反応図中の化合物(VIII)、(IX)および(XI)はいずれも上記一般式(I)の化合物に相当する。

工程①:アニリン誘導体(VI)と1,3-ジオン類(VII)とを脱水縮合することにより、化合物(VIII)を合成する。本反応は、無溶媒または反応を阻害しない溶媒(例えばペンタン、ヘキサン等

工程②:化合物(VIII)のR。が水素原子の化合物とハロゲン化剤を反応させ、Yがハロゲン原子である化合物(IX)を合成する。ハロゲン化剤としては、例えばN-クロロこはく酸イミド、N-ブロモこはく酸イミド、N-ヨードこはく酸イミドを用い、溶媒は反応を阻害しないようなものであればどのようなものでもよく、例えば、エタノール、メタノール、水等が好ましい。この反応によって得られた化合物は公知の方法(例えば、結晶化、再結晶、クロマトグラフィー等)で精製される。

工程③:特開昭49-85050号公報に記載の製造法に従い、 化合物(VIII)のR4が水素原子の化合物と、アミン類(X)およ びホルムアルデヒドより反応系中で生成されるアミノアルコールを 反応させ、化合物(XI)を合成する。得られた化合物は、公知の方 法(例えば、結晶化、再結晶、クロマトグラフィー等)で精製され る。

製造方法 2

$$R_2O$$
 R_4 R_8 R_7 R_8 R_7 R_8 R_8 R_7 R_8 $R_$

上記反応図中の化合物(XIV)および(XV)は上記一般式(I) の化合物に相当する。

工程④:先に記した工程①と同様の方法により、化合物(XII) と化合物(VII)から化合物(XIII)へと変換する。

工程⑤:化合物(XIII)のヒドロキシ基をアルキル化し、化合物(XIV)を合成する。アルキル化の方法としては、塩基(例えば炭酸カリウム、水素化ナトリウム等)存在下、ハロゲン化アルキル(R₁-Z)(式中、Zはハロゲン原子を示す)を反応させる方法やアルコール誘導体(R₁-OH)を光延反応により脱水縮合する方法等が挙げられる。

工程⑥:化合物 (XIV) にさらに水素化ナトリウム等の塩基の存

PCT/JP97/04857

在下、ハロゲン化アルキル(R。-Z)(式中、Zはハロゲン原子を示す)を反応させると、化合物(XV)が得られる。

WO 98/58901

製造方法 1 および製造方法 2 において用いられる出発物質は、市販の化合物が使用できるが、1,3-ジオン類は、公知の方法(特開昭 5 9-2 5 3 9 2 号公報、特開昭 6 1-5 7 5 8 3 号公報、米国特許 3 6 7 1 5 8 9)により製造することもできる。

本発明化合物を治療剤として用いる場合、単独または薬学的に可能な担体と複合して投与する。その組成は、化合物の溶解度、化学的性質、投与経路、投与計画等によって決定される。

また、非経口剤の場合には、水、エタノール、グリセリン、プロピレングリコール、ポリエチレングリコール、寒天、トラガントガム等の希釈剤を用いて、必要に応じて溶解補助剤、緩衝剤、保存剤

、香料、着色剤等を使用することができる。製剤の調製法は常法に よればよい。

臨床投与量は、経口投与により用いる場合には、成人に対し本発明の化合物として、一般には、1日量 0. 01~1000mgであり、好ましくは0.01~100mgであるが、年令、病状、症状、同時投与の有無等により適宜増減することが更に好ましい。前記1日量の薬剤(本発明化合物)は、1日1回、または適当間隔をおいて1日に2もしくは3回に分けて投与してもよいし、間欠投与してもよい。また、注射剤として用いる場合には、成人に対し本発明の化合物として、1回量 0. 001~100mgを連続投与または間欠投与することが好ましい。また、外皮用剤として用いる場合には、成人に対して本発明の化合物を 0. 01~1. 0%含む基剤を1日1~数回患部に塗布するが、年令、病状、症状、同時投与の有無等により適宜増減することが好ましい。

以下に、本発明を実施例および試験例により具体的に説明するが、本発明の範囲をこれらの実施例および試験例に限定されるものでないことはいうまでもない。

実施例

実施例1

2-メトキシ-5-二トロフェノール10.00g(59ミリモル)、プロモシクロペンタン11.01g(74ミリモル)、炭酸カリウム10.21g(74ミリモル)およびヨウ化カリウム0.

98gをN, N-ジメチルホルムアミド50m1中で一晩室温撹拌する。この溶液を塩化メチレン200m1で希釈し、水で洗浄する。有機溶液を無水硫酸マグネシウムで乾燥し、減圧下で溶媒を除去し、黄色固体の残渣を得る。この残渣をフラッシュクロマトグラフィー(SiO2:40%酢酸エチル/ヘキサンの範囲のグラジェントで溶出)により精製し、真空下にて溶媒を除去・乾燥し、黄色固体の3-シクロペンチルオキシー4-メトキシニトロベンゼン12.52g(収率89.3%)を得る。

1 H-NMR (400MHz, CDC13) δ 1.64-1 .68(2H, m), 1.83-1.92(4H, m), 1.99 -2.05(2H, m), 3.95(3H, s), 4.85(1H , m), 6.89(1H, d, J=8.79Hz), 7.74(1 H, d, J=2.44Hz), 7.88(1H, dd, J=8.7 9, 2.44Hz)

(2) 3-シクロペンチルオキシ-4-メトキシアニリンの合成

3 - シクロペンチルオキシー 4 - メトキシニトロベンゼン1.5 0 g (6.3 2 ミリモル)をメタノール20 m 1 と塩化メチレン4 m 1 の混合液に溶解し、この溶液に10% P d / C 150 m g を添加し、水素気流下(4.0 k g f / c m²に加圧する)1時間激しく撹拌する。次いで、反応液の不溶物を除去するために濾過を行い、得られた濾液を減圧下、溶媒を留去し、褐色油状の粗生成物1.3 1 g を得る。ここで得られた粗生成物は、精製せずとも十分な純度であるため、このまま次反応に用いることができる。

¹ H-NMR (400MHz, CDCl₃) δ 1.55-1 .63(2H, m), 1.80-1.92(6H, m), 3.41 (2H, broad s), 3.77(3H, s), 4.72(1

H, m) 6.22(1 H, dd, J = 8.30, 2.44 Hz)6.31(1 H, d, J = 2.44 Hz), 6.70(1 H, d, J = 8.30 Hz)

(3) 3 - (3 - シクロペンチルオキシ-4 - メトキシアニリノ)-2 - シクロペンテン-1 - オンの合成

3-シクロペンチルオキシー4-メトキシアニリン1.04g(5.02ミリモル)、1,3-シクロペンタンジオン0.51g(5.02ミリモル)およびパラトルエンスルホン酸0.03gをベンゼン30m1に溶解し、水分離管を装着した装置で、生成する水を共沸除去しながら3時間還流する。反応後、室温に戻し、析出してくる黄色結晶を吸引濾取し、結晶をジエチルエーテルで洗浄後、真空下で乾燥し、淡黄色結晶の標記化合物1.16g(収率80.4%)を得る。

' H-NMR (400MHz, CDC1₃) δ 1.52-1
.63(2H, m), 1.81-1.96(6H, m), 2.47
(2H, m), 2.73(2H, m), 3.84(3H, s), 4
.72(1H, m), 5.46(1H, s), 6.41(1H, b)
road s), 6.67(1H, dd, J=8.30, 2.44
Hz), 6.73(1H, d, J=2.44Hz), 6.82(1H, d, J=8.30Hz)

実施例 2

3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-2-シクロヘキセン-1-オン(表1の化合物No. 2) の合成

実施例1 (2) で製造される3-シクロペンチルオキシー4-メトキシアニリン0.98g(4.73ミリモル)と1,3-シクロペキサンジオン0.53g(4.73ミリモル)をベンゼン50m1に溶解し、実施例1(3)と同様の操作を行い、黄色固体の標記

化合物 1. 25 g (収率 87. 9%) を得る。

¹ H-NMR (400MHz, CDCl₃) る 1.55-1 .96(8H, m)、2.03(2H, m, J=6.35Hz)、 2.35(2H, t, J=6.35Hz)、2.48(2H, t, J=6.35Hz)、3.83(3H, s)、4.71(1H, m))、5.43(1H, s)、6.17(1H, broad s)、 6.67-6.69(2H, m)、6.80(1H, m) 実施例3

3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-5, 5-ジメチル-2-シクロヘキセン-1-オン(表1の化合物No. 3)の合成

実施例1(2)で製造される3-シクロペンチルオキシー4-メトキシアニリン0.91g(4.40ミリモル)、ジメドン0.62g(4.40ミリモル)をベンゼン30mlに溶解し、実施例1(3)と同様の装置で5時間還流する。反応後、ベンゼンを減圧除去し、褐色油状の残渣を得る。この残渣をフラッシュクロマトグラフィー(SiO2:2%メタノール/塩化メチレンから4%メタノール/塩化メチレンの範囲のグラジェントで溶出)により精製する。真空下にて溶媒を除去・乾燥し、黄色固体の標記化合物0.98g(収率67.6%)を得る。

¹ H-NMR (400MHz, CDCl₃) δ 1.11(6 H, s), 1.52-1.66(2H, m), 1.74-2.00 (6H, m), 2.21(2H, s), 2.31(2H, s), 3 .83(3H, s), 4.72(1H, m), 5.43(1H, s)), 6.09(1H, broad s), 6.68-6.70(2 H, m), 6.80(1H, m)

実施例 4

3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-2-メチル-2-シクロペンテン-1-オン(表1の化合物No.4) の合成

実施例1(2)で製造される3-シクロペンチルオキシー4-メトキシアニリン0.91g(4.40ミリモル)、2-メチル-1,3-シクロペンタンジオン0.49g(4.40ミリモル)およびパラトルエンスルホン酸0.02gをベンゼン50m1に溶解し、後の操作は実施例1(3)に準じて行い、黒色油状の標記化合物1.27g(収率96.2%)を得る。

1 H-NMR (400MHz, CDCl3) δ 1.68(3 H, s)、1.61-1.96(8H, m)、2.38-2.40 (2H, m)、2.56(2H, m)、3.86(3H, s)、4 .75(1H, m)、6.53(1H, broad s)、6.6 9-6.72(2H, m)、6.82-6.84(1H, m) 実施例5

3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-5-メチル-2-シクロヘキセン-1-オン(表1の化合物No.5) の合成

実施例1(2)で製造される3-シクロペンチルオキシー4-メトキシアニリン0.83g(4.01ミリモル)、5-メチルー1,3-シクロヘキサンジオン0.51g(4.01ミリモル)を用い、実施例1(3)と同様の方法により、淡黄色固体の標記化合物1.12g(収率88.2%)を得る。

¹ H-NMR (400MHz, CDCl₃) δ 1.08(3 H, d, J=5.86Hz), 1.55-1.61(2H, m), 1.77-1.96(6H, m), 2.00-2.08(1H, m), 2.22-2.31(2H, m), 2.36-2.42(2H

, m), 3. 82 (3H, s), 4. 70 (1H, m), 5. 4.1 (1H, s), 6. 37 (1H, broad s), 6. 66-6 . 68 (2H, m), 6. 78-6. 80 (2H, m)

実施例 6

2-2-1-3-(3-2)-1-3-(3-2

実施例1(3)で製造される3-(3-シクロペンチルオキシー4-メトキシアニリノ)-2-シクロペンテン-1-オン0.49g(1.69ミリモル)のエタノールー水(9:1)溶液5m1にN-クロロこはく酸イミド0.25g(1.86ミリモル)を加え、室温で1.5時間撹拌する。反応後、減圧下溶媒を留去し、次いで得られた残渣を酢酸エチル100m1で希釈し、この溶液を飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄する。有機溶液を無水硫酸マグネシウムで乾燥し、減圧下で溶媒を除去し、黒色油状の粗生成物を得る。ここで得られた粗生成物をフラッシュクロマトグラフィーにより精製する。真空下にて溶媒を除去・乾燥し、淡桃色固体の標記化合物0.45g(収率82.5%)を得る。

1 H-NMR (400 MHz, CDC 13) δ 1.53-1

72 (2H, m), 1.92-2.10 (6H, m), 2.48

(2H, m), 2.68 (2H, m), 3.90 (3H, s), 4

86 (1H, m), 6.74-6.75 (2H, m), 6.85

(1H, d, J=8.30 Hz), 7.25 (1H, broads)

実施例7

2-プロモー3-(3-シクロペンチルオキシ-4-メトキシア ニリノ)-2-シクロペンテン-1-オン(表1の化合物No.7

)の合成

実施例 6 と同様の手法を用い、N-クロロこはく酸イミドのかわりにN-プロモこはく酸イミドを使用し、灰色固体の標記化合物(収率 6 1.0%)を得る。

¹ H-NMR (400 MHz, CDC 1₃) δ 1.55-1 . 72 (2H, m), 1.74-2.05 (6H, m), 2.51 (2H, m), 2.69 (2H, m), 3.86 (3H, s), 4 . 76 (1H, m), 6.75-6.77 (2H, m), 6.86 (1H, d, J=7.81Hz), 7.28 (1H, broad s)

実施例8

3 - [3 - [rel (1R, 2R, 4S) - ビシクロ [2. 2. 1] ヘプター2-イルオキシ] - 4 - メトキシアニリノ] - 2 - シク ロペンテン-1-オン(表1の化合物No. 8)の合成 (1) 3 - [rel (1R, 2R, 4S) - ビシクロ [2. 2. 1] ヘプター2-イルオキシ] -4-メトキシニトロベンゼンの合成 2 - メトキシー 5 - ニトロフェノール1.50g(8.87ミリ モル)、rel (1R, 2S, 4S) - 2 - ヒドロキシビシクロ[2 . 2. 1] ヘプタン1. 0 4 g (8. 8 7 ミリモル) およびトリフ ェニルホスフィン3. 49g(13.30ミリモル)を乾燥テトラ ヒドロフラン50m1に溶解し、この溶液にジエチル アゾジカル ボキシレート2. 32g(13.30ミリモル)を注意深く滴下す る。反応液を22時間還流した後、ジエチルエーテル100mlを 加えて希釈し、水酸化ナトリウム、水で順次洗浄する。有機溶液を 無水硫酸マグネシウムで乾燥し、減圧下で溶媒を除去し、褐色油状 の残渣を得る。この残渣をフラッシュクロマトグラフィー(SiO 2:50%ヘキサン/塩化メチレンで溶出)により精製する。真空

下にて溶媒を除去・乾燥し、黄色固体の3-[rel (1R, 2R, 4S)-ビシクロ[2.2.1] ヘプター2-イルオキシ]-4-メトキシニトロベンゼン2.04g(収率87.2%)を得る。

¹ H-NMR (400MHz, CDCl₃) δ 1. 18-1 . 26 (3H, m), 1. 49-1. 65 (3H, m), 1. 73 (1H, m), 1. 83-1. 88 (1H, m), 2. 36 (1H, m), 2. 54 (1H, m), 3. 94 (3H, s), 4. 27 (1H, m), 6. 88 (1H, d, J=8. 79Hz), 7. 6 9 (1H, d, J=2. 44Hz), 7. 87 (1H, dd, J=8. 79, 2. 44Hz)

(2) 3 - [rel (1R, 2R, 4S) - ビシクロ [2. 2. 1] ヘプター2-イルオキシ] - 4 - メトキシアニリンの合成

実施例 1 (2) と同様の手法を用い、3-シクロペンチルオキシ $-4-メトキシニトロベンゼンのかわりに、<math>3-[rel\ (1\ R,\ 2\ R,\ 4\ S)-ビシクロ[2.\ 2.\ 1] ヘプタ-2-イルオキシ] -4-メトキシニトロベンゼンを使用し、紫色油状の<math>3-[rel\ (1\ R,\ 2\ R,\ 4\ S)-ビシクロ[2.\ 2.\ 1] ヘプタ-2-イルオキシ] -4-メトキシアニリンを得る。$

¹ H-NMR (400 MHz, CDC 1₃) δ 1.08-1 .19 (3H, m), 1.43-1.65 (3H, m), 1.71 -1.76 (2H, m), 2.31 (1H, m), 2.50 (1H, m), 2.55-2.56 (2H, m), 3.76 (3H, s) ,4.13 (1H, m), 6.21 (1H, dd, J=8.30, 2.44 Hz), 6.28 (1H, d, J=2.44 Hz), 6. 70 (1H, d, J=8.30 Hz)

(3) 3 - [3 - [rel (1R, 2R, 4S) - ビシクロ [2. 2]
 . 1] ヘプター2ーイルオキシ] - 4 - メトキシアニリノ] - 2 -

シクロペンテン-1-オンの合成

実施例 1 (3) と同様の手法を用い、3-シクロペンチルオキシー4-メトキシアニリンのかわりに、3-[rel (1R, 2R, 4S)-ビシクロ[2.2.1] ヘプター2-イルオキシ]-4-メトキシアニリンを使用し、黄色固体の標記化合物(収率85.0%)を得る。

1 H-NMR (400 MHz, CDC 13) δ 1. 12-1
22 (3 H, m), 1. 49-1. 62 (3 H, m), 1. 74
(2 H, m), 2. 33 (1 H, m), 2. 46-2. 50 (3 H, m), 2. 71-2. 74 (2 H, m), 3. 84 (3 H, s)
4. 14 (1 H, m), 5. 45 (1 H, s), 6. 47 (1 H, broad s), 6. 66-6. 68 (2 H, m), 6. 82
(1 H, d, J=8. 30 Hz)

実施例 9

3-[3-(2-4ンダニルオキシ)-4-メトキシアニリノ] -2-シクロペンテン-1-オン(表1の化合物No. 9)の合成 (1) 3-(2-4ンダニルオキシ)-4-メトキシニトロベンゼンの合成

2 - メトキシー5 - 二トロフェノール10.00g(59.12 ミリモル)、2 - インダノール7.93g(59.12 ミリモル) およびトリフェニルホスフィン18.60g(70.94ミリモル) を乾燥テトラヒドロフラン250mlに溶解し、この溶液にジエチル アゾジカルボキシレート12.36g(70.94ミリモル)を室温にて注意深く滴下する。室温で一晩撹拌した後、この溶液をジエチルエーテル250mlを加えて希釈し、水酸化ナトリウム水溶液、水で順次洗浄する。有機溶液を無水硫酸マグネシウムで乾燥し、減圧下で溶媒を除去し、淡黄色固体の残渣を得る。この残渣

をフラッシュクロマトグラフィー(SiO2:50%へキサン/塩化メチレンで溶出)により精製する。真空下にて溶媒を除去・乾燥し、淡黄色固体の3-(2-インダニルオキシ)-4-メトキシニトロベンゼン12.65g(収率75.0%)を得る。

1 H-NMR (400 MHz, CDC 13) δ 3. 26 (2 H, dd, J=17. 09, 3. 42 Hz), 3. 48 (2 H, dd, J=17. 09, 6. 83 Hz), 3. 91 (3 H, s), 5 26 (1 H, m), 6. 90 (1 H, d, J=8. 79 Hz), 7. 19-7. 29 (4 H, m), 7. 81 (1 H, d, J=2. 44 Hz), 7. 93 (1 H, dd, J=8. 79, 2. 44 Hz)

(2) 3-(2-インダニルオキシ)-4-メトキシアニリンの合 成

実施例1(2)と同様の手法を用い、3-シクロペンチルオキシ -4-メトキシニトロベンゼンのかわりに、3-(2-インダニルオキシ)-4-メトキシニトロベンゼンを使用し、紫色油状の3-(2-インダニルオキシ)-4-メトキシアニリンを得る。

1 H-NMR (400MHz, CDCl₃) δ 3.23(2 H, dd, J=16.60, 3.90Hz), 3.35(2H, dd, J=16.60, 6.35Hz), 3.72(3H, s), 5 .15(1H, m), 6.27(1H, dd, J=8.30, 2.44Hz), 6.73 (1H, d, J=8.30Hz), 7.15-7.24(4H, m)

(3) 3 - [3 - (2 - インダニルオキシ) - 4 - メトキシアニリノ] - 2 - シクロペンテン-1 - オンの合成

実施例1 (3) と同様の手法を用い、3-シクロペンチルオキシ

-4-メトキシアニリンのかわりに、3-(2-インダニルオキシ) -4-メトキシアニリンを使用し、無色固体の標記化合物 0.5 3 g (収率 8 5.1%) を得る。

1 H-NMR (400 MHz, CDC 13) δ 2. 46-2

. 49 (2H, m), 2. 72-2. 75 (2H, m), 3. 23

(2H, dd, J=16.60, 3.42Hz), 3.38 (2H, dd, J=16.60, 6.35Hz), 3.81 (3H, s)

. 5. 14 (1H, m), 5. 47 (1H, s), 6.54 (1H, broad s), 6.74 (1H, dd, J=8.30, 2.44Hz), 6.85

(1H, d, J=8.30Hz), 7.17-7.25 (4H, m)

実施例10

3-[3-(2-インダニルオキシ)-4-メトキシアニリノ] -2-メチル-2-シクロペンテン-1-オン(表1の化合物No . 10)の合成

実施例 9 (2)で製造される 3 - (2 - インダニルオキシ) - 4 - メトキシアニリン 2 . 6 8 g (1 0 . 5 2 ミリモル)、 2 - メチル - 1 , 3 - シクロペンタンジオン 1 . 1 8 g (1 0 . 5 2 ミリモル)およびパラトルエンスルホン酸 0 . 0 7 g をトルエン 1 3 0 m 1 に溶解し、 2 0 時間還流する。反応後、溶媒を減圧留去し、得られた残渣を塩化メチレン 1 0 0 m 1 で希釈し、この有機溶液を水で洗浄する。次いで溶液を無水硫酸ナトリウムで乾燥した後、減圧下溶媒を留去し、黒褐色油状の残渣を得る。この残渣をフラッシュクロマトグラフィー(SiO2 : 2 %メタノール/塩化メチレンで溶出)で精製し、真空下で溶媒を留去・乾燥し、褐色固体の標記化合物 3 . 6 0 g (収率 9 8 . 2 %)を得る。

H-NMR (400MHz, CDC1₃) δ 1.68 (3 H, s), 2.38-2.41 (2H, m), 2.57-2.58 (2H, m), 3.23 (2H, dd, J=16.60, 3.42 Hz), 3.38 (2H, dd, J=16.60, 6.83 Hz) 3.81 (3H, s), 5.15 (1H, m), 6.74-6. 76 (3H, m), 6.84 (1H, d, J=9.28 Hz), 7 17-7.24 (4H, m)

実施例11

3-(4-メトキシ-3-フェネチルオキシアニリノ)-2-シ クロペンテン-1-オン (表 1 の化合物 N o . 1 1) の合成

(1) 4-メトキシー3-フェネチルオキシニトロベンゼンの合成 実施例9(1)と同様の手法を用い、2-インダノールのかわり に、フェネチルアルコールを使用し、黄色固体の4-メトキシー3 -フェネチルオキシニトロベンゼン(収率100%)を得る。

¹ H-NMR (400MHz, CDCl₃) δ 3.19(2 H, t, J=7.32Hz), 3.97(3H, s), 4.28(2H, t, J=7.32Hz), 6.90(1H, d, J=9.2 8Hz), 7.27-7.36(5H, m), 7.73(1H, d , J=2.93Hz), 7.91(1H, dd, J=9.28, 2 93Hz)

(2) 4-メトキシー3-フェネチルオキシアニリンの合成

実施例1 (2) と同様の手法を用い、3 - シクロペンチルオキシー4 - メトキシニトロベンゼンのかわりに、4 - メトキシー3 - フェネチルオキシニトロベンゼンを使用し、褐色油状の4 - メトキシー3 - フェネチルオキシアニリンを得る。

 1 H - NMR (400MHz, CDCl₃) δ 3.15 (2 H, t, J = 7.33Hz), 3.77 (3H, s), 4.16 (

2 H, t, J = 7. 3 3 H z), 6. 2 3 (1 H, d d, J = 8... 3 0, 2. 4 4 H z), 6. 3 0 (1 H, d, J = 2. 4 4 H z), 6. 7 2 (1 H, d, J = 8... 3 0 H z), 7. 2 1 - 7. 3 3 (5 H, m)

(3) 3-(4-メトキシ-3-フェネチルオキシアニリノ)-2-シクロペンテン-1-オンの合成

実施例1(3)と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシアニリンのかわりに、4-メトキシー3-フェネチルオキシアニリンを使用し、黄色固体の標記化合物(収率87.9%)を得る。

' H-NMR (400MHz, CDCl₃) δ 2.41 (2 H, m), 2.69 (2H, m), 3.14 (2H, t, J=7. 32Hz), 3.84 (3H, s), 4.14 (2H, t, J=7. .32Hz), 5.41 (1H, s), 6.70 (2H, m), 6. .82 (1H, d, J=7.81Hz), 7.22-7.32 (5 H, m)

実施例12

3-(4-メトキシ-3-フェネチルオキシアニリノ)-2-メ チル-2-シクロペンテン-1-オン(表1の化合物No. 12) の合成

実施例4と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシアニリンのかわりに、実施例11(2)で製造される4-メトキシ-3-フェネチルオキシアニリンを使用し、茶色固体の標記化合物(収率74.2%)を得る。

 1 H-NMR (400MHz, CDCl₃) δ 1.64 (3H, s), 2.35 (2H, m), 2.51 (2H, m), 3.16 (1H, t, J=7.32Hz), 3.87 (3H, s), 4.

18 (1H, t, J=7. 32Hz)、6. 67 (1H, d, J=2. 44Hz)、6. 72 (1H, dd, J=8. 79, 2. 44Hz)、6. 61-6. 77 (1H, broad)、6. 84 (1H, d, J=8. 79Hz)、7. 23-7. 33 (5H, m) 実施例13

3-(3-シクロヘキシルオキシ-4-メトキシアニリノ)-2- シクロペンテン-1-オン (表1の化合物No. 13) の合成 (1) 3-シクロヘキシルオキシ-4-メトキシニトロベンゼンの合成

実施例 9 (1) と同様の手法を用い、2-インダノールのかわりに、シクロヘキサノールを使用し、黄色固体の3-シクロヘキシルオキシ-4-メトキシニトロベンゼン(収率49.2%)を得る。

' H-NMR (400MHz, CDCl₃) δ 1.39-1 .43(3H, m), 1.56-1.64(3H, m), 1.83 -1.87(2H, m), 2.04-2.07(2H, m), 3. 95(3H, s), 4.32(1H, m), 6.91(1H, d, J=8.79Hz), 7.76(1H, d, J=2.44Hz), 7.89(1H, dd, J=8.79, 2.44Hz)

実施例1(2)と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシニトロベンゼンのかわりに、3-シクロヘキシルオキシ-4-メトキシニトロベンゼンを使用し、褐色油状の3-シクロヘキシルオキシ-4-メトキシアニリンを得る。

(2) 3-シクロヘキシルオキシ-4-メトキシアニリンの合成

¹ H-NMR (400MHz, CDCl₃) δ 1. 25-1 . 37 (3H, m), 1. 50-1. 58 (3H, m), 1. 80 (2H, m), 2. 01 (2H, m), 3. 41 (2H, broad d s), 3. 77 (3H, s), 4. 13 (1H, m), 6. 2

4 (1 H, dd, J = 8. 3 0, 2. 4 4 Hz), 6. 3 5 (1 H, d, J = 2. 4 4 Hz), 6. 7 1 (1 H, d, J = 8. 3 0 Hz)

(3) 3-(3-シクロヘキシルオキシ-4-メトキシアニリノ)-2-シクロペンテン-1-オンの合成

実施例1(3)と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシアニリンのかわりに、3-シクロヘキシルオキシー4-メトキシアニリンを使用し、黄色固体の標記化合物(収率65.1%)を得る。

¹ H-NMR (400MHz, CDCl₃) δ 1.31-1 .36(3H, m), 1.53-1.60(3H, m), 1.80 (2H, m), 2.00(2H, m), 2.46(2H, m), 2 .72(2H, m), 3.85(3H, s), 4.16(1H, m)), 5.44(1H, s), 6.56(1H, broad s), 6.71(1H, dd, J=8.79, 1.96Hz), 6.76 (1H, d, J=1.96Hz), 6.84(1H, d, J=8.79Hz)

実施例14

3-(3-シクロヘキシルオキシ-4-メトキシアニリノ)-2-メチル-2-シクロペンテン-1-オン(表1の化合物No.1 4)の合成

実施例4と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシアニリンのかわりに、実施例13(2)で製造される3-シクロヘキシルオキシ-4-メトキシアニリンを使用し、茶色固体の標記化合物(収率86.0%)を得る。

¹ H-NMR (400MHz, CDCl₃) δ 1. 26-1 . 37 (3H, m), 1. 56-1. 61 (3H, m), 1. 68

(3 H, s), 1. 8 2 (2 H, m), 2. 0 0 - 2. 0 5 (2 H, m), 2. 3 8 - 2. 4 1 (2 H, m), 2. 5 5 (2 H, m), 3. 8 6 (3 H, s), 4. 1 8 (1 H, m), 6. 4 5 (1 H, broad s), 6. 7 1 - 6. 7 3 (2 H, m), 6. 8 4 (1 H, d, J = 9. 2 8 Hz)

実施例15

3-(3-シクロプロピルメトキシ-4-メトキシアニリノ)-2-シクロペンテン-1-オン (表1の化合物<math>No.15) の合成 (1) 3-シクロプロピルメトキシ-4-メトキシニトロベンゼンの合成

実施例 9 (1) と同様の手法を用い、2-インダノールのかわりに、シクロプロピルカルビノールを使用し、淡黄色固体の3-シクロプロピルメトキシー4-メトキシニトロベンゼン(収率89.0%)を得る。

' H-NMR (400MHz, CDCl₃) δ 0.40(2 H, m), 0.70(2H, m), 1.36(1H, m), 3.9 3(2H, d, J=7.33Hz), 3.98(3H, s), 6. 91(1H, d, J=8.79Hz), 7.73(1H, d, J= 2.44Hz), 7.90(1H, dd, J=8.79, 2.44 Hz)

(2) 3 - シクロプロピルメトキシー 4 - メトキシアニリンの合成 実施例 1 (2) と同様の手法を用い、3 - シクロペンチルオキシー 4 - メトキシニトロベンゼンのかわりに、3 - シクロプロピルメトキシー 4 - メトキシニトロベンゼンを使用し、紫色油状の3 - シクロプロピルメトキシー 4 - メトキシアニリンを得る。

 1 H-NMR (400MHz, CDC1₃) δ 0.32(2H, m), 1.30(1H, m), 3.7

6 (2 H, d, J = 7. 3 3 Hz), 3. 7 9 (3 H, s), 3.

96 (2H, broad s), 6. 25 (1H, dd, J = 8.

30, 2.44Hz), 6.32(1H, d, J=2.44Hz)

6.69(1H, d, J=8.30Hz)

(3) 3-(3-シクロプロピルメトキシ-4-メトキシアニリノ

) -2-シクロペンテン-1-オンの合成

実施例1 (3) と同様の手法を用い、3 - シクロペンチルオキシー4 - メトキシアニリンのかわりに、3 - シクロプロピルメトキシー4 - メトキシアニリンを使用し、淡黄色固体の標記化合物(収率8 1. 1%)を得る。

 1 H-NMR (400MHz, CDCl3)
 δ 0.35 (2

 H, m)、0.65 (2H, m)、1.32 (1H, m)、2.4

 6 (2H, m)、2.73 (2H, m)、3.80 (2H, d, J

 = 6.84 Hz)、3.87 (3H, s)、5.44 (1H, s)

 .6.70 (1H, dd, J=8.30, 2.44 Hz)、6.7

 4 (1H, d, J=2.44 Hz)、6.76-6.88 (1H, broad s)、6.83 (1H, d, J=8.30 Hz)

 実施例 1 6

3-(3-シクロプロピルメトキシ-4-メトキシアニリノ)-2-メチル-2-シクロペンテン-1-オン (表1の化合物<math>No. 16)の合成

実施例4と同様の手法を用い、3-シクロペンチルオキシー4-メトキシアニリンのかわりに、実施例15(2)で製造される3-シクロプロピルメトキシー4-メトキシアニリンを使用し、黒色固体の標記化合物(収率94.4%)を得る。

¹ H-NMR (400MHz, CDCl₃) δ 0.35-0 38 (2H, m), 0.64-0.69 (2H, m), 1.34

PCT/JP97/04857

(1 H, m), 1. 6 7 (3 H, s), 2. 3 8 - 2. 4 0 (2 H, m), 2. 5 5 (2 H, m), 3. 8 4 (2 H, d, J = 7. 3 2 H z), 3. 8 9 (3 H, s), 6. 4 3 (1 H, broad s), 6. 6 9 (1 H, d, J = 2. 4 4 H z), 6. 7 3 (1 H, d, J = 8. 3 0 H z)

実施例17

3-(3-プトキシー4-メトキシアニリノ)-2-シクロペン テン-1-オン(表1の化合物No. 17)の合成

(1) 3-ブトキシ-4-メトキシニトロベンゼンの合成

実施例1(1)と同様の手法を用い、ブロモシクロペンタンのかわりに、ヨウ化プチルを用い、黄色固体の3-プトキシー4-メトキシニトロベンゼン(収率100%)を得る。

¹ H-NMR (400MHz, CDCl₃) δ 1.00 (3 H, t, J=7.33Hz), 1.52(2H, m), 1.87(2H, m), 3.97(3H, s), 4.09(2H, t, J=6 .83Hz), 6.90(1H, d, J=8.79Hz), 7.7 4 (1H, d, J=2.93Hz), 7.90(1H, dd, J=8.79, 2.93Hz)

(2) 3-プトキシー4-メトキシアニリンの合成

実施例1 (2) と同様の手法を用い、3 - シクロペンチルオキシー4 - メトキシニトロベンゼンのかわりに、3 - ブトキシー4 - メトキシニトロベンゼンを使用し、紫色油状の3 - ブトキシー4 - メトキシアニリンを得る。

¹ H-NMR (400MHz, CDC1₃) δ 0.96 (3 H, t, J=7.32Hz), 1.48 (2H, m), 1.80 (2H, m), 3.45 (2H, broad s), 3.77 (3H₂ , s)、3.94(2H, t, J=6.84Hz)、6.20(1H, dd, J=8.30, 2.44Hz)、6.30(1H, d, J=2.44Hz)、6.69(1H, d, J=8.30Hz) (3)3-(3-ブトキシ-4-メトキシアニリノ)-2-シクロペンテン-1-オンの合成

実施例1(3)と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシアニリンのかわりに、3-ブトキシー4-メトキシアニリンを使用し、淡黄色固体の標記化合物(収率81.6%)を得る。

1 H-NMR (400MHz, CDC13) δ 0.98 (3 H, t, J=7.33Hz), 1.49 (2H, m), 1.82 (2H, m), 2.45-2.47 (2H, m), 2.71-2.7 4 (2H, m), 3.97 (2H, t, J=6.83Hz), 5. 46 (1H, s), 6.69 (1H, dd, J=8.79, 2.4 4Hz), 6.72-6.80 (1H, broad), 6.74 (1H, d, J=2.44Hz), 6.83 (1H, d, J=8.79Hz)

実施例18

3-(3-ブトキシー4-メトキシアニリノ) -2-メチルー2-シクロペンテン-1-オン(表1の化合物No. 18)の合成実施例4と同様の手法を用い、3-シクロペンチルオキシー4-メトキシアニリンのかわりに、実施例17(2)で製造される3-

プトキシー4-メトキシアニリンを使用し、茶色固体の標記化合物

(収率 6 6. 2%)を得る。

 1 H-NMR (400MHz, CDC1₃) δ 0.98(3 H, t, J=7.33Hz), 1.50(2H, m), 1.67(3H, s), 1.84(2H, m), 2.38-2.40(2H,

PCT/JP97/04857

WO 98/58901

m), 2. 55-2. 56 (2H, m), 3. 87 (3H, s), 4. 00 (2H, t, J=6. 83Hz), 6. 51 (1H, br oad s), 6. 70 (1H, d, J=2. 44Hz), 6. 7 2 (1H, dd, J=8. 30, 2. 44Hz), 6. 84 (1H , d, J=8. 30Hz)

実施例19

3-[3-(2-インダニルオキシ)-4-メトキシアニリノ] -2-シクロヘキセン-1-オン(表1の化合物No. 19)の合 成

<u>(1) 3 - (3 - ヒドロキシ - 4 - メトキシアニリノ) - 2 - シク</u>ロヘキセン - 1 - オンの合成

3ーヒドロキシー4ーメトキシアニリン1.00g(7.19ミリモル)、1,3ーシクロヘキサンジオン0.83g(7.19ミリモル)およびパラトルエンスルホン酸50mgをベンゼン20m1中で4.5時間還流する。反応液を室温で一晩放置し、析出した褐色固体を吸引濾取する。結晶をベンゼンで洗浄した後、減圧下乾燥を行い、3ー(3ーヒドロキシー4ーメトキシアニリノ)ー2ーシクロヘキセン-1ーオン1.68g(収率100%)を得る。

' H-NMR (400MHz, CDC13) δ 2.04 (2 H, m), 2.36 (2H, t, J=6.35Hz), 2.47 (2H, t, J=6.35Hz), 3.89 (3H, s), 5.47 (1H, s), 5.65-5.90 (2H, broad), 6.6 7 (1H, dd, J=8.30, 2.44Hz), 6.75 (1H, d, J=8.30Hz)

(2) 3 - [3 - (2 - インダニルオキシ) - 4 - メトキシアニリノ] - 2 - シクロヘキセン-1 - オンの合成

実施例 9 (1) と同様の手法を用い、2-メトキシー5-二トロフェノールのかわりに、3-(3-ヒドロキシー4-メトキシアニリノ)-2-シクロヘキセン-1-オンを使用し、褐色固体の標記化合物(収率54.4%)を得る。

¹ H-NMR (400 MHz, CDCl₃) δ 2.02-2 .08 (2H, m), 2.37 (2H, t, J=6.35 Hz), 2.48 (2H, t, J=6.35 Hz), 3.22 (2H, dd, J=16.61, 3.91 Hz), 3.36 (2H, dd, J=16.61, 6.35 Hz), 3.80 (3H, s), 5.14 (1H, m), 5.44 (1H, s), 5.91 (1H, broads), 6.74-6.76 (2H, m), 6.82-6.84 (1H, m), 7.16-7.19 (2H, m), 7.22-7.2 5 (2H, m)

実施例20

3-(3-ベンジルオキシ-4-メトキシアニリノ)-2-シクロヘキセン-1-オン(表1の化合物No. 20)の合成

実施例19(2)と同様の手法を用い、2-インダノールのかわりに、ベンジルアルコールを使用し、褐色固体の標記化合物(収率68.0%)を得る。

' H-NMR (400 MHz, CDC 13) δ 2.01 (2 H, m, J=6.35 Hz), 2.34 (2 H, t, J=6.35 Hz), 2.42 (2 H, t, J=6.35 Hz), 3.88 (3 H, s), 5.11 (2 H, s), 5.39 (1 H, s), 5.8 7 (1 H, broad s), 6.70 (1 H, d, J=2.44 Hz), 6.74 (1 H, dd, J=8.79, 2.44 Hz), 6.84 (1 H, d, J=8.79 Hz), 7.29-7.43 (5 H, m)

実施例21

4-(3-シクロペンチルオキシー4-メトキシアニリノ)-1, 2, 5, 6-テトラヒドロピリジン-2-オン(表1の化合物No. 21)の合成

実施例1 (2) で製造される3-シクロペンチルオキシー4-メトキシアニリン0.60g(2.89ミリモル)、2,4-ジオキソピペリジン0.33g(2.89ミリモル)をベンゼン15m1、アセトニトリル4m1、メタノール1m1の混合溶媒に溶解し、室温にて24時間撹拌する。反応後、溶媒を減圧留去し、残渣にエーテルを加え、結晶化を行い、析出する褐色結晶を濾取し、減圧下乾燥し、標記化合物0.88g(収率100%)を得る。

1 H-NMR (400 MHz, CDCl3) δ 1.58-1
62(2H, m), 1.78-1.93(6H, m), 2.51
(2H, t, J=6.84Hz), 3.44(2H, ddd, J=6.84, 6.84, 2.44Hz), 3.83(3H, s), 4
72(1H, m), 5.12(1H, s), 5.34(1H, b)
road), 5.83(1H, broad s), 6.69(1H, dd, J=8.30, 1.95Hz), 6.71(1H, d, J=1.95Hz), 6.80(1H, d, J=8.30Hz)

<u>実施例 2-2</u> 1 - ベンジル- 4 - (3 -)

1-ベンジル-4-(3-シクロペンチルオキシー4-メトキシアニリノ)-1,2,5,6-テトラヒドロピリジン-2-オン(表1の化合物<math>No.22)の合成

する結晶を濾取し、ベンゼンで洗浄した後、減圧下乾燥し、淡桃色固体の標記化合物 0.76g(収率 80.6%)を得る。

1 H-NMR (400MHz, CDCl3) δ 1.55-1
63(2H, m)、1.81-1.96(6H, m)、2.46
(2H, t, J=6.84Hz)、3.33(2H, t, J=6.
84Hz)、3.84(3H, s)、4.63(2H, s)、4.
74(1H, m)、5.25(1H, s)、5.40(1H, broad s)、6.67-6.71(2H, m)、6.80(1H, d, J=8.30Hz)、7.28-7.37(5H, m)
実施例23

4-[3-[3-[rel (1R, 2R, 4S)-ビンクロ[2.2. 1] ヘプタ-2-イルオキシ]-4-メトキシアニリノ]-12, 5, 6-テトラヒドロピリジン-2-オン(表1の化合物No. 23)の合成

実施例21と同様の手法を用い、3-シクロペンチルオキシー4-メトキシアニリンのかわりに、実施例8(2)で製造される3-[rel(1R,2R,4S)-ビシクロ[2.2.1]へプター2-イルオキシ]-4-メトキシアニリンを使用し、淡褐色固体の標記化合物(収率74.3%)を得る。

¹ H-NMR (400MHz, CDCl₃) δ 1. 12-1
. 22 (3H, m), 1. 49-1. 62 (3H, m), 1. 73
-1. 78 (2H, m), 2. 33 (1H, m), 2. 49-2.
53 (3H, m), 3. 45-3. 50 (2H, m), 3. 83 (3H, s), 4. 15 (1H, m), 5. 05 (1H, broads), 5. 12 (1H, s), 5. 52 (1H, broads), 6. 65 (1H, d, J=2. 44Hz), 6. 69 (1H, d, J=8. 30, 2. 44Hz), 6. 81 (1H, d, J=

PCT/JP97/04857

8 3 0 Hz)

実施例24

3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-2 -ジメチルアミノメチル-2-シクロペンテン-1-オン(表1の 化合物No.24)の合成

ジメチルアミン塩酸塩 0. 1 6 g (1. 9 1 ミリモル) およびホルムアルデヒド 3 5 %水溶液 0. 1 8 g (2. 0 9 ミリモル) をベンゼン 2 m 1 に溶解し、この溶液に実施例 1 で得られる 3 ー (3 ーシクロペンチルオキシー 4 ーメトキシアニリノ) ー 2 ーシクロペンテンー1ーオン 0. 5 0 g (1. 7 4 ミリモル) をベンゼンーメタノール (1: 2) 溶液 1 5 m 1 に溶解し、室温にて注意深く滴下する。室温で一晩撹拌した後、減圧下で溶媒を除去し、淡黄色固体の残渣を得る。この残渣をフラッシュクロマトグラフィーにより精製する。真空下にて溶媒を除去、乾燥し無色固体の標記化合物 0. 5 g (収率 9 2. 2 %) を得る。

¹ H-NMR (400MHz, CDCl₃) δ 1.60-1 .63(2H, m), 1.82-1.89(4H, m), 1.96 -1.99(2H, m), 2.41-2.44(2H, m), 2. 68-2.72(8H, m), 3.77(2H, s), 3.84(3H, s), 4.75-4.78(1H, m), 6.81(2H, s), 6.94(1H, s)

実施例25

3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-2- (4-モルフォリノメチル)-2-シクロペンテン-1-オン(表1の化合物No.25)の合成

実施例24と同様の手法を用い、ジメチルアミン塩酸塩のかわりに、モルフォリンを使用し、無色固体の標記化合物(収率29.2

PCT/JP97/04857

%)を得る。

1 H-NMR (400 MHz, CDC 13) δ 1.64-1 95 (8 H, m), 2.40-2.43 (2 H, m), 2.51 (4 H, broad s), 2.67 (2 H, m), 3.37 (2 H, s), 3.75 (4 H, broad s), 3.85 (3 H, s), 4.74-4.76 (1 H, m), 6.61-6.63 (2 H, m), 6.84 (1 H, d, J=8.79 Hz), 9.66 (1 H, broad s)

実施例26

3-(3-シクロペンチルオキシ-4-メトキシ-N-メチルア ニリノ) -2-シクロペンテン-1-オン (表1の化合物No. 2 6) の合成

実施例1で製造される3-(3-シクロペンチルオキシー4-メトキシアニリノ)-2-シクロペンテン-1-オン0.10g(0.35ミリモル)、水素化ナトリウム(60%)0.02gおよびヨウ化メチル0.06g(0.42ミリモル)をN,Nージメチルホルムアミド4m1に溶解し室温で一晩撹拌する。反応溶液に水を加え、塩化メチレンで抽出し、抽出液を無水硫酸マグネシウムで乾燥後、減圧下で溶媒を除去し、粗生成物を得る。この粗生成物をフラッシュクロマトグラフィー(SiO2;2%メタノール/塩化メチレンで溶出)により精製し、無色固体の標記化合物0.10g(収率93.4%)を得る。

¹ H-NMR (400 MHz, CDC 1₃) δ 1.61-1 .64(2H, m), 1.80-1.97(6H, m), 2.40 (4H, m), 3.30(3H, s), 3.86(3H, s), 4 .72-4.76(1H, m), 5.11(1H, broad s), 6.70(1H, d, J=1.95Hz), 6.73(1H,

dd, J=8.31,1.95Hz),6.86(1H,d,J=8.31Hz)

実施例27

3-(3-シクロペンチルオキシ-4-メトキシ-N-メチルア ニリノ) -2-シクロヘキセン-1-オン(表1の化合物No.2 7) の合成

実施例26と同様の手法を用い、3-(3-シクロペンチルオキシー4-メトキシアニリノ)-2-シクロペンテン-1-オンのかわりに、実施例2で製造される3-(3-シクロペンチルオキシー4-メトキシアニリノ)-2-シクロヘキセン-1-オンを使用し、褐色固体の標記化合物(収率53.6%)を得る。

1 H-NMR (400MHz, CDCl3) δ 1.61-1
64(2H, m)、1.81-1.95(8H, m)、2.21
(2H, t, J=6.35Hz)、2.30(2H, t, J=6.34Hz)、3.20(3H, s)、3.86(3H, s)、4.72-4.75(1H, m)、5.30(1H, s)、6.61(1H, d, J=2.44Hz)、6.66(1H, dd, J=8.30Hz)

実施例28

3-[3-シクロペンチルオキシ-4-メトキシ-N-(4-ピリジルメチル) アニリノ] <math>-2-シクロペンテン-1-オン(表1の化合物No. 28) の合成

実施例26と同様の手法を用い、ヨウ化メチルのかわりに、4-(クロロメチル)ピリジン塩酸塩を使用し、褐色固体の標記化合物 (収率66.7%)を得る。

¹ H-NMR (400MHz, CDC1₃) δ 1.71(2 H, m), 1.75-1.82(6H, m), 2.42(2H, b

road s), 2. 52 (2H, broad s), 3. 84 (3H, s), 4. 63-4. 64 (1H, m), 4. 77 (2H, s), 5. 19 (1H, broad s), 6. 59 (1H, d, J=2. 44Hz), 6. 69 (1H, dd, J=8. 79, 2. 44Hz), 6. 81 (1H, d, J=8. 79Hz), 7. 17 (2H, m), 8. 58 (2H, m)

実施例29

3-(N-rセチル-3-シクロペンチルオキシー4-メトキシアニリノ) -2-シクロペンテン-1-オン (表1の化合物No.29) の合成

実施例26と同様の手法を用い、ヨウ化メチルのかわりに、アセチルクロライドを使用し、無色固体の標記化合物(収率77.6%)を得る。

1 H-NMR (400 MHz, CDC l₃) δ 1.59-1

.63 (2H, m), 1.85-1.95 (6H, m), 1.98

(3H, s), 2.38-2.40 (2H, m), 2.97-2.

99 (2H, m), 3.89 (3H, s), 4.74 (1H, m)

.5.69 (1H, s), 6.70 (1H, d, J=2.44Hz)

), 6.76 (1H, dd, J=8.30, 2.44Hz), 6.

92 (1H, d, J=8.30Hz)

実施例30

3-(N-ベンジル-3-シクロペンチルオキシ-4-メトキシアニリノ) -2-シクロペンテン-1-オン (表1の化合物No. 3 0) の合成

実施例26と同様の手法を用い、ヨウ化メチルのかわりに、臭化ベンジルを使用し、褐色油状の標記化合物(収率87.9%)を得る。

1 H-NMR (400 MHz, CDCl₃) δ 1.56-1
59(2H, m), 1.73-1.79(6H, m), 2.40
(4H, broad s), 3.83(3H, s), 4.58(1
H, m), 4.76(2H, s), 5.27(1H, broad s), 6.53(1H, d, J=2.44Hz), 6.67(1H, d, J=8.30Hz), 7.19-7.32(5H, m)

実施例31

3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-2-エチル-2-シクロペンテン-1-オン(表1の化合物No. 3 1)の合成

実施例 1 (3) と同様の手法を用い、1,3 - シクロペンタンジオンのかわりに、2 - エチル-1,3 - シクロペンタンジオンを使用し、褐色固体の標記化合物(収率 9 4.1%)を得る。

' H-NMR (400MHz, CDC1₃) δ 1.05 (3 H, t, J=7.33Hz), 1.61-1.66 (2H, m), 1.82-1.96 (6H, m), 2.22 (2H, q, J=7. 33Hz), 2.36-2.39 (2H, m), 2.55 (2H, t, J=4.88Hz), 3.86 (3H, s), 4.74-4. 77 (1H, m), 6.48 (1H, broad s), 6.69 -6.71 (2H, m), 6.83 (1H, d, J=8.79Hz

実施例32

2-xチルー3-[3-(2-1) クロペンテンー1-オン(表1の化合物No 3 2) の合成

実施例9と同様の手法を用い、1、3-シクロペンタンジオンの

かわりに、2-エチル-1,3-シクロペンタンジオンを使用し、褐色固体の標記化合物(収率91.5%)を得る。

1 H-NMR (400 MHz, CDC 13) δ 1.06 (3 H, t, J=7.32 Hz), 2.22 (2 H, q, J=7.32 Hz), 2.38-2.41 (2 H, m), 2.57-2.58 (2 H, m), 3.25 (2 H, dd, J=16.60, 3.90 Hz), 3.39 (2 H, dd, J=16.60, 6.34 Hz), 3.83 (3 H, s), 5.16-5.20 (1 H, m), 6.4 4 (1 H, broad s), 6.74-6.77 (2 H, m), 6.84-6.87 (1 H, m), 7.18-7.25 (4 H, m)

実施例33

 $\frac{2-ベンジル-3-(3-シクロペンチルオキシ-4-メトキシ}{アニリノ)-2-シクロペンテン-1-オン (表1の化合物No.}$ 33)の合成

実施例1 (3) と同様の手法を用い、1,3-シクロペンタンジオンのかわりに、2-ベンジル-1,3-シクロペンタンジオンを使用し、褐色固体の標記化合物(収率96.5%)を得る。

¹ H-NMR (400 MHz, CDC 1₃) δ 1.62-1 .91 (8H, m), 2.44-2.47 (2H, m), 2.57 -2.59 (2H, m), 3.62 (2H, s), 3.81 (3H ,s), 4.64-4.66 (1H, m), 6.32 (1H, s) ,6.40 (1H, d, J=2.44Hz), 6.46 (1H, d d, J=8.30, 2.44Hz), 6.75 (1H, d, J=8 .30Hz), 7.22-7.33 (5H, m)

実施例34

<u>アニリノ] - 2 - シクロペンテン - 1 - オン (表 1 の化合物 N o .</u> 3 4) の合成

(1) 3 - [2 - (2 - インダニル)エトキシ] - 4 - メトキシニ トロベンゼンの合成

実施例 9 (1) と同様の手法を用い、2-インダノールのかわりに、2-(2-インダニル) エタノールを使用し、黄色固体の3-[2-(2-インダニル) エトキシ] -4-メトキシニトロベンゼン(収率 9 7. 2%)を得る。

1 H-NMR (400 MHz, CDCl₃) δ 2.12(2 H, q, J=6.83 Hz), 2.68-2.74(3 H, m), 3.11-3.17(2 H, m), 3.97(3 H, s), 4.1 8 (2 H, t, J=6.83 Hz), 6.91(1 H, d, J=9) . 27 Hz), 7.13-7.16(2 H, m), 7.19-7. 2 2 (2 H, m), 7.77(1 H, d, J=2.93 Hz), 7 . 9 2 (1 H, d d, J=9.27, 2.93 Hz)

(2) 3-[3-[2-(2-インダニル)エトキシ]-4-メトキシアニリノ]-2-シクロペンテン-1-オンの合成

実施例1(2)と同様の手法を用い、3-シクロペンチルオキシー4-メトキシニトロベンゼンのかわりに、3-[2-(2-インダニル)エトキシ]ー4-メトキシニトロベンゼンを使用し、桃色固体の3-[2-(2-インダニル)エトキシ]ー4-メトキシアニリンを得る。次いで実施例1(3)と同様の手法を用い、3-シクロペンチルオキシー4-メトキシアニリンのかわりに、3-[2-(2-インダニル)エトキシ]-4-メトキシアニリンを使用し、淡褐色固体の標記化合物(収率97.7%)を得る。

 1 H - NMR (400 MHz, CDC 1 3) δ 2.08 (2 H, q, J = 6.35 Hz), 2.47 - 2.50 (2 H, m),

2. 65-2. 75 (5 H, m), 3. 09-3. 13 (2 H, m), 3. 87 (3 H, s), 4. 06 (2 H, t, J=6. 35 Hz), 5. 48 (1 H, s), 6. 47 (1 H, broad s), 6. 72 (1 H, dd, J=8. 30, 2. 44 Hz), 6. 76 (1 H, d, J=2. 44 Hz), 6. 85 (1 H, d, J=8. 30 Hz), 7. 12-7. 15 (2 H, m), 7. 18-7.

実施例35

3-[3-[2-(2-インダニル) エトキシ] - 4-メトキシ アニリノ] - 2-メチル-2-シクロペンテン-1-オン (表1の 化合物No. 35)の合成

実施例10と同様の手法を用い、3-(2-インダニルオキシ) -4-メトキシアニリンのかわりに、実施例34(2)で製造される3-[2-(2-インダニル)エトキシ]-4-メトキシアニリンを使用し、褐色固体の標記化合物(収率96.3%)を得る。

1 H-NMR (400MHz, CDCl₃) δ 1.68 (3 H, s), 2.08 (2H, m), 2.39-2.40 (2H, m), 2.56 (2H, m), 2.67-2.70 (3H, m), 3 .11-3.13 (2H, m), 3.87 (3H, s), 4.08 (2H, t, J=6.83Hz), 6.63 (1H, broad s), 6.72-6.74 (2H, m), 6.84 (1H, d, J =8.78Hz), 7.12-7.14 (2H, m), 7.18-7.20 (2H, m)

実施例36

(1) 4-メトキシー3-(3-2, 3, 4, 5-テトラヒドロフラニルオキシ) ニトロベンゼンの合成

実施例 9 (1) と同様の手法を用い、2-インダノールのかわりに、3-ヒドロキシ-2,3,4,5-テトラヒドロフランを使用し、淡橙色固体の4-メトキシ-3-(3-2,3,4,5-テトラヒドロフラニルオキシ)ニトロベンゼン(収率 8 4 . 2 %)を得る。

 1 H-NMR (400MHz, CDC13) δ 2.17-2 2.3 (1H, m), 2.25-2.35 (1H, m), 3.91 -3.95 (1H, m), 3.96 (3H, s), 3.98-4.07 (3H, m), 5.02 (1H, m), 6.93 (1H, d, J=8.79Hz), 7.70 (1H, d, J=2.45Hz), 7.94 (1H, dd, J=8.79, 2.45Hz) (2) 3-[4-x+2-3-(3-2,3,4,5-7+5-2-17)]

の合成

実施例1 (2) と同様の手法を用い、3 - シクロペンチルオキシー4 - メトキシニトロベンゼンのかわりに、4 - メトキシー3 - (3 - 2,3,4,5 - テトラヒドロフラニルオキシ) ニトロベンゼンを使用し、紫色固体の4 - メトキシー3 - (3 - 2,3,4,5 - テトラヒドロフラニルオキシ) アニリンを得る。次いで実施例1 (3) と同様の手法を用い、3 - シクロペンチルオキシー4 - メトキシアニリンのかわりに、4 - メトキシー3 - (3 - 2,3,4,5 - テトラヒドロフラニルオキシ) アニリンを使用し、淡黄色固体の標記化合物(収率87.4%)を得る。

¹ H-NMR (400MHz, CDC1₃) δ 2.17-2 . 21 (2H, m), 2.47-2.50 (2H, m), 2.73

-2. 75 (2H, m), 3. 85 (3H, s), 3. 87-3. 93 (1H, m), 3. 96-4. 06 (3H, m), 4. 91 (
1H, m), 5. 44 (1H, s), 6. 47 (1H, broad
s), 6. 69 (1H, d, J=2. 44Hz), 6. 76 (1
H, dd, J=8. 30, 2. 44Hz), 6. 87 (1H, d,
J=8. 30Hz)

実施例37

3-[4-xh+2-3-(3-2,3,4,5-rhラヒドロフラニルオキシ)アニリノ] -2-x+n-2-yクロペンテンー 1-x+x+2(表1の化合物No.37)の合成

実施例10と同様の手法を用い、3-(2-インダニルオキシ) -4-メトキシアニリンのかわりに、実施例36(2)で製造される4-メトキシ-3-(3-2,3,4,5-テトラヒドロフラニルオキシ)アニリンを使用し、暗紫色固体の標記化合物(収率67.5%)を得る。

¹ H-NMR (400 MHz, CDC l₃) δ 1.68 (3 H, s), 2.18-2.22 (2H, m), 2.39-2.41 (2H, m), 2.56 (2H, m), 3.87 (3H, s), 3 .89-3.94 (1H, m), 3.97-4.07 (3H, m) ,4.94 (1H, m), 6.47 (1H, broad s), 6 .67 (1H, d, J=1.96 Hz), 6.77 (1H, dd, J=8.30, 1.96 Hz), 6.87 (1H, d, J=8.3 0 Hz)

実施例38

3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-6, 6-ジメチル-2-シクロヘキセン-1-オン(表1の化合物No. 38)の合成 実施例1と同様の手法を用い、1,3-シクロペンタンジオンのかわりに、4,4-ジメチル-1,3-シクロヘキサンジオンを使用し、無色固体の標記化合物(収率93.6%)を得る。

1 H-NMR (400MHz, CDC13) δ 1.15 (6 H, s), 1.56-1.62(2H, m), 1.80-1.94 (6H, m), 1.87(2H, t, J=6.35Hz), 2.4 9 (2H, t, J=6.35Hz), 3.83(3H, s), 4. 72(1H, m), 5.33(1H, s), 5.78(1H, broad s), 6.68-6.71(2H, m), 6.80(1H, d, J=7.81Hz)

実施例39

<u>3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-5</u> -フェニル-2-シクロヘキセン-1-オン(表1の化合物No.

3 9) の合成

実施例1と同様の手法を用い、1,3-シクロペンタンジオンのかわりに、5-フェニル-1,3-シクロヘキサンジオンを使用し、淡黄色固体の標記化合物(収率87.0%)を得る。

1 H-NMR (400 MHz, CDCl₃) δ 1.60-1

.63(2H, m), 1.81-2.05(6H, m), 2.53

-2.63(3H, m), 2.83(1H, dd, J=16.11

,12.21Hz), 3.43(1H, m), 3.84(3H, s)

), 4.73(1H, m), 5.50(1H, s), 5.95(1

H, broad s), 6.70-6.72(2H, m), 6.8

1-6.83(1H, m), 7.27-7.29(3H, m), 7

.35-7.39(2H, m)

実施例40

3-(3-シクロペンチルメトキシ-4-メトキシアニリノ)-

2-シクロペンテン-1-オン (表1の化合物No. 40) の合成 (1) 3-シクロペンチルメトキシ-4-メトキシニトロベンゼン の合成

実施例 9 (1) と同様の手法を用い、2-インダノールのかわりに、シクロペンチルメタノールを使用し、黄色固体の3-シクロペンチルメトキシ-4-メトキシニトロベンゼン(収率 9 8 . 6 %)を得る。

¹ H-NMR (400MHz, CDCl₃) δ 1.34-1 .43(2H, m), 1.55-1.69(4H, m), 1.85 -1.92(2H, m), 2.47(1H, m, J=7.32Hz), 3.95(2H, d, J=7.32Hz), 3.96(3H, s), 6.90(1H, d, J=8.79Hz), 7.74(1H, d, J=2.93Hz), 7.90(1H, dd, J=8.79, 2.93Hz)

(2) 3-(3-シクロペンチルメトキシ-4-メトキシアニリノ)-2-シクロペンテン-1-オンの合成

実施例1(2)と同様の手法を用い、3-シクロペンチルオキシー4-メトキシニトロベンゼンのかわりに、3-シクロペンチルメトキシー4-メトキシアニリンを使用し、紫色油状の3-シクロペンチルメトキシー4-メトキシアニリンのかわりに、3-シクロペンチルオキシー4-メトキシアニリンのかわりに、3-シクロペンチルメトキシー4-メトキシアニリンを使用し、淡黄色固体の標記化合物(収率97.1%)を得る。

¹ H-NMR (400 MHz, CDC1₃) δ 1.31-1 .40 (2H, m), 1.55-1.70 (4H, m), 1.83 -1.90 (2H, m), 2.40-2.49 (3H, m), 2.

73 (2H, m), 3.83 (2H, d, J=7.32Hz), 3.86 (3H, s), 5.47 (1H, s), 6.53 (1H, b) road s), 6.69 (1H, dd, J=8.79, 1.96 Hz), 6.74 (1H, d, J=1.96Hz), 6.84 (1H, d, J=8.79Hz)

実施例41

3-(3-シクロペンチルメトキシ-4-メトキシアニリノ)-2-メチル-2-シクロペンテン-1-オン (表1の化合物No.41) の合成

実施例10と同様の手法を用い、3-(2-インダニルオキシ) -4-メトキシアニリンのかわりに、実施例40(2)で製造される3-シクロペンチルメトキシー4-メトキシアニリンを使用し、 無色固体の標記化合物(収率95.9%)を得る。

¹ H-NMR (400MHz, CDCl₃) δ 1.34-1 .39(2H, m), 1.57-1.66(4H, m), 1.68 (3H, s), 1.83-1.90(2H, m), 2.39-2. 46(3H, m), 2.55-2.56(2H, m), 3.86(2H, d, J=6.84Hz), 3.87(3H, s), 6.38 (1H, broad s), 6.70-6.73(2H, m), 6 .84(1H, d, J=8.30Hz)

実施例 4 2

3-[4-x+キシ-3-[2-(1-ナフチル) エトキシ] ア -1/2 -2-シクロペンテン-1-オン(表1の化合物No. 4 2) の合成

(1) 4-メトキシ-3-[2-(1-ナフチル)エトキシ]ニト ロベンゼンの合成

実施例9(1)と同様の手法を用い、2-インダノールのかわり

に、2-(1-ナフチル) エタノールを使用し、黄色固体の4-メトキシ-3-[2-(1-ナフチル) エトキシ] ニトロベンゼン(収率98.6%) を得る。

1 H-NMR (400MHz, CDC13) δ 3.68(2 H, t, J=7.32Hz), 3.97(3H, s), 4.41(2H, t, J=7.32Hz), 6.90(1H, d, J=9.2 8 Hz), 7.42-7.50(2H, m), 7.50-7.58 (2H, m), 7.71(1H, d, J=2.93Hz), 7.7 9 (1H, dd, J=6.35, 2.93Hz), 7.88(1H, dd, J=9.28, 2.93Hz), 7.88 (1H, dd, J=6.84, 1.47Hz), 7.90(1H, dd, J=9.28, 3)

(2) 3 - [4 - メトキシ-3 - [2 - (1 - ナフチル) エトキシ] アニリノ] - 2 - シクロペンテン-1 - オンの合成

実施例1(2)と同様の手法を用い、3 - シクロペンチルオキシー4 - メトキシニトロベンゼンのかわりに、4 - メトキシー3 - [2 - (1 - ナフチル)エトキシ]ニトロベンゼンを使用し、紫色油状の4 - メトキシー3 - [2 - (1 - ナフチル)エトキシ]アニリンを得る。次いで実施例1(3)と同様の手法を用い、3 - シクロペンチルオキシー4 - メトキシアニリンのかわりに、4 - メトキシー3 - [2 - (1 - ナフチル)エトキシ]アニリンを使用し、淡黄色固体の標記化合物(収率95.5%)を得る。

¹ H-NMR (400MHz, CDCl₃) δ 2. 42-2 . 45 (2H, m), 2. 65-2. 68 (2H, m), 3. 66 (2H, t, J=7. 33Hz), 3. 88 (3H, s), 4. 3 0 (2H, t, J=7. 33Hz), 5. 40 (1H, s), 6. 34 (1H, broad s), 6. 65 (1H, d, J=2. 4

5 H z), 6. 7 1 (1 H, dd, J = 8. 3 0, 2. 4 5 H z), 6. 8 5 (1 H, d, J = 8. 3 0 H z), 7. 4 2 - 7. 5 6 (4 H, m), 7. 7 7 (1 H, dd, J = 6. 3 5, 3. 4 2 H z), 7. 8 6 - 7. 8 8 (1 H, m), 8. 1 0 (1 H, d, J = 8. 3 0 H z)

実施例 4 3

3- [4-メトキシ-3-[2-(1-ナフチル) エトキシ] ア ニリノ] -2-メチル-2-シクロペンテン-1-オン(表1の化 合物No. 43)の合成

実施例10と同様の手法を用い、3-(2-インダニルオキシ) -4-メトキシアニリンのかわりに、実施例42(2)で製造される4-メトキシ-3-[2-(1-ナフチル)エトキシ]アニリンを使用し、暗褐色固体の標記化合物(収率98.2%)を得る。

1 H-NMR (400 MHz, CDCl3) δ 1.63(3 H, s), 2.34-2.36(2H, m), 2.47-2.48 (2H, m), 3.67(2H, t, J=7.82Hz), 3.9 0 (3H, s), 4.32(2H, t, J=7.82Hz), 6. 27(1H, broad s), 6.58(1H, d, J=2.4 4Hz), 6.71(1H, dd, J=8.30, 2.44Hz) , 6.85(1H, d, J=8.30Hz), 7.42-7.45 (2H, m), 7.48-7.55(2H, m), 7.77(1H , dd, J=6.84, 2.93Hz), 7.87-7.89(1H, m), 8.10(1H, d, J=7.82Hz)

実施例 4 4

合成

実施例10と同様の手法を用い、3-(2-インダニルオキシ) -4-メトキシアニリンのかわりに、実施例8(2)で製造される 3-[rel(1R,2R,4S)-ビシクロ[2.2.1]へプタ -2-イルオキシ]-4-メトキシアニリンを使用し、褐色油状の 標記化合物(収率100%)を得る。

¹ H-NMR (400MHz, CDCl₃) δ 1. 12-1. 18 (2H, m), 1. 21-1. 23 (1H, m), 1. 48-1. 54 (1H, m), 1. 56-1. 64 (2H, m), 1. 68 (3H, s), 1. 72-1. 80 (3H, m), 2. 39-2. 41 (2H, m), 2. 51 (1H, d, J=4. 39Hz), 2. 55-2. 56 (2H, m), 3. 85 (3H, s), 4. 16-4. 17 (1H, m), 6. 47 (1H, broad s), 6. 65 (1H, d, J=2. 44Hz), 6. 69 (1H, dd, J=8. 79, 2. 44Hz), 6. 83 (1H, d, J=8. 79Hz)

実施例45

3-[3-[rel (1R, 2R, 4S)-ビシクロ[2.2.1] ヘプタ-2-イルオキシ] - 4-メトキシアニリノ] - 2-エチル-2-シクロペンテン-1-オン(表1の化合物No.45)の合成

実施例1 (3) と同様の手法を用い、3 - シクロペンチルオキシー4-メトキシアニリンのかわりに、実施例8 (2) で製造される3 - [rel (1R, 2R, 4S) - ビシクロ[2.2.1] ヘプター2-イルオキシ] - 4-メトキシアニリンを使用し、1, 3-シクロペンタンジオンのかわりに2-エチルー1, 3-シクロペンタンジオンを使用し、暗褐色油状の標記化合物(収率100%)を得

る。

1 H-NMR (400MHz, CDC13) δ 1.05 (3 H, t, J=7.81Hz), 1.14-1.18 (2H, m), 1.21-1.24 (1H, m), 1.49-1.64 (3H, m), 1.71-1.80 (3H, m), 2.22 (2H, q, J=7.81Hz), 2.36-2.39 (2H, m), 2.50-2 51 (1H, m), 2.53-2.55 (2H, m), 3.85 (3H, s), 4.17 (1H, d, J=6.35Hz), 6.5 1 (1H, broad s), 6.65 (1H, d, J=2.44 Hz), 6.69 (1H, dd, J=8.30, 2.44Hz), 6.83 (1H, d, J=8.30Hz)

実施例 4 6

3-[3-[rel (1R, 2R, 4S)-ビシクロ[2.2.1] ヘプタ-2-イルオキシ]-4-メトキシアニリノ]-2-メチル-2-シクロヘキセン-1-オン(表1の化合物No.46)の合成

実施例45と同様の手法を用い、2-エチル-1,3-シクロペンタンジオンのかわりに、2-メチル-1,3-シクロヘキサンジオンを使用し、淡褐色固体の標記化合物(収率86.0%)を得る

¹ H-NMR (400MHz, CDCl₃) δ 1.13-1 .26(3H, m), 1.48-1.63(3H, m), 1.74 -1.80(3H, m), 1.83(3H, s), 1.88(2H , m), 2.36-2.39(4H, m), 2.50-2.51(1H, m), 3.85(3H, s), 4.17(1H, d, J=5 .86Hz), 6.16(1H, broad s), 6.59(1 H, d, J=2.44Hz), 6.64(1H, dd, J=8.3

0, 2. 4 4 H z)、6. 8 2 (1 H, d, J = 8. 3 0 H z) 実施例 4 7

3-[3-[rel (1R, 2R, 4S)-ビシクロ[2.2.1] ヘプタ-2-イルオキシ]-4-メトキシーN-メチルアニリノ
]-2-メチル-2-シクロペンテン-1-オン(表1の化合物No.47)の合成

実施例 2 6 と同様の手法を用い、 3 - (3 - シクロペンチルオキシー4-メトキシアニリノ) - 2 - シクロペンテン-1 - オンのかわりに、実施例 4 4 で得られる 3 - [3 - [rel (1 R, 2 R, 4 S) - ビシクロ [2.2.1] ヘプター2 - イルオキシ] - 4 - メトキシアニリノ] - 2 - メチルー2 - シクロペンテン-1 - オンを使用し、褐色油状の標記化合物(収率 4 2.2%)を得る。

1 H-NMR (400MHz, CDC13) δ 1.10-1
.16(2H, m)、1.19-1.22(1H, m)、1.25
(3H, s)、1.47-1.60(3H, m)、1.72-1.
76(2H, m)、2.33(1H, broad)、2.38-2
.41(2H, m)、2.48-2.49(1H, m)、2.60
-2.61(2H, m)、3.42(3H, s)、3.85(3H, s)、4.16(1H, d, J=6.35Hz)、6.65(1H, d, J=2.44Hz)、6.72(1H, dd, J=8.79Hz)

実施例48

3-[3-(2-インダニルオキシ)-4-メトキシアニリノ] -2-メチル-2-シクロヘキセン-1-オン(表1の化合物No . 48)の合成

実施例1(3)と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシアニリンのかわりに、実施例9(2)で製造される

3 - (2 - インダニルオキシ) - 4 - メトキシアニリンを使用し、 1,3 - シクロペンタンジオンのかわりに2 - メチル-1,3 - シ クロヘキサンジオンを使用し、淡褐色固体の標記化合物(収率94,2%)を得る。

1 H-NMR (400 MHz, CDC13) δ 1.84 (3 H, s), 1.89-1.94 (2H, m), 2.36-2.40 (4H, m), 3.24 (2H, dd, J=16.60, 3.42 Hz), 3.39 (2H, dd, J=16.60, 6.35 Hz) ,3.83 (3H, s), 5.17 (1H, m), 6.13 (1H, broad s), 6.70-6.72 (2H, m), 6.85 (1H, d, J=8.79 Hz), 7.18-7.23 (2H, m)), 7.24-7.28 (2H, m)

実施例 4 9

3-[4-メトキシ-3-[(1-フェニルシクロプロピル) メトキシ] アニリノ] <math>-2-シクロペンテン-1-オン(表1の化合物No.49)の合成

(1) 4-メトキシ-3-[(1-フェニルシクロプロピル)メト キシ]ニトロベンゼンの合成

実施例 9 (1) と同様の手法を用い、2-インダノールのかわりに、1-フェニルシクロプロピルメタノールを使用し、黄色固体の4-メトキシ-3-[(1-フェニルシクロプロピル)メトキシ]ニトロベンゼン(収率 6 9 . 3 %)を得る。

¹ H-NMR (400 MHz, CDC 1₃) δ 1.03-1 .06 (4H, m), 3.92 (3H, s), 4.14 (2H, s), 6.86 (1H, d, J=8.79 Hz), 7.20-7.2 4 (1H, m), 7.29-7.32 (2H, m), 7.43-7 .45 (2H, m), 7.63 (1H, d, J=2.44 Hz),

7. 87 (1 H, dd, J=8. 79, 2. 4 4 H z)
(2) 3- [4-メトキシ-3-[(1-フェニルシクロプロピル
) メトキシ] アニリノ] -2-シクロペンテン-1-オンの合成

実施例 1 (2)と同様の手法を用い、3 ーシクロペンチルオキシー4ーメトキシニトロベンゼンのかわりに、4ーメトキシー3ー[(1ーフェニルシクロプロピル)メトキシ]ニトロベンゼンを使用し、紫色油状の4ーメトキシー3ー[(1ーフェニルシクロプロピル)メトキシ]アニリンを得る。次いで実施例 1 (3)と同様の手法を用い、3 ーシクロペンチルオキシー4ーメトキシアニリンのかわりに、4ーメトキシー3ー[(1ーフェニルシクロプロピル)メトキシ]アニリンを使用し、淡褐色固体の標記化合物(収率 9 3 . 3 %)を得る。

1 H-NMR (400 MHz, CDC 13) δ 0. 98-1

. 03 (4H, m), 2. 42-2. 45 (2H, m), 2. 67

-2. 69 (2H, m), 3. 79 (3H, s), 4. 03 (2H, s), 5. 40 (1H, s), 6. 61 (1H, d, J=1. 9)

5 Hz), 6. 66 (1H, dd, J=8. 79, 1. 95 Hz)

. 6. 78 (1H, broad s), 6. 79 (1H, d, J=8. 79 Hz)

8. 79 Hz), 7. 18-7. 22 (1H, m), 7. 27-7

. 31 (2H, m), 7. 42-7. 44 (2H, m)

実施例 5 0

実施例10と同様の手法を用い、3-(2-インダニルオキシ) -4-メトキシアニリンのかわりに、実施例49(2)で製造される4-メトキシ-3-[(1-フェニルシクロプロピル)メトキシ

] アニリンを使用し、無色固体の標記化合物(収率 4 2. 1 %)を得る。

1 H-NMR (400MHz, CDCl₃) δ 0.98-1 .00(2H, m), 1.03-1.06(2H, m), 1.64 (3H, s), 2.35-2.36(2H, m), 2.47(2H, m), 3.81(3H, s), 4.07(2H, s), 6.54 (2H, broad), 6.68(1H, dd, J=8.79, 1, 95Hz), 6.80(1H, d, J=8.79Hz), 7.1 6-7.31(3H, m), 7.43-7.44(2H, m)

<u>実施例51</u>

3-(3-シクロプチルメトキシ-4-メトキシアニリノ)-2- シクロペンテン-1-オン(表1の化合物No.51)の合成 (1) 3-シクロプチルメトキシ-4-メトキシニトロベンゼンの合成

実施例 9 (1) と同様の手法を用い、2-インダノールのかわりに、1-フェニルシクロプロピルメタノールを使用し、黄色固体の3-シクロプチルメトキシー4-メトキシニトロベンゼン(収率 9 0.6%)を得る。

 1 H - NMR (400 MHz, CDC 1 3) δ 1.86 - 2 .02 (4H, m), 2.15 - 2.23 (2H, m), 2.87 (1H, m), 3.96 (3H, s), 4.06 (2H, d, J = 6.84 Hz), 6.90 (1H, d, J = 9.28 Hz), 7. 74 (1H, d, J = 2.93 Hz), 7.90 (1H, dd, J = 9.28, 2.93 Hz)

(2) 3-(3-シクロブチルメトキシ-4-メトキシアニリノ)-2-シクロペンテン-1-オンの合成

実施例1 (2) と同様の手法を用い、3-シクロペンチルオキシ

- 4 - メトキシニトロベンゼンのかわりに、 3 - シクロブチルメトキシー 4 - メトキシニトロベンゼンを使用し、紫色油状の 3 - シクロブチルメトキシー 4 - メトキシアニリンを得る。次いで実施例 1 (3) と同様の手法を用い、 3 - シクロペンチルオキシー 4 - メトキシアニリンのかわりに、 3 - シクロブチルメトキシー 4 - メトキシアニリンを使用し、淡褐色固体の標記化合物(収率 9 2 . 8 %)を得る。

1 H-NMR (400MHz, CDCl3) δ 1.83-1 98(4H, m)、2.13-2.20(2H, m)、2.47 -2.49(2H, m)、2.73-2.74(2H, m)、2. 83(1H, m)、3.86(3H, s)、3.95(2H, d, J=7.33Hz)、5.47(1H, s)、6.60(1H, b) road s)、6.70(1H, d, J=8.30Hz)、6. 75(1H, s)、6.83(1H, d, J=8.30Hz) 実施例52

3-(3-シクロプチルメトキシ-4-メトキシアニリノ)-2-メチル-2-シクロペンテン-1-オン(表1の化合物No. 5 2)の合成

実施例10と同様の手法を用い、3-(2-インダニルオキシ) -4-メトキシアニリンのかわりに、実施例51(2)で製造される3-シクロプチルメトキシ-4-メトキシアニリンを使用し、無色固体の標記化合物(収率92.7%)を得る。

¹ H-NMR (400MHz, CDC1₃) δ 1.68 (3 H, s), 1.84-2.00 (4H, m), 2.07-2.21 (2H, m), 2.39-2.41 (2H, m), 2.56-2. 57 (2H, m), 2.84 (1H, m, J=6.84Hz), 3 .87 (3H, s), 3.97 (2H, d, J=6.84Hz),

6. 44 (1 H, broad s), 6. 71-6. 73 (2 H, m), 6. 84 (1 H, d, J = 8. 30 Hz)

実施例 5 3

3-[3-[2-(2-インダニル) エトキシ] - 4-メトキシ アニリノ] - 2-メチル-2-シクロヘキセン-1-オン(表1の 化合物No. 53)の合成

実施例 4 6 と同様の手法を用い、3 - [rel (1R, 2R, 4S)) - ビシクロ [2. 2. 1] ヘプター2ーイルオキシ] - 4 - メトキシアニリンのかわりに、実施例 3 4 (2) で製造される3 - [2 - (2-インダニル) エトキシ] - 4 - メトキシアニリンを使用し、淡褐色固体の標記化合物(収率92.0%)を得る。

1 H-NMR (400MHz, CDCl3) δ 1.84(3 H, s)、1.89(2H, m)、2.09(2H, q, J=6.35Hz)、2.36-2.39(4H, m)、2.68-2.7 0 (3H, m)、3.12-3.14(2H, m)、3.88(3 H, s)、4.09(2H, t, J=6.35Hz)、6.13(1H, broad s)、6.67(1H, s)、6.68(1H, d, J=8.30Hz)、6.84(1H, d, J=8.30Hz)、7.14(2H, m)、7.19-7.20(2H, m) 実施例54

3-(3-シクロペンチルメトキシ-4-メトキシアニリノ) - 2-メチル-2-シクロヘキセン-1-オン (表1の化合物<math>No. 5 4) の合成

実施例 4 6 と同様の手法を用い、3 - [rel (1R, 2R, 4S) - ビシクロ [2. 2. 1] ヘプター2ーイルオキシ] - 4 - メトキシアニリンのかわりに、実施例 4 0 (2) で製造される3 - シクロペンチルメトキシー4 - メトキシアニリンを使用し、淡褐色固体

の標記化合物(収率91.6%)を得る。

¹ H-NMR (400 MHz, CDCl₃) δ 1.35-1 .39 (2H, m), 1.60-1.66 (4H, m), 1.83 (3H, s), 1.83-1.90 (4H, m), 2.36-2. 39 (4H, m), 2.44 (1H, m), 3.86 (2H, d, J=9.76 Hz), 3.87 (3H, s), 6.15 (1H, b road s), 6.65-6.67 (2H, m), 6.83 (1 H, d, J=8.79 Hz)

実施例55

3-(3-シクロヘキシルオキシ-4-メトキシアニリノ)-2-メチル-2-シクロヘキセン-1-オン(表1の化合物No. 5 5)の合成

実施例 4 6 と同様の手法を用い、3 - [rel (1R, 2R, 4S) - ビシクロ [2. 2. 1] ヘプター2ーイルオキシ] - 4 - メトキシアニリンのかわりに、実施例 1 3 (2) で製造される 3 - シクロヘキシルオキシー4 - メトキシアニリンを使用し、淡褐色固体の標記化合物 (収率 8 1. 2%) を得る。

¹ H-NMR (400 MHz, CDCl₃) δ 1.24-1

.42(3H, m), 1.49-1.62(2H, m), 1.65

-1.92(5H, m), 1.83(3H, s), 2.01-2.

04(2H, m), 2.37-2.39(4H, m), 3.86(3H, s), 4.18(1H, m), 6.11(1H, broads), 6.66-6.68(2H, m), 6.84(1H, d, J=9.27Hz)

実施例56

3 - (N - ベンジル - 3 - シクロヘキシルオキシー 4 - メトキシアニリノ) -2 - シクロペンテン - 1 - オン (表 1 の化合物 N o .

56)の合成

実施例 2 6 と同様の手法を用い、3 - (3 - シクロペンチルオキシー4-メトキシアニリノ) - 2 - シクロペンテン-1 - オンのかわりに、実施例 1 3 (3) で製造される3 - (3 - シクロヘキシルオキシー4-メトキシアニリノ) - 2 - シクロペンテン-1 - オンを使用し、ヨウ化メチルのかわりに臭化ベンジルを使用し、黄色油状の標記化合物(収率89.4%)を得る。

1 H-NMR (400 MHz, CDC 13) δ 1. 22-1
29 (3 H, m), 1. 41-1. 49 (2 H, m), 1. 56
-1. 58 (1 H, m), 1. 76-1. 79 (2 H, m), 1.
85-1. 88 (2 H, m), 2. 41 (4 H, broad s), 3. 84 (3 H, s), 3. 96-4. 01 (1 H, m), 4.
75 (2 H, s), 5. 38 (1 H, broad s), 6. 52 (1 H, d, J=2. 44 Hz), 6. 69 (1 H, dd, J=8. 79 Hz), 7. 20-7. 34 (5 H, m)

実施例57

3-[3-シクロヘキシルオキシ-4-メトキシーN-(2-ナフチルメチル) アニリノ] <math>-2-シクロペンテン-1-オン(表1の化合物No.57) の合成

実施例 5 6 と同様の手法を用い、臭化ベンジルのかわりに、2 - (プロモメチル) ナフタレンを使用し、淡褐色油状の標記化合物(収率 8 5 . 1 %)を得る。

¹ H-NMR (400MHz, CDCl₃) δ 1.08-1 .18(3H, m), 1.31-1.40(2H, m), 1.47 -1.51(1H, m), 1.61-1.64(2H, m), 1. 73-1.75(2H, m), 2.42(4H, broad s)

、3.82(3H, s)、3.84-3.90(1H, m)、4.90(2H, s)、5.47(1H, broad s)、6.49(1H, broad)、6.72(1H, dd, J=8.79, 2.44Hz)、6.80(1H, d, J=8.79Hz)、7.35(1H, d, J=8.30Hz)、7.46-7.48(2H, m)、7.60(1H, s)、7.74-7.83(3H, m)
実施例58

実施例26と同様の手法を用い、ヨウ化メチルのかわりに、2-(クロロメチル)キノリン塩酸塩を使用し、黒褐色油状の標記化合物(収率96.8%)を得る。

' H-NMR (400MHz, CDCl₃) δ 1.52(2 H, m), 1.76(6H, m), 2.42(2H, broad) , 2.61(2H, broad), 3.83(3H, s), 4.6 0(1H, m), 5.08(2H, s), 5.19(1H, broad), 6.79-6.85(3H, m), 7.38(1H, d, J=8.30Hz), 7.55(1H, dd, J=7.33, 6.83Hz), 7.73(1H, dd, J=8.30, 6.83Hz), 7.73(1H, dd, J=8.30, 6.83Hz), 7.82(1H, d, J=8.30Hz), 8.03(1H, d, J=8.30Hz), 8.15(1H, d, J=8.30Hz)

実施例 5 9

3-(3-シクロペンチルオキシ-4-メトキシ-N-プロピルアニリノ) -2-シクロペンテン-1-オン(表1の化合物<math>No.59) の合成

実施例26と同様の手法を用い、ヨウ化メチルのかわりに、ヨウ化プロピルを使用し、褐色油状の標記化合物(収率95.1%)を得る。

1 H-NMR (400 MHz, CDC13) δ 0.99 (3 H, t, J=7.33 Hz), 1.63 (4 H, m), 1.82-1.95 (6 H, m), 2.35 (4 H, broad), 3.50 (2 H, t, J=7.32 Hz), 4.74 (1 H, m), 5.2 0 (1 H, broad), 6.66 (1 H, d, J=2.45 Hz), 6.71 (1 H, dd, J=8.30, 2.45 Hz), 6. 86 (1 H, d, J=8.30 Hz)

実施例60

3-(N-シクロペンチル-3-シクロペンチルオキシ-4-メトキシアニリノ) -2-シクロペンテン-1-オン(表1の化合物 No. 60)の合成

実施例26と同様の手法を用い、ヨウ化メチルのかわりに、プロモシクロペンタンを使用し、淡褐色油状の標記化合物(収率27.3%)を得る。

' H-NMR (400MHz, CDC13) δ 1.46(2 H, broad)、1.55(4H, m)、1.63(2H, m) 、1.85-1.93(8H, m)、2.30(4H, broad) 、3.87(3H, s)、4.11(1H, broad)、4. 73(1H, m)、5.26(1H, broad)、6.59(1H, d, J=2.44Hz)、6.64(1H, dd, J=8.30Hz) 実施例61

3-[3-シクロペンチルオキシ-4-メトキシ-N-(2-ピリジルメチル) アニリノ] -2-シクロペンテン-1-オン(麦1)

の化合物No. 61)の合成

実施例26と同様の手法を用い、ヨウ化メチルのかわりに、2-(クロロメチル)ピリジン塩酸塩を使用し、黄褐色油状の標記化合物(収率81.6%)を得る。

¹ H-NMR (400MHz, CDCl₃) δ 1.60-1 .63(2H, m), 1.80-1.87(6H, m), 2.41 -2.58(4H, broad), 3.84(3H, s), 4.6 5(1H, broad), 4.90(2H, s), 5.12(1H , broad), 6.76-6.82(3H, m), 7.19-7 .22(2H, m), 7.66(1H, ddd, J=7.81, 7 .81, 1.47Hz), 8.58(1H, d, J=4.40Hz

実施例 6 2

3-[3-シクロペンチルオキシ-4-メトキシ-N-(2-ナフチルメチル) アニリノ] <math>-2-シクロペンテン-1-オン(表1の化合物No.62) の合成

実施例26と同様の手法を用い、ヨウ化メチルのかわりに、2-(プロモメチル)ナフタレンを使用し、淡桃色油状の標記化合物(収率92.3%)を得る。

H-NMR (400MHz, CDCl₃) δ 1.46-1

.49(2H, m), 1.65-1.71(6H, m), 2.42

(4H, broad), 3.82(3H, s), 4.48(1H, m), 4.91(2H, s), 5.45(1H, broad), 6

.49(1H, broad), 6.69(1H, dd, J=8.7

9, 2.44Hz), 6.78(1H, d, J=8.79Hz),

7.35(1H, dd, J=8.30, 1.47Hz), 7.47

-7.49(2H, m), 7.61(1H, s), 7.75-7.

77 (1 H, m)、7.80-7.83 (2 H, m) 実施例 6 3

3-[3-シクロペンチルオキシ-4-メトキシ-N-(3-ピリジルメチル) アニリノ] <math>-2-シクロペンテン-1-オン(麦1の化合物No.63) の合成

実施例26と同様の手法を用い、ヨウ化メチルのかわりに、3-(クロロメチル)ピリジン塩酸塩を使用し、褐色油状の標記化合物 (収率77.2%)を得る。

3-(3-シクロペンチルオキシ-4-メトキシ-N-ペンチルアニリノ) <math>-2-シクロペンテン-1-オン (表1の化合物No.64)の合成

実施例26と同様の手法を用い、ヨウ化メチルのかわりに、ヨウ化アミルを使用し、褐色油状の標記化合物(収率100%)を得る

 1 H-NMR (400MHz, CDC13) δ 0.88 (3 H, t, J=6.84Hz), 1.25-1.33 (4H, m), 1.63-1.68 (4H, m), 1.82-1.86 (2H, m

), 1. 89-1. 95 (4H, m), 2. 35 (4H, broad), 3. 53 (2H, bt, J=7. 81Hz), 3. 87 (3H, s), 4. 74 (1H, m), 5. 20 (1H, broad), 6. 65 (1H, d, J=2. 44Hz), 6. 70 (1H, dd, J=8. 30Hz)

実施例 6 5

実施例66

+ シアニリノ] - 2 - シクロヘキセン-1 - オン (表 1 の化合物 N o 6 6) の合成

実施例 6 5 と同様の手法を用い、ヨウ化メチルのかわりに臭化ベンジルを使用し、淡褐色油状の標記化合物(収率 5 5 . 6 %)を得る。

1 H-NMR (400 MHz, CDCl3) δ 1.94-1

97 (2H, m), 2.31-2.36 (4H, m), 3.09

(2H, dd, J=16.60, 3.91 Hz), 3.23 (2H, dd, J=16.60, 6.34 Hz), 3.80 (3H, s)

4.79 (2H, s), 5.00 (1H, m, J=3.42 Hz), 5.45 (1H, s), 6.56 (1H, d, J=2.44 Hz), 6.72 (1H, dd, J=8.30, 2.44 Hz), 6

82 (1H, d, J=8.30 Hz), 7.16-7.23 (7H, m), 7.28-7.35 (2H, m)

実施例67

 3-[3-(2-インダニルオキシ)-4-メトキシーN-(2

 -ナフチルメチル)アニリノ]-2-シクロヘキセン-1-オン(

 麦1の化合物No.67)の合成

実施例 6 5 と同様の手法を用い、ヨウ化メチルのかわりに 2 - (プロモメチル)ナフタレンを使用し、淡褐色油状の標記化合物(収率 4 8 . 9 %)を得る。

¹ H-NMR (400 MHz, CDC l₃) δ 1. 96-1 . 99 (2H, m), 2. 33-2. 38 (4H, m), 2. 95 (2H, m), 3. 06 (2H, dd, J=16.60, 6. 35 Hz), 3. 79 (3H, s), 4. 90 (1H, m, J=3.4 2Hz), 4. 94 (2H, s), 5. 56 (1H, s), 6. 5 0 (1H, d, J=2.44 Hz), 6. 76 (1H, dd, J=

8. 79, 2. 44 Hz), 6. 82 (1 H, d, J = 8. 79 Hz), 7. 04-7. 06 (2 H, m), 7. 12-7. 14 (2 H, m), 7. 35-7. 37 (1 H, m), 7. 47-7. 50 (2 H, m), 7. 62 (1 H, s), 7. 77-7. 84 (3 H, m)

実施例68

実施例 6 5 と同様の手法を用い、ヨウ化メチルのかわりに2-(クロロメチル)ピリジン塩酸塩を使用し、淡褐色油状の標記化合物(収率 7 0 . 5 %)を得る。

1 H-NMR (400 MHz, CDC1 s) δ 1.94-1

99(2H, m), 2.31(2H, t, J=6.35 Hz),

2.40(2H, t, J=6.35 Hz), 3.16(2H, dd, J=16.60, 6.84 Hz), 3.81(3H, s), 4.92(2H, s), 5.09(1H, m), 5.29(1H, s), 6.82-6.85(3H, m), 7.17-7.28(6H, m),

7.67(1H, ddd, J=7.81, 7.81, 1.96 Hz), 8.58(1H, bd, J=3.91 Hz)

実施例 6 9

 $\frac{2-ベンジル-3-(3-シクロペンチルオキシ-4-メトキシ}{アニリノ)-2-シクロヘキセン-1-オン (表1の化合物No.}$ 6 9) の合成

実施例1と同様の手法を用い、1、3-シクロペンタンジオンのかわりに、2-ベンジル-1、3-シクロヘキサンジオンを使用し

、淡桃色固体の標記化合物(収率94.1%)を得る。

1 H-NMR (400 MHz, CDC1₃) δ 1.61 (2 H, broad), 1.82-1.91 (6H, m), 1.95 (2H, m, J=6.35 Hz), 2.40 (2H, t, J=6.35 Hz), 2.47 (2H, t, J=6.35 Hz), 3.81 (3H, s), 3.84 (2H, s), 4.63 (1H, m), 6. 21 (1H, broad s), 6.31 (1H, d, J=2.44 Hz), 6.40 (1H, dd, J=8.79, 2.44 Hz), 6.73 (1H, d, J=8.79 Hz), 7.18-7.31 (5H, m)

実施例70

3-(3-シクロペンチルオキシ-4-メトキシ-N-メチルア-リノ)-2-メチル-2-シクロペンテン-1-オン (表 1 の化合物 No. 70)の合成

実施例26と同様の手法を用い、3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-2-シクロペンテン-1-オンのかわりに、実施例4で製造される3-(3-シクロペンチルオキシー4-メトキシアニリノ)-2-メチル-2-シクロペンテン-1-オンを使用し、茶褐色固体の標記化合物(収率62.8%)を得る

H-NMR (400MHz, CDCl₃) δ 1.26(3 H, s), 1.59-1.62(2H, m), 1.81-1.94 (6H, m), 2.39-2.41(2H, m), 2.59-2. 60(2H, m), 3.42(3H, s), 3.86(3H, s) 4.73(1H, m, J=3.42Hz), 6.69(1H, d) , J=2.44Hz), 6.73(1H, dd, J=8.79, 2) .44Hz), 6.83(1H, d, J=8.79Hz)

実施例71

3-(N-ベンジル-3-シクロペンチルオキシ-4-メトキシアニリノ) -2-メチル-2-シクロペンテン-1-オン (表1の化合物 No. 71) の合成

実施例70と同様の手法を用い、ヨウ化メチルのかわりに臭化ベンジルを使用し、褐色固体の標記化合物(収率27.5%)を得る。

H-NMR (400MHz, CDCl₃) δ 1.30 (3 H, s), 1.55-1.56 (2H, m), 1.77 (6H, b road), 2.41-2.43 (2H, m), 2.66-2.6 7 (2H, m), 3.79 (3H, s), 4.55 (1H, m), 4.92 (2H, s), 6.55 (1H, d, J=2.44Hz), 6.66 (1H, dd, J=8.79, 2.44Hz), 6.7 5 (1H, d, J=8.79Hz), 7.21-7.37 (5H, m)

実施例72

3-[3-シクロペンチルオキシ-4-メトキシ-N-(2-キノリンメチル) アニリノ] <math>-2-メチル-2-シクロペンテン-1 -オン (表 1 の化合物 No. 7 2) の合成

実施例70と同様の手法を用い、ヨウ化メチルのかわりに2-(クロロメチル)キノリン塩酸塩を使用し、赤褐色油状の標記化合物(収率36.2%)を得る。

¹ H-NMR (400MHz, CDCl₃) δ 1.29(3 H, s), 1.50(2H, broad), 1.73(6H, broad), 2.42-2.43(2H, m), 2.76(2H, broad), 3.81(3H, s), 4.55(1H, m), 5. 20(2H, s), 6.74-6.80(3H, m), 7.35(

1 H, d, J = 8. 3 0 Hz), 7. 5 5 (1 H, m), 7. 7.4

(1 H, m), 7. 8 3 (1 H, d, J = 8. 3 0 Hz), 8. 0

4 (1 H, d, J = 8. 3 0 Hz), 8. 1 6 (1 H, d, J = 8. 3 0 Hz)

. 3 0 Hz)

実施例73

実施例26と同様の手法を用い、3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-2-シクロペンテン-1-オンのかわりに、実施例10で製造される3-[3-(2-インダニルオキシ)-4-メトキシアニリノ]-2-メチル-2-シクロペンテン-1-オンを使用し、ヨウ化メチルのかわりに4-(クロロメチル)ピリジン塩酸塩を使用し、褐色油状の標記化合物(収率38.8%)を得る。

' H-NMR (400MHz, CDC13) δ 1.34(3 H, s), 2.43-2.45(2H, m), 2.63(2H, m)), 3.12(2H, dd, J=16.60, 3.90Hz), 3 .25(2H, dd, J=16.60, 6.84Hz), 3.80 (3H, s), 4.95(2H, s), 5.04(1H, m, J= 3.42Hz), 6.64(1H, d, J=2.44Hz), 6. 72(1H, dd, J=8.30, 2.44Hz), 6.79(1H, d, J=8.30Hz), 7.17-7.23(6H, m), 8.62-8.64(2H, m)

実施例74

-1-オン(表1の化合物No. 74)の合成

実施例73と同様の手法を用い、4-(クロロメチル)ピリジン 塩酸塩のかわりに、2-(プロモメチル)ナフタレンを使用し、褐 色油状の標記化合物(収率24.9%)を得る。

1 H-NMR (400 MHz, CDCl3) δ 1. 35 (3 H, s), 2. 45-2. 48 (2 H, m), 2. 75 (2 H, b road), 2. 93 (2 H, dd, J=16.60, 3.91 Hz), 3. 04 (2 H, dd, J=16.60, 6.35 Hz), 3. 78 (3 H, s), 4. 86 (1 H, m, J=3.42 Hz), 5. 09 (2 H, s), 6. 54 (1 H, broad s), 6. 77 (2 H, s), 7. 03-7. 05 (2 H, m), 7. 11 -7. 13 (2 H, m), 7. 36-7. 39 (1 H, m), 7. 50-7. 52 (2 H, m), 7. 64 (1 H, s), 7. 80-7. 88 (3 H, m)

実施例75

3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-2-メチル-2-シクロヘキセン-1-オン(表1の化合物No. 7 5)の合成

実施例 4 6 と同様の手法を用い、3 - [rel (1 R, 2 R, 4 S) - ビシクロ [2.2.1] ヘプター2ーイルオキシ] - 4 - メトキシアニリンのかわりに、実施例 1 (2) で製造される3 - シクロペンチルオキシー4 - メトキシアニリンを使用し、淡灰色固体の標記化合物(収率85.9%)を得る。

' H-NMR (400MHz, CDCl₃) δ 1.63(2 H, m), 1.83(3H, s), 1.87-1.96(8H, m), 2.38(4H, t, J=6.35Hz), 3.86(3H, s), 4.75(1H, m, J=2.93Hz), 6.13(1H

, broad s), 6. 64-6. 66 (2H, m), 6. <u>8</u> 2 (1H, d, J=7. 82Hz)

実施例76

実施例77

3-[3-(2-インダニルオキシ)-4-メトキシ-N-メチルアニリノ]-2-シクロペンテン-1-オン(表1の化合物No.76)の合成

実施例 2 6 と同様の手法を用い、3 - (3 - シクロペンチルオキシー4-メトキシアニリソ) - 2 - シクロペンテン-1-オンのかわりに、実施例 9 (3) で製造される3 - [3 - (2 - インダニルオキシ) - 4 - メトキシアニリノ] - 2 - シクロペンテン-1 - オンを使用し、淡褐色油状の標記化合物(収率100%)を得る。

H-NMR (400MHz, CDC1₃) δ 2. 42 (4 H, broad), 3. 23 (2H, dd, J=16.60, 3. 42Hz), 3. 32 (3H, s), 3. 39 (2H, dd, J= 16.60, 6.83Hz), 3.84 (3H, s), 5. 16 (2H, m), 6.76-6.80 (2H, m), 6.88 (1H, d, J=8.30Hz), 7.18-7.26 (4H, m)

3 - [N - ベンジル - 3 - (2 - インダニルオキシ) - 4 - メト キシアニリノ] -2 - シクロペンテン - 1 - オン (表 1 の化合物 N o. 77) の合成

実施例76と同様の手法を用い、ヨウ化メチルのかわりに、臭化ベンジルを使用し、無色油状の標記化合物(収率94.3%)を得る。

 1 H-NMR (400MHz, CDCl₃) δ 2.43 (4 H, broad), 3.08 (2H, dd, J=16.60, 3. 42Hz), 3.22 (2H, dd, J=16.60, 6.84H

z), 3.81 (3H, s), 4.78 (2H, s), 4.98 (1H, m), 5.32 (1H, broad), 6.55 (1H, broad), 6.55 (1H, broad), 6.74 (1H, dd, J=8.79, 2.45 Hz), 6.82 (1H, d, J=8.79Hz), 7.16-7

実施例78

3- [3-(2-インダニルオキシ)-4-メトキシ-N-(4-ピリジルメチル)アニリノ]-2-シクロペンテン-1-オン(表1の化合物No. 78)の合成

実施例76と同様の手法を用い、ヨウ化メチルのかわりに、4-(クロロメチル)ピリジン塩酸塩を使用し、茶褐色油状の標記化合物(収率77.2%)を得る。

1 H-NMR (400 MHz, CDC 13) δ 2. 45-2

55 (4H, broad), 3. 13 (2H, dd, J=16.

60, 3. 42Hz), 3. 28 (2H, dd, J=16.60,

6. 84Hz), 3. 82 (3H, s), 4. 79 (2H, s),

5. 06 (1H, m), 5. 20 (1H, broad), 6. 65

(1H, d, J=2. 44Hz), 6. 76 (1H, dd, J=8.30 Hz),

30, 2. 44Hz), 6. 84 (1H, d, J=8.30 Hz),

7. 18-7. 24 (6H, m), 8. 60-8. 62 (2H, m)

実施例 7.9

3-[3-(2-インダニルオキシ)-4-メトキシ-N-(2-ナフチルメチル)アニリノ]-2-シクロペンテン-1-オン(表1の化合物No.79)の合成

実施例76と同様の手法を用い、ヨウ化メチルのかわりに、2-(プロモメチル)ナフタレンを使用し、淡褐色固体の標記化合物(

収率100%)を得る。

H-NMR (400MHz, CDCl₃) δ 2. 45 (4 H, broad), 2. 92 (2 H, dd, J=16.60, 3. 42 Hz), 3. 03 (2 H, dd, J=16.60, 6.83 Hz), 3. 79 (3 H, s), 4. 86 (1 H, m, J=3.42 Hz), 4. 93 (2 H, s), 5. 51 (1 H, broad), 6. 48 (1 H, broad), 6. 77 (1 H, dd, J=8. 79, 2. 44 Hz), 6. 82 (1 H, d, J=8. 79 Hz) 7. 03-7. 05 (2 H, m), 7. 11-7. 14 (2 H, m), 7. 38 (1 H, m), 7. 50-7. 52 (2 H, m), 7. 62 (1 H, s), 7. 78-7. 80 (1 H, m), 7. 8 3-7. 85 (2 H, m)

実施例80

3-[3-(2-インダニルオキシ)-4-メトキシ-N-(2 -キノリルメチル)アニリノ]-2-シクロペンテン-1-オン(表1の化合物No. 80)の合成

実施例76と同様の手法を用い、ヨウ化メチルのかわりに、2-(クロロメチル)キノリン塩酸塩を使用し、淡褐色固体の標記化合物(収率76.1%)を得る。

¹ H-NMR (400 MHz, CDCl₃) δ 2. 45-2 . 64 (4H, broad), 3. 06 (2H, dd, J=16. 60, 3. 42Hz), 3. 20 (2H, dd, J=16.60, 6. 35Hz), 3. 80 (3H, s), 5. 01 (1H, m), 5. 09 (2H, s), 5. 22 (1H, broad), 6. 82 -6. 90 (3H, m), 7. 11-7. 17 (4H, m), 7. 41 (1H, broad), 7. 56 (1H, dd, J=8.30, 6.8

3 H z), 7. 8 3 (1 H, d, J = 8. 3 0 H z), 8. 0 4 (
1 H, d, J = 8. 3 0 H z), 8. 1 7 (1 H, d, J = 8. 7
9 H z)

実施例81

3-[N-ベンジル-3-[rel (1R, 2R, 4S)-ビシクロ[2.2.1] ヘプタ-2-イルオキシ] -4-メトキシアニリノ]-2-シクロペンテン-1-オン(表1の化合物No.81)の合成

実施例26と同様の手法を用い、3-(3-シクロペンチルオキシー4-メトキシアニリノ)-2-シクロペンテン-1-オンのかわりに、実施例8(3)で製造される3-[3-[rel (1R, 2R, 4S)-ビシクロ[2.2.1]へプター2-イルオキシ]-4-メトキシアニリノ]-2-シクロペンテン-1-オンを使用し、ヨウ化メチルのかわりに臭化ベンジルを使用し、淡黄色油状の標記化合物(収率92.3%)を得る。

¹ H-NMR (400MHz, CDCl₃) δ 1.00-1

. 11 (2H, m), 1.16-1.18 (1H, m), 1.47

-1.69 (5H, m), 2.29 (1H, m), 2.34 (1H, m), 2.34 (1H, m), 2.40 (4H, broad), 3.83 (3H, s), 3.96-3.98 (1H, m), 4.76 (2H, s), 5.3

0 (1H, broad), 6.46 (1H, broad), 6.6

7 (1H, dd, J=8.30, 2.44 Hz), 6.79 (1H, d, J=8.30 Hz), 7.20-7.22 (2H, m), 7.28-7.34 (3H, m)

実施例82

<u>メチル) アニリノ] - 2 - シクロペンテン-1 - オン (表1の化合</u> 物No. 82) <u>の合成</u>

実施例 8 1 と同様の手法を用い、臭化ベンジルのかわりに、 2 - (クロロメチル) キノリン塩酸塩を使用し、褐色油状の標記化合物 (収率 9 2 . 8 %) を得る。

1 H-NMR (400MHz, CDCl3) δ 0.96-1
02(2H, m)、1.11-1.14(1H, m)、1.43
-1.44(3H, m)、1.54(1H, m)、1.62-1.65(1H, m)、2.23(1H, broad)、2.33(1H, broad)、2.33(1H, broad)、3.82(3H, s)、3.97(1H, broad)、5.07(2H, s)、5.22(1H, broad)、6.72(1H, broad)、6.72(1H, broad)、6.72(1H, broad)、6.72(1H, broad)、6.72(1H, broad)、6.73(1H, m)、7.38-7.3
9(1H, m)、7.55(1H, m)、7.73(1H, m)、7.82(1H, d, J=8.30Hz)、8.03(1H, d, J=8.30Hz)、8.15(1H, d, J=8.30Hz)

実施例83

3-[3-[rel (1R, 2R, 4S)-ビシクロ[2.2.1]] ヘプタ-2-イルオキシ] -4-メトキシアニリノ] -2-シクロヘキセン-1-オン (表1の化合物No.83)の合成

実施例 8 と同様の手法を用い、1,3 - シクロペンタンジオンのかわりに、1,3 - シクロヘキサンジオンを使用し、淡黄色固体の標記化合物(収率 9 0.1%)を得る。

¹ H-NMR (400 MHz, CDC l₃) δ 1. 11-1 . 13 (2H, m), 1. 19-1. 21 (1H, m), 1. 48 -1. 58 (3H, m), 1. 72-1. 75 (2H, m), 2. 04 (2H, m, J=6. 35Hz), 2. 32-2. 37 (1H)

, m) 2.36(2H, t, J=6.35Hz), 2.46-2

.49(1H, m), 2.48(2H, t, J=6.35Hz),

3.83(3H, s), 4.13-4.14(1H, m), 5.4

2(1H, s), 5.96(1H, broad s), 6.63(

1H, d, J=2.44Hz), 6.69(1H, dd, J=8.

30, 2.44Hz), 6.80(1H, d, J=8.30Hz)

実施例 8 4

3- [N-ベンジル-3- [rel (1R, 2R, 4S)-ビシクロ[2.2.1] ヘプタ-2-イルオキシ] - 4-メトキシアニリノ] - 2-シクロヘキセン-1-オン(表1の化合物No.84) の合成

実施例 2 6 と同様の手法を用い、 3 - (3 - シクロペンチルオキシー4-メトキシアニリノ) - 2 - シクロペンテン-1-オンのかわりに、実施例 8 3 で製造される 3 - [3 - [rel (1 R, 2 R, 4 S) - ビシクロ [2. 2. 1] ヘプター2-イルオキシ] - 4 - メトキシアニリノ] - 2 - シクロヘキセン-1 - オンを使用し、ヨウ化メチルのかわりに臭化ベンジルを使用し、淡黄色油状の標記化合物(収率 6 0 . 8 %)を得る。

1 H-NMR (400 MHz, CDC1;) δ 1.04-1

10(2H, m), 1.16-1.18(1H, m), 1.48

-1.54(3H, m), 1.60-1.61(1H, m), 1.67-1.69(1H, m), 1.93(2H, m, J=6.35

Hz), 2.30-2.31(4H, broad), 2.33(1H, m), 2.35(1H, m), 3.83(3H, s), 3.9

9-4.01(1H, m), 4.77(2H, s), 5.44(1H, s), 6.65(

1 H, dd, J = 8. 30, 2. 44 Hz), 6. 79 (1 H, d, J = 8. 30 Hz), 7. 19 - 7. 21 (2 H, m), 7. 2 5 - 7. 32 (3 H, m)

実施例85

3-[3-[rel (1R, 2R, 4S)-ビシクロ[2.2.1] ヘプタ-2-イルオキシ]-4-メトキシ-N-(4-ピリジルメチル)アニリノ]-2-シクロヘキセン-1-オン(表1の化合物No.85)の合成

実施例 8 4 と同様の手法を用い、臭化ベンジルのかわりに、 4 - (クロロメチル) ピリジン塩酸塩を使用し、淡褐色油状の標記化合物 (収率 4 4 . 6 %) を得る。

' H-NMR (400MHz, CDCl₃) δ 1.07-1
.13(2H, m), 1.18-1.21(1H, m), 1.57
-1.70(5H, m), 1.94(2H, m, J=6.35Hz), 2.29-2.33(5H, m), 2.38(1H, m), 3
.84(3H, s), 4.05-4.06(1H, m), 4.77
(2H, s), 5.32(1H, s), 6.52(1H, d, J=2.44Hz), 6.67(1H, dd, J=8.30, 2.44Hz), 6.80(1H, d, J=8.30Hz), 7.17(2H, d, J=5.86Hz), 8.57(2H, d, J=5.86Hz)

表 1

化合物No.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	x
1	, \	Me	Н	Н	Н	н	Н	Н	-
2	\bigcirc	Me	Н	Н	Н	Н	Н	H	CH ₂
3	, . -	Me	Н	H	н	Н	Me	Me	CH ₂
4	\Diamond	Me	Н	Me	н	Н	Н	Н	-
5	\Diamond	Me	Н	H	H	н	Me	н	CH ₂
6	\Diamond	Me	Н	Cl	н	н	н	Н	-
7	. 👉	Me	Н	Br	н	Н	H	H	
8	0	Me	Н	H	Н	Н	Н	Н	-
9	0>	Me	. H	Н	Н	Н	Н	Н	-
10		Me	Н	Me	Н	Н	· H	н	-

化合物No.	R ₁	R ₂	R ₃	R ₄	R ₅	R_6	R ₇	R ₈	x
11		Me	н	Н	H	Н	Н	н	<u>-</u>
12		Me	Н	Me	Н	н	Н	Н	-
13	O'.	Me	н	Н	Н	Н	Н	н	-
14	0	Me	Н	Me	Н	н	н	Н	-
15		Me	Н	Н	н	Н	Н	Н	-
16	∇	Me	Н	Me	н	н	Н	н	-
17	CH ₃ (CH ₂) ₃	Me	Н	Н	н	н	Н	Н	· _
18	CH ₃ (CH ₂) ₃	Me	Н	Me	Н	Н	Н	Н	-
19	0>	Me	Н	Н	Н	Н	Н	н	ĊH²
20		Me	Н	Н	Н	Н	Н	Н	CH ₂
21	<u></u>	Me	Н	H	Н	Н	Н	Н	NH
22	\bigcirc	Me	н	Н	Н	Н	Н	н	NBn
		•				1.	,		

化合物No.	R,	R ₂	R ₃	R₄	R ₅	R_6	R ₇	Rg	х
23	0	Me	Н	н	Н	н	н	н	NH
24	\Diamond	Me	Н	H₃C _N ∕ CH₃	Н	Н	н	н	1
25	\Diamond	Me	Н		н	н	Н	Н	
26	\Diamond	Мe	Me	Н	н	н	н	Н	1
27	\Diamond	Me	Me	Н	Н	Н	Н	Н	CH₂
28	\Diamond	Me	$\langle z \rangle$	Н	Н	н	Н	Н	-
29	\Diamond	Me	CH ₃ CO	Н	Н	Н	Н	Н	-
30	\Diamond	Me		н	н	н	Н	Н	-
31	\Diamond	Me	H	Et	Н	Н	Н	Н	•
32		Me	Н	Et	Н	Н	Н	Н	-
33	\Diamond	Me	Н	0	Н	Н	Н	Н	-
34		Me	Н	Н	Н	Н	·H	Н	-

			 -		_	<u> </u>	7	7	
化合物No.	R ₁	R ₂	R ₃	R₄	R ₅	R ₆	R ₇	R ₈	_ <u>X</u> _
35		Me	н	Me	н	Н	н	н	-
36	5>	Me	Н	Н	Н	н	Н	н	-
37 .	5>-	Ме	н	Me	Н	Н	Н	н	-
38	\bigcirc	Me	Н	Н	H	н	H	·H	СМе2
39	○	Me	H.	Н	н	н	Ph	Н	CH ₂
40	0	Me	Н	Н	Н	н	Н	Н	-
41	0	Me	Н	Me	Н	Н	Н	н	<u>-</u>
42	9	Me	H	Н	Н	н	н	Н	_
43	9	Me	H	Me	н	н	Н	Н	-
. 44	0	Me	Н	Me	Н	Н	Н	н	-
45	0	Me	Н	Et	н	Н	H	Н	-
46	0	Me	Н	Me	Н	H	Н	Н	CH ₂

(I.e. A. Atta N.I.a.	R ₁	R ₂	R ₃	R₄	R ₅	R ₆	R ₇	R ₈	x
化合物No. 47		Me	Me	Me	Н	н	н	н	-
48		Me	Н	Me	Н	H	н	Н	CH ₂
49	Ph	Me	н	н	Н	Н	н	н	-
50	Ph	Me	Н	Me	Н	н	н	Н	_
51		Me	H.	Н	н	Ħ	н	Н	-
52	5	Me	Н	Me	н	Н	Н	н	-
53		Me	Н	Me	Н	н	Н	н	CH ₂
. 54		Me	Н	Me	н	Н	Н	Н	CH ₂
55	<u></u>	Me	Н	Me	Н	Н	н	н	CH ₂
56	\bigcirc	Me	0	Н	Н	Н	Н	н	· -
57	\bigcirc	Me		Н	F	H	Н	H	-
58	\bigcirc	Me		Н	I	I I	Н	Н	-

					R ₅	R ₆	R ₇	Т	28	x
化合物No.	R ₁	R ₂	R ₃	R ₄	145	7.6	107	+	8	^
59	\bigcirc	Me	∕CH ₃	н	н	Н	н]	H	_
60	\bigcirc	Me	\bigcirc	Н	н	н	Н		н	-
61	\bigcirc	Me	N	Н	н	Н	H		н	-
62	\ \rightarrow -	Me		Н	Н	н	F		н	-
63	\bigcirc	Me	N	Н	Н	Н	F	I	н	-
64	\Diamond	Me	СН	3 H	Н	Н	I	I	н	-
65		- Me	I	Н	Н	H		H	Н	CH ₂
66		- M	e O	Н	H	H	1	H	Н	CH ₂
67		- M	e	·H	F	I I	I	H	Н	CH ₂
68.		- M	ie N	Н	F	I I	H	Н	Н	CH ₂
69	│	N	le H	O	\	H	Н	Н	Н	CH;
70	\	N	1e Me	Me		н	н	Н	Н	-

化合物No.	R ₁	R ₂	R ₃	R₄	R ₅	R ₆	R ₇	R ₈	х
71	\Diamond	Me		Me	Н	Н	Н	н	-
72	\Diamond	Ме		Me	н	Н	н	Н	-
73		Me	N	Me	н	н	н	н	-
74		Мe		Me	Н	Н	н	H	_
75	\bigcirc	Me	Н	Me	Н	H	Н	Н	CH ₂
76		Me	Me	Н	Н	н	Н	Н	-
77		Me		Н	н	н	н	н	-
78		Me	N	H	Н	н	Н	H	-
79		Me		Н	Н	Н	н	Н	-
80		Me		Н	Н	Н	Н	н	-
81	0	Me		Н	н	Н	Н	Н	
82		Me		Н	н	H	н	Н	-

化合物No.	R ₁	R ₂	R ₃	R ₄	R ₅	R_6	R ₇	R ₈	х
83	0	Me	Н	Н	Н	Н	н	н	CH ₂
84		Me		Н	н	н	Н	н	CH ₂
85	0	Me	N	н	Н	Н	Н	Н	CH ₂

実施例86

錠剤の製造

30gの3-(3-シクロペンチルオキシー4-メトキシアニリノ)-2-シクロペンテン-1-オン(表1の化合物No. 1)、乳糖253g、トウモロコシデンプン63g、低置換ヒドロキシプロピルセルロース40g、ステアリン酸カルシウム4gを混和し、通常の方法で圧縮して各錠剤が前記化合物10mgを含むように調製した。

実施例87

カプセル剤の製造

3 0 gの3 - [3 - [rel (1R, 2R, 4S) - ビシクロ[2 2. 1] ヘプター2 - イルオキシ] - 4 - メトキシアニリノ] - 2 - シクロペンテンー1 - オン (表1の化合物No. 8)、乳糖26 0 g、トウモロコシデンプン66g、ステアリン酸カルシウム4gを混和した後、通常の方法でゼラチンカプセルに充塡し、各カプセルが前記化合物10mgを含むように調製した。

実施例88

吸入剤の製造

実施例89

軟膏剤の製造

4-[3-(2-インダニルオキシ)-4-メトキシアニリノ]-2-シクロペンテン-1-オン(表1の化合物No. 9)100mg、オリーブ油20gおよび白色ワセリン79.9gを無菌条件下で混和する。

試験例1

フォスフォジエステラーゼ (PDE) の分離およびPDE阻害活性の測定

本発明の化合物のPDE阻害活性および選択性を調べるために、I型、III型、IV型およびV型の、4種類のPDEアイソザイムを準備した[Trends Pharmacol. Sci., 12, 19-27(1992)]。I型PDEはシグマ社より購入したものを用いた。また、III型、IV型およびV型のPDEアイソザイムはラットより採取した血小板(III型およびV型)または好中球(IV型)から部分精製した。各酵素源を20mMビストリス、EDTA(エチレンジアミン四酢酸)2mM、PMSF(フェニルメチルスルフォニルフルオライド)0.1mM、2ーメルカプトエタノール5mM、ペプスタチン0.001mM、ロイペプチン0.01mMを含む緩衝液(PH6.5)中でホモジナイズし、30000

gで30分間遠心して得られた遠心上清をイオン交換樹脂(Qセファロースファーストフロー、ファルマシア社製)を充塡したカラムにかけ、0~1Mの酢酸ナトリウムで溶離した。部分精製したアイソザイムは各々既知の選択的阻害剤の効果を調べることによって同定した。

被検物質はDMSO(ジメチルスルホキシド)中に溶解し、5mMの塩化マグネシウムを含む50mMトリス塩酸緩衝液中に添加した。この反応液に上記のPDEアイソザイムおよび³HーcAMP(III型、IV型PDEのとき)または³HーcGMP(I型、V型PDEのとき)を基質として加え、30度で30分間反応させた。反応は100度の沸騰液中に5分間つけることによって停止した。PDEによって生成したヌクレオチドは5'ーヌクレオチダーゼで³Hーアデノシンまたは³Hーグアノシンに分解し、未反応の基質と反応生成物はイオン交換樹脂(QAEセファデックス、ファルマシア社製)を充塡したカラムを通して分離した。

溶出した[®] H-ヌクレオシドの放射活性を液体シンチレーションカウンターで測定した。各被検物質の阻害活性は I C 50値で表し、IV型に対する阻害活性を表 2 に示した。また、各被検物質の I 型、III 型、V型に対する阻害活性は IV型に対する阻害活性の 1 0 分の 1 以下であった。

表 2

化合物No.	PDEIV阻害作用 I C s o (M)
1	1.6×10 ⁻⁶
2	3.7×10 ⁻⁶
3	4.9×10 ⁻⁶
4	3.9×10 ⁻⁷
5	2.2×10 ⁻⁶
6	5.4×10 ⁻⁷
7	2.8×10 ⁻⁷
8	1.3×10 ⁻⁶
9	6.9×10 ⁻⁷
10	1.4×10 ⁻⁷
11	4.0×10 ⁻⁶
12	7.1×10^{-7}
13	7.4×10^{-6}
14	2. 4 × 10 ⁻⁶
15	7.1×10^{-6}
16	1.0×10 ⁻⁶
17.	1.4×10 ⁻⁵
18	1.7×10 ⁻⁶
19	1.8×10 ⁻⁶
20	4.4×10 ⁻⁵
21	1.1×10 ⁻⁶
22	2. 4×10 ⁻⁵
23	2.4×10 ⁻⁶
24	6.1×10 ⁻⁵

表 2 (続き)

化合物No.	PDEIV阻害作用 I C so (M)
25	1.7×10 ⁻⁵
26	8.0×10 ⁻⁷
27	1.9×10 ⁻⁶
28	4. 3 × 10 ⁻⁶
~ 29 .	4.8×10 ⁻⁵
30	2.6×10 ⁻⁶
31	2. 2×10 ⁻⁷
32	5. 0 × 10 ^{- 8}
33	4. 0 × 10 ⁻⁷
34	1.8×10 ⁻⁶
35	2. 9 × 10 ⁻⁷
36	8.9×10 ⁻⁶
37	1.2×10 ⁻⁶
38	1.7×10 ⁻⁵
39	3.9×10 ⁻⁶
40	4.0×10 ⁻⁶
41	9.4×10^{-7}
42	9.6×10 ⁻⁶
43	1.3×10-6
44	2.2×10 ⁻⁷
45	8.0×10 ⁻⁸
46	2.6×10^{-7}
47	1.6×10 ⁻⁶
48	8.2×10 ⁻⁸

表2(続き)

化合物No.	PDEIV阻害作用 I C 5 0 (M)
49	2.3×10 ⁻⁶
50	6.2×10 ⁻⁷
51	1.9×10 ⁻⁶
52	5.5×10 ⁻⁷
53	2.2×10 ⁻⁷
54	7.3×10 ⁻⁷
55	2.0×10 ⁻⁶
56	5.5×10 ⁻⁶
57	1.9×10 ⁻⁶
58	5. 3×10 ⁻⁷
59	7.4×10^{-6}
60	4. 4×10 ⁻⁵
61	3.2×10 ⁻⁶
62	1.2×10 ⁻⁶
63	5. 3×10 ⁻⁶
64	4. 4 × 10 ⁻⁶
65	2.9×10^{-7}
66	5.7×10^{-7}
67	3.8×10 ⁻⁶
68	4.9×10 ⁻⁷
69	1.1×10 ⁻⁶
70	3.1×10 ⁻⁶
71	8.2×10 ⁻⁶
72	3.0×10 ⁻⁶

表 2 (続き)

化合物No.	PDEIV阻害作用 I C 50 (M)
73	3.2×10 ⁻⁶
74	3.5×10 ⁻⁶
75	4.7×10 ⁻⁷
76	1.3×10 ⁻⁷
77	9.1×10 ⁻⁷
78	1.3×10 ⁻⁶
79	7.3×10 ⁻⁷
80	1.2×10 ⁻⁷
81	1.0×10 ⁻⁶
82	5.3×10 ⁻⁷
. 83	1.6×10 ⁻⁶
84	1.4×10 ⁻⁶
85	3.6×10 ⁻⁶

試験例2

ラット好中球の活性化抑制作用

炎症性白血球である好中球の活性化抑制作用を調べるためにスーパーオキサイドアニオンの放出量を測定した。

エーテル麻酔下のウィスター系雄性ラットから採血し、得られた血液を血球分離液(ポリモルフォプレップ 1.13、ナイコメッドファーム社製)に重層して好中球を遠心分離した。好中球はハンクス液中で 0.5×10^4 c e 11s/m1に調整し、この細胞浮遊液 2m1にルシゲニン 0.1mMおよび DMSOに溶解した被検物質を添加した。カルシウムイオノフォアーA 231870. 3μ Mの刺激によって発生する化学発光をケモルミネッセンスリーダ

ーで測定し、スーパーオキサイドアニオン放出量を算出し、スーパーオキサイドアニオン放出抑制作用に対する本発明の化合物の効果を I C 50値で表し、表 3 に示す。

表 3

化合物No.	ラット好中球からのスーパーオキサイド アニオン放出抑制作用 IC50(M)
1	1.2×10 ⁻⁷
8	1.4×10 ⁻⁷
21	4.1×10^{-7}
22	3.3×10 ⁻⁶
23	1.9×10 ⁻⁷

試験例3

抗原誘発気道収縮抑制作用(抗喘息作用)

ハートレイ系雄性モルモットに卵白アルブミン(OA)を35mg筋肉内投与して感作し、4日後に同様に追加感作を行った。初回感作から25~29日後、ペントバルビタール麻酔したモルモットに気管カニューレを挿入して人工呼吸を施した。Konzett-Roess1er法により気道抵抗をモニターし、OA0.2mg/kg静脈内投与で惹起される気道抵抗の増加を調べた。被検物質はポリエチレングリコール400に溶解して抗原投与の10分前に静脈内投与した。本発明の化合物の効果をED50値で表し、麦4に示す。

<u>表 4</u>

化合物No.	抗原誘発気道収縮抑制作用 ED。(mg/kg)
1	1.4
8	3.0
9	5.5
10	0.86
21	1.0
32	7.34

試験例4

マウスTPA誘発耳介浮腫抑制作用

5週齢のICR系雄性マウスを一群7~8匹として用いた。起炎剤として2μgのTPA(phorbor 12-miristate;SIGMA社)を含むアセトン溶液20μ1をマウスの右耳介の両面に塗布し、反応を惹起した。被検物質0.1mgをテトラヒドロフランーメタノール混合液(混合比1:1)20μ1に溶解し、この溶液(20μ1)をTPA塗布直後に右耳介に塗布した。TPA塗布6時間後、マウスを屠殺し、右耳介を直径6mmのパンチで打ち抜き重量を測定した。溶媒対照群の浮腫率を100%とし、被検物質による浮腫抑制率を求めた。本発明の化合物の効果を耳介浮腫抑制率で表し、表5に示す。

表 5

化合物No.	耳介浮腫抑制率(%)
1	68.2
2	65.0
7	55. 8
8	73. 1
9	72. 3
12	52.5
13	51.8
14	73. 4
16	72. 1
17	57.1
19	76.3
22	76.8
23	73.0
26	82.0
27	86.4
28	71.5
30	78.4
31	73. 4
32	75. 5
33	81.7
35	52. 5
37	51.8
44	74. 1
45	75.3

表 5 (続き)

化合物No.	耳介浮腫抑制率(%)
47	59.9
48	53.8
49	54.3
50	62.6
53	55.9
55	70.8
56	86.1
57	89.7
58	58.7
59	60.1
60	78.5
61	66.2
62	78.8
63	75. 4
64	52.0
. 65	52.5
66	72.8
67	60.8
68	52.0
73	54.3
75	64.8
76	52. 7
77	50.9
78	82. 2

表5(続き)

化合物No.	耳介浮腫抑制率(%)
79	89.0
80	6.4.4
81	82.7
82	84. 4
83	70.5
84	71.8
85	70.3

試験例5

マウスIV型アレルギー抑制作用(DNFB誘発接触性皮膚炎モデル)

表 6

化合物No.	ED ₅₀ (μg/ear)
9	94
14	16
22	32

試験例6

急性毒性

本発明の化合物のNo. 1~No. 85を0. 5%カルボキシルメチルセルロースーナトリウムを含む生理食塩水に懸濁してddY 系雄性マウスに腹腔内投与し、翌日生死を観察した。30mg/k gの投与量で死亡例が認められた化合物はなかった。

産業上の利用性

本発明の化合物は、優れたPDEIV阻害作用を有しており、喘息、皮膚炎等の炎症性疾患;多発性硬化症;リューマチ等の自己免疫疾患等の治療薬として有用である。

請求の範囲

1. 式(]):

〔式中、R」は置換基を有してもよいC」~C。のアルキル基(ただし置換基を有しないメチル基を除く)、C。~C,のシクロアルキル基、C。~C」のビシクロアルキル基、3ーテトラヒドロフリル基またはインダニル基を表し、R。はC」~C。のアルキル基を表し、R。は水素原子、置換基を有してもよいC」~C。のアルキル基、C。~C,のシクロアルキル基またはアンル基を表し、R。は水素原子、置換基を有してもよいC」~C。のアルキル基、ハロゲン原子、式(II):

$$\begin{array}{c}
R_{10} \\
R_{10}
\end{array}$$
(II)

(式中、R。およびR、oは、それぞれ独立して、C、~C。のアルキル基を表す)で表される基または式([[]):

(式中、nは2~6の整数を表すが、一つのCH。基は酸素原子、 窒素原子及び硫黄原子の中から選ばれた1個のヘテロ原子で置換す ることができる)で表される基を表し、R。、R。、R、およびR 。は、それぞれ独立して、水素原子、置換基を有してもよいC」~ C。のアルキル基、置換基を有してもよいフェニル基を表し、Xは -(CR11R12) n - (式中、R11およびR12はそれぞれ独立して水素原子、置換基を有してもよいC1 ~ C5 のアルキル基、置換基を有してもよいフェニル基を表し、nは0~2の整数を表す)または-NR13-(式中、R13は水素原子、置換基を有してもよいC1~C5 のアルキル基を表す)を表す〕で表される3-アニリノ-2-シクロアルケノン誘導体、その光学異性体もしくはそれらの医薬上許容される塩またはこれらの水和物もしくは溶媒和物。

2. R」がC4~C6のアルキル基、C4~C7のシクロアルキル基、C6~C8のビシクロアルキル基、置換基として、フェニル基、ナフチル基、インダニル基もしくは置換基を有してもよいC3~C7のシクロアルキル基を有するC1~C5のアルキル基、3~テトラヒドロフリル基またはインダニル基である請求項1に記載の化合物。

3. R₁ がプチル基、シクロプロピル基、シクロペンチル基、シクロペキシル基、シクロプロピルメチル基、シクロプチルメチル基、シクロプチルメチル基、シクロペンチルメチル基、(1-フェニルシクロプロピル)メチル基、ベンジル基、フェネチル基、2-(1-ナフチル)エチル基、2-(2-インダニル)エチル基、rel (1R, 2R, 4S) ビシクロ[2.2.1] ヘプター2ーイル基、3ーテトラヒドロフリル基、2-インダニル基であることを特徴とする請求項2に記載の化合物。

4. R₂ がメチル基である請求項1~3のいずれか1項に記載の 化合物。

5. R 3 が水素原子、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、2 - ピリジルメチル基、3 - ピリジルメチル基、4 - ピリジルメチル基、ベンジル基、1 - ナフチルメチル基、2 - ナフチルメチル基、2 - キフチルメチル基、2 - キノリルメチル基、シクロペンチル基また

はアセチル基である請求項1~4のいずれか1項に記載の化合物。

- 6. R。が水素原子、ハロゲン原子、メチル基、エチル基、ジメ チルアミノメチル基、モルフォリノメチル基またはベンジル基であ る請求項1~5のいずれか1項に記載の化合物。
- 7. Xにおいて、- (CR₁₁R₁₂) n のnが0または1、R₁₁ およびR₁₂がそれぞれ独立して水素原子またはメチル基であるか、 もしくは-NR₁₃-のR₁₃が水素原子、C₁ ~ C₃ アルキル基もし くはベンジル基である請求項1~6のいずれか1項に記載の化合物
- 8. R₅、R₆、R₇ およびR₈が、それぞれ独立して、水素原子またはメチル基である請求項1~7のいずれか1項に記載の化合物。
- 9. 請求項1~8のいずれか1項に記載の化合物を含有してなる 医薬組成物。
- 10. 請求項1~8のいずれか1項に記載の化合物を含有してなる 炎症性疾患の予防または治療薬。
- 11. 請求項1~8のいずれか1項に記載の化合物を含有してなる喘息の予防または治療薬。
- 12. 請求項1~8のいずれか1項に記載の化合物を含有してなる皮膚炎治療薬。
- 13. 前記皮膚炎治療薬がアトピー性皮膚炎治療薬、接触性皮膚炎治療薬、乾癬治療薬又は蕁麻疹治療薬である請求項12に記載の皮膚炎治療薬。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/04857

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁶ C07C225/20, C07D215/12, C07D213/38, A61K31/135, A61K31/44, A61K31/47			
According to International Patent Classification (IPC) or to both national classification and IPC			
B. FIELDS SEARCHED			
Minimum documentation searched (classification system followed Int.Cl ⁶ C07C225/20, C07D213/38, CA61K31/44, A61K31/47	by classification symbols) 07D215/12, A61K31/135,		
Documentation searched other than minimum documentation to the	e extent that such documents are included	l in the fields searched	
Electronic data base consulted during the international search (national SEGISTRY (STN), CA (STN), CAOLD (earch terms used)	
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category* Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.	
A JP, 49-5944, A (Takeda Chemi January 19, 1974 (19. 01. 74 & NL, 7306650, A & BE, 799 & FR, 2184095, A & JP, 49- & GB, 1425606, A & CA, 992 & US, 3969409, A & CH, 581 & US, 4064133, A) 291, A 85050, A 545, A	1-9	
A JP, 6-100510, A (Nikken Cher April 12, 1994 (12. 04. 94)		1-9	
A JP, 6-100509, A (Nikken Cher April 12, 1994 (12. 04. 94)		1-9	
A JP, 6-100444, A (Nikken Cher April 12, 1994 (12. 04. 94)		1-9	
A JP, 5-97783, A (Nikken Chem. April 20, 1993 (20. 04. 93)		1-9	
Further documents are listed in the continuation of Box C.	See patent family annex.	-	
*T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered to be of particular relevance to document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) The document referring to an oral disclosure, use, exhibition or other means and cocument published prior to the international filing date but later than the priority date claimed The document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of the actual completion of the international search March 17, 1998 (17.03.98)			
-			
Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer		
Facsimile No.	Telephone No.	•	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP97/04857

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP, 5-51317, A (Nikken Chemicals Co., Ltd.), March 2, 1993 (02. 03. 93) (Family: none)	1-9
		· .
·		
·		

国際調査報告

発明の属する分野の分類(国際特許分類(IPC)) Int. C1° C07C225/20, C07D215/12, C07D213/38, A61K31/135, A61K31/44, A61K31/47 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. C1° C07C225/20, C07D213/38, C07D215/12, A61K31/135, A61K31/44, A61K31/47 最小限資料以外の資料で調査を行った分野に含まれるもの 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) REGISTRY (STN) CA (STN) CAOLD (STN) 関連すると認められる文献 関連する 引用文献の 請求の範囲の番号 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 カテゴリー* JP, 49-5944, A(武田薬品工業株式会社) 19. 1月. 1974(19. 01. 74) 1-9 Α & NL, 7306650, A & BE, 799291, A & FR, 2184095, A & JP, 49-85050, A & GB, 1425606, A & CA, 992545, A & US, 3969409, A & CH, 581094, A & US, 4064133, A JP, 6-100510, A(日研化学株式会社)12.4月.1994(12.04.94) 1-9 Α (ファミリーなし) JP, 6-100509, A(日研化学株式会社)12.4月.1994(12.04.94) 1-9 A (ファミリーなし) JP, 6-100444, A(日研化学株式会社)12.4月.1994(12.04.94) 1-9 Α (ファミリーなし) 1-9 JP, 5-97783, A(日研化学株式会社)20.4月.1993(20.03.93) (ファミリーなし) □ パテントファミリーに関する別紙を参照。 C欄の続きにも文献が列挙されている。 |X| の日の後に公表された文献 * 引用文献のカテゴリー 「T」国際出願日又は優先日後に公表された文献であって 「A」特に関連のある文献ではなく、一般的技術水準を示す て出願と矛盾するものではなく、発明の原理又は理 もの 論の理解のために引用するもの 「E」先行文献ではあるが、国際出願日以後に公表されたも 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行 「Y」特に関連のある文献であって、当該文献と他の1以 日若しくは他の特別な理由を確立するために引用する 上の文献との、当業者にとって自明である組合せに 文献 (理由を付す) よって進歩性がないと考えられるもの 「O」ロ頭による開示、使用、展示等に含及する文献 「&」同一パテントファミリー文献 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 国際調査報告の発送日 国際調査を完了した日 17.03.98 31.03.98 7457 特許庁審査官(権限のある職員) 4 H 国際調査機関の名称及びあて先 脇 村 善 日本国特許庁(ISA/JP) 郵便番号100-8915 電話番号 03-3581-1101 内線 3443 東京都千代田区霞が関三丁目4番3号

国際調査報告

国際出願番号 PCT/JP97/04857

引用文献の	関連すると認められる文献		関連する	
カテゴリー*	引用文献名	及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号	
A	JP, 5-51317, (ファミリー	A(日研化学株式会社)2.3月.1993(02.03.93) なし)	1-9	
·				
		•		
		•		
ŀ				
	-			
			·	
	·			
•				
	•	•	·	
·	,			
	·		-	