1. Given the circuit below:

(a) Identify the number of branches, the number of nodes, and the number of meshes.

Branches = Nodes = Meshes =

- (b) Which resistors, if any, are in series with other resistors?
- 2. Given the following circuit:

(a) How many nodes and meshes are there?

(b) If $V_1=36\mathrm{V}$ and $V_2=-18\mathrm{V},$ use KVL equations to solve for $V_3,\,V_4,$ and V_5

$$V_3=oxed{V_4=}oxed{V_5=}$$

(c) If $I_1=$ -15A, $I_2=$ -3A, and $I_5=$ -9A, use KCL equations to solve for $\overline{I_3}$ and I_4

$$I_3= igg| I_4= igg|$$

(d) Determine the power absorbed by each component (confirm that the sum of the powers absorbed must be zero).

$P_1 =$	$P_2 =$	$P_3 =$	
$P_4 =$	$P_5 =$		

(e) Using the definition of parallel, which sets of components are in parallel?

Parallel =	
------------	--

3. Given the following circuit:

(a) How many nodes and meshes are there?

Nodes =		Meshes =	
---------	--	----------	--

(b) Is the circuit series, parallel, or neither?

(A) Series (B) Parallel (C) Neither

(c) If $V_s=24{\rm V}$ and $R_1=R_3=1\Omega,$ what value of R_2 will make the current coming out of the voltage source equal 2A?

$$R_2 =$$

(d) If $V_S=24\mathrm{V}$ and $R_1=R_3=1\Omega$, what new value of R_2 will make the voltage across R_2 equal 16V?

$$R_2 =$$

4. Given the following circuit:

(a) How many nodes and meshes are there?

- (b) Is the circuit series, parallel, or neither?
 - (A) Series (B) Parallel (C) Neither
- (c) If $V_s=36{\rm V},\ R_1=9\Omega$ and $R_2=12\Omega,$ what value of R_3 will make the current coming out of the voltage source equal to 13A?

$$R_3 =$$

(d)	Given $R_1 = 9\Omega$, $R_2 = 3\Omega$, the current through R_1 is 6A, and the source current is 33A,	find the
	new value for V_s , R_3 , and the currents through R_2 and R_3 .	
	(Hint: $48V < V_s < 66V, 8A < I_3 < 11A$)	

$V_s =$	$R_3 =$	$I_2 =$	$I_3 =$	