# Auto White Balance for Multi-illuminant Scene

팀 JYP

팀원: 박윤정, 유수민, 조윤수

지도교수: 김선주

조교: 김동영

### 목차

- 연구 주제 및 필요성
- U-Net, U-Net3+
- SWIN Transformer + UperNet
- 실험 결과
- 진행 시 문제점 및 보완 계획
- 역할 배분

#### 연구 주제

- LSMI dataset을 사용해 개선된 AWB 모델 탐색
- 기존 U-Net 모델을 수정해 U-Net3+ 모델 적용
- Vision Transformer를 활용한 심화 모델 구현

#### 연구의 필요성

- 기존 연구의 한계
  - Multi-illuminants 장면에 대한 연구 부족
- Computer Vision 연구에 사용되는 이미지 개선
  - AWB가 적용된 이미지는 딥러닝 모델의 학습을 개선시킴

#### 기존 연구

LSMI dataset 연구에서 사용한 U-net 모델의 경우

- 이미지의 illuminants의 chrominance(u, v) 예측
- Pixel별 예측

### 이번 연구

- U-net (baseline 모델)
- U-net3+
- SWIN Transformer + UperNet
  - → Semantic Segmentation task 수행

#### **U-Net**

- ▷ Biomedical 분야에서 Image Segmentation을 목적으로 제안됨
- (1) Contracting path: 입력 이미지의 컨텍스트(이웃 픽셀간 정보와 이미지 문맥)를 파악
- (2) Expanding path: Feature map을 Upsampling하고 컨텍스트와 결합해 정확한 localization을 함



#### U-Net3+

- 의료 영상을 다루기 위해 개발된 encoder-decoder 구조의 모델
- Image segmentation에 있어 우수, pixel-level task에서 널리 사용됨.



#### U-Net, U-Net3+ 학습, 테스트 결과

2000 epoch 후 test 성능 비교 (MAE\_illum mean)

|   | 모델      | Batch size | Learning rate | Learning rate decay | Initial<br>weight | MAE_illum<br>mean |
|---|---------|------------|---------------|---------------------|-------------------|-------------------|
| 1 | U-net   | 32         | 0.0005        | 1200                | 파이토치 기본           | 2.0421            |
| 2 | U-net3+ | 8          | 0.0005        | 1200                | 파이토치 기본           | 2.4012            |
| 3 | U-net3+ | 8          | 0.00055       | 1200                | 파이토치 기본           | 2.4102            |
| 4 | U-net3+ | 8          | 0.0005        | 1200                | Kaiming           | 2.4187            |
| 5 | U-net3+ | 8          | 0.0005        | 800                 | Kaiming           | 2.4602            |
| 6 | U-net   | 8          | 0.0005        | 1200                | Kaiming           | 3.4980            |

#### SWIN transformer + UperNet

#### Encoder - Decoder 구조 사용

- 1. backbone: SWIN transformer
  - feature 추출
- 2. decode\_head: UperNet
  - upsampling

#### 4.3. Semantic Segmentation on ADE20K

| ADE20K       |                      | val  | test  | п       | ELOD. | EDC  |
|--------------|----------------------|------|-------|---------|-------|------|
| Method       | Backbone             | mIoU | score | #param. | FLOPS | FPS  |
| DANet [23]   | ResNet-101           | 45.2 | -     | 69M     | 1119G | 15.2 |
| DLab.v3+[11] | ResNet-101           | 44.1 | -     | 63M     | 1021G | 16.0 |
| ACNet [24]   | ResNet-101           | 45.9 | 38.5  | -       |       |      |
| DNL [71]     | ResNet-101           | 46.0 | 56.2  | 69M     | 1249G | 14.8 |
| OCRNet [73]  | ResNet-101           | 45.3 | 56.0  | 56M     | 923G  | 19.3 |
| UperNet [69] | ResNet-101           | 44.9 | -     | 86M     | 1029G | 20.1 |
| OCRNet [73]  | HRNet-w48            | 45.7 | -     | 71M     | 664G  | 12.5 |
| DLab.v3+[11] | ResNeSt-101          | 46.9 | 55.1  | 66M     | 1051G | 11.9 |
| DLab.v3+[11] | ResNeSt-200          | 48.4 | -     | 88M     | 1381G | 8.1  |
| SETR [81]    | T-Large <sup>‡</sup> | 50.3 | 61.7  | 308M    | -     | -    |
| UperNet      | DeiT-S <sup>†</sup>  | 44.0 | -     | 52M     | 1099G | 16.2 |
| UperNet      | Swin-T               | 46.1 |       | 60M     | 945G  | 18.5 |
| UperNet      | Swin-S               | 49.3 |       | 81M     | 1038G | 15.2 |
| UperNet      | Swin-B <sup>‡</sup>  | 51.6 |       | 121M    | 1841G | 8.7  |
| UperNet      | Swin-L‡              | 53.5 | 62.8  | 234M    | 3230G | 6.2  |

Table 3. Results of semantic segmentation on the ADE20K val and test set. † indicates additional deconvolution layers are used to produce hierarchical feature maps. ‡ indicates that the model is pre-trained on ImageNet-22K.

다른 Task(Object Detection, Semantic Segmentation)의 backbone으로 사용했을 때 의 성능은 거의 state-of-the-art이다.

### SWIN transformer + UperNet

#### SWIN transformer란

- Vision transformer 중 하나인 Shifted Window Transformer
- ViT보다 계산량이 적고 다양한 scale을 처리 가능
  - 이미지 크기에 선형비례하는 계산량



#### SWIN transformer + UperNet

#### UperNet이란

- 객체의 세분화된 속성에 따른 segmentation을 동시에 수행하는 모델(multi-task learning)
- Upsampling 과정. input image와 크기와 같은 esgmentation map을 만들기 위해 사용



[왼쪽에서 오른쪽으로 (추론 결과): 장면 분류 및 객체, 부품, 재질 및 텍스처 파싱]

#### 1. 성능 (MAE)

| 모델           | Min  | Mean | Median | Max   |
|--------------|------|------|--------|-------|
| U-net        | 0.80 | 3.09 | 2.04   | 15.19 |
| U-net3+      | 0.74 | 3.19 | 2.40   | 13.75 |
| SWIN+Upernet | 1.03 | 3.63 | 2.38   | 16.91 |

|                                                                     | Input Image | U-Net | U-Net3+ | Swin+Upernet | GT   |
|---------------------------------------------------------------------|-------------|-------|---------|--------------|------|
| Best MAE<br>illumination<br>for<br>U-Net<br>(1 illum: 1)            | 16.84       | 0.80  | 1.16    | 1.08         | 0.00 |
| Best MAE<br>illumination<br>for<br>U-net3+<br>(2 illums: 1,2)       | 18.01       | 0.89  | 0.74    | 1.08         | 0.00 |
| Best MAE<br>illumination<br>for<br>SWIN+Uper<br>net<br>(1 illum: 1) | 15.32       | 1.73  | 2.10    | 1.03         | 0.00 |

|                                                                      | Input Image | U-Net | U-Net3+ | Swin+Upernet | GT   |
|----------------------------------------------------------------------|-------------|-------|---------|--------------|------|
| Worst MAE illumination for U-Net (2 illums: 1, 3)                    | 23.54       | 15.19 | 13.75   | 13.44        | 0.00 |
| Worst MAE illumination for U-net3+ (2 illums: 1, 3)                  | 23.54       | 15.19 | 13.75   | 13.44        | 0.00 |
| Worst MAE<br>illumination<br>for<br>SWIN+Uper<br>net<br>(1 illum: 1) | 17.25       | 10.19 | 8.88    | 16.91        | 0.00 |

**Input Image U-Net** GT 17.45 4.07 0.00 Low MAE illumination (3 illums: 1, 2, 3) 23.39 7.13 Mid MAE illumination (2 illums: 1, 3) 22.11 0.00 12.44 High MAE illumination (2 illums: 1, 2)

**Input Image** U-Net3+ GT 0.00 Low MAE illumination (3 illums: 1, 2, 3) 0.00 Mid MAE illumination (2 illums: 1, 2) 22.11 13.23 0.00 High MAE illumination (2 illums: 1, 2)

**SWIN+Upernet Input Image** GT 17.30 4.61 0.00 Low MAE illumination (3 illums: 1, 2, 3) 0.00 16.17 7.16 Mid MAE illumination (2 illums: 1, 2) 0.00 17.19 15.26 High MAE illumination (1 illum: 1)

#### 진행 시 문제점

- 1. U-net, U-net3+ 모델 크기가 24GB
  - Batch size를 8 이하로만 설정 가능
  - 2000 epoch을 도는 데 4일 이상 소모
- 2. 심화 모델의 성능이 눈에 띄게 향상되지 않음

#### 최종 보고서 전까지 수정, 보완할 부분

- SWIN+UperNet모델의 weight initialization과 learning rate 등의 hyperparameter 조정을 통한 모델 개선
- 조명의 개수와 특징에 따른 각 모델의 성능 비교, 분석

# 역할 분배

| 박윤정 | 발표 자료 및 자료조사, 개발 |
|-----|------------------|
| 유수민 | 발표 자료 및 자료조사, 개발 |
| 조윤수 | 발표 자료 및 자료조사, 개발 |

# 감사합니다!