ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

Cơ sở trí tuệ nhân tạo

Tìm kiếm đối kháng

Nguyễn Ngọc Đức 2024

Trò chơi đối kháng

Nguyễn Ngọc Đức Cơ sở trí tuệ nhân tạo 2024 1 / 28

Trò chơi

- Trò chơi là một trong những nghiên cứu chính cho việc phát triển các chương trình thông minh
- Đặc điểm:
 - 1 Môi trường đa nhân tố: sự hiện diện của những người chơi với mục đích không đồng nhất
 - Bất định (uncertainty): chiến lược di chuyển không rõ ràng

Các loại trò chơi

- Trò chơi có thể được phân loại dựa trên các yếu tố:
 - Hành động
 - 2 Số lượng người chơi
 - 3 Đối kháng?
 - 4 Cụ thể (perfect information)?

Trò chơi đối kháng 2 người l

Tập người chơi $Players = \{agent, opp\}$

- 1 s_0 : trạng thái bắt đầu
- $oxed{2}$ Action(s): Các hành động có thể thực hiện với trạng thái s
- ${f 3}$ Succ(s,a): trạng thái kết quả thực hiện hành động a ở trạng thái s
- 4 IsEnd(s): kiểm tra trạng thái s có phải là trạng thái cuối (kết thúc trò chơi)
- $6 \ Player(s) \in Players$: người chơi điểu khiển trạng thái s

Trò chơi đối kháng 2 người II

- Có 2 đặc điểm chính:
 - 1 Tất cả mục tiêu đều nằm ở trạng thái cuối cùng
 - 2 Người chơi khác nhau điều khiển các trạng thái khác nhau

Cờ vua

- Players={đen, trắng}
- State(s): vị trí của các quân cờ
- Action(s): nước đi hợp lệ mà người chơi Player(s) có thể thực hiện
- IsEnd(s): kiểm tra trạng thái hiện tại là chiếu bí hay hòa
- lacksquare Utility(s): $+\infty$ nếu đen thắng, $-\infty$ nếu trắng thắng, 0 nếu hòa

Thành tựu hiện nay l

Cờ đam:

■ Độ phức tạp: $\approx 10^{18}$ nút

■ 1950: chương trình đầu tiên

■ 1991: Chinook đánh bại hoàn toàn nhà vô địch Marion Tinsley

Thành tựu hiện nay II

- Cờ vua:
 - Độ phức tạp: $b \approx 35, d \approx 100, 10^{154}$ nút
 - 1997: Deep Blue đánh bại Gary Kasparov trong ván đấu 6 trận.

Thành tựu hiện nay III

- Cờ vây:
 - Độ phức tạp: $b \approx 361, d \approx 200, 10^{174}$ trạng thái bàn cờ
 - Không thể đoán trước được ngay cả ở giai đoạn thu quan
 - 2016: AlphaGo đánh bại kỳ thủ cửu đẳng Lee Sedol (4-1)

Vấn đề

- Ta không biết rõ chiến lược của đối thủ
- Duy lý cá nhân
 - Mỗi người tham gia cuộc chơi sẽ cố gắng giành lợi ích tuyệt đối về bản thân
- Thuật toán Minimax

Minimax

Minimax I

- Nếu chúng ta có khả năng đọc suy nghĩ ⇒ Expectimax
- Tuy nhiên, trên thực tế chúng ta không biết chiến lược của đối thủ
- Giả định trường hợp xấu nhất: đối thủ làm mọi cách để giảm thiểu lợi ích

Minimax II

Lợi ích của đối thủ được thay thế bằng lợi ích tối thiểu

$$V_{minmax}(s) = \begin{cases} Utility(s) & IsEnd(s) \\ \max_{a \in Actions(s)} V_{minmax}(Succ(s, a)) & Player(s) = agent \\ \min_{a \in Action(s)} V_{minmax}(Succ(s, a)) & Player(s) = opp \end{cases}$$

Minimax III

Hình 1: Minimax

Expectiminimax

Expectimax

- Nếu trò chơi có yếu tố ngẫu nhiên?
- Giả sử mỗi nút ngẫu nhiên ta đều biết được phân phối của các successor
- Chiến lược bất định

Trò chơi 3 chiếc hộp

- Có 3 chiếc hộp, mỗi hộp chứa 2 con số.
- Bạn chọn một chiếc hộp sau đó tung đồng xu; nếu ra mặt ngửa, thay vì chọn hộp của bạn, mình sẽ chọn hộp bên trái và một con số nằm trong hộp đó
- Nhiệm vụ của bạn là phải tối đa con số mà mình chọn

Expectiminimax I

■ Trò chơi trên có thể được mô hình bằng expectiminimax.

$$V_{exptminmax}(s) = \begin{cases} Utility(s) & IsEnd(s) \\ \max_{a \in Actions(s)} V_{exptminmax}(Succ(s, a)) & Player(s) = agendal \\ \min_{a \in Actions(s)} V_{exptminmax}(Succ(s, a)) & Player(s) = opp \\ \sum_{a \in Actions(s)} \pi_{coin}(s, a) V_{exptminmax}(Succ(s, a)) & Player(s) = coin \end{cases}$$

Expectiminimax II

$$\pi_{\mathsf{coin}}(s, a) = \frac{1}{2} \text{ for } a \in \{0, 1\}$$

Hình 2: Expectiminimax

Tía nhánh Alpha-Beta

Nguyễn Ngọc Đức Cơ sở trí tuệ nhân tạo 2024 20 / 28

Tía nhánh Alpha-Beta I

Ý tưởng chính:

- Giữ ngưỡng trên α của nút
 min và ngưỡng dưới β của
 nút max
- Tỉa nhánh một nút nếu khoảng giá trị của nút đó không giao với nút cha (α < β)

Tia nhánh Alpha-Beta II

- Việc tỉa nhánh không ảnh hưởng đến giá trị cuối cùng của trò chơi
- Trong trường hợp tốt nhất độ phức tạp giảm xuống $O(b^{m/2})$
- Tìm kiếm toàn bộ cây trò chơi cờ vua???

Tia nhánh Alpha-Beta II

- Việc tỉa nhánh không ảnh hưởng đến giá trị cuối cùng của trò chơi
- Trong trường hợp tốt nhất độ phức tạp giảm xuống $O(b^{m/2})$
- Tìm kiếm toàn bộ cây trò chơi cờ vua???

vô vọng!!!

Hàm đánh giá

Nguyễn Ngọc Đức Cơ sở trí tuệ nhân tạo 2024 23 / 28

Hàm đánh giá

- Xấp xỉ lợi ích của trạng thái hiện tại
- Thứ tự trạng thái cuối cùng đúng với lợi ích của trò chơi
 - Các trạng thái chiến thắng cần được đánh giá tốt hơn hòa và hòa tốt hơn thua
- Việc tính toán không quá lâu!
- Với các trạng thái không phải là trạng thái cuối, việc đánh giá cần phải tương quan chặt chẽ với tỷ lệ chiến thắng

Ví dụ

Eval(s) = material + mobility +king - safety + center - control

- $material = 10^{100}(K K') + 9(Q Q') + 5(R R') + 3(B B' + N N') + 1(P P')$
- **.**..

Bài tập I

Bài tập II

Tài liệu tham khảo

- [1] Bùi Tiến Lên, Bộ môn Khoa học máy tính Bài giảng môn Cơ sở trí tuệ nhân tạo
- [2] Michael Negnevitsky

Artificial Intelligence: A Guide to Intelligent Systems (3rd Edition)

[3] Dan Klein and Pieter Abbeel

CS188: Introduction to Artificial Intelligence