Práctico 5: Sustitución, Unificación, Resolución

Ejercicio 1

Sea S un conjunto de cláusulas y C una cláusula sobre un lenguaje de 1er orden. Demuestre que S \vdash C sii S $\{ \neg C \}$ es insatisfactible.

Ejercicio 2

Deduzca, utilizando resolución:

- Sipyp→q, entonces q [Modus Ponens]
- Si p→q y ¬q , entonces ¬p [Contrarrecíproco]

Ejercicio 3

La propiedad del ejercicio 1 permite usar la resolución para hacer demostraciones por refutación, i.e. deducir la cláusula vacía a partir de un conjunto de cláusulas. Demuestre por refutación las propiedades del ejercicio 2.

Ejercicio 4

Demuestre que las siguientes fórmulas son insatisfactibles:

- a. $(\neg p \lor q) \land \neg q \land p$
- b. $(p \lor q) \land (r \lor q) \land \neg r \land \neg q$
- c. $(p \lor q) \land (\neg p \lor q) \land (\neg r \lor \neg q) \land (r \lor \neg q)$

Ejercicio 5

- a) Sea $\theta = \{x | a, y | b, z | g(x,y)\}$ una sustitución. Sea E = P(h(x),z). Halle $E\theta$.
- b) Sean $\theta_1 = \{x|a, y|f(z), z|y\}$ y $\theta_2 = \{x|b, y|z, z|g(x)\}$ sustituciones. Halle la composición de θ_1 y θ_2 .
- c) Demostrar que dadas dos sustituciones $(\theta_1 \ y \ \theta_2) \ y$ una expresión E, se cumple: $E(\theta_1 \circ \theta_2) = (E\theta_1)\theta_2$
- d) Demostrar que para cualesquiera sustituciones θ_1 , θ_2 y θ_3 se cumple: $(\theta_1 \circ \theta_2) \circ \theta_3 = \theta_1 \circ (\theta_2 \circ \theta_3)$

Ejercicio 6

Para cada par de expresiones indique si existe una sustitución que las unifica. En caso afirmativo dé un unificador más general.

a)	padre(Z, juan)	padre(jorge, juan)
b)	tio(X, juan)	tio(W, juan)
c)	q(f(X,Y), X, h(a))	q(f(b,Z), W, h(Z))
d)	r([X Xs])	r([a, b, c [d]])
e)	t([])	t([X Xs])
f)	p(X)	p(f(X))
g)	s(X, f(X))	s(f(Z), Z)
h)	a(f(Y), W, g(Z))	a(X, X, V)
i)	b(f(Y), W, g(Z))	b(V, X, V)
j)	c(a, X, f(g(Y)))	c(Z, h(Z,W), f(W))

<u>Nota</u>: La notación [X|Y] indica la lista con primer elemento X y resto Y. [] es la lista vacía. La notación [a,b,...|R] indica la lista cuyos primeros elementos son a,b,..., con resto R, [a,b,c|R] = [a|[b|[c|R]]]. La notación [a] indica la lista cuyo único elemento es a, [a] = [a|[]]. Notar que el constructor de lista es un functor binario.

Ejercicio 7

Sea E una cláusula sobre un lenguaje de 1er orden, θ una sustitución. Demostrar que E \vdash E θ

<u>Nota</u>: si E es la cláusula $\forall (L_1 \lor ... \lor L_n)$, por $E\theta$ se entiende $\forall ((L_1 \lor ... \lor L_n) \theta)$

Ejercicio 8

Calcule el m.g.u. del siguiente conjunto de expresiones S:

$$S = \{p(x_1, ..., x_n), p(f(x_0, x_0), f(x_1, x_1), ..., f(x_{n-1}, x_{n-1}))\}.$$

Indique el costo del chequeo de ocurrencia en el paso k-ésimo del algoritmo de unificación.

Ejercicio 9

Sean C y D dos cláusulas sobre un lenguaje de 1er orden. Decimos que C **subsume** a D, si existe una sustitución θ t.q. $C\theta \subseteq D$

- a) Demostrar que si C subsume a D, entonces C ⊢ D
- b) Indicar, para los siguientes pares de cláusulas, si C subsume a D
 - $C = p(x,y) \vee q(z), D = q(a) \vee p(b,b) \vee r(w)$
 - $C = p(x,y) \vee r(y,x), D = p(a,y) \vee r(y,b)$

Ejercicio 10

Demuestre que el siguiente conjunto de cláusulas es insatisfactible:

$$\{ \neg p(x) \lor q(f(x),x), p(g(b)), \neg q(y,z) \}$$