Homework 8: Randomness

Bhishan Poudel

Oct 24,2015

Contents

1	Que	estion 1: Random Sequences	2	
	1.1	part abc: intrinsic function $mod(a,p) \dots \dots \dots$	2	
	1.2	part d: intrinsic function drand(seed)	4	
	1.3	part e:	5	
2	Question 2: Checks on Random Sequences			
	2.1	part a: checking uniformity for drand	6	
	2.2	part b: Testing sobol sequence	6	
3	Question 3: Random Walk (Landau second edition page			
	147	•	6	
			6	
	3.2		8	
	3.3		9	
\mathbf{L}_{i}	ist o	of Figures		
	1	random numbers using $mod(a,p)$	3	
	2	= · · · · · · · · · · · · · · · · · · ·	4	
	3		5	
	4	•	7	
	5	plot of rms distance versus square root of steps	8	
	6		9	

1 Question 1: Random Sequences

In this question I studied some programs to test and generate the random numbers. The programs are mod(a,M), ran(flag), drand(flag), and a subroutine sobseqn.f90.

1.1 part abc: intrinsic function mod(a,p)

In this part I used the intrinsic program of fortran 90 compiler called mod(a,p). Description:

MOD(A,P) computes the remainder of the division of A by P.

Arguments:

A Shall be a scalar of type INTEGER or REAL.

P Shall be a scalar of the same type and kind as A and not equal to zero.

Return value: The return value is the result of A - (INT(A/P) * P). The type and kind of the return value is the same as that of the arguments. The returned value has the same sign as A and a magnitude less than the magnitude of P.

In this question I varied A and P so that it gives different random numbers. Here, first argument $A = r_i = ar_{i-1} + c$

second argument M = 256

I varied the values of r(i) and fixed value of m=256 so that I got 256 random numbers.

Then I plotted r(i) vs. r(i+1).

The solution directory is:

location : hw8/qn1abc, qn1d and qn1e

source code : hw8qn1abc.f90, hw8qn1d.f90, hw8qn1e.f90 plots : hw8qn1c.eps, hw8qn1d.eps, hw8qn1e.eps datafiles : hw8qn1a.dat, hw8qn1c.dat, hw8qn1e.dat

provided subroutines : sobseqn.f90 makefile : Makefile

Figure 1: random numbers using mod(a,p)

1.2 part d: intrinsic function drand(seed)

In this part I studied the fortran intrinsic function drand (seed) to study random numbers. I created the data file for r(i) vs. r(i+1) and plotted the graph.

The figures are shown below:

random numbers generated by ran and drand

Figure 2: random numbers using drand(seed)

1.3 part e:

In this part I used the subroutine 'sobseqn' to create and study random numbers. Then, I plotted the graph of r(i) vs. r(i+1).

Figure 3: random numbers using subroutine 'sobseqn'

2 Question 2: Checks on Random Sequences

In this part I tested two random generator functions, viz. drand(seed) and 'sobseqn' to check the uniformity of these functions.

The solution directory is:

location : hw8/qn2

source code : rand_check.f90, drand_check.f90

datafiles : rand_check.dat, drand_check.dat, hw8qn2b.dat

provided subroutines : randcheck.f90, stest.f90, sobseqn.f90

2.1 part a: checking uniformity for drand

In this part I tested fortran built-in function ran and drand for the uniformity. The code randcheck.f90 was provided and I modified it.

2.2 part b: Testing sobol sequence

In this part I tested the given subroutine sobol sequence. The code stest.f90 was modified. The source code is hw8qn2b.f90.

3 Question 3: Random Walk (Landau second edition page 147)

3.1 part ab:

In this part I modified the code walk.f90, normalized the plot and the plot looks like as I expected.

Random walks for N=1000 steps

Figure 4: plot of random walks

3.2 part cde:

In this part each trial have 1000 steps and calculated the root mean square distance. I plotted R_{rms} versus \sqrt{N} . I started N with small value and I took 3 significant figures. Here I took N=1000, when N increases the gaussian distribution fits well and values of rms distance and square root of N becomes closer and closer. The plot is shown below:

Figure 5: plot of rms distance versus square root of steps

3.3 part f:

In this part I plotted the scatterplot of random walk. The plot is uniform in all the four quadrant. The plot is shown below:

The figures are shown below:

Scatter plot of random walks

Figure 6: scatterplot