Galois, Fields and Algebras

Naveensurya V naveen24@iisertvm.ac.in

January 19, 2025

Contents

1	First half of Galois Theory	2
	1.1 Basic Definitions	2
	1.2 Dedekind Theorem	2
	1.3 Artin Theorem	2
	1.4 Galois extension	3
2	Results from Ring Theory	3

1 First half of Galois Theory

1.1 Basic Definitions

Definition 1.1. Let L/K be a field extension and **Automorphism** of L/K is defined as

$$Aut(L/K) := \{ \phi : L \to L | \phi(k) = k, \ \forall k \in K \}$$

Definition 1.2. Let $U \subseteq Aut(L/K)$ then $\mathscr{F}(U)$ is defined as

$$\mathscr{F}(U) := \{ x \in L | \Psi(x) = x, \ \forall \Psi \in U \}$$

Definition 1.3. Let $Z \subset L$ be a intermediate field between L and K then $\mathscr{G}(Z)$ is defined as

$$\mathscr{G}(Z) := Aut(L/Z)$$

Lemma 1.1. Let $U \subseteq Aut(L/K)$ and $Z \subset L$ be a intermediate field between L and K

- (a) $U \subseteq \mathscr{G} \circ \mathscr{F}(U) := Aut(L/\mathscr{F}(U))$
- (b) $Z \subset \mathscr{F} \circ \mathscr{G}(Z)$
- (c) \mathscr{F} is inclusion reversing. i.e, $U_1 \subseteq U_2 \implies \mathscr{F}(U_2) \subseteq \mathscr{F}(U_1)$
- (d) \mathscr{G} is inclusion reversing. i.e, $Z_1 \subseteq Z_2 \implies \mathscr{G}(Z_2) \subseteq \mathscr{G}(Z_1)$
- (e) $\mathscr{G} = \mathscr{G} \circ \mathscr{F} \circ \mathscr{G}$
- (f) $\mathscr{F} = \mathscr{F} \circ \mathscr{G} \circ \mathscr{F}$

Proof. Isn't it obvious \heartsuit

1.2 Dedekind Theorem

Theorem 1.1. [Dedekind's theorem on linear independence of characters.] Distinct field automorphims $\sigma_1, \ldots, \sigma_n$ from $L \to L$ are linearly independent on the L-vector space of all mappings from $L \to L$

Proof.

Definition 1.4. Let L/K be a field extension. we can view L as vector space over K and degree of extension is defined as

$$[L:K] := dim_K(L)$$

Lemma 1.2. Suppose $[V_1 : K] = n$ and $[V_2 : K] = m$, then

$$dim_K(Hom_K(V_1, V_2)) = mn$$

Lemma 1.3. Let L/K be a finite field extension. Then $Aut(L/K) \leq [L:K]$

1.3 Artin Theorem

Definition 1.5. Let $U \subseteq Aut(L/K)$ be a finite subgroup. Then the **U-trace** of $\alpha \in L$ is defined as

$$tr_U(\alpha) := \sum_{\sigma \in U} \sigma(\alpha)$$

Lemma 1.4. $tr_U: L \to \mathscr{F}(U)$ is a K-linear map. If $char(K) \nmid |U|$, then $tr_U: L \to \mathscr{F}(U)$ is surjective

Lemma 1.5. tr_{II} is not identitically zero.

Theorem 1.2. [Artin] Let $U \subseteq Aut(L/K)$ be a finite subgroup. Then $[L: \mathcal{F}(U)] = |U|$ and $\mathcal{G} \circ \mathcal{F}(U) = U$

Proof. Exercise. \Box

Corollary 1. If L/K is a finite field extension, then $\mathscr{G} \circ \mathscr{F} \equiv id$

1.4 Galois extension

Definition 1.6. An extension L/K is Galois extension if

$$\mathscr{F} \circ \mathscr{G}(K) = K$$

 $Equivalently, \ \mathscr{F}(Aut(L/(K))) = K$

Corollary 2. Let $G \subseteq Aut(L)$ be a finite subgroup and let $K := \mathscr{F}(G)$. Then L/K is a galois extension and Aut(L/K) = G

Proof.

Corollary 3. Let L/K be a finite extension. Then L/K is Galois $\iff |Aut(L/K)| = [L:K]$

2 Results from Ring Theory