

Encadrants : B. Lihoreau, A. Novak

Eliot Deschang

Schéma électrique du circuit de la pédale MXR Distortion +

- O Étude expérimentale
- Mise en équation du système + résolution numérique
- Comparaison résultats expérimentaux/numériques
- Résolution en temps réel
- Création d'un plugin d'effet audio

Étude expérimentale - Montage

Schématisation de la chaîne de montage.

Étude expérimentale - Résultats

Équations du système

Équation de la diode de Shockley:

$$I_d = I_s \left(e^{V/\eta V_t} - 1 \right)$$

Équation du "Diode Clipper" ou écrêteur à diodes:

$$\frac{\mathrm{d}V_o}{\mathrm{d}t} = \frac{V_i - V_o}{RC} - 2\frac{I_s}{C}\sinh\left(\frac{V_o}{\eta V_t}\right)$$

$$\frac{\mathrm{d}v}{\mathrm{d}t} = v' = f(t, u(t), v(t))$$

Discrétisation de l'équation

$$v'_n = f(t_n, u_n, v_n) = \frac{u_n - v_n}{RC} - 2\frac{I_s}{C}\sinh\left(\frac{v_n}{\eta V_t}\right)$$

Résolution numérique: <u>Méthode des</u> <u>trapèzes</u>

$$v_{n+1} = v_n + \frac{T}{2}(v'_n + v'_{n+1})$$

Solveur de racine: <u>Newton-raphson</u> (pour les méthodes implicites)

Comparaisons

Comparaison du signal de sortie théorique obtenue par la méthode des trapèze et les données expérimentales pour une excitation sinusoïdale. Fs = 192 kHz.

f=200 Hz, A=2 V.

f=800 Hz, A=1 V.

Temps réel - Transition

Temps réel - Simplification du modèle

Rappel: équation de l'écrêteur à diodes

$$\frac{\mathrm{d}V_o}{\mathrm{d}t} = \frac{V_i - V_o}{RC} - 2\frac{I_s}{C}\sinh\left(\frac{V_o}{\eta V_t}\right)$$

Simplification du système :

approache statique:
$$\frac{\mathrm{d}V_o}{\mathrm{d}t} = 0$$

approximation par sigmoïde

Approche statique de l'étage d'écrêtage

Comparaison du signal de sortie théorique obtenue par la méthode des trapèze et la méthode du sculpteur de forme pour une excitation sinusoïdale. Fs = 384 kHz.

f=200 Hz, A=2 V.

f=3 kHz, A=1 V.

Temps réel - Plugin

Simulation en temps différé satisfaisantes visà-vis des résultats expérimentaux

Approche statique suffisante

Plugin audio performant et simple d'utilisation

Amélioration de la solution en temps réel

Modélisation de l'étage de filtrage actif

- -D. T. Yeh, J. Abel, et J. O. Smith, "Simplified, physically informed models of distortion and overdrive guitar effects pedals", actes de la conférence internationale sur les effets audio numériques (DAFx-07), Bordeaux, 2007.
- -L. F. Shampine, "Numerical Solution of Ordinary Differential Equations", Chapman and Hall, New York, 1994.
- -J. O. Smith, "Elementary Finite Different Schemes", Music 420 Lecture of Stanford University, Californie, 2020.
- T. Serafini, S. Barbati, "A Perceptual Approach on Clipping and Saturation", http://www.simulanalog.org/clip.pdf, 2002.

De manière plus générale :

-

- -Papiers des conférences DAFx : https://dafx2020.mdw.ac.at/
- -Page d'enseignement de Julius O. Smith : https://ccrma.stanford.edu/~jos/pasp/