

S1 RT2 – Saé 13 : découvrir un dispositif de transmission

Ressources impliquées: R104 / R105 / R113 / R114

Séance non encadrée n°1

Etude de supports de transmission : Câbles Coaxiaux Fibres Optiques

Consigne pour cette séance de Saé 13 non encadrée

- Durée de la séance : 2h
- Lieu : en présentiel en salle « machine » à l'I.U.T..
- Le contenu : résultats graphiques d'expériences sur les supports de transmission et signaux utilisés pour caractériser ces supports.
- Ce qui vous devez faire :
 - Comprendre des graphiques
 - Répondre aux questions posées
 - Déposer le diaporama complété avec votre travail sur l'E.N.T..
 - https://ent.uca.fr/moodle/course/view.php?id=27097§ion=4
- Comment travailler:
 - Votre travail peut être fait en binome
 - Vous déposerez CHACUN le diaporama sur l'ENT en idiquant le nom des 2 auteurs.
 - Nom du fichier retour : Sae13-Séance1-NOMPrenom1-NOMPrenom2.pptx ou .pdf
- L'évaluation du travail :
 - Les enseignants doivent pouvoir avoir accès à votre travail pour le consulter avec vous lors des séances de T.P. ou de Saé.
 - Des questions seront posées sur les notions abordées lors des prochains examens des ressources concernées.

Caractérisation d'un signal sinusoïdal à l'aide un oscilloscope

Comprendre et se familiariser avec les signaux ...

Présentation

• Réglage du signal

• Forme : sinus

• Amplitude : 4V crête

• Fréquence : 1kHz

• Calculer la période de ce signal.

• Montage:

Découverte de l'appareil

• Observation du signal

• Observer l'échelle des temps (échelle horizontale): 500µs / carreau

• Observer l'échelle des tensions (échelle verticale) : 2V / carreau

Relevé de caractéristiques

- Observation du signal
 - Relever la période de ce signal et comparer avec la valeur théorique calculée précédemment.
 - Relever la valeur crête-à-crête et vérifier que c'est bien la valeur attendue.

- Signal attendu:
 - Forme sinusoïdale
 - Fréquence : 1MHz
 - Amplitude crête-à-crête : 4V
 - Vérifier si l'oscillogramme correspond bien au signal prévu.

- Signal attendu:
 - Forme sinusoïdale
 - Fréquence : 20 kHz
 - Amplitude crête-à-crête : 10V
 - Vérifier si l'oscillogramme correspond bien au signal prévu.

• Signal attendu:

•	Forme	•
---	-------	---

• Fréquence :

• Amplitude crête-à-crête : _____

• Relever les caractéristiques de ce signal.

• Signal attendu:

•	Forme	•		
---	-------	---	--	--

- Fréquence : _____
- Amplitude crête-à-crête : _____
 - Relever les caractéristiques de ce signal.
 - Calculer la valeur efficace de ce signal et vérifier que la valeur lue à l'aide des curseurs est la bonne.

 DSO-X 2004A, MY57482296: Thu Jan 28 17:45:26 2021

Pour un signal sinusoïdal, on pourra admettre que :

$$Veff = \frac{Vcrete}{\sqrt{2}}$$

• Signal attendu:

• Forme : _____

• Fréquence : _____

• Amplitude crête-à-crête : _____

• Valeur efficace:

• Relever les caractéristiques de ce signal.

DSO-X 2004A, MY57482296-Thu Jan 28 17:50:10 2021

Etude de transmission par câble coaxial

Appliquer les connaissances acquises .

Mesure du temps de propagation

- Présentation du contexte
 - Ligne coaxiale de longueur Lo
 - Générateur placé en entrée de la ligne : génération d'une impulsion ou d'un signal sinusoïdal.
 - Observation à l'oscilloscope en entrée et en sortie de la ligne.

• Rappeler la valeur de la vitesse d'un signal électrique dans une ligne coaxiale : Vp.

Mesure du temps de propagation

- Expérience n°1 : une simulation
 - Sur cette simulation, déterminer le temps mis par le signal pour parcourir une ligne : temps de propagation Tp1.
 - En déduire la longueur de cette ligne.

Mesure du temps de propagation

- Expérience n°2 : un relevé expérimental
 - Sur ce relevé, déterminer le temps mis par le signal pour parcourir la ligne : temps de propagation Tp2.
 - En déduire la longueur de cette ligne.

- Mesures à 1kHz:
 - Signal jaune : signal en entrée du câble coaxial
 - Signal vert : signal en sortie du câble coaxial
 - Relever l'amplitude crête-à-crête de chacun des signaux
 - En déduire l'amplification : Vs / Ve

- Mesures à 100kHz:
 - Mêmes mesures que précédemment

- Mesures à 2MHz:
 - Mêmes mesures que précédemment

- Mesures à 10MHz:
 - Mêmes mesures que précédemment

- Mesures à 30MHz:
 - Mêmes mesures que précédemment

- Résumé des mesures et calculs des amplifications et atténuations
 - Remplir le tableau ci-dessous :
 - Lignes vertes : rentrer les valeurs lues.
 - Lignes oranges et grises : utiliser les fonctions mathématiques du tableur pour réaliser les calculs.

Fréquence	1kHz	100kHz	2MHz	10MHz	30MHz
Ve cc (Volt)					
Vs cc (Volt)					
Amplification: Vs/Ve					
Amplification en dB					
Atténuation : Ve/Vs					
Atténuation en dB					

Etude de transmission par fibres optiques

Découverte du contexte

F Capallera / octobre 2021 R&T1 / Saé 13

• Le poste de travail à l'I.U.T.

- Les lignes de transmission
 - Le tiroir des lignes
 - Rechercher la dénomination usuelle des lignes fibres optiques.

- Les jarretières
 - Rechercher quelle est la fonction des jarretières.

• Les connecteurs

• Rechercher la différence qui existe entre ces différents connecteurs. Préciser les applications de chacun.

• Les bobines (amorce et fin)

Une bobine de 500m en valise grise

Une bobine de 500m en valise jaune

- Les appareils de mesure
 - Un photomètre
 - Un réflectomètre
 - Rechercher l'utilisation et le mode de fonctionnement de chacun de ces appareils.

Utilisation d'un photomètre

• Vérification des données de l'appareil

• Calculer la puissance en Watt correspondant à la puissance affichée en dBm.

• Calculer la puissance en dBm correspondant à la puissance affichée en Watt.

• Ces mesures sont elles cohérentes?

- Présentation du mode opératoire :
 - Mesure en deux étapes :
 - Mesure de la puissance sans la fibre à tester = mesure de référence (en dBm) : Pref(dBm)
 - Adjonction de la fibre à tester et mesure de la puissance à sa sortie : Ps (en dBm)
 - Donner l'expression de l'atténuation en dB en fonction de Pref(dBm) et Ps(dBm)

• Mesure de la ligne G657,

- Résultat de la mesure de référence (étalonnage)
 - Mesure sans la fibre à tester

- Résultat de la mesure de la fibre
 - Mesure en sortie de la fibre à tester

- Exploitation des résultats :
 - Déterminer l'atténuation dans cette fibre optique
 - Si la longueur de cette fibre est donnée, Lo=1,6km, déterminer la valeur de l'atténuation linéique de cette fibre (en dB/km).
 - A quelle longueur d'onde est réalisée cette mesure ...

- Même procédure à une longueur d'onde différente
 - A quelle longueur d'onde sont réalisées les mesures ci-dessous.
 - Déterminer l'atténuation de cette fibre.
 - En déduire son atténuation linéique.

Fin

Bonne rédaction ...