Raport z projektu: Stresowanie modelu rozpoznającego obiekty

Autor: Edyta Cal

1. Opis projektu

1.1. Cel projektu

Celem projektu było zrozumienie czy wielkość, położenie a także tło na którym znajduje się obiekt ma wpływ na jego detekcję.

1.2. Założenia projektowe

Użyto modelu detekcji obiektów YOLOv3 wytrenowanego na bazie COCO 2017.

Detekcję obiektów wykonywano na zdjęciach w rozdzielczości Full HD (1920x1080 px)

Wybrano cztery, znacząco różniące się od siebie klasy: jabłko, samochód, pies oraz krzesło

Dla każdej z klas wybrano po 20 obiektów, o wymiarach 1024x1024 px (jabłko pies), 1024x2048 px (krzesło) oraz 2048x1024 px (samochód).

Wybrano 13 teł: białe, szum RGB, po dwa charakterystyczne dla danej klasy i trzy losowe

Wybrano 6 lokalizacji obiektu wg. schematu nr 1, gdzie liczba 5 oznacza miejsce losowe

Schemat nr 1: Oznaczenia lokalizacji obiektu na zdjęciu. Lokalizacja 5, oznacza lokalizację losową

Obiekty były skalowane do wielkości 25%, 18,75%, 12,5% oraz 6,25% oraz umieszczane w lokalizacjach przedstawionych na schemacie nr 1.

Obiekty umieszczane były także "w skali 100%" (skalowane były na tyle by zmieściły się w rozdzielczości Full HD), jednak umieszczane były wtedy tylko w lokalizacji nr 0 (środek zdjęcia).

2. Przebieg projektu

2.1. Tworzenie danych do analizy

Projekt zaczęto od znalezienia po 20 zdjęć z obiektami dla każdej z klas, wycięciu obiektów i umieszczeniu ich na przezroczystym tle. Obiekty w zależności od klasy, były rozmiaru 1024x1024 px w przypadku klasy jabłko i pies, 1024x2048 px w przypadku klasy samochód oraz 2048x1024 px w przypadku klasy krzesło. Spreparowane obiekty można znaleźć w folderze objects.

Napisano algorytm *generator.py*, którego celem było skalowanie obiektów i umieszczenie ich na tłach, w lokalizacjach wskazanych na schemacie nr 1. . Jego drugim celem było zebranie danych użytych do generacji zdjęć w pliku .csv.

Napisano także algorytm *detektor_yolo.py*, który używając modelu YOLOv3 przeprowadzał rozpoznawanie obiektów na wygenerowanych wcześniej zdjęciach. On także zbierał dane do pliku .csv.

W celu ułatwienia analizy napisano także algorytm *heatmap.py*, który służył wygenerowaniu map ciepła występowania interesujących nas klas na zdjęciach z bazy COCO.

Napisano algorytmy takie jak *detection_image_test.py*, służący detekcji i podglądowi wyniku działania algorytmu rozpoznającego obiekty na pojedynczych zdjęciach (głównie w celu analizy anomalii) oraz kilka innych służących głównie organizacji wytworzonych danych.

2.2. Analiza zebranych danych

Analiza danych została przeprowadzona na podstawie wygenerowanych danych, informacji na temat bazy COCO (w tym mapy ciepła dla klas oraz liczba obiektów w bazie reprezentujących daną klasę) oraz zasadzie działanie modelu YOLOv3.

Wielkość obiektu

Wielkość obiektu ma największy i najbardziej zauważalny wpływ na jego rozpoznawanie. Następuje gwałtowny spadek w skuteczności rozpoznawania obiektów między skalami 18,75% a 12,5% (wielkość obiektu pomiędzy ok. 380 a 120 px (największy wymiar))

Skala:	Jabłko	Pies	Samochód	Krzesło
100%	84,23	95,38	75,76	68,07
25%	77,67	57,05	78,46	65,93
18,75%	54,48	37,56	75,75	54,48
12,5%	14,74	8,58	56,6	23,71
6,25%	0,57	0,32	15,38	1,35
Ogółem	38,75	28,66	57,31	37,66

Tabela nr 1: Skuteczność rozpoznawania klas w zależności od skali

■ Tekstura\Złożoność obiektu

Warto uwzględnić na ilu obiektach danej klasy wytrenowano model. W bazie COCO znajduje się 13354 zdjęć krzeseł, 12786 zdjęć samochodów, 4562 zdjęć psów oraz 1662 zdjęć jabłek. Sugeruje to, że rozpoznawalność krzeseł powinna być największa z tych czterech klas, tymczasem jest mniejsza od rozpoznawalności jabłka, którego zdjęć znajduje się najmniej w bazie. Wynika to z tego, że jabłko jest stosunkowo prostym obiektem. Jednak różnica w rozpoznawalności samochodów a krzeseł jest ogromna. Wygląd obu obiektów jest skomplikowany, jednak model detekcji działa w inny sposób niż ludzki mózg. Dla ludzi ważniejsze są kształty, a dla modelu tekstury. Samochody są na ogół budowane z tych samych materiałów (blacha, szkło), tymczasem krzesła mogą być zbudowane z różnych materiałów (np. drewno, plastik) mogą też być dodatkowo obite różnym materiałem.

■ Tło

Detektor osiągał radził sobie dobrze w przypadku teł białego i szumu RGB (*white* i *noise_RGB*) w przypadku wszystkich klas. Dla każdej z klas najsłabsze wyniki były dla tła z graffiti (tło *backg1*).

Dla małych skal (6,25%, 12,5%), można było zauważyć zależność między zawartością bazy COCO, skutecznością rozpoznawania detektora. Najwyraźniej było to widać dla klasy pies:

Rysunek 1: Skuteczność rozpoznawania klasy pies dla skali 12,5% w zależności od tła.

W bazie COCO, można wyróżnić dużą podgrupę zdjęć, które zawierają obiekt klasy pies na tle trawy. Natomiast tła *backg3* i grass to zdjęcia w zdecydowanej większości przedstawiające trawę.

Podobną zależność można wyraźnie zauważyć także dla klasy krzesło; dla teł backg3, beach, grass.

Lokalizacja obiektu

Po analizie otrzymanych danych okazało się, że dla małych skal (12,5% i 6,25%), rozmieszczenie obiektów na zdjęciach ma wpływ na skuteczność rozpoznawania obiektów. Jednak po porównaniu ich z mapami ciepła wygenerowanych na podstawie zdjęć z bazy COCO, zależności te nie pokrywają się w pełni. Przez to nie można jednoznacznie stwierdzić, iż skuteczność detekcji obiektów zależy od ich lokalizacji.

Rysunek nr 2: Skuteczność rozpoznawania obiektów klasy samochód w zależności od lokalizacji obiektu i skali (na pomarańczowo zaznaczono dane dla skali 6,25%). Sądząc po mapie ciepła (Rysunek nr 3), wynik dla lokalizacji 1 i 2 powinien być zbliżony.

Rysunek nr 3: Map a ciepła dla obiektów klasy samochód wygenerowana na podstawie zdjęć z bazy danych COCO z naniesionym schematem oznaczeń lokalizacji obiektów.

2.3. Anomalie

Na 26000 wygenerowanych zdjęć wystąpiło tylko 16 anomalii (wystąpiły one tylko dla 7 obiektów). Polegały one najczęściej na wykryciu błędnej obiektu, gdy w istocie go tam nie było (15), i tylko raz na rozpoznaniu obiektu jako dwóch różnych.

Jedną z ciekawszych anomalii jest wynik detekcji przeprowadzonej na zdjęciu *E15_002879*. Użyte do jego generacji tło *plate* zostało użyte do generacji także 1999 innych zdjęć, jednak tylko w tym jednym przypadku miska została rozpoznana jako jabłko.

Zdjęcie nr 1: E15_002879.

3. Wnioski

Jak dla każdego modelu detekcyjnego, najważniejsze jest odpowiednie przygotowanie bazy danych do jego treningu. Rozmiar obiektu odgrywa ogromną rolę w detekcji. W przypadku niewielkich obiektów, tło zaczyna odgrywać dużą rolę. Jednak trzeba też, wziąć pod uwagę złożoność klasy obiektów - im bardziej różnorodne obiekty wchodzą w skład klasy, tym więcej zdjęć tej klasy obiektów powinna zawierać baza treningowa modelu.

4. Materialy

<u>GitHub</u> - kod źródłowy, wygenerowane dane oraz obiekty i tła użyte do ich generacji <u>COCO</u> - baza danych na której trenowany był model <u>Model YOLOv3</u> - wytrenowany YOLOv3 na bazie COCO <u>Unsplash</u> - źródło teł oraz obiektów