PSALTer results panel

$$S = \frac{1}{1} \int \int \int (\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau (\Delta + \mathcal{K})_{\alpha\beta} - 2r_{,\alpha} (\partial_{\beta}\mathcal{A}_{,\theta}^{\ \theta} \partial^{i}\mathcal{A}_{,\alpha}^{\alpha\beta} + \partial_{\alpha}\mathcal{A}_{,\alpha}^{\beta} \partial_{\theta}\mathcal{A}_{,\alpha}^{\alpha\beta} + \partial_{\alpha}\mathcal{A}_{,\alpha}^{\alpha\beta} \partial_{\theta}\mathcal{A}_{,\beta}^{\ \theta} - 2\partial^{i}\mathcal{A}_{,\alpha}^{\alpha\beta} \partial_{\theta}\mathcal{A}_{,\beta}^{\ \theta} - 2\partial^{i}\mathcal{A}_{,\alpha}^{\ \theta} \partial_{\alpha}^{\alpha\beta} \partial_{\alpha}^{\ \theta} - 2\partial^{i}\mathcal{A}_{,\alpha}^{\ \theta} \partial_{\alpha}^{\ \theta} - 2\partial^{i}\mathcal{A}_{,\alpha}^{\ \theta} \partial_{\alpha}^{\ \theta} - 2\partial$$

Wave operator

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities
0⁻σ == 0	$\epsilon \eta_{\alpha\beta\chi\delta} \partial^{\delta} \sigma^{\alpha\beta\chi} == 0$	1
$0^{+}_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1
0^+ $\tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha}$	1
$1 \tau^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}$	3
1. T = 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$1 \sigma^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi} == 0$	3
$1^+_{\cdot \tau} ^{\alpha \beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta} == \partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha}$	3
$1^+_{\cdot}\sigma^{\perp}{}^{\alpha\beta} == 0$	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} == \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3
$2^+_{.}\tau^{\parallel}^{\alpha\beta} == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} = 0$	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\tau(\Delta+\mathcal{K})^{\chi}_{\chi}$	
$2^+_{\cdot}\sigma^{\parallel}^{\alpha\beta} == 0$	$3\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 3\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} + 2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\sigma^{\chi}_{\chi}^{\delta} = 2\partial_{\delta}\partial^{\beta}\partial^{\alpha}\sigma^{\chi}_{\chi}^{\delta} + 3(\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi})$	5
Total expected gauge generators: 28		

Massive spectrum

(No particles)

Massless spectrum

?
$$k^{\mu} = (p, 0, 0, p)$$
?
?

Massless particle

Pole residue:	$\left \frac{3}{r_1} + \frac{3}{r_1 - 2r_1 - r_1} + \frac{8}{2r_1 + r_2} \right > 0$
Polarisations:	2

Unitarity conditions

 $r. \in \mathbb{R} \&\& ((r. < -2r. \&\& 2r. + r. < r. < 0) || (r. > -2r. \&\& (r. < 0 || r. > 2r. + r.)))$