Conjecturer une limite

Exercice 1

On donne la courbe C_f suivante représentant une fonction f.

Choisir la (les) bonne(s) réponse(s).

1. La courbe \mathscr{C}_{ϵ} admet une asymptote verticale d'équation :

 $\mathbf{a} \quad x = -2$

- y = -2
- x=1
- **2.** La courbe \mathscr{C}_f admet une asymptote horizontale d'équation :

- y = -2
- x=1
- **3.** D'après la courbe \mathscr{C}_f , on peut dire que :

 $\lim_{x \to \infty} f(x) = -2$

 $\lim_{x \to -\infty} f(x) = 1$

 $\lim_{\substack{x \to 1 \\ x > 1}} f(x) = +\infty$

$$\lim_{\substack{x \to 1 \\ x < 1}} f(x) = +\infty$$

Exercice 2

Dans chacun des cas suivants, déterminer d'après la courbe les limites de la fonction f aux bornes et une équation de chacune des asymptotes.

Exercice 6

On donne la représentation dune fonction f ci-contre définie sur $\mathbb{R}\setminus\{0\}$.

- 1) Conjecturer la limite de la fonction f en $+\infty$ et en $-\infty$. Que peut-on déduire géométriquement?
- **2) (a)** Conjecturer les limites de la fonction *f* en 0 en valeurs supérieures et en valeurs inférieures.
- (b) Que peut-on déduire géométriquement?
- **(c)** La fonction *f* admet-elle une limite en 0? Pourquoi?

Exercice 3

L'affirmation suivante est-elle vraie ou fausse? (justifier votre réponse)

"Si f est une fonction strictement décroissante sur $]0; +\infty[$ alors on a nécessairement $\lim_{x\to +\infty} f(x) = -\infty$ "

Exercice 4

Soit la fonction f définie sur $\mathbb R$ par : $f(x)=rac{e^x-1}{e^x+1}$

- 1) Tracer la fonction f sur une calculatrice. On pourra prendre comme fenêtre $x \in [-5; 5]$ et $y \in [-2; 2]$.
- **2)** Que peut-on conjecturer sur les limites de la fonction f en $+\infty$ et $-\infty$?
- 3) Comment peut-on le vérifier?

Exercice 5

Soit la fonction f définie sur $\mathbb{R}\setminus\{1\}$ par : $f(x)=\frac{x}{(x-1)^2}$

- 1) Tracer la fonction f sur une calculatrice.
- 2) (a) Que peut-on conjecturer sur la limite de f en 1?
- (b) Interpréter graphiquement cette limite?

Opérations sur les limites

Exercice 7

On donne les limites suivantes.

$$\lim_{x \to +\infty} f(x) = +\infty \text{ et } \lim_{x \to +\infty} g(x) = 0^{-}$$

Choisir la ou les bonne(s) réponse(s).

(a)
$$\lim_{x \to 0} f(x) + g(x) = +\infty$$

(a)
$$\lim_{x \to +\infty} f(x) + g(x) = +\infty$$

(b) $\lim_{x \to +\infty} f(x) \times g(x) = -\infty$

(c)
$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = -\infty$$

(d)
$$\lim_{x \to +\infty} \frac{1}{f(x)} = 0$$

Exercice 8

Soit la fonction f définie sur \mathbb{R}^* par : $f(x) = 2x - 1 - \frac{1}{x}$

- 1) Déterminer les limites de f en $+\infty$ et en $-\infty$.
- **2)** Déterminer les limites de f en 0.

Exercice 9

Soit la fonction f définie sur $\mathbb{R}\setminus\{2\}$ par :

$$f(x) = \frac{3x - 1}{2 - x}$$
 avec $a = 2$

Déterminer la limite à gauche et à droite de la valeur a donnée, en justifiant le signe du dénominateur.

Exercice 10

Soit la fonction f définie sur \mathbb{R}^* par :

$$f(x) = \frac{e^x}{e^x - 1} \text{ avec } a = 0$$

Déterminer la limite à gauche et à droite de la valeur a donnée, en justifiant le signe du dénominateur.

Exercice 11

Soit la fonction f définie sur \mathbb{R}^* par :

$$f(x) = \frac{x-2}{1-e^x} \text{ avec } a = 0$$

Déterminer la limite à gauche et à droite de la valeur a donnée, en justifiant le signe du dénominateur.

Exercice 12

Soit la fonction f définie sur $\mathbb{R}\setminus\{-1\}$ par :

$$f(x) = \frac{2x^2 - 1}{-x - 1}$$
 avec $a = -1$

Déterminer la limite à gauche et à droite de la valeur a donnée, en justifiant le signe du dénominateur.

Exercice 13

Déterminer la limite en $+\infty$ de la fonction f dans les cas suivants :

(On précisera si la courbe de f admet une asymptote horizontale en $+\infty$)

(a)
$$f(x) = \frac{1}{x} - \sqrt{x}$$
 (b) $f(x) = \frac{1}{x+1} - 2$

Exercice 14

Déterminer la limite en $-\infty$ de la fonction f dans les cas suivants :

(On précisera si la courbe de f admet une $\textit{asymptote horizontale en} \ +\infty)$

(a)
$$f(x) = \frac{1}{x^3} - x$$
 (b) $f(x) = \frac{x+1}{\frac{1}{x}-2}$

Exercice 15

Déterminer les limites en $+\infty$ des fonctions suivantes en expliquant la méthode utilisée.

(a)
$$f(x) = \frac{1}{1 + e^x}$$

(b) $f(x) = 2x\sqrt{x} + 1$
(c) $f(x) = \frac{-2}{1 - \sqrt{x}}$

(b)
$$f(x) = 2x\sqrt{x} + 1$$

(c)
$$f(x) = \frac{-2}{1 - \sqrt{x}}$$

(d)
$$f(x) = e^x + x - 4$$

Chapitre 1: Limites de fonctions

Etude d'une fonction

Soit f la fonction définie sur $\mathbb{R}\setminus\{-1\}$ par $f(x)=\frac{-5}{x+1}+2$.

- 1) Etudier les limites en $+\infty$ et $-\infty$.
- 2) Etudier les limites en -1. Interpréter graphiquement ces limites.
- 3) Calculer f'(x).
- **4)** Etudier le signe de f' et dresser le tableau de variation de f.
- **5)** (a) Démontrer que l'équation f(x) = 0 possède une unique solution α dans l'intervalle $[-1; +\infty[$. A l'aide de la calculatrice donne une valeur de α arrondie à 0,01 près.
- **(b)** En déduire le signe de la fonction f en fonction des valeurs de x.

Etude d'une fonction

Soit f la fonction définie sur $\mathbb{R}\setminus\{-1\}$ par $f(x)=\frac{-5}{x+1}+2$.

- 1) Etudier les limites en $+\infty$ et $-\infty$.
- 2) Etudier les limites en -1. Interpréter graphiquement ces limites.
- 3) Calculer f'(x).
- **4)** Etudier le signe de f' et dresser le tableau de variation de f.
- **5)** (a) Démontrer que l'équation f(x) = 0 possède une unique solution α dans l'intervalle $]-1;+\infty[$. A l'aide de la calculatrice donne une valeur de α arrondie à 0,01 près.
- **(b)** En déduire le signe de la fonction f en fonction des valeurs de x.

Etude d'une fonction

Soit f la fonction définie sur $\mathbb{R}\setminus\{-1\}$ par $f(x)=\frac{-5}{x+1}+2$.

- 1) Etudier les limites en $+\infty$ et $-\infty$.
- 2) Etudier les limites en -1. Interpréter graphiquement ces limites.
- 3) Calculer f'(x).
- 4) Etudier le signe de f' et dresser le tableau de variation de f.
- **5)** (a) Démontrer que l'équation f(x) = 0 possède une unique solution α dans l'intervalle $]-1;+\infty[$. A l'aide de la calculatrice donne une valeur de α arrondie à 0,01 près.
- **(b)** En déduire le signe de la fonction f en fonction des valeurs de x.

Etude d'une fonction

Soit f la fonction définie sur $\mathbb{R}\setminus\{-1\}$ par $f(x)=\frac{-5}{x+1}+2$.

- 1) Etudier les limites en $+\infty$ et $-\infty$.
- 2) Etudier les limites en -1. Interpréter graphiquement ces limites.
- 3) Calculer f'(x).
- **4)** Etudier le signe de f' et dresser le tableau de variation de f.
- **5)** (a) Démontrer que l'équation f(x) = 0 possède une unique solution α dans l'intervalle $]-1;+\infty[$. A l'aide de la calculatrice donne une valeur de α arrondie à 0,01 près.
- **(b)** En déduire le signe de la fonction f en fonction des valeurs de x.

Théorème des valeurs intermédiaires

Exercice 16

Soit f une fonction définie et dérivable sur \mathbb{R} . On donne ci-dessous le tableau de variations de la fonction f sur \mathbb{R} .

- 1) Montrer que l'équation f(x) = -3 admet une unique solution sur \mathbb{R} .
- **2)** Dénombrer le nombre de solutions de léquation f(x) = 0.

Exercice 17

Soit la fonction f définie sur \mathbb{R} par : $f(x) = x^3 + 6x^2 + 9x + 3$ dont les variations sont données par le ta-

dont les variations sont données par le tableau de variations suivant.

x	-∞		-3		-1	+∞
f'		+	þ	-	Ó	+
f	-w -1 + w					

- 1) Justifier que f est continue sur \mathbb{R} .
- 2) Dénombrer les solutions de l'équation f(x) = 2.
- 3) (a) Justifier que l'équation f(x) = 4 admet une unique solution α .
- **(b)** Déterminer un encadrement de α à l'unité près.

Exercice 18

Une fonction f définie et dérivable sur [1; 13] a pour tableau de variations le tableau suivant.

- 1) Justifier la continuité de la fonction f sur [1; 13].
- 2) Dénombrer les solutions de l'équation f(x)=5. Justifier.
- 3) Justifier que l'équation $f(x) = \frac{5}{2}$ admet une unique solution α .

Exercice 19

Une fonction f définie et dérivable sur [-5; 5[a pour tableau de variations le tableau suivant.

- 1) Justifier la continuité de la fonction f sur l = [-5; 5[.
- 2) Dénombrer les solutions de l'équation f(x)=0. Justifier.

Exercice 20

On donne le tableau de variations d'une fonction f.

- 1) Donner les limites de la fonction f en $+\infty$ et en $-\infty$. Interpréter.
- **2)** La fonction *f* admet-elle une limite en -1? Pourquoi?
- **3)** Tracer une courbe susceptible de représenter la fonction f.

On fera figurer les éléments caractéristiques du tableau de variations sur la courbe.

Exercice 21

On donne le tableau de variations d'une fonction f.

- 1) Déterminer les asymptotes de la courbe C_f .
- **2)** Démontrer que l'équation f(x) = 0 admet au moins une solution sur \mathbb{R} .
- **3)** Tracer une courbe susceptible de représenter la fonction f. On fera figurer les asymtotes à la courbe.