EE4620 Spectral Domain Methods in EM

Lecture: Matlab Session on Connected Arrays

Dr. Daniele CavalloAssociate Professor

<u>Faculty</u>: Electrical Engineering, Mathematics and Computer Science

Department: Microelectronics

Group: Terahertz Sensing

T+31 (0) 15 27 89538

E <u>D.Cavallo@tudelft.nl</u> http://terahertz.tudelft.nl Riccardo Ozzola

PhD Candidate

<u>Faculty</u>: Electrical Engineering, Mathematics and Computer Science

Department: Microelectronics

Group: Terahertz Sensing

S riccardo.ozzola E R.Ozzola-1@tudelft.nl

http://terahertz.tudelft.nl

Problem

- Implement the active input impedance of the elements of a connected array of dipole with backing reflector
- Compare the finite Active Z_a and Γ with the infinite array for broadside and scanning to 45°

How to Calculate the Admittance Matrix?

• integral

fun = @(kx) integrand(kx,...)

Integration variable (not defined by you)

Array containing the points which define the integration path

... Towards Z_{Act}

• toeplitz
Y = toeplitz(real(YRow))+1j*toeplitz(imag(YRow));

Broadside

Scanning to 45 degrees

Edge effects worsen for scanning -> mismatch

Finite array 30 elements

Larger array: elements are mostly matched except few at the edge (higher overall efficiency)