BRAC UNIVERSITY

CSE250L

Dept. of Computer Science and Engineering

Circuits and Electronics Laboratory

Student ID:	21201686	Lab Section:	13	
Name:	Khandalker Rabiat Nasin	Lab Group:	01	

Experiment No. 1

Introduction to Series and Parallel Circuit Connections

Objective

The aim of this experiment is to acquaint students with series and parallel circuit connections and to properly identify them on a breadboard or from a schematic diagram.

Theory

An electrical circuit is a continuous path through which electrical current flows. Amongst various circuit combinations, two prominent ones are called "Series" and "Parallel". For a connection to be called "Series", it must fulfil the following criteria:

- ➤ All the components must be connected *one after the other*.
- > The same current must flow through all the components.

For instance, in the following circuit, we have N resistors: R_1 , R_2 , R_3 , ..., R_N connected one after another and the same current I is flowing through them. All of these series resistors can be combined into just one equivalent resistance,

Figure: A series connection

Similarly, in a "Parallel" connection,

- > All the components must be connected between the same two nodes.
- > The same potential (voltage) drop should exist across all the components.

For example, in the following figure, we have N resistors with resistances: R_1 , R_2 , R_3 , ..., R_N connected at the same two nodes a and b. And therefore, the voltage drop across all the resistors are, $\Delta V = V_a - V_b$. Hence, we conclude that the resistors are connected in parallel. The equivalent resistance of these resistors is R_{eq} where,

Figure: A parallel connection

In this experiment, we will learn how to connect circuits in breadboards and how to identify series and parallel connections,

Apparatus

- > Multimeter
- > Resistors
- > DC power supply
- >> Breadboard
- > Jumper wires

Procedures

- > Measure the resistances of the provided resistors and fill up the data table.
- > Construct the following circuits on a breadboard. Try to use minimum number of jumper wires:

Circuit ?

- Measure the equivalent resistance using a multimeter. To do this, disconnect the power supply (if any) and connect the multimeter across the open terminals.
- Apply 6 V potential drop across the terminals a and b. Use the DC power supply to connect the positive terminal to node a and the negative terminal to terminal b.
- Measure the voltage and current across each resistors. Use Multimeter for measuring the voltage and use Ohm's law to calculate the current through each resistor. Fill up the data tables.

Signature of Lab Faculty

Date:

obroin

* For all the data tables, take data up to three decimal places, round to two, then enter into the able.

Cable 1: Resistance Data

For all your future calculations, please use the observed values only (even for theoretical calculations).

Notation	Expected Resistance	Observed Resistance (kΩ)
R_1	1 kΩ	1.00KV
R ₂	3.3 kΩ	3.275 KD
R_3	4.7 kΩ	4.61
R_4	18 kΩ	17.81

Table 2: Data from Circuit 1

In the following table, V_1 is the voltage drop across resistor R_1 and I_1 is the current through it. Similar syntax applies to remaining resistors. For theoretical calculations, please note that, in series connection, the supplied voltage will be divided proportionally to the resistances. The voltage supplied to the complete circuit is denoted by V_s and the current being supplied to the whole network is denoted as I_s . Also, calculate the percentage of error between experimental and theoretical values of R_{ss} .

Obser- vation	R _{eq} (kΩ)	V _s (V) (from de power supply)	V s (V) (using multim eter)	$I_s = \frac{v_s}{R_{eq}}$ (mA)	V₁ · (V)	$I_1 = \frac{V_1}{R_1}$ (mA)	<i>V</i> ₂ (V)	$I_2 = \frac{V_2}{R_2}$ (mA)	V ₃ (V)	$I_3 = \frac{V_3}{R_3}$ (mA)	ν ₄ (V)	$I_4 = \frac{V_4}{R_4}$ (mA)
Experi- mental	26.66	6.0	6.02	0.2258	0.229	.22000	0.732	22.55	1.038	0.22	4.02	0.225)
Theo- retical	26-29		6	0.228	0.555	0°227	0-738	0-22-7	1.0442	0-227	3-99	0.127

Here, Percentage of error in
$$R_{eq}$$
 calculation = 1.407 %

Table 3: Data from Circuit 2

proportional to the resistance values.

Observation	R _{eq} (kΩ)	V _s (V) (from dc power supply)	V _s (V) (using multimeter)	$l_s = \frac{V_s}{R_{eq}}$ (mA)	$I_1 = \frac{V_s}{R_1}$ (mA)	$I_2 = \frac{v_s}{k_2}$ (mA)	$I_3 = \frac{V_s}{P_s}$ (mA)	$I_4 = \frac{V_s}{R_4}$ (mA)
Experimental	0.635	6. Q	5.98	9.417	5.98	1.826	1.297	0.336
Theoretical	0.619		6	9.693	6	1.81	1.27	0-33

Here, Percentage of error in
$$R_{eq}$$
 calculation = 9.69 %

ble 4: Data from Circuit 3

Collect the following data.

r- tion	R_{ab} (k Ω)	V _s (V) (from de power supply)	V _s (V) (using multim eter)	$I_s = \frac{V_s}{R_{eq}}$ (mA)	<i>v</i> ₁ (V)	$I_1 = \frac{v_1}{R_1}$ (mA)	V ₂ (V)	$I_2 = \frac{V_2}{R_2}$ (mA)	V ₃ (V)	$I_3 = \frac{V_3}{R_3}$ (mA)	<i>V</i> ₄ (V)	$I_4 = \frac{V_4}{R_4}$ (mA)
Experi- nental	1.73	6	6.02	3.48	0.0035	0.63	6.01	1.835	-6.01	-1.362	6.01	0.337
Theo- etical	1.75	6	6	3.49	0	0	6	1.81	6	1-27	0	0.33

Here, Percentage of error in
$$R_{eq}$$
 calculation = 1.0%

How are the resistors in circuit 3 connected with each other? Justify your answer.

Questions

1.

- (a) After taking voltage and currents measurements in a laboratory for the circuit shown above, the currents through the R_4 and R_7 resistors are found to be equal. Are R_4 and
 - R_7 in series?

☐ Yes

Justify your choice.

Using meah analysis $\in I_1 \rightarrow \pi_1$, $i_2 \frac{-I_2P_3 + I_2\pi_2}{V_3 + \pi_3 - \Pi_2}$ And $c_1 \rightarrow r_2$ is $i_4 = \frac{I_1P_3}{P_1 + P_3}$ Hence, we see that i_2 and i_4 are different although they might be equal but that door are in series combination

(b) R_1 , R_2 , and, R_3 are connected in

☐ Series ☐ Parallel ☐ None of the two ☐ Cannot be predicted

Explain your choice.

2.

(a) If the voltages v_x and v_y are equal, are R_1 and R_5 in parallel?

☐ Yes No

Justify your answer.

NO. R. and R5 are not between some Paint of modes so they are not panallel

Draw a circuit diagram of the circuit shown on the breadboard above.

4. For the following circuit:

(a) How many nodes are there. Mark and label all the nodes in the circuit diagram.

chaing nodes in each fow that connect the corresponding cheate comment

Circuit Element	Starting/Ending Node	Ending/Starting Node
12 kΩ Resistor	α	C
4 kΩ Resistor	<u>C</u> .	d
18 kΩ Resistor	45	d
9 kΩ Resistor	d.	6.
8 kΩ Resistor	Ь	a
24 kΩ Resistor	a	Ь
3.3 kΩ Resistor	6	Ь

(c) Based on the table in (b), draw a simplified version of the circuit using the labeled/identified nodes.

(d) Determine the equivalent resistance between terminals a and b from the reduced circuit drawn in (c).

5. For the following circuit, determine R_{ab} , R_{ac} , R_{ad} , R_{bd} and R_{cd} . Use logical operators to indicate the series-parallel combinations. For exmple, the following equation means, two 10 Ω resistors are in parallel, their combination is in series with a 5 Ω resistor, and the total is again parallel with a 20 Ω resistor.

$$R_{xy} = \{(10 \mid\mid 10) + 5\} \mid\mid 20$$

$R_{ab} = \{(2+6) (5+3) + 20 \} 12 - 12 = 0$	$R_{ac} = (12+3)11(20+5)$
$R_{ad} = (5+3) (5+3)+12 20$	$R_{bd} = (12+20) 8 8$
$R_{cd} = ((20 + 12) (6+2) + 3) 5$	

Report

- 1. Fill up the theoretical parts of all the data tables.
- 2. Answer to the questions.
- 3. Discussion [your overall experience, accuracy of the measured data, difficulties experienced and your thoughts on those]. Add pages if necessary.