Beveridge Curve

労働経済学 2

川田恵介

Table of contents

1	雇用の"生産"関数	2
1.1	Beveridge curve	2
1.2	「少数の法則」	2
1.3	例	2
1.4	例: ハローワークの Beveridge curve	3
1.5	Beveridge Curve の特性	3
1.6	Beveridge Curve の理論的基礎	3
1.7	Beveridge Curve の理論的基礎	3
2	最適求職者数	4
2.1	最適性	4
2.2	Beveridgean unemployment	4
2.3	目的関数	4
2.4	制約	5
2.5	例: 少数の法則	5
2.6	最適化問題: 最適求人倍率	5
2.7	最適化問題: 最適求人倍率	5
2.8	解釈	6
2.9	解釈	6
2.10	例: Beveridge curve の推定	6
2.11	例: 社会厚生関数の定式化	7
2.12	例: 最適求人倍率	7
2.13	最適求職者数	7
2.14	例: Beveridgean unemployment	8
2.15	まとめ	8
2.16	まとめ	8
2.17	Referene	9

1 雇用の"生産"関数

- 前回: 就業状態への Inflow + Outflow に分解
 - Inflow = 「求人と求職を投入物として、雇用が生産される」と解釈する

1.1 Beveridge curve

- William Beveridge が"発見"した求人と求職の間の安定的な関係性
- v = v(u):
 - -v=求人数、u=求職者数
- 求人と求職が同時に存在し、「少数の法則」が成り立っていない
 - Barlevy et al. (2024); Elsby, Michaels, and Ratner (2015)

1.2 「少数の法則」

- 供給 > 需要 であれば、市場取引量 = 需要
 - 未充足の供給が発生
- 供給 < 需要 であれば、市場取引量 = 供給
 - 未充足の需要が発生
- 未充足の供給と需要は両立しない
 - 少なくとも求人/求職データとは矛盾

1.3 例

- ハローワークにおける求人/求職者数は、毎月、業務統計として報告される
 - 職業安定業務統計
- 日本全体の求人/求職者数ではないことに注意

1.4 例: ハローワークの Beveridge curve

1.5 Beveridge Curve の特性

- 頑強に以下の事実が観察される
 - 常に未充足の求人と求職者
 - 求人と求職の間の負の関係性

1.6 Beveridge Curve の理論的基礎

- 少数の法則が成り立たない理由として、市場のマッチング機能の不完全性が考えられる
 - 局所的な需給ミスマッチ (Shimer 2007)
 - Coordination friction (Burdett, Shi, and Wright 2001)
 - 情報の不完全性

1.7 Beveridge Curve の理論的基礎

• 求人と求職の間の負の関係性として

- 求人が少ないと、就職件数が減り、求職者が増える
- "景気の悪化"は、求人の減少と、(整理解雇などに伴う)新規求職者数の増加を引き起こす
- 詳細は、将来の講義 (Rogerson, Shimer, and Wright 2005)

2 最適求職者数

- 現実の求職者数は、"理想的な状況"に比べて過大/過小?
 - 何を理想的な状況とするのか、明示しながら議論する必要がある
 - 経済学における伝統的な論点

2.1 最適性

- ある政策や変数が、最適な状況にあるか?
- 少なくとも以下を明示する必要がある
 - 目的関数は何か?
 - 何を操作するか?
 - 操作に対して、反応しない構造 (制約) はなにか?
 - * 何が Deep parameter か?

2.2 Beveridgean unemployment

- Michaillat and Saez (2021)
 - 求職者、求人数を"仮想的に"操作
 - 求人/求職に伴う機会費用最小化が目的
 - Beveridge Curve を制約とする

2.3 目的関数

• 目的: 社会厚生関数

W(v, u)

の最大化

-v: 求人数、u: 求職者数

- 仮定
 - $-\partial W/\partial v<0:$ 求人の維持に必要な資源 (人員)
 - $-\partial W/\partial u < 0$: 求職の機会費用 (就業状態と比べた際の生産性ロスなど)

2.4 制約

• Beveridge Curve:

$$v = v(u)$$

- 以下のように定式化 $v=\beta_0 u^{-\beta_1}$
 - 対数変換すると、

$$\log(v) = \beta_0 - \beta_1 \log(u)$$

- β_0, β_1 はデータから推定する

2.5 例: 少数の法則

- Beveridge Curve ではなく、少数の法則が制約ならば、
 - 未充足の求人 = 求職者を達成することが最適
 - 未充足の求人 = 求職者 = 0となり、社会厚生を必ず最大化
- 少数の法則は、データと矛盾している

2.6 最適化問題: 最適求人倍率

.

$$\max_{v,u} W(v,u)$$

• subject to

$$\log(v) = \beta_0 - \beta_1 \log(u)$$

2.7 最適化問題: 最適求人倍率

• 一階条件は、

$$0 = \frac{\partial W}{\partial u} + \beta_1 \lambda \frac{1}{u}$$

$$0 = \frac{\partial W}{\partial v} + \lambda \frac{1}{v}$$

$$\frac{\underline{v}}{\underline{u}} = \frac{1}{\beta_1} \frac{\frac{\partial W}{\partial u}}{\frac{\partial W}{\partial v}}$$
求人倍率

2.8 解釈

- β_1 が大きい \iff Beveridge curve 上で、求職の増加させると、求人を大きく減少させる
 - 求職の増加と求人の減少が望ましい
 - 求人倍率が小さくても良い

2.9 解釈

- $\frac{\partial W}{\partial u}/\frac{\partial W}{\partial v}=$ 求職者が一人増える場合、求人がどのくらい減れば補償できるか?
 - 求職者の社会的費用が大きい = $\frac{\partial W}{\partial u}/\frac{\partial W}{\partial v}$ が大きい
 - 最適な求人倍率は大きくなる
- 求人費用や求職 (非就業) の機会損失に依存
 - 本質的には規範的なパラメタ

2.10 例: Beveridge curve の推定

```
lm(log(Vac) ~ log(See), Data, subset = Year >= 2015)
```

Call:

lm(formula = log(Vac) ~ log(See), data = Data, subset = Year >=
2015)

Coefficients:

(Intercept) log(See) 24.4872 -0.6071

lm(log(Vac) ~ log(See), Data, subset = Year >= 2021)

Call:

Coefficients:

(Intercept) log(See) 31.632 -1.082

2.11 例: 社会厚生関数の定式化

• $\frac{\partial W}{\partial u}/\frac{\partial W}{\partial v}=1$ と設定

2.12 例: 最適求人倍率

2.13 最適求職者数

• Beveridge curve $\mbox{\ensuremath{\upsigma}}$)

•

$$v=\beta_0 u^{-\beta_1}$$

•

$$u = (\frac{1}{v/u}\beta_0)^{1/(1+\beta_1)}$$

 $u = (\frac{1}{\underbrace{v/u}_{\text{最適求人倍率を代入}}} \frac{v}{u^{-\beta_1}})^{1/(1+\beta_1)}$

2.14 例: Beveridgean unemployment

2.15 まとめ

- Beveridge Curve を deep parameter とみなして最適求人倍率や求職者を算出している
- 理論研究で強調されたきた最適性の条件である Hosios condition (Hosios 1990) よりも、実証研究との 親和性が高い
 - "余剰"の労働分配率という推定困難なパラメタに依存
 - 詳細は、後述

2.16 まとめ

- Beveridge Curve は、明らかに"不変"ではない (Barlevy et al. 2024; Elsby, Michaels, and Ratner 2015)
 - 後述する通り、さまざまな経済・社会ショックの影響を受けうる
- Michaillat and Saez (2021) では、structural breaks をデータから推定する手法も採用している

2.17 Referene

- Barlevy, Gadi, R Jason Faberman, Bart Hobijn, and Ayşegül Şahin. 2024. "The Shifting Reasons for Beveridge Curve Shifts." *Journal of Economic Perspectives* 38 (2): 83–106.
- Burdett, Kenneth, Shouyong Shi, and Randall Wright. 2001. "Pricing and Matching with Frictions." Journal of Political Economy 109 (5): 1060–85.
- Elsby, Michael WL, Ryan Michaels, and David Ratner. 2015. "The Beveridge Curve: A Survey." *Journal of Economic Literature* 53 (3): 571–630.
- Hosios, Arthur J. 1990. "On the Efficiency of Matching and Related Models of Search and Unemployment." The Review of Economic Studies 57 (2): 279–98.
- Michaillat, Pascal, and Emmanuel Saez. 2021. "Beveridgean Unemployment Gap." *Journal of Public Economics Plus* 2: 100009.
- Rogerson, Richard, Robert Shimer, and Randall Wright. 2005. "Search-Theoretic Models of the Labor Market: A Survey." *Journal of Economic Literature* 43 (4): 959–88.
- Shimer, Robert. 2007. "Mismatch." American Economic Review 97 (4): 1074-1101.