BIST Part1 - TPG

- Introduction
- Test Pattern Generation (TPG)
 - Deterministic: ROM, Algorithm, Counter
 - Pseudo Random
 - Linear Feedback Shift Register, LFSR (1977)
 - Two types of LFSR
 - Design of LFSR
 - * Cellular Automata, CA (1984)

Design of LFSR

- Questions to answer
 - How to find seed?
 - What is LFSR degree?
 - What polynomial?

How to Find a Seed?

- Given LFSR and test pattern, find initial state of LFSR (seed)
- Example:
 - LFSR feeds scan chain inputs
 - S0~S9 are test pattern (specified by ATPG)
 - $Q_3 \sim Q_0$ are seeds

- Two methods:
 - Cycle-by-cycle tracing
 - System of linear equations

Cycle-by-cycle Tracing (1)

- Test pattern desired
 - $S_0 S_1 ... S_9 = 1 X X X X 0 1 X X 1 0$

Cycle-by-cycle Tracing (2)

This is Slow! Can We Do Better?

System of Linear Equations (1)

Initial conditions

•
$$S_9 = Q_0$$

$$\bullet$$
 S₈ = Q₁

•
$$S_7 = Q_2$$

$$\bullet$$
 S₆ = Q₃

- $S_n = S_{n+4} \oplus S_{n+1}$
 - $S_5 = S_9 \oplus S_6 = Q_3 \oplus Q_0$
 - $S_4 = S_8 \oplus S_5 = Q_3 \oplus Q_1 \oplus Q_0$
 - $S_3 = S_7 \oplus S_4 = Q_3 \oplus Q_2 \oplus Q_1 \oplus Q_0$
 - $S_2 = S_6 \oplus S_3 = Q_2 \oplus Q_1 \oplus Q_0$
 - $S_1 = S_5 \oplus S_2 = Q_3 \oplus Q_2 \oplus Q_1$
 - $S_0 = S_4 \oplus S_1 = Q_2 \oplus Q_0$
- 4 variables, 10 equations

0	1	0	1		$\lceil S_0 = 1 \rceil$
1	1	1	0		$S_1 = X$
0	1	1	1		$S_2 = X$
1	1	1	1	$\lceil Q_3 ceil$	S3 = X
1	0	1	1	Q_2	$S_4 = 0$
1	0	0	1	Q_1	$S_5 = 1$
1	0	0	0	$\lfloor Q_0 floor$	$S_6 = X$
0	1	0	0		$S_7 = X$
0	0	1	0		$S_8 = 1$
0	0	0	1		$S_9 = 0$

System of Linear Equations (2)

•
$$S_9 = 0 = Q_0$$

•
$$S_8 = 1 = Q_1$$

•
$$S_5 = 1 = Q_0 \oplus Q_3 \Rightarrow Q_3 = 1$$

•
$$S_4 = 0 = Q_3 \oplus Q_1 \oplus Q_0$$

- consistent!
- $S_0 = 1 = Q_2 \oplus Q_0 \Rightarrow Q_2 = 1$
- Solution :
 - Seed =[Q₃ Q₂ Q₁ Q₀]= 1110

$\lceil 0$	1	0	17		$\lceil S_0 = 1 \rceil$
1	1	1	0		$S_1 = X$
0	1	1	1		$S_2 = X$
1	1	1	1	$\lceil Q_3 ceil$	$S_3 = X$
1	0	1	1	Q_2	$S_4 = 0$
1	0	0	1	Q_1	$S_5 = 1$
1	0	0	0	$\lfloor Q_0 floor$	$S_6 = X$
0	1	0	0		$S_7 = X$
0	0	1	0		$S_8 = 1$
0	0	0	1		$\lfloor S_9 = 0 \rfloor$

Derive Linear Equations (1)

- Start with identity matrix I
 - $t = [h_3 h_2 h_1 h_0]$
- Iteratively bottom up, k=4~10
 - $Row_k = t \times (Row_{k-4} \sim Row_{k-1})$
 - **♦** K++
- Example
 - $t = [h_3 h_2 h_1 h_0] = [1 \ 0 \ 0 \ 1]$
 - $t \times I_1 = [1001]$
 - $t \times I_2 = [1 \ 0 \ 1 \ 1]$
 -
 - Eventually, 10 rows, 4 columns

Solve Linear Equations (1)

- Gauss-Jordan elimination, but Mod-2 addition
- Example
 - Append specified bits to last column (Augment matrix)
 - Remove useless rows with X
 - Exchange row 1 with row 2

ſ	0	1	0	1	1	0	1	0	1	1	Γ1	0	1	1	0	\
	1	1	1	0	X											\
	0	1	1	1	X											
	1	1	1	1	X											
	1	0	1	1	0	1	0	1	1	0	0	1	0	1	1	↓
	1	0	0	1	1	1	0	0	1	1	1	0	0	1	1	
	1	0	0	0	X											1
	0	1	0	0	X											
	0	0	1	0	1	0	0	1	0	1	0	0	1	0	1	1
	0	0	0	1	0_	0	0	0	1	0	0	0	0	1	0	l

Solve Linear Equations (2)

- Pivot column #1 (add row 1 to row 3)
- Pivot column #2 (do nothing)
- Pivot column #3 (add row3 to row1; add row3 to row4)
- Pivot column #4 (add row5 to row1, add row 5 to row2)
- Solution: seed =[Q₃ Q₂ Q₁ Q₀] = [1 1 1 0]

1	0	1	1	0		0	1	1	0	1	0	1	1	0	1	0	0	1	1		1	0	0	0	1	
0	1 0	0	1	1 1	0 0	0	0	1 0	1 1	0	1 0	0	1 0	1 1	0	1 0	0	1 0	1 1	-	0	1 0	0	0	1 1	
0	0	1 0	0	1 0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	1 0	0	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0	0 0	1 0	0	1 0	0	0	0	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$		0_0	0	0	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	

Summary

- Number of equations depends on number of care bits
- Number of variables = LFSR degree
- If more care bits than degree,
 - May not be solvable every time
 - This time we are lucky :)

Can We Guarantee Solution Exists?

FFT

- Q: What should we do if we find no solution?
 - 1
 - **2**
 - **•** 3

$\lceil 0$	1	0	1		$\lceil S_0 = 1 \rceil$
1	1	1	0		$S_1 = X$
0	1	1	1		$S_2 = X$
1	1	1	1	$\lceil Q_3 ceil$	$S_3 = X$
1	0	1	1	Q_2	$S_4 = 0$
1	0	0	1	Q_1	$S_5 = 1$
1	0	0	0	$\lfloor Q_0 floor$	$S_6 = X$
0	1	0	0		$S_7 = X$
0	0	1	0		$S_8 = 1$
0	0	0	1		$S_9 = 0$