LeanIMT: An optimized IMT

Privacy & Scaling Explorations $\label{eq:June 4} \mbox{June 4, 2024}$

1 Abstract

Contents

1	Abstract	1
	Introduction	
	Merkle Tree	
4	LeanIMT	3
5	Benchmarks	4
c	Conductors	1

2 Introduction

2.1 Motivation

3 Merkle Tree

3.1 Incremental Merkle Tree

TODO: Explain what is a Merkle tree and an Incremental Merkle Tree.

4 LeanIMT

$$T = (V, E)$$

$$V = \{a_0, a_1, a_2, a_3, H_0, H_1, H_2\}$$

$$E = \{(a_0, H_0), (a_1, H_0), (a_2, H_1), (a_3, H_1), (H_0, H_2), (H_1, H_2)\}\$$

Before inserting a_4

After inserting a_4

5 Benchmarks

6 Conslusions

This document is based on the work of [1].

References

[1] Barry Whitehat Kobi Gurkan Koh Wei Jie. "Semaphore: Zero-Knowledge Signaling on Ethereum". In: (2020). URL:

https://semaphore.pse.dev/whitepaper-v1.pdf.