paraborbic.
$$\frac{1}{5}$$
 $\frac{1}{5}$, $\frac{1}{5}$, $\frac{1}{5}$

$$-)$$
: $e_{ss} = lt$ $s = \frac{1}{s^3}$ = lt $\frac{1}{s+6\pi(s)+(s)}$ $s \to 0$ $s \to 0$

$$e_{ss} = \frac{1}{ka}$$

$$\frac{1}{100} = \frac{1}{100} = \frac{1}{100} = \frac{1}{100}$$

-) (ii) type 1-5/m

$$|ca = |t| s^2 G(s) H(s)$$

$$= k + \frac{s^{2}}{k} \left(\frac{s+2i}{s+2i} \right) \left(\frac{s+22}{s+2i} \right) \left(\frac{s$$

$$\frac{1}{2} \cdot \left[e_{ij} = \frac{1}{0} = \infty \right].$$

->ciii) Type 2-s/m

$$ka = \frac{1}{s-10} \frac{s^2 k(s+z_1)(s+z_2)}{s^2 (s+p_1)(s+p_2)}$$

$$2ss = \frac{1}{ka} = 0 constant (finite).$$

-)
$$R_a = lt \frac{s^2(s+z_1)(s+z_2)...}{s+0}$$

$$\rightarrow$$
:, $e_{ss} = \frac{1}{\kappa \alpha} = \frac{1}{\infty} = 0$

-): for the type 3 & above, the unit parabolic Up will have en as O.

Static error constants (Kp, Kv, Ka)

Empr constant	Type no, of s/m					
	0	1	2	3		
Kp	constant	00	00	0		
kv	0	constant		80		
Ka	0	0	covurant	0		

IT Steady Error for various Types of 1/p:

				,			
I/p		Type no. of s/m					
I/p signa	l T	0	11	2	3		
unit s		1 1+kp	0	D	0 - 2		
	- 2	Ø	k _v	0	D		
unit 8		Ø	00	1	0.		
unit para	botic		A Page	y ka			

Generalized Some Co-efficients/ Dynamic Erron co-efficients

$$\Rightarrow Cn = (-1)^n \int_0^t t^n f(t) dt$$

$$co = (-i)^{\circ} \int_{0}^{t} f(t) dt = \int_{0}^{t} f(t) dt$$

$$F(s) = L[f(t)] = \int_{0}^{t} f(t) e^{-st} dt = \frac{1}{1 + G(s) + (s)}$$

-) on taking et 5 => 0 on both sides,

$$dt = c(s) = dt \int f(t)e^{-st} dt$$

$$s \to 0 \qquad 0$$

$$= lt \int_{0}^{t} f(t) dt$$

At
$$F(s) = \bigoplus C_0 = 0$$
 $C_0 = At F(s)$.

-)
$$c_2 = dt \frac{d^2}{ds^2} F(s)$$

$$c_0 = \frac{1}{1 + K_P}$$

$$c_1 = \frac{1}{k_V}$$

$$f\left(c(t) = c_0 r(t) + c_1 r'(t) + \frac{c_2}{2!} f'(t) + \cdots \right)$$