Evaluation Report

Contents

Introduction	2
Research setup	2
Dataset	2
Experiments	3
Analysis 1: Prediction model	4
AUC Score	4
F1-score	5
Analysis 2: Feature reduction	6
Correlation-based feature selection	6
Recursive Feature Elimination	8
Analysis 3: Feature selection method	10
Correlation-based feature selection	10
Recursive feature elimination	10
Model Highlight	12
Conclusion	13
References	14

Introduction

This report covers our research analysis for our application's performance based on available configurations within our application. Our objective is to find the combination which returns the best results, particularly when handling imbalanced datasets.

Additionally, the results gained will also provide insights towards this field of research.

Research setup

Dataset

During our research, we analysed the datasets from NASA and promise repository. Through our analysis, we studied the properties of each dataset and tabulate the information as followed:

Table 1: Properties of datasets from NASA (Shepherd et al., 2014) repository

Dataset	Procedural Metric	Object oriented Metric	Misc. Metric	Metric count	Defective	Not defective	Module count	Degree of imbalance
CM1.arff	25	11	2	38	12.84%	87.16%	327	Moderate
JM1.arff	17	4	0	21	20.88%	79.12%	7720	Mild
KC1.arff	17	4	0	21	25.3%	74.7%	1162	Mild
KC3.arff	25	13	2	40	18.56%	81.44%	194	Moderate
KC4.arff (Raw)	24	14	2	40	48.8%	51.2%	125	Normal
MC1.arff	24	13	2	39	1.84%	98.16%	1952	High
MC2.arff	24	13	2	39	35.48%	64.52%	124	Mild
MW1.arff	24	11	2	37	10%	90%	250	Moderate
PC1.arff	24	11	2	37	8.1%	91.9%	679	Moderate
PC2.arff	23	11	2	36	2.22%	97.78%	722	High
PC3.arff	24	11	2	37	12.35%	87.65%	1053	Moderate
PC4.arff	24	11	2	37	13.86%	86.14%	1270	Moderate
PC5.arff	23	13	2	38	27.04%	72.96%	1694	Mild

Table 2: Properties of datasets from Promise (Menzies, 2004) repository

Dataset	Procedural Metric	Object oriented Metric	Misc. Metric	Metric count	Defective	Not defective	Module count	Degree of imbalance
kc1.arff	17	4	0	21	15.46%	84.54%	2109	Moderate
cm1.arff	17	4	0	21	9.84%	90.16%	498	Moderate
kc2.arff	17	4	0	21	20.5%	79.5%	522	Mild
jm1.arff	17	4	0	21	19.35%	80.65%	10885	Moderate
pc1.arff	17	4	0	21	19.35%	80.65%	1109	Moderate

These datasets will be used throughout this research. Furthermore, these datasets were also used for our second evaluation report which focuses on comparing our results with other research papers.

For the following experiments, our focus would mainly be on datasets which are highly imbalanced. As such, our experiments were conducted using datasets that were categorized to have a moderate or high degree of imbalance. The selected datasets are as followed:

Moderate: CM1, KC3, MW1, PC1, PC3, PC4

High: MC1, PC2

Experiments

Our devised experiments were used to study the performance of our algorithm based on the following factors:

- 1. Degree of imbalance
- 2. The prediction models selected
- 3. The feature selection used
- 4. The number of features reduced

The application we devised will allow us to perform experiments for analysing the factors mentioned. In addition, our program allows us to test and evaluate the performance of our built models using 4 evaluation metrics.

From the results gained, we will be able to determine the influence of each factor towards the performance of our fault detection method. Furthermore, we will be able to identify the optimal values and selections which allows will the best results to be achieved.

Analysis 1: Prediction model

There are several prediction models included within our program, each having different levels of proficiency towards handling imbalanced datasets. To compare the performance of each model, we used our program to obtain the performance result for all models in chart and tabular form. On a side note, no feature selection methods were used as this analysis focuses solely on the effectiveness of each model.

AUC Score

Table 3: AUC results for the model analysis

Model name	Complement Naive Bayes	Decision Tree	Logistic regression	Multi- Layer	Naive Bayes	Random Forest	Rotation Forest	Voting
				Perceptron				
CM1.arff	0.559	0.669	0.705	0.481	0.697	0.798	0.723	0.745
KC3.arff	0.415	0.566	0.501	0.424	0.506	0.545	0.533	0.528
MC1.arff	0.602	0.93	0.909	0.61	0.82	0.968	0.933	0.926
MW1.arff	0.475	0.455	0.508	0.378	0.461	0.636	0.6	0.566
PC1.arff	0.611	0.818	0.75	0.714	0.796	0.864	0.769	0.841
PC2.arff	0.646	0.665	0.92	0.479	0.876	0.788	0.717	0.878
PC3.arff	0.612	0.739	0.831	0.563	0.766	0.845	0.788	0.836
PC4.arff	0.672	0.893	0.831	0.646	0.783	0.909	0.829	0.894
Average								
performance	0.574	0.716875	0.744375	0.536875	0.713125	0.794125	0.7365	0.77675

Fig. 1 Bar chart displaying the AUC evaluation scores for the model analysis

As shown, most models performed outstandingly well in this field. In literature, Naïve Bayes and Logistic Regression are known to be proficient for handling imbalanced dataset. So, the scores for these two predictions were expected to perform greater than other base predictors. If observe from Fig 1, these two base models shown to achieve scores which outperform others, these scores fall between acceptable and excellent range. If we look at the datasets with the highest degree of imbalanced, MC1 and PC2, both models show outstanding performance. Overall, the Logistic regression model shown to have results for handling imbalanced datasets.

For the ensemble predictors, these models overall perform greater than most base prediction models. Consequently, the voting and random forest models achieved the best performance among all models.

F1-score

Table 4: F1-score results for the model analysis

Model name	Complement	Decision	Logistic	Multi-	Naive	Random	Rotation	Voting
	Naive Bayes	Tree	regression	Layer	Bayes	Forest	Forest	
				Perceptron				
CM1.arff	0.236	0.312	0.272	0.13	0.321	0.365	0.324	0.337
KC3.arff	0.113	0.182	0.143	0.126	0.135	0.15	0.224	0.137
MC1.arff	0.021	0.303	0.086	0	0.136	0.433	0.306	0.277
MW1.arff	0.076	0.025	0.069	0	0.04	0.178	0.104	0.05
PC1.arff	0.111	0.257	0.253	0.201	0.176	0.259	0.22	0.25
PC2.arff	0.067	0.114	0.171	0.067	0.087	0.067	0.178	0.126
PC3.arff	0.219	0.282	0.296	0.168	0.247	0.312	0.294	0.283
PC4.arff	0.251	0.525	0.387	0.237	0.343	0.449	0.416	0.392
Average								
performance	0.13675	0.25	0.209625	0.116125	0.185625	0.276625	0.25825	0.2315

Fig. 2 Bar chart displaying the F1-score evaluation scores for the model analysis

For F1-score, none of models were able to achieve outstanding results, which is a common outcome for this field. An interesting observation was that every model shown to perform poorly for the MW1, which can be observed in 3rd row of Table 4.

An interesting observation was that the best scores were achieved mainly by the tree-based models. The decision tree achieved promising results and shows to have the best results when compared with the other base prediction models. The Rotation Forest had the best performance, achieving remarkable scores and shown good consistency.

One thing to highlight would be the performance of the Logistic regression and Voting models. While the scores achieved by these models were not greater than the tree-based models, they are above average and show consistency.

Analysis 2: Feature reduction

For this analysis, we will introduce feature selection methods to our experiment. These methods will reduce the metric for the data to fit each model. The idea behind the feature selection methods is that not all metrics are good indicators for faultiness of a software. These algorithms are used to reduce the metrics so that only useful metrics remain which will improve the performance of our program. There are several discoveries that were identified through testing which relates to this topic.

Correlation-based feature selection

The correlation-based feature selection is a supervised method which will rank attributes for a given dataset based on its subset's correlation with the class label. For our algorithm, the user will be able to input the number of features to reduce to from a given dataset. Below are the average results of each model for CFS using the 8 datasets stated previously with varying feature reduction values:

Table 5: Average AUC results for CFS analysis

Feature reduction	Complement Naive Bayes	Decision Tree	Logistic regression	Multi- Layer	Naive Bayes	Random Forest	Rotation Forest	Voting	Average model
reduction	italite bayes	1166	10610331011	Perceptron	Dayes	Torest	Torest		score
3	0.647	0.711	0.77575	0.740875	0.8295	0.792875	0.72825	0.800625	0.753234
4	0.680625	0.73425	0.79925	0.751375	0.828125	0.80825	0.75125	0.813	0.770766
5	0.689125	0.732125	0.791375	0.719375	0.827875	0.804125	0.715625	0.809625	0.761156
6	0.61625	0.72375	0.780375	0.6825	0.814	0.794125	0.754375	0.8185	0.747984
9	0.63875	0.72325	0.777625	0.623625	0.807375	0.8135	0.765875	0.809375	0.744922
12	0.70425	0.70075	0.7595	0.591125	0.787125	0.7875	0.73825	0.807375	0.734484
15	0.685375	0.692	0.778	0.557	0.76575	0.788625	0.728	0.80975	0.725563
18	0.590875	0.663	0.7375	0.581375	0.717875	0.7725	0.7065	0.768625	0.692281
Max	0.70425	0.73425	0.79925	0.751375	0.8295	0.8135	0.765875	0.8185	
Min	0.590875	0.663	0.7375	0.557	0.717875	0.7725	0.7065	0.768625	

Table 6: Average F1-score results for CFS analysis

Feature reduction	Complement Naive Bayes	Decision Tree	Logistic regression	Multi- Layer	Naive Bayes	Random Forest	Rotation Forest	Voting	Average model
				Perceptron					score
3	0.2075	0.272625	0.222375	0.26225	0.26175	0.28775	0.27775	0.308625	0.262578
4	0.195375	0.291375	0.25125	0.299875	0.23875	0.303375	0.307125	0.312625	0.274969
5	0.190875	0.287375	0.236	0.295875	0.242625	0.312	0.2805	0.304875	0.268766
6	0.1775	0.289625	0.224625	0.229625	0.240125	0.291	0.327625	0.29	0.258766
9	0.1845	0.27025	0.234	0.214875	0.231	0.312625	0.282875	0.2735	0.250453
12	0.184	0.239	0.21625	0.19	0.213375	0.2955	0.26725	0.248875	0.231781
15	0.16725	0.233	0.22625	0.150875	0.2165	0.273875	0.244625	0.23725	0.218703
18	0.143875	0.22575	0.196125	0.14375	0.1905	0.265875	0.231375	0.221	0.202281
Max	0.2075	0.291375	0.25125	0.299875	0.26175	0.312625	0.327625	0.312625	
Min	0.143875	0.22575	0.196125	0.14375	0.1905	0.265875	0.231375	0.221	

From the results gained, we can observe that the CFS method works particularly well when the feature reduction value is below 6. Logistic regression along with all ensemble models shown consistent results when the feature reduction value varies. The Decision tree, Multi-Layer Perceptron and Naïve Bayes base predictors has a more visible effect with greater decrease in performance from a reduction value of 6 onwards. The Complement Naïve Bayes shows no visible pattern with random changes between each interval.

Fig. 3 Line chart displaying the Average model AUC for CFS analysis

Fig. 4 Line chart displaying the Average model F1-score for CFS analysis

From the charts shown, we can view that the performance peak when the feature reduction value is between 3 to 6. Additionally, any value above 6 shown to gradually decrease the overall score for both AUC and F1-score.

Recursive Feature Elimination

The recursive feature elimination function is a supervised method which uses a recursive approach to remove the least important feature until a set number of features remain. Similar to the CFS method, our program allows us to configure the number of features to reduce. Below are the average results of each model for RFE using the 8 datasets stated previously with varying feature reduction values:

Table 7: Average AUC results for RFE analysis

Feature reduction	Complement Naive Bayes	Decision Tree	Logistic regression	Multi- Layer	Naive Bayes	Random Forest	Rotation Forest	Voting	Average model
				Perceptron					score
3	0.646125	0.653625	0.698	0.66175	0.68575	0.707625	0.676625	0.71525	0.680594
6	0.7145	0.669	0.785875	0.65825	0.73475	0.771	0.683375	0.77775	0.724313
9	0.778125	0.686875	0.777	0.735125	0.755	0.777625	0.710375	0.785125	0.750656
12	0.76925	0.731375	0.760375	0.71275	0.74675	0.797375	0.72175	0.783125	0.752844
15	0.7875	0.714875	0.786875	0.75475	0.7555	0.790625	0.7265	0.782125	0.762344
16	0.802	0.7205	0.77775	0.721	0.759125	0.8035	0.7315	0.78875	0.763016
17	0.78925	0.727625	0.76675	0.722	0.751125	0.797125	0.7275	0.77775	0.757391
18	0.78775	0.70025	0.806375	0.72525	0.746875	0.796875	0.714125	0.80075	0.759781
Max	0.802	0.731375	0.806375	0.75475	0.759125	0.8035	0.7315	0.80075	
Min	0.646125	0.653625	0.698	0.65825	0.68575	0.707625	0.676625	0.71525	

Table 8: Average AUC results for CFS analysis

Feature	Complement	Decision	Logistic	Multi-	Naive	Random	Rotation	Voting	Average
reduction	Naive Bayes	Tree	regression	Layer	Bayes	Forest	Forest		model
				Perceptron					score
3	0.181375	0.230375	0.113625	0.206875	0.162125	0.250875	0.20975	0.202625	0.194703
6	0.191	0.243625	0.244625	0.25625	0.207375	0.281125	0.276625	0.27075	0.246422
9	0.217125	0.246375	0.236	0.29125	0.214375	0.256375	0.2705	0.281875	0.251734
12	0.1855	0.260375	0.261625	0.242875	0.201125	0.27175	0.260375	0.245375	0.241125
15	0.196375	0.2535	0.272125	0.251625	0.202875	0.242375	0.246625	0.281	0.243313
16	0.20575	0.259375	0.28775	0.27625	0.196625	0.275	0.2585	0.297	0.257031
17	0.194375	0.2695	0.2345	0.231875	0.194375	0.264875	0.27825	0.267	0.241844
18	0.198	0.2435	0.253375	0.252	0.198	0.255375	0.259	0.263	0.240281
Max	0.217125	0.2695	0.28775	0.29125	0.214375	0.281125	0.27825	0.297	
Min	0.181375	0.230375	0.113625	0.206875	0.162125	0.242375	0.20975	0.202625	

Unlike the CFS method, a greater feature reduction value seems to show better results for all models, as observed in the tables above. Unlike CFS, only ensemble methods show consistent results. While the changes in performance are visible for the base models, there is less value difference between each interval. Hence, the acceptable range for better performance is much wider as compared to CFS.

Fig. 5 Line chart displaying the Average model AUC for RFE analysis

Fig. 6 Line chart displaying the Average model F1-score for RFE analysis

From the charts shown, we can view that the performance peak when the feature reduction value is between 15 to 16. Unlike the CFS method, an increase in feature reduction shown greater improvements towards the performance for both evaluation scores.

Analysis 3: Feature selection method

This analysis uses the results from analysis 2 to determine the best feature selection methods for each model and finding the performance increase when compared to the results from analysis 1.

Table 9: Results for comparison between feature selection methods

Model Name			С	FS					RI	-E		
		AUC		F1-score				AUC		F1-score		
	Max	Min	Average	Max	Min	Average	Max	Min	Average	Max	Min	Average
Complement Naive Bayes	0.7043	0.5909	0.6565	0.2075	0.1439	0.1814	0.8020	0.6461	0.7593	0.2171	0.1814	0.1962
Decision Tree	0.7343	0.6630	0.7100	0.2914	0.2258	0.2636	0.7314	0.6536	0.7005	0.2695	0.2304	0.2508
Logistic regression	0.7993	0.7375	0.7749	0.2513	0.1961	0.2259	0.8064	0.6980	0.7699	0.2878	0.1136	0.2380
Multi-Layer Perceptron	0.7514	0.5570	0.6559	0.2999	0.1438	0.2234	0.7548	0.6583	0.7114	0.2913	0.2069	0.2511
Naive Bayes	0.8295	0.7179	0.7972	0.2618	0.1905	0.2293	0.7591	0.6858	0.7419	0.2144	0.1621	0.1971
Random Forest	0.8135	0.7725	0.7952	0.3126	0.2659	0.2928	0.8035	0.7076	0.7802	0.2811	0.2424	0.2622
Rotation Forest	0.7659	0.7065	0.7360	0.3276	0.2314	0.2774	0.7315	0.6766	0.7115	0.2783	0.2098	0.2575
Voting	0.8185	0.7686	0.8046	0.3126	0.2210	0.2746	0.8008	0.7153	0.7763	0.2970	0.2026	0.2636

The red encoded text indicates the best results between the two selection methods. We determine the best method for each model using the table above by the count of red encoded data. The best feature selection method based on our analysis are as followed:

Correlation-based feature selection

- Decision Tree
- Naive Bayes
- Random Forest
- Rotation Forest
- Voting

Recursive feature elimination

- Complement Naive Bayes
- Logistic regression
- Multi-Layer Perceptron

Table 10: Performance increase from the base and max score for each model

Model Name		AUC		F1-score			
	Base	Max	% Increase	Base	Max	% Increase	
Complement Naive Bayes	0.574	0.802	39.72125	0.13675	0.217125	58.77514	
Decision Tree	0.716875	0.73425	2.423714	0.25	0.291375	16.55	
Logistic regression	0.744375	0.806375	8.329135	0.209625	0.28775	37.26893	
Multi-Layer Perceptron	0.536875	0.75475	40.58207	0.116125	0.29125	150.8073	
Naive Bayes	0.713125	0.8295	16.31902	0.185625	0.26175	41.0101	
Random Forest	0.794125	0.8135	2.439792	0.276625	0.312625	13.01401	
Rotation Forest	0.7365	0.765875	3.988459	0.25825	0.327625	26.8635	
Voting	0.77675	0.8185	5.37496	0.2315	0.312625	35.0432	

With the introduction of feature selection methods, the models shown to have great improvements towards the F1-score. There is also an increase in performance for the AUC of all models, with significant improvements for the Multi-Layer Perceptron and Complement Naïve Bayes models. As such, we can conclude that our proposed method has improved the overall performance of all models within the systems, with significant improvements particularly on models that by nature are not suited for handling imbalanced datasets.

Model Highlight

From these experiments, we were able to study the nature of various models with various changes. As such, we were also able to identify the model which performs best which we would like to highlight in this section. This model being the Voting ensemble model.

Fig. 7 Line chart displaying the Average score for Voting model

From previous analysis, we were able to identify the best feature selection method for this model so this section will be focused only on this combination of model and feature selection. If we observe the chart in Figure 7, the voting ensemble model has shown the most consistent results. Additionally, the Voting model also achieved the second highest score on the average AUC and F1-score among all models. In essence, the Voting model outperforms other models in terms of consistency and achieving scores greater than majority of the models available. This led us to decide that the Voting method is the best model for our system.

Conclusion

From this analysis, we were able to determine the optimal configurations for achieving the best results from every models. The experiments performed has revealed valuable information on nature of each model and it's changes with the introduction of feature selection methods. The results also led us to identify the best configuration for our system, that is the Voting model with the CFS feature selection method. With that said, our proposed method has shown prominent results in the case for finding fault proneness for imbalanced datasets.

References

Menzies, T. (2004). *Promise Software Engineering Repository*. Retrieved May 15, 2021 from http://promise.site.uottawa.ca/SERepository/datasets-page.html

Shepherd et al. (2014). NASADefectDataset. Retrieved May 15, 2021 from https://github.com/klainfo/NASADefectDataset/tree/master/CleanedData/MDP/D"