M 348 HOMEWORK 4

ZUN CAO

- 1. Chapter 1.4 Ex # 2 Apply two steps of Newton's Method with initial guess $x_0 = 1$.
 - (a) $x^3 + x^2 1 = 0$
 - (b) $x^2 + \frac{1}{x+1} 3x = 0$
 - (c) 5x 10 = 0

Solution. See Page2.

2. Additional Problem 1 Apply two steps of the Secant Method for the functions from Sec 1.4 Ex # 2 with initial guesses $x_0 = 0.5$ and $x_1 = 1.0$.

Solution. See Page3.

 $Date \colon 2/16/2024.$

ショウラクタクタクタクタクタウンショウラウンショウ

3	M348HW4
1.4 #2	We know that the Newton Method is
	Xo = Initial guess
	$X_{\bar{i}+1} = X_{\bar{i}} - \frac{f(X_{\bar{i}})}{f(X_{\bar{i}})} \text{for } \bar{i} = 0.1.2.$
(0)	Since Xo=1, we have
	$f(X_0) = f(X_0) = y^3 + y^2 - 1 = 1$
Step 1 >	$X_1 = X_0 - \frac{f(X_0)}{f(X_0)}$ $f(X_0) = X_0^3 + X_0^2 - 1 = 1^3 + 1^2 - 1 = 1$ $f(X_0) = 3X_0^2 + 2X_0 = 3 \cdot 1^2 + 2 \cdot 1 = 5$
	$X_1 = 1 - \frac{1}{5} = \frac{4}{5}$
4 1 1 1	$ \begin{array}{ll} \chi_{2} = \chi_{1} - \frac{f(\chi_{1})}{f'(\chi_{1})} & f(\chi_{1}) = \chi_{1}^{3} + \chi_{1}^{2} - 1 = (\frac{4}{5})^{3} + (\frac{4}{5})^{2} - 1 = \frac{19}{125} \\ f'(\chi_{1}) & f'(\chi_{1}) = 3\chi_{1}^{2} + 2\chi_{1} = 3(\frac{4}{5})^{2} + 2(\frac{4}{5}) = \frac{88}{25} \\ \chi_{2} = \frac{4}{5} - \frac{19}{\frac{125}{25}} = \frac{333}{440} \approx \boxed{0.756818} \end{array} $
Step 2:	$\chi_2 = \chi_1 - \frac{f(\chi_1)}{f(\chi_2)}$ $\chi_1 = \chi_1 + \chi_1 - 1 = (\frac{1}{5}) + (\frac{1}{5}) - 1 = (\frac{1}{5})$
	$f(x_1) = 5x_1 + 2x_1 = 3(\frac{1}{5}) + 2(\frac{1}{5}) = \frac{1}{25}$
+	$\chi_2 = \frac{4}{5} - \frac{125}{38} = \frac{333}{440} \approx 0.756818$
	25
43	
(6)	sīncexo=1. We have
step 1=	$\chi_1 = \chi_0 - \frac{f(\chi_0)}{f'(\chi_0)}$ $f(\chi_0) = \chi_0^2 + \frac{1}{\chi_0 + 1} - 3\chi_0 = 1^2 + \frac{1}{ + } - 3 = -\frac{3}{2}$
	$f'(X_0) = 2X_0 - (X_0 + 1)^2 - 3 = 2 \cdot 1 - 2^2 - 3 = -\frac{5}{4}$
	$X_1 = 1 - \frac{\left(-\frac{5}{2}\right)}{\left(-\frac{5}{2}\right)} = -\frac{1}{5}$
in the same	
step 2 =	$\chi_2 = \chi_1 - \frac{f(\chi_1)}{f(\chi_1)}$ $f(\chi_1) = \chi_1^2 + \frac{1}{\chi_1 + 1} - 3\chi_1 = (-\frac{1}{5})^2 + \frac{1}{1 - \frac{1}{5}} - 3(-\frac{1}{5})^2 = \frac{189}{100}$
Siepz	$f'(X_1) = 2X_1 - (X_1 + 1)^{-2} - 3 = 2(-\frac{1}{5}) - (1 - \frac{1}{5})^{-2} - 3 = -\frac{397}{80}$
	A TOTAL AND A TOTA
W F	$X_2 = -\frac{1}{5} - \frac{189}{100} = \frac{359}{1985} \approx 0.180856$
	-397 1989 (**1865)
(0)	Since Xo=1, We have
step1:	$= X_1 = X_0 - \frac{f(X_0)}{f(X_0)} \qquad f(X_0) = 5X_0 - 10 = 5 \cdot 1 - 10 = -5$ $= (X_0) = 5$
	$X_1 = 1 - \frac{-5}{5} = 2$
1	2012
٨	100
Step2:	$\chi_2 = \chi_1 - \frac{1}{4}(\chi_1)$ $\chi_2 = \chi_2 - 0 = 2$

とうしゅ かんしん しんしん しんしん しんしん しゅん しゅん

MUL	We know the secant meth	00 IS =	
	$X_0, X_1 = \overline{\text{initial guess}}$ $X_{\overline{i}+1} = X_{\widehat{i}} - f(X_{\overline{i}})(X_{\overline{i}})$	-X:_)	
	$f(X_i) - f(X_i) - f(X_i)$	101 6-17-13	
	Since X0=0.5, X1=1.0, We ha		
(a)	$X_z = X_1 - \frac{f(X_1)(X_1 - X_0)}{f(X_1) - f(X_0)}$	$f(\chi_1) = \chi_1^3 + \chi_1^2 - 1 = 1^3 + 1^2 - 1 = 1$	and the second
01	12- 11 f(X1)-f(X0)	$f(X_0) = X_0^3 + X_0^2 - 1 = (0.5)^3 + (0.5)^2 - 1 =$	-0.625
Step1=	$\chi_2 = 1.0 - \frac{1(1-0.5)}{1-(-0.625)} = \frac{9}{15}$	2 ≈ 0.692308	
Step2=	$\chi_3 = \chi_2 - \frac{f(\chi_2)(\chi_2 - \chi_1)}{f(\chi_2) - f(\chi_1)}$	$f(X_1) = 1$ $f(X_2) = X_2^3 + X_2^2 - 1 = (\frac{9}{13})^3 + (\frac{9}{13})^2 - 1 = \frac{1}{13}$	415
	. 415 9	484 653 ≈ 0.741194	2191
2		X3+1 2+1	3
(6)	$\chi_2 = \chi_1 - \frac{f(\chi_1)(\chi_1 - \chi_0)}{f(\chi_1) - f(\chi_0)}$	$f(X_1) = X_1^2 + \frac{1}{X_1 + 1} - 3X_1 = 1^2 + \frac{1}{1 + 1} - 3$	
Step1=	†(X1)-†(X0)	$f(\chi_0) = \chi_0^2 + \frac{1}{\chi_0 + 1} - 3\chi_0 = (0.5)^2 + \frac{1}{0.5 + 1}$	$-3(0.5) = -\frac{7}{12}$
	(-豆)-(-迃)	$\frac{2}{11} \approx 0.181818$	
	$\chi_2 = \chi_2 - \frac{f(\chi_2)(\chi_2 - \chi_1)}{\chi_2 - \chi_2}$	$f(X_i) = -\frac{1}{2}$	2, 525
Step2:	f(X ₂)-f(X ₁)	$f(\chi_2) = \chi_2^2 + \frac{1}{\chi_2 + 1} - 3\chi_2 = (\frac{2}{11})^2 + \frac{1}{(\frac{2}{11}) + 1}$	$-3(1) = \frac{1}{1513}$
	$X_3 = X_2 - \frac{f(X_2)(X_2 - X_1)}{f(X_2) - f(X_1)}$ $X_3 = \frac{2}{11} - \frac{\frac{525}{1513}(\frac{2}{11} - 1)}{\frac{525}{1573} - (-\frac{3}{2})} = \frac{212}{64}$	0.330733	
(<i>U</i>)	(XI)(XI-XO)	$f(X_1) = 5X_1 - 10 = 5 \cdot 1 - 10 = -5$	
C+0-1	$\chi_2 = \chi_1 - \frac{f(\chi_1)(\chi_1 - \chi_0)}{f(\chi_1) - f(\chi_0)}$	$f(X_0) = 5X_0 - 10 = 5(0.5) - 10 = -\frac{15}{3}$	
Step1:	$\chi_2 = 1 - \frac{(-5)(1-0.5)}{(-5)-(-\frac{15}{2})} = 2$	Good Tiggs	
		f(x1)=-5	
Step 2:	$\chi_3 = \chi_2 - \frac{f(\chi_2)(\chi_2 - \chi_1)}{f(\chi_2) - f(\chi_1)}$	$f(X_2) = 5X_2 - 10 = 5x_2 - 10 = 0$	
	X3= 2-0 = 2		

- **3. Additional Problem 2** Consider the function $f(x) = 54x^6 + 45x^5 102x^4 69x^3 + 35x^2 + 16x 4$ on the interval [-2,2].
 - (a) Apply Secant method (use secant_err) to find all roots of the function to 6 correct decimal places. Please refer to Notes About Correct Decimal Places in Code page. Report for each root:
 - the initial guess and tolerance used;
 - the solution with 6 correct decimal places;
 - the number of iterations needed;
 - the sequence of iterates x_i , the error e_i , and the error ratios $r_{sl} = \frac{e_i}{e_{i-1}e_{i-2}}$ and $r_l = \frac{e_i}{e_{i-1}}$ (Modify the code to calculate and print these ratios for each iteration.)
 - (b) Determine the convergence (superlinear or linear) to each of the roots.

 Recall that Secant method requires two previous approximations, so the first ratio (testing for superlinear convergence) is not defined for the first iteration.
- **Solution.** (a) Same as precious homework, we use WolframAlpha to find true root of this function, which are:

$$r_1 = -\frac{2}{3}$$

$$r_2 = 0.5$$

$$r_3 = -1.38129848$$

$$r_4 = 0.20518292$$

$$r_5 = 1.17611556$$

(1) Root1 $r_1 = -\frac{2}{3}$.

- initial guess $x_0 = -0.7$ and $x_1 = -0.6$, tolerance = 5e-7
- solution = -0.666667
- The number of iterations is 30.
- As shown in the picture.

- $02\ 1.44487994e 02\ 9.02480465e 03\ 5.58869406e 03\ 3.46462614e 03\ 2.14388991e 030480465e 0304804666 0304804666 0304804666 0304804666 0304804666 0304804666 0304804666 0304804666 0304804666 0304804666 0304804666 0304804666 030480466 0304804666 030480466 0304806 030$
- $03\ 1.32636285e-03\ 8.20179287e-04\ 5.07087648e-04\ 3.13465125e-04\ 1.93759095e-08$
- $04\ 1.19759768e-04\ 7.40195133e-05\ 4.57480530e-05\ 2.82744196e-05\ 1.74747695e-06$
- $06\ 9.73860948e-07\ 6.01906854e-07$

Linear error ratios (r_l): $[0.5.8043599\ 0.27277407\ 2.19708814\ 0.31969863\ 0.77440221\ 0.57966593\ 0.64628232\ 0.61610307\ 0.62460585\ 0.61925928\ 0.61993484\ 0.61879401\ 0.61867116\ 0.6183672\ 0.61826439\ 0.61816754\ 0.6181201\ 0.61808592\ 0.6180666\ 0.61805396\ 0.6180464\ 0.61804167\ 0.61803864\ 0.61803685\ 0.61803631\ 0.6180344\ 0.61803509\ 0.61803879\ 0.61806242]$

 $Superlinear error \ ratios \ (r_sl): \ [0.000000000e+00\ 3.75264093e+00\ 5.20747349e+00\ 2.77790424e+00\ 3.06263755e+00\ 7.17077381e+00\ 1.03239036e+01\ 1.69784195e+01\ 2.66334642e+01\ 4.28588747e+01\ 6.86923276e+01\ 1.10722470e+02\ 1.78567942e+02\ 2.88432350e+02\ 4.66135183e+02\ 7.53698067e+02\ 1.21896107e+03\ 1.97178528e+03\ 3.18987145e+03\ 5.16078117e+03\ 8.34977663e+03\ 1.35096825e+04\ 2.18585791e+04\ 3.53673820e+04\ 5.72251457e+04\ 9.25915162e+04\ 1.49815826e+05\ 2.42408388e+05\ 3.92239311e+05]$

```
C:\Users\13464\AppData\Local\Programs\Python\Python.exe "C:\Users\13464\Desktop\M348\HW4\secant Modified.py"
Solve the problem f(x)=0 using Secant method
Enter guess 0 at root:
Enter guess 1 at root:
Enter guess 1 at root:
Enter dolerance:
Enter markiteration:
Monitor iterations? (1/0):
Mouss 0: x=-0.700800, error=0.033333333
Guess 1: x=-0.600800, error=0.066666667
Iter 1: x=-0.739355228845, dx=-0.139355228845, error = 0.072688562178
Iter 2: x=-0.244756091134, dx=-0.44459913771, error = 0.421918975532
Iter 3: x=-0.781752933614, dx=-0.536996841096, error = 0.115086266374
Iter 4: x=-0.919521337282, dx=-0.137768404241, error = 0.252854670615
Iter 5: x=-0.7477639597889, dx=-0.137768404241, error = 0.08268872911424
Iter 6: x=-0.729267263579, dx=-0.122017379473, error = 0.0836372911424
Iter 6: x=-0.772926735579, dx=-0.02335502453, error = 0.0362874215581
Iter 8: x=-0.690118888872, dx=-0.0263131552541, error = 0.0362874215581
Iter 9: x=-0.690118888872, dx=-0.0263131552541, error = 0.0362874215681
Iter 10: x=-0.661115466062, dx=-0.090831198097, error = 0.0362874215681
Iter 11: x=-0.67361471317, dx=-0.083434311693301, error = 0.085883799154
Iter 12: x=-0.668115646062, dx=-0.090831198097, error = 0.036287421581
Iter 13: x=-0.667113137281, dx=-0.08343611693301, error = 0.085889489566
Iter 14: x=-0.6793029519, dx=-0.08343611693301, error = 0.08058809489666
Iter 15: x=-0.668810556572, dx=-0.081320736232788, error = 0.0082143899565
Iter 14: x=-0.667173754314, dx=-0.080831389153564, error = 0.008820179287109
Iter 15: x=-0.666816556572, dx=-0.00137076053555, error = 0.008313467323318
Iter 18: x=-0.666713747472, dx=-0.008961389555, error = 0.008131397359758214
Iter 19: x=-0.66671241472, dx=-0.0091370736333443, error = 0.008131397359758214
Iter 19: x=-0.66671241472, dx=-0.009137073633546492-85, error = 0.0081313971599768214
Iter 20: x=-0.66674068618, dx=-0.77407363344780-85, error = 0.0081313991509291-05
Iter 21: x=-0.66668446868, dx=-0.000137706303555, error = 1.747476947418-05
Iter 21: x=-0.66668446868, dx=-0.00013707363334689
```

```
Iter 26: x= -0.666670791966, dx= 2.5495500089e-06, error = 4.12529908045e-06
Iter 27: x= -0.666669216243, dx= 1.57572234975e-06, error = 2.54957673074e-06
1.15086266e-01 2.52854671e-01 8.08372911e-02 6.26005769e-02
3.62874217e-02 2.34519192e-02 1.44487994e-02 9.02480465e-03
5.58869406e-03 3.46462614e-03 2.14388991e-03 1.32636285e-03
8.20179287e-04 5.07087648e-04 3.13465125e-04 1.93759095e-04
1.19759768e-04 7.40195133e-05 4.57480530e-05 2.82744196e-05
2.54957673e-06 1.57572788e-06 9.73860948e-07 6.01906854e-07]
0.57966593 0.64628232 0.61610307 0.62460585 0.61925928 0.61993484
Superlinear error ratios (r_sl): [0.000000000e+00 3.75264093e+00 5.20747349e+00 2.77790424e+00
3.06263755e+00 7.17077381e+00 1.03239036e+01 1.69784195e+01
2.66334642e+01 4.28588747e+01 6.86923276e+01 1.10722470e+02
1.78567942e+02 2.88432350e+02 4.66135183e+02 7.53698067e+02
1.21896107e+03 1.97178528e+03 3.18987145e+03 5.16078117e+03
8.34977663e+03 1.35096825e+04 2.18585791e+04 3.53673820e+04
5.72251457e+04 9.25915162e+04 1.49815826e+05 2.42408388e+05
3.92239311e+05]
Process finished with exit code 0
```

```
C:\Users\13464\AppData\Local\Programs\Python\Python310\python.exe "C:\Users\13464\Desktop\M348\HW4\secant Modified.py"

Solve the problem f(x)=0 using Secant method
Enter guess 0 at root: 8.4
Enter guess 1 at root: 8.6
Enter tolerance: 8.7
Enter maxIteration: 8.8
Monitor iterations? (1/0): 8
Guess 0: x=0.400000, error=0.1
Guess 1: x=0.459531456858, dx= -0.140468543142, error = 0.0404685431417
Iter 1: x= 0.459531456858, dx= -0.140468543142, error = 0.0404685431417
Iter 2: x= 0.480550998519, dx= 0.027019832601, error = 0.0134490104806
Iter 3: x= 0.502859623441, dx= 0.0163086339218, error = 0.00285962344122
Iter 4: x= 0.499933158272, dx= -0.00302646516942, error = 0.000166847128199
Iter 5: x= 0.499998036691, dx= 0.000164878419148, error = 1.96330905095e-06
Iter 6: x= 0.500000001363, dx= 1.96467219806e-06, error = 1.35314715071e-09
Iter 7: x= 0.5, dx= -1.36315826244e-09, error = 1.11022302463e-14
The root is 0.500000
The number of iterations is 7
errors = [1.000000000e-01 1.00000000e-01 4.04685431e-02 1.34490105e-02
2.85962344e-03 1.66841728e-04 1.96330905e-06 1.36314715e-09
1.11022302e-14]
Linear error ratios (r_1): [0.00000000e+00 3.32332460e-01 2.12627051e-01 5.83439504e-02
1.17674941e-02 6.94311041e-04 8.14455742e-06]
Superlinear error ratios (r_s): [0. 5.2541316 4.33815934 4.11505023 4.16149514 4.14838276]
Process finished with exit code 0
```

(2) Root2 $r_2 = 0.5$.

- initial guess $x_0 = 0.4$ and $x_1 = 0.6$, tolerance = 5e-7
- solution = 0.500000
- The number of iterations is 7.
- As shown in the picture.

 $errors = \begin{bmatrix} 1.000000000e-01 \ 1.000000000e-01 \ 4.04685431e-02 \ 1.34490105e-02 \ 2.85962344e-03 \ 1.66841728e-04 \ 1.96330905e-06 \ 1.36314715e-09 \ 1.11022302e-14 \end{bmatrix}$

Linear error ratios (r_l): $[0.000000000e+00\ 3.32332460e-01\ 2.12627051e-01\ 5.83439504e-02\ 1.17674941e-02\ 6.94311041e-04\ 8.14455742e-06]$

Superlinear error ratios (r_sl): $[0.5.2541316\ 4.33815934\ 4.11505023\ 4.16149514\ 4.14838276]$

```
C:\Users\13464\AppData\Local\Programs\Python\Python310\python.exe "C:\Users\13464\Desktop\M348\HW4\secant Modified.py"
Solve the problem f(x)=0 using Secant method
Enter guess 0 at root:
Enter guess 1 at root:
Enter tolerance:
Enter maxIteration:
Monitor iterations? (1/0):
Guess 0: x=-1.500000, error=0.11870152
Guess 1: x=-1.200000, error=0.18129848
Iter 1: x= -1.28403005813, dx= -0.084030058125, error = 0.097268421875
Iter 4: x= -1.32767301043, dx= -0.0194027089918, error = 0.0536254695684
Iter 5: x= -1.40730890642, dx= -0.0796358959836, error = 0.0260104264152
Iter 6: x= -1.37480149781, dx= 0.0325074086041, error = 0.00649698218894
Iter 7: x= -1.38060120375, dx= -0.00579970593492, error = 0.000697276254018
Iter 8: x= -1.38131858811, dx= -0.00071738436135, error = 2.01081073321e-05
Iter 9: x= -1.38129842092, dx= 2.01671824004e-05, error = 5.90750681706e-08
Iter 10: x= -1.38129848204, dx= -6.11137155765e-08, error = 2.03864747306e-09
The root is -1.381298
The number of iterations is 10
6.97276254e-04 2.01081073e-05 5.90750682e-08 2.03864747e-09]
Linear error ratios (r_l): [0.00000000e+00 3.15332484e+00 2.38094787e-01 7.34312023e-01
4.85038670e-01 2.49783763e-01 1.07323098e-01 2.88380785e-02
2.93787313e-03 3.45094392e-02]
Superlinear error ratios (r_sl): [ 0.
                                                                                           4.65793148
Process finished with exit code 0
```

(3) Root3 $r_3 = -1.38129848$.

- initial guess $x_0 = -1.5$ and $x_1 = -1.2$, tolerance = 5e-7
- solution = -1.381298
- The number of iterations is 10.
- As shown in the picture.

 $\begin{array}{l} {\rm errors} = [1.18701520 {\rm e}\hbox{-}01\ 1.81298480 {\rm e}\hbox{-}01\ 9.72684219 {\rm e}\hbox{-}02\ 3.06718931 {\rm e}\hbox{-}01\ 7.30281786 {\rm e}\hbox{-}02\ 5.36254696 {\rm e}\hbox{-}02\ 2.60104264 {\rm e}\hbox{-}02\ 6.49698219 {\rm e}\hbox{-}03\ 6.97276254 {\rm e}\hbox{-}04\ 2.01081073 {\rm e}\hbox{-}05\ 5.90750682 {\rm e}\hbox{-}08\ 2.03864747 {\rm e}\hbox{-}09] \end{array}$

Linear error ratios (r_l): $[0.000000000e+00\ 3.15332484e+00\ 2.38094787e-01\ 7.34312023e-01\ 4.85038670e-01\ 2.49783763e-01\ 1.07323098e-01\ 2.88380785e-02\ 2.93787313e-03\ 3.45094392e-02]$

Superlinear error ratios (r_sl): $[0.2.44781176\ 2.39408771\ 6.64180155\ 4.65793148\ 4.12615679\ 4.43868825\ 4.21335606\ 1716.19529508]$

```
C:\Users\13464\AppData\Local\Programs\Python\Python310\python.exe "C:\Users\13464\Desktop\M348\HW4\secant Modified.py"
Solve the problem f(x)=0 using Secant method
Enter quess 0 at root:
Enter guess 1 at root:
Enter tolerance:
Enter maxIteration: 10
Monitor iterations? (1/0):
Iter 6: x= 0.205182924781, dx= 9.51536369278e-07, error = 4.78113260094e-09
Iter 7: x= 0.205182924689, dx= -9.20848496959e-11, error = 4.68904776119e-09
errors = [2.05182920e-01 1.94817080e-01 7.77633428e-02 2.52482377e-01
 9.30164272e-03 6.46077583e-05 9.46755237e-07 4.78113260e-09
 4.68904776e-09]
                                     3.24680458 0.03684076 0.00694584 0.01465389 0.00505002
 0.98073995]
Superlinear error ratios (r_sl): [0.000000000e+00 4.73754842e-01 2.75102127e-02 1.57540924e+00
 7.81642923e+01 1.03589599e+06]
Process finished with exit code \theta
```

(4) Root4 $r_4 = 0.20518292$.

- initial guess $x_0 = 0$ and $x_1 = 0.4$, tolerance = 5e-7
- solution = 0.20518292
- The number of iterations is 7.
- As shown in the picture.

 $\begin{aligned} \text{errors} &= [2.05182920\text{e-}01\ 1.94817080\text{e-}01\ 7.77633428\text{e-}02\ 2.52482377\text{e-}01\ 9.30164272\text{e-}03\ 6.46077583\text{e-}05\ 9.46755237\text{e-}07\ 4.78113260\text{e-}09\ 4.68904776\text{e-}09] \end{aligned}$

Linear error ratios (r_l): $[0. 3.24680458 \ 0.03684076 \ 0.00694584 \ 0.01465389 \ 0.00505002 \ 0.98073995]$

Superlinear error ratios (r_sl): $[0.000000000e+00\ 4.73754842e-01\ 2.75102127e-02\ 1.57540924e+00\ 7.81642923e+01\ 1.03589599e+06]$

(5) Root5 $r_5 = 1.17611556$.

- initial guess $x_0 = 1$ and $x_1 = 1.3$, tolerance = 5e-7
- solution = 1.176115562
- The number of iterations is 8.
- As shown in the picture.

 $\begin{array}{l} \text{errors} = [1.76115560\text{e-}01\ 1.23884440\text{e-}01\ 8.86666232\text{e-}02\ 3.83412023\text{e-}02\ 1.97537131\text{e-}02\ 3.15136020\text{e-}03\ 2.38088010\text{e-}04\ 3.01295602\text{e-}06\ 5.50806556\text{e-}09\ 2.64508726\text{e-}09] \end{array}$

Linear error ratios (r_l): $[0.\ 0.43241979\ 0.51520849\ 0.15953255\ 0.07555087\ 0.0126548\ 0.00182813\ 0.48022073]$

Superlinear error ratios (r_sl): $[0.000000000e+00\ 5.81062495e+00\ 4.16086454e+00\ 3.82464153e+00\ 4.01566265e+00\ 7.67836555e+00\ 1.59385244e+05]$

(b) The convergence type is determined by examining the linear (r_l) and superlinear (r_{sl}) error ratios for the last few iterations.

Root 1 $(r_1 = -\frac{2}{3})$. From the error ratios generated by Python, we can find that,

- Linear Error Ratios (r_l) : [0.6180344 0.61803509 0.61803879 0.61806242]
- Superlinear Error Ratios (r_{sl}) : [9.25915162e+04 1.49815826e+05 2.42408388e+05 3.92239311e+05]
- From the last few iterations, we can find that $r_{sl} \to \infty$ and r_l is approximately converge to 0.618, S = 0.618 < 1, so it is locally linear convergence.

Root 2 $(r_2 = 0.5)$.

- Linear Error Ratios (r_l) : [0.0117674941, 0.000694311041, 0.00000814455739]
- Superlinear Error Ratios (r_{sl}) : [4.11505023 4.16149514 4.14838276]
- From the last few iterations, we can find that $r_l \to 0$ and r_{sl} is approximately converge to 4.15, 4.15 $< \infty$, so it is locally superlinear convergence.

Root 3 $(r_3 = -1.38129848)$.

- Linear Error Ratios (r_l) : [0.02883808, 0.00293787, 0.03450944]
- Superlinear Error Ratios (r_{sl}) : [4.12615679 4.43868825 4.21335606 1716.19529508]
- From the last few iterations, we can find that $r_l \to 0$ and r_{sl} is approximately converge to 4.21, 4.21 $< \infty$, so it is locally superlinear convergence.

Root 4 $(r_4 = 0.20518292)$.

- Linear Error Ratios (r_l) : [0.00694584 0.01465389 0.00505002 0.98073995]
- Superlinear Error Ratios (r_{sl}) : [1.57540924e+00 7.81642923e+01 1.03589599e+06]
- From the last few iterations, we can find that $r_l \to 0$ and r_{sl} is approximately converge to 1.58, 1.58 $< \infty$, so it is locally superlinear convergence.

Root 5 $(r_5 = 1.17611556)$.

- Linear Error Ratios (r_l) : [0.07555087, 0.0126548, 0.00182813]
- Superlinear Error Ratios (r_{sl}) : [3.82464153e+00 4.01566265e+00 7.67836555e+00 1.59385244e+05]
- From the last few iterations, we can find that $r_l \to 0$ and r_{sl} is approximately converge to 4.015, 4.015 $< \infty$, so it is locally superlinear convergence.

4. Additional Problem 3

Solution. See next page.

AD	3 - ± 47-7 ³ +4
(a)	For (A), $Y = 4^3$ is a fixed point of $g_1(x) = \frac{TA - X + 1}{4}$ Since
	For (A), $r = 4^{\frac{1}{3}}$ is a fixed point of $g_1(x) = \frac{4x - x^3 + 4}{4}$ since $g_1(x) = \frac{4y - y^3 + 4}{4} = \frac{4 \cdot 4^{\frac{1}{3}} - 4^{\frac{1}{3}} \cdot \frac{1}{3} + 4}{4} = 4^{\frac{1}{3}} = 7$
	Because gill=r, ris a fixed paint root.
	For(B), $Y=4^{\frac{1}{3}}$ is a fixed point of $f_1(x)=4-x^3$ since
	$f_1(r) = 4 - 4^{\frac{1}{3} \cdot 3} = 0$
	Because ficr)=0, ris a fixed point root.
	For(c), $r=4^{\frac{1}{3}}$ is a fixed point of $g_2(x)=\frac{3x}{4}+\frac{1}{\chi^2}$ since $g_2(t)=\frac{3r}{4}+\frac{1}{r^2}=\frac{3\cdot 4^{\frac{1}{3}}}{4}+\frac{1}{4^2\cdot \frac{1}{3}}=\frac{3}{4}\cdot 4^{\frac{1}{3}}+\frac{1}{4}\cdot 4^{\frac{1}{3}}=\frac{4^{\frac{1}{3}}}{4}=r$
	$g_2(r) = \frac{3r}{4} + \frac{1}{r^2} = \frac{3\cdot 4^3}{4} + \frac{1}{4^2 \cdot 3} = \frac{3}{4} \cdot 4^{\frac{1}{3}} + \frac{1}{4} \cdot 4^{\frac{1}{3}} = 4^{\frac{1}{3}} = r$
	Because g2(r)= r, r is a fixed pointroot.
	For(D), $r=4^{\frac{1}{3}}$ is a fixed point of $g_3(x)=\frac{2}{\sqrt{x}}$ since
	$g_3(r) = \frac{2}{\sqrt{4^{\frac{1}{3}}}} = \frac{2^{\frac{3}{3}}}{2^{\frac{1}{3}}} = 2^{\frac{3}{3}} = 4^{\frac{1}{3}} = 7$
	Because g3(r)=r, ris a fixed point 100t.
	For (E), $r = 4^{\frac{1}{3}}$ is a fixed point of $f_2(x) = x^3 - 4$ since
	$f_2(r) = 4^{\frac{1}{3} \cdot 3} - 4 = 0$
	Because f2(t)=0, tis a fixed point root.
	For (F), $r = 4^{\frac{1}{3}}$ is a fixed point of $g_4(x) = \frac{4}{x^2}$ Since
	$g_4(r) = \frac{4}{r^2} = \frac{4}{4^{\frac{1}{3} \cdot 2}} = 4^{\frac{1}{3}} = 7$
	Because g ₄ (x)=r, t is a fixed point root.

a	
	For(F), FPI=
	$g_4'(x) = \frac{d}{dx}(\frac{4}{x^2}) = -\frac{8}{x^3}$
	$94(r) = -\frac{8}{r^3} = -\frac{8}{43\frac{1}{2}} = -2$, $ 94(r) = 2$
	Since 194(1) = 2 > 1, FPI does not converge.
R.F	In Conclusion, we find that
inear conv	(A) $S \approx 0.8899$, (B) $S = 0.5$, (c) $S = 0.25$, (D) $S = 0.5$
	(E) $\alpha = 1.62$ S more close to 0, it converge faster.
do not conver	
	Therefore, the rank from fastest to slowest must be=
-	E > C > B=D > A ; F does not converge.
(८)	Yes. Newton Method applied to $f(x)=4-x^3$ will be faster.
	we already showed that $r=4^{\frac{1}{5}}$ is a simple root of f, so
	the Newton Method is locally quadratic convergent.
	Specifically,
	$X_{i+1} = X_{i} - \frac{f(x_{i})}{f(x_{i})} = X_{i} - \frac{4 - X_{i}^{3}}{-3X_{i}^{2}} = X_{i} + \frac{4}{3X_{i}} - \frac{X_{i}^{2}}{3}$
	and $e_{i+1} \approx ce_i^2$, $\alpha = 2 \rightarrow (c = f'(i))$
	(fi(x)=-3x2=-3r2=-3(4378-7,56+0), M=1

5. Additional Problem 4 You buy a \$20,000 piece of equipment for nothing down and \$4000 per year for 6 years. What interest rate are you paying? The formula relating present worth P, annual payments A, number of years n, and interest rate i is

$$A = P \frac{i(1+i)^n}{(1+i)^n - 1}$$

Report:

- the solution method used (any from Chapter 1);
- the initial guess(es) or interval and tolerance used;
- the interest rate i with 6 correct decimal places;
- the number of iterations needed;
- the backward error of the final solution.

Solution. We apply the secant method to solve this question. From the question, we know that P = 20000, A = 4000, n = 6. Therefore,

$$f(i) = 4000 - 20000 \frac{i(1+i)^6}{(1+i)^6 - 1}$$

- initial guess $i_0 = 0.02$ and $i_1 = 0.09$, tolerance = 5e-7
- solution i = 0.054718 = 5.47179%
- The number of iterations is 4.
- \bullet As shown in the picture. errors = [3.47180000e-02 3.52820000e-02 8.57700862e-04 2.03537256e-05 6.27813400e-08 7.49766366e-08]

Linear error ratios (r_l): $[0.\ 0.02373056\ 0.00308451\ 1.19425034]$ Superlinear error ratios (r_sl): $[0.000000000e+00\ 3.59625781e+00\ 5.86747782e+04]$

• The backward error is calculated by substituting the computed solution, in this case the interest rate i = 0.054718 or 5.47179%, back into the original function and taking the absolute value of the result. The function f(i) is defined as:

$$f(i) = 4000 - 20000 \cdot \frac{i(1+i)^6}{(1+i)^6 - 1}$$

Therefore, the backward error is given by:

Backward Error =
$$|f(i)| \approx 0.000951$$

```
C:\Users\13464\AppData\Local\Programs\Python\Python310\python.exe "C:\Users\13464\Desktop\M348\HW4\secant Modified.py"
Solve the problem f(x)=0 using Secant method
Enter guess 0 at root: 0.02
Enter guess 1 at root: 0.02
Enter maxiteration: 0.00
Monitor iterations? (1/0): 0
Guess 0: x=0.020000, error=0.034718
Guess 0: x=0.020000, error=0.035282
Iter 1: x=0.09308002991383, dx= -0.0361397908617, error = 0.090857790861691
Iter 2: x=0.0546976462744, dx=0.090837347136946, error = 2.03537256449e-05
Iter 3: x=0.0547179372187, dx= 2.02909443049e-05, error = 6.27813400225e-08
Iter 4: x=0.0547179250234, dx= -1.2195296535e-08, error = 7.4976636559e-08
The root is 0.054718
The number of iterations is 4
errors = [3.47180000e-02 3.52820000e-02 8.57700862e-04 2.03537256e-05
6.27813400e-08 7.49766366e-08]
Linear error ratios (r_st): [0.000000000e+00 3.59625781e+00 5.86747782e+04]

Process finished with exit code 0
```

For i = 0.054718, the backward error was found to be approximately 0.000951, which quantifies the deviation of the computed solution from the expected result based on the original equation.

#!/usr/bin/env python3

11 11 11

SECANT METHOD

Solves the problem

f(x) = 0

using Secant method. For a known true solution calculates errors.

The main function is secant:

[state, x, errors] = secant(g0, g1, tolerance, maxIteration, debug)

Inputs:

g0 The initial guess at the solution.

g1 The second guess at the solution.

tolerance The convergence tolerance (must be > 0).

maxIteration The maximum number of iterations that can be taken.

debug Boolean to set debugging output.

Outputs:

x The solution.

Return:

state An error status code.

SUCCESS Successful termination.

BAD_ITERATE Error: The function had a vanishing derivative.

Remark: We assume we are given the function

f The name of the function for which a root is sought.

11 11 11

from math import sqrt

from numpy import zeros

SUCCESS = 0

```
WONT\_STOP = 1
BAD_ITERATE = 2
x_{true} = 0.054718
# The function for which a root is sought
def f(x):
   return 54*x**6 + 45*x**5 - 102*x**4 - 69*x**3 + 35*x**2 + 16*x - 4
       \#4000 - 20000 * (x * (1 + x) ** 6 / ((1 + x) ** 6 - 1)) AD4
def secant(g0, g1,TOL,MAX_ITERS,debug):
   global x_true, SUCCESS, WONT_STOP, BAD_ITERATE
   prec = 12
   eps = 1e-20
   # formatting string, this decides how output will look
   fmt = f"Iter %d: x= %.{prec}g, dx= %.{prec}g, error = %.{prec}g"
   errors = zeros(MAX_ITERS+2)
   x = g1
   f0 = f(g0)
   errors[0] = abs(g0-x_true)
   errors[1] = abs(g1-x_true)
   ratios_l = zeros(MAX_ITERS)
   ratios_sl = zeros(MAX_ITERS)
   if debug:
       print("Guess 0: x=%f, error=%.8g"%(g0,errors[0]))
       print("Guess 1: x=%f, error=%.8g"%(g1,errors[1]))
   ## Secant Loop
   for itn in range(1,MAX_ITERS+1):
       fx = f(x)
       if(abs(fx-f0) < eps):
           state = BAD_ITERATE
```

```
iters = itn
           return state,x,errors,iters,ratios_l[:itn-1], ratios_sl[:itn-2]
       dx = -f(x)*(x-g0)/(fx-f0)
       g0 = x
       f0 = fx
       x += dx
       err = abs(x - x_true)
       errors[itn+1] = err
       if itn > 1:
           ratios_l[itn - 1] = errors[itn + 1]/ errors[itn]
           if itn > 2:
              ratios_sl[itn - 2] = errors[itn+1] / (errors[itn] * errors[itn - 1])
       if debug:
           print(fmt % (itn, x, dx,err))
       # Check error tolerance
       if (abs(dx) \le TOL):
           iter = itn
           state = SUCCESS
           return state,x,errors, iter, ratios_1[:itn], ratios_s1[:itn-1]
   state = WONT_STOP
   iter = itn
   return state,x, errors, MAX_ITERS, ratios_1[:MAX_ITERS], ratios_s1[:MAX_ITERS-1]
###input
print("Solve the problem f(x)=0 using Secant method")
x0 = float(input("Enter guess 0 at root: "))
x1 = float(input("Enter guess 1 at root: "))
```

```
tol = float(input("Enter tolerance: "))
maxIter = int(input("Enter maxIteration: "))
debug = bool(input("Monitor iterations? (1/0): "))
### Solve
[s,x,errors,iters, ratios_l, ratios_sl] = secant(x0,x1,tol,maxIter,debug)
if s == SUCCESS:
   print(f"The root is {x:.6f}")
   print("The number of iterations is %d"%(iters))
elif s == WONT_STOP:
   print("ERROR: Failed to converge in %d iterations!"%(maxIter))
elif s == BAD_ITERATE:
   print("ERROR: Obtained a vanishing derivative!")
    exit(1)
else:
   print("ERROR: Coding error!")
    exit(1)
errors = errors[:iters+2]
print("errors =",errors)
print("Linear error ratios (r_l):", ratios_l)
print("Superlinear error ratios (r_sl):", ratios_sl)
```