AA

TÀI LIỆU LUYỆN THI OLYMPIC TOÁN SINH VIÊN

Phần I

Giải tích

1 Dãy số và hàm số

1.1 Tóm tắt lý thuyết

Đ/n 1.1. Dãy (a_n) đơn điệu tăng (tương ứng giảm) nếu $a_n \leq a_{n+1}, \ \forall n \in \mathbb{Z}^+$ (tương ứng \geq). Dãy tăng (hoặc giảm) gọi chung là đơn điệu.

Đ/n 1.2. Dãy (a_n) bị chặn trên (tương ứng dưới) nếu $\exists C, \ a_n \leq C, \ \forall n \in \mathbb{Z}^+$ (tương ứng \geq).

Đ/l 1.1. Dãy (a_n) tăng và bị chặn trên (tương ứng dưới) bởi C thì có giới hạn L và $u_n \leq L \leq C$, $\forall n \in \mathbb{Z}^+$ (tương ứng \geq).

Đ/l 1.2 (Stolz). Cho hai dãy (a_n) , (b_n) . Giả sử

a)
$$\lim_{n\to\infty} b_n = \infty$$

b)
$$\lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n} = L$$

Khi đó
$$\lim_{n\to\infty} \frac{a_n}{b_n} = L$$

H/q 1.1. Cho dãy số dương (a_n) . Khi đó $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=L\Rightarrow\lim_{n\to\infty}\sqrt[n]{a_n}=L.$

HD. Áp dụng định lý Stolz với hai dãy (ln a_n) và (n).

Đ/I 1.3 (Đ/I trung bình Cesàro). $\lim_{n\to\infty} a_n = L \Rightarrow \lim_{n\to\infty} \frac{a_1 + a_2 + \cdots + a_n}{n} = L$

Chú ý 1.1. Cho dãy (a_n) xác định bởi $a_{n+1} = f(a_n)$. Nếu

a)
$$\alpha < a_n < \beta$$
, $\forall n \geq n_0$

b)
$$f'(x) > 0, \forall x \in (\alpha, \beta)$$

thì dãy $(a_n)_{n\geq n_0}$ tăng (tương ứng giảm) nều $a_{n_0}\leq a_{n_0+1}$ (tương ứng \geq).

 $G\phi i \ \acute{y}$. Chứng minh bằng quy nạp, chẳng hạn $a_{n+2} = f(a_{n+1}) \ge f(a_n) = a_{n+1}$.

Chú ý 1.2. Cho f(x) liên tục tại a. Khi đó $\lim_{n\to\infty} x_n = a \Rightarrow \lim_{n\to\infty} f(x_n) = f(a)$.

Chú ý 1.3. Cho dãy (a_n) , xác định bởi $a_{n+1} = f(a_n)$ trong đó f là hàm liên tục. Khi đó $\lim_{n \to \infty} a_n = L \Rightarrow L = f(L)$.

Đ/l 1.4 (Nguyên lý ánh xạ co). Cho dãy (a_n) xác định bởi $a_{n+1} = f(a_n)$, $\alpha \leq a_0 \leq \beta$. Giả sử

a)
$$\alpha \leq f(x) \leq \beta$$
, $\forall x \in [\alpha, \beta]$

b)
$$\exists q \leq (0,1), |f(x) - f(y)| \leq q |x - y|, \forall x, y \in [\alpha, \beta].$$

Khi đó

a)
$$\lim_{n\to\infty} a_n = L \in [\alpha, \beta]$$
 $v \grave{a} L = f(L)$

b) Với $n \ge 1$

$$|a_n - L| \le \frac{q^n}{1 - q} |a_1 - a_0|$$

 $|a_n - L| \le \frac{q}{1 - q} |a_n - a_{n-1}|$

Chú ý 1.4. Điều kiện (b) trong \not 1.4 thỏa mãn nếu $|f'(x)| \le q < 1$, $\forall x \in [\alpha, \beta]$. Thật vậy theo định lý số gia giới nội Lagrange, $\exists c \in (x, y)$, f(x) - f(y) = f'(c)(x - y), suy ra

$$|f(x) - f(y)| = |f'(c)| \times |x - y| \le q|x - y|$$

Các dạng sau gồm Đ/l 1.5, M/đ 1.1 thì ít gặp hơn

Đ/l 1.5 (Phương pháp Newton trong giải tích số). *Cho dãy* (a_n) *xác định bởi* $a_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)}$, $a_0 \in [\alpha, \beta]$ trong đó

- a) f', f'' không đổi dấu trên $\left[\alpha, \beta\right]$
- b) $f(\alpha) f(\beta) < 0$
- c) $f(a_0) f'' > 0$

Khi đó

- a) Dãy (a_n) tăng (tương ứng giảm) nếu f'f'' < 0 (tương ứng >)
- b) $\lim_{n\to\infty} a_n = L$, và L là nghiệm duy nhất của f trên $\left[\alpha,\beta\right]$
- c)

$$|a_n - L| \le \frac{M}{2m} |a_n - a_{n-1}|^2, \ \forall n \ge 1$$

 $|a_n - L| \le \frac{|f(a_n)|}{m}, \ \forall n$

trong đó $M \ge |f''(x)|$, $0 < m \le |f'(x)|$, $\forall x \in [a, b]$

Chú ý 1.5 (Phương pháp Newton cải biên). *Nếu* $a_{n+1} = a_n - \frac{f(a_n)}{f'(a_0)}$, thì các các mục trong Đ/l 1.5 vẫn đúng trừ kết luân (c).

M/đ 1.1 (Phương pháp dây cung trong giải tích số). *Cho dãy* (x_n) *xác định bởi* $a_{n+1} = a_n - \frac{f(a_n)}{f(a_n) - f(r)} (a_n - r)$, trong đó

- a) f', f'' không đổi dấu trên $[x_0, r]$
- b) $f(x_0) f(r) < 0$
- c) f'f'' > 0 ứng với $x_0 < r$, và ngược lại

Khi đó

- a) Dãy (a_n) tăng (tương ứng giảm) nếu f'f''>0 (tương ứng <)
- b) $\lim_{n\to\infty} a_n = L$, và L là nghiệm duy nhất của f trên $[x_0, r]$

c)

$$|a_n - L| \le \left(\frac{M}{m} - 1\right) |a_n - a_{n-1}|^2, \ \forall n \ge 1$$
 $|a_n - L| \le \frac{|f(a_n)|}{m}, \forall n$

trong đó $0 < m \le |f'(x)| \le M, \ \forall x \in [a_0, r]$

1.2 Đề thi chính thức các năm

Vd 1.1 (2018). Cho dãy (x_n) xác định bởi $x_1 = 2019$, $x_{n+1} = \frac{1}{2018}x_n^2 + \frac{2017}{2018}x_n$.

a) Chứng minh (x_n) tăng, không bị chặn trên.

b) Chứng minh
$$\frac{x_n}{x_{n+1}-1} = 2018 \left(\frac{1}{x_n-1} - \frac{1}{x_{n+1}-1} \right)$$

c) Tim
$$\lim_{n\to\infty}\sum_{k=1}^{\infty}\frac{x_k}{x_{k+1}-1}$$

Chú ý 1.6. Tổng quát cho $x_1 = a > 0$, $x_{n+1} = bx_n^2 + (1-b) x_n với <math>0 < b < 1$.

Vd 1.2 (2017). Cho dãy (u_n) xác định bởi $u_1 = 1$, $u_{n+1} = \frac{1}{2}u_n^2 - 1$.

Bảng A: Chứng minh (u_n) hội tụ, và tìm $\lim_{n\to\infty} u_n$

Bảng B: Chứng minh

a)
$$-1 < u_n < 0, \forall n \ge 2$$

b) (u_n) có giới hạn, và giới hạn đó là 1 $-\sqrt{3}$

Vd 1.3 (2016). Cho dãy (u_n) xác định bởi $u_1 = a$, $u_{n+1} = u_n^2 - u_n + 1$.

- a) Tìm a để (u_n) hội tụ
- b) Tìm giới hạn của (un) khi nó hội tụ

Chú ý 1.7. *Tổng quát cho* $u_{n+1} = u_n + (u_n - b)^2$.

Vd 1.4 (2015). Cho dãy (a_n) xác định bởi $2a_{n+1} - 2a_n + a_n^2 = 0$, $n \ge 0$.

- a) Chứng minh (a_n) đơn điệu
- b) Cho $a_0 = 1$. Tim $\lim_{n \to \infty} a_n$
- c) Tìm tất cả giá trị của a_0 để (a_n) có giới hạn hữu hạn. Khi đó tìm $\lim_{n\to\infty}$ na_n

Vd 1.5 (2014). Cho dãy (u_n) xác định bởi $u_1 = 1$, $u_{n+1} = \sqrt{u_n^2 + a^n}$, $a \ge 0$. Tìm a để (u_n) hội tụ, và tìm giới hạn đó.

HD. Bình phương hệ thức rồi khử $ightarrow u_n^2$ theo a

1.3 Luyện tập

Vd 1.6 (Olympic SV Bắc Mỹ).
$$x_n = \underbrace{\sqrt[3]{6 + \sqrt[3]{6 + \dots + \sqrt[3]{6}}}}_{n/\hat{n}n} Tim \lim_{n \to \infty} 6^n (2 - x_n).$$

HD. 1.
$$x_1 = \sqrt[3]{6}$$
, $x_{n+1} = \sqrt[3]{6 + x_n}$

2.
$$f(x) = \sqrt[3]{6+x}$$
, $f'(x) = \frac{1}{3 \cdot \sqrt[3]{(6+x)^2}}$

- 3. Dự đoán $L = \lim_{n \to \infty} x_n = 2$: L = f(L)
- 4. $0 < x_n < 2, \ \forall n$
- 5. (x_n) tăng
- 6. L = 2

7.
$$2-x_n=f(2)-f\left(x_{n-1}\right)=f'(c)\left(2-x_{n-1}\right)<\frac{1}{3\cdot\sqrt[3]{(6+0)^2}}\left(2-x_{n-1}\right)$$

8. Đặt
$$q = \frac{1}{3 \cdot \sqrt[3]{36}} < \frac{1}{6} \Rightarrow 2 - x_n < q^{n-1} (1 - x_1) \Rightarrow 6^n (2 - x_n) = \frac{1 - x_1}{q} (6q)^n$$

Chú ý 1.8. *Tương tự với*
$$x_n = \underbrace{\sqrt{a + \sqrt{a + \dots + \sqrt{a}}}_{n}}_{n}$$
 khi $a \in \{24, 60, 120\}$. *Riêng* $x_n = \underbrace{\sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}}_{n} = 2\cos\frac{\pi}{2^{n+1}}$

Vd 1.7 (Olympic SV Bắc Mỹ). *Cho* $a_0 = a$, $x_1 = b$, $x_n = \left(1 - \frac{1}{n}\right) x_{n-1} + \frac{1}{n} x_{n-2}$. *Tìm* $\lim_{n \to \infty} x_n$.

HD. 1.
$$x_n - x_{n-1}$$

2. *x*_n

Vd 1.8. Cho dãy (x_n) xác định bởi $x_1 \in (0,1)$, $x_{n+1} = \ln(1+x_n)$. Tìm $\lim_{n\to\infty} nx_n$

Vd 1.9. Cho dãy (x_n) xác định bởi $x_0 = 1$, $x_{n+1} = x_n - \frac{x_n^2}{2002}$. Chứng minh $x_{2002} < \frac{1}{2}$.

Vd 1.10.
$$Tinh \lim_{n\to\infty} \left(\sum_{k=1}^n \frac{1}{C_n^k}\right)^n$$