Volné extrémy, skupina $Alpha \alpha$ -i

Jméno:

Cílem je najít volné extrémy funkce f(x, y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

$f(x,y) = x^3 - 6x^2 - 15x - 1 + 24y + 3y^2 - y^3$??? vybarvi

(b) Najdi parciální derivaci podle
$$x$$
, $\frac{\partial f}{\partial x} = ??? \quad 3x^2 - 12x - 15$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = 4$

(d) Najdi parciální derivaci podle
$$y$$
, $\frac{\partial f}{\partial y} = ??? -3y^2 + 6y + 24$

(e) Najdi stacionární body v
$$y$$
 $???$ $y_1 + y_2 = 2$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\text{max}}(x,y) = \dots ??? \dots -21$$

Písmeno Braillovei abecedy

Volné extrémy, skupina $Alpha \alpha$ -ii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(b) Najdi parciální derivaci podle
$$x$$
, $\frac{\partial f}{\partial x} = ??? -3x^2 - 9x + 21$

(c) Najdi stacionární body v x ???
$$x_1 + x_2 = -6$$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = . ??? . 3y^2 + 6y - 36$$

(e) Najdi stacionární body v
$$y$$
 ??? $y_1 + y_2 = -2$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\max}(x,y) = \dots ??? \dots -72$$

Písmeno Braillovei abecedy

Volné extrémy, skupina $Alpha \alpha$ -iii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x,y) = x^3 + 6x^2 + 9x - 1 + 21y + 9y^2 - y^3$$
 . ??? . vybarvi

(b) Najdi parciální derivaci podle
$$x, \frac{\partial f}{\partial x} = . ??? . 3x^2 + 12x + 9$$

(c) Najdi stacionární body v x ????
$$x_1 + x_2 = -4$$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = ??? -3y^2 + 18y + 12$$

(e) Najdi stacionární body v y ???
$$y_1 + y_2 = 6$$

3.

Písmeno Braillovei abecedy

Volné extrémy, skupina Alpha α -iv

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x,y) = -4x^3 - 12x^2 + 36x + 3 - 96y - 12y^2 + 4y^3$$
 ??? vybarvi

(b) Najdi parciální derivaci podle
$$x$$
, $\frac{\partial f}{\partial x} = . ??? . -12x^2 - 12x + 36$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = -1$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = \dots ??? \dots 12y^2 - 24y - 72$$

f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\text{max}}(x,y) = \dots ??? \dots 135$$

Volné extrémy, skupina $Beta \beta$ -i

Jméno:

Cílem je najít **volné extrémy** funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x,y) = -6x^3 - 18x^2 + 144x - 3 + 45y - 30y^2 + 5y^3$$
 .. ???? .. vybarvi

- (b) Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = ??? -18x^2 18x + 144$
- (c) Najdi stacionární body v x ??? $x_1 + x_2 = -1$
- (d) Najdi parciální derivaci podle $y, \frac{\partial f}{\partial y} = . ??? . 15y^2 60y + 15$
- (e) Najdi stacionární body v y ??? $y_1 + y_2 = 4$
- (f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots -483$

1.

Písmeno Braillovej abecedy

Volné extrémy, skupina $Beta\ \beta$ -ii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) $f(x,y) = x^3 3x^2 24x 1 + 36y + 12y^2 4y^3$??? vybarvi
- (b) Najdi parciální derivaci podle $x, \frac{\partial f}{\partial x} = . ??? . 3x^2 6x 24$
- (c) Najdi stacionární body v x ??? $x_1 + x_2 = 2$
- (d) Najdi parciální derivaci podle y, $\frac{\partial f}{\partial y} = ??? -12y^2 + 24y + 24$
- (e) Najdi stacionární body v y ??? $y_1 + y_2 = 2$
- (f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots ...$ 7

2.

Písmeno Braillovej abecedy

Volné extrémy, skupina Beta β -iii

Jm'eno:

Cílem je najít volné extrémy funkce f(x, y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) $f(x,y) = -x^3 9x^2 + 81x 7 + 48y + 6y^2 2y^3$??? nebarvi
- **(b)** Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = ??? -3x^2 18x + 81$
- (c) Najdi stacionární body v x ??? $x_1 + x_2 = -5$
- (d) Najdi parciální derivaci podle y, $\frac{\partial f}{\partial y} = ??? -6y^2 + 12y + 36$
- (e) Najdi stacionární body v y ??? $y_1 + y_2 = 3$
- (f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 28$

3.

Písmeno Braillovej abecedy

Volné extrémy, skupina $Beta \beta$ -iv

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) $f(x,y) = -6x^3 + 36x^2 + 90x + 2 + 75y + 30y^2 5y^3$??? vybarvi
- (b) Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = . ??? . -18x^2 + 36x + 90$
- (c) Najdi stacionární body v x ??? $x_1 + x_2 = 4$
- (d) Najdi parciální derivaci podle y, $\frac{\partial f}{\partial y} = . ??? . -15y^2 + 60y + 45$
- f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 562$

Volné extrémy, skupina $Gamma \gamma$ -i

Jméno:

Cílem je najít volné extrémy funkce f(x, y) zadané v (a). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = -x^3 + 6x^2 + 15x - 4 - 9y - 6y^2 - y^3$??? vybarvi

(b) Najdi parciální derivaci podle
$$x$$
, $\frac{\partial f}{\partial x} = ??? -3x^2 + 12x + 15$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = 4$

(d) Najdi parciální derivaci podle
$$y$$
, $\frac{\partial f}{\partial y} = ??? -3y^2 - 12y - 9$

(e) Najdi stacionární body v
$$y$$
 ??? $y_1 + y_2 = -3$

Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots -12$

Písmeno Braillovei abecedy

Volné extrémy, skupina $Gamma \gamma$ -ii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = 2x^3 - 12x^2 - 72x + 4 - 24y + 3y^2 + y^3$??? vybarvi

(b) Najdi parciální derivaci podle
$$x$$
, $\frac{\partial f}{\partial x} = . ??? . $6x^2 - 12x - 72$$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = 5$

(d) Najdi parciální derivaci podle
$$y$$
, $\frac{\partial f}{\partial y} = \dots ??? \dots 3y^2 + 6y - 18$

(e) Najdi stacionární body v
$$y$$
 $???$ $y_1 + y_2 = -1$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\max}(x,y) = \dots ??? \dots 56$$

Písmeno Braillovei abecedy

Volné extrémy, skupina $Gamma \gamma$ -iii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = -x^3 - 6x^2 - 9x - 7 + 72y - 12y^2 - 2y^3$??? vybaryi

(b) Najdi parciální derivaci podle
$$x, \frac{\partial f}{\partial x} = . ??? . -3x^2 - 6x - 9$$

(c) Najdi stacionární body v x ???
$$x_1 + x_2 = -4$$

(d) Najdi parciální derivaci podle
$$y$$
, $\frac{\partial f}{\partial y} = ??? -6y^2 - 24y + 48$

(e) Najdi stacionární body v
$$y$$
 ??? $y_1 + y_2 = -4$

Naidi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots ??? \dots ...$ 3.

Písmeno Braillovei abecedy

Volné extrémy, skupina $Gamma \gamma$ -iv

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = -2x^3 + 6x^2 + 18x - 2 + 36y + 6y^2 - y^3$??? vybarvi

(b) Najdi parciální derivaci podle
$$x$$
, $\frac{\partial f}{\partial x} = . ??? . -6x^2 + 6x + 18$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = 3$

d) Najdi parciální derivaci podle
$$y$$
, $\frac{\partial f}{\partial y} = ??? -3y^2 + 12y + 24$

(e) Najdi stacionární body v
$$y$$
 ??? $y_1 + y_2 = 5$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\text{max}}(x,y) = \dots ??? \dots 12$$

Písmeno Braillovei abecedy

Volné extrémy, skupina $Delta \ \delta$ -i

Jméno:

Cílem je najít volné extrémy funkce f(x, y) zadané v (a). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = -7x^3 - 21x^2 + 63x + 4 - 45y - 3y^2 + y^3$??? vybarvi

(b) Najdi parciální derivaci podle
$$x$$
, $\frac{\partial f}{\partial x} = ??? -21x^2 - 21x + 63$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = -2$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = \dots ??? \dots 3y^2 - 6y - 36$$

(e) Najdi stacionární body v
$$y$$
 ??? $y_1 + y_2 = 2$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\text{max}}(x,y) = \dots ??? \dots -360$$

Písmeno Braillovei abecedy

Volné extrémy, skupina $Delta \delta$ -ii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = -x^3 + 9x^2 + 21x - 3 - 15y - 9y^2 - y^3$??? nebarvi

(b) Najdi parciální derivaci podle
$$x, \frac{\partial f}{\partial x} = ??? -3x^2 + 18x + 21$$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = 6$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = ??? -3y^2 - 18y - 6$$

(e) Najdi stacionární body v
$$y$$
 $???$ $y_1 + y_2 = -5$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\max}(x,y)=\ldots$$
 249

Písmeno Braillovei abecedy

Volné extrémy, skupina $Delta \delta$ -iii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = 2x^3 + 12x^2 + 18x + 5 + 54y - 18y^2 - 6y^3$??? vvbarvi

(b) Najdi parciální derivaci podle
$$x, \frac{\partial f}{\partial x} = \dots ??? \dots 6x^2 + 12x + 18$$

(c) Najdi stacionární body v x ????
$$x_1 + x_2 = -3$$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = .$$
 ??? . $-18y^2 - 36y + 36$

(e) Najdi stacionární body v
$$y$$
 ??? $y_1+y_2=-2$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\max}(x,y) = \dots ??? \dots -165$$

3.

Písmeno Braillovei abecedy

Volné extrémy, skupina $Delta \ \delta$ -iv

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a) $f(x,y) = -4x^3 + 12x^2 + 36x + 1 - 75y + 30y^2 + 5y^3$??? vybaryi

(b) Najdi parciální derivaci podle
$$x, \frac{\partial f}{\partial x} = . ??? . -12x^2 + 24x + 36$$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = 2$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = \dots ??? \dots 15y^2 + 60y - 45$$

(e) Najdi stacionární body v
$$y$$
 ??? $y_1 + y_2 = -3$

Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\text{max}}(x,y) = \dots ??? \dots 69$$

Písmeno Braillovei abecedy

Volné extrémy, skupina $Epsilon \epsilon$ -i

Jméno:

Cílem je najít **volné extrémy** funkce f(x,y) zadané v (a). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

- (a) $f(x,y) = 4x^3 + 12x^2 36x + 3 45y 30y^2 5y^3$??? vybarvi
- (b) Najdi parciální derivaci podle $x, \frac{\partial f}{\partial x} = .$??? . $12x^2 + 24x 36$
- (c) Najdi stacionární body v x ??? $x_1 + x_2 = -1$
- (d) Najdi parciální derivaci podle $y, \frac{\partial f}{\partial y} = . ??? . -15y^2 60y 15$
- (e) Najdi stacionární body v y ??? $y_1 + y_2 = -3$
- (f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots -17$

1.

Písmeno Braillovej abecedy

Volné extrémy, skupina $Epsilon~\epsilon$ -ii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

- (a) $f(x,y) = -x^3 + 9x^2 + 21x 6 9y 3y^2 + y^3$??? vybarvi
- (b) Najdi parciální derivaci podle $x, \frac{\partial f}{\partial x} = ???? -3x^2 + 9x + 21$
- (c) Najdi stacionární body v x ??? $x_1 + x_2 = 7$
- (d) Najdi parciální derivaci podle $y, \frac{\partial f}{\partial y} = . ??? . 3y^2 6y 9$
- (e) Najdi stacionární body v y ??? $y_1 + y_2 = 3$
- (f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 21$

2.

Písmeno Braillovej abecedy

Volné extrémy, skupina $Epsilon~\epsilon$ -iii

Jm'eno:

Cílem je najít volné extrémy funkce f(x, y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) $f(x,y) = 2x^3 12x^2 30x 2 108y 18y^2 + 3y^3$??? vybarvi
- (b) Najdi parciální derivaci podle $x, \frac{\partial f}{\partial x} = \dots ??? \dots 6x^2 24x 30$
- (c) Najdi stacionární body v x ??? $x_1 + x_2 = 5$
- (d) Najdi parciální derivaci podle $y, \frac{\partial f}{\partial y} = \dots ??? \dots 9y^2 36y 72$
- (f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots -850$

<u>3.</u>

Písmeno Braillovej abecedy

Volné extrémy, skupina $Epsilon \epsilon$ -iv

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) $f(x,y) = 2x^3 12x^2 30x + 3 9y 6y^2 y^3$??? vybarvi
- (b) Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = ??? 6x^2 12x 30$
- (c) Najdi stacionární body v x ??? $x_1 + x_2 = 5$
- (d) Najdi parciální derivaci podle $y, \frac{\partial f}{\partial y} = ??? -3y^2 12y 3$
- (e) Najdi stacionární body v y ??? $y_1 + y_2 = -3$
- (f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots -197$

4.

Volné extrémy, skupina Zeta ζ -i

Jméno:

Cílem je najít **volné extrémy** funkce f(x,y) zadané v (a). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

- (a) $f(x,y) = -3x^3 + 18x^2 + 108x 2 + 48y + 6y^2 2y^3$??? vybarvi
- **(b)** Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = . ??? . -9x^2 + 36x + 108$
- (c) Najdi stacionární body v x ??? $x_1 + x_2 = 5$
- (d) Najdi parciální derivaci podle y, $\frac{\partial f}{\partial y} = . ??? . -6y^2 + 12y + 36$
- (f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 590$

1.

Písmeno Braillovej abecedy

Volné extrémy, skupina Zeta ζ -ii

Jméno:

Cílem je najít **volné extrémy** funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) $f(x,y) = -3x^3 18x^2 + 45x 5 + 144y 18y^2 6y^3$.. ??? .. vybarvi
- **(b)** Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = ??? -9x^2 18x + 45$
- (c) Najdi stacionární body v x ??? $x_1 + x_2 = -4$
- (d) Najdi parciální derivaci podle y, $\frac{\partial f}{\partial y} = ??? -18y^2 36y + 108$
- (e) Najdi stacionární body v y ??? $y_1 + y_2 = -2$
- (f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots -785$

2.

Písmeno Braillovej abecedy

Volné extrémy, skupina Zeta ζ -iii

 $Jm\'{e}no:$

Cílem je najít volné extrémy funkce f(x, y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) $f(x,y) = -6x^3 36x^2 54x + 6 + 9y + 6y^2 + y^3$??? vybarvi
- **(b)** Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = ??? -18x^2 72x 54$
- (c) Najdi stacionární body v x ??? $x_1 + x_2 = -4$
- (d) Najdi parciální derivaci podle $y, \frac{\partial f}{\partial y} = \dots ???? \dots 3y^2 + 12y 9$
- (e) Najdi stacionární body v y $y_1 + y_2 = -4$

3.

Písmeno Braillovej abecedy

Volné extrémy, skupina Zeta ζ -iv

Jméno:

Cílem je najít volné extrémy funkce f(x, y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) $f(x,y) = 4x^3 + 12x^2 96x 3 + 63y 6y^2 y^3$??? vybarvi
- (b) Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = ??? 12x^2 + 12x 96$
- (c) Najdi stacionární body v x ??? $x_1 + x_2 = -1$
- (d) Najdi parciální derivaci podle $y, \frac{\partial f}{\partial y} = ??? -3y^2 12y + 45$
- (e) Najdi stacionární body v y ??? $y_1 + y_2 = -3$
- (f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots -507$

d

Volné extrémy, skupina $Eta \eta$ -i

Jméno:

Cílem je najít volné extrémy funkce f(x, y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = 3x^3 - 18x^2 - 45x - 2 + 45y - 18y^2 - 3y^3$??? vybarvi

(b) Najdi parciální derivaci podle
$$x, \frac{\partial f}{\partial x} = \dots ??? \dots 9x^2 - 18x - 45$$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = 4$

(d) Najdi parciální derivaci podle
$$y$$
, $\frac{\partial f}{\partial y} = ... ??? ... -9y^2 - 36y + 45$

(e) Najdi stacionární body v y ???
$$y_1 + y_2 = -3$$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\text{max}}(x,y) = \dots ??? \dots -602$$

Písmeno Braillovei abecedy

Volné extrémy, skupina $Eta \eta$ -ii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = -4x^3 - 12x^2 + 96x - 1 - 9y + 6y^2 - y^3$??? vybarvi

(b) Najdi parciální derivaci podle
$$x$$
, $\frac{\partial f}{\partial x} = ??? -12x^2 - 24x + 96$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = -2$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = . ??? . -3y^2 + 12y - 3$$

(e) Najdi stacionární body v
$$y$$
 ??? $y_1 + y_2 = 4$

Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 107$

Písmeno Braillovei abecedy

Volné extrémy, skupina $Eta \eta$ -iii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = -x^3 + 6x^2 - 9x + 7 + 216y - 36y^2 - 6y^3$??? vybaryi

(b) Najdi parciální derivaci podle
$$x, \frac{\partial f}{\partial x} = \dots ??? \dots -3x^2 + 6x - 9$$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = 4$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = ??? -18y^2 - 72y + 144$$

(e) Najdi stacionární body v
$$y$$
 ??? $y_1 + y_2 = -4$

3.

Písmeno Braillovei abecedy

Volné extrémy, skupina $Eta \eta$ -iv

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = -x^3 - 6x^2 + 15x - 1 - 9y - 3y^2 + y^3$??? vybaryi

(b) Najdi parciální derivaci podle
$$x$$
, $\frac{\partial f}{\partial x} = ??? -3x^2 - 6x + 15$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = -3$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = . ??? . 3y^2 - 6y - 6$$

(e) Najdi stacionární body v
$$y$$
 ??? $y_1 + y_2 = 3$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\text{max}}(x,y) = \dots ??? \dots -128$$

Písmeno Braillovei abecedy

Volné extrémy, skupina $Theta \ \theta$ -i

Jméno:

Cílem je najít **volné extrémy** funkce f(x,y) zadané v (a). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

- (a) $f(x,y) = -4x^3 24x^2 + 60x + 4 18y 12y^2 2y^3$??? nebarvi
- (b) Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = . ??? . -12x^2 48x + 60$
- (c) Najdi stacionární body v x ??? $x_1 + x_2 = -3$
- (d) Najdi parciální derivaci podle $y, \frac{\partial f}{\partial y} = \dots ??? \dots -6y^2 24y 6$
- (e) Najdi stacionární body v y ??? $y_1 + y_2 = -3$
- (f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 44$

1.

Písmeno Braillovej abecedy

Volné extrémy, skupina $Theta \theta$ -ii

Jméno:

Cílem je najít **volné extrémy** funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

- (a) $f(x,y) = -x^3 + 9x^2 15x + 1 + 9y + 6y^2 + y^3$??? vybarvi
- (b) Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = ??? -3x^2 + 18x 15$
- (c) Najdi stacionární body v x ??? $x_1 + x_2 = 7$
- (d) Najdi parciální derivaci podle $y, \frac{\partial f}{\partial y} = . ??? . 3y^2 + 12y + 3$
- (e) Najdi stacionární body v y ??? $y_1 + y_2 = -4$
- (f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 26$

2.

Písmeno Braillovej abecedy

Volné extrémy, skupina $Theta \theta$ -iii

Jm'eno:

Cílem je najít **volné extrémy** funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) $f(x,y) = 2x^3 12x^2 + 18x 7 36y + 12y^2 + 4y^3$??? vybarvi
- (b) Najdi parciální derivaci podle $x, \frac{\partial f}{\partial x} = \dots ??? \dots 6x^2 24x + 18$
- (c) Najdi stacionární body v x ??? $x_1 + x_2 = 4$
- (d) Najdi parciální derivaci podle $y, \frac{\partial f}{\partial y} = \dots ??? \dots 12y^2 + 24y 24$
- (e) Najdi stacionární body v y ??? $y_1 + y_2 = -1$
- (f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots -19$

<u>3.</u>

Písmeno Braillovej abecedy

Volné extrémy, skupina $Theta \theta$ -iv

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) $f(x,y) = -5x^3 + 15x^2 + 45x + 1 72y 9y^2 + 3y^3$??? vybarvi
- (b) Najdi parciální derivaci podle $x, \frac{\partial f}{\partial x} = . ??? . -15x^2 + 15x + 45$
- (c) Najdi stacionární body v x ??? $x_1 + x_2 = 2$
- (d) Najdi parciální derivaci podle $y, \frac{\partial f}{\partial y} = \dots ??? \dots 9y^2 18y 72$
- f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots -264$

abecedy

d

Volné extrémy, skupina $Iota~\iota$ -i

Jméno:

Cílem je najít volné extrémy funkce f(x, y) zadané v (a). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = -x^3 - 3x^2 + 9x + 6 - 9y + 3y^2 + y^3$??? nebarvi

(b) Najdi parciální derivaci podle
$$x$$
, $\frac{\partial f}{\partial x} = ??? -3x^2 - 3x + 9$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = -2$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = . ???? . 3y^2 + 6y - 9$$

(e) Najdi stacionární body v
$$y$$
 $???$ $y_1 + y_2 = -1$

Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 38$

Písmeno Braillovei abecedy

Volné extrémy, skupina $Iota \iota$ -ii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = -x^3 - 6x^2 + 15x + 4 + 15y - 6y^2 - y^3$??? nebarvi

(b) Najdi parciální derivaci podle
$$x$$
, $\frac{\partial f}{\partial x} = ??? -3x^2 - 12x + 15$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = -4$

(d) Najdi parciální derivaci podle
$$y$$
, $\frac{\partial f}{\partial y} = ??? -3y^2 - 12y + 9$

(e) Najdi stacionární body v
$$y$$
 ??? $y_1 + y_2 = -3$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\max}(x,y)=$$
 20

Písmeno Braillovei abecedy

Volné extrémy, skupina $Iota~\iota$ -iii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = -4x^3 - 12x^2 + 36x + 5 + 45y - 3y^2 - y^3$??? nebarvi

(b) Najdi parciální derivaci podle
$$x$$
, $\frac{\partial f}{\partial x} = ??? -12x^2 - 24x + 36$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = -2$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = \dots ??? \dots -3y^2 - 6y + 36$$

(e) Najdi stacionární body v y ???
$$y_1 + y_2 = -2$$

Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots 2?? \dots 106$ 3.

Písmeno Braillovei abecedy

Volné extrémy, skupina $Iota \iota$ -iv

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a) $f(x,y) = -5x^3 - 15x^2 + 45x - 2 - 45y + 3y^2 + y^3$??? vybaryi

(b) Najdi parciální derivaci podle
$$x$$
, $\frac{\partial f}{\partial x} = ??? -15x^2 - 15x + 45$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = -1$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = \dots ??? \dots 3y^2 + 6y - 36$$

(e) Najdi stacionární body v
$$y$$
 $???$ $y_1 + y_2 = -1$

f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\text{max}}(x,y) = \dots ??? \dots -58$$

Volné extrémy, skupina $Kappa \kappa$ -i

Jméno:

Cílem je najít volné extrémy funkce f(x, y) zadané v (a). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- $f(x,y) = -x^3 + 9x^2 + 48x + 2 48y 9y^2 + y^3$??? vybarvi
- Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = ??? -3x^2 + 18x + 48$
- Najdi stacionární body v x ??? $x_1 + x_2 = 6$
- Najdi parciální derivaci podle $y, \frac{\partial f}{\partial y} = . ??? . 3y^2 18y 30$
- Najdi stacionární body v y ??? $y_1 + y_2 = 6$
- Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots -498$

Písmeno Braillovei abecedy

Volné extrémy, skupina $Kappa \kappa$ -ii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- $f(x,y) = 2x^3 + 6x^2 48x + 3 15y 6y^2 + y^3$??? vybarvi
- Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = .$??? . $6x^2 + 6x 48$
- Najdi stacionární body v x ??? $x_1 + x_2 = -2$
- Najdi parciální derivaci podle $y, \frac{\partial f}{\partial y} = ??? 3y^2 12y 15$
- Najdi stacionární body v y ??? $y_1 + y_2 = 5$
- Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots -153$

Písmeno Braillovei abecedy

Volné extrémy, skupina $Kappa \kappa$ -iii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- $f(x,y) = -4x^3 12x^2 + 36x 6 + 9y + 3y^2 y^3$??? vybarvi
- Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = ??? -12x^2 12x + 36$
- Najdi stacionární body v x ??? $x_1 + x_2 = -2$
- Najdi parciální derivaci podle y, $\frac{\partial f}{\partial y} = \dots ??? \dots -3y^2 + 6y + 6$
- Naidi funkční hodnoty vo všech stacionárních bodech

3.

Písmeno Braillovei abecedy

Volné extrémy, skupina $Kappa \kappa$ -iv

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- $f(x,y) = -x^3 6x^2 9x + 5 18y 6y^2 + 2y^3$??? vybaryi
- Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = . ??? . -3x^2 6x 9$
- Najdi stacionární body v x ??? $x_1 + x_2 = -3$
- Najdi parciální derivaci podle $y, \frac{\partial f}{\partial y} = . ??? . 6y^2 12y 12$
- Najdi stacionární body v y ??? $y_1 + y_2 = 3$
- Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots -49$

Volné extrémy, skupina Lambda λ -i

Jméno:

Cílem je najít **volné extrémy** funkce f(x,y) zadané v (a). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a) $f(x,y) = x^3 + 9x^2 + 15x - 1 + 72y + 9y^2 - 3y^3$??? vybarvi

(b) Najdi parciální derivaci podle
$$x, \frac{\partial f}{\partial x} = . ??? . 3x^2 + 9x + 15$$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = -6$

(d) Najdi parciální derivaci podle
$$y$$
, $\frac{\partial f}{\partial y} = ??? -9y^2 + 18y + 72$

(e) Najdi stacionární body v y ???
$$y_1 + y_2 = 2$$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots \cdots ??? \dots -60$

1.

Písmeno Braillovej abecedy

Volné extrémy, skupina $Lambda \lambda$ -ii

Jméno:

Cílem je najít volné extrémy funkce f(x, y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a) $f(x,y) = 3x^3 + 9x^2 - 27x - 3 - 18y + 6y^2 + 2y^3$??? nebarvi

(b) Najdi parciální derivaci podle
$$x, \frac{\partial f}{\partial x} = . ??? . 9x^2 + 18x - 27$$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = -1$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = . ??? . 6y^2 + 12y - 12$$

(e) Najdi stacionární body v
$$y$$
 $y_1 + y_2 = -1$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 132$

2.

Písmeno Braillovej abecedy

Volné extrémy, skupina Lambda λ -iii

Jm'eno:

Cílem je najít volné extrémy funkce f(x, y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

a) $f(x,y) = -3x^3 + 9x^2 + 27x - 5 + 21y + 9y^2 - y^3$??? vybarvi

- (b) Najdi parciální derivaci podle $x, \frac{\partial f}{\partial x} = . ??? . -9x^2 + 9x + 27$
- (c) Najdi stacionární body v x ???? $x_1 + x_2 = 2$
- (d) Najdi parciální derivaci podle y, $\frac{\partial f}{\partial y} = ??? -3y^2 + 18y + 12$
- (e) Najdi stacionární body v y ??? $y_1 + y_2 = 7$
- (f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 321$

3.

Písmeno Braillovej abecedy

Volné extrémy, skupina Lambda λ -iv

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a) $f(x,y) = 3x^3 + 18x^2 - 108x + 4 + 9y + 3y^2 - y^3$??? vybarvi

(b) Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = ??? 9x^2 + 18x - 108$

(c) Najdi stacionární body v x ??? $x_1 + x_2 = -3$

d) Najdi parciální derivaci podle $y, \frac{\partial f}{\partial y} = .$??? . $-3y^2 + 6y + 6$

(e) Najdi stacionární body v y ??? $y_1 + y_2 = 3$

f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 647$

4.

Volné extrémy, skupina $Mu \mu$ -i

Jméno:

Cílem je najít volné extrémy funkce f(x, y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = x^3 - 6x^2 - 63x - 1 - 60y + 24y^2 + 4y^3$??? vybarvi

(b) Najdi parciální derivaci podle
$$x, \frac{\partial f}{\partial x} = . ??? . 3x^2 - 6x - 63$$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = 5$

(d) Najdi parciální derivaci podle
$$y$$
, $\frac{\partial f}{\partial y} = ??? 12y^2 + 48y - 36$

(e) Najdi stacionární body v
$$y$$
 ??? $y_1 + y_2 = -4$

Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots ... 75$

Písmeno Braillovei abecedy

Volné extrémy, skupina $Mu \mu$ -ii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = 4x^3 - 12x^2 - 36x + 5 - 24y - 9y^2 - y^3$??? vybarvi

(b) Najdi parciální derivaci podle
$$x, \frac{\partial f}{\partial x} = ??? 12x^2 - 12x - 36$$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = 2$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = ??? -3y^2 - 18y - 24$$

(e) Najdi stacionární body v
$$y$$
 $???$ $y_1 + y_2 = -5$

Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots -87$

Písmeno Braillovei abecedy

Volné extrémy, skupina $Mu \mu$ -iii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = -6x^3 - 36x^2 + 90x + 1 + 9y + 3y^2 - y^3$??? vybarvi

(b) Najdi parciální derivaci podle
$$x$$
, $\frac{\partial f}{\partial x} = ??? -18x^2 - 72x + 90$

(c) Najdi stacionární body v x ???
$$x_1 + x_2 = -4$$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = . ??? . -3y^2 + 6y + 18$$

(e) Najdi stacionární body v
$$y$$
 ??? $y_1 + y_2 = 2$

Naidi funkční hodnoty vo všech stacionárních bodech 3.

Písmeno Braillovei abecedy

Volné extrémy, skupina $Mu~\mu$ -iv

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = x^3 + 6x^2 - 36x + 4 - 60y + 24y^2 + 4y^3$??? vybaryi

(b) Najdi parciální derivaci podle
$$x$$
, $\frac{\partial f}{\partial x} = . ??? . $3x^2 + 6x - 36$$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = -4$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = ??? 12y^2 + 48y - 36$$

(e) Najdi stacionární body v
$$y$$
 ??? $y_1 + y_2 = -4$

f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\text{max}}(x,y) = \dots ??? \dots 188$$

Písmeno Braillovei abecedy

Volné extrémy, skupina $Nu~\nu$ -i

Jméno:

Cílem je najít **volné extrémy** funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = 3x^3 + 18x^2 - 45x - 2 + 180y - 30y^2 - 5y^3$??? vybarvi

(b) Najdi parciální derivaci podle
$$x$$
, $\frac{\partial f}{\partial x} = \dots ??? \dots 9x^2 + 18x - 45$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = -4$

(d) Najdi parciální derivaci podle
$$y$$
, $\frac{\partial f}{\partial y} = ??? -15y^2 - 60y + 120$

(e) Najdi stacionární body v
$$y$$
 ??? $y_1 + y_2 = -4$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\text{max}}(x,y) = \dots ??? \dots -1106$$

1.

Písmeno Braillovej abecedy

Volné extrémy, skupina $Nu~\nu$ -ii

Jméno:

Cílem je najít volné extrémy funkce f(x, y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a) $f(x,y) = -x^3 - 6x^2 + 15x + 2 - 18y + 6y^2 + 2y^3$??? vybarvi

(b) Najdi parciální derivaci podle
$$x, \frac{\partial f}{\partial x} = .$$
 ??? . $-3x^2 - 6x + 15$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = -4$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = .$$
 ??? . $6y^2 + 12y - 12$

(e) Najdi stacionární body v
$$y$$
 $???$ $y_1 + y_2 = -1$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 0$

4.

e

Písmeno Braillovej abecedy

Volné extrémy, skupina Nu~ u -iii

Jm'eno:

Cílem je najít volné extrémy funkce f(x, y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a) $f(x,y) = 2x^3 - 12x^2 - 30x - 4 - 48y - 9y^2 + y^3$??? vybarvi

(b) Najdi parciální derivaci podle
$$x, \frac{\partial f}{\partial x} = . ??? . 6x^2 - 12x - 30$$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = 4$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = . ??? . 3y^2 - 18y - 30$$

(e) Najdi stacionární body v
$$y$$
 ??? $y_1 + y_2 = 6$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\max}(x,y) = \dots ??? \dots 64$$

3.

Písmeno Braillovej abecedy

Volné extrémy, skupina $Nu \nu$ -iv

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a) $f(x,y) = -x^3 + 6x^2 + 36x + 3 + 9y + 6y^2 + y^3$??? vybarvi

(b) Najdi parciální derivaci podle
$$x$$
, $\frac{\partial f}{\partial x} = ??? -3x^2 + 6x + 36$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = 4$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = . ??? . 3y^2 + 12y - 9$$

(e) Najdi stacionární body v
$$y$$
 $???$ $y_1 + y_2 = -4$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\text{max}}(x,y) = \dots ??? \dots -41$$

4.

d

Volné extrémy, skupina $Xi \xi$ -i

Jméno:

Cílem je najít volné extrémy funkce f(x, y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = x^3 + 6x^2 - 15x + 5 + 108y + 18y^2 - 3y^3$??? vybarvi

(b) Najdi parciální derivaci podle
$$x, \frac{\partial f}{\partial x} = . ??? . 3x^2 + 12x - 15$$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = -4$

(d) Najdi parciální derivaci podle
$$y$$
, $\frac{\partial f}{\partial y} = . ??? . -9y^2 + 36y + 72$

(e) Najdi stacionární body v y ???
$$y_1 + y_2 = 5$$

Najdi funkční hodnoty vo všech stacionárních bodech

Písmeno Braillovei abecedy

Volné extrémy, skupina $Xi \xi$ -ii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a) $f(x,y) = 2x^3 + 6x^2 - 18x + 1 - 108y + 18y^2 + 3y^3$??? vybarvi

(b) Najdi parciální derivaci podle
$$x$$
, $\frac{\partial f}{\partial x} = \dots ??? \dots 6x^2 + 6x - 18$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = -1$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = \dots ??? \dots 9y^2 + 36y - 72$$

(e) Najdi stacionární body v
$$y$$
 ??? $y_1 + y_2 = -3$

Najdi funkční hodnoty vo všech stacionárních bodech

Písmeno Braillovei abecedy

Volné extrémy, skupina $Xi \xi$ -iii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = -x^3 - 6x^2 + 15x + 7 + 48y - 6y^2 - 2y^3$??? vvbarvi

(b) Najdi parciální derivaci podle
$$x, \frac{\partial f}{\partial x} = .$$
 ??? . $-3x^2 - 6x + 15$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = -4$

(d) Najdi parciální derivaci podle
$$y, \ \frac{\partial f}{\partial y} = ??? -6y^2 - 12y + 36$$

(e) Najdi stacionární body v
$$y$$
 ??? $y_1 + y_2 = -2$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\max}(x,y) = \dots ??? \dots 71$$

3.

Písmeno Braillovei abecedy

Volné extrémy, skupina $Xi \xi$ -iv

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = x^3 - 6x^2 + 9x + 1 - 18y - 6y^2 + 2y^3$??? vybarvi

(b) Najdi parciální derivaci podle
$$x, \frac{\partial f}{\partial x} = . ??? . 3x^2 - 6x + 9$$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = 4$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = ??? 6y^2 - 12y - 12y$$

(e) Najdi stacionární body v
$$y$$
 ??? $y_1 + y_2 = 2$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\text{max}}(x,y) = \dots ??? \dots -53$$

Písmeno Braillovei abecedy

Volné extrémy, skupina *Omicron o*-i

Jméno:

Cílem je najít volné extrémy funkce f(x, y) zadané v (a). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

$f(x,y) = x^3 + 3x^2 - 9x - 1 - 15y + 6y^2 + y^3$??? vybarvi

(b) Najdi parciální derivaci podle
$$x, \frac{\partial f}{\partial x} = ??? \quad 3x^2 + 3x - 9$$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = -2$

(d) Najdi parciální derivaci podle
$$y$$
, $\frac{\partial f}{\partial y} = ??? \quad 3y^2 + 12y - 9$

(e) Najdi stacionární body v
$$y$$
 $???$ $y_1 + y_2 = -4$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\max}(x,y) = \dots 2?? \dots 126$$

Písmeno Braillovei abecedy

Volné extrémy, skupina *Omicron o*-ii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(b) Najdi parciální derivaci podle
$$x, \frac{\partial f}{\partial x} = . ??? . 6x^2 - 6x - 18$$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = 2$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = ??? \quad 3y^2 + 18y - 12$$

(e) Najdi stacionární body v
$$y$$
 $y_1 + y_2 = -6$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\text{max}}(x,y) = \dots ??? \dots -4$$

Písmeno Braillovei abecedy

Volné extrémy, skupina *Omicron o*-iii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x,y) = -6x^3 + 36x^2 - 54x + 3 + 45y - 3y^2 - y^3$$
 ??? vybarvi

(b) Najdi parciální derivaci podle
$$x$$
, $\frac{\partial f}{\partial x} = ??? -18x^2 + 72x - 54$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = 5$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = \dots ??? \dots -3y^2 - 6y + 36$$

(e) Najdi stacionární body v y ???
$$y_1 + y_2 = -2$$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\max}(x,y)=\ldots 2??\ldots -196$$

3.

Písmeno Braillovei abecedy

Volné extrémy, skupina *Omicron o*-iv

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x,y) = -3x^3 - 18x^2 + 45x - 3 - 45y - 18y^2 + 3y^3$$
 ??? vybarvi

(b) Najdi parciální derivaci podle
$$x$$
, $\frac{\partial f}{\partial x} = . ??? . -9x^2 - 18x + 45$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = -3$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = \dots ??? \dots 9y^2 - 36y - 27$$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\text{max}}(x,y) = \dots ??? \dots -603$$

Písmeno Braillovei abecedy

Volné extrémy, skupina Pi π -i

Jméno:

Cílem je najít volné extrémy funkce f(x, y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = -2x^3 + 6x^2 + 18x - 1 - 36y + 6y^2 + y^3$??? vybarvi

(b) Najdi parciální derivaci podle
$$x, \frac{\partial f}{\partial x} = . ??? . -6x^2 + 6x + 18$$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = 3$

(d) Najdi parciální derivaci podle
$$y$$
, $\frac{\partial f}{\partial y} = . ??? . $3y^2 + 12y - 24$$

(e) Najdi stacionární body v
$$y$$
 ??? $y_1 + y_2 = -3$

Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots$ 269

Písmeno Braillovei abecedy

Volné extrémy, skupina Pi π -ii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = -x^3 + 6x^2 - 9x - 1 - 36y - 24y^2 - 4y^3$??? vybarvi

(b) Najdi parciální derivaci podle
$$x, \frac{\partial f}{\partial x} = . ??? . -3x^2 + 6x - 9$$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = 5$

(d) Najdi parciální derivaci podle
$$y$$
, $\frac{\partial f}{\partial y} = ??? -12y^2 - 48y - 12$

(e) Najdi stacionární body v
$$y$$
 $???$ $y_1 + y_2 = -4$

Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots -5$

Písmeno Braillovei abecedy

Volné extrémy, skupina $Pi \pi$ -iii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = 2x^3 - 12x^2 + 18x - 2 + 18y + 6y^2 - 2y^3$??? vybaryi

(b) Najdi parciální derivaci podle
$$x, \frac{\partial f}{\partial x} = .$$
 ??? . $6x^2 - 12x + 18$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = 4$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = .$$
 ??? . $-6y^2 + 12y + 12$

(e) Najdi stacionární body v y ???
$$y_1 + y_2 = 2$$

Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 60$ 3.

Písmeno Braillovei abecedy

Volné extrémy, skupina $Pi \pi$ -iv

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = 4x^3 - 12x^2 - 96x - 6 + 21y - 9y^2 - y^3$??? vybarvi

(b) Najdi parciální derivaci podle
$$x$$
, $\frac{\partial f}{\partial x} = ??? 12x^2 - 12x - 96$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = 3$

(d) Najdi parciální derivaci podle
$$y$$
, $\frac{\partial f}{\partial y} = ??? -3y^2 - 18y + 12$

(e) Najdi stacionární body v
$$y$$
 ??? $y_1 + y_2 = -5$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\max}(x,y) = \dots ??? \dots -571$$

Písmeno Braillovei abecedy

Volné extrémy, skupina $Rho \rho$ -i

Jméno:

Cílem je najít volné extrémy funkce f(x, y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

$f(x,y) = -x^3 - 9x^2 + 81x + 1 + 48y - 6y^2 - 2y^3$??? nebarvi

- Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = .$??? . $-3x^2 9x + 81$
- Najdi stacionární body v x ??? $x_1 + x_2 = -6$
- Najdi parciální derivaci podle y, $\frac{\partial f}{\partial y} = ??? -6y^2 12y + 48$
- Najdi stacionární body v y ??? $y_1 + y_2 = -1$
- Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 192$

Písmeno Braillovei abecedy

Volné extrémy, skupina $Rho \rho$ -ii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

$f(x,y) = x^3 - 9x^2 - 81x - 2 - 45y - 3y^2 + y^3$??? vybarvi

- Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = ??? 3x^2 9x 81$
- Najdi stacionární body v x ??? $x_1 + x_2 = 6$
- Najdi parciální derivaci podle $y, \frac{\partial f}{\partial u} = ??? \quad 3y^2 6y 36$
- Najdi stacionární body v y ??? $y_1 + y_2 = 2$
- Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots 214$

e

Písmeno Braillovei abecedy

Volné extrémy, skupina *Rho ρ*-iii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x,y) = -x^3 + 6x^2 - 9x - 3 + 9y + 6y^2 + y^3$$
 ??? vybarvi

- Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = ??? -3x^2 + 6x 9$
- Najdi stacionární body v x ??? $x_1 + x_2 = 4$
- Najdi parciální derivaci podle y, $\frac{\partial f}{\partial y} = ??? \quad 3y^2 + 12y 9$
- Najdi stacionární body v y ??? $y_1 + y_2 = -4$
- Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots -11$

3.

Písmeno Braillovei abecedy

Volné extrémy, skupina *Rho ρ*-iv

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

a)
$$f(x,y) = 4x^3 + 24x^2 - 60x - 2 + 24y - 9y^2 + y^3$$
 ??? vybarvi

- **(b)** Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = ??? 12x^2 + 48x 60$
- Najdi stacionární body v x ??? $x_1 + x_2 = -4$
- Najdi parciální derivaci podle $y, \frac{\partial f}{\partial y} = \dots ??? \dots 3y^2 18y + 6$
- Najdi stacionární body v y ??? $y_1 + y_2 = 6$
- Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots -18$

Písmeno Braillovei abecedy

Volné extrémy, skupina $Sigma\ \sigma$ -i

Jméno:

Cílem je najít **volné extrémy** funkce f(x,y) zadané v (a). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a) $f(x,y) = -3x^3 - 18x^2 + 108x - 1 + 27y + 9y^2 - 3y^3$??? vybarvi

(b) Najdi parciální derivaci podle
$$x, \frac{\partial f}{\partial x} = . ??? . -9x^2 - 36x + 108$$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = -4$

(d) Najdi parciální derivaci podle
$$y$$
, $\frac{\partial f}{\partial y} = . ??? . -9y^2 + 18y + 18$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 104$

1.

Písmeno Braillovej abecedy

Volné extrémy, skupina $Sigma\ \sigma$ -ii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a) $f(x,y) = x^3 + 9x^2 + 24x - 5 + 15y + 9y^2 + y^3$??? vybarvi

(b) Najdi parciální derivaci podle
$$x$$
, $\frac{\partial f}{\partial x} = ??? \quad 3x^2 + 9x + 24$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = -6$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = ??? \quad 3y^2 + 18y + 15$$

(e) Najdi stacionární body v
$$y$$
 ??? $y_1 + y_2 = -6$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\max}(x,y)=$$
 4

2.

Písmeno Braillovej abecedy

Volné extrémy, skupina $Sigma~\sigma$ -iii

Jm'eno:

Cílem je najít volné extrémy funkce f(x, y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a) $f(x,y) = 3x^3 + 18x^2 + 27x + 2 + 81y + 9y^2 - y^3$??? vybarvi

(b) Najdi parciální derivaci podle
$$x, \frac{\partial f}{\partial x} = . ??? . 9x^2 + 36x + 27$$

(c) Najdi stacionární body v x ????
$$x_1 + x_2 = -3$$

(d) Najdi parciální derivaci podle
$$y$$
, $\frac{\partial f}{\partial y} = ??? -3y^2 + 18y + 54$

(e) Najdi stacionární body v
$$y$$
 ??? $y_1 + y_2 = 7$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\text{max}}(x,y) = \dots ??? \dots -133$$

3.

Písmeno Braillovej abecedy

Volné extrémy, skupina $Sigma\ \sigma$ -iv

 $Jm\'{e}no:$

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a) $f(x,y) = -2x^3 + 6x^2 + 18x - 1 + 24y - 9y^2 + y^3$??? vybarvi

(b) Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = . ??? . -6x^2 + 6x + 18$

(c) Najdi stacionární body v x ??? $x_1 + x_2 = 3$

d) Najdi parciální derivaci podle $y, \frac{\partial f}{\partial y} = \dots ??? \dots 3y^2 - 18y + 6$

(e) Najdi stacionární body v y ??? $y_1 + y_2 = 7$

f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 5$

(a) (f)

d

Volné extrémy, skupina Tau au -i

Jméno:

Cílem je najít volné extrémy funkce f(x, y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x,y) = -x^3 + 9x^2 - 15x + 1 - 96y + 12y^2 + 4y^3$$
 ??? vybarvi

- Najdi parciální derivaci podle $x,\,\frac{\partial f}{\partial x}=\quad .\quad ??? \ .\quad -3x^2+9x-15$
- Najdi stacionární body v x ??? $x_1 + x_2 = 7$
- Najdi parciální derivaci podle $y, \frac{\partial f}{\partial y} = .$??? . $12y^2 + 24y 96$
- Najdi stacionární body v y ??? $y_1 + y_2 = -2$
- Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots -86$

Písmeno Braillovei abecedy

Volné extrémy, skupina Tau au-ii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = x^3 + 6x^2 - 63x + 1 - 72y - 9y^2 + 3y^3$??? vybarvi

- Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = . ??? . <math>3x^2 + 6x 63$
- Najdi stacionární body v x ??? $x_1 + x_2 = -4$
- Najdi parciální derivaci podle y, $\frac{\partial f}{\partial u} = ??? \qquad 9y^2 18y 54$
- Najdi stacionární body v y ??? $y_1 + y_2 = 2$
- Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots 277$

e

Písmeno Braillovei abecedy

Volné extrémy, skupina $Tau \tau$ -iii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = x^3 + 6x^2 - 63x - 4 + 72y + 12y^2 - 2y^3$??? vybarvi

- Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = . ??? . <math>3x^2 + 6x 63$
- Najdi stacionární body v x ??? $x_1 + x_2 = -3$
- Najdi parciální derivaci podle y, $\frac{\partial f}{\partial y} = ??? -6y^2 + 24y + 48$
- Najdi stacionární body v y ??? $y_1 + y_2 = 4$
- Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 308$

3.

Písmeno Braillovei abecedy

Volné extrémy, skupina Tau au-iv

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a) $f(x,y) = -6x^3 + 18x^2 + 54x - 4 + 27y + 18y^2 + 3y^3$??? vybaryi

(b) Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = . ??? . -18x^2 + 18x + 54$

(c) Najdi stacionární body v x ??? $x_1 + x_2 = 2$

(d) Najdi parciální derivaci podle $y, \frac{\partial f}{\partial u} = \dots ??? \dots 9y^2 + 36y + 9$

(e) Najdi stacionární body v y $y_1 + y_2 = -3$

Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots 2?? \dots 146$

Volné extrémy, skupina $Upsilon \ \upsilon$ -i

Jméno:

Cílem je najít **volné extrémy** funkce f(x,y) zadané v (a). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

- (a) $f(x,y) = x^3 3x^2 9x + 2 + 36y + 24y^2 + 4y^3$??? vybarvi
- (b) Najdi parciální derivaci podle $x, \frac{\partial f}{\partial x} = . ??? . 3x^2 6x 9$
- (c) Najdi stacionární body v x ??? $x_1+x_2=2$
- (d) Najdi parciální derivaci podle y, $\frac{\partial f}{\partial y} = ??? 12y^2 + 48y + 36$
- (e) Najdi stacionární body v y ??? $y_1+y_2=-3$
- (f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\max}(x,y)=\cdots ???\cdots -9$

1.

Písmeno Braillovej abecedy

Volné extrémy, skupina Upsilon v-ii

Jméno:

Cílem je najít volné extrémy funkce f(x, y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) $f(x,y) = x^3 6x^2 15x + 6 + 72y + 12y^2 2y^3$??? vybarvi
- (b) Najdi parciální derivaci podle $x, \frac{\partial f}{\partial x} = . ??? . 3x^2 12x 15$
- (c) Najdi stacionární body v x ??? $x_1 + x_2 = 4$
- (d) Najdi parciální derivaci podle y, $\frac{\partial f}{\partial y} = ??? -6y^2 + 24y + 48$
- (e) Najdi stacionární body v y ??? $y_1 + y_2 = 5$
- (f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots -66$

2.

Písmeno Braillovej abecedy

Volné extrémy, skupina $Upsilon \ \upsilon$ -iii

Jm'eno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) $f(x,y) = x^3 9x^2 81x + 3 24y 3y^2 + y^3$??? vybarvi
- (b) Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = ??? \quad 3x^2 9x 81$
- (c) Najdi stacionární body v x ??? $x_1 + x_2 = 7$
- (d) Najdi parciální derivaci podle y, $\frac{\partial f}{\partial y} = ??? \quad 3y^2 6y 18$
- (e) Najdi stacionární body v y ??? $y_1 + y_2 = 3$
- (f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots -806$

3.

Písmeno Braillovej abecedy

Volné extrémy, skupina $Upsilon \ \upsilon$ -iv

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- (a) $f(x,y) = -x^3 + 6x^2 + 63x + 3 27y 9y^2 + 3y^3$??? vybarvi
- (b) Najdi parciální derivaci podle $x, \frac{\partial f}{\partial x} = .$??? . $-3x^2 + 6x + 63$
- (c) Najdi stacionární body v x ??? $x_1 + x_2 = 4$
- (d) Najdi parciální derivaci podle $y, \frac{\partial f}{\partial y} = . ??? . 9y^2 18y 18$
- (e) Najdi stacionární body v y ??? $y_1 + y_2 = 3$
- (f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots -186$

Volné extrémy, skupina $Phi \phi$ -i

Jméno:

Cílem je najít volné extrémy funkce f(x, y) zadané v (a). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky,

tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- $f(x,y) = -x^3 6x^2 + 36x + 3 + 18y + 12y^2 + 2y^3$??? vybarvi
- Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = .$??? . $-3x^2 6x + 36$
- Najdi stacionární body v x ??? $x_1 + x_2 = -3$
- Najdi parciální derivaci podle $y, \frac{\partial f}{\partial y} = \dots ??? \dots 6y^2 + 24y + 6$
- Najdi stacionární body v y ??? $y_1 + y_2 = -4$
- Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots 2?? \dots 23$

Písmeno Braillovei abecedy

Volné extrémy, skupina $Phi \phi$ -ii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- $f(x,y) = -x^3 + 3x^2 + 9x 6 + 45y 15y^2 5y^3$??? vybarvi
- Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = .$??? . $-3x^2 + 3x + 9$
- Najdi stacionární body v x ??? $x_1 + x_2 = 3$
- Najdi parciální derivaci podle y, $\frac{\partial f}{\partial y} = ??? -15y^2 30y + 30$
- Najdi stacionární body v y ??? $y_1 + y_2 = -2$
- Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots -146$

Písmeno Braillovei abecedy

Volné extrémy, skupina *Phi φ*-iii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- $f(x,y) = -x^3 + 6x^2 + 15x + 1 36y 24y^2 4y^3$??? vybaryi
- Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = .$??? . $-3x^2 + 6x + 15$
- Najdi stacionární body v x ??? $x_1 + x_2 = 4$
- Najdi parciální derivaci podle y, $\frac{\partial f}{\partial y} = ??? -12y^2 48y 12$
- Najdi stacionární body v y ??? $y_1 + y_2 = -3$
- Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots -7$

3.

Písmeno Braillovei abecedy

Volné extrémy, skupina $Phi \phi$ -iv

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

- $f(x,y) = 4x^3 12x^2 96x + 5 15y 6y^2 + y^3$??? vybaryi
- Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = ??? 12x^2 12x 96$
- Najdi stacionární body v x ??? $x_1 + x_2 = 3$
- Najdi parciální derivaci podle $y, \frac{\partial f}{\partial y} = \dots ??? \dots 3y^2 12y 9$
- Najdi stacionární body v y ??? $y_1 + y_2 = 5$
- Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots -415$

Volné extrémy, skupina $Chi \chi$ -i

Jméno:

Cílem je najít volné extrémy funkce f(x, y) zadané v (a). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = -x^3 + 6x^2 - 9x + 7 - 120y - 15y^2 + 5y^3$??? nebarvi

(b) Najdi parciální derivaci podle
$$x, \frac{\partial f}{\partial x} = .$$
 ??? . $-3x^2 + 12x - 9$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = 4$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = .$$
 ??? . $15y^2 - 30y - 90$

(e) Najdi stacionární body v
$$y$$
 ??? $y_1 + y_2 = 3$

Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots 2?? \dots 147$

Písmeno Braillovei abecedy

Volné extrémy, skupina $Chi \chi$ -ii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = 3x^3 - 9x^2 - 72x - 4 - 9y - 6y^2 - y^3$??? vybarvi

(b) Najdi parciální derivaci podle
$$x$$
, $\frac{\partial f}{\partial x} = ??? 9x^2 - 9x - 72$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = 2$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = ??? -3y^2 - 12y - 3$$

(e) Najdi stacionární body v
$$y$$
 $y_1 + y_2 = -4$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\max}(x,y) = \dots ??? \dots -244$$

Písmeno Braillovei abecedy

Volné extrémy, skupina *Chi γ*-iii

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

 $f(x,y) = -2x^3 - 12x^2 - 18x - 3 + 18y - 6y^2 - 2y^3$??? vybaryi

(b) Najdi parciální derivaci podle
$$x, \frac{\partial f}{\partial x} = . ??? . -6x^2 - 24x - 18$$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = -4$

(d) Najdi parciální derivaci podle
$$y, \frac{\partial f}{\partial y} = . ??? . -6y^2 - 12y + 18$$

(e) Najdi stacionární body v
$$y$$
 ??? $y_1 + y_2 = -1$

(f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\max}(x,y) = \dots ??? \dots -57$$

3.

Písmeno Braillovei abecedy

Volné extrémy, skupina *Chi* γ -iv

Jméno:

Cílem je najít volné extrémy funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a) $f(x,y) = 2x^3 + 6x^2 - 48x + 2 + 108y - 18y^2 - 3y^3$??? vybaryi

(b) Najdi parciální derivaci podle
$$x$$
, $\frac{\partial f}{\partial x} = \dots ??? \dots 6x^2 + 6x - 48$

(c) Najdi stacionární body v
$$x$$
 ??? $x_1 + x_2 = -1$

(d) Najdi parciální derivaci podle
$$y$$
, $\frac{\partial f}{\partial y} = ... ??? ... -9y^2 - 36y + 72$

(e) Najdi stacionární body v
$$y$$
 $???$ $y_1 + y_2 = -3$

f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší.
$$f_{\text{max}}(x,y) = \dots ??? \dots -702$$

Písmeno Braillovei abecedy

Volné extrémy, skupina $Psi~\psi$ -i

Jméno:

Cílem je najít **volné extrémy** funkce f(x,y) zadané v (a). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a) $f(x,y) = -2x^3 - 12x^2 + 72x + 4 - 9y + 3y^2 + y^3$??? vybarvi

- **(b)** Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = ??? -6x^2 12x + 72$
- (c) Najdi stacionární body v x ??? $x_1 + x_2 = -4$
- (d) Najdi parciální derivaci podle $y, \frac{\partial f}{\partial y} = \dots ??? \dots 3y^2 + 6y 18$
- (e) Najdi stacionární body v y ??? $y_1 + y_2 = -1$
- (f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots 111$

1.

Písmeno Braillovej abecedy

Volné extrémy, skupina $Psi \ \psi$ -ii

Jméno:

Cílem je najít volné extrémy funkce f(x, y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a) $f(x,y) = -3x^3 - 9x^2 + 27x + 3 + 9y - 3y^2 - y^3$??? vybarvi

- (b) Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = ??? -9x^2 9x + 27$
- (c) Najdi stacionární body v x ??? $x_1 + x_2 = -2$
- (d) Najdi parciální derivaci podle $y, \frac{\partial f}{\partial y} = ??? -3y^2 6y + 18$
- (e) Najdi stacionární body v y ??? $y_1 + y_2 = -2$
- (f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\max}(x,y)=\cdots ???\cdots -9$

2.

Písmeno Braillovej abecedy

Volné extrémy, skupina $Psi~\psi$ -iii

Jm'eno:

Cílem je najít **volné extrémy** funkce f(x,y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a) $f(x,y) = -3x^3 + 9x^2 + 72x - 2 - 18y + 6y^2 + 2y^3$??? nebarvi

- (b) Najdi parciální derivaci podle $x, \frac{\partial f}{\partial x} = .$??? . $-9x^2 + 18x + 72$
- (c) Najdi stacionární body v x ??? $x_1 + x_2 = 2$
- (d) Najdi parciální derivaci podle $y, \frac{\partial f}{\partial y} = \dots ??? \dots 6y^2 + 12y 12$
- (e) Najdi stacionární body v y ??? $y_1 + y_2 = -1$
- (f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\max}(x,y) = \dots 29$

3.

Písmeno Braillovej abecedy

Volné extrémy, skupina $Psi \ \psi$ -iv

 $Jm\'{e}no:$

Cílem je najít volné extrémy funkce f(x, y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a) $f(x,y) = -3x^3 - 18x^2 - 27x - 3 + 36y + 6y^2 - y^3$??? nebarvi

- (b) Najdi parciální derivaci podle $x, \frac{\partial f}{\partial x} = . ??? . -9x^2 36x 27$
- (c) Najdi stacionární body v x ??? $x_1 + x_2 = -4$
- (d) Najdi parciální derivaci podle y, $\frac{\partial f}{\partial y} = . ??? . -3y^2 + 12y + 24$
- e) Najdi stacionární body v y ??? $y_1 + y_2 = 4$
- (f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 225$

4.

Volné extrémy, skupina $Omega~\omega$ -i

Jméno:

Cílem je najít **volné extrémy** funkce f(x,y) zadané v (a). Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi s

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a) $f(x,y) = x^3 + 6x^2 + 9x + 1 + 90y + 36y^2 - 6y^3$??? vybarvi

- (b) Najdi parciální derivaci podle $x, \frac{\partial f}{\partial x} = \dots ??? \dots 3x^2 + 6x + 9$
- (c) Najdi stacionární body v x ??? $x_1 + x_2 = -3$
- (d) Najdi parciální derivaci podle y, $\frac{\partial f}{\partial y} = ??? -18y^2 + 72y + 54$
- (e) Najdi stacionární body v y ??? $y_1 + y_2 = 5$
- (f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\max}(x,y)=\ldots ???\ldots -47$

1.

Písmeno Braillovej abecedy

Volné extrémy, skupina $Omega \omega$ -ii

Jméno:

Cílem je najít volné extrémy funkce f(x, y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. **Spolu odevzdejte výsledné slovo**.

(a) $f(x,y) = 4x^3 - 24x^2 - 144x + 1 - 21y - 9y^2 + y^3$??? vybarvi

- (b) Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = ??? 12x^2 24x 144$
- (c) Najdi stacionární body v x ??? $x_1 + x_2 = 4$
- (d) Najdi parciální derivaci podle $y, \frac{\partial f}{\partial y} = \dots ??? \dots 3y^2 18y 21$
- (e) Najdi stacionární body v y ??? $y_1 + y_2 = 7$
- (f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\max}(x,y) = \dots ??? \dots -1108$

Písmeno Braillovej abecedy

Volné extrémy, skupina $Omega~\omega$ -iii

Jm'eno:

Cílem je najít volné extrémy funkce f(x, y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x,y) = -5x^3 + 15x^2 + 120x - 1 + 144y + 24y^2 - 4y^3$$
 .. ??? .. nebarvi

- (b) Najdi parciální derivaci podle x, $\frac{\partial f}{\partial x} = ??? -15x^2 + 30x + 120$
- (c) Najdi stacionární body v x ??? $x_1+x_2=2$
- (d) Najdi parciální derivaci podle y, $\frac{\partial f}{\partial y} = ??? -12y^2 + 48y + 96$
- (e) Najdi stacionární body v y ??? $y_1 + y_2 = 4$
- (f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots 263$

3.

Písmeno Braillovej abecedy

Volné extrémy, skupina $Omega~\omega$ -iv

 $Jm\'{e}no:$

Cílem je najít **volné extrémy** funkce f(x, y) zadané v (a).

Postupuj podle krokú v (b) až (f). Pokud se medzivýsledky shodujú s těmi za otazníky, tak napravo obarvi příslušející kroužek načerno. Spolu odevzdejte výsledné slovo.

(a)
$$f(x,y) = x^3 + 3x^2 - 24x + 1 + 90y + 36y^2 - 6y^3$$
 ??? vybarvi

- (b) Najdi parciální derivaci podle $x, \frac{\partial f}{\partial x} = .$??? . $3x^2 + 3x 24$
- (c) Najdi stacionární body v x ??? $x_1 + x_2 = -2$
- (d) Najdi parciální derivaci podle y, $\frac{\partial f}{\partial y} = ??? -18y^2 + 72y + 54$
- (e) Najdi stacionární body v y ??? $y_1 + y_2 = 4$
- f) Najdi funkční hodnoty vo všech stacionárních bodech a vyber tu najvětší. $f_{\text{max}}(x,y) = \dots ??? \dots 33$

Volné extrémy (riešenia)

۵	i : W ii : O iii: R iv : D	 (a) vybarvi ✓ (a) vybarvi ✓ (a) vybarvi ✓ (a) vybarvi ✓ 	(b) $3x^2 - 12x - 15\checkmark$ (b) $-3x^2 - 18x + 21 \checkmark$ (b) $3x^2 + 12x + 9 \checkmark$ (b) $-12x^2 - 24x + 36 \checkmark$	(c) $x_1 + x_2 = 4\checkmark$ (c) $x_1 + x_2 = -6\checkmark$ (c) $x_1 + x_2 = -4\checkmark$ (c) $x_1 + x_2 = -2\checkmark$	(d) $-3y^2 + 6y + 24\checkmark$ (d) $3y^2 + 6y - 45𝔞$ (d) $-3y^2 + 18y + 21𝔞$ (d) $12y^2 - 24y - 96𝔞$	(e) $y_1 + y_2 = 2\checkmark$ (e) $y_1 + y_2 = -2\checkmark$ (e) $y_1 + y_2 = 6\checkmark$ (e) $y_1 + y_2 = 2\checkmark$	(f) 87 x (f) 184 x (f) 244 x (f) 135 ✓
β	$i: \mathbf{E}$ $ii: \mathbf{R}$ $iii: \mathbf{I}$ $iv: \mathbf{K}$	 (a) vybarvi ✓ (a) vybarvi ✓ (b) vybarvi ✓ (c) vybarvi ✓ 	(b) $-18x^2 - 36x + 144x$ (b) $3x^2 - 6x - 24x$ (b) $-3x^2 - 18x + 81x$ (b) $-18x^2 + 72x + 90x$	(c) $x_1 + x_2 = -2 X$ (c) $x_1 + x_2 = 2 \checkmark$ (c) $x_1 + x_2 = -6 X$ (c) $x_1 + x_2 = 4 \checkmark$	(d) $15y^2 - 60y + 45 \mathbf{x}$ (d) $-12y^2 + 24y + 36 \mathbf{x}$ (d) $-6y^2 + 12y + 48 \mathbf{x}$ (d) $-15y^2 + 60y + 75 \mathbf{x}$	(e) $y_1 + y_2 = 4\checkmark$ (e) $y_1 + y_2 = 2\checkmark$ (e) $y_1 + y_2 = 2x$ (e) $y_1 + y_2 = 4x$	(f) 185 x (f) 135 x (f) 288 \times (f) 1102 x
7	$i: \mathbf{V}$ $ii: \mathbf{A}$ $iii: \mathbf{N}$ $iii: \mathbf{N}$ $iv: \mathbf{A}$	(a) vybarvi ✓(a) vybarvi ✓(a) vybarvi ✓(b) vybarvi ✓	(b) $-3x^2 + 12x + 15\checkmark$ (b) $6x^2 - 24x - 72 \checkmark$ (c) $-3x^2 - 12x - 9 \checkmark$ (d) $-6x^2 + 12x + 18 \checkmark$	(c) $x_1 + x_2 = 4$ (c) $x_1 + x_2 = 4$ (c) $x_1 + x_2 = 4$ (c) $x_1 + x_2 = -4$ (d) $x_1 + x_2 = 2$ (e) $x_1 + x_2 = 2$	(d) $-3y^2 - 12y - 9\checkmark$ (d) $3y^2 + 6y - 24x$ (d) $-6y^2 - 24y + 72x$ (d) $-3y^2 + 12y + 36x$	(e) $y_1 + y_2 = -4x$ (e) $y_1 + y_2 = -2x$ (e) $y_1 + y_2 = -4x$ (e) $y_1 + y_2 = 4x$	(f) 100 x (f) 164 x (f) 77 \tag{f} 268 x
8	i: O ii: S iii: E iv: L	(a) vybarvi√(b) vybarvi√(c) vybarvi√(d) vybarvi√	(b) $-21x^2 - 42x + 63 \times (b) -3x^2 + 18x + 21 \checkmark$ (b) $6x^2 + 24x + 18 \times (b) -12x^2 + 24x + 36 \checkmark$	(c) $x_1 + x_2 = -2\checkmark$ (c) $x_1 + x_2 = 6\checkmark$ (c) $x_1 + x_2 = -4X$ (c) $x_1 + x_2 = 2\checkmark$	(d) $3y^2 - 6y - 45 \times$ (d) $-3y^2 - 18y - 15 \times$ (d) $-18y^2 - 36y + 54 \times$ (d) $15y^2 + 60y - 75 \times$	(e) $y_1 + y_2 = 2\checkmark$ (e) $y_1 + y_2 = -6 ×$ (e) $y_1 + y_2 = -2 \checkmark$ (e) $y_1 + y_2 = -2 \checkmark$	(f) 120 x (f) 249 \(f) 35 x (f) 609 x
· ·	$i: \mathbf{B}$ $ii: \mathbf{A}$ $iii: \mathbf{B}$ $iv: \mathbf{A}$	(a) vybarvi ✓(a) vybarvi ✓(b) vybarvi ✓(c) vybarvi ✓	(b) $12x^2 + 24x - 36\checkmark$ (b) $-3x^2 + 18x + 21 ×$ (b) $6x^2 - 24x - 30 \checkmark$ (b) $6x^2 - 24x - 30 ×$	(c) $x_1 + x_2 = -2x$ (c) $x_1 + x_2 = 6x$ (c) $x_1 + x_2 = 4x$ (d) $x_1 + x_2 = 4x$	(d) $-15y^2 - 60y - 45 \mathbf{x}$ (d) $3y^2 - 6y - 9 \checkmark$ (d) $9y^2 - 36y - 108 \mathbf{x}$ (d) $-3y^2 - 12y - 9 \mathbf{x}$	(e) $y_1 + y_2 = -4x$ (e) $y_1 + y_2 = 2x$ (e) $y_1 + y_2 = 4x$ (e) $y_1 + y_2 = 4x$	(f) 131 x (f) 244 x (f) 134 x (f) 23 x
2	i: H ii: O iii: R iv: A	(a) vybarvi√(a) vybarvi√(a) vybarvi√(a) vybarvi√	(b) $-9x^2 + 36x + 108 \checkmark$ (b) $-9x^2 - 36x + 45 \times$ (b) $-18x^2 - 72x - 54 \checkmark$ (b) $12x^2 + 24x - 96 \times$	(c) $x_1 + x_2 = 4 \times$ (c) $x_1 + x_2 = -4 \checkmark$ (c) $x_1 + x_2 = -4 \checkmark$ (c) $x_1 + x_2 = -2 \times$	(d) $-6y^2 + 12y + 48 \mathbf{X}$ (d) $-18y^2 - 36y + 144 \mathbf{X}$ (d) $3y^2 + 12y + 9 \mathbf{X}$ (d) $-3y^2 - 12y + 63 \mathbf{X}$	(e) $y_1 + y_2 = 2\checkmark$ (e) $y_1 + y_2 = -2\checkmark$ (e) $y_1 + y_2 = -4\checkmark$ (e) $y_1 + y_2 = -4\checkmark$	(f) 806 x (f) 187 x (f) 30 x (f) 425 x
a	$i: \mathbf{U}$ $ii: \mathbf{R}$ $iii: \mathbf{N}$ $iv: \mathbf{A}$	(a) vybarvi√(a) vybarvi√(a) vybarvi√(a) vybarvi√	(b) $9x^2 - 36x - 45 \text{x}$ (b) $-12x^2 - 24x + 96 \text{y}$ (b) $-3x^2 + 12x - 9 \text{x}$ (c) $-3x^2 - 12x + 15 \text{x}$	(c) $x_1 + x_2 = 4$ / (c) $x_1 + x_2 = -2$ / (c) $x_1 + x_2 = 4$ / (d) $x_1 + x_2 = -4$ /	(d) $-9y^2 - 36y + 45 \checkmark$ (d) $-3y^2 + 12y - 9 \checkmark$ (d) $-18y^2 - 72y + 216 \checkmark$ (d) $3y^2 - 6y - 9 \checkmark$	(e) $y_1 + y_2 = -4 X$ (e) $y_1 + y_2 = 4 \checkmark$ (e) $y_1 + y_2 = -4 \checkmark$ (e) $y_1 + y_2 = -4 \checkmark$	(f) 46 <i>x</i> (f) 111 <i>x</i> (f) 247 <i>x</i> (f) 12 <i>x</i>
θ	$i: \mathbf{I}$ $ii: \mathbf{G}$ $ivi: \mathbf{L}$ $ivi: \mathbf{L}$	(a) vybarvi X(a) vybarvi ✓(a) vybarvi ✓(a) vybarvi ✓	(b) $-12x^2 - 48x + 60 \checkmark$ (c) $-3x^2 + 18x - 15 \checkmark$ (b) $6x^2 - 24x + 18 \checkmark$ (c) $-15x^2 + 30x + 45 \checkmark$	(c) $x_1 + x_2 = -4x$ (c) $x_1 + x_2 = 6x$ (c) $x_1 + x_2 = 4x$ (c) $x_1 + x_2 = 2x$	(d) $-6y^2 - 24y - 18 \mathbf{x}$ (d) $3y^2 + 12y + 9 \mathbf{x}$ (d) $12y^2 + 24y - 36 \mathbf{x}$ (d) $9y^2 - 18y - 72 \checkmark$	(e) $y_1 + y_2 = -4 \mathbf{x}$ (e) $y_1 + y_2 = -4 \mathbf{x}$ (e) $y_1 + y_2 = -2 \mathbf{x}$ (e) $y_1 + y_2 = -2 \mathbf{x}$	(f) 44 \(f) 26 \(f) 109 \(f) 220 \(f) \)
9	$i: \hat{\mathbf{U}}$ $ii: \hat{\mathbf{U}}$ $iii: \mathbf{S}$ $iii: \mathbf{T}$ $iv: \mathbf{A}$	 (a) vybarvi X (a) vybarvi X (a) vybarvi X (b) vybarvi X 	(b) $-3x^2 - 6x + 9x$ (b) $-3x^2 - 12x + 15x$ (c) $-12x^2 - 24x + 36x$ (d) $-15x^2 - 30x + 45x$	(c) $x_1 + x_2 = -2\checkmark$ (c) $x_1 + x_2 = -4\checkmark$ (c) $x_1 + x_2 = -2\checkmark$ (c) $x_1 + x_2 = -2\checkmark$	(d) $3y^2 + 6y - 9\checkmark$ (d) $-3y^2 - 12y + 15𝔞$ (d) $-3y^2 - 6y + 45𝔞$ (d) $3y^2 + 6y - 45𝔞$	(e) $y_1 + y_2 = -2x$ (e) $y_1 + y_2 = -4x$ (e) $y_1 + y_2 = -2x$ (e) $y_1 + y_2 = -2x$	(f) 38 \(f) 20 \(f) 106 \(f) 198 \(f) 198 \(f)
2	$i : \mathbf{R}$ $ii : \mathbf{U}$ $iii : \mathbf{K}$ $iv : \mathbf{A}$	(a) vybarvi(a) vybarvi(a) vybarvi(a) vybarvi	(b) $-3x^2 + 18x + 48x$ (c) $6x^2 + 12x - 48x$ (d) $-12x^2 - 24x + 36x$ (e) $-3x^2 - 12x - 9x$	(c) $x_1 + x_2 = 6$ (c) $x_1 + x_2 = -2$ (d) $x_1 + x_2 = -2$ (e) $x_1 + x_2 = -4$ X	(d) $3y^2 - 18y - 48 \mathbf{x}$ (d) $3y^2 - 12y - 15 \mathbf{x}$ (d) $-3y^2 + 6y + 9 \mathbf{x}$ (d) $6y^2 - 12y - 18 \mathbf{x}$	(e) $y_1 + y_2 = 6\checkmark$ (e) $y_1 + y_2 = 4X$ (e) $y_1 + y_2 = 2X$ (e) $y_1 + y_2 = 2X$ (e) $y_1 + y_2 = 2X$ ((f) 502 X(f) 171 X(f) 41 X(f) 19 X
κ	$i: \mathbf{Z}$ $ii: \mathbf{I}$ $ii: \mathbf{M}$ $iii: \mathbf{M}$	 (a) vybarvi X (a) vybarvi X (a) vybarvi ✓ 	(b) $3x^2 + 18x + 15x$ (b) $9x^2 + 18x - 27x$ (c) $-9x^2 + 18x + 27x$ (d) $9x^2 + 36x - 108x$	(c) $x_1 + x_2 = -6 \checkmark$ (c) $x_1 + x_2 = -2 ×$ (c) $x_1 + x_2 = 2 \checkmark$ (c) $x_1 + x_2 = -4 ×$	(d) $-9y^2 + 18y + 72 \checkmark$ (d) $6y^2 + 12y - 18 ×$ (d) $-3y^2 + 18y + 21 ×$ (d) $-3y^2 + 6y + 9 ×$	(e) $y_1 + y_2 = 2\checkmark$ (e) $y_1 + y_2 = -2 ×$ (e) $y_1 + y_2 = 6 ×$ (e) $y_1 + y_2 = 2 ×$	(f) 264 <i>X</i> (f) 132 \(f) 321 \(f) 679 <i>X</i>
Ħ	$i: \mathbf{E}$ $ii: \mathbf{U}$ $iii: \mathbf{R}$ $iv: \mathbf{O}$	(a) vybarvi /(a) vybarvi /(a) vybarvi /(a) vybarvi /	(b) $3x^2 - 12x - 63$ X (b) $12x^2 - 24x - 36$ X (b) $-18x^2 - 72x + 90$ < (b) $3x^2 + 12x - 36$ X	(c) $x_1 + x_2 = 4 X$ (c) $x_1 + x_2 = 2 \checkmark$ (c) $x_1 + x_2 = -4 \checkmark$ (c) $x_1 + x_2 = -4 \checkmark$	(d) $12y^2 + 48y - 60 \mathbf{x}$ (d) $-3y^2 - 18y - 24 \mathbf{x}$ (d) $-3y^2 + 6y + 9 \mathbf{x}$ (d) $12y^2 + 48y - 60 \mathbf{x}$	(e) $y_1 + y_2 = -4\checkmark$ (e) $y_1 + y_2 = -6 ×$ (e) $y_1 + y_2 = 2\checkmark$ (e) $y_1 + y_2 = -4\checkmark$	(f) 507 X (f) 45 X (f) 76 X (f) 620 X

Volné extrémy (riešenia)