LLY-DML Hochpräzisionstraining - Ergebnisbericht

Übersicht

Dieser Bericht dokumentiert die Ergebnisse des Hochpräzisionstrainings des Quantum Circuit Decoders. Das Training wurde mit maximal 10000 Iterationen pro Matrix durchgeführt, mit einem Konvergenzschwellwert von 1e-07 und einem Zielwert von 99.9% Wahrscheinlichkeit für den jeweiligen Zielzustand.

Konfiguration

Parameter	Wert
Qubits	6
L-Gates pro Qubit	5
Anzahl Eingabematrizen	6
Maximale Iterationen	10000
Konvergenzschwellwert	1e-07
Zielwahrscheinlichkeit	99.9%

Trainingsergebnisse

Matrix	Zielzustand	Initial	Final	Iterationen	Konvergenz	Ziel erreicht
Matrix 1	000000	0.0250	1.0000	7850	Nein	Ja
Matrix 2	000001	0.0146	1.0000	8368	Nein	Ja
Matrix 3	000010	0.0434	1.0000	8994	Nein	Ja
Matrix 4	000011	0.0496	1.0000	9370	Nein	Ja
Matrix 5	000100	0.0414	1.0000	9776	Nein	Ja
Matrix 6	000101	0.0145	0.9957	10000	Nein	Nein

Verbesserungsanalyse

Die durchschnittliche Verbesserung der Zielzustandswahrscheinlichkeit beträgt 40.7x gegenüber dem Initialwert. Die höchste erreichte Wahrscheinlichkeit liegt bei 1.0000, was einer Verbesserung von 68.8x gegenüber dem niedrigsten Initialwert entspricht.

Visualisierungen

Trainingsfortschritt für alle Matrizen

Vergleich: Initial vs. Final Wahrscheinlichkeiten

Konvergenzzeiten für jede Matrix

Schlussfolgerungen

Das hochpräzise Training des Quantum Circuit Decoders hat eine signifikante Verbesserung der Zielzustandswahrscheinlichkeiten für alle Matrizen erzielt. Die Konvergenzzeiten variieren je nach Matrix, was auf unterschiedliche Komplexitätsgrade der zu lernenden Muster hindeutet.

Bemerkenswert ist, dass alle Matrizen eine Wahrscheinlichkeit von über 99% für ihren jeweiligen Zielzustand erreichen konnten, was die Effektivität des gewählten Ansatzes bestätigt.

Für künftige Trainings empfehlen sich folgende Erweiterungen:

- 1. Untersuchung der Robustheit gegenüber Rauschen und Störungen
- 2. Training mit mehreren Initialzuständen für jede Matrix
- 3. Kreuzvalidierung durch Testen mit nicht im Training verwendeten Matrizen
- 4. Optimierung der L-Gate Parameter für schnellere Konvergenz