Exercise Sheet 10 Solution

Exercise 36: Bayesian inference.

(3 Points)

Consider the Bayesian network BN from Figure 1.

Figure 1: Bayesian network for Exercise 36.

Use inference by enumeration to compute the following probabilities:

- (a) $P(dog \mid loudNoise, likesChappi)$.
- (b) $P(loudNoise \mid \neg likesChappi)$.
- (c) P(likesChappi).

Include intermediate steps at a level of granularity as in the examples on the lecture slides. In particular, for each part, state what the query variable, evidence, and hidden variables are; and write down *which* probabilities provided in BN can be combined, and how to obtain the demanded probability P.

(Solution)

As the variable ordering consistent with BN, we choose $X_1 = Animal$, $X_2 = LoudNoise$, $X_3 = LikesChappi$.

- (a) The query variable X here is Animal. The evidence \mathbf{e} is loudnoise, likeschappi. There are no hidden variables, $\mathbf{Y} = \emptyset$. Using Normalization+Marginalization $\mathbf{P}(X \mid \mathbf{e}) = \alpha \sum_{\mathbf{y} \in \mathbf{Y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$ we get $\mathbf{P}(Animal \mid loudnoise, likeschappi) = \alpha \mathbf{P}(Animal, loudnoise, likeschappi)$. By the Chain rule and exploiting conditional independence, we get $\alpha \mathbf{P}(Animal, loudnoise, likeschappi) = \alpha \mathbf{P}(likeschappi \mid Animal) * \mathbf{P}(loudnoise \mid Animal) * \mathbf{P}(Animal) = \alpha \langle 0.8 * 0.4 * 0.7, 0.1 * 0.2 * 0.4, 0.7 * 0.01 * 0.2 \rangle \approx \langle 0.96, 0.03, 0.01 \rangle$. Thus $P(dog \mid loudnoise, likeschappi) \approx 0.96$. ("If your animal likes Chappi and makes loud noise, chances are good it's a dog.")
- (b) The query variable X here is LoudNoise. The evidence \mathbf{e} is $\neg likeschappi$. The hidden variables \mathbf{Y} are $\{Animal\}$. Using Normalization+Marginalization $\mathbf{P}(X \mid \mathbf{e}) = \alpha \sum_{\mathbf{y} \in \mathbf{Y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$ we get $\mathbf{P}(LoudNoise \mid \neg likeschappi) = \alpha \sum_{\mathbf{y} \in \{Animal\}} \mathbf{P}(\mathbf{y}, LoudNoise, \neg likeschappi)$. By the Chain rule and exploiting conditional independence, we get $\alpha \sum_{\mathbf{y} \in \{Animal\}} \mathbf{P}(\mathbf{y}, LoudNoise, \neg likeschappi) = \alpha \sum_{\mathbf{y} \in \{Animal\}} P(\neg likeschappi \mid \mathbf{y}) * \mathbf{P}(LoudNoise \mid \mathbf{y}) * P(\mathbf{y})$. That is, for each truth value v of LoudNoise, we need to sum over each possible animal \mathbf{y} the product of the likelihood of \mathbf{y} not liking Chappi multiplied with the likelihood of \mathbf{y} having value v for LoudNoise multiplied with the likelihood of \mathbf{y} . This gives us $\mathbf{P}(LoudNoise \mid \neg likeschappi) = \alpha \langle 0.2 * 0.7 * 0.4 + 0.9 * 0.2 * 0.4 + 0.3 * 0.01 * 0.2, 0.2 * 0.3 * 0.4 + 0.9 * 0.8 * 0.4 + 0.3 * 0.99 * 0.2 \rangle = \alpha \langle 0.1286, 0.3714 \rangle = \langle 0.2572, 0.7428 \rangle$. Thus $P(loudnoise \mid \neg likeschappi) = 0.2572$. ("If your animal does not like Chappi, chances are good it is quiet.")
- (c) The query variable X here is LikesChappi. There is no evidence this time, and the hidden variables are $\mathbf{Y} = \{Animal, LoudNoise\}$. Using Normalization+Marginalization $\mathbf{P}(X) = \alpha \sum_{a \in v_{Animal}} \sum_{b \in v_{LoudNoise}} \mathbf{P}(X, a, b)$. By the Chain rule and avoiding irrelevant computation as shown on the slides, $\mathbf{P}(X) = \alpha \sum_{a \in v_{Animal}} \mathbf{P}(a)\mathbf{P}(X \mid a) \sum_{b \in v_{LoudNoise}} \mathbf{P}(b \mid a) = \alpha \sum_{a \in v_{Animal}} \mathbf{P}(a)\mathbf{P}(X \mid a) = \alpha \langle 0.4 * 0.8 + 0.4 * 0.1 + 0.2 * 0.7, 0.4 * 0.2 + 0.4 * 0.9 + 0.2 * 0.3 \rangle = \langle 0.5, 0.5 \rangle$. Thus $\mathbf{P}(likesChappi) = 0.5$.

(/Solution)

Assume it is your responsibility to monitor volcanic eruptions. You receive data from two different stations (seismometers), S_1 and S_2 . Each S_i is modeled as a Boolean variable where "true" stands for "I detected an eruption" and "false" stands for "I did not detect an eruption". The seismometers are not fully reliable, however; they may not detect an eruption even though there was one, and they may mistake an earthquake for an eruption of a volcano. We model this situation with two additional Boolean variables: V for volcanic eruption, and E for Earthquake.

Use the algorithm from the lecture to construct a Bayesian network for these 4 variables. Do so for the following two variable orders:

(a)
$$X_1 = V$$
, $X_2 = E$, $X_3 = S_1$, $X_4 = S_2$.

(b)
$$X_1 = S_1, X_2 = S_2, X_3 = E, X_4 = V.$$

For each of these orders, draw the resulting Bayesian network. Justify your design, i.e., for each variable X_i added to the network explain why the set of parents you give X_i are needed, and why they are sufficient.

(Solution)

(a) With this variable order, we get the following network:

 $X_2 = E$ does not need $X_1 = V$ as a parent because Earthquakes are independent from volcano tests. $x_3 = S_1$ needs both $X_1 = V$ and $X_2 = E$ as parents because each of these may influence the measurement; same for $X_4 = S_2$, i.e., here we also need the parents $X_1 = V$ and $X_2 = E$. However, given the values of V and E, the measurements of $X_3 = S_1$ and $X_4 = S_2$ are independent. So $X_4 = S_2$ does not require the parent $X_3 = S_1$.

(b) With this variable order, we get the following network:

 $X_2 = S_2$ needs $X_1 = S_1$ as a parent because, if S_1 detects a seismic phenomenon, then chances are higher S_2 will detect one as well. $X_3 = E$ needs each of $X_1 = S_1$ and $X_2 = S_2$ as parents because, if a station detects a seismic phenomenon, then chances are higher there was an earthquake; same for $X_4 = V$, i.e., here we also need the parents $X_1 = S_1$ and $X_2 = S_2$ because measurements indicate volcano tests as well. Finally, say we already know that S_1 and S_2 are true; then the value of E still has an influence on the value of E: If there was an earthquake, then there is a chance that the seismic measurements were caused by the earthquake rather than a volcano test. Thus E is not conditionally independent of E given E and E and E and we need E as a parent of E as well.

(/Solution)

Exercise 38: ALC. (7 Points)

- 1. Formulate the following \mathcal{ALC} concept descriptions in natural language:
 - (a) Person $\sqcap \exists gives.(Talk \sqcap \forall topic.DL)$
 - (b) Person $\sqcap \forall gives.(Talk \sqcap \exists topic.DL)$
- 2. Using only concept names

Vehicle, Boat, Bicycle, Car, Device, Wheel, Engine, Axle, Rotation, Water, Human, Driver, Adult, Child

and the role names

hasPart, poweredBy, capableOf, travelsOn, controls

build an \mathcal{ALC} - TBox \mathcal{T} that captures each of the following statements in a suitable concept definition.

- (a) Cars are exactly those vehicles that have wheels and are powered by an engine.
- (b) Bicycles are exactly those vehicles that have wheels and are powered by a human.
- (c) Boats are exactly those vehicles that travel on water.
- (d) Boats have no wheels.
- (e) Cars and bicycles do not travel on water.
- (f) Wheels are exactly those devices that have an axle and are capable of rotation.
- (g) Drivers are exactly those humans who control a vehicle.
- (h) Drivers of cars are adults.
- (i) Humans are not vehicles.
- (j) Wheels and engines are not humans.
- (k) Humans are either adults or children.
- (l) Adults are not children.
- 3. Draw the subsumption hierarchy for the concept definitions created in part 2.

(Solution)

- 1. (a) A Person that gives talks only about DL.
 - (b) A Person that exclusively gives talks, some about DL.
- 2. (a) Car \equiv Vehicle \sqcap \exists hasPart.Wheel \sqcap \exists poweredBy.Engine
 - (b) Bicycle \equiv Vehicle \sqcap \exists hasPart.Wheel \sqcap \exists poweredBy.Human
 - (c) Boat \equiv Vehicle $\sqcap \exists travelsOn.Water$
 - (d) Boat $\sqsubseteq \forall hasPart. \neg Wheel$
 - (e) Car \sqcup Bicycle $\sqsubseteq \forall$ travelsOn. \neg Water
 - (f) Wheel \equiv Device \sqcap \exists hasPart.Axle \sqcap \exists capableOf.Rotation
 - (g) Driver \equiv Human \sqcap \exists controls. Vehicle
 - (h) Driver $\sqcap \exists controls.Car \sqsubseteq Adult$ (alternative: Person $\sqcap \exists controls.Car \sqsubseteq Adult$)
 - (i) Human $\sqsubseteq \neg Vehicle$
 - (j) Wheel \sqcup Engine $\sqsubseteq \neg$ Human
 - (k) Human \sqsubseteq Adult \sqcup Child
 - (l) Adult $\sqsubseteq \neg$ Child

(/Solution)