STA 5106: Homework Assignment #1

(Thursday, August 29) Due: Thursday, September 5

- 1. Let *A* be an $n \times n$ real matrix. Prove that if *A* is symmetric, i.e. $A = A^T$, then all eigenvalues of *A* are real.
- 2. Through transformation with orthogonal matrix O, the problem $\hat{b} = \arg\min_b \|y Xb\|^2$ is equivalent to $\hat{b} = \arg\min_b \|y^* X^*b\|^2$ where y and y^* are in \mathbf{R}^m , X and X^* are in $\mathbf{R}^{m \times n}$ ($m \ge n$), and $y^* = Oy$ and $X^* = OX$. Let $y^* = [y_1^*, y_2^*, \cdots, y_m^*]^T$. If X^* is upper-triangular, prove that the residual sum of square

$$||y - X\hat{b}||^2 = \sum_{i=n+1}^m |y_i^*|^2$$
.

- 3. Let *O* be an $n \times n$ orthogonal real matrix, i.e. $O^TO = I_n$, where I_n is an $n \times n$ identity matrix. Prove that
 - i) Any entry in O is between -1 and 1.
 - ii) If λ is an eigenvalue of O, then $|\lambda| = 1$.
 - iii) det(O) is either 1 or -1.
- 4. Let H be an $n \times n$ householder matrix given by

$$H = I_n - 2 \frac{vv^T}{v^T v}$$
, for any non-zero *n*-length column vector $v \neq 0$.

Show that H is a symmetric, orthogonal, and reflection matrix. That is, H satisfies i) $H = H^T$, ii) $HH^T = I_n$, iii) $\det(H) = -1$.