Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Информатика и системы управления
КАФЕДРА	Системы обработки информации и управления (ИУ5)

Отчет Лабораторная работа №1

«Разведочный анализ данных. Исследование и визуализация данных»

По курсу: «Технологии машинного обучения»

Выполнил: <u>студент группы</u> <u>ИУ5-64Б</u>	(Подпись, дата)	Корыткина А.Н. (Ф.И.О.)
Проверил:	(Подпись, дата)	<u>Гапанюк Ю.Е.</u> (Ф.И.О.)

Цель лабораторной работы: изучение различных методов визуализация данных.

Описание: построение основных графиков, входящих в этап разведочного анализа данных. создание ноутбука, который содержит следующие разделы: текстовое описание выбранного набора данных, основные характеристики датасета, визуальное исследование датасета, информация о корелляции признаков.

Текст программы и экранные формы с примерами выполнения программы:


```
[ ] # Список колонок
      data.columns
[ ] # Список колонок с типами данных
     data.dtypes
                                           float64
C→ alcohol
                                           float64
float64
float64
     malic_acid
     ash
alcalinity_of_ash
     arcainity_or_asn
magnesium
total_phenols
flavanoids
nonflavanoid_phenols
proanthocyanins
color_intensity
                                           float64
float64
float64
                                           float64
float64
                                           float64
     hue
od280/od315_of_diluted_wines
                                           float64
float64
     proline
target
dtype: object
                                           float64
[ ] # Основные статистические характеристки набора данных
```

₽		alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenols	proanthocyanins	color_intens
	count	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000
	mean	13.000618	2.336348	2.366517	19.494944	99.741573	2.295112	2.029270	0.361854	1.590899	5.058
	std	0.811827	1.117146	0.274344	3.339564	14.282484	0.625851	0.998859	0.124453	0.572359	2.318
	min	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000	0.130000	0.410000	1.280
	25%	12.362500	1.602500	2.210000	17.200000	88.000000	1.742500	1.205000	0.270000	1.250000	3.220
	50%	13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.135000	0.340000	1.555000	4.690
	75%	13.677500	3.082500	2.557500	21.500000	107.000000	2.800000	2.875000	0.437500	1.950000	6.200
	max	14.830000	5.800000	3.230000	30.000000	162.000000	3.880000	5.080000	0.660000	3.580000	13.000

[] #Диаграмма рассеяния
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='alcohol', y='color_intensity', data=data)

Зависимости между алкоголем и интенсивностью цвета не наблюдается.

```
[ ] fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='alcohol', y='color_intensity', data=data, hue='target')
```


[] #Fuctorpamma fig, ax = plt.subplots(figsize=(10,10)) sns.distplot(data['alcohol'])

- [] #Ящик с усами sns.boxplot(x=data['alcohol'])
- C→ <matplotlib.axes._subplots.AxesSubplot at 0x7f2c5a261550>

- [] # Распределение параметра alcohol сгруппированные по target. sns.boxplot(x='target', y='alcohol', data=data)


```
fig, ax = plt.subplots(2, 1, figsize=(10,10))
sns.violinplot(ax=ax[0], x=data['alcohol'])
sns.distplot(data['alcohol'], ax=ax[1])
```

← matplotlib.axes._subplots.AxesSubplot at 0x7f2c58912978>

[] # Распределение параметра alcohol сгруппированные по target. sns.violinplot(x='target', y='alcohol', data=data)

[]	#Проверка корреляции data.corr()									
₽		alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenols	proanthoc
	alcohol	1.000000	0.094397	0.211545	-0.310235	0.270798	0.289101	0.236815	-0.155929	0.
	malic_acid	0.094397	1.000000	0.164045	0.288500	-0.054575	-0.335167	-0.411007	0.292977	-0.:
	ash	0.211545	0.164045	1.000000	0.443367	0.286587	0.128980	0.115077	0.186230	0.
	alcalinity_of_ash	-0.310235	0.288500	0.443367	1.000000	-0.083333	-0.321113	-0.351370	0.361922	-0.
	magnesium	0.270798	-0.054575	0.286587	-0.083333	1.000000	0.214401	0.195784	-0.256294	0.:
	total_phenols	0.289101	-0.335167	0.128980	-0.321113	0.214401	1.000000	0.864564	-0.449935	0.0
	flavanoids	0.236815	-0.411007	0.115077	-0.351370	0.195784	0.864564	1.000000	-0.537900	0.
	nonflavanoid_phenols	-0.155929	0.292977	0.186230	0.361922	-0.256294	-0.449935	-0.537900	1.000000	-0.
	proanthocyanins	0.136698	-0.220746	0.009652	-0.197327	0.236441	0.612413	0.652692	-0.365845	1.0
	color_intensity	0.546364	0.248985	0.258887	0.018732	0.199950	-0.055136	-0.172379	0.139057	-0.
	hue	-0.071747	-0.561296	-0.074667	-0.273955	0.055398	0.433681	0.543479	-0.262640	0.:
	od280/od315_of_diluted_wines	0.072343	-0.368710	0.003911	-0.276769	0.066004	0.699949	0.787194	-0.503270	0.
	proline	0.643720	-0.192011	0.223626	-0.440597	0.393351	0.498115	0.494193	-0.311385	0.
	tarnet	-0.328222	0 437776	-0 049643	0.517859	-N 2N9179	-0 719163	-0 847498	0 489109	-n ·

[]	<pre>data.corr(method='pearson')</pre>									
₽		alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenols	proanthocya
	alcohol	1.000000	0.094397	0.211545	-0.310235	0.270798	0.289101	0.236815	-0.155929	0.13
	malic_acid	0.094397	1.000000	0.164045	0.288500	-0.054575	-0.335167	-0.411007	0.292977	-0.22
	ash	0.211545	0.164045	1.000000	0.443367	0.286587	0.128980	0.115077	0.186230	0.00
	alcalinity_of_ash	-0.310235	0.288500	0.443367	1.000000	-0.083333	-0.321113	-0.351370	0.361922	-0.19
	magnesium	0.270798	-0.054575	0.286587	-0.083333	1.000000	0.214401	0.195784	-0.256294	0.23
	total_phenols	0.289101	-0.335167	0.128980	-0.321113	0.214401	1.000000	0.864564	-0.449935	0.61
	flavanoids	0.236815	-0.411007	0.115077	-0.351370	0.195784	0.864564	1.000000	-0.537900	0.65
	nonflavanoid_phenols	-0.155929	0.292977	0.186230	0.361922	-0.256294	-0.449935	-0.537900	1.000000	-0.36
	proanthocyanins	0.136698	-0.220746	0.009652	-0.197327	0.236441	0.612413	0.652692	-0.365845	1.00
	color_intensity	0.546364	0.248985	0.258887	0.018732	0.199950	-0.055136	-0.172379	0.139057	-0.02
	hue	-0.071747	-0.561296	-0.074667	-0.273955	0.055398	0.433681	0.543479	-0.262640	0.29
	od280/od315_of_diluted_wines	0.072343	-0.368710	0.003911	-0.276769	0.066004	0.699949	0.787194	-0.503270	0.51
	proline	0.643720	-0.192011	0.223626	-0.440597	0.393351	0.498115	0.494193	-0.311385	0.33
	target	-0.328222	0.437776	-0.049643	0.517859	-0.209179	-0.719163	-0.847498	0.489109	-0.49

[] #тепловая карта sns.heatmap(data.corr())

<matplotlib.axes._subplots.AxesSubplot at 0x7f2c5727f2b0>


```
[ ] # Треугольный вариант матрицы
mask = np.zeros_like(data.corr(), dtype=np.bool)
mask[np.triu_indices_from(mask)] = True
sns.heatmap(data.corr(), mask=mask)
```

