

**Identification de marqueurs diagnostic
pour les encéphalopathies subaiguës spongiformes transmissibles**

- La présente demande concerne des marqueurs biologiques des encéphalopathies subaiguës 5 spongiformes transmissibles et leurs utilisations dans des méthodes de diagnostic. Elle concerne également des outils et/ou kits utilisables pour la mise en œuvre de ces méthodes (réactifs, sondes, amorces, anticorps, puces, cellules, etc.), leur préparation et leurs utilisations. L'invention est utilisable pour détecter la présence d'une infection chez les mammifères, y compris en phase précoce.
- 10 Les maladies à prions, également appelées encéphalopathies subaiguës spongiformes transmissibles ou maladies à agents transmissibles non conventionnels (ATNC) sont des maladies du système nerveux central rencontrées chez certains mammifères, dont l'homme.
- 15 Les formes les plus connues de ces maladies sont la tremblante du mouton chez les ovins, l'Encéphalopathie Spongiforme Bovine (ESB) chez les bovins, la maladie de Creutzfeld-Jakob (MCJ), le kuru et l'insomnie fatale familiale chez l'homme.
- 20 L'agent infectieux n'est pas encore définitivement déterminé, mais l'hypothèse la plus acceptée est que ces maladies sont associées à l'accumulation dans le cerveau d'une protéine prion (PrP) de conformation anormale par rapport à la conformation observée chez les individus sains.
- 25 La découverte d'une nouvelle variante de MJC (vMJC) après l'épidémie bovine de ESB en Angleterre confirme que ces maladies sont transmissibles et vraisemblablement peuvent franchir la barrière des espèces par le biais de l'alimentation. Leur évolution lente et fatale, est associée à des lésions qui affectent exclusivement le système nerveux central.
- 30 Avec la découverte de vMCJ, des mesures d'urgences ont été mises en place pour évaluer l'ampleur de l'épidémie de l'ESB et pour protéger la santé publique. L'Union européenne impose désormais le test systématique de toute viande provenant de bovins abattus et âgés

de plus de 30 mois. Le temps d'incubation de l'ESB étant autour de cinq années, période durant laquelle l'infection peut se propager latéralement et verticalement, le développement d'un test diagnostic sur des animaux vivants revêt une importance vitale. Un test précoce offrirait un moyen sûr d'exclure les animaux infectés de la chaîne alimentaire. Le test utilisé aujourd'hui détecte uniquement de façon post mortem les animaux infectés à un stade tardif de la maladie.

Il y a un besoin urgent de mettre sur pied un test diagnostique capable de détecter des encéphalopathies à un stade précoce chez des animaux vivants et de façon rapide. Un tel test permettrait de suivre tous les animaux à risque en les testant de multiple fois au cours de leur vie.

La demande WO02/074986, appartenant au demandeur, décrit plusieurs marqueurs génétiques des encéphalopathies. Par une recherche extensive utilisant une approche innovante, différents marqueurs supplémentaires de l'ESB ont été identifiés et validés dans des expériences d'hybridation, permettant d'établir un test pré-symptomatique utilisable à partir du sang d'un mammifère vivant.

Les marqueurs identifiés ont été isolés par la technique DATAS (demande de brevet n° WO99/46403). DATAS identifie des différences qualitatives de l'expression de gènes et fournit une analyse systématique de l'ARN épissé entre deux conditions : sains/infecté. DATAS mène à l'identification de variants ARN fonctionnellement distincts. La technique DATAS comprend trois étapes distinctes: la collecte de tissu, l'isolement des ARNs et la construction d'un répertoire contenant des différences qualitatives et identifiant des nouveaux fragments de gènes, qui ne peuvent pas être isolés par d'autres techniques génétiques.

Par comparaison de l'expression qualitative des gènes dans les cellules sanguines de mammifères sains et infectés naturellement ou expérimentalement par l'ESB, différentes signatures de marqueurs génétiques ont été isolées. Les mammifères naturellement infectés étaient au stade final de la maladie, alors que les mammifères infectés par voie orale avec 1 g de cerveaux infectés par l'ESB, représentaient le stade précoce de la maladie.

La mise en œuvre de la méthodologie DATAS sur des cellules sanguines de vaches a permis l'identification et l'isolement de plusieurs milliers de marqueurs génétiques, répartis en deux répertoires représentatifs de l'expression qualitative des gènes entre des vaches 5 saines et des vaches infectées naturellement d'une part, et entre des vaches saines et des vaches infectées expérimentalement d'autre part.

Les marqueurs contenus dans ces répertoires ont été sélectionnés et validés selon deux approches:

10

Dans la première approche, les fragments de gènes communs aux deux répertoires DATAS ainsi produits ont été identifiés. La séquence de ces 11 marqueurs est représentée dans les séquences SEQ ID NO: 16-26.

15

Dans la seconde approche, les différents clones des deux expériences DATAS ont été déposés sur lames de verre. Les lames ont été hybridées avec des sondes produites à partir de matériel biologique de vaches infectées naturellement ou expérimentalement et de vaches saines utilisées comme contrôle. Au travers de deux types d'analyses statistiques, SAM (Significance Analysis of Microarray) et PAM (Prediction analysis of Microarray) 20 comparant les animaux sains versus les animaux infectés, 15 clones ont été observés comme présentant une dérégulation dans les conditions sain versus infectés. Les 15 séquences d'acides nucléiques sont décrites ci-dessous comme SEQ ID NO:1-15.

25

La présente demande fournit ainsi un ensemble de marqueurs biologiques qui peuvent être utilisés, seuls ou en combinaison(s), pour détecter, caractériser ou suivre une encéphalopathie spongiforme transmissible chez un mammifère. L'invention est utile notamment pour détecter la présence de maladies à prion chez des sujets mammifères, notamment ovins, bovins ou humains. Elle est particulièrement avantageuse dans la mesure où elle peut être réalisée sur des mammifères vivants, à partir de fluides biologiques tels 30 que le sang, plasma, plaquettes, etc.

Un objet de la présente demande concerne une méthode pour détecter la présence ou le risque de développer une encéphalopathie chez un mammifère, comprenant la détermination de la présence (ou de l'absence), dans un échantillon biologique du mammifère, d'une molécule cible choisie parmi:

- 5 a) un acide nucléique comprenant une séquence choisie parmi SEQ ID NOs: 1 à 26 ou un fragment de celles-ci ayant au moins 5, de préférence 6, 7, 8, 9 ou 10 bases consécutives,
- b) un acide nucléique ayant une séquence complémentaire d'une séquence selon a),
- c) un analogue fonctionnel d'un acide nucléique selon a) ou b), ou
- 10 d) un polypeptide codé par un acide nucléique selon a) à c),

la présence (ou l'absence) d'une telle molécule cible dans l'échantillon étant une indication de la présence ou du risque de développer une encéphalopathie chez ce mammifère.

Dans une variante particulière de mise en œuvre, la méthode comprend la détermination 15 (simultanée) de la présence ou absence d'au moins, 2, 3, 4, 5, 6, 7, 8, 9, 10 ou plus des molécules cibles telles que définies ci-dessus. L'invention permet en effet d'établir et de déterminer un profil d'hybridation sur un ensemble de marqueurs, afin d'évaluer la présence ou le risque de développer une encéphalopathie chez un mammifère. Le profil 20 d'hybridation est typiquement réalisé en utilisant une combinaison de plusieurs marqueurs choisis par les cibles indiquées ci-dessus, par exemple contenant l'ensemble de ces cibles.

La molécule cible peut être la séquence complète du gène ou de l'ARN ou de la protéine correspondant aux séquences SEQ ID NOs: 1-26, ou un fragment de celles-ci, par exemple 25 un fragment comportant un domaine de variabilité (épissage, délétion, polymorphisme, etc.). Un analogue fonctionnel désigne plus particulièrement un analogue provenant d'une autre espèce (par exemple homme, mouton, etc.), ou un variant naturel résultant par exemple de polymorphisme, épissage, etc.

Dans un mode de réalisation particulier, la méthode comprend la détermination de la 30 présence d'au moins un acide nucléique selon a) à c). Différentes techniques utilisables pour détecter une espèce d'acide nucléique dans un échantillon sont utilisables dans la présente invention, comme par exemple le Northern Blot, l'hybridation sélective,

l'utilisation de supports revêtus d'oligonucléotides sondes, l'amplification d'acide nucléique comme par exemple par RT-PCR, PCR quantitative et ligation-PCR, etc. Ces méthodes peuvent comprendre l'utilisation d'une sonde nucléique (par exemple un oligonucléotide) capable de détecter sélectivement ou spécifiquement l'acide nucléique cible dans
5 l'échantillon. L'amplification peut être réalisée selon différentes méthodes connues en soi de l'homme du métier, telles que la PCR, la LCR, l'amplification médiée par transcription (TMA), l'amplification par déplacement de brin (SDA), NASBA, l'emploi d'oligonucléotides spécifiques d'allèles (ASO), l'amplification spécifique d'allèle, le Southern blot, l'analyse conformationnelle SSCA, l'hybridation in situ (e.g., FISH), la
10 migration sur gel, l'analyse d'hétéroduplexes, etc.

Selon un mode préféré de mise en oeuvre, la méthode comprend la détection de la présence ou de l'absence d'un acide nucléique selon a) à c) par hybridation sélective ou amplification sélective.
15

L'hybridation sélective est typiquement réalisée en utilisant des sondes nucléiques, de préférence immobilisées sur un support, tel qu'un support solide ou semi-solide présentant au moins une surface, plane ou non, permettant l'immobilisation de sondes nucléiques. De tels supports sont par exemple une lame, bille, membrane, filtre, colonne, plaque, etc. Ils
20 peuvent être réalisés en tout matériau compatible, comme notamment du verre, silice, plastique, fibre, métal, polymère, etc. Les sondes nucléiques peuvent être tout acide nucléique (ADN, ARN, PNA, etc.), de préférence simple-brin, comprenant une séquence spécifique d'une molécule cible telle que définie en a) à c) ci-dessus. Les sondes comprennent typiquement de 5 à 400 bases, de préférence de 8 à 200, plus
25 préférentiellement moins de 100. Les sondes peuvent être des oligonucléotides synthétiques, produits sur la base des séquences de molécules cibles de l'invention selon des techniques de synthèse classique. Les sondes peuvent également être synthétisées directement in situ, sur le support, selon des méthodes connues en soi de l'homme du métier. Les sondes peuvent également être fabriquées par des techniques génétiques, par
30 exemple par amplification, recombinaison, ligation, etc. Une telle sonde constitue un autre objet de la présente demande, ainsi que son utilisation (essentiellement in vitro) pour la détection d'une encéphalopathie chez un sujet. De manière particulièrement préférée, on

utilise un ensemble de sondes nucléiques comprenant tout ou un fragment de 5 bases consécutives au moins de chacune des séquences SEQ ID NO : 1-26, ou d'un brin complémentaire de celles-ci, avantageusement immobilisées sur un support.

- 5 L'hybridation peut être réalisée dans des conditions classiques, connues de l'homme du métier et ajustables par celui-ci (Sambrook et al). En particulier, l'hybridation peut être réalisée dans des conditions de stringence élevée, moyenne ou faible, selon le niveau de sensibilité recherché, la quantité de matériel disponible, etc. Par exemple, des conditions appropriées d'hybridation incluent une température comprise entre 62 et 67°C pendant 2 à
10 18 heures. Après l'hybridation, différents lavages peuvent être réalisés pour éliminer les molécules non-hybridées, typiquement dans des tampons SSC comprenant du SDS, tels que un tampon comprenant 0,1 à 10 X SSC et 0,1% SDS.

Dans un mode de mise en oeuvre typique, les acides nucléiques (ou les puces ou supports) 15 sont pré-hybridés dans un tampon d'hybridation (Rapid Hybrid Buffer, Amersham) contenant typiquement 100 µg/ml d'ADN de sperme de saumon à 65°C pendant 30 min. Les acides nucléiques de l'échantillon sont ensuite mis en contact avec les sondes (typiquement appliqués sur le support ou la puce) à 65°C pendant 2 à 18 heures. De préférence, les acides nucléique de l'échantillon sont marqués au préalable, par tout 20 marquage connu (radioactif, enzymatique, fluorescent, luminescent, etc.). Les supports sont ensuite lavés dans un tampon 5X SSC, 0,1% SDS à 65°C pendant 30 min, puis dans un tampon 0.2X SSC, 0,1% SDS. Le profil d'hybridation est analysé selon des techniques classiques, comme par exemple en mesurant le marquage sur le support au moyen d'un instrument adapté (par exemple InstantImager, Packard Instruments). Les conditions de 25 l'hybridation peuvent naturellement être ajustées par l'homme du métier, par exemple en modifiant la température d'hybridation et/ou la concentration saline du tampon.

L'amplification sélective est de préférence réalisée en utilisant une amorce ou une paire 30 d'amorces permettant l'amplification de tout ou partie d'un des acides nucléiques cibles dans l'échantillon, lorsque celui-ci y est présent. L'amorce peut être spécifique d'une séquence cible selon SEQ ID NO : 1-26, ou d'une région flanquant la séquence cible dans un acide nucléique de l'échantillon. L'amorce comprend typiquement un acide nucléique

simple-brin, d'une longueur comprise avantageusement entre 5 et 50 bases, de préférence entre 5 et 30. Une telle amorce constitue un autre objet de la présente demande, ainsi que son utilisation (essentiellement *in vitro*) pour la détection d'une encéphalopathie chez un sujet.

5

Dans un autre mode de réalisation, la méthode comprend la détermination de la présence d'un polypeptide selon d). La mise en évidence d'un polypeptide dans un échantillon peut être réalisée par toute technique connue en soi, comme notamment au moyen d'un ligand spécifique, par exemple un anticorps ou un fragment ou dérivé d'anticorps. De préférence, 10 le ligand est un anticorps spécifique du polypeptide, ou un fragment d'un tel anticorps (par exemple un Fab, Fab', CDR, etc.), ou un dérivé d'un tel anticorps (par exemple un anticorps simple-chaîne, ScFv). Le ligand est typiquement immobilisé sur un support, tel qu'une lame, bille, colonne, plaque, etc. La présence du polypeptide cible dans l'échantillon peut être détectée par mise en évidence d'un complexe entre la cible et le ligand, par 15 exemple en utilisant un ligand marqué, en utilisant un deuxième ligand de révélation marqué, etc. Des techniques immunologiques utilisables et bien connues sont les techniques ELISA, RIA, etc.

Des anticorps spécifiques des polypeptides cibles peuvent être produits par des techniques 20 conventionnelles, notamment par immunisation d'un animal non-humain avec un immunogène comprenant le polypeptide (ou un fragment immunogène de celui-ci), et récupération des anticorps (polyclonaux) ou des cellules productrices (pour produire des monoclonaux). Des techniques de production d'anticorps poly- ou monoclonaux, de fragments ScFv, d'anticorps humains ou humanisés sont décrites par exemple dans Harlow 25 et al., *Antibodies: A laboratory Manual*, CSH Press, 1988 ; Ward et al., *Nature* 341 (1989) 544 ; Bird et al., *Science* 242 (1988) 423 ; WO94/02602 ; US5,223,409 ; US5,877,293 ; WO93/01288. L'immunogène peut être fabriqué par synthèse, ou par expression, dans un hôte approprié, d'un acide nucléique cible tel que défini ci-dessus. Un tel anticorps, monoclonal ou polyclonal, ainsi que ses dérivés ayant la même spécificité antigénique, 30 constituent également un objet de la présente demande, de même que leur utilisation pour détecter une encéphalopathie.

- La méthode de l'invention est applicable à tout échantillon biologique du mammifère testé, en particulier tout échantillon comportant des acides nucléiques ou des polypeptides. On peut citer avantageusement un échantillon de sang, plasma, plaquette, salive, urine, selles, etc., plus généralement tout tissu, organe ou, avantageusement, fluide biologique
- 5 comportant des acides nucléiques ou des polypeptides. Dans un mode de mise en oeuvre préféré, l'échantillon est un échantillon de sang ou plasma. L'échantillon peut être obtenu par toute technique connue en soi, par exemple par prélèvement, par des techniques non invasives, à partir de collections ou banques d'échantillons, etc. L'échantillon peut par ailleurs être pré-traité pour faciliter l'accessibilité des molécules cibles, par exemple par
- 10 lyse (mécanique, chimique, enzymatique, etc.), purification, centrifugation, séparation, etc. L'échantillon peut également être marqué, pour faciliter la détermination de la présence des molécules cibles (marquage fluorescent, radioactif, luminescent, chimique, enzymatique, etc.).
- 15 L'invention est applicable à tout mammifère, de préférence choisi parmi les bovins, ovins et humains. La méthode de l'invention est particulièrement utile pour la détection de la tremblante du mouton chez les ovins, de l'Encéphalopathie Spongiforme Bovine (ESB) chez les bovins, et de la maladie de Creutzfeld-Jakob (MCJ), le kuru et l'insomnie fatale familiale chez l'homme.
- 20 Un objet particulier de la présente demande concerne une méthode pour détecter la présence ou le risque de développer une ESB chez un bovin, comprenant la détermination de la présence (ou de l'absence), dans un échantillon biologique du bovin, d'une ou plusieurs molécules cibles choisies parmi:
- 25 a) un acide nucléique comprenant une séquence choisie parmi SEQ ID NO: 1 à 26 ou un fragment de celles-ci ayant au moins 5, de préférence 6, 7, 8, 9 ou 10 bases consécutives,
- b) un acide nucléique ayant une séquence complémentaire d'une séquence selon a),
- c) un polypeptide codé par un acide nucléique selon a) ou b).

30 Un autre objet particulier de la présente demande concerne une méthode pour détecter la présence ou le risque de développer une ESB chez un bovin ou un ovin, comprenant la

mise en contact d'un échantillon biologique du bovin ou ovin contenant des acides nucléiques avec un produit comprenant un support sur lequel est immobilisé au moins un acide nucléique comprenant une séquence choisie parmi SEQ ID NO: 1 à 26, un fragment de celles-ci ayant au moins 5 bases consécutives, ou un acide nucléique ayant une 5 séquence complémentaire de celles-ci, et la détermination du profil d'hybridation, le profil indiquant la présence ou le risque de développer une ESB chez le bovin ou ovin. De préférence, le produit comprend au moins 2, 3, 4, 5, 6, 7, 8, 9, 10 acides nucléiques différents choisis parmi les acides nucléiques mentionnés ci-dessus. Dans un mode particulier de mise en oeuvre, le produit comprend chacun des acides nucléiques de 10 séquence SEQ ID NO: 1 à 26, un fragment de celles-ci ayant au moins 5 bases consécutives, ou un acide nucléique ayant une séquence complémentaire de celles-ci.

Un autre objet de la présente demande concerne un produit comprenant un support sur lequel est immobilisé au moins un acide nucléique comprenant une séquence choisie parmi 15 SEQ ID NO: 1 à 26, un fragment de celles-ci ayant au moins 5 bases consécutives, un acide nucléique ayant une séquence complémentaire de celles-ci ou un analogue fonctionnel de celles-ci. De préférence, le produit comprend au moins 2, 3, 4, 5, 6, 7, 8, 9, 10 acides nucléiques différents choisis parmi les acides nucléiques mentionnés ci-dessus. Dans un mode particulier de mise en oeuvre, le produit comprend chacun des acides 20 nucléiques de séquence SEQ ID NO: 1 à 26, un fragment de celles-ci ayant au moins 5 bases consécutives, ou un acide nucléique ayant une séquence complémentaire de celles-ci

Un autre objet de la présente demande concerne un produit comprenant un support sur lequel est immobilisé au moins un polypeptide codé par un acide nucléique comprenant 25 une séquence choisie parmi SEQ ID NO: 1 à 26, un fragment de celles-ci ayant au moins 15 bases consécutives, un acide nucléique ayant une séquence complémentaire de celles-ci ou un analogue fonctionnel de celles-ci. De préférence, le produit comprend au moins 2, 3, 4, 5, 6, 7, 8, 9, 10 polypeptides différents choisis parmi les polypeptides mentionnés ci-dessus.

30

Le support peut être tout support solide ou semi-solide présentant au moins une surface, plane ou non, permettant l'immobilisation d'acides nucléiques ou de polypeptides. De tels

supports sont par exemple une lame, bille, membrane, filtre, colonne, plaque, etc. Ils peuvent être réalisés en tout matériau compatible, comme notamment du verre, silice, plastique, fibre, métal, polymère, polystyrène, téflon, etc. Les réactifs peuvent être immobilisés sur la surface du support par des techniques connues, ou, dans le cas des 5 acides nucléiques, synthétisés directement *in situ* sur le support. Des techniques d'immobilisation incluent l'adsorption passive (Inouye et al., J. Clin. Microbiol. 28 (1990) 1469), la liaison covalente. Des techniques sont décrites par exemple dans WO90/03382, WO99/46403). Les réactifs immobilisés sur le support peuvent être ordonnés selon un schéma pré-établi, pour faciliter la détection et l'identification des complexes formés, et 10 selon une densité variable et adaptable.

Dans un mode de mise en oeuvre, le produit de l'invention comprend un pluralité d'oligonucléotides synthétiques, d'une longueur comprise entre 5 et 100 bases, spécifiques d'un ou plusieurs acides nucléiques cibles définis en a) à c).

15

Les produits de l'invention comprennent typiquement des molécules contrôle, permettant d'établir et/ou normaliser les résultats.

Un autre objet de la présente demande concerne un kit comprenant un compartiment ou 20 conteneur comprenant moins un acide nucléique comprenant une séquence choisie parmi SEQ ID NO: 1 à 26, un fragment de celles-ci ayant au moins 5 bases consécutives, un acide nucléique ayant une séquence complémentaire de celles-ci ou un analogue fonctionnel de celles-ci. De préférence, le produit comprend au moins 2, 3, 4, 5, 6, 7, 8, 9, 10 acides nucléiques différents choisis parmi les acides nucléiques mentionnés ci-dessus. 25 Dans un mode particulier de mise en oeuvre, le produit comprend chacun des acides nucléiques de séquence SEQ ID NO: 1 à 26, un fragment de celles-ci ayant au moins 5 bases consécutives, ou un acide nucléique ayant une séquence complémentaire de celles-ci. Le kit peut comprendre par ailleurs des réactifs pour une réaction d'hybridation ou immunologique, ainsi que, le cas échéant, des contrôles et/ou instructions.

30

Un autre objet de l'invention concerne l'utilisation d'un produit ou kit tel que défini ci-dessus pour la détection d'une encéphalopathie chez un sujet mammifère.

- Un autre objet de l'invention concerne un acide nucléique comprenant une séquence choisie parmi SEQ ID NO : 1-26, ou un fragment de celles-ci comprenant au moins 5 bases consécutives, ou un acide nucléique ayant une séquence complémentaire de celles-ci, ou un
- 5 analogue fonctionnel de celles-ci, en particulier un analogue provenant d'une autre espèce. L'invention concerne également un vecteur de clonage ou d'expression comportant ces acides nucléiques, ainsi que toute cellule recombinante comprenant un tel vecteur ou acide nucléique.
- 10 Un autre objet de l'invention concerne l'utilisation d'un acide nucléique comprenant une séquence choisie parmi SEQ ID NO : 1-26, ou un fragment de celles-ci comprenant au moins 5 bases consécutives, ou un acide nucléique ayant une séquence complémentaire de celles-ci, ou un analogue fonctionnel de celles-ci, en particulier un analogue provenant d'une autre espèce, pour la détection (essentiellement *in vitro*) d'une encéphalopathie chez
- 15 un sujet mammifère.
- Selon un exemple particulier de mise en œuvre de l'invention, on prélève un échantillon de sang d'un mammifère à tester. L'échantillon de sang est traité de manière à rendre les acides nucléiques plus accessibles, et ceux-ci sont marqués. Les aides nucléiques sont
- 20 ensuite appliqués sur un produit tel que défini ci-dessus et le profil d'hybridation est déterminé, permettant de diagnostiquer la présence ou non d'une encéphalopathie chez le sujet. La méthode de l'invention est simple, pratiquée *ex vivo*, sur des animaux vivants, et permet la détection précoce d'une maladie à prion.
- 25 Il est entendu que toute technique équivalente peut être utilisée dans le cadre de la présente demande pour déterminer la présence d'une molécule cible. La liste des séquences est donnée ci-après (N désigne toute base).

REVENDICATIONS

1. Méthode pour détecter la présence ou le risque de développer une encéphalopathie chez un mammifère, comprenant la détermination de la présence, dans un échantillon biologique du mammifère, d'une molécule cible choisie parmi:
 - a) un acide nucléique comprenant une séquence choisie parmi SEQ ID NO: 1 à 26 ou un fragment de celles-ci ayant au moins 5, de préférence 6, 7, 8, 9 ou 10 bases consécutives,
 - b) un acide nucléique ayant une séquence complémentaire d'une séquence selon a),
 - c) un analogue fonctionnel d'un acide nucléique selon a) ou b) provenant d'une autre espèce ou un variant naturel, ou
 - d) un polypeptide codé par un acide nucléique selon a) à c),la présence d'une telle molécule cible dans l'échantillon étant une indication de la présence ou du risque de développer une encéphalopathie chez ce mammifère.
- 15 2. Méthode selon la revendication 1, comprenant la détermination (simultanée) de la présence d'au moins 2, 3, 4, 5, 6, 7, 8, 9, 10 ou plus des molécules cibles.
- 20 3. Méthode selon la revendication 1 ou 2, comprenant la détection de la présence ou de l'absence d'un acide nucléique selon a) à c) par hybridation sélective ou amplification sélective.
- 25 4. Méthode selon la revendication 1 ou 2, comprenant la détection de la présence ou de l'absence d'un polypeptide selon d) au moyen d'un anticorps spécifique ou d'un fragment ou dérivé de celui-ci.
5. Méthode selon la revendication 1, pour détecter la présence ou le risque de développer une ESB chez un bovin, comprenant la détermination de la présence, dans un échantillon biologique du bovin, d'une ou plusieurs molécules cibles choisies parmi:
 - a) un acide nucléique comprenant une séquence choisie parmi SEQ ID NO: 1 à 26 ou un fragment de celles-ci ayant au moins 5, de préférence 6, 7, 8, 9 ou 10 bases consécutives,

- b) un acide nucléique ayant une séquence complémentaire d'une séquence selon a),
- c) un polypeptide codé par un acide nucléique selon a) ou b).

6. Méthode pour détecter la présence ou le risque de développer une ESB chez un bovin ou
5 un ovin, comprenant la mise en contact d'un échantillon biologique du bovin ou ovin
contenant des acides nucléiques avec un produit comprenant un support sur lequel est
immobilisé au moins un acide nucléique comprenant une séquence choisie parmi SEQ ID
NO: 1 à 26, un fragment de celles-ci ayant au moins 5 bases consécutives, ou un acide
nucléique ayant une séquence complémentaire de celles-ci, et la détermination du profil
10 d'hybridation, le profil indiquant la présence ou le risque de développer une ESB chez le
bovin ou ovin.

7. Utilisation d'une sonde nucléique spécifique d'un acide nucléique cible tel que défini
dans la revendication 1, ladite sonde comprenant de 5 à 400 bases, pour la détection in
15 vitro d'une encéphalopathie chez un sujet.

8. Utilisation d'une amorce nucléique permettant l'amplification de tout ou partie d'un
acide nucléique cible tel que défini dans la revendication 1, ladite amorce étant simple-
brin, d'une longueur comprise entre 5 et 50 bases, pour la détection in vitro d'une
20 encéphalopathie chez un sujet.

9. Produit comprenant un support sur lequel est immobilisé au moins un acide nucléique
comprenant une séquence choisie parmi SEQ ID NO: 1 à 26.

25 10. Produit comprenant un support sur lequel est immobilisé au moins un polypeptide codé
par un acide nucléique comprenant une séquence choisie parmi SEQ ID NO: 1 à 26.

11. Kit comprenant un compartiment ou conteneur comprenant au moins un acide
nucléique comprenant une séquence choisie parmi SEQ ID NO: 1 à 26.

30

12. Utilisation d'un acide nucléique comprenant une séquence choisie parmi SEQ ID NO :
1-26, ou un fragment de celles-ci comprenant au moins 5 bases consécutives, ou un acide

nucléique ayant une séquence complémentaire de celles-ci, ou un analogue fonctionnel de celles-ci provenant d'une autre espèce ou un variant naturel, pour la détection *in vitro* d'une encéphalopathie chez un sujet mammifère.

LISTE DE SEQUENCES

SEQ ID NO : 1 – EXB-NROA0576 :

5 *Homologie avec NM_003576 : Homo sapiens serine/threonine kinase 24 (STE20 homolog, yeast) (STK24), mRNA. 4/2003*

1 GGTGTGGAGG TGTTCAAAGG CATTGACAAT CGGACTCAGA AAGTAGTCGC
10 51 CATAAAAATC ATTGACCTGG AGGAGGCAGA AGATGAGATC GAGGACATTC
101 151 AGCAGGAAAT CACAGTGCTG AGTCAGTGTG ACAGTCCCTA CGTAACCAAA
15 151 TATTACGGAT CCTACCTGAA GGACACTAAA TTGTGGATAA T

SEQ ID NO :2 - Cluster NROA_c584_1 :

Homologie avec CB424646 : 598918 MARC 6BOV Bos taurus cDNA 3', mRNA sequence. 3/2003

20 1 TATCTGCAGA ATTTCCCCTT GAGAAGCGTT ATGGGGTGCA GGTAAGTTAT
51 51 TACACAAAGAG AAAGAAGTTT TCTTACTAAC AGCAAGATTA ATGGCACAAAT
25 101 TCAACCAAAA CTCATATACA TTTTACTGCT TAATTTACAT ATTATTTGG
151 151 TGGAAAAAAAT AGTATTCTTT ATTCTTCAG TTTCTTTATG CAAAAATACA
30 201 CTTCTACAGG GACATCACTT AGATGTTATG CAAACCTCCC CCCC

SEQ ID NO : 3 – EXB-NROA1108 :

Homologie avec NM_138402 : Homo sapiens hypothetical protein BC004921 (LOC93349), mRNA. 4/2003

35 1 GAGACATTG GCCAAAAGAG GAATTTCCAG GACACCAACA ACATCCATTA
51 51 TTCCATTATT CATTGTTTC CTGAAGAGCA AACACTTCCT TGAAATTCTT
40 101 CTCAAATTCT GCCTCCAGTC TAAGCCCCAT TTGGCCAAAA TCATTGAAC
151 151 TGAAAGATGC CCTGTGGTTC TGAAAGATGA GACGCATGTC CCACACAAAC
201 201 CCTTCCACAT TGGAGTAGCC CTGCTCATTC AGCCTCTTCT TGATCTGTC
45 251 251 CAGCCACATG GGCTCCTTGA GGTTTTAGA AGCCTCTTTC ATATAATAAT
301 301 AATAGGGAAT CCTCACTATA ACGCT

50

SEQ ID NO: 4 - Cluster NROA_c450_1 :

Pas d'homologie

55 1 AAGCGTTATG CAGGTAGGCC GACAAGGCAGA AGTGGGATGC CGGAGAGCGG

51 CCGAGTTATT GCTCCGAGGA GACCACGTT ACCGGTTACT ATGGCGACCG
 101 CCCCCATCCCG GATCACTATC AGCCGTTCAC CGCCGATGAG GCGACGTGGT
 5 151 TCCAGCTCTG GGAGACGGTG AGCGAGGGCA CTCCTACGTC GCCGCCCTTC
 201 GCGACGATTG AGGAACCTGGC AGCCTACCTC GCCGAGTGGG GCGACTTCTG
 10 251 TGATCACAGG CGCGCCGTCG AGTCCATGGA CGCGCGCGAG ATTGAGCGCC
 301 TCCTGACGCT GAATGACCGG CACTAGTTCA AGGTGCGGC GGGGGCAGCA
 351 GCGCGCCTAA GCTTCCTGCA AGACTGGCTG GGCGCCCAGC ATGATGGTCC
 15 401 GCGGCGGCAGA GATCCTGACC AACCCCTGGGG ACATGGTGTC GTCGTGACCC
 451 TCGCCTAGCT CTCTCACACA CCTAGGAGGA AGAGATGACC ACCCCCAACA
 20 501 TTCGCGGCCA CGAGACCGAA GCCAAGGCC CCAAGGCC GATGAAGTGG
 551 TTCACCTTCA CGGACGGCAC CAAGCCTGTC GAGGGCGTCC ACTTCCACAT
 601 CAAGCAGAAC CACTTCGGGC TCTGGACCTT CCGGGAGGGC CCGGCTCCGA
 25 651 AGTCCGCCGG ACCCCGCATC ACTCATAACG CTTCTCAA

SEQ ID NO: 5 – EXB-NROB1323 :

Homologie avec NM_000982 : Homo sapiens ribosomal protein L21 (RPL21), mRNA.
30 5/2003

1 AGAACGTTA TTGCTGATAC CCGCTACATG TTCTCCAGGC CTTTCAGAAA
 35 51 ACATGGAGTT GTTCCTTTGG CCACATACAT GCGAATCTAC AGGAAGGGTG
 101 ATATTGTAGA TATCAAGGGGA ATGGGTACTG TTCAAAAAGG AATGCCAAC
 151 AAATGTTACC ATGGCAAAAC TGGAAGAGTC TATAATGTCA CCCAGCATGC
 40 201 TGTTGGCATC ATTGTAAACA AACAAAGTTAA GGGCAAGATT CTTGCCAAGA
 251 GAATTAATGT GCGTATCGAG CATATTAAGC ACTCTAAGAG CCGAGATAGC
 45 301 TTCCTGAAAC GTGTGAAGGA AAATGATCAG AAAAAGAGGG AAGCCAAAGA
 351 GAAAGGGACT TGGGGTTAAC ACC

SEQ ID NO :6 – EXB-NROA0588 :

Homologie avec AW325879 : 17199 MARC IBOV Bos taurus cDNA 5', mRNA sequence.
50 4/2001

1 GGGCGGAGGT CACCCCTGGGG ATCCTCCAGG GCCAGGCCCT GGCACAACTC
 55 51 GTCTCCATCA CACAGATGGG CCGTCGCCCTG GTCTGGCTC TCAGGAGTCA
 101 GACCGGAAAA AGCCAGCCCT GGGGCAACCA GGAGCACCGA GGTGATGAGC

151 AGGACAGCCC AGGAGGTCAT GTTGAGGCAG CTGAAAGGTC TGTGCAAGTC
 201 AATCATGAAG AAATTCTCC GTACCATCAC CTCCC

5

SEQ ID NO :7 – EXB-NROB1540 :

Homologie avec D37952 : Bovine NB10 mRNA for MHC class II (BoLA-DQB), partial cds. 2/1999

10

1 CTTGTGTTAGG CAGAGGTTCC AGGGTCAGTG GAGGAAGCAG CATCACAGCC
 51 AGATCCATGG TTGGGGGATG GCCACGGGAA ATGACTTGGT GACTGACTCT
 15 101 GATCTCAGAG TGGGACAGGC TGACAGGCAT CTGGGAATTG CGGGCAAGGT
 151 CAGGCACGTA TTATAGAAGA GCAAACACCA ATCCAAAAT ATCCTCAGGA
 20 201 ATCAGCGCAT GAGCCCCCTTC TGGCTCCTGT GATGGATGAT GAGGCCAGC
 25 251 CCAAGGAAGA TCAGCCCCAG CACAAAGCCT CCAAC

SEQ ID NO : 8 Cluster NROB_c1_-64 :

Homologie avec D76416 : Bovine mRNA for MHC class II DM alpha-chain (BoLA-DMA), complete cds. 2/1999

25

1 TCTGCAGAAC TCGCCTCTGA GAAGCGTTAT CCGTTGGACC CAANNNNNNN
 30 51 NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNCAAGA GAAAAGATCA
 101 GAGGGTGCTG GTGTGACGTT TAAGTAGGAA AAGGCCTGGA AGGTGAGTCC
 35 151 ATCAAACCGCG GAGACAAAAG TGGGCCCGGC TCCTTCCACA GGTGCCGACT
 201 GATGCTGCCA GTTCACGGTC AGTGTGGTC AACAC

SEQ ID NO : 9 – EXB-NROB1371 :

Homologie avec NM_006098 : Homo sapiens guanine nucleotide binding protein (G protein), beta polypeptide 2-like 1 (GNB2L1), mRNA. 4/2003

40

1 AAGCGTTATT TAGATAANNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN
 45 51 NNNNNNNNTAC ACCCAGAGTA TTCCATAGTT TGATGGTTT GTCTCGGGAG
 101 CCAGAGACAA TTTGCCGGTT GTCAGAAAGAG AAGGCCACAC TCAGCACATC
 50 151 TTTGGTATGG CCTACAAATC GGCGAGTGGT GGTGCCCGTT GTGAGATCCC
 201 AAAGGCGAAG GGTCCATCC CAGGAGCCTG AGAGGGCAAA TTGGCCATCT
 251 GAGGAAATGA CCACATCACT AACAAAGTGG GAGTGACCCC GAAGAGCACG
 55 301 CTGTGGGATA CCATAGTTGG TTTCATCTCT GGTCACTTC CACATAATGA

351 TGGTCTTATC TCGAGAGGCG GACGATATCA TGTCCGGAA CTGGGGAGTG

SEQ ID NO :10 - NROB_c579_1 :

5 *Homologie avec D87076 : Homo sapiens mRNA for KIAA0239 gene, partial cds. 1/2003*

1 GGGCCAGGGG ATGATATGAA TGTCACAGGA GGAGACACCT TCTGTCTTG
 51 TTTCAAAGAA AGTTGATGTG CCATTTGTTA ATATACAAGA GAAATATTGA
 10 101 AAATATATTG AAAAGAGCAA TTTTAAATTA TTTTGCTT ATGTTGCAAT
 15 151 ATTTATTTTC TTGTATTAGG AAAGATTCCCT TTGTAGAAAA AAAATGTATT
 20 201 TTTCATTAAC GCAAAAACCT ATTTCTCCTT TTTGTACATT GTCCATGTT
 25 251 GCTACCCCTTA ACGAGCAATA GAATGTATGG CTGCCTCGGG GTGGCCGGTG
 30 301 CCCGCGTGCC CTGCATGATT CTGTGGTCCC ACCACCATGT AGCTCCAGT
 35 351 CCCATCCTGT CCTGCTCACT CATGGGGTT TCCAGAGCCT AGCCCCT

SEQ ID NO : 11 – Cluster NROA_c125_1 :

25 *Homologie avec D45359 : Bos taurus mRNA for MHC class II DRB3, partial cds. 1/2003*

1 TGGATTGCAG GTGACTGAGA AAACCATCGA GGACAGTTT TAAGGGGTCA
 51 CTGAGCCAGG AGCAAATGAG ATCCTGAGAA AGTACTTCAT TGTGGAAGAG
 30 101 TTAGCACTAA GCAGGAAACC TTTCCATGCT GTGAAGAACG TGGGACAGAA
 151 GGTTCTTCCT TGAGTGTGAC CATCTTCACT TCAGCTCAGG AGCCCTGTTG
 35 201 GCTGAAGTGT AGGGCGTCCT TTCTGATTCC TGAAGTATAT TTATTAGCCC
 251 CACGGCAAGG AAGAACAGAC TCAGAACGAA GCCCCCGACT CCACTCATCA
 40 301 TCTTGCTCTG AGCAGAGTCA GACCGTGCCTC TCCATTCTAC TGTGATAGGG
 351 CTTGTCTGGC TGGGGTGCTC CACTTGGCAA GTGTAGACCT GGCACCA

SEQ ID NO :12 – Cluster NROB_c0_1 :

45 *Homologie avec J01394 : Bos taurus mitochondrion, complete genome. 4/2001*

1 GCTGTCCAAA AAGGCCTCCG TTATGGAATA ATTCTTTTA TTATCTCCGA
 51 51 AGTACTATTTC TTTACCGGAT TTTTCTGAGC TTTCTACCAC TCAAGCCTCG
 100 101 CCCCCACCCC TGGGGGAGGC GGCTGCTGAC CCCAACAGG CATTACCCCA
 151 151 CTAACACCCC TAGAAGTCCC ACTGCTAAC ACCTCTGTCC TATTGGCTTC
 200 201 CGGAGTTTCT ATTACCTGAG CCCATCATAG TTTAATAGAA GGGGACCGAA
 251 251 AGCATATATT ACAAGCCCTA TTTATCACCA TCACATTAGG AGTCTACTTC

301 ACACTACTAC AAGCCTCAGA ATACTATGAA GCACCTTTA CTATCTCCGA
 5 351 CGGAGTTAC GGCTCAACTT TTTTGTTAGC CACAGGCTTC CACGGCCTCC
 401 ACGTCATCAT TGGGTCCAAC AAATAACGCT TCTCNNNNNN NNNNNNTGCA
 451 GATA

10 **SEQ ID NO :13 - Cluster NROA_c1045_-1 :**
Homologie avec BM363411 : BS320054B20G01 Subtracted Lewin Cattle Spleen Bos taurus cDNA clone BS320054B20G01 5', mRNA sequence. 1/2002

15 1 GGGGAGGTAT CTGTCACCCA CGCAGAAATG CTTCTGACAG GCGGCANNNN
 51 NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN
 20 101 NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN NNNNNNNNNN CTTGGCCGAA
 151 AAGCCTGAGG TAGTCTCGGC GGCAGAGCTT CCGGCCCAGC TTGTAGTAGA
 201 GGCGCCGGCC CACCTACCC

25 **SEQ ID NO : 14 – Cluster NROA_c69_1 :**
Homologie avec NM_003127 : Homo sapiens spectrin, alpha, non-erythrocytic 1 (alpha-fodrin) (SPTAN1), mRNA. 4/2003

30 1 GAAGCGTTAT TGGAGGAGGC TAACCTAGGA GCAGAGGATC AGTTCACGAA
 51 GAGCGAGCGG GTGAACTCGA CGTAGTCAAA AGCAGTGGGG AGTTCGCGGC
 35 101 CCTTGCTGTC CACGTAGGGC TTCATGTGGG AGACGCAGTA GTCGGCTTGT
 151 TCCCGAGTCA AGTTCTGGTA CAGCTCCTCC TTGGTCACAT AAGGCTTCCC
 201 TTCAGAGCTC ACGGCCCGGA AGGCGCTCTC AATCTCCTCG CTGGACTTGA
 40 251 CGTTCTCCGT CTCACGGCTG ATCATAAAGG ACATGTACTC TTGCATGGAG
 301 ACGTGGACGT CCCTGTTAGG ATCCACAGTG TCCAAGATGG ACTCGAACTC
 45 351 AAGGTCGGGC TCCCCCTCCT CCAACATGGG CAGGTC

SEQ ID NO : 15 – Cluster NROB_c1_12 :
Homologie avec BM431390: 1Duo15D10 Bos taurus Duodenum #1 library Bos taurus cDNA, mRNA sequence. 1/2002

50 1 TCTGCAGAAT TCGCCTTGA GAAGCGTTAT GGGGGCGAGG TGGTAAAGGA
 51 AGCTTACAAA ACAACTATTG TTTAAAAAAA AACAAAAAAA CAAAAAAACA
 55 101 AAAAACAGCA AAAGCCAACC GGCCCAATTG TGTCTCCAGT TTTCAACGTG

151 TGCTTCGAG CATTTCAGCT GTTCCAGTT ACTTAGTTT CCAGATATTA
 201 GTCTTCCATT TAGTTTAAG ACTAAATCTC ACTTTGGAT AAACACAAGG
 5 251 AAATATTTA CTTGCTGAAA AATCACTTA CTGGATAAAG TTACCTCTTA
 301 TGCCCTTCAG TTTCTAATC CAACTTCTG ACAACCAGTG GTAATTAGGA
 10 351 AGTTCTAAGT TGCAGTTGTC CCTATGACTT TGGGCTTCCC TGGTGGCTCA
 401 GCTGGTCAA AATCTGCCTG CAATGCGGGA GACCTCCACC CCATAACGCT
 451 TCTCAAAGGC GAATTCTGCA GA

15 **SEQ ID NO: 16 - Cluster NROA_c21_1**

Homologie avec NM_001416 : Homo sapiens eukaryotic translation initiation factor 4A, isoform 1 (EIF4A1) mRNA

20 1 TTGAGAACG TTATTGTGGG GAGGTCATAG TTGATGACTA AGGAAACTTG
 51 CTGTACATCA ATACCTCTGG CCAGTAGGTC AGTGGTAATC AATACTCTGC
 25 101 TGGAGCCAGA GCGGAACCTCC CTCATGATAA CGTCTCGTTC TTTTGGTCC
 151 ATGTCTCCGT GCATGGCAGA GACGGTGAAG TCTCGGGCAT GCATCTTCTC
 30 201 GGTGAGCCAA TCCACCTTCC TTCGGGTGTT GATGAAGATG ACTGCCTGGG
 251 TAATGGTCAG GGTTTCATAC AAGTCGCACA GTGTGTCCAG CTTCCACTCC
 301 TCTCGTTCCA CATTGATGTA GAACTGACGG ATACCCTCCA GCGTCAACTC
 35 351 TTCCCTTCTTG ACAAGAATTG TAATTGGTGC CCTCATGAAC TTCTTGGTCA
 401 CCTCCCGCCC ATAACGCTTC TCAA

40 **SEQ ID NO: 17 - Cluster NROA_c12_1**

Homologie avec NM_15862: Homo sapiens actin related protein 2/3 complex, subunit 2, 43kDa 5ARPC2) transcript variant 1 mRNA

45 1 CTTGTATGGT GTATGGAAGT TACTTGGTAA ATCCAGAACATC AGGATACAAT
 51 GTCTCCTTGC TATACGACCT TGAAAATCTG CCTGCATCCA AGGATTCCAT
 50 101 CGTGCATCAA GCTGGCATGT TGAAACGAAA CTGTTTGCC TCTGTCTTG
 151 AGAAATACTT CCAGTTCCAG GAATGAGGGC AAGGAATGAG AGTTAGGGC
 201 AGTTATCCAT TATAGGGATG ATGAGACCAC GTATGTTGAG TCAAAAAAAG
 25 251 ACAGAGTCAC AGTAGTCTTC AGCACAGTGT TTAAGGATGA CGACGATGTG
 301 GTCATTGGAA AGGTGTTCAT GCAGGAGTTC AAAGAAGGAC GCAGAGCCAG

351 CCACACAGCC CCACAGGTCC TCTTCAGCCA CAGGGAACCT CCCTTAGAGC
401 TGAAAGATAAC CGATGCCGCC GTGGGTGACA ACATTGGCTA CATTACCTTC
5 451 GTGCTGTTCC CTGCCCAAT ATAA

10 **SEQ ID NO: 18 - Cluster NROB_c160_1**

Homologie avec AF513721 : Bos grunniens myosin regulatory light chain mRNA

1 CCAGTGTGTT GCCCCTGAGA AGCGTTATAT GCGGTAGTGA GGGAAATTTC
15 51 AATTACATCG AGTTCACACG CATCCTTAAG CATGGAGCGA AAGACAAAGA
101 CGACTAAAAAA GAACTTCAAA CTCCAGCCAA ACGTTCCCTTG TTGCCACTCT
20 151 GGGTATTCT GAGACTTTCT CTTAGAGCCT GTTGCATGCC CTTAGCTTTA
201 CAGCTCTGC CTTCTTTG TATTTATTCT CAGCCATTG GGGCACATGC
25 251 ATCTCTATAA TCAGACTGGA TATGGGACTT CTTGTCATTT TAAGAGTAGA
301 AAATAGGGTA ATTTAACTTA CCAGCTGCCG TCTACCCCTCC CCCAAAGTCA
351 TAACGCTTCT CNNNNNNNCA GC

30 **SEQ ID NO: 18 - Cluster NROB_c1_11**

Homologie avec BM429753: 1Duo20H3.ab1 Bos Taurus duodenum #1 library Bos Taurus cDNA, mRNA sequence

35 1 TCTGCAGAAT TCGCCTCTGA GAAGCGTTAT GCTGAGAGGG GGGACTGGAA
51 GCTTTGCTGA TATTACTCA ATATTCACAA GGGGCCTGTG TAATGTGTTT
40 101 CACAGGTAGT GCTAATGCTC AATGCAAGAT GCATTTCAGC CTTGTAATTG
151 CTTTCATTG AGTCTTGAA CCATGTCAA TGAACCAGAG CTCAAACTAA
201 TCAATTTGT AGTTGGTATT TGTTGGAGGG GAGGCAGGCA TGGACAGCAA
25 45 251 TAGGGAGTGA GCTGGAGAGA TGCTTGCTA ACCATAGTAA ACTGTGAAAA
301 AATAGTTACT TCCTGAAAAA AGGAAATATT CTTGAGAGCA CCTTCATAAT
35 351 GTCATCAAAT ACATGGCTAA ATACATTGTC TTGAGCCTCC TTCCTAATGT
40 401 TTCTTAGTT TTTTCATAT TCCATTTA GTAATTCAAT TTCCCCCTCT
45 451 TTTTCCTGCA TAATCTCTC GCATGCTTGA GCACACTCCT TTTCCACTTT
55 501 TTGGATTTC ATTCTAATT GATCAATATA TCTTT

SEQ ID NO: 20 - Cluster NROB_c1_15

Homologie avec NM_003127 : Homo sapiens spectrin, alpha, non-erythrocytic 1 (alpha-fodrin) (SPTAN1) mRNA

5 1 AGAACGCGTTA TCGGGTAGGC TAACCTAGGA GCAGAGGATC AGTTCACGAA
 51 GAGCGAGCGG GTGAACTCGA CGTAGTCAAA AGCAGTGGGG AGTTCGCGGC
10 101 CCTTGCTGTC CACGTAGGGC TTCATGTGGG AGACGCAGTA GTCGGCTTGT
 151 TCCCGAGTCA GGTTCTGGTA CAGCTCCTCC TTGGTCACAT AAGGCTTCCC
15 201 TTCAGAGCTC AGGGCCCGGA AGGCGCTCTC AATCTCCTCG CTGGACTTGA
 251 CGTTCTCGGT CTCACGGCTG ATCATAAAGG CCATGTACTC TTGCAGGGAG
 301 ACGTGGCCGT CCCTGTTAGG ATCCACAGTG TCCAGGATGG CCTCGAACTC
20 351 AGGGTCGGGC TCCCCCTTCCT CCACCATGGG CAGGTCA TAG CCCAGGGAGC
 401 GCAGACAGGA TTTGAACCTCC TGGTGGTTCA GCCGGCCAGA CTTGTCTTG
25 451 TCGAAGTGTT TGAACATCAT GCTGAATTCT TTGAGGGCCT TACAGATAAAC
 501 GCTTCTCAAA GGCGAATTCT GCAGATA

SEQ ID NO: 21 - Cluster NROB_c1_13

Homologie avec NM_003295 : Homo sapiens tumor protein, translationally-controlled 1 (TP1) mRNA

30 1 GAGAACGCGTT ATGGCGGGGA GGTACCGAAA GCACAGTAAT CACTGGTGTC
 35 51 GATATTGTCA TGAGCCATCA CTTGCAGGAA ACCAGCTTCA CAAAAGAAGC
 101 CTACAAGAAG TACATCAAAG ATTACATGAA GTCAATCAAA GGGAAACTTG
40 151 AAGAACAGAG ACCAGAAAGA GTAAAACCTT TTATGACAGG GGCTGCAGAA
 201 CAAATCAAGC ACATCCTTGC TAATTCAAA AACTATCAGT TCTTTATTGG
 251 TGAAAACATG AATCCAGATG GCATGGTTGC TCTGCTGGAC TACCGTGAGG
45 301 ATGGTGTAAAC CCCATATATG ATTTTCTTTA AGGATGGTTT AGAGATGGAA
 351 AAATGTTAAC AAAGTTGGCA GTTACTTTGG ATCAATCACC TCCCCCCCAT
50 401 AACGCTTCTC TAATGCTTAT TCATGCAGAC AACACCAGGA CTTAGACAGA
 451 TGGGACTGAT GTCATCTCGA GCTCTTCATT TGTTTGAAC GTTGATTAT
 501 TTGGAGCGGA GGCATTGTTT TTGAGAAAAC GTGTCAATGTA GGTCCC
55

SEQ ID NO: 22 - Cluster NROB_c795_1*Homologie avec X85799 : B. Taurus mRNA from clone TUS4 (unknown function)*

5 1 GGGGTAGGTC AAAAAAAGTC CAAACCAAAA ACAAAACCTG CCAAAACCAA
 51 CAAAAAACCT CCGAAATCTG AAGACAACTG AATCAATCCC TGCAGTCTCA
10 101 CTTTCTCTTG GAAAGAAAAG TTGGATAATC CAACCCTTT ACAAAGGATA
 151 ATACAAGGGT GACAGTTCCA AGCTCTCAGG AACAGGGTCT TAGACGCTTT
 201 TGGAGGTTGA GAGGCACAAA ACGGCAGTCT GAAAATTCCCT TTCATCTCAC
15 251 GGCACTGATT GAGTTAGAC TTGATTTCTC CTCCCCTACC TACCCGATAT
 301 AACGCTTCTC

20 SEQ ID NO: 23 - EXB-NROB0367-01*Homologie avec AJ318335: Ovis aries partial mRNA for high affinity IgE receptor gamma subunit (fceR1g gene)*

25 1 GAAGGGCAGG CGCGAAAGGC AGCTACAGCC AGTGAGAAAT CAGATGGCAT
 51 TTACACGGGC CTGAGCACCC GGACCCAGGA GACTTATGAG ACCCTGAAGC
 101 ATGAGAAACC ACCACAATAG CTTTAGAACA GATGCCCTTT GTCACTTCCT
30 151 T

35 SEQ ID NO: 24 - EXB-NROB1653-01*Homologie avec NM_004397 : Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 6 (RNA helicase, 54 kDa)) (DDX6)*

40 1 AATGTAAGGG GGATTAGAGT GATTATGGGA GCAGCTAAAG ATGAGAGGGG
 51 CTCAGTTTC CGCAACACTA AATCTAAAAA GTATTTGGC TTCTTACTGT
 101 AGAGAGCAGA CCTCTACAGG AATCCTACAT TGGAAAAGAG ACCCAGAGGT
45 151 CTGCGGTTCA CTGCTGCCAC ACTGTCTCAC ATAGTACCTT TGGAGTAGGC
 201 CTGACAGAGA GCACAGGGAA GCTTCAGAAA CCTGTAATTC AAGATTTAT
 251 TTTTTGAGA CGTTCTCTCT GATACTGTT CCCGCCAGCC TTTTTAAAAA
50 301 GTTTGAGAAA CTTTCAAGC TCTGCAAAAG GGGACAAAGA ATTTGCCTTG
 351 CAGTGTGGGG ATATGATTGA GCGGCAGTG

SEQ ID NO: 25 - EXB-NROB1743-01

Homologie avec NM_078480: Homo sapiens fuse-binding protein interacting repressor (SIAHBP1) transcript variant 1 mRNA

5 1 GTGGTAGGTG ACTGAGGAGT GTGGCAAGTT TGGTGCTGTC AACCGTGTCA
 51 TCATCTACCA AGAGAAGCAG GGCGAGGAAG AGGACGCGGA GATCATTGTC
10 101 AAGATTTTG TGGAGTTTC CGTAGCCTCT GAGACTCACA AGGCCATCCA
 151 GCCCCTCAAT GGGCGCTGGT TTGCTGGCCG CAAGGTGGTG GCTGAAGTGT
15 201 ATGACCAGGA GCGTTTGAT AACAGTGACC TCTCTGCATG ACCTCCCCCC
 251 C

SEQ ID NO: 26 - EXB-NROA1346-01

Homologie avec AB098926: Bos Taurus mRNA for similar to beta 2-microglobulin, partial cds

20 1 GATCAGTACA GCTGCCGAGT GAAACACGTT ACTTGGAAC AACCCCGGAT
 51 AGTTAAGTGG GATCGAGACC TGTAAGCAGC ACCATCGAGA TTTGAACATT
 101 CTTCATTTGG TATAATATCT GGAAAATTCT GTTCCCTGC TCTTTAATAC
30 151 TGATATGCTT TTATGCTTTA TGCGCATAAT CAGAAGTCAT ATTCAATGTTA
 201 CCATAAAATAC CTTCTTTATA ATTTTACCGT GGGTGCTACA TGTCCATGTT
 251 TGACCTTCCT AGGCAGGTGT CTGCAGTGGA GGTCCACAAA

35