Neural Voice Cloning with a Few Samples

Sercan Ö. Arık*, Jitong Chen*, Kainan Peng*, Wei Ping*, Yanqi Zhou

* Equal Contribution

Speaker encoder

model

Cloning audio

Summary

Introduction

- Voice Cloning: synthesize a person's voice from only a few audio samples, two approaches: speaker adaptation and speaker encoding.
- Speaker Adaptation: fine-tune a pre-trained multi-speaker speech synthesis model for an unseen speaker, two options: adaptation of speaker embedding only and adaptation of the whole model.
- Speaker Encoding: train a separate speaker encoder model to directly infer the speaker embedding for an unseen speaker, then feed the embedding into a multi-speaker speech synthesis model.

Architecture

Speaker

embeddings

Self-attention

Mean Pooling

Convolution Blocks

Mel spectrograms

- Multi-speaker speech synthesis model:
- DeepVoice3, a fully convolutional
 sequence-to-sequence text-to-speech
 model training on more than 2000 speakers.
- Speaker encoder model:
 - MLP: spectral processing.
- Convolutional blocks and pooling: temporal processing.
- Self-attention: adaptively assign weights to Mel s different cloning audio samples while combining them.

Dataset

- For training multi-speaker speech synthesis model and speaker encoder: LibriSpeech: around 2500 speakers and 800 hours.
- For audio generation of speaker adaptation and speaker encoding:
 VCTK: 108 speakers around 40 hours.

Comparison

	Speaker Adaptation		Speaker Encoding		
Approaches	Embedding-only	Whole-model	Without fine-tuning	With fine-tuning	
Training data	Text and audio		Audio and embedding		
Adaptation/Encoding time	8 h	0.5~5 min	1.5~3.5 s	1.5~3.5 s	
Parameters per speaker	128	25 million	512	512	

Conclusions

The adaptation/encoding time and required parameters per speaker are significantly less for speaker encoding approach, which makes it more favorable for low-resource deployment.

Neural Voice Cloning

Voice Morphing via Embedding Manipulation

Simple algebraic operations to inferred embeddings are highly effective in transforming speaker characteristics.

BritishMale + AveragedFemale - AveragedMale = BritishFemale

(Speaker embeddings)

BritishMale + AveragedAmerican - AveragedBritish = AmericanMale

Automated Evaluation

Conclusions

- Both speaker adaptation and speaker encoding benefit from more cloning audios.
- When the number of cloning audio samples exceed five, whole-model adaptation outperforms others.
- Speaker encoding yields a lower classification accuracy compared to embedding adaptation, but it achieves a similar speaker verification performance.

Subjective Evaluation

Naturalness: 5-scale mean opinion score

Approach	Sample count					
	1	2	3	5	10	
Ground-truth (16 KHz sampling rate)	4.66±0.06					
Multi-speaker generative model	2.61±0.10					
Speaker adaptation (embedding-only)	2.27 ± 0.10	2.38 ± 0.10	2.43 ± 0.10	2.46 ± 0.09	2.67 ± 0.10	
Speaker adaptation (whole-model)	2.32 ± 0.10	2.87 ± 0.09	2.98 ± 0.11	2.67 ± 0.11	3.16 ± 0.09	
Speaker encoding (without fine-tuning)	2.76 ± 0.10	2.76±0.09	2.78 ± 0.10	2.75 ± 0.10	2.79±0.10	
Speaker encoding (with fine-tuning)	2.93±0.10	3.02 ± 0.11	2.97 ± 0.1	2.93 ± 0.10	2.99±0.12	

Similarity: 4-scale similarity score

Approach	Sample count				
	1	2	3	5	10
Ground-truth (same speaker)	3.91±0.03				
Ground-truth (different speakers)	1.52±0.09				
Speaker adaptation (embedding-only)	2.66 ± 0.09	2.64 ± 0.09	2.71 ± 0.09	2.78 ± 0.10	2.95 ± 0.09
Speaker adaptation (whole-model)	2.59 ± 0.09	2.95 ± 0.09	3.01 ± 0.10	3.07 ± 0.08	3.16 ± 0.08
Speaker encoding (without fine-tuning)	2.48 ± 0.10	2.73 ± 0.10	2.70 ± 0.11	2.81±0.10	2.85 ± 0.10
Speaker encoding (with fine-tuning)	2.59 ± 0.12	2.67 ± 0.12	2.73 ± 0.13	2.77 ± 0.12	2.77 ± 0.11

Conclusions

- Higher number of cloning audios improve both metrics. The improvement is more significant for whole model adaptation, due to the more degrees of freedom provided for an unseen speaker.
- Speaker encoding achieves naturalness similar or better than the baseline model. Similarity scores slightly improve with higher sample counts for speaker encoding, and match the scores for speaker embedding adaptation.