

Business Forecasting

Autoregression

Autoregressions

Another useful forecasting model with quasi-explanatory variables is an <u>autoregression</u>

Autoregression is a regression where the <u>independent</u> <u>variables</u> are <u>lagged values of the dependent variable</u>

$$Y_t = f(Y_{t-1}, Y_{t-2}, \dots, Y_{t-p})$$

Generally the function is assumed linear $\beta_0 + \beta_1$ $\mathbf{Y_t} = \beta_0 + \beta_1 * \mathbf{Y_{t-1}} + \beta_2 * \mathbf{Y_{t-2}} + \dots + \beta_p \mathbf{Y_{t-p}}$

The number of lagged dependent variables used (ie p) is up to the modeller

Rationale for Autoregressions

A typical regression assumption is that **errors** of different observations are **uncorrelated**. This suggests that the Y values of these observations are also uncorrelated

While this is likely to hold for cross-sectional data it is unlikely to hold for time series

Y values are likely to be **related over time** eg current interest rates or prices are likely to be highly correlated with interest rates or prices in recent previous periods

Thus **past** (**Y**_{t-i}) **values** of these variables may be useful predictors of their **current values** (**Y**_t)

Further Rationale

The impacts of <u>explanatory variables</u> in many cases are <u>likely to be spread over many time periods</u>

Current prices, interest rates (X) likely to impact on spending (Y) in the <u>current period</u> and also in <u>future periods</u>

Hence current spending (Y) is influenced not only by current X but also past values of X

Past values of Y capture some of the influence of the past values of X

Including past Y values can <u>substitute</u>, <u>in part</u>, for past X in the regression model

Predictive Models

Autoregressions, like trend extrapolations are **quasiexplanatory models**

Time (t) and lagged values of the dependent variable (Y_{t-i}) are likely to be **proxies for other explanatory variables** that may be **numerous**, **are unobserved or difficult to measure**

Thus autoregressions & trend extrapolations are <u>more</u> <u>predictive rather than explanatory models</u>

They can lead to reasonable predictions and, if this is all that is required, then they may suffice as forecasting methods.

More for **short to medium term** forecasts

Relationships to Other Methods

$$Y_{t} = \beta_{o} + \beta_{1} * Y_{t-1} + \beta_{2} * Y_{t-2} + ... + \beta_{p} * Y_{t-p}$$

The estimated forecast equation for (Y_{t+1}) is

$$Y_{t+1} = b_0 + b_1 * Y_t + b_2 * Y_{t-1} + ... + b_p * Y_{t-p+1}$$

If we assume $\mathbf{b_o} = 0$, Y_{t+1} is a <u>weighted average of past Y values</u>

If $b_2, b_3, ..., b_p = 0$ then this is a <u>naïve forecast</u>

If $b_1, b_2 b_m = 1/m$ and $b_{m+1}, b_{m+2}, ... b_p = 0$ then we have a **moving** average of order m

If $b_1 = \alpha$ (0< α <1) and $b_{1+i} = (1-\alpha)^i *(\alpha)$ then we have **SES**

Autoregression allows the weights β_i to follow more flexible patterns than either SES or MA

Autoregression-Example

Consider CPI (Australia) between 1991(q4) and 2007(q4)

Data looks **generally horizontal** but there are periods of seeming **systematic fluctuation Possible Seasonality**(Check ACF and PACF for objective

CPI values seem **related to near past values of CPI**during these systematic
fluctuations

Forecast Model for CPI

Autoregression is a <u>quick option to forecast CPI</u> as explanatory variables are likely to be numerous and may not be available

Selection of number of lagged variables to include is not simple

Logically, a model with 6 lagged dependent variables (in this case) should suffice. <u>Current CPI is unlikely to be affected</u> <u>by observations beyond 6 quarters (1.5 years)</u>

At least 4 lagged dep vars needed to allow for any **seasonal impacts** (4 quarters - yearly seasonality)

CPI Time Series (Selected

Sep-2007

Dec-2007

1.9

3.0

2.1

1.9

3.0

4.0

Obser	_	_		cteu		* MAC Unive	QUARIE ersity
Quarter	CPI	CPI(-1)	CPI(-2)	CPI(-3)	CPI(-4)	CPI(-5)	CPI(-6)
Dec-1991	1.5	0	0	0	0	0	0
Mar-1992	1.7	1.5	0.0	0.0	0.0	0.0	0.0
Jun-1992	1.2	1.7	1.5	0.0	0.0	0.0	0.0
Sep-1992	0.8	1.2	1.7	1.5	0.0	0.0	0.0
Dec-1992	0.3	0.8	1.2	1.7	1.5	0.0	0.0
Mar-1993	1.2	0.3	0.8	1.2	1.7	1.5	0.0
Jun-1993	1.9	1.2	0.3	8.0	1.2	1.7	1.5
Sep-1993	2.2	1.9	1.2	0.3	8.0	1.2	1.7
Sep-2006	3.9	4.0	3.0	2.8	3.0	2.5	2.4
Dec-2006	3.3	3.9	4.0	3.0	2.8	3.0	2.5
Mar-2007	2.4	3.3	3.9	4.0	3.0	2.8	3.0
Jun-2007	2.1	2.4	3.3	3.9	4.0	3.0	2.8

3.3

2.4

2.4

2.1

3.9

3.3

4.0

3.9

Autoregression Estimation Results

Multiple R	0.886051919			
R Square	0.785088003			
Adjusted R Square	0.762855728			
Standard Error	0.706874078			
Observations	65			
ANOVA				
	df	SS	MS	F
Regression	6	105.869238	17.644873	35.31298464

	<u> </u>			
Regression	6	105.869238	17.644873	35.31298464
Residual	58	28.9809158	0.49967096	Significance F
Total	64	134.8501538		1.26116E-17

3			_	
Residual	58	28.9809158	0.49967096	Significance F
Total	64	134.8501538		1.26116E-17
	Coefficients	Standard Error	t Stat	P-value
Intercept	0.557030779	0.196179376	2.83939521	0.00622221
CPI(-1)	1.046605234	0.129317959	8.09327059	4.274E-11
CPI(-2)	-0.01102862	0.176147712	-0.0626101	0.950292283
CPI(-3)	-0.18017052	0.168310884	-1.0704627	0.288845623
CPI(-4)	-0.39181654	0.16883985	-2.3206402	0.023843903
CPI(-5)	0.550909566	0.177058857	3.11144879	0.002887435
CPI(-6)	-0.23027878	0.127822106	-1.8015568	0.076813506

Forecasting with Autoregressions

$$E(CPI_{t}) = 0.55 + 1.04 * CPI_{t-1} - 0.011 * CPI_{t-2}$$
 $- 0.18 * CPI_{t-3} - 0.39 * CPI_{t-4} + 0.55 * CPI_{t-5}$
 $- 0.23 * CPI_{t-6}$

Thus to Forecast CPI_{t+1}

$$E(CPI_{t+1}) = 0.55 + 1.04 * CPI_{t} - 0.011 * CPI_{t-1}$$

- 0.18 * CPI_{t-2} - 0.39 * CPI_{t-3} + 0.55 * CPI_{t-4}
- 0.23 * CPI_{t-5}

The values for CPI_t.....CPI_{t-5} are known and can be substituted from the observations

Forecasting Further Ahead

To Forecast CPI t+2

$$E(CPI_{t+2}) = 0.55 + 1.04 * CPI_{t+1} - 0.011 * CPI_{t}$$

- 0.18 * CPI_{t-1} - 0.39 * CPI_{t-2} + 0.55 * CPI_{t-3}
- 0.23 * CPI_{t-4}

The values for CPI_{t-1} are known and can be substituted from the observations $\underline{but.....}$ $\underline{CPI_{t+1}}$ is $\underline{unknown}$ if we are forecasting at time t

Substitute E(CPI_t) forecast for unknown CPI_t

The procedure is similar if we wish to forecast CPI_{t+3} . We will need forecasts of CPI_{t+1} and CPI_{t+2}

Thus forecasts are done sequentially

Actual Forecasts

Suppose we wish a forecast for March 08 (t+1)

```
E(CPI<sub>t+1</sub>) = 0.55 + 1.04 * CPI<sub>t</sub> - 0.011 * CPI<sub>t-1</sub>
- 0.18 * CPI<sub>t-2</sub> - 0.39 * CPI<sub>t-3</sub> + 0.55 * CPI<sub>t-4</sub>
- 0.23 * CPI<sub>t-5</sub>
```

```
E(CPI_{Maro8}) = 0.55 + 1.04 * CPI_{Deco7} - 0.011 *
CPI_{Sepo7} - 0.18 * CPI_{Juno7} - 0.39 * CPI_{Maro7} + 0.55 *
CPI_{Deco6} - 0.23 * CPI_{Sepo6}
```

$$E(CPI_{Maro8}) = 0.55 + 1.04 * 3.0 - 0.011 * 1.9 - 0.18 * 2.1 - 0.39 * 2.4 + 0.55 * 3.3 - 0.23 * 3.9 = 3.27$$

Forecasting 2 periods ahead

Suppose we wish a forecast for Jun 08 (t+2)

```
E(CPI_{t+2}) = 0.55 + 1.04 * CPI_{t+1} - 0.011 * CPI_{t}
- 0.18 * CPI<sub>t-1</sub> - 0.39 * CPI<sub>t-2</sub> + 0.55 * CPI<sub>t-3</sub>
- 0.23 * CPI<sub>t-4</sub>
```

$$E(CPI_{Maro8}) = 0.55 + 1.04 * 3.27 - 0.011 * 3 - 0.18 * 1.9 - 0.39 * 2.1 + 0.55 * 2.4 - 0.23 * 3.3 = 3.34$$