

FPGA Benchmarking

Dries Kennes

2019-06-25

Introduction

- Antwerp Space
 - Founded in 1962 as part of Bell Telephone
 - Since 2010 part of the European OHB group
 - Primarily satellite communications
 - Ground stations
 - On-craft modules
 - Also scientific modules

FPGAs

- What is an FPGA
 - Field-Programmable Gate Array
 - Programmable network of digital logic
 - Fast thanks to parallelization
 - Basically equivalent to a custom chip
- Why use an FPGA
 - Price
 - Flexibility
 - Design adjustable once deployed
 - Replacing a chip in orbit is difficult
 - Ideal for DSP at high speed with low latency

IO Block Logic Slice DSP Block

Routing Fabric

Used by circuit A Used by circuit B

Space Hardware

- Low volume
- Long term projects
- Every watt counts
- Radiation!
 - Limits component choice
 - e.g. Xilinx: only Virtex-5QV and Virtex-4QV
 - Very expensive
 - Virtex-5QV 85k€

Component Choice

- Large differences between architectures
 - Pin counts
 - Specialized hardware blocks
 - Internal structure
- Specifications
 - Every manufacturer (or even architecture) uses different metrics
 - Difficult to compare
 - Dubious to rely on
- Software!
 - Just as important as the hardware itself
 - If the software can't synthesize a design, it can't be used

The question: How do you pick an FPGA for a project?

Our answer: Based on hard data: Benchmarking.

Benchmarking

- Determining performance of an FPGA, in this context:
 - Maximal frequency
 - Maximal occupancy rate
- Stamping
 - Filling the FPGA with identical copies of 1 (small) circuit
 - When the software fails: found max occupancy
 - Use the maximal frequency here
 - Repeat for a number of other circuits
- Synthetic results
 - Not a realistic data point
 - Heavily dependent on circuit used
 - Liked, but steerable, by manufacturers

Better Benchmarking

- We want an accurate early estimation of FPGA resources.
- Manufacturer independent
- Very flexible
 - Allow custom parameters and options
- Basic circuits
 - The end user should pick relevant circuit
- Allow background filler
- Requires custom software
 - Automatic creation of datasets

Background Filler

- Simulate routing congestion
- ► Keep specialized hardware free for actual circuit
- ► Fill a lot of LUTs with nonsense
- Must be in the data path!
 - Synthesis software is smart
 - Segregates unconnected parts of a design
- ▶ Must not be slower than the "real" circuit
- ► ISCAS'89 Benchmarks
 - Basic combinatorial logic
 - Varied designs, from 13 to 23815 gates

Limitations

- Limited devices for testing
 - Xilinx
 - Vivado
 - Large Kintex-7 part (XC7K410T)
 - 28nm
 - 254 200 LUTs
 - NanoXplore
 - nxMap/nxPython
 - Small part (NG-MEDIUM)
 - 65nm
 - 34 272 LUTs
- Small set of designs
- Limited sets of parameters
 - Mainly to keep computation time reasonable

Software Implementation

- User supplies VHDL files
- User sets parameters
- Software automatically runs vendor software
- Parallelized

Background Filler Top Module

- Chain multiple circuits
- As generic as possibleLimited by VHDL
- Vaca chifting data act
- Keep shifting data path
 - Defeat optimizations

FIR With Background Filler

- Symmetric FIR filter design provided by Antwerp Space
 - Treated as black box
 - 129 tabs, 16 bit data and coefficients
 - 2.7% fill rate
- ► ISCAS s382 as background filler
 - 0.1% fill rate (easy to calculate with)
 - Faster than base FIR speed (> 200MHz)
- From $1 \times FIR + 10 \times Filler$ to $30 \times FIR + 500 \times Filler$
 - Only ran if predicted fill rate <90%
- Took about a week of night-time running on 28 cores with 128GB RAM
- Due to technical problems, only on Kintex part.

Results ISCAS'89

Conclusion

- Our methodology is more accurate than estimation based on manufacturer data
- Our custom software automates data creation
 - Interpretation still relies on expertise
- Benchmarking and performance estimation is complex

Questions

Thank you for your attention.

Question time!