Web Mining

Discovering interesting and useful information from Web content and usage

Web Mining Challenges

- In traditional data mining: "Structured" data; Scale: 10 million already quite big
- In web mining
 - > Semi-structured: Html with hierarchies, Web information are linked
 - Scale: 25+ billion web pages
- Web: Contains information of almost anything, High redundancy, Noisy

Content Mining

- Content mining extends the functionality of basic search engines.
- Collaborative filtering identifies preferences based on ratings of similar users (e.g. which pages did they visit).
- Steps:
 - Step0: Handling Missing values
 - > Step1: Find similar (cosine similarity) users
 - Step2: Estimate user's rating (Select Top-N (k) candidates)
 - > Step 3: Return the recommendation (return Top-N ratings to users)
 - Estimate rate = Sum (top-N ratings) / N

Challenges:

- scalability (many users and items),
- robustness (there will be noise),
- > sparsity (user-item rating matrix is very sparse),
- > and cold start (how to make recommendations to new users)

Structure Mining

- Mines the structure (links, graph) of the Web.
 - One technique is PageRank by Google.
- Motivation of Web structure mining:
 - Was only based on relevance of query
 - Hyperlinks(importance,similar web)
 - Applications(communities discover)
- Algorithms:
 - PageRank (Ranking web pages used by Google)
 - Importance: calculated numerically from the number of pages that point to it (backlinks)
 - Weighting is used to provide even more importance to those backlinks that come from other important pages.
 - Phase 1: Matrix Formulation (portion of page point to it)

- Be aware Matrix columns (Pages 0 -> n) and row(Pages 0 -> m)
- Phase 2: Power-Iteration (Repeat K iterations)
 - Check if NOT Spider Trap first. (No probability needed)

- Check if is Spider Trap first.
 - Spider Trap: if there are no links from within the group to outside the group
 - ◆ Spider Trap Solution:
 - Old: Randomly pick a link in the page and visit that linking page
 - •
- Probability Matrix M
 - M(i, j):probability to visit page P_i if we are currently at page P_i

$$\begin{bmatrix} pr_1 \\ pr_2 \\ \dots \\ pr_N \end{bmatrix} = \alpha M \begin{bmatrix} pr_1 \\ pr_2 \\ \dots \\ pr_N \end{bmatrix} + (1 - \alpha) \begin{bmatrix} 1/N \\ 1/N \\ \dots \\ 1/N \end{bmatrix}$$

- How to choose K iterations?
 - Maximum error is 0.85^t
 - + Choosing the number of iterations: Analysis
 - Let $err(t) = \sum_{i=1}^{N} |pr_i(t) pr_i|$ denotes the error in the t —th iteration
 - Property 1: $err(t) \le \alpha \cdot err(t-1)$
 - Property 2: err(0) ≤ 1
 - Question: If $\alpha = 0.85$, and we need to guarantee the error is no more than 0.0001, how to choose the number t of iterations?
 - $err(t) \le err(t-1) \cdot \alpha \le \cdots \le err(0) \cdot \alpha^t \le \alpha^t$
 - $err(t) \le 0.85^t \le 0.0001$
 - t ≥ 57

 $pr_i(t)$: the calculated PageRank of page P_i in the t-th iteration; pr_i : the exact PageRank of page P_i .

- HITS (Hyperlink-induced Topic Search)
 - 2 Scores for each page:
 - Hub value: the value of its links to other pages
 - Authority value: the value of the content of the page

Pages with highest authority values and hub values are the results of interest.

Sampling component

Root set: top pages returned by a text-based search algorithm

weight propagation component

- Use count frequency to construct Matrix A^T
- A^T has same column and row as PageRank

$$\begin{bmatrix}
P1(p1) & P2(p2) & P3(p3) \\
P2(p1) & P2(p2) & P2(p3) \\
P3(p1) & P3(p2) & P3(p3)
\end{bmatrix}$$

P1....Pn:Column

■ Iterative approach

I step:

O Step:

p1....pn:Row

- I: Authority A^T
- O: Hub
- Initially all hub values and authority values are 1.

Authority value of page P_i is updated to the sum of the hub values of the pages link to P_i \searrow 5

■ Hub value of page P_i is updated to the sum of the authority values of the pages P_i links to

- Normalization
 - Scale a_i so that the maximum becomes 1 after I step
 - lacksquare Scale h_i so that the maximum becomes 1 after O step
- Stopping condition
 - Repeat the I-step and O-step k times
 - When k is large enough, it converges (Proof of convergence is not required).

> Algorithms in web-community detection

■ Co-citation: the similarity of A and B is measured by the number of pages cite both A and B.

Bibliographic coupling: the similarity of A and B is measured by the number of pages cited by both A and B.

HITS Advantages Vs. Disadvantages

Advantages	Disadvantages
Rank pages according to the query topic	 Does not have anti-spam capability: One may add out-links to his own page that points to many good authorities Topic-drift: One may collect many pages that have nothing to do with the topic — by just pointing to them Query-time evaluation: expensive

HITS Vs. PageRank

HITS	PageRank
executed at query time	PrecomputedCommonly used in search engine

- Not-commonly used in search engine
- 2 scores for each page
- Process on small subset of relevant doc
- 1 score for each page
- Rank all web pages

Both are iterative algorithms based on the link structure of the Web

Usage Mining

- Base upon how the Web is used, Predict user's actions
- OutComes:
 - Association rules Find pages that are often viewed together
 - Clustering Cluster users based on browsing patterns
 - Classification Relate user attributes to patterns
- Data can be from clickstreams, user sessions, or a server session.
- ❖ To keep track of this data, use a log. But first, must cleanse and sessionize the data.

Pre-processing

- ➤ Web logs are raw data
 - Click stream: a sequential series of page view request
 - User session: a delimited set of user clicks (click stream) across one or more Web servers.
 - Server session (visit): a collection of user clicks to a single Web server during a user session.
- Web log cleansing
 - Replace source IP address with unique but non-identifying ID
 - Replace exact URL of pages referenced with unique but non-identifying ID
 - Delete error records and records containing nonpage data (such as figures and code).

> Sessionization

- Identify consecutive page references from a IP address
 - occurring within a predefined time interval (e.g., 25 minutes).
 - Where the interclick time is less than a predefined threshold

♦ Pattern Discovery

Using statistical analysis, association rules, clustering, classification, sequential pattern, dependency modelling

- Example 1: use association rule algorithms to find pages frequently visited together:
 - Item set: visited pages
 - Help better website design
- Example 2: use statistical analysis to find user visit peaks
 - Use historical web logs to derive visiting histogram
- Help better service
- When need more machines

❖ Issues:

- ➤ identification of exact user not possible, single session isn't well defined
- > exact sequence of pages references is unavailable due to caching of web pages. There is also privacy and legal issues.