Chapitre 5 : Notion de Matrice Associée à

une Application Linéaire" Module : Mathématiques 2 (ST/L1 2019/2020)

Dr. Imene Medjadj

CHAPITRE 1

Notion de Matrice Associée à une Application Linéaire

DÉFINITION 0.1. On appelle une matrice dans \mathbb{K} de type (n, p) un tableau rectangulaire A d'éléments de \mathbb{K} ayant n lignes et p colonnes.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & \vdots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{pmatrix}$$

On note a_{ij} l'élément qui se trouve à la ligne numéro i et la colonne j et on note la matrice A par $A = (a_{ij})_{1 \leq i \leq n, 1 \leq j \leq p}$. L'ensemble des matrices de type (n, p) est noté $\mathcal{M}_{(n,p)}(\mathbb{K})$.

- (1) Pour n = 1, on dit que A est une matrice ligne, $A = (a_{11}, a_{12}, ..., a_{1p})$.
- (2) Pour p = 1 on dit que A est une matrice ligne, $A = \begin{pmatrix} a_{11} \\ a_{12} \\ ... \\ a_{1p} \end{pmatrix}$.
- (3) Pour n = p, on dit que A est une matrice carrée d'ordre n et on note $A \in \mathcal{M}_n(\mathbb{K})$.

EXEMPLE 0.2. (1)
$$A_1 = \begin{pmatrix} 1 & 4 & 0 \\ 2 & 3 & 0 \\ 3 & 2 & 0 \\ 4 & 1 & 3 \end{pmatrix}$$
, A_1 est une matrice de type $(4,3)$.

- (2) $A_2 = \begin{pmatrix} -1 & 0 & 1 & 7 \\ 5 & 2 & 1 & 0 \end{pmatrix}$, A_2 est une matrice de type (2,4).
- (3) $A_3 = \begin{pmatrix} 1 & 9 \\ -6 & 0 \end{pmatrix}$, A_3 est une matrice carrée d'ordre 2.

DÉFINITION 0.3. Soit $A = (a_{ij})_{1 \le i \le n, 1 \le j \le p}$ et $B = (b_{ij})_{1 \le i \le n, 1 \le j \le p}$ deux matrices de types (n, p),

- (1) On dit que A = B si $\forall i = 1, ..., n, \forall j = 1, ..., p; a_{ij} = b_{ij}$.
- (2) La transposée de la matrice A est une matrice notée A^t définie par

$$A^t = (a_{ji})_{1 \le j \le p, 1 \le i \le n},$$

autrement dit A^t c'est la matrice de type (p, n) obtenue en remplaçant les lignes par les colonnes et les colonnes par les lignes et on $a: (A^t)^t = A$.

EXEMPLE 0.4. (1)
$$A_1 = \begin{pmatrix} 1 & 4 & 0 \\ 2 & 3 & 0 \\ 3 & 2 & 0 \\ 4 & 1 & 3 \end{pmatrix} \Rightarrow A_1^t = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

(2)
$$A_2 = \begin{pmatrix} -1 & 0 & 0 & -5 \\ 1 & 2 & 1 & 8 \end{pmatrix} \Rightarrow A_2^t = \begin{pmatrix} -1 & 1 \\ 0 & 2 \\ 0 & 1 \\ -5 & 8 \end{pmatrix}$$

$$(3) A_3 = \begin{pmatrix} 1 & 0 \\ 5 & -5 \end{pmatrix} \Rightarrow A_3^t = \begin{pmatrix} 1 & 5 \\ 0 & -5 \end{pmatrix}.$$

THÉORÈME 0.5. En munissant l'ensemble $\mathcal{M}_{(n,p)}(\mathbb{K})$ par les opération suivantes :

$$(+): \mathcal{M}_{(n,p)}(\mathbb{IK}) \times \mathcal{M}_{(n,p)}(\mathbb{IK}) \to \mathcal{M}_{(n,p)}(\mathbb{IK})$$

$$\left(\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & \vdots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{pmatrix}, \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1p} \\ b_{21} & b_{22} & \dots & b_{2p} \\ \vdots & \vdots & \dots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{np} \end{pmatrix} \right) \to \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1p} + b_{1p} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2p} + b_{2p} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ a_{n1} + b_{n1} & a_{n2} + b_{n2} & \dots & a_{np} + b_{np} \end{pmatrix}.$$

$$\begin{pmatrix}
\lambda \cdot \begin{pmatrix}
a_{11} & a_{12} & \dots & a_{1p} \\
a_{21} & a_{22} & \dots & a_{2p} \\
\vdots & \vdots & \dots & \vdots \\
a_{n1} & a_{n2} & \dots & a_{np}
\end{pmatrix}
\end{pmatrix}, \rightarrow \begin{pmatrix}
\lambda a_{11} & \lambda a_{12} & \dots & \lambda a_{1p} \\
\lambda a_{21} & \lambda a_{22} & \dots & \lambda a_{2p} \\
\vdots & \vdots & \dots & \vdots \\
\lambda a_{n1} & \lambda a_{n2} & \dots & \lambda a_{np}
\end{pmatrix}$$

Alors $(\mathcal{M}_{(n,p)}(\mathbb{K}),+,\cdot)$ est $\mathbb{K}-$ espace vectoriel de dimension $n\times p,$ sachant que l'élé-

ment neutre de l'addition est la matrice nulle $\begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ & \ddots & \ddots & \ddots \\ 0 & 0 & \dots & 0 \end{pmatrix}$

1. Produit de deux matrices

DÉFINITION 1.1. Soit $A \in \mathcal{M}_{(n,p)}(\mathbb{IK})$ et $B \in \mathcal{M}_{(p,m)}(\mathbb{IK})$, on définit le produit de la matrice A par B comme étant une matrice $C = (c_{ij})_{1 \leq i \leq , 1 \leq j \leq m} \in \mathcal{M}_{(n,m)}(\mathbb{IK})$, avec $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + a_{31}b_{3j} + ... + a_{ip}b_{pj}$.

- REMARQUE 1.2. (1) L'élément C_{ij} de la matrice C se calcule en additionnant le produit des éléments de la ligne i de la matrice A par la les éléments de la colonne j de la matrice B.
- (2) Le produit de deux matrice ne peut se faire que si le nombre de colonnes de la matrice A correspond au nombre de lignes dela matrice B.

EXEMPLE 1.3.

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 2 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 2 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix},$$

A est de type (2,3) et B de type (3,4) ainsi C sera de type (2,4).

$$C = A.B = \begin{pmatrix} 1.1 + 1.2 + 0.1 & 1.2 + 1.0 + 0.1 & 1.0 + 1.1 + 0.0 & 1.1 + 1.1 + 0.0 \\ 2.1 + 2.2 + 0.1 & 2.2 + 2.0 + 0.1 & 2.0 + 2.1 + 0.0 & 2.1 + 2.1 + 0.0 \end{pmatrix}$$

$$\Leftrightarrow C = \begin{pmatrix} 3 & 2 & 1 & 2 \\ 6 & 4 & 2 & 4 \end{pmatrix}$$

Remarque 1.4. Le produit deux matrice n'est pas commutatif voiçi un exemple :

$$A.B = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}. \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ -1 & 4 \end{pmatrix} \neq B.A = \begin{pmatrix} 1 & 3 \\ 1 & 2 \end{pmatrix}$$

2. Matrices carrées

DÉFINITION 2.1. Soit A une matrice carrée d'ordre n, $A = (a_{ij})_{1 \le i \le n, 1 \le j \le n}$,

- (1) La suite des éléments $\{a_{11}, a_{22}, ..., a_{nn}\}$ est appelée la diagonale principle de A.
- (2) La trace de A est le nombre $Tr(A) = a_{11} + a_{22} + ... + a_{nn}$.
- (3) A est dite matrice diagonale si $a_{ij} = 0, \forall i \neq j$ c'est à dire que les éléments de A sont tous nuls sauf la diagonale principale.
- (4) A est dite matice triangulaire supérieure (resp inférieure) si $a_{ij} = 0, \forall i > j$, (resp i < j), c'est à dire les éléments qui sont au dessous(resp au dessus) de la diagonale sont nuls).
- (5) A st dite symétrique si $A = A^t$.

EXEMPLE 2.2. (1) $A_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, A_1 est une matrice diagonale.

- (2) $A_2 = \begin{pmatrix} -1 & 0 & 0 \\ 5 & 4 & 0 \\ 6 & 3 & 9 \end{pmatrix}$, A_2 est une matrice triangulaire inférieure.
- (3) $A_3 = \begin{pmatrix} 7 & 40 & 2 \\ 0 & 2 & 3 \\ 0 & 0 & -1 \end{pmatrix}$, A_3 est une matrice triangulaire supérieure.

PROPOSITION 2.3. Le produit des matrices est une opération interne dans $\mathcal{M}_{(n,n)}(\mathbb{IK})$ et il admet un élément neutre la matrice nommée matrice identitée notée I_n définie par :

$$I_n = \begin{pmatrix} 1 & 0 & 0 & 0 \dots & 0 \\ 0 & 1 & 0 & 0 \dots & 0 \\ 0 & 0 & 1 & 0 \dots & 0 \\ 0 & 0 & 0 & 1 \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

DÉFINITION 2.4. Soit $A \in \mathcal{M}_{(n,n)}(\mathbb{K})$ on dit que A est invesible s'il existe une matrice $B \in \mathcal{M}_{(n,n)}(\mathbb{K})$ telle que $A.B = B.A = I_n$.

EXEMPLE 2.5. Montrons que la matrice $A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$ est inversible et ceci en cherchant la matice $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ telle que

$$A.B = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2 = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} = B.A$$

$$\Leftrightarrow \begin{pmatrix} a+2c & b+2d \\ -c & -d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & 2a-b \\ c & 2c-d \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}.$$

3. Les Déterminants

DÉFINITION 3.1. Soit $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ une matrice dans $\mathcal{M}_{(2,2)}(\mathbb{IK})$, on appelle déterminant de A le nombre réel donné par : $a_{11}a_{22} - a_{12}a_{21}$. On le note det(A) ou $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$,

EXEMPLE 3.2. Calculons le det(A),

$$|A| = \begin{vmatrix} 1 & 2 \\ 0 & -1 \end{vmatrix} = 1(-1) - 0.(2) = -1.$$

DÉFINITION 3.3. De même, on définit le déterminant d'une matrice

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \in \mathcal{M}_3(\mathbb{I}K),$$

par

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = (-1)^{\mathbf{1}+\mathbf{1}} a_{\mathbf{1}\mathbf{1}} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{\mathbf{1}+\mathbf{2}} a_{\mathbf{1}\mathbf{2}} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + (-1)^{\mathbf{1}+\mathbf{3}} a_{\mathbf{1}\mathbf{3}} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

EXEMPLE 3.4.

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 12 & -1 & 1 \\ 0 & 1 & 0 \end{vmatrix} = (-1)^{\mathbf{1}+\mathbf{1}} \cdot 1 \begin{vmatrix} -1 & 1 \\ 1 & 0 \end{vmatrix} + (-1)^{\mathbf{1}+2} \cdot 0 \cdot \begin{vmatrix} 12 & 1 \\ 0 & 0 \end{vmatrix} + (-1)^{\mathbf{1}+3} \cdot (-1) \begin{vmatrix} 12 & 2 \\ 0 & 1 \end{vmatrix}$$
$$\Leftrightarrow |A| = -1 + 0 - 12 = -13$$

PROPOSITION 3.5. Pour calculer le déterminant d'une matrice A on peut développer A suivant n'importe quelle ligne ou colonne.

Suivant cette proposition il vaut mieux choisir la ligne ou colonne contenant le plus de zéros.

EXEMPLE 3.6. On reprend la même matrice de l'exemple pécédent mais calculer suivant la troisième ligne on aura :

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 12 & -1 & 1 \\ 0 & 1 & 0 \end{vmatrix} = (-1)^{3+1} \cdot 0 \begin{vmatrix} 0 & -1 \\ -1 & 0 \end{vmatrix} + (-1)^{3+2} \cdot 1 \begin{vmatrix} 1 & -1 \\ 12 & 1 \end{vmatrix} + (-1)^{3+3} \cdot 0 \begin{vmatrix} 1 & 0 \\ 12 & -1 \end{vmatrix}$$
$$det(A) = 0 - 13 + 0 = -13$$

on calcule juste un déterminant au lieu de trois.

DÉFINITION 3.7. De même, on définit le déterminant d'une matrice

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix} \in \mathcal{M}_4(\mathbb{I}K),$$

par

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} = (-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} + (-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} & a_{24} \\ a_{31} & a_{33} & a_{34} \\ a_{41} & a_{43} & a_{44} \end{vmatrix}$$

$$+(-1)^{1+3}a_{13}\begin{vmatrix} a_{21} & a_{22} & a_{24} \\ a_{31} & a_{32} & a_{34} \\ a_{41} & a_{42} & a_{44} \end{vmatrix} + (-1)^{1+4}a_{14}\begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{vmatrix}.$$

DÉFINITION 3.8. Soit $A = (a_{ij})_{1 \le i \le n, 1 \le j \le n}$, le déterminant suivant la j-ème colone est :

$$det(A) = (-1)^{1+j} a_{1j} D_{1j} + (-1)^{2+j} a_{2j} D_{2j} + \dots + (-1)^{n+j} a_{nj} D_{nj}, j = 1, \dots, n.$$

Le déterminant suivant la i-ème ligne est :

$$det(A) = (-1)^{i+1}a_{i1}D_{i1} + (-1)^{i+2}a_{i2}D_{i2} + \dots + (-1)^{i+n}a_{in}D_{in}, i = 1, \dots, n.$$

 $Où A_{ij}$ représent ce que nous appelons le déterminant mineur du terma a_{ij} , le déterminant d'ordre n-1 obtenu de det(A) en supprimant la i-ème ligne et la j-ème colonne.

PROPOSITION 3.9. Soit $A \in \mathcal{M}_n(\mathbb{K})$ on a:

- (1) $det(A) = det(A^t)$.
- (2) det(A) = 0 si deux lignes de A sont égales (ou deux colonnes).
- (3) det(A) = 0 si deux lignes de A sont proportinnelles (ou deux colonnes le sont).
- (4) det(A) = 0 si une lique est combinaison linéaires de deux autres liques de A (même chôse pour les colonnes).
- (5) det(A) ne change pas si on ajoute à une lique une combinaison linéaires d'autres lignes (même chôse pour les colonnes).
- (6) Si $B \in \mathcal{M}_n(\mathbb{K})$, alors det(A.B) = det(A).det(B).

EXEMPLE 3.10. (1)
$$|A| = \begin{vmatrix} 3 & 0 & -5 \\ 2 & 2 & 1 \\ 3 & 0 & -5 \end{vmatrix} = 0$$
, car la ligne 1 est égale à la ligne

(2)
$$|B| = \begin{vmatrix} 9 & 0 & -15 & 3 \\ 2 & 2 & 1 & 1 \\ 1 & 0 & -1 & 4 \\ 3 & 0 & -5 & 1 \end{vmatrix} = 0, car L_1 = 3 * L_4.$$

(3) $|C| = \begin{vmatrix} 1 & 1 & -1 & 2 \\ 1 & 1 & 2 & 20 \\ 0 & 0 & -1 & 4 \\ 1 & 1 & -10 & 2 \end{vmatrix} = 0, car C_1 = C_2.$

(3)
$$|C| = \begin{vmatrix} 1 & 1 & -1 & 2 \\ 1 & 1 & 2 & 20 \\ 0 & 0 & -1 & 4 \\ 1 & 1 & -10 & 2 \end{vmatrix} = 0, \ car \ C_1 = C_2.$$

DÉFINITION 3.11. Soit $V_1, V_2, ..., V_n$, n vecteurs de \mathbb{R}^n on appelle déterminant des vecteurs $(V_1, V_2, ..., V_n)$ et on le note $det(V_1, V_2, ..., V_n)$ le déterminant dont les colonnes sont les vecteurs $V_1, V_2, ..., V_n$.

EXEMPLE 3.12. Soit $V_1 = (1, 1, 0), V_2 = (0, -1, 1), V_3 = (0, 0, 1), alors$

$$det(V_1, V_2, V_3) = \begin{vmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = +1 \begin{vmatrix} -1 & 0 \\ 1 & 1 \end{vmatrix} = -1$$

PROPOSITION 3.13. Soit $V_1, V_2, ..., V_n$, n vecteurs de \mathbb{R}^n on $(V_1, V_2, ..., V_n)$ est une base de $\mathbb{R}^n \Leftrightarrow det(V_1, V_2, ..., V_n) \neq 0$

EXEMPLE 3.14. Soit $V_1 = (1, 2, 0), V_2 = (0, -1, 1), V_3 = (0, 0, 1),$ forment une base $de \ \mathbb{R}^3$, $car \ det(V_1, V_2, V_3) = -1 \neq 0$.

3.1. Le rang d'un matrice.

DÉFINITION 3.15. Soit $A \in M_{(n,p)}(\mathbb{K})$, on appelle rang de A et on note rgA l'ordre de la plus grande matrice carrée B prise (extraite) dans A telle que $det B \neq 0$.

EXEMPLE 3.16.
$$A = \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix}, det A = 2 \neq 0, rgA = 2.$$

$$B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, det A = 0 \neq 0, rgA = 1.$$

 $C = \left(\begin{array}{cccc} 0 & 1 & -1 & 0 \\ -1 & 1 & -1 & 1 \\ 0 & -1 & 1 & 0 \end{array}\right), rgA < 4(rgA \leq 3) \ la \ plus \ grande \ matrice \ carrée \ contenue$

dans A est d'ordre 3, dans cet exmple on a : 4 possibilité :

$$C_{1} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & -1 & 1 \\ -1 & 1 & 0 \end{pmatrix}, C_{2} = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix},$$

$$C_{3} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \\ 0 & -1 & 0 \end{pmatrix}, C_{4} = \begin{pmatrix} 0 & -1 & 0 \\ -1 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

 $detC_1 = detC_2 = 0$ et $detC_3 = detC_4 = 0$ donc le rgA < 3 et on a :

$$\begin{vmatrix} -1 & 0 \\ -1 & 1 \end{vmatrix} = -1 \neq 0 \Rightarrow rgA = 2.$$

THÉORÈME 3.17. le rang d'une matrice est égale au nombre maximale de vecteurs lignes (ou colonnes) linéairement indépendants.

DÉFINITION 3.18. Soit $A = (a_{ij})_{1 \le i \le n, 1 \le j \le n} \in \mathcal{M}_n(\mathbb{K})$, on appelle cofacteur d'indice i et j de A le scalaire

$$c_{ij} = (-1)^{i+j} det A_{ij}.$$

Avec A_{ij} est la matrice déduite de A par suppression de la ligne i t la colonne j. La matrice $C = (c_{ij})_{1 \leq i \leq n, 1 \leq j \leq n}$ est appelée la matrice des cofacteurs et la matrice C^t est appellée la comatrice de A.

EXEMPLE 3.19. Soit la matrice
$$A = \begin{pmatrix} 1 & 0 & 3 \\ 1 & -1 & 1 \\ 0 & 2 & 2 \end{pmatrix}, \begin{pmatrix} + & - & + \\ - & + & - \\ + & - & + \end{pmatrix}$$
. Calculons

les coffacteurs de A

$$c_{11} = (-1)^{1+1} det(A_{11}) = (-1)^{2} \begin{vmatrix} -1 & 1 \\ 2 & 2 \end{vmatrix} = -4.$$

$$c_{12} = (-1)^{1+2} det(A_{12}) = (-1)^{3} \begin{vmatrix} 1 & 1 \\ 0 & 2 \end{vmatrix} = -2.$$

$$c_{13} = (-1)^{1+3} det(A_{13}) = (-1)^{4} \begin{vmatrix} 1 & -1 \\ 0 & 2 \end{vmatrix} = 2.$$

$$c_{21} = (-1)^{2+1} det(A_{21}) = (-1)^{3} \begin{vmatrix} 0 & 3 \\ 2 & 2 \end{vmatrix} = 6.$$

$$c_{22} = (-1)^{2+2} det(A_{22}) = (-1)^{4} \begin{vmatrix} 1 & 3 \\ 0 & 2 \end{vmatrix} = 2.$$

$$c_{23} = (-1)^{2+3} det(A_{23}) = (-1)^{5} \begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix} = -2.$$

$$c_{31} = (-1)^{3+1} det(A_{31}) = (-1)^{4} \begin{vmatrix} 0 & 3 \\ -1 & 1 \end{vmatrix} = 3.$$

$$c_{32} = (-1)^{3+2} det(A_{32}) = (-1)^{5} \begin{vmatrix} 1 & 3 \\ 1 & 1 \end{vmatrix} = 2.$$

$$c_{33} = (-1)^{3+3} det(A_{33}) = (-1)^{6} \begin{vmatrix} 1 & 0 \\ 1 & -1 \end{vmatrix} = -1.$$

donc la matrice des cofacteurs est donnée par :

$$\left(\begin{array}{ccc}
-4 & -2 & 2 \\
6 & 2 & -2 \\
3 & 2 & -1
\end{array}\right)$$

et la comatrice et

$$C^t = \left(\begin{array}{ccc} -4 & 6 & 3\\ -2 & 2 & 2\\ 2 & -2 & -1 \end{array}\right)$$

THÉORÈME 3.20. Soit $A \in \mathcal{M}_n(\mathbb{K})$, on a:

Aest inversible $\Leftrightarrow det(A) \neq 0$.

et dans ce cas la matrice inverse de A est donnée par :

$$A^{-1} = \frac{1}{\det(A)}C^t.$$

 $Où C^t$ est la comatrice de A.

EXEMPLE 3.21. La matrice $A = \begin{pmatrix} 1 & 0 & 3 \\ 1 & -1 & 1 \\ 0 & 2 & 2 \end{pmatrix}$, $det(A) = 2 \neq 0$ donc elle est

inversible, de plus

$$A^{-1} = \frac{1}{2}C^{t} = \frac{1}{2} \begin{pmatrix} -4 & 6 & 3\\ -2 & 2 & 2\\ 2 & -2 & -1 \end{pmatrix}$$
$$A^{-1} = \begin{pmatrix} -2 & 3 & \frac{3}{2}\\ -1 & 1 & 1\\ 1 & -1 & -\frac{1}{2} \end{pmatrix}.$$

On peut vérifier que $A^{-1}A = I_3 = AA^{-1}$.

3. LES DÉTERMINANTS

11

Dr. I.Medjadj