

ARM Architecture Overview

THE ARCHITECTURE FOR THE DIGITAL WORLD!

ARM

Development of the ARM Architecture

Processor Architecture = Instruction Set + Programmer's model

ARM7TDMI ARM922T

Thumb instruction set

ARM926EJ-S ARM946E-S ARM966E-S

Improved ARM/Thumb Interworking

DSP instructions

Extensions:

Jazelle (5TEJ)

ARM1136JF-S ARM1176JZF-S ARM11 MPCore

SIMD Instructions
Unaligned data support

Extensions:

Thumb-2 (6T2)
TrustZone (6Z)

Multicore (6K)

Cortex-A8/R4/M3/M1

Thumb-2

Extensions:

v7A (applications) - NEON

v7R (real time) - HW Divide

V7M (microcontroller) – HW Divide and Thumb-2 only

- Note: Implementations of the same architecture can be very different
 - ARM7TDMI architecture v4T. Von Neuman core with 3 stage pipeline
 - ARM920T architecture v4T. Harvard core with 5 stage pipeline and MMU

ARM Architecture profiles

- Application profile (ARMv7-A → e.g. Cortex-A8)
 - Memory management support (MMU)
 - Highest performance at low power
 - Influenced by multi-tasking OS system requirements
 - TrustZone and Jazelle-RCT for a safe, extensible system
- Real-time profile (ARMv7-R → e.g. Cortex-R4)
 - Protected memory (MPU)
 - Low latency and predictability 'real-time' needs
 - Evolutionary path for traditional embedded business
- Microcontroller profile (ARMv7-M → e.g. Cortex-M3)
 - Lowest gate count entry point
 - Deterministic and predictable behavior a key priority
 - Deeply embedded use

THE ARCHITECTURE FOR THE DIGITAL WORLD

ARM

Programmer's Model

Data Sizes and Instruction Sets

- When used in relation to the ARM:
 - Halfword means 16 bits (two bytes)
 - Word means 32 bits (four bytes)
 - Doubleword means 64 bits (eight bytes)
- Most ARMs implement two instruction sets
 - 32-bit ARM Instruction Set
 - 16-bit Thumb Instruction Set
- Latest ARM cores introduce a new instruction set Thumb-2
 - Provides a mixture of 32-bit and 16-bit instructions
 - Maintains code density with increased flexibility
- Jazelle-DBX cores can also execute Java bytecode

HE ARCHITECTURE FOR THE DIGITAL WORLD!

ARM

Processor Modes

- The ARM has seven basic operating modes:
 - Each mode has access to own stack and a different subset of registers
 - Some operations can only be carried out in a privileged mode

Data alignment

- Prior to architecture v6 data accesses must be appropriately aligned for access size
 - Unaligned addresses will produce unexpected/undefined results

 Unaligned data can be accessed using multiple aligned accesses combined with shift/mask operations

HE ARCHITECTURE FOR THE DIGITAL WORLD

ARM

Exception Handling

- When an exception occurs, the core:
 - Copies CPSR into SPSR <mode>
 - Sets appropriate CPSR bits
 - Change to ARM state
 - Change to exception mode
 - Disable interrupts (if appropriate)
 - Stores the return address in LR <mode>
 - Sets PC to vector address
- To return, exception handler needs to:
 - Restore CPSR from SPSR_<mode>
 - Restore PC from LR <mode>

FIQ 0x1C **IRQ** 0x18 (Reserved) 0x14 **Data Abort** 0x10 **Prefetch Abort** 0x0C 80x0 Software Interrupt Undefined Instruction 0x04 Reset 0x00

Vector Table

Vector table can also be at 0xFFFF0000 on most cores

- Must be done in ARM state in most cores, but...
 - ... Thumb-2 capable cores can do this in Thumb state

Introduction to Instruction Sets

ARM

ARM Instruction Set

- All instructions are 32 bits long / many execute in a single cycle
- Instructions are conditionally executed
- A load / store architecture
 - Example data processing instructions

Example branching instructionB <Label>

Example memory access instructions

```
LDR r0,[r1]

STRNEB r2,[r3,r4]

STMFD sp!,{r4-r8,lr}
```

```
r0 = r1 - 5
r2 = r3 + (r3 * 4)
IF EQ condition true r5 = r5 + r6
```

Branch forwards or backwards relative to current PC (+/- 32MB range)

Load word at address r1 into r0

IF NE condition true, store bottom byte of r2 to address r3+r4

Store registers r4 to r8 and 1r on stack. Then update stack pointer

Thumb Instruction Set

- Thumb is a 16-bit instruction set
 - Optimized for code density from C code (~65% of ARM code size)
 - Improved performance from narrow memory
 - Subset of the functionality of the ARM instruction set
- Thumb is not a "regular" instruction set!
 - Constraints are not generally consistent
 - Targeted at compiler generation, not hand coding

HE ARCHITECTURE FOR THE DIGITAL WORLD!

ARM

Thumb-2 Instruction Set

- Thumb-2 is a major extension to the Thumb ISA
 - Adds 32-bit instructions to implement almost all of the ARM ISA functionality
 - Retains the complete 16-bit Thumb instruction set
- Design objective: ARM performance with Thumb code density
 - No switching between ARM-Thumb states
 - Compiler automatically selects mix of 16 and 32 bit instructions

Thumb 2 Performance / Density

HE ARCHITECTURE FOR THE DIGITAL WORLD

ARM

Processor Cores

ARM7TDMI Processor

- Architecture v4T
- 3-stage pipeline
- Single interface to memory

HE ARCHITECTURE FOR THE DIGITAL WORLD

ARM

ARM926EJ-S Processor

ARM926EJ-S

- Architecture v5TE
- 5-stage pipeline
- Single-cycle 32x16 multiplier
- Caches and TCMs
- Memory management unit (MMU)
- 2 AHB memory interfaces
- Jazelle technology

ARM1176JZ(F)-S Processor Core

- TrustZone
- 8-stage pipeline
- Branch prediction
- Four AXI memory ports
- IEM (Intelligent Energy Management)
- Integrated VFP coprocessor

THE ARCHITECTURE FOR THE DIGITAL WORLD

ARM

ARM11 MPCore Processor

- 1 4 MP11 processors
- Cache coherency
- Distributed interrupt controller

ARM Cortex-M3 Processor

- Architecture v7-M (Thumb-2 only) → Very different from previous ARM processors
 - No CPSR register
 - Vector table contains addresses, not instructions
 - Processor automatically saves/restores state in exceptions
 - Only 2 processor modes (Thread/Handler)
 - No Coprocessor 15 3-stage pipeline with static branch prediction
- Atypical Implementation
 - Fixed memory map
 - Integrated interrupt controller
 - Serial-Wire Debug

THE ARCHITECTURE FOR THE DIGITAL WORLD

ARM

ARM Cortex-A8 Processor

- Architecture v7-A
- 14 stage pipeline
- NEON media processor

The Instruction Pipeline

THE ARCHITECTURE FOR THE DIGITAL WORLD!

A

The Instruction Pipeline

- The ARM7TDMI uses a 3-stage pipeline in order to increase the speed of the flow of instructions to the processor
 - Allows several operations to be performed simultaneously, rather than serially

- The PC points to the instruction being fetched, not executed
 - Debug tools will hide this from you
 - This is now part of the ARM Architecture and applies to all processors

Optimal Pipelining

Cycle		1	2	3	4	5	6	7	8	9
Operation										
ADD F	D	Ε								
SUB	F	D	Ε							
ORR		F	D	Ε						
AND			F	D	Ε					
ORR				F	D	Ε				
EOR					F	D	Ε			

F - Fetch D - Decode E - Execute

- All operations here are on registers (single cycle execution)
- In this example it takes 6 clock cycles to execute 6 instructions
- Clock cycles per Instruction (CPI) = 1

HE ARCHITECTURE FOR THE DIGITAL WORLDS

ARM

Branch Pipeline Example

Cycle				1	2	3	4	5	6	7	8	9
Address	Operation											
0x8000	BL 0x8FEC	F	D	Ε	EL	EA						
0x8004	SUB		F	D								
0x8008	ORR			F					Ī	Ī		
0x8FEC	AND				F	D	Ε		I			
	ORR					F	D	Е				
0x8FF4	EOR						F	D	Ε			

F - Fetch D - Decode E - Execute L - Linkret A - Adjust

- Breaking the pipeline
- Note that the core is executing in ARM state

Cortex-A8 Integer Pipeline

- Optimising code to make use of the processor pipeline is very difficult
- Leave it to the compiler!!

27

ARM

Reference Slides

Reference Material

- ARM ARM ("Architecture Reference Manual")
 - ARM DDI 0100E covers v5TE DSP extensions
 - Can be purchased from booksellers ISBN 0-201-737191 (Addison-Wesley)
 - Available for download from ARM's website
 - ARM v7-M ARM available for download from ARM's website
 - Contact ARM if you need a different version (v6, v7-AR, etc.)
- Steve Furber "ARM system-on-chip architecture" 2nd edition
 - ISBN 0-201-67519-6 (Addison-Wesley)
- Sloss, Symes & Wright "ARM System Developer's Guide"
 - ISBN: 1-55860-874-5 (Morgan Kaufman)
- RVCT Assembler Guide
 - Available for download from ARM's website
- Technical Reference Manuals for processor core being used
 - Available for download from ARM's website

THE ARCHITECTURE FOR THE DIGITAL WORLDS

ARM

Naming Conventions

- ARMx1z (e.g. ARM710T) indicates cache & full MMU
- ARMx2z (e.g. ARM720T) indicates cache, MMU & Process ID support
- ARMx3z (e.g. ARM1136J-S) indicates physically mapped caches and MMU
- ARMx4z (e.g. ARM740T) indicates cache and MPU
- ARMx5z (e.g. ARM1156T2-S) indicates cache, MPU and error correcting memory
- ARMx6z (e.g. ARM966E-S) indicates write buffer but no caches
- ARMx7z (e.g. ARM1176JZ-S) indicates AXI bus, & physically mapped caches and MMU
- ARMxy6 (e.g. ARM946E-S) indicates TCMs

Which architecture is my processor?

Processor core	Architecture
ARM7TDMI familyARM720T, ARM740T	v4T
 ARM9TDMI family 	v4T
 ARM920T,ARM922T,ARM940T 	WETE WETE I
 ARM9E family ARM946E-S, ARM966E-S, ARM926EJ-S 	v5TE, v5TEJ
 ARM10E family ARM1020E, ARM1022E, ARM1026EJ-S 	v5TE, v5TEJ
 ARM11 family 	v6
ARM1136J(F)-S	v6
ARM1156T2(F)-S	v6T2
 ARM1176JZ(F)-S 	v6Z
 ARM11 MPCore 	v6
Cortex family	
 ARM Cortex -A8 	v7-A
ARM Cortex -R4(F)	v7-R
 ARM Cortex -M3 	v7-M
 ARM Cortex -M1 	v6-M

For ARM processor naming conventions and features, please see the Appendix

THE ARCHITECTURE FOR THE DIGITAL WORLD

ARM

ARMv4T Cores:

	7TDMI	720T	740T	920T	940T	SA1100
Architecture	von Neumann	von Neumann	von Neumann	Harvard	Harvard	Harvard
Cache	None	8K Unified 4 words/line	8K Unified 4 words/line	16K Instr + 16K Data 8 words/line	4K Instr + 4K Data 4 words/line	16K Instr + 16K Data 4 words/line
Associativity	N/A	4-way	4-way	64- way	64- way	32- way
TCM	No	No	No	No	No	No
Replacement	N/A	Random	Random	Random Round Robin	Random	Round Robin
Write Strategy	N/A	Write Through	Write Through	Write Through Write Back	Write Through Write Back	Write Back
Write Buffer	None	8 Words 4 Addresses	8 Words 4 Addresses	16 Words 4 Addresses	8 Words 4 Addresses	8 Words 4 Addresses
MMU/MPU	None	MMU	MPU	MMU	MPU	MMU
Hi Vectors	No	Yes	No	Yes	Yes	Yes
Streaming	N/A	Yes	Yes	Yes	Yes	Yes
Standby Mode	No	No	No	Yes	Yes	Yes

ARMv5 Cores:

	926EJ-S	946E-S	966E-S	968E-S	1026EJ-S	XScale
Architecture	Harvard	Harvard	Harvard	Harvard	Harvard	Harvard
Cache	4-128K Instr 4-128K Data 8 words/line	0-1024K Instr 0-1024K Data 8 words/line	None	None	0-128K Instr 0-128K Data 8 words/line	32K Instr 32K Data 8 words/line
Associativity	4-way	4-way	N/A	N/A	4-way	32- way
ТСМ	0-1024K Instr 0-1024K Data	0-1024K Instr 0-1024K Data	0-64M Instr 0-64M Data	0-64M Instr 0-64M Data	0-1024K Instr 0-1024K Data	No
Replacement	Random Round Robin	Random Round Robin	N/A	N/A	Random Round Robin	Random Round Robin
Write Strategy	Write Through Write Back	Write Through Write Back	N/A	Write Through Write Back	Write Through Write Back	Write Through Write Back
Write Buffer	16 Words 4 Addresses	16 Words Data or Address	12 Words Data or Address	12 Words Data or Address	8 Words Data or Address	8 x 16 Bytes Coalescing
MMU/MPU	мми	MPU	None	None	MMU or MPU	MMU With extensions
Hi Vectors	Yes	Yes	Yes	Yes	Yes	Yes
Streaming	Yes	Yes	N/A	N/A	Yes	Yes
Standby Mode	Yes	Yes	Yes	Yes	Yes	Yes

33 ARM

ARMv6 Cores:

	1136EJ(F)- S	1156T2(F)- S	1176JZ(F)- S	MPCore11
Architecture	Harvard	Harvard	Harvard	Harvard
Cache	4-64K Instr 4-64K Data 8 words/line	0-64K Instr 0-64K Data 8 words/line	4-64K Instr 4-64K Data 8 words/line	16-64K Instr 16-64K Data 8 words/line
Associativity	4-way	4-way	4-way	4-way
ТСМ	0-64K Instr 0-64K Data	0-256K Instr 0-256K Data	0-64K Instr 0-64K Data	None
Replacemen t	Random Round Robin	Random Round Robin	Random Round Robin	Random Round Robin
Write Strategy	Write Through Write Back	Write Through Write Back	Write Through Write Back	Write Through Write Back
MMU/MPU	мми	MPU	мми	мми
Hi Vectors	Yes	Yes	Yes	Yes
Streaming	Yes	Yes	N/A	Yes
Standby Mode	Yes	Yes	Yes	Yes
Bus	AHB/APB	AXI	AXI	AXI
VFP Support	Yes	Yes	Yes	Yes

Cortex Cores:

	Cortex-M3	Cortex-M1	Cortex-R4	Cortex-A8
Architecture	Harvard	Harvard	Harvard	Harvard
Cache	None	None	4-64K Instr 4-64K Data 8 words/line	16 or 32 Instr 16 or 32 Data 16 words/line
Associativity	N/A	N/A	4-way	4-way
ТСМ	None	0-1M Instr 0-1M Data	0-8M Instr 0-8M Data	None
Replacemen t	N/A	N/A	Random	Random
Write Strategy	N/A	N/A	Write Through Write Back	Write Through Write Back
MMU/MPU	MPU	None	MPU (optional)	мми
Hi Vectors	No	No	Yes	Yes
Streaming	N/A	N/A	Yes	Yes
Standby Mode	Yes	Yes	Yes	Yes
Bus	AHB Lite/APB	AHB Lite/APB	AXI	AXI
VFP Support	No	No	Yes	Yes

THE ARCHITECTURE FOR THE DIGITAL WORLD

ARM

TrustZone Computing

- TrustZone adds a "parallel world" to allow trusted programs and data to be safely separated from the OS and applications
- Introduced for ARM1176, standard for ARMv7-A Cores
- Features:
 - New Secure Monitor Mode: gate-keeper for secure state
 - New S-bit in CP15 to indicate when the processor is running in a secured state
 - Security state exposed on external bus accesses to permit securityaware memory and peripherals
 - Ability to restrict debug to nonsecure state

NEON Media Processor Features

- Single Instruction Multiple Data (SIMD) Media Processor
- Targets audio and video codecs, image and speech processing, graphics, baseband processing, and general signal processing
- 3 Processing pipelines: Integer/fixed point, single precision floating point, IEEE vector floating point
- Efficient data handling
 - Best use of available memory bandwidth
 - Eliminates data arrangement overhead
 - Operates on separate register file
 - SIMD Framework excellent target for compilers

THE ARCHITECTURE FOR THE DIGITAL WORLD

ARI

End