Benodigdhede vir hierdie	vraestel/Requirements for this paper:			
Multikeusekaarte/ Multi-choice cards:	Nie-programmeerbare sakrekenaar/ Non-programmable calculator:	Х	Oopboek-eksamen/ Open book examination?	NEE/ NO
Grafiekpapier/ Graph paper:	Draagbare Rekenaar/ Laptop:			

EKSAMEN/TOETS Semestertoets / KWALIFIKASIE/ Honns. B.Sc., M.Sc.

EXAMINATION/TEST: Semester Test QUALIFICATION:

MODULEKODE/ ITRI626 TYDSDUUR/ 90

MODULE CODE: DURATION: minute/minutes

MODULEBESKRYWING/ Kunsmatige Intelligensie / Artificial MAKS/ 62

MODULE DESCRIPTION: Intelligence MAX:

· ·

EKSAMINATOR(E)/ DR. J. V. DU TOIT DATUM/ 06/09/2016 EXAMINER(S): DATE:

AMMINER(S). DATE.

TYD/TIME: 07:30

MODERATOR: DR. J. V. DU TOIT

Vraag 1 (Logiese Agente) / Question 1 (Logical Agents)

1.1 Gee drie definisies vir logiese gevolgtrekking ($\alpha \models \beta$).

Give three definitions of logical entailment ($\alpha \models \beta$).

 $[3 \times 3 = 9]$

[5]

Answer:

- a) For any sentences α and β , $\alpha \models \beta$ if and only if $M(\alpha) \subseteq M(\beta)$ [3 marks].
- b) For any sentences α and β , $\alpha \models \beta$ if and only if the sentence $(\alpha \Rightarrow \beta)$ is valid [3 marks].
- c) For any sentences α and β , $\alpha \models \beta$ if and only if $(\alpha \land \neg \beta)$ is unsatisfiable [3 marks].
- 1.2 Teken die volgende waarheidstabel oor en voltooi dit.

Draw the following truth table and complete it.

Р	Q	¬P	PΛQ	PVQ	$P \Rightarrow Q$	$P \Leftrightarrow Q$
Т	Т	?	?	?	?	?
Т	F	?	?	?	?	?
F	Т	?	?	?	?	?
F	F	?	?	?	?	?

Answer:

Р	Q	¬P	PΛQ	PVQ	$P \Rightarrow Q$	P⇔Q
Т	Т	F	Η	Т	Η	Η
Т	F	F	F	Т	F	F
F	Т	Т	F	Т	Т	F
F	F	Т	F	F	Т	Т

Each column counts 1 mark.

1.3 Voltooi die volgende tabel met logiese ekwivalensies.

ITRI626 1/3

$(\alpha \Rightarrow \beta)$	≡	1.3 (a)
$(\alpha \Rightarrow \beta)$	=	1.3 (b)
$(\alpha \Leftrightarrow \beta)$	Ξ	1.3 (c)
1.3 (d)	=	(¬α ∧ ¬β)
1.3 (e)	≡	$((\alpha \land \beta) \lor (\alpha \land \gamma))$

Answer:

$(\alpha \Rightarrow \beta)$	Ш	$(\neg \beta \Rightarrow \neg \alpha)$ [1.3 (a)]	2 marks
$(\alpha \Rightarrow \beta)$	Ш	(¬α V β) [1.3 (b)]	2 marks
$(\alpha \Leftrightarrow \beta)$	Ш	$((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) [1.3 (c)]$	2 marks
¬(α V β) [1.3 (d)]	Ш	(¬α ∧ ¬β)	2 marks
(α Λ (β V γ)) [1.3 (e)]	≡	$((\alpha \land \beta) \lor (\alpha \land \gamma))$	2 marks

1.4 Bewys dat P ⇒ P V Q altyd waar is deur van 'n bewys en ekwivalensies gebruik te maak. Wys jou redenasies en stappe volledig.

Show that $P \Rightarrow P \ V \ Q$ is always true by using a proof and equivalences. Show all your reasoning and steps clearly. [10]

Answer:

 $P \Rightarrow P V Q$

 $\equiv \neg P \lor (P \lor Q)$ Implication elimination

 $\equiv (\neg P \lor P) \lor Q$ Association $\equiv (P \lor \neg P) \lor Q$ Commutative

≡ (True V Q) Negation

≡ (Q V True) Commutative

≡ True

The left side counts 5 marks and the right side counts 5 marks. The exact steps and number of them can differ.

1.5 Toon aan dat $((P \land Q) \lor R) \land (R \Rightarrow S) \models (P \lor S)$ deur van die Resolusie algoritme gebruik te maak. Wys jou redenasies en stappe volledig.

Show that $((P \land Q) \lor R) \land (R \Rightarrow S) \models (P \lor S)$ by using the Resolution algorithm. Show all your reasoning and steps clearly. [28]

Let KB = $((P \land Q) \lor R) \land (R \Rightarrow S)$ and $\alpha = (P \lor S)$

∴ Proof that KB \wedge ¬ α is unsatisfiable.

Convert KB $\wedge \neg \alpha$ to conjunctive normal form (CNF):

 $((P \land Q) \lor R) \land (R \Rightarrow S) \land \neg (P \lor S)$

 $\equiv ((P \land Q) \lor R) \land (R \Rightarrow S) \land (\neg P \land \neg S)$ De Morgan

 \equiv ((P \land Q) V R) \land (\neg R V S) \land (\neg P) \land (\neg S) Implication elimination

 $\equiv (\mathsf{R} \ \mathsf{V} \ (\mathsf{P} \ \mathsf{\Lambda} \ \mathsf{Q})) \ \mathsf{\Lambda} \ (\neg \mathsf{R} \ \mathsf{V} \ \mathsf{S}) \ \mathsf{\Lambda} \ (\neg \mathsf{P}) \ \mathsf{\Lambda} \ (\neg \mathsf{S})$ Association $\equiv (\mathsf{R} \ \mathsf{V} \ \mathsf{P}) \ \mathsf{\Lambda} \ (\mathsf{R} \ \mathsf{V} \ \mathsf{Q}) \ \mathsf{\Lambda} \ (\neg \mathsf{R} \ \mathsf{V} \ \mathsf{S}) \ \mathsf{\Lambda} \ (\neg \mathsf{P}) \ \mathsf{\Lambda} \ (\neg \mathsf{S})$ Association

ITRI626 2/3

2 mark for each correct clause produced = 10 marks. 5 marks for the conversion and 5 marks for the explanations on the right = 10 marks.

Number the clauses:

- 1) (R V P)
- 2) (R V Q)
- 3) (¬R ∨ S)
- 4) (¬P)
- 5) (¬S)

1 mark.

Perform resolution:

Resolution between (5) and (3) gives:

6) (¬R)

Resolution between (6) and (1) gives:

7) (P)

Resolution between (7) and (4) gives:

8) 🗆

6 marks for the application of the resolution rule.

 \therefore Since the empty clause was found, KB $\models \alpha$

$$\therefore ((P \land Q) \lor R) \land (R \Rightarrow S) \vDash (P \lor S)$$

1 mark for the final answer.

TOTAAL/TOTAL: 62

ITRI626 3/3