

(💎) 以下是主流激活函数的对比,包含数学表达式、特性、代码示例和图示,帮助您直观理解它们的差异和适用 场景:

#### 1. 函数对比总览

| 函数         | 公式                                              | 输出范围     | 优点          | 缺点              |
|------------|-------------------------------------------------|----------|-------------|-----------------|
| Sigmoid    | $\sigma(x)=rac{1}{1+e^{-x}}$                   | (0, 1)   | 概率解释直观      | 梯度              |
| Tanh       | $	anh(x)=rac{e^x-e^{-x}}{e^x+e^{-x}}$          | (-1, 1)  | 零中心化        | 梯度              |
| ReLU       | $\operatorname{ReLU}(x) = \max(0,x)$            | [0, +∞)  | 计算高效,缓解梯度消失 | 负区              |
| Leaky ReLU | $\max(0.01x,x)$                                 | (-∞, +∞) | 缓解死亡神经元     | 需诉              |
| ELU        | $x 	ext{ if } x > 0 	ext{ else } lpha(e^x - 1)$ | (-a, +∞) | 负区间平滑       | 计算              |
| GELU       | $x\Phi(x)$ ( $\Phi$ 为标准正态CDF)                   | (-∞, +∞) |             | ·计算<br><b>〉</b> |

#### 1. 函数对比总览

|                                     | 输出范围     | 优点                       | 缺点      | 死神经元风险 |
|-------------------------------------|----------|--------------------------|---------|--------|
| ī                                   | (0, 1)   | 概率解释直观                   | 梯度消失严重  | 无      |
| $\frac{e^x - e^{-x}}{e^x + e^{-x}}$ | (-1, 1)  | 零中心化                     | 梯度消失    | 无      |
| $\max(0,x)$                         | [0, +∞)  | 计算高效,缓解梯度消失              | 负区间死亡   | 高      |
| <i>x</i> )                          | (-∞, +∞) | 缓解死亡神经元                  | 需调斜率参数  | 低      |
| se $lpha(e^x-1)$                    | (-a, +∞) | 负区间平滑                    | 计算复杂度略高 | 极低     |
| ı标准正态CDF)                           | (-∞, +∞) | Transformer常用,近似ReLU+随机性 | 计算复杂    | 低      |

```
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-3, 3, 500)
functions = {
  "Sigmoid": lambda x: 1/(1+np.exp(-x)),
  "Tanh": np.tanh,
  "ReLU": lambda x: np.maximum(0, x),
  "Leaky ReLU": lambda x: np.maximum(0.01*x, x),
  "ELU": lambda x: np.where(x>0, x, 0.1*(np.exp(x)-1)),
  "GELU": lambda x: 0.5*x*(1 + np.tanh(np.sqrt(2/np.pi)*(x + lambda x))
     0.044715*x**3)))
plt.figure(figsize=(12, 6))
for name, func in functions.items():
  plt.plot(x, func(x), label=name, lw=2)
plt.title("Activation Functions Comparison")
plt.legend()
plt.grid()
plt.show()
```



i

3

-2

-3

-1





# 4. 梯度对比(反向传播影响)

| 函数         | 梯度公式                                         | 梯度范围      |
|------------|----------------------------------------------|-----------|
| Sigmoid    | $\sigma'(x) = \sigma(x)(1-\sigma(x))$        | (0, 0.25] |
| Tanh       | $1-\tanh^2(x)$                               | (0, 1]    |
| ReLU       | $1 	ext{ if } x > 0 	ext{ else } 0$          | {0, 1}    |
| Leaky ReLU | $1 	ext{ if } x > 0 	ext{ else } \alpha$     | {a, 1}    |
| ELU        | $1 	ext{ if } x > 0 	ext{ else } \alpha e^x$ | (a, 1]    |
| GELU       | $\Phi(x) + x\phi(x)$ ( $arphi$ 为PDF)         | (0, ~1.1) |

## 5. 选择指南

| 场景          | 推荐激活函数  | 理由         |
|-------------|---------|------------|
| 二分类输出层      | Sigmoid | 输出概率解释性强   |
| RNN/LSTM隐藏层 | Tanh    | 零中心化缓解梯度偏移 |

# 5. 选择指南

| 场景             | 推荐激活函数          | 理由          |
|----------------|-----------------|-------------|
| 二分类输出层         | Sigmoid         | 输出概率解释性强    |
| RNN/LSTM隐藏层    | Tanh            | 零中心化缓解梯度偏移  |
| CNN/全连接隐藏层     | ReLU/Leaky ReLU | 计算高效,缓解梯度消失 |
| 对抗性训练(GAN)     | Leaky ReLU      | 避免判别器过早死亡   |
| Transformer类模型 | GELU            | 平滑随机性提升泛化能力 |
| 自监督学习(如BERT)   | GELU            | 近似ReLU但更平滑  |
| 需要负区间响应        | ELU             | 负值处理更鲁棒     |

## 6. 最新趋势

- Transformer架构: 普遍采用GELU(如GPT、BERT)。
- 稀疏模型: ReLU变体(如Swish  $x\cdot\sigma(x)$ )在MobileNet中表现优异。
- 量子化感知训练:使用分段线性激活(如Hard-Sigmoid)便于部署。