Prof. Dr. Silvana Botti Dr. Luca Zambelli

MSc. Alessandro Ugolotti

Problems in Advanced Quantum Theory

Sheet 2

Problem 3: Polarization states

1+2+2(+2+2) points

We model the phase of a photon as a two-level system (q-bit) whose Hilbert space is spanned by a orthonormal basis of two states: $|1\rangle$ and $|2\rangle$. They correspond, for instance, to two orthogonal linear polarizations, with observable polarization operators:

$$P_1 = |1\rangle\langle 1|, \qquad P_2 = |2\rangle\langle 2|. \tag{1}$$

- 1. Provide an example of a normalized pure state for which the expectation value of both P_1 and P_2 equals 1/2, and a two-by-two matrix representation of the corresponding density-matrix operator in the given basis.
- 2. Find the density matrix for the most general normalized pure state with the properties specified in the previous task.
- 3. The state with partial polarization has the general representation

$$\rho = \frac{1}{2} \left(\mathbb{1} + \boldsymbol{\xi} \cdot \boldsymbol{\sigma} \right), \tag{2}$$

where $\mathbb{1}$ is the two-by-two identity matrix, $\boldsymbol{\sigma} = (\sigma_1, \sigma_2, \sigma_3)$ is the vector of Pauli matrices, and $\boldsymbol{\xi} \in \mathbb{R}^3$. For which $\boldsymbol{\xi}$ this state is a pure state?

Bonus questions.

- 4. For which $\boldsymbol{\xi}$ is $\langle P_1 \rangle = 1$? For which $\boldsymbol{\xi}$ is $\langle P_2 \rangle = 1$?
- 5. Define the states with circular polarizations:

$$|\pm\rangle = \frac{1}{2} (|1\rangle \pm i|2\rangle) .$$
 (3)

For which ξ is $\langle P_+ \rangle = 1$? For which ξ is $\langle P_- \rangle = 1$?

Problem 4: Canonical probability density: the harmonic oscillator 2+2+2+2 points

Consider a one dimensional quantum harmonic oscillator with mass m and frequency ω in a canonical ensemble such that the density matrix at some temperature T is given by

$$\hat{\rho}(T) = \sum_{n=0}^{\infty} e^{-\frac{E_n}{k_B T}} |n\rangle \langle n| \tag{4}$$

where $|n\rangle$ is the eigenstate of the Hamiltonian with energy $E_n = \hbar\omega \left(n + \frac{1}{2}\right)$. The partition function is given by the trace of the density-matrix operator

$$Z(T) = \text{Tr}[\hat{\rho}(T)]. \tag{5}$$

- 1. Knowing that the energy-eigenstate wave functions $\psi_n(x)$ are real, find the canonical probability density in configuration space P(x).
- 2. Show that, up to some normalization pre-factor C, the derivative of P(x) is

$$\frac{dP(x)}{dx} = C\sqrt{\frac{2m\omega}{\hbar}} \left(e^{-\frac{\hbar\omega}{k_B T}} - 1 \right) \sum_{n=0}^{\infty} e^{-\frac{E_n}{k_B T}} \sqrt{n+1} \,\psi_n(x) \psi_{n+1}(x) \,. \tag{6}$$

Hint: express the momentum operator \hat{p} in terms of the lowering \hat{a} and raising \hat{a}^{\dagger} operators.

3. Similarly show that, for the same constant as in the previous task,

$$xP(x) = C\sqrt{\frac{\hbar}{2m\omega}} \left(e^{-\frac{\hbar\omega}{k_BT}} + 1 \right) \sum_{n=0}^{\infty} e^{-\frac{E_n}{k_BT}} \sqrt{n+1} \,\psi_n(x) \psi_{n+1}(x) \,. \tag{7}$$

Hint: express the position operator \hat{x} in terms of \hat{a} and \hat{a}^{\dagger} .

4. Show that

$$\frac{1}{xP(x)}\frac{dP(x)}{dx} = -\frac{2m\omega}{\hbar}\tanh\left(\frac{\hbar\omega}{2k_BT}\right),\tag{8}$$

and integrate the previous differential equation in the variable x, i.e. solve for P(x).

Submission date: Thursday, 15 November 2018