мэи	ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 4	Утверждаю:
	Кафедра ВМСС	Зав.кафедрой
	Дисциплина МСПИ II часть	09.01.22 г.
	Факультет ИВТ	

- Эквивалентная схема однородной длинной линии и метод расчета режима в линии.
- 2. Радиоканал передачи информационных сигналов.

1. Эквивалентная схема однородной длинной линии и метод расчета режима в линии.

Эквивалентная схема модели линии (представление однородной длинной линии) — каскадное соединение бесконечного множества одинаковых Γ -образных четырехполюсников. В схеме r_0 — сопротивление прямого и обратного провода; L_0 — это рабочая индуктивность петли; g_0 — проводимость между проводами длинной линии; C_0 — ёмкость между проводами. r_0 dx—продольное сопротивление, L_0 dx— продольная индуктивность, g_0 dx— поперечная проводимость, C_0 dx— поперечная емкость.

Расчет режима в длинной линии направлен на определение мгновенных и действующих значений напряжения и тока вдоль длинной линии. Алгоритм расчета режима в длинной линии основан на применении уравнений состояния (уравнений Кирхгофа) к расчету эквивалентной схемы модели длинной линии.

Составим дифференциальные уравнения. Мгновенные значения напряжения и тока в начале выбранного элемента dx обозначим через u и i, а в конце этого элемента, т.е. в начале следующего элемента dx – через $u + \frac{\partial u}{\partial x} dx$ и $i + \frac{\partial i}{\partial x} dx$.

Для элемента линии длиной dx уравнения по второму закону Кирхгофа для контура a—b—c запишем в виде:

$$u - \left(u + \frac{\partial u}{\partial x}dx\right) = \left(r_0 dx\right)i + \left(L_0 dx\right)\frac{\partial i}{\partial x};$$

а по первому закону Кирхгофа для узла b в виде:

$$i - \left(i + \frac{\partial i}{\partial x}dx\right) = \left(g_0 dx\right) \left(u + \frac{\partial u}{\partial x}dx\right) + \left(C_0 dx\right) \left(u + \frac{\partial u}{\partial x}dx\right).$$

Приводим подобные члены, сокращаем на dx и учитываем, что $u\gg \frac{\partial u}{\partial x}dx$ и получаем:

$$\begin{cases} -\frac{\partial u}{\partial x} = r_0 i + L_0 \frac{\partial i}{\partial t}; \\ -\frac{\partial i}{\partial x} = g_0 u + C_0 \frac{\partial u}{\partial t}. \end{cases}$$

Рассмотрим установившийся режим в длинной линии при синусоидальном напряжении источника питания и перейдём в частотную область.

С учетом представления синусоидальной функции f(t), $u_L=L\frac{\partial i}{\partial t}$ и после сокращения на $e^{j\omega t}$ получаем: $U_{m\,L}e^{j\varphi_u}=j\omega LI_{m\,L}e^{j\varphi_i}$.

Аналогично из
$$u=rac{1}{C}\int i\ dt$$
 и ,сокращая на $e^{j\omega t}$, получаем: $U_{m\,L}e^{j\varphi_u}=rac{1}{j\omega C}I_{m\,L}e^{j\varphi_i}$

С учетом комплексных напряжения и тока, сопротивления и проводимости, получаем:

$$\begin{cases} -\frac{\partial \underline{U}}{\partial x} = \left(r_0 + j\omega L_0\right)\underline{I} = \underline{Z_0}\underline{I}; \\ -\frac{\partial \underline{I}}{\partial x} = \left(g_0 + j\omega C_0\right)\underline{U} = \underline{Y_0}\underline{U}. \end{cases}$$

Продифференцировав уравнения, приведенные выше, и заменив $\frac{\partial \underline{I}}{\partial x}$ и $\frac{\partial \underline{U}}{\partial x}$, получим:

$$\frac{\partial^2 \underline{U}}{\partial x^2} = \underline{Z_0} \, \underline{Y_0} \, \underline{U} \, ; (1)$$

$$\frac{\partial^2 \underline{I}}{\partial x^2} = \underline{Z_0} \, \underline{Y_0} \, \underline{I} \, .$$

Решение уравнения (1) имеет вид: $\underline{U} = \underline{A_1} e^{-\underline{\gamma}x} + \underline{A_2} \ e^{\underline{\gamma}x} = \underline{A_1} e^{-\alpha x} e^{-j\beta x} + \underline{A_2} \ e^{\alpha x} e^{j\beta x} \,,$ где $\underline{\gamma} = \alpha + \beta x = \sqrt{\underline{Z_0} \ \underline{Y_0}} = \sqrt{\Big(r_0 + j\omega L_0\Big)} (g_0 + j\omega C_0) \text{ и } \underline{A_1}, \underline{A_2} - \text{комплексные}$

постоянные интегрирования, которые находят из граничных условий на концах линии.

$$\underline{Z_B} = \sqrt{\frac{\underline{Z_0}}{\underline{Y_0}}} = Ze^{j\theta} = r_B + jx_B = \sqrt{\frac{Z_0}{Y_0}}e^{j\theta},$$

гле

$$\theta = \frac{1}{2} \left[arg \left(r_0 + j\omega L_0 \right) - arg \left(g_0 + j\omega C_0 \right) \right] = arctg \frac{\omega L_0}{r_0} - arctg \frac{\omega C_0}{g_0} = arctg \frac{\omega (g_0 L_0 - r_0 C_0)}{r_0 g_0 + \omega^2 L_0 C_0}$$

Из формулы тока равной:
$$\underline{I} = \frac{\underline{I}}{Z_B} \left(\underline{A_1} e^{-\underline{\gamma}x} + \underline{A_2} \ e^{\underline{\gamma}x} \right) = \frac{\underline{A_1}}{Z_B} e^{-\alpha x} e^{-j\beta x} + \frac{\underline{A_2}}{Z_B} \ e^{\alpha x} e^{j\beta x}.$$

Выражая $\underline{A_1}=A_1e^{j\Psi_1}$ и $\underline{A_2}=A_2e^{j\Psi_2}$, запишем мгновенные значения напряжения и тока:

$$u(x,t) = \sqrt{2}A_1e^{-\alpha x}\sin(\omega t - \beta x + \Psi_1) + \sqrt{2}A_2e^{\alpha x}\sin(\omega t + \beta x + \Psi_2).$$

$$u(x,t) = \sqrt{2} \frac{A_1}{Z_R} e^{-\alpha x} \sin(\omega t - \beta x + \Psi_1 - \theta) + \sqrt{2} \frac{A_2}{Z_R} e^{\alpha x} \sin(\omega t + \beta x + \Psi_2 - \theta).$$

Каждое из слагаемых в правой части в формулах выше можно рассматривать как электромагнитную волну, распространяющуюся («бегущие волны») в направлении возрастания или убывания координаты х. Первые слагаемые в обеих формулах соответствуют волне распространяющейся в направлении оси х (прямая волна), а вторые слагаемые — описывают волну распространяющуюся (бегущую) в обратном направлении (обратная волна).

2. Радиоканал передачи информационных сигналов.

Радиоканал передачи информационных сигналов формируется на основе радиолинии, состоящей из передатчика, заканчивающегося передающей антенной, связанной с свободным пространства распространения электромагнитной волны, приемной антенны и узлов усиления и обработки сигналов, подключенных к приемной антенне.

Амплитуды излучаемых полей в дальней зоне уменьшаются обратно пропорционально квадрату расстояния от излучателя, то есть пропорционально $\frac{1}{r^2}$, что соответствует делению передаваемой мощности на площадь сферической поверхности $4\pi r^2$. Таким образом, в первом приближении уровень сигнала на принимающем устройстве можно оценить по следующей формуле:

$$P_{np} = \frac{P_{nep}}{4\pi r^2} S$$

Здесь:

 P_{nep} – мощность, излучаемая передающей антенной

 P_{np} – мощность, принимаемая антенной приемника

r – расстояние между антеннами

S – эффективная «площадь» принимающей антенны

Данная формула является верной только в первом приближении, поскольку не учитывает множество факторов, таких как, например, климатические и погодные условия передающей среды. Также она не содержит информации и о взаимосвязи эффективной площади приемной

антенны с ее конструктивными особенностями. Все эти детали надо учитывать при реализации алгоритма расчета радиолинии, учитывающего все этапы ее проектирования.		