Assignment Project Exam Help Perceptron and Kernelization

Add WeChat powcoder

Last time...

- Generative vs. Discriminative Classifiers
- Nearest Neighbor (NN) classification Assignment Project Exam Help
- Optimality of k-NN powcoder.com
- Coping with drawbatkwelchild powcoder
- Decision Trees
- The notion of overfitting in machine learning

A Closer Look Classification

Linear Decision Boundary

Assume binary classification $y = \{-1, +1\}$ (What happens in multi-class case?)

Learning Linear Decision Boundaries

g = decision boundary

d=1 case:
$$g(x) = w_1 x + w_0 = 0$$

Assignment Project Exam Help ral: $g(\vec{x}) = \vec{w} \cdot \vec{x} + w_0 = 0$

general:

$$g(\vec{x}) = \vec{w} \cdot \vec{x} + w_0 = 0$$

https://powcoder.com

$$f = linear classifier$$

Add: We that power of if
$$g(\vec{x}) < 0$$

$$= \operatorname{sign}(\vec{w} \cdot \vec{x} + w_0)$$

of parameters to learn in \mathbb{R}^d ?

Dealing with w_o

The Linear Classifier

Can Be Combined to Make a Network

How to Learn the Weights?

Given labeled training data (bias included): $(\vec{x}_1, y_1), (\vec{x}_2, y_2), \dots (\vec{x}_n, y_n)$

Want: \vec{w} , which minimizes the training error, i.e.

$$\arg\min_{\vec{w}} \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \underbrace{\left[\operatorname{sign}(\vec{w} \cdot \vec{x}_i) \neq y_i \right]}_{i=1} \text{ ect Exam Help}$$

$$= \arg\min_{\vec{w}} \frac{\text{htps://powcoder-com}}{\text{Add WeChat powcoder}} \mathbf{1}[\vec{x}_i \cdot \vec{w} \ge 0]$$

How do we **minimize**?

 Cannot use the standard technique (take derivate and examine the stationary points). Why?

Unfortunately: NP-hard to solve or even approximate!

Finding Weights (Relaxed Assumptions)

Can we approximate the weights if we make reasonable assumptions?

https://powcoder.com

What if the training data is linearly separable? Add WeChat powcoder

Linear Separability

Say there is a **linear** decision boundary which can **perfectly separate** the training data

Finding Weights

Given: labeled training data $S = (\vec{x}_1, y_1), (\vec{x}_2, y_2), \dots (\vec{x}_n, y_n)$

Want to determine: is there a \vec{w} which satisfies $y_i(\vec{w} \cdot \vec{x}_i) \geq 0$ (for all i) Assignment Project Exam Help i.e., is the training data linearly separable?

https://powcoder.com

Since there are d+1 variables and |S| constraints, it is possible to solve efficiently it via a (constraint) wet or interest in programmer. (How?)

Can find it in a much **simpler** way!

The Perceptron Algorithm

Given: labelled training data $S = (\vec{x}_1, y_1), (\vec{x}_2, y_2), \dots (\vec{x}_n, y_n)$

Initialize
$$\vec{w}^{(0)} = 0$$

For $t = 1,2,3,...$ Assignment Project Exam Help

If exists $(\vec{x},y) \in S$ https://powcoder.com

 $\vec{w}^{(t)} \leftarrow \begin{cases} \vec{w}^{(t-1)} + \vec{x} d \vec{i}$ we char powcoder+ $y\vec{x}$

(terminate when no such training sample exists)

Perceptron Algorithm: Geometry

Perceptron Algorithm: Geometry

The Perceptron Algorithm

Input: labelled training data $S = (\vec{x}_1, y_1), (\vec{x}_2, y_2), \dots (\vec{x}_n, y_n)$

Initialize
$$\vec{w}^{(0)} = 0$$

For t = 1,2,3,... Assignment Project Exam Help

If exists $(\vec{x}, y) \in S$ https://powcoder.com

$$\vec{w}^{(t)} \leftarrow \begin{cases} \vec{w}^{(t-1)} + \vec{x} d \vec{d}_{if} \vec{w} = \vec{c}_{i} \vec{d}_{if} \vec{w} \\ \vec{w}^{(t-1)} - \vec{x} \vec{d}_{if} \vec{w} = \vec{c}_{i} \vec{d}_{i} \vec{d}_{if} \vec{w} = \vec{c}_{i} \vec{d}_{i} \vec{d}_{if} \vec{w} = \vec{c}_{i} \vec{d}_{i} \vec{$$

(terminate when no such training sample exists)

Question: Does the perceptron algorithm terminates? If so, when?

Perceptron Algorithm: Guarantee

Theorem (Perceptron mistake bound):

Assume there is a (unit length) \vec{w}^* that can separate the training sample S with margin γ

Let R =
$$\max_{\vec{x} \in S} ||\vec{x}||$$
 Assignment Project Exam Help

Then, the perceptron algorithm with we keel at most
$$T:=\left(\frac{R}{\gamma}\right)^2$$
 mistakes.

Add WeChat powcoder

Thus, the algorithm will terminate in T rounds!

umm... but what about the generalization or the test error?

Proof

Key quantity to analyze:

How far is $\vec{w}^{(t)}$ from \vec{w}^* ?

Suppose the perceptson glassithmphakes a mistake in it pation t, then

$$\vec{w}^{(t)} \cdot \vec{w}^* = (\vec{w} \text{https://powcoder.com}$$
 $\geq \vec{w}^{(t)} A^1 dd\vec{w} \text{WeChat powcoder}$

$$\|\vec{w}^{(t)}\|^2 = \|\vec{w}^{(t-1)} + y\vec{x}\|^2$$

$$= \|\vec{w}^{(t-1)}\|^2 + 2y(\vec{w}^{(t-1)} \cdot \vec{x}) + \|y\vec{x}\|^2$$

$$\leq \|\vec{w}^{(t-1)}\|^2 + R^2$$

Proof (contd.)

for all iterations t

$$ec{w}^{(t)} \cdot ec{w}^* \geq ec{w}^{(t-1)} \cdot ec{w}^* + \gamma$$

$$\| \vec{w}^{(t)} \|_{\mathbf{Assignment}}^2 \overset{<}{\mathbf{Project}} \overset{||\vec{w}^{(t-1)}||^2}{\mathbf{Exam Help}}$$

So, after T rounds

https://powcoder.com

$$T\gamma \leq \vec{w}^{(T)} Add$$
 We Chat powcoder

Therefore:
$$T \leq \left(\frac{R}{\gamma}\right)^2$$

What Good is a Mistake Bound?

• It's an upper bound on the number of mistakes made by an *online* algorithm on an arbitrary sequence of examples Help

i.e. no i.i.d. assumption and not loading all the data at once! https://powcoder.com

Add WeChat powcoder

 Online algorithms with small mistake bounds can be used to develop classifiers with good generalization error!

Other Simple Variants on the Perceptron

Voted perceptron

Average percentsignment Project Exam Help

Winnow

https://powcoder.com

Add WeChat powcoder

...

Linear Classification

Assignment Project Exam Help

https://powcoder.com Linear classification simple,

but... when is real-Andd (We Capatropoinwated) tinearly separable?

What about non-linear decision boundaries?

Non linear decision boundaries are common:

Generalizing Linear Classification

Suppose we have the following training data:

separable via a circular decision boundary

not linear in \vec{x} !

But g is Linear in some Space!

$$g(\vec{x}) = w_1 x_1^2 + w_2 x_2^2 + w_0$$
 non linear in $x_1 \& x_2$

$$= w_1 \chi_1 + w_2 \chi_2 + w_0$$
 linear in $\chi_1 \& \chi_2$!
Assignment Project Exam Help

https://powcoder.com So if we apply a feature transformation on our data:

Add WeChat powcoder
$$\phi(x_1, x_2) \mapsto (x_1^2, x_2^2)$$

Then g becomes linear in ϕ - transformed feature space!

Feature Transformation Geometrically

Feature Transform for Quadratic Boundaries

R² case: (generic quadratic boundary)

$$g(\vec{x}) = w_1 x_1^2 + w_2 x_2^2 + w_3 x_1 x_2 + w_4 x_1 + w_5 x_2 + w_0$$

$$= \sum_{p+q \le 2} w_1^{p,q} x_1^p x_2^q$$
Project Exam Help

feature transhtipatiopowcoder.com

$$\overset{\phi(x_1,x_2)}{\text{Add}}\overset{\psi(x_1,x_2)}{\text{WeChat powcoder}}\overset{x_1,x_2,x_1,x_2,x_1}{\text{Nowcoder}}$$

R^d case: (generic quadratic boundary)

$$g(ec{x}) = \sum_{i,j=1}^d \sum_{p+q \leq 2} w_{i,j}^{p,q} \ x_i^p x_j^q$$
 This inte

This captures all pairwise interactions between variables

feature transformation:

$$\phi(x_1, x_2) \mapsto (x_1^2, x_2^2, \dots, x_d^2, x_1 x_2, \dots, x_{d-1} x_d, x_1, x_2, \dots, x_d, 1)$$

Data is Linearly Separable in some Space!

Theorem:

Given n distinct points $S = \vec{x}_1, \vec{x}_2, ..., \vec{x}_n$ there exists a feature transform such that for any labelling of S is linearly separable in the transformed spacewooder.com

Add WeChat powcoder

(feature transforms are sometimes called the Kernel transforms)

the proof is almost trivial!

Proof

Given n points, consider the mapping into \mathbf{R}^n :

Then, the decision boundary induced by linear weighting $\vec{w}^* = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$ perfectly separates the input data!

Transforming the Data into Kernel Space

Pros:

Any problem becomes linearly separable!

Assignment Project Exam Help

Cons:

What about complitation? Generic kernel transform is typically $\Omega(n)$ Add WeChat powcoder

Some useful kernel transforms map the input space into **infinite dimensional space**!

What about model complexity?

Generalization performance typically degrades with model complexity

The Kernel Trick (to Deal with Computation)

Explicitly working in generic Kernel space $\phi(\vec{x}_i)$ takes time $\Omega(n)$

But the dot product between two data points in kernel space can be computed relatively quickly

Assignment Project Exam Helpe fast

Examples:

https://powcoder.com

• quadratic kernel transform for data in **R**^d explicit transform Add WeChat powcoder

 $\vec{x} \mapsto (x_1^2, \dots, x_d^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_{d-1}x_d, \sqrt{2}x_1, \dots, \sqrt{2}x_d, 1)$

dot products O(d) $(1 + \vec{x}_i \cdot \vec{x}_j)^2$

• RBF (radial basis function) kernel transform for data in \mathbf{R}^d

explicit transform infinite dimension! $\vec{x} \mapsto \left(\exp(-\|\vec{x} - \alpha\|^2)\right)_{\alpha \in \mathbb{R}^d}$ dot products O(d) $\exp(-\|\vec{x}_i - \vec{x}_i\|^2)$

The Kernel Trick

The trick is to perform classification in such a way that it only accesses the data in terms of dot products (so it can be done quicker)

Example: the `kernel gengeptrop roject Exam Help

Recall:
$$\vec{w}^{(t)} \leftarrow \vec{\mathbf{h}} \overset{(t-1)}{\mathsf{ttps}} : \forall \vec{p} \overset{\vec{o}}{\mathsf{owcoder.com}}$$

Recall:
$$\vec{w}^{(t)} \leftarrow \vec{\text{phttps://prowcoder.com}}$$

Equivalently $\vec{w} = \sum_{k=1}^{n} \alpha_k y_k \vec{x}$ Well-frimes mistake was made on x_k

Thus, classification becomes

$$f(\vec{x}) := \operatorname{sign}(\vec{w} \cdot \vec{x}) = \operatorname{sign}\left(\vec{x} \cdot \sum_{k=1}^{n} \alpha_k y_k \vec{x}_k\right) = \operatorname{sign}\left(\sum_{k=1}^{n} \alpha_k y_k (\vec{x}_k \cdot \vec{x})\right)$$

Only accessing data in terms of dot products!

The Kernel Trick: for Perceptron

classification in original space:

$$f(\vec{x}) = \operatorname{sign}\left(\sum_{k=1}^{n} \alpha_k y_k (\vec{x}_k \cdot \vec{x})\right)$$

If we were working in the transformed Kernel space, it would have been

Assignment Project Exam
$$\sum_{k=1}^{n} py_k (\phi(\vec{x}_k) \cdot \phi(\vec{x}))$$

https://powcoder.com

Algorithm:

Add WeChat powcoder

Initialize
$$\vec{\alpha} = 0$$

For t = 1,2,3,..., T If exists
$$(\vec{x}_i,y_i) \in S$$
 s.t. $\operatorname{sign} \Big(\sum_{k=1}^n \alpha_k y_k \big(\phi(\vec{x}_k) \cdot \phi(\vec{x}_i) \big) \Big) \neq y_i$ $\alpha_i \leftarrow \alpha_i + 1$

implicitly working in non-linear kernel space!

The Kernel Trick: Significance

Can be replaced by any user-powcoder defined measure of similarity!

So, we can work in any user-defined non-linear space **implicitly** without the potentially heavy computational cost

What We Learned...

- Decision boundaries for classification
- Linear decision boundary (linear classification) Assignment Project Exam Help
- The Perceptron algorithm https://powcoder.com
- Mistake bound fording chatronwooder
- Generalizing to non-linear boundaries (via Kernel space)
- Problems become linear in Kernel space
- The Kernel trick to speed up computation

Questions?

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Next time...

Support Vector Massignen Shi Methoject Exam Help

https://powcoder.com

Add WeChat powcoder