

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی بهار ۱۴۰۲

یادگیری ویژگی

Feature Learning

شبكههاى عصبى

• یک شبکه عصبی چندلایه شامل تعدادی لایه خطی و توابع فعالسازی غیرخطی است

- شبكه ۲ لايه:

$$y = f(W x)$$

$$y = f_2(W_2 f_1(W_1 x))$$

$$y = f_3 (W_3 f_2(W_2 f_1(W_1 x)))$$

توابع فعالسازى

• به دلیل خطی بودن ضرب داخلی، وجود توابع فعالسازی غیرخطی ضروری است

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

ReLU

 $\max(0,x)$

tanh

tanh(x)

Leaky ReLU

 $\max(0.1x, x)$

شبکههای عصبی

28 x 28 784 pixels

شبكههاى عصبى عميق

- آیا یک شبکه دارای لایههای زیاد می تواند منجر به بهبود طبقه بندی تصویر شود؟
- مهمترین ایراد این ساختار در پردازش تصویر آن است که اطلاعات همسایگی را لحاظ نمی کند
 - به عبارت دیگر، دانش بدست آمده را میان پیکسلهای تصویر به اشتراک نمی گذارد
- ایده اصلی در پیشرفت یادگیری عمیق در حوزه بینایی کامپیوتر استفاده از لایههای کانولوشنی است

شبكههاى عصبى كانولوشني

Convolutional Neural Networks

كانولوشن

- در لایههای کاملا متصل، مقدار هر نورون در لایه خروجی وابسته به تمام نورونها در لایه قبل است
- کانولوشن یکبعدی مشابه با لایه کاملا متصل است اما هر نورون خروجی تنها به بخشی از نورونهای لایه ورودی متصل است

• در پردازش تصاویر از کانولوشن دوبعدی استفاده میشود

30	3	22	1	0
0_2	0_2	1_{0}	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

مثال: عملگر Sobel

+1	0	-1
+2	0	-2
+1	0	-1

+1	+2	+1
0	0	0
-1	-2	-1

لايه كانولوشني

خروجی لایه کانولوشنی حاصل فیلتر کردن ماتریس ورودی با فیلتر مربوطه است که به صورت مکانی بر روی آن لغزانده میشود

ورودی یک ماتریس ۳ بعدی است

5x5x3 filter

لایه کانولوشنی

خروجی لایه کانولوشنی حاصل فیلتر کردن ماتریس ورودی با فیلتر مربوطه است که به صورت مکانی بر روی آن لغزانده میشود

ورودی یک ماتریس ۳ بعدی است

خروجی برابر با ضرب داخلی بین فیلتر و همسایگی مربوطه برای هر پیکسل است که معادل با ۷۵ ضرب و جمع است w^Tx+b

لایه کانولوشنی

خروجی لایه کانولوشنی حاصل فیلتر کردن ماتریس ورودی با فیلتر مربوطه است که به صورت مکانی بر روی آن لغزانده میشود

ورودی یک ماتریس ۳ بعدی است

لايه كانولوشني

• البته یک فیلتر می تواند تنها یک مشخصه از تصویر را استخراج نماید

ورودی یک ماتریس ۳ بعدی است

لايه كانولوشني

• البته یک فیلتر می تواند تنها یک مشخصه از تصویر را استخراج نماید

ورودی یک ماتریس ۳ بعدی است

نقشههای فعالیت

لایه کانولوشنی در Keras

filters: Integer, the dimensionality of the output space

kernel_size: Specifying the height and width of the 2D convolution window

activation: Activation function to use. If you don't specify anything, no

activation is applied (see keras.activations)