CVPR 2014 Tutorial

Deep Learning for Computer Vision

Graham Taylor (University of Guelph)
Marc' Aurelio Ranzato (Facebook)
Honglak Lee (University of Michigan)

Tutorial Overview

https://sites.google.com/site/deeplearningcvpr2014

Basics

- Introduction
- Supervised Learning
- Unsupervised Learning
- Libraries
 - Torch7
 - Theano/Pylearn2
 - CAFFE
- Advanced topics
 - Object detection
 - Regression methods for localization
 - Large scale classification and GPU parallelization
 - Learning transformations from videos
 - Multimodal and multi task learning
 - Structured prediction

- Honglak Lee
- Marc'Aurelio Ranzato
- Graham Taylor
- Marc'Aurelio Ranzato
- Ian Goodfellow
- Yangqing Jia
- Pierre Sermanet
- Alex Toshev
- Alex Krizhevsky
- Roland Memisevic
- Honglak Lee
- Yann LeCun

Traditional Recognition Approach

Features are not learned

feature representation (hand-crafted)

Learning Algorithm (e.g., SVM)

So The second se

Low-level vision features (edges, SIFT, HOG, etc.)

Object detection / classification

Computer vision features

and many others:

SURF, MSER, LBP, Color-SIFT, Color histogram, GLOH,

Motivation

- Features are key to recent progress in recognition
- Multitude of hand-designed features currently in use
- Where next? Better classifiers? building better features?

Felzenszwalb, Girshick, McAllester and Ramanan, PAMI 2007

Yan & Huang
(Winner of PASCAL 2010 classification competition)

What Limits Current Performance?

- Ablation studies on Deformable Parts Model
 - Felzenszwalb, Girshick, McAllester, Ramanan, PAMI'10
- Replace each part with humans (Amazon Turk):

Parikh & Zitnick, CVPR'10

- Also removal of part deformations has small (<2%) effect.
 - Are "Deformable Parts" necessary in the Deformable Parts Model? Divvala, Hebert, Efros, ECCV 2012

Mid-Level Representations

Mid-level cues

Difficult to hand-engineer -> What about learning them?

- Learn hierarchy
- All the way from pixels → classifier
- One layer extracts features from output of previous layer

Train all layers jointly

1. Learn **useful higher-level features** from images

Input data

Lee et al., ICML 2009;

CACM 2011

Feature representation 3rd layer "Objects" 2nd layer "Object parts" 1st layer "Edges" **Pixels**

2. Fill in representation gap in recognition

- Better performance
- Other domains (unclear how to hand engineer):
 - Kinect
 - Video
 - Multi spectral

- Feature computation time
 - Dozens of features now regularly used [e.g., MKL]
 - Getting prohibitive for large datasets (10's sec /image)

Approaches to learning features

- Supervised Learning
 - End-to-end learning of deep architectures (e.g., deep neural networks) with <u>back-propagation</u>
 - Works well when the amounts of labels is large
 - Structure of the model is important (e.g. convolutional structure)
- Unsupervised Learning
 - Learn <u>statistical structure or dependencies</u> of the data from unlabeled data
 - Layer-wise training
 - Useful when the amount of labels is not large

Taxonomy of feature learning methods **Supervised**

- Support Vector Machine
- Logistic Regression
- Perceptron

- Deep Neural Net
- Convolutional Neural Net
- Recurrent Neural Net

Shallow

- Denoising Autoencoder
- Restricted Boltzmann machines*
- Sparse coding*

Deep

- Deep (stacked) Denoising Autoencoder*
- Deep Belief Nets*
 - Deep Boltzmann machines*
 - Hierarchical Sparse Coding*

Unsupervised

* supervised version exists

Supervised Learning

Example: Convolutional Neural Networks

- LeCun et al. 1989
- Neural network with specialized connectivity structure

Convolutional Neural Networks

- Feed-forward:
 - Convolve input
 - Non-linearity (rectified linear)
 - Pooling (local max)
- Supervised
- Train convolutional filters by back-propagating classification error

LeCun et al. 1998

C1: feature maps 6@28x28

C3: f. maps 16@10x10
S4: f. maps 16@5x5
S2: f. maps 6@14x14

C5: layer F6: layer OUTPUT 84

Full connection Gaussian connections

Convolutions Subsampling Full connection

Components of Each Layer

Filtering

Convolutional

- Dependencies are local
- Translation equivariance
- Tied filter weights (few params)
- Stride 1,2,... (faster, less mem.)

Input

Feature Map

Non-Linearity

- Non-linearity
 - Per-element (independen
 - Tanh
 - Sigmoid: 1/(1+exp(-x))
 - Rectified linear
 - Simplifies backprop
 - Makes learning faster
 - Avoids saturation issues
 - → Preferred option

×

Pooling

- Spatial Pooling
 - Non-overlapping / overlapping regions
 - Sum or max
 - Boureau et al. ICML'10 for theoretical analysis

Normalization

- Contrast normalization (across feature maps)
 - Local mean = 0, local std. = 1, "Local" → 7x7 Gaussian
 - Equalizes the features maps

Feature Maps

Feature Maps
After Contrast Normalization

Compare: SIFT Descriptor

Applications

- Handwritten text/digits
 - MNIST (0.17% error [Ciresan et al. 2011])
 - Arabic & Chinese [Ciresan et al. 2012]

- Simpler recognition benchmarks
 - CIFAR-10 (9.3% error [Wan et al. 2013])
 - Traffic sign recognition
 - 0.56% error vs 1.16% for humans [Ciresan et al. 2011]

Application: ImageNet

[Deng et al. CVPR 2009]

- ~14 million labeled images, 20k classes
- Images gathered from Internet
- Human labels via Amazon Turk

Krizhevsky et al. [NIPS 2012]

- Same model as LeCun'98 but:
 - Bigger model (8 layers)
 - More data (10⁶ vs 10³ images)
 - GPU implementation (50x speedup over CPU)
 - Better regularization (DropOut)

- 7 hidden layers, 650,000 neurons, 60,000,000 parameters
- Trained on 2 GPUs for a week

ImageNet Classification 2012

- Krizhevsky et al. -- 16.4% error (top-5)
- Next best (non-convnet) 26.2% error

ImageNet Classification 2013 Results

http://www.image-net.org/challenges/LSVRC/2013/results.php

Feature Generalization

- Zeiler & Fergus, arXiv 1311.2901, 2013
- Girshick et al. CVPR'14
- Oquab et al. CVPR'14
- Razavian et al. arXiv 1403.6382, 2014
- Pre-train on Imagnet

Retrain classifier on Caltech256

From Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, arXiv 1311.2901, 2013

(Caltech-101,256)

(Caltech-101, SunS)

(VOC 2012)

(lots of datasets)

Bo, Ren, Fox, CVPR 2013 Sohn, Jung, Lee, Hero, ICCV 2011

Industry Deployment

- Used in Facebook, Google, Microsoft
- Image Recognition, Speech Recognition,
- Fast at test time

Taigman et al. DeepFace: Closing the Gap to Human-Level Performance in Face Verification, CVPR'14

Unsupervised Learning

Unsupervised Learning

Model distribution of input data

Can use unlabeled data (unlimited)

 Can be refined with standard supervised techniques (e.g. backprop)

Useful when the amount of labels is small

Unsupervised Learning

- Main idea: model distribution of input data
 - Reconstruction error + regularizer (sparsity, denoising, etc.)
 - Log-likelihood of data
- Models
 - Basic: PCA, KMeans
 - Denoising autoencoders
 - Sparse autoencoders
 - Restricted Boltzmann machines
 - Sparse coding
 - Independent Component Analysis
 - **—** ...

Example: Auto-Encoder

Bengio et al., NIPS'07; Vincent et al., ICML'08

Stacked Auto-Encoders

At Test Time

Learning basis vectors for images

[Olshausen & Field, Nature 1996, Ranzato et al., NIPS 2007; Lee et al., NIPS 2007; Lee et al., NIPS 2008; Jarret et al., CVPR 2009; etc.]

Higher layer (Combinations of edges)

First layer (edges)

Input image (pixels)

[Olshausen & Field, Nature 1996, Ranzato et al., NIPS 2007; Lee et al., NIPS 2007; Lee et al., NIPS 2008; Jarret et al., CVPR 2009; etc.]

Learning object representations

Learning objects and parts in images

- Large image patches contain interesting higher-level structures.
 - E.g., object parts and full objects

Unsupervised learning of feature hierarchy

H. Lee, R. Grosse, R. Ranganath, A. Ng, ICML 2009; Comm. ACM 2011

Unsupervised learning of feature hierarchy

H. Lee, R. Grosse, R. Ranganath, A. Ng, ICML 2009; Comm. ACM 2011

Unsupervised learning from natural images

Second layer bases

contours, corners, arcs, surface boundaries

First layer bases localized, oriented edges

Related work: Zeiler et al., CVPR'10, ICCV'11; Kavuckuglou et al., NIPS'09

Learning object-part decomposition

Applications:

- Object recognition (Lee et al., ICML'09, Sohn et al., ICCV'11; Sohn et al., ICML'13)
- Verification (Huang et al., CVPR'12)
- Image alignment (Huang et al., NIPS'12)

Cf. Convnet [Krizhevsky et al., 2012]; Deconvnet [Zeiler et al., CVPR 2010]

Large-scale unsupervised learning

- Large-scale deep autoencoder (three layers)
- Each stage consists of
 - local filtering
 - L2 pooling
 - local contrast normalization
- Training jointly the three layers by:
 - reconstructing the input of each layer
 - sparsity on the code

Le et al. "Building high-level features using large-scale unsupervised learning, 2011

Large-scale unsupervised learning

- Large-scale deep autoencoder
- Discovers high-level features from large amounts of unlabeled data

 Achieved state-of-the-art performance on Imagenet classification 10k categories

Le et al. "Building high-level features using large-scale unsupervised learning, 2011

Supervised vs. Unsupervised

- Supervised models
 - Work very well with large amounts of labels (e.g., imagenet)
 - Convolutional structure is important

- Unsupervised models
 - Work well given limited amounts of labels.
 - Promise of exploiting virtually unlimited amount of data without need of labeling

Summary

- Deep Learning of Feature Hierarchies
 - showing great promises for computer vision problems
- More details will be presented later:
 - Basics: Supervised and Unsupervised
 - Libraries: Torch7, Theano/Pylearn2, CAFFE
 - Advanced topics:
 - Object detection, localization, structured output prediction, learning from videos, multimodal/multitask learning, structured output prediction

Tutorial Overview

https://sites.google.com/site/deeplearningcvpr2014

Basics

- Introduction
- Supervised Learning
- Unsupervised Learning

Libraries

- Torch7
- Theano/Pylearn2
- CAFFE

Advanced topics

- Object detection
- Regression methods for localization
- Large scale classification and GPU parallelization
- Learning transformations from videos
- Multimodal and multi task learning
- Structured prediction

- Honglak Lee
- Marc'Aurelio Ranzato
- Graham Taylor
- Marc'Aurelio Ranzato
- Ian Goodfellow
- Yangqing Jia
- Pierre Sermanet
- Alex Toshev
- Alex Krizhevsky
- Roland Memisevic
- Honglak Lee
- Yann LeCun