Class 14

Yu-Chia Huang (PID: A59026739)

Table of contents

Adding gene annotation	11
Gene set analysis/Pathway analysis Gene Ontology	13 16
##Section 1. Differential Expression Analysis	
The data for for hands-on session comes from GEO entry: GSE37704, which is associate the following publication:	ed with
• Trapnell C, Hendrickson DG, Sauvageau M, Goff L et al. "Differential analysis regulation at transcript resolution with RNA-seq". Nat Biotechnol 2013 Jan;31(1 PMID: 23222703	_
The authors report on differential analysis of lung fibroblasts in response to loss of th opmental transcription factor HOXA1.	e devel-
#Data Import	
library(DESeq2)	
Loading required package: S4Vectors	
Loading required package: stats4	
Loading required package: BiocGenerics	
Attaching package: 'BiocGenerics'	

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

findMatches

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Attaching package: 'IRanges'

The following object is masked from 'package:grDevices':

windows

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

 ${\tt Loading\ required\ package:\ MatrixGenerics}$

Loading required package: matrixStats

Warning: package 'matrixStats' was built under R version 4.3.2

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.

Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

rowMedians

The following objects are masked from 'package:matrixStats':

anyMissing, rowMedians

```
metadata <- read.csv("GSE37704_metadata.csv")
counts <- read.csv("GSE37704_featurecounts.csv", row.names = 1)
head(counts)</pre>
```

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				

ENSG00000279457 46
ENSG00000278566 0
ENSG00000273547 0
ENSG00000187634 258

```
colData <- read.csv("GSE37704_metadata.csv", row.names=1)
head(colData)</pre>
```

```
condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369 hoxa1_kd
SRR493370 hoxa1_kd
SRR493371 hoxa1_kd
```

```
colnames(counts)
```

- [1] "length" "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" [7] "SRR493371"
 - Q. Complete the code below to remove the troublesome first column from countData

```
counts <- as.matrix(counts[,-1])
head(counts)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

metadata

```
id condition
1 SRR493366 control_sirna
2 SRR493367 control_sirna
3 SRR493368 control_sirna
4 SRR493369 hoxa1_kd
5 SRR493370 hoxa1_kd
6 SRR493371 hoxa1_kd
```

Q. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

Tip: What will rowSums() of counts return and how could you use it in this context? Remove any genes with zero counts in all sample.

```
nrow(counts)
```

[1] 19808

- Find the rowSums() this will be zero for any genes with no count data
- Find the zero sum genes
- Remove them before doing our DESeq

```
to.rm.ind <- rowSums(counts) == 0
counts <- counts[!to.rm.ind,]
head(counts)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

```
nrow(counts)
```

```
[1] 15975
```

#Data Tifying

#DESeq setup and analysis

##Running DESeq2

dds <- DESeqDataSetFromMatrix(countData = counts, colData = colData, design = ~condition)</pre>

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds <- DESeq(dds)
```

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

res <- results(dds) head(res)</pre>

 $\log 2$ fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 6 columns

	baseMean	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.2296	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.1881	-0.6927205	0.0548465	-12.630158	1.43990e-36
ENSG00000187961	209.6379	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.9798	0.5428105	0.5215598	1.040744	2.97994e-01
	pac	lj			
	<numerio< td=""><td>c></td><td></td><td></td><td></td></numerio<>	c>			
ENSG00000279457	6.86555e-0	01			
ENSG00000187634	5.15718e-0	03			
ENSG00000188976	1.76549e-3	35			
ENSG00000187961	1.13413e-0	07			
ENSG00000187583	9.19031e-0	01			
ENSG00000187642	4.03379e-0	01			

dds

class: DESeqDataSet

dim: 15975 6

metadata(1): version

assays(4): counts mu H cooks

rownames(15975): ENSG00000279457 ENSG00000187634 ... ENSG00000276345

ENSG00000271254

 $\label{eq:condition} rowData\ names(22):\ baseMean\ baseVar\ \dots\ deviance\ maxCooks\\ colnames(6):\ SRR493366\ SRR493367\ \dots\ SRR493370\ SRR493371$

colData names(2): condition sizeFactor

Q. Call the summary() function on your results to get a sense of how many genes are up or down-regulated at the default 0.1 p-value cutoff.

summary(res)

```
out of 15975 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)
                  : 4349, 27%
LFC < 0 (down)
                  : 4396, 28%
outliers [1]
                  : 0, 0%
low counts [2]
                  : 1237, 7.7%
(mean count < 0)</pre>
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
#Add annotation data
#Side-note: QZ with PCA
  pc <- prcomp(t(counts), scale=T)</pre>
#Save my results
  summary(pc)
Importance of components:
                                          PC3
                         PC1
                                 PC2
                                                   PC4
                                                           PC5
                                                                     PC6
Standard deviation
                      87.7211 73.3196 32.89604 31.15094 29.18417 7.373e-13
Proportion of Variance 0.4817 0.3365 0.06774 0.06074 0.05332 0.000e+00
Cumulative Proportion
                       plot(pc$x[,1], pc$x[,2], col = as.factor(metadata$condition), pch = 15)
```


Visualization

plot(res\$log2FoldChange, -log(res\$padj))

Let;s add some color and annotation data to this plot.

Q. Improve this plot by completing the below code, which adds color and axis labels

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01
# and absolute fold change more than 2
inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log()</pre>
```


Adding gene annotation

Q. Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

```
library(AnnotationDbi)
```

Warning: package 'AnnotationDbi' was built under R version 4.3.2

```
library(org.Hs.eg.db)
```

```
columns(org.Hs.eg.db)
```

[1]	"ACCNUM"	"ALIAS"	"ENSEMBL"	"ENSEMBLPROT"	"ENSEMBLTRANS"
[6]	"ENTREZID"	"ENZYME"	"EVIDENCE"	"EVIDENCEALL"	"GENENAME"
[11]	"GENETYPE"	"GO"	"GOALL"	"IPI"	"MAP"

```
[16] "OMIM"
                                    "ONTOLOGYALL" "PATH"
                    "ONTOLOGY"
                                                                   "PFAM"
[21] "PMID"
                    "PROSITE"
                                    "REFSEQ"
                                                 "SYMBOL"
                                                                   "UCSCKG"
[26] "UNIPROT"
  head(row.names(counts))
[1] "ENSG00000279457" "ENSG00000187634" "ENSG00000188976" "ENSG00000187961"
[5] "ENSG00000187583" "ENSG00000187642"
  res$symbol <- mapIds(org.Hs.eg.db,</pre>
                       keys=row.names(counts),
                       keytype = "ENSEMBL",
                       column = "SYMBOL",
                       multiVals = "first")
'select()' returned 1:many mapping between keys and columns
  res$entrez <- mapIds(org.Hs.eg.db,</pre>
                       keys=row.names(counts),
                       keytype = "ENSEMBL",
                       column = "ENTREZID",
                       multiVals = "first")
'select()' returned 1:many mapping between keys and columns
  res$name <- mapIds(org.Hs.eg.db,</pre>
                       keys=row.names(counts),
                       keytype = "ENSEMBL",
                       column = "GENENAME",
                       multiVals = "first")
'select()' returned 1:many mapping between keys and columns
  head(res, 10)
```

 $\log 2$ fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 10 rows and 9 columns

	baseMean	log2FoldChange	lfcSE	. stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<pre><numeric></numeric></pre>	<numeric></numeric>
ENSG00000279457	29.913579	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.229650	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.188076	-0.6927205	0.0548465	-12.630158	1.43990e-36
ENSG00000187961	209.637938	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.255123	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.979750	0.5428105	0.5215598	1.040744	2.97994e-01
ENSG00000188290	108.922128	2.0570638	0.1969053	10.446970	1.51282e-25
ENSG00000187608	350.716868	0.2573837	0.1027266	2.505522	1.22271e-02
ENSG00000188157	9128.439422	0.3899088	0.0467163	8.346304	7.04321e-17
ENSG00000237330	0.158192	0.7859552	4.0804729	0.192614	8.47261e-01
	padj	symbol	entrez		name
	<numeric></numeric>	<character> <c< td=""><td>haracter></td><td><</td><td>character></td></c<></character>	haracter>	<	character>
ENSG00000279457	6.86555e-01	NA	NA		NA
ENSG00000187634	5.15718e-03	SAMD11	148398	sterile alph	a motif
ENSG00000188976	1.76549e-35	NOC2L	26155	NOC2 like nu	cleolar
ENSG00000187961	1.13413e-07	KLHL17	339451	kelch like f	amily me
ENSG00000187583	9.19031e-01	PLEKHN1	84069	pleckstrin h	omology
ENSG00000187642	4.03379e-01	PERM1	84808	PPARGC1 and	ESRR ind
ENSG00000188290	1.30538e-24	HES4	57801	hes family b	HLH tran
ENSG00000187608	2.37452e-02	ISG15	9636	ISG15 ubiqui	tin like
ENSG00000188157	4.21963e-16	AGRN	375790		agrin
ENSG00000237330	NA	RNF223	401934	ring finger	protein

Q. Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res = res[order(res$pvalue),]
write.csv(res, file ="deseq_results.csv")
```

Gene set analysis/Pathway analysis

```
#|mmessage: false
library(gage)
```

```
library(gageData)
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

The gage() function wants a "vector of importance" in our case here it will be fold-change values with associated entrez names.

```
foldchange <- res$log2FoldChange
names(foldchange) <- res$entrez

data(kegg.sets.hs)
#Get the results
keggres = gage(foldchange, gsets=kegg.sets.hs)

head(keggres$less)</pre>
```

```
p.geomean stat.mean
                                               8.995727e-06 -4.378644
hsa04110 Cell cycle
hsa03030 DNA replication
                                               9.424076e-05 -3.951803
hsa05130 Pathogenic Escherichia coli infection 1.405864e-04 -3.765330
hsa03013 RNA transport
                                               1.375901e-03 -3.028500
hsa03440 Homologous recombination
                                               3.066756e-03 -2.852899
hsa04114 Oocyte meiosis
                                               3.784520e-03 -2.698128
                                                      p.val
                                                                  q.val
                                               8.995727e-06 0.001889103
hsa04110 Cell cycle
                                               9.424076e-05 0.009841047
hsa03030 DNA replication
hsa05130 Pathogenic Escherichia coli infection 1.405864e-04 0.009841047
hsa03013 RNA transport
                                               1.375901e-03 0.072234819
hsa03440 Homologous recombination
                                               3.066756e-03 0.128803765
```

hsa04114 (Oocyte meiosis	3.784520	3.784520e-03 0.132458191			
		set.size	exp1			
hsa04110 (Cell cycle	121	8.995727e-06			
hsa03030 I	DNA replication	36	9.424076e-05			
hsa05130 I	Pathogenic Escherichia coli infect	ion 53	1.405864e-04			
hsa03013 H	RNA transport	144	1.375901e-03			
hsa03440 I	Homologous recombination	28	3.066756e-03			
hsa04114 (Oocyte meiosis	102	3.784520e-03			

hsa04110 Cell cycle

```
pathview(gene.data=foldchange, pathway.id="hsa04110")
```

Info: Working in directory D:/UCSD BioSci/Courses/Year 1/Fall_BGGN 213 Bioinformatics/Previous

Info: Writing image file hsa04110.pathview.png

Have a look at my figure (?@fig-cellcycle).

Figure 1: Cell cycle hsa04110

Q. Can you do the same procedure as above to plot the pathview figures for the top 5 down-reguled pathways?

^{&#}x27;select()' returned 1:1 mapping between keys and columns

Gene Ontology

```
data(go.sets.hs)
data(go.subs.hs)
# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]
gobpres = gage(foldchange, gsets=gobpsets, same.dir=TRUE)
lapply(gobpres, head)
```

\$greater				
		p.geomean	${\tt stat.mean}$	p.val
GO:0007156	homophilic cell adhesion	8.519724e-05	3.824205	8.519724e-05
GD:0002009	morphogenesis of an epithelium	1.396681e-04	3.653886	1.396681e-04
GO:0048729	tissue morphogenesis	1.432451e-04	3.643242	1.432451e-04
GO:0007610	behavior	1.925222e-04	3.565432	1.925222e-04
GO:0060562	epithelial tube morphogenesis	5.932837e-04	3.261376	5.932837e-04
GO:0035295	tube development	5.953254e-04	3.253665	5.953254e-04
		q.val set	.size	exp1
GO:0007156	homophilic cell adhesion	0.1952430	113 8.51	19724e-05
GO:0002009	${\tt morphogenesis} \ {\tt of} \ {\tt an} \ {\tt epithelium}$	0.1952430	339 1.39	96681e-04
GO:0048729	tissue morphogenesis	0.1952430	424 1.43	32451e-04
GO:0007610	behavior	0.1968058	426 1.92	25222e-04
GO:0060562	epithelial tube morphogenesis	0.3566193	257 5.93	32837e-04
GO:0035295	tube development	0.3566193	391 5.95	53254e-04
\$less				
		p.geomean s	stat.mean	p.val

```
GO:0048285 organelle fission
                                       1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                       4.286961e-15 -7.939217 4.286961e-15
GO:0007067 mitosis
                                       4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                       2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                       1.729553e-10 -6.695966 1.729553e-10
                                              q.val set.size
                                                                    exp1
GO:0048285 organelle fission
                                       5.843127e-12
                                                        376 1.536227e-15
GO:0000280 nuclear division
                                       5.843127e-12
                                                        352 4.286961e-15
GO:0007067 mitosis
                                       5.843127e-12
                                                        352 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.195965e-11
                                                        362 1.169934e-14
GO:0007059 chromosome segregation 1.659009e-08
                                                        142 2.028624e-11
```

\$stats

```
### stat.mean exp1
### stat.mean exp1
### stat.mean exp1
### 3.824205 3.824205
### 3.824205 3.824205
### 3.653886 3.653886
### 3.653886 3.653886
### 3.643242 3.643242
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.565432
### 3.65382 3.65382
### 3.65382 3.65382
### 3.65382 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
### 3.65382
###
```

##Reactome

We will use the online version of Reactome. It wants a list of your genes. We will write this out from R here:

(reactome wants symbol)

Q: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

Cell cycle (Entities p-value: 6.22E-4) Partially matched. I'm wondering if different gene targets for each pathway in two methods. And how the two methods to sum up the hit-genes.

