Teil I: Formale Grundlagen der Informatik I Endliche Automaten und formale Sprachen

Teil II: Formale Grundlagen der Informatik II Logik in der Informatik

Martin Ziegler

Sommer 2011

Professor für Angewandte Logik

TU Darmstadt, Fachbereich Mathematik

(Folien wesentlich basierend auf Prof. M Otto)

Inhalt: FGdI I

2 Endliche Automaten – Reguläre Sprachen

- Automaten, Wörter, Sprachen reguläre Sprachen -
- endliche Automaten als rudimentäres Berechnungsmodell -
- deterministische und nicht-deterministische Automaten
- Automatentheorie Satz von Kleene Satz von Myhill-Nerode

3 Grammatiken und die Chomsky-Hierarchie

- Grammatiken und Normalformen
- Stufen der Chomsky-Hierarchie
- kontextfreie/kontextsensitive Sprachen

4 Berechnungsmodelle

- endliche Automaten, Kellerautomaten, Turingmaschinen -
- Turingmaschinen als universelles Berechnungsmodell -
- Aufzählbarkeit, Entscheidbarkeit, Grenzen der Berechenbarkeit

Inhalt

0 Einführung

- Transitionssysteme Wörter über endlichen Alphabeten -
- informelle Beispiele

1 Mengen, Relationen, Funktionen, ...

- mathematische Grundbegriffe elementare Mengen-Operationen
- algebraische Strukturen und Homomorphismen -
- elementare Beweismethoden Beweise mittels Induktion –
- Beispiele

Gdl I Sommer 2011 M.Otto und M.Ziegler 2/138

Literatur

J. HOPCROFT, R. MOTWANI, AND J. ULLMAN: Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, 2nd ed., 2001. (inzwischen auch in deutscher Ausgabe)

U. Schöning:

Theoretische Informatik – kurzgefasst, Spektrum, 4. Aufl., 2001.

I. Wegener:

Theoretische Informatik – eine algorithmenorientierte Einführung, Teubner, 1999.

H.R. Lewis and C.H. Papadimitriou:

Elements of the Theory of Computation,

Prentice Hall, 2nd ed., 1998.

FGdl I Sommer 2011 M.Otto und M.Ziegler 3/138 FGdl I Sommer 2011 M.Otto und M.Ziegler 4/138

Kapitel 0: Einführung und Beispiele

Kap. 0: Einführung

Transitionssysteme: Beispiel Beispiel 0.0.2

Mann/Wolf/Hase/Kohl

Zustände:

Verteilungen von $\{m, w, h, k\}$ rechts/links symbolisiert durch Objekte $[m, w, h, k \parallel], \dots, [m, w \parallel h, k], \dots$

"erlaubte" Zustände: rechte und linke Seiten $\neq [w, h], [h, k], [w, h, k]$

Transitionen: Änderung der Verteilung durch Bootsfahrten, z.B.

$$[m, w, h, k \parallel] \xrightarrow{k} [w, h \parallel m, k]$$
 m transportiert k $[m, w, h, k \parallel] \xrightarrow{\square} [w, h, k \parallel m]$ m fährt ohne Passagier

Kap. 0: Einführung

Transitionssysteme: Beispiel

Beispiel 0.0.1

Weckzeit-Kontrolle eines Weckers

$$\text{Zustände: } (\textit{h},\textit{m},\textit{q}) \quad \left\{ \begin{array}{l} \textit{h} \in \mathcal{H} = \{0,\ldots,23\} \\ \textit{m} \in \mathcal{M} = \{0,\ldots,59\} \\ \textit{q} \in \{\text{NIL}, \text{SETH}, \text{SETM}\} \end{array} \right.$$

Aktionen/Operationen: set, +

Typische Transitionen z.B.:

9

Sommer 2011

1.Otto und M.Ziegler

- /....

Kap. 0: Einführung

Mann/Wolf/Hase/Kohl

das vollständige Transitionssystem auf den erlaubten Zuständen

idl I Sommer 2011 M.Otto und M.Ziegler 7/138

M.Otto und M.Ziegler

Kap. 0: Einführung

Beispiel Übung 0.0.4

 Σ Alphabet, $a \in \Sigma$.

Aufgabe: finde ein möglichst einfaches System, das auf einen (online fortlaufenden) Strom von Signalen aus Σ zu jedem Zeitpunkt die Information bereithält, ob die Anzahl der bisher eingetroffenen a durch 3 teilbar ist.

- $\bullet \ \ L_3 \ = \ \left(\Sigma'^* \circ \{a\} \circ \Sigma'^* \circ \{a\} \circ \Sigma'^* \circ \{a\} \circ \Sigma'^*\right)^*, \quad \ \Sigma' := \Sigma \setminus \{a\}$
- a-Zähler mit Teilbarkeitstest?
- Reichen endlich viele Zustände?
 Wieviele mindestens?
- Wie verhält sich die Sprache L₃ unter Konkatenation?

FGdl | Sommer 2011 M.Otto und M.Ziegler 11/138

Kap. 0: Einführung

Alphabete/Wörter/Sprachen

Definition 0.0.3

Alphabet: nicht-leere, endliche Menge Σ ; $a \in \Sigma$: Buchstabe/Zeichen/Symbol

Σ-Wort: endliche Sequenz von Buchstaben aus Σ, $\mathbf{w} = \mathbf{a_1} \dots \mathbf{a_n}$ mit $a_i \in \Sigma$

Menge aller Σ -Wörter: Σ^*

leeres Σ -Wort: $\varepsilon \in \Sigma^*$

Σ-Sprache: Teilmenge $L \subseteq \Sigma^*$, eine Menge von Σ-Wörtern

Konkatenation von Wörtern und von Sprachen

dl I Sommer 2011 M.Otto und M.Ziegler 10/138

Kapitel 1: Mathematische Grundbegriffe Mengen, Relationen, Funktionen, Strukturen, . . . elementare Beweistechniken Kap 1: Grundbegriffe

Mengen

1.1.1

Georg Cantor (1845–1918)

Eine Menge ist eine Zusammenfassung von bestimmten, wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens, welche Elemente der Menge genannt werden, zu einem Ganzen

Beispiele/Standardmengen

 $\emptyset = \{ \}$ die leere Menge

 $\mathbb{B} = \{0,1\}$ Menge der Booleschen (Wahrheits)werte

 $\mathbb{N} = \{0, 1, 2, \ldots\}$ Menge der natürlichen Zahlen (mit 0)

 $\mathbb{Z}/\mathbb{Q}/\mathbb{R}$ Mengen der ganzen/rationalen/reellen Zahlen

FGdl I Sommer 2011 M.Otto und M.Ziegler 13/13

Kap 1: Grundbegriffe Mengen 1.1.1

Mengen/Mengenoperationen

 \rightarrow Abschnitt 1.1.1

Mengen A, B, \dots

Elementbeziehung: $a \in A$ bzw. $a \notin A$ für "nicht $a \in A$ "

Teilmengenbeziehung (Inklusion): $B \subseteq A$

 $z.B. \emptyset \subseteq \{0,1\} \subseteq \mathbb{N} \subseteq \mathbb{Z}$

Potenzmenge: $\mathcal{P}(A) = \{B : B \subseteq A\}$

die Menge aller Teilmengen von A

Mengengleichheit: A = B gdw ($A \subseteq B$ und $B \subseteq A$)

[genau dieselben Elemente]

Extensionalität

Definition von Teilmengen: $B := \{a \in A : p(a)\}$

für eine Eigenschaft p

Kap 1: Grundbegriffe Mengen 1.1.1

Mengenbegriff (Cantor)

- unstrukturierte Sammlung von Objekten (Elementen);
 z.B. A = {a, b, c} = {b, a, a, c}
- die Gesamtheit ihrer Elemente legt die Menge fest (*Extensionalität*)
- über naiv aufzählende Spezifikation und die einfachsten Operationen hinausgehende Prinzipien (v.a. für die Existenz unendlicher Mengen)

→ axiomatische Mengenlehre (Zermelo, Fraenkel, ZFC)

Gdl I Sommer 2011 M.Otto und M.Ziegler 14/13

1.1.1

Kap 1: Grundbegriffe

Boolesche Mengenoperationen

Mengen

Durchschnitt: $A \cap B = \{c : c \in A \text{ und } c \in B\}$

A, B disjunkt gdw $A \cap B = \emptyset$

Vereinigung: $A \cup B = \{c : c \in A \text{ oder } c \in B\}$

Mengendifferenz: $A \setminus B = \{a \in A : a \notin B\}$

Komplement:

für Teilmengen einer festen Menge M, d.h. in $\mathcal{P}(M)$:

 $\overline{B} := M \setminus B$ [Komplement bzgl. M]

Kommutativgesetze $A \cup B = B \cup A$, $A \cap B = B \cap A$

Assoziativgesetze $(A \cup B) \cup C = A \cup (B \cup C)$

 $\mathsf{und}\; (A\cap B)\cap C = A\cap (B\cap C)$

Distributivgesetze $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ und $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

dl Sommer 2011 M.Otto und M.Ziegler 15/138 FGdl I Sommer 2011 M.Otto und M.Ziegler 1

Kap 1: Grundbegriffe

Mengen

1.1.1

Kap 1: Grundbegriffe Mengen

Boolesche Mengenoperationen, Bemerkungen

große Vereinigungen/Durchschnitte über beliebige Familien von Mengen $(A_i)_{i \in I}$:

- $\bigcup_{i \in I} A_i = \{a : a \in A_i \text{ für mindestens ein } i \in I \}$
- $\bigcap_{i \in I} A_i = \{a : a \in A_i \text{ für alle } i \in I \}$

Beispiele: $\Sigma^* = \bigcup_{n \in \mathbb{N}} \Sigma^n$

$$\Sigma^+ = \Sigma^* \setminus \{\varepsilon\} = \{w \in \Sigma^* : |w| \geqslant 1\} = \bigcup_{n \geqslant 1} \Sigma^n$$

Beispiel (reelle Intervalle): $\bigcup_{n\in\mathbb{N}}\bigcap_{m\in\mathbb{N}}[n-1/m,n+1/m]=?$

Edl I Sommer 20

M.Otto und M.Ziegler

17/138

Kap 1: Grundbegriffe

Relationen

1.1.2

Relationen über einer Menge A

 \rightarrow Abschnitt 1.1.2

n-stellige Relation: $R \subseteq A^n$

Menge von *n*-Tupeln über *A*

Beispiele: Kantenrelation eines Graphen, Präfixrelation auf Σ^* , Ordnungsrelationen, Äquivalenzrelationen, . . .

Kantenrelationen in Graph/Transitionssystem:

 $(u, v) \in E$ beschreibt E-Kante $u \xrightarrow{E} v$

Präfixrelation auf Σ*:

 $u \leq v$ gdw. u Anfangsabschnitt (Präfix) von v $\leq = \{(u, uw) \colon u, w \in \Sigma^*\} \subseteq \Sigma^* \times \Sigma^*$

oft auch infixe Notation: aRb statt $(a, b) \in R$

Tupel und Mengenprodukte

geordnete Paare: (a, b) mit erster Komponente a, zweiter Komponente b

n-Tupel: (a_1, \ldots, a_n) mit n Komponenten $(n \in \mathbb{N}, n \geqslant 2)$

Kreuzprodukt (kartesisches Produkt):

$$A \times B = \{(a, b) : a \in A, b \in B\}$$

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, \dots, a_n) : a_i \in A_i \text{ für } 1 \leqslant i \leqslant n\}$$

$$A^n - A \times A \times \cdots \times A \quad \text{Menge aller } n. \text{Tupel über } A$$

$$A^n = \underbrace{A \times A \times \cdots \times A}_{\cdot}$$
 Menge aller *n*-Tupel über *A*.

Bemerkung:

wir identifizieren n-Tupel über Σ mit Σ -Wörtern der Länge n und Wörter der Länge 1 mit Buchstaben, $\Sigma^1 = \Sigma$.

FGdI

Sommer 201

M.Otto und M.Zies

18/139

Kap 1: Grundbegriffe

Relationen

1.1.2

1.1.1

Äquivalenzrelationen

wichtige potentielle Eigenschaften für 2-stelliges $R \subseteq A^2$:

Reflexivität: für alle $a \in A$ gilt: aRa.

Symmetrie: für alle $a, b \in A$ gilt: $aRb \Leftrightarrow bRa$.

Transitivität: für alle $a, b, c \in A$ gilt: $(aRb \text{ und } bRc) \Rightarrow aRc$.

z.B. Präfixrelation: reflexiv und transitiv, nicht symmetrisch

Äquivalenzrelation $R \subseteq A^2$: reflexiv, symmetrisch und transitiv

Beispiele: Gleichheit (über A), Längengleichheit über Σ^* , gleicher Rest bei Division durch n über \mathbb{N} oder \mathbb{Z} , ...

Idee: Äquivalenzrelationen als verallgemeinerte Gleichheiten

FGdl I Sommer 2011 M.Otto und M.Ziegler 19/138 FGdl I

20/138

1.1.2

Äquivalenzklassen:

für Äquivalenzrelation $R \subseteq A^2$ auf A, $a \in A$:

$$[a]_R := \{b \in A : aRb\}$$

die Äquivalenzklasse von a

wichtig: A wird durch die Äquivalenzklassen in disjunkte Teilmengen zerlegt (Lemma 1.1.8), sodass aRb gdw $[a]_R = [b]_R$

__...

Sommer 2011

M.Otto und M.Ziegler

21 /138

Äquivalenzrelationen: Quotient, natürliche Projektion

Quotient A/R: die Menge aller Äquivalenzklassen von R,

$$A/R := \{[a]_R \colon a \in A\}$$

die natürliche Projektion $\pi_R \colon A \longrightarrow A/R$ $a \longmapsto [a]_R = \{b \in A \colon aRb\}$

ordnet jedem Element seine Äquivalenzklasse zu

Relationen

FGdI I

Kap 1: Grundbegriffe

Sommer 201

M Otto und M Ziegler

1.1.3

22/120

Kap 1: Grundbegriffe

Funktionen

1.1.3

Funktionen und Operationen

→ Abschnitt 1.1.3

Funktion f von A nach B:

 $f: A \longrightarrow B$ $a \longmapsto f(a)$

f(a) ist das *Bild von a* unter f; a ein *Urbild* von b = f(a).

wesentlich: eindeutig definierter Funktionswert $f(a) \in B$ für jedes $a \in A$

A: Definitionsbereich

B: Zielbereich

f(a) Bild von a unter f.

 $f[A] := \{f(a) : a \in A\} \subseteq B$ Bild(menge) von f.

Funktionen, Operationen, Beispiele

Funktionen

n-stellige Funktion auf A: Funktion $f: A^n \to B$.

n-stellige Operation auf A: Funktion $f: A^n \to A$.

Beispiele: Addition, Multiplikation auf \mathbb{N} , \mathbb{Z} , ...

Beispiel Konkatenation auf Σ^* :

$$\begin{array}{ccc} \cdot \colon \Sigma^* \times \Sigma^* & \longrightarrow & \Sigma^* \\ (u, v) & \longmapsto & u \cdot v \; (= uv). \end{array}$$

Für $u = a_1 \dots a_n$; $v = b_1 \dots b_m$ ist $uv := \underbrace{a_1 \dots a_n}_{v} \underbrace{b_1 \dots b_m}_{v}$

FGdl I Sommer 2011 M.Otto und M.Ziegler 23/138

M.Otto und M.Ziegler