A study of the hyperspectral stress response of vegetation to drought situation.

A project for the examination of the Earth Observation course, of Pr. G. Venuti

Author of the project : Mrs Madeleine Abbes

Case of study Como lake, summer 2022.

Como lake during the summer 2022. Credits : Giovanni Di Leo

Data

Multispectral satellite imagery from ESA Copernicus

Sentinel 2 mission

NDVI

NDVI = (NIR - VIS)/(NIR+VIS)

NDVI is directly linked to chlorophyll content of the vegetation

RGB visualisation

Respective NDVI map

Impact of urbanisation on NDVI

NDBI

Urban index:

NDBI = (SWIR - NIR)/(SWIR + NIR)

In white: pixels with NDBI > 0

Difference between 2021 and 2022

2022 RGB visualisation

Data sampling:

62 points were selected by hand outside of the urban area

Map of the sampling cloud of points (red)

Results of NDVI sampling for both years

t-statistic	-2.7373
pvalue	0.0071209
df	122.0

Results of the Student's 2 samples t-test on the sampled data

Histogram of the repartition of NDVI values for both years

Conclusion

- We proved that NDVI can be an idicator of stress response to drought for vegetation
- We showed that NDVI is higher in case of drought
- We could validate the hypothesis that stress response to drought increases the chlorophyll content of plants