Стратегия решений задач по асимптотике

- **0. Постановка задачи:** доказать, что $f(n) = \Theta(g(n))$
- 1. Вначале написать, что мы хотим доказать (т.е. написать неравенство)
- $oldsymbol{2}$. Найти $oldsymbol{n}_0$, $oldsymbol{c}_1$ и $oldsymbol{c}_2$

Пример: докажите, что

$$\frac{1}{2}n^2-3n=\Theta(n^2)$$

интуитивно ясно, но нужно доказать формально

Мы хотим доказать, что:

$$c_1 \times n^2 \le \frac{1}{2}n^2 - 3n \le c_2 \times n^2$$

Разделим все части на n^2 :

для
$$orall n \geq n_0$$

$$c_1 \leq \frac{1}{2} - \frac{3}{n} \leq c_2$$

Решение:

$$c_1 = \frac{1}{14}, c_2 = \frac{1}{2}, n_0 = 7$$

Стратегия решений задач по асимптотике

- **0.** Постановка задачи: доказать, что $f(n) = \Theta(g(n))$
- 1. Вначале написать, что мы хотим доказать (т.е. написать неравенство)
- $oldsymbol{2}$. Найти $oldsymbol{n}_0$, $oldsymbol{c}_1$ и $oldsymbol{c}_2$

Пример: докажите, что

$$6n^3 \neq \Theta(n^2)$$

Если утверждение истинно, то $\exists c_2, n_0$:

$$6n^3 \le c_2 \times n^2$$

Из этого следует, что (разделив на n^2):

$$n \leq \frac{c_2}{6}$$

интуитивно ясно, но нужно доказать формально — «от обратного»

для
$$\forall n \geq n_0$$

для
$$\forall n \geq n_0$$

Невозможно подобрать такое c_2 Задача решена.