Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа №1 по дисциплине «Методы машинного обучения» на тему

«Разведочный анализ данных. Исследование и визуализация данных»

Выполнил: студент группы ИУ5-21М Ся Бэйбэй

1. Цель лабораторной работы

Изучить различные методы визуализации данных [1].

2. Задание

Требуется выполнить следующие действия [1]:

- Выбрать набор данных (датасет).
- Создать ноутбук, который содержит следующие разделы:
 - 1. Текстовое описание выбранного набора данных.
 - 2. Основные характеристики датасета.
 - 3. Визуальное исследование датасета.
 - 4. Информация о корреляции признаков.
- Сформировать отчет и разместить его в своем репозитории на GitHub

3. Ход выполнения работы

3.1. Текстовое описание набора данных

В качестве набора данных использовались метрологические данные физико-химических исследований качества вина. [2]. Данный набор данных доступен по следующему адресу: Wine Quality Dataset | Kaggle. Этот набор данных состоит из одного файла WineQT.csv, содержащего все данные датасета. Данный файл содержит следующие колонки:

- 1 fixed acidity (фиксированная кислотность)
- 2 volatile acidity (летучая кислотность)
- 3 citric acid (лимонная кислота)
- 4 residual sugar (остаточный сахар)
- 5 chlorides (хлориды)
- 6 free sulfur dioxide (свободный диоксид серы)
- 7 total sulfur dioxide (общий диоксид серы)
- 8 density (плотность)
- 9 pH
- 10 sulphates (сульфаты)
- 11 alcohol (алкоголь)

Output variable (based on sensory data):

12 - quality (score between 0 and 10) (качество)

3.2. Основные характеристики набора данных

Подключим все необходимые библиотеки & Загрузим непосредственно данные:

Показать часть данных о физико - химических параметрах вина:

Показывать размер данных:

```
In [5]: #print the shape dataset
print("Shape the dataset", df. shape)
Shape the dataset (1143, 13)
```

проверка типов данных и пустоты данных:

```
In [6]: M #Checking the dtypes of all the columns
df.info()
                       <class 'pandas.core.frame.DataFrame'>
                      RangeIndex: 1143 entries, 0 to 1
Data columns (total 13 columns):
                               Column
                                                                        Non-Null Count Dtype
                              fixed acidity 1143 non-null volatile acidity 1143 non-null citric acid 1143 non-null residual sugar 1143 non-null free sulfur dioxide total sulfur dioxide total sulfur dioxide density 1143 non-null 1143 non-null 1143 non-null 1143 non-null 1143 non-null
                                                                                                      float64
                                                                                                      float64
                                                                                                      float64
                                                                                                      float64
                                                                                                      float64
                                                                                                      float64
                                                                                                      float64
                                                                                                      float64
                         8
                                                                                                      float64
                                                                        1143 non-null
                               .
sulphates
                                                                                                      float64
                      9 sulphates

10 alcohol 114

11 quality 114

12 Id 114

dtypes: float64(11), int64(2)

memory usage: 116.2 KB
                                                                        1143 non-null
                                                                                                      float64
                                                                        1143 non-null
                                                                                                      int64
                                                                        1143 non-null
                                                                                                      int64
In [7]: # #checking null value
df.isna().sum()
      Out[7]: fixed acidity
volatile acidity
citric acid
residual sugar
                      chlorides
                      free sulfur dioxide
total sulfur dioxide
                      density
                      sulphates
                      alcohol
                      quality
                      dtype: int64
```

Показывать многомерные данные:

3.3. Визуальное исследование датасета

Показать распределение данных по всем параметрам:

Очевидно, что, за исключением свободной диоксид серы и общей диоксид серы, другие параметры не претерпели значительных изменений.

Показывать среднее значение параметров с одинаковым качеством красного вина:

	<pre># making Group by ave_qu =df.groupby("quality").mean() ave_qu</pre>												
Out[12]:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	
	quality												
	3	8.450000	0.897500	0.211667	2.666667	0.105333	8.166667	24.500000	0.997682	3.361667	0.550000	9.691667	
	4	7.809091	0.700000	0.165758	2.566667	0.094788	14.848485	40.606061	0.996669	3.391212	0.637879	10.260606	
	5	8.161077	0.585280	0.240124	2.540476	0.091770	16.612836	55.299172	0.997073	3.302091	0.613375	9.902277	
	6	8.317749	0.504957	0.263680	2.444805	0.085281	15.215368	39.941558	0.996610	3.323788	0.676537	10.655339	
	7	8.851049	0.393671	0.386573	2.760140	0.075217	14.538462	37.489510	0.996071	3.287133	0.743566	11.482634	
	8	8.806250	0.410000	0.432500	2.643750	0.070187	11.062500	29.375000	0.995553	3.240625	0.766250	11.937500	

Очевидно, качество вина и степень летучести алкоголя отрицательны.

Качество спирта и концентрация хлорида в вине были отрицательными.

Разница в плотности между разными видами вина невелика.

Качество вина прямо связано с концентрацией алкоголя.

Среднее значение параметра с одинаковым качеством красного вина, показанное на колонке:

Очевидно, что когда качество вина составляет 5, наибольшие значения имеют диоксид серы и общий диоксид серы.

Изучение влияния летучой кислотности, лимонной кислоты, хлорида, РН, сульфата на качество вина:

Видно, что значение вышеприведенных параметров не сильно влияет на качество вина.

Показать на ломаной диаграмме соотношение между качеством вина и количеством алкоголя:

Результаты как раз подтверждают вышеприведенные выводы:

Качество вина прямо связано с концентрацией алкоголя.

Изучение с помощью ломаной диаграммы соотношения между качеством вина и концентрацией свободной диоксида серы и общей концентрацией диоксида серы:

Результаты как раз подтверждают вышеприведенные выводы:

Очевидно, что между качеством вина и приведенными выше параметрами существует нелинейная связь.

Изучение с помощью растрескивания соотношения между качеством вина и концентрацией свободной диоксида серы и общей концентрацией диоксида серы:

Очевидно, что существует положительная корреляция между двумя параметрами.

Построим корреляционную матрицу по всему набору данных:

Out[30]:													
		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	qualit
	fixed acidity	1.000000	-0.250728	0.673157	0.171831	0.107889	-0.164831	-0.110628	0.681501	-0.685163	0.174592	-0.075055	0.12197
	volatile acidity	-0.250728	1.000000	-0.544187	-0.005751	0.056336	-0.001962	0.077748	0.016512	0.221492	-0.276079	-0.203909	-0.40739
	citric acid	0.673157	-0.544187	1.000000	0.175815	0.245312	-0.057589	0.036871	0.375243	-0.546339	0.331232	0.106250	0.24082
	residual sugar	0.171831	-0.005751	0.175815	1.000000	0.070863	0.165339	0.190790	0.380147	-0.116959	0.017475	0.058421	0.02200
	chlorides	0.107889	0.056336	0.245312	0.070863	1.000000	0.015280	0.048163	0.208901	-0.277759	0.374784	-0.229917	-0.12408
	free sulfur dioxide	-0.164831	-0.001962	-0.057589	0.165339	0.015280	1.000000	0.661093	-0.054150	0.072804	0.034445	-0.047095	-0.06326
	total sulfur dioxide	-0.110628	0.077748	0.036871	0.190790	0.048163	0.661093	1.000000	0.050175	-0.059126	0.026894	-0.188165	-0.18333
	density	0.681501	0.016512	0.375243	0.380147	0.208901	-0.054150	0.050175	1.000000	-0.352775	0.143139	-0.494727	-0.17520
	pH	-0.685163	0.221492	-0.546339	-0.116959	-0.277759	0.072804	-0.059126	-0.352775	1.000000	-0.185499	0.225322	-0.05245
	sulphates	0.174592	-0.276079	0.331232	0.017475	0.374784	0.034445	0.026894	0.143139	-0.185499	1.000000	0.094421	0.2577
	alcohol	-0.075055	-0.203909	0.106250	0.058421	-0.229917	-0.047095	-0.188165	-0.494727	0.225322	0.094421	1.000000	0.4848
	quality	0.121970	-0.407394	0.240821	0.022002	-0.124085	-0.063260	-0.183339	-0.175208	-0.052453	0.257710	0.484866	1.0000

Визуализируем корреляционную матрицу с помощью тепловой карты:

Кроме того, можно видеть, что высокая зависимость между фиксированной кислотой и величиной РН соответствует теоретическим выводам. также существует тесная связь между постоянной кислотностью и плотностью.

Список литературы

[1] Гапанюк Ю. Е. Лабораторная работа «Разведочный анализ данных. Исследование и визуализация данных» [Электронный ресурс] // GitHub. — 2019. — Режим доступа: https://github.com/ugapanyuk/ml_course/wiki/LAB_EDA_VISUALIZATION (дата обращения: 13.02.2019)

[2] https://www.kaggle.com/datasets