

INSTITUTO SUPERIOR DE ENGENHARIA DE COIMBRA

DEPARTAMENTO DE FÍSICA E MATEMÁTICA

ENGENHARIA INFORMÁTICA – 1º ano /1º Semestre ANÁLISE MATEMÁTICA I

Teste 1

15-fev-2013 Duração:2h

Importante:

 A resolução completa de cada pergunta inclui a justificação do raciocínio utilizado bem como a apresentação de todos os cálculos efetuados.

1. Considere a região do plano, identificada na figura seguinte:

a. Justificando convenientemente a sua escolha, diga se algum dos seguintes conjuntos corresponde à região representada no gráfico. Em caso negativo, defina o conjunto.

$$A_{1} = \{(x, y) \in \Re^{2} : 1 - y^{2} \le x \le -\ln(y) \land 0 \le y \le 1\}$$

$$A_{2} = \{(x, y) \in \Re^{2} : -1 - y^{2} \le x \le -\ln(y) \land 0 \le y \le 1\}$$

$$A_{3} = \{(x, y) \in \Re^{2} : -1 - y^{2} \le x \le \ln(-y) \land 0 \le y \le 1\}$$

$$A_{4} = \{(x, y) \in \Re^{2} : 1 - y^{2} \le x \le \ln(-y) \land 0 \le y \le 1\}$$

- b. Identifique, <u>sem calcular</u>, a expressão que lhe permite determinar a medida da área da região considerada na figura quando $x \le 1$.
- c. Identifique, <u>sem calcular</u>, a expressão que lhe permite determinar a medida do volume do sólido de revolução que se obtém por rotação da região em torno do eixo das abcissas.
- d. Que pode concluir sobre a existência da medida encontrada na alínea anterior?
- 2. Considere a região do plano definida pelo seguinte conjunto:

$$D = \{(x, y) \in \Re^2 : x^2 \le y + 1 \land y \le -x + 1\}$$

- a. Represente geometricamente a região D.
- b. Reescreva o domínio plano D da forma: $D = \{(x, y) \in \Re^2 : g(x) \le y \le f(x) \land a \le x \le b\}$. Calcule a medida da área da região D.

- c. Identifique, sem calcular, a expressão que lhe permite determinar a medida do volume do sólido de revolução que se obtém por rotação da região D em torno do eixo das ordenadas.
- d. Identifique, sem calcular, a expressão simplificada que lhe permite determinar a medida do perímetro total da região D.
- 3. Considere a função real de variável real $f(x) = \pi + 2arctg(2\sqrt{x})$.
 - a. Caracterize a função inversa de *f* indicando o domínio e o contradomínio.
 - b. Determine o valor $f(\frac{1}{4})$.
 - c. Determine a expressão analítica da derivada da função, f'.
 - d. Justifique em que medida a expressão encontrada na alínea c. pode ajudar no cálculo da primitiva $\int \frac{4}{\sqrt{x(1+4x)}} dx$.
 - e. Considere os seguintes integrais:

1.
$$\int_{0}^{\frac{1}{4}} \frac{4}{\sqrt{x(1+4x)}} dx$$

1.
$$\int_{0}^{\frac{1}{4}} \frac{4}{\sqrt{x(1+4x)}} dx$$
 2.
$$\int_{\frac{1}{4}}^{+\infty} \frac{4}{\sqrt{x(1+4x)}} dx$$

3.
$$\int_{1/4}^{1/6} \frac{4}{\sqrt{x}(1+4x)} dx$$
 4.
$$\int_{-1}^{0} \frac{4}{\sqrt{x}(1+4x)} dx$$

$$4. \quad \int_{-1}^{0} \frac{4}{\sqrt{x}(1+4x)} \, dx$$

Indique, justificando convenientemente a sua escolha, quais dos integrais são impróprios e determine a respetiva natureza.

- 4. Considere a seguinte equação diferencial xy' + y = g(x, y), onde g(x, y) é uma função contínua
 - a. Seja $g(x, y) = x^2y$.
 - i. Verifique, sem resolver, se a função $y = C \frac{e^{x^2}}{r}, C \in \Re$ é solução da equação diferencial.
 - ii. Prove que se trata de uma equação diferencial de variáveis separáveis e confirme o resultado anterior, determinando analiticamente a sua solução.
 - b. Resolva a equação diferencial considerando $g(x, y) = xsen(x^2)$.

Cotação

1a	1b	1c	1d	2a	2b	2c	2d	3a	3b	3c	3d	3e	4a	4b
0,5	1	1	1	1,5	1,5	1,5	1	1,5	0,5	1	1	3	2,5	1,5