

Simulated	Method	of M	loments
-----------	--------	------	---------

• SMM is a simulated version of GMM

SMM is a simulated version of GMM

Simulated Method of Moments

• Uses moments from simulated data instead of analytical moments

Simulated Method of Moments

- SMM is a simulated version of GMM
- Uses moments from simulated data instead of analytical moments
- Objective: make simulated and actual data match

Simulated Method of Moments

- SMM is a simulated version of GMM
- Uses moments from simulated data instead of analytical moments
- Objective: make simulated and actual data match
- See McFadden (1989) and Evans (2018) for details

Droc	۰f	SMM
Pros	OΤ	SIVIIVI

• Can estimate models with P's that don't have closed form (e.g. probit)

• Can estimate models with P's that don't have closed form (e.g. probit)

• Can handle otherwise intractable models (dynamic models, high-dim integrals)

- Can estimate models with P's that don't have closed form (e.g. probit)
- Can handle otherwise intractable models (dynamic models, high-dim integrals)
- Can estimate micro-models using only aggregated data

- Can estimate models with P's that don't have closed form (e.g. probit)
- Can handle otherwise intractable models (dynamic models, high-dim integrals)
- Can estimate micro-models using only aggregated data
- Simulation code already done—easy to move to counterfactuals

- Can estimate models with P's that don't have closed form (e.g. probit)
- Can handle otherwise intractable models (dynamic models, high-dim integrals)
- Can estimate micro-models using only aggregated data
- Simulation code already done—easy to move to counterfactuals
- Straightforward to interpret which moments the model is fitting

- Can estimate models with P's that don't have closed form (e.g. probit)
- Can handle otherwise intractable models (dynamic models, high-dim integrals)
- Can estimate micro-models using only aggregated data
- Simulation code already done—easy to move to counterfactuals
- Straightforward to interpret which moments the model is fitting
- Easier to compare with reduced-form evidence

_	_	C
Cons	O†	SMM

• Much more computationally intensive than GMM

Cons of SMM

• Much more computationally intensive than GMM

• Must fully specify model (including error distribution)

Cons of SMM

- Much more computationally intensive than GMM
- Must fully specify model (including error distribution)
- Loss of statistical efficiency relative to MLE (larger standard errors)

Cons of SMM

- Much more computationally intensive than GMM
- Must fully specify model (including error distribution)
- Loss of statistical efficiency relative to MLE (larger standard errors)
- Selection of moments can feel ad hoc

SMM Example: Linear Regression

Consider a simple linear regression model:

$$y = X\beta + \varepsilon,$$
$$\varepsilon \sim N(0, \sigma^2)$$

SMM Example: Linear Regression

Consider a simple linear regression model:

$$y = X\beta + \varepsilon,$$
$$\varepsilon \sim N(0, \sigma^2)$$

y and X are data; we want to estimate β and σ

As mentioned earlier, we must make a strong assumption about DGP: $\varepsilon \sim N(0,\sigma^2)$

For each guess of $\theta = [\beta', \sigma]'$:

• Compute data moments

- Compute data moments
- ullet Draw N arepsilon's D times (typically D>1000)

- Compute data moments
- ullet Draw N arepsilon's D times (typically D>1000)
- ullet For each draw, compute $\tilde{\mathbf{y}} = \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\varepsilon}$

- Compute data moments
- ullet Draw N arepsilon's D times (typically D>1000)
- ullet For each draw, compute $\tilde{y} = X\beta + \varepsilon$
- \bullet Compute model moments using \tilde{y} (same structure as data moments)

- Compute data moments
- Draw $N \varepsilon$'s D times (typically D > 1000)
- For each draw, compute $\tilde{y} = X\beta + \varepsilon$
- ullet Compute model moments using $ilde{y}$ (same structure as data moments)
- Average model moments across all D draws

- Compute data moments
- Draw $N \varepsilon$'s D times (typically D > 1000)
- For each draw, compute $\tilde{y} = X\beta + \varepsilon$
- Compute model moments using \tilde{y} (same structure as data moments)
- Average model moments across all D draws
- Update objective function: minimize distance between data and model moments

Moments to Match

Data moments:
$$\left\{y_i, i=1,\ldots, N; \widehat{V}(y)
ight\}$$

Moments to Match

Data moments:
$$\left\{ y_i, i=1,\ldots,N; \widehat{V}(y) \right\}$$

Data moments:
$$\{y_i, i=1,\ldots,N, v(y)\}$$

Model moments: $\left\{ ilde{y}_i, i=1,\ldots, extbf{N}; \widehat{V}(ilde{y})
ight\}$

• Can use any optimizer for the SMM objective function

• Can use any optimizer for the SMM objective function

• SMM objective may have local optima (poorly behaved)

- Can use any optimizer for the SMM objective function
- SMM objective may have local optima (poorly behaved)
- Tactics for finding global optimum:
 - Use L-BFGS from many starting values
 - Use Simulated Annealing or Particle Swarm

- Can use any optimizer for the SMM objective function
- SMM objective may have local optima (poorly behaved)
- Tactics for finding global optimum:
 - Use L-BFGS from many starting values
 - Use Simulated Annealing or Particle Swarm
- Simple problems (like OLS) should be well-behaved

- Can use any optimizer for the SMM objective function
- SMM objective may have local optima (poorly behaved)
- Tactics for finding global optimum:
 - Use L-BFGS from many starting values
 - Use Simulated Annealing or Particle Swarm
- Simple problems (like OLS) should be well-behaved
- Be sure to use same draw of ε in every iteration!