MCAL/MT - série 1 - Machine de Turing (2 TD)

Exercice 1 : Machine de Turing de base

On considére l'alphabet $\Sigma = \{0, 1, \square, \$\}$

 $\mathbf{Q1.} \quad \text{Que fait la MT} \xrightarrow{\Sigma - \{\Box\}/\Box : L} \boxed{2}$

- **Q2.** Dessinez une machine $M_{\overrightarrow{?}\square}$ qui déplace la tête de lecture vers la droite jusqu'au dernier symbole différent de \square .
- **Q4.** Dessinez une machine M_{\S} qui déplace la tête de lecture vers la gauche jusqu'à rencontrer le marqueur \$ ou un blanc \square . Elle termine dans l'état accepteur \bigcirc si elle trouve le \$ et dans l'état rejet \otimes sinon.
- **Q5.** Dessinez une transition de MT qui ne fait rien. Par la suite on notera \bigcirc $\stackrel{\epsilon}{\longrightarrow}$ ce type de transition.
- **Q6.** Pour chaque MT M précédente donnez sa description sous la forme d'un sextuplet $(\Sigma, \mathcal{Q}, q_I, \delta, \mathcal{A}, \mathcal{R})$ où Σ est l'alphabet de M, \mathcal{Q} est l'ensemble des états de M, q_i son état initial, $\delta: \mathcal{Q} \times \Sigma \to \Sigma \times \{L, H, R\} \times \mathcal{Q}, \mathcal{A} \subseteq \mathcal{Q}$ est l'ensemble des états accepteurs, $\mathcal{R} \subseteq \mathcal{Q}$ est l'ensemble des états rejets.

Exercice 2: Zoom sur les macro-transitions

On considère l'alphabet $\Sigma_4 = \{\$, \square, 0, 1\}$. On note $[n]_2$ l'écriture binaire, de gauche à droite (*ie.* avec les unités à gauche) de l'entier $n \in \mathbb{N}$. Par exemple, $[4]_2 = 001, [5]_2 = 101$.

- Q7. Donnez une telle MT M_{inc} qui incrémente de 1 un entier n écrit sur le ruban en binaire. Vous utiliserez un état q_r pour mémoriser la retenue r à propager. On autorise uniquement des transitions de la forme $q \xrightarrow{l/e:d} q'$ qui effectue à la fois une lecture, une écriture, un déplacement.
- **Q8.** On considére un alphabet $\Sigma = \{s_1, \dots, s_4\}$. Expliquez comment réaliser les transitions suivantes à l'aide de transitions classiques : $\underbrace{q} \xrightarrow{\{s_1, s_2\}/s_3} \underbrace{q'} \quad \underbrace{q} \xrightarrow{\Sigma:d} \underbrace{q'} \quad \underbrace{q} \xrightarrow{\ell/\Box:d} \underbrace{q'}$
- **Q9.** (**DS 2014**) Comment traduire les transitions $\stackrel{s}{\longrightarrow}$ d'un automate (à nombre) d'états fini A en transition de machines de Turing pour obtenir une MT M équivalente à A au sens où $\mathcal{L}(A) = \mathcal{L}(M)$.
- Q10. (Projet 2014) Montrez qu'on peut traduire une MT en une MT avec uniquement les deux formes de transitions écriture ou déplacement.

Q11. (Projet 2014) Appliquez votre transformation sur la MT M_{inc} .

Exercice 3: L'alphabet minimal Σ_2

Montrez qu'on peut transformer une MT M opérant sur un alphabet $\Sigma_4 = \{\$, \square, 1, 0\}$ en une MT M' équivalente opérant sur l'alphabet $\Sigma_2 = \{\lceil 0 \rceil, \lceil 1 \rceil\}$.

Indication : On représente les 4 symboles de Σ_4 par des couples de symboles de Σ_2 ie. $0=(\boxed{\mathtt{o}},\boxed{\mathtt{o}}),\ 1=(\boxed{\mathtt{1}},\boxed{\mathtt{1}}),\ \$=(\boxed{\mathtt{o}},\boxed{\mathtt{1}}),\ \square=(\boxed{\mathtt{1}},\boxed{\mathtt{o}})$

Quand la machine M fait une transition sur un symbole de Σ_4 la machine M' fait deux transitions.

- **Q12.** Transformez la machine $M_{\overrightarrow{?\square}}$ de la question **Q??** en une machine équivalente $M'_{\overrightarrow{?\square}}$ opérant sur Σ_2 .
- **Q13.** Transformez la MT M_{effG} de la question **Q??** opérant sur Σ_4 en une machine équivalente M'_{effG} opérant sur Σ_2 .
- Q14. (à chercher) Donnez une version optimisée de la machine M'_{effG} .

PROJET 2017 L'un des objectifs du projet est d'implanter cette transformation de Σ_4 vers Σ_2 puis de généraliser cette transformation à des MT opérant sur un alphabet Σ_{2^N} contenant 2^N symboles s_1, \ldots, s_{2^N} .

Exercice 4 : Exécution séquentielle de deux MT

Étant données deux MT $M_1 = (\Sigma_1, \mathcal{Q}_1, \mathcal{A}_1, \mathcal{R}_1)$ et $M_2 = (\Sigma_2, \mathcal{Q}_2, \mathcal{A}_2, \mathcal{R}_2)$, construire la MT notée $[M_1; M_2]$ qui exécute M_1 puis exécute de M_2 à partir de la position où s'est arrêtée M_1 .

Indication : On rappelle que les états accepteurs et rejets sont terminaux (pas de transition sortante) et q'un état \bigcirc indique un succès et \otimes un échec.

On suppose que toutes les MT M_i sont de la forme q_i M_i

Exercice 5 : Reconnaissance de langages classiques

Soit l'alphabet $\Sigma = \{a, b, c\}$. Pour chacun des langages suivants, donnez une MT qui le reconnaît $L_1 = \Sigma^*$, $L_2 = \emptyset$, $L_3 = \{\epsilon\}$, $L_4 = \{a^nb^n \mid n \in \mathbb{N}\}$, $L_5 = \{\omega.R(\omega) \mid \omega \in \Sigma^*\}$ où R est l'opération qui renverse un mot et donc L_5 est l'ensemble des palindromes de longueur paire sur Σ , $L_6 = \{a^nb^nc^n \mid n \in \mathbb{N}\}$.

Exercice 6: Renversement et Palindrome avec des MT à deux bandes

Les transitions d'une MT à deux bandes sont de la forme $\textcircled{q} \xrightarrow{\ell_1/e_1:d_1} \textcircled{q'}$. La partie $\ell_1/e_1:d_1$ concernent la bande B_1 et la partie $\ell_2/e_2:d_2$ concerne la bande B_2 .

Q15. Donnez un MT M_R qui réalise la fonction $R: \Sigma^* \to \Sigma^*$ qui renverse un mot fourni.

Attention : Dans cette question les bandes comportent un symbole \$ qui sert à indiquer qu'il y a des données à gauche du \$ qu'il ne faut pas écraser.

- Q16. Donnez une MT à deux bandes M_{eq} qui décide si les mots inscrits sur les bandes sont identiques. Indication: M_{eq} « décide » signifie que M_{eq} atteint \bigcirc si c'est vrai et atteint \otimes si c'est faux.
- Q17. À l'aides des MT précédents, donnez une MT à deux bandes M_{pal} qui accepte uniquement les mots de la forme $\omega.R(\omega)$ ou $\omega.s.R(\omega)$
- **Q18.** Donnez une MT à une seule bande M'_{pal} qui accepte les mots de la forme $\omega.R(\omega)$ ou $\omega.s.R(\omega)$
- Q19. Complétez $\mathscr{L}(M_{pal}) = \dots$