

Optocoupler, Phototransistor Output, no Base Connection

DESCRIPTION

The CNY17F is an optocoupler consisting of a gallium arsenide infrared emitting diode optically coupled to a silicon planar phototransistor detector in a plastic plug-in DIP-6 package.

The coupling device is suitable for signal transmission between two electrically separated circuits. The potential difference between the circuits to be coupled is not allowed to exceed the maximum permissible reference voltages. In contrast to the CNY17 series, the base terminal of the F type is not conected, resulting in a substantially improved common-mode interference immunity.

FEATURES

- Isolation test voltage, 5300 V_{RMS}
- No base terminal connection for improved common mode interface immunity

- Industry standard dual-in-line package
- Lead (Pb)-free component
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

AGENCY APPROVALS

- UL1577, file no. E52744 system code H or J, double protection
- DIN EN 60747-5-5 (VDE 0884) available with option 1
- BSI IEC 60950; IEC 60065
- FIMKO

ORDER INFORMATION					
PART	REMARKS				
CNY17F-1	CTR 40 % to 80 %, DIP-6				
CNY17F-2	CTR 63 % to 125 %, DIP-6				
CNY17F-3	CTR 100 % to 200 %, DIP-6				
CNY17F-4	CTR 160 % to 320 %, DIP-6				
CNY17F-1X006	CTR 40 % to 80 %, DIP-6 400 mil (option 6)				
CNY17F-1X007	CTR 40 % to 80 %, SMD-6 (option 7)				
CNY17F-1X009	CTR 40 % to 80 %, SMD-6 (option 9)				
CNY17F-2X006	CTR 63 % to 125 %, DIP-6 400 mil (option 6)				
CNY17F-2X007	CTR 63 % to 125 %, SMD-6 (option 7)				
CNY17F-2X009	CTR 63 % to 125 %, SMD-6 (option 9)				
CNY17F-3X006	CTR 100 % to 200 %, DIP-6 400 mil (option 6)				
CNY17F-3X007	CTR 100 % to 200 %, SMD-6 (option 7)				
CNY17F-3X009	CTR 100 % to 200 %, SMD-6 (option 9)				
CNY17F-4X006	CTR 160 % to 320 %, DIP-6 400 mil (option 6)				
CNY17F-4X007	CTR 160 % to 320 %, SMD-6 (option 7)				
CNY17F-4X009	CTR 160 % to 320 %, SMD-6 (option 9)				

Note

For additional information on the available options refer to option information.

Optocoupler, Phototransistor Output, no Base Connection

ABSOLUTE MAXIMUM RATINGS							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
INPUT							
Reverse voltage		V _R	6	V			
DC forward current		l _F	60	mA			
Surge forward current	t ≤ 10 μs	I _{FSM}	2.5	Α			
Power dissipation		P _{diss}	100	mW			
OUTPUT							
Collector emitter breakdown voltage		BV _{CEO}	70	V			
Calle sterr account		I _C	50	mA			
Collector current	t ≤ 1 ms	I _C	100	mA			
Total power dissipation		P _{diss}	150	mW			
COUPLER							
Isolation test voltage between emitter and detector		V _{ISO}	5300	V_{RMS}			
Creepage distance			≥ 7	mm			
Clearance distance			≥ 7	mm			
Isolation thickness between emitter and detector			≥ 0.4	mm			
Comparative tracking index per DIN IEC 112/VDE 0303, part 1			175				
Isolation resistance	V _{IO} = 500 V	R _{IO}	≥ 10 ¹¹	Ω			
Storage temperature range		T _{stg}	- 55 to + 150	°C			
Ambient temperature range		T _{amb}	- 55 to + 100	°C			
Junction temperature		Tj	100	°C			
Soldering temperature	max. 10 s, dip soldering: distance to seating plane ≥ 1.5 mm	T _{sld}	260	°C			

T_{amb} = 25 °C, unless otherwise specified.

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.

ELECTRICAL CHARACTERISTCS								
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT	
INPUT					•			
Forward voltage	I _F = 60 mA		V _F		1.25	1.65	V	
Breakdown voltage	I _R = 10 μA		V_{BR}	6			V	
Reverse current	V _R = 6 V		I _R		0.01	10	μΑ	
Capacitance	V _R = 0 V, f = 1 MHz		Co		25		pF	
Thermal resistance			R _{th}		750		K/W	
OUTPUT								
Collector emitter capacitance	V _{CE} = 5 V, f = 1 MHz		C _{CE}		5.2		pF	
Base collector capacitance	V _{CE} = 5 V, f = 1 MHz		C _{BC}		6.5		pF	
Emitter base capacitance	V _{CE} = 5 V, f = 1 MHz		C _{EB}		7.5		pF	
Thermal resistance			R _{th}		500		K/W	
COUPLER								
Collector emitter, saturation voltage	$I_F = 10 \text{ mA}, I_C = 2.5 \text{ mA}$		V _{CEsat}		0.25	0.4	V	
Coupling capacitance			C _C		0.6		pF	
Collector emitter, leakage current		CNY17F-1	I _{CEO}		2	50	nA	
	V - 10 V	CNY17F-2	I _{CEO}		2	50	nA	
	V _{CE} = 10 V	CNY17F-3	I _{CEO}		5	100	nA	
		CNY17F-4	I _{CEO}		5	100	nA	

Note

 T_{amb} = 25 °C, unless otherwise specified. Minimum and maximum values were tested requierements. Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements.

Optocoupler, Phototransistor Output, no Base Connection

Vishay Semiconductors

CURRENT TRANSFER RATIO							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Current transfer ratio		CNY17F-1	CTR	40		80	%
	I _F = 10 mA	CNY17F-2	CTR	63		125	%
	IF = 10 IIIA	CNY17F-3 CTR	100		200	%	
		CNY17F-4	CTR	160		320	%
		CNY17F-1	CTR	13	30		%
	1 10 mA	CNY17F-2	CTR	22	45		%
	I _F = 1.0 mA	CNY17F-3	CTR	34	70		%
		CNY17F-4	CTR	56	90		%

Note

Current transfer ratio I_C/I_F at V_{CE} = 5.0 V, 25 °C and collector emitter leakage current by dash number.

SWITCHING CHAR	ACTERISTICS						
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
LINEAR OPERATION (with	out saturation)		'		•		
Turn-on time	$I_F = 10 \text{ mA}, V_{CC} = 5 \text{ V},$ $R_L = 75 \Omega$		t _{on}		3		μs
Rise time	I_F = 10 mA, V_{CC} = 5 V, R_L = 75 Ω		t _r		2		μs
Turn-off time	I_F = 10 mA, V_{CC} = 5 V, R_L = 75 Ω		t _{off}		2.3		μs
Fall time	$I_F = 10 \text{ mA}, V_{CC} = 5 \text{ V},$ $R_L = 75 \Omega$		t _f		2		μs
Cut-off frequency	$I_F = 10 \text{ mA}, V_{CC} = 5 \text{ V},$ $R_L = 75 \Omega$		f _{CO}		250		kHz
SWITCHING OPERATION ((with saturation)		'				
	I _F = 20 mA	CNY17F-1	t _{on}		3		μs
Turn-on time	I _F = 10 mA	CNY17F-2	t _{on}		4.2		μs
Turn-on time	IF = 10 IIIA	CNY17F-3	t _{on}		4.2		μs
	$I_F = 5 \text{ mA}$	CNY17F-4	t _{on}		6		μs
	I _F = 20 mA	CNY17F-1	t _r		2		μs
Rise time	I _F = 10 mA	CNY17F-2	t _r		3		μs
nise time	IF = 10 IIIA	CNY17F-3	t _r		3		μs
	$I_F = 5 \text{ mA}$	CNY17F-4	t _r		4.6		μs
Turn-off time	I _F = 20 mA	CNY17F-1	t _{off}		18		μs
	I _F = 10 mA	CNY17F-2	t _{off}		23		μs
	IF = 10 IIIA	CNY17F-3	t _{off}		23		μs
	I _F = 5 mA	CNY17F-4	t _{off}		25		μs
	I _F = 20 mA	CNY17F-1	t _f		11		μs
Fall time	1 10 mA	CNY17F-2	t _f		14		μs
raii iiiile	I _F = 10 mA	CNY17F-3	t _f		14		μs
	$I_F = 5 \text{ mA}$	CNY17F-4	t _f		15		μs

Optocoupler, Phototransistor Output, no Base Connection

TYPICAL CHARACTERISTICS

 T_{amb} = 25 °C, unless otherwise specified

icny17f_01

Fig. 1 - Linear Operation (without Saturation)

icny17f_02

Fig. 2 - Switching Operation (with Saturation)

Fig. 3 - Current Transfer Ratio vs. Diode Current

Fig. 4 - Current Transfer Ratio vs. Diode Current

Fig. 5 - Current Transfer Ratio vs. Diode Current

Fig. 6 - Current Transfer Ratio vs. Diode Current

Optocoupler, Phototransistor Output, no Base Connection

Vishay Semiconductors

Fig. 7 - Current Transfer Ratio vs. Diode Current

Fig. 8 - Current Transfer Ratio (CTR) vs. Temperature

Fig. 9 - Output Characteristics CNY17F-2, -3

Fig. 10 - Forward Voltage

Fig. 11 - Collector Emitter Off-state Current

Fig. 12 - Saturation Voltage vs.
Collector Current and Modulation Depth CNY17F-1

Optocoupler, Phototransistor Output, no Base Connection

Fig. 13 - Saturation Voltage vs. Collector Current and Modulation Depth CNY17F-2

10⁴

Fig. 14 - Saturation Voltage vs. Collector Current and Modulation Depth CNY17F-3

Fig. 17 - Permissible Power Dissipation for Transistor and Diode

Fig. 15 - Saturation Voltage vs. Collector Current and Modulation Depth CNY17F-4

Fig. 18 - Permissible Forward Current Diode

Optocoupler, Phototransistor Output, no Base Connection

Vishay Semiconductors

Fig. 19 - Transistor Capacitance

PACKAGE DIMENSIONS in inches (millimeters)

Optocoupler, Phototransistor Output, no Base Connection

Optocoupler, Phototransistor Output, no Base Connection

Vishay Semiconductors

OZONE DEPLETING SUBSTANCES POLICY STATEMENT

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively.
- Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com Revision: 18-Jul-08