安徽大学 20<u>18</u>—20<u>19</u>学年第<u>1</u>学期 (电磁场与电磁波)考试试卷(A卷) (闭卷 时间 120 分钟)

考场登记表序号____

題号	-	=	131	Д	总分
得分					
阅卷人					

	į	填空	題(毎	空15	},共 :	20分)					有	分	7
1	• }	亥姆霍	兹定理	表明矢	量场由で	芒的	和	及		一地确定。	•		
2					1 1	_		为zē _z ,则常			理论依据	号为∇· ၨ	克 =0,若
		度分	$ ho$ 别为 $ar{B}$	$ec{m{S}}$ 、 $ec{m{H}}$,	则磁均	杨能量密 原	度 w _m =	る能量密度 。 实数),则其	,				
***************************************		频率	为 300N	MHz 的	均匀平面	了。 「波在空 ^を	· 〔中传播,	其波阻抗; 亥介质中的	与120 π	Ω ,波的(专播速度	雙为3×1	$10^8 m/s$;
	6		电磁场	可以用		量位函数。		天量位函数 。			且场 <i>E</i> 、	磁感应	强度 <i>B之</i>
1	7	7. 坡印	P廷矢 量	上的瞬时		为 <i>Š(t)=_</i>		;			匀坡印码	5矢量的]复数形式
		8. 均	匀平面》	皮垂直 λ	. 斜到理	相导休夷	·面上. 入	射波电场振	福与反射	寸波电场振	幅的关	系是	

第1页 共7页

, 透射波的电场振幅为。
9. 矩形导的主模是。
10. 均匀平面波是指在与传播方向垂直的无限大平面内,电、磁场的、方向和均
保持不变的平面波。
二. 判断题 (每小题 2分, 共 19分)
(在下列描述正确的题后括号内打"√",描述错误的题后括号内打"×")
1. 矩形波导与同轴线均可以引导 TEM 模式的电磁波传播。 ································()
2. 位移电流是由电荷的定向运动引起的。()
3. 均匀平面波在有损耗媒质中传播时,电场、磁场和传播方向三者相互垂直,成右手螺旋关系,是 TEM 波。
电场和磁场的振幅按指数衰减,它们在时间上同相。
4. 垂直与平行极化波以布儒斯特角 $\theta_{\scriptscriptstyle B}=\arctan\left(\sqrt{rac{arepsilon_2}{arepsilon_1}} ight)$ 斜入射,均会在分界面产生全透
射。
5. 静电场的散度为零,旋度也为零。
三. 简答题 (共 20 分)
1. (6分)写出线性均匀各向同性媒质中麦克斯韦方程组的微分形式,并说明其物理意义。

第2页 共7页

2. (4分) 写出时变场中理想导体表面上的边界条件。

3. (10分)请由麦克斯韦方程出发,写出电荷密度为 ρ 电流密度为J的均匀无耗媒质中电场强度E和磁场强度H满足的波动方程的的详细推导过程。(可能用到的矢量恒等式, $\nabla \times (\nabla \times \mathbf{A}) = \nabla \times (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$)波动方程的表达式如下,

$$\nabla^2 \mathbf{E} - \varepsilon \mu \frac{\partial^2 \mathbf{E}}{\partial t^2} = \mu \mathbf{J} + \nabla \left(\frac{\rho}{\varepsilon} \right), \quad \nabla^2 \mathbf{H} - \varepsilon \mu \frac{\partial^2 \mathbf{H}}{\partial t^2} = -\nabla \times \mathbf{J}$$

四、计算题 (共50分)

1. (10分) 如图 1 所示,求距离无限长的线电荷距离为 ρ 处的的电场的大小和方向,线电荷单位长度的带电量为 ρ 1。

第4页 共7页

- 2. (10分)如图 2 所示,有一个点电荷 q 位于无限大的接接地导体面上方,与导体面的距离为 h,试用镜像法求解,
 - (1) 镜像电荷的位置, 带电量;
 - (2) 导体面上方(z>0)的电位分布:
 - (3) 导体面上的感应电荷密度。

图 2

第5页 共7页

3. (15 分) 空气中传播的均匀平面波垂直入射到位于z=0 处的理想导体板上,入射波的电场强度表达式为:

$$\mathbf{E} = \left(\vec{e}_x + j\vec{e}_y\right) E_0 e^{-jkz}.$$

求: (1) 波的极化方式: (2) 反射波的电场强度(复矢量形式); (3) 导体板上的感应电流的表达式(复矢量形式); (4) 空气中总电场强度的瞬时值表达式;

- (1) 求出与 \vec{E} 相应的磁场强度的复数形式(提示:利用时谐形式的 Maxwell 方程);
- (2) 求两导体板内表面上的面电流密度 J_s 表达式 (复数形式):
- (3) 此电磁波是TEM波、TE波还是TM波?