Bank Customer Churn Prediction

Mfundo Monchwe

Bank Customer Churn Prediction

- EDA.ipynb Exploratory Data Analysis
- Model.ipynb Model Building
- app.py Flask App
- templates HTML Templates
- static CSS Stylesheet

i Import necessary libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
set_seed = 42
sns.set_style('darkgrid')
```

read in the data

```
data = pd.read_csv('Bank_Customer_Churn_Prediction.csv')
data.head()
```

	customer_id	$credit_score$	country	gender	age	tenure	balance	products_number	credit_cai
0	15634602	619	France	Female	42	2	0.00	1	1

	$customer_id$	${\tt credit_score}$	country	gender	age	tenure	balance	products_number	credit_car
1	15647311	608	Spain	Female	41	1	83807.86	1	0
2	15619304	502	France	Female	42	8	159660.80	3	1
3	15701354	699	France	Female	39	1	0.00	2	0
4	15737888	850	Spain	Female	43	2	125510.82	1	1

Data Preprocessing

```
#write a function that does data preprocessing for the entire dataset
  def data_preprocessing(data):
      #drop the row with missing values
      data.dropna(inplace=True)
      #drop the column with unique values
      data.drop(['RowNumber', 'CustomerId', 'Surname'], axis=1, inplace=True)
      #convert the categorical variables to dummy variables
      data = pd.get_dummies(data, drop_first=True)
      #split the data into features and target
      X = data.drop('Exited', axis=1)
      y = data['Exited']
      return X, y
  # confirm if there are any missing values
  data.isnull().sum()
                    0
customer_id
credit_score
                    0
country
gender
                    0
age
                    0
tenure
                    0
balance
                    0
products_number
                    0
credit_card
                    0
active_member
                    0
estimated_salary
churn
dtype: int64
```

data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10000 entries, 0 to 9999 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	customer_id	10000 non-null	int64
1	credit_score	10000 non-null	int64
2	country	10000 non-null	object
3	gender	10000 non-null	object
4	age	10000 non-null	int64
5	tenure	10000 non-null	int64
6	balance	10000 non-null	float64
7	products_number	10000 non-null	int64
8	credit_card	10000 non-null	int64
9	active_member	10000 non-null	int64
10	estimated_salary	10000 non-null	float64
11	churn	10000 non-null	int64
dtyp	es: float64(2), in	t64(8), object(2)

memory usage: 937.6+ KB

Exploration Data Analysis

```
#check the distribution of the target variable
data['churn'].value_counts()
```

churn

7963 2037

Name: count, dtype: int64

• We observe that about 7963 customers have exited the bank, while 2037 customers have stayed with the bank. This is an imbalanced dataset.

```
color_wheel = {1: "#0392cf",2: "#7bc043"}
colors = data['churn'].map(lambda x: color_wheel.get(x + 1))
print(data.churn.value_counts())
p=data.churn.value_counts().plot(kind="bar")
```

churn

0 7963 1 2037

Name: count, dtype: int64

check how many unique values are there in each column
data.nunique()

customer_id	10000
credit_score	460
country	3
gender	2
age	70
tenure	11
balance	6382
products_number	4
credit_card	2

active_member 2 estimated_salary 9999 churn 2

dtype: int64

check the distribution of the numerical variables
data.describe()

	${\rm customer_id}$	${\tt credit_score}$	age	tenure	balance	products_number	cr
count	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10
mean	1.569094e + 07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.
std	7.193619e + 04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.4
\min	1.556570e + 07	350.000000	18.000000	0.000000	0.000000	1.000000	0.0
25%	1.562853e + 07	584.000000	32.000000	3.000000	0.000000	1.000000	0.0
50%	1.569074e + 07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.0
75%	1.575323e + 07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.
max	1.581569e + 07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.0

Descriptive of the data is as follows:

- mean age of the customers is 38 years
- mean balance of the customers is 76485
- mean estimated salary of the customers is 100090
- mean credit score of the customers is 650
- mean tenure of the customers is 5 years
- mean number of products used by the customers is 1.5
- mean number of active members is 0.5
- mean number of customers who have credit card is 0.7
- mean number of customers who have exited the bank is 0.2

```
#plot how many females and males are there in the dataset
data['gender'].value_counts().plot(kind='bar', color=['salmon', 'lightblue']), data['gender']
```

(<Axes: xlabel='gender'>,

gender

Male 5457 Female 4543

Name: count, dtype: int64)

- we observe that in our dataset, we have 4543 females and 5457 males.
- which indicates that there are more males than females in our dataset.

```
#plot gender with age
plt.figure(figsize=(10, 6))
data[data['churn'] == 1]['age'].hist(alpha=0.5, color='salmon', bins=30, label='churn = 1'
data[data['churn'] == 0]['age'].hist(alpha=0.5, color='lightblue', bins=30, label='churn =
plt.legend()
plt.xlabel('age')
plt.ylabel('count')
plt.title('age vs churn')
plt.show()
```


- An observation of the distribution of the age of the customers shows that the age of the customers ranges from 18 to 92 years.
- The age of the customers is normally distributed with a mean of 38 years.

```
#plot gender with churn
plt.figure(figsize=(10, 6))
data[data['churn']==1]['gender'].hist(alpha=0.5, color='salmon', bins=30, label='churn = 1
data[data['churn']==0]['gender'].hist(alpha=0.5, color='lightblue', bins=30, label='churn
plt.legend()
plt.xlabel('gender')
plt.ylabel('count')
plt.show()
```


data[data['churn']==1]['gender'].value_counts(),data[data['churn']==0]['gender'].value_counts()

(gender

Female 1139 Male 898

Name: count, dtype: int64,

gender

Male 4559 Female 3404

Name: count, dtype: int64)

- an observation based on gender and churn
- \bullet 1139 females 898 males churned
- 4559 Males and 3404 females churned

```
#one hotenconding the data for gender and country column
data['gender']=data['gender'].replace(['Female'],'0')
data['gender']=data['gender'].replace(['Male'],'1')
data['country']=data['country'].replace(['France'],'0')
data['country']=data['country'].replace(['Spain'],'1')
```

data['country']=data['country'].replace(['Germany'],'2') data.head()

	$customer_id$	${\tt credit_score}$	country	gender	age	tenure	balance	products_number	credit_car
0	15634602	619	0	0	42	2	0.00	1	1
1	15647311	608	1	0	41	1	83807.86	1	0
2	15619304	502	0	0	42	8	159660.80	3	1
3	15701354	699	0	0	39	1	0.00	2	0
4	15737888	850	1	0	43	2	125510.82	1	1

#drop customer id
data.drop(['customer_id'],axis=1,inplace=True)
data.head()

	credit_score	country	gender	age	tenure	balance	products_number	credit_card	active_mer
0	619	0	0	42	2	0.00	1	1	1
1	608	1	0	41	1	83807.86	1	0	1
2	502	0	0	42	8	159660.80	3	1	0
3	699	0	0	39	1	0.00	2	0	0
4	850	1	0	43	2	125510.82	1	1	1

data.corr(method='pearson')

	${\tt credit_score}$	country	gender	age	tenure	balance	products_numb
credit_score	1.000000	0.008267	-0.002857	-0.003965	0.000842	0.006268	0.012238
country	0.008267	1.000000	-0.016936	0.048092	0.001418	0.348700	-0.006180
gender	-0.002857	-0.016936	1.000000	-0.027544	0.014733	0.012087	-0.021859
age	-0.003965	0.048092	-0.027544	1.000000	-0.009997	0.028308	-0.030680
tenure	0.000842	0.001418	0.014733	-0.009997	1.000000	-0.012254	0.013444
balance	0.006268	0.348700	0.012087	0.028308	-0.012254	1.000000	-0.304180
products_number	0.012238	-0.006180	-0.021859	-0.030680	0.013444	-0.304180	1.000000
credit _card	-0.005458	0.004036	0.005766	-0.011721	0.022583	-0.014858	0.003183
$active_member$	0.025651	-0.012692	0.022544	0.085472	-0.028362	-0.010084	0.009612
$estimated_salary$	-0.001384	0.007382	-0.008112	-0.007201	0.007784	0.012797	0.014204
churn	-0.027094	0.153771	-0.106512	0.285323	-0.014001	0.118533	-0.047820

```
#plot the correlation matrix
plt.figure(figsize=(15, 10))
sns.heatmap(data.corr(), annot=True, cmap='coolwarm')
plt.show()
```



```
#get the correlation of each feature in the dataset
corrmat = data.corr()
top_corr_features = corrmat.index
plt.figure(figsize=(20, 20))
#plot heat map
g = sns.heatmap(data[top_corr_features].corr(), annot=True, cmap='RdYlGn')
```



```
#select the best features
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
X = data.iloc[:,0:11] #independent columns
y = data.iloc[:,-1] #target column i.e price range
```

```
#apply SelectKBest class to extract top 10 best features
bestfeatures = SelectKBest(score_func=chi2, k=10)
fit = bestfeatures.fit(X,y)
dfscores = pd.DataFrame(fit.scores_)
dfcolumns = pd.DataFrame(X.columns)
#concat two dataframes for better visualization
featureScores = pd.concat([dfcolumns,dfscores],axis=1)
featureScores.columns = ['features','score'] #naming the dataframe columns
print(featureScores.nlargest(10,'score')) #print 10 best features
```

```
features
                            score
5
            balance 7.151303e+06
9
   estimated_salary 4.835088e+04
              churn 7.963000e+03
10
3
                age 2.300417e+03
            country 2.175407e+02
1
8
      active_member 1.181994e+02
0
       credit_score 1.054035e+02
2
             gender 5.153993e+01
    products_number 5.055394e+00
6
4
             tenure 3.270538e+00
```

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)

Data Modelling

```
#split the data into features and target
from sklearn.model_selection import train_test_split
X = data.drop('churn', axis=1)
y = data['churn']
#split the data into train and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=set_X_train.shape, X_test.shape, y_train.shape, y_test.shape

((8000, 10), (2000, 10), (8000,), (2000,))

#scale the data
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
```

```
#build the model
  from sklearn.linear_model import LogisticRegression
  from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
  log_reg = LogisticRegression()
  log_reg.fit(X_train, y_train)
  y_pred = log_reg.predict(X_test)
  print('Accuracy score: {}'.format(accuracy_score(y_test, y_pred)))
  print('Confusion matrix: \n{}'.format(confusion matrix(y_test, y_pred)))
  print('Classification report: \n{}'.format(classification_report(y_test, y_pred)))
Accuracy score: 0.8145
Confusion matrix:
[[1544
         631
 Γ 308
         8511
Classification report:
              precision
                         recall f1-score
                                              support
           0
                   0.83
                             0.96
                                       0.89
                                                 1607
           1
                   0.57
                             0.22
                                       0.31
                                                  393
   accuracy
                                       0.81
                                                 2000
                   0.70
                             0.59
                                       0.60
                                                 2000
  macro avg
                             0.81
                                       0.78
weighted avg
                   0.78
                                                 2000
  # build random forest classifier
  from sklearn.ensemble import RandomForestClassifier
  rf = RandomForestClassifier()
  rf.fit(X_train, y_train)
  y_pred = rf.predict(X_test)
  print('Accuracy score: {}'.format(accuracy_score(y_test, y_pred)))
  print('Confusion matrix: \n{}'.format(confusion_matrix(y_test, y_pred)))
  print('Classification report: \n{}'.format(classification_report(y_test, y_pred)))
Accuracy score: 0.862
Confusion matrix:
[[1539
         681
 [ 208 185]]
Classification report:
              precision recall f1-score
                                              support
```

```
0
                   0.88
                              0.96
                                        0.92
                                                   1607
                   0.73
                              0.47
                                        0.57
                                                   393
           1
                                        0.86
                                                  2000
    accuracy
                                        0.75
                                                  2000
  macro avg
                   0.81
                              0.71
                   0.85
                              0.86
                                        0.85
                                                  2000
weighted avg
```

```
#build XGBoost classifier
from xgboost import XGBClassifier
xgb = XGBClassifier()
xgb.fit(X_train, y_train)
y_pred = xgb.predict(X_test)
print('Accuracy score: {}'.format(accuracy_score(y_test, y_pred)))
print('Confusion matrix: \n{}'.format(confusion_matrix(y_test, y_pred)))
print('Classification report: \n{}'.format(classification_report(y_test, y_pred)))
```

Accuracy score: 0.861 Confusion matrix: [[1530 77]

[201 192]]

Classification report:

	precision	recall	f1-score	support
0	0.88	0.95	0.92	1607
1	0.71	0.49	0.58	393
accuracy			0.86	2000
macro avg	0.80	0.72	0.75	2000
weighted avg	0.85	0.86	0.85	2000

```
#plot roc_curve and roc_auc_score
from sklearn.metrics import roc_curve, roc_auc_score
y_pred_prob = log_reg.predict_proba(X_test)[:, 1]
fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob)
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr, tpr, label='Logistic Regression')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Logistic Regression ROC Curve')
plt.show()
```

```
auc_score = roc_auc_score(y_test, y_pred_prob)
print('AUC score: {}'.format(auc_score))
```



```
#plot roc_curve and roc_auc_curve for random forest
y_pred_prob = rf.predict_proba(X_test)[:, 1]
fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob)
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr, tpr, label='Random Forest')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Random Forest ROC Curve')
plt.show()
auc_score = roc_auc_score(y_test, y_pred_prob)
print('AUC score: {}'.format(auc_score))
```



```
#plot roc_curve and roc_auc_curve for XGBoost
y_pred_prob = xgb.predict_proba(X_test)[:, 1]
fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob)
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr, tpr, label='XGBoost')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('XGBoost ROC Curve')
plt.show()
auc_score = roc_auc_score(y_test, y_pred_prob)
print('AUC score: {}'.format(auc_score))
```



```
#plot the feature importance
plt.figure(figsize=(12, 8))
feat_importances = pd.Series(rf.feature_importances_, index=X.columns)
feat_importances.nlargest(10).plot(kind='barh')
plt.show()
```



```
#solve the imbalance problem
from imblearn.over_sampling import SMOTE
smote = SMOTE(random_state=set_seed)
X_train, y_train = smote.fit_resample(X_train, y_train)
X_train.shape, y_train.shape
```

((12712, 10), (12712,))

```
#build the model
log_reg = LogisticRegression()
log_reg.fit(X_train, y_train)
y_pred = log_reg.predict(X_test)
print('Accuracy score: {}'.format(accuracy_score(y_test, y_pred)))
print('Confusion matrix: \n{}'.format(confusion_matrix(y_test, y_pred)))
print('Classification report: \n{}'.format(classification_report(y_test, y_pred)))
```

Accuracy score: 0.7225 Confusion matrix: [[1166 441]

[114 279]]

	precision	recall	f1-score	support
0 1	0.91 0.39	0.73 0.71	0.81 0.50	1607 393
accuracy macro avg weighted avg	0.65 0.81	0.72 0.72	0.72 0.65 0.75	2000 2000 2000

```
#build random forest classifier

rf = RandomForestClassifier()

rf.fit(X_train, y_train)

y_pred = rf.predict(X_test)

print('Accuracy score: {}'.format(accuracy_score(y_test, y_pred)))

print('Confusion matrix: \n{}'.format(confusion_matrix(y_test, y_pred)))

print('Classification report: \n{}'.format(classification_report(y_test, y_pred)))
```

Accuracy score: 0.8455

Confusion matrix:

[[1456 151] [158 235]]

Classification report:

	precision	recall	f1-score	support
0	0.90	0.91	0.90	1607
1	0.61	0.60	0.60	393
accuracy			0.85	2000
macro avg	0.76	0.75	0.75	2000
weighted avg	0.84	0.85	0.84	2000

```
#build XGBoost classifier
xgb = XGBClassifier()
xgb.fit(X_train, y_train)
y_pred = xgb.predict(X_test)
print('Accuracy score: {}'.format(accuracy_score(y_test, y_pred)))
print('Confusion matrix: \n{}'.format(confusion_matrix(y_test, y_pred)))
```

```
Accuracy score: 0.8595
Confusion matrix:
[[1503 104]
[ 177 216]]
```

```
#plot roc_curve and roc_auc_score
y_pred_prob = log_reg.predict_proba(X_test)[:, 1]
fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob)
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr, tpr, label='Logistic Regression')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Logistic Regression ROC Curve')
plt.show()
auc_score = roc_auc_score(y_test, y_pred_prob)
print('AUC score: {}'.format(auc_score))
```



```
#plot roc_curve and roc_auc_curve for random forest
y_pred_prob = rf.predict_proba(X_test)[:, 1]
fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob)
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr, tpr, label='Random Forest')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Random Forest ROC Curve')
plt.show()
auc_score = roc_auc_score(y_test, y_pred_prob)
print('AUC score: {}'.format(auc_score))
```

Random Forest ROC Curve 1.0 0.8 0.6 0.2 0.0 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 False Positive Rate

```
#plot roc_curve and roc_auc_curve for XGBoost
y_pred_prob = xgb.predict_proba(X_test)[:, 1]
fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob)
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr, tpr, label='XGBoost')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('XGBoost ROC Curve')
plt.show()
```

