Introduction to Distance Sampling

Line transect estimation by hand

1) In the previous exercise, you used the data in the table below to create a histogram and fitted a detection function by eye. You also estimated the proportion of nests within 2.4m of the line that are seen, P_a , and an estimate of nest density D (number of nests per square meter or per square kilometer).

n=534 nests. *L*=2575 km.

Perpendicular distance band (meters)	0.0-0.3	0.3-0.6	0.6-0.9	0.9-1.2	1.2-1.5	1.5-1.8	1.8-2.1	2.1-2.4
Frequency	74	73	79	66	78	58	52	54

- **2)** Now use your histogram created in the previous exercise to estimate the effective half-width of search μ . Again estimate nest density D. How does it compare to your estimate from the previous exercise?
- 3) Rescale the y-axis to make your curve into the probability density function f(x). Read off f(0), and again estimate nest density D. How does it compare with your previous estimates?