LTCC Based L-Band Bandpass Filters for Communication Devices

- → Determining Specifications
 - Centre frequency
 - Bandwidth
 - Insertion Loss
 - Return Loss
- → Determining Topology
 - Coupled resonator
 - Inter-digital filter
 - Hairpin filter
 - Stepped Impedance filter
 - Piezoelectric tuned filter
- → Designing in Matlab
 - Signal processing
 - Filter design tools
- → Simulating filter in CST Design Suite (Microwave)
- → I plan to design 3 filters using above parameters, then see results of each simulation and select the best/most efficient one.

Selected filters: hairpin, stepped impedance and inter-digital.

Stepped Impedance Filter

Specifications:-

- Centre frequency(f_o): 2.65 GHz

- 3dB bandwidth(B): 50 MHz

- Number of stages(N): 3

- Characteristic impedance(Z₀): ~50 Ohms

Design:-

Response Plot (freq, amplitude):-

Hairpin Filter

Specifications:-

- Centre frequency(f_o): 1.25 GHz

- 3dB bandwidth(B): 50 MHz

- Number of stages(N): 3

- Characteristic impedance(Z_o): ~50 Ohms

Design:-

Response Plot (freq, amplitude):-

Inter-digital Filter

Specifications:-

- Centre frequency(f_o): >4 GHz

- 3dB bandwidth(B): 50 MHz

- Number of stages(N): 5

- Characteristic impedance(Z₀): ~50 Ohms

Design:-

Response Plot (freq, amplitude):-

Conclusion

By simulating above 3 designs we find that the best suited filter for L-Band Microwave is the Hairpin filter, as it has a centre frequency of 1.25 GHz hence we use this design to construct and simulate in CST Studio.