

Based on Arm® Cortex®-M7 single

General description

CYT3DL is a family of TRAVEO™ T2G microcontrollers targeted at automotive systems such as instrument clusters and Head-Up Displays (HUD). CYT3DL has a 2D Graphics engine, sound processing, an Arm® Cortex®-M7 CPU for primary processing, and an Arm® Cortex®-M0+ CPU for peripheral and security processing. These devices contain embedded peripherals supporting Controller Area Network with Flexible Data rate (CAN FD), Local Interconnect Network (LIN), Clock Extension Peripheral Interface (CXPI), and Ethernet. TRAVEO™ T2G devices are manufactured on an advanced 40-nm process. CYT3DL incorporates Infineon' low-power flash memory, multiple high-performance analog and digital peripherals, and enables the creation of a secure computing platform.

Features

Graphics subsystem

- Supports 2D and 2.5D (perspective warping, 3D effects) graphics rendering
- Internal color resolution
 - 40-bit for RGBA (4 × 10-bit)
 - 24-bit for RGB (3 × 8-bit)
- 2048 KB of embedded video RAM memory (VRAM)
- Two video output interfaces supporting a display from
 - Parallel RGB (max display size: 1600 × 600 at 80 MHz)
 - FPD-link single (max display size: 1920 × 720 at 110 MHz)
- One Capture engine for video input processing for ITU 656 or parallel RGB/YUV or MIPI CSI-2 input
 - ITU656 (standard camera capture: up to 800 × 480), multiplexed with RGB interface
 - RGB (max capture size 1600 × 600 at 80 MHz) or
 - Two-/four-lane MIPI CSI-2 interface (max capture size: 1920 × 720 for two lanes at 110 MHz, 2880 × 1080 for four lanes at 220 MHz)
- Display warping on-the-fly for HUD applications
- Direct video feed through from capture to display interface with graphics overlay
- Composition engine for scene composition from display layers
- Display engine for video timing generation and display functions
- Drawing engine for acceleration of vector graphics rendering
- Command sequencer for setup and control of the rendering process
- Supports graphics rendering without frame buffers (on-the-fly)
- Single-channel FPD-Link/LVDS interface for up to HD resolution video output

Sound subsystem

- Four time-division multiplexing (TDM) interfaces
- Two pulse-code modulation-pulse width modulation (PCM-PWM) interfaces
- Up to five sound generator (SG) interfaces
- Two PCM Audio stream mixers with five input streams
- One audio digital-to-analog converter (DAC)

CPU subsystem

- 240-MHz (max) 32-bit Arm® Cortex®-M7 CPU, with
 - Single-cycle multiply
 - Single/double-precision floating point unit (FPU)
 - 16-KB data cache, 16-KB instruction cache
 - Memory protection unit (MPU)
 - 64-KB instruction and 64-KB data Tightly-Coupled Memories (TCM)

Based on Arm® Cortex®-M7 single

Features

- 100-MHz 32-bit Arm® Cortex®-M0+ CPU with
 - Single-cycle multiply
 - Memory protection unit
- Inter-processor communication in hardware
- Four DMA controllers
 - Peripheral DMA controller #0 (P-DMA0) with 76 channels
 - Peripheral DMA controller #1 (P-DMA1) with 84 channels
 - Memory DMA (AHB) controller (M-DMA0) with 8 channels
 - Memory DMA (AXI) controller (M-DMA1) with 4 channels

· Integrated memories

- 4160-KB code-flash with an additional 128-KB of work-flash
 - Read-While-Write (RWW) allows updating the code-flash/work-flash while executing from it
 - Single- and dual-bank modes (specifically for Firmware update Over The Air [FOTA])
 - Flash programming through SWD/JTAG interface
- 384-KB SRAM with selectable retention granularity

Crypto engine^[1]

- Supports Enhanced Secure Hardware Extension (eSHE) and Hardware Security Module (HSM)
- Secure boot and authentication
- Using digital signature verification^[1]
- Using fast secure boot
- AES: 128-bit blocks, 128-/192-/256-bit keys
- 3DES^[1]: 64-bit blocks, 64-bit key
- Vector unit^[1] supporting asymmetric key cryptography such as Rivest-Shamir-Adleman (RSA) and Elliptic Curve (ECC)
- SHA-1/2/3^[1]: SHA-512, SHA-256, SHA-160 with variable length input data
- CRC^[1]: supports CCITT CRC16 and IEEE-802.3 CRC32
- True random number generator (TRNG) and pseudo random number generator (PRNG)
- Galois/Counter Mode (GCM)

· Functional safety for ASIL-B

- Memory protection unit (MPU)
- Shared memory protection unit (SMPU)
- Peripheral protection unit (PPU)
- Watchdog timer (WDT)
- Multi-counter watchdog timer (MCWDT)
- Low-voltage detector (LVD)
- Brown-out detection (BOD)
- Overvoltage detection (OVD)
- Overcurrent detection (OCD)
- Clock supervisor (CSV)
 - Supported in all power modes except Hibernate mode
- Hardware error correction (SECDED ECC) on all safety-critical memories (SRAM, flash, TCM)

· Low-power 2.7-V to 5.5-V operation

- Low-power Active, Sleep, Low-power Sleep, DeepSleep, and Hibernate modes for fine-grained power management
- Configurable options for robust BOD
 - \bullet Two threshold levels (2.7 V and 3.0 V) for BOD on V_{DDD} and $V_{DDA\ ADC}$
 - One threshold level (1.1 V) for BOD on V_{CCD}

· Wakeup support

- Up to four pins to wakeup from Hibernate mode
- Up to 61 GPIO pins to wakeup from DeepSleep mode
- Event Generator, SCB, Watchdog Timer, RTC alarms to wake from DeepSleep modes

Note

1. The Crypto engine features are available on select MPNs.

Based on Arm® Cortex®-M7 single

Features

Clocks

- Internal main oscillator (IMO)
- Internal low-speed oscillator (ILO)
- External crystal oscillator (ECO)
- Watch crystal oscillator (WCO)
- Phase-locked loop (PLL)
- Frequency-locked loop (FLL)
- Low-power external crystal oscillator (LPECO)

Communication interfaces

- Up to four CAN FD channels
 - Increased data rate (up to 8 Mbps) compared to classic CAN, limited by physical layer topology and transceivers
 - Compliant to ISO 11898-1:2015
 - Supports all the requirements of Bosch CAN FD Specification V1.0 non-ISO CAN FD
 - ISO 16845:2015 certificate available
- Up to 12 runtime-reconfigurable serial communication block (SCB) channels, each configurable as I²C, SPI, or UART
- Up to two independent LIN channels
 - LIN protocol compliant with ISO 17987
- Up to two CXPI channels with data rate up to 20 kbps
- 10/100 Mbps Ethernet MAC interface conforming to IEEE-802.3bw
 - Supports the following PHY interfaces:
 - Media-independent interface (MII)
 - Reduced media-independent interface (RMII)
 - Compliant with IEEE-802.1BA for audio video bridging (AVB)
 - Compliant with IEEE-1588 precision time protocol (PTP)

Serial memory interface (SMIF)

- Two SPIs (single, dual, quad, or octal), xSPI interface
- On-the-fly encryption and decryption
- Execute-In-Place (XIP) from external memory

Timers

- Up to 50 16-bit and 32 32-bit Timer/Counter Pulse-Width modulator (TCPWM) blocks for regular operations
 - Up to 12 16-bit counters optimized for motor-control operations (Equivalent to 6 stepper motor-control [SMC] channels with ZPD and slew rate control capability)
 - Supports timer, capture, quadrature decoding, pulse-width modulation (PWM), PWM with dead time (PW-M_DT), pseudo-random PWM (PWM_PR), and shift-register (SR) modes
- Up to 16 Event Generation (EVTGEN) timers supporting cyclic wakeup from DeepSleep
 - Events trigger a specific device operation (such as execution of an interrupt handler, a SAR ADC conversion, and so on)

· Real time clock (RTC)

- Year/Month/Date, Day-of-week, Hour:Minute:Second fields
- 12- and 24-hour formats
- Automatic leap-year correction

· I/O

- Up to 135 programmable I/Os
- Four I/O types
 - GPIO Standard (GPIO_STD)
 - GPIO Enhanced (GPIO_ENH)
 - GPIO Stepper Motor Control (GPIO_SMC)
 - High-Speed I/O Standard with Low Noise (HSIO_STDLN)

Based on Arm® Cortex®-M7 single

Features

Power

- Regulators
 - Generates 1.1-V nominal core supply from a 2.7-V to 5.5-V input supply
 - Two regulators: DeepSleep and Core internal
- PMIC control module

· Programmable analog

- One SAR A/D converter
 - Each ADC supports 32 logical channels, with 48 external channels. Any external channel can be connected to any logical channel in the SAR.
 - 12-bit resolution and sampling rates up to 1 Msps
- The ADC also supports six internal analog inputs like
 - Bandgap reference to establish absolute voltage levels
 - Calibrated diode for junction temperature calculations
 - Two AMUXBUS inputs and two direct connections to monitor supply levels
- ADC supports addressing of external multiplexers
- ADC has a sequencer supporting autonomous scanning of configured channels

Smart I/O

- One smart I/O block, which can perform Boolean operations on signals going to and from I/Os
- Up to eight I/Os (GPIO_STD) supported

Debug interface

- JTAG controller and interface compliant to IEEE-1149.1-2001
- Arm® SWD (serial wire debug) port
- Supports Arm® Embedded Trace Macrocell (ETM) Trace
 - · Data trace using SWD
 - Instruction and data trace using JTAG

· Compatible with industry-standard tools

GHS MULTI or IAR EWARM for code development and debugging

Packages

- 272-BGA, 16 × 16 × 1.7 mm (max), 0.8-mm ball pitch
- 216-TEQFP, 24 × 24 × 1.6 mm (max), 0.4-mm ball pitch

Based on Arm® Cortex®-M7 single

Table of contents

General description	•
Features	
Table of contents	
1 Features list	
1.1 Peripheral instance list	
2 Blocks and functionality	
Block diagram	
3 Functional description	
3.1 CPU subsystem	
3.2 System resources	
3.3 Peripherals	
3.4 Graphics	
3.5 I/Os	
4 CYT3DL address map	
5 Flash base address map	
6 Peripheral I/O map	
7 CYT3DL clock diagram	
8 CYT3DL CPU start-up sequence	
9 Pin assignment	
10 High-speed I/O matrix connections	
11 Package pin list and alternate functions	
12 Power pin assignments	
13 Alternate function pin assignments	
13.1 Pin function description	
14 Interrupts and wake-up assignments	
15 Core interrupt types	
16 Trigger multiplexer	
17 Triggers group inputs	
18 Triggers group outputs	
19 Triggers one-to-one	
20 Peripheral clocks	
21 Faults	75
22 Peripheral protection unit fixed structure pairs	79
23 Bus masters	
24 Miscellaneous configuration	94
25 Development support	
25.1 Documentation	96
25.2 Tools	96
26 Electrical specifications	97
26.1 Absolute maximum ratings	97
26.2 Device-level specifications	102
26.3 Reset specifications	110
26.4 I/O Specifications	112
26.5 Analog peripherals	119
26.6 AC specifications	123
26.7 Digital peripherals	124
26.8 Memory	136
26.9 System resources	138
26.10 Clock specifications	148
26.11 Ethernet specifications	157
26.12 Sound subsystem specifications	161

Based on Arm® Cortex®-M7 single

Table of contents

26.13 CXPI specifications	165
26.14 Serial memory interface specifications	
26.15 Graphics subsystem specifications	
27 Ordering information	
27.1 Part number nomenclature	
28 Packaging	
29 Appendix	
29.1 External IP revisions	
29.2 Internal IP revisions	188
29.3 MIPI formats supported[89]	
30 Acronyms	
Revision history	
Revision history change log	

Based on Arm® Cortex®-M7 single

Features list

Features list 1

Table 1-1 **CYT3DL** feature list

Features	Packages	
reatures	216-TEQFP	272-BGA
CPU		
Core	32-bit Arm [®] Cortex [®] -M7 CPU ar	nd 32-bit Arm® Cortex®-M0+ CPU
Functional safety	AS	IL-B
Operation voltage for GPIO_STD	2.7 V t	to 5.5 V
Operation voltage for GPIO_ENH	2.7 V t	to 5.5 V
Operation voltage for GPIO_SMC	2.7 V t	to 5.5 V
Operation voltage for HSIO_STDLN	3.0 V t	to 3.6 V
Core voltage VCCD	1.09 V t	to 1.21 V
Operation frequency	Arm® Cortex®-M7 240 MHz (max) an	nd Arm® Cortex®-M0+ 100 MHz (max)
MPU, PPU	Supp	oorted
FPU	Supports both single (32-bit)	and double (64-bit) precision
DSP-MUL/DIV/MAC	Supported by Arm	า® Cortex®-M7 CPU
TCM	64-KB instruction and 64-k	KB data for Cortex®-M7 CPU
Memory		
Code-flash	4160 KB (403	1 KB + 128 KB)
Work-flash	128 KB (96	KB + 32 KB)
SRAM (configurable for retention)	384	1 KB
ROM	64 KB	
Communication Interfaces	1	
CAN0 (CAN-FD: Up to 8 Mbps)	2	ch
CAN1 (CAN-FD: Up to 8 Mbps)	2 ch	
CAN RAM	16 KB per instance (2 ch), 32 KB in total	
Serial Communication Block (SCB/UART)	9 ch	12 ch
Serial Communication Block (SCB/I ² C)	9 ch	11 ch
Serial Communication Block (SCB/SPI)	8 ch	11 ch
LINO		
CXPI controller	2 ch	
Ethernet MAC	1 ch × 10/100	
Memory Interfaces	1 0.11	10/100
SMIF (Single SPI / Dual SPI / Quad SPI / Octal SPI / xSPI)	2 ch (HSIO_STDLN at 100 MHz)	2 ch (HSIO_STDLN at 133 MHz)
Timers	2 CH (11310_31 DEN at 100 MHZ)	2 cm (11010_31 DER at 100 MHz)
RTC	1	ch
TCPWM (16-bit)	1 ch	
TCPWM (16-bit) SMC	38 ch	
TCPWM (32-bit)	12 ch (Equivalent to 6 ch SMC with ZPD and slew rate control) 32 ch	
External Interrupts	108	135
Analog	100	133
niiuog	1 Unit /SAD#0 22	logical channels
12 hit 1 Mana SAR ADC		l logical channels)
12-bit, 1 Msps SAR ADC		
Security	6 cn for Inter	rnal sampling
Security Flood Counity (avagram (work road protection))		.outod
Flash Security (program/work read protection)	Supp	ported

Based on Arm® Cortex®-M7 single

Table 1-1 **CYT3DL feature list** (continued)

Features	Packages		
reatures	216-TEQFP	272-BGA	
Flash Chip erase enable	Config		
eSHE / HSM	By separate	By separate firmware ^[2]	
Sound			
Mixer	2 ch (5 mix	er sources)	
PCM-PWM	20	ch	
TDM/I ² S	4 TDM structures (each	support 32 channels)	
TDM/RX	3 ch	4 ch	
TDM/TX	2 ch	4 ch	
Audio DAC	10	ch	
Sound Generator (SG)	50	ch	
Graphics			
2/2.5 D Engine	Supp	orted	
Embedded Video RAM	2048 KB (with	h protection)	
Vector Drawing	Supp	orted	
Warping	Supported	(on the fly)	
Scale/Rotate/Blend	Supported	(on the fly)	
Graphics Engine Clock	200 MH	z (max)	
Timing Control	One o	One output	
Video Capture	One Capture (1× MIPI CSI-2, up to 4 lanes)	One Capture (1× RGB or 1× MIPI CSI-2, up to 4 lanes)	
Video Capture Formats	TTL - ITU656 (8-/10-bit, RGB/YUV interlaced or progressive), Parallel RGB (1 to 24 bpp), YUV444, YUV422 MIPI CSI-2 - Table 29-3		
Number of Displays	Up to two (1× LVDS s	Up to two (1× LVDS single and/or 1× RGB)	
RGB888/TTL Output	1 ch at 40 l	1 ch at 40 MHz (max)	
FPD-link/LVDS Output	Single channel LVDS at 80 MHz pixel clock (max)	Single channel LVDS at 110 MHz pixel clock (max)	
MIPI CSI-2 Input	4 or 2 lane MIPI CSI-2 at 80 MHz pixel clock (max)	4 or 2 lane MIPI CSI-2 at 110 MHz pixel clock (max)	
System			
DMA Controller		P-DMA0 with 76 channels (32 general purpose), P-DMA1 with 84 channels (16 general purpose), M-DMA0 with 8 channels, and AXI M-DMA1 with 4 channels	
Internal Main Oscillator	8 M	8 MHz	
Internal Low speed Oscillator	32.768 kHz	32.768 kHz (nominal)	
PLL	Input frequency: 3.988 to 33.34 MHz,	Input frequency: 3.988 to 33.34 MHz, PLL output frequency: up to 240 MHz	
FLL	Input frequency: 0.25 to 100 MHz, F	LL output frequency: up to 100 MHz	
Watchdog timer and multi-counter watchdog timer		Supported (WDT + 2× MCWDT) MCWDT#0 tied to CM0+, MCWDT#1 to CM7_0	
Clock supervisor	Supp	Supported	
Cyclic wakeup from DeepSleep	Supp	Supported	
GPIO Standard (GPIO_STD)	21	29	
GPIO Enhanced (GPIO_ENH)	8	8	
GPIO SMC (GPIO_SMC) ^[3]	2	4	
HSIO Standard Low Noise (HSIO_STDLN)	55	74	
Smart I/O (Blocks)	1 block, mapped		

Based on Arm® Cortex®-M7 single

Features list

Table 1-1 **CYT3DL feature list** (continued)

Features	Packages	
reatures	216-TEQFP	272-BGA
Notes 2. Enhanced Secure Hardware Extension (eSHE) and Har 3. High current SMC I/O for direct connections to steppe		e enabled by third-party firmware.
Low-voltage detect	Two, 26 selectable levels	
Maximum ambient temperature	105°C for S-grade	
Debug interface	SWD/JTAG	
Debug Trace	Arm® Cortex®-M7 ETB size of 8 KB, Arm® Cortex®-M0+ MTB size of 4 K	

Based on Arm® Cortex®-M7 single

Features list

1.1 Peripheral instance list

The following table lists the instances supported under each package for communication peripherals, based on the minimum, and full pins needed for the functionality.

Table 1-2 Minimum peripheral instance list

Module	216-TEQFP	272-BGA	Minimum pin functions
CAN0	0-1	0-1	TX, RX
CAN1	0-1	0-1	TX, RX
LIN0	0-1	0-1	TX, RX
CXPI	0-1	0-1	TX, RX
SCB/UART	0-4, 8-11	0-11	TX, RX
SCB/I2C	1-4, 7-11	1-11	SCL, SDA
SCB/SPI	1-4, 8-11	1-11	MISO, MOSI, SCK, SELECTO
TDM/RX	0-2	0-3	MCK, FSYNC, SCK, SD
TDM/TX	2-3	0-3	MCK, FSYNC, SCK, SD
SG	0-4	0-4	TONE, AMPL
ETHERNET	0	0	RMII
SMIF	0-1	0-1	DATA, CLK, RWDS, SELECT0-1
PWM	0-1	0-1	LINE1_P/N, LINE2_P/N
TCPWM (32-bit)	0-31	0-31	PWM, PWM_N
TCPWM (16-bit) ^[4]	32-35, 256-267, 520-533, 536-543	32-37, 256-267, 512-543	PWM, PWM_N

Table 1-3 Full peripheral instance list

Module	216-TEQFP	272-BGA	Full pin functions
CAN0	0-1	0-1	TX, RX
CAN1	0-1	0-1	TX, RX
LIN0	0-1	0-1	TX, RX, EN
CXPI	0-1	0-1	TX, RX, EN
SCB/UART	0-4, 8-11	0-11	TX, RX, RTS, CTS
SCB/I2C	1-4, 7-11	1-11	SCL, SDA
SCB/SPI	1-4, 8	1-11	MISO, MOSI, SCK, SELECT0-1
TDM/RX	0-2	0-3	MCK, FSYNC, SCK, SD
TDM/TX	2-3	0-3	MCK, FSYNC, SCK, SD
SG	4	0-4	TONE, AMPL, MCK
ETHERNET	-	0	MII
SMIF	0-1	0-1	DATA, CLK, RWDS, SELECT0-1
PWM	0-1	0-1	LINE1_P/N, LINE2_P/N, MCK
TCPWM (32-bit)	0-31	0-31	PWM, PWM_N, TC_TR
TCPWM (16-bit) ^[4]	32-33, 36-37, 518-519, 522-54	32-37, 512-543	PWM, PWM_N, TC_TR

Note

^{4.} Channels 522-524 pin functions shared on same pin.

Blocks and functionality

Blocks and functionality 2

Block diagram

Figure 2-1 **Architecture block diagram**

The **Block diagram** gives a simplified view of the interconnection between subsystems and blocks. CYT3DL has five major subsystems: CPU, system resources, peripherals, graphics, and $I/O^{[5,6,7,8]}$. The color-coding shows the lowest power mode where the particular block is still functional.

CYT3DL provides extensive support for programming, testing, debugging, and tracing of both hardware and firmware.

Debug-on-chip functionality enables in-system debugging using the production device. It does not require special interfaces, debugging pods, simulators, or emulators.

The JTAG interface is fully compatible with industry-standard third-party probes such as I-jet, J-Link, and GHS.

The debug circuits are enabled by default.

CYT3DL provides a high level of security with robust flash protection and the ability to disable features such as debug.

Additionally, each device interface can be permanently disabled for applications concerned with phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. All programming, debug, and test interfaces are disabled when maximum device security is enabled.

Notes

GPIO_STD supports 2.7 V to 5.5 V V_{DDIO_GPIO} range.
 GPIO_ENH supports 2.7 V to 5.5 V V_{DDIO_GPIO} range with higher currents at lower voltages.
 GPIO_SMC supports 2.7 V to 5.5 V V_{DDIO_SMC} range with currents higher than GPIO_ENH.
 HSIO_STDLN supports 3.0 V to 3.6 V V_{DDIO_HSIO} range with high-speed signaling and programmable drive strength.

Based on Arm® Cortex®-M7 single

Functional description

Functional description 3

3.1 **CPU** subsystem

3.1.1 **CPU**

The CYT3DL CPU subsystem contains a 32-bit Arm® Cortex®-M0+ CPU with MPU, and a 32-bit Arm® Cortex®-M7 CPU, with MPU, single/double-precision FPU, and 16-KB data and instruction caches. This subsystem also includes P-/M-DMA controllers, a cryptographic accelerator, 4160 KB of code-flash, 128 KB of work-flash, 384 KB of SRAM, and 64 KB of ROM.

The Cortex®-M0+ CPU provides a secure, un-interruptible boot function. This guarantees that, following completion of the boot function, system integrity is valid and privileges are enforced. Shared resources (flash, SRAM, peripherals, and so on) can be accessed through bus arbitration, and exclusive accesses are supported by an inter-processor communication (IPC) mechanism using hardware semaphores.

Each Cortex®-M7 CPU has 64 KB of instruction and 64 KB of data TCM with programmable read wait states. Each TCM is clocked by the associated Cortex®-M7 CPU clock.

3.1.2 **DMA controllers**

CYT3DL has four DMA controllers: P-DMA0 with 32 general purpose and 44 dedicated channels. P-DMA1 with 16 general purpose and 68 dedicated channels, M-DMA0 with eight channels, and AXI M-DMA1 with four channels. P-DMA is used for peripheral-to-memory and memory-to-peripheral data transfers and provides low latency for a large number of channels. Each P-DMA controller uses a single data-transfer engine that is shared by the associated channels. General purpose channels have a rich interconnect matrix including P-DMA cross triggering which enables demanding data-transfer scenarios. Dedicated channels have a single triggering input (such as an ADC channel) to handle common transfer needs. M-DMA is used for memory-to-memory data transfers and provides high memory bandwidth for a small number of channels. M-DMA uses a dedicated data-transfer engine for each channel. They support independent accesses to peripherals using the AHB multi-layer bus. AXI M-DMA is used to provide access to AXI slaves like VRAM.

3.1.3 Flash

CYT3DL has 4160 KB (4032 KB with a 32-KB sector size, and 128 KB with an 8-KB sector size) of code-flash with an additional work-flash of 128 KB (96 KB with a 2-KB sector size, and 32 KB with a 128-B sector size). Work-flash is optimized for reprogramming many more times than code-flash. Code-flash supports Read-While-Write (RWW) operation so that flash may be updated while the CPU is active. Both the code-flash and work-flash areas support dual-bank operation for over-the-air (OTA) programming.

3.1.4 SRAM

CYT3DL has 384 KB of SRAM with two independent controllers. SRAM0 provides DeepSleep retention in 32-KB increments while SRAM1/2 is selectable between fully retained and not retained.

3.1.5 **ROM**

CYT3DL has 64 KB of ROM that contains boot and configuration routines. This ROM enables secure boot and authentication of user flash to guarantee a secure system.

Cryptography accelerator for security 3.1.6

The cryptography accelerator implements (3)DES block cipher, AES block cipher, SHA hash, cyclic redundancy check, pseudo random number generation, true random number generation, galois/counter mode, and a vector unit to support asymmetric key cryptography such as RSA and ECC.

Depending on the part number, this block is either completely or partially available or not available at all. See "Ordering information" on page 183 for more details.

Based on Arm® Cortex®-M7 single

Functional description

3.2 **System resources**

3.2.1 Power system

The power system ensures that the supply voltage levels meet the requirements of each power mode, and provides a full-system reset when these levels are not valid. Internal power-on reset (POR) guarantees full-chip reset during the initial power ramp.

Three BOD circuits monitor the external supply voltages (V_{DDD} , V_{DDA_ADC} , V_{CCD}). The BOD on V_{DDD} and V_{CCD} is initially enabled and cannot be disabled. The BOD on V_{DDA_ADC} is initially disabled and can be enabled by the user. For the external supplies V_{DDD} and V_{DDA_ADC} , BOD circuits are software-configurable with two settings; a 2.7-V minimum voltage that is robust for all internal signaling, and a 3.0-V minimum voltage, which is also robust for all I/O specifications (which are guaranteed at 2.7 V). The BOD on V_{CCD} is provided as a safety measure and is not a robust detector.

Three overvoltage detection (OVD) circuits are provided for monitoring external supplies (V_{DDD} , V_{DDA_ADC} , V_{CCD}), and overcurrent detection circuits (OCD) for monitoring internal and external regulators. OVD thresholds on V_{DDD} and V_{DDA_ADC} are configurable with two settings; a 5.0-V and 5.5-V maximum voltage.

Two voltage detection circuits are provided to monitor the external supply voltage (V_{DDD}) for falling and rising levels, each configurable for one of the 26 selectable levels.

All BOD, OVD, and OCD circuits on V_{DDD} and V_{CCD} generate a reset, because these protect the CPUs and fault logic. The BOD and OVD circuits on V_{DDA ADC} can be configured to generate either a reset, or a fault.

3.2.2 Regulators

CYT3DL contains two regulators that provide power to the low-voltage core transistors: DeepSleep and core internal. These regulators accept a 2.7-V to 5.5-V V_{DDD} supply and provide a low-noise 1.1-V supply to various parts of the device. These regulators are automatically enabled and disabled by hardware and firmware when switching between power modes. The core internal regulator operates in Active mode and provides power to the CPU subsystem and associated peripherals.

3.2.2.1 DeepSleep

The DeepSleep regulator is used to maintain power in a small number of blocks when in DeepSleep mode. These blocks include the ILO and WDT timers, BOD detector, SCB0, SRAM memories, Smart I/O, and other configuration memories. The DeepSleep regulator is enabled when in DeepSleep mode, and the core internal regulator is disabled. It is disabled when XRES_L is asserted (LOW) and when the core internal regulator is disabled.

3.2.2.2 **Core internal**

The core internal regulator supports load currents up to 300 mA, and is operational during device start-up (boot process), and in Active/Sleep modes. (Graphics subsystem is not supported)

Functional description

3.2.3 **PMIC control module**

An internal PMIC module is available to control an external PMIC. The PMIC control module manages the handoff between the internal active regulator, used only for boot, and the external PMIC.

Both the core internal and external PMIC require an external bulk storage capacitor connected to the V_{CCD} pin. This capacitor provides charge under the dynamic loads of the low-voltage core transistors.

Figure 3-1 Sample PMIC control interface

Clock system 3.2.4

The CYT3DL clock system provides clocks to all subsystems that require them, and glitch-free switching between different clock sources. In addition, the clock system ensures that no metastable conditions occur.

The clock system for CYT3DL consists of the 8-MHz IMO, two ILOs, four watchdog timers, eight PLLs, an FLL, five clock supervisors (CSV), a 7.2- to 33.34-MHz ECO, a 3.99- to 8.01-MHz LPECO, and a 32.768-kHz WCO.

The clock system supports three main clock domains: CLK_HF, CLK_SLOW, and CLK_LF.

- CLK_HFx are the Active mode clocks. Each can use any of the high frequency clock sources including IMO, EXT_CLK, ECO, LPECO, FLL, or PLL
- CLK SLOW provides a reference clock for the Cortex®-CM0+ CPU, Crypto, P-/M-DMA, and other slow infrastructure blocks of CPU subsystem
- CLK LF is a DeepSleep domain clock and provides a reference clock for the MCWDT or RTC modules. The reference clock for the CLK_LF domain is either disabled or selectable from ILO0, ILO1, or WCO.

Table 3-1 **CLK_HF** destinations

Name	Description
CLK_HF0	CPUSS (Memories, CLK_SLOW, Peripherals)
CLK_HF1	CPUSS (Cortex®-M7 CPU)
CLK_HF2	CAN FD, CXPI, LIN, SCB, SAR

Based on Arm® Cortex®-M7 single

Functional description

Table 3-1 CLK_HF destinations (continued)

Name	Description	
CLK_HF3	Event Generator, Clock output (CLK_EXT)	
CLK_HF4	Ethernet Internal Clock	
CLK_HF5	Sound Subsystem #0 (TDM, SG, PWM, MIXER, DAC), Ethernet TSU	
CLK_HF6	Sound Subsystem #1 (TDM, SG, PWM, MIXER)	
CLK_HF7	Sound Subsystem #2 (TDM, SG, PWM)	
CLK_HF8	SMIF#0	
CLK_HF9	SMIF#1	
CLK_HF10	Video Subsystem	
CLK_HF11	Video Display #0	
CLK_HF12	Video Display #1	

3.2.4.1 IMO clock source

The IMO is the frequency reference in CYT3DL when no external reference is available or enabled. The IMO operates at a frequency of around 8 MHz.

3.2.4.2 ILO clock source

An ILO is a low-power oscillator, nominally 32.768 kHz, which generates clocks for a watchdog timer when in DeepSleep mode. There are two ILOs to ensure clock supervisor (CSV) capability in DeepSleep mode. ILO-driven counters can be calibrated to the IMO, WCO, or ECO to improve their accuracy. ILO1 is also used for clock supervision.

3.2.4.3 PLL and FLL

A PLL (three 200 MHz and five 400 MHz) or FLL may be used to generate high-speed clocks from the IMO, ECO, or an EXT_CLK. The FLL provides a much faster lock than the PLL (5 μ s instead of 35 μ s) in exchange for a small amount (±2%) of frequency error^[9] and a lower max output frequency (100 MHz instead of up to 400 MHz). The 400-MHz PLL supports spread spectrum clock generation (SSCG) with down spreading.

3.2.4.4 Clock supervisor

Each clock supervisor (CSV) allows one clock (reference) to supervise the behavior of another clock (monitored). Each CSV has counters for both the monitored and reference clocks. Parameters for each counter determine the frequency of the reference clock as well as the upper and lower frequency limits of the monitored clock. If the frequency range comparator detects a stopped clock or a clock outside the specified frequency range, an abnormal state is signaled and either a reset or an interrupt is generated.

3.2.4.5 **EXT_CLK**

One of three GPIO_STD I/Os can be used to provide an external clock input of up to 100 MHz. This clock can be used as the source clock for either the PLL or FLL, or can be used directly by the CLK_HF domain.

Note

^{9.} Operation of reference-timed peripherals (such as a UART) with an FLL-based reference is not recommended due to the allowed frequency error.

Based on Arm® Cortex®-M7 single

Functional description

3.2.4.6 ECO

The ECO provides high-frequency clocking using an external crystal connected to the ECO_IN and ECO_OUT pins. It supports fundamental mode (non-overtone) quartz crystals, in the range of 7.2 to 33.34 MHz. When used in conjunction with the PLL, it generates CPU and peripheral clocks up to device's maximum frequency. ECO accuracy depends on the selected crystal. If the ECO is disabled, the associated pins can be used for any of the available I/O functions.

3.2.4.7 LPECO

The LPECO provides high-frequency clocking using an external crystal connected to the LPECO_IN and LPECO_OUT pins. It supports fundamental mode (non-overtone) quartz crystals, in the range of 3.99 to 8.01 MHz. LPECO can operate during DeepSleep, and Hibernate modes with significant lower current consumptions. It can also be used for real-time-clock applications. When used in conjunction with the PLL, it generates CPU and peripheral clocks up to device's maximum frequency.

3.2.4.8 WCO

The WCO is a low-power, watch-crystal oscillator intended for real-time-clock applications. It requires an external 32.768-kHz crystal connected to the WCO_IN and WCO_OUT pins. The WCO can also be configured as a clock reference for CLK_LF, which is the clock source for the MCWDT and RTC.

3.2.5 Reset

CYT3DL can be reset from a variety of sources, including software. Most reset events are asynchronous and guarantee reversion to a known state. The reset cause (POR, BOD, OVD, overcurrent, XRES_L, WDT, MCWDT, software reset, fault, CSV, Hibernate wakeup, debug) is recorded in a register, which is sticky through reset and allows software to determine the cause of the reset. An XRES_L pin is available for external reset.

3.2.6 Watchdog timer

CYT3DL has one watchdog timer (WDT) and two multi-counter watchdog timers (MCWDT).

The WDT is a free-running counter clocked only by ILO0, which allows it to be used as a wakeup source from Hibernate. Watchdog operation is possible during all power modes. To prevent a device reset from a WDT timeout, the WDT must be serviced during a configured window. A watchdog reset is recorded in the reset cause register.

An MCWDT is available for each of the CPU cores. These timers provide more capabilities than the WDT, and are only available in Active, Sleep, and DeepSleep modes. These timers have multiple counters that can be used separately or cascaded to trigger interrupts and/or resets. They are clocked from ILO0 or the WCO.

3.2.7 Power modes

CYT3DL has six power modes that apply to the core functions, CM0+ core, and peripherals without power switches. Power modes for the CM7 cores and VIDEOSS are controlled separately.

- Active all peripherals are available
- Low-Power Active (LPACTIVE) Low-power profile of Active mode where all peripherals and the CPUs are available, but with limited capability
- Sleep all peripherals except the CPUs are available
- Low-Power Sleep (LPSLEEP) Low-power profile of Sleep mode where all peripherals except the CPUs are available, but with limited capability
- DeepSleep only peripherals which work with CLK LF are available
- Hibernate the device and I/O states are frozen, the device resets on wakeup

Based on Arm® Cortex®-M7 single

Functional description

3.3 **Peripherals**

Peripheral clock dividers 3.3.1

Integer and fractional clock dividers are provided for peripheral and timing purposes.

Table 3-2 **Clock dividers - CPUSS Group (Number 0)**

Divider type	Instances	Description
div_8	9	Integer divider, 8 bits
div_16	16	Integer divider, 16 bits
div_16_5	7	Fractional divider, 16.5 bits (16 integer bits, 5 fractional bits)
div_24_5	3	Fractional divider, 24.5 bits (24 integer bits, 5 fractional bits)

Table 3-3 **Clock dividers - CPUSS Group (Number 1)**

Divider type	Instances	Description
div_8	3	Integer divider, 8 bits
div_16	4	Integer divider, 16 bits
div_24_5	7	Fractional divider, 24.5 bits (24 integer bits, 5 fractional bits)

3.3.2 **Peripheral protection unit**

The peripheral protection unit (PPU) controls and monitors unauthorized access from all masters (CPU, P-/M-DMA, Crypto, and any enabled debug interface) to the peripherals. It allows or restricts data transfers on the bus infrastructure. The access rules are enforced based on specific properties of a transfer, such as an address range for the transfer and access attributes (such as read/write, user/privilege, and secure/non-secure).

12-bit SAR ADC 3.3.3

CYT3DL contains one 1-Msps SAR ADC. This ADC can be clocked at up to 26.67 MHz and provide a 12-bit result in 26 clock cycles.

The references for the SAR ADC comes from a dedicated pair of inputs: VREFH and $VREFL^{[10]}$.

CYT3DL supports 32 logical ADC channels which can select one of 54 input sources. Sources include 48 external inputs from I/Os, and six internal connections for diagnostic and monitoring purposes.

The number of ADC channels (per ADC and package type) are listed in **Table 1-1**.

SAR ADC has a sequencer, which autonomously cycles through the configured channels (sequencer scan) with zero-switching overhead (that is, the aggregate sampling bandwidth, when clocked at 26.67 MHz, is equal to 1 Msps whether it is for a single channel or distributed over several channels). The sequencer switching is controlled through a state machine or firmware. The sequencer prioritizes trigger requests, enables the appropriate analog channel, controls ADC sampling, initiates ADC data conversion, manages results, and initiates subsequent conversions for repetitive or group conversions without CPU intervention.

SAR ADC has two analog multiplexers used to connect the signals to be measured to the ADC. One is SARMUX0 which has 24 GPIO_STD inputs (ADC[0]_0 to ADC[0]_23), and six additional inputs to measure internal signals such as a band-gap reference, a temperature sensor, V_{CCD}, V_{DDA_ADC} power supplies and AMUXBUSA/B signals. The other multiplexer is SARMUX1 which has 24 GPIO_SMC inputs (ADC[1]_0 to ADC[1]_23).

CYT3DL has a temperature sensor. Software post processing is required to convert the temperature sensor reading into kelvin or Celsius values.

To accommodate signals with varying source impedances and frequencies, it is possible to have different sample times programmed for each channel. ADC also supports range comparison, which allows fast detection of out-of-range values without having to wait for a sequencer scan to complete and for the CPU firmware to evaluate the measurement for out-of-range values.

The ADC cannot be used in DeepSleep and Hibernate modes as these modes require a high-speed clock. The ADC input reference voltage (V_{REFH}) range is 2.7 V to V_{DDA ADC}, and V_{REFL} is V_{SSA ADC}.

Note

10.VREF_L prevents IR drops in the VSSIO and VSSA_ADC paths from impacting the measurements. VREF_L, when properly connected, reduces or removes the impact of IR drops in the VSSIO and VSSA_ADC paths from measurements.

Based on Arm® Cortex®-M7 single

Functional description

3.3.4 Timer/Counter/PWM block (TCPWM)

The TCPWM block consists of 16-bit (50 channels) and 32-bit (32 channels) counters with user-programmable period.

Each TCPWM counter contains a capture register to record the count at the time of an event, a period register (used to either stop or auto-reload the counter when its count is equal to the period register), and compare registers to generate signals that are used as PWM duty-cycle outputs.

Each counter within the TCPWM block supports several functional modes such as timer, capture, quadrature, PWM, PWM with dead-time insertion (PWM_DT, 8-bit), pseudo-random PWM (PWM_PR), and shift-register.

The TCPWM block also provides true and complement outputs, with programmable offset between them, to allow their use as deadband complementary PWM outputs. The TCPWM block also has a kill input (only for the PWM mode) to force outputs to a predetermined state; for example, this may be used in motor-drive systems when an overcurrent state is detected and the PWMs driving the FETs need to be shut off immediately (no time for software intervention).

Twelve of the 16-bit counters are optimized for DC and stepper motor-control operations, these also have ZPD (Zero Point detection) and slew rate control capabilities. Two of these TCPWM channels constitute one SMC channel.

3.3.5 **Serial Communication Blocks (SCB)**

CYT3DL contains up to 12 serial communication blocks, each configurable to support I²C, UART, or SPI.

I²C interface 3.3.5.1

An SCB can be configured to implement a full I²C master (capable of multi-master arbitration) or slave interface. Each SCB configured for I²C can operate at speeds of up to 1 Mbps (Fast-mode Plus) and has flexible buffering options to reduce the interrupt overhead and latency of the CPU. In addition, each SCB supports FIFO buffering for receive and transmit data, which, by increasing the time for the CPU to read the data, reduces the need for clock stretching. The I²C interface is compatible with Standard, Fast-mode, and Fast-mode Plus devices as specified in the NXP I²C-bus specification and user manual (UM10204). The \tilde{I}^2 C-bus I/O is implemented with GPIO in open-drain modes [11, 12].

3.3.5.2 **UART** interface

When configured as a UART, each SCB provides a full-featured UART with maximum signaling rate determined by the configured peripheral-clock frequency and over-sampling rate. It supports infrared interface (IrDA) and SmartCard (ISO 7816) protocols, which are minor variants of the UART protocol. It also supports the 9-bit multiprocessor mode that allows the addressing of peripherals connected over common Rx and Tx lines. Common UART functions such as parity, number of stop bits, break detect, and frame error are supported. FIFO buffering of transmit and receive data allows greater CPU service latencies to be tolerated.

The LIN protocol is supported by the UART. LIN is based on a single-master multi-slave topology. There is one master node and multiple slave nodes on the LIN bus. The SCB UART supports only LIN slave functionality. Compared to the dedicated LIN blocks, an SCB/UART used for LIN requires a higher level of software interaction and increased CPU load.

Notes

¹¹. This is not 100% compliant with the I^2 C-bus specification; I/Os are not overvoltage tolerant, do not support the 20-mA sink requirement of Fast-mode Plus, and violate the leakage specification when no power is applied.

12. See **Table 26-10** 'Serial Communication Block (SCB) specifications' for supported IO-cells and I²C modes.

Based on Arm® Cortex®-M7 single

Functional description

3.3.5.3 SPI interface

The SPI configuration supports full Motorola SPI, TI Synchronous Serial Protocol (SSP, essentially adds a start pulse that is used to synchronize SPI-based codecs), and National Microwire (a half-duplex form of SPI). The SPI interface can use the FIFO. The SPI interface operates with up to a 12.5-MHz SPI Clock. SCB also supports EZSPI^[13] mode.

SCB0 supports the following additional features:

- Operable as a slave in DeepSleep mode
- I²C slave EZ (EZI2C^[14]) mode with up to 256-B data buffer for multi-byte communication without CPU intervention
- I²C slave externally-clocked operations
- Command/response mode with a 512-B data buffer for multi-byte communication without CPU intervention

3.3.6 Controller area network flexible data-rate (CAN FD)

CYT3DL supports two CAN FD controller blocks, each supporting two CAN FD channel. All CAN FD controllers are compliant with the ISO 11898-1:2015 standard; an ISO 16845:2015 certificate is available. It also implements the time-triggered CAN (TTCAN) protocol specified in ISO 11898-4 (TTCAN protocol levels 1 and 2) completely in hardware. All functions concerning the handling of messages are implemented by the Rx and Tx handlers. The Rx handler manages message acceptance filtering, transfer of received messages from the CAN core to a message RAM, and provides receive-message status. The Tx handler is responsible for the transfer of transmit messages from the message RAM to the CAN core, and provides transmit-message status.

3.3.7 Local interconnect network (LIN)

CYT3DL contains up to two LIN channels. Each channel supports transmission/reception of data following the LIN protocol according to ISO standard 17987. Each LIN channel connects to an external transceiver through a 3-pin interface (including an enable function) and supports master and slave functionality. Each block also supports classic and enhanced checksum, along with break detection during message reception and wake-up signaling. Break detection, sync field, checksum calculations, and error interrupts are handled in hardware.

3.3.8 Clock extension peripheral interface (CXPI)

CYT3DL contains up to four CXPI channels compliant with JASO D015 and ISO standard 20794 including the controller specification.

Each channel supports:

- Master and slave functionality
- Polling and event trigger method for both normal and long frames
- Non-return to zero (NRZ) and PWM signaling modes
- Collision resolution and carries sense multiple access
- Wakeup pulse generation and detection
- CRC8 and CRC16 for both normal and long frames
- Error detection
- Dedicated FIFO (16 B) for transmit and receive

3.3.9 Ethernet MAC

CYT3DL supports one Ethernet channel with transfer rates of 10, or 100 Mbps. The input/output frames and flow control are compliant with the Ethernet/IEEE 802.3bw standard and also IEEE-1588 precision-time protocol (PTP). CYT3DL supports half/full-duplex data transport using external PHY devices. The MAC supports glue-free connection to PHYs through IEEE standard MII, and RMII interfaces. The device also supports Audio-Video Bridging (AVB). The MAC supports standard 6-byte programmable addresses. Module uses **AXI** interface for DMA access.

Notes

13. The Easy SPI (EZSPI) protocol is based on the Motorola SPI protocol operating in any mode (0, 1, 2, or 3). It allows communication between master and slave while reducing the need for CPU intervention.

14. The Easy I²C (EZI2C) protocol is a unique communication scheme built on top of the I²C protocol by Infineon. It uses a meta protocol around the standard I²C protocol to communicate to an I²C slave using indexed memory transfers. This reduces the need for CPU intervention.

Based on Arm® Cortex®-M7 single

Functional description

3.3.10 Serial memory interface (SMIF)

In addition to the internal flash memory, CYT3DL supports direct connection to two units of 512 MB of external flash or RAM memory. This connection is made through either a xSPI or serial peripheral interface (SPI). xSPI allows connection to HyperFlash and HyperRAM devices, while SPI (single, dual, quad, or octal SPI) can connect with serial flash memory. Code stored in memory connected through this interface allows execute-in-place (XIP) operation, which does not require the instructions to be first copied to internal memory, and on-the-fly encryption and decryption for environments requiring secure external data and code.

3.3.11 Sound subsystem

CYT3DL supports the following,

- Up to four time-division multiplexing (TDM) interfaces
 - Full-duplex transmitter and receiver operation
 - Independent transmitter or receiver operation, each in master or slave mode
 - Up to 32 channels, each channel can be individually enabled or disabled
- Up to two pulse code modulation-pulse width modulation (PCM-PWM) interface
 - Conversion of PCM audio streaming to PWM signals
 - Up to 32-bit output sample resolution
 - Supports E- and H-bridge formats
 - Dead time insertion
- · Up to five sound generator (SG) interfaces
 - PWM modulated (amplitude, tone) sound generation
 - Separate volume and frequency control (two signals) and combined volume-frequency control (one signal) formats
- Up to five mixers
 - Combines multiple PCM source streams into a single PCM destination stream
 - PCM source stream can be gain/volume controlled
 - Fixed PCM sample formatting (16-bit pairs)
 - LPF support by FIR filter
 - Fade-in and Fade-out control for both source and destination PCM streams
- One audio digital-to-analog converter (DAC)
 - Programmable sampling rate and frequency control
 - Supports stereo (Left and Right)
 - Supports CIC filter, FIR filter, Interpolation filter, and Delta-Sigma modulator
 - Multi-level DAC

3.3.12 One-time-programmable (OTP) eFuse

CYT3DL contains a 1024-bit OTP eFuse memory that can be used to store and access a unique and unalterable identifier or serial number for each device. eFuses are also used to control the device life-cycle (manufacturing, programming, normal operation, end-of-life, and so on) and the security state. Of the 1024 bits, 192 are available for user purposes.

3.3.13 Event generator

The event generator supports generation of interrupts and triggers in Active mode and interrupts in DeepSleep mode. The event generators are used to trigger a specific device operation (execution of an interrupt handler, a SAR ADC conversion, and so on) and to provide a cyclic wakeup mechanism from DeepSleep mode. They provide CPU-free triggers for device functions, and reduce CPU involvement in triggering device functions, thus reducing overall power consumption and processing overhead.

Based on Arm® Cortex®-M7 single

Functional description

3.3.14 **Trigger multiplexer**

CYT3DL supports connecting various peripherals using trigger signals. Triggers are used to inform a peripheral of the occurrence of an event or change of state. These triggers are used to affect or initiate some action in other peripherals. The trigger multiplexer is used to route triggers from a source peripheral to a destination. Triggers provide active logic functionality and are typically supported in Active mode.

3.4 **Graphics**

CYT3DL supports one instance of the graphics subsystem which includes 2048 KB of embedded Video RAM, a 2D graphics core and interfaces for video input and output processing.

CYT3DL supports 4-lane MIPI CSI-2 interface for up to HD (1920 × 720) resolution video inputs and single channel FPD-link interface for up to HD (1920 × 720) resolution video output. The 2D graphics core supports a BLock Image Transfer (BLIT) engine for faster graphics rendering to memory or on-the-fly to display, a drawing engine for acceleration of vector graphics rendering and a command sequencer for setup and control of the rendering process. The video I/O supports a composition engine for scene composition from display layers, a display engine for video timing generation, and display functions and a capture engine for video input processing. The device also supports perspective correction for 3D effects ("2.5D"). One layer, such as head-up displays, can be warped on-the-fly.

3.5 I/Os

CYT3DL has up to 135 programmable I/Os.

The I/Os are organized as logical entities called ports, which are a maximum of 8 bits wide. During power-on and reset, the I/Os are forced to the High-Z state. During the Hibernate mode, the I/Os are frozen.

Every I/O can generate an interrupt (if enabled) and each port has an interrupt request (IRQ) and interrupt service routine (ISR) associated with it.

I/O port power source mapping is listed in **Table 3-4**. The associated supply determines the V_{OH} , V_{OI} , V_{IH} , and V_{II} levels when configured for CMOS and Automotive thresholds.

Table 3-4 I/O port power source

Supply pins	Ports
VDDD ^[15]	P0
VDDIO_GPIO_1 ^[15]	P1, P2, P3
VDDIO_GPIO_2 ^[15]	P4, P5, P6
VDDIO_SMC ^[15]	P7, P8, P9
VDDIO_HSIO	P11, P12, P13, P14, P15, P16, P17, P18, P19, P20, P21

All I/Os support the following programmable drive modes:

- High impedance
- Resistive pull-up
- Resistive pull-down
- Open drain with strong pull-down
- Open drain with strong pull-up
- Strong pull-up or pull-down
- Weak pull-up or pull-down

CYT3DL has four types of programmable GPIOs: GPIO Standard, GPIO Enhanced, GPIO SMC, and HSIO Standard with Low noise. Only GPIO_STD, GPIO_ENH, and GPIO_SMC have the capability to wakeup the device from DeepSleep mode. All these I/Os have GPIO input/output functionality, some of these might need special configuration^[16].

^{15.}Ensure that V_{DDD} ≥ (V_{DDIO_GPIO_1} - 0.3 V) ≥ (V_{DDIO_GPIO_2} - 0.3 V).
16.Refer to the family-specific Architecture TRM for more information on the I/O configurations (002-25800, TRAVEO™ T2G Automotive MCU cluster 2D architecture technical reference manual).

Based on Arm® Cortex®-M7 single

Functional description

3.5.1 **GPIO**

Three types of GPIOs are supported:

• GPIO STD, GPIO ENH, and GPIO SMC

These implement the following:

- Configurable input threshold (CMOS, TTL, or Automotive)
- Hold mode for latching previous state (used for retaining the I/O state in DeepSleep mode)
- Analog input mode (input and output buffers disabled)
- Edge-triggered interrupts on rising edge, falling edge, or on both the edges, on pin basis

3.5.1.1 GPIO Standard (GPIO_STD)

This GPIO supports standard automotive signaling across the 2.7-V to 5.5-V V_{DDIO} range. GPIO_STD I/Os have multiple configurable drive levels, drive modes, and selectable input levels.

3.5.1.2 GPIO Enhanced (GPIO_ENH)

This GPIO supports extended functionality automotive signaling across the 2.7-V to 5.5-V V_{DDIO} range with higher currents at lower voltages (full I2C timing support, slew-rate control).

3.5.1.3 GPIO SMC (GPIO_SMC)

This GPIO provides significant drive strength than GPIO_STD and GPIO_ENH (Supports 30-mA drive).

3.5.2 HSIO

These I/Os are optimized exclusively for high-speed signaling and do not support slew-rate control, DeepSleep operation, POR mode control, analog connections, or non-CMOS signaling levels. HSIO support programmable drive strength. They are available only in Active mode.

3.5.2.1 HSIO standard low noise (HSIO_STDLN)

This I/O supports clocking and signaling up to 133 MHz for BGA packages and 100 MHz for TEQFP packages. Supports high-speed peripherals such as Graphics input/output, and Ethernet. Also supports holding state during DeepSleep mode. Low noise version optimizes the noise generated by having specific modes for each interface support.

3.5.3 Port nomenclature

Px.y describes a particular bit "y" available within an I/O port "x." For example, P4.2 reads "port 4, bit 2".

3.5.4 Smart I/O

Smart I/O allows Boolean operations on signals going to the I/O from the subsystems of the chip or on signals coming into the chip. CYT3DL has one Smart I/O block. Operation can be synchronous or asynchronous and the blocks operate in all device power modes except for the Hibernate mode.

Based on Arm® Cortex®-M7 single

CYT3DL address map

4 CYT3DL address map

The CYT3DL microcontroller supports the memory spaces shown in Figure 4-1.

- 4160 KB (4032 KB + 128 KB) of code-flash, used in the single- or dual-bank mode based on the associated bit in the flash control register
 - Single-bank mode: 4160 KB
 - Dual-bank mode: 2080 KB per bank
- 128 KB (92 KB + 32 KB) of work-flash, used in the single- or dual-bank mode based on the associated bit in the flash control register
 - Single-bank mode: 128 KB
 - Dual-bank mode: 64 KB per bank
- 64 KB of secure ROM
- 384 KB of SRAM (First 2 KB is reserved for internal usage)
- 64 KB of Instruction TCM for each Cortex®-M7 CPU
- 64 KB of Data TCM for each Cortex®-M7 CPU
- 512 MB SMIF XIP1
- 512 MB SMIF XIP2
- 2048 KB of VRAM

Based on Arm® Cortex®-M7 single

CYT3DL address map

Figure 4-1 CYT3DL address map^[17, 18]

Notes

17. The size representation is not up to scale.

18. First 2KB of SRAM is reserved, not available for users. User must keep the power of first 32KB block of SRAM0 in enabled or retained in all Active, LP Active, Sleep, LP Sleep, DeepSleep modes.

Based on Arm® Cortex®-M7 single

Flash base address map

Flash base address map 5

Table 5-1 through Table 5-6 give information about the sector mapping of the code- and work-flash regions along with their respective base addresses.

Table 5-1 Code-flash address mapping in single bank mode

Code-flash Size (KB) Large Sectors (LS)		Small Sectors (SS)	Large Sector Base Address	Small Sector Base Address
4160	4160 32 KB × 126		0x1000 0000	0x103F 0000

Table 5-2 Work-flash Address Mapping in Single Bank Mode

Work-flash Size (KB)	Large Sectors	Small Sectors	Large Sector Base Address	Small Sector Base Address
128	2 KB × 48	128 B × 256	0x1400 0000	0x1401 8000

Table 5-3 Code-flash Address Mapping in Dual Bank Mode (Mapping A)

Code-flash Size (KB)	First Half LS	First Half SS	Second Half LS	Second Half SS	First Half LS Base Address	First Half SS Base Address	Second Half LS Base Address	Second Half SS Base Address
4160	32 KB × 63	8 KB × 8	32 KB × 63	8 KB × 8	0x1000 0000	0x101F 8000	0x1200 0000	0x121F 8000

Table 5-4 Code-flash Address Mapping in Dual Bank Mode (Mapping B)

Code-flash Size (KB)	First Half LS	First Half SS	Second Half LS	Second Half SS	First Half LS Base Address	First Half SS Base Address	Second Half LS Base Address	Second Half SS Base Address
4160	32 KB × 63	8 KB × 8	32 KB × 63	8 KB × 8	0x1200 0000	0x121F 8000	0x1000 0000	0x101F 8000

Table 5-5 Work-flash Address Mapping in Dual Bank Mode (Mapping A)

Work-flash Size (KB)	First Half LS	First Half SS	Second Half LS	Second Half SS	First Half LS Base Address	First Half SS Base Address	Second Half LS Base Address	Second Half SS Base Address
128	2 KB × 24	128 B × 128	2 KB × 24	128 B × 128	0x1400 0000	0x1400 C000	0x1500 0000	0x1500 C000

Table 5-6 Work-flash Address Mapping in Dual Bank Mode (Mapping B)

Work-flash Size (KB)	First Half LS	First Half SS	Second Half LS	Second Half SS	First Half LS Base Address	First Half SS Base Address	Second Half LS Base Address	Second Half SS Base Address
128	2 KB × 24	128 B × 128	2 KB × 24	128 B × 128	0x1500 0000	0x1500 C000	0x1400 0000	0x1401 8000

Based on Arm® Cortex®-M7 single

Peripheral I/O map

6 Peripheral I/O map

Table 6-1 CYT3DL peripheral I/O map

Section	Description	Base address	Instances	Instance size	Group	Slave
	Peripheral interconnect	0x4000 0000				
PERI	Peripheral group (0, 1, 2, 3, 4, 5, 6, 8, 9, 10)	0x4000 4000	10	0x40	0	0
PERI	Peripheral trigger group	0x4000 8000	13	0x400	7 0	U
	Peripheral 1:1 trigger group	0x4000 C000	8	0x400		
	Peripheral interconnect, master interface	0x4002 0000				
PERI_MS	PERI Programmable PPU	0x4002 0000	10 ^[19]	0x40	0	1
	PERI Fixed PPU	0x4002 0800	582	0x40		
PERI_PCLK	Peripheral Clock Groups	0x4004 0000	2	0x2000	0	2
Crypto	Cryptography component	0x4010 0000			1	0
CPUSS	CPU subsystem (CPUSS)	0x4020 0000			2	0
	Fault structure subsystem	0x4021 0000			2	1
FAULT	Fault structures	0x4021 0000	4	0x100	2	1
	Inter process communication	0x4022 0000				
IPC	IPC structures	0x4022 0000	8	0x20	2	2
	IPC interrupt structures	0x4022 1000	8	0x20		
	Protection	0x4023 0000				
PROT	Shared memory protection unit structures	0x4023 2000	16	0x40	2	3
	Memory protection unit structures	0x4023 4000	16	0x400		
FLASHC	Flash controller	0x4024 0000			2	4
	System Resources Subsystem Core Registers	0x4026 0000				
	Clock Supervision High Frequency	0x4026 1400	14	0x10		
	Clock Supervision Reference Frequency	0x4026 1710	1			
CDCC	Clock Supervision Low Frequency	0x4026 1720	1		7	5
ССЯС	Clock Supervision Internal Low Frequency	0x4026 1730	1		2	5
	Clock PLL 400 MHz	0x4026 1900	5	0x10		
	Multi Counter WDT	0x4026 8000	2	0x100		
	Free Running WDT	0x4026 C000	1			
DACKUD	SRSS Backup Domain/RTC	0x4027 0000			2	
DACKUP	Backup Register		4	0x04	2	6
	P-DMA 0 Controller	0x4028 0000				7
D DMA	P-DMA 0 channel structures	0x4028 8000	76	0x40	2	7
P-DMA	Clock Supervision High Frequency Clock Supervision Reference Frequency Clock Supervision Low Frequency Clock Supervision Internal Low Frequency Clock PLL 400 MHz Multi Counter WDT Free Running WDT SRSS Backup Domain/RTC Backup Register P-DMA 0 Controller P-DMA 1 Controller					
	P-DMA 1 channel structures	0x4029 8000	84	0x40	2	8

Note

^{19.} These programmable PPUs are configured by the Boot ROM and are available for the user based on the access rights. Refer to the device-specific TRM to know more about the configuration of these programmable PPUs.

Based on Arm® Cortex®-M7 single

Peripheral I/O map

Table 6-1 CYT3DL peripheral I/O map (continued)

Section	Description	Base address	Instances	Instance size	Group	Slave
	M-DMA0 Controller (AHB Bus)	0x402A 0000			- 2	9
M-DMA	M-DMA0 channels	0x402A 1000	8	0x100		9
M-DMA	M-DMA1 Controller (AXI Bus)	0x402B 0000			2	10
	M-DMA1 channels	0x402B 1000	8	0x100		10
eFUSE	eFUSE Customer Data (192 bits)	0x402C 0868	6	0x04	2	11
HSIOM	High-Speed I/O Matrix (HSIOM)	0x4030 0000	21	0x10	3	0
GPIO	GPIO port control/configuration	0x4031 0000	21	0x80	3	1
SMARTIO	Programmable I/O configuration	0x4032 0000			- 3	2
SMARTIO	SMARTIO port configuration	0x4032 0C00	1	0x100	3	2
	Timer/Counter/PWM 0 (TCPWM0)	0x4038 0000				
TCDWM	TCPWM0 Group #0 (16-bit)	0x4038 0000	38	0x80	_	2
TCPWM	TCPWM0 Group #1 (16-bit, Motor control)	0x4038 8000	12	0x80	- 3	3
	TCPWM0 Group #2 (32-bit)	0x4039 0000	32	0x80		
EVTGEN	Event generator 0 (EVTGEN0)	0x403F 0000			3	4
EVIGEN	Event generator 0 comparator structures	0x403F 0800	16	0x20	3	4
	Serial Memory Interface 0 (SMIF0)	0x4042 0000			4	0
SMIF	SMIF0 Devices	0x4042 0800	2	0x80	- 4	0
SIVIIF	Serial Memory Interface 1 (SMIF1)	0x4043 0000			4	1
	SMIF1 Devices	0x4043 0800	2	0x80	4	1
ETH	Ethernet 0 (ETH0)	0x4048 0000	1		4	2
LIN	Local Interconnect Network 0 (LIN0)	0x4050 0000			_	0
LIN	LIN0 Channels	0x4050 8000	2	0x100	- 5	0
CXPI	Clock Extension Peripheral Interface 0 (CXPI0)	0x4051 0000			5	1
	CXPI0 Channels	0x4051 8000	2	0x100		
	CAN0 controller	0x4052 0000	2	0x200	_	2
CAN	Message RAM CAN0	0x4053 0000		0x4000	- 5	2
CAN	CAN1 controller	0x4054 0000	2	0x200	_	2
	Message RAM CAN1	0x4055 0000		0x4000	- 5	3
SCB	Serial Communications Block (SPI/UART/I ² C)	0x4060 0000	12	0x10000	6	0-11

Based on Arm® Cortex®-M7 single

CYT3DL peripheral I/O map (continued) Table 6-1

Section	Description	Base address	Instances	Instance size	Group	Slave
	Time Division Multiplexer 0 (TDM0)	0x4081 0000			- 8	0
	TDM0 Structures	0x4081 8000	2	0x200	0	U
	Sound Generator 0 (SG0)	0x4082 0000			- 8	1
	SG0 Structures	0x4082 8000	5	0x100	8	1
	Pulse Width Modulation 0 (PWM0)	0x4083 0000			- 8	2
	PWM0 Structures	0x4083 8000	2	0x100	8	2
Sound	Audio DAC0	0x4084 0000	1		8	3
	Mixer0	0x4088 0000				
	Mixer0 Source Structures	0x4088 8000	5	0x100	8	4
	Mixer0 Destination Structures	0x4088 C000	1			
	Mixer1	0x4089 0000				
	Mixer1 Source Structures	0x4089 8000	5	0x100	8	5
	Mixer1 Destination Structures	0x4089 C000	1			
	Programmable Analog Subsystem (PASS0)	0x4090 0000				
SAR PASS	SAR0 channel controller	0x4090 0000			9	0
	SAR0 channel structures	0x4090 0800	24 ^[20]	0x40		-
	SAR1 channel structures	0x4090 1800	24	0x40		
	Video Subsystem (VIDEOSS0)	0x40A0 0000				
Craphics	Display Engine	0x40AA 0000	2	0x4000	10	_
Graphics	FPD-Link	0x40AC 0000	2	0x8000	_ 10	0
	MIPI CSI0	0x40AD 0000	1		1	

Note 20.Remaining 24 external channels are accessed from SAR1 Multiplexer. (SAR0 uses SARMUX1).

CYT3DL clock diagram

CYT3DL clock diagram 7

Figure 7-1 CYT3DL clock diagram

Based on Arm® Cortex®-M7 single

CYT3DL CPU start-up sequence

8 CYT3DL CPU start-up sequence

The start-up sequence is described in the following steps:

- 1. System Reset (@0x0000 0000)
- 2. CM0+ executes ROM boot (@0x0000 0004)
 - i. Applies trims
 - ii. Applies Debug Access port (DAP) access restrictions and system protection from eFuse and supervisory flash
 - iii. Authenticates flash boot (only in SECURE life-cycle stage) and transfers control to it
- 3. CM0+ executes flash boot (from Supervisory flash @0x1700 2000)
 - i. Debug pins are configured as per the SWD/JTAG spec^[21]
 - ii. Sets CM0+ vector offset register (CM0_VTOR part of the Arm® system space) to the beginning of flash (@0x1000 0000)
 - iii.CM0+ branches to its Reset handler
- 4. CM0+ starts execution
 - i. Moves CM0+ vector table to SRAM (updates CM0+ vector table base)
 - ii. Sets up wait states for different memory subsystems
 - iii. Sets up root clocks, enable core external supply (PMIC), graphics subsystem etc.
 - iv.Sets clocks for CM7_0 (CLK_HF1)
 - v. Sets CM7_0 (CM7_0_VECTOR_TABLE_BASE @0x4020 0200) vector tables to the respective locations, also and mentioned in flash (specified in the linker definition file)
 - vi.Enables the power for the CPU core CM7_0
 - vii.Disables CPU_WAIT so as to be able to be accessed by the debugger
 - viii.Releases CM7_0 from reset
 - ix. Continues execution of CM0+ user application
- 5. CM7_0 executes directly from either code-flash or SRAM
 - i. CM7_0 branches to its Reset handler
 - ii. Continues execution of the user application

Note

^{21.} Port configuration of SWD/JTAG pins will be changed from the default GPIO mode to support debugging after the boot process, refer to **Table 11-1** for pin assignments.

Pin assignment

9 Pin assignment

Figure 9-1 216-TEQFP pin assignment^[22]

Note

22. Connect exposure pad of TEQFP devices to the ground.

Pin assignment

 ${\bf 216\text{-}TEQFP\ pin\ assignment\ with\ alternate\ functions}^{[22]}$ Figure 9-2

Based on Arm® Cortex®-M7 single

Pin assignment

Figure 9-3 272-BGA ball map

Based on Arm® Cortex®-M7 single

High-speed I/O matrix connections 10

HSIOM connections reference **Table 10-1**

Name	Number	Description
HSIOM_SEL_GPIO	0	GPIO controls 'out'
HSIOM_SEL_GPIO_DSI	1	
HSIOM_SEL_DSI_DSI	2	
HSIOM_SEL_DSI_GPIO	3	
HSIOM_SEL_AMUXA	4	Reserved
HSIOM_SEL_AMUXB	5	
HSIOM_SEL_AMUXA_DSI	6	
HSIOM_SEL_AMUXB_DSI	7	
HSIOM_SEL_ACT_0	8	Active functionality 0
HSIOM_SEL_ACT_1	9	Active functionality 1
HSIOM_SEL_ACT_2	10	Active functionality 2
HSIOM_SEL_ACT_3	11	Active functionality 3
HSIOM_SEL_DS_0	12	DeepSleep functionality 0
HSIOM_SEL_DS_1	13	DeepSleep functionality 1
HSIOM_SEL_DS_2	14	DeepSleep functionality 2
HSIOM_SEL_DS_3	15	DeepSleep functionality 3
HSIOM_SEL_ACT_4	16	Active functionality 4
HSIOM_SEL_ACT_5	17	Active functionality 5
HSIOM_SEL_ACT_6	18	Active functionality 6
HSIOM_SEL_ACT_7	19	Active functionality 7
HSIOM_SEL_ACT_8	20	Active functionality 8
HSIOM_SEL_ACT_9	21	Active functionality 9
HSIOM_SEL_ACT_10	22	Active functionality 10
HSIOM_SEL_ACT_11	23	Active functionality 11
HSIOM_SEL_ACT_12	24	Active functionality 12
HSIOM_SEL_ACT_13	25	Active functionality 13
HSIOM_SEL_ACT_14	26	Active functionality 14
HSIOM_SEL_ACT_15	27	Active functionality 15
HSIOM_SEL_DS_4	28	DeepSleep functionality 4
HSIOM_SEL_DS_5	29	DeepSleep functionality 5
HSIOM_SEL_DS_6	30	DeepSleep functionality 6
HSIOM_SEL_DS_7	31	DeepSleep functionality 7

Package pin list and alternate functions

Package pin list and alternate functions 11

Most pins have alternate functionality, as specified in **Table 11-1**.

Pin selector and alternate pin functions in DeepSleep (DS) Mode, Analog, Smart I/O **Table 11-1**

	Package		I/O Type	DeepSleep	Mapping Mapping		
Name	272-BGA	216-TEQFP	HCon#0	HCon#29 ^[23]	HCon#30	Analog/HV	SMARTIO
	Pin	Pin		DS #5 ^[24, 25]	DS #6		
P0.0	J18	136	GPIO_STD			WCO_IN, LPECO_IN ^[26]	
P0.1	J17	137	GPIO_STD			WCO_OUT, LPECO_OUT ^[26]	
P0.2	G18	138	GPIO_STD			ECO_IN ^[26]	
P0.3	G17	139	GPIO_STD			ECO_OUT ^[26]	
P1.0	F15	NA	GPIO_STD				
P1.1	E15	NA	GPIO_STD				
P1.2	D18	NA	GPIO_STD				
P1.3	C18	NA	GPIO_STD			ADC[0]_0	
P1.4	B18	147	GPIO_STD			ADC[0]_1	
P1.5	D17	148	GPIO_STD			ADC[0]_2	
P1.6	C17	151	GPIO_STD			ADC[0]_3	
P1.7	D16	152	GPIO_STD			ADC[0]_4, HIBERNATE_WAKEUP[0]	
P2.0	D15	NA	GPIO_STD			ADC[0]_5	
P2.1 ^[27]	C16	153	GPIO_STD	RTC_CAL		HIBERNATE_WAKEUP[1]	
P2.2	A17	154	GPIO_STD	SWJ_SWO_TDO		HIBERNATE_WAKEUP[2]	
P2.4	B16	155	GPIO_STD	SWJ_SWCLK_TCLK		ADC[0]_6	
P2.5	A16	156	GPIO_STD	SWJ_SWDIO_TMS		ADC[0]_7	
P3.0	C15	157	GPIO_ENH	SWJ_SWDOE_TDI	SCB0_SDA	ADC[0]_8	
P3.1	B15	158	GPIO_ENH	SWJ_TRSTN	SCB0_SCL	ADC[0]_9	
P4.0	A15	NA	GPIO_STD				
P4.1	D14	NA	GPIO_STD				
P4.2	C14	NA	GPIO_STD				

- 23. High-Speed I/O matrix connection (HCON) reference as per **Table 10-1**.
 24. DeepSleep ordering (DS#0, DS#1, DS#2) does not have any impact on choosing any alternate functions; the HSIOM module handles the individual alternate function assignment.
 25. All port pin functions available in DeepSleep mode are also available in Active mode.
 26. I/O pins that support an oscillator function (WCO or ECO) must be configured for high-impedance if the oscillator is enabled.
 27. This I/O will have increased leakage to ground when V_{DDD} is below the POR threshold.
 28. See **Table 26-10** 'Serial Communication Block (SCB) specifications' for supported IO-cells and I²C modes.

Datasheet

	Package		I/O Type	DeepSleep	Mapping		
Name	272-BGA	216-TEQFP	HCon#0	HCon#29 ^[23]	HCon#30	Analog/HV	SMARTIC
	Pin	Pin		DS #5 ^[24, 25]	DS #6		
P4.3	B14	NA	GPIO_STD				
P4.4	B12	172	GPIO_STD		SCB0_SEL3	ADC[0]_16	
P4.5	A12	173	GPIO_STD		SCB0_SDA ^[28]	ADC[0]_17	
P4.6	C11	174	GPIO_STD		SCB0_SCL ^[28]	ADC[0]_18	
P4.7	B11	175	GPIO_STD			ADC[0]_19	
P5.0	A14	166	GPIO_ENH		SCB0_CLK	ADC[0]_10	
P5.1	D13	167	GPIO_ENH		SCB0_MOSI	ADC[0]_11	
P5.2	C13	168	GPIO_ENH		SCB0_MISO	ADC[0]_12 HIBERNATE_WAKEUP[3]	
P5.3	B13	169	GPIO_ENH		SCB0_SEL0	ADC[0]_13	
P5.4	A13	170	GPIO_ENH		SCB0_SEL1	ADC[0]_14	
P5.5	C12	171	GPIO_ENH		SCB0_SEL2	ADC[0]_15	
P6.0	A11	176	GPIO_STD			ADC[0]_20	
P6.1	D10	177	GPIO_STD			ADC[0]_21	
P6.2	C10	178	GPIO_STD			ADC[0]_22	
P6.3	B10	179	GPIO_STD			ADC[0]_23	
P7.0	D9	186	GPIO_SMC			ADC[1]_0	
P7.1	C9	187	GPIO_SMC			ADC[1]_1	
P7.2	B9	188	GPIO_SMC			ADC[1]_2	
P7.3	A9	189	GPIO_SMC			ADC[1]_3	
P7.4	D8	190	GPIO_SMC			ADC[1]_4	
P7.5	C8	191	GPIO_SMC			ADC[1]_5	
P7.6	B8	192	GPIO_SMC			ADC[1]_6	
P7.7	A8	193	GPIO_SMC			ADC[1]_7	
P8.0	D7	196	GPIO_SMC			ADC[1]_8	
P8.1	C7	197	GPIO_SMC			ADC[1]_9	
P8.2	B7	198	GPIO_SMC			ADC[1]_10	
P8.3	A7	199	GPIO_SMC			ADC[1]_11	
P8.4	F6	200	GPIO_SMC			ADC[1]_12	
P8.5	D6	201	GPIO_SMC			ADC[1]_13	
P8.6	C6	202	GPIO_SMC			ADC[1]_14	

Table 11-1 Pin selector and alternate pin functions in DeepSleep (DS) Mode, Analog, Smart I/O (continued)

	Package		I/O Type	DeepSleep N	lapping		
Name	272-BGA	216-TEQFP	HCon#0	HCon#29 ^[23]	HCon#30	Analog/HV	SMARTIC
	Pin	Pin		DS #5 ^[24, 25]	DS #6		
P8.7	B6	203	GPIO_SMC			ADC[1]_15	
P9.0	A6	206	GPIO_SMC			ADC[1]_16	SMARTIO9_0
P9.1	D5	207	GPIO_SMC			ADC[1]_17	SMARTIO9_1
P9.2	C5	208	GPIO_SMC			ADC[1]_18	SMARTIO9_2
P9.3	B5	209	GPIO_SMC			ADC[1]_19	SMARTIO9_3
P9.4	A5	210	GPIO_SMC			ADC[1]_20	SMARTIO9_4
P9.5	B4	211	GPIO_SMC			ADC[1]_21	SMARTIO9_5
P9.6	A4	212	GPIO_SMC			ADC[1]_22	SMARTIO9_6
P9.7	A3	213	GPIO_SMC			ADC[1]_23	SMARTIO9_7
P11.0	L3	44	HSIO_STDLN				
P11.1	L4	45	HSIO_STDLN				
P11.2	L2	46	HSIO_STDLN				
P11.3	L1	47	HSIO_STDLN				
P11.4	M1	48	HSIO_STDLN				
P11.5	M2	49	HSIO_STDLN				
P11.6	N1	50	HSIO_STDLN				
P11.7	N2	51	HSIO_STDLN				
P12.0	M3	52	HSIO_STDLN				
P12.1	M4	53	HSIO_STDLN				
P12.2	N3	NA	HSIO_STDLN				
P12.3	N4	NA	HSIO_STDLN				
P12.4	P1	NA	HSIO_STDLN				
P12.5	P2	NA	HSIO_STDLN				
P12.6	R1	NA	HSIO_STDLN				
P12.7	R2	NA	HSIO_STDLN				
P13.0	P3	NA	HSIO_STDLN				
P13.1	P4	NA	HSIO_STDLN				
P13.2	T2	NA	HSIO_STDLN				
P13.3	Т3	NA	HSIO_STDLN				
P13.4	T4	NA	HSIO_STDLN				
P13.5	U1	NA	HSIO_STDLN				

Table 11-1 Pin selector and alternate pin functions in DeepSleep (DS) Mode, Analog, Smart I/O (continued)

	Package		I/O Type	DeepSleep N	/lapping		
Name	272-BGA	216-TEQFP	HCon#0	HCon#29 ^[23]	HCon#30	Analog/HV	SMARTIC
	Pin	Pin		DS #5 ^[24, 25]	DS #6		
P13.6	U2	NA	HSIO_STDLN				
P13.7	V2	NA	HSIO_STDLN				
P14.0	U3	NA	HSIO_STDLN				
P14.1	V3	NA	HSIO_STDLN				
P14.2	U4	56	HSIO_STDLN				
P14.3	V4	57	HSIO_STDLN				
P14.4	R5	58	HSIO_STDLN				
P14.5	T5	59	HSIO_STDLN				
P14.6	U5	60	HSIO_STDLN				
P14.7	V5	61	HSIO_STDLN				
P15.0	R6	62	HSIO_STDLN				
P15.1	T6	63	HSIO_STDLN				
P15.2	U6	66	HSIO_STDLN				
P15.3	V6	67	HSIO_STDLN				
P15.4	R7	68	HSIO_STDLN				
P15.5	T7	69	HSIO_STDLN				
P15.6	U7	70	HSIO_STDLN				
P15.7	V7	71	HSIO_STDLN				
P16.0	R8	72	HSIO_STDLN				
P16.1	T8	73	HSIO_STDLN				
P16.2	U8	78	HSIO_STDLN				
P16.3	V8	79	HSIO_STDLN				
P16.4	R9	80	HSIO_STDLN				
P16.5	Т9	81	HSIO_STDLN				
P16.6	U9	82	HSIO_STDLN				
P16.7	V9	NA	HSIO_STDLN				
P17.0	T10	NA	HSIO_STDLN				
P17.1	V10	NA	HSIO_STDLN				
P18.0	B1	2	HSIO_STDLN				
P18.1	B2	3	HSIO_STDLN				
P18.2	C1	4	HSIO_STDLN				

Package pin list and alternate functions

Based on Arm® Cortex®-M7 single

Table 11-1 Pin selector and alternate pin functions in DeepSleep (DS) Mode, Analog, Smart I/O (continued)

	Package		I/O Type	DeepSleep M	lapping		
Name	272-BGA	216-TEQFP	HCon#0	HCon#29 ^[23]	HCon#30	Analog/HV	SMARTIO
	Pin	Pin		DS #5 ^[24, 25]	DS #6		
P18.3	C2	5	HSIO_STDLN				
P18.4	D1	8	HSIO_STDLN				
P18.5	D2	9	HSIO_STDLN				
P18.6	E1	10	HSIO_STDLN				
P18.7	E2	11	HSIO_STDLN				
P19.0	C3	14	HSIO_STDLN				
P19.1	D3	15	HSIO_STDLN				
P19.2	E3	16	HSIO_STDLN				
P19.3	E4	17	HSIO_STDLN				
P20.0	F1	24	HSIO_STDLN				
P20.1	F2	25	HSIO_STDLN				
P20.2	G1	26	HSIO_STDLN				
P20.3	G2	27	HSIO_STDLN				
P20.4	H1	30	HSIO_STDLN				
P20.5	H2	31	HSIO_STDLN				
P20.6	J1	32	HSIO_STDLN				
P20.7	J2	33	HSIO_STDLN				
P21.0	G3	36	HSIO_STDLN				
P21.1	H3	37	HSIO_STDLN				
P21.2	J3	38	HSIO_STDLN				
P21.3	H4	39	HSIO_STDLN				
FPD0_TAP	T12	90					
FPD0_TAN	U12	91					
FPD0_TBP	V13	94					
FPD0_TBN	V14	95					
PD0_TCLKP	R13	98					
PD0_TCLKN	R14	99					
FPD0_TCP	T15	102					
FPD0_TCN	U15	103					
FPD0_TDP	V16	106					
FPD0_TDN	V17	107					

Package pin list and alternate functions

Based on Arm® Cortex®-M7 single

Table 11-1 Pin selector and alternate pin functions in DeepSleep (DS) Mode, Analog, Smart I/O (continued)

	Package		I/O Type	DeepSleep M	lapping		
Name	272-BGA	216-TEQFP	HCon#0	HCon#29 ^[23]	HCon#30	Analog/HV	SMARTIO
	Pin	Pin		DS #5 ^[24, 25]	DS #6		
MIPI_DP3	T18	110					
MIPI_DN3	R18	111					
MIPI_DN1	P17	114					
MIPI_DP1	P16	115					
MIPI_REXT	L15	118					
MIPI_CKN	N15	121					
MIPI_CKP	M15	122					
MIPI_DP0	L16	123					
MIPI_DN0	L17	124					
MIPI_DN2	M18	127					
MIPI_DP2	N18	128					
DAC_AOUTS_R	J15	130					
DAC_COM_R	J16	131					
DAC_COM_L	H15	133					
DAC_AOUTS_L	H16	134					
PMIC_EN	E16	143					
PMIC_STATUS	E17	144					
XRES_L	F16	146					

Package pin list and alternate functions

Power pin assignments

12 Power pin assignments

Table 12-1 Power pin assignments

DDIO_HSIO DDIO_GPIO_1 DDIO_GPIO_2 DDIO_SMC SSIO_SMC DDPLL_FPD0 SPLL_FPD0 DDHA_FPD0 DDA_FPD0 SSA_FPD0	Package		Dli-
Name	272-BGA	216-TEQFP	Remarks
VDDD	M7, N7, G12, G13, F9	140, 183	Main supply for SRSS
VSS	A2, B3, C4, D4, F3, F4, K1, K2, K3, K4, R3, R4, T1, V1, R10, U10, H17, H18, F17, F18, A18, B17, A10, H8, H9, H10, H11, J8, J9, J10, J11, K8, K9, K10, K11, L8, L9, L10, L11	1, 6, 12, 19, 20, 22, 28, 34, 40, 43, 55, 64, 75, 76, 109, 142, 150, 163, 164, 180	Main digital ground
VDDIO_HSIO	G4, J4, H6, J6, K6, L6, M6, N6	7, 13, 18, 23,29, 35, 41, 54, 65, 74, 216	Supply for HSIO (3.0 V - 5.5 V)
VDDIO_GPIO_1	F10, F13	149	Supply for GPIO 1 (2.7V - 5.5V)
VDDIO_GPIO_2	F8	162	Supply for GPIO 2 (2.7V - 5.5V)
VDDIO_SMC	F7, G6, G7	185, 195, 204, 214	GPIO SMC supply (2.7 V - 5.5 V)
VSSIO_SMC	NA	184, 194, 205, 215	GPIO SMC ground
VDDPLL_FPD0	N13	83, 84	Dedicated supplies for FPD0 1.15 V
VSSPLL_FPD0	NA	85, 86	Dedicated ground for FPD0
VDDHA_FPD0	T13, T14, U13, U14, V15, U16	92, 93, 100, 101	Dedicated supplies for FPD0 (3.0 V - 3.6 V)
VDDA_FPD0	N12	88, 89	Dedicated supplies for FPD0 1.15 V
VSSA_FPD0	V18, U17, T16, R15, V12, R12, V11, U11, T11, R11	87, 96, 97, 104, 105, 108	Dedicated ground for FPD0
VDDA_MIPI	M12, M13, L13	112, 116, 119, 125	Dedicated supplies for MIPI 1.15 V
VSSA_MIPI	U18, T17, R16, P15, R17, P18, N16, N17, M16, M17, L18, K18, K17, K16, K15	113, 117, 120, 126	Dedicated ground for MIPI
VCCD ^[29]	J13, K13, N8, N9, N10, N11	21, 42, 77, 141, 165, 181, 182	Main regulated supply. Driven by external PMIC.
VREFH	F12	159	High reference voltage for SAR
VREFL	D12	161	Low reference voltage for SAR
VDDA_ADC	F11	160	Main analog supply (for PASS/SAR, 2.7 V - 5.5 V)
VSSA_ADC	D11	161	Main analog ground
VDDA_DAC	H13	132	Supply for DAC (3.0 V - 3.6 V)
VSSA_DAC	G15, G16	129, 135	Ground for DAC

Note

29. The V_{CCD} pins must be connected together to ensure a low-impedance connection. (see the requirement in **Figure 26-2**)

Alternate function pin assignments 13

Alternate pin functions in active power mode^[25, 32, 33] **Table 13-1**

							Acti	ve Mapping							
Pin	HCon#8 ^[30]	HCon#9	HCon#10	HCon#11	HCon#16	HCon#17	HCon#18	HCon#20	HCon#21	HCon#22	HCon#23	HCon#24	HCon#25	HCon#26	HCon#27
Name	ACT#0 ^[31]	ACT#1	ACT#2	ACT#3	ACT#4	ACT#5	ACT#6	ACT#8	ACT#9	ACT#10	ACT#11	ACT#12	ACT#13	ACT#14	ACT#15
P0.0															
P0.1															
P0.2										EXT_CLK					
P0.3															
P1.0	PWM0_H_4	PWM0_H_3_N	TC0_H_2_TR										SCB6_MISO	SCB6_RTS	
P1.1	PWM0_H_5	PWM0_H_4_N	TC0_H_3_TR										SCB6_SEL0	SCB6_CTS	
P1.2	PWM0_H_6	PWM0_H_5_N	TC0_H_4_TR										SCB7_CLK	SCB7_RX	
P1.3	PWM0_H_7	PWM0_H_6_N	TC0_H_5_TR						TRIG_DBG[1]				SCB7_MOSI	SCB7_TX	
P1.4	PWM0_H_8	PWM0_H_7_N	TC0_H_6_TR						TRIG_IN[1]				SCB7_MISO	SCB7_RTS	SCB7_SDA ^[34]
P1.5	PWM0_H_9	PWM0_H_8_N	TC0_H_7_TR						TRIG_IN[2]				SCB7_SEL0	SCB7_CTS	SCB7_SCL ^[34]
P1.6	PWM0_H_10	PWM0_H_10_N	TC0_H_10_TR						TRIG_IN[3]		DAC_MCK	LIN0_TX	CAN0_0_TX	CXPI0_TX	
P1.7	PWM0_H_11	PWM0_H_11_N	TC0_H_11_TR						TRIG_IN[4]			LIN0_RX	CAN0_0_RX	CXPI0_RX	
P2.0	PWM0_H_12	PWM0_H_12_N	TC0_H_12_TR						TRIG_IN[5]			LIN0_EN	CAN0_1_TX	CXPI0_EN	
P2.1	PWM0_H_13	PWM0_H_15_N	TC0_H_14_TR						TRIG_DBG[0]		CAL_SUP_NZ	LIN0_EN	CAN0_1_RX	CXPI0_EN	FAULT_OUT_0
P2.2	PWM0_H_14	PWM0_H_13_N	TC0_H_15_TR						TRIG_IN[0]			LIN1_RX	CXPI1_RX		
P2.4	PWM0_H_15	PWM0_H_14_N	TC0_H_13_TR						TRIG_IN[6]			LIN1_TX	CXPI1_TX		
P2.5	PWM0_0	PWM0_2_N							TRIG_IN[7]			LIN1_EN	CXPI1_EN		
P3.0	PWM0_1	PWM0_0_N							TRIG_IN[8]						
P3.1	PWM0_2	PWM0_1_N							TRIG_IN[9]						
P4.0	PWM0_H_2	PWM0_H_1_N	TC0_H_0_TR										SCB6_CLK	SCB6_RX	SCB6_SDA ^[34]
P4.1	PWM0_H_3	PWM0_H_2_N	TC0_H_1_TR										SCB6_MOSI	SCB6_TX	SCB6_SCL ^[34]
P4.2	PWM0_H_0	PWM0_H_9_N	TC0_H_8_TR										SCB6_SEL1		
P4.3	PWM0_H_1	PWM0_H_0_N	TC0_H_9_TR										SCB7_SEL1		
P4.4	PWM0_9	PWM0_8_N			EXT_MUX[0]_ 2				TRIG_IN[16]	SG_AMPL[1](2)			CAN0_1_TX		SCB3_SDA ^[34]

Notes

- 30.High-Speed I/O matrix connection (HCON) reference as per **Table 10-1**.
 31.Active Mode ordering (ACT#0, ACT#1, and so on) does not have any impact on configuring alternate functions; the HSIOM module handles the alternate function assignments.
 32.Refer to **Table 13-2** for more information on pin multiplexer abbreviations used.
- 33. For any function marked with an identifier (n), the AC timing is only guaranteed within the respective group "n". 34. See **Table 26-10** 'Serial Communication Block (SCB) specifications' for supported IO-cells and I²C modes.

Based on Arm® Cortex®-M7 single

TRAVEO™ T2G 32-bit Automotive MCU

Alternate function pin assignments

Table 13-1 Alternate pin functions in active power mode [25, 32, 33]

							Acti	ve Mapping							
Pin	HCon#8 ^[30]	HCon#9	HCon#10	HCon#11	HCon#16	HCon#17	HCon#18	HCon#20	HCon#21	HCon#22	HCon#23	HCon#24	HCon#25	HCon#26	HCon#27
Name	ACT#0 ^[31]	ACT#1	ACT#2	ACT#3	ACT#4	ACT#5	ACT#6	ACT#8	ACT#9	ACT#10	ACT#11	ACT#12	ACT#13	ACT#14	ACT#15
P4.5	PWM0_10	PWM0_9_N			EXT_MUX[1]_ 0				TRIG_IN[17]	SG_TONE[1](2)			CAN0_1_RX		SCB3_SCL ^[34]
P4.6	PWM0_11	PWM0_10_N			EXT_MUX[1]_				TRIG_IN[18]	SG_AMPL2			CAN1_0_TX		
P4.7	PWM0_12	PWM0_11_N			EXT_MUX[1]_				TRIG_IN[19]	SG_TONE2			CAN1_0_RX		
P5.0	PWM0_3	PWM0_16_N							TRIG_IN[10]	CLK_FM_P UMP	SCB0_RX				FAULT_OUT_1
P5.1	PWM0_4	PWM0_3_N							TRIG_IN[11]		SCB0_TX	LIN1_TX	CXPI1_EN		FAULT_OUT_2
P5.2	PWM0_5	PWM0_4_N							TRIG_IN[12]		SCB0_RTS	LIN1_RX	CXPI1_RX	SCB1_SDA	FAULT_OUT_3
P5.3	PWM0_6	PWM0_5_N							TRIG_IN[13]		SCB0_CTS	LIN1_EN	CXPI1_TX	SCB1_SCL	
P5.4	PWM0_7	PWM0_6_N			EXT_MUX[0]_ 0				TRIG_IN[14]	SG_AMPL[0](2)			CAN0_0_TX	SCB2_SDA	
P5.5	PWM0_8	PWM0_7_N			EXT_MUX[0]_				TRIG_IN[15]	SG_TONE[0](2)			CAN0_0_RX	SCB2_SCL	
P6.0	PWM0_13	PWM0_12_N			EXT_MUX[0]_ EN				TRIG_IN[20]	SG_AMPL[3](2)			CAN1_1_TX		
P6.1	PWM0_14	PWM0_13_N			EXT_MUX[1]_ EN				TRIG_IN[21]	SG_TONE[3](2)			CAN1_1_RX		
P6.2	PWM0_15	PWM0_14_N							TRIG_IN[22]	SG_AMPL[4](0)					
P6.3	PWM0_16	PWM0_15_N							TRIG_IN[23]	SG_TONE[4					
P7.0	PWM0_M_0	PWM0_H_21_N							TRIG_IN[24]	20.7					
P7.1	PWM0_H_16	PWM0_M_0_N	TC0_H_21_TR						TRIG_IN[25]						
P7.2	PWM0_M_1	PWM0_H_16_N							TRIG_IN[26]						
P7.3	PWM0_H_17	PWM0_M_1_N	TC0_H_16_TR						TRIG_IN[27]						
P7.4	PWM0_M_2	PWM0_H_17_N							TRIG_IN[28]						
P7.5	PWM0_H_18	PWM0_M_2_N	TC0_H_17_TR						TRIG_IN[29]						
P7.6	PWM0_M_3	PWM0_H_18_N							TRIG_IN[30]						FAULT_OUT_0
P7.7	PWM0_H_19	PWM0_M_3_N	TC0_H_18_TR						TRIG_IN[31]						FAULT_OUT_1
P8.0	PWM0_M_4	PWM0_H_19_N							TRIG_IN[32]						
P8.1	PWM0_H_20	PWM0_M_4_N	TC0_H_19_TR						TRIG_IN[33]	SG_MCK[0]					
P8.2	PWM0_M_5	PWM0_H_20_N							TRIG_IN[34]	SG_AMPL[0](3)					
P8.3	PWM0_H_21	PWM0_M_5_N	TC0_H_20_TR						TRIG_IN[35]	SG_TONE[0](3)					
P8.4	PWM0_M_6	PWM0_17_N							TRIG_IN[36]	SG_AMPL[1](3)					
P8.5	PWM0_17	PWM0_M_6_N	TC0_22_TR						TRIG_IN[37]	SG_TONE[1](3)					

Alternate function pin assignments

Based on Arm® Cortex®-M7 single

002-27763 Rev.*H 2023-03-03

Alternate pin functions in active power $\mathsf{mode}^{[25,\,32,\,33]}$ **Table 13-1**

							Acti	ve Mapping							
Pin	HCon#8 ^[30]	HCon#9	HCon#10	HCon#11	HCon#16	HCon#17	HCon#18	HCon#20	HCon#21	HCon#22	HCon#23	HCon#24	HCon#25	HCon#26	HCon#27
Name	ACT#0 ^[31]	ACT#1	ACT#2	ACT#3	ACT#4	ACT#5	ACT#6	ACT#8	ACT#9	ACT#10	ACT#11	ACT#12	ACT#13	ACT#14	ACT#15
P8.6	PWM0_M_7	PWM0_18_N							TRIG_IN[38]	SG_AMPL[2](3)					
P8.7	PWM0_18	PWM0_M_7_N							TRIG_IN[39]	SG_TONE[2](3)					
P9.0	PWM0_M_8	PWM0_19_N							TRIG_IN[40]	SG_AMPL3					
P9.1	PWM0_19	PWM0_M_8_N							TRIG_IN[41]	SG_TONE3					
P9.2	PWM0_M_9	PWM0_20_N							TRIG_IN[42]	SG_AMPL[4](1)					
P9.3	PWM0_20	PWM0_M_9_N							TRIG_IN[43]	SG_TONE[4](1)			SCB8_SEL1		
P9.4	PWM0_M_10	PWM0_21_N							TRIG_IN[44]	SG_MCK[1]			SCB8_CLK	SCB8_RX	SCB8_SDA ^[34]
P9.5	PWM0_21	PWM0_M_10_N	TC0_20_TR						TRIG_IN[45]	SG_MCK[2]			SCB8_MOSI	SCB8_TX	SCB8_SCL ^[34]
P9.6	PWM0_M_11	PWM0_22_N							TRIG_IN[46]	SG_MCK[3]			SCB8_MISO	SCB8_RTS	
P9.7	PWM0_22	PWM0_M_11_N	TC0_21_TR						TRIG_IN[47]	SG_MCK[4]			SCB8_SEL0	SCB8_CTS	
P11.0				ETH_REF_CLK								TTL_D- SP1_DATA_ A1[11]	SCB1_RX	SCB1_SDA ^[34]	SCB1_CLK
P11.1				ETH_RX_ER								TTL_D- SP1_DATA_ A0[11]	SCB1_TX	SCB1_SCL ^[34]	SCB1_MOSI
P11.2				ETH_RXD_0								TTL_D- SP1_DATA_ A1[10]	SCB1_RTS		SCB1_MISO
P11.3				ETH_RXD_1								TTL_D- SP1_DATA_ A0[10]	SCB1_CTS		SCB1_SEL0
P11.4				ETH_TXD_0									TTL_DSP1 CONTROL[2]		SCB1_SEL1
P11.5				ETH_TXD_1									SCB2_RX	SCB2_SDA ^[34]	SCB2_CLK
P11.6				ETH_TX_CTL								TTL_D- SP1_DATA_ A1[9]	SCB2_TX	SCB2_SCL ^[34]	SCB2_MOSI
P11.7				ETH_RX_CTL								TTL_D- SP1_DATA_ A0[9]	SCB2_RTS		SCB2_MISO
P12.0				ETH_MDC								TTL_D- SP1_DATA_ A1[8]	SCB2_CTS		SCB2_SEL0
P12.1				ETH_MDIO								TTL_D- SP1_DATA_ A0[8]	TTL_DSP0 CONTROL[11]		SCB2_SEL1
P12.2				ETH_TX_CLK	TDM_TX_MC K0	TDM_RX_MCK 1			PWM_LINE1_F 0](0)	SG_TONE0		TTL_D- SP1_CONT ROL[10]	TTL_DSP0 CONTROL[10]	SCB9_SEL1	
P12.3				ETH_RX_CLK	TDM_TX_SCK 0	TDM_RX_SCK 1			PWM_LINE1_N 0](0)	I[SG_AMPL0		TTL_D- SP1_CONT ROL[9]	TTL_DSP0 CONTROL[9]	SCB10_SEL1	

Alternate function pin assignments

Based on Arm® Cortex®-M7 single

Alternate pin functions in active power $\mathsf{mode}^{[25,\,32,\,33]}$ **Table 13-1**

							Acti	ve Mapping							
Pin	HCon#8 ^[30]	HCon#9	HCon#10	HCon#11	HCon#16	HCon#17	HCon#18	HCon#20	HCon#21	HCon#22	HCon#23	HCon#24	HCon#25	HCon#26	HCon#27
Name	ACT#0 ^[31]	ACT#1	ACT#2	ACT#3	ACT#4	ACT#5	ACT#6	ACT#8	ACT#9	ACT#10	ACT#11	ACT#12	ACT#13	ACT#14	ACT#15
P12.4				ETH_RXD_2	TDM_TX- _FSYNC0	TDM_RX- _FSYNC1			PWM_LINE2_P0	SG_TONE[1](0)		TTL_D- SP1_CONT ROL[8]	TTL_DSP0 CONTROL[8]	SCB11_SEL1	
P12.5				ETH_RXD_3	TDM_TX_SD0	TDM_RX_SD1			PWM_LINE2_N0	SG_AMPL[1](0)		TTL_D- SP1_CONT ROL[7]	TTL_DSP0 CONTROL[7]	TRACE CLOCK(1)	
P12.6				ETH_TXD_2	TDM_TX_MC K[1](0)	TDM_RX_MCK [0](1)			PWM_LINE1_P[1](0)	SG_TONE[2](0)		TTL_D- SP1_CONT ROL[6]	TTL_DSP0 CONTROL[6]	TRACE DATA_0(1)	
P12.7				ETH_TXD_3	TDM_TX_SCK [1](0)	TDM_RX_SCK [0](1)			PWM_LINE1_N[1](0)	SG_AMPL[2](0)		TTL_D- SP1_CONT ROL[5]	TTL_DSP0 CONTROL[5]	TRACE DATA_1(1)	
P13.0				ETH_TX_ER	TDM_TX- _FSYNC[1](0)	TDM_RX- _FSYNC[0](1)			PWM_LINE2_P[1](0)	SG_TONE[3](0)		TTL_D- SP1_CONT ROL[4]	TTL_DSP0 CONTROL[4]	TRACE DATA_2(1)	
P13.1				ETH_TSU TIMER_C- MP_VAL	TDM_TX_SD[1](0)	TDM_RX_SD[0](1)			PWM_LINE2_N[1](0)	SG_AMPL[3](0)		TTL_D- SP1_CONT ROL[3]	TTL_DSP0 CONTROL[3]	TRACE DATA_3(1)	
P13.2							TTL_CAP0_DA TA[23]		PWM_MCK[0]			TTL_D- SP1_DATA_ A1[11]			
P13.3							TTL_CAP0_DA TA[22]		PWM_MCK[1]		TTL_CAP0_DAT A[26]	TTL_D- SP1_DATA_ A0[11]			
P13.4							TTL_CAP0_DA TA[21]				TTL_CAP0_DAT A[25]	TTL_D- SP1_DATA_ A1[10]			
P13.5							TTL_CAP0_DA TA[20]				TTL_CAP0_DAT A[24]	TTL_D- SP1_DATA_ A0[10]			
P13.6							TTL_CAP0_DA TA[19]				TTL_CAP0_DAT A[0]	TTL_D- SP1_DATA_ A1[9]			
P13.7							TTL_CAP0_DA TA[18]				TTL_CAP0_DAT A[1]	TTL_D- SP1_DATA_ A0[9]			
P14.0	PWM0_H_22	PWM0_H_31_N	TC0_H_30_TR				TTL_CAP0_DA TA[17]				TTL_CAP0_DAT A[2]	TTL_D- SP1_DATA_ A1[8]			
P14.1	PWM0_H_23	PWM0_H_22_N	TC0_H_31_TR				TTL_CAP0_DA TA[16]				TTL_CAP0_DAT A[3]	TTL_D- SP1_DATA_ A0[8]			
P14.2	PWM0_H_24	PWM0_H_23_N	TC0_H_22_TR		TDM_TX_MC K[2](0)	TDM_RX_MCK 0	TTL_CAP0_DA TA[15]		PWM_LINE1_P[0](1)	SG_TONE[0](1)	TTL_CAP0_DAT A[4]	TTL D-	TTL_DSP1 CONTROL[2]	TRACE CLOCK(0)	
P14.3	PWM0_H_25	PWM0_H_24_N	TC0_H_23_TR		TDM_TX_SCK [2](0)	TDM_RX_SCK 0	TTL_CAP0_DA TA[14]		PWM_LINE1_N[0](1)	SG_AMPL[0](1)	TTL_CAP0_DAT A[5]	TTL_D- SP1_DATA_ A0[7]		TRACE DATA_0(0)	
P14.4	PWM0_H_26	PWM0_H_25_N	TC0_H_24_TR		TDM_TX- _FSYNC[2](0)	TDM_RX- _FSYNC0	TTL_CAP0_DA TA[13]		PWM_LINE2_P[0](1)	SG_TONE1	TTL_CAP0_DAT A[6]	TTL_D- SP1_DATA_ A1[6]		TRACE DATA_1(0)	
P14.5	PWM0_H_27	PWM0_H_26_N	TC0_H_25_TR		TDM_TX_SD[2](0)	TDM_RX_SD0	TTL_CAP0_DA TA[12]		PWM_LINE2_N[0](1)	SG_AMPL1	TTL_CAP0_DAT A[7]	TTL_D- SP1_DATA_ A0[6]		TRACE DATA_2(0)	

Alternate function pin assignments

Based on Arm® Cortex®-M7 single

Table 13-1 Alternate pin functions in active power mode [25, 32, 33]

							Activ	e Mapping							
Pin	HCon#8 ^[30]	HCon#9	HCon#10	HCon#11	HCon#16	HCon#17	HCon#18	HCon#20	HCon#21	HCon#22	HCon#23	HCon#24	HCon#25	HCon#26	HCon#27
Name	ACT#0 ^[31]	ACT#1	ACT#2	ACT#3	ACT#4	ACT#5	ACT#6	ACT#8	ACT#9	ACT#10	ACT#11	ACT#12	ACT#13	ACT#14	ACT#15
P14.6	PWM0_H_28	PWM0_H_27_N	TC0_H_26_TR		TDM_TX_MC K[3](0)	TDM_RX_MCK [1](0)	TTL_CAP0_DA TA[11]		PWM_LINE1_P1	SG_TONE[2](1)	TTL_CAP0_DAT A[8]	TTL_D- SP1_DATA_ A1[5]		TRACE DATA_3(0)	
P14.7	PWM0_H_29	PWM0_H_28_N	TC0_H_27_TR		TDM_TX_SCK [3](0)	TDM_RX_SCK [1](0)	TTL_CAP0_DA TA[10]		PWM_LINE1_N1	SG_AMPL[2](1)	TTL_CAP0_DAT A[9]	TTL_D- SP1_DATA_ A0[5]			
P15.0	PWM0_H_30	PWM0_H_29_N	TC0_H_28_TR		TDM_TX- _FSYNC[3](0)	TDM_RX- _FSYNC[1](0)	TTL_CAP0_CLK		PWM_LINE2_P1	SG_TONE[3](1)		TTL_D- SP1_DATA_ A1[4]			
P15.1	PWM0_H_31	PWM0_H_30_N	TC0_H_29_TR		TDM_TX_SD[3](0)	TDM_RX_SD[1](0)	TTL_CAP0_DA TA[10]		PWM_LINE2_N1	SG_AMPL[3](1)	TTL_CAP0_DAT A[9]	TTL_D- SP1_DATA_ A0[4]			
P15.2	PWM0_23	PWM0_29_N	TC0_28_TR				TTL_CAP0_DA TA[11]				TTL_CAP0_DAT A[8]	TTL_D- SP1_DATA_ A1[3]	SCB3_CLK	SCB3_RX	SCB3_SDA ^[34]
P15.3	PWM0_24	PWM0_30_N	TC0_29_TR				TTL_CAP0_DA TA[12]				TTL_CAP0_DAT A[7]	TTL_D- SP1_DATA_ A0[3]	SCB3_MOSI	SCB3_TX	SCB3_SCL ^[34]
P15.4	PWM0_25	PWM0_23_N	TC0_30_TR				TTL_CAP0_DA TA[13]				TTL_CAP0_DAT A[6]	TTL_D- SP1_DATA_ A1[2]	SCB3_MISO	SCB3_RTS	
P15.5	PWM0_26	PWM0_24_N	TC0_23_TR				TTL_CAP0_DA TA[14]				TTL_CAP0_DAT A[5]	TTL_D- SP1_DATA_ A0[2]	SCB3_SEL0	SCB3_CTS	
P15.6	PWM0_27	PWM0_25_N	TC0_24_TR				TTL_CAP0_DA TA[15]				TTL_CAP0_DAT A[4]	TTL_D- SP1_DATA_ A1[1]	SCB3_SEL1		
P15.7	PWM0_28	PWM0_26_N	TC0_25_TR				TTL_CAP0_DA TA[16]				TTL_CAP0_DAT A[3]	TTL_D- SP1_DATA_ A0[1]	SCB4_CLK	SCB4_RX	SCB4_SDA ^[34]
P16.0	PWM0_29	PWM0_27_N	TC0_26_TR				TTL_CAP0_DA TA[17]				TTL_CAP0_DAT A[2]	TTL_D- SP1_DATA_ A1[0]	SCB4_MOSI	SCB4_TX	SCB4_SCL ^[34]
P16.1	PWM0_30	PWM0_28_N	TC0_27_TR				TTL_CAP0_DA TA[18]				TTL_CAP0_DAT A[1]	TTL_D- SP1_DATA_ A0[0]	SCB4_MISO	SCB4_RTS	
P16.2	PWM0_31	PWM0_37_N	TC0_36_TR			TDM_RX_MCK [2](0)	TTL_CAP0_DA TA[19]		PWM_LINE1_P[0](2)	EXT_CLK	TTL_CAP0_DAT A[0]	TTL_D- SP1_CLOC K	SCB4_SEL0	SCB4_CTS	
P16.3	PWM0_32	PWM0_31_N	TC0_37_TR			TDM_RX_SCK [2](0)	TTL_CAP0_DA TA[20]		PWM_LINE1_N[0](2)		TTL_CAP0_DAT A[24]	TTL_D- SP1_CONT ROL[0]	SCB4_SEL1		
P16.4	PWM0_33	PWM0_32_N	TC0_31_TR			TDM_RX- _FSYNC[2](0)	TTL_CAP0_DA TA[21]		PWM_LINE2_P[0](2)	IO_CLK_HF [5]	TTL_CAP0_DAT A[25]	TTL_D- SP1_CONT ROL[1]	TTL_DSP1 CONTROL[2]		
P16.5	PWM0_34	PWM0_33_N	TC0_32_TR			TDM_RX_SD[2](0)	TTL_CAP0_DA TA[22]		PWM_LINE2_N[0](2)		TTL_CAP0_DAT A[26]	SCB5_SEL1	TTL_DSP1 CONTROL[2]		
P16.6	PWM0_35	PWM0_34_N	TC0_33_TR		TDM_TX_MC K[2](1)	TDM_RX_MCK [3](0)	TTL_CAP0_DA TA[23]		PWM_LINE1_P[1](2)			TTL_D- SP1_CONT ROL[11]	SCB5_CLK	SCB5_RX	SCB5_SDA ^[34]
P16.7	PWM0_36	PWM0_35_N	TC0_34_TR		TDM_TX_SCK [2](1)	TDM_RX_SCK [3](0)			PWM_LINE1_N[1](2)			TTL_D- SP0_CONT ROL[2]	SCB5_MOSI	SCB5_TX	SCB5_SCL ^[34]

Alternate function pin assignments

Based on Arm® Cortex®-M7 single

002-27763 Rev.*H 2023-03-03

Alternate pin functions in active power mode [25, 32, 33] **Table 13-1**

							Acti	ve Mapping							
Pin	HCon#8 ^[30]	HCon#9	HCon#10	HCon#11	HCon#16	HCon#17	HCon#18	HCon#20	HCon#21	HCon#22	HCon#23	HCon#24	HCon#25	HCon#26	HCon#27
Name	ACT#0 ^[31]	ACT#1	ACT#2	ACT#3	ACT#4	ACT#5	ACT#6	ACT#8	ACT#9	ACT#10	ACT#11	ACT#12	ACT#13	ACT#14	ACT#15
P17.0	PWM0_37	PWM0_36_N	TC0_35_TR	ETH_MDC	TDM_TX- _FSYNC[2](1)	TDM_RX- _FSYNC[3](0)			PWM_LINE2_P[1](2)			TTL_D- SP0_CONT ROL[1]	SCB5_MISO	SCB5_RTS	
P17.1				ETH_MDIO	TDM_TX_SD[2](1)	TDM_RX_SD[3](0)			PWM_LINE2_N[1](2)			TTL_D- SP0_CONT ROL[0]	SCB5_SEL0	SCB5_CTS	
P18.0								SCB9_CLK	SCB9_RX	SCB9_SDA [[]					SPIHB[0]_DATA4
P18.1								SCB9_MOSI	SCB9_TX	SCB9_SCL ^{[3}					SPIHB[0]_DATA2
P18.2								SCB9_MISO	SCB9_RTS						SPIHB[0]_DATA3
P18.3								SCB9_SEL0	SCB9_CTS						SPIHB[0]_DATA5
P18.4								SCB10_CLK	SCB10_RX	SCB10_SDA [34]					SPIHB[0]_DATA0
P18.5								SCB10_MO SI	SCB10_TX	SCB10_SCL					SPIHB[0]_DATA6
P18.6								SCB10_MIS O	SCB10_RTS						SPIHB[0]_DATA1
P18.7								SCB10_SEL	SCB10_CTS						SPIHB[0]_DATA7
P19.0								SCB11_CLK	SCB11_RX	SCB11_SDA					SPIHB[0]_CLK
P19.1								SCB11_MO SI	SCB11_TX	SCB11_SCL [34]					SPIHB[0]_RWDS
P19.2								SCB11_MIS O	SCB11_RTS						SPIHB[0]_SELEC T0
P19.3								SCB11_SEL 0	SCB11_CTS						SPIHB[0]_SELEC T1
P20.0				SPIHB[1]_DAT A4											
P20.1				SPIHB[1]_DAT A2											
P20.2				SPIHB[1]_DAT A3											
P20.3				SPIHB[1]_DAT A5									TTL_DSP1 CONTROL[2]		
P20.4				SPIHB[1]_DAT A0								TTL_D- SP1_DATA_ A1[11]			
P20.5				SPIHB[1]_DAT A6								TTL_D- SP1_DATA_ A0[11]			
P20.6				SPIHB[1]_DAT A1								TTL_D- SP1_DATA_ A1[10]			
P20.7				SPIHB[1]_DAT A7								TTL_D- SP1_DATA_ A0[10]			

Based on Arm® Cortex®-M7 single

TRAVEO™ T2G 32-bit Automotive MCU

Alternate function pin assignments

	Active Mapping														
Pin	HCon#8 ^[30]	HCon#9	HCon#10	HCon#11	HCon#16	HCon#17	HCon#18	HCon#20	HCon#21	HCon#22	HCon#23	HCon#24	HCon#25	HCon#26	HCon#27
Name	ACT#0 ^[31]	ACT#1	ACT#2	ACT#3	ACT#4	ACT#5	ACT#6	ACT#8	ACT#9	ACT#10	ACT#11	ACT#12	ACT#13	ACT#14	ACT#15
P21.0				SPIHB[1]_CLK								TTL_D- SP1_DATA_ A1[9]			
P21.1				SPIHB[1]_RW DS								TTL_D- SP1_DATA_ A0[9]			
P21.2				SPIHB[1]_SEL ECT0								TTL_D- SP1_DATA_ A1[8]			
P21.3				SPIHB[1]_SEL ECT1								TTL_D- SP1_DATA_ A0[8]			

Based on Arm® Cortex®-M7 single

Alternate function pin assignments

Pin function description 13.1

Pin function description **Table 13-2**

Sl. No.	Pin	Module	Description
1	PWMx_y	TCPWM	TCPWM 16-bit PWM (no motor control), PWM_DT and PWM_PR line out, x-TCPWM block, y-counter number
2	PWMx_y_N	TCPWM	TCPWM 16-bit PWM (no motor control), PWM_DT and PWM_PR complementary line out (N), x-TCPWM block, y-counter number
3	PWMx_M_y ^[35]	TCPWM	TCPWM 16-bit PWM with motor control line out, x-TCPWM block, y-counter number
4	PWMx_M_y_N ^[35]	TCPWM	TCPWM 16-bit PWM with motor control complementary line out (N), x-TCPWM block, y-counter number
5	PWMx_H_y	TCPWM	TCPWM 32-bit PWM, PWM_DT and PWM_PR line out, x-TCPWM block, y-counter number
6	PWMx_H_y_N	TCPWM	TCPWM 32-bit PWM, PWM_DT and PWM_PR complementary line out (N), x-TCPWM block, y-counter number
7	TCx_y_TRz	TCPWM	TCPWM 16-bit dedicated counter input triggers, x-TCPWM block, y-counter number, z-trigger number
8	TCx_H_y_TRz	TCPWM	TCPWM 32-bit dedicated counter input triggers, x-TCPWM block, y-counter number, z-trigger number
9	SCBx_RX	SCB	UART Receive, x-SCB block
10	SCBx_TX	SCB	UART Transmit, x-SCB block
11	SCBx_RTS	SCB	UART Request to Send (Handshake), x-SCB block
12	SCBx_CTS	SCB	UART Clear to Send (Handshake), x-SCB block
13	SCBx_SDA	SCB	I2C Data line, x-SCB block
14	SCBx_SCL	SCB	I2C Clock line, x-SCB block
15	SCBx_MISO	SCB	SPI Master Input Slave Output, x-SCB block
16	SCBx_MOSI	SCB	SPI Master Output Slave Input, x-SCB block
17	SCBx_CLK	SCB	SPI Serial Clock, x-SCB block
18	SCBx_SELy	SCB	SPI Slave Select, x-SCB block, y-select line
19	LINx_RX	LIN	LIN Receive line, x-LIN block
20	LINx_TX	LIN	LIN Transmit line, x-LIN block
21	LINx_EN	LIN	LIN Enable line, x-LIN block
22	CXPIx_RX	CXPI	CXPI Receive line, x-CXPI block
23	CXPIx_TX	CXPI	CXPI Transmit line, x-CXPI block
24	CXPIx_EN	CXPI	CXPI Enable line, x-CXPI block
25	CANx_y_TX	CANFD	CAN Transmit line, x-CAN block, y-channel number
26	CANx_y_RX	CANFD	CAN Receive line, x-CAN block, y-channel number
27	SPIHB_CLK	SMIF	SMIF interface clock
28	SPIHB_RWDS	SMIF	SMIF (SPI/xSPI) read-write-data-strobe line
29	SPIHB_SELx	SMIF	SMIF (SPI/xSPI) memory select line, x-select line number
30	SPIHB_DATAx	SMIF	SMIF (SPI/xSPI) memory data read and write line, x-0 to 7 data lines
31	ETHx_RX_ER	Ethernet	Ethernet receive error indication line, x-ETH module number
32	ETHx_ETH_TSU_TIMER_C- MP_VAL	Ethernet	Ethernet time stamp unit timer compare indication line, x-ETH module number
33	ETHx_MDIO	Ethernet	Ethernet management data input/output (MDIO) interface to PHY, x-ETH module number
34	ETHx_MDC	Ethernet	Ethernet management data clock (MDC) line, x-ETH module number
35	ETHx_REF_CLK	Ethernet	Ethernet reference clock line, x-ETH module number
36	ETHx_TX_CTL	Ethernet	Ethernet transmit control line, x-ETH module number
37	ETHx_TX_ER	Ethernet	Ethernet transmit error indication line, x-ETH module number

Note 35. This pin/line is intended for a direct connection to the coil of stepper motor for pointer instruments.

Based on Arm® Cortex®-M7 single

Alternate function pin assignments

Pin function description (continued) **Table 13-2**

Sl. No.	Pin	Module	Description
38	ETHx_TX_CLK	Ethernet	Ethernet transmit clock line, x-ETH module number
39	ETHx_TXD_y	Ethernet	Ethernet transmit data line, x-ETH module number, y-transmit channel number
40	ETHx_RXD_y	Ethernet	Ethernet receive data line, x-ETH module number, y-receive channel number
41	ETHx_RX_CTL	Ethernet	Ethernet receive control line, x-ETH module number
42	ETHx_RX_CLK	Ethernet	Ethernet receive clock line, x-ETH module number
43	CAL_SUP_NZ	System	ETAS Calibration support line
44	FAULT_OUT_x	SRSS	Fault output line x-0 to 3
45	TRACE_DATA_x	SRSS	Trace dataout line x-0 to 3
46	TRACE_CLOCK	SRSS	Trace clock line
47	RTC_CAL	SRSS RTC	RTC calibration clock input
48	SWJ_TRSTN	SRSS	JTAG Test reset line (Active low)
49	SWJ_SWO_TDO	SRSS	JTAG Test data output/SWO (Serial Wire Output)
50	SWJ_SWCLK_TCLK	SRSS	JTAG Test clock/SWD clock (Serial Wire Clock)
51	SWJ_SWDIO_TMS	SRSS	JTAG Test mode select/SWD data (Serial Wire Data Input/Output)
52	SWJ_SWDOE_TDI	SRSS	JTAG Test data input
53	HIBERNATE_WAKEUP[x]	SRSS	Hibernate wakeup line x-0 to N (Check Table 11-1)
54	EXT_CLK	SRSS	External clock input
55	IO_CLK_HF[5]	SRSS	CLK_HF5 clock output
56	PMIC_EN	SRSS PMIC	PMIC control line, Enable output for PMIC
57	PMIC_STATUS	SRSS PMIC	PMIC status line, Power good input from PMIC
58	ADC[x]_y	PASS SAR	SAR, channel, x-SAR number, y-channel number
59	ADC[x]_M	PASS SAR	SAR motor control input, x-SAR number
60	EXT_MUX[x]_y	PASS SAR	External SAR MUX inputs, x-MUX number, y-MUX input 0 to 2
61	EXT_MUX[x]_EN	PASS SAR	External SAR MUX enable line
62	PWM_LINEx_N[y]	PCM PWM	Audio PWM complementary output line, x-PWM module instance
63	PWM_LINEx_P[y]	PCM PWM	Audio PWM output line, x-PWM module instance
64	PWM_MCK[x]	PCM PWM	Audio PWM master clock input, x-PWM module instance
65	SG_AMPL[x]	SG	Sound generator (SG) amplitude output, x-SG module number
66	SG_MCK[x]	SG	Sound generator (SG) master clock input, x-SG module number
67	SG_TONE[x]	SG	Sound generator (SG) tone output, x-SG module number
68	TDM_RX_FSYNC[x]	TDM	TDM receive frame sync, x-TDM module number
69	TDM_RX_MCK[x]	TDM	TDM receive master clock input, x-TDM module number
70	TDM_RX_SCK[x]	TDM	TDM receive bit clock, x-TDM module number
71	TDM_RX_SD[x]	TDM	TDM receive serial data, x-TDM module number
72	TDM_TX_FSYNC[x]	TDM	TDM transmit frame sync, x-TDM module number
73	TDM_TX_MCK[x]	TDM	TDM transmit master clock input, x-TDM module number
74	TDM_TX_SCK[x]	TDM	TDM transmit bit clock, x-TDM module number
75	TDM_TX_SD[x]	TDM	TDM transmit serial data, x-TDM module number
76	TTL_CAPx_CLK	VIDEO	Capture clock, x-capture module number
77	TTL_CAPx_DATA[y]	VIDEO	Capture data lines, x-capture module number, y- (0-26) data line
78	TTL_DSPx_CONTROL[y]	VIDEO	Display control line, x-display number, y-0/lvalid, 1/vertical sync signal, 2/display enable (DE)
79	TTL_DSPx_CLOCK	VIDEO	Display clock line (PCLK), x-display number
80	TTL_DSPx_DATA_A0[y]	VIDEO	Display data (A0/1 used in pairs), x-display number, y- (0-11) color data
81	TTL_DSPx_DATA_A1[y]	VIDEO	Display data (A0/1 used in pairs), x-display number, y- (0-11) color data
82	DAC_MCK	AUDIODAC	DAC external master clock input

Alternate function pin assignments

Based on Arm® Cortex®-M7 single

Table 13-2 Pin function description (continued)

Sl. No.	Pin	Module	Description
83	DAC_AOUTS_x	AUDIODAC	DAC output signal, x-left (L) or right (R) signal
84	DAC_COM_x	AUDIODAC	DAC common signal, x-left (L) or right (R) signal
85	MIPI_DPx	VIDEO	MIPI CSI-2 positive Data-Y input signal
86	MIPI_DNx	VIDEO	MIPI CSI-2 negative Data-Y input signal
87	MIPI_CKP	VIDEO	MIPI CSI-2 positive clock input signal
88	MIPI_CKN	VIDEO	MIPI CSI-2 negative clock input signal
89	MIPI_REXT	VIDEO	MIPI CSI-2 external reference resistor pin for auto-calibration
90	FPDx_TyP	VIDEO	FPD-link positive transmit signal, x-FPD instance, y-(0-3/A-C) output signal
91	FPDx_TyN	VIDEO	FPD-link negative transmit signal, x-FPD instance, y-(0-3/A-C) output signal
92	FPDx_TCLKP	VIDEO	FPD-link positive clock signal, x-FPD instance
93	FPDx_TCLKN	VIDEO	FPD-link negative clock signal, x-FPD instance

Based on Arm® Cortex®-M7 single Interrupts and wake-up assignments

Peripheral interrupt assignments and wake-up sources **Table 14-1**

nterrupt	Source	Power mode	Description
0	cpuss_interrupts_ipc_0_IRQn	DeepSleep	CPUSS Inter Process Communication Interrupt #0
1	cpuss_interrupts_ipc_1_IRQn	DeepSleep	CPUSS Inter Process Communication Interrupt #1
2	cpuss_interrupts_ipc_2_IRQn	DeepSleep	CPUSS Inter Process Communication Interrupt #2
3	cpuss_interrupts_ipc_3_IRQn	DeepSleep	CPUSS Inter Process Communication Interrupt #3
4	cpuss_interrupts_ipc_4_IRQn	DeepSleep	CPUSS Inter Process Communication Interrupt #4
5	cpuss_interrupts_ipc_5_IRQn	DeepSleep	CPUSS Inter Process Communication Interrupt #5
6	cpuss_interrupts_ipc_6_IRQn	DeepSleep	CPUSS Inter Process Communication Interrupt #6
7	cpuss_interrupts_ipc_7_IRQn	DeepSleep	CPUSS Inter Process Communication Interrupt #7
8	cpuss_interrupts_fault_0_IRQn	DeepSleep	CPUSS Fault Structure #0 Interrupt
9	cpuss_interrupts_fault_1_IRQn	DeepSleep	CPUSS Fault Structure #1 Interrupt
10	cpuss_interrupts_fault_2_IRQn	DeepSleep	CPUSS Fault Structure #2 Interrupt
11	cpuss_interrupts_fault_3_IRQn	DeepSleep	CPUSS Fault Structure #3 Interrupt
12	srss_interrupt_backup_IRQn	DeepSleep	BACKUP domain Interrupt
13	srss_interrupt_mcwdt_0_IRQn	DeepSleep	Multi Counter Watchdog Timer#0 interrupt
14	srss_interrupt_mcwdt_1_IRQn	DeepSleep	Multi Counter Watchdog Timer#1 interrupt
17	srss_interrupt_wdt_IRQn	DeepSleep	Hardware Watchdog Timer interrupt
18	srss_interrupt_IRQn	DeepSleep	Other combined Interrupts for SRSS (LVD, CLKCAL)
19	evtgen_0_interrupt_dpslp_IRQn	DeepSleep	Event gen DeepSleep domain interrupt
20	scb_0_interrupt_IRQn	DeepSleep	SCB0 interrupt (DeepSleep capable)
22	ioss_interrupt_vdd_IRQn	DeepSleep	I/O Supply (VDDIO, VDDA_ADC, VDDD) state change Interrupt
23	ioss_interrupt_gpio_dpslp_IRQn	DeepSleep	Consolidated Interrupt for GPIO*, All Ports
24	ioss_interrupts_gpio_dpslp_0_IRQn	DeepSleep	GPIO_STD Port #0 Interrupt
25	ioss_interrupts_gpio_dpslp_1_IRQn	DeepSleep	GPIO_STD Port #1 Interrupt
26	ioss_interrupts_gpio_dpslp_2_IRQn	DeepSleep	GPIO_STD Port #2 Interrupt
27	ioss_interrupts_gpio_dpslp_3_IRQn	DeepSleep	GPIO_STD Port #3 Interrupt
28	ioss_interrupts_gpio_dpslp_4_IRQn	DeepSleep	GPIO_STD Port #4 Interrupt
29	ioss_interrupts_gpio_dpslp_5_IRQn	DeepSleep	GPIO_STD Port #5 Interrupt
30	ioss_interrupts_gpio_dpslp_6_IRQn	DeepSleep	GPIO_STD Port #6 Interrupt
31	ioss_interrupts_gpio_dpslp_7_IRQn	DeepSleep	GPIO_SMC Port #7 Interrupt
32	ioss_interrupts_gpio_dpslp_8_IRQn	DeepSleep	GPIO_SMC Port #8 Interrupt
33	ioss_interrupts_gpio_dpslp_9_IRQn	DeepSleep	GPIO_SMC Port #9 Interrupt
50	ioss_interrupt_gpio_act_IRQn	Active	Consolidated Interrupt for HSIO*, All Ports
52	ioss_interrupts_gpio_act_11_IRQn	Active	HSIO_STDLN Port Interrupt #11 Interrupt
53	ioss_interrupts_gpio_act_12_IRQn	Active	HSIO_STDLN Port Interrupt #12 Interrupt
54	ioss_interrupts_gpio_act_13_IRQn	Active	HSIO_STDLN Port Interrupt #13 Interrupt
55	ioss_interrupts_gpio_act_14_IRQn	Active	HSIO_STDLN Port Interrupt #14 Interrupt
56	ioss_interrupts_gpio_act_15_IRQn	Active	HSIO_STDLN Port Interrupt #15 Interrupt
57	ioss_interrupts_gpio_act_16_IRQn	Active	HSIO_STDLN Port Interrupt #16 Interrupt
58	ioss_interrupts_gpio_act_17_IRQn	Active	HSIO_STDLN Port Interrupt #17 Interrupt
59	ioss_interrupts_gpio_act_18_IRQn	Active	HSIO_STDLN Port Interrupt #18 Interrupt

Based on Arm® Cortex®-M7 single

Table 14-1 Peripheral interrupt assignments and wake-up sources (continued)

Interrupt	Source	Power mode	Description
60	ioss_interrupts_gpio_act_19_IRQn	Active	HSIO_STDLN Port Interrupt #19 Interrupt
61	ioss_interrupts_gpio_act_20_IRQn	Active	HSIO_STDLN Port Interrupt #20 Interrupt
62	ioss_interrupts_gpio_act_21_IRQn	Active	HSIO_STDLN Port Interrupt #21 Interrupt
70	cpuss_interrupt_crypto_IRQn	Active	Crypto Accelerator Interrupt
71	cpuss_interrupt_fm_IRQn	Active	FLASH Macro Interrupt
72	cpuss_interrupts_cm7_0_fp_IRQn	Active	CM7_0 Floating Point operation fault
74	cpuss_interrupts_cm0_cti_0_IRQn	Active	CM0+ CTI (Cross Trigger Interface) #0
75	cpuss_interrupts_cm0_cti_1_IRQn	Active	CM0+ CTI #1
76	cpuss_interrupts_cm7_0_cti_0_IRQn	Active	CM7_0 CTI #0
77	cpuss_interrupts_cm7_0_cti_1_IRQn	Active	CM7_0 CTI #1
80	evtgen_0_interrupt_IRQn	Active	Event gen Active domain interrupt
81	smif_0_interrupt_IRQn	Active	SMIF #0 (QSPI) interrupt
82	smif_1_interrupt_IRQn	Active	SMIF #1 (QSPI) interrupt
83	eth_0_interrupt_eth_0_IRQn	Active	Ethernet #0 priority queue[0]
84	eth_0_interrupt_eth_1_IRQn	Active	Ethernet #0 priority queue[1]
85	eth_0_interrupt_eth_2_IRQn	Active	Ethernet #0 priority queue[2]
86	canfd_0_interrupt0_IRQn	Active	CANO, Consolidated interrupt #0 for all channels
87	canfd_0_interrupt1_IRQn	Active	CANO, Consolidated interrupt #1 for all channels
88	canfd_1_interrupt0_IRQn	Active	CAN1, Consolidated interrupt #0 for all channels
89	canfd_1_interrupt1_IRQn	Active	CAN1, Consolidated interrupt #1 for all channels
90	canfd_0_interrupts0_0_IRQn	Active	CAN0, Interrupt #0, Channel #0
91	canfd_0_interrupts0_1_IRQn	Active	CAN0, Interrupt #0, Channel #1
96	canfd_0_interrupts1_0_IRQn	Active	CAN0, Interrupt #1, Channel #0
97	canfd_0_interrupts1_1_IRQn	Active	CAN0, Interrupt #1, Channel #1
102	canfd_1_interrupts0_0_IRQn	Active	CAN1, Interrupt #0, Channel #0
103	canfd_1_interrupts0_1_IRQn	Active	CAN1, Interrupt #0, Channel #1
108	canfd_1_interrupts1_0_IRQn	Active	CAN1, Interrupt #1, Channel #0
109	canfd_1_interrupts1_1_IRQn	Active	CAN1, Interrupt #1, Channel #1
114	lin_0_interrupts_0_IRQn	Active	LIN0 Channel #0 Interrupt
115	lin_0_interrupts_1_IRQn	Active	LIN0 Channel #1 Interrupt
130	cxpi_0_interrupts_0_IRQn	Active	CXPI0 Channel #0 Interrupt
131	cxpi_0_interrupts_1_IRQn	Active	CXPI0 Channel #1 Interrupt
135	scb_1_interrupt_IRQn	Active	SCB1 Interrupt
136	scb_2_interrupt_IRQn	Active	SCB2 Interrupt
137	scb_3_interrupt_IRQn	Active	SCB3 Interrupt
138	scb_4_interrupt_IRQn	Active	SCB4 Interrupt
139	scb_5_interrupt_IRQn	Active	SCB5 Interrupt
140	scb_6_interrupt_IRQn	Active	SCB6 Interrupt
141	scb_7_interrupt_IRQn	Active	SCB7 Interrupt
142	scb_8_interrupt_IRQn	Active	SCB8 Interrupt
143	scb_9_interrupt_IRQn	Active	SCB9 Interrupt
144	scb_10_interrupt_IRQn	Active	SCB10 Interrupt
145	scb_11_interrupt_IRQn	Active	SCB11 Interrupt

Based on Arm® Cortex®-M7 single

Table 14-1 Peripheral interrupt assignments and wake-up sources (continued)

Interrupt	Source	Power mode	Description
150	videoss_0_interrupt_gfx2d_IRQn	Active	GFX2D Interrupt
151	videoss_0_interrupt_mipicsi_IRQn	Active	MIPICSI Interrupt
152	videoss_0_interrupt_videoio0_IRQn	Active	VIDEOSS I/O Interrupt #0
153	videoss_0_interrupt_videoio1_IRQn	Active	VIDEOSS I/O Interrupt #1
154	videoss_0_interrupt_videoio0_safety	Active	VIDEOSS I/O Safety Interrupt #0
155	videoss_0_interrupt_videoio1_safety	Active	VIDEOSS I/O Safety Interrupt #1
160	pass_0_interrupts_sar_0_IRQn	Active	SAR0, Logical Channel #0 Interrupt
161	pass_0_interrupts_sar_1_IRQn	Active	SAR0, Logical Channel #1 Interrupt
162	pass_0_interrupts_sar_2_IRQn	Active	SAR0, Logical Channel #2 Interrupt
163	pass_0_interrupts_sar_3_IRQn	Active	SAR0, Logical Channel #3 Interrupt
164	pass_0_interrupts_sar_4_IRQn	Active	SAR0, Logical Channel #4 Interrupt
165	pass_0_interrupts_sar_5_IRQn	Active	SAR0, Logical Channel #5 Interrupt
166	pass_0_interrupts_sar_6_IRQn	Active	SAR0, Logical Channel #6 Interrupt
167	pass_0_interrupts_sar_7_IRQn	Active	SAR0, Logical Channel #7 Interrupt
168	pass_0_interrupts_sar_8_IRQn	Active	SAR0, Logical Channel #8 Interrupt
169	pass_0_interrupts_sar_9_IRQn	Active	SAR0, Logical Channel #9 Interrupt
170	pass_0_interrupts_sar_10_IRQn	Active	SAR0, Logical Channel #10 Interrupt
171	pass_0_interrupts_sar_11_IRQn	Active	SAR0, Logical Channel #11 Interrupt
172	pass_0_interrupts_sar_12_IRQn	Active	SAR0, Logical Channel #12 Interrupt
173	pass_0_interrupts_sar_13_IRQn	Active	SAR0, Logical Channel #13 Interrupt
174	pass_0_interrupts_sar_14_IRQn	Active	SAR0, Logical Channel #14 Interrupt
175	pass_0_interrupts_sar_15_IRQn	Active	SAR0, Logical Channel #15 Interrupt
176	pass_0_interrupts_sar_16_IRQn	Active	SAR0, Logical Channel #16 Interrupt
177	pass_0_interrupts_sar_17_IRQn	Active	SAR0, Logical Channel #17 Interrupt
178	pass_0_interrupts_sar_18_IRQn	Active	SAR0, Logical Channel #18 Interrupt
179	pass_0_interrupts_sar_19_IRQn	Active	SAR0, Logical Channel #19 Interrupt
180	pass_0_interrupts_sar_20_IRQn	Active	SAR0, Logical Channel #20 Interrupt
181	pass_0_interrupts_sar_21_IRQn	Active	SAR0, Logical Channel #21 Interrupt
182	pass_0_interrupts_sar_22_IRQn	Active	SAR0, Logical Channel #22 Interrupt
183	pass_0_interrupts_sar_23_IRQn	Active	SAR0, Logical Channel #23 Interrupt
184	pass_0_interrupts_sar_24_IRQn	Active	SAR0, Logical Channel #24 Interrupt
185	pass_0_interrupts_sar_25_IRQn	Active	SAR0, Logical Channel #25 Interrupt
186	pass_0_interrupts_sar_26_IRQn	Active	SAR0, Logical Channel #26 Interrupt
187	pass_0_interrupts_sar_27_IRQn	Active	SAR0, Logical Channel #27 Interrupt
188	pass_0_interrupts_sar_28_IRQn	Active	SAR0, Logical Channel #28 Interrupt
189	pass_0_interrupts_sar_29_IRQn	Active	SAR0, Logical Channel #29 Interrupt
190	pass_0_interrupts_sar_30_IRQn	Active	SAR0, Logical Channel #30 Interrupt
191	pass_0_interrupts_sar_31_IRQn	Active	SAR0, Logical Channel #31 Interrupt
280	axi_dmac_0_interrupts_0_IRQn	Active	AXI M-DMA1, Channel#0 Interrupt
281	axi_dmac_0_interrupts_1_IRQn	Active	AXI M-DMA1, Channel#1 Interrupt
282	axi_dmac_0_interrupts_2_IRQn	Active	AXI M-DMA1, Channel#2 Interrupt
283	axi_dmac_0_interrupts_3_IRQn	Active	AXI M-DMA1, Channel#3 Interrupt
288	cpuss_interrupts_dmac_0_IRQn	Active	CPUSS M-DMA0, Channel #0 Interrupt

Based on Arm® Cortex®-M7 single

Table 14-1 Peripheral interrupt assignments and wake-up sources (continued)

Interrupt	Source	Power mode	Description
289	cpuss_interrupts_dmac_1_IRQn	Active	CPUSS M-DMA0, Channel #1 Interrupt
290	cpuss_interrupts_dmac_2_IRQn	Active	CPUSS M-DMA0, Channel #2 Interrupt
291	cpuss_interrupts_dmac_3_IRQn	Active	CPUSS M-DMA0, Channel #3 Interrupt
292	cpuss_interrupts_dmac_4_IRQn	Active	CPUSS M-DMA0, Channel #4 Interrupt
293	cpuss_interrupts_dmac_5_IRQn	Active	CPUSS M-DMA0, Channel #5 Interrupt
294	cpuss_interrupts_dmac_6_IRQn	Active	CPUSS M-DMA0, Channel #6 Interrupt
295	cpuss_interrupts_dmac_7_IRQn	Active	CPUSS M-DMA0, Channel #7 Interrupt
296	cpuss_interrupts_dw0_0_IRQn	Active	CPUSS P-DMA0, Channel #0 Interrupt
297	cpuss_interrupts_dw0_1_IRQn	Active	CPUSS P-DMA0, Channel #1 Interrupt
298	cpuss_interrupts_dw0_2_IRQn	Active	CPUSS P-DMA0, Channel #2 Interrupt
299	cpuss_interrupts_dw0_3_IRQn	Active	CPUSS P-DMA0, Channel #3 Interrupt
300	cpuss_interrupts_dw0_4_IRQn	Active	CPUSS P-DMA0, Channel #4 Interrupt
301	cpuss_interrupts_dw0_5_IRQn	Active	CPUSS P-DMA0, Channel #5 Interrupt
302	cpuss_interrupts_dw0_6_IRQn	Active	CPUSS P-DMA0, Channel #6 Interrupt
303	cpuss_interrupts_dw0_7_IRQn	Active	CPUSS P-DMA0, Channel #7 Interrupt
304	cpuss_interrupts_dw0_8_IRQn	Active	CPUSS P-DMA0, Channel #8 Interrupt
305	cpuss_interrupts_dw0_9_IRQn	Active	CPUSS P-DMA0, Channel #9 Interrupt
306	cpuss_interrupts_dw0_10_IRQn	Active	CPUSS P-DMA0, Channel #10 Interrupt
307	cpuss_interrupts_dw0_11_IRQn	Active	CPUSS P-DMA0, Channel #11 Interrupt
308	cpuss_interrupts_dw0_12_IRQn	Active	CPUSS P-DMA0, Channel #12 Interrupt
309	cpuss_interrupts_dw0_13_IRQn	Active	CPUSS P-DMA0, Channel #13 Interrupt
310	cpuss_interrupts_dw0_14_IRQn	Active	CPUSS P-DMA0, Channel #14 Interrupt
311	cpuss_interrupts_dw0_15_IRQn	Active	CPUSS P-DMA0, Channel #15 Interrupt
312	cpuss_interrupts_dw0_16_IRQn	Active	CPUSS P-DMA0, Channel #16 Interrupt
313	cpuss_interrupts_dw0_17_IRQn	Active	CPUSS P-DMA0, Channel #17 Interrupt
314	cpuss_interrupts_dw0_18_IRQn	Active	CPUSS P-DMA0, Channel #18 Interrupt
315	cpuss_interrupts_dw0_19_IRQn	Active	CPUSS P-DMA0, Channel #19 Interrupt
316	cpuss_interrupts_dw0_20_IRQn	Active	CPUSS P-DMA0, Channel #20 Interrupt
317	cpuss_interrupts_dw0_21_IRQn	Active	CPUSS P-DMA0, Channel #21 Interrupt
318	cpuss_interrupts_dw0_22_IRQn	Active	CPUSS P-DMA0, Channel #22 Interrupt
319	cpuss_interrupts_dw0_23_IRQn	Active	CPUSS P-DMA0, Channel #23 Interrupt
320	cpuss_interrupts_dw0_24_IRQn	Active	CPUSS P-DMA0, Channel #24 Interrupt
321	cpuss_interrupts_dw0_25_IRQn	Active	CPUSS P-DMA0, Channel #25 Interrupt
322	cpuss_interrupts_dw0_26_IRQn	Active	CPUSS P-DMA0, Channel #26 Interrupt
323	cpuss_interrupts_dw0_27_IRQn	Active	CPUSS P-DMA0, Channel #27 Interrupt
324	cpuss_interrupts_dw0_28_IRQn	Active	CPUSS P-DMA0, Channel #28 Interrupt
325	cpuss_interrupts_dw0_29_IRQn	Active	CPUSS P-DMA0, Channel #29 Interrupt
326	cpuss_interrupts_dw0_30_IRQn	Active	CPUSS P-DMA0, Channel #30 Interrupt
327	cpuss_interrupts_dw0_31_IRQn	Active	CPUSS P-DMA0, Channel #31 Interrupt
328	cpuss_interrupts_dw0_32_IRQn	Active	CPUSS P-DMA0, Channel #32 Interrupt
329	cpuss_interrupts_dw0_33_IRQn	Active	CPUSS P-DMA0, Channel #33 Interrupt
330	cpuss_interrupts_dw0_34_IRQn	Active	CPUSS P-DMA0, Channel #34 Interrupt
331	cpuss_interrupts_dw0_35_IRQn	Active	CPUSS P-DMA0, Channel #35 Interrupt

Based on Arm® Cortex®-M7 single

Table 14-1 Peripheral interrupt assignments and wake-up sources (continued)

Interrupt	Source	Power mode	Description
332	cpuss_interrupts_dw0_36_IRQn	Active	CPUSS P-DMA0, Channel #36 Interrupt
333	cpuss_interrupts_dw0_37_IRQn	Active	CPUSS P-DMA0, Channel #37 Interrupt
334	cpuss_interrupts_dw0_38_IRQn	Active	CPUSS P-DMA0, Channel #38 Interrupt
335	cpuss_interrupts_dw0_39_IRQn	Active	CPUSS P-DMA0, Channel #39 Interrupt
336	cpuss_interrupts_dw0_40_IRQn	Active	CPUSS P-DMA0, Channel #40 Interrupt
337	cpuss_interrupts_dw0_41_IRQn	Active	CPUSS P-DMA0, Channel #41 Interrupt
338	cpuss_interrupts_dw0_42_IRQn	Active	CPUSS P-DMA0, Channel #42 Interrupt
339	cpuss_interrupts_dw0_43_IRQn	Active	CPUSS P-DMA0, Channel #43 Interrupt
340	cpuss_interrupts_dw0_44_IRQn	Active	CPUSS P-DMA0, Channel #44 Interrupt
341	cpuss_interrupts_dw0_45_IRQn	Active	CPUSS P-DMA0, Channel #45 Interrupt
342	cpuss_interrupts_dw0_46_IRQn	Active	CPUSS P-DMA0, Channel #46 Interrupt
343	cpuss_interrupts_dw0_47_IRQn	Active	CPUSS P-DMA0, Channel #47 Interrupt
344	cpuss_interrupts_dw0_48_IRQn	Active	CPUSS P-DMA0, Channel #48 Interrupt
345	cpuss_interrupts_dw0_49_IRQn	Active	CPUSS P-DMA0, Channel #49 Interrupt
346	cpuss_interrupts_dw0_50_IRQn	Active	CPUSS P-DMA0, Channel #50 Interrupt
347	cpuss_interrupts_dw0_51_IRQn	Active	CPUSS P-DMA0, Channel #51 Interrupt
348	cpuss_interrupts_dw0_52_IRQn	Active	CPUSS P-DMA0, Channel #52 Interrupt
349	cpuss_interrupts_dw0_53_IRQn	Active	CPUSS P-DMA0, Channel #53 Interrupt
350	cpuss_interrupts_dw0_54_IRQn	Active	CPUSS P-DMA0, Channel #54 Interrupt
351	cpuss_interrupts_dw0_55_IRQn	Active	CPUSS P-DMA0, Channel #55 Interrupt
352	cpuss_interrupts_dw0_56_IRQn	Active	CPUSS P-DMA0, Channel #56 Interrupt
353	cpuss_interrupts_dw0_57_IRQn	Active	CPUSS P-DMA0, Channel #57 Interrupt
354	cpuss_interrupts_dw0_58_IRQn	Active	CPUSS P-DMA0, Channel #58 Interrupt
355	cpuss_interrupts_dw0_59_IRQn	Active	CPUSS P-DMA0, Channel #59 Interrupt
356	cpuss_interrupts_dw0_60_IRQn	Active	CPUSS P-DMA0, Channel #60 Interrupt
357	cpuss_interrupts_dw0_61_IRQn	Active	CPUSS P-DMA0, Channel #61 Interrupt
358	cpuss_interrupts_dw0_62_IRQn	Active	CPUSS P-DMA0, Channel #62 Interrupt
359	cpuss_interrupts_dw0_63_IRQn	Active	CPUSS P-DMA0, Channel #63 Interrupt
360	cpuss_interrupts_dw0_64_IRQn	Active	CPUSS P-DMA0, Channel #64 Interrupt
361	cpuss_interrupts_dw0_65_IRQn	Active	CPUSS P-DMA0, Channel #65 Interrupt
362	cpuss_interrupts_dw0_66_IRQn	Active	CPUSS P-DMA0, Channel #66 Interrupt
363	cpuss_interrupts_dw0_67_IRQn	Active	CPUSS P-DMA0, Channel #67 Interrupt
364	cpuss_interrupts_dw0_68_IRQn	Active	CPUSS P-DMA0, Channel #68 Interrupt
365	cpuss_interrupts_dw0_69_IRQn	Active	CPUSS P-DMA0, Channel #69 Interrupt
366	cpuss_interrupts_dw0_70_IRQn	Active	CPUSS P-DMA0, Channel #70 Interrupt
367	cpuss_interrupts_dw0_71_IRQn	Active	CPUSS P-DMA0, Channel #71 Interrupt
368	cpuss_interrupts_dw0_72_IRQn	Active	CPUSS P-DMA0, Channel #72 Interrupt
369	cpuss_interrupts_dw0_73_IRQn	Active	CPUSS P-DMA0, Channel #73 Interrupt
370	cpuss_interrupts_dw0_74_IRQn	Active	CPUSS P-DMA0, Channel #74 Interrupt
371	cpuss_interrupts_dw0_75_IRQn	Active	CPUSS P-DMA0, Channel #75 Interrupt
424	cpuss_interrupts_dw1_0_IRQn	Active	CPUSS P-DMA1, Channel #0 Interrupt
425	cpuss_interrupts_dw1_1_IRQn	Active	CPUSS P-DMA1, Channel #1 Interrupt
426	cpuss_interrupts_dw1_2_IRQn	Active	CPUSS P-DMA1, Channel #2 Interrupt

Based on Arm® Cortex®-M7 single

Table 14-1 Peripheral interrupt assignments and wake-up sources (continued)

Interrupt	Source	Power mode	Description
427	cpuss_interrupts_dw1_3_IRQn	Active	CPUSS P-DMA1, Channel #3 Interrupt
428	cpuss_interrupts_dw1_4_IRQn	Active	CPUSS P-DMA1, Channel #4 Interrupt
429	cpuss_interrupts_dw1_5_IRQn	Active	CPUSS P-DMA1, Channel #5 Interrupt
430	cpuss_interrupts_dw1_6_IRQn	Active	CPUSS P-DMA1, Channel #6 Interrupt
431	cpuss_interrupts_dw1_7_IRQn	Active	CPUSS P-DMA1, Channel #7 Interrupt
432	cpuss_interrupts_dw1_8_IRQn	Active	CPUSS P-DMA1, Channel #8 Interrupt
433	cpuss_interrupts_dw1_9_IRQn	Active	CPUSS P-DMA1, Channel #9 Interrupt
434	cpuss_interrupts_dw1_10_IRQn	Active	CPUSS P-DMA1, Channel #10 Interrupt
435	cpuss_interrupts_dw1_11_IRQn	Active	CPUSS P-DMA1, Channel #11 Interrupt
436	cpuss_interrupts_dw1_12_IRQn	Active	CPUSS P-DMA1, Channel #12 Interrupt
437	cpuss_interrupts_dw1_13_IRQn	Active	CPUSS P-DMA1, Channel #13 Interrupt
438	cpuss_interrupts_dw1_14_IRQn	Active	CPUSS P-DMA1, Channel #14 Interrupt
439	cpuss_interrupts_dw1_15_IRQn	Active	CPUSS P-DMA1, Channel #15 Interrupt
440	cpuss_interrupts_dw1_16_IRQn	Active	CPUSS P-DMA1, Channel #16 Interrupt
441	cpuss_interrupts_dw1_17_IRQn	Active	CPUSS P-DMA1, Channel #17 Interrupt
442	cpuss_interrupts_dw1_18_IRQn	Active	CPUSS P-DMA1, Channel #18 Interrupt
443	cpuss_interrupts_dw1_19_IRQn	Active	CPUSS P-DMA1, Channel #19 Interrupt
444	cpuss_interrupts_dw1_20_IRQn	Active	CPUSS P-DMA1, Channel #20 Interrupt
445	cpuss_interrupts_dw1_21_IRQn	Active	CPUSS P-DMA1, Channel #21 Interrupt
446	cpuss_interrupts_dw1_22_IRQn	Active	CPUSS P-DMA1, Channel #22 Interrupt
447	cpuss_interrupts_dw1_23_IRQn	Active	CPUSS P-DMA1, Channel #23 Interrupt
448	cpuss_interrupts_dw1_24_IRQn	Active	CPUSS P-DMA1, Channel #24 Interrupt
449	cpuss_interrupts_dw1_25_IRQn	Active	CPUSS P-DMA1, Channel #25 Interrupt
450	cpuss_interrupts_dw1_26_IRQn	Active	CPUSS P-DMA1, Channel #26 Interrupt
451	cpuss_interrupts_dw1_27_IRQn	Active	CPUSS P-DMA1, Channel #27 Interrupt
452	cpuss_interrupts_dw1_28_IRQn	Active	CPUSS P-DMA1, Channel #28 Interrupt
453	cpuss_interrupts_dw1_29_IRQn	Active	CPUSS P-DMA1, Channel #29 Interrupt
454	cpuss_interrupts_dw1_30_IRQn	Active	CPUSS P-DMA1, Channel #30 Interrupt
455	cpuss_interrupts_dw1_31_IRQn	Active	CPUSS P-DMA1, Channel #31 Interrupt
456	cpuss_interrupts_dw1_32_IRQn	Active	CPUSS P-DMA1, Channel #32 Interrupt
457	cpuss_interrupts_dw1_33_IRQn	Active	CPUSS P-DMA1, Channel #33 Interrupt
458	cpuss_interrupts_dw1_34_IRQn	Active	CPUSS P-DMA1, Channel #34 Interrupt
459	cpuss_interrupts_dw1_35_IRQn	Active	CPUSS P-DMA1, Channel #35 Interrupt
460	cpuss_interrupts_dw1_36_IRQn	Active	CPUSS P-DMA1, Channel #36 Interrupt
461	cpuss_interrupts_dw1_37_IRQn	Active	CPUSS P-DMA1, Channel #37 Interrupt
462	cpuss_interrupts_dw1_38_IRQn	Active	CPUSS P-DMA1, Channel #38 Interrupt
463	cpuss_interrupts_dw1_39_IRQn	Active	CPUSS P-DMA1, Channel #39 Interrupt
464	cpuss_interrupts_dw1_40_IRQn	Active	CPUSS P-DMA1, Channel #40 Interrupt
465	cpuss_interrupts_dw1_41_IRQn	Active	CPUSS P-DMA1, Channel #41 Interrupt
466	cpuss_interrupts_dw1_42_IRQn	Active	CPUSS P-DMA1, Channel #42 Interrupt
467	cpuss_interrupts_dw1_43_IRQn	Active	CPUSS P-DMA1, Channel #43 Interrupt
468	cpuss_interrupts_dw1_44_IRQn	Active	CPUSS P-DMA1, Channel #44 Interrupt
469	cpuss_interrupts_dw1_45_IRQn	Active	CPUSS P-DMA1, Channel #45 Interrupt

Based on Arm® Cortex®-M7 single

Table 14-1 Peripheral interrupt assignments and wake-up sources (continued)

Interrupt	Source	Power mode	Description
470	cpuss_interrupts_dw1_46_IRQn	Active	CPUSS P-DMA1, Channel #46 Interrupt
471	cpuss_interrupts_dw1_47_IRQn	Active	CPUSS P-DMA1, Channel #47 Interrupt
472	cpuss_interrupts_dw1_48_IRQn	Active	CPUSS P-DMA1, Channel #48 Interrupt
473	cpuss_interrupts_dw1_49_IRQn	Active	CPUSS P-DMA1, Channel #49 Interrupt
474	cpuss_interrupts_dw1_50_IRQn	Active	CPUSS P-DMA1, Channel #50 Interrupt
475	cpuss_interrupts_dw1_51_IRQn	Active	CPUSS P-DMA1, Channel #51 Interrupt
476	cpuss_interrupts_dw1_52_IRQn	Active	CPUSS P-DMA1, Channel #52 Interrupt
477	cpuss_interrupts_dw1_53_IRQn	Active	CPUSS P-DMA1, Channel #53 Interrupt
478	cpuss_interrupts_dw1_54_IRQn	Active	CPUSS P-DMA1, Channel #54 Interrupt
479	cpuss_interrupts_dw1_55_IRQn	Active	CPUSS P-DMA1, Channel #55 Interrupt
480	cpuss_interrupts_dw1_56_IRQn	Active	CPUSS P-DMA1, Channel #56 Interrupt
481	cpuss_interrupts_dw1_57_IRQn	Active	CPUSS P-DMA1, Channel #57 Interrupt
482	cpuss_interrupts_dw1_58_IRQn	Active	CPUSS P-DMA1, Channel #58 Interrupt
483	cpuss_interrupts_dw1_59_IRQn	Active	CPUSS P-DMA1, Channel #59 Interrupt
484	cpuss_interrupts_dw1_60_IRQn	Active	CPUSS P-DMA1, Channel #60 Interrupt
485	cpuss_interrupts_dw1_61_IRQn	Active	CPUSS P-DMA1, Channel #61 Interrupt
486	cpuss_interrupts_dw1_62_IRQn	Active	CPUSS P-DMA1, Channel #62 Interrupt
487	cpuss_interrupts_dw1_63_IRQn	Active	CPUSS P-DMA1, Channel #63 Interrupt
488	cpuss_interrupts_dw1_64_IRQn	Active	CPUSS P-DMA1, Channel #64 Interrupt
489	cpuss_interrupts_dw1_65_IRQn	Active	CPUSS P-DMA1, Channel #65 Interrupt
490	cpuss_interrupts_dw1_66_IRQn	Active	CPUSS P-DMA1, Channel #66 Interrupt
491	cpuss_interrupts_dw1_67_IRQn	Active	CPUSS P-DMA1, Channel #67 Interrupt
492	cpuss_interrupts_dw1_68_IRQn	Active	CPUSS P-DMA1, Channel #68 Interrupt
493	cpuss_interrupts_dw1_69_IRQn	Active	CPUSS P-DMA1, Channel #69 Interrupt
494	cpuss_interrupts_dw1_70_IRQn	Active	CPUSS P-DMA1, Channel #70 Interrupt
495	cpuss_interrupts_dw1_71_IRQn	Active	CPUSS P-DMA1, Channel #71 Interrupt
496	cpuss_interrupts_dw1_72_IRQn	Active	CPUSS P-DMA1, Channel #72 Interrupt
497	cpuss_interrupts_dw1_73_IRQn	Active	CPUSS P-DMA1, Channel #73 Interrupt
498	cpuss_interrupts_dw1_74_IRQn	Active	CPUSS P-DMA1, Channel #74 Interrupt
499	cpuss_interrupts_dw1_75_IRQn	Active	CPUSS P-DMA1, Channel #75 Interrupt
500	cpuss_interrupts_dw1_76_IRQn	Active	CPUSS P-DMA1, Channel #76 Interrupt
501	cpuss_interrupts_dw1_77_IRQn	Active	CPUSS P-DMA1, Channel #77 Interrupt
502	cpuss_interrupts_dw1_78_IRQn	Active	CPUSS P-DMA1, Channel #78 Interrupt
503	cpuss_interrupts_dw1_79_IRQn	Active	CPUSS P-DMA1, Channel #79 Interrupt
504	cpuss_interrupts_dw1_80_IRQn	Active	CPUSS P-DMA1, Channel #80 Interrupt
505	cpuss_interrupts_dw1_81_IRQn	Active	CPUSS P-DMA1, Channel #81 Interrupt
506	cpuss_interrupts_dw1_82_IRQn	Active	CPUSS P-DMA1, Channel #82 Interrupt
507	cpuss_interrupts_dw1_83_IRQn	Active	CPUSS P-DMA1, Channel #83 Interrupt
552	tcpwm_0_interrupts_0_IRQn	Active	TCPWM0 Group #0, Counter #0 Interrupt
553	tcpwm_0_interrupts_1_IRQn	Active	TCPWM0 Group #0, Counter #1 Interrupt
554	tcpwm_0_interrupts_2_IRQn	Active	TCPWM0 Group #0, Counter #2 Interrupt
555	tcpwm_0_interrupts_3_IRQn	Active	TCPWM0 Group #0, Counter #3 Interrupt
556	tcpwm_0_interrupts_4_IRQn	Active	TCPWM0 Group #0, Counter #4 Interrupt

Based on Arm® Cortex®-M7 single

Table 14-1 Peripheral interrupt assignments and wake-up sources (continued)

Interrupt	Source	Power mode	Description
557	tcpwm_0_interrupts_5_IRQn	Active	TCPWM0 Group #0, Counter #5 Interrupt
558	tcpwm_0_interrupts_6_IRQn	Active	TCPWM0 Group #0, Counter #6 Interrupt
559	tcpwm_0_interrupts_7_IRQn	Active	TCPWM0 Group #0, Counter #7 Interrupt
560	tcpwm_0_interrupts_8_IRQn	Active	TCPWM0 Group #0, Counter #8 Interrupt
561	tcpwm_0_interrupts_9_IRQn	Active	TCPWM0 Group #0, Counter #9 Interrupt
562	tcpwm_0_interrupts_10_IRQn	Active	TCPWM0 Group #0, Counter #10 Interrupt
563	tcpwm_0_interrupts_11_IRQn	Active	TCPWM0 Group #0, Counter #11 Interrupt
564	tcpwm_0_interrupts_12_IRQn	Active	TCPWM0 Group #0, Counter #12 Interrupt
565	tcpwm_0_interrupts_13_IRQn	Active	TCPWM0 Group #0, Counter #13 Interrupt
566	tcpwm_0_interrupts_14_IRQn	Active	TCPWM0 Group #0, Counter #14 Interrupt
567	tcpwm_0_interrupts_15_IRQn	Active	TCPWM0 Group #0, Counter #15 Interrupt
568	tcpwm_0_interrupts_16_IRQn	Active	TCPWM0 Group #0, Counter #16 Interrupt
569	tcpwm_0_interrupts_17_IRQn	Active	TCPWM0 Group #0, Counter #17 Interrupt
570	tcpwm_0_interrupts_18_IRQn	Active	TCPWM0 Group #0, Counter #18 Interrupt
571	tcpwm_0_interrupts_19_IRQn	Active	TCPWM0 Group #0, Counter #19 Interrupt
572	tcpwm_0_interrupts_20_IRQn	Active	TCPWM0 Group #0, Counter #20 Interrupt
573	tcpwm_0_interrupts_21_IRQn	Active	TCPWM0 Group #0, Counter #21 Interrupt
574	tcpwm_0_interrupts_22_IRQn	Active	TCPWM0 Group #0, Counter #22 Interrupt
575	tcpwm_0_interrupts_23_IRQn	Active	TCPWM0 Group #0, Counter #23 Interrupt
576	tcpwm_0_interrupts_24_IRQn	Active	TCPWM0 Group #0, Counter #24 Interrupt
577	tcpwm_0_interrupts_25_IRQn	Active	TCPWM0 Group #0, Counter #25 Interrupt
578	tcpwm_0_interrupts_26_IRQn	Active	TCPWM0 Group #0, Counter #26 Interrupt
579	tcpwm_0_interrupts_27_IRQn	Active	TCPWM0 Group #0, Counter #27 Interrupt
580	tcpwm_0_interrupts_28_IRQn	Active	TCPWM0 Group #0, Counter #28 Interrupt
581	tcpwm_0_interrupts_29_IRQn	Active	TCPWM0 Group #0, Counter #29 Interrupt
582	tcpwm_0_interrupts_30_IRQn	Active	TCPWM0 Group #0, Counter #30 Interrupt
583	tcpwm_0_interrupts_31_IRQn	Active	TCPWM0 Group #0, Counter #31 Interrupt
584	tcpwm_0_interrupts_32_IRQn	Active	TCPWM0 Group #0, Counter #32 Interrupt
585	tcpwm_0_interrupts_33_IRQn	Active	TCPWM0 Group #0, Counter #33 Interrupt
586	tcpwm_0_interrupts_34_IRQn	Active	TCPWM0 Group #0, Counter #34 Interrupt
587	tcpwm_0_interrupts_35_IRQn	Active	TCPWM0 Group #0, Counter #35 Interrupt
588	tcpwm_0_interrupts_36_IRQn	Active	TCPWM0 Group #0, Counter #36 Interrupt
589	tcpwm_0_interrupts_37_IRQn	Active	TCPWM0 Group #0, Counter #37 Interrupt
616	tcpwm_0_interrupts_256_IRQn	Active	TCPWM0 Group #1, Counter #0 Interrupt
617	tcpwm_0_interrupts_257_IRQn	Active	TCPWM0 Group #1, Counter #1 Interrupt
618	tcpwm_0_interrupts_258_IRQn	Active	TCPWM0 Group #1, Counter #2 Interrupt
619	tcpwm_0_interrupts_259_IRQn	Active	TCPWM0 Group #1, Counter #3 Interrupt
620	tcpwm_0_interrupts_260_IRQn	Active	TCPWM0 Group #1, Counter #4 Interrupt
621	tcpwm_0_interrupts_261_IRQn	Active	TCPWM0 Group #1, Counter #5 Interrupt
622	tcpwm_0_interrupts_262_IRQn	Active	TCPWM0 Group #1, Counter #6 Interrupt
623	tcpwm_0_interrupts_263_IRQn	Active	TCPWM0 Group #1, Counter #7 Interrupt
624	tcpwm_0_interrupts_264_IRQn	Active	TCPWM0 Group #1, Counter #8 Interrupt
625	tcpwm_0_interrupts_265_IRQn	Active	TCPWM0 Group #1, Counter #9 Interrupt

Based on Arm® Cortex®-M7 single

Table 14-1 Peripheral interrupt assignments and wake-up sources (continued)

Interrupt	Source	Power mode	Description
626	tcpwm_0_interrupts_266_IRQn	Active	TCPWM0 Group #1, Counter #10 Interrupt
627	tcpwm_0_interrupts_267_IRQn	Active	TCPWM0 Group #1, Counter #11 Interrupt
680	tcpwm_0_interrupts_512_IRQn	Active	TCPWM0 Group #2, Counter #0 Interrupt
681	tcpwm_0_interrupts_513_IRQn	Active	TCPWM0 Group #2, Counter #1 Interrupt
682	tcpwm_0_interrupts_514_IRQn	Active	TCPWM0 Group #2, Counter #2 Interrupt
683	tcpwm_0_interrupts_515_IRQn	Active	TCPWM0 Group #2, Counter #3 Interrupt
684	tcpwm_0_interrupts_516_IRQn	Active	TCPWM0 Group #2, Counter #4 Interrupt
685	tcpwm_0_interrupts_517_IRQn	Active	TCPWM0 Group #2, Counter #5 Interrupt
686	tcpwm_0_interrupts_518_IRQn	Active	TCPWM0 Group #2, Counter #6 Interrupt
687	tcpwm_0_interrupts_519_IRQn	Active	TCPWM0 Group #2, Counter #7 Interrupt
688	tcpwm_0_interrupts_520_IRQn	Active	TCPWM0 Group #2, Counter #8 Interrupt
689	tcpwm_0_interrupts_521_IRQn	Active	TCPWM0 Group #2, Counter #9 Interrupt
690	tcpwm_0_interrupts_522_IRQn	Active	TCPWM0 Group #2, Counter #10 Interrupt
691	tcpwm_0_interrupts_523_IRQn	Active	TCPWM0 Group #2, Counter #11 Interrupt
692	tcpwm_0_interrupts_524_IRQn	Active	TCPWM0 Group #2, Counter #12 Interrupt
693	tcpwm_0_interrupts_525_IRQn	Active	TCPWM0 Group #2, Counter #13 Interrupt
694	tcpwm_0_interrupts_526_IRQn	Active	TCPWM0 Group #2, Counter #14 Interrupt
695	tcpwm_0_interrupts_527_IRQn	Active	TCPWM0 Group #2, Counter #15 Interrupt
696	tcpwm_0_interrupts_528_IRQn	Active	TCPWM0 Group #2, Counter #16 Interrupt
697	tcpwm_0_interrupts_529_IRQn	Active	TCPWM0 Group #2, Counter #17 Interrupt
698	tcpwm_0_interrupts_530_IRQn	Active	TCPWM0 Group #2, Counter #18 Interrupt
699	tcpwm_0_interrupts_531_IRQn	Active	TCPWM0 Group #2, Counter #19 Interrupt
700	tcpwm_0_interrupts_532_IRQn	Active	TCPWM0 Group #2, Counter #20 Interrupt
701	tcpwm_0_interrupts_533_IRQn	Active	TCPWM0 Group #2, Counter #21 Interrupt
702	tcpwm_0_interrupts_534_IRQn	Active	TCPWM0 Group #2, Counter #22 Interrupt
703	tcpwm_0_interrupts_535_IRQn	Active	TCPWM0 Group #2, Counter #23 Interrupt
704	tcpwm_0_interrupts_536_IRQn	Active	TCPWM0 Group #2, Counter #24 Interrupt
705	tcpwm_0_interrupts_537_IRQn	Active	TCPWM0 Group #2, Counter #25 Interrupt
706	tcpwm_0_interrupts_538_IRQn	Active	TCPWM0 Group #2, Counter #26 Interrupt
707	tcpwm_0_interrupts_539_IRQn	Active	TCPWM0 Group #2, Counter #27 Interrupt
708	tcpwm_0_interrupts_540_IRQn	Active	TCPWM0 Group #2, Counter #28 Interrupt
709	tcpwm_0_interrupts_541_IRQn	Active	TCPWM0 Group #2, Counter #29 Interrupt
710	tcpwm_0_interrupts_542_IRQn	Active	TCPWM0 Group #2, Counter #30 Interrupt
711	tcpwm_0_interrupts_543_IRQn	Active	TCPWM0 Group #2, Counter #31 Interrupt
752	tdm_0_interrupts_tx_0_IRQn	Active	TDM0 TX #0 Interrupt
753	tdm_0_interrupts_rx_0_IRQn	Active	TDM0 RX #0 Interrupt
754	tdm_0_interrupts_tx_1_IRQn	Active	TDM0 TX #1 Interrupt
755	tdm_0_interrupts_rx_1_IRQn	Active	TDM0 RX #1 Interrupt
756	tdm_0_interrupts_tx_2_IRQn	Active	TDM0 TX #2 Interrupt
757	tdm_0_interrupts_rx_2_IRQn	Active	TDM0 RX #2 Interrupt
758	tdm_0_interrupts_tx_3_IRQn	Active	TDM0 TX #3 Interrupt
759	tdm_0_interrupts_rx_3_IRQn	Active	TDM0 RX #3 Interrupt
760	sg_0_interrupts_0_IRQn	Active	SG0 #0 Interrupt

Based on Arm® Cortex®-M7 single

Table 14-1 Peripheral interrupt assignments and wake-up sources (continued)

Interrupt	Source	Power mode	Description
761	sg_0_interrupts_1_IRQn	Active	SG0 #1 Interrupt
762	sg_0_interrupts_2_IRQn	Active	SG0 #2 Interrupt
763	sg_0_interrupts_3_IRQn	Active	SG0 #3 Interrupt
764	sg_0_interrupts_4_IRQn	Active	SG0 #4 Interrupt
768	pwm_0_interrupts_0_IRQn	Active	PCM-PWM0 #0 Interrupt
769	pwm_0_interrupts_1_IRQn	Active	PCM-PWM0 #1 Interrupt
776	dac_0_interrupt_IRQn	Active	Audio DAC interrupt
780	mixer_0_interrupt_dst_IRQn	Active	MIXER0 Destination interrupt
781	mixer_0_interrupts_src_0_IRQn	Active	MIXERO Source #0 Interrupt
782	mixer_0_interrupts_src_1_IRQn	Active	MIXER0 Source #1 Interrupt
783	mixer_0_interrupts_src_2_IRQn	Active	MIXER0 Source #2 Interrupt
784	mixer_0_interrupts_src_3_IRQn	Active	MIXERO Source #3 Interrupt
785	mixer_0_interrupts_src_4_IRQn	Active	MIXERO Source #4 Interrupt
789	mixer_1_interrupt_dst_IRQn	Active	MIXER1 Destination interrupt
790	mixer_1_interrupts_src_0_IRQn	Active	MIXER1 Source #0 Interrupt
791	mixer_1_interrupts_src_1_IRQn	Active	MIXER1 Source #1 Interrupt
792	mixer_1_interrupts_src_2_IRQn	Active	MIXER1 Source #2 Interrupt
793	mixer_1_interrupts_src_3_IRQn	Active	MIXER1 Source #3 Interrupt
794	mixer_1_interrupts_src_4_IRQn	Active	MIXER1 Source #4 Interrupt

Based on Arm® Cortex®-M7 single

Core interrupt types

15 Core interrupt types

Table 15-1 Core interrupt types

Interrupt	Source	Power Mode	Description
0	CPUIntIdx0_IRQn ^[36]	DeepSleep	CPU User Interrupt #0
1	CPUIntIdx1_IRQn ^[36]	DeepSleep	CPU User Interrupt #1
2	CPUIntIdx2_IRQn	DeepSleep	CPU User Interrupt #2
3	CPUIntldx3_IRQn	DeepSleep	CPU User Interrupt #3
4	CPUIntIdx4_IRQn	DeepSleep	CPU User Interrupt #4
5	CPUIntldx5_IRQn	DeepSleep	CPU User Interrupt #5
6	CPUIntIdx6_IRQn	DeepSleep	CPU User Interrupt #6
7	CPUIntldx7_IRQn	DeepSleep	CPU User Interrupt #7
8	Internal0_IRQn	Active	Internal Software Interrupt #0
9	Internal1_IRQn	Active	Internal Software Interrupt #1
10	Internal2_IRQn	Active	Internal Software Interrupt #2
11	Internal3_IRQn	Active	Internal Software Interrupt #3
12	Internal4_IRQn	Active	Internal Software Interrupt #4
13	Internal5_IRQn	Active	Internal Software Interrupt #5
14	Internal6_IRQn	Active	Internal Software Interrupt #6
15	Internal7_IRQn	Active	Internal Software Interrupt #7

Note

36. User interrupt cannot be used for CM0+ application, as it is used internally by system calls. Note, this does not impact CM7 application.

Trigger multiplexer

Trigger multiplexer 16

Trigger multiplexer^[37] Figure 16-1

37. The diagram shows only the TRIG_LABEL; the final trigger formation is based on the formula TRIG_{PREFIX(IN/OUT)}_{MUX-_x}_{TRIG_LABEL} and the information provided in **Table 17-1**, and **Table 18-1**.

Based on Arm® Cortex®-M7 single

Triggers group inputs

Triggers group inputs 17

Trigger inputs Table 17-1

Input	Trigger Label (TRIG_LABEL)	Description
MUX Group 0: P-DMA0_0	0_15 trigger multiplexer	
1:32	PDMA0_TR_OUT[0:31]	Allow P-DMA0 to chain to itself. Channels 0 - 32 are general purpose channels available for chaining
33:48	PDMA1_TR_OUT[0:15]	Cross connections from P-DMA1 to P-DMA0, Channels 0-15 are used
49:56	MDMA_TR_OUT[0:7]	Cross connections from M-DMA0 to P-DMA0
57:58	CAN0_TT_TR_OUT[0:1]	CAN0 TT Sync Outputs
59:60	CAN1_TT_TR_OUT[0:1]	CAN1 TT Sync Outputs
61:84	HSIOM_IO_INPUT[0:23]	I/O Inputs
85:88	FAULT_TR_OUT[0:3]	Fault events
MUX Group 1: P-DMA0_	16_31 trigger multiplexer	
1:38	TCPWM0_16_TR_OUT0[0:37]	16-bit TCPWM0 counters
39:50	TCPWM0_16M_TR_OUT0[0:11]	16-bit Motor enhanced TCPWM0 counters
51:82	TCPWM0_32_TR_OUT0[0:31]	32-bit TCPWM0 counters
83:84	PASS_GEN_TR_OUT[0:1]	PASS0 SAR events
85:86	CTI_TR_OUT[0:1]	Trace events
87:90	EVTGEN_TR_OUT[0:3]	Event generator triggers
MUX Group 2: P-DMA1_0	0_15 trigger multiplexer	
1:16	PDMA1_TR_OUT[0:15]	Allow P-DMA1 to chain to itself. Channels 0 - 15 are dedicated for chaining
17:48	PDMA0_TR_OUT[0:31]	Cross connections from P-DMA0 to P-DMA1, channels 0-31 are used
49:72	HSIOM_IO_INPUT[24:47]	I/O Inputs
MUX Group 3: M-DMA0 t	rigger multiplexer	1
1:8	TCPWM0_16_TR_OUT0[0:7]	16-bit TCPWM0 counters
9:16	TCPWM0_32_TR_OUT0[0:7]	32-bit TCPWM0 counters
17:20	AXIDMA_TR_OUT[0:3]	AXI M-DMA1 triggers
MUX Group 4: TCPWM0	Trigger multiplexer	
1:32	PDMA0_TR_OUT[0:31]	General purpose P-DMA0 triggers
33:48	PDMA1_TR_OUT[0:15]	General purpose P-DMA1 triggers
49:56	MDMA_TR_OUT[0:7]	M-DMA0 triggers
57:94	TCPWM0_16_TR_OUT0[0:37]	16-bit TCPWM0 counters
95:106	TCPWM0_16M_TR_OUT0[0:11]	16-bit Motor enhanced TCPWM0 counters
107:138	TCPWM0_32_TR_OUT0[0:31]	32-bit TCPWM0 counters
139	SMIF0_TX_TR_OUT	SMIF0 TX trigger
140	SMIF0_RX_TR_OUT	SMIF0 RX trigger
141	SMIF1_TX_TR_OUT	SMIF1 TX trigger
142	SMIF1_RX_TR_OUT	SMIF1 RX trigger
143:146	AXIDMA_TR_OUT[0:3]	AXI M-DMA1 triggers
151:154	TDM0_TX_TR_OUT[0:3]	TDM0 TX trigger
155:158	TDM0_RX_TR_OUT[0:3]	TDM0 RX trigger
159:163	SG0_TR_COMPLETE[0:4]	SG0 TX complete trigger
164:165	PWM0_TX_TR_OUT[0:1]	PCM-PWM0 TX trigger
166:170	MIXERO_TR_SRC_REQ_OUT[0:4]	MIXER0 SRC trigger
171	MIXERO_TR_DST_REQ_OUT	MIXERO DST trigger
172:176	MIXER1_TR_SRC_REQ_OUT[0:4]	MIXER1 SRC trigger

Based on Arm® Cortex®-M7 single

Table 17-1 Trigger inputs (continued)

MUX Group 5: TCPWMO_20_31 Trigger multiplexer	Input	Trigger Label (TRIG_LABEL)	Description
MUX Group 5: TCPWMO_20_31 Trigger multiplexer			-
MUX Group 5: TCPWM0_20_31 Trigger multiplexer			
1:2 CANO_DBG_TR_OUT[0:1] CANO DMA events 3:4 CANO_FIFOU_TR_OUT[0:1] CANO FIFOU events 5:5 CANO_FIFOU_TR_OUT[0:1] CANO FIFOU events 7:8 CANL_DBG_TR_OUT[0:1] CANL DMA events 9:10 CANL_FIFOU_TR_OUT[0:1] CANL DMA events 9:10 CANL_FIFOU_TR_OUT[0:1] CANL DMA events 11:12 CANL_FIFOU_TR_OUT[0:1] CANL FIFOU events 13:14 CANO_TT_TR_OUT[0:1] CANL FIFOU events 15:16 CANL_TT_R_OUT[0:1] CANL TT Sync Outputs 17:24 EVTGENT_R_OUT[0:1] CANL TT Sync Outputs 17:24 EVTGENT_R_OUT[0:1] CANL TT Sync Outputs 17:25 EVENT_R_OUT[0:1] CANL TT Sync Outputs 17:26 EVTGENT_R_OUT[0:1] CANL TT Sync Outputs 17:27 SCB_TX_TR_OUT[0:1] SCBO TX trigger 18 SCB_TX_TR_OUT[0:1] SCBO TX trigger 19 SCB_DC_SCL_TR_OUT[0:1] SCBO TX trigger 20 SCB_TX_TR_OUT[0:1] SCBO TX trigger 21 SCB_RX_TR_OUT[1] SCBI TX trigger 22 SCB_DC_SCL_TR_OUT[1] SCBI TX trigger 23 SCB_TX_TR_OUT[2] SCBZ TX trigger 24 SCB_RX_TR_OUT[2] SCBZ TX trigger 25 SCB_DC_SCL_TR_OUT[2] SCBZ TX trigger 26 SCB_TX_TR_OUT[2] SCBZ TX trigger 27 SCB_RX_TR_OUT[2] SCBZ TX trigger 28 SCB_DC_SCL_TR_OUT[3] SCB3 TX trigger 29 SCB_TX_TR_OUT[3] SCB3 TX trigger 29 SCB_TX_TR_OUT[3] SCB3 TX trigger 29 SCB_TX_TR_OUT[4] SCBA TX trigger 29 SCB_TX_TR_OUT[3] SCB3 TX trigger 29 SCB_TX_TR_OUT[4] SCBA TX trigger 30 SCB_RX_TR_OUT[4] SCBA TX trigger 31 SCB_DC_SCL_TR_OUT[4] SCBA TX trigger 32 SCB_TX_TR_OUT[4] SCBA TX trigger 33 SCB_DC_SCL_TR_OUT[4] SCBA TX trigger 34 SCB_DC_SCL_TR_OUT[4] SCBA TX trigger 35 SCB_DC_SCL_TR_OUT[4] SCBA TX trigger 36 SCB_TX_TR_OUT[6] SCBA TX trigger 37 SCB_DC_SCL_TR_OUT[6] SCBA TX trigger 38 SCB_DC_SCL_TR_OUT[6] SCBA TX trigger 39 SCB_TX_TR_OUT[6] SCBA TX trigger 30 SCB_RX_TR_OUT[6] SCBA TX trigger 31 SCB_DC_SCL_TR_OUT[6] SCBA TX trigger 32 SCB_TX_TR_OUT[6] SCBA TX trigger 33 SCB_DC_SCL_TR_OUT[6] SCBA TX trigger 34 SCB_DC_SCL_TR_OUT[6] SCBA TX trigger 35 SCB_DC_SCL_TR_OUT[6] SCBA TX trigger 36 SCB_DC_SCL_TR_OUT[6] SCBA TX trigger 37 SCB_DC_SCL_TR_OUT[6] SCBA TX trigger 38 SCB_DC_SCL_TR_OUT[6] SCBA TX trigger 49 SCB_DC_SCL_TR_OUT[6] SCBA TX trigger 40			AODIO DACO IX trigger
SAME			CANO DMA quents
S.6 CAND_FIFO1_TR_OUT[0:1] CAND FIFO1 events			
7.8 CAN1_DBG_TR_OUT[0:1] CAN1 FIFO0 events 9:10 CAN1_FIFO0_TR_OUT[0:1] CAN1 FIFO0 events 11:12 CAN1_FIFO1_TR_OUT[0:1] CAN1 FIFO1 events 13:14 CAN0_TT_TR_OUT[0:1] CAN1 FIFO1 events 15:16 CAN1_TT_TR_OUT[0:1] CAN1 TIFO1 cuputs 15:16 CAN1_TT_TR_OUT[0:1] CAN1 TI Sync Outputs 17:24 EVTCEN_TR_OUT[0:1] CAN1 TT Sync Outputs 17:24 EVTCEN_TR_OUT[0:1] CAN1 TT Sync Outputs 17:25 EVTCEN_TR_OUT[0:1] CAN1 TT Sync Outputs 17:26 EVTCEN_TR_OUT[0:1] CAN1 TT Sync Outputs 17:27 EVENT E			
9:10			
11:12			
13:14			
15:16			
NUX Group 6: TCPWM0_32_59 Trigger Multiplexer			
MUX Group 6: TCPWM0_32_99 Trigger Multiplexer			
1:16 TCPWM0_16_TR_OUT1[0:15] 16-bit TCPWM0 counters			Event generator triggers
17 SCB_TX_TR_OUT[0] SCB0 TX trigger 18 SCB_RX_TR_OUT[0] SCB0 RX trigger 19 SCB_J2C_SCL_TR_OUT[0] SCB0 J2C trigger 20 SCB_TX_TR_OUT[1] SCB1 TX trigger 21 SCB_RX_TR_OUT[1] SCB1 TX trigger 22 SCB_J2C_SCL_TR_OUT[1] SCB1 RX trigger 23 SCB_TX_TR_OUT[2] SCB2 TX trigger 24 SCB_RX_TR_OUT[2] SCB2 TX trigger 25 SCB_J2C_SCL_TR_OUT[2] SCB2 J2C trigger 26 SCB_TX_TR_OUT[2] SCB2 J2C trigger 27 SCB_RX_TR_OUT[3] SCB3 TX trigger 28 SCB_J2C_SCL_TR_OUT[3] SCB3 TX trigger 29 SCB_TX_TR_OUT[3] SCB3 TX trigger 29 SCB_TX_TR_OUT[4] SCB3 L2C trigger 30 SCB_RX_TR_OUT[4] SCB4 TX trigger 31 SCB_J2C_SCL_TR_OUT[4] SCB4 TX trigger 32 SCB_TX_TR_OUT[4] SCB4 TX trigger 33 SCB_RX_TR_OUT[5] SCB5 TX trigger 34 SCB_J2C_SCL_TR_OUT[6] SCB5 TX trigger 35 SCB_TX_TR_OUT[6] SCB5 TX trigger 36 SCB_TX_TR_OUT[6] SCB5 TX trigger 37 SCB_J2C_SCL_TR_OUT[6] SCB6 TX trigger 38 SCB_TX_TR_OUT[6] SCB6 TX trigger 39 SCB_TX_TR_OUT[6] SCB6 TX trigger 39 SCB_TX_TR_OUT[6] SCB6 TX trigger 40 SCB_J2C_SCL_TR_OUT[7] SCB7 TX trigger 41 SCB_J2C_SCL_TR_OUT[7] SCB7 TX trigger 42 SCB_TX_TR_OUT[6] SCB6 TX trigger 43 SCB_J2C_SCL_TR_OUT[6] SCB6 TX trigger 44 SCB_TX_TR_OUT[8] SCB7 TX trigger 45 SCB_J2C_SCL_TR_OUT[8] SCB8 TX trigger 46 SCB_J2C_SCL_TR_OUT[8] SCB8 TX trigger		-	T
18			
19 SCB_I2C_SCL_TR_OUT[0] SCB0 I ² C trigger			
SCB_TX_TR_OUT[1] SCB1 TX trigger			
SCB_RX_TR_OUT[1] SCB1 RX trigger			
SCB_IZC_SCL_TR_OUT[1] SCB1 I ² C trigger			
SCB_TX_TR_OUT[2] SCB2 TX trigger			
24 SCB_RX_TR_OUT[2] SCB2 RX trigger 25 SCB_I2C_SCL_TR_OUT[2] SCB2 I²C trigger 26 SCB_TX_TR_OUT[3] SCB3 TX trigger 27 SCB_RX_TR_OUT[3] SCB3 RX trigger 28 SCB_I2C_SCL_TR_OUT[3] SCB3 I²C trigger 29 SCB_TX_TR_OUT[4] SCB4 TX trigger 30 SCB_RX_TR_OUT[4] SCB4 RX trigger 31 SCB_I2C_SCL_TR_OUT[4] SCB4 I²C trigger 32 SCB_TX_TR_OUT[5] SCB5 TX trigger 33 SCB_RX_TR_OUT[5] SCB5 RX trigger 34 SCB_I2C_SCL_TR_OUT[6] SCB5 I²C trigger 35 SCB_TX_TR_OUT[6] SCB6 TX trigger 36 SCB_RX_TR_OUT[6] SCB6 RX trigger 37 SCB_I2C_SCL_TR_OUT[6] SCB6 I²C trigger 38 SCB_TX_TR_OUT[7] SCB7 TX trigger 39 SCB_RX_TR_OUT[7] SCB7 TX trigger 40 SCB_I2C_SCL_TR_OUT[7] SCB7 I²C trigger 41 SCB_TX_TR_OUT[8] SCB8 TX trigger 42 SCB_RX_TR_OUT[8] SCB8 RX trigger 43 SCB_I2C_SCL_TR_OUT[9] SCB9 TX trigger			
25 SCB_I2C_SCL_TR_OUT[2] SCB2 I²C trigger 26 SCB_TX_TR_OUT[3] SCB3 TX trigger 27 SCB_RX_TR_OUT[3] SCB3 RX trigger 28 SCB_I2C_SCL_TR_OUT[3] SCB3 I²C trigger 29 SCB_TX_TR_OUT[4] SCB4 TX trigger 30 SCB_RX_TR_OUT[4] SCB4 RX trigger 31 SCB_I2C_SCL_TR_OUT[4] SCB4 I²C trigger 32 SCB_TX_TR_OUT[5] SCB5 TX trigger 33 SCB_RX_TR_OUT[5] SCB5 RX trigger 34 SCB_I2C_SCL_TR_OUT[6] SCB6 TX trigger 35 SCB_TX_TR_OUT[6] SCB6 TX trigger 36 SCB_RX_TR_OUT[6] SCB6 RX trigger 37 SCB_I2C_SCL_TR_OUT[6] SCB6 I²C trigger 38 SCB_TX_TR_OUT[7] SCB7 TX trigger 39 SCB_RX_TR_OUT[7] SCB7 RX trigger 40 SCB_I2C_SCL_TR_OUT[7] SCB7 I²C trigger 41 SCB_TX_TR_OUT[8] SCB8 TX trigger 42 SCB_RX_TR_OUT[8] SCB8 RX trigger 43 SCB_I2C_SCL_TR_OUT[8] SCB8 TX trigger 44 SCB_TX_TR_OUT[9] SCB9 TX trigger			
26 SCB_TX_TR_OUT[3] SCB3 TX trigger 27 SCB_RX_TR_OUT[3] SCB3 RX trigger 28 SCB_I2C_SCL_TR_OUT[4] SCB3 I²C trigger 29 SCB_TX_TR_OUT[4] SCB4 TX trigger 30 SCB_RX_TR_OUT[4] SCB4 RX trigger 31 SCB_I2C_SCL_TR_OUT[4] SCB4 I²C trigger 32 SCB_TX_TR_OUT[5] SCB5 TX trigger 33 SCB_RX_TR_OUT[5] SCB5 RX trigger 34 SCB_I2C_SCL_TR_OUT[5] SCB5 I²C trigger 35 SCB_TX_TR_OUT[6] SCB6 TX trigger 36 SCB_RX_TR_OUT[6] SCB6 RX trigger 37 SCB_I2C_SCL_TR_OUT[6] SCB6 I²C trigger 38 SCB_TX_TR_OUT[7] SCB7 TX trigger 39 SCB_RX_TR_OUT[7] SCB7 RX trigger 40 SCB_I2C_SCL_TR_OUT[7] SCB7 I²C trigger 41 SCB_TX_TR_OUT[8] SCB8 TX trigger 42 SCB_RX_TR_OUT[8] SCB8 RX trigger 43 SCB_I2C_SCL_TR_OUT[8] SCB8 RX trigger 44 SCB_TX_TR_OUT[9] SCB9 TX trigger 45 CB_RX_TR_OUT[9] SCB9 RX trigger			
27 SCB_RX_TR_OUT[3] SCB3 RX trigger 28 SCB_I2C_SCL_TR_OUT[4] SCB4 TX trigger 29 SCB_TX_TR_OUT[4] SCB4 RX trigger 30 SCB_RX_TR_OUT[4] SCB4 RX trigger 31 SCB_I2C_SCL_TR_OUT[4] SCB4 I²C trigger 32 SCB_TX_TR_OUT[5] SCB5 TX trigger 33 SCB_RX_TR_OUT[5] SCB5 RX trigger 34 SCB_I2C_SCL_TR_OUT[6] SCB6 TX trigger 35 SCB_TX_TR_OUT[6] SCB6 TX trigger 36 SCB_RX_TR_OUT[6] SCB6 RX trigger 37 SCB_I2C_SCL_TR_OUT[6] SCB6 I²C trigger 38 SCB_TX_TR_OUT[7] SCB7 TX trigger 39 SCB_RX_TR_OUT[7] SCB7 RX trigger 40 SCB_I2C_SCL_TR_OUT[7] SCB7 I²C trigger 41 SCB_TX_TR_OUT[8] SCB8 TX trigger 42 SCB_RX_TR_OUT[8] SCB8 RX trigger 43 SCB_I2C_SCL_TR_OUT[8] SCB8 I²C trigger 44 SCB_TX_TR_OUT[9] SCB9 TX trigger 45 CB_RX_TR_OUT[9] SCB9 RX trigger 46 SCB_I2C_SCL_TR_OUT[9] SCB9 I²C trigger <			
28 SCB_I2C_SCL_TR_OUT[3] SCB3 I²C trigger 29 SCB_TX_TR_OUT[4] SCB4 TX trigger 30 SCB_RX_TR_OUT[4] SCB4 RX trigger 31 SCB_I2C_SCL_TR_OUT[4] SCB4 I²C trigger 32 SCB_TX_TR_OUT[5] SCB5 TX trigger 33 SCB_RX_TR_OUT[5] SCB5 RX trigger 34 SCB_I2C_SCL_TR_OUT[5] SCB5 I²C trigger 35 SCB_TX_TR_OUT[6] SCB6 TX trigger 36 SCB_RX_TR_OUT[6] SCB6 RX trigger 37 SCB_I2C_SCL_TR_OUT[6] SCB6 I²C trigger 38 SCB_TX_TR_OUT[7] SCB7 TX trigger 39 SCB_RX_TR_OUT[7] SCB7 TX trigger 40 SCB_I2C_SCL_TR_OUT[7] SCB7 IX trigger 41 SCB_TX_TR_OUT[8] SCB8 TX trigger 42 SCB_RX_TR_OUT[8] SCB8 TX trigger 43 SCB_I2C_SCL_TR_OUT[8] SCB8 IX trigger 43 SCB_IZC_SCL_TR_OUT[9] SCB9 TX trigger 45 CB_RX_TR_OUT[9] SCB9 TX trigger 46 SCB_IZC_SCL_TR_OUT[9] SCB9 IX trigger <td>26</td> <td></td> <td></td>	26		
SCB_TX_TR_OUT[4] SCB4 TX trigger			
SCB_RX_TR_OUT[4] SCB4 RX trigger			
31			
SCB_TX_TR_OUT[5] SCB5 TX trigger		= = = • •	
33 SCB_RX_TR_OUT[5] SCB5 RX trigger 34 SCB_I2C_SCL_TR_OUT[5] SCB5 I²C trigger 35 SCB_TX_TR_OUT[6] SCB6 TX trigger 36 SCB_RX_TR_OUT[6] SCB6 RX trigger 37 SCB_I2C_SCL_TR_OUT[6] SCB6 I²C trigger 38 SCB_TX_TR_OUT[7] SCB7 TX trigger 39 SCB_RX_TR_OUT[7] SCB7 RX trigger 40 SCB_I2C_SCL_TR_OUT[7] SCB7 I²C trigger 41 SCB_TX_TR_OUT[8] SCB8 TX trigger 42 SCB_RX_TR_OUT[8] SCB8 RX trigger 43 SCB_I2C_SCL_TR_OUT[8] SCB8 RX trigger 44 SCB_TX_TR_OUT[9] SCB9 TX trigger 45 CB_RX_TR_OUT[9] SCB9 RX trigger 46 SCB_I2C_SCL_TR_OUT[9] SCB9 I²C trigger 46 SCB_I2C_SCL_TR_OUT[9] SCB9 I²C trigger 47 SCB_I2C_SCL_TR_OUT[9] SCB9 RX trigger 48 SCB_I2C_SCL_TR_OUT[9] SCB9 RX trigger 49 SCB_I2C_SCL_TR_OUT[9] SCB9 RX trigger 40 SCB_I2C_SCL_TR_OUT[9] SCB9 I²C trigger 41 SCB_IZC_SCL_TR_OUT[9] SCB9 I²C trigger 42 SCB_IZC_SCL_TR_OUT[9] SCB9 I²C trigger 43 SCB_IZC_SCL_TR_OUT[9] SCB9 I²C trigger 44 SCB_IX_TR_OUT[9] SCB9 I²C trigger	31	SCB_I2C_SCL_TR_OUT[4]	77
34 SCB_I2C_SCL_TR_OUT[5] SCB5 I²C trigger 35 SCB_TX_TR_OUT[6] SCB6 TX trigger 36 SCB_RX_TR_OUT[6] SCB6 RX trigger 37 SCB_I2C_SCL_TR_OUT[6] SCB6 I²C trigger 38 SCB_TX_TR_OUT[7] SCB7 TX trigger 39 SCB_RX_TR_OUT[7] SCB7 RX trigger 40 SCB_I2C_SCL_TR_OUT[7] SCB7 I²C trigger 41 SCB_TX_TR_OUT[8] SCB8 TX trigger 42 SCB_RX_TR_OUT[8] SCB8 RX trigger 43 SCB_I2C_SCL_TR_OUT[8] SCB8 I²C trigger 44 SCB_TX_TR_OUT[9] SCB9 TX trigger 45 CB_RX_TR_OUT[9] SCB9 RX trigger 46 SCB_I2C_SCL_TR_OUT[9] SCB9 I²C trigger	32		
35 SCB_TX_TR_OUT[6] SCB6 TX trigger 36 SCB_RX_TR_OUT[6] SCB6 RX trigger 37 SCB_I2C_SCL_TR_OUT[6] SCB6 I²C trigger 38 SCB_TX_TR_OUT[7] SCB7 TX trigger 39 SCB_RX_TR_OUT[7] SCB7 RX trigger 40 SCB_I2C_SCL_TR_OUT[7] SCB7 I²C trigger 41 SCB_TX_TR_OUT[8] SCB8 TX trigger 42 SCB_RX_TR_OUT[8] SCB8 RX trigger 43 SCB_I2C_SCL_TR_OUT[8] SCB8 I²C trigger 44 SCB_TX_TR_OUT[9] SCB9 TX trigger 45 CB_RX_TR_OUT[9] SCB9 RX trigger 46 SCB_I2C_SCL_TR_OUT[9] SCB9 I²C trigger			
36 SCB_RX_TR_OUT[6] SCB6 RX trigger 37 SCB_12C_SCL_TR_OUT[6] SCB6 I²C trigger 38 SCB_TX_TR_OUT[7] SCB7 TX trigger 39 SCB_RX_TR_OUT[7] SCB7 RX trigger 40 SCB_12C_SCL_TR_OUT[7] SCB7 I²C trigger 41 SCB_TX_TR_OUT[8] SCB8 TX trigger 42 SCB_RX_TR_OUT[8] SCB8 RX trigger 43 SCB_12C_SCL_TR_OUT[8] SCB8 I²C trigger 44 SCB_TX_TR_OUT[9] SCB9 TX trigger 45 CB_RX_TR_OUT[9] SCB9 RX trigger 46 SCB_12C_SCL_TR_OUT[9] SCB9 I²C trigger			
SCB_I2C_SCL_TR_OUT[6] SCB6 I ² C trigger	35	= =	
38 SCB_TX_TR_OUT[7] SCB7 TX trigger 39 SCB_RX_TR_OUT[7] SCB7 RX trigger 40 SCB_I2C_SCL_TR_OUT[7] SCB7 I²C trigger 41 SCB_TX_TR_OUT[8] SCB8 TX trigger 42 SCB_RX_TR_OUT[8] SCB8 RX trigger 43 SCB_I2C_SCL_TR_OUT[8] SCB8 I²C trigger 44 SCB_TX_TR_OUT[9] SCB9 TX trigger 45 CB_RX_TR_OUT[9] SCB9 RX trigger 46 SCB_I2C_SCL_TR_OUT[9] SCB9 I²C trigger	36		
39			
40 SCB_I2C_SCL_TR_OUT[7] SCB7 I ² C trigger 41 SCB_TX_TR_OUT[8] SCB8 TX trigger 42 SCB_RX_TR_OUT[8] SCB8 RX trigger 43 SCB_I2C_SCL_TR_OUT[8] SCB8 I ² C trigger 44 SCB_TX_TR_OUT[9] SCB9 TX trigger 45 CB_RX_TR_OUT[9] SCB9 RX trigger 46 SCB_I2C_SCL_TR_OUT[9] SCB9 I ² C trigger	38		
41 SCB_TX_TR_OUT[8] SCB8 TX trigger 42 SCB_RX_TR_OUT[8] SCB8 RX trigger 43 SCB_I2C_SCL_TR_OUT[8] SCB8 I ² C trigger 44 SCB_TX_TR_OUT[9] SCB9 TX trigger 45 CB_RX_TR_OUT[9] SCB9 RX trigger 46 SCB_I2C_SCL_TR_OUT[9] SCB9 I ² C trigger	39		
42 SCB_RX_TR_OUT[8] SCB8 RX trigger 43 SCB_I2C_SCL_TR_OUT[8] SCB8 I²C trigger 44 SCB_TX_TR_OUT[9] SCB9 TX trigger 45 CB_RX_TR_OUT[9] SCB9 RX trigger 46 SCB_I2C_SCL_TR_OUT[9] SCB9 I²C trigger	40		
43 SCB_I2C_SCL_TR_OUT[8] SCB8 I ² C trigger 44 SCB_TX_TR_OUT[9] SCB9 TX trigger 45 CB_RX_TR_OUT[9] SCB9 RX trigger 46 SCB_I2C_SCL_TR_OUT[9] SCB9 I ² C trigger			
44 SCB_TX_TR_OUT[9] SCB9 TX trigger 45 CB_RX_TR_OUT[9] SCB9 RX trigger 46 SCB_I2C_SCL_TR_OUT[9] SCB9 I ² C trigger			
45 CB_RX_TR_OUT[9] SCB9 RX trigger 46 SCB_I2C_SCL_TR_OUT[9] SCB9 I ² C trigger	43		
46 SCB_I2C_SCL_TR_OUT[9] SCB9 I ² C trigger	44		
	45		
A7 SCP TV TD OUT[10] SCP10 TV trianger	46		
41 2CD_IV_IK_OOT[I0] 2CDIO IY (LIBBEL	47	SCB_TX_TR_OUT[10]	SCB10 TX trigger

Based on Arm® Cortex®-M7 single

Triggers group inputs

Table 17-1 Trigger inputs (continued)

Input	Trigger Label (TRIG_LABEL)	Description
48	SCB_RX_TR_OUT[10]	SCB10 RX trigger
49	SCB_I2C_SCL_TR_OUT[10]	SCB10 I ² C trigger
50	SCB_TX_TR_OUT[11]	SCB11 TX trigger
51	SCB_RX_TR_OUT[11]	SCB11 RX trigger
52	SCB_I2C_SCL_TR_OUT[11]	SCB11 I ² C trigger
53:54	PASS_GEN_TR_OUT[0:1]	PASS0 SAR events
55:102	HSIOM_IO_INPUT[0:47]	I/O Inputs
103:104	CTI_TR_OUT[0:1]	Trace events
105:108	FAULT_TR_OUT[0:3]	Fault events
109:110	CXPI_TX_TR_OUT[0:1]	CXPI0 events
111:112	CXPI_RX_TR_OUT[0:1]	CXPI0 events
IUX Group 7: PASSO SAR	trigger multiplexer	1
1:32	PDMA0_TR_OUT[0:31]	General-purpose P-DMA0 triggers
33:70	TCPWM0_16_TR_OUT0[0:37]	16-bit TCPWM0 counters
71:82	TCPWM0_16M_TR_OUT0[0:11]	16-bit Motor enhanced TCPWM0 counters
83:114	TCPWM0_32_TR_OUT0[0:31]	32-bit TCPWM0 counters
115:122	HSIOM_IO_INPUT[0:7]	I/O Inputs
123	EVTGEN_TR_OUT[12]	Event generator triggers
IUX Group 8: CAN TT Syi	nc trigger multiplexer	1 2
1:2	CAN0_TT_TR_OUT[0:1]	CAN0 TT Sync Outputs
3:4	CAN1_TT_TR_OUT[0:1]	CAN1 TT Sync Outputs
IUX Group 9: Debug trig		· · · · · · · · · · · · · · · · · · ·
1:5	TR_GROUP10_OUTPUT[0:4]	Output from debug reduction multiplexer #1
6:10	TR_GROUP11_OUTPUT[0:4]	Output from debug reduction multiplexer #2
11:15	TR_GROUP12_OUTPUT[0:4]	Output from debug reduction multiplexer #3
IUX Group 10: Debug Re	duction #1	
1:76	PDMA0_TR_OUT[0:75]	General purpose P-DMA0 triggers
77:88	SCB_TX_TR_OUT[0:11]	SCB TX triggers
89:100	SCB_RX_TR_OUT[0:11]	SCB RX triggers
101:112	SCB_I2C_SCL_TR_OUT[0:11]	SCB I ² C triggers
113:114	CAN0_DBG_TR_OUT[0:1]	CANO DMA
115:116	CAN0_FIFO0_TR_OUT[0:1]	CAN0 FIFO0
117:118	CAN0_FIFO1_TR_OUT[0:1]	CAN0 FIFO1
119:120	CAN0_TT_TR_OUT[0:1]	CAN0 TT Sync Outputs
121:122	CAN1_DBG_TR_OUT[0:1]	CAN1 DMA
123:124	CAN1_FIFO0_TR_OUT[0:1]	CAN1 FIFO0
125:126	CAN1_FIFO1_TR_OUT[0:1]	CAN1 FIFO1
127:128	CAN1_TT_TR_OUT[0:1]	CAN1 TT Sync Outputs
129:130	CTI_TR_OUT[0:1]	Trace events
131:134	FAULT_TR_OU[0:3]	Fault events
135:150	EVTGEN_TR_OUT[0:15]	EVTGEN Triggers
NUX Group 11: Debug Re		
1:32	TCPWM0_32_TR_OUT0[0:31]	32-bit TCPWM0 counters
33:44	TCPWM0_16M_TR_OUT0[0:11]	16-bit Motor enhanced TCPWM0 counters
45:82	TCPWM0_16_TR_OUT0[0:37]	16-bit TCPWM0 counters

Based on Arm® Cortex®-M7 single

Table 17-1 Trigger inputs (continued)

Input	Trigger Label (TRIG_LABEL)	Description	
83	SMIF0_TX_TR_OUT	SMIF0 TX trigger	
84	SMIF0_RX_TR_OUT	SMIF0 RX trigger	
85	SMIF1_TX_TR_OUT	SMIF1 TX trigger	
86	SMIF1_RX_TR_OUT	SMIF1 RX trigger	
87:90	AXIDMA_TR_OUT[0:3]	AXI M-DMA1 triggers	
95:98	TDM0_TX_TR_OUT[0:3]	TDM0 TX trigger	
99:102	TDM0_RX_TR_OUT[0:3]	TDM0 RX trigger	
103:107	SG0_TX_TR_OUT[0:4]	SG0 TX trigger	
108:109	PWM0_TX_TR_OUT[0:1]	PCM-PWM0 TX trigger	
110	AUDIODAC0_TX_TR_OUT	AUDIO DAC0 TX trigger	
111:115	MIXERO_TR_SRC_REQ_OUT[0:4]	MIXERO SRC trigger	
116	MIXERO_TR_DST_REQ_OUT	MIXER0 DST trigger	
117:121	MIXER1_TR_SRC_REQ_OUT[0:4]	MIXER1 SRC trigger	
122	MIXER1_TR_DST_REQ_OUT	MIXER1 DST trigger	
123:170	HSIOM_IO_INPUT[0:47]	I/O inputs	
171:172	CXPI_TX_TR_OUT[0:1]	CXPI0 TX trigger	
173:174	CXPI_RX_TR_OUT[0:1]	CXPI0 RX trigger	
IUX Group 12: Debug Red	uction #3		
1:84	PDMA1_TR_OUT[0:83]	General purpose P-DMA1 triggers	
85:92	MDMA_TR_OUT[0:7]	M-DMA0 triggers	
93:124	TCPWM0_32_TR_OUT1[0:31]	32-bit TCPWM0 counters	
125:136	TCPWM0_16M_TR_OUT1[0:11]	16-bit Motor enhanced TCPWM0 counters	
137:174	TCPWM0_16_TR_OUT1[0:37]	16-bit TCPWM0 counters	
175:176	PASS_GEN_TR_OUT[0:1]	PASS0 SAR events	
IUX Group 13: AXI M-DMA	trigger multiplexer		
1:4	TCPWM0_16_TR_OUT0[0:3]	16-bit TCPWM0 counters	
5:8	TCPWM0_32_TR_OUT0[0:3]	32-bit TCPWM0 counters	
9:12	AXIDMA_TR_OUT[0:3]	AXI M-DMA1 triggers	

Based on Arm® Cortex®-M7 single

Triggers group outputs

Triggers group outputs 18

Trigger outputs Table 18-1

Output	Trigger	Description
MUX Group 0: P-DMA0_0_15 trigge	er multiplexer	
0:15	PDMA0_TR_IN[0:15]	Triggers to P-DMA0[0:15]
MUX Group 1: P-DMA0_16_31 trigg	ger multiplexer	
0:15	PDMA0_TR_IN[16:31]	Triggers to P-DMA0[16:31]
MUX Group 2: P-DMA1_0_15 trigge	er multiplexer	
0:15	PDMA1_TR_IN[0:15]	Triggers to P-DMA1
MUX Group 3: M-DMA0 trigger mul	ltiplexer	
0:7	MDMA_TR_IN[0:7]	Triggers to M-DMA0
MUX Group 4: TCPWM0 Trigger mu	ıltiplexer	
0:19	TCPWM0_ALL_CNT_TR_IN[0:19]	Triggers to TCPWM0
MUX Group 5: TCPWM0_20_31 Trig	gger multiplexer	
0:11	TCPWM0_ALL_CNT_TR_IN[20:31]	Triggers to TCPWM0
MUX Group 6: TCPWM0_32_59 Trig	gger multiplexer	
0:27	TCPWM0_ALL_CNT_TR_IN[32:59]	Triggers to TCPWM0
MUX Group 7: PASS0 SAR trigger n	nultiplexer	
0:3	PASS_GEN_TR_IN[0:3]	Triggers to PASS0 SAR
MUX Group 8: CAN TT Sync trigger	multiplexer	
0:1	CAN0_TT_TR_IN[0:1]	CAN0 TT Sync Inputs
2:3	CAN1_TT_TR_IN[0:1]	CAN1 TT Sync Inputs
MUX Group 9: Debug trigger multi	plexer	
0	HSIOM_IO_OUTPUT[0]	To HSIOM as an output
1	HSIOM_IO_OUTPUT[1]	To HSIOM as an output
2:3	CTI_TR_IN[0:1]	To the Cross Trigger system
4	PERI_DEBUG_FREEZE_TR_IN	Signal to Freeze PERI operation
5	PASS_DEBUG_FREEZE_TR_IN	Signal to Freeze PASS0 SAR operation
6	SRSS_WDT_DEBUG_FREEZE_TR_IN	Signal to Freeze WDT operation
7	SRSS_MCWDT_DEBUG_FREEZE_TR_IN[2]	Signal to Freeze MCWDT2 operation
8	SRSS_MCWDT_DEBUG_FREEZE_TR_IN[1]	Signal to Freeze MCWDT1 operation
9	SRSS_MCWDT_DEBUG_FREEZE_TR_IN[0]	Signal to Freeze MCWDT0 operation
10	TCPWM0_DEBUG_FREEZE_TR_IN	Signal to Freeze TCPWM0 operation
12	TDM0_DEBUG_FREEZE_TR_IN	Signal to Freeze TDM0 operation
13	SG0_DEBUG_FREEZE_TR_IN	Signal to Freeze SG0 operation
14	PWM0_DEBUG_FREEZE_TR_IN	Signal to Freeze PWM0 operation
15	MIXERO_DEBUG_FREEZE_TR_IN	Signal to Freeze MIXERO operation
16	MIXER1_DEBUG_FREEZE_TR_IN	Signal to Freeze MIXER1 operation
17	AUDIODACO_DEBUG_FREEZE_TR_IN	Signal to Freeze AUDIO DAC0 operation
MUX Group 10: Debug Reduction #	* 1	
0:4	TR_GROUP9_INPUT[1:5]	To main debug multiplexer
MUX Group 11: Debug Reduction #		
0:4	TR_GROUP9_INPUT[6:10]	To main debug multiplexer
MUX Group 12: Debug Reduction #	‡ 3	
0:4	TR_GROUP9_INPUT[11:15]	To main debug multiplexer
MUX Group 13: AXI-DMA trigger m	ultiplexer	
0:3	AXIDMA_TR_IN[0:3]	Triggers to AXI M-DMA1
-	-	

Triggers one-to-one

19 Triggers one-to-one

Figure 19-1 Triggers one-to-one^[38]

Note

38. The diagram shows only the TRIG_LABEL; the final trigger formation is based on the formula TRIG_{PREFIX(IN_1TO1/OUT_1-TO1)}_{x}_{TRIG_LABEL} and the information provided in **Table 19-1**.

Based on Arm® Cortex®-M7 single

Table 19-1 Triggers 1:1

Input	Trigger In	Trigger Out	Description
MUX Group 0	: CANO to P-DMAO Triggers	-	
0	CAN0_DBG_TR_OUT[0]	PDMA0_TR_IN[32]	CANO, Channel #0 P-DMA0 trigger
1	CAN0_FIFO0_TR_OUT[0]	PDMA0_TR_IN[33]	CANO, Channel #0 FIFOO trigger
2	CAN0_FIFO1_TR_OUT[0]	PDMA0_TR_IN[34]	CANO, Channel #0 FIFO1 trigger
3	CAN0_DBG_TR_OUT[1]	PDMA0_TR_IN[35]	CANO, Channel #1 P-DMA0 trigger
4	CAN0_FIFO0_TR_OUT[1]	PDMA0_TR_IN[36]	CANO, Channel #1 FIFOO trigger
5	CAN0_FIFO1_TR_OUT[1]	PDMA0_TR_IN[37]	CANO, Channel #1 FIFO1 trigger
6:37	PASSO_CH_DONE_TR_OUT[0:31]	PDMA0_TR_IN[38:69]	PASS0 SAR0 to P-DMA0 direct connect
38	SMIF0_TX_TR_OUT	PDMA0_TR_IN[70]	SMIF TX to P-DMA0 Trigger
39	SMIF0_RX_TR_OUT	PDMA0_TR_IN[71]	SMIF RX to P-DMA0 Trigger
40:41	CXPI0_TX_TR_OUT[0:1]	PDMA0_TR_IN[72:73]	CXPI 0 TX P-DMA0 Triggers
42:43	CXPI0_RX_TR_OUT[0:1]	PDMA0_TR_IN[74:75]	CXPI 0 RX P-DMA0 Triggers
IUX Group 1	: SCBx to P-DMA1 Triggers	-	
0	SCB0_TX_TR_OUT	PDMA1_TR_IN[16]	SCB0 to P-DMA1 Trigger
1	SCB0_RX_TR_OUT	PDMA1_TR_IN[17]	SCB0 to P-DMA1 Trigger
2	SCB1_TX_TR_OUT	PDMA1_TR_IN[18]	SCB1 to P-DMA1 Trigger
3	SCB1_RX_TR_OUT	PDMA1_TR_IN[19]	SCB1 to P-DMA1 Trigger
4	SCB2_TX_TR_OUT	PDMA1_TR_IN[20]	SCB2 to P-DMA1 Trigger
5	SCB2_RX_TR_OUT	PDMA1_TR_IN[21]	SCB2 to P-DMA1 Trigger
6	SCB3_TX_TR_OUT	PDMA1_TR_IN[22]	SCB3 to P-DMA1 Trigger
7	SCB3_RX_TR_OUT	PDMA1_TR_IN[23]	SCB3 to P-DMA1 Trigger
8	SCB4_TX_TR_OUT	PDMA1_TR_IN[24]	SCB4 to P-DMA1 Trigger
9	SCB4_RX_TR_OUT	PDMA1_TR_IN[25]	SCB4 to P-DMA1 Trigger
10	SCB5_TX_TR_OUT	PDMA1_TR_IN[26]	SCB5 to P-DMA1 Trigger
11	SCB5_RX_TR_OUT	PDMA1_TR_IN[27]	SCB5 to P-DMA1 Trigger
12	SCB6_TX_TR_OUT	PDMA1_TR_IN[28]	SCB6 to P-DMA1 Trigger
13	SCB6_RX_TR_OUT	PDMA1_TR_IN[29]	SCB6 to P-DMA1 Trigger
14	SCB7_TX_TR_OUT	PDMA1_TR_IN[30]	SCB7 to P-DMA1 Trigger
15	SCB7_RX_TR_OUT	PDMA1_TR_IN[31]	SCB7 to P-DMA1 Trigger
16	SCB8_TX_TR_OUT	PDMA1_TR_IN[32]	SCB8 to P-DMA1 Trigger
17	SCB8_RX_TR_OUT	PDMA1_TR_IN[33]	SCB8 to P-DMA1 Trigger
18	SCB9_TX_TR_OUT	PDMA1_TR_IN[34]	SCB9 to P-DMA1 Trigger
19	SCB9_RX_TR_OUT	PDMA1_TR_IN[35]	SCB9 to P-DMA1 Trigger
20	SCB10_TX_TR_OUT	PDMA1_TR_IN[36]	SCB10 to P-DMA1 Trigger
21	SCB10_RX_TR_OUT	PDMA1_TR_IN[37]	SCB10 to P-DMA1 Trigger
22	SCB11_TX_TR_OUT	PDMA1_TR_IN[38]	SCB11 to P-DMA1 Trigger
23	SCB11_RX_TR_OUT	PDMA1_TR_IN[39]	SCB11 to P-DMA1 Trigger
24	CAN1_DBG_TR_OUT[0]	PDMA1_TR_IN[40]	CAN1 Channel #0 P-DMA1 trigger
25	CAN1_FIFO0_TR_OUT[0]	PDMA1_TR_IN[41]	CAN1 Channel #0 FIFO0 trigger
26	CAN1_FIFO1_TR_OUT[0]	PDMA1_TR_IN[42]	CAN1 Channel #0 FIFO1 trigger
27	CAN1_DBG_TR_OUT[1]	PDMA1_TR_IN[43]	CAN1 Channel #1 P-DMA1 trigger
28	CAN1_FIFO0_TR_OUT[1]	PDMA1_TR_IN[44]	CAN1 Channel #1 FIFO0 trigger
29	CAN1_FIFO1_TR_OUT[1]	PDMA1_TR_IN[45]	CAN1 Channel #1 FIFO1 trigger
30	SMIF1_TX_TR_OUT	PDMA1_TR_IN[46]	SMIF1 TX to P-DMA1 Trigger

Based on Arm® Cortex®-M7 single

Triggers one-to-one

Table 19-1 Triggers 1:1 (continued)

Input	Trigger In	Trigger Out	Description
31	SMIF1_RX_TR_OUT	PDMA1_TR_IN[47]	SMIF1 RX to P-DMA1 Trigger
32:36	MIXERO_TR_SRC_REQ_OUT[0:4]	PDMA1_TR_IN[48:52]	MIXER0 to P-DMA1 trigger
37	MIXERO_TR_DST_REQ_OUT	PDMA1_TR_IN[53]	MIXER0 to P-DMA1 trigger
38:42	MIXER1_TR_SRC_REQ_OUT[0:4]	PDMA1_TR_IN[54:58]	MIXER1 to P-DMA1 trigger
43	MIXER1_TR_DST_REQ_OUT	PDMA1_TR_IN[59]	MIXER1 to P-DMA1 trigger
44:47	AXIDMA_TR_OUT[0:3]	PDMA1_TR_IN[60:63]	AXI M-DMA1 to P-DMA1 trigger
52:55	TDM0_TX_TR_OUT[0:3]	PDMA1_TR_IN[68:71]	TDM0 TX to P-DMA1 trigger
56:59	TDM0_RX_TR_OUT[0:3]	PDMA1_TR_IN[72:75]	TDM0 RX to P-DMA1 trigger
60:64	SG0_TX_TR_OUT[0:4]	PDMA1_TR_IN[76:80]	SG0 TX to P-DMA1 trigger
65:66	PWM0_TX_TR_OUT[0:1]	PDMA1_TR_IN[81:82]	PWM0 TX to P-DMA1 trigger
67	AUDIODACO_TX_TR_OUT	PDMA1_TR_IN[83]	AUDIODAC0 to P-DMA1 trigger
UX Group 2	2: PASS SARx to TCPWM1 direct connect		
0	PASS0_CH_RANGEVIO_TR_OUT[0]	TCPWM0_16_ONE_CNT_TR_IN[0]	SAR0 ch#0 ⁽³⁹⁾ , range violation to TCPWM0 Group#0 Counter#00 trig=0
1	PASSO_CH_RANGEVIO_TR_OUT[1]	TCPWM0_16_ONE_CNT_TR_IN[1]	SAR0 ch#1, range violation to TCPWM0 Group#0 Counter#01 trig=0
2	PASS0_CH_RANGEVIO_TR_OUT[2]	TCPWM0_16_ONE_CNT_TR_IN[2]	SAR0 ch#2, range violation to TCPWM0 Group#0 Counter#02 trig=0
3	PASSO_CH_RANGEVIO_TR_OUT[3]	TCPWM0_16_ONE_CNT_TR_IN[3]	SAR0 ch#3, range violation to TCPWM0 Group#0 Counter#03 trig=0
4	PASSO_CH_RANGEVIO_TR_OUT[4]	TCPWM0_16_ONE_CNT_TR_IN[4]	SAR0 ch#4, range violation to TCPWM0 Group#0 Counter#0- trig=0
5	PASS0_CH_RANGEVIO_TR_OUT[5]	TCPWM0_16_ONE_CNT_TR_IN[5]	SAR0 ch#5, range violation to TCPWM0 Group#0 Counter#0! trig=0
6	PASS0_CH_RANGEVIO_TR_OUT[6]	TCPWM0_16_ONE_CNT_TR_IN[6]	SAR0 ch#6, range violation to TCPWM0 Group#0 Counter#06 trig=0
7	PASS0_CH_RANGEVIO_TR_OUT[7]	TCPWM0_16_ONE_CNT_TR_IN[7]	SAR0 ch#7, range violation to TCPWM0 Group#0 Counter#0 trig=0
8	PASSO_CH_RANGEVIO_TR_OUT[8]	TCPWM0_16_ONE_CNT_TR_IN[8]	SAR0 ch#8, range violation to TCPWM0 Group#0 Counter#0: trig=0
9	PASS0_CH_RANGEVIO_TR_OUT[9]	TCPWM0_16_ONE_CNT_TR_IN[9]	SAR0 ch#9, range violation to TCPWM0 Group#0 Counter#0 trig=0
10	PASSO_CH_RANGEVIO_TR_OUT[10]	TCPWM0_16_ONE_CNT_TR_IN[10]	SAR0 ch#10, range violation to TCPWM0 Group#0 Counter#1 trig=0
11	PASSO_CH_RANGEVIO_TR_OUT[11]	TCPWM0_16_ONE_CNT_TR_IN[11]	SAR0 ch#11, range violation to TCPWM0 Group#0 Counter#1 trig=0
12	PASS0_CH_RANGEVIO_TR_OUT[12]	TCPWM0_16_ONE_CNT_TR_IN[12]	SAR0 ch#12, range violation to TCPWM0 Group#0 Counter#1 trig=0
13	PASSO_CH_RANGEVIO_TR_OUT[13]	TCPWM0_16_ONE_CNT_TR_IN[13]	SAR0 ch#13, range violation to TCPWM0 Group#0 Counter#1 trig=0
14	PASSO_CH_RANGEVIO_TR_OUT[14]	TCPWM0_16_ONE_CNT_TR_IN[14]	SAR0 ch#14, range violation to TCPWM0 Group#0 Counter#1 trig=0
15	PASSO_CH_RANGEVIO_TR_OUT[15]	TCPWM0_16_ONE_CNT_TR_IN[15]	SAR0 ch#15, range violation to TCPWM0 Group#0 Counter#1 trig=0
16	PASSO_CH_RANGEVIO_TR_OUT[16]	TCPWM0_16_ONE_CNT_TR_IN[16]	SAR0 ch#16, range violation to TCPWM0 Group#0 Counter#1 trig=0
17	PASSO_CH_RANGEVIO_TR_OUT[17]	TCPWM0_16_ONE_CNT_TR_IN[17]	SAR0 ch#17, range violation to TCPWM0 Group#0 Counter#1 trig=0
18	PASS0_CH_RANGEVIO_TR_OUT[18]	TCPWM0_16_ONE_CNT_TR_IN[18]	SAR0 ch#18, range violation to TCPWM0 Group#0 Counter#1 trig=0
19	PASS0_CH_RANGEVIO_TR_OUT[19]	TCPWM0_16_ONE_CNT_TR_IN[19]	SAR0 ch#19, range violation to TCPWM0 Group#0 Counter#1 trig=0
20	PASS0_CH_RANGEVIO_TR_OUT[20]	TCPWM0_16M_ONE_CNT_TR_IN[0]	SAR0 ch#20, range violation to TCPWM0 Group#1 Counter#0 trig=0
21	PASSO_CH_RANGEVIO_TR_OUT[21]	TCPWM0_16M_ONE_CNT_TR_IN[1]	SAR0 ch#21, range violation to TCPWM0 Group#1 Counter#0 trig=0

39. Each logical channel of SAR ADC[x] can be connected to any of the SAR ADC[x]_y external pin. (x = 0, or 1, or, 2 and y = 0 to max 31)

Based on Arm® Cortex®-M7 single

Triggers one-to-one

Table 19-1 Triggers 1:1 (continued)

Input	Trigger In	Trigger Out	Description
22	PASS0_CH_RANGEVIO_TR_OUT[22]	TCPWM0_16M_ONE_CNT_TR_IN[2]	SAR0 ch#22, range violation to TCPWM0 Group#1 Counter#02 trig=0
23	PASS0_CH_RANGEVIO_TR_OUT[23]	TCPWM0_16M_ONE_CNT_TR_IN[3]	SAR0 ch#23, range violation to TCPWM0 Group#1 Counter#03 trig=0
24	PASSO_CH_RANGEVIO_TR_OUT[24]	TCPWM0_16M_ONE_CNT_TR_IN[4]	SAR0 ch#24, range violation to TCPWM0 Group#1 Counter#04 trig=0
25	PASS0_CH_RANGEVIO_TR_OUT[25]	TCPWM0_16M_ONE_CNT_TR_IN[5]	SAR0 ch#25, range violation to TCPWM0 Group#1 Counter#05 trig=0
26	PASSO_CH_RANGEVIO_TR_OUT[26]	TCPWM0_16M_ONE_CNT_TR_IN[6]	SAR0 ch#26, range violation to TCPWM0 Group#1 Counter#06 trig=0
27	PASSO_CH_RANGEVIO_TR_OUT[27]	TCPWM0_16M_ONE_CNT_TR_IN[7]	SAR0 ch#27, range violation to TCPWM0 Group#1 Counter#07 trig=0
28	PASS0_CH_RANGEVIO_TR_OUT[28]	TCPWM0_16M_ONE_CNT_TR_IN[8]	SAR0 ch#28, range violation to TCPWM0 Group#1 Counter#08 trig=0
29	PASS0_CH_RANGEVIO_TR_OUT[29]	TCPWM0_16M_ONE_CNT_TR_IN[9]	SAR0 ch#29, range violation to TCPWM0 Group#1 Counter#09 trig=0
30	PASS0_CH_RANGEVIO_TR_OUT[30]	TCPWM0_16M_ONE_CNT_TR_IN[10]	SAR0 ch#30, range violation to TCPWM0 Group#1 Counter#10 trig=0
31	PASS0_CH_RANGEVIO_TR_OUT[31]	TCPWM0_16M_ONE_CNT_TR_IN[11]	SAR0 ch#31, range violation to TCPWM0 Group#1 Counter#11 trig=0
MUX Group 3	B: TCPWM0 to PASS SARx	,	
0:19	TCPWM0_16_TR_OUT1[0:19]	PASS0_CH_TR_IN[0:19]	TCPWM0 Group #0 Counter #00 through 19 (PWM0_0 to PWM0_19) to SAR0 ch#0 through SAR0 ch#19
20:31	TCPWM0_16M_TR_OUT1[0:11]	PASSO_CH_TR_IN[20:31]	TCPWM0 Group #1 Counter #00 through 11 (PWM0_M_0 to PWM0_M_11) to SAR0 ch#20 through SAR0 ch#31
MUX Group 4	4: Acknowledge triggers from P-DMA1 to CA	N1	
0	PDMA1_TR_OUT[40]	CAN1_DBG_TR_ACK[0]	CAN1 Channel#0 P-DMA1 acknowledge
1	PDMA1_TR_OUT[43]	CAN1_DBG_TR_ACK[1]	CAN1 Channel#1 P-DMA1 acknowledge
MUX Group !	5: Acknowledge triggers from P-DMA0 to CA	No	
0	PDMA0_TR_OUT[32]	CAN0_DBG_TR_ACK[0]	CAN0 Channel#0 P-DMA0 acknowledge
1	PDMA0_TR_OUT[35]	CAN0_DBG_TR_ACK[1]	CAN0 Channel#1 P-DMA0 acknowledge
MUX Group 6	5: TCPWM0 to LIN0 triggers		
0:1	TCPWM0_16_TR_OUT1[24:25]	LIN0_CMD_TR_IN[0:1]	TCPWM0 (Group #0 Counter #24 to #25) to LIN0
MUX Group 7	7: TCPWM0_TO_CXPI (TCPWM0 to CXPI)	'	·
0:1	TCPWM0_16_TR_OUT1[26:27]	CXPI0_CMD_TR_IN[0:1]	TCPWM0 (Group #0 Counter #24 to #25) to CXPI0

Based on Arm® Cortex®-M7 single

Peripheral clocks

20 Peripheral clocks

Table 20-1 Peripheral clock assignments

Output	Destination	Description			
CPUSS Root Cl	ocks (Group 0)	'			
0	PCLK_CPUSS_CLOCK_TRACE_IN	Trace clock			
1	PCLK_SMARTIO9_CLOCK	Smart I/O #9			
2	PCLK_TCPWM0_CLOCKS0	TCPWM0 Group #0, Counter #0			
3	PCLK_TCPWM0_CLOCKS1	TCPWM0 Group #0, Counter #1			
4	PCLK_TCPWM0_CLOCKS2	TCPWM0 Group #0, Counter #2			
5	PCLK_TCPWM0_CLOCKS3	TCPWM0 Group #0, Counter #3			
6	PCLK_TCPWM0_CLOCKS4	TCPWM0 Group #0, Counter #4			
7	PCLK_TCPWM0_CLOCKS5	TCPWM0 Group #0, Counter #5			
8	PCLK_TCPWM0_CLOCKS6	TCPWM0 Group #0, Counter #6			
9	PCLK_TCPWM0_CLOCKS7	TCPWM0 Group #0, Counter #7			
10	PCLK_TCPWM0_CLOCKS8	TCPWM0 Group #0, Counter #8			
11	PCLK_TCPWM0_CLOCKS9	TCPWM0 Group #0, Counter #9			
12	PCLK_TCPWM0_CLOCKS10	TCPWM0 Group #0, Counter #10			
13	PCLK_TCPWM0_CLOCKS11	TCPWM0 Group #0, Counter #11			
14	PCLK_TCPWM0_CLOCKS12	TCPWM0 Group #0, Counter #12			
15	PCLK_TCPWM0_CLOCKS13	TCPWM0 Group #0, Counter #13			
16	PCLK_TCPWM0_CLOCKS14	TCPWM0 Group #0, Counter #14			
17	PCLK_TCPWM0_CLOCKS15	TCPWM0 Group #0, Counter #15			
18	PCLK_TCPWM0_CLOCKS16	TCPWM0 Group #0, Counter #16			
19	PCLK_TCPWM0_CLOCKS17	TCPWM0 Group #0, Counter #17			
20	PCLK_TCPWM0_CLOCKS18	TCPWM0 Group #0, Counter #18			
21	PCLK_TCPWM0_CLOCKS19	TCPWM0 Group #0, Counter #19			
22	PCLK_TCPWM0_CLOCKS20	TCPWM0 Group #0, Counter #20			
23	PCLK_TCPWM0_CLOCKS21	TCPWM0 Group #0, Counter #21			
24	PCLK_TCPWM0_CLOCKS22	TCPWM0 Group #0, Counter #22			
25	PCLK_TCPWM0_CLOCKS23	TCPWM0 Group #0, Counter #23			
26	PCLK_TCPWM0_CLOCKS24	TCPWM0 Group #0, Counter #24			
27	PCLK_TCPWM0_CLOCKS25	TCPWM0 Group #0, Counter #25			
28	PCLK_TCPWM0_CLOCKS26	TCPWM0 Group #0, Counter #26			
29	PCLK_TCPWM0_CLOCKS27	TCPWM0 Group #0, Counter #27			
30	PCLK_TCPWM0_CLOCKS28	TCPWM0 Group #0, Counter #28			
31	PCLK_TCPWM0_CLOCKS29	TCPWM0 Group #0, Counter #29			
32	PCLK_TCPWM0_CLOCKS30	TCPWM0 Group #0, Counter #30			
33	PCLK_TCPWM0_CLOCKS31	TCPWM0 Group #0, Counter #31			
34	PCLK_TCPWM0_CLOCKS32	TCPWM0 Group #0, Counter #32			
35	PCLK_TCPWM0_CLOCKS33	TCPWM0 Group #0, Counter #33			
36	PCLK_TCPWM0_CLOCKS34	TCPWM0 Group #0, Counter #34			
37	PCLK_TCPWM0_CLOCKS35	TCPWM0 Group #0, Counter #35			
38	PCLK_TCPWM0_CLOCKS36	TCPWM0 Group #0, Counter #36			
39	PCLK_TCPWM0_CLOCKS37	TCPWM0 Group #0, Counter #37			
40	PCLK_TCPWM0_CLOCKS256	TCPWM0 Group #1, Counter #0			

Based on Arm® Cortex®-M7 single

Peripheral clocks

Table 20-1 Peripheral clock assignments (continued)

Output	Destination	Description			
41	PCLK_TCPWM0_CLOCKS257	TCPWM0 Group #1, Counter #1			
42	PCLK_TCPWM0_CLOCKS258	TCPWM0 Group #1, Counter #2			
43	PCLK_TCPWM0_CLOCKS259	TCPWM0 Group #1, Counter #3			
44	PCLK_TCPWM0_CLOCKS260	TCPWM0 Group #1, Counter #4			
45	PCLK_TCPWM0_CLOCKS261	TCPWM0 Group #1, Counter #5			
46	PCLK_TCPWM0_CLOCKS262	TCPWM0 Group #1, Counter #6			
47	PCLK_TCPWM0_CLOCKS263	TCPWM0 Group #1, Counter #7			
48	PCLK_TCPWM0_CLOCKS264	TCPWM0 Group #1, Counter #8			
49	PCLK_TCPWM0_CLOCKS265	TCPWM0 Group #1, Counter #9			
50	PCLK_TCPWM0_CLOCKS266	TCPWM0 Group #1, Counter #10			
51	PCLK_TCPWM0_CLOCKS267	TCPWM0 Group #1, Counter #11			
52	PCLK_TCPWM0_CLOCKS512	TCPWM0 Group #2, Counter #0			
53	PCLK_TCPWM0_CLOCKS513	TCPWM0 Group #2, Counter #1			
54	PCLK_TCPWM0_CLOCKS514	TCPWM0 Group #2, Counter #2			
55	PCLK_TCPWM0_CLOCKS515	TCPWM0 Group #2, Counter #3			
56	PCLK_TCPWM0_CLOCKS516	TCPWM0 Group #2, Counter #4			
57	PCLK_TCPWM0_CLOCKS517	TCPWM0 Group #2, Counter #5			
58	PCLK_TCPWM0_CLOCKS518	TCPWM0 Group #2, Counter #6			
59	PCLK_TCPWM0_CLOCKS519	TCPWM0 Group #2, Counter #7			
60	PCLK_TCPWM0_CLOCKS520	TCPWM0 Group #2, Counter #8			
61	PCLK_TCPWM0_CLOCKS521	TCPWM0 Group #2, Counter #9			
62	PCLK_TCPWM0_CLOCKS522	TCPWM0 Group #2, Counter #10			
63	PCLK_TCPWM0_CLOCKS523	TCPWM0 Group #2, Counter #11			
64	PCLK_TCPWM0_CLOCKS524	TCPWM0 Group #2, Counter #12			
65	PCLK_TCPWM0_CLOCKS525	TCPWM0 Group #2, Counter #13			
66	PCLK_TCPWM0_CLOCKS526	TCPWM0 Group #2, Counter #14			
67	PCLK_TCPWM0_CLOCKS527	TCPWM0 Group #2, Counter #15			
68	PCLK_TCPWM0_CLOCKS528	TCPWM0 Group #2, Counter #16			
69	PCLK_TCPWM0_CLOCKS529	TCPWM0 Group #2, Counter #17			
70	PCLK_TCPWM0_CLOCKS530	TCPWM0 Group #2, Counter #18			
71	PCLK_TCPWM0_CLOCKS531	TCPWM0 Group #2, Counter #19			
72	PCLK_TCPWM0_CLOCKS532	TCPWM0 Group #2, Counter #20			
73	PCLK_TCPWM0_CLOCKS533	TCPWM0 Group #2, Counter #21			
74	PCLK_TCPWM0_CLOCKS534	TCPWM0 Group #2, Counter #22			
75	PCLK_TCPWM0_CLOCKS535	TCPWM0 Group #2, Counter #23			
76	PCLK_TCPWM0_CLOCKS536	TCPWM0 Group #2, Counter #24			
77	PCLK_TCPWM0_CLOCKS537	TCPWM0 Group #2, Counter #25			
78	PCLK_TCPWM0_CLOCKS538	TCPWM0 Group #2, Counter #26			
79	PCLK_TCPWM0_CLOCKS539	TCPWM0 Group #2, Counter #27			
80	PCLK_TCPWM0_CLOCKS540	TCPWM0 Group #2, Counter #28			
81	PCLK_TCPWM0_CLOCKS541	TCPWM0 Group #2, Counter #29			
82	PCLK_TCPWM0_CLOCKS542	TCPWM0 Group #2, Counter #30			
83	PCLK_TCPWM0_CLOCKS543	TCPWM0 Group #2, Counter #31			

Based on Arm® Cortex®-M7 single

 Table 20-1
 Peripheral clock assignments (continued)

Output	Destination	Description
COMM Root Clo	cks (Group 1)	
0	PCLK_CANFD0_CLOCK_CAN0	CAN0, Channel #0
1	PCLK_CANFD0_CLOCK_CAN1	CAN0, Channel #1
2	PCLK_CANFD1_CLOCK_CAN0	CAN1, Channel #0
3	PCLK_CANFD1_CLOCK_CAN1	CAN1, Channel #1
4	PCLK_LIN0_CLOCK_CH_EN0	LIN0, Channel #0
5	PCLK_LIN0_CLOCK_CH_EN1	LIN0, Channel #1
6	PCLK_CXPI0_CLOCK_CH_EN0	CXPI0, Channel #0
7	PCLK_CXPI0_CLOCK_CH_EN1	CXPI0, Channel #1
8	PCLK_SCB0_CLOCK	SCB0
9	PCLK_SCB1_CLOCK	SCB1
10	PCLK_SCB2_CLOCK	SCB2
11	PCLK_SCB3_CLOCK	SCB3
12	PCLK_SCB4_CLOCK	SCB4
13	PCLK_SCB5_CLOCK	SCB5
14	PCLK_SCB6_CLOCK	SCB6
15	PCLK_SCB7_CLOCK	SCB7
16	PCLK_SCB8_CLOCK	SCB8
17	PCLK_SCB9_CLOCK	SCB9
18	PCLK_SCB10_CLOCK	SCB10
19	PCLK_SCB11_CLOCK	SCB11
20	PCLK_PASS0_CLOCK_SAR0	SAR0

Based on Arm® Cortex®-M7 single

Faults

21 **Faults**

Fault assignments Table 21-1

Fault	Source	Description
0	CPUSS_MPU_VIO_0	CM0+ SMPU violation DATA0[31:0]: Violating address. DATA1[0]: User read. DATA1[1]: User write. DATA1[2]: User execute. DATA1[3]: Privileged read. DATA1[4]: Privileged write. DATA1[5]: Privileged execute. DATA1[5]: Privileged execute. DATA1[6]: Non-secure. DATA1[11:8]: Master identifier. DATA1[15:12]: Protection context identifier. DATA1[31]: '0' MPU violation; '1': SMPU violation.
1	CPUSS_MPU_VIO_1	Crypto SMPU violation. See CPUSS_MPU_VIO_0 description.
2	CPUSS_MPU_VIO_2	P-DMA0 MPU/SMPU violation. See CPUSS_MPU_VIO_0 description.
3	CPUSS_MPU_VIO_3	P-DMA1 MPU/SMPU violation. See CPUSS_MPU_VIO_0 description.
4	CPUSS_MPU_VIO_4	M-DMA0 MPU/SMPU violation. See CPUSS_MPU_VIO_0 description.
9	CPUSS_MPU_VIO_9	ETH0 MPU/SMPU violation. See CPUSS_MPU_VIO_0 description.
11	CPUSS_MPU_VIO_11	AXI M-DMA1 MPU/SMPU violation. See CPUSS_MPU_VIO_0 description.
12	CPUSS_MPU_VIO_12	VIDEOSS0 MPU/SMPU violation. See CPUSS_MPU_VIO_0 description.
14	CPUSS_MPU_VIO_14	CM7_0 MPU/SMPU violation. See CPUSS_MPU_VIO_0 description.
15	CPUSS_MPU_VIO_15	Test Controller MPU/SMPU violation. See CPUSS_MPU_VIO_0 description.
16	CPUSS_CM7_0_CACHE_C_ECC	Correctable ECC error in CM7_0 Cache memories DATA0[16:2]: location information: Tag/Data SRAM, Way, Index and line Offset, see CM7 UGRM IEBR0/DEBR0 description for details. DATA0[31]: 0=Instruction cache, 1= Data cache
17	CPUSS_CM7_0_CACHE_NC_ECC	Non Correctable ECC error in CM7_0 Cache memories. See CPUSS_CM7_0CACHE_C_ECC description
18	CPUSS_CM7_0_TCM_C_ECC	Correctable ECC error in CM7_0 TCM memory DATA0[23:2]: Violating address. DATA1[7:0]: Syndrome of code word (at address offset 0x0). DATA1[31:30]: 0= ITCM, 2=D0TCM, 3=D1TCM
19	CPUSS_CM7_0_TCM_NC_ECC	Non Correctable ECC error in CM7_0 TCM memory. See CPUSS_CM7_0_TCM_C_ECC description.
24	PERI_PERI_ECC	Peripheral protection SRAM correctable ECC violation DATA0[10:0]: Violating address. DATA1[7:0]: Syndrome of SRAM word.
25	PERI_PERI_NC_ECC	Peripheral protection SRAM non-correctable ECC violation
26	PERI_MS_VIO_0	CM0+ Peripheral Master Interface PPU violation DATA0[31:0]: Violating address. DATA1[0]: User read. DATA1[1]: User write. DATA1[2]: User execute. DATA1[3]: Privileged read. DATA1[4]: Privileged write. DATA1[5]: Privileged execute. DATA1[5]: Privileged execute. DATA1[6]: Non-secure. DATA1[11:8]: Master identifier. DATA1[15:12]: Protection context identifier. DATA1[31:28]: "0": master interface, PPU violation, "1': timeout detected, "2": bus error, other: undefined.
27	PERI_MS_VIO_1	CM7_0 Peripheral Master Interface PPU violation. See PERI_MS_VIO_0 description.
29	PERI_MS_VIO_3	P-DMA0 Peripheral Master Interface PPU violation. See PERI_MS_VIO_0 description.
30	PERI_MS_VIO_4	P-DMA1 Peripheral Master Interface PPU violation. See PERI_MS_VIO_0 description.

Based on Arm® Cortex®-M7 single

Faults

Fault assignments (continued) **Table 21-1**

Fault	Source	Description
32	PERI_GROUP_VIO_0	Peripheral Group #0 violation. DATA0[31:0]: Violating address. DATA1[0]: User read. DATA1[1]: User write. DATA1[2]: User execute. DATA1[3]: Privileged read. DATA1[4]: Privileged write. DATA1[5]: Privileged execute. DATA1[6]: Non-secure. DATA1[1:8]: Master identifier. DATA1[15:12]: Protection context identifier. DATA1[31:28]: "0": decoder or peripheral bus error, other: undefined.
33	PERI_GROUP_VIO_1	Peripheral Group #1 violation. See PERI_GROUP_VIO_0 description.
34	PERI_GROUP_VIO_2	Peripheral Group #2 violation. See PERI_GROUP_VIO_0 description.
35	PERI_GROUP_VIO_3	Peripheral Group #3 violation. See PERI_GROUP_VIO_0 description.
36	PERI_GROUP_VIO_4	Peripheral Group #4 violation. See PERI_GROUP_VIO_0 description.
37	PERI_GROUP_VIO_5	Peripheral Group #5 violation. See PERI_GROUP_VIO_0 description.
38	PERI_GROUP_VIO_6	Peripheral Group #6 violation. See PERI_GROUP_VIO_0 description.
40	PERI_GROUP_VIO_8	Peripheral Group #8 violation. See PERI_GROUP_VIO_0 description.
41	PERI_GROUP_VIO_9	Peripheral Group #9 violation. See PERI_GROUP_VIO_0 description.
42	PERI_GROUP_VIO_10	Peripheral Group #10 violation. See PERI_GROUP_VIO_0 description.
48	CPUSS_FLASHC_MAIN_BUS_ERR	Flash controller main flash bus error FAULT_DATA0[26:0]: Violating address. Append 5'b00010 as most significant bits to derive 32-bit system address. FAULT_DATA1[11:8]: Master identifier.
49	CPUSS_FLASHC_MAIN_C_ECC	Flash controller main flash correctable ECC violation DATA[26:0]: Violating address. Append 5'b00010 as most significant bits to derive 32-bit system address. DATA1[7:0]: Syndrome of 64-bit word (at address offset 0x00). DATA1[15:8]: Syndrome of 64-bit word (at address offset 0x08). DATA1[23:16]: Syndrome of 64-bit word (at address offset 0x10). DATA1[31:24]: Syndrome of 64-bit word (at address offset 0x18).
50	CPUSS_FLASHC_MAIN_NC_ECC	Flash controller main flash non-correctable ECC violation. See CPUSS_FLASHC_MAIN_C_ECC description.
51	CPUSS_FLASHC_WORK_BUS_ERR	Flash controller work-flash bus error. See CPUSS_FLASHC_MAIN_BUS_ERR description.
52	CPUSS_FLASHC_WORK_C_ECC	Flash controller work flash correctable ECC violation. DATA0[26:0]: Violating address. Append 5'b00010 as most significant bits to derive 32-bit system address. DATA1[6:0]: Syndrome of 32-bit word.
53	CPUSS_FLASHC_WORK_NC_ECC	Flash controller work-flash non-correctable ECC violation. See CPUSS_FLASHC_WORK_C_ECC description.
54	CPUSS_FLASHC_CM0_CA_C_ECC	Flash controller CM0+ cache correctable ECC violation. DATA0[26:0]: Violating address. DATA1[6:0]: Syndrome of 32-bit SRAM word (at address offset 0x0). DATA1[14:8]: Syndrome of 32-bit SRAM word (at address offset 0x4). DATA1[22:16]: Syndrome of 32-bit SRAM word (at address offset 0x8). DATA1[30:24]: Syndrome of 32-bit SRAM word (at address offset 0xc).
55	CPUSS_FLASHC_CM0_CA_NC_ECC	Flash controller CM0+ cache non-correctable ECC violation. See CPUSS_FLASHC_CM0_CA_C_ECC description.
56	CPUSS_FM_SRAMC_C_ECC	Flash code storage SRAM memory correctable ECC violation: DATA0[15:0]: Address location in the eCT Flash SRAM. DATA1[6:0]: Syndrome of 32-bit SRAM word.
57	CPUSS_FM_SRAMC_NC_ECC	Flash code storage SRAM memory non-correctable ECC violation: See CPUSS_FM_SRAMC_C_ECC description.
58	CPUSS_RAMCO_C_ECC	System memory controller 0 correctable ECC violation: DATA0[31:0]: Violating address. DATA1[6:0]: Syndrome of 32-bit SRAM code word.
59	CPUSS_RAMC0_NC_ECC	System memory controller 0 non-correctable ECC violation. See CPUSS_RAMC0_C_ECC description.

Based on Arm® Cortex®-M7 single

Faults

Fault assignments (continued) **Table 21-1**

Fault	Source	Description
60	CPUSS_RAMC1_C_ECC	System memory controller 1 correctable ECC violation. See CPUSS_RAMC0_C_ECC description.
61	CPUSS_RAMC1_NC_ECC	System memory controller 1 non-correctable ECC violation. See CPUSS_RAMCO_C_ECC description.
62	CPUSS_RAMC2_C_ECC	System memory controller 2 correctable ECC violation. See CPUSS_RAMCO_C_ECC description.
63	CPUSS_RAMC2_NC_ECC	System memory controller 2 non-correctable ECC violation. See CPUSS_RAMC0_C_ECC description.
64	CPUSS_CRYPTO_C_ECC	Crypto memory correctable ECC violation. DATA0[31:0]: Violating address. DATA1[6:0]: Syndrome of Least Significant 32-bit SRAM. DATA1[14:8]: Syndrome of Most Significant 32-bit SRAM.
65	CPUSS_CRYPTO_NC_ECC	Crypto memory non-correctable ECC violation. See CPUSS_CRYPTO_C_ECC description.
66	CPUSS_DW0_C_ECC	P-DMA0 memory correctable ECC violation: DATA0[11:0]: Violating DW SRAM address (word address, assuming byte addressable). DATA1[6:0]: Syndrome of 32-bit SRAM code word.
67	CPUSS_DW0_NC_ECC	P-DMA0 memory non-correctable ECC violation. See CPUSS_DW0_C_ECC description.
68	CPUSS_DW1_C_ECC	P-DMA1 memory correctable ECC violation. See CPUSS_DW0_C_ECC description.
69	CPUSS_DW1_NC_ECC	P-DMA1 memory non-correctable ECC violation. See CPUSS_DW0_C_ECC description.
70	CANFD_0_CAN_C_ECC	CANO message buffer correctable ECC violation: DATA0[15:0]: Violating address. DATA0[22:16]: ECC violating data[38:32] from MRAM. DATA0[27:24]: Master ID: 0-7 = CAN channel ID within mxttcanfd cluster, 8 = AHB I/F DATA1[31:0]: ECC violating data[31:0] from MRAM.
71	CANFD_0_CAN_NC_ECC	CANO message buffer non-correctable ECC violation: DATA0[15:0]: Violating address. DATA0[22:16]: ECC violating data[38:32] from MRAM (not for Address Error). DATA0[27:24]: Master ID: 0-7 = CAN channel ID within mxttcanfd cluster, 8 = AHB I/F DATA0[30]: Write access, only possible for Address Error DATA0[31]: Address Error: a CAN channel did an MRAM access above MRAM_SIZE DATA1[31:0]: ECC violating data[31:0] from MRAM (not for Address Error).
72	CANFD_1_CAN_C_ECC	CAN1 message buffer correctable ECC violation. See CANFD_0_CAN_C_ECC description.
73	CANFD_1_CAN_NC_ECC	CAN1 message buffer non-correctable ECC violation. See CANFD_0_CAN_NC_ECC description.
82	VIDEOSS_0_VRPU_RD_0	VIDEOSS Fault Reporting VRPU read 0: DATA0[31:0]: Violating address. DATA1[0]: User read. DATA1[1]: User write. DATA1[2]: User execute. DATA1[3]: Privileged read. DATA1[4]: Privileged write. DATA1[5]: Privileged execute. DATA1[5]: Privileged execute. DATA1[6]: Non-secure. DATA1[11:8]: Master identifier. DATA1[15:12]: Protection context identifier. DATA1[31:28]: "0": decoder or peripheral bus error, other: undefined.
83	VIDEOSS_0_VRPU_RD_1	VIDEOSS Fault Reporting VRPU read 1. See VIDEOSS_0_VRPU_RD_0 description.
84	VIDEOSS_0_VRPU_RD_2	VIDEOSS Fault Reporting VRPU read 2. See VIDEOSS_0_VRPU_RD_0 description.
85	VIDEOSS_0_VRPU_RD_3	VIDEOSS Fault Reporting VRPU read 3. See VIDEOSS_0_VRPU_RD_0 description.
86	VIDEOSS_0_VRPU_RD_4	VIDEOSS Fault Reporting VRPU read 4. See VIDEOSS_0_VRPU_RD_0 description.
87	VIDEOSS_0_VRPU_WR_0	VIDEOSS Fault Reporting VRPU write 0. See VIDEOSS_0_VRPU_RD_0 description.

Based on Arm® Cortex®-M7 single

Table 21-1 Fault assignments (continued)

Fault	Source	Description
88	VIDEOSS_0_VRPU_WR_1	VIDEOSS Fault Reporting VRPU write 1. See VIDEOSS_0_VRPU_RD_0 description.
90	SRSS_FAULT_CSV	Consolidated fault output for clock supervisors. Multiple CSV can detect a violation at the same time. DATA0[15:0]: CLK_HF* root CSV violation flags. DATA0[24]: CLK_REF CSV violation flag (reference clock for CLK_HF CSVs) DATA0[25]: CLK_LF CSV violation flag DATA0[26]: CLK_HVILO CSV violation flag
91	SRSS_FAULT_SSV	Consolidated fault output for supply supervisors. Multiple CSV can detect a violation at the same time. DATA0[0]: BOD on VDDA_ADC DATA[1]: OVD on VDDA_ADC DATA[16]: LVD/HVD #1 DATA0[17]: LVD/HVD #2
92	SRSS_FAULT_MCWDT0	Fault output for MCWDT0 (all sub-counters) Multiple counters can detect a violation at the same time. DATA0[0]: MCWDT sub counter 0 LOWER_LIMIT DATA0[1]: MCWDT sub counter 0 UPPER_LIMIT DATA0[2]: MCWDT sub counter 1 LOWER_LIMIT DATA0[3]: MCWDT sub counter 1 UPPER_LIMIT
93	SRSS_FAULT_MCWDT1	Fault output for MCWDT1 (all sub-counters). See SRSS_FAULT_MCWDT0 description.

Based on Arm® Cortex®-M7 single

Peripheral protection unit fixed structure pairs

22 Peripheral protection unit fixed structure pairs

Protection pair is a pair PPU structures, a master, and a slave structure. The master structure protects the slave structure, and the slave structure protects resources such as peripheral registers, or the peripheral itself.

Refer to **Table 6-1** for the FX PPU Base address.

Table 22-1 PPU fixed structure pairs

1 F 2 F 3 F 4 F 5 F 6 F 7 F 8 F	PERI_MAIN PERI_SECURE PERI_GR0_GROUP PERI_GR1_GROUP PERI_GR3_GROUP PERI_GR4_GROUP PERI_GR5_GROUP PERI_GR5_GROUP PERI_GR6_GROUP PERI_GR6_GROUP PERI_GR8_GROUP PERI_GR9_GROUP PERI_GR9_GROUP	0x40000200 0x40002000 0x40004010 0x40004050 0x400040C0 0x40004100 0x40004140 0x40004180 0x40004200 0x40004240	0x00000040 0x00000004 0x00000004 0x00000004 0x00000004 0x00000020 0x00000020 0x00000020 0x00000020	Peripheral Group #0 main Peripheral Group #1 main Peripheral Group #2 main Peripheral Group #3 main Peripheral Group #4 main Peripheral Group #5 main Peripheral Group #6 main
2 F 3 F 4 F 5 F 6 F 7 F 8 F	PERI_GR0_GROUP PERI_GR1_GR0UP PERI_GR3_GROUP PERI_GR4_GROUP PERI_GR5_GROUP PERI_GR6_GROUP PERI_GR6_GROUP PERI_GR8_GROUP PERI_GR8_GROUP PERI_GR8_GROUP PERI_GR8_GROUP	0x40004010 0x40004050 0x40004090 0x400040C0 0x40004100 0x40004140 0x40004180 0x40004200	0x00000004 0x00000004 0x00000004 0x00000020 0x00000020 0x00000020 0x00000020	Peripheral Group #0 main Peripheral Group #1 main Peripheral Group #2 main Peripheral Group #3 main Peripheral Group #4 main Peripheral Group #5 main Peripheral Group #6 main
3 F 4 F 5 F 6 F 7 F 8 F 9 F	PERI_GR1_GROUP PERI_GR3_GROUP PERI_GR4_GROUP PERI_GR5_GROUP PERI_GR6_GROUP PERI_GR6_GROUP PERI_GR8_GROUP PERI_GR8_GROUP PERI_GR9_GROUP PERI_GR9_GROUP	0x40004050 0x40004090 0x400040C0 0x40004100 0x40004140 0x40004180 0x40004200	0x0000004 0x00000004 0x00000020 0x00000020 0x00000020 0x00000020	Peripheral Group #1 main Peripheral Group #2 main Peripheral Group #3 main Peripheral Group #4 main Peripheral Group #5 main Peripheral Group #6 main
4 F 5 F 6 F 7 F 8 F 9 F	PERI_GR2_GROUP PERI_GR3_GROUP PERI_GR4_GROUP PERI_GR5_GROUP PERI_GR6_GROUP PERI_GR8_GROUP PERI_GR8_GROUP PERI_GR9_GROUP	0x40004090 0x400040C0 0x40004100 0x40004140 0x40004180 0x40004200	0x00000004 0x00000020 0x00000020 0x00000020 0x00000020	Peripheral Group #2 main Peripheral Group #3 main Peripheral Group #4 main Peripheral Group #5 main Peripheral Group #6 main
5 F 6 F 7 F 8 F 9 F	PERI_GR3_GROUP PERI_GR4_GROUP PERI_GR5_GROUP PERI_GR6_GROUP PERI_GR8_GROUP PERI_GR9_GROUP PERI_GR9_GROUP	0x400040C0 0x40004100 0x40004140 0x40004180 0x40004200	0x00000020 0x00000020 0x00000020 0x00000020	Peripheral Group #3 main Peripheral Group #4 main Peripheral Group #5 main Peripheral Group #6 main
6 F 7 F 8 F 9 F	PERI_GR4_GROUP PERI_GR5_GROUP PERI_GR6_GROUP PERI_GR8_GROUP PERI_GR9_GROUP PERI_GR9_GROUP	0x40004100 0x40004140 0x40004180 0x40004200	0x00000020 0x00000020 0x00000020	Peripheral Group #4 main Peripheral Group #5 main Peripheral Group #6 main
7 F 8 F 9 F	PERI_GR5_GROUP PERI_GR8_GROUP PERI_GR9_GROUP PERI_GR9_GROUP PERI_GR10_GROUP	0x40004140 0x40004180 0x40004200	0x00000020 0x00000020	Peripheral Group #5 main Peripheral Group #6 main
8 F	PERI_GR6_GROUP PERI_GR8_GROUP PERI_GR9_GROUP PERI_GR10_GROUP	0x40004180 0x40004200	0x00000020	Peripheral Group #6 main
9 F	PERI_GR8_GROUP PERI_GR9_GROUP PERI_GR10_GROUP	0x40004200		
	PERI_GR9_GROUP PERI_GR10_GROUP		0x00000020	Peripheral Group #8 main
	PERI_GR10_GROUP	0x40004240		
10 F			0x00000020	Peripheral Group #9 main
11 F	DEDI CDO DOOT	0x40004280	0x00000020	Peripheral Group #10 main
12 F	PERI_GR0_BOOT	0x40004020	0x00000004	Peripheral Group #0 boot
13 F	PERI_GR1_BOOT	0x40004060	0x00000004	Peripheral Group #1 boot
14 F	PERI_GR2_BOOT	0x400040A0	0x00000004	Peripheral Group #2 boot
15 F	PERI_GR3_BOOT	0x400040E0	0x00000004	Peripheral Group #3 boot
16 F	PERI_GR4_BOOT	0x40004120	0x00000004	Peripheral Group #4 boot
17 F	PERI_GR5_BOOT	0x40004160	0x00000004	Peripheral Group #5 boot
18 F	PERI_GR6_BOOT	0x400041A0	0x00000004	Peripheral Group #6 boot
19 F	PERI_GR8_BOOT	0x40004220	0x00000004	Peripheral Group #8 boot
20 F	PERI_GR9_BOOT	0x40004260	0x00000004	Peripheral Group #9 boot
21 F	PERI_GR10_BOOT	0x400042A0	0x00000004	Peripheral Group #10 boot
22 F	PERI_TR	0x40008000	0x00008000	Peripheral trigger multiplexer
23 F	PERI_MS_BOOT	0x40030000	0x00001000	Peripheral master slave boot
24 F	PERI_PCLK_MAIN	0x40040000	0x00004000	Peripheral clock main
25 C	CRYPTO_MAIN	0x40100000	0x00000400	Crypto main
26 C	CRYPTO_CRYPTO	0x40101000	0x00000800	Crypto MMIO (Memory Mapped I/O)
27 C	CRYPTO_BOOT	0x40102000	0x00000100	Crypto boot
28 C	CRYPTO_KEY0	0x40102100	0x00000004	Crypto Key #0
29 0	CRYPTO_KEY1	0x40102120	0x00000004	Crypto Key #1
30 0	CRYPTO_BUF	0x40108000	0x00002000	Crypto buffer
31 (CPUSS_CM7_0	0x40200000	0x00000400	CM7_0 CPU core
32 F	Reserved	0x40200500	0x00000020	
33 (CPUSS_CM0	0x40201000	0x00001000	CM0+ CPU core
34 0	CPUSS_BOOT ^[40]	0x40202000	0x00000200	CPUSS boot
35 C	CPUSS_CM0_INT	0x40208000	0x00001000	CPUSS CM0+ interrupts
36 C	CPUSS_CM7_0_INT	0x4020A000	0x00001000	CPUSS CM7_0 interrupts

Note

^{40.} Fixed PPU is configured inside the Boot and user is not allowed to change the attributes of this PPU.

Peripheral protection unit fixed structure pairs

Table 22-1 PPU fixed structure pairs (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
37	Reserved	0x4020C000	0x00001000	
38	FAULT_STRUCTO_MAIN	0x40210000	0x00000100	CPUSS Fault Structure #0 main
39	FAULT_STRUCT1_MAIN	0x40210100	0x00000100	CPUSS Fault Structure #1 main
40	FAULT_STRUCT2_MAIN	0x40210200	0x00000100	CPUSS Fault Structure #2 main
41	FAULT_STRUCT3_MAIN	0x40210300	0x00000100	CPUSS Fault Structure #3 main
42	IPC_STRUCT0_IPC	0x40220000	0x00000020	CPUSS IPC Structure #0
43	IPC_STRUCT1_IPC	0x40220020	0x00000020	CPUSS IPC Structure #1
44	IPC_STRUCT2_IPC	0x40220040	0x00000020	CPUSS IPC Structure #2
45	IPC_STRUCT3_IPC	0x40220060	0x00000020	CPUSS IPC Structure #3
46	IPC_STRUCT4_IPC	0x40220080	0x00000020	CPUSS IPC Structure #4
47	IPC_STRUCT5_IPC	0x402200A0	0x00000020	CPUSS IPC Structure #5
48	IPC_STRUCT6_IPC	0x402200C0	0x00000020	CPUSS IPC Structure #6
49	IPC_STRUCT7_IPC	0x402200E0	0x00000020	CPUSS IPC Structure #7
50	IPC_INTR_STRUCT0_INTR	0x40221000	0x00000010	CPUSS IPC Interrupt Structure #0
51	IPC_INTR_STRUCT1_INTR	0x40221020	0x00000010	CPUSS IPC Interrupt Structure #1
52	IPC_INTR_STRUCT2_INTR	0x40221040	0x00000010	CPUSS IPC Interrupt Structure #2
53	IPC_INTR_STRUCT3_INTR	0x40221060	0x00000010	CPUSS IPC Interrupt Structure #3
54	IPC_INTR_STRUCT4_INTR	0x40221080	0x00000010	CPUSS IPC Interrupt Structure #4
55	IPC_INTR_STRUCT5_INTR	0x402210A0	0x00000010	CPUSS IPC Interrupt Structure #5
56	IPC_INTR_STRUCT6_INTR	0x402210C0	0x00000010	CPUSS IPC Interrupt Structure #6
57	IPC_INTR_STRUCT7_INTR	0x402210E0	0x00000010	CPUSS IPC Interrupt Structure #7
58	PROT_SMPU_MAIN	0x40230000	0x00000040	Peripheral protection SMPU main
59	PROT_MPU0_MAIN	0x40234000	0x00000004	Peripheral protection MPU #0 main
60	PROT_MPU9_MAIN	0x40236400	0x00000400	Peripheral protection MPU #9 main
61	PROT_MPU11_MAIN	0x40236C00	0x00000004	Peripheral protection MPU #11 main
62	PROT_MPU12_MAIN	0x40237000	0x00000400	Peripheral protection MPU #12 main
63	PROT_MPU14_MAIN	0x40237800	0x00000004	Peripheral protection MPU #14 main
64	PROT_MPU15_MAIN	0x40237C00	0x00000400	Peripheral protection MPU #15 main
65	FLASHC_MAIN	0x40240000	0x00000008	Flash controller main
66	FLASHC_CMD	0x40240008	0x00000004	Flash controller command
67	FLASHC_DFT	0x40240200	0x00000100	Flash controller tests
68	FLASHC_CM0	0x40240400	0x00000080	Flash controller CM0+
69	FLASHC_CM7_0	0x402404E0	0x00000004	Flash controller CM7_0
70	FLASHC_CRYPTO	0x40240580	0x00000004	Flash controller Crypto
71	FLASHC_DW0	0x40240600	0x00000004	Flash controller P-DMA0
72	FLASHC_DW1	0x40240680	0x00000004	Flash controller P-DMA1
73	FLASHC_DMAC	0x40240700	0x00000004	Flash controller M-DMA0
74	FLASHC_FlashMgmt ^[40]	0x4024F000	0x00000080	Flash management
75	FLASHC_MainSafety	0x4024F400	0x00000008	Flash controller main safety
76	FLASHC_WorkSafety	0x4024F500	0x00000004	Flash controller work safety
77	SRSS_GENERAL	0x40260000	0x00000400	SRSS General
78	SRSS_MAIN	0x40261000	0x00001000	SRSS main
79	SRSS_SECURE	0x40262000	0x00002000	SRSS secure
80	MCWDT0_CONFIG	0x40268000	0x00000080	MCWDT #0 configuration
81	MCWDT1_CONFIG	0x40268100	0x00000080	MCWDT #1 configuration

Table 22-1 **PPU fixed structure pairs** (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
82	MCWDT0_MAIN	0x40268080	0x00000040	MCWDT #0 main
83	MCWDT1_MAIN	0x40268180	0x00000040	MCWDT #1 main
84	WDT_CONFIG	0x4026C000	0x00000020	System WDT configuration
85	WDT_MAIN	0x4026C040	0x00000020	System WDT main
86	BACKUP_BACKUP	0x40270000	0x00010000	SRSS backup
87	DW0_DW	0x40280000	0x00000100	P-DMA0 main
88	DW1_DW	0x40290000	0x00000100	P-DMA1 main
89	DW0_DW_CRC	0x40280100	0x00000080	P-DMA0 CRC
90	DW1_DW_CRC	0x40290100	0x00000080	P-DMA1 CRC
91	DW0_CH_STRUCT0_CH	0x40288000	0x00000040	P-DMA0 Channel #0
92	DW0_CH_STRUCT1_CH	0x40288040	0x00000040	P-DMA0 Channel #1
93	DW0_CH_STRUCT2_CH	0x40288080	0x00000040	P-DMA0 Channel #2
94	DW0_CH_STRUCT3_CH	0x402880C0	0x00000040	P-DMA0 Channel #3
95	DW0_CH_STRUCT4_CH	0x40288100	0x00000040	P-DMA0 Channel #4
96	DW0_CH_STRUCT5_CH	0x40288140	0x00000040	P-DMA0 Channel #5
97	DW0_CH_STRUCT6_CH	0x40288180	0x00000040	P-DMA0 Channel #6
98	DW0_CH_STRUCT7_CH	0x402881C0	0x00000040	P-DMA0 Channel #7
99	DW0_CH_STRUCT8_CH	0x40288200	0x00000040	P-DMA0 Channel #8
100	DW0_CH_STRUCT9_CH	0x40288240	0x00000040	P-DMA0 Channel #9
101	DW0_CH_STRUCT10_CH	0x40288280	0x00000040	P-DMA0 Channel #10
102	DW0_CH_STRUCT11_CH	0x402882C0	0x00000040	P-DMA0 Channel #11
103	DW0_CH_STRUCT12_CH	0x40288300	0x00000040	P-DMA0 Channel #12
104	DW0_CH_STRUCT13_CH	0x40288340	0x00000040	P-DMA0 Channel #13
105	DW0_CH_STRUCT14_CH	0x40288380	0x00000040	P-DMA0 Channel #14
106	DW0_CH_STRUCT15_CH	0x402883C0	0x00000040	P-DMA0 Channel #15
107	DW0_CH_STRUCT16_CH	0x40288400	0x00000040	P-DMA0 Channel #16
108	DW0_CH_STRUCT17_CH	0x40288440	0x00000040	P-DMA0 Channel #17
109	DW0_CH_STRUCT18_CH	0x40288480	0x00000040	P-DMA0 Channel #18
110	DW0_CH_STRUCT19_CH	0x402884C0	0x00000040	P-DMA0 Channel #19
111	DW0_CH_STRUCT20_CH	0x40288500	0x00000040	P-DMA0 Channel #20
112	DW0_CH_STRUCT21_CH	0x40288540	0x00000040	P-DMA0 Channel #21
113	DW0_CH_STRUCT22_CH	0x40288580	0x00000040	P-DMA0 Channel #22
114	DW0_CH_STRUCT23_CH	0x402885C0	0x00000040	P-DMA0 Channel #23
115	DW0_CH_STRUCT24_CH	0x40288600	0x00000040	P-DMA0 Channel #24
116	DW0_CH_STRUCT25_CH	0x40288640	0x00000040	P-DMA0 Channel #25
117	DW0_CH_STRUCT26_CH	0x40288680	0x00000040	P-DMA0 Channel #26
118	DW0_CH_STRUCT27_CH	0x402886C0	0x00000040	P-DMA0 Channel #27
119	DW0_CH_STRUCT28_CH	0x40288700	0x00000040	P-DMA0 Channel #28
120	DW0_CH_STRUCT29_CH	0x40288740	0x00000040	P-DMA0 Channel #29
121	DW0_CH_STRUCT30_CH	0x40288780	0x00000040	P-DMA0 Channel #30
122	DW0_CH_STRUCT31_CH	0x402887C0	0x00000040	P-DMA0 Channel #31
123	DW0_CH_STRUCT32_CH	0x40288800	0x00000040	
124	DW0_CH_STRUCT33_CH	0x40288840	0x00000040	P-DMA0 Channel #33
125	DW0_CH_STRUCT34_CH	0x40288880	0x00000040	P-DMA0 Channel #34
126	DW0_CH_STRUCT35_CH	0x402888C0	0x00000040	P-DMA0 Channel #35

Based on Arm® Cortex®-M7 single

Table 22-1 PPU fixed structure pairs (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
127	DW0_CH_STRUCT36_CH	0x40288900	0x00000040	P-DMA0 Channel #36
128	DW0_CH_STRUCT37_CH	0x40288940	0x00000040	P-DMA0 Channel #37
129	DW0_CH_STRUCT38_CH	0x40288980	0x00000040	P-DMA0 Channel #38
130	DW0_CH_STRUCT39_CH	0x402889C0	0x00000040	P-DMA0 Channel #39
131	DW0_CH_STRUCT40_CH	0x40288A00	0x00000040	P-DMA0 Channel #40
132	DW0_CH_STRUCT41_CH	0x40288A40	0x00000040	P-DMA0 Channel #41
133	DW0_CH_STRUCT42_CH	0x40288A80	0x00000040	P-DMA0 Channel #42
134	DW0_CH_STRUCT43_CH	0x40288AC0	0x00000040	P-DMA0 Channel #43
135	DW0_CH_STRUCT44_CH	0x40288B00	0x00000040	P-DMA0 Channel #44
136	DW0_CH_STRUCT45_CH	0x40288B40	0x00000040	P-DMA0 Channel #45
137	DW0_CH_STRUCT46_CH	0x40288B80	0x00000040	P-DMA0 Channel #46
138	DW0_CH_STRUCT47_CH	0x40288BC0	0x00000040	P-DMA0 Channel #47
139	DW0_CH_STRUCT48_CH	0x40288C00	0x00000040	P-DMA0 Channel #48
140	DW0_CH_STRUCT49_CH	0x40288C40	0x00000040	P-DMA0 Channel #49
141	DW0_CH_STRUCT50_CH	0x40288C80	0x00000040	P-DMA0 Channel #50
142	DW0_CH_STRUCT51_CH	0x40288CC0	0x00000040	P-DMA0 Channel #51
143	DW0_CH_STRUCT52_CH	0x40288D00	0x00000040	P-DMA0 Channel #52
144	DW0_CH_STRUCT53_CH	0x40288D40	0x00000040	P-DMA0 Channel #53
145	DW0_CH_STRUCT54_CH	0x40288D80	0x00000040	P-DMA0 Channel #54
146	DW0_CH_STRUCT55_CH	0x40288DC0	0x00000040	P-DMA0 Channel #55
147	DW0_CH_STRUCT56_CH	0x40288E00	0x00000040	P-DMA0 Channel #56
148	DW0_CH_STRUCT57_CH	0x40288E40	0x00000040	P-DMA0 Channel #57
149	DW0_CH_STRUCT58_CH	0x40288E80	0x00000040	P-DMA0 Channel #58
150	DW0_CH_STRUCT59_CH	0x40288EC0	0x00000040	P-DMA0 Channel #59
151	DW0_CH_STRUCT60_CH	0x40288F00	0x00000040	P-DMA0 Channel #60
152	DW0_CH_STRUCT61_CH	0x40288F40	0x00000040	P-DMA0 Channel #61
153	DW0_CH_STRUCT62_CH	0x40288F80	0x00000040	P-DMA0 Channel #62
154	DW0_CH_STRUCT63_CH	0x40288FC0	0x00000040	P-DMA0 Channel #63
155	DW0_CH_STRUCT64_CH	0x40289000	0x00000040	P-DMA0 Channel #64
156	DW0_CH_STRUCT65_CH	0x40289040	0x00000040	P-DMA0 Channel #65
157	DW0_CH_STRUCT66_CH	0x40289080	0x00000040	P-DMA0 Channel #66
158	DW0_CH_STRUCT67_CH	0x402890C0	0x00000040	P-DMA0 Channel #67
159	DW0_CH_STRUCT68_CH	0x40289100	0x00000040	P-DMA0 Channel #68
160	DW0_CH_STRUCT69_CH	0x40289140	0x00000040	P-DMA0 Channel #69
161	DW0_CH_STRUCT70_CH	0x40289180	0x00000040	P-DMA0 Channel #70
162	DW0_CH_STRUCT71_CH	0x402891C0	0x00000040	P-DMA0 Channel #71
163	DW0_CH_STRUCT72_CH	0x40289200	0x00000040	P-DMA0 Channel #72
164	DW0_CH_STRUCT73_CH	0x40289240	0x00000040	P-DMA0 Channel #73
165	DW0_CH_STRUCT74_CH	0x40289280	0x00000040	P-DMA0 Channel #74
166	DW0_CH_STRUCT75_CH	0x402892C0	0x00000040	P-DMA0 Channel #75
167	DW1_CH_STRUCT0_CH	0x40298000	0x00000040	P-DMA1 Channel #0
168	DW1_CH_STRUCT1_CH	0x40298040	0x00000040	P-DMA1 Channel #1
169	DW1_CH_STRUCT2_CH	0x40298080	0x00000040	P-DMA1 Channel #2
170	DW1_CH_STRUCT3_CH	0x402980C0	0x000000040	P-DMA1 Channel #3
171	DW1_CH_STRUCT4_CH	0x40298100	0x00000040	P-DMA1 Channel #4

Based on Arm® Cortex®-M7 single

Table 22-1 PPU fixed structure pairs (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
172	DW1_CH_STRUCT5_CH	0x40298140	0x00000040	P-DMA1 Channel #5
173	DW1_CH_STRUCT6_CH	0x40298180	0x00000040	P-DMA1 Channel #6
174	DW1_CH_STRUCT7_CH	0x402981C0	0x00000040	P-DMA1 Channel #7
175	DW1_CH_STRUCT8_CH	0x40298200	0x00000040	P-DMA1 Channel #8
176	DW1_CH_STRUCT9_CH	0x40298240	0x00000040	P-DMA1 Channel #9
177	DW1_CH_STRUCT10_CH	0x40298280	0x00000040	P-DMA1 Channel #10
178	DW1_CH_STRUCT11_CH	0x402982C0	0x00000040	P-DMA1 Channel #11
179	DW1_CH_STRUCT12_CH	0x40298300	0x00000040	P-DMA1 Channel #12
180	DW1_CH_STRUCT13_CH	0x40298340	0x00000040	P-DMA1 Channel #13
181	DW1_CH_STRUCT14_CH	0x40298380	0x00000040	P-DMA1 Channel #14
182	DW1_CH_STRUCT15_CH	0x402983C0	0x00000040	P-DMA1 Channel #15
183	DW1_CH_STRUCT16_CH	0x40298400	0x00000040	P-DMA1 Channel #16
184	DW1_CH_STRUCT17_CH	0x40298440	0x00000040	P-DMA1 Channel #17
185	DW1_CH_STRUCT18_CH	0x40298480	0x00000040	P-DMA1 Channel #18
186	DW1_CH_STRUCT19_CH	0x402984C0	0x00000040	P-DMA1 Channel #19
187	DW1_CH_STRUCT20_CH	0x40298500	0x00000040	P-DMA1 Channel #20
188	DW1_CH_STRUCT21_CH	0x40298540	0x00000040	P-DMA1 Channel #21
189	DW1_CH_STRUCT22_CH	0x40298580	0x00000040	P-DMA1 Channel #22
190	DW1_CH_STRUCT23_CH	0x402985C0	0x00000040	P-DMA1 Channel #23
191	DW1_CH_STRUCT24_CH	0x40298600	0x00000040	P-DMA1 Channel #24
192	DW1_CH_STRUCT25_CH	0x40298640	0x00000040	P-DMA1 Channel #25
193	DW1_CH_STRUCT26_CH	0x40298680	0x00000040	P-DMA1 Channel #26
194	DW1_CH_STRUCT27_CH	0x402986C0	0x00000040	P-DMA1 Channel #27
195	DW1_CH_STRUCT28_CH	0x40298700	0x00000040	P-DMA1 Channel #28
196	DW1_CH_STRUCT29_CH	0x40298740	0x00000040	P-DMA1 Channel #29
197	DW1_CH_STRUCT30_CH	0x40298780	0x00000040	P-DMA1 Channel #30
198	DW1_CH_STRUCT31_CH	0x402987C0	0x00000040	P-DMA1 Channel #31
199	DW1_CH_STRUCT32_CH	0x40298800	0x00000040	P-DMA1 Channel #32
200	DW1_CH_STRUCT33_CH	0x40298840	0x00000040	P-DMA1 Channel #33
201	DW1_CH_STRUCT34_CH	0x40298880	0x00000040	P-DMA1 Channel #34
202	DW1_CH_STRUCT35_CH	0x402988C0	0x00000040	P-DMA1 Channel #35
203	DW1_CH_STRUCT36_CH	0x40298900	0x00000040	P-DMA1 Channel #36
204	DW1_CH_STRUCT37_CH	0x40298940	0x00000040	P-DMA1 Channel #37
205	DW1_CH_STRUCT38_CH	0x40298980	0x00000040	P-DMA1 Channel #38
206	DW1_CH_STRUCT39_CH	0x402989C0	0x00000040	P-DMA1 Channel #39
207	DW1_CH_STRUCT40_CH	0x40298A00	0x00000040	P-DMA1 Channel #40
208	DW1_CH_STRUCT41_CH	0x40298A40	0x00000040	P-DMA1 Channel #41
209	DW1_CH_STRUCT42_CH	0x40298A80	0x00000040	P-DMA1 Channel #42
210	DW1_CH_STRUCT43_CH	0x40298AC0	0x00000040	P-DMA1 Channel #43
211	DW1_CH_STRUCT44_CH	0x40298B00	0x00000040	P-DMA1 Channel #44
212	DW1_CH_STRUCT45_CH	0x40298B40	0x00000040	P-DMA1 Channel #45
213	DW1_CH_STRUCT46_CH	0x40298B80	0x00000040	P-DMA1 Channel #46
214	DW1_CH_STRUCT47_CH	0x40298BC0	0x00000040	P-DMA1 Channel #47
215	DW1_CH_STRUCT48_CH	0x40298C00	0x00000040	P-DMA1 Channel #48
216	DW1_CH_STRUCT49_CH	0x40298C40	0x00000040	P-DMA1 Channel #49

Based on Arm® Cortex®-M7 single

Table 22-1 PPU fixed structure pairs (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
217	DW1_CH_STRUCT50_CH	0x40298C80	0x00000040	P-DMA1 Channel #50
218	DW1_CH_STRUCT51_CH	0x40298CC0	0x00000040	P-DMA1 Channel #51
219	DW1_CH_STRUCT52_CH	0x40298D00	0x00000040	P-DMA1 Channel #52
220	DW1_CH_STRUCT53_CH	0x40298D40	0x00000040	P-DMA1 Channel #53
221	DW1_CH_STRUCT54_CH	0x40298D80	0x00000040	P-DMA1 Channel #54
222	DW1_CH_STRUCT55_CH	0x40298DC0	0x00000040	P-DMA1 Channel #55
223	DW1_CH_STRUCT56_CH	0x40298E00	0x00000040	P-DMA1 Channel #56
224	DW1_CH_STRUCT57_CH	0x40298E40	0x00000040	P-DMA1 Channel #57
225	DW1_CH_STRUCT58_CH	0x40298E80	0x00000040	P-DMA1 Channel #58
226	DW1_CH_STRUCT59_CH	0x40298EC0	0x00000040	P-DMA1 Channel #59
227	DW1_CH_STRUCT60_CH	0x40298F00	0x00000040	P-DMA1 Channel #60
228	DW1_CH_STRUCT61_CH	0x40298F40	0x00000040	P-DMA1 Channel #61
229	DW1_CH_STRUCT62_CH	0x40298F80	0x00000040	P-DMA1 Channel #62
230	DW1_CH_STRUCT63_CH	0x40298FC0	0x00000040	P-DMA1 Channel #63
231	DW1_CH_STRUCT64_CH	0x40299000	0x00000040	P-DMA1 Channel #64
232	DW1_CH_STRUCT65_CH	0x40299040	0x00000040	P-DMA1 Channel #65
233	DW1_CH_STRUCT66_CH	0x40299080	0x00000040	P-DMA1 Channel #66
234	DW1_CH_STRUCT67_CH	0x402990C0	0x00000040	P-DMA1 Channel #67
235	DW1_CH_STRUCT68_CH	0x40299100	0x00000040	P-DMA1 Channel #68
236	DW1_CH_STRUCT69_CH	0x40299140	0x00000040	P-DMA1 Channel #69
237	DW1_CH_STRUCT70_CH	0x40299180	0x00000040	P-DMA1 Channel #70
238	DW1_CH_STRUCT71_CH	0x402991C0	0x00000040	P-DMA1 Channel #71
239	DW1_CH_STRUCT72_CH	0x40299200	0x00000040	P-DMA1 Channel #72
240	DW1_CH_STRUCT73_CH	0x40299240	0x00000040	P-DMA1 Channel #73
241	DW1_CH_STRUCT74_CH	0x40299280	0x00000040	P-DMA1 Channel #74
242	DW1_CH_STRUCT75_CH	0x402992C0	0x00000040	P-DMA1 Channel #75
243	DW1_CH_STRUCT76_CH	0x40299300	0x00000040	P-DMA1 Channel #76
244	DW1_CH_STRUCT77_CH	0x40299340	0x00000040	P-DMA1 Channel #77
245	DW1_CH_STRUCT78_CH	0x40299380	0x00000040	P-DMA1 Channel #78
246	DW1_CH_STRUCT79_CH	0x402993C0	0x00000040	P-DMA1 Channel #79
247	DW1_CH_STRUCT80_CH	0x40299400	0x00000040	P-DMA1 Channel #80
248	DW1_CH_STRUCT81_CH	0x40299440	0x00000040	P-DMA1 Channel #81
249	DW1_CH_STRUCT82_CH	0x40299480	0x00000040	P-DMA1 Channel #82
250	DW1_CH_STRUCT83_CH	0x402994C0	0x00000040	P-DMA1 Channel #83
251	DMAC_TOP	0x402A0000	0x00000010	M-DMA0 main
252	DMAC_CH0_CH	0x402A1000	0x00000100	M-DMA0 Channel #0
253	DMAC_CH1_CH	0x402A1100	0x00000100	M-DMA0 Channel #1
254	DMAC_CH2_CH	0x402A1200	0x00000100	M-DMA0 Channel #2
255	DMAC_CH3_CH	0x402A1300	0x00000100	M-DMA0 Channel #3
256	DMAC_CH4_CH	0x402A1400	0x00000100	M-DMA0 Channel #4
257	DMAC_CH5_CH	0x402A1500	0x00000100	M-DMA0 Channel #5
258	DMAC_CH6_CH	0x402A1600	0x00000100	M-DMA0 Channel #6
259	DMAC_CH7_CH	0x402A1700	0x00000100	M-DMA0 Channel #7
260	AXI_DMAC_TOP	0x402B0000	0x00000008	AXI M-DMA1 main
261	AXI_DMAC_SEC	0x402B0008	0x00000004	AXI M-DMA1 active secure channels

Based on Arm® Cortex®-M7 single

infineon

Table 22-1 **PPU fixed structure pairs** (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
262	AXI_DMAC_NONSEC	0x402B000C	0x00000004	AXI M-DMA1 active non-secure channels
263	AXI_DMAC_CH0_CH	0x402B1000	0x00000100	AXI M-DMA1 Channel #0
264	AXI_DMAC_CH1_CH	0x402B1100	0x00000100	AXI M-DMA1 Channel #1
265	AXI_DMAC_CH2_CH	0x402B1200	0x00000100	AXI M-DMA1 Channel #2
266	AXI_DMAC_CH3_CH	0x402B1300	0x00000100	AXI M-DMA1 Channel #3
267	EFUSE_CTL	0x402C0000	0x00000200	EFUSE control
268	EFUSE_DATA	0x402C0800	0x00000200	EFUSE data
269	Reserved	0x402F0000	0x00001000	
270	HSIOM_PRT0_PRT	0x40300000	0x00000008	HSIOm Port #0
271	HSIOM_PRT1_PRT	0x40300010	0x00000008	HSIOm Port #1
272	HSIOM_PRT2_PRT	0x40300020	0x00000008	HSIOm Port #2
273	HSIOM_PRT3_PRT	0x40300030	0x00000008	HSIOm Port #3
274	HSIOM_PRT4_PRT	0x40300040	0x00000008	HSIOm Port #4
275	HSIOM_PRT5_PRT	0x40300050	0x00000008	HSIOm Port #5
276	HSIOM_PRT6_PRT	0x40300060	0x00000008	HSIOm Port #6
277	HSIOM_PRT7_PRT	0x40300070	0x00000008	HSIOm Port #7
278	HSIOM_PRT8_PRT	0x40300080	0x00000008	HSIOm Port #8
279	HSIOM_PRT9_PRT	0x40300090	0x00000008	HSIOm Port #9
280	HSIOM_PRT10_PRT	0x403000A0	0x00000008	HSIOm Port #10
281	HSIOM_PRT11_PRT	0x403000B0	0x00000008	HSIOm Port #11
282	HSIOM_PRT12_PRT	0x403000C0	0x00000008	HSIOm Port #12
283	HSIOM_PRT13_PRT	0x403000D0	0x00000008	HSIOm Port #13
284	HSIOM_PRT14_PRT	0x403000E0	0x00000008	HSIOm Port #14
285	HSIOM_PRT15_PRT	0x403000F0	0x00000008	HSIOm Port #15
286	HSIOM_PRT16_PRT	0x40300100	0x00000008	HSIOm Port #16
287	HSIOM_PRT17_PRT	0x40300110	0x00000008	HSIOm Port #17
288	HSIOM_PRT18_PRT	0x40300120	0x00000008	HSIOm Port #18
289	HSIOM_PRT19_PRT	0x40300130	0x00000008	HSIOm Port #19
290	HSIOM_PRT20_PRT	0x40300140	0x00000008	HSIOm Port #20
291	HSIOM_PRT21_PRT	0x40300150	0x00000008	HSIOm Port #21
292	HSIOM_AMUX	0x40302000	0x00000020	HSIOm Analog multiplexer
293	HSIOM_MON	0x40302200	0x00000010	HSIOm monitor
294	GPIO_PRT0_PRT	0x40310000	0x00000040	GPIO_STD Port #0
295	GPIO_PRT1_PRT	0x40310080	0x00000040	GPIO_STD Port #1
296	GPIO_PRT2_PRT	0x40310100	0x00000040	GPIO_STD Port #2
297	GPIO_PRT3_PRT	0x40310180	0x00000040	GPIO_ENH Port #3
298	GPIO_PRT4_PRT	0x40310200	0x00000040	GPIO_STD Port #4
299	GPIO_PRT5_PRT	0x40310280	0x00000040	GPIO_ENH Port #5
300	GPIO_PRT6_PRT	0x40310300	0x00000040	GPIO_STD Port #6
301	GPIO_PRT7_PRT	0x40310380	0x00000040	GPIO_STD Port #7
302	GPIO_PRT8_PRT	0x40310400	0x00000040	GPIO_STD Port #8
303	GPIO_PRT9_PRT	0x40310480	0x00000040	GPIO_SMC Port #9
304	GPIO_PRT10_PRT	0x40310500	0x00000040	GPIO_SMC Port #10
305	GPIO_PRT11_PRT	0x40310580	0x00000040	GPIO_SMC Port #11
306	GPIO_PRT12_PRT	0x40310600	0x00000040	GPIO_SMC Port #12

Peripheral protection unit fixed structure pairs

Table 22-1 PPU fixed structure pairs (continued)

Pair				
No.	PPU Fixed Structure Pair	Address	Size	Description
307	GPIO_PRT13_PRT	0x40310680	0x00000040	HSIO_STDLN Port #13
308	GPIO_PRT14_PRT	0x40310700	0x00000040	HSIO_STDLN Port #14
309	GPIO_PRT15_PRT	0x40310780	0x00000040	HSIO_STDLN Port #15
310	GPIO_PRT16_PRT	0x40310800	0x00000040	HSIO_STDLN Port #16
311	GPIO_PRT17_PRT	0x40310880	0x00000040	HSIO_STDLN Port #17
312	GPIO_PRT18_PRT	0x40310900	0x00000040	HSIO_STDLN Port #18
313	GPIO_PRT19_PRT	0x40310980	0x00000040	HSIO_STDLN Port #19
314	GPIO_PRT20_PRT	0x40310A00	0x00000040	HSIO_STDLN Port #20
315	GPIO_PRT21_PRT	0x40310A80	0x00000040	HSIO_STDLN Port #21
316	GPIO_PRT0_CFG	0x40310040	0x00000020	GPIO_STD Port #0 Configuration
317	GPIO_PRT1_CFG	0x403100C0	0x00000020	GPIO_STD Port #1 Configuration
318	GPIO_PRT2_CFG	0x40310140	0x00000020	GPIO_STD Port #2 Configuration
319	GPIO_PRT3_CFG	0x403101C0	0x00000020	GPIO_ENH Port #3 Configuration
320	GPIO_PRT4_CFG	0x40310240	0x00000020	GPIO_STD Port #4 Configuration
321	GPIO_PRT5_CFG	0x403102C0	0x00000020	GPIO_ENH Port #5 Configuration
322	GPIO_PRT6_CFG	0x40310340	0x00000020	GPIO_STD Port #6 Configuration
323	GPIO_PRT7_CFG	0x403103C0	0x00000020	GPIO_STD Port #7 Configuration
324	GPIO_PRT8_CFG	0x40310440	0x00000020	GPIO_STD Port #8 Configuration
325	GPIO_PRT9_CFG	0x403104C0	0x00000020	GPIO_SMC Port #9 Configuration
326	GPIO_PRT10_CFG	0x40310540	0x00000008	GPIO_SMC Port #10 Configuration
327	GPIO_PRT11_CFG	0x403105C0	0x00000040	GPIO_SMC Port #11 Configuration
328	GPIO_PRT12_CFG	0x40310640	0x00000040	GPIO_SMC Port #12 Configuration
329	GPIO_PRT13_CFG	0x403106C0	0x00000040	HSIO_STDLN Port #13 Configuration
330	GPIO_PRT14_CFG	0x40310740	0x00000040	HSIO_STDLN Port #14 Configuration
331	GPIO_PRT15_CFG	0x403107C0	0x00000040	HSIO_STDLN Port #15 Configuration
332	GPIO_PRT16_CFG	0x40310840	0x00000040	HSIO_STDLN Port #16 Configuration
333	GPIO_PRT17_CFG	0x403108C0	0x00000040	HSIO_STDLN Port #17 Configuration
	GPIO_PRT18_CFG	0x40310940	0x00000040	HSIO_STDLN Port #18 Configuration
335	GPIO_PRT19_CFG	0x403109C0	0x00000040	HSIO_STDLN Port #19 Configuration
	GPIO_PRT20_CFG	0x40310A40	0x00000040	HSIO_STDLN Port #20 Configuration
	GPIO_PRT21_CFG	0x40310AC0	0x00000040	HSIO_STDLN Port #21 Configuration
	GPIO_GPIO	0x40314000	0x00000040	GPIO main
	GPIO_TEST	0x40315000	0x00000008	GPIO test
	SMARTIO_PRT9_PRT	0x40320900	0x00000100	SMART I/O #9
	TCPWM0_GRP0_CNT0_CNT	0x40380000	0x00000080	· ·
	TCPWM0_GRP0_CNT1_CNT	0x40380080	0x00000080	TCPWM0 Group #0, Counter #1
	TCPWM0_GRP0_CNT2_CNT	0x40380100	0x00000080	, ,
	TCPWM0_GRP0_CNT3_CNT	0x40380180	0x00000080	TCPWM0 Group #0, Counter #3
	TCPWM0_GRP0_CNT4_CNT	0x40380200	0x00000080	TCPWM0 Group #0, Counter #4
	TCPWM0_GRP0_CNT5_CNT	0x40380280	0x00000080	
	TCPWM0_GRP0_CNT6_CNT	0x40380300	0x00000080	TCPWM0 Group #0, Counter #6
	TCPWM0_GRP0_CNT7_CNT	0x40380380	0x00000080	
	TCPWM0_GRP0_CNT8_CNT	0x40380400	0x00000080	TCPWM0 Group #0, Counter #8
	TCPWM0_GRP0_CNT9_CNT	0x40380480	0x00000080	, ,
351	TCPWM0_GRP0_CNT10_CNT	0x40380500	0x00000080	TCPWM0 Group #0, Counter #10

Based on Arm® Cortex®-M7 single

Table 22-1 **PPU fixed structure pairs** (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
352	TCPWM0_GRP0_CNT11_CNT	0x40380580	0x00000080	TCPWM0 Group #0, Counter #11
353	TCPWM0_GRP0_CNT12_CNT	0x40380600	0x00000080	TCPWM0 Group #0, Counter #12
354	TCPWM0_GRP0_CNT13_CNT	0x40380680	0x00000080	TCPWM0 Group #0, Counter #13
355	TCPWM0_GRP0_CNT14_CNT	0x40380700	0x00000080	TCPWM0 Group #0, Counter #14
356	TCPWM0_GRP0_CNT15_CNT	0x40380780	0x00000080	TCPWM0 Group #0, Counter #15
357	TCPWM0_GRP0_CNT16_CNT	0x40380800	0x00000080	TCPWM0 Group #0, Counter #16
358	TCPWM0_GRP0_CNT17_CNT	0x40380880	0x00000080	TCPWM0 Group #0, Counter #17
359	TCPWM0_GRP0_CNT18_CNT	0x40380900	0x00000080	TCPWM0 Group #0, Counter #18
360	TCPWM0_GRP0_CNT19_CNT	0x40380980	0x00000080	TCPWM0 Group #0, Counter #19
361	TCPWM0_GRP0_CNT20_CNT	0x40380A00	0x00000080	TCPWM0 Group #0, Counter #20
362	TCPWM0_GRP0_CNT21_CNT	0x40380A80	0x00000080	TCPWM0 Group #0, Counter #21
363	TCPWM0_GRP0_CNT22_CNT	0x40380B00	0x00000080	TCPWM0 Group #0, Counter #22
364	TCPWM0_GRP0_CNT23_CNT	0x40380B80	0x00000080	TCPWM0 Group #0, Counter #23
365	TCPWM0_GRP0_CNT24_CNT	0x40380C00	0x00000080	TCPWM0 Group #0, Counter #24
366	TCPWM0_GRP0_CNT25_CNT	0x40380C80	0x00000080	TCPWM0 Group #0, Counter #25
367	TCPWM0_GRP0_CNT26_CNT	0x40380D00	0x00000080	TCPWM0 Group #0, Counter #26
368	TCPWM0_GRP0_CNT27_CNT	0x40380D80	0x00000080	TCPWM0 Group #0, Counter #27
369	TCPWM0_GRP0_CNT28_CNT	0x40380E00	0x00000080	TCPWM0 Group #0, Counter #28
370	TCPWM0_GRP0_CNT29_CNT	0x40380E80	0x00000080	TCPWM0 Group #0, Counter #29
371	TCPWM0_GRP0_CNT30_CNT	0x40380F00	0x00000080	TCPWM0 Group #0, Counter #30
372	TCPWM0_GRP0_CNT31_CNT	0x40380F80	0x00000080	TCPWM0 Group #0, Counter #31
373	TCPWM0_GRP0_CNT32_CNT	0x40381000	0x00000080	TCPWM0 Group #0, Counter #32
374	TCPWM0_GRP0_CNT33_CNT	0x40381080	0x00000080	TCPWM0 Group #0, Counter #33
375	TCPWM0_GRP0_CNT34_CNT	0x40381100	0x00000080	TCPWM0 Group #0, Counter #34
376	TCPWM0_GRP0_CNT35_CNT	0x40381180	0x00000080	TCPWM0 Group #0, Counter #35
377	TCPWM0_GRP0_CNT36_CNT	0x40381200	0x00000080	TCPWM0 Group #0, Counter #36
378	TCPWM0_GRP0_CNT37_CNT	0x40381280	0x00000080	TCPWM0 Group #0, Counter #37
379	TCPWM0_GRP1_CNT0_CNT	0x40388000	0x00000080	TCPWM0 Group #1, Counter #0
380	TCPWM0_GRP1_CNT1_CNT	0x40388080	0x00000080	TCPWM0 Group #1, Counter #1
381	TCPWM0_GRP1_CNT2_CNT	0x40388100	0x00000080	TCPWM0 Group #1, Counter #2
382	TCPWM0_GRP1_CNT3_CNT	0x40388180	0x00000080	TCPWM0 Group #1, Counter #3
383	TCPWM0_GRP1_CNT4_CNT	0x40388200	0x00000080	TCPWM0 Group #1, Counter #4
384	TCPWM0_GRP1_CNT5_CNT	0x40388280	0x00000080	TCPWM0 Group #1, Counter #5
385	TCPWM0_GRP1_CNT6_CNT	0x40388300	0x00000080	TCPWM0 Group #1, Counter #6
386	TCPWM0_GRP1_CNT7_CNT	0x40388380	0x00000080	TCPWM0 Group #1, Counter #7
387	TCPWM0_GRP1_CNT8_CNT	0x40388400	0x00000080	TCPWM0 Group #1, Counter #8
388	TCPWM0_GRP1_CNT9_CNT	0x40388480	0x00000080	TCPWM0 Group #1, Counter #9
389	TCPWM0_GRP1_CNT10_CNT	0x40388500	0x00000080	TCPWM0 Group #1, Counter #10
390	TCPWM0_GRP1_CNT11_CNT	0x40388580	0x00000080	, ,
391	TCPWM0_GRP2_CNT0_CNT	0x40390000	0x00000080	, ,
392	TCPWM0_GRP2_CNT1_CNT	0x40390080	0x00000080	TCPWM0 Group #2, Counter #1
393	TCPWM0_GRP2_CNT2_CNT	0x40390100	0x00000080	' '
394	TCPWM0_GRP2_CNT3_CNT	0x40390180	0x00000080	TCPWM0 Group #2, Counter #3
395	TCPWM0_GRP2_CNT4_CNT	0x40390200	0x00000080	TCPWM0 Group #2, Counter #4
396	TCPWM0_GRP2_CNT5_CNT	0x40390280	0x00000080	TCPWM0 Group #2, Counter #5

Based on Arm® Cortex®-M7 single

Table 22-1 PPU fixed structure pairs (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
397	TCPWM0_GRP2_CNT6_CNT	0x40390300	0x00000080	TCPWM0 Group #2, Counter #6
398	TCPWM0_GRP2_CNT7_CNT	0x40390380	0x00000080	TCPWM0 Group #2, Counter #7
399	TCPWM0_GRP2_CNT8_CNT	0x40390400	0x00000080	TCPWM0 Group #2, Counter #8
400	TCPWM0_GRP2_CNT9_CNT	0x40390480	0x00000080	TCPWM0 Group #2, Counter #9
401	TCPWM0_GRP2_CNT10_CNT	0x40390500	0x00000080	TCPWM0 Group #2, Counter #10
402	TCPWM0_GRP2_CNT11_CNT	0x40390580	0x00000080	TCPWM0 Group #2, Counter #11
403	TCPWM0_GRP2_CNT12_CNT	0x40390600	0x00000080	TCPWM0 Group #2, Counter #12
404	TCPWM0_GRP2_CNT13_CNT	0x40390680	0x00000080	TCPWM0 Group #2, Counter #13
405	TCPWM0_GRP2_CNT14_CNT	0x40390700	0x00000080	TCPWM0 Group #2, Counter #14
406	TCPWM0_GRP2_CNT15_CNT	0x40390780	0x00000080	TCPWM0 Group #2, Counter #15
407	TCPWM0_GRP2_CNT16_CNT	0x40390800	0x00000080	TCPWM0 Group #2, Counter #16
408	TCPWM0_GRP2_CNT17_CNT	0x40390880	0x00000080	TCPWM0 Group #2, Counter #17
409	TCPWM0_GRP2_CNT18_CNT	0x40390900	0x00000080	TCPWM0 Group #2, Counter #18
410	TCPWM0_GRP2_CNT19_CNT	0x40390980	0x00000080	TCPWM0 Group #2, Counter #19
411	TCPWM0_GRP2_CNT20_CNT	0x40390A00	0x00000080	TCPWM0 Group #2, Counter #20
412	TCPWM0_GRP2_CNT21_CNT	0x40390A80	0x00000080	TCPWM0 Group #2, Counter #21
413	TCPWM0_GRP2_CNT22_CNT	0x40390B00	0x00000080	TCPWM0 Group #2, Counter #22
414	TCPWM0_GRP2_CNT23_CNT	0x40390B80	0x00000080	TCPWM0 Group #2, Counter #23
415	TCPWM0_GRP2_CNT24_CNT	0x40390C00	0x00000080	TCPWM0 Group #2, Counter #24
416	TCPWM0_GRP2_CNT25_CNT	0x40390C80	0x00000080	TCPWM0 Group #2, Counter #25
417	TCPWM0_GRP2_CNT26_CNT	0x40390D00	0x00000080	TCPWM0 Group #2, Counter #26
418	TCPWM0_GRP2_CNT27_CNT	0x40390D80	0x00000080	TCPWM0 Group #2, Counter #27
419	TCPWM0_GRP2_CNT28_CNT	0x40390E00	0x00000080	TCPWM0 Group #2, Counter #28
420	TCPWM0_GRP2_CNT29_CNT	0x40390E80	0x00000080	TCPWM0 Group #2, Counter #29
421	TCPWM0_GRP2_CNT30_CNT	0x40390F00	0x00000080	TCPWM0 Group #2, Counter #30
422	TCPWM0_GRP2_CNT31_CNT	0x40390F80	0x00000080	TCPWM0 Group #2, Counter #31
423	EVTGEN0	0x403F0000	0x00001000	Event generator #0
424	SMIF0	0x40420000	0x00001000	Serial Memory Interface #0
425	SMIF1	0x40430000	0x00001000	Serial Memory Interface #1
426	ЕТНО	0x40480000	0x00010000	Ethernet0
427	LINO_MAIN	0x40500000	0x00000008	LIN0, main
428	LINO_CHO_CH	0x40508000	0x00000100	LIN0, Channel #0
429	LIN0_CH1_CH	0x40508100	0x00000100	LIN0, Channel #1
430	CXPI0_MAIN	0x40510000	0x00000008	CXPI0, main
431	CXPIO_CHO_CH	0x40518000	0x00000100	CXPI0, Channel #0
432	CXPIO_CH1_CH	0x40518100	0x00000100	CXPI0, Channel #1
433	CANFD0_CH0_CH	0x40520000	0x00000200	CANO, Channel #0
434	CANFD0_CH1_CH	0x40520200	0x00000200	CANO, Channel #1
435	CANFD1_CH0_CH	0x40540000	0x00000200	CAN1, Channel #0
436	CANFD1_CH1_CH	0x40540200	0x00000200	CAN1, Channel #1
437	CANFD0_MAIN	0x40521000	0x00000100	CAN0 main
438	CANFD1_MAIN	0x40541000	0x00000100	CAN1 main
439	CANFD0_BUF	0x40530000	0x00010000	CAN0 buffer
440	CANFD1_BUF	0x40550000	0x00010000	CAN1 buffer
441	SCB0	0x40600000	0x00010000	SCB0

Based on Arm® Cortex®-M7 single

Table 22-1 PPU fixed structure pairs (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
442	SCB1	0x40610000	0x00010000	SCB1
443	SCB2	0x40620000	0x00010000	SCB2
444	SCB3	0x40630000	0x00010000	SCB3
445	SCB4	0x40640000	0x00010000	SCB4
446	SCB5	0x40650000	0x00010000	SCB5
447	SCB6	0x40660000	0x00010000	SCB6
448	SCB7	0x40670000	0x00010000	SCB7
449	SCB8	0x40680000	0x00010000	SCB8
450	SCB9	0x40690000	0x00010000	SCB9
451	SCB10	0x406A0000	0x00010000	SCB10
452	SCB11	0x406B0000	0x00010000	SCB11
453	TDM0_TDM_STRUCT0_TDM_TX_STRUCT_TX	0x40818000	0x00000100	TDM0 TX Structure #0
454	TDM0_TDM_STRUCT1_TDM_TX_STRUCT_TX	0x40818200	0x00000100	TDM0 TX Structure #1
455	TDM0_TDM_STRUCT2_TDM_TX_STRUCT_TX	0x40818400	0x00000100	TDM0 TX Structure #2
456	TDM0_TDM_STRUCT3_TDM_TX_STRUCT_TX	0x40818600	0x00000100	TDM0 TX Structure #3
457	TDM0_TDM_STRUCT0_TDM_RX_STRUCT_RX	0x40818100	0x00000100	TDM0 RX Structure #0
458	TDM0_TDM_STRUCT1_TDM_RX_STRUCT_RX	0x40818300	0x00000100	TDM0 RX Structure #1
459	TDM0_TDM_STRUCT2_TDM_RX_STRUCT_RX	0x40818500	0x00000100	TDM0 RX Structure #2
460	TDM0_TDM_STRUCT3_TDM_RX_STRUCT_RX	0x40818700	0x00000100	TDM0 RX Structure #3
461	SG0_SG_STRUCT0_TX	0x40828000	0x00000100	SG0 TX Structure #0
462	SG0_SG_STRUCT1_TX	0x40828100	0x00000100	SG0 TX Structure #1
463	SG0_SG_STRUCT2_TX	0x40828200	0x00000100	SG0 TX Structure #2
464	SG0_SG_STRUCT3_TX	0x40828300	0x00000100	SG0 TX Structure #3
465	SG0_SG_STRUCT4_TX	0x40828400	0x00000100	SG0 TX Structure #4
466	PWM0_MAIN	0x40830000	0x00000010	PW0 Main
467	PWM0_TX0_TX	0x40838000	0x00000100	PWM0 TX0
468	PWM0_TX1_TX	0x40838100	0x00000100	PWM0 TX1
469	DAC0_MAIN	0x40840000	0x00000100	DAC0 Main
470	MIXERO_MIXER_SRC_STRUCTO_SRC	0x40888000	0x00000100	MIXER0 Source Structure #0
471	MIXERO_MIXER_SRC_STRUCT1_SRC	0x40888100	0x00000100	MIXER0 Source Structure #1
472	MIXERO_MIXER_SRC_STRUCT2_SRC	0x40888200	0x00000100	MIXER0 Source Structure #2
473	MIXERO_MIXER_SRC_STRUCT3_SRC	0x40888300	0x00000100	MIXER0 Source Structure #3
474	MIXERO_MIXER_SRC_STRUCT4_SRC	0x40888400	0x00000100	MIXER0 Source Structure #4
475	MIXER1_MIXER_SRC_STRUCT0_SRC	0x40898000	0x00000100	MIXER1 Source Structure #0
476	MIXER1_MIXER_SRC_STRUCT1_SRC	0x40898100	0x00000100	MIXER1 Source Structure #1
477	MIXER1_MIXER_SRC_STRUCT2_SRC	0x40898200	0x00000100	MIXER1 Source Structure #2
478	MIXER1_MIXER_SRC_STRUCT3_SRC	0x40898300	0x00000100	MIXER1 Source Structure #3
479	MIXER1_MIXER_SRC_STRUCT4_SRC	0x40898400	0x00000100	MIXER1 Source Structure #4
480	MIXERO_MIXER_DST_STRUCT_DST	0x4088C000	0x00000100	MIXERO Destination Structure
481	MIXER1_MIXER_DST_STRUCT_DST	0x4089C000	0x00000100	MIXER1 Destination Structure
482	PASSO_SARO_SAR	0x40900000	0x00000400	PASS SAR0
483	PASS0_SAR1_SAR	0x40901000	0x00000008	PASS SAR1
484	PASSO_SARO_CHO_CH	0x40900800	0x00000040	SAR0, Channel #0
485	PASS0_SAR0_CH1_CH	0x40900840	0x00000040	SAR0, Channel #1
486	PASS0_SAR0_CH2_CH	0x40900880	0x00000040	SAR0, Channel #2

Based on Arm® Cortex®-M7 single

Table 22-1 PPU fixed structure pairs (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
487	PASS0_SAR0_CH3_CH	0x409008C0	0x00000040	SAR0, Channel #3
488	PASS0_SAR0_CH4_CH	0x40900900	0x00000040	SAR0, Channel #4
489	PASS0_SAR0_CH5_CH	0x40900940	0x00000040	SAR0, Channel #5
490	PASS0_SAR0_CH6_CH	0x40900980	0x00000040	SAR0, Channel #6
491	PASS0_SAR0_CH7_CH	0x409009C0	0x00000040	SAR0, Channel #7
492	PASS0_SAR0_CH8_CH	0x40900A00	0x00000040	SAR0, Channel #8
493	PASS0_SAR0_CH9_CH	0x40900A40	0x00000040	SAR0, Channel #9
494	PASS0_SAR0_CH10_CH	0x40900A80	0x00000040	SAR0, Channel #10
495	PASS0_SAR0_CH11_CH	0x40900AC0	0x00000040	SAR0, Channel #11
496	PASS0_SAR0_CH12_CH	0x40900B00	0x00000040	SAR0, Channel #12
497	PASS0_SAR0_CH13_CH	0x40900B40	0x00000040	SAR0, Channel #13
498	PASS0_SAR0_CH14_CH	0x40900B80	0x00000040	SAR0, Channel #14
499	PASS0_SAR0_CH15_CH	0x40900BC0	0x00000040	SAR0, Channel #15
500	PASS0_SAR0_CH16_CH	0x40900C00	0x00000040	SAR0, Channel #16
501	PASS0_SAR0_CH17_CH	0x40900C40	0x00000040	SAR0, Channel #17
502	PASS0_SAR0_CH18_CH	0x40900C80	0x00000040	SAR0, Channel #18
503	PASS0_SAR0_CH19_CH	0x40900CC0	0x00000040	SAR0, Channel #19
504	PASS0_SAR0_CH20_CH	0x40900D00	0x00000040	SAR0, Channel #20
505	PASS0_SAR0_CH21_CH	0x40900D40	0x00000040	SAR0, Channel #21
506	PASS0_SAR0_CH22_CH	0x40900D80	0x00000040	SAR0, Channel #22
507	PASS0_SAR0_CH23_CH	0x40900DC0	0x00000040	SAR0, Channel #23
508	PASS0_SAR0_CH24_CH	0x40900E00	0x00000040	SAR0, Channel #24
509	PASS0_SAR0_CH25_CH	0x40900E40	0x00000040	SAR0, Channel #25
510	PASS0_SAR0_CH26_CH	0x40900E80	0x00000040	SAR0, Channel #26
511	PASS0_SAR0_CH27_CH	0x40900EC0	0x00000040	SAR0, Channel #27
512	PASS0_SAR0_CH28_CH	0x40900F00	0x00000040	SAR0, Channel #28
513	PASS0_SAR0_CH29_CH	0x40900F40	0x00000040	SAR0, Channel #29
514	PASS0_SAR0_CH30_CH	0x40900F80	0x00000040	SAR0, Channel #30
515	PASS0_SAR0_CH31_CH	0x40900FC0	0x00000040	SAR0, Channel #31
516	PASS0_TOP	0x409F0000	0x00001000	PASS0 SAR main
517	VIDEOSS0_VCFG_VIDEOSSCFG	0x40A00000	0x00000400	VIDEOSS#0 Configuration
518	VIDEOSS0_VCFG_VRAM	0x40A00400	0x00000400	VIDEOSS#0 VRAM Configuration
519	VIDEOSS0_GPU_GFX2D	0x40A40000	0x00040000	VIDEOSS#0 Graphics 2D Core
520	VIDEOSS0_VIDEOIOCFG_VIRQ_VIDEOIOCFG	0x40A80020	0x00000020	VIDEOSS#0 I/O Configuration
521	VIDEOSS0_CAPIFC0_FRAMEDUMP	0x40A80400	0x00000400	VIDEOSS#0 Frame Dump Unit
522	VIDEOSS0_CAPIFC0_CAPENG0	0x40A81000	0x00001000	VIDEOSS#0 Capture Engine#0
523	VIDEOSS0_DSPCFG_COMPENGCFG	0x40A90000	0x00002000	VIDEOSS#0 Composition Engine Configuration
524	VIDEOSS0_DSPSEC0_CONSTFRAME0	0x40A92000	0x00000400	VIDEOSS#0 Constant Frame#0 (Content)
525	VIDEOSS0_DSPSEC0_EXTDST0	0x40A92400	0x00000400	VIDEOSS#0 ExtDst#0 (Content)
526	VIDEOSS0_DSPPRIM0_CONSTFRAME4	0x40A92800	0x00000400	VIDEOSS#0 Constant Frame#4 (Content)
527	VIDEOSS0_DSPPRIM0_EXTDST4	0x40A92C00	0x00000400	VIDEOSS#0 ExtDst#4 (Safety)
528	VIDEOSS0_DSPSEC1_CONSTFRAME1	0x40A93000	0x00000400	VIDEOSS#0 Constant Frame#1 (Content)
529	VIDEOSS0_DSPSEC1_EXTDST1	0x40A93400	0x00000400	VIDEOSS#0 ExtDst#1 (Safety)
530	VIDEOSS0_DSPPRIM1_CONSTFRAME5	0x40A93800	0x00000400	VIDEOSS#0 Constant Frame#5 (Safety)
531	VIDEOSS0_DSPPRIM1_EXTDST5	0x40A93C00	0x00000400	VIDEOSS#0 ExtDst#5 (Safety)

Based on Arm® Cortex®-M7 single

Table 22-1 PPU fixed structure pairs (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
532	VIDEOSS0_CAPIFC0_EXTSRC4	0x40A94000	0x00000400	VIDEOSS#0 ExtSrc#4 (Capture)
533	VIDEOSS0_CAPIFC0_STORE4	0x40A94400	0x00000400	VIDEOSS#0 Store#4 (Capture)
534	VIDEOSS0_DSPLAYER1_FETCHLAYER0	0x40A94800	0x00000400	VIDEOSS#0 Fetch Layer#0 (Display)
535	VIDEOSS0_DSPLAYER2_FETCHDECODE4	0x40A94C00	0x00000400	VIDEOSS#0 Fetch Decode#4 (Capture)
536	VIDEOSS0_DSPLAYER2_FETCHECO4	0x40A95000	0x00000400	VIDEOSS#0 Fetch Eco#4 (Capture)
537	VIDEOSS0_DSPLAYER3_FETCHWARP1	0x40A95800	0x00000400	VIDEOSS#0 Fetch Warp#1 (Display)
538	VIDEOSS0_DSPLAYER3_FETCHECO1	0x40A95C00	0x00000400	VIDEOSS#0 Fetch Eco#1 (Display)
539	VIDEOSS0_DSPLAYER4_FETCHLAYER1	0x40A96000	0x00000400	VIDEOSS#0 Fetch Layer#1 (Display)
540	VIDEOSS0_DSPLAYER5_FETCHDECODE0	0x40A96400	0x00000400	VIDEOSS#0 Fetch Decode#0 (Display)
541	VIDEOSS0_DSPVPB_GAMMACOR4	0x40A96800	0x00000400	Video Processing Block #0 GammaCor (Capture)
542	VIDEOSS0_DSPVPB_MATRIX4	0x40A96C00	0x00000400	Video Processing Block #0 Matrix (Capture)
543	VIDEOSS0_DSPVPB_GPSCALER4	0x40A97000	0x00000400	GPscaler #4 (Capture)
544	VIDEOSS0_DSPVPB_HISTOGRAM4	0x40A97400	0x00000400	Video Processing Block #0 Histogram (Capture)
545	VIDEOSS0_DSPBLEND1_LAYERBLEND1	0x40A97800	0x00000400	LayerBlend #1 (Display, Alpha Plane 1)
546	VIDEOSS0_DSPBLEND2_LAYERBLEND2	0x40A97C00	0x00000400	LayerBlend #2 (Display, Alpha Plane 2)
547	VIDEOSS0_DSPBLEND3_LAYERBLEND3	0x40A98000	0x00000400	LayerBlend #3 (Display, Alpha Plane 3)
548	VIDEOSS0_DSPBLEND4_LAYERBLEND4	0x40A98400	0x00000400	LayerBlend #4 (Display, Alpha Plane 4)
549	VIDEOSS0_DSPBLEND5_LAYERBLEND5	0x40A98800	0x00000400	LayerBlend #5 (Display, Alpha Plane 5)
550	VIDEOSS0_CAPIFC0_EXTSRC8	0x40A98C00	0x00000400	ExtSrc #8 (Display)
551	VIDEOSS0_DSPCFG0_DISENGCFG0	0x40AA0000	0x00000400	VIDEOSS#0 Display Engine#0 Configuration
552	VIDEOSS0_DSPMON0_SIG0	0x40AA1000	0x00000400	VIDEOSS#0 Display Engine#0 Signature Unit#0
553	VIDEOSS0_DSPCFG0_FRAMEGEN0	0x40AA2000	0x00000400	VIDEOSS#0 Display Engine#0 Frame Generator#0
554	VIDEOSS0_DSPCOL0_GAMMACOR0	0x40AA2400	0x00000400	VIDEOSS#0 Display Engine#0 Gamma Correction Unit#0
555	VIDEOSS0_DSPCOL0_DITHER0	0x40AA2800	0x00000400	VIDEOSS#0 Display Engine#0 Dither Unit#0
556	VIDEOSS0_DSPIFC0_TCON0	0x40AA3000	0x00000800	VIDEOSS#0 Display Engine#0 Timing Controller#0
557	VIDEOSS0_DSPCFG1_DISENGCFG1	0x40AA4000	0x00000400	VIDEOSS#0 Display Engine#1 Configuration
558	VIDEOSS0_DSPMON1_SIG1	0x40AA5000	0x00000400	VIDEOSS#0 Display Engine#1 Signature Unit#1
559	VIDEOSS0_DSPCFG1_FRAMEGEN1	0x40AA6000	0x00000400	VIDEOSS#0 Display Engine#1 Frame Generator
560	VIDEOSS0_DSPCOL1_GAMMACOR1	0x40AA6400	0x00000400	VIDEOSS#0 Display Engine#1 Gamma Correction Unit#1
561	VIDEOSS0_DSPCOL1_DITHER1	0x40AA6800	0x00000400	VIDEOSS#0 Display Engine#1 Dither Unit#1
562	VIDEOSS0_DSPIFC1_TCON1	0x40AA7000	0x00000800	VIDEOSS#0 Display Engine#1 Timing Controller#1
563	VIDEOSS0_DSPIFC0_FPDLINK0	0x40AC0000	0x00000400	VIDEOSS#0 Display interface0 FPD-Link#0
564	VIDEOSSO_MIPICSIO_MIPICSI_STRUCT_MIPIC- SI_WRAP_MAIN	0x40AD0000	0x00000100	VIDEOSS#0 MIPICSI#0 D-PHY wrapper configuration and status
565	VIDEOSSO_MIPICSI0_MIPICSI_STRUCT_MIPIC- SI_CORE_3PIP	0x40AD0200	0x00000080	VIDEOSS#0 MIPICSI#0 RX Core through APB interface
566	VIDEOSS0_VRPU_MAIN	0x40AF0000	0x00000080	VIDEOSS#0 VRPU Configuration
567	VIDEOSS0_GFX_MPU_RD0_MAIN	0x40AF4000	0x00000004	VIDEOSS#0 MPU Configuration for Read Masters
568	VIDEOSS0_GFX_MPU_RD1_MAIN	0x40AF4400	0x00000004	VIDEOSS#0 MPU Configuration for Read Masters
569	VIDEOSS0_GFX_MPU_RD2_MAIN	0x40AF4800	0x00000004	VIDEOSS#0 MPU Configuration for Read Masters
570	VIDEOSS0_GFX_MPU_RD3_MAIN	0x40AF4C00	0x00000004	VIDEOSS#0 MPU Configuration for Read Masters
571	VIDEOSS0_GFX_MPU_RD4_MAIN	0x40AF5000	0x00000004	VIDEOSS#0 MPU Configuration for Read Masters
572	VIDEOSS0_GFX_MPU_RD5_MAIN	0x40AF5400	0x00000004	VIDEOSS#0 MPU Configuration for Read Masters
573	VIDEOSS0_GFX_MPU_RD6_MAIN	0x40AF5800	0x00000004	VIDEOSS#0 MPU Configuration for Read Masters
574	VIDEOSS0_GFX_MPU_RD7_MAIN	0x40AF5C00	0x00000004	VIDEOSS#0 MPU Configuration for Read Masters
575	VIDEOSS0_GFX_MPU_RD8_MAIN	0x40AF6000	0x00000004	VIDEOSS#0 MPU Configuration for Read Masters

Based on Arm® Cortex®-M7 single

 Table 22-1
 PPU fixed structure pairs (continued)

Pair No.	PPU Fixed Structure Pair	Address	Size	Description
576	VIDEOSS0_GFX_MPU_RD9_MAIN	0x40AF6400	0x00000004	VIDEOSS#0 MPU Configuration for Read Masters
577	VIDEOSS0_GFX_MPU_RD10_MAIN	0x40AF6800	0x00000004	VIDEOSS#0 MPU Configuration for Read Masters
578	VIDEOSS0_GFX_MPU_RD11_MAIN	0x40AF6C00	0x0000004	VIDEOSS#0 MPU Configuration for Read Masters
579	VIDEOSS0_GFX_MPU_RD12_MAIN	0x40AF7000	0x0000004	VIDEOSS#0 MPU Configuration for Read Masters
580	VIDEOSS0_GFX_MPU_RD13_MAIN	0x40AF7400	0x0000004	VIDEOSS#0 MPU Configuration for Read Masters
581	VIDEOSS0_GFX_MPU_RD14_MAIN	0x40AF7800	0x00000004	VIDEOSS#0 MPU Configuration for Read Masters
582	VIDEOSS0_GFX_MPU_RD15_MAIN	0x40AF7C00	0x00000004	VIDEOSS#0 MPU Configuration for Read Masters
583	VIDEOSS0_GFX_MPU_WR0_MAIN	0x40AF8000	0x0000004	VIDEOSS#0 MPU Configuration for Write Masters
584	VIDEOSS0_GFX_MPU_WR1_MAIN	0x40AF8400	0x00000004	VIDEOSS#0 MPU Configuration for Write Masters
585	VIDEOSS0_GFX_MPU_WR2_MAIN	0x40AF8800	0x00000004	VIDEOSS#0 MPU Configuration for Write Masters
586	VIDEOSS0_GFX_MPU_WR3_MAIN	0x40AF8C00	0x00000004	VIDEOSS#0 MPU Configuration for Write Masters
587	VIDEOSS0_GFX_MPU_WR4_MAIN	0x40AF9000	0x00000004	VIDEOSS#0 MPU Configuration for Write Masters
588	VIDEOSS0_GFX_MPU_WR5_MAIN	0x40AF9400	0x00000004	VIDEOSS#0 MPU Configuration for Write Masters
589	VIDEOSS0_GFX_MPU_WR6_MAIN	0x40AF9800	0x0000004	VIDEOSS#0 MPU Configuration for Write Masters
590	VIDEOSS0_GFX_MPU_WR7_MAIN	0x40AF9C00	0x00000004	VIDEOSS#0 MPU Configuration for Write Masters
591	VIDEOSS0_GFX_MPU_WR8_MAIN	0x40AFA000	0x00000004	VIDEOSS#0 MPU Configuration for Write Masters
592	VIDEOSS0_GFX_MPU_WR9_MAIN	0x40AFA400	0x0000004	VIDEOSS#0 MPU Configuration for Write Masters
593	VIDEOSS0_GFX_MPU_WR10_MAIN	0x40AFA800	0x00000004	VIDEOSS#0 MPU Configuration for Write Masters
594	VIDEOSS0_GFX_MPU_WR11_MAIN	0x40AFAC00	0x0000004	VIDEOSS#0 MPU Configuration for Write Masters
595	VIDEOSS0_GFX_MPU_WR12_MAIN	0x40AFB000	0x0000004	VIDEOSS#0 MPU Configuration for Write Masters
596	VIDEOSS0_GFX_MPU_WR13_MAIN	0x40AFB400	0x0000004	VIDEOSS#0 MPU Configuration for Write Masters
597	VIDEOSS0_GFX_MPU_WR14_MAIN	0x40AFB800	0x0000004	VIDEOSS#0 MPU Configuration for Write Masters
598	VIDEOSS0_GFX_MPU_WR15_MAIN	0x40AFBC00	0x00000004	VIDEOSS#0 MPU Configuration for Write Masters
599	PD_PD	0x40B00000	0x00000100	VIDEOSS#0 Power Domain Control

Based on Arm® Cortex®-M7 single

Bus masters

23 Bus masters

The Arbiter (part of flash controller) performs priority-based arbitration based on the master identifier. Each bus master has a dedicated 4-bit master identifier. This master identifier is used for bus arbitration and IPC functionality.

Table 23-1 Bus masters for access and protection control

ID No.	Master ID	Description
0	CPUSS_MS_ID_CM0	Master ID for CM0+
1	CPUSS_MS_ID_CRYPTO	Master ID for Crypto
2	CPUSS_MS_ID_DW0	Master ID for P-DMA0
3	CPUSS_MS_ID_DW1	Master ID for P-DMA1
4	CPUSS_MS_ID_DMAC	Master ID for M-DMA0
9	CPUSS_MS_ID_FAST0	Master ID for External AXI Master 0 (Ethernet#0)
11	CPUSS_MS_ID_FAST2	Master ID for M-DMA1 (AXI DMA)
12	CPUSS_MS_ID_FAST3	Master ID for VIDEO Subsystem
14	CPUSS_MS_ID_CM7_0	Master ID for CM7_0
15	CPUSS_MS_ID_TC	Master ID for DAP Tap Controller

Based on Arm® Cortex®-M7 single

Miscellaneous configuration

24 Miscellaneous configuration

Table 24-1 Miscellaneous configuration for CYT3DL devices

Sl. No.	Configuration	Number/ Instances	Description
0	SRSS_NUM_CLKPATH	11	Number of clock paths. One for each of FLL, PLL, Direct, and CSV
1	SRSS_NUM_HFROOT	14	Number of CLK_HFs present
2	PERI_PC_NR	8	Number of protection contexts
3	PERI_PERI_PCLK_PCLK_GROUP_NR	2	Number of asynchronous PCLK groups
4	PERI_PERI_PCLK_PCLK_GROUP_NR0_GR_DIV_8_VECT	9	Group 0, Number of divide-by-8 clock dividers
5	PERI_PERI_PCLK_PCLK_GROUP_NR0_GR_DIV_16_VECT	16	Group 0, Number of divide-by-16 clock dividers
6	PERI_PERI_PCLK_PCLK_GROUP_NR0_GR_DIV_16_5_VECT	7	Group 0, Number of divide-by-16.5 clock dividers
7	PERI_PERI_PCLK_PCLK_GROUP_NR0_GR_DIV_24_5_VECT	3	Group 0, Number of divide-by-24.5 clock dividers
8	PERI_PERI_PCLK_PCLK_GROUP_NR0_GR_CLOCK_VECT	84	Group 0, Number of programmable clocks [1, 256]
9	PERI_PERI_PCLK_PCLK_GROUP_NR1_GR_DIV_8_VECT	3	Group 1, Number of divide-by-8 clock dividers
10	PERI_PERI_PCLK_PCLK_GROUP_NR1_GR_DIV_16_VECT	4	Group 1, Number of divide-by-16 clock dividers
11	PERI_PERI_PCLK_PCLK_GROUP_NR1_GR_DIV_24_5_VECT	7	Group 1, Number of divide-by-24.5 clock dividers
12	PERI_PERI_PCLK_PCLK_GROUP_NR1_GR_CLOCK_VECT	21	Group 1, Number of programmable clocks [1, 256]
13	CPUSS_CM0P_MPU_NR	8	Number of MPU regions in CM0+
14	CPUSS_CM7_0_FPU_LVL	2	CM7_0 Floating point unit configuration. 0 - No FPU 1 - Single precision FPU 2 - Single and Double precision FPU
15	CPUSS_CM7_0_MPU_NR	16	Number of MPU regions in CM7_0
16	CPUSS_CM7_0_ICACHE_SIZE	16	CM7_0 Instruction cache (ICACHE) size in KB
17	CPUSS_CM7_0_DCACHE_SIZE	16	CM7_0 Data cache size (DCACHE) in KB
18	CPUSS_CM7_0_ITCM_SIZE	64	CM7_0 Instruction TCM (ITCM) size in KB
19	CPUSS_CM7_0_DTCM_SIZE	64	CM7_0 Data TCM (DTCM) size in KB
26	CPUSS_DW0_CH_NR	76	Number of P-DMA0 channels
27	CPUSS_DW1_CH_NR	84	Number of P-DMA1 channels
28	CPUSS_DMAC_CH_NR	8	Number of M-DMA0 controller channels
29	CPUSS_CRYPTO_BUFF_SIZE	2048	Number of 32-bit words in the IP internal memory buffer (to allow for a 256-B, 512-B, 1-KB, 2-KB, 4-KB, 8-KB, 16-KB, and 32-KB memory buffer)
30	CPUSS_FAULT_FAULT_NR	4	Number of fault structures
31	CPUSS_IPC_IPC_NR	8	Number of IPC structures 0 - Reserved for CM0+ access 1 - Reserved for CM7_0 access 2 - Reserved for DAP access Remaining for user purposes
32	CPUSS_PROT_SMPU_STRUCT_NR	16	Number of SMPU protection structures
33	SCB0_EZ_DATA_NR	256	Number of EZ memory bytes. This memory is used in EZ mode, CMD_RESP mode and FIFO mode. Note: Only SCB0 supports EZ mode
34	TCPWM_TR_ONE_CNT_NR	1	Number of input triggers per counter, routed to one counter
35	TCPWM_TR_ALL_CNT_NR	60	Number of input triggers routed to all counters, based on the pin package
36	TCPWM_GRP_NR	3	Number of TCPWM0 counter groups
37	TCPWM_GRP_NR0_GRP_GRP_CNT_NR	38	Number of counters per TCPWM0 Group #0
38	TCPWM_GRP_NR0_CNT_GRP_CNT_WIDTH	16	Counter width in number of bits per TCPWM0 Group #0
39	TCPWM_GRP_NR1_GRP_GRP_CNT_NR	12	Number of counters per TCPWM0 Group #1

Miscellaneous configuration

Miscellaneous configuration for CYT3DL devices (continued) **Table 24-1**

Sl. No.	Configuration	Number/ Instances	Description
40	TCPWM_GRP_NR1_CNT_GRP_CNT_WIDTH	16	Counter width in number of bits per TCPWM0 Group #1
41	TCPWM_GRP_NR2_GRP_GRP_CNT_NR	32	Number of counters per TCPWM0 Group #2
42	TCPWM_GRP_NR2_CNT_GRP_CNT_WIDTH	32	Counter width in number of bits per TCPWM0 Group #2
43	CANFD0_MRAM_SIZE / CANFD1_MRAM_SIZE	16	Message RAM size in KB shared by all the channels
44	EVTGEN_COMP_STRUCT_NR	16	Number of Event Generator comparator structures

Based on Arm® Cortex®-M7 single

Development support

25 Development support

CYT3DL has a rich set of documentation, programming tools, and online resources to assist during the development process. Visit **www.infineon.com** to find out more.

25.1 Documentation

A suite of documentation supports CYT3DL to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

25.1.1 Software user guide

A step-by-step guide for using the sample driver library along with third-party IDEs such as IAR EWARM and GHS Multi.

25.1.2 Technical reference manual

The Technical Reference Manual (TRM) contains all the technical detail needed to use a CYT3DL device, including a complete description of all registers. The TRM is available in the documentation section at **www.infineon.com**.

25.2 Tools

CYT3DL is supported on third-party development tool ecosystems such as IAR and GHS. The device is also supported by Infineon programming utilities for programming, erasing, or reading using Infineon MiniProg4 or Segger J-link. More details are available in the documentation section at www.infineon.com.

Based on Arm® Cortex®-M7 single

Electrical specifications

Electrical specifications 26

26.1 **Absolute maximum ratings**

Use of this device under conditions outside the min and max limits listed in Table 26-1 may cause permanent damage to the device. Exposure to conditions within the limits of Table 26-1 but beyond those of normal operation for extended periods of time may affect device reliability. The maximum storage temperature is 150°C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When operated under conditions within the limits of Table 26-1 but beyond those of normal operation, the device may not operate to specification.

Power considerations

The average chip-junction temperature, T_J, in °C, may be calculated using Equation 1:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Equation. 1

Where:

 T_A is the ambient temperature in °C.

 θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W.

 P_D is the sum of P_{INT} and P_{IO} ($P_D = P_{INT} + P_{IO}$).

 P_{INT} is the chip internal power. $(P_{INT} = V_{DDD} \times I_{DD} + V_{CCD} \times I_{CC} + V_{DDA} \times I_{VDDA})$

P_{IO} represents the power dissipation on input and output pins; user determined.

For most applications, P_{IO} < P_{INT} and may be neglected.

On the other hand, P_{IO} may be significant if the device is configured to continuously drive external modules and/or memories.

WARNING:

- The recommended operating conditions are required to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are guaranteed when the device is operated under these conditions.
- Operation under any conditions other than these conditions may adversely affect reliability of device and can result in device failure.
- No guarantee is made with respect to any use, operating conditions, or combinations not represented in this datasheet. If you want to operate the device under any condition other than listed herein, contact the sales representatives.

Based on Arm® Cortex®-M7 single

Electrical specifications

Table 26-1 Absolute maximum ratings

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/ conditions
SID10	V _{DDD_ABS}	Power supply voltage (V _{DDD}) ^[39, 40]	V _{SS} - 0.3	-	V _{SS} + 6.0	V	See Table 3-4 for assignment of ports to supply domains
SID10A	V _{DDIO_GPIO_ABS}	Power supply voltage (V _{DDIO_GPIO}) ^[40]	V _{SS} - 0.3	-	V _{SS} + 6.0	V	Applies to all $V_{\rm DDIO_GPIO}$ sources $(V_{\rm DDIO_GPIO_1/2})$. See Table 3-4 for assignment of ports to supply domains
SID10B	V _{DDIO_SMC_ABS}	Power supply voltage (V _{DDIO_SMC}) ^[40]	V _{SS} – 0.3	_	V _{SS} + 6.0	V	See Table 3-4 for assignment of ports to supply domains
SID10C	V _{DDIO_HSIO_ABS}	Power supply voltage (V _{DDIO_HSIO}) ^[40]	V _{SS} – 0.3	-	V _{SS} + 6.0	V	See Table 3-4 for assignment of ports to supply domains
SID10F	V _{DDPLL_FPD0_ABS}	Power supply voltage (V _{DDPLL_FPDO}) ^[40] . Supply for FPD-Link PLLs	V _{SSA_FPD0} - 0.3	-	V _{SSA_FPD0} + 1.21	V	
SID10G	V _{DDHA_FPD0_ABS}	Power supply voltage (V _{DDHA_FPD0}) ^[40] . Supply for FPD-Link Drivers	V _{SSA_FPD0} - 0.3	-	V _{SSA_FPD0} + 4.0	V	
SID10H	V _{DDA_FPD0_ABS}	Power supply voltage (V _{DDA_FPD0}) ^[40] . Core-supply for FPD-Link	V _{SSA_FPD0} - 0.3	-	V _{SSA_FPD0} + 1.21	V	
SID10J	V _{DDA_MIPI_ABS}	Power supply voltage (V _{DDA MIPI}) ^[40] . Supply for MIPI D-PHY	V _{SSA_MIPI} - 0.3	-	V _{SSA_MIPI} + 1.21	V	
SID45	V _{DDA_DAC_ABS}	Power supply voltage $(V_{DDA_DAC})^{[40]}$. Supply for Audio DAC	V _{SSA_DAC} - 0.3	-	V _{SSA_DAC} + 4.0	V	
SID11	V _{DDA_ADC_ABS}	Analog power supply voltage $(V_{DDA_ADC})^{[40]}$. Supply for SAR ADC	V _{SSA_ADC} - 0.3	-	V _{SSA_ADC} + 6.0	V	
SID12	V _{REFH_ABS}	SAR Analog reference voltage, high ^[40]	V _{SSA_ADC} - 0.3	-	V _{SSA_ADC} + 6.0	V	$V_{REFH} \le (V_{DDA_ADC} + 0.3 V)$
SID12A	V _{REFL_ABS}	SAR Analog reference voltage, low ^[40]	V _{SSA_ADC} - 0.3	-	V _{SSA_ADC} + 0.3	V	
SID13	V _{CCD_ABS}	Power supply voltage (V _{CCD})	V _{SS} - 0.3	-	V _{SS} + 1.21	V	
SID15A	V _{I_GPIO_ABS}	Input voltage ^[40]	V _{SS} - 0.5	-	V _{DDIO_GPIO} + 0.5	V	See Table 3-4 for assignment of ports to supply domains
SID15B	V _{I_SMC_ABS}	Input voltage ^[40]	V _{SS} – 0.5	-	V _{DDIO_SMC} + 0.5	V	See Table 3-4 for assignment of ports to supply domains
SID15C	V _{I_HSIO_ABS}	Input voltage ^[40]	V _{SS} – 0.5	-	V _{DDIO_HSIO} + 0.5	V	See Table 3-4 for assignment of ports to supply domains
SID15F	V _{I_MIPI_ABS}	Input voltage ^[40]	V _{SSA_MIPI} - 0.3	-	V _{DDA_MIPI} + 0.3	V	
SID16	V _{I_ADC_ABS}	Analog input voltage to ADC ^[40]	V _{SSA_ADC} - 0.3	-	V _{DDA_ADC} + 0.3	V	See Table 3-4 for assignment of ports to supply domains
SID17A	V _{O_GPIO_ABS}	Output voltage ^[40]	V _{SS} - 0.3	-	V _{DDIO_GPIO} + 0.3	V	See Table 3-4 for assignment of ports to supply domains
SID17B	V _{O_SMC_ABS}	Output voltage ^[40]	V _{SS} - 0.3	-	V _{DDIO_SMC} + 0.3	V	See Table 3-4 for assignment of ports to supply domains
SID17C	V _{O_HSIO_ABS}	Output voltage ^[40]	V _{SS} - 0.3	-	V _{DDIO_HSIO} + 0.3	V	See Table 3-4 for assignment of ports to supply domains
SID17G	V _{O_FPD0_ABS}	Output voltage ^[40]	V _{SSA_FPD0} - 0.3	-	V _{DDA_FPD0} + 0.3	V	
SID17H	V _{O_PMIC_EN_ABS}	Output voltage ^[40]	V _{SS} – 0.3	-	V _{DDD} + 0.3	V	For the pin PMIC_EN
SID18	I _{CLAMP_ABS}	Maximum clamp current ^[41,42,43,44]	-5	-	5	mA	Applicable to general purpose I/O pins
SID18A	ΣI _{CLAMP_ABS}	Total maximum clamp current	-25	-	25	mA	Applicable to I/O pins in total for $V_{DDIO_GPIO_X}$
SID18B	I _{CLAMP_ABS}	Maximum clamp current ^[41, 42, 43, 44]	-52	-	52	mA	Applicable to SMC I/O pins

^{39.}Ensure that V_{DDD} ≥ (V_{DDIO_GPIO_1} - 0.3 V) ≥ (V_{DDIO_GPIO_2} - 0.3 V).

40.These parameters are based on the condition that V_{SS} = V_{SSA_ADC} = V_{SSA_DAC} = V_{SSA_MIPI} = V_{SSA_FPD} = 0.0 V.

41.A current-limiting resistor must be provided such that the current at the I/O pin does not exceed rated values at any time, including

 ^{41.}A current-timiting resistor flust be provided such that the current at the 1/0 pin does not exceed rated values at any time, including during power transients. Refer to Figure 26-1 for more information on the recommended circuit.
 42.V_{DDD} and V_{DDIO} must be sufficiently loaded or protected to prevent them from being pulled out of the recommended operating range by the clamp current.
 43.Clamp current can be applied only when the part is powered, and for ports between each pair of VDDIO/VSSIO pins (excluding ADC pins, ECO_IN/OUT, LPECO_IN/LPECO_OUT, WCO_IN/OUT and XRES_L).
 44.When the conditions of [41], [42], [43], and SID18/A/B/C/D/E are met, |I_{CLAMP_ABS}| supersedes V_{IA_ABS} and V_{I_ABS}.

Based on Arm® Cortex®-M7 single

Electrical specifications

Table 26-1 Absolute maximum ratings (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/ conditions
SID18C	ΣI _{CLAMP_ABS}	Total maximum clamp current	-624	-	624	mA	Applicable to SMC I/O pins clamping current occurred by sudden switching-off of inductive load (stepper motor coil) in total for V _{DDIO_SMC}
SID18D	I _{CLAMP_ABS}	Maximum clamp current ^[41, 42, 43, 44]	-5	-	5	mA	Applicable to HSIO_STDLN
SID18E	ΣI _{CLAMP_ABS}	Total maximum clamp current	-25	-	25	mA	Applicable to I/O pins in total for $V_{\text{DDIO_HSIO}}$
SID20	I _{OL1_GPIO_ABS}	LOW-level maximum output current for GPIO ^[45]	_	-	3.5	mA	Setting is 1 mA
SID21	I _{OL2_GPIO_ABS}	LOW-level maximum output current for GPIO ^[45]	-	-	7	mA	Setting is 2 mA
SID22	I _{OL3_GPIO_ABS}	LOW-level maximum output current for GPIO ^[45]	-	-	10	mA	Setting is 5 mA
SID22A	I _{OL4_GPIO_ABS}	LOW-level maximum output current for GPIO ^[45]	-	-	10	mA	Setting is 6 mA
SID23A	I _{OL_PMIC_EN_ABS}	Sink maximum current	-	-	4	mA	For the pin PMIC_EN. Required to add a current limiting series resistor of 1.25 k Ω –5 k Ω to the PMIC_EN output.
SID23B	ΣΙ _{ΟL_P-} MIC_EN_ABS	Sink average current	-	-	1	mA	For the pin PMIC_EN. The average output current is defined as the value of the average current flowing through any one of the corresponding pins for a 10 ms period. The average value is the operation current \times the operation ratio. The operation current period over the average current spec should be less than 100 ns. $Required to add a current limiting series resistor of 1.25 k\Omega -5 k\Omega to the PMIC_EN output.$
SID26	ΣΙ _{ΟL_GPIO_ABS}	LOW-level total output current for GPIO ^[46]	-	-	50	mA	
SID26A	I _{OL_SMC_ABS}	LOW-level maximum output current for SMC ^[47]	-	-	52	mA	Setting is 30 mA at -40°C
SID26B	ΣI _{OL_SMC_ABS}	LOW-level total output current for SMC ^[48]	-	-	300	mA	25°C < T _A ≤ 105°C
SID26I	ΣI _{OL_SMC_ABS}	LOW-level total output current for SMC ^[48]	-	-	450	mA	-40°C ≤ T _A ≤ 25°C
SID26E	I _{OL_FPD_ABS}	LOW-level maximum output current for FPD-link ^[49]	-	-	24	mA	
SID26F	ΣI _{OL_FPD_ABS}	LOW-level total output current for FPD-link ^[50]	-	-	120	mA	
SID26G	I _{OL_HSIO_ABS}	LOW-level maximum output current for HSIO ^[51]	-	-	15	mA	
SID26H	ΣΙ _{ΟL_HSIO_ABS}	LOW-level total output current for HSIO ^[52]	-	-	150	mA	
SID27	I _{OH1_GPIO_ABS}	HIGH-level maximum output current for GPIO ^[45]	-	-	-3.5	mA	Setting is 1 mA
SID28	I _{OH2_GPIO_ABS}	HIGH-level maximum output current for GPIO ^[45]	-	-	-7	mA	Setting is 2 mA
SID29	I _{OH3_GPIO_ABS}	HIGH-level maximum output current for GPIO ^[45]	-	-	-10	mA	Setting is 5 mA

45. The maximum output current is the peak current flowing through any one GPIO I/O.
46. The total output current is the maximum current flowing through all GPIO I/Os (GPIO_STD, and GPIO_ENH).
47. The maximum output current is the peak current flowing through any one SMC I/O.
48. The total output current is the maximum current flowing through all SMC I/Os (GPIO_SMC).
49. The maximum output current is the peak current flowing through any one FPD-link I/O output.
50. The total output current is the maximum current flowing through all FPD-link I/O outputs.
51. The maximum output current is the peak current flowing through any one HSIO I/O
52. The total output current is the maximum current flowing through all HSIO I/Os (HSIO_STDLN).

Based on Arm® Cortex®-M7 single

Absolute maximum ratings (continued) **Table 26-1**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/ conditions
SID29A	I _{OH4_GPIO_ABS}	HIGH-level maximum output current for GPIO ^[45]	_	-	-10	mA	Setting is 6 mA
							For the pin PMIC_EN.
SID30A	I _{OH_PMIC_EN_ABS}	Source maximum current	-	-	-4	mA	Required to add a current limiting series resistor of $1.25\mathrm{k}\Omega$ - $5\mathrm{k}\Omega$ to the PMIC_EN output.
SID30B	ΣΙ _{ΟΗ_Ρ} - MIC_EN_ABS	Source average current	-	-	-1	mA	For the pin PMIC_EN. The average output current is defined as the value of the average current flowing through any one of the corresponding pins for a 10 ms period. The average value is the operation current \times the operation ratio. The operation current period over the average current spec should be less than 100 ns. $Required to add a current limiting series resistor of 1.25 k\Omega - 5 k\Omega to the PMIC_EN output.$
SID33	ΣΙ _{ΟΗ1_GPIO_ABS}	HIGH-level total output current for GPIO ^[46]	_	-	-50	mA	
SID33A	I _{OH_SMC_ABS}	HIGH-level maximum output current for SMC ^[47]	_	_	-52	mA	Setting is 30 mA at -40°C
SID33B	ΣI _{OH_SMC_ABS}	HIGH-level total output current for SMC ^[48]	_	-	-300	mA	
SID33E	I _{OH_FPD_ABS}	HIGH-level maximum output current for FPD-link ^[49]	-	-	-24	mA	
SID33F	ΣI _{OH_FPD_ABS}	HIGH-level total output current for FPDlink ^[50]	_	-	-120	mA	
SID33G	I _{OH_HSIO_ABS}	HIGH-level maximum output current for HSIO ^[51]	-	-	-15	mA	
SID33H	ΣΙ _{ΟΗ_HSIO_ABS}	HIGH-level total output current for HSIO ^[52]	_	-	-150	mA	
SID34_2	P_{D}	Power dissipation	-	-	2500	mW	
SID36	T _A	Operating ambient temperature	-40	-	105	°C	For S-grade devices
SID38	T _{STG}	Storage temperature	-55	-	150	°C	
SID39	TJ	Operating junction temperature	-40	-	150	°C	
SID39A	V _{ESD_HBM}	Electrostatic discharge human body model	2000	-	-	V	
SID39B1	V _{ESD_CDM1}	Electrostatic discharge charged device model for corner pins	750	-	-	V	
SID39B2	V _{ESD_CDM2}	Electrostatic discharge charged device model for all other pins	500	-	-	V	
SID39C	I _{LU}	The maximum pin current the device can tolerate before triggering a latch-up	-100	-	100	mA	

Based on Arm® Cortex®-M7 single

Electrical specifications

 $\mbox{Figure 26-1} \quad \mbox{ Example of a recommended circuit}^{[53]}$

WARNING:

Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current, or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings.

102 of 207

Note

Datasheet

53.+B is the positive battery voltage around 45 V.

Based on Arm® Cortex®-M7 single

Electrical specifications

26.2 **Device-level specifications**

Table 26-2 Recommended operating conditions

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
Recommo	ended operatin	g conditions					1
SID40	V _{DDD} , V _{DDA_ADC} , V _{DDIO_GPIO} , V _{DDIO_SMC} ,	Power supply voltage ^[54]	2.7 ^[55]	-	5.5 ^[56]	V	V _{DDIO_GPIO} (V _{DDIO_GPIO_1/2})
SID40A	V _{DDIO_EFP}	Power supply voltage for eFuse programming ^[57]	3.0	-	5.5	V	V _{DDIO_GPIO_1} for this product, when programming eFuses
SID40B	V _{DDIO_HSIO}	Power supply voltage	3.0	3.3	3.6	V	
SID40E	V _{DDPLL_FPD0} ^[58]	Power supply voltage (V _{DDPLL FPDO}). Supply for FPD-link PLLs.	1.09	1.15	1.21	V	
SID40F	V _{DDHA_FPD0}	Power supply voltage (V _{DDHA_FPD0}). Supply for FPD-link line drivers.	3.0	3.3	3.6	V	
SID40G	V _{DDA_FPD0} ^[58]	Power supply voltage (V _{DDA_FPD0}). Core-supply for FPD-link.	1.09	1.15	1.21	V	
SID40H	V _{DDA_MIPI} ^[58]	Power supply voltage (V _{DDA_MIPI}). Supply for D-PHY.	1.09	1.15	1.21	V	
SID40J	V _{CCD} ^[58]	External V _{CCD} power supply	1.09	1.15	1.21	V	External V _{CCD} power supply range when externally supplied at V _{CCD} . V _{CCD} must not be driven by an external supply at startup. See related application note for correct startup sequence.
SID41	C _{S1}	Smoothing capacitor ^[59, 60]	30.8	94	103.4	μF	
SID43	V _{DDA_DAC}	High voltage supply	3.0	3.3	3.6	V	

54. Ensure $V_{DDIO_GPIO_1} \ge 0.8 \text{ x } V_{DDA_ADC}$ when SARMUX0 is enabled.

55.3.0 V ±10% is supported with a lower BOD setting option. This setting provides robust protection for internal timing but BOD reset occurs at a voltage below the specified operating conditions. A higher BOD setting option is available (consistent with down to 3.0 V) and guarantees that all operating conditions are met.

56.5.0 V ±10% is supported with a higher OVD setting option. This setting provides robust protection for internal and interface timing, but OVD reset occurs at a voltage above the specified operating conditions. A lower OVD setting option is available (consistent with up to 5.0 V) and guarantees that all operating conditions are met. Voltage overshoot to a higher OVD setting range for V_{DDD} and V_{DDA_ADC} is permissible, provided the duration is less than 2 hours cumulated. Note that during overshoot voltage condition electrical parameters are not

57. ĕFuse programming must be executed with the part in a "quiet" state, with minimal activity (preferably only JTAG or a single LIN/CAN channel on V_{DDD} domain).

58. Analog and digital supply rails to be shorted on the PCB $(V_{DDPLL_FPDO} = V_{DDA_FPDO} = V_{DDA_MIPI} = V_{CCD)}$. These supply rails must be connected to the same power supply of V_{CCD} . This supply voltage needs to be filtered in order to eliminate any PLL jitters. It is recommended to use a noise filter to reduce the noise ripple for the FPD-LINK and MIPI-PHY supply.

59. Only one smoothing capacitor, C_{S1} is required per chip (not per VCCD pin). The VCCD pins should be connected together to ensure a low-im-

pedance connection (see the recommendation in **Figure 26-2**).

60. Capacitors used for power supply decoupling or filtering are operated under a continuous DC-bias. Many capacitors used with DC power across them provide less than their target capacitance, and their capacitance is not constant across their working voltage range. When selecting capacitors for use with this device, ensure that the selected components provide the required capacitance under the specific operating conditions of temperature and voltage used in your design. While the temperature coefficient is normally found within a parts catalog (such as, X7R, C0G, Y5V), the matching voltage coefficient may only be available on the component datasheet or direct from the manufacturer. Use of components that do not provide the required capacitance under the actual operating conditions may cause the device to operate to less than datasheet specifications.

Electrical specifications

Figure 26-2 **Smoothing capacitor**

Smoothing capacitor should be placed as close as possible to the VCCD pin.

DC specifications, CPU current, and transition time specifications **Table 26-3**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
Execute v	with Flash						
SID51C	I _{CC1}	V _{CCD} current in external PMIC mode	-	450	950	mA	Typ: $T_A = 25^{\circ}\text{C}$, $V_{CCD} = 1.15 \text{ V}$, process typ (TT) Max: $T_A = 105^{\circ}\text{C}$, $T_J = 150^{\circ}\text{C}$, $V_{CCD} = 1.21 \text{ V}$, process worst (FF) (Maximum expected V_{CCD} when $T_J = 150^{\circ}\text{C}$ is reached due to self-heating)
SID52C	I _{DD1}	V _{DDD} current in external PMIC mode, Use case with VIDEOSS (V _{DDD} current for SID51C use case)	-	7	10	mA	Cortex®-M7 at 240 MHz generated by PLL with ECO reference, executing Dhrystone from flash with cache enabled. Cortex®-M0+ is sleeping at 100 MHz. Graphics Engine at 200 MHz, operating 2D rendering, drawing, capture, output on 2 displays. All other peripherals, peripheral clocks, interrupts, CSV, DMA, ECO are enabled. No I/O toggling. Typ: T _A = 25°C, V _{CCD} = 1.15 V, process typ (TT) Max: T _A = 105°C, V _{CCD} = 1.21 V, process worst (FF)

Based on Arm® Cortex®-M7 single

Table 26-3 DC specifications, CPU current, and transition time specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID56	I _{DD1}	V _{DDD} current in internal regulator mode, Execute from flash; Cortex®-M7 CPU in Active mode	-	8	38	mA	Cortex®-M7 at 8 MHz generated by IMO reference, executing Dhrystone from flash with cache enabled. Cortex®-M0+ is sleeping at 8 MHz. All clocks at 8MHz generated by IMO. VIDEOSS power switched off. All other peripherals, peripheral clocks, interrupts, CSV, DMA, PLL, ECO are disabled. No IO toggling. Typ: T _A = 25°C, V _{DDD} = 5.0 V, process typ (TT) Max: T _A = 85°C, V _{DDD} = 5.5 V, process worst (FF)
SID50A	I _{DD1}	V _{DDD} current in internal regulator mode. Cortex®- M7/M0+ CPUs in Sleep mode	-	28	70	mA	Clocks running at max frequency, All CPUs in Sleep mode. VIDEOSS power switched off. All other peripherals, peripheral clocks, interrupts, CSV, DMA, ECO are disabled. No IO toggling. Typ: T _A = 25°C, V _{DDD} = 5.0 V, process typ (TT) Max: T _A = 85°C, V _{DDD} = 5.5 V, process worst (FF)
SID50C	I _{DD1}	V _{DDD} current in internal regulator mode. Cortex®- M7/M0+ CPUs in Sleep mode (room temp)	-	-	40	mA	Clocks running at max frequency, All CPUs in Sleep mode. VIDEOSS power switched off All other peripherals, peripheral clocks, interrupts, CSV, DMA, ECO are disabled. No IO toggling. Max: T _A = 25°C, V _{DDD} = 5.5 V, process worst (FF)

Based on Arm® Cortex®-M7 single

Table 26-3 DC specifications, CPU current, and transition time specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID50B	I _{CC1}	V _{CCD} current in external PMIC mode. Cortex®- M7/M0+ CPUs in Sleep mode. VIDEOSS in sleep mode (clocks off)	-	30	500	mA	Clocks running at max frequency, All CPUs in Sleep mode. VIDEOSS in sleep mode All other peripherals, peripheral clocks, interrupts, CSV, DMA, ECO are disabled. No IO toggling. Typ: T _A = 25°C, V _{DDD} = 5.0 V, V _{CCD} = 1.15 V, process typ (TT) Max: T _A = 105°C, V _{DDD} = 5.5 V, V _{CCD} = 1.21 V, process worst (FF)
DeepSlee	p Mode		T				
SID59_3	I _{DD_DS32A}	V _{DDD} current in internal regulator mode. 32 KB SRAM retention, LPECO(4 MHz) operation in DeepSleep mode.	_	150	_	μА	Deep Sleep Mode (RTC and EVTGEN operating, all other peripherals off, CAN MRAM disabled), CM0+ and CM7_0 retain, CM7_1 power switched OFF Typ: T _A = 25°C, V _{DDD} = 5.0 V, V _{CCD} = 1.1 V, process typ (TT) FPD-Link/MIPI Standby currents not included
SID59A_3	I _{DD_DS32A}	V _{DDD} current in internal regulator mode. 32 KB SRAM retention, LPECO(4 MHz) operation in DeepSleep mode.	-	-	250	μА	Deep Sleep Mode (RTC at 32kHz and EVTGEN operating, all other peripherals off, CAN MRAM disabled), CM0+ and CM7_0 retain Max: V _{DDD} = 5.5 V, TA = 25°C, process worst (FF) FPD-Link/MIPI Standby currents not included
SID60_3	I _{DD_DS32B}	V _{DDD} current in internal regulator mode. 32 KB SRAM retention, LPECO(4 MHz) operation in DeepSleep mode.	_	_	2500	μА	DeepSleep Mode (RTC and Event generator operating, all other peripherals off, CAN MRAM disabled), CM0+ and CM7_0 retain, CM7_1 power switched OFF Max: V _{DDD} = 5.5 V, T _A = 85°C, process worst (FF) FPD-Link/MIPI Standby currents not included

Based on Arm® Cortex®-M7 single

Electrical specifications

Table 26-3 DC specifications, CPU current, and transition time specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID64_3	IDD_D\$32C	V _{DDD} current in internal regulator mode. 32 KB SRAM retention, ILO operation in DeepSleep mode.	-	50	2500	μА	DeepSleep Mode (RTC and Event generator operating, all other peripherals off, CAN MRAM disabled) CM0+ and CM7_0 retain, CM7_1 power switched OFF Typ: T _A = 25°C, V _{DDD} = 5.0 V, process typ (TT) Max: T _A = 85°C, V _{DDD} = 5.5 V, process worst (FF) FPD-Link/MIPI Standby currents not included
SID64A_3	I _{DD_DS32D}	32 KB SRAM retention, ILO operation in DeepSleep mode	-	-	150	μА	DeepSleep Mode (RTC at 32kHz and Event generator operating, all other peripherals off, CAN MRAM disabled) CM0+ and CM7_0 retain Max: T _A = 25°C, V _{DDD} = 5.5 V, process worst (FF) FPD-Link/MIPI Standby currents not included
Hibernat	e Mode						
SID66	I _{DD_HIB1}	V _{DDD} current, Hibernate Mode + RTC at 32.768 KHz	-	_	20	μΑ	T _A = 25°C using ILO, V _{DDD} = 5.0 V
SID66A	I _{DD_HIB2}	V _{DDD} current, Hibernate Mode + RTC at 32.768 KHz	-	_	40	μΑ	T _A = 25°C, using WCO, V _{DDD} = 5.0 V
SID66B	I _{DD_HIB3}	V _{DDD} current, Hibernate Mode + RTC at 32.768 KHz	-	_	75	μА	$T_A = 85$ °C, using WCO, $V_{DDD} = 5.5 V$
SID66C	I _{DD_HIB4}	V _{DDD} current, Hibernate Mode + RTC at 32.768 KHz	-	_	150	μА	T _A = 25°C using LPECO 4 MHz, 20 pF load of LPECO V _{DDD} = 5.0 V
SID66D	I _{DD_HIB5}	V _{DDD} current, Hibernate Mode + RTC at 32.768 KHz	-	_	215	μΑ	T _A = 85°C, using LPECO 4 MHz, 20 pF load of LPECO V _{DDD} = 5.5 V
Power Mo	ode Transitio	on Times					·
SID69_1	t _{ACT_DS}	Power down time from ACTIVE to DEEPSLEEP (using the internal regulator)	-	_	2.8	μs	When IMO is already running and all HFCLK roots are at least 8 MHz. HFCLK roots that are slower than this will require additional time to turn off.

Based on Arm® Cortex®-M7 single

Table 26-3 DC specifications, CPU current, and transition time specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID69A	t _{ACT_DS}	Power down time from ACTIVE to DeepSleep (using external PMIC)	-	_	6.5	μs	When IMO is already running and all HFCLK roots are at least 8 MHz. HFCLK roots that are slower than this will require additional time to turn off. The time for the PMIC to deassert its power good signal is not included.
SID67	t _{DS_ACT}	DeepSleep to Active transition time (IMO clock, flash execution)	-	_	26	μs	When using 8 MHz IMO. Measured from wakeup interrupt during DeepSleep until Flash execution. $T_A \ge -5^{\circ}C$ Note: At temperatures below $-5^{\circ}C$ the DeepSleep to Active transition time can be higher than the max time indicated by as much as 20 μ s
SID67A	t _{DS_ACT_FLL}	DeepSleep to Active transition time (FLL clock, flash execution)	-	_	26	μs	When using FLL to generate 96 MHz from the 8-MHz IMO. Measured from wakeup interrupt during DeepSleep until Flash execution. $T_A \ge -5^{\circ}C$ Note: At temperatures below $-5^{\circ}C$ the DeepSleep to Active transition time can be higher than the max time indicated by as much as 20 μ s
SID67B	t _{DS_ACT_PLL}	DeepSleep to Active transition time (PLL clock)	-	_	60	μs	When using PLL to generate 96 MHz from the 8-MHz IMO. Measured from wakeup interrupt during DeepSleep until PLL locks. $T_A \ge -5^{\circ}C$ Note: At temperatures below $-5^{\circ}C$ the DeepSleep to Active transition time can be higher than the max time indicated by as much as 20 μ s
SID68C	t _{нів_аст}	Release time from HV reset (POR, BOD, OVD, OCD, WDT, Hibernate wakeup, or XRES_L) until CM0+ begins executing ROM boot	_	-	650	μs	Without boot runtime with max. 103.4 µF smoothing capacitor per SID41, no FPD/MIPI filter connected Guaranteed by Design
SID68D	t _{нів_аст}	Release time from HV reset (POR, BOD, OVD, OCD, WDT, Hibernate wakeup, or XRES_L) until CM0+ begins executing ROM boot	-	_	1040	μs	Without boot runtime with max. 103.4 μF smoothing capacitor per SID41 + max. 5x11 μF FPD/MIPI filter caps Guaranteed by Design
SID68A	t _{LVR_ACT}	Release time from LV reset (Fault, Internal system reset, MCWDT, or CSV) during Active/Sleep until CM0+ begins executing ROM boot	8	_	10	μs	Without boot runtime. Guaranteed by design

Based on Arm® Cortex®-M7 single

Electrical specifications

Table 26-3 DC specifications, CPU current, and transition time specifications (continued)

All specifications are valid for $-40^{\circ}C \leq T_{A} \leq 105^{\circ}C$ and for 2.7 V to 5.5 V except where noted.

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID68B	t _{LVR_DS}	Release time from LV reset (Fault, or MCWDT) during DeepSleep until CM0+ begins executing ROM boot	-	_	15	μs	Without boot runtime. Guaranteed by design
SID79	t _{HIBWAKE} - UP_PW	Pulse width for wakeup from Hibernate mode on HIBER- ANTE_WAKEUP pins	90	_	_	ns	Guaranteed by design
SID80A	t _{RB_N}	ROM boot startup time or wakeup time from hibernate in NORMAL protection state	-	_	1700	μs	FAST_BOOT = 1, CM0+ clocked at 100 MHz
SID80B	t _{RB_S}	ROM boot startup time or wakeup time from hibernate in SECURE protection state	_	_	2300	μs	FAST_BOOT = 1, CM0+ clocked at 100 MHz
SID81A	t _{FB}	Flash boot startup time or wakeup time from hibernate in NORMAL/SECURE protection state	-	-	190	μs	FAST_BOOT = 1, TOC2_FLAGS=0x2CF, CM0+ clocked at 100 MHz, Listen window = 0 ms
SID81B	t _{FB_A}	Flash boot with app authentication time in NORMAL/SECURE protection state	-	-	5000	μs	FAST_BOOT = 1, TOC2_FLAGS = 0x24F, CM0+ clocked at 100 MHz, Listen window = 0 ms, Public key exponent e = 0x010001, APP size is 64 KB with the last 256 bytes being a digital signature in RSASSA-PKCS1-v1.5 Valid for RSA2K.
SID81C	t _{FB_B}	Flash boot with app authentication time in NORMAL/SECURE protection state	-	-	8150	μѕ	FAST_BOOT = 1, TOC2_FLAGS = 0x24F, CM0+ clocked at 100 MHz, Listen window = 0 ms, Public key exponent e = 0x010001, APP size is 64 KB with the last 384 bytes being a digital signature in RSASSA-PKCS1-v1.5 Valid for RSA3K.
Regulato	r Specificati	ons		'			
SID600	V _{CCD}	Internal regulator core supply voltage (transient range)	1.05	1.1	1.15	V	
SID600A	V _{CCD_S}	Internal regulator core supply voltage (static range, no load)	1.075	1.1	1.125	V	Guaranteed by design
SID601	I _{DDD_ACT}	Regulator operating current in Active/Sleep mode	-	900	1500	μΑ	Guaranteed by design
SID602	I _{DDD_DPSLP}	Regulator operating current in DeepSleep mode	-	1.5	20	μΑ	Guaranteed by design

Based on Arm® Cortex®-M7 single

Electrical specifications

Table 26-3 DC specifications, CPU current, and transition time specifications (continued)

All specifications are valid for $-40^{\circ}C \leq T_{A} \leq 105^{\circ}C$ and for 2.7 V to 5.5 V except where noted.

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID603	I _{RUSH}	In-rush current	_	-	850	mA	
SID604	I _{ILDOUT}	Internal regulator output current for operation	-	-	300	mA	
SID606	V _{IL}	PMIC digital input LOW voltage (%V _{DDD})	0.3 × V _{DDD}	_	-	V	
SID606A	V _{IH}	PMIC digital input HIGH voltage (%V _{DDD})	-	-	0.7 × V _{DDD}	V	
SID606B	V _{HYST}	PMIC digital input hysteresis (%V _{DDD})	0.05 × V _{DDD}	-	-	V	
SID607	V _{OL}	PMIC digital output LOW voltage	-	-	0.5	V	I _{OL} = 1 mA
SID607A	V _{OH}	PMIC digital output HIGH voltage	V _{DDD} – 0.5	-	-	V	I _{OH} = -1 mA

Based on Arm® Cortex®-M7 single

26.3 **Reset specifications**

Table 26-4 XRES_L Reset

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
XRES_L	DC specifica	tions	1		I	11	1
SID73	I _{IDD_XRES}	I _{DD} when XRES_L asserted	-	_	1.7	mA	Typ: $T_A = 25^{\circ}C$, $V_{DDD} = 5 V$, process typ (TT) Max: $T_A = 105^{\circ}C$, $V_{DDD} = 5.5 V$, process worst (FF)
SID74	V_{IH}	Input voltage high threshold	$0.7 \times V_{DDD}$	_	_	V	CMOS Input
SID75	V _{IL}	Input voltage low threshold	_	_	$0.3 \times V_{DDD}$	V	CMOS Input
SID76	R _{PULLUP}	Pull-up resistor	7	_	20	kΩ	
SID77	C _{IN}	Input capacitance	_	_	5	pF	
SID78	V _{HYSXRES}	Input voltage hysteresis	0.05 × V _{DDD}	-	_	V	
SID82	I _{DDIO_HSIO}	I _{DDIO_HSIO} when XRES_L is asserted	-	1.5	300	μА	Typ: T _A = 25°C, V _{DDIO_HSIO} = 3.3 V, process typ (TT) Max: T _A = 105°C, V _{DDIO_HSIO} = 3.6 V, process worst (FF)
SID82_1	I _{DDIO_H} - SIO_1	I _{DDIO_HSIO} when XRES_L is asserted	_	-	4.5	μΑ	Max: T _A = 25°C, V _{DDIO_HSIO} = 3.6 V, process worst (FF)
SID82_2	I _{DDIO_H} - SIO_2	I _{DDIO_HSIO} when XRES_L is asserted	-	-	36	μΑ	Max: T _A = 85°C, V _{DDIO_HSIO} = 3.6 V, process worst (FF)
SID83	I _{DDIO_SMC}	I _{DDIO_SMC} when XRES_L is asserted	-	0.06	90	μА	Typ: $T_A = 25^{\circ}C$, $V_{DDIO_SMC} = 5.0 \text{ V}$, process typ (TT) Max: $T_A = 105^{\circ}C$, $V_{DDIO_SMC} = 5.5 \text{ V}$, process worst (FF)
SID83_1	I _{DDIO_SMC_1}	I _{DDIO_SMC} when XRES_L is asserted	-	_	0.2	μΑ	Max: T _A = 25°C, V _{DDIO_SMC} = 5.5 V, process worst (FF)
SID83_2	I _{DDIO_SMC_2}	I _{DDIO_SMC} when XRES_L is asserted	_	-	3	μΑ	Max: T _A = 85°C, V _{DDIO_SMC} = 5.5 V, process worst (FF)
SID84	I _{DDIO_G} - PIO_1	I _{DDIO_GPIO_1} when XRES_L is asserted	_	0.05	40	μА	Typ: $T_A = 25^{\circ}C$, $V_{DDIO_GPIO_1} = 5.0 \text{ V}$, process typ (TT) Max: $T_A = 105^{\circ}C$, $V_{DDIO_GPIO_1} = 5.5 \text{ V}$, process worst (FF)
SID84_1	I _{DDIO_GPI} - O_1_1	I _{DDIO_GPIO_1} when XRES_L is asserted	-	_	0.15	μΑ	Max: T _A = 25°C, V _{DDIO_GPIO_1} = 5.5 V, process worst (FF)

Based on Arm® Cortex®-M7 single

Table 26-4 XRES_L Reset (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID84_2	I _{DDIO_GPI-} O_1_2	I _{DDIO_GPIO_1} when XRES_L is asserted	-	-	1.2	μΑ	Max: T _A = 85°C, V _{DDIO_GPIO_1} = 5.5 V, process worst (FF)
SID85	I _{DDIO_G} - PIO_2	I _{DDIO_GPIO_2} when XRES_L is asserted	-	0.05	50	μА	Typ: $T_A = 25^{\circ}C$, $V_{DDIO_GPIO_2} = 5.0 \text{ V}$, process typ (TT) Max: $T_A = 105^{\circ}C$, $V_{DDIO_GPIO_2} = 5.5 \text{ V}$, process worst (FF)
SID85_1	I _{DDIO_GPI-} O_2_1	I _{DDIO_GPIO_2} when XRES_L is asserted	-	-	0.15	μΑ	Max: T _A = 25°C, V _{DDIO_GPIO_2} = 5.5 V, process worst (FF)
SID85_2	I _{DDIO_GPI} - O_2_2	I _{DDIO_GPIO_2} when XRES_L is asserted	-	-	1.2	μΑ	Max: T _A = 85°C, V _{DDIO_GPIO_2} = 5.5 V, process worst (FF)
XRES_L	AC specifica	tions				•	
SID70	t _{XRES_ACT}	XRES_L deasserted to Active transition time	-	_	265	μs	Without boot runtime. Guaranteed by design
SID71	t _{XRES_PW}	XRES_L pulse width	5	-	-	μs	
SID72	t _{XRES_FT}	Pulse suppression width	100	_	_	ns	

Figure 26-3 **Reset sequence**

Based on Arm® Cortex®-M7 single

Electrical specifications

I/O Specifications 26.4

I/O specifications **Table 26-5**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
GPIO_STI	specification	ıs (5-V I/Os, except GPI	O_ENH)		1		1
SID650	V _{OL1}	Output voltage LOW level	-	-	0.6	V	I _{OL} = 6 mA CFG_OUT/DRIVE_SEL<1:0> = 0b00 V _{DDIO_GPIO} ≥ 4.5 V
SID651	V _{OL2}	Output voltage LOW level	-	-	0.4	V	$I_{OL} = 5 \text{ mA}$ CFG_OUT/DRIVE_SEL<1:0> = 0b0X $V_{DDIO_GPIO} \ge 4.5 \text{ V}$
SID651D	V _{OL2}	Output voltage LOW level	-	-	0.4	V	I_{OL} = 2 mA CFG_OUT/DRIVE_SEL<1:0> = 0b0X 2.7 V \leq V _{DDIO_GPIO} \leq 4.5 V
SID652	V _{OL3}	Output voltage LOW level	-	-	0.4	V	I_{OL} = 2 mA CFG_OUT/DRIVE_SEL<1:0> = 0b10 $V_{DDIO_GPIO} \ge 4.5 \text{ V}$
SID652D	V _{OL3}	Output voltage LOW level	-	-	0.4	V	I_{OL} = 1 mA CFG_OUT/DRIVE_SEL<1:0> = 0b10 2.7 V \leq V _{DDIO GPIO} < 4.5 V
SID653	V _{OL4}	Output voltage LOW level	-	-	0.4	V	I_{OL} = 1 mA CFG_OUT/DRIVE_SEL<1:0> = 0b11 $V_{DDIO\ GPIO} \ge 4.5\ V$
SID653D	V _{OL4}	Output voltage LOW level	-	-	0.4	V	$I_{OL} = 0.5 \text{ mA}$ CFG_OUT/DRIVE_SEL<1:0> = 0b11 $2.7 \text{ V} \le \text{V}_{DDIO_GPIO} < 4.5 \text{ V}$
SID654	V _{OH1}	Output voltage HIGH level	V _{DDIO_GPIO} – 0.5	-	-	V	I_{OH} = -5 mA CFG_OUT/DRIVE_SEL<1:0> = 0b00 $V_{DDIO_GPIO} \ge 4.5 \text{ V}$
SID654D	V _{OH1}	Output voltage HIGH level	V _{DDIO_GPIO} – 0.5	-	-	V	I_{OH} = -2 mA CFG_OUT/DRIVE_SEL<1:0> = 0b00 2.7 V \leq V _{DDIO GPIO} < 4.5 V
SID655	V _{OH2}	Output voltage HIGH level	V _{DDIO_GPIO} – 0.5	-	-	V	I_{OH} = -5 mA CFG_OUT/DRIVE_SEL<1:0> = 0b01 $V_{DDIO_GPIO} \ge 4.5 \text{ V}$
SID655D	V _{OH2}	Output voltage HIGH level	V _{DDIO_GPIO} – 0.5	-	-	V	I_{OH} = -2 mA CFG_OUT/DRIVE_SEL<1:0> = 0b01 2.7 V \leq V _{DDIO_GPIO} < 4.5 V
SID656	V _{OH3}	Output voltage HIGH level	V _{DDIO_GPIO} – 0.5	-	-	V	I_{OH} = -2 mA CFG_OUT/DRIVE_SEL<1:0> = 0b10 $V_{DDIO_GPIO} \ge 4.5 \text{ V}$
SID656D	V _{OH3}	Output voltage HIGH level	V _{DDIO_GPIO} – 0.5	-	-	V	I_{OH} = -1 mA CFG_OUT/DRIVE_SEL<1:0> = 0b10 2.7 V \leq V _{DDIO_GPIO} < 4.5 V
SID657	V _{OH4}	Output voltage HIGH level	V _{DDIO_GPIO} – 0.5	-	-	V	$I_{OH} = -1 \text{ mA}$ CFG_OUT/DRIVE_SEL<1:0> = 0b11 $V_{DDIO_GPIO} \ge 4.5 \text{ V}$
SID657D	V _{OH4}	Output voltage HIGH level	V _{DDIO_GPIO} – 0.5	-	_	V	$\begin{split} & _{OH} = -0.5 \text{ mA} \\ & \text{CFG_OUT/DRIVE_SEL} < 1:0 > = 0b11 \\ & 2.7 \text{ V} \leq \text{V}_{DDIO_GPIO} < 4.5 \text{ V} \end{split}$
SID658	R _{PD}	Pull-down resistance	25	50	100	kΩ	
SID659	R _{PU}	Pull-up resistance	25	50	100	kΩ	
SID660	V _{IH_CMOS}	Input voltage HIGH threshold in CMOS mode	0.7 × V _{DDIO_GPIO}	-	-	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0 CFG_IN/VTRIP_SEL<0:0> = 0b0
SID661	V _{IH_TTL}	Input voltage HIGH threshold in TTL mode	2.0	-	-	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0 CFG_IN/VTRIP_SEL<0:0> = 0b1
SID662	V _{IH_AUTO}	Input voltage HIGH threshold in AUTO mode	0.8 × V _{DDIO_GPIO}	-	-	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b1 CFG_IN/VTRIP_SEL<0:0> = 0b0 4.5 V ≤ V _{DDIO_GPIO} ≤ 5.5 V
SID663	V _{IL_CMOS}	Input voltage LOW threshold in CMOS mode	-	-	0.3 × V _{DDIO_GPIO}	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0 CFG_IN/VTRIP_SEL<0:0> = 0b0
SID664	V _{IL_TTL}	Input voltage LOW threshold in TTL mode	-	-	0.8	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0 CFG_IN/VTRIP_SEL<0:0> = 0b1

Based on Arm® Cortex®-M7 single

Table 26-5 I/O specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID665	V _{IL_AUTO}	Input voltage LOW threshold in AUTO mode	-	-	0.5 × V _{DDIO_GPIO}	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b1 CFG_IN/VTRIP_SEL<0:0> = 0b0 4.5 V ≤ V _{DDIO_GPIO} ≤ 5.5 V
SID666	V _{HYST_CMOS}	Hysteresis in CMOS mode	0.05 × V _{DDIO_GPIO}	-	-	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0 CFG_IN/VTRIP_SEL<0:0> = 0b0
SID668	V _{HYST_AUTO}	Hysteresis in AUTO mode	0.05 × V _{DDIO_GPIO}	-	-	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b1 CFG_IN/VTRIP_SEL<0:0>= 0b0 $4.5 \text{ V} \leq \text{V}_{\text{DDIO_GPIO}} \leq 5.5 \text{ V}$
SID669	C _{IN}	Input pin capaci- tance	-	-	5	pF	Test condition: 10/100MHz
SID670	I _{IL}	Input leakage current	-1	-	1	μА	$V_{DDIO_GPIO_x} = V_{DDD} = V_{DDA_ADC} = 5.5 \text{ V},$ $V_{SS} < V_I < V_{DDIO_GPIO_x} - 40^{\circ}\text{C} \le T_A \le 105^{\circ}\text{C}$ This is valid for the pin which do not have ADC input functionality.
SID671	t _{R_F_FAST}	Rise time or fall time (10% to 90% of V _{DDIO_GPIO})	1	-	10	ns	CFG_OUT/DRIVE_SEL<1:0> = 0b00, 20-pF load, entire V _{DDIO_GPIO} range
SID672	t _{R_F_FAST}	Rise time or fall time (10% to 90% of V _{DDIO_GPIO})	1	-	20	ns	CFG_OUT/DRIVE_SEL<1:0>= 0b00, 50-pF load, entire V _{DDIO_GPIO} range, guaranteed by design
SID673	t _{R_F_FAST}	Rise time or fall time (10% to 90% of V _{DDIO_GPIO})	1	-	20	ns	CFG_OUT/DRIVE_SEL<1:0> = 0b01, 20-pF load, entire V _{DDIO_GPIO} range, guaranteed by design
SID674	t _{R_F_FAST}	Rise time or fall time (10% to 90% of V _{DDIO_GPIO})	1	-	20	ns	CFG_OUT/DRIVE_SEL<1:0>= 0b10, 10-pF load, entire V _{DDIO_GPIO} range, guaranteed by design
SID675	t _{R_F_FAST}	Rise time or fall time (10% to 90% of VDDIO_GPIO)	1	-	20	ns	CFG_OUT/DRIVE_SEL<1:0> = 0b11, 6-pF load, entire V _{DDIO_GPIO} range, guaranteed by design
GPIO_SM	C specification	ns (Stepper Motor Con	trol, 5-V I/Os)		1	1.	
SID650A	V _{OL2}	Output voltage LOW level	-	-	0.6	V	I_{OL} = 6 mA CFG_OUT/DRIVE_SEL<1:0> = 0b01 $V_{DDIO\ SMC} \ge 4.5\ V$
SID651A	V _{OL2}	Output voltage LOW level	-	-	0.4	V	I _{OL} = 5 mA CFG_OUT/DRIVE_SEL<1:0> = 0b01 V _{DDIO_SMC} ≥ 4.5 V
SID651E	V _{OL2}	Output voltage LOW level	-	-	0.4	V	I _{OL} = 2 mA CFG_OUT/DRIVE_SEL<1:0> = 0b01 2.7 V ≤ V _{DDIO_SMC} < 4.5 V
SID652A	V _{OL3}	Output voltage LOW level	-	-	0.4	V	$I_{OL} = 2 \text{ mA}$ CFG_OUT/DRIVE_SEL<1:0> = 0b10 $V_{DDIO SMC} \ge 4.5 \text{ V}$
SID652E	V _{OL3}	Output voltage LOW level	-	-	0.4	V	I _{OL} = 1 mA CFG_OUT/DRIVE_SEL<1:0> = 0b10 2.7 V ≤ V _{DDIO_SMC} < 4.5 V
SID653A	V _{OL4}	Output voltage LOW level	-	-	0.4	V	I _{OL} = 1 mA CFG_OUT/DRIVE_SEL<1:0> = 0b11 V _{DDIO_SMC} ≥ 4.5 V
SID653E	V _{OL4}	Output voltage LOW level	-	-	0.4	V	I _{OL} = 0.5 mA CFG_OUT/DRIVE_SEL<1:0> = 0b11 2.7 V ≤ V _{DDIO_SMC} < 4.5 V

Based on Arm® Cortex®-M7 single

Table 26-5 I/O specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID653B	V _{OL5}	Output voltage LOW level	-	-	0.5	V	$\begin{array}{l} I_{OL} = 30 \text{ mA} \\ CFG_OUT/DRIVE_SEL<1:0> = 0b00 \\ CFG_OUT/SLOW<0:0> = 0b1 \\ 25^{\circ}C < T_{A} \le 105^{\circ}C \\ V_{DDIO_SMC} \ge 4.5 \text{ V} \end{array}$
SID653C	V _{OL5}	Output voltage LOW level	-	-	0.5	V	$\begin{split} & I_{\text{OL}} = 40 \text{ mA} \\ & \text{CFG_OUT/DRIVE_SEL} < 1:0 > = 0 \text{b00} \\ & \text{CFG_OUT/SLOW} < 0:0 > = 0 \text{b1} \\ & -30^{\circ}\text{C} < \text{T}_{\text{A}} \leq 25^{\circ}\text{C} \\ & \text{V}_{\text{DDIO_SMC}} \geq 4.5 \text{ V} \end{split}$
SID653H	V _{OL5}	Output voltage LOW level	-	-	0.5	V	$\begin{split} &I_{OL} = 52 \text{ mA} \\ &CFG_OUT/DRIVE_SEL<1:0> = 0b00 \\ &CFG_OUT/SLOW<0:0> = 0b1 \\ &-40^{\circ}C \le T_{A} \le -30^{\circ}C \\ &V_{DDIO_SMC} \ge 4.5 \text{ V} \end{split}$
SID654A	V _{OH2}	Output voltage HIGH level	V _{DDIO_SMC} – 0.5	-	-	V	I_{OH} = -5 mA CFG_OUT/DRIVE_SEL<1:0> = 0b01 $V_{DDIO_SMC} \ge 4.5 \text{ V}$
SID654E	V _{OH2}	Output voltage HIGH level	V _{DDIO_SMC} – 0.5	-	-	V	$I_{OH} = -2 \text{ mA}$ CFG_OUT/DRIVE_SEL<1:0> = 0b01 2.7 V \leq V _{DDIO_SMC} < 4.5 V
SID656A	V _{OH3}	Output voltage HIGH level	V _{DDIO_SMC} – 0.5	-	-	V	I_{OH} = -2 mA CFG_OUT/DRIVE_SEL<1:0> = 0b10 $V_{DDIO_SMC} \ge 4.5 \text{ V}$
SID656E	V _{OH3}	Output voltage HIGH level	V _{DDIO_SMC} – 0.5	-	-	V	$I_{OH} = -1 \text{ mA}$ CFG_OUT/DRIVE_SEL<1:0> = 0b10 2.7 V \leq V _{DDIO_SMC} < 4.5 V
SID657A	V _{OH4}	Output voltage HIGH level	V _{DDIO_SMC} – 0.5	-	-	V	$I_{OH} = -1 \text{ mA}$ $CFG_OUT/DRIVE_SEL<1:0> = 0b11$ $V_{DDIO_SMC} \ge 4.5 \text{ V}$
SID657E	V _{OH4}	Output voltage HIGH level	V _{DDIO_SMC} – 0.5	-	-	V	$I_{OH} = -0.5 \text{ mA}$ CFG_OUT/DRIVE_SEL<1:0> = 0b11 2.7 V \leq V _{DDIO_SMC} < 4.5 V
SID657B	V _{OH5}	Output voltage HIGH level	V _{DDIO_SMC} – 0.5	-	-	V	$\begin{array}{l} I_{OL} = -30 \text{ mA} \\ CFG_OUT/DRIVE_SEL<1:0> = 0b00 \\ CFG_OUT/SLOW<0:0> = 0b1 \\ 25^{\circ}C < T_{A} \le 105^{\circ}C \\ V_{DDIO_SMC} \ge 4.5 \text{ V} \end{array}$
SID657C	V _{OH5}	Output voltage HIGH level	V _{DDIO_SMC} - 0.5	-	-	V	$\begin{split} & I_{\text{OL}} = -40 \text{ mA} \\ & \text{CFG_OUT/DRIVE_SEL} < 1:0 > = 0b00 \\ & \text{CFG_OUT/SLOW} < 0:0 > = 0b1 \\ & -30^{\circ}\text{C} < \text{T}_{\text{A}} \leq 25^{\circ}\text{C} \\ & \text{V}_{\text{DDIO_SMC}} \geq 4.5 \text{ V} \end{split}$
SID657I	V _{OH5}	Output voltage HIGH level	V _{DDIO_SMC} - 0.5	-	-	V	$\begin{split} & I_{OL} = -52 \text{ mA} \\ & CFG_OUT/DRIVE_SEL<1:0> = 0b00 \\ & CFG_OUT/SLOW<0:0> = 0b1 \\ & -40^{\circ}\text{C} \le T_{A} \le -30^{\circ}\text{C} \\ & V_{DDIO_SMC} \ge 4.5 \text{ V} \end{split}$
SID658A	R _{PD}	Pull-down resistance	25	50	100	kΩ	
SID659A	R _{PU}	Pull-up resistance	25	50	100	kΩ	
SID659B	V _{OUT}	Mid range voltage level	2.45	-	2.55	V	CFG/DRIVE_MODE<2:0> = 0b001
SID660A	V _{IH_CMOS}	Input voltage HIGH threshold in CMOS mode	$0.7 \times V_{DDIO_SMC}$	-	-	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0 CFG_IN/VTRIP_SEL<0:0> = 0b0
SID661A	V _{IH_TTL}	Input voltage HIGH threshold in TTL mode	2	-	-	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0 CFG_IN/VTRIP_SEL<0:0> = 0b1
SID662A	V _{IH_AUTO}	Input voltage HIGH threshold in AUTO mode	0.8 × V _{DDIO_SMC}	-	-	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b1 CFG_IN/VTRIP_SEL<0:0> = 0b0 $4.5 \text{ V} \le \text{V}_{\text{DDIO_SMC}} \le 5.5 \text{ V}$
SID663A	V _{IL_CMOS}	Input voltage LOW threshold in CMOS mode	-	-	0.3 × V _{DDIO_SMC}	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0 CFG_IN/VTRIP_SEL<0:0> = 0b0
SID664A	V _{IL_TTL}	Input voltage LOW threshold in TTL mode	-	-	0.8	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0 CFG_IN/VTRIP_SEL<0:0> = 0b1

Based on Arm® Cortex®-M7 single

Table 26-5 I/O specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID665A	V _{IL_AUTO}	Input voltage LOW threshold in AUTO mode	-	-	0.5 × V _{DDIO_SMC}	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b1 CFG_IN/VTRIP_SEL<0:0> = 0b0 $4.5 \text{ V} \leq \text{V}_{\text{DDIO_SMC}} \leq 5.5 \text{ V}$
SID666A	V _{HYST_CMOS}	Hysteresis in CMOS mode	0.05 × V _{DDIO_SMC}	-	-	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0 CFG_IN/VTRIP_SEL<0:0> = 0b0
SID668A	V _{HYST_AUTO}	Hysteresis in AUTO mode	0.05 × V _{DDIO_SMC}	-	-	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b1 CFG_IN/VTRIP_SEL<0:0> = 0b0 $4.5 \text{ V} \leq \text{V}_{\text{DDIO_SMC}} \leq 5.5 \text{ V}$
SID669A	C _{IN}	Input pin capaci- tance	-	-	7	pF	Test condition: 10/100MHz
SID670A	I _{IL}	Input leakage current	-2	-	2	μА	$\begin{split} &V_{DDIO_SMC} = V_{DDD} = 5.5 \text{ V,} \\ &V_{SS} < V_I < V_{DDIO_SMC} \\ &-40^{\circ}\text{C} \le T_A \le 105^{\circ}\text{C} \\ &\text{This is valid for the pin which} \\ &\text{do not have ADC input} \\ &\text{functionality.} \end{split}$
SID673A	t _{R_F_FAST}	Rise time or fall time (10% to 90% of V _{DDIO_SMC})	1	-	20	ns	5 mA drive strength 20-pF load, CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_OUT/SLOW<0:0> = 0b0, guaranteed by design
SID674A	t _{R_F_FAST}	Rise time or fall time (10% to 90% of V _{DDIO_SMC})	1	-	20	ns	2 mA drive strength 10-pF load, CFG_OUT/DRIVE_SEL<1:0> = 0b10, CFG_OUT/SLOW<0:0> = 0b0, guaranteed by design
SID675A	t _{R_F_FAST}	Rise time or fall time (10% to 90% of V _{DDIO_SMC})	1	-	20	ns	1 mA drive strength 6-pF load, CFG_OUT/DRIVE_SEL<1:0> = 0b11, CFG_OUT/SLOW<0:0> = 0b0, guaranteed by design
SID676A	t _{R_F_SMC_SLOW}	Rise time or fall time (10% to 90% of V _{DDIO_SMC})	15	-	80	ns	30 mA drive strength No load, CFG_OUT/DRIVE_SEL<1:0> = 0b00, CFG_OUT/SLOW<0:0> = 0b1
SID676B	t _{R_F_SMC_SLOW}	Rise time or fall time (10% to 90% of V _{DDIO_SMC})	25	-	100	ns	30 mA drive strength 85-pF load, CFG_OUT/DRIVE_SEL<1:0> = 0b00, CFG_OUT/SLOW<0:0> = 0b1
SID676C	t _{R_F_SMC_SLOW}	Rise time or fall time (10% to 90% of V _{DDIO_SMC})	100	-	200	ns	30 mA drive strength 2.7-nF load, CFG_OUT/DRIVE_SEL<1:0> = 0b00, CFG_OUT/SLOW<0:0> = 0b1
	H Specification						
SID650C	V_{OL1}	Output voltage LOW level	-	-	0.6	V	I_{OL} = 6 mA CFG_OUT/DRIVE_SEL<1:0> = 0b0X $V_{DDIO_GPIO} \ge 4.5 \text{ V}$
SID650D	V _{OL1}	Output voltage LOW level	-	-	0.4	V	I _{OL} = 5 mA CFG_OUT/DRIVE_SEL<1:0> = 0b0X V _{DDIO_GPIO} ≥ 4.5 V
SID651C	V _{OL1}	Output voltage LOW level	_	-	0.4	V	I_{OL} = 2 mA CFG_OUT/DRIVE_SEL<1:0> = 0b0X 2.7 V \leq V _{DDIO_GPIO} < 4.5 V

Based on Arm® Cortex®-M7 single

Table 26-5 I/O specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID652C	V _{OL3}	Output voltage LOW level	-	-	0.4	V	I_{OL} = 2 mA CFG_OUT/DRIVE_SEL<1:0> = 0b10 $V_{DDIO_GPIO} \ge 4.5 \text{ V}$
SID652F	V _{OL3}	Output voltage LOW level	-	-	0.4	V	$\begin{split} & I_{OL} = 1 \text{ mA} \\ & CFG_OUT/DRIVE_SEL<1:0> = 0b10 \\ & 2.7 \text{ V} \leq \text{V}_{DDIO_GPIO} < 4.5 \text{ V} \end{split}$
SID653F	V _{OL4}	Output voltage LOW level	-	-	0.4	V	I_{OL} = 1 mA CFG_OUT/DRIVE_SEL<1:0> = 0b11 $V_{DDIO_GPIO} \ge 4.5 \text{ V}$
SID653G	V _{OL4}	Output voltage LOW level	-	-	0.4	V	I_{OL} = 0.5 mA CFG_OUT/DRIVE_SEL<1:0> = 0b11 2.7 V \leq V _{DDIO_GPIO} < 4.5 V
SID654C	V _{OH1}	Output voltage HIGH level	V _{DDIO_GPIO} – 0.5	-	-	V	I_{OH} = -5 mA CFG_OUT/DRIVE_SEL<1:0> = 0b0X $V_{DDIO_GPIO} \ge 4.5 \text{ V}$
SID654G	V _{OH1}	Output voltage HIGH level	V _{DDIO_GPIO} – 0.5	-	-	V	I_{OH} = -2 mA CFG_OUT/DRIVE_SEL<1:0> = 0b0X 2.7 V \leq V _{DDIO_GPIO} < 4.5 V
SID655C	V _{OH3}	Output voltage HIGH level	V _{DDIO_GPIO} – 0.5	-	-	V	I_{OH} = -2 mA CFG_OUT/DRIVE_SEL<1:0> = 0b10 $V_{DDIO_GPIO} \ge 4.5 \text{ V}$
SID656C	V _{OH3}	Output voltage HIGH level	V _{DDIO_GPIO} – 0.5	-	-	V	I_{OH} = -1 mA CFG_OUT/DRIVE_SEL<1:0> = 0b10 2.7 V \leq V _{DDIO_GPIO} < 4.5 V
SID657G	V _{OH4}	Output voltage HIGH level	V _{DDIO_GPIO} – 0.5	_	-	V	$I_{OH} = -1 \text{ mA}$ $CFG_OUT/DRIVE_SEL<1:0> = 0b11$ $V_{DDIO_GPIO} \ge 4.5 \text{ V}$
SID657H	V _{OH4}	Output voltage HIGH level	V _{DDIO_GPIO} – 0.5	-	-	V	$I_{OH} = -0.5 \text{ mA}$ CFG_OUT/DRIVE_SEL<1:0> = 0b11 2.7 V \leq V _{DDIO_GPIO} < 4.5 V
SID658C	R _{PD}	Pull-down resistance	25	50	100	kΩ	
SID659C	R _{PU}	Pull-up resistance	25	50	100	kΩ	
SID660C	V _{IH_CMOS}	Input voltage HIGH threshold in CMOS mode	0.7 × V _{DDIO_GPIO}	_	-	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0 CFG_IN/VTRIP_SEL<0:0> = 0b0
SID661C	V _{IH_TTL}	Input voltage HIGH threshold in TTL mode	2	-	-	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0 CFG_IN/VTRIP_SEL<0:0> = 0b1
SID662C	V _{IH_AUTO}	Input voltage HIGH threshold in AUTO mode	0.8 × V _{DDIO_GPIO}	-	-	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b1 CFG_IN/VTRIP_SEL<0:0>= 0b0 4.5 V \le V_DDIO_GPIO \le 5.5 V
SID663C	V _{IL_CMOS}	Input voltage LOW threshold in CMOS mode	-	-	0.3 × V _{DDIO_GPIO}	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0 CFG_IN/VTRIP_SEL<0:0> = 0b0
SID664C	V _{IL_TTL}	Input voltage LOW threshold in TTL mode	-	-	0.8	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0 CFG_IN/VTRIP_SEL<0:0> = 0b1
SID665C	V _{IL_AUTO}	Input voltage LOW threshold in AUTO mode	-	-	0.5 × V _{DDIO_GPIO}	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b1 CFG_IN/VTRIP_SEL<0:0>= 0b0 4.5 V \le V_DDIO_GPIO \le 5.5 V
SID666C	V _{HYST_CMOS}	Hysteresis in CMOS mode	0.05 × V _{DDIO_GPIO}	-	-	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0 CFG_IN/VTRIP_SEL<0:0> = 0b0
SID668C	V _{HYST_AUTO}	Hysteresis in AUTO mode	0.05 × V _{DDIO_GPIO}	-	-	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b1 CFG_IN/VTRIP_SEL<0:0> = 0b0 $4.5 \text{ V} \le \text{V}_{\text{DDIO_GPIO}} \le 5.5 \text{ V}$
SID669C	C _{IN}	Input pin capacitance	-	-	5	pF	Test condition: 10/100MHz
SID670C	I _{IL}	Input leakage current	-1	_	1	μΑ	$V_{DDIO_GPIO} = V_{DDD} = 5.5 \text{ V},$ $V_{SS} < V_I < V_{DDIO_GPIO}$ $-40^{\circ}\text{C} \le T_A \le 105^{\circ}\text{C}$

Based on Arm® Cortex®-M7 single

Table 26-5 I/O specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID671C	t _{R_F_FAST}	Rise time or fall time (10% to 90% of V _{DDIO_GPIO})	1	-	10	ns	20-pF load, CFG_OUT/DRIVE_SEL<1:0> = 0b00, CFG_OUT/SLOW<0:0> = 0b0, entire V _{DDIO_GPIO} range
SID672C	t _{R_F_FAST}	Rise time or fall time (10% to 90% of V _{DDIO_GPIO})	1	-	20	ns	50-pF load, CFG_OUT/DRIVE_SEL<1:0> = 0b00, CFG_OUT/SLOW<0:0> = 0b0, entire V _{DDIO_GPIO} range, guaranteed by design
SID673C	t _{R_F_FAST}	Rise time or fall time (10% to 90% of V _{DDIO_GPIO})	1	-	20	ns	20-pF load, CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_OUT/SLOW<0:0> = 0b0, entire V _{DDIO_GPIO} range, guaranteed by design
SID674C	t _{R_F_FAST}	Rise time or fall time (10% to 90% of V _{DDIO_GPIO})	1	_	20	ns	10-pF load, CFG_OUT/DRIVE_SEL<1:0> = 0b10, CFG_OUT/SLOW<0:0> = 0b0, entire V _{DDIO_GPIO} range, guaranteed by design
SID675C	t _{R_F_FAST}	Rise time or fall time (10% to 90% of V _{DDIO_GPIO})	1	_	20	ns	6-pF load, CFG_OUT/DRIVE_SEL<1:0> = 0b11, CFG_OUT/SLOW<0:0> = 0b0, entire V _{DDIO_GPIO} range, guaranteed by design
SID676E	t _{F_I2C_SLOW}	Fall time (30% to 70% of V _{DDIO_GPIO})	20 × (V _{DDIO_GPIO} / 5.5)	-	250	ns	10-pF to 400-pF load, CFG_OUT/DRIVE_SEL<1:0> = 0b00, CFG_OUT/SLOW<0:0> = 0b1, minimum R_{PU} = 400 Ω
SID677C	t _{R_F_SLOW}	Rise time or fall time (10% to 90% of V _{DDIO_GPIO})	20 × (V _{DDIO_GPIO} / 5.5)	-	160	ns	20-pF load, CFG_OUT/DRIVE_SEL<1:0> = 0b00, CFG_OUT/SLOW<0:0> = 0b1, output frequency = 1 MHz
SID678C	t _{R_F_SLOW}	Rise time or fall time (10% to 90% of V _{DDIO_GPIO})	20 × (V _{DDIO_GPIO} / 5.5)	-	250	ns	400-pF load, CFG_OUT/DRIVE_SEL<1:0> = 0b00, CFG_OUT/SLOW<0:0> = 0b1, output frequency = 400 kHz guaranteed by design
HSIO_STE	LN Specifica	tions (3 V I/Os)	,	<u>'</u>		1	
SID650E	V _{OL0}	Output LOW voltage level	-	-	0.4	V	I _{OL} = 10 mA CFG_DRIVE_EXT<1:0>/DRIVE_SEL _EXT<2:0> = 0b000
SID651F	V _{OL0}	Output LOW voltage level	_	_	0.2	V	I _{OL} = 0.1 mA CFG_DRIVE_EXT<1:0>/DRIVE_SEL _EXT<2:0> = 0b000
SID654I	V _{OL1}	Output LOW voltage level	-	-	0.4	V	$\begin{split} &I_{OL} = 10 \text{ mA} \\ &CFG_DRIVE_EXT<1:0>/DRIVE_SEL} \\ &_EXT<2:0> = 0b001 \\ &3.0 \text{ V} \leq \text{V}_{DDIO} \text{ HSIO} \leq 3.6 \text{ V} \end{split}$
SID655G	V _{OL2}	Output LOW voltage level	-	-	0.4	V	I_{OL} = 2 mA CFG_DRIVE_EXT<1:0>/DRIVE_SEL _EXT<2:0> = 0b010 3.0 V \leq V _{DDIO} HSIO \leq 3.6 V
SID656G	V _{OL3}	Output LOW voltage level	-	-	0.4	V	$I_{OL} = 1 \text{ mA}$ CFG_DRIVE_EXT<1:0>/DRIVE_SEL _EXT<2:0> = 0b011 $3.0 \text{ V} \leq \text{V}_{DDIO_HSIO} \leq 3.6 \text{ V}$
SID656H	V _{OL4}	Output LOW voltage level	-	-	0.4	V	I_{OL} = 0.5 mA CFG_DRIVE_EXT<1:0>/DRIVE_SEL _EXT<2:0> = 0b100 $3.0 \text{ V} \le V_{DDIO_HSIO} \le 3.6 \text{ V}$

Based on Arm® Cortex®-M7 single

 Table 26-5
 I/O specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID657J	V _{OH0}	Output HIGH voltage level	V _{DDIO_HSIO} – 0.4	-	-	V	I _{OH} = -10 mA CFG_DRIVE_EXT<1:0>/DRIVE_SEL _EXT<2:0> = 0b000
SID658D	V _{OH0}	Output HIGH voltage level	V _{DDIO_HSIO} - 0.2	-	-	V	I _{OH} = -0.1 mA CFG_DRIVE_EXT<1:0>/DRIVE_SEL _EXT<2:0> = 0b000
SID661F	V _{OH1}	Output HIGH voltage level	V _{DDIO_HSIO} – 0.4	-	-	V	I_{OH} = -10 mA CFG_DRIVE_EXT<1:0>/DRIVE_SEL _EXT<2:0> = 0b001 3.0 V \leq V _{DDIO} HSIO \leq 3.6 V
SID662F	V _{OH2}	Output HIGH voltage level	V _{DDIO_HSIO} - 0.4	-	-	V	I_{OH} = -2 mA CFG_DRIVE_EXT<1:0>/DRIVE_SEL _EXT<2:0> = 0b010 3.0 V \leq V _{DDIO} HSIO \leq 3.6 V
SID663E	V _{OH3}	Output HIGH voltage level	V _{DDIO_HSIO} - 0.4	-	-	V	I_{OH} = -1 mA CFG_DRIVE_EXT<1:0>/DRIVE_SEL _EXT<2:0> = 0b011 $3.0 \text{ V} \le V_{DDIO}$ HSIO $\le 3.6 \text{ V}$
SID663F	V _{OH4}	Output HIGH voltage level	V _{DDIO_HSIO} - 0.4	-	-	V	I_{OH} = -0.5 mA CFG_DRIVE_EXT<1:0>/DRIVE_SEL _EXT<2:0> = 0b100 3.0 V \leq V _{DDIO} HSIO \leq 3.6 V
SID664D	R _{PD}	Pull-down resistance	25	50	100	kΩ	
SID665F	R _{PU}	Pull-up resistance	25	50	100	kΩ	
SID665H	V _{IH3}	Input Voltage HIGH threshold	1.7	-	-	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b1 CFG_IN/VTRIP_SEL<0:0> = 0b1
SID667G	V _{IH0}	Input Voltage HIGH threshold	0.7 × V _{DDIO_HSIO}	-	-	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0 CFG_IN/VTRIP_SEL<0:0> = 0b0
SID667I	V _{IH1}	Input Voltage HIGH threshold	2	-	-	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0 CFG_IN/VTRIP_SEL<0:0> = 0b1
SID667H	V _{IL3}	Input Voltage LOW threshold	-	-	0.9	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b1 CFG_IN/VTRIP_SEL<0:0> = 0b1
SID671F	V _{ILO}	Input Voltage LOW threshold	-	-	0.3 × V _{DDIO_HSIO}	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0 CFG_IN/VTRIP_SEL<0:0> = 0b0
SID671G	V _{IL1}	Input Voltage LOW threshold	-	-	0.8	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0 CFG_IN/VTRIP_SEL<0:0> = 0b1
SID674D	V _{HYST_CMOS}	Hysteresis in CMOS mode	0.05 × V _{DDIO_HSIO}	-	-	V	CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0 CFG_IN/VTRIP_SEL<0:0> = 0b0
SID675D	C _{IN}	Input pin capacitance	-	-	5	pF	Test condition: 10/100MHz
SID676H	I _{IL12}	Input leakage current	-1	-	1	μΑ	$V_{DDIO_HSIO} = 3.6 \text{ V},$ $V_{SS} < V_I < V_{DDIO_HSIO}$ $-40^{\circ}\text{C} \le T_A \le 105^{\circ}\text{C}$
GPIO Inp	ut Specificatio	ons					
SID98	t _{FT}	Analog glitch filter (pulse suppression width)	-	-	50 ^[61]	ns	One filter per port group (required for some I ² C speeds)
SID99	t _{INT}	Minimum pulse width for GPIO interrupt	160	-	-	ns	

Note

61.If a longer pulse suppression width is necessary, use Smart I/O.

Electrical specifications

Analog peripherals 26.5

SAR ADC 26.5.1

Figure 26-4 **ADC characteristics and error descriptions**

12-bit SAR ADC DC specifications **Table 26-6**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID100	A_RES	SAR ADC resolution	_	_	12	bits	
SID101	V_{A_INV}	Input voltage range	V_{REFL}	_	V_{REFH}	V	
SID102	V _{REFH}	SARADC HIGH reference voltage range	2.7	-	V _{DDA_ADC}	V	ADC performance degrades when high reference is higher than supply
SID103	V _{REFL}	SAR ADC LOW reference voltage range	V _{SSA_ADC}	-	V _{SSA_ADC}	V	ADC performance degrades when low reference is lower than ground
SID103A	V _{BAND_GAP}	Internal band gap reference voltage	0.882	0.9	0.918	V	

Based on Arm® Cortex®-M7 single

Integral and differential linearity errors Figure 26-5

Figure 26-6 ADC equivalent circuit for analog input

Based on Arm® Cortex®-M7 single

Table 26-7 SAR ADC AC specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID104	V _{ZT}	Zero transition voltage	-20	-	20	mV	$V_{DDA_ADC} = 2.7 \text{ V to } 5.5 \text{ V},$ $-40^{\circ}\text{C} \leq T_{A} \leq 105^{\circ}\text{C}$ before offset adjustment
SID105	V _{FST}	Full-scale transition voltage	-20	-	20	mV	$V_{DDA_ADC} = 2.7 \text{ V to } 5.5 \text{ V},$ -40°C \le T_A \le 105°C before offset adjustment
SID114	f_{ADC}	ADC operating frequency	2	-	26.67	MHz	
SID113	t _{S_4P5}	Analog input sample time (4.5 V ≤ V _{DDA ADC}) for channels of SARMUX0	412	-	-	ns	SARMUX0 inputs are direct into the ADC Guaranteed by design
SID113A	t _{S_2P7}	Analog input sample time (2.7 V ≤ V _{DDA_ADC}) for channels of SARMUX0	824	-	-	ns	SARMUX0 inputs are direct into the ADC Guaranteed by design
SID113B	t _{S_DR_4P5}	Analog input sample time when input is from diagnostic reference (4.5 V ≤ V _{DDA_ADC})	2	-	-	μs	Guaranteed by design
SID113C	t _{S_DR_2P7}	Analog input sample time when input is from diagnostic reference (2.7 V ≤ V _{DDA_ADC})	2.5	-	-	μs	Guaranteed by design
SID113D	t _{S_TS}	Analog input sample time for temperature sensor	7	-	-	μs	Guaranteed by design
SID106	t _{ST1}	Max throughput (sample per second) for channels of SARMUX0	_	-	1	Msps	4.5 V ≤ V _{DDA_ADC} ≤ 5.5 V, 80 MHz / 3 = 26.67 MHz, 11 sampling cycles, 15 conversion cycles
SID106A	t _{ST2}	Max throughput (sample per second) for channels of SARMUX0	-	-	0.5	Msps	2.7 V ≤ V _{DDA_ADC} < 4.5 V 80 MHz / 6 = 13.3 MHz, 11 sampling cycles, 15 conversion cycles
SID107	C _{VIN}	ADC input sampling capacitance	-	-	4.8	pF	Guaranteed by design
SID108	R _{VIN1}	Input path ON resistance (4.5 V to 5.5 V)	-	-	9.4	kΩ	Guaranteed by design
SID108A	R _{VIN2}	Input path ON resistance (2.7 V to 4.5 V)	-	-	13.9	kΩ	Guaranteed by design
SID108B	R _{DREF1}	Diagnostic path ON resistance (4.5 V to 5.5 V)	-	-	40	kΩ	Guaranteed by design
SID108C	R _{DREF2}	Diagnostic path ON resistance (2.7 V to 4.5 V)	-	-	50	kΩ	Guaranteed by design
SID119	ACC_RLAD	Diagnostic reference resistor ladder accuracy	-4	-	4	%	
SID109	A_TE	Total error	-5	-	5	LSb	$V_{DDA_ADC} = V_{REFH} = 2.7 \text{ V to}$ 5.5 V, $V_{REFL} = V_{SSA_ADC}$ $-40^{\circ}\text{C} \leq T_{A} \leq 105^{\circ}\text{C}$ Total error after offset and gain adjustment at 12-bit resolution mode
SID110	A_INL	Integral nonlinearity	-2.5	-	2.5	LSb	$V_{DDA_ADC} = 2.7 \text{ V to } 5.5 \text{ V},$ -40°C \le T_A \le 105°C

Based on Arm® Cortex®-M7 single

SAR ADC AC specifications (continued) **Table 26-7**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID111	A_DNL	Differential nonlinearity	-0.99	-	1.9	LSb	$V_{DDA_ADC} = 2.7 \text{ V to } 5.5 \text{ V},$ -40°C \le T _A \le 105°C
SID112	A_GE	Measure the ADC output with input switching through all input channels of one ADC	-7	-	7	LSb	$V_{DDA_ADC} = 2.7 \text{ V to } 5.5 \text{ V},$ -40°C \le T _A \le 105°C
SID115	I _{AIC}	Analoginputleakage current (GPIO_STD)	-350	-	350	nA	When input pad is selected for conversion, $V_{DDA_ADC} = V_{REFH} = 2.7 \text{ V to}$ $5.5 \text{ V, } -40^{\circ}\text{C} \le T_{A} \le 105^{\circ}\text{C}$
SID115B	I _{AIC}	Analoginputleakage current (GPIO_ENH)	-700	-	700	nA	When input pad is selected for conversion, $V_{DDA_ADC} = V_{REFH} = 2.7 \text{ V to}$ 5.5 V, $-40^{\circ}\text{C} \le T_{A} \le 105^{\circ}\text{C}$
SID115D	I _{AIC}	Analoginputleakage current (GPIO_SMC)	-1075	-	1075	nA	When input pad is selected for conversion, $V_{DDA_ADC} = V_{REFH} = 2.7 \text{ V to}$ 5.5 V, $-40^{\circ}\text{C} \le T_{A} \le 105^{\circ}\text{C}$
SID115A	I _{AIC2}	Analoginputleakage current (GPIO_STD)	-	-	165	nA	When input pad is not selected for conversion, $V_{DDA_ADC} = V_{REFH} = 2.7 \text{ V to}$ 5.5 V, -40°C $\leq T_A \leq 105$ °C
SID115C	I _{AIC2}	Analog input leakage current (GPIO_ENH)	-	-	515	nA	When input pad is not selected for conversion, $V_{DDA_ADC} = V_{REFH} = 2.7 \text{ V to}$ 5.5 V, $-40^{\circ}\text{C} \le T_{A} \le 105^{\circ}\text{C}$
SID115E	I _{AIC2}	Analoginputleakage current (GPIO_SMC)	-	-	1015	nA	When input pad is not selected for conversion, $V_{DDA_ADC} = V_{REFH} = 2.7 \text{ V to}$ 5.5 V, $-40^{\circ}\text{C} \le T_{A} \le 105^{\circ}\text{C}$
SID116	I _{DIAGREF}	Diagnostic reference current	-	-	70	μΑ	
SID117	I _{VDDA}	Analog power supply current while ADC is operating	-	360	550	μА	Per enabled ADC, without diagnosis
SID117A	I _{VDDA_DS}	Analog power supply current while ADC is not operating	_	1	21	μΑ	Per enabled ADC
SID118	I _{VREF}	Analog reference voltage current while ADC is operating	_	360	550	μА	Per enabled ADC, without diagnosis
SID118A	I _{VREF_LEAK}	Analog reference voltage current while ADC is not operating	_	1.8	5	μА	Per enabled ADC
SID118B	t _{S_4P5_1}	Analog input sample time (4.5 V ≤ V _{DDA ADC}) for channels of SARMUX1	824	-	-	ns	Additional delay for SARMUX1 due to additional switches in the path to the ADC Guaranteed by Design
SID118C	t _{S_2P7_1}	Analog input sample time (2.7 V ≤ V _{DDA ADC}) for channels of SARMUX1	1648	-	-	ns	Additional delay for SARMUX1 due to additional switches in the path to the ADC Guaranteed by Design

Based on Arm® Cortex®-M7 single

Electrical specifications

Table 26-7 SAR ADC AC specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID119A	t _{ST3}	Max throughput (sample per second) for channels of SARMUX1	-	-	0.5	Msps	4.5 V ≤ V _{DDA_ADC} ≤ 5.5 V 80 MHz / 6 = 13.3 MHz, 11 sampling cycles, 15 conversion cycles
SID119B	t _{ST4}	Max throughput (sample per second) for channels of SARMUX1	-	-	0.25	Msps	2.7 V ≤ V _{DDA_ADC} < 4.5 V 80 MHz / 12 = 6.67 MHz, 11 sampling cycles, 15 conversion cycles

Table 26-8 Temperature sensor specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID201	T _{SENSACC_TR}	Temperature sensor accuracy trimmed	-5	-	5	°C	This spec is valid for the following two conditions: $1.3.0 \text{V} \leq \text{V}_{DDA_ADC} = \text{V}_{REFH} \leq 3.6 \text{V}$ and $3.0 \text{V} \leq \text{V}_{DDD} \leq 3.6 \text{V}$ 2. $4.5 \text{V} \leq \text{V}_{DDA_ADC} = \text{V}_{REFH} \leq 5.5 \text{V}$ and $4.5 \text{V} \leq \text{V}_{DDD} \leq 5.5 \text{V}$ (Calibrated accuracy by factory trimming)
SID202	T _{SENSAC} - C_STD	Temperature sensor accuracy standard	-10	_	10	°C	This spec applies to all valid combinations for $V_{DDA_ADC} = V_{REFH}$ and V_{DDD} , which are not covered by SID201 (Uncalibrated accuracy)

AC specifications 26.6

Unless otherwise noted, the timings are defined with the guidelines mentioned in the Figure 26-7.

Figure 26-7 **AC timings specifications**

Electrical specifications

Digital peripherals 26.7

Table 26-9 TCPWM specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID120	f _C	TCPWM operating frequency	-	-	100	MHz	f _C = peripheral clock
SID121	t _{PWMENEXT}	Input trigger pulse width for all trigger events	2 / f _C	-	_	ns	Trigger Events can be Stop, Start, Reload, Count, Capture, or Kill depending on which mode of operation is selected.
SID122	t _{PWMEXT}	Output trigger pulse widths	2/f _C	_	_	ns	Minimum possible width of Overflow, Underflow, and Counter = Compare (CC) value trigger outputs
SID123	t _{CRES}	Resolution of counter	1/f _C	-	_	ns	Minimum time between successive counts
SID124	t _{PWMRES}	PWM resolution	1/f _C	_	_	ns	Minimum pulse width of PWM output
SID125	t _{QRES}	Quadrature inputs resolution	2 / f _C	-	_	ns	Minimum pulse width between Quadrature phase inputs.

Figure 26-8 **TCPWM timing diagrams**

Based on Arm® Cortex®-M7 single

Electrical specifications

Table 26-10 SCB specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID129	f _{SCB}	SCB operating frequency	_	ı	100	MHz	
SID129_2	t _{SPI_TRANS}	SCB transition in SPI mode	-	_	4	ns	

I²C Interface-Standard-mode

Recommended I/O Configuration:

GPIO_STD: CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_IN_AUTOLVL/VTRIP_SEL<0:0> = 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG/DRIVE_MODE<2:0> = 0b100
GPIO_ENH: CFG_OUT/DRIVE_SEL<1:0> = 0b00, CFG_IN_AUTOLVL/VTRIP_SEL<0:0> = 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG/DRIVE_MODE<2:0> = 0b100, CFG_OUT/SLOW<0:0> GPIO_SMC: CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_IN_AUTOLVL/VTRIP_SEL<0:0> = 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG/DRIVE_MODE<2:0> = 0b100, CFG_OUT/SLOW<0:0>

- USD STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<2:0>=0b010, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0>= 0b0, CFG/DRIVE_MODE<2:0>= 0b100 (Note: SID138 is not valid for HSIO_STDLN)

SID130	f_{SCL}	SCL clock frequency	_	_	100	kHz	
SID131	t _{HD;STA}	Hold time, START condition	4000	-	-	ns	
SID132	t _{LOW}	Low period of SCL	4700	-	_	ns	
SID133	t _{HIGH}	High period of SCL	4000	-	_	ns	
SID134	t _{SU;STA}	Setup time for a repeated START	4700	-	-	ns	
SID135	t _{HD;DAT}	Data hold time, for receiver	0	-	-	ns	
SID136	t _{SU;DAT}	Data setup time	250	-	-	ns	
SID138	t _F	Fall time of SCL and SDA	-	_	300	ns	Input and output Output: Only valid for GPIO_ENH, GPIO_SMC, GPIO_STD
SID139	t _{SU;STO}	Setup time for STOP	4000	-	_	ns	
SID140	t _{BUF}	Bus-free time between START and STOP	4700	-	-	ns	
SID141	C _B	Capacitive load for each bus line	_	-	400	pF	
SID142	t _{VD;DAT}	Time for data signal from SCL LOW to SDA output	_	-	3450	ns	
SID143	t _{VD;ACK}	Data valid acknowledge time	-	-	3450	ns	

I²C Interface-Fast-mode

Recommended I/O Configuration:

GPIO_STD: CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_IN_AUTOLVL/VTRIP_SEL<0:0> = 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG/DRIVE_MODE<2:0> = 0b100

GPIO_ENH: CFG_OUT/DRIVE_SEL<1:0> = 0b00, CFG_IN_AUTOLVL/VTRIP_SEL<0:0> = 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG/DRIVE_MODE<2:0> = 0b100, CFG_OUT/SLOW<0:0> GPIO_SMC: CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_IN_AUTOLVL/VTRIP_SEL<0:0> = 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG/DRIVE_MODE<2:0> = 0b100, CFG_OUT/SLOW<0:0>

- 5051

HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<2:0>=0b010, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0>= 0b0, CFG/DRIVE_MODE<2:0>= 0b100
(Note: SID158 is not valid for GPIO_STD, HSIO_STDLN)

SID150	f_{SCL}	SCL clock frequency	_	_	400 ^[62]	kHz	
SID151	t _{HD;STA}	Hold time, START condition	600	_	-	ns	
SID152	t _{LOW}	Low period of SCL	1300	-	-	ns	
SID153	t _{HIGH}	High period of SCL	600	-	1	ns	
SID154	t _{SU;STA}	Setup time for a repeated START	600	_	-	ns	
SID155	t _{HD;DAT}	Data hold time, for receiver	0	_	-	ns	

Based on Arm® Cortex®-M7 single

Table 26-10 SCB specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
Note 62.In order t	to drive full bus loa	nd at 400 kHz, 6 mA I _{OL} is require	ed at 0.6 V V _O)L			

SID156	t _{SU;DAT}	Data setup time	100	-	_	ns	
SID158	t _F	Fall time of SCL and SDA	20 × (V _{DDIO_G} _{PIO} /5.5)	-	300	ns	Input and output Output: Only valid for GPIO_ENH, GPIO_SMC
SID159	t _{SU;STO}	Setup time for STOP	600	-	-	ns	
SID160	t _{BUF}	Bus free time between START and STOP	1300	-	-	ns	
SID161	C _B	Capacitive load for each bus line	-	-	400	pF	
SID162	t _{VD;DAT}	Time for data signal from SCL LOW to SDA output	-	-	900	ns	
SID163	t _{VD;ACK}	Data valid acknowledge time	-	-	900	ns	
SID164	t _{SP}	Pulse width of spikes that must be suppressed by the input filter	_	-	50	ns	

I²C Interface-Fast-Plus mode

Recommended I/O Configuration:

GPIO_STD: CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_IN_AUTOLVL/VTRIP_SEL<0:0> = 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG/DRIVE_MODE<2:0> = 0b100

GPIO_ENH: CFG_OUT/DRIVE_SEL<1:0> = 0b00, CFG_IN_AUTOLVL/VTRIP_SEL<0:0> = 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG/DRIVE_MODE<2:0> = 0b100, CFG_OUT/SLOW<0:0> = 0b100, CFG_OUT/SLOW<0

GPIO_SMC: CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_IN_AUTOLVL/VTRIP_SEL<0:0> = 0b0, CFG_IN_VTRIP_SEL<0:0> = 0b0, CFG/DRIVE_MODE<2:0> = 0b100, CFG_OUT/SLOW<0:0>

= 0b0

HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<2:0> = 0b010, CFG_IN_AUTOLVL/VTRIP_SEL<0:0> = 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG/DRIVE_MODE<2:0> = 0b100
(Note: SID178 is not valid for *GPIO_STD, GPIO_SMC, and HSIO_STDLN*)

SID170	f_{SCL}	SCL clock frequency	_	-	$1^{[63]}$	MHz	
SID171	t _{HD;STA}	Hold time, START condition	260	-	-	ns	
SID172	t _{LOW}	Low period of SCL	500	-	-	ns	
SID173	t _{HIGH}	High period of SCL	260	-	-	ns	
SID174	t _{SU;STA}	Setup time for a repeated START	260	-	-	ns	
SID175	t _{HD;DAT}	Data hold time, for receiver	0	-	-	ns	
SID176	t _{SU;DAT}	Data setup time	50	-	-	ns	
SID178	t _F	Fall time of SCL and SDA	20 × (V _{DDIO_G} _{PIO} /5.5)	-	160	ns	Input and output, 20pF load Output: Only for GPIO_ENH
SID179	t _{SU;STO}	Setup time for STOP	260	-	-	ns	
SID180	t _{BUF}	Bus free time between START and STOP	500	-	-	ns	
SID181	C _B	Capacitive load for each bus line	_	-	20	pF	
SID182	t _{VD;DAT}	Time for data signal from SCL LOW to SDA output	-	-	450	ns	
SID183	t _{VD;ACK}	Data valid acknowledge time	-	-	450	ns	

Based on Arm® Cortex®-M7 single

Table 26-10 SCB specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
Note 63.In order	to drive full bus lo	ad at 1 MHz, 20 mA I _{OL} is required	d at 0.4 V V _{OI}	L•			
SID184	t _{SP}	Pulse width of spikes that must be suppressed by the input filter	-	-	50	ns	

SPI Interface

Recommended I/O Configuration: (Applicable to all below modes)

HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<2:0> = 0b010, CFG_IN_AUTOLVL/VTRIP_SEL<0:0> = 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG_SLEW_EXT/SLEW<0:0> = 0b0
For SPI speeds ≤ 12.5 MHz

GPIO_STD: CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_IN_AUTOLVL/VTRIP_SEL<0:0> = 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0
GPIO_ENH: CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_IN_AUTOLVL/VTRIP_SEL<0:0> = 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG_OUT/SLOW<0:0> = 0b0
GPIO_SMC: CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_IN_AUTOLVL/VTRIP_SEL<0:0> = 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG_OUT/SLOW<0:0> = 0b0

SPI Interface Mas	tor (Full clock me	MAN LATE MICO	CAMPLE - 1 CD	101
SPI Interface Mas	ter (Full-clock ma	ode: LAIE MISO	SAMPLE = 1. GP	TO)

SID190	f _{SPI}	SPI operating frequency	-	-	12.5	MHz	Do not use half-clock mode: LATE_MISO_SAMPLE = 0 SPI Master (Full-clock mode: LATE_MISO_SAMPLE = 1) - 12.5 Mbps for instances on GPIO_STD, GPIO_ENH, GPIO_SMC
SID191	t _{DMO}	SPI Master: MOSI valid after SCLK driving edge	_	-	15	ns	SPI Master (Full-clock mode: LATE_MISO_SAMPLE = 1) – 12.5 Mbps for instances on GPIO_STD, GPIO_ENH, GPIO_SMC
SID192	t _{DSI}	SPI Master: MISO valid before SCLK capturing edge	40	-	-	ns	SPI Master (Full-clock mode: LATE_MISO_SAMPLE = 1) – 12.5 Mbps for instances on GPIO_STD, GPIO_ENH, GPIO_SMC
SID193	t _{нмо}	SPI Master: Previous MOSI data hold time	0	-	-	ns	SPI Master (Full-clock mode: LATE_MISO_SAMPLE = 1) – 12.5 Mbps for instances on GPIO_STD, GPIO_ENH, GPIO_SMC
SID194	tw_sclk_h_l	SPI SCLK pulse width HIGH or LOW	0.4 × (1/f _{SPI})	0.5 × (1/f _{SPI})	0.6 × (1/f _{SPI})	ns	SPI Master (Full-clock mode: LATE_MISO_SAMPLE = 1) – 12.5 Mbps for instances on GPIO_STD, GPIO_ENH, GPIO_SMC
SID195	t _{vss}	SPI Master: MOSI valid after SSEL falling edge (CPHA=0)	-	-	12	ns	SPI Master (Full-clock mode: LATE_MISO_SAMPLE = 1) – 12.5 Mbps for instances on GPIO_STD, GPIO_ENH, GPIO_SMC
SID196	t _{DHI}	SPI Master: MISO hold time after SCLK capturing edge	0	-	-	ns	SPI Master (Full-clock mode: LATE_MISO_SAMPLE = 1) – 12.5 Mbps for instances on GPIO_STD, GPIO_ENH, GPIO_SMC
SID198	t _{EN_SETUP}	SSEL valid, before the first SCK capturing edge	0.5 × (1/f _{SPI})	_	_	ns	Min is half clock period
SID199	t _{EN_SHOLD}	SSEL hold, after the last SCK capturing edge	0.5 × (1/f _{SPI})	_	-	ns	Min is half clock period

Based on Arm® Cortex®-M7 single

SCB specifications (continued) **Table 26-10**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID197	C _{SPIM_MS}	SPI Capacitive Load	_	-	20	pF	
SPI Interf	ace Master (Fu	ıll-clock mode: LATE_MIS	O_SAMPI	E = 1, H	SIO)	111	
SID190A	f _{SPI}	SPI operating frequency	-	-	20	MHz	Do not use half-clock mode: LATE_MISO_SAMPLE = 0 SPI Master (Full-clock mode: LATE_MISO_SAMPLE = 1) - 20 Mbps For 20 Mbps, SCB operating frequency (f _{SCB}) must be configured to 80 MHz. for instances on HSIO_STDLN
SID191A	t _{DMO}	SPI Master: MOSI valid after SCLK driving edge	-	-	9	ns	SPI Master (Full-clock mode: LATE_MISO_SAMPLE = 1) - 20 Mbps For 20 Mbps, SCB operating frequency (f _{SCB}) must be configured to 80 MHz for instances on HSIO_STDLN
SID192A	t _{DSI}	SPI Master: MISO valid before SCLK capturing edge	25	_	_	ns	SPI Master (Full-clock mode: LATE_MISO_SAMPLE = 1) - 20 Mbps For 20 Mbps, SCB operating frequency (f _{SCB}) must be configured to 80 MHz for instances on HSIO_STDLN
SID193A	t _{нмо}	SPI Master: Previous MOSI data hold time	0	-	-	ns	SPI Master (Full-clock mode: LATE_MISO_SAMPLE = 1) - 20 Mbps For 20 Mbps, SCB operating frequency (f _{SCB}) must be configured to 80 MHz for instances on HSIO_STDLN
SID194A	t _{W_SCLK_H_L}	SPI SCLK pulse width HIGH or LOW	0.4 × (1/f _{SPI})	0.5 × (1/f _{SPI})	0.6 × (1/f _{SPI})	ns	SPI Master (Full-clock mode: LATE_MISO_SAMPLE = 1) – 20 Mbps For 20 Mbps, SCB operating frequency (f _{SCB}) must be configured to 80 MHz for instances on HSIO_STDLN
SID195A	t _{VSS}	SPI Master: MOSI valid after SSEL falling edge (CPHA=0)	-	_	12	ns	SPI Master (Full-clock mode: LATE_MISO_SAMPLE = 1) - 20 Mbps For 20 Mbps, SCB operating frequency (f _{SCB}) must be configured to 80 MHz for instances on HSIO_STDLN
SID196A	t _{DHI}	SPI Master: MISO hold time after SCLK capturing edge	0	_	-	ns	SPI Master (Full-clock mode: LATE_MISO_SAMPLE = 1) - 20 Mbps For 20 Mbps, SCB operating frequency (f _{SCB}) must be configured to 80 MHz for instances on HSIO_STDLN
SID197A	C _{SPIM_MS}	SPI Capacitive Load	_	_	20	pF	
SID198A	t _{EN_SETUP}	SSEL valid, before the first SCK capturing edge	0.5 × (1/f _{SPI})	_	_	ns	Min is half clock period

Based on Arm® Cortex®-M7 single

SCB specifications (continued) **Table 26-10**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID199A	t _{EN_SHOLD}	SSEL hold, after the last SCK capturing edge	0.5 × (1/f _{SPI})	_	_	ns	Min is half clock period
SPI Inter	ace Slave (inte	ernally clocked, GPIO and	HSIO)	T.			,
SID205	f _{SPI_INT}	SPI operating frequency	_	-	12.5	MHz	SPI Slave, internally clocked
SID206	t _{DMI_INT}	SPI Slave: MOSI Valid before Sclock capturing edge	5	_	-	ns	SPI Slave, internally clocked
SID207	t _{DSO_INT}	SPI Slave: MISO Valid after Sclock driving edge, in the internal-clocked mode	-	_	60	ns	SPI Slave, internally clocked
SID208	t _{HSO_INT}	SPI Slave: Previous MISO data hold time	3	-	_	ns	SPI Slave, internally clocked
SID209	t _{EN_SETUP_INT}	SPI Slave: SSEL valid to first SCK valid edge	33	-	_	ns	SPI Slave, internally clocked
SID210	t _{EN_HOLD_INT}	SPI Slave Select active (LOW) from last SCLK hold	33	_	_	ns	SPI Slave, internally clocked
SID211	t _{EN_SETUP_PRE}	SPI Slave: from SSEL valid, to SCK falling edge before the first data bit	20	_	_	ns	SPI Slave, internally clocked
SID212	t _{EN_HOLD_PRE}	SPI Slave: from SCK falling edge before the first data bit, to SSEL invalid	20	_	_	ns	SPI Slave, internally clocked
SID213	t _{EN_SETUP_CO}	SPI Slave: from SSEL valid, to SCK falling edge in the first data bit	20	-	-	ns	SPI Slave, internally clocked
SID214	t _{EN_HOLD_CO}	SPI Slave: from SCK falling edge in the first data bit, to SSEL invalid	20	_	-	ns	SPI Slave, internally clocked
SID215	t _{W_DIS_INT}	SPI Slave Select inactive time	40	_	_	ns	SPI Slave, internally clocked
SID216	t _{W_SCLKH_INT}	SPI SCLK pulse width HIGH	32	-	_	ns	SPI Slave, internally clocked
SID217	t _{W_SCLKL_INT}	SPI SCLK pulse width LOW	32	-	_	ns	SPI Slave, internally clocked
SID218	t _{SIH_INT}	SPI MOSI hold from SCLK	20	-	-	ns	SPI Slave, internally clocked
SID219	C _{SPIS_INT}	SPI Capacitive Load	_	-	20	pF	SPI Slave, internally clocked
SPI Interf	•	ernally clocked, GPIO and	HSIO)				
SID220	f _{SPI_EXT}	SPI operating frequency	-	_	12.5	MHz	SPI Slave, externally clocked: 12.5 Mbps
SID221	t _{DMI_EXT}	SPI Slave: MOSI Valid before Sclock capturing edge	8	_	_	ns	SPI Slave, externally clocked: 12.5 Mbps

Based on Arm® Cortex®-M7 single

SCB specifications (continued) **Table 26-10**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID222	t _{DSO_EXT}	SPI Slave: MISO Valid after Sclock driving edge, in the external-clocked mode	-	-	30	ns	SPI Slave, externally clocked: 12.5 Mbps
SID223	t _{HSO_EXT}	SPI Slave: Previous MISO data hold time	5	_	_	ns	SPI Slave, externally clocked: 12.5 Mbps
SID224	t _{EN_SETUP_EXT}	SPI Slave: SSEL valid to first SCK valid edge	20	_	_	ns	SPI Slave, externally clocked: 12.5 Mbps
SID225	t _{EN_HOLD_EXT}	SPI Slave Select active (LOW) from last SCLK hold	20	_	_	ns	SPI Slave, externally clocked: 12.5 Mbps
SID226	t _{W_DIS_EXT}	SPI Slave Select inactive time	20	_	_	ns	SPI Slave, externally clocked: 12.5 Mbps
SID227	t _{W_SCLKH_EXT}	SPI SCLK pulse width HIGH	32	_	_	ns	SPI Slave, externally clocked: 12.5 Mbps
SID228	t _{W_SCLKL_EXT}	SPI SCLK pulse width LOW	32	_	_	ns	SPI Slave, externally clocked: 12.5 Mbps
SID229	t _{SIH_EXT}	SPI MOSI hold from SCLK	5	-	-	ns	SPI Slave, externally clocked: 12.5 Mbps
SID230	C _{SPIS_EXT}	SPI Capacitive Load	-	-	20	pF	SPI Slave, externally clocked: 12.5 Mbps
SID231	t _{VSS_EXT}	SPI Slave: MISO valid after SSEL falling edge (CPHA = 0)	-	_	33	ns	SPI Slave, externally clocked: 12.5 Mbps
SPI Interf	ace Slave (inte	ernally clocked, SMC I/O)					
SID205_2	f _{SPI_INT}	SPI operating frequency	_	-	12.5	MHz	SPI Slave, internally clocked
SID206_2		SPI Slave: MOSI Valid before Sclock capturing edge	5	_	_	ns	SPI Slave, internally clocked
SID207_2	t _{DSO_INT}	SPI Slave: MISO Valid after Sclock driving edge, in the internal-clocked mode	-	_	64	ns	SPI Slave, internally clocked
SID208_2	t _{HSO_INT}	SPI Slave: Previous MISO data hold time	3	_	_	ns	SPI Slave, internally clocked
SID209_2	t _{EN_SETUP_INT}	SPI Slave: SSEL valid to first SCK valid edge	33	_	_	ns	SPI Slave, internally clocked
SID210_2	t _{EN_HOLD_INT}	SPI Slave Select active (LOW) from last SCLK hold	33	_	-	ns	SPI Slave, internally clocked
SID211_2	t _{EN_SETUP_PRE}	SPI Slave: from SSEL valid, to SCK falling edge before the first data bit	20	_	-	ns	SPI Slave, internally clocked
SID212_2	ten_HOLD_PRE	SPI Slave: from SCK falling edge before the first data bit, to SSEL invalid	20	-	_	ns	SPI Slave, internally clocked
SID213_2	t _{EN_SETUP_CO}	SPI Slave: from SSEL valid, to SCK falling edge in the first data bit	20	_	_	ns	SPI Slave, internally clocked

Based on Arm® Cortex®-M7 single

Electrical specifications

SCB specifications (continued) **Table 26-10**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID214_2	t _{EN_HOLD_CO}	SPI Slave: from SCK falling edge in the first data bit, to SSEL invalid	20	_	_	ns	SPI Slave, internally clocked
SID215_2	t _{W_DIS_INT}	SPI Slave Select inactive time	40	_	_	ns	SPI Slave, internally clocked
SID216_2	t _{W_SCLKH_INT}	SPI SCLK pulse width HIGH	36	_	-	ns	SPI Slave, internally clocked
SID217_2	t _{W_SCLKL_INT}	SPI SCLK pulse width LOW	36	_	-	ns	SPI Slave, internally clocked
SID218_2	t _{SIH_INT}	SPI MOSI hold from SCLK	20	-	-	ns	SPI Slave, internally clocked
SID219_2		SPI Capacitive Load	_	-	20	pF	SPI Slave, internally clocked
SPI Interf	ace Slave (ext	ernally clocked, SMC I/O)					
SID220_2		SPI operating frequency	-	_	12.5	MHz	SPI Slave, externally clocked: 12.5 Mbps
SID221_2	t _{DMI_EXT}	SPI Slave: MOSI Valid before Sclock capturing edge	8	_	-	ns	SPI Slave, externally clocked: 12.5 Mbps
SID222_2	t _{DSO_EXT}	SPI Slave: MISO Valid after Sclock driving edge, in the external-clocked mode	-	_	34	ns	SPI Slave, externally clocked: 12.5 Mbps
SID223_2	t _{HSO_EXT}	SPI Slave: Previous MISO data hold time	5	_	-	ns	SPI Slave, externally clocked: 12.5 Mbps
SID224_2	t _{EN_SETUP_EXT}	SPI Slave: SSEL valid to first SCK valid edge	20	_	_	ns	SPI Slave, externally clocked: 12.5 Mbps
SID225_2	t _{EN_HOLD_EXT}	SPI Slave Select active (LOW) from last SCLK hold	20	_	-	ns	SPI Slave, externally clocked: 12.5 Mbps
SID226_2	t _{W_DIS_EXT}	SPI Slave Select inactive time	20	_	_	ns	SPI Slave, externally clocked: 12.5 Mbps
SID227_2	t _{W_SCLKH_EXT}	SPI SCLK pulse width HIGH	36	_	_	ns	SPI Slave, externally clocked: 12.5 Mbps
SID228_2	t _{W_SCLKL_EXT}	SPI SCLK pulse width LOW	36	_	-	ns	SPI Slave, externally clocked: 12.5 Mbps
SID229_2	t _{SIH_EXT}	SPI MOSI hold from SCLK	5	-	-	ns	SPI Slave, externally clocked: 12.5 Mbps
SID230_2	C _{SPIS_EXT}	SPI Capacitive Load	-	_	20	pF	SPI Slave, externally clocked: 12.5 Mbps
SID231_2	t _{VSS_EXT}	SPI Slave: MISO valid after SSEL falling edge (CPHA = 0)	-	_	37	ns	SPI Slave, externally clocked: 12.5 Mbps
SPI Interf	ace Slave (ext	ernally clocked, 20 MHz)					
SID220A	f _{SPI_EXT}	SPI operating frequency	_	_	20	MHz	SPI Slave, externally clocked: 20 Mbps
SID221A	t _{DMI_EXT}	SPI Slave: MOSI Valid before Sclock capturing edge	5	_	-	ns	SPI Slave, externally clocked: 20 Mbps

Based on Arm® Cortex®-M7 single

Table 26-10 SCB specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID222A	t _{DSO_EXT}	SPI Slave: MISO Valid after Sclock driving edge, in the external-clocked mode	-	-	18	ns	SPI Slave, externally clocked: 20 Mbps
SID223A	t _{HSO_EXT}	SPI Slave: Previous MISO data hold time	5	-	_	ns	SPI Slave, externally clocked: 20 Mbps
SID224A	t _{EN_SETUP_EXT}	SPI Slave: SSEL valid to first SCK valid edge	20	_	_	ns	SPI Slave, externally clocked: 20 Mbps
SID225A	t _{EN_HOLD_EXT}	SPI Slave Select active (LOW) from last SCLK hold	20	-	_	ns	SPI Slave, externally clocked: 20 Mbps
SID226A	t _{W_DIS_EXT}	SPI Slave Select inactive time	20	-	_	ns	SPI Slave, externally clocked: 20 Mbps
SID227A	t _{W_SCLKH_EXT}	SPI SCLK pulse width HIGH	20	_	_	ns	SPI Slave, externally clocked: 20 Mbps
SID228A	t _{W_SCLKL_EXT}	SPI SCLK pulse width LOW	20	-	_	ns	SPI Slave, externally clocked: 20 Mbps
SID229A	t _{SIH_EXT}	SPI MOSI hold from SCLK	5	-	_	ns	SPI Slave, externally clocked: 20 Mbps
SID230A	C _{SPIS_EXT}	SPI Capacitive Load	-	-	20	pF	SPI Slave, externally clocked: 20 Mbps
SID231A	t _{VSS_EXT}	SPI Slave: MISO valid after SSEL falling edge (CPHA = 0)	-	_	23	ns	SPI Slave, externally clocked: 20 Mbps

UART Interface

Recommended I/O Configuration:

GPIO_STD: CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_IN_AUTOLVL/VTRIP_SEL<0:0> = 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0

GPIO_ENH: CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_IN_AUTOLVL/VTRIP_SEL<0:0> = 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG_OUT/SLOW<0:0> = 0b0

GPIO_SMC: CFG_OUT/DRIVE_SEL<1:0> = 0b01, CFG_IN_AUTOLVL/VTRIP_SEL<0:0> = 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG_OUT/SLOW<0:0> = 0b0

HSIO_STDLN: CFG_DRIVE_EXT<1:0> /DRIVE_SEL_EXT<2:0> = 0b010, CFG_IN_AUTOLVL/VTRIP_SEL<0:0> = 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG_IN/V

SID240	f _{BPS}	Signaling rate	-	-	10	Mbps	
SID240A	f _{BPS_TX}	Signaling rate for TX on P16_0 for SCB#4 and P15_3 for SCB#3	_	-	25	Mbps	Valid only for TX at 20 pF load
SID241	f _{ACC}	Frequency accuracy of TX bit time on P16_0 for SCB#4 and P15_3 for SCB#3	-0.5	_	0.5	ns	With PLL 200 MHz ≤ f _{VCO} ≤ 400 MHz at 20 pF load
SID242	f _{JIT}	Jitter of TX on P16.0 for SCB#4 and P15.3 for SCB#3	-4.5	-	4.5	ns	at 20 pF load

Figure 26-9 I²C timing diagrams

Figure 26-10 SPI master timing diagrams with LOW clock phase

Figure 26-11 SPI master timing diagrams with HIGH clock phase

Based on Arm® Cortex®-M7 single

Figure 26-12 SPI slave timing diagrams with LOW clock phase

Figure 26-13 SPI slave timing diagrams with HIGH clock phase

Based on Arm® Cortex®-M7 single

Electrical specifications

Table 26-11 CAN FD specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID630	f _{HCLK}	System clock (HCLK) frequency	_	-	100	MHz	f _{CCLK} ≤ f _{HCLK} , guaranteed by design
SID631	f _{CCLK}	CAN clock (CCLK) frequency	_	-	100	MHz	f _{CCLK} ≤ f _{HCLK} , guaranteed by design

Table 26-12 LIN specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID249	f _{LIN}	Internal clock frequency to the LIN block	_	-	100	MHz	
SID250	BR_NOM	Bit rate on the LIN bus	1	-	20	kbps	Guaranteed by design
SID250A	BR_REF	Bit rate on the LIN bus (not in standard LIN specification) for re-flashing in LIN slave mode	1	_	115.2	kbps	Guaranteed by design

26.8 **Memory**

Table 26-13 Flash DC specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID257A	V_{PE}	Erase and program voltage	2.7	-	5.5	V	

Flash AC specifications Table 26-14

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID257	f _{FO}	Maximum operation frequency	-	_	100	MHz	Zero wait access to code-flash memory up to 100 MHz Zero wait access with cache hit up to 320 MHz
SID254	t _{ERS_SUS}	Maximum time from erase suspend command till erase is indeed suspend	-	-	37.5	μs	
SID255	t _{ERS_RES_SUS}	Minimum time allowed from erase resume to erase suspend	250	-	_	μs	Guaranteed by design
SID258	t _{BC_WF}	Blank Check time for Work Flash N-byte	-	-	10+0.3 × N	μs	At 100 MHz, N ≥ 4 and multiple of 4, excludes system overhead time
SID258A	t _{AA_BC_ENTRY}	Time to enter Blank Check mode	-	5	_	μs	
SID258B	t _{AA_BC_EXIT}	Time to exit Blank Check mode	-	5	_	μs	
SID259	t _{SECTORERASE1}	Sector erase time (code-flash: 32 KB)	-	45	90	ms	Includes internal preprogramming time
SID260	t _{SECTORERASE2}	Sector erase time (code-flash: 8 KB)	-	15	30	ms	Includes internal preprogramming time
SID261	t _{SECTORERASE3}	Sector erase time (work-flash, 2 KB)	-	80	160	ms	Includes internal preprogramming time
SID262	t _{SECTORERASE4}	Sector erase time (work-flash, 128 B)	-	5	15	ms	Includes internal preprogramming time

Based on Arm® Cortex®-M7 single

Flash AC specifications (continued) **Table 26-14**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID263	t _{WRITE1}	64-bit write time (code-flash)	_	30	60	μs	Excludes system overhead time
SID264	t _{WRITE2}	256-bit write time (code-flash)	-	40	70	μs	Excludes system overhead time
SID265	t _{WRITE3}	4096-bit write time (code-flash)	-	320	1200	μs	Excludes system overhead time
SID266	t _{WRITE4}	32-bit write time (work-flash)	-	30	60	μs	Excludes system overhead time
SID267	t _{FRET1}	Code-flash retention. 1000 program/erase cycles	20	_	_	years	Temperature at write/erase time. T _A ≤ +85°C average
SID182T1	t _{FRET2}	Code-flash retention. 100 program/erase cycles	50	-	_	years	Temperature at write/erase time. T _A ≤ +30°C average
SID268	t _{FRET3}	Work-flash retention. 125,000 program/erase cycles	20	-	-	years	Temperature at write/erase time. T _A ≤ +85°C average
SID269	t _{FRET4}	Work-flash retention. 250,000 program/erase cycles	10	-	_	years	Temperature at write/erase time. T _A ≤ +85°C average
SID182T2	t _{FRET5}	Work-flash retention. 1000 program/erase cycles	50	-	_	years	Temperature at write/erase time. T _A ≤ +30°C average
SID612	I _{CC_ACT2}	Program operating current (code or work-flash)	-	15	62	mA	V _{DDD} = 5 V, V _{CCD} = 1.1 V guaranteed by design
SID613	I _{CC_ACT3}	Erase operating current (code- or work-flash)	-	15	62	mA	V _{DDD} = 5 V, V _{CCD} = 1.1 V guaranteed by design

Based on Arm® Cortex®-M7 single

Electrical specifications

26.9 **System resources**

Table 26-15 System resources

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/ conditions
Power-o	n Reset Specificat	tions			II.	1	1
SID270	V_{POR_R}	POR rising trip voltage	1.5	-	2.35	V	Guaranteed by design
SID276	V _{POR_F}	POR falling trip voltage	1.45	_	2.1	V	
SID271	V _{POR_H}	Level detection hysteresis	20	_	300	mV	
SID272	t _{DLY_POR}	Delay between V _{DDD} rising through 2.3 V and POR reset output rising through V _{DDD} / 2	-	_	3	μs	Guaranteed by design
SID273	t _{POFF}	Power off time	350	-	-	μs	V _{DDD} < 1.45 V Does not apply to SID274A and SID274B
SID274A	POR_RR1	V _{DDD} power ramp rate with robust BOD - XRES_L asserted (BOD operation is guaranteed)	-	-	100	mV/μs	Applies to ramp up and ramp down
SID274B	POR_RR1	V _{DDD} power ramp rate with robust BOD - XRES_L de-asserted (BOD operation is guaranteed)	1	-	100	mV/μs	Applies to ramp up and ramp down
SID275	POR_RR2	V _{DDD} power ramp rate without robust BOD	100	-	1000	mV/μs	This ramp does not support robust BOD t _{POFF} must be satisfied. Applies to ramp up and ramp down
High-vol	tage BOD (HV BOI	D) Specifications					
SID500	V _{TR_2P7_R}	HVBOD 2.7 V trimmed rising trip point for V _{DDD} and V _{DDA_ADC} (default)	2.474	2.55	2.627	V	
SID501	V _{TR_2P7_F}	HV BOD 2.7 V trimmed falling trip point for V _{DDD} and V _{DDA_ADC} (default)	2.449	2.525	2.601	V	
SID502	V _{TR_3P0_R}	HV BOD 3.0 V trimmed rising trip point for V_{DDD} and V_{DDA_ADC}	2.765	2.85	2.936	V	
SID503	V _{TR_3P0_F}	HV BOD 3.0 V trimmed falling trip point for V _{DDD} and V _{DDA_ADC}	2.74	2.825	2.91	V	
SID505	HVBOD_RR_A	Power ramp rate: V _{DDD} and V _{DDA_ADC} (Active)	-	_	100	mV/μs	
SID506	HVBOD_RR_DS	Power ramp rate: V _{DDD} and V _{DDA_ADC} (DeepSleep)	-	-	10	mV/μs	
SID507	t _{DLY_ACT_HVBOD}	Active mode delay between V _{DDD} falling/rising through V _{TR_2P7_F/R} or V _{TR_3P0_F/R} and an internal HV BOD output transitioning through V _{DDD} / 2	-	_	0.5	μs	Guaranteed by design
SID507A	t _{DLY_ACT_HVBOD_A}	Active mode delay between V _{DDA_ADC} falling/rising through V _{TR_2P7_F/R} or V _{TR_3P0_F/R} and internal HV BOD output transitioning through V _{DDD} / 2	-	-	1	μѕ	Guaranteed by design
SID507B	t _{DLY_DS_HVBOD}	DeepSleep mode delay between V _{DDD} /V _{DDA_ADC} falling/rising through V _{TR_2P7_F/R} or V _{TR_3P0_F/R} and an internal HV BOD output transitioning through V _{DDD} / 2	-	-	4	μs	Guaranteed by design

Based on Arm® Cortex®-M7 single

Table 26-15 System resources (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/ conditions
SID508	t _{RES_HVBOD}	Response time of HV BOD, V _{DDD} /V _{DDA_ADC} supply. HV BOD guaranteed to generate pulse for V _{DDD} /V _{DDA_ADC} pulse width greater than this. (For falling-then-rising supply at max ramp rate; pulse width is time below V _{TR_2P7_F} or V _{TR_3P0_F})	100	-	-	ns	Guaranteed by design
Low-volt	age BOD (LV BOI) Specifications					
SID510	V _{TR_R_LVBOD}	LV BOD trimmed rising trip point for V _{CCD}	0.917	0.945	0.973	V	
SID511	V _{TR_F_LVBOD}	LV BOD trimmed falling trip point for V _{CCD}	0.892	0.92	0.948	V	
SID515	t _{DLY_ACT_LVBOD}	Active delay between V _{CCD} falling/rising through V _{TR_R/F_LVBOD} and an internal LV BOD output transitioning through V _{DDD} / 2	-	-	1	μs	Guaranteed by design
SID515A	t _{DLY_DS_LVBOD}	DeepSleep mode delay between V_{CCD} falling/rising through V_{TR_R/F_LVBOD} and an internal LV BOD output transitioning through V_{DDD} / 2	-	-	12	μs	Guaranteed by design
SID516	t _{RES_LVBOD}	Response time of LV BOD. LV BOD guaranteed to generate pulse for V _{CCD} pulse width greater than this. (For falling-then-rising supply at max ramp rate; pulse width is time below V _{TR_F_LVBOD})	100	-	1	ns	Guaranteed by design
Low-volt	age Detector (LV	D) DC Specifications					
SID520	V _{TR_2P8_F}	LVD 2.8 V trimmed falling trip point for V _{DDD}	Typ – 4%	2800	Typ + 4%	mV	
SID521	V _{TR_2P9_F}	LVD 2.9 V trimmed falling trip point for V_{DDD}	Typ – 4%	2900	Typ + 4%	mV	
SID522	V _{TR_3P0_F}	LVD 3.0 V trimmed falling trip point for V_{DDD}	Typ – 4%	3000	Typ + 4%	mV	
SID523	V _{TR_3P1_F}	LVD 3.1 V trimmed falling trip point for V_{DDD}	Typ – 4%	3100	Typ + 4%	mV	
SID524	V _{TR_3P2_F}	LVD 3.2 V trimmed falling trip point for V _{DDD}	Typ – 4%	3200	Typ + 4%	mV	
SID525	V _{TR_3P3_F}	LVD 3.3 V trimmed falling trip point for V_{DDD}		3300	Typ + 4%	mV	
SID526	V _{TR_3P4_F}	LVD 3.4 V trimmed falling trip point for V _{DDD}	Typ – 4%	3400	Typ + 4%	mV	
SID527	V _{TR_3P5_F}	LVD 3.5 V trimmed falling trip point for V_{DDD}	Typ – 4%	3500	Typ + 4%	mV	
SID528	V _{TR_3P6_F}	LVD 3.6 V trimmed falling trip point for V _{DDD}	Typ – 4%	3600	Typ + 4%	mV	
SID529	V _{TR_3P7_F}	LVD 3.7 V trimmed falling trip point for V _{DDD}	Typ – 4%	3700	Typ + 4%	mV	
SID530	V _{TR_3P8_F}	LVD 3.8 V trimmed falling trip point for V_{DDD}	Typ – 4%	3800	Typ + 4%	mV	
SID531	V _{TR_3P9_F}	LVD 3.9 V trimmed falling trip point for V_{DDD}	Typ – 4%	3900	Typ + 4%	mV	
SID532	V _{TR_4P0_F}	LVD 4.0 V trimmed falling trip point for V _{DDD}	Typ – 4%	4000	Typ + 4%	mV	

Based on Arm® Cortex®-M7 single

 Table 26-15
 System resources (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/ conditions
SID533	V _{TR_4P1_F}	LVD 4.1 V trimmed falling trip point for V _{DDD}	Typ – 4%	4100	Typ + 4%	mV	
SID534	V _{TR_4P2_F}	LVD 4.2 V trimmed falling trip point for V_{DDD}	Typ – 4%	4200	Typ + 4%	mV	
SID535	V _{TR_4P3_F}	LVD 4.3 V trimmed falling trip point for V_{DDD}	Typ – 4%	4300	Typ + 4%	mV	
SID536	V _{TR_4P4_F}	LVD 4.4 V trimmed falling trip point for V_{DDD}	Typ – 4%	4400	Typ + 4%	mV	
SID537	V _{TR_4P5_F}	LVD 4.5 V trimmed falling trip point for V_{DDD}	Typ – 4%	4500	Typ + 4%	mV	
SID538	V _{TR_4P6_F}	LVD 4.6 V trimmed falling trip point for V_{DDD}	Typ – 4%	4600	Typ + 4%	mV	
SID539	V _{TR_4P7_F}	LVD 4.7 V trimmed falling trip point for V_{DDD}	Typ – 4%	4700	Typ + 4%	mV	
SID540	V _{TR_4P8_F}	LVD 4.8 V trimmed falling trip point for V_{DDD}	Typ – 4%	4800	Typ + 4%	mV	
SID541	V _{TR_4P9_F}	LVD 4.9 V trimmed falling trip point for V_{DDD}	Typ – 4%	4900	Typ + 4%	mV	
SID542	V _{TR_5P0_F}	LVD 5.0 V trimmed falling trip point for V_{DDD}	Typ – 4%	5000	Typ + 4%	mV	
SID543	V _{TR_5P1_F}	LVD 5.1 V trimmed falling trip point for V_{DDD}	Typ – 4%	5100	Typ + 4%	mV	
SID544	V _{TR_5P2_F}	LVD 5.2 V trimmed falling trip point for V_{DDD}	Typ – 4%	5200	Typ + 4%	mV	
SID545	V _{TR_5P3_F}	LVD 5.3 V trimmed falling trip point for V_{DDD}	Typ – 4%	5300	Typ + 4%	mV	
SID546	V _{TR_2P8_R}	LVD 2.8 V trimmed rising trip point for V _{DDD}	Typ – 4%	2825	Typ + 4%	mV	Same as V _{TR_2P8_F} + 25 mV
SID547	V _{TR_2P9_R}	LVD 2.9 V trimmed rising trip point for V_{DDD}	Typ – 4%	2925	Typ + 4%	mV	Same as V _{TR_2P9_F} + 25 mV
SID548	V _{TR_3P0_R}	LVD 3.0 V trimmed rising trip point for V_{DDD}	Typ – 4%	3025	Typ + 4%	mV	Same as V _{TR_3P0_F} + 25 mV
SID549	V _{TR_3P1_R}	LVD 3.1 V trimmed rising trip point for V_{DDD}	Typ – 4%	3125	Typ + 4%	mV	Same as V _{TR_3P1_F} + 25 mV
SID550	V _{TR_3P2_R}	LVD 3.2 V trimmed rising trip point for V_{DDD}	Typ – 4%	3225	Typ + 4%	mV	Same as V _{TR_3P2_F} + 25 mV
SID551	V _{TR_3P3_R}	LVD 3.3 V trimmed rising trip point for V_{DDD}	Typ – 4%	3325	Typ + 4%	mV	Same as V _{TR_3P3_F} + 25 mV
SID552	V _{TR_3P4_R}	LVD 3.4 V trimmed rising trip point for V_{DDD}	Typ – 4%	3425	Typ + 4%	mV	Same as V _{TR_3P4_F} + 25 mV
SID553	V _{TR_3P5_R}	LVD 3.5 V trimmed rising trip point for V_{DDD}	Typ – 4%	3525	Typ + 4%	mV	Same as V _{TR_3P5_F} + 25 mV
SID554	V _{TR_3P6_R}	LVD 3.6 V trimmed rising trip point for V_{DDD}	Typ – 4%	3625	Typ + 4%	mV	Same as V _{TR_3P6_F} + 25 mV
SID555	V _{TR_3P7_R}	LVD 3.7 V trimmed rising trip point for V _{DDD}	Typ – 4%	3725	Typ + 4%	mV	Same as V _{TR_3P7_F} + 25 mV
SID556	V _{TR_3P8_R}	LVD 3.8 V trimmed rising trip point for V _{DDD}	Typ – 4%	3825	Typ + 4%	mV	Same as V _{TR_3P8_F} + 25 mV
SID557	V _{TR_3P9_R}	LVD 3.9 V trimmed rising trip point for V _{DDD}	Typ – 4%	3925	Typ + 4%	mV	Same as V _{TR_3P9_F} + 25 mV
SID558	V _{TR_4P0_R}	LVD 4.0 V trimmed rising trip point for V_{DDD}	Typ – 4%	4025	Typ + 4%	mV	Same as V _{TR_4P0_F} + 25 mV

Based on Arm® Cortex®-M7 single

Table 26-15 System resources (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/ conditions
SID559	V _{TR_4P1_R}	LVD 4.1 V trimmed rising trip point for V_{DDD}	Typ – 4%	4125	Typ + 4%	mV	Same as V _{TR_4P1_F} + 25 mV
SID560	V _{TR_4P2_R}	LVD 4.2 V trimmed rising trip point for V _{DDD}	Typ - 4%	4225	Typ + 4%	mV	Same as V _{TR_4P2_F} + 25 mV
SID561	V _{TR_4P3_R}	LVD 4.3 V trimmed rising trip point for V _{DDD}	Typ - 4%	4325	Typ + 4%	mV	Same as V _{TR_4P3_F} + 25 mV
SID562	V _{TR_4P4_R}	LVD 4.4 V trimmed rising trip point for V _{DDD}	Typ - 4%	4425	Typ + 4%	mV	Same as V _{TR_4P4_F} + 25 mV
SID563	V _{TR_4P5_R}	LVD 4.5 V trimmed rising trip point for V _{DDD}	Typ – 4%	4525	Typ + 4%	mV	Same as V _{TR_4P5_F} + 25 mV
SID564	V _{TR_4P6_R}	LVD 4.6 V trimmed rising trip point for V _{DDD}	Typ – 4%	4625	Typ + 4%	mV	Same as V _{TR_4P6_F} + 25 mV
SID565	V _{TR_4P7_R}	LVD 4.7 V trimmed rising trip point for V _{DDD}	Typ – 4%	4725	Typ + 4%	mV	Same as V _{TR_4P7_F} + 25 mV
SID566	V _{TR_4P8_R}	LVD 4.8 V trimmed rising trip point for V _{DDD}	Typ - 4%	4825	Typ + 4%	mV	Same as V _{TR_4P8_F} + 25 mV
SID567	V _{TR_4P9_R}	LVD 4.9 V trimmed rising trip point for V _{DDD}	Typ - 4%	4925	Typ + 4%	mV	Same as V _{TR_4P9_F} + 25 mV
SID568	V _{TR_5P0_R}	LVD 5.0 V trimmed rising trip point for V_{DDD}	Typ – 4%	5025	Typ + 4%	mV	Same as V _{TR_5P0_F} + 25 mV
SID569	V _{TR_5P1_R}	LVD 5.1 V trimmed rising trip point for V_{DDD}	Typ – 4%	5125	Typ + 4%	mV	Same as V _{TR_5P1_F} + 25 mV
SID570	V _{TR_5P2_R}	LVD 5.2 V trimmed rising trip point for V_{DDD}	Typ – 4%	5225	Typ + 4%	mV	Same as V _{TR_5P2_F} + 25 mV
SID571	V _{TR_5P3_R}	LVD 5.3 V trimmed rising trip point for V_{DDD}	Typ – 4%	5325	Typ + 4%	mV	Same as V _{TR_5P3_F} + 25 mV
SID573	LVD_RR_A	Power ramp rate: V _{DDD} (Active)	-	-	100	mV/μs	
SID574	LVD_RR_DS	Power ramp rate: V _{DDD} (DeepSleep)	-	-	10	mV/μs	
SID575	t _{DLY_ACT_LVD}	Active mode delay between V _{DDD} falling/rising through LVD rising/falling point and an internal LVD output transitioning through V _{DDD} / 2	-	-	1	μs	Guaranteed by design
SID575A	t _{DLY_DS_LVD}	DeepSleep mode delay between V _{DDD} falling/rising through LVD rising/falling point and an internal LVD output transitioning through V _{DDD} / 2	-	-	4	μs	Guaranteed by design
SID576	t _{RES_LVD}	Response time of LVD, V _{DDD} supply. LVD guaranteed to generate pulse for V _{DDD} pulse width greater than this. (For falling-then-rising supply at max ramp rate; pulse width is time below LVD falling trip point.)	100	-	-	ns	Guaranteed by design
High-vol	tage OVD Specifi	ications					
SID580	V _{TR_5P0_R}	High-voltage OVD 5.0-V trimmed rising trip point for V _{DDD} and V _{DDA_ADC}	5.049	5.205	5.361	V	
SID581	V _{TR_5P0_F}	High-voltage OVD 5.0-V trimmed falling trip point for V _{DDD} and V _{DDA_ADC}	5.025	5.18	5.335	V	
SID582	V _{TR_5P5_R}	High-voltage OVD 5.5-V trimmed rising trip point for V _{DDD} and V _{DDA_ADC} (default)	5.548	5.72	5.892	V	

Based on Arm® Cortex®-M7 single

Table 26-15 System resources (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/ conditions
SID583	V _{TR_5P5_F}	High-voltage OVD 5.5-V trimmed falling trip point for V _{DDD} and V _{DDA_ADC} (default)	5.524	5.695	5.866	V	
SID585	HVOVD_RR_A	Power ramp rate: V _{DDD} and V _{DDA_ADC} (Active)	_	-	100	mV/μs	
SID586	HVOVD_RR_DS	Power ramp rate: V _{DDD} and V _{DDA_ADC} (DeepSleep)	-	-	10	mV/μs	
SID587	t _{DLY_ACT_HVOVD}	Active mode delay between V _{DDD} falling/rising through V _{TR_5P0_F/R} or V _{TR_5P5_F/R} and an internal HV OVD output transitioning through V _{DDD} / 2	-	-	1	μs	Guaranteed by design
SID587A	^t DLY_ACT_HVOVD_A	Active mode delay between V_{DDA_ADC} falling/rising through $V_{TR_5P0_F/R}$ or $V_{TR_5P5_F/R}$ and an internal HV OVD output transitioning through V_{DDD} / 2	-	-	1.5	μs	Guaranteed by design
SID587B	^t DLY_DS_HVOVD	DeepSleep mode delay between V_{DDD}/V_{DDA_ADC} falling/rising through $V_{TR_5P0_F/R}$ or $V_{TR_5P5_F/R}$ and an internal HV OVD output transitioning through V_{DDD} / 2	-	-	4	μs	Guaranteed by design
SID588	^t RES_HVOVD	Response time of HV OVD HV OVD guaranteed to generate pulse for V _{DDD} /V _{DDA ADC} pulse width greater than this. (For rising-then-falling supply at max ramp rate; pulse width is time above V _{TR_5PO_R} or V _{TR_5P5_R})	100	-	-	ns	Guaranteed by design
Low-volt	age OVD Specific	ations					
SID590	$V_{TR_R_LVOVD}$	LV OVD trimmed rising trip point for V _{CCD}	Typ – 3%	1300	Typ + 3%	mV	
SID591	V _{TR_F_LVOVD}	LV OVD trimmed falling trip point for V _{CCD}	Typ – 3%	1275	Typ + 3%	mV	Same as V _{TR_R_LVOVD} – 25 mV
SID595	t _{DLY_ACT_LVOVD}	Active mode delay between V _{CCD} falling/rising through V _{TR_F/R_LVOVD} and an internal LV OVD output transitioning through V _{DDD} / 2	-	-	1	μs	Guaranteed by design
SID595A	^t DLY_DS_LVOVD	DeepSleep mode delay between V_{CCD} falling/rising through V_{TR_F/R_LVOVD} and an internal LV OVD output transitioning through V_{DDD} / 2	-	-	12	μs	Guaranteed by design
SID596	t _{RES_LVOVD}	Response time of LV OVD. LV OVD guaranteed to generate pulse for V _{CCD} pulse width greater than this. (For rising-then-falling supply at max ramp rate; pulse width is time above V _{TR_R_LVOVD})	100	-	-	ns	Guaranteed by design
Over cur	rent detection (O	CD) Specifications	<u> </u>			ı	1
SID598	locd	Over current detection range for internal Active regulator	312	-	630	mA	
SID599	I _{OCD_DPSLP}	Over current detection range for internal DeepSleep regulator	18	-	72	mA	

Based on Arm® Cortex®-M7 single

Figure 26-14 Device operations supply range

Figure 26-15 POR specifications

Figure 26-16 High-voltage BOD specifications

Figure 26-17 Low-voltage BOD specifications

Figure 26-18 High-voltage OVD specifications

Figure 26-19 Low-voltage OVD specifications

Figure 26-20 LVD specifications

SWD, JTAG, and Trace specifications 26.9.1

SWD interface specifications **Table 26-16**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
	d I/O Configuration: G_OUT/DRIVE_SEL<1:0>	=0b00, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>=	0b0, CFG_IN/VT	RIP_SEL<0:0)>=0b1		
SID300	f _{SWDCLK}	SWD clock input frequency	_	-	10	MHz	$2.7 \text{V} \leq \text{V}_{\text{DDIO_GPIO}} \leq 5.5 \text{V}$
SID301	t _{SWDI_SETUP}	SWDI setup time	0.25 × T	ī	-	ns	$T = 1 / f_{SWDCLK}$
SID302	t _{SWDI_HOLD}	SWDI hold time	0.25 × T	-	_	ns	T = 1 / f _{SWDCLK}
SID303	t _{SWDO_VALID}	SWDO valid time	_	_	0.5 × T	ns	T = 1 / f _{SWDCLK}
SID304	t _{SWDO_HOLD}	SWDO hold time	1	-	_	ns	T = 1 / f _{SWDCLK}

JTAG AC specifications Table 26-17

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions				
	Recommended I/O Configuration: GPIO_STD: CFG_OUT/DRIVE_SEL<1:0> = 0b00, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b1										
SID620	t _{JCKH}	TCK HIGH time	25	_	-	ns	30-pF load on TDO				
SID621	t _{JCKL}	TCK LOW time	25	-	-	ns	30-pF load on TDO				
SID622	t_{JCP}	TCK clock period	62.5	-	_	ns	30-pF load on TDO				
SID623	t _{JSU}	TDI/TMS setup time	6.25	_	-	ns	30-pF load on TDO				
SID624	t _{JH}	TDI/TMS hold time	6.25	_	-	ns	30-pF load on TDO				
SID625	t _{JZX}	TDO High-Z to active	_	-	25	ns	30-pF load on TDO				
SID626	t_{JXZ}	TDO active to High-Z	-	-	25	ns	30-pF load on TDO				
SID627	t _{JCO}	TDO clock to output	_	_	25	ns	30-pF load on TDO				

Based on Arm® Cortex®-M7 single

Figure 26-21 JTAG specifications

Table 26-18 Trace Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
HSIO_STDLN: (RIVE_SEL_EXT<2:0> = 0b000, CFG_SLEW_E	XT/SLEW<0	:0>=0b0			
SID1412A	C _{TRACE}	Trace capacitive load	_	_	30	pF	
SID1412	t _{TRACE_CYC}	Trace clock period	20	-	-	ns	Trace clock cycle time for 50 MHz
SID1413	t _{TRACE_CLKL}	Trace clock LOW pulse width	2	-	-	ns	Clock low pulse width
SID1414	t _{TRACE_CLKH}	Trace clock HIGH pulse width	2	-	-	ns	Clock high pulse width
SID1415	t _{TRACE_SETUP}	Trace data setup time	2	-	-	ns	Trace data setup time, CLK_PERI ≥ 75 MHz
SID1416	t _{TRACE_HOLD}	Trace data hold time	1	-	-	ns	Trace data hold time, CLK_PERI ≥ 75 MHz
SID1415A	t _{TRACE_SETUP}	Trace data setup time	3	-	-	ns	Trace data setup time, CLK_PERI < 75 MHz
SID1416A	t _{TRACE_HOLD}	Trace data hold time	2	-	-	ns	Trace data hold time, CLK_PERI < 75 MHz

Clock specifications 26.10

Root and intermediate clocks^[64, 65] **Table 26-19**

	Maximum			М	aximum permitted cl	ock frequency (MHz	<u>.</u>)[66]		
Root Clock	permitted clock frequency (MHz) ^[66]	Source	PLL/F	LL Clock source: E	CO/LPECO ^[67]	PLL/FLI	Clock source: IM	O ^[68, 69]	Description
	frequency (MHz)[00]		Integer	SSCG	Fractional	Integer	SSCG	Fractional	
	160	PLL200#0	160	NA	NA	153	NA	NA	Root clock for CPUSS, PERI (CLK_MEM)
CLK_HF0	100	FLL	100	NA	NA	100	NA	NA	NOOCCIOCK TOT CT 033, T ENT (CEN_MEM)
CEN_III 0	100	PLL200#0	100	NA	NA	95	NA	NA	PERI (CLK_SLOW, CLK_PERI)
	100	FLL	100	NA	NA	97	NA	NA	1. Ett (EEL_SEON, EEL_1 EIN)
CLK HF1	240	PLL400#0	240	235	237	229	225	227	CM7 CPU Core#0
CLK_HF1	240	FLL	100	NA	NA	100	NA	NA	CM7 CFG COIE#0
CLK_HF2	100	PLL200#1	100	NA	NA	95	NA	NA	Peripheral clock root other than CLK_PERI (CAN FD, etc.)
CLK_HF2	100	FLL	100	NA	NA	97	NA	NA	reinfrieda ciock foot other than CEK_FERT (CARFD, etc.)
CLK HF3	100	PLL200#0	100	NA	NA	95	NA	NA	Event generator (CLK_REF), clock output on EXT_CLK pins (when used as output)
CEN_III 5	100	FLL	100	NA	NA	97	NA	NA	Event generator (CEN_NET), clock output on EN_CEN pins (when used as output)
CLK_HF4	50	PLL200#1	50	NA	NA	47	NA	NA	ETH Channel#0. Internal clock 50 MHz for RMII, External PHY provides 25 MHz for MII
CLK_IIF4	30	FLL	50	NA	NA	48	NA	NA	ETH Chamile Ho. Internal Clock 30 Mil 2 for RMII, External FTH provides 23 Mil 2 for Mil
CLK_HF5	200	PLL400#1 / PLL400#2 / EXT_CLK	200	196	198	191	187	189	Sound Subsystem #0 root clock, ETH0 TSU clock (CLK_IF_SRSS0)
		FLL	100	NA	NA	100	NA	NA	
CLK_HF6	200	PLL400#1 / PLL400#2 / EXT_CLK	200	196	198	191	187	189	Sound Subsystem #1 root clock (CLK_IF_SRSS1)
		FLL	100	NA	NA	100	NA	NA	
CLK_HF7	200	PLL400#1 / PLL400#2 / EXT_CLK	200	196	198	191	187	189	Sound Subsystem #2 root clock (CLK_IF_SRSS2)
		FLL	100	NA	NA	100	NA	NA	
		PLL400#1	200	196	198	191	187	189	
CLK_HF8	266	PLL400#2	266	260	263	254	249	252	SMIF#0 root clock
		FLL	NA	NA	NA	NA	NA	NA	
		PLL400#1	200	196	198	191	187	189	
CLK_HF9	266	PLL400#2	266	260	263	254	249	252	SMIF#1 root clock
		FLL	NA	NA	NA	NA	NA	NA	

- Notes
 64. Intermediate clocks that are not listed have the same limitations as that of their parent clock.
 65. Table indicates guaranteed mapping between a root clock (CLK_HFx) and the PLL.
 66. Maximum clock frequency after the corresponding clock source (PLL/FLL + dividers). All internal tolerances and affects are covered by these frequencies.
 67. For ECO, LPECO: up to ±150 ppm uncertainty of the external clock source are tolerated by design.
 68. The IMO operation frequency tolerance is included.
 69. ROM and flash boot execution with IMO/FLL at 100 MHz is guaranteed by design.

Electrical specifications

Based on Arm® Cortex®-M7 single

TRAVEO™ T2G 32-bit Automotive MCU

Based on Arm® Cortex®-M7 single

TRAVEO™ T2G 32-bit Automotive MCU

Based on Arm® Cortex®-M7 single

Electrical specifications

Table 26-20 PLL400 operation modes

PLL400 operation mode	Spread spectrum clock generation (SSCG)	Fractional			
Integer	OFF	OFF			
SSCG	ON	OFF			
Fractional	OFF	ON			

Table 26-21 IMO AC specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID310	f _{IMO}	IMO operating frequency	7.632	8	8.368	MHz	Accuracy after factory trimming
SID311	t _{STARTIMO}	IMO startup time	-	-	7.5	μs	Startup time to 90% of final frequency
SID312	I _{IMO_ACT}	IMO current	_	13.5	22	μΑ	Guaranteed by design

Table 26-22 ILO AC specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID320	f _{ILOTRIM}	ILO operating frequency	30.965	32.768	34.57		5.5% accuracy after factory trimming
SID321	t _{STARTILO}	ILO startup time	_	8	12		Startup time to 90% of final frequency
SID323	I _{ILO}	ILO current	-	500	2800	nA	Guaranteed by design

Table 26-23 LPECO specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID325	f _{LPECO}	LPECO operating frequency	3.99	-	8.01	MHz	Drive level protection DL ≥ 100 μW, ESR ≤ 200 Ω Crystal load capacitance (C _L) 5 pF to 25 pF
SID329	I _{LPECO_4M}	LPECO current at 4 MHz	-	93	110	μΑ	Shared with GPIO, Load: 10 pF BACKUP_LPECO_CTL/LPECO_AMP- DET_EN<0:0>=0b0
SID354	I _{LPECO_4M}	LPECO current at 4 MHz	_	97	125	μΑ	Shared with GPIO, Load: 15 pF BACKUP_LPECO_CTL/LPECO_AMP- DET_EN<0:0>=0b0
SID326	I _{LPECO_4M}	LPECO current at 4 MHz	-	106	145	μΑ	Shared with GPIO, Load: 20 pF BACKUP_LPECO_CTL/LPECO_AMP- DET_EN<0:0>=0b0
SID355	I _{LPECO_4M}	LPECO current at 4 MHz	-	115	155	μА	Shared with GPIO, Load: 25 pF BACKUP_LPECO_CTL/LPECO_AMP- DET_EN<0:0>=0b0
SID356	I _{LPECO_8M}	LPECO current at 8 MHz	-	140	165	μА	Shared with GPIO, Load: 10 pF BACKUP_LPECO_CTL/LPECO_AMP- DET_EN<0:0>=0b0
SID357	I _{LPECO_8M}	LPECO current at 8 MHz	-	149	175	μΑ	Shared with GPIO, Load: 15 pF BACKUP_LPECO_CTL/LPECO_AMP- DET_EN<0:0>=0b0
SID327	I _{LPECO_8M}	LPECO current at 8 MHz	-	165	190	μА	Shared with GPIO, Load: 20 pF BACKUP_LPECO_CTL/LPECO_AMP- DET_EN<0:0>=0b0

Notes

^{70.}Oscillator startup time is a performance parameter and mainly depending on the chosen external crystal and load capacitance.

Based on Arm® Cortex®-M7 single

Table 26-23 LPECO specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID358	I _{LPECO_8M}	LPECO current at 8 MHz	-	183	220	μΑ	Shared with GPIO, Load: 25 pF BACKUP_LPECO_CTL/LPECO_AMP- DET_EN<0:0>=0b0
SID328	t _{START_LPECO}	LPECO startup time ^[70]	-	-	10	ms	Startup time to 90% of final frequency. Time from oscillator enable (BACKUP_LPECO_CTL.LPECO_EN<0:0>=0b1) to stable oscillation and sufficient amplitude (BACKUP_LPECO_STATUS.LPECO_READY<0:0>=0b1 and BACKUP_LPECO_STATUS.LPECO_AMP-DET OK<0:0>=0b1).

Based on Arm® Cortex®-M7 single

Electrical specifications

 $\mbox{Figure 26-22} \quad \mbox{LPECO connection scheme}^{[71]}$

Table 26-24 ECO specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID330	f _{ECO}	Crystal frequency range	7.2	_	33.34	MHz	
SID332	R _{FDBK}	Feedback resistor value. Min: RTRIM = 3; Max: RTRIM = 0 with 100 kΩ step size on RTRIM	100	_	400	kΩ	Guaranteed by design
SID333	I _{ECO3}	ECO current at T _J = 150°C	_	1200	2000	μА	Maximum operation current with a 33-MHz crystal, max 18-pF load
SID334	t _{START_7.2M}	7.2-MHz ECO startup time ^[72]	-	-	10	ms	Startup time to 90% of final frequency. Time from oscillator enable (CLK_ECOCONFIG.ECO_EN<0:0>= 0b1) to stable oscillation and sufficient amplitude (CLK_ECO_STATUS.ECO_OK<0:0>=0b1 and CLK_ECO_STATUS.ECO_READY<0:0>=0b1).
SID335	t _{START_33M}	33-MHz ECO startup time ^[72]	-	-	1	ms	Startup time to 90% of final frequency. Time from oscillator enable (CLK_ECOCONFIG.ECO_EN<0:0>= 0b1) to stable oscillation and sufficient amplitude (CLK_ECO_STATUS.ECO_OK<0:0>=0b1 and CLK_ECO_STATUS.ECO_READY<0:0>=0b1).

Notes

^{71.}Refer to the family-specific Architecture TRM for more information on crystal requirements (002-25800, TRAVEO™ T2G Automotive MCU cluster 2D architecture technical reference manual).

^{72.} Oscillator startup time is a performance parameter and mainly depending on the chosen external crystal and load capacitance.

Based on Arm® Cortex®-M7 single

 $\begin{tabular}{ll} Figure 26-23 & ECO connection scheme \end{tabular} \label{table}$

Table 26-25 PLL specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
PLL Speci	fications for "	PLL without SSCG and Frac	ctional C	perati	on" (PLL	200)	<u>'</u>
SID340	t _{PLL200_LOCK}	Time to achieve PLL lock	-	-	35	μs	Time from stable reference clock until PLL frequency is within 0.1% of final value and lock indicator is set
SID341	f _{out}	Output frequency from PLL block (PLL_OUT)	10.998	-	200.03	MHz	
SID346	f _{IN}	PLL input frequency (Reference Clock f _{REF})	3.988	-	33.34	MHz	
SID347	I _{PLL_200M}	PLL operating current	_	0.87	1.85	mA	f _{OUT} = 200 MHz
SID348C	f _{PLL_VCO}	VCO frequency, clock output of 'Voltage Control Oscillator (VCO)'	169.97 45	-	400.06	MHz	
SID349C	f _{PLL_PFD}	Phase Detector Frequency, clock output of the Reference Divider (Q) and Feedback Divider (P)	3.988	-	8.0012	MHz	
SID342	PLL_LJIT1	Long term jitter	-0.25	-	0.25	ns	For 125 ns Guaranteed by design f _{PLL_VCO} : 320 MHz or 400 MHz f _{PLL_OUT} : 40 MHz to 200 MHz f _{PLL_PFD} : 8 MHz f _{PLL_IN} : ECO
SID343	PLL_LJIT2	Long term jitter	-0.5	-	0.5	ns	For 500 ns Guaranteed by design f _{PLL_VCO} : 320 MHz or 400 MHz f _{PLL_OUT} : 40 MHz to 200 MHz f _{PLL_PFD} : 8 MHz f _{PLL_IN} : ECO
SID344	PLL_LJIT3	Long term jitter	-0.5	_	0.5	ns	For 1000 ns Guaranteed by design f_PLL_VCO: 320 MHz or 400 MHz f_PLL_OUT: 40 MHz to 200 MHz f_PLL_PFD: 8 MHz f_PLL_IN: ECO

Based on Arm® Cortex®-M7 single

Table 26-25 PLL specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
	PLL_LJIT5	Long term jitter	-0.75	-	0.75	ns	For 10000 ns Guaranteed by design f _{PLL_VCO} : 320 MHz or 400 MHz f _{PLL_OUT} : 40 MHz to 200 MHz f _{PLL_PFD} : 8 MHz f _{PLL_IN} : ECO
PLL Speci	fications for "	PLL with SSCG and Fraction	nal Ope	ration"	(PLL400))	
SID340A	t _{PLL400_LOCK}	Time to achieve PLL lock	_	-	50	μs	
SID341A	f _{OUT}	Output frequency from PLL block (PLL_OUT)	24.996	-	400.06	MHz	
SID343A	SPREAD_D	Spread spectrum modulation depth	0.5	-	3	%	Downspread only, triangle modulation
SID343B	f _{SPREAD_MR}	Spread spectrum modulation rate	_	-	32	kHz	Selected by modulation divider from f _{PFD}
SID346A	f _{IN}	PLL input frequency (Reference Clock f _{REF})	3.988	-	33.34	MHz	
SID347A	I _{PLL_400M}	PLL operating current	-	1.4	2.2	mA	f _{OUT} = 400 MHz
SID348A	f _{PFD_S}	Phase Detector Frequency, clock output of the Reference Divider (Q) and Feedback Divider (P)	3.988	-	20.003	MHz	Fractional operation OFF
SID349A	f _{PFD_F}	Phase Detector Frequency, clock output of the Reference Divider (Q) and Feedback Divider (P)	7.9988	-	20.003	MHz	Fractional operation ON
SID345A	f _{VCO}	VCO frequency, Clock output of 'Voltage Control Oscillator (VCO)'	399.94	-	800.12	MHz	
SID342D1	PLL400_LJIT1	Long term jitter	-0.25	-	0.25	ns	For 125 ns Guaranteed by Design f _{VCO} : 800 MHz (Integer mode) f _{IN} : ECO f _{PFD} : 4 MHz f _{OUT} : 100 MHz to 400 MHz
SID343D1	PLL400_LJIT2	Long term jitter	-0.5	-	0.5	ns	For 500 ns Guaranteed by Design f _{VCO} : 800 MHz (Integer mode) f _{IN} : ECO f _{PFD} : 4 MHz f _{OUT} : 100 MHz to 400 MHz
SID344D1	PLL400_LJIT3	Long term jitter	-1	-	1	ns	For 1000 ns Guaranteed by Design f _{VCO} : 800 MHz (Integer mode) f _{IN} : ECO f _{PFD} : 4 MHz f _{OUT} : 100 MHz to 400 MHz
SID345E1	PLL400_LJIT5	Long term jitter	-1.5	-	1.5	ns	For 10000 ns Guaranteed by Design f _{VCO} : 800 MHz (Integer mode) f _{IN} : ECO f _{PFD} : 4 MHz f _{OUT} : 100 MHz to 400 MHz

Based on Arm® Cortex®-M7 single

Electrical specifications

Table 26-26 FLL specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID350	^t fll_WAKE	FLL wake up time	-	-	5	μs	Wakeup with < 10°C temperature change while in DeepSleep. f _{FLL_IN} = 8 MHz, f _{FLL_OUT} = 100 MHz, Time from stable reference clock until FLL frequency is within 5% of final value
SID351	f _{FLL_OUT}	Output frequency from FLL block	24	_	100	MHz	Output range of FLL divided-by-2 output
SID352	FLL_CJIT	FLL frequency accuracy	-1	_	1	%	This is added to the error of the source
SID353	f _{FLL_IN}	Input frequency	0.25	_	100	MHz	

Table 26-27 WCO specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID360	f _{wco}	Watch crystal frequency	_	32.768	-	kHz	Tuning Fork Crystal with following parameters: DL (drive level) $\geq 0.5 \mu W$, ESR $\leq 130 \text{ k}\Omega$
SID361	WCO_DC	WCO duty cycle	10	-	90	%	
SID362	t _{START_WCO}	WCO start up time ^[73]	_	-	1000	ms	Time from oscillator enable (BACKUP_CTL.WCO_EN< 0:0>=0b1) to stable oscil- lation and sufficient amplitude (BACKUP_STATUS.WCO_ OK<0:0>=0b1)
SID363	I _{wco}	WCO current	_	1.4	_	μΑ	AGC=OFF

Figure 26-24 WCO connection scheme^[74]

Notes

^{73.}Oscillator startup time is a performance parameter and mainly depending on the chosen external crystal and load capacitance.
74.Refer to the family-specific Architecture TRM for more information on crystal requirements (002-25800, TRAVEO™ T2G Automotive MCU cluster 2D architecture technical reference manual).

Based on Arm® Cortex®-M7 single

Table 26-28 External clock input specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID366	f _{EXT}	External clock input frequency	0.25	-	100		For EXT_CLK pin (all input level settings: CMOS, TTL, Automotive)
SID367	EXT_DC	Duty cycle	45	_	55	%	

Table 26-29 MCWDT timeout specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID410	t _{MCWDT1}	Minimum MCWDT timeout	57.85	-	-	μs	When using the ILO (32 kHz + 5.5%) and 16-bit MCWDT counter Guaranteed by design
SID411	t _{MCWDT2}	Maximum MCWDT timeout	-	-	2.12	S	When using the ILO (32 kHz – 5.5%) and 16-bit MCWDT counter Guaranteed by design

Table 26-30 WDT timeout specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID412	t _{WDT1}	Minimum WDT timeout	57.85	_	-	μs	When using the ILO (32 kHz + 5.5%) and 32-bit WDT counter Guaranteed by design
SID413	t _{WDT2}	Maximum WDT timeout	_	_	38.53	h	When using the ILO (32 kHz – 5.5%) and 32-bit WDT counter Guaranteed by design
SID414	t _{WDT3}	Default WDT timeout	-	1000	-	ms	When using the ILO and 32-bit WDT counter at 0x8000 (default value), guaranteed by design

Based on Arm® Cortex®-M7 single

Electrical specifications

Ethernet specifications 26.11

Ethernet specifications Table 26-31

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
Ethernet (General Speci	fications	1				
SID364	C _L	Load capacitance	-	-	20	pF	for all between MAC and PHY for MII-IF, RMII-IF, MDC/MDIO-IF
SID368	f_{SYS}	System clock max frequency	-	-	100	MHz	Guaranteed by design
SID369	f _{AXI}	AXI clock max frequency	_	-	200	MHz	Guaranteed by design
Ethernet I	MII Specificati	ons					
Recommended HSIO_STDLN: C	I/O configuration: FG_DRIVE_EXT<1:0>/D	RIVE_SEL_EXT<2:0> = 0b011, CFG_IN_AUTOLVL/	VTRIP_SEL<0:0	>= 0b0, CF0	G_IN/VTRIP_SEL<	<0:0> = 0b1,	CFG_SLEW_EXT/SLEW<0:0> = 0b0
SID370	t _{TXCYC}	MII tx_clk cycle	39.5	40	40.5	ns	
SID371	t _{RXCYC}	MII rx_clk cycle	39.5	40	40.5	ns	
SID372	t _{SKEWT}	MII Transmit data (txd,tx_en,tx_er) valid after tx_clk	0.5	_	25	ns	
SID373	t _{SUR}	MII Receive data setup to rx_clk rising edge	10	-	_	ns	
SID374	t _{HOLDR}	MII Receive data hold to rx_clk rising edge	10	-	-	ns	
SID375	f _{TXRX_CLK}	MII TX/RX_CLK Clock frequency	-50ppm	25	+50ppm	MHz	
SID376A	DUTY_REF	Duty cycle of reference clock	40	-	60	%	
SID365A	t _{RF}	Input rise / fall time	_	-	2	ns	20% to 80%
SID365E	t _{RFO}	Output rise / fall time	_	-	6.5	ns	20% to 80%
Ethernet I	RMII Specifica	tions					
Recommended HSIO_STDLN: C	I/O configuration: FG_DRIVE_EXT<1:0>/D	RIVE_SEL_EXT<2:0> = 0b010, CFG_IN_AUTOLVL/	VTRIP_SEL<0:0	>= 0b0, CF0	G_IN/VTRIP_SEL<	<0:0> = 0b1,	CFG_SLEW_EXT/SLEW<0:0> = 0b0
SID375A	f _{REF_CLK}	RMII reference clock frequency	-50ppm	50	+50ppm	MHz	
SID376	DUTY_REF	Duty cycle of reference clock	40	-	60	%	
SID377	t _{SU}	RXD[1:0], CRS_DV, RX_ER Data Setup to REF_CLK rising edge.	4	-	-	ns	
SID378	t _{HOLD}	RXD[1:0], CRS_DV, RX_ER, Data hold from REF_CLK rising edge	2	-	-	ns	
SID379A	t _{TXOUTE}	External clock mode. TXD[1:0], TX_EN Data output delay from REF_CLK rising edge	2	_	14	ns	
SID379B	t _{TXOUTI}	Internal clock mode. TXD[1:0], TX_EN Data output delay from REF_CLK rising edge	2	_	16	ns	
SID365C	t _{RF}	Input rise / fall time	_	-	2	ns	20% to 80%

Based on Arm® Cortex®-M7 single

Table 26-31 Ethernet specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID365F	t _{RFO}	Output rise / fall time	_	_	6.5	ns	20% to 80%
Ethernet I	MDIO Specific	ations					
SID395	t _{MDCYC}	MDC clock cycle	400	_	_	ns	
SID395A	t _{HL_MDC}	MDIO Minimum high and low times for MDC	160	-	_	ns	
SID396	t _{MDIS}	MDIO input setup time to MDC rising edge	100	-	_	ns	
SID397	t _{MDIH}	MDIO input hold time to MDC rising edge	0	-	_	ns	
SID398	t _{MDIO}	MDIO output skew from MDC rising edge	10	-	390	ns	
SID365D	t _{RF}	Input rise / fall time	_	_	2	ns	20% to 80%
SID365G	t _{RFO}	Output MDIO rise / fall time	-	_	6.5	ns	20% to 80%

Figure 26-25 MII timing diagram

Based on Arm® Cortex®-M7 single

Figure 26-26 MDIO timing diagram

Figure 26-27 RMII timing diagram

Based on Arm® Cortex®-M7 single

Electrical specifications

26.11.1 Minimum bus frequency requirements

The following table details the required minimum operating frequencies for all possible Ethernet configurations and MAC speeds. Ethernet module uses **AXI** interface for DMA access.

Table 26-32 Minimum AXI frequency for MAC speeds

DMA bus width	MAC rate	Minimum AXI frequency		
64	100 Mbps	10 MHz		
64	10 Mbps	10 MHz		

Based on Arm® Cortex®-M7 single

Electrical specifications

Sound subsystem specifications 26.12

Table 26-33 Sound Subsystem Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
I ² S I/O sett	ings						
Recommended HSIO_STDLN: =0b000	d I/O configuration CFG_DRIVE_EXT<1:0	: >>/DRIVE_SEL_EXT<2:0> =0b100, CFC	G_IN_AUTOLVL/	VTRIP_SEL<0:	:0>= 0b0, CFG	_IN/VTRIP_	SEL<0:0> = 0b1, CFG_SLEW_EXT/SLEW<2:0>
I ² S Serial C	lock Frequency	У					
SID796	t _{SCLK}	Serial clock period	162	-	-	ns	Guaranteed by design No feature is used for low frequency I ² S operation: DUT RX Master: * RX_IF_CTL.LATE_SAMPLE = 0 * RX_IF_CTL.LATE_CAPTURE = 0b00 DUT TX Slave: No special configuration DUT RX Slave: * RX_IF_CTL.LATE_SAMPLE = 0
SID797	t _{HC}	Serial clock high time	0.35 × t _{SCLK}	-	-	ns	Guaranteed by design
SID798	t _{LC}	Serial clock low time	0.35 × t _{SCLK}		_	ns	Guaranteed by design
SID799	t _{MCLK}	Master clock period	20	-	-	ns	Guaranteed by design
I ² S Transm	itter Timing						
SID740	t _{DTR}	Delay from rising edge of TX_CLK to transition on TX_SD/TX_FSYNC (WS)	-	-	0.8 × t _{SCLK}	ns	Guaranteed by design
SID741	t _{HTR}	Delay from rising edge of TX_CLK to transition on TX_SD/TX_FSYNC (WS)	0	-	-	ns	Guaranteed by design
SID743	t _{HR_WS_POL_0}	TX Slave: Hold on TX_FSYNC (WS) after the 1st edge following the driving edge of TX_CLK (SCK_POLARITY = 0, half-cycle hold)	1.8	-	-	ns	
I ² S Receive	r Timing	•	•		•	•	•
SID751	t _{SR}	Setup on RX_SD/RX_FSYNC (WS) before the rising edge to RX_CLK	0.2×t _{SCLK}	-	-	ns	Guaranteed by Design Setup time is independent from RX_IF_CTL.LATE_SAMPLE, RX_IF_CTL.LATE_CAPTURE or SCK_POLARITY setting
SID752	t _{HR}	Hold on RX_SD/RX_FSYNC (WS) after the rising edge to RX_CLK	0	-	_	ns	Guaranteed by Design Sampling edge w.r.t driving edge of RX_SCLK: 1st edge (0.5 x t _{SCLK}) RX-Master: RX_IF_CTL.LATE_SAMPLE = 0, RX_IF_CTL.LATE_CAPTURE = 0b00 RX-Slave: SCK_POLARITY = 0
SID753	t _{SCLK_TRANS}	SCLK transition timing	1	-	8	ns	20% to 80%
SID754	t _{MCLK_TRANS}	MCLK transition timing	1	-	8	ns	20% to 80%
SID755	t _{DATA_TRANS}	DATA transition timing	1	_	8	ns	20% to 80%

Sound Subsystem Specifications (continued) **Table 26-33**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
TDM I/O Set	ttings						
For serial clock HSIO_STDLN:			i_IN_AUTOLVL	/VTRIP_SEL<0	:0>= 0b0, CFG	_IN/VTRIP_	_SEL<0:0> = 0b1, CFG_SLEW_EXT/SLEW<0:0> = 0b0
	k up to 25 MHz CFG_DRIVE_EXT<1:0)>/DRIVE_SEL_EXT<2:0> = 0b100, CFG	_IN_AUTOLVL	/VTRIP_SEL<0	:0>= 0b0, CFG	_IN/VTRIP_	_SEL<0:0> = 0b1, CFG_SLEW_EXT/SLEW<0:0> = 0b0
TDM Serial	Clock						
SID1000A	t _{SCLK}	Serial clock period, TDM[x] (x=0 through 3)	20	-	-	ns	Guaranteed by Design TX Master: TX_IF_CTL.SCK_POLARITY = 0 RX Master: not supported at 50 MHz
							TX Slave: not supported at 50 MHz RX Slave: not supported at 50 MHz
SID1000B	^t sclk	Serial clock period, TDM[x] (x=0 through 3)	40	-	-	ns	Guaranteed by Design TX Master: TX_IF_CTL.SCK_POLARITY = 0 RX Master: RX_IF_CTL.LATE_SAMPLE = 1 RX_IF_CTL.LATE_CAPTURE = 0b00 TX Slave: Set TX_IF_CTL.SCK_POLARITY = 1 RX Slave: RX_IF_CTL.SCK_POLARITY = 0
SID1001	t _{HC}	Serial clock high time	0.35 × t _{SCLK}	_	_	ns	Guaranteed by design
SID1002	t _{LC}	Serial clock low time	0.35 × t _{SCLK}	_	-	ns	Guaranteed by design
SID1010	t _{MCLK}	Master clock input period	10	-	-	ns	MCLK must be SCLK*2; The maximum output frequency of the TDM depends on the used I/O type.
SID1002A	t _{MCLK}	Master clock output period	20	-	-	ns	
SID1002D	t _{MCLK_IH}	Master clock input high time	0.45 × t _{MCLK}	_	-	ns	
SID1002E	t _{MCLK_IL}	Master clock input low time	0.45 × t _{MCLK}	_	_	ns	
SID1002F	t _{MCLK_OH}	Master clock output high time	0.35 × t _{MCLK}	_	_	ns	
SID1002G	t _{MCLK_OL}	Master clock output low time	0.35 × t _{MCLK}	_	_	ns	
TDM Transr	nit Timing						
SID1003	t _{DTR}	Delay from rising edge of TX_CLK to transition on TX_SD/TX_FSYNC (WS)	-	-	0.8 × t _{SCLK}	ns	Guaranteed by design
SID1004	t _{HTR}	Delay from rising edge of TX_CLK to transition on TX_SD/TX_FSYNC (WS)	0	-	-	ns	Guaranteed by design
SID1011	t _{HR_WS_POL_0}	TX Slave: Hold on TX_FSYNC (WS) after the 1st edge following the driving edge of TX_CLK (SCK_POLARITY = 0, half-cycle hold)	1.8	-	-	ns	

Based on Arm® Cortex®-M7 single

Sound Subsystem Specifications (continued) **Table 26-33**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID1012	t _{HR_WS_POL_1}	TX Slave: Hold on TX_FSYNC (WS) after the 2nd edge following the driving edge of TX_CLK (SCK_POLARITY = 1, zero-cycle hold)	1.8	-	-	ns	
TDM Receiv	e Timing						
SID1005	t _{SR}	Setup on RX_SD/RX_FSYNC (WS) before the 1st edge following the driving edge of RX_CLK	0.2 × t _{SCLK}	-	-	ns	Guaranteed by Design Setup time is independent from RX_IF_CTL.LATE_SAMPLE, RX_IF_CTL.LATE_CAPTURE and SCK_POLARITY setting
SID1006	t _{HR}	Hold on RX_SD/RX_FSYNC (WS) after the 1st edge following the driving edge of RX_CLK	0	-	-	ns	Guaranteed by Design Sampling edge w.r.t driving edge of RX_SCLK: 1st edge (0.5 x t _{SCLK}) RX-Master: RX_IF_CTL.LATE_SAMPLE = 0, RX_IF_CTL.LATE_CAPTURE = 0b00 RX-Slave: SCK_POLARITY = 0
SID1006A	t _{HR}	Hold on RX_SD/RX_FSYNC (WS) after the 2nd edge following the driving edge of RX_CLK	0	-	-	ns	Guaranteed by Design Sampling edge w.r.t driving edge of RX_SCLK: 2nd edge (1 x t _{SCLK}) RX-Master: RX_IF_CTL.LATE_SAMPLE = 1, RX_IF_CTL.LATE_CAPTURE = 0b00 RX-Slave: SCK_POLARITY = 1
SID1006B	t _{HR}	Hold on RX_SD/RX_FSYNC (WS) after the 3rd edge following the driving edge of RX_CLK	0	-	-	ns	Guaranteed by Design Sampling edge w.r.t driving edge of RX_SCLK: 3rd edge (1.5 x t _{SCLK}) RX-Master: RX_IF_CTL.LATE_SAMPLE = 0, RX_IF_CTL.LATE_CAPTURE = 0b01 RX Slave: Not Applicable
TDM Transi	tion Timing				*		
SID1007	t _{SCLK_TRANS}	SCLK transition timing	-	-	0.15 × t _{SCLK}	ns	Guaranteed by design
SID1008	t _{MCLK_TRANS}	MCLK transition timing	-	-	0.15 × t _{SCLK}	ns	Guaranteed by design
SID1009	t _{DATA_TRANS}	DATA transition timing	-	-	0.15 × t _{SCLK}	ns	Guaranteed by design
(PCM) PWM	<u> </u>						
	d I/O configuration		0 01 5111 5175		•		
SID1100_1	t _{PW_1}	0>/DRIVE_SEL_EXT<2:0> = 0b011, CF Pulse width on CH1_P, CH1_N, CH2_P, CH2_N for HSIO_STDLN	8 8	_ _	_	ns	PWM clock ≤ 100MHz, min pulse width nom. 10 ns – 20% max distortion Guaranteed by design
SID1101	f _{PWM}	PWM sample frequency	15	_	60	kHz	Guaranteed by design
SID1110	t _{MCLK}	Master clock input period	10	_	-	ns	Guaranteed by design
SID1111	t _{MCLKI_DUTY}	Master clock input duty cycle	40	-	50	%	Guaranteed by design
Sound Gen	erator	1 -	1		1	1	I
Recommende GPIO_STD: CFG GPIO_ENH: CF GPIO_SMC: CF	d I/O configuration G_OUT/DRIVE_SEL< G_OUT/DRIVE_SEL< G_OUT/DRIVE_SEL<	1:0> = 0b01 <1:0> = 0b01	G SLEW EXT/SI	.EW<0:0> = 0h	00		
SID1102	f _{PWM}	PWM sample frequency	15	-	60	kHz	Guaranteed by design
	t _{MCLK}	Master clock input period	10	_	_	ns	Guaranteed by design
SID1103					1		

Based on Arm® Cortex®-M7 single

Table 26-33 Sound Subsystem Specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
AudioDAC		•		,,,	1		,
SID1300	f _{CLKDA0}	System clock frequency	2.048	-	18.432	MHz	All parameters specified f_S = 44.1 kHz, system clock 256 × f_S and 16-bit data, R_L = 20 k Ω , C_L = 100 pF, unless otherwise noted
SID1301	f_S	Sampling clock	8	-	48	kHz	
SID1302	R_L	Analog output load resistance	20	_	_	kΩ	DAC_L, DAC_R
SID1303	C _L	Analog output load capacitance	_	_	100	pF	DAC_L, DAC_R
SID1304	ССОМ	Com Capacitance	2.2	-	10	μF	C_L, C_R
SID1305	V _{OUT_MAX}	Analog output single-end output range (±full scale)	0.655 × V _{DDA_DAC}	0.673 × V _{DDA_DAC}	0.690 × V _{DDA_DAC}	V _{P-P}	DAC_L, DAC_R, $R_L = 20 \text{ k}\Omega$, $C_L = 100 \text{ pF}$
SID1306	V _{OUT_ZERO}	Analog output voltage (zero)	0.49 × V _{DDA_DAC}	0.5 × V _{DDA_DAC}	0.51 × V _{DDA_DAC}	V	DAC_L, DAC_R
SID1307	THD + N	THD + N (Signal to Noise + Distortion ratio)	-	-82	-72	dB	These values do not include the noise caused by the analog power supply. Signal frequency: 1 kHz LPF (f _C : 20 kHz)
SID1308	SNR	Signal to Noise ratio	85	89	-	dB	These values do not include the noise caused by the analog power supply. Signal frequency: 1 kHz LPF (f _C : 20 kHz) A-weighting filter
SID1309	DR	Dynamic range	83	86	-	dB	These values do not include the noise caused by the analog power supply. Signal frequency: 1 kHz LPF (f _C : 20 kHz) A-weighting filter
SID1310	GAIN_MM	Gain mismatch between channels	-	-	0.4	dB	Signal frequency: 1 kHz
SID1312	CH_SEP	Channel Separation	-	80	-	dB	
SID1313	Z _{OUT}	Output impedance	150	200	250	Ω	
SID1314	PSRR_50	PSRR @ 50 Hz, digital input = 0	_	-35	_	dB	Digital input: zero noise 50 Hz
SID1315	PSRR_1K	PSRR @ 1 kHz, digital input = 0	_	-50	_	dB	Digital input: zero noise 1kHz
SID1316	PSRR_20K	PSRR @ 20 kHz, digital input = 0	_	-40	_	dB	Digital input: zero noise 20 kHz
SID1318	I _{DD}	Supply current normal operation	-	2.2	3.2	mA	
SID1319	I _{DD_OFF}	Supply current power-down	-	1	100	μА	Typ: T _A = 25°C, V _{DDA_DAC} = 5.0 V, process typ (TT) Max: T _A = 105°C, V _{DDA_DAC} = 5.5 V, process worst (FF)
SID1320	t _{START}	Startup Time	-	-	70	ms	C_L and C_R should be 2.2 μF

Based on Arm® Cortex®-M7 single

Electrical specifications

26.13 CXPI specifications

Table 26-34 CXPI specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/ conditions
SID1400	f _{CLK_AHB}	CLK_PERI clock frequency	-	-	100	MHz	Guaranteed by design, AHB Interface clock
SID1402	t _{BIT_CONT}	Width of clock disparity against the bit width t _{BIT_REF} of nominal signaling rate	-0.5	_	+0.5	%	Guaranteed by design
SID1403	t _{RX_0_HI_CONT}	The time that should be detected the receiving node is HIGH level.	0.02	_	_	t _{BIT}	t _{BIT} = 1 / f _{BRC} , Guaranteed by design
SID1404	t _{TX_DIF_CONT}	Difference of width of LOW-level at the constant threshold that receiving node should discriminate logic '1' and logic '0'	0.05	-	-	t _{BIT}	t _{BIT} = 1 / f _{BRC} , Guaranteed by design t _{TX_DIF_CONT} = t _{TX_0_LO} - t _{TX_1_LO}
SID1405	t _{TX_0_PD_CONT} ^[75]	At the time of logical value '0' outputs, time from the LOW level detection of the communication bus unit falling the voltage "TH_dom".	-	-	0.01	t _{BIT}	t _{BIT} = 1 / f _{BRC} , CTL0.FILTER_EN bit = '0', Guaranteed by design
SID1406	t _{TX_0_PD_CONT} [75]	At the time of logical value '0' outputs, time from the LOW-level detection of the communication bus unit falling the voltage "TH_dom".	-	-	0.0125	t _{BIT}	t _{BIT} = 1 / f _{BRC} , CTL0.FILTER_EN bit = '1', Guaranteed by design
SID1407	t _{RX_0_FF_CONST}	Delay from external serial data input pin to a flop. This is a standard to satisfy AC.11.	-	-	20	ns	Guaranteed by design
SID1408	t _{TX_0_FF_CONST}	Delay from a flop to external serial data output pin. This is a standard to satisfy AC.11.	-	-	80	ns	Guaranteed by design
SID1409	BR	Bit rate	-	_	20	kbps	
SID1411	OS	Oversampling factor	-	_	400		

Note

^{75.} The AC spec according to CXPI controller specification is maximum 0.01 t_{BIT}. The AC spec, according to the CXPI system specification, including transceiver or driver/receiver is maximum 0.1 t_{BIT}.

Based on Arm® Cortex®-M7 single

Figure 26-1 **CXPI specifications**

Based on Arm® Cortex®-M7 single

Electrical specifications

26.14 Serial memory interface specifications

Table 26-35 xSPI specifications

Spec ID	Parameter	Description	Min	Max	Min	Max	Units
xSPI (JEDEC JES	D251)		xS	PI266	xSI	PI200	
CFG_SLEW_EXT/SLE	DLN: CFG_DRIVE_EXT EW<0:0> = 0b0 DLN: CFG_DRIVE_EXT	<pre><1:0>/DRIVE_SEL_EXT<2:0> = 0b000, CFG_IN_AUTOLVL/VTRIF</pre> <pre><1:0>/DRIVE_SEL_EXT<2:0> = 0b001, CFG_IN_AUTOLVL/VTRIF</pre>	_			•	
SID1500_2	t _{CK}	Interface clock period (JEDEC)	7.5	_	10	_	ns
SID1500_2CM	t _{CK}	Interface clock period (CMOS)	7.5	-	10	-	ns
SID1501_2	t _{CKDCD}	Allowable clock distortion ^[76]	-	0.05 × t _{CK}	-	0.05 × t _{CK}	ns
SID1502_2	t _{CKMPW}	Minimum clock pulse width (JEDEC)	3.375	-	4.5	-	ns
SID1502_2CM	t _{CKMPW}	Minimum clock pulse width (CMOS)	3.375	-	4.5	-	ns
SID1503_2HV	OUT_SR	Output slew rate with respect to V _{OH} /V _{OL}	1.37	-	1.03	-	V/ns
SID1504_2	t _{OSU}	Output setup time of DS and I/O[7:0] to CK	0.9	-	1.1	-	ns
SID1505_2	t _{OH}	Output hold time of DS and I/O[7:0] to CK	0.9	-	1.1	-	ns
SID1506_2HV	IN_SR	Input slew rate with respect to V _{IH} /V _{IL}	1.37	-	1.03	-	V/ns
SID1507_2	t _{DSMPW}	Input min pulse width of DS (JEDEC)	3.075	-	4.1	-	ns
SID1507_2CM	t _{DSMPW}	Input min pulse width of DS (CMOS)	3.075	-	4.1	-	ns
SID1508_2	t _{RQ}	Input DS to I/O[7:0] valid time (JEDEC)	-	0.675	-	0.9	ns
SID1508_2CM	t _{RQ}	Input DS to I/O[7:0] valid time (CMOS)	-	0.675	-	0.9	ns
SID1509_2	t _{RQH}	Input I/O[7:0] invalid to DS time (JEDEC)	-	0.675	-	0.9	ns
SID1509_2CM	t _{RQH}	Input I/O[7:0] invalid to DS time (CMOS)	-	0.675	-	0.9	ns
SID1511_2	t _{CKLCSL}	CK LOW to CS LOW	6	-	8	-	ns
SID1512_2	t _{CSLCKH}	CS LOW to CK HIGH	6	-	8	-	ns
SID1513_2	t _{CKLCSH}	CK LOW to CS HIGH	6	-	8	-	ns
SID1514_2	t _{CSHCKH}	CS HIGH to CK HIGH	6	-	8	-	ns
SID1515_2	t _{DSLCSH}	DS LOW to CS HIGH	6	-	8	-	ns
SID1516_2	t _{CSHDST}	CS HIGH to DS High-Z	-	7.5	_	10	ns
SID1517_2	t _{CSLDSL}	CS LOW to DS LOW	0	-	0	-	ns
SID1518_2	t _{DSTCSL}	DS High-Z to CS LOW	0	-	0	_	ns

Table 26-36 xSPI (JEDEC JESD251) Delay tap recommended configuration

Feature	xSPI266	xSPI200
reature	Rx	Rx
Delay Tap Selection (SMIF_DEVICE_DELAY_TAP_SEL/DELAY_TAPS_NR_LOG2<7:0>) for SMIF0	1	6
Delay Line Selection (SMIF_CTL/DELAY_LINE_SEL<2:0>) for SMIF0	0	0
Delay Tap Selection (SMIF_DEVICE_DELAY_TAP_SEL/DELAY_TAPS_NR_LOG2<7:0>) for SMIF1	1	6
Delay Line Selection (SMIF_CTL/DELAY_LINE_SEL<2:0>) for SMIF1	0	0

Notes

76.PLL#400 with SSCG = 0, fractional divider = off.

Table 26-37 Input, output supported voltage reference levels

Si-mal	Supported modes for voltage reference levels						
Signal	CMOS	JEDEC					
Clock	$V_T = (50\% \times V_{DDIO_HSIO})$						
RWDS (output)	$V_T = (50\% \times V_{DDIO_HSIO})$	V _{OH} /V _{OL} = 70% / 30% × V _{DDIO_HSIO}					
DQ[7:0] (output)	$V_T = (50\% \times V_{DDIO_HSIO})$	V _{OH} /V _{OL} = 70% / 30% × V _{DDIO_HSIO}					
RWDS (input)	$V_T = (50\% \times V_{DDIO_HSIO})$						
DQ[7:0] (input)	$V_T = (50\% \times V_{DDIO_HSIO})$	V _{IH} /V _{IL} = 70% / 30% × V _{DDIO_HSIO}					

Notes:

- One of the modes ("CMOS", "JEDEC") needs to be selected depending on the requirements of the actual memory.
- Some parameters may be available and listed separately for the individual modes. The corresponding mode will be mentioned in the parameter description.
- Parameters without explicit mode description (e.g. t_{OSU}) are applicable for all modes but the voltage reference level as per the table still
 applies.

Figure 26-2 xSPI master data input timing reference level (JEDEC)

Figure 26-3 xSPI master data output timing reference level (JEDEC)

Based on Arm® Cortex®-M7 single

infineon

Figure 26-4 xSPI clock to chip select timing diagram

Figure 26-5 xSPI data strobe to chip select timing diagram

Based on Arm® Cortex®-M7 single

Electrical specifications

Standard SPI specifications Table 26-38

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
Standard SPLSD	R						

Recommended I/O configuration:
HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<2:0> = 0b001, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG_SLEW_EXT/SLEW<0:0> = 0b0

DLL Tap settings for RX:
SMIF_CTL/DELAY_LINE_SEL<2:0> = 0, SMIF_DEVICE_DELAY_TAP_SEL/DELAY_TAPS_NR_LOG2<7:0> = 2

All timings aligned with respect to $V_T = (50\% \times V_{DDIO_HSIO})$.

SID1600_2 ^[77]	t_{CK}	Interface clock period	10	-	-	ns	15-pF output loads
SID1601	t _{CKPW}	Clock pulse width	0.45 × t _{CK}	-	0.55×t _{CK}	ns	15-pF output loads
SID1602_HS	t _{CSS}	CS# active setup to CK (f _{CK} > 50 MHz)	4	-	-	ns	15-pF output loads, f _{CK} > 50 MHz Guaranteed by design
SID1602_LS	t _{CSS}	CS# active setup to CK (f _{CK} ≤ 50 MHz)	5	-	-	ns	15-pF output loads, f _{CK} ≤ 50 MHz Guaranteed by design
SID1603	t _{CSH0}	CS# active hold to CK (mode 0)	4	-	-	ns	15-pF output loads Guaranteed by design
SID1604	t _{CSH3}	CS# active hold to CK (mode 3)	6	-	-	ns	15-pF output loads Guaranteed by design
SID1605_2	tosu	Output setup time of DQ[7:0] to CK high (f _{CK} = 100 MHz)	2.1	-	-	ns	15-pF output loads For other frequencies: tosu=tosu_min+0.45 × (t _{CK} -t _{CK_min}) tosu_min=value at MIN of SID1605_2 t _{CK_min} =value at MIN of SID1600_2 t _{CK} = actual clock period
SID1606_2	t _{OH}	Output hold time of DQ[7:0] to CK high (f _{CK} = 100 MHz)	2.1	-	-	ns	15-pF output loads For other frequencies: t _{OH} = t _{OH_min} + 0.45 × (t _{CK} - t _{CK_min}) t _{OH_min} = value at MIN of SID1606_2 t _{CK_min} = value at MIN of SID1600_2 t _{CK} = actual clock period
SID1607	t _{IN_V}	CK edge low to DQ[7:0] input valid time	1	-	6.7	ns	CTL/DELAY_TAP_ENABLE=1 (Delay line is enabled) Three options 1) CTL/CLOCK_IF_RX_SEL<2:0 >= 0b011 2) CTL/CLOCK_IF_RX_SEL<2:0 >= 0b100 or 0b101 CTL/INT_CLOCK_DL_EN-ABLED<0:0>=0b0 CTL/INT_CLOCK_CAP-TURE_CYCLE<1:0>=0b100 CTL/INT_CLOCK_DL_EN-ABLED<0:0>=0b100 CTL/INT_CLOCK_CAP-TURE_CYCLE<1:0>=0b100 CTL/INT_CLOCK_DL_EN-ABLED<0:0>=0b1 CTL/INT_CLOCK_DL_EN-ABLED<0:0>=0b1 CTL/INT_CLOCK_DL_EN-ABLED<0:0>=0b1 CTL/INT_CLOCK_CAP-TURE_CYCLE<1:0> needs to be adjusted based on INTR/DL_WARNING

Based on Arm® Cortex®-M7 single

Electrical specifications

Table 26-38 Standard SPI specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID1607A	t _{ISU}	DQ[7:0] input setup time	1.25	-	-	ns	CTL/DELAY_TAP_ENABLE=0 (Delay line is disabled/bypassed) CTL/CLOCK_IF_RX_SEL<2:0 >= 0b011
SID1608	t _{IH}	DQ[7:0] input hold time	1.5	_	-	ns	CTL/DELAY_TAP_ENABLE=0 (Delay line is disabled/bypassed) CTL/CLOCK_IF_RX_SEL<2:0 >= 0b011
SID1609	t _{RDV}	Input data valid time of DQ[7:0]	3.8	-	-	ns	CTL/DELAY_TAP_ENABLE=1 (Delay line is enabled) Three options 1) CTL/CLOCK_IF_RX_SEL<2:0 >= 0b011 2) CTL/CLOCK_IF_RX_SEL<2:0 >= 0b100 or 0b101 CTL/INT_CLOCK_DL_EN-ABLED<0:0>=0b0 CTL/INT_CLOCK_CAP-TURE_CYCLE<1:0>=0b10 3) CTL/CLOCK_IF_RX_SEL<2:0 >= 0b100 or 0b101 CTL/INT_CLOCK_DL_EN-ABLED<0:0>=0b1 CTL/INT_CLOCK_DL_EN-ABLED<0:0>=0b1 CTL/INT_CLOCK_DL_EN-ABLED<0:0>=0b1 CTL/INT_CLOCK_CAP-TURE_CYCLE<1:0> needs to be adjusted based on INTR/DL_WARNING
SID1610	t _{CS}	CS# HIGH time (Read)	10	-	-	ns	15-pF output loads Guaranteed by design
SID1610A	t _{CS}	CS# High time (Read when Reset feature and Quad mode are both enabled and aborted transaction)	20	-	-	ns	15-pF output loads Guaranteed by design
SID1610B	t _{CS}	CS# High time (Program / Erase)	50		-	ns	15-pF output loads Guaranteed by design
SID1611	t _{DIS}	CS# inactive to output disable time	-	-	8	ns	15-pF output loads Guaranteed by design

Standard SPI DDR

Recommended I/O configuration:
HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<2:0> =0b001, CFG_IN_AUTOLVL/VTRIP_SEL<0:0> = 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG_SLEW_EXT/SLEW<2:0> =0b000

DLL Tap settings for RX: $SMIF_CTL/DELAY_LINE_SEL<2:0>=0, SMIF_DEVICE_DELAY_TAP_SEL/DELAY_TAPS_NR_LOG2<7:0>=2$

All timings aligned with respect to $V_T = (50\% \times V_{DDIO, HSIO})$.

SID1700_2 ^[77]	t _{CK}	Interface clock period	12.5	-	-	ns	15-pF output loads
SID1701	t _{CKPW}	Clock pulse width	0.45 × t _{CK}		0.55×t _{CK}	ns	15-pF output loads
SID1702_HS	t _{CSS}	CS# active setup to CK (f _{CK} > 50 MHz)	4	-	-	ns	15-pF output loads, f _{CK} > 50 MHz Guaranteed by design
SID1702_LS	t _{CSS}	CS# active setup to CK (f _{CK} ≤ 50 MHz)	5	-	-	ns	15-pF output loads, f _{CK} ≤ 50 MHz Guaranteed by design
SID1703	t _{CSH0}	CS# active hold to CK (mode 0)	4		-	ns	15-pF output loads Guaranteed by design

77. Ensure to explicitly configure PLL#400 in Integer mode with "SSCG = OFF", "Fractional = OFF".

Based on Arm® Cortex®-M7 single

Table 26-38 Standard SPI specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID1705_2	t _{OSU}	Output setup time of DQ[7:0] to CK edge (f _{CK} = 80 MHz)	2.1	-	-	ns	For other frequencies: $t_{OSU} = t_{OSU_min} + 0.225 \times (t_{CK} - t_{CK_min}) $ $t_{OSU_min} = value at MIN $ of SID1705_2 $t_{CK_min} = value at MIN $ of SID1700_2 $t_{CK} = actual clock $ period
SID1706_2	t _{OH}	Output hold time of DQ[7:0] to CK edge (f _{CK} = 80 MHz)	1.6	-	-	ns	15-pF output loads For other frequencies: t _{OH} = t _{OH_min} + 0.225 × (t _{CK} - t _{CK_min}) t _{OH_min} = value at MIN of SID1706_2 t _{CK_min} = value at MIN of SID1700_2 t _{CK} = actual clock period
SID1707	t _{IN_V}	CK edge low to DQ[7:0] input valid time	1	-	6.7	ns	CTL/DELAY_TAP_ENABL E=1 (Delay line is enabled) Three options 1) CTL/CLOCK_IF_RX_SEL< 2:0> = 0b011 2) CTL/CLOCK_IF_RX_SEL< 2:0> = 0b100 or 0b101 CTL/INT_CLOCK_DL_EN-ABLED<0:0> = 0b0 CTL/INT_CLOCK_CAP-TURE_CYCLE<1:0> = 0b101 3) CTL/CLOCK_IF_RX_SEL< 2:0> = 0b100 or 0b101 CTL/INT_CLOCK_DL_EN-ABLED<0:0> = 0b1 CTL/INT_CLOCK_DL_EN-ABLED<0:0> = 0b100 or 0b101 CTL/INT_CLOCK_DL_EN-ABLED<0:0> = 0b1 CTL/INT_CLOCK_CAP-TURE_CYCLE<1:0> needs to be adjusted based on INTR/DL_WARNING
SID1707A	t _{ISU}	DQ[7:0] input setup time	1.25	-	-	ns	CTL/DELAY_TAP_ENABL E=0 (Delay line is disabled/bypassed) CTL/CLOCK_IF_RX_SEL< 2:0> = 0b011
SID1708	t _{IH}	DQ[7:0] input hold time	1.5	-	-	ns	CTL/DELAY_TAP_ENABL E=0 (Delay line is disabled/bypassed) CTL/CLOCK_IF_RX_SEL< 2:0> = 0b011

Based on Arm® Cortex®-M7 single

Table 26-38 Standard SPI specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID1709_2	t _{RDV}	Input data valid time of DQ[7:0] (f _{CK} ≤ 80 MHz)	3.5	-	F	ns	CTL/DELAY_TAP_ENABL E=1 (Delay line is enabled) Three options 1) CTL/CLOCK_IF_RX_SEL< 2:0> = 0b011 2) CTL/CLOCK_IF_RX_SEL< 2:0> = 0b100 or 0b101 CTL/INT_CLOCK_DL_EN-ABLED<0:0> = 0b0 CTL/INT_CLOCK_CAP-TURE_CYCLE<1:0> = 0b101 3) CTL/CLOCK_IF_RX_SEL< 2:0> = 0b100 or 0b101 CTL/INT_CLOCK_CAP-TURE_CYCLE<1:0> = 0b01 CTL/INT_CLOCK_DL_EN-ABLED<0:0> = 0b100 or 0b101 CTL/INT_CLOCK_DL_EN-ABLED<0:0> = 0b1 CTL/INT_CLOCK_DL_EN-ABLED<0:0> = 0b1 CTL/INT_CLOCK_CAP-TURE_CYCLE<1:0> needs to be adjusted based on INTR/DL_WARNING
SID1710	t _{CS}	CS# High time (Read)	10	_	-	ns	15-pF output loads Guaranteed by design
SID1710A	t _{CS}	CS# High time (Read when Reset feature and Quad mode are both enabled and aborted transaction)	20	_	_	ns	15-pF output loads Guaranteed by design
SID1710B	t _{CS}	CS# High time (Program / Erase)	50	-	-	ns	15-pF output loads Guaranteed by design
SID1711	t _{DIS}	CS# inactive to output disable time	-	-	8	ns	15-pF output loads Guaranteed by design

Figure 26-6 SDR write and read timing diagram

Based on Arm® Cortex®-M7 single

infineon

Figure 26-7 DDR write and read timing diagram

Based on Arm® Cortex®-M7 single

26.15 **Graphics subsystem specifications**

Graphics specifications Table 26-39

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
	utput - TTL Mo	ode					
HSIO_STDLN (B	I/O configuration: GA package): CFG_DR CFG_ CFG_	IVE_EXT<1:0>/DRIVE_SEL_EXT<2:0> = 0b010, CI DRIVE_EXT<1:0>/DRIVE_SEL_EXT<2:0> = 0b011,	G_SLEW_EXT	T/SLEW<0:0> EXT/SLEW<0	:0> = 0b0		
SID866	t _{DC1CYC}	Clock cycle	25	-	-	ns	TTL_DSP1_CLOCK, C _L = 15 pF
SID873	t _{DC1CKPW}	Clock pulse width	0.40 × t _{DC1CYC}	-	0.60 × t _{DC1CYC}	ns	$\begin{array}{l} {\sf TTL_DSP1_CLOCK\ pulse\ width} \\ {\sf C_L=15\ pF} \end{array}$
SID868	t _{DC1S}	Data/control output to TTL_D- SP1_CLOCK time	4	_	_	ns	TTL_DSP1_DATA_A0[11-0] TTL_DSP1_DATA_A1[11-0] TTL_DSP1_CONTROL[11-0] (TCON for FPDLink) C _L = 15 pF
SID869	t _{DC1H}	TTL_DSP1_CLOCK to Data/Control valid time	5	-	-	ns	TTL_DSP1_DATA_A0[11-0] TTL_DSP1_DATA_A1[11-0] TTL_DSP1_CONTROL[11-0] (TCON for FPDLink) C _L = 15 pF
SID890	t _{DSP0_CON-} TROL_SKEW	TTL_DSP0_CONTROL skew	ı	-	4	ns	Skew between signals TTL_D- SP0_CONTROL[11-0] C _L = 15 pF
Display Ca	pture						
	I/O configuration: L/VTRIP_SEL<0:0>= 0b	0, CFG_IN/VTRIP_SEL<0:0> = 0b0					
SID875	t _{CAPOCYC}	Display capture Clock Cycle	12.5	_	_	ns	TTL_CAP0_CLK (HSIO)
SID876	t _{CAPOSU}	Display capture data setup time	1.9	-	-	ns	TTL_CAP0_DATA[35-0] (HSIO)
SID877	t _{CAP0HD}	Display capture data hold time	2.7	-	-	ns	TTL_CAP0_DATA[35-0] (HSIO)
FPD Link							
SID880	I _{VDDA}	Total analog supply current in TX mode	-	_	30	mA	
SID881	I _{VDDPLL}	Total PLL supply current in TX mode	-	-	4	mA	
SID881B	I _{VDDHA}	Total I/O (LVDS driver) supply current in TX mode	-	_	91	mA	
SID884	I _{VDDA_PD}	Total analog supply current in Power-Down mode	-	4	300	μА	Typ: $T_A = 25^{\circ}C$, $V_{DDA\ FPD} = 1.15$ V, process typ (TT) Max: $T_A = 105^{\circ}C$, $V_{DDA\ FPD} = 1.21$ V, process worst (FF)
SID884_1	I _{VDDA_PD_1}	Total analog supply current in Power-Down mode (room temp)	-	_	5	μА	Max: T _A = 25°C, V _{DDA_FPD} = 1.15 V (max VREG), process worst (FF)
SID884_2	I _{VDDA_PD_2}	Total analog supply current in Power-Down mode	-	_	40	μΑ	Max: T _A = 85°C, V _{DDA_FPD} = 1.15 V (max VREG), process worst (FF)
SID885	I _{VDDPLL_PD}	Total PLL supply current in Power-Down mode	-	3	200	μА	Typ: $T_A = 25^{\circ}C$, $V_{DDPLL\ FPD} = 1.15$ V, process typ (TT) Max: $T_A = 105^{\circ}C$, $V_{DDPLL\ FPD} = 1.21$ V, process worst (FF)
SID885_1	I _{VDDPLL_PD_1}	Total PLL supply current in Power-Down mode (room temp)	-	-	4	μА	Max: T _A = 25°C, V _{DDPLL_FPD} = 1.15 V (max VREG), process worst (FF)
SID885_2	I _{VDDPLL_PD_2}	Total PLL supply current in Power-Down mode	-	-	25	μА	Max: T _A = 85°C, V _{DDPLL_FPD} = 1.15 V (max VREG), process worst (FF)
SID885B	I _{VDDHA_PD}	Total I/O (LVDS driver) supply current in Power-Down mode	-	0.5	50	μА	Typ: $T_A = 25^{\circ}\text{C}$, $V_{DDHA\ FPD} = 3.3 \text{ V}$, process typ (TT) Max: $T_A = 105^{\circ}\text{C}$, $V_{DDHA\ FPD} = 3.6 \text{ V}$, process worst (FF)

Based on Arm® Cortex®-M7 single

Graphics specifications (continued) **Table 26-39**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID885B_1	I _{VDDHA_PD_1}	Total I/O (LVDS driver) supply current in Power-Down mode (room temp)	-	-	1	μА	Max: T _A = 25°C, V _{DDHA_FPD} = 3.6 V (max VREG), process worst (FF)
SID885B_2	I _{VDDHA_PD_2}	Total I/O (LVDS driver) supply current in Power-Down mode	-	-	12	μА	Max: T _A = 85°C, V _{DDHA_FPD} = 3.6 V (max VREG), process worst (FF)
SID895	V _{OD}	Steady-state magnitude of the differential output voltage	247	350	454	mV	
SID896	$V_{\Delta VOD_M}$	Variation of signal swing voltage between drivers	-	-	25	mV	
SID897	V_{CM}	Output Common-mode voltage	1.125	1.25	1.375	V	
SID898	$V_{\Delta VCM_M}$	Delta in Common-mode voltage between drivers	-	_	25	mV	
SID899A	I _{SA}	Magnitude of current flowing through output terminal P when the output terminals are short-circuited to ground.	-	-	24	mA	See Figure 6 of "TIA/EIA-644-A" specifications.
SID899B	I _{SB}	Magnitude of current flowing through output terminal M when the output terminals are short-circuited to ground.	-	П	24	mA	See Figure 6 of "TIA/EIA-644-A" specifications.
SID899C	I _{os}	Magnitude of current flowing through the output terminals when they are short-circuited to each other.	-	-	12	mA	See Figure 7 of "TIA/EIA-644-A" specifications.
SID900	t _{WAKE}	Wakeup time	-	-	1.2	ms	
SID901	t _{PDD}	Power down delay time	-	-	100	μs	Guaranteed by design
SID902	f _{PX}	Pixel clock frequency	7	-	110	MHz	BGA package Guaranteed by design
SID902_3	f _{PX}	Pixel clock frequency	7	ı	80	MHz	TEQFP package Characterization only
SID903	f _{PX110}	Output Clock Frequency (110 MHz)	103.7	110	116.3	MHz	BGA only; When trans- mitting an alternating 0/1 bit pattern
SID904	f _{PX55}	Output Clock Frequency (55 MHz)	52.35	55	57.65	MHz	BGA only; When trans- mitting an alternating 0/1 bit pattern
SID905	f _{PX28}	Output Clock Frequency (28 MHz)	26.66	28	29.34	MHz	When transmitting an alternating 0/1 bit pattern
SID906	f _{PX14}	Output Clock Frequency (14 MHz)	13.28	14	14.72	MHz	When transmitting an alternating 0/1 bit pattern
SID907	f _{PX7}	Output Clock Frequency (7 MHz)	6.59	7	7.41	MHz	When transmitting an alternating 0/1 bit pattern
SID908	GAIN_JIT_ LVDS	Gain region max long-term total jitter	-	ı	0.32	UI2 p-p	
SID909	ATTEN_JIT_ LVDS	Attenuation region long-term total jitter	-	-	0.34	UI2 p-p	
SID910	C2C_JIT	Cycle-to-cycle jitter	_	-	0.11	UI	
SID911	t _{CSK}	Channel-to-channel skew of driver outputs	-	ı	100	ps	BGA package
SID911_2	t _{CSK}	Channel-to-channel skew of driver outputs			200	ps	TEQFP package
SID913	TPPos0	Transmit Pulse Position Offset 0	-0.168	0	0.168	ns	
SID914	TPPos1	Transmit Pulse Position Offset 1	T/7- TPPos0	T/7	T / 7 + TPPos0	ns	

Based on Arm® Cortex®-M7 single

Graphics specifications (continued) **Table 26-39**

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID915	TPPos2	Transmit Pulse Position Offset 2	2T / 7 - TPPos0	2T / 7	T/7+ TPPos0	ns	
SID916	TPPos3	Transmit Pulse Position Offset 3	3T / 7 – TPPos0	3T / 7	3T / 7 + TPPos0	ns	
SID917	TPPos4	Transmit Pulse Position Offset 4	4T / 7 – TPPos0	4T / 7	4T / 7 + TPPos0	ns	
SID918	TPPos5	Transmit Pulse Position Offset 5	5T / 7 – TPPos0	5T / 7	5T / 7 + TPPos0	ns	
SID919	TPPos6	Transmit Pulse Position Offset 6	6T / 7 – TPPos0	6T / 7	6T / 7 + TPPos0	ns	
SID920	t _{LLHT}	Differential driver rise time	-	_	390	ps	BGA package
SID920_2	t _{LLHT}	Differential driver rise time	-	-	500	ps	TEQFP package
SID921	t _{LHLT}	Differential driver fall time	-	-	390	ps	BGA package
SID921_2	t _{LHLT}	Differential driver fall time	-	_	500	ps	TEQFP package
SID922	t _{RF_MATCH}	Lane-to-lane rise/fall delta	-	_	40	ps	-
MIPI/DPH				-		!	+
SID1447	f _{PX_QFP}	Pixel clock frequency	_	_	80	MHz	TEQFP package
SID1448	f _{PX_BGA}	Pixel clock frequency	_	_	110	MHz	BGA package
SID1417	V _{CMRX}	Common-mode voltage HS receive mode	70	_	330	mV	, , , , , ,
SID1418	V _{IDTH}	Differential input HIGH threshold	70	-	-	mV	
SID1419	V _{IDTL}	Differential Input LOW threshold	-	-	-70	mV	
SID1420	V _{IHHS}	Single-ended input HIGH voltage	-	-	460	mV	
SID1421	V _{ILHS}	Single-ended Input LOW voltage	-40	-	-	mV	
SID1422	Z _{ID}	Differential Input Impedance	80	_	125	Ω	
SID1423	V _{IH_LS}	Logic 1 input voltage LS	_	-	880	mV	
SID1424	V _{IL_LS}	Logic 0 Input voltage LS	550	_	_	mV	
SID1425	V _{HYST}	Input hysteresis	25	_	_	mV	
SID1426	I _{LEAK}	Pin leakage current DPx, DNx, CLKP/N in LP mode	-100	_	100	μΑ	T _A = 85°C
SID1427	I _{VDDA_LP}	Current in LP	_	-	3	mA	
SID1428	I _{VDDA_PD}	Current when D-PHY powered down	Ι	8	800	μА	Typ: $T_A = 25^{\circ}\text{C}$, $V_{DDA_MIPI} = 1.15 \text{ V}$, process typ (TT) Max: $T_A = 105^{\circ}\text{C}$, $V_{DDA_MIPI} = 1.21 \text{ V}$, process worst (FF)
SID1428_1	I _{VDDA_PD_1}	Current when D-PHY powered down (room temp)	-	_	20	μΑ	Max: T _A = 25°C, V _{DDA MIPI} = 1.15 V (max VREG), process worst (FF)
SID1428_2	I _{VDDA_PD_2}	Current when D-PHY powered down	-	_	150	μΑ	Max: T _A = 85°C, V _{DDA MIPI} = 1.15 V (max VREG), process worst (FF)
SID1429	I _{VDDA_ULP}	Current in ULP	-	-	2	mA	
SID1430	I _{VDDA_HS}	current in HS	-	_	35	mA	
SID1431	t _{CLK_TERM_EN}	Time for the Clock Lane receiver to enable the HS line termi- nation, starting from the time point when Dn crosses VIL,MAX	-	-	38	ns	

Based on Arm® Cortex®-M7 single

 Table 26-39
 Graphics specifications (continued)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/conditions
SID1432	t _{D_TERM_EN}	Time for the Data Lane receiver to enable the HS line termi- nation, starting from the time point when Dn crosses, VIL,MAX	-	_	38	ns	
SID1433	^t CLK_SETTLE	Time interval during which HS receiver should ignore any Clock Lane HS transitions, starting from the beginning of TCLK-PREPARE	95	-	300	ns	
SID1434	t _{HS_SETTTLE}	Time interval during which the HS receiver shall ignore any DATA Lane HS transitions, starting from the beginning of THSPREPARE. The HS receiver shall ignore any Data Lane transitions before minimum value, and the HS receiver shall respond to any Data Lane transitions after maximum value	85 + 6 × UI	-	145 + 10 × UI	ns	
SID1435	t _{HS-SKIP}	Time interval during which the HS-RX should ignore any transitions on the Data Lane, following a HS burst. The end point of the interval is defined as the beginning of the LP-11 state following the HS burst.	40	_	55 + 4 × UI	ns	
SID1436	$V_{\Delta VCMRX_HF}$	Common-mode interference	-	_	100	mV	Beyond 450 MHz
SID1437	V _{ΔVCMRX_LF}	Common-mode interference	-	-	50	m۷	50 to 450 MHz
SID1438	C _{CM}	Common-mode termination	-	-	60	pF	
SID1439	t _{E_SPIKE}	Input pulse rejection	_	_	300	ps	
SID1440	t _{MIN_RX}	Minimum pulse width response	_	_	20	ns	
SID1441	t _{SETUP_QFP}	Data to clock setup time	0.15	-	-	UI	Valid for TEQFP package
SID1442	t _{HOLD_QFP}	Clock to data told time	0.15	-	-	UI	Valid for TEQFP package
SID1443	t _{SETUP_BGA}	Data to clock setup time	0.2	-	-	UI	Valid for BGA package
SID1444	t _{HOLD_BGA}	Clock to data told time	0.2	-	-	UI	Valid for BGA package
SID1445	I _{VDDA_1P4GB} - PS_HS	Current in high speed max frequency	-	-	35	mA	
SID1446	I _{VDDA_10M_LP}	Current in LP mode max frequency	-	-	2	mA	

Figure 26-8 TTL display out timing

infineon

Figure 26-9 Video capture timing

Figure 26-10 FPD-link output pulse position error and channel-to-channel skew

Based on Arm® Cortex®-M7 single

Electrical specifications

Skew between TxP and TxN, and steady-state differential amplitude and common-mode Figure 26-11 voltages

Based on Arm® Cortex®-M7 single

Electrical specifications

VIDEOSS capture timing groups 26.15.1

The Table 26-40 lists the recommended capture signals segregated as groups, and only signals within a specific group can be used together. The AC timing of signals between different groups is not guaranteed.

Table 26-40 Capture timing groups

able 20-40	Capture tilling groups		
Pin	ACT#6	ACT#11	Group ACT#6 / ACT#11
P13.2	TTL_CAP0_DATA[23]		Group 0
P13.3	TTL_CAP0_DATA[22]	TTL_CAP0_DATA[26]	Group 0
P13.4	TTL_CAP0_DATA[21]	TTL_CAP0_DATA[25]	Group 0
P13.5	TTL_CAP0_DATA[20]	TTL_CAP0_DATA[24]	Group 0
P13.6	TTL_CAP0_DATA[19]	TTL_CAP0_DATA[0]	Group 0
P13.7	TTL_CAP0_DATA[18]	TTL_CAP0_DATA[1]	Group 0
P14.0	TTL_CAP0_DATA[17]	TTL_CAP0_DATA[2]	Group 0
P14.1	TTL_CAP0_DATA[16]	TTL_CAP0_DATA[3]	Group 0
P14.2	TTL_CAP0_DATA[15]	TTL_CAP0_DATA[4]	Group 0
P14.3	TTL_CAP0_DATA[14]	TTL_CAP0_DATA[5]	Group 0
P14.4	TTL_CAP0_DATA[13]	TTL_CAP0_DATA[6]	Group 0
P14.5	TTL_CAP0_DATA[12]	TTL_CAP0_DATA[7]	Group 0
P14.6	TTL_CAP0_DATA[11]	TTL_CAP0_DATA[8]	Group 0
P14.7	TTL_CAP0_DATA[10]	TTL_CAP0_DATA[9]	Group 0
P15.0	TTL_CAP0_CLK		Group 0
P15.1	TTL_CAP0_DATA[10]	TTL_CAP0_DATA[1]	Group 0
P15.2	TTL_CAP0_DATA[11]	TTL_CAP0_DATA[0]	Group 0
P15.3	TTL_CAP0_DATA[12]	TTL_CAP0_DATA[7]	Group 0
P15.4	TTL_CAP0_DATA[13]	TTL_CAP0_DATA[6]	Group 0
P15.5	TTL_CAP0_DATA[14]	TTL_CAP0_DATA[5]	Group 0
P15.6	TTL_CAP0_DATA[15]	TTL_CAP0_DATA[4]	Group 0
P15.7	TTL_CAP0_DATA[16]	TTL_CAP0_DATA[3]	Group 0
P16.0	TTL_CAP0_DATA[17]	TTL_CAP0_DATA[2]	Group 0
P16.1	TTL_CAP0_DATA[18]	TTL_CAP0_DATA[9]	Group 0
P16.2	TTL_CAP0_DATA[19]	TTL_CAP0_DATA[8]	Group 0
P16.3	TTL_CAP0_DATA[20]	TTL_CAP0_DATA[24]	Group 0
P16.4	TTL_CAP0_DATA[21]	TTL_CAP0_DATA[25]	Group 0
P16.5	TTL_CAP0_DATA[22]	TTL_CAP0_DATA[26]	Group 0
P16.6	TTL_CAP0_DATA[23]		Group 0

Table 26-41 Capture timing group clocks

Group	Clock	EROS Parameter
Group 0	P15.0	SID875

Ordering information 27

The CYT3DL microcontroller part numbers and features are listed in **Table 27-1**.

CYT3DL ordering information^[78] **Table 27-1**

Device Code	Ordering Code	Package	CM7 Cores	Code-flash (KB)	Work-flash (KB)	RAM (KB)	ADC Channels	SCB	CAN FD	rin	CXPI	Ethernet Channels	SMIF	Audio DAC	MIPI	Temperature Grade	JTAG ID Code
CYT3DLBBAS	CYT3DLBBABQ1BZSGS	272-BGA	1	4160 ^[80]	128 ^[81]	384	48	12	4	2	2	1	2	0	0	S ^[82]	0x1E841069 ^[83]
CYT3DLBBBS	CYT3DLBBBBQ1BZSGS	272-BGA	1	4160	128	384	48	12	4	2	2	1	2	0	0	S	0x1E842069
CYT3DLBBCS	CYT3DLBBCBQ1BZSGS	272-BGA	1	4160	128	384	48	12	4	2	2	1	2	0	1	S	0x1E843069
CYT3DLBBDS	CYT3DLBBDBQ1BZSGS	272-BGA	1	4160	128	384	48	12	4	2	2	1	2	0	1	S	0x1E844069
CYT3DLBBES	CYT3DLBBEBQ1BZSGS	272-BGA	1	4160	128	384	48	12	4	2	2	1	2	1	0	S	0x1E845069
CYT3DLBBFS	CYT3DLBBFBQ1BZSGS	272-BGA	1	4160	128	384	48	12	4	2	2	1	2	1	0	S	0x1E846069
CYT3DLBBGS	CYT3DLBBGBQ1BZSGS	272-BGA	1	4160	128	384	48	12	4	2	2	1	2	1	1	S	0x1E847069
CYT3DLBBHS ^[79]	CYT3DLBBHBQ1BZSGS	272-BGA	1	4160	128	384	48	12	4	2	2	1	2	1	1	S	0x1E848069
CYT3DLABAS	CYT3DLABABQ1AESGS	216-TEQFP	1	4160	128	384	48	12	4	2	2	1	2	0	0	S	0x1E849069
CYT3DLABBS	CYT3DLABBBQ1AESGS	216-TEQFP	1	4160	128	384	48	12	4	2	2	1	2	0	0	S	0x1E84A069
CYT3DLABCS	CYT3DLABCBQ1AESGS	216-TEQFP	1	4160	128	384	48	12	4	2	2	1	2	0	1	S	0x1E84B069
CYT3DLABDS	CYT3DLABDBQ1AESGS	216-TEQFP	1	4160	128	384	48	12	4	2	2	1	2	0	1	S	0x1E84C069
CYT3DLABES	CYT3DLABEBQ1AESGS	216-TEQFP	1	4160	128	384	48	12	4	2	2	1	2	1	0	S	0x1E84D069
CYT3DLABFS	CYT3DLABFBQ1AESGS	216-TEQFP	1	4160	128	384	48	12	4	2	2	1	2	1	0	S	0x1E84E069
CYT3DLABGS	CYT3DLABGBQ1AESGS	216-TEQFP	1	4160	128	384	48	12	4	2	2	1	2	1	1	S	0x1E84F069
CYT3DLABHS ^[79]	CYT3DLABHBQ1AESGS	216-TEQFP	1	4160	128	384	48	12	4	2	2	1	2	1	1	S	0x1E850069

78. Supported shipment types are "Tray" (default) and "Tape and Reel". Add the character 'T' at the end to get the ordering code for "Tape and Reel" shipment type. 79. This part is available as an engineering sample.
80. Code-flash size 4160 KB = 32 KB × 126 (Large Sectors) + 8 KB × 16 (Small Sectors).
81. Work-flash size 128 KB = 2 KB × 48 (Large Sectors) + 128 B × 256 (Small Sectors).
82. S-grade Temperature (-40°C to 105°C).
83. JTAG ID CODE bits 12 through 27, represents the Silicon ID of the device.

Based on Arm® Cortex®-M7 single

TRAVEO™ T2G 32-bit Automotive MCU

Ordering information

Based on Arm® Cortex®-M7 single

Ordering information

27.1 Part number nomenclature

Table 27-2 Device code nomenclature

Field	Description	Value		Meaning		
CY	Cypress Prefix	CY				
Т	Category	Т	TRAVEO™			
F	Family Name	3	TRAVEO™ T2G (Core M7 S	Single)		
Α	Application	D	Cluster with 2D Graphics			
D	Code-flash/Work-flash/SRAM quantity	L	4160 KB / 128 KB / 384 K	В		
Р	Dealrage	В	272-BGA			
Р	Packages	Α	216-TEQFP			
Н	Hardware Option	В	Security on (HSM), RSA - 3K			
			Audio DAC	MIPI	2 x Video Out ^[84]	
		Α	No	No	No	
		В	No	No	Yes	
		С	No	Yes	No	
1	Marketing Option	D	No	Yes	Yes	
		E	Yes	No	No	
		F	Yes	No	Yes	
		G	Yes	Yes	No	
		Н	Yes	Yes	Yes	
С	Temperature Grade	S	S-grade (-40°C to 105°C)			

Table 27-3 Ordering code nomenclature

Field	Description	Value		Meaning				
CY	Cypress Prefix	CY						
Т	Category	Т	TRAVEO™	TRAVEO™				
F	Family Name	3	TRAVEO™ T2G (Core M7 S	Single)				
Α	Application	D	Cluster with 2D Graphics					
D	Code-flash/Work-flash/SRAM quantity	L	4160 KB / 128 KB / 384 KB	3				
Р	Dealrage	В	272-BGA					
Р	Packages	Α	216-TEQFP					
Н	Hardware Option	В	Security on (HSM), RSA - 3K					
			Audio DAC	MIPI	2 x Video Out ^[84]			
		Α	No	No	No			
		В	No	No	Yes			
		С	No	Yes	No			
I	Marketing Option	D	No	Yes	Yes			
		E	Yes	No	No			
		F	Yes	No	Yes			
		G	Yes	Yes	No			
		Н	Yes	Yes	Yes			

Note

84.A "No" signifies the presence of either FPD-link or RGB video out, and a "Yes" signifies the availability of both FPD-link and RGB video outs.

R	Revision	В	First revision (0x13)
F	Fab Location	Q	UMC (Fab 12i) Singapore

Based on Arm® Cortex®-M7 single

Ordering information

Table 27-3 Ordering code nomenclature (continued)

Field	Description	Value	Meaning
Х	Reserved	1	Reserved (ASE)
К	Package Code	AE	TEQFP
K	rackage code	BZ	BGA
С	Temperature Grade	S	S-grade (-40°C to 105°C)
0	Quality Grado	ES	Engineering samples
Q	Quality Grade		Standard grade of automotive
S	Shipment Type	Blank	Tray shipment
3		Т	Tape and Reel shipment

Based on Arm® Cortex®-M7 single

Packaging

Packaging 28

CYT3DL microcontroller is offered in the packages listed in the Table 28-1.

Table 28-1 Package information

Package	Dimensions ^[85]	Contact/Lead Pitch	Coefficient of Thermal Expansion	I/O Pins
216-TEQFP	24 × 24 × 1.6 mm (max)	0.4-mm	a1 ^[86] = 8.4 ppm/°C, a2 ^[87] = 29.4 ppm/°C	108
272-BGA	16 × 16 × 1.7 mm (max)	0.8-mm	a1 ^[86] = 11.9 ppm/°C, a2 ^[87] = 34.3 ppm/°C	135

Package characteristics^[88] **Table 28-2**

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature	S-grade	-40	_	105	°C
ТЈ	Operating junction temperature	-	-	_	150	°C
D	$R_{\theta JA}$ Package thermal resistance, junction to ambient $\theta_{JA}^{[89]}$	216-TEQFP	-	_	15.5	°C/Watt
νθЈА		272-BGA	-	_	17.7	°C/Watt
D	Package thermal resistance,	216-TEQFP	-	_	11	°C/Watt
$R_{\theta JB}$	junction to board θ_{JB}	272-BGA	_	_	12.6	°C/Watt
$R_{ heta JC}$	Package thermal resistance, junction to case θ _{JC}	216-TEQFP	_	_	2	°C/Watt
		272-BGA	_	_	2.96	°C/Watt

Table 28-3 Solder reflow peak temperature, package moisture sensitivity level (MSL), IPC/JEDEC J-STD-2

Package	Maximum Peak Temperature (°C)	Maximum Time at Peak Temperature (seconds)	MSL
216-TEQFP	260	30	3
272-BGA	260	30	3

Notes

85. The dimensions (column 2) are valid for room temperature.

86.a1 = CTE (Coefficient of Thermal Expansion) value below T_g (ppm/°C) (T_g is glass transition temperature which is 131°C).

87.a2 = CTE value above T_g (ppm/°C). 88.Board condition complies to JESD51-7(4 Layers). 89.The T_A and T_J values for the packages will be provided in a later revision of the datasheet.

Based on Arm® Cortex®-M7 single

Packaging

Figure 28-1 272-ball FBGA package outline

Packaging

Figure 28-2 216-TEQFP package outline

Based on Arm® Cortex®-M7 single

Appendix

29 Appendix

29.1 External IP revisions

Table 29-1 IP revisions

Module	IP	Revision	Vendor
CANFD	mxttcanfd	M_TTCAN IP revision: Rev.3.2.3	Bosch
Arm® Cortex®-M0+	armcm0p	Cortex-M0+-r0p1	Arm®
Arm® Cortex®-M7	armcm7	Cortex-M7-r1p2	Arm®
Arm® Coresight	armcoresighttk	CoreSight-SoC-TM100-r3p2	Arm®
Ethernet	mxeth	GEM_GXL r1p09	Cadence

29.2 Internal IP revisions

Table 29-2 Internal IP revisions

Module	Revision
SMIF	SMIF version 3.0 (Variant v3.1)

29.3 MIPI formats supported[90]

Table 29-3 MIPI formats supported

MIPI Format	ID	Remarks	
YUV422 8-bit	0x1E		
YUV422 10-bit	0x1F		
RGB888	0x24	Full processing supported	
RGB666	0x23		
RGB565	0x22		
RGB555	0x21		
RGB444	0x20		
RAW8	0x2A		
RAW10	0x2B		
RAW12	0x2C	Data can be written to VRAM as is, no color processing or	
RAW14	0x2D	format conversion supported.	
RAW16	0x2E		
RAW20	0x2F		
Conoric 9 hit Long Packet Data	0x10	Supported	
Generic 8-bit Long Packet Data Types	0x11	Data can be written to VRAM as is, no color processing or format conversion supported.	
User Defined Byte-based Data	0x30 - 0x37	Data can be written to VRAM as is, no color processing or format conversion supported.	

Note

90.CYT3DL devices do not support MIPI data ID type 0x12.

Based on Arm® Cortex®-M7 single

Acronyms

Acronyms 30

Acronyms used in the document **Table 30-1**

Acronym	Description	Acronym	Description
A/D	Analog to Digital	POR	Power-on reset
ABS	Absolute	PPU	Peripheral protection unit
ADC	Analog to Digital converter	PRNG	Pseudorandom number generator
AES	Advanced encryption standard	PSoC	Programmable system on chip
АНВ	AMBA (advanced microcontroller bus architecture) high-performance bus, Arm® data transfer bus	PWM	Pulse-width modulation
Arm®	Advanced RISC machine, a CPU architecture	MCU	Microcontroller Unit
ASIL	Automotive safety integrity level	MCWDT	Multi-counter watchdog timer
BOD	Brown-out detection	M-DMA	Memory-Direct Memory Access
CAN FD	Controller Area Network with Flexible Data rate	MISO	Master-in slave-out
CMOS	Complementary metal-oxide-semiconductor	MMIO	Memory mapped I/O
CPU	Central Processing Unit	MOSI	Master-out slave-in
CRC	Cyclic redundancy check, an error-checking protocol	MPU	Memory protection unit
CSV	Clock supervisor	NVIC	Nested vectored interrupt controller
DES	Data encryption standard	RAM	Random access memory
DW	Datawire same as P-DMA	RISC	Reduced-instruction-set computing
ECC	Error correcting code	ROM	Read only memory
ECO	External crystal oscillator	RTC	Real-time clock
ETM	Embedded Trace Macrocell	SAR	Successive approximation register
FLL	Frequency Locked Loop	SCB	Serial communication block
FPU	Floating point unit	SCL	I ² C serial clock
GHS	Green hills tool chain with IDE	SDA	I ² C serial data
GPIO	General purpose input/output	SHA	Secure hash algorithm
HSM	Hardware security module	SHE	Secure hardware extension
I/O	Input/output	SMPU	Shared memory protection unit
I ² C	Inter-Integrated Circuit, a communications protocol	SPI	Serial peripheral interface, a communications protocol
ILO	Internal low-speed oscillator	SRAM	Static random access memory
IMO	Internal main oscillator	SWD	Single wire debug
IPC	Inter-processor communication	TCM	Tightly Coupled Memory
IrDA	Infrared interface	TCPWM	Timer/Counter Pulse-width modulator
IRQ	Interrupt request	TTL	Transistor-transistor logic
JTAG	Joint test action group	TRNG	True random number generator
LIN	Local Interconnect Network, a communications protocol	UART	Universal Asynchronous Transmitter Receiver, a communications protocol
LVD	Low voltage detection	WCO	Watch crystal oscillator
OTA	Over-the-air programming	WDT	Watchdog timer reset

Based on Arm® Cortex®-M7 single

Table 30-1 Acronyms used in the document

Acronym	Description	Acronym	Description
OTP	One-time programmable	XIP	eXecute In Place
OVD	Over voltage detection	XTAL	Crystal
P-DMA	Peripheral-Direct Memory Access	PASS	Programmable Analog Subsystem
PLL	Phase Locked Loop		

Based on Arm® Cortex®-M7 single

31 **Errata**

This section describes the errata for the CYT3DL product family. Details include errata trigger conditions, scope of impact, available workaround, and silicon revision applicability. Contact your local Infineon Sales Representative if you have questions.

Part Numbers Affected

Part Number	
All CYT3DL parts	

CYT3DL Qualification Status

Production samples

CYT3DL Errata Summary

The following table defines the errata applicability to available CYT3DL family devices.

Items	Errata ID	CYT3DL	Silicon Rev.	Fix Status
[1.] CAN FD RX FIFO top pointer feature does not function as expected	96			No silicon fix planned. Use workaround.
[2] CAN FD debug message handling state machine not get reset to Idle state when CANFD_CH_CCCR.INIT is set	ate machine 97		No silicon fix planned. Use workaround.	
[3] No YUV422 allowed in Direct Capture Mode	153			No silicon fix planned. Use workaround.
[4] SWRESET register field of VIDEOSSO_TCONx_S-WRESET violates the spec	172	CYT3DLBBABQ1BZSGS		No silicon fix planned. Use workaround.
[5] Crypto ECC errors may be set after boot with application authentication	185	CYT3DLBBBBQ1BZSGS CYT3DLBBCBQ1BZSGS		No silicon fix planned. TRM will be updated.
[6] Incomplete erase of Code Flash cells could happen Erase Suspend / Erase Resume is used along with Erase Sector operation in Non-Blocking mode	198	CYT3DLBBDBQ1BZSGS CYT3DLBBEBQ1BZSGS CYT3DLBBFBQ1BZSGS CYT3DLBBGBQ1BZSGS		Will be fixed to update the Flash settings, from the date code 312xxxxx.
[7] Limitation for keeping the port state from peripheral IP after wakeup from DeepSleep [8] A part of the PWR_CTL2.BGREF_LPMODE description is lacked in the existing register TRM	199	CYT3DLBBHBQ1BZSGS CYT3DLABABQ1AESGS CYT3DLABBBQ1AESGS CYT3DLABCBQ1AESGS CYT3DLABDBQ1AESGS CYT3DLABEBQ1AESGS CYT3DLABFBQ1AESGS	В	No silicon fix planned. TRM will be updated.
	201			No silicon fix planned. Register TRM will be updated.
[9] Limitation of clock configuration before entering DeepSleep mode	202	CYT3DLABGBQ1AESGS CYT3DLABHBQ1AESGS		No silicon fix planned. TRM will be updated.
[10] Several data retention information in Register TRM are incorrect	203			No silicon fix planned. Register TRM will be updated.
[11] SCBx_INTR_TX.UNDERFLOW bit may be set unintentionally	204			No silicon fix planned. Register TRM will be updated.
[12] Hardfault may occur when calling ReadSWPU or WriteSWPU while executing EraseSector or ProgramRow in non-blocking mode	206			No silicon fix planned. TRM will be updated.

Problem Definition	RX FIFO top pointer function calculates the address for received messages in Message RAM by hardware. This address should be re-start back from the start address after reading all messages of RX FIFO n size (n: 0 or 1). However, the address does not re-start back from the start address when RX FIFO n size is set to 1 (CANFD_CH_RXFnC.FnS = 0x01). This results in CPU/DMA to read messages from the wrong address in Message RAM.
Parameters Affected	N/A
Trigger Condition(s)	RX FIFO top pointer function is used when RX FIFO n size set to 1 element (CANFD_CH_RXFnC.FnS = 0x01).
Scope of Impact	Received message cannot be correctly read by using RX FIFO top pointer function, when RX FIFO n size set to 1 element.
Workaround	Any of the following. 1) Set RX FIFO n size to 2 or more when using RX FIFO top pointer function. 2) Do not use RX FIFO top pointer function when RX FIFO n size set to 1 element. Instead of RX FIFO top pointer, read received messages from the Message RAM directly.
Fix Status	No silicon fix planned. Use workaround.

2. CAN FD debug message handling state machine not get reset to Idle state when CANFD_CH_CCCR.INIT is set	
Problem Definition	If either CANFD_CH_CCCR.INIT bit is set by the Host or when the M_TTCAN module enters Bus-off state, the debug message handling state machine stays in its current state instead of being reset to Idle state. Configuring the bit CANFD_CH_CCCR.CCE does not change CANFD_CH_RXF1S.DMS.
Parameters Affected	N/A
Trigger Condition(s)	Either CANFD_CH_CCCR.INIT bit is set by the Host or when the M_TTCAN module enters Bus-off state.
Scope of Impact	The errata is limited to the use case when the Debug on CAN functionality is active. Normal operation of CAN module is not affected, in which case the debug message handling state machine always remains in Idle state. In the described use case, the debug message handling state machine is stopped and remains in the current state signaled by the bit CANFD_CH_RXF1S.DMS. In case CANFD_CH_RXF1S.DMS is set to 0b11, DMA request remains active. Bosch classifies this as non-critical error with low severity, there is no fix for the IP. Bosch recommends the workaround listed also here.
Workaround	In case the debug message handling state machine has stopped while CANFD_CH_RXF1S.DMS is 0b01 or 0b10, it can be reset to Idle state by hardware reset or by reception of debug messages after CANFD_CH_CCCR.INIT is reset to zero.
Fix Status	No silicon fix planned. Use workaround.

3. No YUV422 allowed in Direct Capture Mode		
Problem Definition	When VIDEOSS is operating in Direct Capture Mode (video input data goes directly to a display without frame buffer interaction) the YUV 4:2:2 to 4:4:4 up-sampling function is corrupting video in a way that prevents the display engine to properly synchronize.	
Parameters Affected	N/A	

Trigger Condition(s)	RASTERMODE = YUV422 in ExtScr4 when destination is ExtDst4 and not Store4 unit.
Scope of Impact	YUV422 cannot be used as a color format for video sources in video feed-through applications.
Workaround	Use capture to display with frame buffers or use video source with RGB or YUV444 format.
Fix Status	No silicon fix planned. Use workaround.

4. SWRESET register field of VIDEOSSO_TCONx_SWRESET violates the spec		
Problem Definition	 Some devices might have wrong reset values upon reset. The SWRESET field read as zero indicates TCON registers being at reset state. However, according to the spec, a value of one being read on SWRESET field should indicate the reset state. When TCON enters reset, not all registers are reset. 	
Parameters Affected	N/A	
Trigger Condition(s)	On system reset and while writing to the SWRESET register.	
Scope of Impact	No impact since the register is not used by the software for debug and not used in customer applications	
Workaround	Write only zero to the SWRESET register field to not trigger the reset active state. This register should not be used at all since other register fields of this register are for miniLVDS and this feature is not supported.	
Fix Status	No silicon fix planned. Use workaround.	

5. Crypto ECC errors may be set after boot with application authentication		
Problem Definition	Due to the improper initialization of the Crypto memory buffer, Crypto ECC errors may be set after boot with application authentication.	
Parameters Affected	N/A	
Trigger Condition(s)	Boot device with application authentication.	
Scope of Impact	Crypto ECC errors may be set after boot with application authentication.	
Workaround	Clear or ignore Crypto ECC errors which generated during boot with application authentication.	
Fix Status	No silicon fix planned. TRM will be updated.	

	6. Incomplete erase of Code Flash cells could happen Erase Suspend / Erase Resume is used along with Erase Sector operation in Non-Blocking mode		
Problem Definition	Code Flash memory can be erased in "Non-Blocking" mode; a Non-Blocking mode supported option allows users to suspend an ongoing erase sector operation. When an ongoing erase operation is interrupted using "Erase Suspend" and "Erase Resume", Flash cells may not have been erased completely, even after the erase operation complete is indicated by FLASHC_STATUS register. Only Code Flash is impacted by this issue, Work Flash and Supervisory Flash (SFlash) are not impacted.		
Parameters Affected	N/A		
Trigger Condition(s)	Using EraseSector System Call in Non-Blocking mode for CM0+ to erase Code Flash and the ongoing erase operation is interrupted using EraseSuspend and EraseResume System calls.		
Scope of Impact	When Code Flash sectors are erased in Non-Blocking mode and the ongoing erase operation is interrupted by Erase Suspend / Erase Resume, it cannot be guaranteed that the Code Flash cells are fully erased. Any read on the Code Flash area after the erase is complete or read on the programmed data after ProgramRow is complete can trigger ECC errors.		
Workaround	Use any of the following: 1) Use Non-Blocking mode for EraseSector, but do not interrupt the erase operation using Erase Suspend / Erase Resume. 2) If a Code Flash sector erase operation is interrupted using Erase Suspend / Erase Resume, then erase the same sector again without Erase Suspend / Erase Resume before reading the sector or programming the sector.		

Fix Status	Will be fixed to update the Flash settings from the date code 312xxxxx, via Manufacturing Test Program
	Update for Code Flash setting; this fix is transferred to TRAVEO™ T2G devices during Infineon Factory Test
	Flow. Fixed devices will be identified by Device Date Code, which is marked on every TRAVEO™ T2G device.

7. Limitation for keeping the port state from peripheral IP after wakeup from DeepSleep			
Problem Definition	The port state is not retained when the port selects peripheral IP (except for LIN or CAN FD) and MCU wakes up from DeepSleep.		
Parameters Affected N/A			
Trigger Condition(s)	Igger Condition(s) The port selects peripherals (except for LIN or CAN-FD) and MCU wakes up from DeepSleep.		
Scope of Impact Unexpected port output change might affect user system.			
Workaround If the port selects peripherals (except for LIN or CAN FD), and the port output value needs after wakeup from DeepSleep, set HSIOM_PRTx_PORT_SEL.IOy_SEL = 0 (GPIO) before Determined output value in GPIO configuration registers. After wakeup, change HSIOM_PORT_SEL.IOy_SEL back to the peripheral module as needed.			
Fix Status	x Status No silicon fix planned. TRM will be updated to add above workaround.		

8. A part of the PWR_CTI	8. A part of the PWR_CTL2.BGREF_LPMODE description is lacked in the existing register TRM			
Problem Definition	The following description is not present in PWR_CTL2.BGREF_LPMODE in the existing register TRM. "This register will not set unless CLK_ILO0_CONFIG.ILO0_ENABLE==1. When changing back to continuous operation, keep ILO0 enabled for at least 5 ILO0 cycles after clearing this bit to allow for internal synchronization."			
Parameters Affected N/A				
Trigger Condition(s)	Using the PWR_CTL2.BGREF_LPMODE.			
Scope of Impact PWR_CTL2.BGREF_LPMODE may not be set or cleared.				
Workaround Use the PWR_CTL2.BGREF_LPMODE according to the following description. "This register will not set unless CLK_ILO0_CONFIG.ILO0_ENABLE==1. When changing back to operation, keep ILO0 enabled for at least 5 ILO0 cycles after clearing this bit to allow for intern nization."				
Fix Status	No silicon fix planned. Register TRM will be updated.			

9. Limitation of clock configuration before entering DeepSleep mode			
Problem Definition	DeepSleep should not be entered while any FLL/PLL is enabled and using ECO/LPECO as its reference clock. Since the unstable ECO/LPECO clock after wakeup is outside the allowed reference clock limits for FLL/PLL, there is possibility of failing the DeepSleep wakeup.		
Parameters Affected N/A			
Trigger Condition(s)	DeepSleep transition while any FLL/PLL is enabled and using ECO/LPECO as its reference clock.		
Scope of Impact	There is possibility of DeepSleep wakeup failure.		
Workaround	If any FLL/PLL is operating with the ECO/LPECO as its reference clock, change the clock to either ECO/LPECO direct or IMO direct or IMO with FLL/PLL before entering DeepSleep.		
Fix Status No silicon fix planned. TRM will be updated to add above workaround.			

10. Several data retent	ion information in Register TRM are incorrect	
Problem Definition	The following registers are described as 'Retained' in the Register TRM while it is not guaranteed that the value before entering DeepSleep mode is still readable from the register. - SARADC: PASSX_SARY_CHz_RESULT - SRSS: PWR_LVD_STATUS - SRSS: PWR_LVD_STATUS2 - SRSS: CLK_CAL_CNT1 - SRSS: CLK_CAL_CNT2 - SRSS: CLK_FLL_STATUS - SRSS: WDT_INTR - SRSS: WDT_INTR - SRSS: WDT_INTR_MASKED - SRSS: CLK_PLL400Mx_STATUS - MIXER: MIXER_DST_STRUCT_INTR_DST_MASKED	
Parameters Affected N/A		
Trigger Condition(s)	Use of the related function and wakeup from DeepSleep mode.	
Scope of Impact	The values before entering DeepSleep are not retained.	
Workaround For PASSx_SARy_CHz_RESULT, any of following: 1) Store the conversion values at another memory location before entering DeepSleep mode 2) Restart the conversion after wakeup from DeepSleep mode For the other registers: Rewrite the register value or read the status flags again after wakeup.		
Fix Status	No silicon fix planned. Register TRM will be updated.	

11. SCBx_INTR_TX.UNDERFLOW bit may be set unintentionally			
Problem Definition There is possibility of setting the SCBx_INTR_TX.UNDERFLOW bit even if the FIFO is not empty.			
Parameters Affected N/A			
Trigger Condition(s) Using the TX FIFO for SCB when the AHB-Lite interface clock (CLK_GR6) frequency of the AHB bus is greater the SCB functionality clock (PCLK_SCBx_CLOCK).			
Scope of Impact SCBx_INTR_TX.UNDERFLOW bit may be set unintentionally.			
Workaround	Ignore the SCBx_INTR_TX.UNDERFLOW bit if the FIFO is not empty.		
ix Status No silicon fix planned. Register TRM will be updated.			

12. Hardfault may occur when calling ReadSWPU or WriteSWPU while executing EraseSector or ProgramRow in non-blocking mode				
Problem Definition	ReadSWPU or WriteSWPU read data from bank#0 in SFlash. While doing that the check for active non-blocking erase or program of bank#0 is not performed. Therefore, reading bank#0 while there is an active erase/program operation will trigger a bus error which can result in a hardfault occurrence based on FLASHC_FLASH_CTL register settings.			
Parameters Affected	N/A			
Trigger Condition(s) Calling ReadSWPU or WriteSWPU while executing EraseSector or ProgramRow in non-blocking mode on bank#				
Scope of Impact	ReadSWPU or WriteSWPU can't be used while executing EraseSector or ProgramRow in non-blocking mode on bank#0			
Workaround	Do not use ReadSWPU or WriteSWPU while executing EraseSector or ProgramRow in non-blocking mode on bank#0.			
Fix Status No silicon fix planned. TRM will be updated.				
Impact on Infineon Software HSM-Perf-Lib: While executing EraseSector or ProgramRow in non-blocking mode on bank#0, users must not call Prot_GetSwpuFlashStructCfg or, if CySldProt_SwpuFlashStructGroupConfigurations is non-empty, CySldProt SecureDomainFlashWriteProtection.				

Based on Arm® Cortex®-M7 single

Revision history

Revision history

Document version	Date of release	Description of changes
**	2020-03-02	New datasheet
*A	2020-06-04	Updated Blocks and functionality. Updated Peripheral I/O map. Updated Pin assignment. Updated Package pin list and alternate functions Updated Power pin assignments Updated Alternate function pin assignments Removed PMIC_VADJ reference throughout. Updated Electrical specifications. Updated VIDEOSS capture timing groups and Table 27-2. Updated Packaging.
*B	2020-09-14	Updated Features and Features list Updated Timer/Counter/PWM block (TCPWM). Updated I/Os. Updated Peripheral I/O map. Updated Alternate function pin assignments and Pin function description. Updated Peripheral clocks. Updated Electrical specifications. Updated VIDEOSS capture timing groups. Added Appendix.
*C	12/07/2020	Updated Features list. Updated Peripheral instance list. Updated Electrical specifications. Updated Clock specifications. Updated Packaging.
*D	2021-05-13	Updated Features list. Updated Clock system, Power modes, and I/Os. Added footnote in Pin assignment. Updated Faults. Updated Electrical specifications. Updated VIDEOSS capture timing groups. Updated Appendix.
*E	2021-09-17	Reamed Traveo II to TRAVEO [™] T2G. Updated Features list. Corrected links in Functional description. Updated Power pin assignments Updated Alternate function pin assignments Updated Peripheral protection unit fixed structure pairs Updated Electrical specifications. Updated Clock specifications Added Table 26-36 Added Table 26-40, and Table 26-41 Updated Ordering information Updated Packaging
*F	2022-05-13	Minor change to correct the page layout from pages 166-169.
*G	2022-06-23	Migrated to IFX template Updated Electrical specifications. Updated Clock specifications Updated Ordering information Updated Packaging

Based on Arm® Cortex®-M7 single

Revision history

Document version	Date of release	se Description of changes		
*H		Updated Features, Features list, and Peripheral instance list. Updated Peripherals and I/Os. Updated Peripheral I/O map, Pin assignment, and Package pin list and alternate functions. Updated Trigger multiplexer and Triggers one-to-one. Updated Electrical specifications. Updated Part number nomenclature and Packaging.		

Based on Arm® Cortex®-M7 single

Revision history change log

Revision history change log

Rev *H Section Updates

Section	Change Description	Current Spec (Rev. *G)	New Spec (Rev. *H)	Reason for change
Features	Packages	- 208-TEQFP, 28 × 28 × 30 mm (max), 0.5-mm ball pitch	(none)	Removed
1. Features List	Table 1-1	Columns for 208-TEQFP	(none)	Removed
1. Features List	Table 1-1 RGB888/TTL Output	216-TEQFP: 1 ch at 64 MHz (max) 272-BGA: 1 ch at 80 MHz (max)	216-TEQFP: 1 ch at 40 MHz (max) 272-BGA: 1 ch at 40 MHz (max)	Correction
1. Features List	Table 1-1 FPD-link/LVDS Output	216-TEQFP: Single channel LVDS at 80 MHz (max) 272-BGA: Single channel LVDS at 110 MHz (max)	216-TEQFP: Single channel LVDS at 80 MHz pixel clock (max) 272-BGA: Single channel LVDS at 110 MHz pixel clock (max)	Correction
1. Features List	Table 1-1 MIPI CSI-2 Input	216-TEQFP: 4 or 2 lane MIPI CSI-2 at 80 MHz (max) 272-BGA: 4 or 2 lane MIPI CSI-2 at 110 MHz (max)	216-TEQFP: 4 or 2 lane MIPI CSI-2 at 80 MHz pixel clock (max) 272-BGA: 4 or 2 lane MIPI CSI-2 at 110 MHz pixel clock (max)	Correction
1. Features List	Table 1-1 Watchdog timer and multi-counter watchdog timer	Supported	Supported (WDT + 2× MCWDT) MCWDT#0 tied to CM0+, MCWDT#1 to CM7_0	Correction
1.1 Peripheral instance list	Table 1-2	Columns for 208-TEQFP	(none)	Removed
1.1 Peripheral instance list	Table 1-3	Columns for 208-TEQFP	(none)	Removed
3.3 Peripherals	3.3.5.1 I2C interface Note [12]	12.Only Port 0 with the slew rate control enabled meets the minimum fall time requirement.	12.See Table 26-10 'Serial Communication Block (SCB) specifications' for supported IO-cells and I2C modes.	Correction
3.3 Peripherals	3.3.9 Ethernet MAC	The MAC supports standard 6-byte programmable addresses.	The MAC supports standard 6-byte programmable addresses. Module uses AXI interface for DMA access.	Correction
3.5 I/Os	3.5.1.3 GPIO SMC (GPIO_SMC)	This GPIO provides significant drive strength than GPIO_STD and GPIO_ENH (Supports 30-mA drive) and also has support for I2C Fast Plus Mode.	This GPIO provides significant drive strength than GPIO_STD and GPIO_ENH (Supports 30-mA drive).	Correction
6. Peripheral I/O map	Table 6-1: CAN: Message RAM CAN0	Instance size: 0x3FFF	Instance size: 0x4000	Correction
6. Peripheral I/O map	Table 6-1: CAN: Message RAM CAN1	Instance size: 0x3FFF	Instance size: 0x4000	Correction
9. Pin assignment	Pin assignment for 208-TEQFP	Specification for 208-TEQFP	(none)	Removed
11. Package pin list and alternate functions	-	Port 11 has the following additional features: • Ability to pass full-level analog signals to the SAR without clipping to VDDD in cases where VDDD < VDDA_ADC • Lower noise, for the most sensitive sensors	(none)	Removed
11. Package pin list and alternate functions	Table 11-1	Columns for 208-TEQFP	(none)	Removed
11. Package pin list and alternate functions	Table 11-1	- - I/O Type	I/O Type HCon#0	Correction
16. Trigger Multiplexer	Figure 16-1	-	Minor changed in the figure	Correction
19. Triggers one-to-one	Figure 19-1	-	Added comments under the figure	Correction
23. Bus masters	ID No. 9: CPUSS_MS_ID_FAST0	Description: Master ID for Ethernet0	Description: Master ID for External AXI Master 0 (Ethernet#0)	Correction
26. Electrical specifications	Note [45]	45.Ensure VDDIO_GPIO_2 ≥ 0.8 × VDDA_ADC when SARMUX0 is enabled.	(none)	Removed
26. Electrical specifications	Table 26-10 I2C Interface-Standard-mode	HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<4:0> = 0b00010, CFG_IN_AU- TOLVL_VTRIP_SEL<0:0>= 0b0, CFG_IN_VTRIP_SEL<0:0> = 0b0, CFG_JORIVE_MODE<2:0> = 0b100, CFG_SLEW_EXT/SLEW<2:0> = 0b000	HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT <2:0> = 0b010, CFG_IN_AU- TOLVL/VTRIP_SEL<0:0> = 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG_ORIVE_MODE<2:0> = 0b100, CFG_SLEW_EXT/SLEW<2:0> = 0b000 (Note: SID138 is not valid for HSIO_STDLN)	Correction
26. Electrical specifications	Table 26-10 I2C Interface-Fast-mode	HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<4:0> = 0b00010, CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0>= 0b0, CFG/DRIVE_MODE<2:0> = 0b100, CFG_SLEW_EXT/SLEW<2:0> = 0b000	HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT <2:0> = 0b010, CFG_IN_AU- TOLVL/VTRIP_SEL<0:0> = 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG/DRIVE_MODE<2:0> = 0b100, CFG_SLEW_EXT/SLEW<2:0> = 0b000 (Note: SID158 is not valid for GPIO_STD, HSIO_STDLN)	Correction

Based on Arm® Cortex®-M7 single

Revision history change log

Rev *H Section Updates (continued)

Section	Change Description	Current Spec (Rev. *G)	New Spec (Rev. *H)	Reason for change
26. Electrical specifications	Table 26-10 I2C Interface-Fast-Plus mode	HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<4:0> =0b00010, CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0, CFG/DRIVE_MODE<2:0> = 0b100, CFG_SLEW_EXT/SLEW<2:0> = 0b000	HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT <2:0>=0b010, CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>=0b0, CFG_IN/VTRIP_SEL<0:0>=0b0, CFG/DRIVE_MODE<2:0>=0b100, CFG_SLEW_EXT/SLEW<2:0>=0b000 (Note: SID178 is not valid for GPIO_STD, GPIO_SMC, and HSIO_STDLN)	Correction
26. Electrical specifications	Table 26-10 SPI Interface	HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<4:0> = 0b00010, CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b0	HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT <2:0> = 0b010, CFG_IN_AU- TOLVL_VTRIP_SEL<0:0>= 0b0, CFG_IN_VTRIP_SEL<0:0> = 0b0	
26. Electrical specifications	Table 26-10 UART Interface	Recommended I/O Configuration: HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<4:0> = 0b00010, CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0>= 0b0 For SPI speeds ≤ 12.5 MHz GPIO_STD: CFG_OUT/DRIVE_SEL<1:0>= 0b10, CFG_IN_VTRIP_SEL<0:0>= 0b0 GPIO_ENH: CFG_OUT/DRIVE_SEL<1:0>= 0b10, CFG_IN_VTRIP_SEL<0:0>= 0b0 GPIO_ENH: CFG_OUT/DRIVE_SEL<1:0>= 0b10, CFG_IN_VTRIP_SEL<0:0>= 0b0, CFG_IN_VTRIP_SEL<0:0>= 0b0, CFG_OUT/SLOW<0:0>= 0b0 CFG_OUT/SLOW<0:0>= 0b0 GPIO_SMC: CFG_OUT/DRIVE_SEL<1:0>= 0b10, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b10, CFG_IN_AUTOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN_VTRIP_SEL<0:0>= 0b0, CFG_OUT/SLOW<0:0>= 0b0 CFG_OUT/SLOW<0:0>= 0b0	Recommended I/O Configuration: GPIO_STD: CFG_OUT/DRIVE_SEL<1:0> = 0b10, CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0>= 0b0, GPIO_ENH: CFG_OUT/DRIVE_SEL<1:0> = 0b10, CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0>= 0b0, CFG_OUT/SLOW<0:0>= 0b0, GPIO_SMC: CFG_OUT/DRIVE_SEL<1:0> = 0b10, CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0>= 0b0, CFG_OUT/SLOW<0:0>= 0b0, CFG_OUT/SLOW<0:0>= 0b0 HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT <2:0>= 0b010, CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0, CFG_DRIVE_EXT<1:0>= 0b00, CFG_DRIVE_EXT<1:0>= 0b00, CFG_DRIVE_EXT<1:0>= 0b00, CFG_IN/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0>= 0b0	Correction
26. Electrical specifications	Table 26-20	(none)	Added Table 26-20 PLL400 operation modes	Added
26. Electrical specifications	Note [72]	73.Mainly depending on the chosen external crystal.	72.Oscillator startup time is a performance parameter and mainly depending on the chosen external crystal and load capacitance.	Correction
26. Electrical specifications	Note [73]	74.Mainly depending on the chosen external crystal.	73.Oscillator startup time is a performance parameter and mainly depending on the chosen external crystal and load capacitance.	Correction
26. Electrical specifications	26.11.1 Minimum bus frequency requirements	(none)	Added a section	Added
26. Electrical specifications	Table 26-33 Sound subsystem specifications I2S I/O settings	Table 26-31 HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<4:0> =0b00100, CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>=0b0, CFG_IN/VTRIP_SEL<0:0> = 0b1, CFG_SLEW_EXT/SLEW<2:0> =0b000	Table 26-33 HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT <2:0>=0b100, CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>=0b0, CFG_IN/VTRIP_SEL<0:0>=0b1, CFG_SLEW_EXT/SLEW<2:0>=0b000	Correction
26. Electrical specifications	Table 26-33 Sound subsystem specifications I2S I/O settings	Table 26-31 HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<4:0> =0b00100, CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>=0b0, CFG_IN/VTRIP_SEL<0:0>=0b1, CFG_SLEW_EXT/SLEW<2:0>=0b000	Table 26-33 HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT <2:0>=0b100, CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>=0b0, CFG_IN/VTRIP_SEL<0:0>=0b1, CFG_SLEW_EXT/SLEW<2:0>=0b000	Correction
26. Electrical specifications	Table 26-33 Sound subsystem specifications TDM I/O settings	Table 26-31 HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<4:0> = 0b00011, CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b1, CFG_SLEW_EXT/SLEW<0:0> = 0b0	Table 26-33 HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT <2:0>= 0b011, CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b1, CFG_SLEW_EXT/SLEW<0:0> = 0b0	Correction
26. Electrical specifications	Table 26-33 Sound subsystem specifications TDM I/O settings	Table 26-31 HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<4:0> = 0b00100, CFG_IN_AU- TOLVL/VTRIP_SEL<0:0>= 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b1, CFG_SLEW_EXT/SLEW<0:0> = 0b0	Table 26-33 HSIO_STDLN: CFG_DRIVE_SEL_EXT<1:0>/DRIVE_SEL_EXT <2:0> = 0b100, CFG_IN_AU- TOLVL/VTRIP_SEL<0:0> = 0b0, CFG_IN/VTRIP_SEL<0:0> = 0b1, CFG_SLEW_EXT/SLEW<0:0> = 0b0	Correction
26. Electrical specifications	Table 26-33 Sound subsystem specifications (PCM) PWM	Table 26-31 HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<4:0> = 0b000011, CFG_SLEW_EXT/SLEW<0:0> = 0b0	Table 26-33 HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT <2:0> = 0b011, CFG_SLEW_EXT/SLEW<0:0> = 0b0	Correction

Based on Arm® Cortex®-M7 single

Revision history change log

Rev *H Section Updates (continued)

Section	Change Description	Current Spec (Rev. *G)	New Spec (Rev. *H)	Reason for change
26. Electrical specifications	Table 26-33 Sound subsystem specifications Sound Generator	Table 26-31 HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT<4:0> = 0b00011, CFG_SLEW_EXT/SLEW<0:0> = 0b0	Table 26-33 HSIO_STDLN: CFG_DRIVE_EXT<1:0>/DRIVE_SEL_EXT <2:0> = 0b011, CFG_SLEW_EXT/SLEW<0:0> = 0b0	Correction
26. Electrical specifications	Table 26-36 xSPI (JEDEC JESD251) Tap/DLL setting requirement Feature	Table 26-34 Delay Tap Setting for SMIF0 (Tx (MDL): CTL2:MDL_TAP_SEL Rx (SDL): RX_CAPTURE_CONFIG:NEG_S-DL_TAP_SEL / POS_SDL_TAP_SEL)	Table 26-36 Delay Tap Setting for SMIF0 (Tx (MDL): SMIF_CORE_CTL2:MDL_TAP_SEL Rx (SDL): SMIF_CORE_DEVICE_RX_CAP- TURE_CONFIG:NEG_SDL_TAP_SEL / POS_SDL_TAP_SEL)	Correction
26. Electrical specifications	Table 26-36 xSPI (JEDEC JESD251) Tap/DLL setting requirement Feature	Table 26-34 Delay Tap Setting for SMIF0 (Tx (MDL): CTL2:MDL_TAP_SEL Rx (SDL): RX_CAPTURE_CONFIG:NEG_S-DL_TAP_SEL / POS_SDL_TAP_SEL)	Table 26-36 Delay Tap Setting for SMIF1 (Tx (MDL): SMIF_CORE_CTL2:MDL_TAP_SEL Rx (SDL): SMIF_CORE_DEVICE_RX_CAP- TURE_CONFIG:NEG_SDL_TAP_SEL / POS_SDL_TAP_SEL)	Correction
26. Electrical specifications	Table 26-36 xSPI (JEDEC JESD251) Tap/DLL setting requirement Feature	Table 26-34 DLL Speed Mode (CTL2:DLL_SPEED_MODE)	Table 26-36 DLL Speed Mode (SMIF_CORE_CTL2:DLL_SPEED_MODE)	Correction
26. Electrical specifications	Table 26-38	Table 26-36 Recommended I/O configuration: HSIO_ENH/I.SI'. CFG_OUT2/DS_TRIM<2:0 = 0b110, CFG_SLEW_EXT/SLEW<0:0> = 0b0 DLL Tap settings: CTL2:MDL_TAP_SEL = 12, Following DLL Tap settings have to be used if DLP is not used: RX_CAPTURE_CONFIG:NEG_SDL_TAP_SEL / POS_SDL_TAP_SEL = 8 All timings aligned with respect to VT = (50% × VDDIO_SMIF).	Table 26-38 Recommended configuration: HSIO_ENH/1.8V I/O: CFG_OUT2/DS_TRIM<2:0 = 0b110, CFG_SLEW_EXT/SLEW<0:0> = 0b0 SMIF_CORE_CTL2:TX_SDR_EXTRA SETUP = 1 DLL Tap settings for SMIF0/1: SMIF_CORE_CTL2:MDL_TAP_SEL = 12 Following DLL Tap settings have to be used if DLP is not used: SMIF_CORE_DEVICE_RX_CAPTURE CONFIG:NEG_SDL_TAP_SEL / POS_S- DL_TAP_SEL = 8 All timings aligned with respect to VT = (50% × VDDIO_SMIF).	Correction
27.1 Part number nomen- clature	Table 27-2	Value: 9 Meaning: 208-TEQFP	(none)	Removed
27.1 Part number nomen- clature	Table 27-3	Value: 9 Meaning: 208-TEQFP	(none)	Removed
28. Packaging	Table 28-1	Specification for 208-TEQFP	(none)	Removed
28. Packaging	Table 28-2 Package characteristics Parameter: RθJB	Description: Package θJB	Description: Package thermal resistance, junction to board θJB	Correction
28. Packaging	Table 28-3	Specification for 208-TEQFP	(none)	Removed
28. Packaging	Figure 28-2	Packageing figure for 208-TEQFP	(none)	Removed

Rev. *H Electrical Spec Updates

Spec ID	Description	Changed Item	Current Spec (Rev. *G)	New Spec (Rev. *H)	Reason for Change
SID52C	VDDD current in external PMIC mode, Use case with VIDEOSS (VDDD current for SID51C use case)	Details/Conditions	Both Cortex®-M7 at 320 MHz generated by PLL with ECO reference, executing Dhrystone from flash with cache enabled. Cortex®-M0+ is sleeping at 100 MHz. Graphics Engine at 250 MHz, operating 2D rendering, drawing, capture, output on 2 displays. All other peripherals, peripheral clocks, interrupts, CSV, DMA, ECO are disabled. No IO toggling. Typ: TA = 25°C, VCCD = 1.15 V, process typ (TT) Max: TA = 105°C, VCCD = 1.21 V, process worst (FF)	Cortex®-M7 at 240 MHz generated by PLL with ECO reference, executing Dhrystone from flash with cache enabled. Cortex®-M0+ is sleeping at 100 MHz. Graphics Engine at 200 MHz, operating 2D rendering, drawing, capture, output on 2 displays. All other peripherals, peripheral clocks, interrupts, CSV, DMA, ECO are enabled. No I/O toggling. Typ: TA = 25°C, VCCD = 1.15 V, process typ (TT) Max: TA = 105°C, VCCD = 1.21 V, process worst (FF)	Updated description
SID138	Fall time of SCL and SDA	Details/Conditions	Details/Conditions: Input and output	Details/Conditions: Input and output Output: Only valid for GPIO_ENH, GPIO_SMC, GPIO_STD	Updated description
SID158	Fall time of SCL and SDA	Details/Conditions	Details/Conditions: Input and output	Details/Conditions: Input and output Output: Only valid for GPIO_ENH, GPIO_SMC	Updated description
SID178	Fall time of SCL and SDA	Details/Conditions	Details/Conditions: Input and output, 20-pF load GPIO_ENH: slow mode	Details/Conditions: Input and output, 20pF load Output: Only for GPIO_ENH	Updated description

Based on Arm® Cortex®-M7 single

Revision history change log

Spec ID	Description	Changed Item	Current Spec (Rev. *G)	New Spec (Rev. *H)	Reason for Change
SID274A	VDDD power ramp rate with robust BOD - XRES_L asserted (BOD operation is guaranteed)	Spec ID Description Details/Conditions	Spec ID: SID274 Description: VDDD power ramp rate with robust BOD (BOD operation is guaranteed) Details/Conditions: This ramp supports robust BOD	Spec ID: SID274A Description: VDDD power ramp rate with robust BOD - XRES_L asserted (BOD operation is guaranteed) Details/Conditions: Applies to ramp up and ramp down	Updated description
SID274B	VDDD power ramp rate with robust BOD - XRES_L de-asserted (BOD operation is guaranteed)	All	(none)	Parameter: POR_RR1 Description:VDDD power ramp rate with robust BOD - XRES_L de-asserted (BOD operation is guaranteed) Min: 1 mV/µs Typ: - Max: 100 mV/µs Details/Conditions: Applies to ramp up and ramp down	Added spec
SID275	VDDD power ramp rate without robust BOD	Min Details/Conditions	Min: – Details/Conditions: This ramp does not support robust BOD tPOFF must be satisfied.	Min: 100 mV/µs Details/Conditions: This ramp does not support robust BOD tPOFF must be satisfied. Applies to ramp up and ramp down	Updated description
SID328	LPECO startup time	Details/Conditions	Details/Conditions: Startup time to 90% of final frequency	Details/Conditions: Startup time to 90% of final frequency. Time from oscillator enable (BACKUP_LPECO_CTL.LPECO_EN<0:0>=0b1) to stable oscillation and sufficient amplitude (BACKUP_LPECO_STATUS.LPECO_READY=0:0>=0b1 and BACKUP_LPECO_STATUS.LPECO_A MPDET_OK<0:0>=0b1).	Updated description
SID334	7.2-MHz ECO startup time	Details/Conditions	Details/Conditions: Startup time to 90% of final frequency	Details/Conditions: Startup time to 90% of final frequency. Time from oscillator enable (CLK_ECO CONFIG.ECO_EN<0:0>=0b1) to stable oscillation and sufficient amplitude (CLK_ECO_STATUS.ECO_OK<0:0>=0b1 and CLK_ECO_STATUS.ECO_READY<0:0>=0 b1).	Updated description
SID335	33-MHz ECO startup time[Details/Conditions	Details/Conditions: Startup time to 90% of final frequency	Details/Conditions: Startup time to 90% of final frequency. Time from oscillator enable (CLK_ECO CONFIG.ECO_EN<0:0>=0b1) to stable oscillation and sufficient amplitude (CLK_ECO_STATUS.ECO_OK<0:0>=0b1 and CLK_ECO_STATUS.ECO_READY<0:0>=0b1).	Updated description
SID342D1	Long term jitter	Details/Conditions	Details/Conditions: For 125 ns Guaranteed by Design fVCO: 800 MHz (spreading is off) fIN: ECO fPFD: 4 MHz fOUT: 100 MHz to 400 MHz	Details/Conditions: For 125 ns Guaranteed by Design fVCO: 800 MHz (Integer mode) fIN: ECO fPFD: 4 MHz fOUT: 100 MHz to 400 MHz	Updated description
SID343D1	Long term jitter	Details/Conditions	Details/Conditions: For 500 ns Guaranteed by Design fVCO: 800 MHz (spreading is off) fIN: ECO fPFD: 4 MHz fOUT: 100 MHz to 400 MHz	Details/Conditions: For 500 ns Guaranteed by Design fVCO: 800 MHz (Integer mode) fIN: ECO fPFD: 4 MHz fOUT: 100 MHz to 400 MHz	Updated description
SID344D1	Long term jitter	Details/Conditions	Details/Conditions: For 1000 ns Guaranteed by Design fVCO: 800 MHz (spreading is off) fIN: ECO fPFD: 4 MHz fOUT: 100 MHz to 400 MHz	Details/Conditions: For 1000 ns Guaranteed by Design fVCO: 800 MHz (Integer mode) fIN: ECO fPFD: 4 MHz fOUT: 100 MHz to 400 MHz	Updated description
SID345E1	Long term jitter	Details/Conditions	Details/Conditions: For 10000 ns Guaranteed by Design fVCO: 800 MHz (spreading is off) fIN: ECO fPFD: 4 MHz fOUT: 100 MHz to 400 MHz	Details/Conditions: For 10000 ns Guaranteed by Design fVCO: 800 MHz (Integer mode) fIN: ECO fPFD: 4 MHz fOUT: 100 MHz to 400 MHz	Updated description
SID362	WCO start up time	Details/Conditions	Details/Conditions: (none)	Details/Conditions: Time from oscillator enable (BACKUP_CTL.WCO_EN<0:0>=0b1) to stable oscillation and sufficient amplitude (BACKUP_STATUS.WCO_OK<0:0>=0b1)	Updated description
SID1602_HS	CS# active setup to CK (fCK > 50 MHz)	Details/Conditions	Details/Conditions: 15-pF output loads, fCK > 50 MHz	Details/Conditions: 15-pF output loads, fCK > 50 MHz Guaranteed by design	Updated description

Based on Arm® Cortex®-M7 single

Spec ID	Description	Changed Item	Current Spec (Rev. *G)	New Spec (Rev. *H)	Reason for Change
SID1602_LS	CS# active setup to CK (fCK ≤ 50 MHz)	Details/Conditions	Details/Conditions: 15-pF output loads, fCK ≤ 50 MHz	Details/Conditions: 15-pF output loads, fCK ≤ 50 MHz Guaranteed by design	Updated description
SID1603	CS# active hold to CK (mode 0)	Details/Conditions	Details/Conditions: 15-pF output loads	Details/Conditions: 15-pF output loads Guaranteed by design	Updated description
SID1604	CS# active hold to CK (mode 3)	Details/Conditions	Details/Conditions: 15-pF output loads	Details/Conditions: 15-pF output loads Guaranteed by design	Updated description
SID1607	CK edge low to DQ[7:0] input valid time	Details/Conditions	Details/Conditions: Delay line is enabled	Details/Conditions: CTL/DELAY_TAP_ENABLE=1 (Delay line is enabled) Three options 1) CTL/CLOCK_IF_RX_SEL<2:0> = 0b011 2) CTL/CLOCK_IF_RX_SEL<2:0> = 0b100 or 0b101 CTL/INT_CLOCK_DL_ENABLED<0:0> = 0b0 CTL/INT_CLOCK_CAPTURE CYCLE<1:0>=0b01 3) CTL/CLOCK_IF_RX_SEL<2:0> = 0b100 or 0b101 CTL/INT_CLOCK_CAPTURE CYCLE<1:0>=0b10 CTL/INT_CLOCK_DL_ENABLED<0:0> = 0b1 CTL/INT_CLOCK_DL_ENABLED<0:0> = 0b1 CTL/INT_CLOCK_CAPTURE CYCLE<1:0> needs to be adjusted based on INTR/DL_WARNING	Updated description
SID1607A	DQ[7:0] input setup time	Details/Conditions	Details/Conditions: Delay line is disabled (bypassed)	Details/Conditions: CTL/DELAY_TAP_ENABLE=0 (Delay line is disabled/bypassed)	Updated description
SID1608	DQ[7:0] input hold time	Details/Conditions	Details/Conditions: Delay line is disabled (bypassed)	CTL/CLOCK_IF_RX_SEL<2:0> = 0b011 Details/Conditions: CTL/DELAY_TAP_ENABLE=0 (Delay line is disabled/bypassed) CTL/CLOCK_IF_RX_SEL<2:0> = 0b011	Updated description
SID1609	Input data valid time of DQ[7:0]	Details/Conditions	Details/Conditions: Delay line is enabled	Details/Conditions: CTL/DELAY_TAP_ENABLE=1 (Delay line is enabled) Three options 1) CTL/CLOCK_IF_RX_SEL<2:0> = 0b011 2) CTL/CLOCK_IF_RX_SEL<2:0> = 0b100 or 0b101 CTL/INT_CLOCK_DL_ENABLED<0:0> = 0b0 CTL/INT_CLOCK_CAPTURE CYCLE<1:0>=0b0 CTL/INT_CLOCK_IF_RX_SEL<2:0> = 0b100 or 0b101 CTL/INT_CLOCK_IF_RX_SEL<2:0> = 0b100 or 0b101 CTL/INT_CLOCK_DL_ENABLED<0:0> = 0b1 CTL/INT_CLOCK_DL_ENABLED<0:0> = 0b1 CTL/INT_CLOCK_CAPTURE CYCLE<1:0> needs to be adjusted based on INTR/DL_WARNING	Updated description
SID1611	CS# inactive to output disable time	Details/Conditions	Details/Conditions: 15-pF output loads	Details/Conditions: 15-pF output loads Guaranteed by design	Updated description
SID1702_HS	CS# active setup to CK (fCK > 50 MHz)	Details/Conditions	Details/Conditions: 15-pF output loads, fCK > 50 MHz	Details/Conditions: 15-pF output loads, fCK > 50 MHz Guaranteed by design	Updated description
SID1702_LS	CS# active setup to CK (fCK ≤ 50 MHz)	Details/Conditions	Details/Conditions: 15-pF output loads, fCK ≤ 50 MHz	Details/Conditions: 15-pF output loads, fCK ≤ 50 MHz Guaranteed by design	Updated description
SID1703	CS# active hold to CK (mode 0)	Details/Conditions	Details/Conditions: 15-pF output loads	Details/Conditions: 15-pF output loads Guaranteed by design	Updated description
SID1707	CK edge low to DQ[7:0] input valid time	Details/Conditions	Details/Conditions: Delay line is enabled	Details/Conditions: CTL/DELAY_TAP_ENABL E=1 (Delay line is enabled) Three options 1) CTL/CLOCK_IF_RX_SEL<2:0> = 0b011 2) CTL/CLOCK_IF_RX_SEL<2:0> = 0b100 or 0b101 CTL/INT_CLOCK_DL_ENABLED<0:0> = 0b0 CTL/INT_CLOCK_CAPTURE CYCLE<1:0>=0b01 3) CTL/CLOCK_IF_RX_SEL<2:0> = 0b100 or 0b101 CTL/INT_CLOCK_CAPTURE CYCLE<1:0>=0b100 or 0b101 CTL/INT_CLOCK_DL_ENABLED<0:0> = 0b1 CTL/INT_CLOCK_DL_ENABLED<0:0> = 0b1 CTL/INT_CLOCK_CAPTURE CYCLE<1:0> needs to be adjusted based on INTR/DL_WARNING	Updated description
SID1707A	DQ[7:0] input setup time	Details/Conditions	Details/Conditions: Delay line is disabled (bypassed)	Details/Conditions: CTL/DELAY_TAP_ENABL E=0 (Delay line is disabled/bypassed) CTL/CLOCK_IF_RX_SEL<2:0> = 0b011	Updated description

Based on Arm® Cortex®-M7 single

Revision history change log

Spec ID	Description	Changed Item	Current Spec (Rev. *G)	New Spec (Rev. *H)	Reason for Change
SID1708	DQ[7:0] input hold time	Details/Conditions	Details/Conditions: Delay line is disabled (bypassed)	Details/Conditions: CTL/DELAY_TAP_ENABL E=0 (Delay line is disabled/bypassed) CTL/CLOCK_IF_RX_SEL<2:0> = 0b011	Updated description
SID1709_2	Input data valid time of DQ[7:0] (fCK = 80 MHz)	Details/Conditions	Details/Conditions: Delay line is enabled	Details/Conditions: CTL/DELAY_TAP_ENABL E=1 (Delay line is enabled) Three options 1) CTL/CLOCK_IF_RX_SEL<2:0>=0b011 2) CTL/CLOCK_IF_RX_SEL<2:0>=0b100 or 0b101 CTL/INT_CLOCK_DL_ENABLED<0:0>=0b0 CTL/INT_CLOCK_CAPTURE CYCLE<1:0>=0b01 3) CTL/CLOCK_IF_RX_SEL<2:0>=0b100 or 0b101 CTL/INT_CLOCK_CAPTURE CYCLE<1:0>=0b00 CTL/INT_CLOCK_IF_RX_SEL<2:0>=0b100 or 0b101 CTL/INT_CLOCK_DL_ENABLED<0:0>=0b1 CTL/INT_CLOCK_CAPTURE CYCLE<1:0> needs to be adjusted based on INTR/DL_WARNING	Updated description
SID1711	CS# inactive to output disable time	Details/Conditions	Details/Conditions: 15-pF output loads	Details/Conditions: 15-pF output loads Guaranteed by design	Updated description
SID866	Clock Cycle	Details/Conditions	Details/Conditions: TTL_DSP1_CLOCK BGA (CL = 15 pF, CFG_OUT/DRIVE_SEL<1:0>=0b01 for HSIO_STD)	Details/Conditions: TTL_DSP1_CLOCK, CL = 15 pF	Updated description
SID873	Clock pulse width	Details/Conditions	Details/Conditions: TTL_DSP1_CLOCK pulse width BGA (CL = 15 pF, CFG_OUT/DRIVE_SEL<1:0> = 0b10) TEQFP (CL = 15 pF, CFG_OUT/DRIVE_SEL<1:0> = 0b11)	Details/Conditions: TTL_DSP1_CLOCK pulse width CL = 15 pF	Updated description
SID868	Data/Control output to TTL_D- SP1_CLOCK time	Details/Conditions	Details/Conditions: TTL_DSP1 DATA_A0[11-0] TTL_DSP1_DATA_A1[11-0] TTL_DSP1_CONTROL[11-0] (TCON for FPDLink) BGA (CL = 15 pF, CFG_OUT/DRIVE_SEL<1:0> = 0b10) TEQFP (CL = 15 pF, CFG_OUT/DRIVE_SEL<1:0> = 0b11)	Details/Conditions: TTL_DSP1 DATA_A0[11-0] TTL_DSP1_DATA_A1[11-0] TTL_DSP1_CONTROL[11-0] (TCON for FPDLink) CL = 15 pF	Updated description
SID869	TTL_DSP1_CLOCK to Data/Control valid time	Details/Conditions	Details/Conditions: TTL_DSP1 DATA_A0[11-0] TTL_DSP1_DATA_A1[11-0] TTL_DSP1_CONTROL[11-0] (TCON for FPDLink) BGA (CL = 15 pF, CFG_OUT/DRIVE_SEL<1:0> = 0b10) TEQFP (CL = 15 pF, CFG_OUT/DRIVE_SEL<1:0> = 0b11)	Details/Conditions: TTL_DSP1 DATA_A0[11-0] TTL_DSP1_DATA_A1[11-0] TTL_DSP1_CONTROL[11-0] (TCON for FPDLink) CL = 15 pF	Updated description
SID899A	Magnitude of current flowing through output terminal P when the output terminals are short-circuited to ground.	Description Details/Conditions	Description: Magnitude of current flowing through output terminal P when the output terminals are short-circuited to ground (Figure 6 of the standard). Details/Conditions: (none)	Description: Magnitude of current flowing through output terminal P when the output terminals are short-circuited to ground. Details/Conditions: See Figure 6 of "TIA/EIA-644-A" specifications.	Updated description
SID899B	Magnitude of current flowing through output terminal P when the output terminals are short-circuited to ground.	Description Details/Conditions	Description: Magnitude of current flowing through output terminal M when the output terminals are short-circuited to ground (Figure 6 of the standard). Details/Conditions: (none)	Description: Magnitude of current flowing through output terminal M when the output terminals are short-circuited to ground. Details/Conditions: See Figure 6 of "TIA/EIA-644-A" specifications.	Updated description
SID899C	Magnitude of current flowing through output terminal P when the output terminals are short-circuited to ground.	Description Details/Conditions	Description: Magnitude of current flowing through the output terminals when they are short-circuited to each other (Figure 7 of the standard). Details/Conditions: (none)	Description: Magnitude of current flowing through output terminal M when the output terminals are short-circuited to ground. Details/Conditions: See Figure 6 of "TIA/EIA-644-A" specifications.	Updated description
SID902	Pixel clock frequency	Details/Conditions	Details/Conditions: Guaranteed by design	Details/Conditions: BGA package Guaranteed by design	Updated description
SID902_3	Pixel clock frequency	All	(none)	Parameter: fPX Description: Pixel clock frequency Min: 7 MHz Typ: – Max: 80 MHz Details/Conditions: TEQFP package Characterization only	Updated description

Based on Arm® Cortex®-M7 single

Spec ID	Description	Changed Item	Current Spec (Rev. *G)	New Spec (Rev. *H)	Reason for Change
SID903	Output Clock Frequency (110 MHz)	All	(none)	Parameter: fPX110 Description: Output Clock Frequency (110 MHz) Min: 103.7 MHz Typ: 110 MHz Max: 116.3 MHz Details/Conditions: When transmitting an alternating 0/1 bit pattern	Added spec
SID904	Output Clock Frequency (55 MHz)	All	(none)	Parameter: fPX55 Description: Output Clock Frequency (55 MHz) Min: 52.35 MHz Typ: 55 MHz Max: 57.65 MHz Details/Conditions: When transmitting an alternating 0/1 bit pattern	Added spec
SID905	Output Clock Frequency (28 MHz)	All	(none)	Parameter: fPX28 Description: Output Clock Frequency (28 MHz) Min: 26.66 MHz Typ: 28 MHz Max: 29.34 MHz Details/Conditions: When transmitting an alternating 0/1 bit pattern	Added spec
SID906	Output Clock Frequency (14 MHz)	All	(none)	Parameter: fPX14 Description: Output Clock Frequency (14 MHz) Min: 13.28 MHz Typ: 14 MHz Max: 14.72 MHz Details/Conditions: When transmitting an alternating 0/1 bit pattern	Added spec
SID907	Output Clock Frequency (7 MHz)	All	(none)	Parameter: fPX7 Description: Output Clock Frequency (7 MHz) Min: 6.59 MHz Typ: 7 MHz Max: 7.41 MHz Details/Conditions: When transmitting an alternating 0/1 bit pattern	Added spec
SID1447	Pixel clock frequency	All	(none)	Parameter: fPX_QFP Description: Pixel clock frequency Min: - Typ: - Max: 80 MHz Details/Conditions: TEQFP package	Added spec
SID1448	Pixel clock frequency	All	(none)	Parameter: fPX_BGA Description: Pixel clock frequency Min: - Typ: - Max: 110 MHz Details/Conditions: BGA package	Added spec
SID1441	Data to clock setup time	Details/Conditions	Details/Conditions: (none)	Details/Conditions: Valid for TEQFP package	Updated description
SID1442	Clock to data told time	Details/Conditions	Details/Conditions: (none)	Details/Conditions: Valid for TEQFP package	Updated description
SID1443	Data to clock setup time	Details/Conditions	Details/Conditions: (none)	Details/Conditions: Valid for BGA package	Updated description
SID1444	Clock to data told time	Details/Conditions	Details/Conditions: (none)	Details/Conditions: Valid for BGA package	Updated description

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-03-03 Published by Infineon Technologies AG 81726 Munich, Germany

© 2023 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Go to www.infineon.com/support

Document reference 002-27763 Rev.*H

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.