

Estimação de iluminação para diferentes horários através de light probes temporalmente variáveis

CAIO DE FREITAS VALENTE – 6552442 THIAGO DE GOUVEIA NUNES – 6797289

Motivação

- Renderizar cenas em períodos diferentes do dia utilizando uma iluminação convincente e realista
 - ► Image Based Lighting!
- ► IBL consiste na obtenção de Light Probes, imagens HDR omnidirecionais de uma cena, que são posteriormente usados na fase de renderização, de modo a substituir as fontes de luz da cena
- Mas essa técnica apresenta uma limitação, para cada período do dia a ser renderizado é necessário obter um novo Light Probe

Image Based Lighting

Cena usada como base para geração do Light Probe

Objetivos

- Gostaríamos de aliviar a restrição de que é necessário obter um Light Probe para cada momento a ser renderizado
- Para tal pretendemos utilizar interpolação para estimar os Light Probes para horários em que não temos dados

Resultados esperados

- Esperamos obter light probes que aproximem de maneira razoável os horários para os quais não possuímos dados. Para tal faremos duas comparações para validar nossa aproximação:
 - Comparação do Light Probe obtido através de interpolação com um Light Probe obtido de maneira convencional
 - Renderização de um objeto simples utilizando o Light Probe interpolado como fonte de iluminação e com uma imagem do mesmo objeto inserido numa cena real
 - ▶O objeto em questão seria um cubo branco

Aquisição dos light probes

- Dados adquiridos!
- Cena interna e externa
- ▶ 18 tomadas para cena externa
- ▶ 17 tomadas para cena interna
- ▶ 533 imagens ao todo
- ▶ Diferença de 30-35 minutos entre cada aquisição
- ▶ Entre as 10:45 até as 20:00 (pausa para almoço apenas)
- Uso de um cubo branco como referencia para comparações
- Problemas com foco em algumas das tomadas

Light Probes - externos

Light Probes - internos

"Cubo branco"

Interpolações

- ▶ Linear
- Gauss forward central difference
- Gauss backward central difference
- ▶ Stirling
- ▶ Lagrange

Interpolações

- ▶ Interpolamos as intensidades de cada pixel em relação ao tempo
- \longrightarrow ..., x_{-3} , x_{-2} , x_{-1} , x_0 , x_1 , x_2 , x_3 , ... -- Conjunto de observações
- ..., y_{-3} , y_{-2} , y_{-1} , y_0 , y_1 , y_2 , y_3 , ... Intensidade corresponde a cada observação

Testes para as interpolações

Linear

Lagrange

Usa o polinômio de Lagrange para a interpolação:

$$P(X) = \sum_{j=1}^{k} P_j(X), onde:$$

$$P_j(X) = \prod_{k=1}^n \sum_{e \mid k \neq j} y_j \frac{x - x_k}{x_j - x_k}$$

Lagrange

Gauss forward central difference

- Supõe que as observações são equidistantes
- Assume uma equação polinomial utilizando as diferenças centrais

$$p = \frac{x - x_0}{h}$$
, onde

 x_0 é a observação mais próxima do ponto que queremos interpolar e h é o período

Gauss Forward

Gauss backward central difference

- Supõe que as observações são equidistantes
- Assume uma equação polinomial utilizando as diferenças centrais

$$p = \frac{x - x_0}{h}$$
, onde

 x_0 é a observação mais próxima do ponto que queremos interpolar e h é o período

$$y_p = y_0 + p\Delta y_{-1} + \frac{p(p+1)}{2!}\Delta^2 y_{-1} + \frac{p(p+1)(p-1)}{3!}\Delta^3 y_{-2} + \frac{p(p-1)(p+1)(p+2)}{4!}\Delta^4 y_{-2} + \dots$$

x	у	Δy	Δ ² y	$\Delta^3 y$	Δ ⁴ <i>y</i>
:	:				
x_2	y ₋₂	Δy_{-2}			
x_{-1}	y ₋₁		$\Delta^2 y_{-2}$		
x_0	y_0 ——	Δy_{-1}		$\Delta^3 y_{-2}$	$\Delta^4 y_{-2}$
x_1	y_1	Δy_0	$\Delta^2 y_{-1}$	$\Delta^3 y_{-1}$	7-2
<i>x</i> ₂	<i>y</i> ₂	Δy_{-1}	$\Delta^2 y_0$		
:	:	-2 -1			

Gauss Backward

Stirling

► Supõe que as observações são equidistantes

$$Stirling = \frac{(Gauss forward central difference + Gauss backward central difference)}{2}$$

Código

- ▶ O código está em C++
- Utilizamos a biblioteca Freelmage para leitura e escrita do formato HDR
- Nosso código é responsável por ler os Light Probes, criar a interpolação para o momento escolhido e gerar o Light Probe artificial
- Com isso podemos gerar uma cena no Maya

Light Probes Interpolados

- Gauss Forward/Backward e por consequência Stirling apresentam os mesmos resultados – vamos nos referir então apenas a Gauss Forward
- Note que as intensidades numa imagem HDR não são limitadas entre 0.0 e 1.0, logo suas diferenças também não são limitadas

Definimos um critério simples de distancia entre imagens como:

Distância(lm1, lm2) = $\sum_{pixel} intensidade(abs(Im1 - Im2))$

Light Probes Interpolados

- As interpolações polinomiais podem gerar pixels com valores negativos, nesses casos travamos as intensidades em 0.0
 - Áreas pretas

Original Lagrange Linear

Interpolação – Cena externa 1

Interpolação – Cena externa 3

Interpolação – Cena interna 1

Original

Interpolada

Diferença

Distancia

130939

127874

Cenas Renderizadas

- Para cada cena de teste utilizamos as interpolações para gerarmos 5 light probes: linear, lagrange, gauss forward, backward, stirling
- Definimos um critério simples de distancia entre imagens como:
 - ▶ Distância(lm1, lm2) = $\sum_{pixel} intensidade(abs(Im1 Im2))$
- Para cada cena de testes escolhemos as duas interpolações que apresentavam distancias mínimas, em relação ao light probe base, para prosseguir para a fase de renderização com o cubo branco

Coeficiente de refletância

- O coeficiente de refletância da esfera foi determinada
 - ► Coeficiente = 1.594594...
- Mas não foi usado, o coeficiente teve que ser ajustado manualmente para cada cena, variando de 1.8 a 4.6

Renderização – Cena externa 1

Renderização – Cena externa 3

Renderização – Cena interna 1

Imagem original

Imagem renderizada

Diferença

Conclusões

- Interpolação linear em todos os testes teve a menor ou a segunda menor distancia em relação ao light probe original
- Gauss forward foi a segunda melhor interpolação, perdendo pra lagrange em apenas um caso
- Interpolações polinomiais de grau elevado como lagrange ou gauss forward/backward podem gerar um erro muito grande
 - Áreas pretas nas imagens interpoladas
- A comparação do cubo não foi satisfatória por ter muitos elementos que não conseguimos capturar de maneira precisa
 - Coeficiente de refletância da esfera não foi usável no Maya
 - ▶ Modelagem e posicionamento do cubo

Próximos passos

Explorar outros tipos de interpolação locais de ordem baixa, como interpolação quadrática ou cubica, de modo a reduzir o erro e tentar evitar áreas pretas nas imagens resultantes

Referências

- ▶ Paul E. Debevec, J. M. (1997). Recovering high dynamic range radiance maps from photographs. Paper presented at the SIGGRAPH.
- ▶ Debevec, P. (2002). Tutorial: Image-Based Lighting. IEEE Computer Graphics and Applications, 26 34.
- Pozrikidis, C. (1998). Numerical Computation in Science and Engineering (O. U. Press Ed. 1 ed.).
- Milton Abramowitz, I. S. (1972). Handbook of mathematical functions: with formulas, graphs, and mathematical tables: Courier Dover Publications.