

### Aprendizado de Máquina Aula 7.1 - Agrupamento de dados

#### Adriano Rivolli

rivolli@utfpr.edu.br

#### Especialização em Inteligência Artificial

Universidade Tecnológica Federal do Paraná (UTFPR) Câmpus Cornélio Procópio Departamento de Computação



### Conteúdo

- 1 Aprendizado não supervisionado
- 2 Agrupamento de dados
- 3 Medidas de distância





## Aprendizado não supervisionado





## Introdução

- Aprendizado não supervisionado: as instâncias não são rotuladas
- Usado para descobrir propriedades dos dados
- Principais tarefas:
  - Agrupamento de dados
  - ► Redução de dimensionalidade
  - Detecção de *outliers* e novidades
  - Regras de associação
  - Descoberta de subgrupos (subgroup discovery)



# Redução de dimensionalidade

- Conhecido como transformação de dados
- Consiste em transformar o espaço dos dados
  - Reduzir a dimensionalidade
  - Sem 'perder' a informação
- Exemplos:
  - Principal Component Analysis (PCA)
  - Singular Value Decomposition (SVD)
  - Autoencoders (redes neurais)



### Detecção de outliers

- Um *outlier* consiste em um ponto que se difere dos demais
  - > anormalidades, discordantes, desviantes ou anomalias
- Aplicações:
  - ► Limpeza de dados
  - Fraudes em sistemas
  - Detecção de intrusão/invasão
- Exemplos:
  - Valores extremos
  - Agrupamentos: distância e densidade
  - Modelos probabilísticos e baseados em teoria da informação



## Regras de associação

- Descoberta de padrões frequentes em dados transacionais
- Aplicações:
  - Compras de produtos
  - Mineração de texto
  - Análise de logs
- Algoritmos:
  - Apriori
  - Enumeration-Tree



### Descoberta de subgrupos

- Encontra associações entre diferentes variáveis em relação a uma propriedade específica
- Encontra elementos que consistentemente se diferem da população em decorrência de alguma propriedade
- Exemplo:
  - Os alunos que reprovaram na disciplina X moram no estado Y e tiraram nota menor do que 7 na disciplina Z



>

# Agrupamento de dados





# Visão geral

- Agrupar pontos similares
  - Proximidade (distância)
  - Relação espacial
- Tipos de agrupamento
  - Bem separados
  - Baseados em centroides
  - Conectados/ligados
  - Densidade
  - Similaridade

2



### Critérios de agrupamento



Fonte: Faceli K., Lorena A. C., Gama J., Carvalho, A. C. P. L., 2011. Inteligência artificial: uma abordagem de aprendizado de máquina. LTC, 2a Edição.



### Critérios

#### ■ Compactação

- ▶ A homogeneidade de um grupo está relacionada a pequenas variações intra-grupo
- Apropriado para formas esféricas e grupos disjuntos
- Não é adequado para estruturas complexas

#### ■ Conexão/Ligação

- Cada elemento está conectado aos vizinhos mais próximos nos mesmos clusters
- ► Funciona com qualquer formato dos dados
- Não adequado quando os grupos estão próximos
- Separação espacial
  - ▶ Não há sobreposição entre os grupos
  - Geralmente associado com outro critério





### Compactação x Ligação



Fonte: Faceli K., Lorena A. C., Gama J., Carvalho, A. C. P. L., 2011. Inteligência artificial: uma abordagem de aprendizado de máquina. LTC, 2a Edição.





### Questões importantes

- Níveis de refinamento (granularidade dos grupos)
- Estruturas heterogênea
- Validação dos grupos
- Interpretação dos resultados



## Granularidade dos grupos



Fonte: Faceli K., Lorena A. C., Gama J., Carvalho, A. C. P. L., 2011. Inteligência artificial: uma abordagem de aprendizado de máquina. LTC, 2a Edição.





# Granularidade dos grupos



Fonte: Faceli K., Lorena A. C., Gama J., Carvalho, A. C. P. L., 2011. Inteligência artificial: uma abordagem de aprendizado de máquina. LTC, 2a Edição.



### Estruturas complexas







(a) Estrutura E1

(b) Estrutura E2

(c) Estrutura E3

Fonte: Faceli K., Lorena A. C., Gama J., Carvalho, A. C. P. L., 2011. Inteligência artificial: uma abordagem de aprendizado de máquina. LTC, 2a Edição.



### Etapas do processo de agrupamento







### Comparação entre algoritmos

- Complexidade
- Escalabilidade
- Métricas de similaridade
- Robustez a ruído e *outliers*
- Suporte a alta dimensionalidade
- Estabilidade
- Agrupamento incremental



## Outras comparações

- Resultado
  - Formato dos grupos
  - Interpretabilidade
- Dados
  - ► Tipo de dado suportado
  - Ordem dos dados (sequência)
- Hiperparâmetros
  - Número de grupos
  - Outros (específicos)

2





### Medidas de distância





### Similaridade e distâncias

- Há diferentes maneiras de modelar a similaridade entre pontos
  - ightharpoonup Quando a=b a similaridade é máxima (ex: 1)
  - Quando a é muito diferente de b a similaridade deve ser próximo de 0
- A similaridade pode ser modelada em função da distância



#### Métricas

- Manhattan / City Block (L1)
- Euclideana (L2)
- Chebyschev (supremum)
  - Máxima diferença entre todos os atributos
- Similaridade de Cosine
- Similaridade de Jaccard
- Correlação Pearson (similarity)



### Minkowski







### Propriedades métricas

- $\blacksquare$   $d(x_i, x_i) = 0$ , para todo  $x_i$
- $\blacksquare$   $d(x_i, x_i) \ge 0$ , para todo  $i \in j$  (positividade)
- $d(x_i, x_i) = 0 \iff x_i = x_i$
- $lack d(x_i,x_j) \leq d(x_i,x_k) + d(x_k,x_j)$  (designal dade triangular)