Temporal Pincer variant

	Let's say we want to delete 'b' from the list and tell if it is 'good'
	a b c
	list is 'good' if:
	$(\cdot \cdot \cdot \otimes - \otimes \cdot \cdot)$
	Prefix is good [a, c] is good Suffix is good
	What are the prefixes/suffixes? Let's see an example:
	1 2 3 3 4 5
	Prefixes Suffixes
	T[] [123345]F
	T[1] [23345]F
う	T[12] [3345]F
	T[123] [345]T
	F[1233] [45]T
	F[12334] [5]T
	F[123345] []T
	Let's write it in tabular form:
	1 2 3 3 4 5
	prefix T T T F F F
	suffix F F F T T T
,	Aka prefix is good: Suffix is good:
	[1 (2)] [(3) 4 5]
	And we must check whether we can tie up their ends:
	1 (2) 3 (3) 4 5
	prefix T T T F F F
	suffix F F F T T T T
	[prefix is safex)
	(x suffix is safe]

Temporal Pincer variant continued
But do we need lists to store the prefix/suffix 'is good' values?
NO. The 'good'-nesses of prefixes and suffixes are monotonic!
Prefix is always Trues then Falses Aka it is enough to store Suffix is always Falses then Trues just an index where
1 2 3 3 4 5 prefix T T T F F F prefix/suffix turns T ->
suffix F F F T T T T So we need to only 'store' two integers (not lists)
Ok. We are going to form 2 teams and search for these indices.
Red Team will go forwards until they flip (T -> F)
1 2 3 3 4 prefix T T T F F F
suffix FFFTTT
Blue Team will go backwards until they 'flip' (T -> F)
Then we'll check the possible choices where both are True
1 2 3 3 4 5
prefix $T T T T F F F$
suffix $F F F (T)(T) T T$
Choice A Choice B
1 2 3 3 4 5 1 2 3 3 4 5
TTTTFFF TTTTFFF

In this case (2, 3) is good

so this is a valid choice

[1 2 _ 3 4 5]

[1 2 3 _ 4 5]

So in this case, they are both good choices

Temporal Pincer variant continued...

Of course, besides the double hit case, we have others like
None are drop candidates
12300056
prefix T T T F F F
suffix FFFF FTT
suffix FFFFFTT All are drop candidates
1 2 3 4 5 6 7 8
prefix T T T T T T T
suffix TTTTTT
One drop candidate
1 2 3 9 4 5 6 7
prefix T T T T F F F F
1 2 3 9 4 5 6 7 prefix T T T F F F F suffix F F F T T T T T
But these can be covered by simply looping from blue to red:
In the no drop candidate red
case we wont even enter TTTFFFF
case we wont even enter T T T F F F the loop because blue > red F F F F T T T
Summary
1) We are going to form two teams and find the two indices:
Red Team knows that before r everything safe
1 2 3 3 4 (b
(b] Blue Team knows that after b everything is safe
2) We'll loop over the possible choices to drop (i <- [bluered])
and for each i we'll do a constant time check:
safe i 1 <= b - a <= 3
x x x a x b x x x
safe
(b

See below link for runtime behaviour: https://youtu.be/gbO6X_aCxDE?t=200