

Low Noise Amplifier

PSA2-6+

50Ω DC to 7000 MHz Low Current

THE BIG DEAL

- · Wide Bandwidth, DC to 7000 MHz
- Low Noise Figure, Typ. 2.4 dB
- High Gain, Typ. 15.2 dB
- Internally Matched to 50 Ohms
- Single +5 V Supply Voltage
- Low Current, Typ. 15 mA

Generic photo used for illustration purposes only

FUNCTIONAL DIAGRAM

APPLICATIONS

- 5G MIMO Radio Systems
- Test and Measurement Equipment
- Radar Systems

PRODUCT OVERVIEW

The PSA2-6+ is a wideband amplifier fabricated using GaAs HBT technology. This device offers +5.6 dBm P1dB, 15.2 dB gain, +17 dBm OIP3 and 2.4 dB NF making it ideal for use in communications applications, radar systems and broadband test and measurement equipment. It has repeatable performance from lot-to-lot and is packaged in a compact 1.85 x 2 mm 6-Lead, SOT-363.

KEY FEATURES

Features	Advantages		
Broadband	A single amplifier covers DC to 7000 MHz, making this ideal for wideband Test and Measurement, Wireless Infrastructure, and Radar Systems.		
Low Noise Figure, Typ. 2.4 dB	Low noise figure and low current (15 mA) makes this an ideal low noise amplifier in power sensitive applications.		
High Gain, Typ. 15.2 dB	High gain helps limit the noise figure contribution of subsequent components.		
SOT-363 Package	Tiny footprint saves space in dense layouts, while providing low inductance, repeatable transitions, and excellent thermal contact to the PCB.		

REV. B ECO-026332 PSA2-6+ MCL NY 250812

Low Noise Amplifier

PSA2-6+

50Ω DC to 7000 MHz Low Current

ELECTRICAL SPECIFICATIONS 1 AT +25 $^{\circ}$ C, V_s = +5 V, UNLESS NOTED OTHERWISE

Parameter	Condition (MHz)	Min.	Тур.	Max.	Units
Frequency Range		DC		7000	MHz
	100		22.2		
	1000		21.2		
Gain	2000		19.2		dB
Gain	4000		15.2		ub
	6000		11.6		
	7000		9.7		
	100		+4.5		
	1000		+4.3		
Output Dower at 1 dD Compression (D1 dD)?	2000		+3.0		dBm
Output Power at 1 dB Compression (P1dB) ²	4000		+5.6		аын
	6000		+2.9		
	7000		+1.5		
	100		+18		
	1000		+19		
Outside Third Order Intercept (D	2000		+17		alD
Output Third-Order Intercept (P _{OUT} = -8 dBm/Tone)	4000		+17		dBm
	6000		+14		
	7000		+12		
	100		28		
	1000		25		
Level Below Leve	2000		18		dB
Input Return Loss	4000		13		
	6000		8		
	7000		6		
	100		24		
	1000		16		
Outrout Datum Lane	2000		14		4D
Output Return Loss	4000		11		dB
	6000		9		
	7000		8		
	100		24		
	1000		24		
loclation	2000		23		dB
Isolation	4000		21		иь
	6000		20		
	7000		20		
	100		2.1		
	1000		2.1		
Noise Figure	2000		2.1		40
ivoise rigure	4000		2.4		dB
	6000		2.8		
	7000		3.2		
Device Supply Voltage (V _S)		+4.75	+5	+5.25	V
Device Operating Voltage (V _D)			+3.6		V
Device Operating Current (I _S)			15		mA
Device Current Variation vs. Temperature ³			31		μ A /°C
Device Current Variation vs. Voltage @ 25°C4			0.01		mA/mV

^{1.} Tested on Mini-Circuits Characterization Test Board TB-MB-149C+. See Figure 3. De-embedded to the device reference plane.

^{2.} Defined as Output Power at which Gain is compressed by 1 dB.

^{3. (}Current at +85°C – Current at -45°C) / (130°C)

^{4. (}Current at +5.25 V - Current at -4.75 V) / (+5.25 V - 4.75 V)

Low Noise Amplifier

PSA2-6+

50Ω DC to 7000 MHz Low Current

TYPICAL PERFORMANCE GRAPHS

Low Noise Amplifier

PSA2-6+

50Ω DC to 7000 MHz Low Current

TYPICAL PERFORMANCE GRAPHS

Low Noise Amplifier

PSA2-6+

50Ω DC to 7000 MHz Low Current

TYPICAL PERFORMANCE GRAPHS

Low Noise Amplifier

PSA2-6+

50Ω DC to 7000 MHz Low Current

ABSOLUTE MAXIMUM RATINGS⁵

Parameter	Ratings
Operating Temperature (ground lead)	-45°C to +85°C
Storage Temperature	-65°C to +150°C
Junction Temperature ⁶	+150°C
Total Power Dissipation	0.2 W
Input Power (CW), V _S = +5V	+25 dBm
DC Current on V _s (I _s)	50 mA

Permanent damage may occur if any of these limits are exceeded. Maximum ratings are not intended for continuous normal operation.

THERMAL RESISTANCE

Parameter	Ratings
Thermal Resistance (O _{JC}) ⁷	95°C/W

^{7.} $\Theta_{\rm JC}$ = (Hot Spot Temperature on Die - Temperature at Ground Lead)/Dissipated Power

ESD RATING

	Class	Class Voltage Range Reference Standard	
HBM	1C	1000 to < 2000 V	ANSI/ESDA/JEDEC JS-001-2017

ESD HANDLING PRECAUTION: This device is designed to be Class 1C for HBM. Static charges may easily produce potentials higher than this with improper handling and can discharge into DUT and damage it. As a preventive measure Industry standard ESD handling precautions should be used at all times to protect the device from ESD damage.

MSL RATING

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

^{6.} Peak temperature on top of Die.

Low Noise Amplifier

PSA2-6+

DC to 7000 MHz Low Current 50Ω

FUNCTIONAL DIAGRAM

Figure 1. PSA2-6+ Functional Diagram

PAD DESCRIPTION

Function	Pad Number	Application Description (Refer to Fig 2)	
RF-IN	1	RF-IN Pad connects to RF input port.	
RF-OUT & V _D	4	RF-OUT Pad connects to RF output and $V_{\scriptscriptstyle D}$ port.	
GND	2, 3, 5, 6	Connects to ground.	

EVALUATION BOARD

Figure 2. DUT soldered on Mini-Circuits Evaluation Board: TB-PSA2-6C+

Electrical Parameters and Conditions

Gain, Return Loss, Output Power at 1dB Compression (P1dB), Output IP3 (OIP3), and Noise Figure measured using N5247B PNA-X microwave network analyzer.

Conditions:

- 1. Gain and Return Loss: P_{IN} = -25 dBm 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, -8 dBm/tone at output.
- $3. V_s = +5 V$

Component	Value	Size	Part Number	Manufacturer
C1, C2	2400 pF	0402	GRM155R71H242JA01D	Murata
C3	0.01 uF	0603	GRM1885C1H103JA01D	Murata
C4	0.1 uF	0603	GCJ188R71H104KA12D	Murata
R1	93.1 Ω	0805	ERJ-6ENF93R1V	Panasonic
СНК	-	0.15" x 0.15"	TCCH-80+	Mini-Circuits

Figure 3. DUT soldered on Mini-Circuits Characterization Board TB-149C+

Electrical Parameters and Conditions

Gain, Return Loss, Output Power at 1dB Compression (P1dB), Output IP3 (OIP3), and Noise Figure measured using N5247B PNA-X microwave network analyzer.

Conditions:

- 1. PNA Internal Bias T is required
- 2. Connect R1 = 93Ω Series Resistor Between Power Supply and Bias T
- 3. Gain and Return Loss: P_{IN} = 25 dBm
- 4. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, -8 dBm/tone at output.
- 5. Vs = +5 V.

Low Noise Amplifier

PSA2-6+

50Ω DC to 7000 MHz Low Current

CASE STYLE DRAWING

Suggested Layout
Tolerance to be within ±.002

Weight: .010 grams

Dimensions are in inches [mm]. Tolerances: 2 Pl.±0.25[0.01]; 3Pl.± 0.127 [0.005] mm [Inches]

PRODUCT MARKING

Marking may contain other features or characters for internal lot control

Low Noise Amplifier

PSA2-6+

 50Ω DC to 7000 MHz Low Current

ADDITIONAL DETAILED INFORMATION IS AVAILABLE ON OUR DASHBOARD

CLICK HERE

	Data
Performance Data & Graphs	Graphs
	S-Parameter (S2P Files) Data Set (.zip file)
Case Style	CA1389. Plastic molded SOT-363 package, Lead Finish: Matte Tin
RoHS Status	Compliant
Tape & Reel Standard quantities available on reel	F101 7" reels with 20, 50, 100, 200, 500, 1000, or 2000 devices
Suggested Layout for PCB Design	PL-770
Evaluation Board	TB-PSA2-6C+
Evaluation board	Gerber File
Environmental Ratings	ENV08T02

NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/terms/viewterm.html

