

Time and Space Complexity - Revision

Number of questions: 10 Questions

To Question

Test Date:

Dec 30, 2022

Your Score:

21/26

```
Question 1/10
```

```
Consider the following two functions. What are the time complexities of the functions?

int fun1(int n)
{

if (n <= 1) return n;

return 2*fun1(n-1);
}

int fun2(int n)
{

if (n <= 1) return n;

return fun2(n-1) + fun2(n-1);
}

O(2^n) for both fun1() and fun2()

O(2^n) for fun1() and O(n) for fun2()

O(n) for both fun1() and fun2()
```

Question 2/10

The minimum number of comparisons required to find the minimum and the maximum of

100 numbers is ______

145.1 to 146.1

140 to 146

140 to 147

Question 3/10

The increasing order of following functions in terms of asymptotic complexity is:

 $f1(n) = n^{0.999999} \log n$ f2(n) = 10000000n $f3(n) = 10000000^{n}$ $f4(n) = n^{2}$ f1(n); f4(n); f2(n); f3(n)

f1(n); f2(n); f3(n); f4(n)

f2(n); f1(n); f4(n); f3(n)

f1(n); f2(n); f4(n); f3(n)

Question 4/10

Consider equality:

 $\sum_{i=0}^{n} i^3 = X$

and the following choices for X:

I. ⊖(n⁴)

II. ⊖(n⁵)

III. $O(n^5)$

IV. $\Omega(n^3)$

			Only II	
I or III or IV but not II	⊘		II or III or IV but not I	
Question 5/10 Which of the given optic complexity of functions f1, f2, f3 and f2 f1(n) = 2^n f2(n) = n^(3/2) f3(n) = nLogn	-	vides the	e increasing order of as	sym
f4(n) = n^(Logn) f3, f2, f4, f1	8		f3, f2, f1, f4	
f2, f3, f1, f4			f2, f3, f4, f1	
$g(n) = 2\sqrt{x} \log 2n$ h(n) = n! Which of the following is h(n) is $O(f(n))$	s true?		h(n) is O(g(n))	
g(n) is not O(f(n))			f(n) is O(g(n))	
given integer to obtain			ent for reversing the dig	gits
Consider the following p given integer to obtain a new integer. Let n = Daint n, rev; rev = 0; while (n > 0) { rev = rev*10 + n%10; n = n/10; }	₁ D ₂ Dr	m		gits
given integer to obtain a new integer. Let n = Di int n, rev; rev = 0; while (n > 0) { rev = rev*10 + n%10; n = n/10;	₁ D ₂ Dr	m		
given integer to obtain a new integer. Let $n = D$ int n , rev; rev = 0; while $(n > 0)$ { rev = rev*10 + n%10; n = n/10; } The loop invariant condi $n = D_1D_2Dm$ -i and rev	tion at	m	of the ith iteration is: $n = Dm-i+1D_{m-1}Dm$ a	nd ı
given integer to obtain a new integer. Let n = Dint n, rev; rev = 0; while (n > 0) { rev = rev*10 + n%10; n = n/10; } The loop invariant condi n = D ₁ D ₂ Dm-i and rev = DmDm-1Dm-i+1	tion at	the end	of the ith iteration is: $n = Dm-i+1D_{m-1}Dm a$ $= D_{m-1}D_2D_1$ $n = D_1D_2Dm and rev$ $DmD_{m-1}D_2D_1$	nd

<u>Support Terms and Conditions Privacy Policy</u>

Copyright © 2022 Incanus Technologies Pvt. Ltd. All rights reserved.