CIRCUITOS ELÉTRICOS

Jordana Leandro Seixas

Leis básicas da eletricidade

Objetivos de aprendizagem

Ao final deste texto, você deve apresentar os seguintes aprendizados:

- Reconhecer a lei de Ohm.
- Determinar a lei de Kirchhoff.
- Analisar aplicações das leis básicas da eletricidade.

Introdução

Na análise de circuitos elétricos, geralmente calculamos o valor da corrente, da tensão e/ou da potência elétrica. Para encontrarmos esses valores de forma eficiente, é necessário conhecer as leis fundamentais da teoria de circuitos: a lei de Ohm e as leis de Kirchhoff. Após a compreensão dessas leis, estaremos prontos para aplicar técnicas de análise de circuitos simples ou mais complexos, como a associação de resistores em série, em paralelo ou mistos, a divisão de tensão, a divisão de corrente, entre outras.

Neste capítulo, você vai conhecer a mais popular dentre as leis da teoria de circuitos: a lei de Ohm. Na sequência, você vai analisar circuitos aplicando as leis de Kirchhoff, que são compostas pela lei de Kirchhoff para as tensões (LKT) e pela lei de Kirchhoff para as correntes (LKC). Por fim, você vai verificar aplicações para as leis básicas da eletricidade.

Lei de Ohm

Um condutor elétrico apresenta propriedades que são características de um resistor, ou seja, quando uma corrente flui por ele, os elétrons colidem com os átomos no condutor — isso impede o movimento dos elétrons. Quanto maior o número de colisões, maior será a resistência do condutor. Basicamente, um resistor é qualquer dispositivo que apresenta resistência. A resistência é definida como a habilidade do elemento em resistir ao fluxo de corrente elétrica. A unidade de medida da resistência é o ohm (Ω) .

A resistência (R) para qualquer material com área uniforme de seção transversal A e comprimento l é diretamente proporcional ao comprimento e inversamente proporcional à área da seção transversal. Na forma matemática,

$$R = \rho \frac{l}{A} \text{ (definição de resistência)}$$
 (1)

Onde:

- ρ = resistividade do material (Ω -m)
- l = comprimento (m)
- \blacksquare $A = \text{área (m}^2)$

em circuitos.

Fonte: Alexander e Sadiku (2013, p. 27).

O resistor é um modelo para o comportamento da resistência do material à passagem da corrente elétrica. A Figura 1a apresenta um condutor com seção transversal uniforme, com área A, comprimento l e resistividade ρ do material. A Figura 1b ilustra o símbolo do resistor utilizado em circuitos elétricos; ele é o elemento passivo mais simples.

O cobre e o alumínio são considerados bons condutores, pois eles possuem baixa resistividade; já os materiais isolantes, como o vidro e o teflon, apresentam alta resistividade. O Quadro 1 apresenta a resistividade (ρ) de alguns materiais comuns, como a prata, o ouro, o carbono e o papel.

Material	Resistividade (Ω-m)	Emprego
Prata	1,64 × 10 ⁻⁸	Condutor
Cobre	1,72 × 10 ⁻⁸	Condutor
Alumínio	2,8 × 10 ⁻⁸	Condutor
Ouro	2,45 × 10 ⁻⁸	Condutor
Carbono	4 × 10 ⁻⁵	Semicondutor
Germânio	47 × 10 ⁻²	Semicondutor
Silício	6,4 × 10 ²	Semicondutor
Papel	10 ¹⁰	Isolante
Mica	5 × 10 ¹¹	Isolante
Vidro	1012	Isolante
Teflon	3 × 10 ¹²	Isolante

Quadro 1. Resistividade de alguns materiais comuns

Fonte: Alexander e Sadiku (2013, p. 27).

A lei de Ohm afirma que a tensão v em um resistor R é diretamente proporcional à corrente i que passa através dele, conforme lecionam Alexander e Sadiku (2013). Assim,

$$v = iR$$
 (lei de Ohm) (2)

Onde a constante de proporcionalidade R é denominada de resistência, e a unidade de resistência é o ohm ou Ω .

Representando a Equação linear (2) graficamente em $i \cdot v$, a Figura 2 ilustra o resultado de uma reta que passa pela origem. Portanto, consideramos o resistor como um resistor linear.

Aplicando-se a lei de Ohm conforme a Equação (2), devemos ficar atentos ao sentido da corrente i e à polaridade da tensão v, que devem estar de acordo com a convenção de sinal passivo, ilustrada na Figura 1b, implicando que a corrente passa de um potencial superior (+) para um mais inferior (-), de forma que v = iR. Caso a corrente flua de um potencial inferior (-) para um potencial superior (+), teremos v = -iR.

Exemplo

Encontre a tensão v para o circuito ilustrado na Figura 3.

Figura 3. Circuito para o exemplo acima.

Fonte: Alexander e Sadiku (2013, p. 31).

Solução:

Encontrando a tensão v pela lei de Ohm, Equação (2), obtemos:

$$v = iR = (3 \ x \ 10^{-3}) \ x \ (10 \ x \ 10^{3}) = 30 \ V$$

Lei de Kirchhoff

Analisar circuitos empregando apenas a lei de Ohm nem sempre é suficiente; somente nos casos de circuitos mais simples, quando a tensão nos terminais de cada elemento e a corrente correspondente forem determinadas, conforme

lecionam Nilsson e Riedel (2009). Utilizando-se a lei de Ohm juntamente com as leis de Kirchhoff, o estudo de circuitos elétricos ficará mais completo e satisfatório.

As leis de Kirchhoff são compostas por duas leis: a lei de Kirchhoff para tensão (LKT), ou lei das malhas, e a lei de Kirchhoff para corrente (LKC), ou lei dos nós.

Fique atento

Os elementos de um circuito elétrico geralmente são interligados de várias maneiras diferentes, e a interconexão entre elementos ou dispositivos é denominada rede. A configuração dos elementos da rede inclui ramos, nós e laços, conforme explicam Alexander e Sadiku (2013). Seguem as definições desses elementos:

- Ramo: representa um único elemento de dois terminais, seja resistor ou fonte. Na Figura 4a, há 5 ramos: a fonte de tensão de 10 V, a fonte de corrente de 2 A e os três resistores.
- Nó: é o ponto em que um ou mais elementos têm uma conexão em comum. Na Figura 4a, há três nós: *a, b* e *c*.
- Laço: é o caminho fechado que é formado a partir de um nó, passa por uma série de nós e retorna ao nó de partida. A Figura 4b apresenta três laços *abca*: com o resistor de $2\,\Omega$, com o resistor de $3\,\Omega$ e com a fonte de corrente de $2\,\Lambda$. Outro laço é formado com o resistor de $2\,\Omega$ em paralelo com o resistor de $3\,\Omega$.

Figura 4. (a) nós, ramos e laços; (b) Figura (a) redesenhada.

Fonte: Alexander e Sadiku (2013, p. 32).

Lei de Kirchhoff para tensão (LKT)

Conforme Alexander e Sadiku (2013), a soma algébrica de todas as tensões em torno de um caminho fechado (ou laço) é zero, segundo a LKT. Matematicamente, essa lei pode ser representada por:

$$\sum_{m=1}^{M} v_m = 0 \tag{3}$$

Onde M é o número de tensões no laço e $v_{\rm m}$ é a m-ésima tensão.

Aplicando-se a LKT, Equação (3), no circuito ilustrado na Figura 5 e escolhendo a convenção do laço no sentido horário (ou anti-horário) para as tensões, a soma algébrica das tensões seria $-v_1$, $+v_2$, $+v_3$, $-v_4$ e $+v_5$. Dessa forma, a LKT será:

$$-v_1 + v_2 + v_3 - v_4 + v_5 = 0$$

E pode ser reescrita desta maneira:

$$v_2 + v_3 + v_5 = v_1 + v_4$$

Figura 5. Circuito com um laço ilustrando a LKT.

Fonte: Alexander e Sadiku (2013, p. 36).

Exemplo

Encontre as tensões v_1 e v_2 no circuito ilustrado na Figura 6.

Solução:

1ª forma de solução: aplicando-se a LKT, usando a Equação (3). Adotando o sentido horário para a corrente que passa pelo circuito (Figura 6b), teremos:

$$-20 + v_1 + v_2 = 0 = > -20 + 2i + 3i = 0 = > -20 + i5 = 0 = > i5 = 20 A = > i = 4 A$$

Como $v_1 = 2i$ e $v_2 = 3i$, teremos: $v_1 = 8$ V e $v_2 = 12$ V.

 2^a forma de solução: aplicando-se a divisão de tensão para encontrar as tensões v_1 e v_2 . Assim, obtemos:

$$v_1 = \frac{2}{2+3} 20 = 8 V$$

$$v_2 = \frac{3}{3+2}20 = \mathbf{12}\,\mathbf{V}$$

Figura 6. Circuito com uma fonte de tensão independente e dois resistores em série. *Fonte*: Alexander e Sadiku (2013, p. 37).

Lei de Kirchhoff para corrente (LKC)

Conforme Alexander e Sadiku (2013), a soma algébrica das correntes que entram em um nó é zero, segundo a LKC. Matematicamente, essa lei pode ser representada por:

$$\sum_{n=1}^{N} i_n = 0 \tag{4}$$

Onde N é o número de ramos conectados ao nó e i_n é a enésima corrente que entra (ou sai) do nó.

A convenção das correntes que entram e saem do nó pode ser adotada como positiva para a corrente que entra no nó e negativa para a corrente que sai do nó, ou vice-versa.

A Figura 7 ilustra correntes entrando $(i_A e i_B)$ e saindo $(i_C e i_D)$ do nó. Aplicando-se a LKC, Equação (4):

$$i_A + i_B + (-i_C) + (-i_D) = 0$$

Isso pode ser reescrito desta outra forma:

$$i_A + i_B = i_C + i_D$$

Figura 7. Correntes em um nó ilustrando a LKC.

Fonte: Hayt Jr., Kemmerly e Durbin (2014, p. 40).

Exemplo

Encontre as correntes I_1 , I_2 e I_3 no circuito ilustrado na Figura 8a.

Solução:

1ª forma de solução: aplicando-se a LKC ao nó M, usando a Equação (4). Inicialmente definimos o nó inferior como o nó de referência (ou nó terra), exibido na Figura 8a. Assim. obtemos:

$$I_1 - I_2 - I_3 = 0 \implies \frac{20 - V_M}{16} - \frac{V_M}{36} - \frac{V_M}{72} = 0$$

O MMC de 16, 36 e 72 é igual a 144. Assim, obtemos o valor de $V_{\rm M}$:

$$\frac{9(20 - V_M) - 4V_M - 2V_M}{144} = 0 \implies 15V_M = 180 \implies V_M = 12$$

Mas.

$$I_1 = \frac{20 - V_M}{16} = \frac{20 - 12}{16} = 0, 5 A; I_2 = \frac{V_M}{36} \cong 333, 3 mA; I_3 = \frac{V_M}{72} \cong 166, 7 mA$$

 2^{a} forma de solução: aplicando-se a divisão de corrente para encontrar as correntes l, e l, sendo l, conhecida. Inicialmente, encontramos a resistência equivalente:

$$R_{eq1} = \frac{36 \times 72}{36 + 72} = 24 \,\Omega$$

A resistência equivalente total, no circuito ilustrado na Figura 8b, será:

$$R_{eqT} = 16 \Omega + 24 \Omega = 40 \Omega$$

A corrente l_1 é a corrente total do circuito que sai da fonte de 20 V. Pela lei de Ohm, obtemos:

$$I_1 = \frac{20}{40} = \mathbf{0}, \mathbf{5} A$$

Para as correntes l_2 e l_3 , aplicando-se a divisão de corrente, obtemos:

$$I_2 = \frac{72}{72+36} x \ 0.5 \cong \ \mathbf{333.3} \ \mathbf{mA} \in I_3 = \frac{36}{36+72} x \ 0.5 \cong \ \mathbf{166.7} \ \mathbf{mA}$$

Figura 8. (a) Circuito com duas malhas e alimentado por uma fonte de tensão independente; (b) O circuito em (a) simplificado.

Fonte: Sadiku, Musa e Alexander (2014, p. 110).

Aplicações das leis básicas da eletricidade

Uma das aplicações mais utilizadas na área da eletricidade está relacionada às medições de tensão, corrente e resistência. O instrumento utilizado para medir tensões é o voltímetro. O amperímetro é utilizado para medir corrente. Já o ohmímetro é utilizado para medir resistências. Essas instrumentações podem ser reunidas em um único instrumento, denominado multímetro.

O multímetro mais utilizado pelos eletricistas é o multímetro digital, ilustrado na Figura 9. Ele é de fácil interpretação, evitando erros de leitura pelo usuário, já que a saída digital do medidor indica o valor numérico da medição. Ele apresenta seletores de função, faixa e conectores de entrada para receber as pontas de prova. Os multímetros digitais precisam, basicamente, de baterias internas para alimentar os circuitos eletrônicos internos, para auxiliar nas medições de tensão, corrente e resistência.

Para medir a tensão, precisamos conectar o voltímetro, ou o multímetro na função voltímetro, em paralelo com o elemento que desejamos medir a tensão, como ilustrado na Figura 10a. Para medir a corrente, precisamos conectar o amperímetro, ou o multímetro na função amperímetro, em série com o elemento por onde a corrente flui e deseja-se medir, como ilustra a Figura 10b. Para medir a resistência de um elemento, é preciso conectar o ohmímetro, ou o multímetro na função ohmímetro, através dele; antes, porém, uma das extremidades do elemento deve estar desconectada do circuito, para que a resistência possa ser medida de forma eficiente, como ilustra a Figura 10c.

Fique atento

Na maioria dos resultados, a unidade do Sistema Internacional de Unidades (SI) é muito pequena ou muito grande para ser utilizada de forma conveniente. Dessa forma, prefixos baseados na potência de 10 são aplicados para a obtenção de unidades maiores e menores em relação às unidades básicas, como mostrado a seguir.

Prefixos SI		
Multiplicador	Prefixo	Símbolo
1012	tera	Т
10 ⁹	giga	G
10 ⁶	mega	М
10 ³	quilo	k
10 ²	hecto	h
10	deca	da
10 ⁻¹	deci	d
10-2	centi	С
10-3	mili	m
10 ⁻⁶	micro	μ
10 ⁻⁹	nano	N
10 ⁻¹²	pico	р

Todos esses prefixos estão corretos, mas os engenheiros costumam utilizar com mais frequência os prefixos que representam potências divisíveis por 3. Já os prefixos centi, deci, deca e hecto são raramente utilizados. Por exemplo, a maioria dos engenheiros descreveria 10⁻⁵ s ou 0,00001 s como 10 µs, em vez de 0,01 ms ou 10.000.000 ps.

Fonte: Adaptado de Sadiku, Musa e Alexander (2014, p. 5).

Fique atento

Precauções ao trabalhar com eletricidade

Antes de trabalhar com eletricidade, siga rigorosamente as seguintes regras, para evitar o risco de choque elétrico:

- Verifique se o circuito está desligado antes de iniciar os trabalhos.
- Desligue sempre o aparelho ou a lâmpada antes de consertá-lo.
- Deixe um aviso para que ninguém ligue a eletricidade enquanto você trabalha; coloque um adesivo sobre o disjuntor, interruptor ou sobre o soquete vazio do fusível.
- Verifique se o isolante do metal está em bom estado e utilize as ferramentas adequadamente.
- Para medir a tensão ou a corrente, ligue a energia e anote a leitura. Para medir a resistência, não ligue a energia.
- Não utilize roupas folgadas, para não ter o risco de ficar preso em algum aparelho.
- Utilize calças, camisas de manga longa e sapatos adequados; mantenha-os secos.
- Não fique em piso molhado ou metálico, pois a junção de eletricidade e água oferece riscos.
- Procure ficar em área com iluminação adequada.
- Não use adornos (relógios, anéis, pulseiras, etc.).
- Descarreque qualquer capacitor que possa reter alta tensão.
- Não trabalhe sozinho.
- Em caso de áreas em que a tensão é elevada, procure trabalhar com apenas uma mão por vez.

Estas são algumas informações importantes para evitar choques e acidentes, que podem causar lesões e danos ao trabalhador que lida com eletricidade. Zelar pela segurança é uma regra fundamental para o ser humano.

Fonte: Sadiku, Musa e Alexander (2014).

Referências

ALEXANDER, C. K.; SADIKU, M. N. O. *Fundamentos de circuitos elétricos*. Porto Alegre: Bookman, 2013.

HAYT JR., W. H.; KEMMERLY, J. E.; DURBIN, S. M. *Análise de circuitos em engenharia*. 8. ed. Porto Alegre: Mc Graw Hill, 2014.

NILSSON, J. W.; RIEDEL, S. A. Circuitos elétricos. 8. ed. São Paulo: Pearson, 2009.

PETRUZELLA, F. D. Eletrotécnica I. Porto Alegre: Bookman, 2014. (Série Tekne).

SADIKU, M. N. D.; MUSA, S.; ALEXANDER, C. K. *Análise de circuitos elétricos com aplicações*. Porto Alegre: Bookman, 2014.

Leituras recomendadas

BOYLESTAD, R. L. Introdução a análise de circuitos. 12. ed. São Paulo: Pearson, 2012.

JOHNSON, D. E.; HILBURN, J. L.; JOHNSON, J. R. *Fundamentos de análise de circuitos elétricos*. 4. ed. Rio de Janeiro: Prentice-Hall do Brasil, 1994.

NAHVI, M.; EDMINISTER, J. A. *Circuitos elétricos*. 5. ed. Porto Alegre: Bookman, 2014. (Coleção Schaum).

Encerra aqui o trecho do livro disponibilizado para esta Unidade de Aprendizagem. Na Biblioteca Virtual da Instituição, você encontra a obra na íntegra.

Conteúdo:

