CS/IT-402(N)

rgpvonline.com

B. E. (Fourth Semester) EXAMINATION, June, 2010

(New Scheme)

(Common for CS & IT Engg. Branch)

DISCRETE STRUCTURE

Time: Three Hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: Attempt one question from each Unit. All questions carry equal marks.

Unit-I

- 1. (a) Write the principle of mathematical induction and by using this prove that $n(n^2 + 5)$ is an integer multiple of 6 for all positive integers n.
 - (b) Define relations P and Q on $\{1, 2, 3, 4, \}$ by $P = \{(a, b) : | a b | = 1\}$ and $Q = \{(a, b) : a b \text{ is even}\}.$

Also represent P and Q as both graphs and matrices.

Or

2. (a) If A and B are two sets then prove that:

$$(A-B)\cup(B-A)=(A\cup B)-(A\cap B)$$

P. T. O.

(b) If f: A → B and g: B → C be one to one onto functions, then prove that g o f is also one to one onto and (g o f)⁻¹ = f⁻¹ o g⁻¹.

Unit-II

- (a) Prove that a non-empty subset S of a group (G, *) is a subgroup of G if and only if for every pair of elements a, b ∈ S, a * b⁻¹ ∈ S.
 - (b) Define field and prove that the set of complex numbers is a field w. r. t. ordinary addition and multiplication.

Or

- 4. (a) Define field and show that the set of real numbers of the form $a + b\sqrt{3}$, where a and b are rational numbers is a field with respect to addition and multiplication.
 - (b) Define the following:
 - (i) Monoid

(ii) Cyclic group

(iii) Cosets

- (iv) Factor group
- (v) Normal subgroup

Unit-III rgpvonline.com

- 5. (a) Prove by the truth table that the following are tautologies or contradiction:
 - (i) $(p \rightarrow (q \land r)) \rightarrow (\sim r \rightarrow \sim q)$
 - (ii) $(p \lor q) \land \{p \lor (\sim q)\} \land (\sim p \lor q) \land (\sim p \lor \sim q)$
 - (b) Make a finite state system to multiply a given binary integer by 3.

Or

- (a) Write short notes on the following:
 - Universal and existential quantifiers
 - (ii) Predicates

(b) Let $A = \{0, 1\}$, $S = \{S_0, S_1, S_2\}$, $O = \{0, 1\}$ and the functions f and g be given by the following state table:

	State	Input		0
		0	1	Output
	S_0	Si	So	0
	S_1	S_2	Sı	1
	S_2	S_2	S ₀	1

Draw the state graph of the finite state machine $M = \{S, A, O, f, g, S_0\}$.

Unit --- IV

- (a) Prove that a simple graph with n vertices and k components can have at most (n k) (n k + 1)/2 edges.
- (b) Define the following terms giving examples :
 - (i) Incidence matrix
 - (ii) Eulerian graph
 - (iii) Graph coloring
 - (iv) Connected graph

rgpvonline.com

Or

(a) Use Dijkstra's algorithm to find the shortest path between a to z in the graph:

(b) Every tree has either one or two centers.

Unit-V

- (a) What is Hasse diagram? Draw the Hasse diagram of the set D₃₀ of positive integral divisors of 30 with the relation '1'.
 - (b) Solve the recurrence relation $a_r + 6 a_{r-1} + 9 a_{r-2} = 3$, given $a_0 = 0$, $a_1 = 1$.

Or

- (a) Prove that in a distributive lattice, if an element has a complement then this complement is unique.
 - (b) Write short notes on the following:
 - (i) Binomial theorem
 - (ii) Multimonial coefficients
 - (iii) Permutation and combination
 - (iv) Generating function

rgpvonline.com