Санкт-Петербургский национальный исследовательский институт информационных технологий, механики и оптики

Физический факультет

ЛАБОРАТОРНАЯ РАБОТА №1.01 "Исследование распределения случайной величины"

Группа: Z3144

Студент: Евгений Турчанин

Цель 1

Цели работы:

- 1. Исследование распределения случайной величины на примере многократных измерений определенного интервала времени.
- 2. Выяснить на сколько теория расходится с практикой и объяснить почему.

2 Теоретическое введение

- Случайная величина величина, которая не может быть однозначно определена до проведения опыта по ее измерению
- При проведении достаточно большого количества измерений можно считать, что случайная величина распределена нормально, то есть ее распределение описывается функцией Гаусса.

Предметная область

В данной работе использованы формулы:
$$\rho(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\left(x-\mu\right)^2}{2\sigma^2}\right) -$$
 для вычисления распределения

$$ar{x}=rac{1}{N}\sum_{i=1}^N x_i$$
 — для поиска среднего $\sigma=\sqrt{rac{1}{N}\sum_{i=1}^N (x_i-ar{x})^2}$ — для поиска дисперсии $\Delta t=t_{lpha,N}\cdot\sigma_{\langle t
angle}$ - для поиска доверительного интервала

 $f_{max} = \frac{1}{\sqrt{2\pi}\sigma}$ - для поиска максимального значения плотности распределе-

 $SEM = \frac{\sigma}{\sqrt{N}}$ - для поиска среднеквадратичного отклонения среднего значе-

4 Схема работы

Есть два человека, у каждого из них есть секундомер. Первый человек нажимает на старт, по прошествии 5 секунд он "подает сигнал", второй же нажимает старт на своем секундомере, после 5 секунд первый снова "подает сигнал", после которого второй останавливает секундомер. В таблице записанны значения второго секундомера.

N	1	2	3	4	5	6	7	8	9	10
1	4.91	5.03	4.93	4.84	4.81	4.94	5.34	4.78	5.00	5.03
2	4.81	4.91	4.65	5.03	4.72	4.91	4.62	4.72	5.00	4.87
3	4.90	4.90	4.78	4.97	4.60	4.75	5.03	4.94	4.93	4.75
4	4.90	5.06	5.06	4.66	5.12	5.09	5.10	4.84	4.97	5.00
5	4.84	5.00	4.81	5.07	4.97	5.00	4.94	4.87	4.91	4.85

5 Полученные данные

Используя выше описанные формулы и python, обрабатываем данные и получаем график, среднее значение,среднеквадратичного отклонения среднего значения, дисперсию, максимальное значение плотности распределения и доверительный интервал.

Доверительный интервал для $t:4.909\pm0.039$

6 Выводы

Данные соответствуют ожидаемым результатам. Отклонения могут быть вызванны из-за нескольких факторов:

- Недостаточность выборки, возможно если количество измерений было больше, то расхождений с теорией было бы меньше.
- В силу того, что человек смотрит на таймер, он пытается нажать чуть заранее, чтобы подать сигнал ровно в 5 секунд, отсюда и выходит что среднее значение чуть меньше 5 секунд.
- У каждого человека своя скорость реакции, которая к тому же может зависить от окружающих факторов и меняться с течением времени.

7 Доп вопрос

Найдите значение нормировочной постоянной С и рассчитайте среднее квадратичное значение для непрерывно распределенной случайной величины со

следующим законом распределения:

$$f(x) = \begin{cases} 0, & x < 0 \\ Cx(10 - x), & 0 \le x \le 10 \\ 0, & x > 10 \end{cases}$$

В нормальном распределении выполняется условие:

$$\int_{-\infty}^{\infty} f(x)dx = 1$$

Тк при х меньшем чем 0 функция распределения ноль и при х большем чем 10 функция распределения ноль, то можно заменить интеграл от $-\infty$ до ∞ на интеграл от 0 до 10, тогда:

$$\int_0^{10} Cx(10-x)dx = C\int_0^{10} x(10-x)dx = C(500 - \frac{1000}{3}) = 1 \Rightarrow C = \frac{3}{500}$$

Среднее квадратичное значение непрерывно распределенной случайной величины вычисляется по формуле:

$$\sigma^2 = \int_{-\infty}^{\infty} x^2 f(x) dx$$

По аналогии можно заменить пределы интегрирования на 0 и 10:

$$\int_0^{10} x^2 Cx(10 - x) dx = C(10 \frac{x^4}{4} - \frac{x^5}{5}) = 30$$