$\begin{array}{c} \text{Machine Learning 2 - Homework} \\ \text{Week 2} \end{array}$

Minh Ngo
MSc Artificial Intelligence
University of Amsterdam
nlminhtl@gmail.com

April 11, 2016

Collaborators: Arthur Bražinskas, Riaan Zoetmulder

Problem 3

3.1

$$p(x) = \mathcal{N}(x|\mu, \Sigma) \Leftrightarrow x \sim \mathcal{N}(x|\mu, \Sigma)$$
 (1)

$$q(x) = \mathcal{N}(x|m, L) \tag{2}$$

$$\mathcal{KL}(p || q) = -\int p(x) \ln \frac{q(x)}{p(x)} dx
= -\int p(x) \left[\ln q(x) - \ln p(x) \right] dx
= -\int p(x) \ln q(x) dx + \int p(x) \ln p(x) dx
= -\int p(x) \ln \left[\frac{1}{(2\pi)^{D/2} |L|^{1/2}} \exp\left(-\frac{1}{2} (x-m)^T L^{-1} (x-m) \right) \right] dx
+ \int p(x) \ln \left[\frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (x-\mu)^T \Sigma^{-1} (x-\mu) \right) \right] dx
= \frac{1}{2} \ln \frac{|L|}{|\Sigma|} \underbrace{\int p(x) dx}_{=1} + \frac{1}{2} \int (x-m)^T L^{-1} (x-m) p(x) dx
- \frac{1}{2} \int (x-\mu)^T \Sigma^{-1} (x-\mu) p(x) dx$$
(3)

From the law of unconscious statistician we have:

$$\mathcal{KL}(p \parallel q) = \frac{1}{2} \ln \frac{|L|}{|\Sigma|} + \frac{1}{2} E[(x-m)^T L^{-1} (x-m)] - \frac{1}{2} E[(x-\mu)^T \Sigma^{-1} (x-\mu)]$$
(4)

Applying Matrix Cookbook (380):

$$\mathcal{KL}(p \parallel q) = \frac{1}{2} \ln \frac{|L|}{|\Sigma|} + \frac{1}{2} \left[(\mu - m)^T L^{-1} (\mu - m) + Tr(L^{-1}\Sigma) \right]$$

$$- \frac{1}{2} \left[(\mu - \mu)^T \Sigma^{-1} (\mu - \mu) + Tr(\Sigma^{-1}\Sigma) \right]$$

$$= \frac{1}{2} \ln \frac{|L|}{|\Sigma|} + \frac{1}{2} (\mu - m)^T L^{-1} (\mu - m) + \frac{1}{2} Tr(L^{-1}\Sigma) - \frac{1}{2} D$$
(5)

3.2

$$\mathcal{H}(x) = -\int p(x) \ln p(x) dx$$

$$= -\int \ln \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (x-\mu)^T \Sigma^{-1} (x-\mu)\right) p(x) dx$$

$$= -\int \left[\frac{D}{2} \ln(2\pi) + \frac{1}{2} \ln |\Sigma| + \frac{1}{2} (x-\mu)^T \Sigma^{-1} (x-\mu)\right] p(x) dx$$

$$= \frac{D}{2} \ln(2\pi) + \frac{1}{2} \ln |\Sigma| + \frac{1}{2} E[(x-\mu)^T \Sigma^{-1} (x-\mu)]$$
(6)

Applying Matrix Cookbook (380):

$$\mathcal{H}(x) = \frac{D}{2}\ln(2\pi) + \frac{1}{2}\ln|\Sigma| + \frac{1}{2}(\mu - \mu)^T \Sigma^{-1}(\mu - \mu) + \frac{1}{2}Tr(\Sigma^{-1}\Sigma)$$

$$= \frac{D}{2}\ln(2\pi) + \frac{1}{2}\ln|\Sigma| + \frac{1}{2}D$$
(7)

Problem 4

Figure 1: Markov chain of latent variables.

- 1. The arrows on the path from $z_{n-1} \to z_n \to x_n$ meet head-to-tail $\Rightarrow x_1, ..., x_{n-1}$ are d-separated from x_n given $z_n \Rightarrow x_n \perp \!\!\! \perp x_1, ..., x_{n-1}|z_n$. Consequently: $p(x_1, ..., x_{n-1}|x_n, z_n) = p(x_1, ..., x_{n-1}|z_n)$ q.e.d.
- 2. Again head-to-tail path $z_{n-2} \to z_{n-1} \to z_n \to z_n \perp \!\!\!\perp x_1, ..., x_{n-1} | z_{n-1}$. Consequently: $p(x_1, ..., x_{n-1} | z_{n-1}, z_n) = p(x_1, ..., x_{n-1} | z_{n-1} \text{ q.e.d.}$
- 3. Head-to-tail path $z_n \to z_{n+1} - > x_{n+k}$ where $k \ge 1$. Consequently, $z_n \perp \!\!\! \perp x_{n+1}, ..., x_N | z_{n+1}$ and $p(x_{n+1}, ..., x_N | z_n, z_{n+1}) = p(x_{n+1}, ..., x_N | z_{n+1})$ q.e.d.
- 4. Head-to-tail path $x_k - > z_N \to z_{N+1}$ where $k \ge 1$. Consequently $z_{N+1} \perp \mathbf{X} | z_N$ and $p(z_{N+1} | z_N, \mathbf{X}) = p(z_{N+1} | z_N)$ where $\mathbf{X} = \{x_1, ..., x_N\}$ q.e.d.

Problem 5

5.1

Let $z_1, ..., z_N$ be common parents of nodes X and Y and the edge $\{X, Y\}$ be a covered edge. To prove that after reversing the edge $\{X, Y\}$ all independent relations stay the same we have to prove that all conditional independence will be the same given X or Y.

- 1. Let K_i and K_j be some descendant of X.
 - $z_k \to X \to K_i$ forms a head-to-tail path and will stay the same after reversing (is blocked given X).
 - $K_i \leftarrow X \rightarrow Y$ forms tail-to-tail path and will become head-to-tail relation (that are blocked given X in both cases).
 - $K_i \leftarrow X \rightarrow K_j$ forms tail-to-tail path and will remain unchanged after reversing $\{X,Y\}$.
- 2. We are considering descendants of Y in the same way:
 - $z_k \to Y \to K_i$ remains blocked given X.
 - $X \to Y \to K_i$ is head-to-tail path and will become tail-to-tail after reversing and remains blocked given X.
 - $K_i \leftarrow Y \rightarrow K_j$ is tail-to-tail path and will remain unchanged after reversing $\{X,Y\}$.

Consequently \mathcal{G} and \mathcal{G}' encode the same set of independent relations q.e.d.

5.2

Counterexample can be a graph $z \to y \leftarrow x$, where $z \not\perp \!\!\!\perp x | y$ (Bishop 8.29). After reversing the edge we get a graph $z \to y \to x$ that makes $z \perp \!\!\!\perp x | y$ (according to the d-separation criteria).