Chemistry Lecture #8: Rules for recognizing significant figures

We will need to know the number of significant figures in a measurement. This isn't too difficult. 2.3 g has two significant figures, and 435 mL has three significant figures. The tricky part occurs when there are zeros in the measurement. Then you have to follow the rules below.

- 1. Non-zero numbers are always significant. E.g., 72.3 g has 3 S.F. (Significant Figures).
- 2. Zeros between non-zero numbers are always significant. E.q., 600.5 q has 4 S.F.
- 3. Zeros that are behind a decimal and a non-zero number are significant. E.g., 6.0 g has 2 S.F.
- 4. Zeros that act as placeholders are not significant. Convert quantities to scientific notation to remove placeholder zeros. E.g., 0.0253 g and 4320 g have 3 S.F. and should be written as 2.53×10^{-2} g and 4.32×10^{3} g
- 5. Counting numbers and defined constants have an infinite number of significant figures. E.g., 5 students, 60 s = 1 min.

Let's try some for practice.

Measurement	Number of Significant Figures
25.1 g	3
135.56 g	5
0.52 km	2
8.75 km	3
8.750 km	4
8.7500 g	5
54300 g	3
$2.6 \times 10^3 \text{ m}$	2
2504 g	4
3.001 g	4
0.0003050 g	4
2000.0 g	5
190.0 g	4
12 cars	infinite
100 cm = 1 m	infinite