Lecture Summary: Null Space, Nullity, and Basis

Source: Lec36.pdf

Key Points

• Definition of Null Space:

- Let A be an $m \times n$ matrix. The **null space** of A is defined as:

$$Null(A) = \{ x \in \mathbb{R}^n \mid Ax = 0 \}.$$

- It represents the solution space of the homogeneous system Ax = 0.
- Null space is a subspace of \mathbb{R}^n .

• Nullity:

- The **nullity** of A is the dimension of the null space of A.
- Denoted as nullity(A), it measures the number of independent solutions to Ax = 0.

• Subspace Verification:

- To confirm that the null space is a subspace:
 - 1. If $x, y \in \text{Null}(A)$, then $x + y \in \text{Null}(A)$ (closure under addition).
 - 2. If $x \in \text{Null}(A)$ and $\lambda \in \mathbb{R}$, then $\lambda x \in \text{Null}(A)$ (closure under scalar multiplication).

• Finding the Basis for the Null Space:

- Use Gaussian elimination to row reduce A.
- Identify independent and dependent variables:
 - 1. Columns with leading 1s correspond to dependent variables.
 - 2. Other columns correspond to independent variables.
- Assign parameters (e.g., t_1, t_2) to independent variables.
- Solve for dependent variables in terms of the independent variables.
- Substitute values for one parameter at a time (e.g., $t_i = 1$, all others = 0) to construct basis vectors.

• Rank-Nullity Theorem:

- The rank-nullity theorem states:

$$rank(A) + nullity(A) = n$$
,

where n is the number of columns of A.

Simplified Explanation

Example: Null Space and Basis in \mathbb{R}^3 Given:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}.$$

Steps:

1. Augmented matrix:

$$[A|0] = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 2 & 2 & 2 & 0 \\ 3 & 3 & 3 & 0 \end{bmatrix}.$$

2. Row reduce:

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

3. Identify variables:

- x_1 is dependent.
- x_2, x_3 are independent.

4. Solve: $x_1 = -x_2 - x_3$.

5. Basis for null space:

$$\{(-1,1,0),(-1,0,1)\}.$$

Example 2: Applying the Rank-Nullity Theorem

• A has 3 columns.

• Row-reduced matrix has 1 non-zero row \Rightarrow rank(A) = 1.

• Nullity:

$$\text{nullity}(A) = 3 - 1 = 2.$$

Conclusion

In this lecture, we:

- Defined the null space and nullity of a matrix.
- Demonstrated how to find the basis and nullity using Gaussian elimination.
- Applied the rank-nullity theorem to relate rank and nullity.

Null space analysis is critical in solving systems of equations and understanding the structure of matrices in linear algebra.