BTS - Maths+STI - TD Spectre

1. Harmoniques et valeurs efficaces

Définition 1 : Un **développement en série de Fourier** d'un signal périodique s'écrit :

$$f(t) = a_0 + a_1 \cos(\omega t) + b_1 \sin(\omega t) + \cdots + a_n \cos(n\omega t) + b_n \sin(n\omega t) + \cdots$$
 $= a_0 + \sum_{n=1}^{+\infty} (a_n \cos(n\omega t) + b_n \sin(n\omega t))$

- a_0 représente la composante continue du signal ;
- les autres coefficients a_n et b_n sont rattachés à \cos et \sin ; ils indiquent la valeur max de l'harmonique de rang n;
- ils peuvent être en nombre infini (mais ils tendent à devenir de plus en plus petits lorsque n grandit, globalement)

Propriété 1:

- L'harmonique de rang n : $h_n(t) = a_n \cos(n\omega t) + b_n \sin(n\omega t)$;
- ullet a pour valeur max $A_n = \sqrt{a_n^2 + b_n^2}$
- ullet comme c'est une sinusoïde, elle a pour valeur efficace $H_n=rac{A_n}{\sqrt{2}}=\sqrt{rac{a_n^2+b_n^2}{2}}$;

Méthode 1 : On trace le spectre sous la forme d'un diagramme bâtons qui indique la valeur efficace A_n en fonction de n.

Exemple 1 : Le diagramme donne le spectre de $f(t)=1+4\cos(t)+3\sin(t)+2\sin(3t)-\cos(5t)$; on voit sur l'expression que $\omega=1$ rad/s.

Exercice 1 : Pour chaque signal donné, près avoir indiqué ω tracer les spectres dans les diagrammes suivants (compléter l'axe vertical).

- 1. $g(t) = 1 + 4\cos(t) + 3\sin(t) + 2\sin(3t) \cos(5t)$; $\omega = \dots$ rad/s
- 2. $u(t)=10+40\cos(2t)+35\sin(4t)+20\sin(18t)-5\cos(18t)$; $\omega=\ldots
 eq 1$ rad/s
- 3. $v(t) = 5 + 240\sqrt{2}\cos(100\pi t) + 90\sin(500\pi t) + 20\sin(200\pi t) \cos(800\pi t)$; $\omega = \dots$ rad/s

 $\textbf{Exercice 2:} \ \ \text{Deux signaux différents peuvent-ils avoir le même spectre ?}$

Si oui, quelles sont les informations manquantes dans un spectre?

2. Valeurs efficaces

Définition 2 : Deux signaux f et g sont dits **orthogonaux** lorsque la valeur efficace $(f+g)_{\rm eff}$ de f+g sont liées par l'expression quadratique de Pythagore : $(f+g)_{\rm eff}^2=f_{\rm eff}^2+g_{\rm eff}^2$

Propriété 2 : Deux harmoniques de rangs différents, ainsi que la composante continue d'un signal sont chacunes orthogonales entre elles.

Propriété 3 : On en déduit :

$$f_{ ext{eff}}^2 = a_0^2 + \sum_{n=1}^{+\infty} H_n^2 = a_0^2 + rac{1}{2} \sum_{n=1}^{+\infty} A_n^2$$

Exercice 3 : Calculer les valeurs efficaces des signaux étudiés dans la partie précédente.

3. Enquête

Exercice 4 : On a relevé le spectre suivant pour un signal pair : $a_0=216$; $a_2=144$; $a_4=-29$; $a_6=12$; Quel montage permet d'obtenir un signal de ce type ?

Indice : <u>tracer</u> la série.

2 sur 2 04/01/2023 22:12