§3. Понятие вещественного числа. Множество вешественных чисел *R* и его свойства

Будем пользоваться общепринятыми обозначениями:

 $N = \{1, 2, 3, ...\}$ – множество натуральных чисел;

 $Z = \{0, \pm 1, \pm 2, ...\}$ – множество целых чисел;

 ${\it Q}$ – множество рациональных чисел, т. е. чисел вида ${\it p}/{\it q}$, где ${\it q}$ \in ${\it N}$, а

 $p \in \mathbb{Z}$; множество Q можно рассматривать также как совокупность всевозможных конечных или бесконечных периодических десятичных дробей.

Можно показать, что множество Q – счётное множество.

Бесконечные десятичные непериодические дроби не принадлежат множеству Q. Эти числа называются *иррациональными*. Рациональные и иррациональные числа называют *вещественными* или *действительными* числами; совокупность всех вещественных чисел обычно обозначают через R.

Основные свойства множества R

- 1 . Упорядоченность. Пусть x_1 , x_2 вещественные числа; справедливо одно и только одно из следующих утверждений: $x_1 < x_2$, $x_1 > x_2$, $x_1 = x_2$.
- 2 . Плотность. Пусть x_1, x_2 вещественные числа, причем $x_1 < x_2$. Всегда существует вещественное число x , лежащее между x_1, x_2 : $x_1 < x < x_2$.
- 3 . *Неограниченность*. Для любого положительного числа A существует вещественное число x, большее, чем A: A < x. Для любого отрицательного числа A существует вещественное число x, меньшее A: x < A.
- 4 . *Непрерывность*. Пусть X, Y множества из R. Если неравенство $x \le y$ справедливо для $\forall x \in X$, $\forall y \in Y$, то существует хотя бы одно вещественное число c: $x \le c \le y$.

Замечание 3.1. Множество Q обладает свойством плотности, но не обладает свойством непрерывности. Пусть X, Y — множества всех рациональных чисел, меньших и больших $\sqrt{2}$ соответственно. Очевидно, неравенство $x \le y$ выполняется для $\forall x \in X$, $\forall y \in Y$, а неравенство $x \le c \le y$ — только при $c = \sqrt{2}$, которое, как известно, не является рациональным числом.

5 . *Множество* **R** несчётно.

6. Геометрическая интерпретация множества R. Геометрически

Рис. 3.1. Числовая прямая

вещественные числа интерпретируются как точки так называемой *числовой прямой*, представляющей из себя направленную прямую, на которой выбран масштаб и начало отсчёта (рис. 3.1). При этом

вещественному числу x ставится в соответствие единственная точка M числовой прямой, для которой число x является координатой, и, обратно, каждой точке M числовой прямой — единственное вещественное число x — координата точки M. Началу отсчёта соответствует число 0.