

DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANIZATION
AERONAUTICAL RESEARCH LABORATORIES
MELBOURNE VICTORIA

Structures Note 429

THE DISTRIBUTION OF FRACTURE TOUGHNESS DATA FOR Déac STEEL

JACQUELINE COYLE, J. M. GRANDAGE and D. G. FORD

C COMMONWEALTH OF AUSTRALIA 1976

Approved for public relea Distribution Unlimited

AUGUST 1976

STRUCTURES NOTE 429

THE DISTRIBUTION OF FRACTURE TOUGHNESS: DATA FOR D6ac STEEL

by

JACQUELINE COYLE, J. M. GRANDAGE and D. G. FORD

SUMMARY

Data on fracture toughness for D6ac steel is analysed for conformity with three probability distributions. The three parameter extreme value distribution is selected, and parameters are estimated for specified conditions.

CONTENTS

	Page No.
1. INTRODUCTION	1
2. GENERAL REQUIREMENTS	1
3. DATA	
4. ANALYSIS PROCEDURE	1
4.1 Form of Distribution	2
4.2 Parameters of Distribution	3
5. CONCLUSIONS	3
REFERENCES	
TABLES	
FIGURES	
DISTRIBUTION	

DOCUMENT CONTROL DATA

1. INTRODUCTION

A.R.L. have recently applied reliability theory to structural fatigue, allowing estimation of safe inspection intervals in service (Refs. 1 and 2). The method recognises various inputs which influence the risk of failure. One input is the distribution of residual strength of structures all cracked to the same extent. This is important in view of the high variability in fracture toughness for some materials, and the corresponding variability in residual strength for a given crack size.

The feasibility of applying the method was investigated using the example of an aircraft having many components made from D6ac steel heat treated to strength levels of 220-240 k.s.i. Five locations in D6ac components were considered possible sites for fatigue failures. Much fracture toughness data for D6ac steel was available. This was analysed to identify its distribution, and to estimate its parameters at each failure site.

This report presents this analysis.

2. GENERAL REQUIREMENTS

The requirement is to identify and estimate parameters of fracture toughness distributions for the five failure sites at temperatures which are appropriate for two types of condition. These conditions are firstly flight operating conditions, and secondly low temperatures corresponding to a cold proof load test, to which the aircraft is subjected before entering service. These temperatures are specified in detail in section 4.

It should be noted that although all the failure sites are in D6ac components, they were not all heat treated by the same process, and thus mean fracture toughness at the same temperature could be expected to vary among the failure sites.

3. DATA

Samples of fracture toughness data are given in Refs. 3 and 4. Ref. 3 gives extensive data obtained during a multi-laboratory test programme in the U.S. Ref. 4 gives a smaller quantity of data from D6ac components from the aircraft.

The data from Ref. 3 covered a wide range of testing parameters, and the following parameters were shown to have an important effect on the mean and/or variability of fracture toughness K_{Ie} :

- (a) Testing Temperature.
- (b) Local quench rate, which is determined by the heat treatment process and also by parameter (c).
- (c) Thickness of material during heat treatment. (As well as being variable itself the thickness during heat treatment often differed from the thickness of the specimen tested).
- (d) Type of specimen. Three types were used; compact tension, surface flaw and double cantilever beam.
 - (e) Material batch number.
 - (f) Position of specimen within the part.

Ref. 5 gives estimates of mean K_{Ic} values for each failure site, and also the variation of K_{Ic} with temperature.

4. ANALYSIS PROCEDURE

The analysis consisted of two stages. Firstly it was assumed that a common form of distribution for K_{Ic} of D6ac steel exists under all testing conditions, and this form was estimated by means of standardising and pooling data from different samples to give the largest possible pooled data sample. Secondly the parameters of the distributions were estimated by considering data relevant to each failure site at appropriate temperatures.

4.1 Form of Distribution

Refs. 3 and 4 contain a small proportion of data stated to be invalid, and these are excluded from the present analysis. The valid data were grouped into 10 samples, each having a characteristic testing temperature, heat treatment and specimen type. This grouping gave samples which included variability associated with batch number, geometric variations and inherent variability caused by micro defects. A total of 406 data points were obtained. The details of the samples are listed in Table I. It is noted that data at -40° F and -65° F are combined into the same sample. This was desirable because of the small sample sizes at each temperature alone, and was considered justified by the small differences in data between the two temperatures.

For pooling purposes the data were standardised as

$$x = (K - \bar{K})/S$$

where K. S represent various means and standard deviations for the relevant subsamples. A similar variate based on log K was used to compare with the log normal distribution. The standardised data were then pooled into a common ordering system. The empirical distribution of the data was plotted on normal probability paper (Figs. 1, 2) to compare it with the normal distribution. It should be noted that in Figures 1 and 2 every point has been plotted at probabilities greater than 90% and less than 10%, whereas between these values every tenth point has been plotted. An inspection of the common ordering system showed that there was no strong tendency towards clustering of data from any particular sample. This supports the initial assumption that a common distribution form exists for all samples, and that data from various samples can be pooled after standardising. Figs 1 and 2 indicate that the Normal and log Normal distributions are fairly good fits to the data.

The data from group 5 (Table I), consisting of the largest sample of 154 data points, was then compared with the two parameter extreme value distribution, defined as

$$P(K) = 1 - \exp\{-(K/v)^a\}$$

K fracture toughness K_{I_C}

P(K) = probability that K is less than the nominated value,

v = characteristic value of K, for which P(K) = 0.63,

 α = dispersion and shape parameter.

This sample alone was used because there was no readily available method of standardising the data from different samples which is compatible with the extreme value distribution. In this instance the use of one sample alone is justified by its large size, and also by the point made in the previous paragraph that there was no strong tendency for any sample to appear clustered in the total pool of data. Fig. 3 compares the data with the two parameter extreme value distribution, and clearly the fit.

As an alternative the three parameter extreme value distribution was investigated. This is

$$P(K) = 1 - \exp\left\{-\left(\frac{K - \varepsilon}{v - \varepsilon}\right)^{\alpha}\right\},\,$$

where

 $\varepsilon =$ least value of K, for which P(K) = 0, and v, α are as before.

The result is shown in Fig. 4. Clearly this is an improvement on the two parameter distribution. Comparing Figs 1, 2 and 4 suggests that the Normal, log Normal and three parameter extreme value distributions all give a fairly reasonable fit to the data. The Kolmogarov-Smirnoff test (Ref. 6), a non-parametric test which makes no specific assumptions about the form or a ranneters of the distribution being tested, also indicated that both distributions fitted the data adequately. The tests were significant at approximately 10%, 15% and 20% respectively for the Normal, log-Normal and the three-parameter extreme value distributions. Thus it cannot be concluded statistically which of these three is preferable.

The extreme value distribution was selected because it allows the choice of a least possible value of K_{I_c} : the normal distribution predicts a finite probability of achieving a very low (or even negative) value of K_{I_c} . In practice it is reasonable to expect a non-zero least value to be imposed by manufacturing quality control.

4.2 Parameters of Distributions

Estimates of the parameters v, e and a are required for conditions of heat treatment temperature and specimen type which are appropriate for the five failure sites. As regards specimen type, the data in Ref. 3 suggests that the surface flaw type gave higher values of fracture toughness than the other specimen types. For this reason surface flaw specimen data were not considered when estimating parameters of distributions. The heat treatment processes for the various failure sites were known in terms of the processes used for the data in Refs. 3 and 4. As discussed above in section 2, temperatures were required to be appropriate for cold proof load test conditions as well as for normal operating conditions. It was anticipated that the proof load test could be applied at either -40°F or -65°F, and both these temperatures were considered. Operating temperatures could typically vary from 0°F to 75°F, with short periods of high speed flight at higher temperatures. In view of the reduction in K_{I_c} at low temperatures, it was decided to consider operating temperatures of 0°F and 20°F as well as 75°F. To estimate the distribution parameters, appropriate samples from Refs. 3 and 4 were used, together with data from Ref. 5 giving mean K_{Ic} for each failure site and the variation of K_{Ic} with temperature. It is noted that the mean values in Ref. 5 in most cases differed from the corresponding sample means from Refs. 3 and 4 because of variations in local quench rate within the part, which are to some extent deterministic.

The procedure was to select data samples from Refs. 3 and 4 having the temperatures (nearest to the required temperatures), heat treatment and specimen type for each failure site. In many cases these distributions were shifted to give the appropriate mean values from Ref. 5, making due allowance for temperature variations (also from Ref. 5), without altering the shape of the distributions. In carrying out this mean shift it was assumed that either the standard deviation or the coefficient of variation remained constant. Coefficient of variation was held constant if the mean shift was required to account for within the part variations of K_{Ic} at the same temperature, and standard deviation was held constant for mean shift due to temperature. This was because, for the data in Ref. 3, the mean and standard deviation were both reduced by lowering temperature, whereas the standard deviation did not appear to vary systematically with sample mean at the same temperature. Finally the extreme value parameters were estimated graphically using extreme value probability paper and the expressions in Ref. 7 for relation ships between the various parameters. The results are shown in Table II.

5. CONCLUSIONS

1. The analysis suggests that a common distribution form exists for the fracture toughness data considered, although the parameters vary greatly according to the testing conditions.

2. The data is fitted adequately by Normal, log-Normal and three-parameter extreme value distributions. This generally agrees with the conclusions of reference 8 for airframe materials.

REFERENCES

 Patricia Diamond and A. O. Payne 	Reliability Analysis Applied to Structural Tests. ICAF Symposium, Miami Beach, May 1971.
2. A. O. Payne	A Reliability Approach to the Fatigue of Structures. ASTM Conference. Atlantic City, June 1971.
3. C. E. Fedderson and D. P. Moon	Preliminary Report on a Compilation and Evaluation of Crack Behaviour Information on Déac Steel Plate and Forging Materials for the F-111 Aircraft. Defence Metals Information Centre, Batelle. June 25th, 1971.
4. A. W. Gunderson	Preliminary Mechanical Property Evaluation of D6ac Steel in Support of the F-111 Aircraft Recovery Program. Tech. Memo. MAA 70-6. AFML. July 1970.
5. General Dynamics	F-111 Structure Status Report to S.A.B. Ad Hoc Committee. FZM-12-13320. July 6th, 1971.
6. P. G. Hoel	Introduction to Mathematical Statistics. J. Wiley & Sons. 1962.
7. E. J. Gumbel	Statistics of Extremes. Columbia University Press, 1958.
8. A. F. Liu	Statistical Variation in Fracture Toughness Data of Airframe Materials. Proceedings of the Air Force Conference on Fatigue and Fracture of Aircraft Structures and Materials. ed H. A. Wood et al AFFDL TR 70-144, September 1970.

TABLE I Description of KIc Data Samples

(1) Sample Number	(2) Specimen Type	(3) Heat Treatment	(4) Temp. (°F)	(5) Sample Size	(6) Source of Data	(7) Sample Mean	(8) Sample S.D.
1	СТ	E	-40 & -65	16	Ref. 3	36.7	3.47
2	CT	A	70	51	Ref. 3	95.8	4.93
3	CT	В	70	13	Ref. 3	85.6	9.89
4	СТ	В	-40 & -65	13	Ref. 3	45.6	3.34
5	CT	E	70	154	Ref. 3	64.7	11.20
6	DCB	E	70	21	Ref. 3	65.9	11.00
7	CT	н	70	33	Ref. 3	56.5	13.64
8	SF	E	70	57	Ref. 3	81 - 2	18 · 50
9	SF	E	Unknown	20	Ref. 3	78.7	15.36
10	CT	E	70	28	Ref. 4	52 · 1	5.65

(2) — Compact Tension, Double Cantilever Beam, or Surface Flaw.
(3) — "A" and "B" — High Toughness Process

"E" — Medium Toughness process
"H" — Low Toughness Process

(4) — Data at -40°F and -65°F was combined.

TABLE II
Parameters of K_{Ic} Distributions
For each failure site and temperature, Table gives:

Mean	S.D.
υ	e
k	ε/υ

Failure	Heat	TEMPERATURE (°F)									
Site	Treatment	7	15	2	20		0	-	40	-	65
		85	4.93	71	4.12	65.5	3.80	53	3.69	46.5	3.69
1	A	87.5	65-6	73.1	54.8	67.4	50.5	54.3	40.7	48.0	36.0
		21.7	0.75	21.7	0.75	21 · 7	0.75	17.9	0.75	15.6	0.75
		85	4.93	71	4.12	65.5	3.80	53	3.69	46.5	3.69
2	A	87.5	65.6	73-1	54.8	67.4	5.05	54.3	40.7	48.0	36.0
		21 · 7	0.75	21.7	0.75	21.7	0.75	17.9	0.75	15.6	0.75
		75	11-20	60.5	9.03	55.5	8 · 29	46.5	2 · 26	41.5	2.26
3	E	79.0	53.7	63.5	43.2	58.3	39.7	47.8	40·1	42.6	35.8
		8.00	0.68	8.00	0.68	8.00	0.68	26.3	0.84	23 · 2	0.84
		55	11-20	43.5	8.86	40.5	8 · 25	35.5	2.26	34	2.26
4	E	58 · 5	37-4	46.0	29.4	43.0	27.5	36.5	29·2	34.9	27.9
		5.71	0.64	5-71	0.64	5.71	0.64	19.6	0.80	18.5	0.80
		65	11 · 20	51.5	8.87	47.5	8-12	40.5	2 · 26	37.5	2.26
5	E	68.0	44.2	54.5	35.4	50.0	32.5	41 · 6	34-1	38.5	31-0
		6.90	0.65	6.90	0.65	6.90	0.65	22.7	0.82	20-4	0.82

FIG.1 COMPARISON OF POOLED DATA WITH NORMAL DISTRIBUTION

FIG. 2 COMPARISON OF POOLED DATA WITH LOG NORMAL DISTRIBUTION

FIG. 3 COMPARISON OF DATA WITH TWO PARAMETER EXTREME VALUE DISTRIBUTION

FIG. 4 COMPARISON OF DATA WITH THREE PARAMETER EXTREME VALUE DISTRIBUTION

DISTRIBUTION

AUSTRALIA

DEPARTMENT OF DEFENCE

Central Office	
Chief Defence Scientist	
Executive Controller ADSS	
Controller — Service Laboratories and Trials Division	
Controller — Military Studies and Operational Analysis Division Controller — Programme Planning and Policy Division	
Central Library S.T.I.B.	
J.I.O.	
Aeronautical Research Laboratories	
Chief Superintendent	
Superintendent — Structures Division	10
Divisional File — Structures Division	11
Jacqueline Coyle)	12
J. M. Grandage Authors	1
D. G. Ford	14
A. O. Payne	15
G. S. Jost	30
Library	17
Central Studies Establishment	
Library	18
Materials Research Laboratories	
Library — Victoria	19
Library — New South Wales	20
Library — South Australia	2
Weapons Research Establishment	
Library	2:
Air Office	
D. Air Eng.	23
Library, Engineering (AMTS) Canberra	24
Library, A.R.D.U., Laverton	2:
Army Office	
Army Scientific Adviser	26
Mr. Gardner, Engineering Design Establishment	21
Library, Engineering Design Establishment	21
Navy Office	
Naval Scientific Adviser	29
Superintendent, R.A.N.R.L.	30

DEPARTMENT OF MANUFACTURING INDUSTRY

DEPARTMENT OF MA	INDIACIONING INDOSINI	
Government Aircraft Fa	ctory	
Library		31
Victorian Region		
Library		32
Australian Government	Engine Works	
Library		33
DEPARTMENT OF TR	ANSPORT	
Air Transport Group		
Director-General/Lib	rary	34
Mr. K. O'Brien		35–36
STATUTORY AUTHOR	RITIES AND INDUSTRY	
Australian Atomic E	nergy Commission Director, N.S.W.	37
C.S.I.R.O.: Chief of	f Mechanical Engineering, H.O.	38
Mr. Mc	orse, Mechanical Engineering Division, Highett	39
Chief, 7	Tribophysics Division	40
Physical	l Metallurgy Division	41
U.S. Air Attache, Ca	nberra	42
U.S. Naval Attache,	Canberra	43-47
Qantas, Library		48
Trans-Australia Airli	nes, Library	49
Ansett Airlines of Au	istralia, Library	50
Hawker de Havilland	1 Pty. Ltd. (Tech. Librarian) Bankstown	51-52
Hawker de Havilland	Pty. Ltd. (Manager) Lidcombe	53
Broken Hill Pty. Ltd	. Central Research Labs., N.S.W.	54
Broken Hill Pty. Ltd	. Melbourne Research Labs, Clayton	55
Commonwealth Airc	raft Corporation, Manager	56
	raft Corporation, Manager of Engineering	57
Library of New Sout	h Wales, Acquisition Librarian	58
UNIVERSITIES		
Adelaide	Barr Smith Library	59
Australian National	Library	60
La Trobe	Library	61
Melbourne	Library, Engineering School	62
Monash	Library	63
Newcastle	Library	64
New England	Library	65
New South Wales	Library, School of Mechanical Engineering	66
	Library, Serials Department	67
Queensland	Library	68

James Cook (Qld)	Library	69
Sydney	Library	70
Tasmania	Library, Eng. Dept	71
West Australia	Library	72
Royal Melbourne Instit	tute of Technology	
	Library	73
	Aero. Eng. Dept. (Mr. Millicer)	74
CANADA		
National Research (Council of Canada, N.A.E. Library	75-76
Library, Aluminium	Labs.	77
Universities		
McGill	Library	78
Toronto	Institute of Aerophysics	79
C.A.A.R.C.	Co-ordinator Structures - Dr. G. R. Cowper	80
FRANCE		
A.G.A.R.D. Library		81
O.N.E.R.A.		82
Service de Documen	station et d'Information	83
GERMANY		
DFVRL		84
Z.L.D.I. (Herr Dr.)	Ing. H. J. Rautenberg)	85
INDIA		
Ministry of Defence	, Aero. Development Est.	86
Department of Civil	Aviation, (Director)	87
Hindustan Aeronau	tics Ltd, Library	88
Hindustan Aeronau	tics Ltd, Helicopter factory, Library	89
Indian Institute of S	Science, Library	90
Indian Institute of 7		91
	cal Laboratory, (Director)	92-93
	inator Structures — Professor P. N. Murthy	94-98
C.A.A.R.C. Co-ord	inator Materials — Dr. S. Ramaseshan	99
ISRAEL		
Technion — Israel I	Institute of Technology, Professor J. Singer	100
ITALY		
Aerotechnica — Ed		101
Fiat Co., Dr. Guise	ppi Gabrielli, Torino	102
JAPAN		
National Aerospace	Laboratory, Library	103

i	niversities		
	Tohuko (Sendai)	Library	104
	Tokyo	Institute of Space and Aerosciences	105
NETH	IERLANDS		
	N.L.R. Amsterdam		106
	Central Technical I	nstitute, T.N.O. Apeldoorn	107
NEW	ZEALAND		
	Air Department, R	.N.Z.A.F., Aero. Documents Section	108
	Department of Civ	il Aviation, Library	109
	University of Canto		110
SWEI	DEN		
	Aeronautical Resea	rch Institute	111
	Kungl. Tekniska H	ogscholens	112
	Library of Chalmer	rs Institute of Technology, Gothenburg	113
	Library, S.A.A.B.	Linkoping	114
	Library, S.F.A.B. 7	Trollbatten	115
UNIT	ED KINGDOM		
	Defence Scientific	Technical Representative, London	116
	Defence Research I	nformation Centre	117-118
	Mr. A. R. G. Brow	n. ADR/MAT (MEA)	119-120
	Aeronautical Resea	rch Council, N.P.L. (Secretary)	121-122
	C.A.A.R.C. N.P.L.	(Secretary)	123
	Royal Aircraft Est.	, Library, Farnborough	124-125
	Royal Aircraft Est.	, Library, Bedford	126
	Royal Armament F	Research & Development., Fort Halstead	127
	C.A.T.C. (Secretari		128
	Aircraft and Arma	ment Experimental Establishment	129
		s Labs., (Dr. R. G. Watson)	130
	National Engineering	ng Labs., (Superintendent) Scotland	131
	British Library, Sci	ence Reference Library (Holborn Divn.)	132
	British Library, Le	nding Division, Boston Spa	133
	Naval Construction	Research Est, (Superintendent) Scotland	134
	C.A.A.R.C. Co-ord	linator Structures — Mr. A. J. Sobey, R.A.E.	135
l	adustry		
		Association, Library, Bedford	136
	British Ship Resear		137
		Generating Board, Marchwood	138
		Data Unit Ltd. (Royal Aero. Society) Library	139
		nstitute Ltd, (Research Director)	140
		desearch Association, (Director)	141
	Metals Abstracts, E		142 143
		Ltd, Aero. Divn. T.R.& I. Library Services	144
	Science Museum L	프로그램 그 시간 시간 그렇게 하는데 보고 있다면 하는데 되었다. 그 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은	145
	Welding Institute,	- onigion	143

Aircraft Companies		
Hawker Siddeley A	Aviation Ltd, Brough	140
Hawker Siddeley A	Aviation Ltd, Greengate	14
Hawker Siddeley A	Aviation Ltd, Kingston-upon-Thames	14
Hawker Siddeley I	Dynamics Ltd, Hatfield	149
British Aircraft Co	rporation Ltd, Commercial A/C. Divn. Filton	150
British Aircraft Co	orporation Ltd, Military A/C. Preston	15
British Aircraft Co	rporation Ltd, Commercial Aviation Divn. Weybridge	152
British Hovercraft	Corporation Ltd, E. Cowes	153
Short Bros. & Har	land, Queen's Island, Belfast	154
Westland Helicopte	ers Ltd, Yeovil	155
Universities		
Bristol	Library, Engineering Dept.	150
Cambridge	Library, Engineering Dept.	157
Liverpool	Library, Engineering Dept.	158
London	Library, Engineering Dept.	159
Manchester	Library, Engineering Dept.	160
Nottingham	Library	161
Sheffield	Library	162
Strathclyde	Library	163
Colleges & Institutes		
Cranfield Inst. of T	ech. Library	164
Imperial College	The Head	165
Imperial College	Library, Dept. of Aero. Eng.	166
Imperial College	Professor of Mechanical Eng.	167
International Committ	tee of Aeronautical Fatigue	168-190
ITED STATES OF A	MERICA	
Counseller Defence		-
	h Labs., Wright-Patterson A.F.B. Ohio	191
	namics Lab. Wright-Patterson A.F.B. Ohio	192
	opment Center, Arnold Airforce Station, Tennessee	193
	Information Service, Springfield —	194
	s, Gift & Exchange Dept. Washington, D.C.	195
	Bureau of Standards, Washington, D.C.	196
	& Information Facility, College Park.	(5) 197-201
	Center, (Mr. S. Leiblein), Cleveland.	202
	abs., Silver Spring. Md.	203
	U.S. Army Command, Alabama.	204
	search Organisation) Albuquerque	205
	th & Development Labs., Fort Belvoir	206
U.S. Atomic Energ	y Commission, Divn. of Tech. Info., Oak Ridge	207

U.S. Naval Ship Resea	rch & Development, Cardirocks, Md.	208
American Institute of	Aeronautics and Astronautics	209
Applied Mechanics Re	views	210
The John Crerar Libra	ry	211
Boeing Co., Head Offic	ce, Seattle	212
Boeing Co., Industrial	Production Divn. Seattle	213
Cessna Aircraft Co., (!	Mr. D. W. Mallonee, Executive Eng.) (Structures only)	214
Lockheed Research La	bs., (Palo Alto), Sunnyvale, Calif.	215
Lockheed Aircraft Co.	, (Director), Burbank, Calif.	216
McDonnell Douglas C	orporation, (Director) St. Louis	217
Pratt & Whitney Aircr	aft Divn. United Aircraft Corp. E. Hartford	218-219
Westinghouse Lab., (D	Pirector), Pittsburg, Penn.	220
Battello Memorial Inst	itute, Library	221
Universities		
Arizona	Library, Dept. of Civil Eng.	223
Brown	Library, Documents Division	224
California	General Library, Documents Dept.	225
Columbia	Library	226
Cornell (New York)	Library, Aero. Labs.	227
Cornell (Ithaca)	Library	228
Florida	Library, Documents Dept.	229
Harvard	Professor A. F. Carrier, Divn. of Eng. & App. Maths.	230
Johns Hopkins	Library	231
Illinois	Library	232
	Professor N. M. Newmark, Talbot Labs.	233
Iowa (State Uni. of Sci. & Tech.)	Library	234
New York	Library	235
Notre Dame	Library	236
Princeton	Library	237
Rhode Island	Library	238
Stanford	Library, Dept. of Aeronautics	239
Geo. Washington	Professor Fruedenthal	240
Wisconsin	Memorial Library, Serials Dept.	241
Yale	Library	242
Institutes of Technology		
Brooklyn	Library, Polytech. Aero. Labs.	243
California	Library, Guggenheim Aero. Labs.	244
Illinois (Memorial Inst		245
Massachusetts	Library	246
		247-257

DOCUMENT CONTROL DATA

1. Security Grading/Release Limit (a) Document Content: Uncl (b) This page: Unclassified 4. Title and Sub-Title: The Dist	assified	7
Personal Authors Jacqueline Corporate Author(s) A.R.L.	A A A A A A A A A A A A A A A A A A A	ISTRUC NOTE-4
7. Data on fracture toughness probability distributions. The three parameters are estimated for spe	ee parameter extreme	alysed for conformity with three value distribution is selected, and
8. Computer Program(s)—Titles a	and Language	ØØ8 65Ø
9. Descriptors Fracture properties Toughness		11. Cosati Classifications 2012, 1201, 1106
Statistical distribution High strength steel		12. Task Reference DSTF 10
	~	12 Sansaring Agency Deference
75.55.	Group) R.A.N.R.L. S.T.I.B.	13. Sponsoring Agency Reference DST 76/133

DEPARTMENT (F DEFENCE DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION AERONAUTICAL RESEARCH LABORATORIES

STRUCTURES NOTE 429

THE DISTRIBUTION OF FRACTURE TOUGHNESS:
DATA FOR D6ac STEEL

by

Jacqueline Coyle, J. M. Grandage and D. G. Ford

Erratum

The last words of paragraph 3, page 2 "... the fit," should be extended to read "... the fit is inadequate."