[Total No. of Printed Pages—4

Seat	2
No.	~;5 ⁾

[5667]-1007

F.E. (All Branches) (I Sem.) EXAMINATION, 2019 BASIC ELECTRICAL ENGINEERING (2019 **PATTERN**)

Time: 2½ Hours

Maximum Marks: 70

- Answer Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6 and Q. 7 or Q. 8.
 - Neat diagram must be drawn wherever necessary.
 - Figures to the right indicate full marks.
 - (iv)Use of Non-Programmable Scientific Calculators is allowed.
 - Assume suitable data, if necessary. (v)
- Define active, reactive and apparent power. State their units. 1. (a) Also draw the power triangle for R-L circuit.
 - (*b*) What is series resonance? Derive the expression for resonant frequency. [6]
 - 150 V.
 e : 150 V. The R-L circuit when supplied by 180V, 50 Hz ac voltage, (c) the voltage drop across the inductance is 150 V. The current drawn by the circuit is 5 A. Calculate [8]
 - (i)inductive reactance
 - (ii)inductance
 - (iii)resistance
 - V_{R} (iv)
 - P.F. (v)
 - (vi)Phasor diagram.

P.T.O.

- 2. (a) Obtain the expression for current, when voltage $v = V_m$, sin ωt is applied across purely inductive circuit. [4]
 (b) Derive the expression for power, when voltage $v = V_m$, sin ωt is applied across R-L series circuit. Draw the phasor
 - (c) The ac voltage given by $v=141.4 \sin{(100 \pi t + \pi/3)}$ Volt, when applied to certain circuit, resultant current is $i=7.07 \sin{(100 \pi t + \pi/6)}$ Amp. Draw the phasor diagram and Find: [8]
 - $\vec{l}(i)$ impedance

diagram.

- (ii) circuit elements
- (iii) active, reactive and apparent power.
- $\mathbf{3.}$ (a) Define:

[3]

[6]

- (i) phase sequence
- (ii) balanced and unbalanced load.
- (b) Derive the emf equation of 1-phase transformer.
- (c) Three identical impedances each of 8 + j6 Ω are connected in star across 3-ph, 415 V, 50 Hz ac supply. Calculate :
 - (i) line voltage, phase voltage
 - (ii) phase current, line current
 - (iii) active power
 - (iv) When same impedances are connected in delta across the same supply voltage, find active power. [8]

- 4. (a) Why are steel laminations used for construction of transformer core? Sketch different types of laminations used for core. [3]
 - (b) What are losses taking place in the transformer? State the parts in which they takes place. How to minimize these losses?
 - (c) Obtain the relation between phase values and line values of voltage and current in case of balanced star connected 3-ph inductive load. Assume phase sequence RYB. Draw the necessary phasor diagram.
- 5. (a) Define the ideal and practical voltage sources. Draw their V-I characteristics. [4]
 - (b) Find current flowing through AB using Kirchhoff's loop analysis for the circuit shown in Fig. 5(b). All resistances are in Ω . [6]

Fig. 5(b)

(c) Derive the equations to convert Delta connected resistive circuit into equivalent star circuit. [8]

[5667]-1007 3 P.T.O.

6.	(a)	State and explain KCL & KVL. [4	4]						
	<i>(b)</i>	Define:							
		(i) active & passive network							
		(ii) linear & nonlinear network.							
		(iii) unilateral & bilateral network.	3]						
	(<i>c</i>)	Find current flowing through 3 Ω using Superposition theorem							
		for the circuit shown in Q $5(b)$ Fig. $5(b)$.	8]						
	(
7.	(<i>a</i>)	Define temperature coefficient of resistance. State the factor	'S						
		on which it depends.	3]						
	(b)	Compare lead acid battery and lithium ion battery. (6 point	S						
	8.	only).	3]						
	(c)	The electrical load of a bungalow is as follows. Find:							
		(i) daily energy consumption in kWh.							
		(ii) monthly electricity bill for the month of 30 days at the	e						
		rate of Rs 6/unit.							
		(I) Tubes 40 W 06 nos 6 hrs/day	. B						
		(II) Fans 60 W 04 nos 10 hrs/day	P						
		(III) Washing machine 2 kW 01 no 01 hr/day							
		(IV) Geyser 2 kW 01 no 02 hrs/day	<i>T</i>						
		(V) TV 100 W 01 no 06 hrs/day [8	3]						
		Or Or							
8.	(<i>a</i>)	State the applications of lead acid battery.	3]						
	<i>(b)</i>	Prove that $\alpha_2 = \alpha_1/1 + \alpha_1 (t_2 - t_1)$, all the symbols have	'e						
	their appropriate meaning. (c) Explain the operation of Lithium ion battery with constru								
		& chemical reactions during charging and discharging. Also stat	e:e						
		its applications.	3]						

Total No. of Questions: 8]	30	SEAT No.:
P6489		[Total No. of Pages : 4

[5868] 105

F.E. (All Branches)

103004 : BASIC ELECTRICAL ENGINEERING (2019 Pattern) (Semester - I/II)

Time: 2½ Hours] [Max. Marks: 70 Instructions to the candidates:

- 1) Solve Q Lor Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Figures to the right indicate full marks.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Assume suitable additional data, if necessary.
- 5) Use of non-programmable calculator is allowed.
- Q1) a) Define and state the unit of admittance, conductance & susceptance.Also draw the admittance triangle for inductive circuit. [4]
 - b) Obtain the expression for current and power, when voltage $v = V_m$ sin ωt is applied across purely resistive circuit. Also draw the waveform for voltage, current & power on common X-axis. [6]
 - c) The series circuit having resistance 5 Ω , inductance 0.1 H and capacitance 150 μF is connected to 1-phase, 200 V, 50 Hz AC supply. Calculate
 - i) Inductive reactance XL
- ii) Capacitive reactance Xc
- iii) Net reactance
- iv) Impedance Z
- v) Current drawn by the circuit vi) Power factor
- vii) Active power P
- viii) Reactive power

OR

- Q2) a) Define and state the unit of active, reactive and apparent power in case of single phase circuit. Draw the power triangle.[4]
 - b) Derive the expression for resonant frequency and comment on impedance, current and power factor in case of series resonance circuit. [6]
 - c) Derive the expression for power, when voltage v = V_m sin ωt is applied across R-L series circuit. Also draw the waveform for voltage, current & power on common X-axis.

<i>Q3</i>)	a)	Wha	at is phase sequence? State it's any two applications.	3]	
	b)	State the relation between:			
		i)	Phase voltage and line voltage		
		ii)	Phase current and line current in case of balanced delta connected 3-ph load. Using above relations, obtain the expressions for 3-pactive power and 3-ph reactive power.		
	c)	W a	0 kVA, 1000/250 V, 1-ph 50 Hz transformer has iron loss of 100 and copper loss 400 W, when its primary draws current of 50.		
		ii)	Efficiency at half load and power factor = 1 lag.		
		9	OR		
<i>Q4</i>)	a) (Wha	at are the losses in the transformer? State the parts in which the	Эу	
		×take	place.	3]	
	b)	Deri	ve the EMF equation of single phase transformer.	6]	
	c) Three identical impedances each of $6+j8~\Omega$ are connected in st 3-ph, 415 V, 50 Hz ac supply. Determine				
		i)	Line voltage	5	
		ii)	Phase voltage	ز	
		iii)	Phase current and line current		
		iv)	3-ph active reactive and apparent power		
Q5)	a)	Defi	ne the practical voltage source & explain it by means of	4]	
		i)	Symbol of representation		
		ii)	Value of internal resistance		
		iii)	Graphs between V and I		
	b)		ve the equations to convert Delta connected resistive circuit in valent Star circuit.	to 6]	
[5868	3]-1 0)5	2		

c) For the circuit given in fig 5c, write down the steps to find current through PQ using Superposition Theorem. [8]

Q6) a) State and explain KCL & KVL

[4]

b) Calculate the current flowing through 6 Ω (AB) for the circuit shown in fig 6b, using Kirchhoff's Laws. [6]

c) Calculate the current flowing through 6 Ω (AB) for the circuit shown in question 6b, using Thevenin's Theorem. [8]

Q7) a) Define resistivity of the material & state the factors on which it depends.

b) Explain construction and working principle of Lithium Ion battery and state it's any two applications. [6]

c) Derive an expression for insulation resistance of a single core cable.

Draw the necessary diagram. Also comment on insulation resistance when [8]

- Two cables are connected in series and i)
- ii) In parallel

- a) Write the name of materials used for anode, cathode and electrolyte in (0.8)case of Lead Acid Battery. State it's any three applications. [3]
 - b) If α_1 and α_2 are the RTC of a conducting material at t_1^0 C and t_2^0 C

respectively prove that
$$\alpha_2 = \frac{\alpha_1}{1 + \alpha_1(t_2 - t_1)}$$
 [6]

- A water pump lifts 12000 litre of water to a height of 15 m per minute. The efficiency of motor and pump is 75% & 80% respectively. Calculate [8]
 - i) Input power to motor in kW
 - Daily energy consumption if pump is used 04 hrs a day
 - Monthly electricity bill as per above daily uses for the month of iii) 30 days at the rate of 10 Rs/unit.