Homework 8

Problem 1. We have 27 fair coins and one counterfeit coin (28 coins in all), which looks like a fair coin but is a bit heavier. Show that one needs at least 4 weighings to determine the counterfeit coin. We have no calibrated weights, and in one weighing we can only find out which of two groups of some k coins each is heavier, assuming that if both groups consist of fair coins only the result is an equilibrium.

Solution. Each weighting has 3 possible outcomes, and hence 3 weightings can only distinguish one among 3³ possibilities.

Problem 2. 1. Prove that, for every integer n, there exists a coloring of the edges of the complete graph K_n by two colors so that the total number of monochromatic copies of K_4 is at most $\binom{n}{4}2^{-5}$.

2. Give a randomized algorithm for finding a coloring with at most $\binom{n}{4}2^{-5}$ monochromatic (i.e. single-color) copies of K_4 that runs in expected time polynomial in n.

Solution.

- 1. Coloring every edge in K_4 by red or blue with probability 1/2. The expected value of the total number of monochromatic copies of K_4 is then $2 \times \binom{n}{4} \times \left(\frac{1}{2}\right)^6$. Then there must exist some coloring scheme where the total number of monochromatic copies of K_4 is less or equal to $\binom{n}{4}2^{-5}$ (otherwise the expectation would be strictly larger than $\binom{n}{4}2^{-5}$.
- 2. Color each edge independently and uniformly. Let $p = Pr(X \le {n \choose 4}2^{-5})$ where X is the number of chromatic K_4 .

$${\binom{n}{4}} 2^{-5} = \mathbf{E}(X)$$

$$= \sum_{i \le \binom{n}{4}} 2^{-5} i \cdot Pr(X = i) + \sum_{i > \binom{n}{4}} 2^{-5} i \cdot Pr(X = i)$$

$$\geq p + (1 - p) \left(\binom{n}{4} 2^{-5} + 1 \right)$$

which implies $p \ge \frac{32}{\binom{n}{4}}$. The expected number of sampling before finding a suitable coloring is $1/p = \frac{\binom{n}{4}}{32}$. For each sampling, the time needs to count the number of chromatic K_4 is bounded by $\binom{n}{4}$ which is also polynomial. Thus the expected running time of this algorithm is polynomial.

Problem 3. Use the Lovasz local lemma to show that if

$$4\binom{k}{2}\binom{n}{k-2}2^{1-\binom{k}{2}} \le 1$$

then it is possible to color the edges of K_n with two colors so that it has no monochromatic (i.e. single color) K_k subgraph.

Solution. E_i : the i-th K_k is monochromatic. $Pr(E_i) = 2^{1-\binom{k}{2}}$. Consider the dependency graph, for any different E_i and E_j , they are adjacent if the corresponding K_k share at least one edge. Thus the degree of the dependency graph is bounded by $\binom{k}{2}\binom{n}{k-2}$.

According to the Lovasz local lemma, it is possible that none of the E_i happens under the given inequality.