Biochemistry of Oxidative P'n

- 1. Pathway of the e- from NADH \rightarrow O₂
- 2. Chemiosmotic Hypothesis
- 3. Synthesis of ATP

The Chemiosmotic Hypothesis

- The accepted model for coupling oxidation to P'n.

- Free energy of electron transport is harnessed by pumping H⁺ from the matrix to the intermembranal space (cytosol) to create a proton gradient.

Evidence that supports the chemiosmotic hypothesis:

- e- transport correlates with generation of a proton gradient
- 2. An artificial pH gradient leads to ATP synthesis in intact mitochondria
- 3. Complex I,III, and IV are proton pumps
- 4. A closed compartment is essential
- 5. Proton carriers (across IMM) "uncouple" oxidation from P'n.

6. ATP Synthesis occurs in artificial liposomes in response to light, if the ATP sythase is reconstituted with bacterial rhodopsin

$\Delta G = -mF\Delta \Psi - 2.3RT\Delta pH$

In respiring mitochondria:

$$\Delta \Psi = \sim 0.18 \text{ V}$$

$$\Delta$$
 pH = ~1 pH unit

So:
$$\Delta G = -(1)(23 \text{ kcal/mol/V})(0.18 \text{ V}) - (1.4 \text{ kcal/mol})(1) = -5.5 \text{ kcal/mol}(23.3 \text{ kJ/mol})$$

Therefore: pumping 1 mole of H+ requires 5.5 kcal

Assuming that oxidation of 1 mol NADH results in 10 mol H⁺ being pumped, 55 kcal is required.

Synthesis of ATP requires 12 kcal/mol. Therefore 2.5 mol ATP's can easily be made from 1 mol NADH.

Biochemistry of Oxidative P'n

- 1. Pathway of the e- from NADH \rightarrow O₂
- 2. Chemiosmotic Hypothesis
- 3. Synthesis of ATP

ATP Synthase

Science 14 January 2005 Science Vol. 207 No. 5707

Vol. 307 No. 5707 Pages 165–300 \$10

MAAAS

Coupling H⁺ translocation through ATP Synthase with ATP synthesis

Free energy of H⁺ translocation "forces" an internal cam shaft to rotate, which changes the conformation of each subunit during one complete turn.

Inhibitors of Oxidative Phosphorylation

- 1. Inhibitors of Complexes I, III, & IV.
- 2. Oligomycin antibiotic which binds to ATP synthase and blocks H⁺ translocation.
- 3. Uncouplers:
 - a) Dinitrophenol (DNP).

b) Ionophores

- i) Valinomycin carries charge but not H+'s.
- Dissipates electrical gradient.
- ii) Nigericin carries protons but not charge.
- Dissipates chemical gradient. (due to H+)

- c) Thermogenin active component of brown fat.
 - acts as a H⁺ channel in the IMM of brown fat mitochon.
 - effect: P/O << 1.

Regulation of Thermogenin Conductance

**Uncoupling (and heat generation) occur only if plenty of FFA substrate is available. If not, ATP synthesis prevails.

ATP Inventory

For homework: Rationalize the following:

From 1 Glucose

10 NADH 25 ATP 2 FADH₂ 3 ATP 2 ATP 2 ATP 32 ATP

Fates of cytosolic NADH

Cytosolic NADH enters the mitochondria via the malate-aspartate shuttle

End of Oxidative Phosphorylation

Glycogen Breakdown and Synthesis

Chapter 15 Lehninger

Please read on your own: Figures 25, 27, 29, 30, 34, 37