

05 ANOVA und Co.

Dominic Schmitz & Janina Esser

	abhängige Variable(n)	unabhängige Variable(n)	konfundierende Variable(n)
one-way ANOVA	1 numerische	1 kategorische	n.a.
two-way ANOVA	1 numerische	2 kategorische	n.a.
one-way MANOVA	2+ numerische	1 kategorische	n.a.
two-way MANOVA	2+ numerische	2 kategorische	n.a.
one-way ANCOVA	1 numerische	1 kategorische	1+ numerisch
two-way ANCOVA	1 numerische	2 kategorische	1+ numerisch
MANCOVA	2+ numerische	1+ kategorische	1+ numerisch

Beispieldaten

Für die folgenden Beispiele werden wir Daten folgender Studie nutzen:

Compensatory Vowel Shortening in German¹

Stressed Vowels sind k\u00fcrzer je nachdem wie viele Konsonanten ihnen folgen:

¹Schmitz, D., Cho, H.-E., & Niemann, H. (2018). Vowel shortening in German as a function of syllable structure.

Proceedings 13. Phonetik Und Phonologie Tagung (P&P13), 181–184.

Beispieldaten

• Für die folgenden Beispiele werden wir Daten folgender Studie nutzen:

Compensatory Vowel Shortening in German¹

 Unabhängig von diesem Vowel Shortening gilt, dass offene Vokale länger sind als halb-offene Vokale, und halb-offene Vokale sind länger als geschlossene Vokale:

¹Schmitz, D., Cho, H.-E., & Niemann, H. (2018). Vowel shortening in German as a function of syllable structure.

Proceedings 13. Phonetik Und Phonologie Tagung (P&P13), 181–184.

	abhängige Variable(n)	unabhängige Variable(n)	konfundierende Variable(n)
one-way ANOVA	1 numerische	1 kategorische	n.a.
two-way ANOVA	1 numerische	2 kategorische	n.a.
one-way MANOVA	2+ numerische	1 kategorische	n.a.
two-way MANOVA	2+ numerische	2 kategorische	n.a.
one-way ANCOVA	1 numerische	1 kategorische	1+ numerisch
two-way ANCOVA	1 numerische	2 kategorische	1+ numerisch
MANCOVA	2+ numerische	1+ kategorische	1+ numerisch

ANOVA – one-way

- = one-way analysis of variance
- Erweiterung des t-Tests für die Analyse von 1 abhängigen kontinuierlichen
 Variable anhand von mehr als 2 Gruppen von 1 kategorischen Variable

- Die Datenpunkte der abhängigen Variable müssen unabhängig voneinander sein → siehe Studiendesign
- Die Datenpunkte, die zu einem Level der kategorischen Variable gehören, müssen normalverteilt sein → Shapiro-Wilk Test
- Die Normalverteilungen (vorheriger Punkt) müssen die gleiche Varianz aufweisen
 - → Levene's Test

ANOVA – one-way

Beispiel

duration ~ vowel

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
vowel	4	0.085	0.021	5.998	0.000 ***
Residuals	443	1.578	0.004		

vowel: $\eta^2 = 0.05$

	abhängige Variable(n)	unabhängige Variable(n)	konfundierende Variable(n)
one-way ANOVA	1 numerische	1 kategorische	n.a.
two-way ANOVA	1 numerische	2 kategorische	n.a.
one-way MANOVA	2+ numerische	1 kategorische	n.a.
two-way MANOVA	2+ numerische	2 kategorische	n.a.
one-way ANCOVA	1 numerische	1 kategorische	1+ numerisch
two-way ANCOVA	1 numerische	2 kategorische	1+ numerisch
MANCOVA	2+ numerische	1+ kategorische	1+ numerisch

ANOVA – two-way

- = two-way analysis of variance
- Erweiterung des t-Tests für die Analyse von 1 abhängigen kontinuierlichen
 Variable anhand von mehr als 2 Gruppen von 2 kategorischen Variablen

- Die Datenpunkte der abhängigen Variable müssen unabhängig voneinander sein → siehe Studiendesign
- Die Datenpunkte, die zu einem Level der kategorischen Variable gehören, müssen normalverteilt sein → Shapiro-Wilk Test
- Die Normalverteilungen (vorheriger Punkt) müssen die gleiche Varianz aufweisen
 → Levene's Test

ANOVA – two-way

Beispiel

duration ~ vowel + structure

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
vowel	4	0.085	0.021	8.866	0.000 ***
structure	2	0.515	0.258	106.948	0.000 ***
Residuals	441	1.062	0.002		

vowel: $\eta^2 = 0.07$

structure: $\eta^2 = 0.33$

	abhängige Variable(n)	unabhängige Variable(n)	konfundierende Variable(n)
one-way ANOVA	1 numerische	1 kategorische	n.a.
two-way ANOVA	1 numerische	2 kategorische	n.a.
one-way MANOVA	2+ numerische	1 kategorische	n.a.
two-way MANOVA	2+ numerische	2 kategorische	n.a.
one-way ANCOVA	1 numerische	1 kategorische	1+ numerisch
two-way ANCOVA	1 numerische	2 kategorische	1+ numerisch
MANCOVA	2+ numerische	1+ kategorische	1+ numerisch

MANOVA - one-way

- = one-way multivariate analysis of variance
- Erweiterung des t-Tests für die Analyse von 2 abhängigen kontinuierlichen
 Variablen anhand von mehr als 2 Gruppen von 1 kategorischen Variable

- Die Datenpunkte der abhängigen Variable müssen unabhängig voneinander sein → siehe Studiendesign
- Die Datenpunkte, die zu einem Level der kategorischen Variable gehören, müssen normalverteilt sein → Shapiro-Wilk Test
- Die Normalverteilungen (vorheriger Punkt) müssen die gleiche Varianz aufweisen
 - → Levene's Test

MANOVA – one-way

Beispiel

duration + rate ~ structure

duration	Df	Sum Sq	Mean Sq	F value	Pr(>F)
structure	2	0.517	0.259	100.52	0.000 ***
Residuals	445	1.145	0.003		
rate	Df	Sum Sq	Mean Sq	F value	Pr(>F)
rate structure	Df 2	•	Mean Sq 0.001		Pr(>F) 0.981

structure: $\eta^2 = 0.16$

	abhängige Variable(n)	unabhängige Variable(n)	konfundierende Variable(n)
one-way ANOVA	1 numerische	1 kategorische	n.a.
two-way ANOVA	1 numerische	2 kategorische	n.a.
one-way MANOVA	2+ numerische	1 kategorische	n.a.
two-way MANOVA	2+ numerische	2 kategorische	n.a.
one-way ANCOVA	1 numerische	1 kategorische	1+ numerisch
two-way ANCOVA	1 numerische	2 kategorische	1+ numerisch
MANCOVA	2+ numerische	1+ kategorische	1+ numerisch

MANOVA – two-way

- = two-way multivariate analysis of variance
- Erweiterung des t-Tests für die Analyse von 2 abhängigen kontinuierlichen
 Variablen anhand von mehr als 2 Gruppen von 2 kategorischen Variablen

- Die Datenpunkte der abhängigen Variable müssen unabhängig voneinander sein → siehe Studiendesign
- Die Datenpunkte, die zu einem Level der kategorischen Variable gehören, müssen normalverteilt sein → Shapiro-Wilk Test
- Die Normalverteilungen (vorheriger Punkt) müssen die gleiche Varianz aufweisen
 - → Levene's Test

MANOVA – two-way

Beispiel

duration + rate ~ structure + vowel

duration	Df	Sum Sq	Mean Sq	F value	Pr(>F)
structure	2	0.517	0.259	107.415	0.000 ***
vowel	4	0.083	0.021	8.633	0.000 ***
Residuals	441	1.062	0.002		
rate	Df	Sum Sq	Mean Sq	F value	Pr(>F)
structure	2	0.001	0.001	0.019	0.981
vowel	4	0.023	0.006	0.190	0.944
Residuals	441	13.124	0.030		
structure: $\eta^2 = 0$	0.16				

29.03. bis 02.04.2023

vowel: $\eta^2 = 0.4$

	abhängige Variable(n)	unabhängige Variable(n)	konfundierende Variable(n)
one-way ANOVA	1 numerische	1 kategorische	n.a.
two-way ANOVA	1 numerische	2 kategorische	n.a.
one-way MANOVA	2+ numerische	1 kategorische	n.a.
two-way MANOVA	2+ numerische	2 kategorische	n.a.
one-way ANCOVA	1 numerische	1 kategorische	1+ numerisch
two-way ANCOVA	1 numerische	2 kategorische	1+ numerisch
MANCOVA	2+ numerische	1+ kategorische	1+ numerisch

ANCOVA - one-way

- = one-way analysis of covariance
- Erweiterung des t-Tests für die Analyse von 1 abhängigen kontinuierlichen
 Variablen anhand von mehr als 2 Gruppen von 1 kategorischen Variable & 1 oder mehr konfundierenden Variablen

- Die Datenpunkte der abhängigen Variable müssen unabhängig voneinander sein → siehe Studiendesign
- Die Datenpunkte, die zu einem Level der kategorischen Variable gehören, müssen normalverteilt sein → Shapiro-Wilk Test
- Die Normalverteilungen (vorheriger Punkt) müssen die gleiche Varianz aufweisen
 → Levene's Test

ANCOVA – one-way

Beispiel

duration ~ rate + structure

	Df	F value	Pr(>F)
rate	2	6.338	0.000 ***
structure	4	101.379	0.000 ***

rate: $\eta^2 = 0.014$

structure: $\eta^2 = 0.313$

	abhängige Variable(n)	unabhängige Variable(n)	konfundierende Variable(n)
one-way ANOVA	1 numerische	1 kategorische	n.a.
two-way ANOVA	1 numerische	2 kategorische	n.a.
one-way MANOVA	2+ numerische	1 kategorische	n.a.
two-way MANOVA	2+ numerische	2 kategorische	n.a.
one-way ANCOVA	1 numerische	1 kategorische	1+ numerisch
two-way ANCOVA	1 numerische	2 kategorische	1+ numerisch
MANCOVA	2+ numerische	1+ kategorische	1+ numerisch

ANCOVA – two-way

- = two-way analysis of covariance
- Erweiterung des t-Tests für die Analyse von 2 abhängigen kontinuierlichen
 Variablen anhand von mehr als 2 Gruppen von 1 kategorischen Variable & 1 oder mehr konfundierenden Variablen

- Die Datenpunkte der abhängigen Variable müssen unabhängig voneinander sein → siehe Studiendesign
- Die Datenpunkte, die zu einem Level der kategorischen Variable gehören, müssen normalverteilt sein \rightarrow Shapiro-Wilk Test
- Die Normalverteilungen (vorheriger Punkt) müssen die gleiche Varianz aufweisen
 → Levene's Test

ANCOVA - two-way

Beispiel

duration ~ rate + structure * vowel

	Df	F value	Pr(>F)
rate	1	5.859	0.000 ***
structure	2	106.930	0.000 ***
vowel	4	8.459	0.000 ***
structure:vowel	8	0.550	0.000 ***

rate:
$$\eta^2 = 0.013$$

vowel:
$$\eta^2 = 0.073$$

structure:
$$\eta^2 = 0.331$$

structure:vowel:
$$\eta^2 = 0.010$$

	abhängige Variable(n)	unabhängige Variable(n)	konfundierende Variable(n)
one-way ANOVA	1 numerische	1 kategorische	n.a.
two-way ANOVA	1 numerische	2 kategorische	n.a.
one-way MANOVA	2+ numerische	1 kategorische	n.a.
two-way MANOVA	2+ numerische	2 kategorische	n.a.
one-way ANCOVA	1 numerische	1 kategorische	1+ numerisch
two-way ANCOVA	1 numerische	2 kategorische	1+ numerisch
MANCOVA	2+ numerische	1+ kategorische	1+ numerisch

MANCOVA

- = multivariate analysis of covariance
- Erweiterung des t-Tests für die Analyse von 2 abhängigen kontinuierlichen
 Variablen anhand von mehr als 2 Gruppen von 2 oder mehr kategorischen
 Variablen & 2 oder mehr konfundierenden Variablen

- Die Datenpunkte der abhängigen Variable müssen unabhängig voneinander sein → siehe Studiendesign
- Die Datenpunkte, die zu einem Level der kategorischen Variable gehören, müssen normalverteilt sein \rightarrow Shapiro-Wilk Test
- Die Normalverteilungen (vorheriger Punkt) müssen die gleiche Varianz aufweisen
 → Levene's Test

MANCOVA

Beispiel

duration + rate ~ confound + structure

duration	Df	Sum Sq	Mean Sq	F value	Pr(>F)
confound	1	0.001	0.001	0.271	0.603
structure	2	0.519	0.260	100.924	0.000 ***
Residuals	444	1.142	0.003		
rate	Df	Sum Sq	Mean Sq	F value	Pr(>F)
rate confound	Df 1	Sum Sq 0.011	Mean Sq 0.011	F value 0.368	Pr(>F) 0.545
		•	•		` ,

confound: $\eta^2 = 0.00$ structure: $\eta^2 = 0.16$

	abhängige Variable(n)	unabhängige Variable(n)	konfundierende Variable(n)
one-way ANOVA	1 numerische	1 kategorische	n.a.
two-way ANOVA	1 numerische	2 kategorische	n.a.
one-way MANOVA	2+ numerische	1 kategorische	n.a.
two-way MANOVA	2+ numerische	2 kategorische	n.a.
one-way ANCOVA	1 numerische	1 kategorische	1+ numerisch
two-way ANCOVA	1 numerische	2 kategorische	1+ numerisch
MANCOVA	2+ numerische	1+ kategorische	1+ numerisch

Extra: Kruskal-Wallis Test

= nicht-parametrische Alternative zur ANOVA

Beispiel

duration ~ structure

$$chi-squared = 120.87$$
, $df = 2$, $p-value < 2.2e-16$

structure: $\eta^2 = 0.267$