Tic-Tac-Toe Endgame Data Set

The dataset I used for this assignment can be found at: https://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame

This is a binary classification problem. This database encodes the complete set of possible board configurations at the end of tic-tac-toe games, where "x" is assumed to have played first. The target concept is "win for x" (i.e., true when "x" has one of 8 possible ways to create a "three-in-a-row").

Results

Algorithm accuracy	Bagging accuracy	AdaBoost accuracy
65.34 %	96.35 %	96.45 %

Both the Bagging and AdaBoost algorithms increased the accuracy *significantly*. With the algorithms, the model was able to predict the classification in almost every case. By sampling many different subsets of the data and taking an average for its predicted classification, the model is able to produce a much higher accuracy. This raw database gives a stripped-down decision tree algorithm fit, which is also why Bagging helped increase the accuracy.

Extra Credit:

Dow Jones Index Data Set: https://archive.ics.uci.edu/ml/datasets/Dow+Jones+Index

Results:

Algorithm accuracy	Bagging accuracy	AdaBoost accuracy
2.93 %	18.93 %	4.13 %

For this dataset, Bagging and AdaBoost increased the accuracy slightly. In either case, the accuracy was still far below any level of significance (much smaller than 50%). The accuracy of each individual tree alone was very poor (note the 2.93 % algorithm accuracy). By taking the average of many poor trees, the aggregated predictions (Bagging and AdaBoost) were not much better.

Weka Outputs

Algorithm Output (Tic-Tac-Toe)

Bagging Output (Tic-Tac-Toe)

=== Stratified cross-validation === === Summary ===			
Correctly Classified Instances	923		96.3466 %
Incorrectly Classified Instances	35		3.6534 %
Kappa statistic	0.9179		
Mean absolute error	0.2398		
Root mean squared error	0.2751		
Relative absolute error	52.935 %	b	
Root relative squared error	57.8065 %	b	
Total Number of Instances	958		

AdaBoost Output (Tic-Tac-Toe)

=== Stratified cross-validation === === Summary ===		
Correctly Classified Instances	924	96.4509 %
Incorrectly Classified Instances	34	3.5491 %
Kappa statistic	0.9199	
Mean absolute error	0.2214	
Root mean squared error	0.2615	
Relative absolute error	48.8742 %	
Root relative squared error	54.9505 %	
Total Number of Instances	958	

Algorithm Output (Dow Jones Index)

=== Summary ===			
Correctly Classified Instances	22		2.9333 %
Incorrectly Classified Instances	728		97.0667 %
Kappa statistic	0		
Mean absolute error	0.01	67	
Root mean squared error	0.09	15	
Relative absolute error	100	olo	
Root relative squared error	100	olo .	
Total Number of Instances	750		

Bagging Output (Dow Jones Index)

=== Summary ===		
Correctly Classified Instances	142	18.9333 %
Incorrectly Classified Instances	608	81.0667 %
Kappa statistic	0.1759	
Mean absolute error	0.0149	
Root mean squared error	0.0879	
Relative absolute error	88.9805 %	
Root relative squared error	96.1342 %	
Total Number of Instances	750	

AdaBoost Output (Dow Jones Index)

=== Stratified cross-validation === === Summary ===			
Correctly Classified Instances	31	4.1333	opo
Incorrectly Classified Instances	719	95.8667	alo
Kappa statistic	0.0178		
Mean absolute error	0.0166		
Root mean squared error	0.0913		
Relative absolute error	99.4335 %		
Root relative squared error	99.817 %		
Total Number of Instances	750		