CS323: Compilers Spring 2023

Week 13: Dataflow Analysis (liveness (recap), Constant Propagation..)

- Variables are live if there exists. some path leading to its use
- Start from exit block and control flow to compute

proceed backwards against the B := 1 := A+B LiveOut(b) = $U_{i \in Succ(b)}$ LiveIn(i) exit LiveIn(b) = LiveUse(b) U (LiveOut(b) - Def(b)) //set that contains all variables //set that contains all used by block b variables defined by block b

entry

CFG with edges reversed (and initialized) for backwards analysis: is X live? (F=false, T=true)

Liveness in a CFG

- •Under what scenarios can a variable be live at the entrance of a basic block?
 - •Either the variable is used in the basic block
 - •OR the variable is live at exit and not defined within the block

CS406, IIT Dharwad 45

Liveness in a CFG

- •Under what scenarios can a variable be live at the entrance of a basic block?
 - •Either the variable is used in the basic block
 - •OR the variable is live at exit and not defined within the block

```
LiveIn(b) = <u>LiveUse(b)</u> U∷(<u>LiveOut(b)</u> - Def(b))
```

CS406, IIT Dharwad 4

- Bigger problem size:
 - Which lines using X could be replaced with a constant value? (apply only constant propagation)
 - How can we automate to find an answer to this question?

```
1. X := 2
2. Label1:
3. Y := X + 1
4. if Z > 8 goto Label2
5. X := 3
6. X := X + 5
7. Y := X + 5
8. X := 2
9. if Z > 10 goto Label1
10.X := 3
11.Label2:
12.Y := X + 2
13.X := 0
14.goto Label3
15.X := 10
16.X := X + X
17.Label3:
```

18.Y := X + 1

- Problem statement:
 - Replace use of a variable X by a constant K

- Requirement:
 - property: on every path to the use of X, the last assignment to X is: X=K
 - Same as: "is X=K at a program point?"
 - At any program point where the above property holds, we can apply constant propagation.

How can we find constants?

- Ideal: run program and see which variables are constant
 - Problem: variables can be constant with some inputs, not others – need an approach that works for all inputs!
 - Problem: program can run forever (infinite loops?) –
 need an approach that we know will finish
- Idea: run program symbolically
 - Essentially, keep track of whether a variable is constant or not constant (but nothing else)

Overview of algorithm

- Build control flow graph
 - We'll use statement-level CFG (with merge nodes) for this
- Perform symbolic evaluation
 - Keep track of whether variables are constant or not
- Replace constant-valued variable uses with their values, try to simplify expressions and control flow

Build CFG

```
x = 1;

y = x + 2;

if (y > x) then y = 5;

... y ...
```


Symbolic evaluation

- Idea: replace each value with a symbol
 - constant (specify which), no information, definitely not constant
- Can organize these possible values in a lattice
 - Set of possible values, arranged from least information to most information

16

Symbolic Evaluation

Associate with X one of the following values:

Value	Meaning
⊥ ("bottom")	This statement never executes
K ("constant")	X = K
T ("top")	X is not a constant

 Idea of symbolic execution: at all program points, determine the value of X

If X=K at some program point, we can apply constant propagation (replace the use of X with value of K at that program point)

- Determining the value of X at program points:
 - Just like in Liveness Computation in a CFG, the information required for constant propagation flows from one statement to adjacent statement
 - For each statement s, compute the information just before and after s. C is the function that computes the information:

```
C(X,s,flag)
//if flag=IN, before s what is the value of X
//if flag=OUT, after s what is the value of X
```

• **Transfer function** (pushes / transfers information from one statement to another)

Determining the value of X at program points (Rule 1):

If X=T at exit of *any* of the predecessors, X=T at the entrance of S

if $C(p_i, s, OUT) = T$ for any i, then C(X, s, IN) = T

• Determining the value of X at program points (Rule 2):

If X=K1 at one predecessor and X=K2 at another predecessor and K1 \neq K2, then X=T at the entrance of S

if $C(p_i,s,OUT)=K1$ and $C(p_j,s,OUT)=K2$ and $K1 \neq K2$ then C(X,s,IN)=T

Determining the value of X at program points (Rule 3):

If X=K at some of the predecessors and X= \bot at all other predecessors, then X=K at the entrance of S

if $C(p_i, s, OUT) = K$ or \bot for all i then C(X, s, IN) = K

Determining the value of X at program points (Rule 4):

If $X = \bot$ at all predecessors, then $X = \bot$ at the entrance of S

if $C(p_i, s, OUT) = \bot$ for all i then $C(X, s, IN) = \bot$

Determining the value of X at program points (Rule 5):

If $X = \bot$ at entrance of s, then $X = \bot$ at the exit of S

if
$$C(X,s,IN)=\bot$$
 then $C(X,s,OUT)=\bot$

Determining the value of X at program points (Rule 6):

No matter what the value of X is at entrance of s(X:=K), X=K at the exit of s

$$C(X,s(X:=K),OUT)=K$$

But previous slide said if $C(X,s,IN)=\bot$ then $C(X,s,OUT)=\bot$. So, we give priority to this.

• Determining the value of X at program points (Rule 7):

In s, assignment to X is any complicated expression (not a constant assignment).

C(X,s(X:=f()),OUT)=T

But earlier slide said if $C(X,s,IN)=\bot$ then $C(X,s,OUT)=\bot$. So, we give priority to this.

Determining the value of X at program points (Rule 8):

Value of X remains unchanged before and after s(Y:=..) when s doesn't assign to X and $X \neq Y$

$$C(X,s(Y:=..),OUT)=C(X,s(Y:=..),IN)$$

- Putting it all together
 - 1. For entry s in the program, initialize C(X,s,IN)=T and initialize $C(X,s,IN)=C(X,s,OUT)=\bot$ everywhere else
 - 2. Repeat until all program points (i.e. any s) satisfy rules 1-8
 - 1. Pick s in the CFG that doesn't satisfy any one of rules 1-8 and update information.

Putting it all together

Constant Propagation

Putting it all together

Constant Propagation

Putting it all together

Constant Propagation - Loops

Ordering of information: Generalizing

- We have been executing with symbols ⊥, T, and K.
 These are called abstract values
- Order these values as:

$$\bot$$
 < K < T

Can also be thought of as an ordering from least information to most information

Pictorially:

Ordering of information: Generalizing

- Least Upper Bound (lub): smallest element (abstract value) that is greater than or equal to values in the input
 - E.g. $lub(\bot,\bot) = \bot$, $lub(\top,\bot) = \top$, $lub(-1,1) = \top$, $lub(1 \bot) = ?$
 - Rewriting rules 1-4: C(X,s,IN)=lub{C(p_i,s,OUT) for all predecessors i)}
 - Also called as join operator. Written as: A □ B

Ordering of information: Generalizing

- Recall that in determining information at all program points:
 - "2. Repeat until all program points (i.e. any s) satisfy rules 1-8
 - Pick s in the CFG that doesn't satisfy any one of rules 1-8 and update information. "
 - How do we know that this terminates?
 - lub ensures that the information changes from lower value to higher value
 - In the constant propagation algorithm:
 - $-\perp$ can change to constant and then to T
 - \perp can change to T
 - C(X, s, flag) can change at most twice

Constant Propagation

- Exercise: what is the complexity of our constant propagation algorithm?
 - = NumS* 4 (NumS = number of statements in the program).
 - Per program point, we evaluate the C function.
 - The C function changes value at most two times (initialized to \bot first and then could change to K and then to \top).
 - There are two program points (entry/IN and exit/OUT) for every statement.

This is the complexity of the analysis per variable

How do we do the analysis considering all variables that exist in the program?

Constant Propagation (Multiple Variables)

- Keep track of the symbolic value of a variable at every program point (on every CFG edge)
 - State vector V
- What should our initial value be?
 - Starting state vector is all ⊤
 - Can't make any assumptions about inputs – must assume not constant
 - Everything else starts as \(\percap_{\text{, since}}\)
 we have no information about
 the variable at that point

Constant Propagation (Multiple Variables)

- For each statement t = e evaluate
 e using V_{in}, update value for t and
 propagate state vector to next
 statement
- What about switches?
 - If e is true or false, propagate V_{in} to appropriate branch
 - What if we can't tell?
 - Propagate V_{in} to both branches, and symbolically execute both sides
- What do we do at merges?

Handling merges

- Have two different V_{in}s coming from two different paths
- Goal: want new value for V_{in} to be safe
 (shouldn't generate wrong information), and we
 don't know which path we actually took
- Consider a single variable. Several situations:

•
$$V_1 = \bot V_2 = * \rightarrow V_{out} = *$$

•
$$V_1 = \text{constant } x, V_2 = x \rightarrow V_{\text{out}} = x$$

• V_1 = constant x, V_2 = constant $y \rightarrow V_{out} = \top$

•
$$V_1 = \top, V_2 = * \rightarrow V_{out} = \top$$

- Generalization:
 - $V_{out} = V_1 \sqcup V_2$

Result: worklist algorithm

- Associate state vector with each edge of CFG, initialize all values to ⊥, worklist has just start edge
 - While worklist not empty, do:

```
Process the next edge from worklist Symbolically evaluate target node of edge using input state vector If target node is assignment (x = e), propagate V_{in}[eval(e)/x] to output edge If target node is branch (e?) If eval(e) is true or false, propagate V_{in} to appropriate output edge Else, propagate V_{in} along both output edges If target node is merge, propagate join(all V_{in}) to output edge If any output edge state vector has changed, add it to worklist
```

Running example

Worklist

Running example

What do we do about loops?

- Unless a loop never executes, symbolic execution looks like it will keep going around to the same nodes over and over again
- Insight: if the input state vector(s) for a node don't change, then its output doesn't change
 - If input stops changing, then we are done!
- Claim: input will eventually stop changing. Why?

Loop example

Complexity of algorithm

- V = # of variables, E = # of edges
- Height of lattice = 2 → each state vector can be updated at most 2 *V times.
- So each edge is processed at most 2 *V times, so we process at most 2 * E *V elements in the worklist.
- Cost to process a node: O(V)
- Overall, algorithm takes O(EV²) time

Question

 Can we generalize this algorithm and use it for more analyses?

Constant propagation

- Step I: choose lattice (which values are you going to track during symbolic execution)?
 - Use constant lattice
- Step 2: choose direction of dataflow (if executing symbolically, can run program backwards!)
 - Run forward through program
- Step 3: create transfer functions
 - How does executing a statement change the symbolic state?
- Step 4: choose confluence operator
 - What do do at merges? For constant propagation, use join

Reaching Definitions - Example

- Goal: to know where in a program each variable x may have been defined when control reaches block b
- Definition d reaches block b if there is a path from point immediately following d to b, such that the variable defined in d is not redefined / killed along that path

```
In(b) = \bigcup_{i \in Pred(b)} Out(i)
```

```
entry
   i=m-1
 2: j=n
 3: a=u1
4: i=i+1
            6: i=u3
  i=u3
  exit
```

```
Out(b) = gen(b) \cup (In(b) - kill(b))
```

```
//set that contains all statements
that may define some variable x in
b. E.g. gen(1:a=3;2:a=4)={2}
```

//set that contains all statements
that define a variable x that is
also defined in b. E.g.

 $kill(1:a=3; 2:a=4)=\{1,2\}$

Reaching definitions

- What definitions of a variable reach a particular program point
 - A definition of variable x from statement s reaches a statement t if there is a path from s to t where x is not redefined
- Especially important if x is used in t
 - Used to build def-use chains and use-def chains, which are key building blocks of other analyses
 - Used to determine dependences: if x is defined in s and that definition reaches t then there is a flow dependence from s to t
 - We used this to determine if statements were loop invaraint
 - All definitions that reach an expression must originate from outside the loop, or themselves be invariant

Creating a reaching-def analysis

- Can we use a powerset lattice?
- At each program point, we want to know which definitions have reached a particular point
 - Can use powerset of set of definitions in the program
 - V is set of variables, S is set of program statements
 - Definition: $d \in V \times S$
 - Use a tuple, <v, s>
 - How big is this set?
 - At most |V × S| definitions

Forward or backward?

• What do you think?

Choose confluence operator

- Remember: we want to know if a definition may reach a program point
- What happens if we are at a merge point and a definition reaches from one branch but not the other?
 - We don't know which branch is taken!
 - We should union the two sets any of those definitions can reach
- We want to avoid getting too many reaching definitions → should start sets at ⊥

Transfer functions for RD

- Forward analysis, so need a slightly different formulation
 - Merged data flowing into a statement

$$IN(s) = \bigcup_{t \in pred(s)} OUT(t)$$

 $OUT(s) = \mathbf{gen}(s) \cup (IN(s) - \mathbf{kill}(s))$

- What are gen and kill?
 - gen(s): the set of definitions that may occur at s
 - e.g., $gen(s_1: x = e)$ is $\langle x, s_1 \rangle$
 - kill(s): all previous definitions of variables that are definitely redefined by s
 - e.g., $kill(s_1: x = e)$ is $\langle x, * \rangle$