Markdown Example 2

Megan Bontrager

6/23/2020

This is a markdown document

If you want this to render on github, you need to add the keep_md option as I have above. Some things still won't look as nice on the github site as they do in the html you create locally (e.g., math, kable tables).

You can have a nice, linked table of contents with the toc options.

You can run code right in here

If echo = TRUE, the code is displayed. For a more polished doc, set echo to FALSE.

```
library(tidyverse)
library(knitr)
dat = read_csv("../data/clean_vern.csv")
# source("../scripts/save_examples.R")
```

You can build plots too

With code:

```
ggplot(dat) +
  geom_boxplot(aes(x = site, y = height_cm, fill = site)) +
  guides(fill = FALSE) +
  labs(x = "Population", y = "Height (cm)")
```


Or with a relative path (can't do this with pdfs):

You can also make simple tables

Either with code:

```
# kable(dat %>% group_by(site, block) %>% summarize(n = n()))
tab1 = dat %>% group_by(site, block) %>% summarize(n = n())
kable(tab1)
```

. 11	
site bloc	k n
DPR B1	40
DPR B2	40
LV3 B1	40
LV3 B2	40
LV3 B3	25
SQ3 B1	40
SQ3 B2	31
SQ3 B3	40
WL1 B1	35
WL1 B2	34

Or by typing them in:

Variable	Definition
stem_diam_mm	Stem diameter in millimeters
$longest_leaf_mm$	Length of the longest leaf, not including petiole, in millimeters
$ m height_cm$	Height to tallest part of plant, in centimeters
$number_true_leaves$	The number of true leaves on a plant

You can also call to R in line

For example, the populations in this dataset are LV3, SQ3, DPR, WL1.

Math is not too bad

 πr^2

Interactive graphs?