

A first look at CRAFT-2009 alignment tracks

Jim Pivarski

Texas A&M University

1 September, 2009

Alignment framework automated

- (V. Khotilovich, TAMU)
- choice of what should be flexible and what should be fixed based on CRAFT-08 analysis
- ► First alignments of CRAFT-09 performed
 - observed few-mm translations, rotations in barrel wheels
 - and more interesting features in endcaps (subject of this talk)
- Interesting features in endcaps
 - ▶ unlike CRAFT-08 (or 2_2_11 CSCSkim reconstruction), we find globalMuons on both the bottoms and tops of the stations
 - even for top+bottom trigger
 - \bullet $\phi_{\rm v}$ angles of individual chambers reproduced from 2008 \to 2009, but with more complete coverage in 2009
 - \triangleright alternating even-odd structure in $r\phi$ residuals???
 - ► ME+4/2 are well-aligned (with very low statistics :)

Reminder of method

Jim Pivarski

- Propagate tracks from the tracker into the endcap
- Compare position and angle of track intersection with segment (actually linear-fit of single-hit residuals, to account for possible curvature)
- " $r\phi$ " = direction perpendicular to CSC strips (no granularity)
- $ightharpoonup \Delta r\phi$, $\Delta \frac{d(r\phi)}{dz}$ residuals interpreted as $r\phi$ translation, ϕ_y rotation

New data are more complete Jim Pivarski

Chamber angles are independent of disk misalignment, more reproducible

ME+3/2 CRAFT-2009 ϕ_v measurements

Global o position (rad)

Why do we now have top-of-CMS hits on our global Muons?

▶ The cause has not been narrowed down: multiple changes

old	new
CRAFT-2008	CRAFT-2009
CMSSW_2_2_11	CMSSW_3_1_2
CSCSkim	prompt RECO

- Common features:
 - ▶ $100 < p_T < 200$ GeV (new to the analysis: not much is lost when also requiring high-quality oblique-angle tracks)
 - ▶ final CRAFT-2008 tracker alignment and APEs
 - most plots produced with DESIGN geometry
- ▶ These are *not* bottom-only trigger data: 109459–111136
- ▶ It is, of course a good thing: with this coverage, we should be able to reliably align disks (and many individual chambers)

Agreement with beam-halo! Jim Pivarski

Wider coverage allows us to see that the correlation is real

ME-2/1 CRAFT-2008 on measurements with beam-halo alignment (red) overlaid

ME-2/1 CRAFT-2009 on measurements with beam-halo (red) overlaid

Agreement with beam-halo? Jim Pivarski

But there are some significant differences: likely real motion

ME-3/1 CRAFT-2008 on measurements with beam-halo alignment (red) overlaid

ME-3/1 CRAFT-2009 $\phi_{_{V}}$ measurements with beam-halo (red) overlaid

discontinuity at boundary = difference in alignment

 \ldots or something else related to the chambers themselves, not the track source

$\Delta r \phi$ position residuals

Jim Pivarski

Nicely completed (const + $\sin \phi + \cos \phi$) curve, but why the alteration?

ME-1/2 CRAFT-2009 rφ measurements (relative to DESIGN geometry)

Now with HW/PG geometry... Jim Pivarski 10/14

Also insensitive to a 1 cm translation in z

ME-1/2 CRAFT-2009 ro measurements (relative to HW/PG geometry)

The other projection

Jim Pivarski 11/14

Selected two neighboring chambers and plot vs. R; nothing strange

- ▶ Only affects $ME\pm x/2$. $ME\pm x/1$ look fine and $ME\pm 1/3$ has a pattern all of its own.
- ightharpoonup Complete set of $\Delta r \phi$ vs. ϕ in backup at the end of this talk
- Are even-numbered chambers mechanically connected to each other in a different way from odd-numbered chambers? Could a real motion like this have been physically introduced? (I wouldn't think so)
- Reconstruction bug? Has something to do with local reconstruction or the local \rightarrow global coordinate transformation...
 - alignment residuals constructed from CSCRecHit2Ds
 - same plotting code: only CMSSW version and primary dataset changed (see p. 5)
- Apart from this, we're in a position to do a high-quality disk alignment (unlike CRAFT-2008)

Alignment of ME+4/2?

Jim Pivarski 13/14

They exist and are not obviously misaligned; not clear if they alternate

- ▶ CRAFT-2009 dataset provides more complete coverage in ϕ , making it possible to do a real alignment
- Reason for improved coverage is unknown
- ▶ Can cross-check beam-halo ϕ_y measurements for the first time (photogrammetry could only cross-check $r\phi$ and ϕ_z)
- lacktriangle Likely that some ϕ_y angles changed by a few mrad in the past year
- ▶ $r\phi$ residuals vs. ϕ show clear (const + $\sin \phi$ + $\cos \phi$) curves (disk displacement and rotation), with a 1 cm alternation pattern superimposed
- Reason for alternation is unknown

ME-3/1 CRAFT-2009 (HW/PG geometry

ME-2/1 CRAFT-2009 (HW/PG geometry

CMS

clear 5 mm x translation

ME+2/1 CRAFT-2009 (HW/PG geometry

ME+3/1 CRAFT-2009 (HW/PG geometry

