

Technical Memorandum 7-87

LIVE FIRE AND SIMULATOR MARKSMANSHIP PERFORMANCE WITH THE M16A1 RIFLE STUDY I: A VALIDATION OF THE ARTIFICIAL INTELLIGENCE DIRECT FIRE WEAPONS RESEARCH TEST BED

VOLUME II: APPENDIXES

James P. Torre U.S. Army Human Engineering Laboratory

Jeffery L. Maxey Advanced Technology, Inc.

Admiral S. Piper U.S. Army Project Manager for Training Devices

March 1987 AMCMS Code 611102.74A0011

Approved for public release; distribution is unlimited.

U.S. ARMY HUMAN ENGINEERING LABORATORY Aberdeen Proving Ground, Maryland 21005-5001

U.S. ARMY PROJECT MANAGER FOR TRAINING DEVICES Orlando, Florida 32813

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
I. REPORT NUMBER	A186529	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Substite) LIVE FIRE AND SIMULATOR MARKSMANSHIP PERFORM 16A1 RIFLE, STUDY I: A VALIDATION OF THE		S. TYPE OF REPORT & PERIOD COVERED Final, September 1985 - November 1986
INTELLIGENCE DIRECT FIRE WEAPONS RESEARCH VOLUME II: APPENDIXES		8. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(*)		8. CONTRACT OR GRANT NUMBER(*)
James P. Torre, Jeffery L. Maxey, Admiral	S. Piper	N61339-85-D-0023
9. PERFORMING ORGANIZATION NAME AND ADDRESS Advanced Technology, Inc. 1010 Executive Center Drive Suite 200 Orlando, FL 32803		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE March 1987
		13. NUMBER OF PAGES 152
14. MONITORING AGENCY NAME & ADDRESS(II dillorer U.S. Army Project Manager for Training New	vices	15. SECURITY CLASS, (of this report)
Naval Training Systems Center, Orlando, Fl	L 32813	Unclassified
U.S. Army Human Engineering Laboratory Aberdeen Proving Ground, Maryland 21005		15a, DECLASSIFICATION/DOWNGRADING SCHEDULE
17. DISTRIBUTION STATEMENT (of the obstract entered	In Block 20, If different from	n Report)
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse elde il necessary en	d identify by block number)	
Artificial Intelligence Direct Fire Weapons Simulator Rifle Marksmanship, M16A1		(On A Simulator) imulator Versus Live Fire
19. ABSTRACT (Captions as reverse side if necessary and	l identify by block number)	
See reverse side		

The Project Manager for Training Devices (PM TRADE) together with the U.S. Army Human Engineering Laboratory (USAHEL) and Naval Training Systems Center (NTSC) are developing the Artificial Intelligence Direct Fire Weapons Research Test Bed (TB) to examine the use of expert systems to fill roles now performed by human instructors and to acquire the simulation data needed for designing future training systems for direct fire weapons.

This report describes two experiments that show the TB is a valid research tool for determining training system requirements for future direct fire weapon systems. These experiments were conducted to determine if the TB would predict real-world performance. If so, it would be a valid research tool. The experiments showed that the TB simulation predicted and could support the training of live fire rifle performance.

The first experiment involved 29 infantrymen who completed three marksmanship tasks on the TB and live fire ranges. They zeroed their rifles; slow fired 10 rounds at a stationary, distinct target; and fired at E-type silhouette targets in a day defense type scenario in which targets varied in range (60 to 300 meters), speed (0 to 12 feet per second), and exposure time (3.25 to 7.25 seconds). The results indicated that TB and field performance did not differ statistically for the rounds to zero, the standard deviation of aiming accuracy for slow fire, and proportion of targets hit for the day defense scenario.

In the second experiment nine male rifle-naive college students were taught M16Al marksmanship skills using the TB rifle simulation. These students performed in the field as well as Army trained infantrymen on the zeroing, slow fire, and defense scenario tasks.

Detailed analyses showed that the TB exhibited all of the fundamental functional relationships characteristic of man/rifle performance normally obtained in the field. These were a decline in hit probability (overall and first round) as a function of target range, exposure time, and speed.

Finally, dependent measures based on rate of firing performance differed between the TB and the field. These results indicated the need to improve the fidelity with which recoil impulse was simulated.

Because the TB and field performance were similar and did not differ statistically on the primary dependent measures for the fundamental marksmanship tasks, the conclusion was reached that the TB is a valid research tool to determine the training system requirements for future direct fire weapons systems.

LIVE FIRE AND SIMULATOR MARKSMANSHIP PERFORMANCE WITH THE M16A1 RIFLE STUDY I: A VALIDATION OF THE ARTIFICIAL INTELLIGENCE DIRECT FIRE WEAPONS RESEARCH TEST BED

VOLUME II: APPENDIXES

James P. Torre U.S. Army Human Engineering Laboratory

> Jeffery L. Maxey Advanced Technology, Inc.

Admiral S. Piper
U.S. Army Project Manager for Training Devices

March 1987

APPROVED:

OHN D. WEISZ

Director

U.S. Army Hustan Engineering Laboratory

APPROVED:

CHARD/A. LYNSFORD, Jr.

Colone

Project Manager for Training Devices

Approved for public release; distribution is unlimited.

U.S. ARMY HUMAN ENGINEERING LABORATORY Aberdeen Proving Ground, Maryland 21005-5001

U.S. ARMY PROJECT MANAGER FOR TRAINING DEVICES
Orlando, Florida 32813

CONTENTS: Volume II

	Description of Static And Moving Targets	
В.	Scenario Random Sequences	
c.<	Scenario Random Time Delays	1
0(.)	TB Hardware and Software Description	2
	Health Hazard Assessment of the TB	3
F	Human Factors Questionnaire	4
3,	ROTC Group Waiver Forms	5
н. °	Summary Analysis of Variance Tables for Primary Marksmanship Peformance Measures	5
I. '	Summary Means and Standard Deviations for Primary Marksmanship Performance Measures	8
J.	Summary Analysis of Variance Tables for Rate of Firing Marksmanship Performance Measures	10
K. 9	Summary Means and Standard Deviations for Rate of Firing Marksmanship Performance Measures	11
19	Figures Displaying Rate of Firing Marksmanship Performance	13

Accesio	n For		
NTIS		V	
DTIC			
Unanno Justific			
J (13)(11)			
Ву			
Distribu	stice /		
Δ	vailability	Codes	
Dist	Avail Les Seeci		
4-1			

APPENDIX A

DESCRIPTION OF STATIC AND MOVING TARGETS

DESCRIPTION OF STATIC AND MOVING TARGETS

STATIC TARGETS

MOVING TARGETS

							330 . 23.		
	TARGET	TARGET	TARGET EXPOSURE			TARGET	TARGET	TARGET EXPOSURE	
	SPEED	RANGE	TIME	TARGET		SPEED	RANGE	TIME	TARGET
TARGET	(FPS)	(M)	(SEC)	POSITION	TARGET	(FPS)	(M)	(SEC)	POSITION
1	Ò	60	3	L	1	6	60	3	L
2	0	60	3	C	2	6	60	3	R
3	0	60	3	R	3	6	60	5	L
4	0 ·	60	5	L	4	6	60	5	R
5	0	60	5	C	5	6	120	3	L
6	0	60	5	R	6	6	120	3	R
7	0	60	7	L	7	6	120	5	L
8	0	60	7	C	8	6	120	5	R
9	0	60	7	R	9	6	180	3	L
10	0	120	3	L	10	6	180	3	R
11	0	120	3	C	11	6	180	5	L
12	0	120	3	R	12	6	180	5	R
13	0	120	5	L	13	12	60	3	L
14	0	120	5	C	14	12	60	3	R
15	0	120	5	R	15	12	60	5	L
16	0	120	7	L	16	12	60	5	R
17	.0	120	7	C	17	12	120	3	L
18	0	120	7	R	18	12	120	3	R
19	0	180	3	L	19	12	120	5	L
20	0	180	3	C	20	12	120	5.	R
21	0	180	3	R	21	12	180	3	L
22	0	180	5	L	22	12	180	3	R
23	0	180	5	C	23	12	180	5	L
24	0	180	5	R	24	12	180	5	R
25	0	180	7	L					
26	0	180	7	C					
27	0	180	7	R					
28	0	250	3	L					
29	0	250	3	C					
30	0	250	3	R					
31	, O:	250	5	L					
32	0	250	5	C					
33	0	250	5	R					
34	0	250	7	L C					
35	0	250	7	C					
36	0	250	7	R					
37	0	300	3	R L C					
38	0	300	3	С					
39	0.	300	3	R L					
40	0	300	5	L					
41	0	300	5	C	•				
42	0	300	5	R					
43	0	300	7	L					
44	0	300	7	С					
45	0	300	7	R					

APPENDIX B

SCENARIO RANDOM SEQUENCES

RANDOM SEQUENCE ASSIGNMENTS: PARAMETRIC EXPERIMENT

GROUP	SCENA	RIO						SU	BJEC	T						
TEST BED:													**			
ALPHA	I	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	II	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
BRAVO	I	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
	11	16	17	18	19	20	21	22	23	24	25	26	27	28	29	
FIELD:																
ALPHA	I	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
	II	4	5	6	4	5	6	4	5	6	4	5	6	4	5	6
BRAVO	I	1	2	3	1	2	3	1	2	3	1	2	3	1	2	-
	TT	4	5	6	4	5	6	4	5	6	4	5	6	4	·5	_

RANDOM SEQUENCE ASSIGNMENTS: TRAINING EXPERIMENT

GROUP	SCENARIO				1	SUBJ	ECT			
		1	2	3	4	5	6	7	8	9
ROTC	I	1	2	2	3	1	2	1	3	3
	II	4	5	5	6	4	5	4	6	6

MASTER TABLE OF TARGETS

TARGET	SPEED (FPS)	RANGE (M)	TIME (SEC)	POSITION
1	o	60	3	R
2	0	60	3	С
3	0	60	3	L
4	0	60	5	R
5	0	60	5 5	C
6	0	60	5	L
7	0	60	7	L
8	0	60	7	R
9	0	60	7	С
10	6	60	3	R
11	6	60	3 3 5	L
12	6	60	5	R
13	6	60	5 3 5 5 3 3 3 5 5 5	L
14	12	60	3	R
15	12	60	3	L
16	12	60	5	R
17	12	60	5	L
18	0	120	3	R
19	0	120	3	C
20	0	120	3	L
21	0	120	5	R
22	0	120	5	C
23	0	120	5	L
24	0	120		L
25	0	120	7	R
26	0	120	7	С
27	6	120	3	R
28	6	120	3	L
29	6	120	3 5 5 3	R
30	6	120	5	L
31	12	120	3	R
32	12	120	3	L
33	12	120	5	R
34	12	120	5	L
35	0	180	3	R
36	0	180	3	C
37	0	180	3	L
38	0	180	5 3 3 5 5 5 7 7	R
39	0	180	5	C
40	0	180	5	L
41	0	180	7	L
42	0	180	7	R
. 43	0	180	7	C

MASTER TABLE OF TARGETS

TARGET	SPEED	RANGE	TIME	POSITION
#	(FPS)	(M)	(SEC)	
44	6	180	3	R
45	6	180	3	L
46	6	180	5	R
47	6	180	5	
48	12	180	3 3	L R
49	12	180	3	L
50	12	180	5	R
51	12	180	5	L
52	0	250	3 3	R
53	0	250	3	C
54	0	250	3	L
55	0	250	5	R
56	0	250	5	C '
57	0	250	5 7	C L R C L
58	0	250	7	L
59	0	250	7	
60	0	250	7	C
61	0	300	7 7 3 3 3 5 5	R C R C
62	0	300	3	C
63	0	300	3	L
64	0	300	5	R
65	0	300	5	C
66	0	300		L
67	0	300	5 7	
68	0	300	7	. R
69	0	300	7 7	L R C

TARGET #	SPEED (FPS)	RANGE (M)	TIME (SEC)	POSITION
1 2 3 4 5 6 7 8 9 10 11 12 13	000000000000000000000000000000000000000	60 60 60 60 60 60 60 60 60 60	333555777733555	R C L R C L L R C R L R L
14 15 16 17 18 19 20 21 223 24 25 27	12 12 12 12 0 0 0	60 60 60 120 120 120 120 120	3 3 5 5 3 3 3 5 5 5	R L R L R C L R C L
24 25 26 27 28 29 30 31 32 33	0 0 0 6 6 6 12 12 12 12	120 120 120 120 120 120 120 120 120 120	7 7 7 7 3 3 5 5 3	L R C R L R L R L R
35 36 37 38 39 40 41 42 43	000000000000000000000000000000000000000	180 180 180 180 180 180 180 180 180	33 35 55 57 77 77 3	R L R C L R C L L R C R
45 447 449 551 555 557 559 661 667 669	12 12 12 12 12 12 12 12 12 12 12 12 12 1	180 180 180 180 180 180 250 250 250 250 250 250 250 300 300 300 300 300 300	35553355533355577733335557777	LRLRLRCLRCLLRCRCLRCLLRC

25 69 69 57 39 65 19 69 57 39 65 19 66 27 26 26 31 26 27 26 31 26 27 26 26 31 26 27 26 26 31 26 31 26 36 31 26 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32<	I TRIA		561	<u> </u>	502	-	503	-	204		505	S	90		0.7		\$03	5	0.3	-	S10 !	511	-	515	 -	513		514		S
1. 25 69 25 129 69 57 139 45 139 65 139 66 139 67 145 17 58 17 18 57 139 45 11 30 45 17 58 17 18 56 13 66 11 130 67 145 15 17 58 17 14 42 62 69 40 10 15 49 12 40 17 46 17 46 17 46 17 46 17 46 17 46 17 46 17 46 17 46 17 46 17 46 17 46 17 46 17 46 17 46 17 46 47 46 47 46 47 46 47 46 47 46 47 47 46 47 47 46 47 47						- •) •												i 	,			i	- ,					
2. 5 48 67 18 52 55 9 46 189 67 45 17 58 46 17 18 52 58 67 18 52 58 67 18 52 58 67 18 58 18 37 18 67 68 68 67 68 </th <th>1 1-</th> <th></th> <th></th> <th>•••</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>63</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>6</th> <th></th> <th>S</th> <th>9</th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>٥١</th>	1 1-			•••							63							-	6		S	9	-							٥١
3. 17 18 32 57 33 31 51 6 11 30 5 15 15 6 11 130 5 15 6 6 15 15 15 6 15	i 2.			- .						••	25	••		_							~	4	•							Ų٠
6. 1 22 1 3 1 3 1 1 4 6 6 1 6 1 6 1 1 6 1 1 6 1	3.									••	33						9				C									_
5. 15 36 63 63 31 50 63 31 50 63 31 50 63 31 50 63 31 50 63 31 66 67 69 67 69 67 69 67 69 67 69 67 69<	**				-						13			•						_,	6	•	-							91
6. 15 6 59 52 40 31 46 12 4 12 4 12 4 12 4 12 4 12 4 12 4 13 15 15 6 13 15	.5			- ·	_	••		- ·			9 9										٣	~			_					7
7. 6 3 58 53 20 69 64 67 35 52 36 111 15 12 8. 1 26 13 140 166 67 145 180 169 139 135 131 19 12 9. 1 8 15 13 13 141 13 18 17 142 13 13 13 13 13 13 13 1	i 6.			<u>-</u> .							9										9	-								U
8. 1 24 1 40 1 13 1 40 1 66 1 67 1 45 1 50 1 69 1 39 1 35 1 31 1 9 1 2 1 18 1 5 1 1 1 42 1 1 1 64 1 21 1 13 1 22 1 43 1 29 1 29 1 29 1 13 1 40 1 22 1 43 1 22 1 43 1 22 1 43 1 22 1 43 1 22 1 43 1 22 1 43 1 22 1 43 1 22 1 43 1 22 1 43 1 22 1 43 1 22 1 43 1 22 1 23 1 23		-									20			_							~	(1)			-					_
9. 18 5 1 42 1 64 21 13 22 43 29 29 5 1 1 1 1 1 1 1 1 1				- ·							99	_									ᠬ	m								V
1. 1.<				- .	_						~										m	7			_					. 4
1. 1 3 1 31	0										1,										7	~								1.1
2. 37 2 29 13 31 25 60 25 60 20 25 69 42 33 44 45 45 45 45 45 45				 _		۰.					2.2			_							6	7								~
3. 58 9 27 34 57 63 23 15 3 37 34 30 56 4 4. 11 35 52 17 31 12 17 8 37 40 43 42 3 5 5. 130 55 5 19 14 47 18 17 18 47 47 42 3 5 6. 14 15 19 16 47 51 53 10 15 48 41 5 17 1 7. 12 13 15 19 16 47 51 53 10 15 48 41 5 1 8. 10 59 57 69 24 19 50 65 16 65 16 65 16 65 10 9. 59 10 4 49 63 36 35 24 47 47 47 47 47 47 47											~ :		S	_							0	7			••					4
4. 111 35 52 17 31 12 17 8 37 40 43 42 31 55 52 53 42 43 47 46 52 53 47 46 52 52 53 47 46 52 52 53 47 46 62 52 53 47<											21		m	_							~	m			•		••			.4
5. 30 55 5 19 34 34 49 47 44 26 52 53 4 6. 14 16 19 16 47 51 53 10 15 48 41 5 7 1 7. 22 38 9 48 40 8 6 2 17 11 14 48 50 1 8. 10 59 57 69 24 19 50 66 65 16 65 12 26 6 9. 59 10 4 4 4 4 4 4 5 5 5 5				-•							31		7								င	4							- .	Ð
6. 1 14 1 16 1 19 1 16 1 47 1 51 1 53 1 10 1 15 1 48 1 41 1 5 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ŋ										19		4								4	7								3
7. 1 22 1 38 1 9 1 48 1 40 1 8 1 6 1 2 1 17 1 11 14 1 49 1 50 1 18 8 1 10 1 59 1 10 1 59 1 57 1 63 1 24 1 19 1 50 1 66 1 65 1 16 1 65 1 32 1 26 1 6 6 1 65 1 10 1 6 5 1 32 1 26 1 6 6 1 65 1 10 1 6 5 1 32 1 26 1 6 1 6 1 6 1 10 1 6 1 6 1 10 1 10	Ó					••					17		-	_				••			80	4					••			Ψ
8. 10 59 57 69 24 19 50 66 65 16 65 32 26 69 9. 59 10 4 49 63 36 35 24 49 47 47 47 47 57 60 59 10 47 47 47 47 57 60 53 50 57 60 52 52 52 52 52 52 52 5	r										07	- .	0 :					••			_	-			-					-
9. ! 59 ! 10 ! 4 ! 49 ! 63 ! 36 ! 35 ! 24 ! 49 ! 47 ! 47 ! 47 ! 57 ! 60 . 1. ! 65 ! 27 ! 22 ! 13 ! 48 ! 38 ! 39 ! 33 ! 23 ! 44 ! 20 ! 35 ! 60 . 2. ! 52 ! 27 ! 23 ! 54 ! 30 ! 57 ! 18 ! 55 ! 26 ! 55 ! 37 ! 41 !	(CD)	_			-						54		0								9	9								2
0. 53 20 54 22 18 48 38 39 33 28 44 20 35 10 1. 65 27 23 54 30 57 18 55 26 55 37 41 2. 52 45 21 11 39 27 65 30 13 10 59 36 69 2 3. 4 42 26 41 11 35 16 19 6 36 4 22 46 59 4. 43 60 43 35 32 22 63 54 53 50 10 13 16 22 35 5. 44 49 6 59 22 44 24 7 10 33 67 39 29 3 6. 62 30 69 23 51 58 69 27 35 59 23 14 46 46 7. 46 59 12 7 35 20 54 35 56 37 37 57 8. 69 26 36 36 27 27 27 27 27 27 27 2	ď										63	•	9							٠.	_	•			_					V
1. 65 27 23 54 30 57 18 55 26 55 37 41 2. 52 45 21 11 139 27 65 30 13 10 59 36 69 2 3. 4 42 25 41 11 35 16 19 6 36 4 22 44 5 4. 43 60 43 35 32 22 63 54 53 50 10 10 12 3 5. 44 49 61 59 22 44 24 7 10 33 67 39 29 3 5. 46 59 23 51 58 69 20 35 59 23 14 46 46 7. 46 58 12 7 35 20 54 21 52 38 33 55 55 8. 68 25 36 36 39 65 60 20 14 38 32 55 54 10 5 9. 60 29 41 59 2 21 42 27 17 43 55 17 43 37 3						••			_				80								m	4			_					m
2. ! 52 ! 45 ! 21 ! 11 ! 39 ! 27 ! 65 ! 30 ! 13 ! 10 ! 59 ! 36 ! 69 ! 23	-				-				-		-		C								9	S			_					?
3. ! 4! 42 ! 26! 41! 11! 35! 16! 19! 6! 36! 4! 22! 46! 5. 4. ! 43! 60! 43! 36! 32! 22! 63! 54! 53! 50! 10! 16! 22! 35 5. ! 44! 49! 6! 59! 22! 44! 24! 7! 10! 33! 67! 39! 22! 3 6. ! 62! 30! 69! 23! 51! 58! 69! 20! 36! 59! 23! 14! 46! 46 7. ! 46! 58! 12! 7! 35! 50! 54! 21! 58! 61! 9! 9! 4! 65! 8. ! 68! 26! 36! 39! 65! 60! 20! 14! 38! 32! 52! 54! 10! 59! 9. ! 60! 46! 59! 21! 42! 27! 17! 43! 55! 17! 43! 37! 3	~							_			•		_								0	2								J
4. ! 43 ! 60 ! 43 ! 35 ! 32 ! 22 ! 63 ! 54 ! 53 ! 50 ! 10 ! 10 ! 12 ! 13 5. ! 5. ! 5. ! 5. ! 5. ! 5. ! 5. ! 5.	m				-					<u>ٺ</u> .			S								9						_ .			Ð
5. ! 44! 49! 6! 59! 22! 44! 24! 7! 10! 33! 67! 39! 29! 3 6. ! 62! 30! 69! 23! 51! 58! 69! 20! 36! 59! 23! 14! 46! 4 7. ! 46! 59! 12! 7! 35! 20! 54! 21! 58! 61! 9! 46! 4 8. ! 68! 25! 8! 46! 2! 23! 49! 35! 24! 38! 33! 55! 55! 9. ! 60! 46! 36! 39! 65! 60! 20! 14! 38! 32! 52! 54! 10! 5	4				-								7					•		- .	0		-		_					•
6. ! 62 ! 30 ! 69 ! 23 ! 51 ! 58 ! 69 ! 20 ! 35 ! 59 ! 23 ! 14 ! 46 ! 47 ! 46 ! 59 ! 21 ! 59 ! 51 ! 46 ! 46 ! 47 ! 52 ! 51 ! 52 ! 52 ! 52 ! 52 ! 52 ! 52	ΙΛ				-				-	. .	•	- .	4	_				· 			m	9			_					Ŋ
7. ! 46! 59! 12! 7! 35! 20! 54! 21! 59! 61! 9! 9! 4! 6. 8. ! 68! 25! 35! 26! 33! 33! 55! 55! 55! 59. 9. !. 60! 46! 36! 39! 65! 60! 20! 14! 38! 32! 52! 54! 10! 5. 0. ! 29! 41! 59! 21! 42! 27! 17! 43! 55! 17! 43! 37! 3	ø				_					_			හ	_							6	7	- ·				- ·			~
8. 1 68 1 26 1 8 1 46 1 2 1 23 1 49 1 36 1 24 1 38 1 33 1 55 1 55 1 59 1 60 1 20 1 14 1 38 1 32 1 52 1 54 1 10 1 5 1 0 1 29 1 41 1 59 1 2 1 2 1 4 1 1 4 1 1 4 1 5 1 1 4 1 1 4 1 1 3 1 3 1 3 1 3 1 3 1 3 1	^								•		_		0	•							-				-					Æ.
9. !. 60 ! 46 ! 36 ! 39 ! 65 ! 60 ! 20 ! 14 ! 38 ! 32 ! 52 ! 54 ! 10 ! 5 0. ! 29 ! 41 ! 59 ! 2 ! 21 ! 42 ! 27 ! 17 ! 48 ! 55 ! 17 ! 43 ! 37 ! 3	œ			- .	-					٠.	N		m	_				•.		- .								7	- ·	
0. ! 29! 41! 59! 2!! 21! 42! 27! 17! 48! 56! 17! 43! 37! 3	σ				_						6 5			_															- ·	()
	0								7		2.1					••														M

parat o received bitteries of transfer of the second of th

	RIAL		501		502	S	03	S	- + O	8	0 5	05	9	20	~	i 50	 συ	503	-	519		511		512		513		S14		51
				- ·		 -		-					·																	
	-					-					59	2	•	4		7			. -											Ø
			20		19				12 i		43	_	u) 	•		2		53	-	27		27		25		19		29		_
	m							_ .			15	~	00	S	တ															
_	•									_	8 7	9	7	m	0	_	 													~
											12	4	-		m				-											(م)
											79	7	•	m	-		5				_									М
											61		-	9	ဏ		5													S
- ·								- •			59	9	-		_		7		 .											
											36	_	S	7	S		2		-						- .					•
						_		_			17		~	-		4	-												•••	Æ.
		٠.						- .		_	25	7		-			• •		•••				••							4
										_	55	S		7		1	- ∙												- .	S
_											m	9		~		9	2										••			~
•								_		_	28	e4		-		9	•		•••											7
_											16		S	4		7	6												٠.	7
_								_			10	-	m	-		m)					_								- ·	4
											23	2	9	-		2	-													3
											19	•	5			2							- ·		- ·					7
•1											79	7	-			7	-													5
										_	23	2	6	7			; 9													1
										_	94	~		9		9	3		-			15								
				- .						_	30	4	0	4		E	- 4													
											77	2	0	9		7	2										- ·			(C)
											75		c	9		~	-													
								_			63	•	9	7		4	- ,								•••					4
										_	75	4	~	~			د								- ·			43		~
								. .			09	4	m	4		2	1 2		-									'n		2
										_	_	-		2		ī	9		-									-		S
								_		_	71	9		m		M	80		•		-						_;	24		5
	.09		33		63		22	-	i 59		37	9		S	9	2	- -	51	-							20		13		
+		1			1	-		1		!	1		1	1	1		1	1	1	1111	1	1 1 1	1				!		1	1

5 1		C.	7	7	7	Ŋ		7		
	- -				-					-
\$14	! ! !	41	21	16	56	52	57	40	37	14
	-			-			-:			_
\$13	! !	16	6 9	24	1.7	4.0	7	45	34	62
	¦ -·									-
512	i !	59	4.7	53	24	~	9	33	~	23
-							-		-	-
\$11		m	37	22	1 3	59	30	11	51	94
	i -						-1			-
\$10	 	69	40	34	54	35	51	2	53	13
	-				-	-				-
503		Ŋ	24	50	25	,	4	34	30	43
				-					-	•
208		4.1	65	23	61	53	32	99	33	68
										-
507		32	77	36	29	67	-	99.	2	4.9
- ·					••			-		-
505		32	9	17	39	56	28	67	•	16
\$05] 	26	67	•	23	50	0	4.5	r	33
- · i			-		••		, - •	-		
i. 504) 	67	9	6.3	54	(A)	6	30	4.5	3.5
(, - ·				-					
503) 	47	30	99	2.8	53	10	5.5	63	37
į										-
1 501 ! 502 ! 503		54	34	23	6 8	15			53	7
i		-						•••	-	-
501	 	27	67	16	39	75	13	99	4.1	69
				-1						
TRIAL		61.	62.	63.	.,9	65.	65.	67.	63.	69
-· •	• •••				- ·					

2																															Ţ
			-•					-						••	•••	-			 						 						į
529																					9									54	
	!															-			 						 				- .		1
\$28	i					32															28										
	!										-			••					 						 	•••					!
527	1					58					6										13									4.1	
	!										_								 						 						1
526	i																				54										
-											-			••	-•				 						 						i
\$28																					97									13	
-	Ι.																-		 					-	 						i
524																					9										
	!													••					 - .						 						į
523																					53										
												•••				-			 					-	 	- ·					i
\$22	i		m																		77									11	
																			 						 						į
\$21																					16									55	
	į																		 	-					 -						i
\$20	i					07															12										
-	į	-					-			-			- ·	••		-			 						 					••	į
\$13	1					23					4.9										67							-	63		-
-														••					 		-				 		••				1
518	1					53															9		-	36	67	_				33	1 1 1
		- ·	-		-		-	***		•				••		-,	-•		 -						 				-		1
517	1		_		30													_		-	41	7	~		36					œ	
i -	i										••								 						 	-		-	-		i
516			15	7																	55										1
i													-	••					 	-					 	•••			-		
TRIAL	1 1 1 1 1 1		1.	7.	3.	4.	5.	• 9	۲.	œ	6										20.					-				30-	
- - ·	+	- ·																	 ÷.						 						+

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 N N N N N N N N N N N N N N N N N N N		0											1111	•	1	1						
		NW40 N44									-							- :		- -		-	! !
		W = 40 N = 4				36 !			•	7	-				_			-	•			-	(L)
₩ 4 № 40 ₽ 00 ₽ 0 ₽ 0 ₽ 0 ₽ 0₩ 4 № 40 ₽ 0 ₽ 0 ₽ 0 ₽ 0₩ 5 № 40 ₽ 0 ₽ 0 ₽ 0 ₽ 0 ₽ 0₩ 5 № 40 ₽ 0 ₽ 0 ₽ 0 ₽ 0 ₽ 0 ₽ 0 ₽ 0₩ 6 № 40 ₽ 0 ₽ 0 ₽ 0 ₽ 0 ₽ 0 ₽ 0 ₽ 0 ₽ 0 ₽ 0		H 0 N H 4				i 79		- .			-· •							57 !			20		3
4 N 0 L 0 0 0 U U W 4 N 0 L 0 0 0 U U V		0 N H 4				: 09			~		-					77					_		S
2 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		· · ·				33 !				7					••						~4		~
0		N 44				2		- .		m			•••										•
				34							-6												-
0 0 0 1 0 m 3 2 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0		•								7							-					-	4
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4										m	- .												
0 11 0 12 0 14 0 15 0 14 0 15 0 14 0 15 0 14 0 15 0 14 0 15 0 15		7								9	2 !				_								3
10		9									; 2				-							-	2
2										4	į 2												9
**************************************		~		89	-	7	79		63	4	-0	5.8		40		σ		56!	26	9	25		-
4 14 18 18 18 18 18 18 18 18 18 18 18 18 18										m	- -											-	9
2 4 4 8 8 8 8 4 4 9 8 8 8 8 8 8 8 8 8 8 8		~			_,																		4
**************************************		7								-	<u>-</u> .												iv
		~			- ·					7					·								~
8 0 0 H V		4				9				m					_								(1)
9		m 				۳. -				4	-												9
2 - 1 - 2		4				1 57		- .		4					_								9
1. ! 4. 2. ! 6		ī.				43 !		- .		•					.							•••	~
2. ! 6		~				24 !				-													C 1
		2				59 i				4	 9												~
3. ! 4		~			- .					m													-4
5 ; • 7		4		4	٠.	14 :		۲.		9	.												4
5. ! 2.						37				9	<u>.</u> 6												
· •		_				15 !					 m					~							~
7. ! 3		4				57 !				S	 •							1.9 !					7
8. ! 2		7				10																	10
		~				i 59				. 5	i 6					64				-			
9 1 .0		7			. .	22 !					-									5			-

															1											1	1	- (1		
! + ·	TRIAL	<u> </u>	\$18	· · · · ·	517	-	\$18	<u> </u>	\$19	! 	\$20	¦	\$21		225		\$23		224		\$28		925) - ·	S27 !	2.5	1 6 2	55	0	ر ا	(A)
+	 	<u> </u>	1	- ·	; ! !	-	; ! !	i	! ! !	-	i !	-	; !				i ! !		 		! ! !	ļ	 	<u> </u>	-						
	61.		51	-	7	-	c		60		52		59	_	20		16		•		20		11	 .	36	_	11	2	21		7
	62.		62		35				1.9		23		33		50		99		11		7		20		12		51 i		m		Ŋ
	63.		13		6		77		58		16		10	٠.	52		13		63	•••	47		6.9		54 !		6	_	_		ľ
	- 79		34		97				61		13		37	-	23		43		99		6		69		25	_	50		0		(1)
	65.		23		20		25		5		69		17		37	_	54		94		51		32		16!		52	2	~		14
	.99		36		34		12	_	13		19		9		9		55		59		58		37		37	1-1	31	2	69		G,
	67-	-	13		99		S		51	_	1.4		45	-	H		57		35		23		6 3	_	63	•	55 !	M)	C		H
	68.	-	30		9		61		33		29		24		46		15		69		21		53	. .	47		55	•	<u>.</u>		(1)
-	6 4	-	37		-	-	6	-	0	_	5.0	_	2.0	_	77	-	36	-	23	-	24	_	5	_	2	•	1 95	5	m	_	7

ومعجرا بمددودود

APPENDIX C

SCENARIO RANDOM TIME DELAYS

TRIAL INTERVAL	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0-1	10	8	10	7	7	7	9	9	8	8	8	10	10	10	7
1-2	8	7	8	9	7	7	9	10	9	7	9	9	9	9	9
2-3	10	9	10	10	10	9	7	9	7	8	8	8	9	8	9
3-4	10	8	7	9	9	10	9	9	9	7	9	10	9	7	7
4-5	10	9	9	10	9	9	10	7	10	9	7	7	9	9	7
5-6	10	10	7	8	7	10	10	7	8	8	8	9	9	8	8
6-7	8	9	7	10	8	7	9	10	7	8	8	9	9	8	8
7-8	7	9	9	10	8	10	9	10	8	10	8	8	7	9	7
8-9	9	8	8	7	7	10	9	7	10	10	7	7	7	8	8
9-10	9	9	10	8	10	8	9	9	7	9	7	9	8	7	7
10-11	7	9	9	7	9	7	8	7	7	8	10	8	8	7	7
11-12	9	8	7	9	7	7	8	8	10	8	9	10	9	7	9
13-14	9	9	8	7	10	9	10	7	7	10	7	8	8	9	.8
14-15	10	8	10	7	8	8	7	10	8	10	7	7	8	9	10
15-16	10	10	9	7	8	8	9	9	8	10	9	9	10	9	9
16-17	7	9	10	10	10	10	8	9	7	8	9	10	7	10	7
17-18	10	9	10	10	9	7	7	9	8	8	8	7	7	8	7
18-19	9	10	8	10	8	10	8	8	9	7	10	10	10	8	8
19-20	9	9	10	10	10	9	10	9	7	9	8	9	10	10	9
20-21	9	9	8	8	7	9	8	9	10	8	9	10	10	10	7
21-22	9	7	10	9	10	10	8	10	8	9	9	9	8	8	7
22-23	7	9	9	7	10	10	10	7	9	8	10	9	7	9	9
23-24	10	9	8	9	9	9	10	10	9	8	10	7	8	9	7
24-25	9	9	8	· 7	7	8	9	10	7	9	9	8	7	7	7
25-26	9	10	9	9	10	8	10	8	8	9	10	8	10	8	8
26-27	9	10	9	7	10	9	9	8	9	7	7	7	7	9	9
27-28	10	10	10	7	9	8	7	9	9	7	8	8	9	8	10
28-29	7	7	7	8	7	8	9	10	8	7	9	7	7	8	7
29-30	10	9	9	7	8	9	9	10	7	10	10	7	10	9	10
30-31	10	8	9	9	7	7	9	8	8	8	9	7	10	7	7
31-32	10	8	8	9	7	9	10	10	7	9	10	10	8	9	7
32-33	10	7	7	7	7	7	9	7	8	7	7	8	7	10	10
33-34	8	9	9	7	7	9	9	10	10	7	8	7	7	9	7
34-35	10	7	8	9	9	8	9	8	8	8	8	8	9	9	9

TRIAL INTERVAL	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
0-1	10	10	10	9	10	8	8	9	9	10	8	9	10	10	9
1-2	8	8	10	9	7	9	9	10	7	8	7	7	10	10	9
2-3	7	8	10	8	10	8	7	9	10	8	9	10	7	9	8
3-4	8	10	9	8	9	8	10	7	10	10	10	9	7	10	7
4-5	9	10	9	8	7	8	7	10	8	8	8	8	9	7	9
5-6	7	8	9	9	8	10	10	10	7	8	9	10	9	10	10
6-7	7	8	10	9	7	9	7	8	7	10	9	8	10	8	7
7-8	10	9	7	8	8	7	10	10	8	7	8	9	8	7	9
8-9	8	8	10	7	7	10	10	10	7	9	7	10	7	9	10
9-10	10	9	8	9	10	8	7	9	8	7	8	10	10	7	9
10-11	7	8	9	10	9	9	8	8	8	9	8	8	10	9	9
11-12	9	8	9	9	9	10	8	7	7	10	7	9	7	10	7
13-14	9	9	7	8	8	10	10	8	10	9	8	9	9	7	9
14-15	10	10	8	7	9	7	7	10	8	8	7	7	8	7	7
15-16	10	8	8	7	8	9	9	10	9	10	7	8	9	10	10
16-17	7	8	10	7	10	9	10	9	8	10	9	8	7	10	10
17-18	10	8	10	9	9	7	9	7	7.	10	7	8	9	9	8
18-19	9	9	10	9	7	8	10	10	10	10	7	9	10	9	9
19-20	10	9	9	10	9	10	9	8	7	7	8	.9	7	10	10
20-21	9	10	9	8	8	9	9	9	10	8	10	9	7	9	10
21-22	9	9	7	7	8	9	8	8	7	8	10	7	10	7	7
22-23	10	7	7	9	10	9	9	7	8	8	10	10	8	8	8
23-24	7	7	9	9	8	10	8	10	8	7	8	8	9	7	9
24-25	10	9	10	7	10	8	9	7	8	9	7	10	10	10	8
25-26	10	9	8	10	8	10	10	9	8	10	10	8	9	7	7
26-27	7	8	9	7	8	8	10	8	10	7	7	8	9	8	8
27-28	9	8	10	10	9	. 8	9	8	7	9	7	10	8	7	9
28-29	9	9	10	9	9	8	9	7	9	9	9	9	8	8	9
29-30	10	7	3	10	10	9	10	7	7	10	9	7	9	7	9
30-31	7	9	8	7	9	9	7	9	10	10	7	7	10	7	7
3132	10	9	8	8	8	10	9	9	7	8	10	10	9	10	7
32-33	8	7	10	10	10	8	10	10	9	9	10	10	8	10	7
33-34	9	7	7	9	10	7	9	7	10	7	8	9	7	7	8
34-35	7	8	8	7	9	9	9	10	10	9	9	7	10	10	8
35-36	9	9	9	7	10	10	7	10	8	10	10	8	10	9	9

APPENDIX D

TB HARDWARE AND SOFTWARE DESCRIPTION

The TB is a complex multiprocessor system. It consists of integrated software and hardware that perform the functions of rifle simulation, system monitoring, target motor control, target tracking, and target and performance feedback. System organization is shown in Figure 1D.

HARDWARE DESCRIPTION

The TB hardware is divided into three subsystems: the Shooter's Station, the Target Board, and the Experimenter's Station. These subsystems are housed in a single facility laid out according to Figure 2D. Hardware components are organized according to Figure 3D.

SHOOTER'S STATION

The Shooter's Station is divided into four components: rifle simulation, rifle sensing instrumentation, shooter feedback, and firing platform.

Rifle Simulation

This component consists of a demilitarized M16Al rifle with its firing mechanism replaced by instrumentation designed to sense various rifle functions. All hardware needed to activate the rifle's functions has been retained.

A Charged Couple Device (CCD) camera is attached to the front end of the rifle barrel. It is boresighted to the rifle's front sight. This was accomplished by first approximately mechanically boresighting the camera and then by electronically positioning it precisely via the system computer.

During firing, the camera senses the point in space where first the rifle is aimed relative to target center of mass. It does this by first detecting the output of an Infrared Emitting Diode (IRED) fixed on the target and then determining the shooter's aiming error in azimuth and elevation. Next, the error data are combined with range data and gravity drop to determine the "bullet" strike point. The effects of round-to-round dispersion may be included in the determination of "bullet" strike.

If the target is moving, lead is incorporated in the "bullet" strike determination. Lead is a function of both target range and velocity. Target range is known to the system for each target. Target velocity is determined from the step count divided by the fundamental period of the system, i.e., 50 milliseconds.

"Bullet" strike as well as aiming point prior to and at the time of firing are displayed on an RGB graphics monitor located so that it may be viewed by the shooter if this is called for by an experiment or test.

To add realism, the muzzle climb associated with rifle recoil is simulated.

Figure 1D. Major components of the AI Test Bed at the time of the validation study.

Figure 2D. Layout of Test Bed facility.

Figure 3D. Test Bed hardware organization.

Appearance. Weight. Balance. and Handling Characteristics. For the most part, the TB rifle's appearance is identical to that of the M16A rifle. Exceptions include the CCD camera, an umbilical cord containing wiring connecting the rifle to the computer system, and an air hose for the recoil simulation hardware.

Removal of the rifle firing mechanism and the addition of the CCD camera and instrumentation altered the rifle's weight and weight distribution. Care was taken, however, to rebalance the rifle after the alteration. People experienced in using an actual M16Al rifle report no differences in the handling characteristics of the TB rifle compared to an actual M16Al.

Recoil Simulation. Recoil effects are simulated by a pneumatic impulse applied to the front end of the rifle barrel and normal to the direction of fire so that the barrel is displaced upwards and to the right. This displacement is approximately 22 milliradians. The direction of the pneumatic impulse is adjustable to provide up-and-to-the-right or up-and-to-the-left muzzle climb. The overall effect of the impulse is to disturb the shooter's aim point and force him to reaim between shots. The impulse is delivered via a blast of compressed air through a hose running into the TB rifle and out to its barrel. During the validation experiments air pressure was maintained at 168 to 170 psi to provide maximum muzzle climb.

Rifle Report. Rifle report is generated by a set of "bang boards" and amplified by an Altec Lansing Mixer/Preamp (Model 1692A) and an Altec Lansing Power Amp (Model 1269). The simulated report is then fed to a set of earphones worn by the shooter. The "bang boards" are activated by squeezing the rifle's trigger which is then sensed by the system software. Report level is adjustable by means of the Altec Lansing amplifiers and varies from 0 to 140 db. The "bang boards" are housed in an area behind the shooter's station.

<u>Sight Selection and Adjustment</u>. The actual rifle hardware has been retained to support this function.

<u>Charging Action.</u> The rifle's charging handle has been retained. The bolt in the upper receiver was removed. As such, there is no bolt action during simulated firing.

Reloading Action. The rifle hardware for this function has been retained.

Firing Mode Selection. The rifle hardware for this function has been retained.

<u>Trigger Operation</u>. The rifle trigger has been retained. A sensor to measure trigger displacement as a function of time has been installed. This has altered the force versus displacement characteristics of the trigger somewhat.

Rifle Camera. A CCD camera is mounted at the front end of the barrel with its optical axis parallel to the line of fire and with a vertical offset of l inch. The camera is a SONY X-37 consisting of a CCD video array, a special 300 mm lens fabricated in-house, by NTSC, and a filter to block out extraneous light (other than infrared).

Rifle Sensing Instrumentation

The rifle sensing instrumentation consists of sensors to monitor parameters associated with rifle functioning to include rear sight selection, magazine insertion/extraction, semiautomatic/automatic firing mode, and trigger position.

<u>Firing Selector Lever Position.</u> A binary sensor indicates the "automatic" and "semiautomatic" positions of the selector lever.

Rear Sight Adjustment. A binary sensor indicates the selected position of the rear sight, either battlesight or long range.

Trigger Operation. A linear travel potentiometer is mounted with the rifle trigger. As the trigger is moved, the potentiometer produces a varying voltage that indicates the position of the trigger.

Magazine. A magezine insertion/extraction feature is provided for realism and monitored to prevent rifle firing when a magazine is not inserted. Each magazine contains a capacitor which when charged produces a current pulse as the magazine is inserted into the rifle. The pulse signals that a loaded magazine has been inserted. Once discharged, the magazine must be removed from the rifle and its capacitor recharged. If it is not recharged and the magazine is reinserted into the rifle, the magazine will register empty and the rifle will not fire. Euring firing, rounds remaining are monitored to limit firing to the number normally held by a magazine, e.g., 20 to 30 rounds for the large M16Al magazines.

Shooter Feedback

Round Impact Display. An RGB monitor is used to show the shooter's aim point. The aiming point is shown before and after trigger squeeze. Before trigger squeeze, a cursor is displayed that moves as the aim point changes. The cursor is superimposed on a graphic representation of a target silhouette. After trigger squeeze, the aim and impact points at trigger squeeze are continuously displayed on the monitor.

<u>Rifle Report.</u> A pair of earphones, worn by the shooter, delivers the rifle report to the shooter's ears. The generation of the rifle report is described above.

Firing Platform

This component consists of an 8x5x3-foot rectangular stand. Two or more sandbags are located on top of the platform in front of the shooter to provide support for the TB rifle. Sandbags are also provided for the shooter to stand on to adjust the shooter's height so that targets can easily be observed on the target board. The stand allows the shooter to fire from the foxhole-supported and unsupported, the prone-supported and unsupported, and the standing positions.

TARGET BOARD

The target board is a scaled model of a shooting range. It consists of scaled E-type silhouette targets and landscaped terrain. Target scaling factors are based on the angle that would be subtended by a life-size silhouette (40" x 20") over the silhouette's actual distance from the shooter. The target board is illuminated by variable, high intensity lamps.

Target Simulation

Targets are E-type (man-shaped) silhouettes scaled to represent targets located at ranges from 50 to 300 meters. There are 9 targets. Five static pop-up targets move only vertically. They are located at the following scaled ranges: one at 50 meters, three at 250 meters, and one between the 180- and 250-meter ranges. This later target is for zeroing the rifle.

The remaining four targets move vertically and horizontally. They are located as follows: one at 60 meters, one at 120 meters, one at 180 meters, and one at 300 meters. Vertical motion is accomplished by a post-and-gear mechanism. Horizontal motion is accomplished by means of a sprocket-and-chain mechanism.

All of the moving targets move along a 6-foot track perpendicular to the shooter's line of sight. Target velocity and acceleration as well as vertical and lateral motions are microprocessor-controlled by individual stepper motors. Each motor is driven by a Darlington power amplifier. All of the drivers are interfaced to the computer system through a custom-made board consisting of a series of Cybernetics Microsystems CY512's for motor control. The target motion mechanism is housed underneath the terrain board.

Every target has an IRED mounted along its midline near the shoulder portion of the target. The IRED has a maximum power output of 12 milliwatts through a 1/16-inch diameter aperture. It emits at a peak wavelength of 880 nanometers. The IRED emissions are detected by the CCD video array in the camera mounted on the TB rifle.

Target Environment

The terrain board is 8 feet wide and 17 feet long. Its height varies from 5 to 6 feet. It is about the same height as the top of the firing platform. It slopes upwards slightly. Trees and bushes are not represented on the target board, only green grass is. The edge of the terrain board is located 20 feet from the firing platform. The terrain board is supported by a wooden structure. The terrain board is shown in Figure 4D.

EXPERIMENTER'S STATION

This station consists of an Intel R 86/380 computer system, experimenter interface, RGB graphics montior, and audio amplifier. These components are are arranged as shown in Figure 5D.

Intel® 86/380 Computer System

This system has the following compenents:

- Intel® 36/30 system controller board
- Intel ® 86/14 graphics controller board
- Intel®video graphics controller board
- Intel®ISBC 88/40 analog interface board
- · Stepper motor controller boards

System Controller Board. The 86/30 system controller board stores and retrieves data from either a 35-megabyte hard disk or an 8-inch floppy drive. It loads target movement scenarios onto the controller on the stepper motor controller board. It also performs rifle ballistics calculations. Additionally, at start-up, it displays menus which allow the experimenter to select the type of target to be displayed, the target range, the target speed (for moving targets), recoil and rifle report effects, target action on being hit, and the ballistic characteristics of the rifle/ammunition combination. In configuring the scenario required for a study, the experimenter uses only one or two keystrokes to select menu items.

Graphics And Video Controller Boards. An 86/14 graphics controller board controls the CCD camera system and two Matrox boards. One of these boards is a video frame grabber while the other generates graphics. Additionally, the 86/14 board draws the graphics presented on the RGB graphics monitor.

Figure 4D. Test Bed Target Board.

Figure 5D. Equipment layout for the Test Bed experimenter's station.

Shooter aim point and "bullet strike" are provided through an Intel R video graphics controller board. This board is installed on and interface with the 86/14 "host" microcomputer board. Communication between the two boards is supported by software in the host computer.

The main components of the video graphics board are a graphics display controller microcircuit and 32 kilobytes of random access display memory. The video board has the capability of reading and writing to the display memory using one of several preprogrammed algorithms which allow special shapes to be drawn very quickly.

Horizontal and vertical sync information for color raster are provided by the video graphics board after initialization. The raster consists of an array of 216 rows and 288 columns of dots or pixels. Each pixel has a corresponding base address in the video board's memory and can be set to any one of eight colors (black, red, blue, magenta, green, yellow, cyan, or white) by altering the contents of its memory location. Lines, arcs, and rectangles can be drawn by using special commands that activate preprogrammed algorithms on the video board. By drawing arcs, lines, and rectangles, target representations can be presented on the RGB monitor.

When the system is in operation, trajectory calculations are used to describe the location of "bullet strike" on the target. This location is converted to x and y coordinate pairs, passed to the host computer, and in turn to the video controller board. "Bullet strike" position is then displayed on the RGB monitor as a spot. This provides an instantaneous indication of where the shooter's "bullet" hit relative to target's center of mass.

Shooter tracking is displayed in a similar way. Data representative of the shooter's aim point are continuously taken prior to firing the TB rifle, passed through the host computer, and then on to the video controller board. This board then outputs to the RGB monitor a spot that shows the near real-time position of the shooter's aim point. Finally, at the time of firing, the shooter's aim point is displayed on the monitor.

Analog Interface Board. This board is an Intel® ISBC 88/40 single board measurement and control computer. It has onboard microcircuits for peripheral control, communications, and timer functions capable of performing analog to digital conversions. This board reads sensors on the TB rifle and controls the simulated recoil and rifle report sound effects.

The computer residing on this board functions as an I/O interface between the TB rifle and other TB components.

Logic levels from switches mounted in the TB rifle are sampled and stored by connecting outputs from the rifle to the peripheral interface on the 88/40 board. Analog signals such as trigger position are connected to the inputs of analog to digital converter. Two additional lines are also brought into the 88/40 board to provide interrupts signifying the exact time the trigger is pulled and when a new magazine is inserted into the TB rifle.

Rifle switches and potentiometers indicating the status of the trigger, the rear sight, and magazine insertion/extraction are monitored continuously until the trigger is snapped. This action generates an interrupt to the computer. Control signals are generated to provide a "bang" to the shooter through the headset along with recoil.

When a new magazine is inserted into the TB rifle, an interrupt is generated that initializes the magazine "round" count to 30 (31 if a round was already chambered).

Stepper Motor Controller Boards. Targets are under control of the host computer via two custom fabricated stepper motor controller boards. One board is dedicated to commanding the static pop-up targets, while the second board commands the moving targets. The two boards are interchangeable and capable of commanding 10 independent stepper motors.

Each target stepper motor is controlled by a Cybernetics Microsystems CY512. High-level commands are sent to the CY512 from the 86/30 system controller via an Intel Universal Peripheral Interface (UPI). A pair of UPI chips is resident on each stepper motor controller board. Each UPI is programmed to route scenarios to the CY512 selected by the 86/30 controller. The scenarios consist of a stream of ASCII characters that command the CY512 to move the target. The CY512 then acts as a stand-alone device controlling the stepper motors in accordance with the system controller's scenario instructions.

One UPI is programmed to keep a count of the absolute position of each stepper motor (UPI-C). For each step completed, the CY512 ouputs an active low pulse which is monitored by UPI-C. This UPI maintains position by incrementing (positive direction) or decrementing (negative direction) a counter. The UPI's internal random access memory has 10 counters. The host computer can interrupt this UPI at any time to obtain a count or "position" of the motor selected.

Experimenter Interface

This component consists of a computer terminal (alphanumeric CRT and keyboard combination) interfaced to the Intel® 86/380 system. It allows the experimenter to initialize the TB system and select firing "scenarios" for the shooter (e.g., zero task, self-paced task, known distance task, or day defense scenario task), monitor shooter performance, and control the simulation.

RGB Graphics Monitor

This monitor displays the simulated rifle round impact points before and at this time of trigger squeeze.

Audio Amplifier

This amplifier consists of an Altec Lansing Mixer/Preamp (Model 1692A), and an Altec Lansing R Power amp, (Model 1269). The audio amplifier system is used to condition the rifle report signal before routing it to a pair of earphones worn by the shooter.

APPENDIX E

HEALTH HAZARD ASSESSMENT OF THE TB

AMCSG (3 Aug 84) 1st Ind

SUBJECT: Health Hazard Assessment of the Artificial Intelligence (AI)
Research Test Bed

HQ, USAMC, 5001 Eisenhower Avenue, Alexandria, VA 22333-0001 28 Aug 84

TO: HQDA (DASG-PSP-E, LTC McAlear), WASH DC 20310-2300

1. Reference:

- a. AR 40-10, Health Hazard Assessment Program in Support of the Army Materiel Acquisition Decision Process, 15 Sep 83.
- b. MIL-STD-1474B (MI), Military Standard, Noise Limits for Army Materiel, 18 Jun 79.
- c. Telephone conversation between CPT (P) William T. Broadwater, Health Hazard Assessment Officer, AMCDE-S, and Dr. James Cronholm, PM TRADE, 27 Aug 84, subject as above.
- d. Telephone conversation between CPT (P) William T. Broadwater, and Mr. Jim Franks, Laser Microwave Division, US Army Environmental Hygiene Agency, 27 Aug 84, subject as above.
- 2. The AMC Surgeon's Office has reviewed the supporting documentation for the request for a health hazard assessment of the AI Research Test Bed. This office concurs with PM TRADE's assessment that the potential ocular and auditory hazards identified for this system do not pose actual health hazards to users of the proposed AI Research Test Bed. This concurrence is based on a review of impulse noise standards (reference 1b) and coordination with USAEHA (reference 1c) concerning the potential ocular hazard. It should be noted, however, that there is a potential ocular hazard for maintenance personnel from the infrared emitting diode within 35 centimeters of the IR source. It is recommended that appropriate warning information be posted and enforced.
- 3. Request the Office of The Surgeon General (OTSG) review the draft Systems Concept Paper (Enc 1), in accordance with paragraph 3-2.b. (2) of AR 40-10, as well as information in Enclosures 2 through 4, to determine if the material developer's assessment is valid. Concurrence or further guidance is needed no later than 7 Sep 84 so that an OTSG position can be provided to HQ TRADOC prior to test initiation.
- 4. Point of Contact for this headquarters is CPT (P) William T. Broadwater, Health Hazard Assessment Officer, AMCDE-S 274-9851.

FOR THE COMMANDER:

4 Encl

nc

The contraction of the contracti

/s/ T. Nowosiwsky
TARAS NOWOSIWSKY, M.D.
Colonel, MC
Command Surgeon

CF: AMCPM-TND-SP (w/o encls) HSHB-OA SGRD-PLC

APPENDIX F

HUMAN FACTORS QUESTIONNAIRE

HUMAN FACTORS TEST SOLDIER QUESTIONNAIRE DIRECT FIRE WEAPONS TEST BED

NAME:			_ DATE				
Direct Fire Man Please answer of comments you de	INSTRUCTIONS: Since you have been involved in the testing of the M16Al Direct Fire Marksmanship Test Bed, your opinions are very important. Please answer each question below, using the scale provided, and write any comments you desire. If you are not certain what a particular question means, please ask for help.						
1. Compared to Test Bed riflé		116Al rifle, ope	erating the ch	arging handle on the			
5	4	3	2	1			
Very Similar Comments:			Different	Very Different			
2. Compared to Test Bed rifle	was:	l6Al rifle, oper	rating the selection	ector switch on the			
	Similar		Different	Very Different			
3. Compared trifle was:	to the real N	416Al rifle, lo	ading a magazi	ne into the Test Bed			
5	4	3	2	1			
Very Similar Comments:		Borderline	Different	Very Different			
4. Compared to Bed rifle was:	to the real N	416Al rifle, un	loading a maga	zine from the Test			
5	4	3	2	1			
Very Similar Comments:	Similar	Borderline	Different	Very Different			
							

	rifle was:		include a decide, open		igger on the Test
	5	4	3	2	1
			Borderline		Very Different
6. sque			116Al rifle, the		essure required to
	5	4	3	2	1
			Borderline		Very Different
			3 Borderline		l Very Different
COMMI	encs.				
8.		to the real M		,	ar peep sight on the
8.	Compared t	to the real M		,	ar peep sight on the
8. Test Very	Compared to Bed rifle	to the real M was:	116Al rifle, ad	justing the rea	
8. Test Very Comme	Compared to Bed rifle 5 Similar ents:	to the real M was: 4 Similar	3 Borderline	justing the rea	1
8. Test Very Comme	Compared to Bed rifle 5 Similar ents:	to the real M was: 4 Similar	3 Borderline	justing the rea	l Very Different

	5	4	3	2	1
			Borderline		Very Different
	Compared to		fl6Al rifle, th	e amount of rec	coil produced by th
	5	4	3	2	1
			Borderline		Very Different
	Compared trifle was:	o the real M	116Al rifle, the	e noise level p	produced by the Tes
	5	4	3	2	1
Comm	ents:				Very Different
12		to the real M		ning (placing t	the front sight pos
		4	3	2	1 -
	5	4			
on ti Very	Similar			Different	Very Different
Very	Similar ents:	Similar			Very Different
Very	Similar ents:	Similar			

	compared to real targets, nitting stationary lest bed targets was.							
	5	4	3	2	1			
			Borderline		Very Different			
L6.	Compared t	o real targe	ets, seeing mov	ing Test Bed to	argets was:			
	5	4	3	2	1			
•			Borderline		Very Different			
17.	Compared t	o real targe	ets, hitting mov	ving Test Bed (targets was:			
	5	4	3	2	1			
			Borderline		Very Different			
18.	-	o real targe	ats, the contra		targets was:			
	5	4	3	2	, 1			
		Good	Borderline	Poor	Very Poor			
Comme	ents:							
19.	Compared t				gets on the Test			
19.	Compared t							
19. Bed v	Compared t	o a real rii	fle range, the s	size of the tar	gets on the Test			
19. Bed w Very Comme	Compared twas: 5 Good	o a real rii	fle range, the s	2 Poor	gets on the Test			
19. Bed w Very Comme	Compared twas: 5 Good	o a real rii	fle range, the s	2 Poor	gets on the Test			

	5	4	3	2	1
			Borderline		Very Different
22. carg	Compared to ets to fall		ets, the amount	of time it to	ok for Test Bed
	5	4	3	2	1
			Borderline		Very Different
	Compared t		ets, the rate a	t which slow me	oving Test Bed
	5	4	3	2	1
			Borderline		Very Different
Comm					
24.			ets, the rate a	t which fast me	oving Test Bed
24.	Compared 1		ets, the rate and	t which fast me	oving Test Bed
24. targ	Compared to the state of the st	was: 4 Similar	3 Borderline	2	1
24. targ	Compared to the state of the st	Similar	Borderline of the Test Bed	2 Different	1 Very Different
24. targ	Compared to the state of the st	was: 4 Similar	Borderline of the Test Bed	2 Different	1 Very Different

	_ No				
	Yes Ex	plain:		· · · · · · · · · · · · · · · · · · ·	
27.	Overall,	the Test B	ed zeroing task was	:	
	5	4	3	2	1
_	Good ents:		Borderline	Poor	Very Poor
			eld zeroing task per sk performance? 3	rformance,	how would you rate
			-		
			About The Same	Worse	Much Worse
Omne	BLILD.				
9.	Was ther	e any aspect	t of the Test Bed thoaced firing task?	hat may hav	ve <u>hindered</u> your
29.	Was ther	e any aspect	t of the Test Bed th	hat may hav	ve <u>hindered</u> your
29. Derfo	Was ther ormance o	e any aspect n the <u>self-</u> 1	t of the Test Bed th		
29. Derfo	Was ther ormance o	e any aspect n the <u>self-</u> 1	t of the Test Bed the		
29. perfo	Was ther ormance of No Yes Ex	e any aspect	t of the Test Bed the		
29. perfo	Was thereformance of the was thereformance of the was the commance of the was the was the commance of the was	e any aspect	t of the Test Bed the paced firing task?		
29. perfo	Was thereformance of the was thereformance of the No	re any aspect plain: re any aspect on the self-	t of the Test Bed the paced firing task?	nat may hav	ve <u>helped</u> your
29. perfo	Was thereformance of the No Yes Ex	re any aspect plain: re any aspect n the self-p	t of the Test Bed the saced firing task?	nat may hav	ve helped your
29. perfo	Was thereformance of the No Yes Ex	re any aspect plain: re any aspect n the self-p	t of the Test Bed the saced firing task? t of the Test Bed the saced firing task?	nat may hav	ve helped your

		to your fle paced firin		ng task, how	would you rate your
	5	4	3	2	1
			About The Same		
perf			of the Test Bed t scenario task?	hat may have	hindered your
	-	lain:			
perf			of the Test Bed t scenario task?	hat may have	helped your
	Yes Exp	lain:			

APPENDIX G

ROTC GROUP WAIVER FORMS

WAIVER OF CAUSE OF ACTION AND/OR CLAIM

(Date)

TRAINING STUDY

The Training Study is scheduled to begin toward the end of October or during the first part of November 1984. It will involve 20 students enrolled in a Reserve Officer Training Corps (ROTC) program in the Orlando, Florida area. All will be volunteers. They will complete a version of the U.S. Army's basic rifle marksmanship (BRM) training program. Specific training tasks will include:

Apply fundamentals of steady position, aiming, breath control, and trigger control to minimize weapon movement during firing.

Zero the M16 rifle.

Engage single static and moving targets.

Most of the training will take place at the Artificial Intelligence Test Bed, N73, Naval Training Equipment Center (NAVTRAEQUIPCEN). This training system provides a non-hazardous environment in which to learn to fire the M16Al rifle. Some preliminary training involving rifle fundamentals will be completed on a not to interfere basis with the students' classes at school. It is expected that 3 to 4 afternoon or evening sessions for about 3 hours per session will be needed for training.

Training will be conducted by PM TRADE and N73 personnel. Prior to training the students will be given a list of rules defining their conduct and duties during the study. They will be briefed on the rules and questions about the rules will then be answered. While training, the students will be constantly monitored by Government personnel. Students who fail to abide by the rules of conduct will be immediately dropped from the training.

Following training in Orlando, the students will travel to Fort Benning, Georgia at the Government's expense under Government supervision. Here they will complete live firing in exercises on U.S. Army Infantry Board (USAIB) firing ranges. This part of the study will take about 2 days to complete including travel to and from Fort Benning.

Before shooting any live rounds, the students will be briefed by experienced riflemen on rifle and range safety. During all firing the students will be under the supervision of experienced USAIB riflemen. The rules defining student conduct and duties will also be in effect during the range firing at Fort Benning.

All student travel, lodging, and subsistence will be arranged by PM TRADE personnel. All travel to and from N-73 will be by privately owned vehicles. Students will be given a training schedule and the appropriate passes to come aboard the NAVTRAEQUIPCEN. Travel to and from Fort Benning. Lodging in the Fort Benning area, and meals will be coordinated by PM TRADE in conjuction with representatives from the USAIB and the U.S. Army Infantry School at Fort Benning.

COVENANT NOT TO SUE - PRACTICAL FIELD TRAINING

STATEMENT REQUIRED BY PRIVACY ACT OF 1974

- 1. AUTHORITY: Title 10, U.S. Code 2102.
- 2. PRINICPAL PURPOSE(S): A statement releasing US Government from liability for injury, death, or damanges for ROTC cadets participating in Voluntary Off-Campus Training programs.
- 3. ROUTINE USES: Normal Personnel Actions. Disclosures of information may be provided to proper authorities in actions regarding law enforcement, legal actions as a result of injury or death, and investigations of accidents resulting from such Voluntary Off-Campus Training.

4. MANDATORY OR VOLUNTARY DISCLOSURE AND EFFECT ON INDIVIDUAL NOT PROVIDING

	voluntary. Fairlure of cadet to complete form will
	participating in that specific voluntary Off-Campus
Training Exercise.	
ı,	, residing at
(Type or print full	
	do hereby agree that in consideration for being
(Address, City, State)	
allowed to participate in _	
	(Type of Training)
conducted by (Name of	Army ROTC detachment, and
(Name of	ROTC Instructor Group)
Army supervised activity, a	ind whereas I am doing so entirely on my own initiative,
	now therefore in consideration of the permission extended to
me by the United States Arm	
	(Name of state school located)
and	through their officers and agents to take
(Name of Institut	•
	hereby, for myself, my heirs, executors, assigns, and
	ease, and forever discharge the Government of the United
States, the State of	of state school located) (Name of Institution)
	gents, and employees, acting officially or otherwise, from actions, or causes of action, on account of my death or
	which may occur from any cause during said activity or
	do further convenant and agree to hold the said Government
of the United States, the s	
Je did direct deaded, the s	(Name of state school located)

eless for any and all damage which egligence. nature of Cadet
ed/Printed Name of Cadet
Period Covered/Activity
•

APPENDIX H

SUMMARY ANALYSIS OF VARIANCE TABLES FOR PRODUCT MEASURES OF MARKSMANSHIP PERFORMANCE

TABLE OF CONTENTS

Title of Table		Tabl	e #
Summary Analysis of Variance for Number of Rounds to Zero in Test Bed and Field (Parametric Experiment)		11	น
Summary Analysis of Variance for Self-Paced Task Group Diameter	•	•	
in Test Bed and Field (Parametric Experiment)	•	. 21	H
Summary Analysis of Variance for Self-Paced Task SD of Aiming Accuracy for Test Bed and Field (Parametric Experiment)		. 31	Н
Summary Analysis of Variance for Self-Paced Task Number of Hits on Target Silhouette for Test Bed and Field	•		
(Parametric Experiment)		. 41	Н
Summary Analysis of Variance for Proportion of Static Targets			
Engaged for Parametric Experiment	•	. 51	H
Hit for Parametric Experiment		. 61	H
Summary Analysis of Variance for Number of Rounds Fired Per Static Target for Parametric Experiment		71	
Summary Analysis of Variance for Proportion of First Round Hits	•	. 71	п
for Static Targets for Parametric Experiment		. 81	H
Summary Analysis of Variance for Proportion of Moving Targets Engaged for Parametric Experiment		. 91	B
Summary Analysis of Variance for Proportion of Moving Targets	•	. 91	Π
Hit for Parametric Experiment	•	. 101	H
Summary Analysis of Variance for Number of Rounds Fired Per Moving Target for Parametric Experiment		111	u
Summary Analysis of Variance for Proportion of First Round Hits	•	. 11	п
for Moving Targets for Parametric Experiment	•	. 121	H
Summary Analysis of Variance for Number of Rounds to Zero in Test Bed and Field (Training Experiment)		1 31	и
Summary Analysis of Variance for Self-Paced Task Group Diameter	•	. 13	•
in Test Bed and Field (Training Experiment)	•	. 14	H
Summary Analysis of Variance for Self-Paced Task SD of Aiming Accuracy for Test Bed and Field (Training Experiment)		. 151	H
Summary Analysis of Variance for Self-Paced Task Number of			
Hits on Target Silhouette for Test Bed and Field			
(Training Experiment)	•	. 161	H
Engaged for the Training Experiment		. 17	H
Summary Analysis of Variance for Proportion of Static Targets		1.01	
Hit for the Training Experiment	•	. 18	H
Static Targets for Training Experiment		. 191	H
Summary Analysis of Variance for Proportion of First Round Hits		0.01	
for Static Targets for Training Experiment	•	. 201	Н
Engaged for Training Experiment		. 211	H
Summary Analysis of Variance for Proportion of Moving Targets			
Hit for Training Experiment	•	. 221	H
Moving Targets for Training Experiment		. 231	H
Summary Analysis of Variance for Proportion of First Round Hits		2/1	•
TAY MANING TOPGOTE TAY TYDINING BYNAWIMANT		',,,, L	

TABLE 1H

Summary Analysis of Variance for Number of Rounds to Zero in Test Bed and Field (Parametric Experiment)

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
Group (G)	399.18103	1	399.18103	0.91	0.3482
Error	11823.75000	27	437.91667		
Treatment (T)	26.39483	1	26.39483	0.10	0.7497
TxG	143.70517	1	143.70517	0.57	0.4586
Error	6862.95000	27	254.18333		

TABLE 2H

Summary Analysis of Variance For Self-Paced
Task Group Diameter in Test Bed and Field
(Parametric Experiment)

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
Group (G)	1023.64212	1	1023.64212	0.28	0.6038
Error	100252.97857	27	3713.07328		
Treatment (T)	5148.65033	1	5148.65033	2.19	0.1503
TxG	976.65033	1	976.65033	0.42	0.5245
Error	63409.07381	27	2348.48422		

TABLE 3H

Summary Analysis of Variance For Self-Paced
Task SD of Aiming Accuracy for Test Bed and Field
(Parametric Experiment)

urce	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
oup (G)	3.21872	1	3.21872	0.01	0.9068
ror	6228.05714	27	230.66878		
eatment (T)	58.48407	1	58.48407	0.40	0.5322
x G	7.58752	1	7.58752	0.05	0.8214
ror	3943.89524	27	146.07019		

TABLE 4H

Summary Analysis of Variance For Self-Paced
Task Number of Hits on Target Silhouette for Test Bed and Field
(Parametric Experiment)

irce	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
oup (G)	1.40895	1	1.40895	0.93	0.3444
r	41.07381	27	1.52125		
eatment (T)	2.28974	1	2.28974	1.14	0.2955
G	3.18629	1	3.18629	1.58	0.2190
or	54.33095	27	2.01226		

TABLE 5H

Summary Analysis of Variance for Proportion of Static Targets Engaged for Parametric Experiment

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
Group (G)	0.04095	1	0.04095	0.98	0.3314
Error	1.13012	27	0.04186		
Treatment (T)	0.03847	1	0.03847	1.76	0.1962
T x G	0.00194	1	0.00194	0.09	0.7682
Error	0.59135	27	0.02190		
Range (R)	1.34616	4	0.33654	28.78	0.0000
R x G	0.08140	4	0.02035	1.74	0.1464
Error	1.26285	108	0.01169		
r x R	0.02730	4	0.00682	0.56	0.6947
r x R x G	0.02998	4	0.00749	0.61	0.6555
Error	1.32437	108	0.01226		
Exposure Time (E)	2.74795	2	1.37397	73.15	0.0000
ExG	0.11653	2	0.05827	3.10	0.0531
Error	1.01431	54	0.01878		
r x E	0.01799	2	0.00899	0.56	0.5723
r x E x G	0.03076	2	0.01538	0.96	0.3878
Error	0.86138	54	0.01595		
RxE	1.29725	8	0.16216	15.86	0.0000
RXEXG	0.06276	8	0.00785	0.77	0.6317
Error	2.20773	216	0.01022		
C x R x E	0.13212	8	0.01652	1.66	0.1086
r x R x E x G	0.03634	8	0.00454	0.46	0.8848
Error	2.14399	216	0.00993		

TABLE 6H

Summary Analysis of Variance for Proportion of Static Targets Hit for Parametric Experiment

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
Group (G)	0.72123	1	0.72123	3.92	0.0581
Error	4.97021	27	0.18408		
Treatment (T)	0.23378	1	0.23378	2.66	0.1146
r x G	0.07030	1	0.07030	0.80	0.3792
Error	2.37478	27	0.08795		
Range (R)	41.56125	4	10.39031	287.09	0.0000
R x G	0.05410	4	0.01353	0.37	0.8269
Error	3.90867	108	0.03619		
C x R	0.23507	4	0.05877	1.59	0.1811
XXX	0.10033	4	0.02508	0.68	0.6070
Error	3.98108	108	0.03686		
Exposure Time (E)	18.23508	2	9.11754	235.43	0.0000
ExG	0.13048	2	0.06524	1.68	0.1951
Error	2.09130	54	0.03873		
ГхЕ	0.03943	2	0.01971	0.81	0.4486
CXEXG	0.05616	2	0.02808	1.16	0.3215
Error	1.30853	54	0.02423		
RxE	4.28811	8	0.53601	22.07	0.0000
RXEXG	0.30139	8	0.03767	1.55	0.1410
Error	5.24504	216	0.02428		
CXRXE	0.50914	8	0.06364	3.76	0.0004
C x R x E x G	0.22740	8	0.02843	1.68	0.1050
Error	3.65823	216	0.01694		

TABLE 7H

Summary Analysis of Variance for Number of Rounds Fired Per Static Target for Parametric Experiment

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
Group (G)	10.46654	1	10.46654	5.81	0.0236
Error	45.04813	25	1.80193		
Treatment (T)	117.15473	1	117.15473	54.95	0.0000
TxG	17.63045	1	17.63045	8.27	0.0081
Error	53.30357	25	2.13214		
Range (R)	6.63542	4	1.65886	5.67	0.0004
RxG	8.38563	4	2.09641	7.17	0.0000
Error	29.23756	100	0.29238		
TxR	2.50874	4	0.62718	2.60	0.0403
TxRxG	3.65785	4	0.91446	3.80	0.0065
Error	24.08235	100	0.24082		
Exposure Time (E)	72.64 16	2	36.32458	251.02	0.0000
ExG	0.48003	2	0.24001	1.66	0.2007
Error	7.23534	50	0.14471		
TxE	11.41399	2	5.70699	33.75	0.0000
TxExG	1.52716	2	0.76358	4.52	0.0157
Error	8.45487	50	0.16910		
RxE	34.26639	8	4.28330	45.28	0.0000
RxExG	0.86968	8	0.10871	1.15	0.3321
Error	18.91907	200	0.09460		
TxRxE	6.04545	8	0.75568	8.00	0.0000
TxRxExG	0.71898	8	0.08987	0.95	0.4753
Error	18.89021	200	0.09445		

TABLE 8H

Summary Analysis of Variance for Proportion
of First Round Hits for Static Targets for Parametric Experiment

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
Group (G)	0.49810	1	0.49810	2.60	0.1186
Error	5.17610	27	0.19171		
Freatment (T)	2.20935	1	2.20935	17.69	0.0003
ГхG	0.38534	1	0.38534	3.08	0.0904
Error	3.37277	27	0.12492		
Range (R)	55.28630	4	13.82158	324.83	0.0000
RxG	0.18732	4	0.04683	1.10	0.3601
Error	4.59537	108	0.04255		
r x R	0.50181	4	0.12545	2.99	0.0220
CxRxG	0.12723	4	0.03181	0.76	0.5548
Error	4.53133	108	0.04196		
Exposure Time (E)	4.03840	2	2.01920	68.33	0.0000
ExG	0.16369	2	0.08184	2.77	0.0716
Error	1.59583	54	0.02955		
CxE	0.89855	2	0.44928	13.30	0.0000
XEXG	0.04708	2	0.02354	0.70	0.5025
Error	1.82392	54	0.03378		
x E	0.85065	8	0.10633	3.91	0.0002
XEXG	0.19790	8	0.02474	0.91	0.5091
rror	5.87304	216	0.02719		
XXXE	1.11216	8	0.13902	6.06	0.0000
XRXEXG	0.26375	8	0.03297	1.44	0.1825
Error	4.95623	216	0.02295		-

TABLE 9H

Summary Analysis of Variance for Proportion of Moving Targets Engaged for Parametric Experiment

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
Group (G)	0.00094	1	0.00094	0.09	0.7707
Error	0.29413	27	0.01089		
Treatment (T)	0.00527	1	0.90527	0.37	0.5493
ТхG	0.03329	1	0.03329	2.32	0.1391
Error	0.38679	27	0.01433		
Range (R)	0.04822	2	0.02411	2.78	0.0707
RxG	0.00512	2	0.00256	0.30	0.7454
Error	0.46758	54	0.00866		
TxR	0.10727	2	0.05363	5.97	0.0045
TxRxG	0.02322	2	0.01161	1.29	0.2830
Error	0.48504	54	0.00898		
Speed (S)	0.00454	1	0.00454	0.68	0.4161
SxG	0.00094	1	0.00094	0.14	0.7092
Error	0.17955	27	0.00665		
TxS	0.01108	1	0.01108	1.97	0.1722
TxSxG	0.00103	1	0.00103	0.18	0.6729
Error	0.15217	27	0.00564		
RxS	0.00496	2	0.00248	0.70	0.4999
RxSxG	0.00209	2	0.00104	0.30	0.7452
Error	0.19080	54	0.00353		
TxRxS	0.00921	2	0.00461	1.47	0.2399
T x R x S x G	0.00849	2	0.00425	1.35	0.2674
Error	0.16967	54	0.00314		
Exposure Time (E)	0.12148	1	0.12148	17.82	0.0002
ExG	0.00295	ī	0.00295	0.43	0.5165
Error	0.18402	27	0.00682		
ГхЕ	0.00192	1	0.00192	0.20	0.6560
T x E x G	0.01054	1	0.01054	1.11	0.3005
Error	0.25544	27	0.00946		
RxE	0.07456	2	0.03728	6.58	0.00.18
RxExG	0.00559	2	0.00280	0.49	0.6130
Error	0.30583	54	0.00566		0.015
T x R x E	0.01994	2	0.00997	1.72	0.1884
T x R x E x G	0.00054	2	0.00027	0.05	0.9541
Error	0.31267	54	0.00579	0.00	017542
S x E	0.03187	1	0.03187	5.34	0.0287
SxExG	0.00170	ī	0.00170	0.28	0.5983
Error	0.16120	27	0.00597	-, -	0,3703
T x S x E	0.00454	1	0.00454	1.43	0.2426
T x S x E x G	0.00094	ī	0.00094	0.30	0.5901
Error	0.08580	27	0.00318	0.30	0.3701
RxSxE	0.00516	2	0.00258	0.57	0.5685
RxSxExG	0.00085	2	0.00042	0.09	0.9105
Error	0.24412	54	0.00452	0.09	0,7103

TABLE 10H

Summary Analysis of Variance for Proportion of Moving Targets Hit for Parametric Experiment

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
Group (G)	0.04297	1	0.04297	0.14	0.7105
Error	8.24205	27	0.30526		
Treatment (T)	1.09332	1	1.09332	4.84	0.0366
ΓxG	0.01250	1	0.01250	0.06	0.8158
Error	6.10406	27	0.22608		
Range (R)	24.13926	2	12.06963	191.73	0.0000
x G	0.05593	2	0.02796	0.44	0.6437
rror	3.39936	54	0.06295		
×R	0.28431	2	0.14215	2.62	0.0823
x R x G	0.16793	2	0.08396	1.55	0.2224
rror	2.93318	54	0.05432		
peed (S)	2.97353	1	2.97353	62.20	0.0000
хG	0.00047	1	0.00047	0.01	0.9221
rror	1.29066	27	0.04780		
x S	0.04189	1	0.04189	0.72	0.4043
x S x G	0.01136	ī	0.01136	0.19	0.6625
rror	1.57538	27	0.5835		
x S	0.27680	2	0.13840	4.27	0.0190
x S x G	0.12162	2	0.06081	1.88	0.1631
rror	1.75104	54	0.03243	_,,,,	0,100 2
x R x S	0.08420	2	0.04210	1.05	0.3566
x R x S x G	0.11581	2	0.05790	1.45	0.2445
rror	2.16275	54	0.04005	2.30	0.2445
xposure Time (E)	6.69551	i	6.69551	140.07	0.0000
x G	0.04572	ī	0.04572	0.96	0.3367
rror	1.29066	27	0.04780	0.70	0.5507
x E	1.01545	1	1.01545	22.60	0.0001
x E x G	0.01221	i	0.01221	0.27	0.6064
rror	1.21318	27	0.04493	0.27	0.0004
x E	1.11701	2	0.55850	13.72	0.0000
x E x G	0.11269	2	0.5635	1.38	0.2592
rror	2.19747	54	0.04069	1.50	0.2372
xRxE	0.04082	2	0.02041	0.57	0.5695
xRxExG	0.23047	2	0.11524	3.21	0.0481
rror	1.93745	5 4	0.03588	3.21	0.0401
x E	0.01728	1	0.01728	0.58	0.4515
x E x G	0.001728	1	0.00111	0.56	0.4313
	0.79900	27		0.04	0.04//
rror			0.02959	2 60	0 1124
x S x E	0.06142	1	0.06142	2.68	0.1134
x S x E x G	0.00216	1	0.00216	0.09	0.7616
rror	0.61943	27	0.02294	0.00	0.1//
x S x E	0.12663	2	0.06332	2.00	0.1446
x S x E x G	0.22577	2	0.11288	3.57	0.0349
ror	1.70580	54	0.03159		
x R x S x E	0.08935	2	0.04468	1.13	0.3318
x R x S x E x G	0.11952	2	0.05976	1.51	0.2309
rror	2.14251	54	0.03968		

TABLE 11H

Summary Analysis of Variance for Number of Rounds Fired Per Moving Target for Parametric Experiment

Group (G) Error Treatment (T) T x G Error Range (R) R x G Error T x R T x R x G Error	10.31117 54.35338 40.43519 6.91782	1 25	10.31117	, 7,	
Error Treatment (T) T x G Error Range (R) R x G Error T x R T x R x G Error	54.35338 40.43519		10.31117	, -,	
Treatment (T) I x G Error Range (R) R x G Error I x R I x R x G Error	40.43519	25	·	4.74	0.0391
T x G Error Range (R) R x G Error T x R T x R x G Error			2.17414		
Error Range (R) R x G Error I x R I x R x G Error	6.91782	1	40.43519	26.18	0.0000
Range (R) R x G Error I x R I x R x G Error		1	6.91782	4.48	0.0444
R x G Error I x R I x R x G Error	38.60899	25	1.54436		
R x G Error I x R I x R x G Error	4.68080	2	2.34040	7.71	0.0012
Error I x R I x R x G Error	3.94817	2	1.97408	6.51	0.0031
I x R I x R x G Error	15.17259	50	0.30345		
Гх R x G Error	0.98225	2	0.49113	2.35	0.1056
Error	0.93943	2	0.46971	2.25	0.1160
	10.43827	50	0.20877		
Speed (S)	27.26687	1	27.26687	122.58	0.0000
SxG	0.00028	ī	0.00028	0.00	0.9720
Error	5.56126	25	0.22245		
TxS	0.29572	1	0.29572	1.33	0.2599
TxSxG	0.13947	ī	0.13947	0.63	0.4360
Error	5.56366	25	0.22255	0.03	0.4300
R x S	1.41370	2	0.70685	3.74	0.0306
RxSxG	0.18029	2	0.09014	0.48	0.6233
Error	9.44394	50	0.18888	0.40	0.0233
TxRxS	0.99368	2	0.49684	5.35	0.0078
TxRxSxG	0.18465	2	0.09232	0.99	0.3771
Error	4.64174	50		0.99	0.3771
	83.56134		0.09283	201 40	0 0000
Exposure Time (E)		1	83.56134	221.49	0.0000
ExG	0.82407	1	0.82407	2.18	0.1519
Error	9.43191	25	0.37728	00.70	
TxE	4.79182	1	4.79182	22.78	0.0001
TxExG	1.78835	1	1.78835	8.50	0.0074
Error	5.25814	25	0.21033	T24 11	
RxE	20.99373	2	10.49687	87.97	0.0000
RxExG	0.18239	2	0.09119	0.76	0.4710
Error	5.96615	50	0.11932		
T x R x E	0.41833	2	0.20917	1.63	0.2069
TxRxExG	0.02829	2	0.01414	0.11	0.8961
Error	6.43043	50	0.12861		
S x E	1.88303	1	1.88303	11.48	0.0023
SxExG	0.00224	1	0.00224	0.01	0.9079
Error	4.10212	25	0.16408		
ГхЅхЕ	0.41695	1	0.41695	3.28	0.0821
T x S x E x G	0.00298	1	0.00298	0.02	0.8795
Error	3.17584	25	0.12703		
RxSxE	0.20300	2	0.10150	0.58	0.5653
RxSxExG	0.17175	2	0.08587	0.49	0.6166
Error	8.79507	50	0.17590		0,0100
TxRxSxE	0.39074	2	0.19537	1.52	0.2278
T x R x S x E x G	0.99684	2	0.49842	3.89	0.0270
Error	6.41057	50	0.12821	5.05	0.0270

TABLE 12H

Summary Analysis of Variance for Proportion
of First Round Hits for Moving Targets for Parametric Experiment

ource	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
roup (G)	0.14885	1	0.14885	0.43	0.5198
rror	9.45064	27	0.35002		
reatment (T)	0.77702	1	0.77702	7.85	0.0093
x G	0.06437	ī	0.06437	0.65	0.4271
rror	2.67341	27	0.09902		
ange (R)	15.79241	2	7.89620	104.01	0.0000
x G	0.02229	2	0.01115	0.15	0.8638
rror	4.09965	54	0.07592		0.000
x R	0.08974	2	0.04487	0.79	0.4611
xRxG	0.16014	2	0.08007	1.40	0.2551
rror	3.08537	54	0.05714	2.40	·
peed (S)	6.88293	1	6.88293	81.54	0.0000
x G	0.07258	ī	0.07258	0.86	0.3620
rror	2.27907	27	0.08441	0.00	0.3020
x S	0.31774	1	0.31774	5.37	0.0283
x S x G	0.01745	i	0.01745	0.30	0.5915
rror	1.59678	27	0.05914	0.50	0.3713
x S	0.61767	2	0.30883	8.14	0.0008
x S x G	0.07456	2	0.03728	0.98	0.3809
rror	2.04846	54	0.03793	0.30	0.3003
xRxS	0.28528	2	0.14264	3.84	0.0275
x R x S x G	0.26660	2	0.13330	3.59	0.0343
rror	2.00441	54	0.03712	3.37	0.0343
xposure Time (E)	0.05728	1	0.05728	1.92	0.1772
x G	0.04004	ī	0.04004	1.34	0.2568
rror	0.80551	27	0.02983	1.34	0.2300
хE	0.00154	1	0.00154	0.03	0.8616
x E x G	0.00154	ī	0.00154	0.03	0.8616
rror	1.34077	27	0.04966	0.03	0.0010
хЕ	0.20266	2	0.10133	2.68	0.0774
x E x G	0.09274	2	0.04637	1.23	0.3008
rror	2.03854	54	0.03775	1.23	0.3008
xRxE	0.05210	2	0.02605	0.59	0.5606
xRxExG	0.04133	2	0.02066	0.46	0.6312
rror	2.40461	54	0.04453	0.40	0.0312
x E	0.00134	1	0.00134	0.03	0.8750
x E x G	0.00134	i	0.00134	0.03	0.8750
rror	1.43472	27	0.05314	0.03	0.0750
x S x E	0.26418	1	0.26418	5.79	0.0233
x S x E x G	0.26418	i	0.20416	0.12	0.0233
rror	1.23259	27	0.04565	0.12	0.7233
x S x E	0.16913	2	0.04363	2 22	0 1102
x S x E x G	0.16913	2 2	0.08437	2.22	0.1183
				2.82	0.0687
rror	2.05590	54	0.03807	0.64	0 5070
x R x S x E x R x S x E x G	0.04816 0.00290	2 2	0.02408	0.54	0.5870
X K X S X K Y G	U.UUZYU	4	0.00145	0.03	0.9568

TABLE 13H

Summary Analysis of Variance for Number of Rounds to Zero in Test Bed and Field (Training Experiment)

(A) ROTC Group's First Zero

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
Group (G)	1439.19737	2	719.59868	1.45	0.2480
Error	17353.75000	35	495.82143		
Treatment (T)	1352.83025	1	1352.83025	4.18	0.0486
TxG	3215.57632	2	1607.78816	4.96	0.0127
Error	11336.95000	35	323,91286		

(B) ROTC Group's Last Zero

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
Group (G)	1462.68421	2	731.34211	2.02	0.1480
Error	12679.75000	3 5	362.27857		
Treatment (T)	163.72197	1	163.72197	0.75	0.3935
TxG	232.74737	2	116.37368	0.53	0.5929
Error	7676.95000	35	219.34143		

TABLE 14H

Summary Analysis of Variance for Self-Paced
Task Group Diameter in Test Bed and Field
(Training Experiment)

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
Group (G)	8408.32698	2	4204.16349	1.01	0.3729
Error	144992.42302	35	4142.64066		
Treatment (T)	1555.74183	1	1555.74183	0.55	0.4639
TxG	25610.19666	2	12805.09833	4.51	0.0180
Error	99269.18492	3 5	2836.26243		

TABLE 15H

Summary Analysis of Variance for Self-Paced
Task SD of Aiming Accuracy for Test Bed and Field
(Training Experiment)

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
Group (G)	478.66947	2	239.33473	0.96	0.3939
Error	8754.50159	35	250.12862		
Treatment (T)	332.32061	1	332.32061	2.02	0.1640
TxG	1237.35769	2	618.67884	3.76	0.0331
Error	5754.33968	35	164.40971		

TABLE 16H

Summary Analysis of Variance for Self-Paced
Task Number of Hits on Target Silhouette for Test Bed and Field
(Training Experiment)

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
Group (G)	2.34140	2	1.17070	0.60	0.5539
Error	68.18492	35	1.94814		
Treatment (T)	0.20019	1	0.20019	0.10	0.7549
ГхG	11.17197	2	5.58599	2.76	0.0769
Error	70.77540	35	2.02215		

TABLE 17H

Summary Analysis of Variance for Proportion
of Static Targets Engaged for Training Experiment

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
Group (G)	0.07501	2	0.03751	1.51	0.2342
Error	0.86734	35	0.02478		
Range (R)	0.51650	4	0.12912	13.51	0.0000
RxG	0.22037	. 8	0.02755	2.88	0.0053
Error	1.33801	140	0.00956		
Exposure Time (E)	1.21221	2	0.60610	40.50	0.0000
ExG	0.13051	4	0.03263	2.18	0.0800
Error	1.04746	70	0.01496		
RxE	0.80390	8	0.10049	9.54	0.0000
RxExG	0.20473	16	0.01280	1.21	0.2560
Error	2.95063	280	0.01054		

TABLE 18H

Summary Analysis of Variance for Proportion of Static Targets Hit for Training Experiment

Mederal Manual Manual Section (1987) (1987) (1985) (1985) (1985) (1985) (1985) (1985) (1985) (1985) (1985) (1985)

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
Group (G)	0.69042	2	0.34521	2.30	0.1147
Error	5.24213	35	0.14978	2.23	***************************************
Range (R)	28.59685	4	7.14921	194.74	0.0000
RxG	0.20648	8	0.02581	0.70	0.6884
Error	5.13972	140	0.03671		
Exposure Time (E)	8.95081	2	4.47541	228.27	0.0000
ExG	0.11053	4	0.02763	1.41	0.2398
Error	1.37241	70	0.01961		
RxE	2.62344	8	0.32793	16.49	0.0000
RxExG	0.54425	16	0.03402	1.71	0.0442
Error	5.56686	280	0.01988		

TABLE 19H

Summary Analysis of Variance for Number of Rounds Fired Per Static Target for Training Experiment

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
Group (G)	27.86209	2	13.93105	32.27	0.0000
Error	15.10891	35	0.43168		
Range (R)	13.41626	4	3.35407	38.04	0.0000
RxG	7.75998	8	0.97000	11.00	0.0000
Error	12.34479	140	0.08818		
Exposure Time (E)	33.07229	2	16.53614	208.46	0.0000
ExG	4.24760	4	1.06190	13.39	0.0000
Error	5.55289	70	0.07933		
RxE	15.81915	8	1.97739	39.48	0.0000
RxExG	2.61203	16	0.16325	3.26	0.0000
Error	14.02560	280	0.05009		

TABLE 20H

Summary Analysis of Variance for Proportion of First Round Hits for Static Targets for Training Experiment

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
Group (G)	2.68460	2	1.34230	8.69	0.0009
Error	5.40862	35	0.15453		
Range (R)	34.34981	4	8.58745	238.79	0.0000
R x G	0.29088	8	0.03636	1.01	0.4305
Error	5.03475	140	0.03596		
Exposure Time (E)	2.36923	2	1.18461	50.79	0.0000
ExG	1.15390	4	0.28848	12.37	0.0000
Error	1.63255	70	0.02332		
RxE	0.82467	8	0.10308	4.16	0.0001
RxExG	0.63813	16	0.03988	1.61	0.0653
Error	6.93215	280	0.02476		

TABLE 21H

Summary Analysis of Variance for Proportion
of Moving Targets Engaged for Training Experiment

Source	Sum of Squares	Degrees of Freedom	Mean Square	· F	Tail Prob
Group (G)	0.03772	2	0.01886	1.32	0.2795
Error	0.49915	35	0.01426	1.52	0.2793
Range (R)	0.03201	2	0.01601	1.23	0.2979
ХХС	0.06816	4	0.01704		· •
Error	0.90936	70	0.01299	1.31	0.2741
peed (S)	0.02707	1	0.02707	4.15	0.0493
S x G	0.03101	2	0.01550	2.38	0.1078
Error	0.22845	35	0.00653	2.30	0.1078
x S	0.01257	2	0.00628	1.28	0.2858
x S x G	0.00539	4	0.00135	0.27	0.2838
rror	0.34494	70	0.00493	0.27	0.8942
Exposure Time (E)	0.03114	1	0.03114	4.37	0.0438
x G	0.00812	2	0.00406	0.57	0.5707
rror	0.24915	35	0.00712	0.57	0.3707
k x E	0.01586	2	0.00793	1.36	0.2633
k x E x G	0.10554	4	0.02638	4.52	0.2633
rror	0.40817	70	0.00583	7.52	0.0026
X E	0.01139	1	0.01139	2.91	0.0967
X E x G	0.00316	2	0.00158	0.40	0.6706
Crror	0.13678	35	0.00391	0.40	0.0700
XSXE	0.01587	2	0.00793	1.38	0 0505
C x S x E x G	0.07704	4	0.01926	3.35	0.2585
rror	0.40268	70	0.00575	. J.JJ	0.0145

TABLE 22H

Summary Analysis of Variance for Proportion of Moving Targets Hit for Training Experiment

ource	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
Group (G) Error	0.09913 11.39772	2 35	0.04956 0.32565	0.15	0.8594
Range (R)	15.69825	2	7.84913	140.67	0.0000
RxG	0.43740	4	0.10935	1.96	0.1102
Error	3.90580	70	0.05580		
Speed (S)	1.08344	1	1.08344	22.77	0.0000
SxG	0.05087	2	0.02543	0.53	0.5906
Error	1.66528	35	0.04758		
RxS	0.15523	2	0.07762	1.52	0.2268
RxSxG	0.15735	4	0.03934	0.77	0.5496
Error	3.58497	70	0.05121		
Exposure Time (E)	1.76773	1	1.76773	54.29	0.0000
ExG	0.06334	2	0.03167	0.97	0.3881
Error	1.13965	35	0.03256		W 1
RxE	0.26565	2	0.13282	4.21	0.0188
RxExG	0.41430	4	0.10357	3.28	0.0159
Error	2.20961	70	0.03157		
SxE	0.00760	1	0.00760	0.41	0.5247
SxExG	0.07712	2	0.03856	2.09	0.1384
Error	0.64451	35	0.01841		
RxSxE	0.00370	2	0.00185	0.06	0.9454
RxSxExG	0.26225	4	0.06556	1.99	0.1056
Error	2.30683	70	0.03295		

A ROSSOCIA RESISTANT PRISOCON CONCRETE COSCIONO DESCRIPION PROPERTO DESCRIPER

TABLE 23H

Summary Analysis of Variance for Number of Rounds Fired Per Moving Targets for Training Experiment

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
Group (G)	3.24183	2	1.62091	1.82	0.1768
Error	31.14647	35	0.88990		0.2,00
Range (R)	3.74214	2	1.87107	7.60	0.0010
RxG	0.84573	4	0.21143	0.86	0.4931
rror	17.23431	70	0.24620		
Speed (S)	14.80014	1	14.80014	75.55	0.0000
x G	0.05513	2	0.02756	0.14	0.8692
Error	6.85619	35	0.19589		
t x S	3.21590	2	1.60795	11.15	0.0001
x S x G	0.55319	4	0.13830	0.96	0.4354
rror	10.09264	70	0.14418		
Exposure Time (E)	28.94897	1	28.94897	233.79	0.0000
x G	0.32536	2	0.16268	1.31	0.2817
rror	4.33377	35	0.12382		
R x E	7.68062	2	3.84031	36.44	0.0000
RXEXG	0.61705	4	0.15426	1.46	0.2225
error	7.37637	70	0.10538		
S x E	0.11832	1	0.11832	0.86	0.3604
S x E x G	0.06733	2	0.03366	0.24	0.7845
error	4.82207	35	0.13777		
XXXE	0.10987	2	0.05494	0.44	0.6439
RxSxExG	0.71959	4	0.17990	1.45	0.2266
Error	8.68173	70	0.12402		

TABLE 24H

Summary Analysis of Variance for Proportion
of First Round Hits for Moving Targets for Training Experiment

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
Group (G)	0.00877	2	0.00438	0.02	0.9841
Error	9.53797	35	0.27251		
Range (R)	10.30025	2	5.15013	77.06	0.0000
RxG	0.24004	4	0.06001	0.90	0.4700
Error	4.67827	70	0.06683		
Speed (S)	2.45281	1	2.45281	30.22	0.0000
SxG	0.01590	2	0.00795	0.10	0.9070
Error	2.84115	35	0.08118		
RxS	0.96314	2	0.48157	12.46	0.0000
RxSxG	0.26360	4	0.06590	1.70	0.1587
Error	2.70625	70	0.03866		
Exposure Time (E)	0.05468	1	0.05468	1.58	0.2168
ExG	0.03793	2	0.01896	0.55	0.5825
Error	1.20947	35	0.03456		
RxE	0.07164	2	0.03582	0.92	0.4034
RxExG	0.14255	4	0.03564	0.91	0.4602
Error	2.72642	70	0.03895		
SxE	0.08400	1	0.08400	1.96	0.1702
SxExG	0.03649	2	0.01825	0.43	0.6565
Error	1.49928	35	0.04284		
RxSxE	0.01869	2	0.00935	0.24	0.7888
RxSxExG	0.15833	4	0.03958	1.01	0.4092
Error	2.74792	70	0.03926		

Principal Intercept Courses Victoria Internal Incresion Internal

APPENDIX I

SUMMARY MEANS AND STANDARD DEVIATIONS FOR PRODUCT MEASURES OF MARKSMANSHIP PERFORMANCE

TABLE OF CONTENTS

Title of Table	TABLE #
Means and Standard Deviations for Parametric Experiment: Proportion Static Targets Engaged	
Means and Standard Deviations for Parametric Experiment: Proportion Static Targets Hit	
Means and Standard Deviations for Parametric Experiment: Number of Rounds Per Static Target	. 31
Means and Standard Deviations for Parametric Experiment: Proportion of First Round Hits for Static Targets	. 41
Means and Standard Deviations for Parametric Experiment: Proportion of Moving Targets Engaged	. 51
Means and Suandard Deviations for Parametric Experiment: Proportion of Moving Targets Hit	. 61
Means and Standard Deviations for Parametric Experiment: Number of Rounds Per Moving Target	. 71
Means and Standard Deviations for Parametric Experiment: Proportion of First Round Hits for Moving Targets	. 81
Means and Standard Deviations for Training Experiment (Field): Proportion of Static Targets Engaged	. 91
Means and Standard Deviations for Training Experiment (Field): Proportion of Static Targets Hit	. 101
Means and Standard Deviations for Training Experiment (Field): Number of Rounds Fired Per Static Target	. 111
Means and Standard Deviations for Training Experiment (Field): Proportion of First Round Hits for Static Targets	. 121
Means and Standard Deviations for Training Experiment (Field): Proportion of Moving Targets Engaged	. 131
Means and Standard Deviations for Training Experiment (Field): Proportion of Moving Targets Hit	. 141
Means and Standard Deviations for Training Experiment (Field): Number of Rounds Fired Per Moving Target	. 151
Means and Standard Deviations for Training Experiment (Field): Proportion of First Round Hits for Moving Targets	. 161

TABLE 1I

Means and Standard Deviations for Parametric
Experiment: Proportion of Static Targets Engaged

					oup	
	Range	Exposure Time		pha	Bra	
Treatment	(m)	(sec)	mn	sd	mn	sd
Testbed	60	3.25	0.98	0.09	0.99	0.04
		5.25	1.00	0.00	0.99	0.04
		7.25	0.99	0.04	0.94	0.15
	120	3.25	0.87	0.14	0.93	0.11
		5.25	0.99	0.04	0.96	0.10
		7.25	1.00	0.00	0.99	0.04
	180	3.25	0.84	0.20	0.90	0.13
		5.25	0.97	0.09	0.98	0.09
		7.25	0.99	0.04	0.99	0.04
	250	3.25	0.77	0.14	0.85	0.15
		5.25	0.97	0.09	0.96	0.10
		7.25	0.98	0.06	0.95	0.14
	300	3.25	0.68	0.22	0.76	0.23
		5.25	0.94	0.14	0.92	0.16
		7.25	0.97	0.09	0.98	0.06
'ield	60	3.25	0.98	0.06	0.96	0.07
1610	00	5.25	0.99	0.04	0.99	0.04
		7.25	1.00	0.00	0.98	0.09
	120	3.25	0.91	0.10	0.90	0.17
		5.25	0.97	0.09	0.95	0.08
		7.25	0.92	0.12	0.96	0.07
	180	3.25	0.80	0.18	0.80	0.18
		5.25	0.99	0.04	0.98	0.06
		7.25	0.98	0.06	0.98	0.06
	250	3.25	0.80	0.21	0.87	0.13
		5.25	0.96	0.10	1.00	0.00
		7.25	0.93	0.11	0.90	0.14
	300	3.25	0.62	0.18	0.74	0.14
		5.25	0.89	0.15	0.96	0.10
		7. 2 5	0.94	0.10	0.95	0.08

TABLE 2I

Means and Standard Deviations for Parametric Experiment: Proportion of Static Targets Hit

	_				coup	
reatment	Range (m)	Exposure Time (sec)	mn Al	pha sd	Br mn	avo sd

Testbed	60	3.25	0.91	0.19	0.89	0.18
		5.25	1.00	0.00	0.98	0.09
		7.25	0.99	0.04	0.92	0.21
	120	3.25	0.67	0.29	0.58	0.28
		5.25	0.98	0.09	0.95	0.10
		7.25	1.00	0.00	0.95	0.10
	180	3.25	0.44	0.30	0.45	0.26
		5.25	0.81	0.21	0.76	0.25
		7.25	0.09	0.08	0.82	0.23
	250	3.25	0.16	0.15	0.26	0.16
		5.25	0.66	0.26	0.51	0.27
		7.25	0.82	0.12	0.73	0.27
	300	3.25	0.14	0.21	0.21	0.20
		5.25	0.42	0.20	0.37	0.21
		7.25	0.57	0.15	0.52	0.27
Field	60	3.25	0.98	0.06	0.95	0.08
		5.25	0.99	0.04	0.98	0.06
		7.25	1.00	0.00	0.96	0.10
	120	3.25	0.69	0.25	0.56	0.19
		5.25	0.92	0.12	0.82	0.18
		7.25	0.92	0.12	0.85	0.12
	180	3.25	0.41	0.20	0.30	0.25
		5.25	0.74	0.20	0.68	0.21
		7.25	0.88	0.13	0.92	0.09
	250	3.25	0.30	0.17	0.25	0.18
		5.25	0.59	0.26	0.54	0.22
		7.25	0.73	0.11	0.56	0.09
	300	3.25	0.08	0.11	0.08	0.09
		5.25	0.43	0.22	0.30	0.21
		7.25	0.62	0.21	0.43	0.18

TABLE 3I

Means and Standard Deviations for Parametric
Experiment: Number of Rounds Fired Per Static Target

				Gre	oup	
	Range	Exposure Time	Alpl	ha	Brav	70
reatment	(m)	(sec)	mn	sd	mn	sd
Testbed	60	3.25	2.41	0.87	1.39	0.5
		5.25	2.53	0.89	1.43	0.4
		7.25	2.62	0.74	1.32	0.4
	120	3.25	1.56	0.70	1.21	0.3
		5.25	2.18	0.86	1.43	0.4
		7.25	2.17	0.74	1.46	0.3
	180	3.25	1.41	0.67	1.12	0.3
		5.25	2.01	0.89	1.89	0.4
		7.25	2.44	0.98	1.95	0.6
	250	3.25	0.99	0.24	1.01	0.3
		5.25	2.35	0.90	1.90	0.5
		7.25	2.87	1.14	2.55	0.8
	300	3.25	1.06	0.42	0.98	0.4
		5.25	2.32	0.84	2.01	0.7
		7.25	3.15	1.05	2.61	0.8
Field	60	3.25	1.04	0.21	0.96	0.1
		5.25	1.08	0.21	0.96	0.0
		7.25	1.05	0.11	1.00	0.1
	120	3.25	0.94	0.13	0.87	0.1
		5.25	0.99	0.13	1.12	0.2
		7.25	1.00	0.18	1.24	0.2
	180	3.25	0.87	0.18	0.90	0.3
		5.25	1.19	0.19	1.32	0.2
		7.25	1.32	0.26	1.25	0.2
	250	3.25	0.83	0.20	0.88	0.1
		5.25	1.32	0.17	1.48	0.2
		7.25	1.30	0.36	1.57	0.3
	300	3.25	0.63	0.17	0.74	0.2
		5.25	1.18	0.39	1.36	0.2
		7.25	1.53	0.53	1.63	0.3

TABLE 4I

Means and Standard Deviations for Parametric
Experiment: Proportion of First Round Hits for Static Targets

					roup	
	Range	Exposure Time		pha	Bra	
reatment	(m)	(sec)	mn	sd	mn	sd
estbed	60	3.25	0.81	0.21	0.86	0.17
		5.25	0.90	0.19	0.92	0.16
		7.25	0.82	0.23	0.86	0.21
	120	3.25	0.56	0.28	0.55	0.26
		5.25	0.81	0.18	0.70	0.16
		7.25	0.79	0.19	0.80	0.19
	180	3.25	0.40	0.30	0.44	0.24
		5.25	0.56	0.24	0.39	0.25
		7.25	0.48	0.23	0.40	0.27
	250	3.25	0.14	0.14	0.24	0.17
		5.25	0.24	0.20	0.25	0.28
		7.25	0.29	0.22	0.21	0.23
	300	3.25	0.13	0.21	0.19	0.16
		5.25	0.14	0.14	0.19	0.14
		7.25	0.21	0.13	0.20	0.26
rield	60	3.25	0.96	0.08	0.92	0.13
		5.25	0.99	0.04	0.95	0.08
		7.25	0.99	0.04	0.93	0.14
	120	3.25	0.67	0.25	0.55	0.21
		5.25	0.92	0.12	0.73	0.20
		7.25	0.83	0.18	0.69	J.17
	180	3.25	0.40	0.20	0.25	0.21
		5.25	0.71	0.21	0.61	0.17
		7.25	0.67	0.25	0.74	0.16
	250	3.25	0.30	0.17	0.24	0.21
		5.25	0.50	0.21	0.39	0.12
		7.25	0.56	0.30	0.46	0.25
	300	3.25	0.08	0.11	0.07	0.09
		5.25	0.42	0.25	0.25	0.16
		7.25	0.44	0.24	0.31	0.17

TABLE 5I

Means and Standard Deviations for Parametric
Experiment: Proportion of Moving Targets Engaged

					Gro	up	
	Range	Speed	Exposure Time	Alp	ha	Bra	vo
Treatment	(m)	(feet/sec)	(sec)	mn	sd	mn	sd
Testbed	60	6	3.25	0.97	0.09	0.98	0.07
			5.25	1.00	0.00	0.98	0.07
		12	3.25	1.00	0.00	1.00	0.00
			5.25	1.00	0.00	0.98	0.07
	120	6	3.25	0.95	0.10	0.98	0.07
			5.25	1.00	0.00	1.00	0.00
		12	3.25	0.97	0.09	1.00	0.00
			5.25	1.00	0.00	1.00	0.00
	180	6	3.25	0.90	0.18	0.91	0.16
			5.25	1.00	0.00	1.00	0.00
		12	3.25	0.93	0.15	0.98	0.07
			5.25	0.97	0.09	1.00	0.00
Field	60	6	3.25	1.00	0.00	1.00	0.00
			5.25	1.00	0.00	0.98	0.07
		12	3.25	0.98	0.06	0.98	0.07
			5.25	0.97	0.09	0.98	0.07
	120	6	3.25	0.92	0.15	0.89	0.16
			5.25	1.00	0.00	0.96	0.13
		12	3.25	0.97	0.09	0.93	0.15
			5.25	0.98	0.06	0.95	0.11
	180	6	3.25	0.98	0.06	0.96	0.09
			5.25	1.00	0.00	1.00	0.00
		12	3.25	0.98	0.06	0.95	0.11
			5.25	1.00	0.00	1.00	0.00

The state of the second of the

TABLE 6I

Means and Standard Deviations for Parametric
Experiment: Proportion of Moving Targets Hit

					Gro	up	
	Range	Speed	Exposure Time	A1	pha	Bra	vo
Treatment	(m)	(feet/sec)	(sec)	mn	sd	mn	sd
Testbed	60	6	3.25	0.80	0.27	0.89	0.19
			5.25	1.00	0.00	0.96	0.1
		12	3.25	0.77	0.27	0.66	0.3
			5.25	0.92	0.15	0.91	0.19
	120	6	3.25	0.47	0.27	0.43	0.30
			5.25	0.90	0.13	0.89	0.1
		12	3.25	0.37	0.23	0.43	0.2
			5.25	0.68	0.26	0.77	0.29
	180	6	3.25	0.48	0.27	0.39	0.2
			5.25	0.70	0.25	0.70	0.2
		12	3.25	0.17	0.28	0.25	0.29
			5.25	0.53	0.33	0.41	0.30
Field	60	6	3.25	0.93	0.15	0.86	0.2
			5.25	0.95	0.14	0.88	0.2
		12	3.25	0.83	0.20	0.70	0.20
			5.25	0.78	0.19	0.80	0.20
	120	6	3.25	0.45	0.30	0.45	0.24
			5.25	0.70	0.36	0.57	0.25
		12	3.25	0.30	0.32	0.43	0.27
			5.25	0.65	0.28	0.48	0.25
	180	6	3.25	0.33	0.36	0.45	0.22
			5.25	0.42	0.22	0.50	0.29
		12	3.25	0.18	0.20	0.16	0.21
			5.25	0.40	0.21	0.38	0.27

TABLE 7I

Means and Standard Deviations for Parametric
Experiment: Number of Rounds Fired Per Moving Target

					Group	P	
	Range	Speed	Exposure Time	A1pi	ha	Bros	VO
Treatment	(m)	(feet/sec)	(sec)	mn	sd	mn	sd
Testbed	60	6	3.25	1.92	0.54	1.52	0.4
			5.25	2.62	0.96	1.52	0.4
		12	3.25	2.50	1.08	1.73	0.5
			5.25	3.03	0.97	2.20	0.8
	120	6	3.25	1.50	0.54	1.30	0.4
			5.25	2.15	0.75	1.82	0.4
		12	3.25	1.71	0.71	1.61	0.4
			5.25	2.98	1.03	2.55	0.6
	180	6	3.25	1.33	0.44	1.20	0.4
			5.25	2.73	0.73	2.32	0.6
		12	3.25	1.54	0.58	1.45	0.4
			5.25	3.38	1.20	2.68	0.6
Field	60	6	3.25	1.31	0.29	1.13	0.2
			5.25	1.31	0.31	1.30	0.3
		12	3.25	1.85	0.48	1.70	0.3
			5.25	2.08	0.61	1.80	0.4
	120	6	3.25	1.00	0.25	1.00	0.2
			5.25	1.58	0.44	1.57	0.3
		12	3.25	1.23	0.19	1.25	0.3
			5.25	1.71	0.30	2.00	0.6
	180	6	3.25	1.23	0.30	1.09	0.3
			5.25	2.02	0.45	1.91	0.5
		12	3.25	1.31	0.34	1.29	0.3
			5.25	2.31	0.55	2.34	0.5

TABLE 8I

Means and Standard Deviations for Parametric
Experiment: Proportion of First Round Hits for Moving Targets

					Grou	ıp	
	Range	Speed	Exposure Time	A1p		Bravo	
Treatment	(m)	(feet/sec)	(sec)	mn	sđ	mn	sd
Testbed	60	6	3.25	0,61	0.30	0.79	0.27
			5.25	0.70	0.17	0.77	0.29
		12	3.25	0.42	0.32	0.48	0.27
			5.25	0.37	0.28	0.48	0.29
	120	6	3.25	0.40	0.25	0.38	0.31
			5.25	0.57	0.24	0.55	0.20
		TO A TO A ST John Stan	3.25	0.17	0.18	0.32	0.25
			5.25	0.22	0.21	0.23	0.23
	180	6	3.25	0.40	0.25	0.32	0.18
			5.25	0 33	0.31	0.32	0.28
		12	3.25	0.10	0.16	0.18	0.27
			5.25	0.12	0.16	0.16	0.16
Field	60	6	3.25	0.87	0.19	0.82	0.21
			5.25	0.83	0.20	0.73	0.27
		12	3.25	0.55	0.29	0.52	0.25
			5.25	0.47	0.23	0.59	0.32
	120	6	3.25	0.43	0.29	0.43	0.23
			5.25	0.48	0.36	0.43	0.25
		12	3.25	0.28	0.31	0.43	0.27
			5.25	0.47	0.23	0.41	0.27
	180	6	3.25	0.32	0.35	0.43	0.23
	****	:	5.25	0.28	0.19	0.38	0.27
		12	3.25	0.17	0.20	0.16	0,21
		she Ca	5,25	0.28	0.21	0.23	0.21

TABLE 9I

Means and Standard Deviations for Training
Experiment (Field): Proportion of Static Targets Engaged

				Gre	oup			
Range	Exposure Time	A1	pha	Bra	avo	RO'	TC	
(m)	(sec)	mn	sd	mn	sd	mn	sd	
60	3.25	0.98	0.06	0.96	0,07	0.98	0.06	
	5.25	0.99	0.04	0.99	0.04	0.91	0.12	
	7.25	1.00	0.00	0.98	0.09	0.94	0.12	
120	3.25	0.91	0.11	0.90	0.17	0.89	0.12	
	5.25	0.97	0.09	0.95	0.08	0.94	0.12	
	7.25	0.92	0.12	0.96	0.07	1.00	0.00	
180	3.25	0.80	0.18	0.80	0.18	0.93	0.12	
	5.25	0.99	0.04	0.98	0.06	0.96	0.07	
	7.25	0.98	0.06	0.98	0.06	0.94	0.08	
250	3.25	0.80	0.21	0.87	0.13	0.93	0.09	
	5.25	0.96	0.10	1.00	0.00	0.96	0.07	
	7.25	0.93	0.11	0.90	0.14	0.96	0.11	
300	3.25	0.62	0.18	0.74	0.14	0.80	0.14	
	5.25	0.89	0.15	0.96	0.10	1.00	0.00	
	7.25	0.94	0.10	0.95	0.08	0.96	0.07	

TABLE 10I

Means and Standard Deviations for Training
Experiment (Field): Proportion of Static Targets Hit

				Gro	1b		
Range	Exposure Time	A1pl	ha	Brav	70	RO'	rc .
(m)	(sec)	mn	sd	mn	sd	mn	sd
60	3.25	0.98	0.06	0.95	0.08	0.94	0.08
60							
	5.25	0.99	0.04	0.98	0.06	0.91	0.12
	7.25	1.00	0.00	0.96	0.10	0.94	0.12
120	3.25	0.69	0.25	0.56	0.19	0.63	0.16
	5.25	0.92	0.12	0.82	0.18	0.81	0.13
	7.25	0.92	0.12	0.85	0.12	0.96	0.07
180	3.25	0.41	0.20	0.30	0.25	0.48	0.35
	5.25	0.74	0.20	0.68	0.21	0.69	0.28
	7.25	0.88	0.13	0.92	0.09	0.81	0.13
250	3.25	0.30	0.17	0.25	0.24	0.28	0.17
	5.25	0.59	0.19	0.54	0.18	0.54	0.34
	7.25	0.73	0.26	0.56	0.22	0.48	0.27
	7.23	0.75	0.20	0.50	0.22	0.40	0.27
300	3.25	0.08	0.11	0.07	0.09	0.06	0.12
	5.25	0.43	0.22	0.30	0.21	0.33	0.31
	7.25	0.62	0.21	0.43	0.18	0.48	0.26

THE PROPERTY OF SECURE AND ADDRESS OF THE PROPERTY OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADD

TABLE 11I

Means and Standard Deviations for Training
Experiment (Field): Number of Rounds Fired per Static Target

				Grou	up		
Range	Exposure Time	Alpha		Brav	VO	ROTC	
(m)	(sec)	mn	sd	mn	sd	mn	sd
60	3.25	1.04	0.19	0.96	0.12	1.11	0.24
	5.25	1.08	0.20	0.96	0.07	1.07	0.29
	7.25	1.06	0.10	1.00	0.11	1.11	0.20
120	3.25	0.94	0.12	0.87	0.16	1.13	0.26
	5.25	0.99	0.12	1.12	0.23	1.52	0.44
	7.25	1.01	0.17	1.24	0.26	1.70	0.47
180	3.25	0.83	0.22	0.90	0.30	1.19	0.10
	5.25	1.18	0.18	1.32	0.24	1.81	0.54
	7.25	1.32	0.24	1.25	0.20	2.09	0.80
250	3.25	0.82	0.21	0.88	0.18	1.22	0.31
	5.25	1.30	0.18	1.48	0.22	1.96	0.47
	7.25	1.29	0.34	1.57	0.37	2.43	0.60
300	3.25	0.61	0.17	0.74	0.24	0.98	0.23
	5.25	1.17	0.36	1.36	0.23	2.22	0.53
	7.25	1.50	0.50	1.63	0.32	2.85	0.65

TABLE 12I

Means and Standard Deviations for Training
Experiment (Field): Proportion of First Round Hits for Static Targets

				Gro	ıр		
Range	Exposure Time	Alpha		Bravo		ROTC	
(m)	(sec)	mn	sd	mn	sd	mn	sd
60	3.25	0.96	0.08	0.92	0.13	0.93	0.09
	5.25	0.99	0.04	0.95	0.08	0.91	0.12
	7.25	0.99	0.04	0.93	0.14	0.85	0.18
120	3.25	0.67	0.25	0.55	0.21	0.59	0.22
	5.25	0.92	0.12	0.73	0.20	0.56	0.19
	7.25	0.83	0.18	0.69	0.17	0.59	0.24
180	3.25	0.40	0.20	0.25	0.21	0.46	0.36
	5.25	0.71	0.21	0.61	0.17	0.41	0.26
	7.25	0.67	0.25	0.74	0.16	0.41	0.29
250	3.25	0.30	0.17	0.24	0.21	0.24	0.17
	5.25	0.50	0.21	0.39	0.12	0.26	0.22
	7.25	0.56	0.30	0.46	0.25	0.24	0.26
300	3.25	0.08	0.11	0.07	0.09	0.06	0.12
	5.25	0.42	0.25	0.25	0.16	0.19	0.15
	7.25	0.44	0.24	0.31	0.17	0.11	0.12

TABLE 13I

Means and Standard Deviations for Training
Experiment(Field): Proportion of Moving Targets Engaged

Speed (feet/sec)	Exposure Time (sec)	Alpi mn	ha sd	Grou Brav mn	_	ROT	
	(sec)	mn	sd	mn	ed		
6					34	mn	sd
	3.25	1.00	0.00	1.00	0.00	0.94	0.1
	5.25	1.00	0.00	0.98	0.07	1.00	0.0
12	3.25	0.98	0.06	0.98	0.07	0.89	0.1
	5.25	0.97	0.09	0.98	0.07	0.97	0.0
6	3.25	0.92	0.15	0.89	0.16	1.00	0.0
	5.25	1.00	0.00	0.96	0.13	0.97	0.0
12	3.25	0.97	0.09	0.93	0.15	0.94	0.1
	5.25	0.98	0.06	0.95	0.11	0.97	0.0
6	3.25	0.98	0.06	0.96	0.09	0.97	0.0
	5.25	1.00	0.00	1.00	0.00	1.00	0.0
12	3.25	0.98	0.64	0.95	0.11	1.00	0.0
	5.25	1.00	0.00	1.00	0.00	0.86	0.1
	6 12 6	12 3.25 5.25 6 3.25 5.25 12 3.25 5.25 6 3.25 5.25	12 3.25 0.98 5.25 0.97 6 3.25 0.92 5.25 1.00 12 3.25 0.97 5.25 0.98 6 3.25 0.98 5.25 1.00 12 3.25 0.98 5.25 1.00	12 3.25 0.98 0.06 5.25 0.97 0.09 6 3.25 0.92 0.15 5.25 1.00 0.00 12 3.25 0.97 0.09 5.25 0.98 0.06 6 3.25 0.98 0.06 5.25 1.00 0.00 12 3.25 0.98 0.64	12 3.25 0.98 0.06 0.98 5.25 0.97 0.09 0.98 6 3.25 0.92 0.15 0.89 5.25 1.00 0.00 0.96 12 3.25 0.97 0.09 0.93 5.25 0.98 0.06 0.95 6 3.25 0.98 0.06 0.96 5.25 1.00 0.00 1.00 12 3.25 0.98 0.64 0.95	12 3.25 0.98 0.06 0.98 0.07 5.25 0.97 0.09 0.98 0.07 6 3.25 0.92 0.15 0.89 0.16 5.25 1.00 0.00 0.96 0.13 12 3.25 0.97 0.09 0.93 0.15 5.25 0.98 0.06 0.95 0.11 6 3.25 0.98 0.06 0.96 0.09 5.25 1.00 0.00 1.00 0.00 12 3.25 0.98 0.64 0.95 0.11	12 3.25 0.98 0.06 0.98 0.07 0.89 5.25 0.97 0.09 0.98 0.07 0.97 6 3.25 0.92 0.15 0.89 0.16 1.00 5.25 1.00 0.00 0.96 0.13 0.97 12 3.25 0.97 0.09 0.93 0.15 0.94 5.25 0.98 0.06 0.95 0.11 0.97 6 3.25 0.98 0.06 0.96 0.09 0.97 5.25 1.00 0.00 1.00 0.00 1.00 12 3.25 0.98 0.64 0.95 0.11 1.00

TABLE 14I

Means and Standard Deviations for Training
Experiment (Field): Proportion of Moving Targets Hit

					Gro	•		
Range Speed		Exposure Time	Alpi	ha	Bra	vo	ROT	C
(m)	(feet/sec)	(sec)	mn	sd	mn	sd	mn	sd
60	6	3.25	0.93	0.15	0.86	0.21	0.81	0.24
		5.25	0.95	0.14	0.88	0.21	0.92	0.18
	12	3.25	0.83	0.20	0.70	⊗.20	0.64	0.25
		5.25	0.78	0.19	0.80	0.20	0.81	0.21
120	6	3.25	0.45	0.30	0.45	0.24	0.50	0.35
		5.25	0.70	0.36	0.57	0.25	0.67	0.31
	12	3.25	0.30	0.32	0.43	0.27	0.53	0.26
		5.25	0.65	0.28	0.48	0.25	0.67	0.25
180	6	3.25	0.33	0.36	0.45	0.22	0.31	0.27
		5.25	0.42	0.22	0.50	0.29	0.56	0.39
	12	3.25	0.18	0.20	0.16	0.21	0.33	0.18
		5.25	0.40	0.21	0.38	0.27	0.36	0.28

HEADY, MATERIAL CONTRACTOR OF THE POOL OF

TABLE 15I

Means and Standard Deviations for Training
Experiment (Field): Number of Rounds Fired per Moving Targets

Range	Speed	Exposure Time	Group Alpha Bravo			•	ROTC		
(m)	(feet/sec)	(sec)	mn	sd	mn	sd	mn	sd	
60	6	3.25	1.28	0.28	1.13	0.21	1.33	0.4	
		5.25	1.30	0.29	1.30	0.30	1.44	0.3	
	12	3.25	1.90	0.48	1.70	0.37	1.75	0.7	
		5.25	2.15	0.61	1.80	0.45	2.17	0.8	
120	6	3.25	1.02	0.24	1.00	0.20	1.39	0.3	
	-	5.25	1.63	0.43	1.57	0.39	1.78	0.8	
	12	3.25	1.28	0.23	1.25	0.35	1.61	0.4	
		5.25	1.83	0.45	2.00	0.66	1.97	0.4	
180	6	3.25	1.22	0.28	1.09	0.35	1.36	0.4	
	-	5.25	2.03	0.42	1.91	0.55	2.19	0.6	
	12	3.25	1.32	0.35	1.29	0.31	1.75	0.6	
		5.25	2.25	0.53	2.34	0.57	2.28	0.7	

TABLE 16I

Means and Standard Deviations for Training
Experiment (Field): Proportion of First Round Hits for Moving Targets

l anga	boogs	Exposure Time	Alpl	hid	Group Bravo			~
Range (m)	Speed (feet/sec)	(sec)	mn	sd	mn	sd	ROT (sd
	· · · · · · · · · · · · · · · · · · ·							
60	6	3.25	0.87	0.19	0.82	0.21	0.75	0.28
		5.25	0.83	0.20	0.73	0.27	0.75	0.28
	12	3.25	0.55	0.29	0.52	0.25	0.44	0.21
		5.25	0.47	0.23	0.59	0.32	0.53	0.26
120	6	3.25	0.43	0.29	0.43	0.23	0.47	0.32
	-	5.25	0.48	0.36	0.43	0.25	0.56	0.30
	12	3.25	0.28	0.31	0.43	0.27	0.44	0.27
		5.25	0.47	0.23	0.41	0.27	0.47	0.20
180	6	3.25	0.32	0.35	0.43	0.23	0.31	0.2
		5.25	0.25	0.19	0.38	0.27	0.33	0.33
	12	3.25	0.17	0.20	0.16	0.21	0.22	0.20
		5.25	0.28	0.21	0.23	0.21	0.22	0.23

APPENDIX J

SUMMARY ANALYSIS OF VARIANCE TABLES FOR RATE OF FIRING MEASURES OF MARKSMANSHIP PERFORMANCE

TABLE OF CONTENTS

Title of Table	IN	DLC +
Summary Analysis of Variable for Average Time to Fire First Round for Static Targets for Parametric Experiment		1J
Summary Analysis of Variable for Average Time to First Hit for Static Targets for Parametric Experiment		2J
Summary Analysis of Variance for Average Number of Rounds to First Hit for Static Targets for Parametric Experiment		3Ј
Summary Analysis of Variable for Average Time to Fire First Round for Moving Targets for Parametric Experiment	•	4 J
Summary Analysis of Variable for Average Time to First Hit for Moving Targets for Parametric Experiment	•	5J
Summary Analysis of Variance for Average Number of Rounds to First Hit for Moving Targets for Parametric Experiment	•	6 J
Summary Analysis of Variable for Average Time to Fire First Round for Static Targets for Training Experiment	•	7 J
Summary Analysis of Variable for Average Time to First Hit for Static Targets for Training Experiment	•	8 J
Summary Analysis of Variance for Average Number of Rounds to First Hit for Static Targets for Training Experiment	•	9Ј
Summary Analysis of Variable for Average Time to Fire First Round for Moving Targets for Training Experiment	. ;	10Ј
Summary Analysis of Variable for Average Time to First Hit for Moving Targets for Training Experiment	. 1	11J
Summary Analysis of Variance for Average Number of Rounds to First Hit for Moving Targets for Training Experiment	. 1	12J

TABLE 1J

Summary Analysis of Variance for Average Time
to Fire First Round for Static Targets for Parametric Experiment

Source	Sum of Squares	Degrees of Freedom	Mean Square	ř	Tail Prob
Group (G)	1.24276	1	1.24276	0.95	0.3393
Error	35.45552	27	1.31317		
Treatment (T)	11.72642	1	11.72642	19.66	0.0001
TxG	0.38932	1	0.38932	0.65	0.4262
Error	1.6.10330	27	0.59642		
Range (R)	147.71230	4	36.92807	390.08	0.0000
RxG	1.77275	4	0.44319	4.68	0.0016
Error	10.22414	108	0.09467		•
T x R	3.48902	4	0.87226	7.69	0.0000
TxRxG	0.31647	4	0.07912	0.70	0.5951
Error	12.24585	108	0.11339		
Exposure Time (E)	6.84056	2	3.42028	45.73	0.0000
ExG	0.51996	2	0.25998	3.48	0.0380
Error	4.03873	54	0.07479		
TxE	0.73213	2	0.36606	5.06	0.0097
TxExG	0.14220	2	0.07110	0.98	0.3812
Error	3.91001	54	0.07241		
RxE	6.22810	8	0.77851	13.72	0.0000
RxExG	0.33191	8	0.04149	0.73	0.6640
Error	12.25802	216	0.05675		
TxRxE	0.53062	. 8	0.06633	1.39	0.2033
TxRxExG	0.59297	8	0.07412	1.55	0.1415
Error	10.32782	216	0.04781		

TABLE 2J

Summary Analysis of Variance for Average Time
to First Hit for Static Targets for Parametric Experiment

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
Group (G)	0.36208	1	0.36208	0.16	0.6953
Error	62.37086	27	2.31003		
Freatment (T)	11.66082	1	11.66082	10.19	0.0036
TxG	0.36887	1	0.36887	0.32	0.5749
Error	30.89746	27	1.14435		
Range (R)	319.57413	4	79.89353	308.68	0.0000
RxG	1.68843	4	0.42211	1.63	0.1717
Error	27.95288	108	0.25882		
C x R	6.84057	4	1.71014	6.84	0.0001
CxRxG	0.90126	4	0.22532	0.90	0.4662
Error	27.01150	108	0.25011		
Exposure Time (1	E) 114.02363	2	57.01181	198.93	0.0000
ExG	0.37645	2	0.18823	0.66	0.5226
Error	15.47626	54	0.28660		
C x E	0.28104	2	0.14052	0.40	0.6730
TxExG	0.40969	2	0.20484	0.58	0.5625
Error	19.02178	54	0.35226		
RxE	57.55749	8	7.19469	37.42	0.0000
RxExG	1.24788	8	0.15598	0.81	0.5933
Error	41.53171	216	0.19228		
TXRXE	2.10212	8	0.26276	1.25	0.2699
TXRXEXG	2.35370	8	0.29421	1.40	0.1967
Error	45.30850	216	0.20976		

TABLE 3J

Summary Analysis of Variance for Average Number of Rounds to First Hit for Static Targets for Parametric Experiment

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
Group (G)	0.58500	1	0.58500	2.11	0.1586
Error	6.92495	25	0.27700		
Treatment (T)	11.92099	1	11.92099	64.41	0.0000
TxG	0.09931	1	0.09931	0.54	0.4707
Error	4.62723	25	0.18509		
Range (R)	6.34896	4	1.58724	23.46	0.0000
RxG	0.44293	4	0.11073	1.64	0.1709
Error	6.76558	100	0.06766		
TxR	3.34308	4	0.83577	11.16	0.0000
TxRxG	0.34925	4	0.08731	1.17	0.3303
Error	7.48627	100	0.07486		
Exposure Time (E)	40.54499	2	20.27250	238.79	0.0000
ExG	0.18505	2	0.09252	1.09	0.3441
Error	4.24492	50	0.08490		
TxE	4.61799	2	2.30899	19.67	0.0000
TxExG	0.14666	2	0.07333	0.62	0.5396
Error	5.87042	50	0.11741		
RxE	12.72328	8	1.59041	26.15	0.0000
RxExG	0.82397	8	0.10300	1.69	0.1018
Error	12.16238	200	0.06081		
TxRxE	3.61797	8	0.45225	6.40	0.0000
TxRxExG	1.40069	8	0.17509	2.48	0.0139
Error	14.13436	200	0.07067		

TABLE 4J

Summary Analysis of Variance for Average Time to Fire First Round for Moving Targets for Parametric Experiment

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
Group (G)	0.01907	1	0.01907	0.02	0.8948
Error	28.91719	27	1.07101		
Treatment (T)	0.42693	1	0.42693	0.63	0.4357
T x G	0.00279	1	0.00279	0.00	0.9495
Error	18.40882	27	0.68181		
Range (R)	43.48016	2	21.74008	202.14	0.0000
l x G	0.16205	2	0.08103	0.75	0.4756
rror	5.80763	54	0.10755		
XR	2.13536	2	1.06768	8.21	0.0008
XXXG	0.40381	2	0.20190	1.55	0.2208
rror	7.01898	54	0.12998		
speed (S)	4.00400	1	4.00400	32.75	0.0000
x G	0.21435	1	0.21435	1.75	0.1965
rror	3.30060	27	0.12224		
x S	0.25432	1	0.25432	2.87	0.1015
XXX	0.09984	1	0.09984	1.13	0.2976
rror	2.38941	27	0.08850		
x S	0.10219	2	0.05109	0.87	0.4243
x S x G	0.04443	2	0.02221	0.38	0.6865
rror	3.16744	54	0.05866		
XXXX	0.20837	2	0.10419	1.82	0.1710
XRXSXG	0.09234	2	0.04617	0.81	0.4508
rror	3.08298	54	0.05709		
xposure Time (E)	0.03747	1	0.03747	0.30	0.5894
x G	0.11563	1	0.11563	0.92	0.3457
rror	3.38960	27	0.12554		
XE	0.29317	1	0.29317	3.07	0.0909
XEXG	0.10351	1	0.10351	1.09	0.3067
rror	2.57488	27	0.09537	_,,,,	
x E	0.06672	2	0.03336	0.50	0.6073
xExG	0.01701	2	0.00850	0.13	0.8799
rror	3.57888	54	0.06628	0.20	0.0777
XXXE	0.34529	2	0.17264	3.24	0.0470
xRxExG	0.06649	2	0.03325	0.62	0.5400
rror	2.88020	54	0.05334	0.02	0.5400
x E	0.14069	1	0.14069	2.81	0.1051
ExG	0.01173	ī	0.01173	0.23	0.6322
rror	1.35126	27	0.05005	0.23	0.0322
x S x E	0.16821	1	0.16821	3.71	0.0646
x S x E x G	0.00086	î	0.00086	0.02	0.8915
rror	1.22322	27	0.04530	5.52	0.0713
xSxE	0.02297	2	0.01148	0.32	0.7303
x S x E x G	0.02297	2	0.01148	2.08	0.7303
rror	1.96206	54	0.03633	2.00	0.1330
xRxSxE	0.11274	2	0.05637	1.38	0.2597
x R x S x E x G	0.10165	2	0.05082	1.25	0.2956
rror	2.20160	54	0.04077	1.23	0.2930

TABLE 5J

Summary Analysis of Variance for Average Time to First Hit for Moving Targets for Parametric Experiment

Soure	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
Group (G)	0.59339	1	0.59339	1.17	0.2896
Error	13.73106	27	0.50856		
Treatment (T)	2.50179	1	2.50179	7.96	0.0089
ТхG	0.07357	1	0.07357	0.23	0.6325
Error	8.49111	27	0.31449		
Range (R)	64.84783	2	32.42392	241.29	0.0000
RxG	0.84777	2	0.42389	3.15	0.0506
Error	7.25648	54	0.13438		
T x R	1.09960	2	0.54980	4.82	0.0118
TxRxG	0.57196	2	0.28598	2.51	0.0908
Error	6.15586	54	0.11400		
Speed (S)	0.06801	1	0.06801	0.54	0.4690
SxG	1.01255	1	1.01255	8.03	0.0086
Error	3.40420	27	0.12608		
ΓxS	0.05804	1	0.05804	0.78	0.3856
TxSxG	0.03062	1	0.03062	0.41	0.5272
Error	2.01498	27	0.07463		
RxS	0.59653	2	0.29827	2.43	0.0978
RxSxG	0.04751	2	0.02375	0.19	0.8248
Error	6.63479	54	0.12287		
TxRxS	1.51508	2	0.75754	5.62	0.0061
TxRxSxG	0.66767	2	0.33383	2.48	0.0936
Error	7.28130	54	0.13484		
Emposure Time (E) 31.84143	1	31.84143	239.66	0.0000
ExG	0.85884	1	0.85884	6.46	0.0171
Error	3.58722	27	0.13286		
TxE	0.02325	1	0.02325	0.17	0.5862
TxExG	0.06136	1	0.06136	0.44	0.5128
Error	3.76540	27	0.13946		
R x E	5.04001	2	2.52001	2 2.73	0.0000
RxExG	0.49536	2	0.24768	2.23	0.1169
Error	5.98763	54	0.11088		
T x R x E	0.13650	2	0.06825	0.63	0.5347
T x R x E x G	0.16219	2	0.08109	0.75	0.4760
Error	5.81908	54	0.10776		
SxE	0.01623	1	0.01623	0.21	0.6496
SxExG	0.49031	ī	0.49031	6.38	0.0177
Error	2.07587	27	0.07688	0.50	0.01//
T x S x E	0.19610	1	0.19610	2.01	0.1673
T x S x E x G	0.00972	i	0.00972	0.10	0.7544
Error	2.62944	27	0.09739	0.10	0.7544
RxSxE	0.02348	2	0.01174	0.10	0.9088
RXSXEXG	0.53906	2	0.26953	2.20	0.1206
Error	6.61519	54	0.12250	2.20	0.1206
T x R x S x E	0.12300	2		0 61	0 (011
I X R X S X E X (2	0.06150 0.08572	0.51 0.72	0.6011 0 .4932

TABLE 6J

Summary Analysis of Variance for Average Number of Rounds to First Hit for Moving Targets for Parametric Experiment

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob	
Group (G)	3.18621	1	3.18621	12.59	0.0016	
Error	6.32498	25	0.25300			
Treatment (T)	18.31019	1	18.31019	51.83	0.0000	
TxG	0.28241	1	0.28241	0.80	0.3798	
Error	8.83179	25	0.35327			
Range (R)	6.24314	2	3.12157	35.76	0.0000	
RxG	0.97964	2	0.48982	5.61	0.0063	
Error	4.36450	50	0.08729			
TxR	1.89134	2	0.94567	9.51	0.0003	
TxRxG	0.58232	2	0.29116	2.93	0.0627	
Error	4.97015	50	0.09940			
Speed (S)	2.53241	1	2.53241	13.07	0.0013	
SxG	1.20834	1	1.20834	6.24	0.0194	
Error	4.84220	25	0.19369			
T x S	1.53877	1	1.53877	9.69	0.0046	
TxSxG	0.01099	1	0.01099	0.07	0.7946	
Error	3.96818	25	0.15873			
RxS	0.09077	2	0.04538	0.37	0.6930	
RxSxG	0.16831	2	0.08416	0.69	0.5087	
Error	6.14226	50	0.12285			
TxRxS	0.11179	2	0.05589	0.54	0.5847	
T x R x S x G	0.34906	2	0.17453	1.69	0.1942	
Error	5.15210	50	0.10304			
Exposure Time (E)		1	25.09938	146.17	0.0000	
ExG	0.01604	1	0.01604	0.09	0.7624	
Error	4.29298	25	0.17172			
T x E	3.24889	1	3.24889	18.94	0.0002	
T x E x G	0.19333	1	0.19333	1.13	0.2986	
Error	4.28892	25	0.17156			
RxE	1.35028	2	0.67514	5.81	0.0054	
RxExG	0.45792	2	0.22896	1.97	0.1503	
Brror	5.81407	50	0.11628			
CxRxE	0.13981	2	0.06991	0.72	0.4913	
T x R x E x G	1.32384	2	0.66192	6.83	0.0024	
Error	4.84784	50	0.09696			
X E	0.16383	1	0.16383	1.01	0.3236	
SxExG	0.04037	1	0.04037	0.25	0.6216	
Error	4.03949	25	0.16158			
XXXE	0.14001	1	0.14001	1.23	0.2782	
XSXEXG	0.00112	1	0.00112	0.01	0.9218	
rror	2.84919	25	0.11397			
XXXE	0.03592	2	0.01796	0.14	0.8672	
RXSXEXG	1.48461	2	0.74230	5.91	0.0050	
rror	6.28391	50	0.12568			
XXXXXE	0.04749	2	0.02375	0.16	0.8527	
CxRxSxExG	1.00930	2	0.50465	3.40	0.0414	

TABLE 7J

Summary Analysis of Variance for Average Time to Fire First Round for Static Targets for Training Study

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
Group (G)	19.91164	2	9.95582	12.49	0.0001
Error	27.90291	35	0.79723		
Range (R)	80.82895	4	20.20724	243.88	0.0000
RxG	3.24796	8	0.40600	4.90	0.0000
Error	11.60021	140	0.08286		
Exposure Time (E)	4.60683	2	2.30342	40.59	0.0000
ExG	0.67357	4	0.16839	2.97	0.0253
Error	3.97278	70	0.05675		
RXE	2.26581	8	0.28323	5.68	0.0000
RXEXG	1.28673	16	0.08042	1.61	0.0651
Error	13.97026	280	0.04989		

TABLE 8J

Summary Analysis of Variance for Average Time to First Hit for Static Targets for Training Experiment

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob	
Group (G)	0.73190	2	0.36595	0.46	0.6374	
Error	28.07758	35	0.80222			
Range (R)	197.74456	4	49.43614	210.62	0.0000	
RxG	2.57650	4 8	0.32206	1.37	0.2138	
Error	32.86087	140	0.23472			
Exposure Time (E)	89.35614	2	44.67807	195.89	0.0000	
ExG	4.58976	4	1.14744	5.03	0.0013	
Error	15.96530	70	0.22808			
R x E	31.12853	8	3.89107	22.31	0.0000	
RxExG	3.63330	16	0.22708	1.30	0.1947	
Error	48.82639	280	0.17438			

TABLE 9J

Summary Analysis of Variance for Average Number of Rounds to First Hit for Static Targets for Training Experiment

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob
Group (G)	3.86641	2	1.93320	21.85	0.0000
Error	3.09621	35	0.08846		
Range (R)	5.85230	4	1.46308	28.89	0.0000
RxG	2.12054	8	0.28507	5.23	0.0000
Error	7.09009	140	0.05064		
Exposure Time (E)	20.35767	2	10.17883	218.66	0.0000
ExG	2.10061	4	0.52516	11.28	0.0000
Error	3.25855	70	0.04655		
RXE	4.92105	8	0.01513	13.92	0.0000
RXEXG	2.10006	16	0.13125	2.97	0.0001
Error	12.37411	280	0.04419		9-9

TABLE 10J

Summary Analysis of Variance for Average Time to Fire First Round for Moving Targets for Training Experiment

Source	Sum of Squares	Degrees of Freedom	Mean Square	F	Tail Prob	
Group (G)	4.20467	2	2.10234	3.94	0.0286	
Error	18.67746	35	0.53364			
lange (R)	26.58437	2	13.29218	151.68	0.0000	
k x G	1.47490	4	0.36873	4.21	0.0041	
Error	6.13422	70	0.08763			
Speed (S)	2.41002	1	2.41002	28.31	0.0000	
S x G	0.54764	2	0.27382	3.22	0.0522	
Error	2.97975	35	0.08514			
t x S	0.36147	2	0.18073	2.83	0.0659	
XSXG	0.95218	4	0.23804	3.73	0.0083	
rror	4.47326	70	0.06390			
Exposure Time (E)	0.01735	1	0.01735	0.25	0.6207	
x G	0.28309	2	0.14154	2.03	0.1460	
rror	2.43588	35	0.06960			
XE	0.03910	2	0.01955	0.44	0.6451	
l x E x G	0.16847	4	0.04212	0.95	0.4402	
rror	3.10170	70	0.04431			
S x E	0.30058	1	0.30058	6.83	0.0131	
XEXG	0.01210	2	0.00605	0.14	0.8720	
Error	1.54108	35	0.04403			
XSXE	0.00772	2	0.00386	0.10	0.9062	
XXXXXX	0.26295	4	0.06574	1.68	0.1645	
rror	2.74038	70	0.03915			

TABLE 11J

Summary Analysis of Variance for Average Time to First Hit for Moving Targets for Training Experiment

Source	Sum of Squares	Degrees of Mean Square Freedom		F	Tail Prob	
Group (G)	2.47105	2	1.23553	3.13	0.0560	
Error	13.80441	35	0.39441			
Range (R)	38.58738	2	19.29369	128.97	0.0000	
RxG	1.71396	4	0.42849	2.86	0.0294	
Error	10.47183	70	0.14960			
Speed (S)	0.11206	1	0.11206	0.94	0.3398	
S x G	0.35363	2	0.17681	1.48	0.2421	
Error	4.18832	35	0.11967			
l x S	2.28641	2	1.14320	6.97	0.0017	
R x S x G	0.55088	4	0.13772	0.84	0.5044	
Error	11.47579	70	0.16394			
Exposure Time (E)	14.80190	1	14.80190	135.24	0.0000	
ExG	1.11464	2	0.55732	5.09	0.0115	
Error	3.83064	35	0.10945			
RxE	3.52792	2	1.76396	17.90	0.0000	
RxExG	0.72730	4	0.18182	1.85	0.1299	
Error	6.89762	70	0.09854			
SxE	0.01171	1	0.01171	0.12	0.7361	
SxExG	0.34962	2	0.17481	1.72	0.1933	
Error	3.55111	35	0.10146			
RxSxE	0.01070	2	0.00535	0.04	0.9638	
RxSxExG	0.25773	4	0.06443	0.44	0.7764	
Error	10.16017	70	0.14515			

TABLE 12J

Summary Analysis of Variance for Average Number of Rounds to First Hit for Moving Targets for Training Experiment

Source	Sum of Squares	Degrees of Mean Square Freedom		F	Tail Prob	
Group (G)	1.19285	2	0.59642	5.28	0.0099	
Error	3.95203	35	0.11292			
Range (R)	6.78568	2	3.39284	49.35	0.0000	
R x G	0.95045	4	0.23761	3.46	0.0123	
Error	4.81298	70	0.06876			
Speed (S)	0.18355	1	0.18355	2.44	0.1275	
S x G	0.50085	2	0.25042	3.32	0.0477	
Error	2.63635	35	0.07481			
R x S	0.17557	2	0.08778	1.17	0.3153	
RxSxG	0.14287	4	0.03572	0.48	0.7522	
Error	5.23679	70	0.07481			
Exposure Time (E)	8.67732	1	8.67732	144.76	0.0000	
ExG	0.25302	2	0.12651	2.11	0.1363	
Error	2.09799	35	0.05994			
R x E	0.26159	2	0.13079	1.77	0.1780	
RxExG	0.71817	4	0.17954	2.43	0.0557	
Error	5.17465	70	0.07392			
SxE	0.00058	1	0.00058	0.01	0.9100	
SxExG	0.03198	2	0.01599	0.36	0.7022	
Error	1.56684	35	0.04477			
RxSxE	0.19427	2	0.09713	1.28	0.2837	
RxSxExG	0.26233	4	0.06558	0.87	0.4887	
Error	5.30045	70	0.07572			

APPENDIX K

SUMMARY MEANS AND STANDARD DEVIATIONS FOR RATE OF FIRING MEASURES OF MARKSMANSHIP PERFORMANCE

TABLE OF CONTENTS

Title of Table	TABLE #
Means and Standard Deviations for Parametric Experiment: Average Time to Fire First Round for Static Targets	. 1к
Means and Standard Deviations for Parametric Experiment: Average Time to First Hit for Static Targets	. 2K
Means and Standard Deviations for Parametric Experiment: Average Number of Rounds to First Hit for Static Targets	. 3к
Means and Standard Deviations for Parametric Experiment: Average Time to Fire First Round for Moving Targets	. 4K
Means and Standard Deviations for Parametric Experiment: Average Time to First Hit for Moving Targets	. 5К
Means and Standard Deviations for Parametric Experiment: Average Number of Rounds to First Hit for Moving Targets	. 6К
Means and Standard Deviations for Training Experiment (Field): Average Time to Fire First Round for Static Targets	. 7к
Means and Standard Deviations for Training Experiment (Field): Average Time to First Hit for Static Targets	. 8K
Means and Standard Deviations for Training Experiment (Field): Average Number of Rounds to First Hit for Static Target	. 9к
Means and Standard Deviations for Training Experiment (Field): Average Time to Fire First Round for Moving Targets	. 10к
Means and Standard Deviations for Training Experiment (Field): Average Time to First Hit for Moving Targets	. 11к
Means and Standard Deviations for Training Experiment (Field): Average Time to First Hit for Moving Targets	. 12K

TABLE 1K

Means and Standard Deviations for Parametric

Experiment: Average Time to Fire First Round for Static Targets

		28			Group			
reatment	Range (m)	Exposure Time (sec)	Al ₁	pha sd	Br.	avo sd		
Testbed	60	3.25	2.12	0.30	2.24	0.46		
		5.25	2.07	0.27	2.20	0.30		
		7.25	2.07	0.34	2.24	0.25		
	120	3.25	2.50	0.34	2.60	0.26		
		5.25	2.57	0.30	2.50	0.22		
		7.25	2.70	0.34	2.60	0.24		
	180	3.25	2.78	0.31	2.91	0.38		
		5.25	2.97	0.55	2.84	0.30		
		7.25	2.97	0.43	2.96	0.31		
	250	3.25	3.17	0.31	3.14	0.26		
		5.25	3.31	0.37	3.27	0.41		
		7.25	3.32	0.39	3.04	0.40		
		7.23	3.32	0.37	3.04	0.40		
	300	3.25	2.87	0.27	2.91	0.28		
		5.25	3.49	0.58	3.20	0.44		
		7.25	3.49	0.52	3.25	9.63		
Field	60	3.25	2.23	0.25	2.27	0.25		
		5.25	2.30	0.23	2.36	0.35		
		7.25	2.34	0.30	2.39	0.34		
	120	3.25	2.84	0.21	2.75	0.23		
		5.25	2.92	0.31	2.67	0.29		
		7.25	2.99	0.42	2.98	0.41		
	180	3.25	3.13	0.13	2.97	0.30		
		5.25	3.40	0.40	3.22	0.41		
		7.25	3.43	0.40	3.12	0.39		
	250	3.25	3.16	0.28	3.06	0.29		
	_••	5.25	3.40	0.35	3.15	0.34		
		7.25	3.39	0.32	3.25	0.34		
	300	3.25	3.29	0.27	3.18	0.32		
	500	5.25	3.70	0.27				
			4.01		3.59	0.39		
		7.25	4.01	0.44	3.80	0.58		

TABLE 2K

Means and Standard Deviations for Parametric

Experiment: Average Time to First Hit for Static Targets

		According to the control of the cont	17.5		oup	
wa atmont	Range	Exposure Time (sec)		pha		ova
reatment	(m)	(sec)	mn .	sd	mn	sd
Testbed	60	3.25	2.10	0.29	2.15	0.26
		5.25	2.09	0.27	2.10	0.51
		7.25	2.09	0.35	2.16	0.39
	120	3.25	2.25	0.31	2.44	0.23
		5.25	2.68	0.32	2.64	0.59
		7.25	2.81	0.31	2.68	0.54
	180	3.25	2.82	0.33	2.66	0.52
		5.25	3.21	0.49	3.39	0.58
		7.25	3.39	0.64	3.56	0.92
	250	3.25	2.91	0.42	3.05	0.29
		5.25	3.94	0.54	3.87	1.17
		7.25	4.31	1.01	4.60	1.40
	300	3.25	2.71	0.21	2.72	0.32
		5.25	4.10	0.85	3.61	0.91
		7.25	4.75	1.06	4.56	1.31
Field	60	3.25	2.26	0.25	2.32	0.28
		5.25	2.31	0.23	2.37	0.34
		7.25	2.38	0.27	2.48	0.47
	120	3.25	2.86	0.24	2.77	0.29
		5.25	2.98	0.29	2.90	0.41
		7.25	3.27	0.56	3.39	0.55
	180	3.25	3.04	0.30	3.09	0.29
		5.25	3.61	0.45	3.49	0.41
		7.25	4.07	0.72	3.60	0.49
	250	3.25	3.10	0.20	3.03	0.22
		5.25	3.93	0.41	3.77	0.43
		7.25	4.20	0.75	4.09	0.85
	300	3.25	3.07	0.23	3.08	0.21
		5.25	4.16	0.60	4.08	0.68
		7.25	5.03	0.71	4.59	0.80

TABLE 3K

Means and Standard Deviations for Parametric

Experiment: Average Number of Rounds to First Hit for Static Targets

					oup	
	Range	Exposure Time		pha	Br	avo
Freatment	(m)	(sec)	mn	sd	mn	sd
Testhed	60	3.25	0.96	0.24	0.93	0.21
		5.25	1.08	0.15	1.04	0.12
		7.25	1.15	0.32	0.98	0.25
	120	3.25	0.82	0.27	0.79	0.15
		5.25	1.14	0.23	1.21	0.20
		7.25	1.26	0.25	1.15	0.18
	180	3.25	0.64	0.23	0.61	0.18
		5.25	1.18	0.44	1.21	0.42
		7.25	1.53	0.41	1.40	0.40
	250	3.25	0.44	0.08	0.39	0.11
		5.25	1.33	0.59	1.04	0.39
		7.25	1.76	0.46	1.88	0.87
	300	3.25	0.53	0.06	0.49	0.14
		5.25	1.01	0.47	0.74	0.30
		7.25	1.46	0.64	1.29	0.47
Field	60	3.25	1.00	0.10	0.93	0.11
		5.25	0.99	0.05	0.95	0.08
		7.25	1.01	0.05	0.99	0.12
	120	3.25	0.87	0.12	0.58	0.20
		5.25	0.95	0.16	0.88	0.25
		7.25	1.00	0.18	1.00	0.28
	180	3.25	0.51	0.17	0.61	0.21
		5,25	0.79	0.22	1.00	0.20
		7.25	1.10	0.23	1.12	0.18
	250	3.25	0.42		0.62	0.17
		5.25	0.68			0.27
		7.25	1.12	0.27	0.80	0.26
	300	3.25	0.32	0.05	0.33	0.00
		5.25	0.59	0.16	0.58	0.28
		7.25	0.95	0.40	0.77	0.26

Means and Standard Deviations for Parametric Experiment: Average Time to Fire First Round for Moving Targets

					Gro	up	
	Range	Speed	Exposure Time	A1	pha	Br	avo
Treatment	(m)	(feet/sec)	(sec)	mn	sd	mn	sd
Testbed	60	6	3.25	2.25	0.29	2.31	0.7
			5.25	2.19	0.32	2.17	0.3
		12	3.25	2.09	0.39	2.19	1.0
			5.25	2.02	0.25	1.96	0.3
	120	6	3.25	2.55	0.34	2.61	0.3
			5.25	2.63	0.38	2.49	0.1
		12	3.25	2.44	0.44	2.39	0.3
			5.25	2.42	0.47	2.29	0.2
	180	6	3.25	2.80	0.33	2.85	0.3
			5.25	2.80	0.51	2.76	0.2
		12	3.25	2.57	0.40	2.56	0.3
			5.25	2.61	0.40	2.61	0.4
Field	60	6	3.25	2.03	0.27	2.11	0.2
			5.25	2.13	0.35	2.31	0.6
		12	3.25	2.07	0.44	1.98	0.1
			5.25	2.08	0.29	2.00	0.1
	120	6	3.25	2.74	0.26	2.80	0.2
			5.25	2.71	0.30	2.83	0.3
		12	3.25	2.57	0.26	2.65	0.1
			5.25	2.57	0.27	2.56	0.1
	180	6	3.25	2.65	0.26	2.69	0.3
			5.25	2.86	0.42	2.69	0.2
		12	3.25	2.81	0.41	2.61	0.3
			5.25	2.69	0.27	2.60	0.3

TABLE J

Means and Standard Deviations for Parametric Experiment: Average Time to First Hit for Moving Targets

					Grou	ıp qı	
	Range	Speed	Exposure Time	Alpl		Bravo	
Treatment	(m)	(feet/sec)	(sec)	mn	sd	mn	sd
Testbed	60	6	3.25	2.30	0.29	2.20	0.2
			5.25	2.42	0.38	2.32	0.4
		12	3.25	2.27	0.32	2.06	0.2
			5.25	2.49	0.49	2.37	0.3
	120	6	3.25	2.39	0.15	2.47	0.1
			5.25	2.99	0.42	2.96	0.3
		12	3.25	2.58	0.15	2.46	0.2
			5.25	3.17	0.62	2.94	0.4
	180	6	3.25	2.73	0.25	2.92	0.2
			5.25	3.21	0.48	3.49	0.4
		12	3.25	2.58	0.09	2.81	0.1
			5.25	3.51	0.62	3.19	0.3
Field	60	6	3.25	2.14	0.31	2.20	0.2
			5.25	2.44	0.56	2.35	0.4
		12	3.25	2.55	0.44	2.28	0.3
			5.25	2.81	0.69	2.37	0.5
	120	6	3.25	2.82	0.18	2.82	0.1
			5.25	3.19	0.54	3.33	0.5
		12	3.25	2.65	0.11	2.74	0.1
			5.25	3.18	0.49	3.07	0.4
	180	6	3.25	2.77	0.18	2.74	0.2
			5.25	3.51	0.39	3.32	0.3
		12	3.25	2.73	0.19	2.93	0.2
			5.25	3.56	0.53	3.23	0.3

Means and Standard Deviations for Parametric Experiment: Average Number of Rounds to First Hit for Moving Targets

		EVENORIUMA TIMA	Δ1	nha	Ry	9370
Range (m)	Speed (feet/sec)	Exposure Time (sec)	mn	pha sd	mn	avo sd
60	6	3.25	1.06	0.34	1.05	0.24
		5.25	1.48	0.33	1.25	0.33
	12	3.25	1.37	0.54	1.07	0.32
		5.25	1.63	0.46	1.64	0.61
120	6	3.25	0.77	0.12	0.86	0.21
		5.25	1.38	0.42	1.36	0.48
	12	3.25	1.12	0.39	0.77	0.21
		5.25	1.58	0.68	1.68	0.70
180	6	3.25	0.92	0.21	0.75	0.20
		5.25	1.48	0.47	1.30	0.64
	12	3.25	1.08	0.28	0.98	0.21
		5.25	2.23	0.89	1.20	0.67
60	6	3.25	1.02	0.12	1.00	0.14
		3.23	1.34	0.28	1.10	0.27
	12	3.25 5.25	1.23	0.43	0.91	0.27
120	6					0.14 0.29
	12					0.19 0.32
. 21						
180	6					0.16 0.25
	12					0.10
		128		•		
	(m) 60 120	(m) (feet/sec) 60 6 12 120 6 12 180 6 12 60 6 12 12 120 6 12	(m) (feet/sec) (sec) 60 6 3.25 5.25 12 3.25 5.25 120 6 3.25 5.25 12 3.25 5.25 180 6 3.25 5.25 60 6 3.25 5.25 12 3.25 5.25 12 3.25 5.25 12 3.25 5.25 12 3.25 5.25 12 3.25 5.25 12 3.25 5.25 12 3.25 5.25 12 3.25 5.25 12 3.25 5.25	(m) (feet/sec) (sec) mm 60 6 3.25 1.06 5.25 1.48 12 3.25 1.37 5.25 1.63 120 6 3.25 0.77 5.25 1.38 12 3.25 1.12 5.25 1.58 180 6 3.25 0.92 5.25 1.48 12 3.25 1.08 5.25 1.48 12 3.25 1.08 5.25 1.34 12 3.25 1.02 5.25 1.34 12 3.25 1.02 5.25 1.34 12 3.25 1.02 5.25 1.34 12 3.25 1.02 5.25 1.06 12 3.25 0.63 5.25 1.06 12 3.25 0.75 5.25 1.04	(m) (feet/sec) (sec) mn sd 60 6 3.25 1.06 0.34 5.25 1.48 0.33 12 3.25 1.37 0.54 5.25 1.63 0.46 120 6 3.25 0.77 0.12 5.25 1.38 0.42 12 3.25 1.12 0.39 5.25 1.58 0.68 180 6 3.25 0.92 0.21 5.25 1.48 0.47 12 3.25 1.08 0.28 5.25 2.23 0.89 60 6 3.25 1.02 0.12 5.25 1.34 0.28 5.25 1.34 0.28 12 3.25 1.34 0.28 12 3.25 1.30 0.43 5.25 1.33 0.40 12 3.25 0.63 0.22 5.25 1.06 0.34 12 3.25 0.75 0.10 5.25 1.04 0.30 180 6 3.25 0.75 0.10 5.25 1.04 0.30 180 6 3.25 0.75 0.40 5.25 1.00 0.25	(m) (feet/sec) (sec) mn sd mn 60 6 3.25 1.06 0.34 1.05 5.25 1.48 0.33 1.25 12 3.25 1.37 0.54 1.07 5.25 1.63 0.46 1.64 120 6 3.25 0.77 0.12 0.86 5.25 1.38 0.42 1.36 12 3.25 1.12 0.39 0.77 5.25 1.58 0.68 1.68 180 6 3.25 0.92 0.21 0.75 5.25 1.48 0.47 1.30 12 3.25 1.08 0.28 0.98 5.25 2.23 0.89 1.20 60 6 3.25 1.02 0.12 1.00 5.25 1.34 0.28 1.16 12 3.25 1.34 0.28 1.16 12 3.25 1.30 0.40 1.20 120 6 3.25 0.63 0.22 0.70 5.25 1.06 0.34 0.96 12 3.25 0.63 0.22 0.70 5.25 1.06 0.34 0.96 12 3.25 0.75 0.10 0.66 5.25 1.04 0.30 0.89 180 6 3.25 0.75 0.10 0.666 5.25 1.04 0.30 0.89 180 6 3.25 0.75 0.40 0.50 5.25 1.00 0.25 0.88

TABLE 7K

Means and Standard Deviations for Training

Experiment (Field): Average Time to Fire First Round for Static Targets

				Gre	oup		
Range	Exposure Time	A1	pha	Bra	avo	RO'	TC
(m)	(sec)	mn	sd	mn	sd	mn	sd
60	3.25	2.23	0.25	2.27	0.25	2.14	0.26
	5.25	2.30	0.23	2.36	0.35	2.23	0.33
	7.25	2.34	0.30	2.39	0.34	2.14	0.31
120	3.25	2.84	0.21	2.75	0.23	2.33	0.29
	5.25	2.92	0.31	2.67	0.29	2.30	0.21
	7.25	2.99	0.42	2.98	0.41	2.53	0.28
180	3.25	3.13	0.13	2.97	0.30	2.70	0.24
	5.25	3.40	0.40	3.22	0.41	2.77	0.30
	7.25	3.43	0.40	3.12	0.39	2.74	0.32
250	3.25	3.16	0.28	3.06	0.29	2.70	0.17
	5.25	3.40	0.35	3.15	0.34	2.81	0.37
	7.25	3.39	0.32	3.25	0.38	2.91	0.31
300	3.25	3.29	0.27	3.18	0.32	2.99	0.15
	5.25	3.70	0.38	3.59	0.39	2.94	0.40
	7.25	4.01	0.44	3.80	0.58	3.08	0.23

TABLE 8K

Means and Standard Deviations for Training
Experiment (Field): Average Time to First Hit for Static Targets

				Gre	oup		
Range	Exposure Time	A1 ₁	pha	Bra	avo	RO'	rc
(m)	(sec)	mn	sd	mn	sd	mn	sd
60	3.25	2.26	0.25	2.43	0.48	2.14	0.27
	5.25	2.31	0.23	2.37	0.34	2.24	0.31
	7.25	2.38	0.27	2.48	0.47	2.34	0.34
120	3.25	2.86	0.24	2.78	0.29	2.47	0.25
	5.25	2.98	0.29	2.90	0.41	2.82	0.41
	7.25	3.28	0.56	3.39	0.55	3.34	0.54
180	3.25	3.04	0.30	3.09	0.30	2.81	0.24
	5.25	3.61	0.45	3.51	0.41	3.40	0.59
	7.25	4.07	0.72	3.60	0.49	4.28	0.78
250	3.25	3.10	0.20	3.06	0.19	3.00	0.26
	5.25	3.93	0.41	3.77	0.43	3.88	0.61
	7.25	4.20	0.75	4.09	0.85	4.78	1.20
300	3.25	3.07	0.23	3.08	0.21	3.11	0.06
	5.25	4.16	0.60	4.08	0.68	3.73	0.40
	7.25	5.03	0.71	4.59	0.80	5.22	0.77

TABLE 9K

Means and Standard Deviations for Training Experiment (Field):

Average Number of Rounds to First Hit for Static Target

					oup	100	n.a
Range	Exposure Time		pha		avo	RO?	
(m)	(sec)	mn	sd	mn	sd	mn	sd
60	3.25	1.00	0.09	0.93	0.11	0.96	0.11
	5.25	0.99	0.04	0.95	0.08	0.91	0.12
	7.25	1.01	0.04	0.99	0.12	1.06	0.19
120	3.25	0.88	0.12	0.58	0.20	0.72	0.12
	5.25	0.96	0.15	0.88	0.25	1.06	0.24
	7.25	1.00	0.17	1.00	0.28	1.44	0.35
180	3.25	0.51	0.16	0.61	2.21	0.65	0.19
	5.25	0.80	0.21	1.00	0.20	1.11	0.39
	7.25	1.10	0.22	1.12	0.18	1.52	0.39
250	3.25	0.42	0.14	0.62	0.17	0.43	0.12
	5.25	0.71	0.15	0.67	0.27	1.00	0.41
	7.25	1.22	0.26	0.80	0.26	1.22	0.33
300	3.25	0.32	0.04	0.33	0.00	0.50	0.00
	5.25	0.61	0.16	0.58	0.28	0.89	0.24
	7.25	0.93	0.37	0.77	0.26	1.50	0.65

TABLE 10K

Means and Standard Deviations for Training Experiment (Field):

Average Time to Fire First Round for Moving Targets

						Group				
ange	Exposu	re Time	A1p	ha	Bra	avo	RO?	ROTC		
(m)	(se	ec)	mn	sd 	mn	sd	mn	sd		
60	6	3.25	2.03	0.27	2.11	0.25	2.06	0.45		
		5.25	2.13	0.35	2.31	0.62	1.97	0.25		
	12	3.25	2.07	0.44	1.98	0.16	2.10	0.39		
		5.25	2.08	0.29	2.00	0.15	1.94	0.27		
120	6	3.25	2.74	0.26	2.80	0.21	2.46	0.33		
		5.25	2.71	0.30	2.83	0.34	2.49	0.38		
	12	3.25	2.57	0.26	2.65	0.15	2.27	0.29		
		5.25	2.57	0.27	2.56	0.17	2.16	0.26		
180	6	3.25	2.65	0.26	2.69	0.32	2.69	0.34		
		5.25	2.86	0.42	2.69	0.29	2.59	0.29		
	12	3.25	2.81	0.41	2.61	0.33	2.29	0.31		
		5.25	2.69	0.27	2.60	0.33	2.17	0.28		

TABLE 11K

Means and Standard Deviations for Training Experiment (Field):

Average Time to First Hit for Moving Targets

						Group		
Range	Speed	Exposure Time	Alpha		Bı	cavo	ROTC	
(m)	(feet/sec)	(sec)	mn	sd	mn	sd	mn	sd
60	6	3.25	2.14	0.31	2.20	0.21	2.13	0.4
		5.25	2.44	0.56	2.35	0.45	2.27	0.4
	12	3.25	2.55	0.44	2.28	0.31	2.38	0.2
		5.25	2.81	0.69	2.37	0.52	2.48	0.2
120	6	3.25	2.82	0.18	2.82	0.17	2.66	0.1
		5.25	3.19	0.54	3.33	0.58	2.80	0.6
	12	3.25	2.65	0.11	2.74	0.18	2.56	0.2
		5.25	3.18	0.49	3.07	0.40	2.63	0.2
180	6	3.25	2.77	0.18	2.74	0.21	2.80	0.2
		5.25	3.51	0.39	3.32	0.32	3.30	0.6
	12	3.25	2.73	0.19	2.93	0.20	2.67	0.2
		5.25	3.56	0.53	3.23	0.39	3.37	0.4

TABLE 12K

Means and Standard Deviations for Training Experiment (Field):

Average Number of Rounds to First Hit for Moving Targets

Range	Speed	Exposure Time	Alp	ha	Grou Brav	-	ROT	^
(m)	(feet/sec)	(sec)	mn	sd	mn	sd	mn	sd
60	6	3.25	1.03	0.13	1.00	0.14	0.92	0.22
		5.25	1.13	0.27	1.16	0.27	1.14	0.18
	12	3.25	1.22	0.42	0.91	0.27	0.94	0.3
		5.25	1.37	0.41	1.20	0.34	1.33	0.3
120	6	3.25	0.65	0.21	0.70	0.14	0.72	0.20
		5.25	1.12	0.36	0.96	0.29	0.94	0.27
	12	3.25	0.75	0.09	0.66	0.19	0.75	0.28
		5.25	1.05	0.29	0.89	0.32	1.03	0.34
180	6	3.25	0.73	0.18	0.59	0.16	0.61	0.13
		5.25	0.88	0.28	0.93	0.25	1.25	0.35
	12	3.25	0.75	0.37	0.50	0.10	0.86	0.13
		5.25	0.93	0.31	0.88	0.31	1.19	0.17

THE SECOND PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF

APPENDIX L

FIGURES DISPLAYING RATE OF FIRING MARKSMANSHIP PERFORMANCE MEASURES

Average Time to Fire First Round, Static Targets, Parametric Experiment
Average Time to Fire First Round, Moving Targets, Parametric Experiment
Average Time to First Hit, Static Targets, Parametric Experiment
Average Time to First Hit, Moving Targets, Parametric Experiment
Average Rounds to First Hit for Static Targets as a Function of Treatment, Target Range, and Exposure Time 51
Average Rounds to First Hit for Slow Moving Targets as a Function of Treatment, Target Range, and Exposure Time 61
Average Rounds to First Hit for Fast Moving Targets as a Function of Treatment, Target Range, and Exposure Time 71
Average Time to Fire First Round, Static Targets, Training Experiment
Average Time to Fire First Round, Moving Targets, Training Experiment
Average Time to First Hit, Static Targets, Training Experiment
Average Time to First Hit, Moving Targets, Training Experiment
Average Rounds to First Hit for Static Targets as a Function of Treatment, Target Range, and Exposure Time
Average Rounds to First Hit for Fast Moving Targets as a Function of Group, Target Range, and Exposure Time
Average Rounds to First Hit for Slow Moving Targets as a Function of Group, Target Range, and Exposure Time

Title of Table

Figure #

Figure 1L. Average time to fire first round, static targets, Parametric Experiment.

Figure 2L. Average time to fire first round, moving targets, Parametric Experiment.

141

Figure 4L. Average time to first hit, moving targets, Parametric Experiment.

Figure 5L. Average rounds to first hit for static targets, as a function of treatment, target range, and exposure time.

Figure 6L. Average rounds to first hit for slow moving targets as a function of treatment, target range, and exposure time.

Figure 7L. Average rounds to first hit for fast moving targets as a function of treatment, target range, and exposure time.

Figure 8L. Average time to fire first round, static targets, Trairing Experiment.

Figure 9L. Average time to fire first round, moving targets, Training Experiment.

Figure 10L. Average time to first hit, static targets, Training Experiment.

Figure 11L. Average time to first hit, moving targets, Training Experiment.

Figure 12L. Average rounds to first hit for static targets as a function of group, target range, and exposure time.

Figure 13L. Average rounds to first hit for fast moving targets as a function of group, target range, and exposure time.

Figure 14L. Average rounds to first hit for slow moving targets as a function of group, target range and exposure time.