MASTER THESIS

me

March 15, 2018

Contents

1	$\mathbf{A}\mathbf{n}$	Introduction to the Einstein Relation	4
	1.1	Hausdorff measure and Hausdorff dimension	4
	1.2	Weyl asymptotics and spectral dimension	6
	1.3	Diffusion processes and walk dimension	6
		1.3.1 From Dirichlet forms to Markov processes	6
	1.4	Other versions of the Enistein relation	6
2	Exa	mples and Non-examples	7
Bibliography			8

Abstract

We consider $\mathbb R$ as well as $\dim_{\mathcal S}, \dim_{\mathcal H} \subseteq \dim_{\mathcal W}.$

Chapter 1

An Introduction to the Einstein Relation

In this introductory chapter, we wish to briefly expose the ingredients of the ER - the Hausdorff dimension $\dim_{\mathcal{H}}$, the spectral dimension $\dim_{\mathcal{S}}$, and the walk dimension $\dim_{\mathcal{W}}$ - and state some of their properties.

1.1 Hausdorff measure and Hausdorff dimension

Although the concepts of Hausdorff measure and dimension are well-known, we give the definitions in the interest of completeness. In what follows, let (E, d) be a metric space.

Definition 1.1 (Hausdorff outer measure). For fixed $s \geq 0$, any subset $S \subseteq E$ and any $\delta > 0$, let

$$\mathcal{H}^s_{\delta}(S) := \inf \left\{ \sum_{i \in I} (\operatorname{diam} U_i)^s : |I| \le \aleph_0, S \subseteq \bigcup_{i \in I} U_i \subseteq E, \operatorname{diam} U_i \le \delta \right\},\,$$

i.e. the infimum is taken over all countable coverings of S with diameter at most δ . The s-dimensional Hausdorff outer measure of S is now defined to be

$$\mathcal{H}^s(S) := \lim_{\delta \searrow 0} \mathcal{H}^s_{\delta}(S). \tag{1.1}$$

Observe that the limit in (1.1) exists or equals ∞ , since $\mathcal{H}^s_{\delta}(S)$ is monotonically nonincreasing in δ , yet bounded from below by 0. Furthermore, it can be shown that \mathcal{H}^s defines a metric outer measure on E, thus restricting to a measure on a σ -algebra containing the Borel σ -algera $\mathcal{B}(E)$ (cf. [Mat99, p.54ff]). By definition, the obtained measure then is the s-dimensional Hausdorff measure which we will denote by \mathcal{H}^s as well.

In the special case of (E, d) being an Euclidean space, Hausdorff measures interpolate between the usual Lebesgue measures λ^n : For s = 0, we have simply $\mathcal{H}^0(S) = \#S$, whereas for any integer n > 0, it can be shown that there exists a constant $c_n > 0$ depending only on n such that $\mathcal{H}^n = c_n \lambda^n$, where the constant evaluates to the volume of the unit ball. Since exponential functions are monotonically increasing, the Hausdorff measures' dependence on s exhibits the same behaviour for a fixed set S. At the same time, simple estimates yield that if $\mathcal{H}^s(S)$ is finite for some s, it vanishes for all s' < s, and conversely, if $\mathcal{H}^s(S) > 0$, then $\mathcal{H}^{s'}(S) = \infty$ for all s' > s. Therefore, there exists precisely one real number s where $\mathcal{H}^s(S)$ jumps from 0 to ∞ (by possibly attaining any value of $[0, \infty]$ there). This motivates the following definition of Hausdorff dimension:

Definition 1.2. The Hausdorff dimension $\dim_{\mathcal{H}}(S)$ of $S \subseteq E$ is defined as

$$\dim_{\mathcal{H}}(S) := \inf\{s \ge 0 : \mathcal{H}^s(S) > 0\}.$$

Due to the above discussion, we have the following equalities:

$$\dim_{\mathcal{H}}(S) = \inf\{s \ge 0 : \mathcal{H}^s(S) > 0\} = \inf\{s \ge 0 : \mathcal{H}^s(S) = \infty\}$$

= \sup\{s \ge 0 : \mathcal{H}^s(S) = 0\} = \sup\{s \ge 0 : \mathcal{H}^s(S) < \infty\},

providing some alternative characterisations of the Hausdorff dimension.

We further collect some important facts. To this end, let S, S' and $S_1, S_2, ...$ be subsets of E as before. Then, the following properties hold (cf. [Fal07, p.32f] for a discussion in the Euclidean setting; however all arguments adapt to our more general situation without complication):

Monotonicity. If $S \subseteq S'$ then $\dim_{\mathcal{H}}(S) \leq \dim_{\mathcal{H}}(S')$.

Countable Stability. For a sequence $(S_n)_{n\geq 1}$, we have the equality

$$\dim_{\mathcal{H}} \left(\bigcup_{n \geq 1} S_n \right) = \sup_{n \geq 1} \dim_{\mathcal{H}} (S_n).$$

Countable Sets. If $|S| \leq \aleph_0$ then $\dim_{\mathcal{H}}(S) = 0$.

Hölder continuous maps. If (E', d') is another metric space and $f: E \to E'$ is α -Hölder continuous for some $\alpha \in (0,1]$ then $\dim_{\mathcal{H}}(f(S)) \leq \alpha^{-1} \dim_{\mathcal{H}}(S)$. In particular, the Hausdorff dimension is invariant under a bi-Lipschitz transformation (i.e. an invertible map f with Hölder exponent $\alpha = 1$ for both f and f^{-1}).

Euclidean Case. If (E, d) happens to be an Euclidean space (or more generally a continuously differentiable manifold) of dimension n and S is an open subset then $\dim_{\mathcal{H}}(S) = n$.

We conclude this section by citing Hutchinson's theorem about the Hausdorff dimension of self-similar sets which will provide us with a plethora of interesting examples. For this, we recall that a map $F: E \to E$ on a metric space (E,d) is a strict contraction if its Lipschitz constant satisfies

$$\operatorname{Lip}_F := \sup_{\substack{x,y \in E \\ x \neq y}} \frac{d(F(x), F(y))}{d(x, y)} < 1.$$

If the stronger condition $d(F(x), F(y)) = \operatorname{Lip}_F d(x, y)$ holds for all $x, y \in E$, we call F a similitude with contraction factor Lip_F .

Theorem 1.3 (Hutchinson, [Hut81]). Let $S = \{S_1, ..., S_N\}$ be a finite set of strict contractions on the Euclidean space \mathbb{R}^n . Then there exists a unique nonempty compact set denoted by |S| invariant under S, i.e.

$$|\mathcal{S}| = \bigcup_{i=1}^{N} S_i(|\mathcal{S}|).$$

Furthermore, assume that |S| satisfies the open set condition (OSC) which means that there exists a nonempty open set $O \subseteq E$ with the properties $S_i(O) \subseteq O$ and $S_i(O) \cap S_j(O) = \emptyset$ for all i, j = 1, ..., N with $i \neq j$. Also assume that the maps S_i are similar with contraction factor $r_i \in (0,1)$. Then, $s = \dim_{\mathcal{H}}(|S|)$ is the unique solution to the equation

$$\sum_{i=1}^{N} r_i^s = 1$$

and we have $0 < \mathcal{H}^s(|\mathcal{S}|) < \infty$.

While uniqueness and existence of |S| are still ensured for maps on a complete metric space, the open set condition is not sufficient for statements about the Hausdorff dimension, see [Sch96] for further discussion.

1.2 Weyl asymptotics and spectral dimension

1.3 Diffusion processes and walk dimension

1.3.1 From Dirichlet forms to Markov processes

We start with the following definition (cf. [MR12, Def. IV.1.13]):

Definition 1.4. Given a filtered probability space $(\Omega, \mathscr{A}, \mathscr{F} = (\mathscr{F}_t)_{t\geq 0}, \mathbf{P})$ satisfying the usual conditions, an \mathscr{F} -adapted time-homogenous Markov process $X = (X_t)_{t\geq 0}$ with state space E_{Δ} is called a right process if it satisfies the strong Markov property for all \mathscr{F} -stopping times and all its trajectories are right continuous.

1.4 Other versions of the Enistein relation

Telcs, Mandelbrot, etc...

Chapter 2

Examples and Non-examples

Bibliography

- [Fal07] K. Falconer. Fractal Geometry: Mathematical Foundations and Applications. 2nd ed. Wiley, Hoboken, 2007.
- [Hut81] John E Hutchinson. "Fractals and self similarity". In: *Indiana University Mathematics Journal* 30.5 (1981), pp. 713–747.
- [Mat99] P. Mattila. Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
- [MR12] Z.M. Ma and M. Röckner. Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Universitext. Springer, Berlin Heidelberg, 2012.
- [Sch96] Andreas Schief. "Self-similar sets in complete metric spaces". In: *Proceedings of the American Mathematical Society* 124.2 (1996), pp. 481–490.