Часть 1. Тест.

вопрос 1 🐞	Ошиоки измерения не	езависимои і	переменнои являются однои из причин			
А мультинВ автокор	коллинеарности реляции		С эндогенности			
Вопрос 2 🐇 мится к	С ростом числа набли	одений расп	ределение статистики Дарбина-Уотсона стре-			
A особому Уотсона	1 1	Дарбина-	В стандартному нормальному распределению			
Вопрос 3 🌲	Одним из способов бо	рьбы с нестр	огой мультиколлинеарностью является			
А использование взвешенного МНК В увеличение количества наблюдений С деление всех регрессоров на одно и то же большое число D Нет верного ответа.						
Вопрос 4 ♣ грессии	Если ошибки распред	елены не но	рмально, то МНК-оценки коэффициентов ре-			
	ивны и несмещены ивны и смещены		С неэффективны и смещеныD неэффективны и несмещены			
Вопрос 5 \clubsuit Оценка $\hat{\beta}$ называется несмещённой, если с ростом числа наблюдений она стремится к истинной β						
А неверно			В верно			
Вопрос 6 🐥	Нестрогая мультиколл	инеарность	нарушает теорему Гаусса-Маркова			
А неверно			В верно			
Вопрос 7 🐥	При гетероскедастичн	ости оценки	коэффициентов			
	ем завышены ем занижены		С остаются несмещёнными			
Вопрос 8 ♣ Уотсона	Если в модели прису	тствуют лаг	и независимой переменной, то тест Дарбина-			
А примен	ИМ		В неприменим			

Вопрос 9 \clubsuit У разностного уравнения $y_t = 0.1y_{t-1} + \varepsilon_t + 0.4\varepsilon_{t-1}$

A нет стационарных решений

В есть единственное стационарное решение

С есть бесконечное количество стационарных решений

Вопрос 10 🐇 Во временных рядах гетероскедастичность

А возможна

В невозможна

Часть 2. Задачи.

1. На основании опроса была оценена следующая модель:

$$ln(wage_i) = \beta_1 + \beta_2 exper_i + \beta_3 exper_i^2 + \beta_4 married_i + \beta_5 educ_i + \beta_6 black_i + \varepsilon_i$$

где:

- $wage_i$ величина заработной платы в долларах
- $exper_i$ опыт работы в годах
- $educ_i$ количество лет обучения
- $married_i$ наличие супруга/супруги (1 есть, 0 нет)
- $black_i$ принадлежность к негроидной расе (1 да, 0 нет)

Показатель	Значение
R^2	B6
Скорректированный \mathbb{R}^2	0.164
Стандартная ошибка регрессии	B 7
Количество наблюдений	B1

Результаты дисперсионного анализа:

	df	SS	MS	F	Р-значение
Регрессия	B 2	B4	7.425	B 5	0.000
Остаток	B 3	184.954	0.145		
Итого	1279	222.079			

Коэффициент	Оценка	$se(\hat{\beta})$	t-статистика	Р-Значение	Нижние 95%	Верхние 95%
Константа	4.906	0.106	46.129	0.000	4.698	5.115
exper	0.095	0.011	8.956	0.000	0.074	0.115
$exper^2$	-0.003	0.001	-5.437	0.000	-0.004	-0.002
married	B8	B9	B10	0.234	-0.018	0.074
educ	0.064	0.006	11.582	0.000	0.053	0.075
black	-0.183	0.028	-6.490	0.000	-0.238	-0.127

Найдите пропущенные числа В1-В10.

Ответ округляйте до 3-х знаков после запятой. Кратко поясняйте, например, формулой, как были получены результаты.

2. Винни-Пух и Пятачок попробовали очень странный мёд. После его употребления, к ним пришли слоники в количестве 100 штук и начали водить вокруг них хороводы. Винни-Пух смог на глазок оценить вес и рост каждого слоника, а Пятачок — его возраст. Эти данные позволили им оценить следующую модель:

$$weight_i = \beta_1 + \beta_2 \ln(height_i) + \beta_3 \ln(age_i) + \varepsilon_i$$

где:

- $weight_i$ вес слоника
- $ln(height_i)$ логарифм роста слоника
- $\ln(age_i)$ логарифм возраста слоника

Выборка	\hat{eta}_1	\hat{eta}_2	\hat{eta}_3	ESS	RSS	N
1. Самые молодые слоники	43.1	1.4	3.7	243	345	40
2. Самые старые слоники	48.4	3.6	1.1	489	194	40
3. Зелёные слоники	39.6	2.1	2.4	311	268	45
4. Розовые слоники	53.1	2.9	3.1	369	307	55
5. Все слоники	45.7	2.6	2.9	615	741	100

- а) Для выборки розовых слоников проинтерпретируйте коэффициент \hat{eta}_2
- б) Определите на 5%-ом уровне значимости, можно ли использовать одну модель для розовых и зелёных слоников
- в) Пятачок уверен, что дисперсия ошибок модели падает с увеличением возраста слоника. Проверьте, так ли это, на 1% уровне значимости на основании соответствующего теста

При проверке гипотез: выпишите H_0 , H_a , найдите значение тестовой статистики, укажите её распределение, найдите критическое значение, сделайте выводы

3. Царевна Несмеяна по 146 дням наблюдений построила регрессию:

$$\widehat{tear}_t = 200 - 5sun_t - 10prince_t - 15chocolate_t, R^2 = 0.8$$

где:

- $tear_t$ количество пролитых слёз в мл
- sun_t дамми-переменная для погоды (1 солнечная, 0 пасмурная)
- $prince_t$ дамми-переменная для посещений Прекрасным Принцем (1 Принц пришёл, 0 нет)
- $chocolate_t$ количество съеденного шоколада в плитках

Известно, что
$$\sum_{t=2}^{146} (\hat{\varepsilon}_t - \hat{\varepsilon}_{t-1})^2 = 876$$
, $\sum_{t=1}^{146} \hat{\varepsilon}_t^2 = 538$, $\sum_{t=2}^{146} |\hat{\varepsilon}_t - \hat{\varepsilon}_{t-1}| = 100$, $\sum_{t=1}^{146} |\hat{\varepsilon}_t| = 150$.

- а) На 1%-ом уровне значимости проверьте гипотезу об адекватности регрессии
- б) Проведите тест Дарбина-Уотсона на 5% уровне значимости
- в) Кроме того, была оценена следующая модель:

$$\hat{\hat{\varepsilon}}_t = 5 - 0.05sun_t + 0.02prince_t + 0.09\hat{\varepsilon}_{t-1} + 0.01\hat{\varepsilon}_{t-2} + 0.004\hat{\varepsilon}_{t-3}, \ R^2 = 0.06$$

Проведите тест Бройша-Годфри на 1% уровне значимости

При проверке гипотез: выпишите H_0 , H_a , найдите значение тестовой статистики, укажите её распределение, найдите критическое значение, сделайте выводы

4. Ослик Иа-Иа горюет и считает количество мёда в горшочках. Сейчас у него 50 горшочков. Горшочки отличаются друг от друга цветом: есть более розовые и менее розовые. Иа-Иа считает, что степень розовости влияет на количество мёда. Он смог оценить следующую регрессию:

$$\widehat{honey}_i = 15 + 3pinkness_i$$

Оценка ковариационной матрицы коэффициентов, $\widehat{\mathrm{Var}}(\hat{\beta}) = \begin{pmatrix} 3 & 1.5 \\ 1.5 & 9 \end{pmatrix}$

Оценка дисперсии ошибок равна $\hat{\sigma}^2 = 137$.

Ослик нашёл новый горшочек с розовостью, равной 5.

- а) Постройте точечный прогноз для количества мёда
- б) Постройте 95%-ый доверительный интервал для $E(honey_i|pinkness_i=5)$, ожидаемого количества мёда в горшочке
- в) Постройте 95%-ый предиктивный интервал для фактического количества мёда в горшочке

Часть 3. Теоретические вопросы

- 5. Опишите F-тест для гипотезы о нескольких линейных ограничениях: сформулируйте нулевую и альтернативную гипотезы, способ получения тестовой статистики, её распределение при верной нулевой гипотезе, вид критической области.
- 6. В парной регрессии $y_t = \beta_1 + \beta_2 x_t + \varepsilon_t$ известно, что $Var(\varepsilon_t) = \sigma^2 x_t^4$. Опишите процедуру получения эффективных оценок коэффициентов.
- 7. Опишите двухшаговый МНК: сформулируйте условия для его применения и опишите процедуру построения оценок.