# **Dimensionality Reduction**

### Ziping Zhao

School of Information Science and Technology ShanghaiTech University, Shanghai, China

CS182: Introduction to Machine Learning (Fall 2022) http://cs182.sist.shanghaitech.edu.cn

Ch. 6 of I2ML (Secs. 6.4, 6.6, and 6.12 – 6.13 excluded)

#### **Outline**

Introduction

Subset Selection

Principal Component Analysis

Factor Analysis

Multidimensional Scaling

Linear Discriminant Analysis

### Canonical Correlation Analysis

Nonlinear Dimensionality Reduction

Kernel Dimensionality Reduction

#### **Canonical Correlation**

- ▶ CCA (a.k.a. canonical variates analysis) is an unsupervised problem for two sets of variables  $\mathcal{X} = \{\mathbf{x}^t, \mathbf{y}^t\}_{t=1}^N$  with  $\mathbf{x}^t \in \mathbb{R}^d$  and  $\mathbf{y}^t \in \mathbb{R}^e$ .
- ▶ Define  $\mathbf{S}_{xx} = \text{Cov}(\mathbf{x}) = \text{Var}(\mathbf{x})$ ,  $\mathbf{S}_{yy} = \text{Cov}(\mathbf{y}) = \text{Var}(\mathbf{y})$ ,  $\mathbf{S}_{xy} = \text{Cov}(\mathbf{x}, \mathbf{y})$ , and  $\mathbf{S}_{yx} = \text{Cov}(\mathbf{y}, \mathbf{x}) = \mathbf{S}_{xy}^T$ .
- We want to find two projections  $\mathbf{w}$  and  $\mathbf{v}$  s.t. when  $\mathbf{x}$  is projected along  $\mathbf{w}$  (i.e.,  $a = \mathbf{w}^T \mathbf{x}$ ) and  $\mathbf{y}$  is projected along  $\mathbf{v}$  (i.e.,  $b = \mathbf{v}^T \mathbf{y}$ ), the correlation is maximized, i.e.,

$$\begin{array}{ll}
\mathsf{maximize} & \rho_{ab} = \mathsf{Corr}(\mathbf{w}^T \mathbf{x}, \mathbf{v}^T \mathbf{y})
\end{array}$$

with

$$Corr(\mathbf{w}^{T}\mathbf{x}, \mathbf{v}^{T}\mathbf{y}) = \frac{Cov(\mathbf{w}^{T}\mathbf{x}, \mathbf{v}^{T}\mathbf{y})}{\sqrt{Var(\mathbf{w}^{T}\mathbf{x})}\sqrt{Var(\mathbf{v}^{T}\mathbf{y})}}$$
$$= \frac{\mathbf{w}^{T}Cov(\mathbf{x}, \mathbf{y})\mathbf{v}}{\sqrt{\mathbf{w}^{T}Var(\mathbf{x})\mathbf{w}}\sqrt{\mathbf{v}^{T}Var(\mathbf{y})\mathbf{v}}} = \frac{\mathbf{w}^{T}\mathbf{S}_{xy}\mathbf{v}}{\sqrt{\mathbf{w}^{T}\mathbf{S}_{xx}\mathbf{w}}\sqrt{\mathbf{v}^{T}\mathbf{S}_{yy}\mathbf{v}}}$$

### **Optimization**

► The problem is equivalent to

$$\begin{aligned} & \underset{\mathbf{w}, \mathbf{v}}{\text{maximize}} & & \mathbf{w}^T \mathbf{S}_{xy} \mathbf{v} \\ & \text{subject to} & & \mathbf{w}^T \mathbf{S}_{xx} \mathbf{w} = 1 \\ & & \mathbf{v}^T \mathbf{S}_{yy} \mathbf{v} = 1 \end{aligned}$$

► The Lagrangian:

$$\mathcal{L}(\mathbf{w}, \mathbf{v}, \alpha, \beta) = -\mathbf{w}^T \mathbf{S}_{xy} \mathbf{v} + \alpha (\mathbf{w}^T \mathbf{S}_{xx} \mathbf{w} - 1) + \beta (\mathbf{v}^T \mathbf{S}_{yy} \mathbf{v} - 1)$$

ightharpoonup Taking the derivative of the Lagrangian w.r.t.  $m{\it w}$  and  $m{\it v}$ , and setting it to  $m{\it 0}$ , we get

$$\begin{aligned} \mathbf{S}_{xy}\mathbf{v} - 2\alpha\mathbf{S}_{xx}\mathbf{w} &= & \mathbf{0} \\ \mathbf{S}_{yx}\mathbf{w} - 2\beta\mathbf{S}_{yy}\mathbf{v} &= & \mathbf{0} \\ \end{aligned} \Longrightarrow \begin{aligned} \mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}\mathbf{S}_{yy}^{-1}\mathbf{S}_{yx}\mathbf{w} &= & 4\alpha\beta\mathbf{w} = \lambda\mathbf{w} \\ \mathbf{S}_{yy}^{-1}\mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}\mathbf{v} &= & 4\alpha\beta\mathbf{v} = \lambda\mathbf{v} \end{aligned}$$

indicating **w** is an eigenvector of  $\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}\mathbf{S}_{yy}^{-1}\mathbf{S}_{yx}$  corresponding to eigenvalue  $\lambda$  and similarly **v** is an eigenvector of  $\mathbf{S}_{yy}^{-1}\mathbf{S}_{yx}\mathbf{S}_{xx}^{-1}\mathbf{S}_{xy}$  corresponding to eigenvalue  $\lambda$ .

To maximize  $\rho_{ab}$ , we choose the eigenvectors with the highest eigenvalue. Canonical Correlation Analysis

### **Canonical Correlation Analysis**

- ▶ Like PCA, we can find  $k \le \min\{d, e\}$  vectors of  $\mathbf{w}_i$  and  $\mathbf{v}_i$  based on the PoV measure.
- ► We can obtain

$$\mathbf{a} = \mathbf{W}^T(\mathbf{x} - \mathbf{m}_x), \quad \mathbf{b} = \mathbf{V}^T(\mathbf{y} - \mathbf{m}_y)$$

which constitute the new, lower-dimensional representation with values of  $a_i$  uncorrelated and each  $a_i$  uncorrelated with all  $b_i$ ,  $j \neq i$ .



#### **Outline**

Introduction

Subset Selection

Principal Component Analysis

Factor Analysis

Multidimensional Scaling

Linear Discriminant Analysis

Canonical Correlation Analysis

Nonlinear Dimensionality Reduction

Kernel Dimensionality Reduction

### **Isometric Feature Mapping I**

- PCA works when the data lies in a linear subspace.
- In many applications, the similarity between two features cannot be measured via the Euclidean distance.
- Isometric feature mapping (IsoMap) is MDS combined with a special metric, called geodesic distance, for reducing the dimensionality of data sampled from a smooth manifold.
- Instead of preserving the Euclidean distance, IsoMap preserves the geodesic distance.
- ► IsoMap is related to the manifold learning methods.

### Isometric Feature Mapping II

- ightharpoonup Given a sample  $\mathcal{X}$ , IsoMap uses the geodesic distances between all pairs of data points.
- The geodesic distance of two data points that live in a manifold is the shortest distance along the manifold.
- On a sphere, it is just the great-circle distance.
- ▶ In practice, where we are only given a sample X sampled from an unknown manifold, we can approximate the true geodesic distances by the shortest-path distances.



# Isometric Feature Mapping III

For neighboring points that are close in the input space, Euclidean distance can be used (i.e., geodesic distance is locally linear)

$$d_{rs} = \|\mathbf{x}^{(r)} - \mathbf{x}^{(s)}\|_2$$

- $\epsilon$ -ball approach: for  $\mathbf{x}^{(r)}$ ,  $\mathbf{x}^{(s)}$  is close to  $\mathbf{x}^{(r)}$  if  $\|\mathbf{x}^{(r)} - \mathbf{x}^{(s)}\|_2 < \epsilon$ . or
- kNN approach: for  $\mathbf{x}^{(r)}$ ,  $\mathbf{x}^{(s)}$  is close to  $\mathbf{x}^{(r)}$  if it is among the the k nearest neighbors of  $\mathbf{x}^{(r)}$ .



- For faraway points, geodesic distance is approximated by the sum of the distances between the points along the way over the manifold (shortest-path distance), say, via Diikstra's algorithm.
- Points that are far apart in the manifold are also far apart in the new k-dim. space after MDS even if they are close in terms of Euclidean distance in the original *d*-dim. space. Nonlinear Dimensionality Reduction

#### **Outline**

Introduction

Subset Selection

Principal Component Analysis

Factor Analysis

Multidimensional Scaling

Linear Discriminant Analysis

Canonical Correlation Analysis

Nonlinear Dimensionality Reduction

Kernel Dimensionality Reduction

## Kernel Methods for Dimensionality Reduction

- The kernel trick:
  - Choose a kernel  $k(\cdot, \cdot)$ .
  - Take any algorithm which can be computed purely using dot products  $\mathbf{x}^{tT}\mathbf{x}^{t'}$ .
  - Replace each instance of  $\mathbf{x}^{tT}\mathbf{x}^{t'}$  with  $k(\mathbf{x}^t, \mathbf{x}^{t'})$ .
- ▶ Since  $k(\mathbf{x}^t, \mathbf{x}^{t'}) = \phi(\mathbf{x}^t)^T \phi(\mathbf{x}^{t'})$ , this procedure results in carrying out the original algorithm inside of  $\mathbf{z} = \phi(\mathbf{x})$  space.
  - kernel PCA
  - kernel LDA
  - ..
- The result will be non-linear in the original data space.
- Similar idea to support vector machines.