Изчисляване на върховото Фолкманово число $F_{v}(2, 3, 4; 6)$

Ивайло Стефанов Арнаудов спец. Компютърни науки, 81638

10 февруари 2019г.

Абстракт

Ще разгледаме решение с помощта на компютър на задача от дял на теорията на Рамзи, свързан с върховите Фолкманови числа.

1 Въведение

1.1 Някои дефиниции и означения

Нека G е неориентиран граф с множество от върхове V(G) и множество от ребра E(G). Хроматичното число на G ще бележим с $\chi(G)$, а числото на независимост с $\alpha(G)$.

Дефиниция 1.1. За дадени положителни цели числа $a_1, ..., a_r$, записваме $G \xrightarrow{\mathbf{v}} (a_1, ..., a_r)$ ако за всяко r-оцветяване на върховете на G, съществува i, такова че има едноцветен K_{a_i} в цвят i.

Дефиниция 1.2. Нека $H_v(a_1,...,a_r;p) = \{G: G \xrightarrow{\mathbf{v}} (a_1,...,a_r) \land K_p \nsubseteq G\}$. Графите, елементи на множеството $H_v(a_1,...,a_r;p)$ наричаме Фолкманови графи.

Дефиниция 1.3. Числото $F_v(a_1,...,a_r;p)=min\{|V(G)|:G\in H_v(a_1,...,a_r;p)\}$ наричаме върхово Фолкманово число.

Дефиниция 1.4. Числото на Рамзи R(r,l) е най-малкото число n, такова, че всички 2-оцветявания на ребрата на K_n съдържат или едноцветен K_r в първия цвят или едноцветен K_l във втория цвят.

Дефиниция 1.5. Графът G наричаме (r,l)-Рамзи граф, ако G не съдържа K_r и $\alpha(G) < l$.

Означение 1.1. Означаваме с R(r,l;n) множеството на всички (r,l)-Рамзи графи с n върха.

Означение 1.2. Означаваме с $H_v(a_1,...,a_r;p;n)$ множеството на всички n-върхови Фолкманови графи.

1.2 Задание

Да се докаже, че върховото Фолкманово число $F_v(2,3,4;6)=14$.

2 Решение

За да решим задачата, ще използваме инструмента nauty, който предоставя готов набор от програми, улесняващи процеса на работа с графи.

Стъпка 1: Генерираме всички 10 върхови графи, които нямат 6 клики, и изпълняват свойството $G \stackrel{\text{v}}{\to} (3,4)$

Това правим, използвайки стандартната команда geng в nauty, която генерира всички n върхови графи. В допълнение, ще използваме инструментите filter и fv, предоставени в материалите за курса, където filter приема предикат и филтрира списък от графи спрямо дадения предикат, а fv приема r на брой аргумента и проверява дали $G \stackrel{\text{v}}{\to} (a_1, ..., a_r)$ за даден граф G. Всички такива графи записваме в файла 10.q6.

Графът, който получаваме е един, и изглежда така:

Стъпка 2: Добавяме независимо множество от 3 върха, разширявайки графа до 13 върхов граф, базирайки се на extend алгоритъма: тоест, при параметри extend q r, намираме всички максимални K_{q-1} свободни множества и построяваме всевъзможните графи, използвайки тези множества и добавените независими r върха (в случая, търсим K_5 -свободни множества и добавяме 3 върха) . Като резултат от extend алгоритъма, получаваме максималните 13 върхови

графи. Накрая премахваме изоморфните графи чрез shortg и разглеждаме само тези, които имат свойството $G\stackrel{\mathrm{v}}{\to}(2,3,4)$

Стъпка 3: Понеже броя на резултантните графи е нула, то следва, че няма графи в множеството $H_v(2,3,4;6;13)$, които имат независимо множество от 3 върха. Остава да проверим, че и графите които не съдържат независимо множество от 3 върха не принадлежат на това множество. Това може да стане посредством графите-допълнение на (3,6)-Рамзи графите (които имаме изчислени предварително от [1]), които са графи, несъдържащи независимо множество с 3 върха и 6-клика.

Така заключаваме, че $F_v(2,3,4;6) \ge 14$.

Стъпка 4: Остава да докажем, че $F_v(2,3,4;6) \le 14$. В [2] е даден пример за такъв граф, който дава оценката отгоре. Може да докажем твърдението и с помощта на изчисления, използвайки отново (3,6)-Рамзи графите:

$$\mathbf{cat} \ \ \mathrm{r36_14.g6} \ | \ \ ./ \ \mathrm{complement} \ \ | \ \ ./ \ \mathrm{fv} \ \ 2 \ \ 3 \ \ 4$$

Получаваме следните два графа (които нямат независимо множество с 3 върха и нямат 6-клика):

Така доказахме, че $F_v(2,3,4;6) = 14$.

Литература

- $[1] \ https://users.cecs.anu.edu.au/\ bdm/data/ramsey.html$
- [2] Nedyalkov, Evgeni Nenov, Nedyalko. (2002). Computation of the Vertex Folkman Numbers $F(2,\,2,\,2,\,4;6)$ and $F(2,\,3,\,4;6)$. Electr. J. Comb.. 9.