Übungsblatt 03

Repetitorium zur Funktionentheorie

Abgabe von: Linus Mußmächer

30. Juni 2023

Punkte: / 30

3.1 Logarithmus

(i) $\overline{\mathbb{D}}$ ist eine kompakte und nicht-leere Menge. Wir setzen g(z) = 4z und berechnen für $z \in \partial \mathbb{D}$:

$$|f(z) - g(z)| = |z^2 + e^z| \le |z^2| + |e^z| \le |z|^2 + e^{|z|} = 1 + e < 4 = |4z| = |g(z)| \le |g(z)| + |f(z)|$$

Nach dem Satz von Rouche hat somit f(z) auf $\overline{\mathbb{D}}$ dieselbe Anzahl an Nullstellen (gezählt nach ihrer Vielfachheit) wie g(z) = 4z, also genau eine (mit Vielfachheit 1). Weiterhin liegt diese Nullstelle im Inneren \mathbb{D} .

(ii) Sei $z_0 \in \mathbb{D}$ die eine Nullstelle von f. Dann können wir f auf \mathbb{D} schreiben als $f(z) = (z-z_0)g(z)$ mit $g(z) \in H(\mathbb{D})$ und $g(z_0) \neq 0$. Angenommen, f besäße eine holomorphe Logarithmusfunktion L auf \mathbb{D} . Dann wäre $L|_{\mathbb{D}\setminus\{z_0\}}$ eine holomorphe Logarithmusfunktion der (auf $\mathbb{D}\setminus\{z_0\}$ nullstellenfreien und holomorphen) Funktion $f|_{\mathbb{D}\setminus\{z_0\}}$. Somit wäre $\int_{\gamma} \frac{f'(z)}{f(z)} dz = 0$ für alle Wege γ in $\mathbb{D}\setminus\{z_0\}$. Wir berechnen dieses Integral:

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = \int_{\gamma} \frac{(z - z_0)g'(z) + g(z)}{(z - z_0)g(z)} dz = \int_{\gamma} \frac{g'(z)}{g(z)} dz + \int_{\gamma} \frac{1}{z - z_0} dz.$$

Das erste Integral hat hier stets den Wert 0, da g und g' in $\mathbb D$ holomorph und g nullstellenfrei und somit $\frac{g'}{g}$ holomorph ist. Das zweite Integral hat nach dem Residuensatz den Wert $n(z_0,\gamma)\cdot \operatorname{res}\left(z_0,\frac{1}{z-z_0}\right)$. Die Funktion $\frac{1}{z-z_0}$ hat in z_0 eine einfache Polstelle und es folgt $\operatorname{res}\left(z_0,\frac{1}{z-z_0}\right)=\lim_{z\to z_0}(z-z_0)\frac{1}{z-z_0}=1\neq 0$. Dies zeigt

$$0 = \int_{\mathcal{S}} \frac{f'(z)}{f(z)} dz = n(z_0, \gamma) \cdot 1.$$

Es müsste also $n(z_0, \gamma) = 0$ für alle Wege $\gamma \in \mathbb{D} \setminus \{z_0\}$ gelten, was natürlich Unsinn ist. Somit folgt per Widerspruch, dass f in $\mathbb{D} \setminus \{z_0\}$ und damit auch in \mathbb{D} keine holomorphe Logarithmusfunktion besitzt.

(iii) Angenommen, eine solche Funktion $h \in H(\mathbb{D})$ existiere. Dann ist $0 = f(z_0) = (w(z_0))^3$, also $w(z_0) = 0$. w hat also in z_0 eine (mindestens) einfache Nullstelle. Daher können wir w schreiben als $w(z) = (z - z_0)^k h(z)$ mit $h \in H(\mathbb{D})$, $h(z_0) \neq 0$ und $k \geq 1$. Dann aber ist

$$f(z) = (w(z))^3 = (z - z_0)^{3k} (h(z))^3,$$

also hat f in z_0 eine (mindestens) dreifache Nullstelle, ein Widerspruch.

3.2 Lokale Injektivität

Für ein beliebiges $n \in \mathbb{N}$ ist f_n lokal injektiv auf ganz G, also folgt $f'_n(z) \neq 0$ für alle $z \in G$. Für die Funktionenfolge $(f'_n) \in H(G)$ gilt also $0 \notin f'_n(G)$ für alle n, und da (f'_n) nach Weierstraß ebenfalls kompakt gegen f' konvergiert folgt $f' \equiv 0$ oder $0 \notin f'(G)$ nach dem Satz von Hurwitz. In ersterem Fall folgt, da G ein Gebiet und insbesondere zusammenhängend ist, dass f konstant ist; in zweiterem Fall per Definition die lokale Injektivität in jedem Punkt.

3.3 Biholomorphe Abbildungen

- (i) Würde eine solche biholomorphe Funktion $\varphi: \mathbb{C} \setminus \{2\} \to \mathbb{D}$ existieren, so ließe sie sich nach dem Riemannschen Fortsetzungssatz zu einer ganzen Funktion $\tilde{\varphi}: \mathbb{C} \to \mathbb{D}$ fortsetzen. Diese Funktion wäre dann aber beschränkt und somit nach Liouville konstant, hätte also insbesondere nicht Bildbereich \mathbb{D} . Somit kann eine solche Funktion nicht existieren.
- (ii) Ja, die gesuchte Funktion ist $f: z \mapsto z^2$. Da f ein Polynom ist, ist die Holomorphie klar. Jedes $z \in \mathbb{C} \setminus (\infty, 0]$ lässt sich als $z = r \exp(i\varphi)$ mit $r \in [0, \infty)$ und $\varphi \in (-\pi, \pi)$ schreiben und hat folglich Urbild $\sqrt{r} \exp(i\varphi/2)$ unter f. Wegen $\varphi \in (-\pi/2, \pi/2)$ liegt dieses Urbild auch in RH.

Für ein $z \in RH$ gilt außerdem $z = r \exp(i\varphi)$ mit $\varphi \in (-\pi/2, \pi/2)$, also $f(z) = r^2 \exp(i2\varphi)$ $\in \mathbb{C} \setminus (-\infty, 0]$. Das Bild f(RH) ist also genau die geschlitzte Ebene.

Seien weiterhin $z_1=r_1\exp(i\varphi_1)\in RH$ und $z_2=r_2\exp(i\varphi_2)\in RH$, mit $r_1,r_2\in[0,\infty)$ und $\varphi_1,\varphi_2\in(-\pi/2,\pi/2)$, derart, dass $f(z_1)=f(z_2)\Rightarrow r_1^2\exp(2i\varphi_1)=r_1\exp(2i\varphi_2)$. Dann folgt $|r_1^2\exp(i2\varphi_1)|=|r_2^2\exp(2i\varphi_2)|\Rightarrow |r_1|^2=|r_2|^2$, also $r_1=r_2$ wegen $r_1,r_2\geq 0$. Falls $r_1=r_2=0$ so folgt bereits $z_1=z_2=0$, andernfalls zeigt dies $\exp(i\cdot 2\varphi_1)=\exp(i\cdot 2\varphi_2)$, also $2\varphi_1=2\varphi_2\mod 2\pi$ und damit $2\varphi_1=2\varphi_2$, da $2\varphi_1,2\varphi_2\in(-\pi,-\pi)$. Dies zeigt $\varphi_1=\varphi_2$ und damit $z_1=z_2$, also die Injektivität von f.

Somit ist f bijektiv und holomorph, also eine biholomorphe Abbildung.

(iii) Angenommen, eine solche Funktion existiert. Dann ist ihre Umkehrabbildung eine Funktion $\varphi: \mathbb{C} \to S$. Insbesondere ist φ ganz. Wäre φ ein Polynom, so folgt $\varphi(\mathbb{C}) = \mathbb{C}$ aus dem Fundamentalsatz der Algebra (denn das Polynom $\tilde{p} = \varphi - w$ hat für alle $w \in \mathbb{C}$ eine Nullstelle x_w , und dann gilt $\varphi(x_w) = w$, d.h. $w \in \varphi(\mathbb{C})$. Also muss φ ganz-transzendent sein. Nach dem Satz von Casorati-Weierstraß liegt dann aber $\varphi(\mathbb{C})$ dicht in \mathbb{C} , also kann $\varphi(\mathbb{C})$ nicht S sein. Eine solche Funktion kann also nicht existieren.

3.4 Beschränkte Ableitungen

- Sei zuerst $G = \mathbb{C}$ und $z_0 \in \mathbb{C}$ beliebig. Dann ist $f_n : \mathbb{C} \to \mathbb{C}, z \mapsto n(z z_0) + z_0$ holomorph, hat Ableitung $f'(z_0) = n$ und es gilt $f(z_0) = n \cdot 0 + z_0 = z_0$. Dies zeigt, dass unsere Menge unbeschränkt ist.
- Sei nun $G \neq \mathbb{C}$. Nach dem Riemannschen Abbildungssatz existiert eine Abbildung $g: G \to \mathbb{D}$ mit $g(z_0) = 0$ und $g'(z_0) > 0$. Dann ist für jede Abbildung $f: G \to G$ mit $f(z_0) = z_0$ die Komposition $\tilde{f} = g \circ f \circ g^{-1}$ eine Abbildung von \mathbb{D} nach \mathbb{D} und $f(0) = g(f(z_0)) = g(z_0) = 0$. Für die Ableitung folgt

$$\tilde{f}'(0) = (g \circ f \circ g^{-1})'(0)$$

$$= (g' \circ f \circ g^{-1})(0) \cdot (f \circ g^{-1})'(0)$$

$$= (g' \circ f \circ g^{-1})(0) \cdot (f' \circ g^{-1})(0) \cdot (g^{-1})'(0)$$

$$= g'(z_0) \cdot f'(z_0) \cdot (g^{-1})'(0) = g'(z_0) \cdot f'(z_0) \cdot \frac{1}{g'(g^{-1}(z_0))}$$
$$= g'(z_0) \cdot f'(z_0) \cdot \frac{1}{g'(z_0)} = f'(z_0)$$

wobei im letzten Schritt $g'(z_0) \neq 0$ aus dem Riemannschen Abbildungssatz eingeht. Der Satz von Schwarz zeigt nun $|\tilde{f}'(0)| \leq 1$, also $|f'(z_0)| \leq 1$ für eine beliebige Funktion $f: G \to G$ mit $f(z_0) = z_0$.

Dies zeigt die Beschränktheit der gegebenen Menge mit Schranke 1. Wegen id : $G \to G$ mit id $'(z_0) = 1$ ist diese Schranke sogar scharf.