Decision Tree Learning

A Sample Task

Day	Temperature	Outlook	Humidity	Windy	Play Golf?
07-05	hot	sunny	high	false	no
07-06	hot	sunny	high	true	no
07-07	hot	overcast	high	false	yes
07-09	cool	rain	normal	false	yes
07-10	cool	overcast	normal	true	yes
07-12	mild	sunny	high	false	no
07-14	cool	sunny	normal	false	yes
07-15	mild	rain	normal	false	yes
07-20	mild	sunny	normal	true	yes
07-21	mild	overcast	high	true	yes
07-22	hot	overcast	normal	false	yes
07-23	mild	rain	high	true	no
07-26	cool	rain	normal	true	no
07-30	mild	rain	high	false	yes

today	cool	sunny	normal	false	?
tomorrow	mild	sunny	normal	false	?

Decision Tree Learning

Divide-And-Conquer Algorithms

- Family of decision tree learning algorithms
 - TDIDT: Top-Down Induction of Decision Trees
- Learn trees in a Top-Down fashion:
 - divide the problem in subproblems
 - solve each problem

Basic Divide-And-Conquer Algorithm:

- 1. select a test for root node
 Create branch for each possible outcome of the test
- split instances into subsetsOne for each branch extending from the node
- 3. repeat recursively for each branch, using only instances that reach the branch
- 4. stop recursion for a branch if all its instances have the same class

ID3 Algorithm

Function ID3

- Input: Example set S
- Output: Decision Tree DT
- If all examples in S belong to the same class c
 - return a new leaf and label it with c
- Else
 - i. Select an attribute *A* according to some heuristic function
 - ii. Generate a new node *DT* with *A* as test
 - iii. For each Value v_i of A
 - (a) Let $S_i = \text{all examples in } S \text{ with } A = V_i$
 - (b) Use ID3 to construct a decision tree DT_i for example set S_i
 - (c) Generate an edge that connects DT and DT_i

A Different Decision Tree

- also explains all of the training data
- will it generalize well to new data?

Which attribute to select as the root?

What is a good Attribute?

- We want to grow a simple tree
 - → a good attribute prefers attributes that split the data so that each successor node is as *pure* as posssible
 - i.e., the distribution of examples in each node is so that it mostly contains examples of a single class
- In other words:
 - We want a measure that prefers attributes that have a high degree of "order":
 - Maximum order: All examples are of the same class
 - Minimum order: All classes are equally likely
 - → Entropy is a measure for (un-)orderedness
 - Another interpretation:
 - Entropy is the amount of information that is contained
 - all examples of the same class → no information

Entropy (for two classes)

- *S* is a set of examples
- p_⊕ is the proportion of examples in class ⊕
- $p_{\ominus} = 1 p_{\oplus}$ is the proportion of examples in class \ominus

Entropy:

$$E(S) = -p_{\oplus} \cdot \log_2 p_{\oplus} - p_{\ominus} \cdot \log_2 p_{\ominus}$$

- Interpretation:
 - amount of unorderedness in the class distribution of S

Example: Attribute Outlook

• Outlook = sunny: 3 examples yes, 2 examples no

$$E(\text{Outlook} = \text{sunny}) = -\frac{2}{5}\log\left(\frac{2}{5}\right) - \frac{3}{5}\log\left(\frac{3}{5}\right) = 0.971$$

• Outlook = overcast: 4 examples yes, 0 examples no

$$E(\text{Outlook} = \text{overcast}) = -1 \log(1) - 0 \log(0) = 0$$

Note: this is normally undefined. Here: = 0

Outlook = rainy: 2 examples yes, 3 examples no

$$E(\text{Outlook} = \text{rainy}) = -\frac{3}{5}\log\left(\frac{3}{5}\right) - \frac{2}{5}\log\left(\frac{2}{5}\right) = 0.971$$

Entropy (for more classes)

- Entropy can be easily generalized for n > 2 classes
 - p_i is the proportion of examples in S that belong to the *i*-th class

$$E(S) = -p_1 \log p_1 - p_2 \log p_2 ... - p_n \log p_n = -\sum_{i=1}^{n} p_i \log p_i$$

Average Entropy / Information

Problem:

- Entropy only computes the quality of a single (sub-)set of examples
 - corresponds to a single value
- How can we compute the quality of the entire split?
 - corresponds to an entire attribute

Solution:

- Compute the weighted average over all sets resulting from the split
 - weighted by their size

$$I(S, A) = \sum_{i} \frac{|S_{i}|}{|S|} \cdot E(S_{i})$$

Example:

Average entropy for attribute *Outlook*:

$$I(\text{Outlook}) = \frac{5}{14} \cdot 0.971 + \frac{4}{14} \cdot 0 + \frac{5}{14} \cdot 0.971 = 0.693$$

Information Gain

- When an attribute A splits the set S into subsets S_i
 - we compute the average entropy
 - and compare the sum to the entropy of the original set S

Information Gain for Attribute A

$$Gain(S, A) = E(S) - I(S, A) = E(S) - \sum_{i} \frac{|S_{i}|}{|S|} \cdot E(S_{i})$$

- The attribute that maximizes the difference is selected
 - i.e., the attribute that reduces the unorderedness most!
- Note:
 - maximizing information gain is equivalent to minimizing average entropy, because E(S) is constant for all attributes A

Example

Gain(S, Outlook) = 0.246

Gain(S, Temperature) = 0.029

Example (Ctd.)

Example (Ctd.)


```
Gain(Temperature) = 0.571 \text{ bits}
Gain(Humidity) = 0.971 \text{ bits}
Gain(Windy) = 0.020 \text{ bits}
```

Humidity is selected

Example (Ctd.)

Final decision tree

Highly-branching attributes

- Problematic: attributes with a large number of values
 - extreme case: each example has its own value
 - e.g. example ID; Day attribute in weather data
- Subsets are more likely to be pure if there is a large number of different attribute values
 - Information gain is biased towards choosing attributes with a large number of values
- This may cause several problems:
 - Overfitting
 - selection of an attribute that is non-optimal for prediction
 - Fragmentation
 - data are fragmented into (too) many small sets

Decision Tree for Day attribute

Entropy of split:

$$I(\text{Day}) = \frac{1}{14} (E([0,1]) + E([0,1]) + ... + E([0,1])) = 0$$

Information gain is maximal for Day (0.940 bits)

Alternative Measures

- ► Gain ratio: penalize attributes like income by incorporating split information
 - SplitInformation $(S, A) \equiv -\sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$
 - ► Split information is sensitive to how broadly and uniformly the attribute splits the data
 - ► $GainRatio(S, A) \equiv \frac{Gain(S, A)}{SplitInformation(S, A)}$
- Gain ratio can be undefined or very large
 - Only test attributes with above average Gain

Gain ratios for weather data

Outlook		Temperature	
Info:	0.693	Info:	0.911
Gain: 0.940-0.693	0.247	Gain: 0.940-0.911	0.029
Split info: info([5,4,5])	1.577	Split info: info([4,6,4])	1.557
Gain ratio: 0.247/1.577	0.157	Gain ratio: 0.029/1.557	0.019
Humidity		Windy	
Info:	0.788	Info:	0.892
Gain: 0.940-0.788	0.152	Gain: 0.940-0.892	0.048
Split info: info([7,7])	1.000	Split info: info([8,6])	0.985
Gain ratio: 0.152/1	0.152	Gain ratio: 0.048/0.985	0.049

- Day attribute would still win...
 - one has to be careful which attributes to add...
- Nevertheless: Gain ratio is more reliable than Information Gain

Gini Index

- Many alternative measures to Information Gain
- Most popular altermative: Gini index
 - used in e.g., in CART (Classification And Regression Trees)
 - impurity measure (instead of entropy)

$$Gini(S) = 1 - \sum_{i} p_i^2$$

average Gini index (instead of average entropy / information)

$$Gini(S, A) = \sum_{i} \frac{|S_{i}|}{|S|} \cdot Gini(S_{i})$$

- Gini Gain
 - could be defined analogously to information gain
 - but typically avg. Gini index is minimized instead of maximizing Gini gain

Comparison among Splitting Criteria

For a 2-class problem:

ACKNOWLEDGMENT

→ Slides borrowed from Johannes Fürnkranz.