More mgcViz tools

Matteo Fasiolo (University of Bristol, UK)

Joint work with:

Simon N. Wood (University of Bristol, UK) Yannig Goude (EDF R&D) Raphaël Nedellec (Talend, formerly EDF R&D)

matteo.fasiolo@bristol.ac.uk

Material available at:

https://github.com/mfasiolo/workshop_EDF19

More tools mgcViz: talk structure

These slides cover:

- Quantile GAMs
 - What are quantile GAMs (QGAMs)
 - Using QGAMs with qgam and mgcViz
- 2 Loss-based checks
 - Loss-based vs goodness-of-fit checks
 - Bayesian predictive checks
- 3 Future developments & hands-on session

Regression setting:

- y is our response or dependent variable
- x is a vector of covariates or independent variables

In **distributional regression** we want a good model for $p(y|\mathbf{x})$.

Model is $p_m\{y|\theta_1(\mathbf{x}),\ldots,\theta_q(\mathbf{x})\}$, where $\theta_1(\mathbf{x}),\ldots,\theta_q(\mathbf{x})$ are parameters.

Lots of options for $p_m(y|\mathbf{x})$: binomial, gamma, Poisson, Tweedie...

We consider continuous (not discrete) y.

Define $F(y|\mathbf{x}) = \text{Prob}(Y \leq y|\mathbf{x})$.

The au-th $(au \in (0,1))$ quantile is $\mu_{ au}(\mathbf{x}) = F^{-1}(au|\mathbf{x})$.

Given $p_m(y|\mathbf{x})$ we can get the conditional quantiles $\mu_{\tau}(\mathbf{x})$.

Quantile regression estimates conditional quantiles $\mu_{\tau}(\mathbf{x})$ directly.

No model for $p(y|\mathbf{x})$.

The τ -th quantile is

$$\mu = F^{-1}(\tau | \mathbf{x}),$$

but also the minimizer of

$$L(\mu|\mathbf{x}) = \mathbb{E}\{ \rho_{\tau}(y-\mu)|\mathbf{x} \},$$

where

$$\rho_{\tau}(z) = (\tau - 1)z\mathbb{1}(z < 0) + \tau z\mathbb{1}(z \ge 0),$$

is the "pinball" loss (Koenker, 2005).

Smoothing the pinball loss

ggam uses a modified loss which we call Extended log-F (ELF) loss.

This is smooth and convex and, as $\lambda \to 0$, we have recover pinball loss.

NB in qgam, λ reparametrized as err \in (0,1) (\downarrow err implies $\downarrow \lambda$).

Smoothing the pinball loss

Increasing err leads to:

- faster and more stable computation
- more bias

By default:

```
qgam(..., err = 0.05, ...)
```

which is a compromise between bias and speed.

mgcViz provides specific visualisations for QGAMs.

Now we move to "qgam_demonstration.html".

References I

- Fasiolo, M., Y. Goude, R. Nedellec, and S. N. Wood (2017). Fast calibrated additive quantile regression. arXiv preprint arXiv:1707.03307.
- Fasiolo, M., R. Nedellec, Y. Goude, and S. N. Wood (2018). Scalable visualisation methods for modern generalized additive models. arXiv preprint arXiv:1809.10632.
- Jones, M. (2008). On a class of distributions with simple exponential tails. *Statistica Sinica* 18(3), 1101–1110.
- Koenker, R. (2005). Quantile regression. Number 38. Cambridge university press.
- Rigby, R. A. and D. M. Stasinopoulos (2005). Generalized additive models for location, scale and shape. *Journal of the Royal Statistical Society: Series C (Applied Statistics)* 54(3), 507–554.
- Wood, S. (2006). Generalized additive models: an introduction with R. CRC press.