

计算机组成原理与接口技术 -基于 MIPS 架构

Chapter 9 DMA

> 张江山 zhangjs@hust.edu.cn 信息工程系

Content & Objectives

- Content
 - ◆ The Concept of Direct Memory Access
 - ◆ AXI CDMA Controller
- Objectives
 - ◆ Understanding the concepts of DMA
 - ◆ Master the method of using AXI CDMA controller

电子信息与通信学院

2/25

电子信息与通信学院

1 The Concept of Direct Memory Access

Comparison of 3 data transmission control modes

- ◆ Program Polling
 - >CPU must query the status continuously
- ◆ Interrupt
 - >CPU can respond to IRQ only after completing an instruction
 - ➤ CPU must backup the current status
- ◆ Direct Memory Access
 - >CPU can respond to the DMA request at any time
 - >CPU does not have to backup the current status
 - ➤ CPU does not access the bus temporarily
 - >Transfer data directly between peripheral and memory
 - lacktriangledown Memory: srcAddr and dstAddr be incremented
 - lacktriangledown Memory ightarrow I/O Device: srcAddr be incremented, dstAddr be fixed
 - I/O Device → Memory: srcAddr be fixed, dstAddr be incremented

3/25

mist

1 The Concept of Direct Memory Access DMA Controller ◆ Request to occupy the bus Control reading and writing

1 The Concept of Direct Memory Access

DMA Operations

- 1. Initialize DMAC
 - >Transfer mode
 - ➤ Source and Destination address
 - ▶Bytes to transfer
- 2. DMAC Request
 - ► DMA Controller request → *HOLD* → CPU
- 3. CPU Response
 - ➤ CPU response → HLDA → DMA Controller, CPU release bus
- 4. Data Transter
 - >DMAC read data from source to DMAC FIFO
 - >DMAC write data from DMAC FIFO to dst address
 - ➤ DMAC count down
- 5. Finish
 - ightharpoonup DMAC ightharpoonup TRQ ightharpoonup CPU, DMAC release the bus

2 AXI CDMA Controller

电子信息与通信学院

AXI CDMA (Central Direct Memory Access)

- ◆ AXI4 interface for data transfer
- ◆ Independent AXI4-Lite Slave interface for register access
- ◆ Fixed-address and Incrementing-address burst support
 - ►I/O device side: Fixed-address
 - ➤ Memory side: Incrementing-address
- ◆ Default simple DMA mode
- ◆ Optional Scatter-gather DMA mode support

6/25

4/25

2 AXI CDMA Controller

• I/O Signals

Signal	Туре	Init	Description	
cdma_introut	0	0	Interrupt output for the AXI CDMA core	
m_axi_aclk	ı	-	AXI CDMA Synchronization Clock	
s_axi_lite_aclk	ı	-	Synchronization Clock for the AXI4-Lite interface	
s_axi_lite_aresetn	ı	-	Active-Low AXI4-Lite Reset, be synchronous to s_axi_lite_aclk	
s_axi_lite_*	I/O	-	AXI4-Lite Slave Interface Signals	
m_axi_*	I/O	-	CDMA Data AXI4 Read/Write Master Interface Signal	

Registers

Offset	Register	Description		
0x0	CDMACR	CDMA Control Register		
0x4	CDMASR	CDMA Status Register		
0x18	SA	Source Address Register		
0x20	DA	Destination Address Register		
0x28	BTT	Bytes to Transfer Register		

L电子信息与通信学院 SCHOOL OF ELECTRONIC INFORMATION AND COMMUNICATIONS

8/25

2 AXI CDMA Controller

CDMACR (CDMA Control Register, Offset: 0x0)

Bits	Field Init		Description
2	Reset 0		Soft reset control for the AXI CDMA core
3	SGMode	0	0 / 1: Simple / Scatter-gather DMA mode
4	Key Hole Read	0	0 / 1: Incremental / Fixed source address
5	Key Hole Write	0	0 / 1: Incremental / Fixed destination address
12	IOC_IrqEn	0	Complete Interrupt Enable
14	Err_IrqEn	0	Error Interrupt Enable
	(Scatter-gath		(Scatter-gather DMA mode and Reserved)

2 AXI CDMA Controller

● *CDMASR* (CDMA Status Register, Offset: 0x4)

Bits	Field	Init	Access Type	Description
1	ldle	0	RO	CDMA Idle
4	DMAIntErr	0	RO	1: Internal error
5	DMASIvErr	0	RO	1: Slave error
6	DMADecErr	0	R/TOW	1: Decode error
12	IOC_Irq	0	R/TOW	Interrupt on complete
14	Err_Irq	0	R/TOW	Interrupt on error
Others				

- BTT (CDMA Bytes to Transfer, Offset: 0x28)
 - ullet BTT_[22:0]: Bytes transmitted from srcAddr to dstAddr
 - \bullet $BTT_{[31:23]}$: Reserved
 - ◆ Writing to BTT register also initiates the Simple DMA transfer

▲电子信息与通信学院 SCHOOL OF ELECTRONIC INFORMATION AND COMMUNICATIONS 10/0

2 AXI CDMA Controller

- Ex.1: 3 types of DMA transfer between device and memory
 - ◆ Memory to memory
 - ◆ Memory to UART I/O device
 - ◆ UART I/O device to memory

2 AXI CDMA Controller

- Ex.1: 3 types of DMA transfer between device and memory
 - ◆ UART
 - ➤ Serial full-duplex, asynchronous communicates protocol
 - e.g. RS-232, RS-485
 - ➤ Four-wire serial bus
 - Vcc, GND, Tx, Rx

▲电子信息与通信学院 SCHOOL OF ELECTRONIC INFORMATION AND COMMUNICATIONS

11/25

12/25

13/25

m T

15/25

m T

17/25

2 AXI CDMA Controller

Ex.1: 3 types of DMA transfer between device and memory

```
#include "xil io.h"
#include "xil_print.h
#define MIG_BASE
                    0x80000000
#define UART BASE
                    0x41100000
#define INTC BASE
                    0x41200000
#define CDMA_BASE
                    0x44A00000
#define UART_RxFIFO (UART_BASE + 0x0)
                                       //UART Receive Data FIFO
#define UART TxFIFO (UART BASE + 0x4)
                                       //UART Transmit Data FIFO
#define UART_SR
                    (UART BASE + 0x8)
                                       //UART Status Register
#define UART_CR
                    (UART_BASE + 0xC)
                                       //UART Control Register
#define INTC ISR
                    (INTC BASE + 0x0)
                                       //INTC Interrupt Status Register
                    (INTC_BASE + 0x8)
#define INTC IER
                                       //INTC Interrupt Enable Register
#define INTC_IAR
                    (INTC_BASE + 0xC)
                                       //INTC Interrupt Acknowledge Register
                    (INTC_BASE + 0x1C) //INTC Master Enable Register
#define INTC MER
#define CDMA CR
                    (CDMA BASE + 0x0)
                                       //CDMA Control Register
#define CDMA_SR
                    (CDMA BASE + 0x4)
                                       //CDMA Status Register
#define CDMA_SA
                    (CDMA_BASE + 0x18) //CDMA Source Address Register
#define CDMA DA
                    (CDMA BASE + 0x20) //CDMA Destination Address Register
                    (CDMA BASE + 0x28) //CDMA Byters to Transfer
#define CDMA BTT
```

2 AXI CDMA Controller

电子信息与通信学院

Ex.1: 3 types of DMA transfer between device and memory

```
u32 k, done = 0, btt = 64:
 void MyISR(void) __attribute_
                              ((interrupt handler)):
 void dma(u32 src, u32 dst, u32 btt);
 void main(void) {
   Xil_Out32(UART_CR, 3); //set UART Control Register, reset UART TxFIFO and RxFIFO
   Xil_Out32(INTC_IAR, 1); //set INTC Interrupt Register, clear INTC ISR[0]
   Xil_Out32(INTC_IER, 1); //set INTC Interrupt Register, enable INTC intr[0]
   Xil_Out32(INTC_MER, 3); //set INTC Master Enable Register, enable INTC irq & intr
   microblaze_enable_interrupts();
                                          //initialize 16 characters in memory
   for(k = 0; k < btt / 4 - 1; k++)
    Xil_Out8(MIG_BASE + k * 4, 'a' + k); //"abcdefghijklmnop\n"
   Xil_Out8(MIG_BASE + k * 4, '\n');
   dma(MIG_BASE, MIG_BASE + btt, btt); //memory → memory
   while(!done);
   dma(UART RxFIFO, MIG BASE, btt);
                                      //IO device → memory
   while(!done):
   dma(MIG BASE, UART TxFIFO, btt);
                                       //memory → IO device
   while(!done);
电子信息与通信学院
                                                                               16/25
```

2 AXI CDMA Controller

\电子信息与通信学院

电子信息与通信学院

• Ex.1: 3 types of DMA transfer between device and memory

2 AXI CDMA Controller

Ex.1: 3 types of DMA transfer between device and memory

▲电子信息与通信学院 SCHOOL DE ELECTRONIC INFORMATION AND COMMUNICATIONS

18/25

mil mil

14/25

m T

2 AXI CDMA Controller

- Scatter-gather Mode
 - ◆ For off-loading CPU management tasks to hardware automation
 - ◆ AXI4 read/write master interface I/O signals: m_axi_sg_* Fetches and updates DMA control transfer descriptors from memory

 - Provides internal descriptor queuing
 - ➤ Tansfer Descriptor Word (16 32-bit words)
 - NXTDESC_PNTR_[31:6]: Next Descriptor Pointer (0x0) Descriptor address must be aligned to 64-byte boundaries (16 32-bit words) e.g. 0x00, 0x40, 0x80, 0xC0
 - $SA_{[31:0]}$: Source Address (0x8)
 - $DA_{(31:0)}$: Destination Address (0x10)
 - $CONTROL_{[22:0]}$: Bytes to Transfer (0x18)
 - STATUS_[31:28]: Cmplt, DMADecErr, DMASlvErr, DMAIntErr (0x1C)
 - Registers
 - $\succ CURDESC_PNTR_{[31:6]}$: Current Descriptor Pointer (0x8)
 - $\gt{TAILDESC_PNTR}_{[31:6]}$: Tail Descriptor Pointer (0x10)
 - Start the channel fetching and processing descriptors after writing

电子信息与通信学院

19/25

mis T

HIST

2 AXI CDMA Controller

• Ex.2: DMA transfer 64 bytes from DDR2-SDRAM to the TxFIFOs of UARTLite and SPI with Scatter-gather Mode

电子信息与通信学院

20/25

IIII

ms?

2 AXI CDMA Controller

Ex.2: DMA transfer 64 bytes from DDR2-SDRAM to the TxFIFOs of UARTLite and SPI with Scatter-gather Mode

```
0x80000000
(MIG_BASE + 0x03000000) //Destination Base Address
#define UART_BASE
#define SPI_BASE
#define INTC_BASE
#define CDMA_BASE
                                        0x41100000
                                         0x41200000
#define UART_TxFIFO (UART_BASE + 0x4)
                                                                               //UART Transmit Data FIFO Register
                                                                               //UART Status Register
//UART Control Register
//SPI Control Register
//SPI Data Transmit Register
//SPI Slave Select Register
                                         (UART_BASE + 0x8)
(UART_BASE + 0xC)
(SPI_BASE + 0x60)
(SPI_BASE + 0x68)
#define UART_SR
#define UART_CR
#define SPI_CR
#define SPI_DTR
#define SPI_SSR
                                         (SPI_BASE + 0x60)
(SPI_BASE + 0x68)
(SPI_BASE + 0x70)
                                                                               //INTC Interrupt Status Register
//INTC Interrupt Enable Register
//INTC Interrupt Acknowledge Reg
//INTC Master Enable Register
#define INTC ISE
                                          (INTC_BASE + 0x0)
(INTC_BASE + 0x8)
#define INTC IER
                                         (INTC_BASE + 0xC)
(INTC_BASE + 0x1C)
                                                                                                                                           Register
#define CDMA_CR
#define CDMA_SR
                                         (CDMA_BASE + 0x0)
                                                                               //CDMA Control Register
                                         (CDMA_BASE + 0x0) //CDMA CONTROL Register

(CDMA_BASE + 0x18) //CDMA Source Address Register

(CDMA_BASE + 0x20) //CDMA Destination Address Register

(CDMA_BASE + 0x20) //CDMA Destriation Address Register

(CDMA_BASE + 0x28) //CDMA Current Descriptor Pointer Register
#define CDMA_SA
#define CDMA DA
#define CDMA_BTT
                                        (CDMA_BASE + 0x8) //CDMA Current Descriptor Pointer Regis
(CDMA_BASE + 0x10) //CDMA Tail Descriptor Pointer Register
#define CDMA CDESC
#define CDMA TDESC
  子信息与通信
                                        学院
                                                                                                                                                                  21/25
```

2 AXI CDMA Controller

Ex.2: DMA transfer 64 bytes from DDR2-SDRAM to the TxFIFOs of UARTLite and SPI with Scatter-gather Mode

2 AXI CDMA Controller

 Ex.2: DMA transfer 64 bytes from DDR2-SDRAM to the TxFIFOs of UARTLite and SPI with Scatter-gather Mode

2 AXI CDMA Controller

 Ex.2: DMA transfer 64 bytes from DDR2-SDRAM to the TxFIFOs of UARTLite and SPI with Scatter-gather Mode

```
void MyISR(void) __attribute__ ((interrupt_handler)) {
  u32 state_INTC = Xil_In32(INTC_ISR);
   if((state_INTC & 1) {
                                         //if \mathsf{state}_{[\theta]}\text{, handle INTC intr}_{[\theta]}
     u32 state_CDMA = Xil_In32(CDMA_SR);
     Xil_Out32(CDMA_SR, state_CDMA); //clear CDMA Status Register (TOW)
     if(state CDMA & 0x1000) {
                                         //if state_{[12]}, handle CDMA Completed Irq
        for(int i = 0; i < 2; i++)
          if(Xi1_In32(DESC_BASE + 0x40 * i + 0x1C) & 0x80000000)
            done++; //check Desc., if DESC.status<sub>[31]</sub>, Complete a transfer
        xil_prinf("dma done numbers is %d\n", done);
     else if(state CDMA & 0x4000)
       xil prinf("dma error\n");
   Xil_Out32(INTC_IAR, state_INTC); //clear INTC Status Register
电子信息与通信学院
                                                                                     24/25
```

● P392 ◆ 10 ◆ 11

25/25

A电子信息与通信学院 SCHOOL OF ELECTRONIC INFORMATION AND COMMUNICATIONS