(Формула на Бейс) Нека H_1,\dots,H_n е разбиване на Ω на събития с ненулева вероятност и $A\subset\Omega.$ Тогава за $k\in\{1,\dots,n\}$

 $\mathbb{P}(H_k|A) = \frac{\mathbb{P}(A|H_k)\mathbb{P}(H_k)}{\sum_{i=1}^n \mathbb{P}(A|H_i)\mathbb{P}(H_i)}.$

Задача 1. Разполагаме с тест за рядко заболяване, който е точен в 99% от случаите и при заразените (когато трябва да е положителен), и при незаразените (когато трябва да е отрицателен). Ако знаете, че 0,5% от населението има това заболяване, каква е вероятността случайно избран човек с положителен тест да е болен?

Решение 1. Дефинираме $H_1 := \{\text{човекът е болен}\}, H_2 := \overline{H_1} = \{\text{човекът не е болен}\}$ и $A := \{\text{тестът е положителен}\}$. По условие $\mathbb{P}(H_1) = 0.5\%, \mathbb{P}(H_2) = 99.5\%, \mathbb{P}(A|H_1) = 99\%$ и $\mathbb{P}(A|H_2) = 1\%$. От формулата на Бейс, можем да пресметнем търсеното $\mathbb{P}(H_1|A)$. Отг.: ≈ 0.3322 .

(Какво представлява Ω в случая? Това може да са тройките (човек, болен/здрав, изход от тест). Можем да разгледаме и по-малко Ω . Идеи?)

Задача 2. В компютърен център има три принтера A, Б и В. Заявките за печат се изпращат към първия свободен принтер. Вероятностите заявка да бъде изпратена към A, Б или В са съответно 0.6, 0.3 и 0.1. Вероятността за всеки от принтерите да провали печатането е съответно 0.01, 0.05 и 0.04. Ако печатането на даден документ е било прекратено, каква е вероятността причината да е грешка в принтера A?

Решение 2. Дефинираме $H_1 := \{$ документът е изпратен към принтер $A\}$, $H_2 := \{$ документът е изпратен към принтер $B\}$, $H_3 := \{$ документът е изпратен към принтер $B\}$ и $D := \{$ печатането е провалено $\}$. По условие $\mathbb{P}(H_1) = 0.6, \mathbb{P}(H_2) = 0.3, \mathbb{P}(H_3) = 0.1, \mathbb{P}(D|H_1) = 0.01, \mathbb{P}(D|H_2) = 0.05$ и $\mathbb{P}(D|H_3) = 0.04$. От формулата на Бейс, можем да пресметнем търсеното $\mathbb{P}(H_1|D)$. Отг.:0.24.

Задача 3. Дадени са три жетона. Първият има две бели страни, вторият две черни, а третият една бяла и една черна страна. По случаен начин се избира жетон и се хвърля върху маса. Ако горната страна на жетона е бяла, каква е вероятността другата му страна която не се вижда също да е бяла?

Решение 3. Дефинираме $H_1:=$ {изтеглили сме монета (бяло, бяло)}, $H_2:=$ {изтеглили сме монета (бяло, черно)}, $H_3:=$ {изтеглили сме монета (черно, черно)} и A:= {хвърлили сме бяло}. По условие $\mathbb{P}(H_1)=1/3, \mathbb{P}(H_2)=1/3, \mathbb{P}(H_3)=1/3, \mathbb{P}(A|H_1)=1, \mathbb{P}(A|H_2)=1/2$ и $\mathbb{P}(A|H_3)=0$. От формулата на Бейс, можем да пресметнем търсеното $\mathbb{P}(H_1|A)$. Отг.: 2/3.

Задача 4. Изпит се провежда по следния начин: във всеки билет има написан един въпрос с четири отговора, от които само един е верен. Предполагаме, че студент знае 90% от въпросите, а ако не знае верния отговор, налучква. Каква е вероятността студент, който е отговорил правилно, да не е знаел верният отговор, а да е налучкал?

Решение 4. Дефинираме $H_1 := \{$ студентът знае въпроса $\}$, $H_2 := \{$ студентът не знае въпроса $\}$ и $A := \{$ отговорът е правилен $\}$. По условие $\mathbb{P}(H_1) = 9/10, \mathbb{P}(H_2) = 1/10, \mathbb{P}(A|H_1) = 1, \mathbb{P}(A|H_2) = 1/4$. От формулата на Бейс, можем да пресметнем търсеното $\mathbb{P}(H_2|A)$. Отг.: 1/37.

Задача 5. Трима ловци едновременно стрелят по заек. Заекът е убит от един куршум при първата стрелба. Каква е вероятността той да е изстрелян от първия ловец, ако те уцелват с вероятност, съответно 0.2, 0.4 и 0.6?

Решение 5. $p_1 := \mathbb{P}(\text{само I уцелва от първия път}) = 0.2 \cdot 0.6 \cdot 0.4, p_2 = \mathbb{P}(\text{само II уцелва от първия път}) = 0.8 \cdot 0.4 \cdot 0.4, p_3 := \mathbb{P}(\text{само III уцелва от първия път}) = 0.8 \cdot 0.6 \cdot 0.6. Отг.: <math>p_1/(p_1+p_2+p_3) = 3/29$. (Можете да проверите, че отговорът не се променя, ако премахнем уточнението, че уцелването е станало точно на първата стрелба.)

Задача 6. Раздаваме последователно картите от стандартно тесте карти. Ако за първи път видим червено асо на 6-та позиция, каква е вероятността след това да видим черно след другото червено асо?

Решение 6. Дефинираме $H_i := \{$ изтеглили сме і черни аса до 6-тата карта $\}$ за i=1,2 и $A=\{$ виждаме черно след второто червено асо $\}$. Пресмятаме $\mathbb{P}(H_0)=\binom{48}{5}/\binom{50}{5},\ \mathbb{P}(H_1)=2\cdot\binom{48}{4}/\binom{50}{5},\ \mathbb{P}(A|H_0)=2/3, \mathbb{P}(A|H_1)=1/2, \mathbb{P}(A|H_2)=0.$ Пресмятаме $\mathbb{P}(A)$ по формулата за пълната вероятност. Отг.: $\approx 0.6306.$

Задача 7. На изпит се явяват 100 студенти, 55 момчета и 45 момичета. Момичетата взимат изпита с вероятност 0.7, а момчетата - с 0.4. След изпита се избират три резултата. Два от тях се оказали успешни, а един неуспешен. Каква е вероятността и трите резултата да са на момичета?

Решение 7. Дефинираме $H_1:=$ {избрали сме три момичета}, $H_2:=$ {избрали сме две момичета и момиче}, $H_3:=$ {избрали сме две момичета и момиче}, $H_4:=$ {избрали сме три момчета} и A:= {отговорите на избраните трима са два верни и един грешен}. Пресмятаме $\mathbb{P}(H_1)=\binom{45}{3}/\binom{100}{3}, \mathbb{P}(H_2)=55\cdot\binom{45}{2}/\binom{100}{3}, \mathbb{P}(H_3)=45\cdot\binom{55}{2}/\binom{100}{3}, \mathbb{P}(H_4)=\binom{55}{3}/\binom{100}{3}, \mathbb{P}(A|H_1)=3\cdot(0.7)^2\cdot(0.3), \mathbb{P}(A|H_2)=(0.7)^2\cdot(0.6)+2\cdot(0.7)\cdot(0.3)\cdot(0.4), \mathbb{P}(A|H_3)=(0.4)^2\cdot(0.3)+2\cdot(0.7)\cdot(0.4)\cdot(0.6)$ и $\mathbb{P}(A|H_4)=3\cdot(0.4)^2\cdot(0.6)$. От формулата на Бейс, можем да пресметнем търсеното $\mathbb{P}(H_1|A)$.

Задача 8. Даден е кръг с радиус R. Върху диаметъра по случаен начин е избрана точка A. През точка A е прекарана хорда перпендикулярна на диаметъра. Каква е вероятността хордата да бъде по-къса от R? Отг.: $(2-\sqrt{3})/2$.

Задача 9. Два парахода трябва да бъдат разтоварени на един и същи пристан през един и същи ден. Всеки от тях, независимо от другия, може да пристигне в кой да е момент от денонощието. Каква е вероятността параходите да не се засекат, ако за разтоварването на първия са необходими 6, а за втория 4 часа? Отг.: ≈ 0.6285 .

Задача 10. Автобусите от линия A се движат на интервали от пет минути, а от линия B на десет минути, независимо от автобусите от линия A. Каква е вероятността

- 1. автобус от А да дойде преди автобус от Б;
- 2. пътник, дошъл в случаен момент на спирката, да чака не повече от две минути?

OTT.: 3/4, 26/50.

Задача 11. Дадена е отсечка с дължина К. По случаен начин се избират две други отсечки с дължина по-малка от К. Каква е вероятността от трите отсечки да може да се построи триъгълник? Отг.: 1/2

Задача 12. Каква е вероятността от три избрани по случаен начин отсечки с дължина по-малка от K да може да се построи триъгълник? Отг.: 1/2

Задача 13. Дадена е магнетофонна лента с дължина 100м. Върху всяка от двете страни на лентата, на случайно избрано място, е записано непрекъснат съобщение с дължина 20м. Каква е вероятността между 25 и 50м, считано от началото на лентата, да няма участък несъдържащ поне едно от двете съобщения?

Задача 14. По случаен начин и независимо едно от друго се избират две числа x и y в интервала (0, 1]. Каква е вероятността на събитията

- 1. $xy \leq 1/4$;
- 2. $x + y \le 1$ и $x^2 + y^2 \ge 1/2$;
- 3. xy > 2/5 и $x^2 + y^2 < 1$?

Задача 15. Разделяме случайно отсечка с дължина 1 на 3 части. Каква е вероятността те да могат да образуват триъгълник? Отг.: 1/4

Задача 16. (Bertrand Paradox) Да разгледаме равностранен триъгълник, вписан в окръжност с радиус 1. Каква е вероятността случайно избрана хорда от тази окръжност да е по-дълга от страната на триъгълника? Отг.: 1/2, 1/3, 1/4?