Definizione (prodotto scalare standard in \mathbb{R}^n). Si definisce **prodotto scalare** (standard) la forma bilineare simmetrica definita positiva di \mathbb{R}^n la cui matrice associata nella base canonica di \mathbb{R}^n è l'identità. In particolare vale che:

$$v \cdot w = \sum_{i=1}^{n} v_i w_i.$$

Osservazione. Dall'Algebra lineare, ogni iperpiano P di \mathbb{R}^n è rappresentabile tramite traslazione di una giacitura che è ortogonale rispetto a una retta, ossia esistono sempre $c \in \mathbb{R}$ e $v \in \mathbb{R}^n$ tale per cui:

$$x \in P \iff x \cdot v = c.$$

Definizione (derivata direzionale). Dati $x_0 \in \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}$, e $v \in \mathbb{R}^n$, definisco la derivata direzionale come:

$$\frac{\partial f}{\partial v}(x_0) = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon v) - f(x)}{\varepsilon}.$$

Osservazione. Si osserva che vale la seguente identità:

$$\frac{\partial f}{\partial \lambda v} = \lambda \frac{\partial f}{\partial v},$$

e che se v = 0, allora la derivata direzionale vale sempre 0.

Osservazione. Non vale la linearità sui vettori della derivata direzionale, ossia, in generale, vale che:

$$\frac{\partial f}{\partial (v+w)} \neq \frac{\partial f}{\partial v} + \frac{\partial f}{\partial w}.$$

Se infatti si definisce f tale per cui:

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & (x,y) \neq 0, \\ 0 & (x,y) = 0, \end{cases}$$

allora
$$\frac{\partial f}{\partial e_1}(0) = \frac{\partial f}{\partial e_2}(0) = 0$$
, ma $\frac{\partial f}{\partial (1,1)}(0) = \frac{1}{2}$.

Osservazione. Trovando un'analogia con \mathbb{R} , vale la seguente identità:

$$f(x_0 + \varepsilon v) = f(x_0) + \varepsilon \frac{\partial f}{\partial v}(x_0) + o(|\varepsilon v|).$$

In particolare si osserva che l'o-piccolo dipende dal vettore direzionale scelto.

Definizione (derivata parziale). Si definisce **derivata parziale** rispetto a x_i , la derivata direzionale rispetto al vettore e_i , e si indica con:

$$\frac{\partial f}{\partial x_i} := \frac{\partial f}{\partial e_i}$$

Osservazione. Se $\frac{\partial f}{\partial v}$ fosse lineare su v, allora si potrebbe riscrivere la derivata direzionale come:

 $\frac{\partial f}{\partial v} = \nabla f v, \quad \nabla f = \left(\frac{\partial f}{\partial x_1} \cdots \frac{\partial f}{\partial x_n}\right),$

dove ∇f è così composto perché in ogni colonna raccoglie la sua valutazione nella base canonica, ossia le derivate parziali.

Definizione (gradiente di f). Si definisce **gradiente** di una funzione $f: \mathbb{R}^n \to \mathbb{R}$ il vettore:

 $\nabla f = \left(\frac{\partial f}{\partial x_1} \cdots \frac{\partial f}{\partial x_n}\right).$

Definizione (differenziabilità). Si dice che f è **differenziabile** se esiste $\omega \in \mathbb{R}^n$ tale per cui:

$$f(x) = f(x_0) + (x - x_0) \cdot \omega + o(|x - x_0|).$$

In tal caso si dice che ω è il suo **differenziale** e si indica con $Df(x_0)$.