Math 308 E - Spring 2018 Midterm exam 2 Friday, May 18th, 2018

3.7		
Name:		
ranic.		

Problem 1	15	
Problem 2	10	
Problem 3	15	
Problem 4	10	
Total	50	

- There are 4 questions on this exam. Make sure you have all four.
- Always explain your reasoning clearly and concisely.
- Any student found engaging in academic misconduct will receive a score of 0 on this exam.
- You have 50 minutes to complete the exam.

1. (15 points) Consider the matrices

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & -2 & 0 \\ 2 & 3 & 4 \\ 0 & 7 & 4 \end{bmatrix}$$

(a) (9 points) For both A and B, find the inverse or explain why it doesn't exist.

(b) (3 points) Does there exist a 3×3 matrix C such that det(AC) = 8? Give an example, or explain why this can't happen.

(c) (3 points) Does there exist a 3×3 matrix D such that det(BD) = -1? Give an example, or explain why this can't happen.

2. (10 points) Consider the following set of vectors in \mathbb{R}^4 :

$$\mathcal{B} = \left\{ v_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ -1 \end{bmatrix}, v_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}, v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, v_4 = \begin{bmatrix} 0 \\ 2 \\ 1 \\ 1 \end{bmatrix} \right\}.$$

(a) (5 points) Prove that \mathcal{B} is a basis for \mathbb{R}^4 . (Hint: it helps to show that $e_1, e_2, e_3, e_4 \in \text{span}(\mathcal{B})$.)

(b) (5 points) Suppose $v \in \mathbb{R}^4$ is a vector satisfying $[v]_{\mathcal{B}} = \begin{bmatrix} 4 \\ 2 \\ 0 \\ -1 \end{bmatrix}$. Find v.

- 3. (15 points) Let A be any 2×6 matrix, and let B be any 6×2 matrix.
 - (a) (5 points) Is the set of vectors $v \in \mathbb{R}^2$ satisfying $(AB)^{51}v = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ a subspace of \mathbb{R}^2 ? Explain.

(b) (5 points) Assume AB is invertible (for part (b) only). Is the set of vectors $v \in \mathbb{R}^2$ satisfying $((AB)^{-1})^3v = \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix} \text{ a subspace of } \mathbb{R}^2? \text{ Explain.}$

(c) (5 points) Suppose that the nullity of A is 4, and the rank of B is 2. What are the dimensions of the row spaces of A and B?

(d) (Extra credit, 3 points) Suppose that, in addition to the assumptions in part (c),

$$Null(A) \cap Range(B) = \{0\}.$$

 $(\cap \text{ is notation for the intersection of sets.})$ What is the rank of AB?

4. (10 points) Let $\pi: \mathbb{R}^3 \to \mathbb{R}^3$ be the projection map

$$\pi\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_1\\x_2\\0\end{bmatrix},$$

and let $R: \mathbb{R}^3 \to \mathbb{R}^3$ be the rotation map

$$R\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \frac{\sqrt{2}}{2} \begin{bmatrix} x - y \\ x + y \\ z \end{bmatrix}.$$

(a) (2 points) Find the matrix representing the linear transformation $T=R\circ\pi$. What is the rank of T?

(b) (4 points) Find a basis for the kernel of π .

(c) (4 points) Show that the set of all vectors $v \in \mathbb{R}^3$ such that Rv = v is a subspace of \mathbb{R}^3 , and find a basis for it.