(2019) 已知 $f(x) = \int_1^x \sqrt{1+t^4} dt$, 则 $\int_0^1 x^2 f(x) dx =$ ______.

(2013) 计算
$$\int_0^1 \frac{f(x)}{\sqrt{x}} dx$$
, 其中 $f(x) = \int_1^x \frac{1 r(t+1)}{t} dt$.

(2009) 曲线
$$\begin{cases} x = \int_0^{1-t} e^{-u^2} du \\ & \text{在}(0, 0)$$
处的切线方程为______.
$$y = t^2 \ln(2-t^2)$$

(2015) 设函数 f(x) 连续, $\varphi(x) = \int_0^{x^2} x f(t) dt$, 若 $\varphi(1) = 1$, $\varphi'(1) = 5$, 则 $f(1) = \underline{\hspace{1cm}}.$

(2010) 设可导函数 y = y(x)由方程 $\int_0^{x+y} e^{-t^2} dt = \int_0^x x \sin t^2 dt$ 确定,则 $\frac{dy}{dx}\Big|_{x=0} = \underline{\qquad}$.

