Algebra II (Doble Grado Informática-Matemáticas)

Relación 5

Curso 2021-2022

G-conjuntos. p-grupos. Teoremas de Sylow

Ejercicio 1. Dado el conjunto $X = \{1, 2, 3, 4\}$; para cada subgrupo $H \leq S_4$ se considera la acción $\sigma \cdot i := \sigma(i)$. Encontrar la órbita y el estabilizador del punto $2 \in X$ para los siguientes subgrupos:

- 1. $H = \langle (1, 2, 3) \rangle$,
- 2. $H = A_4$.
- 3. H = K el subgrupo de Klein de A_4 .
- 4. $H = \langle (1234) \rangle$.

Ejercicio 2. Sea G un grupo y N un subgrupo normal abeliano de G. Demostrar que G/N actúa sobre N por conjugación y describir el homomorfismo $G/N \to Aut(N)$.

Ejercicio 3. Sean S y T dos G-conjuntos. Se define la **acción diagonal** de un G sobre el producto cartesiano $S \times T$ mediante $^x(s,t) := (^xs,^xt)$. Demostrar que para la acción diagonal, el estabilizador de (s,t) es la intersección de los estabilizadores de s y t en las acciones dadas.

Ejercicio 4. Sea G un p-grupo actuando sobre un conjunto finito X. Demostrar que

$$|X| \equiv |Fix_G(X)| \mod p$$
.

Ejercicio 5. Sea G un 2-grupo finito que actúa sobre un conjunto finito X cuya cardinalidad es un número impar. ¿Podemos afirmar que existe al menos un punto de X que queda fijo bajo la acción de G? ¿Podemos decir lo mismo si |X| es par?

Ejercicio 6. Se dice que la acción de un grupo G en un conjunto X es **transitiva** si hay una sola órbita para esta acción (es decir, si para cada $x, y \in X$ existe algún $g \in G$ tal que gx = y). Demostrar que si G actúa transitivamente sobre un conjunto X con n elementos, entonces |G| es un múltiplo de n.

Ejercicio 7. Demostrar que si G contiene un elemento x que tiene exactamente dos conjugados, entonces G admite un subgrupo normal propio. **Pista:** Considerar el centralizador de x.

Ejercicio 8. Encontrar todos los grupos finitos que tienen exactamente dos clases de conjugación.

Ejercicio 9. Describir explícitamente las clases de conjugación del grupo D_4 .

Ejercicio 10. Un subgrupo $G \leq S_n$ se dice **transitivo** si la acción de G sobre $\{1, 2, \dots, n\}$ es transitiva. Encontrar todos los subgrupos transitivos de S_3 y S_4 .

Ejercicio 11. Sea G un grupo finito y H < G un subgrupo suyo tal que [G:H] = p siendo p el menor primo que divide al orden de G. Probar que H es un subgrupo normal de G. Para ello

- 1. Considerar la representación, ρ , asociada a la acción por traslaciones de G sobre el conjunto de clases laterales a izquierda G/H. Probar que su núcleo está contenido en H.
- 2. Probar que $[G: Ker(\rho)]|p!$.
- 3. Probar que $[H:Ker(\rho)]|(p-1)!$.
- 4. Concluir que $[H: Ker(\rho)] = 1$.

Ejercicio 12. Sea $C_n = \langle a | a^n = 1 \rangle$ un grupo cíclico de orden n. Describir sus subgrupos de Sylow.

Ejercicio 13. Sea G un grupo finito tal que |G| = pn siendo p un primo con p > n. Demostrar que G tiene un subgrupo normal de orden p.

Ejercicio 14. Sea G un p-grupo y H un subgrupo normal de G de orden p. Demostrar que H está contenido en el centro de G.

Ejercicio 15. Sea p un número primo. Demostrar que existen únicamente dos grupos no isomorfos de orden p^2 .

Ejercicio 16. Demostrar que si N es un subgrupo normal de un grupo G tal que N y G/N son p-grupos entonces G es un p-grupo.

Ejercicio 17. Sea G un p-grupo con $|G| = p^n$. Demostrar que para cada $0 \le k \le n$ existe H subgrupo normal de G con $|H| = p^k$.

Ejercicio 18. Demostrar que si G es un grupo no abeliano con $|G| = p^3$, p un número primo, entonces |Z(G)| = p.

Ejercicio 19. Sea G un p-grupo de orden p^n . Demostrar que l(G) = n y que $fact(G) = (C_p, C_p, \stackrel{(n)}{\dots}, C_p)$, siendo C_p el grupo cíclico.

Ejercicio 20. Hallar todos los subgrupos de Sylow de los grupos S_3 y S_4 . **Pista:** Para los 2–subgrupos de Sylow de S_4 , observar primero que todos deben contener al subgrupo de Klein V, y, al menos, una trasposición τ , y que como consecuencia se pueden obtener como producto de V por el grupo cíclico generado por τ .

Ejercicio 21. Demostrar que D_4 es isomorfo a los 2-subgrupos de Sylow de S_4

Pista: Considerar la representación asociada a la acción de D_4 sobre los vértices del cuadrado.

Ejercicio 22. Describir todos los subgrupos de Sylow de A_4 .

Ejercicio 23. Demostrar que todo grupo de orden 12 con más de un 3-subgrupo de Sylow es isomorfo al grupo alternado A_4 .

Pista: Considerar la acción por traslaciones de un tal grupo sobre el conjunto de clases módulo \mathcal{P} , siendo \mathcal{P} un 3-subgrupo de Sylow. Probar que dicha acción es fiel.

Ejercicio 24. Hallar todos los subgrupos de Sylow de los grupos \mathbb{Z}_{600} , Q_2 , D_5 , D_6 , A_5 y S_5 .

- **Ejercicio 25.** 1. Demostrar que no existen grupos simples de orden 12. Más concretamente, demostrar que todo grupo de orden 12 admite un subgrupo normal de orden 3 o de orden 4.
 - 2. Demostrar que todo grupo de orden 12 es resoluble.
- **Ejercicio 26.** 1. Demostrar que no existen grupos simples de orden 28. Más concretamente, probar que todo grupo de orden 28 contiene un subgrupo normal de orden 7.
 - 2. Demostrar que todo grupo de orden 28 es resoluble.
- Ejercicio 27. 1. Demostrar que no existen grupos simples de orden 56. Más concretamente, probar que todo grupo de orden 56 contiene un subgrupo normal de orden 7 o de orden 8.
 - 2. Demostrar que todo grupo de orden 56 es resoluble.

Ejercicio 28. Calcular el número de elementos de orden 7 que tiene un grupo simple de orden 168.

Ejercicio 29. Demostrar que no existen grupos simples de orden 148, 200 ni 351. Deducir que cualquier grupo de cualquiera de estos órdenes es resoluble.

- Ejercicio 30. Razonar que todo grupo de orden 24 es resoluble.
- Ejercicio 31. Demostrar que todo grupo de orden 312 contiene un subgrupo normal de orden 13, y que como consecuencia es siempre resoluble.
- Ejercicio 32. Demostrar que todo grupo de orden 10 o 30 es resoluble.
- **Ejercicio 33.** 1. Demostrar que todo grupo de orden 18 es resoluble.
 - 2. Demostrar que todo grupo de orden 36 es resoluble.
- Ejercicio 34. Demostrar que todo grupo de orden 48 es resoluble.
- **Ejercicio 35.** Demostrar que todo grupo de orden pq, con p y q primos, es un grupo resoluble.
- **Ejercicio 36.** Demostrar que todo grupo de orden p^2q , con p y q primos, es un grupo resoluble.
- **Ejercicio 37.** Demostrar que si p_1, p_2, p_3 son tres primos tales que $p_3 > p_1p_2$, entonces cualquier grupo de orden $p_1p_2p_3$ es resoluble.
- Ejercicio 38. 1. Demostrar que todo grupo de orden 70 es resoluble.
 - 2. Demostrar que todo grupo de orden 100 es resoluble.
 - 3. Sea G un grupo de orden 200. Demostrar que $G \times D_{41}$ es resoluble.