MATH 311

Last Chapter

SECTION 8.1: ORTHOGONAL COMPLEMENTS AND PROJECTIONS

Contents

Gram-Schmidt Orthogonalization	2
The Gram-Schmidt Orthogonalization Algorithm	 •

Created by: Pierre-Olivier Parisé Spring 2024

GRAM-SCHMIDT ORTHOGONALIZATION

EXAMPLE 1. Let $V = \mathbb{R}^2$ and $B = \{(1, -1), (2, 1)\}$. Notice that B is not an orthogonal basis. Using the vectors from B, construct an orthogonal basis F.

SOLUTION. Geometric intuition: https://www.desmos.com/geometry/e9mrgozxmb.

P.-O. Parisé MATH 311 Page 2

The Gram-Schmidt Orthogonalization Algorithm

Let $B = \{\mathbf{b_1}, \mathbf{b_2}, \dots, \mathbf{b_m}\}$ be a basis of a subspace U of $V = \mathbb{R}^n$.

To transform B into an orthogonal basis $F = \{\mathbf{f_1}, \mathbf{f_2}, \dots, \mathbf{f_m}\}$, we define

- $f_1 = b_1$.
- $\bullet \ \ f_2 = b_2 \frac{b_2 \cdot f_1}{\|f_1\|^2} f_1.$
- $\bullet \ \ f_3 = b_3 \frac{b_3 \cdot f_1}{\|f_1\|^2} f_1 \frac{b_3 \cdot f_2}{\|f_2\|^2} f_2.$
- . . .
- $\bullet \ \ f_k = b_k \frac{b_k \cdot f_1}{\|f_1\|^2} f_1 \frac{b_k \cdot f_2}{\|f_2\|^2} f_2 \dots \frac{b_k \cdot f_{k-1}}{\|f_{k-1}\|^2} f_{k-1}.$
- . . .
- $\bullet \ \ f_m = b_m \frac{b_m \cdot f_1}{\|f_1\|^2} f_1 \frac{b_m \cdot f_2}{\|f_2\|^2} f_2 \dots \frac{b_m \cdot f_{m-1}}{\|f_{m-1}\|^2} f_{m-1}.$