§1. Nekonečné řady

Def: Nechť $\{a_n\}_{n=1}^{\infty}$ je posloupnost reálých čísel. Číslo

$$S_n = a_1 + a_2 + a_3 + \dots + a_n = \sum_{i=1}^n a_i; \quad n \in \mathbb{N}$$

Nazývejme n-tým částečným součtem posloupnosti $\{a_n\}_{n=1}^{\infty}$. Posloupnost $\{S_n\}_{n=1}^{\infty}$ nazýváme posloupností částečných součtů řady $\sum_{n=1}^{\infty} a_n$ (posloupnosti $\{a_n\}_{n=1}^{\infty}$).

 $Nekonečnu \ \check{r}adu$ (číselnou) nazýváme posloupnost částečných součtů $\left\{S_n\right\}_{n=1}^\infty$ a značíme stručně:

$$\sum_{n=1}^{\infty} a_n$$

Čísla $a_n; n \in \mathbb{N}$ nazýváme *členy řady*, čísla $S_n; n \in \mathbb{N}$ nazýváme *částečné součty řasy*.

Pozn: Symbolem $\sum_{n=1}^{\infty}$ označujeme jak nekonečnou řadu, tak její součet.

Def: Má-li posloupnost částečných součtů $\{S_n\}_{n=1}^{\infty}$ limitu S, řekneme, že nekonečná řada konverguje a číslo S nazveme jejím součtem (zapisujeme $\sum_{n=1}^{\infty} a_n = S$).

Je-li $\{S_n\}_{n=1}^{\infty}$ posloupností divergentní, řekneme, že nekonečná řada diverguje.

Pozn: 1) Chováním řady budeme rozumět to, zda řada konverguje či diverguje.

- 2) Někdy se rozlišují 2 možnosti divergence řady (posloupnosti):
 - (a) \check{R} ada diverguje, jestliže má nevlastní limitu ($\lim_{n\to\infty} S_n = \pm \infty$).
 - (b) *Řada osciluje*, jestliže nemá vlastní ani nevlastní limitu.

Př: Určete chování řady:

$$\sum_{n=1}^{infty} a_n = 1 + 2 + 3 + 0 + 0 + 0 + \dots + 0 + \dots = 6$$

$$S_1=1; S_2=3; S_3=6; S_4=6; \dots$$

$$\lim_{n\to\infty}S_n=S=6 \text{ řada konverguje}.$$

Pozn: 1) Je-li posloupnost $\{a_n\}_{n=1}^{\infty}$ divergentní, pak také řada $\sum_{n=1}^{\infty} a_n$ je divergentní.

2) Je-li posloupnost $\{a_n\}_{n=1}^\infty$ konvergentní, může být řada $\sum_{n=1}^\infty a_n$ je divergentní i kovnergentní.

V.1.1.: Nechť je řada $\sum_{n=1}^{\infty} a_n$ konvergentní, pak $\lim_{n\to\infty} a_n = 0.$

Pozn: Jedná se pouze o padmínku nutnou nikoliv dostačující.

V.1.2.: Dvě řady lišící se pouze v konečném počtu členů se chovají stejně (i když mohou mít jiné částečné součty i jiný součet), zejména se chování řady nezmění, jestliže z ní vyškrtneme konečně mnoho členů, přidáme k ní konečně mnoho členů nebo změníme konečně mnoho členů.

Př:

$$\sum_{n=1}^{\infty} 0 = 0$$

$$\sum \frac{1}{n(n+1)}$$

$$S_n = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)}$$

$$S_n = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$S_n = 1 - \frac{1}{n+1}$$
$$\lim_{n \to \infty} S_n = 1$$

$$\lim_{n\to\infty} S_n = 1$$