

## Atomic, Molecular and Equivalent masses

**45.** (d) 1 atom has mass =  $10.86 \times 10^{-26} kg$ =  $10.86 \times 10^{-23} gm$ 

 $6.023 \times 10^{23}$  atoms has mass =10.86  $\times$  10<sup>-23</sup>  $\times$  6.023  $\times$  10<sup>23</sup> = 65.40 gm. This is the atomic weight of Zn.

**46.** (b) : 1mole  $(COOH)_2$  .  $2H_2O$  has 96gm oxygen ∴0.3 mole  $(COOH)_2$  .  $2H_2O$  has  $96 \times 0.3 = 28.8gm$ 

∴ No. of gram atoms of oxygen =  $\frac{28.8}{16}$  = 1.8.

**47.** (c) Equimolecular proportion means both gases occupied equal volume  $=\frac{2.24}{2}$ 

= 1.12L

For  $CH_4$ :

22.4L  $CH_4$ has mass = 16gm

1.12*L CH*<sub>4</sub>has mass =  $\frac{16}{22.4} \times 1.12 = 0.8 gm$ .

For  $C_2H_6$ 

22.4L  $C_2H_6$ has mass = 30gm

$$1.12LC_2H_6$$
 has mass  $=\frac{30}{22.4} \times 1.12 = \frac{3.0}{2}gm = 1.5gm$ 

Total mass = 1.5gm + 0.8gm = 2.3gm.

**48.** (c) Let wt. of metal oxide = 100gm

wt. of metal = 53gm

wt. of oxygen = 47gm

Equivalent weight of oxygen=  $\frac{\text{wt. of metal}}{\text{wt. of oxygen}} \times 8$ 

$$=\frac{53}{47}\times8=9.02$$



Valency = 
$$\frac{2 \times V.D}{E+35.5} = \frac{2 \times 66}{9+35.5} = \frac{132}{44.5} = 2.96 \approx 3$$

- ∴ Atomic weight = Equivalent weight × Valency =  $9.02 \times 3 = 27.06$
- **49.** (b) One gram of hydrogen combines with 80*gm* of bromine.

So, equivalent weight of bromine = 80gm

- ∴ 80gm of bromine combines with  $=\frac{1}{4} \times 80 = 20$ .

**50.** (b) 
$$\stackrel{+2}{Mn}SO_4 \rightarrow \stackrel{+4}{Mn}O_2$$

Change of valency = 4 - 2 = 2

∴Equivalent weight =  $\frac{M}{2}$ .

**51.** (a) 
$$2PH_3 \rightarrow 2P + 3H_2 \atop 2ml \atop 100ml$$
 (solid)  $+ 3H_2 \atop 3ml \atop 150ml$ 

Increase in volume = 150ml - 100ml = 50mlincrease.

**52.** (b) 
$$Mg + 2HCl \rightarrow MgCl_2 + H_2$$

∴ 12*g Mg* evolves 
$$H_2$$
at STP  $\frac{22.4}{24} \times 12$ 

=11.2*L* at STP.

**53.** (b) (a) 
$$2gm$$
 atom of nitrogen =  $28gm$ 

(b) 
$$6 \times 10^{23}$$
 atoms of C has mass =  $12gm$ 

$$3 \times 10^{23}$$
 atoms of *C* has mass =  $\frac{12 \times 3 \times 10^{23}}{6 \times 10^{23}} = 6gm$ 

(c) 1 mole of 
$$S$$
 has mass =  $32gm$ 



# **IIT-JEE CHEMISTRY**



#### CHEMICAL ARITHMETIC (MOLE CONCEPT)

(d) 7.0gm of Ag

So, lowest mass = 6gm of C.

- 54. (c) 1mole of any gas at STP occupies 22.4L.
- **55.** (b) : 22400cc of gas at STP has  $6 \times 10^{23}$  molecules

$$\therefore \ \ 1.12 \times \mathbf{10^{-7}} \ \text{of gas at STP has} \ \frac{6 \times 10^{23} \times 1.12 \times 10^{-7}}{22400} = .03 \times 10^{14} = 3 \times 10^{12}.$$

- **56.** (a) : 2.24*L* of gas has mass = 4.4gm
  - $\therefore$  22.4*L* of gas has mass =  $\frac{4.4}{2.24} \times 22.4 = 44$

So given gas is  $CO_2$  because  $CO_2$  has molecular mass=44.

**57.** (d) 1*L* of air =210cc  $O_2$ 

22400cc = 1 mole

$$210cc = \frac{1}{22400} \times 210 = 0.0093.$$

**58.** (d) : 22.4*L* of a gas at STP has no. of molecules =  $6.023 \times 10^{23}$ 

∴ 8.96*L* of a gas at STP has no. of molecules = 
$$\frac{6.02 \times 10^{23} \times 8.96}{22.4} = 2.408 \times 10^{23}$$

$$= 24.08 \times 10^{22}$$
.

**59.** (a) Given equivalent weight of metal = 9

Vapour density of metal chloride = 59.25

:molecular weight of metal chloride

$$= 2 \times V.D = 2 \times 59.25 = 118.5$$

∴valency of metal



$$= \frac{\text{molecular weight of metal chloride}}{\text{equivalnet weight of metal } +35.5}$$

Valency of metal = 
$$\frac{118.5}{9+35.5} = \frac{118.5}{44.5} = 2.66$$

Therefore atomic weight of the metal

=equivalent weight ×valency

$$= 9 \times 2.66 = 23.9$$

**60.** (d) The density of gas = 
$$\frac{\text{molecular wt. of metal}}{\text{volume}}$$
 =  $\frac{45}{22.4} = 2gmlitre^{-1}$ 

∴Atomic weight of metal = 
$$37.2 \times 2 = 74.4$$

∴Formula of chloride = 
$$MCl_2$$

Hence, molecular weight of chloride

$$(MCl_2) = 74.4 + 2 \times 35.5 = 145.4$$

Equivalent weight = 
$$\frac{\text{weight of metal}}{\text{weight of oxygen}} \times 8$$

$$=\frac{32}{0.4}\times8=64$$

Vapour density = 
$$\frac{\text{mol. wt}}{2}$$

Mol. wt = 
$$2 \times V$$
.  $D = 2 \times 32 = 64$ 

As we know that 
$$n = \frac{\text{mol.wt}}{\text{eg. wt}} = \frac{64}{64} = 1$$

Suppose, the formula of metal oxide be  $M_2 O_n$ . Hence the formula of metal oxide  $= M_2 O$ .



**63.** (b) Molecular weight of  $NH_3$  is 17

According to the mole concept

 $17gm\ NH_3$  has molecules =  $6.02\times10^{23}$ 

$$\therefore 1gm \ NH_3$$
 has molecules =  $\frac{6.02 \times 10^{23}}{17}$ 

 $\therefore 4.25 gm \ NH_3$  has molecules

$$=\frac{6.02\times10^{23}\times4.25}{17}=1.5\times10^{23}$$
 molecule



