# Universidade Estadual de Campinas

Instituto de Computação

Introdução ao Processamento Digital de Imagem (MC920 / MO443)

Professor: Hélio Pedrini

#### Trabalho 3

## 1 Especificação do Problema

O objetivo deste trabalho é obter algumas medidas de objetos presentes em imagens digitais. Os principais passos são descritos nas seções a seguir.

### 1.1 Transformação de Cores

Ler e exibir uma imagem colorida formada por um conjunto de objetos distribuídos em um fundo branco. A imagem colorida deve ser convertida para níveis de cinza.



imagem colorida

imagem monocromática

### 1.2 Contornos dos Objetos

Apresentar os contornos (bordas) dos objetos presentes na imagem.



contornos dos objetos

#### 1.3 Extração de Propriedades dos Objetos

Extrair as seguintes propriedades dos objetos: centroide, perímetro e área. Para cada região (objeto), listar o perímetro e a área.

```
número de regiões: 9
                     perímetro: 313.764502 excentricidade: 0.816362 solidez: 0.747739
região 0: área: 3969
                     perímetro: 119.982756 excentricidade: 0.741103 solidez: 0.898864
região 1: área: 791
região 2: área: 3584
                     perímetro: 259.462987 excentricidade: 0.898073 solidez: 0.977899
região 3: área: 540
                     perímetro: 99.254834 excentricidade: 0.889586 solidez: 0.910624
região 4: área: 438
                     perímetro: 88.769553 excentricidade: 0.855923 solidez: 0.916318
                     perímetro: 174.124892 excentricidade: 0.868169 solidez: 0.972286
região 5: área: 1684
                     perímetro: 103.012193 excentricidade: 0.890242 solidez: 0.969789
região 6:
         área: 642
região 7:
          área: 3934
                     perímetro: 305.421356 excentricidade: 0.910992 solidez: 0.774257
região 8: área: 675
                     perímetro: 96.325902 excentricidade: 0.620380 solidez: 0.976845
```

Mostrar cada região rotulada individualmente na imagem.



regiões rotuladas

### 1.4 Histograma de Área dos Objetos

Classificar os objetos de acordo com a propriedade de área. Utilizar os seguintes critérios na classificação:

```
objeto pequeno: área < 1500 pixels objeto médio: área \ge 1500 pixels e área < 3000 pixels objeto grande: área \ge 3000
```

Exemplo de saída do programa:

```
número de regiões pequenas: 5
número de regiões médias: 1
número de regiões grandes: 3
```

Apresentar um histograma com as áreas calculadas dos objetos.



## 2 Entrada de Dados

As imagens de entrada estão no formato PNG (*Portable Network Graphics*). Alguns exemplos encontram-se disponíveis no diretório: http://www.ic.unicamp.br/~helio/imagens\_objetos\_coloridos/.

#### 3 Saída de Dados

As imagens de saída devem estar no formato PNG (*Portable Network Graphics*). Resultados intermediários podem ser também exibidos na tela.

# 4 Especificação da Entrega

- A entrega do trabalho deve conter os seguintes itens:
  - código fonte: o arquivo final deve estar no formato zip ou no formato tgz, contendo todos os programas ou dados necessários para sua execução.
  - relatório impresso: deve conter uma descrição dos algoritmos e das estruturas de dados, considerações adotadas na solução do problema, testes executados, eventuais limitações ou situações especiais não tratadas pelo programa.
- O trabalho deve ser submetido por meio da plataforma Google Classroom.
- Data de entrega: 17/10/2019.

### 5 Observações Gerais

- Os programas serão executados em ambiente Linux. Os formatos de entrada e saída dos dados devem ser rigorosamente respeitados pelo programa, conforme definidos anteriormente. Não serão aceitos trabalhos após a data de entrega.
- Os seguintes aspectos serão considerados na avaliação: funcionamento da implementação, clareza do código, qualidade do relatório técnico.