Квантовая Теория

2021 г.

Запрягаев Сергей Александрович

Литература

- А.С.Давыдов. Квантовая механика
- Д.И.Блохинцев. Квантовая механика
- Флюгге 3. Задачи по квантовой механике, том 1 (Мир, 1974)
- Флюгге 3. Задачи по квантовой механике, том 2 (Мир, 1974)
- Ф. Кайе, Р. Лафламм, М. Моска. Введение в квантовые вычисления. 2009 г.
- С.А.Запрягаев. Введение в квантовые информационные системы. 2015 г.
- Лекции

История автоматизации вычислений

Абак (греч. αβαξ, abákion, лат. abacus – доска) – счётная доска, простейшее счётное устройство, применявшееся для арифметических вычислений приблизительно с IV века до н.э. в Древней Греции, Древнем Риме. В Европе абак применялся до XVIII века.

• В *России* ещё в средние века (16-17 вв.) на основе абака было разработано другое приспособление –

русские счёты.

Механические приспособления

- В 1623 год В. Шиккард нем. разработал первое в мире механическое устройство («суммирующие часы») для выполнения операций сложения и вычитания шестиразрядных десятичных чисел.
- В 1642 году фран.Б. Паскаль сконструировал первое в мире механическое цифровое вычислительное устройство («Паскалин»), построенное на основе зубчатых колес. Оно могло суммировать и вычитать пятиразрядные десятичные числа, а последние модели оперировали числами с восемью десятичными разрядами.
- В 1673 г. Нем. В. Лейбниц создал механический калькулятор, который при помощи двоичной системы счисления выполнял умножение, деление, сложение и вычитание. Операции умножения и деления выполнялись путём многократного повторения операций сложения и вычитания.
- Вычислительные аппараты распространились с 1820 года, когда фран. Ч. Калмар изобрёл арифмометр. Благодаря своей универсальности арифмометры использовались до 60-х годов XX века.

История автоматизации вычислений

С помощью логарифмической линейки можно производить умножение, деление, возведение в степень и извлечение корней, определять натуральные значения тригонометрических функций заданных углов и по заданным натуральным значениям тригонометрических функций находить соответствующие им углы, определять логарифмы и антилогарифмы чисел, находить логарифмы тригонометрических функций и производить различные вычисления.

Эволюция компьютеров

Марк 1 -1941 г-1944 г.. (реле)

- 3 операции сложения в секунду
- 17 метров дина, 2.5 метра высота
- Вес 4,5 тонны. 800 километров проводов

Эниак 1946 г. (лампы)

- 5000 операций сложения в секунду
- Вес 27 тонн
- Частота 100 кГц
- 17 468 ламп
- 1 500 реле
- 70 000 сопротивлений
- 10 000 конденсаторов
- 154 кВт !!!

БЭСМ 1-6

Далее

CPU Transistor Counts 1971-2008 & Moore's Law

Когда состоится переход на атомный уровень?

https://quantumexperience.ng.bl uemix.net/qx/experience

Квантовый компьютер IBM 50 кубит

https://quantumexperience.ng.bluemix.net/qx/tutorial?sectionId=full-userguide&page=introduction

IBM Q-computer

https://www.research.ibm.com/ibm-q/

https://quantum-computing.ibm.com/

На чем делать?

Модель Томсона

Модель Резерфорда

Модель атома Бора

Спектры атомов объяснить не могла ни одна из моделей

EMISSION SPECTRA

Квантовый компьютер

Рис. 9. Модельный квантовый компьютер в представлении Шора [21]. Первоначально все частицы имеют спины вниз. Этап a) классическая машина берет отдельные спины или пары спинов и на этапе b) производит подобранную однобитную или двубитную операцию; на этапе c) «скрещенные» частицы возвращаются на свои первоначальные места. Эти три этапа повторяются много раз в соответствии с командами, заданными обычным классическим компьютером. Когда этот цикл завершен, этап d) состоит в измерении состояния частиц (помещая их в некоторую частную двоичную строку); эта двоичная строка является результатом вычисления.

Квантовый компьютер

Квантовая криптография

No	Действия			-		W = 8			, 1	Секретность
1	$A \rightarrow B$	1	0	0	1	0	0	1	1	секретно квант. канал
		1	1	4	1	+	+	1	1	
2	Визмеряет	+	+	×	×	+	×	×	+	открытый канал
		1	1	1	1	+	1	1	1	секретно
3	A → В: тип изм. A → В: верно	V			~	√			V	открытый канал
4	А и В создают код	1			1	4			1	секретно
		1			1	0			1	

Волновые свойства электрона

Волновые свойства

Электромагнитное поле

• Векторный потенциал
$$\vec{A}(\vec{r},t) = \vec{A}_0 \exp\left(-i\left(\omega t - \vec{k} \cdot \vec{r}\right)\right)$$

• Волна де Бройля

$$\Psi(\mathbf{r},t) = \operatorname{Aexp}\left(-i\left(\frac{\varepsilon}{\hbar}t - \frac{\vec{p}\cdot\vec{r}}{\hbar}\right)\right)$$

§1 Алгебра операторов

- y=F(x); $y=F \rightarrow x$;
- Оператор == символическое изображение математической операции
- Обозначение
- Равенство операторов
- Число частный случай оператора

\$1 Алгебра операторов
Оператор == символическое изображение математической операции
Обозначение
Равенство операторов
Число — частный случай оператора

§ Алгебра операторов ...

- Сложение (вычитание) операторов
- Произведение операторов !!
- Коммутатор двух операторов
- Целая положительная степень
- Обратный оператор
- Функция от оператора
- Линейный оператор
- Эрмитовский оператор

\$ Алгебра операторов ...
Сложение (вычитание) операторов
Произведение операторов !!
Коммутатор двух операторов
Целая положительная степень
Обратный оператор
Функция от оператора
Линейный оператор
Эрмитовский оператор

Определение понятия оператор

Определение понятия оператор

Определение понятия оператор

Определение понятия оператор

Свойства

- 1. Равенство операторов
- 2. Число
- 3. Сложение Вычитание
- 4. Произведение

свойства/определения

свойства/определения

5 Коммутатор

6 степень

7 обратный

Линейный и Эрмитовский оператор

$$\int \varphi * \hat{F} \psi dv = \int \psi \hat{F} * \varphi * dv$$

$$\hat{F} = \hat{F}^+$$

3

Пример для функции f(x)=f(x+2Pi)

Линейный и Эрмитовский оператор 9 Линейный

Пример для функции

Алгебра операторов

- 1. Равенство операторов $\hat{A} = \hat{E}$
- 2. Число частный случай оператора $\hat{A}=2$
- 3. Сложение вычитание операторов $\hat{A} = \hat{E} \pm \hat{O}$
- 4. Произведение $\hat{A} = \hat{E} \cdot \hat{O}$
- 5. Коммутатор $\hat{A} = [\hat{E}, \hat{O}] = \hat{E} \cdot \hat{O} \hat{O} \cdot \hat{E}$
- 6. Степень $\hat{A}^n = \hat{A} \cdot \hat{A} \dots \hat{A}$
- 7. Обратный оператор $\hat{A}^{-1} \cdot \hat{A} = 1$
- 8. Функция от оператора $f(\hat{A}) = \sum_{n=1}^{\infty} A^n \frac{d^n f(x)}{dx^n}_{x=0}$
- 9. Линейный $\hat{A}(c_1\varphi_1 + c_2\varphi_2) = c_1\hat{A}\varphi_1 + c_2\hat{A}\varphi_2$

1

10.Эрмитовский $\int \varphi_1^* \hat{A} \varphi_2 dx = \int \varphi_2 \hat{A}^* \varphi_1^* dx$; $\hat{A} = \hat{A}^\dagger$

- 1. Равенство операторов
- 2. Число частный случай оператора
- 3.Сложение вычитание операторов
- 4. Произведение
- 5. Коммутатор
- 6. Степень
- 7. Обратный оператор
- 8. Функция от оператора
- 9. Линейный
- 10. Эрмитовский