

BLM2502

Theory of

Computation

Spring 2015

BLM2502 Theory of Computation

>>	Course Outline	
>>	Week	Content
»	1	Introduction to Course
»	2	Computability Theory, Complexity Theory, Automata Theory, Set Theory, Relations, Proofs, Pigeonhole Principle
»	3	Regular Expressions
»	4	Finite Automata
»	5	Deterministic and Nondeterministic Finite Automata
»	6	Epsilon Transition, Equivalence of Automata
»	7	Pumping Theorem
»	8	April 10 - 14 week is the first midterm week
>>	9	Context Free Grammars
>>	10	Parse Tree, Ambiguity,
»	11	Pumping Theorem
>>	12	Turing Machines, Recognition and Computation, Church-Turing Hypothesis
>>	13	Turing Machines, Recognition and Computation, Church-Turing Hypothesis
»	14	May 22 – 27 week is the second midterm week
>>	15	Review
»	16	Final Exam date will be announced

Context-Free Languages

>>

Context-Free Languages

$$\{a^nb^n: n \ge 0\}$$

$$\{ww^R\}$$

Regular Languages

$$a*b*$$
 $(a+b)*$

Context-Free Languages

Context-Free Grammars

Pushdown Automata

Context-Free Grammars

Grammars

- » Grammars express languages
- » Example: the English language grammar

$$\langle sentence \rangle \rightarrow \langle noun_phrase \rangle \langle predicate \rangle$$

$$\langle noun_phrase \rangle \rightarrow \langle article \rangle \langle noun \rangle$$

$$\langle predicate \rangle \rightarrow \langle verb \rangle$$

$$\langle article \rangle \rightarrow a$$

 $\langle article \rangle \rightarrow the$

$$\langle noun \rangle \rightarrow cat$$

 $\langle noun \rangle \rightarrow dog$

$$\langle verb \rangle \rightarrow runs$$

 $\langle verb \rangle \rightarrow sleeps$

» Derivation of string "the dog walks" :

```
\langle sentence \rangle \Rightarrow \langle noun\_phrase \rangle \langle predicate \rangle
                        \Rightarrow \langle noun\_phrase \rangle \langle verb \rangle
                        \Rightarrow \langle article \rangle \langle noun \rangle \langle verb \rangle
                        \Rightarrow the \langle noun \rangle \langle verb \rangle
                        \Rightarrow the dog \langle verb \rangle
                        \Rightarrow the dog sleeps
```

» Derivation of string "a cat runs" :

```
\langle sentence \rangle \Rightarrow \langle noun\_phrase \rangle \langle predicate \rangle
                         \Rightarrow \langle noun\_phrase \rangle \langle verb \rangle
                         \Rightarrow \langle article \rangle \langle noun \rangle \langle verb \rangle
                         \Rightarrow a \langle noun \rangle \langle verb \rangle
                         \Rightarrow a \ cat \ \langle verb \rangle
                         \Rightarrow a cat runs
```

» Language of the grammar:

```
L = \{ \text{"a cat runs"}, 
      "a cat sleeps",
      "the cat runs",
      "the cat sleeps",
      "a dog runs",
      "a dog sleeps",
      "the dog runs",
      "the dog sleeps" }
```

Productions

Sequence of Terminals (symbols)

$$\langle noun \rangle \rightarrow cat$$

$$\langle sentence \rangle \rightarrow \langle noun_phrase \rangle \langle predicate \rangle$$

Variables

Sequence of Variables

Another Example

Sequence of terminals and variables

» Grammar:

$$S \to aSb$$
$$S \to \varepsilon$$

» Derivation of string :ab

$$S \Rightarrow aSb \Rightarrow ab$$

$$S \rightarrow aSb$$

$$S \rightarrow \varepsilon$$

» Grammar:

$$S \to aSb$$
$$S \to \varepsilon$$

» Derivation of string :
aahh

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

$$\begin{picture}(1,0) \put(0,0) \put(0,0$$

Grammar:
$$S \rightarrow aSb$$

$$S \to \varepsilon$$

Other derivations:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$$

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb$$

$$\Rightarrow aaaaSbbbb \Rightarrow aaaabbbb$$

Grammar:

$$S \to aSb$$
$$S \to \varepsilon$$

Language of the grammar:

$$L = \{a^n b^n : n \ge 0\}$$

A Convenient Notation

» We write: $S \Rightarrow aaabbb$

for one or more derivation steps

» Instead of:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$$

In general we write:

$$w_1 \implies w_n$$

If:
$$w_1 \Rightarrow w_2 \Rightarrow w_3 \Rightarrow \cdots \Rightarrow w_n$$

in zero or more derivation steps

$$w \Rightarrow w$$

Example Grammar

Possible Derivations

$$S \rightarrow aSb$$

$$S \to \varepsilon$$

$$S \Rightarrow \varepsilon$$

$$S \Rightarrow ab$$

$$S \Rightarrow aaabbb$$

$$S \stackrel{*}{\Rightarrow} aaSbb \stackrel{*}{\Rightarrow} aaaaaSbbbbb$$

Another convenient notation:

$$S \to aSb$$

$$S \to \varepsilon$$

$$S \to aSb \mid \varepsilon$$

$$\langle article \rangle \rightarrow a$$

 $\langle article \rangle \rightarrow the$

 $\langle article \rangle \rightarrow a \mid the$

Formal Definition

Grammar: G = (V, T, S, P)

Set of variables

Set of terminal symbols

Start variable Set of productions

Context-Free Grammar: G = (V, T, S, P)

All productions in P are of the form

Example for Context-Free Grammar

$$S \rightarrow aSb \mid \varepsilon$$

productions

$$P = \{S \rightarrow aSb, S \rightarrow \varepsilon\}$$

$$G = (V, T, S, P)$$
 $V = \{S\}$
variables
 $T = \{a, b\}$
terminals

Language of a Grammar:

» For a grammar G with start variable S

$$L(G) = \{ w \colon S \Longrightarrow w, \quad w \in T^* \}$$

String of terminals or \mathcal{E}

Example:

context-free grammar
$$G: |S \rightarrow aSb| \varepsilon$$

$$L(G) = \{a^nb^n : n \ge 0\}$$

Since, there is derivation

$$S \stackrel{*}{\Rightarrow} a^n b^n$$
 for any $n \ge 0$

Context-Free Language:

- » A language L is context-free
- » if there is a context-free grammar $\,G\,$
- " with L = L(G)

Example:

$$L = \{a^n b^n : n \ge 0\}$$

is a context-free language since context-free grammar G:

$$S \rightarrow aSb \mid \varepsilon$$

generates
$$L(G) = L$$

Another Example

Context-free grammar G:

$$S \rightarrow aSa \mid bSb \mid \varepsilon$$

Example derivations:

$$S \Rightarrow aSa \Rightarrow abSba \Rightarrow abba$$

$$S \Rightarrow aSa \Rightarrow abSba \Rightarrow abaSaba \Rightarrow abaaba$$

$$L(G) = \{ww^R : w \in \{a,b\}^*\}$$

Palindromes of even length

Another Example

Context-free grammar G:

$$S \rightarrow aSb \mid SS \mid \varepsilon$$

Example derivations:

$$S \Rightarrow SS \Rightarrow aSbS \Rightarrow abS \Rightarrow ab$$

$$S \Rightarrow SS \Rightarrow aSbS \Rightarrow abS \Rightarrow abaSb \Rightarrow abab$$

$$L(G) = \{w : n_a(w) = n_b(w),$$

and $n_a(v) \ge n_b(v)$

Describes in any prefix v} matched

parentheses: ()((()))(())
$$a = (, b =)$$

Derivation Trees

Derivation Order

Consider the following example grammar with 5 productions:

1.
$$S \rightarrow AB$$

1.
$$S \rightarrow AB$$
 2. $A \rightarrow aaA$

$$A. B \rightarrow Bb$$

3.
$$A \rightarrow \varepsilon$$

5.
$$B \rightarrow \varepsilon$$

1.
$$S \rightarrow AB$$

1.
$$S \rightarrow AB$$
 2. $A \rightarrow aaA$

4.
$$B \rightarrow Bb$$

3.
$$A \rightarrow \varepsilon$$

5.
$$B \rightarrow \varepsilon$$

eftmost derivation order of string aab:

$$1 \qquad 2 \qquad 3 \qquad 4 \qquad 5$$
$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaB \Rightarrow aaBb \Rightarrow aab$$

At each step, we substitute the leftmost variable

1.
$$S \rightarrow AB$$

1.
$$S \rightarrow AB$$
 2. $A \rightarrow aaA$

$$A. B \rightarrow Bb$$

3.
$$A \rightarrow \varepsilon$$

5.
$$B \rightarrow \varepsilon$$

Rightmost derivation order of string aab:

At each step, we substitute the rightmost variable

1.
$$S \rightarrow AB$$

1.
$$S \rightarrow AB$$
 2. $A \rightarrow aaA$

4.
$$B \rightarrow Bb$$

3.
$$A \rightarrow \varepsilon$$

5.
$$B \rightarrow \varepsilon$$

Leftmost derivation of aab:

$$1 \qquad 2 \qquad 3 \qquad 4 \qquad 5$$
$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaB \Rightarrow aaBb \Rightarrow aab$$

Rightmost derivation of aab:

Consider the same example grammar:

$$S \to AB$$
 $A \to aaA \mid \varepsilon \quad B \to Bb \mid \varepsilon$

And a derivation of aab:

$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb \Rightarrow aaBb \Rightarrow aab$$

Derivation Tree

$$S \to AB \qquad A \to aaA \mid \varepsilon \quad B \to Bb \mid \varepsilon$$

$$S \Rightarrow AB$$

yield AB

$$S \to AB$$
 $A \to aaA \mid \varepsilon \quad B \to Bb \mid \varepsilon$

$$S \Rightarrow AB \Rightarrow aaAB$$

 $S \to AB$ $A \to aaA \mid \varepsilon \quad B \to Bb \mid \varepsilon$

 $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb$

 $S \to AB \qquad A \to aaA \mid \varepsilon \quad B \to Bb \mid \varepsilon$ $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb \Rightarrow aaBb$

Sometimes, derivation order doesn't matter

Leftmost derivation:

$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaB \Rightarrow aaBb \Rightarrow aab$$

Rightmost derivation:

$$S \Rightarrow AB \Rightarrow ABb \Rightarrow Ab \Rightarrow aaAb \Rightarrow aab$$

Give same derivation tree

Ambiguity

Grammar for mathematical expressions

$$E \to E + E \mid E * E \mid (E) \mid a$$

Example strings:

Denotes any number

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

$$E\Rightarrow E*E\Rightarrow E+E*E\Rightarrow a+E*E$$

$$\Rightarrow a+a*E\Rightarrow a+a*a$$
Another
leftmost derivation
for $a+a*a$

$$E$$

$$\Rightarrow a+a*a$$

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

Two derivation trees

take
$$a=2$$

$$a + a * a = 2 + 2 * 2$$

Good Tree

Bad Tree

$$2 + 2 * 2 = 6$$

$$2 + 2 * 2 = 8$$

Two different derivation trees may cause problems in applications which use the derivation trees:

· Evaluating expressions

 In general, in compilers for programming languages

Ambiguous Grammar:

A context-free grammar G is ambiguous if there is a string $w \in L(G)$ which has:

two different derivation trees or

two leftmost derivations

(Two different derivation trees give two different leftmost derivations and vice-versa)

Example:
$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

this grammar is ambiguous since string a + a * a has two derivation trees

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

this grammar is ambiguous also because string a + a * a has two leftmost derivations

$$E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + E * E$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$

$$E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow a + E * E$$

$$\Rightarrow a + a * E \Rightarrow a + a * a$$

Another ambiguous grammar:

Very common piece of grammar in programming languages

If expr1 then if expr2 then stmt1 else stmt2

In general, ambiguity is bad and we want to remove it

Sometimes it is possible to find a non-ambiguous grammar for a language

But, in general we cannot do so

A successful example:

Ambiguous Grammar

$$E \to E + E$$

$$E \to E * E$$

$$E \to (E)$$

$$E \to a$$

Equivalent
Non-Ambiguous
Grammar

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid a$$

generates the same language

$$E \Rightarrow E + T \Rightarrow T + T \Rightarrow F + T \Rightarrow a + T \Rightarrow a + T * F$$
$$\Rightarrow a + F * F \Rightarrow a + a * F \Rightarrow a + a * a$$

$$E \to E + T \mid T$$

$$T \to T * F \mid F$$

$$F \to (E) \mid a$$

Unique derivation tree for a + a * a

An un-successful example:

$$L = \{a^n b^n c^m\} \cup \{a^n b^m c^m\}$$
$$n, m \ge 0$$

L is inherently ambiguous:

every grammar that generates this language is ambiguous

Example (ambiguous) grammar for L:

$$L = \{a^{n}b^{n}c^{m}\} \cup \{a^{n}b^{m}c^{m}\}$$

$$S \to S_{1} | S_{2} \qquad S_{1} \to S_{1}c | A \qquad S_{2} \to aS_{2} | B$$

$$A \to aAb | \lambda \qquad B \to bBc | \lambda$$

The string $a^nb^nc^n \in L$ has always two different derivation trees (for any grammar)

BLM2502 Theory of Computation

