第四次作业讲解

杨清元

证明µ(q)是L(X)上的一个标准解释

- 易证 $\mu(q)$ 是良定义的。下面证明它是一个语义解释。
 - (1) $\mu|_{X}$ 是X上的一个指派,即对任何x有 $\mu(x) \in \{t, f\}$;
 - (2) $\mu(q)$ 是L(X)上的一个标准赋值。
- ❖定义1(指派-命题变元的语义解释) L(X)的一个指派是一个映射 v_o : $X → \{t, f\}$ 。
- ◆注释 命题符号被解释为真值。逻辑不考虑一个vo"对不对"。
- ❖定义2(赋值-联结词的解释原则) L(X)的一个赋值ν是一个满足下列条件的映射:
 - 1. v(¬)是一个一元函数 $\{t, f\}$ → $\{t, f\}$;
 - 2. ν (→)是一个二元函数{t,f}×{t,f}→{t,f};
- ◆注释 联结词被解释为真值函数。

❖定义3(标准赋值) 标准赋值是满足下列条件的赋值v:

$$1. v(\neg) =_{df} f_{\neg},$$

$$f_{\neg}(x)$$
的定义如下

t	f	
f	t	
x	$f_{\neg}(x)$	
	¬x的真值	

$$2. v(\rightarrow) =_{df} f_{\rightarrow},$$
 $f_{\rightarrow}(x, y)$ 的定义如下

	t	f	y
t	t	f	
f	t	t	
x	$f_{\rightarrow}(x,y)$ $x \rightarrow y$ 的真值		•
$x \rightarrow y$ 的真值			

μ 是X上的一个指派,即对任何x有 μ (x) \in {t, f}

- 因为 Γ^* 极大相容,所以对一切公式 p_n ,有 $\Gamma^* \vdash p_n$ 或 $\Gamma^* \vdash \neg p_n$ Ib 公式
 - 1. 任何命题符号是公式, 称为原子公式;
- 所以对任意x,有 $\Gamma^* \vdash x$ 或 $\Gamma^* \vdash \neg x$,所以有 $\mu(x) \in \{t, f\}$

μ(q)是L(X)上的一个标准赋值

首先 $\overline{\operatorname{tr}}\mu(\neg q) = \neg \mu(q)$,分以下两种情况:

•
$$\mu(q) = 1 \Rightarrow \Gamma^* \vdash q \Rightarrow \Gamma^* \vdash \neg \neg q \Rightarrow \mu(\neg q) = 0 = \neg \mu(q)$$

•
$$\mu(q) = 0 \Rightarrow \Gamma^* \vdash \neg q \Rightarrow \mu(\neg q) = 1 = \neg \mu(q)$$

然后 $\overline{\iota}\mu(q \to r) = \mu(q) \to \mu(r)$

情形 1 $\mu(q) \rightarrow \mu(r) = 1$. 此时又有两种可能: $\mu(q) = 0$ 或 $\mu(r) = 1$.

$$\mu(q) = 0$$
 $\Rightarrow \Gamma^* \vdash \neg q$ (由 ν 的定义)
 $\Rightarrow \Gamma^* \vdash q \rightarrow r$ (由否定前件律 $\neg q \rightarrow (q \rightarrow r)$)
 $\Rightarrow \mu(q \rightarrow r) = 1$, (由 ν 的定义)
 $\mu(r) = 1$ $\Rightarrow \Gamma^* \vdash r$ (由 ν 的定义)
 $\Rightarrow \mu(q \rightarrow r) = 1$. (由 ν 的定义)
 $\Rightarrow \mu(q \rightarrow r) = 1$. (由 ν 的定义)

μ(q)是L(X)上的一个标准赋值

然后证
$$\mu(q \to r) = \mu(q) \to \mu(r)$$

情形 2 $\mu(q) \to \mu(r) = 0$. 此时有
 $\mu(q) = 1 \perp \mu(r) = 0$,
 $\Gamma^* \vdash q \perp \Gamma^* \vdash \neg r$, (由 ν 的定义)
 $\Gamma^* \vdash \neg (q \to r)$, (见 1.2.4 例 2)
 $\mu(q \to r) = 0$. (由 ν 的定义)

所以μ(q)是L(X)上的一个标准解释

总之,不管情形1还是情形2,都有

 $\mu(q \to r) = \mu(q) \to v(r).$