



# FCC PART 90 MEASUREMENT AND TEST REPORT

For

## Nokia Shanghai Bell Co. Ltd.

No. 388, Ningqiao Rd. Pilot Free Trade Zone, Shanghai, China 201206

FCC ID: 2ADZR34003800FM20

| Report Type:<br>Original Report |                       | Product Type: FastMile Compact |
|---------------------------------|-----------------------|--------------------------------|
| Test Engineer:                  | Hope Zhang            | Hope Zhang                     |
| Report Number:                  | RSHA18081400          | 01-00C                         |
| Report Date:                    | 2018-12-11            |                                |
| Reviewed By:                    | Oscar Ye<br>RF Leader | Gscar. Ye                      |
| Prepared By:                    |                       | 88934268                       |

**Note**: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

## TABLE OF CONTENTS

| GENERAL INFORMATION                                                   | 3  |
|-----------------------------------------------------------------------|----|
| PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)                    | 3  |
| Objective                                                             | 3  |
| RELATED SUBMITTAL(S)/GRANT(S)                                         |    |
| TEST METHODOLOGY                                                      |    |
| TEST FACILITY                                                         |    |
| SYSTEM TEST CONFIGURATION                                             |    |
| JUSTIFICATION                                                         |    |
| CHANNEL LIST.                                                         |    |
| EUT Exercise Software                                                 | 5  |
| EQUIPMENT MODIFICATIONS                                               |    |
| SUPPORT EQUIPMENT LIST AND DETAILS                                    |    |
| EXTERNAL I/O CABLEBLOCK DIAGRAM OF TEST SETUP                         |    |
| SUMMARY OF TEST RESULTS                                               |    |
|                                                                       |    |
| TEST EQUIPMENT LIST                                                   | 9  |
| FCC §1.1310 & §2.1091 –MAXIMUM PERMISSIBLE EXPOSURE (MPE)             | 11 |
| FCC §2.1046; §90.1321 (A) - RF OUTPUT POWER                           | 13 |
| APPLICABLE STANDARDS                                                  |    |
| TEST PROCEDURE                                                        |    |
| TEST DATA                                                             |    |
| §90.1321 (A) - PEAK POWER SPECTRAL DENSITY                            | 15 |
| APPLICABLE STANDARDS                                                  |    |
| TEST PROCEDURE                                                        |    |
| TEST DATA                                                             |    |
| FCC §2.1049, §90.209 - OCCUPIED BANDWIDTH                             |    |
| APPLICABLE STANDARDSTEST PROCEDURE                                    |    |
| TEST DATA                                                             |    |
| FCC § 2.1051; § 90.1323 (A) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS |    |
| APPLICABLE STANDARDS                                                  |    |
| TEST PROCEDURE                                                        |    |
| TEST DATA                                                             | 35 |
| FCC § 2.1053; § 90.1323 (A) - SPURIOUS RADIATED EMISSIONS             | 48 |
| APPLICABLE STANDARDS                                                  |    |
| TEST PROCEDURE                                                        | 48 |
| TEST DATA                                                             | 48 |
| FCC § 2.1055; § 90.213 - FREQUENCY STABILITY                          | 50 |
| APPLICABLE STANDARDS                                                  |    |
| TEST PROCEDURE                                                        | 50 |

#### **GENERAL INFORMATION**

#### **Product Description for Equipment under Test (EUT)**

| Applicant:    | Nokia Shanghai Bell Co. Ltd.                   |  |  |
|---------------|------------------------------------------------|--|--|
| Tested Model: | 3FE75113AAAA                                   |  |  |
| Product Type: | FastMile Compact                               |  |  |
| Dimension:    | 235 mm(L) $\times$ 235 mm(W) $\times$ 52 mm(H) |  |  |
| Power Supply: | DC 53 V from POE                               |  |  |

Report No.: RSHA180814001-00C

Adapter Information:

Model: G0545-530-060-PSE1000 Input: AC100-240 V 50/60Hz 0.75A

Output: DC53V,0.6A

#### **Objective**

This type approval report is prepared on behalf of *Nokia Shanghai Bell Co. Ltd.* in accordance with Part 2, Part 90 of the Federal Communication Commission's rules.

#### Related Submittal(s)/Grant(s)

FCC Part 15.247 DSS submittal with FCC ID: 2ADZR34003800FM20.

#### **Test Methodology**

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-Part J as well as the following parts:

Part 90 - Private Land Mobile Radio Service

Applicable Standards: TIA 603-D, ANSI 63.4-2014.

All radiated and conducted emissions measurements were performed at Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 90 Page 3 of 52

<sup>\*</sup>All measurement and test data in this report was gathered from production sample serial number: 20180814001. (Assigned by the BACL. The EUT supplied by the applicant was received on 2018-08-14)

#### **Measurement Uncertainty**

|                     | Item                   | Uncertainty |
|---------------------|------------------------|-------------|
| AC Power Lin        | es Conducted Emissions | 3.19dB      |
| RF conduct          | ed test with spectrum  | 0.9dB       |
| RF Output Po        | ower with Power meter  | 0.5dB       |
|                     | 30MHz~1GHz             | 5.91dB      |
| De l'ete l'enclarie | 1GHz~6GHz              | 4.68dB      |
| Radiated emission   | 6GHz~18GHz             | 4.92dB      |
|                     | 18GHz~40GHz            | 5.21dB      |
| Оссир               | pied Bandwidth         | 0.5kHz      |
| Temperature         |                        | 1.0℃        |
|                     | Humidity               | 6%          |

Report No.: RSHA180814001-00C

#### **Test Facility**

The test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4323.01) and the FCC designation No. CN1185 under the FCC KDB 974614 D01. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

FCC Part 90 Page 4 of 52

#### **SYSTEM TEST CONFIGURATION**

#### **Justification**

The system was configured for testing in a test mode which has been done in the factory. This device does not support CA on TX chain.

#### **Channel List**

| Frequency Band | Bandwidth | Cha    | nnel  | Frequency<br>(MHz) |
|----------------|-----------|--------|-------|--------------------|
|                |           | Low    | 56265 | 3652.5             |
|                | 5M        | Middle | 56490 | 3675.0             |
|                |           | High   | 56715 | 3697.5             |
|                |           | Low    | 56290 | 3655.0             |
|                | 10M       | Middle | 56490 | 3675.0             |
| 3650-3700MHz   |           | High   | 56690 | 3695.0             |
| 3030-3700MHZ   | 15M       | Low    | 56315 | 3657.5             |
|                |           | Middle | 56490 | 3675.0             |
|                |           | High   | 56665 | 3692.5             |
|                |           | Low    | 56340 | 3660.0             |
|                | 20M       | Middle | 56490 | 3675.0             |
|                |           | High   | 56640 | 3690.0             |

Report No.: RSHA180814001-00C

#### **EUT Exercise Software**

RF test tool: CMD

#### **Equipment Modifications**

No modifications were made to the EUT.

#### **Support Equipment List and Details**

| Manufacturer         | Description                                                              | Model                 | Serial Number |  |
|----------------------|--------------------------------------------------------------------------|-----------------------|---------------|--|
| SHENZHEN GOSPELL     | POE<br>Input: AC 100-240V,<br>50/60Hz, 0.75A Max<br>Output: DC 53V, 0.6A | G0545-530-060-PSE1000 | /             |  |
| DELL                 | Notebook                                                                 | GX620                 | D65874152     |  |
| Aihuaixin Technology | Antenna                                                                  | /                     | /             |  |
| R & S                | Wideband Radio<br>Communication Tester                                   | CMW500                | 104478        |  |

FCC Part 90 Page 5 of 52

#### **External I/O Cable**

| Cable Description | Length (m) | From Port      | То       |
|-------------------|------------|----------------|----------|
| RJ45 Cable-1      | 3.0        | EUT            | POE      |
| RJ45 Cable-2      | 15.0       | POE            | Notebook |
| Power Cable       | 1.0        | POE AC Source/ |          |
| Antenna Cable     | 1.2        | Antenna        | CMW500   |

Report No.: RSHA180814001-00C

### **Block Diagram of Test Setup**



FCC Part 90 Page 6 of 52



FCC Part 90 Page 7 of 52

## SUMMARY OF TEST RESULTS

| FCC Rules               | Description of Test                    | Result    |
|-------------------------|----------------------------------------|-----------|
| § 1.1310 & § 2.1091     | MAXIMUM PERMISSIBLE EXPOSURE (MPE)     | Compliant |
| § 2.1046; § 90.1321 (a) | RF Output Power                        | Compliant |
| § 90.1321 (a)           | Peak Power Spectral Density            | Compliant |
| § 2.1049; § 90.209      | Occupied Bandwidth                     | Compliant |
| § 2.1051; § 90.1323(a)  | Spurious Emissions at Antenna Terminal | Compliant |
| § 2.1053; § 90.1323(a)  | Spurious Radiated Emissions            | Compliant |
| § 2.1055; § 90.213      | Frequency stability                    | Compliant |

Report No.: RSHA180814001-00C

FCC Part 90 Page 8 of 52

## TEST EQUIPMENT LIST

| Manufacturer                  | Description                            | Model                 | Serial<br>Number | Calibration<br>Date | Calibration Due Date |  |
|-------------------------------|----------------------------------------|-----------------------|------------------|---------------------|----------------------|--|
|                               | Radiated Em                            | ission Test (Char     |                  |                     |                      |  |
| Rohde & Schwarz               | EMI Test Receiver                      | ESCI                  | 100195           | 2017-11-12          | 2018-11-11           |  |
| HP                            | Signal Generator HP 8341B 2624A00116   |                       | 2018-08-29       | 2019-08-28          |                      |  |
| Sunol Sciences                | Broadband Antenna                      | JB3                   | A090413-1        | 2016-12-26          | 2019-12-25           |  |
| Sunol Sciences                | Broadband Antenna                      | JB3                   | A090314-2        | 2016-01-09          | 2019-01-08           |  |
| Sonoma Instrunent             | Pre-amplifier                          | 310N                  | 171205           | 2018-08-15          | 2019-08-14           |  |
| Rohde & Schwarz               | Auto test Software                     | EMC32                 | 100361           | /                   | /                    |  |
| MICRO-COAX                    | Coaxial Cable                          | Cable-6               | 006              | 2018-08-15          | 2019-08-14           |  |
| MICRO-COAX                    | Coaxial Cable                          | Cable-8               | 008              | 2018-08-15          | 2019-08-14           |  |
| MICRO-COAX                    | Coaxial Cable                          | Cable-9               | 009              | 2018-08-15          | 2019-08-14           |  |
| MICRO-COAX                    | Coaxial Cable                          | Cable-10              | 010              | 2018-08-15          | 2019-08-14           |  |
| R & S                         | Wideband Radio<br>Communication Tester | CMW500                | 104478           | 2018-07-21          | 2019-07-20           |  |
|                               | Radiated Em                            | ission Test (Char     | nber 2#)         |                     |                      |  |
| HP                            | Signal Generator                       | HP 8341B              | 2624A00116       | 2018-08-29          | 2019-08-28           |  |
| Rohde & Schwarz               | EMI Test Receiver                      | ESU40                 | 100207           | 2018-08-26          | 2019-08-25           |  |
| ETS-LINDGREN                  | Horn Antenna                           | 3115                  | 9311-4159        | 2016-01-11          | 2019-01-10           |  |
| ETS-LINDGREN                  | Horn Antenna                           | orn Antenna 3115 6229 |                  | 2016-01-11          | 2019-01-10           |  |
| ETS-LINDGREN                  | Horn Antenna                           | 3116                  | 00084159         | 2016-10-18          | 2019-10-17           |  |
| ETS-LINDGREN                  | Horn Antenna                           | 3116                  | 2516             | 2016-12-12          | 2019-12-12           |  |
| Mini-Circuits                 | Amplifier                              | ZVA-183W-S+           | 220701818        | 2018-05-20          | 2019-05-19           |  |
| EM Electronics<br>Corporation | Amplifier                              | EM18G40G              | 060726           | 2018-03-22          | 2019-03-21           |  |
| Rohde & Schwarz               | Auto test Software                     | EMC32                 | 100361           | /                   | /                    |  |
| MICRO-COAX                    | Coaxial Cable                          | Cable-6               | 006              | 2018-08-15          | 2019-08-14           |  |
| MICRO-COAX                    | Coaxial Cable                          | Cable-11              | 011              | 2018-08-15          | 2019-08-14           |  |
| MICRO-COAX                    | Coaxial Cable                          | Cable-12              | 012              | 2018-08-15          | 2019-08-14           |  |
| MICRO-COAX                    | Coaxial Cable                          | Cable-13              | 013              | 2018-08-15          | 2019-08-14           |  |
| MICRO-COAX                    | Coaxial Cable                          | Cable-16              | 016              | 2018-08-15          | 2019-08-14           |  |
| R & S                         | Wideband Radio<br>Communication Tester | CMW500                | 104478           | 2018-07-21          | 2019-07-20           |  |

Report No.: RSHA180814001-00C

FCC Part 90 Page 9 of 52

| Manufacturer    | Description                            | Model       | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |  |  |  |
|-----------------|----------------------------------------|-------------|------------------|---------------------|-------------------------|--|--|--|
|                 | RF Conducted Test                      |             |                  |                     |                         |  |  |  |
| Rohde & Schwarz | Signal Analyzer                        | FSIQ26      | 836131/009       | 2017-09-21          | 2018-09-20              |  |  |  |
| Rohde & Schwarz | Signal Analyzer                        | FSV40       | 101116           | 2018-07-23          | 2019-07-22              |  |  |  |
| Narda           | Attenuator/6dB                         | 10690812-2  | 26850-6          | 2018-01-10          | 2019-01-09              |  |  |  |
| R & S           | Wideband Radio<br>Communication Tester | CMW500      | 104478           | 2018-07-21          | 2019-07-20              |  |  |  |
| Mini-Ciruits    | Power splitter                         | ZFRSC-14-S+ | SF019411452      | 2017-11-10          | 2018-11-09              |  |  |  |
| BACL            | Temperature & Humidity Chamber         | BTH-150     | 30023            | 2018-10-10          | 2019-10-09              |  |  |  |
| EAST            | Regulated DC Power Supply              | MCH-303D-II | 14070562         | 2018-10-10          | 2019-10-09              |  |  |  |
| Bell            | RF Cable                               | /           | /                | Each Time           | /                       |  |  |  |

Report No.: RSHA180814001-00C

FCC Part 90 Page 10 of 52

<sup>\*</sup> Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

#### FCC §1.1310 & §2.1091 –MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Report No.: RSHA180814001-00C

#### **Applicable Standard**

According to subpart §2.1091 and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

| (B) Limits for General Population/Uncontrolled Exposure                                                                             |       |        |                        |    |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------|-------|--------|------------------------|----|--|--|--|--|--|
| Frequency Range (MHz)  Electric Field Magnetic Field Strength (V/m)  Magnetic Field Power Density (mW/cm²)  Averaging Time (mW/cm²) |       |        |                        |    |  |  |  |  |  |
| 0.3-1.34                                                                                                                            | 614   | 1.63   | *(100)                 | 30 |  |  |  |  |  |
| 1.34-30                                                                                                                             | 824/f | 2.19/f | *(180/f <sup>2</sup> ) | 30 |  |  |  |  |  |
| 30-300                                                                                                                              | 27.5  | 0.073  | 0.2                    | 30 |  |  |  |  |  |
| 300-1500                                                                                                                            | /     | /      | f/1500                 | 30 |  |  |  |  |  |
| 1500-100,000                                                                                                                        | /     | /      | 1.0                    | 30 |  |  |  |  |  |

f = frequency in MHz; \* = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$ 

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} \le 1$$

#### **Calculated Data:**

| Mode   | Frequency<br>Range | Antenna Gain |           | Tune-up<br>Conducted<br>Power |       | Evaluation<br>Distance | Power<br>Density      | MPE<br>Limit          | MPE<br>ratio |
|--------|--------------------|--------------|-----------|-------------------------------|-------|------------------------|-----------------------|-----------------------|--------------|
|        | (MHz)              | (dBi)        | (numeric) | (dBm)                         | (mW)  | (cm)                   | (mW/cm <sup>2</sup> ) | (mW/cm <sup>2</sup> ) | 23320        |
| BT 3.0 | 2402-2480          | 0.00         | 1.00      | 7.50                          | 5.62  | 20                     | 0.0011                | 1.0                   | 0.0011       |
| LTE    | 3652.5-3697.5      | 14.00        | 25.12     | 18.00                         | 63.10 | 20                     | 0.3153                | 1.0                   | 0.3153       |

FCC Part 90 Page 11 of 52

#### Note:

- 1. The tune-up conducted power was declared by the manufacturer.
- 2. BT and LTE can transmit simultaneously, and the worst condition is as below:

Report No.: RSHA180814001-00C

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} = 0.0011 + 0.3153 = 0.3164 < 1.0$$

**Result:** The device meet FCC MPE at 20 cm distance.

FCC Part 90 Page 12 of 52

#### FCC §2.1046; §90.1321 (a) - RF OUTPUT POWER

#### **Applicable Standards**

FCC §2.1046 and §90.1321

#### Limit

According to FCC §2.1046 and §90.1321:

(a) Base and fixed stations are limited to 25 watts/25 MHz equivalent isotropically radiated power (EIRP). In any event, the peak EIRP power density shall not exceed 1 Watt in any one-megahertz slice of spectrum.

Report No.: RSHA180814001-00C

#### **Test Procedure**

The EUT was connected to a CMW500 through a attenuator, the EUT power was adjusted to produce maximum output power as specified in the owner's manual, measurements were performed at the low, mid and high channels for each of the EUT's bandwidths and modulations.



#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 23.2℃    |
|--------------------|----------|
| Relative Humidity: | 51 %     |
| ATM Pressure:      | 101.3kPa |

The testing was performed by Hope Zhang on 2018-09-04.

FCC Part 90 Page 13 of 52

LTE Band: 3650-3700MHz

| D 1 11/1  | 36 114     | Frequency | <b>Output Power</b> | Antenna Gain | EIRP  | Limit |
|-----------|------------|-----------|---------------------|--------------|-------|-------|
| Bandwidth | Modulation | (MHz)     | (dBm)               | (dBi)        | (dBm) | (dBm) |
| 5391      | QPSK       | 3652.5    | 17.44               | 14.00        | 31.44 | 43.98 |
|           |            | 3675.0    | 17.66               | 14.00        | 31.66 |       |
|           |            | 3697.5    | 17.83               | 14.00        | 31.83 |       |
| 5MHz      |            | 3652.5    | 17.32               | 14.00        | 31.32 |       |
|           | 16-QAM     | 3675.0    | 17.62               | 14.00        | 31.62 |       |
|           |            | 3697.5    | 17.81               | 14.00        | 31.81 |       |
|           |            | 3655.0    | 17.50               | 14.00        | 31.50 |       |
|           | QPSK       | 3675.0    | 17.51               | 14.00        | 31.51 | 43.98 |
| 10MHz     |            | 3695.0    | 17.76               | 14.00        | 31.76 |       |
| TUMHZ     | 16-QAM     | 3655.0    | 17.37               | 14.00        | 31.37 |       |
|           |            | 3675.0    | 17.54               | 14.00        | 31.54 |       |
|           |            | 3695.0    | 17.76               | 14.00        | 31.76 |       |
|           | QPSK       | 3657.5    | 17.50               | 14.00        | 31.50 | 43.98 |
|           |            | 3675.0    | 17.63               | 14.00        | 31.63 |       |
| 15MHz     |            | 3692.5    | 17.82               | 14.00        | 31.82 |       |
| ТЭМПХ     | 16-QAM     | 3657.5    | 17.45               | 14.00        | 31.45 | 43.98 |
|           |            | 3675.0    | 17.65               | 14.00        | 31.65 |       |
|           |            | 3692.5    | 17.85               | 14.00        | 31.85 |       |
| 20MHz     | QPSK       | 3660.0    | 17.36               | 14.00        | 31.36 | 43.98 |
|           |            | 3675.0    | 17.54               | 14.00        | 31.54 |       |
|           |            | 3690.0    | 17.87               | 14.00        | 31.87 |       |
|           | 16-QAM     | 3660.0    | 17.50               | 14.00        | 31.50 |       |
|           |            | 3675.0    | 17.52               | 14.00        | 31.52 |       |
|           |            | 3690.0    | 17.73               | 14.00        | 31.73 |       |

Report No.: RSHA180814001-00C

FCC Part 90 Page 14 of 52

#### §90.1321 (a) - PEAK POWER SPECTRAL DENSITY

#### **Applicable Standards**

FCC§90.1321

#### Limit

According to FCC §2.1046 and §90.1321:

(a) Base and fixed stations are limited to 25 watts/25 MHz equivalent isotropically radiated power (EIRP). In any event, the peak EIRP power density shall not exceed 1 Watt in any one-megahertz slice of spectrum.

Report No.: RSHA180814001-00C

#### **Test Procedure**

The EUT was connected to a CMW500 & signal analyzer through a splitter, the EUT power was adjusted to produce maximum output power as specified in the owner's manual, measurements were performed at the low, mid and high channels for each of the EUT's bandwidths and modulations.

The resolution bandwidth of the spectrum analyzer was set at 1MHz.



#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 23.2℃    |  |
|--------------------|----------|--|
| Relative Humidity: | 51 %     |  |
| ATM Pressure:      | 101.3kPa |  |

The testing was performed by Hope Zhang on 2018-09-04.

FCC Part 90 Page 15 of 52

LTE Band: 3650-3700MHz

| Bandwidth | Modulation | Frequency | Peak Power<br>Density | Antenna Gain | EIRP<br>Power<br>Density | Limit     |
|-----------|------------|-----------|-----------------------|--------------|--------------------------|-----------|
|           |            | (MHz)     | (dBm/MHz)             | (dBi)        | (dBm/MHz)                | (dBm/MHz) |
| 5MHz      | QPSK       | 3652.5    | 10.50                 | 14.00        | 24.50                    |           |
|           |            | 3675.0    | 10.70                 | 14.00        | 24.70                    |           |
|           |            | 3697.5    | 11.33                 | 14.00        | 25.33                    |           |
|           |            | 3652.5    | 10.78                 | 14.00        | 24.78                    |           |
|           | 16-QAM     | 3675.0    | 10.27                 | 14.00        | 24.27                    |           |
|           |            | 3697.5    | 11.39                 | 14.00        | 25.39                    |           |
|           |            | 3655.0    | 9.20                  | 14.00        | 23.20                    |           |
| 10MHz     | QPSK       | 3675.0    | 9.25                  | 14.00        | 23.25                    | 30.00     |
|           |            | 3695.0    | 8.97                  | 14.00        | 22.97                    |           |
|           | 16-QAM     | 3655.0    | 9.47                  | 14.00        | 23.47                    |           |
|           |            | 3675.0    | 9.06                  | 14.00        | 23.06                    |           |
|           |            | 3695.0    | 8.63                  | 14.00        | 22.63                    |           |
|           |            | 3657.5    | 8.67                  | 14.00        | 22.67                    | 30.00     |
|           | QPSK       | 3675.0    | 8.86                  | 14.00        | 22.86                    |           |
| 15MHz     |            | 3692.5    | 8.19                  | 14.00        | 22.19                    |           |
| ТЭМПХ     | 16-QAM     | 3657.5    | 8.74                  | 14.00        | 22.74                    |           |
|           |            | 3675.0    | 8.55                  | 14.00        | 22.55                    |           |
|           |            | 3692.5    | 8.42                  | 14.00        | 22.42                    |           |
| OOM       | QPSK       | 3660.0    | 7.37                  | 14.00        | 21.37                    |           |
|           |            | 3675.0    | 6.94                  | 14.00        | 20.94                    |           |
|           |            | 3690.0    | 7.53                  | 14.00        | 21.53                    |           |
| 20MHz     | 16-QAM     | 3660.0    | 7.55                  | 14.00        | 21.55                    |           |
|           |            | 3675.0    | 7.10                  | 14.00        | 21.10                    |           |
|           |            | 3690.0    | 7.78                  | 14.00        | 21.78                    |           |

Report No.: RSHA180814001-00C

FCC Part 90 Page 16 of 52

#### Please refer to the following plots

#### QPSK (5 MHz) - Peak Power Density, Low channel

Report No.: RSHA180814001-00C



#### QPSK (5 MHz) - Peak Power Density, Middle channel



FCC Part 90 Page 17 of 52

#### QPSK (5 MHz) - Peak Power Density, High channel



#### 16-QAM (5 MHz) - Peak Power Density, Low channel



FCC Part 90 Page 18 of 52

#### 16-QAM (5 MHz) - Peak Power Density, Middle channel

Report No.: RSHA180814001-00C



#### 16-QAM (5 MHz) - Peak Power Density, High channel



FCC Part 90 Page 19 of 52

#### QPSK (10 MHz) - Peak Power Density, Low channel



#### QPSK (10 MHz) - Peak Power Density, Middle channel



FCC Part 90 Page 20 of 52

#### QPSK (10 MHz) - Peak Power Density, High channel



#### 16-QAM (10 MHz) - Peak Power Density, Low channel



FCC Part 90 Page 21 of 52

#### 16-QAM (10 MHz) - Peak Power Density, Middle channel

Report No.: RSHA180814001-00C



#### 16-QAM (10 MHz) - Peak Power Density, High channel



FCC Part 90 Page 22 of 52

#### QPSK (15 MHz) - Peak Power Density, Low channel



#### QPSK (15 MHz) - Peak Power Density, Middle channel



FCC Part 90 Page 23 of 52

#### QPSK (15 MHz) - Peak Power Density, High channel



#### 16-QAM (15 MHz) - Peak Power Density, Low channel



FCC Part 90 Page 24 of 52

#### 16-QAM (15 MHz) - Peak Power Density, Middle channel

Report No.: RSHA180814001-00C



#### 16-QAM (15 MHz) - Peak Power Density, High channel



FCC Part 90 Page 25 of 52

#### QPSK (20 MHz) - Peak Power Density, Low channel



#### QPSK (20 MHz) - Peak Power Density, Middle channel



FCC Part 90 Page 26 of 52

#### QPSK (20 MHz) - Peak Power Density, High channel



#### 16-QAM (20 MHz) - Peak Power Density, Low channel



FCC Part 90 Page 27 of 52

#### 16-QAM (20 MHz) - Peak Power Density, Middle channel

Report No.: RSHA180814001-00C



#### 16-QAM (20 MHz) - Peak Power Density, High channel



FCC Part 90 Page 28 of 52

#### FCC §2.1049, §90.209 - OCCUPIED BANDWIDTH

#### **Applicable Standards**

FCC 47 §2.1049 and §90.209.

#### **Test Procedure**

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 50 kHz (5MHz BW), 100 kHz (10MHz BW), 300 kHz (15MHz/20MHz BW), and the 99% bandwidth was recorded.

Report No.: RSHA180814001-00C



#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 22.5℃    |  |
|--------------------|----------|--|
| Relative Humidity: | 51 %     |  |
| ATM Pressure:      | 101.3kPa |  |

The testing was performed by Hope Zhang on 2018-11-02

EUT operation mode: Transmitting

Test Result: Compliance.

FCC Part 90 Page 29 of 52

| Test Bandwidth | Test Modulation | 99% Occupied<br>Bandwidth<br>(MHz) | 26dB Bandwidth<br>(MHz) |  |
|----------------|-----------------|------------------------------------|-------------------------|--|
| 5M             | QPSK            | 4.54                               | 5.34                    |  |
|                | 16-QAM          | 4.54                               | 5.41                    |  |
| 10M            | QPSK            | 8.94                               | 9.84                    |  |
|                | 16-QAM          | 8.94                               | 9.84                    |  |
| 15M            | QPSK            | 13.46                              | 14.59                   |  |
|                | 16-QAM          | 13.46                              | 14.63                   |  |
| 20M            | QPSK            | 17.83                              | 19.13                   |  |
|                | 16-QAM          | 17.89                              | 19.19                   |  |

Report No.: RSHA180814001-00C

FCC Part 90 Page 30 of 52

#### QPSK (5 MHz) - 99% Occupied Bandwidth &26dB Bandwidth, Middle channel

Report No.: RSHA180814001-00C



Date: 2NOV 2018 18:25:56

#### 16-QAM (5 MHz) - 99% Occupied Bandwidth &26dB Bandwidth, Middle channel



Date: 2 NOV 2018 18:23:59

FCC Part 90 Page 31 of 52

#### QPSK (10 MHz) - 99% Occupied Bandwidth &26dB Bandwidth, Middle channel

Report No.: RSHA180814001-00C



#### 16-QAM (10 MHz) - 99% Occupied Bandwidth &26dB Bandwidth, Middle channel



FCC Part 90 Page 32 of 52

#### QPSK (15 MHz) - 99% Occupied Bandwidth &26dB Bandwidth, Middle channel

Report No.: RSHA180814001-00C



#### 16-QAM (15 MHz) - 99% Occupied Bandwidth &26dB Bandwidth, Middle channel



FCC Part 90 Page 33 of 52

#### QPSK (20 MHz) - 99% Occupied Bandwidth &26dB Bandwidth, Middle channel

Report No.: RSHA180814001-00C



#### 16-QAM (20 MHz) - 99% Occupied Bandwidth &26dB Bandwidth, Middle channel



FCC Part 90 Page 34 of 52

## FCC § 2.1051; § 90.1323 (a) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Report No.: RSHA180814001-00C

#### **Applicable Standards**

FCC §2.1051 and §90.1323(a).

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1051.

The power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or less, but at least one percent of the emission bandwidth of the fundamental emission of the transmitter, provided the measured energy is integrated over a 1 MHz bandwidth.

#### **Test Procedure**

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. Sufficient scans were taken to show any out of band emissions up to 10<sup>th</sup> harmonic.



#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 23.2℃    |
|--------------------|----------|
| Relative Humidity: | 51 %     |
| ATM Pressure:      | 101.3kPa |

The testing was performed by Hope Zhang from 2018-11-02 to 2018-11-13.

EUT operation mode: Transmitting

Test Result: Compliance.

FCC Part 90 Page 35 of 52

#### QPSK (5 MHz), Middle Channel

Report No.: RSHA180814001-00C



#### QPSK (10 MHz), Middle Channel



FCC Part 90 Page 36 of 52

## QPSK (15 MHz), Middle Channel

Report No.: RSHA180814001-00C



### QPSK (20 MHz), Middle Channel



FCC Part 90 Page 37 of 52

### 16-QAM (5 MHz), Middle Channel

Report No.: RSHA180814001-00C



## 16-QAM (10 MHz), Middle Channel



FCC Part 90 Page 38 of 52

## 16-QAM (15 MHz), Middle Channel

Report No.: RSHA180814001-00C



### 16-QAM (20 MHz), Middle Channel



FCC Part 90 Page 39 of 52

### **Bandage:**

### QPSK (5 MHz) – Bandage-Left

Report No.: RSHA180814001-00C



### QPSK (5 MHz) - Bandage-Right



FCC Part 90 Page 40 of 52

### 16-QAM (5 MHz) – Bandage-Left

Report No.: RSHA180814001-00C



### 16-QAM (5 MHz) - Bandage-Right



FCC Part 90 Page 41 of 52

### QPSK (10 MHz) - Bandage-Left

Report No.: RSHA180814001-00C



### QPSK (10 MHz) – Bandage-Right



FCC Part 90 Page 42 of 52

## 16-QAM (10 MHz) – Bandage-Left

Report No.: RSHA180814001-00C



### 16-QAM (10 MHz) - Bandage-Right



FCC Part 90 Page 43 of 52

## QPSK (15 MHz) - Bandage-Left

Report No.: RSHA180814001-00C



### QPSK (15 MHz) – Bandage-Right



FCC Part 90 Page 44 of 52

### 16-QAM (15 MHz) – Bandage-Left

Report No.: RSHA180814001-00C



### 16-QAM (15 MHz) – Bandage-Right



FCC Part 90 Page 45 of 52

Report No.: RSHA180814001-00C



### QPSK (20 MHz) – Bandage-Right



FCC Part 90 Page 46 of 52

## 16-QAM (20 MHz) – Bandage-Left

Report No.: RSHA180814001-00C



### 16-QAM (20 MHz) - Bandage-Right



FCC Part 90 Page 47 of 52

# FCC § 2.1053; § 90.1323 (a) - SPURIOUS RADIATED EMISSIONS

## **Applicable Standards**

FCC § 2.1053 and §90.1323(a)

The power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or less, but at least one percent of the emission bandwidth of the fundamental emission of the transmitter, provided the measured energy is integrated over a 1 MHz bandwidth.

Report No.: RSHA180814001-00C

### **Test Procedure**

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious attenuation limit in dB =43+10 Log10 (power out in Watts)

### **Test Data**

### **Environmental Conditions**

| Temperature:       | 23.2℃    |
|--------------------|----------|
| Relative Humidity: | 51 %     |
| ATM Pressure:      | 101.3kPa |

The testing was performed by Hope Zhang on 2018-09-05.

FCC Part 90 Page 48 of 52

Test mode: Transmitting (Pre-scan with all the bandwidth, and worse case as below)

### 30MHz~37GHz:

|                   | Receiver Turn                        |     | Rx Antenna  |                | Substituted                 |                       |                              | Absolute    |             |                |
|-------------------|--------------------------------------|-----|-------------|----------------|-----------------------------|-----------------------|------------------------------|-------------|-------------|----------------|
| Frequency (MHz) R | Reading Angle                        |     | Height (cm) | Polar<br>(H/V) | Submitted<br>Level<br>(dBm) | Cable<br>Loss<br>(dB) | Antenna<br>Gain<br>(dBd/dBi) | Level (dBm) | Limit (dBm) | Margin<br>(dB) |
|                   |                                      |     | QPSK        | 5MHz B         | andwidth Mid                | ldle Chan             | nel                          |             |             |                |
| 650.00            | 33.65                                | 252 | 2           | Н              | -61.65                      | 0.60                  | -1.20                        | -63.45      | -13         | 50.45          |
| 650.00            | 34.01                                | 142 | 256         | V              | -66.80                      | 0.60                  | -1.20                        | -68.60      | -13         | 55.60          |
| 7350.00           | 38.45                                | 252 | 89          | Н              | -52.94                      | 1.74                  | 10.13                        | -44.55      | -13         | 31.55          |
| 7350.00           | 38.54                                | 142 | 81          | V              | -53.08                      | 1.74                  | 10.13                        | -44.69      | -13         | 31.69          |
| 11025.00          | 39.01                                | 140 | 158         | Н              | -45.84                      | 2.04                  | 12.37                        | -35.51      | -13         | 22.51          |
| 11025.00          | 38.49                                | 350 | 227         | V              | -45.86                      | 2.04                  | 12.37                        | -35.53      | -13         | 22.53          |
|                   | 16-QAM 5MHz Bandwidth Middle Channel |     |             |                |                             |                       |                              |             |             |                |
| 650.00            | 33.69                                | 252 | 236         | Н              | -61.61                      | 0.60                  | -1.20                        | -63.41      | -13         | 50.41          |
| 650.00            | 34.51                                | 142 | 167         | V              | -66.30                      | 0.60                  | -1.20                        | -68.10      | -13         | 55.10          |
| 7350.00           | 38.24                                | 252 | 205         | Н              | -53.15                      | 1.74                  | 10.13                        | -44.76      | -13         | 31.76          |
| 7350.00           | 37.98                                | 142 | 123         | V              | -53.64                      | 1.74                  | 10.13                        | -45.25      | -13         | 32.25          |
| 11025.00          | 38.56                                | 140 | 263         | Н              | -46.29                      | 2.04                  | 12.37                        | -35.96      | -13         | 22.96          |
| 11025.00          | 38.47                                | 350 | 112         | V              | -45.88                      | 2.04                  | 12.37                        | -35.55      | -13         | 22.55          |

Report No.: RSHA180814001-00C

### Note:

FCC Part 90 Page 49 of 52

<sup>1)</sup> Absolute Level (dBm) = Submitted Level (dBm) - Cable loss (dB) + Antenna Gain (dBd/dBi)

<sup>2)</sup> Margin (dB) = Limit (dBm) - Absolute Level (dBm)

# FCC § 2.1055; § 90.213 - FREQUENCY STABILITY

### **Applicable Standards**

FCC § 2.1055 and § 90.213

Unless noted elsewhere, transmitters used in the services governed by this part must have a minimum frequency stability as specified in the following table.

### MINIMUM FREQUENCY STABILITY

Report No.: RSHA180814001-00C

[Parts per million (ppm)]

|                          |                         | Mobile stations           |                              |  |  |
|--------------------------|-------------------------|---------------------------|------------------------------|--|--|
| Frequency range<br>(MHz) | Fixed and base stations | Over 2 watts output power | 2 watts or less output power |  |  |
| Below 25                 | 1 2 3 <sub>100</sub>    | 100                       | 200                          |  |  |
| 25-50                    | 20                      |                           | 50                           |  |  |
| 72-76                    | 5                       |                           | 50                           |  |  |
| 150-174                  | 5 115                   | 65                        | <sup>4 6</sup> 50            |  |  |
| 216-220                  | 1.0                     |                           | 1.0                          |  |  |
| 220-222 <sup>12</sup>    | 0.1                     |                           | 1.5                          |  |  |
| 421-512                  | 7 11 142.5              | 85                        | <sup>8</sup> 5               |  |  |
| 806-809                  | 141.0                   |                           | 1.5                          |  |  |
| 809-824                  | 141.5                   |                           | 2.5                          |  |  |
| 851-854                  | 1.0                     |                           | 1.5                          |  |  |
| 854-869                  | 1.5                     | 2.5                       | 2.5                          |  |  |
| 896-901                  | <sup>14</sup> 0.1       | 1.5                       | 1.5                          |  |  |
| 902-928                  | 2.5                     | 2.5                       | 2.5                          |  |  |
| 902-928 <sup>13</sup>    | 2.5                     | 2.5                       | 2.5                          |  |  |
| 929-930                  | 1.5                     |                           |                              |  |  |
| 935-940                  | 0.1                     | 1.5                       | 1.5                          |  |  |
| 1427-1435                | <sup>9</sup> 300        | 300                       | 300                          |  |  |
| Above 2450 <sup>10</sup> |                         |                           |                              |  |  |

<sup>&</sup>lt;sup>10</sup>Except for DSRCS equipment in the 5850-5925 MHz band, frequency stability is to be specified in the station authorization. Frequency stability for DSRCS equipment in the 5850-5925 MHz band is specified in subpart M of this part.

### **Test Procedure**

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

FCC Part 90 Page 50 of 52

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.



**Test Data** 

### **Environmental Conditions**

| Temperature:       | 23.2℃    |
|--------------------|----------|
| Relative Humidity: | 51 %     |
| ATM Pressure:      | 101.3kPa |

The testing was performed by Hope Zhang on 2018-11-02

Test Result: Compliance.

FCC Part 90 Page 51 of 52

# LTE band (3650-3700MHz)

|                     | QPSK Middle Channel, fo =3675 MHz |                            |                             |           |  |  |
|---------------------|-----------------------------------|----------------------------|-----------------------------|-----------|--|--|
| Temperature<br>(°C) | Power Supplied $(V_{AC})$         | Frequency<br>Error<br>(Hz) | Frequency<br>Error<br>(ppm) | Result    |  |  |
| -30                 |                                   | 17.02                      | 0.0046                      | Compliant |  |  |
| -20                 |                                   | 13.48                      | 0.0037                      | Compliant |  |  |
| -10                 |                                   | 15.10                      | 0.0041                      | Compliant |  |  |
| 0                   |                                   | 11.59                      | 0.0032                      | Compliant |  |  |
| 10                  | 120                               | 12.89                      | 0.0035                      | Compliant |  |  |
| 20                  |                                   | 10.04                      | 0.0027                      | Compliant |  |  |
| 30                  |                                   | 17.91                      | 0.0049                      | Compliant |  |  |
| 40                  |                                   | 11.65                      | 0.0032                      | Compliant |  |  |
| 50                  |                                   | 13.22                      | 0.0036                      | Compliant |  |  |
| 25                  | V min.= 108                       | 12.02                      | 0.0033                      | Compliant |  |  |
| 25                  | V max.= 132                       | 15.70                      | 0.0043                      | Compliant |  |  |

Report No.: RSHA180814001-00C

| 16-QAM Middle Channel, fo =3675 MHz |                                   |                            |                             |           |  |
|-------------------------------------|-----------------------------------|----------------------------|-----------------------------|-----------|--|
| Temperature<br>(°C)                 | Power Supplied (V <sub>AC</sub> ) | Frequency<br>Error<br>(Hz) | Frequency<br>Error<br>(ppm) | Result    |  |
| -30                                 |                                   | 18.96                      | 0.0052                      | Compliant |  |
| -20                                 |                                   | 15.35                      | 0.0042                      | Compliant |  |
| -10                                 |                                   | 20.27                      | 0.0055                      | Compliant |  |
| 0                                   |                                   | 14.10                      | 0.0038                      | Compliant |  |
| 10                                  | 120                               | 14.06                      | 0.0038                      | Compliant |  |
| 20                                  |                                   | 21.99                      | 0.0060                      | Compliant |  |
| 30                                  |                                   | 19.65                      | 0.0053                      | Compliant |  |
| 40                                  |                                   | 13.54                      | 0.0037                      | Compliant |  |
| 50                                  |                                   | 20.42                      | 0.0056                      | Compliant |  |
| 25                                  | V min.= 108                       | 18.36                      | 0.0050                      | Compliant |  |
| 25                                  | V max.= 132                       | 15.85                      | 0.0043                      | Compliant |  |

\*\*\*\*\* END OF REPORT \*\*\*\*\*

FCC Part 90 Page 52 of 52