UC Berkeley Department of Electrical Engineering and Computer Sciences

EECS 126: PROBABILITY AND RANDOM PROCESSES

Homework 03

Fall 2023

1. Expected Norm

Pick two points $X=(X_1,X_2)$ and $Y=(Y_1,Y_2)$ independently and uniformly in $[0,1]^2$. Calculate $\mathbb{E}(\|X-Y\|_2^2)$.

2. Joint Density for Exponential Distribution

- a. If $X \sim \text{Exponential}(\lambda)$ and $Y \sim \text{Exponential}(\mu)$ are independent, compute $\mathbb{P}(X < Y)$.
- b. If X_1, \ldots, X_n are independent and Exponentially distributed with parameters $\lambda_1, \ldots, \lambda_n$, show that $\min_{1 \le k \le n} X_k \sim \text{Exponential}(\sum_{j=1}^n \lambda_j)$.
- c. Deduce that

$$\mathbb{P}\left(X_i = \min_{1 \le k \le n} X_k\right) = \frac{\lambda_i}{\sum_{j=1}^n \lambda_j}.$$

3. Change of Variables

Let X be a continuous random variable with cdf F_X and pdf $f_X > 0$ everywhere, and let Y = g(X), where g is a differentiable function.

- a. Suppose that g is also invertible. Find the pdf of Y, f_Y , in terms of g and f_X .
- b. Let $U \sim \text{Uniform}([0,1])$. Using the conclusion from part a, show that $F_X^{-1}(U)$ has the same distribution as X. (This allows us to generate a given random variable given only a uniform random number generator.)
- c. Now suppose that $g(x) = x^2$. Find the pdf of Y in terms of the pdf of X. Also find the pdf of Y when X is a standard normal random variable in particular. (Note that this g is not invertible, unlike in part a.)

4. Really Random Binomial

Consider the random variables $U \sim \text{Uniform}([0,1])$ and $X|U \sim \text{Binomial}(n,U)$, where X is a binomial random variable with a random success probability. Given that X = k, we wish to find the conditional distribution of U, $f_{U|X}(u \mid k)$ using the steps below.

- a. Write $f_{U|X}(u \mid k)$ in terms of the distributions of X, U, and $X \mid U$ using Bayes' Rule. Plug in any distribution given in the setup.
- b. You may realize that the denominator $\mathbb{P}(X=k)$ of your expression above is hard to evaluate. It requires integrating over values of U and iterative integration by parts. Instead, we resort to an approach based on moment generating functions. Write the mgf of X as a summation in terms of $\mathbb{P}(X=k)$. Then, write $\mathbb{P}(X=k)$ as an integral over values of U and exchange the summation and integration. Use the binomial theorem to absorb the summation so we are left with an integral.
- c. Carry out the evaluation of the integral. Use the identity $\frac{1-s^{n+1}}{1-s} = \sum_{i=0}^{n} s^i$ to leave your answer as a summation. Does this expression look like the mgf of some discrete random variable, and which one?
- d. Conclude the distribution of X is the distribution of the discrete random variable you found above. Use this to find $\mathbb{P}(X=k)$, then find $f_{U|X}(u \mid k)$.

5. Poisson Practice

Suppose X is a Poisson random variable with parameter λ . Find the following:

- a. $\mathbb{E}(X^2)$.
- b. $\mathbb{P}(X \text{ is even})$. (*Hint*: Use the Taylor series expansion of e^x .)

6. Graphical Density

The following figure depicts the joint density $f_{X,Y}$ of X and Y.

- a. Are X and Y independent? Remember to justify your answer.
- b. What is the value of A?
- c. Compute $f_X(x)$.
- d. Compute $\mathbb{E}(Y \mid X = x)$. You may leave your answer as a fraction of terms containing x, but you may not have an integral.
- e. What is $\mathbb{E}(X Y \mid X + Y)$?