Integral

Dr. Nijat Aliyev

BHOS

Calculus

October 31, 2024

Up to now, we have required definite integrals to have two properties. First, that the domain of integration [a,b] be finite. Second, that the range of the integrand be finite on this domain. In practice, we may encounter problems that fail to meet one or both of these conditions. The integral for the area under the curve $y = (\ln x)/x^2$ from x = 1 to $x = \infty$ is an example for which the domain is infinite (Figure 8.12a). The integral for the area under the curve of $y = 1/\sqrt{x}$ between x = 0 and x = 1 is an example for which the range of the integrand is infinite (Figure 8.12b). In either case, the integrals are said to be *improper* and are calculated as limits. We will see in Chapter 10 that improper integrals play an important role when investigating the convergence of certain infinite series.

Infinite Limits of Integration

Consider the infinite region that lies under the curve $y = e^{-x/2}$ in the first quadrant (Figure 8.13a). You might think this region has infinite area, but we will see that the value is finite. We assign a value to the area in the following way. First find the area A(b) of the portion of the region that is bounded on the right by x = b (Figure 8.13b).

· 1

$$A(b) = \int_0^b e^{-x/2} dx = -2e^{-x/2} \bigg]_0^b = -2e^{-b/2} + 2$$

Then find the limit of A(b) as $b \to \infty$

$$\lim_{b \to \infty} A(b) = \lim_{b \to \infty} (-2e^{-b/2} + 2) = 2.$$

The value we assign to the area under the curve from 0 to ∞ is

$$\int_0^\infty e^{-x/2} dx = \lim_{b \to \infty} \int_0^b e^{-x/2} dx = 2.$$

DEFINITION Integrals with infinite limits of integration are **improper** integrals of Type I.

1. If f(x) is continuous on $[a, \infty)$, then

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx.$$

2. If f(x) is continuous on $(-\infty, b]$, then

$$\int_{-\infty}^{b} f(x) dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) dx.$$

3. If f(x) is continuous on $(-\infty, \infty)$, then

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{\infty} f(x) dx,$$

where c is any real number.

In each case, if the limit is finite we say that the improper integral **converges** and that the limit is the **value** of the improper integral. If the limit fails to exist, the improper integral **diverges**.

It can be shown that the choice of c in Part 3 of the definition is unimportant. We can evaluate or determine the convergence or divergence of $\int_{-\infty}^{\infty} f(x) dx$ with any convenient choice.

Any of the integrals in the above definition can be interpreted as an area if $f \ge 0$ on the interval of integration. For instance, we interpreted the improper integral in Figure 8.13 as an area. In that case, the area has the finite value 2. If $f \ge 0$ and the improper integral diverges, we say the area under the curve is **infinite**.

EXAMPLE 1 Is the area under the curve $y = (\ln x)/x^2$ from x = 1 to $x = \infty$ finite? If so, what is its value?

We find the area under the curve from x = 1 to x = b and examine the limit as Solution $b \to \infty$. If the limit is finite, we take it to be the area under the curve (Figure 8.14). The area from 1 to b is

$$\int_{1}^{b} \frac{\ln x}{x^{2}} dx = \left[(\ln x) \left(-\frac{1}{x} \right) \right]_{1}^{b} - \int_{1}^{b} \left(-\frac{1}{x} \right) \left(\frac{1}{x} \right) dx$$
Integration by parts with $u = \ln x$, $dv = dx/x^{2}$, $du = dx/x$, $v = -1/x$

$$= -\frac{\ln b}{b} - \left[\frac{1}{x} \right]_{1}^{b}$$

$$= -\frac{\ln b}{b} - \frac{1}{b} + 1.$$

Integration by parts with

The limit of the area as $b \to \infty$ is

$$\int_{1}^{\infty} \frac{\ln x}{x^{2}} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{\ln x}{x^{2}} dx$$

$$= \lim_{b \to \infty} \left[-\frac{\ln b}{b} - \frac{1}{b} + 1 \right]$$

$$= -\left[\lim_{b \to \infty} \frac{\ln b}{b} \right] - 0 + 1$$

$$= -\left[\lim_{b \to \infty} \frac{1/b}{1} \right] + 1 = 0 + 1 = 1.$$
 l'Hôpital's Rule

EXAMPLE 2 Evaluate

$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2}.$$

Solution According to the definition (Part 3), we can choose c = 0 and write

$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2} = \int_{-\infty}^{0} \frac{dx}{1+x^2} + \int_{0}^{\infty} \frac{dx}{1+x^2}.$$

Next we evaluate each improper integral on the right side of the equation above.

$$\int_{-\infty}^{0} \frac{dx}{1+x^{2}} = \lim_{a \to -\infty} \int_{a}^{0} \frac{dx}{1+x^{2}}$$

$$= \lim_{a \to -\infty} \tan^{-1} x \Big]_{a}^{0}$$

$$= \lim_{a \to -\infty} (\tan^{-1} 0 - \tan^{-1} a) = 0 - \left(-\frac{\pi}{2}\right) = \frac{\pi}{2}$$

$$\int_0^\infty \frac{dx}{1+x^2} = \lim_{b \to \infty} \int_0^b \frac{dx}{1+x^2}$$

$$= \lim_{b \to \infty} \tan^{-1} x \Big|_0^b$$

$$= \lim_{b \to \infty} (\tan^{-1} b - \tan^{-1} 0) = \frac{\pi}{2} - 0 = \frac{\pi}{2}$$

Thus,

$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2} = \frac{\pi}{2} + \frac{\pi}{2} = \pi.$$

Since $1/(1 + x^2) > 0$, the improper integral can be interpreted as the (finite) area beneath the curve and above the x-axis (Figure 8.15).

FIGURE 8.15 The area under this curve is finite (Example 2).

The Integral
$$\int_{1}^{\infty} \frac{dx}{x^{p}}$$

The function y = 1/x is the boundary between the convergent and divergent improper tegrals with integrands of the form $y = 1/x^p$. As the next example shows, the improintegral converges if p > 1 and diverges if $p \le 1$.

EXAMPLE 3 For what values of p does the integral $\int_1^\infty dx/x^p$ converge? When the integral does converge, what is its value?

Solution If $p \neq 1$,

$$\int_1^b \frac{dx}{x^p} = \frac{x^{-p+1}}{-p+1} \bigg]_1^b = \frac{1}{1-p} (b^{-p+1} - 1) = \frac{1}{1-p} \left(\frac{1}{b^{p-1}} - 1 \right).$$

Thus,

$$\int_{1}^{\infty} \frac{dx}{x^{p}} = \lim_{b \to \infty} \int_{1}^{b} \frac{dx}{x^{p}}$$

$$= \lim_{b \to \infty} \left[\frac{1}{1 - p} \left(\frac{1}{b^{p-1}} - 1 \right) \right] = \begin{cases} \frac{1}{p - 1}, & p > 1\\ \infty, & p < 1 \end{cases}$$

because

$$\lim_{b \to \infty} \frac{1}{b^{p-1}} = \begin{cases} 0, & p > 1\\ \infty, & p < 1. \end{cases}$$

Therefore, the integral converges to the value 1/(p-1) if p>1 and it diverges if p<1.

If p = 1, the integral also diverges:

$$\int_{1}^{\infty} \frac{dx}{x^{p}} = \int_{1}^{\infty} \frac{dx}{x}$$

$$= \lim_{b \to \infty} \int_{1}^{b} \frac{dx}{x}$$

$$= \lim_{b \to \infty} (\ln x)_{1}^{b}$$

$$= \lim_{b \to \infty} (\ln b - \ln 1) = \infty.$$

Integrands with Vertical Asymptotes

Another type of improper integral arises when the integrand has a vertical asymptote—an infinite discontinuity—at a limit of integration or at some point between the limits of integration. If the integrand f is positive over the interval of integration, we can again interpret the improper integral as the area under the graph of f and above the x-axis between the limits of integration.

Consider the region in the first quadrant that lies under the curve $y = 1/\sqrt{x}$ from x = 0 to x = 1 (Figure 8.12b). First we find the area of the portion from a to 1 (Figure 8.16).

FIGURE 8.16 The area under this curve is an example of an improper integral of the second kind.

$$\int_a^1 \frac{dx}{\sqrt{x}} = 2\sqrt{x} \bigg]_a^1 = 2 - 2\sqrt{a}.$$

Then we find the limit of this area as $a \rightarrow 0^+$:

$$\lim_{a \to 0^+} \int_a^1 \frac{dx}{\sqrt{x}} = \lim_{a \to 0^+} \left(2 - 2\sqrt{a} \right) = 2.$$

Therefore the area under the curve from 0 to 1 is finite and is defined to be

$$\int_0^1 \frac{dx}{\sqrt{x}} = \lim_{a \to 0^+} \int_a^1 \frac{dx}{\sqrt{x}} = 2.$$

DEFINITION Integrals of functions that become infinite at a point within the interval of integration are **improper integrals of Type II**.

1. If f(x) is continuous on (a, b] and discontinuous at a, then

$$\int_a^b f(x) dx = \lim_{c \to a^+} \int_c^b f(x) dx.$$

2. If f(x) is continuous on [a, b) and discontinuous at b, then

$$\int_a^b f(x) dx = \lim_{c \to b^-} \int_a^c f(x) dx.$$

3. If f(x) is discontinuous at c, where a < c < b, and continuous on $[a, c) \cup (c, b]$, then

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

In each case, if the limit is finite we say the improper integral **converges** and that the limit is the **value** of the improper integral. If the limit does not exist, the integral **diverges**.

EXAMPLE 4 Investigate the convergence of

$$\int_0^1 \frac{1}{1-x} dx.$$

Solution The integrand f(x) = 1/(1-x) is continuous on [0, 1) but is discontinuous at x = 1 and becomes infinite as $x \to 1^-$ (Figure 8.17). We evaluate the integral as

$$\lim_{b \to 1^{-}} \int_{0}^{b} \frac{1}{1 - x} dx = \lim_{b \to 1^{-}} \left[-\ln|1 - x| \right]_{0}^{b}$$
$$= \lim_{b \to 1^{-}} \left[-\ln(1 - b) + 0 \right] = \infty.$$

The limit is infinite, so the integral diverges.

EXAMPLE 5 Evaluate

$$\int_0^3 \frac{dx}{(x-1)^{2/3}}.$$

Solution The integrand has a vertical asymptote at x = 1 and is continuous on [0, 1) and (1, 3] (Figure 8.18). Thus, by Part 3 of the definition above,

$$\int_0^3 \frac{dx}{(x-1)^{2/3}} = \int_0^1 \frac{dx}{(x-1)^{2/3}} + \int_1^3 \frac{dx}{(x-1)^{2/3}}.$$

Next, we evaluate each improper integral on the right-hand side of this equation.

$$\int_{0}^{1} \frac{dx}{(x-1)^{2/3}} = \lim_{b \to 1^{-}} \int_{0}^{b} \frac{dx}{(x-1)^{2/3}}$$

$$= \lim_{b \to 1^{-}} 3(x-1)^{1/3} \Big]_{0}^{b}$$

$$= \lim_{b \to 1^{-}} \left[3(b-1)^{1/3} + 3 \right] = 3$$

$$\int_{1}^{3} \frac{dx}{(x-1)^{2/3}} = \lim_{c \to 1^{+}} \int_{c}^{3} \frac{dx}{(x-1)^{2/3}}$$

$$= \lim_{c \to 1^{+}} 3(x-1)^{1/3} \Big]_{c}^{3}$$

$$= \lim_{c \to 1^{+}} \left[3(3-1)^{1/3} - 3(c-1)^{1/3} \right] = 3\sqrt[3]{2}$$

We conclude that

$$\int_0^3 \frac{dx}{(x-1)^{2/3}} = 3 + 3\sqrt[3]{2}.$$

Tests for Convergence and Divergence

When we cannot evaluate an improper integral directly, we try to determine whether it converges or diverges. If the integral diverges, that's the end of the story. If it converges, we can use numerical methods to approximate its value. The principal tests for convergence or divergence are the Direct Comparison Test and the Limit Comparison Test.

EXAMPLE 6 Does the integral $\int_{1}^{\infty} e^{-x^2} dx$ converge?

Solution By definition,

$$\int_{1}^{\infty} e^{-x^{2}} dx = \lim_{b \to \infty} \int_{1}^{b} e^{-x^{2}} dx.$$

We cannot evaluate this integral directly because it is nonelementary. But we *can* show that its limit as $b\to\infty$ is finite. We know that $\int_1^b e^{-x^2} dx$ is an increasing function of b. Therefore either it becomes infinite as $b\to\infty$ or it has a finite limit as $b\to\infty$. It does not become infinite: For every value of $x\ge 1$, we have $e^{-x^2}\le e^{-x}$ (Figure 8.19) so that

$$\int_{1}^{b} e^{-x^{2}} dx \le \int_{1}^{b} e^{-x} dx = -e^{-b} + e^{-1} < e^{-1} \approx 0.36788.$$

Hence,

$$\int_{1}^{\infty} e^{-x^2} dx = \lim_{b \to \infty} \int_{1}^{b} e^{-x^2} dx$$

converges to some definite finite value. We do not know exactly what the value is except that it is something positive and less than 0.37. Here we are relying on the completeness property of the real numbers, discussed in Appendix 6.

FIGURE 8.19 The graph of e^{-x^2} lies below the graph of e^{-x} for x > 1 (Example 6).

THEOREM 2—Direct Comparison Test Let f and g be continuous on $[a, \infty)$ with $0 \le f(x) \le g(x)$ for all $x \ge a$. Then

1.
$$\int_{a}^{\infty} f(x) dx$$
 converges if $\int_{a}^{\infty} g(x) dx$ converges.

2.
$$\int_{a}^{\infty} g(x) dx$$
 diverges if $\int_{a}^{\infty} f(x) dx$ diverges.

EXAMPLE 7 These examples illustrate how we use Theorem 2.

(a)
$$\int_{1}^{\infty} \frac{\sin^2 x}{x^2} dx$$
 converges because

$$0 \le \frac{\sin^2 x}{x^2} \le \frac{1}{x^2}$$
 on $[1, \infty)$ and $\int_1^\infty \frac{1}{x^2} dx$ converges. Example 3

(b)
$$\int_{1}^{\infty} \frac{1}{\sqrt{x^2 - 0.1}} dx$$
 diverges because $\frac{1}{\sqrt{x^2 - 0.1}} \ge \frac{1}{x}$ on $[1, \infty)$ and $\int_{1}^{\infty} \frac{1}{x} dx$ diverges. Example 3

THEOREM 3—Limit Comparison Test If the positive functions f and g are continuous on $[a, \infty)$, and if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L, \qquad 0 < L < \infty,$$

then

$$\int_{a}^{\infty} f(x) dx \quad \text{and} \quad \int_{a}^{\infty} g(x) dx$$

both converge or both diverge.

EXAMPLE 8 Show that

$$\int_{1}^{\infty} \frac{dx}{1+x^2}$$

converges by comparison with $\int_{1}^{\infty} (1/x^2) dx$. Find and compare the two integral values.

Solution The functions $f(x) = 1/x^2$ and $g(x) = 1/(1 + x^2)$ are positive and continuous on $[1, \infty)$. Also,

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{1/x^2}{1/(1+x^2)} = \lim_{x \to \infty} \frac{1+x^2}{x^2}$$
$$= \lim_{x \to \infty} \left(\frac{1}{x^2} + 1\right) = 0 + 1 = 1,$$

a positive finite limit (Figure 8.20). Therefore, $\int_{1}^{\infty} \frac{dx}{1+x^2}$ converges because $\int_{1}^{\infty} \frac{dx}{x^2}$ converges.

The integrals converge to different values, however:

$$\int_{1}^{\infty} \frac{dx}{x^2} = \frac{1}{2-1} = 1 \qquad \text{Example 3}$$

and

$$\int_{1}^{\infty} \frac{dx}{1+x^{2}} = \lim_{b \to \infty} \int_{1}^{b} \frac{dx}{1+x^{2}}$$
$$= \lim_{b \to \infty} [\tan^{-1}b - \tan^{-1}1] = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}.$$

EXAMPLE 9 Investigate the convergence of $\int_{1}^{\infty} \frac{1 - e^{-x}}{x} dx$.

Solution The integrand suggests a comparison of $f(x) = (1 - e^{-x})/x$ with g(x) = 1/x. However, we cannot use the Direct Comparison Test because $f(x) \le g(x)$ and the integral of g(x) diverges. On the other hand, using the Limit Comparison Test we find that

$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=\lim_{x\to\infty}\left(\frac{1-e^{-x}}{x}\right)\left(\frac{x}{1}\right)=\lim_{x\to\infty}\left(1-e^{-x}\right)=1,$$

which is a positive finite limit. Therefore, $\int_{1}^{\infty} \frac{1 - e^{-x}}{x} dx$ diverges because $\int_{1}^{\infty} \frac{dx}{x}$ diverges. Approximations to the improper integral are given in Table 8.5. Note that the values do not appear to approach any fixed limiting value as $b \to \infty$.

TABLE 8.5	
b	$\int_1^b \frac{1-e^{-x}}{x} dx$
2	0.5226637569
5	1.3912002736
10	2.0832053156
100	4.3857862516
1000	6.6883713446
10000	8.9909564376
100000	11.2935415306