1.3 Vector Equations

What is Linear Algebra?

Linear equations in n unknown $x_1...mx_n$

$$a_1x_2 + a_2x_2 + \dots + a_nx_n = k$$

System of Linear Equations

M linear equations in n unknowns $x_1, ..., x_n$.

$$\{a_1x_1 + a_2x_2 + \dots + a_nx_n = b_1 \to Ax = b$$
$$\{a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

$$Ax = b$$

$$\begin{bmatrix} a_1 & \dots & a_n \\ \vdots & & \ddots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

2 Dimensional Matrix

$$\mathbb{R}^2, \ \vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Operations on Vectors

Vector Addition
$$\vec{u} + \vec{v}$$

Scalar Multiplication $c \cdot \vec{u}$

Linear Combinations *

Given vectors $v_1, v_2, v_p \in \mathbb{R}^n$ and scalars $c_1, c_2, ..., c_p$. The vector y defined by $y = c_1v_1 + c_2v_2 + ... + c_3v_3$ is called a linear combination of the vectors $v_1, ..., v_p$ with weights $c_1, ..., c_p$.

An example of linear combinationation being applied would be RGB colors. Where $v_1, v_2 \& v_3$ are red, green, & blue. While the scalar values $c_1, c_2, \& c_3$ would be the magnitude of those colors.

Least Squares

Span $v_1, ..., v_p$ is the set of all linear combinations of $v_1, v_2, ..., v_p$.

$$v_1, v_2, v_3 =$$