

FCT – Faculdade de Ciências e Tecnologia DMEC – Departamento de Matemática, Estatística e Computação Bacharelado em Ciência da Computação

Trabalho de Conclusão de Curso

(Modalidade Trabalho Acadêmico)

Revisão Bibliográfica

Título da Pesquisa: Visualização de dados pluviométricos com utilização de Banco de Dados não convencionais

Autor: Guilherme Henrique Lourenço dos Santos Orientador(es): Prof. Dr. Milton Hirokazu Shimabukuro

Presidente Prudente, 17 de Outubro de 2016

Resumo

- Fundamentação teórica
 - Bases de Dados não convencionais
 - Visualização de Dados
- Foco em:
 - NOSQL orientado a documento
 - Técnica de visualização multi-escala

Introdução

- Desafios
 - Obter informação
 - Visualizar a informação
 - Performance
- Objetivos
- Organização do Trabalho
 - Bancos de Dados não relacionais
 - PostgreSQL e os tipos n\u00e3o relacionais
 - Visualização de Dados
 - Trabalhos relacionados
 - Conclusões

Bancos de Dados não relacionais

- Definição
 - NonSQL
 - NOSQL
 - Fundamentos:
 - Armazenamento Distribuído
 - Fonte Aberto
 - Escalável Horizontalmente
- Aspectos Comuns ao NoSQL
 - Recapitulação
 - ACID e BASE
 - Teorema CAP

Bancos de Dados não relacionais

- Formas de armazenamento
 - Chave e Valor
 - Orientado a documento
 - Orientado a colunas
 - Orientado a grafos

PostgreSQL e os tipos de dados não convencionais

- PostgreSQL
- JSON
- BSON
- json vs jsonb
- Uso em PostgreSQL
 - Criação de Tabelas
 - Realização de Inserções

INSERT INTO eventos values ('Show de Sábado', '{"lista de convidados": ["João", "Maria", "Roberto"]}','{"lista de intrusos":[]}');

PostgreSQL e os tipos de dados não convencionais

- Uso em PostgreSQL
 - Execução de Queries

Operador	Operando à Direita	Descrição	Exemplo	Resultado do Exemplo
->	int	Retorna o elemento do array JSON	'["a","b","c"]'::json->2	С
->	texto	Retorna o objeto da chave	'{"a": [1,2,3]}'::json->'a'	[1,2,3]
->>	int	Retorna o elemento do array JSON como texto	'["a","b","c"]'::json->>1	"b"
->>	texto	Retorna o objeto da chave como texto	'{"a": [1,2,3]}'::json->>'a'	"[1,2,3]"
#>	texto[]	Retorna o objeto JSON no caminho	'{"a": {"b":2}}'::json#>'{a,b}'	2
#>>	texto[]	Retorna o objeto JSON no caminho como texto	'{"a": {"b":2}}'::json#>>'{a,b}'	'2'

Tabela 1: Operadores de json e jsonb (POSTGRESQL, 1996)

- Mineração e Visualização
 - Técnicas de visualização
 - Orientadas a pixel

Figura 11: Mútiplas janelas para um caso de 6 atributos em técnicas orientadas a pixel. (SHIMABUKURO, 2004) adaptado de (KEIM, 2000).

- Mineração e Visualização
 - Técnicas de visualização
 - Orientadas a pixel

Figura 13: Formato circular para apresentação dos pixels em Segmentos de Círculo. (SHI-MABUKURO, 2004) adaptado de (KEIM, 2000).

- Mineração e Visualização
 - Técnicas de visualização
 - Projeção Geométrica

Figura 15: Correlação e distribuição de valores em Coordenadas Paralelas. (WARD, 1994 apud SHIMABUKURO, 2004).

- Mineração e Visualização
 - Técnicas de visualização
 - Projeção Geométrica

Figura 16: Sobreposições de linhas com apresentação de 473 itens. (INSELBERG, 1997 apud SHIMABUKURO, 2004).

Visualização de Dados

- Mineração e Visualização
 - Técnicas de visualização
 - Iconográficas

Figura 17: Configuração para Figura de Arestas usando cinco arestas (KEIM; KRIEGEL, 1996 apud SHIMABUKURO, 2004).

- Mineração e Visualização
 - Técnicas de visualização
 - Iconográficas

Figura 18: Diferentes texturas representadas por Figura de Arestas. (GRINSTEIN; TRUTSCHL; CVEK, 2001 apud SHIMABUKURO, 2004).

- Mineração e Visualização
 - Técnicas de visualização
 - Hierárquicas

Figura 19: Resultado do empilhamento dimensional. Quatro atributos são aninhados aos pares (HOFFMAN, 1977 apud SHIMABUKURO, 2004).

- Mineração e Visualização
 - Técnicas de visualização
 - Temporal Uni-Escala

Figura 20: Construção da representação visual 'Variação Temporal Uniescala'.(SHIMABUKURO, 2004).

- Mineração e Visualização
 - Técnicas de visualização
 - Temporal Multi-Escala

Figura 21: Construção da representação visual 'Variação Temporal Multi-escala'.(SHIMABUKURO, 2004).

Trabalhos Relacionados

- GENGHINI Visualização com Interatividade.
- BOSTOCK; OGIEVETSKY; HEER Biblioteca D3 que implementa diversas técnicas de visualização.
- WHITTAKER Implementação dos campos Json e Jsonb no PostgreSQL através do source do mesmo e de bibliotecas do CouchDB

Conclusões

A quantidade crescente de dados tem impulsionado estudos de diversas áreas para conseguirmos obter a informação através de técnicas de mineração de dados, interpretar a informação através de técnicas de visualização de dados e fazer isso de forma fluida, com uma boa performance, e para isso é necessário avaliar de que forma o computador processará tudo, nesse passo, podemos usufruir de Bases NOSQL.