Optimización

Diseño de Equipos Electrónicos

I.T.B.A.

"... la meta de un ingeniero de diseño es desarrollar el mejor sistema posible, de acuerdo a los recursos asignados, con el fin de cumplir un objetivo establecido..."

Optimización - Temas a Desarrollar

Introducción

- Clasificación de los Métodos
 - Métodos analíticos
 - Métodos tabulares

Métodos de búsqueda de Intervalos

Optimización – Introducción

• En el análisis de cualquier problema de ingeniería aparecen más incógnitas que datos disponibles para su cálculo.

n > m

Siendo:

- n: Cantidad de incógnitas o variables de un problema
- m: Cantidad de ecuaciones que pueden plantearse para tal problema
- Número de Soluciones Resultantes: INFINITAS

¡La mejor solución!

No se debe recurrir a expresiones del tipo "asumiendo", " suponiendo", "tomando", o "asignando" INJUSTIFICADAS de forma que el sistema resulte finalmente resoluble

 Cuando esas asignaciones no estén justificadas o fundadas en algún criterio de decisión explícitamente establecido, serán decisiones totalmente arbitrarias, y serán por tanto inválidas como método de solución de ingeniería.

¿Cuál de todas implementar?

Optimización - Introducción

- La condición óptima resultará de la valuación de los efectos asociados en forma inherente a cualquier sistema:
 - Efectos indeseados
 - Alto costo
 - Altos rechazos
 - Altas temperaturas
 - Altas tasa de fallas.
 - Efectos deseados
 - Larga vida útil
 - Alta eficiencia
 - Alta capacidad de disipación
 - Mejores prestaciones en general
- Por lo tanto,

Optimización – Introducción

- La condición óptima resultará de la valuación de los efectos asociados en forma inherente a cualquier sistema:
 - Efectos indeseados
 - Alto costo
 - Altos rechazos
 - Altas temperaturas
 - Altas tasa de fallas.
 - Efectos deseados
 - Larga vida útil
 - Alta eficiencia
 - Alta capacidad de disipación
 - Mejores prestaciones en general
- Por lo tanto,
 - "La meta de un ingeniero de diseño es desarrollar el mejor sistema posible, de acuerdo a los recursos asignados, con el fin de cumplir un objetivo establecido"

Optimización – Introducción

Implica:

- La existencia de un criterio frente al cual se valore que un sistema es mejor que otro.
- La existencia de alternativas, o grados de libertad.

Cuando la solución es única y no hay posibilidad de optimización alguna, tampoco existe un problema de ingeniería de diseño.

"La meta de un ingeniero de diseño es desarrollar el mejor sistema posible, de acuerdo a los recursos asignados, con el fin de cumplir un objetivo establecido"

Las soluciones deben contemplar las restricciones propias del problema.

Ej: Costo, vida útil, etc.

Solo puede hablarse de solución, si se da cumplimiento al requerimiento o especificación o al conjunto de objetivos fijados para el diseño

Optimización - Introducción

Surge entonces que que en todo proceso de optimización hay

dos aspectos claves:

- Criterio de optimización.
 - Característica, condición o regla a satisfacer.
 - Puede ser:
 - De carácter técnico
 - Abarca todo lo que hace a la prestación y operatividad.
 - De carácter económico
 - Abarca todo lo que tienda a formar el costo: tecnologías, circuitos, componentes, procesos, controles, etc.
- Variables de sistema.
 - Pueden ser divididas en dos categorías:
 - Dependientes
 - Cuando están asociadas directamente al cumplimiento de una especificación
 - Independientes
 - Cuando pueden ser establecidas para ajustarse a los criterios de diseño.

Optimización - Introducción

 Es posible hallar criterios comunes según el segmento de mercado al que este orientado el producto

Entretenimiento

Campo

de soluciones

Profesional

Prestación

Militar

Tecnológica

Frontera

Área de entretenimiento

El factor preponderante es el costo, y fundamentalmente el de fabricación.

Área profesional

La prestación debe siempre ajustarse a especificaciones y requiere además que el diseño sea validado.

Las pruebas de validación de estos productos se vuelven muy onerosas.

Área militar

Busca que los equipos o sistemas superen en prestación a los del potencial enemigo, y que además se garantice su funcionamiento en un ambiente hostil que impone solicitaciones extremas.

Optimización – Introducción

- En general hay dos tipos de problemas de optimización:
 - Problemas de criterio simple
 El objetivo es maximizar o minimizar una sola función objetivo.
 - Problemas multicriterio

El objetivo es maximizar o minimizar más de una función objetivo en forma simultánea.

Optimización – Introducción

- En general hay dos tipos de problemas de optimización:
 - Problemas de criterio simple

El objetivo es maximizar o minimizar una sola función objetivo.

Problemas multicriterio

El objetivo es maximizar o minimizar más

Tienen las siguientes características:

- Definen las condiciones factibles de diseño.
- Establecen restricciones en las variables de diseño
 - Directas sobre los valores de las mismas
 - Definiendo relaciones entre ellas
- •Fijan restricciones sobre el comportamiento del sistema,
 - Limitando la carga máxima, la potencia de salida, las impedancias, los umbrales lógicos, etc.
 - Limitando los valores que pueden asumir las variables por imposición de leves físicas.
 - •Pueden estar establecidas por inecuaciones o por igualdades.

- Definición de términos
 - Función Objetivo:

Establece la relación ex que se desea optimizar

Función Restricción
$$h(\mathbf{x}) = h(x_1, x_2, ..., x_n) = 0$$

 $g(\mathbf{x}) = g(x_1, x_2, ..., x_n) \ge 0$

Define a o las relaciones existentes entre las variables

Optimización - Métodos

Clasificación según forma de evaluar

Optimización – Métodos

Clasificación según tipo de funciones

Función Objetivo

- Optimización por cálculo diferencial
 - Se basa de plantear analiticamente la función objetivo que se desea optimizar $E(\mathbf{x})$
 - Se buscan los puntos críticos de la función objetivo haciendo:

$$\frac{\partial E(\mathbf{x})}{\partial \mathbf{x}} = 0$$

 Se determina si se trata de un máximo o un mínimo según el criterio de la 2da derivada.

$$\frac{\partial^{2} E(\mathbf{x})}{\partial \mathbf{x}^{2}} < 0 \quad \Rightarrow \quad \text{Máximo}$$

$$\frac{\partial^{2} E(\mathbf{x})}{\partial \mathbf{x}^{2}} > 0 \quad \Rightarrow \quad \text{Mínimo}$$

Optimización por cálculo diferencial

- Optimización por cálculo diferencial
 - Ejemplo:

Lo difícil es determinar los criterios de optimización cuando no están especificados

El tiempo de retardo estará dado por:

$$v_C(t) = E\left(1 - e^{-\frac{t}{\tau}}\right) \implies E_r = E\left(1 - e^{-\frac{Tr}{\tau}}\right)$$

Se busca optimizar la función:

$$y = \frac{\Delta Tr}{Tr}$$

- Optimización por cálculo diferencial
 - Ejemplo (cont):
 - Optimización frente a variaciones de E

$$y = \frac{\Delta E}{E} \cdot \frac{1 - e^x}{x} = \frac{\Delta E}{E} \cdot f(x)$$

Se deduce entonces que:

$$\frac{Tr}{\tau} \to 0$$

- Optimización por cálculo diferencial
 - Ejemplo (cont):
 - Optimización frente a variaciones de Er

$$y = \frac{e^x}{x} \frac{\Delta E_r}{E} = \frac{\Delta Er}{E} . f(x)$$

Se deduce entonces que:

$$\frac{Tr}{\tau} = 1$$

Optimización Multiplicadores de Lagrange

- Optimización por multiplicadores de Lagrange
 - Sea $f(\mathbf{x})$ una función definida en un conjunto abierto n-dimensional.
 - Se definen s restricciones $gk(\mathbf{x}) = 0$, k=1,...,s, y se observa (si las restricciones son satisfechas) que:

$$h(\mathbf{x},\lambda) = f - \sum_k^s \lambda_k g_k j$$

Se procede a buscar un extremo para h

$$\frac{\partial h}{\partial x_i} = 0,$$

lo que es equivalente a

$$rac{\partial f}{\partial x_i} = \sum_{k}^{s} \lambda_k rac{\partial g_k}{\partial x_i}.$$

Los multiplicadores desconocidos λk se determinan a partir de las ecuaciones con las restricciones y conjuntamente se obtiene un extremo para h que al mismo tiempo satisface las restricciones (i.e. gk=0), lo que implica que f ha sido optimizada

Optimización Multiplicadores de Lagrange

- Optimización por multiplicadores de Lagrange
 - Ejemplo:
 - Se requiere optimizar el diseño mostrado en la figura para lograr una atenuación >30dB

Optimización Multiplicadores de Lagrange

- Optimización por multiplicadores de Lagrange
 - Ejemplo:
 - Planteando el lagrangiano se obtiene:

$$L = \alpha + \lambda.h = \frac{R_s + R_1}{R_s}.\frac{R_p + R_2}{R_p} + \lambda.(R_1 + R_2 - 62)$$

Buscando los puntos donde las derivadas de anulan se obtiene:

$$\frac{\partial L}{\partial R_1} = \left(\frac{1}{R_s \cdot R_p}\right) \cdot \left(R_p + R_2\right) + \lambda = R_p + R_2 + \lambda = 0$$

$$\frac{\partial L}{\partial R_2} = \left(\frac{1}{R_s \cdot R_p}\right) \cdot \left(R_s + R_1\right) + \lambda = \cdot R_s + R_1 + \lambda = 0$$

$$\frac{\partial L}{\partial \lambda} = R_1 + R_2 - 62 = 0$$

Resolviendo el sistema de ecuaciones se obtiene que:

$$R_1 = 33.12 \Omega$$

 $R_2 = 28.87 \Omega$

Optimización Métodos tabulares

- Se emplea cuando no es posible realizar un tratamiento analítico.
- Se basa en realizar una tabla indicando las ventajas, desventajas e implicancias asociadas a una determinada decisión.

PROS	CONTRAS		IMPLICANCIAS			
	•••••					
puntaje	P1	puntaje	P2	puntaje	P3	

- A cada factor se le asigna un puntaje
- Se realiza una ponderación entre los tres puntajes
- La mejor solución es la que posea el mayor puntaje final

Optimización Métodos tabulares

- Análisis de fuerzas y resistencias
 - Es un método particular de un proceso de optimización tabular
 - Se busca, para cada opción, factores que:
 - Ayudan al objetivo (fuerzas de empuje)
 - Desfavorecen al objetivo (fuerzas resistentes)
- hacia el objetivo menor costo aprendizaje no hay disponibilidad Objetivo en el mercado

Fuerzas que empujan

Fuerzas contrapuestas

al objetivo

- Con todos los factores definidos se trata de:
 - Potenciar los factores favorables
 - Reducir, minimizar o eliminar a los factores desfavorables
- Normalmente se trabaja con una tabla de doble entrada como la mostrada a continuación

	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Totales	
	Peso 1	Peso 2	Peso 3	Peso 4	Peso 5	1	
Opción 1							
Opción 2							
Opción 3							
Opción 4							

- Tratan de identificar el valor extremo de una determinada función con un error predeterminado
- Son especialmente utilizados cuando se trabaja con funciones:
 - Trascendentes
 - No analíticas
 - Cuando se obtiene resultados a partir de un experimento
- Se basan en la evaluación de la función de prestación E sobre su dominio, de un modo que sea convergente al óptimo.

Búsqueda uniforme

- Generalmente es el método menos adecuado
- Requiere realizar el conjunto total de mediciones o ensayos
- Finalmente se busca el intervalo donde se encuentra el valor óptimo

- Búsqueda Secuencial Uniforme
 - Se basa en la búsqueda uniforme
 - Se comienza desde un extremo del intervalo de búsqueda
 - Se compara cada valor con el anterior
 - Se finaliza el proceso cuando se encuentra el cambio en tendencia.

- Búsqueda Secuencial Uniforme de convergencia rápida
 - Se basa en la búsqueda secuencial uniforme
 - Inicialmente se realiza la búsqueda con subintervalos grandes
 - Se reducen los subintervalos
 - Se definen nuevos intervalos más pequeños
 - Se repite el proceso hasta alcanzar la precisión deseada.

- Búsqueda Secuencial de convergencia rápida o Búsqueda dicotómica
- La búsqueda secuencial se hace más eficiente si en cada paso de búsqueda el intervalo de incerteza se reduce a la mitad.
- N° de pasos

$$p = \log_{2}\left(\frac{L}{S}\right)$$

N° de experiencias

$$n = 2 \cdot p = 2 \cdot \log_2\left(\frac{L}{\delta}\right)$$

Métodos de búsqueda de Fibonacci

- Aplicable cuando la optimización debe valerse de ensayos experimentales.
- Se supone función es unimodal y se conoce intervalo L=(b-a)
- El procedimiento de búsqueda a desarrollar se apoya en las tres reglas siguientes:
- 1. El intervalo de incerteza que reste después de cada evaluación debe tener igual valor, independientemente de cual haya sido la sección descartada
- 2. Debe aprovecharse para la siguiente decisión el resultado del ensayo que esta ubicado dentro del intervalo de incerteza ganador
- 3. Los puntos de prueba deben ser seleccionados de modo tal que el intervalo de incerteza que reste sea el menor posible; o planteado de otro modo, cada evaluación debe permitir descartar el mayor intervalo posible

Búsqueda de Fibonacci

$$L_n = L_{n-1} + L_{n-2}$$

$$F_{\,j}\,=F_{\,j-1}\,+\,F_{\,j-2}$$

$$F_o = 1$$
$$F_I = 1$$

n		0	1	2	3	4	5	6	7	8	9	10	11	12	13
F	n	1	1	2	3	5	8	13	21	34	55	89	144	233	377
d	n			0.5	0.3333	0.4	0.375	0.3846	0.381	0.3824	0.3818	0.382	0.3819	0.382	0.382

Principal problema del método de búsqueda de Finobacci es que requiere de antemano saber la cantidad de ensayos a realizar.

Búsqueda Por Relación Aurea

- Principal problema del método de búsqueda de Fibonacci es que requiere de antemano saber la cantidad de ensayos a realizar, sino la eficiencia baja por ser los intervalos variables.
- Para no considerar de antemano el número de ensayos, puede usarse la propiedad que resulta del método de Fibonacci cuando el número de ensayos es elevado.
- En tal caso, la proporción de intervalo descartado en cada ensayo se mantiene constante, que tiende al valor 0,382 si n>8. (1-0,618)
- En cambio, en esta variante, conocida como método de búsqueda por sección áurea, se usa siempre la misma relacion:
- Fn-1/Fn=0.382

CONVERSOR DC-DC 24V-12V ANALISIS DE SOLUCIONES

- 1. Regulador lineal
 - -> falta de rendimiento

- 2. Regulador por conmutación
 - -> emisión electromagnética
 - -> consumo mínimo de corriente

CONVERSOR DC-DC 24V-12V ANALISIS DE SOLUCIONES

- 1. Refinar los esquemas de base hasta lograr satisfacer el requerimiento
- 2. Analizar que nuevos dispositivos y conceptos están disponibles
- 3. Tratar de hallar un nuevo concepto de solución
- 4. Buscar antecedentes de solución