Proyecto de grado Escalabilidad de Redes Definidas por Software en la Red Académica

Santiago Vidal

Tutores:

Dr. Eduardo Grampín

MSc. Martín Giachino

Instituto de Computación Facultad de Ingeniería Universidad de la República

5 de octubre de 2016

Conceptos previos & RAUFlow

Entorno virtual

Pruebas de escala

Conclusiones

Conceptos previos & RAUFlow

Entorno virtual

Pruebas de escala

Conclusiones

Introducción

Red Académica Uruguaya (RAU)

- Emprendimiento de la Universidad de la República, administrado por el Servicio Central de Informática Universitario (SeCIU).
- Red que conecta instituciones académicas, centros de investigación e instituciones gubernamentales.
- Parte de la RedClara.

RAU2

RAU2 es un proyecto para reemplazar la infraestructura actual, con el objetivo de brindar más y mejores servicios a las instituciones.

Proyecto RRAP

Routers Reconfigurables de Altas Prestaciones (Emiliano Viotti, Rodrigo Amaro):

- Proyecto de grado que terminó en agosto de 2015.
- Construyó un prototipo para la RAU2, basado en SDN.
- Desarrolló una aplicación para gestión de redes llamada RAUFlow, que implementa clasificación y separación de tráfico.

Proyecto RRAP

Prototipo físico para pruebas funcionales:

Contestar las siguientes preguntas:

Introducción

Contestar las siguientes preguntas:

1. ¿Cómo podemos seguir trabajando sobre la arquitectura RAUflow sin ser limitados por el prototipo físico?

Contestar las siguientes preguntas:

- 1. ¿Cómo podemos seguir trabajando sobre la arquitectura RAUflow sin ser limitados por el prototipo físico?
- 2. ¿RAUFlow funciona con topologias más grandes?

Introducción

Contestar las siguientes preguntas:

- 1. ¿Cómo podemos seguir trabajando sobre la arquitectura RAUflow sin ser limitados por el prototipo físico?
- 2. ¿RAUFlow funciona con topologias más grandes?
- 3. ¿Tiene buena escalabilidad?

 Estado del arte en las aplicaciones de SDN (con foco en VPNs), y las herramientas de virtualización disponibles.

- 1. Estado del arte en las aplicaciones de SDN (con foco en VPNs), y las herramientas de virtualización disponibles.
- 2. Una herramienta que permita virtualizar la arquitectura RAUFlow para pruebas y desarrollo.

- Estado del arte en las aplicaciones de SDN (con foco en VPNs), y las herramientas de virtualización disponibles.
- Una herramienta que permita virtualizar la arquitectura RAUFlow para pruebas y desarrollo.
- Diseño e implementación de pruebas para estudiar la escalabilidad de RAUFlow.

Conceptos previos & RAUFlow

Entorno virtual

Pruebas de escala

Conclusiones

Diapo1

Conceptos previos & RAUFlow

Entorno virtual

Pruebas de escala

Conclusiones

Poder utilizar la arquitectura RAUFlow y RAUSwitch en un entorno virtual para:

- Experimentos y pruebas.
- Desarrollo de nuevas funcionalidades sobre RAUFlow.
- Investigación sobre esquemas híbridos en general.

Requerimientos

Requerimientos funcionales:

- 1. RAUSwitch virtuales:
 - 1.1 OpenFlow 1.3
 - **1.2** OSPF
 - 1.3 SNMP (no esencial)
- Hosts virtuales
- 3. Controlador RAUFlow

Entorno virtual

Requerimientos

Requerimientos funcionales:

- RAUSwitch virtuales:
 - **1.1** OpenFlow 1.3
 - **1.2** OSPF
 - 1.3 SNMP (no esencial)
- Hosts virtuales
- 3. Controlador RAUFlow

Requerimientos no funcionales:

- Configurabilidad / Usabilidad
- 2. Escalabilidad

Siguiente paso

Se descarta una construcción desde cero

Hay que encontrar una herramienta que cumpla los requerimientos

Entorno virtual

Elección de una herramienta

Herramientas orientadas a SDN

- Algunas no soportan OpenFlow 1.3
- Algunas no permiten un controlador externo.
- Ninguna contempla switches híbridos!

Herramientas orientadas a SDN

- Algunas no soportan OpenFlow 1.3
- Algunas no permiten un controlador externo.
- Ninguna contempla switches híbridos!

Herramientas de propósito general

- Algunas no tienen buena configurabilidad.
- La **escalabilidad** es un gran problema.

Entorno virtual

Mininet

- Emulador de redes.
- Comúnmente utilizado para experimentar con SDN y OpenFlow.
- Ofrece Hosts y Switches.
- Virtualización ligera (containers).
- Cumple todos los requerimientos excepto el soporte para switches híbridos.
- Pero permite al usuario definir sus propias clases de nodos para extender las funcionalidades de las clases que vienen por defecto.

Arquitectura de Mininet

Los switches están en el root namespace, así que no es posible que cada uno ejecute su instancia de Quagga.

Entorno virtual

- No es posible poner a cada Switch en su propio namespace ya que Open vSwitch no tendría acceso a ellos.
- Si los switches están en su propio namespace, el controlador OpenFlow (RAUFlow) no puede comunicarse con ellos a través de la interfaz de loopback.

Problema con Mininet tradicional

- Los switches están en el root namespace, así que no es posible que cada uno ejecute su instancia de Quagga.
- No es posible poner a cada Switch en su propio namespace ya que Open vSwitch no tendría acceso a ellos.
- Si los switches están en su propio namespace, el controlador OpenFlow (RAUFlow) no puede comunicarse con ellos a través de la interfaz de loopback.

Solución: utilizar Mininet pero como emulador de propósito general.

Arquitectura del entorno construido

Eliminación de SNMP

Eliminación de SNMP

Eliminación de SNMP

El envío de datos de las interfaces pasa a implementarse con Open vSwitch (por fuera de OpenFlow).

Ventajas

- ► Reduce complejidad de la arquitectura.
- Reduce carga de cómputo en los switches.

Entorno virtual

Verificación funcional

Con el entorno construido, el siguiente paso es probar distintos escenarios y topologias para detectar:

- Problemas con el entorno virtual.
- Problemas con la arquitectura/código de RAUFlow.

Problemas encontrados

- Error en el código de RAUFlow: error en el algoritmo del camino óptimo. Provocaba una excepción de Python.
- Error en el código de RAUFlow: error en el código que instala los flujos OpenFlow en los nodos. Provocaba que los flujos en cada nodo de un camino tuvieran incorrecto puerto de entrada.

- 3. **Posible problema** en el módulo LSDB Sync para leer base de datos topológica de OSPF cuando la topología es muy grande (librería Telnetlib de Python).
- Posible problema de comunicación en la red de gestión cuando hay muchos switches.

Problemas encontrados

Conceptos previos & RAUFlow

Entorno virtual

Pruebas de escala

Conclusiones

Diapo1

Conclusiones

Diapo1