Corso di Fondamenti di Informatica (A-L)

Prova Scritta del 13/01/2020

Avvertenze

- Usare ESCLUSIVAMENTE penne ad inchiostro nero o blu (NO MATITE).
- Consegnare solo fogli formato A4 scritti da ambo i lati.
- In testa a ciascun foglio scrivere: cognome, nome, numero progressivo di pagina rispetto al totale; esempio per il secondo foglio di 3 consegnati: Giuseppe Russo 2/3
- Mantenere sul banco il libretto o altro documento di riconoscimento fino a controllo avvenuto
- Nient'altro deve trovarsi sul banco: non è consentito consultare libri, dispense, appunti, ecc.
- La correzione di riferimento per l'autovalutazione verrà fornita sul sito internet del Corso

Specifiche

E' possibile approssimare il valore del pi greco per via statistica usando il metodo Monte Carlo, prendendo un cerchio di raggio 1 (area = π) inscritto in un quadrato di lato 2 (Figura 1). Considerando un settore circolare pari ad 1/4, l'area del settore sarà π /4 ed è inscritta in un quadrato di lato 1 (Figura 2). Pertanto, generando randomicamente N coppie di coordinate (punti) comprese tra 0.0 e 1.0, se K di queste cadono dentro al settore circolare (cioè se $x^2 + y^2 \le 1$), il valore di π può essere approssimato come

$$\pi = 4 * K / N$$

A partire dalle precedenti considerazioni, si realizzi un programma che

- **chieda** un intero all'utente, pari al numero N di punti da generare;
- **stampi a schermo** il numero di punti generati, il numero di punti che cadono dentro al settore circolare e il valore approssimato di π ;
- **chieda** all'utente se vuole continuare (risposte ammissibili 's' o 'S' per continuare, 'n' o 'N' per chiudere il programma) e, in caso affermativo, se desidera ricominciare da capo o aggiungere i nuovi punti a quelli generati nelle iterazioni precedenti ('s' o 'S' per ricominciare da capo, 'n' o 'N' per accumulare i punti). Ogni carattere diverso da quelli ammissibili ('s', 'S', 'n', 'N') genera il messaggio "Usa solo caratteri consentiti" e chiede nuovamente l'input all'utente.

Note:

• Per generare un numero randomico si può usare la funzione int rand() della libreria cstdlib.

Si tenga presente che tale funzione restituisce un intero compreso tra 0 e la macro RAND MAX;

• Due esecuzioni diverse del programma non dovrebbero generare lo stesso insieme di punti. Pertanto è possibile combinare le funzioni void srand(unsigned int n) e time_t time(time_t* timer) delle librerie cstdlib e ctime per inizializzare la generazione di numeri casuali (srand(time(NULL));)

Esempio esecuzione:

```
Quanti punti vuoi generare? 1
Dopo 1 punti generati 1 punti sono dentro il settore circolare
Dunque il valore approssimato del pi greco e': 4
Vuoi continuare? [s/n] k
Usa solo i caratteri consentiti
Vuoi continuare? [s/n] s
Vuoi ricominciare da capo? [s/n] U
Usa solo i caratteri consentiti
Vuoi ricominciare da capo? [s/n] n
Quanti punti vuoi generare? 10
Dopo 11 punti generati 8 punti sono dentro il settore circolare
Dunque il valore approssimato del pi greco e': 2.90909
Vuoi continuare? [s/n] S
Vuoi ricominciare da capo? [s/n] N
Quanti punti vuoi generare? 1000
Dopo 1011 punti generati 780 punti sono dentro il settore circolare
Dunque il valore approssimato del pi greco e': 3.08605
Vuoi continuare? [s/n] s
Vuoi ricominciare da capo? [s/n] N
Quanti punti vuoi generare? 1000000
Dopo 1001011 punti generati 786542 punti sono dentro il settore circolare
Dunque il valore approssimato del pi greco e': 3.14299
Vuoi continuare? [s/n] S
Vuoi ricominciare da capo? [s/n] n
Quanti punti vuoi generare? 2000004
Dopo 3001015 punti generati 2357056 punti sono dentro il settore
circolare
Dunque il valore approssimato del pi greco e': 3.14168
Vuoi continuare? [s/n] s
Vuoi ricominciare da capo? [s/n] s
Quanti punti vuoi generare? 10000000
Dopo 10000000 punti generati 7854517 punti sono dentro il settore
circolare
Dunque il valore approssimato del pi greco e': 3.14181
Vuoi continuare? [s/n] n
Ciao!
```

Punteggi:

```
#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;
/* Stampa a schermo la stringa "domanda", e riceve un carattere in input
dall'utente. Se il carattere è 's' o 'S' ritorna true, se è 'n' o 'N'
ritorna false, mentre con qualsiasi altro carattere fa ripetere l'input */
bool chiedi conferma(const char domanda[])
     //PUNTI 4
/* Ritorna \textit{true} se il punto di coordinate (x,y) è all'interno di un cerchio
di raggio 1, cioè se x^2 + y^2 \le 1, false in ogni altro caso */
bool punto_nel_cerchio(float x, float y)
{
     //PUNTI 4
/* Ritorna un valore float randomico compreso tra 0.0 e 1.0 */
float genera valore random()
     //PUNTI 4
int main()
      //PUNTI 6
```