custom hazi

1. lokalis szelsoertek: $f(x) = x^2 \cdot e^{-x} \quad (x \in \mathbb{R})$

$$f'(x) = 2x \cdot e^{-x} + x^2 \cdot (-e^{-x}) = 2xe^{-x} - x^2e^{-x} = xe^{-x}(2-x)$$
$$f'(x) = 0 \iff 2xe^{-x} = -x^2e^{-x} \implies x_1 = 0, x_2 = 2$$

	\boldsymbol{x}	x < 0	0	0 < x < 2	2	x > 2
	f'(x)	+	0	+	0	_
I	f(x)	+	0	†	$\frac{4}{e^2}$	+

lokalis minimum: f(0) = 0lokalis maximum: $f(2) = \frac{4}{e^2}$

2. globalis szelsoertek: $f(x) = \sin^4 x + \cos^4 x$ $x \in \left[-\frac{2\pi}{3}, \frac{\pi}{2}\right]$

$$\mathcal{D}_f = \left[-\frac{2\pi}{3}, \frac{\pi}{2} \right] \text{ korlatos es zart (kompakt), es } f \in C\left[-\frac{2\pi}{3}, \frac{\pi}{2} \right] \Longrightarrow \exists \min \mathcal{R}_f, \exists \max \mathcal{R}_f$$

lehetnek:

• belso pontok: $x\in\left(-\frac{2\pi}{3},\frac{\pi}{2}\right)$ ahol f'(x)=0 • vegpontok: $x=-\frac{2\pi}{3},x=\frac{\pi}{2}$

ha 1)

$$x \in \left(-\frac{2\pi}{3}, \frac{\pi}{2}\right) \Longrightarrow f \in D\{a\} \ \text{es} \ f'(x) = -\sin 4x = 0 \Longleftrightarrow x_1 = 0 + \frac{k\pi}{4} \quad (k \in \mathbb{N})$$

ha 2)

kuka

regular hazi

1

$$f(x) \coloneqq x^5 - 5x^4 + 5x^3 + 1 \quad \ (x \in \mathbb{R})$$

$$f'(x) = 5x^4 - 20x^3 + 15x^2 = 5x^2\big(x^2 - 4x + 3\big) = 5x^2(x - 3)(x - 1) \Longleftrightarrow x_1 = 0 \lor x_2 = 3 \lor x_3 = 1$$

\boldsymbol{x}	x < 0	0	0 < x < 1	1	1 < x < 3	3	3 < x
f'(x)	_	0	+	0	_	0	+
f(x)	\downarrow	1	†	2	\downarrow	-26	

$$f \uparrow : (0;1), (3;+\infty)$$

$$f \downarrow : (-\infty; 0), (1; 3)$$

lokalis $\max: 2$

lokalis $\min: -26$

$$f(x) \coloneqq \frac{e^x}{x} \quad (x \in \mathbb{R} \setminus \{0\})$$

$$f'(x) = \frac{e^x x - e^x}{x^2} = \frac{e^x (x - 1)}{x^2} = 0 \Longleftrightarrow x_1 = 0 \ (x \in \mathbb{R} \setminus \{0\}!) \ \forall \ x_2 = 1 \Longrightarrow x = 1$$

x	x < 1	1	x < 1		
f'(x)		0	+		
f(x)	↓	e	↑		

$$f \uparrow: (1; +\infty)$$

$$f \downarrow : (-\infty; 1)$$

lokalis max : \nexists lokalis min : e

3

$$f(x)\coloneqq\frac{x}{x^2+x+1} \quad (x\in[-2,0])$$

$$f'(x)=\frac{\left(x^2+x+1\right)-x(2x+1)}{\left(x^2+x+1\right)^2}=\frac{x^2+x+1-2x^2-x}{\left(x^2+x+1\right)^2}=\frac{-x^2+1}{\left(x^2+x+1\right)^2}=\frac{1-x^2}{\left(x^2+x+1\right)^2}$$

	\boldsymbol{x}	-2	-2 < x < 0	0
	f'(x)	-1	+	1
I	f(x)	$-\frac{2}{3}$	↑	0

$$f \uparrow: [-2; 0]$$

lokalis $\max:-1$

 ${\rm lokalis\ min}:-\frac{2}{3}$

4

$$6x + y = 9$$
 legkozelebbi pont $(-3, 1)$

$$y = -6x + 9$$

$$d = \sqrt{(x+3)^2 + (y-1)^2} = \sqrt{(x+3)^2 + (-6x+8)^2}$$

$$f(x) = (x+3)^2 + (-6x+8)^2$$

$$f'(x) = 2(x+3) + 2(-6x+8) \cdot (-6) = 2x + 6 + 72x - 96 = 74x - 90$$

$$\begin{cases} x = \frac{90}{74} \\ y = -6\left(\frac{90}{74}\right) + 9 = \frac{63}{37} \end{cases} \Longrightarrow \text{a legkozelebbi pont } \left(\frac{90}{74}, \frac{63}{37}\right)$$

gyakorlo

1/b

$$\begin{split} f(x) &\coloneqq \big(x^2 - x + 1\big)e^{-x} \quad (x \in [-2, 3]) \\ \mathcal{D}_f &= [-2, 3] \Longrightarrow f \in C[-2, 3] \Longrightarrow \exists \mathcal{R}_{\max}, \mathcal{R}_{\min} \end{split}$$

$$x \in (-2,3) \Longrightarrow f \in D(-2,3)$$

$$f'(x) = (2x-1)e^{-x} - (x^2 - x + 1)e^{-x} = e^{-x}\big((2x-1) - (x^2 - x + 1)\big) = e^{-x}\big(2x - 1 - x^2 + x - 1\big) =$$

$$= e^{-x}\big(-x^2 + 3x - 2\big) = e^{-x}\big(-x + 1\big)(x - 2) = 0 \Longleftrightarrow x_1 = 0 \lor x_2 = 1 \lor x_3 = 2$$

$$f(-2) = 7e^2, \ f(0) = 1, \ f(1) = \frac{1}{e}, \ f(2) = \frac{3}{e^2}, \ f(3) = \frac{7}{e^3}$$

$$\min \text{helye} : 3, \ \text{erteke} : \frac{7}{e^3}$$

$$\max \text{helye} : -2, \ \text{erteke} : 7e^2$$

1/c

$$f(x) \coloneqq x^2 e^{-x} \quad (x \in \mathbb{R})$$

$$f'(x) = 2xe^{-x} - x^2 e^{-x} = xe^{-x}(2-x) = 0 \Longleftrightarrow x_1 = 0 \ \forall \ x_2 = 2$$

\boldsymbol{x}	x < 0	0	0 < x < 2	2	x > 2
f'(x)	+	0	+	0	1
f(x)	\rightarrow	0	†	$\frac{4}{e^2}$	\rightarrow

lokalis minimum: f(0)=0 lokalis maximum: $f(2)=\frac{4}{e^2}$

3

$$\begin{split} y^2-x^2 &= 4 \text{ melyik a legkozelebb pontja} \quad (2,0)\text{-hoz} \\ d &= \sqrt{(x-2)^2+(y-0)^2} = \sqrt{(x-2)^2+y^2} \\ d &= \sqrt{(x-2)^2+4+x^2} \\ f(x) &= 2x^2-4x+8 = 2(x^2-2+4) = 2[(x-1)^2+3] \\ \text{min}: \text{ ha } \mathbf{x} &= 1:\sqrt{5} \end{split}$$