

TEST REPORT

Product HD Bluetooth Audio Transimtter

Trade mark MEElectronics, MEE audio

Model/Type reference AF-T1, 703

Serial Number N/A

Report Number EED32H000579

FCC ID Z63AFCONNECT01

Date of Issue Jun. 02, 2015

Test Standards 47 CFR Part 15 Subpart C (2014)

Test result **PASS**

Prepared for:

SHENZHEN AONI ELECTRONIC INDUSTRY CO., LTD No.5 Bldg, Honghui Industrial park, 2nd liuxian Road, Xinan street, **Baoan District, Shenzhen**

Prepared by:

Centre Testing International (Shenzhen) Corporation Hongwei Industrial Zone, 70 Area, Bao'an District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested by:

Reviewed by:

Date:

Jun. 02, 2015

Sheek Luo

Lab supervisor

Check No.:2135132711

1 Version

Version No.	Date	6	Description	9
00	2015-04-01		Original	
	15	/°5	/05	-05
		(%)		

Report No.: EED32H000579 Page 3 of 51

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2009	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2009	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10-2009	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2009	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2009	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (b)	ANSI C63.10-2009	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10-2009	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2009	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2009	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2009	PASS

Remark:

1.Model No.: AF-T1, 703

Only the Model AF-T1 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for all above models. Only different on model names.

2. Test according to ANSI C63.4-2009 & ANSI C63.10-2009.

Report No.: EED32H000579 Page 4 of 51

3 Content

1	VERSION	•••••		2
2	TEST SUMMARY	•••••		3
3	CONTENT			4
4	TEST REQUIREMENT			5
	4.1 TEST SETUP)	5
	4.1.1 For Conducted test setup			5
	4.1.2 For Radiated Emissions test setup			
	4.1.3 For Conducted Emissions test setup			6
	4.2 Test Environment			6
	4.3 TEST CONDITION			
5	GENERAL INFORMATION			7
	5.1 CLIENT INFORMATION			7
	5.2 GENERAL DESCRIPTION OF EUT			7
	5.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS S	STANDARD		7
	5.4 DESCRIPTION OF SUPPORT UNITS			8
	5.5 TEST LOCATION			8
	5.6 TEST FACILITY			9
	5.7 DEVIATION FROM STANDARDS			10
	5.8 ABNORMALITIES FROM STANDARD CONDITIONS			10
	5.9 OTHER INFORMATION REQUESTED BY THE CUST	OMER		10
6	EQUIPMENT LIST			11
7	RADIO TECHNICAL REQUIREMENTS SPECIFIC	CATION		12
	Appendix A): 20dB Occupied Bandwidth			13
	Appendix B): Carrier Frequency Separation			
	Appendix C): Dwell Time			21
	Appendix D): Hopping Channel Number			25
	Appendix E): Conducted Peak Output Power			26
	Appendix F): Band-edge for RF Conducted Emissi	ions		30
	Appendix G) Pseudorandom Frequency Hopping S	Sequence		34
	Appendix H) Antenna Requirement			
	Appendix I) AC Power Line Conducted Emission			
	Appendix J) Restricted bands around fundamental		•	
Pŀ	OTOGRAPHS OF TEST SETUP			44
PH	IOTOGRAPHS OF EUT CONSTRUCTIONAL DETA	ILS		46

Report No.: EED32H000579 Page 5 of 51

4 Test Requirement

4.1 Test setup

4.1.1 For Conducted test setup

4.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

4.1.3 For Conducted Emissions test setup Conducted Emissions setup

4.2 Test Environment

Operating Environment:					
Temperature:	25.0 °C	(E)			
Humidity:	53 % RH				
Atmospheric Pressure:	995mbar				

4.3 Test Condition

Toot Mode	Ty/Dy RF		RF Channel			
Test Mode	Tx/Rx	Low(L)	Middle(M)	High(H)		
GFSK/π/4DQPSK/	24028411- 2400 8411-	Channel 1	Channel 40	Channel79		
8DPSK(DH1,DH3,DH5) 2402MHz ~2480 MHz		2402MHz	2441MHz	2480MHz		
7 - 4 4						

5 General Information

5.1 Client Information

Applicant:	SHENZHEN AONI ELECTRONIC INDUSTRY CO. , LTD
Address of Applicant: No.5 Bldg, Honghui Industrial park,2nd liuxian Road,Xinan street, District,Shenzhen	
Manufacturer:	SHENZHEN AONI ELECTRONIC INDUSTRY CO., LTD
Address of Manufacturer:	No.5 Bldg, Honghui Industrial park,2nd liuxian Road,Xinan street,Baoan District,Shenzhen
Factory:	SHENZHEN AONI ELECTRONIC INDUSTRY CO. , LTD
Address of Factory:	No.5 Bldg, Honghui Industrial park,2nd liuxian Road,Xinan street,Baoan District,Shenzhen

5.2 General Description of EUT

Product Name:	HD Bluetooth Audio Transimtter			
Model No.(EUT):	AF-T1, 703			
Trade mark:	MEElectronics, MEE audio			120
EUT Supports Radios application:	Bluetooth V3.0+EDR	(0,)		6.
Power Supply:	Charging input: 5V—, 150mA lithium Battery: 3,7V— 200mAh		-	
Sample Received Date:	May 08, 2015		(20)	
Sample tested Date:	May 08, 2015 to Jun. 02, 2015			
	1			

5.3 Product Specification subjective to this standard

.0+EDR	1637		
requency Hopping Spread S	Spectrum(FHSS)		
FSK, π/4DQPSK, 8DPSK			
9		130	
daptive Frequency Hopping	systems	(0,0)	
ortable production			
ntegral Antenna			
dBi	/**		~ ~
OC 3.7V	(25)		(63)
	SFSK, π/4DQPSK, 8DPSK	g daptive Frequency Hopping systems ortable production ntegral Antenna dBi	SFSK, π/4DQPSK, 8DPSK 9 daptive Frequency Hopping systems Portable production Integral Antenna dBi

Report No.: EED32H000579 Page 8 of 51

Operation	Frequency ea	ch of channe	el	(67))	(67))
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

5.4 Description of Support Units

The EUT has been tested with associated equipment below:

Device Type	Brand	Model	Data Cable	Remark
Notebook	HP	G3	N/A	FCC DOC
Mouse	L.Selectron	M004	Un-shielded 1.2M	FCC DOC

5.5 Test Location

All tests were performed at:

Centre Testing International (Shenzhen) Corporation Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted.

Report No.: EED32H000579 Page 9 of 51

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International (Shenzhen) Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 756231

Centre Testing International (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 756231.

IC-Registration No.: 7408A

The 3m Alternate Test Site of Centre Testing International (Shenzhen) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A.

IC-Registration No.: 7408B

The 10m Alternate Test Site of Centre Testing International (Shenzhen) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B.

NEMKO-Aut. No.: ELA503

Centre Testing International (Shenzhen) Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

Report No.: EED32H000579 Page 10 of 51

VCCI

The Radiation 3 &10 meters site of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International (Shenzhen) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions None.

5.9 Other Information Requested by the Customer None.

Report No.: EED32H000579 Page 11 of 51

6 Equipment List

Equipment	Manufacturer	Model	Serial No.	Due Date
3M Chamber & Accessory Equipment	TDK	SAC-3		06/01/2016
Receiver	R&S	ESCI	100435	07/08/2015
Spectrum Analyzer	R&S	FSP40	100416	07/06/2015
Signal Generator	R&S	SMB 100A	3008A02145	01/15/2016
Vector Signal Generator	R&S	SMBV 100A	3636A01004	01/15/2016
Signal Analyzer	R&S	FSV	100263	01/15/2016
Communication test set test set	Agilent	N4010A	MY47230124	01/15/2016
Spectrum Analyzer	Keysight	N9010A	5522H-HY5KC-VL	01/15/2016
Signal Generator	Keysight	N5182B	MMAPJ-I6AC3	01/15/2016
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	618	06/17/2015
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	617	07/13/2015
Multi device Controller	maturo	NCD/070/107 11112		N/A
Horn Antenna	ETS-LINGREN	3117	00057407	07/07/2015
Horn Antenna	ETS-LINGREN	3117	00057362	07/07/2015
Microwave Preamplifier	Agilent	8449B	3008A02425	03/19/2016
ESG Vector signal generators	Agilent	E4438C	MY45095744	01/15/2016
Temperature & Humidity Chamber	ESPEC	EL-04KA	N/A	08/03/2015
Receiver	R&S	ESCI	100009	07/19/2015
LISN	R&S	ENV216	100098	07/19/2015

Reference documents for testing:

No.	Identity	Document Title		
1	FCC Part15C (2014)	Subpart C-Intentional Radiators		
2	ANSI C63.10-2009	American National Standard for Testing Unlicesed Wireless Devices		

Test Results List:

Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10:2009	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10:2009	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10:2009	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10:2009	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10:2009	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10:2009	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section 15.247 (a)(1)	ANSI 63.10:2009	Pseudorandom Frequency Hopping Sequence	PASS	Appendix G)
Part15C Section 15.203/15.247 (c)	ANSI 63.10:2009	Antenna Requirement	PASS	Appendix H)
Part15C Section 15.207	ANSI 63.10:2009	AC Power Line Conducted Emission	PASS	Appendix I)
Part15C Section 15.205/15.209	ANSI 63.10:2009	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10:2009	Radiated Spurious Emissions	PASS	Appendix j)

Page 12 of 51

Appendix A): 20dB Occupied Bandwidth

Test Result

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict
GFSK	LCH	0.964	0.9347	PASS
GFSK	MCH	0.966	0.9278	PASS
GFSK	HCH	0.964	0.9330	PASS
π /4DQPSK	LCH	1.368	1.2181	PASS
π /4DQPSK	MCH	1.374	1.2175	PASS
π /4DQPSK	нсн	1.360	1.2226	PASS
8DPSK	LCH	1.330	1.2181	PASS
8DPSK	MCH	1.329	1.2130	PASS
8DPSK	НСН	1.328	1.2142	PASS

400-6788-333

Report No. : EED32H000579 Page 14 of 51

Test Graph

Report No. : EED32H000579 Page 17 of 51

Appendix B): Carrier Frequency Separation

Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.004	PASS
GFSK	MCH	1.073	PASS
GFSK	НСН	0.984	PASS
π/4DQPSK	LCH	0.995	PASS
π/4DQPSK	MCH	0.998	PASS
π/4DQPSK	нсн	1.005	PASS
8DPSK	LCH	0.995	PASS
8DPSK	MCH	0.997	PASS
8DPSK	НСН	0.998	PASS

REMARK: limit is >916KHz (2/3 20BW :2/3x1374)

Report No. : EED32H000579 Page 18 of 51

Test Graph

Report No.: EED32H000579 Page 21 of 51

Appendix C): Dwell Time

Result Table

DH1 Packet permit maximum 1600 / 79 / 2 = 10.12 hops per second in each channel (1 time slot RX, 1 time slot TX). So, total hops is $10.12 \times 31.6 = 320$

DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots RX, 1 time slot TX). So, total hops is $5.06 \times 31.6 = 160$

DH5 Packet permit maximum 1600/79 / 6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). So, total hops is 3.37 x 31.6 = 106.67

time slot 1.	X). So, tota	al hops is 3	$3.37 \times 31.6 =$	106.67
	1			

	time diet 177). Ge, total hope is e.e. x e1.e. 100.07					
Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Verdict
GFSK	DH1	LCH	0.41	320	131.2	PASS
GFSK	DH1	MCH	0.411	320	131.52	PASS
GFSK	DH1	HCH	0.412	320	131.84	PASS
GFSK	DH3	LCH	1.666	160	266.56	PASS
GFSK	DH3	MCH	1.667	160	266.72	PASS
GFSK	DH3	HCH	1.667	160	266.72	PASS
GFSK	DH5	LCH	2.914	106.7	310.9238	PASS
GFSK	DH5	MCH	2.915	106.7	311.0305	PASS
GFSK	DH5	НСН	2.915	106.7	311.0305	PASS

GFSK is the worst case and only reported.

Report No. : EED32H000579 Page 22 of 51

Test Graph

Report No.: EED32H000579 Page 25 of 51

Appendix D): Hopping Channel Number

Result Table

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Hop	79	PASS

Test Graph

Report No. : EED32H000579 Page 26 of 51

Appendix E): Conducted Peak Output Power

Result Table

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	3.76	PASS
GFSK	MCH	3.55	PASS
GFSK	нсн	5.19	PASS
π/4DQPSK	LCH	2.08	PASS
π/4DQPSK	MCH	3.94	PASS
π/4DQPSK	НСН	4.93	PASS
8DPSK	LCH	2.34	PASS
8DPSK	MCH	4.47	PASS
8DPSK	HCH	5.6	PASS

Test Graph

Report No. : EED32H000579 Page 30 of 51

Appendix F): Band-edge for RF Conducted Emissions

Appendix G) Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹ -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Appendix H) Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Test Procedure:	Test frequency range :150KHz-30MHz				
	The mains terminal disturbation The EUT was connected to Stabilization Network) which power cables of all other under which was bonded to the graph of the unit being measure multiple power cables to a sexceeded.	AC power source thrown the provides a 50Ω/50μ nits of the EUT were cround reference planed. A multiple socket o	ough a LISN 1 (Line H + 5Ω linear impectonnected to a section the same way as utlet strip was used	Impedance dance. The and LISN 2, the LISN 1 to connect	
	The tabletop EUT was place reference plane. And for floth horizontal ground reference place.	or-standing arrangeme		•	
	4) The test was performed wind EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT at LISN 2.	th a vertical ground re e vertical ground refere d to the horizontal gro he boundary of the ui or LISNs mounted or etween the closest poi	ence plane. The ver und reference plane nit under test and b n top of the ground nts of the LISN 1 ar	tical ground e. The LISN conded to a d reference and the EUT.	
	 In order to find the maximu all of the interface cables conducted measurement. 				
Limit:	Francisco (MIII-)	Limit (d	BμV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*	100	
	0.5-5	56	46	(3)	
	5-30	60	50		
/*	* The limit decreases linearly MHz to 0.50 MHz. NOTE: The lower limit is applied.	· ·		range 0.15	

Page 37 of 51

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Product : HD Bluetooth Audio Transimtter

Keeping TX

Model/Type reference

: AF-T1

Power : AC 120V/60Hz

Temperature : 22℃

Humidity : 52%

Live line:

Mode

Reading_Level No. Freq. (dBuV)		evel	Correct Measurement Factor (dBuV)		Limit (dBu∀)		Margin (dB)							
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1940	35.21		29.51	9.90	45.11		39.41	63.86	53.86	-18.75	-14.45	Р	
2	0.4300	25.53		19.38	9.90	35.43		29.28	57.25	47.25	-21.82	-17.97	Р	
3	0.8300	33.85		26.39	9.90	43.75		36.29	56.00	46.00	-12.25	-9.71	Р	
4	2.7340	26.57		18.65	9.90	36.47		28.55	56.00	46.00	-19.53	-17.45	Р	
5	13.5740	33.75		29.37	9.93	43.68		39.30	60.00	50.00	-16.32	-10.70	Р	

Neutral line: 80.0 dBuV Limit: AVG: AVG: Peak AVG 0.150 0.5 (MHz) 5 30.000

No.	Freq.		ling_Le dBu∀)	evel	Correct Factor	М	easuren (dBuV)		Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1940	35.63		29.99	9.90	45.53		39.89	63.86	53.86	-18.33	-13.97	Р	
2	0.2580	22.34		6.71	9.90	32.24		16.61	61.49	51.49	-29.25	-34.88	Р	
3	0.8300	35.12		22.97	9.90	45.02		32.87	56.00	46.00	-10.98	-13.13	Р	
4	2.2740	28.77		19.11	9.90	38.67		29.01	56.00	46.00	-17.33	-16.99	Ρ	
5	8.2460	28.76		20.23	9.94	38.70		30.17	60.00	50.00	-21.30	-19.83	Р	
6	13.4060	33.81		26.24	9.93	43.74		36.17	60.00	50.00	-16.26	-13.83	Р	

Appendix J) Restricted bands around fundamental frequency (Radiated)/Radiated Spurious Emissions

					3.70.20	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
)	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak	
(0.)	Above 4011=	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber.
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- Repeat above procedures until all frequencies measured was complete.

Page 40 of 51

Limit:	Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
		0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
		0.490MHz-1.705MHz	24000/F(kHz)	-	705	30
		1.705MHz-30MHz	30	-	(4)	30
		30MHz-88MHz	100	40.0	Quasi-peak	3
		88MHz-216MHz	150	43.5	Quasi-peak	3
		216MHz-960MHz	200	46.0	Quasi-peak	3
		960MHz-1GHz	500	54.0	Quasi-peak	3
		Above 1GHz	500	54.0	Average	3
						II all all all all all all all all all a

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data:

All the modes of operation (X, Y, Z) were investigated and the worst-case emissions are reported.

A. Below 30MHz:

No emissions were found higher than the background below 30MHz and background is lower than the limit, so it deems to compliance with the limit without recorded.

B. $30MHz \sim 1GHz$:

The test data of low channel, middle channel and high channel are almost same in frequency bands 30MHz to 1GHz, and the data of middle channel (GFSK mode) are chosen as representative in below:

H:

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
53.280000	24.10	15.7	40.0	15.9		200.0	53.00	HORIZONTAL
84.320000	21.10	10.1	40.0	18.9		200.0	63.00	HORIZONTAL
97.900000	24.20	13.1	43.5	19.3		200.0	44.00	HORIZONTAL
181.320000	22.00	12.9	43.5	21.5		200.0	29.00	HORIZONTAL
542.160000	26.40	21.6	46.0	19.6		100.0	10.00	HORIZONTAL
910.760000	31.90	27.1	46.0	14.1		100.0	316.00	HORIZONTAL

V:

Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Height cm	Azimuth deg	Polarization
49.400000	26.30	16.0	40.0	13.7	 200.0	35.00	VERTICAL
86.260000	20.80	10.5	40.0	19.2	 200.0	63.00	VERTICAL
140.580000	22.30	10.7	43.5	21.2	 200.0	141.00	VERTICAL
187.140000	22.10	13.4	43.5	21.4	 200.0	161.00	VERTICAL
555.740000	26.20	21.9	46.0	19.8	 100.0	335.00	VERTICAL
943.740000	32.30	27.2	46.0	13.7	 200.0	308.00	VERTICAL

Report No. : EED32H000579 Page 43 of 51

C. Above 1GHz:

Test Results-(Measurement Distance: 3m) Channel low 2402MHz GFSK mode:

Frequency Measurement (MHz) (dBµV/m)		Limit (dBµV/m)	Detector Type	Antenna (H/V)	Result (P/F)	
2390.0	35.98	74	PK	Н	Р	
2400.0	44.12	74	PK	Н	Р	
2402.0*	87.32		PK	Н	Р	
4804.0	39.09	74	PK	Н	Р	
2390.0	36.22	74	PK	V	Р	
2400.0	43.98	74	PK	V	Р	
2402.0*	86.34		PK	V	Р	
4804.0	38.37	74	PK	V	Р	

^{*:} fundamental frequency

Test Results-(Measurement Distance: 3m)_Channel middle_2441MHz_GFSK mode:

Frequency (MHz)	Measurement (dBμV/m)			Antenna (H/V)	Result (P/F)	
2441.0*	88.37	<i></i>	PK	н	Р	
4882.0	39.09	74	PK	н 🤘	Р	
2441.0*	87.32		PK	V	Р	
4882.0	36.89	74	PK	V	Р	

^{*:} fundamental frequency

Test Results-(Measurement Distance: 3m)_Channel high_2480MHz_GFSK mode:

Frequency (MHz)			Detector Type	Antenna (H/V)	Result (P/F)	
2480.0*	88.34	S)	PK	н 🦟	Р	
2483.5	40.23	74	PK	Н	Р	
4960.0	38.78	74	PK	Н	Р	
2480.0*	88.09	/5	PK	V	P	
2483.5	39.08	74	PK	V	P	
4960.0	39.89	74	PK	V	Р	

^{*:} fundamental frequency

Remark:

- 1. The above tables show that the frequencies peak data are all below the average limit, so the average data of these frequencies are deems to fulfill the average limits and not reported.
- 2. All the modes of GFSK, π /4-DQPSK and 8DPSK have been tested. The worst case is GFSK mode, and the worst data of GFSK mode are chosen as above.
- 3. No emission found from 18GHz to 25GHz.
- 4. All outside of operating frequency band and restricted band specified are below 15.209.

Report No. : EED32H000579 Page 44 of 51

PHOTOGRAPHS OF TEST SETUP

Radiated spurious emission Test Setup-1 (Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Report No. : EED32H000579 Page 46 of 51

PHOTOGRAPHS OF EUT Constructional Details

View of external EUT-1

View of external EUT-2

View of external EUT-3

View of external EUT-4

View of external EUT-5

View of external EUT-6

View of external EUT-7

View of internal EUT-1

View of internal EUT-2

View of internal EUT-3

Report No. : EED32H000579 Page 51 of 51

View of internal EUT-4

View of internal EUT-5

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.