```
Double-click (or enter) to edit
!pip install numpy seaborn pandas matplotlib scikit-learn
Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (1.25.2)
    Requirement already satisfied: seaborn in /usr/local/lib/python3.10/dist-packages (0.13.1)
    Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (2.0.3)
    Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (3.7.1)
    Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (1.2.2)
    Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas) (2.8.2)
    Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2023.4)
    Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2024.1)
    Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (1.2.1)
    Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (0.12.1)
    Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (4.53.1)
    Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (1.4.5)
    Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (24.1)
Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (9.4.0)
    Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (3.1.2)
    Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.11.4)
    Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (1.4.2)
    Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn) (3.5.0)
    Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)
import numpy as np
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import SGDClassifier, LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import accuracy_score
from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from \ sklearn.feature\_selection \ import \ SelectKBest
from sklearn.feature_selection import chi2
from sklearn.feature_selection import f_regression
from sklearn.metrics import mean_squared_error
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
import pandas as pd
from sklearn.preprocessing import LabelEncoder
import warnings
warnings.filterwarnings('ignore')
df = pd.read_csv('Flight delay prediction.csv')
Data Preprocessing
df.columns
dtype='object')
df['Delay'].value_counts()
\overline{2}
   Delay
    0
         299119
         240264
    Name: count, dtype: int64
df['weather'].value_counts()
→ weather
    Perfect
                 299119
    Imperfect
                 240264
    Name: count, dtype: int64
df['Airline'].value_counts()
```

Airline WN 9

94097

```
60940
50254
45656
36605
34500
DL
00
AA
MQ
US
ΧE
          31126
\mathsf{EV}
          27983
          27619
21118
20827
UA
C0
FL
9E
B6
YV
OH
          20686
18112
13725
          12630
AS
F9
          11471
            6456
НΑ
            5578
Name: count, dtype: int64
```

df.info()

<<cle>
<<cle><class 'pandas.core.frame.DataFrame'>
RangeIndex: 539383 entries, 0 to 539382
Data columns (total 10 columns):

Data	Data Cotumns (total 10 Cotumns):								
#	Column	Non-Nu	ll Count	Dtype					
0	id	539383	non-null	int64					
1	Airline	539383	non-null	object					
2	Flight	539383	non-null	int64					
3	AirportFrom	539383	non-null	object					
4	AirportTo	539383	non-null	object					
5	Day0fWeek	539383	non-null	int64					
6	Time	539383	non-null	int64					
7	Length	539383	non-null	int64					
8	Delay	539383	non-null	int64					
9	weather	539383	non-null	object					
dtype	es: int64(6),	object	(4)	-					
memoi	ry usage: 41.2	2+ MB							

df.isnull().sum()

id 0
Airline 0
Flight 0
AirportFrom 0
AirportTo 0
DayOfWeek 0
Time 0
Length 0
Delay 0
Weather 0
dtype: int64

df.describe()

	id	Flight	Day0fWeek	Time	Length	Delay
count	539383.000000	539383.000000	539383.000000	539383.000000	539383.000000	539383.000000
mean	269692.000000	2427.928630	3.929668	802.728963	132.202007	0.445442
std	155706.604461	2067.429837	1.914664	278.045911	70.117016	0.497015
min	1.000000	1.000000	1.000000	10.000000	0.000000	0.000000
25%	134846.500000	712.000000	2.000000	565.000000	81.000000	0.000000
50%	269692.000000	1809.000000	4.000000	795.000000	115.000000	0.000000
75%	404537.500000	3745.000000	5.000000	1035.000000	162.000000	1.000000

df.head()

_		id	Airline	Flight	AirportFrom	AirportTo	DayOfWeek	Time	Length	Delay	weather
	0	1	СО	269	SFO	IAH	3	15	205	1	Imperfect
	1	2	US	1558	PHX	CLT	3	15	222	1	Imperfect
	2	3	AA	2400	LAX	DFW	3	20	165	1	Imperfect
	3	4	AA	2466	SFO	DFW	3	20	195	1	Imperfect

Label Encoding

```
# List of categorical columns to be label encoded
categorical_columns = ['Airline', 'AirportFrom', 'AirportTo', 'weather']
# Initialize LabelEncoder
label encoder = LabelEncoder()
# Iterate over each categorical column and transform it
for col in categorical_columns:
    df[col] = label_encoder.fit_transform(df[col])
Feature selection
# Separate features (X) and target variable (y)
X = df.drop(columns=['Delay','id']) # Exclude the target column from features
y = df['Delay']
# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Initialize SelectKBest with ANOVA F-value scoring
k_best = SelectKBest(score_func=f_regression, k=8)
# Fit SelectKBest to training data
X_train_kbest = k_best.fit_transform(X_train, y_train)
# Get indices of selected features
selected_indices = k_best.get_support(indices=True)
# Get names of selected features
selected_features = X.columns[selected_indices]
# Evaluate the selected features
# Example: Fit a model and evaluate its performance
model = LinearRegression()
model.fit(X_train_kbest, y_train)
y_pred = model.predict(k_best.transform(X_test))
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error (Using SelectKBest):", mse)
print("Selected features:", selected_features)
Mean Squared Error (Using SelectKBest): 1.0849515342250246e-29
Selected features: Index(['Airline', 'Flight', 'AirportFrom', 'AirportTo', 'DayOfWeek', 'Time',
            'Length', 'weather'],
           dtype='object')
Train Test Split
X = df[['Airline', 'Flight', 'AirportFrom', 'AirportTo', 'DayOfWeek', 'Time', 'Length', 'weather']].values
y = df['Delay'].values
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size = 0.2, random_state=5)
Model implementation
Stochastic Gradient Descent (SGD)
sgd = SGDClassifier(max_iter=5, tol=None)
sgd.fit(X_train, y_train)
Y pred = sqd.predict(X test)
sgd.score(X_train, y_train)
```

sns.heatmap(conf_mat, annot=True, fmt='d', cmap="Blues", xticklabels=['Not Delayed', 'Delayed'], yticklabels=['Not Delayed', 'Delayed'])

acc_sgd = round(sgd.score(X_train, y_train) * 100, 2)

print(round(acc_sgd,2,), "%")

Calculate confusion matrix

plt.figure(figsize=(8, 6))

plt.title('Confusion Matrix')

plt.xlabel('Predicted')
plt.ylabel('Actual')

conf_mat = confusion_matrix(y_test, Y_pred)

Plot confusion matrix as a heatmap

→ 47.05 %

plt.show()


```
# Print classification report
print("Classification Report:")
print(classification_report(y_test, Y_pred))
```

_	Classification	on Report: precision	recall	f1-score	support
	0 1	0.98 0.46	0.05 1.00	0.09 0.63	59768 48109
	accuracy macro avg weighted avg	0.72 0.75	0.52 0.47	0.47 0.36 0.33	107877 107877 107877

Random Forest Classifier

```
random_forest = RandomForestClassifier(n_estimators=100)
random_forest.fit(X_train, y_train)

Y_prediction = random_forest.predict(X_test)

random_forest.score(X_train, y_train)
acc_random_forest = round(random_forest.score(X_train, y_train) * 100, 2)
print(round(acc_random_forest,2,), "%")

$\frac{1}{2}$ 100.0 %
```

```
# Calculate confusion matrix
conf_mat = confusion_matrix(y_test, Y_pred)

# Plot confusion matrix as a heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(conf_mat, annot=True, fmt='d', cmap="Blues", xticklabels=['Not Delayed', 'Delayed'], yticklabels=['Not Delayed', 'Delayed'])
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()
```



```
# Print classification report
print("Classification Report:")
print(classification_report(y_test, Y_pred))
```

₹	Classificati	on Report: precision	recall	f1-score	support
	0	0.98 0.46	0.05 1.00	0.09 0.63	59768 48109
	accuracy macro avg weighted avg	0.72	0.52 0.47	0.47 0.36 0.33	107877 107877 107877

Logistic Regression

```
logreg = LogisticRegression()
logreg.fit(X_train, y_train)

Y_pred = logreg.predict(X_test)

acc_log = round(logreg.score(X_train, y_train) * 100, 2)
print(round(acc_log,2,), "%")

100.0 %
```

```
# Calculate confusion matrix
conf_mat = confusion_matrix(y_test, Y_pred)

# Plot confusion matrix as a heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(conf_mat, annot=True, fmt='d', cmap="Blues", xticklabels=['Not Delayed', 'Delayed'], yticklabels=['Not Delayed', 'Delayed'])
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()
```



```
# Print classification report
print("Classification Report:")
print(classification_report(y_test, Y_pred))
```

	Classificatio	n Report: precision	recall	f1-score	support	
	0 1	1.00 1.00	1.00 1.00	1.00 1.00	59768 48109	
	accuracy macro avg weighted avg	1.00 1.00	1.00	1.00 1.00 1.00	107877 107877 107877	

K-Nearest Neighbor (KNN)

```
knn = KNeighborsClassifier(n_neighbors = 3)
knn.fit(X_train, y_train)
Y_pred = knn.predict(X_test)
acc_knn = round(knn.score(X_train, y_train) * 100, 2)
print(round(acc_knn,2,), "%")
⋺ 91.24 %
```

```
# Calculate confusion matrix
conf_mat = confusion_matrix(y_test, Y_pred)
# Plot confusion matrix as a heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(conf_mat, annot=True, fmt='d', cmap="Blues", xticklabels=['Not Delayed'], yticklabels=['Not Delayed'])
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()
```



```
# Print classification report
print("Classification Report:")
print(classification_report(y_test, Y_pred))
```

	Classificatio	n Report: precision	recall	f1-score	support
	0 1	0.79 0.77	0.83 0.72	0.81 0.75	59768 48109
	accuracy macro avg weighted avg	0.78 0.78	0.78 0.78	0.78 0.78 0.78	107877 107877 107877

GaussianNB

```
nb= GaussianNB()
nb.fit(X_train, y_train)
nb_pred = nb.predict(X_test)
nb_accuracy = round(accuracy_score(y_test, nb_pred)* 100, 2)
print("Naive Bayes Accuracy:", nb_accuracy)
print(round(nb_accuracy,2,), "%")
```

Naive Bayes Accuracy: 100.0 100.0 %

```
# Calculate confusion matrix
conf_mat = confusion_matrix(y_test, nb_pred)

# Plot confusion matrix as a heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(conf_mat, annot=True, fmt='d', cmap="Blues", xticklabels=['Not Delayed', 'Delayed'], yticklabels=['Not Delayed', 'Delayed'])
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()
```



```
# Print classification report
print("Classification Report:")
print(classification_report(y_test, nb_pred))
```

₹	Classific	catio	n Report: precision	recall	f1-score	support
		0 1	1.00 1.00	1.00 1.00	1.00 1.00	59768 48109
	accu macro weighted	avg	1.00 1.00	1.00	1.00 1.00 1.00	107877 107877 107877

DecisionTreeClassifier

plt.title('Confusion Matrix')

plt.show()

```
dt= DecisionTreeClassifier()
dt.fit(X_train, y_train)
dt_pred = dt.predict(X_test)
dt_accuracy = round(accuracy_score(y_test, dt_pred)* 100, 2)
print("Decision Tree Accuracy:", dt_accuracy)

# Calculate confusion matrix
conf_mat = confusion_matrix(y_test, dt_pred)

Decision Tree Accuracy: 100.0
```

```
# Plot confusion matrix as a heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(conf_mat, annot=True, fmt='d', cmap="Blues", xticklabels=['Not Delayed', 'Delayed'], yticklabels=['Not Delayed', 'Delayed'])
plt.xlabel('Predicted')
plt.ylabel('Actual')
```



```
# Print classification report
print("Classification Report:")
print(classification_report(y_test, dt_pred))
```

→	Classific	lassification Repor precis		recall	f1-score	support
		0 1	1.00 1.00	1.00 1.00	1.00 1.00	59768 48109
	accu macro weighted	avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	107877 107877 107877

VOTING CLASSIFIER

```
from sklearn.ensemble import VotingClassifier
# Define the individual models
model1 = GaussianNB()
model2 = DecisionTreeClassifier()
# Define the ensemble model
model = VotingClassifier(estimators=[('nb', model1), ('dt', model2)], voting='hard')
# Fit the model to the training data
model.fit(X_train, y_train)
# Make predictions
model_pred = model.predict(X_test)
# Calculate accuracy
model_accuracy = round(accuracy_score(y_test, model_pred) * 100, 2)
print("Hybrid Model Accuracy:", model_accuracy,"%")
# Print classification report
\verb"print("Classification Report:")"
print(classification_report(y_test, model_pred))
```

→	Hybrid Model Accuracy: 100.0 % Classification Report:									
		precision	recall	f1-score	support					
	0	1.00	1.00	1.00	59768					
	1	1.00	1.00	1.00	48109					
	accuracy			1.00	107877					
	macro avg	1.00	1.00	1.00	107877					
	weighted avg	1.00	1.00	1.00	107877					

import numpy as np
import tensorflow as tf

```
# Assuming X_train, X_test, y_train, y_test are already prepared
# Define the RNN model
model_rnn = models.Sequential([ # This line should work now
   layers.SimpleRNN(32, input_shape=(X_train.shape[1], 1)),
   layers.Dense(1, activation='sigmoid')
1)
# Compile the model
model_rnn.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# Evaluate the model and calculate accuracy
evaluation_result = model_rnn.evaluate(X_test, y_test)
accuracy_rnn = round(evaluation_result[1] * 100, 2)
print("Accuracy of RNN model:", accuracy_rnn, "%")
Accuracy of RNN model: 55.4 %
LSTM
# Assuming X_train, X_test, y_train, y_test are already prepared
# Define the LSTM model
model_lstm = models.Sequential([
   layers.LSTM(32, input_shape=(X_train.shape[1], 1)),
   layers.Dense(1, activation='sigmoid')
])
# Compile the model
model_lstm.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# Train the model
model_lstm.fit(X_train, y_train, epochs=1, batch_size=32, validation_data=(X_test, y_test))
# Evaluate the model
evaluation_result = model_lstm.evaluate(X_test, y_test)
accuracy_lstm = round(evaluation_result[1] * 100, 2)
print("Accuracy of LSTM model:", accuracy_lstm, "%")
Accuracy of LSTM model: 100.0 %
CNN
# Reshape the input data for CNN
X train cnn = np.reshape(X train, (X train.shape[0], X train.shape[1], 1))
X_test_cnn = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
# Define the CNN model
model_cnn = models.Sequential([
   layers.Conv1D(32, 3, activation='relu', input_shape=(X_train_cnn.shape[1], 1)),
   layers.MaxPooling1D(2),
   layers.Flatten(),
   layers.Dense(64, activation='relu'),
   layers.Dense(1, activation='sigmoid')
# Compile the model
model_cnn.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
```

from tensorflow.keras import layers, models # Add this line to import the models submodule

LSTM with SGD [Hybrid]

→ 3372/3372 [====

Evaluate the model and calculate accuracy

Accuracy of CNN model: 47.98 %

evaluation_result = model_cnn.evaluate(X_test_cnn, y_test)
accuracy_cnn = round(evaluation_result[1] * 100, 2)
print("Accuracy of CNN model:", accuracy_cnn, "%")

```
from tensorflow.keras import layers, models
from tensorflow.keras.optimizers import SGD
# Assuming X_train, X_test, y_train, y_test are already prepared
# Define the LSTM model
model_lstm = models.Sequential([
 layers.LSTM(32, input_shape=(X_train.shape[1], 1)),
 layers.Dense(1, activation='sigmoid')
])
# Define the SGD optimizer without the decay argument
sgd = SGD(learning_rate=0.01, momentum=0.9, nesterov=True)
# Compile the model with SGD optimizer
model_lstm.compile(optimizer=sgd, loss='binary_crossentropy', metrics=['accuracy'])
# Train the model
model_lstm.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test))
# Evaluate the model
evaluation_result = model_lstm.evaluate(X_test, y_test)
accuracy_lstm = round(evaluation_result[1] * 100, 2)
print("Accuracy of LSTM model with SGD optimizer:", accuracy_lstm, "%")

→ Epoch 1/10
  Epoch 2/10
  Epoch 3/10
  13485/13485 [
          Epoch 4/10
  Epoch 5/10
  Epoch 6/10
  Epoch 7/10
  Epoch 8/10
  Epoch 9/10
  12/05/12/05 [.
```