

# Fundação Educacional de Ensino Superior de Frutal



Avenida Professor Mario Palmério nº 1000 – Bairro Universitário 38200-000 - FRUTAL - MG - Fone (34) 3423-9400 CNPJ. 06.172.537/0001-15 - Inscrição Municipal: 00113207-4

#### **Campus Frutal**

# Curso de Sistemas de Informação

# Métodos para determinação da validade de fórmulas da Lógica Proposicional

Prof. Sérgio Carlos Portari Júnior

## Índice

| Índice                                          | 1 |
|-------------------------------------------------|---|
| Introdução                                      | 2 |
| Propriedades semânticas da Lógica Proposicional | 2 |
| Método da Tabela Verdade                        | 2 |
| Método da Árvore Semântica                      | 3 |
| Método da Negação ao Absurdo                    | 5 |
| Bibliografia                                    |   |

#### Introdução

Um dos passos frequentemente utilizados no estudo da lógica proposicional corresponde à análise dos mecanismos que produzam ou verifiquem os argumentos válidos representados na linguagem da lógica. Iremos analisar nesse capítulo três métodos de determinação da validade de fórmulas da Lógica Proposicional: **Tabela da Verdade**, **Árvore Semântica** e **Negação ou Absurdo**.

Esses métodos se equivalem em muitos aspectos, entretanto, dependendo da fórmula, há métodos mais ou menos eficientes para a determinação de sua validade.

#### Propriedades semânticas da Lógica Proposicional

Para iniciarmos nosso estudo, veremos rapidamente algumas propriedades semânticas da Lógica Proposicional, que são propriedades que relacionam os resultados das interpretações das fórmulas. Possui também a denominação de Teoria dos Modelos.

As propriedades semânticas são definidas a partir das seguintes regras:

#### Propriedades semânticas básicas:

- Uma fórmula H é uma tautologia ou válida se e somente se para toda interpretação I, I[H] = T.
  - Exemplo:  $H = P \vee \neg P$
- Uma fórmula H é factível ou satisfatível se e somente se existe pelo menos uma interpretação I tal que I[H] = T.
  - Exemplo:  $H = P \lor Q$  (I[P] = T e I[Q] = F, J[P] = F e J[P] = F)
- Uma fórmula H é contraditória se e somente se para toda interpretação I,
   I[H] = F.
  - Exemplo:  $H = (P \land \neg P)$  Como I[P] será falsa ao mesmo tempo que  $I[\neg P]$ ?
- Duas fórmulas H e G, **H implica em G** <u>se e somente se</u> para toda interpretação I, <u>se</u> **I[H] = T** <u>então</u> **I[G] = T**.
- Duas fórmulas H e G, **H equivale a G** se e somente se para toda interpretação I, se **I[H] = I[G]**.
- Dada uma fórmula H e uma interpretação I, então I satisfaz H se e somente se I[H] = T.
- Um conjunto β = {H<sub>1</sub>, H<sub>2</sub>, H<sub>3</sub>,..., H<sub>n</sub>} é satisfatível se e somente se existe uma interpretação I tal que I[H<sub>1</sub>] = I[H<sub>2</sub>] = I[H<sub>3</sub>] = ... = I[H<sub>n</sub>] = T. Neste caso, I satisfaz o conjunto de fórmulas, o que é indicado por I[β] = T.
- Dado um conjunto de fórmulas vazio, então toda interpretação I satisfaz esse conjunto.

#### Método da Tabela Verdade

O método da tabela da verdade já foi demonstrado anteriormente. Nada mais é do que um método de força bruta ou *brute force* onde dada uma fórmula H suponha que  $P_1$ ,  $P_2$ , ...,  $P_n$  sejam seus símbolos proposicionais. Nesse método, são consideradas todas as possibilidades de valores de verdade associados a esses símbolos proposicionais. A primeira linha da tabela é definida pelos símbolos



As outras linhas são preenchidas com todas as possíveis combinações de valores da verdade dos símbolos proposicionais. Assim, para determinar a validade de H, são consideradas todas as possibilidades  $I[P_i] = T$  ou  $I[P_i] = F$  onde  $1 \le i \le n$ . Se H possui n

Fundação Educacional de Ensino Superior de Frutal - Introdução à Lógica - Sérgio Carlos Portari Júnior

símbolos proposicionais, ocorrem 2<sup>n</sup> possibilidades, por isso nem sempre indicado para fórmulas com muitos símbolos proposicionais.

Exemplo:

Lei de Morgan diz que  $H = \neg (P \land Q) \leftrightarrow ((\neg P) \lor (\neg Q))$  é uma tautologia.

Essa lei define uma regra para distribuição do conectivo ¬ em uma conjunção. Observe que o conectivo ∧ transforma-se em ∨. Veja a tabela da verdade de H

| Р | Q | ¬ (P ∧ Q) | (¬P) ∨ (¬Q) | H |
|---|---|-----------|-------------|---|
| Т | Т | F         | F           | T |
| Т | F | Т         | Т           | Т |
| F | T | T         | T           | T |
| F | F | Т         | Т           | Т |

Observe que se I[P] = T e I[Q] = T, então  $I[\neg (P \land Q)] = F$  e  $I[(\neg P) \lor (\neg Q)] = F$ , como  $H = \neg (P \land Q) \leftrightarrow ((\neg P) \lor (\neg Q))$  então I[H] = T

Se observarmos a coluna da tabela em H, veremos que para qualquer I[H] temos I[H]=T mostrando que é uma tautologia. Além disso, dizemos que  $\neg$  ( P  $\land$  Q ) equivale a ( $\neg$  P )  $\lor$  ( $\neg$  Q ), pois as colunas das duas fórmulas sempre tem o mesmo resultado interpretado.

Imaginem se tivéssemos que utilizar pelo método da Tabela da Verdade a fórmula seguinte:  $H = P_1 \rightarrow ((P_2 \land P_3) \rightarrow ((P_4 \land P_5) \rightarrow ((P_6 \land P_7) \rightarrow P_8)))$ 

Manualmente seria inviável faze-lo, pois  $2^8 = 256$  interpretações. Por isso, para cada caso devemos procurar um método adequado de método para verificação da validade de uma fórmula proposicional, não sendo suficiente conhecermos apenas um método.

### Método da Árvore Semântica

Esse método determina a validade de uma fórmula a partir da estrutura de dados denominada árvore. Uma árvore é um conjunto de nós ou vértices ligados por arestas conforme indicado pela figura abaixo, onde são rotulados por números inteiros. Os nós finais 2,6,7 e 5 são denominados folhas e o nó 1 raiz da árvore.



Exemplo:

Vamos demonstrar que a fórmula  $H = (P \rightarrow Q) \leftrightarrow ((\neg Q) \rightarrow (\neg P))$  é uma tautologia (essa fórmula é a lei da contraposição).

Iniciaremos começando a desenhar nossa árvore a partir da raiz:

Fundação Educacional de Ensino Superior de Frutal – Introdução à Lógica – Sérgio Carlos Portari Júnior



Nessa figura observamos que as arestas são denominadas por I[P] = T e I[P] = F, que são as possibilidades de o valor verdade para P.

O Nó numero 2 corresponde à fórmula:

Nó 2 = 
$$(P \rightarrow Q) \leftrightarrow ((\neg Q) \rightarrow (\neg P))$$
  
T

O significado de P é colocado abaixo de seu símbolo. A partir desse significado, podemos obter o significado de (¬ P):

Nó 2 = 
$$(P \rightarrow Q) \leftrightarrow ((\neg Q) \rightarrow (\neg P))$$

Análogo a isso, o nó de número 3 (onde supomos I[P] = F fica assim:

Nó 3 = 
$$(P \rightarrow Q) \leftrightarrow ((\neg Q) \rightarrow (\neg P))$$
  
F T F

E pelas leis da semântica, obtemos apenas com o significado de I[P] = F que o resultado dessa fórmula é T (representado abaixo do conectivo  $\leftrightarrow$ ):

Nó 3 = 
$$(P \rightarrow Q) \leftrightarrow ((\neg Q) \rightarrow (\neg P))$$
  
F T T T T F

Pois F implicado em qualquer coisa é T e qualquer coisa que implica em T também é T.

Agora que achamos que o nó 3 é uma folha da árvore, continuamos a desenvolver nossa árvore supondo os valores de I[Q] no nó 2.



Continuamos então nossa análise:

Nó 
$$4 = (P \rightarrow Q) \leftrightarrow ((\neg Q) \rightarrow (\neg P))$$
  
T T T T FT FT FT

Neste caso, todos os significados estão determinados, Um símbolo T abaixo do conectivo ↔ significa que a fórmula H é verdadeira quando P e Q são verdadeiros. O Símbolo semântico T é escrito abaixo da folha (ou nó) 4 na árvore semântica.

Nó 5 = 
$$(P \rightarrow Q) \leftrightarrow ((\neg Q) \rightarrow (\neg P))$$
  
T F F T T F F F T

Novamente, abaixo do conectivo ↔ é escrito o símbolo semântico T que também será transferido para baixo da folha (ou nó) 5 de nossa árvore, que ficará completa como na figura abaixo:



Concluímos então que ( P  $\rightarrow$  Q ) equivale a (  $\neg$  Q  $\rightarrow$   $\neg$  P ) e ainda que P implica em Q se e somente se  $\neg$  Q implica em  $\neg$  P.

Observe que se as folhas das arestas são todas T, significa que temos uma tautologia.

Se elas estivessem todas rotuladas com F, então a fórmula seria contraditória e se pelo menos uma tivesse T, então ela seria satisfatível.

#### Método da Negação ao Absurdo

Nesse método, é considerada inicialmente a negação daquilo que se quer demonstrar. Assim sendo, se quiser demonstrar que H é uma tautologia, teremos que supor que H **não** é uma tautologia. A partir dessa suposição, é utilizado um conjunto de deduções para concluir o fato contraditório ou absurdo. Em outras palavras, se a suposição inicial diz que H não é uma tautologia e após uma seqüência de deduções é concluído um absurdo, então a não-validade de H é um absurdo, concluindo que H é uma tautologia. Esse método também é conhecido como método da refutação.

Exemplo:

Vamos demonstrar que a lei de transitividade é uma tautologia:

$$H = ((P \rightarrow Q) \land (Q \rightarrow R)) \rightarrow (P \rightarrow R)$$

A demonstração da validade dessa fórmula H pelo método da negação ou absurdo seguiria os seguintes passos: Suponha que H não é uma tautologia. Logo é possível interpretar que I[H] = F em pelo menos uma interpretação. Nossa suposição terá a seguinte notação:

$$H = ((P \to Q) \land (Q \to R)) \to (P \to R)$$

Como I[H] = F então, a única forma possível de ser possível seria quando o antecedente de H for verdadeiro e o consequente for falso, assim sendo:

$$H = ((P \rightarrow Q) \land (Q \rightarrow R)) \rightarrow (P \rightarrow R)$$

$$T \qquad F \qquad F$$

A partir desses valores de verdade, podemos chegar aos valores das subfórmulas:

$$H = ((P \rightarrow Q) \land (Q \rightarrow R)) \rightarrow (P \rightarrow R)$$

$$T \qquad T \qquad F \qquad F \qquad F \qquad F$$

Nesse ponto concluímos que I[P] = T e I[R] = F, distribuímos esses valores pela fórmula.

$$H = ((P \rightarrow Q) \land (Q \rightarrow R)) \rightarrow (P \rightarrow R)$$
 
$$T \quad T \quad T \quad F \quad F \quad T \quad F \quad F$$

Observe que nessa fórmula existem duas subfórmulas (P 
$$\rightarrow$$
 Q) e (Q  $\rightarrow$  R) T T T F

A partir da primeira subfórmula, o resultado de I[Q] é concluído como T. Entretanto, é concluído que pela segunda subfórmula, o resultado de I[Q] = F. Portanto, temos um absurdo, onde o valor de Q não pode ser interpretado simultaneamente como T e F.

Isto posto, temos que a suposição inicial é falsa, isto é, não existe interpretação de I tal que I[H] = F. Não é possível ter interpretação falsa de H.Logo, H é uma tautologia.

Fundação Educacional de Ensino Superior de Frutal – Introdução à Lógica – Sérgio Carlos Portari Júnior

## Bibliografia

SOUZA, João Nunes. **Lógica para Ciência da Computação**. Campus, 2002. Capítulos 3 e 4.