

planetmath.org

Math for the people, by the people.

integral element

Canonical name IntegralElement
Date of creation 2013-03-22 14:15:56
Last modified on 2013-03-22 14:15:56

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 31

Author pahio (2872) Entry type Definition Classification msc 12E99

 ${\it Related topic} \qquad {\it PAdic Canonical Form}$

Related topic PAdicValuation

Related topic KummersCongruence

An element a of a field K is an integral element of the field K, iff

$$|a| \leq 1$$

for every non-archimedean valuation $|\cdot|$ of this field.

The set \mathcal{O} of all integral elements of K is a subring (in fact, an integral domain) of K, because it is the intersection of all valuation rings in K.

Examples

- 1. $K = \mathbb{Q}$. The only non-archimedean valuations of \mathbb{Q} are the p-adic valuations $|\cdot|_p$ (where p is a rational prime) and the trivial valuation (all values are 1 except the value of 0). The valuation ring \mathcal{O}_p of $|\cdot|_p$ consists of all so-called p-integral rational numbers whose denominators are not divisible by p. The valuation ring of the trivial valuation is, generally, the whole field. Thus, \mathcal{O} is, by definition, the intersection of the \mathcal{O}_p 's for all p; this is the set of rationals whose denominators are not divisible by any prime, which is exactly the set \mathbb{Z} of ordinary integers.
- 2. If K is a finite field, it has only the trivial valuation. In fact, if $|\cdot|$ is a valuation and a any non-zero element of K, then there is a positive integer m such that $a^m = 1$, and we have $|a|^m = |a^m| = |1| = 1$, and therefore |a| = 1. Thus, $|\cdot|$ is trivial and $\mathcal{O} = K$. This means that all elements of the field are integral elements.
- 3. If K is the field \mathbb{Q}_p of the http://planetmath.org/NonIsomorphicCompletionsOfMathbbQp-adic numbers, it has only one non-trivial valuation, the p-adic valuation, and now the ring \mathcal{O} is its valuation ring, which is the ring of http://planetmath.org/PAdicIntegersp-adic integers; this is visualized in the 2-adic (dyadic) case in the article "p-adic canonical form".