6 Homomorfizmy przestrzeni liniowych

Definicja 6.1. Niech V,U bedą przestrzeniami liniowymi nad ciałem K. Przekształcenie $F:V\to W$ nazywamy przekształceniem liniowym (homomorfizmem przestrzeni liniowych), gdy dla dowolnych $v,u\in V, a\in K$ spełnione są następujące warunki

- F(u+v) = F(u) + F(v),
- F(au) = aF(u).

Łatwo udowodnić następujący fakt:

Uwaga 6.2. Przekształcenie $F: V \to W$ jest liniowe wtedy i tylko wtedy gdy dla dowolnych wektorów $v_1, v_2, \ldots v_n \in V$ oraz dowolnych $a_1, a_2, \ldots a_n \in K$, $F(a_1v_1 + \ldots + a_nv_n) = a_1F(v_1) + \ldots + a_nF(v_n)$

Przykłady

- 1. $F: K[x] \to K[x], \quad w \mapsto \frac{dw}{dx}$.
- 2. Niech $\mathcal{B} = (v_1, \ldots, v_n)$ będzie bazą przestrzeni liniowej V nad ciałem K. Definiujemy przekształcenie $M_{\mathcal{B}}: V \to M_n^1(K)$,

$$M_{\mathcal{B}}(v) = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \Leftrightarrow v = x_1 v_1 + \ldots + x_n v_n.$$

Przekształcenie $M_{\mathcal{B}}$ jest przekształceniem liniowym. Nazywamy je przekształceniem wspólrzędnych.

- 3. Niech X bedzie niepustym zbiorem, K ciałem i $x_0 \in X$. Przekształcenie $F: Map(X,K) \to K, \quad f \mapsto f(x_0)$ jest liniowe.
- 4. Niech $V=V_1\oplus V_2$. Dla dowolnego wektora $v\in V$ istnieją wtedy wyznaczone jednoznacznie wektory $v_1\in V_1,\quad v_2\in V_2$, takie że $v=v_1+v_2$. Przekształcenie

$$P_{V_1}: V \to V, v \mapsto v_1$$

nazywamy rzutem na V_1 wdłuz V_2 .

Symetrią wzgledem V_1 wzdłuż V_2 nazywamy takie przekształcenie

$$S: V \to V, v \mapsto v_1 - v_2.$$

Łatwo pokazać, że oba te przekształcenia są liniowe.

Twierdzenie 6.3. Niech V, W będą przestrzeniami liniowymi nad ciałem K i niech $\mathcal{B} = (v_1, \ldots, v_n)$ bedzie bazą przestrzeni V oraz niech w_1, \ldots, w_n będzie dowolnym układem wektorów w przestrzeni W. Istnieje dokładnie jedno przekształcenie liniowe $F: V \to W$, takie że $F(v_i) = w_i$, dla $i = 1, \ldots, n$.

Niech V,W będą przestrzeniami liniowymi nad ciałem K. Oznaczmy symbolem Hom(V,W) zbiór wszystkich przekształceń liniowych z V w W. Przekształcenia liniowe z Hom(V,W) możemy dodawać i mnożyć przez elementy z ciała K. Dla $F,G \in Hom(V,W)$, $a \in K$

$$(F+G)(v) := F(v) + G(v), (aF)(v) := aF(v).$$

Zbiór Hom(V,W) z tymi działaniami jest przestrzenia wektorową nad ciałem K. Wektorem zerowym w tej przestrzeni jest przestrzenie zerowe przyporzadkowujące dowolnemu wektorowi v z przestrzeni V wektor zerowy z przestrzeni V.

Twierdzenie 6.4. Niech $F: V \to W, G: W \to U$ będa przekształceniami liniowymi.

- 1. Przekształcenie $G \circ F : V \to U$ jest przekształceniem liniowym.
- 2. Jesli przekształcenie liniowe F jest odwracalne to $F^{-1}:W\to V$ jet również przekształceniem liniowym.

Definicja 6.5. Niech $F: V \to W$ bedzie przekształceniem liniowym. Wówczas

1. Jądrem przekształcenia F nazywamy zbiór

$$ker F := \{ v \in V : F(v) = \mathbf{0} \}.$$

2. Obrazem przekształcenia F nazywamy zbiór

$$ImF := \{ F(v) : v \in V \}.$$

Przykład 6.6. Niech $V = V_1 \oplus V_2$ oraz P_{V_1} będzie rzutem na V_1 wzdłuż V_2 . Wtedy $Ker P_{V_1} = V_2$ oraz $Im P_{V_1} = V_1$. Ponadto $P_{V_1}|V_1 = Id_{V_1}$ oraz $P_{V_1} + P_{V_2} = Id_{V}$.

Uwaga 6.7. Niech $F: V \to W$ bedzie przekształceniem liniowym. Wówczas

- 1. kerF jest podprzestrzenia liniową V,
- 2. ImF jest podprzestrzenia liniową W.

Twierdzenie 6.8. Niech $\mathcal{B} = (v_1, \ldots, v_n)$ będzie bazą przestrzeni V oraz niech $F: V \to W$ bedzie przekształceniem liniowym. Wówczas $ImF = \mathcal{L}(F(\mathcal{B}))$.

Twierdzenie 6.9. Niech $F:V\to W$ bedzie przekształceniem liniowym. Wówczas

dimV = dimkerF + dimImF.

Definicja 6.10. Przekształcenie liniowe $F: V \to W$ nazywamy

- monomorfizmem, jeśli F jest róznowartosciowe,
- epimorfizmem, jeśli F jest " na",
- izomorfizmem, jesli F jest róznowartościowe i "na" .

Twierdzenie 6.11. Niech $F:V\to W$ bedzie przekształceniem liniowym. Następujące warunki są równoważne:

- 1. F jest monomorfizmem,
- 2. $kerF = \{0\},\$
- 3. F przeprowadza dowolny liniowo niezależny układ wektorów na układ liniowo niezależny,
- 4. F przeprowadza dowolną bazę na układ liniowo niezależny,
- 5. F przeprowadza pewną bazę na układ liniowo niezależny.

Wniosek 6.12. Niech $F: V \to W$ będzie przekształceniem liniowym. Następujące warunki są równoważne:

- 1. F jest izomorfizmem,
- 2. F przeprowadza każdą bazę przestrzeni V na bazę przestrzeni W,
- 3. F przeprowadza pewną bazę przestrzeni V na bazę przestrzeni W.

Niech $F:V\to W$ bedzie izomorfizmem przestrzeni liniowych. Z powyższych wniosków wynika, że wtedy dimV=dimW. Ponadto, jeśli dimV=dimW=n to przestrzenie V oraz W są izomorficzne. Oznacza to, że dwie przestrzenie wektorowe V,W są izomorficzne wtedy i tylko wtedy gdy dimV=dimW W szczególnosci wynika stąd, ze każda n wymiarowa przestrzeń wektorowa jest izomorficzna z przestrzenią K^n .

7 Macierze przekształceń liniowych

Definicja 7.1. Niech V, W będą przestrzeniami liniowymi nad ciałem K i niech $F: V \to W$ będzie przekształceniem liniowym. Ponadto niech układ wektorów $\mathcal{B} = (v_1, \ldots, v_n)$ bedzie bazą przestrzeni V, a układ $\mathcal{C} = (w_1, \ldots, w_m)$ bazą przestrzeni W. Macierzą przekształcenia F w bazach \mathcal{B} i \mathcal{C} nazywamy macierz $A = [a_{ij}] \in M_m^n(K)$ taką, że

$$c^{j}(A) = M_{\mathcal{C}}(F(v_{i})),$$

 $dla \ j = 1, \ldots, n.$

Macierz przekształcenia liniowego w bazach \mathcal{B} oraz \mathcal{C} oznaczamy $M_{\mathcal{C}}^{\mathcal{B}}(F)$. Bezpośrednio z definicji wynika, że dla dowolnego $j=1,\ldots,n$

$$F(v_j) = \sum_{i=1}^m a_{ij} w_i.$$

Uwaga 7.2. Niech $F: V \to W$ będzie przekształceniem liniowym.

$$DimImF = rz(M_{\mathcal{C}}^{\mathcal{B}}(F)).$$

Twierdzenie 7.3. Niech V, W będą przestrzeniami liniowymi nad ciałem K i niech $F: V \to W$ bedzie przekształceniem liniowym. Ponadto niech \mathcal{B} bedzie bazą przestrzeni V a układ $\mathcal{C} = bazą$ przestrzeni W. Przekształcenie

$$M_{\mathcal{C}}^{\mathcal{B}}: Hom(V, W) \to M_m^n(K), \quad F \mapsto M_{\mathcal{C}}^{\mathcal{B}}(F),$$

jest izomorfizmem przestrzeni wektorowych.

Twierdzenie 7.4. Niech V, W będą przestrzeniami liniowymi nad ciałem K i niech $F: V \to W$ bedzie przekształceniem liniowym. Ponadto niech \mathcal{B} bedzie bazą przestrzeni V a układ \mathcal{C} bazą przestrzeni W. Macierz $A = M_{\mathcal{C}}^{\mathcal{B}}(F)$ wtedy i tylko wtedy gdy dla dowolnego wektora $v \in V, M_{\mathcal{C}}(F(v)) = A \cdot M_{\mathcal{B}}(v)$.

Niech \mathcal{B} , \mathcal{B}' będą bazami przestrzeni wektorowej V, a przekształcenie $Id = Id_V$ bedzie przekształceniem identycznosciowym przestrzeni V (tzn $Id_V(v) = v$). Macierz $M_{\mathcal{B}'}^{\mathcal{B}}(Id)$ nazywamy macierzą zmiany bazy z \mathcal{B} do \mathcal{B}' . Macierz ta pozwala obliczyć współrzędne dowolnego wektora z V w bazie \mathcal{B}' , gdy znamy te współrzedne w bazie \mathcal{B} . Prawdziwy jest następujący wzór

$$M_{\mathcal{B}'}(v) = M_{\mathcal{B}'}^{\mathcal{B}}(Id)M_{\mathcal{B}}(v).$$

Twierdzenie 7.5. Jeśli V, U, W są przestrzeniami liniowymi nad ciałem K z bazami $\mathcal{B}, \mathcal{C}, \mathcal{D}$ odpowiednio a $F: V \to W, \quad G: W \to U$ są przekształceniami liniowymi, to

$$M_{\mathcal{D}}^{\mathcal{B}}(G \circ F) = M_{\mathcal{D}}^{\mathcal{C}}(G) \cdot M_{\mathcal{C}}^{\mathcal{B}}(F).$$

Twierdzenie 7.6. Jeśli $F: V \to W$ jest przekształceniem liniowym a $\mathcal{B}i \mathcal{B}'$ są bazami przestrzeni V oraz $\mathcal{C}i \mathcal{C}'$ są bazami przestrzeni W, to

$$M_{\mathcal{C}'}^{\mathcal{B}'}(F) = M_{\mathcal{C}'}^{\mathcal{C}}(Id) M_{\mathcal{C}}^{\mathcal{B}}(F) M_{\mathcal{B}}^{\mathcal{B}'}(Id).$$

8 Macierze odwracalne (przypomnienie)

Definicja 8.1. Macierz $A \in M_n^n(K)$ nazywamy odwracalną, jeśli istnieje macierz $B \in M_n^n(K)$, taka że $AB = I_n$. Macierz B nazywamy wówczas macierzą odwrotną do macierzy A i oznaczamy A^{-1} .

Twierdzenie 8.2. Niech $A \in M_n^n(K)$. Nastepujące warunki są równoważne:

- Macierz A jest odwracalna,
- Macierz A jest wierszowo równowazna z macierzą jednostkową,
- Macierz A jest iloczynem macierzy elementarnych,
- Rząd macierzy A jest równy n

Poniższe twierdzenie opisuje algorytm znajdowania macierzy odwrotnej.

Twierdzenie 8.3. Niech $A \in M_n^n(K)$. Macierz A jest odwracalna wtedy i tylko wtedy gdy macierz A|I jest wierszowo równoważna z macierzą I|B. Ponadto jeśli ten warunek jest spełniony to $A^{-1} = B$.

Pokazaliśmy, ze macierze przekształceń (jeśli wybierzemy bazy) wyznaczają jednoznacznie przekształcenia liniowe.

Okazuje się że macierze odwracalne odpowiadają przy takinm utożsamieniu izomorfizmom.

Uwaga 8.4. Macierz $A \in M_n^n(K)$ jest macierzą odwracalną wtedy i tylko wtedy gdy przekształcenie liniowe $F: K^n \to K^n$ takie, że $M_{\mathcal{B}}^{\mathcal{B}}(F) = A$, gdzie \mathcal{B} jest dowolną bazą K^n , jest izomorfizmem.

Wniosek 8.5. Niech $A \in M_n^n(K)$. Jeśli istnieje $B \in M_n^n(K)$, takie że AB = I to zachodzi też BA = I. Ponadto taka macierz B jest wyznaczona jednoznacznie.

- **Uwaga 8.6.** 1. Macierze zamiany wpółrzednych są odwracalne. Ponadto $(M_{\mathcal{B}'}^{\mathcal{B}}(Id))^{-1} = M_{\mathcal{B}}^{\mathcal{B}'}(Id).$
 - 2. Jeśli A, B są macierzami odwracalnymi to AB jest macierza odwracalną i $(AB)^{-1}=B^{-1}A^{-1}$.