

Autonomes Fahren SS 2019

Path Planning and Motion Planning

Motion planning for autonomous driving

- Lane detection
- Traffic sign detection
- Vehicle detection and tracking
- Pedestria detection
 Sensing

- Navigation
- Task planning
- Path Solution planning
 - Trajectory generation

Planning

Acting

- Drive by wire
- Teering by wire
- · Trajectory control
- Emergency brake

Problem Definitions

- Path, trajectory and motion
- Configuration space and workspace
- Constraints
- Motion planning problem
- Correct, optimal and complete
- Planning Methods
 - Combinatorial methods
 - Behavior-based methods
 - Random sampling methods
 - Search methods

Path, Trajectory and Motion

Path

- The geometric form of a motion from start to goal
- A list of poses

Motion

- The movement along the path regarding the physical laws
- A list of control inputs

Trajectory

- The result of a motion
- A list of poses with timestamps

Configuration Space and Workspace > we are not fee to make

- Configuration space
 - General coordinatesystem: (x, y, θ)

- Workspace
 - Physical Cartesian space:(x, y)

ConstraintsHolonomic Constraints

Only depends on the general coordinates

$$- f(x_0, x_1, \cdots, x_n, t) = 0$$

Example: obstacles, no rotation

Constraints

Nonholonomic Constraints

Depends on the general coordinates and the time derivatives

$$- f(x_0, x_1, \dots, x_n, \dot{x_0}, \dot{x_1}, \dots, \dot{x_n}, t) = 0$$

Example: vehicle kinematics with limited steering radius

Reachable configuration

Accessible domain of shortest path with fixed length for Reeds-Shepp car [Laumond1998]

Motion Planning Problem

• Given:

- Configuration space
- Constraints: obstacles, kinematics
- Start and goal
- To find:
 - Path
 - Motion
 - Trajectory

Correct, Optimal and Complete

- Correct
 - All the path internal configurations are valid (collision-free)
 - The motion between the configurations are executable
- Optimal
 - Time or distance
 - Safety: low risk
 - Comfort: smooth
 - Eco: energy consumption
- Complete
 - Decide whether a solution exists in a finite amount of time.
 - If a solution exists, return one solution in finite time.

Planning Methods

- Combinatorial Methods
- Behavior-based Methods
- Random Sampling Methods
- Search Methods

Combinatorial Methods General Ideas

- Directly solve the path planning problem based on the geometry of the configuration space
- The motion is calculated regarding an explicit motion metric

Combinatorial Methods Visibility Map

 Build a roadmap based on a set of points, whose fields of view cover the whole configuration space.

Combinatorial Methods Visibility Map

 Build a roadmap based on a set of points, whose fields of view cover the whole configuration space.

Combinatorial MethodsVisibility Map

 Build a roadmap based on a set of points, whose fields of view cover the whole configuration space.

Combinatorial MethodsSpace Decomposition

Build a roadmap based on the space decomposition

Triangulation

Combinatorial MethodsSpace Decomposition

Trapezoidal decomposition

Cylindrical decomposition

[LaValle2004]

Combinatorial MethodsVoronoi Decomposition

- Decompose the configuration space with a set of objects {p_n}
- Each object p_k has a region R_k , where all points are closer to this object than the others.

Combinatorial Methods Voronoi Diagram

Voronoi diagram of 196 pseudorandom samples [LaValle2004]

Combinatorial MethodsSummary

- Complete
- Geometric representation of the configuration space is important
- Easily applicable for motion planning with holonomic constraints

Behavior-based MethodGeneral Ideas

- A reactive motion strategy for the whole configuration space
- The complex behavior is a reflex of the sophisticated environment with simple sensing-acting schema and a few internal states

Artificial Potential Fields

- Conservative force and potential field
 - The work is independent of the path
 - Superposition of potential fields by sum

$$U = k_e \frac{Q}{r}, \qquad F = k_e \frac{q_1 q_2}{r^2}$$

$$U = -G\frac{M}{r}, \qquad F = G\frac{m_1 m_2}{r^2}$$

$$U = k \frac{d^2}{2}, \qquad F = kd$$

Artificial Potential Fields

Artificial potential field

$$U(x) = U_a(x) + U_r(x)$$

Attractive potential field

$$\begin{aligned} U_a(x) &= \frac{1}{2} k d_{goal}(x)^2 \\ F_a(x) &= \nabla U_a(x) = k d_{goal}(x) \nabla d_{goal}(x) \end{aligned}$$

Repulsive potential field

$$U_r(x) = \begin{cases} \frac{1}{2} \eta (\frac{1}{d(x)} - \frac{1}{D})^2 & d(x) \le D\\ 0 & d(x) > D \end{cases}$$

$$F_r(x) = \nabla U_r(x) = \begin{cases} -\eta (\frac{1}{d(x)} - \frac{1}{D}) \frac{1}{d^2(x)} \nabla d(x) & d(x) \le D\\ 0 & d(x) > D \end{cases}$$

[Khatib1986]

$$d(x) \le D$$

Artificial Potential Fields

Gradient descent

$$q_0 = q_{start};$$

For (i = 0; F(q_i) \neq 0; ++i)
 $q_{i+1} = q_i + s_i * F(q_i);$

 $-s_i$ is the step size of the iteration i

Artificial Potential Fields

Local minima

Behavior-based MethodArtificial Potential Fields

Combine with space decomposition

Behavior-based MethodArtificial Potential Fields

Global navigating function

[Barraquand1991]

[Quinlan1993]

Behavior-based MethodCombined Behaviors

Combination with simple behaviors

Autonomous Parking

Behavior-based MethodSummary

- Simple motion strategies for the whole configuration space
- A global guidance is required to escape the local minima
- Efficient for local motions

Random Sampling Methods General Ideas

- Explore the configuration space with random samples
- Create a graph in the configuration space which connects the start and goal

Random Sampling Methods Probabilistic Roadmaps (PRM)

· Idea:

- Select a random valid configuration q
- Find the nearest neighbors N_a
- Connect q with N_q
- Algorithm

```
\begin{split} \mathsf{N} \leftarrow \varnothing; \, \mathsf{N} \colon \mathsf{nodes} \\ \mathsf{E} \leftarrow \varnothing; \, \mathsf{E} \colon \mathsf{edges} \\ \mathsf{While}(\mathsf{1}) \\ \mathsf{q} \leftarrow \mathsf{random} \; \mathsf{tree} \; \mathsf{configuration}; \\ \mathsf{N}_{\mathsf{q}} \leftarrow \mathsf{nearest} \; \mathsf{neighbors} \; \mathsf{of} \; \mathsf{q} \; \mathsf{from} \; \mathsf{N}; \\ \mathsf{N} \leftarrow \mathsf{N} \; + \; \mathsf{q} \mathsf{g}; \\ \mathsf{for} \; \mathsf{all} \; \mathsf{n} \; \varepsilon \; \mathsf{N}_{\mathsf{q}} \\ & \mathsf{if} \; \mathsf{unconnected}(\mathsf{q}, \; \mathsf{n}) \; \mathsf{and} \; \mathsf{exists\_path}(\mathsf{q}, \; \mathsf{n}) \\ \mathsf{E} \leftarrow \mathsf{E} \; + \; \mathsf{\{}(\mathsf{q}, \; \mathsf{n}) \mathsf{\}}; \end{split}
```


[Kavraki1996]

Probabilistic Roadmaps (PRM)

- Explicit motion metric is required to connect the configurations
- Can be used as a global strategy, and employ other planning methods for the local connection
- The map can be reused for multiple queries

Rapid-exploring Random Trees (RRT)

- Idea:
 - Select a random configuration q
 - Find the nearest neighbor q_n
 - Create a new configuration from q_n to q

Algorithm:

```
\begin{split} N &\leftarrow q_{start}; \\ E &\leftarrow \mathcal{O}; \\ While(1) \\ q &\leftarrow random \ configuration; \\ q_n &\leftarrow nearest \ neighbor \ of \ q \ in \ N; \\ q_i &\leftarrow create\_state(q, \ q_n, \ q_{goal}); \\ N &\leftarrow N + \{q_i\}; \\ E &\leftarrow E + \{(q_n, \ q_i)\}; \end{split}
```


[LaValle1998]

Rapid-exploring Random Trees (RRT)

RRT Example

Rapid-exploring Random Trees (RRT)

RRT with forward dynamics

Rapid-exploring Random Trees (RRT)

- The tree starts from the initial configuration and grows with bias to the goal configuration
- Does not require explicit motion metric of the configuration space
- Can apply the forwards kinematics/dynamics of nonholonomic vehicles

Random Sampling Methods Weak completeness

- **Resolution complete**: if no solution exists, the algorithm will run forever.
- Probabilistically complete: with infinite samples, the probability of finding an existing solution converges to one.

Random Sampling Methods RRT*

Incremental planning for an optimal solution

Random Sampling Methods Summary

- Generic motion planning methods
- Resolution and probabilistically complete
- Randomness of the results
- Inefficient with certain constraints: narrow passage
- Nearest neighbor search is time consuming

General Graph Search Algorithm

```
\begin{split} N &\leftarrow q_{initial}; \\ E &\leftarrow \mathcal{O}; \\ While(1) \\ q &\leftarrow \text{ select a node from N;} \\ q_{new} &\leftarrow \text{ create a new node from q to } q_{goal}; \\ N &\leftarrow N + \{q_{new}\}: \\ E &\leftarrow E + \{(q,\,q_{new})\}; \\ \text{ if } (q_{goal} \in N) \\ \text{ return success;} \end{split}
```


Breadth-first Search

 Explore all the neighbors in one level, then continue with the next level

Depth-first Search

Explore as far as possible along each branch

Best-first Search (Greedy Search)

Explore the most promising node according to a specified rule

Heuristic Search (A* Search)

- Heuristic cost h: the estimated cost to reach the goal.
- Actual cost g: the sum of the edge weight from the start node.
- Total cost f: the sum of heuristic cost and actual cost.

$$f = h + g$$

Explore the node with the minimum total cost.

Heuristic Search (A* Search)

- f = h + g
 - Frankfurt(300+0)
 - Würzburg(220+121)
 - Mannheim(270+84)
 - Nürnberg(150+230)
 - München (0+400)

Search Methods Heuristic Search (A* Search)

- A* Search Algorithm
 - Node: q
 - Parent node
 - Actual cost
 - Total cost
 - Open set: S_{open}
 - Holds all the nodes waiting for expansion
 - Sorted after total costs
 - Closed set: S_{closed}
 - Holds all the visited nodes
 - Expand node x -> y
 - parent (y) = x
 - actual_cost(y) = actual_cost(x) + actual_cost(x, y)
 - total_cost(y) = actual_cost(y) + heuristic_estimate(y)
 - Construct path
 - Backtrack through parents

```
S_{closed} \leftarrow \emptyset;
S_{open} \leftarrow q_{start};
While (S_{open} \neq \emptyset)
      q \leftarrow pop(S_{open});
       if (q \in S_{closed})
              continue;
       if (q == q_{goal})
              return path(q);
       S_{closed} \leftarrow S_{closed} + \{q\};
       \{q_i\} \leftarrow expand(q);
        S_{open} \leftarrow S_{open} + \{q_i\};
return failed;
```


Search Methods Heuristic Search (A* Search)

- Open Set: the frontier of the exploration. (Only border orange)
- Closed Set: the internal of the exploration area (Text orange).

Heuristic Search (A* Search)

- Admissible condition:
 - The heuristic estimation is always optimistic (not conservative).
 - heuristic_cost(q, goal) ≤ actual_cost(q, goal)
 - A* is optimally efficient when the heuristic is admissible, i.e., takes the minimum number of nodes to find the result.
- Monoton condition (consistent):
 - heuristic_cost(x) ≤ actual_cost(x, y) + heuristic_cost(y)
 - Each node only needs to be evaluated once.

Heuristic Search (A* Search)

- Finding the best heuristic is as difficult as the search problem itself.
- How to create a heuristic
 - Relax one or several constraints in the problem
 - e.g., ignore the obstacles, ignore the kinematics constraints
- How to combine multiple heuristics
 - Example: h₁, h₂
 - $h = max(h_1, h_2)$

Search in Continuous Configuration Space

Infinite number of states

Grid-based discretization

Search in Continuous Configuration Space

- Continuous motion
- Improve the grid discretization

[Dolgov2010]

Hybrid A* Search

- Mapping a continuous configuration to a discrete grid
- Primitive motion: different combinations of control inputs
- Heuristics
 - Actual cost (eg. Reed Shepp)
 - h_1: Grid-based distance with obstacles
 - h_2: Nonholonomic distance without obstacles
 - $f = g + h, h = max(h_1, h_2)$

Hybrid A* Search

Heuristic Search with Space Exploration

- Heuristic from workspace exploration result
- Search step-size adaptation

[Chen2013]

Search Methods Summary

- Heuristic search expand the node with the least total cost:
 - total cost = actual cost + heuristic cost
- Admissible heuristic:
 - heuristic_cost(x, goal) ≤ actual_cost(x, goal)
- Monoton heuristic:
 - heuristic_cost(y) ≤ heuristic_cost(x) + actual_cost(x, y)
- Continuous space:
 - Grid discretization
 - Primitive motions

Path Optimization

- Cost function
 - Efficiency: path length
 - Safety: distance to obstacles
 - Comfort: smoothness of the path
- Methods
 - Newton's method
 - Gradient descent

Trajectory Generation

Speed profile

Path Planning for Autonomous Driving

- Applications
 - Autonomous parking
 - Adaptive cruise control
 - Autonomous park house
- Further aspects
 - Traffic rules
 - Interaction with the traffic
 - Online motion planning

Deep Q Learning

 Learn agent policy to provide best action to take depending on state Agent

State, Reward | Action

Environment

- Executed action provides according reward to support learning
- Neural Network approximates
 Q function

$$NewQ(s,a) = Q(s,a) + \alpha [R(s,a) + \gamma \max Q'(s',a') - Q(s,a)]$$

Reinforcement Learning

References

- [Laumond1998] Jean-Paul Laumond, Ed., Robot Motion Planning and Control. 1998.
- [LaValle2004] Steven LaValle, Ed., Planning Algorithms. 2004.
- [Khatib1986] Oussama Khatib, "Real-Time Obstacle Avoidance for Manipulators and Mobile Robots," The International Journal of Robotics Research, vol. 5, no. 1, pp. 90–98, Spring 1986.
- [Barraquand1991] Jerome Barraquand and Jean-Claude Latombe, "Robot Motion Planning: A Distributed Representation Approach," *The International Journal of Robotics Research*, vol. 10, no. 6, pp. 628–649, Dec. 1991.
- [Quinlan1993] Sean Quinlan and Oussama Khatib, "Elastic Bands: Connecting Path Planning and Control," presented at the IEEE International Conference on Robotics and Automation, 1993, pp. 802–807.
- [Brooks1991] Rodney Brooks, "Intelligence without Representation," *Artificial Intelligence*, vol. 47, pp. 139–159, 1991.
- [Kavraki1996] Lydia Kavraki, Petr Svcstka, Jean-Claude Latombe, and Mark Overmars, "Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces," *IEEE Transactions on Robotics and Automation*, vol. 12, no. 4, pp. 566–580, Aug. 1996.
- [LaValle1998] Steven LaValle, "Rapidly-Exploring Random Trees: A New Tool for Path Planning," Computer Science Dept., Iowa State University, Oct. 1998.
- [Karaman2011] Sertac Karaman and Emilio Frazzoli, "Sampling-Based Algorithms for Optimal Motion Planning," The International Journal of Robotics Research, vol. 30, no. 7, pp. 846–894, Jun. 2011.
- [Dolgov2010] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel, "Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments," *The International Journal of Robotics Research*, vol. 29, no. 5, pp. 485–501, Apr. 2010.
- [Chen2013] Chao Chen, Markus Rickert, and Alois Knoll, "Combining Space Exploration and Heuristic Search in Online Motion Planning for Nonholonomic Vehicles," presented at the IEEE Intelligent Vehicles Symposium, 2013, pp. 1307–1312.

Gereon Hinz

STTech GmbH

Floriansmühlstraße 8 - 80939 München

Tel: 089/905499430

gereon.hinz@sttech.de

www.sttech.de