# Тятя! Тятя! Наши сети притащили мертвеца!

#### Задача 1

Маша услышала про машин лёрнинг и решила, что они и есть та самая Маша, которой этот лёрнинг принадлежит. Теперь она собрала два наблюдения:  $x_1 = 1, x_2 = 2, y_1 = 2, y_2 = 3$  и собирается обучить линейную регрессию  $y = \beta \cdot x$ . Она собирается сделать это тремя способами, и ей нужна ваша помощь!

- 1. Получить теоретическую оценку методом наименьших квадратов.
- 2. Методом градиентного спуска. Она собирается в качестве скорости обучения взять  $\eta=0.1$ . В качестве стартовой точки она хочет использовать  $\beta_0=0$ . Обучение заканчивается после первого шага.
- 3. Методом стохастического градиентного спуска. Все параметры берутся такими же как в предыдущем пункте. Делается два шага. Сначала с первым наблюдением, потом со вторым.

#### Задача 2

Парни очень любят Олю, а Оля любит собирать персептроны и думать по вечерам о их весах и функциях активации. Сегодня она решила разобрать свои залежи из персептронов и как следует

упорядочить их.





нужно подобрать веса так, чтобы он превращал  $x_1=0$  в y=1, а  $x_1=1$  в y=0.

• Для перцепторона



Оля хочет по наблюдениям х подобрать такие веса  $w_i$ , чтобы на выходе получились у.

$$\begin{array}{c|ccccc} x_1 & x_2 & x_3 & y \\ \hline 1 & 1 & 2 & 0.5 \\ \hline 1 & -1 & 1 & 0 \\ \end{array}$$

• У Оли есть несколько вот таких перцептронов с неизвестной функцией активации (надо самому выбирать):



На плоскости проведены две прямые  $x_1 + x_2 = 1$  и  $x_1 - x_2 = 1$ .



Оле нужно собрать нейросетку, которая будет классифицировать объекты с плоскости так, как показано на картинке.

## Задача 3

Попробуйте с помощью нейросеток с минимально возможным числом нейронов описать логические функции, заданные следущими таблицами истиности:

| $\chi_1$ | $\chi_2$ | $x_1 \cap x_2$ |
|----------|----------|----------------|
| 1        | 1        | 1              |
| 1        | 0        | 0              |
| 0        | 1        | 0              |
| 0        | 0        | 0              |

| $x_1$ | $\chi_2$ | $x_1 \cup x_2$ |
|-------|----------|----------------|
| 1     | 1        | 1              |
| 1     | 0        | 1              |
| 0     | 1        | 1              |
| 0     | 0        | 0              |

| $x_1$ | $\chi_2$ | $x_1 XoR x_2$ |
|-------|----------|---------------|
| 1     | 1        | 0             |
| 1     | 0        | 1             |
| 0     | 1        | 1             |
| 0     | 0        | 0             |

Первые два столбика идут на вход, третий получается на выходе. Операция из третьей таблицы называется исключающим или.

### Задача 4

Нарисуйте следущую функцию в виде нейросетки. ¬



#### Задача 5

Дана нейросетка:



- 1. Перепишите её как сложную функцию.
- 2. Запишите эту функцию в матричном виде.
- 3. Предположим, что  $\mathsf{L}(W_1,W_2,W_3)=\frac{1}{2}\cdot(\mathsf{y}-\hat{\mathsf{y}})^2-$  функция потерь, где  $W_\mathfrak{i}-$  веса  $\mathfrak{i}-$ го слоя. Найдите производную функции L по всем весам  $W_\mathfrak{i}.$

#### Задача 6

Изобразите для функции  $f(x,y) = x^2 + xy + (x+y)^2$  граф вычислений. Найдите производные всех выходов по всем входам. Опираясь на граф выпишите частные производные функции f.

#### Задача 7

Функция  $f(t)=rac{e^t}{1+e^t}$  называется сигмоидом. Покажите, что f'(t)=f(t)(1-f(t)).

#### Задача 8

Как-то раз Вовочка решал задачу классификации. С тех пор у него в кармане завалялась нейросеть:



В качестве функции активации используется сигмоид:  $f(t)=\frac{e^t}{1+e^t}$ . Есть два наблюдения:  $x_1=1, x_2=5, y_1=1, y_2=0$ . Скорость обучения  $\gamma=1$ . В качестве инициализации взяты нулевые веса. Как это обычно бывает, Вовочка обнаружил её в своих штанах после стирки и

очень обрадовался. Теперь он собирается сделать два шага стохастического градиентного спуска, используя алгоритм обратного распространения ошибки. Помогите ему.

#### Задача 9

Дана нейросетка:



Для квадратичной функции ошибки  $MSE(W_1,W_2,W_3)=(y-\hat{y})^2$  выпишите все производные в том виде, в котором их было бы удобно использовать для алгоритма обратного распространения ошибки.

#### Задача 10

Та, кому принадлежит машин лёрнинг собирается обучить нейронную сеть для решения задачи регрессии, На вход в ней идёт 12 переменных, в сетке есть 3 скрытых слоя. В пером слое 300 нейронов, во втором 200, в третьем 100.

- а) Сколько параметров предстоит оценить Маше? Сколько наблюдений вы бы на её месте использовали?
- b) Что Маша должна сделать с внешним слоем, если она собирается решать задачу классификации на два класса и получать на выходе вероятность принадлежности к первому классу?
- с) Что делать Маше, если она хочет решать задачу классификации на К классов?