Ungubugyawnoe & 3 no mypry "Metogo ontumzaeniu"

Bunainum crygent zpynnu M80-20915 Konnedarob O.C.

Bapuant 135

Bapuani N135 Vonusedarob

 $f(X) = \chi_1^2 + \chi_2^2 - 4\chi_2 \rightarrow extr$ $n\mu \quad or panurenue : \quad \chi_1 - \chi_2 \leq 2$ $\chi_1^2 + 2\chi_2 \leq -2$

Fran 12. Tena: Metogn pemerus 3 HTT upu orpanurenun Tuna repabenciba

Baganue:

а) Сденать чертём к зручие : построить ограничение , линии уровия сручиние, чина эногрешунов

б) Янашчичении обышать регульрные энтремулы другиции при ограничениях типа керавентва, шпоигух аппарат необходимых и достогочных условий

Истоды решения задачи компейного программирования при ограничениех Типи перавенства

Dano: $f(X) = X_1^2 + X_2^2 - 9X_2 \longrightarrow extr$

 $\begin{array}{c} X_1 - X_2 \le Z \\ X_1^2 + 2X_2 \le -2 \end{array}$

Baganue 1a)

Сделать чергём и задаче: потроить ограничение, мини уровил дручиний, уподать Гочни энтранунов

Leuceuce

Notifional na reptime MDP, zagabaesnoe orpanuremenus: $x_1 - x_2 \le 2$ (1) $x_1^2 + 2x_1 \le -2$ (2)

Opanurenne (1) b zagare oupegenseria uprnoit $x_1-x_2=2$, uposogrusei y_2 Torun

 X_1 X_2 O -2 Z O

MDP b zaquie $\delta qqet$ σγραμινέμο \mathfrak{H} οῦ ηραμοῦ u $\delta qqet$ cogephuate <math>toruy $(0,0)^T$, t. κ. <math>yuu nogitano <math>buu uoopqunot \mathfrak{H} οῦ toruu b coparurenue (1) no. yrae <math>t.s lgpnoe upabent <math>bo: $c-c \le 2$

Opanurenne (2) b zagare zagaëter napadawi $x_i^2 + 2x_2 = -2 = > 2x_2 = -x_i^2 - 2 = >$

=> $x_2 = -\frac{1}{2} \times \frac{1}{2} - 1$, c beputenoù β Torne (0, -1), bethe busy. Kuigën remaisse Toren que norspoluer napadosm \times , \times .

X₁ X₂
-3 -5,5
-2 -3
-1 -1,5
0 -1
1 -1,5

Il DP b zagare Syget orponureno Frois napassolvis u Syget coggruents torny $(0,0)^T$, in upu noquambre noopquiat Froi Tornu b orponurenue (2) nongraetus nebepuoe nepabenito: $0^2 + 2 \cdot 0 \le -2 = 0 \le -2 - nebepuo$

January yp-ue summe ypobre yp-yeur $x_1^2 + x_2^2 - 4x_2 = C = x_1^2 + (x_2^2 - 4x_2 + 4) - 4 = C = x_1^2 + (x_2^2 - 4x_2$

Тоша A=(0;2), гвиноизания безумовным монанным минимумом ф-чем, не принад-

Построим немольно миний уровых при размичних значениях С. Отметим на урафине точин насания мини уровых и МДР: В, С

Other: no spapuny bugno, rto

• умовний монаминий манимин в тогие B = (0, -1) (Тогиа "внимно" насания) • умовний лонаминий манимин в Тогие C = (-2, 7, -4, 7) (Тогиа "внешнего" насания)

Zaganue (S) Аналитически отникть рецульриме энстремумы орупичии при ограничениях Типа перавенства, испанозуя аппарат необходимих и устаточных умовий. Rpeodpaggan orpanureum × bugy: 4; (X) ≤0 $x_i - x_2 \le 2 = x_1 - x_2 - 2 \le 0 = x_1 - x_2 - 2 \le 0$ $X_{1}^{2} + 2X_{2} \le -2 = 7 \times_{1}^{2} + 2X_{2} + 2 \le 0 = 7$ $Y_{2}(X) = X_{1}^{2} + 2X_{2} + 2$ Запинен иманиченную рушини Лагранна: $L(X,\lambda) = X_1^2 + X_2^2 - 4X_2 + \lambda_1(X_1 - X_2 - 2) + \lambda_2(X_1^2 + 2X_2 + 2)$ Запишен необходиные условия экстренциа до-чин при ограничениях чипа нер-ва: $\frac{\partial L}{\partial x_i} = 2x_i + \lambda_i + 2\lambda_2 x_i = 0$ JK = 2 x2-4- /1+2/2=0 $\lambda_1(x_1-x_2-2)=0$ $\lambda_2(X_1^2+2X_2+2)=0$ Pennen no ryrenayo cactery, paranospulas bre aryran Lyraii a) Orpanurenue $\varphi_1(X)=X_1-X_2-2<0$ - naccubro, $\lambda_1=0$ Opanurence $\varphi_1(X) = X_1^2 + 2X_2 + 2 < 0 - naccubro, \lambda_2 = 0$ Torga nacyrun u pennun cièg curtary yp-û: X,=0 X,=2 Т. v. получено 1-е ришение систаны - тогия A с пординатами A=(0;2;0;0). Построим эту тогиу на черчение Cuyrau S) Opanurenue $\varphi_{i}(X)=x_{i}-x_{2}-2=0$ - auxubro Ornanwerul $\varphi_1(X)=X_1^2+2X_1+2=0$ - autubno Гогда получим и решим след систему ур-й: [2x,+1,+21,x,=0 [2x,+1,+21,x,=0 [2x,+1,+21,x,=0 [2x,+1,+21,x=0 12x2-4-1+2/2=0 => d2x2-4-1+2/2=0=> 2x2-4-1+2/2=0=> d2x2-4-1+2/2=0=> x, -x2-2=0 X2 = X1-2 1 X2 = X1-2 X2=X1-2 1x,2+2x2+2=0 $|X_{i}|^{2}+2X_{i}-4+2=0$ $|X_{i}|^{2}+2X_{i}-2=0$ X,=-1=137 12x+1.+2/2x=0 [-2+253+1,+2/2+253/2=0 4+21,+41,+4=0 1-6+213-4-1, +6/2+253/2=0 2x2-4-1121,=0 -6+213-4-1,-61,+2131,=0 $1 X_{2} = -3 + \sqrt{3}$ X = -3+13 X2=-3+13 X = - 1+ B X1=-1+/3' X1=-1+03 12x,+1,+2/2x,=0 (-2-203+1,-21,-21, 53=0 (4+4+4/2+2/1=0 12x2-4-1,+2/2=0 -6-213-4- 11-6/2-24-13=0 -6-2 V37-4-1,-61,-21, V3=0 X=-3-13 X1 = -3- 13 X=-3-13 K12-1-17 $1 \times 1 = -1 - \sqrt{3}$ Lx,=-1-13

Cyranic 2) Ogranurence $\varphi_{\epsilon}(X) = x, -x_2 - 2 < 0 - nanubro, cieg-ro <math>\lambda_{\epsilon} = 0$ Ogranurence $\psi_{\epsilon}(X) = x, {}^{2}+2x_{2}+2 = 0 - cutabro$

Тогда получил и решил след. систему ур-й:

$$\begin{cases} 2x_{1}+2\lambda_{2}x_{1}=0 \\ 2x_{2}-4+2\lambda_{2}=0 \\ \lambda_{1}=0 \\ x_{1}^{2}+2x_{2}+2=0 \end{cases} = \begin{cases} 2x_{1}(1+\lambda_{2})=0 \\ 2x_{2}-4+2\lambda_{2}=0 \\ \lambda_{1}=0 \\ x_{1}^{2}+2x_{2}+2=0 \end{cases} = \begin{cases} 2x_{1}(1+\lambda_{2})=0 \\ 2x_{2}-4+2\lambda_{2}=0 \\ x_{2}^{2}+4+2\lambda_{2}=0 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \\ x_{1}=0 \\ x_{2}=-1 \\ x_{1}=0 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \\ x_{1}=0 \\ x_{2}=-1 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \\ x_{1}=3 \\ x_{1}^{2}+2x_{2}+2=0 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \\ x_{1}=3 \\ x_{1}^{2}+2x_{2}+2=0 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \\ x_{1}=3 \\ x_{1}^{2}+2x_{2}+2=0 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \\ x_{1}=3 \\ x_{1}^{2}+2x_{2}+2=0 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \\ x_{2}=-1 \\ x_{1}=3 \\ x_{1}^{2}+2x_{2}+2=0 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \\ x_{2}=3 \\ x_{1}^{2}+2x_{2}+2=0 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \\ x_{2}=3 \\ x_{1}^{2}+2x_{2}+2=0 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \\ x_{2}=3 \\ x_{1}^{2}+2x_{2}+2=0 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \\ x_{2}=3 \\ x_{1}^{2}+2x_{2}+2=0 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \\ x_{2}=3 \\ x_{1}^{2}+2x_{2}+2=0 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \\ x_{2}=3 \\ x_{1}^{2}+2x_{2}+2=0 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \\ x_{2}=3 \\ x_{1}^{2}+2x_{2}+2=0 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \\ x_{2}=3 \\ x_{1}^{2}+2x_{2}+2=0 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \\ x_{2}=3 \\ x_{1}^{2}+2x_{2}+2=0 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \\ x_{2}=3 \\ x_{1}^{2}+2x_{2}+2=0 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \\ x_{2}=3 \\ x_{1}^{2}+2x_{2}+2=0 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \\ x_{2}=3 \\ x_{1}^{2}+2x_{2}+2=0 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \\ x_{2}=3 \\ x_{1}^{2}+2x_{2}+2=0 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \\ x_{2}=-1 \\ x_{3}=3 \\ x_{1}^{2}+2x_{2}+2=0 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \\ x_{3}=3 \\ x_{3}=-1 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \\ x_{3}=3 \\ x_{3}=-1 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \\ x_{3}=3 \\ x_{3}=-1 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1 \end{cases} = \begin{cases} x_{1}=0 \\ x_{2}=-1$$

Т. о. получено 5-е решение системи - тогие В с поорданочами В= (0,-1;03) Построим эту точну на чертение. Вышина получениие точни:

Torna	Mpolepua yarolini na znan 1;		No lepus Town re unurogresuro \mathcal{U} \mathcal{P} ? $\varphi_{\epsilon}(x) \leq 0$ $u \in \mathcal{Y}_{\epsilon}(x) \leq 0$	
	Yawhur	Bulog	Ушовиг	Bulog
A = (0, 2; 0, 0)	1=0 1=0	Torne xbreeter nangu- goton na manunya um mumuya	4.(A')=-4<0 4.(A')=6>0	Torna ne munaquemur MDP u oTT panoba- baetica
D=(-1+13',-3+13';-14+645, 213'-21	1,00	yero bus ne bunor- nense, Torna otopa- nolubacter		
C=(-1-53,-3-53;-14-653 -253-2)	1,00	точка гвичетих нанди- датом на маненици	4,(C')=0 42(C')=0	Torna yeuragueuut
E=(2,0;-4,0)	1,<0 12=0	Точна является нак- дидатек на мансилиза	4.(D')=0 42(D')=6>0	Точна не принадле- пит м ДР и отбра- иовывается
B=(0,-1,0,3)	λ ₁ =0 λ ₂ >0	Torna abasetar nangugatar na muhu- muhu	P.(E')=-100 P.(E')=0	Точна принадлений М ДР

Tanum odpazon, noue otopanobue octaines gbe Torne: $\beta' = (-1+\sqrt{3}^2, -3+\sqrt{3}^2; 14+6\sqrt{3}^2, 2\sqrt{3}^2-2)$ — Torna aberetes nangugatore na meminique $C = (-1-\sqrt{3}^2, -3-\sqrt{3}^2; -14-6\sqrt{3}^2, -2\sqrt{3}^2-2)$ — Torna aberetes nangugatore na mammingue $\beta = (0, -1; 0, 3)$ — Torna aberetes nangugatore na meminique

Apolepum gostotorium yunobus nephoro nopegna b nangosi uz nangrennam Toren:

Torna	Axiabane	ограничения	3nau /j	Bochog
C=(-1-13',-3-13';-14-613', -2131-2)	4,=0 42=0	чись аймьных ода- начений равно числу перешенных	1,<0	достоточнае умовия 1-ю по- рядил выполнени - Точия умовый мональный мен- синди.
B=(0,-1,0,3)		чило антивнях оулениче- кий меньние чили пере- меньих - достаточ, ум. 1-го пор ядие не выполнени	_	необлодина проверна доста Точних уствий 2-го поряди

Tanun ospazan, normeno: Torna C = (-1-53, -3-53); -14-653, -253-2) - yer. Non. main. p-unu Дия оставистия точии уговерния достаточние умовия энстренция 2-го порядии.

Запишем 2-й дидоференциал до-ими вазранта:

$$\frac{\partial^2 \mathcal{L}}{\partial x_i^2} = 2 + 2\lambda_2 \qquad \frac{\partial^2 \mathcal{L}}{\partial x_i \partial x_2} = \frac{\partial^2 \mathcal{L}}{\partial x_i \partial x_3} = 0 \qquad \frac{\partial^2 \mathcal{L}}{\partial x_i^2} = 2$$

$$d^{2}l = (2+2\lambda_{2})(dx_{1})^{2} + 2(dx_{2})^{2}$$

Запишан диереренциан ограничения У.

$$\frac{\partial \varphi_1}{\partial x_i} = 1 \qquad \frac{\partial \varphi_1}{\partial x_i} = -1 \qquad = > \left[\frac{\partial \varphi_1}{\partial x_i}(X) = 1 \cdot \frac{\partial x_i}{\partial x_i} - 1 \cdot \frac{\partial x_i}{\partial x_i} \right]$$

Banunan zuppepensuai orpanirence 42:

$$\frac{\partial \varphi_2}{\partial x_i} = 2x_i, \quad \frac{\partial \varphi_2}{\partial x_i} = > \left[d\varphi_2(X) = 2x_i dx_i + 2dx_2 \right]$$
Museoner To

имедури чоги В = (0,-1;0,3)-кандидат на миниции, ангивний в чей является orpanurenne φ_2 , upu From $\lambda_2 = 3 \neq 0$, Torga:

d2(B)=8(dx,)2+2(dx,)2, you your dy, (B)=0.dx,+2dx,=0=>2dx,=0.dx,=1

=> naujum: $dx_2 = 0 => d^2 L(B) = 8(dx_1)^2 > 0$ nym $dx_1 \neq 0$

Ciego la Taisono, le Torne B=(0,-1,0,3) bunaisem gosta Torne que bus renamos умовного минимума

Other: opynum f(X) upu organizenies $x_1-x_2 \leq 2$, $x_1^2+2x_2 \leq -2$ uncer:

- умовный монамый манимум в точне С=(-1-13, -3-13), f(С)=48,78461
- умовний монамый минимум в гочи В = (0, -1), f (В) = 5.