LECTURE 4

SOME BASIC MATHEMATICAL CONCEPTS

Mathematical induction

Example 1: Prove that the sum of integers 1 ... n is given by: n(n+1)/2.

Basis step:

Take n = 1.

Then the sum = 1, and 1(1+1)/2 = 1. The summation formula holds trivially.

Induction step:

Induction hypothesis: Assume that the result is true for all integers up to k.

That is, assume that: $\sum_{j=1,k} j = k(k+1)/2$.

We know that $\sum_{j=1,k+1} j = \sum_{j=1,k} j + (k+1)$.

Applying the induction hypothesis to the first term, this gives:

RHS =
$$k(k+1)/2 + (k+1) = (k+1)(k/2+1) = (k+1)(k+2)/2$$

Induction step is proved. Therefore this is the required result.

Example 2: Prove that the sum of squares of integers 1^2 , 2^2 ... n^2 is given by n(n+1)(2n+1)/6.

Example 3: Prove by mathematical induction that an <u>undirected</u> <u>connected</u> <u>acyclic</u> **graph** with n nodes has (n-1) edges.

[Note: Unless it is explicitly stated to be undirected, a graph will be assumed to be <u>directed</u>.]

Example 4: Prove by mathematical induction that a balanced, complete binary tree of height n has 2^{n+1} - 1 nodes.

Mathematical induction is also used in proving the correctness of algorithms.

Quick review

- 1. When is a binary relation transitive, reflexive, symmetric?
- 2. What is a directed, acyclic graph (DAG)?
- 3. When is a binary relation also a function?
- 4. When is a function f: X → Y one-to-one, onto, invertible?

Selection from [CLRS]

A function f(n) is **monotonically increasing** if $m \le n$ implies that $f(m) \le f(n)$.

A function f(n) is **monotonically decreasing** if $m \le n$ implies that $f(m) \ge f(n)$.

A function f(n) is **strictly increasing** if m < n implies that f(m) < f(n).

A function f(n) is **strictly decreasing** if m < n implies that f(m) > f(n).

$$mod(a,n) = a - floor(a/n)*n$$

Note that integer arithmetic is in fact modulo arithmetic.

[BTW: Quick review of <u>2's complement number representation</u> and <u>floating point number representation</u>.]

Polynomial p(n) of degree d: $p(n) = \sum_{j=0,d} a_j n^j$, asymptotically positive if $a_d > 0$.

A function f(n) is polynomially bounded if $f(n) = \Theta(n^k)$ for some constant k.

Miscellaneous

If
$$b^c = a$$
, then $c = log_b a$ [Logarithm of a to base b]

$$log_b a = log_c a / log_c b$$
 [Change of base]

$$\lg(n!) = \Theta(n \lg n)$$

Infinite geometric series: For $0 \le r \le 1$, $1 + r + r^2 + r^3 \dots = 1/(1-r)$

Fibonacci numbers (or series)

$$F_0 = 0, \, F_1 = 1, \, F_k = F_{k\text{-}1} + F_{k\text{-}2} \quad \text{ for } k \geq 2.$$