Математические пакеты программ.

Методические указания к выполнению лабораторных работ

Оглавление

Лабораторная работа №1. Графики	2
Цель работы	2
Задание на лабораторную работу	2
Часть 1. Python	2
Часть 2. Matlab	2
Часть 3. Визуализация трехмерных объектов в MatLab	2
Варианты заданий	4
Задание 1	4
Задание 2	4
Задание 3	6
Требования к оформлению отчета	7
Лабораторная работа №2. Проверка статистических гипотез	8
Цель работы	8
Справочная информация	8
Задание на лабораторную работу	9
Часть 1. Matlab	9
Часть 2. Python	10
Варианты заданий	10
Контрольные вопросы	11
Требования к оформлению отчета	11
Лабораторная работа №3. Регрессионный анализ	12
Цель работы	12
Задание на лабораторную работу	12
Часть 1. Однофакторный регрессионный анализ в Python	12
Часть 2. Линейный многофакторный регрессионный анализ в Matlab	12
Часть 3. Нелинейный многофакторный регрессионный анализ в Matlab	13
Варианты заданий	13
Задание 1	13
Задание 2	14
Задание 3	16

Лабораторная работа №1. Графики

Цель работы

Знакомство с подсистемами визуализации данных пакета MatLab и библиотеки matplotlib языка Python на примере построения геометрических объектов и решения нелинейных уравнений.

Задание на лабораторную работу

Часть 1. Python

Необходимо разработать программу на языке Python (версии 3.4.1 или более поздней) для отображения графика функции или системы функций в соответствии с вариантом, указанным в разделе «Задание 1». Для построения графика необходимо использовать модуль matplotlib, математические функции и константы доступны в модулях math, numpy. Значения коэффициентов a, b, c и d заданной по варианту математической функции должны считываться из внешнего файла, представленного в формате TSV (Tab Separated Values).

Для обозначения координатных осей и заголовка координатного пространства использовать команды системы верстки LaTeX.

Часть 2. Matlab

В этой части работы необходимо выполнить отделение корней с использованием графической оценки в соответствии с вариантом, указанным в разделе «Задание 2». Визуализация осуществляется с использованием средств MatLab.

Необходимо создать три координатные плоскости. В нечетных вариантах плоскости располагаются горизонтально, в четных – вертикально. Во всех плоскостях определить прямоугольную систему координат. Построить графическое отображение по заданным нелинейным уравнениям. Обозначить с помощью кругового маркера и текстового объекта полученные решения. Изменить свойства всех созданных графических объектов (текстовых обозначений, линий, координатных плоскостей или графических окон) с помощью командной строки.

Для обозначения координатных осей и заголовка координатного пространства использовать команды системы верстки LaTeX.

Часть 3. Визуализация трехмерных объектов в MatLab

Необходимо построить поверхность, заданную уравнением в соответствии с вариантом задания. Варианты приведены в разделе «Задание 3».

При выполнении третьего задания свойства объектов графического окна задаются с помощью команд, вводимых в командном окне MatLab, а наиболее подходящая точка обзора задается с помощью инструментов панели Camera. Необходимо вывести цветовую шкалу в графическое окно и координатные оси внутри координатного пространства с помощью прямых линий синего цвета толщиной 1 пункт. При построении поверхности скрыть линии, соединяющие узловые точки поверхности, и задать плавный переход между цветами палитры. Фон координатного пространства совпадает с фоном графического окна. Значения вычисленных параметров вывести в заголовке координатного пространства, используя функцию num2str ().

Для обозначения координатных осей и заголовка координатного пространства использовать команды системы верстки LaTeX.

Варианты заданий

Задание 1

Символами a, b, c и d обозначены параметры; y — зависимая переменная (значение функции); x — независимая переменная (аргумент функции).

Номер задания вычисляется как остаток от деления на 15 порядкового номера по списку в журнале. Если остаток равен нулю, необходимо брать последнее задание.

1.
$$y = ax^5 + bx^2 + cx + d$$

$$2. \quad y = a\sin(bx+c)$$

3.
$$y = tg(ax^2 + bx + c)$$

$$4. \quad y = a \ln(b + cx)$$

5.
$$y = a \ln \frac{x}{b+cx}$$

$$6. \quad y = \log_d(ax^2 + bx + c)$$

7.
$$v = d^{ax^2 + bx + c}$$

8.
$$y = \log_a \log_b (cx + d)$$

$$9. \quad y = \frac{1}{a \ln|bx + c|}$$

10.
$$y = a \sin bx + c \sin dx$$

11.
$$y = ax^2 \sin bx$$

$$12. \quad y = a \frac{\sin(bx)}{x} + c$$

13.
$$ax^2 + by^2 = c^2$$

14.
$$\begin{cases} y = \sqrt{1 - (|x| - 1)^2} \\ y = \arccos(1 - |x|) - \pi \end{cases}$$

15.
$$y = ax^3 + bx^2 + cx + d$$

Задание 2

Таблица 1

Νō	2.1	2.2	2.3
1	$3x^4 + 4x^3 - 12x^2 - 5 = 0$	$ln(x)+(x+1)^3=0$	sin(x+1)-y=1.2 $2x+cos(y)=2$
2	$2x^3-9x^2-60x+1=0$	x·2 ^x =1	$tg(xy+0.4) = x^2$ $0.6x^2 + 2y^2 = 1$
3	$x^4-x-1=0$	x+cos(x)=1	cos(x-1)+y=0.5 x-cos(y)=3
4	$2x^4 - x^2 - 10 = 0$	x+lg(1+x)=1.5	sin(x)+2y=2 cos(y-1)+x=0.7
5	$3x^4 + 8x^3 + 6x^2 - 10 = 0$	lg(2+x)+2x=3	cos(x-1)+y=1 sin(y)+2x=1.6

6	$x^4 - 18x^2 + 5x - 8 = 0$	2 ^x +5x-3=0	sin(x+1)-y=1 2x+cos(y)=2
7	$x^4 + 4x^3 - 12x^2 + 1 = 0$	$5^{x}+3x=0$	sin(x-y)-xy=0 $x^2-y^2=0.75$
8	$x^4 - x^3 - 2x^2 + 3x - 3 = 0$	3e ^x =5x+2	sin(x+y)-1.5xy=0 $x^2+y^2=1$
9	$3x^4 + 4x^3 - 12x^2 + 1 = 0$	5 ^x =6x+3	$\sin(x-y)-xy+1=0$ $x^2-y^2=0.75$
10	$3x^4 - 8x^3 - 18x^2 + 2 = 0$	2e ^x +5x-6=0	$y=1/(x^{3/2}+1)$ $x^2+y^2=9$
11	$2x^4 - 8x^3 + 8x^2 - 1 = 0$	2arctg(x)-x+3=0	$x^{2}+y^{2}=9$ y=1+ e ^{-x}
12	$2x^4 + 8x^3 + 8x^2 - 1 = 0$	$(x-3) \cdot \cos(x) = 1$	$x^{2}+y^{2}=5$ y=1-2 e ^{-xy}
13	$x^4-4x^3-8x^2+1=0$	x ^x = 20-9x	$x^{2}+y^{2}=5$ y= e ^{-xy}
14	$2x^4-9x^3-60x^2+1=0$	$x \cdot \lg(x) = 1$	sin(x-0.6)-y=1.6 3x-cos(y)=0.9
15	$x^5 + x^2 - 5 = 0$	tg³x=x-1	$x^{2}+y^{2}=6$ y= e ^{-x}
16	$3x^4 + 4x^3 - 12x^2 - 7 = 0$	5 ^x =1+e ^{-x}	$x^{3} + y^{3} = 6$ $y = e^{-x}$
17	$3x^4 + 8x^3 + 6x^2 - 11 = 0$	5 ^x =3-e ^x	$x^4 + y^4 = 5$ $y = e^{-x}$
18	x ⁴ -18x ³ -10=0	$arctg(x^2+1/x)=x$	$x^{2}+y^{2}=1$ $\sin(x+y)=1.2x$
19	$3x^4 - 8x^3 - 18x^2 + 2 = 0$	$tg(0.55x+0.1)=x^2$	$x^{2}+y^{2}=1$ $\sin(x+y)=0.2+x$
20	x ⁴ -18x -10=0	$5^{x}-6x = 7$	$x+\cos(y-1)=0.8$ y- $\cos(x)=2$
21	$x^4 + 18x - 10 = 0$	$5^{x}-6x = 3$	$x^{2}+y^{2}=1$ $x^{3}+y^{3}=2$
22	$x^4 + 18x^3 - 6x^2 + x - 10 = 0$	$5^{x} = 1 + e^{-2x}$	$x^{2}+y^{2}=1$ x - $y^{3}=0.5$
23	$x^5 + 12x^3 - 6x^2 + x - 10 = 0$	7^{x} -6x =2	$x^{3} + y^{3} = 8$ $y = x^{3/2}$
24	$3x^5 - 8x^3 - 18x^2 + 2 = 0$	$5^{x} = 2 + e^{-2x}$	$x^{3}+y^{3}=8$ $y=1+x^{3/2}$
25	x ³ -18x -10=0	x·2 ^x =3	$x^{3}+y^{3}=8$ $y=1-x^{3/2}$

Задание 3

Номер задания вычисляется как остаток от деления на 10 порядкового номера по списку в журнале. Если остаток равен нулю, необходимо брать последнее задание.

- 1. Построить двуполостный гиперболоид, заданный с помощью канонического уравнения $x^2/a^2-y^2/b^2+z^2/c^2=-1$. Величины a=1, b=2, c=1 и $h\in [-2-b;-b]\cup [b;b+2]$. Повернуть поверхность относительно оси x на 45°. Задать цветовую палитру colorcube. Исследовать влияние значений величин a, b и c, угла поворота относительно оси x и цветовой палитры на вид поверхности в координатном пространстве.
- 2. Построить эллиптический параболоид, заданный с помощью канонического уравнения $y^2/p + z^2/q = 2x$, где p = 3 и q = 1. Высота параболоида h = 3. Повернуть поверхность относительно оси z на 60° . Задать цветовую палитру pink. Исследовать влияние значений коэффициентов p и q, а также высоты параболоида и цветовой палитры на вид поверхности
- 3. Построить *гиперболический параболоид*, заданный с помощью канонического уравнения $y^2/p-z^2/q=2x$, где p=1.5 и q=3. Высота параболоида h=8. Задать цветовую палитру *hsv* и ориентировать цвета поверхности по оси x. Исследовать влияние значений коэффициентов p и q, а также высоты параболоида и цветовой палитры на вид поверхности.
- 4. Построить конус второго порядка, заданный с помощью канонического уравнения $x^2/a^2-y^2/b^2+z^2/c^2=0$, где a=1, b=2, c=1.5. Высота конуса h=5. Задать цветовую палитру jet и ориентировать цвета поверхности по оси y. Повернуть поверхность относительно оси x на 45°. Исследовать влияние значений коэффициентов уравнения и палитры цветов на вид поверхности.
- 5. Построить *однополостный гиперболоид*, заданный с помощью канонического уравнения x^2/a^2 - y^2/b^2 + z^2/c^2 =1, где a = 2, b = 1.5 и c = 3. Высота гиперболоида h = 5. Повернуть поверхность относительно оси z на 30°. Задать цветовую палитру *аитит*. Ориентировать цвета поверхности по оси y. Исследовать влияние значений коэффициентов уравнения и палитры цветов на вид поверхности.
- 6. Построить двуполостный гиперболоид, заданный с помощью канонического уравнения $x^2/a^2 + y^2/b^2 + z^2/c^2 = -1$, где a = 1.5, b = 2.5, c = 1 и $h \in [-3-a;-a] \cup [a; a+3]$. Повернуть поверхность относительно оси z на угол 60°. Задать цветовую палитру flag. Ориентировать цвета поверхности по оси x. Исследовать влияние значений коэффициентов уравнения и палитры цветов на вид поверхности.
- 7. Построить эллиптический параболоид, заданный с помощью канонического уравнения x^2 $/p + z^2/q = 2y$, где p = 1 и q = 2. Высота параболоида h = 4. Повернуть поверхность относительно оси x на 30°. Задать цветовую палитру bone. Ориентировать цвета поверхности по оси y. Исследовать влияние значений коэффициентов p и q, а также высоты параболоида и цветовой палитры на вид поверхности.
- 8. Построить гиперболический параболоид, заданный с помощью канонического уравнения $x^2/p + z^2/q = 2y$, где p = 3 и q = 2. Высота параболоида h = 10. Задать цветовую палитру winter и ориентировать цвета поверхности по оси y. Исследовать влияние значений коэффициентов p u q, а также высоты параболоида и цветовой палитры на вид поверхности.

- 9. Построить конус второго порядка, заданный с помощью канонического уравнения $-x^2/a^2 + y^2/b^2 + z^2/c^2 = 0$, где a = 2, b = 1.5, c = 3. Высота конуса h = 4. Задать цветовую палитру spring и ориентировать цвета поверхности по оси x. Повернуть поверхность относительно оси z на 60° . Исследовать влияние значений коэффициентов уравнения и палитры цветов на вид поверхности.
- 10. Построить в координатном пространстве эллипсоид, заданный с помощью канонического уравнения $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$, где a = 3, b = 1.5, c = 1 Повернуть поверхность относительно оси y на 25° . Задать стандартную цветовую палитру cool и ориентировать цвета по оси y. Переместить центр эллипсоида в точку O(1;-1;0). Исследовать влияние значений полуосей и цветовой палитры на вид эллипсоида.

Требования к оформлению отчета

- 1. Титульный лист
- 2. Цель работы
- 3. Задание
- 4. Результат выполнения работы
- 5. Исходный код программы на языке MatLab и на языке Python
- 6. Выводы

Лабораторная работа №2. Проверка статистических гипотез

Цель работы

Проверка гипотезы о соответствии распределения экспериментальных данных нормальному закону. Изучение критерия Хи-квадрат (критерия Пирсона) и его реализаций в Matlab и Python.

Справочная информация

Осуществить проверку гипотезы о соответствии статистического и теоретического распределений в Matlab можно, например, с помощью функции **chi2gof**. Данная функция в простейшем случае принимает на вход всего один параметр – вектор наблюдаемых частот. В этом случае проверяется гипотеза о соответствии экспериментальных данных нормальному закону. Для проверки гипотезы о соответствии экспериментальных данных произвольному закону распределения необходимо указать также вектор частот, ожидаемых в соответствии с выбранным законом распределения (вектор теоретических частот).

Пример 1:

```
% Проверка гипотезы о соответствии экспериментальных данных распределению Пуассона
% с указанием наблюдаемых и ожидаемых частот.
% Задаем центры интервалов, на которые разбиты значения случайной величины:
bins = 0:5;
% Задаем наблюдаемые (экспериментальные, статистические) значения частот попадания
случайной величины в заданные интервалы:
obsCounts = [6 16 10 12 4 2];
% Общее число наблюдений (объем выборки):
n = sum(obsCounts);
% По наблюдаемым значениям находим оценку параметра распределения Пуассона:
lambdaHat = sum(bins.*obsCounts) / n;
% Вычисляем ожидаемые (теоретические) частоты попадания случайной величины в заданные
интервалы с помощью функции плотности вероятности Пуассона:
expCounts = n * poisspdf(bins,lambdaHat);
% Проверяем гипотезу о соответствии экспериментальных данных Пуассоновскому
распределению:
 [h,p,st] = chi2gof(bins,'ctrs',bins,'frequency',obsCounts, ...
                          'expected', expCounts, 'nparams', 1)
```

Параметр 'ctrs' позволяет задать центры интервалов, на которые разбиты результаты измерения случайной величины. Параметр 'frequency' используется для указания вектора наблюдаемых частот попадания случайной величины в интервалы. В свою очередь параметр 'expected' задает вектор теоретических частот попадания случайной величины в заданные интервалы в соответствии с выбранным законом распределения. Параметр 'nparams' указывает количество ограничений, накладываемых на случайную величину (используется при вычислении числа степеней свободы). Обычно число ограничений равно числу параметров выбранного закона распределения. Поскольку у Пуассоновского распределения всего один параметр λ , то в приведенном примере значение 'nparams' равно 1.

По умолчанию функция chi2gof следит за тем, что бы частота попадания случайной величины в каждый из интервалов была не меньше 5. Интервалы с меньшим числом попаданий объединяются с соседними интервалами, что является целесообразным для повышения точности критерия Пирсона. Управлять этим поведением функции chi2gof можно с помощью параметра 'emin', который позволяет задать минимальную частоту попадания в интервал, начиная с которой соседние интервалы не будут объединяться. Указав ноль в качестве значения параметра 'emin' можно полностью отключить алгоритм, избавляющийся от интервалов с малым числом попавших в них значений.

Пример 2:

```
bins=0:4;
x1 = [3 10 22 13 2];
M = sum(bins.*x1) / 50;
s = sqrt(sum(bins.^2.*x1) / 50 - M^2)
x1_expected = 50 * normpdf(bins, M, s)
[h,p,st] = chi2gof(bins, 'ctrs', bins, 'frequency', x1, 'expected', x1_expected, 'nparams', 2, 'emin', 0)
```

В Python для проверки гипотезы по критерию Хи-квадрат необходимо воспользоваться пакетом scipy. Функция scipy.stats.chisquare позволяет проверить соответствие наблюдаемых экспериментальных данных теоретическим значениям. В отличие от Matlab, если теоретические значения не указаны, в scipy подразумевается проверка гипотезы о равномерном распределении.

Пример 3:

```
from scipy.stats import chisquare chisquare([5, 24, 40, 19, 3], f exp=[5.34, 24.2, 39.9, 24.2, 5.4], ddof=2)
```

Параметр f_exp задает вектор теоретических частот, а параметр ddof указывает количество дополнительных ограничений, которые должны учитываться при вычислении числа степеней свободы распределения Хи-квадрат.

Задание на лабораторную работу

Часть 1. Matlab

Интервальный статистический ряд представляет собой способ описания случайной величины, когда указывается число попаданий m_i случайной величины X в фиксированные интервалы I_i .

В соответствии с вариантом задан интервальный статистический ряд. По заданному ряду необходимо:

- построить статистическое распределение экспериментальных данных в виде гистограммы;
- произвести её выравнивание теоретической плотностью нормального распределения;
- проверить гипотезу о соответствии статистического и теоретического распределений.

Порядок выполнения задания:

- 1) Найти статистические вероятности попаданий значений случайной величины в интервалы I_i , i = 1..7 по заданному числу попаданий m_i (таблица 2).
- 2) Построить гистограмму распределения экспериментальных данных.
- 3) Найти теоретическую плотность нормального распределения в соответствии с методом моментов. Полученную кривую нанести на гистограмму распределения.
- 4) Проверить гипотезу о соответствии статистического и теоретического распределений (т.е. гипотезу о нормальном распределении случайной величины) методом К. Пирсона при уровне значимости:
 - а) $\alpha = 0.025 для четных вариантов;$
 - б) $\alpha = 0.05 для$ нечетных вариантов.

Алгоритм проверки гипотезы о соответствии статистического и теоретического распределений необходимо реализовать самостоятельно с использованием вычислительных возможностей среды Matlab. Использование готовых функций, напр. chi2gof(...), не допускается.

Часть 2. Python

Используя функцию chisquare из модуля stats пакета scipy (scipy.stats.chisquare) осуществить проверку результатов, полученных в Matlab.

Варианты заданий

Таблица 2 – Экспериментальные данные

	<u>№</u>		Инт	гервальный	статистиче	еский ряд		
	I_i	0; 0,25	0,25; 0,5	0,5; 0,75	0,75; 1	1; 1,25	1,25; 1,5	1,5; 1,75
1	m_i	5	13	22	28	19	10	3
	I_i	-2; -1	-1; 0	0; 1	1; 2	2; 3	3; 4	4; 5
2	m_i	3	15	23	27	20	11	1
2	I_i	0; 0,5	0,5; 1	1; 1,5	1,5; 2	2; 2,5	2,5; 3	3; 3,5
3	m_i	1	12	25	30	21	9	2
4	I_i	0; 0,1	0,1; 0,2	0,2; 0,3	0,3; 0,4	0,4; 0,5	0,5; 0,6	0,6; 0,7
4	m_i	3	16	22	27	15	11	6
5	I_i	0; 1	1; 2	2; 3	3; 4	4; 5	5; 6	6; 7
3	m_i	8	12	22	22	20	10	6
6	I_i	-3; -2	-2; -1	-1; 0	0; 1	1; 2	2; 3	3; 4
0	m_i	1	15	33	26	16	7	2
7	I_i	-0,5; 0	0; 0,5	0,5; 1	1; 1,5	1,5; 2	2; 2,5	2,5; 3
,	m_i	2	10	29	30	21	7	1
8	I_i	-0,2; -0,1	-0,1; 0	0; 0,1	0,1; 0,2	0,2; 0,3	0,3; 0,4	0,4; 0,5
	m_i	6	12	22	27	18	11	4
9	I_i	0; 1	1; 2	2; 3	3; 4	4; 5	5; 6	6; 7
	m_i	4	12	27	23	21	10	3
10	I_i	0; 0,25	0,25; 0,5	0,5; 0,75	0,75; 1	1; 1,25	1,25; 1,5	1,5; 1,75
	m_i	2	10	30	29	16	10	3
11	I_i	-5; -4	-4; -3	-3; -2	-2; -1	-1; 0	0; 1	1; 2
11	m_i	4	11	31	26	16	7	5
12	I_i	-2,5;-2	-2; -1,5	-1,5; -1	-1; -0,5	-0,5; 0	0; 0,5	0,5; 1
12	m_i	3	11	29	26	22	7	2
13	I_i	-0,1; 0	0; 0,1	0,1; 0,2	0,2; 0,3	0,3; 0,4	0,4; 0,5	0,5; 0,6
13	m_i	5	18	22	21	15	13	6
14	I_i	0; 0,5	0,5; 1	1; 1,5	1,5; 2	2; 2,5	2,5; 3	3; 3,5
14	m_i	8	12	20	19	21	13	7
15	I_i	0; 1	1; 2	2; 3	3; 4	4; 5	5; 6	6; 7
13	m_i	14	14	20	20	17	12	3
16	I_i	-1,5;-1	-1; -0,5	-0,5; 0	0; 0,5	0,5; 1	1; 1,5	1,5; 2
10	m_i	5	11	16	20	21	13	14
17	I_i	0; 0,1	0,1; 0,2	0,2; 0,3	0,3; 0,4	0,4; 0,5	0,5; 0,6	0,6; 0,7
	m_i	7	19	21	23	15	11	4
18	I_i	-1,5; -1	-1; -0,5	-0,5; 0	0; 0,5	0,5; 1	1; 1,5	1,5; 2
	m_i	5	11	16	26	21	14	7
19	I_i	-2; -1	-1; 0	0; 1	1; 2	2; 3	3; 4	4; 5

	m_i	7	14	21	25	18	12	3
20	I_i	0; 1	1; 2	2; 3	3; 4	4; 5	5; 6	6; 7
20	m_i	2	10	25	23	21	12	7
21	I_i	−5 ; −4	-4; -3	-3; -2	-2; -1	-1; 0	0; 1	1; 2
21	m_i	6	9	27	25	16	10	7
22	I_i	-1,5;-1	-1; -0,5	-0,5; 0	0; 0,5	0,5; 1	1; 1,5	1,5; 2
22	m_i	7	11	22	20	21	10	9
23	I_i	-0,1; 0	0; 0,1	0,1; 0,2	0,2; 0,3	0,3; 0,4	0,4; 0,5	0,5; 0,6
23	m_i	2	16	22	30	15	14	1
24	I_i	-1,5;-1	-1; -0,5	-0,5; 0	0; 0,5	0,5; 1	1; 1,5	1,5; 2
27	m_i	3	13	14	28	20	17	5
25	I_i	-3; -2	-2; -1	-1; 0	0; 1	1; 2	2; 3	3; 4
23	m_i	4	12	30	29	13	10	2
26	I_i	-0,3;-0,2	-0,2;-0,1	-0,1; 0	0; 0,1	0,1; 0,2	0,2; 0,3	0,3; 0,4
20	m_i	2	14	25	27	17	11	4
27	I_i	0; 0,25	0,25;0,5	0,5; 0,75	0,75; 1	1; 1,25	1,25; 1,5	1,5;1,75
21	m_i	2	17	22	28	20	10	1
28	I_i	-3; -2,5	-2,5;-2	-2; -1,5	-1,5;-1	-1; -0,5	-0,5; 0	0; 0,5
20	m_i	5	11	17	25	19	18	5
29	I_i	-0,25; 0	0; 0,25	0,25; 0,5	0,5; 0,75	0,75; 1	1; 1,25	1,25; 1,5
2)	m_i	4	15	27	23	19	11	1
30	I_i	-1; -0,5	-0,5; 0	0; 0,5	0,5; 1	1; 1,5	1,5; 2	2; 2,5
50	m_i	4	12	18	24	23	14	5

Контрольные вопросы

В процессе защиты лабораторной работы преподавателем могут быть заданы вопросы для проверки теоретических знаний студента о следующих понятиях математической статистики:

- Уровень значимости статистической гипотезы
- Ошибки первого и второго рода
- Функция распределения, функция плотности вероятности случайной величины
- Параметры законов распределения случайных величин
- Гауссовское (нормальное) распределение, его параметры, вид функции плотности вероятности.

Требования к оформлению отчета

- 1. Титульный лист
- 2. Цель работы
- 3. Задание
- 4. Результат выполнения работы
- 5. Исходный код программы на языке MatLab и на языке Python
- 6. Выводы

Лабораторная работа №3. Регрессионный анализ

Цель работы

Знакомство с методами однофакторного и многофакторного регрессионного анализа в MatLab, а также с использованием библиотеки scikit-learn языка Python.

Задание на лабораторную работу

Часть 1. Однофакторный регрессионный анализ в Python

На основе заданного массива данных:

- построить уравнение регрессии в виде алгебраического полинома третьей степени;
- проверить адекватность уравнения регрессии;
- проверить значимость коэффициентов регрессии;
- отобразить на графике алгебраический полином с найденными коэффициентами.

Порядок выполнения задания:

- 1. Составить систему нормальных уравнений, используя массив экспериментальных данных в соответствии с вариантом, указанным в разделе «Задание 1».
- 2. Найти оценки коэффициентов регрессии посредством решения системы нормальных уравнений.
- 3. Проверить адекватность построенного уравнения регрессии экспериментальным данным по критерию Фишера при уровне значимости $\alpha = 0.05$.
- 4. Проверить значимость коэффициентов регрессии по критерию Стьюдента при таком же уровне значимости.
- 5. В случае выявления незначимых коэффициентов, исключить их из уравнения регрессии. Повторно проверить адекватность уравнения регрессии после исключения незначимых коэффициентов.

Часть 2. Линейный многофакторный регрессионный анализ в Matlab

На основе заданного массива данных в соответствии с вариантом, указанным в разделе «Залание 2»:

• построить уравнение регрессии в виде линейного алгебраического полинома от двух переменных:

$$y(x_1, x_2) = b_0 + b_1 x_1 + b_2 x_2;$$

- проверить адекватность уравнения регрессии;
- проверить значимость факторов регрессии.

Расчеты произвести в матричной форме.

Порядок выполнения задания:

- 1. Выполнить центрирование факторов.
- 2. Составить матричное уравнение с вектором неизвестных оценок коэффициентов регрессии.
- 3. Найти оценки коэффициентов регрессии посредством решения матричного уравнения.
- 4. Проверить адекватность построенного уравнения регрессии экспериментальным данным по критерию Фишера при уровне значимости $\alpha = 0.05$;
- 5. Выполнить селекцию факторов по критерию Стьюдента при таком же уровне значимости.
- 6. Повторно проверить адекватность уравнения регрессии после исключения незначимых факторов.

Часть 3. Нелинейный многофакторный регрессионный анализ в Matlab

На основе заданного массива данных в соответствии с вариантом, указанным в разделе «Залание 3»:

- построить уравнение регрессии в виде <u>линейного алгебраического полинома от двух переменных</u>;
- проверить адекватность уравнения регрессии;
- в случае если уравнение регрессии в виде линейного алгебраического полинома окажется неадекватным исходным данным, построить уравнение регрессии в виде неполного квадратичного полинома:

$$y(x_1, x_2) = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_1 x_2,$$

после чего заново проверить адекватность уравнения регрессии;

• проверить значимость факторов регрессии.

Порядок выполнения задания:

- 1. Построить уравнение регрессии в виде линейного алгебраического полинома от двух переменных.
- 2. Проверить адекватность построенного уравнения регрессии экспериментальным данным по критерию Фишера при уровне значимости $\alpha = 0.05$.
- 3. В случае неадекватности линейного уравнения построить уравнение регрессии в виде неполного квадратичного полинома от двух переменных.
- 4. Проверить адекватность построенного уравнения регрессии экспериментальным данным по критерию Фишера при уровне значимости $\alpha = 0.05$.
- 5. Выполнить селекцию факторов по критерию Стьюдента при таком же уровне значимости.
- 6. Повторно проверить адекватность уравнения регрессии после исключения незначимых факторов.

Варианты заданий

Задание 1

Таблица 1

№	Массив экспериментальных данных										
1	x	-2,5	-1	0,5	0	1	1,5	3			
I	у	39	10	1	3	1	-2	-18			
2	X	-2,5	-1	0,5	0	1	1,5	3			
2	y	-9	10	2	5	0	2	36			
3	х	-4	-2	-1	0	2	3	4			
	y	-5	14	8	1	5	28	70			
4	X	-3	-2	0	0,5	1	2	4			
4	y	-59	-22	-6	-5	-4	10	119			
5	X	-3	-2	0	1	2	3	4			
3	y	-15	-8	-2	2	12	30	55			
6	x	-3	-2	-1	0	2	3	4			
U	y	-92	-26	3	10	6	18	58			
7	Х	-2	-1	0	1	2	3	4			
/	y	-11	1	1	-3	-4	1	20			
8	X	-2	-1	0	1	2	3	4			
O	y	-29	3	5	5	1	-1	6			
9	х	-5	-3	-2	-1	0	1	2			
J	y	17	27	20	9	2	6	25			

10	X	-3	-1	0		1		2	3	4
10	y	-67	-4	2		1		-2	-1	8
	x	-2	-1	0		1		2	3	4
11	y	23	8	2		0		-4	-14	-42
	x	-3	-1	0		1		2	3	4
12	y	-94	-11	0		4		14	41	97
4.0	x	-2	-1	0		1		2	3	4
13	y	-36	1	10)	4		-7	-7	10
	x	-3	-2	0	<u> </u>	1		2	3	4
14	y	-95	-42	5		6		2	-4	-3
	x	-2	-1	0		1		2	3	5
15	y	14	17	10)	4		6	19	101
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-3	-2	1	2	' '	3	4	5	6
16	y	-12	2	-3	-2		11	44	105	185
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-3	-2	-1	1		2	3	4	5
17	y	71	21	4	1		-8	-36	- 95	-202
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-2	-1	0	1		2	3	4	5
18	y	-28	-23	-20	-17		-12	7	46	104
	-	-20	-2.3	0	-3		2	3	4	5
19	x	-2 -44			-84		-13	24	96	221
	y	-44	-32 -2	-32			1			4
20	X			-1	0			2	3	
	у	71	36	20	17		16	3	-36	-109
21	х	-3	-2	-1	1		2	3	4	5
	у	-15	0	5	-3		-1	15	50	104
22	х	-5	-4	-3	-2		-1	0	2	3
	у	-70	-28	-6	4		7	4	17	49
23	X	-3	-2	-1	1		2	3	4	5
	У	47	16	2	1		1	-9	-34	-74
24	x	-4	-3	-2	0		-1	2	3	4
	У	-109	-54	-18	3		-2	-3	2	19
25	X	-2	-1	0	1		2	3	4	5
	у	9	-1	1	1		-12	-45	-112	-235
26	X	-1	-3	0	-2		1	2	3	4
20	y	6	-12	4	1		2	8	22	54
27	X	-3	-1	-2	0		1	4	3	2
27	y	-101	-3	-37	5		2	37	4	-3
28	X	-3	-4	-1	3		2	4	5	1
20	y	57	91	31	3		24	-34	-96	29
29	X	-4	-3	-1	-2		0	1	3	2
2)	y	-112	-61	-11	-25		5	-5	13	0
30	X	-4	-3	1	-2		-1	2	3	4
30	y	-35	-6	-7	6		8	-6	5	37
					•					

Задание 2

Таблица 2

№	Массив экспериментальных данных									
	x_1	2,1	2,8	3,5	4	5	5,5			
1	x_2	5	4	3,1	3	2	1			
	y	2,5	6,5	10	11,8	17	19,5			
	x_1	5	6	7	4	2	1			
2	x_2	1,5	1,1	0,5	1	0	-1			
	v	26,7	32	37	22,2	13	8			

	x_1	4	2	0	1	3	-1
3		2,5	3	4	1	1,2	2
3	$\frac{x_2}{y}$	6,2	5	4,8	0,2	7	0
	$\begin{array}{c c} y \\ \hline x_1 \end{array}$	0,5	1	2	4	3,5	-1
4		0,3	1	1.5	2	2.5	
4	<i>x</i> ₂	0,2	5	1,5 8,8	15,2	2,5 17	1
	y	1	2	0,0			2
5	x_1	-1	0	3 1,5	2	4,5 3	-2 -2
3	<i>x</i> ₂	9,2	10,7	1,3	15,2	14,6	-2 -1
	y	9,2	10,7	0	13,2		-1 1
6	x_1	2 -1	1,5 0,5	0,1	0	3 1 1	3
0	<i>x</i> ₂		1			1	2.5
	y	6,2	0,5	0,6	2,1	1	-3,5 -2
7	x_1		2	3			-2
/	<i>x</i> ₂	1	4.2	7,2 0,5	3 8 2	0,3	0,5 -3
	у	2 2	4,3	1,2	8	3	-3
	x_1	2	1	0,5	2	3	-0,5
8	x_2	-1	0	1		1,8	0,5
	У	9,7	5,1	1,5	4,2	6,8	-0,5
	x_1	1	0,5	0	2 3 2,1	1,5	3 4
9	x_2	1	0,5	1	3	2	
	у	4,2	3,4	0	2,1	2 3,2 2	2,5
1.0	x_1	1	2	0	-1	2	-0,5
10	x_2	-2	-3	1	1	-0,5	2
	у	8,8	11,5	1	1,9	3,7 7 3 -8	10
	x_1	2	3	4	6	7	-1
11	x_2	-2	0	1	2 -2	3	-1 7
	у	16	6	1		-8	7
	x_1	-3	2	0	1	2	-2
12	x_2	0	1	2	3	4	5
	y	-17	-1	-4,5	2	8,3	-1`
	x_1	-2	-1	0	1	6	-0,5
13	x_2	1	2	3	5	6	7
	у	-20	-11	-3	8	14	-3
	x_1	-3	-1	0	2	5	6
14	x_2	-2	3	5	7	9	8
	у	-15	-9	-7	-2	2	4
	x_1	-2	-1	0	1	2	-3
15	\mathcal{X}_2	1	3	4	6	7	-10
	у	-11	-2	7	16	26	-9
	x_1	-2	-1	0	1	2	1,5
16	\mathcal{X}_2	3	2	5	6	7	1
	у	-2	2,5	0	2	2	11
	x_1	-2	-1	0	1	2	0,5
17	x_2	4	0	5	2	0	1
	у	-6,8	1	1	5	12	5,7
	x_1	-3	-2	1,5	2	3	4
18	x_2	4	1	2	-1		-2
10	У	-17	-7	11,6	18,5	20	30
	x_1	-2	-1,5	-1	1	2	3
19	x_2	2	1	0	3	1,5	4
	y	4	-2,5	-9	14	4,5	23
	x_1	-2	-1	0	1	2	4
20	x_2	2,5	3	-4	-2	2	-1
	y	-22	-23	30	17	-5	13
	1 /	1			1	<u> </u>	

	x_1	2	1,5	1	3	-1	4
21	x_2	-1	2	0,5	-3	4	-2
	y	17	9	8	25	-12	32
	x_1	2	0,5	1	-1	4	3
22	x_2	-3	-2	-1	2	1	-0,5
	y	-17	-5,5	-8	13	-22	-21
	x_1	3	-2	1	-1	0,5	2
23	x_2	-2	2	-1	3	4	-3
	у	-7	24	2	32	30	-12
	x_1	1	2	-3	4	3	1,5
24	x_2	-3	-2	2	-1	1	0
	y	0	3	-6	9	11	4
	x_1	2	3	0,5	-1	-2	1
25	x_2	4	-1	1	2	3	-4
	y	0	13	1	-9	-12	11
	x_1	-3	1	-2	0	2	3
26	x_2	2 -7	-3	1	3	-1	-2
	y		12	-3	3	17	18
	x_1	-2	1,5	3	-1	2	4
27	x_2	3	-1	-2	-1	-3	-0,5
	y	17	-6	-13	-8	-21	0
	x_1	-3	1	2	-0,5	-2	3
28	x_2	3	-2	0	1	2	-1
	y	12	-21	-6	-1	7	-12
	x_1	3	2	-1	-1,5	1	0
29	x_2	-2	-1	2	-1	0,5	1
	у	31	25	-3	-4	13	7
	x_1	-4	-1	0	2	1	-2
30	x_2	-3	-2	2	3	4	-1
	y	-16	-3	-3	5	-2	-9

Задание 3

Таблица 3

№	Масси	в эксперим	ентальных д	данных			
	x_1	-1	0	1	2	3	4
1	x_2	2	3	1	-1	0	-2
	у	-10	-9	0	5	6	7
	x_1	-2	-1	0	1	2	3
2	x_2	1	0	-1	-2	-3	1
	y	2	-1	-2	-1	2	3
	x_1	1	2	3	0	-1	-2
3	x_2	2	1	0	-1	-2	-3
	y	1	2	9	2	-6	-22
	x_1	-3	-2	-1	0	1	2
4	x_2	-2	0	1	2	3	4
	y	7	4	4	6	10	15
	x_1	-2	-1	0	2	4	5
5	x_2	-3	-2	-1	0	3	2
	y	-6	-1	0	5	-7	-1
	x_1	-1	1	0	2	3	4
6	x_2	-2	-1	1	2	0	3
	y	-12	0	0	4	7	4

	ı					_	
	x_1	-3	-2	1	0	2	3
7	x_2	-1	0	1	2	3	4
	у	-1	6	1	7	-5	-15
	x_1	-2	1	0	-1	2	3
8	x_2	3	2	1	0	-1	-2
	y	-15	2	0	0	6	7
	x_1	-3	-1	0	1	2	3
9	x_1	4	2	1	-1	0	-2
	$\frac{x_2}{y}$	23	6	0	1	1	13
		-3	-2	1	0	-1	2
10	x_1	3	2	-1	1	0	-2
10	<i>x</i> ₂	-28	-16	-1 -1	-3	-4	-2 -4
	y						3
1.1	x_1	-2	0	1	2	-1	
11	x_2	3	2	1	-1	-2	0
	У	7	7	3	-7	-1	-5
	x_1	-3	-1	0	1	-2	3
12	x_2	-2	1	2	3	-1	4
	у	15	6	6	8	9	13
	x_1	1	-1	0	-2	2	3
13	x_2	-2	0	1	2	3	4
	у	10	-3	-2	-2	-12	-22
	x_1	-2	0	1	2	3	-1
14	x_2	2	3	1	0	-1	-2
	у	-11	-7	2	6	7	8
	x_1	-3	-1	0	2	3	1
15	x_2	2	1	3	-1	-2	-3
	y	-4	2	0	1	-3	2
	x_1	-2	-1	0	1	2	3
16	x_2	2	3	4	-1	-2	0
	y	-4	1	6	-3	5	9
	x_1	-3	-2	0	1	2	3
17	x_2	2	1	2	3	-1	-2
-,	y	16	5	5	0	10	21
	x_1	-3	-1	1	2	0	-2
18	x_1	2	1	-1	-2	4	-2
10	$\frac{x_2}{y}$	-1	3	1	-3	8	6
	x_1	-3	-2	1	0	2	3
19	$\frac{x_1}{x_2}$	1	2	-3	4	-1	-2
19		5	8	1	12	5	8
	y	-2	-1	0	1	2	3
20	x_1	3	2	1	-1	-2	-3
20	<i>x</i> ₂			1			-3 -7
	y	-16	-6		3	0	
0.1	x_1	-3	-1	3	2	1	-2
21	x_2	1	0	-1	-2	2	3
	У	22	5	- 9	-3	4	31
	x_1	-3	-2	0	-1	1	2
22	x_2	2	1	-1	3	-2	-5
	у	-10	-4	3	-7	5	4
	x_1	-2	-3	0	-1	1	2
23	x_2	3	1	2	-1	-2	4
	у	-19	-14	-7	-2	-4	10
	x_1	2	-2	3	-1	1	4
24	x_2	-1	2	1	-1	-2	0
∠ '1	у	2	14	-3	3	3	-3
	•	•	•				

	x_1	-2	-3	1	-1	2	3
25	x_2	1	4	-1	2	3	-4
	y	8	16	0	5	-8	1
	x_1	-2	0	-3	2	3	-1
26	x_2	2	0	1	-1	0	3
	y	2	3	7	-12	-7	7
	x_1	-3	-1	2	1	0	3
27	x_2	1	2	-1	3	4	-2
	y	22	15	-4	0	8	-5
	x_1	-2	-1	0	1	2	3
28	x_2	-2	0	3	-1	1	-3
	y	-9	-8	-8	1	5	4
	x_1	-3	-1	1	2	3	4
29	x_2	2	3	-1	-2	-3	0
	у	10	4	7	19	33	8
	x_1	-2	-1	1	-3	2	3
30	x_2	1	0	3	2	-1	-2
	у	-6	-1	6	-13	-2	-9