6	Date
No. 6	Page No. 41
Amis To find the solution of given linear Jacobs method	Equations by Graws
Apparatus Required: Aus Laytop (15),	Windows II, MATLAB 2021a
mony:	
the first iterative method is call gen carl Grustar Jacob Jacobi (1804- system of linear equations. This method 1 The grissphem given by	1851) to colour to
a117 + 912 /2+ 91 nm	h = b1
9217, +922bn2 + 90	
9	
	1
선물에 가게 하는 것이 되는 것이 되는 것이 되었다. 그 사람들이 되는 것이 되는 것이 되었다. 그렇게 되는 것이 되었다면 하는 것이 되었다.	annyn = bn
has a unique solution.	
the Coefficient matrix A has no ze	eno on its maindragnal
diagnal entries are zero tren we sho	zeros Hany of the
to columns to obtain a Cofficient mat	no bat has
entries on the main diagonal.	That has hon year
To begin some the 1st equation for	n by ord equation for
in and so on to obtain the hervite	
7, = 1 (b, -9,272-9,373	
911 (1) 1/2 / 1/3 3	
	$-agn^n$
$m = \frac{1}{ann} \left(p_n - a_{n,1} m_1 - a_{m,2} n_2 \right)$	antan-1)
물일에 되는 것이 되었다면 그 이 이번 성진하다 하고 하면서 하는 이 얼마를 가는 수 있다. 그릇 살이 되는 것은 나는 그 모든 모든 것이다.	s Signature

Date
Page No. 42
make an initial guess of solution $n^{\circ} = (n_{1}^{\circ}, n_{2}^{\circ}, n_{3}^{\circ} - \cdot n_{1}^{\circ})$ Substitute these values into the right hard code the q the revertiten equations to obtains the fresh approximation, $(n', n'_{2}, n'_{3},, n'_{1})$. This accomplishes one iteration. In the same very, the substituting the first approximations n -values into the right hard side q or remarked iterations, we form a sequence q approximation $n'_{1} = (n'_{1}, n_{2}, n'_{3},, n'_{4})$. $k = (n'_{1}, n_{2}, n'_{3},, n'_{4})$. $k = (n'_{1}, n_{2}, n'_{3},, n'_{4})$.
The Jacobi method.
for each $k \ge 1$ generate the Components $n_i k \ne 1$ the form n^{k+1} by $n_i(k) = 1$ $\exists i = 1$ $\exists i = 1, 2, n$
Given Equations:
is To find the solution of fiven equations by gams - Jacobsi method $ 30 n + 2y + 6z = 28 $ $ n + 20y + 9z = -23 $ $ 2n - 7y - 20z = -57 $ Solution $ h = 1 (28 - 2y - 6z) $ $ y = 1 (-23 - n - 9z) $ $ z = 1 (-51 - 2n + 7y) $
Teacher's Signature

107

20]

		Date	
		Page No.	44
n	4	Z	
0	0		
0.3	0.3	-0.3	m destingen, deligne des de Agrico (El sin register) es de Santi-Artis de Agrico Comme
0.39	6.33	,	m card dearf help only any act-such to a subject of the degree measure of a direction
0 36 3	0.303	-0.537	and the second s
0 3441	0.2841	-0.5[8]	accusive delay assumed in the second
D. 3384	0.2822	- O. 504 87	
7 0.3 401	0-2839	-0.5032	
0.3413	0.2857	-0.543	
9 0.3416	0.2852	-0.5052	
n=0-3416	z = -0.50	52	
y = 0.2852			
	L. Na		
natlas code:			
IN TENS COL			
all			
lear all			
lear all			
ctc	re coefficient	matrix A:') j	
clc A = Input ('Enter tr	re coefficient e Constant	matrix A:');	
clc A = input (Enter tr B = input (Enter Tr	re coefficient e Constant	matrix A:') j	
Clc A = Input ('Enter tr B = Input ('Enter Tr P= [A B];	e Constant	mators A:') j	
Clc A = Input ('Enter tr B = Input ('Enter Tr P= [A B]; [row (of] = Size(e Constant	matrix A:')j	
CIC A = Input (Enter tr B = Input (Enter Tr P = [A B]; [row (of] = Size(X = Zeros (row, 1);	e Constant	matry A:')j	
CIC A = Input ('Enter tr B = Input ('Enter Tr P = [A B]; [row (ot] = Size(x = Zeros (row, 1); C = Zeros (sow, 1); Free One (row)	(P);		
CIC A = Input ('Enter tr B = Input ('Enter Tr P = [A B]; [row (ot] = Size(x = Zeros (row, 1); C = Zeros (sow, 1); Free One (row)	(P);		
Clc A = Input (Enter tr B = Input (Enter Tr P = [A B]; [row (ot] = Size(X = Zeros (row, 1); C = Zeros (row, 1); En = Ones (row, 1); td = Input (Enter	(P);		
A = Input (Enter tr B = Input (Enter Tr P = [A B]; [row (of] = Size(x = Zeros (row, 1); (= Zeros (row, 1); Err = Ones (row, 1); tot = Input (Enter While Err > tot	(P); the tolerance: !)}	
A = Input (Enter tr B = Input (Enter Tr P = [A B]; [row (of] = Size(x = Zeros (row, 1); (= Zeros (row, 1); Err = Ones (row, 1); tot = Input (Enter While Err > tot	(P); the tolerance: !		(m, m)*X(

Date Page No.	Expt. No.
Ebr(m, 1) = abs(c(m, 1) - x(m, 1))	
end .	
$x(\cdot,t) = c(\cdot,t);$	
disp (1 The required solution is:1);	
disply);	
T topies.	
Enter the Coefficient matrix A: [10-5	2: 4 -10 2: 1 X 16
Enter the constant matrix B: [3, 3;	
Enter the tolerance: 0.0001	3
_ OUT PUT	
The required solution is	
0.3415	
0.2850	
-0.5052	
(i) INPUT	
Enter the coefficient matrix ? [20	285/209;2-726
Enter the constant matrix Bi [28]	1 -23, -57
Enter the tolerance: 0.0001.	
OUT BUT	
The required Solution 15	
0.515]	
-2.9448	

Consti	Page No. Continue of the cont	Expt. No.	
	By this expendent ,	done his experiment in MATLAB soft we find the solution of Linear equation method and verify the result we expelly	by
	RC General !! Num	mental mighods in organeous and science of and information Lie 3rd edition 2014.	
		16/11/22	