FindDefault Solution by K.Nithin Sai

DESIGN CHOICES:

- 1) Outlier Handling:
 - i) Used boxplots to figure out the outliers that exist in the dataset.
 - ii) Capped the outliers to the max or min value depending on the position of the outlier to not lose any information.
- 2) Class Imbalance:
 - i) Huge difference between the two target classes.
 - ii) Upsampled the minority class with sampling_strategy of 40% instead of 100% to try to mimic real world data.
- 3) Dimensionality reduction:
 - i) PCA with 90% variance gives 22 features needed to keep 90% variance.
- 4) Train test split:
 - Used a 67%train -33% test split to create validation and then a 67%train -33% test split to create a test set.
- 5) Model used:
 - i) Used SVC classifier as the estimator with hyperparameters as follows:
 - 1. C: 1

2. Kernel: rbf3. Degree: 3

4. Gamma: scale

Performance Metrics:

Validation Set:

1) Accuracy Score: 0.996

2) Confusion_matrix:

[[93610, 129], [371, 37244]]

3) Classification Report:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	93739
1	1.00	0.99	0.99	37615
accuracy			1.00	131354
macro avg	1.00	0.99	1.00	131354
weighted avg	1.00	1.00	1.00	131354

Test Set

- 1) Accuracy Score: 0.995
- 2) Confusion Matrix: [[30927, 49], [133, 12238]]
- 3) Classification report:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	30976
1	1.00	0.99	0.99	12371
accuracy			1.00	43347
macro avg weighted avg	1.00 1.00	0.99 1.00	1.00 1.00	43347 43347