Análise

Cálculo Diferencial em \mathbb{R}^n : Extremos Livres

Maria Elfrida Ralha & Maria Isabel Caiado

Departamento de Matemática e Aplicações (Universidade do Minho)

MIE: Informática

Ralha, M. E. & Caiado, M. I. (DMA)

Extremos Livres

março 2019

1/16

Cálculo Diferencial em \mathbb{R}^n : Extremos livres

- Definições Básicas
- 2 Identificação de Pontos Críticos: Teste das 1. as derivadas
- Classificação de Pontos Críticos: Teste das 2.as derivadas
 - Funções Quadráticas definidas por $f(x, y) = ax^2 + bxy + cy^2$
 - Matriz Hessiana

Conceitos: Definições

Sejam $U \subset \mathbb{R}^n$ um conjunto aberto, $\mathbf{a} = (a_1, \dots, a_n) \in U$ e $f: U \longrightarrow \mathbb{R}$. Diz-se que

• f tem um minimizante local em $\mathbf{a} \in U$ quando existir uma vizinhança $B(\mathbf{a}, \varepsilon)$ tal que

$$f(\mathbf{x}) \geq f(\mathbf{a}), \quad \forall \mathbf{x} \in (B(\mathbf{a}, \varepsilon) \cap U)$$

• f tem um maximizante local em $\mathbf{a} \in U$ quando existir uma vizinhança $B(\mathbf{a}, \varepsilon)$ de a tal que

$$f(\mathbf{x}) \leq f(\mathbf{a}), \quad \forall \mathbf{x} \in (B(\mathbf{a}, \varepsilon) \cap U)$$

• f tem um extremante local em $a \in U$ quando tiver um minimizante ou um maximizante local em a.

* 第

Ralha, M. E. & Caiado, M. I. (DMA)

Extremos Livres

março 2019

3/16

Exercícios: Extremos, via definição

• Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por $g(x,y) = -\sqrt{x^2 + y^2}$

• Conjeture sobre os extremantes de g.

2 Verifique que (0,0) é maximizante de g.

2 Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por $f(x,y) = x^2 - 2x + y^2 - 4y + 5$

 \bullet Conjeture sobre os extremantes de f.

2 Verifique que (1,2) é minimizante de f.

Teste das 1.^{as} derivadas

Seja $U \subset \mathbb{R}^n$ um conjunto aberto e $f: U \longrightarrow \mathbb{R}$ uma função de classe \mathscr{C}^1 .

- ullet $\mathbf{a} \in U$ é um ponto crítico de f quando, simultaneamente,
 - **1** $\mathbf{a} \in \operatorname{int} U$ (isto é, \mathbf{a} é um ponto interior do domínio de f) e
 - ② $\nabla f(\mathbf{a})$ não existe (não pode ser definido) ou $\nabla f(\mathbf{a}) = \vec{\mathbf{0}}$
- [Teste das 1^{as} derivadas] Se $a \in U$ é um extremante local de f, então é um ponto crítico de f.
- a ∈ U diz-se um ponto de sela de f quando a é ponto crítico mas não é extremante local de f.

Ralha, M. E. & Caiado, M. I. (DMA)

Extremos Livres

março 2019

5/16

Observação

- O teorema/teste das 1.^{as} derivadas estabelece que os extremantes só ocorrem nos pontos críticos de uma função¹.
- Como fazer?
 - Identificar os pontos críticos, usando o Teste/Teorema;
 - Classificar os pontos críticos.

¹Contudo, nem todo o ponto críticoscorresponde a um extremante.

Exercício: Extremos, via teste das 1. as derivadas

- Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por $f(x,y) = x^2 y^2$
- \odot Identifique os pontos críticos de f.
- 2 Verifique que (0,0) é ponto de sela de f.

Obs: Atente-se, também, num diagrama de nível que represente curvas em torno da origem...

Ralha, M. E. & Caiado, M. I. (DMA)

Extremos Livres

março 2019

7/16

Extremos & curvas de nível

Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por $f(x,y) = 8y^3 + 12x^2 - 24xy$

- a) Identifique os pontos críticos.
- b) Classifique os pontos críticos, partindo de um diagrama de nível conveniente.

Funções quadráticas da forma $f(x, y) = ax^2 + bxy + cy^2$

Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ uma função (de classe \mathscr{C}^3 em $B(\mathbf{a}, \varepsilon)$) definida por $f(x,y) = ax^2 + bxy + cy^2$; onde $a,b,c \in \mathbb{R}$ e $a \neq 0$.

- Identifiquem-se e classifiquem-se os pontos críticos de f.
 - f tem um único ponto crítico em (0,0).
 - 2 Analise-se a forma do gráfico de f, sabendo que f(0,0) = 0.

$$f(x,y) = ax^{2} + bxy + cy^{2} = a\left(x^{2} + \frac{b}{a}xy + \frac{c}{a}y^{2}\right)$$

$$= \cdots$$

$$= a\left[\left(x + \frac{b}{2a}y\right)^{2} + \left(\frac{4ac - b^{2}}{4a^{2}}\right)y^{2}\right]$$

- A forma do gráfico depende do discriminante $\Delta := 4ac b^2$ ser positivo, negativo ou zero.
- <u>Exercício</u>: Classifique-se, então, o ponto crítico...
 - Quando $\Delta > 0...$
 - Quando $\Delta < 0...$
 - Quando $\Delta = 0...$

Ralha, M. E. & Caiado, M. I. (DMA)

Extremos Livres

março 2019

9/16

Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ uma função de classe \mathscr{C}^3 em $B(\mathbf{a}, \varepsilon)$, tal que $\nabla f(0,0) = \vec{\mathbf{0}}$.

- O polinómio de Taylor, quadrático, em torno de (0,0), para a função f é
 - $egin{array}{lll} f(x,y) &pprox & f(0,0)+ \ &+f_{x}(0,0)x+f_{y}(0,0)y+ \ &+rac{1}{2}f_{xx}(0,0)x^{2}+f_{xy}(0,0)xy+rac{1}{2}f_{yy}(0,0)y^{2} \end{array}$
 - Ou seja

$$f(x,y) - f(0,0) \approx +\frac{1}{2}f_{xx}(0,0)x^2 + f_{xy}(0,0)xy + \frac{1}{2}f_{yy}(0,0)y^2$$

A forma do gráfico depende do discriminante $\Delta=4ac-b^2$ ser positivo, negativo ou zero.

• O discriminante $\Delta = 4ac - b^2$ é, agora,

$$\Delta = f_{xx}(0,0) f_{yy}(0,0) - f_{xy}(0,0)^2$$

que é o DETERMINANTE de uma matriz quadrada (de ordem 2) cujos elementos são as derivadas de 2.ª ordem.

• [Determinante de uma Matriz, de 2. as Derivadas]

Seja $U \subset \mathbb{R}^2$ um conjunto aberto, $f: U \longrightarrow \mathbb{R}$ uma função de classe \mathscr{C}^3 numa vizinhança de $(x_0, y_0) \in U$. Considere-se uma matriz $\mathscr{H}f(x_0, y_0)$ tal que

$$\det \mathcal{H} f(x_0, y_0) = f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - [f_{xy}(x_0, y_0)]^2$$

Suponha-se que $(x_0, y_0) \in U$ é um ponto crítico de f. Assim,

- Se $\det \mathcal{H} f(x_0, y_0) > 0$, então (x_0, y_0) é um extremante local de f. Além disso,
 - se $f_{xx}(x_0, y_0) > 0$, então f tem um minimizante local em (x_0, y_0) ;
 - se $f_{xx}(x_0, y_0) < 0$, então f tem um maximizante local em (x_0, y_0) ;
- Se det $\mathcal{H}f(x_0, y_0) < 0$ então f tem um ponto de sela em (x_0, y_0) ;
- Se $\det \mathcal{H} f(x_0, y_0) = 0$ nada se pode concluir.

Ralha, M. E. & Caiado, M. I. (DMA)

Extremos Livres

março 2019

11 / 16

Observação/Exercício

- No resultado anterior "se $\det \mathcal{H} f(x_0, y_0) < 0$, então f tem um ponto de sela em (x_0, y_0) ". Porquê?
- Pode traduzir-se esse mesmo resultado em termos de "menores principais" da matriz \mathcal{H} :
 - $M_2 < 0$ e M_1 ?
 - Se $M_2 = \det \mathcal{H} f(x_0, y_0) < 0$, então os 2 valores próprios de $\mathcal{H} f(x_0, y_0)$ têm sinais opostos pelo que $\mathcal{H} f(x_0, y_0)$ é uma matriz indefinida e (x_0, y_0) é um ponto de sela de f.

Exercício

- ① Identifique e classifique os pontos críticos da função $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ dada por $f(x,y) = 12x^2 + 8y^3 24xy$.
 - 1. Determinar P tal que $\nabla f(P) = \vec{0}$;
 - 2. Estudar o sinal de det $\mathcal{H}f(P)$.

Ralha, M. E. & Caiado, M. I. (DMA)

Extremos Livres

março 2019

13 / 16

Matriz Hessiana

Seja $U \subset \mathbb{R}^n$ um conjunto aberto e $f: U \longrightarrow \mathbb{R}$ uma função de classe \mathscr{C}^3 em $B(\mathbf{a}, \varepsilon)$.

• Define-se a matriz Hessiana de f em a por

$$\mathscr{H}f(\mathsf{a}) = \left(\begin{array}{ccc} f_{\mathsf{X}_1\mathsf{X}_1}(\mathsf{a}) & \cdots & f_{\mathsf{X}_1\mathsf{X}_n}(\mathsf{a}) \\ \vdots & & \vdots \\ f_{\mathsf{X}_n\mathsf{X}_1}(\mathsf{a}) & \cdots & f_{\mathsf{X}_n\mathsf{X}_n}(\mathsf{a}) \end{array} \right)$$

- ullet $\mathscr{H}f$ é uma matriz
 - quadrada de dimensão *n*;
 - ullet simétrica porque, pelo Teorema de Schwarz, $f_{x_ix_j}(\mathbf{a})=f_{x_jx_i}(\mathbf{a})$

• [Teste das 2. as derivadas] (para extremantes locais)

Seja $U \subset \mathbb{R}^n$ um conjunto aberto, $f: U \longrightarrow \mathbb{R}$ uma função de classe \mathscr{C}^3 e $\mathbf{a} \in U$ um ponto crítico de f. Nestas condições,

- [Critério dos menores principais]
 - se todos os menores principais de $\mathcal{H}_f(\mathbf{a})$ são positivos f tem um minimizante local em \mathbf{a} ;
 - se os menores principais de ordem par de $\mathscr{H}_f(\mathbf{a})$ são positivos e os de ordem impar negativos f tem um maximizante local em \mathbf{a} ;
 - se todos os menores principais de $\mathcal{H}_f(\mathbf{a})$ são não nulos mas a matriz não é definida positiva ou definida negativa f tem um ponto de sela em \mathbf{a} ;
 - se algum dos menores principais for nulo nada se pode concluir sobre a natureza de **a**.

Ralha, M. E. & Caiado, M. I. (DMA)

Extremos Livres

março 2019

15 / 16

Exercício

Identifique e classifique os pontos críticos da função $f:\mathbb{R}^3\longrightarrow\mathbb{R}$ definida por

$$f(x, y, z) = x^2 + y^2 + z^2 + xy$$