Решения задания по направлению «Прикладная математика»

Профиль

«Системы управления и обработки информации в инженерии»

Задание включает 5 задач.

Задача 1.(20 баллов)

(дифференциальные уравнения, теория управления)

Для объекта

$$\frac{dx}{dt} = bu$$
, при $x(0) = x_0$, построить управление вида $u = -cx$, минимизирующее

функционал качества
$$y = \frac{1}{2} \cdot \int\limits_{t_0}^{t_f} (q \cdot x^2 + r \cdot u) dt; \quad t_f \to \infty;$$

Оценить влияние соотношения параметров функционала качества q и r на переходной процесс в управляемом объекте.

Решение задачи 1.

1. Составим дифференциальное уравнение Риккати

$$\dot{S} = -SA - A^TS - Q_1 + SBQ_2^{-1}B^TS$$

Для параметров заданных объекта и функционала качества

$$A = 0;$$
 $B = b;$ $Q_1 = q;$ $Q_2 = r;$ $\dot{S} = -q + S^2 b^2 \frac{1}{r}.$

2. Стационарное положительное решение для S

$$S = \sqrt{\frac{q \cdot r}{b^2}} = \frac{1}{b} \sqrt{q \cdot r}.$$

3. Оптимальное управление

$$u = -Q_2^{-1}B^TS \cdot x;$$
 $C = \sqrt{\frac{q}{r}};$

4. Уравнение управляемого объекта

$$\frac{dx}{dt} = -b\sqrt{\frac{q}{r}} \cdot x .$$

Это апериодическое звено с постоянной времени $\tau = \frac{1}{b} \sqrt{\frac{r}{q}}$

$$x(t) = x_0 \cdot e^{-t/\tau};$$

Таким образом, чем больше отношение r/q, тем меньше постоянная времени τ и, тем быстрее сходится процесс стабилизации, который характеризуется экспонентой.

Задача 2.(20 баллов)

(теория управления)

Построить в плоскости комплексного переменного амплитудно-фазовую характеристику ($A\Phi X$) идеального ПИД регулятора. Указать характерные точки на построенной $A\Phi X$.

Указание. Математическая модель регулятора представляет собой линейную комбинацию пропорционального интегрирующего и дифференцирующего звеньев, то есть имеет передаточную функцию $W(s) = a_1 + a_2 \frac{1}{s} + a_3 s$, $\left(a_i > 0\right)$.

Решение задачи 2.

Согласно определению АФХ строится на комплексной плоскости и представляет собой геометрическое место концов векторов (годограф), соответствующих частотной передаточной функции $W(j\omega)$ при изменении частоты от нуля до бесконечности. Преобразуем исходную передаточную функцию в частотную передаточную функцию:

$$W(j\omega) = a_1 + a_2 \frac{1}{j\omega} + a_3 j\omega = a_1 + j \left(a_3 \omega - a_2 \frac{1}{\omega} \right).$$

Из приведенного соотношения видно, что действительная часть $W(j\omega)$ не зависит от величины ω и равна a_1 , то есть $A\Phi X$ располагается параллельно мнимой оси на расстоянии a_1 от нее. При $\omega=0$ мнимая часть $W(j\omega)$ равна $-\infty$, при $\omega=\infty$ мнимая часть $W(j\omega)$ равна $+\infty$. Из сказанного следует, $A\Phi X$ располагается параллельно мнимой оси на расстоянии a_1 от нее и меняется в пределах $-\infty$ и $+\infty$, то есть пересекает действительную ось плоскости комплексного переменного. Найдем значение ω , при котором это происходит. Оно определяется из соотношения

$$\left(a_3\omega - a_2 \frac{1}{\omega}\right) = 0, \implies \omega = \sqrt{a_2/a_3}.$$

Задача 3.(10 балов)

(линейная алгебра)

Найти ортогональный базис подпространства решений линейной однородной системы уравнений:

$$\begin{cases} x_1 - 3x_2 + 2x_3 + 5x_4 + 9x_5 = 0\\ 2x_1 - x_2 - x_3 + 3x_5 = 0\\ 3x_1 - 4x_2 + x_3 + 5x_4 + 12x_5 = 0 \end{cases}$$

Решение к задаче 3.

Обозначим $L \subset \Re^5$ - подпространство решений представленной системы. Решим эту систему уравнений методом Гаусса и найдем фундаментальную систему решений, т.е. один из базисов подпространства L. Запишем расширенную матрицу системы и элементарными преобразованиями строк этой матрицы приведем ее к ступенчатой матрице:

$$\begin{pmatrix}
1 & -3 & 2 & 5 & 9 & 0 \\
2 & -1 & -1 & 0 & 3 & 0 \\
3 & -4 & 1 & 5 & 12 & 0
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
1 & -3 & 2 & 5 & 9 & 0 \\
0 & 5 & -5 & -10 & -15 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
1 & -3 & 2 & 5 & 9 & 0 \\
0 & 1 & -1 & -2 & -3 & 0
\end{pmatrix}
\Rightarrow$$

$$\Rightarrow
\begin{pmatrix}
1 & 0 & -1 & -1 & 0 & 0 \\
0 & 1 & -1 & -2 & -3 & 0
\end{pmatrix}$$

Используя последнюю матрицу, записываем систему уравнений, равносильную исходной:

$$\begin{cases} x_1 - x_3 - x_4 = 0 \\ x_2 - x_3 - 2x_4 - 3x_5 = 0 \end{cases}$$

Запишем решения $\vec{x} \in L$ последней системы сначала в координатном виде, а затем в векторном виде, используя параметрическую форму:

$$\begin{cases} x_{1} = t_{1} + t_{2} \\ x_{2} = t_{1} + 2t_{2} + 3t_{3} \\ x_{3} = t_{1} \\ x_{4} = t_{2} \\ x_{5} = t_{3} \end{cases} \Leftrightarrow \vec{x} = \begin{pmatrix} t_{1} + t_{2} \\ t_{1} + 2t_{2} + 3t_{3} \\ t_{1} \\ t_{2} \\ t_{3} \end{pmatrix} = t_{1} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t_{2} \begin{pmatrix} 0 \\ 3 \\ 0 \\ 0 \\ 1 \end{pmatrix} \quad \forall t_{1}, t_{2}, t_{3} \in \Re$$

Таким образом, фундаментальная система решений (т.е. базис подпространства решений) – это три вектора

$$\vec{a}_{1} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}; \quad \vec{a}_{2} = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \\ 0 \end{pmatrix}; \quad \vec{a}_{3} = \begin{pmatrix} 0 \\ 3 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Но эти векторы не образуют ортогональный базис, например, $(\vec{a}_1, \vec{a}_2) = 1 \neq 0$. Ортогонализируем систему векторов $\vec{a}_1, \vec{a}_2, \vec{a}_3$ методом Грама-Шмидта, т.е. построим новые векторы $\vec{b}_1, \vec{b}_2, \vec{b}_3$, которые будут попарно ортогональны и будут являться требуемым ортогональным базисом подпространства L.

$$1. \ \vec{b_1} = \vec{a_1} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}; \qquad 2. \ \vec{b_2} = \vec{a_2} - \lambda \vec{b_1}, \quad \tilde{\alpha} \ddot{a} \dot{a} \quad \lambda = \frac{(\vec{a_2}, \vec{b_1})}{(\vec{b_1}, \vec{b_1})} = \frac{3}{3} = 1, \\ \Rightarrow \vec{b_2} = \vec{a_2} - \vec{b_1} = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ -1 \\ 1 \\ 0 \\ 0 \end{pmatrix};$$

3.
$$\vec{b}_3 = \vec{a}_3 - \lambda_1 \vec{b}_1 - \lambda_2 \vec{b}_2$$
, $\tilde{a} \ddot{a} \dot{a} \lambda_1 = \frac{(\vec{a}_3, \vec{b}_1)}{(\vec{b}_1, \vec{b}_1)} = \frac{3}{3} = 1$, $\lambda_2 = \frac{(\vec{a}_3, \vec{b}_2)}{(\vec{b}_2, \vec{b}_2)} = \frac{3}{3} = 1$.

$$\Rightarrow \vec{b}_3 = \vec{a}_3 - \vec{b}_1 - \vec{b}_2 = \begin{pmatrix} 0 \\ 3 \\ 0 \\ 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} -1 \\ 1 \\ 0 \\ -1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}.$$

Ответ:

$$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 0 \\ 1 \\ -1 \\ 1 \\ 0 \\ -1 \\ 1 \end{pmatrix}$$

Замечание. Ответ может быть другим, но полученные другие три вектора должны быть:

- а). Решением исходной системы (что легко проверяется подстановкой);
- b). Попарно ортогональными, что легко проверяется при помощи вычисления скалярных произведений.

Задача 4.(20 балов)

(шифрование и криптография)

В таблицу, состоящую из 28 строк и 29 столбцов, внесены буквы русского алфавита, размещенные в случайном порядке, первый столбец включает порядковые номера строк (табл.1). Необходимо прочитать фразу, которая зашифрована в данной таблице, используя в качестве подсказки пример (табл.2).

1	Α	П	Ч	Ц	И	Щ	Ю	И	Э	Б	Ь	Н	Щ	Э	Д	С	Ч	И	Щ	Ц	Ь	Φ	Л	X	Е	У	Γ	P
2	Л	T	И	Φ	Э	Ю	3	M	И	Ч	R	A	Я	Ц	Э	Н	У	Щ	M	R	Ц	Л	Φ	Щ	R	Α	P	К
3	T	И	О	К	Б	3	Д	Н	Щ	И	Е	Щ	О	C	Ь	Л	О	M	T	Д	О	Ц	X	Α	У	Γ	Α	С
4	П	Ч	A	Щ	К	Ч	X	Э	Б	Ь	Н	R	Н	Ю	C	Д	X	Γ	Я	M	Ч	Ч	A	У	Щ	Е	M	Э
5	Д	Ь	Ц	И	R	X	Щ	Е	M	Э	Ю	Б	Ц	Н	A	У	Ж	У	И	Е	Ю	O	Щ	Ь	X	P	У	Γ
6	Н	В	Ж	Е	Е	У	M	У	P	Е	3	T	У	Л	T	К	M	В	Γ	В	У	И	Е	P	Н	К	Ο	X
7	Μ	Л	Н	Н	У	О	Б	Щ	Ь	Н	Щ	3	С	Ч	Н	Э	Д	Τ	В	Ь	Е	T	У	Φ	A	M	Д	Л
8	Ε	Б	П	Л	О	Α	О	X	Η	P	К	Ц	Ч	Ж	Б	В	И	О	К	Φ	В	3	Ч	Е	C	O	Б	И
9	В	К	Д	У	Л	К	Н	В	Е	M	Б	C	Д	О	Ж	X	T	Ж	Е	И	M	У	Ц	Д	P	Ч	C	M
10	К	A	T	Ч	3	P	И	К	Ч	Л	Ц	Е	И	Б	P	О	В	Φ	Д	Ч	Л	Е	Б	Л	О	X	Е	Б
11	Ж	Н	Л	Ж	Н	Γ	Л	Б	X	В	И	У	3	P	Γ	A	Э	3	Ч	К	Я	X	П	C	Γ	Д	Л	О

12	Б	Е	Φ	Α	П	Н	P	О	Ц	Щ	Ч	К	Л	Д	В	Τ	Н	Л	О	T	Б	Ж	Τ	Б	M	Н	К	Е
13	Ч	M	В	П	Ж	И	К	3	В	Ж	C	И	Б	X	X	Ж	Γ	К	Ж	П	A	M	C	T	Д	C	Φ	Д
14	Ц	Ж	С	T	Φ	M	В	П	Л	К	M	Д	Ж	T	У	Е	Щ	Д	У	Л	X	Щ	Ь	M	T	R	X	У
15	Φ	Д	3	О	Γ	П	Е	Ь	О	X	A	О	P	Α	0	И	Л	P	3	Щ	И	Б	Д	П	В	Л	И	Η
16	Ο	Ц	К	Γ	X	Л	Φ	Л	Γ	Д	O	Л	Φ	У	Ц	M	Б	Н	Ц	Ж	Γ	П	Я	Н	Ч	Ж	Н	Ж
17	3	Φ	Б	3	P	Φ	Γ	Д	T	Ц	Л	P	В	3	Л	Γ	P	Е	Л	A	К	C	M	Ч	Л	Φ	В	П
18	П	C	У	M	T	Ж	У	T	Ж	Ο	Γ	Φ	К	Щ	И	Щ	3	Ь	Α	C	Ж	Д	P	Ж	Φ	Б	П	3
19	И	О	Γ	Д	Ц	Б	П	Φ	К	A	P	Ж	X	Е	П	Φ	К	X	П	У	П	Ь	В	О	К	T	Ц	Ч
20	Γ	Ю	M	P	M	Е	Ь	Γ	Φ	3	Д	M	A	Ь	M	Ь	Φ	Ю	Б	Ο	C	К	Н	Γ	Ц	3	Ж	В
21	Э	3	P	Б	Α	C	T	P	Д	C	У	Ь	T	И	Е	P	Е	Ц	C	X	Д	Я	3	Ц	Ж	Π	Ь	Ц
22	Ь	Щ	Ю	Я	C	В	Я	Ж	Я	Γ	Π	В	Э	П	Ч	Ч	Ю	Α	Н	Э	3	В	Э	Ю	Б	И	T	Щ
23	С	X	Е	C	Д	Ь	Ж	A	C	У	Э	X	M	Γ	Щ	П	Ц	Я	X	Н	Щ	P	И	К	Ь	Э	Э	Φ
24	X	Γ	Я	Э	Ю	T	Э	Ц	У	T	X	Ч	Π	M	Ю	3	Я	C	Ю	Б	P	Ю	Γ	Э	Π	В	3	Ь
25	Я	Я	Ь	Ю	В	Я	Ч	Я	3	П	В	Ю	Е	К	Φ	Ю	П	Б	Э	Γ	T	Н	O	3	И	Ю	Ю	A
26	P	У	Щ	В	Ь	Ц	Α	Ч	Ю	Я	Φ	Э	Γ	В	3	Ц	Ь	Ч	P	Ю	Φ	A	Ж	В	Ю	Ь	Щ	Я
27	Ю	Э	X	Ь	Щ	Д	C	Ю	Α	Φ	T	П	Ю	Я	К	R	A	Э	Φ	P	Н	Э	Ю	Я	3	Ц	Я	T
28	У	P	Э	X	Ч	Э	Ц	C	П	Ю	Ж	Γ	Ь	Φ	Я	Б	C	П	Ь	3	Э	Γ	К	И	Э	Щ	Ч	Ю

Табл.1

Пример:

1	У	Ч	A	У	И
2	Ч	И	И	A	Д
3	И	A	Д	Ч	У
4	A	У	Ч	Д	Ч
5	Д	Д	У	Ч	A

Табл.2

Для прочтения текста необходимо знать 2 числа: 1 и 5. Эти числа являются порядковым номерами строк, в которых содержатся буквы зашифрованного слова, которые будут чередоваться, как показано в примере.

Порядковые номера строк, используемых для прочтения текста в задании, и и v являются значениями следующих выражений:

$$u = 3^{205},$$

 $v = 3^{129}.$

Принцип вычисления требуется установить, ориентируясь на следующие подсказки:

- $3^1 = 3$,
- $3^2 = 2$,
- $3^3 = 6$,
- $3^4 = 4$.
- $3^5 = 5$.

Решение задачи 4.

Для получения приведенных в подсказках значений требуется брать значение остатка по модулю 7 от числа, записанного в левой части каждого из равенств. Установив данный принцип вычислений (взятие остатка по модулю 7), можно установить, что $u = 3^{205} = 3$, а $v = 3^{129} = 6$. Тогда зашифрованная фраза читается в строках 3 и 6, чередуя их через каждый символ, как показано на рисунке. Зашифрованная фраза: «Твоё будущее только в твоих руках».

1	A	П	Ч	Ц	И	Ш	Ю	И	Э	Б	Ь	Н	Ш	Э	Д	С	Ч	И	Ш	Ц	Ь	Φ	Л	X	Е	У	Γ	P
2	Л	T	И	Φ	Э	Ю	3	M	И	Ч	Я	A	R	Ц	Э	Н	У	Ш	M	R	Ц	Л	Φ	Ш	Я	A	P	K
3	Т	И	O	K	Ь	<u>З</u>	Д V	<u>Н</u> Э	П	И	Е	Щ	0	<u>C</u>	Ь	Л	<u>v</u>	М	T	Д	Ч	Ч	X	A	У	Γ	A	C
5	П	Ь	<u>А</u> Ц	И	К Я	X	X	E	<u>Б</u>	<u>Б</u>	H Ю	<u>Я</u> Б	Н	Ю Н	A	У	Ж	<u>Г</u>	<u>Я</u> И	M E	Ю	0	<u>А</u> Ш	У Ь	Х	E P	M y	Э Т
6	Н	В	Ж	E	Е	У	M	У	P	E	3	Т	У	Л	T	К	M	В	Γ	В	У	И	Е	P	Н	К	0	X
7	M	Л	Н	Н	У	О	Б	Ш	Ь	Н	Ш	3	С	Ч	Н	Э	Д	Т	В	Ь	Е	Т	У	Φ	A	M	Д	Л
8	Е	Б	П	Л	О	A	О	X	Н	P	К	Ц	Ч	Ж	Б	В	И	О	К	Φ	В	3	Ч	Е	C	О	Б	И
9	В	K	Д	У	Л	К	Н	В	Е	M	Б	C	Д	0	Ж	X	T	Ж	E	И	M	У	Ц	Д	P	Ч	C	M
1	К	A	T	Ч	3	P	И	K	Ч	Л	Ц	E	И	Б	P	O	В	Φ	Д	Ч	Л	Е	Б	Л	О	X	Е	Б
0	Ж	Н	Л	Ж	Н	Γ	Л	Б	X	В	И	У	3	P	Γ	A	Э	3	Ч	К	Я	X	П	С	Γ	Д	Л	O
1	310		01	710		•		D	11	2		•	,	•	•	11)	•	•	10	71	11			•		• •	
1	Б	Е	Φ	A	П	Н	P	О	Ц	Ш	Ч	К	Л	Д	В	T	Н	Л	О	T	Б	Ж	T	Б	M	Н	К	Е
2	**	3.7	D	п)TC	7.7	TC	n	D)TC	-	11	Г	37	37)TC	г	TC)TC	П	_) (-	T	п	-	Æ	
1 3	Ч	M	В	П	Ж	И	К	3	В	Ж	С	И	Б	X	X	Ж	Γ	K	Ж	П	A	M	C	T	Д	С	Φ	Д
1	П	Ж	С	Т	Φ	M	В	П	Л	К	M	Д	Ж	Т	У	Е	Ш	Д	У	Л	X	Ш	Ь	M	Т	Я	X	У
4	,											, ,						, ,										
1	Φ	Д	3	O	Γ	П	Е	Ь	O	X	A	O	P	A	O	И	Л	P	3	Ш	И	Б	Д	Π	В	Л	И	Н
5		TT	I/	Г	V	п	Ф	п	г	п		п	Ф	17	TT	M	г	TT	TT	٦٢٢	Г	п	σ	TT	Ч	٦٢٢	TT	NC
1 6	О	Ц	K	Γ	X	Л	Φ	Л	Γ	Д	О	Л	Φ	У	Ц	M	Þ	Н	Ц	Ж	1	П	Я	Н	Ч	Ж	Н	Ж
1	3	Φ	Б	3	P	Φ	Γ	Д	Т	Ц	Л	P	В	3	Л	Γ	P	Е	Л	A	К	С	M	Ч	Л	Φ	В	П
7								, ,		,																		
1	Щ	C	У	M	T	Ж	У	T	Ж	О	Γ	Φ	К	Щ	И	Ш	3	Ь	A	C	Ж	Д	P	Ж	Φ	Б	П	3
8	И	О	Γ	π	Ц	Б	П	Φ	К	A	P	Ж	X	Е	П	Φ	К	X	П	У	П	Ь	В	О	К	Т	Ц	Ч
9	ΥI	U	1	Д	ц	D	11	Ψ	V	A	Г	Л	Λ	E	11	Ψ	V	Λ	11	У	11	D	D	U	N	1	ц	4
2	Γ	Ю	M	P	M	Е	Ь	Γ	Φ	3	Д	M	A	Ь	M	Ь	Φ	Ю	Б	0	С	К	Н	Γ	Ц	3	Ж	В
0																									·			
2	Э	3	P	Б	A	C	T	P	Д	C	У	Ь	T	И	Е	P	Е	Ц	C	X	Д	Я	3	Ц	Ж	П	Ь	Ц
2	Ь	III	Ю	g	C	R	Я	Ж	g	Γ	П	R	7	П	u	u	Ю	A	Н	'	3	R	7	Ю	Б	И	Т	Ш
$\frac{2}{2}$	ъ	щ	10	/1	C	ט	71	Ж	/1	1	11	D)	11	1	1	10	Λ	11)	,	D)	10	ע	rı	1	111
2	С	X	Е	С	Д	Ь	Ж	A	С	У	Э	X	M	Γ	Ш	П	Ц	Я	X	Н	Ш	P	И	К	Ь	Э	Э	Φ
3																												
2	X	Γ	Я	Э	Ю	T	Э	Ц	У	T	X	Ч	П	M	Ю	3	Я	C	Ю	Б	Р	Ю	Γ	Э	П	В	3	Ь
2	Я	Я	L	Ю	R	g	Ч	g	3	П	R	Ю	F	K	Ф	Ю	П	Б	<u>٦</u>	Γ	Т	Н	\cap	3	И	Ю	Ю	_
5	/1	/1	ע	10	ט	/1	1	/1	,	11	ט	10	Ľ	1/	Ψ	10	11	ע	,	1	1	11	J	,	ΙΊ	10	10	11
2	P	У	Ш	В	Ь	Ц	A	Ч	Ю	Я	Φ	Э	Γ	В	3	Ц	Ь	Ч	P	Ю	Φ	A	Ж	В	Ю	Ь	Ш	Я
6	_																	-										
2	Ю	Э	X	Ь	Ш	Д	С	Ю	A	Φ	T	П	Ю	Я	К	Я	A	Э	Φ	P	Н	Э	Ю	Я	3	Ц	Я	T
7	У	P	7	X	Ч	F	Ц	С	П	Ю	Ж	Γ	Ь	Ф	Я	Б	С	П	Ь	3	Э	Γ	К	И	<u> </u>	H	Ч	Ю
8	,	1)	11	1	,			11	10	71 \	1	ע	Ŧ	/1	ע		11	ע	,		1	11	11		щ	1	10

Задача 5.(30 баллов)

(операционные системы, системное программирование)

Определить значения переменных a, b, c, d, n, m, m, n, n, n0 после выполнения фрагмента программы на языке программирования C0 в UNIX — подобной операционной системе. Обосновать свое решение.

```
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <stdlib.h>
void main()
\{ int \ a=0, b, c, d, k, m, n, s, n1, n2, n3, p[2] \}
char buf[5000];
close(1);
pipe(p);
if(fork()==0)
\{close(p[0]);
close(0);
creat("a.txt", 0664);
a=open("a.txt", 0);
b=write(a, "aaaa", 10);
c=read(0, buf, 1);
d=write(p[1], "aaa", 2);
exit(0):
ļ
else
\{wait(\&s);
close(p[1]);
n = creat("b.txt", 640);
k=read(p[0], buf, 50000);
m = dup(a);
n1 = open("a.txt", 1);
n2=write(n1, "aa", 1);
n3 = read(n2, buf, 4);
```

Решение к задаче 5.

При создании процесса автоматически открываются файлы стандартного ввода, стандартного вывода и стандартного протокола с пользовательскими дескрипторами 0, 1 и 2, соответственно.

Далее, закрывается файл с пользовательским дескриптором 1 - close(1). Открывается файл межпроцессного канала pipe(p) с пользовательскими дескрипторами p[0]=1 и p[1]=3. После чего процесс создает процесс-потомок с помощью системного вызова fork(). Таблица пользовательских дескрипторов открытых файлов у «процесса-отца» и у «процесса-сына» одинаковы. Далее эти процессы функционируют независимо друг от друга.

«Процесс-сын» закрывает файлы с пользовательскими дескрипторами p[0]=1 и 0-close(p[0]) и close(0). Создает файл a.txt с пользовательским дескриптором 0-

creat("a.txt",0664). Открывает файл a.txt для чтения — open("a.txt",0). Системный вызов open() возвращает номер первой свободной строки в таблице пользовательских дескрипторов открытых файлов процесса 1, т.е. a=1. Далее, в файл с пользовательским дескриптором a осуществляется запись 10 символов, начиная со строки aaaa - write(a, "aaaa",10), но так как файл с дескриптором a открыт только для чтения, системный вызов write() вернет -1, т.е. b=-1. После этого производится чтение из файла с пользовательским дескриптором 0 - read(0,buf,1), но файл с дескриптором 0 создан с помощью системного вызова creat(), а creat() при создании открывает файл только на запись, поэтому read() вернет значение -1, т.е. c=-1. Системный вызов write(p[1], "aaa",2) осуществляет запись в файл с пользовательским дескриптором p[1]=3 двух байтов, поэтому d=2. С помощью функции exit() «процесс-сын» завершается.

«Процесс-отец» дождавшись завершения «процесса-сына» (wait()), закрывает файл с пользовательским дескриптором p[1]=3. Создает и открывает на запись файл b.txt с с первым свободным пользовательским дескриптором, т.е. *n=3*. Считывает из межпроцессного канала, т.е. из файла с пользовательским дескриптором p[0] = 1 50000 байтов, но т.к. в канале находится всего два байта, системный вызов read() вернет 2, т.е. k=2. Далее, происходит копирование дескриптора файла a на первую свободную строку в таблице пользовательских дескрипторов файлов процесса (dup(a)), а это 4 строка, т.е. m=4. При этом необходимо учитывать, что значение a для «процесса-отца» равно 0 (это файл стандартного ввода). Далее, файл *a.txt* открывается на запись. Системный вызов *open()* вернет номер первой свободной строки в таблице пользовательских дескрипторов открытых файлов процесса, а это 5, т.е. n1=5. После чего осуществляется запись одного байта в файл с пользовательским дескриптором n1=5. Системный вызов write() вернет 1, т.е. n2=1. А при чтении из файла с пользовательским дескриптором n2=p[0]=1 (т.е. межпроцессного канала) будет получен код ответа 0, что означает конец файла, т.к. перед этим всю информацию из этого файла уже считали. Таким образом, *n3=0*. «Процесс-отец» завершается.

Значения переменных после выполнения этого фрагмента программы можно занести в таблицу:

	a	b	c	d	n	k	m	n1	n2	<i>n3</i>
«Процесс-отец»	0	?	?	?	3	2	4	5	1	0
«Процесс-сын»	1	-1	-1	2	?	?	?	?	?	?