UNIVERSIDADE FEDERAL DE LAVRAS GCC113 - CIRCUITOS DIGITAIS - 2020/2 RELATÓRIO DE ATIVIDADE AVALIATIVA REO #04

Prof. Bruno Silva e Prof. Eric Araújo

Nome: Layra Vilas Boas Ferreira

Turma: 10 A

Matrícula: 202010142

0Va2V 3Va5V 6Va9V

Tabela verdade para as 3 operações(X espera, Y economia, Z desempenho):

Α	В	С	D	X	Y	Z
0	0	0	0	1	0	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	0	1	0
0	1	0	0	0	1	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	×	x	Х
1	0	1	1	×	X	×
1	1	0	0	×	x	х
1	1	0	1	×	Х	X
1	1	1	0	x	×	X
1	1	1	1	×	x	X

X(espera) mapa de Karnaugh (0V a 2V)

Circuito:

Y(economia) mapa de Karnaugh (3V a 5V)

	_	C		С		_
	Ā	0	0	1	0	B
		1	1	0	0	В
B.C + B.C.D	Α	Х	Х	х	X	
		0	0	Х	X	B
		D		D	\overline{D}	

Circuito:

Z(desempenho) mapa de Karnaugh(6V a 9V)

		C		С		
	_	0	0	0	0	B
	Ā	0	0	1	1	В
	А	X	Х	х	Х	
B.C + A.B.C		1	1	X	X	B
		D	[O	D	

Circuito:

Driver BCD:

Esse módulo recebe os bits de A,B,C,D e do Enable e retorna as 7 saídas para o display.

Display:

Utilizei o circuito de espera, utilizando a seguinte lógica: Caso não seja a saída dado pelo circuito X(espera), acende o display, ou seja, quando o LED vermelho acende, o display

continua apagado, caso o LED vermelho não acenda, o display será ligado, pois atenderá o caso dos circuitos Y(economia) e Z(desempenho), LED amarelo e verde, respectivamente.

Obs: os LEDs acesos podem ser verificados nas pastas de cada circuito. No display utilizei a única condição de que se o LED vermelho não acende então serão satisfeitos os casos dos LEDs amarelo e verde.