Введение в анализ Ribo-Seq данных. Отчет

Горохов Никита

Ноябрь 2019

Этап 0

Моя рабочая директория: /mnt/local/vse2019/home/nsgorokhov/HW5/ Я установил миниконду и необходимые пакеты (svist4get, cutadapt, imagemagick). И проверил корректность их работы.

Этап 1

Идентификатор серии GEO: **GSE101865**. Теперь скачаем метаданные. Для этого воспользуемся командами:

```
$ ~/../kulakovskiy/edirect/esearch —db gds —query "GSE101865[ACCN]" | \
~/../kulakovskiy/edirect/efetch —format docsum —mode json > \
gse__details.json
$ ~/../kulakovskiy/edirect/esearch —db sra —query PRJNA395723 | \
~/../kulakovskiy/edirect/efetch —format runinfo > srx2srr.csv
Склеим два полученных файла
$ ruby ~/../kulakovskiy/h/h0_download_prep.rb gse__details.json \
srx2srr.csv > samples.tsv
```

И добавим в полученную табличку колонку с человеческими названиями экспериментов. В итоге финальная таблица будет иметь следующий вид: Для дальнейшего исследования я выбрал 4 файла (см. табл. 1). Теперь скачаем эти 4 файла (из-за того что все это происходит довольно долго, 2 файла я скачал и преобразовал в fasta, а два других взял из директории /../kulakovskiy/fastqraw/):

(base) nsgoro	khov@hpc09:~/HW5\$	cat samples_annotated.ts	V	
GSM2717371	SRX3033801	RNA_seq_Torin SRR5865	805 rna_s	eq_torin
GSM2717370	SRX3033800	RNA_seq_shABCF1_rep2	SRR5865804	rna_seq_shABCF1_rep2
GSM2717369	SRX3033799	RNA_seq_shABCF1_rep1	SRR5865803	rna_seq_shABCF1_rep1
GSM2717368	SRX3033798	RNA_seq_shMETTL3_rep2	SRR5865802	rna_seq_shMETTL3_rep2
GSM2717367	SRX3033797	RNA_seq_shMETTL3_rep1	SRR5865801	rna_seq_shMETTL3_rep1
GSM2717366	SRX3033796	RNA_seq_Scram_rep2	SRR5865800	rna_seq_Scram_rep2
GSM2717365	SRX3033795	RNA seq_Scram_rep1	SRR5865799	rna_seq_Scram_rep1
GSM2717364	SRX3033794	Ribo_seq_Torin SRR5865	798 ribo_	seq_torin
GSM2717363	SRX3033793	Ribo_seq_shABCF1_rep2	SRR5865797	ribo_seq_shABCF1_rep2
GSM2717362	SRX3033792	Ribo_seq_shABCF1_rep1	SRR5865796	ribo_seq_shABCF1_rep1
GSM2717361	SRX3033791	Ribo_seq_shMETTL3_rep2	SRR5865795	ribo_seq_shMETT3_rep2
GSM2717360	SRX3033790	Ribo_seq_shMETTL3_rep1	SRR5865794	ribo_seq_shMETT3_rep1
GSM2717359	SRX3033789	Ribo_seq_Scram_rep2	SRR5865793	ribo_seq_Scram_rep2
GSM2717358	SRX3033787	Ribo_seq_Scram_rep1	SRR5865792	ribo seq Scram rep1

Рис. 1: Таблица с метаданными

id	описание	адаптер
SRR5865803	RNA Seq ABCF1	AAAAAAAAA
	replicate 1	
SRR5865801	RNA Seq METTL3	AAAAAAAAA
	replicate 1	
SRR5865796	RIBO Seq ABCF1	AAAAAAAAA
	replicate 1	
SRR5865794	Ribo Seq METTl3	AAAAAAAAA
	replicate 1	

Таблица 1: Информация о выбранных данных

 $\$ ~~ ^{\sim}/.../\,kulakovskiy/bin/\,sratoolkit/\,sratoolkit\,.2.10.0-ubuntu64/\,bin/\,prefetch$

-v SRR5865803

И распакуем в директорию fasta

 $\$ ~~^{\sim}/.../~kulakovskiy/bin/sratoolkit/sratoolkit.2.10.0-ubuntu64/bin/fastq-durated and the state of the control of the state of the control of the state of the control of the state o$

Также создадим сивольные ссылки на эти fasta файлы (они будут храниться в каталоге fasta_ $\ln/$)

 $\ \ln \ fasta/SRR5865803_1.\,fasta.gz\ fasta_ln/rna_seq_shABCF1_rep1$

Этап 2

Запустим FastQC для 4 образцов.

 $\begin{tabular}{ll} $$ $^-/.../kulakovskiy/bin/fastqc/FastQC/fastqc fasta/SRR5865803_1. \\ \end{tabular} $$ $$ fastq.gz -o fastqc_before_trim/ $$ \end{tabular}$

После этого удалим адаптеры и повторно запустим FastQC для обновленных fastq файлов (для результатов Ribo seq я дополнительно выставлял паратмер –trimmed-only).

```
\ cutadapt -a AAAAAAAAA -j 4 —minimum-length 20 \ -q 20 fasta/SRR5865803_1.fasrq.gz -o \ fasta trim/SRR5865803 after trim.fastq.gz
```

Результаты работы FastQC до и после тримминга находятся в папках fastqc_before_trim и fastqc_after_trim соответственно. Для упрощения, будем работать только с одной парой данных (ABCF1 rna и ribo seq) Теперь проанализируем полученые результаты

- 1. **Вопрос**: Какова характерная длина рибосомных футпринтов в рибосеке и рнксеке? **Ответ** Для рнк и рибо экспериментов длина футпринтов равна 49 (поле Sequence length в Basic Statistics) до тримминга и 39 (рнасек) и 32 (рибосек).
- 2. **Вопрос**: Обрабатывали ли РНК-сек по тому же протоколу (с нарезкой нуклеазами и отбором фрагментов по размеру) или нет. **Ответ** Нет.

Этап 3

Проверим долю рибосомной РНК.

```
$ ~/../kulakovskiy/bin/bowtie -1.2.3-linux-x86_64/bowtie —sam -p 4 \ ~/../kulakovskiy/bin/bowtie -1.2.3-linux-x86_64/rRNA_euk/rRNA_euk \ SRR5865803_after_trim.fastq.gz —chunkmbs 10000 > /\text{dev/null} Итого для рибосека (46.15%):
```

- reads processed: 53393979
- reads with at least one reported alignment: 24639869 (46.15%)
- reads that failed to align: 28754110 (53.85%)

Итого для риксека (49.18%):

- reads processed: 62791081
- reads with at least one reported alignment: 30881163 (49.18%)
- reads that failed to align: 31909918 (50.82%)

Этап 4

Этап 5

Фазирование прочтений и метагенные профили. Для выполнения этой задачи нам понадобится пакет **plastid**. Геномные аннотации мы будем брать из /../kulakovskiy/genomes/plastidme Команда запуска имеет следующий вид (для рибосека):

```
$ psite ~/../kulakovskiy/genomes/plastidmetagen/mouse_start_rois.txt
psite_test —countfile_format BAM —count_files \
bam/ABCF1_ribo_Coots2017_m_r1.bam \
—min_length 20 —max_length 40 —aggregate —constrain 10 18 \
—min_count 10 —default 14
```

Аналогично запустим для результатов рнасека. В результате получаем файл с фазированием прочтений различной длины и картинку фазирования. На рис.2 изображено фазирование для рибо и рнксека. Можно сделать вывод, что для рнксека фазирование не получилось.

Теперь перейдем к построению метогеномного профиля. Для этого воспользуемся командой **metagene**:

```
$ metagene count —countfile_format BAM —count_files \
bam/ABCF1_ribo_Coots2017_m_r1.bam \
—fiveprime —min_length 25 —max_length 32 —min_count 10 \
—use_mean —landmark Start \
```

Аналогично сделаем для риксека и сравним полученные профили. На рис.3 изображены профили для рибо и риксека.

~/../kulakovskiy/genomes/plastidmetagen/mouse start rois.txt metagene cou

Этап 6

Получение bedGraph файлов и визуализация. Воспользуемся утилитой **make wiggle**.

```
$ make_wiggle -o output —count_files
ABCF1_ribo_Coots2017_m_r1.bam —normalize
—min_length 25 —max_length 31 —fiveprime_variable
—offset psite test p offsets.txt
```

Ha выходе получаем 2 файла: **output_fw**, **output_rc**. Далее склеим эти два файла в один. Для это установим пакет **csvtk** (conda install -c bioconda csvtk).

```
\ bedtools unionbedg -i output_fw.wig output_rc.wig | \ csvtk mutate2 -H -t -L 5 -e '$4+$5' | \ cut -f 4-5 —complement > output ribo.bedGraph
```

Аналогично поступаем с риксек файлом. Теперь с помощью svist4get провизулизируем некоторые гены. Я выбрал TP53 (ENSMUSG00000059552) и ABCF1 (ENSMUSG00000038762). В результате получил следующие картинки:

Рис. 2: Рибосек (слева) и риксек (справа)

Рис. 3: Рибосек (слева) и риксек (справа)

Рис. 4: ген ABCF1

Рис. 5: ген ТР53