Reconnaissance faciale par Eigenfaces

Bouarah Romain

Langdorph Matthieu Ketels Lucas Nathan Souffan

19 mai 2020

Calcul des eigenfaces

Travail dans $\mathbb{R}^{N \times N}$ Matrice de covariance Analyse en composantes principales Décomposition en valeurs singulières

Classification des visages

Projection dans l'espace des visages Analyse de la projection

Application

Techniques utilisées aujourd'hui Les besoins auxquels répondent les technologies de reconnaissance faciale Les secteurs dans lesquels la reconnaissancefaciale est utilisée

Conclusion

Références

Représentation matricielle des images

Définition

Une image de taille $N \times N$ est représentée par une matrice $N \times N$. Chaque coefficient représente un niveau de gris d'un pixel.

Transformation en un vecteur de $\mathbb{R}^{N \times N}$

On juxtapose simplement les colonnes de la matrice l'une en dessous de l'autre.

$$\begin{pmatrix} p_{1,1} & p_{1,2} & \cdots & p_{1,N} \\ p_{2,1} & p_{2,2} & \cdots & p_{2,N} \\ \vdots & \vdots & \ddots & \vdots \\ p_{N,1} & p_{N,2} & \cdots & p_{N,N} \end{pmatrix} \rightarrow \begin{pmatrix} p_{1,1} \\ p_{2,1} \\ \vdots \\ p_{N,1} \\ \vdots \\ p_{1,N} \\ \vdots \\ p_{N,N} \end{pmatrix}$$

Calcul des eigenfaces

└ Matrice de covariance

Observation sur les images des visages

Question

Que dire de la position de nos images de visages dans l'espace $\mathbb{R}^{N\times N}$?

Matrice de covariance

Observation sur les images des visages

Question

Que dire de la position de nos images de visages dans l'espace $\mathbb{R}^{N\times N}$?

Réponse

Nos images de visages ne sont pas si éloignées les unes des autres.

└─ Matrice de covariance

Définition de la Matrice de Covariance

Définition

La matrice de covariance d'un vecteur de p variables aléatoires

$$\overrightarrow{X} = \begin{pmatrix} X_1 \\ \vdots \\ X_p \end{pmatrix}$$
 dont chacune possède une variance, est la matrice

carrée dont le terme générique est donné par $a_{i,j} = \text{Cov}(X_i, X_j)$.

Encodons cette dispersion

Définition (Estimation de la Matrice de Covariance)

En partant d'un échantillon de réalisations indépendantes d'un vecteur aléatoire, une estimation de la matrice de covariance est donné par :

$$\mathsf{Var}(\overrightarrow{X}) = \frac{1}{n} \sum_{i=1}^{n} (\overrightarrow{X}_i - \overrightarrow{\mu}) (\overrightarrow{X}_i - \overrightarrow{\mu})^{\mathsf{T}}$$

où
$$\overrightarrow{\mu} = \frac{1}{n} \sum_{i=1}^{n} \overrightarrow{X}_{i}$$
 est le vecteur des moyennes empiriques.

Calcul des eigenfaces
Matrice de covariance

Application à notre cas

Soit $I = [I_1, I_2, \dots, I_M]$ la matrice de l'ensemble de nos images.

└Matrice de covariance

Application à notre cas

Soit $I = [I_1, I_2, \dots, I_M]$ la matrice de l'ensemble de nos images.

1. On calcule le visage moyen $\Psi = \frac{1}{M} \sum_{i=1}^{M} I_i$.

Reconnaissance faciale par Eigenfaces

Calcul des eigenfaces

Matrice de covariance

Notre Visage Moyen

Application à notre cas

Soit $I = [I_1, I_2, \dots, I_M]$ la matrice de l'ensemble de nos images.

- 1. On calcule le visage moyen $\Psi = \frac{1}{M} \sum_{i=1}^{M} I_i$.
- 2. Chaque visage différe donc de la moyenne par le vecteur $\Phi_i = I_i \Psi$.

Application à notre cas

Soit $I = [I_1, I_2, \dots, I_M]$ la matrice de l'ensemble de nos images.

- 1. On calcule le visage moyen $\Psi = \frac{1}{M} \sum_{i=1}^{M} I_i$.
- 2. Chaque visage différe donc de la moyenne par le vecteur $\Phi_i = I_i \Psi$.
- 3. On calcule la matrice de covariance

$$C = \frac{1}{M} \sum_{i=1}^{M} \Phi_i \Phi_i^T = \frac{1}{M} A A^T$$

où
$$A = [\Phi_1, \Phi_2, \dots, \Phi_M].$$

└Matrice de covariance

Observations sur la Matrice de Covariance

La matrice de covariance C est :

☐ Matrice de covariance

Observations sur la Matrice de Covariance

La matrice de covariance C est :

symétrique réelle.

☐ Matrice de covariance

Observations sur la Matrice de Covariance

La matrice de covariance C est :

- symétrique réelle.
- définie semi-positive.

```
Reconnaissance faciale par Eigenfaces

Calcul des eigenfaces

Analyse en composantes principales
```

Introduction à l'Analyse en Composantes Principales

Principe

Trouver des axes décrivant au mieux notre nuage de points.

Analyse en composantes principales

Introduction à l'Analyse en Composantes Principales

Principe

Trouver des axes décrivant au mieux notre nuage de points.

Définition (Eigenfaces)

La méthode développéee par Turk et Pentland définit les *eigenfaces* comme les axes principaux de l'ACP.

Calcul des eigenfaces

Analyse en composantes principales

Illustration en 2 Dimensions

Calcul des eigenfaces

Analyse en composantes principales

Illustration en 2 Dimensions

Lien avec la Matrice de Covariance

$$C = \begin{pmatrix} 0.55 & 0.07 \\ 0.07 & 0.12 \end{pmatrix}$$

Lien avec la Matrice de Covariance

$$C = \begin{pmatrix} 0.55 & 0.07 \\ 0.07 & 0.12 \end{pmatrix}$$
$$= P \begin{pmatrix} 0.55 & 0 \\ 0 & 0.11 \end{pmatrix} P^{T}$$

avec

$$P = \begin{pmatrix} 0.99 & -0.16 \\ 0.16 & 0.99 \end{pmatrix}$$

Reconnaissance faciale par Eigenfaces Calcul des eigenfaces

Analyse en composantes principales

Limite de la Méthode

Question

Quels sont les problèmes de la méthode?

Calcul des eigenfaces

Analyse en composantes principales

Limite de la Méthode

Question

Quels sont les problèmes de la méthode?

Réponse

▶ La matrice de covariance est de taille $N^2 \times N^2$.

Calcul des eigenfaces

Analyse en composantes principales

Limite de la Méthode

Question

Quels sont les problèmes de la méthode?

Réponse

- ▶ La matrice de covariance est de taille $N^2 \times N^2$.
- ► La diagonaliser est infaisable informatiquement.

Énoncé de la Décomposition en Valeurs Singulières

Théorème

Soit M une matrice $m \times n$, alors il existe une décomposition de la forme

$$M = U\Sigma V^t$$

avec U et V des matrices orthonormales de taille respectives $m \times m$ et $n \times n$.

Proposition

- les colonnes de V sont les vecteurs propres de M^T M
- ▶ les colonnes de U sont les vecteurs propres de MM^T

Décomposition en valeurs singulières

LDécomposition en valeurs singulières

Les 15 Premières Eigenfaces

Projection d'un visage

Soit Γ une nouvelle image de visage, on la projette dans l'espace des visages par :

$$\omega_k = u_k^T (\Gamma - \Psi)$$

Projection dans l'espace des visages

Projection d'un visage

Soit Γ une nouvelle image de visage, on la projette dans l'espace des visages par :

$$\omega_k = u_k^T (\Gamma - \Psi)$$

Pour $k \in \{1, ..., M'\}$, on a alors :

$$W = \begin{pmatrix} \omega_1 \\ \vdots \\ \omega_{M'} \end{pmatrix}$$

Reconnaissance faciale par Eigenfaces Classification des visages Analyse de la projection

image reconstruite = $U \cdot W + \Psi$

Reconnaissance faciale par Eigenfaces

- Classification des visages
 - Analyse de la projection

image reconstruite = $U \cdot W + \Psi$

image d'origine image reconstruite distance/l'EDV distance/VLPP

1210 4630

- Classification des visages
 - Analyse de la projection

image reconstruite = $U \cdot W + \Psi$

image d'origine image reconstruite distance/l'EDV distance/VLPP

1210 4630

8088 6828

└Analyse de la projection

	proche d'une classe de visage	éloigné des classes de visage
proche de l'espace des visages		
éloigné de l'espace des visages		

└Analyse de la projection

	proche d'une classe de visage	éloigné des classes de visage
proche de l'espace des visages	visage connu	
éloigné de l'espace des visages		

└Analyse de la projection

	proche d'une classe de visage	éloigné des classes de visage
proche de l'espace des visages	visage connu	visage inconnu
éloigné de l'espace des visages		

Analyse de la projection

	proche d'une classe de visage	éloigné des classes de visage
proche de l'espace des visages	visage connu	visage inconnu
éloigné de l'espace des visages	faux positif	

Analyse de la projection

	proche d'une classe de visage	éloigné des classes de visage
proche de l'espace des visages	visage connu	visage inconnu
éloigné de l'espace des visages	faux positif	pas un visage

Réseau de Neurones Convolutifs

Principe

Reproduire le cortex visuel humain.

Application

Techniques utilisées aujourd'hui

Réseau de Neurones Convolutifs

Reconnaissance faciale par Eigenfaces

Application

Les besoins auxquels répondent les technologies de reconnaissance faciale

Authentification et Identification

Définition (Authentification)

Vérifier qu'une personne est bien celle qu'elle prétend être.

Application

Les besoins auxquels répondent les technologies de reconnaissance faciale

Authentification et Identification

Définition (Authentification)

Vérifier qu'une personne est bien celle qu'elle prétend être.

Définition (Identification)

Retrouver une personne au sein d'un groupe d'individus, dans un lieu, une image ou une base de données.

Secteurs utilisant la reconnaissance faciale

Quelques Exemples

Identification:

Authentification:

Quelques Exemples

Identification:

► Facebook avec les suggestions.

Authentification:

Secteurs utilisant la reconnaissance faciale

Quelques Exemples

Identification:

Facebook avec les suggestions.

Authentification:

Accès à des services de retrait d'argents.

Quelques Exemples

Identification:

- Facebook avec les suggestions.
- Sécurité sur la voie publique.

Authentification:

Accès à des services de retrait d'argents.

- Turk, Matthew and Pentland, Alex, Eigenfaces for Recognition, Journal of Cognitive Neuroscience, 1991, https://doi.org/10.1162/jocn.1991.3.1.71
- Covariance, Wikipédia, l'encyclopédie libre, https://fr.wikipedia.org/w/index.php?title=Covariance&oldid=169222335
- Analyse en composantes principales, Wikipédia, l'encyclopédie libre, https://fr.wikipedia.org/w/index.php?title=Analyse_en_composantes_principales&oldid=168590115
- Décomposition en valeurs singulières, Wikipédia, l'encyclopédie libre, https://fr.wikipedia.org/w/index.php?title=D% C3%A9composition_en_valeurs_singuli%C3%A8res& oldid=169733819