

(17 NO: 17	,	_	NO: 3)	NO: 4) HMG-1	NO: 5) HMG-		NO: 7)	NO: 8)	NO: 9) HMG-	NO: 10) HMG-	NO: 1	ID NO: 12)	ID NO: 13)		ID NO: 15)	ID NO: 16) HMG-1		ID NO: 169)	ID NO: 17)	ID NO: 18) LH-alpha	ID NO: 19)	ID NO: 20) LH-beta	
	GDAHTE (SEQ	n peptides	LADEYEYMXK* (SEQ	TSSSGLXLK*	GEMWAE (SEQ	E K R A (SEQ	SEHAGLSIGDTAK* (SEQ	LADEYEYMRK* (SEQ	GEHPGLSIGDVAK* (SEQ	EYAFFVQTXR* (SEQ	HPGLSIGDTAK * (SEQ	YFAEXAR*	EFLXAK*	EMASEQGA (SEQ	EALAALK*	CSEQ (SEQ	M	178 men	SC VO POPUTACE OF T. K K V P M V T G A Y T. (SEQ.	CIKFKWFKKATVM (SEQ	Y F S K X D A (SEQ	FYVP (SEQ	FAS	
erm	01 F K	٠,	2 K/R A	3 K/R T	4 K/R K	5 K/R L	6 K/R I	7 K/R A	8 K/R I	9 K/R M	O K/R S	1 K/R A	2 K/R K	3 K/R T	X/X V	K/R F	6 K/R L	5 7 1	17 LOCA 17 TH TH		o o 1 ⊞ 1 ⊲) H	
	GGF-I 0			∺ 1	H	۱ <u>۱</u>	4 	1 H	۱ <u>۱</u>	ı	ŧ ⊢	4 F	4 H	4 }- I	4 F	-1 }- 	1 1		,			4 1-	 	i

28)

ID NO: ID NO:

ID NO:

FIG. 10

Е \succ Ø G Σ K Σ ø × \succ G \geq \circ O X ×Ш 团 田の K Ø K ഥ Σ Ø П 7 国 国の Ö E AHAAH Ø [-01 02 03 07 11 GGF-I GGF-I GGF-I GGF-I GGF-I GGF-I GGF-I GGF-I GGF-I

1) 22) 23) 24) 25) 26) 27)

ID NO: ID NO: ID NO: ID NO: ID NO:

(SEQ

(SEQ

(SEQ ID NO: 19) (SEQ ID NO: 32) \bowtie Œ × u 田区 20 GGF-I GGF-I

	Trypsin peptides	peptide	S										
GGF-II 01	K/R V	$M \lor Q \lor M$	1 A	Ø	X	*						(SEQ ID NO:	33)
GGF-II 02	K/R Y	IFFM	回	Ц	曰	Ø	×	Ω Ω	S D	r h		(SEQ ID NO:	34)
GGF-II 03	K/R L	G A W G	Д	Д	K	ഥ	г Д,	× ×	X	١.		(SEQ ID NO:	
GGF-II 04	K/R W	FVVI	П	G	×	*						(SEQ ID NO:	36)
GGF-II 05	/R A	LAAA	Ö	×	Д	>	ы	*	,_		Histone H1	(SEQ ID NO:	164)
GGF-II 06	K/R L	V L R *										(SEQ ID NO:	165)
GGF-II 07	/R X	X Y P G	Ø	Η	\vdash	Ŋ	Z				Trypsin	(SEQ ID NO:	166)
GGF-II 08	K/R A S	PVSV	Ω	Ω	>	α	日日	LV	α	* \		(SEQ ID NO:	37)
GGF-II 09	K/R V C I	LLTV	۷,	Þ	Д	Д	[-					(SEQ ID NO:	38)
GGF-II 10	/R D L	LLXV										(SEQ ID NO:	39)
	Twen In	Jonant 1	ה ה	ď	ر	ğ	+	ر ر	Ŭ				
GGF-II 11	K V H Q V W A A K *	W A A	j ×) * 1)	፲ ጊ) }	2			(SEQ ID NO:	51)
GGF-II 12	KASLA	DSG	ப	\succ	Σ	M X K*	*					(SEQ ID NO:	52)

A

(SEO TD NO. 53)	2)	GGE-II 10
	Novel Factor II Peptides - others	
ID NO:	K V H Q V W A A K K A S L A D S G E Y M X K	GGF-II 11 GGF-II 12
	TVAAPPT	GGF-II 09
	SPVSVGS	GGF-II 08
	FVVIEGK	GGF-II 04
. ON CE	PPAFPVX	GGF-II 03
: ON CIT	IFFMEPE	GGF-II 02
	VHQVWAAK	GGF-II 01

FIG. 13
Comparison of BrdU-ELISA and [125 I]UdR Counting Method for the DNA Synthesis Assay in Schwann Cell Cultures

FIG. 14A
Comparison of Br-UdR Immunoreactivity
and Br-UdR Labelled Cell Number

FIG. 14B
Comparison of Br-UdR Immunoreactivity
and Br-UdR Labelled Cell Number

FIG. 15
Mitogenic Response of Rat Sciatic
Nerve Schwann cell to GGFs

FIG. 16

DNA Synthesis in Rat Sciatic Nerve Schwann
Cells and 3T3 Fibroblasts in the presence of GGFs

FIG. 17
Mitogenic Response of
BHK 21 C13 Cells to FCS and GGFs

FIG. 18
Survival and Proliferation of BHK21 C13 Cell
Microcultures After 48 Hours in Presence of GGFs

FIG. 19
Mitogenic Response of C6 Cells to FCS

FIG. 20A Mitogenic Response of C6 Cells to aFGF & GGFs

% Maximal BrdU Incorp.

12.5

6.25

3.12

GGF(ul/ml)

FIG. 20B Mitogenic Response of C6 Cells to aFGF & GGFs

FIG. 21

Degenerate Oligonucleotide Probes for Factor I & Factor II

Oligo	Sequence	Peptide			
535	TTYAARGGNGAYGCNCAYAC!	GGFI-1	(SEQ	ID NO:	54)
536	CATRTAYTCRTAYTCRTCNGC!	GGFI-2	-	ID NO:	55)
537	TGYTCNGANGCCATYTCNGT!	GGFI-13		ID NO:	56)
538	TGYTCRCTNGCCATYTCNGT!	GGFI-13		ID NO:	57)
539	CCDATNACCATNGGNACYTT!	GGFI-17		ID NO:	58)
540	GCNGCCCANACYTGRTGNAC!	GGFII-1	_	ID NO:	59)
541	GCYTCNGGYTCCATRAARAA!	GGFII-2		ID NO:	60)
542	CCYTCDATNACNACRAACCA!	GGFII-4		ID NO:	61)
543	TCNGCRAARTANCCNGC!	GGFI-11		ID NO:	62)
544	GCNGCNAGNGCYTCYTTNGC!	GGFI-14		ID NO:	63)
545	GCNGCYAANGCYTCYTTNGC!	GGFI-14		ID NO:	64)
546	TTYTTNGCYTGNAGNACRAA!	GGFI-15		ID NO:	65)
551	TTYTTNGCYTGYAANACRAA!	GGFI-15		ID NO:	66)
568	TGNACNAGYTCYTGNAC!	GGFII-8		ID NO:	67)
569	TGNACYAAYTCYTGNAC!	GGFII-8		ID NO:	68)
609	CATRTAYTCNCCNGARTCNGC!	GGFII-12		ID NO:	69)
610	CATRTAYTCNCCRCTRTCNGC!	GGFII-12		ID NO:	70)
649	NGARTCNGCYAANGANGCYTT!	GGFII-12		ID NO:	71)
650	NGARTCNGCNAGNGANGCYTT!	GGFII-12	_	ID NO:	72)
651	RCTRTCNGCYAANGANGCYTT!	GGFII-12		ID NO:	73)
652	RCTRTCNGCNAGNGANGCYTT!	GGFII-12		ID NO:	74)
653	NGARTCNGCYAARCTNGCYTT!	GGFII-12		ID NO:	74) 75)
654	NGARTCNGCNAGRCTNGCYTT!	GGFII-12		ID NO:	76)
655	RCTRTCNGCYAARCTNGCYTT!	GGFII-12		ID NO:	78)
656	RCTRCTNGCNAGRCTNGCYTT!	GGFII-12	_	ID NO:	79)
659	ACNACNGARATGGCTCNNGA!	GGFI-13		ID NO:	80)
660	ACNACNGARATGGCAGYNGA!	GGFI-13		ID NO:	81)
661	CAYCARGTNTGGGCNGCNAA!	GGFII-1		ID NO:	82)
662	TTYGTNGTNATHGARGGNAA!	GGFII-4		ID NO:	83)
663	AARGGNGAYGCNCAYACNGA!	GGFI-1		ID NO:	
664	GARGCNYTNGCNGCNYTNAA!	GGDI-14		ID NO:	84) 85)
665	GTNGGNTCNGTNCARGARYT!	GGFII-8		ID NO:	•
666	GTNGGNAGYGTNCARGARYT!	GGFII-8		ID NO:	86) 87)
694	NACYTTYTTNARHATYTGNCC!	GGFI-17		ID NO:	88)
		· - ·	(いしん	7D IVO:	001

FIG. 22 Putative Bovine Factor II Gene Sequences

	ATA 53 Ile	101	149	197	245	293	341	389	417
SEQ ID NO: 89:	TCTAA AAC TAC AGA GAC TGT ATT TTC ATG ATC ATC ATA GTT CTG TGA AAT	CTT AAA CCG CTT TGG TCC TGA TCT TGT AGG AAG TCA GAA CTT CGC ATT	AGC AAA GCG TCA CTG GCT GAT TCT GGA GAA TAT ATG TGC AAA GTG ATC	AGC AAA CTA GGA AAT GAC AGT GCC TCT GCC AAC ATC ACC ATT GTG GAG	TCA AAC GGT AAG AGA TGC CTA CTG CGT GCT ATT TCT CAG TCT CTA AGA	GGA GTG ATC AAG GTA TGT GGT CAC ACT TGA ATC ACG CAG GTG TGT GAA	ATC TCA TTG TGA ACA AAT AAA AAT CAT GAA AGG AAA ACT CTA TGT TTG	AAA TAT CTT ATG GGT CCT CCT GTA AAG CTC TTC ACT CCA TAA GGT GAA	ATA GAC CTG AAA TAT ATA TAG ATT ATT T
	Asn Tyr Arg Asp Cys Ile Phe Met Ile Ile Ile Val Leu Xaa Asn	Leu Lys Pro Leu Trp Ser Xaa Ser Cys Arg Lys Ser Glu Leu Arg Ile	Ser Lys Ala Ser Leu Ala Asp Ser Gly Glu Ser Met Cys Lys Val Ile	Ser Lys Leu Gly Asn Asp Ser Ala Ser Ala Asn Ile Arg Ile Val Glu	Ser Asn Gly Lys Arg Cys Leu Leu Arg Ala Ile Ser Gln Ser Leu Arg	Gly Val Ile Lys Val Cys Gly His Thr Xaa Ile Thr Gln Val Cys Glu	Ile Ser Cys Xaa Thr Asn Lys Asn His Glu Arg Lys Thr Leu Cys Leu	Lys Tyr Leu Met Gly Pro Pro Val Lys Leu Phe Thr Pro Xaa Gly Glu	Ile Asp Leu Lys Tyr Ile Xaa Ile Ile

FIG. 23A PCR Primers for Factor I & Factor II

Degenerate PCR Primers

FIG. 23B PCR Primers for Factor I & Factor II

Unique PCR Primers for Factor II

Oligo	Oligo Sequence	Comment	
711	CATCGATCTGCAGGCTGATTCTGGAGAATATATGTGCA!	3' RACE	(SEQ ID NO: 109)
712	AAGGATCCTGCAGCCACATCTCGAGTCGACATCGATT!	3' RACE	(SEQ ID NO: 110)
713	CCGAATTCTGCAGTGATCAGCAAACTAGGAAATGACA!	3' RACE	(SEQ ID NO: 111)
721	CATCGATCTGCAGCCTAGTTTGCTGATCACTTTGCAC!	5' RACE	(SEQ ID NO: 112)
722	AAGGATCCTGCAGTATATTCTCCAGAATCAGCCAGTG!	5' RACE; ANCHORED	(SEQ ID NO: 113)
725	AAGGATCCTGCAGGCACGCAGTAGGCATCTTA!	EXON A	(SEQ ID NO: 114)
726	CCGAATTCTGCAGCAGAACTTCGCATTAGCAAAGC!	EXON A	(SEQ ID NO: 115)
771	CATCCCGGGATGAAGAGTCAGGAGTCTGTGGCA!	EXONS B+A	(SEQ ID NO: 116)
772	ATACCCGGGCTGCAGACAATGAGATTTCACACACCTGCG!		(SEQ ID NO: 117)
773	AAGGATCCTGCAGTTTGGAACCTGCCACAGACTCCT!	ANCHORED	(SEQ ID NO: 118)
922	ATACCCGGGCTGCAGATGAGATTTCACACACCCTGCGTGA!	EXONS B+A	(SEQ ID NO: 119)

FIG. 24
Summary of Contiguous GGF-II cDNA Structures & Sequences

FIG. 25

FIG. 26Alternative Gene Products of Putative Bovine GGF-II

FIG. 27
GGF-II Peptides Identified in Deduced Amino Acid Sequences of Putative Bovine GGF-II Proteins

Peptide	Pos.		Sequence match	ID Sequences
II-1	1:		VHQVWAAK HQVWAAK AAGLK	(SEQ ID NO:120)
II-10	14:	GGLKK	DLLLXV dslltv RLGAW	(SEQ ID NO:121)
II-03	21:	LLTVR	LGAWGPPAFPVXY lgawghpafpscg RLKED	(SEQ ID NO:122) (SEQ ID NO:123)
· II-02	41:	KEDSR	YIFFMEPEAXSSG YIFFMEPEANSSG GPGRL	(SEQ ID NO:124) (SEQ ID NO:125)
II-6	103:	VAGSK	LVLR LVLR CETSS	(SEQ ID NO:126)
I-18	112:	CETSS	EYKCLKFKWFKKATVM eysslkfkwfkngsel SRKNK	(SEQ ID NO:127) (SEQ ID NO:128)
II-12	151:	ELRIS	KASLADSGEYMXK KASLADSGEYMCK VISKL	(SEQ ID NO:129) (SEQ ID NO:130)
I-07	152:	LRISK	ASLADEYEYMRK asladsgeymck VISKL	(SEQ ID NO:131) (SEQ ID NO:132)

		•
3. 5. 5. 5.	CCTGCAG CAT CAA GTG TGG GCG GCG AAA GCC GGG GGC TTG AAG AAG GAC TCG CTG His Gln Val Trp Ala Ala Lys Ala Gly Gly Leu Lys Lys Asp Ser Leu	G 55 u
SEQ 1D NO: 133:	CTC ACC GTG CGC CTG GGC GCC TGG GGC CAC CCC GCC TTC CCC TCC TGC Leu Thr Val Arg Leu Gly Ala Trp Gly His Pro Ala Phe Pro Ser Cys	103
	GGG CGC CTC AAG GAG GAC AGC AGG TAC ATC TTC ATG GAG CCC GAG Gly Arg Leu Lys Glu Asp Ser Arg Tyr Ile Phe Phe Met Glu Pro Glu	151
	GCC AAC AGC AGC GGC GGG CCC GGC CTT CCG AGC CTC CTT CCC CCC Ala Asn Ser Ser Gly Gly Pro Gly Arg Leu Pro Ser Leu Leu Pro Pro	199
	TCT CGA GAC GGG CCG GAA CCT CAA GAA GGA GGT CAG CCG GGT GCT GTG Ser Arg Asp Gly Pro Glu Pro Gln Glu Gly Gly Gln Pro Gly Ala Val	247
	CAA CGG TGC GCC TTG CCT CCC CGC TTG AAA GAG ATG AAG AGT CAG GAG Gln Arg Cys Ala Leu Pro Pro Arg Leu Lys Glu Met Lys Ser Gln Glu	295
	TCT GTG GCA GGT TCC AAA CTA GTG CTT CGG TGC GAG ACC AGT TCT GAA Ser Val Ala Gly Ser Lys Leu Val Leu Arg Cys Glu Thr Ser Ser Glu	343
	TAC TCC TCT CTC AAG TTC AAG TGG TTC AAG AAT GGG AGT GAA TTA AGC Tyr Ser Ser Leu Lys Phe Lys Trp Phe Lys Asn Gly Ser Glu Leu Ser	391
	CGA AAG AAC AAA CCA GAA AAC ATC AAG ATA CAG AAA AGG CCG GGG AAG Arg Lys Asn Lys Pro Glu Asn Ile Lys Ile Gln Lys Arg Pro Gly Lys	439
	TCA GAA CTT CGC ATT AGC AAA GCG TCA CTG GCT GAT TCT GGA GAA TAT Ser Glu Leu Arg Ile Ser Lys Ala Ser Leu Ala Asp Ser Gly Glu Tyr	487
	ATG TGC AAA GTG ATC AGC AAA CTA GGA AAT GAC AGT GCC TCT GCC AAC Met Cys Lys Val Ile Ser Lys Leu Gly Asn Asp Ser Ala Ser Ala Asn	535
	ATC ACC ATT GTG GAG TCA AAC GGT AAG AGA TGC CTA CTG CGT GCT ATT Ile Val Glu Ser Asn Gly Lys Arg Cys Leu Leu Arg Ala Ile	583
	TCT CAG TCT CTA AGA GGA GTG ATC AAG GTA TGT GGT CAC ACT Ser Gln Ser Leu Arg Gly Val Ile Lys Val Cys Gly His Thr	625
	TGAATCACGC AGGTGTGTA AATCTCATTG TGAACAAATA AAAATCATGA AAGGAAAAAA	685
	AAAAAAAAA AATCGATGTC GACTCGAGAT GTGGCTGCAG GTCGACTCTA GAGGATCCC	744

FIG. 28B

Nucleotide Sequences & Deduced Amino Acid Sequences of GGF2BPP2

SEQ ID NO: 134:

_										
55	103	151	199	247	295	343	391	439	487	535
CTG Leu	•									
TCG										
GAC	TGC	GAG Glu	CCC Pro	GTG Val	GAG Glu	GAA	AGC Ser	AAG Lys	TAT Tyr	AAC Asn
AAG Lys	rcc Ser	CCC	CCC	GCT	CAG (Glu (TCT (Ser (TTA i	GGG A	GAA 1 Glu 1	GCC A
AAG	CCC '	GAG (Glu]	CTT (Leu	GGT (AGT (AGT 1 Ser 5	GAA 1 Glu I	CCG G Pro G	GGA G Gly G	TCT G Ser A
TTG /	TTC C	ATG G	CTC C	CCG G Pro G	AAG A Lys S	ACC A Thr S	AGT G	AGG C Arg P	TCT G Ser G	GCC T
GGC Gly	GCC Ala	TTC	AGC	CAG	ATG	GAG	GGG G1y	AAA Lys	GAT Asp	AGT
GGG Gly	CCC	TTC Phe	CCG Pro	$_{\rm G1Y}^{\rm GGT}$	GAG Glu	TGC	AAT	CAG Gln	GCT Ala	GAC Asp
GCC Ala	CAC	ATC Ile	CTT Leu	GGA G1y	AAA Lys	CGG	AAG Lys	ATA Ile	CTG	AAT Asn
AAA Lys	GGC Gly	\mathtt{TAC}	CGC Arg	GAA Glu	TTG	CTT Leu	TTC Phe	AAG Lys	TCA	GGA Gly
GCG	TGG	AGG Arg	$\frac{\text{GGC}}{\text{G1}}$	CAA Gln	CGC	GTG Val	TGG	ATC Ile	GCG Ala	CTA
GCG Ala	GCC Ala	AGC Ser	CCC Pro	CCT	CCC Pro	CTA Leu	AAG	AAC Asn	AAA Lys	AAA Lys
${ m TGG}$	GGC	GAC	GGG	GAA Glu	CCT	AAA Lys	TTC	GAA Gly	AGC Ser	AGC
GTG Val	CTG Leu	GAG	GGC Gly	CCG Pro	TTG Leu	TCC Ser	AAG Lys	CCA Gly	ATT Ile	ATC
CAA Gln	CGC Arg	AAG Lys	AGC	666 61y	GCC Ala	$_{\rm G1Y}^{\rm GGT}$	CTC	AAA Lys	CGC Arg	GTG Val
CAT His	GTG Val	CTC	AGC	GAC Asp	TGC	GCA Ala	TCT Ser	AAC Asn	CTT	AAA Lys
CCTGCAG	ACC Thr	CGC Arg	AAC Lys	CGA Arg	CGG	GTG	rcc	AAG Lys	GAA Glu	TGC Z
CCT	CTC	666 G1y	GCC Ala	TCT	CAA Gln	TCT Ser	TAC	CGA	TCA (ATG ' Met (

FIG. 28C Nucleotide Sequences & Deduced Amino Acid Sequences of GG2BPP2

583	631	679	727	775	826	886	946	1006	1066	1126	1186	1102
ATC ACC ATT GTG GAG TCA AAC GCC ACA TCC ACA TCT ACA GCT GGG ACA Ile Thr Ile Val Glu Ser Asn Ala Thr Ser Thr Ser Thr Ala Gly Thr	AGC CAT CTT GTC AAG TGT GCA GAG AAG GAG AAA ACT TTC TGT GTG AAT Ser His Leu Val Lys Ser Ala Glu Lys Glu Lys Thr Phe Cys Val Asn	GGA GGC GAG TGC TTC ATG GTG AAA GAC CTT TCA AAT CCC TCA AGA TAC Gly Gly Glu Cys Phe Met Val Lys Asp Leu Ser Asn Pro Ser Arg Tyr	TTG TGC AAG TGC CAA CCT GGA TTC ACT GGA GCG AGA TGT ACT GAG AAT Leu Cys Lys Cys Gln Pro Gly Phe Thr Gly Ala Arg Cys Thr Glu Asn	GTG CCC ATG AAA GTC CAA ACC CAA GAA AGT GCC CAA ATG AGT TTA CTG Val Pro Met Lys Val Gln Thr Gln Glu Ser Ala Gln Met Ser Leu Leu	GTG ATC GCT GCC AAA ACT ACG TAATGGCCAG CTTCTACAGT ACGTCCACTC Val ile Ala Ala Lys Thr Thr	CCTTTCTGTC TCTGCCTGAA TAGCGCATCT CAGTCGGTGC CGCTTTCTTG TTGCCGCATC	TCCCCTCAGA TTCCTCCTAG AGCTAGATGC GTTTTACCAG GTCTAACATT GACTGCCTCT	GCCTGTCGCA TGAGAACATT AACACAAGCG ATTGTATGAC TTCCTCTGTC CGTGACTAGT	GGGCTCTGAG CTACTCGTAG GTGCGTAAGG CTCCAGTGTT TCTGAAATTG ATCTTGAATT	ACTGTGATAC GACATGATAG TCCCTCTCAC CCAGTGCAAT GACAATAAAG GCCTTGAAAA	GTCAAAAAAA AAAAAAAA AAAAATCGA TGTCGACTCG AGATGTGGCT GCAGGTCGAC	

FIG. 28D Nucleotide Sequences & Deduced Amino, Acid Sequences of GGF2BPP3

SEQ ID NO: 135:

CTG 55 Leu	103	151	199	247	295	343	391	439	487
TCG C1 Ser Le									
GAC Asp	TGC	GAG Glu	CCC	GTG Val	GAG	GAA Glu	AGC Ser	AAG Lys	\mathtt{TAT}
AAG Lys	TCC	CCC Pro	CCC Pro	GCT Ala	CAG Gln	TCT Ser	TTA Leu	GGG Pro	GAA Glu
AAG Lys	CCC Pro	GAG Glu	CTT Leu	$_{\rm GLY}^{\rm GGT}$	AGT Ser	AGT Ser	GAA Glu	CCG Pro	GGA Gly
TTG Leu	TTC	ATG Met	CTC Leu	CCG Pro	AAG Lys	ACC Thr	AGT	AGG	TCT Ser
GGC Gly	GCC Ala	TTC	AGC Ser	CAG Gln	ATG Met	GAG Glu	GGG G1y	AAA Lys	GAT' Asp
$^{\rm GGG}_{ m G1Y}$	CCC Pro	TTC	CCG Pro	$_{\rm G1y}^{\rm GGT}$	GAG	TGC	AAT	CAG Gln	GCT Ala
GCC Ala	CAC His	ATC	CTT	GGA Gly	AAA Lys	CGG Arg	AAG Lys	ATA Ile	CTG
AAA Lys	66C G1y	\mathtt{TAC}	CGC Arg	GAA Glu	TTG	CTT Leu	T.T.C Phe	AAG Lys	TCA
GCG Ala	TGG	AGG	$\frac{\text{GGC}}{\text{Gl} Y}$	CAA Gln	CGC	GTG Val	TGG	ATC Ile	GCG Ala
GCG Ala	GCC Ala	AGC	CCC Pro	CCT Pro	CCC Pro	CTA	AAG Lys	AAC Asn	AAA Lys
TGG Trp	GGC Gly	GAC	$\frac{GGG}{G1y}$	GAA Glu	CCT Pro	AAA Lys	TTC Phe	GAA Glu	AGC
GTG Val	CTG	GAG	GGC	CCG Pro	TTG Leu	TCC	AAG Lys	CCA Pro	ATT Ile
CAA	CGC	AAG Lys	AGC	GGG Gly	GCC Ala	$_{\rm GGT}$	CTC	AAA Lys	CGC Arg
CAT His	GTG Val	CTC	AGC	GAC Asp	TGC	GCA Ala	TCT Ser	AAC Asn	CTT Leu
CCTGCAG	ACC Thr	CGC Arg	AAC	CGA Arg	CGG Arg	GTG Val	TCC	AAG Lys	GAA Glu
CCT	CTC	GGG G1y	GCC Ala	TCT Ser	CAA	TCT Ser	TAC	CGA Arg	TCA
						•			

FIG. 28ENucleotide Sequences & Deduced Amino Acid Sequences of GGF2BPP3

YEAST CHICKEN RABBIT BOVINE DOG MOUSE RAT MONKEY HUMAN

FIG. 31A

Coding Segments of Glial Growth Factor/Heregulin Gene

474	Met Ser Glu Arg Arg CGGGAGCCGT CCGCGCAGAG CGTGCACTTC TCGGGCGAG ATG TCG GAG CGC AGA
420	AAACTTTTCC CGAAGCCGAT CCCAGCCCTC GGACCCAAAC TTGTCGCGCG TCGCCTTCGC
360	GCTCCCCCC ACGCCGCGC CGCCTCGGCC CGGTCGCTGG CCCGCCTCCA CTCCGGGGAC
300	AGTUCUAGGT GECUUGGAUU GCAUGTTGUG TUUUCGGUT UUUUGGUU GAUAGAGAU
240	CCAGCGGCGC GCCAGCAGGA GCCACCCCGC GAGNCGTGCG ACCGGGACGG AGCGCCCGCC
180	TGCGAGCGCG CCGGACCGAG GCAGCGACAG GAGCGGACCG CGGCGGAAC CGAGGACTCC
120	GGCGGCTGCC CAGGCGATGC GAGCGCGGGC CGGACGGTAA TCGCCTCTCC CTCCTCGGGC
09	AGITICCCCC CCCAACITGI CGGAACICIG GGCICGCGCG CAGGGCAGGA GCGGAGCGGC
	CODING SEGMENT F: (SEQ ID NO: 136 (bovine) and 173 (human))

CGGGAGCCGT CCGCGCAGAG CGTGCACTTC TCGGGCGAG ATG TCG GAG CGC AGA	Glu Gly Lys Gly Lys Gly Lys Gly Gly Lys Lys Asp Arg Gly Ser Gly GAA GGC AAG GGG AAG GGC GGC AAG AAG GAC CGA GGC TCC GGG	Lys Lys Pro Val Pro Ala Ala Gly Gly Pro Ser Pro Ala AAG AAG CCC GTG CCC GCG GCT GGC GGC CCG AGC CCA G \ \ \ \ \ \ \ \ \ \ \ \ \ \
•		

522

559

FIG. 31E

	TCG	TCC	CCC Pro	CCC Pro	GCT Ala	
	GAC Asp	CCC Pro	GAG Glu	CTT Leu	GGT Gly	
	AAG Lys	TTC Phe	ATG Met	CTC	CCG	
	AAG Lys	GCC Ala	TTC Phe	AGC Ser	CAG	
	${ m TTG}$	CCC Pro	TTC Phe	CCG	GGT Gly	
	GGC Gly	CAC His	ATC Ile	CTT Leu	GGA Gly	
	GGG		${ m TAC}$	CGC Arg	GAA Glu	
7)	GCC	TGG	AGG Arg	GGC Gly	CAA Gln	
: 137)	AAA Lys	GCC	AGC Ser	CCC Pro	CCT Pro	
0 0	GCG Ala	${\tt GGC} {\tt G1Y}$	GAC Asp	$\frac{\text{GGG}}{\text{G1y}}$	GAA Glu	
E E	GCG Ala	CTG Leu	GAG Glu	GGC Gly	CCG Pro	
SEGMENT E: (SEQ ID NO:	TGG	CGC Arg	AAG Lys	AGC Ser	$\frac{\text{GGG}}{\text{Gly}}$	Ŋ
ENT	GTG Val	GTG Val	CTC Leu	AGC Ser	GAC Asp	TGC Cys
SEGM	CAN Gln	ACC Thr	CGC	AAC Asn	CGA Arg	CGG Arg
CODING	CAT His	CTC	666 Gly	GCC Ala	TCT Ser	CAA Gln
COD	SS	CTG	TGC	GAG Glu	CCC Pro	GTG Val

31C FIG.

CODING SEGMENT B: (SEQ ID NO: 138 (bovine, top) and 174 (human, bottom)

Ala GCA ||| GCA Val GTG | GCT Ser TCT || TCG Glu GAG || GAA Gln CAG ||| CAG Glu Met Lys 9
GAG ATG AAG 7
||| ||| || ||
GAG ATG AAA 7 Lys AAA ||| AAA Leu TTG Arg CGC || CGA Pro Pro CCT ||| CCT Leu TTG TTG S = S

Ser TCT |--Ser TCC |--Tyr TAC ||| TAC Glu GAA ||| GAA Ser TCT ||| TCT Ser AGT ||| Thr ACC ||| Glu GAG Arg CGG CTT CTT CTT CTT CTT Val GTG || GTC Leu CTA ||| Lys AAA AAA Ser TCC TCC TCC Gly GGT ||| GGT

Lys Asn AAG AAC || AAA AAC Arg CGA CGA Ser AGC | AAT Glu Leu GAA TTA A Ser AGT - AAT N G17 GGG GGG Asn AAT AAT Lys AAG AAG Phe TTC ||| Trp TGG ||| Lys AAG ||| AAG Phe TTC ||| Lys AAG | AGA R Leu CTC |---CTC

G1y GG Arg AGG | | AAG Lys AAA ||| AAA Gln CAG Ile ATA ||| Lys AAG ||| AAG Ile ATC ATC Asn AAC || AAT Glu CAA ||| CAA Pro CCA |||| CCA Lys AAA ||| AAA

Gly GGA Ser TCT ||| TCT Ala GCC ||| GCC CODING SEGMENT A: (SEQ ID NO: 139 (bovine) and 175 (human)) Asp GAT ||| GAT Ser AGT |-|| Ala GCT ||| GCT Asp GAC ||| GAC Leu CTG Asn AAT Ser TCA Gly GGA ||| GGA Leu CTA | | Ala G G Lys AAA Lys AAA ||| Asn AAC | | | Ile Ser
ATT AGC
||| | |
ATT AAC Ser AGC ||| Ser TCA Ile ATC ||| Glu GAG Arg CGC Val GTG ||| GTG Val GTG ||| GTG Leu CTT ||| CTT Lys AAA ||| Glu GAA Cys TGC Thr ACC Ser TCA Met ATG ||| ATG Ile ATC ||| ATC Lys AAG TYY TAT Asn AAC || NAT G Ala GCC |||

FIG. 31D

FIG. 31E

CODING SEGMENT A': (SEQ ID NO: 140)

TCTAAAACTA CAGAGACTGT ATTTTCATGA TCATCATAGT TCTGTGAAAT ATACTTAAAC	09
CGCTTTGGTC CTGATCTTGT AGG AAG TCA GAA CTT CGC ATT AGC AAA GCG Lys Ser Glu Leu Arg Ile Ser Lys Ala	110
TCA CTG GCT GAT TCT GGA GAA TAT ATG TGC AAA GTG ATC AGC AAA CTA Ser Leu Ala Asp Ser Gly Glu Tyr Met Cys Lys Val Ile Ser Lys Leu	158
GGA AAT GAC AGT GCC TCT GCC AAC ATC ACC ATT GTG GAG TCA AAC GGT Gly Asn Asp Ser Ala Ser Ala Asn Ile Thr Ile Val Glu Ser Asn Gly	206
AAG AGA TGC CTA CTG CGT GCT ATT TCT CAG TCT CTA AGA GGA GTG ATC Lys Arg Cys Leu Leu Arg Ala Ile Ser Gln Ser Leu Arg Gly Val Ile	254
AAG GTA TGT GGT CAC ACT TGAATCACGC AGGTGTGTGA AATCTCATTG Lys Val Cys Gly His Thr	302
TGAACAAATA AAAATCATGA AAGGAAAACT CTATGTTTGA AATATCTTAT GGGTCCTCCT	362
GTAAAGCTCT TCACTCCATA AGGTGAAATA GACCTGAAAT ATATATAGAT TATTT	417

(SEQ ID NO: 141 (bovine) and 176 (human)) CODING SEGMENT G:

Ser TCT ||| $ext{TCT}$ Tyr Val TAT GTG GTG \mathtt{TAT} Ala GCG GCA Glu Thr Gag aca c GGA G GAA Thr ACT ACT Ser TCA TCA Ala GCC CCC Pro CCA CCA Met ATG ATG Gly GGC GGT ACT Thr ACC Thr ATC I Ile ATC ATC

Asn Thr AAT ACT ||| ||| AAT ACT Glu Gly Thr A
GAA GGA ACA A
[|| || || || ||
GAA GGA GCA A GCA A Thr ACA |||| ACA (Ser TCA Val GTA [|| Ser TCA Ile ATA ATA AGA Arg AGA Ile ATT ||| ATT 200 Pro Ser TCT ||| TCT Glu GAG TCA | LCA TCA Ser

Ser Ser TCA TTCA TCA T Ser TCT |||

47

95

FIG. 31G

human))
and 177 (
bovine) a
0: 160 (
(SEQ ID NO:
CODING SEGMENT C: (
CODINGS

Ala	GCA	===	909	Val	${\tt GTG}$	=
Cys	\mathtt{TGT}	=	TGT	Met	ATG	\equiv
Lys	AAG	_	AAA	Phe	TTC	=
Val			GTA	Cys	$_{\mathrm{TGC}}$	=
		_	CTT	Glu	GAG	=
His	CAT	=	CAT	G1Y	CGC	=
Ser	AGC	=	AGC	G1y	GGA	\equiv
			ACA	Asn		=
		=		Val	GTG	=
Ala	GCT		ACT T	Cys	TGT	=
Thr	ACA		ACC	Phe	TTC	
Ser	$ ext{TCT}$		TCC	Thr	ACT	=
\mathtt{Thr}	ACA	=	ACA	Lys	AAA	=
Ser	$^{\mathrm{TCC}}$		TCT	Glu	GAG	=
Thr	ACA	==	ACA	Lys	AAG	\equiv
	CC		CT	Glu	GAG	=

Cys	TGC	=
Leu	TTG	
TYr	TAC	
Arg	AGA	=
Ser	TCA	
Pro	CCC	
Asn	AAT	=
Ser	TCA	
Leu	CTT	<u> </u>
Asp	GAC	=
Lys	AAA	=

GAG AAG GAG AAA ACT TTC TGT GTG AAT GGA GGG GAG TGC TTC ATG GTG

AAA GAC CTT TCA AAC CCC TCG AGA TAC TTG TGC

128

FIG. 31H

CODING SEGMENT C/D: (SEQ ID NO: 142 (bovine) and 178 (human))

Pro Glu Asn Val B GAG AAT GTG (Cys TGT T Arg AGA ||| Ala GCG Gly GGA Thr ACT ||| Phe TTC Gly GGA Pro CCT Gln CAA Cys TGC Lys (
AAG '
AAG

Met Lys Val Gln Thr Gln Glu ATG AAA GTC CAA ACC CAA GAA ||| ||| ||| || || || || ||| ||| ATG AAA GTC CAA AAC CAA GAA

	48	09	36
ING SEGMENT \leq /D' (SEQ ID NO: 143 (bovine) and 179 (human)) Cvs Pro Asn Glu Phe Thr Glv Asp Arg Cvs Gln Asn Tvr Val	AÀG TĜC CCA AAT GAG TTT ACT GGT GAT CGC TĜC CAA AAC TAC GTA ATG	Ala Ser Phe Tyr GCC AGC TTC TAC	CODING SEGMENT D: (SEQ ID NO: 144 (bovine) and 180 (human)) Ser Thr Ser Thr Pro Phe Leu Ser Leu Pro Glu * AGT ACG TCC ACT CCC TTT CTG TCT CTG CCT GAA TAG
FIG. 311			FIG. 31J

FIG. 31K CODING SEGMENT D': (SEQ ID NO: 145 (bovine))

Lys His Leu Gly Ile Glu Phe Met Glu AAG CAT CTT GGG ATT GAA TTT ATG GAG

27

	48	96	144	192	240	288
CODING SEGMENT H: (SEQ ID NO: 146 (bovine) and 181 (human))	- Lys Ala Glu Glu Leu Tyr Gln Lys Arg Val Leu Thr Ile Thr Gly Ile AAA GCG GAG GAG CTC TAC CAG AAG AGA GTG CTC ACC ATT ACC GGC ATT	Cys lle Ala Leu Leu Val Val Gly Ile Met Cys Val Val Val Tyr Cys TGC ATC ATC ATG TGT GTG GTG TAC TGC III III III III III III III III III I	Lys Thr Lys Lys Gln Arg Lys Lys Leu His Asp Arg Leu Arg Gln Ser AAA ACC AAG AAA CAA CGG AAA AAG CTT CAT GAC CGG CTT CGG CAG AGC	Leu Arg Ser Glu Arg Asn Thr Met Met Asn Val Ala Asn Gly Pro His CTT CGG TCT GAA AGA AAC ACC ATG ATG AAC GTA GCC AAC GGG CCC CAC	His Pro Asn Pro Pro Glu Asn Val Gln Leu Val Asn Gln Tyr Val CAC CCC AAT CCG CCC CCC GAG AAC GTG CAG CTG GTG AAT CAA TAC GTA II II III III III III III III III CAT CCT AAC CCC CCC GAG AAT GTC CAG CTG GTG AAT CAA TAC GTA	Ser Lys Asn Val Ile Ser Ser Glu His Ile Val Glu Arg Glu Ala Glu TCT AAA AAT GTC ATC TCT AGC GAG CAT ATT GTT GAG AGA GAG GCG GAG
	2.5 2.5 4.0					

336	384	432	480	528	569
Thr Ser Thr Ala His His Ser ACT TCG ACA GCT CAT CAT TCC 		Val Ile Val Met Ser Ser Val Glu GTC ATC GTG ATG TCA TCC GTA GAA 	Gly Gly Pro Arg Gly Arg Leu Asn GGG GGC CCG AGA GGA CGT CTC AAT 	Asn Ser Phe Leu Arg His Ala Arg AAC AGC TTC CTC AGG CAT GCC AGA 	Ser Pro His Ser Glu Arg TCT CCT CAT AGT GAA AG TCT CCT CAT AGT GAA AG
r His Tyr T CAC TAC T CAC TAT	Ser His	r His Ser c CAC TCT 	CCCG ACT	Glu GAA	. Arg Asp : CGA GAC : CGA GAC
Thr ACC ACC	Gln Thr Pro CAG ACT CCC CAG ACT CCT	ser Glu ser TCG GAA AGC TCC GAA AGC	His Ser Ser CAC AGC AGC CAC AGC AGC	Gly Pro Arg GGC CCT CGT GGC CCT CGT	Asp Ser Tyr GAC TCC TAC GAT TCC TAC
Ser Phe TCT TTT TCC TTT	Val Thr GTC ACT GTC ACC	Ile Ile ATC ATT ATC CTT	Ser Arg AGT AGG AGT AGG	Gly Leu Gly G GGC TTG GGA G GGC ACA GGA G	Thr Pro ACC CCT

FIG. 31M

141

FIG. 31N

CODING SEGMENT K: (SEQ ID NO: 161)

TCC	TCC	AG
AGA Arg	TCT Ser	GGA
CAC His	GCT Ala	TTA
GCC Ala	AGA Arg	CCT
AAG Lys	CTT Leu	TGG
AAC Asn	CAT His	CCT
AGA Arg	ACT Thr	ACC
AGG Arg	GCA Ala	AAG Lvs
CTA Leu	TCC Ser	TCT Ser
GAG Glu	CTT Leu	TTC
GCT Ala	CAG Gln	TCA
ATA Ile	ATC Ile	GCT Ala
CTT Leu	CAG Gln	$\frac{\text{TGG}}{\text{Trp}}$
AAC Asn	ATG Met	CAT His
CAT His	TGC Cys	CCC Pro
Æ	AAA Lys	ATT Ile

Pro CCC []] CCC

Ser AGT || AGC

GTC

GTC

Val

Leu CTG |||| CTG

Arg CGG ||

Pro CCA |||| CCA

46

Asp GAT

Val GTA

(human))

GAT

94

Ser TCC

Met ATG

CCA

 $\vec{\Gamma}$

ATG

286

His CAC |||

TCG

TTC

TCC

Phe

Ser

Arg AGG |||| AGG Leu TTG ||| Pro CCC ||| Ser AGC ||| Pro CCC 1 GCT A Pro CCC || CCT Leu CTG || CTC AGC | | | | AGC | AGC AAC AGC || AGT GAG | | | GAC D CAT GCG ||| GCG AAC

Ser

Asn

Ser

Glu

His

Ala

Pro

Asn

AAG K

382

478

334

FIG. 31P

Ala GCT 	Arg AGA AGA	Asn AAC AAC	Arg AGA AGA
Pro CCA []] CCA	Lys AAA AAA	Asn AAC AGC S	Glu GAA GAA
Glu GAA GAG	Ala GCC GCC	Asp GAC GAC	Asp GAT GAT
Tyr TAC TAC	Arg CGG CGG	Met ATG GTG	Glu GAG GAA
Glu GAG GAG	Arg CGG CGG	Glu GAA GAA	Thr ACA ACA
Gln CAG [.] CAA	Ser AGC 	Leu TTG TTG	Glu GAA GAA
Thr ACC ACC	Ser AGC	Arg AGG AGA	Ser AGC AGT
Thr ACG ACG	Asn AAC AA.	His CAC NAC	Glu GAG GAG
Glu GAA GAA	Thr ACC II GCC A	Ala GCC GCT	Ser TCA TCA
Tyr TAT TAT	Leu CTC 	Ile ATT ATT	Asn AAC
Glu GAA GAG	Lys AAA AAA	His CAC CAC	Ser AGT
Glu GAG GAG	Lys AAG AAG	G1y GGT GGC	Ser AGC
Asp GAT GAT	Val GTT 	Asn AAT AAT	Asp GAC CAG
Glu GAG GAG	Pro CCG 	Pro	Ala GCT TCC S
Val GTG 	Glu GAG GAG	Lys AAG AAG	G1y GGC H
Ile ATA 	Gln CAA 	Thr ACC 	Thr ACA ACA

FIG. 31Q	Gly Glu Asp Thr Pro Phe Leu Ala Ile Gln Asn Pro Leu Ala GGA GAA GAT ACG CCT TTC CTG GCC ATA CAG AAC CCC CTG GCA 	526
•	Leu Glu Ala Ala Pro Ala Phe Arg Leu Val Asp Ser Arg Thr CTC GAG GCG CCC CCT GCC TTC CGC CTG GTC GAC AGG ACT 	574
	Thr Gly Gly Phe Ser Pro Gln Glu Glu Leu Gln ACA GGC GGC TTC TCT CCG CAG GAA GAA TTG CAG II III III III III III III III III II	622
		672
	ATA GAT TCA CCT GTA AAA CTT TAT TTT ATA TAA TAA AGT ATT	718
	AA ATT	733

48	96	144	192	240	288	336	384	432	480	528	576	624	672	720	745
CGG Arg	CTG	GCG	TCG Ser	GCG Ala	GCA Ala	GGC Gly	CCC Pro	CCC Pro	\mathtt{TAT}	AAG Lys	GCC Ala	TTC Phe	CGA Arg	GTC Va.1	
CCC	CCG	666 61y	TAC	GCC Ala	$_{\rm GGG}$	TGG Trp	CCG	${\tt TGG}$	CCC Pro	${ m TTG}$	CCC Pro	TTC	TTC Phe	GAG Glu	
GGC	CTG	CCG	TGC	CGC	CAG Gln	GCG Ala	$\begin{array}{c} GGG\\ G1Y \end{array}$	TCT Ser	GCG Ala	GGC	CAC His	ATC Ile	GCC Ala	AAG Lys	
T CCC g Pro	cce Pro	GCG Ala	GTG Val	CAG Gln	CAG Gln	GGG G1y	CTG	CCC	GAG Glu	$\frac{GGG}{G1Y}$	GGC Gly	TAC	GCC	AAG Lys	
CG	G CCG	C CTG a Leu	TCG Ser	GCT Ala	CGG Arg	GCA Ala	GCG	GTG	GAG	GCC Ala	${\tt TGG}$	AGG Arg	CCG	CTC	
C GGG r Gly	G TCG	G GCC a Ala	GCC Ala	CTA Leu	GGG Arg	GAG Glu	A CGG	ACC Thr	GGG Gly	AAA Lys	ACC	AGC Ser	GCG Ala	AAC Asn	
C TCC g Ser	TC Se	GC	GGG GGG	g. GAG n Glu	GAG Gln	G GGC a Gly	C CCA	GGG	CCC Pro	GTG Val	GGG	GAC	CGC Arg	CĠG Arg	
C CGC g Arg	C CGC a Arg	G ACC Y Thr	C GCG o Ala	g CAG. 1 Gln	C CCG s Pro	GCAI	996	C AAC a Asn	GAG Glu	GCG Ala	CTG	GAG	AGC	GGC	Ü
G CGC	c GC a Al	G GGG u Gly	T CC a Pr	G GTG r Val	CA Hi	G GCG a Ala	c GCG a Ala	c gcc a Ala	c ggc a Gly	TGG Trp	GCC Arg	AAG Lys	ACC Thr	ACG Thr	TGC
C CCG	CC GC er Al	TG CTG eu Leu	G G A J	GA TCG ly Ser	G GTG s Val	G GC a Al	GC	GC	GC	G GTG	g GTG r Val	G CTC	Ser Ser	g GAG	CGG Arg
SC GCC	GC TC ly Se	Ω 1	AG GCO	TG GG	GA AA 1y Ly	CG GC	CG CCA	G CTC u Leu	C AGC o Ser	c cAG	c ACC u Thr	3 AGG / Arg	C AAC a Asn	T CTG o Leu	C AAG s Lys
CGA CGC Arg Arg	CC GG ro G1	TG CTG eu Leu	00	0 h	AG GG 1u G1	0 a	AG CC lu Pr	G CTG o Leu	TG CC	CA Hi	G CTC u Leu	c GGG s Gly	C GC(C CCC	G TGC u Cys
TGG CC Trp A1	GC CC	TA CJ eu Le	GC AAC ly Asn	CC AG	TC GA	G AA	00 00	ig CCG	() () () ()	G GTG s Val	G CTG r Leu	TG	GA	CC	CT
GA TO	AG C(ln A)	A O	CC G(CG CC ro Pr	TG AT al Il	AC AGG	AT CG	AG GAG lu Glu	C CCC	G AA	C TCG	C TCC	G CCC u Pro	T TTC r Phe	G GTG g Val
ATG A	CC CC	CTG CC. Leu Pr	GCG G(Ala A.	TCC C(Ser Pi	GTG G: Val Va	CTC GAC Leu Asp	GGC GAT Gly Asp	99	C GC	GT Va	G GA	ic cc	G GA	C TC	CG
	715.31T	HUMAN CODING SEGMENT E: CT (SEQ ID NO: 163) Le	GC A	TC Se	GT	C	GC G1	GCC	ACC Thr	CTG	AAG Lys	TTC	ATG	GCC .	AGC

FIG. 32A

GGF2BPP5 Nucleotide Sequence & Deduced Protein Sequence

SEQ ID NO: 148:

(00	120	180	240	300	360	420	475	523	571	619	199	715	763	811
	AGITICCCCC CCCAACITGI CGGAACICIG GGCICGCG CAGGGCAGGA GCGGAGCGGC	GGCGGCTGCC CAGGCGATGC GAGCGCGGGC CGGACGGTAA TCGCCTCTCC CTCCTCGGGC	TGCGAGCGCG CCGGACCGAG GCAGCGACAG GAGCGGACCG CGGCGGGAAC CGAGGACTCC	CCAGCGGCGC GCCAGCAGGA GCCACCCCGC GAGCGTGCGA CCGGGACGGA GCGCCCGCCA	GTCCCAGGTG GCCCGGACCG CACGTTGCGT CCCCGCGCTC CCCGCCGGCG ACAGGAGACG	CTCCCCCCCA CGCCGCGCGC GCCTCGGCCC GGTCGCTGGC CCGCCTCCAC TCCGGGGACA	AACTTTTCCC GAAGCCGATC CCAGCCCTCG GACCCAAACT TGTCGCGCGT CGCCTTCGCC	GGGAGCCGTC CGCGCAGAGC GTGCACTTCT CGGGCGAG ATG TCG GAG CGC AGA	GAA GGC AAA GGC AAG GGG AAG GGC GGC AAG AAG	AAG CCC GTG CCC GCG GCT GGC GGC CCG AGC CCA GCC TTG CCT	LYS LYS FIO VAI FIO AIA AIA GIY GIY FIO SEI FIO AIA LEU FIO FIO CGC TTG AAA GAG ATG AAG ATG CAG GAG TCT GTG GCA GGT TCC AAA CTA Arg Leu Lys Glu Met Lys Ser Gln Glu Ser Val Ala Gly Ser Lys Leu	GTG CTT CGG TGC GAG ACC AGT TCT GAA TAC TCC TCT CTC AAG TTC AAG Val Leu Arg Cys Glu Thr Ser Ser Glu Tyr Ser Ser Leu Lys Phe Lys	TGG TTC AAG AAT GGG AGT GAA TTA AGC CGA AAG AAC AAA CCA CAA AAC Trp Phe Lys Asn Gly Ser Glu Leu Ser Arg Lys Asn Lys Pro Gln Asn	ATC AAG ATA CAG AAA AGG CCG GGG AAG TCA GAA CTT CGC ATT AGC AAA Ile Lys Ile Gln Lys Arg Pro Gly Lys Ser Glu Leu Arg Ile Ser Lys	GCG TCA CTG GCT GAT TCT GGA GAA TAT ATG TGC AAA GTG ATC AGC AAA Ala Ser Leu Ala Asp Ser Gly Glu Tyr Met Cys Lys Val Ile Ser Lys

FIG. 32B

GGF2BPP5 Nucleotide Sequence & Deduced Protein Sequence

FIG. 33A

GGF2BPP2 Nucleotide Sequence & Deduced Protein Sequence

SEQ ID NO: 149:

						•				
48	96	144	192	240	288	336	384	432	480	528
CTG	TGC Cys	GAG Glu	CCC Pro	GTG Val	GAG Glu	GAA Glu	AGC Ser	AAG Lys	\mathtt{TAT}	AAC Asn
TCG	TCC Ser	CCC Pro	CCC Pro	GCT Ala	CAG Gln	TCT Ser	TTA Leu	GGG	GAA Glu	GCC
GAC Asp	CCC Pro	GAG Glu	CTT Leu	$_{\rm GLY}^{\rm GGT}$	AGT Ser	AGT Ser	GAA Glu	CCG Pro	GGA Gly	TCT
AAG Lys	TTC Phe	ATG Met	CTC Leu	CCG Pro	AAG Lys	ACC Thr	AGT Ser	AGG	TCT	GCC
AAG Lys	GCC Ala	TTC Phe	AGC Ser	CAG Gln	ATG Met	GAG Glu	GGG G1y	AAA Lys	GAT Asp.	AGT Ser
TTG	CCC Pro	TTC Phe	CCG Pro	$_{\rm GLY}^{\rm GGT}$	GAG	TGC Cys	AAT Asn	CAG	GCT	GAC
GGC	CAC Hìs	ATC Ile	CTT Leu	GGA Gly	AAA Lys	CGG Arg	AAG Lys	ATA Ile	CTG	AAT
GGG	GGC	TAC	CGC Arg	GAA Glu	TTG Leu	CTT Leu	TTC Phe	AAG Lys	TCA	GGA Gly
GCC Ala	TGG Trp	AGG	GGC	CAA	CGC Arg	GTG Val	TGG	ATC Ile	GCG Ala	CTA Leu
AAA Lys	GCĊ Ala	AGC	CCC Pro	CCT Pro	CCC Pro	CTA	AAG Lys	AAC Asn	AAA Lys	AAA Lys
GCG Ala	GGC Gly	GAC Asp	$\frac{\text{GGG}}{\text{G1}}$	GAA Glu	CCT Pro	AAA Lys	TTC Phe	GAA Glu	AGC Ser	AGC Ser
GCG Ala	CTG Leu	GAG Glu	GGC	CCG Pro	TTG	TCC Ser	AAG Lys	CCA Pro	ATT Ile	ATC Ile
TGG Trp	CGC	AAG Lys	AGC Ser	$_{\rm GGG}$	GCC	GGT Gly	CTC Leu	AAA Lys	CGC	GTG Val
GTG Val	GTG Val	CTC	AGC	GAC Asp	TGC Cys	GCA Ala	TCT Ser	AAC Asn	CTT Leu	AAA Lys
CAN Gln	ACC Thr	CGC Arg	AAC Asn	CGA Arg	CGG Arg	GTG Val	TCC Ser	AAG Lys	GAA Glu	TGC
CAT His	CTC	GGG	GCC Ala	TCT	CAA Gln	TCT Ser	\mathtt{TAC}	CGA Arg	TCA Ser	ATG Met

FIG. 33B

GGF2BPP2 Nucleotide Sequence & Deduced Protein Sequence

	576	624	672	720	768	816	870	930	066	1050	1110	1140
darzbrrz nucieoliae Sequence & Deaucea Protein Sequence	ATC ACC ATT GTG GAG TCA AAC GCC ACA TCC ACA TCT ACA GCT GGG ACA lle Thr lle Val Glu Ser Asn Ala Thr Ser Thr Ser Thr Ala Gly Thr	AGC CAT CTT GTC AAG TGT GCA GAG AAG GAG AAA ACT TTC TGT GTG AAT Ser His Leu Val Lys Cys Ala Glu Lys Glu Lys Thr Phe Cys Val Asn	GGA GGC GAG TGC TTC ATG GTG AAA GAC CTT TCA AAT CCC TCA AGA TAC Gly Gly Glu Cys Phe Met Val Lys Asp Leu Ser Asn Pro Ser Arg Tyr	TTG TGC AAG TGC CAA CCT GGA TTC ACT GGA GCG AGA TGT ACT GAG AAT Leu Cys Lys Cys Gln Pro Gly Phe Thr Gly Ala Arg Cys Thr Glu Asn	GTG CCC ATG AAA GTC CAA ACC CAA GAA AAG TGC CCA AAT GAG TTT ACT Val Pro Met Lys Val Gln Thr Gln Glu Lys Cys Pro Asn Glu Phe Thr	GGT GAT CGC TGC CAA AAC TAC GTA ATG GCC AGC TTC TAC AGT ACG TCC Gly Asp Arg Cys Gln Asn Tyr Val Met Ala Ser Phe Tyr Ser Thr Ser	ACT CCC TTT CTG TCT CTG CCT GAA TAGCGCATCT CAGTCGGTGC CGCTTTCTTG Thr Pro Phe Leu Ser Leu Pro Glu	TTGCCGCATC TCCCCTCAGA TTCCNCCTAG AGCTAGATGC GTTTTACCAG GTCTAACATT	GACTGCCTCT GCCTGTCGCA TGAGAACATT AACACAAGCG ATTGTATGAC TTCCTCTGTC	CGTGACTAGT GGGCTCTGAG CTACTCGTAG GTGCGTAAGG CTCCAGTGTT TCTGAAATTG	ATCTTGAATT ACTGTGATAC GACATGATAG TCCCTCTCAC CCAGTGCAAT GACAATAAAG	GCCTTGAAAA GTCAAAAAAA AAAAAAAA

FIG. 34A

GGF2BPP4 Nucleotide Sequence & Deduced Protein Sequence

SEQ ID NO: 150:

49	97	145	193	241	289	337	385	433	481	529	577
AAG TCA GAA CTT CGC ATT AGC AAA GCG TCA CTG GCT GAT TCT GGA GAA Lys Ser Glu Leu Arg Ile Ser Lys Ala Ser Leu Ala Asp Ser Gly Glu	TAT ATG TGC AAA GTG ATC AGC AAA CTA GGA AAT GAC AGT GCC TCT GCC Tyr Met Cys Lys Val Ile Ser Lys Leu Gly Asn Asp Ser Ala Ser Ala	4	9	4	TAC TTG TGC AAG TGC CAA CCT GGA TTC ACT GGA GCG AGA TGT ACT GAG TYr Leu Cys Lys Cys Gln Pro Gly Phe Thr Gly Ala Arg Cys Thr Glu	\sim	∞	GGC ATC ATG TGT GTG GTG GTC TAC TGC AAA ACC AAG AAA CAA CGG Gly Ile Met Cys Val Val Val Tyr Cys Lys Thr Lys Lys Gln Arg	AAG CTT CAT GAC CGG CTT CGG CAG AGC CTT CGG TCT GAA AGA AAC Lys Leu His Asp Arg Leu Arg Gln Ser Leu Arg Ser Glu Arg Asn	ATG ATG AAC GTA GCC AAC GGG CCC CAC CAC CCC AAT CCG CCC CCC Met Met Asn Val Ala Asn Gly Pro His His Pro Asn Pro Pro Pro	AAC GTG CAG CTG GTG AAT CAA TAC GTA TCT AAA AAT GTC ATC TCT Asn Val Gln Leu Val Asn Gln Tyr Val Ser Lys Asn Val Ile Ser
O	<u> </u>	A A	A H	A A	E E	AA	00	GTT Val	AAA Lys	ACC Thr	GAG

FIG. 34B

GGF2BPP4 Nucleotide Sequence & Deduced Protein Sequence

	625	673	721	169	817	865	913	961	1009	1057	1105	1153
	AGT Ser	CCC Pro	AGC Ser	AGC Ser	CGT Arg	\mathtt{TAC}	AGG Arg	GCA	AAG Lys	GCT Ala	CCC Pro	CCC
	ACC Thr	ACT	GAA Glu	AGC Ser	CCT	TCC Ser	CTA	TCC Ser	TCT Ser	CCG Pro	TCA Ser	ATG
	TCC	CAG	TCG	CAC His	GGC	GAC Asp	GAG Glu	CTT Leu	TTC Phe	ACC Thr	AAG Lys	TCC Ser
	TTT Phe	ACT	ATT Ile	AGG Arg	GGA Gly	CCT	GCT Ala	CAG Gln	TCA	ACC Thr	CCC Pro	GTC Val
	TCT Ser	GTC Val	ATC Ile	AGT Ser	TTG	ACC Thr	ATA Ile	ATC Ile	GCT Ala	ATG Met	TCC Ser	ACG
	AGC	ACT Thr	AGC Ser	AAC Asn	GGC G1y	GAA Glu	CTT Leu	CAG Gln	TGG Trp	GCA Ala	AGC Ser	ACG Thr
	GAG Glu	ACT Thr	GAA Glu	GAA Glu	AAT Asn	AGA Arg	AAC Asn	ATG Met	CAT His	TCA Ser	CCA Pro	AGC Ser
	GCG Ala	TCC	ACT	GTA Val	CTC Leu	GCC	CAT	TGC	CCC Pro	GTA Val	ACG Thr	TCC
ì	GAG	CAT	CAC His	TCC	CGT	CAT His	AGA Arg	AAA Lys	ATT Ile	\mathtt{TAT}	CAC His	GTG Val
	AGA Arg	CAT	$_{\rm GGA}^{\rm GGA}$	TCA	$_{\rm GGA}^{\rm GGA}$	AGG Arg	GAA Glu	TCC Ser	TCC Ser	AGG Arg	TTC Phe	CCC
	GAG	GCT Ala	AAT Asn	ATG Met	AGA Arg	CTC	AGT Ser	AGA Arg	TCT Ser	GGA Gly	GAT Asp	CCG Pro
	GTT Val	ACA Thr	AGC	GTG Val	CCG Pro	TTC Phe	CAT	CAC Hìs	GCT Ala	TTA Leu	GTA Val	TCC
	ATT Ile	TCG	TGG Trp	ATC Ile	GGC	AGC Ser	CCT	GCC Ala	AGA Arg	CCT	CCT Pro	ATG Met
	CAT	ACT		GTC Val	$_{\rm G1Y}^{\rm GGG}$	AAC Asn	TCT	AAG Lys	CTT Leu	TGG Trp	TCA	GAA Glu
	GAG Glu	TAC	CAC	TCT	ACT Thr	TGT	GAC Asp	AAC Asn	CAT His	CCT Pro	ATG Met	TCG Ser
	AGC Ser	CAC His	AGT Ser	CAC His	CCG	GAA Glu	CGA Arg	AGA Arg	ACT	ACC Thr	CGT Arg	CCT Pro

FIG. 34CGGF2BPP4 Nucleotide Sequence & Deduced Protein Sequence

· · · · · ·	TTAAACAAAA AAA
1741	TAAAACCGAA ATACACCCAT AGATTCACCT GTAAAACTTT ATTTTATATA ATAAAGTATT
1681.	CAG GCC AGG CTC TCC GGT GTA ATC GCT AAC CAA GAC CCT ATC GCT GTC Gln Ala Arg Leu Ser Gly Val Ile Ala Asn Gln Asp Pro Ile Ala Val
1633	GAC AGC AGG ACT AAC CCA ACA GGC GGC TTC TCT CCG CAG GAA GAA TTG Asp Ser Arg Thr Asn Pro Thr Gly Gly Phe Ser Pro Gln Glu Glu Leu
1585	AAC CCC CTG GCA GCC AGT CTC GAG GCG GCC CCT GCC TTC CGC CTG GTC Asn Pro Leu Ala Ala Ser Leu Glu Ala Ala Pro Ala Phe Arg Leu Val
1537	ACA GAG GAT GAA AGA GTA GGA GAA GAT ACG CCT TTC CTG GCC ATA CAG Thr Glu Asp Glu Arg Val Gly Glu Asp Thr Pro Phe Leu Ala 11e Gln
1489	GAA ATG GAC AAC ACA GGC GCT GAC AGC AGT AAC TCA GAG AGC GAA Glu Met Asp Asn Asn Thr Gly Ala Asp Ser Ser Asn Ser Glu Ser Glu
1441	CGG CGG GCC AAA AGA ACC AAG CCC AAT GGT CAC ATT GCC CAC AGG TTG Arg Arg Ala Lys Arg Thr Lys Pro Asn Gly His Ile Ala His Arg Leu
1393	GAG TAC GAA CCA GCT CAA GAG CCG GTT AAG AAA CTC ACC AAC AGC AGC Glu Tyr Glu Pro Ala Gln Glu Pro Val Lys Lys Leu Thr Asn Ser Ser
1345	CCC AGC CCC TTG AGG ATA GTG GAG GAT GAG GAA TAT GAA ACG ACC CAG Pro Ser Pro Leu Arg Ile Val Glu Asp Glu Glu Tyr Glu Thr Thr Gln
1297	TTC AAC TCG TTC CAC TGC AAC CCC GCG CAT GAG AGC AAC AGC CTG CCC Phe Asn Ser Phe His Cys Asn Pro Ala His Glu Ser Asn Ser Leu Pro
1249	GTG ACG CCA CCG CTG CGG GAG AAG TAT GAC CAC CAC GCC CAG CAA Val Thr Pro Pro Arg Leu Arg Glu Lys Tyr Asp His His Ala Gln Gln
1201	TCC ATG GCG GTC AGT CCC TTC GTG GAA GAG GAG AGA CCC CTG CTC CTT Ser Met Ala Val Ser Pro Phe Val Glu Glu Glu Arg Pro Leu Leu

FIG. 35

GGF2bpp5 (SEQ ID NO: 151) KCAEKEKTFCVNGGECFMVKDLSNPSRYLCKCPNEFTGDRCQNYVMASFY GGF2bpp4 (SEQ ID NO: 152) KCAEKEKTFCVNGGDCFMVKDLSNPSRYLCKCQPGFTGARCTENVPMKVQ (SEQ ID NO: 153) ECLRKYKDFCIH-GECKYVKELRAPS---CKCQQEYFGERCGEKSNKTHS

hEGF

FIG. 36
200 kDa Tyrosine Phosphorylation
Compared with Mitogenic Activity

FIG. 37A GGF/Heregulin Splicing Variants

F-B-A'	F-E-B-A'
F-B-A-C-C/D-D	F-E-B-A-C-C/D-D
F-B-A-C-C/D-H	F-E-B-A-C-C/D-H
F-B-A-C-C/D-H-L	F-E-B-A-C-C/D-H-L
F-B-A-C-C/D-H-K-L	F-E-B-A-C-C/D-H-K-L
F-B-A-C-C/D-D'-H	F-E-B-A-C-C/D-D'-H
F-B-A-C-C/D-D'-H-L	F-E-B-A-C-C/D-D'-H-L
F-B-A-C-C/D-D'-H-K-L	F-E-B-A-C-C/D-D'-H-K-L
F-B-A-C-C/D'-D	F-E-B-A-C-C/D'-D
F-B-A-C-C/D'-H	F-E-B-A-C-C/D'-H
F-B-A-C-C/D'-H-L	F-E-B-A-C-C/D'-H-L
F-B-A-C-C/D'-H-K-L	F-E-B-A-C-C/D'-H-K-L
F-B-A-C-C/D'-D'-H	F-E-B-A-C-C/D'-D'-H
F-B-A-C-C/D'-D'-H-L	F-E-B-A-C-C/D'-D'-H-L
F-B-A-C-C/D'-D'-H-K-L	F-E-B-A-C-C/D'-D'-H-K-L
F-B-A-C-C/D-C/D'-D	F-E-B-A-C-C/D-C/D'-D
F-B-A-C-C/D-C/D'-H	F-E-B-A-C-C/D-C/D'-H
F-B-A-C-C/D-C/D'-H-L	F-E-B-A-C-C/D-C/D'-H-L
F-B-A-C-C/D-C/D'-H-K-L	F-E-B-A-C-C/D-C/D'-H-K-L
F-B-A-C-C/D-C/D'-D'-H	F-E-B-A-C-C/D-C/D'-D'-H
F-B-A-C-C/D-C/D'-D'-H-L	F-E-B-A-C-C/D-C/D'-D'-H-L
F-B-A-C-C/D-C/D'-D'-H-K-L	F-E-B-A-C-C/D-C/D'-D'-H-K-L
F-B-A-G-C-C/D-D	F-E-B-A-G-C-C/D-D
F-B-A-G-C-C/D-H	F-E-B-A-G-C-C/D-H
F-B-A-G-C-C/D-H-L	F-E-B-A-G-C-C/D-H-L
F-B-A-G-C-C/D-H-K-L	F-E-B-A-G-C-C/D-H-K-L
F-B-A-G-C-C/D-D'-H	F-E-B-A-G-C-C/D-D'-H
F-B-A-G-C-C/D-D'-H-L	F-E-B-A-G-C-C/D-D'-H-L
F-B-A-G-C-C/D-D'-H-K-L	F-E-B-A-G-C-C/D-D'-H-K-L
F-B-A-G-C-C/D'-D	F-E-B-A-G-C-C/D'-D
F-B-A-G-C-C/D'-H	F-E-B-A-G-C-C/D'-H
F-B-A-G-C-C/D'-H-L	F-E-B-A-G-C-C/D'-H-L
F-B-A-G-C-C/D'-H-K-L	F-E-B-A-G-C-C/D'-H-K-L
F-B-A-G-C-C/D'-D'-H	F-E-B-A-G-C-C/D'-D'-H
F-B-A-G-C-C/D'-D'-H-L	F-E-B-A-G-C-C/D'-D'-H-L
F-B-A-G-C-C/D'-D'-H-K-L	F-E-B-A-G-C-C/D'-D'-H-K-L
F-B-A-G-C-C/D-C/D'-D	F-E-B-A-G-C-C/D-C/D'-D
F-B-A-G-C-C/D-C/D'-H	F-E-B-A-G-C-C/D-C/D'-H
F-B-A-G-C-C/D-C/D'-H-L	F-E-B-A-G-C-C/D-C/D'-H-L
F-B-A-G-C-C/D-C/D'-H-K-L	F-E-B-A-G-C-C/D-C/D'-H-K-L
F-B-A-G-C-C/D-C/D'-D'-H	F-E-B-A-G-C-C/D-C/D'-D'-H
F-B-A-G-C-C/D-C/D'-D'-H-L	F-E-B-A-G-C-C/D-C/D'-D'-H-L
F-B-A-G-C-C/D-C/D'-D'-H-K-L	F-E-B-A-G-C-C/D-C/D'-D'-H-K-

E-B-A-C-C/D-D

E-B-A-C-C/D-H E-B-A-C-C/D-H-L E-B-A-C-C/D-H-K-L

FIG. 37B

GGF/Heregulin Splicing Variants

E-B-A'

```
E-B-A-C-C/D-D'-H
E-B-A-C-C/D-D'-H-L
E-B-A-C-C/D-D'-H-K-L
E-B-A-C-C/D'-D
E-B-A-C-C/D'-H
E-B-A-C-C/D'-H-L
E-B-A-C-C/D'-H-K-L
E-B-A-C-C/D'-D'-H
E-B-A-C-C/D'-D'-H-L
E-B-A-C-C/D'-D'-H-K-L
E-B-A-C-C/D-C/D'-D
E-B-A-C-C/D-C/D'-H
E-B-A-C-C/D-C/D'-H-L
E-B-A-C-C/D-C/D'-H-K-L
E-B-A-C-C/D-C/D'-D'-H
E-B-A-C-C/D-C/D'-D'-H-L.
E-B-A-C-C/D-C/D'-D'-H-K-L
E-B-A-G-C-C/D-D
E-B-A-G-C-C/D-H
E-B-A-G-C-C/D-H-L
E-B-A-G-C-C/D-H-K-L
E-B-A-G-C-C/D-D'-H
E-B-A-G-C-C/D-D'-H-L
E-B-A-G-C-C/D-D'-H-K-L
E-B-A-G-C-C/D'-D
E-B-A-G-C-C/D'-H
E-B-A-G-C-C/D'-H-L
E-B-A-G-C-C/D'-H-K-L
E-B-A-G-C-C/D'-D'-H
E-B-A-G-C-C/D'-D'-H-L
E-B-A-G-C-C/D'-D'-H-K-L
E-B-A-G-C-C/D-C/D'-D
E-B-A-G-C-C/D-C/D'-H
E-B-A-G-C-C/D-C/D'-H-L
E-B-A-G-C-C/D-C/D'-H-K-L
E-B-A-G-C-C/D-C/D'-D'-H
E-B-A-G-C-C/D-C/D'-D'-H-L
E-B-A-G-C-C/D-C/D'-D'-H-K-L
```

FIG. 38 EGFL1

SEQ ID NO: 154:

48	96	144	192	198
AAT Asn	\mathtt{TAC}	\mathtt{TAC}	CCT	
GTG Val	AGA Arg	AAC Asn	CTG	
TGT Cys	TCA	CAA Gln	TCT Ser	
TTC Phe	CCC Pro	TGC Cys	CTG	
ACT Thr	AAT Asn	CGC Arg	TTT Phe	
AAA Lys	TCA Ser	GAT Asp	CCC Pro	
GAG Glu	CTT Leu	GGT	ACT Thr	
AAG Lys	GAC (ACT Thr	TCC	-
GAG Glu	AAA Lys	TTT Phe	ACG Thr	
GCA Ala	GTG Val	GAG Glu	AGT	
TGT	ATG Met	AAT Asn	TAC	
AAG Lys	TTC Phe	CCA Pro	TTC Phe	
GTC Val	TGC	TGC Cys	AGC	
CTT Leu	GAG Glu	AAG Lys	GCC Ala	
CAT His	GGC Gly	TGC	ATG Met	TAG
AGC	GGA Gly	TTG	GTA Val	GAA Glu

FIG. 39 EGFL2

SEQ ID NO: 155:

48	96	144	192
AAT	TAC	AAT	TAA
Asn	Tyr	Asn	
GTG	AGA	GAG	\mathtt{TAC}
Val	Arg	Glu	
TGT	TCA	ACT	CTC
Cys	Ser	Thr	
TTC	CCC	TGT	GAG
	Pro	Cys	Glu
ACT	AAT	AGA	GAG
Thr	Asn	Arg	
AAA Lys	TCA	GCG	GCG
GAG Glu	CTT	GGA	AAA (
AAG	GAC	ACT	GAA
Lys	Asp	Thr	Glu
GAG	AAA Lys	TTC Phe	CAA
GCA	GTG	GGA	ACC
Ala	Val	Gly	Thr
TGT Cys	ATG Met	CCT	CAA
AAG	TTC	CAA	GTC
Lys		Gln	Val
GTC	TGC	TGC	AAA
Val	Cys	Cys	Lys
CTT	GAG	AAG	ATG
Leu	Glu	Lys	Met
CAT	GGC Gly	TGC	CCC
AGC	GGA	TTG	GTG
Ser	Gly		Val

FIG. 40EGFL3

.

SEQ ID NO: 156:

48		96	144	183
AAT	Asn	TAC Tyr	TAC	
GTG	Val	AGA Arg	AAC	
$_{\mathrm{TGT}}$	CYS	TCA Ser	CAA Gln	
	Phe	CCC	TGC Cys	TAA
	\mathtt{Thr}	AAT Asn	CGC Arg	\mathtt{TAC}
AAA	$\text{L} \gamma$ s	TCA	GAT Asp	CTC Leu
GAG	Glu	CTT Leu	GGT Gly	GAG Glu
GAG . AAG	Lys	GAC Asp	ACT	GAG Glu
	Glu	AAA Lys	TTT Phe	GCG Ala
GCA	Ala	GTG	GAG Glu	AAA Lys
\mathtt{TGT}	Cys	ATG Met	AAT Asn	\mathtt{TAC}
AAG	Lys	TTC Phe	CCA Pro	TTC
GTC	Val	TGC	TGC	AGC Ser
CTT		GAG Glu	AAG Lys	GCC Ala
	His	GGC	TGC	ATG Met
AGC	Ser	GGA	TTG	GTA

FIG. 41 EGFL4

SEQ ID NO: 157:

48	96	144	192	210
AAT Asn	TAC	\mathtt{TAC}	AAA Lys	
GTG Val	AGA Arg	AAC Asn	GAG Glu	
TGT	TCA	CAA Glu	ATG Met	
TTC	ccc	TG(Cys	TTT Phe	
ACT	AAT Asn	CGC Arg	GAA Glu	
AAA Lys	TCA AAT (Ser Asn I	GAT CGC Asp Arg	ATT	
GAG	AAA GAC CTT Lys Asp Leu	GGT (GGG	
AAG Lys	GAC Asp	ACT Thr	CÝT Leu	
GAG Glu	AAA Lys	TTT Phe	CAT	
GCA Ala	GTG Val	GAG Glu	AAG Lys	
G TGT G	ATG Met	AAT GAG Asn Glu	\mathtt{TAC}	TAA
AA(Lys	TTC Phe	CCA Pro	TTC	
GTC Val	TGC Cys	TGC	AGC Ser	CTC
CTT	GAG Glu	AAG Lys	GCC Ala	SCG GAG GAG CTC TAC
CAT His	GGC	TTG TGC Leu Cys	ATG Met	GAG
AGC Ser	GGA Gly	TTG Leu	GTA Val	3CG

FIG. 42 EGFL5

SEQ ID NO: 158:

48	96	144	192	240	267
AAT Asn	\mathtt{TAC}	AAT Asn	ACT Thr	TCC	
GTG Val	AGA Arg	GAG Glu	TTT Phe	ACG	
TGT	TCA Ser	ACT Thr	GAG Glu	AGT Ser	
TTC Phe	CCC Pro	TGT Cys	AAT Asn	TAC Tyr	
ACT	AAT Asn	AGA Arg	CCA Pro	TTC Phe	
AAA Lys	TCA	GCG Ala	TGC	AGC Ser	
GAG Glu	CTT Leu	GGA Gly	AAG Lys	GCC Ala	
AAG	GAC Asp	ACT	GAA Glu	ATG Met	TAG
GAG	AAA Lys	TTC	CAA Gln	GTA Val	GAA Glu
GCA Ala	GTG Val	GGA	ACC Thr	TAC	CCT
TGT	ATG Met	CCT	CAA Gln	AAC Asn	CTG Leu
AAG Lys	TTC Phe	CAA Gln	GTC Val	CAA Gln	TCT Ser
GTC Val	TGC	TGC Cys	AAA Lys	TGC	CTG Leu
CTT Leu	GAG Glu	AAG Lys	ATG Met	CGC Arg	TTT Phe
CAT His	GGC Gly	TGC	CCC	GAT Asp	CCC Pro
AGC Ser	GGA Gly	TTG	GTG Val	$_{\rm G1y}^{\rm GGT}$	ACT Thr

FIG. 43 EGFL6

SEQ ID NO: 159:

48	96	144	192	240	252
AAT Asn	TAC	AAT	ACT Thr	GAG Glu	
GTG	AGA	GAG	TTT	GCG	
Val	Arg	Glu	Phe	Ala	
TGT Cys	TCA	ACT Thr	GAG	AAA Lys	
TTC Phe	CCC	${ m TGT}$	AAT Asn	TAC	
ACT Thr	AAT Asn	AGA Arg	CCA Pro	TTC	
AAA	GAC CTT TCA AAT	GCG	AAG TGC	AGC	
Lys	Asp Leu Ser Asn	Ala	Lys Cys	Ser	
GAG	CTT	GGA	AAG	GCC	
Glu	Leu	Gly	Lys	Ala	
AAG	GAC	ACT	GAA	ATG	
Lys	Asp	Thr	Glu	Met	
GAG	GTG AAA	TTC	CAA	gtá	
Glu	Val Lys	Phe	Gln	Val	
GCA	GTG	GGA	ACC	TAC	
Ala	Val	Gly	Thr	Tyr	
$ ext{TGT}$	ATG Met	CCT	CAA Gln	AAC Asn	
AAG	TTC	CAA	GTC	CAA	
Lys	Phe	Gl:n	Val	Gln	
GTC Val	TGC	TGC	AAA Lys	TGC	TAA
CAT CTT	GAG	AAG	CCC ATG	CGC	\mathtt{TAC}
His Leu	Glu	Lys	Pro Met	Arg	
CAT	GGC	TGC		GAT	CTC
His	Gly	Cys		Asp	Leu
AGC	GGA.	TTG	GTG	GGT	GAG
Ser		Leu	Val	Gly	Glu

<u>-</u>Œ

FIG. 45A Nucleotide Sequence & Deduced Acid Sequence of GGF2HBS5

SEQ ID NO: 21:	
GGAATTCCTT TTTTTTTTTTTTTTTTTTTTTTTTTT TGCCCTTATA CCTCTTGCCC	09
TTTCTGTGGT TCCATCCACT TCTTCCCCCT CCTCCTCCCA TAAACAACTC TCCTACCCCT	120
GCACCCCCAA TAAATAAATA AAAGGAGGAG GGCAAGGGGG GAGGAGGAGG AGTGGTGCTG	180
CGAGGGGAAG GAAAAGGGAG GCAGCGCGAG AAGAGCCGGG CAGAGTCCGA ACCGACAGCC	240
AGAAGCCCGC ACGCACCTCG CACC ATG AGA TGG CGA CGC GCC CCG CGC CGC	291
TCC GGG CGT CCC GGC CCC CGG GCC CGC CCC GGC TCC GCC G	339
TCG TCG CCG CTG CCG CTG CCA CTA CTG CTG CTG CTG GGG ACC Ser Ser Pro Pro Leu Pro Leu Pro Leu Leu Leu Leu Gly Thr Val Cys Leu Leu Thr Val GGF-II 09	387
GCG GCC CTG GCG CCG GCG GCC GCC AAC GAG GCG GCT CCC GCG Ala Ala Leu Ala Pro Gly Ala Ala Ala Gly Asn Glu Ala Ala Pro Ala Ala Ala Leu Pro Pro	435
GGG GCC TCG GGC TAC TCG TCC CCG CCC AGC GTG GGA TCG GTG CAG Gly Ala Ser Val Cys Tyr Ser Ser Pro Pro Ser Val Gly Ser Val Gln Ala Ser Pro Val Ser Val Gly Ser Val Gln GGF-II 08	483
SAG CTA GCT CAG CGC GCG GTG GTG ATC GAG GGA AAG GTG CAC CCG Slu Leu Ala Gln Arg Ala Ala Val Val Ile Glu Gly Lys Val His Pro Slu Leu Val Gln Arg Trp Phe Val Val Ile Glu Gly Lys	531

FIG. 45B Nucleotide Sequence & Deduced Acid Sequence of GGF2HBS5

579	627	675	723	771	819	867	915
GCG Ala	GGC Gly	AAC Asn	GAG Glu	GCG Ala Ala	CTG Leu Leu	GAG Glu	AGC Ser Gly
GCG G Ala A	GCG G Ala G	GCC A Ala A	GGC G Gly G	H LL CGC	GC rg	AAG G Lys G	ACC AC Thr Se Ser G
GCG	GCC	GCC	GCC	GTG Val Val GGF		CTC /	AGC A Ser J
GCG	CCA	CTC	AGC	CAG Gln Glu	ACC Thr Xaa	AGG Arg	AAC Asn Xaa
G GCG	3 CCG	CTG	CCC Pro	CAC His His	CTG CTC Leu Leu Leu Leu 3GF-II 10	GGG Gly Tyr	GCC Ala Ala
G AAG	C GAG g Glu	G CCG u Pro	G GTG o Val	G GTG s Val s Val GGF	s CTG r Leu 1 Leu GGF-I	C TGC Cys	C GAC D ASP D Gla
GAC AGG Asp Arg	GAT CGC Asp Arg	G GAG	c ccc	G AAG 1 Lys Lys	C TCG P Ser P Leu G	c TCC o Ser o Val	G CCC u Pro u Pro 3GF-II
CTC G/ Leu As	GGC GAT Gly Asp	GCC GAG Ala Glu	ACC GCC Thr Ala	CTG GTG Leu Val	AAG GAC Lys Asp Asp	CCC 1e Pro 1e Pro	G GAG (et Glu lit Glu lit Glu lit Glu lit GGE
GCA C Ala L	GGC GG	CCC GO	CCC A(Pro T	TAT C. Tyr Le	AAG AA Lys Ly	GCC TTC Ala Phe Ala Phe	TTC ATG Phe Met Phe Met
GGG (TGG G Trp G	CCG C Pro F	TGG C Trp F	CCC T Pro T	TTG A Leu L	CCC G Pro A Pro A	TTC T' Phe Pl Phe Pl
CAG	GCG Ala	GGG	TCT	GCG		 	
; CAG	. GGG Gly	CTG	CCC	GAG Glu	666 Gly	660 61y 61y 61y	TAC Tyr Tyr
G CGG g Arg	G GCA	GGG g Ala	C GTG	GAG Glu	Ď Ŕ	ĔĔĖ	A(A)
G CGG n Arg	C GAG Y Glu	A CGG o Arg	G ACC y Thr	c GGG o Gly	3 AAA 1 Lys a Lys	3 ACC 7 Thr 7 Ala	Ser
CAG Gln	GGC G1y	CCA	GGG Gly	CCC	GTG Val Ala	666 617 617	GAC

FIG. 45C Nucleotide Sequence & Deduced Acid Sequence of GGF2HBS5

636	1011	1059	1107	1155	1203	1251	1299	1347
				٠				
GGC Gly	GCC Ala	$_{\rm G1Y}$	CTC Leu	AAA Lys	CGC	GTG Val	GTG Val	GTA Val
ACG Thr	TGC	GCA Ala	TCT Ser	AAC Asn	CTT Leu	AAA Lys Lyx	ATC Ile.	CTT Leu
GAG Glu	CGG	GCT	TCC Ser	AAA Lys	GAA Glu	TGC Cys Xaa	ACC Thr	CAT His
CTG	AAG Lys	TCG	TAC TY <i>r</i>	CGA Arg	TĊA Ser	ATG Met Met	ATC Ile	AGC
CCT	TGC	GAA Glu	GAA Glu	AAT Asn	AAG Lys	TAT TYr TYr	AAT Asn	ACA Thr
CCC	CTG	CAG Gln	TCT Ser	TTG Leu	${\tt GGG}\\ {\tt G1y}$	GAG Glu Glu	GCC	GGG Gly
TTC Phe	'GTG Val	AGC Ser	AGT Ser	GAA Glu	CCA Pro	GGA Gly Gly I 12	TCT Ser	ACT
TCT	CGG Arg	AAA Lys	ACC Thr	AAT Asn	AAG Lys	GAT TCT Asp Ser Asp Ser GGF-II	GCC Ala	ACC Thr
GCC	AGC	ATG Met	GAA Glu	$\frac{GGG}{G1Y}$	AAA Lys	GAT ASP ASP GC	AGT Ser	TCC
CGA	GTC Val	GAG Glu	TGT Cys	AAT Asn	CÀA Gln	GCT Ala Ala	GAC	ACA Thr
TTC	GAG	AAA Lys	CGG Arg Arg	AAG Lys	ATA Ile	CTG Leu Leu	AAT Asn	TCT Ser
GCC Ala	AAG	TTG	CTT Leu Leu	TTC	AAG Lys	TCA Ser Ser	GGA Gly	ACA Th <i>r</i>
GCC Ala	AAG	CAA Gln	GTC Val Val GGF-I	TGG	ATC Ile	GCA Ala Ala	TTA Leu	GCT Ala
CCG Pro	CTC	ccc, Pro	CT7 Let Let	AAG Lys	AAT Asn	AAA Lys Lys	AAA Lys	AAC
GCG J Ala	AAC Asn	CCT Pro	AAA	TTC	CAA Gln	AAC Asn	AGC Ser	TCA
CGC Arg	CGG	TTG	TCC	AGA Arg	CCA Pro	ATT Ile	ATC Ile	GAA Glu

FIG. 45D

Nucleotide Sequence & Deduced Acid Sequence of GGF2HBS5

AAA TGT GCG GAG AAG GAG AAA ACT TTC TGT GTG AAT GGA GGG GAG TGC Lys Cys Ala Glu Lys Glu Lys Thr Phe Cys Val Asn Gly Gly Glu Cys	1395
TTC ATG GTG AAA GAC CTT TCA AAC CCC TCG AGA TAC TTG TGC AAG TGC Phe Met Val Lys Asp Leu Ser Asn Pro Ser Arg Tyr Leu Cys Lys Cys	1443
CCA AAT GAG TTT ACT GGT GAT CGC TGC CAA AAC TAC GTA ATG GCC AGC Pro Asn Glu Phe Thr Gly Asp Arg Cys Gln Asn Tyr Val Met Ala Ser	1491
TTC TAC AGT ACG TCC ACT CCC TTT CTG TCT CTG CCT GAA Phe Tyr Ser Thr Ser Thr Pro Phe Leu Ser Leu Pro Glu	1530
TAGGAGCATG CTCAGTTGGT GCTGCTTTCT TGTTGCTGCA TCTCCCCTCA GATTCCACCT	1590
AGAGCTAGAT GTGTCTTACC AGATCTAATA TTGACTGCCT CTGCCTGTCG CATGAGAACA	1650
TTAACAAAAG CAATTGTATT ACTTCCTCTG TTCGCGACTA GTTGGCTCTG AGATACTAAT	1710
AGGTGTGTGA GGCTCCGGAT GTTTCTGGAA TTGATATTGA ATGATGTGAT ACAAATTGAT	1770
AGTCAATATC AAGCAGTGAA ATATGATAAT AAAGGCATTT CAAAGTCTCA CTTTTATTGA	1830
TAAAATAAAA ATCATTCTAC TGAACAGTCC ATCTTCTTTA TACAATGACC ACATCCTGAA	1890
AAGGGTGTTG CTAAGCTGTA ACCGATATGC ACTTGAAATG ATGGTAAGTT AATTTTGATT	1950
CAGAATGTGT TATTTGTCAC AAATAAACAT AATAAAAGGA AAAAAAAAA AAA	2003

FIG. 46 Schwann Cell Proliferation Assay

CONTROLS 十 7 ω \$ **⇔** Þ FIG. 48 Schwann Cell Assay/Baculovirus Clones μl Assayed 12000 — 14000 -10000 2000 8000 – - 0009 4000 -. O

CPM

8-BV 10 25 µl 9-BV 10 6µl

≫ 10-BV Control 25

11 - BV Control 6 12 - CHO HBS5

13-CHO Control

FIG. 50B

FIG. 52

1 MRMRRAPRRSGRPGPRAQRPGSAARSSPP <u>LPLLPLLLLGTAALAPGAAAG</u> NEAAPAGAS	II-8 II-4 VCYSSPPSVGSVQELAQRAAVVIEGKVHPQRRQQGALDRKAAAAAGEAGAWGGDREPPAA	$\frac{\text{II}-1}{\text{GPRALGPPAEEPLLAANGTVPSWPTAPVPSAGEPGEEAPYLVKVHQVWAVKAGGLKKDSL}}$ $\frac{\text{II}-1}{\text{II}-3}$	PSCGRLKEDSRYIFFMEPDANSTSRAPAAFRASFPPLETGR	SRVLCKRCALPPQLKEMKSQESAAGSK O OMSERKEGRGKGKKKERGSGKKPESAAGSQSPRRN	II-14 II-18 TII-13 LVLRCETSSEYSSLRFKNFKNGNELNRKNKPQNIKIQKKPGKSELRINKASLADSGEYMC * TII-13 LVLRCETSSEYSSLRFKNFKNGNELNRKNKPQNIKIQKKPGKSELRINKASLADSGEYMC	S R S 5 IGMPASTEGAYVSSESPIRISVSTEG	T T 6 II-15 TTGTSHLVKÇAEKEKTFÇVNGGEÇFMVKDLSNPSRYLÇKÇPNEFTGDRÇQNYVMASFYST A	 9 STPFLSLPE*
. ←	61	121	181	241 1	268 53 53	328 113 113	354 173 173	4 232 232
SEQ ID NO:170 GGFHBS5				GGFHBS5 SEQ ID NO: 171 GGFHFB1 SEQ ID NO: 172 GGFBPP5		FIG. 53	Deduced Sequences of Human & Bovine Glial Growth Factors	

FIG. 54

