EXAMENUL DE BACALAUREAT - 2009 Proba scrisă la Fizică

Proba E: Specializarea: matematică-informatică, ştiințe ale naturii Proba F: Filiera tehnologică - toate profilele, filiera vocațională - toate profilele şi specializările, mai puțin specializarea matematică-informatică`

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. • Timpul efectiv de lucru este de 3 ore.

B. ELEMENTE DE TERMODINAMICA

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \, \text{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \frac{\text{J}}{\text{mol} \cdot \text{K}}$. Între parametri

de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$. Exponentul adiabatic este definit prin relația: $\gamma = \frac{C_P}{C_{VP}}$

SUBIECTUL I -

Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

- 1. Mărimea fizică numeric egală cu căldura necesară modificării temperaturii unui corp cu 1 K se numește:
- a. căldură specifică
- **b.** căldură molară
- c. capacitate calorică
- d. putere calorică

(5p)

- 2. Știind că simbolurile mărimilor fizice și ale unităților de măsură sunt cele utilizate în manualele de fizică, unitatea de măsură în S.I. a expresiei $\frac{p \cdot V}{T}$ este:
- **a.** J·K⁻¹
- **b.** J · mol ⁻¹
- d. J·mol

 p_2

- 3. O masă dată de gaz ideal efectuează transformările ciclice 1231 și 2542 reprezentate într-un sistem de coordonate p-V ca în figura alăturată. Cunoscând
- că $\frac{p_2}{p_1}=2$ și $\frac{p_4}{p_1}=3$, alegeți relația corectă dintre lucrul mecanic schimbat de

gaz cu mediul exterior în cele două transformări ciclice:

- **a.** $L_{1231} = L_{2542}$
- **b.** $L_{1231} = 2L_{2542}$
- **c.** $L_{1231} = 3L_{2542}$
- **d.** $L_{1231} = |L_{2542}|$

(3p)

- **4.** Căldurile molare pentru gaze se pot exprima cu ajutorul exponentului adiabatic γ . Raportul $\frac{C_V}{R}$ este egal cu:
- **a.** $\gamma(\gamma-1)$
- c. $\frac{1}{\gamma 1}$

(2p)

- 5. Două corpuri cu mase egale, având temperaturi diferite, sunt puse în contact termic. Căldurile specifice ale celor două corpuri sunt în relația $c_2 = \frac{c_1}{3}$, iar între temperaturile inițiale ale celor două corpuri există relația $T_2 = 3 \cdot T_1$. Temperatura finală T a sistemului după stabilirea echilibrului termic, se exprimă ca:
- **a.** $T = 2.5 \cdot T_1$
- **b.** $T = 1.5 \cdot T_1$ **c.** $T = T_1$
- **d.** $T = 0.5 \cdot T_1$
- (3p)