322441 ข่ายงานประสาท (Neural Networks)

ภาคต้น ปีการศึกษา 2561

สัปดาห์	บทที่	เนื้อหา
1		แนะนำเนื้อหา การสอน และการประเมินผล
1		การประยุกต์ใช้งาน
1	1	บทนำข่ายงานประสาทเทียม
		1.1 ข่ายงานประสาทเทียม (Artificial Neural Networks : ANN) คืออะไร
		1.2 โครงสร้างข่ายงานประสาทเทียม
		1.3 ความสำคัญของข่ายงานประสาทเทียม
		1.4 วิวัฒนาการในการพัฒนาข่ายงานประสาทเทียม
2	2	พื้นฐานข่ายงานประสาทเทียม
		2.1 ตัวแบบนิวรอนพื้นฐาน (Basic Fundamental neuron model)
		2.2 กฎการเรียนรู้ (Learning Rule)
		2.2.1 Hebbian Learning Rule
		2.2.2 Perceptron Learning Rule
		2.2.3 Delta Learning rule (Widrow-Hoff Rule or Least Mean Square (LMS) Rule)
		2.3 การแบ่งแยกเชิงเส้น (Linearly Separable)
2	3	การเรียนรู้แบบเพอร์เซปตรอน (Perceptron Learning)
		3.1 บทนำ
		3.2 เพอร์เซปตรอนชั้นเคียว (Single layer perceptron)
		3.3 สถาปัตยกรรมเพอร์เซปตรอนชั้นเดียว
		3.4 กฎการเรียนรู้เพอร์เซปตรอน (Perceptron Learning Rules) และทฤษฎีการลู่เข้า
		(Convergence Theorem)
		3.5 ขั้นตอนวิธีการเรียนรู้ (Learning Algorithm) ของเพอร์เซปตรอนชั้นเดียว
		3.6 ตัวอย่างการคำนวณ ด้วยข่ายงานเพอร์เซปตรอนชั้นเดียว
3-4	4	การเรียนรู้แบบมีผู้สอน : การเรียนรู้แบบ LMS
		4.1 การเรียนรู้เสมือนการประมาณค่าของฟังก์ชั่น (Learning As Function Approximation)
		4.2 การเรียนรู้แบบการแก้ไขข้อผิดพลาด หรือ LMS และกฎการเคลื่อนลงตามความชั้น (Error
		correction learning and Gradient descent rules)
		4.2.1 ขั้นตอนวิธี
		4.2.2 การปรับค่าน้ำหนัก
		4.2.3 กรณีฟังก์ชันกระตุ้นแบบเชิงเส้น
		4.2.4 กรณีฟังก์ชันกระตุ้นแบบไม่เชิงเส้น
5	5	เพอร์เชพตรอนแบบหลายชั้น
		5.1 เพอร์เซปตรอนหลายชั้น (Multi-Layer Perceptron)

		5.2 โครงสร้าง MLP (Multi-Layer Perceptron Structure)
		5.3 ขั้นตอนวิธีการเรียนรู้ ข่ายงานประสาทเทียม แบบเพอร์เซปตรอนหลายชั้น สำหรับปัญหา
		X-OR
6	6	เพอร์เซปตรอนหลายชั้นแบบแพร่ย้อนกลับ (MLP Back-Propagation)
		6.1 บทนำ
		6.2 สถาปัตยกรรมแบบป้อนไปข้างหน้าสำหรับข่ายงานเพอร์เซปตรอนหลายชั้นแบบแพร่
		ข้อนกลับ (MLP-Backpropagation)
		6.3 การเรียนรู้แบบแพร่ข้อนกลับ (Backpropagation Learning Algorithm)
		6.4 ขั้นตอนวิธีการเรียนรู้ข่ายงานแบบแพร่ย้อนกลับ
		6.5 ตัวอย่างการคำนวณข่ายงานแบบแพร่ย้อนกลับ
		6.6 ข้อควรพิจารณาในแง่การปฏิบัติสำหรับข่ายงานประสาทเทียมแบบแพร่ย้อนกลับ
		6.7 สรุป
7		สอบกลางภาค
8-9	7	ข่ายงานเรเดียลเบสิสฟังก์ชัน (Radial Basis Function Network :RBFN)
		7.1 บทนำ
		7.2 แนวคิดการสร้างข่ายงานเรเดียลเบสิสฟังก์ชัน
		7.3 เรเดียลเบสิสฟังก์ชัน
		7.4 สถาปัตยกรรมของข่ายงาน RBF
		7.5 ข่ายงาน Regularization (Regularization network)
		7.6 ข่ายงาน Generalize Regression Neural Networks (GRNN)
		7.7 ตัวอย่าง RBF Network ทั่วไป
		7.8 กลยุทธ์การเรียนรู้ข่ายงาน RBF ทั่วไป
10	8	ชัพพอร์ตเวคเตอร์แมชชีนส์เบื้องต้น (Introduction to Support Vector Machines :SVM)
		8.1 สถาปัตยกรรมของข่ายงาน SVM
		8.2 ซัพพอร์ตเวกเตอร์แมชชีนส์ (Support Vector Machines)
11-13	9	ระบบการเรียนรู้แบบไม่มีผู้สอน (Unsupervised Learning Systems)
		9.1 การจัดกลุ่ม (Clustering)
		9.2 ระบบก่อรูปเอง (Self Organizing System) ด้วยการแข่งขัน
		9.3 ขั้นตอนวิธี K-Means clustering
		9.4 ขั้นตอนวิธีการเรียนรู้ของแผนที่ลักษณะเค่นก่อรูปเอง (SOFM)
14		อื่นๆ Mini Project
15		สอบปลายภาค