- 1. A computer memory system is addressable by a 28 bit address bus. The cache in this system supports direct addressing, with a 4-bit word, and 19-bit line, and a 5-bit Tag. Answer the following questions:
 - a. What is the size of this memory system?
 - i. 2^{28} bits = 32 MB
 - b. What is the size of cache in this system?
 - i. 2^{19+5} bits = 2^{24} bits = 2 MB
 - c. How many words are in each cache line?
 - i. 2^4 bits = 2 Bytes
 - d. What is the maximum number of different tags that can be loaded in this cache
 - i. $2^5 = 32 \text{ tags}$
- 2. Consider a machine with a byte addressable main memory of 2¹⁶ bytes and a block size of 8 bytes. Assume that a direct cache consisting of 32 lines is used with this machine.
 - a. How is the 16-bit memory address divided into Tag, Line number, and byte number
 - i. 8 bits for Tag, 5 bits for Line, 3 bits for words
 - b. Into what lines would bytes with each of the following addresses be stored:
 - i. 0001 0001 0001 1011
 - 1. Line 3
 - ii. 1100 0011 0011 0100
 - 1. Line 6
 - iii. 1101 0000 0001 1101
 - 1. Line 3
 - iv. 1010 1010 1010 1010
 - 1. Line 21
 - c. How many total bytes of memory can be stored in the cache?
 - i. $2^{5+3} = 2^8 = 256$ bytes = 32 Bytes
- 3. For the hexadecimal main memory addresses 444444, 999999, CCCCC, show the following information:
 - a. Tag, Line, and Word values for a direct mapped cache using the format of (8-bit tag, 14-bit line and 2-bit word)
 - i. Tag: 44, Line: 1111, Word: 0
 - ii. Tag: 99, Line: 2666, Word: 1
 - iii. Tag: CC, Line: 3333, Word: 0
 - b. For an associative-mapped cache, with a 22-bit tag, what are the tag and word values
 - i. Tag: 111111, Word: 0
 - ii. Tag: 266666, Word: 1
 - iii. Tag: 333333, Word: 0

- 4. Consider a CPU with the following specifications:
 - It can access 256 words of memory, each word being 8 bits wide. The CPU does this by outputting a 8-bit address on its output pins A[7...0] and reading in the 8-bit value from memory on its inputs D[7...0]
 - The CPU contains an 8-bit address register (AR), program counter (PC), accumulator (AC), data register (DR), and a 4-bit instruction register (IR).
 - The CPU must realize the following instruction set. Note that β is an 8-bit value stored in the location immediately following the instruction

Write and Design the following parts for this CPU:

- a. RTL (Register Transfer language)
- b. Data path / Register Section

Instruction	Instruction Code	Operation
LD	0000XXXX β	AC <- M[β]
STI	0001XXXX β	β <- AC
ADD	0100XXXX β	AC <- AC + M[β]
JUMP	1000XXXX β	PC <- β
SKIP	1100XXXX	PC <- PC + 1
RST	1110XXXX	PC <- 0 , AC <- 0