

Co-ocurrencia de especies

Recuerden: datos de detección /no detección

Ayuda a responder:

- Como se estructuran las comunidades
- ¿Interacciones de especies?
- Respuesta espacial a variables

Mucha información y varios modelos

La gran mayoría pueden recuperar estos patrones con respecto al azar

Mayor probabilidad de que ocurran juntos

Mayor probabilidad de que se segreguen

Susana distancia

Detectabilidad imperfecta

- Las especies se detectan con diferente probabilidad
- No considerarlo nos lleva a conclusiones erróneas

Modelos de ocupación multi-especie (co-ocurrencia)

MacKenzie et al 2004

Modelo originalproblemas de convergencia RW (2010)

Modelo de probabilidad condicional

Rota et al (2016)

Modelo no condicional

Parámetros del modelo

Prepárense para los trabalenguas

Probabilidad de ocupación de la especie A en ausencia de B

$$\psi^B - \psi^{AB} = \psi^{B0}$$

Probabilidad de ocupación de la especie B en ausencia de A

Probabilidad de ocupación de ambas especies

$1 - \psi^A - \psi^B + \psi^{AB}$

Modelo condicional RW

- El primer modelo presenta problemas de convergencia
- Re-parametrización que calcula la probabilidad de psi y p de manera condicional
- Asume que una especie es dominante

La probabilidad de ocupación de la especie dominante es independiente

 $Z^A \sim Bernoulli(\psi^A)$

Pero la especie subordinada?

$$Z^B \sim Bernoulli(\psi^{Ba} * (1 - \psi^A) + \psi^{BA} * \psi^A)$$

 $Z^B \sim$

 $*\psi^A$)

ψ^A

Probabilidad de ocupación de la especie A

 $\psi^{B|a}$

Probabilidad de ocupación de la especie B dado que A este ausente

Probabilidad de ocupación de la especie B dado que A este presente

¿ Y la detección?

Cuando solo B esta presente

P La probabilidad de que solo B sea detectada dado que A este ausente

Que pasa cuando A también esta presente?

Que pasa cuando A también esta presente?

Calculo del factor de interacción de especies (FIE o SIF)

FIE<1

La especie **B** tiene menor probabilidad de co-ocurrir con A, de lo esperado por el azar

FIE=1

Las especies ocurren de manera independiente

FIE>1

Las especies tienen mayor probabilidad de co-ocurrir de lo esperado por el azar

El trabalenguas es importante, porque en el modelo RW vamos a construir hipótesis variando todos estos parámetros

 $\psi^A \psi^{BA} \psi^{Ba} p^A p^A p^B r^A r^{BA} r^{Ba}$

Wiqid

RPresence

Modelo no condicional

- No asume dominancia de alguna especie a priori, lo cual es deseable en algunos casos
- Permite modelar más de dos especie

Bernoulli multivariada

- Ahora Z es un vector de dimensión S
- S= al número de especies

$$Z^A \sim MVB(\psi_{11} \ \psi_{10} \psi_{01} \ \psi_{00})$$

Para dos especies

La probabilidad se describe mediante "parámetros naturales"

$$f_{1} = \log(\frac{\psi_{10}}{\psi_{00}}) \qquad f_{2} = \log(\frac{\psi_{01}}{\psi_{00}})$$

$$f_{12} = \log(\frac{\psi_{11}\psi_{00}}{\psi_{01}\psi_{10}})$$

Modelo no condicional se agregó recientemente a la paquetería de unmarked, pero también esta presente en MARK

