JaeHoon Kim

Joint work with Kyoungjae Lee and Lizhen Lin (Univ. of Maryland)

Department of Statistics, Sungkyunkwan University

Presented at KAIST November 22, 2024

Outline

- ► Introduction
 - ► Problem setting
 - ► Background
- ► Methodologies
 - ► Change Point Detection in Mean Structure
 - Choice of Hyperparameters
 - ► Multiscale Approach
- ► Numerical Results
- ► Appendix (If time allows)
 - ► Change Point Detection in Covariance Structure
 - ► Theoretical Foundations

Problem Setting

ightharpoonup Suppose we observe a sequence of random vectors X_1, \ldots, X_n independently from p-dimensional Gaussian distributions:

$$X_i \stackrel{\text{ind.}}{\sim} N_p(\mu_i, \Sigma_i), \quad i = 1, \ldots, n.$$

- ► We consider the high-dimensional setting:
 - ightharpoonup The number of variables p grows to infinity with the sample size n.
 - \triangleright p can be significantly larger than n.
- ► Assume changes occur in the mean vector or covariance matrix, with unknown number and locations.

Background

Approach:

▶ Define a sliding window of size n_w and perform two-sample tests within it to detect changes.

Background

Challenges:

- ► How can we efficiently compute the Bayes factor for high-dimensional data?
- ► How can we determine the optimal window size?

mxPBF for Two-Sample Mean Test

- For two-sample tests, we will use mxPBF, introduced by Lee et al. (2023), which is designed for high-dimensional data.
- Let the hypothesis of interest be:

$$H_0^{\mu}: \mu_i = \mu_{i+1}$$
 for all $1 \le i \le n-1$ vs $H_1^{\mu}: \text{not } H_0^{\mu}$.

For $n_w + 1 < l < n - n_w + 1$, consider the model:

$$X_{l-n_w}, \ldots, X_{l-1} \mid \mu_{l-1}, \Sigma \stackrel{\text{i.i.d.}}{\sim} N_p(\mu_{l-1}, \Sigma),$$

 $X_l, \ldots, X_{l+n_w-1} \mid \mu_l, \Sigma \stackrel{\text{i.i.d.}}{\sim} N_p(\mu_l, \Sigma),$

► We can sequentially perform the following hypothesis:

$$H_0^{\mu,l}: \mu_{l-1} = \mu_l \quad \text{vs} \quad H_1^{\mu,l}: \mu_{l-1} \neq \mu_l.$$

mxPBF for Two-Sample Mean Test

▶ For a given integer $1 \le j \le p$, we can marginalize the model as:

$$X_{l-n_w,j},\ldots,X_{l-1,j}\mid \mu_{l-1,j},\sigma_{jj}\stackrel{\text{i.i.d.}}{\sim} N(\mu_{l-1,j},\sigma_{jj}),$$

$$X_{l,j},\ldots,X_{l+n_w-1,j}\mid \mu_{l,j},\sigma_{jj}\stackrel{\text{i.i.d.}}{\sim} N(\mu_{l,j},\sigma_{jj}).$$

► Then, the marginalized hypothesis becomes:

$$H_{0,j}^{\mu,l}: \mu_{l-1,j} = \mu_{l,j} \quad \text{vs} \quad H_{1,j}^{\mu,l}: \mu_{l-1,j} \neq \mu_{l,j}.$$

► This approach avoids inverse calculation and allows obtaining the Bayes factor for p > n - 2, though ignores the data's dependence structure.

Priors

▶ Let
$$\overline{\mathbf{X}}_{a:b,j} = (b-a+1)^{-1} \sum_{i=a}^{b} X_{ij}$$
 and $\gamma_{n_w} = (n_w \vee p)^{-\alpha}$.

▶ Priors under $H_{0,i}^{\mu,l}$:

$$\blacktriangleright \mu_j \mid \sigma_{jj} \sim N\left(\overline{\mathbf{X}}_{(l-n_w):(l+n_w-1),j}, \frac{\sigma_{jj}}{2n_w\gamma_{n_w}}\right)$$

$$ightharpoons$$
 $\pi\left(\sigma_{jj}\right)\propto\sigma_{jj}^{-1}$

▶ Priors under $H_{1,i}^{\mu,l}$:

$$\blacktriangleright \mu_{l-1,j} \mid \sigma_{jj} \sim N\left(\overline{\mathbf{X}}_{(l-n_w):(l-1),j}, \frac{\sigma_{jj}}{n_w \gamma_{n_w}}\right)$$

$$\blacktriangleright \ \mu_{l,j} \mid \sigma_{jj} \sim \mathcal{N}\left(\overline{\mathbf{X}}_{l:(l+n_w-1),j}, \frac{\sigma_{jj}}{n_w \gamma_{n_w}}\right)$$

$$ightharpoons$$
 $\pi\left(\sigma_{jj}\right)\propto\sigma_{jj}^{-1}$

The Maximum Pairwise Bayes Factor

▶ We can get the resulting log pairwise Bayes factor as a closed form:

$$\log B_{10}^{\mu} \left(\mathbf{X}_{(l-n_{w}):(l+n_{w}-1),j} \right) := \log \frac{p \left(\mathbf{X}_{(l-n_{w}):(l+n_{w}-1),j} \mid H_{1,j}^{\mu,l} \right)}{p \left(\mathbf{X}_{(l-n_{w}):(l+n_{w}-1),j} \mid H_{0,j}^{\mu,l} \right)}$$

► Then, the mxPBF is:

$$B_{\max,10}^{\mu,n_{\rm w}}(X_n) := \max_{n_{\rm w}+1 \le l \le n-n_{\rm w}+1} \max_{1 \le j \le p} B_{10}^{\mu}(X_{(l-n_{\rm w}):(l+n_{\rm w}-1),j})$$

 \blacktriangleright We can reject $H_0^{\mu}: \mu_i = \mu_{i+1}$ for all i, i.e., detect a change, if the mxPBF exceeds a prespecified threshold.

- ightharpoonup The choice of the hyperparameter α is critical for performance.
- ▶ We adopt the hyperparameter selection method from Lee et al. (2023), which controls the empirical False Positive Rate (FPR).
 - 1. Given an observed data matrix X, calculate the sample mean $\hat{\mu}$ and sample covariance matrix $\hat{\Sigma}$.
 - 2. Generate N simulated datasets $\{X_{\text{sim}}^{(s)} \in \mathbb{R}^{n \times p}\}_{s=1}^{N}$ using $\hat{\mu}$ and $\hat{\Sigma}$.
 - 3. For each s, calculate the mxPBF $B_{\max,10,\alpha}(X_{cim}^{(s)})$.
 - 4. Calculate the empirical FPR as

$$\widehat{\mathsf{FPR}}_{\alpha} = N^{-1} \sum_{s=1}^{N} I(B_{\mathsf{max},10,\alpha}(X_{\mathsf{sim}}^{(s)}) > C_{\mathsf{th}}).$$

5. Choose $\widehat{\alpha}$ that achieves a pre-specified FPR.

Theoretical Foundation

- \blacktriangleright Given a class of distributions for X_n , with K_0 denoting the number of change points and i_1, \ldots, i_{K_0} representing their locations.
- \blacktriangleright We define the localization rate for change point detection as ϵ , if:

$$\mathbb{P}_0\left(\widehat{K}=K_0, \ \max_{1\leq k\leq K_0}\frac{|i_k-\widehat{i}_k|}{n}\leq \epsilon\right)\longrightarrow 1.$$

- Consistency of the Bayes factor implies that:
 - 1. $B_{10}(X_n) \stackrel{p}{\longrightarrow} 0$ under H_0
 - 2. $\{B_{10}(X_n)\}^{-1} \xrightarrow{p} 0 \text{ under } H_1$
- ▶ It has been demonstrated that mxPBF is consistent and achieves nearly minimax-optimal localization rate.

Multiscale Approach

- ► Choosing the optimal window size is case-specific and difficult when data knowledge is limited.
- ► To address this issue and enhance stability across scenarios, we propose a multiscale approach inspired by Avanesov and Buzun (2018).
- ► The approach simultaneously considers a set of window sizes $\mathcal{N} = \{ n_{\scriptscriptstyle \mathsf{NV}}^{(r)} : r = 1, \dots, |\mathcal{N}| \}$ and makes a decision based on a majority rule.
- ▶ Under mild conditions, the approach inherits the theoretical properties of a single window.
- ▶ It has been shown that the proposed multiscale method outperforms existing state-of-the-art methods across various scenarios.

Combined method

- ▶ In practice, it is often uncertain whether changes occur in the mean, covariance, or both.
- In such cases, we sequentially apply both of the proposed change point detection methods.
 - 1. Given a data matrix X and a window size n_w , apply a sliding window approach to center the observations.
 - 2. Apply the change point detection method to covariance matrices.
 - 2-1. If one or more change points are detected, partition the data based on the estimated change points.
 - 3. Apply the proposed change point detection method for mean vectors to the uncentered data or each segment.
 - 4. Combine the change points detected in both mean and covariance structures.

Comparative Genomic Hybridization Microarray Data

- ► Log intensity ratio of fluorescence levels in DNA fragments.
- ► 2215 × 43 matrix.

Figure: Log-intensity ratio measurements from microarray data of 43 individuals, with vertical dotted lines marking the identified change points.

- Daily log returns of the closing stock prices from January 2015 to December 2016.
- ► 380 × 479 matrix.

Figure: Log returns of 479 companies within the S&P 500 are displayed, with vertical dotted lines indicating the identified change points.

Simulation Study

- ► We compare our methods with those from:
 - ▶ Dette (Dette et al., 2022)
 - ► Geomcp (Grundy et al., 2020)
 - ► Inspect (Wang and Samworth, 2018)
 - ► Edivisive (Matteson and James, 2014)
- ► Settings for mxPBF:
 - ► Set of window sizes $\mathcal{N} = \{25, 60, 100\}$
 - Number of generated samples N = 300
 - ► Prespecified FPR = 0.05
 - ▶ Threshold $C_{th} = 10$
- ► 50 replications for each scenario.
- ► Evaluation metrics: F1 score and Hausdorff distance.

Performance When Data Including CPs in Mean

Figure: F1 scores based on 50 simulated datasets under $H_{1,M}$ with p = 200.

Performance When Data Including CPs in Covariance

Figure: F1 scores based on 50 simulated datasets under $H_{1,M}$ with p = 200.

References I

Avanesov, V. and Buzun, N. (2018). Change-point detection in high-dimensional covariance structure. *Electronic Journal of Statistics*, 12(2):3254-3294.

Numerical Results

- Dette, H., Pan, G., and Yang, Q. (2022). Estimating a change point in a sequence of very high-dimensional covariance matrices. Journal of the American Statistical Association, 117(537):444–454.
- Enikeeva, F. and Harchaoui, Z. (2019). High-dimensional change-point detection under sparse alternatives. The Annals of Statistics, 47(4):2051-2079.
- Grundy, T., Killick, R., and Mihaylov, G. (2020). High-dimensional changepoint detection via a geometrically inspired mapping. Statistics and Computing, 30(4):1155-1166.
- Lee, K., Lin, L., and Dunson, D. (2021). Maximum pairwise Bayes factors for covariance structure testing. Electronic Journal of Statistics, 15(2):4384 -4419
- Lee, K., You, K., and Lin, L. (2023). Bayesian optimal two-sample tests for high-dimensional gaussian populations. Bayesian Analysis, 1(1):1-25.

References II

Matteson, D. S. and James, N. A. (2014). A nonparametric approach for multiple change point analysis of multivariate data. Journal of the American Statistical Association, 109(505):334-345.

Numerical Results

- Wang, D., Yu, Y., and Rinaldo, A. (2021). Optimal covariance change point localization in high dimensions. Bernoulli, 27(1):554-575.
- Wang, T. and Samworth, R. J. (2018). High dimensional change point estimation via sparse projection. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(1):57–83.

CPD in Covariance Structure

- ► The method in the covariance structure is quite similar.
- ► Assume that the data has a zero mean:

$$X_i \stackrel{\text{ind.}}{\sim} N_p(0, \Sigma_i), \quad i = 1, \ldots, n.$$

► We consider the following hypothesis test:

$$H_0^\Sigma: \Sigma_i = \Sigma_{i+1} \quad \text{for all} \ \ 1 \leq i \leq n-1 \quad \text{vs} \quad H_1^\Sigma: \text{not} \ H_0^\Sigma.$$

ightharpoonup Given n_w and l, this hypothesis becomes:

$$H_0^{\Sigma,l}:\Sigma_{l-1}=\Sigma_l$$
 vs $H_1^{\Sigma,l}:\Sigma_{l-1}\neq\Sigma_l$,

meaning that H_0^{Σ} holds if and only if $H_0^{\Sigma,l}$ is true for all l.

- ► We apply the mxPBF idea (Lee et al., 2021) once again to construct the Bayes factor for hypothesis testing.
- ▶ For a given pair (i,j) with $1 \le i \ne j \le p$, the marginalized models are defined as follows:

$$\begin{split} &X_{(l-n_w):(l-1),i} \mid X_{(l-n_w):(l-1),j} \stackrel{\text{i.i.d.}}{\sim} & N_{n_w} \left(a_{l-1,ij} X_{(l-n_w):(l-1),j}, \tau_{l-1,ij} I_{n_w} \right), \\ &X_{l:(l+n_w-1),i} \mid X_{l:(l+n_w-1),j} \stackrel{\text{i.i.d.}}{\sim} & N_{n_w} \left(a_{l,ij} X_{l:(l+n_w-1),j}, \tau_{l,ij} I_{n_w} \right), \\ &\text{where } \Sigma_l = (\sigma_{l,ij}), \ a_{l,ij} = \sigma_{l,ij} / \sigma_{l,jj}, \ \text{and} \ \tau_{l,ij} = \sigma_{l,ii} (1 - \rho_{l,ij}^2). \end{split}$$

► The resulting hypotheses are:

- ▶ Priors under $H_{0,i}^{\Sigma,l}$:
 - $\blacktriangleright \ a_{ij} \mid \tau_{ij} \sim N\left(\widehat{a}_{l,ij}, \frac{\tau_{ij}}{\gamma_{n_w} \|X_{(l-n_w):(l+n_w-1),i}\|_2^2}\right)$
 - ightharpoonup $au_{ij} \sim IG\left(a_0, b_{0,ij}\right)$
- ▶ Priors under $H_{1,i}^{\Sigma,l}$:

$$\blacktriangleright \ a_{l-1,ij} \mid \tau_{l-1,ij} \sim N\left(\widehat{a}_{1l-1,ij}, \frac{\tau_{l-1,ij}}{\gamma_{n_W} \|X_{(l-n_W):(l-1),j}\|_2^2}\right)$$

►
$$a_{l,ij} \mid \tau_{l,ij} \sim N\left(\widehat{a}_{2l,ij}, \frac{\tau_{l,ij}}{\gamma_{n_w} \|X_{l:(l+n_w-1),j}\|_2^2}\right)$$

- $\blacktriangleright \ \tau_{l-1,ij} \sim \textit{IG}(a_0,b_{01,ij})$
- ightharpoonup $au_{I,ij} \sim IG(a_0,b_{02,ij})$

where

$$a_{ij} = a_{1,ij} = a_{2,ij}, \ \tau_{ij} = \tau_{1,ij} = \tau_{2,ij}, \ \widehat{a}_{l,ij} = \frac{X_{(l-n_w):(l+n_w-1),i}^T X_{(l-n_w):(l+n_w-1),j}}{\|X_{(l-n_w):(l+n_w-1),j}\|_2^2}.$$

► The resulting log PBF is:

$$\begin{split} &\log B_{10}^{\Sigma}\left(X_{(l-n_w):(l+n_w-1),i},X_{(l-n_w):(l+n_w-1),j}\right) \\ &= \frac{1}{2}\log\left(\frac{\gamma_{n_w}}{1+\gamma_{n_w}}\right) + 2\log\Gamma\left(\frac{n_w}{2} + a_0\right) - \log\left\{\Gamma\left(n_w + a_0\right)\Gamma(a_0)\right\} \\ &+ a_0\log\left(\frac{b_{01,ij}b_{02,ij}}{b_{0,ij}}\right) - \left(\frac{n_w}{2} + a_0\right)\log\left(b_{01,ij} + \frac{n_w}{2}\widehat{\tau}_{1l-1,ij}\right) \\ &- \left(\frac{n_w}{2} + a_0\right)\log\left(b_{02,ij} + \frac{n_w}{2}\widehat{\tau}_{2l,ij}\right) + (n_w + a_0)\log\left(b_{0,ij} + n_w\widehat{\tau}_{l,ij}\right), \end{split}$$

where Γ is the Gamma function and

$$\widehat{\tau}_{ij} = \frac{X_{(l-n_w):(l+n_w-1),i}^{T} \left(I_{2n_w} - H_{X_{(l-n_w):(l+n_w-1),j}}\right) X_{(l-n_w):(l+n_w-1),i}}{2n_w}.$$

► For each I, we define the mxPBF as:

$$B_{\max,10}^{\Sigma,l,n_w}(X_n) := \max_{1 \leq i \neq j \leq p} B_{10}^{\Sigma}(X_{(l-n_w):(l+n_w-1),i},X_{(l-n_w):(l+n_w-1),j})$$

► The final mxPBF, used for testing the existence of change points, is:

$$B_{max,10}^{\Sigma,n_w}(X_n) := \max_{n_w+1 \le l \le n-n_w+1} B_{10}^{\Sigma,l,n_w}(X_n)$$

▶ Given a threshold $C_{cp} > 0$, we reject H_0^{Σ} if

$$B_{max,10}^{\Sigma,n_w}(X_n) > C_{cp}$$

 Once the existence of change points is confirmed, we can proceed to estimate their locations.

Consistency of mxPBF

- ► To support the proposed change point detection method, we establish the consistency of the mxPBF.
- ► Consistency of the mxPBF $B_{\text{max}, 10}^{n_w}$ implies that:
 - 1. $B_{\max, 10}^{n_w}(X_n) \stackrel{p}{\longrightarrow} 0$ under H_0
 - 2. $\{B_{\max, 10}^{n_w}(X_n)\}^{-1} \stackrel{p}{\longrightarrow} 0 \text{ under } H_1$
- \blacktriangleright We first assume the following condition for the window size n_w :

Condition (A1)

$$n_w \le n/2$$
 and $\epsilon_{n_w} := \log(n_w \vee p)/n_w = o(1)$ as $n \to \infty$.

Consistency in Mean Structure

Theorem 2.1

Suppose we observe $X_i \stackrel{\text{ind.}}{\sim} N_p(\mu_{0i}, \Sigma_0)$, i = 1, ..., n, and consider the hypothesis above. Assume a window size n_w satisfies condition (A1). Let $C_{2,\text{low}} = 2 + \epsilon$ and $C_2 = 2 + 2\epsilon$ for some small constant $\epsilon > 0$.

- (i) Suppose H_0^μ is true. if $p(n-2n_w+1)(n_w\vee p)^{-C_{2,low}}=o(1)$ and $\alpha>2[1+2\{C_2\log(n_w\vee p)\}^{-1/2}]/(1-3\sqrt{C_2\epsilon_{n_w}}):=\alpha_{n_w,p},$ then $B_{\max}^{\mu,n_w}{}_{10}(X_n)=O_p\{(n_w\vee p)^{-c}\}$, for some c>0.
- (ii) Suppose H_1^{μ} is true. If there exist indices k and j such that $\{i_k i_{k-1}\} \wedge \{i_{k+1} i_k\} \geq n_w$ and $\frac{(\mu_{0i_k,j} \mu_{0i_{k+1},j})^2}{\sigma_{0,jj}} \geq K \log(n_w \vee p)/n_w := \xi_{n_w,p}^2(\star), \text{ for some } K,$ then $\{B_{m,n_w}^{p,n_w}\}_{10}^{p,n_w}(X_n)\}^{-1} = O_n\{(n_w \vee p)^{-c'}\}, \text{ for some } c' > 0.$

Consistency in Mean Structure

- ► Enikeeva and Harchaoui (2019) proposed a test for change point detection in mean under sparse alternatives.
- ► Their test can detect a change point if:
 - (1) $\|\mu_{0i_1} \mu_{0i_2}\|_2^2 \ge C\sqrt{p\log(p\log n)}/\{i_1(1-i_1/n)\}$ in the moderate sparsity regime.
 - (2) $\|\mu_{0i_1} \mu_{0i_2}\|_2^2 \ge C' s_0 \log p / \{i_1(1 i_1/n)\}$ in the high sparsity regime, for some positive constants C and C'.
- ▶ In contrast, our condition (*) in Theorem 2.1 can be seen as:

$$\max_{1 \le k \le K_0} \|\mu_{0i_k} - \mu_{0i_k}\|_{\max}^2 \ge K^* \log(n_w \vee p) / n_w,$$

which is not directly comparable.

Localization Rate in Mean Structure

- ▶ Let $\mathcal{P}_{u}^{*}(K_{0}, \delta_{n}, \psi_{\min}^{2}, \Sigma_{0})$ be the class of distributions X_{n} , where
 - $\blacktriangleright X_i \stackrel{\text{ind.}}{\sim} N_p(\mu_{0i}, \Sigma_0), i = 1, \ldots, n$
 - ► K_0 change points $\{i_1, \ldots, i_{K_0}\}$ exist

Theorem 2.2

Suppose $X_n \sim P \in \mathcal{P}^*_{\mu}(K_0, \delta_n, \psi^2_{\min}, \Sigma_0)$.

Assume that $n_w \leq \delta_n$, $\psi_{\min}^2 \geq \xi_{n_w,p}^2$. Let $C_{1,\text{low}} = 1 + \epsilon$ and $C_{2,\text{low}} = 2 + \epsilon'$ for some small constants $\epsilon > 0$ and $\epsilon' > 0$.

If
$$K_0(n_w \vee p)^{-C_{1,\text{low}}} = o(1)$$
, $p(n-2n_w+1)(n_w \vee p)^{-C_{2,\text{low}}} = o(1)$, and $\alpha > \alpha_{n_w,p}$,

then
$$\mathbb{P}_0\left(\widehat{K}=K_0, \max_{1\leq k\leq K_0}|i_k-\widehat{i_k}|\leq n_w\right)\longrightarrow 1.$$

Localization Rate in Mean Structure

- Wang and Samworth (2018) proposed a change point estimation method for high-dimensional mean vectors based on a sparse projection.
- ► To obtain the localization rate for change point detection, they assumed:

$$\min_{1 \le k \le K_0} \|\mu_{0i_k} - \mu_{0i_{k+1}}\|_2^2 \ge C\sigma^2 \frac{s_0 \log(np)}{n\tau^2},$$

where $\tau \leq n^{-1} \min_{0 \leq k \leq K_0} (i_{k+1} - i_k)$.

► This assumption implies:

$$\min_{1\leq k\leq K_0}\|\mu_{0i_k}-\mu_{0i_{k+1}}\|_{\max}^2\geq C\sigma^2\frac{\log(np)}{\delta_n\tau}.$$

▶ On the other hand, our condition (\star) in Theorem 2.1 implies:

$$\min_{1 \le k \le K_0} \|\mu_{0i_k} - \mu_{0i_{k+1}}\|_{\max}^2 \ge C_{\star} \sigma^2 \frac{\log(n_w \vee p)}{\delta_n},$$

for some constant $C_{\star} > 0$, which is a much weaker.

Localization Rate in Mean Structure

 \blacktriangleright We define the *localization rate* for change point detection as ϵ_n^{\star} if

$$\mathbb{P}_0\left(\widehat{K}=K_0, \max_{1\leq k\leq K_0}\frac{|i_k-\widehat{i}_k|}{n}\leq \epsilon_n^\star\right)\longrightarrow 1.$$

Theorem 2.3

Let $\mathcal{P}_{\mu,1}^*=\mathcal{P}_{\mu,1}^*(\mathcal{K}_0=1,\delta_n,\psi_{\min}^2,\Sigma_0)$ be the class of distributions of X_n , where only one change point i_1 exists and $\|\mu_{0i_1}-\mu_{0i_0}\|_0=1$. Suppose $1/\delta_n\leq\psi_{\min}^2\leq 1$. Then,

$$\inf_{\widehat{i}_1} \sup_{P \in \mathcal{P}_{\mu,1}^*} \frac{1}{n} \mathbb{E}_P |\widehat{i}_1 - i_1| \geq \frac{1}{16n\psi_{\min}^2}.$$

- ▶ The lower bound in Theorem 2.3 becomes $\frac{n_w}{n \log(n_w \vee p)}$ if condition (\star) in Theorem 2.1 holds.
- ► Thus, the rate obtained in Theorem 2.2 is nearly minimax-optimal.

Consistency in Covariance Structure

► We now introduce the following conditions to guarantee consistency of the mxPBF in covariance structure.

Condition (A2)

 $\min_{i\neq j} \tau_{0,ij} \gg \left\{\log(n_w \vee p)\right\}^{-1}.$

Condition (A3)

There exist an index k and a pair (i,j) with $i \neq j$ satisfying

$$\begin{aligned} \{\log(n_{w} \vee p)\}^{-1} \ll \tau_{0i_{k},ij} \wedge \tau_{0i_{k+1},ij} & \leq & \tau_{0i_{k},ij} \vee \tau_{0i_{k+1},ij} \ll (n_{w} \vee p), \\ \frac{\tau_{0i_{k},ij}}{\tau_{0i_{k+1},ij}} \vee \frac{\tau_{0i_{k+1},ij}}{\tau_{0i_{k},ij}} & > & \frac{1 + C_{\text{bm}}\sqrt{\epsilon_{n_{w}}}}{1 - 4\sqrt{C_{1}\epsilon_{n_{w}}}} \end{aligned}$$

for the constant $C_1 > 1$ and some constant $C_{\rm bm}^2 > 8(\alpha + 1)$.

Consistency in Covariance Structure

Theorem 3.1

Suppose we observe $X_i \stackrel{\text{ind.}}{\sim} N_p(0, \Sigma_{0i}), i = 1, \ldots, n$, and consider the hypothesis stated above. Assume that a window size n_w satisfies condition (A1). Let $C_{3,\text{low}} = 3 + \epsilon$ and $C_3 = 3 + 2\epsilon$ for some small constant $\epsilon > 0$.

- (i) Suppose H_0^{Σ} is true. If $p^2(n-2n_w+1)(n_w\vee p)^{-C_{3,low}}=o(1)$ and $\alpha>6C_3$, then $B_{\max,n_1}^{\Sigma,n_w}(X_n)=O_p\{(n_w\vee p)^{-c}\}$, for some c>0.
- (ii) Suppose H_1^{Σ} is true. If there exist k and a pair (i,j) such that $\{i_k-i_{k-1}\} \wedge \{i_{k+1}-i_k\} \geq n_w$ and condition (A3) holds, then $\{B_{\max,10}^{\Sigma,n_w}(X_n)\}^{-1} = O_p\{(n_w \vee p)^{-c'}\}$, for some c'>0.

Consistency in Covariance Structure

- Avanesov and Buzun (2018) proposed a testing procedure based on a bootstrap and multiscale approach for change point detection.
- ► They defined:
 - \triangleright \mathcal{N} be a set of window sizes.
 - ▶ n_- be the minimum window size in \mathcal{N} .
 - d be the maximum number of nonzero entries in any column of the true precision matrix.
- ► To prove the consistency of the proposed test, they assumed
 - (1) $d|\mathcal{N}|^3 \{\log(np)\}^{10} = o\left((s \wedge n_-^2)^{1/4}\right)$
 - (2) $d|\mathcal{N}|\{\log(np)\}^7 = o\left((s \vee n_-)^{1/2}\right)$, where $s \leq n$ is the number of subsamples used to construct bootstrap statistics.
 - (3) Sparsity and irrepresentability conditions of the precision matrix. which are stronger than those required for mxPBF.

- ▶ Let $\mathcal{P}_{\Sigma}^*(K_0, \delta_n)$ be the class of distributions X_n , where
 - $\triangleright X_i \stackrel{\text{ind.}}{\sim} N_p(0, \Sigma_{0i}), i = 1, \ldots, n$
 - ► K_0 change points $\{i_1, \ldots, i_{K_0}\}$ exist

 - ► Condition (A3) holds

Theorem 3.2

Suppose $X_n \sim P \in \mathcal{P}^*_{\Sigma}(K_0, \delta_n)$.

Assume that $n_w \leq \delta_n$ and condition (A1) holds. Let $C_{1,\text{low}} = 1 + \epsilon$, $C_{3,\text{low}} = 3 + \epsilon'$, and $C_3 = 3 + 2\epsilon'$ for some small constants $\epsilon > 0$ and $\epsilon' > 0$.

If $K_0(n_w \vee p)^{-C_{1,\text{low}}} = o(1)$, $p^2(n-2n_w+1)(n_w \vee p)^{-C_{3,\text{low}}} = o(1)$, and $\alpha > 6C_3$,

then, $\mathbb{P}_0\left(\widehat{K}=K_0,\; \max_{1\leq k\leq K_0}|i_k-\widehat{i_k}|\leq n_w\right)\longrightarrow 1.$

- ▶ Wang et al. (2021) proposed two procedures to detect change points in covariance structures for sub-Gaussian random vectors.
- ► Their second procedure, called WBSIP, assumes

 - For any $\xi > 0$, there exists a constant C > 0 such that

$$\min_{k} \|\Sigma_{0i_k} - \Sigma_{0i_{k+1}}\|^2 \ge \frac{Cp(\log n)^{1+\varsigma}}{n_w}.$$

▶ On the other hand, condition (A3) is satisfied if

$$\min_{k} \|\Sigma_{0i_k} - \Sigma_{0i_{k+1}}\|_{\max}^2 \ge \frac{C' \log(n_w \vee p)}{n_w},$$

for some constant C' > 0.

► Their condition always implies ours in their settings, since

$$\|\Sigma_{0i_k} - \Sigma_{0i_{k+1}}\| \le p\|\Sigma_{0i_k} - \Sigma_{0i_{k+1}}\|_{\mathsf{max}}.$$

- ▶ Dette et al. (2022) developed a two-step approach to detect a change point in covariance structures when each component of an observation is a sub-Gaussian random variable.
- ► They defined:
 - $ightharpoonup i_1$: the true change point
 - lacktriangledown λ : a lower bound for the smallest nonzero entry in $|\Sigma_{0i_0} \Sigma_{0i_1}|$
- ▶ To obtain their localization rate Δ/n , they assumed:
 - $ightharpoonup p^2 n = o(e^{c'\lambda\Delta})$ for some constant c'.
 - ▶ $\lambda \ge C \left(\frac{\tau}{n}\right)^{1/2} \max\left\{\frac{n^2}{(n-i_1)^2}, \frac{n^2}{i_1^2}\right\}$, where τ is a threshold for dimension reduction in their method.
- ▶ If we further assume $c'\lambda > 3$, $\tau = C \log(n \vee p)$, and $i_1 \asymp n$, then their localization rate becomes $\log(n \vee p)/n$, which corresponds to ours.
- ► However, their condition is stronger than ours, as we consider the maximum nonzero entry in $|\Sigma_{0i_0} \Sigma_{0i_1}|$.

Theorem 3.3

For given constant $C_d>0$ and $0<\tilde{\sigma}_{\mathrm{diff}}<3/4$, define a class of joint distributions of (X_1,\ldots,X_n) ,

$$\begin{split} \mathcal{G}(\tilde{\sigma}_{\mathrm{diff}}, C_d) & := & \left\{P: X_i \overset{\mathit{ind.}}{\sim} N_p(0, \Sigma_{0i}), \, i = 1, \ldots, n, \right. \\ & \text{there is only } i_1 \; \mathsf{satisfying} \; \frac{C_d \log p}{\tilde{\sigma}_{\mathrm{diff}}^2} \leq \delta_n \leq \frac{n}{3}, \\ & \max_{1 \leq i \leq j \leq p} \frac{\left(\sigma_{0i_0, ij} - \sigma_{0i_1, ij}\right)^2}{\sigma_{0i_0, ii} \sigma_{0i_0, jj} + \sigma_{0i_1, ii} \sigma_{0i_1, jj}} \geq \tilde{\sigma}_{\mathrm{diff}}^2 \right\}. \end{split}$$

If $0 < C_d < 1/2$, then we have

$$\inf_{\widehat{i}} \sup_{P \in \mathcal{G}(\widetilde{\sigma}_{\mathrm{diff}}, \, C_d)} \frac{1}{n} \mathbb{E}_P |\widehat{i} - i_1| \geq c$$

for some constant c > 0 and all sufficiently large p.

▶ Theorem 3.3 implies that if $\tilde{\sigma}_{\text{diff}}^2 < \frac{\log p}{2\delta_n}$, the localization rate is larger than some constant c > 0, at least in the worst case.

Theorem 3.4

If $C_d > 2$, then

$$\inf_{\widehat{i}} \sup_{P \in \mathcal{G}(\widetilde{\sigma}_{\mathsf{diff}}, C_d)} \mathbb{E}_P |\widehat{i} - i_1| \geq c \, \widetilde{\sigma}_{\mathsf{diff}}^{-2}$$

for some constant c > 0 and for all sufficiently large p.

- ▶ Under condition (A3), we can derive that $\tilde{\sigma}_{\text{diff}}^2 \asymp \frac{\log(n_w \vee p)}{n_w}$.
- ► Thus, the localization rate in Theorem 3.2 is nearly minimax-optimal, since $\tilde{\sigma}_{\text{diff}}^{-2} n^{-1}$ has the same rate as $\frac{n_w}{n \log(n_w \vee p)}$.