מספרים רציונליים Rational Number Representation

ארגון המחשב ושפת סף

מרצה: **רועי אש**

Fixed Point vs. Floating Point

- We've already seen two ways to represent an integer in computer hardware:
 - signed
 - unsigned
- Both ways were with a *fixed point*representation the location of the binary
 point was fixed:

0	1	0	1	1	1	0	1
---	---	---	---	---	---	---	---

Floating Point

- Going back to decimal...
- Sometimes it is more comfortable to represent a value using a floating point.
 - For instance: 1,200,000,000 = 1.2 ⋅ 10⁹ Exponent

 1.2E9

 Mantissa Base
- Generally, we use the form $d_0.d_1d_2...d_{p-1} \cdot B^e$ $(d_0 \neq 0)$

$$d_0.d_1d_2...d_{p-1} \cdot B^e = \left(d_0 + \sum_{j=1}^{p-1} d_j B^{(-j)}\right) \cdot B^e$$

Floating Point

If we look at 123:

$$-123 = 1 \cdot 10^{2} + 2 \cdot 10^{1} + 3 \cdot 10^{0}$$

$$10^{2} \cdot 10^{1} \cdot 10^{0}$$

The same goes for (fixed point) 123.456:

$$-123.456 = 1 \cdot 10^{2} + 2 \cdot 10^{1} + 3 \cdot 10^{0} + 4 \cdot 10^{-1} + 5 \cdot 10^{-2} + 6 \cdot 10^{-3}$$

$$10^{2} \ 10^{1} \ 10^{0} \ 10^{-1} \ 10^{-2} \ 10^{-3}$$

Floating Point

• Using the form: $d_0.d_1d_2...d_{p-1} \cdot B^e$

$$-123 = 1 \cdot 10^{2} + 2 \cdot 10^{1} + 3 \cdot 10^{0}$$
$$10^{2} \cdot (1 \cdot 10^{0} + 2 \cdot 10^{-1} + 3 \cdot 10^{-2}) =$$
$$1.23 \cdot 10^{2} = 1.23E2$$

$$-123.456 = 1 \cdot 10^{2} + 2 \cdot 10^{1} + 3 \cdot 10^{0} + 4 \cdot 10^{-1} + 5 \cdot 10^{-2} + 6 \cdot 10^{-3}$$

$$= 10^{2} \cdot (1 \cdot 10^{0} + 2 \cdot 10^{-1} + 3 \cdot 10^{-2} + 4 \cdot 10^{-3} + 5 \cdot 10^{-4} + 6 \cdot 10^{-5})$$

$$= 1.23456 \cdot 10^{2} = 1.23456E2$$

Binary Rational

- Converting from any radix to decimal is done as before.
 - So, for instance, the binary number 100.101:

$$100.101 = 1 \cdot 2^{2} + 0 \cdot 2^{1} + 0 \cdot 2^{0} + 1 \cdot 2^{-1} + 0 \cdot 2^{-2} + 1 \cdot 2^{-3}$$
$$= 1 \cdot 4 + 0 \cdot 2 + 0 \cdot 1 + 1 \cdot 0.5 + 0 \cdot 0.25 + 1 \cdot 0.125$$
$$= 4 + 0.5 + 0.125 = 4.625$$

IEEE 754 Floating Point Standard

IEEE 754 standard, released in 1985 after many years of development

- Floating Point numbers <u>approximate</u>
 values that we want to use.
- IEEE 754 Floating Point Standard is most widely accepted attempt to standardize interpretation of such numbers
 - Every desktop or server computer sold since
 ~1997 follows these conventions

IEEE - Institute of Electrical and Electronics Engineers

Float vs. Double

- So how many digits do we really have?
- Depends on the representation. We have two possible representations for floating point values:
 - 4-byte float and 8-byte double.
- It all depends on the amount of accuracy we need.

Hidden Bit

• In IEEE 754, we use the form:

$$d_0 \cdot d_1 d_2 \dots d_{p-1} * B^e$$

- Where: B = 2, $d_i \in \{0,1\}$
- In decimal, every digit would have values in the range 0..9 besides d_0 which have values in range 1..9.
- Likewise, in binary, d_0 could only have the value of 1.
- So why should we save it?
- · Since we won't save it, we'll refer to it as the "hidden bit"

Float

- 32-bit (4-byte) representation.
- 1 bit for sign: 1 for negative, 0 for positive.
- 23 bits for mantissa.
- 8 bits for the exponent.

 Important: The true value of a exponent is

 Important: The true value of a exponent is

 Important: The true value of a exponent is a second true value.

unsigned exponent representation - 127.

Float Limitations

- 0 is represented with mantissa=0 and "computer" exponent=0.
- Max absolute value (all 1's in mantissa and 11111110 exponent):

$$1.1111....1 * 2^{127} = 2^{128} - \varepsilon$$

Min absolute value (0 in mantissa and 1 as "computer" exponent):

$$1.0000....0 * 2^{-127} = 2^{-126}$$

- "Computer" exponent=0 and mantissa different from 0 represent sub-normal numbers $-2^{-126} < X < 2^{128}$
- "Computer" exponent=255 represent ±∞ and Nan.

Double

- 64-bit (8-byte) representation.
- 1 bit for sign: 1 for negative, 0 for positive.
- 52 bits for mantissa.
- 11 bits for the exponent.
 Important: The true value of a exponent is unsigned exponent representation 1023

Double Limitations

- 0 is represented with mantissa=0 and "computer" exponent=0.
- Max absolute value (all 1's in mantissa and 11111111110 exponent): $1.1111....1 * 2^{1023} = 2^{1024} \varepsilon$
- Min absolute value (0 in mantissa and 1 as "computer" exponent): $1.0000....0*2^{-1023} = 2^{-1022}$
- "Computer" exponent=0 and mantissa different from 0 represent sub-normal numbers $-2^{-1022} < X < 2^{1023}$
- "Computer" exponent=2047 represent ±∞ and Nan.

Examples (1)

Convert the following float to decimal:

- $0xc3528000 = 1100\ 0011\ 0101\ 0010\ 1000\ 0000\ 0000\ 0000$
- As float parts: 1 10000110 10100101000000000000000
- with the hidden bit: 1 10000110 (1.)10100101
- As decimal: $134 1 + 2^{-1} + 2^{-3} + 2^{-6} + 2^{-8}$
- Real exp. (less 127): $7 1 + 2^{-1} + 2^{-3} + 2^{-6} + 2^{-8}$
- Sum up: (-1) * 2⁷ * (1 + 2⁻¹ + 2⁻³ + 2⁻⁶ + 2⁻⁸)= (-1) * (2⁷ + 2⁶ + 2⁴ + 2¹ + 2⁻¹)
 - = (-1) * 210.5 = -210.5

Examples (2)

Convert 12.125 to float:

- As polynomial: $+ 12.125 = +2^3 + 2^2 + 2^{-3}$
- Factor out: $+ 2^{3} * (1 + 2^{-1} + 2^{-6})$
- As parts: + 3 (1.)100001
- Represented as: 0 130 * 1000010...0
- Binary exp.: 0 10000010 1000010...0

* Note: we have to add 127 to the real exponent

Binary Rational

- For converting from decimal to binary, we'll use a polynomial of base 2:
 - So, for instance 20.75 to binary:

$$20.75 = 2^{4} + 2^{2} + 2^{-1} + 2^{-2}$$

$$= 1^{24} + 1^{22} + 1^{2-1} + 1^{2-2}$$

$$= 10100.11$$

What about converting to floating point?

Binary Rational

- Here, of course B = 2, $di \in \{0,1\}$
- In order to transform the result to floating point, we'll continue from here:

$$20.75 = 2^{4} + 2^{2} + 2^{-1} + 2^{-2}$$

$$= 2^{4} * (1 + 2^{-2} + 2^{-5} + 2^{-6})$$

$$= 2^{4} * (1*2^{0} + 1*2^{-2} + 1*2^{-5} + 1*2^{-6})$$

$$= 1.010011 * 2^{4}$$

Binary Rationals

- Problem: how can we convert simple fractions to binary? Binary representation might require infinite number of digits.
 - -For example:

$$\frac{1}{3}$$
 = 0.010101...

We have an algorithm.

Algorithm for Simple Fractions

- write "0."
- while (true) do:
 - \Box If x=0
 - Break
 - □ else
 - $x \leftarrow x \cdot 2$
 - If $x \ge 1$
 - □ write "1"
 - $\Box x \leftarrow x 1$
 - else write "0"

Algorithm for Simple Fractions

For instance:
$$x = \frac{1}{3}$$

0.

$$\frac{1}{3} \cdot 2 = \frac{2}{3} < 1$$

• 0.0

$$\frac{2}{3} \cdot 2 = \frac{4}{3} \ge 1$$

• 0.01

$$\frac{4}{3} - 1 = \frac{1}{3}$$

$$\frac{1}{3} \cdot 2 = \frac{2}{3} < 1$$

- 0.010
 - And so on...
- 0.01010101...

- write "0."
- while (true) do:
 - \Box If x=0
 - Break
 - □ else

$$x \leftarrow x \cdot 2$$

- If $x \ge 1$
 - write "1"
 - $\Box x \leftarrow x 1$
- else write "0"

Algorithm for Simple Fractions

From here, converting to floating point is easy:

$$0.01010101... =$$

$$= 2^{-2} + 2^{-4} + 2^{-6} + 2^{-8} + ...$$

$$= 2^{-2} * (1 + 2^{-2} + 2^{-4} + 2^{-6} + ...)$$

$$= 1.01010101... * 2^{-2}$$

Binary Rationals

Problems:

- This algorithms can run to infinity.
- Furthermore, we do not have an endless supply of digits.

Solution:

 Run the main loop the number of times as the number of digits you have for the fraction part.

Fixed Algorithm for Simple Fractions

- write "0."
- For each available digit to fraction part do:
 - \Box If x=0
 - Break
 - □else
 - $x \leftarrow x \cdot 2$
 - If $x \ge 1$
 - □ write "1"
 - $\Box x \leftarrow x 1$
 - else write "0"

Mixed Part Numbers

- For mixed whole and simple fraction parts numbers, like $5\frac{1}{3}$:
 - Convert the integer part to binary as we learned on integers.
 - Convert the fraction part as learned now.
 - Add the results.
 - Only now, if desired, convert to floating point.

סיימנו...

?שאלות

