Yakeen NEET 2.0 2026

Physics By Saleem Sir

DPP: 2

Laws of Motion

Q1 A mass of $10~\mathrm{kg}$ is suspended by a rope of length $2.8~\mathrm{m}$ from a ceiling. A force of $98~\mathrm{N}$ is applied at the midpoint of the rope as shown in figure. The angle which the rope makes with the vertical in equilibrium is:

- (A) 30°
- (B) 60°
- (C) 45°
- (D) 90°
- Q2 Figure shows a man of mass 50 kg standing on a light weighing machine kept in a box of mass 30 kg. The box is hanging from a pulley fixed to the ceiling through a light rope, the other end of which is held by the man himself. If the man manages to keep the box at rest, the weight shown by the machine is

- (A) 10 N
- (C) 800 N
- (B) 100 N
- (D) 200 N

Q3 A body of mass 5 kg is suspended by the strings making angles 60° and 30° with the horizontal –

- (a) $T_1 = 25 \text{ N}$
- (b) $T_2 = 25 \text{ N}$
- (c) $T_1 = 25 \sqrt{3} \text{ N}$
- (d) $T_2 = 25 \sqrt{3} \text{ N}$

- (A) a, b
- (B) a, d
- (C) c, d
- (D) b, c
- Q4 A massless string AB is loaded at its centre O by mass m. If its ends A and B are on the same horizontal line, then tension in the strings OA is

- (A) $\frac{mg}{2}$
- (B) *mg*
- (C) $\frac{\sqrt{3}mg}{2}$
- (D) $\frac{mg}{\sqrt{3}}$
- Q5 Two masses M_1 to M_2 connected by means of a string which is made to pass over light, smooth pulley are in equilibrium on a fixed smooth wedge as shown in figure. If $\theta=60^\circ$ and $lpha=30^\circ$, then the ratio of M_1 to M_2 is

- (A) 1:2
- (B) $2:\sqrt{3}$

- (C) $1:\sqrt{3}$ (D) $\sqrt{3}:1$
- Q6 A pendulum bob is suspended in a Car moving horizontally with acceleration 'a' the angle the string will make with vertical is

- (A) $\tan^{-1} \frac{g}{a}$
- (C) $\sin^{-1} \frac{a}{a}$
- (B) $an^{-1} rac{a}{g}$ (D) $\cos^{-1} rac{a}{g}$
- Q7 In the arrangement shown, the pulleys are fixed and ideal, the string are light, $m_1 > m_2$ and S is a spring balance which is itself massless. The reading of S (in units of mass) is

- (B) $\frac{1}{2} (m_1 + m_2)$ (D) $\frac{2m_1m_2}{m_1+m_2}$
- (A) $m_1 m_2$ (C) $\frac{m_1 m_2}{m_1 + m_2}$
- Q8 For the arrangement shown in the figure, the tension is the string is given by

- (A) $\frac{mg}{2}$ (C) $\frac{3mg}{2}$
- (B) mg
- (D) 2mg
- In the figure, what should be mass m so that block A of mass 10 kg slides up with a constant velocity?

Q10 In the figure shown, surface is frictionless. Forces are applied as shown in figure, then find tension

- (A) $\frac{250}{3} N$ (B) $\frac{190}{3} N$
- (C) 90 N
- (D) 50 N
- **Q11** Two blocks of masses 2 kg and 1 kg are in contact with each other on a frictionless table. When a horizontal force of 3.0 N is applied to the block of mass $2\ \mathrm{kg}$ the value of the force of contact between
 - (A) 4 N
 - (B) 3 N
 - (C) 5 N
 - (D) 1 N
- Q12 As shown in the figure, two equal masses each of 2 kg are suspended from a spring balance. The reading of the spring balance will be

- (A) Zero
- (B) 2 kg
- (C) 4 kg
- (D) Between zero and $2~\mathrm{kg}$

Q13 Three blocks of masses m_1,m_2 and m_3 are connected by massless string as shown kept on a frictionless table. They are pulled with a force $T_3=40~\mathrm{N}$. If $m_1=10~\mathrm{kg},m_2=6~\mathrm{kg}$ and $m_3=4~\mathrm{kg}$, the tension T_2 will be

- (A) 20 N
- (B) $40~\mathrm{N}$
- (C) 10 N
- (D) 32 N

Answer	Key
---------------	-----

Q1	(C)	Q8	(B)
Q2	(B)	Q9	(B)
Q3	(B)	Q10	(A)
Q4	(B)	Q11	(D)
Q5	(C)	Q12	(B)
Q6	(B)	Q13	(D)
Q7	(D)		

Master NCERT with PW Books APP