PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-109420

(43)Date of publication of application: 20.04.2001

(51)Int.Cl.

G02F 1/133

G09G 3/28

(21)Application number: 11-286395

(71)Applicant: MITSUBISHI ELECTRIC CORP

(22)Date of filing:

(72)inventor · ISHIDA KOZO

(54) DRIVING CIRCUIT FOR MATRIX TYPE DISPLAY PANEL AND MATRIX TYPE DISPLAY DEVICE PROVIDED THEREWITH

(57)Abstract:

PROBLEM TO BE SOLVED: To realize power control and heat control not by conventional mechanical parts such as a heat sink but only by signal processing, in a data driver circuit of a capacitive load of a matrix display device.

07.10.1999

SOLUTION: Power consumption of a data driver is controlled only by signal processing by controlling signal processing of an image processing part so that the power is reduced, based on the detection result from a correlation detecting part for detecting a correlation with display data or from a count part for counting a discharge-nondischarge change-over frequency.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted

registration] [Date of final disposal for application]

[Patent number]

Date of registration

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision of rejection

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-109420

(P2001-109420A) (43)公開日 平成13年4月20日(2001.4.20)

(51) Int.Cl. ⁷		線別記号	FΙ		3	·~73~}*(参考)	
GO9G	3/20	611	G09G	3/20	6.11A	2H093	
		642			642Z	5 C 0 8 0	
G02F	1/133	505	G02F	1/133	505		
G09G	3/28		G 0 9 G	3/28	Z		

		審査請求 未請求 請求項の数8 OL (全 17 B
(21)出願番号	特顯平 11-286395	(71)出顧人 000006013 三菱電機株式会社
(22) 出版日	平成11年10月7日(1999, 10.7)	東京都下代田区丸の内二丁目 2番8号 (72) 発明者 石田 晃三 東京都下代田区丸の内二丁目 2番8号 慶電機鉄式会社内 (74) 代題人 1010に2439 外理土 宮田 金雄 (41.2名) Fターム(参考) 21893 MAGB NC13 NC18 NC21 NC49 NC52 NC98 SO300 AAG AAG AA10 8805 DC00 DD028 EE17 EC28 PF09 1 J02 J104 J105 J106 J107
		1

(54) [発明の名称] マトリクス型表示パネルの駆動回路およびこれを備えるマトリクス型表示装置

(57)【要約】

【鉄題】 容量性負荷のマトリクス表示装置のデータド ライバの駆動回路において、従来のヒートシンクなど機 橋部品によらず、電力制御、熱対策、を信号処理のみで 実現する。

【解決手段】 表示データの相関を検出する相関検出部 または放電・非放電の関接り回数を検出するカウンタ部 からの検出結果をもとに、電力が小さくなるよう画像処 理郷の信号処理を制御することにより、信号処理のみで データドライバの消費電力を抑える。

【特許請求の範囲】

【請求項1】 入力される表示データに対応する画像を 表示可能な複数の表示セルを有するマトリクス型表示パ ネルを駆動するための駆動回路であって、

上記表示データについて上記表示セル間における上記表 示データの切換り回数を計数する計数部または上記マト リクス型表示パネルトの表示に対応する上記表示データ と上記表示セルの複数に対応する所定領域におけるデー タ配列との間の時系列的な相関を検出する相関検出部の 少なくともいずれかを有し、

上紀計数部または上記相関検出部の少なくともいずれか からの出力が入力されて上記表示データの性質を判別す る表示データ判別部と、

該表示データ判別部からの出力に基づいて上記表示デー タに対する画像処理を行う画像処理部とを備えることを 特徴とするマトリクス型表示パネルの駆動回路。

【請求項2】 画像処理部は、計数部の計数結果が既定 値以上となった場合に、表示データに対する画像処理を 行うことを特徴とする請求項1に記載のマトリクス型表 示パネルの駆動回路。

【請求項3】 画像処理部における画像処理は、表示セ ルの寿示されるべき明るさを調整する処理を含むことを 特徴とする糖水項2に記載のマトリクス型表示パネルの 駆動回路。

【請求項4】 画像処理部における画像処理は、表示デ ータと所定領域におけるデータ配列との相関を有する場 合に、上記所定領域に対応する上記表示データの空間周 波数を低くするデータに置き換える処理を含むことを特 後とする請求項1に記載のマトリクス型表示パネルの駆 動同路。

【請求項5】 所定領域におけるデータ配列が固定され たものであることを特徴とする請求項4に記載のマトリ クス型表示パネルの駆動回路。

【請求項6】 所定領域がマトリクス型表示パネルの表 示領域全体であることを特徴とする請求項2乃至5のい ずれかに記載のマトリクス型表示パネルの駆動回路。

【請求項7】 マトリクス型表示パネルと、 該マトリクス型表示パネルの電極に接続される請求項1 万至6のいずれかに記載のマトリクス型表示パネルの駆 動向路とを備えるマトリクス型表示装置。

【請求項8】 マトリクス型表示パネルがプラズマディ スプレイパネルであることを特徴とする請求項7に記載

のマトリクス型表示装置。 【発明の詳細な説明】

[1000]

[発明の属する技術分野] この発明は、プラズマディス プレイ、液晶表示パネル、エレクトロルミネッセンスパ ネル等の、いわゆる容量性負荷型の表示装置としてのマ トリクス型表示装置に関し、特にその消費電力を低減す るための機能を備えたマトリクス型表示装置に関するも 50 態となってしまう等の弊害を生じる。

のである。

[00002] 【従来の技術】以下に、容量性負荷型の表示装置とし

て、プラズマディスプレイ装置を例にとり説明を行う。 図19は、従来の交流型プラズマディスプレイ装置の概 略構成図である。図において、1は外部から供給される 表示データ、10はコントローラ、14はコントローラ 10内に設けられた表示データ処理部、15はシーケン スコントローラ、16はデータドライバ、17は走査維 10 特ドライバ、18は維持ドライバ、19は走査維持ドラ

イバ17および維持ドライバ18へ電力を供給するため の維持電源である。 [0003] 20はデータドライバ16へ電力を供給す るためのデータドライバ電源、21はプラズマディスプ

レイパネル (以下、PDPと称す) である。 【0004】以下、その動作について説明する。外部か ら供給される表示データ1は、コントローラ10の内部 に設けられた表示データ処理部14においてPDP21 を駆動するのに適した信号を得るための信号処理が施さ 20 れ、データドライパ16に出力される。

【0005】 データドライバ16からの出力は、いわゆ る書込みデータとしてPDP21の書込み電極に供給さ れ、 走奋維持ドライバ17より供給されるドライブ波形 **との関係によって雲込み放電が生む、PDP21にある** 誘電体上の表示放電を行わせるべき部位に壁電荷が蓄積 される。

【0006】その後、シーケンスコントローラ15によ り制御された走査維持ドライバ17および維持ドライバ 18により、維持電圧が両ドライバに接続された電極対 30 の間に印加され、この維持電圧と、先の壁電荷により生 起する電圧 (壁電圧) との加算によって得られる電圧 が、放電閾値をこえる部位に表示のための放電が生じ

る。 【0007】以降、電極対盟に印加される維持電圧を交 番することによって表示のための放電の生じた部位(表 示状態の放電セル) に表示放電が継続的に発生する。 こ れにより、放電セル毎の放電または非放電の維持制御が なされることにより、PDP21において、映像の表示 が実現される。

【0008】 ここで、表示データとして市松模様を表示 する場合の画面など、充放電回数(放電または非放電の 切換り回数) が大きい表示データが入力された場合、デ ータドライバ16からの出力は、充放電回数が増すこと になり、この充放電回数の増加に伴ってパネルの容量性 負荷に起因する無力損失(充放電の周波数に比例して増 大する) が発生するため消費電力が増大してしまい、つ いには、データドライバ16の許容される電力損失を超 えてしまうことによって、データドライバ16が破損を 受けたり、データドライバ16を構成する素子が過熱状 3 [0009] このため、図20に例示するように、データドライバ16の基板の裏面にヒートシンクを取付け、このヒートシンクへ風を当てるための風路設計を行う等の鉄対策(始勢)を壊じる水夢があった。

【0010】また、消費電力の増加に伴い、電源部(図示のデータドライバ16に電力を供給するためのデータドライバ電源20)の電力容量を増加させる必要もあった。

【0011】また、図21は、特開平10-18709 3号公報に記載された、ブラスマディスプレイ装置にお 10 名消費電力の低減を図るための構成を示すプロック図 である。図において、22は解散コサイン変換処理部

(以下、DCTと称す)、23は例えば信号成分の高域を除法するためにデジタルフィルタによって構成された高域成分除去部、24は逆聴散コサイン変換処理部(以下、IDCTと称す)。25は高域成分除法部23に合まれるフィルタを使用するか否か(フィルタのON/OFF)を削壊するためのフィルタコントローラである。

【0012】以下、その動作の説明を行う。DCT22 においては入力される画像データに対して襲散コサイン 20 変換を施し、当該画像データを周波数空間上のデータへ 変換する。しかる後、DCT22から出力は高域成 分除去部23に入力されて高域成分の除去が行われる。

[0013] この場合、外部から消費電力の後出結果がフィルタコントローラ25に与えられ、このフィルタコントントローラ25の出力に基づいて高域成分除去部23に含まれる高域フィルタのON/OFFがなされる。

[0014] 高級成分除去版23の高域フィルケが0F Fの場合にはDCT22からそのままの出力が、0Nの 場合にはDCT22の出力の高域成分が抑制あるいは除 30 がれた出力が1DCT24に入力され、画像データへの 複類がなされる。 (0022]また、本発明によるマトリクス型表示パネ

[0015] このように、データドライバ16の消費電 力に応じて画像データの高域成分の除去が行なわれる。 なお、この場合の高域成分の除去は、画像データ内に うる高域成分の「面内の、空間的な)分布によらず、画 面全体に亙って一律に高域成分の除去がなされる。

[0016] とれにより、たとえば森の水々の画像データ内に市総模様の画面が削入されている場合、一像に高 域の信号成分が魅さがなされることにより、市総模様の 40 画面の情報だけではなく、木々の情報も次落してしまう ため入力画像データの表示品位が悪化してしまうため、 穏々の表示データに対応した高級端去フィルターを書え ることが必要となり、また個々のフィルタの最適化が必要 ジアなる。

[0017]

【発明が解決しようとする課題】従って、従来のマトリ クス型表示装置においては、マトリクス状に配置された 電板配線や、放電セル、液晶等の表示パネルの構造に起 因する容量性自荷を駆動して表示画像を得ているため、 市松模様の画面を表示した場合、原理的に、互いに隣接 する電配を関における容量成分が形成されることとな り、この容量成分の充放電を行う回数が増大するとデー タドライバの消費電力を低く抑えることが困難となると いう間層があった。

【0018】また、消費電力の増大による発熱に対する 冷却機構の追加や風影影計によるコストアップ、風路を 確認するための空間が増大するなどの問題があり、これ らはパネルの大型化が進むほど顕著になってくる。

) 【0019】さらに、一律に高域成分を除去することに よって表示品位の劣化を招いてしまうという問題があっ

【0020】 この発明は上記のような問題点を解消する ためになされたもので、消費電力を抑制することによっ て、PDPモジュールの博型化、表示品位の向上などを 図ることを目的とする。

【0021】 (2021) (2022年) (20

備える。 [0022]また、本発明によるマトリクス型表示パネルの駆動回路は、画像処理部が、計数部の計数結果が既 定値以上となった場合に、表示データに対する画像処理 を行うように構成した。

[0023] また、本発明によるマトリクス型表示パネ ルの駅動回路は、画像処理がにおける画像処理が、表示 さルの表示されるべき明るさを調整する処理を含むよう に構成した。

【0024】また、本発明によるマトリクス型表示パネ ルの駆動回路は、画像処理部は、表示データと所定領域 におけるデータ配列との相関を有する場合に、所定領域 に対応する表示データの空間周波数を低くするデータに 置き換える処理を含むように構成した。

【0025】また、本発明によるマトリクス型表示パネルの駆動回路は、所定領域におけるデータ配列が固定されたものによって構成される。

【0026】また、本発明によるマトリクス型表示パネルの駆動回路は、所定領域がマトリクス型表示パネルの 50 表示領域全体であるように構成した。

【0027】また、本発明によるマトリクス型表示装置 は、マトリクス型表示パネルと、このマトリクス型表示 パネルの電極に接続される上述したいずれかのマトリク ス型表示パネルの駆動回路とを備える。

【0028】また、本発明によるマトリクス型表示装置 は、マトリクス型表示パネルがプラズマディスプレイパ ネルであることを特徴とする。

[0029]

[発明の実施の形態]以下、本発明にかかわるマトリク ス表示装置を、その実施の一形態を示す図面に基づき具 10 が行われる。 体的に説明する。なお、図において、同一符号は従来の ものと同一または相当のものを示す。

[0030] 本発明に係わるPDP表示装置は、PDP と、このPDPの電極に接続される各実施の形態に述べ る駆動回路とを備える。

実施の形態1.

(表示データ制御部:フィードフォワード型)以下で は、マトリクス型表示装置としてPDP表示装置を例に とり説明する。図1は、本発明に係わる実施の形態によ るPDP表示装置における表示データ制御部のブロック 20 図であり、1はPDPで表示したい表示データ、3は画 面全体における表示データ内に放電・非放電の切換り回 数を計数する計数部としてのカウント部、4はカウント 部3の検出結果により表示データの判別を行い表示デー タの制御を行う表示データ判別部、5は表示データ判別 部4の判別結果により、表示データの処理を行う画像処 理部としての表示データ処理部である。

【0031】以下、その動作について図1を参照しなが ら説明する。外部より入力された表示データ1は、カウ ント部3および表示データ処理部5に入力される。 【0032】カウント部3においては、後に説明する構 成および方法によって、画面全体に対応する表示データ 1について放電・非放電の切換り回数を計数する。

【0033】カウント部3からの出力は表示データ判別 部4に入力され、後に説明するように表示データの判別 が行われる。

[0034] そして、表示データ1および表示データ判 別部4からの出力を表示データ処理部5に与え、表示デ ータ処理部5では表示データ1に対する所定の処理を行 った信号を出力する。

【0035】 (表示データ制御:フィードバック型) な お、図1にはフィードフォワード型の構成を示している が、図2に示すようなフィードバック型の構成も可能で

[0036] 図2において、6は振幅制御やオフセット 制御(明るさ制御、コントラスト制御)等の画像調整を 行うための画像処理部としての画像調整部である。な お、1、3、4については図1について説明したものと 同様であるので説明を省略する。

ら説明する。外部より入力された表示データ1(図中、 DATA1)は、画像調整部6に入力された後、この画 像調整部6の出力である図中DATA2を出力すると共 に、このDATA2はカウント部3に入力される。

【0038】カウント部3においては、後に説明する構 成および方法によって、画面全体に対応する表示データ 1について放電・非放電の切換り回数を計数する。 【0039】カウント部3からの出力は表示データ判別

部4に入力され、後に説明するように表示データの判別

【0040】そして、表示データ1および表示データ判 別部4からの出力を画像調整部6に与え、表示データ1 (DATA1) に対する所定の処理を行った信号(DA TA2) を出力する。

【0041】 (消費電力について)以下、消費電力につ いて説明する。図3は、従来にも用いられているPDP 表示装置のパネル駆動系および駆動の形態の概略を示す 説明図である。

【0042】図3(a)において、21はPDP、17 はPDP21の走査維持電極を駆動 (ドライブ) するた めの走査維持ドライバ、18はPDP21の維持電極を 駆動 (ドライブ) するための維持ドライバ、16 はPD P21の書込み電極を駆動 (ドライブ) するためのデー タドライパである。

[0043] また、a1、a2およびa3は書込み電 極、x1、x2およびx3は維持走査電極である(この 図に示したものにおいては、3×3の表示セルを有する PDPを例にしている)。なお、図中、ハッチングを施 した楕円は放電発光しているセルを表している(すなわ 30 ち、表示工程の前段における書込み工程においては、当 該セルへの書込み動作がなされる)。

【0044】また、図3(b)は図3(a)に示した状 能に対応する、PDP21上に表示される表示状態のモ デル(1は放電発光しているセル、0は書込み動作が行 われず発光していないセルをそれぞれ表す)である。

[0045] 図3(c)は、上段、中段、下段に向かっ て、上述した放電発光しているセルへ、どのような書込 み動作がなされるかを例示するため、書込み電極 a 1、 a 2およびa 3、維持走査電極 x 1、 x 2 および x 3 の 40 それぞれについて示した図である(図中、横軸方向は時 間軸であり、縦軸方向は信号波形の電圧を示している。 また、基準電位Lに対して高電位をHとして表現してい る)。

[0046]以下、その動作について説明する。図3 (a) に表された、PDP21を駆動する手法の一つと しては、PDP21に含まれる誘電体層上のそれまでに 蓄積されている壁電荷を、パネル全面(全表示セル)に おいて消滅(消去工程)させた後、表示放電を生じさせ るべき表示セルを特定するために表示放電を生じさせる [0037]以下、その動作について図2を参照しなが 50 べき表示セルに対応する誘電体層上に壁電荷を蓄積させ る(書込み工程)。

7 【0047】その後、走査維持電極と維持電極との間に おいて維持放電が行われて表示発光を生じさせ、図3 (b) に示したような表示が行われる (維持工程)。

【0048】図3(b)に示したような表示状態を得る ためには、上述の書込み工程において、図3 (c) に示 すような書込み工程が実施される。すなわち、走査維持 雷版 x 1~x 3 には順次、選択されるべき行を特定する ための走査パルス (走査維持電極 x 1~x3のそれぞれ a 3には表示させるべき表示セルの位置に対応するよう にデータ信号 (LまたはH) が印加される。

【0049】例えば、図3(a)に示される走査維持電 極x1について説明する。走査維持電極x1に沿って書 込み電極 a 1 から a 3 の方向に、非表示一表示一非表示 の順にその表示状態が表されており、この場合には図3 (c) の上段に示されるように、まず走査維持電極×1 に印加される電圧がLのときの書込み電極 a 1 に印加さ

れる慣圧がしとされる。 【0050】次に、図3(c)の中段に示されるよう に、走査維持電極x1に印加される電圧がLのときの書

込み電極 a 1 に印加される電圧がHとされる。 【0.0.5.1】練いて、図3 (c) の下段に示されるよう に、走査維持電極×1に印加される電圧がLのときの書 込み懺極 a 1 に印加される電圧がLとされる。

【0052】 走査維持電極 x 2 および x 3 についても、 同様の書込み動作がなされ、画面全体の書込み動作が完 了する。

[0053] 図4は、PDPにおける等価回路モデルお よび書込み動作の際の動作概念を説明するための説明図 30 である。図において、W1、W2は普込み電極、Xは走 杏維持電板、Yは維持電極、V.wは書き込み電圧、SW 1 · · S Wnは n 本の水平解像度分の走査維持電極Xに対 応するデータドライバ16内部のスイッチである(図3 (a) の走査維持電極 x 1 に沿う表示状態を実現する場 合の書込み電圧の印加の状態に対応している)。

【0054】Cw-xyは書込み電極と走査維持電極 (または維持電橋) との間の等価容量、Cw-wは書込 み電極間 (例えば、書込み電極W1とW2との間) の等 価容量である。

【0055】図3を参照して書込み動作について説明し たが、書込み動作が行われる場合、隣接する書込み電極 a 1 および a 2 の間におけるデータ信号が、H-L、あ るいは L-Hとなる場合には、両書込み電極 a 1 および a 2間の容量成分 (等価容量 Cw-w) において、充放 電が行われることになる。

【0056】従って、市松模様などの、書込み電極方向 の電極毎に、白(表示のための放電発光が行われる)、 里 (表示のための放置発光が行われない) が繰り返し現 a2、a2およびa3、・・間における充放電の回数は 最大のものとなり、書込み動作に伴って発生する充放電 による消費電力が最大となる。

【0057】 このような表示(市松模様)、あるいはこ れに類する表示状態のときには、先にも説明したが、書 込み動作において、書込み電極間にある容量成分の影響 が顕著であり、そのためデータドライバ16における消 背雷力を考慮した電力制御を行う必要がある。

【0058】 (放電・非放電の計数) 上述した、書込み に与えられるLの信号)が印加され、書込み電極 a 1~ 10 動作における充放電の多少は、以下に詳細説明するよう な (書込み動作を行う際のPDPにおける) 放電・非放 電の回数を計数することによって知ることができる。

【0059】図5 (a) は行・列それぞれの表示セルの **放電・非放電の切換り回数をカウントする方法を説明す** るための説明図である。図中、行列内の0、1は、表示 セル毎の放電、非放電の状態をそれぞれ示している。

【0060】まず、行における放電・非放電の計数につ いて述べる。例えば、1行目においては、その列方向の 放電セルが、非放電(0)一放電(1)一非放電(0) 20 の状態である。

【0061】従って、1行目においては、1行1列目と 1行2列目との間において非放電(0)から放電(1) への切換りが1回、1行2列目と1行3列目との間にお いて放電(1)から非放電(0)への切換りが1回の合 計2回の放電・非放電の切換りが存在することになる。 [0062] 同様に、2行目においては、2行2列目と 2行3列目との間において切換りが1回存在し、3行目 においては、どの列も故雪状態であり切換りが存在しな

【0063】次に、列における放電・非放電の計数につ いて述べる。例えば、1列目においては、その行方向の 放電セルが、非放電(0) 一非放電(0) 一放電(1) の状態である。

[0064] 従って、1列目においては、2行1列目と 3行1列目との間において非放電(0)から放電(1) への切換りが1回存在することになる。

【0065】 同様に、2列目においては、1行2列目と 2行2列目との間において放電(1)から非放電(0) への切換りが1回、2行2列目と3行2列目との間にお

40 いて非放電(0)から放電(1)への切換りが1回の合 計2回の切換りが存在し、3列目においては、1行3列 目と2行3列目との間において切換りが1回存在するこ とになる。

【0066】すなわち、行方向における放電・非放電の 切換りの合計は3回、列方向における放電・非放電の切 換りの合計は4回となる。

【0067】なお、上述したような、行方向、列方向に ついての切換り回数を計数して、消費電力を類推するこ とができるが、マトリクス表示装置の場合、実際上は、 れるような画像表示を行う場合、書込み電極 a 1 および 50 特に映像信号のデータが階調に対応する 2 値化信号 (b 1 t) によって与えられる場合が多い。

【0068】このような2値化信号においては、例え ば、信号の1が放徽を行う信号として、また信号の0が 非放置である信号として規定される。すなわち、上述し た行方向、列方向についての切換り回数は、書込み電極 に与えられる2値化信号について、その1から0への切 **ぬり、あるいは 0 から 1 への切換りの回数を計数するこ** とによっても求めることができることになり、この2値 化信号を基にして消費電力を類推することもできる。な お、この場合、図1および図2に示したカウント部3か 10 らは、書込み雪板に与えられる2値化信号の1から0、 または0から1への切換りの回数が放電・非放電の切換 り回数として出力される。

【0069】以下では、このような実際の場面に即した 信号形態である、2値化信号(以下、bitと表記す る) によって消費電力を類推し、この類推された消費電 力に基づく電力制御について説明する。

【0070】 (電力の制御) 図6は、カウントされた放 電・非放電切換り回数と消費電力との関係の一例を示し ており、放電・非放電切換り回数に基づいて消費電力の 20 大きさが類推可能であることを示している。図の実線を 参照すると分かるように、切換り回数と消費電力とは比 例関係にある(破線については、後に説明する)。な お、以下の説明においては、図1および図2も参照しな がら説明を行う。

【0071】図7は、カウント部3から出力される放電 非放電の切換り回数により表示データの制御を行った 場合の一例を説明するための説明図である。

【0072】 ここで、全表示セルのうち、任意の連続す る6セルの強度が、図7(a)下段の表に示すような4 30 hitのデータとして与えられる場合、各bit毎の放 電・非放電の切換り回数の合計は14回となる(各bi t 目における、0から1、あるいは1から0への変移す る何数の合計)。

【0073】 この場合、各bit毎の放電・非放電の切 換り回数の合計が所定の回数k (例えば、13回) より 超えているとした場合、表示データ判別部4において、 所定の回数を招えた旨の信号を画像翻整部6に出力し、 この信号を受けて画像信号調整部6は表示画面全体の輝 度を、例えば半分にするような制御を行う。なお、画面 40 全体の輝度は、画面の明るさが放電の回数に比例するた め、輝度を半分にするような制御とは明るさを半分にす るような制御を行うことと等価である。

【0074】画像観整部6に対して輝度を半分にするよ う制御がかかると図7 (b) に示すように、基本的にセ ル毎の明るさが半分となるように画像調整部6を制御す る。この制御は、例えば、図7 (b) の下段に示した表 のような放電・非放電状態を設定することによって達成 することができ、この場合、各bit毎の放電・非放電 の切換り回数の合計は9回となる。これにより、放置・ 50 表示領域全体が所定領域となる)。

非放置の切換り回数は、元のものよりも減少し書込み電 板間の容量成分に起因する電力消費が低下するような電 力制御を行うことができる。

【0075】図8は、上述した電力制御のフローチャー トである。カウント部3において、放電・非放電の回数 を計数する (ステップS61)。続いて、カウントされ た放置・非放置の回数がn(回)とカウントされた場 合、表示データ判別部4において既定の数値kとの大小 関係を判別する(ステップS62)。

【0076】ここで、nがk以下であるときは画像調整 を行わず (ステップ S 6 4) 、 n > k であるときは画像 調整部6における調整動作を施す(ステップS63) こ とにより、図6に点線によって示したような電力制御を 実現することが可能となる。

【0077】なお、上述した図7(b)を参照しながら 説明した形態においては、画面全体の輝度を抑えるため に、明るさを1/2倍する場合について述べたが、明る さの振幅 (コントラスト) および明るさの絶対値 (オフ セット)を加減することにより画像調整を実施すること . も可能であり、また、任意の倍率によるコントラスト調 整、オフセット調整のいずれかについて放電・非放電の 切換り回数の検出値に基づく調整制御を実施することも 可能である。

【0078】また、図5(b)は、表示セルをn×mの 基本パターン(図示したものにおいては2×2の表示セ ルを所定領域とし、データ配列が固定されている)を単 位として、放電・非放電の切換り回数を計数するもので ある。すなわち、全表示セル内にいくつの基準パターン が含まれるかをカウントし、このカウント値と予め基本 パターンに含まれる物質・非常質の切換り回数とを要質 することによって全表示セルにおける放電・非放電の切 換り回数を得ることができ、上述した形態と同様の手法 に基づいて電力制御を行うことが可能である。

【0079】実施の形態2.なお、実施の形態1におい ては、カウント部3の検出結果による電力制御について 説明したが所定領域における時系列的な相関検出を行っ て電力を制御することも可能である。以下、このような 形態について説明する。

【0080】図9は、本発明に係わる別の実施の形態に よるPDP表示装置における表示データ制御部を表す図 であり、図において、2は相関検出部である。なお、 1、4および5は図1または図2において説明したもの と同様であるので説明を省略する。

【0081】以下、その動作について図1を参照しなが **ら説明する。外部より入力された表示データ1は、相関** 検出部2および表示データ処理部5に入力される。

【0082】相関検出部2においては、後に説明する構 成および方法によって、画面全体に対応する表示データ 1 について相関の有無を検出する(この場合はPDPの

【0083】相関輸出部2からの出力は表示データ判別 部4に入力され、後に説明するように表示データの判別 が行われる。

【0084】そして、表示データ1および表示データ判 別部4からの出力を表示データ処理部5に与え、表示デ ータ処理部5では表示データ1に対する所定の処理を行 った信号を出力する。

【0085】 (表示データ制御:フィードバック型) な お、図9にはフィードフォワード型の構成を示している が、図10に示すようなフィードバック型の構成も可能 10 である。

【0086】図10において、6は振幅制御やオフセッ ト制御 (明るさ制御、コントラスト制御) 等の画像調整 を行うための画像調整部である。なお、1、2、4につ いては図9について説明したものと同様であるので説明 を省略する。

【0087】以下、その動作について図10を参照しな がら説明する。外部より入力された表示データ1 (図 中、DATA1)は、画像調整部6に入力された後、こ の画像調整部6の出力である図中DATA2を出力する 20 i<j≤表示信号の総SF数回実施され、その演算の結 と共に、このDATA2は相関検出部2に入力される。 【0088】相関検出部2においては、後に説明する構 成および方法によって、画面全体に対応する表示データ

1 について対震・非対電の切換り回数を計数する。 【0089】相関検出部2からの出力は表示データ判別 部4に入力され、後に説明するように表示データの判別

[0090] そして、表示データ1および表示データ判 別部4からの出力を画像郷勢部6に与え、表示データ1 (DATA1) に対する所定の処理を行った信号(DA 30 TA2) を出力する。

【0091】(相関検出について)図11(a)は、相 隙綸出部2の構成の一例を示すプロック図であり、図に おいて、7aは1サプフィールドを検出するための情報 検出部、7 bは 1 サブフィールドを検出するための情報 検出部、8は情報検出部7aからの出力(サブフィール ドSF1)と情報検出部7bからの出力(サブフィール ドSF1)とに基づいて演算を施す演算部、9は演算部 8の出力から相関を判別する相関判別部である。

【0092】また、図12は相関係数について説明する 40 ための税明図である。以下、図11および図12を参照 してその動作を説明する。

【0093】ここで、例に挙げているPDP装置におい ては、その階調を表現する際、1つのフィールドを時間 的に細分化された画面であるサブフィールド(SF)に 分割し、このサブフィールドの時間軸上の重ねあわせに よって1フィールドの画像を表現する。

【0094】各サプフィールドにおいては、PDP装置 の駆動について上述したような、消去工程一書込み工程 ー維持工程をそれぞれ実施する。サブフィールドへのわ 50 【0104】次に、SFiおよびSFjが図12中のN

け方として一般的なのは、例えば256階調を表現する 場合には1つのフィールドを8つのサブフィールドに分 ける方法である。この場合、各サブフィールドにおける 維持工程の維持回数(維持発光の回数)は、基本的に、 0から128回の維持回数を実現する2の累乗となって いる(このとき、2の0乗のビットがLSB、2の7乗 のビットがMSBである)。

12

【0095】表示セルが発生する光の明るさは、維持工 程における維持回数に比例するため、上述の0から12 8回の維持回数の組み合わせ(時間的な重ねあわせ)に よって階調表現を行うことができる。

【0096】 このようなサプフィールド毎の信号が情報 検出部7a、7bに入力されると、この情報検出部7 a、7bにおいてSFiとSFjが検出される(但し、 i≠|となるようにサプフィールドを検出する)。

[0097] 情報検出部7a、7bにおいて検出された SFiおよびSFjは、演算部8に入力され、この演算 部8においてはSFIおよびSF」について、例えば排 他的論理和を演算する。この演算は、それぞれ1≤i,

果は相関判別部9に与えられる。 【0098】相関判別部9においては、この演算の結果 に基づいてSPiおよびSPiの間の相関の有無を判別

【0099】図12は3×3の表示セルで構成されたP D Pの相関係数ならびに相関の有無を判別した一例を示 す (この場合は、3×3の表示セルが所定領域とな

る)。 図において、(a) および(c) はSFiにおけ る、1は放電されるべきセル、0は非放電のセルを表し ている。また、(b) および(d) はSFjにおける、 1は放電されるべきセル、 ()は非放電のセルを表してい

【0100】以下、基準の判別セルの大きさとして、1 ×1 または2×2の大きさのものを例としてあげるがP DPの解像度n×m以内の判別セルであれば、SFiと SFjとの間における相関の有無を判別することは可能 である。

【0101】なお、SFiおよびSFiは図12中のN o 1 のように与えられるとして説明する (図中 (a) お よび(b))。また、ここにおける基準の判別セルとし てSFj内の1×1 (演算を行うべきマトリクス座標の 値が1つ)の場合を考える。

【0102】 この場合、SFIとSFIとは、全てのマ トリクス座標に亙って、全く同一の値であるので相関係 数は1 (=9/9。図中(e))となる。

【0103】 同様に基準の判別セルがSF | 内の2×2 (演算を行うべきマトリクス座標の値が4つ) の場合に ついての相関係数も1 (=4/4。図中(f))とな

o 2に示すように与えられるとする(図中(c) および (d))。また、ここにおける基準の判別セルとしてS Fi内の1×1 (演算を行うべきマトリクス座標の値が 1つ) の場合を考える。

【0105】この場合、SFiのマトリクス座標におけ る値はすべてりである(すなわち、画面全体において非 放電)から、SF1におけるOの部分と相関を有するこ ととなり、その相関係数は5/9 (図中 (g)) とな り、同様に基準の判別セルがSF | 内の2×2の場合0 (=0/4。図中(h))となる。

【0106】これによって得られた相関係数を、相関の 有無を判別する値と比較することにより、それぞれの場 合の相関関係が判別可能となる。

【0107】図13は、4行×6列の表示セルを有する PDPの表示データとして、3サブフィールド(SF1 ~SF3)分の表示されるべき映像を例示するものであ り、特にその表示データとして市松模様が入力された場 合を示す (図中(a)~(c))。

【0 1 0 8】図に示したものでは、SF1~SF3に亙 って同一の市松模様が入力されるため、各SF間(SF 1とSF2との間、SF2とSF3との間) における相 関係数は、上述の説明にあったように 1 であり S F 間に おける相関があると判断する。

【0109】このような場合においては、例えば、SF 1については(a)から(d)の状態に、SF2につい ては (b) から (e) の状態に、SF3については

(c) から(f)の状態にそれぞれ表示データを置き換 まる(なお、この場合のSF3については置き換えしな くとも良い)。

を全面的に非放電状態 (無表示) とすることにより、デ ータドライバ16における電力を1/3倍へと軽減する ことができる(SF3の情報を残すことにより、表示し たい信号の情報表示については行われる)。

【0111】図14は、上述のような制御について説明 するためのフローチャートである。相関検出部2におい て、SFiおよびSFIの間における相関を検出する (ステップS101)。続いて、検出された相関係数に 基づいて、SFIおよびSFiの間における相関の有無 を判断する(ステップS102)。

【0112】ここで、相関がないと判断される場合には 画像調整部6における処理は行わず(ステップS10 3) 、相関があると判断される場合には画像調整部6に おいて、例えばLSB側のSF1およびSF2を非放電 状態となるようにデータの置き換えを行う(S10 3) 。このようにすることにより、データドライバ16

における電力消費を抑えることができる。 [0113] なお、SFの置き換え信号は、非放電とす

るだけではなく、放電状態であって空間周波数の低い放 雷・非放電の組み合わせとすることも可能である(市松 50 る表示データP(t)と遅延出力データP(t-At)

14

模様の白黒の空間的な繰り返し周期を下げる)。 【0 1 1 4】 このようにすることによって、例えば、表 示されている自然画の中に市松模様の領域が存在してい るような場合、この市松模様の領域(すなわち画面全体 に対する一部の領域) について非放電状態に置き換える ようにすれば、全体的に市松模様の白と黒とのコントラ ストを著しく低下させずに消費電力の抑制が可能であ り、全体的に暗い表示を行っている場合に特に有効な手 法である。

10 【0115】また、全画面が白に近い状態においては空 間周波数を下げるようにしても良いし、全面面が明るい 部分から暗い部分への領域を有する場合に、その領域に 適合するように空間周波数を低くするようにしても良

【0116】さらにSFの置き換えは、LSB側からの み実行するのみではなく、例えば、SF1とSF3とが 全面市松模様の表示(SF1とSF3との間では相関が ある) であって、SF2がSF1とは相関がない(すな わちSF3とも相関がない)ような場合、SF2を全面 非放電状態あるいは空間周波数を低くするような表示状 態に置き換えるようにしても電力消費を抑えることがで きる (伯し、このように中間のSFに対して画像調整を 施したことにより視覚上の問題が発生しない場合に有効 である)。

【0117】以上の実施の形態の説明では、SFの相関 判別による電力制御のみについて述べたが、図11

(b) に示すような、時間毎の相関判別を行うようにし てもよい。図11(b)において、18は入力される表 示データに遅延を与える遅延部、8は入力される表示デ 【0110】 このように、LSB側のSF1からSF2 30 一タと遅延部18からの出力との演算を行う演算部(例 えば、排他的論理和を演算する)、9は相関判別部であ

> 【0118】図中、P(t)は時刻tにおける表示デー タを示しており、 A t は例えば 1 フィールドなどの 1 つ の映像表示パターンが完結している期間 (例えば、17 ィールド期間あるいは複数フィールド期間)を示す。

【0 1 1 9】時刻 t における表示データP(t) が遅延 部18に入力されると、A+の遅延を与えられた遅延出 カデータP($t-\Delta t$)(すなわち、時刻tより過去に 40 入力された表示データ)が出力され、入力される表示デ -タP(t)と遅延出力データ $P(t-\Delta t)$ とが演算 部8に入力され、例えば、排他的論理和の演算が行われ

【0120】演算部8から出力される演算結果出力 AP (t) は相関判別部9に入力され、入力される表示デー 関の有無が判別されて、図14を参照して説明したフロ 一と同様の処理が画像調整部6において実行される。 【O 1 2 1 】表示データが静止画である場合、入力され

との間の相関は1になる。すなわち静止画においては、 特定の表示セルにおける表示が長時間変化しないため、 比較的大きな書込み電力を必要とする表示の場合に、デ ータドライバ16の温度上昇が引き起こされ、温度上昇 が飽和するまでその温度上昇が単調増加する。

- 【0122】この場合、PDPの熱容量のため、温度上 昇は時間的に1フィールド期間よりもかなり長い時定数 を有する。従って、上述の∆ tを1フィールド期間に必 ずしも設定する必要はなく、5~6フィールド期間に設 定して表示データの相関を検出するようにしても実際上 10 は問題ない。
- 【0123】入力される表示データが動画である場合に は、任意の表示セルにおいて放電・非放電が任意に発生 するので書込み工程におけるデータドライバ16での電 力消費は低い状態に維持される。
- 【0124】以上のように構成することで、動画、静止 画の判別が可能であり、動画、静止画それぞれに対して 最適な電力制御が可能となる。
- 【0125】実施の形態3.以上、これまで述べてきた 実施の形態の影明においては、それぞれ、カウント部3 20 による放電・非放電の切換り回数の計数結果、相関検出 部2による相関検出の結果に基づいて画像表示の制御を 行うような構成、動作について説明したが、これらカウ ント部3および相関検出部2の両方を表示データ制御部 に備える構成としても良い。
- 【0126】図15に示す構成は上述した図1および図 9の構成を組み合わせた構成を示すプロック図であり、 図16に示す構成は上述した図2および図10の構成を 組み合わせた構成を示すプロック図である。
- [0127] なお、図15および図16に示す構成によ 30 る動作は、それぞれ、図1および図9に示した個々の構 成の動作および図2および図10に示した個々の構成の 動作と同様であるので説明を省略する。なお、全体とし ての動作例については、以下に説明する。
- 【0128】図17に、カウント部3および相関検出部 2の両方の動作を行わせる場合のフローチャートの一例 を示す。入力された表示データ内についての放電・非放 雷の切換り同数をカウント部3によって計数し(ステッ プS111)、この計数した結果が設定値以上となった ップ112)。
- 【0129】計数した結果が設定値以上とならなかった 場合は、画像調整部6における画像の制御を行わず(ス テップS 1 1 7) 、計数した結果が設定値以上となった 場合は、相関検出部2においてサブフィールドの間にお ける相関を検出する(ステップS113)。
- 【0130】相関検出部2から検出された相関検出結果 において、2つ以上のサブフィールド間における相関が ない場合には、入力された表示データ内についての放電 ・非放電の切換り回数に基づく画像調整部による制御を 50

行う (ステップ S 1 1 6)。

【0131】相関検出部2から検出された相関検出結果 において、2つ以上のサブフィールド間における相関が ある場合には、画像調整部6において、例えばLSB側 のSF1およびSF2を非放電状態となるようにデータ の置き換えを行う(ステップS115)。

- 【0132】 このような動作を行うことによって、熱的 な信頼性の高い、画像に適した電力制御が可能となり、 その制御に基づく温度制御が可能となる。
- 【0133】 事権の形態 4. また、これまで述べてきた 実施の形態においては、全画面についての制御を例に説 明したが、必ずしもこれに限られることはなく、例えば 表示画面を複数のブロックに分割し、各ブロック毎の画 像の制御を行っても良い。
 - 【0134】図18は、ブロック分割した場合の制御の 例を説明するための説明図である。 相関検出部 2 におい て2×2のプロック毎の相関を検出する場合、図中、破 線に示す部がSF1からSF3までに亙って相関(プロ ックにおける相関)のあることが検出される。
- [0135] そこで、SF1 (LSB) およびSF2に おける、相関のあるプロックの部分を非表示状態(黒表 示)とすることにより、少なくとも当該プロックにおけ る消費電力を抑制することができる。また、当該ブロッ クの本来の表示データに対応する表示はSF3において 行われるため、表示品位の劣化を防ぐことも可能であ る。
 - 【0136】なお、以上の各実施の形態の説明において は、PDP表示装置を例に説明したが、同様の容量性負 結を有する表示装置として、液晶パネルを用いた表示装 置、エレクトロルミネッセンスパネルを用いた表示装置 等の、いわゆるマトリクス型表示装置においても、各実 施の形態の説明において述べた構成およびこの構成を用 いた動作を行わせることが可能であることは改めて説明 するまでもなく適用可能である。
- [0137] 【発明の効果】この発明は、以上説明したように構成さ れているので、以下に示すような効果を奏する。本発明 によるマトリクス型表示パネルの駆動回路は、入力され る表示データに対応する画像を表示可能な複数の表示セ かどうかを表示データ判別部4において判断する(ステ 40 ルを有するマトリクス型表示パネルを駆動するための駆 動回路であって、表示データについて表示セル間におけ る表示データの切換り回数を計数する計数部またはマト リクス型表示パネル上の表示に対応する表示データと表 示セルの複数に対応する所定領域におけるデータ配列と の間の時系列的な相関を検出する相関検出部の少なくと もいずれかを有し、計数部または相関検出部の少なくと もいずれかからの出力が入力されて表示データの性質を 判別する表示データ判別部と、この表示データ判別部か らの出力に基づいて表示データに対する画像処理を行う 画像処理部とを備えるようにしたので、消費電力を低下

- させるような電力制御を確実に行うことができる。
- 【0138】また、本発明によるマトリクス型表示パネ ルの駆動回路は、画像処理部が、計数部の計数結果が既 定備以上となった場合に、表示データに対する画像処理 を行うように構成したので、簡単な構成によって電力制 御を行うことができる。
- 【0139】また、本発明によるマトリクス型表示パネ ルの駆動回路は、画像処理部における画像処理が、表示 セルの表示されるべき明るさを調整する処理を含むよう に構成したので、消費電力をより確実に低下させること 10 が可能である。
- 【0140】また、本発明によるマトリクス型表示パネ ルの察動回路は、画像処理部は、表示データと所定領域 におけるデータ配列との相関を有する場合に、所定領域 に対応する表示データの空間周波数を低くするデータに 響き換える処理を含むように構成したので、簡単な構成 によって確実に消費電力を低下させることができる。
- 【0141】また、本発明によるマトリクス型表示パネ ルの駆動回路は、所定領域におけるデータ配列が固定さ れたものによって構成されるので、相関検出が簡単なも 20 【図13】 実施の形態2における4行×6列の表示セ のとなり、所定のパターンの表示データについて選択的 な消費電力の低下を実現することができる。
- 【0142】また、本発明によるマトリクス型表示パネ ルの駆動回路は、所定領域がマトリクス型表示パネルの 表示領域全体であるように構成したので、画面全体の消 曹雪力の低下を実現することができる。。
- 【0143】また、本発明によるマトリクス型表示装置 は、マトリクス型表示パネルと、このマトリクス型表示 パネルの雪板に接続される上述したいずれかのマトリク ス型表示パネルの駆動回路とを備えるので、従来のもの 30 より消費電力が低いマトリクス型表示装置を実現するこ とができる。
- 【0144】また、本発明によるマトリクス型表示装置 は、マトリクス型表示パネルがプラズマディスプレイパ ネルであることを特徴とするので、従来のプラズマディ スプレイ表示装置よりも消費電力が低い装置を実現する ことができ、熱対策の簡素化により装置の薄形化、信号 処理による電力制御の精度向上が図れる。。
- 【図面の簡単な説明】
- 【図1】 実施の形態1における表示データ制御部のブ 40 ロック図である。
- 【図2】 実施の形態1における表示データ制御部のブ ロック図である。
- 【図3】 実施の形態1におけるPDP表示装置のパネ ル緊動系および駆動の形態の機略を示す説明図である。 【図4】 実施の形態1のPDPにおける等価回路モデ ルおよび書込み動作の際の動作概念を説明するための説 明図である。

- 【図5】 実施の形態1における放電・非放電の切換り 同数をカウントする方法を説明するための説明図であ る。
- 【図6】 実施の形態1におけるカウントされた放電・ 非放電切換り回数と消費電力との関係の一例を示す説明
- 図である。 【図7】 実施の形態1におけるカウント部から出力さ れる放電・非放電の切換り回数により表示データの制御
- を行った場合の一例を説明するための説明図である。 【図8】 実施の形態1における電力制御のフローチャ ートである。
 - 【図9】 実施の形態2のPDP表示装置における表示 データ制御部を表すプロック図である。
 - 【図10】 実施の形態2のPDP表示装置における表 示データ制御部を表すプロック図である。
 - 【図11】 実施の形態2における相関検出部の構成の 一例を示すプロック図である。
 - 【図12】 実施の形態2における相関係数について説 明するための説明図である。
- ルを有するPDPの表示データとして、3サプフィール ド(SF1~SF3)分の表示されるべき映像を例示す る説明図である。
 - 【図14】 実施の形態2における相関検出に基づく面 像制御を説明するためのフローチャートである。
 - 【図15】 実施の形態3におけるPDP表示装置にお ける表示データ制御部を表すプロック図である。
 - 【図16】 実施の形態3におけるPDP表示装置にお ける表示データ制御部を表すプロック図である。
- 【図17】 実施の形態3におけるカウント部および相 関検出部の両方の動作を行わせる場合のフローチャート である。
 - 【図18】 実施の形態4におけるブロック分割した場 合の制御の例を説明するための説明図である。
 - 【図19】 従来の交流型プラズマディスプレイ装置の 概略構成図である。
 - 【図20】 従来の装置における熱対策の説明をするた めの説明図である。
- 【図21】 従来のプラズマディスプレイ装置における 消費電力の低減を図るための構成を示すプロック図であ

【符号の説明】

1 表示データ、2 相関検出部、3 カウンタ部、4 表示判別部、5 表示データ処理部、6 画像調整 窓、7a iサプフィールドの情報検出窓、7biサブ フィールドの情報検出部、8 演算部、9 相関判別 部、18 遅延部。

[図4]

[図5]

[図7]

[2]11]

【図19】

