

Co - Host Utilities

ORGANIZER

India SMART UTILITY Week 2024

Supporting Ministries

सत्यमेव जयते MINSTRY OF ELECTRONICS & INFORMATION TECHNOLOG

MINISTRY OF POWER
GOVERNMENT OF INDIA

ENTRAL ELECTRICITY AUTHORITY

Master Class on Energy Transition Strategies and Pathways to Net Zero Power Systems

Presented By

Glenn Pritchard, Sr. Manager, Advanced Grid, PECO

Confidentiality and Privacy

The slides in this presentation are not to be copied or distributed without prior permission of the author and sources. All the material presented in this slide has already been presented at ISGF events in a public forum and the slides can be shared with attendees.

Glenn Pritchard

Glenn Pritchard is currently the Manager of Advanced Grid Operations and Technology for PECO's Smart Grid/Smart Meter system. PECO's Smart Grid consists of 2.3M electric and gas meters and over 4,000 Distribution Automation devices. Pritchard graduated from Clemson University in 1990 with a B.S. Degree in Electrical Engineering. He is a registered professional engineer in Pennsylvania. He has been with Exelon/PECO in Philadelphia for over thirty-two years where he is responsible for developing new applications that leverage the Smart Grid, AMI Systems and metering data.

Other areas of experience include distribution & transmission engineering, substation automation and communications. Pritchard specializes in finding new applications of existing and emerging technologies.

Beyond his work at PECO, Pritchard has taught numerous classes and frequently presents at the key industry venues, including DistribuTECH, EEI and IEEE. He has authored numerous papers on Smart Grids, AMI systems and the use of the data generated by such platforms.

Pritchard has been recently recognized as PECO's Innovation Champion of the Year for 2021. Other notable awards include EPRI's Technology Transfer Award in 2017 and 2014, the 2010 IEC Grid Vision and the 2008 Utilimetrics' Utility Best Practices Awards for his work in the Smart Grid and AMI fields.

AMI Update – What's New?

- AMI 2.0
- Meter Architecture Evolution
- Data Opportunities and Analytics
- Distributed Intelligence & Grid Edge Solutions
- System Obsolescence Challenges

 AMI 2.0 is a system upgrade that results in increased network reliability and more reliable exchanges of data

 The functions build upon AMI 1.0, which set the foundation for the future

"Many of the end user/customer advantages promised by AMI 1.0 did not materialize."

Advanced Metering Infrastructure

What is the Advanced Metering Infrastructure (AMI)?

The Advanced Metering Infrastructure is an integrated system of smart meters, communications networks, and data management systems that enables two-way communication between utilities and customers.

Smart Meter -

A smart meter is an electronic device that records consumption of electric energy and communicates the information to the electricity supplier for monitoring and billing. Smart meters typically record energy hourly or more frequently, and report at least daily. Smart meters enable two-way communication between the meter and the central system.

More Data & New Functions

- Increased Sample Rates
 - 60-, 15-, 5- & 1-minute samples are possible
- Multiple Recording Channels
 - Some vendors are claiming up to 32 independent channels are available
- Distributed Intelligence and Decision Making local to the meter

Question – Has the network and head-end kept pace with the new meter capabilities?

New Data Opportunities

Going Beyond Energy Consumption and Usage

Voltage

- True RMS data to give accurate profiles throughout a feeder
- Key for managing the distribution grid that is rich with DER inputs
- Creates the foundation for voltage management programs

Power Quality & Harmonics

- Ability to track and manage power factor and flow across a feeder
- Helps ensure low noise is maintained
- Helps identify sources/locations of emerging trouble on the grid

New Functions

- On-Board Decision Making
 - EV Charging Management
 - Voltage Regulation
- Analytics
 - Non-intrusive load monitoring & Load Disaggregation
- New Communications Methods for FAN and HAN
 - WiFi Enabled Meters

AMI 2.0 Use Cases

Grid optimization use cases

- Supply/Demand security on all voltage levels
- Manage Congestion management (dispatching)
- Keep Grid stable (frequency, voltage) despite renewable
- · Optimize utilization of grid capacity

Distributed Energy Resources use cases

- Distributed generation
- Distributed storage
- Energy Efficiency
- · Demand Response
- Load and Feed-in Management
- Microgrids & VPP (Virtual Power Plant) Mgmt.
- Ripple Control (heating, heat pumps)

AMI – Advanced Analytics Opportunities - Utility Analytics Institute

India Smar

From Deloitte's AMI 2.0 Study

https://www2.deloitte.com/us/en/pages/energy-and-resources/articles/next-gen-advanced-metering-infrastructure.html

billing, and outage/usage alerts. Slide 10

Meter Hardware Evolution

- Key Changes
 - New Microprocessors
 - Faster
 - Greater Functionality
 - Access to more internal Memory
 - Modern Interfaces
 - Expansion Slots
 - Improved Security

Meter Architecture Evolution

Core Functionality

- Energy Measurement
 - Register Reads
 - Interval Reads
- Real & Reactive Power
- Net Metering
- Alarms
 - Tamper/Non-Technical Losses
 - Outage
 - Meter Health

New Functionality

- Independent channels (up to 32) that have unique sample rates and transmit frequencies
 - DER, Electric Vehicles, Storage
- Advanced Alarms
 - Sag/Swell
 - Power Quality
- Distributed Intelligence

Meters are now able to record multiple data streams independently to delivery new benefit. Each channel may be configured to deliver data at unique intervals as require

Meter Block Diagram

Key Components

- Metrology
- CTs/Coils
- CPU/Memory
- Battery
- Display
- Interfaces
- Communications
- RCD Switch
- Surge Suppression

Analytics Use Cases

Grid

Meter

Customer

Finance

Distribution Operations

Outage Management
TLM/Overload Prevention
CVR
Phase Balancing
Non-tech Loss Localization
Event Correlations
Deployment Health

System Planning

Device Capacity Planning
Device lifecycle management
EV Planning
Connectivity Model Audit
Stressed Asset ID
Data Quality

Energy Procurement

Demand Forecasting Inventory Monitoring

Meter Services

Defective Meter ID
Defective Socket ID
New Meter Health
Contract Validation
Data Quality Assurance
Geospatial Outlier Monitoring
Net Meter
Geospatial Reporting
Meter Inventory Tracking

AMI Deployment

New meter health
Deployment Tracking
Network Tracking
Customer Refusal Tracking
Deployment Data Quality
Geospatial Reporting

Billing

High Bill Prioritization
Low Bill Prioritization
Stopped Meter
Slow Consumption
Diagnostic Prioritization
Account Billing Prioritization
Rates Analysis
Bill Cycle Monitoring
Consumption reporting
Settlements Reporting

Call Center

High Bill Customer Benchmarking High Bill Account Reporting

Safety

Gas Leaks Water Leaks Meter Overheating

Demand Response & Energy Efficiency

Program Customer Targeting
Load Disaggregation
Behavioral Program Analytics
Geospatial Reporting
Customer Usage Reporting
Program Efficacy
Auditing Support
Regulatory Compliance/M&V
Whole Building Reporting
Predictive load

Operations

Resource Planning Prioritization Account Transition Monitoring

Revenue Protection

Identifying bypass
Diversions
Identifying meter swaps
Identifying meter tampering
Smart meter deployment
theft
Identifying Behavioral Trends

Operations

Unbilled Sales Reporting Forecasting Rate Development

Evolution of Analytics

Centralized

- Analytics developed on a centralized platform and data lake
- Easy to integrate data from multiple sources to gain insight
- Analytics take place at many locations throughout the meter to cash process flow

Decentralized

 Computing power is now available deep into the grid and specifically at the meter

Hybrid

 Maximizing the benefits of both Centralize and Decentralized applications and analysis

Distributed Intelligence

Grid Edge Applications and Functionality

- Downloadable Applications
 - Meter and Socket Health
 - Location Awareness
 - Tamper & Non-Technical Losses
 - Load Disaggregation
 - Transformer Load Analysis
 - DER Management
 - Load Shedding
 - IoT/Smart Device Management

- Concerns
 - Validating Applications
 - Managing Application functions
 - Version Control
 - Meter Maintenance actions
 - Meter changes
 - Functional Changes
 - Updates in firmware

Use Case: Meter and Socket Health

- Remotely identifying meter irregularities and emerging problems
- Excess temperature detection and alarming
 - Auto Make Safe by disconnecting load
- Battery monitoring, if equipped

Use Case: Location Awareness

- Identifying neighbouring meters to connectivity model accuracy
- Reduces unnecessary dispatch and truck rolls

Use Case: Tamper & Non-Technical Losses

- Alarming on expected conditions
- Identifying changes in service impedance, sending alarms for further investigation

Use Case: Load Disaggregation

- Ability to sense various types of loads
 - Electric Vehicles
 - Heat Pumps/Air Conditioning
 - Machinery
- Potentially able to coordinate and schedule loads according to current grid conditions

Use Case: Transformer Load Analysis

- Using metering data to construct actual models of transformer performance
- Monitoring transformer loading and alarming when overloads are identified

Load Monitoring and Analytics

Develop weather normalized capacity peak load contribution Predict system load by customer class Correlate usage to weather especially abnormal usage profiles. **Customer Analytics**

- Calculate feeder losses to capture meter theft
- · Determine voltage profile on feeders
- Determine feeder abnormalities and phase detection
- Provide feeder monitoring
- · Trending and Analysis of feeder historical data
- Customer Analytics
 - Usage patters at and correlations with system load
 - Unbilled energy
 - Recoverable revenue
 - Social media value
 - Load profile by customers and groups
 - Abnormal load patters (EV usage for example)
 - Determine optimized aggregation.
 - Load patterns with Net-Metering
 - System enhancements determination
 - Electric/ gas/ water correlation

ISGF Training Program on Advanced Metering Infrastructure | www.indiasmartgrid.org | Slide - 49

Transformer Performance, Loading etc.,

Compare transformer vs meters Identify transformer loading (for planning and operational purposes) Load profile at transformer level Identify transformer to premise mapping in accuracies Distribution transformer loading

Transformer Asset Monitoring

- Capture time-series kVA data from meter and compare to that at transformer
- Track transformers with loading levels
- Track and trend load profiles at transformer level
- Identify transformer to premise mapping
- Use meter data to determine transformer loading
- Identify risk of failure and corresponding costs (transformer asset monitoring)

Transformer Monitoring

- . Transformers with yr-to-yr load increase of more than 25% (3,764 winter

The ultimate goal is incorporating a day-of-week and temperature estimation for all distribution transformer or primary meter points into the outage, and planning systems

ISGF Training Program on Advanced Metering Infrastructure | www.indiasmartgrid.org | Slide - 45

Use Case: Load Shedding

- Traditionally emergency load sheds are managed at the feeder/circuit level
 - Results in greater impact to customers
- Smart Meters allow you to tactically choose which meters and which load is temporarily turned off and for how long
 - This allows for a safer and more equitable sharing of the impact

Use Case: IoT/Smart Device Management

- The meter continues to be a viable node or gateway into the consumers Smart Home.
- The meter can send load and price information to the house
- It can help make decisions as to which load is modified or turned off
 - Minimal consumer action is needed one the system is set up
 - Different modes can be created for Home, Away, Eco & Comfort

Systems and Hardware get **OLD** . . .

- Bathtub Curve
- Impact from the COVID Pandemic
- Obsolescence Planning
- Financial Concerns

Bathtub Curve

- Infant Mortality Section: Infant mortality section is simply referred to as early failure period. By seeing curve, one can easily understand that in this section, asset is beginning with its usage for first time. Initially, failure rate i.e. probability of failure occurrence is very high and with increasing time, there is a gradual decrease in failure rate. In this section, failures are usually occurred due to manufacturing defects, installation issues, design issues, material defects, or improper start-up procedures, etc.
- Normal Life Section: Normal life section is simply referred to as usual life period or steady-state operation. It can also be said that this section represents normal operating life of assets. By seeing curve, one can easily understand that in this section, asset is still experiencing failure but at normal and low rate. In this section, failures are usually occurred due to overloading, hidden defects, collision with other objects, mistakes of personnel, etc. Failure occurrence generally depends upon function and condition of particular asset. Therefore, for different assets, failure rate can be different. In this period or section, an asset can be remaining unchecked for some time as chances of failure occurrence is low during this period and therefore resources can be used wherever required. Failure rate is almost constant in this phase. One can say that failures generally occur due to random events.
- Wear-out Section: Wear-out section is simply referred to as aging period. By seeing curve, one can easily understand that in this section, there is gradual increase in failure rate of assets with increasing time. Number of failures occurrence experienced by assets generally increases with time. In this section, failures are usually occurred due to fatigue, wear, gradual deterioration, corrosion, etc. This period simply represents end of life cycle of assets.

Bathtub Curve

Impact from the COVID Pandemic:

- COVID has changed everything
- Manufacturing plants shut down, some permanently leading to shortages in material supplies
- Manufacturers change their focus on the most profitable product lines, niche lines were closed down
- Meter vendors needed to switch to products that were available and being mass produced
- New meter lines emerged

Obsolescence Planning

- New Smart Meters have a finite useful life (15-20yrs)
- As you prepare to start your initial rollouts, it is important to recognize that there
 will be a future need to replace both the meters and the networks
- Is a future full redeployment an option?
- Do you have a lifecycle plan?
- What about a future annual replacement plan?
 - It pays to plan for this now, account for it in your Long-Range Financial Plans
 - It is also advisable to include your regulators and stakeholders

Financial Concerns

- How will obsolescence impact your initial deployment?
- Will the funding models change?
- When do you begin to prepare for a future redeployment?
 - Will you do a system wide refresh, in one large project?
 - Or, will you consider changing ~10% of your meter population every year to keep the system fresh?

It best to have a plan now for these questions while you still have options

- AMI 2.0
- Meter Architecture Evolution
- Data Opportunities and Analytics
- Distributed Intelligence & Grid Edge Solutions
- System Obsolescence Challenges

Questions?

Thank You!

Glenn Pritchard, PE

Sr. Manager, Advanced Grid

PECO

2301 Market St

Philadelphia, Pa 19103 USA

+1 215 841-6977

Glenn.Pritchard@Exeloncorp.com

THANK YOU

For discussions/suggestions/queries email: isuw@isuw.in

visit: www.isuw.in

Links/References (If any)

DER – Monitoring and Control

- AMI Meters can directly interact with all forms of DER
 - Solar
 - Storage
 - Electric Vehicles
- Provides telemetry and control to best take advantage of these solutions
- Multiple communication options
 - Direct Connections
 - Fan Radio and Networks

