



# Electricity market clearing under uncertainty and its impact on investments

Juan M. Morales and Salvador Pineda

Department of Fundamentals of Economics: Quantitative Economics

Universidad Autónoma de Madrid

March 8, 2013



DTU Electrical Engineering

Department of Electrical Engineering



The Facts



### **GLOBAL CUMULATIVE INSTALLED WIND CAPACITY 1996-2011**







### The Facts













FIGURE 16: WIND FORECAST ERROR IN SPAIN







































- Uncertainty  $\uparrow$  (stochastic production  $\uparrow$ ) and flexibility  $\downarrow \Rightarrow$  Balancing costs  $\uparrow$
- The forward dispatch has an impact on balancing costs









- Uncertainty  $\uparrow$  (stochastic production  $\uparrow$ ) and flexibility  $\downarrow \Rightarrow$  Balancing costs  $\uparrow$
- The forward dispatch has an impact on balancing costs









# Problem description (Adjustment markets)



 Adjustment markets allow redefining forward positions and trading with a lesser degree of uncertainty





# Problem description (Adjustment markets)



 Adjustment markets allow redefining forward positions and trading with a lesser degree of uncertainty





### **Problem description**



(Capacity markets)

Guarantee balancing resources

**Day-ahead** market

**Reserve capacity** markets

 Promote flexible generation via capacity payments (missing money in price-capped energy markets)



**Balancing market** 

Day d

Day d-1

Time



## Problem description (Energy-only market)







# Problem description (Clearing mechanism)



• The day-ahead market is cleared by accounting for the projected impact on subsequent balancing operation





# \* Clearing mechanism (Decoupled vs. Coupled)



**Day-ahead market** 



**Balancing market** 

**Decoupled** (DAM and BM are cleared

independently)

**Day-ahead market** 

**Balancing prognosis** 



**Balancing market** 

Coupled

(Day-ahead energy dispatch decisions account for balancing operation)





### Clearing mechanism (Decoupled vs. Coupled)





### **Decoupled**













### Clearing mechanism (Decoupled vs. Coupled)









### Clearing mechanism (Decoupled vs. Coupled)



Power balance at the day-ahead stage

$$\sum_{i \in \Phi_n^{\mathbf{G}}} P_i + \sum_{q \in \Phi_n^{\mathbf{Q}}} W_q^{\mathbf{S}} - \sum_{j \in \Phi_n^{\mathbf{L}}} L_j - \sum_{\ell \mid o(\ell) = n} b_\ell \left( \delta_{o(\ell)}^0 - \delta_{e(\ell)}^0 \right)$$

$$+ \sum_{\ell \mid e(\ell) = n} b_\ell \left( \delta_{o(\ell)}^0 - \delta_{e(\ell)}^0 \right) = 0 \quad \forall n$$

Power balance at the balancing stage

*Minimize*  $C^B(x_{\omega'}^B, \omega')$ 

s.t. 
$$h^{B}(x_{\omega'}^{B}, x^{D^{*}}, \omega') = 0$$
  
 $x_{\omega'}^{B} \in X^{B}(x^{D^{*}}, \omega')$ 

 $\sum_{i \in \Phi_n^{\mathrm{G}}} \left( r_{i\omega'}^{\mathrm{U}} - r_{i\omega'}^{\mathrm{D}} \right) + \sum_{j \in \Phi_n^{\mathrm{L}}} L_{j\omega'}^{\mathrm{shed}} + \sum_{q \in \Phi_n^{\mathrm{Q}}} \left( W_{q\omega'} - W_q^{\mathrm{S}} - W_{q\omega'}^{\mathrm{spill}} \right)$ +  $\sum b_{\ell} \left( \delta_{o(\ell)}^{0} - \delta_{o(\ell)\omega'} - \delta_{e(\ell)}^{0} + \delta_{e(\ell)\omega'} \right)$  $- \sum b_{\ell} \left( \delta_{o(\ell)}^{0} - \delta_{o(\ell)\omega'} - \delta_{e(\ell)}^{0} + \delta_{e(\ell)\omega'} \right) = 0 \quad \forall n$ 

### **Decoupled**



### Clearing mechanism (Decoupled vs. Coupled)





### **Decoupled**

### Offer limits

$$\begin{split} P_i^{\max} &\leq \overline{P}_i, \forall i \\ W_q^{\max} &\leq \overline{W}_q, \forall q \end{split}$$

### Offer limits

$$egin{aligned} r_{i\omega'}^{\mathrm{U}} &\leq R_{i}^{\mathrm{U},\mathrm{max}}, orall i \ r_{i\omega'}^{\mathrm{D}} &\leq R_{i}^{\mathrm{D},\mathrm{max}}, orall i \ P_{i}^{\star} - r_{i\omega'}^{\mathrm{D}} &\geq 0, orall i \ P_{i}^{\star} + r_{i\omega'}^{\mathrm{U}} &\leq \overline{P}_{i}, orall i \end{aligned}$$





# \* Clearing mechanism (Decoupled vs. Coupled)





- Transmission capacity limits, variable bounds, reference node ...
- Non convexities are disregarded!





### Clearing mechanism (Decoupled vs. Coupled)





**Coupled** 



# \* Clearing mechanism (Decoupled vs. Coupled)











### Clearing mechanism (Decoupled vs. Coupled)

- Expectation of the balancing costs: It requires a centralized forecasting tool
- Scenario-based modeling of uncertainty

$$\sum_{i=1}^{N_G} C_i P_i + \sum_{\omega=1}^{N_\Omega} \pi_\omega \left[ \sum_{i=1}^{N_G} \left( C_i^{U} r_{i\omega}^{U} - C_i^{D} r_{i\omega}^{D} \right) + \sum_{j=1}^{N_L} V_j^{LOL} L_{j\omega}^{shed} \right]$$



Coupled

 $x_{\omega'}^B \in X^B(x^{D^*}, \omega')$ 











- Expectation of the balancing costs: It requires a centralized forecasting tool
- Scenario-based modeling of uncertainty
- Two-stage stochastic programming problem

Minimize 
$$C^{D}(x^{D}) + E_{\omega} \{C^{B}(x_{\omega}^{B}, \omega)\}$$
  
s.t.  $h^{D}(x^{D}) = 0$   
 $x^{D} \in X^{D}$   
 $h^{B}(x_{\omega}^{B}, x^{D}, \omega) = 0, \forall \omega$   
 $x_{\omega}^{B} \in X^{B}(x^{D}, \omega), \forall \omega$ 

Minimize 
$$C^{B}(x_{\omega'}^{B}, \omega')$$
  
s.t.  $h^{B}(x_{\omega'}^{B}, x^{D^{*}}, \omega') = 0$   
 $x_{\omega'}^{B} \in X^{B}(x^{D^{*}}, \omega')$ 



# \* Clearing mechanism (Decoupled vs. Coupled)



- Expectation of the balancing costs: It requires a centralized forecasting tool
- Scenario-based modeling of uncertainty
- Two-stage stochastic programming problem
- Two-settlement energy market: The balancing market is still there!

$$\begin{aligned} & \underset{x^{D}, x_{\omega}^{B}}{\textit{Minimize}} \quad C^{D}(x^{D}) + \mathbf{E}_{\omega} \Big\{ C^{B}(x_{\omega}^{B}, \omega) \Big\} \\ & s.t. \quad h^{D}(x^{D}) = 0 \\ & x^{D} \in X^{D} \\ & h^{B}(x_{\omega}^{B}, x^{D}, \omega) = 0, \, \forall \, \omega \\ & x_{\omega}^{B} \in X^{B}(x^{D}, \omega), \, \forall \, \omega \end{aligned}$$





# \* Clearing mechanism (Decoupled vs. Coupled)



- Expectation of the balancing costs: It requires a centralized forecasting tool
- Scenario-based modeling of uncertainty
- Two-stage stochastic programming problem
- Two-settlement energy market: The balancing market is still there!
- A more detailed formulation of the problem can be found in:
- J. M. Morales, A. J. Conejo, K. Liu, J. Zhong (2012). *Pricing Electricity in Pools with Wind Producers*, IEEE Transactions on Power Systems 27(3): 1366 1376.

$$\begin{aligned}
& \underset{x^{D}, x_{\omega}^{B}}{\text{Minimize}} \quad C^{D}(x^{D}) + \operatorname{E}_{\omega} \left\{ C^{B}(x_{\omega}^{B}, \omega) \right\} \\
& s.t. \quad h^{D}(x^{D}) = 0 \\
& x^{D} \in X^{D} \\
& h^{B}(x_{\omega}^{B}, x^{D}, \omega) = 0, \forall \omega \\
& x_{\omega}^{B} \in X^{B}(x^{D}, \omega), \forall \omega
\end{aligned}$$

Minimize 
$$C^{B}(x_{\omega'}^{B}, \omega')$$
  
s.t.  $h^{B}(x_{\omega'}^{B}, x^{D^{*}}, \omega') = 0$   
 $x_{\omega'}^{B} \in X^{B}(x^{D^{*}}, \omega')$ 





# Clearing mechanism (Example)







| Unit | $P^{\max}$ | C  | $C^{U}$ | $C^{D}$ | $R_U^{ m max}$ | $R_D^{ m max}$ |
|------|------------|----|---------|---------|----------------|----------------|
| G1   | 100        | 35 | 40      | 34      | 20             | 40             |
| G2   | 110        | 30 | _       | _       | 0              | 0              |
| G3   | 50         | 10 | -       | -       | 0              | 0              |







### (Example)



- Unit capacity and offer cost in DAM
- Offer limit and cost for the energy sold in BM





| Unit | P <sup>max</sup> | C  | $C^{U}$ | $C^{D}$ | $R_U^{ m max}$ | $R_D^{\max}$ |
|------|------------------|----|---------|---------|----------------|--------------|
| G1   | 100              | 35 | 40      | 34      | 20             | 40           |
| G2   | 110              | 30 | _       | _       | 0              | 0            |
| G3   | 50               | 10 | _       | _       | 0              | 0            |







### (Example)



- Unit capacity and offer cost in DAM
- Offer limit and cost for the energy sold in BM
- Offer limit and cost for the energy repurchased in BM





| Unit | $P^{\max}$ | C  | $C^{U}$ | $C^{D}$ | $R_U^{ m max}$ | $R_D^{\max}$ |
|------|------------|----|---------|---------|----------------|--------------|
| G1   | 100        | 35 | 40      | 34      | 20             | 40           |
| G2   | 110        | 30 | _       | _       | 0              | 0            |
| G3   | 50         | 10 | _       | -       | 0              | 0            |



# Clearing mechanism (Example)





Expensive, but flexible

| Unit | $P^{\max}$ | C  | $C^{U}$ | $C^{D}$ | $R_U^{ m max}$ | $R_D^{ m max}$ |
|------|------------|----|---------|---------|----------------|----------------|
| G1   | 100        | 35 | 40      | 34      | 20             | 40             |
| G2   | 110        | 30 | _       | _       | 0              | 0              |
| G3   | 50         | 10 | -       | -       | 0              | 0              |





# Clearing mechanism (Example)



Less expensive, but inflexible

| Unit | $P^{\max}$ | C  | $C^{U}$ | $C^{D}$ | $R_U^{ m max}$ | $R_D^{\mathrm{max}}$ |
|------|------------|----|---------|---------|----------------|----------------------|
| G1   | 100        | 35 | 40      | 34      | 20             | 40                   |
| G2   | 110        | 30 | -       | -       | 0              | 0                    |
| G3   | 50         | 10 | _       | -       | 0              | 0                    |



## Clearing mechanism (Example)





| Unit | $P^{\max}$ | C  | $C^{U}$ | $C^{D}$ | $R_U^{ m max}$ | $R_D^{ m max}$ |
|------|------------|----|---------|---------|----------------|----------------|
| G1   | 100        | 35 | 40      | 34      | 20             | 40             |
| G2   | 110        | 30 | _       | _       | 0              | 0              |
| G3   | 50         | 10 | -       | -       | 0              | 0              |

Cheap, but inflexible



## Clearing mechanism (Example)





| Unit | $P^{\max}$ | C  | $C^{U}$ | $C^{D}$ | $R_U^{ m max}$ | $R_D^{\mathrm{max}}$ |
|------|------------|----|---------|---------|----------------|----------------------|
| G1   | 100        | 35 | 40      | 34      | 20             | 40                   |
| G2   | 110        | 30 | _       | _       | 0              | 0                    |
| G3   | 50         | 10 | -       | -       | 0              | 0                    |





## Clearing mechanism (Example)



### **Decoupled**

| Unit | $P^{\max}$ | C  | $P^{sch}$ |
|------|------------|----|-----------|
| G1   | 100        | 35 | 0         |
| G2   | 110        | 30 | 86        |
| G3   | 50         | 10 | 50        |
| WP   | 34         | 0  | 34        |



# Clearing mechanism (Example)





### **Decoupled**

| Unit | P <sup>max</sup> | C  | $P^{sch}$ |
|------|------------------|----|-----------|
| G1   | 100              | 35 | 0         |
| G2   | 110              | 30 | 86        |
| G3   | 50               | 10 | 50        |
| WP   | 34               | 0  | 34        |

Forecast bid



## Clearing mechanism (Example)





### **Decoupled**

| Unit | $P^{\max}$ | C  | $P^{sch}$ |
|------|------------|----|-----------|
| G1   | 100        | 35 | 0         |
| G2   | 110        | 30 | 86        |
| G3   | 50         | 10 | 50        |
| WP   | 34         | 0  | 34        |



# Clearing mechanism (Example)





### **Decoupled**

| Unit | P <sup>max</sup> | C  | $P^{sch}$ |
|------|------------------|----|-----------|
| G1   | 100              | 35 | 0         |
| G2   | 110              | 30 | 86        |
| G3   | 50               | 10 | 50        |
| WP   | 34               | 0  | 34        |



# Clearing mechanism (Example)





### **Decoupled**

| Unit | $P^{\max}$ | C  | $P^{sch}$ |
|------|------------|----|-----------|
| G1   | 100        | 35 | 0         |
| G2   | 110        | 30 | 86        |
| G3   | 50         | 10 | 50        |
| WP   | 34         | 0  | 34        |

Powers in MW; costs in \$/MWh

Units are dispatched following a **merit-order principle** 



## Clearing mechanism (Example)





- The wind producer is dispatched only to 10 MW
- G1 is dispatched to 40, even though it is more expensive than G2
- The "traditional" merit-order principle does not hold in "Coupled"
- G1 is dispatched to exploit its ability to reduce production in real time

#### **Decoupled**

| Unit | $P^{\max}$ | C  | $P^{sch}$ |
|------|------------|----|-----------|
| G1   | 100        | 35 | 0         |
| G2   | 110        | 30 | 86        |
| G3   | 50         | 10 | 50        |
| WP   | 34         | 0  | 34        |

Powers in MW; costs in \$/MWh

### Coupled

| Unit | $P^{\max}$ | C  | $P^{sch}$ |
|------|------------|----|-----------|
| G1   | 100        | 35 | 40        |
| G2   | 110        | 30 | 70        |
| G3   | 50         | 10 | 50        |
| WP   | 34         | 0  | 10        |



## Clearing mechanism (Example)





|           | Total | Day ahead | Balancing |
|-----------|-------|-----------|-----------|
| Decoupled | 3720  | 3080      | 740       |
| Coupled   | 3184  | 4000      | -826      |

"Coupled" results in a more expensive day-ahead dispatch that leads, however, to a much more efficient balancing operation

### **Decoupled**

| Unit | $P^{\max}$ | C  | $P^{sch}$ |
|------|------------|----|-----------|
| G1   | 100        | 35 | 0         |
| G2   | 110        | 30 | 86        |
| G3   | 50         | 10 | 50        |
| WP   | 34         | 0  | 34        |

Powers in MW; costs in \$/MWh

### Coupled

| Unit | $P^{\max}$ | C  | $P^{sch}$ |
|------|------------|----|-----------|
| G1   | 100        | 35 | 40        |
| G2   | 110        | 30 | 70        |
| G3   | 50         | 10 | 50        |
| WP   | 34         | 0  | 10        |







## Clearing mechanism (Prices & Revenues)



$$\begin{aligned} & \textit{Minimize} \quad C^{D}(x^{D}) + \mathbb{E}_{\omega} \left\{ C^{B}(x_{\omega}^{B}, \omega) \right\} \\ & \textit{s.t.} \quad h^{D}(x^{D}) = 0 : \hat{\lambda}_{n}^{D} \\ & \quad x^{D} \in X^{D} \\ & \quad h^{B}(x_{\omega}^{B}, x^{D}, \omega) = 0, \, \forall \, \omega \\ & \quad x_{\omega}^{B} \in X^{B}(x^{D}, \omega), \, \forall \, \omega \end{aligned}$$

$$\begin{matrix} X^{D*} \\ & X^{D*} \\ &$$

**Coupled** 



### **Clearing mechanism**



### (Example: Day-ahead market prices)



### **Decoupled**

| Unit | P <sup>max</sup> | C  | $P^{sch}$ |
|------|------------------|----|-----------|
| G1   | 100              | 35 | 0         |
| G2   | 110              | 30 | 86        |
| G3   | 50               | 10 | 50        |
| WP   | 34               | 0  | 34        |

Powers in MW; costs in \$/MWh

### Coupled

| Unit | $P^{\max}$ | C  | $P^{sch}$ |
|------|------------|----|-----------|
| G1   | 100        | 35 | 40        |
| G2   | 110        | 30 | 70        |
| G3   | 50         | 10 | 50        |
| WP   | 34         | 0  | 10        |

DTU Electrical Engineering, Technical University of Denmark

In "Coupled" unit G1 is dispatched day ahead in a loss-

Powers in MW; costs in \$/MWh

making position



### **Clearing mechanism**



### (Example: Day-ahead market prices)



| Durefit C4 | Fun anta d | Per scenario |      |  |
|------------|------------|--------------|------|--|
| Profit G1  | Expected   | High         | Low  |  |
| Decoupled  | 1320       | 0            | 3300 |  |
| Coupled    | 24         | 173.33       | -200 |  |

In "Coupled" unit G1 incur losses if scenario "low" happens

### **Decoupled**

| Unit | P <sup>max</sup> | C  | $P^{sch}$ |
|------|------------------|----|-----------|
| G1   | 100              | 35 | 0         |
| G2   | 110              | 30 | 86        |
| G3   | 50               | 10 | 50        |
| WP   | 34               | 0  | 34        |

Powers in MW; costs in \$/MWh

### **Coupled**

| Unit | $P^{\max}$ | C  | $P^{sch}$ |
|------|------------|----|-----------|
| G1   | 100        | 35 | 40        |
| G2   | 110        | 30 | 70        |
| G3   | 50         | 10 | 50        |
| WP   | 34         | 0  | 10        |



# Clearing mechanism (24-bus Case Study)





- Based on the IEEE Reliability test System
- Total system demand = 2000 MW
- ullet Per-unit wind power productions are modeled using Beta distributions with a correlation coefficient  $\rho$



## Clearing mechanism (24-bus Case Study)





- Under "coupled", stochastic production "never" leads to an increase in the expected cost
- "Coupled" is barely affected by the spatial correlation of stochastic energy sources





# Clearing mechanism (24-bus Case Study)



| Wind penetration 38% |                        | Unit  |       |       |      |  |
|----------------------|------------------------|-------|-------|-------|------|--|
| ρ =                  | 0.35                   | 1     | 6     | 11    | 12   |  |
|                      | Expected profit (\$)   | 47.9  | 49.4  | 102.2 | 67.4 |  |
| Coupled              | Avearge losses (\$)    | -14.9 | -10.7 | -16.5 | -9.7 |  |
|                      | Probability profit < 0 | 0.81  | 0.71  | 0.71  | 0.75 |  |

"Coupled" guarantees revenue reconciliation in expectation for both the system and market participants, but not per scenario



# Clearing mechanism (Conclusions)



- Clearing mechanism for the day-ahead market that accounts for the expected balancing costs using stochastic programming
- It uses information on units' flexibility and relies on a probabilistic model for stochastic generation (centralized forecasting tool)
- It manages to decrease system total costs and reduce price volatility by breaking the "traditional" merit-order principle
- It guarantees revenue adequacy in expectation, but not per scenario, which poses the following questions:
  - Are flexible producers willing to take the risk?
  - What if the probabilistic model for stochastic generation is not well calibrated?







Wind power investment model









Bi-level optimization problem (MPEC)

#### Wind Power Producer

Max Expected profit

s.t. Investment constraints

### **Market Operator**

Min Total cost

s.t. Generation = Demand

**Network constraints** 



### Impact on investments

Impact of imbalance costs ⇒ day-ahead + balancing markets

#### **Wind Power Producer**

Max Expected profit (day-ahead + balancing)

s.t. Investment constraints

### Day-ahead market

Min Day-ahead cost

s.t. Gen + Exp.Wind = Dem

Network constraints

### **Balancing market**

Min Balancing cost

s.t.  $\Delta$ Gen +  $\Delta$ Wind =  $\Delta$ Dem Network constraints







Impact of imbalance costs ⇒ day-ahead + balancing markets









### Modeling of wind forecast errors









Modeling of wind forecast errors









Modeling of wind forecast errors









Impact of market design

Decoupled

Wind Power Producer

Investment constraint

Day-ahead market

**Balancing market** 

Coupled

**Wind Power Producer** 

Investment constraint

Day-ahead market

**Prognosis of BM** 

**Balancing market** 



# Impact on investments (Example)



### Data



|                  |             |       | Units         |         |               |         |
|------------------|-------------|-------|---------------|---------|---------------|---------|
| $\overline{g}$   | $P_g^{max}$ | $C_g$ | $P_g^{max,u}$ | $C_g^u$ | $P_g^{max,d}$ | $C_g^d$ |
| $\overline{g_1}$ | 150         | 20    | 50            | 21      | 50            | 19      |
| $g_2$            | 500         | 20.1  | 50            | 50      | 50            | 5       |

|                      | Lines |      | Wind Prob |     |               |                           |                           |       |              |
|----------------------|-------|------|-----------|-----|---------------|---------------------------|---------------------------|-------|--------------|
|                      |       |      |           |     |               | $\widetilde{W}_{ns_1r_2}$ | $\widetilde{W}_{ns_1r_3}$ | r     | $\pi_{s_1r}$ |
| $\overline{n_1 n_2}$ | 10    | 7.69 | $n_1$     | 0.6 | -Δ            | 0                         | $+\Delta$                 | $r_1$ | 0.4          |
| $n_1 n_3$            | 250   | 7.69 | $n_2$     | 0.7 | $-\Delta$     | 0                         | +\Delta<br>+\Delta<br>-   | $r_2$ | 0.2          |
| $n_2n_3$             | 250   | 7.69 | $n_3$     | -   | -Δ<br>-Δ<br>- | -                         | -                         | $r_3$ | 0.4          |

$$L_{n_3} = 225 \text{MW}$$

$$P_{w_1'}^{max} = 50 \mathrm{MW}$$

# Impact on investments (Example)



Results: Impact of forecast errors



| Dec   | Bus1                                                         | Bus2                                                          |
|-------|--------------------------------------------------------------|---------------------------------------------------------------|
| Δ=0.1 | DA profit = \$600<br>B profit = -\$4<br>Total profit = \$596 | DA profit = \$704<br>B profit = -\$62<br>Total profit = \$642 |



## Impact on investments (Example)



Results: Impact of forecast errors



| Dec   | Bus1                                                          | Bus2                                                           |
|-------|---------------------------------------------------------------|----------------------------------------------------------------|
| Δ=0.1 | DA profit = \$600<br>B profit = -\$4<br>Total profit = \$596  | DA profit = \$704<br>B profit = -\$62<br>Total profit = \$642  |
| Δ=0.3 | DA profit = \$600<br>B profit = -\$12<br>Total profit = \$588 | DA profit = \$704<br>B profit = -\$186<br>Total profit = \$518 |

Forecast errors may have a significant impact on wind investment decisions

### Económicas y Empresariales Impact on investments UNIVERSIDAD AUTÓNOMA DE MADRID (Example)



Results: Impact of market design



| Δ=0.3 | Bus1                                                          | Bus2                                                           |
|-------|---------------------------------------------------------------|----------------------------------------------------------------|
| Dec   | DA profit = \$600<br>B profit = -\$12<br>Total profit = \$588 | DA profit = \$704<br>B profit = -\$186<br>Total profit = \$518 |

## Impact on investments (Example)



Results: Impact of market design



| Δ=0.3 | Bus1                                                          | Bus2                                                           |
|-------|---------------------------------------------------------------|----------------------------------------------------------------|
| Dec   | DA profit = \$600<br>B profit = -\$12<br>Total profit = \$588 | DA profit = \$704<br>B profit = -\$186<br>Total profit = \$518 |
| Coup  | DA profit = \$600<br>B profit = -\$12<br>Total profit = \$588 | DA profit = \$704<br>B profit = -\$14<br>Total profit = \$690  |

The wind producer achieves a higher profit with the Coup market clearing



# Impact on investments (Conclusions)



- Imbalance cost is an important factor to be accounted for in wind power generation expansion
- The coupled market clearing reduces the imbalance costs of stochastic generation and facilitates the investment in new wind farms













Inflexible units (need advance planning)

Wind producers/consumers (need balancing energy)





































- Uncertainty  $\uparrow$  (stochastic production  $\uparrow$ ) and flexibility  $\downarrow \Rightarrow$  Balancing costs  $\uparrow$
- The forward dispatch has an impact on balancing costs









- Uncertainty  $\uparrow$  (stochastic production  $\uparrow$ ) and flexibility  $\downarrow \Rightarrow$  Balancing costs  $\uparrow$
- The forward dispatch has an impact on balancing costs











# Clearing mechanism (Prices & Revenues)

•  $\frac{\gamma_{n\omega}}{\pi_{\omega}}$  is dual optimal for the balancing problem (Wong and

Fuller 2007)

- $\frac{\gamma_{n\omega}}{\pi_{\omega}}$  is a prediction of the balancing market price in  $\omega$
- $\ \, \text{The set of prices} \, \left\{ \hat{\lambda}_n^{\text{D}}, \frac{\gamma_{n\omega}}{\pi_\omega} \right\} \, \, \text{are expected profit} \\ \text{maximizing} \, \, \right.$

 $\pi_{\omega}$  : probability of occurrence of scenario  $\omega$ 

$$\begin{aligned} & \textit{Minimize} \quad C^{D}(x^{D}) + \mathbf{E}_{\omega} \left\{ C^{B}(x_{\omega}^{B}, \omega) \right\} \\ & \textit{s.t.} \quad h^{D}(x^{D}) = 0 : \hat{\lambda}_{n}^{D} \\ & x^{D} \in X^{D} \\ & h^{B}(x_{\omega}^{B}, x^{D}, \omega) = 0, \, \forall \, \omega : \gamma_{n\omega} \\ & x_{\omega}^{B} \in X^{B}(x^{D}, \omega), \, \forall \, \omega \end{aligned}$$

$$\begin{matrix} X^{D*} \\ x^{$$

Coupled



## Clearing mechanism (24-bus Case Study)





- Under "coupled", stochastic production "never" leads to an increase in the expected cost
- "Coupled" is barely affected by the spatial correlation of stochastic energy sources
- "Coupled" produces more stable real-time market prices







# Clearing mechanism (Future work)



- The balancing prognosis may be focused on the worst-case scenario (robust optimization)
- Analysis of the impact of modeling errors on revenue adequacy, expected costs, prices, etc.
- An extended framework to control the degree of coupling between day-ahead and balancing dispatch decisions
- The balancing prognosis might only affect a group of agents (e.g. the stochastic producers)
- J. M. Morales, M. Zugno, P. Pinson, S. Pineda. Electricity Market Clearing Under Uncertainty: A Bilevel Programming Framework, under review