

Epidemic Modelling

Henry Nguyen

Mentors: Max Wolf + Yuri Wolf

Differential Equations to Model Epidemics

S – Susceptible

I – Infectious

R – Recovered

$$S \xrightarrow{\beta} I \xrightarrow{\gamma} R$$

$$\frac{dS}{dt} = -\beta I \left(\frac{S}{N}\right)$$

$$\frac{dS}{dt} = -\beta I \left(\frac{S}{N}\right) \qquad \frac{dI}{dt} = \beta I \left(\frac{S}{N}\right) - \gamma I \qquad \frac{dR}{dt} = \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

Assumptions of DE model

- Continuously, uniformly mixed
- Natural birth and death rates are negligible (small epidemic timeframe)
- Sufficiently large population (imagine chemical systems)
- All individuals have the same infectivity
- Incubation/infectious period is small

- S = Susceptible
- E = Exposed (Incubation period, does not spread)
- A = Asymptomatic (or Unknown)
- I = Infected
- R = Recovered
- D = Dead

d is calculated by $d=\min\left(d_0+m\left(rac{I}{total}
ight)$, $d_1
ight)$

 d_0 is death rate with best possible medical care

 d_1 is death rate without any medical care

m shows dependence of medical care quality on proportion of infected

S

$$d_0 = 0.001; d_1 = 0.1; m = 0.5$$

 q_{known} is the proportion of infected individuals that go to I

Example Curve

$$G = 0.4$$

$$q_{known} = 0.4$$

$$B_A = 2.5$$

$$B_I = 1$$

With no birth/death, E, I, A have a single peak.

A and I have the same shape D and R have the same shape

The effect of q_{known}

Example I and A graphs for $\frac{B_A}{B_I} = 2.5$

Population Flux, Oscillations

All populations die at a constant rate

$$\frac{dx}{dt} = -\mu x$$

New births into S population balanced to match natural deaths

$$\frac{dS}{dt} = \mu N$$

Deaths and Time to Completion based on q_{known} and m

Maximum Infected (A + I)

Total Deaths

$$\frac{B_A}{B_I} = 1.5$$

 $\frac{B_A}{B_I} = 3.5$

 $\frac{B_A}{B_I} = 9.0$

 B_A is infectivity of asymptomatic (unknown)

 B_I is infectivity of symptomatic (known)

 q_{known} is proportion of unknown cases

m is the linear burdening of the healthcare system

Heatmaps from different rows are not directly comparable due to different B_{avg} .

Stochastic Models

- Instead of continuous changes (e.g. it is possible for I=0.5 to start an epidemic), stochastic predicts based on discrete changes.
 - More realistic for smaller populations
- Uses random number generator, so simulations with same parameters might produce different results (false for large populations)

Advantages:

- Can model individuals with different characteristics
 - Mask-wearing
 - Geographic location
 - Closely connected hubs, small communities, ...

4000

3000

2000

1000

- Different individual Betas (infectivity)
- Communities with occasional contact
- Age, socioeconomic status, infectivity, death rate, travel, ...

Left: Stochastic, Right: DE; same rate constants, SIR model
At sufficiently large populations, stochastic models have the same result as DE

Implementation based on discrete events SIR

Event	Rate (probability of occurring)
I interacts with any alive individual	Ιβ
I turns to R	Ig
Death of x (S, I, R) Births	$x\mu$ (S + I + R) μ
All events rate	$I\beta + Ig + 2(S + I + R)\mu = r$

Action

- If I interacts with S, then that S turns to I, else nothing
- I turns to R
- Individual turns to D
- One individual is added to S collection

For total event rate r, the times between events is given by distribution $t=-\frac{\ln(1-x)}{r}$, x is random in $[0\dots 1)$

Implementation based on discrete events, with individual beta SIR

Choose which events by rolling n-sided weighted dice with probabilities for each side equal to specific rate

Why?

Allows us to model every individual

Measurements

- Total deaths
- Length of epidemic (when the population of Infected is 0)
- Peak of infected population
- Time to peak of infected population

Simulating mask wearing (5000 individuals)

0.6 **Proportion masked:** 0.4 700 350 600 300 500 250 60 400 200 300 150 200 100 100 50

15

20

Masks:

2.5

5.0

• Increase length of epidemic (17 to 25 to 35)

7.5 10.0 12.5 15.0 17.5

- Increase time to peak of infection
- Decrease peak of infection

Red: Infected Cyan: Exposed

Black: Dead

Aside: implementing masks with DE?

Reason:

Masked and unmasked populations don't interchange

$$S_m \to I_m \to R$$
$$S_{um} \to I_{um} \to R$$

Infectious Mask status	Susceptible Mask status	Chance of infection in interaction	
0	0	1	k_1
1	0	0.1	k_2
0	1	0.6	k_3
1	1	0.05	k_4

Sample equations for I_m and S_m

$$\frac{dS_m}{dt} = -\frac{\beta S_m}{N} (k_3 I_{um} + k_4 I_m)$$

$$\frac{dI_m}{dt} = \frac{\beta I_m}{N} (k_2 S_{um} + k_4 S_m) - \gamma I_m$$

$$\frac{dR}{dt} = \gamma (I_m + I_{um})$$

Non-uniform mixing

Green – Susceptible Purple – Recovered Black – Dead

Infectious individuals infect all within a certain radius.

Plot Title - Proportion of population moving per iteration Simulates travel restrictions, stay at home

