Chương 2: PHƯƠNG PHÁP ĐẾM (Counting)

Khoa CNTT

DH GTVT TP.HCM

Nội dung

- Tập hợp
- Ánh xạ
- Giải tích tổ hợp
- Nguyên lý Dirichlet
- Thảo luận & Bài tập

Tập hợp (1/7)

- Khái niệm:
 - Tập hợp là một khái niệm nguyên thủy, không có định nghĩa
 - Tập hợp thường bao gồm (các) phần tử có cùng tính chất nào đó.
- Kí hiêu:
 - Tập hợp kí hiệu bằng chữ cái in hoa, ví dụ: A, B, C, X, Y, ...
 - Phần tử của tập hợp kí hiệu bằng chữ cái in thường, ví dụ: a, b, ...
- Biểu diễn & ví dụ:

Cách biểu diễn	Ví dụ
Liệt kê	$A = \{1,2,3,4\}$
Vị từ	$A = \{x \in R : x^2 - 5x + 6 = 0\}$
Biểu đồ Venn	X

Tập hợp (2/7)

• Các tập hợp đặc biệt:

Tên gọi	Kí hiệu	Ý nghĩa				
Tập rỗng	Ø	Tập không chứa bất kỳ phần tử nào				
Tập vũ trụ	U	Tập tất cả các phần tử ở ngữ cảnh đang xét				

Tập hợp (3/7)

Phần tử & tập hợp:

Kí hiệu	Ý nghĩa			
$x \in A$	x là phần tử của A			
<i>x</i> ∉ <i>A</i>	x không là phần tử của A			

• Các phép toán trên tập hợp:

Tên phép toán	Kí hiệu		
Hợp	U		
Giao	\cap		
Hiệu	\		

Tập hợp (4/7)

- Hợp của 2 tập hợp:
 - + Dinh nghĩa: $A \cup B = \{x : x \in A \lor x \in B\}$

+ Ví dụ: Giả sử $A = \{x \in R : x^2 - 5x + 6 = 0\}, B = \{-1,0,2\}$ Khi đó: $A \cup B = \{-1,0,2,3\}$

Tập hợp (5/7)

- Giao của 2 tập hợp:
 - + Định nghĩa: $A \cap B = \{x : x \in A \land x \in B\}$

+ Ví dụ: Giả sử $A=\{x\in R: x^2-5x+6=0\},\ B=\{-1,0,2\}$ Khi đó: $A\cap B=\{2\}$

Tập hợp (6/7)

- Hiệu của 2 tập hợp:
 - + Dinh nghĩa: $A \setminus B = \{x : x \in A \land x \notin B\}$

- + Ví dụ: Giả sử $A=\{x\in R: x^2-5x+6=0\},\ B=\{-1,0,2\}$ Khi đó: $A\setminus B=\{3\}$
- Trường hợp đặc biệt: $\overline{A} = U \setminus A$ gọi là phần bù của tập A.

Tập hợp (7/7)

- Tích Descartes của 2 tập hợp:
 - + Định nghĩa: Tích Descartes của 2 tập hợp A và B (kí hiệu là $A \times B$) là tập được xác định như sau:

$$A \times B = \{(a,b) : (a \in A) \land (b \in B)\}$$

+ Ví dụ:

$$A = \{a, b, c\}, B = \{x, y\}$$

$$\Rightarrow A \times B = \{(a, x), (a, y), (b, x), (b, y), (c, x), (c, y)\}$$

Ánh xạ (1/6)

Ánh xạ (2/6)

• Định nghĩa:

Giả sử X, Y là 2 tập khác rỗng. Khi đó, anh xạ từ X vào Y là phép cho tương ứng mỗi phần tử thuộc X duy nhất một phần tử thuộc Y.

• Kí hiệu là: $f: X \mapsto Y$

Ví dụ:

+
$$f : \mathbb{R} \mapsto \mathbb{R}, f(x) = 2x^2 + 1$$

+ $f : \mathbb{Z} \mapsto \mathbb{Z}, f(x) = x + 1$

Ánh xạ (3/6)

- Biểu diễn: có thể biểu diễn ánh xạ bằng nhiều cách, bao gồm:
 - + Dạng bảng
 - + Biểu thức đại số
 - + Đồ thị

Ánh xạ (4/6)

• Biểu diễn ánh xạ dưới dạng bảng:

X	1	2	3	4	5
y=f(x)	2	4	6	8	10

• Biểu diễn dưới dạng biểu thức đại số:

$$f: \mathbb{R} \mapsto \mathbb{R}, f(x) = 2x^2 + 1$$

Biểu diễn dưới dạng đồ thị:

Ánh xạ (5/6)

Đơn ánh

$$\forall x_1, x_2 \in X, x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2)$$

Ví dụ: $f: \mathbb{R} \mapsto \mathbb{R}, f(x) = e^x$

Toàn ánh

$$\forall y \in Y, \exists x \in X : y = f(x)$$
. Tức là $f(X) = Y$

Ví dụ: $f: \mathbb{R} \mapsto \mathbb{R}^+, f(x) = e^x$

Song ánh

⇔ Đơn ánh ∧ Toàn ánh

Ví du: $f: \mathbb{R} \mapsto \mathbb{R}, f(x) = 2x - 5$

Ánh xạ (6/6)

Ánh xạ hợp thành (tích của 2 ánh xạ):

Ví dụ:
$$f(x) = 2x + 1, g(x) = x^2 \Rightarrow g \circ f = g(f(x)) = (2x + 1)^2$$

Giải tích tổ hợp

- Các nguyên lý đếm
- Chỉnh hợp (Arrangement, k permutation)
- Hoán vị (Permutation)
- Tổ hợp (Combination)
- Chỉnh hợp lặp (Variation)
- Tổ hợp lặp

Giải tích tổ hợp - Các nguyên lý đếm

Nguyên lý cộng:

- * Công thức: $|A \cup B| = |A| + |B| |A \cap B|$
- * Ví dụ: Một lớp gồm:
 - + 10 sinh viên học Kỹ thuật lập trình.
 - + 15 sinh viên học Toán rời rạc.

Hỏi lớp có bao nhiều sinh viên? Biết rằng có 7 sinh viên học cả 2 học phần trên.

Giải tích tổ hợp - Các nguyên lý đếm

Nguyên lý nhân:

- * Công thức: $|A \times B| = |A| \times |B|$
- * Ví dụ xét đoạn mã sau:

$$s = 0;$$

 $for(i = 1; i \le k; i = i + 1)$
 $for(j = 1; j \le n; j = j + 1)s = s + i * j;$

Hỏi phép toán + được thực hiện bao nhiều lần?

Giải tích tổ hợp - Các nguyên lý đếm

Nguyên lý bù trừ:

- * Công thức: $|\overline{A}| = |U| |A|$
- * Ví dụ: cho $A = \{0, 1, 2, 3\}, B = \{-2, -1, 0, 1, 2, 3\}$ Có bao nhiều bộ $(x, y) \in A \times B$ sao cho xy = 0?

Giải tích tổ hợp - Chỉnh hợp

Bài toán:

Chọn 3 trong 5 sinh viên để thành lập ban cán sự lớp. Với quy tắc:

- Sinh viên thứ nhất làm lớp trưởng
- Sinh viên thứ hai làm lớp phó
- Sinh viên còn lại làm thủy quỹ

Hỏi có bao nhiều cách chọn?

Khái niêm:

- Mỗi cách chọn ra 3 trong 5 sinh viên có kể thứ tự như trên gọi là một chỉnh hợp chập 3 của 5 phần tử.
- **Tổng quát**: mỗi cách chọn k từ n ($k \le n$) phần tử có kể thứ $t\psi$ gọi là một chỉnh hợp chập k của n phần tử
- Số chỉnh hợp chập k của n phần tử kí hiệu là: A_n^k

Giải tích tổ hợp - Chỉnh hợp

- Công thức tính số chỉnh hợp:
 - + Phần tử thứ 1 có *n* cách chọn
 - + Phần tử thứ 2 có n-1 cách chọn
 - + Phần tử thứ 3 có n-2 cách chọn
 - + ...
 - + Phần tử thứ k có n k + 1 cách chọn
- Vậy theo quy tắc nhân ta có:

$$A_n^k = n(n-1)(n-2)...(n-k+1) = \frac{n!}{(n-k)!}$$

Giải tích tổ hợp - Hoán vị

 Mỗi chỉnh hợp chập n của n phần tử được gọi là một hoán vị của các phần tử đó.

• Số hoán vị $P_n = A_n^n = n!$

Giải tích tổ hợp - Tổ hợp

Bài toán:

Chọn k trong n ($k \le n$) sinh viên nam để thành lập đội bóng đá. Hỏi có bao nhiều cách chọn?

Khái niêm:

- Mỗi cách chọn k từ n ($k \le n$) phần tử không kể thứ tự gọi là một tổ hợp chập k của n phần tử
- Số tổ hợp chập k của n phần tử kí hiệu là: C_n^k

Công thức tính:

- Mỗi hoán vị của một tố hợp chập k cho trước tạo ra k! chỉnh hợp tương ứng
- Vậy số tổ hợp $C_n^k = \frac{A_n^k}{k!} = \frac{n!}{(n-k)!k!}$

Giải tích tổ hợp - Chỉnh hợp lặp

Bài toán:

Có bao nhiều cách đánh số các máy tính trong phòng thực hành nếu mỗi máy tính được đánh số bằng 3 chữ số bất kỳ?

Khái niêm:

- Mỗi cách chọn có thứ tự và có thể lặp lại k trong n phần tử gọi là chỉnh hợp lặp chập k của n phần tử đó.
- Số chỉnh hợp lặp chập k của n phần tử kí hiệu là: V_n^k

Công thức tính:

$$V_n^k = n \times n \times ... \times n = n^k$$

Giải tích tố hợp - Tố hợp lặp

Bài toán:

Có bao nhiều cách mua 4 cái laptop của 3 hãng máy tính (IBM, Dell và Sony)?

Cách giải:

 Mỗi cách mua laptop có thể được biểu diễn bằng 1 chuỗi các kí tự như sau:

$$\times ... \times | \times ... \times | \times ... \times$$
IBM | Dell | Sony

- Trong đó:
 - + Kí tự × biểu diễn số laptop của mỗi hãng
 - + Kí tự | phân cách các laptop theo từng hãng
 - + Ví dụ: $\times \times | \times | \times |$ biểu diễn cách mua 2 IBM, 1 Dell và 1 Sony

Giải tích tổ hợp - Tổ hợp lặp

Cách giải (tiếp):

- Mỗi cách mua chính là một cách chọn ra 2 trong 6 kí tự để làm dấu
 |, tương ứng với một tổ hợp chập 2 của 6 phần tử.
- ullet Vậy tổng số cách mua là: C_6^2

Trường hợp tổng quát:

- Mỗi cách chọn có thể lặp lại k trong n phần tử gọi là một tổ hợp lặp chập k của n phần tử đó
- Theo lập luận trên, số tổ hợp lặp chập k của n phần tử là:

$$K_n^k = C_{n+k-1}^{k-1}$$

Giải tích tổ hợp - Nguyên lý Dirichlet

Nguyên lý:

"Nếu nhốt n>m con chim bồ câu vào m chuồng thì tồn tại một chuồng nào đó chứa nhiều hơn 1 chim bồ câu"

Ý nghĩa:

- Có 4 lớp bài toán trong toán rời rạc, gồm:
 - + Bài toán tồn tại (*)
 - + Bài toán đếm
 - + Bài toán liệt kê
 - + Bài toán tối ưu
- Nguyên lý Dirichlet là một trong những phương pháp giải quyết lớp bài toán (*)

Thảo luận (1/7)

Về ánh xa:

- * Hãy liên hệ khái niệm ánh xạ trong thực tế
- * Hãy lấy ra một vài ánh xạ không phải đơn ánh, toàn ánh hay song ánh.
- * Khái niệm hàm số có phải là ánh xạ không? giải thích?
- * Bạn có liên hệ gì trong lập trình?
 - + Giữa khái niệm ánh xạ với khái niệm function
 - + Giữa ánh xạ hợp thành f^n với hàm đệ quy
- * Có bao nhiều ánh xạ từ tập A vào tập B nếu |A| = n và |B| = m
- * Hãy mô tả ánh xạ f(x) = x

Thảo luận (2/7)

Về quan hệ giữa các (lớp) bài toán phổ biến trong Toán rời rạc: Bài toán Bài toán đếm liêt kê Bài toán Bài toán tồn tại tối ưu

Thảo luận (3/7)

Về tổ hợp lặp:

- * Xét xem các bài toán sau đây có tương đương không?
 - + Mua k món đồ cùng loại của n hãng sản xuất
 - + Xếp k đồ vật vào n thùng chứa
 - + Tìm số nghiệm nguyên không âm của phương trình:

$$x_1 + x_2 + \dots + x_k = n$$

* Làm thế nào để chia kẹo cho một nhóm trẻ sao cho đứa trẻ lớn nhất được ít nhất k chiếc kẹo?

Thảo luận (4/7)

Nhị thức Newton & Tam giác Pascal (1/2):

Thảo luận (5/7)

Nhị thức Newton & Tam giác Pascal (2/2):

* Có thể dễ dàng suy ra tam giác pascal nhờ đẳng thức sau:

$$C_n^k = C_{n-1}^k + C_{n-1}^{k-1}$$

(Hãy tự chứng minh đẳng thức trên)

* Nhi thức Newton:

$$(x+y)^n = \sum_{i=0}^n C_n^i x^i y^{n-i} = C_n^0 x^n + C_n^1 x^{n-1} y + \dots + C_n^{n-1} x y^{n-1} + C_n^n y^n$$

(Hãy chứng minh nhị thức Newton bằng phương pháp quy nạp)

Thảo luận (6/7)

$|A| = n \Rightarrow |\mathcal{P}(A)| = ?$

- * Sử dụng nhị thức Newton $2^n = (1+1)^n = ?$
- * Sử dụng chuỗi nhị phân: mỗi tập con của A tương ứng với một chuỗi nhị phân n bit, suy ra $\left||\mathcal{P}(A)|=2^n\right|$

Thảo luận (7/7)

Mở rộng nguyên lý Dirichlet:

* Hãy tổng quát hóa nguyên lý Dirichlet cho trường hợp số bồ câu nhiều gấp nhiều lần số chuồng.

Bài tập (1/5)

Bài tập 1:

Xét các tập con của \mathbb{Z} :

$$A = \{2m+1 : m \in \mathbb{Z}\}, \quad B = \{2n+3 : n \in \mathbb{Z}\}\$$

 $C = \{2p-3 : p \in \mathbb{Z}\}, \quad D = \{2r+1 : r \in \mathbb{Z}\}\$

$$F = \{3s + 2 \cdot s \in \mathbb{Z}\}, \quad F = \{3t - 2 \cdot t \in \mathbb{Z}\}$$

$$E = \{3s + 2 : s \in \mathbb{Z}\}, \quad F = \{3t - 2 : t \in \mathbb{Z}\}$$

Xác định các khẳng định đúng trong các khẳng định sau:

a.
$$A = B$$
, b. $A = C$, c. $B = C$

d.
$$D = E$$
, e. $D = F$, f. $E = F$

Bài tập (2/5)

Bài tập 2:

Cho tập $A = \{1, 2, 3, 4, 5, 6, 7\}$. Hãy liệt kê:

- Các tập con của A
- Các tập con chứa 3 phần tử của A
- Các tập con của A chứa 1 và 2

Bài tập (3/5)

Bài tập 3:

Xét các tập con của \mathbb{Z} :

$$A = \{2n : n \in \mathbb{Z}\}, \quad B = \{3n : n \in \mathbb{Z}\}$$

$$C = \{4n : n \in \mathbb{Z}\}, \quad D = \{6n : n \in \mathbb{Z}\}$$

$$E = \{8n : n \in \mathbb{Z}\}$$

Xác định các khẳng định đúng trong các khẳng định sau:

- a. $E \subset C \subset A$, b. $A \subset C \subset E$
- c. $D \subset B$, d. $D \subset A$
- e. $B \subset D$, f. $\overline{D} \subset \overline{A}$

Xác định các tập dưới đây:

- a. $C \cup E$, b. $B \cup D$ c. $A \cap B$
- d. $B \cap D$, e. \overline{A} f. $A \cap E$

Bài tập (4/5)

Bài tập 4:

Đối với mỗi ánh xạ dưới đây, hãy xác định xem nó có đơn ánh không? Tìm ảnh của miền xác định?

Bài tập (5/5)

Các bài tập còn lại trong Chương 2 Toán rời rạc - GS.Nguyễn Hữu Anh

