MA453 Topologia Geral - Exercícios

Adair Neto

26 de abril de 2023

Espaços Topológicos

Exercício 2.6a

Questão: Seja (\mathcal{M}, τ) um espaço topológico e A, B \subset M. Mostre que A $^{\circ} \cup$ B $^{\circ} \subset$ (A \cup B) $^{\circ}$. Dê um exemplo para o qual A $^{\circ} \cup$ B $^{\circ} \neq$ (A \cup B) $^{\circ}$.

Resolução:

- Note que $A^{\circ} \cup B^{\circ} \subset A \cup B$.
- Como $A^{\circ} \cup B^{\circ}$ é aberto, segue que $A^{\circ} \cup B^{\circ} \subset (A \cup B)^{\circ}$.
- Contraexemplo. Tome A = [0, 1] e B = [1, 2] em \mathbb{R} com a topologia canônica:

$$A^{\circ} \cup B^{\circ} = (0,1) \cup (1,2)$$
 mas $(A \cup B)^{\circ} = ([0,2])^{c} = (0,2)$

Exercício 2.6b

Questão: Seja (\mathcal{M}, τ) um espaço topológico e A, B \subset M. Mostre que $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$. Dê um exemplo para o qual $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$.

Resolução:

- Observe que $A \cap B \subset \overline{A} \cap \overline{B}$.
- Como $\overline{A} \cap \overline{B}$ é fechado, segue que $\overline{A} \cap \overline{B} \subset \overline{A} \cap \overline{B}$.
- Contraexemplo. Tome $A = \mathbb{Q}$ e $B = \mathbb{R} \setminus \mathbb{Q}$:

$$\overline{\mathbb{Q} \cap \mathbb{R} \setminus \mathbb{Q}} = \emptyset \quad \text{mas} \quad \overline{\mathbb{Q}} \cap \overline{\mathbb{R} \setminus \mathbb{Q}} = \mathbb{R}$$

Exercício 2.9

Questão: Seja (\mathcal{M}, τ) um espaço topológico e $A \subset \mathcal{M}$. Mostre que $\partial A = \emptyset$ se, e somente se, A é aberto e fechado.

- (\Rightarrow) Lembre que $\partial A = \overline{A} \cap \overline{A^c}$.
- Para mostrar que A é fechado, suponha que A $\neq \overline{A}$.
- Isto é, existe $x \notin A$ tal que $x \in \overline{A}$.
- Como $x \notin A$, temos que $x \in A^c \subset \overline{A^c}$.
- Ou seja, $x \in \overline{A} \cap \overline{A^c}$, o que contradiz o fato de que $\partial A = \emptyset$.
- Portanto, A é fechado.
- Pelo mesmo argumento, $A^c = \overline{A^c}$. Assim, A^c é fechado e, portanto, A é aberto.
- (\Leftarrow) Suponha A aberto e fechado, i.e., $A = \overline{A} e A^{c} = \overline{A^{c}}$.
- Logo,

$$\emptyset = A \cap A^c = \overline{A} \cap \overline{A^c} = \partial A$$

Exercício 2.10

Questão: Dê um exemplo de um conjunto $A \subset \mathbb{R}$ tal que os conjuntos

$$A, A^{\circ}, \overline{A}, (\overline{A})^{\circ}, \overline{A^{\circ}}, \overline{(\overline{A})^{\circ}}, (\overline{A^{\circ}})^{\circ}$$

Resolução: Tome dois abertos, um fechado intersectado com os racionais e um ponto.

$$A = (0,1) \cup (1,2) \cup ([2,3] \cap \mathbb{Q}) \cup \{4\}$$

- $A^{\circ} = (0,1) \cup (1,2)$;
- $\overline{A} = [0,3] \cup \{4\};$
- $(\overline{A})^{\circ} = (0,3);$
- $\overline{A^{\circ}} = [0, 2];$
- $\overline{(\overline{A})^{\circ}} = [0,3];$
- $(\overline{A^{\circ}})^{\circ} = (0,2)$.

Exercício 2.15

Questão: Prove que os intervalos [a,b) para $a,b \in \mathbb{R}$ formam uma base para uma topologia τ_2 de \mathbb{R} que é mais fina que a topologia usual.

Resolução:

- Defina $\mathcal{B} = \{[a,b) : a < b, a, b \in \mathbb{R}\}.$
- Note que

$$\mathbb{R} = \bigcup_{a,b \in \mathbb{R}} [a,b)$$

- Seja $x \in \mathbb{R}$, U = [a, b) e V = [c, d) tais que $x \in U \cap V$.
- Tome

$$W = \lceil \max\{a, c\}, \min\{b, d\} \rceil$$

- Então $x \in W \subset U \cap V$ e temos que \mathcal{B} é base.
- Note que todo (*a*,*b*) pode ser escrito como

$$(a,b) = \bigcup_{n \in \mathbb{N}} \left[a + \frac{\varepsilon}{n}, b \right), \quad \varepsilon < \frac{b-a}{2}$$

- Porém, [a,b) não pode ser escrito como união de (a,b).
- Assim, como $(a,b) \subset [a,b)$, mas $[a,b) \not\subset (a,b)$, segue que τ_2 é mais fina que a topologia usual.

Exercício 2.17a

Questão: Seja (S, \mathcal{S}) um subespaço de (\mathcal{M}, τ) . Mostre que se \mathcal{B}_x é uma base de vizinhanças para $x \in \mathcal{M}$, então

$$\mathscr{B}_{r}^{s} = \{ S \cap U : U \subset \mathscr{B}_{x} \}$$

é uma base de vizinhanças de $x \in S$.

Além disso, mostre que se M satisfaz o primeiro axioma de enumerabilidade, então S também o satisfaz.

- Seja $U^s \in \mathcal{U}_x^s$. Precisamos mostrar que existe $V^s \in \mathcal{B}_x^s$ tal que $V^s \subset U^s$.
- Como \mathcal{B}_{x} é base de vizinhanças para $x \in \mathcal{M}$, para todo $U \in \mathcal{U}_{x}$ existe $V \in \mathcal{B}_{x}$ tal que $V \subset U$.
- Assim, basta tomar $V^s = S \cap V$. Note que $V^s \in \mathscr{B}^s_r$ e $V^s \subset V \subset U^s$.
- Observe que se \mathcal{B}_{x} é enumerável, então \mathcal{B}_{x}^{s} também é enumerável. Isto é, se \mathcal{M} satisfaz o primeiro axioma de enumerabilidade, então S também satisfaz.

Exercício 2.17b

Questão: Seja (S, \mathcal{S}) um subespaço de (\mathcal{M}, τ) . Mostre que se \mathcal{B} é uma base para a topologia de \mathcal{M} , então

$$\mathscr{B}_s = \{ S \cap U : U \subset \mathscr{B} \}$$

é uma base para a topologia de S.

Além disso, mostre que se M satisfaz o segundo axioma de enumerabilidade, então S também o satisfaz.

Resolução:

• Tome $U_s \in \mathcal{S}$. Como U_s é aberto em S, temos

$$U_s = S \cap U, \quad U \in \tau$$

• Agora como \mathcal{B} é base, existe $\mathscr{C} \subset \mathcal{B}$ tal que

$$U = \bigcup_{V \in \mathscr{C}} V$$

· Portanto,

$$U_s = S \cap U = S \cap \bigcup_{V \in \mathscr{C}} V = \bigcup_{V \in \mathscr{C}} (S \cap V)$$

• Isto é, existe $\mathscr{C}_s \subset \mathscr{B}_s$ tal que

$$U_s = \bigcup_{V_s \in \mathscr{C}_s} V_s$$

Ou seja, \mathcal{B}_s é base para a topologia de S.

• Observe que se \mathcal{B} é enumerável, então \mathcal{B}_s também é enumerável. Isto é, se \mathcal{M} satisfaz o segundo axioma de enumerabilidade, então S também satisfaz.

Exercício 2.18

Questão: Seja A um subconjunto de \mathcal{M} e suponha que, para todo $x \in A$, existe um aberto U_x contendo x tal que $U_x \subset A$. Mostre que A é aberto em \mathcal{M} .

Resolução: Basta notar que A é união de abertos:

$$A = \bigcup_{x \in A} x \subset \bigcup_{x \in A} U_x \subset A \iff A = \bigcup_{x \in A} U_x$$

Exercício 2.19a

Questão: Seja $\{\tau_i\}_{i\in I}$ uma coleção de topologias de X. Mostre que existe uma topologia que contida em todas as τ_i e que é a maior com esta propriedade.

Resolução: Basta tomar $\tau = \bigcap_{i \in I} \tau_i$ e temos que τ é a topologia mais fina (maior) contida em cada τ_i .

Exercício 2.19b

Questão: Seja $\{\tau_i\}_{i\in I}$ uma coleção de topologias de X. A união de τ_i é uma topologia?

Mostre que existe uma topologia que contém todas as τ_i e que é a menor com esta propriedade.

- Considere $A \in \tau_1$, $A \notin \tau_2$, $B \in \tau_2$ e $b \notin \tau_1$ tais que ou a interseção ou a união de A e B não estão em τ_1 ou em τ_2 .
- Por exemplo,

$$\tau_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}, \quad \tau_2 = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$$

- Temos que $\{b\} \cup \{c\} = \{b,c\} \notin \tau_1 \cup \tau_2$.
- Denote por $\mathscr S$ a coleção de todas as topologias que contém todas as τ_i e tome $\tau_s = \bigcap_{S \in \mathscr S} S$. Temos que:

- $-\tau_s$ é uma topologia.
- τ_s contém todas as τ_i .
- Se τ' é uma topologia contendo todas as τ_i , então $\tau_s \subset \tau'$.
- Assim, τ_s é a menor topologia com a propriedade desejada.

Exercício 2.25

Questão: Mostre que a coleção

$$\mathcal{B}_1 = \{ [a, b) : a < b, \ a, b \in \mathbb{Q} \}$$

é base de uma topologia diferente da topologia do limite inferior de \mathbb{R} .

Resolução:

- \mathcal{B}_1 é base de \mathbb{R} .
 - Note que $\mathbb{R} = \bigcup_{B \in \mathscr{B}_1} B$.
 - Dados $x \in \mathbb{R}$ e U, V ∈ \mathcal{B}_1 tais que $x \in U \cap V$, vamos mostrar que existe W ∈ \mathcal{B}_1 tal que $x \in W \cap V$.
 - De fato, se $U = [a_1, b_1)$ e $V = [a_2, b_2)$, basta tomar W = [a, b) com $a = \max\{a_1, a_2\}$ e $b = \min\{b_1, b_2\}$.
 - − Logo, \mathcal{B}_1 é base de \mathbb{R} .
- Seja τ_1 a base gerada por \mathcal{B}_1 . Vamos verificar que essa topologia é diferente da topologia do limite inferior τ_l .
 - Considere um elemento $[\sqrt{2}, \sqrt{2} + 1) \in \tau_I$.
 - E considere B = [a,b) um elemento da base \mathcal{B}_1 contendo $\sqrt{2}$.
 - Como $a \in \mathbb{Q}$ e B contém $\sqrt{2}$, temos que $a < \sqrt{2}$ e $a \notin [\sqrt{2}, \sqrt{2} + 1)$.
 - Assim, B não é um subconjunto de $[\sqrt{2}, \sqrt{2} + 1)$.
 - Note que o argumento é válido para qualquer x irracional no lugar de $\sqrt{2}$.
 - Logo, τ_1 e τ_l são diferentes.

Exercício 2.29a

Questão: Mostre que cada subespaço aberto de um espaço topológico separável é separável.

Resolução:

- Seja (S, \mathcal{S}) um subespaço aberto de um espaço separável (M, τ) .
- Como M é separável, existe $D \subset M$ tal que D é denso e enumerável.
- Considere $\tilde{D} = D \cap S$ e tome \tilde{U} aberto em S.
- Assim, $\tilde{U} = U \cap S$, em que $U \in \tau$, é aberto em M, pois S é aberto.
- Como D é denso em M, D \cap (U \cap S) \neq \emptyset .
- · Dessa forma,

$$D \cap (U \cap S) = (D \cap S) \cap (U \cap S) = \tilde{D} \cap \tilde{U} \neq \emptyset$$

• Logo, \tilde{D} é denso em S. Como $\tilde{D} \subset D$, \tilde{D} é enumerável.

Exercício 2.29b

Questão: Mostre que cada subespaço fechado de um espaço topológico Lindelöf separável é Lindelöf.

Resolução:

- Seja (S, ${\mathscr S}$) um subespaço fechado de um espaço Lindelöf separável (M, τ).
- Tome $\{\tilde{\mathbf{U}}_i\}_{i\in \mathbf{I}}$ uma cobertura aberta de S. Assim,

$$\tilde{\mathbf{U}}_i = \mathbf{U}_i \cap \mathbf{S}_i, \quad \forall i$$

em que cada U_i é aberto em M.

- Portanto, $\{U_i\}_{i\in I} \cup S^c$ é cobertura aberta de M.
- Como M é Lindelöf, existe J enumerável tal que $\{U_j\}_{j\in J}\cup S^c$ é subcobertura enumerável de M.
- Dessa forma, $\{\tilde{\mathbf{U}}_i\}_{i\in J}$ é subcobertura enumerável de S e, assim, S é Lindelöf.
- De fato, dado $x \in S$ temos que

$$x \in M = S^c \cup \bigcup_{j \in J} U_j \implies x \in \bigcup_{j \in J} U_j \cap S = \bigcup_{j \in J} \tilde{U}_j$$

Exercício 2.31a

Questão: Mostre que $\mathbb R$ não é compacto.

Resolução: Basta cobrir \mathbb{R} com os abertos da forma (-n,n), que não possui subcobertura finita.

Exercício 2.31b

Questão: Mostre que um subconjunto finito de um espaço topológico é compacto.

Resolução:

- Tome um conjunto finito $X = \{x_1, \dots, x_n\}$ e uma cobertura aberta $\{U_i\}_{i \in I}$ de X.
- Para todo $x \in X$, existe $j \in I$ tal que $x \in U_j$.
- Assim, podemos renomear os conjuntos da cobertura de forma que

$$x_1 \in U_1, \dots, x_n \in U_n$$

• Ou seja, X é compacto, pois

$$X \subset \bigcup_{i=1}^n U_i$$

Exercício 2.31c

Questão: Mostre que um espaço topológico discreto é compacto se, e somente se, é finito.

Resolução:

- (\Rightarrow) Suponha que (X, τ) é compacto e infinito.
 - Tome $C = \{\{x\} : x \in X\}$ uma cobertura aberta de X.
 - Como X é compacto, X admite uma subcobertura finita $C' = \{\{x_i\} : x_i \in X, 1 \le i \le n\}$.
 - Porém, como X é infinito, existe $y \notin \{x_1, ..., x_n\}$.
 - Como $\{y\}$ ∉ C', temos que C' não cobre X, o que é uma contradição.
 - Logo, X é finito.
- (⇐) Pelo item anterior, todo espaço finito é compacto.

Exercício 2.33

Questão: Mostre que se S é um subconjunto conexo de \mathbb{R} e $a,b \in S$ com a < b, então $[a,b] \subset S$. **Resolução:**

- Suponha que $[a,b] \not\subset S$.
- Então existe $c \in [a, b]$ tal que $c \notin S$.
- Agora basta considerar

$$((-\infty,c)\cap S)\cup ((c,+\infty)\cap S)=S$$

• Como $(-\infty,c) \cap S$ e $(c,+\infty) \cap S$ são abertos disjuntos, temos que S é desconexo.

Exercício 2.38

Questão: Seja M um espaço topológico discreto com pelo menos dois pontos. Mostre que

- 1. M é localmente conexo, mas não conexo.
- 2. $C_x = \{x\}$ para cada $x \in M$ (i.e. o espaço discreto é totalmente desconexo).

Resolução:

- Note que, para todo x ∈ M, temos que {x} é aberto (pois topologia discreta) e {x} é conexo. Assim, temos que M é localmente conexo.
 - Note que $\{x\}$ e $\{x\}^c$ são abertos.
 - Ou seja, $\{x\}$ é aberto e fechado em M.
 - Logo, como ∅ e M não são os únicos abertos e fechados de M, temos que M é desconexo.
- 2. Suponha $y \neq x$ e $y \in C_x$.
 - Então $\{x\}$ e $\{y\}$ são abertos, mas também $\{x\}^c$ e $\{y\}^c$ são abertos.
 - Logo, como Ø e C_x não são os únicos abertos e fechados de C_x, temos que C_x é desconexo, o que é uma contradição.

Exercício 2.40

Questão: Se um espaço topológico compacto é localmente conexo, então ele possui um número finito de componentes conexas.

Resolução:

- Seja $\{C_x : x \in M\}$ as componentes conexas de M.
- Como M é localmente conexo e componentes conexas de espaços localmente conexos são abertas, cada C_x é aberto.
- Ou seja, $\{C_x\}_{x\in M}$ é uma cobertura aberta de M.
- Como M é compacto, existe $I \subset M$ finito tal que $\{C_x : x \in I\}$ cobre M.
- Por fim, como para todo $x \neq y \in M$ temos que $C_x = C_y$ ou $C_x \cap C_y = \emptyset$, segue que $\{C_x\}_{x \in I}$ são todas as componentes conexas.

Propriedades Topológicas

Exercício 3.1

Questão: Mostre que o axioma T_1 é equivalente a pedir que todo conjunto finito de pontos é fechado.

Resolução:

- 1. Todo conjunto unitário é fechado sse. todo conjunto finito é fechado.
 - A volta é imediata: todo conjunto unitário é finito.
 - Suponha que todo conjunto unitário é fechado.
 - Como todo conjunto finito é união finita de conjuntos unitários, temos que todo conjunto finito é fechado.
- 2. (\Rightarrow) Suponha T_1 .
 - Para todo $y \neq x$, existe V aberto contendo y tal que $\{x\} \cap V = \emptyset$.
 - Logo, $\{x\}^c$ é aberto e $\{x\}$ é fechado.
- 3. (⇐) Suponha que todo conjunto finito de pontos é fechado.
 - Dado $x \neq y$ temos que $\{x\}$ e $\{y\}$ são fechados.
 - Ou seja, $\{x\}^c =: V \in \{y\}^c =: U$ são abertos.
 - Como $x \in U$, $x \notin V$, $y \in V$ e $y \notin U$, temos que T_1 é satisfeito.

Exercício 3.3

Questão: Considere N com a topologia em que

$$\overline{A} = \{kn : n \in A, k \in \mathbb{N}\}\$$

Mostre que \mathbb{N} com essa topologia é T_0 , mas não T_1 .

Resolução:

- Considere sobre \mathbb{N} a topologia $\mathfrak{N} = \{A^c \subset \mathbb{N} : A = \overline{A}\}.$
- Vamos mostrar que $(\mathbb{N}, \mathfrak{N})$ é T_0 .
 - Dados a e b naturais distintos, considere $A = \{a\}$ e $B = \{b\}$.
 - Então $\overline{\mathbf{A}}^c = \mathbb{N} \setminus \{na : n \in \mathbb{N}\}\ e\ \overline{\mathbf{B}}^c = \mathbb{N} \setminus \{nb : n \in \mathbb{N}\}\ são$ abertos.
 - Se $b \not | a$, então $a \in \overline{B}^c$ e $b \notin \overline{B}^c$.
 - Se $a \not\mid b$, pelo mesmo argumento, $b \in \overline{A}^c$ e $a \notin \overline{A}^c$.
 - Como $a \neq b$, um dos dois casos acima ocorre. Logo, $(\mathbb{N}, \mathfrak{N})$ é T_0 .
- Por fim, mostramos que $(\mathbb{N}, \mathfrak{N})$ não é T_1 .
 - Basta notar que {*a*} não pode ser fechado, pois $\overline{\{a\}}$ = {*na* : *n* ∈ N} ≠ {*a*}.

Exercício 3.5

Questão: Seja M um conjunto infinito munido da topologia cofinita. Mostre que M é T_1 , mas não T_2 .

Resolução:

- Seja $x \in M$. Então $\{x\}^c$ é aberto e, portanto, $\{x\}$ é fechado. Ou seja, M é T_1 .
- Tome $x, y \in M$ e suponha que existam abertos U e V tais que $x \in U$ e $y \in V$.
- Assim, podemos escrever

$$U = M \setminus F$$
 e $V = M \setminus G$, F, G finitos

• Com isso,

$$U \cap V = (M \setminus F) \cap (M \setminus G) = (M \cap F^c) \cap (M \cap G^c)$$
$$= M \cap (F^c \cap G^c) = M \cap (F \cup G)^c = M \setminus (F \cup G)$$

• Como F∪G é finito e M é infinito,

$$U \cap V = M \setminus (F \cup G) \neq \emptyset$$

Exercício 3.7b (Mujica 16.G)

Questão: Mostre que M é T_2 sse., para cada $a \in M$ temos que

$$\bigcap \{\overline{\mathsf{U}} : \mathsf{U} \in \mathscr{U}_a\} = \{a\}$$

Resolução:

- 1. (⇒) Suponha que M é T_2 .
 - Tome $x \in M$ e $U \in \mathcal{U}_{r}$.
 - Se $\overline{U} = \{x\}$, não há nada para fazer.
 - Se existe $y \in \overline{U} \setminus \{x\}$, como M é Hausdorff, existem U_1 e V_1 abertos disjuntos tais que $x \in U_1$ e $y \in V_1$.
 - Como V_1 é aberto e $U_1 \subset M \setminus V_1$, segue que $M \setminus V_1$ é uma vizinhança fechada de x que não contém y.
 - Repetindo os passos acima temos que a interseção de todas as vizinhanças fechadas de x é igual a $\{x\}$.
- 2. (⇐) Suponha que a igualdade do enunciado é válida.
 - Por hipótese, existe $U \in \mathcal{U}_x$ tal que $x \in \overline{U}$ e $y \notin \overline{U}$.
 - Assim $V := M \setminus \overline{U}$ é um aberto que contém y.
 - Logo, $x \in U$, $y \in V$ e $U \cap V = \emptyset$.

Exercício 3.8 (Mujica 18.B)

Questão: Prove que o espaço de Sierpinski é normal, mas não é regular nem Hausdorff.

Resolução:

1. Sierpinski é normal.

- Seja X = $\{a,b\}$ e $\tau = \{\emptyset, \{a\}, \{a,b\}\}.$
- Note que os fechados são $\mathcal{F} = \{\emptyset, \{b\}, \{a, b\}\}.$
- Como não existem dois fechados disjuntos, o resultado segue trivialmente.
- 2. Sierpinski não é regular.
 - Considere o fechado $\{b\}$ e $a \in \{b\}^c$.
 - O único aberto contendo $\{b\}$ é M, mas $a \in M$.
 - Ou seja, nenhum aberto contendo *a* é disjunto de M.
 - Logo, X não é regular.
- 3. Sierpinski não é Hausdorff.
 - Considere os pontos *a* e *b*.
 - Pelo mesmo argumento acima, X não é Hausdorff.

Exercício 3.9 (Mujica 17.C)

Questão: Seja X um conjunto infinito com a topologia cofinita. Prove que X não é regular.

Resolução:

- Tome B fechado, portanto finito, e $a \in B^c$.
- Suponha que X seja regular.
- Então existem abertos U contendo a e V contendo B disjuntos.
- Podemos escrever

$$U = M \setminus F$$
, $V = M \setminus G$, F, G finitos

• Portanto,

$$\emptyset = U \cap V = M \setminus (F \cup G)$$

• Como $F \cup G$ é finito, isso contradiz a hipótese de que $U \cap V = \emptyset$.

Exercício 3.11a (Mujica 17.E)

Questão: Considere sobre $\mathbb R$ a família

$$\mathcal{B} = \{(a,b) : a,b \in \mathbb{R}, a < b\} \cup \{(a,b) \cap \mathbb{Q} : a,b \in \mathbb{R}, a < b\}$$

Mostre que ${\mathcal{B}}$ é uma base de uma topologia τ de ${\mathbb{R}}$.

Resolução:

1. O espaço todo é união dos elementos da base:

$$\mathbb{R} = \bigcup_{B \in \mathscr{B}} B$$

- 2. Existe elemento da base que "faz o sanduíche":
 - Seja $x \in \mathbb{R}$ e U, $V \in \mathcal{B}$ tais que $x \in U \cap V$.
 - Escreva U e V como intervalos.
 - Tome W um intervalo tal que $x \in W \subset U \cap V$.
 - Note que $W \in \mathcal{B}$.

Exercício 3.11c (Mujica 17.E)

Questão: Considere sobre $\mathbb R$ a família

$$\mathcal{B} = \{(a,b) : a,b \in \mathbb{R}, \ a < b\} \cup \{(a,b) \cap \mathbb{Q} : a,b \in \mathbb{R}, \ a < b\}$$

Mostre que (\mathbb{R}, τ) não é regular.

- Tome $(a,b) \cap (\mathbb{R} \setminus \mathbb{Q})$ (fechado) e $c \in (a,b) \cap \mathbb{Q}$.
- Pela densidade dos racionais e irracionais, todo aberto contendo *c* intersecta o fechado.

Exercício 3.12

Questão: Seja (M, τ) um espaço regular. Dado um fechado A \subset M e um ponto $b \in A^c$, mostre que existem abertos U, $V \in \tau$ tais que A \subset U, $b \subset V$ e $\overline{U} \cap \overline{V} = \emptyset$.

Resolução:

- Como M é regular, existem U_0 , $V_0 \in \tau$ tais que $A \subset U_0$, $b \in V_0$ e $U_0 \cap V_0 = \emptyset$.
- Para cada $a \in A$, como $a \in U_0$, temos que existe $U_a \in \tau$ tal que $a \in U_a \subset \overline{U}_a \subset U_0$.
- Como $b \in V_0$, existe V aberto tal que $b \in V \subset \overline{V} \subset V_0$.
- Definimos

$$U = \bigcup_{a \in A} U_a$$

- Dessa forma, $A \subset U$ e $b \in V$.
- Como

$$\overline{\mathbf{U}} = \overline{\bigcup_{a \in \mathbf{A}} \mathbf{U}_a} = \bigcup_{a \in \mathbf{A}} \overline{\mathbf{U}}_a \subset \mathbf{U}_0$$

· Temos que

$$\overline{U} \cap \overline{V} \subset U_0 \cap V_0 = \emptyset$$

Exercício 3.14a (Mujica, 21.H)

Questão: Seja (M, τ) um espaço de Hausdorff. E seja K um subconjunto compacto de M e $y \in K^c$. Mostre que existem abertos disjuntos U e V em M tais que K \subset U e $y \in$ V.

Resolução:

- 1. Aplique Hausdorff para obter os abertos.
 - Como M é Hausdorff, para todo $x \in K$ existem U_x e V_x abertos disjuntos tais que $x \in U_x$ e $y \in V_x$.
- 2. Aplique compacidade.
 - Como K é compacto e

$$K \subset \bigcup_{x \in K} U_x$$

• Temos que existe $\Delta \subset K$ finito tal que

$$K \subset \bigcup_{x \in \Delta} U_x =: U$$

• Seja

$$V = \bigcap_{x \in \Delta} V_x \implies y \in V$$

- Assim, $K \subset U$ e $y \in V$.
- 3. Mostre que $U \cap V = \emptyset$.
 - Tome $z \in U \cap V$.
 - Então $z \in V_x$ para todo $x \in \Delta$ e existe $x_0 \in \Delta$ tal que $z \in U_{x_0}$.
 - Ou seja, $z \in U_{x_0} \cap V_{x_0}$, o que é uma contradição.
 - Logo, $U \cap V = \emptyset$.

Exercício 3.15 (Mujica, 21.I)

Questão: Seja (M, τ) um espaço de Hausdorff, K um subconjunto compacto de M e U_1 , U_2 abertos tais que K $\subset U_1 \cup U_2$. Mostre que existem dois subconjuntos compactos K_1 e K_2 de M tais que

$$K = K_1 \cup K_2$$
, $K_1 \subset U_1$, $K_2 \subset U_2$

Resolução:

- Considere $K \setminus U_1$ e $K \setminus U_2$.
- Note que K\U₁ e K\U₂ são disjuntos, pois

$$(K \setminus U_1) \cap (K \setminus U_2) = K \setminus (U_1 \cup U_2) = \emptyset$$

E também note que K \ U₁ e K \ U₂ são compactos, pois são subconjuntos fechados de um compacto:

$$K \setminus U_1 = K \cap (M \setminus U_1)$$

- Como M é Hausdorff, existem V_1 e V_2 abertos disjuntos tais que $K \setminus U_1 \subset V_1$ e $K \setminus U_2 \subset V_2$.
- Tomemos $K_1 = K \setminus V_1$ e $K_2 = K \setminus V_2$.
- Note que $K_1 \subset U_1$ e $K_2 \subset U_2$.
- Se $K = K_1 \cup K_2$, temos o que queríamos.
- Caso contrário, aplicamos o algoritmo acima novamente.

Exercício 3.17a

Questão: Seja (M, τ) um espaço localmente compacto. Mostre que todo subespaço aberto de M é localmente compacto.

Resolução:

- Suponha X um subespaço aberto de M.
- Tome $x \in X$ e U uma vizinhança aberta de x em X.
- Como X é aberto, U é aberto em M.
- Como M é localmente compacto, existe uma base de vizinhanças para x consistindo de compactos.
- Assim, $x \in V \subset U$ em que V é uma vizinhança compacta de x em M.
- Como $V \subset U \subset X$, temos que V é uma vizinhança compacta de x em X.

Exercício 3.17b

Questão: Seja (M, τ) um espaço localmente compacto. Mostre que todo subespaço fechado de M é localmente compacto.

Resolução:

- Suponha X um subespaço fechado de M.
- Primeiro, construímos uma vizinhança aberta de x em X.
 - Tome $x \in X$ e V uma vizinhança aberta de x em M tal que \overline{V} é compacto.
 - Assim, temos que $V_x = V \cap X$ é uma vizinhança aberta de x em X.
- Vamos verificar que \overline{V}_X é compacto.
 - Seja $\{\tilde{\mathbf{U}}_i\}_{i\in \mathbf{I}}$ uma cobertura aberta de $\overline{\mathbf{V}}_x$.
 - Assim, cada $\tilde{\mathbf{U}}_i = \mathbf{U}_i \cap \overline{\mathbf{V}}_x$, em que \mathbf{U}_i é aberto.
 - Note que $\{U_i\}_{i\in I}$ ∪ $\{X^c\}$ é aberto e cobre \overline{V} , pois $V_x = V \setminus X^c$.
 - Pela compacidade de \overline{V} , temos que existe J ⊂ I finito tal que $\{U_i\}_{i\in J} \cup \{X^c\}$ cobre \overline{V} .
 - Logo, $\{\tilde{U}_j\}_{j\in J}$ é uma subcobertura finita de \overline{V}_x .

Exercício 3.18

Questão: Seja (M, τ) um espaço de Hausdorff. Mostre que a interseção de dois subespaços localmente compactos de M é localmente compacta.

- Lembre que um espaço Hausdorff é localmente compacto sse. todo ponto possui vizinhança compacta.
- Assim, sejam X₁ e X₂ dois subespaços localmente compactos de M.
- Como M é Hausdorff, X_1 e X_2 também são.

- Tome $x \in X_1 \cap X_2$.
- Como $x \in X_1$, que é Hausdorff localmente compacto, existe V_1 vizinhança compacta de x em X_1 .
- Analogamente, existe V_2 vizinhança compacta de x em X_2 .
- Assim, $V_1 \cap V_2$ é uma vizinhança de x em $X_1 \cap X_2$.
- Como M é Hausdorff, V_1 e V_2 são fechados em M.
- Portanto, como $V_1 \cap V_2$ é um subconjunto fechado de um compacto, segue que $V_1 \cap V_2$ é compacto.
- Logo, X₁ ∩ X₂ é Hausdorff (pois subespaço de M) e todo ponto possui vizinhança compacta, temos que X₁ ∩ X₂ é localmente compacto.

Exercício 3.19

Questão: Seja (M, τ) um espaço localmente compacto. Mostre que $A \subset M$ é aberto em M sse. $A \cap K$ é aberto em K para cada compacto $K \subset M$.

- 1. (⇒) Suponha A aberto em M, em que M é localmente compacto.
 - Tome $K \subset M$ compacto.
 - No subespaço K, temos que A∩K é aberto, pois A é aberto em M.
- 2. (\Leftarrow) Suponha A \cap K aberto em K para cada compacto K \subset M.
 - Seja $x \in A$.
 - Como M é localmente compacto, existe V_x vizinhança aberta de x tal que $\overline{V_x}$ é compacto.
 - Assim, $A \cap \overline{V_X}$ é aberto em $\overline{V_X}$ por hipótese.
 - Logo, A é aberto em M.