Formulae for Solid Oxide Fuel Cells

Output Voltage

Output Voltage = Nernst Voltage - (Activation Loss + Concentration loss + Ohmic Loss)

 $V_{fc} = E_{nernst} - (V_{act} + V_{con} + V_{ohmic})$

Nernst Equation

$$E = E_0 + \frac{RT}{2F} \ln \left(\frac{P_{\text{H}_2} * P_{\text{O}_2}^{0.5}}{P_{\text{H}_2\text{O}}} \right)$$

Where

 E_0 = 1.1 V is the standard potential

 $R = 8.314 \, kJ/kmol.K$ is the universal gas constant

T = operating temperature of the fuel cell in kelvins

F = 96486 C/mol is the Faraday constant

Output current Density

$$I_{\rm fc} = I_0 \left(e^{(\alpha_1 nF/RT)V_{\rm act}} - e^{(-\alpha_2 nF/RT)V_{\rm act}} \right)$$

where -

 I_0 is the exchange current

 α_i is the coefficient of charge transfer

n = 2 is the number of moles of electrons transferred

Exchange Current Density

$$I_0 = A(e_-Eact)/RT$$

where -

 $A = 101.2 \text{ kA/cm}^2$ is a preexponential factor obtained by curve fitting with the distributed model

Partial Pressures

$$P_{H2} = \left(\frac{\frac{1}{K_{H2}}}{1 + \tau_{H2}}\right) (q_{H2} - 2K_r I_{fc})$$

$$P_{O2} = \left(\frac{\frac{1}{K_{O2}}}{1 + \tau_{O2}}\right) \left(q_{O2} - 2K_r I_{fe}\right)$$

$$P_{H2O} = \left(\frac{1}{K_{H2O}} \frac{1}{1 + \tau_{H2O}}\right) (2K_r I_{fc})$$

$$q_{H2} = \frac{2K_r}{U_{opt}} \left(\frac{1}{1 + \tau_f s} \right)$$

$$q_{O2} = \frac{q_{H2}}{r_{OH}}$$

Where

- qH2 is the fuel flow rate
- qO2 is the oxygen flow rate
- KH2, KO2, KH2O are the molar valve constants of hydrogen, oxygen and water respectively,
- tH2, tO2, tH2O, are the response times of hydrogen, oxygen and water respectively,
- *τf* is the fuel response time in seconds,
- *Uopt* is the optimum fuel utilization,
- *rOH* is the ratio of hydrogen to oxygen
- Kr = 1/(8F).

Activation Loss

$$V_{\rm act} = \frac{RT}{F} \left(z + \sqrt{(1+z^2)} \right)$$

Where

 I_0 is the exchange current

 α_i is the coefficient of charge transfer

n = 2 is the number of moles of electrons transferred.

Concentration Loss

$$V_{\rm con} = \frac{RT}{nF} \ln \left(\frac{C_b}{C_{\infty}} \right)$$

OR

$$V_{conc} = -\frac{RT}{nF} \ln \left(1 - \frac{I_{fc}}{I_L} \right)$$

Where

 C_b is the concentration at the triple-phase boundary (tbp) where the gas, electrolyte,

 $C\infty$ is the bulk concentration of reactant

n is the number of moles of electrons participating in the reaction

IL is the maximum possible current density of the cell at a given flowrate

I fc is the given current density

<u>Ohmic Loss</u>

$$V_{Ohmic} = \left(\gamma \exp \left[eta \left(rac{1}{T_0} - rac{1}{T}
ight)
ight]
ight) I_{
m fc} = r I$$

where

T is the fuel cell temperature

 $T_0 = 973 \ K$

 γ = 0.2 Ω , and θ = -2870 K are the constant coefficients of the fuel cell

r is the internal resistance of the SOFC

Constants and Parameters Used

Parameter	Value	Unit
E_O	1.1	V
R	8.314	KJ/Kmol.K
F	98486	C/mol
K_{H2}	8.43x10 ⁻⁴	Kmol/atm
K_{O2}	2.81x10 ⁻⁴	Kmol/atm
K_{H2O}	2.52x10 ⁻³	Kmol/atm
$ au_{H2}$	26.1	seconds
$ au_{O2}$	2.91	seconds
$ au_{H2O}$	78.3	seconds
$ au_f$	5	seconds
U_{opt}	0.85	-
r_{OH}	1.145	ohm

References:

- Modeling and Simulation of Solid Oxide Fuel Cell Based Distributed Generation System 1Mukesh Kumar Baliwal, 2Dr.A.Bhargava, 3Mr. S.N. Joshi, 4 Sunil kumar - International Journal of Engineering Research & Technology (IJERT) Vol. 2 Issue 8, August - 2013 IJERT ISSN: 2278-0181
- 2. Solid Oxide Fuel Cell Modeling Abraham Gebregergis, Member, IEEE, Pragasen Pillay, Fellow, IEEE, Debangsu Bhattacharyya, and Raghunathan Rengaswemy
- 3. Mathematical modelling of solid oxide fuel cell using Matlab/Simulink TVVS Lakshmi, P Geethanjali and Krishna Prasad S International Conference on Microelectronics, Communication and Renewable Energy (ICMiCR-2013)