MA675GroupC_Brooke

2024-10-11

```
# Load necessary libraries
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.4
                       v readr
                                   2.1.5
## v forcats 1.0.0
                       v stringr 1.5.1
## v ggplot2 3.5.1 v tibble 3.2.1
## v lubridate 1.9.3
                     v tidyr
                                  1.3.1
## v purrr
             1.0.2
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
# Load the dataset
data <- read.csv("Individual-level basic variable.csv")</pre>
# Ensure Age and Partners_count are numeric
data$Age <- as.numeric(data$Age)</pre>
data$Partners_count <- as.numeric(data$Partners_count)</pre>
# Create a scatter plot
ggplot(data, aes(x = Age, y = Partners_count)) +
 geom_point() +
 labs(title = "Scatter Plot of Age vs. Partners Count",
      x = "Age",
      y = "Partners Count") +
  theme_minimal()
```

Scatter Plot of Age vs. Partners Count


```
# Load necessary libraries
library(tidyverse)
# Load the dataset
data <- read.csv("Individual-level basic variable.csv")</pre>
# Ensure Age and Partners_count are numeric
data$Age <- as.numeric(data$Age)</pre>
data$Partners_count <- as.numeric(data$Partners_count)</pre>
# Group by Age and calculate the mean of Partners_count
age_partner_mean <- data %>%
  group_by(Age) %>%
  summarise(mean_partners = mean(Partners_count, na.rm = TRUE))
# Create a bar plot
ggplot(age_partner_mean, aes(x = Age, y = mean_partners)) +
  geom_bar(stat = "identity") +
 labs(title = "Mean Partners Count by Age",
       x = "Age",
       y = "Mean Partners Count") +
  theme_minimal()
```



```
# Load necessary libraries
library(tidyverse)

# Load the dataset
data <- read.csv("Individual-level basic variable.csv")

# Ensure Age, Partners_count, and Sex are in the correct format
data$Age <- as.numeric(data$Age)
data$Partners_count <- as.numeric(data$Partners_count)
data$Sex <- as.factor(data$Sex) # Make sure Sex is a factor (M/F)

# Group by Age and Sex, then calculate the mean of Partners_count
age_sex_partner_mean <- data %>%
group_by(Age, Sex) %>%
summarise(mean_partners = mean(Partners_count, na.rm = TRUE))
```

```
fill = "Sex") +
theme_minimal()
```

Mean Partners Count by Age and Sex


```
# Load necessary libraries
library(tidyverse)

# Load the dataset
data <- read.csv("Individual-level basic variable.csv")

# Ensure Age, Count_same_sex, and Sex are in the correct format
data$Age <- as.numeric(data$Age)
data$Count_same_sex <- as.numeric(data$Count_same_sex)
data$Sex <- as.factor(data$Sex) # Make sure Sex is a factor (M/F)

# Group by Age and Sex, then calculate the mean of Count_same_sex
age_sex_same_sex_mean <- data %>%
group_by(Age, Sex) %>%
summarise(mean_same_sex = mean(Count_same_sex, na.rm = TRUE))
```

```
# Create a bar plot with divided bars for Males and Females
ggplot(age_sex_same_sex_mean, aes(x = Age, y = mean_same_sex, fill = Sex)) +
```

Mean Same-Sex Partners Count by Age and Sex


```
# Group by Age and Sex, then calculate the mean of Count_same_sex
age_sex_same_sex_mean <- data %>%
group_by(Age, Sex) %>%
summarise(mean_same_sex = mean(Count_same_sex, na.rm = TRUE))
```

```
# Fit linear regression models for each sex
model_male <- lm(mean_same_sex ~ Age, data = age_sex_same_sex_mean %>% filter(Sex == "M"))
model_female <- lm(mean_same_sex ~ Age, data = age_sex_same_sex_mean %>% filter(Sex == "F"))
# Print summaries for both models
summary(model_male)
```

```
##
## Call:
```

```
## lm(formula = mean_same_sex ~ Age, data = age_sex_same_sex_mean %>%
##
      filter(Sex == "M"))
##
## Residuals:
               1Q Median
                               3Q
                                      Max
## -0.9020 -0.6361 -0.2476 0.6320 1.8550
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.71947
                          0.83681
                                   0.860 0.41005
## Age
               0.27281
                          0.07571
                                    3.603 0.00482 **
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 0.9054 on 10 degrees of freedom
## Multiple R-squared: 0.5649, Adjusted R-squared: 0.5214
## F-statistic: 12.98 on 1 and 10 DF, p-value: 0.00482
summary(model_female)
##
## Call:
## lm(formula = mean_same_sex ~ Age, data = age_sex_same_sex_mean %>%
      filter(Sex == "F"))
##
##
## Residuals:
                 1Q
                     Median
## -1.47370 -0.57844 0.03024 0.58473 1.95628
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.03222
                          0.94764
                                    2.144
                                            0.0576 .
               0.02597
                          0.07918
                                    0.328
                                            0.7497
## Age
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9855 on 10 degrees of freedom
## Multiple R-squared: 0.01064, Adjusted R-squared: -0.08829
## F-statistic: 0.1076 on 1 and 10 DF, p-value: 0.7497
# Scatter plot with regression line for both males and females
ggplot(age_sex_same_sex_mean, aes(x = Age, y = mean_same_sex, color = Sex)) +
 geom_point() + # Scatter plot
 geom_smooth(method = "lm", se = TRUE) + # Regression line with confidence interval
 labs(title = "Mean Same-Sex Partners Count by Age with Regression Line",
      x = "Age",
      y = "Mean Same-Sex Partners Count",
      color = "Sex") +
 theme_minimal()
## 'geom_smooth()' using formula = 'y ~ x'
```

Mean Same-Sex Partners Count by Age with Regression Line


```
# Fit a combined model with interaction between Age and Sex
combined_model <- lm(mean_same_sex ~ Age * Sex, data = age_sex_same_sex_mean)
# Print the summary of the combined model
summary(combined_model)</pre>
```

```
##
## lm(formula = mean_same_sex ~ Age * Sex, data = age_sex_same_sex_mean)
## Residuals:
      Min
                1Q Median
                                3Q
                                       Max
## -1.4737 -0.6361 -0.1297 0.5847
                                   1.9563
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 2.03222
                           0.90993
                                     2.233
                                             0.0371 *
               0.02597
                           0.07603
                                     0.342
                                             0.7362
## Age
## SexM
               -1.31274
                           1.26212
                                    -1.040
                                             0.3107
               0.24684
                           0.10973
                                             0.0359 *
## Age:SexM
                                     2.249
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.9463 on 20 degrees of freedom
## Multiple R-squared: 0.5301, Adjusted R-squared: 0.4596
## F-statistic: 7.521 on 3 and 20 DF, p-value: 0.001469
```

'geom_smooth()' using formula = 'y ~ x'


```
# Load necessary libraries
library(tidyverse)

# Load the dataset
data <- read.csv("Individual-level basic variable.csv")

# Ensure Age, Count_unrelated_noadult, and Sex are in the correct format
data$Age <- as.numeric(data$Age)
data$Count_unrelated_noadult <- as.numeric(data$Count_unrelated_noadult) # Assuming this variable repr
data$Sex <- as.factor(data$Sex) # Ensure Sex is a factor (M/F)

# Group by Age and Sex, then calculate the mean of Count_unrelated_noadult
age_sex_unrelated_noadult_mean <- data %>%
```

```
group_by(Age, Sex) %>%
summarise(mean_unrelated_noadult = mean(Count_unrelated_noadult, na.rm = TRUE))
```

'summarise()' has grouped output by 'Age'. You can override using the '.groups'
argument.

Mean Unrelated Non-Adult Partners Count by Age and Sex


```
# Group by Age and Sex, then calculate the mean of Count_unrelated_noadult
age_sex_unrelated_noadult_mean <- data %>%
group_by(Age, Sex) %>%
summarise(mean_unrelated_noadult = mean(Count_unrelated_noadult, na.rm = TRUE))
```

```
# Fit separate linear regression models for Males and Females
model_male <- lm(mean_unrelated_noadult ~ Age, data = age_sex_unrelated_noadult_mean %>% filter(Sex ==
model_female <- lm(mean_unrelated_noadult ~ Age, data = age_sex_unrelated_noadult_mean %>% filter(Sex =
# Print the summary of the models for Males and Females
cat("Summary for Male Model:\n")
## Summary for Male Model:
summary(model_male)
##
## Call:
## lm(formula = mean_unrelated_noadult ~ Age, data = age_sex_unrelated_noadult_mean %>%
       filter(Sex == "M"))
##
## Residuals:
      Min
               1Q Median
                               ЗQ
                                      Max
## -1.5210 -0.8717 -0.2729 0.8270 2.1293
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.7526
                          1.1675 -0.645 0.53366
                0.3749
                           0.1056 3.549 0.00528 **
## Age
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 1.263 on 10 degrees of freedom
## Multiple R-squared: 0.5575, Adjusted R-squared: 0.5132
## F-statistic: 12.6 on 1 and 10 DF, p-value: 0.005275
cat("\nSummary for Female Model:\n")
##
## Summary for Female Model:
summary(model_female)
##
## lm(formula = mean_unrelated_noadult ~ Age, data = age_sex_unrelated_noadult_mean %>%
       filter(Sex == "F"))
##
##
## Residuals:
               1Q Median
##
      Min
                               3Q
                                      Max
## -1.9908 -0.9548 0.1687 1.0839 1.9927
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.08463 1.35018 1.544
                                             0.871
              -0.01877 0.11281 -0.166
## Age
```

'geom_smooth()' using formula = 'y ~ x'

Mean Unrelated Non-Adult Partners Count by Age and Sex with Regression


```
# Fit a combined model with interaction between Age and Sex
combined_model <- lm(mean_unrelated_noadult ~ Age * Sex, data = age_sex_unrelated_noadult_mean)
# Print the summary of the combined model
summary(combined_model)</pre>
```

##

```
## Call:
## lm(formula = mean_unrelated_noadult ~ Age * Sex, data = age_sex_unrelated_noadult_mean)
## Residuals:
                 1Q Median
                                   3Q
## -1.99080 -0.87166 -0.01057 1.04548 2.12926
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.08463 1.28419
                                  1.623 0.1202
## Age
              -0.01877
                          0.10730 -0.175
                                           0.8629
              -2.83727
                          1.78123 -1.593 0.1269
## SexM
              0.39366
                          0.15487
                                  2.542 0.0194 *
## Age:SexM
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.335 on 20 degrees of freedom
## Multiple R-squared: 0.461, Adjusted R-squared: 0.3801
## F-statistic: 5.701 on 3 and 20 DF, p-value: 0.005468
# Scatter plot with regression line for both males and females
ggplot(age_sex_unrelated_noadult_mean, aes(x = Age, y = mean_unrelated_noadult, color = Sex)) +
 geom_point() + # Scatter plot
 geom_smooth(method = "lm", se = TRUE) + # Regression line with confidence interval
 labs(title = "Mean Unrelated Non-Adult Partners Count by Age and Sex with Combined Regression",
      x = "Age",
      y = "Mean Unrelated Non-Adult Partners Count",
      color = "Sex") +
 theme minimal()
```

Mean Unrelated Non-Adult Partners Count by Age and Sex with Combined F


```
# Load necessary libraries
library(tidyverse)
# Load the dataset
data <- read.csv("Individual-level basic variable.csv")</pre>
# Ensure Age and Partners count are numeric
data$Age <- as.numeric(data$Age)</pre>
data$Partners_count <- as.numeric(data$Partners_count)</pre>
# Create a new variable for pre-pubescent and post-pubescent
data <- data %>%
  mutate(Puberty_Status = ifelse(Age < 12, "Pre-pubescent", "Post-pubescent"))</pre>
# Group by Puberty_Status and calculate the mean of Partners_count
puberty_partner_mean <- data %>%
  group_by(Puberty_Status) %>%
  summarise(mean_partners = mean(Partners_count, na.rm = TRUE))
# Create a bar plot
ggplot(puberty_partner_mean, aes(x = Puberty_Status, y = mean_partners, fill = Puberty_Status)) +
  geom_bar(stat = "identity") +
  labs(title = "Mean Partners Count by Puberty Status",
       x = "Puberty Status",
       y = "Mean Partners Count") +
  theme minimal() +
```



```
pre_pubescent_data <- data %>% filter(Puberty_Status == "Pre-pubescent")
post_pubescent_data <- data %>% filter(Puberty_Status == "Post-pubescent")
# Group by Age and calculate the mean of Partners_count for both groups
pre pubescent mean <- pre pubescent data %>%
  group_by(Age) %>%
  summarise(mean_partners = mean(Partners_count, na.rm = TRUE))
post_pubescent_mean <- post_pubescent_data %>%
  group_by(Age) %>%
  summarise(mean_partners = mean(Partners_count, na.rm = TRUE))
# Create the bar plots for both groups
# Pre-pubescent plot
pre_plot <- ggplot(pre_pubescent_mean, aes(x = Age, y = mean_partners)) +</pre>
  geom_bar(stat = "identity", fill = "lightblue") +
  labs(title = "Mean Partners Count by Age (Pre-pubescent)",
       x = "Age",
       y = "Mean Partners Count") +
  theme_minimal()
# Post-pubescent plot
```

Mean Partners Count by Age (Pre-pubescent)

print(post_plot)

Mean Partners Count by Age (Post-pubescent)


```
model <- lm(Partners_count ~ Age, data = data)
# Print the summary of the regression model
summary(model)</pre>
```

```
##
## Call:
## lm(formula = Partners_count ~ Age, data = data)
##
## Residuals:
       {\tt Min}
##
                1Q Median
                                ЗQ
                                       Max
## -3.9799 -1.6996 -0.1668 1.3004 4.4873
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                          0.76708
                                    3.727 0.000312 ***
## (Intercept) 2.85857
                0.09345
                          0.07351
                                     1.271 0.206432
## Age
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 2.14 on 107 degrees of freedom
## Multiple R-squared: 0.01488, Adjusted R-squared: 0.00567
## F-statistic: 1.616 on 1 and 107 DF, p-value: 0.2064
```

'geom_smooth()' using formula = 'y ~ x'

Scatter Plot of Age vs. Partners Count with Regression Line

