WHAT IS CLAIMED IS:

1. A compound having the structure:

wherein

1

2

3

R¹, R², R³, R⁴, R⁵ and R⁶ are members independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heterocycloalkyl, wherein a member selected from R¹ and R²; R³ and R⁴; and R⁵ and R⁶, together with the nitrogen atom to which they are attached, optionally form a ring system selected from heteroaryl and heterocycloalkyl;

11 Y¹, Y² and Y³ are members independently selected from O and (H)₂;

12 Q is a member selected from H, a protecting group and a cleaveable group;

13 and

3

14 a is 0 or 1.

The compound according to claim 1, wherein a member selected from R¹, R³ and R⁵ has the structure:

$$\xi$$
—L¹—X¹

4 wherein

L¹ is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted aryl; and

Y¹ is a member selected from protected or unprotected reactive functional

8 X¹ is a member selected from protected or unprotected reactive functional groups and non-covalent protein binding groups.

The compound according to claim 2, wherein a member selected from R¹, R³ and R⁵ is a member selected from:

WO 2006/001835

5

$$X^1 \longrightarrow X^1 \longrightarrow X^1$$

 X^1 is a member selected from:

$$R^{21}O \longrightarrow NH \longrightarrow$$
; $R^{21}O \longrightarrow$; and $R^{21}HN \longrightarrow$

- in which R²¹ is a member selected from H, substituted or unsubstituted or unsubstituted aryl;
- 8 v is an integer from 1 to 20; and
- 9 w is an integer from 1 to 1,000.
- 4. The compound according to claim 2, wherein said non-covalent protein binding group is sulfonate.
- 5. The compound according to claim 1, wherein a member selected from R¹, R³ and R⁵ has the structure:

$$\xi$$
 $L^1-X^2-Z^1$

- 4 wherein
- L¹ is a member selected from substituted or unsubstituted alkyl and substituted or unsubstituted heteroalkyl; and
- 7 X^2 is a linking member adjoining L^1 to Z^1 ; and
- Z^1 is a member selected from carrier molecules and detectable labels.
- 1 6. The compound according to claim 5, wherein said carrier molecule 2 is a targeting agent.
 - 7. The compound according to claim 2, having the structure:

3 wherein

4 5	X^1 is a member selected from NH ₂ , SH, COR^7 , $O(CH_2)_mZ^6$, NHNH ₂ and $O(CH_2)_2(OCH_2CH_2)_sO(CH_2)_2Z^6$
6	
7	R ⁷ is a member selected from H, OR ⁸ , OCOR ⁸ , NR ⁸ R ⁹ ,
8	wherein
9	R ⁸ and R ⁹ are members independently selected from H,
10	substituted or unsubstituted alkyl, substituted or
11	unsubstituted heteroalkyl, substituted or
12	unsubstituted aryl, substituted or unsubstituted
13	heteroaryl and substituted or unsubstituted
14	heterocycloalkyl;
15	Z ⁶ is a member selected from OR ¹⁰ , OCOR ¹⁰ , NR ¹⁰ R ¹¹
16	wherein
17	R ¹⁰ and R ¹¹ are members independently selected from H,
18	substituted or unsubstituted alkyl, substituted or
19	unsubstituted heteroalkyl, substituted or
20	unsubstituted aryl, substituted or unsubstituted
21	heteroaryl and substituted or unsubstituted
22	heterocycloalkyl;
23	m is an integer from 1 to 20; and
24	s is an integer from 1 to 1000.
1	8. The compound according to claim 1, having the structure:

$$Z^{3}$$
— L^{5}
 Z^{4} — L^{6}
 L^{4} — Z^{2}
 Z^{4} — L^{6}
 L^{3} — L^{3} — L^{3} — L^{4}
 Z^{4} — L^{6}
 Z^{4} — Z^{4

3

2

wherein L² is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, 5 substituted or unsubstituted heteroaryl, substituted or unsubstituted 6 heterocycloalkyl; L³, L⁴, L⁵ and L⁶ are members independently selected from a single bond, 8 substituted or unsubstituted alkyl and substituted or unsubstituted 9 heteroalkyl; and 10

 Z^2 , Z^3 , and Z^4 are members independently selected from H, substituted or unsubstituted aryl and substituted or unsubstituted heteroaryl.

9. The compound according to claim 8, wherein Z², Z³, and Z⁴ are members independently selected from substituted or unsubstituted pyridyl, substituted or unsubstituted salicylamidyl, substituted or unsubstituted phthalamidyl, substituted or unsubstituted catechol and

$$R^{14}R^{15}N$$
 $R^{16}-\xi$
 $NR^{16}-\xi$
 $NR^{12}R^{13}$
 $NR^{12}R^{13}$

6 wherein

5

7

8

9

10

11

12

13

14

15

3

R¹², R¹³, R¹⁴, R¹⁵ and R¹⁶ are members independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heterocycloalkyl, wherein a member selected from R⁷ and R⁸; and R⁹ and R¹⁰, together with the nitrogen atom to which they are attached, form a ring system selected from heteroaryl and heterocycloalkyl;

 Y^4 , Y^5 and Y^6 are members independently selected from O and $(H)_2$; and Q is a member selected from H, a protecting group or a cleaveable group.

- 1 10. The compound according to claim 8, wherein L² is a substituted or unsubstituted C₁-C₆ alkyl group.
- 1 11. The compound according to claim 1, wherein at least one of R¹, R³ and R⁵ has the structure:

$$\begin{cases} \\ \\ \\ \\ \end{cases} \\ X \end{cases} \qquad \begin{cases} \\ \\ \\ \\ \\ \end{cases} \\ Z^5$$

4 wherein,

5 Z⁵ is a member selected from H, OR¹⁷, SR¹⁷, NHR¹⁷, OCOR¹⁸, OC(O)NHR¹⁸, NHC(O)OR¹⁷, OS(O)₂OR¹⁷, and C(O)R¹⁸;

R¹⁷ is a member selected from H, substituted or unsubstituted alkyl, and 7 substituted or unsubstituted heteroalkyl; 8 R¹⁸ is a member selected from H, OR¹⁹, NR¹⁹NH₂, SH, C(O)R¹⁹, NR¹⁹H₁ 9 substituted or unsubstituted alkyl and substituted or unsubstituted 10 heteroalkyl; 11 R¹⁹ is a member selected from H, substituted or unsubstituted alkyl and 12 substituted or unsubstituted alkyl; 13 X is a member selected from O, S and NR²⁰ 14 wherein 15 R²⁰ is a member selected from H, substituted or unsubstituted alkyl 16 and substituted or unsubstituted heteroalkyl; and 17 j an k are members independently selected from the group consisting of 18 integers from 1 to 20. 19

12. The compound according to claim 1, having the structure:

2

1

1

3 in which p is an integer from 0 to 2.

1 13. A polymer comprising a subunit having said structure according to

2 claim 1.

14. The polymer according to claim 13, wherein said polymer is a

2 biomolecule.

15. The polymer according to 1, having the structure:

2

3

wherein

- L⁷ is a member selected from a single bond, substituted or unsubstituted alkyl and substituted or unsubstituted aryl; and
- X^3 is linking member joining L^7 to A;
- 7 A is a carrier molecule.
- 1 16. The polymer according to claim 15 wherein A is a member selected from biopolymers, poly(amino acids), polyethers, polyimines, polysaccharides, dendrimers, cyclodextrins, pharmaceutical agents.
- 1 The polymer according to claim 16, wherein said biopolymer is a member selected from polypeptides, nucleic acids and saccharides.
- 1 18. The polymer according to claim 17, wherein said protein is a member selected from antibodies, enzymes, and serum proteins
- 1 19. A chelate of a metal ion comprising an organic ligand having said structure according to claim 1.
- 1 20. The chelate according to claim 19, wherein said metal ion is a lanthanide ion.
- 1 21. The chelate according to claim 20, wherein said chelate is
- 2 luminescent.
- The chelate according to claim 19, wherein said chelate is covalently attached to a carrier molecule.
- 1 23. A method for detecting enzyme in a sample, said method 2 comprising:
- 3 (a) contacting said sample with a peptide construct comprising:

4	i)	a peptide sequence, said sequence comprising a cleavage site
5		for said enzyme;
6	ii)	a complex according to claim 19 covalently bound to said
7		peptide; and
8	iii)	a quencher of light energy covalently bound to said peptide
9		sequence, said quencher having an absorbance band
10		overlapping an emission band of said complex,
11	whe	rein said peptide sequence conformation allows light energy
12		transfer between said complex and said quencher when said
13		complex is excited;
14	(b) exciting said	l complex;
15	(c) determining	a fluorescence property of said sample; and
16	(d) comparing sa	aid fluorescence property from step (c) with a reference
17	fluorescence	property for said peptide construct, wherein said activity of said
18	enzymé in sa	aid sample alters said light energy transfer, resulting in a change in
19	said fluoresc	ence property.
1	24. A	method of determining the effect of a compound on enzyme
2	activity, said method co	
3	• •	sample comprising said enzyme with a peptide construct
4	comprising:	;
5	iii)	a peptide sequence, said sequence comprising a cleavage site
6		for said enzyme;
7	iv)	a complex according to claim 19 covalently bound to said
8		peptide sequence; and
9	iii)	a quencher of light energy covalently bound to said peptide
10	·	sequence, said quencher having an absorbance band
11		overlapping an emission band of said complex,
12	whe	rein said peptide sequence conformation allows light energy
13		transfer between said complex and said quencher when said
14		complex is excited;
15	(b) exciting said	d complex;
16	(c) determining	a fluorescence property of said sample; and

17	(d) comparing said fluorescence property from step (c) with a reference		
18	fluorescence property for said peptide construct, wherein said activity of said		
19	enzyme in said sample alters said light energy transfer, resulting in a change in		
20	said fluorescence property.		
1	25. A method for detecting a target nucleic acid sequence, said method		
2	comprising:		
3	(a) contacting said target sequence with a detector oligonucleotide comprising a		
4	single-stranded target binding sequence, said detector oligonucleotide having		
5	covalently linked thereto,		
6	i) a complex according to claim 19;		
7	ii) a quencher of light energy having an absorbance band overlapping		
8	an emission band of said complex,		
9	wherein said detector nucleic acid conformation allows fluorescence		
10	energy transfer between said complex and said quencher when said		
11	complex is excited;		
12	(b) hybridizing said target binding sequence to said target sequence, thereby		
13	altering said conformation of said detector oligonucleotide, causing a change		
14	in a fluorescence parameter of said complex; and		
15	(c) determining a fluorescence property of said sample; and		
16	(d) comparing said fluorescence property from step (c) with a reference		
17	fluorescence property for said peptide construct, wherein said activity of said		
18	enzyme in said sample alters said light energy transfer, resulting in a change in		
19	said fluorescence property.		
1	26. The method according to claim 25, wherein said detector		
2	oligonucleotide has a format selected from molecular beacons, scorpion probes, sunrise		
3	probes, light up probes and TaqMan™ probes.		
1	27. The method according to claim 23, 24 or 25, wherein said		
2	fluorescence property is detected in-real time.		
1	28. The method according to claim 23, 24 or 25, wherein said change		
2	and said fluorescence property measured is a change in fluorescence intensity.		

1	29. A microarray comprising a complex according to claim 19,
2	wherein said complex is conjugated to a solid support or to a carrier molecule attached to
3	said solid support.
1	30. The microarray according to claim 29, wherein said carrier
2	molecule is a member selected from a nucleic acid, a peptide, a peptide nucleic acid, a
3	pharmaceutical agent and combinations thereof.
1	31. The microarray according to claim 29, wherein said solid support is
2	divided into a first region and a second region, said first region having attached thereto a
3	first complex, and said second region having attached thereto a second.
1	32. A method of providing radiation therapy to a subject requiring such
2	therapy, said method comprising:
3	administering to said subject a complex according to claim 19, said
4	complex having radiosensitization properties; and
5	administering ionizing radiation to said subject, thereby providing
6	radiation therapy to said subject.
1	33. A method for photodynamic therapy of a lesion or of a lesion
2	beneath melanodermic tissue of a subject, said method comprising:
3	(a) administering a complex according to claim 19 to said subject; and
4	(b) photoirradiating said lesion.
1	34. The method according to claim 33, wherein said photoirradiating is
2	with light having a wavelength range of about 610 to about 1150 nanometers.
1	35. The method of claim 34 wherein the photoirradiating is with light
2	having a wavelength range of about 730 to about 770 nanometers.
1	36. The complex according to claim 19, wherein said complex
2	comprises a component of an ink or a dye.
1	37. The complex according to claim 19, wherein said complex
2	comprises a component of a substrate for the transmission and amplification of light.

38. The complex according to claim 37, wherein said substrate comprises a member selected from glass, organic polymers, inorganic polymers and combinations thereof.

39. A method for amplifying light transmitted by a substrate, said

method comprising transmitting light through a substrate according to claim 37, thereby

3 amplifying said light.

2