Работа 4.3.1

Изучение дифракции света

Работу выполнил Матренин Василий Б01-006

Цель работы: Исследовать явления дифракции Френеля и Фраунгофера на щели, изучить влияние дифракции на разрешающую способность оптических приборов.

В работе используются: оптическая скамья, ртутная лампа, монохроматор, щели с регулируемой шириной, рамка с вертикальной нитью, двойная щель, микроскоп на поперечных салазках с микрометрическим винтом, зрительная труба

Работа 4.3.1

1 Ход работы

1.1 Дифракция Френеля на щели

1. Схема установки для наблюдения дифракции Френеля на щели представлена на рис. 1.

Рис. 1: Схема установки для наблюдения дифракции Френеля.

- 2. Проведём настройку приборов, соберём установку. Наблюдаем дифракцию Френеля на щели на ярком фоне изображения щели появляются узкие тёмные полосы, количество которых уменьшается по мере удаления микроскопа (дифракция в ближней волновой зоне).
- 3. Снимем зависимость координаты микроскопа от числа наблюдаемых полос, результаты занесём в таблицу 1.

Table 1. Таблица 1.

Количество темных полос n	0	1	2	3	4	5
X, MM	52,4	49,4	50,3	50,7	51	51,2

4. Сравним размеры зон Френеля с измеренной шириной $D_{\text{шели}}=340\pm 5$ мкм S_2 . Для этого рассчитаем величину $2z_n=2\sqrt{an\lambda}(\lambda=579$ нм). Тогда $D=\frac{1}{5}\sum_{n=1}^52z_i=330\pm 6$ мкм.

2 Работа 4.3.1

1.2 Дифракция Фраунгоффера на щели

1. Схема установки для наблюдения дифракции Φ раунгоффера представлена на рисунке 2.

Рис. 2: Схема установки для наблюдения дифракции Фраунгоффера.

Фокусные расстояния линз F1=11.5 см, F2=12.8 см. Ширина щели $D=400\pm 5$ мкм.

2. Измеренния представлены в таблице 2.

Table 2. Таблица 2.

1	-4						3	4
x_m , MM	0,08	0,1	0,12	0,14	0,17	0,19	0,21	0,23

3. График представлен на рисунке 3.

Рис. 3: График для дифракции Фраунгоффера.

4. Посчитал D по MHK: $D = 402 \pm 8$ мкм

Работа 4.3.1

2 Вывод

Были получены интерефереционные картины для дифракции Френеля и Фраунгофера. Теоретические формулы были успешно проверены на практике.

4 Pабота 4.3.1