

OBSERVATION -

Source Level	Power output For 1m cable (Pi)	Power output for 5m cable (Pf)	Attenuation
			dB/km
Minimum	- 27.8	- 27.2	21.5
Maæimum	-14.2	- 12.9	103 - 25

$$A = 10 \cdot \frac{\log(P_i|P_f)}{L} \qquad dB|km$$

$$= 10 \cdot \frac{\log(27.8127.2)}{4 \times 10^{-3}}$$

$$= 10 \cdot \frac{\log(1.02)}{4 \times 10^{-3}} = \frac{10 \times 0.0086}{4 \times 10^{-3}} = \frac{0.086}{4} \times 10^{3}$$
$$= 0.0215 \times 10^{3} = 21.5 \text{ dB/km}$$

STUDY OF	ATTEN	NOITAUL	AND PRO	PAGATION	CHARACTER-
ISTIC	S OF	OPTIC		CABLE	

I. ATTENUATION IN FIBERS ----

AIM ===>

To determine the attenuation for the given optical fibre.

APPARATUS REQUIRED -

Fiber optic, light source, optic power meter and fiber cables (1m and 5m), optic fiber cable with source, screen.

PRINCIPLE ===>

The propagation of light down dielectric waveguides

bears some similarity to the propagation of microw
aves down metal waveguides. If a beam of power

'Pi' is launched into one end of an optical fiber and

if 'Pr' is the power remaining after a length 'L' km

has been transversed then the attenuation is given by:

Attenuation = 10.108 (Pi/Pr) dB/km

$$A = 10 \cdot \frac{\log(Pi/PF)}{L}$$

$$= 10 \cdot \frac{\log(I^{U} \cdot 2/12 \cdot 4)}{4 \times 10^{-3}}$$

$$= 10 \cdot \frac{\log(1 \cdot 10)}{4 \times 10^{-3}} = \frac{10 \times 0.0413}{4 \times 10^{-3}} = \frac{0.413}{4} \times 10^{3}$$

$$= 0.10325 \times 10^{3} = 103.25 \text{ dB/km}$$

DIAGRAM ->

OBSERVATION =

Circle	Distance bet- ween source	Diameter of the spot	$NA = \frac{W}{\sqrt{4L^2 + W^2}}$	Θ
	and screen (L)	(w)		
	(mm)	(mm)		
	10	10	0.4472	26 · 5641
	12	12	0.4472	26. 5641
5m	14	14	0.4472	26 - 5641

Exp	t. No Page No
	RESULT ===
1>	Attenuation at source level A (min) = 21.5 dB1 km
2>	Attenuation at source level 8 (maxe) = 103.25 dB/km
	TEL 25 TE
I.	NUMERICAL APERTURE
	To measure the numerical aperture and hence the acceptance angle of the given fiber cables.
	Fiber optic light source, optic power meter and fiber cables (1m and 5m), Numerical aperture measurement JIG, optic Fiber cable with source, screen.
	Numerical aperture refers to the maximum angle at which the light incident on the fiber end is totally internally reflected and transmitted properly along the Fiber. The cone formed by the rotation of this angle along the axis of the Fiber is the cone of acceptance of the fiber.
	Teacher's Signature

	16	17	0.4692	27 . 9823
	18	19	0.4668	27 · 8267
		MEAN	0.4555	27 - 1002
	10	11 10001	0.4820	28 8 8 6 1
	12	12	0.4472	26 . 5641
1m	14	15	0.4722	וררו 28.
	16	18	0 · 4903	29 · 3603
	18	19	0 · 4668	27 · 8267
		MEAN -	0.4717	28.1488

CALCULATIONS ====

· For 5m:

24

3>

$$: NA = \frac{W}{\sqrt{4L^2 + W^2}} = \frac{10}{\sqrt{400 + 100}} = \frac{10}{\sqrt{500}} = \frac{10}{22.36}$$

and
$$\theta = \sin^{-1}(NA)$$

$$: NA = \frac{W}{\sqrt{4L^2 + W^2}} = \frac{17}{\sqrt{1024 + 289}} = \frac{17}{\sqrt{1313}} = \frac{17}{36.23}$$

and
$$\theta = \sin^{-1}(NA)$$

$$:. NA = \frac{W}{\sqrt{4L^2 + W^2}} = \frac{19}{\sqrt{1296 + 361}} = \frac{19}{\sqrt{1657}} = \frac{19}{40.70}$$

FORMULA

1) Numerical aperture (NA) = $W = \sin \theta_{\text{max}}$

2) Acceptance angle = 20 max (deg.)
where,

L = distance of the screen from the fiber end in metre.

W = diameter of the spot in metre.

and
$$\theta = \sin^{-1}(NA)$$

$$= \sin^{-1}(0.4668) = 27.8267$$
so, the acceptance angle is 20 maxe

$$= 2 \times 27.1002$$

$$= 54.2004^{\circ}$$

· For 1m:

24

3}

$$: NA = \frac{W}{\sqrt{4L^2 + W^2}} = \frac{11}{\sqrt{400 + 121}} = \frac{11}{\sqrt{521}} = \frac{11}{22.82}$$

= 0.4820

$$NA = \frac{W}{\sqrt{4L^2 + W^2}} = \frac{12}{\sqrt{576 + 144}} = \frac{12}{\sqrt{720}} = \frac{12}{26.83}$$

$$= 0.4472$$
and $\theta = \sin^{-1}(NA)$

$$= \sin^{-1}(0.4472) = 26.5641$$

$$NA = \frac{W}{\sqrt{4L^2 + W^2}} = \frac{15}{\sqrt{784 + 225}} = \frac{15}{\sqrt{1009}} = \frac{15}{31.76}$$

$$= \sin^{-1}(0.4722) = 28.1771$$

so, the acceptance angle is 20 max

Exp	t. No	Page No.
1>	The Numerical aperture of fiber is measured 0.4555 mm, 1m = 0.4717 mm.	as 5m =
2}	The acceptance angle is calculated as 5m = 1m = 56.2976°.	54·2004°,
	att stermen asserved (M) questión paravola	.014 .13
	(Fax) (#kar)	
		8
		At 1
		.8