Кореляційний аналіз

Кореляційний аналіз займається з'ясуванням питання є істотним (суттєвим, достатньо тісним) зв'язок між змінними, які досліджуються.

Основні етапи розв'язання задачі кореляційного аналізу:

- вибір числової характеристики статистичного зв'язку;
- визначення оцінки цієї характеристики статистичного зв'язку;
- на основі отриманого значення оцінки характеристики статистичного зв'язку прийняття рішення, чи є істотним зв'язок між змінними, які аналізуються.

І тільки після стверджувальної відповіді про істотність статистичного зв'язку між змінними, що розглядаються, має сенс переходити до наступного етапу — пошуку математичної моделі цього зв'язку засобами інших розділів аналізу та обробки інформації (даних).

Вимоги до характеристик статистичного зв'рязку $K_{\eta\bar{\xi}}$ при їх конструюванні:

- якщо $K_{\eta \vec{\xi}} = 0$, то це відповідає ситуації, що зв'язок між η та $\vec{\xi}$ відсутній,
- зі збільшенням відхилення $K_{\eta \bar{\xi}}$ від нуля зростає суттєвість зв'язку між η та $\bar{\xi}$,
- нехай $\max \left| K_{\eta \vec{\xi}} \right| = K_{\max}, \left(K_{\max} < \infty \right);$ тоді якщо $\left| K_{\eta \vec{\xi}} \right| = K_{\max},$ то це відповідає ситуації, що зв'язок між η та $\vec{\xi}$ функціональний.

Нехай $\hat{K}_{\eta\bar{\xi}}$ є оцінкою характеристики $K_{\eta\bar{\xi}}$, тоді у загальному випадку спільна процедура її використання буде мати вигляд:

- якщо $\hat{K}_{\eta \vec{\xi}} = 0$, то зв'язок між η та $\vec{\xi}$ відсутній,
- якщо $\left|\hat{K}_{\eta \vec{\xi}}\right| = K_{\max}$, $\left(K_{\max} < \infty\right)$, то зв'язок між η та $\vec{\xi}$ функціональний,
- якщо $\left|\hat{K}_{\eta \bar{\xi}}\right| \in (0, K_{\max})$, то потрібно перевірити гіпотезу про те, чи значимо відхиляється від нуля коефіцієнт $K_{\eta \bar{\xi}}$, тобто

Нехай аналізується зв'язок між залежною скалярною змінною η та вектором незалежних змінних $\vec{\xi}$ розмірності q деякого типу. Припустимо, що була обрана характеристика (коефіцієнт) статистичного зв'язку $K_{\eta \vec{\xi}}$.

Якщо q=1, то її називають *парною характеристикою* статистичного зв'язку, інакше — множинною характеристикою статистичного зв'язку.

• якщо $|\hat{K}_{\eta\xi}| \in (0,K_{\max})$, то потрібно перевірити гіпотезу про те, чи значимо відхиляється від нуля коефіцієнт $K_{\eta\xi}$, тобто здійснити *перевірку* $K_{\eta\xi}$ на значимість, а саме перевірити гіпотезу:

$$H_0: K_{\eta \vec{\xi}} = 0,$$

з деяким рівнем значущості $\alpha > 0$.

Приклади задач кореляційного аналізу:

- 1. чи суттєво впливає рівень безробіття на рівень злочинності у країні (+1% росту рівня безробіття дає +5% росту рівня злочинності),
- 2. вплив рівня алкоголю у крові водія на час його реакції,
- вплив рівня допінгу у крові спортемена на його спортивне досягнення,
- 4. вплив ряду основних економічних показників країни на рівень життя населення,
- 5. чи є суттєвим вплив на об'єми продажів товару/послуги має обсяг фінансування рекламної компанії товару/послуги,
- 6. чи істотно впливають на врожайність певної сільськогосподарські культури кількість опадів та сонячних годин протягом сезону,
- 7. чи суттєво залежить остаточний результат студента під час сесії від результатів його роботи протягом семестру.

Структура кореляційного аналізу:

- кореляційний аналіз кількісних змінних,
- кореляційний аналіз ординальних змінних,
- кореляційний аналіз номінальних змінних.

Кореляційний аналіз кількісних змінних

Ключове поняття у цьому розділі це функція регресії η щодо $\vec{\xi}$.

Означення. Нехай η і $\vec{\xi}$ – випадкові величина та вектор, відповідно, причому $M|\eta|<\infty$. Тоді функцією регресії η щодо $\vec{\xi}$ назива ϵ ться функція

$$f(\vec{x}) = M(\eta / \vec{\xi} = \vec{x}).$$

 $f(\vec{x}) = M(\eta/\vec{\xi} = \vec{x})\,.$ Тут $M(\eta/\vec{\xi} = \vec{x})$ - умовне математичне сподівання випадкової величини η відносно події $\left\{ \vec{\xi} = \vec{x} \right\}$. Детальніше, відомо що:

$$M(\eta) = \int_{-\infty}^{\infty} y \, dF_{\eta}(y), \text{ де } F_{\eta}(y) = P\{\eta < y\}, \text{ тодi}$$

$$M(\eta / \vec{\xi} = \vec{x}) = \int_{-\infty}^{\infty} y \, dF_{\eta}(y / \vec{\xi} = \vec{x}), \text{ де } F_{\eta}(y / \vec{\xi} = \vec{x}) = P\{\eta < y / \vec{\xi} = \vec{x}\}.$$

Якщо $M\eta^2 < \infty$, тоді по аналогії буде існувати умовна дисперсія випадкової величини η відносно події $\{ \vec{\xi} = \vec{x} \}$:

$$g(\vec{x}) = D(\eta / \vec{\xi} = \vec{x}).$$

Для $f(\vec{\xi})$ та $g(\vec{\xi})$ будемо використовувати такі нотації:

$$M(\eta/\vec{\xi}) = f(\vec{\xi}),$$

$$D(\eta/\vec{\xi}) = g(\vec{\xi}),$$

відповідно умовним математичним сподіванням та називати випадкової величини η відносно випадкового вектора $\vec{\xi}$ та умовною дисперсією випадкової величини η відносно випадкового вектора $\vec{\xi}$.

Самостійна робота №4. З навчального посібника «Слабоспицький О.С. Основи кореляційного аналізу даних, 2006». Пропрацювати матеріал наведений у Додатку 1:

Умовні ймовірності та математичні сподівання. Основні властивості.

Згадаємо деякі властивості для них:

1.
$$M\{M(\eta/\vec{\xi})\}=M\eta$$
,

2.
$$M(\varphi(\vec{\xi})\eta/\vec{\xi}) = \varphi(\vec{\xi})M(\eta/\vec{\xi}), \quad \varphi(\cdot) \in \mathfrak{B}_q,$$

де \mathfrak{B}_q — множина борелівських функцій на \mathbb{R}^q .

Наслідок.

1.
$$Mf(\vec{\xi}) = M\eta$$
, (*)

2.
$$M\left[\left(\eta - f(\vec{\xi})\right)/\vec{\xi}\right] = 0.$$
 (**)

3.
$$M\left(\varphi(\vec{\xi})\left[\eta - f(\vec{\xi})\right]\right) = 0, \quad \forall \varphi(\cdot) \in \mathfrak{B}_q.$$
 (***)

Доведення наслідку. 1. Очевидно з огляду на першу властивість.

2. Легко перевіряється, бо згідно другої властивості:

$$M\left[\left(\eta - f\left(\vec{\xi}\right)\right)/\vec{\xi}\right] = M\left(\eta/\vec{\xi}\right) - f\left(\vec{\xi}\right) = 0.$$

3. Скористаємося послідовно спочатку властивістю 1 справа наліво, а потім наслідком 2, в результаті отримаємо:

$$M(\varphi(\vec{\xi})[\eta - f(\vec{\xi})]) = M\{M(\varphi(\vec{\xi})[\eta - f(\vec{\xi})]/\vec{\xi})\} =$$

$$= M\{\varphi(\vec{\xi})M([\eta - f(\vec{\xi})]/\vec{\xi})\} = 0.$$

 ${\cal J}$ е м а . Якщо η та $\vec{\xi}$ — випадкові величина та вектор відповідно, а $M\eta^2<\infty$, тоді для них справедливо:

$$D\eta = {}^{\mathrm{I}}Df(\vec{\xi}) + Mg(\vec{\xi}),$$

або розгорнуто

$$D\eta = M\left\{ \left(M\left(\eta / \vec{\xi} \right) - M\eta \right)^{2} \right\} + M\left\{ M\left\{ \left(\eta - M\left(\eta / \vec{\xi} \right) \right)^{2} / \vec{\xi} \right\} \right\}.$$

Доведення. Використаємо вищенаведені властивості:

$$D\eta = M(\eta - M\eta)^{2} = M\left[\left(\eta - f(\vec{\xi})\right) + \left(f(\vec{\xi}) - M\eta\right)\right]^{2} =$$

$$= M\left(\eta - f(\vec{\xi})\right)^{2} + 2M\left[\left(\eta - f(\vec{\xi})\right)\left(f(\vec{\xi}) - M\eta\right)\right] + M\left(f(\vec{\xi}) - M\eta\right)^{2} =$$

$$= M\left\{M\left[\left(\eta - f(\vec{\xi})\right)^{2} / \vec{\xi}\right]\right\} + Df(\vec{\xi}) =$$

$$= M\left\{M\left[\left(\eta - M(\eta / \vec{\xi})\right)^{2} / \vec{\xi}\right]\right\} + Df(\vec{\xi}) = M\left\{D\left(\eta / \vec{\xi}\right)\right\} + Df(\vec{\xi}) =$$

$$= Mg(\vec{\xi}) + Df(\vec{\xi}).$$

Теорема (про фундаментальну властивість функції регресії). Нехай η і $\vec{\xi}$ — випадкові величина та вектор розмірності q, відповідно, причому $M\eta^2 < \infty$, \mathfrak{B}_q — множина борелівських функцій на \mathbb{R}^q , тоді:

$$f(\cdot)=\arg\min_{\phi(\cdot)\in\mathfrak{B}_q}M\Big[\eta-\phi\Big(ec{\xi}\Big)\Big]^2,$$
 де $f(ec{x})=M(\eta/ec{\xi}=ec{x})$.

Доведення. Без втрати загальності будемо розглядати ті борелівські функції $\varphi(\cdot)$ на \mathbb{R}^q , для яких $M\varphi^2(\vec{\xi}) < \infty$. Скориставшись властивостями умовного математичного сподівання випадкової величини η відносно випадкового вектора $\vec{\xi}$ і врахувавши, що $M\Big[f(\vec{\xi}) - \varphi(\vec{\xi})\Big]^2 \geq 0$, легко бачити, що має місце такий ланцюжок перетворень:

$$M \Big[\eta - \varphi(\vec{\xi}) \Big]^{2} = M \Big[\Big(\eta - f(\vec{\xi}) \Big) + \Big(f(\vec{\xi}) - \varphi(\vec{\xi}) \Big) \Big]^{2} =$$

$$= M \Big[\eta - f(\vec{\xi}) \Big]^{2} + 2M \Big[\Big(\eta - f(\vec{\xi}) \Big) \Big(f(\vec{\xi}) - \varphi(\vec{\xi}) \Big) \Big] +$$

$$+ M \Big[f(\vec{\xi}) - \varphi(\vec{\xi}) \Big]^{2} \stackrel{\text{(****)}}{\geq} M \Big[\eta - f(\vec{\xi}) \Big]^{2}.$$

У результаті, маємо

$$M \left[\eta - \phi(\vec{\xi}) \right]^2 \ge M \left[\eta - f(\vec{\xi}) \right]^2$$

тобто отримано нижню межу для нашого функціоналу $M\left[\eta - \phi(\vec{\xi})\right]^2$, яка досягається на функції регресії $f(\vec{x}) = M(\eta/\vec{\xi} = \vec{x})$.

Наведена теорема дозволяє стверджувати, що найкращою в середньоквадратичному розумінні апроксимацією η на класі борелівських функцій від $\vec{\xi}$ є функція $f(\vec{\xi})$, тобто за математичну модель можна взяти таке співвідношення, яке будемо називати регресійною моделлю η щодо $\vec{\xi}$:

$$\eta = f(\vec{\xi}) + \varepsilon,$$

де є – залишкова похибка апроксимації.

Для цієї моделі мають місце такі властивості:

- 1) $Mf(\vec{\xi}) = M\eta$, $M\varepsilon = 0$;
- 2) $f(\vec{\xi})$ та ε некорельовані;
- 3) $D\eta = Df(\vec{\xi}) + D\varepsilon$.

Зауваження. Перша властивість дозволяє запропонувати для останнього співвідношення ще одне представлення:

$$D\eta = Df(\xi) + M\varepsilon^2.$$

Доведення. Скористаємося властивостями умовного математичного сподівання випадкової величини η відносно

випадкового вектора $\vec{\xi}$ та доведемо послідовно кожну з властивостей:

1)
$$Mf(\vec{\xi}) = M\eta$$
.

А це у свою чергу, дозволяє стверджувати, що

$$M\varepsilon = M\left\{\eta - f(\vec{\xi})\right\} = M\eta - Mf(\vec{\xi}) = 0;$$

2) оскільки, згідно з попередньою властивістю $M\varepsilon = 0$, то для доведення некорельованості достатньо впевнитися, що $M \left[f(\vec{\xi}) - M f(\vec{\xi}) \right] \varepsilon = 0$. Дійсно:

$$M\left[f(\vec{\xi})-Mf(\vec{\xi})\right]\varepsilon=M\left[f(\vec{\xi})-M\eta\right]\left[\eta-f(\vec{\xi})\right]^{(n-r)}=0.$$

3) з доведеної у другій властивості некорельованості $f(\vec{\xi})$ та є

виплива
$$\epsilon$$
: $D\eta = D(f(\vec{\xi}) + \epsilon) = Df(\vec{\xi}) + D\epsilon$.

Коефіцієнт детермінації та його властивості. Індекс кореляції.

Введемо універсальну характеристику статистичного зв'язку для змінних η та $\vec{\xi}$, $(\vec{\xi} \in \mathbb{R}^q)$. Будемо вважати, що $M|\eta| < \infty$, тоді існуватиме функція регресії η щодо $\vec{\xi}$, а саме: $f(\vec{x}) = M(\eta/\vec{\xi} \stackrel{\triangleright}{=} \vec{x})$. А для випадкової величини η можна використовувати таку математичну модель:

$$\eta = f(\vec{\xi}) + \varepsilon,$$

де ε – залишкова похибка апроксимації.

Причому
$$D\eta = Df(\vec{\xi}) + D\varepsilon$$
.

Після цих міркувань, враховуючи унікальну властивість функції регресії, доведену в теоремі, цілком природним здається використання, як характеристики статистичного зв'язку для кількісних змінних η та ξ , нижчевизначеного коефіцієнта.

Означення. Нехай η і ξ — випадкові величина та вектор розмірності q, відповідно, причому $0 < D\eta < \infty$. Тоді коефіцієнтом детермінації η щодо ξ називається величина

$$I_{\eta\bar{\xi}}^2 = \frac{Df(\bar{\xi})}{D\eta} = 1 - \frac{D\varepsilon}{D\eta} = 1 - \frac{M\varepsilon^2}{D\eta}.$$

Зауваження 1. Коефіцієнт детермінації $I_{\eta\bar{\xi}}^2$ приваблює ще тим, що має прозору інтерпретацію, а саме: він вказує, яка частина дисперсії змінної η визначається варіацією (дисперсією) функції регресії $f(\bar{\xi})$.

Зауваження 2. Коефіцієнт детермінації $I_{\eta\bar{\xi}}^2$, де $\bar{\xi} \in \mathbb{R}^q$, у випадку q=1 ще називають парним коефіцієнтом детермінації η идодо $\bar{\xi}$, а коли q>1 його ще називають множинним коефіцієнтом детермінації η щодо $\bar{\xi}$.

Властивості коефіцієнта детермінації:

- 1) $0 \le I_{\eta \xi}^2 \le 1;$
- 2) якщо $I_{\eta \bar{\xi}}^2 = 0$, то відсутній вплив $\bar{\xi}$ на η ;
- 3) якщо $I_{\eta \bar{\xi}}^2 = 1$, то існує функціональний зв'язок між η та $\bar{\xi}$, а саме, з ймовірністю 1 справедливо $\eta = f(\bar{\xi})$.

Зауваження. Тут і далі для випадкових величин/векторів рівності/нерівності вважаються справедливими з ймовірністю 1, якщо не наголошується на іншому.

Доведення. Скористаємось відомими властивостями умовного математичного сподівання та умовної дисперсії:

1) так як $D\varepsilon \ge 0$, то отримуємо:

$$0 \le I_{\eta \bar{\xi}}^2 = 1 - \frac{D\varepsilon}{D\eta} \le 1;$$

2) припустимо, що $I_{\eta \bar{\xi}}^2 = 0$. Тоді

$$Df(\vec{\xi}) = 0 \Rightarrow f(\vec{\xi}) = Mf(\vec{\xi}) = \text{const}.$$

Звідси випливає, що функція регресії, за допомогою якої апроксимується η , не залежить від значень свого аргументу — $\vec{\xi}$;

3) нехай $I_{\eta \bar{\xi}}^2 = 1$, тоді

$$1 = I_{\eta \bar{\xi}}^2 = 1 - \frac{D\varepsilon}{D\eta} \Rightarrow D\varepsilon = 0.$$

Згідно першої властивості регресійної моделі $M\varepsilon = 0$, тоді $D\varepsilon = 0 \Rightarrow \varepsilon = M\varepsilon = 0$.

Але $\varepsilon = \eta - f(\vec{\xi})$, а це, у свою чергу, дозволяє стверджувати, що з ймовірністю 1 має місце така функціональна залежність між η та $\vec{\xi}$: $\eta = f(\vec{\xi})$.