RIPPLE FACTOR

It is parameter used to indicate how much component AC is left in D.C. (output).

Ripple \rightarrow fluctuations \rightarrow A.C. component (rms only)

It is defined as ratio of r.m.s. value of A.C. component to D.C. component (also called average value) Ripple factor $(r) = \frac{V'_{rms}}{V_{dc}} = \frac{I'_{rms}}{I_{dc}}$

 V'_{rms} is rms value of A.C. component of in output of rectifier. Total current, I = D.C. component + A.C. component (pulsating dc)

 $i=I_{dc}+i'$ i' is A.C. component; I'_{rms} is rms value of i' as per definition of ripple factor $i'-i-I_{dc}$

$$I'_{rms} = \sqrt{\frac{1}{2\pi} \int_0^{2\pi} (i')^2 d\alpha}$$

Where $i' - i - I_{dc}$

$$I'_{rms} = \sqrt{\frac{1}{2\pi} \int_0^{2\pi} (i - I_{dc})^2 d\alpha}$$
$$= \sqrt{\frac{1}{2\pi} \int_0^{2\pi} (i^2 - 2iI_{dc} + I_{dc})^2 d\alpha}$$

Since I_{dc} is constant

$$I'_{rms} = \sqrt{\frac{1}{2\pi}} \left[\int_0^{2\pi} i^2 d\alpha - 2iI_{dc} \int_0^{2\pi} id\alpha \right] + I^2_{dc} \int_0^{2\pi} 1d\alpha$$

$$= \sqrt{(I_{rms})^2 - 2I_{dc} (I_{dc}) + I^2 dc}$$

$$= \sqrt{I_{rms}^2 - 2I_{dc}^2 + I^2 dc}$$

$$= \sqrt{I_{rms}^2 - I_{dc}^2}$$

Ripple factor
$$r = \frac{I'_{rms}}{I_{dc}} = \sqrt{\frac{{I_{rms}}^2 - {I_{dc}}^2}{I_{dc}}}$$

$$=\sqrt{\frac{I_{rms}^{2}}{I_{dc}^{2}}-1}$$

General expression for ripple factor of any rectifier

$$r = \sqrt{\left(\frac{I_{rms}^{2}}{I_{dc}^{2}}\right) - 1}$$

In terms of voltages

$$r = \frac{V'_{rms}}{V_{dc}} = \sqrt{\left(\frac{V_{rms}}{V_{dc}}\right)^2 - 1}$$

Ripple factor for half wave rectifier is

$$I_{rms} = \frac{I_m}{2}$$

$$I_{dc} = \frac{I_m}{\pi}$$

$$r = \sqrt{\frac{\left(\frac{I_m}{2}\right)^2}{\left(\frac{I_m}{\pi}\right)^2} - 1}$$

$$= \sqrt{\frac{\pi^2}{4} - 1}$$

$$= 1.21$$

Ripple factor for half-wave rectifier = 1.21

Here the result is more than 1. Whenever any result is more than 1 the numerator is greater than denominator. Here Nr is a.c. component and denominator is d.c. component. But from result ac component is more which is undesirable. So it is not a efficient.

Rectification efficiency: It is defined as ratio of d.c. output power to a.c. input power

$$\% \eta = \frac{P_{dc}}{P_{ac}} \times 100$$

$$= \frac{dc \ output \ power}{ac \ input \ power} \times 100$$

$$P_{dc} = I_{dc}^{2} \cdot R_{L}$$

$$P_{ac} = I_{rms}^{2} (R_{f} + R_{S} + R_{L})$$

$$\% \eta = \frac{I^{2}_{dc} R_{L}}{I^{2}_{rms} (R_{f} + R_{S} + R_{L})} \times 100 \quad \rightarrow \quad \text{General expression fro}$$

efficiency of a rectifier

If given is a half-wave rectifier

$$\% \eta = \frac{\left(\frac{I_{m}}{\pi}\right)^{2} R_{L}}{\left(\frac{I_{m}}{\pi}\right)^{2} \left(R_{f} + R_{S} + R_{L}\right)} \times 100$$
$$= \frac{4}{\pi^{2}} \frac{1}{\frac{R_{f} + R_{S}}{R_{L}} + 1} \times 100$$

$$R_f + R_S \ll R_L$$

So we can neglect $\frac{R_f + R_S}{R_L}$

$$\therefore \% \eta = 40.5\%$$

Only 40.6% of ac input power is converted into DC output power.

Peak Inverse voltage (PIV):

It is defined as max. reverse voltage that diode can withstand without destroying the junction. The PIV of half wave rectifier v_m (peak of –ve half cycle)

PIV deals with half-cycle when diode is non-conducting.

Form Factor: Form factor =
$$\frac{Rms}{avg} = \frac{Vm/2}{Vm/\pi} = \frac{\pi}{2}1.57$$

Peak factor:
$$=\frac{V_m}{Rms}=2$$

Transformer utilization factor (TUF): In the design of any power supply the rating of transformer is important.

$$TUF = \frac{dc \ power \ delivered \ to \ load}{ac \ power \ rating \ of \ transformer \ sec \ ondary}$$
$$= \frac{P_{dc}}{P_{ac}(rated)}$$

The ac powr rating is different from (greater than) actual ac power delivered to the circuit. Power rating of transformer secondary, $P_{ac}(rated)$

$$P_{ac}(rated) = V_{ac}(rms) \cdot I_{ac}(rms)$$

$$TUF = \frac{P_{dc}}{P_{ac}(rated)} = \frac{I^{2}_{dc} \cdot R_{L}}{V_{ac}(rms) \cdot I_{ac}(rms)}$$

Since secondary voltage is purely sinusoidal and hence its rms value, is equal to $\frac{1}{\sqrt{2}}$ times of its max. value for half wave rectifier.

$$\therefore V_{ac}(rms) = \frac{V_m}{\sqrt{2}}$$

$$I(rms) = \frac{I_m}{2}$$

$$TUT = \frac{\left(\frac{I_m}{\pi}\right)^2 R_L}{\frac{V_m}{\sqrt{2}} \cdot \frac{I_m}{2}}$$

$$= \frac{\frac{I_m^2}{\pi^2} R_L}{\frac{V_m \cdot I_m}{2\sqrt{2}}}$$

But
$$I_m = \frac{V_m}{R_f + R_s + R_L}$$

$$V_m = I_m \left(R_f + R_s + R_L \right)$$

$$TUF = \frac{\frac{I_{m}^{2}}{\pi^{2}}R_{L}}{\frac{I_{m}}{2\sqrt{2}}(R_{f} + R_{S} + R_{L})I_{m}} = \frac{2\sqrt{2}R_{L}}{\pi^{2}(R_{f} + R_{S} + R_{L})}$$

$$\frac{2\sqrt{2}}{\pi^2} \frac{1}{\frac{Rf + R_S}{R_I} + 1}$$

$$\frac{Rf + R_S}{R_L} << 1$$

$$TUF = \frac{2\sqrt{2}}{\pi^2}$$
$$= 0.287$$

The DC power delivered to load = $0.287 \times ac$ power rating of transformer secondary

ac power rating of transformer secondary = $\frac{dc \ power \ delivered \ to \ load}{0.287}$