DNA sequence mapping and alignment

Aaron Quinlan
Departments of Human Genetics and Biomedical Informatics
USTAR Center for Genetic Discovery
University of Utah
quinlanlab.org

Alignment is central to most genomic research

The problems

- The human genome is big. Oh yeah, it's complex too.
- · Sequencers can produce 1 billion reads / run.
- But they make mistakes. Frequently.
- · Accurate alignment takes time, but it's worth it.
 - · Shortcuts lead to artifacts
- · Alignment strategy is highly nuanced, depending on experimental context

We have FASTQ files. Now what?

- Need to find a home for every read in the file.

- Must get the alignment just right. Else problems.

- Must choose the right tool for the experiment.

Problem: Half of the human genome is comprised of repeats

McClintock's "jumping genes" in maize

Retrotransposons use a "copy/paste" mechanism DNA transposons use a "cut/paste" mechanism

Problem: Half of the human genome is comprised of repeats

taaccctaaccctaaccctaaccctaaccctaaccctaaccctaacccta accetaaccetaaccetaaccetaaccetaaccetaaccetaaccetaac cctaacccaaccctaaccctaaccctaaccctaaccctaacccc taaccctaaccctaaccctaaccctaaccctaaccctaaccctaaccctaa ccccctaaccctaaccctaaccctaaccctaaccctaaccc ccctaaaccctaaccctaaccctaaccctaaccccaaccccaac cccaaccccaaccccaaccctaaccctaaccctaaccctaacc ctaccctaaccctaaccctaaccctaaccctaacccctaacccc taaccctaaccctaaccctaaccctaaccctaaccctaaccct tctgacctgaggagaactgtgctccgccttcagagtaccaccgaaatctg tgcagaggacaacgcagctccgccctcgcggtgctctccgggtctgtgct gaggagaacgcaactccgccggcgcaggcgcagagaggcgcgccgccgcgc gcgcaggcgcagacacatgctagcgcgtcggggtggaggcgtggcgcagg cgcagagaggcgcgcgcgcggcgcaggcgcagagacacatgctaccgc gtccaggggtggaggcgtggcgcagggcgcagggggcgcaccgcggc gcaggcgcagagacacatgctagcgcgtccaggggtggaggcgtggcgca gcacgcgcagaaactcacgtcacggtggcgcggcgcagagacgggtagaa

Best case scenario: an error-free sequencing technology

Computers are rather good at finding *exact* matches. Think Google.

Reality check. Errors happen. Frequently.

"Fuzzy" matching is much more computationally expensive.
Think Google's "Did you mean..."

Sequence *mapping* versus *alignment*

Mapping: (quickly) find the best possible loci to which a sequence could be aligned

Alignment: for each locus to which a sequence can be mapped, determine the optimal base by base alignment of the query sequence to the reference sequence

Step1: hash/index the genome

Toy genome (16 bp)

Step1: hash/index the genome

CATGGTCATTGGTTCC

k = 3 Kmer/Hash
CAT

Genome Positions

1

Step1: hash/index the genome

k = 3	<u>Kmer/Hash</u>	<u>Genome Position</u>	
	CAT	1	
	ATG	2	

Step1: hash/index the genome

k = 3	<u>Kmer/Hash</u>	<u>Genome Positions</u>
	CAT	1
	ATG	2
	TGG	3

Step1: hash/index the genome

k = 3	<u>Kmer/Hash</u>	<u>Genome Positions</u>
	CAT	1
	ATG	2
	TGG	3
	GGT	4

Step1: hash/index the genome

k = 3	<u>Kmer/Hash</u>	<u>Genome Positions</u>
	CÁT	1
	ATG	$\overline{2}$
	TGG	3
	GGT	4
	GTC	5

Step1: hash/index the genome

k = 3	<u>Kmer/Hash</u>	<u>Genome Positions</u>
	CAT	1
	ATG	2
	TGG GGT	3
	GTC	5
	TĊĂ	6

Step1: hash/index the genome

k = 3	<u>Kmer/Hash</u>	<u>Genome Positions</u>
	CAT	1,7
	ATG	1, / 2
	TGG GGT	3
	GTC	5
	TĊĂ	6

Step1: hash/index the genome

CATGGTCATTGGTTCC

k = 3	<u>Kmer/Hash</u>	Genome Positions
	CAT	1,7 2,10 4,11 5 6 8
	ATG TGG	3.10
	GGT	4,11
	GTC TCA	5 6
	ATT	8
	TTG GTT	9 12
	TTC	13
	TCC	14

Complete hash/kmer index of our toy genome (forward strand only)

Step2: use the index to map (i.e., find alignment locations) reads

Toy genome	CATGGTCATTGGTTCC	<u>Kmer/Hash</u>	Genome Positions
		CAT	1,7
		ATG	2
		TGG	3,10
		GGT	4,11
		GTC	5
		TCA	6
		ATT	8
and a		TTG	9
\rightarrow	Read TGGTCA	GTT	12
		TTC	13
		TCC	14

kmer index is used to quickly find candidate alignment locations in genome.

Toy genome	CATGGTCATTGGTTCC	<u>Kmer/Hash</u>	<u>Genome Positions</u>
		CAT	1,7
		ATG	2
		TGG	3,10
		GGT	4,11
		GTC	5
		TCA	6
		ATT	8
		TTG	9
\rightarrow	Read TGGTCA	GTT	12
		TTC	13
		TCC	14

Okay, that was a bit easy because the read and the reference

exactly matched. What about if there is a sequencing error or

a genetic variant in the read?

Step2: use the index to map (i.e., find alignment locations) reads

kmer index is used to quickly find candidate alignment locations in genome.

Mapping quality (MAPQ)

What is the probability that the sequence should be mapped here and only here?

MAPQ also uses the Phred (log) scale:

 $MAPQ = -10*log_{10}(P_{map_loc_wrong})$

$(P_{\text{map_loc_wrong}})$	log ₁₀ (P _{map_loc_wrong})	MAPQ
1	0	0
0.1	-1	10
0.01	-2	20
0.001	-3	30
0.0001	-4	40

Mapping quality (MAPQ)

Edit distance

How many edits (changes) must be made to a word or kmer to make it match (align) to another word or kmer?

SHORT SHO-T Edit distance = 1. Delete R

TGTTACGG GGTTGACTA TG-TT-ACGG -GGTTGACTA TGTT-ACGG GGTTGACTA

Edit distance = 5

Edit distance = 4

BWA-MEM: never "published"; widely used.

Fig. 1. Percent mapped reads as a function of the false alignment rate under different mapping quality cutoff. Alignments with mapping quality 3 or lower are excluded. An alignment is *wrong* if after correcting clipping, its start position is within 20bp from the simulated position. 10^6 pairs of 101bp reads are simulated from the human reference genome using wgsim (http://bit.ly/wgsim2) with 1.5% substitution errors and 0.2% indel variants. The insert size follows a normal distribution $N(500, 50^2)$. The reads are aligned back to the genome either as single end (SE; top panel) or as paired end (PE; bottom panel). GEM is configured to allow up to 5 gaps and to output suboptimal alignments (option '-e5 -m5 -s1' for SE and '-e5 -m5 -s1 -pb' for PE). GEM does not compute mapping quality. Its mapping quality is estimated with a BWA-like algorithm with suboptimal alignments available. Other mappers are run with the default setting except for specifying the insert size distribution. The run time in seconds on a single CPU core is shown in the parentheses.

Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM

Heng Li

Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA

BWA-MEM

Unaligned Sample Data In FASTQ (SE or PE)

ATTCGAAACA...

DDED88(999...

CCCCGTTTCA...

AAC887BBAC...

@seq1

@seq2

>chr1 TACCTCCAGGGGGCATCCTCCCCCCAATTCG AAACACAATCGTAGCCCCTGGCACTACCTATG TGTGTCAATTCGGAGAGAGAGAGATTCACGAA AAAAAAGTCTGGACTCAACTAGGATACACACA TTCGGCTACAGATACCAAAAAAAAAAAAAAAAAAA AAATTTTCACCATTGAGGCACCACCTTCTCGT CGCTGCGTCGCTCTGCTCGCTTCGGCTAAAAA TTCGCGCAATACATTCGGCTACAGATACCAAA

seq1 99 3666901 60 149M 3666935 185 ATTCGAAACA.. .DDED88(999 MC:Z:151M RG:Z:15-0017315 1 MD:Z:149 NM:i:0 MQ:i:60 AS:i:149 XS:i:44 seq2 147 3666935 60 151M 3666901 -185 CCCCGTTTCA...AAC887BBAC...MC:Z:149M MD:Z:151 RG:Z:15-0017315 1 NM:i:0 MQ:i:60 AS:i:151 XS:i:59

Aligned

Sample Data in

SAM format

BWA-MEM workflow

This takes a long time, but you do it <u>once</u>

Output is in SAM format.
Use multiple threads if you have a computer with multiple CPUs.

Align paired-end FASTQ to BWT index.

\$ bwa mem -t 16 grch38.fa 1.fq 2.fq > sample.sam

Let's get our hands dirty

https://gist.github.com/arg5x/4716b710f967998e9feaeb134e0ebe2b#file-alignment-md