Data dan Komputer Communikasi William Stalling Edisi 7

BAB 11

Transfer Mode Asynchronous

Arsitekture Protocol

- Persamaan antara ATM dan paket switching
 - —Pengiriman data berbentuk discrete chunks
 - —Berbagai koneksi logikal melalui satu interface fisik
- Dalam aliran ATM disetiap koneksi logikalnya berupa paket yang memiliki ukuran tetap yang disebut cells
- Minimal error dan flow control
 - —Mengurangi overhead
- Data rates (layer physical) 25.6Mbps sampai 622.08Mbps

Arsitekture Protocol (diag)

Reference Model Planes

- User plane
 - —Disediakan untuk informasi transfer user
- Control plane
 - —Panggilan dan kontol koneksi
- Management plane
 - —Plane management
 - Seluruh fungsi sistem
 - —Layer management
 - Resources dan parameters in protocol entities

ATM Logical Connections

- Virtual channel connections (VCC)
- Analogous to virtual circuit in X.25
- Basic unit of switching
- Antara dua end users
- Full duplex
- Fixed size cells
- Data, user-network exchange (control) and networknetwork exchange (network management and routing)
- Virtual path connection (VPC)
 - Bundle of VCC with same end points

Hubungan koneksi ATM

Keuntungan dari Virtual Paths

- Arsitekture jaringan yang dipermudah
- Meningakatkan performance jaringan dan reliability
- Pengurangan proses
- Waktu setup koneksi yang pendek
- Enhanced network services

Membangun panggilan Menggunakan VPs

Penggunaan koneksi Virtual Channel

- Antara end users
 - —End to end user data
 - —Sinyal Control
 - —VPC menyediakan kapasitas menyeluruh
 - Organisasi VCC dilakukan oleh user
- Antara end user dan jaringan
 - —Control signaling
- Antara entitas jaringan
 - —Network traffic management
 - —Routing

Karakteristik VP/VC

- Kualitas dari service
- Switched dan semi-permanent channel connections
- Integritas call sequence
- Negosiasi parameter lalu lintas dan usage monitoring
- Hanya VPC
 - —Pengenalan Virtual channel dilarang dalam VPC

Control Signaling - VCC

- Dilakukan dalam koneksi yang terpisah
- Semi-permanent VCC
- Meta-signaling channel
 - Digunakan sebagai saluran sinyal kontrol permanen
- User to network signaling virtual channel
 - Untuk control signaling
 - Digunakan untuk set up VCCs untuk membawa data user
- User to user signaling virtual channel
 - Didalam VPC yang belum dibangun
 - Digunakan oleh dua end users tanpaintervensi jaringan untuk membangun dan membebaskan user to user VCC

Kontrol Signaling - VPC

- Semi-permanent
- Customer controlled
- Network controlled

Cell ATM Cells

- Ukuran tetap
- 5 octet header
- 48 octet informasi field
- Cell kecil mengurangi delay antrian cell yang berprioritas tinggi
- Cell kecil dapat di switch lebih effisien
- Lebih mudah untuk mengimplementasikan switching dari cell kecil dalam hardware

Format cell ATM

(a) User-Network Interface

(b) Network-Network Interface

Format Header

- Generic flow control
 - Hanya terdapay pada user ampai interface jaringan
 - —Controls flow hanya ada pada point ini
- Virtual path identifier
- Virtual channel identifier
- Payload type
 - —e.g. info user atau manajemen jaringan
- Cell loss priority
- Header error control

Generic Flow Control (GFC)

- Kontrol traffic flow pada user dampai interface jaringan untuk meredakan short term overload
- Dua set prosedur
 - Uncontrolled transmission
 - Controlled transmission
- Adalah setiap koneksi walaupun merupakan subject to flow control atau tidak
- Subject to flow control
 - Mungkin satu grup (A) default
 - Mungkin dua grup (A and B)
- Flow control adalah dari subscriber to network
 - Dikontrol oleh network side

Single Group of Connections (1)

- Terminal equipment (TE) menginisialisasi dua variabel
 - —TRANSMIT flag to 1
 - —GO_CNTR (credit counter) to 0
- Jika TRANSMIT=1 cell pada koneksi yang tidak terkontrol mungkin dapat terkirim kapan saja
- Jika TRANSMIT=0 tidak ada sell yang dikirim (pada koneksi yang terkontrol maupun tidak)
- Jika diterima HALT, TRANSMIT set pada 0 and tetp bernilai 0 sampai NO_HALT

Single Group of Connections (2)

- Jika TRANSMIT=1 dan tidak ada sell yang dikirim apda sembarang koneksi yang tidak terkontrol (uncontrolled connection):
 - —If GO_CNTR>0, TE mungkin mengirimakan sell pada koneksi yang terkontrol
 - Cell marked as being on controlled connection
 - GO_CNTR decremented
 - —Jika GO_CNTR=0, TE munkin tidak mengirim pada koneksi yang terkontrol
- TE sets GO_CNTR to GO_VALUE sejak menerima SET signal
 - —Null signal tidak memiliki effek

Kegunan dari HALT

- Untuk membatasi effective data rate pada ATM
- Should be cyclic
- Untuk mengurangi separuh data rate, pengiriman HALT berpengaruh pada 50% of time
- Dilakukan sebagai pola yang teratur setiap saat pada koneksi

Dua model Queue

Dua counters

```
—GO_CNTR_A, GO_VALUE_A,GO_CNTR_B,
GO_VALUE_B
```

Kontrol Error Header

- 8 bit error control field
- Dihitung pada 32 bit sisa pada header
- Mengizinkan error correction

Operasi HEC pada Receiver

Effek Error pada Cell Header

Dampak dari Random Bit Errors pada HEC Performance

Transmission sell ATM

- 622.08Mbps
- 155.52Mbps
- 51.84Mbps
- 25.6Mbps
- Cell Based physical layer
- SDH based physical layer

Cell Based Physical Layer

- Tidak ada frame yang ditentukan
- Stream yang berkelanjutan dari 53 cell octet
- Cell delineation based pada header error control field

State Diagram Cell Delineation

Dampak Random Bit Errors padaCell Delineation Performance

Acquisition Time v Bit Error Rate

SDH Based Physical Layer

- Menentukan truktur pada ATM stream
- e.g. untuk 155.52Mbps
- Menggunakan frame STM-1 (STS-3)
- Dapat membawa ATM dan STM payloads
- Specific connections can be circuit switched menggunakan channel SDH
- Teknik SDH multiplexing dapat mengkombinasikan beberapa ATM streams

STM-1 Payload untuk SDH-Based ATM Cell Transmission

Kategori service ATM

- Real time
 - —Constant bit rate (CBR)
 - —Real time variable bit rate (rt-VBR)
- Non-real time
 - —Non-real time variable bit rate (nrt-VBR)
 - —Available bit rate (ABR)
 - —Unspecified bit rate (UBR)
 - —Guaranteed frame rate (GFR)

Real Time Services

- banyaknya delay
- Variasi delay (jitter)

CBR

- Data rate berukuran tetap secara terus menerus continuously available
- Tight upper bound on delay
- Uncompressed audio dan video
 - —Video conferencing(percakapan melalui video)
 - —Interactive audio
 - —A/V distribution and retrieval

rt-VBR

- Aplikasi yang sensitif terhadap waktu
 - —Sangat tergantung pada delay dan variasi delay
- Sebuah aplikasi rt-VBR memiliki rate memiliki rate yang berfariasi setiap waktu
- Contoh video yang dikomprese.g. compressed video
 - —Memiliki frame gambar yang berfariasi ukurannya
 - —Aslinya (tidak dikompres) memiliki frame rate tetap
 - —Begitu pula pada data rate
- Dapat me-multiplex connections secara statik

nrt-VBR

- Mungkin dapat memberikan karakteristik traffic flow yang diharapkan
- Memperbaiki QoS dalam loss dan delay
- End system specifies:
 - —Peak cell rate
 - —Sustainable or average rate
 - —Measure of how bursty traffic is
- Contoh: pemesanan tiket pesawat terbang, tansaksi pada bank

UBR

- Dapat mempunyai kapasitas yang lebih besar dari pada yang digunakan oleh CBR dan VBR traffic
 - —Tidak semua resources dedicated
 - —Bursty nature of VBR
- Untuk aplikasi yang dapat mentolerir cell loss atau variable delays
 - —Contoh: TCP based traffic
- Cells ditransfer berbasis FIFO
- Usaha servis terbaik

ABR

- Aplikasi menjelaskan peak cell rate (PCR) dan minimum cell rate (MCR)
- Resources dialokasikan paling tidak untuk MCR
- Kapasitas sisa dibgikan pada semua ARB sources
- Contoh: interkoneksi LAN

Guaranteed Frame Rate (GFR)

- Didesain untuk mendukung IP backbone subnetworks
- Servis yang lebih baik dari pada UBR untuk frame based traffic
 - Termasuk IP dan Ethernet
- Mengoptimasi handling of frame berdasar lalu lintas dari LAN melalui Router menuju ATM backbone
 - Digunkan oleh enterprise, carrier dan ISP networks
 - Consolidation dan extension of IP over WAN
- ABR Sulit untuk iimplementasikan antara routers pada jaringan ATM
- GFR alternatif yang lebih baik pada pengaturan lalu lintas pada Ethernet
 - Jaringan diketahui dari paket atau frame nya
 - Jika bertbrakan, semua cell dari frame dibatalkan
 - Garansi kapasitas minimum
 - Frame tambahan dibawa pada frame yang tidak bertabrakan

ATM Adaptation Layer

- Mendukung untuk informasi transfer protocol tidak berdasar pada ATM
- PCM (suara)
 - —Assemble bits kedalam cell
 - —Re-assemble kedalam flow tetap
- IP
 - —Map IP packets kedalam ATM cells
 - —Fragment IP packets
 - —Menggunakan LAPF pada ATM untuk menyimpan semua infrastruktur IP

Servis ATM Bit Rate

Adaptation Layer Services

- Mengatasi eorror transmisi
- Segmentation dan re-assembly
- Mengatasi lost dan misinserted cells
- Flow control dan timing

Tipe aplikasi yang didukung

- Emulasi Circuit
- VBR voice dan video
- General data service
- IP pada ATM
- Encapsulasi Multiprotocol pada ATM (MPOA)
 - —IPX, AppleTalk, DECNET)
- Emulasi LAN

Protokol AAL

- Convergence sublayer (CS)
 - —Mendukung untuk aplikasiyang spesifik
 - —user AAL dimasukkan SAP
- Segmentation dan re-assembly sublayer (SAR)
 - Packages dan unpacks ibfo yang diterima dari CS kedalam cell
- Empat tipe
 - —Tipe 1
 - —Tipe 2
 - —Tipe 3/4
 - —Tipe 5

Protokol AAL

Segmentation dan Reassembly PDU

AAL Tipe 1

- CBR source
- SAR packs dan unpacks bits
- Setipap blok mempunyai nomor yang urut

AAL Tipe 2

- VBR
- Aplikasi Analog

AAL Tipe 3/4

- Connectionless atau connected
- Message mode atau stream mode

AAL Tipe 5

 Transport ter-Streamlined untuk koneksi berorientasi pada protol yang lebih tinggi

CPCS PDUs

CPCS-PDU header CPCS-PDU payload pad CPCS-PDU trailer

CPI Btag BASize AL Etag Length

CPI = common part indicator (1 octet)

Btag = beginning tag (1 octet)

BASize = buffer allocation size (2 octets)

AL = alignment (1 octet) Etag = end tag (1 octet)

Length = length of CPCS-PDU payload (2 octets)

(a) AAL Type 3/4

CPCS-UU = CPCS user-to-user indication (1 octet)

CPI = common part indicator (1 octet)

Length = length of CPCS-PDU payload (2 octets)
CRC = cyclic redundancy check (4 octets)

Contoh transmisi AAL 5

CPCS = common part convergence sublayer SAR = segmentation and reassembly

PDU = protocol data unit CPCS-T = CPCS trailer ATM-H = ATM header

SDU = Service Data Unit type bit

Informasi tambahan

- Stallings bab 11
- ATM Forum Web site