MOVE-R: OPTIMIZING THE R-INDEX

Symposium on Experimental Algorithms 2024 · Nico Bertram, Johannes Fischer and Lukas Nalbach

Text Indexing

Text index: data structure for a string T to answer count and locate queries

Text Indexing

- Text index: data structure for a string T to answer count and locate queries
- Count query: How often does the pattern *P* occur in *T*?
- Locate query: At which positions does the pattern P occur in T?

Text Indexing

- Text index: data structure for a string T to answer count and locate queries
- Count query: How often does the pattern P occur in T?
- Locate query: At which positions does the pattern *P* occur in *T*?

Queries

ightharpoonup T = acbbcacbc

Text Indexing

- Text index: data structure for a string T to answer count and locate queries
- Count guery: How often does the pattern *P* occur in *T*?
- Locate query: At which positions does the pattern *P* occur in *T*?

Queries

T = acbbcacbc

ightharpoonup count(bc) = 2

Text Indexing

- Text index: data structure for a string T to answer count and locate queries
- Count query: How often does the pattern P occur in T?
- ► Locate query: At which positions does the pattern *P* occur in *T*?

Queries

- T = acbbcacbc
- ightharpoonup count(bc) = 2
- **locate**(ac) = {1, 6}

Text Indexing

- Text index: data structure for a string T to answer count and locate queries
- Count query: How often does the pattern P occur in T?
- Locate query: At which positions does the pattern P occur in T?
- Compressed Text Index: utilizes information redundancy in repetitive strings ⇒ lower memory footprint

Repetitive Strings

- ► T₁ = bbccaaaaccbbaaaa
- $T_2 = ATCGATCGATCGAT$

Oueries

- T = acbbcacbc
- ightharpoonup count(bc) = 2
- ▶ **locate**(\underline{ac}) = {1, 6}

Text Indexing

- Text index: data structure for a string T to answer count and locate queries
- Count query: How often does the pattern P occur in T?
- Locate query: At which positions does the pattern P occur in T?
- ► Compressed Text Index: utilizes information redundancy in repetitive strings ⇒ lower memory footprint

Repetitive Strings

- ► T₁ = bbccaaaaccbbaaaa
- $T_2 = ATCGATCGATCGAT$
- in practice: DNA, log files, versioned documents, natural language

Queries

- ightharpoonup T = acbbcacbc
- ightharpoonup count(bc) = 2
- **locate**(\underline{ac}) = {1, 6}

BWT-based Text Indexes

- ► Text *T* of length *n*
- ► Lexicographical order \prec (i.e. $abc \prec acb$)

BWT-based Text Indexes

- ► Text *T* of length *n*
- Lexicographical order \prec (i.e. $abc \prec acb$)
- ▶ Suffix $T_i = T[i, n]$
- ► Suffix array SA[1..n], s.t. $T_{SA[1]} \prec ... \prec T_{SA[n]}$

Burrows Wheeler Matrix (BWM)

T = acbcbac\$

i	SA	
1	8	
2	6	
3	1	
4	5	
5	3	
6	7	
7	4	
8	2	

BWT-based Text Indexes

- ► Text *T* of length *n*
- Lexicographical order \prec (i.e. $abc \prec acb$)
- Suffix $T_i = T[i, n]$
- ► Suffix array SA[1..*n*], s.t. $T_{SA[1]} \prec ... \prec T_{SA[n]}$
- rot(T, i) = T[i, n]T[1, i)

Burrows Wheeler Matrix (BWM)

- T = acbcbac\$
- ightharpoonup *i*-th row = rot(T, SA[i])

i	SA	F		L
1	8	\$	acbcba	С
2	6	a	c\$acbc	b
3	1	a	cbcbac	\$
4	5	b	ac\$acb	С
5	3	b	cbac\$a	С
6	7	С	\$acbcb	a
7	4	С	bac\$ac	b
8	2	С	bcbac\$	a

BWT-based Text Indexes

- ► Text *T* of length *n*
- Lexicographical order \prec (i.e. $abc \prec acb$)
- Suffix $T_i = T[i, n]$
- ► Suffix array SA[1..n], s.t. $T_{SA[1]} \prec ... \prec T_{SA[n]}$
- rot(T, i) = T[i, n]T[1, i)
- Burrows Wheeler Transform (BWT) = last (L) column of the BWM

Burrows Wheeler Matrix (BWM)

- T = acbcbac\$
- ightharpoonup *i*-th row = rot(T, SA[i])

i	SA	F		L	
1	8	\$	acbcba	С	
2	6	a	c\$acbc	b	
3	1	a	cbcbac	\$	
4	5	b	ac\$acb	С	
5	3	b	cbac\$a	С	
6	7	С	\$acbcb	a	
7	4	С	bac\$ac	b	
8	2	С	bcbac\$	a	

BWT-based Text Indexes

- ► Text *T* of length *n*
- Lexicographical order \prec (i.e. $abc \prec acb$)
- ▶ Suffix $T_i = T[i, n]$
- ► Suffix array SA[1..*n*], s.t. $T_{SA[1]} \prec ... \prec T_{SA[n]}$
- rot(T, i) = T[i, n]T[1, i)
- Burrows Wheeler Transform (BWT) = last (L) column of the BWM
- ► SA-interval [b, e] of P stores occurrences of P in T

SA-Interval

- P = ac has SA-interval [2, 3]
- \Rightarrow **count**(*P*) = |[2,3]| = 2
- \Rightarrow **locate**(*P*) = SA[2, 3] = {6, 1}

Burrows Wheeler Matrix (BWM)

- T = acbcbac\$
- ightharpoonup *i*-th row = rot(T, SA[i])

i	SA	F		L
1	8	\$	acbcba	С
2	6	a	<u>c</u> \$acbc	b
3	1	a	<u>c</u> bcbac	\$
4	5	b	ac\$acb	С
5	3	b	cbac\$a	С
6	7	С	\$acbcb	a
7	4	С	bac\$ac	b
8	2	С	bcbac\$	a

Compressed BWT-based Text Indexes

Compressed BWT-based Text Indexes

- Let r = # equal-letter runs in L, $\sigma = \#$ distinct characters in T, $\omega = \text{word-width of the word-RAM}$, m = length of the pattern
- r-index [Gagie et al. 2020]:
 - ightharpoonup O(r) space
 - Implements functions LF and Φ in $O(\log\log_\omega n/r)$ time
 - Count: $O(m \log \log_{\omega}(\sigma + n/r))$ time
 - Locate: additional $O(occ \log \log_{\omega}(n/r))$ time

Compressed BWT-based Text Indexes

Compressed BWT-based Text Indexes

- Let r=# equal-letter runs in L, $\sigma=\#$ distinct characters in T, $\omega=$ word-width of the word-RAM, m= length of the pattern
- r-index [Gagie et al. 2020]:
 - ightharpoonup O(r) space
 - Implements functions LF and Φ in $O(\log \log_{\omega} n/r)$ time
 - Count: $O(m \log \log_{\omega}(\sigma + n/r))$ time
 - Locate: additional $O(occ \log \log_{\omega}(n/r))$ time
- OptBWTR [Nishimoto et al. 2021] (not yet implemented):
 - \triangleright O(r) space
 - Implements functions LF and Φ in O(1) time using move data structures
 - ightharpoonup Count: $O(m \log \log_{\omega} \sigma)$ time
 - Locate: additional O(occ) time

Compressed BWT-based Text Indexes

Compressed BWT-based Text Indexes

- Let r=# equal-letter runs in L, $\sigma=\#$ distinct characters in T, $\omega=$ word-width of the word-RAM, m= length of the pattern
- r-index [Gagie et al. 2020]:
 - ightharpoonup O(r) space
 - Implements functions LF and Φ in $O(\log \log_{\omega} n/r)$ time
 - Count: $O(m \log \log_{\omega}(\sigma + n/r))$ time
 - Locate: additional $O(occ \log \log_{\omega}(n/r))$ time
- OptBWTR [Nishimoto et al. 2021] (not yet implemented):
 - \triangleright O(r) space
 - Implements functions LF and Φ in O(1) time using move data structures
 - ightharpoonup Count: $O(m \log \log_{\omega} \sigma)$ time
 - Locate: additional O(occ) time
- Is the improved runtime reflected in practice?

Our Contribution

Our Contribution

- ► Move-r: practically optimized implementation of OptBWTR
 - Practically optimized implementation and construction of the move data structure and other index data structures
 - Practically optimized count- and locate algorithms
 - More optimizations

Our Contribution

Our Contribution

- Move-r: practically optimized implementation of OptBWTR
 - Practically optimized implementation and construction of the move data structure and other index data structures
 - Practically optimized count- and locate algorithms
 - More optimizations
- Compared with the resp. fastest other index:
 - 2x-35x (typ. 15x) faster queries
 - o.9-2x (typ. 2x) faster construction with
 - 1-3 (typ. 3x) lower memory usage, but
 - o.8x-2.5x (typ. 2x) larger index

Backward Search (Step)

- ► Given SA-interval [b, e] of P
- ► Compute SA-interval of *cP*

Backward Search (Step)

- ► Given SA-interval [b, e] of P
- Compute SA-interval of cP
- LF(i) = position of SA[i] 1 in SA (shift rotation down by 1)

Backward Search (Step)

- ► Given SA-interval [b, e] of P
- Compute SA-interval of cP
- ► LF(i) = position of SA[i] 1 in SA (shift rotation down by 1)

Locate Query

- Compute values of SA in the SA-interval
- ▶ Implement function $\Phi(SA[i]) = SA[i-1]$
- ightharpoonup Can be implemented in O(r) space

- Fix a character c
- Rows i with L[i] = c are sorted by what follows c in T

- Fix a character c
- Rows i with L[i] = c are sorted by what follows c in T
- Rows LF(i) are also sorted by what follows c in T

- Fix a character c
- Rows i with L[i] = c are sorted by what follows c in T
- Rows LF(i) are also sorted by what follows c in T
- \Rightarrow LF(i) is ascending for a fixed L[i] = c

- Fix a character c
- Rows i with L[i] = c are sorted by what follows c in T
- Rows LF(i) are also sorted by what follows c in T
- \Rightarrow LF(i) is ascending for a fixed L[i] = c
- Recall r = number of runs in L

- Fix a character c
- Rows i with L[i] = c are sorted by what follows c in T
- Rows LF(i) are also sorted by what follows c in T
- \Rightarrow LF(i) is ascending for a fixed L[i] = c
- Recall r = number of runs in L
- ⇒ LF can be divided into r intervals

- Fix a character c
- Rows i with L[i] = c are sorted by what follows c in T
- Rows LF(i) are also sorted by what follows c in T
- \Rightarrow LF(i) is ascending for a fixed L[i] = c
- Recall r = number of runs in L
- \Rightarrow LF can be divided into r intervals

- Fix a character c
- Rows i with L[i] = c are sorted by what follows c in T
- Rows LF(i) are also sorted by what follows c in T
- \Rightarrow LF(i) is ascending for a fixed L[i] = c
- Recall r = number of runs in L
- ⇒ LF can be divided into r intervals

- Fix a character c
- Rows i with L[i] = c are sorted by what follows c in T
- Rows LF(i) are also sorted by what follows c in T
- \Rightarrow LF(i) is ascending for a fixed L[i] = c
- Recall r = number of runs in L
- \Rightarrow LF can be divided into r intervals

$$I = (p_1, q_1), (p_2, q_2), ..., (p_k, q_k) \text{ with } d_i = p_{i+1} - p_i \text{ and } n + 1 = p_k + d_k$$

$$I = (p_1, q_1), (p_2, q_2), ..., (p_k, q_k)$$
 with $d_i = p_{i+1} - p_i$ and $n + 1 = p_k + d_k$

- $I = (p_1, q_1), (p_2, q_2), ..., (p_k, q_k) \text{ with } d_i = p_{i+1} p_i \text{ and } n+1 = p_k + d_k$
- ▶ Input intervals $[p_i, p_i + d_i)$
- Corresponding output intervals $[q_i, q_i + d_i)$ have the same lengths d_i and do not overlap

- $I = (p_1, q_1), (p_2, q_2), ..., (p_k, q_k) \text{ with } d_i = p_{i+1} p_i \text{ and } n+1 = p_k + d_k$
- ► Input intervals $[p_i, p_i + d_i)$
- Corresponding output intervals $[q_i, q_i + d_i)$ have the same lengths d_i and do not overlap
- ⇒ Represents function $f_I(i) = q_x + i p_x$, where $i \in [p_x, p_x + d_x)$

Move Data Structure and Move Query

Move(i, x) = (i', x') with $i' = f_I(i)$ and $i' \in [p_{x'}, p_{x'} + d_{x'})$

Move Data Structure and Move Query

- Move(i, x) = (i', x') with $i' = f_I(i)$ and $i' \in [p_{x'}, p_{x'} + d_{x'})$
- Store $M_{idx}[1..k]$, where $M_{idx}[j] = index$ of the input interval containing q_j

Move Data Structure and Move Query

- Move(i, x) = (i', x') with $i' = f_I(i)$ and $i' \in [p_{x'}, p_{x'} + d_{x'})$
- Store $M_{idx}[1..k]$, where $M_{idx}[j] = index$ of the input interval containing q_j

Move Query

 $M_{idx} = [1, 1, 1, 1, 1]$

Move Data Structure and Move Query

- Move(i, x) = (i', x') with $i' = f_I(i)$ and $i' \in [p_{X'}, p_{X'} + d_{X'})$
- Store $M_{idx}[1..k]$, where $M_{idx}[j] = index$ of the input interval containing q_j

Move Query

- $M_{idx} = [1, 1, 1, 1, 1]$
- ightharpoonup Move(4, 1) = (12, 3)

Move Data Structure and Move Query

- Move(i, x) = (i', x') with $i' = f_I(i)$ and $i' \in [p_{x'}, p_{x'} + d_{x'})$
- Store $M_{idx}[1..k]$, where $M_{idx}[j] = index$ of the input interval containing q_j
- Runtime $O(\# input intervals starting in [q_x, q_x + d_x)) = O(r)$

Move Query

- $M_{idx} = [1, 1, 1, 1, 1]$
- ightharpoonup Move(4, 1) = (12, 3)

Move Data Structure and Move Query

- Move(i, x) = (i', x') with $i' = f_I(i)$ and $i' \in [p_{X'}, p_{X'} + d_{X'})$
- Store $M_{idx}[1..k]$, where $M_{idx}[j] = index$ of the input interval containing q_j
- Runtime $O(\# input intervals starting in [q_x, q_x + d_x)) = O(r)$
- \Rightarrow can be limited to O(1)

Move Query

- $M_{idx} = [1, 1, 1, 1, 1]$
- ightharpoonup Move(4, 1) = (12, 3)

General Approach

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position u

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position u
 - Check for new a-heavy output interval before u and recurse

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position u
 - Check for new a-heavy output interval before u and recurse

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position *u*
 - Check for new a-heavy output interval before u and recurse

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position u
 - Check for new a-heavy output interval before u and recurse

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position u
 - Check for new a-heavy output interval before u and recurse

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position u
 - Check for new a-heavy output interval before u and recurse

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position u
 - Check for new a-heavy output interval before u and recurse

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position u
 - Check for new a-heavy output interval before u and recurse

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position u
 - Check for new a-heavy output interval before u and recurse

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position u
 - Check for new a-heavy output interval before u and recurse

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position u
 - Check for new a-heavy output interval before u and recurse

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position u
 - Check for new a-heavy output interval before u and recurse

General Approach

- Simultaneously iterate over inputand output intervals
- If an output interval is a-heavy:
 - Split and remember starting position u
 - Check for new a-heavy output interval before u and recurse

Details

- Use balanced search trees for input and output intervals
- $\Rightarrow O(k \log k)$ time, O(1) additional space

Experimental Setup

Tested Indexes

- ♦ move-r
- □ r-index [Gagie et al. 2020]
- △ online-rlbwt (dynamic) [Bannai et al. 2020]
- rcomp-glfig (dynamic) [Nishimoto et al. 2022]

► Experimental Evaluation 8

Experimental Setup

▶ Experimental Evaluation 8

Construction Performance (einstein.en.txt)

▶ Experimental Evaluation 9

Query Performance (einstein.en.txt)

▶ Experimental Evaluation 10

Conclusion

Conclusion

- ► The Move Data Structure can be constructed efficiently in practice
- The improved O(1) time to answer LF- and Φ queries is reflected in practice

▶ Conclusion 11

Conclusion

Conclusion

- The Move Data Structure can be constructed efficiently in practice
- The improved O(1) time to answer LF- and Φ queries is reflected in practice
- Optimizing other aspects of the r-index further improved construction- and query performance
 - 2x-35x (typ. 15x) faster queries
 - 0.9-2x (typ. 2x) faster construction with 1-3 (typ. 3x) lower memory usage, but
 - o.8x-2.5x (typ. 2x) larger index

▶ Conclusion 11