MATH 1002

LECTURE 8-B

GEOMETRIC MEANING OF THE CROSS PRODUCT: DIRECTION

Recall from last hime:

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \times \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{bmatrix}$$

We know that this vector $\vec{u} \times \vec{v}$ contains two kinds of information

- (1) direction
- (2) length.

We will show: Both of these can be understood geometrically based on the geometric properties of \vec{G} & \vec{V} .

This lecture: What is the direction of uxv?

Key insights from last time

•
$$\vec{u} \times \vec{u} = \vec{0}$$
 \Rightarrow if $\vec{v} = c\vec{u}$ (parallel) then $\vec{u} \times \vec{v} = c(\vec{u} \times \vec{u}) = \vec{0}$.

•
$$\vec{u} \times \vec{v}$$
 is atnogenal to \vec{u} & to \vec{v} :
$$(\vec{u} \times \vec{v}) \cdot \vec{u} = 0; \quad (\vec{u} \times \vec{v}) \cdot \vec{v} = 0.$$

We need to consider the case where \vec{c}_i, \vec{v}_i are not parallel.

Then the set of all linear combinations of $\vec{u} \approx \vec{v}$ is a plane in \mathbb{R}^3 .

Example: the set of linear combinations of $\dot{e}_{1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ & $\dot{e}_{2} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is the set $\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \middle| a_{1}b \in \mathbb{R}^{n} \right\}$

i.e. the x-y plane:

Any vector perpendicular to both it 8- it must point directly out of this plane, so there are only two possible directions.

THE RIGHT- HAND RULE tells us which of these two options is the direction of $\vec{u} \times \vec{v}$.

- 1) Point your <u>night hand</u> with your fingers held straight pointing in the direction of \vec{u} .
- 2) Curl your fingers to point in the direction of 7 (flip your hand over if necessary!)
 - 8) What direction is your thumb pointing? In this is the direction of $\vec{u} \times \vec{v}$.

Example: Consider the vectors \vec{a} , \vec{b} , \vec{c} lying flat on the iPad/computer screen.

men · àxò points into the iPad screen.

· b x a points out of the screen.

Exercise: What about axe? Out.

Remark: The Right-Hand Rule confirms the fact we showed algebraically: $\vec{a} \times \vec{b}$ & $\vec{b} \times \vec{a}$ point in the apposite direction.

Summary of the lecture

• If \vec{u}, \vec{v} are parallel, $\vec{u} \times \vec{v} = \vec{0}$.

* If not, \vec{u} , \vec{v} span a plane and $\vec{u} \times \vec{v}$ is perpendicular to the plane.

Its direction is determined by the Right-Hand Rule.

You should be able to:

· use the night - wond rule.

(lock up other examples (drawings on the internet!)

Next lecture: geometric content of 112 x 711.