Princípios de Redes Neurais Artificiais e de Reconhecimento de Padrões

Prof. Antônio de Pádua Braga Departamento de Engenharia Eletrônica Escola de Engenharia da UFMG

7 de junho de 2017

Sumário

1	Extração de Características			5
	1.1	Introd	ução	5
	1.2	Anális	e de Componentes Principais	5
		1.2.1	Centralização do conjunto de amostras	5
		1.2.2	Projeção ótima	6
		1.2.3	Cálculo da projeção	8
		1.2.4	Maximizando a projeção	9
		1.2.5	Exemplo	10

4 SUMÁRIO

Capítulo 1

Extração de Características

1.1 Introdução

1.2 Análise de Componentes Principais

1.2.1 Centralização do conjunto de amostras

Considere um conjunto $D = \{\mathbf{x}_i, y_i\}_{i=1}^N$, com N pares de amostras (\mathbf{x}_i, y_i) , em que \mathbf{x}_i é o vetor de entrada de dimensão n e y_i indica a sua classe. O centróide \mathbf{x}_m das amostras de entrada \mathbf{x}_i corresponde ao vetor cujas distâncias em relação a todos os outros vetores do conjunto $D_u = \{\mathbf{x}_i\}_{i=1}^N$ seja mínima ou, em outras palavras, que minimize a função de custo da Equação 1.1.

$$J(\mathbf{x}) = \frac{1}{2} \sum_{i=1}^{N_u} (\mathbf{x} - \mathbf{x}_i)^2$$
(1.1)

em que \mathbf{x} é um vetor arbitrário de mesma dimensão de \mathbf{x}_i .

Com o objetivo de obter o vetor \mathbf{x}_m , deriva-se $J(\mathbf{x})$ em relação a \mathbf{x} e chega-se à expressão apresentada na Equação 1.2.

$$\frac{\partial J(\mathbf{x})}{\partial \mathbf{x}} = N\mathbf{x} - \sum_{i} \mathbf{x}_{i} \tag{1.2}$$

Igualando-se a Equação 1.2 a zero chega-se à Equação 1.3 que indica que o vetor \mathbf{x}_m que minimiza $J(\mathbf{x})$ equivale ao vetor médio de D.

$$\mathbf{x}_m = \frac{1}{N} \sum_i \mathbf{x}_i \tag{1.3}$$

A Figura 1.1 apresenta dados amostrados de duas distribuições normais com médias nos pontos (2,2) e (4,4), assim como o ponto médio de todo o conjunto de dados, obtido conforme Equação 1.3.

Considerando-se agora \mathbf{x}_m como a origem de um novo sistema de coordenadas, o vetor $(\mathbf{x}_i - \mathbf{x}_m)$ corresponde ao vetor arbitrário \mathbf{x}_i centralizado no novo sistema com origem em \mathbf{x}_m .

Figura 1.1: Dados amostrados de duas distribuições Normais formando agrupamentos distintos. O ponto médio é apresentado na cor azul no centro da figura.

1.2.2 Projeção ótima

Conforme Figura 1.1, o novo sistema de coordenadas tem o ponto \mathbf{x}_m como origem, pela qual passam infinitas retas de direção arbitrária \mathbf{u} . Deseja-se encontrar agora qual destas retas maximiza as magnitudes das projeções dos vetores $(\mathbf{x}_i - \mathbf{x}_m)$ sobre a mesma. As coordenadas dos vetores \mathbf{u} em relação à origem (0,0) podem ser obtidas como $\mathbf{u}_0 = \mathbf{x}_m + \mathbf{u}_{x_m}$ em que $\mathbf{u}_{x_m} = [cos(\alpha), sin(\alpha)]^T$. Como exemplo, a Figura 1.2 ilustra os dados da Figura 1.1, vetores arbitrários \mathbf{u} com origem em \mathbf{x}_m e também um vetor arbitrário $(\mathbf{x}_i - \mathbf{x}_m)$, cuja projeção sobre a reta de direção \mathbf{u} é obtida por meio da Equação 1.4.

$$a_i = \mathbf{u}^T (\mathbf{x}_i - \mathbf{x}_m) \tag{1.4}$$

A Figura 1.3 mostra as projeções de todas as amostras do conjunto de dados sobre uma reta arbitrária que passa por \mathbf{x}_m . As magnitudes de a_i , obtidas conforme Equação 1.4 são proporcionais às variâncias destas projeções no novo sistema de coordenadas. Assim, os componentes principais de um conjunto de amostras, segundo a análise de componentes principais, é determinada pelas variâncias dos dados em cada eixo do novo sistema de coordenadas. Neste caso, o novo sistema de coordenadas possui origem em \mathbf{x}_m , porém, será rotacionado visando a maximizar as projeções a_i . Deseja-se, assim, encontrar um novo sistema de coordenadas que, após uma translação e uma rotação, maximize as projeções das amostras nos seus eixos.

A Figura 1.4 mostra as variâncias das projeções no novo sistema de coordenadas para retas arbitrárias, cujas direções variam de 0 a 2π com passo de $\frac{\pi}{10}$. Pode-se obervar que a variância máxima para este exemplo ocorre no terceiro valor do ângulo, ou seja, quando a rotação da reta é de $\frac{\pi}{5}$. Este valor máximo se

repete para a reta simétrica em $\frac{13\pi}{10},$ já que o vetor ${\bf u}$ foi rotacionado em torno de ${\bf x}_m.$

Figura 1.2: Vetores ${\bf u}$ indicando direções arbitrárias para as possíveis retas que passam pelo ponto médio.

Figura 1.3: Reta de direção arbitrária ${\bf u}$ que passa pelo ponto ${\bf x}_m$. A figura mostra também as projeções das amostras das duas classes sobre a mesma.

Figura 1.4: Variância das projeções a_i em função do ângulo de rotação do ângulo de rotação do vetor ${\bf u}.$

1.2.3 Cálculo da projeção

Conforme seção anterior, considere que a_i seja o módulo da projeção do vetor \mathbf{x}_i sobre a reta de direção \mathbf{u} que passa pelo vetor \mathbf{x}_m . A projeção \mathbf{x}_i' de \mathbf{x}_i em relação à origem do sistema de coordenadas corresponde então à Equação 1.5.

$$\mathbf{x}_{i}^{'} = \mathbf{x}_{m} + a_{i}\mathbf{u} \tag{1.5}$$

Substituindo-se a Equação 1.5 na Equação 1.1, chega-se à Equação 1.6 com argumento a_i , a qual é expandida na Equação 1.7.

$$J(a_i) = \frac{1}{2} \sum_{i=1}^{N_u} ((\mathbf{x}_m + a_i \mathbf{u}) - \mathbf{x}_i)^2$$
 (1.6)

$$J(a_i) = \frac{1}{2} \sum_{i=1}^{N_u} (\mathbf{x}_m^2 + 2\mathbf{x}_m a_i \mathbf{u} + a_i^2 \mathbf{u}^2 - 2\mathbf{x}_m \mathbf{x}_i - 2a_i \mathbf{u} \mathbf{x}_i + \mathbf{x}_i^2)$$
(1.7)

Derivando-se a Equação 1.7 em relação a a_i e considerando-se que $\mathbf{u}^2=1$, chega-se à Equação 1.8.

$$\frac{\partial J(a_i)}{\partial a_i} = \frac{1}{2} \sum_{i=1}^{N_u} (2\mathbf{x}_m \mathbf{u} + 2a_i - 2\mathbf{u}\mathbf{x}_i)$$
(1.8)

Igualando-se a Equação 1.8 a zero, obtém-se o valor de a_i que minimiza a função de custo da Equação 1.1, que é apresentada na Equação 1.9.

$$a_i^* = \mathbf{u}^T (\mathbf{x}_i - \mathbf{x}_m) \tag{1.9}$$

A interpretação da Equação 1.9 é que a projeção a_i que minimiza a função de custo da Equação 1.1 é aquela que corresponde à projeção do vetor $(\mathbf{x} - \mathbf{x}_m)$ sobre a reta de direção \mathbf{u} com origem em \mathbf{x}_m . Considerando-se que \mathbf{u} pode ser um vetor unitário qualquer com origem em \mathbf{x}_m deseja-se saber agora qual o vetor \mathbf{u} maximiza a projeção.

1.2.4 Maximizando a projeção

Substituindo-se agora a projeção ótima da Equação 1.9 na Equação 1.1 chega-se às Equações 1.10 e 1.11.

$$J(\mathbf{u}) = \frac{1}{2} \sum_{i=1}^{N_u} \left((\mathbf{x}_m + \mathbf{u}^T (\mathbf{x}_i - \mathbf{x}_m) \mathbf{u}) - \mathbf{x}_i \right)^2$$
(1.10)

$$J(\mathbf{u}) = -\mathbf{u} \sum_{i=1}^{N_u} \underbrace{(\mathbf{x}_i - \mathbf{x}_m)(\mathbf{x}_i - \mathbf{x}_m)^T}_{(N-1) \times \text{Matriz de Covariância}} \mathbf{u} + \sum_{i=1}^{N} (\mathbf{x}_i - \mathbf{x}_m)^2$$
(1.11)

Assim, de acordo com a Equação 1.11, o vetor \mathbf{u} que minimiza a função de custo da Equação 1.1 é aquele que maximiza o produto $-\mathbf{u}^T\mathbf{S}\mathbf{u}$, em que \mathbf{S} equivale a (N-1) vezes a matriz de covariância. A Figura 1.5 a variação de $J\mathbf{u}$ da Equação 1.11 em função do ângulo de rotação para o exemplo das seções anteriores, a qual pode ser comparada com gráfico análogo apresentado na Figura 1.4. Observa-se, assim, que o vetor \mathbf{u} que minimiza $J\mathbf{u}$ é o mesmo que maximiza a variância da projeção.

Figura 1.5: Função de custo determinada pela Equação 1.11 em função do ângulo de rotação do vetor ${\bf u}.$

Assim,
a Equação 1.12 apresenta a função de custo $Q(\mathbf{u})$ para a minimização de
 $-\mathbf{u}^T\mathbf{S}\mathbf{u}$ utilizando-se Multiplicadores de Lagrange [NW06].

$$Q(\mathbf{u}) = -\mathbf{u}^T \mathbf{S} \mathbf{u} + \lambda (\mathbf{u}^T \mathbf{u} - 1)$$
(1.12)

onde λ é um Multiplicador de Lagrange.

Igualando-se a derivada parcial de $Q(\mathbf{u})$ e igualando-a a zero, chega-se à Equação 1.13.

$$\mathbf{S}\mathbf{u} = \lambda \mathbf{u} \tag{1.13}$$

A primeira conclusão importante da Equação 1.13 é que ${\bf u}$ é um autovetor de ${\bf S}$. Outra conclusão importante é que a magnitude de ${\bf S}{\bf u}$ que minimiza $Q({\bf u})$ é proporcional a λ , ou seja, a importância de cada eixo do novo sistema de coordenadas formado pelos autovetores de ${\bf S}$ na maximização da projeção é proporcional ao seu autovalor.

1.2.5 Exemplo

```
> rm(list=ls())
> data(iris)
> X<-as.matrix(iris[,(1:4)])
> meanx<-colMeans(X)
> X<- X - t(replicate(dim(X)[1],meanx))</pre>
```

- > pcaX<-prcomp(X)
- > us<-pcaX\$rotation
- > projX<-X %*% us
- > barplot(pcaX\$sdev)
- > # Reduzindo para os dois primeiros eixos
- > plot(projX[,1],projX[,2],type='p',xlim=c(-4,4),ylim=c(-2,2),xlab='PCA1',ylab='PCA2',xlim=c(-2,2),xlab='PCA1',ylab='PCA2',xlim=c(-4,4),ylim=c(-2,2),xlab='PCA1',ylab='PCA2',xlim=c(-4,4),ylim=c(-2,2),xlab='PCA1',ylab='PCA2',xlim=c(-4,4),ylim=c(-2,2),xlab='PCA1',ylab='PCA1',ylab='PCA2',xlim=c(-4,4),ylim=c(-2,2),xlab='PCA1',ylab=
- > par(new=TRUE)
- > plot(projX[(1:50),1],projX[(1:50),2],type='p',xlim=c(-4,4),ylim=c(-2,2),col='red',x
- > par(new=TRUE)
- > plot(projX[(51:100),1],projX[(51:100),2],type='p',xlim=c(-4,4),ylim=c(-2,2),col='blank')

Figura 1.6: Autovalores para a base de dados Iris. As duas primeiras coordenadas concentram boa parte da variância da projeção.

Figura 1.7: Projeção das três classes da base de dados Iris nas duas primeiras coordenadas PCA.

Referências Bibliográficas

 $[{\rm NW06}]$ J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, 2nd edition, 2006.