BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI INSTRUCTION DIVISION SECOND SEMESTER 2017-2018

SECOND SEMESTER 2017-2

Course Handout (Part II)

Date: 02.08.2018

In addition to part-I (General Handout for all courses appended to the timetable), this portion gives further specific details regarding the course.

CourseNo. :PHYF211

CourseTitle :ClassicalMechanics
Instructor-in-Charge :RAKESH CHOUBISA

<u>CourseDescription</u>: This course aims at an elementary introduction to the advanced formulations of classical mechanics such as the Lagrangian and Hamiltonian formalisms.

<u>Scope&Objectives</u>: The course begins with the D'Alembert's principle and derives Lagrange's equations from it. The Hamiltonian formalism is introduced. Canonical transformations, Poisson brakets and symmetry Groups are discussed. The course ends with the kinematics of rigid body motion and physical effects of rotating frame, like Coriolis effects.

<u>TextBook</u>: (1) H.Goldstein, C.Poole&J.Safko, Classical Mechanics, Third Edition, Pearson Education, Inc., 2002 (2) N.C.Rana and P.S. Joag, Classical Mechanics, McGraw Hill. 2006

CoursePlan:

Lect.	Learning Objectives	Topics to be covered	Reference to	Lagraina
No.	Learning Objectives	Topics to be covered	Text book	Learning
110.			Text book	Outcome
1-2	Basic Mechanics	Mechanics of a P1rticle	1.1,1.2	A review of
		and a System of particles		basic mechanics
				which will be a
				base of the
				starting of
				course.
3-7	Lagrangian	Constraints, D'Alembert's	1.3-1.6	Learning of
	Formulation	principle, Velocity		alternate
		dependent potential and		approach but
		Lagrange's equation		more powerful
				as compared to
				the Newtonian
				approach.
8-9	Variational	Hamilton's Principle,	2.1-2.3	Learning of
	Principles and	Calculus of variations,		alternate
	Lagrange's	Lagrange equations from		approach to the
	Equations	Hamilton's principles		Lagrangian
				approach and
				more useful in
				Quantum

				Mechanics.
10-	Variational	Nonholonomic Systems,	2.4-2.6	Learning of
12	Principles and	Symmetry principle and		symmetric
	Lagrange's	conservation laws		aspects of
	Equations			Nature.
13-	Central Force	One Body Problem, First	3.1-3.4	Students will be
14	Problem	Integrals, Classification of		exposed to the
		orbits, Virial Theorem		intrecacies and
				difficulty of such
				types of
				problems, useful
				in many realistic
				problems like
				solar system.
15-	Central Force	Power-Law Potentials,	3.5-3.8	Will expose
16	Problem	Bertrand's theorem, Kepler		students to
		Problem		handle Planetary
				motion
				problems.
17-	Hamilton's equations	Legendre transformations	8.1-8.2	Learning of
18		and Hamilton's equation		equivalence of
				two approaches
				(Lagrangian and
				Hamiltonian
10	TT 11, 1	77 11 1	0.5	approach)
19- 20	Hamilton's equations	Hamilton's equations from	8.5	Dynamical
20		variational principle		equations in Hamiltonian
				Formalism.
21-	Canonical	Equations of canonical	9.1-9.2	Students lean the
23	transformations	transformations	9.1-9.2	concepts useful
20	transior mations	transionnations		in Statistical
				Mechanics.
				Useful tool for
				complicated
				dynamical
				problems
24-	Canonical	harmonic oscillator	9.3	Students learn
25	transformations			the applications
				to the realistic
				problem.
26-	Poisson brackets	Poisson brackets and other	9.5	Compact
28		canonical invariants		approach to the
				Lagrangian and
				Hamiltonian
				approach. It
				resembles
				commutation
				algebra in
				Quantum
				Mechanics. A

				good learning aspect for more advanced Physics problems.
26- 28	Infinitesimal canonical transformations (ICT)	ICT and angular momentum	9.6	Learning of beauty of symmetry and Conservation laws of all the independent constants of motion.
29	Symmetry groups	Angular momentum, symmetry groups of mechanical system	9.8	Explaining a compact approach to solve complicated problems. More Intuitive based approach.
30	Liouville's theorem	Liouville's theorem	9.9	Explaining a compact approach to solve complicated problems.
31- 33	Kinematics of Rigid Body Motion	Independent Coordinates, Orthogonal Transformations	4.1-4.2	This applies for the extended system and unlike the cases we discussed before this.
34- 36	Kinematics of Rigid Body Motion	Transformation Matrix, Euler Angles	4.3-4.4,4.6	Transition from coordinates fixed in space to coordinates fixed in the rigid body by means of Transformation Matrix. Expression of Transformation Matrix in terms of Euler angles.
37- 38	Kinematics of Rigid Body Motion	Finite and Infinitesimal Rotations	4.7, 4.8	Representation of the coordinate transformations in terms of parameters of the rotation.

				Orthogonal Transformation of coordinate
				axes.
39-	Kinematics of Rigid	Rate of Change of a Vector,	4.9-4.10	Related to the
40	Body Motion	Coriolis Effects		realistic physical
				aspects of earth's
				rotation, namely
				Coriolis effects.

Evaluation Scheme:

EC No	Evaluation Component.	Duration.	Weightage	Date & Time	Nature of Component.
1	Midsem Test		30%	13/10 9:00 - 10:30	Closed Book
				AM	
3	Tutorial/Assignment		30%		Closed Book
4	Comprehensive	3 Hours.	40%	12/12 FN	Open and
	Examination				Closed Book

Chamber Consultation Hour: To be announced in the class.

Notices: Notices concerning the course will be put up on the **NALANDA** SITE only.

<u>Make-up Policy:</u> No Make will be granted for tutorial tests. Make-up for the test/s will be granted only for genuine cases of health problems or urgency for going out of town with prior permission. In case of medical grounds for make-ups, the students must arrange to send the application, which must mention the location of student, with their trusted friends or by email on my bits server not later than the end of that test.

Instructor-in-charge Rakesh Choubisa