

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 1, 1999

Электронный журнал, рег. N П23275 от 07.03.97

http://www.neva.ru/journal e-mail: diff@osipenko.stu.neva.ru

Теория нелинейных колебаний

УДК 621.376.54

 $A. X. \Gamma$ елиг, 1 $A. H. Чурилов <math>^2$

НЕОСЦИЛЛЯТОРНОСТЬ НЕЛИНЕЙНЫХ ИМПУЛЬСНЫХ СИСТЕМ

Для широкого класса нелинейных импульсных систем с устойчивой непрерывной линейной частью получены достаточные частотные условия отсутствия периодических режимов.

1. Описание системы и постановка задачи. Рассмотрим импульсную систему, описываемую нелинейным функционально-интегральным уравнением

$$\sigma(t) = \alpha(t) - \int_{0}^{t} \gamma(t - \lambda) f(\lambda) d\lambda, \tag{1}$$

в котором $\alpha(t)$ и $\gamma(t)$ — заданные функции ("собственные колебания" и "импульсная переходная функция" непрерывной линейной части системы), а f(t) является результатом отображения искомой функции $\sigma(t)$ ("модулирующего сигнала") с помощью нелинейного оператора ("модулятора") M:

$$f = M\sigma. (2)$$

Предполагается, что оператор M каждой функции $\sigma(t) \in C[0, +\infty)$ ставит в соответствие функцию f(t), обладающую следующими свойствами: 1)

¹ Санкт-Петербургский государственный университет: 198904, Санкт-Петербург, Петродворец, Библиотечная пл., д. 2. СПбГУ. НИИ математики и механики имени академика В. И. Смирнова. Лаборатория теоретической кибернетики.

² Санкт-Петербургский государственный Морской технический университет: 190008. Санкт-Петербург, ул. Лоцманская, д. 3.

существует последовательность $\{t_n\}$, удовлетворяющая условиям

$$0 < \varepsilon_0 T \le t_{n+1} - t_n \le T$$
, $n = 0, 1, 2, \dots$; $t_0 = 0$,

где ε_0 , T — некоторые постоянные числа;

- 2) функция f(t) кусочно-непрерывна на $[0, +\infty)$ и сохраняет знак на каждом промежутке $[t_n, t_{n+1})$ (напомним, что функция называется кусочно-непрерывной, если она может иметь разрывы только первого рода, причем на каждом ограниченном интервале таких разрывов не более чем конечное число);
- 3) t_n зависит от значений $\sigma(t)$ лишь при $t \leq t_n$, f(t) зависит от значений $\sigma(\tau)$ лишь при $\tau \leq t$ (иными словами, модулятор обладает свойством "каузальности");
- 4) для каждого n существует такое $\tilde{t}_n \in [t_n, \ t_{n+1}],$ что среднее значение n-го импульса

$$v_n = \frac{1}{t_{n+1} - t_n} \int_{t_n}^{t_{n+1}} f(t) dt$$

удовлетворяет квадратичной связи

$$(\sigma(\tilde{t}_n) - \sigma_* v_n) v_n \ge 0, \tag{3}$$

где σ_* — заданное положительное число ("порог насыщения модулятора").

Отметим, что условиям 1)-4) удовлетворяют большинство из известных видов импульсной модуляции (амплитудная, частотная, широтная и другие) [1,2,3].

Особенностью рассматриваемого класса систем является нарушение непрерывности оператора M. Например, в случае широтно-импульсной модуляции первого рода [3] $t_n = nT$,

$$f(t) = \begin{cases} \operatorname{sgn} \sigma(nT), & nT \le t < nT + \tau_n, \\ 0, & nT + \tau_n \le t < (n+1)T, \end{cases}$$

где $\tau_n = F(|\sigma(nT)|), \ F(\cdot)$ — заданная непрерывная функция, F(0) = 0, $0 < F(\lambda) < T$ при $0 < \lambda \le \sigma_*, \ F(\lambda) = T$ при $\lambda \ge \sigma_*.$ Очевидно, что оператор M,

$$M: C[0, \tau] \to L_1[0, \tau],$$

при любом τ непрерывен в силу непрерывности функции F. В случае широтно-импульсной модуляции второго рода τ_n является наименьшим положительным корнем уравнения $\tau_n = F(|\sigma(nT+\tau_n)|)$, если таковой имеется на

интервале (0, T]. Если такого корня нет, то $\tau_n = T$. Очевидно, что в этом случае оператор M не будет непрерывным во всем пространстве $C[0, \tau]$, поскольку корень τ_n , вообще говоря, не является непрерывным функционалом от σ .

Предполагая непрерывную линейную часть системы устойчивой и следуя [4], под Ω -периодическим режимом системы (1), (2) будем понимать Ω -периодическое продолжение для $t>\Omega$ отличного от состояния равновесия решения функционально-интегрального уравнения

$$\sigma(t) = -\int_{0}^{t} \gamma(t - \lambda) f(\lambda) d\lambda - \int_{0}^{\Omega} \sum_{n=1}^{\infty} \gamma(t + n\Omega - \lambda) f(\lambda) d\lambda, \tag{4}$$

в котором $0 \le t \le \Omega$, а σ и f связаны соотношением (2). Будем ппредполагать, что существует такое число N, для которого $\Omega = t_N$, то есть, что промежуток $[0, \Omega]$ состоит из целого числа промежутков вида $[t_n, t_{n+1}]$.

Ставится задача определения условий, при выполнении которых система (1),(2) не имеет Ω -периодических режимов заданного периода Ω . В случае, когда $f(t)=\varphi(\sigma(t))$, где $\varphi(\sigma)$ — заданная непрерывная функция, удовлетворяющая условию

$$\sigma\varphi - \sigma_*\varphi^2 \ge 0,\tag{5}$$

эта задача рассматривалась в [5], где было получено частотное условие отсутствия Ω -периодических режимов.

2. Формулировка результата. Будем рассматривать случай устойчивой непрерывной линейной части, когда функции $\alpha(t)$ и $\dot{\gamma}(t)$ абсолютно непрерывны и удовлетворяют условию

$$|\alpha(t)| + |\dot{\alpha}(t)| + |\gamma(t)| + |\dot{\gamma}(t)| + |\ddot{\gamma}(t)| \le \gamma_0 \exp(-\nu t) \quad (\nu > 0).$$

Введем обозначения:

$$W(p)=\int\limits_0^\infty e^{-pt}\gamma(t)\,dt$$
 ("передаточная функция"),
$$egin{aligned} & & \equiv \lim_{p o\infty}pW(p)=\gamma(+0), \\ & & \omega=rac{2\pi}{\Omega}, \quad \chi(p)=pW(p)-\mbox{\mathbb{R}}, \quad \mbox{\mathbb{R}}_1=\lim_{p o\infty}p\chi(p). \end{aligned}$$

Tе о p е м а . Пусть существуют такие положительные числа $\varepsilon,~\tau,$ что выполнены неравенства

$$\sigma_* - \varepsilon - \tau - |\mathfrak{A}| T - \varepsilon_1 \mathfrak{A}^2 > 0, \tag{6}$$

$$\sigma_* - \varepsilon - \tau - |\mathfrak{E}| T + \operatorname{Re} W(i\omega k) - \varepsilon_1 \omega^2 k^2 |W(i\omega k)|^2 - \frac{T^2}{12\tau} |\chi(i\omega k)|^2 \times \left[4\varepsilon_1 \omega^2 k^2 (\sigma_* - \tau - \varepsilon - |\mathfrak{E}| T) + 1 \right] > 0,$$

$$k = 0, 1, 2, \dots,$$
(7)

где $\varepsilon_1 = T^2/(\pi^2 \varepsilon)$. Тогда в системе (1), (2) не может существовать Ω -периодический режим.

Замечание 1. Если в левых частях неравенств (6), (7) положить $\varepsilon = \tau = T$ и устремить затем $T \to +0$, то получим неравенства $\sigma_* > 0$, $\sigma_* + \mathrm{Re}\,W(i\omega k) > 0$ ($k = 0, 1, 2, \ldots$). Первое из них является тривиальным, а остальные совпадают с полученным в [5] частотным критерием отсутствия Ω -периодических режимов в случае $f(t) = \varphi(\sigma(t))$, где функция φ удовлетворяет неравенству (5).

З а м е ч а н и е 2. Если потребовать, чтобы неравенства (7) выполнялись при всех вещественных ω и k=1, то, согласно [3], условия (6), (7) гарантируют асимптотику $\sigma(t) \to 0$ при $t \to +\infty$ для решений уравнения (1).

3. Доказательство теоремы. Воспользуемся методом усреднения [3] и идеей, примененной в [5]. Введя функции $v(t) = v_n$ при $t_n \le t < t_{n+1}$ (n = 0, 1, 2, ...) и

$$u(t) = \int_{0}^{t} (f(\lambda) - v(\lambda)) d\lambda,$$

представим уравнение (4) следующим образом:

$$\sigma(t) = -\int_{0}^{\Omega} \sum_{n=0}^{\infty} \gamma(t + n\Omega - \lambda) v(\lambda) d\lambda - \int_{0}^{t} \gamma(t - \lambda) \dot{u}(\lambda) d\lambda - \int_{0}^{\infty} \gamma(t - \lambda) \dot{u}(\lambda) d\lambda$$
$$-\int_{0}^{\Omega} \sum_{n=1}^{\infty} \gamma(t + n\Omega - \lambda) \dot{u}(\lambda) d\lambda.$$

Проинтегрировав интегралы, содержащие \dot{u} , по частям и воспользовав-

шись очевидным равенством $u(0) = u(\Omega) = 0$, приходим к уравнению

$$\zeta(t) = -\int_{0}^{\Omega} \sum_{k=0}^{\infty} \gamma(t + n\Omega - \lambda) v(\lambda) d\lambda - \int_{0}^{t} \dot{\gamma}(t - \lambda) u(\lambda) d\lambda - \int_{0}^{\Omega} \sum_{n=1}^{\infty} \dot{\gamma}(t + n\Omega - \lambda) u(\lambda) d\lambda,$$
(8)

где $\zeta(t) = \sigma(t) + \alpha u(t)$. Введя кусочно-постоянные функции

$$\bar{\sigma}(t) = \sigma(\tilde{t}_n), \quad \bar{\zeta}(t) = \zeta(\tilde{t}_n), \quad \bar{u}(t) = u(\tilde{t}_n),$$

где $t \in [t_n, t_{n+1}), n = 0, 1, 2, \dots$, представим функционал

$$J(\zeta, \dot{\zeta}, v, u) = \int_{0}^{\Omega} \left[(\zeta - \sigma_* v)v + (\varepsilon + \tau + |\mathbf{x}| T)v^2 + \varepsilon_1 \dot{\zeta}^2 - \frac{3\tau}{T^2} u^2 \right] dt$$

в следующем виде $J(\zeta,\dot{\zeta},v,u)=$

$$= \int_{0}^{\Omega} \left[(\bar{\sigma} - \sigma_* v) v + \otimes \bar{u}v + (\zeta - \bar{\zeta})v + (\varepsilon + \tau + |\otimes|T)v^2 + \varepsilon_1 \dot{\zeta}^2 - \frac{3\tau}{T^2} u^2 \right] dt.$$

В [3] доказано, что в силу (3), свойства 2 функции f(t) и неравенства Виртингера, справедлива оценка

$$J(\zeta, \dot{\zeta}, v, u) \ge 0. \tag{9}$$

Предположим теперь, что в системе имеется Ω -периодический режим. Тогда v(t) и u(t) будут Ω -периодическими функциями, которые представимы их рядами Фурье:

$$v(t) = \sum_{k=-\infty}^{+\infty} c_k e^{i\omega kt}, \quad u(t) = \sum_{k=-\infty}^{+\infty} d_k e^{i\omega kt}.$$
 (10)

Чтобы обеспечить в дальнейшем сходимость рядов, получаемых при дифференцировании рядов Фурье, построим достаточно гладкие функции $v_h(t)$ и $u_h(t)$, зависящие от параметра h, которые аппроксимируют функции v(t) и u(t) в следующем смысле

$$v_h \stackrel{L_2[0,\Omega]}{\longrightarrow} v, \quad u_h \stackrel{C[0,\Omega]}{\longrightarrow} u \quad \text{при} \quad h \to 0$$
 (11)

(в качестве таких функций можно взять, например, средние функции С. Л. Соболева [6]). Коэффициенты Фурье функций v_h и u_h будем обозначать через c_k^h и d_k^h соответственно. Определим функцию $\zeta_h(t)$ следующим равенством

$$\zeta_h(t) = -I_1 - I_2, \tag{12}$$

где

$$I_{1} = \int_{0}^{\Omega} \sum_{n=0}^{\infty} \gamma(T + n\Omega - \lambda) v_{h}(\lambda) d\lambda,$$

$$I_{2} = \int_{0}^{t} \dot{\gamma}(t - \lambda) u_{h}(\lambda) d\lambda - \int_{0}^{\Omega} \sum_{n=1}^{\infty} \dot{\gamma}(t + n\Omega - \lambda) u_{h}(\lambda) d\lambda.$$

Поскольку

$$\dot{\zeta}_{h}(t) = -\omega v_{h}(t) - \int_{0}^{t} \dot{\gamma}(t-\lambda)v_{h}(\lambda) d\lambda - \int_{0}^{\Omega} \sum_{n=1}^{\infty} \dot{\gamma}(t+n\Omega-\lambda)v_{h}(\lambda) d\lambda - \int_{0}^{\Omega} \sum_{n=1}^{\infty} \dot{\gamma}(t+n\Omega-\lambda)u_{h}(\lambda) d\lambda - \int_{0}^{\Omega} \sum_{n=1}^{\infty} \ddot{\gamma}(t+n\Omega-\lambda)u_{h}(\lambda) d\lambda,$$

то, ввиду (11), при $h \to 0$ справедлива асимптотика

$$\zeta_h \stackrel{C[0,\Omega]}{\longrightarrow} \zeta, \quad \dot{\zeta}_h \stackrel{L_2[0,\infty)}{\longrightarrow} \dot{\zeta} \quad \text{при} \quad h \to 0.$$

Поэтому функционал $J_h = J(\zeta_h, \dot{\zeta}_h, v_h, u_h)$ обладает свойством

$$J_h \to J(\zeta, \dot{\zeta}, v, u)$$
 при $h \to 0.$ (13)

Подставив вместо $v_h(t)$ его ряд Фурье в I_1 и проведя цепочку преобразований, получим соотношения:

$$\begin{split} I_1 &= \int_0^t \gamma(t-\lambda) \sum_{k=-\infty}^{+\infty} c_k^h e^{i\omega k\lambda} \, d\lambda \, + \\ &+ \int_0^\Omega \sum_{n=1}^\infty \gamma(t+n\Omega-\lambda) \sum_{k=-\infty}^{+\infty} c_k^h e^{i\omega k\lambda} \, d\lambda = \\ &= \sum_{k=-\infty}^{+\infty} c_k^h \left\{ \int_0^t \gamma(\mu) e^{i\omega k(t-\mu)} \, d\mu + \sum_{n=1}^\infty \int_{t+(n-1)\Omega}^{t+n\Omega} \gamma(\mu) e^{i\omega k(t+n\Omega-\mu)} d\mu \right\} = \\ &= \sum_{k=-\infty}^{+\infty} c_k^h e^{i\omega kt} \int_0^\infty \gamma(\mu) e^{-i\omega k\mu} \, d\mu, \end{split}$$

откуда

$$I_1 = \sum_{k=-\infty}^{+\infty} c_k^h W(i\omega k) e^{i\omega kt}.$$
 (14)

Аналогичным образом преобразуем I_2 . Поскольку

$$\int_{0}^{\infty} \dot{\gamma}(\mu) e^{-i\omega k\mu} d\mu = i\omega kW(i\omega k) - \mathfrak{X},$$

то

$$I_2 = \sum_{k=-\infty}^{+\infty} d_k^h \chi(i\omega k) e^{i\omega kt}.$$

Подставляя это выражение, а также (14) в соотношение (12), получим представление

$$\zeta_h(t) = -\sum_{k=-\infty}^{+\infty} \left(c_k^h W(i\omega k) + d_k^h \chi(i\omega k) \right) e^{i\omega kt}. \tag{15}$$

Отсюда

$$\dot{\zeta}_h(t) = -\sum_{k=-\infty}^{+\infty} i\omega k \left(c_k^h W(i\omega k) + d_k^h \chi(i\omega k) \right) e^{i\omega kt}. \tag{16}$$

Подставив выражения (15), (16) в J_h , приходим к соотношению

$$J_{h} = -\int_{0}^{\Omega} \sum_{k=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} \left\{ c_{k}^{h} c_{n}^{h} \left[W(i\omega k) + (\sigma_{*} - \varepsilon - \tau - |\mathbf{x}| T) + \right. \right. \\ \left. + \varepsilon_{1} \omega^{2} k n W(i\omega k) W(i\omega n) \right] + d_{k}^{h} d_{n}^{h} \left[\frac{3\tau}{T^{2}} + \varepsilon_{1} \omega^{2} k n \chi(i\omega k) \chi(i\omega n) \right] + \\ \left. + d_{k}^{h} c_{n}^{h} \left[\chi(i\omega k) + \varepsilon_{1} \omega^{2} k n \chi(i\omega k) W(i\omega n) \right] + \right. \\ \left. + \varepsilon_{1} \omega^{2} k n d_{n}^{h} c_{k}^{h} \varepsilon \omega^{2} k n \chi(i\omega n) W(i\omega k) \right] \right\} e^{i\omega(k+n)t} dt.$$

Ввиду вещественности функций $v_h(t)$ и $u_h(t)$ справедливы равенства

$$c_{-n}^h = \bar{c}_n^h, \quad d_{-n}^h = \bar{d}_n^h,$$
 (17)

где чертой обозначено комплексное сопряжение.

В силу (17), а также свойства

$$\int_{0}^{\Omega} e^{i\omega mt} dt = \begin{cases} 0 & \text{при целом } m \neq 0, \\ \Omega & \text{при } m = 0, \end{cases}$$

выражение J_h примет вид

$$J_h = -\Omega \sum_{k=-\infty}^{+\infty} \Phi_k^h, \tag{18}$$

где

$$\Phi_{k}^{h} = m_{11}(k)|c_{k}^{h}|^{2} + 2\operatorname{Re}\left(m_{12}(k)\bar{c}_{k}^{h}d_{k}^{h}\right) + m_{22}(k)|d_{k}^{h}|^{2},$$

$$m_{11}(k) = \sigma_{*} - \varepsilon - \tau - |\mathbf{e}|T + \operatorname{Re}W(i\omega k) - \varepsilon_{1}\omega^{2}k^{2}|W(i\omega k)|^{2},$$

$$m_{22}(k) = \frac{3\tau}{T^{2}} - \varepsilon_{1}\omega^{2}k^{2}|\chi(i\omega k)|^{2},$$

$$m_{12}(k) = \chi(i\omega k)/2 - \varepsilon_{1}\omega^{2}k^{2}W(-i\omega k)\chi(i\omega k).$$

В силу условия (6) $\lim_{k\to\infty} m_{11}(k) > 0$. Предположение (7) равносильно неравенствам

$$\Delta(k) = \det \begin{bmatrix} m_{11}(k) & m_{12}(k) \\ \bar{m}_{12}(k) & m_{22}(k) \end{bmatrix} > 0 \quad \text{при} \quad k = 0, 1, 2, \dots,$$
 (19)

причем ввиду условия (6) $\lim_{k\to\infty} \Delta(k) > 0$ и функция $\Delta(k)$ отделена от нуля равномерно по k. Очевидно, что $m_{11}(k) > 0$ при всех k, ибо в противном случае нарушилось бы свойство (19). Ввиду (6) $m_{11}(k)$ также отделена от нуля равномерно по k. Поэтому, согласно критерию Сильвестра, существует такое число $\delta > 0$, не зависящее от k и k, $\Phi_k^h > \delta\left(|c_k^h|^2 + |d_k^h|^2\right)$, и из формулы (18) вытекает оценка

$$J_h < -\Omega\delta \sum_{k=-\infty}^{+\infty} \left(|c_k^h|^2 + |d_k^h|^2 \right).$$

Устремляя $h \to 0$, приходим в силу (9) и (13) к неравенству

$$0 \le -\Omega \delta \sum_{k=-\infty}^{+\infty} \left(|c_k|^2 + |d_k|^2 \right),\,$$

которое может выполняться лишь при $c_k = d_k = 0$ (k = 0, 1, 2, ...), то есть при $u(t) \equiv v(t) \equiv 0$. Но тогда в силу (8) $\sigma(t) \equiv 0$, что противоречит предположению, что существующий Ω -периодический режим отличен от состояния равновесия. Теорема доказана.

Работа выполнена при поддержке Федеральной целевой программы "Интеграция" (проект N 2.1-326.53).

Список литературы

- 1. *Кунцевич В. М.*, *Чеховой Ю. Н.* Нелинейные системы управления с частотно- и широтно-импульсной модуляцией. Киев: Техника, 1970.
- 2. *Цыпкин Я. З., Попков Ю. С.* Теория нелинейных импульсных систем. М.: Наука, 1973.
- 3. *Гелиг А. Х.*, *Чурилов А. Н.* Колебания и устойчивость нелинейных импульсных систем. СПб: Издательство С.-Петерб. ун-та, 1993.
- 4. *Розенвассер Е. Н.* Периодически нестационарные системы управления. М.: Наука, 1973.
- 5. Гарбер Е. Д., Шифрин М. Ш. Нелинейные задачи автоматического регулирования судовых энергетических установок. Л.: Судостроение, 1967.
- 6. *Соболев С. Л.* Некоторые применения функционального анализа в математической физике. Л.: Изд-во ЛГУ, 1950.