Name: SHAHNAWAZ ALAM

@Bharat intern

Domain: Machine Learning Intern

Task#2: Wine Quality Prediction

Importing Libraries/Packages

```
In [5]:
```

import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn import metrics %matplotlib inline

Importing Dataset

In [6]:

```
print("Importing data...")
dataset = pd.read_csv(r"C:\Users\md naiyer azam\Desktop\winequality-red.csv")
print("Sucessfully imported.")
```

Importing data...
Sucessfully imported.

In [7]:

dataset.head()

Out[7]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

In [8]:

dataset.tail()

Out[8]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	5
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2	6
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	5
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0	6

In [9]:

dataset.shape

Out[9]:

(1599, 12)

In [10]:

#info of data
dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	pH	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64

dtypes: float64(11), int64(1) memory usage: 150.0 KB

In [11]:

dataset.describe()

Out[11]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.996747	3.311113	0.658149	10.422983
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.001887	0.154386	0.169507	1.065668
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.990070	2.740000	0.330000	8.400000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995600	3.210000	0.550000	9.500000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.996750	3.310000	0.620000	10.200000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	0.997835	3.400000	0.730000	11.100000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000	1.003690	4.010000	2.000000	14.900000
4											l .

```
In [12]:
```

```
dataset.columns # to find the no of columns
Out[12]:
'pH', 'sulphates', 'alcohol', 'quality'],
       dtype='object')
In [14]:
#shape of datasets
print("Shape of our datasets of Red-Wine:{s}".format(s = dataset.shape))
print("Column headers/names: {s}".format(s = list(dataset)))
Shape of our datasets of Red-Wine:(1599, 12)
Column headers/names: ['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar', 'chlorides', 'free sulfur diox ide', 'total sulfur dioxide', 'density', 'pH', 'sulphates', 'alcohol', 'quality']
In [15]:
dataset['quality'].unique()
Out[15]:
array([5, 6, 7, 4, 8, 3], dtype=int64)
dataset.quality.value_counts().sort_index()
Out[16]:
       10
3
       53
5
     681
```

Exploratory Data Analysis for Wine quality Prediction

We will create some simple plot for visualizing the data.

```
In [17]:
```

6

638 199 18

Name: quality, dtype: int64

```
sns.countplot(x='quality', data=dataset)
```

Out[17]:

<AxesSubplot: xlabel='quality', ylabel='count'>


```
In [18]:
dataset['alcohol'].describe()
Out[18]:
         1599.000000
count
           10.422983
mean
            1.065668
std
min
            8.400000
            9.500000
25%
50%
           10.200000
           11.100000
75%
           14.900000
max
Name: alcohol, dtype: float64
In [19]:
dataset['sulphates'].describe()
Out[19]:
count
         1599.000000
            0.658149
mean
            0.169507
std
            0.330000
min
25%
            0.550000
50%
            0.620000
75%
            0.730000
max
            2.000000
Name: sulphates, dtype: float64
In [20]:
dataset['citric acid'].describe()
Out[20]:
count
         1599.000000
mean
            0.270976
std
            0.194801
min
            0.000000
25%
            0.090000
50%
            0.260000
75%
            0.420000
max
            1.000000
Name: citric acid, dtype: float64
In [21]:
dataset['fixed acidity'].describe()
Out[21]:
count
         1599.000000
mean
            8.319637
std
            1.741096
min
            4.600000
25%
            7.100000
50%
            7.900000
75%
            9.200000
max
           15.900000
Name: fixed acidity, dtype: float64
In [22]:
dataset['residual sugar'].describe()
Out[22]:
count
         1599.000000
mean
            2.538806
std
            1.409928
min
            0.900000
25%
            1.900000
50%
            2.200000
75%
            2.600000
           15.500000
max
Name: residual sugar, dtype: float64
```

```
In [23]:
```

```
Q1 = dataset.quantile(0.25)
Q3 = dataset.quantile(0.75)
IQR = Q3 - Q1
print(IQR)
```

fixed acidity 2.100000 0.250000 volatile acidity 0.330000 citric acid residual sugar 0.700000 0.020000 chlorides free sulfur dioxide 14.000000 total sulfur dioxide 40.000000 density 0.002235 рΗ 0.190000 sulphates 0.180000 alcohol 1.600000 quality 1.000000

dtype: float64

In [60]:

```
#The data point where we have False that means these values are valid whereas True indicates presence of an outlier. print(dataset < (Q1 - 1.5 * IQR)) |(dataset > (Q3 + 1.5 * IQR))
```

```
fixed acidity volatile acidity citric acid residual sugar chlorides \
0
              False
                                 False
                                              False
                                                               False
                                                                          False
1
              False
                                 False
                                              False
                                                               False
                                                                          False
2
              False
                                 False
                                              False
                                                               False
                                                                          False
              False
                                 False
                                              False
                                                               False
                                                                          False
4
              False
                                 False
                                              False
                                                               False
                                                                          False
              False
                                 False
                                              False
                                                               False
                                                                          False
1594
              False
                                 False
                                              False
                                                               False
                                                                          False
1595
1596
              False
                                 False
                                              False
                                                               False
                                                                          False
1597
              False
                                 False
                                              False
                                                               False
                                                                          False
1598
                                 False
                                                              False
                                                                          False
              False
                                              False
      free sulfur dioxide total sulfur dioxide density
                                                              pH sulphates
0
                                                    False False
                    False
                                           False
                                                                       False
                    False
                                                    False
                                                                       False
1
                                           False
                                                           False
2
                    False
                                                                       False
                                           False
                                                    False
                                                           False
3
                    False
                                           False
                                                    False
                                                           False
                                                                       False
4
                    False
                                                    False
                                                           False
                                                                       False
                                           False
```

In [29]:

```
dataset_out = dataset[~((dataset < (Q1 - 1.5 * IQR)) |(dataset > (Q3 + 1.5 * IQR))).any(axis=1)]
dataset_out.shape
```

Out[29]:

(1179, 12)

In [30]:

dataset_out

Out[30]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	5
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8	5
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8	6
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
		•••										
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	5
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2	6
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	5
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0	6

1179 rows × 12 columns

In [31]:

```
correlations = dataset_out.corr()['quality'].drop('quality')
print(correlations)
fixed acidity
                        0.113422
volatile acidity
                        -0.346962
                        0.212133
citric acid
                        0.007934
residual sugar
                       -0.190869
chlorides
free sulfur dioxide
                       -0.003609
total sulfur dioxide
                       -0.203374
density
                       -0.215375
рΗ
                       -0.060288
sulphates
                        0.413533
alcohol
                        0.492551
Name: quality, dtype: float64
```

In [32]:

```
sns.heatmap(dataset.corr())
plt.show()
```


In [33]:

```
#impact of various factor on quality
correlations.sort_values(ascending=False)
```

Out[33]:

```
alcohol
                         0.492551
                         0.413533
sulphates
citric acid
                         0.212133
fixed acidity
                         0.113422
residual sugar
                         0.007934
free sulfur dioxide
                        -0.003609
рΗ
                        -0.060288
chlorides
                        -0.190869
total sulfur dioxide
                        -0.203374
density
                        -0.215375
volatile acidity
                        -0.346962
Name: quality, dtype: float64
```

In [34]:

```
def get_features(correlation_threshold):
   abs_corrs = correlations.abs()
   high_correlations = abs_corrs[abs_corrs > correlation_threshold].index.values.tolist()
   return high_correlations
```

In [35]:

```
# taking features with correlation more than 0.05 as input x and quality as target variable y
features = get_features(0.05)
print(features)
x = dataset_out[features]
y = dataset_out['quality']
```

['fixed acidity', 'volatile acidity', 'citric acid', 'chlorides', 'total sulfur dioxide', 'density', 'pH', 'sulphates', 'al cohol']

In [36]:

```
#to finding the no of outiers we have in our dataset with properties
bx = sns.boxplot(x='quality', y='alcohol', data = dataset)
bx.set(xlabel='Quality', ylabel='Alcohol', title='Alcohol % in different samples')
```

Out[36]:

```
[Text(0.5, 0, 'Quality '),
  Text(0, 0.5, 'Alcohol '),
  Text(0.5, 1.0, 'Alcohol % in different samples')]
```


In [37]:

```
bx = sns.boxplot(x='quality', y='sulphates', data = dataset)
bx.set(xlabel='Quality ', ylabel='Sulphates ', title='Sulphates % in different samples')
```

Out[37]:

```
[Text(0.5, 0, 'Quality '),
  Text(0, 0.5, 'Sulphates '),
  Text(0.5, 1.0, 'Sulphates % in different samples')]
```


In [39]:

```
bx = sns.boxplot(x='quality', y='citric acid', data = dataset)
bx.set(xlabel='Quality ', ylabel='Citric Acid ', title='Citric Acid % in different samples')
```

Out[39]:

```
[Text(0.5, 0, 'Quality '),
Text(0, 0.5, 'Citric Acid '),
Text(0.5, 1.0, 'Citric Acid % in different samples')]
```


In [40]:

```
bx = sns.boxplot(x='quality', y='fixed acidity', data = dataset)
bx.set(xlabel='Quality', ylabel='Fixed Acidity', title='Fixed Acidity' in different samples')
```

Out[40]:

```
[Text(0.5, 0, 'Quality'),
  Text(0, 0.5, 'Fixed Acidity'),
  Text(0.5, 1.0, 'Fixed Acidity % in different samples')]
```



```
In [41]:
```

х

Out[41]:

	fixed acidity	volatile acidity	citric acid	chlorides	total sulfur dioxide	density	рН	sulphates	alcohol
0	7.4	0.700	0.00	0.076	34.0	0.99780	3.51	0.56	9.4
1	7.8	0.880	0.00	0.098	67.0	0.99680	3.20	0.68	9.8
2	7.8	0.760	0.04	0.092	54.0	0.99700	3.26	0.65	9.8
3	11.2	0.280	0.56	0.075	60.0	0.99800	3.16	0.58	9.8
4	7.4	0.700	0.00	0.076	34.0	0.99780	3.51	0.56	9.4
1594	6.2	0.600	0.08	0.090	44.0	0.99490	3.45	0.58	10.5
1595	5.9	0.550	0.10	0.062	51.0	0.99512	3.52	0.76	11.2
1596	6.3	0.510	0.13	0.076	40.0	0.99574	3.42	0.75	11.0
1597	5.9	0.645	0.12	0.075	44.0	0.99547	3.57	0.71	10.2
1598	6.0	0.310	0.47	0.067	42.0	0.99549	3.39	0.66	11.0

1179 rows × 9 columns

```
In [42]:
```

у

```
Out[42]:
```

- 0 5 1 5 2 5 3 6
- 4 5
- 1594 5 1595 6 1596 6
- 1597 5 1598 6

Name: quality, Length: 1179, dtype: int64

In [43]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_state=3)
```

In [44]:

```
# x_train.shape
# x_test.shape
# y_train.shape
y_test.shape
```

Out[44]:

(354,)

In [45]:

```
# fitting linear regression to training data
regressor = LinearRegression()
regressor.fit(x_train,y_train)
```

Out[45]:

```
▼ LinearRegression
LinearRegression()
```

In [46]:

```
#To retrieve the intercept
regressor.intercept_
```

Out[46]:

27.670573873546417

```
In [48]:
```

```
# this gives the coefficients of the 10 features selected above.
regressor.coef_
Out[48]:
array([ 4.22974782e-02, -8.16827531e-01, -4.00865196e-01, -2.68428276e+00,
        -1.47339257e-03, -2.37486638e+01, -4.72842021e-01, 1.71236742e+00,
         2.47526682e-01])
In [49]:
train_pred = regressor.predict(x_train)
train pred
Out[49]:
array([6.14356299, 5.11710037, 5.21197237, 5.13828062, 5.97949972,
        5.66562893, 5.4777587, 5.75868703, 5.98907913, 5.40401462, 5.52303708, 5.21113234, 5.38046811, 5.75877598, 5.35007708, 5.08567146, 5.70418446, 6.15016457, 4.98217495, 6.37902248,
        5.34435775, 5.58388766, 5.56975986, 6.5429133, 5.95905468, 5.36649122, 5.24598625, 5.58550515, 5.18791293, 5.25072061,
        5.10187748, 5.00442024, 5.69182774, 5.89415555, 5.21543362,
        5.72691046, 5.08042222, 5.16537087, 6.26665775, 5.11379649,
        4.84031354, \; 5.32908031, \; 6.59578316, \; 5.9574155 \; , \; 5.17612261, \\
        5.52155991, 5.08413929, 6.1392644 , 5.48990749, 5.93825753,
        6.23616917, 5.92388793, 5.7786765 , 6.0650639 , 5.79356716,
        5.78930793, 6.0279377 , 4.86136512, 6.06957539, 5.1960625 ,
        5.82623979, 5.21010511, 5.18855806, 5.17190517, 5.06530766,
        5.2522647 , 5.64833165, 5.66231692, 5.54553416, 5.89096209,
        5.29556643, 5.10200981, 5.02472467, 5.47288678, 5.45596721,
        6.29709987, 5.76623284, 5.26529395, 5.64531976, 5.61024562,
        5.93475858, 5.87726527, 5.91779798, 5.45342902, 6.52865604,
        4.95957019.\ 5.76606249.\ 5.04086682.\ 5.79175917.\ 5.0713891\ .
```

```
In [50]:
```

```
test pred = regressor.predict(x test)
test pred
Out[501:
array([5.31808602, 5.58846727, 5.83179258, 5.23562426, 6.36492755,
        5.75166188, 5.61511554, 6.51307801, 6.033911 , 5.66126467,
       5.15680921, 5.48432811, 5.53204251, 5.17612261, 5.98484046,
       5.76958525, 6.09867422, 5.24902132, 5.45163284, 5.31035025,
       5.09350311, 5.87828479, 6.40866401, 5.412199 , 5.96442862,
       5.64014045, 5.51992784, 5.13588457, 6.28333602, 5.24519459,
       5.0320614 , 5.27962193 , 5.59753018 , 5.48395895 , 5.58964467
       6.0845468 , 5.19985585, 6.19604141, 5.34136276, 5.46949893,
       5.52658067, 5.96992765, 5.69237733, 6.52259415, 5.39271847,
       5.25392748, 5.99084808, 5.47407662, 5.49640697, 5.43513813,
       6.32835806, 6.16672701, 6.20060859, 5.78978599, 5.70708754,
       5.27350261, 5.36347142, 5.35513893, 6.26073939, 5.39379095,
       5.13365707, 5.39539395, 5.31604688, 5.55738131, 5.35711922,
       5.41823198, 5.04290802, 5.63751858, 5.05701887, 5.37699259,
       5.4916961 , 6.49050987, 5.67902012, 5.58946844, 5.624972
       5.61792591, 5.86986021, 5.21037668, 5.78468929, 5.26398956,
       5.72691046, 5.40092383, 6.69197151, 5.64531976, 5.56034568,
       5.43467889, 5.55686222, 6.0233058, 6.43578849, 5.52513157,
       5.67902012, 4.64898744, 6.14662984, 6.51674285, 5.97318723,
       5.49719429, 5.46490347, 6.16584155, 5.94581464, 5.07746641,
       5.2441662 , 5.78930793, 5.75304305, 5.10426467, 5.1827166 ,
       5.31511321, 5.99987354, 5.68526126, 5.07037239, 4.94121606,
       6.52865604, 5.74004727, 6.28794889, 5.43117363, 5.71550177,
       5.81784698, 4.9303826 , 5.24038113, 5.09211785, 5.14563991,
       5.26449292, 6.57023719, 6.70915507, 5.41197844, 6.34009483,
       6.4260368 , 6.30187789 , 5.71188375 , 5.91280815 , 5.82027154,
       5.27651711, 5.74529965, 5.84539052, 5.22809651, 5.66670316,
       5.5902705 , 5.01881644, 6.21672901, 5.47214183, 5.47596665,
       5.94786716, 6.63668959, 6.27596776, 5.91709308, 5.1588646, 5.47042012, 6.45247034, 5.0713891, 6.0862025, 6.03998607,
       5.25484004, 5.23470007, 5.55305246, 5.53467428, 5.04086682,
       5.16716583, 5.48101184, 6.22269596, 5.50728207, 5.10962883,
       5.58846727, 6.21149416, 6.11221593, 4.94675827, 5.84251347,
       5.64450235, 5.4419686 , 5.08727946, 6.01457484, 5.92755667,
       5.16288998, 5.88359672, 5.37380208, 5.05286101, 5.32431777,
       5.6439566 , 5.46490347, 6.56429012, 5.74004727, 6.24090367,
       5.74724044, 4.92431392, 5.53386144, 5.20778505, 4.86136512,
       5.43460576, 6.30967672, 5.31790065, 5.25163527, 6.05613027,
       5.84035633, 5.08784791, 6.15870704, 6.12754243, 5.52607036,
       4.97187315, 5.25359412, 6.70790937, 6.28794889, 5.13236485,
       5.32725711, 6.28448589, 5.45923718, 5.73101634, 5.69440787,
       5.65949152, 5.84565418, 5.01329309, 5.23624174, 6.23691057,
       5.55686222, 5.04799289, 5.29971201, 5.79794396, 5.30597556,
       5.40898341, 6.10600355, 5.77233753, 5.93825753, 5.10830136,
       5.2400021 , 5.35766108, 6.04499105, 5.76822909, 5.76958525,
       5.99354945, 5.61024562, 5.06244794, 5.47042012, 4.93392193,
       5.28715373, 5.22670922, 5.53684889, 5.53208489, 5.95021487,
       5.40558751, 5.19161171, 5.47596665, 5.11794805, 5.0981402 ,
        5.21451607, 5.70435419, 5.6116368 , 4.99467008, 6.46094847,
       6.65968339, 5.36928711, 6.16584155, 5.38024253, 5.38068717,
       6.09599831, 5.31294223, 5.43759048, 5.611229 , 6.29147929,
       5.41823198, 6.02194676, 5.37832235, 5.80309593, 5.47680605,
       5.38908021, 5.24902132, 5.04068696, 5.69516629, 5.86000764,
       5.40120967, 5.3834551, 6.23387007, 6.0375956, 6.67075119, 5.10200981, 5.42506762, 5.80924931, 5.70588308, 6.05499602,
       4.97975135, 5.05000333, 4.95080592, 5.55137988, 5.60201573,
       5.51449882, 6.32041445, 4.98861147, 5.82834176, 5.37670742,
       5.20026968, 6.53073594, 4.84246122, 5.27651711, 5.10819397,
       5.92311671,\; 5.0143682 \;\; , \; 5.58802138,\; 6.20016963,\; 5.50501381,
       4.89930303, 5.18962732, 5.55263282, 5.58964467, 6.17709158,
       5.55700084, 5.39046152, 6.52219068, 5.67196235, 5.05000333,
       5.08079148, 5.5943058 , 6.0929811 , 5.83125641, 5.11413388, 5.39621839, 5.35003757, 5.53339833, 5.17331786, 6.1812361 ,
       6.66364432, 6.08288344, 5.76263575, 6.46721371, 6.16370399, 5.30301361, 5.80309593, 5.38956387, 5.31619663, 5.56898153,
       5.13831066, 5.45929077, 6.36179741, 5.78350828, 4.8024992, 4.93392193, 6.15635513, 5.63443962, 5.78846641, 5.38404606,
       5.24038113, 5.72478184, 5.03161613, 6.06088742, 5.70624392,
       6.02392175,\ 6.31342769,\ 6.19084804,\ 5.18021277,\ 5.09496384,
       5.3259214 , 6.26077414, 5.39835093, 6.09093032, 5.27630308,
       5.08727946, 5.58886863, 6.12677789, 6.33604641])
In [51]:
train_rmse = metrics.mean_squared_error(train_pred, y_train) ** 0.5
train_rmse
Out[51]:
0.5716073011886497
```

```
In [52]:
```

```
test_rmse = metrics.mean_squared_error(test_pred, y_test) ** 0.5
test_rmse
```

Out[521:

0.5670861234986311

In [53]:

```
# rounding off the predicted values for test set
predicted_data = np.round_(test_pred)
predicted_data
```

Out[53]:

```
array([5., 6., 6., 5., 6., 6., 7., 6., 6., 5., 5., 6., 5., 6., 6., 6.,
      5., 5., 5., 5., 6., 6., 5., 6., 6., 5., 6., 5., 5., 5., 6., 5.,
      6., 6., 5., 6., 5., 5., 6., 6., 6., 7., 5., 5., 6., 5., 5., 5., 6.,
      6., 6., 6., 6., 5., 5., 5., 6., 5., 5., 5., 6., 5., 5., 6.,
      5., 5., 5., 6., 6., 6., 6., 6., 5., 6., 5., 6., 5., 7., 6., 6.,
      5., 6., 6., 6., 6., 5., 6., 7., 6., 5., 5., 6., 6., 5., 5., 6.,
      6., 5., 5., 5., 6., 6., 5., 5., 7., 6., 6., 5., 6., 6., 5., 5., 5.,
      5., 5., 7., 7., 5., 6., 6., 6., 6., 6., 5., 6., 6., 5., 6., 6.,
      5., 6., 5., 5., 6., 7., 6., 6., 5., 5., 6., 5., 6., 6., 5., 5., 6.,
      6., 5., 5., 5., 6., 6., 5., 6., 6., 5., 6., 5., 5., 5., 6., 6.,
      5., 6., 5., 5., 5., 6., 5., 7., 6., 6., 5., 6., 5., 5., 5., 6.,
      5., 5., 6., 6., 5., 6., 6., 5., 5., 7., 6., 5., 5., 6., 5., 6.,
      6., 6., 6., 5., 5., 6., 6., 5., 5., 6., 5., 6., 6., 6., 5., 5.,
      5., 6., 6., 6., 6., 6., 5., 5., 5., 5., 5., 6., 6., 6., 5., 5., 5.,
      5., 5., 5., 6., 6., 5., 6., 7., 5., 6., 5., 5., 6., 5., 5., 6., 6.,
      5., 6., 5., 6., 5., 5., 5., 6., 6., 5., 5., 6., 6., 7., 5., 5.,
      6., 6., 6., 5., 5., 5., 6., 6., 6., 5., 6., 5., 5., 7., 5., 5.,
      5., 6., 5., 6., 6., 6., 5., 5., 6., 6., 6., 6., 5., 7., 6., 5., 5.,
      6., 6., 6., 5., 5., 5., 6., 5., 6., 7., 6., 6., 6., 6., 5., 6., 5.,
```

In [54]:

```
print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, test_pred))
print('Mean Squared Error:', metrics.mean_squared_error(y_test, test_pred))
rmse = np.sqrt(metrics.mean_squared_error(y_test, test_pred))
print('Root Mean Squared Error:',rmse)
```

Mean Absolute Error: 0.4566775059037429 Mean Squared Error: 0.3215866714647046 Root Mean Squared Error: 0.5670861234986311

In [55]:

from sklearn.metrics import r2_score
r2_score(y_test,test_pred)

Out[55]:

0.4070484025414417

In [56]:

```
ame(regressor.coef_,features)
'Coeffecient']

holding all other features fixed, a 1 unit increase in suplhates will lead to an increase of 0.8 in Quality of wine, and similarly for th holding all other features fixed, a 1 unit increase in volatile acidity will lead to a decrease of 0.99 in Quality of wine, and
```

Out[56]:

	Coeffecient
fixed acidity	0.042297
volatile acidity	-0.816828
citric acid	-0.400865
chlorides	-2.684283
total sulfur dioxide	-0.001473
density	-23.748664
рН	-0.472842
sulphates	1.712367
alcohol	0.247527

In [57]:

```
import matplotlib.pyplot as plt1
ax=plt1.axes()
color1= 'green'
color2= 'blue'
ax.arrow(0,0,1,0.56,head_width=0.00,head_length=0,fc=color2,ec=color2)
ax.arrow(0,0,2,0.63,head_width=0.00,head_length=0.05,fc=color1,linestyle='--')
ax.set_ylim([0,0.8])
ax.set_ylim([0,4])
plt.grid()
plt.title('RMSE_Score')
```


In [58]:

```
import matplotlib.pyplot as plt1
ax=plt1.axes()
color1= 'green'
color2= 'blue'
ax.arrow(0,0,2,0.40,head_width=0.00,head_length=0,fc=color2,ec=color2)
ax.arrow(0,0,1,0.34,head_width=0.00,head_length=0.05,fc=color1,ec=color1,linestyle='--')
ax.set_ylim([0,0.6])
ax.set_xlim([0,3])
plt.grid()
plt.title('R2_Score')
```


In [59]:

```
import matplotlib.pyplot as plt1
ax=plt1.axes()
color1= 'green'
color2= 'blue'
ax.arrow(0,0,1,0.45,head_width=0.00,head_length=0,fc=color2,ec=color2)
ax.arrow(0,0,2,0.49,head_width=0.00,head_length=0.05,fc=color1,linestyle='--')
ax.set_ylim([0,0.6])
ax.set_xlim([0,3])
plt.grid()
plt.title('MAE')
```


Conclusion

We have created a Linear Regression Model which we help to Analysis the Wine quality prediction.

End of the code

Thank You