Using a posteriori error analysis to develop fast and low bias gradient-based ODE inference strategies.

Richard Creswell

2022 May 23

Inference problem for ordinary differential equations (DEs).

$$\frac{dy}{dt} = f(y, t; \theta); \quad y(t = t_0) = y_0$$

• Given an observed time series for y, learn parameters θ .

Inference problem for ordinary differential equations (DEs).

$$\frac{dy}{dt} = f(y, t; \theta); \quad y(t = t_0) = y_0$$

- Given an observed time series for y, learn parameters θ .
- ▶ Problems of this type arise throughout mathematical biology (e.g., epidemiology, cardiac electrophysiology, enzyme kinetics, ...).

Inference for DEs requires multiple approximate forward solves.

- Each forward solution requires a numerical approximation.
- Adaptive step size solvers are based on the **local truncation error** without directly controlling the error in the likelihood.

Inference for DEs requires multiple approximate forward solves.

- ► Each forward solution requires a numerical approximation.
- Adaptive step size solvers are based on the **local truncation error** without directly controlling the error in the likelihood.

Beeler and Reuter: "Reconstruction of the action potential of ventricular myocardial fibres," Journal of Physiology (1977).

Some other ideas from probabilistic numerics.

▶ *Probabilistic numerics* aims to quantify uncertainty in numerical approximations using probability distributions.

Hennig et al.: "Probabilistic numerics and uncertainty in computations," *Proceedings of the Royal Society A* (2015).

Some other ideas from probabilistic numerics.

- Probabilistic numerics aims to quantify uncertainty in numerical approximations using probability distributions.
- ▶ Place Gaussian process priors on the DE solution, incorporating this uncertainty in the solution in parameter inference.

- Hennig et al.: "Probabilistic numerics and uncertainty in computations," *Proceedings of the Royal Society A* (2015).
- Chkrebtii et al.: "Bayesian solution uncertainty quantification for differential equations," Bayesian Analysis 11.4 (2016)

Some other ideas from probabilistic numerics.

- Probabilistic numerics aims to quantify uncertainty in numerical approximations using probability distributions.
- ▶ Place Gaussian process priors on the DE solution, incorporating this uncertainty in the solution in parameter inference.
- ▶ Randomize the solver by inserting noise (IID Gaussian) at each solver time step, to obtain a distribution over the solutions to the DE.
- Hennig et al.: "Probabilistic numerics and uncertainty in computations," *Proceedings of the Royal Society A* (2015).
- Chkrebtii et al.: "Bayesian solution uncertainty quantification for differential equations," Bayesian Analysis 11.4 (2016)
- Conrad et al.: "Statistical analysis of differential equations: introducing probability measures on numerical solutions," *Statistics and Computing*, 27.4 (2017).

DE problems often present challenging or high-dimensional posteriors.

$$Q(y) = \int_0^T q(y)dt$$

Q = quantity of interest
(e.g., log-likelihood)

y =solution to ODE

$$Q(y) = \int_0^T q(y)dt$$

$$q(y) = \sum_{k=1}^{K} \delta(t^{(k)}) (\tilde{y}^{(k)} - y(t^{(k)}; \theta))^{2}$$

Q = quantity of interest
(e.g., log-likelihood)

y =solution to ODE

 $\{t^{(k)}\}$ = time points $\{\tilde{y}^{(k)}\}$ = data points

$$Q(y) = \int_0^T q(y)dt$$

$$q(y) = \sum_{k=1}^K \delta(t^{(k)})(\tilde{y}^{(k)} - y(t^{(k)}; \theta))^2$$

$$e_Q = Q(y) - Q(\hat{y})$$

y =solution to ODE

$$\{t^{(k)}\}=$$
 time points $\{ ilde{y}^{(k)}\}=$ data points

$$\hat{y} = \text{numerical approximation to ODE solution}$$

$$e_Q pprox \int_0^T (y-\hat{y}) \left. rac{\partial q}{\partial y} \right|_{\hat{y}, heta} dt$$

Q = quantity of interest(e.g., log-likelihood)

y = true solution to ODE

 $\hat{y} = \text{numerical approx}$ solution

$$e_Q pprox \int_0^T (y - \hat{y}) \left. \frac{\partial q}{\partial y} \right|_{\hat{y}, \theta} dt$$

$$\frac{d}{dt}(y - \hat{y}) = f(y, t; \theta) - \dot{\hat{y}}$$

$$\approx f(\hat{y}, t; \theta) - \dot{\hat{y}} + \frac{\partial f}{\partial y}(y - \hat{y})$$

Q = quantity of interest(e.g., log-likelihood)

y = true solution to ODE

 $\hat{y} = \text{numerical approx}$ solution

$$e_{Q} \approx \int_{0}^{T} (y - \hat{y}) \frac{\partial q}{\partial y} \bigg|_{\hat{y}, \theta} dt$$
$$= \int_{0}^{T} (f(\hat{y}, t; \theta) - \dot{\hat{y}}) \phi dt.$$

Adjoint differential equation:

$$\frac{d\phi}{dt} = \phi \left. \frac{\partial f}{\partial y} \right|_{\hat{y},\theta} + \frac{\partial q}{\partial y} \right|_{\hat{y}}; \quad t \in (T,0]$$
$$\phi(t=T) = 0$$

Q = quantity of interest (e.g., log-likelihood)

y = true solution to ODE

 $\hat{y} = \text{numerical approx}$ solution

 $\phi = {\sf adjoint\ state}$

Adjoint-based estimate of gradient.

Consider the same ODE at parameters $\theta + \Delta\theta$:

$$egin{split} rac{d}{dt}(y+z) &= f(t,y+z, heta+\Delta heta) \ rac{dQ}{d heta} &pprox rac{1}{\Delta heta} \int_0^T z rac{\partial q}{\partial y} dt \end{split}$$

Q = quantity of interest (e.g., log-likelihood)

y = true solution to ODE

z = perturbation to ODE solution

Adjoint-based estimate of gradient.

Consider the same ODE at parameters $\theta + \Delta\theta$:

$$rac{d}{dt}(y+z) = f(t,y+z,\theta+\Delta\theta)$$
 $rac{dQ}{d\theta} pprox rac{1}{\Delta\theta} \int_0^T z rac{\partial q}{\partial y} dt$

$$rac{d}{dt}(y+z) pprox f(t,y, heta) + rac{\partial f}{\partial y}z + rac{\partial f}{\partial heta}\Delta heta$$
 $rac{dz}{dt} = rac{\partial f}{\partial y}z + rac{\partial f}{\partial heta}\Delta heta; \quad z(t=0) = 0$

Q = quantity of interest (e.g., log-likelihood)

y = true solution to ODE

z = perturbation to ODE solution

Adjoint-based estimate of gradient.

Consider the same ODE at parameters $\theta + \Delta\theta$:

$$\frac{dQ}{d\theta} \approx \frac{1}{\Delta \theta} \int_0^T z \frac{\partial q}{\partial y} dt$$
$$\approx \int_0^T \frac{\partial f}{\partial \theta} \frac{\phi}{\phi} dt$$

This is the same adjoint state ϕ we used for e_Q .

Q = quantity of interest(e.g., log-likelihood)

y =true solution to ODE

z = perturbation to ODE

 $\phi = {\sf adjoint\ state}$

- ightharpoonup At parameter values θ proposed by the inference algorithm:
 - ▶ Solve the forward problem, to obtain the numerical solution \hat{y} .

- ightharpoonup At parameter values θ proposed by the inference algorithm:
 - ▶ Solve the forward problem, to obtain the numerical solution \hat{y} .
 - **Solve the adjoint problem, to obtain** ϕ .

- ightharpoonup At parameter values θ proposed by the inference algorithm:
 - ▶ Solve the forward problem, to obtain the numerical solution \hat{y} .
 - Solve the adjoint problem, to obtain ϕ .
 - Evaluate the two previously derived expressions, to obtain:
 - the error in the log-likelihood resulting from numerical approximation
 - and the gradient in the log-likelihood.

- ightharpoonup At parameter values θ proposed by the inference algorithm:
 - ▶ Solve the forward problem, to obtain the numerical solution \hat{y} .
 - Solve the adjoint problem, to obtain ϕ .
 - Evaluate the two previously derived expressions, to obtain:
 - the error in the log-likelihood resulting from numerical approximation
 - and the gradient in the log-likelihood.
 - ▶ If the error is too high, refine the grid and repeat. Otherwise, use the gradient to drive HMC or NUTS or a similar algorithm to the next parameter values.

How accurate does the log-likelihood need to be?

For the absolute Bayes factor between the true posterior and the numerical posterior not to exceed 1 + b, we should have:

$$|e_Q| < b$$

Capistrán et al.: "Error control of the numerical posterior with Bayes factors in Bayesian uncertainty quantification," *Bayesian Analysis* 1.1 (2021).

DE model and inference methods.

$$\ddot{y} + k\dot{y} + cy = F(t)$$

 $y(t = 0) = 0; \quad \dot{y}(t = 0) = 2$

DE model and inference methods.

$$\ddot{y} + k\dot{y} + cy = F(t)$$

 $y(t = 0) = 0; \quad \dot{y}(t = 0) = 2$

Method	Forward solution adaptation	Inference
Traditional	Local truncation error	Adaptive covariance
Adjoint	Log-likelihood (adjoint-based)	NUTS (adjoint-based gradient)

Adaptation based on error in the log-likelihood avoids having to tune solver tolerances.

Inference via Traditional method.

Adaptation based on error in the log-likelihood avoids having to tune solver tolerances.

Inference via Adjoint method.

Comparison of inference performance: ESS.

Method	Forward solution adaptation	Inference
Traditional	Local truncation error	Adaptive covariance
Adjoint	Log-likelihood (adjoint-based)	NUTS (adjoint-based gradient)
Mixed	Local truncation error	NUTS (adjoint-based gradient)

Comparison of inference performance: ESS.

Future work

Extend methods to other solvers.

Future work

- Extend methods to other solvers.
- ▶ Improved strategies for grid adaptation.

Acknowledgements.

Collaborative project between:

- Oxford Computer Science (Richard Creswell, Martin Robinson, David Gavaghan)
- University of Exeter (Ben Lambert)
- University of Macau (Chon Lok Lei)
- Colorado State University (Simon Tavener)