Teorema TC1a

$$\vdash \forall x P \leftrightarrow P$$

Donde P es una fbf libre de x.

$$\vdash \forall x P \rightarrow P$$

 $1 \forall x P$ Supuesto

2 P E.U. de 1: la particularización no resulta en cambio alguno en la fbf P, pues ésta es

libre de la variable x.

 $3 \forall x P \rightarrow P$ Teorema de la deducción (TdD) entre 1 y 3

 $\vdash P \rightarrow \forall x P$

1a P Supuesto

2a $\forall x P$ G.U. de 1a. No se infringen las restricciones para realizar la G.U.

 $3a P \rightarrow \forall x P$ TdD entre 1a y 2a

 $4 (\forall x P \rightarrow P) \land (P \rightarrow \forall x P)$ TP15a (Adjunción) entre 3 y 3a.

 $5 \forall x P \leftrightarrow P$ Sustitución de 4: RFP7

Teorema TC1b

$$\vdash \exists x P \leftrightarrow P$$

Donde P es una fbf libre de x.

Teorema C2a (Intercambio de cuantificadores)

$$\vdash \exists x P \leftrightarrow \neg \forall x \neg P$$

"Afirmar que existe al menos un elemento que cumple una proposición" es equivalente a "Negar que todos la incumplen"

 $1 \exists x P$ Supuesto

 $2 \neg \forall x \neg P$ Sustitución de 1: Aplicación de RFC3 (define el cuantificador existencial en

términos del universal)

 $3 \exists x P \rightarrow \neg \forall x \neg P$ TdD entre 1 y 2.

El hecho de haber aplicado sustitución entre el supuesto y la fbf 2 las hace equivalentes, y el conector de condicional puede cambiarse por el de bicondicional, y la prueba finaliza.

Teorema C2b (Intercambio de cuantificadores)

$$\vdash \forall x P \leftrightarrow \neg \exists x \neg P$$

"Afirmar que todos cumplen una proposición" es equivalente a "Negar que algo la incumple"

$$\vdash \forall x P \rightarrow \neg \exists x \neg P$$

1. $\forall x P$ Supuesto

2. $\neg\neg \forall x \neg \neg P$ Sustitución en 1: doble aplicación de TP11 (doble negación)

3. $\neg \exists x \neg P$ Sustitución en 2: aplicación de TC2a.

4. $\forall x P \rightarrow \neg \exists x \neg P$ TdD entre 1 y 3.

Puesto que se aplicó únicamente la Ley de sustitución entre 1 y 3, la expresión realmente hallada es una equivalencia; por tanto, $\vdash \forall x \ P \leftrightarrow \neg \exists x \neg P$.

Teorema C2c (Intercambio de cuantificadores)

$$\vdash \neg \forall x P \leftrightarrow \exists x \neg P$$

Teorema C2d (Intercambio de cuantificadores)

$$\vdash \neg \exists x P \leftrightarrow \forall x \neg P$$

"Negar que algo cumple una proposición", es equivalente a "afirmar que todos la incumplen"

$$\vdash \neg \exists x P \rightarrow \forall x \neg P$$

1. $\neg \exists x P$ Supuesto.

2. $\neg\neg \forall x \neg P$ Sustitución en 1: TC2a.

3. $\forall x \neg P$ Sustitución en 2: TP11 (doble negación).

 $4. \neg \exists x P \rightarrow \forall x \neg P$ TdD entre 1 y 3. Sin embargo, dado que se hizo empleo de la sustitución entre el supuesto y la conclusión, la condicional podría reemplazarse por

la bi-condicional y así, no se requeriría probar la condicional recíproca.

Ahora,

 $\vdash \forall x \neg P \rightarrow \neg \exists x P$

1. $\forall x \neg P$ Supuesto

2. $\neg \exists x \neg \neg P$ Sustitución en 1: TC2b

3. $\neg \exists x P$ Sustitución en 2: TP11 (doble negación).

4. $\forall x \neg P \rightarrow \neg \exists x P$ TdD entre 1 y 3. Sin embargo, y al igual que en la anterior prueba, dado que se hizo empleo de la sustitución entre el supuesto y la conclusión, la

condicional podría reemplazarse por la bi-condicional.

Teorema C3a (Negación de expresiones con varios cuantificadores)

$$\vdash \neg \forall x \forall y \ P \leftrightarrow \exists x \exists y \neg P$$

"Negar que toda pareja de elementos cumple una proposición" es equivalente a "afirmar que existe al menos una pareja que la incumple"

$$\vdash \neg \forall x \forall y \ P \rightarrow \exists x \exists y \neg P$$

1. $\neg ∀x∀y$ P	Supuesto
2. $∃x¬∀y$ P	Sustitución: TC2c en 1
3. $∃x∃y ¬P$	Sustitución: TC2c en 2
$4. \neg \forall x \forall y \ P \rightarrow \exists x \exists y \neg P$	TdD entre 1 y 3

El uso exclusivo de la sustitución entre 1 y 3, permite afirmar la existencia de una equivalencia entre ellas; lo que implica que no es necesario efectuar el sentido recíproco de la demostración.

Teorema C3b (Negación de expresiones con varios cuantificadores)

$$\vdash \neg \exists x \exists y P \leftrightarrow \forall x \forall y \neg P$$

Teorema C3c (Negación de expresiones con varios cuantificadores)

$$\vdash \neg \forall x \exists y \ P \leftrightarrow \exists x \forall y \neg P$$

"Negar que cada elemento x está relacionado con al menos un elemento y con el que se cumpla una proposición" es equivalente a "afirmar que existe un elemento x con el que todos los elementos y la incumple"

$$\vdash \neg \forall x \exists y \ P \rightarrow \exists x \forall y \neg P$$

$1 \neg \forall x \exists 1$	v P	Supuesto

$$2 \exists x \neg \exists y P$$
 Sustitución en 1: TC2c

$$\exists x \neg \neg \forall y \neg P$$
 Sustitución en 2: RFC3 (define el cuantificador existencial en términos del

universal)

$$4 \exists x \forall y \neg P$$
 Sustitución en 3: TP11 (doble negación).

$$5 \neg \forall x \exists y \ P \rightarrow \exists x \forall y \neg P$$
 TdD entre 1 y 4. El hecho de haber aplicado sustitución entre el supuesto y la fbf 4 las hace equivalentes, y el conector de condicional puede cambiarse por el de bicondicional, y la prueba finaliza.

Teorema C3d (Negación de expresiones con varios cuantificadores)

$$\vdash \neg \exists x \forall y P \leftrightarrow \forall x \exists y \neg P$$

Teorema C4a (Conmutación de cuantificadores universales)

$$\vdash \forall x \forall y P \leftrightarrow \forall y \forall x P$$

$\vdash \forall x \forall y P \rightarrow \forall y \forall x P$

1. $\forall x \forall y P$	Supuesto
2. $(\forall y P)_{x x}$	E.U. en 1
$3. \left(P_{y y} \right)_{x x}$	E.U. en 2
4. $\forall x P_{y y}$	G.U en 3

[&]quot;Afirmar que todo elemento de x relacionado con cualquier elemento y cumplen una proposición", es equivalente a "afirmar que todo elemento de y relacionado con cualquier elemento x la cumplen"

5.
$$\forall y \forall x P$$

G.U en 4

6.
$$\forall x \forall y P \rightarrow \forall y \forall x P$$

TdD entre 1 y 5

De manera análoga se desarrolla $\vdash \forall y \forall x \ P \rightarrow \forall x \forall y \ P$

Ejemplo de una afirmación que emplea doble cuantificación universal:

Identidad trigonométrica

$$\forall x \forall y \left(\sin(x + y) = \sin x \cos y + \cos x \sin y \right)$$

Teorema C4b (Conmutación de cuantificadores existenciales)

$$\vdash \exists x \exists y \ P \leftrightarrow \exists y \exists x \ P$$

Ejemplo de una afirmación que emplea doble cuantificación existencial

Ecuación de la circunferencia

$$\exists x \exists y ((x-a)^2 + (y-b)^2 = r^2)$$

Teorema C5

$$\exists x \forall y P \vdash \forall y \exists x P$$

"Afirmar que con al menos uno de los elementos x todos los elementos y satisfacen la proposición" es suficiente para asegurar que "para cada elemento y existe al menos un elemento x con el que cumple la proposición"

1. $\exists x \forall y P$	Premisa
$2. (\forall y P)_{x x}$	E.E. en 1.
$3. \left(P_{y y} \right)_{x x}$	E.U. en 2.
$4. \; \exists x P_{y y}$	G.E. en 3.
5. ∀ <i>y</i> ∃ <i>x</i> P	G.U. en 4.

Ejemplo de una afirmación que emplea la combinación cuantificación universal-cuantificación existencial:

Ecuación de línea recta

$$\forall x \exists y (ax + by + c = 0)$$

Teorema C6a

$$\vdash \forall x (P \lor Q) \leftrightarrow P \lor \forall xQ$$

Donde la fbf P es libre de la variable x.

Teorema C6b

$$\vdash \exists x (P \land Q) \leftrightarrow \exists x P \land Q$$

Donde la fbf Q es libre de la variable x.

"Afirmar que al menos un elemento cumple dos proposiciones conjuntamente - una de ellas independiente de tales elementos", es equivalente a "afirmar que se cumple conjuntamente la proposición independiente y aquella en la que al menos uno de los elementos cumple la otra proposición"

Se efectuará primero: $\vdash \exists x \ (P \land Q) \rightarrow \exists x P \land Q$

1. $\exists x \ (P \land Q)$ Supuesto

2. $\neg \forall x \neg (P \land Q)$ Sustitución: TC2a en 1

3. $\neg \forall x (\neg P \lor \neg Q)$ Sustitución: T25b (DeMorgan) en 2

4. $\neg(\forall x \neg P \lor \neg Q)$ Sustitución: TC6a en 3

5. $\neg(\neg \exists x P \lor \neg Q)$ Sustitución: TC2d en 4

6. ∃xP ∧ Q Sustituciones: T25a (DeMorgan) en 5, y doble aplicación de TP11

(doble negación) en expresión resultante.

7. $\exists x (P \land Q) \rightarrow \exists x P \land Q$ TdD entre 1 y 6.

De hecho, por la aplicación reiterada de sustituciones para obtener 6 desde 1, ya se podría afirmar que las dos expresiones son formalmente equivalentes, y no sería necesario efectuar la demostración en sentido recíproco, es decir, $\vdash \exists x P \land Q \rightarrow \exists x (P \land Q)$; sin embargo, con el propósito de exponer argumentaciones formales, se realizará tal prueba.

Ahora; $\vdash \exists x P \land Q \rightarrow \exists x (P \land Q)$

1a. $\exists x P \land Q$ Supuesto

2a. Q TP15a (propiedad de la conjunción) en 1a.

3a. $\exists x P$ TP15a (propiedad de la conjunción) en 1a.

4a. $P_{x|x}$ E.E. en 3a.

5a. $P_{x|x} \wedge Q$ TP15b (propiedad de la conjunción) entre 4a y 2a.

6a. $\exists x \ (P \land Q)$ G.E. en 5a. se toma a $P_{x|x} \land Q$ como una fbf en la que se presenta

ocurrencia libre de la variable x.

7a. $\exists x P \land Q \rightarrow \exists x (P \land Q)$ TdD entre 1a y 6a.

Teorema C7a

$$\forall x P \lor \forall x Q \vdash \forall x (P \lor Q)$$

"Cuando todos los elementos satisfacen una proposición o todos satisfacen a otra", se afirma necesariamente que "todos los objetos satisfacen al menos una de las dos proposiciones"

1. $\forall x P \lor \forall x Q$	Premisa
2. ∀ <i>x</i> P	Supuesto
3. $P_{x x}$	E.U. aplicada en 2.
$4. \ \forall x P \rightarrow P_{x x}$	TdD entre 2 y 3.
5. ∀ <i>x</i> Q	Supuesto
6. $Q_{x x}$	E.U. aplicada en 5.
$7. \ \forall x \mathbf{Q} \to \mathbf{Q}_{x x}$	TdD entre 5 y 6.
8. $P_{x x} \vee Q_{x x}$	TP21 entre 1, 4 y 7.
9. $\forall x (P \lor Q)$	G.U. en 8. La fbf de 8 cumple con las restricciones establecidas: el término (en este caso, la variable x) por el cual se generalizó no

Teorema C7b

$$\exists x (P \land Q) \vdash \exists x P \land \exists x Q$$

resultó de una E.E. en algún paso previo.

Teorema C8a

$$\vdash \forall x (P \land Q) \leftrightarrow \forall x P \land \forall x Q$$

Teorema C8b

$$\vdash \exists x (P \lor Q) \leftrightarrow \exists x P \lor \exists x Q$$

$\vdash \exists x (P \lor Q) \rightarrow \exists x P \lor \exists x Q$

$1. \exists x (P \lor Q)$	Supuesto
$2. \neg \forall x \neg (P \lor Q)$	Sustitución de 1: TC2b (intercambio de cuantificadores)
$3. \neg \forall x (\neg P \land \neg Q)$	Sustitución en 2: TP25a (DeMorgan)
$4. \neg (\forall x \neg P \land \forall x \neg Q)$	Sustitución en 3: TC8a.
$5 \neg \forall x \neg P \lor \neg \forall x \neg Q$	Sustitución de 4: TP25b (DeMorgan)
6. $\exists x P \lor \exists x Q$	Doble sustitución en 5: TC2a.

7. $\exists x (P \lor Q) \leftrightarrow \exists x P \lor \exists x Q$ TdD entre 1 y 6 (aplicación reiterada de la regla de sustitución desde 1 a 6, permite reemplazar condicional por bicondicional).

[&]quot;Afirmar que existe un elemento que satisface al menos una de dos proposiciones" es equivalente a "afirmar que al menos una de las dos proposiciones es satisfecha por algún elemento"

Solución alternativa

2.
$$P_{x|x} \vee Q_{x|x}$$
 E.E. de 1.

3.
$$P_{x|x}$$
 Supuesto

4.
$$\exists x P$$
 G.E de 3.

5.
$$P_{x|x} \rightarrow \exists x P$$
 TdD entre 3 y 4.

6.
$$Q_{x|x}$$
 Supuesto
7. $\exists xQ$ G.E de 6.

8.
$$Q_{x|x} \rightarrow \exists xQ$$
 TdD entre 6 y 7.

9.
$$\exists x P \lor \exists x Q$$
 TP21 (Ley Disyunción de casos) entre 2, 5 y 8.

Supuesto

10.
$$\exists x (P \lor Q) \rightarrow \exists x P \lor \exists x Q$$
 TdD entre 1 y 9.

$$\vdash \exists x P \lor \exists x Q \rightarrow \exists x (P \lor Q)$$

1.
$$\exists x P$$
 Supuesto

2.
$$P_{x|x}$$
 E.E. de 1.

3.
$$P_{x|x} \vee Q_{x|x}$$
 TP1 (Adición) en 2.

4.
$$\exists x (P \lor Q)$$
 G.E. de 3.

5.
$$\exists x P \rightarrow \exists x (P \lor Q)$$
 TdD entre 1 y 4.

6.
$$\exists xQ$$
 Supuesto

7.
$$Q_{x|x}$$
 E.E. en 6. (Puedo emplear el término x nuevamente, porque en el momento de realizar la conexión del supuesto en 1 con la fbf 4, a través del Teorema de la deducción, la existencia previa de x en la demostración cesó)

8.
$$P_{x|x} \vee Q_{x|x}$$
 TP1 (Adjunción) y TP3 (conmutatividad) en 7.

9.
$$\exists x (P \lor Q)$$
 G.E. de 8.

10.
$$\exists x Q \rightarrow \exists x (P \lor Q)$$
 TdD entre 6 y 9.

11.
$$\exists x P \lor \exists x Q \to \exists x (P \lor Q)$$
 TP19 (Adición disyuntiva de condicionales) entre 5 y 10; TP2 (idempotencia) en el consecuente resultante.

Teorema C9

$$\vdash \forall x P \lor \forall y Q \leftrightarrow \forall x \forall y (P \lor Q)$$

Donde la fbf P es libre de la variable y, y la fbf Q es libre de la variable x.

Teorema C10

$$\forall x (P \rightarrow Q), \forall x P \vdash \forall x Q$$

Cuando se establece que "para cada elemento una proposición se vuelve suficiente para otra", y se ha verificado que "todos los elementos cumplen la proposición suficiente", es necesariamente cierto que "todos los elementos satisfacen la proposición consecuente"

1. $\forall x (P \rightarrow Q)$

Premisa

2. ∀*x*P

Premisa

3.
$$P_{x|x} \rightarrow Q_{x|x}$$

E.U. de 1

4.
$$P_{x|x}$$

E.U. de 2

5. $Q_{x|x}$

Modus Ponems entre 3 y 4.

6. ∀*x*0

G.U. de 5.

Teorema C11

$$\forall x (P \rightarrow Q) \vdash \forall x P \rightarrow \forall x Q$$

Teorema C12

$$\vdash \forall x (P \rightarrow Q) \leftrightarrow (\exists x P \rightarrow Q)$$

Donde la fbf Q es libre de la variable x.

Teorema C13

$$\vdash \exists x (P \rightarrow Q) \leftrightarrow (\forall x P \rightarrow \exists x Q)$$

Teorema C14

$$\exists x P \rightarrow \forall x O \vdash \forall x (P \rightarrow O)$$

Teorema C15

$$\exists x P \rightarrow \forall x Q \vdash \forall x P \rightarrow \forall x Q$$

Teorema C16

$$\vdash \forall x \forall y \forall z (P \land Q \rightarrow R) \leftrightarrow \forall x \forall z (\exists y (P \land Q) \rightarrow R)$$

La fbf P es libre de la variable z, la fbf Q es libre de la variable x, y la fbf R es libre de la variable y.

"Afirmar que cualquier trío de elementos torna a la conjunción de dos proposiciones P, Q – proposiciones que comparten su dependencia de los elementos representados mediante y- suficiente para una proposición R" es equivalente a "afirmar que para todo par de elementos x, z, se puede encontrar al menos un elemento y que torna a la conjunción de proposiciones P, Q suficiente para la proposición R"

- 1. $\forall x \forall y \forall z (P \land Q \rightarrow R)$
- Supuesto.
- 2. $\forall x \forall z \forall y (P \land Q \rightarrow R)$
- Sustitución en 1: TC4a
- $3 \forall x \forall z (\exists y (P \land Q) \rightarrow R)$
- Sustitución en 2: TC12 (La fbf R es libre de y)
- 4. $\forall x \forall y \forall z (P \land Q \rightarrow R) \rightarrow \forall x \forall z (\exists y (P \land Q) \rightarrow R) \text{ TdD entre 1 y 3; que resultó en equivalencia.}$

En este punto ya no se requiere más demostración, pues sólo fue empleada la sustitución como regla de validez entre el supuesto y la fbf 3.

Teorema C17a

$$\forall x (P \leftrightarrow Q) \vdash \forall x P \leftrightarrow \forall x Q$$

 $1 \forall x (P \leftrightarrow Q)$ Premisa $2 \forall x ((P \rightarrow Q) \land (Q \rightarrow P))$ Sustitución en 1: RFP7 (definición de fbf bicondicional) $3 \forall x (P \rightarrow Q) \land \forall x (Q \rightarrow P)$ Sustitución de 2: TC8a $4 \forall x (P \rightarrow Q)$ TP15a (simplificación) de 3 $5 \forall x (Q \rightarrow P)$ TP15a (simplificación) de 3 $6 \forall x P \rightarrow \forall x Q$ TC11 en 4 $7 \forall xQ \rightarrow \forall xP$ TC11 en 5 $8 \forall x P \leftrightarrow \forall x Q$ TP15b (conjunción) entre 6 y 7; sustitución en la fbf resultante: RFP7 (definición de fbf bicondicional)