Lower Bounds for Testing Properties of Functions on Hypergrids

Grigory Yaroslavtsev

http://grigory.us

Joint with: **Eric Blais (MIT)** Sofya Raskhodnikova (PSU)

Property Testing

[Goldreich, Goldwasser, Ron, Rubinfeld, Sudan]

 ϵ -close : $\leq \epsilon$ fraction can be changed to become **YES**

Ultra-fast Approximate Decision Making

Property Testing

[Goldreich, Goldwasser, Ron, Rubinfeld, Sudan]

Property **P** = set of **YES** instances

Query complexity of testing **P**:

- $Q_{\epsilon}(P)$ = Adaptive queries
- $Q_{\epsilon}^{na}(P)$ = Non-adaptive (all queries at once)
- $Q_{\epsilon}^{r}(P)$ = Queries in r rounds $(Q_{\epsilon}^{na}(P) = Q_{\epsilon}^{1}(P))$

Communication Complexity [Yao'79]

Shared randomness

- R(f) = min. communication (error 1/3)
- $R^{k}(f) = \min k$ -round communication (error 1/3)

k/2-disjointness $\Rightarrow k$ -linearity

[Blais, Brody, Matulef'11]

- k-linear function: $\{0,1\}^n \to \{0,1\}$ $\bigoplus_{i \in S} x_i = x_{i_1} \bigoplus x_{i_2} \bigoplus \cdots \bigoplus x_{i_k}$ where |S| = k
- k/2-Disjointness: $S, T \subseteq [n], |S| = |T| = \frac{k}{2}$ $f(S,T) = 1, \text{ iff } |S \cap T| = 0.$

$$f: |S \cap T| = 0?$$

Alice:

$$S \subseteq [n], |S| = k/2$$

Bob:

$$\mathbf{T} \subseteq [n], |\mathbf{T}| = k/2$$

k/2-disjointness $\Rightarrow k$ -linearity

[Blais, Brody, Matulef'11]

$$\chi = \chi_{S} \oplus \chi_{T}$$

$$S \subseteq [n], |S| = k/2$$

$$\chi_{S} = \bigoplus_{i \in S} \chi_{i}$$

$$T \subseteq [n], |T| = k/2$$

$$\chi_{T} = \bigoplus_{i \in T} \chi_{i}$$

- $S \cap T = \emptyset \Rightarrow \chi$ is k-linear
- $S \cap T \neq \emptyset \Rightarrow \chi$ is (< k)-linear, ½-far from k-linear
- Test χ for k-linearity using shared randomness
- To evaluate $\chi(x)$ exchange $\chi_{S}(x)$ and $\chi_{T}(x)$ (2 bits)
- $R\left(\frac{k}{2}\text{-Disjointness}\right) \leq 2 \cdot Q_{1/2}(k\text{-Linearity})$

k-Disjointness

- R(k-Disjointness) = $\Theta(k)$ [Razborov, Hastad-Wigderson]
- $R^1(k-Disjointness) = \Theta(k \log k)$

[Folklore + Dasgupta, Kumar, Sivakumar'12; Buhrman, Garcia-Soriano, Matsliah, De Wolf'12]

• $R^r(k ext{-Disjointness}) = \Theta(k ext{ ilog}^r k)$, where $ilog^r k = log log ... log k$ [Saglam, Tardos'13]

$$\Omega(\mathbf{k} \operatorname{ilog}^r \mathbf{k}) = \mathbf{Q^r}_{1/2}(\mathbf{k} - \operatorname{Linearity})$$

• R(k-Disjointness) = αk + o(k)[Braverman, Garg, Pankratov, Weinstein'13]

Property testing lower bounds via CC

- Monotonicity, Juntas, Low Fourier degree,
 Small Decision Trees [Blais, Brody, Matulef'11]
- Small-width OBDD properties [Brody, Matulef, Wu'11]
- Lipschitz property [Jha, Raskhodnikova'11]
- Codes [Goldreich'13, Gur, Rothblum'13]
- Number of relevant variables [Ron, Tsur'13]

(Almost) all: Boolean functions over Boolean hypercube

$$M_{m,n}$$
 = monotone functions over $[m]^n$
 $Q^1(M_{m,n}) = \Omega(n \log m)$

Previous for monotonicity on the line (n = 1):

- $Q^1(M_{m,1}) = \Theta(\log m)$ [Ergun, Kannan, Kumar, Rubinfeld, Viswanathan'00]
- $Q(M_{m,1}) = \Omega(\log m)$ [Fischer'04]

Proof ideas:

- Reduction from Augmented Index (widely used in streaming, e.g [Jayram, Woodruff'11; Molinaro, Woodruff, Y.'13])
- Fourier analysis over $\{0,1\}^n$ basis of characters => Fourier analysis over $[m]^n$: basis of Walsh functions
- Case n = 1: Any non-adaptive tester for monotonicity of $f: [m] \to [r]$ has complexity $\Omega(\min(\log m, \log r))$

• Augmented Index: S; $(i, S \cap [i-1])$

• R^1 [Augmented Index] = $\Omega(|S|)$ [Miltersen, Nisan, Safra, Wigderson, 98]

Walsh functions: For
$$S \subseteq [\log m]$$
, $w_S: [m] \to \{-1,1\}$: $w_S(x) = \prod_{i \in S} (-1)^{x_i}$,

where x_i is the *i*-th bit of x.

$$w_{\{1\}} = \frac{}{}$$
 $w_{\{2\}} = \frac{}{}$
 $w_{\{2\}} = \frac{}{}$

Step functions. For $i \in [\log m]$: $step_i$: $[m] \rightarrow \left\lfloor \frac{m}{2^i} \right\rfloor$: $step_i(x) = [x/2^i]$

Augmented Index ⇒ Monotonicity Testing

$$\chi = w_{S \cap [i,...,log m]} + 2 step_{i}$$

$$= w_{S} \oplus w_{S \cap [i-1]} + 2 step_{i}$$

$$S \subseteq [log m]$$

$$i \in [log m], S \cap [i-1]$$

- $i \notin S \Rightarrow \chi$ is monotone
- $i \in S \Rightarrow \chi$ is $\frac{1}{4}$ -far from monotone
- Only *i*-th frequency matters: higher frequencies are cancelled, lower don't affect monotonicity
- Thus, $Q^1(M_{m,1}) = \Omega(\log m)$

$$S \subseteq [n \log m]$$
 \downarrow
 $S_1, \dots, S_n \subseteq [\log m]$

$$i \in [n \log m], S \cap [i - 1]$$

$$\downarrow$$

$$(m, m, ..., m, i_{j^*}, 0, 0, ..., 0)$$

$$S_1, ..., S_{j^*-1}, S_{j^*} \cap [i_{j^*} - 1]$$

Embed into j^* -th coordiante using n-dimensional Walsh and step functions:

- Walsh functions: $\mathbf{w_S}(x_1, ..., x_n) = \prod_{j=1}^n w_{S_i}(x_j)$
- Step functions: $step_i(x_1, ..., x_n) = \sum_{j=1}^n step_j(x_j)$

- Walsh functions: $\mathbf{w_s}(x_1, ..., x_n) = \prod_{j=1}^n w_{s_i}(x_j)$
- Step functions: $step_i(x_1, ..., x_n) = \sum_{j=1}^n step_j(x_j)$

$$\chi(x_1, ..., x_n) = w_S(x_1, ..., x_n) \oplus \prod_{j=1}^{j^*-1} w_{S_j}(x_j) + 2step_{i_{j^*}}(x_{j^*}) + 2\sum_{j=j^*+1}^{n} x_j$$

- Only coordinate j* matters:
 - Coordinates $\langle j^* \rangle$ cancelled by Bob's Walsh terms
 - Coordinates > j* cancelled by Bob's Step terms
 - Coordinate j^* behaves as in the n=1 case

- $M_{m,n}$ = monotone functions over $[m]^n$ $Q^1(M_{m,n}) = \Omega(n \log m)$
- $L_{m,n} = c$ -Lipschitz functions over $[m]^n$
- $C_{m,n}^{s}$ = separately convex functions over $[m]^n$
- $M_{m,n}^k = \text{monotone axis-parallel } k\text{-th derivative over } [m]^n$
- $C_{m,n} = \text{convex functions over } [m]^n$
 - Can't be expressed as a property of axis-parallel derivatives!

Thm. [BRY] For all these properties $Q^1 = \Omega(n \log m)$ These bounds are optimal for $M_{m,n}$ and $L_{m,n}$ [Chakrabarty, Seshadhri, '13]

Open Problems

- Adaptive bounds and round vs. query complexity tradeoffs for functions $[m]^n \to \mathbb{R}$
 - Only known: $Q(M_{m,n}) = \Omega(n \log m)$ [Fischer'04; Chakrabarty Seshadhri'13]
- Inspired by connections of CC and Information Complexity
 - Direct information-theoretic proofs?
 - Round vs. query complexity tradeoffs in property testing?
- Testing functions $[0, 1]^n \to \mathbb{R}$
 - $-L_p$ -testing model [Berman, Raskhodnikova, Y. '14]
 - Testing convexity: $2^{O(n \log n)}$ vs. $\Omega(n)$?