Computational Methods in Physics (PHY 365) FA23

Dr. Muhammad Kamran

Department of Physics

COMSATS University Islamabad

Lab 15

- q = integral (fun , xmin , xmax) numerically integrates function fun from xmin to xmax using global adaptive quadrature and default error tolerances.
 - ♦ fun must be a function handle.
 - \diamond xmin and xmax can be $-\infty$ or ∞ .
 - If both are finite, they can be complex.
 - If at least one is complex, integral approximates the path integral from xmin to xmax over a straight line path.

- q = integral (fun , xmin , xmax) numerically integrates function fun from xmin to xmax using global adaptive quadrature and default error tolerances.
 - fun must be a function handle.
 - \diamond xmin and xmax can be $-\infty$ or ∞ .
 - ♦ If both are finite, they can be complex.
 - ♦ If at least one is complex, integral approximates the path integral from xmin to xmax over a straight line path.
- q = integral (fun , xmin , xmax , Name , Value) specifies additional options.
 - ♦ For example, specify 'WayPoints' followed by a vector of real or complex numbers to indicate specific points for the integrator to use.

■ Problem: Compute the following integral using integral function.

$$I = \int_{0}^{\infty} e^{-x^2} \left[\ln x \right]^2 dx.$$

■ Problem: Compute the following integral using integral function.

$$I = \int_{0}^{\infty} e^{-x^2} \left[\ln x \right]^2 dx.$$

■ The interval

$$x_{lower} = 0;$$

$$x_upper = inf;$$

Problem: Compute the following integral using integral function.

$$I = \int_{0}^{\infty} e^{-x^2} \left[\ln x \right]^2 dx.$$

■ The interval

■ The integrand

$$f = @(x) \exp(-x \hat{2}) * \log(x) \hat{2};$$

■ Problem: Compute the following integral using integral function.

$$I = \int_{0}^{\infty} e^{-x^2} \left[\ln x \right]^2 dx.$$

■ The interval

■ The integrand

$$f = @(x) \exp(-x \cdot 2) \cdot \log(x) \cdot 2;$$

■ Calling the integral function

Displaying the resultdisp (['The result is ', num2str (integral_int)])

- q = integral2 (fun , xmin , xmax , ymin , ymax) approximates the integral of the function over the planar region xmin $\leq x \leq xmax$ and ymin(x) $\leq y \leq ymax(x)$.
- q = integral2 (fun , xmin , xmax , ymin , ymax , Name , Value) specifies additional options with one or more Name, Value pair arguments.
- q = integral3(fun , xmin , xmax , ymin , ymax , zmin , zmax) approximates the integral of the function over the region xmin \leq x \leq xmax, ymin(x) \leq y \leq ymax(x) and zmin(x,y) \leq z \leq zmax(x,y).

■ Problem: Compute the following integral using integral2 function.

$$I = \int_{-5}^{5} \int_{-3}^{3} (x^2 + y^2) dx dy.$$

Problem: Compute the following integral using integral2 function.

$$I = \int_{-5}^{5} \int_{-3}^{3} (x^2 + y^2) dx dy.$$

■ The intervals

Problem: Compute the following integral using integral2 function.

$$I = \int_{-5}^{5} \int_{-3}^{3} (x^2 + y^2) dx dy.$$

■ The intervals

■ The integrand

$$f = @ (x, y) x ^2 + y ^2;$$

Calling the integral2 function
integral2_int = integral (f , x_lower , x_upper , y_lower ,
y_upper);

- Calling the integral2 function
 integral2_int = integral (f , x_lower , x_upper , y_lower ,
 y_upper);
- Displaying the result disp (['The result is ', num2str (integral2 int)])

- int(expr, var) computes the indefinite integral of "expr" with respect to the symbolic scalar variable "var".
 - Specifying the variable is optional.
 - ♦ If the variable is not specified, the function int uses the default variable determined by symvar.
 - ⋄ If expr is a constant, then the default variable is x.

- int(expr, var) computes the indefinite integral of "expr" with respect to the symbolic scalar variable "var".
 - Specifying the variable is optional.
 - ♦ If the variable is not specified, the function int uses the default variable determined by symvar.
 - \diamond If expr is a constant, then the default variable is x.
- int(expr, var, a, b) computes the definite integral of the expression with respect to the variable from "a" to "b".

- int(expr, var) computes the indefinite integral of "expr" with respect to the symbolic scalar variable "var".
 - Specifying the variable is optional.
 - ♦ If the variable is not specified, the function int uses the default variable determined by symvar.
 - \diamond If expr is a constant, then the default variable is x.
- int(expr, var, a, b) computes the definite integral of the expression with respect to the variable from "a" to "b".
- int(____, Name, Value) uses additional options specified by one or more Name, Value pair arguments.

■ Problem: Determine the integral

$$I = \int \sin(x) dx$$

■ Problem: Determine the integral

$$I = \int \sin(x) dx$$

■ Defining the function

syms x

$$f = \sin(x)$$

■ Problem: Determine the integral

$$I = \int \sin(x) dx$$

■ Defining the function

syms x

$$f = \sin(x)$$

■ The integral

$$int_int = int(f);$$

■ Problem: Determine the integral

$$I = \int \sin(x) dx$$

■ Defining the function

```
syms x
```

$$f = \sin(x)$$

- The integral
 - $int_int = int(f);$
- Displaying the result

disp (['The result is', char (int int)])

■ Problem: Determine the integral

$$I = \int_{0}^{2} \frac{1}{x - 1} dx$$

■ Problem: Determine the integral

$$I = \int_{0}^{2} \frac{1}{x - 1} dx$$

■ Defining the function

$$f = 1 / (x - 1)$$

■ Problem: Determine the integral

$$I = \int_{0}^{2} \frac{1}{x - 1} dx$$

■ Defining the function

syms x

$$f = 1 / (x - 1)$$

■ The integral

$$int_int = int (f, x, 0, 2);$$

■ Problem: Determine the integral

$$I = \int_{0}^{2} \frac{1}{x - 1} dx$$

Defining the function syms x

$$f = 1 / (x - 1)$$

- The integral
 int_int = int (f , x , 0 , 2);
- Displaying the result disp(['The result is ', char(int_int)])

- The integrand has a pole in the interior of the interval of integration.
 - ♦ Mathematically, this integral is not defined.

MP Dr. M. Kamran 12 / 13

- The integrand has a pole in the interior of the interval of integration.
 - ♦ Mathematically, this integral is not defined.
- The Cauchy principal value of the integral exists.

CMP Dr. M. Kamran 12 / 13

- The integrand has a pole in the interior of the interval of integration.
 - ⋄ Mathematically, this integral is not defined.
- The Cauchy principal value of the integral exists.
 - \rightarrow int_int = int (f, x, 0, 2, 'PrincipalValue', true);

References

- https://www.mathworks.com/help/matlab/ref/integral.html
- https://www.mathworks.com/help/matlab/ref/integral2.html
- https://www.mathworks.com/help/matlab/ref/integral3.html
- https://www.mathworks.com/help/symbolic/int.html