Computer Vision II: Multiple View Geometry (IN2228)

Chapter 12 Bundle Adjustment (Part 1 Fundamentals)

Dr. Haoang Li

06 July 2023 11:00-11:45

Announcement Before Class

Updated Lecture Schedule

For updates, slides, and additional materials: https://cvg.cit.tum.de/teaching/ss2023/cv2

90-minute course; 45-minute course

Wed 24.05.2023 No lecture (Conference)

Thu 25.05.2023 No lecture (Conference)

```
Wed 19.04.2023 Chapter 00: Introduction
Thu 20.04.2023 Chapter 01: Mathematical Backgrounds

Wed 26.04.2023 Chapter 02: Motion and Scene Representation (Part 1)
Thu 27.04.2023 Chapter 02: Motion and Scene Representation (Part 2)

Wed 03.05.2023 Chapter 03: Image Formation (Part 1)
Thu 04.05.2023 Chapter 03: Image Formation (Part 2)

Wed 10.05.2023 Chapter 04: Camera Calibration
Thu 11.05.2023 Chapter 05: Correspondence Estimation (Part 1)

Wed 17.05.2023 Chapter 05: Correspondence Estimation (Part 2)
Thu 18.05.2023 No lecture (Public Holiday)
```

Videos and reading materials about the combination of deep learning and multi-view geometry

Thu 01.06.2023 Chapter 06: 2D-2D Geometry (Part 1)

Wed 07.06.2023 Chapter 06: 2D-2D Geometry (Part 2)
Thu 08.06.2023 No lecture (Public Holiday)

Wed 14.06.2023 Chapter 06: 2D-2D Geometry (Part 3)
Thu 15.06.2023 Chapter 06: 2D-2D Geometry (Part 4)

Wed 21.06.2023 Chapter 07: 3D-2D Geometry
Thu 22.06.2023 Chapter 08: 3D-3D Geometry
Thu 22.06.2023 Chapter 08: 3D-3D Geometry

Thu 29.06.2023 Chapter 10: Combination of Different Configurations

Wed 05.07.2023 Chapter 11: Photometric Error and Direct Method

Thu 06.07.2023 Chapter 12: Bundle Adjustment (Part 1)

Wed 31.05.2023 Chapter 05: Correspondence Estimation (Part 3)

Wed 12.07.2023 Chapter 12: Bundle Adjustment (Part 2)
Chapter 13: Robust Estimation
Thu 13.07.2023 Exam Information and Knowledge Review

Wed 19.07.2023 Chapter 14: SLAM and SFM

Wed 28.06.2023 Chapter 09: Single-view Geometry

Thu 20.07.2023 No Onsite Lecture. Alternative: Online Meeting for Question Answering

Today's Outline

- Error Metrics
- Definition of Bundle Adjustment
- Basic Knowledge of Non-linear Optimization
- Application of Non-linear Optimization to Bundle Adjustment Based on Lie Algebra (next class)

- Overview
- ✓ The quality of the estimated camera pose can be measured using different error metrics:
- Algebraic error
- Epipolar Line Distance (only for 2D-2D)
- · Reprojection Error
- ✓ By minimizing any of the above error, we can optimize the camera pose.
- ✓ The above metrics are not limited to 2D-2D. We can also use them to evaluate 3D-2D case. In our class, let us take 2D-2D for example.

- > Algebraic Error
- ✓ We consider 8-point algorithm for illustration. It seeks to minimize the algebraic error:

$$err = ||QE||^2 = \sum_{i=1}^{N} (\bar{p}_{2}^{iT} E \bar{p}_{1}^{i})^2$$

✓ From the derivation of the epipolar constraint and the property of dot product, we can observe:

$$\begin{aligned} \left\| \overline{\boldsymbol{p}}_{2}^{\mathsf{T}} \boldsymbol{E} \overline{\boldsymbol{p}}_{1} \right\| &= \left\| \overline{\boldsymbol{p}}_{2}^{\mathsf{T}} \cdot (\boldsymbol{E} \overline{\boldsymbol{p}}_{1}) \right\| &= \left\| \overline{\boldsymbol{p}}_{2} \right\| \left\| \boldsymbol{E} \overline{\boldsymbol{p}}_{1} \right\| \cos(\theta) \\ & \text{Associative law} \end{aligned}$$
 Property of dot product
$$= \left\| \overline{\boldsymbol{p}}_{2} \right\| \left\| \left[T_{\times} \right] R \ \overline{\boldsymbol{p}}_{1} \ \right\| \cos(\theta)$$
Definition of essential matrix (in right camera frame)

Algebraic Error

- $= \| \overline{\boldsymbol{p}}_2 \| [T_{\times}] R \ \overline{\boldsymbol{p}}_1 \| \cos(\theta)$ Normal in the right camera frame
- \checkmark We can see that this product depends on the angle θ between \bar{p}_2 and the normal to the epipolar plane.

✓ It is nonzero when \overline{p}_1 , \overline{p}_2 , and T are not coplanar.

- > Epipolar Line Distance (only for 2D-2D configuration)
- ✓ Sum of squared epipolar-line-to-point distances:

$$err = \sum_{i=1}^{N} \left(d(p_1^i, l_1^i) \right)^2 + \left(d(p_2^i, l_2^i) \right)^2$$

✓ Cheaper than reprojection error (introduced later) because does not require point triangulation

Left point $\begin{bmatrix} u_2^i \\ v_2^i \\ 1 \end{bmatrix}^{\text{T}} \begin{bmatrix} u_1^i \\ v_1^i \\ 1 \end{bmatrix} = 0$ Point lies on a line: dot(p, l)=0

Epipolar line computed by the right point

- Reprojection Error
- ✓ Sum of the Squared Reprojection Errors $err = \sum_{i=1}^{N} \|p_1^i \pi(P^i, K_1, I, 0)\|^2 + \|p_2^i \pi(P^i, K_2, R, T)\|^2$
- ✓ More expensive than the previous errors because it requires to first triangulate the 3D points.
 Camera 2 reprojection error

- Reprojection Error
- ✓ It is the most popular because more accurate. The reason is that the error is computed directly with respect to the original input data, i.e., the image points. It is point-to-point distance.
- ✓ Previous algebraic error is with respect to 3D direction; Epipolar line distance is a point-to-line distance.
- ✓ Reprojection error is commonly called "golden standard" in our society. For a systematic analysis, please refer to [1].

[1] "Multiple View Geometry in Computer Vision": R. Hartley and A. Zisserman Link: https://www.robots.ox.ac.uk/~vgg/hzbook/

- > Reprojection Error
- ✓ We often use reprojection error to perform two tasks:
- Pose and 3D point optimization
- · Accuracy evaluation

Bundle adjustment for optimization

Calibration evaluation

- Error Minimization
- ✓ Let us consider 8-point method. For **more than 8 points**, error will only be 0 if there is **no noise** in the data (if there is image noise, the linear system becomes overdetermined)
- ✓ We aim to find the optimal camera pose to minimize the least-squares error.

- Definition
- ✓ We extend two-view reprojection minimization to multi-view case, which is called "bundle adjustment".
- ✓ We typically treat the first camera as the world frame.

✓ We can reformulate the problem as a "graph optimization problem". Nodes are parameters to optimize, and edges are constraints.

- Definition
- ✓ We jointly optimize camera poses of all the cameras and 3D points:

$$P^{i}, C_{1}, ..., C_{n} = argmin_{X^{i}, C_{1}, ..., C_{n}}, \sum_{k=1}^{n} \sum_{i=1}^{N} \rho \left(p_{k}^{i} - \pi (P^{i}, K_{k}, C_{k}) \right)$$

where ρ () is the Huber norm for robust estimation (introduced next week)

✓ We often use non-linear optimization, e.g., Gauss-Newton algorithm to minimize the error. Details will be introduced later.

- Strategies for acceleration
- ✓ A small window size limits the number of parameters for the optimization and thus makes real time bundle adjustment possible.
- ✓ It is possible to reduce the computational complexity by just optimizing over the camera parameters and keeping the 3D landmarks fixed, e.g., motion-only BA.

Photometric Bundle Adjustment

We can extend the photometric error between 1-by-1 frames to 1-by-N frames.

- Problem Formulation
- ✓ A teaser of curve fitting
- Input: A set of observed discrete points (no outliers here)
- Step 1: Select a suitable model/function with unknown parameters
- Step 2: Estimate the parameters by the least-squares method: We define an objective function, i.e., the sum of squared distances.

> Motivation of Gradient Descent Algorithm

To minimize the function, we can employ first-order optimality condition

$$\min_{\mathbf{x}} F(\mathbf{x}) = \frac{1}{2} \|f(\mathbf{x})\|_{2}^{2} \qquad \frac{\mathrm{d}F}{\mathrm{d}\mathbf{x}} = \mathbf{0}$$

If the derivative is simple, we can directly obtain the global minimum of objective function. However, what if the objective function is more complex?

2D function

$$egin{aligned} rac{\partial}{\partial w_1}g(\mathbf{v}) &= 0 \ rac{\partial}{\partial w_2}g(\mathbf{v}) &= 0 \ &dots \ rac{\partial}{\partial w_N}g(\mathbf{v}) &= 0 \end{aligned}$$

Motivation of Gradient Descent Algorithm

Instead of directly obtaining the global minimum, we iteratively minimize the function. x_k is a temporary value. It is known.

 Δx_k is the adjustment of the above temporary value. It is unknown.

- 1. Give an initial value \mathbf{x}_0 .
- 2. For k-th iteration, we find an incremental value of $\Delta \mathbf{x}_k$, such that the object function $\|f(\mathbf{x}_k + \Delta \mathbf{x}_k)\|_2^2$ reaches a smaller value.
- 3. If $\Delta \mathbf{x}_k$ is small enough, stop the algorithm.
- 4. Otherwise, let $\mathbf{x}_{k+1} = \mathbf{x}_k + \Delta \mathbf{x}_k$ and return to step 2.

Steepest method

Now consider the k-th iteration. Suppose the current solution is at x_k and we want to find the increment Δx_k . For problem simplification, we use the first-order Taylor expansion to re-write the objective function:

$$F(\mathbf{x}_k + \Delta \mathbf{x}_k) \approx F(\mathbf{x}_k) + \mathbf{J} (\mathbf{x}_k)^T + \Delta \mathbf{x}_k$$
 Gradient (Jacobi Matrix) Known Unknown

Along the minus gradient direction, we can ensure that the function decreases:

$$\Delta \mathbf{x}^* = -\mathbf{J}(\mathbf{x}_k)$$
 We do not explicitly compute $\Delta \mathbf{x}$

 Δx is only a direction. We also manually select another step length parameter (learning rate), say, λ . The smaller function value is $F(\mathbf{x}_k) - \mathbf{J}(\mathbf{x}_k) \lambda$

Newton's method
$$F(\mathbf{x}_k + \Delta \mathbf{x}_k) \approx F(\mathbf{x}_k) + \mathbf{J} (\mathbf{x}_k)^T \Delta \mathbf{x}_k + \frac{1}{2} \Delta \mathbf{x}_k^T \mathbf{H} (\mathbf{x}_k) \Delta \mathbf{x}_k$$

We can also use the second-order Taylor expansion to re-write the objective function:

$$\Delta \mathbf{x}^* = \arg\min\left(F\left(\mathbf{x}\right) + \mathbf{J}\left(\mathbf{x}\right)^T \Delta \mathbf{x} + \frac{1}{2}\Delta \mathbf{x}^T \mathbf{H} \Delta \mathbf{x}\right)$$
Known
Unknown

We leverage the first-order optimality condition, i.e., computing the derivative with respect to Δx and setting the result to zero. We thus can obtain

$$\mathbf{J} + \mathbf{H}\Delta \mathbf{x} = \mathbf{0} \Rightarrow \mathbf{H}\Delta \mathbf{x} = -\mathbf{J}$$

Hessian matrix

- Gauss-Newton Method
- ✓ Motivation
 Steepest method results in the zig-zag descending trajectory

Newton's method is time consuming due to the computation of Hessian matrix

We need a more effective method: We will introduce a representative method "Gauss-Newton algorithm".

$$\mathbf{H}_{f} = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \\ \vdots & \vdots & \ddots & \vdots \\ \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

Gauss-Newton Method

$$\min_{\mathbf{x}} F(\mathbf{x}) = \frac{1}{2} |\mathbf{f}(\mathbf{x})|_{2}^{2}$$

Similar to the steepest method, we begin with first-order Taylor expansion

$$f(\mathbf{x} + \Delta \mathbf{x}) \approx f(\mathbf{x}) + \mathbf{J}(\mathbf{x})^T \Delta \mathbf{x}$$

We aim to find the optimal Δx to minimize this function

$$\Delta \mathbf{x}^* = \arg\min_{\Delta \mathbf{x}} \frac{1}{2} \left\| f(\mathbf{x}) + \mathbf{J}(\mathbf{x})^T \Delta \mathbf{x} \right\|^2$$

Let us first expand this function:

$$\frac{1}{2} \left\| f(\mathbf{x}) + \mathbf{J}(\mathbf{x})^T \Delta \mathbf{x} \right\|^2 = \frac{1}{2} \left(f(\mathbf{x}) + \mathbf{J}(\mathbf{x})^T \Delta \mathbf{x} \right)^T \left(f(\mathbf{x}) + \mathbf{J}(\mathbf{x})^T \Delta \mathbf{x} \right) \\
= \frac{1}{2} \left(\left\| f(\mathbf{x}) \right\|_2^2 + 2f(\mathbf{x}) \mathbf{J}(\mathbf{x})^T \Delta \mathbf{x} + \Delta \mathbf{x}^T \mathbf{J}(\mathbf{x}) \mathbf{J}(\mathbf{x})^T \Delta \mathbf{x} \right)$$

Gauss-Newton Method

$$\boxed{\frac{1}{2} \left(\|f(\mathbf{x})\|_{2}^{2} + 2f(\mathbf{x}) \mathbf{J}(\mathbf{x})^{T} \Delta \mathbf{x} + \Delta \mathbf{x}^{T} \mathbf{J}(\mathbf{x}) \mathbf{J}(\mathbf{x})^{T} \Delta \mathbf{x} \right)}$$

We compute the derivative of the above function with respect to Δx , and then set the derivate to zero:

$$\mathbf{J}(\mathbf{x})f(\mathbf{x}) + \mathbf{J}(\mathbf{x})\mathbf{J}^{T}(\mathbf{x})\Delta\mathbf{x} = \mathbf{0}$$

We transform the above into

$$\underbrace{\mathbf{J}(\mathbf{x})\mathbf{J}^{T}}_{\mathbf{H}(\mathbf{x})}(\mathbf{x})\Delta\mathbf{x} = \underbrace{-\mathbf{J}(\mathbf{x})f(\mathbf{x})}_{\mathbf{g}(\mathbf{x})}$$

We obtain a linear system to compute Δx

 $\mathbf{H}\Delta\mathbf{x}=\mathbf{g}$

An approximation to Hessian matrix

> Application to Bundle Adjustment (A Teaser)

Jacobian matrix w.r.t. pose and point

✓ General objective function simplification by Gauss-Newton ✓

$$oldsymbol{e}(x+\Delta x)pproxoldsymbol{e}(x)+oldsymbol{J}\Delta x.$$

Adjustment of camera pose and 3D point

- ✓ We have to compute derivative w.r.t. SO3/SE3. It evolves addition and subtraction operation.
- ✓ Intuitively, R1 is in SO3 and R2 is in SO3, but we cannot guarantee that R1 + R2 is in SO3.
- ✓ To solve this problem, we first map Lie Group to Lie Algebra, and compute the derivative by Lie Algebra. More details will be introduced next week.

Summary

- Error Metrics
- Bundle Adjustment
- Non-linear Optimization

Thank you for your listening!

If you have any questions, please come to me :-)