

Fondamenti di Chimica industriale

25 Luglio 2014

Esercizio N. 1

Produzione di NH₃: $N_2 + 3H_2 \leftrightarrow NH_3$

Alimentazione fresca: miscela di azoto e idrogeno in proporzioni stechiometriche, inerti 1 vol%.

Riciclo: inerti 12.5 vol%, NH₃ 6.5 vol%.

Corrente effluente dal reattore: NH₃ 22 vol%.

Condensatore: pressione 350 kg/cm²; inerti, azoto e idrogeno solubili in NH₃ liquida.

Base: 100 kmol/h di alimentazione fresca

- Etichettare lo schema e procedere all'analisi dei gradi di libertà con il metodo delle tie streams.
- Si determini: la composizione (mol%) delle correnti di processo; la resa globale di processo;
 la temperatura della corrente effluente dal reattore.

	<i>C_p</i> [kcal/kmol °C]	solubilità in NH3 liquida [kmol/(kg/cm²) kgNH3]
inerti	10.5	2.22·10 ⁻⁵
azoto	7.0	4.46·10 ⁻⁵
idrogeno	7.0	4.46·10 ⁻⁵
ammoniaca	9.9	
$\Delta H_{\rm r}^0 = -27 \text{ kcal/mol N}_2$		

Esercizio N. 2

Processo di riduzione di solfato di bario a solfuro.

$$2BaSO_4(s) + 4C(s) \rightarrow 2BaS(s) + 4CO_2(g)$$

Una miscela di barite (minerale con composizione: x_B (kgBaSO₄/kg), resto ganga) e carbone (composizione: x_C (kgC/kg), resto ceneri) alla temperatura T_0 è alimentata ad un forno, in cui tutto il solfato di bario alimentato è convertito.

Si proceda alla etichettatura dello schema di processo, sulla base di 100 kg/h di barite alimentata. Si esegua l'analisi dei gradi di libertà e si verifichi:

- i. se il processo è risolubile fissati x_B , x_C , l'eccesso di carbone, T_0 e il calore fornito al forno;
- ii. se il processo è risolubile fissati x_B, x_C, il calore fornito al forno, T₀ e la temperatura dei prodotti;
- iii. se il processo è risolubile fissati x_B , x_C , la massa di BaS prodotta, T_0 e il calore fornito al forno. Indicare quale dei precedenti set di variabili non rende necessaria la risoluzione integrata dei bilanci di materia e di energia.

Esercizio N. 3

Legno umido viene essiccato in un essiccatore rotativo in continuo a pressione atmosferica.

Si determini:

- l'umidità residua (wt%) del legno essiccato (assumendo un peso molecolare dell'aria secca di 29);
- la temperatura di uscita del legno, sapendo che l'essiccatore opera adiabaticamente, il calore specifico del legno secco è 2.1 kJ/kg °C e il calore specifico dell'aria secca 1.006 kJ/kg °C.