תורת החבורות – תרגיל בית 13 – פתרון

<u>שאלה 1:</u>

המתאים $\phi:G\to S_N$ פועלת על M ע"י ההצמדה. כלומר, קיים הומומורפיזם G פועלת על G איבר $\phi_g(n)=gng^{-1}$ $n\in N$ כאשר לכל $\phi_g\in Aut(N)$ איבר מצא את גרעינו:

$$\begin{split} g \in Ker \big(\phi \big) &\iff \phi_g = id_N \iff \big(\forall n \big) \Big(\phi_g \big(n \big) = n \big) \iff \\ &\iff \big(\forall n \big) \Big(gng^{-1} = n \big) \iff \big(\forall n \big) \Big(gn = ng \big) \iff g \in C_G \big(N \big) \end{split}$$

. בכך קיבלנו כי $\mathrm{C}_{\mathrm{G}}(\mathrm{N})$ אלכן הינה תחיינ כגרעין של הומומורפיזם $\mathrm{C}_{\mathrm{G}}(\mathrm{N})$

:2 שאלה

 $g\in G$ פועלת על עצמה עייי ההצמדה. כלומר, קיים הומומורפיזם $\phi\colon G\to S_G$ פועלת על עצמה עייי ההצמדה. כלומר, קיים הומומורפיזם $\phi_g(x)=gxg^{-1}$ עיבר לכל $\phi_g(x)=gxg^{-1}$ איבר לכל

$$|\mathrm{cl}_{\mathrm{G}}(\mathrm{x})|$$
 וכך גם עבור, p חזקה על $\left|\mathrm{C}_{\mathrm{G}}(\mathrm{x})
ight| \ \Leftarrow \ \mathrm{C}_{\mathrm{G}}(\mathrm{x}) \leq G \ \mathrm{x} \in G$ לכל

, C(x) =
$$G$$
 $x \in Z(G)$ כעת נניח כי לכל ($G = Z(G)$ כעת מתקיים כי לכל ($G = Z(G)$, לכן

. p -ב כמו כן עבור כל
$$\left|\mathrm{cl}(x)\right| > 1 \iff \mathrm{C}(x) \neq G \;\; x \notin \mathrm{Z}(G)$$
 ולכן מתחלק ב- $\left|\mathrm{cl}_{\mathrm{G}}(x)\right| = 1$

$$|G| = |Z(G)| + \sum_{i=1}^{t} |cl(x_i)| \iff G = Z(G) \dot{\cup} \left(\bigcup_{i=1}^{t} cl(x_i)\right) :$$
היא איחוד זר G

מתחלק ב- p. מצד שני, |C(G)| מתחלק ב- p, מתחלק ב- p, מתחלק ב- $cl(x_i)$ מתחלק לכל לכל

$$Z(G)
eq \{e\} \iff ig|Z(G)
eq p$$
 נכי מרכז מכיל את יחידה), לכן וכי $ig|Z(G)
eq 0$

<u>שאלה 4:</u>

. אברי מבנה מבנה אם יש להם אם צמודים אם צמודים אברי אברי אברי

: בטבלא בטבלא כו $\operatorname{cl}(x),\operatorname{C}(x)$ של וגדלים כו $\operatorname{cl}(x)$ הצמידות הצמידות וגדלים הבאה

כעת נמצא את הרכזים.

$$C(id) = S_5 \qquad (1)$$

$$C(45) = \langle \alpha, (45) | \alpha \in S_3 \rangle \iff \psi(45) \psi^{-1} = (45) \quad (25)$$

בעלת מרכז לא טריביאלי, לכן ציקלית.
$$|C(123)| = 6$$

$$C(123) = \langle (123)(45) \rangle \iff (123)(45) \in C(123)$$
 כמו כן

$$C(1234) = \langle (1234) \rangle \iff (1234) \in C(1234) \land |C(1234)| = 4$$

$$C(12345) = \langle (12345) \rangle$$
 באותו אופן (5

.
$$\psi = (1324) \in C((12)(34)) \Leftarrow \psi(12)(34)\psi^{-1} = (34)(21)$$
 66 לכן $\langle (1324), (12), (34) \rangle \in C((12)(34))$ והיות והיא ת״ח מסדר 8 השוויון מתקיים.

$$.\langle (1\,2)(3\,4\,5)\rangle$$
 בעלת מרכז לא טריביאלי, לכן ציקלית והינה $|C((1\,2)(3\,4\,5))|=6$ (7

<u>שאלה 5:</u>

: $A_{\scriptscriptstyle 5}$ ל- הקודם הטבלה מהתרגיל הקודם ל-

x id
$$(12)(34)$$
 (123) (12345)
C(x) 60 4 3 5
cl(x) 1 15 20 12

ובכך מחלקת הצמידות אוות אודל היא המתפרקת ב- A_5 לשתי החלקת הצמידות אוות אודל היא המתפרקת האמידות של 5-מעגל. לכן גדלים של חלקות הצמידות ב- A_5 הן: A_5 -מעגל. לכן גדלים של חלקות הצמידות ב- A_5

<u>שאלה 6:</u>

 $|N| \leq |A_5|/2 = 30$ אז $N \neq G$ כך ש $N \lhd A_5$ תהי תהי

היות וכל תח"נ של ${\bf A}_5$ היא איחוד של מחלקות צמידות של ${\bf A}_5$, נקבל כי

 $\left|N\right|$ אך לפי משפט לגרנגי . $\left|N\right|\in\left\{1,\,1+12,\,1+15,\,1+20,\,1+12+12,\,1+12+15\right\}$

. בכך היבלנו כי ל- A_5 אין ת״ח ממש ההינה תח״נ, מכאן בכך פשוטה. בכך את 30, לכן את 30, לכן את 1 $\left|N\right|=1$