GEOSCIENCE

Suggested pacing: 3 lessons per week

Unit	Lesson	Date	Торіс	Pages
GEOLOGY	intro	Wed, Jan 21	Introduction and tips for success	
	1	Mon, Jan 26	Continental Drift	4-5
	2	Wed, Jan 18	Plate Boundaries	6-7
	3	Self-paced	Activity: Map the Ring of Fire	8-11
	4	Mon, Feb 2	Weathering vs Tectonics	12-13
	5	Wed, Feb 4	Faults and Earthquakes	14-15
	6	Self-paced	Activity: Earthquake Proofing	16-17
	7	Mon, Feb 9	Rivers - Engines of Erosion	18-19
	8	Wed, Feb 11	Permafrost and the Cryosphere	20-21
	9	Self-paced	Activity: Stream Table	22-23
	10	Mon, Feb 16	How old are rocks?	24-25
	11	Wed, Feb 18	Geologic time	26-28
	12	Self-paced	Geology Assessment / Study for quiz show	29-31
	13	Mon, Feb 23	Geology Quiz Show	-
	14	Wed, Feb 25	Relative Humidity	32-34
	15	Self-paced	Activity: Cloud in a Jar	35
Ш	16	Mon, Mar 2	Heat Index and Windchill	36-37
	17	Wed Mar 4	Air Masses and Fronts	38-39
& ATMOSPHERE	18	Self-paced	Activity: Humidity Lab	40-41
JP.	19	Mon, Mar 9	Ocean Currents and Thermohaline Circulation	42-43
ő	20	Wed, Mar 11	El Niño-Southern Oscillation	44-45
AT/	21	Self-paced	Activity: Hurricane Tracker	46-49
8			March 16-20: SPRING BREAK	
ER	22	Mon, Mar 23	Global Weather Patterns	50-51
WEATHE	23	Wed, Mar 25	Past Climates	52-53
Æ	24	Self-paced	Activity: Convection Convention	54-55
>	25	Mon, Mar 30	Making a Forecast	56-57
	26	Wed, Apr 1	Natural disaster: Hurricanes	58-59
	27	Self-paced	Weather & Atmosphere Assessment	60-63
	28	Mon, Apr 6	Weather Quiz Show	
ECOLOGY	29	Wed, Apr 8	Ecosystems	
	30	Self-paced	Activity: Build a Food Web	
	31	Mon, Apr 13	Keystone Species	
	32	Wed, Apr 15	Ecological Succession	
	33	Self-paced	Activity: Competing Compost Jars	

Unit	Lesson	Date	Topic	Pages
ECOLOGY & HUMAN SYSTEMS	34	Mon, Apr 20	Carbon and Nitrogen Cycles	
	35	Wed, Apr 22	Resilience and Disturbance	
	36	Self-paced	Activity: Charting Biodiversity	
	37	Mon, Apr 27	Where We Live and Why	
	38	Wed, Apr 29	Renewable vs Non-Renewable Energy	
	39	Self-paced	Activity: Natural Resource Scavenger Hunt	
	40	Mon, May 4	5 Myths About Climate Change	
	41	Wed, May 6	5 Solutions to Climate Change	
	42	Self-paced	Capstone Activity: Local climate resilience plan	
	43	Mon, May 11	Final Quiz Show	

SUPPLY LIST:

Lesson 3 - Map the Ring of Fire

- The lesson notes
- Colored pencils or crayons
- Pencil

Lesson 6 - Shake, Rattle, Resilient

- A small box
- Cardboard (at least 3x as long as the small box)
- Cylindrical pencils or markers
- Smart phone
- Various household objects

Lesson 9 - Stream Table Study

- Sand and gravel
- Plastic paint tray or a long bin or storage container
- Dril
- Cups or an empty gallon jug

Lesson 15 - Cloud in a Jar

- 4 glass jars with lids
- Ice
- Water
- Matches
- Paper or tape and pen for making labels

Lesson 18 - Humidity Lab

- A small piece of cloth or gauze
- Fan
- Rubber band
- 2 identical thermometers

Lesson 21 - Hurricane Tracker

- The lesson notes
- Colored pencils or crayons
- Pencil
- Internet connection or book(s) to use for researching a historic hurricane

Lesson 24 - Convection Convention

- 4 identical cups or jars
- Thin flat piece of plastic
- Food coloring

- Water
- Ice cubes
- Salt
- Tray and 1 large clear container
- 2 paper cups
- Scissors
- Matches
- Tea candle

Lesson 30 - Build a Food Web

- Cardboard
- Colored pencils, crayons, or markers
- Yarn
- Tacks or pins
- Scissors
- Gluestick

Lesson 30 - Competing Compost Jars

- 2 identical clear containers
- Lids for the containers with ventilation holes OR 2 pieces of cloth and 2 rubber bands
- Newspaper
- Scissors
- Grass clippings or vegetable scraps such as carrot peels, apple cores, or squash rinds etc
- A small sample of soil, if possible, containing invertebrates such as earthworms, millipedes etc

Lesson 36 - Charting Biodiversity

- Cardboard
- Colored pencils, crayons, or markers
- Scissors
- Gluestick

Lesson 39 - Natural Resource Scavenger Hunt

Pencil and lesson handout

Lesson 35 - Local Climate Resilience Plan

- Internet connection for research or books about local economy, agriculture, and weather
- Posterboard and art supplies

SCIENCE M@M

CONTINENTAL DRIFT

Alfred Wegener was the first to propose that Earth's landmasses had once been connected in a supercontinent called Pangea. He called the idea of slowly-shifting land masses "continental drift." It was controversial until more evidence came in: Marie Tharp's mapping of mid-ocean ridges, magnetic striping of the sea floor, and location of earthquake epicenters all added further evidence that continents do move.

WHAT IT IS

4

The scientific theory that the outer layer of the Earth (the lithosphere) is made of segments called plates. The movement of these plates causes the major features of Earth's surface and most earthquakes and volcanoes.

NOT TO SCALE

SCIENCE MMM

Inner Core

Use the descriptions below to identify and color each of the major tectonic plates:

TYPES OF PLATE BOUNDARIES

Convergent

Definition: A place where plates move toward each other

Fx:

Subduction zone (when oceanic meets continental plate). Forms volcanic arc, largest tsunamis, and earthquakes.

Collision zone (continental + continental plate) has frequent large earthquakes but little volcanism.

Divergent

Definition: A place where plates move away from each other

Ex:

In continental plates: rift valleys or fault-block mountains.

In oceanic plates: mid ocean ridges Both can have earthquakes and volcanism

Transform or strike-slip

Definition: A place where plates slide past each other, also called transform boundary

Ex:

Form fault lines that often have a lot of earthquakes. Famous examples are San Andreas fault in California, the Northern and Eastern Anatolian Faults in Turkey, and the Alpine Fault in New Zealand

6 SCIENCE MMM

Explain how plate tectonics caused or influenced each event or geologic feature:

In 1877, Cotopaxi erupted with a violent explosion that destroyed the town of Latacunga, Ecuador.

The volcano produced enormous pyroclastic flows of hot gas and volcanic material which melted all of the ice cap on the volcano. This caused mudflows or lahars that traveled to the Pacific Ocean, more than 100 km away.

below the South American plate. This subduction

zone forms the Andean Volcanic Belt, which has
hundreds of volcanoes. This subduction zone has
also regularly produced megathrust earthquakes.
the strongest Earthquake ever recorded was in
1960 along this zone - the Valdivia earthquake or
Great Chilean Earthquake was magnitude 9.5.

Lake Baikal is over 1,600 m deep and contains approximately 20% of Earth's surface water. It is one both the oldest and largest freshwater lake in the world. It is getting larger by approximately 4 mm each year. Deep hydrothermal vents release heated, mineral-rich water into the lake.

RIFT VALLEY: Lake Baikal is the largest basin in
the Baikal Rift Zone which stretches more than
2,000 km long. The lake is slowly growing deeper
and wider because of the divergent plate boundary.
The continental plate to the southwest of Lake
Baikal is sometimes labeled the Eurasian plate.
Other times, it is called the Amurian microplate.

//L 2002 DENALI /// EARTHQUAKE

This magnitude 7.9 quake lasted for almost 3 minutes. It caused thousands of landslides, fractured glaciers, and displaced roads and streams up to 29 feet from their original location. It even caused sloshing in lakes as far away as Louisiana!

STRIKE-SLIP or TRANSFORM FAULT: The Denali quake was caused by movement along the Denali fault. As the Pacific plate slides under the North American Plate, it pushes the Yakutat terrane (a subcontinent smashed into the North American plate) which transmits the pressure or push inland, causing many faults. The Denali fault is a strike-slip fault similar to the San Andreas Fault.

HAWAIIAN ISLANDS

The Hawaiian-Emperor seamount chain is an enormous chain of volcanic islands, atolls, and seamounts that stretch for 6,200 km across the Pacific Ocean. The Western-most islands contain the most active volcanoes on Earth.

HOTSPOT: The Hawaii plume is a hotspot that is					
currently powering 4 active volcanoes. 2 dorman					
volcanoes and over 100 extinct volcanoes show					
evidence of where the Pacific plate has travelled.					
•					

SCIENCE MAM 7