

原子结构模型的衍变

19世纪初,英国科学家道尔顿提出近代原子学说,他认为原子是微小的不可分割的实心球体。

英国化学及物理学家 道尔顿 (J. Dalton)

1897年,英国科学家汤姆生发现了电子,认识到原子是由更小的微粒构成。

英国物理学家 汤姆生

1911年,英国物理学家卢瑟福根据α粒子散射现象认识到原子是由原子核和核外电子构成的。

英籍新西兰物理学家 卢瑟福 (E. Rutherford, 1871-1937)

卢瑟福原子模型

1913年丹麦物理学家波尔提出,原子核外,电子在一系列稳定的轨道上运动。

波尔的原子结构模型

新知精讲

- 一、人类认识原子结构的探索历程(含视频,老师课前提前看一下视频,一个视频里包含多个 理论对应的实验)
 - 1. 古代朴素的原子观

我国战国时期的 惠施(<mark>熟记)</mark> 认为	;
我国战国时期的 墨子 认为	;
古希腊哲学家 德谟克里特 提出	(原子是构成物质的微粒,万物是由间断的
不可分割的微粒即原子构成的,原子不能创造,	也不能被毁灭,原子的结合和分割是万物变化
的根本原因)。	

【答案】物质是无限可分的;物质被分割是有条件的;古典原子论

2. 近代原子论

1803年, 道尔顿道尔顿提出 --实心球模型:

- ①化学元素由不可再分的微粒构成,这种微粒称为原子;
- ②原子在一切化学变化中均保持其不可再分性;
- ③同一种元素的原子在质量和性质上都相同,不同元素的原子在质量和性质上都不相同;
- ④不同元素化合时,这些元素的原子按简单整数比结合成化合物。

【答案】近代原子学说

3. 葡萄干面包原子模型

学生活动:汤姆生的阴极射线管实验(含视频 1'50"处)

实验现象: 阴极射线在磁场中会发生偏移, 弯向带正电的一极而远离带负电的一极。

结论: 阴极射线是由一种看不见的、带负电的粒子组成。

1903年, 汤姆生(孙)(翻译问题:解决学生对人名的疑问)提出。

认为原子内正电荷均匀分布在整个原子的球形体内,电子则均匀的分布在这些正电荷之间, 就像葡萄干面包一样。

该理论依据是基于下列事实:

- ①物质在通常情况下呈电中性。
- ②物质中存在带负电荷的电子,那么一定有带正电荷的组成部分。
- ③物质由原子构成。
- ④原子中正电荷与负电荷的电量相等, 电性相反。

【答案】葡萄干面包原子模型

4. 原子结构的行星模型

学生活动:观看卢瑟福的 α 粒子散射实验(含视频4'30"处)

实验操作: 用α粒子去轰击金箔

实验现象: 绝大部分α粒子都直接穿了过去,但有极少数α粒子穿过金箔时发生了偏转,有个别α 粒子竟然偏转了 180°。

结论:

【答案】原子一定是中空的,原子中一定存在着很小的带正电的核

英国物理学家卢瑟福的"行星式"原子结构模型(核式原子结构模型):

①原子由原子核和核外电子组成,原子核带正电荷,位于中心,电子带负电荷,在核周围 作高速运动;

②电子	的运动	形态就像行星绕太	、阳运转一样。
③原子	中空,	存在一个极小的带	寺正电的核
*卢瑟	福的其余	※ 发现: α射线(本	质);β射线
他	2人同时	期其余发现: 伦琴	琴(X 射线-) <u>γ射线</u> -
【答案	ミ】 氦原·	子核(带两个单位	立正电); 电子流; 电磁波; 电磁波。
丹麦物理学	*家 玻尔	的轨道原子结构模	莫型:
引入量	量子论观.	点,提出原子核タ	卜,电子不是随意占据在原子核的周围,而是在固定的层面
上运动。当	自电子从-	一个层面跃迁到另	另一个层面时,原子便吸收或释放能量。
【练一练】		学说——电子云构	
			期的实验,用来帮助"看到无法看到的物,了解不易了解的 、的科学发现或理论,下列哪个选项的组合是错误的()
7 . 2	选项	科学家 科学家	发表的内容
	A	道尔顿	提出原子学说
	В	汤姆生	发现电子
	С	卢瑟福	提出原子结构的葡萄干面包模型
	D	波尔	建立量子化的氢原子模型
【答案】C		0,2,7,1	X
		·结构的行星模型	的实验依据是"α粒子散射实验"。
			个电子后的阳离子。
			——— 5多散的α粒子都穿了过去,并不改变它们的前进方向,由此
说明原子			
		子前进的方向发生	三小的偏转,只有极少数α粒子好像碰到了坚硬的不可穿透的
质点而被弹了回]来。用	卢瑟福的话描述:	"它是如此难以令人置信,正好像你用 15 英寸的炮射击一
张薄纸,而炮居	然反弹	了回来,然后把你	· ·打中了一样。"根据以上实验事实,可推理出:原子中存在
着 的	带	电荷的	0
			的行星模型。它的要点是:
【答案】((1) 氦;	2; (2) 原子的	内部是中空的;(3)质量很集中;正;电子核;(4)原子
是由带正点的质	量很集	中的很小的原子树	该和它周围运动着的带负电的电子组成的,就像行星绕太阳

运转一样的一个体系。

二、原子的构成

1. 原子的组成

(1)组成(学生版下面的框架图建议删除,让学生自己写)

(2) 构成原子的微粒和性质

原子							
构成原子的微	电子	原子核					
粒		质子	中子				
质量	质量 9.041×10 ⁻³¹ kg		1.6748×10 ⁻²⁷ kg				
相对质量	1		1.008				
典型和电荷量	带1个单位负电荷	带1个单位正电荷	不显电性				

(3) 质量数

电子的质量很小,仅为质子质量的 1/1836,原子的质量主要集中在原子核上。质子和中子的相对质量分别为 1.007 和 1.008,均取近似整数值为 1。如果忽略电子的质量,将原子核内所有的质子和中子相对质量取近似整数值,加起来所得的数值,叫做质量数,用符号表示。

公式 1: 原子中各微粒之间的关系: 质量数 (A) = _______ 公式 2: 原子序数= ____ = _____

答案: A 质子数(Z)+中子数(N)

质子数=核外电子数=核电荷数

【思考1】如何判断某一个原子的质量数呢?

答案:某原子的质量数=质子数+中子数≈该原子的近似相对原子质量(因为质量数是忽略了原子内部的电子数计算得到的)。

2. 离子

- (1) 离子的形成:由原子或原子团得、失电子而形成电子微粒。离子也是构成物质的一种微粒。
- (2) 离子的种类: 阴离子、阳离子

阳离子: 原子失去电子形成的微粒,如 H+、Na+、Mg2+等;

核电荷数(Z)=质子数=原子序数=

即:核内质子数 核外电子数(填">""<"或"=")

阴离子: 原子得到电子形成的微粒,如 O^{2-} 、 S^{2-} 、 Cl^{-} 等;

核电荷数(Z)=质子数=原子序数=

即:核内质子数 核外电子数(填">""<"或"=")

答案: 核外电子数+离子电荷数; > 核外电子数一离子电荷数; <

(3) 常见离子的书写方式

(举例: Fe³⁺、Fe²⁺、NH₄⁺、NO₃⁻、SO₄²⁻、O²⁻、S²⁻、F⁻、Cl⁻、Mg²⁺、Na⁺、Ca²⁺、Cu²⁺)

3. 元素符号角标的意义

【答案】A——质量数

Z----核电荷数

b——离子所带的电荷数 a——化合价

c——原子团中所含原子个数

【思考2】你能够熟练地背出1-20号元素名称吗?

答案: 略,要求学生能够熟练背出 1-20 号元素名称,并写出对应的名称和元素符号。

【思考3】是不是所有的原子都含有质子和中子呢?

答案: 不是, 普通氢原子的质子数为1, 质量数为1, 则中子数为0。

【思考4】不同的原子之间相互转化是属于物理变化还是化学变化?

答案:属于物理变化。

【练一练】

原	子	质子数	中子数	电子数
符号	名称			
¹² ₆ C	碳	6	6	6

$^{24}_{12}Mg$	镁	12	12	12
²⁸ ₁₄ Si	硅	14	14	14
⁴⁰ ₂₀ Ca	钙	20	20	20

三、同位素

1.	同位素的概念:	_相同而	_不同的同一元素的不同核素互称为同位素。
例如	如:氢有三种同位素;		

氢原子	中文名称	质子数	中子数	质量数
$^{1}_{1}H$	氕(普通氢)	1	0	1
$^{2}_{1}H$	氘 (重氢)	1	1	2
^{3}H	氚(超重氢)	1	2	3

答案: 质子数 中子数

碳有多种同位素: ${}^{12}C$ 、 ${}^{13}C$ 和 ${}^{14}C$ (有放射性)等。

注意: 同位素是同一元素的不同原子, 其原子具有相同数目的质子, 但中子数目却不同。

2. 同位素的性质

	同位	立素具有	有相同原	子序数的	同一化学	元素的	的两种或多	多种原子	之一,	在元素周	周期表上,	占有同
一位	江置,	化学性	上 质		(氕、	氘和氚		有些微差	是异),	但原子原	质量或质	量数不
同,	从正	可其物理	里性质(主要表现	在质量、	熔点、	沸点上)			°		
	答案	≥。 刀.习	产完全相	同	有所差异							

3. 放射性同位素

放射性同位素具有以下三个特性:

第一,能放出各种不同的射线. 有的放出 α 射线,有的放出 β 射线,有的放出 γ 射线或者同时放出其中的两种射线. 还有中子射线. 其中, α 射线是一束 α 粒子流,带正电荷, β 射线就是电子流,带有负电荷.

第二,放出的射线由不同原子核本身决定.例如钴-60原子核每次发生衰变时,都要放射出三个粒子:一个β粒子和两个光子,钴-60最终变成了稳定的镍-60.

第三, 具有一定的寿命. 人们将开始存在的放射性同位素的原子核数目减少到一半时 所需的时间, 称为半衰期. 例如钴-60的半衰期大约是5年。

4. 放射性同位素的应用:

- (1) 射线照相技术,可以把物体内部的情况显示在照片上;
- (2) 测定技术方面的应用, 古生物年龄的测定, 对生产过程中的材料厚度进行监视和控制等;
- (3) 用放射性同位素作为示踪剂;
- (4) 用放射性同位素的能量,作为航天器能源等;
- (5) 利用放射性同位素的杀伤力,转恶为善,治疗癌症、灭菌消毒以及进行催化反应等。

5. 与元素、同素异形体的比较:

- (1) 同一元素的不同原子之间互称为同位素.
- (2) 同种元素可以有多种原子, 所以元素的种数远少于原子的种数。
- (3) 概念的比较

概念	研究对象	相同点	不同点	例子
同位素	原子	质子数、元素种类	中子数、原子种	氢元素: ¹ ₁ H、 ² ₁ H、 ³ ₁ H 氧元素: ¹⁶ ₈ O、 ¹⁷ ₈ O、 ¹⁸ ₈ O
内匹汞	127. 1	灰丁奴、九东行天	类	碳元素: ¹² ₆ C、 ¹³ ₆ C
同素异形体	单质	元素、原子种类	结构、物理性质	金刚石、石墨、C ₆₀ 、C ₇₀ 红磷、白磷 O ₂ 和 O ₃

【练一练】

4		\
	下列各组为同位素的是 ()
1.		

A. 红磷和白磷 B. T和 D C. H₂O 和 D₂O D. H₂和 D₂

- 2. 由以下一些微粒: 6¹³C、19³⁹K、20⁴⁰Ca、6¹²C、7¹⁴N、18⁴⁰Ar、O2、O3其中:
 - (1) 互为同位素的是
 - (2) 中子数相等,但质子数不相等的是_____;
 - (3) _____互为同素异形体。

【答案】

1. B 2. (1) 6^{13} C, 6^{12} C; (2) 6^{13} C, 7^{14} N; (3) O₂, O₃

点石成金

秦始皇幻想帝位永在,龙体长存,日思长生药,夜作金银梦。于是各路仙家大炼金丹,他们深居简出于山野之中,过着超脱尘世的神仙般生活。炼丹家以丹砂(硫化汞)、雄黄(硫化砷)等为原料,开炉熔炼。企图制得仙丹,再点石成金,服用仙丹或以金银为皿,均使人永不老死。西文洋人也仿效于暗室或洞穴,单身寡居致力于炼金术。一两千年过去了,死于仙丹不乏其人,点石成金出终成泡影。金丹太徒劳无功而销声匿迹。中外古代炼金术士毕生从事化学实验,为何总一事无成?乃因其违背科学规律。他们梦想用升华等简单立法改变贱金属的性质,把铅、铜、铁、汞变成贵重的金银。殊不知用一般化学立法是不能改变元素的性质的。化学元素是具有相同核电荷数的同种原子的总称,而原子是经学变化中的最小微粒。在化学反应里分子可以分成原子,原子却不能再分。随着科学的发展、今天"点石成金"已经实现。

1919年英国卢瑟福用α粒子轰击氮元素使氮变成了氧。

1941年科学家用原子加速器把汞变成了黄金-人造黄金镄(一百号元素)。

1980 年美国科学家又用氖和碳原子高速轰击铋金属靶,得到了针尖大的微量金。金丹术士得知 今人之丰功伟绩,在天之灵出会自觉羞愧的。

例题解析

知识点1:原子结构发展历程

【例1】(2014•上海模拟)2013年6月《自然》刊波尔原子结构模型100周年。波尔在人类对原子结构的认识的历程上是非常重要的。以下关于人类对原子结构的认识错误的是 ()

- A. 伦琴发现 X 射线将人类对原子结构的认识引入了新的历程
- B. 道尔顿认为"不同元素化合时,这些元素的原子按简单整数比结合成化合物"
- C. 汤姆生通过α粒子散射实验总结出原子结构行星模型
- D. 法国物理学家贝克勒尔发现铀的放射性

【难度】★【答案】C

变式 1: 原子结构模型的简历和发展与科学实验紧密相关。下列对应关系错误的是 ()

- A. 道尔顿发现原子 - "空心球"模型
- B. 汤姆逊发现电子 "葡萄干布丁"模型
- C. 卢瑟福进行α粒子散射实验 - "核式"模型

D.	玻尔解释氢原	子光谱 "电子分层	排布"模型	Ā	
【难	度】★【答案	E A			
变式 2:	(2016•金山区	区一模)在化学的发展	史上,许	多科学家创建的	的理论对化学科学的发展起到重
大的作用]. 有关科学家	(与其创建的理论对应)	不匹配的	是 ()
Α.	墨子:物质的	分割是有条件的			
В.	汤姆生:葡萄	干面包模型			
C. 7	德谟克利特:	古典原子论			
D.	贝克勒尔:原	子结构的行星模型			
【难	度】★【答案	E D			
【方法提	上炼】牢记各代	(表人物及其对应的观,	点,并知:	道其发展的先从	台顺序 。
知识点2	: 质子数、中	子数、质量数、核外属	电子数的	相互联系	
【例1】	下列关于 ³ He	的说法正确的是()		
Α.	³ He 原子核内	含有2个中子	В.	³ He 原子核内	1含有3个质子
C.	³ He 原子核外	有3个电子	D.	³ <i>H</i> e 和 ⁴ ₂ <i>H</i> e 是	两种不同的原子
【难	度】★【答案	E D			
变式 1:	放射性同位素	钬 ¹⁶⁶ Ho 的原子核内的	中子数与	核外的电子数	之差是()
Α	32	B. 67	C. 99		D. 166
【难	度】★【答案	E A			
变式 2:	(2000•上海)	据报道,某些建筑材	料会产生	放射性同位素質	氡 ²²² Rn,从而对人体产生伤害,
该同位素	原子的中子数	女和质子数之差是 ()		
Α.	136	B. 50	C.	86	D. 222
【难	度】★【答案	₿ 】B			
【例2】	已知元素 X、	Y 的核电荷数分别是 a	和 b,它	们的离子 X ^{m+}	和 Y ^{n ·} 的核外电子排布相同,则
下列关系	式中正确的是	<u>!</u> ()			
Α. :	a=b+m+n	B. a=b - m+n	C. a=b	+m - n	D. a=b - m - n
【难	度】★★★Ⅰ	【答案】A			
【解	2析】在原子中	可,核电荷数等于核外口	电子数;		
在阳	离子中,核电	目荷数减去离子所带电荷	荷数等于	核外电子数;	
在阴]离子中,核电	目荷数加上离子所带电荷	荷数等于	核外电子数。	
因为	J X ^{m+} 和 Y ^{n -} 具	有相同的核外电子排布	ī,		

所以, X^{m+}和 Yⁿ⁻具有相同的核外电子数,

 aX^{m+} 的核外电子数等于 a - m, b Y^{n-} 的核外电子数为: b+n, 则: a - m=b+n.

变式 1: 已知元素 R 的某种同位素的氯化物 RClx 为离子化合物, 其中该元素的微粒核内中子数为 v,

核外电子数为 Z,则该同位素的符号为 (

 $A z^{\gamma} R$

 $\mathbf{R} = \frac{y+z}{z}R$

C. z+x R

【难度】★★★【答案】D

变式 2: 已知 R^{2+} 离子核外有 a 个电子,b 个中子.表示 R 原子组成正确的是(

A. ${}^{b}_{a}R$

B. a+b-2 R = C. a+b+2 R = a+b+2 R

D. a+b R

【难度】★★【答案】C

【方法提炼】

牢记几个等式关系:

- 1、原子内部:核电荷数=质子数=核外电子数=原子序数
- 2、阳离子: 核外电子数=核电荷数-离子所带电荷数
- 3、阴离子:核外电子数=核电荷数+离子所带电荷数
- 4、质量数=质子数+中子数≈原子的近似相对原子质量

知识点 3: 同位素

题型一:同位素的概念辨析

【例1】下列各组粒子中属于同位素的是()

A. H₂和 D₂ B. H₂O 和 D₂O C. ¹⁶O 和 ¹⁸O D. ²⁴Mg 和 ²⁴Na

【难度】★【答案】C

【解析】A、H2和 D2都是由氡元素组成的单质,结构相同,为同一物质,故A错误:

- B、H₂O 和 D₂O 都是由氢氧元素组成的化合物,结构相同,为同一物质,故 B 错误;
- $C_{s}^{16}O$ 和 ^{18}O 质子数相同为 8,中子数不同分别为 8、10,是氧元素不同核素,互为同位素, 故 C 正确:
 - D、24Mg 和 24Na 质子数不同,属于不同元素的原子,故 D 错误。

变式 1: (2014•上海)"玉兔"号月球车用 $^{238}_{94}Pu$ 作为热源材料。下列关于 $^{238}_{94}Pu$ 的说法正确的是()

- A. ²³⁸₉₄Pu 与 ²³⁸₉₇U 互为同位素
- B. ²³⁸Pu 与 ²³⁸Pu 互为同素异形体
- C. $^{238}_{94}Pu$ 与 $^{238}_{99}U$ 具有完全相同的化学性质
- D. $^{238}_{94}$ Pu 与 $^{239}_{94}$ Pu 具有相同的最外层电子数

【难度】★【答案】D

变式 2: (本题中用大写字母代表原子核)所谓α衰变指放射性同位素放出 1 个氦核, 衰变为其他的原 子核。β衰变指放射性同位素放出1个电子,衰变为其他的原子核。

Ε 经α衰变成为 F,再经β衰变成为 G,再经α衰变成为 H。

上述系列衰变可记为下式: $E \xrightarrow{\alpha} F \xrightarrow{\beta} G \xrightarrow{\alpha} H$

另一系列衰变如下: $P \xrightarrow{\beta} O \xrightarrow{\beta} R \xrightarrow{\alpha} S$

已知 P 是 F 的同位素,则 ()

- A. Q是G的同位素,R是H的同位素
- B. R是E的同位素, S是F的同位素
- C. R是G的同位素, S是H的同位素
- D. Q是E的同位素,R是F的同位素

【难度】★★【答案】B

题型二:综合题

【例 2】下列说法中不正确的是(

- ①质子数相同的粒子一定属于同种元素;
- ②同位素的性质几乎完全相同;
- ③质子数相同,电子数也相同的两种粒子,不可能是一种分子和一种离子:
- ④电子数相同的粒子不一定是同一种元素;
- ⑤一种元素只能有一种质量数;
- ⑥某种元素的原子相对原子质量取整数,就是其质量数.

- A. (1)2(4)5) B. (3)(4)(5)(6) C. (2)(3)(5)(6) D. (1)(2)(5)(6)

【难度】★★【答案】D

变式 1: 两种微粒含有相同的质子数和电子数,这两种微粒可能是 ()

①两种不同的原子;②两种不同元素的原子;③一种原子和一种分子;④一种原子和一种离子;⑤ 两种不同分子;⑥一种分子和一种离子;⑦两种不同阳离子;⑧两种不同阴离子;⑨一种阴离子和 一种阳离子.

- A. ①35678 B. ①3578 C. ①3457 D. 全部都是

【难度】★★【答案】B

变式 2: 在 ${}_{3}^{6}Li$ 、 ${}_{1}^{7}Li$ 、 ${}_{11}^{23}Na$ 、 ${}_{12}^{24}Mg$ 、 ${}_{6}^{14}Li$ 、 ${}_{7}^{14}N$ 中

- (1) 和 互为同位素;
- (2) ______和_____的质量数相等,但不能互称为同位素;
- 和 的中子数相等,但质子数不等,所以不是同一种元素 (3)

【难度】★★

	【名	答案】	<u>3⁶Li</u> ;	3^7 Li;	<u>6¹⁴C</u> ;	$7^{14}N$;	11 ²³ Na;	12^{24} Mg;			
题	型三:	同位	素的简单	台计算							
•	例1】	分子	数相同的	H ₂ O ₂ D	$O_2O \setminus T_2O$	的质子数之	之比为	,	电子数之	比为	,中子数
之	比为_		,质量	量数之比为	为	_					
	【 ×	進度】	★【答第	₹】 1:1:1;	1:1:1; 4	4:5:6; 9:10	0:11。				
变	式1:	与 27	'.0 克水台	有相同。	中子数的	D ₂ O 质量)	为 ()			
	A.	13.2g	,	B. 20.1	g	C. 24.0g	g	D. 30.0	g		
	【 ×	進度】	★★【 答	茶業】C							
变	式 2:	电解	普通水(H ₂ O)和	重水(D	2O)的混合	合物,通时	电一段时	间后,两	极共生成气	体 18.5g,
其	体积为	் 33.6	L(标况	下),在	三所生成的	J气体中重	氢和普通	氢的原子	个数比为) (1
	A.	2: 3		B. 2:	5	C. 1: 2		D. 1:	3		
	【 ×	進度】	★★【 答	答案】D							
[方法抗	是炼】									
	1,	掌握同	司位素的	研究对象	是原子,	质子数相	同而中子	数不同。			
	2、	掌握常	常见的几	种同位素	,比如氢	的三种同	位素。				
	3、	在简单	单的计算	题中,要	区分不同	的同位素	的中子数	和质量数	的变化。		
_											
ľ	! ()	课后	作业								
Æ	=/_	V V F									
1.	汤姆	逊提出	出原子的	葡萄干面	i包模型的	主要依据	是 ()			
	①原-	子构成	中有质	F 21	原子构成。	中有电子	③整个原	手是电 。	中性的	④原子构原	成中有中子
	A. (1)(2)		B. 23		C. 12	3	D.	4		
	(×	進度】	★【答案	₹ 】B							
2.	卢瑟	福的α	粒子散射	対实验的 3	见象说明	了 ()				
	①葡	萄干面	面包原子	模型的理	论是错误	:的					
	②原	子中纟	色大部分	是中空的	J						
	③原	子内存	存在着很	小的带正	电荷的核						
	Α. (1)2)3)	В.	23	C.	13	D.	12		
	【 ×	進度】	★【答第	₹】A							
3.	1803	年,	英国科学	家道尔顿	页提出原子	产学说,其	主要论点	有: ①物	70质都是由	目原子构成;	②原子是
	微小	的不可	丁分割的:	实心球体	; ③同类	原子的性质	质和质量	都相同。	从现代观.	点看,这三	点不正确的

是 ()

	A.	2		B. ①②)	C.	23		D.	12	3				
	【难	達夏】	★【答詞	案】D											
4.	1919	年,	科学家第	第一次实	现了人类	多年	色的梦	5想——	-人工\$	传变元	素。这	个核	反应如	下: 1	¹⁴ ₇ N+
	⁴ ₂ He-	$\rightarrow {}^{17}_{8}$ C)+1H,	下列叙述	正确的是	()							
	A.	¹⁷ ₈ O	原子核内]有9个质	子		В.	¹H原	子核内	有1个	·中子				
	C.	O ₂ 和	O ₃ 互为	同位素			D.	通常情	_青 况下,	He 和	N ₂ 化与	学性质	都很稳	定	
	【难	達度】	★【答》	案】D											
5.	1 3C,	$\frac{1}{7}$ 5 N $\overline{1}$	可用于测	定蛋白质	和核酸等	生物	高分	子的空	区间结构	。下 <i>列</i>	刊关于 1	³ C、 ¹	⁵N 原子	的叙	述中,
正硕	角的是	<u> </u>	()											
	A.	1 3C E	ラ ゥ⁵N 有	相同的中	子数										
	В.	¹ ³C ≜	ヺ C60 互	为同素异形	 ド 体										
	C.	¹ ³C ≜	j ¦⁴N 有	相同的中	子数										
	D.	^{1 5} N 自	的核外电	子数与中	子数相同										
	【难	達夏】	★★【 答	答案】C											
6.	下面	8 种征	 散粒中,	中子数相	同的是	()							
	1 8	^{8}O	② 1 8F	③ 1 2C	$4^{24}Mg$	(5) £	² ⁵ Mg	6 ^{2 3} 1	Na ⑦	$^{2}_{11}{}^{3}Na^{+}$	® ^{3 5} C1				
	A.	58	В.	123	C.	1)2		D. (4	967						
	【难	達度】	★【答詞	案】D											
7.	原计划	划实现	见全球卫	星通讯需	发射 77 颗	记是	星 ,这	这与铱	(Ir) 元	素的原	子核外	电子	数恰好村	泪等,	因此
称え	为"铱	星计划	划",已知4	铱的一种。	司位素是 7	⁹¹ <i>I</i> r ,	, 则	其核内	的中子	数是()			
	A.	77		B. 114			C.	191			D. 268	3			
	【难	達夏】	★【答詞	案】B											
8.	某元	素的菌	两种同位	素,它们	的原子具	有不	同的	()						
	A.	质子	数	В.	质量数			C. 原	 手字多	汝		D.	电子数		
	【难	達夏】	★【答詞	案】B											
9.	$_{1}^{1}H$	$\frac{2}{1}H$	$\sqrt{\frac{3}{1}}H$	H ⁺ 、H ₂ 7	是 ()								
	A.	氢的	5 种同素	5异形体			В.	5 种氢	元素						
	C.	氢的	5 种同位	素			D.	氢元素	素的 5 和	中不同征	散粒				
	【难	達度】	★【答》	案】D											
10.	¹³ C-	-NM	R(核磁	姓振)、	¹⁵ N—NM	R 可	用于	·测定蛋	白质、	核酸等	9年物プ	大分子	的空间:	结构,	,

	KurtWüthrich 等人为					正确 ()
	A. ¹³ C 与 ¹⁵ N 有相						
	C. ¹⁵ N 与 ¹⁴ N 互为	同位素	D. 15	N 的核外电子	一数与中子数相	同	
	【难度】★【答案】	C					
11.	下列有关性质与原	子的最外层电子数	放无关的是	()			
	A. 元素的化合价	В.	元素的化学	活泼性			
	C. 得失电子难易科	是度 D.	相对原子质	量			
	【难度】★★【答	案】D					
12.	科学上常用元素符	号左下角的数字表	表示原子的原	质子数,左上	角的数字表示。	原子的中子	数与质子
	数之和,如 6 C 表示	核内有6个质子	、7个中子的	的碳原子,则	35Cl和 37Cl表	示的是 ()
	A. 原子中含有相同	引数目的中子	B. 属	于同一种元	美		
	C. 原子中的核外申	3子数不同	D. 原	子核内质子	数目不同		
	【难度】★【答案】	B					
13.	已知质量数为 A 的	某阳离子 R ⁿ⁺ ,核	亥外有 X 个 🛭	电子,则核内	中子数为	()	
	A. A - x	3. A - x - n	C. A	-x+n	D. A+x -	n	
	【难度】★★【答	案】B					
14.	某金属氧化物的化金	学式为 M ₂ O ₃ ,一	个分子的电	子总数为 50,	每个 M 离子含	了10个电子	² ,若其中
	每个氧原子核内部	有8个中子, M	I ₂ O ₃ 的相对	分子质量为	102,则M原	子核内的	中子数为
	()						
	A. 14	В. 16	C. 10	D. 2	21		
	【难度】★★★【	答案】A					
15.	13C—NMR(核磁共	ķ振)可以用于含碳	炭化合物的纟	指构分析, 6	C 表示的碳原子	子 ()
	A. 核外有 13 个电	子					
	B. 核内有 6 个质子	子,核外有7个电	子				
	C. 质量数为13, J	原子序数为 6,核	内有7个质	子			
	D. 质量数为13,	原子序数为6,核	医内有7个中	子			
	【难度】★【答案】	D					
16.	美国科学家将两种	元素铅和氪的原	子核对撞,	获得了一种质	5子数为 118、 「	中子数为1	75 的超重
	元素,该元素原子	核内的中子数与标	亥外电子数之	之差是()		
	A. 57	B. 47	C. 61	D. 2	293		
	【难度】★【答案】	A					
17.	人类探测月球发现	,在月球的土壤。	中含有较丰富	富的质量数为	3 的氦,它可	以作为未来	核聚变的
	重要原料之一. 氦	的该种同位素应为	表示为	()			

C. 元素的放射性是由原子内部结构变化引起的
D. 放射性元素的放射现象是在一定条件下发生的
【难度】★【答案】C
19. 2004年2月2月,俄国杜布纳实验室宣布用核反应得到两种新元素 X 和 Y,其中 X 元素是用高
能 $_{20}^{40}Ca$ 撞击 $_{95}^{243}Am$ 得到的。科学家发现.每个 $_{20}^{40}Ca$ 原子撞击一个 $_{95}^{243}Am$ 原子后除了生成一个 X 原子外,
同时生成3个中子。下列说法正确的是 ()
A. $^{243}_{95}$ Am 表明 Am 元素的相对原子质量一定为 243
B. $\frac{243}{95}$ Am 表明其相对应的原子核内含有的中子数为 95
C. X 元素的原子核内中子数应为 176,核外电子数应为 118
D. X元素原子的质量数应为280,核内质子数应为115
【难度】★★【答案】D
20. ¹⁴ C 是宇宙射线与大气中的氮通过核反应产生的,它和 ¹² C 以一定比例混合存在于空气中的二氧
化碳里, ¹⁴ C 随生物体的吸收代谢, 经过食物链进入活的生物体中。当生物死亡之后新陈代谢停止,
在以后年代里, ¹² C 通常不再发生变化, 其数量固定下来, 而 ¹⁴ C 具有放射性, 仍不断衰变减少, 与
其有关的说法中不正确的是 ()
A. ¹⁴ C 与 ¹² C 互为同位素
B. $0.012kg$ 的 ^{14}C 中含有 N_A 个碳原子数(N_A 表示阿伏加德罗常数的值)
C. 等物质的量的 14 C 与 12 C 所含的中子数不同
D. 可根据 ¹⁴ C 在生物体内的含量来计算生物体的死亡年代
【难度】★★【答案】B
21. 某原子的核内质子数为18,中子数比电子数多4,则该原子中所含微粒总数(质子、中子、电
子)为 ()
A. 18 B. 40 C. 58 D. 62
【难度】★【答案】C
22. 在离子 RO_3^{n-} 中,共有 x 个核外电子, R 原子的质量数为 A ,则 R 原子核内含有的中子数目是

A. $^{\frac{3}{2}}$ He B. $^{\frac{4}{3}}$ He C. $^{\frac{4}{2}}$ He D. $^{\frac{3}{3}}$ He

18. 下列关于放射性元素的说法正确的是 ()

【难度】★【答案】A

A. 所有的元素都具有放射性

B. 只有铀元素具有放射性

A. A - x + n + 48

B. A - x + n + 24

C. A - x - n - 24

D. A + x - n - 24

【难度】★★【答案】B

- 23. (2014•青浦区一模) $^{131}_{53}$ I 是常规核裂变产物之一,可以通过测定大气或水中 $^{131}_{53}$ I 的含量变化来监测核电站是否发生放射性物质泄漏.下列有关 $^{131}_{53}$ I 的叙述中错误的是 ()
 - A. ¹³¹53I 的化学性质与 ¹²⁷53I 相同
 - B. ¹³¹53I 的原子核外电子数为 78
 - C. ¹³¹53I 的原子序数为 53
 - D. 13153I 的原子核内中子数多于质子数

【难度】★【答案】B

24. (2013 春•济南期中)已知 R^{2-} 核内共有 N 个中子,R 的质量数为 A,则 m 克 R^{2-} 中含电子的物质的量为 ()

A.
$$\frac{m(A-N)}{A}$$
 mol

B.
$$\frac{m(A-N-2)}{A}$$
 mol

C.
$$\frac{m(A-N+2)}{Am}$$
 mol

D.
$$\frac{m(A-N+2)}{4}$$
 mol

【难度】★★★【答案】D

25. 填空:

粒子符号	质子数(Z)	中子数(N)	质量数(A)	用 $^{\frac{A}{Z}}X$ 表示为
①O	8	10	18	$^{18}_{8}O$
②A1	13	14	27	$^{27}_{13}Al$
③Ar	18	22	40	$^{40}_{18}Ar$
4Cl	17	18	35	35 17 Cl
(5)H	1	0	1	1 1 H

【难度】★

【难度】★

【答案】5; 10; 10; 1; 10。

27. 卢瑟福在研究元素放射性时发现,放射性元素可以放射处三种射线,下图中 $A \times B \times C$ 分别代表三种射线,

其中A代表 射线,本质上是 ,

р Д	式表,本质上是,
C 17	式表,本质上是。
	【难度】★
	【答案】β; 电子流; α; 氦核; γ; 波长很短的电磁波。
28.	¹ H ¹ ₂ ⁶ O、 ² H ¹ ₂ ⁷ O、 ³ H ¹ ₂ ⁸ O、 ² H ³⁷ Cl 五种分子中共存在种元素,种原子。
	【难度】★★
	【答案】3; 7
29.	有六种微粒,分别是 ¼°M、¼°N、¼°X、¼°Q+、¼°Y²+、¾7Z-, 它们所属元素的种类有种。
	【难度】★★【答案】4
30.	有下列四种微粒: ① $^{18}_{8}O$ 、② $^{23}_{11}Na$ 、③ $^{24}_{12}Mg$ 、④ $^{14}_{7}N$ (用序号填空)
	(1)按原子半径由大到小顺序排列的是
	(2) 微粒中质子数小于中子数的是
	【难度】★★【答案】②③④①; ①②;
31.	在 $_{1}^{1}H$ 、 $_{1}^{2}H$ 、 $_{1}^{3}H$ 、 $_{12}^{23}Mg$ 、 $_{12}^{24}Mg$ 和 $_{29}^{65}Cu$ 中共有
中子	· · · · · · · · · · · · · · · · · · ·
	【难度】★★【答案】3; 6; 65 Cu
32.	己知粒子 X^{2+} 的质量数为 24 ,中子数为 12 ,则 X^{2+} 的核电荷数为,核外电子数为
	, mg 该粒子的氧化物 XO 中含有电子数为。
	【难度】★★
	【答案】12; 10 ; $\frac{mN_A}{4}$