

Report No.: 160300092TWN-001

Model No.: PLTN-RB1V1
Issued Date: Apr. 18, 2016

Applicant: Peloton Interactive LLC

158 West 27th Street Fourth Floor New York, NY 10001

Test Method/ Standard: 47 CFR FCC Part 15.247 & ANSI C63.10 2013

KDB 558074 D01 v03r05

Test Site: 93910

Test By: Intertek Testing Services Taiwan Ltd.

No. 11, Lane 275, Ko-Nan 1 Street, Chia-Tung Li,

Shiang-Shan District, Hsinchu City, Taiwan

It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of Intertek Laboratory. The test result(s) in this report only applies to the tested sample(s).

The test report was prepared by:

Sunny Liu/ Senior Officer

These measurements were taken by:

Wayne Chen/ Engineer

The test report was reviewed by:

Name Terry Hsu
Title Engineer

Testing Laboratory 0597

Revision History

Report No.	Issue Date	Revision Summary	
160300092TWN-001	Apr. 18, 2016	Original report	

Table of Contents

1. Summary of Test Data	5
General Information	6 7
2.3 Antenna description	
2.4 Operation mode	
2.5 Applied test modes and channels	8
3. Minimum 6 dB Bandwidth	9 9
3.4 Test procedure	
3.5 Test diagram	
3.6 Test results	10
4. Maximum Peak Conducted Output Power 4.1 Operating environment	13
4.3 Measuring instrument setting	
4.4 Test procedure	13
4.5 Test diagram	13
4.6 Test result	14
5. Power Spectral Density	
5.1 Operating environment	
5.2 Limit for power spectrum density	15
5.3 Measuring instrument setting	15
5.4 Test procedure	16
5.5 Test diagram	16
5.6 Test results	16
6. Emissions In Non-Restricted Frequency Bands	
6.2 Limit for emissions in non-restricted frequency bands	
6.3 Measuring instruments setting	
6.4 Test procedure	

	6.5 Test diagram	. 20
	6.6 Test results	. 21
7.	Emissions In Restricted Frequency Bands (Radiated emission measurements) 7.1 Operating environment	
	7.2 Limit for emission in restricted frequency bands (Radiated emission measurement)	
	7.3 Measuring instrument setting	
	7.4 Test procedure	
	7.5 Test configuration	
	7.5.1 Radiated emission from 9kHz to 30MHz uses Loop Antenna:	
	7.5.2 Radiated emission below 1GHz using Bilog Antenna	
	7.5.3 Radiated emission above 1GHz using Horn Antenna	
	7.6 Test result	
	7.6.1 Measurement results: frequencies 9kHz to 30MHz	
	7.6.2 Measurement results: frequencies below 1 GHz	
	7.6.3 Measurement results: frequency above 1GHz	. 31
3.	Emission On Band Edge	. 32
	8.1 Operating environment	. 32
	8.2 Measuring instrument setting	. 32
	8.3 Test procedure	. 32
	8.4 Test results	. 33
1 (D. AC Power Line Conducted Emission	. 35
	10.1 Operating environment	
	10.2 Limit for AC power line conducted emission	. 35
	10.3 Measuring instrument setting	. 35
	10.4 Test procedure	. 35
	10.5 Test diagram	. 36
	10.6 Test results	. 37
4	ppendix A: Test equipment list	. 39
4	ppendix B: Measurement Uncertainty	. 41

1. Summary of Test Data

Test Requirement	Applicable Rule (Section 15.247)	Result
Minimum 6 dB Bandwidth	15.247(a)(2) KDB 558074 D01 v03r05	Pass
Maximum Peak Conducted Output Power	15.247(b)(3) KDB 558074 D01 v03r05	Pass
Power Spectral Density	15.247(e)	Pass
Emissions In Non-Restricted Frequency Bands	15.247(d)	Pass
Emissions In Restricted Frequency Bands (Radiated emission measurements)	15.247(d), 15.205, 15.209	Pass
Emission On The Band Edge	15.247(d), 15.205	Pass
AC Power Line Conducted Emission	15.207	Pass
Antenna Requirement	15.203	Pass

2. General Information

2.1 Identification of the EUT

Product: Peloton Console

Model No: PLTN-RB1V1

Operating Frequency: 2402 MHz ~ 2480 MHz

Channel Number: 40 channels

Frequency of Each Channel: 2402+2 k MHz, k=0~39

Access scheme: GFSK

Rated Power: DC 12 from adapter

Power Cord: N/A

Sample Received: Mar. 04, 2016

Sample condition: Workable

Test Date(s): Mar. 07, 2016 ~ Mar. 18, 2016

Note 1: This report is for the exclusive use of Intertek's Client and is

provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has

ever been under an Intertek certification program.

Note 2: When determining the test conclusion, the Measurement

Uncertainty of test has been considered.

2.2 Description of EUT

The EUT is a Peloton Console, and was defined as information technology equipment.

Product SW version: eng.RUBY.211

Product HW version: FP

Radio SW version : eng.RUBY.211

Radio HW version: FP

Test SW Version : eng.RUBY.211

For more detail features, please refer to user's Manual.

2.3 Antenna description

The EUT uses a permanently connected antenna.

Antenna Gain : -3.76 dBi

Antenna Type : PIFA Antenna

Connector Type : I-PEX

2.4 Operation mode

The EUT is supplied with DC 12 V from adapter (Test voltage: 120Vac, 60Hz). TX-MODE is based on "Engineer mode" and the program can select different frequency and modulation.

The signal is maximized through rotation and placement in the three orthogonal axes.

X axis Y axis Z axis

After verifying three axes, we found the maximum electromagnetic field was occurred at Y axis. The final test data was executed under this configuration.

2.5 Applied test modes and channels

Test items	Mode	Channel	Antenna
Minimum 6 dB Bandwidth	BT 4.0	Low, Middle , High	Chain0
Maximum peak conducted output power	BT 4.0	Low, Middle , High	Chain0
Power Spectral Density	BT 4.0	Low, Middle , High	Chain0
RF Antenna Conducted Spurious	BT 4.0	Low, Middle , High	Chain0
Radiated spurious Emission 9kHz~1GHz		Normal Link	
Radiated Spurious Emission 10GHz~10th Harmonic	BT 4.0 Low, Middle , High Chain0		Chain0
Emission on the Band Edge	BT 4.0	Low, Middle , High	Chain0
AC Power Line Conducted Emission		Normal Link	

3. Minimum 6 dB Bandwidth

3.1 Operating environment

Temperature:	25	$^{\circ}\!\mathbb{C}$
Relative Humidity:	50	%
Atmospheric Pressure	1008	hPa
Requirement & Test	15.247	(a)(2)
method	KDB 558074	D01 v03r05

3.2 Limit for minimum 6dB bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.3 Measuring instrument setting

Spectrum analyzer settings				
Spectrum Analyzer function	Setting			
Detector	Peak			
RBW	100kHz			
VBW	≥3 x RBW			
Sweep	Auto couple			
Trace	Allow the trace to stabilize.			
Snon	Between two times and five times the			
Span	occupied bandwidth			
Attenuation	Auto			

3.4 Test procedure

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. Test was performed in accordance with clause 8.1 option1 of KDB 558074 D01
- 3. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

3.5 Test diagram

3.6 Test results

Mode	Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)	Pass/Fail
	Low	2402	0.681	0.5	Pass
BT4.0	Middle	2442	0.703	0.5	Pass
	High	2480	0.682	0.5	Pass

Chain0 : 6dB Bandwidth @ Lower Energy mode Ch low

Chain0: 6dB Bandwidth @ Lower Energy mode Ch middle

4. Maximum Peak Conducted Output Power

4.1 Operating environment

Temperature:	25	$^{\circ}\!\mathbb{C}$
Relative Humidity:	50	%
Atmospheric Pressure	1008	hPa
Requirement & Test	15.247	7 (b)(3)
method	KDB 558074	D01 v03r05

4.2 Limit for maximum peak conducted output power

For systems using digital modulation in the 2400-2483.5 MHz: 1 Watt (30dBm)

4.3 Measuring instrument setting

Power meter			
Power meter Setting			
Donduidth	65MHz bandwidth is greater than the EUT		
Bandwidth	emission bandwidth		
Detector	Peak & Average		

4.4 Test procedure

Test procedures refer to clause 9.1.3 peak power meter method and clause 9.2.3.2 measurement using a gated RF average power meter of KDB 558074 D01.

4.5 Test diagram

4.6 Test result

Mode	Channel	Frequency (MHz)	Maximum (PK) (dBm)	Maximum (PK) (mW)	Limit (dBm)	Margin (dB)
	Low	2402	0.62	1.15	30	-29.38
BT4.0	Middle	2442	1.31	1.35	30	-28.69
	High	2480	1.42	1.39	30	-28.58

5. Power Spectral Density

5.1 Operating environment

Temperature:	25	$^{\circ}$
Relative Humidity:	50	%
Atmospheric Pressure	1008	hPa
Requirement & Test	15.24	7(e)
method	KDB 558074	D01 v03r05

5.2 Limit for power spectrum density

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

5.3 Measuring instrument setting

Spectrum analyzer settings						
Spectrum Analyzer function	Setting					
Detector	Peak					
RBW	≧3 kHz					
VBW	≧3 x RBW					
Sweep	Auto couple					
Trace	Max hold					
Span	1.5 times x 6dB bandwidth					
Attenuation	Auto					

5.4 Test procedure

- 1. Test procedure refer to clause 10.2 method PKPSD (peak PSD) of KDB 558074 D01 and clause E) 2) b) measure.
- 2. Using the maximum conducted output power in the fundamental emission demonstrates compliance. The EUT must be configured to transmit continuously at full power over the measurement duration.
- 3. Use the peak marker function to determine the maximum amplitude level within the RBW.

5.5 Test diagram

5.6 Test results

Mada	Channel Frequency		RBW	RBW PSD in		PSD in 3kHz		Margin
Mode	Channel	(MHz)	factor	10kHz	(dBm)	(mW)	(dBm)	(dB)
	Low	2402	5.23	-15.429	-20.66	0.01	8	-28.66
BT 4.0	Middle	2442	5.23	-14.976	-20.20	0.01	8	-28.20
	High	2480	5.23	-15.141	-20.37	0.01	8	-28.37

Chain0: Power Spectral Density @ Lower Energy mode Ch low

Chain0 : Power Spectral Density @ Lower Energy mode Ch middle

Chain0 : Power Spectral Density @ Lower Energy mode Ch high

6. Emissions In Non-Restricted Frequency Bands

6.1 Operating environment

Temperature:	20	$^{\circ}\!\mathbb{C}$
Relative Humidity:	55	%
Atmospheric Pressure	1008	hPa
Requirement	15.247(d	l)

6.2 Limit for emissions in non-restricted frequency bands

The peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz

6.3 Measuring instruments setting

Reference level measurement

Spectrum analyzer settings						
Spectrum Analyzer function	Setting					
Detector	Peak					
RBW	≥100 kHz					
VBW	≥3 x RBW					
Sweep	Auto couple					
Trace	Max hold					
Span	≥1.5 time 6dB bandwidth					
Attenuation	Auto					

Emission level measurement

Spectrum analyzer settings						
Spectrum Analyzer function	Setting					
Detector	Peak					
RBW	≥100 kHz					
VBW	≧3 x RBW					
Sweep	Auto couple					
Trace	Max hold					
Attenuation	Auto					

6.4 Test procedure

- 1. The procedure was used in antenna-port conducted and connected to the spectrum analyzer.
- 2. Set instrument center frequency to center frequency
- 3. Use the parameter configured in clause 6.3 to measure
- 4. Use the peak marker function to determine the maximum amplitude level.

6.5 Test diagram

6.6 Test results

Chain0: Conducted Spurious @ Lower Energy mode Ch low

Chain0: Conducted Spurious @ Lower Energy mode Ch low

Chain0: Conducted Spurious @ Lower Energy mode Ch middle

Chain0: Conducted Spurious @ Lower Energy mode Ch middle

Chain0: Conducted Spurious @ Lower Energy mode Ch high

Chain0: Conducted Spurious @ Lower Energy mode Ch high

7. Emissions In Restricted Frequency Bands (Radiated emission measurements)

7.1 Operating environment

Temperature:	20	$^{\circ}\!\mathbb{C}$	
Relative Humidity:	55	%	
Atmospheric Pressure	1008	hPa	
Deguirement	15.247(d), 15.205,		
Requirement	15.209		

7.2 Limit for emission in restricted frequency bands (Radiated emission measurement)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	2400/F(kHz)	30
1.705~30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark:

- 1. In the above table, the tighter limit applies at the band edges.
- 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system

7.3 Measuring instrument setting

Below 1GHz measurement

Receiver settings					
Receiver function	Setting				
Detector	QP				
	9-150 kHz ; 200-300 Hz				
RBW	0.15-30 MHz; 9-10 kHz				
	30-1000 MHz; 100-120 kHz				
VBW	≥3 x RBW				
Sweep	Auto couple				
Attenuation	Auto				

Above 1GHz measurement

Spectrum analyzer settings						
Spectrum Analyzer function	Setting					
Detector	Peak					
RBW	1MHz					
VBW	3MHz for Peak; 10Hz for Average					
Sweep	Auto couple					
Start Frequency	1GHz					
Stop Frequency	Tenth harmonic					
Attenuation	Auto					

7.4 Test procedure

- 1. Configure the EUT according to ANSI C63.10: 2013 The EUT was placed on the top of the turntable 1.5 meter above ground for above 1GHz and placed on the top of the turntable 0.8 meter above ground for below 1GHz. The center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the companion devices. The turntable was rotated by 360 degree to find the position of the maximum emission level.
- 3. The height of the receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of the both horizontal and vertical polarization
- 4. If find the frequencies above the limit or below within 3dB, the antenna tower was scan (from 1m to 4m) and then the turntable was rotated to find the maximum reading.
- 5. Set the test-receiver system to peak or CISPR quasi-peak detector with specified bandwidth under maximum hold mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. If the emissions level of the EUT in peak mode was 3dB lower than the average limit specified then testing will be stopped and peak values of the EUT will be reported. Otherwise, the emissions which do not have 3dB margin will be measured using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, The emissions level of the EUT in peak mode was lower than average limit, then testing will be stopped and peak values of the EUT will be reported, otherwise, the emission will be measured in average mode again and reported.
- In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be quasi-peak measured by receiver.

7.5 Test configuration

7.5.1 Radiated emission from 9kHz to 30MHz uses Loop Antenna:

7.5.2 Radiated emission below 1GHz using Bilog Antenna

7.5.3 Radiated emission above 1GHz using Horn Antenna

7.6 Test result

7.6.1 Measurement results: frequencies 9kHz to 30MHz

The test was performed on EUT under GFSK continuously transmitting mode. The worst case occurred at Tx High channel

EUT : PLTN-RB1V1

Test mode : TX mode High channel

Frequency	Detection	factor	Reading	Value	Limit @ 3m	Tolerance	
(MHz)	value	(dB/m)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)	
0.12	QP	20.77	9.10	29.87	106.02	-76.15	
3.49	QP	21.62	13.55	35.17	69.54	-34.37	
27.02	QP	22.19	16.26	38.45	69.54	-31.09	
Remark: Corr. Factor = Antenna Factor + Cable Loss							

7.6.2 Measurement results: frequencies below 1 GHz

The test was performed on EUT under GFSK continuously transmitting mode. The worst case occurred at Tx Middle channel

EUT :PLTN-RB1V1

Worst Case : GFSK at Tx Middle channel

Antenna	Freq.	Receiver	Corr.	Reading	Corrected	Limit	Margin
Polarized			Factor		Level	@ 3 m	
(V/H)	(MHz)	Detector	(dB/m)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)
Vertical	43.58	QP	14.49	12.74	27.23	40.00	-12.77
Vertical	136.70	QP	13.75	24.76	38.51	43.50	-4.99
Vertical	239.52	QP	13.83	20.92	34.75	46.00	-11.25
Vertical	293.84	QP	15.52	10.49	26.01	46.00	-19.99
Vertical	518.88	QP	20.94	10.68	31.63	46.00	-14.37
Vertical	831.22	QP	26.45	6.62	33.07	46.00	-12.93
Horizontal	134.76	QP	13.53	26.11	39.64	43.50	-3.86
Horizontal	206.54	QP	12.54	21.72	34.26	43.50	-9.24
Horizontal	253.10	QP	14.17	27.10	41.28	46.00	-4.72
Horizontal	289.96	QP	15.36	18.13	33.49	46.00	-12.51
Horizontal	396.66	QP	18.30	9.41	27.70	46.00	-18.30
Horizontal	862.26	QP	26.89	5.30	32.18	46.00	-13.82

Remark: Corr. Factor = Antenna Factor + Cable Loss

7.6.3 Measurement results: frequency above 1GHz

EUT :PLTN-RB1V1

Test Condition : Tx at Middle channel

	Frequency	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
Mode		Analyzer	Pol.	Gain	Factor		Reading	@ 3 m	
	(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)
Ch	4804	PK	V	40.13	-0.10	42.27	42.17	54.00	-11.83
Low	4804	PK	Н	40.13	-0.10	42.84	42.74	54.00	-11.26

Remark: Correction Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Pre_Amplifier Gain

EUT :PLTN-RB1V1

Test Condition : Tx at Middle channel

	Frequency	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
Mode		Analyzer	Pol.	Gain	Factor		Reading	@ 3 m	
	(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)
Ch	4884	PK	V	39.99	0.16	42.89	43.05	54.00	-10.95
Middle	4884	PK	Н	39.99	0.16	44.02	44.18	54.00	-9.82

Remark: Correction Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Pre_Amplifier Gain

EUT :PLTN-RB1V1

Test Condition : Tx at Middle channel

	Frequency	Spectrum	Ant.	Preamp.	Correction	Reading	Corrected	Limit	Margin
Mode		Analyzer	Pol.	Gain	Factor		Reading	@ 3 m	
	(MHz)	Detector	(H/V)	(dB)	(dB/m)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)
Ch	4960	PK	V	39.84	0.41	41.07	41.48	54.00	-12.52
High	4960	PK	Η	39.84	0.41	42.34	42.75	54.00	-11.25

Remark: Correction Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Pre Amplifier Gain

8. Emission On Band Edge

8.1 Operating environment

Temperature:	25	$^{\circ}\!\mathbb{C}$
Relative Humidity:	50	%
Atmospheric Pressure	1008	hPa
Requirement	15.247(d), 15	5.205,

8.2 Measuring instrument setting

Spectrum analyzer settings						
Spectrum Analyzer function	Setting					
Detector	Peak					
RBW	1MHz					
VBW	3MHz for Peak; 10Hz for Average					
Sweep	Auto couple					
Restrict bands	2310~2390MHz					
Restrict barids	2483.5 ~2500MHz					
Attenuation	Auto					

8.3 Test procedure

The test procedure is the same as clause 7.4

8.4 Test results

EUT :PLTN-RB1V1

Test Condition : Tx at Middle channel

	Frequency	Spectrum	Ant.	Correction	Reading	Corrected	Limit	Margin	Restricted	
Mode		Analyzer	Pol.	Factor		Reading	@ 3 m		band	
	(MHz)	Detector	(H/V)	(dB/m)	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)	(MHz)	
DT4.0	2389.40	PK	V	33.85	26.96	60.81	74	-13.19	2310~2390	
	2390.00	AV	V	33.85	14.64	48.49	54	-5.51	2310~2390	
BT4.0	2483.50	PK	V	34.30	27.43	61.73	74	-12.27	2492 5- 2500	
	2483.50	AV	V	34.30	17.80	52.10	54	-1.90	2483.5~2500	
Remark:	Remark: Correction Factor = Antenna Factor + Cable Loss									

20dB Bandwidth @ Lower Energy mode Ch low

20dB Bandwidth @ Lower Energy mode Ch high

10. AC Power Line Conducted Emission

10.1 Operating environment

Temperature:	20	$^{\circ}\!\mathbb{C}$
Relative Humidity:	58	%
Atmospheric Pressure	1009	hPa
Requirement	15.207	

10.2 Limit for AC power line conducted emission

Freq.	Conducted Limit (dBuV)			
(MHz)	Q.P.	Ave.		
0.15~0.50	66 – 56*	56 – 46*		
0.50~5.00	56	46		
5.00~30.0	60	50		

10.3 Measuring instrument setting

Receiver settings							
Receiver function	Setting						
Detector	QP						
Start frequency	0.15MHz						
Stop frequency	30MHz						
IF bandwidth	9 kHz						
Attenuation	10dB						

10.4 Test procedure

- 1. Configure the EUT according to ANSI C63.10:2013. The EUT or host of EHT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network.

- 3. All the companion devices are connected to the other LISN. The LISN should provide 50Uh/50ohms coupling impedance.
- 4. The frequency range from 150 kHz to 30MHz was searched
- 5. Set the test-receiver system to peak detector and specified bandwidth with maximum hold mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

10.5 Test diagram

Note: The EUT was tested while in normal communication mode.

10.6 Test results

Phase: Live Line
Model No.: PLTN-RB1V1

Test Condition: Normal communication

Frequency	Corr. Factor	Level Qp	Limit Op	Level AV	Limit Av	Margi (dB)	
(MHz)	(dB)	(dĎu∜)	(dĎū∜)	(dBu∀)	(dBu∀)	Qp (Av
0.158	9.74	48.46	65.56	38.34	55.56	-17.10	-17.22
0.323	9.73	34.28	59.62	26.80	49.62	-25.33	-22.82
0.454	9.73	35.99	56.80	30.55	46.80	-20.81	-16.26
0.486	9.73	34.09	56.23	28.65	46.23	-22.14	-17.58
0.549	9.75	28.33	56.00	21.59	46.00	-27.67	-24.41
12.649	9.89	32.20	60.00	26.79	50.00	-27.80	-23.21

Remark:

- 1. Correction Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)

Phase: Neutral Line Model No.: PLTN-RB1V1

Test Condition: Normal communication

Frequency	Corr. Factor	Level Qp	Limit Qp	Level AV	Limit Av	$egin{array}{l} {\sf Marging} \\ ({ m dB}) \end{array}$	
(MHz)	(dB)	(dBūV)	(dŘůV)	(dBuV)	(dBuV)	Qp (Av
0.160	9.74	47.34	65.47	38.39	55.47	-18.13	-17.08
0.199	9.74	36.83	63.67	26.64	53.67	-26.84	-27.02
0.330	9.73	34.01	59.44	26.74	49.44	-25.43	-22.70
0.449	9.73	34.91	56.89	30.03	46.89	-21.98	-16.86
0.567	9.75	26.35	56.00	19.96	46.00	-29.65	-26.04
12.920	9.92	33.85	60.00	28.46	50.00	-26.15	-21.54

Remark:

- 1. Correction Factor (dB)= LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) = Level (dBuV) Limit (dBuV)

Appendix A: Test equipment list

Equipment	Brand	Model No.	Serial No.	Calibration Date	Next Calibration Date
ESCI EMI Test Receiver	Rohde & Schwarz	ESCI	100018	2015/12/02	2016/11/30
Spectrum Analyzer	Rohde & Schwarz	FSP30	100137	2015/08/18	2016/08/16
Horn Antenna (1-18G)	SHWARZBECK	BBHA 9120 D	9120D-456	2014/08/29	2017/08/27
Horn Antenna (14-42G)	SHWARZBECK	BBHA 9170	BBHA9170159	2014/09/16	2017/09/14
Broadband Antenna	SHWARZBECK	VULB 9168	9168-172	2013/08/08	2016/08/06
Pre-Amplifier	EMC Co.	EMC12635SE	980205	2015/10/7	2016/10/05
Pre-Amplifier	MITEQ	JS4-26004000 27-8A	828825	2015/09/15	2016/09/13
Power Meter	Anritsu	ML2495A	0844001	2015/11/11	2016/11/09
Power Sensor	Anritsu	MA2411B	0738452	2015/11/11	2016/11/09
Two-Line V-Network	Rohde & Schwarz	ENV216	101159	2015/06/08	2016/06/06
Artificial Mains Network (LISN)	Schaffner	MN2050D	1586	2015/05/27	2016/05/25
CON-1 Cable	SUHNER	BNC / RG-58	1521946	2015/05/09	2016/05/07
Test software	Audix	e3	4.2004-1-12k	NCR	NCR
Signal Analyzer	Agilent	N9030A	MY51380492	2015/09/21	2016/09/19
966-2(A) Cable 9kHz~26.5GHz	SUHNER	SMA / EX 100	N/A	2015/05/06	2016/05/05
966-2(B) Cable 9kHz~26.5GHz	SUHNER	SMA / SUCOFLEX 104P	CB0005	2015/05/06	2016/05/04

Equipment	Brand	Model No.	Serial No.	Calibration Date	Next Calibration Date
RF Cable 9kHz~26.5GHz	SUHNER	SUCOFLEX 102	CB0006	2015/05/06	2016/05/05
966-2_3m Semi-Anechoic Chamber	966_2	CEM-966_2	N/A	2016/02/24	2017/02/22
Hight Pass Filter	Reactel	7HS-3G/18G-S 11	N/A	2015/06/06	2016/06/04
Active Loop Antenna	SCHWARZBECK MESS-ELEKTRO NIC	FMZB1519	1519-067	2016/03/03	2017/03/02
EMI Test Receiver	Rohde & Schwarz	ESR-7	101232	2015/12/02	2016/11/30
Test software	ADT	Radiated test system	7.5.14	NCR	NCR

Note: No Calibration Required (NCR).

Report No.: 160300092TWN-001

Appendix B: Measurement Uncertainty

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.

Item	Uncertainty
Vertically polarized radiated disturbances from 30MHz~1GHz in a semi-anechoic chamber at a distance of 3m	5.14 dB
Horizontally polarized radiated disturbances from 30MHz~1GHz in a semi-anechoic chamber at a distance of 3m	5.22 dB
Vertically polarized Radiated disturbances from 1GHz~18GHz in a semi-anechoic chamber at a distance of 3m	3.64 dB
Horizontally polarized Radiated disturbances from 1GHz~18GHz in a semi-anechoic chamber at a distance of 3m	3.64 dB
Vertically polarized Radiated disturbances from 18GHz~40GHz in a semi-anechoic chamber at a distance of 3m	2.7 dB
Horizontally polarized Radiated disturbances from 18GHz~40GHz in a semi-anechoic chamber at a distance of 3m	2.7 dB
Radiated disturbances from 9kHz~30MHz in a semi-anechoic chamber at a distance of 3m	3.53 dB
Emission on the Band Edge Test	3.64 dB
RF Antenna Conducted Spurious Test	0.85 dB
Maximum Output Power Test	0.42 dB
20dB Bandwidth Test	0.85 dB
Carrier Frequency Separation Test	0.85 dB
Number of Hopping Frequencies Test	0.85 dB
Time of Occupancy (Dwell Time) Test	0.85 dB
AC Power Line Conducted Emission	2.47 dB