The Price of Fairness Applicazione

Alice Daldossi

Università degli Studi di Pavia

Indice

1 Problema

2 Schemi di equità

Presentazione del problema

Problema

Un condominio da 6 appartamenti ha installato dei pannelli fotovoltaici che creano energia elettrica pari a 30 kWh al giorno. Questo totale viene normalmente suddiviso tra le 6 utenze in base alle quote di ciascuna. Se una famiglia va in vacanza, l'appartamento consuma meno, quindi c'è più energia a disposizione per le altre. Come distribuire questa energia in più?

Risoluzione

Per ogni famiglia si cerca la percentuale del rispettivo surplus (energia che non viene normalmente coperta dai fotovoltaici) che è coperta dal fotovoltaico aggiuntivo.

Dati

n=6 giocatori

Disponibilità giornaliera dei pannelli fotovoltaici: 30 kWh

Prezzo dell'energia: 0.277 €/kWh

Presenze	Nomi	Copertura	Surplus	Fisso
1	Bianchi	2,647058824	1,452941176	1,5
1	Rossi	3,235294118	4,164705882	1,5
1	Verdi	3,529411765	1,970588235	1,5
0	Longo	5,882352941	3,117647059	1,5
0	Costa	6,470588235	3,529411765	2
1	Gatti	8,235294118	5,764705882	2

Soluzione utilitaria

Nomi	Copertura aggiuntiva	Costo (€)
Bianchi	1.452941176	0.00
Rossi	4.164705882	0.00
Verdi	1.970588235	0.00
Gatti	3.1176470600000004	0.73

Soluzione

$$SYSTEM(U) = \sup\{e^T u | u \in U\} =$$

$$= 100.0 + 100.0 + 100.0 + 54.08 = 354.08$$
(1)

Link al codice: ...

Equità proporzionale

Soluzione

$$S^{PF}(U) =$$

$$FAIR(U; S^{PF}) = e^{T} S^{PF}(U) =$$

$$POF(U; S^{PF}) = \frac{SYSTEM(U) - FAIR(U; S^{PF})}{SYSTEM(U)}$$
(2)

Link al codice: ...

Equità max-min

Soluzione

$$S^{\text{MMF}}(U) =$$

$$\text{FAIR}(U; S^{\text{MMF}}) = e^{T} S^{\text{MMF}}(U) =$$

$$\text{POF}(U; S^{\text{MMF}}) = \frac{\text{SYSTEM}(U) - \text{FAIR}(U; S^{\text{MMF}})}{\text{SYSTEM}(U)}$$
(3)

Link al codice: ...

Limiti

Teorema: Uguali massime utilità possibili

Abbiamo n=6>2 giocatori, $U\subset\mathbb{R}^6_+$ è compatto e convesso. Tutti i giocatori hanno la stessa massima utilità, che è maggiore di 0, allora

$$POF(U; \mathcal{S}^{PF}) = \dots \le 1 - \frac{2\sqrt{n} - 1}{n} = 0.3501700857389407,$$

$$POF(U; \mathcal{S}^{MMF}) = \dots \le 1 - \frac{4n}{(n+1)^2} = 0.5102040816326531.$$
(4)