$\begin{array}{c} {\rm Universit\`a~degli~Studi~Roma~Tre~-~Corso~di~Laurea~in~Matematica} \\ {\rm Tutorato~di~GE220} \end{array}$

A.A. 2010-2011 - Docente: Prof. Edoardo Sernesi Tutori: Filippo Maria Bonci, Annamaria Iezzi e Maria Chiara Timpone

> Tutorato 9 (26 Maggio 2011) Omotopia e Gruppo fondamentale

- 1. Considerare in S^2 il cappio α di base $x_0 = (1,0,0)$ definito da $\alpha(t) = (cos2\pi t, sin2\pi t, 0)$. Dimostrare che α è equivalente al cappio costante costruendo esplicitamente una omotopia relativa tra α e c_{x_0} . Ripetere l'esercizio considerando α come cappio in $S^2 \setminus (0,0,1)$.
- 2. Dimostrare che se P è un poligono etichettato e S è la superficie quoziente, allora ogni cappio in P ha per immagine un cappio in S che è equivalente al cappio costante. Possiamo dedurne che S è semplicemente connessa?
- 3. Sia X e Y spazi topologici tali che $Y \subset X$. Y si dice un ritratto di X se esiste $f: X \to Y$ continua tale che $f(y) = y \, \forall \, y \in Y$.

 Dimostrare che se Y è un ritratto di X e $y \in Y$ allora $\pi_1(Y,y)$ è isomorfo a un sottogruppo di $\pi(X,y)$.

 Dare un esempio di ritratto di X che non sia omotopicamente equivalente a X.
- 4. Sia X uno spazio topologico. Costruire un'equivalenza omotopica tra X e $X \times I$. Dare un esempio di spazio topologico X tale che X e $X \times I$ non siano omeomorfi.
- 5. Costruire un cappio in $S^1 \times I$ che non è equivalente al cappio costante e che quindi definisca un elemento del gruppo fondamentale che non è l'identità.
- 6. Sia X uno spazio topologico. Dimostrare che se $x_0, x_1 \in X$ appartengono alla stessa componente connessa per archi, l'isomorfismo

$$\pi_{\alpha}: \pi_1(X, x_0) \to \pi_1(X, x_1)$$

$$[f] \mapsto [\alpha^0 * f * \alpha]$$

è indipendente dall'arco $\alpha: I \to X$ di estremi x_0 e x_1 se e solo se $\pi_1(X, x_0)$ è un gruppo abeliano.

7. Si consideri il quoziente $Y:=\frac{S^1\times I}{\rho}$ dove ρ è la relazione di equivalenza che identifica $0\times S^1$ a un punto e $1\times S^1$ a un altro punto. Dimostrare che Y è omeomorfo a S^2 .