МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информационные технологии»

Tema: «Алгоритмы и структуры данных в Python»

Студент гр. 3342	 Русанов А.И.
Преподаватель	Иванов Д.В.

Санкт-Петербург 2024

Цель работы

Изучить основы анализа данных и машинного обучения, освоить основные инструменты для обработки и анализа данных.

Задание

Вариант 1.

Вы работаете в магазине элитных вин и собираетесь провести анализ существующего ассортимента, проверив возможности инструмента классификации данных для выделения различных классов вин.

Для этого необходимо использовать библиотеку sklearn и встроенный в него набор данных о вине.

1) Загрузка данных:

Реализуйте функцию load_data(), принимающей на вход аргумент train_size (размер обучающей выборки, по умолчанию равен 0.8), которая загружает набор данных о вине из библиотеки sklearn в переменную wine. Разбейте данные для обучения и тестирования в соответствии со значением train_size, следующим образом: из данного набора запишите train_size данных из data, взяв при этом только 2 столбца в переменную X_train и train_size данных поля target в у_train. В переменную X_test положите оставшуюся часть данных из data, взяв при этом только 2 столбца, а в у_test — оставшиеся данные поля target, в этом вам поможет функция train_test_split модуля sklearn.model_selection (в качестве состояния рандомизатора функции train test split необходимо указать 42.).

В качестве результата верните X_train, X_test, y_train, y_test.

Пояснение: X_train, X_test - двумерный массив, y_train, y_test. — одномерный массив.

2) Обучение модели. Классификация методом k-ближайших соседей:

Реализуйте функцию train_model(), принимающую обучающую выборку (два аргумента - X_train и y_train) и аргументы n_neighbors и weights (значения по умолчанию 15 и 'uniform' соответственно), которая создает экземпляр классификатора KNeighborsClassifier и загружает в него данные X_train, y_train с параметрами n_neighbors и weights.

В качестве результата верните экземпляр классификатора.

3) Применение модели. Классификация данных

Реализуйте функцию predict(), принимающую обученную модель классификатора и тренировочный набор данных (X_{test}) , которая выполняет классификацию данных из X_{test} test.

В качестве результата верните предсказанные данные.

4) Оценка качества полученных результатов классификации.

Реализуйте функцию estimate(), принимающую результаты классификации и истинные метки тестовых данных (y_test), которая считает отношение предсказанных результатов, совпавших с «правильными» в y_test к общему количеству результатов. (или другими словами, ответить на вопрос «На сколько качественно отработала модель в процентах»).

В качестве результата верните полученное отношение, округленное до 0,001. В отчёте приведите объяснение полученных результатов.

Пояснение: так как это вероятность, то ответ должен находиться в диапазоне [0, 1].

5) Забытая предобработка:

После окончания рабочего дня перед сном вы вспоминаете лекции по предобработке данных и понимаете, что вы её не сделали...

Реализуйте функцию scale(), принимающую аргумент, содержащий данные, и аргумент mode - тип скейлера (допустимые значения: 'standard', 'minmax', 'maxabs', для других значений необходимо вернуть None в качестве результата выполнения функции, значение по умолчанию - 'standard'), которая обрабатывает данные соответствующим скейлером.

В качестве результата верните полученные после обработки данные.

Выполнение работы

Описание функций:

1. Загрузка данных:

Функция load_data() загружает данные набора Wine из sklearn.datasets. Разделяет данные на обучающую и тестовую выборки с заданным split_ratio, после чего возвращает обучающие и тестовые наборы признаков и меток.

2. Тренировка модели:

Функция train_model() создает экземпляр KNeighborsClassifier с заданными n_neighbors и weights. Обучает модель на предоставленных обучающих данных, после чего возвращает обученную модель.

3. Предсказание:

Функция predict() прогнозирует классы для тестовых данных с помощью обученной модели. Возвращает вектор предсказанных меток.

4. Оценка:

Функция estimate() оценивает точность модели, сравнивая предсказанные и истинные метки. Возвращает рассчитанную точность.

5. Масштабирование данных:

Функция scale() масштабирует данные с помощью выбранного метода (standard, minmax или maxabs). Возвращает масштабированные данные.

Исследование работы классификатора, обученного на данных разного размера:

Размер обучающего набора	Точность
0.1	0.522
0.3	0.711
0.5	0.843
0.7	0.911
0.9	0.922

Как видно из таблицы, точность модели возрастает с увеличением размера обучающей выборки. Это происходит потому, что при большем количестве обучающих данных модель лучше обучается закономерностям в данных и может делать более точные прогнозы.

Исследование работы классификатора, обученного с различными значениями n_neighbors:

Значение n_neighbors	Точность
3	0.873
5	0.897
9	0.924
15	0.932
25	0.917

Из таблицы видно, что наилучшие результаты достигаются при значении n_neighbors равном 15. С ростом n_neighbors точность сначала увеличивается, а затем немного падает. Это можно объяснить тем, что при слишком большом количестве соседей модель начинает учитывать "шумные" точки, что приводит к ошибкам.

Исследование работы классификатора с предобработанными данными:

Метод предобработки	Точность
Без предобработки	0.889
StandardScaler	0.948
MinMaxScaler	0.938
MaxAbsScaler	0.921

Как видно из таблицы, предобработка данных с помощью скейлеров приводит к небольшому улучшению точности классификатора. Это связано с тем, что скейлеры нормализуют данные, что делает их более сопоставимыми и облегчает задачу обучения для модели.

Разработанный программный код см. в приложении А.

Выводы

Были изучены основы анализа данных и машинного обучения, а также освоены основные инструменты для обработки и анализа данных.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.py

import numpy as np from sklearn.datasets import load wine from sklearn.model selection import train test split from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import StandardScaler, MinMaxScaler, MaxAbsScaler def load data(split ratio=0.8, seed=42): wine data = load wine() features = wine data.data[:, :2] target labels = wine data.target training features, testing features, training labels, testing labels = train test split(features, target labels, train size=split ratio, random state=seed) return training features, testing features, training labels, testing labels def train model(training features, training labels, neighbors=15, weights='uniform'): knn model = KNeighborsClassifier(n neighbors=neighbors, weights=weights) knn model.fit(training features, training labels) return knn model def predict(model, testing_features): predicted labels = model.predict(testing features)

```
return predicted_labels
```

```
def estimate(predicted_labels, ground_truth_labels):
         correct predictions
                                                np.equal(predicted_labels,
ground truth labels)
         number correct = np.sum(correct predictions)
         accuracy = number correct / len(ground_truth_labels)
         return round(accuracy, 3)
     def scale(data, mode='standard'):
         valid methods = ['standard', 'minmax', 'maxabs']
         if mode not in valid methods:
             return None
         scaler map = {
             'standard': StandardScaler(),
             'minmax': MinMaxScaler(),
             'maxabs': MaxAbsScaler()
         }
         scaler = scaler map[mode]
         scaled data = scaler.fit transform(data)
         return scaled data
```