goal: camputation of H2 and Has system norms

refs: Dogle, Glover, Khargonekar, Francis 1989

State-Space Solutions to Standard \mathcal{IC}_2 and \mathcal{IC}_{∞} Control Problems

JOHN C. DOYLE, KEITH GLOVER, MEMBER, IEEE, PRAMOD P. KHARGONEKAR, MEMBER, IEEE, AND BRUCE A. FRANCIS, FELLOW, IEEE

· consider the following feedback block diagram between process P and centroller C:

w contains disturbances
(i.e. ball input & out put disturbances)
3 contains "errors" to be minimized
(i.e. tracking error, control effort)

Tow = Pow + Pou (I - C Pyu) - C Pyw - verify this formular

* our goal as control engineers is to minimize || Towl|

| Will Prox an II and II marries

Lywell focus on Hz and Hoo norms

or assume given causal LTI Istable transformation
$$3=Tw$$
 and let (A,B,C,D) be minimal realization: \Rightarrow A stable $\widehat{T}(s) = C(sI-A)^{-1}B^{+}D$ and (A,B) controllable, (A,C) observable (A,C) observable (A,C) $(A,$

 $\hat{y}(s) = \hat{T}(s) \cdot \hat{u}(s)$ $|H_2| \text{ let } L_{C_1} L_0 \text{ denote controllability } \xi \text{ dosevability Gramians}$ $|I.e. AL_C + L_C A^T + BB^T = 0, A^T L_0 + L_0 A + C^T C = 0$ $|H_{M}: ||T||_2^2 = tr(C_L C_T) = tr(B^T L_0 B)$ $- \text{ importantly}, L_c & L_0 \text{ can be obtained by solving linear equations}$ $|H_{\infty}| \text{ assuming } A \text{ stable}, Y>0, \text{ define } H_8 = A \frac{1}{8^2}BB^T$

How assuming A stable, 7>0, define $H_{\chi} = \begin{bmatrix} A & \frac{1}{2}BB^T \\ -C^TC & -A^T \end{bmatrix}$ then: $\|T\|_{\infty} < \gamma \iff jR \cap spec H_{\gamma} = \emptyset$ "Harritanian matrix" (i.e. H_{γ} has no eigenvalues an imaginary axis)

robustness Page 2

PWILLIAM WINDER

(i.e. Hy has no eigenvalues an imaginary axis)
- so we need to do a line search to find smallest of