Gedächtnisprotokoll Pattern Analysis

• Prüfer: Dr.-Ing. Christian Rieß

• Zweitprüfer: hat sich nicht vorgestellt

• Uhrzeit& Ort: kamen am Tag vorher per Mail

• Stimmung: entspannt

• Benotung: mit PR vergleichbar 😊

• Zeit: verging wie im Fluge

- 1. Übersicht: PA-Wolke malen (siehe 2017-SS_PA_Summary.pdf)
- 2. Random Forests:
 - a. Wie funktioniert unsupervised learning mittels Density Estimation Tree?
 - b. Wie schaut ein Regression tree aus?
- 3. Density Estimation:
 - a. Parzen-Window-Estimator: Formel für p(x) herleiten
 - b. Welche Alternative gibt es für die Density Estimation (s. Frage 2a)
- 4. Clustering:
 - a. Unterschiede zwischen k-means und mean-shift-algo (MSA) nennen, beide Algorithmen skizzieren
 - b. MSA:
 - i. Formel herleiten
 - ii. Welches Kernel verwendet man hier gerne? (Epanechnikov)
 - iii. Was passiert, wenn man nicht die 2-Norm, sondern eine andere Norm verwendet?
 - c. K-means:
 - i. Wie findet man ein gutes k? Mittels gap statistics (within-cluster-distance). Hier war es ihm besonders wichtig, dass die W(C)-Kurve streng monoton fallend ist, auch bei dem "little dent". Da wäre es in der Vorlesung von Vorteil gewesen, die Tafelzeichnung korrekt abzumalen.
 - ii. Was passiert bei Outlayers (Punkte, die weit weg vom Rest vom Fest liegen)?

5. HMM:

a. HMM malen (Grafik aus KI2 geklaut)

- b. Beide Assumptions (Markov, Output) hinschreiben
- c. $p(x_1,...,x_N,y_1,...,y_N)$ vereinfachen: Indizes durch $i \in [1;N]$ ersetzen, Bayes' Theorem anwenden
- d. Welche Algorithmen gibt es? (nur die Namen haben gereicht)
- 6. Manifold Learning: dazu kam leider keine Frage, obwohl MDS und ISOMAP so schön zu erklären gewesen wären