UNIDAD N° 2: MATRICES

BASE Y DIMENSION.

ESPACIO VECTORIAL

- Si $\overrightarrow{V_1}$, $\overrightarrow{V_2}$, $\overrightarrow{V_3}$, ..., $\overrightarrow{V_r}$ son vectores en un ESPACIO VECTORIAL V, y si todos los vectores en este espacio vectorial V es expresable como una combinación lineal de los vectores $\overrightarrow{V_1}$, $\overrightarrow{V_2}$, $\overrightarrow{V_3}$, ..., $\overrightarrow{V_r}$, entonces se dice que estos vectores generan el espacio vectorial V
- EJEMPLO: $\overrightarrow{V_1}$: (1, 1, 1), $\overrightarrow{V_2}$: (2, 2, 0), $\overrightarrow{V_3}$: (3, 0, 0)

$$(b, b_2, b_3) = dV, + BV_2 + S(V_3)$$

= $(d, d, d) + (2B + 2B) + 3S$

9+23+35=6.

$$\int b_3 + 2 \beta + 3 \delta = b_1$$

 $b_3 + 2 \beta = b_2$

$$D \ge 2$$
 $2\beta = b_2 - b_3$

$$b_{3} + b_{2} - b_{3} + 3\delta = b_{1}$$

$$b_{2} + 3\delta = b_{1}$$

$$3\delta = b_{1} + b_{2}$$

$$\delta = b_{1} + b_{2}$$
3

Cualquier $\vec{V} = (b_1, b_2, b_3)$ se va a poder escribir como combinación lineal de $\vec{V_1}, \vec{V_2}, \vec{V_3}$, por lo tanto decimos que $\vec{V_1}, \vec{V_2}, \vec{V_3}$ generan \mathbb{R}^3

BASE Y DIMENSION

BASE:

Si V es cualquier Espacio Vectorial y $S = \{\vec{V}_1, \vec{V}_2, \vec{V}_3, ..., \vec{V}_r\}$ es un conjunto de finito de vectores (matrices) en V, entonces S se denomina Base para el Espacio Vectorial V si se cumple:

- a) S es Linealmente Independiente
- b) S genera al Espacio Vectorial V

EJEMPLO: $\overrightarrow{V_1}$: (1, 1, 1), $\overrightarrow{V_2}$: (2, 2, 0), $\overrightarrow{V_3}$: (3, 0, 0) Si $S = \{\overrightarrow{V_1}, \overrightarrow{V_2}, \overrightarrow{V_3}\}$, este conjunto es una base para el espacio vectorial \mathbb{R}^3