Лабораторная работа №4

Anna A. Astafeva¹

NEC-2021, 13 February, 2021 Moscow, Russia

¹RUDN University, Moscow, Russian Federation

Цели и задачи

Цель работы - построение модели гармонических колебаний.

Вариант 42

Постройте фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для следующих случаев

- 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы х"+14x=0
- 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы х"+2х'+5х=0
- 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы x"+4x'+5x=0.5cos(2t)

Построение фазового портрета гармонических колебаний

Без затуханий и без действий внешней силы

Колебания гармонического осциллятора без затуханий и без действий внешней силы x"+14x=0 (рис. 1):

Рис. 1: Фазовый портрет гармонического осциллятора без затуханий, без действия внешней силы, с собственной частотой колебания $\omega = \sqrt{14}$

С затуханием и без действий внешней силы

Колебания гармонического осциллятора с затуханием и без действий внешней силы х"+2х'+5х=0 (рис. 2):

Рис. 2: Фазовый портрет гармонического осциллятора с затуханием γ = 1, без действия внешней силы, с собственной частотой колебания ω = $\sqrt{14}$

С затуханием и под действием внешней силы

Колебания гармонического осциллятора с затуханием и под действием внешней силы x"+4x'+5x=0.5cos(2t) (рис. 3):

Рис. 3: Фазовый портрет гармонического осциллятора с затуханием γ = 2, с действием внешней силы, с собственной частотой колебания ω = $\sqrt{14}$

Вывод

В ходе выполнения лабораторной работы я изучила модель линейного гармонического осциллятора, построила фазовые портреты гармонических колебаний с затуханием и без затухания, с учетом действия внешней силы и без учета действия внешней силы.

