SRN	1 1 1	1.1	1 1	
DKIN				1_1

40000000
1
DES
Comment of the

PES UNIVERSITY

UE17CS205

End Semester Assessment (ESA) B. Tech. 3rd SEMESTER – Aug-Dec-2018
UE17CS205 - Discrete Mathematics and Logic Sec A

me:	3 Hrs. Answer All Questions Max Marks.	5
а	Let p, q, r, s represent the following propositions. p: $x \in \{8, 9, 10, 11, 12\}$ q: x is a composite number r: x is a perfect square s: x is a prime number Find the value of the expression below for each element of the set $\{8, 9, 10, 11, 12\}$	
	$\neg ((p \rightarrow q) \land (\neg r \lor \neg s))$	5
b	Let p, q be primitive statements for which implication p -> q is false. Determine the truth values of the following. i) p ^ q	
	ii) ¬p v q iii) q → p	
	iv) $\neg q \rightarrow \neg p$ v) $\neg q \land p$	2
С	progisely using universal and existential quantificity.	3
	State precisely in English. Iii) $\exists x \forall y (x + y = y)$ Is this valid? If yes, what is the value of x? If no, give a counter example.	5
(d Given x ∈ { santhosh, santasa, ananda } H(x) : x is happy. ∃ x H(x).)
	Are these possible? I) santhosh and santasa are both happy. H(santhose) ^ H(ananda) ii) santhosh is definitely happy iii) all santhosh, santasa, ananda are happy	
	iv) dukh is happy v) santasa might be happy	

		SRN SRN	
Ta		A and B are sets.	5
		i) Given A X B = Φ , what can we conclude about the sets A and B? ii) A X B = B X A. what can we conclude about the sets A and B? iii) A \cap B = Φ . what can we conclude about the sets A and B? iv) A = m; A x B = n; what is B ? v) A = m; A u B = n; what is B ?	
L		Function $f: N \to N$	4
	b	f(x) = x ² State and then prove or disprove whether the function is I) one-to-one ii) onto	
	С	Classify the following as finite, countably infinite, uncountably infinite. I) set of even numbers ii) set of rational numbers iii) set of real numbers between 0.0 and 1.0 iv) set of prime numbers between 2 and 100	4
	d	A relation R is defined on the set Z by "a R b if $a - b$ is divisible by n" for a, b, $n \in Z$. Prove or disprove that this relationship is an equivalence relationship.	3
	е	R: A \rightarrow A is a relation on A = {1, 2, 3, 4} R = { (1, 1), (2, 2), (4, 4), (1, 2), (2, 1)} Answer yes or no. i) is this irreflexive? ii) is this transitive? iii) Is this transitive? iv) is this symmetric?	
3	а	Show that if any 14 integers are selected from the set $S = \{1, 2, 3,, 25\}$, there are at least two whose sum is 26	4
		Count the number of palindromes which are less than 1000.	4
	b	wasianed long int fun(unsigned long lit ii)	4
		<pre>unsigned long int i, j = 0, sum = 0; for (i = n; i > 1; i = i/2) j++; printf("j : %d\n", j); for (; j > 1; j = j/2) sum++; printf("sum : %d\n", sum); return(sum);</pre>	
		what will be the outputs if the argument passed to this function is 220.	4
		How many solutions are there to the equation $x1 + x2 + x3 + x4 + x5 >= 21$ where i) each x is non-negative	
		ii) each x is non-negative ii) each x is at least one? Express the solution as a combination.	

		SRN SRN	4
T	e	How many bitstrings of length n	
1		a) equal # of 0 and 1 (assume n is even)	
1		b) begin with two consecutive 00?	
J.	1		4
T	a	By induction, prove that the max number of leaves in a binary tree is 2 ^k level number of the root is 0.	6.82
	4	where k is the level number - level number of	4
ŀ	b	Complete this to compare two strings for equality.	1200 8 **
	ט	int mycmpstr(int *x, int *y)	
		{	
1		if()	
		return 1;	
		else if()	
		return 0;	
		else	
		return what(,);	
		Tetam what	
		}	3 + 3
	C	Solve the recurrence relation	
		I) $a(n)=a(n-1)+n$ with $a(0)=4$	
		ii) $a(n)=a(n-1) * n$ with $a(0)=4$ Express the number of moves in Tower of Hanoi as a recurrence	2 + 4
	d	Express the number of moves in Tower of Harlet as	
		relationship. Solve it.	
		Generator for the group is the set {25}. The binary operator is	4
5	a	x op y = power(x, y) % 26.	
	1	I) find all the elements in the group	
		1 :: \ hat is the identity?	
		lii) What is the inverse for each element?	6
	b	to the table (recults of binally operator on cierrons	
	1	1 - Jackwood COTT WIND HILL TOHOUS TO	
		I) all elements on the principal diagonal are same	
		w == triv is symmetric	
		iii) all elements in a row are same as the second operand	6
	-		
	C	Prove that a group $G(T, .)$ is Abelian iff $(ab)^2 = a^2 b^2$ for $a, b = a^2$, the concatenation operator – a.b is written as ab. Prove both if and only if cases.	
			4
	C	The coding scheme $E: B^m \rightarrow B^{5m}$.	
	"	E(10) = 1010101010	
		E(10) = 1010101010 while decoding, bit is made 1 if there are 3 or more 1s in the	
	1	corresponding positions, otherwise o.	
		Decode the following strings.	
		101101101101	
	1 -	101000001100011	I

