IA024 - Respostas

February 14, 2024

1 Respostas das Questões do Processo Seletivo Aluno Especial IA-024 1S2024 FEEC-UNICAMP

1.1 Aluno: Fabio Grassiotto

1.2 RA: 890441

Link para o notebook com a implementação: https://colab.research.google.com/drive/1xtikSpHPHJylcKZA_XAXJv9mSlV0cLS9?usp=sharing

Seção I

I.1. Na célula de calcular o vocabulário, aproveite o laço sobre IMDB de treinamento e utilize um segundo contador para calcular o número de amostras positivas e amostras negativas. Calcule também o comprimento médio do texto em número de palavras dos textos das amostras. Código implementado na seção I do notebook. Seguem os resultados obtidos:

Amostras positivas, negativas e totais: Counter({'total': 25000, 'pos': 12500, 'neg': 12500})

Comprimento médio do texto em palavras 270.68748

I.2 Mostre as cinco palavras mais frequentes do vocabulário e as cinco palavras menos frequentes. (Utilizando o Tokenizador)

Cinco palavras mais frequentes: ['the', '.', ',', 'and', 'a']

Cinco palavras menos frequentes: ['voicing', 'hazard', 'lynda', 'gft', 'watergate']

Qual é o código do token que está sendo utilizado quando a palavra não está no vocabulário? Na função de dicionário dict.get() o segundo parâmetro indica o valor default caso a palavra não seja encontrada no dicionário. Nesse caso o código do token usado é o número zero.

Número de tokens que não estão no vocabulário na base de treinamento: 174226

I.3.a) Qual é a razão pela qual o modelo preditivo conseguiu acertar 100% das amostras de teste do dataset selecionado com apenas as primeiras 200 amostras? Ao reduzirmos a base de treinamento para apenas 200 amostras, a base se tornou totalmente desbalanceada. Como pudemos verificar, temos 200 amostras classificadas como negativas e nenhuma como positiva.

Portanto a taxa de acurácia calculada sobre a classificação da base de testes depende unicamente da percentagem de amostras positivas ou negativas nesta base.

I.3.b) Modifique a forma de selecionar 200 amostras do dataset, porém garantindo que ele continue balanceado, isto é, aproximadamente 100 amostras positivas e 100 amostras negativas. Para obtermos um dataset balanceado, usaremos uma função que seleciona amostras do dataset de acordo com a classificação e cria um dataset com a quantidade de amostras de cada classificação desejada conforme abaixo.

Seção II

II.1.a) Investigue o dataset criado na linha 24. Faça um código que aplique um laço sobre o dataset train_data e calcule novamente quantas amostras positivas e negativas do dataset. Seção do código implementado:

```
counter_lbl = Counter({"pos": 0, "neg": 0, "total": 0})
words_encoded = 0
for (oneHot, sentiment) in train_data:

    words = oneHot.tolist()
    label = sentiment.item()

# Número de amostras positivas e negativas
if (label == 1):
    counter_lbl['neg'] += 1
else:
    counter_lbl['pos'] += 1
counter_lbl['total'] += 1

    hot_encoded = sum(words[i] for i in range(len(words)) if words[i] != 0)
    words_encoded += hot_encoded

avg_words_enc = words_encoded / counter_lbl['total']
```

II.1.b) Calcule também o número médio de palavras codificadas em cada vetor one-hot. Quantidade média de palavras codificadas em cada vetor one-hot 139.59268

Compare este valor com o comprimento médio de cada texto (contado em palavras), conforme calculado no exercício I.1.c. e explique a diferença. No exercício I.1.c., o comprimento médio do texto em palavras depois de passar pelo tokenizador foi de cerca de 270 palavras. Essa diferença do vetor One-Hot se deve ao fato que o vetor one-hot só codifica as palavras que foram identificadas no dicionário, enquanto que o comprimento médio considera todas as palavras das sentenças. Ou seja, palavras que não foram codificadas no dicionário serão representadas por zeros.

II.2.a) Medição dos tempos de loop Notamos que o tempo do passo do forward leva mais tempo que o passo de backward, conforme os dados obtidos abaixo para a primeira época do

treinamento. Também notamos que a maior parte to tempo do loop de forward é gasto com a transferência dos dados da CPU para a GPU (97% no primeiro loop).

```
Loop # 1
Tempo de loop = 0.048320770263671875
Forward pass = 0.047322750091552734
Gpu copy = 97.88851606662435 %
Model processing = 2.1114839333756574 %
Backward pass = 0.0009980201721191406

Loop # 2
Tempo de loop = 0.007141590118408203
Forward pass = 0.005140781402587891
Gpu copy = 80.50737408403673 %
Model processing = 19.49262591596327 %
Backward pass = 0.0020008087158203125
```

II.2.b) Trecho que precisa ser otimizado. (Esse é um problema mais difícil) Para otimizarmos o loop, o carregamento dos dados em GPU pode ser realizado pelo Dataloader fora do loop de treinamento, para tanto alterando o método init() da classe IMDBDataset.

```
def __init__(self, split, vocab):
    #self.data = list(IMDB(split=split))[:n_samples]
    self.data = list(balanced_dataset(IMDB(split=split), n_samples))
    self.vocab = vocab
```

II.2.c) Otimize o código e explique aqui. Substituimos então com a nova implementação, onde o dataset inteiro é pré-processado, codificado em forma One-Hot (uma vez que tensores não suportam strings) e movido para a GPU antes do processo de treinamento:

```
def __init__(self, split, vocab):
    # II.2.b) Trecho que precisa ser otimizado. (Esse é um problema mais difícil)
    self.data = list(balanced_dataset(IMDB(split='train'), n_samples))

if preload_to_gpu:
    labels = [x[0] for x in self.data]
    lines = [x[1] for x in self.data]

    # One-Hot Encoding
    self.labels_enc = []
    for l in labels:
    l = 1 if l == 1 else 0
    self.labels_enc.append(l)
    self.labels_enc = torch.tensor(self.labels_enc)
    self.labels_enc = self.labels_enc.to(device)

self.lines_enc = []
    for l in lines:
```

```
X = torch.zeros(len(vocab) + 1)
for word in encode_sentence(l, vocab):
    X[word] = 1
self.lines_enc.append(X)
self.lines_enc = [tensor.to(device) for tensor in self.lines_enc]
self.vocab = vocab
```

Comparação do tempo de treinamento com a otimização (GPU RTX2060 local): Sem pre-load em GPU:

```
Epoch [1/5],
                       Loss: 0.6911,
                                                  Elapsed Time: 61.36 sec
Epoch [2/5],
                       Loss: 0.6929,
                                                  Elapsed Time: 58.69 sec
                                                  Elapsed Time: 58.95 sec
Epoch [3/5],
                      Loss: 0.6984,
                      Loss: 0.6792,
Epoch [4/5],
                                                  Elapsed Time: 58.60 sec
                                                  Elapsed Time: 58.59 sec
Epoch [5/5],
                       Loss: 0.6874,
Com pre-load em GPU (RTX2060)
Epoch [1/5],
                       Loss: 0.6896,
                                                  Elapsed Time: 3.81 sec
                      Loss: 0.6925,
                                                 Elapsed Time: 0.58 sec
Epoch [2/5],
                                               Elapsed Time: 0.64 sec
Elapsed Time: 0.58 sec
                      Loss: 0.6933,
Epoch [3/5],
Epoch [4/5],
                      Loss: 0.6890,
Epoch [5/5],
                        Loss: 0.6904,
                                                  Elapsed Time: 0.57 sec
```

Notamos, no entanto, que o uso de mémória na GPU se torna muito maior, conforme pode ser visualizado abaixo (5Gb/6Gb total):

```
[venv:ml] $ nvidia-smi
Mon Feb 12 08:23:42 2024
```

II.3 Faça a melhor escolha do LR, analisando o valor da acurácia no conjunto de teste, utilizando para cada valor de LR, a acurácia obtida. Faça um gráfico de Acurácia vs LR e escolha o LR que forneça a maior acurácia possível.

```
[14]: lr_list = [0.0001, 0.001, 0.01, 0.1]
acc_list = []
for lr in lr_list:
```

```
print("LR = ", lr)
    model = OneHotMLP(vocab_size) # to reset weights
    train_mdl(model, lr)
    acc_list.append(eval_mdl(model))
    print()
print(lr_list)
print(acc_list)
print()
LR = 0.0001
Epoch [1/5],
                          Loss: 0.6939,
                                                       Elapsed Time: 0.37 sec,
Loader Iterations: 196,
                                      Spls 1st batch: 40 ,
0.5000
Epoch [2/5],
                          Loss: 0.6937.
                                                       Elapsed Time: 0.46 sec,
Loader Iterations: 196,
                                      Spls 1st batch: 40 ,
0.5003
Epoch [3/5],
                           Loss: 0.6941,
                                                       Elapsed Time: 0.47 sec,
Loader Iterations: 196,
                                      Spls 1st batch: 40,
0.5002
Epoch [4/5],
                           Loss: 0.6942,
                                                       Elapsed Time: 0.49 sec,
Loader Iterations: 196,
                                      Spls 1st batch: 40,
0.5003
Epoch [5/5],
                           Loss: 0.6954,
                                                       Elapsed Time: 0.51 sec,
Loader Iterations: 196,
                                      Spls 1st batch: 40 ,
                                                                         R avg:
0.5002
Test Accuracy: 52.412%
LR = 0.001
Epoch [1/5],
                           Loss: 0.6956.
                                                       Elapsed Time: 0.37 sec,
Loader Iterations: 196,
                                      Spls 1st batch: 40 ,
                                                                         R avg:
0.4998
                           Loss: 0.6914,
Epoch [2/5],
                                                       Elapsed Time: 0.37 sec,
Loader Iterations: 196,
                                      Spls 1st batch: 40 ,
                                                                         R avg:
0.5000
Epoch [3/5],
                           Loss: 0.6853,
                                                       Elapsed Time: 0.37 sec,
Loader Iterations: 196,
                                      Spls 1st batch: 40 ,
                                                                         R avg:
0.5003
Epoch [4/5],
                           Loss: 0.6860,
                                                       Elapsed Time: 0.36 sec,
                                      Spls 1st batch: 40 ,
Loader Iterations: 196,
                                                                         R avg:
0.4999
Epoch [5/5],
                           Loss: 0.7005,
                                                       Elapsed Time: 0.37 sec,
Loader Iterations: 196,
                                      Spls 1st batch: 40 ,
                                                                         R avg:
0.4990
Test Accuracy: 54.152%
LR = 0.01
```

```
Epoch [1/5],
                          Loss: 0.6765,
                                                      Elapsed Time: 0.36 sec,
Loader Iterations: 196,
                                     Spls 1st batch: 40 ,
                                                                        R avg:
0.5000
Epoch [2/5],
                          Loss: 0.6476,
                                                      Elapsed Time: 0.37 sec,
Loader Iterations: 196,
                                     Spls 1st batch: 40,
0.4998
Epoch [3/5],
                          Loss: 0.5837,
                                                      Elapsed Time: 0.37 sec,
Loader Iterations: 196,
                                     Spls 1st batch: 40,
                                                                        R avg:
0.5001
                          Loss: 0.4483,
Epoch [4/5],
                                                      Elapsed Time: 0.37 sec,
Loader Iterations: 196,
                                     Spls 1st batch: 40 ,
                                                                        R avg:
0.5000
                          Loss: 0.5591,
Epoch [5/5],
                                                      Elapsed Time: 0.37 sec,
Loader Iterations: 196,
                                     Spls 1st batch: 40,
                                                                        R avg:
Test Accuracy: 82.02%
LR = 0.1
                          Loss: 0.3548,
Epoch [1/5],
                                                     Elapsed Time: 0.37 sec,
Loader Iterations: 196,
                                     Spls 1st batch: 40,
                                                                        R avg:
0.5001
                          Loss: 0.2222,
                                                      Elapsed Time: 0.36 sec,
Epoch [2/5],
Loader Iterations: 196,
                                     Spls 1st batch: 40 ,
                                                                        R avg:
0.5007
Epoch [3/5],
                          Loss: 0.2340.
                                                      Elapsed Time: 0.36 sec,
Loader Iterations: 196,
                                     Spls 1st batch: 40,
                                                                        R avg:
0.5002
                                                      Elapsed Time: 0.37 sec,
Epoch [4/5],
                          Loss: 0.3581,
Loader Iterations: 196,
                                     Spls 1st batch: 40 ,
                                                                        R avg:
0.5002
                        Loss: 0.3277,
Epoch [5/5],
                                                      Elapsed Time: 0.37 sec,
Loader Iterations: 196,
                                     Spls 1st batch: 40 ,
                                                                        R avg:
0.5004
Test Accuracy: 88.212%
[0.0001, 0.001, 0.01, 0.1]
[52.412, 54.152, 82.02, 88.212]
```

II.3.a) Gráfico Acurácia vs LR

```
[15]: import seaborn as sns
import matplotlib.pyplot as plt

sns.set_style("darkgrid")
sns.lineplot(x=lr_list, y=acc_list)

# Add labels and title
```

```
plt.xlabel("Learning Rate")
plt.ylabel("Accuracy")
plt.title("Accuracy vs Learning Rate")

# Show the plot
plt.show()
```


II.3.b) Valor ótimo do LR Notamos que o valor ótimo para a Learning Rate foi de cerca de 0.1, com crescimento exponencial ao aumentá-la. Valores acima deste são grandes demais e não levam à otimização do modelo.

II.3.c) Mostre a equação utilizada no gradiente descendente e qual é o papel do LR no ajuste dos parâmetros (weights) do modelo da rede neural. No processo de otimização de uma função, a fórmula utilizada para a estimativa do próximo valor da função é dada por:

valor atualizado = valor anterior - learning rate*gradiente

Portanto o papel da LR é definir qual é o tamanho do passo a ser utilizado no processo de atualização.

II.4 Melhores a forma de tokenizar, isto é, pré-processar o dataset de modo que a codificação seja indiferente das palavras serem escritas com maiúsculas ou minúsculas e sejam pouco influenciadas pelas pontuações.

II.4.a) Mostre os trechos modificados para este novo tokenizador, tanto na seção I - Vocabulário, como na seção II - Dataset. Na seção I - Vocabulário:

```
from torchtext.data import get_tokenizer
for (label, line) in list(IMDB(split='train'))[:n_samples]:
    if (use_tokenizer):
      tokenizer = get_tokenizer('basic_english')
      # tokenize the sentence
      line = tokenizer(line)
    counter.update(line.split())
    # Número de amostras positivas e negativas
    if (label == 1):
      counter_lbl['neg'] += 1
    else:
      counter_lbl['pos'] += 1
    counter_lbl['total'] += 1
    # Comprimento médio do texto das reviews em palavras
    tokenizer = get_tokenizer('basic_english')
    # tokenize the sentence
    tokens = tokenizer(line)
    # count the number of words
    total review len += len(tokens)
Na Seção II - Dataset: São apenas necessárias alterações no encoder da sentença, conforme abaixo.
def encode_sentence(sentence, vocab, use_tokenizer):
    if (use tokenizer):
       sentence = tokenizer(sentence)
       return [vocab.get(word, 0) for word in sentence]
    else:
      return [vocab.get(word, 0) for word in sentence.split()] # 0 for OOV
```

II.4.b) Recalcule novamente os valores do exercício I.2.c - número de tokens unknown, e apresente uma tabela comparando os novos valores com os valores obtidos com o tokenizador original e justifique os resultados obtidos. Sem o tokenizador:

```
566141
Com o tokenizador:
174226
```

Estes valores se justificam pelo fato que o tokenizador altera as palavras das sentenças, mantendo apenas radicais, de forma que menos palavras não serão encontradas na base do vocabulário.

II.4.c) Execute agora no notebook inteiro com o novo tokenizador e veja o novo valor da acurácia obtido com a melhoria do tokenizador. Sem o tokenizador:

```
Test Accuracy: 73.45\% (Para LR = 0.1)
Com o tokenizador
Test Accuracy: 88.47\% (Para LR = 0.1)
```

O aumento da acurácia é justificado pelo fato que menos palavras de cada sentença não serão reconhecidas (OneHot encoding não terá tantos valores zerados)

Os dados obtidos estão resumidos na tabela abaixo.

Uso do Tokenizador	Tokens Unknown	Test Accuracy
Sem Tokenizador	566141	73.45%
Com Tokenizador	174226	88.47%

Seção III

Vamos estudar agora o Data Loader da seção III do notebook. Em primeiro lugar anote a acurácia do notebook com as melhorias de eficiência de rodar em GPU, com ajustes de LR e do tokenizador. Em seguida mude o parâmetro shuffle na construção do objeto train_loader para False e execute novamente o notebook por completo e meça novamente a acurácia.

```
[17]: from tabulate import tabulate

# Sample data
data = [
    ['Com Shuffle', '88.47%'],
    ['Sem Shuffle', '50.00%']
]
```

```
# Headers
headers = ['Shuffle dos dados de Treinamento', 'Test Accuracy']
# Print the table
print(tabulate(data, headers=headers))
```

```
Shuffle dos dados de Treinamento Test Accuracy
------
Com Shuffle 88.47%
Sem Shuffle 50.00%
```

III.1.a) Explique as duas principais vantagens do uso de batch no treinamento de redes neurais. O uso de lotes em treinamento é importante por causa do aumento da eficiência computacional e para aumentar a estabilidade do gradiente. A eficiência computacional é aumentada pois com lotes maiores a paralelização do processamento em GPUs é mais bem aproveitada, enquanto que a estabilidade do gradiente é aumentada durante o treinamento pois em cada iteração, o gradiente é calculado com base na função de perda para o lote inteiro reduzindo a variabilidade do gradiente em comparação com o cálculo individual para cada exemplo.

III.1.b) Explique por que é importante fazer o embaralhamento das amostras do batch em cada nova época. O embarelhamento das amostras de batch do treinamento é essencial para aumentar a generabilidade do modelo. As razões para tanto são:

- Redução do viés das amostras ordenadas do início ao fim do dataset.
- Estabilização do gradiente (redução da oscilação causada por amostras ordenadas).
- Melhoria da convergência, pois amostras agrupadas de uma classe dificultam o processo de aprendizado da rede neural.

Em geral o embaralhamento de amostras de treinamento é um processo usual para a redução da generalização e a obtenção de um modelo de melhores características.

III.1.c) Se você alterar o shuffle=False no instanciamento do objeto test_loader, por que o cálculo da acurácia não se altera? A acurácia não se altera pois em tempo de inferência (ou seja, fase de teste) os pesos do modelo não são alterados mais. Portanto, a base de testes é usada apenas para verificar a capacidade de generalização do modelo.

III.2.a) Faça um laço no objeto train_loader e meça quantas iterações o Loader tem. Mostre o código para calcular essas iterações. Explique o valor encontrado. Modificações no código de treinamento (função train_mdl()) acima:

```
for epoch in range(num_epochs):
    start_time = time.time() # Start time of the epoch
    model.train()

loop_count = 0

train_loader_iterations = 0
```

```
for inputs, labels in train_loader:
    train_loader_iterations += 1
```

Número de interações por época:

```
Epoch [1/5], Loss: 0.3918, Elapsed Time: 6.79 sec, Epoch [2/5], Loss: 0.3028, Elapsed Time: 0.56 sec, Epoch [3/5], Loss: 0.1997, Elapsed Time: 0.57 sec, Epoch [4/5], Loss: 0.1883, Elapsed Time: 0.57 sec, Epoch [5/5], Loss: 0.3806, Elapsed Time: 0.56 sec,
```

III.2.b) Imprima o número de amostras do último batch do train_loader e justifique o valor encontrado? Ele pode ser menor que o batch_size?

L

```
Number of samples in last batch: 40
```

O valor encontrado é menor que o tamanho do batch size (nesse caso, 128) pois esta é a quantidade de amostras restantes nas base. Como temos 196 iterações, o total de amostras nos primeiros 195 ciclos totaliza 24.960. Portanto, o último batch tem um total de 25.000 (tamanho da base) - 24.960 = 40.

III.2.c) Calcule R, a relação do número de amostras positivas sobre o número de amostras no batch e no final encontre o valor médio de R, para ver se o data loader está entregando batches balanceados. Desta vez, em vez de fazer um laço explícito, utilize list comprehension para criar uma lista contendo a relação R de cada amostra no batch. No final, calcule a média dos elementos da lista para fornecer a resposta final. Médias de R por época:

```
R avg: 0.4999
R avg: 0.5004
R avg: 0.5003
R avg: 0.4999
R avg: 0.5000
```

III.2.d) Mostre a estrutura de um dos batches. Cada batch foi criado no método getitem do Dataset, linha 20. É formado por uma tupla com o primeiro elemento sendo a codificação one-hot do texto e o segundo elemento o label esperado, indicando positivo ou negativo. Mostre o shape (linhas e colunas) e o tipo de dado (float ou integer), tanto da entrada da rede como do label esperado. Desta vez selecione um elemento do batch do train_loader utilizando as funções next e iter: batch = next(iter(train_loader)).

```
[18]: my_loader = DataLoader(train_data, batch_size=1)
batch = next(iter(my_loader))

# Dado de entrada
entrada = batch[0].tolist()
dado_entrada = (batch[0])[0]

print("Dado de entrada:")
```

```
print(dado_entrada.size())
print(dado_entrada.dtype)
print()

# Label
print("Label:")
lbl = batch[1]
print(lbl.size())
print(lbl.dtype)
```

Dado de entrada:
torch.Size([20001])
torch.float32
Label:
torch.Size([1])
torch.int64

III.3.a) Verifique a influência do batch size na acurácia final do modelo. Experimente usar um batch size de 1 amostra apenas e outro com mais de 128 e comente sobre os resultados. Notei que o cálculo de perda da linha criterion() gera um erro com batch size = 1, então usei batch size = 2 para este exercício.

```
[19]: # Acurácia com batch = 2
    train_loader = DataLoader(train_data, batch_size=2, shuffle=train_shuffle)
    model = OneHotMLP(vocab_size) # to reset weights
    train_mdl(model, best_LR)
    eval_mdl(model)
    print()

# Acurácia com batch = 256
    train_loader = DataLoader(train_data, batch_size=256, shuffle=train_shuffle)
    model = OneHotMLP(vocab_size) # to reset weights
    train_mdl(model, best_LR)
    eval_mdl(model)
    print()
```

```
Epoch [1/5],
                                                        Elapsed Time: 17.09 sec,
                           Loss: 0.0217,
Loader Iterations: 12500,
                                         Spls 1st batch: 2 ,
                                                                            R avg:
0.5000
Epoch [2/5],
                           Loss: 0.5510,
                                                        Elapsed Time: 16.61 sec,
Loader Iterations: 12500,
                                         Spls 1st batch: 2 ,
                                                                            R avg:
0.5000
Epoch [3/5],
                                                        Elapsed Time: 16.82 sec,
                           Loss: 0.3738,
Loader Iterations: 12500,
                                         Spls 1st batch: 2,
                                                                            R avg:
0.5000
Epoch [4/5],
                           Loss: 0.0002,
                                                        Elapsed Time: 17.54 sec,
Loader Iterations: 12500,
                                         Spls 1st batch: 2 ,
                                                                            R avg:
```

```
0.5000
Epoch [5/5],
                           Loss: 0.0039,
                                                       Elapsed Time: 17.01 sec,
Loader Iterations: 12500,
                                         Spls 1st batch: 2 ,
                                                                            R avg:
0.5000
Test Accuracy: 86.568%
Epoch [1/5],
                           Loss: 0.4962,
                                                        Elapsed Time: 0.35 sec,
Loader Iterations: 98,
                                      Spls 1st batch: 168,
                                                                           R avg:
0.4999
Epoch [2/5],
                           Loss: 0.4107,
                                                        Elapsed Time: 0.35 sec,
Loader Iterations: 98,
                                      Spls 1st batch: 168,
                                                                           R avg:
0.5003
Epoch [3/5],
                           Loss: 0.3138,
                                                        Elapsed Time: 0.38 sec,
                                      Spls 1st batch: 168,
Loader Iterations: 98,
                                                                           R avg:
0.5000
Epoch [4/5],
                           Loss: 0.3772,
                                                        Elapsed Time: 0.36 sec,
Loader Iterations: 98,
                                      Spls 1st batch: 168,
                                                                           R avg:
0.4999
                           Loss: 0.2645,
                                                        Elapsed Time: 0.38 sec,
Epoch [5/5],
Loader Iterations: 98,
                                      Spls 1st batch: 168,
                                                                           R avg:
0.5002
Test Accuracy: 87.728%
```

Pudemos verificar que o batch size muito reduzido aumenta em muito a acurácia, mas em contrapartida aumenta muito a complexidade computacional. O ganho da acurácia pode ser explicado pela melhoria na generalização. Nesse caso os pesos do modelo são atualizados depois da análise de cada amostra de forma independente. O aumento do batch size de 128 para 256 não trouxe ganhos na acurácia. Portanto, para datasets pequenos como o caso deste exercício, uma redução do tamanho do batch pode ser benéfico desde que o custo computacional não seja excessivo.

Seção IV

IV.1.a) Faça a predição do modelo utilizando um batch do train_loader: extraia um batch do train_loader, chame de (input, target), onde input é a entrada da rede e target é o label esperado. Como a rede está com seus parâmetros (weights) aleatórios, o logito de saída da rede será um valor aleatório, porém a chamada irá executar sem erros: logit = model(input)

aplique a função sigmoidal ao logito para convertê-lo numa probabilidade de valor entre 0 e 1.

```
[20]: import numpy as np
  new_loader = DataLoader(train_data, batch_size=128, shuffle=train_shuffle)
  model = OneHotMLP(vocab_size).to(device)

input, target = next(iter(new_loader))
  logit = model(input)
```

```
# Define the sigmoid function
def sigmoid(x):
    return 1 / (1 + torch.exp(-x))

probability = sigmoid(logit[0])*100

# Cálculo da probabilidade para a primeira amostra
print(f'Probabilidade: {probability.item():.2f} %')
```

Probabilidade: 47.73 %

Predição = 0.0

IV.1.b) Agora, treine a rede executando o notebook todo e verifique se a acurácia está alta. Agora repita o exercício anterior, porém agora, compare o valor da probabilidade encontrada com o target esperado e verifique se ele acertou. Você pode considerar que se a probabilidade for maior que 0.5, pode-se dar o label 1 e se for menor que 0.5, o label 0. Observe isso que é feito na linha 11 da seção VI - Avaliação.

```
[21]: import numpy as np
  new_loader = DataLoader(train_data, batch_size=128, shuffle=train_shuffle)
  model = OneHotMLP(vocab_size).to(device)

input, target = next(iter(new_loader))
  logit = model(input).cpu()

predicted = torch.round(torch.sigmoid(logit.squeeze()))

print("Predição = ", predicted[0].item())
  print("Target Esperado = ", target[0].item())
```

```
Target Esperado = 1
Se você der um print no modelo: print(model), você obterá:
OneHotMLP(
   (fc1): Linear(in_features=20001, out_features=200, bias=True)
   (fc2): Linear(in_features=200, out_features=1, bias=True)
   (relu): ReLU()
)
```

Os pesos da primeira camada podem ser visualizados com model.fc1.weight e o elemento constante (bias) pode ser visualizado com model.fc1.bias

Calcule o número de parâmetros do modelo, preenchendo a seguinte tabela (utilize shape para verificar a estrutura de cada parâmetro do modelo).

```
[22]: from tabulate import tabulate
model = OneHotMLP(vocab_size)
```

```
w_fc1 = model.fc1.weight.size()
b_fc1 = model.fc1.bias.size()
w_fc2 = model.fc2.weight.size()
b_fc2 = model.fc2.bias.size()
print("Model Parameters:")
print("FC1 weights dimensions: ", list(w_fc1))
print("FC2 weights dimensions: ", list (w_fc2))
print("FC1 bias dimensions: ", list(b_fc1))
print("FC2 bias dimensions: ", list (b_fc2))
print()
# Table data
data = [
    ['', 'weight', 'bias', 'weight', 'bias', ''],
    ['size', w_fc1[0]*w_fc1[1], b_fc1[0], w_fc2[0]*w_fc2[1], b_fc2[0], '']
]
# Headers
headers = ['layer', 'fc1', '', 'fc2', '', 'total']
# Print the table
print(tabulate(data, headers=headers))
```

Model Parameters:

FC1 weights dimensions: [200, 20001]
FC2 weights dimensions: [1, 200]
FC1 bias dimensions: [200]

FC2 bias dimensions: [200

layer	fc1		fc2		total
	weight	bias	weight	bias	
size	4000200	200	200	1	

Secão V

V.1.a) Qual é o valor teórico da Loss quando o modelo não está treinado, mas apenas inicializado? Isto é, a probabilidade predita tanto para a classe 0 como para a classe 1, é sempre 0,5 ? Justifique. Atenção: na equação da Entropia Cruzada utilize o logaritmo natural. Utilizando a equação da entropia cruzada, podemos obter o valor teórico da perda:

```
\begin{aligned} &\text{Loss} = -1/\text{n SumN (yi * ln(y^i) + (1-yi)ln(1-y^i))} \\ &\text{com y^i} = 0.5, \text{ temos: } \ln(y^i) = \ln(1-y^i) = \ln(0.5) = -0.69314 \\ &\text{Loss} = -1/\text{n SumN(yi * (-0.69314) + (1-yi) * (-0.69314))} \text{ Loss} = -1/\text{n SumN(-0.69314yi - 0.69314)} \\ &+ 0.69314\text{yi)} \end{aligned}
```

cancelando ambos termos em yi ->

Loss = -1/n SumN(-0.69314) e portanto Loss = 0.69314 para o modelo inicializado independente do número de amostras N.

No entanto, para um modelo não inicializado, o valor da perda depende do valor dos pesos da rede neural não inicializada, que pode variar e não ser o mesmo que o valor teórico.

V.1.b) Utilize as amostras do primeiro batch: (input,target) = next(iter(train_loader)) e calcule o valor da Loss utilizando a equação fornecida anteriormente utilizando o pytorch. Verifique se este valor confere com o valor teórico do exercício anterior.

```
[23]: new_loader = DataLoader(train_data, batch_size=128, shuffle=train_shuffle)
model = OneHotMLP(vocab_size).to(device)

input, target = next(iter(new_loader))
logit = model(input)
prob = torch.sigmoid(logit)

# Calculo numérico da perda
loss = - torch.sum(torch.mul(target, torch.log(prob).t()) + torch.mul(1-target, userch.log(1-prob).t())) / prob.shape[0]
print(loss)
```

tensor(0.6917, device='cuda:0', grad_fn=<DivBackward0>)

Notamos que para um batch acima o valor da perda calculada não é a mesma da perda teórica, mas é muito próxima devido aos valores dos pesos não inicializados da rede neural.

V.1.c) O pytorch possui várias funções que facilitam o cálculo da Loss pela Entropia Cruzada. Utilize a classe nn.BCELoss (Binary Cross Entropy Loss). Você primeiro deve instanciar uma função da classe nn.BCELoss. Esta função instanciada recebe dois parâmetros (probs , targets) e retorna a Loss. Use a busca do Google para ver a documentação do BCELoss do pytorch. Calcule então a função de Loss da entropia cruzada, porém usando agora a função instanciada pelo BCELoss e confira se o resultado é exatamente o mesmo obtido no exercício anterior.

```
[24]: loss_fn = nn.BCELoss()
    loss = loss_fn(prob.squeeze(), target.float())
    print(loss)
```

tensor(0.6917, device='cuda:0', grad_fn=<BinaryCrossEntropyBackward0>)

Notamos que o valor foi o mesmo que o obtido acima.

V.1.d) Repita o mesmo exercício, porém agora usando a classe nn.BCEWithLogitsLoss, que é a opção utilizada no notebook. O resultado da Loss deve igualar aos resultados anteriores.

```
[25]: loss_fn = nn.BCEWithLogitsLoss()
    loss = loss_fn(logit.squeeze(), target.float())
    print(loss)

tensor(0.6917, device='cuda:0',
```

grad_fn=<BinaryCrossEntropyWithLogitsBackwardO>)

Novamente chegamos ao mesmo valor calculado.

V.2.a) Modifique a célula do laço de treinamento de modo que a primeira Loss a ser impressa seja a Loss com o modelo inicializado (isto é, sem nenhum treinamento), fornecendo a Loss esperada conforme os exercícios feitos anteriormente. Observe que desta forma, fica fácil verificar se o seu modelo está correto e a Loss está sendo calculada corretamente. Atenção: Mantenha esse código da impressão do valor da Loss inicial, antes do treinamento, nesta célula, pois ela é sempre útil para verificar se não tem nada errado, antes de começar o treinamento.

```
[26]: # Medição da perda
      def train first loss(model, lr):
        model = model.to(device)
        # Define loss and optimizer
        criterion = nn.BCEWithLogitsLoss()
        optimizer = optim.SGD(model.parameters(), lr)
        # Training loop
        num_epochs = 5
        # First loss calculation
        is_first_loss = True
        for epoch in range(num_epochs):
            start_time = time.time()
            model.train()
            for inputs, labels in train_loader:
                if not preload_to_gpu:
                  inputs = inputs.to(device)
                  labels = labels.to(device)
                # Forward pass
                outputs = model(inputs)
                loss = criterion(outputs.squeeze(), labels.float())
                if is_first_loss:
                  print(f'Loss before training: {loss.item():.4f}')
```

```
is_first_loss = False
    print()

# Backward and optimize
backward_start = time.time()
optimizer.zero_grad()
loss.backward()
optimizer.step()

print(f'Epoch [{epoch+1}/{num_epochs}], \
    Loss: {loss.item():.4f}')
print()
model = OneHotMLP(vocab_size)
train_first_loss(model, best_LR)
```

Loss before training: 0.6928

```
Epoch [1/5], Loss: 0.4690
Epoch [2/5], Loss: 0.3171
Epoch [3/5], Loss: 0.3201
Epoch [4/5], Loss: 0.3079
Epoch [5/5], Loss: 0.3412
```

Notamos que o primeiro valor calculado da perda se manteve o mesmo.

V.2.b) Execute a célula de treinamento por uma segunda vez e observe que a Loss continua diminuindo e o modelo está continuando a ser treinado. O que é necessário fazer para que o treinamento comece novamente do modelo aleatório? Qual(is) célula(s) é(são) preciso executar antes de executar o laço de treinamento novamente? Para que o treinamento inicie novamente, os pesos devem ser resetados a seus valores iniciais. Uma maneira de fazer isso é criando uma função que resete os parâmetros de cada camada, por exemplo:

```
[27]: def reset_weights(model):
    for module in model.modules():
        if isinstance(module, nn.Linear):
            module.reset_parameters()
```

E adicionar ao loop de treinamento acima.

```
[28]: # Medição da perda
def train_first_loss_reset(model, lr):

    model = model.to(device)
    reset_weights(model)
    # Define loss and optimizer
    criterion = nn.BCEWithLogitsLoss()
```

```
optimizer = optim.SGD(model.parameters(), lr)
# Training loop
num_epochs = 5
# First loss calculation
is_first_loss = True
for epoch in range(num_epochs):
    start time = time.time()
    model.train()
    for inputs, labels in train_loader:
        if not preload_to_gpu:
          inputs = inputs.to(device)
          labels = labels.to(device)
        # Forward pass
        outputs = model(inputs)
        loss = criterion(outputs.squeeze(), labels.float())
        if is_first_loss:
          print(f'Loss before training: {loss.item():.4f}')
          is_first_loss = False
          print()
        # Backward and optimize
        backward_start = time.time()
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    print(f'Epoch [{epoch+1}/{num_epochs}], \
            Loss: {loss.item():.4f}')
print()
```

Sem o reset de parâmetros:

```
[29]: model = OneHotMLP(vocab_size)
    train_first_loss(model, best_LR)
    train_first_loss(model, best_LR)
```

Loss before training: 0.6927

```
Epoch [1/5], Loss: 0.4922
Epoch [2/5], Loss: 0.3288
Epoch [3/5], Loss: 0.3500
```

```
Epoch [4/5], Loss: 0.2923
Epoch [5/5], Loss: 0.3409
```

Loss before training: 0.2243

```
Epoch [1/5], Loss: 0.3253

Epoch [2/5], Loss: 0.2242

Epoch [3/5], Loss: 0.2936

Epoch [4/5], Loss: 0.2388

Epoch [5/5], Loss: 0.1457
```

Com reset de parâmetros:

```
[30]: model = OneHotMLP(vocab_size)
    train_first_loss_reset(model, best_LR)
    train_first_loss_reset(model, best_LR)
```

Loss before training: 0.6957

```
Epoch [1/5], Loss: 0.4929
Epoch [2/5], Loss: 0.3588
Epoch [3/5], Loss: 0.2829
Epoch [4/5], Loss: 0.2523
Epoch [5/5], Loss: 0.2483
```

Loss before training: 0.6972

```
Epoch [1/5], Loss: 0.4644
Epoch [2/5], Loss: 0.3141
Epoch [3/5], Loss: 0.3423
Epoch [4/5], Loss: 0.3514
Epoch [5/5], Loss: 0.3239
```

V.3.a) Repita o exercício V.1.a) porém agora utilizando a equação acima. M - número de amostras

N - número de classes

```
loss = -1/(MN) sumM (sumN (yijlog(y^ij)))
```

Podemos supor 2 classes (positiva e negativa, e portanto y ij = 50%)

daí
$$\log(y \hat{j}) = \log(0.5) = -0.69314$$
.

Com duas classes:

$${\rm sumN}({\rm yij} \log(y \hat{\ } ij)) = 2({\rm yij}(-0.69314)) = -1.38628 {\rm yij}$$

$$loss = -1/(MN) sumM(-1.38628*yij)$$

Se temos duas classes, podemos assumir que metade são da classe 0 e metade da classe 1, e portanto

```
sumM(yij) = M/2 daí a perda seria dada por loss = -1/(M2)(M/2)^* - 1.38628 = 1.38628/2 = 0.69314.
```

V.3.b) Modifique a camada de saída da rede para 2 logitos e utilize a função Softmax para converter os logitos em probabilidades. Repita o exercício V.1.b)

```
class OneHotMLP_2logits(nn.Module):
    def __init__(self, vocab_size):
        super(OneHotMLP_2logits, self).__init__()
        self.fc1 = nn.Linear(vocab_size+1, 200)
        self.fc2 = nn.Linear(200, 2)
        self.relu = nn.ReLU()
        self.softmax = nn.Softmax(dim=1)

def forward(self, x):
        o = self.fc1(x.float())
        o = self.relu(o)
        o = self.fc2(o)
        return self.softmax(o)
```

tensor(0.6941, device='cuda:0', grad_fn=<NegBackward0>)

V.3.c) Utilize agora a função nn.CrossEntropyLoss para calcular a Loss e verifique se os resultados são os mesmos que anteriormente.

```
[33]: loss_fn = nn.CrossEntropyLoss()
    loss = loss_fn(probs_2logits.squeeze(), target)
    print(loss)
```

tensor(0.6941, device='cuda:0', grad_fn=<NllLossBackward0>)

Notamos que o valor foi o mesmo que o obtido acima.

V.3.d) Modifique as seções V e VI para que o notebook funcione com a saída da rede com 2 logitos. Há necessidade de alterar o laço de treinamento e o laço de cálculo da acurácia.

```
[34]: # Treinamento e inferência multi-classe
      def train_two_logits(model, lr):
        model = model.to(device)
        reset_weights(model)
        # Define loss and optimizer
        criterion = nn.CrossEntropyLoss()
        optimizer = optim.SGD(model.parameters(), lr)
        # Training loop
        num_epochs = 5
        for epoch in range(num_epochs):
            model.train()
            for inputs, labels in train_loader:
                if not preload_to_gpu:
                  inputs = inputs.to(device)
                  labels = labels.to(device)
                # Forward pass
                outputs = model(inputs)
                loss = criterion(outputs.squeeze(), labels)
                # Backward and optimize
                optimizer.zero grad()
                loss.backward()
                optimizer.step()
            print(f'Epoch [{epoch+1}/{num_epochs}], \
                    Loss: {loss.item():.4f}')
        print()
      def eval_two_logits(model):
          model.eval()
          with torch.no_grad():
              correct = 0
```

```
total = 0
for inputs, labels in test_loader:
    inputs = inputs.to(device)
    labels = labels.to(device)
    outputs = model(inputs)
    _, predicted = torch.max(outputs, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum().item()

acc = 100* correct/total
    print(f'Test Accuracy: {acc}%')
return acc

model = OneHotMLP_2logits(vocab_size)
train_two_logits(model, best_LR)
eval_two_logits(model)
```

```
Epoch [1/5], Loss: 0.5940
Epoch [2/5], Loss: 0.5067
Epoch [3/5], Loss: 0.4641
Epoch [4/5], Loss: 0.4820
Epoch [5/5], Loss: 0.4484
```

Test Accuracy: 86.74%

[34]: 86.74

Seção VI

VI.1.a) Calcule o número de amostras que está sendo considerado na seção de avaliação.

```
[35]: print(len(test_data))
```

25000

VI.1.b) Explique o que faz os comandos model.eval()e with torch.no_grad(). O comando model.eval() informa para o Pytorch que estamos em modo de inferência, o que faz com que algumas camadas dos modelos (como camadas de dropout) sejam desabilitadas.

O loop with torch.no_grad() informa o Pytorch para não calcular gradientes relacionados a um tensor. Assim, loops onde o gradiente precisa ser preservado utilizam essa configuração.

VI.1.c) Existe uma forma mais simples de calcular a classe predita na linha 11, sem a necessidade de usar a função torch.sigmoid? Torch.sigmoid() é uma função de ativação, para transformar uma entrada numérica em um número entre zero e um. Uma maneira muito simples de fazer a mesma coisa é dividir a entrada pelo valor máximo da entrada observada, além de, claro, utilizar outras funções de ativação alternativas (ReLU, etc).

VI.2.a) Utilizando a resposta do exercício V.1.a, que é a Loss teórica de um modelo aleatório de 2 classes, qual é o valor da perplexidade?

```
[36]: tensor(0.5000)
```

A perplexidade neste caso nos retorna a probabilidade de distribuição das classes de 50%.

- VI.2.b) E se o modelo agora fosse para classificar a amostra em N classes, qual seria o valor da perplexidade para o caso aleatório? Para N classes, a perplexidade seria dada por 1/N.
- VI.2.c) Qual é o valor da perplexidade quando o modelo acerta todas as classes com 100% de probabilidade? Quando um modelo acerta 100% das previsões, a perplexidade é 1.
- VI.3.a) Modifique o código da seção VI Avaliação, para que além de calcular a acurácia, calcule também a perplexidade. lembrar que PPL = torch.exp(CE). Assim, será necessário calcular a entropia cruzada, como feito no laço de treinamento.

```
[37]: def eval_with_perplexity(model):
          model.eval()
          criterion = nn.CrossEntropyLoss()
          \#total\_loss = 0
          #total labels = 0
          perplexity = 0
          with torch.no_grad():
              correct = 0
              total = 0
              for inputs, labels in test_loader:
                  inputs = inputs.to(device)
                  labels = labels.to(device)
                  outputs = model(inputs)
                  loss = criterion(outputs, labels)
                  perplexity = torch.exp(loss)
                  _, predicted = torch.max(outputs, 1)
                  total += labels.size(0)
                  correct += (predicted == labels).sum().item()
              acc = 100* correct/total
              print(f'Test Accuracy: {acc}% \
                      Test Perplexity: {perplexity}')
          return acc
      eval_with_perplexity(model)
```

Test Accuracy: 86.74% Test Perplexity: 1.5994813442230225

[37]: 86.74

VI.4.a) Modifique o laço de treinamento para incorporar também o cálculo da avaliação ao final de cada época. Aproveite para reportar também a perplexidade, tanto do treinamento como da avaliação (observe que será mais fácil de interpretar). Essa é a forma usual de se fazer o treinamento, monitorando se o modelo não entra em overfitting.

```
[38]: def train_and_eval(model, lr, epochs):
        model = model.to(device)
        reset weights(model)
        # Define loss and optimizer
        criterion = nn.CrossEntropyLoss()
        optimizer = optim.SGD(model.parameters(), lr)
        perplexity = 0
        for epoch in range(epochs):
            model.train()
            for inputs, labels in train_loader:
                if not preload_to_gpu:
                  inputs = inputs.to(device)
                  labels = labels.to(device)
                # Forward pass
                outputs = model(inputs)
                loss = criterion(outputs.squeeze(), labels)
                perplexity = torch.exp(loss)
                # Backward and optimize
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
            eval_with_perplexity(model)
            model.train()
            print(f'Epoch [{epoch+1}/{epochs}], \
                    Loss: {loss.item():.4f}, \
                    Train Perplexity: {perplexity}')
        print()
```

```
model = OneHotMLP_2logits(vocab_size)
train_and_eval(model, best_LR, 5)
```

Test Accuracy: 79.372% Test Perplexity: 1.8890479803085327 Epoch [1/5], Loss: 0.6000, Train Perplexity: 1.822061538696289 Test Accuracy: 83.416% Test Perplexity: 1.7140659093856812 Epoch [2/5], Loss: 0.5073, Train Perplexity: 1.6608058214187622 Test Accuracy: 85.052% Test Perplexity: 1.6764986515045166 Epoch [3/5], Loss: 0.4443, Train Perplexity: 1.559381365776062 Test Accuracy: 86.024% Test Perplexity: 1.583828091621399 Epoch [4/5], Loss: 0.4751, Train Perplexity: 1.6081184148788452 Test Accuracy: 86.616% Test Perplexity: 1.6186288595199585 Epoch [5/5], Loss: 0.4688. Train Perplexity: 1.5980067253112793

Por fim, como o dataset tem muitas amostras, ele é demorado de entrar em overfitting. Para ficar mais evidente, diminua novamente o número de amostras do dataset de treino de 25 mil para 1 mil amostras e aumente o número de épocas para ilustrar o caso do overfitting, em que a perplexidade de treinamento continua caindo, porém a perplexidade no conjunto de teste começa a aumentar.

Test Accuracy: 100.0% Test Perplexity: 1.4652374982833862 Epoch [1/100], Loss: 0.3981, Train Perplexity: 1.4890598058700562 Test Accuracy: 100.0% Test Perplexity: 1.402090311050415 Epoch [2/100], Loss: 0.3379, Train Perplexity: 1.4019744396209717 Test Accuracy: 100.0% Test Perplexity: 1.3873093128204346 Epoch [3/100], Loss: 0.3279, Train Perplexity: 1.3881028890609741 Test Accuracy: 100.0% Test Perplexity: 1.3811591863632202

Epoch [4/100],	Loss: 0.3222,	Train Perplexity:
1.3801277875900269 Test Accuracy: 100.0% Epoch [5/100], 1.376153588294983	Test Perplexity: Loss: 0.3193,	1.3778650760650635 Train Perplexity:
Test Accuracy: 100.0% Epoch [6/100], 1.376289963722229	Test Perplexity: Loss: 0.3194,	1.3758258819580078 Train Perplexity:
Test Accuracy: 100.0% Epoch [7/100], 1.3749326467514038	Test Perplexity: Loss: 0.3184,	1.3744561672210693 Train Perplexity:
Test Accuracy: 100.0% Epoch [8/100], 1.3725703954696655	Test Perplexity: Loss: 0.3167,	1.373476505279541 Train Perplexity:
Test Accuracy: 100.0% Epoch [9/100], 1.374079704284668	Test Perplexity: Loss: 0.3178,	1.372735619544983 Train Perplexity:
Test Accuracy: 100.0% Epoch [10/100], 1.370390772819519	Test Perplexity: Loss: 0.3151,	1.3721671104431152 Train Perplexity:
Test Accuracy: 100.0% Epoch [11/100], 1.3721094131469727	Test Perplexity: Loss: 0.3163,	1.3717094659805298 Train Perplexity:
Test Accuracy: 100.0% Epoch [12/100], 1.37095308303833	Test Perplexity: Loss: 0.3155,	1.371337890625 Train Perplexity:
Test Accuracy: 100.0% Epoch [13/100], 1.3705111742019653	Test Perplexity: Loss: 0.3152,	1.3710299730300903 Train Perplexity:
Test Accuracy: 100.0% Epoch [14/100], 1.372287631034851	Test Perplexity: Loss: 0.3165,	1.3707679510116577 Train Perplexity:
Test Accuracy: 100.0% Epoch [15/100], 1.3699136972427368	Test Perplexity: Loss: 0.3147,	1.3705463409423828 Train Perplexity:
Test Accuracy: 100.0% Epoch [16/100], 1.3700511455535889	Test Perplexity: Loss: 0.3148,	1.3703547716140747 Train Perplexity:
Test Accuracy: 100.0% Epoch [17/100], 1.371317744255066	Test Perplexity: Loss: 0.3158,	1.37018620967865 Train Perplexity:
Test Accuracy: 100.0% Epoch [18/100], 1.3699020147323608	Test Perplexity: Loss: 0.3147,	1.3700395822525024 Train Perplexity:
Test Accuracy: 100.0% Epoch [19/100], 1.3694963455200195	Test Perplexity: Loss: 0.3144,	1.3699101209640503 Train Perplexity:
Test Accuracy: 100.0%	Test Perplexity:	1.3697941303253174

Epoch [20/100], 1.3696213960647583	Loss:	0.3145,	Train Perplexity:
Test Accuracy: 100.0% Epoch [21/100], 1.3698198795318604	Loss:	Test Perplexity: 0.3147,	1.3696900606155396 Train Perplexity:
Test Accuracy: 100.0% Epoch [22/100], 1.3697214126586914	Loss:	Test Perplexity: 0.3146,	1.3695961236953735 Train Perplexity:
Test Accuracy: 100.0% Epoch [23/100], 1.3699082136154175	Loss:	Test Perplexity: 0.3147,	1.3695107698440552 Train Perplexity:
Test Accuracy: 100.0% Epoch [24/100], 1.3698039054870605	Loss:	Test Perplexity: 0.3147,	1.3694332838058472 Train Perplexity:
Test Accuracy: 100.0% Epoch [25/100], 1.368842363357544	Loss:	Test Perplexity: 0.3140,	1.3693631887435913 Train Perplexity:
Test Accuracy: 100.0% Epoch [26/100], 1.3694206476211548	Loss:	Test Perplexity: 0.3144,	1.3692984580993652 Train Perplexity:
Test Accuracy: 100.0% Epoch [27/100], 1.3697483539581299	Loss:	Test Perplexity: 0.3146,	1.3692387342453003 Train Perplexity:
Test Accuracy: 100.0% Epoch [28/100], 1.3698594570159912	Loss:	Test Perplexity: 0.3147,	1.3691834211349487 Train Perplexity:
Test Accuracy: 100.0% Epoch [29/100], 1.369748592376709	Loss:	Test Perplexity: 0.3146,	1.3691322803497314 Train Perplexity:
Test Accuracy: 100.0% Epoch [30/100], 1.369724988937378	Loss:	Test Perplexity: 0.3146,	1.3690849542617798 Train Perplexity:
Test Accuracy: 100.0% Epoch [31/100], 1.3687975406646729	Loss:	Test Perplexity: 0.3139,	1.3690409660339355 Train Perplexity:
Test Accuracy: 100.0% Epoch [32/100], 1.3691222667694092	Loss:	Test Perplexity: 0.3142,	1.368999719619751 Train Perplexity:
Test Accuracy: 100.0% Epoch [33/100], 1.3689675331115723	Loss:	Test Perplexity: 0.3141,	1.368961215019226 Train Perplexity:
Test Accuracy: 100.0% Epoch [34/100], 1.3693097829818726	Loss:	Test Perplexity: 0.3143,	1.3689253330230713 Train Perplexity:
Test Accuracy: 100.0% Epoch [35/100], 1.368466854095459	Loss:	Test Perplexity: 0.3137,	1.368891716003418 Train Perplexity:
Test Accuracy: 100.0%		Test Perplexity:	1.368859887123108

Epoch [36/100], 1.368798017501831	Loss:	0.3139,	Train Perplexity:
Test Accuracy: 100.0% Epoch [37/100], 1.3685476779937744	Loss:	Test Perplexity: 0.3138,	1.3688302040100098 Train Perplexity:
Test Accuracy: 100.0% Epoch [38/100], 1.3688825368881226	Loss:	Test Perplexity: 0.3140,	1.3688018321990967 Train Perplexity:
Test Accuracy: 100.0% Epoch [39/100], 1.3684091567993164	Loss:	Test Perplexity: 0.3136,	1.3687752485275269 Train Perplexity:
Test Accuracy: 100.0% Epoch [40/100], 1.3686186075210571	Loss:	Test Perplexity: 0.3138,	1.3687498569488525 Train Perplexity:
Test Accuracy: 100.0% Epoch [41/100], 1.3687593936920166	Loss:	Test Perplexity: 0.3139,	1.3687258958816528 Train Perplexity:
Test Accuracy: 100.0% Epoch [42/100], 1.3691896200180054	Loss:	Test Perplexity: 0.3142,	1.368703007698059 Train Perplexity:
Test Accuracy: 100.0% Epoch [43/100], 1.3684498071670532	Loss:	Test Perplexity: 0.3137,	1.3686814308166504 Train Perplexity:
Test Accuracy: 100.0% Epoch [44/100], 1.3684937953948975	Loss:	Test Perplexity: 0.3137,	1.3686609268188477 Train Perplexity:
Test Accuracy: 100.0% Epoch [45/100], 1.368397831916809	Loss:	Test Perplexity: 0.3136,	1.3686413764953613 Train Perplexity:
Test Accuracy: 100.0% Epoch [46/100], 1.3685566186904907	Loss:	Test Perplexity: 0.3138,	1.3686225414276123 Train Perplexity:
Test Accuracy: 100.0% Epoch [47/100], 1.3692359924316406	Loss:	Test Perplexity: 0.3143,	1.3686045408248901 Train Perplexity:
Test Accuracy: 100.0% Epoch [48/100], 1.368489146232605	Loss:	Test Perplexity: 0.3137,	1.3685874938964844 Train Perplexity:
Test Accuracy: 100.0% Epoch [49/100], 1.3687890768051147	Loss:	Test Perplexity: 0.3139,	1.368571162223816 Train Perplexity:
Test Accuracy: 100.0% Epoch [50/100], 1.3686046600341797	Loss:	Test Perplexity: 0.3138,	1.3685554265975952 Train Perplexity:
Test Accuracy: 100.0% Epoch [51/100], 1.368720293045044	Loss:	Test Perplexity: 0.3139,	1.3685404062271118 Train Perplexity:
Test Accuracy: 100.0%		Test Perplexity:	1.3685258626937866

Epoch [52/100], 1.369149923324585	Loss:	0.3142,	Train Perplexity:
Test Accuracy: 100.0% Epoch [53/100], 1.368369698524475	Loss:	Test Perplexity: 0.3136,	1.3685119152069092 Train Perplexity:
Test Accuracy: 100.0% Epoch [54/100], 1.3682812452316284	Loss:	Test Perplexity: 0.3136,	1.368498682975769 Train Perplexity:
Test Accuracy: 100.0% Epoch [55/100], 1.368517518043518	Loss:	Test Perplexity: 0.3137,	1.3684860467910767 Train Perplexity:
Test Accuracy: 100.0% Epoch [56/100], 1.3682323694229126	Loss:	Test Perplexity: 0.3135,	1.3684738874435425 Train Perplexity:
Test Accuracy: 100.0% Epoch [57/100], 1.3685381412506104	Loss:	Test Perplexity: 0.3137,	1.3684619665145874 Train Perplexity:
Test Accuracy: 100.0% Epoch [58/100], 1.369145154953003	Loss:	Test Perplexity: 0.3142,	1.368450403213501 Train Perplexity:
Test Accuracy: 100.0% Epoch [59/100], 1.3680731058120728	Loss:	Test Perplexity: 0.3134,	1.3684395551681519 Train Perplexity:
Test Accuracy: 100.0% Epoch [60/100], 1.368316411972046	Loss:	Test Perplexity: 0.3136,	1.3684290647506714 Train Perplexity:
Test Accuracy: 100.0% Epoch [61/100], 1.368345022201538	Loss:	Test Perplexity: 0.3136,	1.3684189319610596 Train Perplexity:
Test Accuracy: 100.0% Epoch [62/100], 1.368705153465271	Loss:	Test Perplexity: 0.3139,	1.3684089183807373 Train Perplexity:
Test Accuracy: 100.0% Epoch [63/100], 1.3688586950302124	Loss:	Test Perplexity: 0.3140,	1.3683993816375732 Train Perplexity:
Test Accuracy: 100.0% Epoch [64/100], 1.3693068027496338	Loss:	Test Perplexity: 0.3143,	1.3683900833129883 Train Perplexity:
Test Accuracy: 100.0% Epoch [65/100], 1.368220567703247	Loss:	Test Perplexity: 0.3135,	1.368381142616272 Train Perplexity:
Test Accuracy: 100.0% Epoch [66/100], 1.3683326244354248	Loss:	Test Perplexity: 0.3136,	1.3683725595474243 Train Perplexity:
Test Accuracy: 100.0% Epoch [67/100], 1.3681540489196777	Loss:	Test Perplexity: 0.3135,	1.3683642148971558 Train Perplexity:
Test Accuracy: 100.0%		Test Perplexity:	1.3683559894561768

Epoch [68/100], 1.3686999082565308	Loss:	0.3139,	Train Perplexity:
Test Accuracy: 100.0% Epoch [69/100], 1.368147611618042	Loss:	Test Perplexity: 0.3135,	1.368348240852356 Train Perplexity:
Test Accuracy: 100.0% Epoch [70/100], 1.3687909841537476	Loss:	Test Perplexity: 0.3139,	1.3683404922485352 Train Perplexity:
Test Accuracy: 100.0% Epoch [71/100], 1.3687148094177246	Loss:	Test Perplexity: 0.3139,	1.3683332204818726 Train Perplexity:
Test Accuracy: 100.0% Epoch [72/100], 1.3683280944824219	Loss:	Test Perplexity: 0.3136,	1.36832594871521 Train Perplexity:
Test Accuracy: 100.0% Epoch [73/100], 1.3687971830368042	Loss:	Test Perplexity: 0.3139,	1.3683189153671265 Train Perplexity:
Test Accuracy: 100.0% Epoch [74/100], 1.368705153465271	Loss:	Test Perplexity: 0.3139,	1.368312120437622 Train Perplexity:
Test Accuracy: 100.0% Epoch [75/100], 1.3682001829147339	Loss:	Test Perplexity: 0.3135,	1.3683055639266968 Train Perplexity:
Test Accuracy: 100.0% Epoch [76/100], 1.3683652877807617	Loss:	Test Perplexity: 0.3136,	1.3682992458343506 Train Perplexity:
Test Accuracy: 100.0% Epoch [77/100], 1.3682271242141724	Loss:	Test Perplexity: 0.3135,	1.3682929277420044 Train Perplexity:
Test Accuracy: 100.0% Epoch [78/100], 1.3681442737579346	Loss:	Test Perplexity: 0.3135,	1.3682869672775269 Train Perplexity:
Test Accuracy: 100.0% Epoch [79/100], 1.3682386875152588	Loss:	Test Perplexity: 0.3135,	1.3682812452316284 Train Perplexity:
Test Accuracy: 100.0% Epoch [80/100], 1.3681339025497437	Loss:	Test Perplexity: 0.3134,	1.3682754039764404 Train Perplexity:
Test Accuracy: 100.0% Epoch [81/100], 1.3685861825942993	Loss:	Test Perplexity: 0.3138,	1.368269920349121 Train Perplexity:
Test Accuracy: 100.0% Epoch [82/100], 1.3681398630142212	Loss:	Test Perplexity: 0.3135,	1.3682644367218018 Train Perplexity:
Test Accuracy: 100.0% Epoch [83/100], 1.368175745010376	Loss:	Test Perplexity: 0.3135,	1.3682591915130615 Train Perplexity:
Test Accuracy: 100.0%		Test Perplexity:	1.3682540655136108

Epoch [84/100], 1.368200421333313	Loss:	0.3135,	Train Perplexity:
Test Accuracy: 100.0% Epoch [85/100], 1.3684122562408447	Loss:	Test Perplexity: 0.3137,	1.3682489395141602 Train Perplexity:
Test Accuracy: 100.0% Epoch [86/100], 1.3688278198242188	Loss:	Test Perplexity: 0.3140,	1.3682440519332886 Train Perplexity:
Test Accuracy: 100.0% Epoch [87/100], 1.3682599067687988	Loss:	Test Perplexity: 0.3135,	1.3682392835617065 Train Perplexity:
Test Accuracy: 100.0% Epoch [88/100], 1.368152141571045	Loss:	Test Perplexity: 0.3135,	1.3682345151901245 Train Perplexity:
Test Accuracy: 100.0% Epoch [89/100], 1.3681014776229858	Loss:	Test Perplexity: 0.3134,	1.3682301044464111 Train Perplexity:
Test Accuracy: 100.0% Epoch [90/100], 1.3683029413223267	Loss:	Test Perplexity: 0.3136,	1.3682255744934082 Train Perplexity:
Test Accuracy: 100.0% Epoch [91/100], 1.3680342435836792	Loss:	Test Perplexity: 0.3134,	1.3682212829589844 Train Perplexity:
Test Accuracy: 100.0% Epoch [92/100], 1.3682141304016113	Loss:	Test Perplexity: 0.3135,	1.36821711063385 Train Perplexity:
Test Accuracy: 100.0% Epoch [93/100], 1.368651270866394	Loss:	Test Perplexity: 0.3138,	1.3682128190994263 Train Perplexity:
Test Accuracy: 100.0% Epoch [94/100], 1.3681857585906982	Loss:	Test Perplexity: 0.3135,	1.368208885192871 Train Perplexity:
Test Accuracy: 100.0% Epoch [95/100], 1.3687580823898315	Loss:	Test Perplexity: 0.3139,	1.3682047128677368 Train Perplexity:
Test Accuracy: 100.0% Epoch [96/100], 1.368249535560608	Loss:	Test Perplexity: 0.3135,	1.3682007789611816 Train Perplexity:
Test Accuracy: 100.0% Epoch [97/100], 1.3686814308166504	Loss:	Test Perplexity: 0.3138,	1.368196964263916 Train Perplexity:
Test Accuracy: 100.0% Epoch [98/100], 1.3686493635177612	Loss:	Test Perplexity: 0.3138,	1.36819326877594 Train Perplexity:
Test Accuracy: 100.0% Epoch [99/100], 1.3683782815933228	Loss:	Test Perplexity: 0.3136,	1.3681894540786743 Train Perplexity:
Test Accuracy: 100.0%		Test Perplexity:	1.3681858777999878

Epoch [100/100], 1.3692086935043335

Loss: 0.3142,

Train Perplexity: