4

Determinants

4.7

CHANGE OF BASIS

• Example 1 Consider two bases $\beta = \{b_1, b_2\}$ and $C = \{c_1, c_2\}$ for a vector space V, such that

$$b_1 = 4c_1 + c_2$$
 and $b_2 = -6c_1 + c_2$ (1)

Suppose

$$x = 3b_1 + b_2 \tag{2}$$

• That is, suppose $[x]_{\beta} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$. Find $[x]_{C}$.

• **Solution** Apply the coordinate mapping determined by *C* to **x** in (2). Since the coordinate mapping is a linear transformation,

$$[x]_C = [3b_1 + b_2]_C$$

=3[b_1]_C + [b_2]_C

• We can write the vector equation as a matrix equation, using the vectors in the linear combination as the columns of a matrix:

$$[x]_{\mathcal{C}} = [\mathbf{b_1} \quad \mathbf{b_2}]_{\mathcal{C}} \begin{bmatrix} 3 \\ 1 \end{bmatrix} \tag{3}$$

• This formula gives $[x]_C$, once we know the columns of the matrix. From (1),

$$[\mathbf{b}_1]_{\mathcal{C}} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
 and $[\mathbf{b}_2]_{\mathcal{C}} = \begin{bmatrix} -6 \\ 1 \end{bmatrix}$

• Thus, (3) provides the solution:

$$[x]_{\mathcal{C}} = \begin{bmatrix} 4 & -6 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

• The *C*-coordinates of **x** match those of the **x** in Fig. 1, as seen on the next slide.

FIGURE 1 Two coordinate systems for the same vector space.

■ **Theorem 15**: Let $\beta = \{b_1, ..., b_n\}$ and $C = \{c_1, ..., c_n\}$ for a vector space V. Then there is a unique $n \times n$ matrix $c \leftarrow \beta$ such that

$$[x]_{\mathcal{C}} = c \stackrel{P}{\leftarrow} \beta [x]_{\beta} \tag{4}$$

• The columns of $c \leftarrow \beta$ are the C-coordinate vectors of the vectors in the basis β . That is,

$$c \stackrel{P}{\leftarrow} \beta = [[b_1]_C [b_2]_C \dots [b_n]_C]$$
 (5)

- The matrix $c \leftarrow \beta$ in Theorem 15 is called the **change-of-coordinates matrix from** β **to** C. Multiplication by $c \leftarrow \beta$ converts β -coordinates into C-coordinates.
- Figure 2 below illustrates the change-of-coordinates equation (4).

FIGURE 2 Two coordinate systems for V.

- The columns of $c \leftarrow \beta$ are linearly independent because they are the coordinate vectors of the linearly independent set β .
- Since $c \leftarrow \beta$ is square, it must be invertible, by the Invertible Matrix Theorem. Left-multiplying both sides of equation (4) by $(c \leftarrow \beta)^{-1}$ yields

$$(c \stackrel{P}{\leftarrow} \beta)^{-1} [x]_{\mathcal{C}} = [x]_{\beta}$$

• Thus $(c \leftarrow \beta)^{-1}$ is the matrix that converts C-coordinates into β -coordinates. That is,

$$(c \stackrel{P}{\leftarrow} \beta)^{-1} = \beta \stackrel{P}{\leftarrow} C \tag{6}$$

CHANGE OF BASIS IN \mathbb{R}^n

If $\beta = \{b_1, \dots, b_n\}$ and \mathcal{E} is the standard basis $\{e_1, \dots, e_n\}$ in \mathbb{R}^n , then $[b_1]_{\mathcal{E}} = b_1$, and likewise for the other vectors in β . In this case, $\mathcal{E} \leftarrow \beta$ is the same as the change-of-coordinates matrix P_{β} introduced in Section 4.4, namely, $P_{\beta} = [b_1 \ b_2 \dots b_n]$

To change coordinates between two nonstandard bases in \mathbb{R}^n , we need Theorem 15. The theorem shows that to solve the change-of-basis problem, we need the coordinate vectors of the old basis relative to the new basis.

CHANGE OF BASIS IN \mathbb{R}^n

- Example 2 Let $b_1 = \begin{bmatrix} -9 \\ 1 \end{bmatrix}$, $b_2 = \begin{bmatrix} -5 \\ -1 \end{bmatrix}$, $c_1 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$, $c_2 = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$ and consider the bases for \mathbb{R}^n given by $\beta = \{b_1, b_2\}$ and $C = \{c_1, c_2\}$. Find the change-of-coordinates matrix from β to C.
- **Solution** The matrix $\beta \overset{P}{\leftarrow} C$ involves the C-coordinate vectors of \mathbf{b}_1 and \mathbf{b}_2 . Let $[\mathbf{b}_1]_C = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $[\mathbf{b}_2]_C = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$. Then, by definition,

$$\begin{bmatrix} c_1 & c_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = b_1$$
 and $\begin{bmatrix} c_1 & c_2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = b_2$

CHANGE OF BASIS IN \mathbb{R}^n

■ To solve both systems simultaneously, augment the coefficient matrix with b₁ and b₂, and row reduce:

$$\begin{bmatrix} c_1 & c_2 \\ \vdots & b_1 \\ \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ -4 & -5 \\ \end{bmatrix} \cdot \begin{bmatrix} -9 & -5 \\ 1 & -1 \\ \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix} \cdot \begin{bmatrix} 6 & 4 \\ -5 & -3 \\ \end{bmatrix}$$
 (7)

Thus

$$[b_1]_{\mathcal{C}} = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$$
 and $[b_2]_{\mathcal{C}} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$

The desired change-of-coordinates matrix is therefore

$$c \stackrel{P}{\leftarrow} \beta = \begin{bmatrix} [b_1]_c & [b_2]_c \end{bmatrix} = \begin{bmatrix} 6 & 4 \\ -5 & -3 \end{bmatrix}$$