Masked Autoregressive Flow for Density Estimation

Midterm 4

- **Problem**: estimating the joint density of samples taken from a set of observations $\mathcal{D} = \{x^1, ..., x^N\} \subset \mathbb{R}^D$
- Neural Density Estimators (NDE): exact density evaluation, unlike VAE and GAN
- Two families of NDE
 - Autoregressive Models: joint density product of conditionals
 - Normalizing Flows: base density $\xrightarrow{\{f_i\}_{i\leq K}}$ target (joint) density
- Trick: combine them together in a (deep) hierarchy
 - Differentiable randomness in generating data thanks to autoregression
 - Tractable Jacobians by design, often invertible ≡ normalizing flow

Background

Autoregressive Density Estimation

For a given sample x: joint density into product of onedimensional conditionals

$$p(x) = p(x_1) \prod_{i=2}^{D} p(x_i | x_1, ..., x_{i-1})$$

- Ordering sensitivity
 - Factorial number of orderings
 - Wrong ordering \Longrightarrow wrong estimation
 - Need an ordering invariant model

Normalizing Flows

• Given a base density $\pi_u(u)$, we can write

$$x = f(u), \quad u \sim \pi_u(u)$$

$$p(x) = \pi_u \left(f^{-1}(x) \right) \left| \det J_x \left(f^{-1} \right) \right|$$

- Need f invertible and tractable Jacobian
- If so, different functions f_i can be **composed** and preserve the property: choose $f = f_1 \circ \dots \circ f_K$

1c: Correct estimation of a 5 layer MAF

1a: The target density $p(x_1, x_2) = \mathcal{N}(x_2 \mid 0, 4) \mathcal{N}(x_1 \mid 0.25 \cdot x_2^2, 1)$

1b: Wrong estimation of Masked Autoencoder for Distribution Estimation (MADE)

Masked Autoregressive Flow (MAF)

• Assumption: all conditionals are parametrized by a single gaussian (x is our single sample)

$$p(x_i \mid x_1, ..., x_{i-1}) = \mathcal{N}(x_i \mid \mu_i, e^{\alpha_i^2}), \qquad \mu_i = f_{\mu_i}(x_1, ..., x_{i-1}), \qquad \alpha_i = f_{\alpha_i}(x_1, ..., x_{i-1})$$

- Autoregressive definition: model i^{th} variable in terms of previously modeled variables x_1, \ldots, x_{i-1}
- Forward Process: $x_i = u_i e^{\alpha_i} + \mu_i$, with $u_i \sim \mathcal{N}(0,1)$
- Inverse Process: $u_i = (x_i \mu_i) e^{-\alpha_i}$
- In this way we have a tractable Jacobian: $\left| \det J_x \left(f^{-1} \right) \right| = e^{-\sum_i \alpha_i}$
 - The Jacobian is lower triangular
 - It measures the rate of change of differential volume under a coordinate transformation
- f_{μ_i} and f_{α_i} are chosen with **masking**, following *MADE* \Longrightarrow single forward pass to compute p(x)
- Idea: stack many layers to improve the fit. Each layer models the random numbers u_i of the next layer

MAF and Other Flows

• MAF vs IAF: in IAF f_{μ_i} and f_{α_i} are defined in terms of previous random numbers $u_1, ..., u_{i-1}$ (MADE)

$$\mu_i = f_{\mu_i}(u_1, ..., u_{i-1}), \quad \alpha_i = f_{\alpha_i}(u_1, ..., u_{i-1}), \quad p(u) = \pi_x(f(u)) \mid \det J_u(f) \mid$$

- MAF more suitable for density estimation: one pass to get the density from an input x and D passes for sampling
- IAF more suitable for generation: one pass to get generate and calculate the density of a sample and D passes for an external input
- MAF vs Real-NVP: in Real-NVP, coupling layers are used
 - Decide a split of size d, copy the first d elements and transform the remaining D-d

$$x_{1:d} = u_{1:d}$$
 $\mu = f_{\mu}(u_{1:d})$ $x_{d+1:D} = u_{d+1:D} \odot e^{\alpha} + \mu$ where $\alpha = f_{\alpha}(u_{1:d})$

- MAF \equiv generalization of Real-NVP with $\alpha_i = \mu_i = 0 \ \forall i \leq d \ \text{and} \ \mu_i = f_{\mu_i} \left(x_{1:d} \right), \ \alpha_i = f_{\alpha_i} \left(x_{1:d} \right)$
- Conditional MAF: requires labelled inputs $\mathcal{D} = \{(x^n, y^n)\}_{n=1}^N$
 - Joint **conditional** density of a sample x is $p(x|y) = p(x_1|y)$ $\prod_{i=2}^{D} p(x_i|x_1,...,x_{i-1},y)$
 - Any ordering is valid, provided that y comes before $x \equiv \text{in a layered architecture}$, y is an **extra input** for each layer

Key Catch

$$\max_{\theta} \log \mathcal{L}(\theta) = \max_{\theta} \sum_{n} \log p(x^{n} \mid \theta) \equiv \min_{\theta} D_{KL} \left(\pi_{x}(x) \parallel p_{x}(x) \right) = \min_{\theta} D_{KL} \left(p_{u}(u) \parallel \pi_{u}(u) \right)$$

- $\pi_x(x)$ is the true density of the data, $\pi_u(u)$ is the base density of MAF
- **Proof idea**: expand definition of KL, change variable $x \leftrightarrow u$ and use Monte Carlo sampling to get

$$\log \mathcal{L}(\theta) \approx \frac{1}{N} \sum_{n} \left(\log \pi_{x}(x^{n}) - \log p_{x}(x^{n} \mid \theta) \right) = -\frac{1}{N} \sum_{n} \log p_{x}(x^{n} \mid \theta) + \text{const}$$

- Interpretation
 - IAF: encoder with target density $\pi_u(u)$ and transformation f^{-1} , trained with Stochastic Variational Inference (SVI) and having base density $\pi_x(x)$ (the MAF target density)
 - **KL Divergences Equality**: due to the approximation $p_x(x)$ of $\pi_x(x)$ starting from prior $\pi_u(u)$ and in the reversed case, the approximation $p_u(u)$ of $\pi_u(u)$ starting from prior $\pi_x(x)$
- Conclusion: inverse direction of transformation f leads to equivalence between IAF and MAF. Training the latter as a density estimator of $\pi_x(x)$ is equivalent to perform SVI on an implicit IAF with posterior $\pi_u(u) \Longrightarrow \text{MAF}$ very **expressive**

Experimental Setup

- Comparison of MAF with MADE and Real-NVP in **unconditional** and **conditional** density estimation on different datasets. Other models' architectures are chosen following the state-of-the-art in the literature.
- MADE: mixture of C gaussians (conditionals). Inputs processing order is the same of the dataset.
 - MADE $\implies C = 1$, MADE MoG $\implies C = 10$
- **Real-NVP (N)**: two FFNNs of shared architecture as f_{α} (tanh) and f_{μ} (ReLU), N is the number of coupling layers with gaussian base density. Copying even and odd indexed elements in coupling layers.
- *MAF (N)*, two versions with $N \in \{5,10\}$ MADE layers, $\pi_u(u) \sim \mathcal{N}(0,1)$ and one MoG version
 - *MAF MoG* (5): 5 autoregressive layers and C = 10 gaussians (\equiv MAF (5) on top of MADE MoG and trained jointly)
 - First layer has standard input order, successive layers alternatively reverse the order (IAF guideline)
- Batch normalization after each autoregressive layer in MAF and after each coupling layer in Real-NVP
- Adam optimizer, batch size 100, L2 weight decay = 10^{-6} , early stopping with 30 epochs patience
- Five preprocessed datasets from UCI repository: POWER, GAS, HEPMASS, MINIBOONE, BSDS300

Results

- Baseline: simple Gaussian model (unconditional and class-conditional)
- Metric: average test log likelihood (in nats, for information entropy)
- Unconditional Density Estimation

	POWER	GAS	HEPMASS	MINIBOONE	BSDS300
Gaussian	-7.74 ± 0.02	-3.58 ± 0.75	-27.93 ± 0.02	-37.24 ± 1.07	96.67 ± 0.25
MADE MADE MoG	-3.08 ± 0.03 0.40 ± 0.01	$3.56 \pm 0.04 \ 8.47 \pm 0.02$	$-20.98 \pm 0.02 \ -15.15 \pm 0.02$	$-15.59 \pm 0.50 \\ -12.27 \pm 0.47$	148.85 ± 0.28 153.71 ± 0.28
Real NVP (5) Real NVP (10)	$-0.02 \pm 0.01 \\ 0.17 \pm 0.01$	4.78 ± 1.80 8.33 ± 0.14	$-19.62 \pm 0.02 \\ -18.71 \pm 0.02$	$-13.55 \pm 0.49 \\ -13.84 \pm 0.52$	152.97 ± 0.28 153.28 ± 1.78
MAF (5) MAF (10) MAF MoG (5)	$0.14 \pm 0.01 \\ 0.24 \pm 0.01 \\ 0.30 \pm 0.01$	9.07 ± 0.02 10.08 ± 0.02 9.59 ± 0.02	$-17.70 \pm 0.02 \ -17.73 \pm 0.02 \ -17.39 \pm 0.02$	-11.75 ± 0.44 -12.24 ± 0.45 -11.68 ± 0.44	$155.69 \pm 0.28 \ 154.93 \pm 0.28 \ {f 156.36} \pm {f 0.28}$

- MAF is the best performing model on 3/5 datasets, MADE on the other 2/5
- On BSDS300, MAF achieves almost equal performance to an **ensemble** of 32 Deep RNADEs
- Tie on MINIBOONE ⇒ statistical comparison
 ⇒ MAF MoG (5) outperforms MAF (5)

Conditional Density Estimation

	M	NIST	CIFAR-10	
	unconditional	conditional	unconditional	conditional
Gaussian	-1366.9 ± 1.4	-1344.7 ± 1.8	2367 ± 29	2030 ± 41
MADE MADE MoG	$-1380.8 \pm 4.8 \ -1038.5 \pm 1.8$	$-1361.9 \pm 1.9 \\ -1030.3 \pm 1.7$	$147\pm20\\-397\pm21$	187 ± 20 -119 ± 20
Real NVP (5) Real NVP (10)	$-1323.2 \pm 6.6 \ -1370.7 \pm 10.1$	-1326.3 ± 5.8 -1371.3 ± 43.9	$2576\pm27\\2568\pm26$	$2642\pm26\\2475\pm25$
MAF (5) MAF (10) MAF MoG (5)	-1300.5 ± 1.7 -1313.1 ± 2.0 -1100.3 ± 1.6	$-1302.9 \pm 1.7* \ -1316.8 \pm 1.8* \ -1092.3 \pm 1.7$	$egin{array}{c} 2936 \pm 27 \ {f 3049} \pm {f 26} \ 2911 \pm 26 \end{array}$	$egin{array}{c} 2983 \pm 26 * \ {f 3058} \pm {f 26} * \ 2936 \pm 26 \end{array}$

- Uniform prior over labels p(y) = 1/10
- Preprocessing: pixels → add noise → logit
 space → augmentation (horizontal flips)
- MNIST: MADE is the best
- **CIFAR-10**: MAF is the best. MADE outperformed by the baseline

Final Conclusions

- MAF: strong model able to process all kinds of data (generalization of Real-NVP and NICE)
- Idea: improve MADE creating an autoregressive flow modeling internal random numbers with more layers
- Strong points
 - Flexible: stack many autoregressive models to compose a flow
 - Efficient: no recursion thanks to masking. p(x) is computed in one single forward pass
 - Can model conditional densities with no additional costs
 - General purpose density estimation, independently from the domain knowledge

Weakness

- **Slow sampling**: cannot exploit parallelization when starting from noise (forward process) \Longrightarrow more suitable for density estimation of input samples
- Possible future works: deep MAF, regularization techniques (not only L2), dynamic masking algorithms