

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

Название:	Исследование синхронных счетчиков
Дисциплина:	Схемотехника

 Студент
 ИУ6-52Б
 И.С. Марчук

 (Группа)
 (Подпись, дата)
 (И.О. Фамилия)

 Преподаватель
 Т.А. Ким

 (Подпись, дата)
 (И.О. Фамилия)

Цель работы: изучение принципов построения счетчиков, овладение методом синтеза синхронных счетчиков, экспериментальная оценка динамических параметров счетчиков, изучение способов наращивания разрядности синхронных счетчиков.

Вариант 8 (состояния счетчика: 0,1,2,3,4,8,9,10,11,12)

Ход работы.

- 1. Исследование четырёхразрядного синхронного суммирующего счётчика с параллельным переносом на Т-триггерах. Проверить работу счётчика
- от одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы,
 - от импульсов генератора.

Просмотреть на экране логического анализатора (осциллографа) временную диаграмму сигналов на входе и выходах счетчика, провести анализ временной диаграммы сигналов счетчика. Измерить время задержки распространения счетчика и максимальную частоту счета.

Построим схему описанного счетчика (рисунок 1).

Рисунок 1 - Схема суммирующего счетчика с параллельным переносом

Проанализируем работу счетчика при помощи одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы, результаты запишем в таблицу 1.

Таблица 1 - Таблица переходов счетчика

Номер	Q3	Q2	Q1	Q0
состояния				
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

Как видно из таблицы 1, счетчик работает корректно.

Изменим схему для анализа работы в динамическом режиме (рисунок 2). Отобразим временную диаграмму сигналов в схеме (рисунок 3). Как видно из временной диаграммы, счетчик изменяет состояния в том же порядке, что в таблице 1.

Как видно из временной диаграммы $t_{\rm вр.з.р.сч} = 2.032$ нс. Расчитаем максимальную частоту срабатывания.

$$f_{max} = \frac{1}{\mathsf{t}_{_{\mathrm{Bp.3.p.c4}}}} = 492,125984$$
МГц

Рисунок 2 - Анализ схемы в динамическом режиме

Рисунок 3 - временная диаграмма сигналов

Рисунок 4 - временная диаграмма сигналов

2. Синтезировать двоично-десятичный счётчик с заданной последовательностью состояний. Последовательность состояний счётчика для каждого варианта работы приведена в табл.3; десятичными числами обозначены номера двоичных наборов, изображающие десятичные цифры и определяющие состояние счётчика. Начертить схему счётчика на элементах интегрального базиса (И-НЕ; И, ИЛИ, НЕ), синхронных ЈК-триггерах.

Заданная последовательность состояний счетчика: 0, 1, 2, 3, 4, 8, 9, 10, 11, 12. Составим таблицу переходов состояний счетчика (таблица 2).

Таблица 2 - таблица переходов состояний счетчика

код		Bpe	мя t			Врем	ıя t+1		Вр	емя 1	, си	гналь	ы на	ЈК-т	ригг	epe
	Q3	Q2	Q1	Q0	Q3	Q2	Q1	Q0	J3	K3	J2	K2	J1	K1	JO	K 0
0	0	0	0	0	0	0	0	1	0	X	0	X	0	X	1	X
1	0	0	0	1	0	0	1	0	0	X	0	X	1	X	X	1
2	0	0	1	0	0	0	1	1	0	X	0	X	X	0	1	X
3	0	0	1	1	0	1	0	0	0	X	1	X	X	1	X	1
4	0	1	0	0	1	0	0	0	1	X	X	1	0	X	0	X
8	1	0	0	0	1	0	0	1	X	0	0	X	0	X	1	X
9	1	0	0	1	1	0	1	0	X	0	0	X	1	X	X	1
10	1	0	1	0	1	0	1	1	X	0	0	X	X	0	1	X
11	1	0	1	1	1	1	0	0	X	0	1	X	X	1	X	1
12	1	1	0	0	0	0	0	0	X	1	X	1	0	X	0	X

Минимизируем задаваемые таблицей ФАЛ, воспользовавшись картами Карно.

Для Ј0:

Q3Q2	00	01	11	10
Q1Q0				
00	1	0	0	1
01	X	X	X	X
11	X	X	X	X
10	1	X	X	1

$$J0 = -Q0 * -Q2$$

Для К0:

Q3Q2	00	01	11	10
Q1Q0				
00	X	X	X	X
01	1	X	X	1
11	1	X	X	1
10	X	X	X	X

K0 = 1

Для Ј1:

Q3Q2	00	01	11	10
Q1Q0				
00	0	0	0	0
01	1	X	X	1
11	X	X	X	X
10	X	X	X	X

$$\overline{J1 = Q0}$$

Для К1:

Q3Q2	00	01	11	10
Q1Q0				
00	X	X	X	X
01	X	X	X	X
11	1	X	X	1
10	0	X	X	0

K1 = Q0

Для J2:

Q:	3Q2	00	01	11	10
Q1Q0)/				
00		0	X	X	0
01		0	X	X	0
11		1	X	X	1
10		0	X	X	0

J2 = Q0 * Q1

Для К2:

Q3Q2	00	01	11	10
Q1Q0				
00	X	1	1	X
01	X	X	X	X
11	X	X	X	X
10	X	X	X	X

K2 = 1

Для Ј3:

Q3Q2	00	01	11	10
Q1Q0				
00	0	1	X	X
01	0	X	X	X
11	0	X	X	X
10	0	X	X	X

 $\overline{J3} = Q2$

Для К3:

Q3Q2	00	01	11	10
Q1Q0				
00	X	X	1	0
01	X	X	X	0
11	X	X	X	0
10	X	X	X	0

K3 = Q2

3. Собрать десятичный счётчик, используя элементную базу приложения Multisim или учебного макета. Установить счётчик в начальное состояние, подав на установочные входы R соответствующий сигнал.

Синтезируем счетчик, опираясь на полученные выше $\Phi A \Pi$ (рисунок 5).

Рисунок 5 - синтезированный десятичный счетчик

- 4. Исследование четырёхразрядного синхронного суммирующего счётчика с параллельным переносом. Проверить работу счётчика
 - от одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы,
 - от импульсов генератора.

Просмотреть на экране логического анализатора (осциллографа) временную диаграмму сигналов на входе и выходах счетчика, провести анализ временной диаграммы сигналов счетчика. Измерить время задержки распространения счетчика и максимальную частоту счета.

Проанализируем работу счетчика, составив таблицу его переходов (таблица 3).

Таблица 3 - таблица переходов состояний счетчика

Код	Q3	Q2	Q1	Q0
состояния				
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0

Исходя из содержания таблицы можно заключить, что счетчик работает корректно. Изменим схему для анализа ее работы в динамическом режиме (рисунок 6). Отобразим временную диаграмму сигналов в схеме (рисунок 7).

Рисунок 6 - анализ работы схемы в динамическом режиме

Рисунок 7 - временная диаграмма сигналов

Согласно диаграмме, счетчик изменяет состояния в том же порядке, что в таблице 3.

С помощью временной диаграммы определим задержку распространения и предельную частоту работы счетчика.

Рисунок 8 - временная диаграмма сигналов

Как видно из временной диаграммы $t_{\rm вр.з.р.cч}=1$ мкс. Расчитаем максимальную частоту срабатывания.

$$f_{max} = \frac{1}{\mathsf{t}_{\scriptscriptstyle{\mathrm{Bp.3.p.cq}}}} = 1$$
МГц

- 5. Исследование четырёхразрядного синхронного суммирующего счётчика с параллельным переносом ИС К555ИЕ9, аналог ИС 74LS160. Проверить работу счётчика
- от одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы,
 - от импульсов генератора.

Просмотреть на экране логического анализатора (осциллографа) временную диаграмму сигналов на входе и выходах счетчика, провести анализ временной диаграммы сигналов счетчика. Измерить время задержки распространения счетчика и максимальную частоту счета.

Составим схемы для анализа работы описанного счетчика (рисунки 9 и 10)

Рисунок 9 - схема для анализа ИС 74LS160 при помощи одиночных импульсов

Рисунок 10 - схема для анализа ИС 74LS160 при помощи импульсов генератора

Составим таблицу состояний счетчика в статическом режиме (таблица 4).

Таблица 4 - таблица состояний счетчика

Код	Q3	Q2	Q1	Q0	ENC
состояния					
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	1

Как видно из таблицы, счетчик работает корректно.

Отобразим временную диаграмму сигналов в схеме в динамическом режиме (рисунок 11). Как видно из временной диаграммы, счетчик работает корректно.

Рисунок 11 - временная диаграмма сигналов

Рисунок 12 – спадающий сигнал тактирования (отмечен треугольниками) и переключившийся по нему выход счетчика QA

Как видно из рисунка 12 время задержки распространения выходных состояний счетчика после подачи тактируемого сигнала, примерно равно 4.8 наносекундам. Тогда время общей задержки $t_{\rm 3д.p.cq} = 19.2$ нс. Следовательно, максимальная частота счета при этом

$$f_{max} = \frac{1}{\mathsf{t}_{\text{вр.з.р.сч}}} = 52,083333 \,\text{МГц}$$

6. Исследование схем наращивания разрядности счетчиков ИЕ9 до четырех секций с последовательным переносом между секциями и по структуре «быстрого» счета.

Составим схему счетчика с последовательным переносом между секциями (рисунок 13).

Рисунок 13 - счетчик с последовательным переносом между секциями

Убедимся в корректности его работы на основании временной диаграммы (рисунок 14).

Рисунок 14 - временная диаграмма сигналов Составим счетчик по структуре «быстрого» счета (рисунок 13).

Рисунок 15 - счетчик составленные по структуре «быстрого» счета

Убедимся в корректности работы данного счетчика на основе временной диаграммы сигналов (рисунок 16).

Рисунок 16 - временная диаграмма сигналов.

Вывод: в ходе данной работы были изучены методы построения различных синхронных счетчиков, проведено изучение их задержек, исследована микросхема ИС 74LS160 и схемы наращивания разрядности счетчиков.