

Data Structure and Algorithms

Lab Report

Name: Asad Abbass Registration #: CSU-F16-109

Lab Report #: 07

Dated: 21-04-2018

Submitted To: Mr. Usman Ahmed

The University of Lahore, Islamabad Campus Department of Computer Science & Information Technology

Experiment # 07 Graph and its representations

Objective

The objectives of this lab session are to understand the basics of Graphs.

Software Tool

1. Dev C++

1 Theory

Graph is a data structure that consists of following two components:

- 1. A finite set of vertices also called as nodes.
- 2. A finite set of ordered pair of the form (u, v) called as edge. The pair is ordered because (u, v) is not same as (v, u) in case of directed graph(digraph). The pair of form (u, v) indicates that there is an edge from vertex u to vertex v. The edges may contain weight/value/cost.

Graphs are used to represent many real life applications: Graphs are used to represent networks. The networks may include paths in a city or telephone network or circuit network. Graphs are also used in social networks like linkedIn, facebook. For example, in facebook, each person is represented with a vertex(or node). Each node is a structure and contains information like person id, name, gender and locale. See this for more applications of graph.

Following two are the most commonly used representations of graph

- . 1. Adjacency Matrix
- 2. Adjacency List

There are other representations also like, Incidence Matrix and Incidence List. The choice of the graph representation is situation specific. It totally depends on the type of operations to be performed and ease of use.

Adjacency Matrix:

Adjacency Matrix is a 2D array of size V x V where V is the number of vertices in a graph. Let the 2D array be adj[][], a slot adj[i][j] = 1 indicates that there is an edge from vertex i to vertex j. Adjacency matrix for undirected graph is always symmetric. Adjacency Matrix is also used to represent weighted graphs. If adj[i][j] = w, then there is an edge from vertex i to vertex j with weight w.

Adjacency List:

An array of linked lists is used. Size of the array is equal to number of vertices. Let the array be array[]. An entry array[i] represents the linked list of vertices adjacent to the ith vertex. This representation can also be used to represent a weighted graph. The weights of edges can be stored in nodes of linked lists.

2 Program

```
int main()
{
    int V = 5;
    vector < int > adj [V];
    addEdge(adj, 0, 1);
    addEdge(adj, 1, 2);
    addEdge(adj, 1, 3);
    addEdge(adj, 1, 3);
    addEdge(adj, 2, 3);
    addEdge(adj, 3, 4);
    printGraph(adj, V);
    return 0;
}
```