Movie Clips Dataset Creation Methods

Diego Rodrigues
October 15, 2024

Outline

Introduction

Dataset Description

Dataset Used

Data Acquisition

Determining Library Availability

API Integration

Data Processing and Embedding

Handling Missing Plot Embeddings

Plot Embedding Generation

Data Cleaning and Preparation

Embedding Visualization

Dimensionality Reduction

Visualization Example

Introduction

Overview

- Objective: Develop a comprehensive dataset of movie clips for analysis, visualization, and various applications.
- Components:
 - Movie Metadata Collection
 - Library Availability Determination
 - Plot Embedding Generation
 - Data Cleaning and Preparation
 - Embedding Visualization

Dataset Description

Dataset Overview

• **Source:** sample_mflix.embedded_movies from Hugging Face.

Attributes Collected:

- _id: Unique identifier for the movie.
- title: Title of the movie.
- release year: Year the movie was released.
- genres: List of genres (e.g., Western, Action, Fantasy).
- plot: Brief summary of the movie's plot.
- plot_embedding: Numerical embeddings of the plot generated using OpenAI's text-embedding-ada-002 model.
- runtime, rated, cast, directors, writers, awards, imdb, countries, tomatoes, etc.
- Size: 1,500 movie records.
- Format: JSON documents.

Data Acquisition Methods

Hugging Face Dataset:

- Utilized the sample_mflix.embedded_movies dataset.
- Contains movies with genres: Western, Action, or Fantasy.

• APIs Used:

- IMDb API for additional movie metadata.
- TMDb API for supplementary details and multimedia resources.

• Data Extraction:

- Automated scripts to fetch and integrate data from multiple sources.
- Ensured compliance with data usage policies of respective platforms.

• Batch Processing:

- Employed threading and asynchronous requests to enhance efficiency.
- Managed large-scale data extraction seamlessly.

Determining Library Availability

Library Availability Process

- Objective: Identify which movies are available in partnered libraries.
- Method: Utilize the Primo API to check availability.
- Steps:
 - 1. Extract movie titles from the dataset.
 - 2. Query the Primo API for each title.
 - 3. Parse API responses to determine availability.
 - 4. Attach library links to available movies.
- Output: Enhanced dataset with library availability status and links.

API Integration for Availability

- Primo API Usage:
 - Fetch availability status for each movie.
 - Retrieve detailed library links where the movie is available.
- Concurrency: Implemented multithreading to handle multiple API requests simultaneously.
- **Error Handling:** Managed API rate limits, connection issues, and unexpected responses.
- Data Storage: Stored results in JSON and Excel formats for flexibility.

Data Processing and Embedding

Handling Missing plot_embedding

 Issue: Some movie records lack valid plot_embedding, leading to processing and visualization errors.

• Strategy:

- Identification: Detect records with missing or empty plot_embedding.
- Exclusion: Exclude these records from further processing to maintain data integrity.
- **Logging:** Log the titles of excluded movies for future reference or manual inspection.

Benefits:

- Prevents errors during library availability checks and visualization.
- Maintains the quality and reliability of the dataset.

Plot Embedding Generation

- **Purpose:** Convert textual plot summaries into numerical vectors for analysis.
- Techniques Used:
 - OpenAl's text-embedding-ada-002: Generates high-dimensional embeddings capturing plot semantics.
- Tools and Libraries:
 - Hugging Face Transformers, OpenAl API.
- Output: 1536-dimensional plot embeddings for each movie.

Data Cleaning and Preparation

Handling Missing Values:

- Ensured completeness of essential fields (title, plot).
- Excluded records with critical missing data (plot_embedding).

Normalization:

- Standardized numerical features (ratings, runtime).
- Encoded categorical variables (genre, language) using one-hot encoding.

Data Validation:

- Verified consistency and accuracy of data entries.
- Removed duplicates and corrected inconsistencies.

Embedding Visualization

Embedding Visualization Overview

- **Objective:** Visualize movie embeddings to identify patterns and clusters.
- Dimensionality Reduction Techniques:
 - UMAP (Uniform Manifold Approximation and Projection)
- Visualization Tools:
 - Matplotlib, Seaborn for static plots.
 - Plotly for interactive visualizations.
- Insights Gained:
 - Identification of genre clusters.
 - Trends based on release year and ratings.

Dimensionality Reduction Techniques

• UMAP:

- Maintains both local and global data structure.
- Faster and scalable compared to other techniques like t-SNE.
- Ideal for large datasets and preserving meaningful relationships.

UMAP Visualization

Figure 1: UMAP Scatter Plot of Movie Embeddings

Results and Insights

Dataset Statistics

- Total Movies: 1,500
- Genres: Western, Action, Fantasy
- Average Runtime: 106 minutes
- Language Distribution: Primarily English with select multilingual entries.
- **Library Availability:** 60% of movies available in at least one library

Clustering Insights

 Genre Clusters: Clear separation between Western, Action, and Fantasy movies in the embedding space.

• Trend Analysis:

- Release year trends showing the evolution of genres over time.
- Correlation between IMDb ratings and embedding distances, indicating viewer preferences.

Library Availability Patterns:

- Popular and highly-rated movies are more likely to be available in libraries.
- Niche genres have lower availability rates, highlighting areas for library collection expansion.