HIERARCHICAL PLANNING DURING NAVIGATION

¹ Jan Balaguer, ² Demis Hassabis, ² Hugo Spiers, ¹ Chris Summerfield

juan.delojobalaguer@psy.ox.ac.uk

University of Oxford
University College London

Introduction

Hierarchical representations alleviate the complexity of planning over multiple states. Using fMRI, we looked for the neural correlates of subgoal states (e.g. line changes) within a navigation task. 20 healthy participants planned their way within a virtual underground network they had previously been familiarised with.

Main effects

PPI analysis

Conclusions

We have found unique signatures of a hierarchical representations in the brain while performing a navigation task. Specifically:

- IPL signals a switch of response.
- dIPFC signals exchange stations, but predicts the line change in advance
- caudate combines information from these two regions in order to change lines
- these regions are functionally connected during a line change (PPI analysis).

Task pesign

Reaction times

ROI analysis

inferior parietal lobule

right caudate

Steps around each condition

