TOI推廣計畫

解題-尋找蜂后

題

目

科學家發現了一種新型的蜜蜂,它們的蜂巢結構為立方體,蜂巢被蜂巢壁分割為好幾個小空間,而蜂后住在蜂巢內最大的空間中。今日為了研究這種蜜蜂,需找到蜂巢中的最大空間,以確認蜂后位置。蜂巢的長度為L,寬度為W,高度為H,請你寫一個程式計算蜂巢中的最大空間為多少。

輸入格式

每筆測試資料為二列:

- 1. 有**三個正整數L \cdot W \cdot H** (1 ≤ L, W, $H \le 135$) · $L \cdot W \cdot H$ 代表蜂巢的長、 寬、高。
- 2. 共有 $L \times W \times H$ 個字元,前 $L \times W$ 個字元為蜂巢的第一層,接下來 $L \times W$ 個字元為蜂巢的第二層,以此類推。每個字元可以是 0 或 1,1 代表蜂巢壁,0 代表蜂巢中的空間。

輸出格式

對每筆資料請輸出一列,請輸出蜂巢中的最大空間。

以輸入範例為例,則蜂巢結構如下圖所示,蜂后所在的空間為灰色區域,共有七格。

	1000000			
10	001	111	ま会 1 <i>左</i> 左 <i>[</i> Til	ま会 1 1 2年 <i>[</i> 五]
	4000	86	│輸入範例	輸出範例
01	001	101	333	7
				'
10	111	111	0101010100010011111111111111	

解題重點:

- 1. 三維陣列儲存整個蜂巢
- 2. 尋找蜂巢中最大的空間size
- method 1: 深度優先搜尋 (DFS)

➤ 深度優先搜尋 (DFS):

先任意傳入一個為0的位置,並**搜尋上下左右前後是否有尚未拜 訪過的空格**,並**搜尋上下左右的周遭是否有空格**,直至整個空間 皆被拜訪,拜訪的數量即是此空間的大小。

▶以第一組範例測資為例:

➤ 深度優先搜尋 (DFS):

先任意傳入一個為0的位置,並**搜尋上下左右前後是否有尚未拜 訪過的空格**,並**搜尋上下左右的周遭是否有空格**,直至整個空間 皆被拜訪,拜訪的數量即是此空間的大小。

▶以第一組範例測資為例:

010 001 111
101 001 101
010 111 111

往上一層

➤ 深度優先搜尋 (DFS):

先任意傳入一個為0的位置,並**搜尋上下左右前後是否有尚未拜 訪過的空格**,並**搜尋上下左右的周遭是否有空格**,直至整個空間 皆被拜訪,拜訪的數量即是此空間的大小。

▶以第一組範例測資為例:

010 001 111101 001 101010 111 111 同層往下一格

➤ 深度優先搜尋 (DFS):

先任意傳入一個為0的位置,並**搜尋上下左右前後是否有尚未拜 訪過的空格**,並**搜尋上下左右的周遭是否有空格**,直至整個空間 皆被拜訪,拜訪的數量即是此空間的大小。

▶以第一組範例測資為例:

010 001 111101 001 101010 111 111 同層往右一格

➤ 深度優先搜尋 (DFS):

先任意傳入一個為0的位置,並**搜尋上下左右前後是否有尚未拜 訪過的空格**,並**搜尋上下左右的周遭是否有空格**,直至整個空間 皆被拜訪,拜訪的數量即是此空間的大小。

▶以第一組範例測資為例:

010 001 111101 001 101010 111 111 同層往上一格

➤ 深度優先搜尋 (DFS):

先任意傳入一個為0的位置,並**搜尋上下左右前後是否有尚未拜 訪過的空格**,並**搜尋上下左右的周遭是否有空格**,直至整個空間 皆被拜訪,拜訪的數量即是此空間的大小。

▶以第一組範例測資為例:

010 001 111 101 001 101 已無未拜訪空間 010 111 111 往上一層

➤ 深度優先搜尋 (DFS):

先任意傳入一個為0的位置,並**搜尋上下左右前後是否有尚未拜 訪過的空格**,並**搜尋上下左右的周遭是否有空格**,直至整個空間 皆被拜訪,拜訪的數量即是此空間的大小。

▶以第一組範例測資為例:

010 001 111 101 001 101 已無未拜訪空間 010 111 111 往上一層

➤ 深度優先搜尋 (DFS):

先任意傳入一個為0的位置,並**搜尋上下左右前後是否有尚未拜 訪過的空格**,並**搜尋上下左右的周遭是否有空格**,直至整個空間 皆被拜訪,拜訪的數量即是此空間的大小。

▶以第一組範例測資為例:

010 001 111

完全無未拜訪空間,共計7個空格

101 001 101

→ 此次DFS獲得大小為7的空間

010 111 111

- ➤ 缺點:
- 由於使用遞迴進行回溯,因此在測資較大時,會造成 runtime error (stack overflow)。
- ▶ 最後一組測資的大小為 **135**³,無法用此方法解決。

▶ 廣度優先搜尋 (BFS):

先任意傳入一個為 0 的位置,並**將周圍未拜訪的空格放入佇列中**,並**使用一個陣列紀錄此佇列中有哪些空格**,避免重複拜訪。

▶以第一組範例測資為例:

藍色為已拜訪的節點。 紅色為在佇列中,而尚未拜訪的節點。

▶ 廣度優先搜尋 (BFS):

先任意傳入一個為 0 的位置,並**將周圍未拜訪的空格放入佇列中**,並**使用一個陣列紀錄此佇列中有哪些空格**,避免重複拜訪。

▶以第一組範例測資為例:

藍色為已拜訪的節點。 紅色為在佇列中,而尚未拜訪的節點。

▶ 廣度優先搜尋 (BFS):

先任意傳入一個為 0 的位置,並**將周圍未拜訪的空格放入佇列中**,並**使用一個陣列紀錄此佇列中有哪些空格**,避免重複拜訪。

▶以第一組範例測資為例:

藍色為已拜訪的節點。 紅色為在佇列中,而尚未拜訪的節點。

▶ 廣度優先搜尋 (BFS):

先任意傳入一個為 0 的位置,並**將周圍未拜訪的空格放入佇列中**,並**使用一個陣列紀錄此佇列中有哪些空格**,避免重複拜訪。

▶以第一組範例測資為例:

藍色為已拜訪的節點。 紅色為在佇列中,而尚未拜訪的節點。

▶ 廣度優先搜尋 (BFS):

先任意傳入一個為 0 的位置,並**將周圍未拜訪的空格放入佇列中**,並**使用一個陣列紀錄此佇列中有哪些空格**,避免重複拜訪。

▶以第一組範例測資為例:

藍色為已拜訪的節點。 紅色為在佇列中,而尚未拜訪的節點。

▶ 廣度優先搜尋 (BFS):

先任意傳入一個為 0 的位置,並**將周圍未拜訪的空格放入佇列中**,並**使用一個陣列紀錄此佇列中有哪些空格**,避免重複拜訪。

▶以第一組範例測資為例:

藍色為已拜訪的節點。 紅色為在佇列中,而尚未拜訪的節點。

▶ 廣度優先搜尋 (BFS):

先任意傳入一個為 0 的位置,並**將周圍未拜訪的空格放入佇列中**,並**使用一個陣列紀錄此佇列中有哪些空格**,避免重複拜訪。

▶以第一組範例測資為例:

藍色為已拜訪的節點。 紅色為在佇列中,而尚未拜訪的節點。

▶ 廣度優先搜尋 (BFS):

先任意傳入一個為 0 的位置,並**將周圍未拜訪的空格放入佇列中**,並**使用一個陣列紀錄此佇列中有哪些空格**,避免重複拜訪。

▶以第一組範例測資為例:

藍色為已拜訪的節點。 → 最後求得答案為 7