北京邮电大学 2021-2022 学年第 | 学期

《通信原理 I》期末考试试题(A 卷)

注意事项		闭卷考试 不使用计算器 手机关机、放在指定位置							
考试课程	通信	原理	考试	时间	2021年12月27日				
题号	- =		三	四	五	总分			
满分	50 12		12	12	12	100			
得分									
阅卷教师									

提示:
$$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} dt$$
; $\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$; $\operatorname{rect}(x) = \begin{cases} 1, & |x| \leq \frac{1}{2} \\ 0, & \text{else} \end{cases}$

本试卷中 $P(\)$ 表示概率, $p(\)$ 表示概率密度, $N(0,\sigma^2)$ 表示均值为零、方差为 σ^2 的高斯分布。

一. 单项选择(每题1分,共50分)

将最佳答案写在下面的答题表中,写在别处不得分

空格号	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
答案	A	D	D	D	В	С	A	B 或 D	В	D
空格号	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
答案	В	С	A	С	A	A	В	С	D	С
空格号	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)
答案	D	В	A	С	С	С	В	С	A	A
空格号	(31)	(32)	(33)	(34)	(35)	(36)	(37)	(38)	(39)	(40)
答案	С	В	В	С	A	D	В	A	С	A
空格号	(41)	(42)	(43)	(44)	(45)	(46)	(47)	(48)	(49)	(50)
答案	В	D	D	В	D	С	A	D	A	В

1. 在升余弦滚降系统中,滚降系数越大则(1)越大。

(1) (A) 带宽 (B) ISI (C) 频带利用率 (D) 信噪比

2. 最佳基带系统的误比特率随(2)的增加而降低。

(2) (A) 滚降系数 α (B) 进制数M (C) 噪声功率谱密度 N_0 (D) 比特信噪比 $E_{\rm b}/N_0$

3. 在 M 进制调制中,星座点数加倍则每符号携带的比特数(3)。保持符号速率不变,如果传输数据速率加倍则需进制数从 M 变成(4)。

(3)	(A) 不变	(B) 增加一倍	(C) 增加 2 比特	(D) 增加 1 比特
(4)	(A) M+1	(B) 2M	(C) $M+2$	(D) M ²

4. 当进制数 *M* 增加时, *M*QAM 的(5), *M*FSK 的(6)。

(5)(6)	(A) 频谱效率提高, 抗噪声能力提高	
(3)(0)	(C) 频谱效率下降, 抗噪声能力提高	(D) 频谱效率下降,抗噪声能力下降

5. 某基带传输系统的总体冲激响应为 $x(t) = h_1(t)h_2(t)$,其中 $h_1(t)$ 、 $h_2(t)$ 的傅氏变换分别是 $H_1(f)$ 和 $H_2(f)$,其绝对带宽分别是 B_1 和 B_2 。该系统的绝对带宽是<u>(7)</u>,该系统实现无ISI 传输的条件是<u>(8)</u>满足奈奎斯特准则。

(7)	(A) $B_1 + B_2$	(B) $B_1 \cdot B_2$	(C) $\min(B_1, B_2)$		(D) $\max(B_1, B_2)$		
(8)	(A) $H_1(f) \cdot H_2(f)$			(B) $H_1(f)$ 和 $H_2(f)$ 全都			
(0)	(C) $H_1(f)$ +	$H_2(f)$		(D) $H_1(f)$ 和 $H_2(f)$ 中任意一个			

6. 设基带传输系统的符号速率是 10Baud,系统的总体冲激响应为x(t)。为了使接收端采样点无 ISI,x(t)应满足(9),其中 c 表示常数。

(9)	(A) $\sum_{n=-\infty}^{\infty} x(t-0.1n) = c$	(B) $x(0.1n) = \begin{cases} c, & n = 0 \\ 0, & n = \pm 1, \pm 2, \dots \end{cases}$
(2)	(C) $\sum_{n=-\infty}^{\infty} x(t-10n) = c$	(D) $x(10n) = \begin{cases} c, & n = 0 \\ 0, & n = \pm 1, \pm 2, \dots \end{cases}$

7. 设四进制基带传输系统的信道带宽是 2kHz。按照奈奎斯特极限,该系统无 ISI 传输的最高比特速率是(10)kbit/s,对应的频带利用率是(11)bit/s/Hz。若采用滚降系数为 1/3 的升余弦频谱滚降,则无 ISI 传输的最高速率是(12)kbit/s,对应的频带利用率是(13)bit/s/Hz。

(10)(11)(12)(13) | (A) 3 | (B) 4 | (C) 6 | (D) 8

8. 如果数字基带传输系统的设计遵循(14)准则,则可以实现(15)传输。

(14)	(A) MAP	(B) ML	(C) 奈奎斯特	(D) 维纳辛钦
(15)	(A) 无 ISI	(B) 无差错	(C) 无噪声	(D) 无失真

9. 均值为零的双极性 NRZ 信号通过调幅指数为 1 的 AM 调制器,输出是(16)信号;通过调频指数为 1 的 FM 调制器,输出是(17)信号;通过 DSB-SC 调制器,输出是(18)信号;先通过差分编码,再通过 DSB-SC 调制器,输出是(19)信号。这四种调制方式中,只能相干解调的是(20),可以差分相干解调的是(21)。

(16)(17)(18)(19)(20)(21) (A) OOK (B) 2FSK (C) BPSK (D) DPSK

10. 给定 $E_{\rm b}/N_0$, 4FSK 的误比特率是误符号率的(22)倍,格雷映射的 QPSK 的误比特率近似是误符号率的(23)倍,非格雷映射的 QPSK 的误比特率近似是误符号率的(24)倍。

(22)(23)(24) (A) 1/2 (B) 2/3 (C) 3/4 (D) 1

11. 设二进制数据独立等概、速率为 3kbit/s,则 OOK 的主瓣带宽是<u>(25)</u>,BSPK 信号的主瓣带宽是<u>(26)</u>kHz。采用最佳相干解调时,对于相同的误比特率目标,OOK 所需的 $E_{\rm b}/N_{\rm 0}$ 比 BPSK 高(27)dB。

(25)(26)(27) (A) 2 (B) 3 (C) 6 (D) 8

12. 若 BPSK 的误比特率是 0.001,则 2DPSK 相干解调差分译码后的误比特率是(28)。

(28) (A) 0.0005 (B) 0.001 (C) 0.002 (D) 0.003

(32)					,	,	•		`	=+1) $p(y x=+1)$	1)
(33) (A)	y = -1	(H	3) y=	= 0	(C)	y = +1		(D)	y = z	7,	
微秒,比特 微焦耳。											
(34)(35)	(36)(37)	') (A) 1		(B) 2		(C)	4		(D) 8	
16. 某 4A	SK 系统	统通过	AWG	N 信道	发送 $x \in$	$\{\pm 3, \pm 1\}$,接收	端判符	央输え	入为 $y = x + z$,其	ţ中
`	,							判决,	则	当 y < -2 时,判 <i>得</i>	中输
出为 $\hat{x} = (3)$	-	送 $x = \frac{1}{2}$			y < -2 的						
(38) (A)) -1	()	(C)				D) +3	_
(39) (A)	$\frac{1}{2}$ erfc	$\left(\frac{1}{\sqrt{2\sigma^2}}\right)$) (B	$\frac{1}{2}$ erfc	$\left(\frac{3}{\sqrt{2\sigma^2}}\right)$	$ \left (C) \right $	$\frac{1}{2}$ erfc	$\frac{5}{\sqrt{2\sigma^2}}$		D) $\frac{1}{2}$ erfc $\left(\frac{7}{\sqrt{2\sigma^2}}\right)$	=
17. 假设各 中星座点之							= 21,贝	J 8ASI	K、8	PSK、8FSK 星座	逐
(40)(4	11)(42)	(A	A) 2		$(B) \sqrt{8}$	$ \overline{34}\sin\frac{\pi}{8} $	(C)	$\sqrt{21}$		(D) $\sqrt{42}$	
18.若 16QA 频带利用率				为 1/3,	数据速率	三为 12N	/Ibit/s,贝	发送	信号	的带宽是 <u>(43)</u> MH:	z,
(43)(44)	(A) 2			(B) 3		(C) 10/3			(D) 4	
19. 矩形 1 构成。	6QAM	由两个	正交的	内 <u>(45)</u> 构	成,QPS	SK 由两	万个正交	的 <u>(46</u>)	<u>)</u> 构成	t, 2FSK 由两个 <u>(</u>	47
(45)(46)((47)	(A) OO	K	(B)	2FSK		(C) BPS	SK		(D) 4ASK	
20. 下列数 最弱的是 <u>('</u>		 方式中	,频带	—— 5利用率	最高的是	是 <u>(48)</u> ,	 抗噪声能	 能力最	强的	是 <u>(49)</u> , 抗噪声能	_ b力
(48)(49)(50)	(A) 8I	FSK	((B) 16AS	SK	(C) 16	6PSK	_	(D) 64QAM	

13. 在数据速率 R_b 和滚降系数 α 都相同的条件下,QPSK 的(29)比 OQPSK 大。

14. 设 BPSK 系统发送星座点 $x \in \{\pm 1\}$,接收端判决输入是 y = x + z,其中 z 是与 x 独立的信 道噪声。下列中的(30)是先验概率,(31)是后验概率,(32)是似然函数。若 x 先验等概,则当

(B) 码间干扰

(29) (A) 包络起伏

(33)时, *x*也后验等概。

(C) 频带利用率

(D) 误比特率

姓名: 班级: 二.(14分)右图所示为某基带传输系统的总体传递

函数
$$X(f)$$
。 令 $M(f) = \sum_{n=-\infty}^{\infty} X(f - nR_s)$ 。 试:

(1) 求出能实现无 ISI 传输的最大符号速率 R_s 以及对 应的频带利用率;

- (2) 分别接 $R_s = 2$ kBaud 和 3kBaud 画出 M(f) 在 |f|≤3kHz 范围内的图形,并说明按该速率传输是否存在 ISI;
- (3) 求系统的总体冲激响应x(t)。

结果: sinc(4000t)sinc(2000t)

方法 1: 梯形是两个矩形的卷积, 底宽顶宽分别是两个矩形的宽度的和与差。梯形的面积是 x(0) \circ

方法 2: X(f) 的微分是左右两个矩形:

$$X'(f) = \frac{10^{-6}}{8} \left[\text{rect} \left(\frac{f + 2000}{2000} \right) - \text{rect} \left(\frac{f - 2000}{2000} \right) \right]$$

 $\frac{10^{-6}}{8} \left[2000 \operatorname{sinc}(2000t) e^{-j4000\pi t} - 2000 \operatorname{sinc}(2000t) e^{j4000\pi t} \right]$ 傅氏反变换为

$$= \frac{\operatorname{sinc}(2000t)}{4000} \cdot -2 \operatorname{jsin}(4000t) = \operatorname{sinc}(2000t) \operatorname{sinc}(4000t) \cdot - \operatorname{j} 2\pi t$$

故 x(t) = sinc(4000t) sinc(2000t)

三. (12 分) 解放 xx 岛需要通信保障。考虑 BPSK 调制通信系统。系统在每个比特周期 $T_{\rm b}$ 内等概发送 $s_{\rm l}(t) = 2\cos(2\pi f_{\rm c}t)$ 或 $s_{\rm l}(t) = -2\cos(2\pi f_{\rm c}t)$ 。信号通过无线信道传输,接 收端 RF 电路输出是 $r(t) = s_{\rm i}(t) + n_{\rm w}(t)$ (i=1,2),其中 $n_{\rm w}(t)$ 是双边功率谱密度为 $N_{\rm o}/2$ 的 高斯噪声。试:

- (1) 画出最佳接收框图;
- (2) 求发送 $s_1(t)$ 条件下,判决器输入y的均值、方差、概率密度函数;
- (3) 写出最佳判决门限及该系统发送的平均误比特率。

注:框图不唯一,例如可以是匹配滤波器;载波的系数也可以不是 1(下一问与此系数有 关)

均值
$$T_{\rm b}$$
、方差 $\sigma^2 = \frac{N_0 T_{\rm b}}{4}$,概率密度 $\sqrt{\frac{2}{\pi N_0 T_{\rm b}}} e^{-\frac{2(y-T_{\rm b})^2}{N_0 T_{\rm b}}}$

判决门限是零,BER=
$$\frac{1}{2}$$
erfc $\left(\sqrt{\frac{2T_b}{N_0}}\right)$

四. (12分) 某 16QAM 调制在归一化正交基下的星座图如 右图所示。每个星座点对应 4 比特,比特映射符合格雷码规则。图中外侧正方形边长为 4,内侧正方形边长为 2。各星座点等概出现,并通过 AWGN 信道传输。试:

- (1) 求平均符号能量,星座点之间的最小距离;
- (2) 按 ML 判决准则, 画出 1000、1100、0100、0000 四个星座点的判决域;
- (3) 补齐图中所缺的 5 个星座点对应的 4 个比特。

五. (12分) 试为某卫星通信系统设计数字调制解调子系统。系统需求: ⓐ能通过 15MHz 带宽实现 20Mbit/s 的数据流传输; ⑥卫星系统要求低功耗、低复杂度、高可靠性。答题要求: (1) 给出所设计的调制方式、符号速率、滚降系数; (2) 画出收发框图; (3) 简要说明你的设计能支撑前述 ② ⑥ 两点系统需求。

支撑理由:

- ② 以上设计能够在 15MHz 带宽上实现 20Mbps 传输
- ②有很多调制方式可以实现需求①,选择 0QPSK (QPSK) 是因为它具有包络起伏小(有利降低功耗),可靠性高(相对于 4ASK、8PSK 等),复杂度低。滚降系数可以在 0~0.5 中选最大的,有利于降低复杂度并提高可靠性(成形滤波器冲激响应衰减快、对时延误差敏感度低)【理由基本准确/靠谱就行】