ENSA Al Hoceima

TDN2

Pr. Y. Abouelhanoune 2018/2019

CP1: Algèbre I

Structures Algébriques : Groupes et sous groupes

Exercice 1

On munit $A = \mathbb{R} * \mathbb{R}$ de deux lois définies par :

 $(x,y) + (x\prime,y\prime) = (x+x\prime,y+y\prime)$ et $(x,y)*(x\prime,y\prime) = (xx\prime,xy\prime+x\prime y)$

- 1. Montrer que la loi * est bien commutative.
- 2. Montrer que la loi * est associative.
- 3. Déterminer l'élément neutre de A par la loi *
- 4. Montrer que (A, +) est un groupe.

Exercice 2

Dans \mathbb{R}^2 , on définit la de de composition interne T par $(x,y)T(x\prime,y\prime)=(x+x\prime,ye^{x\prime}+y\prime e^{-x})$

- 1. Montrer que (\mathbb{R}^2,T) est un groupe. Est-il abélien ?
- 2. determiner les sous groupes de (\mathbb{R}^2, T) .

Exercice 3

Soit $G = \mathbb{R}^* * \mathbb{R}$ et * la loi dans G définie par

$$(x,y)*(x\prime,y\prime) = (xx',xy'+y)$$

- 1. Montrer que (G,*) est un groupe non commutative
- 2. Montrer que $(]0, +\infty[*\mathbb{R}, *)$ est un sous groupe de (G, *).

Exercice 4

1. Montrer que $\mathbb Z$ est un monoïde pour la loi * définie par

$$x * y = x + y - xy$$

2. Trouver les éléments inversibles de $(\mathbb{Z},*)$.

Exercice 5

Soit (G,*) un groupe, et soit e son élément neutre.

On suppose que $\forall g \in G \quad g^2 = g * g = e$

- 1. Soient $x, y \in G$, déterminer $(x * y)^{-1}$.
- 2. Soient $x, y \in G$, déterminer x^{-1} et y^{-1}
- 3. En deduire que (G,*) est commutative.

Exercice 6

Soit E l'ensemble des fonctions $f: [0, +\infty[\to]0, +\infty[$ telles que

$$\forall \alpha \in]0, +\infty[\qquad f(x) = x^{\alpha}$$

- 1. Montrer que f est une bijiction de \mathbb{R}^+ sur \mathbb{R}^+
- 2. Montrer que E muni de la loi de composition o des fonctions est un groupe.

Exercice 7

- 1. Montrer que l'ensemble $A=\left\{\forall (a,b)\in\mathbb{Z}\ ,\ a+b\sqrt{2}\in\mathbb{R},\right\}$ est un sous anneau de \mathbb{R} .
 - 2. Montrer que $u = \sqrt{2} + 1$ est inversible dans A.