# WP2 - Semantic Parsing and Generation of Documents and Documents Components



#### WP2





#### Goal: Provide tools and methods for:

- Converting texts to models and models to text
- Annotating text fragments with model elements

#### Tasks:

- T2.1 Data Collection
- T2.2 Semantic Parsing
- T2.3 Natural Language Generation
- T2.4 Definition of a common target semantic language
- T2.5 Development of a Semantic Parser and of a Natural Language Generator

Text <==> Model



# **Synchronising Text and Model**







## **Related Work on Ontology Learning**

## **Ontology Learning from Text**

[Mädche and Staab 2000, Volker et al. 2007, Tablan et al. 2006, Zouaq and Nkambou 2008]

==> Restricted expressivity. Not applied to sentences (complex axioms).







## **Related Work on Semantic Parsing**

## **Deep parsing**

[Currant et al. 2007, McCartney and Manning 2007]

First Order Logic Representations close to initial text. Trained on newspaper text (Penn Tree Bank).

==> Not easily adaptable to Description Logic and SIDP text.

## **Domain Specific Semantic Parsing**

[Ge and Mooney 2009, Wong and Mooney 2007]

==> Require parallel text-data training corpus.

## **Open Domain Semantic parsing**

[Kwiatkowski et al 2010, Bordes et al. 2012, Kwiatkowski et al 2013, Berant et al., 2013, Bordes et al. 2014, Wang et al. 2015]

==> Restricted to questions. Require parallel question-answer training corpus.





#### **Related Work on Text Generation**

## **Symbolic Approaches**

[Dimitrios et al. 2007, Androtsopoulos et al. 2013, Power et al. 2010, Bontcheva et al. 2004]

==> Heavily dependent on hand-written modules.

## **Machine Learning Approaches**

[Wong et al. 2007, Belz 2008, Angeli et al. 2010, Chen et al. 2008, Konstas and Lapata 2012a and 2012b]

==> Require parallel data-text training corpus.

#### **Pattern-Based**

[Duma et al. 2010, Blake et al. 2013, Schilder et al. 2013]

==> Require large quantity of parallel or comparable text-data training corpus.

==> Limited Semantic Expressivity (set of RDF triples).



### **Contributions**



**Reversible Processing: Text <--> Model** 

Analysis: SIDP Rule → Description Logic Generation: Description Logic → SIDP Rule

Verification by generation

#### **Semantic Parsing of Complex Axioms**

Pipe shall be identified by labels

 $Pipe \sqsubseteq \exists identificationArg2^{-}.(Identification \sqcap \exists identificationArg3.Label)$ 

#### **Executable Semantic Parsing on DL KBs**

The output of semantic parsing is used to update a Description logic Knowledge Base and check the consistency of SIDPs (system installation design principle)

#### Genericity

No training corpus required. Adaptation to a new domain through grammar adaptation, extension or induction







## **Grammar-Based Parsing and Generation**







## **Grammar-Based Parsing and Generation**



 $PL:Pipe(x) \ L0:subset(PL,NL) \ NL:not(VPL)$  $VPL:exists(identifyA2inv,VL) \ VL:Identify(x)$ 

 $Pipe \sqsubseteq \exists \neg identify A2^-.(Identify)$ 





## **Semantic Variations**

| Logical Operators                           |                                                                                  |  |  |  |
|---------------------------------------------|----------------------------------------------------------------------------------|--|--|--|
|                                             | *                                                                                |  |  |  |
| Only S shall be used by O                   | $\neg S \sqsubseteq \neg \exists useA2^{-}.(use \sqcap \exists by.O)$            |  |  |  |
| S should be used by <u>all</u> O            | $O \sqsubseteq \exists by^(Use \sqcap \exists use A2.S)$                         |  |  |  |
| S shall <u>not</u> be used by O             | $S \sqsubseteq \neg \exists use A2^{-}.(Use \sqcap \exists by.O)$                |  |  |  |
| Word Order                                  |                                                                                  |  |  |  |
| S shall be used by O only                   | $S \sqsubseteq \neg \exists useA2^{-}.(Use \sqcap \exists by.\neg O)$            |  |  |  |
| All S shall be used by O                    | $S \sqsubseteq \exists useA2^{-}.(Use \sqcap \exists by.O)$                      |  |  |  |
| Arity                                       |                                                                                  |  |  |  |
| S shall be used                             | $S \sqsubseteq \exists useA2^(use)$                                              |  |  |  |
| S shall be used by O                        | $S \sqsubseteq \exists useA2^(use \sqcap \exists by.O)$                          |  |  |  |
| S shall be used by O on PO                  | $S \sqsubseteq \exists useA2^(use \sqcap \exists by.O \sqcap$                    |  |  |  |
|                                             | $\exists on. PO)$                                                                |  |  |  |
| Sentence                                    | Structure                                                                        |  |  |  |
| S shall be used by O <u>before</u> entering | $(Use \sqcap \exists useA2.S \sqcap \exists by.O) \sqsubseteq$                   |  |  |  |
| connections                                 |                                                                                  |  |  |  |
|                                             | $\exists before.(Enter $                                                         |  |  |  |
|                                             | $\exists enter A2. Connections)$                                                 |  |  |  |
| Modifiers                                   |                                                                                  |  |  |  |
| S shall be used directly by O               | $S \sqsubseteq \exists useA2^(Use \sqcap$                                        |  |  |  |
| <del></del>                                 | $\exists directly.(\exists by.O))$                                               |  |  |  |
| S shall be used by O between C and          | $S \sqsubseteq \exists useA2^(Use \sqcap \exists useA3.(O\sqcap \exists useA3))$ |  |  |  |
| D                                           | ,                                                                                |  |  |  |
|                                             | $\exists between A1^(Between \sqcap$                                             |  |  |  |
|                                             | $\exists between A2.C \sqcap \exists between A3.D)))$                            |  |  |  |



# Parsing, Generating and Checking Consistency



PARSING: CKY algorithm + Robustness mechanism to skip unknown words

GENERATION: Tabular algorithm + Polarity filtering

#### **CONSISTENCY CHECKING:**

The Semantic Representations output by the parser are converted to Description
 Logic Pipes should be identified by labels

```
l_1: Pipe(x)l_0: subset(l_1, l_2) \ l_2: exists(identifyA2inv, l_3) \ l_3: and(l_4, l_5)
l_4: Identify(z) \ l_5: exists(by, l_6)l_6: Label(y)
SubClassOf(Pipe ObjectSomeValuesFrom(identifyA2inv ObjectIntersectionOf(Identify ObjectSomeValuesFrom(by Label))))
```

- The resulting formulae are added to the AIRBUS KB
- Hermit is used to check for consistency





## **Experimental Setup and Results for Parsing**

Grammar: 52 trees

Lexicon: 10781 lexical entries

Parsing algorithm: CKY + Robustness mechanism to skip unknown words

Input: 991 System Installation Design Principles

|              | Complete<br>Parse | Partial Parse | Failure |
|--------------|-------------------|---------------|---------|
| Simple SIDP  | 132               | 329           | 24      |
| Complex SIDP | 0                 | 496           | 10      |
| All SIDP     | 132 (13%)         | 825 (83%)     | 34 (3%) |



# Updating the Model using Parsing Results (All Parses)



|             | Nb. of new Concepts               | 667   |
|-------------|-----------------------------------|-------|
| CONCEPTS    | Nb. of Existing Concepts          | 79    |
|             | Nb. of New Properties             | 98    |
| PROPERTIES  | Nb. of SIDP Axioms (from Parsing) | 957   |
|             | Nb of Invalid Axioms              | 61    |
| SIDP AXIOMS | Nb. of Redundant Axioms           | 125   |
|             | Nb. of Inconsistent Axioms        | 20    |
|             | Nb. of added SIDP Axioms          | 749   |
|             | Total Nb. Of Added Elements       | 1514  |
| ALL         | Nb. of Axioms in Initial KB       | 12469 |
|             | Nb. of Axioms in Enriched KB      | 14650 |





### **Generation Results**

Grammar: 52 trees

Lexicon: 10781 lexical entries

Generation algorithm: Tabular + Polarity Filtering

Input: 957 Description Logic Axioms derived from the AIRBUS System Installation Design Principles

|              | Success   | Failure |
|--------------|-----------|---------|
| Simple SIDP  | 448       | 13      |
| Complex SIDP | 470       | 26      |
| All SIDP     | 918 (96%) | 39 (4%) |





# **Verifying Parsing Results Using Generation**

| BLEU                | < 0.33    | > 0.32 and < 0.67 | > 0.66           |
|---------------------|-----------|-------------------|------------------|
| Complete Parses (S) | 1         | 0                 | 131 (14%)        |
| Complete Parses (C) |           |                   |                  |
| Partial (Simple)    | 143       | 117               | 69               |
| Partial (Complex)   | 396       | 91                | 9                |
| All Parses          | 540 (56%) | 208 <b>(22%)</b>  | 209 <b>(22%)</b> |

Regenerating from the DL formula derived through parsing from an SIDP:

- Produces a sentence identical to the input SIDP for complete parses
- Produces a sentence highly similar to the input SIDP in 44% of of the cases for partial parses





## **Perspectives and Future Work**

- Improve lexicon construction using chunking
- Improve coverage on complex sentences including conditions
- Querying the KB (support for AIRBUS engineers)
- Improve robustness and genericity (experiment with deep learning approaches using data expansion techniques and sequence to sequence models)

