## Vorlesungsmitschrift WS 2010/2011

# Informations- und Kodierungstheorie

von Steve Göring

email: stg7@gmx.de

# Inhaltsverzeichnis

| 1 | Kap | itel I: I | Elementare Kombinatorik                  | 1  |
|---|-----|-----------|------------------------------------------|----|
|   | 1.1 | Menge     | en, Einfache Abzählaussagen              | 1  |
|   |     | 1.1.1     | Gleichheitsregeln                        | 2  |
|   |     | 1.1.2     | Produktregel                             | 2  |
|   |     | 1.1.3     | Summenregel                              | 2  |
|   | 1.2 | Wortn     | nengen, Multinomialsatz                  | 3  |
|   |     | 1.2.1     | Satz                                     | 3  |
|   |     | 1.2.2     | Definition                               | 3  |
|   |     | 1.2.3     | Satz                                     | 3  |
|   |     | 1.2.4     | Multinomialsatz                          | 4  |
|   |     | 1.2.5     | Teilmengen, Permutationen                | 5  |
|   |     | 1.2.6     | Kombinationen und Variationen            | 6  |
|   | 1.3 | Das P     | rinzip der Inklusion und Exklusion       | 7  |
|   |     | 1.3.1     | Aufgabe                                  | 7  |
|   |     | 1.3.2     | Siebformel                               | 8  |
|   |     | 1.3.3     | Lösung der Aufgabe (1.3.1)               | 8  |
| 2 | Kap | itel II:  | Quellenkodierung                         | 10 |
|   | 2.1 |           | neines Modell der Nachrichtenübertragung | 10 |
|   |     | 2.1.1     | Quellenkodierung und Kanalkodierung      | 10 |
|   |     | 2.1.2     | Grundbegriffe                            | 11 |
|   |     | 2.1.3     | Diskrete Quelle                          | 12 |
|   | 2.2 | Quelle    | encodierung                              | 12 |
|   |     | 2.2.1     | Eindeutig entzifferbare Codes            | 12 |
|   |     | 2.2.2     | Präfixcode                               | 13 |
|   |     | 2.2.3     | Zielstellung der Quellencodierung        | 14 |
|   |     | 2.2.4     | Satz: Kraftsche Ungleichung              | 14 |
|   |     | 2.2.5     | Hauptsatz der Quellencodierung           | 15 |
|   |     | 2.2.6     | Satz                                     | 16 |
|   |     | 2.2.7     | Huffman-Algorithmus                      | 18 |
|   |     | 2.2.8     | Der erste Hauptssatz von Shannon         | 20 |
|   | 2.3 | Sucht     | heorie                                   | 22 |
|   |     | 2.3.1     | Suchprobleme und Entscheidungsbäume      | 22 |
|   |     | 2.3.2     | Satz: Informationstheoretische Schranke  | 24 |
|   |     | 2.3.3     |                                          | 25 |
|   |     | 2.3.4     | Stirlingsche Formel                      | 26 |

#### In halts verzeichn is

|   |     | 2.3.5    | Satz                                        |
|---|-----|----------|---------------------------------------------|
|   |     | 2.3.6    | Hauptsatz der Suchtheorie                   |
| 3 | Kap |          | Kanalkodierung 29                           |
|   | 3.1 | Entde    | cken und Korrigieren von Fehlern            |
|   |     | 3.1.1    | Aufgabenstellung der Kanalkodierung         |
|   |     | 3.1.2    | Blockcodes und Hammingabstand               |
|   |     | 3.1.3    | Abstandsmethode zur Fehlerkorrektur         |
|   |     | 3.1.4    | Definition                                  |
|   |     | 3.1.5    | Zielstellung der Kanalkodierung             |
|   |     | 3.1.6    | Hammingschranke, perfekte Codes             |
|   | 3.2 | Der 2.   | Hauptsatz von Shannon                       |
|   |     | 3.2.1    | Informationsrate                            |
|   |     | 3.2.2    | Fehlerwahrscheinlichkeiten                  |
|   |     | 3.2.3    | Satz (2. Hauptsatz von Shannon 1948)        |
| 4 | Kap | itel IV: | lineare Codes 39                            |
|   | 4.1 |          | rung                                        |
|   |     | 4.1.1    | Definition                                  |
|   |     | 4.1.2    | Definition                                  |
|   |     | 4.1.3    | Satz                                        |
|   |     | 4.1.4    | Generatormatrix                             |
|   |     | 4.1.5    | Kontrollmatrix                              |
|   | 4.2 | Hamm     | ing Codes                                   |
|   |     | 4.2.1    | Kontrollmatrix und Abstand                  |
|   |     | 4.2.2    | Satz (Hemming 1950)                         |
|   |     | 4.2.3    | Bemerkungen                                 |
|   |     | 4.2.4    | Satz                                        |
|   |     | 4.2.5    | Reed-Solomon-Codes                          |
|   | 4.3 | Footba   | all Pools                                   |
|   |     | 4.3.1    | Problemstellung                             |
|   |     | 4.3.2    | Lemma                                       |
|   |     | 4.3.3    | Satz                                        |
|   |     | 4.3.4    | Folgerung                                   |
|   |     | 4.3.5    | Beispiele                                   |
|   |     | 4.3.6    | Tabelle der bekannten Werte für $K_3(n,r)$  |
| 5 | Kan | itel V:  | Prüfziffersysteme 52                        |
| - | 5.1 |          | rung                                        |
|   |     | 5.1.1    | Häufigkeit der Eingabefehler (Verhoff 1969) |
|   |     | 5.1.2    | Prüfziffersysteme                           |
|   |     | 5.1.3    | Gruppen                                     |
|   |     | 5.1.4    | Symetrie Gruppen                            |
|   |     | J        |                                             |

#### In halts verzeichn is

| Prüfzeichen-Codierung über Gruppen |                                         |                                                        |  |  |
|------------------------------------|-----------------------------------------|--------------------------------------------------------|--|--|
| 5.2.1                              | Grundmodelle                            | 55                                                     |  |  |
| 5.2.2                              | Prüfziffer-Codierung modulo m           | 56                                                     |  |  |
| 5.2.3                              | Satz                                    | 58                                                     |  |  |
| 5.2.4                              | Prüfziffersystem für deutsche Banknoten | 58                                                     |  |  |
|                                    | 5.2.1<br>5.2.2<br>5.2.3                 | Prüfzeichen-Codierung über Gruppen  5.2.1 Grundmodelle |  |  |

## Hinweise

Im Skript werden für Zahlenbereiche keine doppelt schrafierten Buchstaben verwendet, d.h.:  $\mathbb{N}=N, \mathbb{R}=R, \mathbb{C}=C$ 

Das SKript entstand aus den Mitschriften von:

Markus Hartwig, Andreas Loth, Steve Göring

Dank an Steffen Hirte für das Korrekturlesen.

## 1 Kapitel I: Elementare Kombinatorik

Vorlesung 1

## 1.1 Mengen, Einfache Abzählaussagen

#### Mengen $A, A_1, ..., B$

- $x \in A$ : x ist Element von A
- $\emptyset$ : leere Menge
- $A \subseteq B$ : A ist Teilmenge von B  $(x \in A \Rightarrow x \in B)$
- A = B: A ist gleich B  $(x \in A \Leftrightarrow x \in B)$
- |A|: Mächtigkeit von A (Anzahl der Elemente)
- A ist endliche Menge, falls  $|A| \ge 0$  und |A| eine natürliche Zahl ist

#### Mengenoperationen .

- Vereinigung:  $A \cup B := \{x | x \in A \lor x \in B\}$
- Durchschnitt:  $A \cap B := \{x | x \in A \land x \in B\}$
- Differenz:  $A B := \{x | x \in A \land x \notin B\}$
- Kartesisches Produkt:

```
A \times B := \{x = (x_1, x_2) | x_1 \in A \land x_2 \in B\}

A_1 \times ... \times A_n := \{x = (x_1, ..., x_n) | x_i \in A_i \text{ für } i = 1, ..., n\}

A^n := A \times ... \times A \text{ n mal} = \{x = (x_1, ..., x_n) | x_i \in A_i; \text{ für } i = 1, ..., n\}

x = (x_1, ..., x_n): Folge der Länge n, n- Tupel, Zeilenvektor mit n Komponenten
```

• A, B heißen disjunkt, falls  $A \cap B = \emptyset$  ist

#### Abbildungen .

- $f: A \to B$  f ist Abbildung von A in B
- BILD MIT MENGEN DING
- f injektiv (eineindeutig):  $a \neq a' \Rightarrow f(a) \neq f(a') \forall a, a' \in A$
- f surjektiv (Abb. auf B):  $\forall b \in B \exists a \in A \text{ mit } f(a) = b$
- f bijektiv: f injektiv und f surjektiv
- $A \cong B$  (A gleichmächtig zu B oder A isomorph zu B), falls es eine bijektive Abb. von A auf B gibt

#### Einfache Regeln .

- $A \cong B \Rightarrow B \cong A$
- $\bullet$   $A \cong A$
- $A \cong B \land B \cong C \Rightarrow A \cong C$
- $A = B \Rightarrow A \cong B$  (Umkehrung gilt nicht)

## 1.1.1 Gleichheitsregeln

$$|A| = |B| \Leftrightarrow A \cong B$$

- $|A| = 0 \Leftrightarrow A = \emptyset$
- $|A| = n \Leftrightarrow \{1,...,n\} \cong A$ , n ist natürliche Zahl

## 1.1.2 Produktregel

$$|A \times B| = |A| \cdot |B|$$

- $|A_1 \times ... \times A_n| = |A_1| \cdot ... \cdot |A_n|$
- $\bullet |A^n| = |A|^n$
- $|\{0,1\}^n|=2^n$

#### 1.1.3 Summenregel

A,B disjunkt  $\Rightarrow |A \cup B| = |A| + |B|$ 

•  $A_1, ..., A_n$  paarweise disjunkt  $\Rightarrow |A_1 \cup ... \cup A_n| = |A_1| + ... + |A_n|$ 

#### **Beispiel**

- 6 lateinische Bücher  $L = \{l_1,..,l_6\} |L| = 6$
- 5 griechische Bücher  $G = \{g_1,..,g_5\} \, |G| = 5$
- 8 englische Bücher  $E = \{e_1, ..., e_8\} |E| = 8$

Auf wieviel verschiedene Arten kann man 2 Bücher verschiedener Sprachen auswählen? B sei die Menge der Möglichkeiten  $\Rightarrow B \cong L \times G \cup L \times E \cup G \times E$  (Mengen paarweise disjunkt)

$$\Rightarrow |B| = |L \times G| + |L \times E| + |G \times E| = 30 + 48 + 40 = 118$$

## 1.2 Wortmengen, Multinomialsatz

Alphabet A: endliche, nicht-leere Menge

Buchstaben: Element aus A

Wort der Länge n über A : Folge der Länge n über A  $w=(w_1,...,w_n) \ \widehat{=}\ w_1..w_n$  mit  $w_i \in A$  für i=1..n

 $A^n$  = Menge aller Wörter der Länge n über A

leeres Wort : Folge der Länge 0, wird mit  $\varepsilon$  bezeichnet  $A^0 = \{\varepsilon\}$ 

 $A^* := \bigcup_{n=0}^\infty A^n$ : Menge aller Wörter über A

#### 1.2.1 Satz

$$|A^n| = |A|^n \ \forall n \ge 0$$

#### 1.2.2 Definiton

 $W\begin{pmatrix} a_1 & ... & a_r \\ k_1 & ... & k_r \end{pmatrix}$  sei die Menge aller Wörter w der Länge  $n=k_1+...+k_r$ , wobei der Buchstabe  $a_i$  in w genau  $k_i$  mal auftaucht  $\forall i=1..r$ 

#### **Beispiel**

$$W\begin{pmatrix} a & b \\ 1 & 2 \end{pmatrix} = \{abb, bab, bba\}$$

$$W\begin{pmatrix} a & b & c \\ 1 & 1 & 1 \end{pmatrix} = \{abc, bac, cab, acb, bca, cba\}$$

$$W\begin{pmatrix} a & b & c \\ 1 & 2 & 0 \end{pmatrix} = W\begin{pmatrix} a & b \\ 1 & 2 \end{pmatrix}$$

#### 1.2.3 Satz

$$\left|W\begin{pmatrix}a_1&..&a_r\\k_1&..&k_r\end{pmatrix}\right|=\frac{(k_1+...+k_r)!}{k_1!\cdot...k_r!}\text{ für }k_1,..k_r\geq0$$

#### **Beweis**

(Induktion über  $n = k_1 + ... + k_r$ )

(IA)

n=0: 
$$k_1 = \dots = k_r = 0$$
  
 $W \begin{pmatrix} a_1 & \dots & a_r \\ 0 & \dots & 0 \end{pmatrix} = \{\epsilon\}, |W| = \frac{0!}{0!} = 1$ 

(IS)

$$(n-1 \Rightarrow n)$$

$$n = k_1 + \dots + k_r \ge 1$$

$$W = W \begin{pmatrix} a_1 & \dots & a_r \\ k_1 & \dots & k_r \end{pmatrix}$$

- $W_i = \{w \in W | w \text{ beginnt mit Buchstaben } a_i\}$  für i = 1..r
- $W = \bigcup_{i=1}^{r} W_i$   $W_i$  sind paarweise disjunkt
- $\bullet \Rightarrow |W| = |W_1| + ... + |W_r|$
- $W_i = W \begin{pmatrix} a_1 & \dots & a_i & \dots & a_r \\ k_1 & \dots & k_i 1 & \dots & k_r \end{pmatrix}$  (lassen den ersten Buchstaben  $a_i$  weg)

• Aus (IV) folgt dann:  

$$|W_i| \cong \left| W \begin{pmatrix} a_1 & .. & a_i & .. & a_r \\ k_1 & .. & k_i - 1 & .. & k_r \end{pmatrix} \right|$$

$$= \frac{(k_1 + ... + k_r - 1)!}{k_1! ... (k_i - 1)! ... k_r!} = k_i \cdot \frac{(k_1 + ... + k_r - 1)!}{k_1! ... k_r!}$$

•  $|W| = |W_1| + ... + |W_r|$ =  $\sum_{i=1..r} k_i \cdot \frac{(k_1 + ... + k_r - 1)!}{k_1! \cdot ... \cdot k_r!}$  (gleichen Term  $\frac{(k_1 + ... + k_r - 1)!}{k_1! \cdot ... \cdot k_r!}$  ausklammern ) =  $(k_1 + ... + k_r) \cdot \frac{(k_1 + ... + k_r - 1)!}{k_1! \cdot ... \cdot k_r!} = \frac{(k_1 + ... + k_r)!}{k_1! \cdot ... \cdot k_r!}$ 

#### Spezialfälle

$$\bullet \left| W \begin{pmatrix} a & b \\ k & n-k \end{pmatrix} \right| = \frac{n!}{k! \cdot (n-k)!} = \binom{n}{k}$$

$$\bullet \left| W \begin{pmatrix} a_1 & \dots & a_n \\ 1 & \dots & 1 \end{pmatrix} \right| = n!$$

#### 1.2.4 Multinomialsatz

$$a_1, ..., a_r \in R, n \ge 1 \ n \in N$$

$$(a_1 + \dots + a_r)^n = \sum_{\substack{(k_1,\dots,k_r) \text{mit } \sum_{i=1}^r k_i = n, k_i \ge 0}} \frac{(k_1 + \dots + k_r)!}{k_1! \dots k_r!} a_1^{k_1} \cdot \dots \cdot a_r^{k_r}$$

#### **Beweis**

umformen

## **Spezialfall**

Binomischer Lehrsatz : 
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} \cdot a^k \cdot b^{n-k}$$
  
Spezialfall:  $2^n = \sum_{k=0}^n \binom{n}{k}$ 

## 1.2.5 Teilmengen, Permutationen

A sei endliche Menge

$$\mathcal{P}(A):=\{X|X\subseteq A\}$$
 Potenzmenge von A, alle Teilmengen von A
$$\mathcal{P}_k(A):=\{X|X\subseteq A\text{ , }|X|=k\}\text{ alle k-elementigen Teilmengen von A}$$
  $\mathcal{S}(A):=\{f|f:A\to A\text{ bijektiv}\}$  f heißt Permutation über A

#### Satz

Ist |A| = n so gilt:

1. 
$$|\mathcal{P}(A)| = 2^n$$

$$2. |\mathcal{P}_k(A)| = \binom{n}{k}$$

3. 
$$|S(A)| = n!$$

#### **Beweis**

$$A = \{a_1, ..., a_n\}$$

1. Betrachten Abbildungen  $X \in \mathcal{P}(A) \to W_x = (w_1, ..., w_n)$  mit

$$w_i = \begin{cases} 1, & \text{falls } a_i \in X \\ 0, & \text{falls } a_i \notin X \end{cases}$$
 Die Abbildung ist bijektiv, also gilt: 
$$|\mathcal{P}(A)| = |\{0,1\}|^n = 2^n$$

Vorlesung 2

#### 1 Kapitel I: Elementare Kombinatorik

2. 
$$P_k(A) \cong \{w \in \{0,1\}^n | \text{w hat genau k Einsen } \}$$

$$= W \begin{pmatrix} 1 & 0 \\ k & n-k \end{pmatrix} \Rightarrow |P_k(A)| = |W \begin{pmatrix} 1 & 0 \\ k & n-k \end{pmatrix}| = \begin{pmatrix} n \\ k \end{pmatrix}$$

3. 
$$f:A\to A$$
 bijektiv: Wertetabelle:  $f = \begin{pmatrix} a_1 & \dots & a_n \\ a_{i1} & \dots & a_{in} \end{pmatrix}$  (alle  $a_{ix}$  verschieden) mit  $f(a_k) = a_{ik} \ \forall i = 1..n$  
$$w_f = (a_{i1}, \dots, a_{in}) \in W \begin{pmatrix} a_1 & \dots & a_n \\ 1 & \dots & 1 \end{pmatrix}$$
 Die Abbildung  $f \in S(A) \to w_f \in W \begin{pmatrix} a_1 & \dots & a_n \\ 1 & \dots & 1 \end{pmatrix}$  ist bijektiv. 
$$\Rightarrow |S(A)| = |W \begin{pmatrix} a_1 & \dots & a_n \\ 1 & \dots & 1 \end{pmatrix}| = n!$$

#### 1.2.6 Kombinationen und Variationen

Anzahl der Möglichkeiten k Elemente aus n gegebenen Elementen auszuwählen

- 1. mit Berücksichtigung der Reihenfolge mit Wiederholungen:  $n^k$
- 2. mit Berücksichtigung der Reihenfolge ohne Wiederholungen:  $\frac{n!}{(n-k)!}$
- 3. ohne Berücksichtigung der Reihenfolge ohne Wiederholungen:  $\binom{n}{k}$
- 4. ohne Berücksichtigung der Reihenfolge mit Wiederholungen:  $\binom{n+k-1}{k}$

#### **Beweis**

- $A = \{a_1, ..., a_n\}$  Menge der n gegebenen Elemente
- $\bullet$  M = Menge aller Möglichenkeiten k Elemente aus A auszuwählen, entsprechend (1)-(4)
- |M| = ?, Codierung der Elemente aus M in geeigneter Form
- 1. Jede Auswahl aus M<br/> lässt sich als Wort der Länge k über A darstellen, wobei gilt: <br/>  $M\cong A^k\Rightarrow |M|=|A^k|=|A|^k=n^k$
- 2.  $M \cong \{w \in A^k | \text{w ist Wort ohne Wdh von Buchstaben }\} = W$ 
  - Beh:  $|M| = |W| = \frac{n!}{(n-k)!}$
  - Beweis durch Induktion über die Wortlänge k
  - (IA) k = 1:  $W = A^1 = A \Rightarrow |W| = |A| = n = \frac{n!}{(n-1)!} = n$
  - (IS)  $k-1 \to k$ :  $W = \{w \in A^k | \text{w Wort ohne Wdh } \}$

- $W_i = \{w \in W | \text{w beginnt mit Buchstaben } a_i\} \text{ mit } i = 1..n$   $w \in W_i \Leftrightarrow w = (a_i, w') \text{ mit } w' \in (A - \{a_i\})^{k-1} \text{ und } w' \text{ ist Wort ohne Wdh}$  $\widehat{W}_i = \{w' | w = (a_i, w') \in W\} = \{w \in (A - \{a_i\})^{k-1} | w' \text{ Wort ohne Wdh}\}$
- Die Abbildung  $w = (a_i, w') \in W \mapsto w' \in \widehat{W}_i$  ist bijektiv  $\Rightarrow |W_i| = |\widehat{W}_i| \Rightarrow_{\text{IV}} \frac{(n-1)!}{((n-1)-(k-1))!} = \frac{(n-1)!}{(n-k)!}$
- $W = W_1 \cup W_2 \cup ... \cup W_n$  und  $W_1, ..., W_n$  sind disjunkt  $\Rightarrow |W| = |W_1| + ... + |W_n| = n \cdot \frac{(n-1)!}{(n-k)!} = \frac{n!}{(n-k)!}$  wzbw
- 3.  $M \cong P_k(A)$  (jede Auswahl entsprechend (3) lässt sich eindeutig durch eine kelementige Teilmenge von A beschreiben)

$$|M| = |P_k(A)| =_{(2.5)} \binom{n}{k}$$

- 4.  $f \in M \Leftrightarrow f$  Auswahl von k Elementen aus  $A = \{a_1, ..., a_n\}$  ohne Beachtung der Reihenfolge, aber mit Wiederholungen
  - $\Leftrightarrow f: \{a_1, ..., a_n\} \to \{0, 1, ..., k\} \text{ mit } \sum_{i=1}^n f(a_i) = k \text{ (Bem: } f(a_i) \text{ gibt an wie oft } a_i \text{ ausgewählt wurde)}$

Codiere f als Wort  $w_f$  über Alphabet  $\{0,1\}$  mit

$$w_f = (\underbrace{1, ..., 1, 0}_{f(a_1)}, \underbrace{1, ..., 1, 0}_{f(a_2)}, ..., \underbrace{1, ..., 1, 0}_{f(a_n)})$$

dann ist  $w_f \in W\begin{pmatrix} 1 & 0 \\ k & n-1 \end{pmatrix}$  und die Abbildung  $f \in M \to w_f \in W\begin{pmatrix} 1 & 0 \\ k & n-1 \end{pmatrix}$  ist bijektiv. Daraus folgt:

$$|M| = |W\begin{pmatrix} 1 & 0 \\ k & n-1 \end{pmatrix}| = \binom{n+k-1}{k}$$
 wzbw.

## 1.3 Das Prinzip der Inklusion und Exklusion

## 1.3.1 Aufgabe

## Gegeben:

- nat Zahlen n,m,k
- Alphabet  $A = \{a_1, ..., a_n\}$
- $M = \{w \in A^k | \text{wenigstens einer der Buchstaben } a_1, ..., a_n \text{ kommt nicht in w vor} \}$

#### Gesucht:

$$|M| = ?$$

#### Lösungansatz:

•  $A_i = \{w \in A^k | a_i \text{ kommt nicht in w vor}\}$ 

#### 1 Kapitel I: Elementare Kombinatorik

- $A_i = (A \{a_i\})^k \Rightarrow |A_i| = (n-1)^k$
- $M=A_1\cup A_2\cup...\cup A_m$  aber  $A_1,...,A_m$  nicht paarweise disjunkt  $\to$  daher  $|M|\neq\sum\limits_{i=1}^m|A_i|$

#### 1.3.2 Siebformel

## Satz: (Prinzip der Inklusion / Exklusion)

Es seien  $A_1, ...A_m$  endliche Mengen, dann gilt:  $|\bigcup_{i=1}^m A_i| = \sum_{I \subset \{1,...m\}, I \neq \emptyset} (-1)^{|I|+1} \cdot |\bigcap_{i \in I} A_i|$ 

#### **Spezialfälle**

- $|A_1 \cup A_2| = \underbrace{|A_1|}_{I=\{1\}} + \underbrace{|A_2|}_{I=\{2\}} \underbrace{|A_1 \cap A_2|}_{I=\{1,2\}}$
- $|A_1 \cup A_2 \cup A_3| = \underbrace{|A_1|}_{I=\{1\}} + \underbrace{|A_2|}_{I=\{2\}} + \underbrace{|A_3|}_{I=\{3\}} \underbrace{|A_1 \cap A_2|}_{I=\{1,2\}} \underbrace{|A_1 \cap A_3|}_{I=\{1,3\}} \underbrace{|A_2 \cap A_3|}_{I=\{2,3\}} + \underbrace{|A_1 \cap A_2 \cap A_3|}_{I=\{1,2,3\}}$

#### **Beweis**

siehe Literatur

#### 1.3.3 Lösung der Aufgabe (1.3.1)

- $A = \{a_1, ..., a_n\}$
- $M = \{w \in A^k | \text{ wenigstens einer der Buchsten } a_1, ..., a_n \text{ kommt in w nicht vor} \}$
- |M| = ?
- $A_i = \{w \in A^k | a_i \text{ kommt in w nicht vor}\}$
- $M = A_1 \cup ... \cup A_m \Rightarrow |M| = \sum_{I \subseteq \{1,..,m\}, I \neq \emptyset} (-1)^{|I|+1} \cdot |\bigcap_{i \in I} A_i|$
- $I \subseteq \{1, ..., m\}, |I| = l > 1$
- $\bigcap_{i \in I} A_i = \{ w \in A^k | \text{ w enthält nicht } a_i \text{ mit } i \in I \} = (A \{ a_i | i \in I \})^k \Rightarrow |\bigcap_{i \in I} A_i| = |(A \{ a_i | i \in I \})^k| = (|A| |I|)^k = (n l)^k$
- somit ergibt die Siebformel für  $M = \bigcup_{i=1}^m A_i$   $|M| = \sum_{I \subseteq \{1,...,m\}, I \neq \emptyset} (-1)^{|I|+1} \cdot |\bigcap_{i \in I} A_i| = \sum_{l=1}^m (\sum_{I \subseteq \{1,...,m\}, |I|=l} (-1)^{|I|+1} \cdot |\bigcap_{i \in I} A_i|)$

## 1 Kapitel I: Elementare Kombinatorik

$$=\sum_{l=1}^{m} \left(\sum_{\substack{I\subseteq\{1,\dots,m\},|I|=l\\}\text{Anzahl der Summanden }=|P_l(\{1,\dots,m\})|=\binom{m}{l}} (-1)^{l+1}\cdot (n-l)^k\right)$$

$$=\sum_{l=1}^{m} \binom{m}{l} (-1)^{l+1}\cdot (n-l)^k$$

## 2 Kapitel II: Quellenkodierung

- R.W.Hamming: Information und Kodierung, VCH, 1987
- H. Klimant ua: Informations und Kodierungstheorie, Teubner, 2006
- C. E. Shannon: A Mathematical Theorie of Communication, The Bell System Technical Journal, Vol. 27, 1948

## 2.1 Allgemeines Modell der Nachrichtenübertragung

#### 2.1.1 Quellenkodierung und Kanalkodierung



#### Quelle/ Sender

Betrachten nur diskrete Quellen: senden taktweise Zeichen über einem Alphabet  $X = \{x_1, ..., x_n\}$ . Man nennt X dann das Klartextalphabet bzw. Quellenalphabet

## Quellencodierung / decodierung

Modell zur effizienten Codierung und Decodierung von Nachrichten (Informationen) der Quelle: Datenkompression, Entzifferbarkeit von Codes

## Kanalcodierung/ decodierung

Bereits codierte Nachricht wird nochmals codiert: Ziel ist die Entdeckung und Korrektur von Fehlern, die bei der Übertragung auftreten (verursacht durch das Rauschen im Kanal ).

Vorlesung 3

## 2.1.2 Grundbegriffe

- (1) Alphabet A: endliche nicht-leere Menge  $a \in A$ : Buchstabe / Symbol / Zeichen aus A
- (2) Ein Wort w der Länge n über A : ist eine Folge  $w=(a_1,...,a_n) \widehat{=} a_1 a_2 ... a_n$  mit  $a_1,...,a_n \in A$

leeres Wort: Wort der Länge 0, wird mit  $\epsilon$  bezeichnet

l(w): Länge des Wortes w

 $A^n$ : Menge der Wörter der Länge n über A

 $A^* := \bigcup_{n=0}^{\infty} A^n$ : Menge aller Wörter über A

(3) Verknüpfung von Wörtern: Operation der Form:

$$u = (a_1, ..., a_n), v = (b_1, ..., b_m) \in A^* \to u \cdot v = (a_1, ..., a_n, b_1, ..., b_m)$$

- $(u \cdot v) \cdot w = u \cdot (v \cdot w)$
- $\bullet \ \epsilon \cdot u = u \cdot \epsilon = u$
- $l(u \cdot v) = l(u) + l(v)$
- $u = (a_1, ..., a_n) \in A^* \Rightarrow u = a_1 \cdot a_2 \cdot ... \cdot a_n, a_i \in A$
- (4) Präfix :  $u \in A^*$  heißt Präfix von  $w \in A^*$ , falls es ein Wort  $v \in A^*$  gibt mit:  $w = u \cdot v$

**Beispiel:** 
$$A=\{0,1\}, A^0=\epsilon, A^1=A, A^2=\{00,01,10,11\}$$
  $|A^n|=|A|^n=2^n$ 



$$u = 101 \ v = 110 \Rightarrow u \cdot v = 101110$$

## 2.1.3 Diskrete Quelle

Eine diskrete Quelle ohne Gedächnis ist Paar Q = (X, p) mit

- (a) X ist Alphabet (Klartextalphabet)
- (b) p ist Wahrscheinlichkeitsverteilung über X, d.h.  $p: X \mapsto [0,1] \text{ mit } \sum_{x \in X} p(x) = 1$

Die Funktion

$$H_r(Q) := -\sum_{x \in X} p(x) \cdot \log_r(p(x))$$
  
heißt dann Entropie der Quelle Q zur Basis  $r \geq 2$   
wobei wir  $0 \cdot \log_r(0) = 0$  setzen

**Bemerkung** Ist  $X = (x_1, ..., x_n)$  und  $p(x_i) = p_i$  so schreibt man statt  $H_r(Q)$  auch  $H_r(p_1,...,p_n)$ 

## 2.2 Quellencodierung

Gegeben:

- Q = (X, p) Quelle mit  $X = \{x_1, ..., x_n\}, n \ge 1$
- A: Codealphabet mit  $r = |A| \ge 2$

## 2.2.1 Eindeutig entzifferbare Codes

**Def1:** Eine Quellencodierung von X (bzw. Q) über A ist eine Abbildung

$$w:X\to A^*$$

Man nennt dann w = w(x) das Codewort von x und

 $C = \{w(x)|x \in X\}$  heißt dann Quellencode.

**Def2:** Ein Quellencode  $w: X \to A^*$  wird dann wie folgt zur Abbildung

$$w^*: X^* \to A^*$$
 erweitert

$$\underbrace{T = x_{i_1} x_{i_2} ... x_{i_p} \in X^*}_{\text{Klartext}} \to \underbrace{w^*(T) = w(x_{i_1}) ... w(x_{i_p})}_{\text{codienter Text}}$$

Klartext codierter Text
Die Quellencodierung bzw der Quellencode C heißt eindeutig entzifferbar, falls die Abbildung

 $T \mapsto w^*(T)$  injektiv ist, d.h. falls für alle

$$T_1, T_2 \in X^*$$
 gilt:

$$w^*(T_1) = w^*(T_2) \Rightarrow T_1 = T_2$$

**Folgerung** Für den Quellencode  $C = \{w_1 = w(x_1), ..., w_n = w(x_n)\}$  sind folgende Bedingungen äquivalent:

- (a) C ist eindeutig entzifferbar
- (b) aus  $w_{i_1} \cdot w_{i_2} \cdot \ldots \cdot w_{i_p} = w_{j_1} \cdot w_{j_2} \cdot \ldots \cdot w_{j_q}$  folgt stets:  $p = q \text{ und } w_{i_1} = w_{j_1}, \dots, w_{i_p} = w_{j_q}$

**Beispiel1** •  $X = \{a, b, c, d\}$ 

- $A = \{0, 1\}$
- $C = \{0, 01, 11, 101\}$
- $T_1 = bb \mapsto w^*(T_1) = 0101$
- $T_1 = ad \mapsto w^*(T_2) = 0101$
- $\bullet \Rightarrow$  Code nicht eindeutig entzifferbar

**Beispiel2** •  $X = \{a, b, c\}$ 

- $A = \{0, 1\}$
- $C = \{00, 01, 1\}$
- $w^*(T) = 00|01|01|11|01| \mapsto T = abbccb$  (von links nach rechts decodieren)
- $\bullet \Rightarrow C$  ist eindeutig entzifferbar

#### 2.2.2 Präfixcode

**Def**  $C = \{w(x)|x \in X\} \subseteq A^*$  heißt Präfixcode, falls kein Codewort aus C Präfix eines anderen Codewortes von C ist.

**Bemerkung** •  $C = \{\epsilon\}$  ist Präfixcode, aber nicht eindeutig entzifferbar

- Ist  $C \subseteq A^*$  eindeutig entzifferbar, so ist  $\epsilon \notin C$
- Ist  $C \subseteq A^*$  ein Präfixcode und  $\epsilon \in C,$  so ist  $C = \{\epsilon\}$
- Ist  $C \subseteq A^*$  ein Präfixcode und  $C \neq \{\epsilon\}$ , so ist C eindeutig entzifferbar
- also jeder Präfixcode  $C \subseteq A^* \{\epsilon\}$  ist eindeutig entzifferbar

**Beweis** Sei also  $C \subseteq A^*$  Präfixcode und  $\epsilon \notin C$ 

Müssen nun zeigen, dass C eindeutig entzifferbar ist.

Benutzen Folgerung aus (2.2.1)

Sei also  $C = \{w_1, ... w_n\}$ , sei nun :

 $w_{i_1}w_{i_2}...w_{i_p} = w_{j_1}...w_{j_q}$ 

Dann ist etwa  $l(w_{i_1}) \leq l(w_{j_1})$  und somit  $w_{i_1}$  Präfix von  $w_{j_1}$ 

Da C Präfixcode ist und  $\epsilon \notin C$ , gilt dann  $w_{i_1} = w_{j_1}$ 

Dann ist aber  $w_{i_2}...w_{i_p} = w_{j_2}...w_{j_q}$  und durch vollständige Induktion

zeigen wir dann:

$$w_{i_2} = w_{j_2}, ..., w_{i_p} = w_{j_q} \text{ und } p = q \text{ q.e.d}$$

#### 2.2.3 Zielstellung der Quellencodierung

Ist  $C = \{w(x) | x \in X\} \subseteq A^*$  ein eindeutig entzifferbarer Code der Quelle Q = (X, p) so nennt man:

$$\begin{array}{l} L(C) := \sum_{x \in X} p(x) \cdot l(w(x)) \\ \text{die mittlere Codewortlänge von C bzw. } w : X \to A^* \end{array}$$

und

$$K_r(C) = L(C) - H_r(C)$$

die absolute Redundanz von C bezüglich der Basis r.

Weiterhin sei:

 $L_r^{min}(Q) = \min\{L(C)|C \text{ ist eindeutig entzifferbar}\}$  die minimale mittlere Codewortlänge von Q.

Ein optimaler Quellencode von Q = (X, p) ist ein eindeutig entzifferbarer Code C mit:

$$L(C) = L_r^{min}(Q)$$
 mit  $r = |A|$ 

**Bemerkung** Ist  $X = \{x_1, ..., x_n\}$  und  $p(x_i) = p_i$  so schreibt man statt:

$$L_r^{min}(Q)$$
 auch  $L_r^{min}(p_1,...,p_n)$ .

#### 2.2.4 Satz: Kraftsche Ungleichung

Ist  $C = \{w(x) | x \in X\} \subseteq A^*$  ein eindeutig entzifferbarer Code über das Alphabet A mit |A| = r, so gilt:

Vorlesung 4

$$\sum_{w \in C} \frac{1}{r^{l(w)}} \le 1$$

#### **Beweis**

- a)  $L := \max\{l(w)|w \in C\}$
- b)  $C \subseteq A^*$  ist eindeutig entzifferbar, d.h. schreiben wir Codewörter aus C auf unterschiedliche Art hintereinander, so erhalten wir unterschiedliche Wörter (siehe (2.2.1) Folgerung)

 $\Rightarrow m_{k_1} \cdot ... \cdot m_{k_p} =$  Anzahl der Wörter aus  $A^*$ , die sich als Verknüpfung von p Codewörtern darstellen lassen, wobei das i-te Codewort die Länge  $k_i$  hat

(Gesamtlänge ist dann: 
$$\sum_{i=1}^{p} k_i$$
)

c) 
$$d_{pl} = \sum_{(k_1, \dots, k_p) \text{mit } \sum k_i = l} m_{k_1} \cdot m_{k_2} \dots \cdot m_{k_p}$$
  
 $\Rightarrow d_{pl} = \text{Anzahl der Wörter der Länge } l \text{ über A, die sich als Verknüpfung von p}$   
Codewörtern darstellen lassen.

Alle diese Wörter sind aus 
$$A^l \Rightarrow d_{pl} \leq |A^l| = |A|^l = r^l$$

d) 
$$\sum_{w \in C} \frac{1}{r^{l(w)}} = \sum_{k=1}^{L} m_k \cdot \frac{1}{r^k}$$

Für ein beliebiges  $p \in N$  gilt:

#### 2.2.5 Hauptsatz der Quellencodierung

Es sei A ein Alphabet mit  $|A| = r \ge 2$ .

Weiterhin seien  $n \geq 1$  natürliche Zahlen  $l_1, ..., l_n \geq 1$  gegeben.

Dann sind folgende Bedingungen äquivalent:

(a) Es gibt Präfixcode  $C=\{w_1,...,w_n\}\subseteq A^*$  mit den Codewortlängen  $l(w_i)=l_i$ 

#### 2 Kapitel II: Quellenkodierung

- (b) Es gibt einen eindeutig entzifferbaren Code  $C = \{w_1, ..., w_n\} \subseteq A^*$  mit den Codewortlängen  $l(w_i) = l_i$  i = 1..n
- (c) Es gilt die Kraftsche Ungleichung, d.h.  $\sum_{i=1}^n \tfrac{1}{r^l} \leq 1$

#### **Beweis**

- $(a) \Rightarrow (b)$ : gilt, da  $l_i \geq 1$  ist und somit  $\epsilon \notin C$  ist. Dann ist der Präfixcode eindeutig entzifferbar.
- $(b) \Rightarrow (c)$ : folgt aus Satz (2.2.4)
- $\bullet$   $(c) \Rightarrow (a)$ : Beweis: siehe Literatur, Konstruktion von C<br/> erfolgt nach Greedy Prinzip

#### **Beispiel**

- $A = \{0, 1\}, r = 2, n = 5, l_1 = l_2 = l_3 = 2, l_4 = 3, l_5 = 4$
- $\sum_{i=1}^{5} = 3 \cdot \frac{1}{4} + \frac{1}{8} + \frac{1}{16} = \frac{15}{16} \le 1$
- Konstruktion von C: (links=0, rechts=1)



- Präfixcode  $C = \{\underline{w}_1 = 00, \underline{w}_2 = 01, \underline{w}_3 = 10, \underline{w}_4 = 110, \underline{w}_5 = 1110\}$
- Kraftsche Ungleichung am Bsp:  $\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} < 1$

#### **Folgerung**

Für die Quelle 
$$Q=(X,p)$$
 und  $r\geq 2$  gilt: 
$$L_r^{min}(Q)=\min\{\sum_{x\in X}l(w(x))\cdot p(x)|w:X\to A^*-\{\epsilon\}\text{ ist Pr\"afixcode}\}$$

#### 2.2.6 Satz

Für die Quelle 
$$Q=(X,p)$$
 und  $r\geq 2$  gilt::  $H_r(Q)\leq L_r^{min}(Q)\leq H_r(Q)+1$ 

#### **Beweis**

- $X = \{x_1, ..., x_n\}, n \ge 1, p(x_i) = p_i$  $0 \le p_i \le 1, \sum_{i=1}^{n} p_i = 1$
- $H_r(Q) = H_r(p_1, ..., p_n) = -\sum_{i=1}^n p_i \cdot \log_r(p_i)$ (dabei setzen wir:  $0 \cdot \log_r(0) = 0$ )
- Ist  $p_i = 1$  für ein i, etwa  $p_1 = 1$ , so ist  $p_j = 0 \ \forall j \neq i$  und  $H_r(Q) = 0$ . Wählen Präfixcode:  $w: X \to A^* \{\epsilon\}$  mit  $w(x_i) = a$  für ein  $a \in A$  und  $w(x_j)$  für  $j \neq i$  irgendwie. Für den Präfix-Code  $C = \{w(x_i) | i = 1..n\}$  gilt dann : L(C) = 1 Also ist:  $L_r^{min}(Q) \leq L(C) = 1$  und die Aussage gilt somit.
- Im Folgenden sei also:  $0 < p_i < 1 \ \forall i = 1..n \ \text{und somit} \ r \geq 2$
- Betrachten optimalen Präfixcode  $w: X \to A^* \{\epsilon\}$  mit  $w(x_i) = w_i$  und  $l(w_i) = l_i$ . Dann ist:  $L_r^{min}(Q) = \sum_{i=1}^n p_i \cdot l_i$
- Aus Satz (2.2.4) folgt:  $\sum_{i=1}^{n} \frac{1}{r}^{l_i} \leq 1$
- Aus Analysis folgt:  $ln(x) \le x 1$
- und somit:  $\log_r x \le \frac{1}{\ln r} \cdot (x-1)$
- Somit gilt:

$$H_{r}(Q) - L_{r}^{min}(Q) = -\sum_{i=1}^{n} p_{i} \cdot \log_{r}(p_{i}) - \sum_{i=1}^{n} p_{i} \cdot l_{i} \text{ mit } l_{i} = \log_{r}(r^{l_{i}})$$

$$= \sum_{i=1}^{n} p_{i} \cdot (-\log_{r}(p_{i}) - \log_{r}(r^{l_{i}}))$$

$$= \sum_{i=1}^{n} p_{i} \cdot \log_{r}(\frac{1}{p_{i} \cdot r^{l_{i}}})$$

$$\leq \sum_{i=1}^{n} p_{i} \cdot \frac{1}{\ln r} \cdot (\frac{1}{p_{i} \cdot r^{l_{i}}} - 1)$$

$$= \frac{1}{\ln r} \cdot \sum_{i=1}^{n} (\frac{1}{r^{l_{i}}} - p_{i})$$

$$= \frac{1}{\ln r} \cdot (\sum_{i=1}^{n} \frac{1}{r^{l_{i}}} - \sum_{i=1}^{n} p_{i}) \leq 0$$

- woraus folgt:  $H_r(Q) \leq L_r^{min}(Q)$
- es sei  $l_i$  natürliche Zahlen mit:  $-\log_r(p_i) \le l_i \le -\log_r(p_i) + 1$  für i = 1..nDann ist  $r^{-l_i} \le p_i$  und somit:  $\sum_{i=1}^n \frac{1}{r^{l_i}} \le \sum_{i=1}^n p_i = 1$
- Aus Satz (2.2.5) folgt dann: es gibt einen Präfixcode  $C = \{w_1, ..., w_n\} \subseteq A^* \text{ mit } l(w_i) = l_i$   $L_r^{min}(Q) \le L(C) = \sum_{i=1}^n p_i \cdot l_i \le \sum_{i=1}^n p_i (-\log_r(p_i) + 1)$   $= -\sum_{i=1}^n p_i \cdot \log_r(p_i) + \sum_{i=1}^n p_i$   $= H_r(Q)$ wzbw.

## 2.2.7 Huffman-Algorithmus

## **Eingabe**

- Quelle Q=(X,p) : z.B.  $X=\{x_1,...,x_n\}$  ,  $p(x_i)=p_i$  ,n=8 mit  $(p_1,...,p_8)=\frac{1}{100}(22,22,17,16,15,3,3,2)$
- Alphabet A mit  $|A| \ge 2$  z.B.  $A = \{0, 1, 2\}, r = 3$

#### **Ausgabe**

• Optimaler Präfixcode  $C = \{w_1, ..., w_8\}$ , d.h. Präfixcode mit  $L_r^{min}(Q) = L(C) = \sum_{i=1}^8 p_i \cdot l(w_i)$ 

#### Methode

- füge  $p_9 = 0$  hinzu (damit die Aufteilung klappt)
- Ordne die Wahrscheinlichkeiten  $p_i$  der Größe nach ; ersetze die kleinsten r=3 Werte durch ihre Summe ; wiederhole das Verfahren



• erzeuge rückwärts einen Baum (oder 'hinschauen und direkt ablesen')



• wir erhalten den optimalen Code:  $C = \{w_1 = 2, w_2 = 02, w_3 = 01, w_4 = 00, w_5 = 10, w_6 = 12, w_7 = 110, w_8 = 111\}$  mit  $L_3^{min}(Q) = L(C) = \frac{1}{100}(22 + (22 + 17 + 16 + 15 + 3) \cdot 2 + 3 \cdot (3 + 2)) = \frac{183}{100} = 1.83$ 

• Entropie:

$$H_r(Q) = H_r(p_1, ..., p_8) = 1.67$$

• Redundanz von  $C = L(C) - H_r(Q) = 1.83 - 1.67 > 0$ 

Vorlesung 5

#### 2.2.8 Der erste Hauptssatz von Shannon

## (1)Wort-Codierung

Betrachten Quelle Q = (X, p) mit  $X = \{a, b, c, d\}$  und p mit

| x    | a   | b   | c   | d   |
|------|-----|-----|-----|-----|
| p(x) | 0.4 | 0.3 | 0.2 | 0.1 |

Dann ist  $H_2(Q) = -\sum_{x \in X} p(x) \cdot \log_2(p(x)) \approx 1.8464$ 

Die Huffman Codierung mit  $A=\{0,1\}$  und |A|=r=2 ergibt folgenden optimalen Präfixcode:

$$0.4, 0.3, \underbrace{0.2, 0.1}_{0.4, 0.6}$$

$$\underbrace{0.4, 0.6}_{1}$$

ergibt Baum:



Codierung:

$$w(a) = 0$$

$$w(b) = 10$$

$$w(c) = 110$$

$$w(d) = 111$$

Somit ist:

$$L_2^{min}(Q) = \sum_{x \in X} p(x) \cdot l(w(x)) = 0.4 \cdot 1 + 0.3 \cdot 2 + 0.2 \cdot 3 + 0.1 \cdot 3 = 1.9$$

Also ist die Redundanz

$$K_2(X) = L_2^{min}(Q) - H_2(Q) = 0.0536 > 0$$

Wir betrachten nun Paare aus  $X^2$  also die Quelle:

$$Q^2=(X^2,p)$$
 mit  $p:X^2\to [0,1]$  ist Abbildung mit  $p(x,y)=p(x)\cdot p(y)$  also :

| Z    | aa   | ab | <br>dd   |
|------|------|----|----------|
| p(z) | 0.16 |    | <br>0.01 |

#### 2 Kapitel II: Quellenkodierung

Dann ergibt die Huffman-Codierung einen optimalen Präfixcode C für  $Q^2$  mit  $L_2^{min}(Q^2)=3.73$ 

Dies ist die optimale mittlere Codewortlänge für Paare aus  $X^2$ .

Für die Buchstaben aus X ergibt sich also eine mittlere Codewortlänge von:  $\frac{1}{2}\cdot 3.73=1.865<1.9$ 

## (2) Produkt von Quellen

Es seien  $Q_1=(X_1,p_1)$  und  $Q_2=(X_2,p_2)$  zwei Quellen. Es sei  $X=X_1\times X_2$  und  $p:X\to [0,1]$  die Abbildung mit  $p(a,b)=p_1(a)\cdot p_2(b)$  für  $(a,b)\in X=X_1\times X_2$ . Mann nennt dann Q=(X,p) das Produkt der Quellen  $Q_1$  und  $Q_2$ .

#### Satz

$$H_r(Q_1 \times Q_2) = H_r(Q_1) + H_r(Q_2)$$

#### **Beweis**

Übungsaufgabe

## (3) Wort-Codierungen

Es sei Q = (X, p) eine Quelle und  $k \ge 1$  eine natürliche Zahl.

Betrachten die Produktquelle:

$$Q^k := \underbrace{Q \times Q \dots \times Q}_{kmal}$$

also 
$$Q^k = (X^k, p^{\sim})$$
 mit  $p^{\sim}(x_1, ..., x_k) = p(x_1) \cdot ... \cdot p(x_k)$  mit  $(x_1, ..., x_k) \in X^k$ .

Dann ist

 $L_r^{min}(Q^k)$  die optimale mittlere Codewortlänge für Wörter der Länge k.

Dann ist:

 $\bar{L}_r^k(Q) = \frac{1}{k} \cdot L_r^{min}(Q^k)$  die mittlere Codewortlänge für die Buchstaben der Quelle Q bei der Huffman-Codierung der Quelle  $Q^k$ .

## 1. Hauptsatz von Shannon

$$H_r(Q) \leq \bar{L}_r^k(Q) \leq H_r(Q) + \frac{1}{k}$$
 also für  $k \to \infty$  gilt:  $\bar{L}_r^k(Q) \to H_r(Q)$  (keine Redundanz)

#### **Beweis**

• 
$$\bar{L}_r^k = \frac{1}{k} \cdot L_r^{min}(Q^k)$$

• aus (2.2.6) folgt : 
$$H_r(Q^k) \le L_r^{min}(Q^k) \le H_r(Q^k) + 1$$

• 
$$H_r(Q^k) =_{(2)} H_r(Q) + H_r(Q) + ... + H_r(Q) = k \cdot H_r(Q)$$

• 
$$\leq L_r^{min}(Q^k) \leq k \cdot H_r(Q) + 1$$
 (Division durch k)

• 
$$H_r(Q) \leq \frac{1}{k} L_r^{min}(Q^k) \leq H_r(Q) + \frac{1}{k}$$

• also : 
$$H_r(Q) \le \bar{L}_r^k \le H_r(Q) + \frac{1}{k}$$
 qed

## 2.3 Suchtheorie

## 2.3.1 Suchprobleme und Entscheidungsbäume

## (1) Frage-Algorithmen:

Die Arbeitsweise eines Algorithmus der mit Tests arbeitet lässt sich als Baum darstellen.

## **Beispiel**

- Gesucht ist Zahl  $x \in \{1, 2, 3, 4, 5, 6, 7\}$
- $\bullet$ zulässige Tests: Fragen der Form 'Istx < k?' mit  $k \in N$
- Eine möglicher Algorithmus könnte wie folgt arbeiten:

• 
$$(1,2,3,4,5,6,7)$$
  $x < 4$ 

- JA: 
$$(1,2,3) x < 3$$
:

\* JA: 
$$(1,2) x < 2$$

- NEIN: 
$$(4, 5, 6, 7)$$
  $x < 6$ 

\* JA: 
$$(4,5)$$
  $x < 5$ 

\* NEIN: 
$$(6,7) x < 7$$

• (als Baum):



- Worst Case : 3 Fragen (ist das optimal?)
- Average Case:  $\frac{1}{7} \cdot (1 \cdot 2 + 6 \cdot 3) = \frac{20}{7}$  Fragen (bei Gleichverteilung)

## (2) Wurzelbaum, (n,r)-Baum

- T heißt Wurzelbaum mit Wurzel v, falls T ein Baum ist und v eine Ecke von T.
- Baum:



- $\bullet$  u = innere Ecke von T mit 2 Nachfolgern
- x Blatt der Länge l(x) = 4 hat keine Nachfolger
- B(T) = Menge von Blättern von (T,v)
- $L(T) = \max_{x \in B(T)} l(x)$ : Tiefe des Wurzelbaumes
- Hat T genau n Blätter und jede Ecke von T höchstens r Nachfolger, so heißt T bzw. (T,v) ein (n,r)-Baum, kurz:  $T \in \mathcal{T}(n,r)$

#### 3 Bemerkung

Modellieren wir einen Suchalgorithmus, der mit Tests arbeitet durch einen Wurzelbaum  $T \in \mathcal{T}((N,r))$  so bedeutet

- $\bullet$  r = Anzahl möglicher Testausgänge
- $\bullet$  N= Größe des Suchbereiches (wir suchen also ein Element aus einer Menge von N Objekten)
- L(T) = maximale Anzahl benötigter Tests (worst case)

#### 2.3.2 Satz: Informationstheoretische Schranke

Sei T ein Wurzelbaum aus  $\mathcal{T}(N,r)$  mit  $N\geq 1$  und  $r\geq 2$ . Dann gilt :  $L(T)\geq \lceil \log_r(N) \rceil$  wobei  $\lceil x \rceil$  die kleinste ganze Zahl größer oder gleich x ist.

#### **Beweis**

- $\bullet$  Sei L=L(T) maximale Länge eines Blattes x in T
- T hat N Blätter



Betrachten der Level des Baumes:

- Level 0: eine Ecke v
- Level 1: höchstens r Ecken
- Level 2: höchstens  $r^2$  Ecken
- …
- Level x: höchstens  $r^x$  Ecken
- $\bullet$  Offenbar hat T höchstens  $r^L$  Blätter
- somit ist  $N \leq r^l \Rightarrow L \geq \log_r(N)$  und  $L \geq \lceil \log_r(N) \rceil$ , da L eine natürliche Zahl ist.

#### **Bemerkung**

Gegeben sei ein Suchbereich der Größe N. Erlaubte Tests haben r<br/> mögliche Ausgänge. Dann besagt (2.3.2), dass jeder Suchalgorithmus im worst case mindesten<br/>s $\lceil \log_r(N) \rceil$ Tests benötigt.

#### **Beispiel**

1 obiges Bsp:

N= 7, r=2 
$$\rightarrow \lceil \log_2(7) \rceil = 3$$
 Test im worst case benötigt

- 2 Sortieralgo:
  - geg: Zahlenfolge  $(a_1,..,a_n)$   $a_i \neq a_j$  für  $i \neq j$
  - ges: richtige Reihenfolge der Größe nach geordnet
  - Permutaion  $\sigma$  so dass  $a_{\sigma(1)} \leq ... \leq a_{\sigma(n)}$
  - Test sind Vergleiche zweier Zahlen  $a \leq b \rightarrow r = 2$
  - $-\rightarrow$  im worst case braucht man mindestens  $\lceil \log_2(n!) \rceil \leq n \cdot \log_n$  viele Vergleiche

Vorlesung 6

## 2.3.3 Beispiel

$$S(n) \ge \lceil \log n! \rceil \ge c \cdot n \cdot \log n$$
 für ein  $c \in \mathbb{R}^+$  (siehe 3.4)

#### Beispiel 3

**Gegeben:** n Münzen, von denen eine falsch ist. Alle echten Münzen haben dasselbe Gewicht, die falsche Münze ist entweder leichter oder schwerer.

Größe des Suchbereiches N=2n (Anzahl Münzen  $\cdot 2$  für Falsche leichter oder Falsche schwerer)

**zulässige Tests** sind Wägungen mit einer Balkenwaage: also r=3 ( gleich, links schwerer als rechts, links leichter als rechts)

Es sei L(n) die kleinste Anzahl von Wägungen mit der man im worst case auskommt, dann besagt Satz (3.2)

$$L(n) \ge \lceil \log_3 2n \rceil$$

**Beh:** L(12) = 3

Beweis: Informationstheoretische Schranke liefert:

$$L(12) \ge \lceil \log_3 24 \rceil$$

$$L(12) \ge 3$$

Wir müssen also nur einen Algorithmus finden, der mit maximal 3 Wägungen auskommt.

Der Suchbereich ist:  $S = \{1_L, 1_S, 2_L, 2_S, ..., 12_L, 12_S\}$  mit

 $m_L$  bedeutet Münze m ist zu leicht

 $m_S$  bedeutet Münze m ist zu schwer

wird später eventuell digitalisiert



## 2.3.4 Stirlingsche Formel

#### Satz 1

Für eine natürliche Zahl n gilt:  $n \cdot \log n - n + 1 \le \log(n!) \le (n+1) \cdot \log n - n + 1$ 

#### **Beweis**

 $\log(n!) = \sum_{k=1}^{n} \log(k)$  (geht aus Logarithmengesetz hervor) Betrachten Funktion  $\log(k)$ :



Rot = Obersumme, Orange = Untersumme

Vergleich der Flächeninhalte ergibt: 
$$\sum_{k=1}^{n} \log(k) \le \int_{1}^{n} \log(x) dx \le \sum_{k=2}^{n} \log(k) = \sum_{k=1}^{n} \log(k)$$
 also gilt: 
$$\int_{1}^{n} \log(x) dx \le \log(n!) \le \int_{1}^{n} \log(x) dx + \log(n)$$

weiterhin ist:  $\int_{1}^{n} \log(x) dx = n \cdot \log(n) - n + 1$  wzbw.

## Stirlingsche Formel

$$n! \approx \sqrt{2\pi n} (\frac{n}{e})^n$$
  
 $\log n! \approx n \cdot \log(n)$ 

#### 2.3.5 Satz

Es sei  $n \geq 1$  natürliche Zahlen  $l_1, ..., l_n$  gegeben und es sei  $r \geq 2$ . Dann sind folgende Bedingungen äquivalent:

(a) Es gibt einen Wurzelbaum  $T \in \mathcal{T}(n,r)$  mit <br/>n Blättern  $\{x_1,...,x_n\}$  der Längen  $l_1, ..., l_n$  mit  $l(x_i) = l_i$ 

(b) Es gilt die Kraftsche Ungleichung:

$$\sum_{i=1}^{n} \frac{1}{r^{l_i}} \le 1$$

#### **Beweis**

Betrachten die Bedingung:

- (a') Es gibt Präfixcode  $C = \{w_1, ..., w_n\} \subseteq A^*$  mit |A| = r und  $l(w_i) = l_i$ . Aus Satz (1.2.5) folgt dann: (a')  $\Leftrightarrow$  (b). Es ist leicht zu zeigen, dass (a')  $\Leftrightarrow$  (a) gilt.
  - Wurzelbaum  $r=3,A=\{0,1,2\},$  Präfixcode  $C=\{00,01,02,1,20,21\}$



#### **Beispiel**

$$r=2, l_1=l_2=l_3=2, l_4=3, l_5=4$$



#### 2.3.6 Hauptsatz der Suchtheorie

**Gegeben:** • natürliche Zahl  $N \ge 1$  (Größe des Suchbereiches)

- natürliche Zahl r > 2 (Anzahl der Testausgänge)
- Wahrscheinlichkeitsverteilung  $(p_1, ..., p_N)$  wobei  $p_i$  = Wahrscheinlichkeit, dass i-tes Objekt gesucht wird.

**Gesucht:** Wurzelbaum  $T \in \mathcal{T}(N,r)$  mit Blättern  $x_1,...,x_N$  derart, dass

 $\bar{L}(T) = \sum_{i=1}^{N} p_i \cdot l(x_i)$  ein Minimum ist. Dabei ist  $\bar{L}(T)$  die durchschnittliche Tiefe des Suchbaumes. Wir suchen also  $L_r^{min}(p_1,...,p_N) := min\{\bar{L}(T), T \in \mathcal{T}(N,r)\}$ 

Dann gilt:

- (a)  $H_r(p_1,...,p_N) \leq L_r^{min}(p_1,...,p_N) \leq H_r(p_1,...,p_N) + 1$
- (b) Konstruktion eines optimalen Suchbaumes erfolgt mit dem Huffman Algo.

Beweis (a) folgt aus (2.3.5) und (2.2.6)

(b) folgt aus (2.3.5) und (2.2.7)

## 3 Kapitel III: Kanalkodierung

## 3.1 Entdecken und Korrigieren von Fehlern

## 3.1.1 Aufgabenstellung der Kanalkodierung



1. Der zu sendende bereits kodierte Text  $T \in A^*$  wird in Wörter(=Blöcke) der Länge k zerlegt :

$$T=\underline{u_1},\underline{u_2},\underline{u_3},\dots \text{ mit }\underline{u_i}\in A^k$$

2. Kanalkodierung ist injektive Abbildung:

$$f:A^k\to A^n$$

 $\underline{u} \mapsto \underline{v}$ 

Nachritenwort  $\mapsto$  Codewort

 $C := \{\underline{v} = f(\underline{u}) | \underline{u} \in A^k\}$  Menge aller Codewörter

3. Codewort  $\underline{v} = f(\underline{u}) \in C \subseteq A^n$  wird gesendet, aber  $\underline{w} \in A^n$  wird empfangen.

Decodierer wählt Codewort  $v' \in C$  mit Abstand  $(\underline{w}, v') \to min$ Dann bestimmt er das Nachrichtenwort  $u' = f^{-1}(v')$ 

Ziel möglichst  $u' = \underline{u}, \, \underline{v} = v'$ 

#### 3.1.2 Blockcodes und Hammingabstand

#### Voraussetzung

Asei ein Alphabet mit  $|A|=r\geq 2$   $n\geq 2$ natürliche Zahl

#### **Definition 1**

 $C\subseteq A$ wird Blockcode (kurz Code) der Länge <br/>n über A genannt. Die Wörter aus C heißen Codewörter.

#### **Bemerkung**

$$\underline{w} \in A^n \ \underline{w} = (w_1, ..., w_n) \ \text{mit} \ w_i \in A$$

#### **Definition 2**

- (a) Für Wörter  $\underline{w} = (w_1, ..., w_n)$ ,  $\underline{u} = (u_1, ..., u_n)$  aus  $A^n$  sei:  $d(\underline{w}, \underline{u}) = |\{i | w_i \neq u_i\}|$  der Hammingabstand von  $\underline{w}$  und  $\underline{u}$ .
- (b) Für einen Code  $C\subseteq A^n$  sei:  $d(C)=min_{\underline{u},\underline{v}\in C,\underline{u}\neq\underline{v}}d(\underline{u},\underline{v}) \text{ der Abstand von C}$

Vorlesung 7

#### Satz

Der Hammingabstand ist eine Metrik auf A, d.h. für  $\underline{u}, \underline{v}, \underline{w} \in A^n$  gilt:

(M1) 
$$d(\underline{u}, \underline{v}) \ge 0$$
  
 $d(\underline{u}, \underline{v}) = 0 \Leftrightarrow \underline{u} = \underline{v}$ 

(M2) 
$$d(u, v) = d(v, u)$$

(M3) 
$$d(\underline{u},\underline{v}) \le d(\underline{u},\underline{w}) + d(\underline{w},\underline{v})$$

#### **Beweis**

- M1, M2 offensichtlich
- (M3)  $\underline{u} = (u_1, ..., u_n) \underline{v} = (v_1, ..., v_n) \Rightarrow u_i \neq v_i \Rightarrow u_i \neq w_i \text{ oder } v_i \neq w_i$

- $d(\underline{u},\underline{v}) = |\{i|u_i \neq v_i\}| = |\{i|u_i \neq w_i\} \cup \{i|v_i \neq w_i\}| \le |\{i|u_i \neq w_i\}| + |\{i|v_i \neq w_i\}| = d(\underline{u},\underline{w}) + d(\underline{v},\underline{w})$
- qed

#### Beispiel: 2-facher Wiederholungscode

- $C = \{\underline{v} = \underline{uuu} | \underline{u} \in A^k\} \subseteq A^n, n = 3 \cdot k, k \ge 1$
- Nachrichtenwort  $\underline{u} \mapsto \text{Codewort } \underline{uuu}$
- Informationsrate  $\frac{k}{n} = \frac{1}{3}$
- $\underline{v} = \underline{uuu}, \ v' = \underline{u'u'u'}$  $v \neq v' \Rightarrow u \neq u' \rightarrow d(v, v') = 3 \cdot d(u, u') \ge 3$
- d(C) > 3

#### 3.1.3 Abstandsmethode zur Fehlerkorrektur

## Gegeben

 $C \subseteq A^n$ 

senden Codewort  $\underline{v} \in C \to_{Kanal}$  empfangenes Wort  $\underline{w} \in A^n \to$  bestimme Codewort  $v' \in C$  mit kleinstem Abstand zu  $\underline{w}$   $(v' \in C \text{ mit } d(v', w) \to \text{min})$ Ziel: v' = v

#### **Annahme**

Bei der Kanalübertragung sind höchstens t Fehler aufgetreten, d.h.  $d(\underline{w},\underline{v}) \leq t$  Dann gilt:

Ist v=v', so ist  $d(v',w) \le d(v,w) \le t$  ansonsten hätten wir nicht v' sondern v gewählt. Also gilt für die Codewörter  $v,v' \in C$ :

 $d(\underline{v},\underline{v'}) \le d(\underline{v},\underline{w}) + d(\underline{v'},\underline{w}) \le t + t = 2t$  und somit  $d(C) \le 2t$ 

Ist hingegen  $d(C) \ge 2t + 1$ , so wird stets v = v' gewählt, d.h. treten bei der Übertragung höchstens t Fehler auf, so werden diese erkannt und korrigiert.

#### 3.1.4 Definition

Sei  $C \subseteq A^n$ 

- (a) C heißt t-fehlerkorrigierend, falls  $d(C) \geq 2t + 1$
- (b) C heißt t-fehlererkennend, falls  $d(C) \ge t + 1$

## 3.1.5 Zielstellung der Kanalkodierung

Suchen  $C \subseteq A^n$  mit d(C) groß (gute Fehlerkorrektur) und |C| groß (viele Nachrichtenwörter kodierbar). Dabei ist A und n gegeben.

$$M(r, n, t) := \max\{|C||C \subseteq A^n, |A| = r, d(C) \ge 2t + 1\}$$

sei die maximale Mächtigkeit eines t-fehlerkorrigierenden Codes über einem Alphabet A mit r Buchstaben.

#### 3.1.6 Hammingschranke, perfekte Codes

#### Definition 1

 $\underline{a} \in A^n, k, t > 0$  natürliche Zahlen

(a) 
$$S_k(\underline{a}) = \{\underline{x} \in A^n | d(\underline{a}, \underline{x}) = k \}$$
 Sphäre

(b) 
$$B_t(\underline{a}) = \{\underline{x} \in A^n | d(\underline{a}, \underline{x}) \le t \}$$
 Kugel, Ball

#### Lemma

Ist  $|A| = r \ge 2$  und  $k, t \ge 0$ , so gilt:

(1) 
$$B_t(\underline{a}) = \bigcup_{k=0}^t S_t(\underline{a})$$

(2) 
$$|S_k(\underline{a})| = \binom{n}{k} (r-1)^k$$

(3) 
$$|B_t(\underline{a})| = \sum_{k=0}^{t} {n \choose k} (r-1)^k$$

#### **Beweis**

(a)  $d(\underline{a}, \underline{x})$  ist ganzzahlig und  $\geq 0$ 

(b) 
$$d(\underbrace{\underline{a}}_{fest}, \underbrace{\underline{x}}_{variabel}) = k$$

- für k Stellen ist  $a_i \neq x_i$  sonst  $x_i = a_i$
- $x_i \neq a_i$  ergibt r-1 Möglichkeiten, also insgesamt  $(r-1)^k$
- $\binom{n}{k}$  = Anzahl der Möglichkeiten die k Fehlerstellen zu wählen

• 
$$|\{\underline{x} \in A^n | d(\underline{x}, \underline{a}) = k\}| = \binom{n}{k} (r-1)^k$$

(1) folgt aus (a) und (b) und der Tatsache dass die Sphären  $S_k(\underline{a})$  für k=0,...,t paarweise disjunkt sind.  $|A \cup B| = |A| + |B|$  falls  $A \cap B = \emptyset$ 

### Satz1

Für  $C \subseteq A^n$  sind folgende Aussagen äquivalent:

- (a) C ist t-fehlerkorrigierend, d.h.  $d(C) \geq 2t + 1$
- (b) Die Kugeln  $B_t(\underline{a})$  mit  $\underline{a} \in C$  sind paarweise disjunkt

#### **Beweis**

### (a)⇒(b)

Indirekt: Annahme: es gibt  $\underline{a}, \underline{b} \in C$  mit  $B_t(\underline{a}) \cap B_t(\underline{b}) \neq \emptyset$ , also es gibt ein  $\underline{v} \in A^n$  mit  $\underline{v} \in B_t(\underline{a}) \cap B_t(\underline{b})$ 

Dann ist  $d(\underline{a},\underline{b}) \le d(\underline{a},\underline{v}) + d(\underline{v},\underline{b}) \le t+t = 2 \cdot t$ 

Widerspruch zu (a)

### (b)⇒(a)

Indirekt: Angenommen  $d(C) < 2t + 1 \Rightarrow d(C) \le 2t$ . Dann gibt es 2 Codewörter  $\underline{a}$  und  $\underline{b} \in C$  mit  $k := d(\underline{a}, \underline{b}) \le 2t$  und  $\underline{a} \ne \underline{b}$ 

Es gibt also k Stellen  $i \in \{1, ..., n\}$  mit  $a_i \neq b_i$ .

O.B.d.A: seien dies die Stellen 1, ..., k

Es gilt also  $a_1 \neq b_1, ..., a_k \neq b_k$  und  $a_{k+1} = b_{k+1}, ..., a_n = b_n$ . Beachte  $k \leq 2 \cdot t$ .

Es gift also 
$$a_1 \neq b_1, ..., a_k \neq b_k$$
 thich  $a_{k+1} = b_{k+1}$   
 $\underline{a} = (a_1, a_2, ..., a_k, a_{k+1}, ..., a_n)$   
 $\neq \neq \neq \neq \neq a_{2t} = a_1$   
 $\Rightarrow a_1 = a_2 + a_2 + a_3 + a_4$   
 $\Rightarrow a_1 = a_1 + a_2 + a_3 + a_4$   
 $\Rightarrow a_1 = a_1 + a_2 + a_3 + a_4$   
 $\Rightarrow a_1 = a_1 + a_2 + a_3 + a_4$   
 $\Rightarrow a_1 = a_1 + a_2 + a_3 + a_4$   
 $\Rightarrow a_1 = a_1 + a_2 + a_3 + a_4$   
 $\Rightarrow a_1 = a_1 + a_2 + a_3 + a_4$   
 $\Rightarrow a_1 = a_1 + a_2 + a_3 + a_4$   
 $\Rightarrow a_1 = a_1 + a_2 + a_3 + a_4$   
 $\Rightarrow a_2 = a_1 + a_2 + a_3 + a_4$   
 $\Rightarrow a_1 = a_1 + a_2 + a_3 + a_4$   
 $\Rightarrow a_1 = a_2 + a_3 + a_4$   
 $\Rightarrow a_2 = a_1 + a_2 + a_3 + a_4$   
 $\Rightarrow a_1 = a_2 + a_3 + a_4$   
 $\Rightarrow a_2 = a_1 + a_2 + a_3 + a_4$ 

Dann sei v das Wort mit:

$$v_i = \begin{cases} a_i & i \le t \\ b_i & i > t \end{cases}$$

ergibt somit:

$$\begin{array}{lll} \underline{a} = & (a_1, ..., a_t, & a_{t+1}, ..., a_{2t}, & a_{2t+1}, ..., a_n) \\ \underline{b} = & (b_1, ..., b_t, & b_{t+1}, ..., b_{2t}, & b_{2t+1}, ..., b_n) \\ \underline{v} = & (a_1, ..., a_t, & b_{t+1}, ..., b_{2t}, & b_{2t+1}, ..., b_n) \end{array}$$

Somit gilt  $d(\underline{v},\underline{a}) \leq t$  (höchstens die Stellen t+1 bis 2t verschieden) und  $d(\underline{v},\underline{a}) \leq t$  (höchstens die ersten t Stellen verschieden) also  $\underline{v} \in B_t(\underline{a}) \cap B_t(\underline{b})$  Widerspruch zu (b), qed.

### Satz 2: Hammingschranke

Sei  $|A| = r \ge 2$ ,  $n, t \ge 1$ . Ist  $C \subseteq A^n$  ein t-fehlerkorrigierender Code, d.h.  $d(C) \ge 2t + 1$  so gilt:

$$|C| \le H(r, n, t) = \frac{r^n}{\sum\limits_{k=0}^{t} \binom{n}{k}^{(r-1)^k}}$$

#### **Beweis:**

Aus Satz1 folgt: Die Kugeln 
$$B_t(\underline{a})$$
 mit  $\underline{a} \in C$  sind paarweise disjunkt. Somit gilt:  $r^n = |A^n| \ge |\bigcup_{\underline{a} \in C} B_t(\underline{a})|$  (da  $\bigcup_{\underline{a} \in C} B_t(\underline{a}) \subseteq A^n$ )
$$= \sum_{\underline{a} \in C} |B_t(\underline{a})| \text{ (wegen Disjunktheit)}$$

$$= \sum_{\underline{a} \in C} \sum_{k=0}^t \binom{n}{k} \cdot (r-1)^k \text{ (wegen Lemma)}$$

$$= |C| \sum_{k=0}^t \binom{n}{k} \cdot (r-1)^k$$
Daraus folgt: 
$$|C| \le \frac{r^n}{\sum_{k=0}^t \binom{n}{k}^{(r-1)^k}} \text{ qed.}$$

### **Folgerung**

Es gilt also 
$$M(r,n,t) \leq H(r,n,t) = \frac{r^n}{\sum\limits_{k=0}^t \binom{n}{k} (r-1)^k}$$

### **Definition 2**

Ein Code  $C \subseteq A^n$  mit  $|A| = r \ge 2$  heißt t-perfekt, falls gilt: C ist t-fehlerkorrigierend und |C| = H(r, n, t)

#### Satz 3

Für  $C \subseteq A^n$  und  $t \ge 0$  sind äquivalent:

- (a) C ist t-perfekt
- (b) Die Kugeln  $B_t(\underline{a})$  mit  $\underline{a} \in C$  bilden eine Zerlegung von  $A^n$  (d.h.  $A^n$  disjunkte Vereinigung der  $B_t(\underline{a})$ )

#### **Beweis**

$$(a) \Rightarrow (b)$$

C sei t-perfekt. Dann ist C t-fehlerkorrigierend und aus Satz 1 folgt, dass  $B_t(\underline{a})$  paarweise disjunkt sind. Aus  $t \geq 0$  folgt  $B_t(\underline{a}) \neq \emptyset$ . Somit genügt zu zeigen:

$$A^n = \bigcup_{\underline{a} \in C} B_t(\underline{a})$$

Angenommen das gilt nicht, dann gilt:

$$\bigcup_{\underline{a} \in C} B_t(\underline{a}) \subset A^n$$
also:
$$|\bigcup_{\underline{a} \in C} B_t(\underline{a})| < |A^n| = r^n$$

$$\Rightarrow \text{(siehe Beweis von Satz 2)}$$

$$|C| < \frac{r^n}{\sum\limits_{k=0}^{t} \binom{n}{k} (r-1)^k} = H(r, n, t)$$

Widerspruch zu (a)

$$(b) \Rightarrow (a)$$

Aus (b) folgt wegen Satz 1, dass C t-fehlerkorrigierend ist. Weiterhin gilt r = |A| $r^n = |A^n| =_{(b)} |\bigcup_{\underline{a} \in C} B_t(\underline{a})|.$ 

Weiter wie im Beweis von Satz 2, folgt:

$$|C| = \frac{r^n}{\sum\limits_{k=0}^t \binom{n}{k}^{(r-1)^k}} \text{ qed.}$$

# 3.2 Der 2. Hauptsatz von Shannon

Wir betrachten nun binäre Codes, d.h.  $C \subseteq A^n$  mit |A| = r = 2. Dann setzen wir  $A=Z_2$ , also  $Z_2$  ist Körper und  $Z_2^n$  Vektorraum über  $Z_2$ . Weiterhin sei  $\log x=\log_2 x$ 

### 3.2.1 Informationsrate

Für einen Code  $C \subseteq \mathbb{Z}_2^n$  sei :

$$I(C) = \frac{\log |C|}{n}$$

die Informationsrate von C.

### Bemerkung 1

Bei der Kanalkodierung betrachten wir die injektive Abbildung f mit:

$$f: Z_2^k \to Z_2^n$$

$$\underline{\underline{u}} \qquad \mapsto \underline{\underline{v}} = f(\underline{\underline{u}})$$

 $\underbrace{\underline{u}}_{Nachrichtenwort} \mapsto \underline{\underline{v}} = \underline{f}(\underline{u})$   $\underbrace{\underline{v}}_{Codewort} = f(\underline{u}) | \underline{u} \in Z_2^k \} \subseteq Z_2^n \text{ ein Code der Länge n "über } Z_2. \text{ Da f injektiv ist,}$ 

$$|C| = |Z_2|^k = 2^k$$
. Dann ist:

$$I(C) = \frac{\log 2^k}{n} = \frac{k}{n}$$

### Bemerkung 2

Ist  $C\subseteq Z_2^n$ , so ist  $|C|\le |Z_2^k|=2^k$  und somit gilt:  $I(C)=\frac{\log |C|}{n}\le \frac{\log 2^n}{n}=\frac{n}{n}=1$ 

$$I(C) = \frac{\log|C|}{n} \le \frac{\log 2^n}{n} = \frac{n}{n} = 1$$

### Ziel:

Suche Code  $C \subseteq \mathbb{Z}_2^n$  mit  $I(C) \to 1$  (groß oder nahe 1)

#### 3.2.2 Fehlerwahrscheinlichkeiten

Es sei  $F = (\underline{w}_1, ..., \underline{w}_m)$  eine Folge von Wörtern  $\underline{w}_1, ..., \underline{w}_m \in \mathbb{Z}_2^n$ . Wir betrachten die Abbildung:

$$m_F: Z_2^n \to \{\underline{w}_1, ..., \underline{w}_n, (?)\}$$
 mit:  

$$\{w_i \text{ falls } d(v, w_i) < d(v, w_i) \forall i \in \{1..., r\}\}$$

$$m_F: Z_2^n \to \{\underline{w}_1, ..., \underline{w}_n, (?)\} \text{ mit:}$$

$$m_F(\underline{v}) = \begin{cases} \underline{w}_i & \text{falls } d(\underline{v}, \underline{w}_i) < d(\underline{v}, \underline{w}_j) \forall j \in \{1..., m\} - \{i\} \\ (?) & sonst \end{cases}$$

Weiterhin sei  $X = (X_1, ..., X_n)$  ein Zufallsvektor von n unabhängigen Bernoulli- verteilten Zufallsvariablen, d.h.

$$P(X_i = 1) = p \text{ und } P(X_i = 0) = 1 - p \text{ mit } p \in [0, 1].$$

Die Zahl:

 $p_F := \frac{1}{m} \sum_{i=1}^{m} P(m_F(\underline{w_i} + X) \neq \underline{w_i})$  ist dann <u>Fehlerwahrscheinlichkeit</u> der Folge F unter der Störung X bei Maximum-Likelihood-Decodierung  $m_{\cal F}$ 

### Bemerkung 1

•  $X = (X_1, ..., X_n)$  entspricht einem zufälligem Wert aus  $\mathbb{Z}_2^n$  und beschreibt die 'Störung' im Kanal. Senden Wort  $\underline{w}$  und empfangen Wort  $\underline{w} + X$  (+: Addition modulo 2 in  $Z_2$ )

Also  $X_i = 1$  besagt, dass in der i-ten Komponente ein Fehler auftritt.

- $\bullet$   $p_F$  ist unabhängig von der Reihenfolge der Wörter in F
- Ist  $C\subseteq Z_2$  in Code mit  $C=\{\underline{w_1},...,\underline{w_m}\}$  also mit m<br/> Codewörtern, so heißt  $p_C=p_F$ mit  $F = \{\underline{w}_1, ..., \underline{w}_m\}$  die Fehlerwahrscheinlichkeit von C unter der Störung X bei M-L-Decodierung  $m_C$ .
- Ziel:  $p_c$  soll klein sein

#### Beispiel

Es sei  $C \subseteq \mathbb{Z}_2^n$  ein t-perfekter Code. Dann bilden die Kugeln  $B_t(\underline{w})$  mit  $\underline{w} \in C$  eine Zerlegung von  $\mathbb{Z}_2^n$ . Somit gibt es zu jedem Wort  $\underline{v} \in \mathbb{Z}_2^n$  genau ein Codewort  $\underline{w} \in \mathbb{C}$  mit  $d(\underline{v},\underline{w}) \le t.$ 



Sei nun  $\underline{w} \in C$  ein Codewort und  $\underline{x} \in \mathbb{Z}_2^n$  ein beliebiges Wort (Störung ).

**Behauptung:**  $m_C(\underline{w} + \underline{x}) = \underline{w} \Leftrightarrow d(\underline{x}, 0) \leq t$ 

Beweis: Übungsaufgabe

Sei nun  $X=(X_1,...,X_n)\in Z_2^n$  ein zufälliges Wort, also ein Zufallsvektor von <br/>n unabhängigen Bernoulli-verteilten Zufallsgrößen zur Wahrscheinlichkeit p. Dann gilt:  $p_C = \frac{1}{|C|} \sum_{\underline{w} \in C} P(m_C(\underline{w} + X) \neq \underline{w}) =_{sieheBeh} \frac{1}{|C|} \sum_{\underline{w} \in C} P(d(X, 0) \geq t + 1) = P(d(X, 0) \geq t + 1)$ 

 (da  $P(d(X,0) \geq t+1)$  nicht von  $\underline{w}$  abhängt,  $X=(X_1,..X_n), X_i=0$  oder  $X_i=1$  ,  $d(X,0) = \text{Anzahl Einsen in } X = \sum X_i$ 

$$= P(\sum X_i \ge t+1) \ (Y = \sum X_i \text{ ist dann binomial verteilt})$$
$$= P(Y \ge t+1) = \sum_{k=t+1}^{n} P(Y = k)$$

$$= P(Y \ge t + 1) = \sum_{k=t+1}^{n} P(Y = k)$$

$$=\sum_{k=t+1}^{n} \binom{n}{k} p^k \cdot (1-p)^{n-k}$$

### 3.2.3 Satz (2. Hauptsatz von Shannon 1948)

Es sei  $p \in (0, \frac{1}{2})$ ,  $0 < r < 1 + p \cdot \log p + (1 - p) \cdot \log(1 - p)$  und  $\epsilon > 0$ . Dann gibt es zu genügend großem n ein Code  $C \subseteq \mathbb{Z}_2^n$  mit:  $I(C) = \frac{\lfloor n \cdot r \rfloor}{n}$  und  $p_C < \epsilon$ 

Beweis: siehe Literatur

### Bemerkung

- p ist die Wahrscheinlichkeit dafür, dass bei der Übertragung an einer der n Stellen ein Fehler auftritt
- Fehler wird dann durch den Zufallsvektor  $X = (X_1, ..., X_n)$  modelliert mit  $P(X_i = 1) = p$  und  $P(X_i = 0) = 1 p$ . Also statt Codewort  $\underline{w}$  wird Wort  $\underline{w} + X$  empfangen und mit  $m_c(\underline{w} + X)$  korrigiert
- $f(p)=1+p\log p+(1-p)\log(1-p)$ : obere Schranke für r z.B.:  $f(\frac{1}{10})\approx 0.53$   $f(\frac{1}{100})\approx 0.92$
- Ist also  $p = \frac{1}{10}$ , so können wir r = 0.53 wählen und  $\epsilon > 0$  beliebig wählen. Dann gibt es zu hinreichend großem n einen Code  $C \subseteq \mathbb{Z}_2^n$  mit  $I(C) = \frac{\lfloor n \cdot r \rfloor}{n}$  und  $p_C < \epsilon$

| n                                     | 10  | 100              | 1000             |  |  |  |
|---------------------------------------|-----|------------------|------------------|--|--|--|
| $\frac{\lfloor n \cdot r \rfloor}{n}$ | 0.5 | $\frac{53}{100}$ | $\frac{53}{100}$ |  |  |  |

• Der Beweis des Satzes ist nicht konstruktiv, d.h. er liefert kein Verfahren zur Konstruktion eines solchen Codes  $C \subseteq \mathbb{Z}_2^n$ ; er liefert aber eine Aussage über die Größenordnung von n.

# 4 Kapitel IV: lineare Codes

# 4.1 Einführung

**Voraussetzung** In diesem Abschnitt sei K=GF(q) ein Körper mit q Elementen. Dann ist q eine Primzahlpotenz und  $K^n$  ein Vektorraum über K. Ist q eine Primzahl, so ist  $K=Z_q$  (Restklassenring modulo q)

**Beispiel**  $K = GF(5) = Z_5 = \{0, 1, 2, 3, 4\}$ 

Addition: + d.h. modulo 5

Multiplikation: · d.h. modulo 5

z.B.: 
$$4 + 2 = 1$$
,  $2 \cdot 4 = 3$ 

$$-3 = x \Leftrightarrow x + 3 = 0 \Leftrightarrow x = 2$$

$$\frac{1}{4} = x \Leftrightarrow 4 \cdot x = 1 \Leftrightarrow x = 4$$

Gauß-Jordan-Verfahren Lineares Gleichungssystem:

$$\begin{cases} x + 3y = 1 \\ x - 3y = 2 \end{cases} \begin{pmatrix} 1 & 3 \\ 1 & -3 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$\vec{A}\vec{x} - \vec{b}$$

ergibt Lösung:
$$\vec{x} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$
 (normaler Gauß aber mit mod 5)

**Bemerkung 1**  $K^n$  ist ein Vektorraum(Zeilenvektoren). Sind dann  $\underline{b}_1,...,\underline{b}_d \in K^n$  Vektorraum

und  $\alpha_1, ..., \alpha_d \in K$  Skalare, so heißt:

 $\underline{v}=\alpha_1\cdot\underline{b}_1+...+\alpha_d\cdot\underline{b}_d$  Linear kombination der Vektoren  $\underline{b}_1,...,\underline{b}_d,$  dann gilt:

$$\underline{v} = (\alpha_1, ..., \alpha_1) \cdot \begin{pmatrix} \underline{b}_1 \\ ... \\ \underline{b}_d \end{pmatrix}$$

- **Bemerkung 2** Für eine Vektormenge  $B=\{\underline{b}_1,...,\underline{b}_d\}$  sind folgende Bedingungen äquivalent:
  - (a) B ist linear unabhängig
  - (b) Kein Vektor  $\underline{b} \in B$  ist Linearkombination der Vektoren aus  $B \{\underline{b}\}$
  - (c) Die Gleichung:

 $\alpha_1\cdot\underline{b}_1+\ldots+\alpha_d\cdot\underline{b}_d=\underline{0}$ mit  $\alpha_i\in K$ hat nur die triviale Lösung:  $\forall i:\alpha_i=0$ 

### 4.1.1 Definition

Cheißt linearer Code der Länge <br/>n über K, falls  $C\subseteq K^n$ ein linearer Unterraum ist,<br/>d.h. falls gilt:

U1 
$$\underline{0} \in C$$
  
U2  $\underline{a}, \underline{b} \in C \Rightarrow \underline{a} + \underline{b} \in C$   
U3  $\underline{a} \in C, \alpha \in K \Rightarrow \alpha \cdot \underline{a} \in C$ 

### 4.1.2 Definition

Für 
$$\underline{x} = (x_1, ..., x_n) \in K^n$$
 sei:  
 $g(\underline{x}) = d(\underline{x}, \underline{0}) = |\{i \mid x_i \neq 0\}|$   
das Gewicht von  $\underline{x}$ 

### 4.1.3 Satz

Ist  $C \subseteq K^n$  ein linearer Code, so gilt  $d(C) = \min_{\underline{x} \in C, \underline{x} \neq 0} g(\underline{x})$ 

#### **Beweis**

$$\begin{array}{l} d(\underline{u},\underline{v}) = d(\underline{u} - \underline{v},\underline{0}) \\ \text{Es sei } d = d(C) = \min_{\underline{a},\underline{b} \in C,\underline{a} \neq \underline{b}} d(\underline{a},\underline{b}) \\ g := \min_{\underline{x} \in C,\underline{x} \neq 0} g(\underline{x}) \\ \text{zu zeigen: } d = g \end{array}$$

- (1) Es gibt  $\underline{a}, \underline{b} \in C$  mit  $\underline{a} \neq \underline{b}$  und  $d(\underline{a}, \underline{b}) = d$   $\Rightarrow \underline{x} = \underline{a} - \underline{b} \in C$  (da linearer Code)  $\underline{x} \neq 0$  $\Rightarrow g \leq g(\underline{x}) = g(\underline{a} - \underline{b}) = d(\underline{a}, \underline{b}) = d$
- (2) Es gibt ein  $\underline{x} \in C$  mit  $\underline{x} \neq 0$  und  $g(\underline{x}) = g$   $\Rightarrow \underline{x} \in C, \underline{0} \in C$  (da linearer Code  $\underline{x} \neq 0$ )  $\Rightarrow d \leq d(\underline{x}, \underline{0}) = g(\underline{x}) = g$
- (3) aus (1) und (2) folgt g = d qed.

### 4.1.4 Generatormatrix

Es sei  $C \subseteq K^n$  ein linearer Code. Dann besitzt C eine Basis  $B = \{\underline{b}_1, ..., \underline{b}_d\}$  bestehend aus d Vektoren aus  $K^n$ , d.h. es gibt:

**(B1)** 
$$\underline{v} \in C \Leftrightarrow \underline{v} = \alpha_1 \cdot \underline{b}_1 + \dots + \alpha_d \cdot \underline{b}_d \text{ mit } \alpha_i \in K$$

(B2) B ist linear unabhängig.

Dann ist  $d = \dim(B)$ . Bilden die Matrix  $G = (\underline{b}_1, ..., \underline{b}_d)^T \in K^{d,n}$ Die Matrix G heißt Generatormatirx von C und es gelten die folgenden Aussagen:

**(G1)** 
$$C = \{ \underline{v} \in K^n \mid \underline{v} = \underline{x} \cdot G, \underline{x} \in K^d \}$$

**(G2)** 
$$rg(G) = d$$

(G3) 
$$0 = x \cdot G \Leftrightarrow x = 0$$

**(G4)** die Abbildung  $\underline{x} \in K^d \mapsto \underline{v} = \underline{x} \cdot G \in C$  ist bijektive Abbildung von  $K^d$  in C

**(G5)** 
$$|C| = |K^d| = q^d \ (K = GF(q), |K| = q)$$

**(G6)** 
$$d(C) = \min_{\underline{v} \in C, \underline{v} \neq \underline{0}} g(\underline{v}) = \min_{\underline{x} \in K^d, \underline{x} \neq \underline{0}} g(\underline{x} \cdot G)$$

Beweis Aus Vorlesung Mathe1+2 folgt: C besitzt Basis B, für die dann (B1),(B2) gilt. Ist nun  $\underline{x} = (\alpha_1, ..., \alpha_d) \in K^d$  so gilt:  $\underline{v} = \underline{x} \cdot G = \alpha_1 \cdot \underline{b}_1 + ... + \alpha_d \cdot \underline{b}_d$ Somit folgt (G1) direkt aus (B1), aus (B2) folgt (G2) und (G3) folgt aus (B2).

**Beweis von G4** (bijektiv=surjektiv+ injektiv)

Aus (G1) folgt: C ist Bild der Abbildung, also ist die Abbildung surjektiv. Zum Beweis der Injektivität müssen wir zeigen:

$$\underline{x} \neq \underline{x}' \Rightarrow \underline{x} \cdot G \neq \underline{x}' \cdot G$$
 bzw:  $\underline{x} \cdot G = \underline{x}' \cdot G \Rightarrow \underline{x} = \underline{x}'$ 

$$\underline{x} \cdot G = \underline{x'} \cdot G \Rightarrow \underline{x} \cdot G - \underline{x'} \cdot G = 0$$

$$\Rightarrow (\underline{x} - \underline{x'}) \cdot G = 0$$

$$\Rightarrow_{(G3)} \underline{x} - \underline{x'} = 0$$

$$\Rightarrow_{(G3)} \underline{x} - \underline{x}' = 0$$
$$\Rightarrow \underline{x} = \underline{x}'$$

(G5) folgt aus (G4) und (G6) folgt aus (4.1.3) sowie (G1)+(G3) qed.

#### **Folgerung**

Ist  $C \subseteq K^n$  ein linearer Code über K = GF(q), so gilt:  $|C| = q^{\dim(C)}$ 

### **Beispiel**

$$\begin{split} K &= GF(2) = Z_2 = \{0,1\}, n = 5, d = k = 3 \\ G &= \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \text{ Zeilen sind linear unabhängig, } rg(G) = 3 = d \\ C &= \{\underline{v} = \underline{x} \cdot G \mid \underline{x} \in K^3\} : \text{ linearer Code, } C \subseteq K^5, \text{ mit Generatormatrix G} \end{split}$$

#### Codewörter

$$\underline{v} = \underline{x} \cdot G = x_1 \cdot (1, 0, 0, 0, 1) + x_2 \cdot (0, 1, 0, 1, 0) + x_3 \cdot (0, 0, 1, 1, 1) \text{ mit } \underline{x} = (x_1, x_2, x_3) 
\Rightarrow \underline{v} = (\underline{x}, \underline{y}) \text{ mit } \underline{y} = x_1 \cdot (0, 1) + x_2 \cdot (1, 0) + x_3 \cdot (1, 1) = (x_2 + x_3, x_1 + x_3) 
\underline{v} = (x_1, x_2, x_3, x_2 + x_3, x_1 + x_3)$$

#### **Abstand**

$$\begin{array}{l} d(C) = \min_{\underline{v} \in C - \{\underline{0}\}} g(\underline{v}) \\ \underline{v} = (\underline{x},\underline{y}) : g(\underline{v}) = g(\underline{x}) + g(\underline{y}) \geq 2 \text{ (falls } \underline{x} \neq \underline{0}) \\ d(C) \geq 2 \text{ (es gilt sogar } d(C) = 2) \\ \text{Also C ist 1-fehlererkennend, Korrekturrate ist 0} \end{array}$$

#### **Fehlerkorrektur**

$$\underbrace{\underline{x} \in K^3}_{Nachrichtenwort} \mapsto \underbrace{\underline{v} = \underline{x} \cdot G}_{Codewort} = (\underline{x}, \underline{y}) \in C \subseteq K^5$$
 Empfangen:  $\underline{w} = 10111 \in K^5(\underline{x} = 101, \underline{y} = 10, \underline{w} \text{ ist also kein Codewort})$  suchen: Codewort  $\underline{v} \in C$  mit  $d(\underline{w}, \underline{v}) \to \min$   $d(\underline{w}, \underline{v}) = g(\underline{w} - \underline{v}) = g(\underline{w} - \underline{x} \cdot G)$  Lösung(en): 
$$\underline{x} = 101 : \underline{v} = 10110 \to d(\underline{v}, \underline{w}) = 1$$
 
$$\underline{x} = 001 : \underline{v} = 00111 \to d(\underline{v}, \underline{w}) = 1$$

#### 4.1.5 Kontrollmatrix

Es sei 
$$H \in K^{(n,m)}$$
 und es sei :  $C = \{\underline{v} \in K^n \mid \underline{v} \cdot H = \underline{0}\}$   
Dann gilt:

- **(K1)**  $C \subseteq K^n$  ist linearer Code
- **(K2)**  $\dim(C) = n \operatorname{rg}(H)$

**(K3)** 
$$|C| = q^{n-rg(H)} (K = GF(q))$$

Beweis von (K1) müssen (U0)-(U2) zeigen:

zu (U0): 
$$\underline{0} \cdot H = \underline{0} \Rightarrow \underline{0} \in C$$
  
zu (U1):  $\underline{a}, \underline{b} \in C \Rightarrow \underline{a} \cdot H = \underline{0}, \underline{b} \cdot H = \underline{0}$   
 $\Rightarrow (\underline{a} + \underline{b}) \cdot H = \underline{a}H + \underline{b}H = \underline{0}$   
 $\Rightarrow \underline{a} + \underline{b} \in C$   
zu (U2):  $a \in C, \alpha \in K \Rightarrow aH = 0 \rightarrow (\alpha \cdot a)H = \alpha \cdot (a \cdot H) = \alpha \cdot 0 = 0$ 

### 4 Kapitel IV: lineare Codes

Beweis von (K2): siehe lineare Algebra

Beweis von (K3): folgt aus (K2) und (4.1.5)

Bemerkung 1 Die Matrix H heißt Kontrollmatrix von C

**Bemerkung 2** Jeder lineare Code  $C \subseteq K^m$  besitzt eine Kontrollmatrix.

# 4.2 Hamming Codes

### 4.2.1 Kontrollmatrix und Abstand

Es sei K = GF(q). Für einen linearen Code:

$$C = \{ \underline{v} \in K^n \mid \underline{v} \cdot H = \underline{0} \}$$

mit  $H \in K^{(n,m)}$  und  $d \ge 2$  sind folgende Bedingungen äquivalent:

- (a)  $d(C) \geq d$
- (b) je d-1 Zeilen von H sind linear unabhängig

#### **Beweis**

$$\bullet \ H = \begin{pmatrix} \underline{a}_1 \\ \dots \\ \underline{a}_n \end{pmatrix} \text{ mit } \underline{a}_i \in K^m$$

- $\underline{v} \cdot H = v_1 \cdot a_1 + ... + v_n \cdot a_n \text{ mit } \underline{v} = (v_1, ..., v_n)$
- $C\subseteq K^n$  ist linearer Code und aus Satz (4.1.3) folgt:  $d(C)=\min_{v\in C-\{0\}}g(\underline{v})$

### Beweis (a) $\Rightarrow$ (b)

Sei  $d(C) \geq d$ . Dann ist  $g(\underline{v}) \geq d$  für alle  $\underline{v} \in C, \underline{v} \neq \underline{0}$ 

Angenommen (b) gilt nicht. Dann besitzt Hd-1 linear abhängige Zeilen, etwa  $\underline{a_1},...,\underline{a_{d-1}}$ . Dann gibt es Skalare mit  $v_1,...,v_{d-1}\in K$  mit:

 $v_1 \cdot \underline{a}_1 + ... + v_{d-1} \cdot \underline{a}_{d-1} = \underline{0}$  und  $v_i$  nicht alle 0. Dann ist  $\underline{v} = (v_1, ..., v_{d-1}, 0, ..., 0) \in K^n$  ein Wort mit  $\underline{v} \neq \underline{0}$  und  $\underline{v} \cdot H = \underline{0}$ .

Also ist  $\underline{v} \in C, \underline{v} \neq \underline{0}$  und  $g(\underline{v}) \leq d - 1$ , Widerspruch zu (a).

### Beweis (b) $\Rightarrow$ (a) (indirekt)

Seien je d-1 Zeilen von H linear unabhängig. Angenommen  $d(C) \leq d-1$ . Dann gibt es ein Codewort  $\underline{v} \in C, \underline{v} \neq \underline{0}$  mit  $g(\underline{v}) = k \leq d-1$ , also etwa

 $\underline{v}=(v_1,...,v_n)$  mit  $v_1\neq 0,...,v_k\neq 0,v_{k+1}=0,...,v_n=0$ . Beachte  $k\geq 1$ , da  $\underline{v}\neq 0$ . Da  $\underline{v}\in C$  ist, gilt dann :

$$\underline{0} = \underline{v} \cdot H = v_1 \cdot \underline{a}_1 + \dots + v_n \cdot \underline{a}_n =$$

$$v_1 \cdot \underline{a}_1 + \dots + v_k \cdot \underline{a}_k$$
.

Woraus folgt: die k Zeilen  $\underline{a}_1,...,\underline{a}_k$  sind linear abhängig, ein Widerspruch zu (b), da $k \leq d-1$ 

### 4.2.2 Satz (Hemming 1950)

Sei K=GF(q) und  $r\leq 2$ . Weiterhin sei  $n=\frac{q^r-1}{q-1}$  und k=n-r Dann gibt es einen linearen Code mit folgenden Eigenschaften:

- (a)  $\dim(C) = k$
- (b) C ist 1-perfekt, d.h.  $d(C) \ge 3$  und |C| = H(q, n, 1)

#### **Beweis**

Beschreiben C durch Kontrollmatrix H , d.h.  $C = \{\underline{v} \mid \underline{v} \cdot H = \underline{0}\}$  mit  $H \in K^{(n,r)}$ 

$$K^r$$
besteht aus  $q^r$ vielen Wörtern (da  $q=|K|$ ist), also gilt für  $M=K^r-\{\underline{0}\}\colon |M|=q^r-1$ 

Für  $\underline{a}, \underline{b} \in M$  definieren wir eine Relation  $\sim$  mit:

 $\underline{a} \sim \underline{b} \Leftrightarrow \underline{a}, \underline{b} \text{ sind linear abhängig}$ 

 $\Leftrightarrow \underline{a}$  ist Vielfaches von  $\underline{b}$ 

 $\Leftrightarrow \underline{b}$  ist Vielfaches von  $\underline{a}$ 

Dann ist  $\sim$  eine Äquivalenzrelation auf M, d.h. es gilt:

- (1)  $\underline{a} \sim \underline{a}$  (reflexiv)
- (2)  $a \sim b \Rightarrow b \sim a$  (symetrisch)
- (3)  $a \sim b, b \sim c \Rightarrow a \sim c \text{ (transitiv)}$

Für die zu  $\underline{a}$  gehörenden Äquivalenzklassen gilt dann:

$$[\underline{a}] :=_{def} \{\underline{b} \mid \underline{a} \sim \underline{b}\}$$

Dann gilt:

(4) 
$$[\underline{a}] \cap [\underline{b}] \neq \emptyset$$
 oder  $[a] = [b]$ 

(5) 
$$[\underline{a}] = [\underline{b}] \Leftrightarrow \underline{a} \sim \underline{b}$$

offenbar gilt dann auch:

$$[\underline{a}] = \{\underline{b} \in K^r \mid \underline{b} = \alpha \cdot \underline{a}, \alpha \in K - \{0\}\}$$
 und somit ist  $|[\underline{a}]| = |K - \{0\}| = q - 1$ 

### 4 Kapitel IV: lineare Codes

Die Äquivalenzklassen haben alle die Mächtigkeit q-1 und bilden eine Zerlegung von  $M=K^r-\{\underline{0}\}$ 

Da 
$$|M| = q^r - 1$$
 ist, gibt es somit:  

$$n = \frac{q^r - 1}{q_r^{-1}}$$

viele Äquivalenzklassen. Wählen aus jeder der n Äquivalenzklassen einen Vektor und erhalten dann n Wörter (Zeilenvektoren)

 $\underline{a}_1,..,\underline{a}_n \in K^r$ , wobei keine zwei dieser Zeilen linear abhängig sind.

Da die Einheitsvektoren  $\underline{e}_1,...,\underline{e}_n\in K^r$  zu verschiedenen Äquivalenzklassen gehören, können wir o.B.d.A wählen:  $\underline{a}_i=\underline{e}_i$ 

Dann setzen wir 
$$H = \begin{pmatrix} \underline{a}_1 \\ \dots \\ \underline{a}_n \end{pmatrix} \in K^{(n,r)}$$

Dann ist rg(H) = r und je 2 Zeilen von H sind linear unabhängig.

Setzen  $C = \{\underline{v} \in K^n \mid \underline{v} \cdot H = \underline{0}\}$ . Damit ist  $C \subseteq K^n$  ein linearer Code mit  $\dim(C) = n - \operatorname{rg}(H) = n - r = k$  (siehe 1.6) und  $d(C) \geq 3$  (siehe 2.1)

Aus (1.6) folgt: 
$$|C| = q^{\dim(C)} = q^k = q^{n-r} = \frac{q^n}{q^r} = \frac{q^n}{1 + n \cdot (q-1)} = H(q, n, 1)$$

Damit ist (4.2.2) bewiesen.

### 4.2.3 Bemerkungen

Die in Satz (4.2.2) konstruierten 1-perfekten Codes  $C \subseteq K^n$  heißen Hamming Codes, kurz:

$$C=\mathrm{Ham}_q(n,k)$$
wobe  
i $q=|K|, K=GF(q)$ ,  $k=\dim(C),$   $C\subseteq K^n$  Diese Codes existieren nur für  
  $n=\frac{q^r-1}{q-1}$  und  $k=n-r$  mit  $r\geq 2$ beliebig.

#### **Beispiel**

• 
$$K = GF(q) = \mathbb{Z}_2, q = 2, r = 3, n = \frac{q^r - 1}{q - 1} = 7, k = n - r = 4$$

• 
$$C = \operatorname{Ham}_2(7,4) = \{\underline{v} \in K^7 \mid \underline{v} \cdot H = \underline{0}\}$$

• Kontrollmatrix  $H \in K^{(n,r)} = K^{(7,3)}$ , besteht aus n = 7 Zeilen aus  $K^r = K^3$  etwa:

$$\bullet \ H = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

• 
$$d(C) \ge 3$$
,  $|C| = q^k = 2^4 = 16$ , C ist 1-perfekt

### 4.2.4 Satz

Es sei  $C \subseteq A^n$  ein t-perfekter Code der Länge n über dem Alphabeth A mit |A| = q, wobei q ein Primzahlpotenz ist. Ist  $|C| \geq 3$  so gilt:

(1) 
$$n = \frac{q^r - 1}{q - 1}$$
 für ein  $r \ge 2$  und  $t = 1$  oder

(2) 
$$n = 23, t = 3 \text{ und } q = 2 \text{ oder}$$

(3) 
$$n = 11, t = 2 \text{ und } q = 3$$

Beweis: siehe Literatur

### Bemerkung

Es wird in dem Satz nicht vorausgesetzt das A ein Körper ist. Beispiel für (1) sind die Hamming Codes, für (2) und (3) die Golay Codes.

### 4.2.5 Reed-Solomon-Codes

Bemerkung werden bei der Fehlerkorrektur von Compact Discs verwendet

**Voraussetzungen**  $K = GF(q) = \{0, 1, a_1, ..., a_{q-2}\}$  mit  $q \ge 2$  Primzahlpotenz

$$V = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ \dots & \dots & \dots & \dots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix} \in K^{n,n}$$

Vandermonde- Matrix Sind  $x_1, ..., x_n \in K$  so heißt die Matrix  $V = \begin{pmatrix} 1 & x_1 & x_1^2 & ... & x_1^{n-1} \\ ... & ... & ... & ... \\ 1 & x_n & x_n^2 & ... & x_n^{n-1} \end{pmatrix} \in K^{n,n}$  Vandermonde Matrix  $V = V(x_1, ..., x_n)$ . Dann gilt:  $\det(V) = \prod_{1 \le i < j < n} (x_i - x_j)$ .

Sind also  $x_1,...,x_n$  paarweise verschieden, so ist  $\det(V) \neq 0$  und die Zeilen (bzw. Spalten) von V linear unabhängig

**Reed-Solomon-Codes**  $C = C_d \text{ mit } d \geq 3$ 

Betrachten die Matrix:

$$H = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & 1\\ 1 & 0 & 0 & \dots & 0 & 0\\ 1 & 1 & 1 & \dots & 1 & 1\\ 1 & a_1 & a_1^2 & \dots & a_{q-2}^{d-3} & a_{q-2}^{d-2}\\ \dots & \dots & \dots & \dots & \dots\\ 1 & a_1 & a_1^2 & \dots & a_{q-2}^{d-3} & a_{q-2}^{d-2} \end{pmatrix}$$

setzen: 
$$C = \{\underline{v} \in K^n \mid \underline{v} \cdot H = \underline{0}\} \ n = q+1$$

Dann gilt:

- $H \in K^{(q+1,d-1)}$
- rg(H) = d 1
- Je d-1 Zeilen sind linear unabhängig

daraus folgt:

- $C \subseteq K^n$  ist linearer Code mit
- $\dim(C) = n \operatorname{rg}(H) = n d + 1 = q + 2 d$
- $|C| = q^{\dim(C)} = q^{q+2-d}$
- Informations rate:  $I(C) := \frac{\log_q |C|}{n} = \frac{q+2-d}{q+1} = 1 + \frac{1-d}{q+1}$

Also I(C) nahe 1 für große q

**Beispiel**  $q = 2^8, d = 11, C = C_d$  $n = q + 1 = 257, C \subseteq K^{257}$ 

 $\dim(C) = n - d + 1 = 257 - 10 = 247$ 

•  $d(C) \ge 11$  (C ist 5 fehlerkorrigierend)

- $I(C) = \frac{258-11}{257} = 1 \frac{10}{257}$
- $GF(2^8)$  ist Vektorraum der Dimentsion 8 über GF(2)also  $GF(2^8) \cong GF(2)^8$

Wir können also jedes Wort der Länge 8 (Zeilenvektor mit 8 Komponenten) über diesen Körper  $GF(2) = Z_2$  darstellen

- $\bullet$ dann ist jedes Codewort  $\underline{v} \in C \subseteq K^{257}$ darstellbar als 0,1 Wort der Länge  $8 \cdot 257 = 2056$ , etwa:  $\underline{v} = (v_1^{(1)}, ..., v_1^{(8)}, ..., v_{257}^{(1)}, ..., v_{257}^{(8)})$
- somit entspricht C also einem Code  $C' \subseteq GF(2)^{2056}$

Beh: C' kann bis zu 33 aufeinanderfolgende Fehler korrigieren (burst error)

Bew: Die 33 aufeinaderfolgende Fehler in  $v \in C'$  treten in höchstens 5 aufeinanderfolgender 8er Blöcken auf. Da der ursprüngliche Code aber 5-fehlerkorrigierend ist, kann C' diese 33 aufeinanderfolgenden Fehler korrigieren. q.e.d

Bem: wollte man einen 33-fehlerkorrigierenden Code konstruieren, würde die Informationsrate wesentlich schlechter sein.

### 4.3 Football Pools

### 4.3.1 Problemstellung

#### Gegeben

• n natürliche Zahl: (= Anzahl der Fußballspiele)

- $Z_3 = \{0, 1, 2\}$ : (= Menge der Spielergebnisse)
- $\mathbb{Z}_3^n$ : (= Menge aller möglichen Tipps= Spielergebnisse der <br/>n Spiele)
- $\bullet$   $\underline{s}\subseteq Z_3^n$ : (=Siegertipp = tatsächlicher Spielausgang der <br/>n Spiele)

#### **Definition**

Ein Tipp  $\underline{w} \in \mathbb{Z}_3^n$  gewinnt den (r+1)-ten Preis, falls gilt:  $d(\underline{w},\underline{s}) = r$ 

#### Gesucht

• Eine Menge  $C \subseteq \mathbb{Z}_3^n$  von Tipps, die uns immer wenigstens den (r+1)-ten Preis garantieren, d.h. für die gilt:

$$\forall \underline{s} \in Z_3^n, \exists \underline{w} \in C : \text{mit } d(\underline{s},\underline{w}) \leq r$$
 Man sagt dann, dass C den covering radius r hat.

•  $K_3(n,r) := \min\{|C| \mid C \subseteq Z_3^n \text{ hat covering radius } r\}$ 

### **Beispiel:**

- (n=4, r=1)  $C \subseteq Z_3^4$  besteht aus 9 Wörtern: 0000, 1101, 0112, 1210, 0221, 2011, 1022, 2120, 2202 Dann hat C den covering radius r=1. Also gilt:  $K_3(4,1) \le |C| = 9$
- $\underline{s} = 1111, \ \underline{w} = 1101, \ d(\underline{s}, \underline{w}) \le 1 = r$
- $\forall \underline{s} \in Z_3^n \exists \underline{w} \in C \text{ mit } d(\underline{w}, \underline{s}) \leq 1 = r$

### **Bemerkung**

 $C \subseteq \mathbb{Z}_3^n$  hat covering radius  $r = 0 \Leftrightarrow C = \mathbb{Z}_3^n$ Also gilt:  $K_3(n,0) = 3^n$ 

### 4.3.2 Lemma

Für eine Menge  $C \subseteq \mathbb{Z}_3^n$  sind folgende Bedingungen äquivalent:

- (a) C hat covering radius r
- (b) Die Kugeln  $B_r(\underline{a}) = \{\underline{w} \in Z_3^n | d(\underline{w}, \underline{a}) \leq r\}$  mit  $\underline{a} \in C$  Bilden eine Überdeckung von  $Z_3^n$ , d.h.  $Z_3^n \subseteq \bigcup_{\underline{a} \in C} B_r(\underline{a})$

### **Beweis**



 $C\subseteq Z_3^n \text{ hat covering radius } \mathbf{r} \Leftrightarrow_{def} \forall \underline{s} \in Z_3^n \exists \underline{a} \in C \text{ mit } d(\underline{a},\underline{s}) \leq r \Leftrightarrow \forall \underline{s} \in Z_3^n \exists \underline{a} \in C$  $\text{mit } \underline{s} \in B_r(\underline{a}) \Leftrightarrow Z_3^n \subseteq \bigcup_{\underline{a} \in C} B_r(\underline{a})$ 

### 4.3.3 Satz

Es sei  $C \subseteq \mathbb{Z}_3^n$  eine Menge mit covering radius  $r \geq 1$ 

Es sei 
$$C \subseteq Z_3^n$$
 eine Menge mit covering Dann ist:  
 $|C| \ge \frac{3^n}{\sum\limits_{k=0}^r \binom{n}{k} \cdot 2^k} =: H(q=3,n,t=r)$   
Somit gilt:  
 $K_2(n,r) > H(3,n,r)$ 

 $K_3(n,r) \ge H(3,n,r)$ 

### **Beweis**

Es sei  $C\subseteq Z_3^n$  Menge mit covering radius  $r\geq 1.$  Aus (4.3.2) folgt:

 $Z_3^n\subseteq\bigcup_{\underline{a}\in C}B_r(\underline{a}).$  Mit Hilfe von Lemma (1.6) aus Kapitel IV schließen wir dann:

$$3^{n} = |Z_{3}|^{n} \le |\bigcup_{\underline{a} \in C} B_{r}(\underline{a})| \le \sum_{\underline{a} \in C} |B_{r}(\underline{a})| \le \sum_{\underline{a} \in C} \sum_{k=0}^{r} {n \choose k} \cdot 2^{k} = |C| \cdot \sum_{k=0}^{r} {n \choose k} \cdot 2^{k}$$

$$\Rightarrow |C| \ge \frac{3^{n}}{\sum_{k=0}^{r} {n \choose k} \cdot 2^{k}}$$

q.e.d

### 4.3.4 Folgerung

Es sei  $1 \le r \le n$ . Ist  $C \subseteq \mathbb{Z}_3^n$  ein r-perfekter Code, so hat C den covering radius r und es gilt dann:

$$|C| = K_3(n,r) = H(3,n,r)$$

### **Beweis**

Es sei  $C \subseteq \mathbb{Z}_3^n$  ein r-perfekter Code. Dann ist |C| = H(3, n, r). Aus Satz 3 in (1.6) aus Kapitel III folgt:

Die Kugeln  $B_r(\underline{a})$  mit  $\underline{a} \in C$  bilden eine Zerlegung von  $Z_3^n$  also auch eine Überdeckung von  $\mathbb{Z}_3^n$ . Aus Lemma (4.3.2) folgt dann: C hat covering radius r. Also gilt:  $K_3(n,r) \leq$ |C| = H(3, n, r). Aus Satz (4.3.3) folgt:  $K_3(n, r) \ge H(3, n, r)$ . Also gilt  $K_3(n, r) =$ H(3, n, r) q.e.d

### 4.3.5 Beispiele

### (1) Fall r=1

1-perfekte Codes  $C \subseteq \mathbb{Z}_3^n$  existieren, falls gilt:

 $n = \frac{3^k - 1}{2}$  mit  $k \ge 1$ , etwa die Hamming Codes aus (4.2.2),(4.2.3). Dann ist:  $K_3(n,1) = H(3,n,1) = \frac{3^n}{2^{n+1}}$ .

$$K_3(n, 1) = H(3, n, 1) = \frac{3^n}{2n+1}.$$

Dies ergibt folgende exakte Werte für:

| k = | n = | $K_3(n,1)$ |
|-----|-----|------------|
| 1   | 1   | 1          |
| 2   | 4   | 9          |
| 3   | 13  | $3^{10}$   |

### (2) Fall $r \ge 2$

Für 1 < r < n existiert genau ein r-perfekter Code, nämlich für r = 2 und n = 11Beispiel für einen 2-perfekten Code ist der sogenannte Golay-Code (wurde 1947 in finnischer Fußballzeitschrift veröffentlicht) besteht aus allen Wörtern  $\underline{v} = (v_1, ..., v_{11})$  mit:

$$\begin{pmatrix} v_7 \\ v_8 \\ v_9 \\ v_{10} \\ v_{11} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 2 & 2 & 1 \\ 1 & 1 & 0 & 1 & 2 & 2 \\ 1 & 2 & 1 & 0 & 1 & 2 \\ 1 & 2 & 2 & 1 & 0 & 1 \\ 1 & 1 & 2 & 2 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \end{pmatrix}$$

und  $(v_1,...,v_6) \in \mathbb{Z}_3^6$ . Somit gilt:  $K_3(11,2) = H(3,11,2) = 3^6 - 9^3 = 729$ 

# 4.3.6 Tabelle der bekannten Werte für $K_3(n,r)$

| n  | r = 1     | r=2       | r=3      |  |  |
|----|-----------|-----------|----------|--|--|
| 3  | 5         | 3         | 1        |  |  |
| 4  | 9         | 3         | 3        |  |  |
| 5  | 27        | 8         | 3        |  |  |
| 6  | 73        | 12-17     | 3        |  |  |
|    |           |           |          |  |  |
| 11 | 7767-9477 | 729       | 115-243  |  |  |
|    |           |           |          |  |  |
| 13 | 59049     | 5062-6561 | 609-1215 |  |  |

### Tippsystem 1 für n = 13 Spiele, r = 4

- $C_1 \subseteq Z_3^4$  sei 1-perfekter Code, |C|=9
- $\bullet \ C=\{\underline{w}=(w_1,w_2,w_3,1)\mid \underline{w}_1,\underline{w}_2,\underline{w}_3\in C_1\}\subseteq Z_3^{13}$
- $|C| = 9^3 = 729$
- $C_1$  hat covering radius r=1, also hat C covering radius r=4
- $\underline{s} = (\underline{s}_1, \underline{s}_2, \underline{s}_3, \underline{\ })$
- also gilt:  $K_3(13,4) \le 729$
- weiterhin  $K_3(13,4) \ge H(3,13,4) \approx 113$
- also  $K_3(13,4) \ge 114$

### Tippsystem 2 für n=13 Spiele, r=4

- $C_2 \subseteq Z_3^n$  sei 2-perfekter Code, |C| = 729
- $\bullet \ C = \{\underline{w}, = (\underline{u}, 1, 1) \mid \underline{u} \in C_2\} \subseteq Z_3^{13}$
- |C| = 729
- $C_2$  hat covering radius r=2, also hat C covering radius r=4

# 5 Kapitel V: Prüfziffersysteme

# 5.1 Einführung

### 5.1.1 Häufigkeit der Eingabefehler (Verhoff 1969)

| Fehlertyp                                     | Symbol                | Häufigkeit |
|-----------------------------------------------|-----------------------|------------|
| Einzelfehler: Verwechselung eines Buchstaben  | $a \rightarrow b$     | 79.0%      |
| Nachbartransposition                          | $ab \rightarrow ba$   | 10.2%      |
| Sprungtransposition                           | $abc \rightarrow cba$ | 0.8%       |
| Zwillingsfehler                               | $aa \rightarrow bb$   |            |
| phonetischer Fehler: z.b. $30 \rightarrow 13$ | $a0 \rightarrow 1a$   | 0.5%       |
| Sprungzwillingsfehler                         | $aca \rightarrow bcb$ | 0.3%       |
| übrige Fehler                                 | _                     | 8.6%       |

### 5.1.2 Prüfziffersysteme

### Gegeben

Alphabet A mit  $|A| = r \ge 2$ , natürliche Zahl  $n \ge 2$ 

### **Definition**

Ein Code  $C \subseteq A^n$  heißt Prüfziffersystem der Länge n über A, falls gilt:  $C = \{\underline{w} \in A^n \mid \underline{w} = (\underline{u}, f(\underline{u})), \underline{u} \in A^{n-1}\}$  wobei  $f: A^{n-1} \to A$  eine Abbildung ist.

### Bemerkung

Zu C gehört die Abbildung:

$$\underbrace{\underline{u} \in A^{n-1}}_{\text{Vachrichtenwort}} \mapsto \underbrace{\underline{w} = (\underline{u}, f(\underline{u})) \in A^n}_{\text{Codewort}}$$

Das Codewort  $\underline{w}=(\underline{u},f(\underline{u}))$  besteht also aus dem Nachrichtenwort  $\underline{u}\in A^{n-1}$  und dem Kontrollwort  $f(\underline{u})\in A$ , man nennt  $f(\underline{u})$  auch Prüfziffer.

Es gilt  $|C|=|A^{n-1}|=r^{n-1}$ , woraus für die Informationsrate von C folgt:  $I(C)=\frac{\log_r|C|}{n}=\frac{n-1}{n}=1-\frac{1}{n}$ 

#### Ziel

Wollen erreichen dass  $d(C) \geq 2$  ist und C somit alle Einzelfehler erkennt. Außerdem soll C noch möglichst alle Nachbartranspositionen erkennen.

### 5.1.3 Gruppen

Ein Paar  $G=(A,\circ)$  bestehend aus einer Menge A mit  $A\neq\emptyset$  und einer Operation  $\circ$  auf A (d.h. Abbildung  $a,b\in A\mapsto a\circ b\in A$ ) heißt Gruppe, falls folgendes gilt:

- (G1)  $\forall a, b \in A : a \circ b \in A \text{ (Abgeschlossenheit von } \circ)$
- (G2)  $\forall a, b, c \in A : a \circ (b \circ c) = (a \circ b) \circ c$  (Assoziativität)
- (G3)  $\exists e \in A : \forall a \in A : a \circ e = e \circ a = a$  (Existenz eines neutralen Elements)

### **Bemerkung**

Man nennt e das <u>neutrale Element</u> der Gruppe G, es gibt dann genau ein neutrales Element.

(G4)  $\forall a \in A : \exists i \in A : a \circ i = i \circ a = e$  (Existenz eines inversen Elements)

#### **Bemerkung**

Gilt  $a \circ i = i \circ a = e$ , so heißt i inverses Element von a, es ist eindeutig bestimmt und wir schreiben:  $i = a^{-1}$ 

### Bemerkung

- (Z, +) ist Gruppe:  $e = 0, a^{-1} = -a$
- (N, +) ist keine Gruppe: (G4) gilt nicht
- $(Z_p, +)$  ist Gruppe:  $e = 0, a^{-1} = -a$
- $(R,\cdot)$  ist keine Gruppe: 0 besitzt kein Inverses $\rightarrow$  (G4) nicht erfüllt
- $(R \setminus \{0\}, \cdot)$  ist Gruppe:  $e = 1, a^{-1} = \frac{1}{a}$

#### **Bemerkung**

Gruppe  $(A, \circ)$  heißt kommutativ (abelsch), falls gilt:  $\forall a, b \in A : a \circ b = b \circ a$ 

### 5.1.4 Symetrie Gruppen

### Gegeben

Menge A, mit  $A \neq \emptyset$  (Ecken= Gruppenelemente, Symetrie durch Spiegelachsen dargestellt)



### Bezeichnung

 $S(A):=\{\pi\mid \pi:A\to A$ bijektive Abbildung } Man nennt die Abbildung  $\pi\in S(A)$ Permutation von A

### Bemerkung

Ist A eine endliche Menge, etwa  $A = \{1,2,3\}$ , so lässt sich jede bijektive Abbildung  $\pi$ :  $A \to A$  als Wertetabelle darstellen:  $\pi = (\pi(1), \pi(2), \pi(3))$ . Wir erhalten die folgenden 6 Abbildungen:  $\pi = (1,2,3)(1,3,2)(3,2,1)(2,1,3)(3,1,2)(2,3,1)$  (das Tupel (a,b,c) immer als Tabelle zu interpretieren : (f(1),f(2),f(3)))

### Bezeichnung

Für zwei Abbildungen  $\pi_1, \pi_2 \in S(A)$  sei  $\pi = \pi_1 \circ \pi_2$  die Komposition von  $\pi_1$  un  $\pi_2$ , d.h.  $\pi : A \to A$  ist Abbildung mit:

 $\pi(a) = \pi_1(\pi_2(a)), \forall a \in A.$  Dann ist auch  $\pi \in S(A)$ .

Für eine Abbildung  $\pi \in S(A)$  sei  $\pi^{-1}$  die <u>Umkehrabbildung</u> von  $\pi$ , d.h.  $\pi^{-1}: A \mapsto A$  ist Abbildung mit:  $\pi^{-1}(a) = b \Leftrightarrow \pi(b) = a$  für  $a, b \in A$ . Dann gilt  $\pi^{-1} \in S(A)$ . Weiterhin sei  $id: A \to A$  die <u>identische Abbildung</u>, d.h.  $id(a) = a \ \forall a \in A$ . Dann ist id  $\in S(A)$  und es gelten folgende Aussagen:

- 1.  $id \circ \pi = \pi \circ id = \pi \ \forall \pi \in S(A)$
- 2.  $\pi \circ \pi^{-1} = \pi^{-1} \circ \pi = id \ \forall \pi \in S(A)$

### Somit gilt

 $G = (S(A), \circ)$  ist eine Gruppe, sie wird symmetrische Gruppe der Menge A genannt.

### Bemerkung

Für G gilt: e = id (neutrales Element) und  $\pi^{-1}$  (inverses Element)

### **Beispiel**

- $A = \{1, 2, 3, \} |S(A)| = 3! = 6$
- $e = (1, 2, 3), \pi_1 = (1, 3, 2), \pi_2 = (2, 1, 3), \pi_3 = (2, 3, 1), \pi_4 = (3, 1, 2), \pi_5 = (3, 2, 1)$
- $\pi_2^{-1} = \pi_2$
- $\pi_4 \circ \pi_3 = \mathrm{id} = e$

## 5.2 Prüfzeichen-Codierung über Gruppen

### 5.2.1 Grundmodelle

### Gegeben

- A Alphabet mit  $|A| = m \ge 2$
- $G = (A, \circ)$  eine Gruppe
- $n \geq 2$  eine natürliche Zahl
- $\pi_1, ..., \pi_n \in S(A), c \in A$

### **Definition**

Eine Menge  $C \subseteq A^n$  heißt Prüfzeichen-Codierung über Gruppe G bezüglich  $\pi_1, ..., \pi_n$  und c, falls für ein Wort  $\underline{w} = (w_1, ..., w_n) \in A^n$  gilt:  $\underline{w} \in C \Leftrightarrow \pi_1(w_1) \circ ... \circ \pi_n(w_n) = c$  (Kontrollgleichung (KG) von C)

#### Lemma

Für die Prüfzeichen-Codierung  $C\subseteq A^n$  mit obiger Kontrollgleichung gilt dann  $d(C)\geq 2$ , d.h. C kann jeden Einzelfehler erkennen.

#### **Beweis**

Ist  $i \in \{1, ..., n\}$ , so lässt sich die Kontrollgleichung für  $\underline{w} = (w_1, ..., w_n) \in C$  nach  $w_i$  auflösen (und zwar eindeutig)

$$\frac{1}{10} (w_0) + \dots + \frac{1}{10} (w_0) + \dots + \frac{1}{10} (w_n) = C$$

$$\frac{1}{10} (w_0) + \dots + \frac{1}{10} (w_0) + \dots + \frac{1}{10} (w_n) = C$$

$$\frac{1}{10} (w_0) = (1 - 1) + \dots + (1 - 1) + C + (1 - 1) + C + (1 - 1) + \dots + (1 - 1) + C + (1 - 1) + \dots + (1 - 1) + C + (1 - 1) + \dots + (1 - 1$$

Die i-te Stelle  $w_i$  des Codewortes  $\underline{w}$  ist eindeutig bestimmt durch die restlichen n-1 Stellen von  $\underline{w}$ . Stimmen also zwei Codewörter  $\underline{u},\underline{v}\in C$  auf den Stellen  $j\neq i$  überein  $(u_i=v_j)$ , so gilt  $u_i=v_i$  als  $\underline{u}=\underline{v}$ . Ist also  $\underline{u}\neq\underline{v}$ , so ist  $d(\underline{u},\underline{v})\neq 1$  und somit  $\geq 2$ . Also ist  $d(C)\geq 2$ . w.z.b.w.

### 5.2.2 Prüfziffer-Codierung modulo m

### Gegeben

- $A = Z_m = \{0, 1, 2, ..., m-1\}$ . Beachte  $(Z_m, +, \cdot)$  ist Restklassenring modulo  $m \ge 2$ ; m muss keine Primzahl sein
- $G = (Z_m, +)$
- $n \ge 2$  natürliche Zahl
- $a_1, ..., a_n \in Z_m$  mit  $ggt(a_i, m) = 1$  (ggt = größter gemeinsamer Teiler)
- $\pi_i: Z_m \to Z_m$  sei Abbildung mit  $\pi_i(x) = a_i \cdot x$  für  $x \in Z_m$  (Multiplikation in  $Z_m$  also modulo m)

### **Behauptung**

 $\pi_i \in S(Z_m)$  ist bijektive Abbildung.

#### **Beweis**

Übungsaufgabe

### **Beispiel**

- $Z_6 = \{0, 1, 2, 3, 4, 5\}$  a = 5, ggt(5, 6) = 1
- $\pi: Z_6 \to Z_6 \text{ mit } \pi(x) = 5 \cdot x \text{ mod } 6$
- Dann gilt:

$$-\pi(0) = 0$$

$$-\pi(1)=5$$

$$-\pi(2)=4$$

$$-\pi(3)=3$$

$$-\pi(4) = 2$$

$$-\pi(5)=1$$

• also gilt: 
$$\pi = (0, 5, 4, 3, 2, 1), \pi^{-1} = (0, 5, 4, 3, 2, 1) = \pi$$

#### **Betrachten**

 $C \subseteq A^n = Z_m^n$  sei Prüfzeichen-Codierung über G bezüglich  $\pi_1, ..., \pi_n$  und c = 0. Dann erhalten wir für  $\underline{w} = (w_1, ..., w_n)$  die Kontrollgleichung:

$$\pi_1(w_1) \circ \dots \circ \pi_n(w_n) = c \text{ also}$$

$$a_1 \cdot w_1 + \dots + a_n \cdot w_n = 0$$

### Also gilt

$$C = \{\underline{w} = (w_1, ..., w_n) \in \mathbb{Z}_m^n \mid \sum_{i=1}^n a_i \cdot w_i = 0 \mod m \}$$
 ist Prüfzeichen-Codierung.

### **Beispiel 1: ISBN-Nummer**

- $m = 11, n = 10, a_i = 11 i, ggt(a_i, 11) = 1$
- Kontrollgleichung  $\sum_{i=1}^{n} (11-i) \cdot w_i = 0 \mod 11$
- Also:

$$C = \{\underline{w} = (w_1, ..., w_10) \in Z_{11}^{10} \mid \sum_{i=1}^{n} (11 - i) \cdot w_i = 0 \mod 11\}$$

• Da m=11 Primzahl ist, ist  $(Z_m,+,\cdot)$  ein Körper und C somit ein linearer Code

### Beispiel 2: EAN (europäische Artikel-Nummer)

- m = 10, n = 13
- $a_i = 1$  falls i ungerade
- $a_i = 3$  falls i gerade
- $ggt(a_i, 10) = 1$
- Kontrollgleichung für  $\underline{w} = (w_1, ..., w_{13}) \in Z_{10}^{13}$ :  $w_1 + 3w_2 + w_3 + ... + 3_{12} + w_1 = 0 \mod 10$
- also:  $C = \{\underline{w} = (w_1, ..., w_{13}) \in Z_{10}^{13} \mid w_1 + 3w_2 + w_3 + ... + 3_{12} + w_{13} = 0 \text{ mod } 10\}$

### 5.2.3 Satz

Es sei  $C \subseteq A^n$  eine Prüfziffer-Codierung über der Gruppe  $G = (A, \circ)$  bezüglich der Permutationen  $\pi_1, ..., \pi_n \in S(A)$  und  $c \in A, d.h.$  mit der Kontrollgleichung:

 $\pi_1(w_1) \circ \dots \circ \pi_n(w_n) = c$ 

für  $\underline{w} = (w_1, ..., w_n) \in A^n$ . Dann sind folgende Bedingungen äquivalent:

- (a) C erkennt alle Nachbartranspositionen
- (b)  $\forall x, y \in A \text{ mit } x \neq y, \forall i \in \{1, ..., n-1\} \text{ gilt die Ungleichung:}$  $x \circ \pi_{i+1}(\pi_i^{-1}(y)) \neq y \circ \pi_{i+1}(\pi_i^{-1}(x))$

Beweis: Übungsaufgabe

### 5.2.4 Prüfziffersystem für deutsche Banknoten

100 DM Note: AA6186305Z2

### Die Diedergruppe $D_n$

### **Definition**

Die Diedergruppe  $D_n$  ist die Symmetriegruppe eines regelmäßigen n-Ecks in der Ebene.

#### Matrizendarstellung von $D_5$

bild(5-eck)

• 
$$D = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$$
: Drehmatrix, Drehung um  $\phi$   
 $D^0 = E, D^1 = D, D^2 = D \cdot D, D^3 = D \cdot D^2, D^4, D^5 = E, D^{-1} = D^4$ 

• 
$$S = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
: Spiegelung an der y-Achse  $S \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ y \end{pmatrix}$   
 $S^2 = E$  also  $S^{-1} = S$ 

Dann gilt:

(a) 
$$SDS = SDS^{-1} = D^{-1} = D^4, D^5 = E$$

(b) 
$$SD = D^4S = D^{-1}S$$

(c)  $D_5$  besteht aus:  $D^0 = E, D^1, D^2, D^3, D^4, D^0S = S, D^1S, D^2S, D^3S, D^4S$ die Gruppenoperation ist die Matrizenmultiplikation

### Darstellung von $D_5 = (A, +)$ als additive Gruppe

• 
$$A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

• erhalten dann folgende Operationstafel für  $D_5 = (A, +)$ 

| + | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 1 | 1 | 2 | 3 | 4 | 0 | 6 | 7 | 8 | 9 | 5 |
| 2 | 2 | 3 | 4 | 0 | 1 | 7 | 8 | 9 | 5 | 6 |
| 3 | 3 | 4 | 0 | 1 | 2 | 8 | 9 | 5 | 6 | 7 |
| 4 | 4 | 0 | 1 | 2 | 3 | 9 | 5 | 6 | 7 | 8 |
| 5 | 5 | 9 | 8 | 7 | 6 | 0 | 4 | 3 | 2 | 1 |
| 6 | 6 | 5 | 9 | 8 | 7 | 1 | 0 | 4 | 3 | 2 |
| 7 | 7 | 6 | 5 | 9 | 8 | 2 | 1 | 0 | 4 | 3 |
| 8 | 8 | 7 | 6 | 5 | 9 | 3 | 2 | 1 | 0 | 4 |
| 9 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

Beispiel: (erst Zeilenwert und dann Spaltenwert (5+2= Zeile mit der 5 links , Spalte mit der 2))

$$5 + 2 \xrightarrow{} D^0 S D^2 = S D D = D^{-1} S D = D^{-1} D^4 S = D^3 S \rightarrow 8$$
  
 $3 + 4 \rightarrow D^3 D^4 = D^7 = D^5 D^2 = E D^2 = D^2 \rightarrow 2$ 

#### Prüfzeichen-Codierung deutscher Banknoten

#### Bemerkung

Bei den deutschen Banknoten wurden ab 1990 die Zeichen 0,1,...,9,A,D,K,L,N,S,U,Y,Z benutzt.

Die Buchstaben wurden wieder in Ziffern übersetzt: A = 0, D = 1, ... Y = 8, Z = 9.

#### Gegeben

- Didergruppe  $D_5 = (A, +)$  mit  $A = \{0, 1, ..., 9\}$
- n = 11
- Permutation  $\tau \in S(A)$  mit  $\tau = (1, 5, 7, 6, 2, 8, 3, 0, 9, 4) = (\tau(0), ..., \tau(9))$

### Bemerkung

- Zyklen von  $\tau: 2 \to 7 \to 0 \to 1 \to 5 \to 8 \to 9 \to 4 \to 2$  und  $3 \to 6 \to 3$  (Kreise)
- $\tau^k = \underbrace{\tau \circ \dots \circ \tau}_{\text{k-mal}} : \tau^2 = (5, 8, 0, 3, 7, 9, 6, 1, 4, 2)$
- Die Permutationen  $\tau^1=\tau,\tau^2,...,\tau^8$  sind verschieden und  $\tau^8=$  id. Dann ist  $\tau^9=\tau^8\circ\tau=id\circ\tau=\tau,\,\tau^{-1}=\tau^7$
- Für  $x, y \in A$  mit  $x \neq y$  gilt:  $x + \tau(y) \neq y + \tau(x)$  mit + Addition in  $D_5 = (A, +)$

### Prüfzeichen-Codierung

 $C \subseteq A^{11}$  mit Kontrollgleichung für  $\underline{w} = (w_1, ..., w_{11})$ :  $\sum_{i=1}^{10} \tau^i(w_i) + w_{11} = 0$ Dabei ist + die Addition in der Diedergruppe  $D_5 = (A, +)$ .

### Bemerkung 1

 $C \subseteq A^{11}$  ist Prüfziffer-Codierung über Gruppe  $D_5 = (A, +)$  bezüglich der Permutationen  $\pi_1 = \tau, ..., \pi_{10} = \tau^{10}, \pi_{11} = \text{id}$  und c = 0. Somit kann C alle Einzelfehler erkennen.

### Bemerkung 2

C erkennt alle Nachbartranspositionen, bis auf die letzen beiden Ziffern.

#### Bsp:

$$\underline{w} = (w_1, ..., w_{11}) \in C \Rightarrow \underline{u} = (w_2, w_1, w_3, ..., w_{11}) \not\in C, \text{ sonst h\"atten wir:}$$

$$\tau(w_1) + \tau^2(w_2) + \underbrace{\tau^3(w_3) + ... + \tau^{10}(w_{10}) + w_{11}}_{x} = 0 \text{ und}$$

$$\tau(w_2) + \tau^2(w_1) + \underbrace{\tau^3(w_3) + ... + \tau^{10}(w_{10}) + w_{11}}_{x} = 0$$

$$\Rightarrow \tau(w_1) + \tau^2(w_2) = \tau(w_2) + \tau^2(w_1)$$

$$\Rightarrow x + \tau(y) = y + \tau(x) \text{ mit } x = \tau(w_1), y = \tau(w_2)$$
im Widerspruch zur Eigenschaft von  $\tau$  q.e.d.

### 5 Kapitel V: Prüfziffersysteme

# Beispiel

|              | $w_1$ | $w_2$ | $w_3$ | $w_4$ | $w_5$ | $w_6$ | $w_7$ | $w_8$ | $w_9$ | $w_{10}$ | $w_{11}$ |
|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|----------|
| Banknote     | A     | A     | 6     | 1     | 8     | 6     | 3     | 0     | 5     | Z        | 2        |
| A = 0, Z = 9 | 0     | 0     | 6     | 1     | 8     | 6     | 3     | 0     | 5     | 9        | 2        |
| $\pi_i(w_i)$ | 1     | 5     | 3     | 4     | 0     | 6     | 6     | 0     | 8     | 2        | 2        |
| $\pi_i(w_i)$ | 1     | Э     | 3     | 4     | U     | 0     | О     | U     | 8     | _        |          |

Aufaddieren in  $D_5 \mid 0$   $\rightarrow$  Erfolg