- 1. Let X be a linear space with a countably infinite dimension. Then there is no norm on X with respect to which X is complete. [Hint: Baire Category Theorem].
- 2. A linear subspace of a normed linear space X is norm closed iff it is weakly closed. [Hint for 'only if': Assume a net $\{x^{\alpha}\}_{{\alpha}\in A} \to x$. Fix a base $\{e_{\beta}\}_{{\beta}\in B}$ for the subspace V and express $x_{\alpha} = \sum a_{\beta}^{\alpha} e_{\beta}$ and $x = \sum a_{\beta} e_{\beta}$ in this base. The weak convergence implies $a_{\beta}^{\alpha} \to a_{\beta}$. Justify why the net can be replaced by a sequence, and prove $x \in V$.]
- 3. Let H be a Hilbert space. Show that $T \in \mathcal{L}(H)$ is compact iff whenever $\{u_n\} \rightharpoonup u$ and $\{v_n\} \rightharpoonup v$, then $\langle Tu_n, v_n \rangle \rightarrow \langle Tu, v \rangle$.
- 4. Let (X, ρ) be a compact metric space and V a closed subspace of $(C(X), \rho_{\infty})$. Suppose that each $f \in V$ is Hölderian, i.e., there exists $C_f > 0$ and $0 < \alpha_f < 1$ such that

$$|f(x) - f(y)| \le C_f \rho(x, y)^{\alpha_f}, \quad x, y \in X.$$

Then V is finite dimensional. [Hint: There are three main ingredients that go into the proof: Arzelà-Ascoli Theorem, Baire Category Theorem and Riesz Theorem. For simplicity (justify), assume that $\rho < 1$, and let $F_n = \bigcap_{x,y \in X} \{f \in V : |f(x) - f(y)| \le n\rho(x,y)^{1/n}\}$. Apply Baire to conclude that there is an open ball in V so that the assumptions of Arzelà-Ascoli are satisfied, and hence has a compact closure. Finish off with Riesz.]

- 5. Let X be a Banach space and $T \in \mathcal{L}(X)$ such that ||T|| < 1. Show that I T is an isomorphism. Show that $\sum_{n=1}^{\infty} T^n$ converges in $\mathcal{L}(X)$, and $(I T)^{-1} = \sum_{n=1}^{\infty} T^n$.
- 6. Let $X = \ell^{\infty}$. Show that the closed unit ball B^* of the dual X^* is not weak-* sequentially compact. How do you reconcile this fact with the Alaoglu and Helly's Theorems?
- 7. Let (X, \mathcal{T}) be a compact Hausdorff topological space. Show that any strictly weaker topology on X is compact but not Hausdorff, and any strictly stronger topology is Hausdorff but not compact.
- 8. Let H be a Hilbert space. An invertible operator $T \in \mathcal{L}(X)$ is said to be orthogonal provided that $T^{-1} = T^*$. Show that an invertible operator is orthogonal iff it is an isometry.
- 9. Let H be a Hilbert space, and $T \in \mathcal{L}(X)$ symmetric and positive. Show that

$$\langle Tu, v \rangle^2 \le \langle Tu, u \rangle \langle Tv, v \rangle, \quad u, v \in H.$$

10. Let X be a Banach space. Let J(X) and $J(X^*)$ be the natural embeddings in X^{**} and X^{***} . Let $J(X)^0 = \{ \psi \in X^{***} : \Psi|_{J(X)} = 0 \}$. Show $X^{***} = J(X)^0 \oplus J(X^*)$. Show that X is reflexive iff X^* is reflexive.