Universidade do Estado do Rio de Janeiro IPRJ

Relatório 3: Aproximação da derivada primeira através da Diferença Avançada, Diferença Centrada e Não Centrada e aproximação da derivada segunda com polinômio de Taylor

Gustavo de Souza Curty Matheus Marendino Matheus lack

Nova Friburgo 2023

Sumário

1. Introdução	
2. Metodologia	3
2.1 Diferença Avançada	3
2.2 Diferença Centrada e Não Centrada	a 4
2.3 Diferença com polinômio de Taylor.	6
2.4 Desvios	6
3. Explicando o código	7
3.1 Diferença Avançada	7
3.2 Diferença Centrada e Não Centrada	a 8
3.3 Diferença com polinômio de Taylor.	9

1. Introdução

O conceito de derivada está relacionado à taxa de variação instantânea da função, a qual está presente no cotidiano das pessoas, podemos tomar como exemplo a taxa de variação de temperatura, taxa de crescimento econômico do país, entre outros. Utilizamos esse exemplo para mostrar que a variação da função e o resultado da mesma se faz necessária em algum momento.

Nesse caso, o objetivo é encontrar uma aproximação para f'(x) e f''(x), para isso será utilizado ferramentas da Diferenciação Numérica. A diferenciação numérica tem origem no conceito de interpolação polinomial, é uma técnica utilizada para estimar derivadas de funções por meio de cálculos aproximados. Nesse caso, para calcular a aproximação da derivada primeira, utilizaremos a Fórmula de dois pontos avançada, e a Fórmula de três pontos Centrada e Não Centrada. E para calcularmos a aproximação da derivada segunda, usaremos a fórmula com aproximação de Taylor.

1. Metodologia

2.1 Diferença Avançada

Se $x_0, x_1, x_2, \dots, x_n$ são números reais distintos no intervalo fechado [a;b] e se $f(x) \subset C^{n+1}$ [a;b], podemos escrever o polinômio de Lagrange de grau n, que aproxima a f(x), segundo o teorema de Weierstrass, na forma:

$$f(x) = P_n(x) + ET_{n+1}(x)$$

onde

$$ET_{n+1} = (x - x_0)(x - x_1)(x - x_2)....(x - x_n) \frac{f(\xi(x))}{(n+1)!}$$

Representa o erro de truncamento dessa aproximação $\xi(x) \subset [a;b]$.

Agora, considere $f(x) \subset C^2$ [a;b] e um ponto $x_0 \subset$ [a;b]. Nosso objetivo é obter uma aproximação para $f'(x_0)$. Para tanto, seja $x_1 = x_0 + h$, onde h $\neq 0$ e suficientemente pequeno para garantir que $x_1 \subset$ [a;b]. Para n = 1, obtemos:

$$f(x) = P_1(x) + ET_2(x)$$

Onde

$$ET_2 = (x - x_0)(x - x_1) \frac{f(\xi(x))}{2!}$$
 para $\xi(x) \subset [x_0; x_0 + h]$

Assim, com algumas manipulações matemáticas, chegamos a fórmula:

$$f'(x) = \frac{f(x_0 + h) - f(x_0)}{h} + \frac{h}{2} f''(\xi(x_0)), \ \xi(x_0) \subset [x_0; x_0 + h]$$

Onde $-\frac{h}{2}f''(\xi(x_0))$ representa o erro de truncamento da aproximação da $f'(x_0)$.

Figura 1: Fórmula Diferença avançada

2.2 Diferença Centrada e Não Centrada

Considere agora uma função $f(x) \subset C^3$ [a;b] e um ponto $x_0 \subset$ [a;b]. O objetivo continua sendo determinar f'(x) de forma aproximada. Aqui vamos, por exemplo, empregar os pontos:

$$x_0$$

$$x_1 = x_0 + h$$

$$x_2 = x_0 + 2h$$

Onde h \neq 0 e suficientemente pequeno para garantir que x_1 e x_2 \subset [a;b]. Partindo da equação:

$$f(x) = P_n(x) + ET_{n+1}(x)$$

onde

$$ET_{n+1} = (x - x_0)(x - x_1)(x - x_2)....(x - x_n) \frac{f(\xi(x))}{(n+1)!}$$

Representa o erro de truncamento dessa aproximação $\xi(x) \subset [a;b]$. Para n = 2, temos:

$$f(x) = P_2(x) + ET_3(x)$$

Onde

$$ET_3 = (x - x_0)(x - x_1) \frac{f[\xi(x)]}{2!} \text{ para } \xi(x) \subset [x_0; x_0 + h; x_0 + 2h]$$

Assim, com algumas manipulações matemáticas, obtemos as seguintes fórmulas de três pontos:

1. Fórmula Não centrada

$$f'(x) = \frac{-3f(x_0) - f(x_0 + 2h)}{2h} + \frac{2f(x_0 + h)}{h} + \frac{h^2}{3}f'''[\xi(x)]$$

Nova Friburgo 2023

para
$$\xi(x) \subset [x_0; x_0 + 2h]$$

2. Fórmula Centrada

$$f'(x) = \frac{-f(x_0 - h) - f(x_0 + -h)}{2h} + \frac{h^2}{6} f'''[\xi(x)]$$

$$para \xi(x) \subset [x_0 - h; x_0 + h]$$

2.3 Diferença com polinômio de Taylor

Vamos agora considerar uma função $f(x) \subset C^4$ [a;b] em um ponto $x_0 \subset$ [a;b]. Inicialmente expandimos essa f(x) no polinômio de Taylor na forma:

$$f(x) = f(x_0) + \frac{(x - x_0)^2}{1!} f'(x_0) + \frac{(x - x_0)^2}{2!} f''(x_0) + \frac{(x - x_0)^3}{3!} f'''(x_0) + \frac{(x - x_0)^4}{4!} f''''[\xi(x)], \xi(x_0) \subset (x_0; x_0 + h)$$

Assim, com algumas manipulações matemáticas, obtemos a fórmula:

$$f''(x) = \frac{f(x_0 + h) + f(x_0 - h) - 2f(x_0)}{h^2} - \frac{h^2}{12} f''''[\xi(x)]$$
$$\xi(x_0) \subset (x_0; x_0 + h)$$

2.3 Desvios

Após os cálculos usando as fórmulas acima, devemos calcular o Desvio Absoluto e o Desvio Relativo Percentual, são medidas estatísticas que fornecem informações sobre a dispersão ou variabilidade de um conjunto de dados em relação à sua média. Ambas as medidas são úteis para avaliar o quão longe os valores individuais estão da média, mas elas são expressas de maneiras ligeiramente diferentes.

Ambos os casos dependem dos valores de r e r*, que são, respectivamente, a referência calculada através da derivada n da função, e a aproximação calculada pela fórmula do método em questão.

O **Desvio Absoluto:** fornece uma medida da distância média entre cada ponto de dados e a média. Quanto maior o desvio absoluto, maior é a dispersão dos dados.

$$DA = |r - r^*|$$

O **Desvio Relativo Percentual**: O desvio relativo percentual expressa o desvio absoluto como uma porcentagem da média, permite comparar a dispersão em termos proporcionais à média.

$$DRP(\%) = |\frac{r - r^*}{r}|100\%$$

3. Explicando o código

Para esse trabalho escolhemos o Jupyter Notebook, uma plataforma que permite manipulações em Python. Para cada método, resolvemos uma questão sobre diferenciação numérica.

3.1 Diferença Avançada

Iniciamos com a fórmula de dois pontos, método de **Diferença Avançada**.

Questão: Considere a função f(x) = ln(x) use a fórmula da diferença avançada para estimar f'(1.8) considerando h = 0.1 e h = 0.01. Calcular o Desvio relativo percentual (DRP) e a cota máxima de erro de truncamento para os dois problemas.

Começamos o código importando as bibliotecas necessárias, após isso, definimos os dados fornecidos na questão, como o Xo, os valores de h como um array, e a função dada.

```
from sympy import diff, ln, Symbol
x = Symbol('x')

# Dados da questão
xo = 1.8
h = [0.1, 0.01]

def f(x):
    y = ln(x)
    return y
```

Em seguida, criamos uma estrutura de repetição para se repetir de acordo com a quantidade de valores no h, para assim calcular todas as possíveis aproximações, e também o desvio absoluto, desvio relativo percentual e o Erro de truncamento.

Para o cálculo das derivadas da função, foi usada a biblioteca Sympy, e sua função diff(), que calcula a derivada da função pedida.

```
# Derivada primeira da f(x)

def F1(n):
    y = (diff(f(x), x, 1))  # F'(xo)
    res = y.subs(x, n)
    return res

# Derivada segunda da f(x)

def F2(n):
    y = (diff(f(x), x, 2))  # F"(xo)
    res = y.subs(x, n)
    return res
```

Em seguida, fizemos a lógica dos cálculos utilizando as fórmulas da Diferença Avançada de dois pontos. Chegando aos seguintes resultados:

```
A aproximação de f'(x) com h = 0.1 pela diferença avançada usando a fórmula de 2 pontos é f'(1.8) = 0.540672

O desvio absoluto DA = 0.014883

O desvio relativo percentual DRP(%) = 2.68%

O erro de truncamento para Et(1.8) = 0.015432

O erro de truncamento para Et(1.90) = 0.013850

A cota máxima do erro de truncamento é Et[1.8] = 0.015432

A aproximação de f'(x) com h = 0.01 pela diferença avançada usando a fórmula de 2 pontos é f'(1.8) = 0.554018

O desvio absoluto DA = 0.001538

O desvio relativo percentual DRP(%) = 0.28%

O erro de truncamento para Et(1.8) = 0.001543

O erro de truncamento para Et(1.8) = 0.001526

A cota máxima do erro de truncamento é Et[1.8] = 0.001543
```

3.2 Diferença Centrada e Não Centrada

Em seguida, no mesmo código, utilizamos a fórmula de três pontos, método de **Diferença Centrada e Não Centrada**.

Questão: Indique a melhor aproximação para a f'(1), da função $f(x) = x^*e^*(-2^*x)$ para h = 0.01, usando a fórmula de três pontos. Estime os desvios absoluto e relativo percentual, bem como a cota máxima do erro de truncamento dessa aproximação. Usar 6 algarismos após a vírgula

E mantivemos o mesmo raciocínio usado acima. Definimos os dados da questão, e suas derivadas.

Nova Friburgo 2023

```
from math import e
x = Symbol('x')
xo = 1.0
h = 0.01
def f(x):
   y = (x*(e**(-2*x)))
   return y
def F1(n):
   y = (diff(f(x), x, 1)) # F'(xo)
   res = y.subs(x, n)
   return res
# Derivada Terceira de f(x)
def F3(n): # F"(xo)
   y = (diff(f(x), x, 3)) # F'''(xo)
   res = y.subs(x, n)
    return res
```

Em seguida, efetuamos a lógica para os cálculos e chegamos aos seguintes resultados:

```
A aproximação de f'(x) pela FÓRMULA CENTRADA é f'(1.0) = -0.135350

O desvio absoluto DA = 1.50e-5

O desvio relativo percentual DRP(%) = 0.011%

O erro de truncamento para Et(1.01) = 8.667e-6

O erro de truncamento para Et(0.99) = 9.389e-6

A cota máxima do erro de truncamento é Et(0.99) = 9.389e-6

A aproximação de f'(x) pela FÓRMULA NÃO CENTRADA é f'(1.0) = -0.135300

O desvio absoluto DA = 3.50e-5

O desvio relativo percentual DRP(%) = 0.026%

O erro de truncamento para Et(1.0) = 1.804e-5

O erro de truncamento para Et(1.01) = 1.733e-5

O erro de truncamento para Et(1.02) = 1.664e-5

A cota máxima do erro de truncamento é Et(1.0) = 1.804e-5
```

3.2 Diferença com polinômio de Taylor

Questão: Calcule de forma aproximada a derivada segunda f''(2) da função $xe^{\Lambda}(x)$ considerando h = 0,1 e h = 0,2. Estime o desvio relativo percentual e a cota de erro máximo dessas aproximações.

Definimos os dados fornecidos na questão e suas derivadas:

```
from math import e
x = Symbol('x')

xo = 2.0
h = [0.1, 0.2]

def f(x):
    y = (x*e**(x))
    return y

def F2(n):
    y = diff(f(x), x, 2)
    res = y.subs(x, n)
    return res
```

Por fim, obtivemos os seguintes resultados:

```
A aproximação de f''(2.0) pela fórmula da Segunda Derivada de Taylor é f''(2.0) = 29.593186

O desvio absoluto DA = 3.70e-2

O desvio relativo percentual DRP(%) = 0.13%

O erro de truncamento para Et(2.1) = 4.151e-2

O erro de truncamento para Et(1.9) = 3.287e-2

A cota máxima do erro de truncamento é Et[2.1] = 4.151e-2

A aproximação de f''(2.0) pela fórmula da Segunda Derivada de Taylor é f''(2.0) = 29.704268

O desvio absoluto DA = 1.48e-1

O desvio relativo percentual DRP(%) = 0.50%

O erro de truncamento para Et(2.2) = 1.865e-1

O erro de truncamento para Et(1.8) = 1.170e-1

A cota máxima do erro de truncamento é Et[2.2] = 1.865e-1
```