Matrix Decompositions

BIOE 210

Matrix multiplication using the eigenbasis

Let's consider a square $n \times n$ matrix **A** with a complete set of eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$.

The eigenvectors form a basis (the *eigenbasis*), so we can decompose another vector \mathbf{x} onto them.

$$\mathbf{x} = a_1 \mathbf{v}_1 + \cdots + a_n \mathbf{v}_n$$

We can use the decomposition of ${\bf x}$ to perform matrix multiplication by ${\bf A}$.

$$\mathbf{A}\mathbf{x} = a_1\lambda_1\mathbf{v}_1 + \cdots + a_n\lambda_n\mathbf{v}_n$$

Matrix multiplication as a multistep transformation

Using the eigenbasis we can break down matrix multiplication into three steps:

- 1. Decompose **x** onto the eigenbasis.
- 2. Scale each term by the respective eigenvalue.
- 3. Reassemble the decomposed vectors into the output vector.

Step 1: Decompose **x** onto the eigenbasis

We already know how to decompose a vector onto a basis. First we assemble a matrix using the basis vectors as columns.

$$\mathbf{V} = (\mathbf{v}_1 \, \mathbf{v}_2 \, \cdots \, \mathbf{v}_n)$$

Then we find the coefficients **a** by solving the linear system

$$Va = x$$

This has a unique solution

$$\mathbf{a} = \mathbf{V}^{-1}\mathbf{x}$$

Step 2: Scale the coefficients by the eigenvalues

Multiplying by the matrix **A** scales each coefficient in our decomposition by the corresponding eigenvalue:

$$a_1 \to \lambda_1 a_1$$

$$a_2 \to \lambda_2 a_2$$

$$\vdots$$

$$a_n \to \lambda_n a_n$$

We can scale all of the coefficients at once using a matrix with the eigenvalues along the diagonal:

$$\mathbf{\Lambda} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}, \quad \mathbf{\Lambda} \mathbf{a} = \begin{pmatrix} \lambda_1 a_1 \\ \lambda_2 a_2 \\ \vdots \\ \lambda_n a_n \end{pmatrix}$$

Step 3: Reassembling the output vector

We can also use matrix multiplication to reassemble a decomposed vector into the output vector.

Notice that the inverse matrix V^{-1} decomposes a vector.

$$\mathbf{a} = \mathbf{V}^{-1}\mathbf{x}$$

The original matrix undoes this operation since it is the inverse of the inverse.

$$Va = VV^{-1}x$$
$$= x$$

Reassembling the decomposed vector is the same as multiplying by the matrix ${\bf V}$.

Putting it all together

We have broken down matrix multiplication into three sequential matrix operations:

$$\begin{aligned} \textbf{A} \textbf{x} &= \underbrace{(\text{reassembly})}_{\textbf{V}} \underbrace{(\text{scaling})}_{\textbf{\Lambda}} \underbrace{(\text{decomposition})}_{\textbf{V}^{-1}} \textbf{x} \\ &= \textbf{V} \boldsymbol{\Lambda} \textbf{V}^{-1} \textbf{x} \end{aligned}$$

The matrix $\bf A$ can therefore be decomposed into the product of three matrices, ${\bf V}{\bf \Lambda}{\bf V}^{-1}$.

This matrix decomposition is called the eigendecomposition of A.

Limitations of the eigendecomposition

The eigendecomposition $\mathbf{A} = \mathbf{V}\Lambda\mathbf{V}^{-1}$ only works when the matrix \mathbf{A} meets certain requirements:

- A must be square.
- A must have a complete set of eigenvectors.
- ▶ **V**⁻¹ must exist.¹

There is a more general form of matrix decomposition that relaxes these requirements.

 $^{^1}$ The inverse V^{-1} will always exist when **A** has a complete set of eigenvectors since the eigenvectors are linearly independent and therefore V is full rank.

The Singular Value Decomposition (SVD)

Any $m \times n$ matrix **A** can be decomposed into the product of three matrices

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^\mathsf{T}$$

where

- **U** is an orthogonal $m \times m$ matrix.
- $ightharpoonup \Sigma$ is a diagonal $m \times n$ matrix with nonzero entries.
- **V** is an orthogonal $n \times n$ matrix.

Parts of the SVD

The matrices **U** and **V** are *orthogonal* matrices, meaning their columns are an orthonormal set of basis vectors. This also means that

$$U^{-1} = U^{T}, V^{-1} = V^{T}$$

The columns in **U** and **V** are called the left and right *singular vectors*. The singular vectors have similar properties to eigenvectors:

$$\mathbf{A}\mathbf{v}_i = \sigma_i \mathbf{u}_i$$

and

$$\mathbf{A}^{\mathsf{T}}\mathbf{u}_{i}=\sigma_{i}\mathbf{v}_{i}$$

where the scalars σ_i are the singular values.

Parts of the SVD

The matrix Σ is a diagonal $m \times n$ matrix. The entries along the diagonal are the singular values.

Singular values are always non-negative. They are similar to eigenvalues for square matrices, but they are not the same.²

If we arrange $\boldsymbol{\Sigma}$ such that the singular values are in descending order, the SVD of a matrix is unique.

²The singular values of a square matrix are the squares of the eigenvalues of the matrix.

Applications of the SVD

We will discuss several examples of the SVD, including:

- Calculating the rank of a matrix.
- Finding a "pseudoinverse" of non-square matrices.
- Approximating matrices with simpler matrices.
- Image compression.