

Проверить, идет ли запись!

Преподаватель

Лапа Викентий

- более 10 лет опыта работы в среде Linux
 - Cluster File Systems
- последние 3 года преподаватель курса "Основы администрирования Linux"
 - о выпущено 26 групп
- интересно наблюдать как человек развивается

Правила вебинара

Активно участвуем: выполняем задания, отвечаем на вопросы

Если возникли сложности задаем вопрос в чат

На вопросы постараюсь отвечать сразу, но возможны паузы

Маршрут вебинара

Знакомство и настройка на обучение

Разбираем примеры и определения

Проверяем чему научились

Цели вебинара | После занятия вы сможете

Установить кластер с файловой системой GlusterFS

Выбрать конфигурацию и тип хранилища

З Проверять состояние файловой системы

Зачем нам распределенная файловая система.

- С какими распределенными файловыми системами знакомы?
- Что это такое распределенная файловая система?
- В чем отличие от локальной файловой системы?
- Для каких задач?

Смысл | Зачем вам это уметь

представление сервиса распределенной файловой системы

обеспечить отказоустойчивость

построить хранилище больших размеров

Проверим себя. Что знаем о GlusterFS?

Проходим тест. Ссылку пришлю в чате

Прошли тест - оценку пишем в чат

Время на выполнение 5 минут

Пример масштабирования файловой системы

Scale-out performance, capacity and availability

Scale-up Capacity

Проверим работу тестового окружения

```
git clone git@github.com:nixuser/otus-gluster.git
cd otus-gluster/
cat README.md
```

Дальше выполняем команды из README.md

Кластер

Кластер - набор серверов работающих вместе, предоставляющих единый ресурс.

В документации называется **Trusted Storage Pool (TSP)**

Client

Блок (brick)

Блок (brick) - единица хранения glusterFS, директория экспортируемая на сервере из пула серверов (truster server pool).

Формат записи:

SERVER: EXPORT

Например:

myhostname:/exports/myexportdir/

192.168.7.150:/srv/gluster/brick

Toм (volume)

Том (volume) это логически объединенные блоки (bricks).

Имя volume используется в команде монтирования

Изучаем кластер.

Выполнить команды и узнать:

- Сколько узлов в кластере?
- Какое имя у volume? Какой тип volume?
- Сколько bricks в volume и сколько bricks приходиться на один сервер?
- Какая точка монтирования для брика?
- Какая файловая система для brick?
- Сколько места в кластере?
- Точка монтирования клиента GlusterFS?

gluster peer status gluster pool list gluster volume list gluster volume status gluster volume info

Ответы пишите в чат

Клиенты GlusterFS

Интерфейсы клиента

- **libgfapi** (клиент работает напрямую с Volumes минуя FUSE. Скорость.)
 - QEMU storage layer
 - Samba VFS plugin
 - NFS-Ganesha
- Native Client (FUSE)

Cluster
Provides File System

Пример работы с клиентом GlusterFS

монтируем Native Client

```
sudo mount -t glusterfs gluster1:/shara
/mnt/gluster_one_server
```

• запускаем I/O с клиента

```
for i in {1..20}
do dd if=/dev/urandom of=/mnt/gluster/test_fs/file_$i bs=1M
count=1
done
```

• изучаем расположение файлов на bricks clush --hostfile=nodes ls /srv/gluster/brick/test_fs

Client

Разбираемся что такое Translator

Транслятор – модуль, конвертирующий запросы

- от пользователей к хранилищу
- от запроса к запросу
- реализация возможностей
- построение стека

Storage транслятор самого низкого уровня, хранит и получает доступ к данным из локальной файловой системы.

Cluster транслятор управляет распределением и репликацией данных.

Пример. Найдем трансляторы

Выведем трансляторы клиента rpm -ql glusterfs-client-xlators

Выведем трансляторы сервера rpm -ql glusterfs-server | grep xlator

По названиям определить кто за что отвечает?

Тranslator type

Performance

Cluster

Feature

Client side Server side IO Stat Posix md-cache Changelog Open-Behind gluster ctl Quick-Read lock IO Cache io-thread Read Ahead index Write Behind marker DHT quota Auto File Replicate IO Stat

Пример работы транслятора DHT

DHT - Distributed Hash Table

Демоны для работы трансляторов

glusterd = management daemon управляет вольюмом, остальными демонами

glusterfsd = per-brick daemon

glustershd = self-heal daemon

ребилд данных у реплицированных вольюмов в случаях отказа нод кластера.

glusterfs = client deamon на клиенте, но может быть и на NFS серверах

Демоны для работы трансляторов

```
ps axf | grep gluster
ps axf | grep glusterd
systemctl status glusterd
systemctl cat glusterd
systemctl status glusterfsd
systemctl cat glusterfsd
ls /var/log/glusterfs/
ps axf | grep glusterfs
```

Алгоритм работы

Нет сервера метаданных

- Месторасположение файла определяется уникальным хэштэгом **GFID** (Global file ID)
- Тэги хранятся на той же файловой системе
- Файлы распределяются на основе расчета
- Операции создания тома, расширения/сжатия выполняются без прерывания доступа к данным

Найдем GFID файла

```
ls -i /srv/gluster/brick/test
100704281 file_11 100672337 file_18 100704279 file_8
find /srv/gluster/brick/test -inum 100704279
/srv/gluster/brick_b/shara/.glusterfs/b0/55/b0559aa3-a
523-4602-b69d-9515cb09711d
```

Найдем GFID файла по кластеру

```
clush --hostfile=nodes sudo ls
/srv/gluster/brick/.glusterfs/f6/65/f665aecd-400d-4202-96
15-cf4632d4977b
```

gluster2:

/srv/gluster/brick/.glusterfs/f6/65/**f665aecd-400d-4202-96 15-cf4632d4977b**

gluster1:

/srv/gluster/brick/.glusterfs/f6/65/**f665aecd-400d-4202-96 15-cf4632d4977b**

Удалим volume

```
Отмонтируем всех клиентов findmnt -t fuse.glusterfs clush --hostfile=nodes sudo umount /mnt/gluster clush --hostfile=nodes sudo findmnt -t fuse.glusterfs
```

Удалим volume sudo gluster volume list sudo gluster volume delete gluster

Типы томов (volumes)

- distributed (распределенный)
- replicated (реплицированный)
- distributed replicated (распределенный реплицированный)
- dispersed (рассредоточенный)

```
Тип тома указывается при создании командой gluster volume create [stripe | replica | disperse] [transport tcp | rdma | tcp,rdma]
```

- если тип не указан то по умолчанию создается distributed

Распределенный том (distributed)

Распределенный том (distributed)

Создаем распределенный том на 3x серверах (1 brick на сервер)

```
gluster volume create test-volume host1:brick1
host2:brick2 host3:brick3
```

Создаем распределенный том на 4x серверах (2 brick на сервер) gluster volume create dist-volume server1:/exp1 server2:/exp2 server3:/exp3 server4:/exp4

Реплицированный том (replicated)

Реплицированный том (replicated)

```
gluster volume create shara2 replica 3 arbiter 1
transport tcp gluster1:/srv/gluster/brick_b/shara
gluster2:/srv/gluster/brick_b/shara
gluster3:/srv/gluster/brick_b/shara
```

Распределенный реплицированный том

Страйпы

Рассредоточенный (Dispersed Volume)

Рассредоточенный (Dispersed Volume)

gluster volume create shara disperse 3 redundancy 1
gluster{1..3}:/srv/gluster/brick_b/shara
sudo gluster volume start shara

Distributed-replicated vs Distributed-dispersed

Выполняем инструкции из файла

- Создаем блоки (bricks)
- Добавляем узлы в кластер
- Собираем вольюм, disperse 3+1
- Собираем вольюм, replicated 2 + 1
- Дополнительные настройки
- Проверяем отказоустойчивость

Дополнительные настройки

Смотрим настройку ping-timeout:

gluster volume get shara network.ping-timeout

Меняем настройку

gluster volume set shara network.ping-timeout "5"

Проверяем значение применилось

gluster volume get shara network.ping-timeout

Все настройки gluster volume get gluster all

Вопросы

У кого получилось настроить кластер?

Какой тип volume выбрали?

Рефлексия

? Как изменились результаты?

Следующий вебинар

Тема:

Ссылка на вебинар будет в ЛК за 15 минут

Материалы к занятию в ЛК — можно изучать

Следующий вебинар

Тема:

Дату сообщу дополнительно в чате группы

Ссылка на вебинар будет в ЛК за 15 минут

Домашнее задание и краткое содержание занятия здесь

Список материалов для изучения

- https://github.com/gluster/community/tree/master/meetings
- сравнение CephFS и GlusterFS
 https://m.habr.com/ru/company/croccloudteam/blog/430474/
- тестирование Dispersed Volume https://m.habr.com/ru/company/0/blog/353666/
- тестирование GlusterFS
 https://m.habr.com/ru/company/croccloudteam/blog/417475/
- подробнее про работу DHT
 https://glusterdocs-beta.readthedocs.io/en/latest/overview-concepts/translators.html#

Лапа Викентий Анатольевич

Test Automation Engineer

whamcloud.com

nop@tut.by