NAVIER-STOKES SOLUTIONS ABOUT THE F/A-18 FOREBODY-LEX CONFIGURATION

Farhad Ghaffari Vigyan Research Associates James M. Luckring, James L. Thomas NASA Langley Research Center

Brent L. Bates Vigyan Research Associates

Abstract

try. Solutions are obtained from an algorithm for the compressible Navier-Stokes equations which in-Results are presented for both laminar and fully turbulent flow assumptions and include correlations with wind tunnel as well as flight-test results. A good quantitative agreement for the forebody surface pressure distribution is achieved between the turbulent computations and wind tunnel measurements at $M_{\infty}=0.6$. The computed turbulent surface flow patterns on the forebody qualitatively agree well with Three-dimensional viscous flow computations are presented for the F/A-18 forebody-LEX geomecorporates an upwind-biased, flux-difference-splitting approach along with longitudinally-patched grids. in-flight surface flow patterns obtained on an F/A-18 aircraft at $M_{\infty}=0.34$.

Overview

- Navier-Stokes Formulation
- o CFL-3D
- Grid Generation
- o Transfinite interpolation
- Results
- o Laminar, turbulent flow
- o Comparisons with wind-tunnel experiment
 - Comparisons with flight test
- Summary

Grid Generation - Transfinite interpolation

H-O topology

Far field

o Inflow, outflow $\approx 1\ \bar{c}$

Radial $\approx 1.5\ \bar{c}$

Baseline grid

Block 1: $31 \times 65 \times 27$ Block 2: $65 \times 65 \times 31$

Approximately 185,000 points 0

 $y^+ \approx 2$ for wind-tunnel conditions $y^+ \approx 8$ for flight conditions 0

Refined grid

o Doubled number of radial points

 \circ Normal surface spacing $\approx 0.25 \times$ baseline

 $y^+ \approx 3$ for flight conditions 0

F-18 Forebody-LEX Grid

Computed Results

Wind tunnel conditions

$$M_{\infty} = 0.6, \ R_{\bar{c}} = 0.8 \times 10^6, \ \alpha = 20^\circ$$

- o Laminar, turbulent flow
- o Comparison with experiment

• Flight conditions

$$M_{\infty} = 0.34, \; R_{ar{c}} = 13.5 \times 10^6, \; \alpha = 19^6$$

- o Turbulent flow
- o Comparison with experiment

		ļ
· H	·	
		:

•

LEX Upper Surface Flow - Laminar $M_{\infty}=0.6$, $R_{\bar{c}}=0.8\times10^6$, Alpha= 20°

Grid1: 27×31×65 Grid2: 31×65×65

LEX Upper Surface Flow - Turbulent $M_{\infty} = 0.6, R_{\overline{c}} = 0.8 \times 10^{6}, Alpha = 20^{\circ}$

Grid1: 11x31x65 Grid2: 17x31x65 Grid3: 31x65x65

OF FIVE GALLEY

and the second of the second o

Forebody Surface Pressure

-

ORIGINAL PAGE COLOR PHOTOGRAPH

PRECEDING PAGE GLANK NOT FILMED

Summary of Results

Significant differences between laminar and turbulent solutions

Forebody

o LEX upper surface

Body-LEX juncture on lower surface

Turbulent solutions provide good correlation with experiment

Surface C_p comparison with wind tunnel data 0

Surface flow comparison with flight test data

Convergence achieved with practical resource utilization

 $\approx 185,000 \text{ points}$

 $\circ \approx 2400 \text{ cycles}$

 $\circ \approx 2 \text{ hours of Cray-2 time}$