$2^{\underline{a}}$ Prova de MA141 — 17/05/2012 (MANHÃ)

ATENÇÃO: Será corrigida a redação da resposta. Cada resposta deve ser redigida com todos os detalhes. Caso duas ou mais provas apresentem alguma resposta cujas redações coincidam em mais de 50%, essa questão será **zerada** em todas elas. Não é permitido **destacar** as folhas da prova.

2102 FF	Turma:	DA.
NOME:	Turma:	n.a:

- 1. (3 pontos) Considere os planos $\alpha: x-y+z-3=0$ e $\beta: -2m^2x+(m+1)y+2z=0$.
 - (a) Determine valores de m de forma que os planos α e β sejam: paralelos e concorrentes, respectivamnete.
 - (b) Para que valores de $m \alpha$ e β são ortogonais?
 - (c) Para m=-1 encontre a equação da reta interseção entre α e β .
- 2. (4 pontos cada item) Sejam $u, v \in w$ são vetores no espaço então: Responda às perguntas abaixo com "CERTA" ou "ERRADA". Respostas sem justificativa não serão consideradas. Observação: $u \wedge v = u \times v$ é o produto vetorial. < u, v >= u.v é o produto escalar.
 - (a) $|\langle u, v \wedge w \rangle| = |\langle v, u \wedge w \rangle|$.
 - (b) Se $u \neq \vec{0}$ e $u \wedge v = u \wedge w = \vec{0}$, então $v \wedge w = \vec{0}$.
 - (c) Existe um plano paralelo ao plano de equação 2x + y + 2z + 8 = 0 que dista 2 unidades da orígem.
 - (d) Se três vetores $(a,b,c),\ (d,e,f),\ (g,h,k)$ são coplanares, então $\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & k \end{pmatrix} = 0.$
- 3. (3 pontos) Seja a reta r com equações $x=-2t,\,y=t,\,z=-t$ e o ponto P=(1,2,1).
 - (a) Encontre a distância de P a r.
 - (b) Encontre um ponto Q em r de forma que a distância de P a Q seja igual a distância de P a r.
 - (c) Encontre um ponto S que seja simétrico a P em relação a r.

Incluir na prova, por favor, **todas** as "contas" feitas nas resoluções. Respostas não acompanhadas de argumentos que as justifiquem não serão consideradas.

Boa Prova!