STATISTIQUES À DEUX VARIABLES E04

Dans certains cas, le nuage de points « ne suit pas une droite » mais un autre type de courbe. L'idée est alors de « redresser le nuage » afin de pouvoir faire un ajustement affine. Les exercices suivants vous présentent « ce genre de redressement ».

EXERCICE N°1

Une entreprise spécialisée dans les panneaux photovoltaïques pour camping-car a mené une étude visant à déterminer à quel prix maximal ses clients seraient prêts à acheter l'un de ses produits.

Les résultats sont regroupés dans le tableau suivant :

Prix maximal x_i (en \in)	50	100	150	200	250
Nombre d'acheteurs potentiels y_i	646	401	224	101	34

- 1) Représenter sur la calculatrice le nuage de points de cette série statistique (<u>Tutoriel</u>). Un ajustement affine de ce nuage est-il envisageable ? Justifier.
- 2) On pose $z = \sqrt{y}$ (C'est ici qu'on « redresse » le nuage)

2.a) Reproduire et compléter le tableau suivant (arrondir à 10^{-2} près):

x_i	50	100	150	200	250
\boldsymbol{z}_i					

- **2.b)** Représenter sur la calculatrice le nuage de point de cette la série statistique. Un ajustement affine de ce nouveau nuage de points est-il envisageable ? Justifier.
- **2.c)** Déterminer l'équation de la droite d'ajustement de z en x par la méthode des moindres carrés (coefficients arrondis à 10^{-1} près).
- **2.d)** En déduire une expression de y en fonction de x. Vérifier que pour un prix de 100 euros, le nombre d'acheteurs potentiels est cohérent avec l'effectif du tableau.
- **2.e)** Estimer le nombre de clients prêts à acheter ce produit jusqu'à 280 euros.

EXERCICE N°2

Au cours de l'hydrolyse alcaline du nitrobenzoate d'éthyle, se dégrade en nitrobenzoate et en éthanol. Dans le tableau suivant, on a mesuré en fonction du temps t, exprimé en minutes, la concentration C du nitrobenzoate d'éthyle, exprimé en millimoles par litre.

t_{i}	0	1	2	3	4	6	8	10
C_{i}	50	32,5	27,6	21,3	17,2	14,1	10	8,2

- 1) À l'aide de la calculatrice, représenter le nuage de points de cette série statistique. Un ajustement affine semble-t-il pertinent ?
- **2)** On pose $y = \frac{100}{C}$

2.a) Reproduire et compléter le tableau suivant en arrondissant si nécessaire les résultats à 10^{-2} près.

10	F							
t_{i}	0	1	2	3	4	6	8	10
y_i								

- **2.b)** Déterminer l'équation de la droite d'ajustement de y en t par la méthode des moindres carrés (arrondir les coefficients à 10^{-2} près).
- **2.c)** En déduire une expression de C en fonction de t.
- **2.d)** En utilisant ce modèle, estimer la concentration du nitrobenzoate d'éthyle au bout de 8 minutes et 30 secondes (résultat arrondi à 10^{-1} près).
- **2.e)** Déterminer par le calcul à quel moment il restera 5 mmol·L de nitrobenzoate d'éthyle. On donnera un résultat arrondi à la minute près.

STATISTIQUES À DEUX VARIABLES E04

Dans certains cas, le nuage de points « ne suit pas une droite » mais un autre type de courbe. L'idée est alors de « redresser le nuage » afin de pouvoir faire un ajustement affine. Les exercices suivants vous présentent « ce genre de redressement ».

EXERCICE N°1

Une entreprise spécialisée dans les panneaux photovoltaïques pour camping-car a mené une étude visant à déterminer à quel prix maximal ses clients seraient prêts à acheter l'un de ses produits.

Les résultats sont regroupés dans le tableau suivant :

Prix maximal x_i (en \in)	50	100	150	200	250
Nombre d'acheteurs potentiels y_i	646	401	224	101	34

- 1) Représenter sur la calculatrice le nuage de points de cette série statistique (<u>Tutoriel</u>). Un ajustement affine de ce nuage est-il envisageable ? Justifier.
- 2) On pose $z = \sqrt{y}$ (C'est ici qu'on « redresse » le nuage)

2.a) Reproduire et compléter le tableau suivant (arrondir à 10^{-2} près):

x_i	50	100	150	200	250
\boldsymbol{z}_i					

- **2.b)** Représenter sur la calculatrice le nuage de point de cette la série statistique. Un ajustement affine de ce nouveau nuage de points est-il envisageable ? Justifier.
- **2.c)** Déterminer l'équation de la droite d'ajustement de z en x par la méthode des moindres carrés (coefficients arrondis à 10^{-1} près).
- **2.d)** En déduire une expression de y en fonction de x. Vérifier que pour un prix de 100 euros, le nombre d'acheteurs potentiels est cohérent avec l'effectif du tableau.
- **2.e)** Estimer le nombre de clients prêts à acheter ce produit jusqu'à 280 euros.

EXERCICE N°2

Au cours de l'hydrolyse alcaline du nitrobenzoate d'éthyle, se dégrade en nitrobenzoate et en éthanol. Dans le tableau suivant, on a mesuré en fonction du temps t, exprimé en minutes, la concentration C du nitrobenzoate d'éthyle, exprimé en millimoles par litre.

t_{i}	0	1	2	3	4	6	8	10
C_{i}	50	32,5	27,6	21,3	17,2	14,1	10	8,2

- 1) À l'aide de la calculatrice, représenter le nuage de points de cette série statistique. Un ajustement affine semble-t-il pertinent ?
- **2)** On pose $y = \frac{100}{C}$

2.a) Reproduire et compléter le tableau suivant en arrondissant si nécessaire les résultats à 10^{-2} près.

10	F							
t_{i}	0	1	2	3	4	6	8	10
y_i								

- **2.b)** Déterminer l'équation de la droite d'ajustement de y en t par la méthode des moindres carrés (arrondir les coefficients à 10^{-2} près).
- **2.c)** En déduire une expression de C en fonction de t.
- **2.d)** En utilisant ce modèle, estimer la concentration du nitrobenzoate d'éthyle au bout de 8 minutes et 30 secondes (résultat arrondi à 10^{-1} près).
- **2.e)** Déterminer par le calcul à quel moment il restera 5 mmol·L de nitrobenzoate d'éthyle. On donnera un résultat arrondi à la minute près.