Übungen zum Ferienkurs Lineare Algebra WS 14/15

Matrizen und Vektoren, LGS, Gruppen, Vektorräume

1.1 Multiplikation von Matrizen

Gegeben seien die Matrizen

$$A := \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & 5 \\ 1 & 8 & -7 \end{pmatrix}, B := \begin{pmatrix} -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{pmatrix}, C := \begin{pmatrix} 1 \\ 0 \\ 8 \\ -7 \end{pmatrix}$$
$$D := \begin{pmatrix} -1 & 2 & 0 & 8 \end{pmatrix}, E := \begin{pmatrix} 1 & 4 \\ 0 & 5 \\ 6 & 8 \end{pmatrix}.$$

Berechnen Sie alle möglichen Produkte.

Lösung:

Die möglichen Produkte der Matrizen lauten:

$$A^{2} = \begin{pmatrix} 3 & 12 & -17 \\ 5 & 49 & -20 \\ -6 & -33 & 91 \end{pmatrix}$$

$$AB = \begin{pmatrix} 1 & -1 & -1 & 1 \\ 5 & 3 & -5 & -3 \\ -8 & 8 & 8 & -8 \end{pmatrix}$$

$$AE = \begin{pmatrix} 13 & 15 \\ 30 & 55 \\ -41 & -12 \end{pmatrix}$$

$$BC = \begin{pmatrix} 7 \\ 7 \\ -7 \end{pmatrix}$$

$$CD = \begin{pmatrix} -1 & 2 & 0 & 8 \\ 0 & 0 & 0 & 0 \\ -8 & 16 & 0 & 64 \\ 7 & -14 & 0 & -56 \end{pmatrix}$$

$$DC = (-57).$$

1.2 LGS, Matrixeigenschaften

Gegeben seien

$$A = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}, b = \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \text{ und } f: \mathbb{R}^2 \to \mathbb{R}^2 : v \mapsto Av + b.$$

- (a) Bestimmen Sie einen Fixpunkt von f, d.h. bestimmen Sie ein $x \in \mathbb{R}^2$ mit f(x) = x.
- (b) Ist die Matrix quadratisch?
- (c) Ist die Matrix orthogonal?

- (d) Ist die Matrix symmetrisch?
- (e) Ist die Matrix hermitesch?

Lösung:

(a) Man berechnet die Lösung des LGS Ax + b = x, also $(A - \mathbb{1}_2)x = -b$. Die Lösung ergibt sich zu

$$x = \begin{pmatrix} -1 - \sqrt{3} \\ \frac{-3 + \sqrt{3}}{-2 + \sqrt{3}} \end{pmatrix}.$$

- (b) Ja $(2 \times 2\text{-Matrix})$.
- (c) Ja (Man prüft $A^T A = \mathbb{1}_2$).
- (d) Nein.
- (e) Nein.

1.3 Matrixeigenschaften

Für welche $t \in \mathbb{R}$ ist die Matrix

$$A_t = \frac{1}{3} \begin{pmatrix} -2 & 2 & t \\ 2 & 1 & 2t \\ 1 & 2 & -2t \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

- (a) symmetrisch?
- (b) invertierbar?
- (c) orthogonal?

Lösung:

- (a) A_t ist nur für t = 1 symmetrisch.
- (b) Es ist

$$det(A) = \frac{1}{3 \cdot 3 \cdot 3} \cdot 27t = t.$$

Damit ist A genau dann invertierbar, wenn $t \neq 0$.

(c) Ist A_t orthogonal, dann muss insbesondere die letzte Spalte von A_t ein Eigenvektor sein. D.h. $t^2 = 1 \Rightarrow t = \pm 1$. Für diese beiden Werte von t ist A_t tatsächlich orthogonal, weil die Spalten eine ONB bilden.

1.4 LGS

Gegeben seien folgende erweiterte Koeffizientenmatrizen (A|b) in Zeilenstufenform:

$$a) \qquad \left(\begin{array}{cc|c} 1 & 0 & 5 \\ 0 & 1 & 4 \end{array}\right), \qquad b) \qquad \left(\begin{array}{cc|c} 3 & 1 & 5 \\ 0 & 2 & 4 \end{array}\right), \qquad c) \qquad \left(\begin{array}{cc|c} 3 & 2 & 1 \\ 0 & 0 & 3 \end{array}\right),$$

$$d) \quad \left(\begin{array}{ccc|c} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 3 \end{array}\right), \quad e) \quad \left(\begin{array}{ccc|c} 3 & 3 & 3 & 3 \\ 0 & 3 & 1 & 4 \\ 0 & 0 & 1 & 3 \end{array}\right), \quad f) \quad \left(\begin{array}{ccc|c} 2 & 0 & 0 & 4 \\ 0 & 4 & 0 & 4 \\ 0 & 0 & 0 & 0 \end{array}\right).$$

Lesen Sie die Lösung des jeweiligen LGS an der Zeilenstufenform ab, und geben Sie diese an.

Lösung

(a) Die erweiterte Koeffizientenmatrix repräsentiert das LGS

$$\begin{array}{rcl} x_1 & & = & 5 \\ & x_2 & = & 4. \end{array}$$

Hier ist also direkt: $x_2 = 4$, $x_1 = 5$.

Hinweis: Natürlich wären auch andere Bezeichnungen für die Variablen denkbar. Im folgenden bleiben wir aber bei der Konvention, dass die zur i.ten Spalte zugehörige Variable mit x_i bezeichnet wird. Die spezielle Matrix A in diesem Beispiel, wird übrigens als (2D) Einheitsmatrix bezeichnet.

(b) Die erweiterte Koeffizientenmatrix repräsentiert das LGS

$$3x_1 + x_2 = 5$$

 $0x_1 2x_2 = 4$

Also haben wir $x_2 = 2$ und $x_1 = \frac{5 - x_2}{3} = 1$.

(c) Die erweiterte Koeffizientenmatrix repräsentiert das LGS

$$\begin{array}{rcl} 3x_1 & +2x_2 & = & 1 \\ 0x_1 & +0x_2 & = & 3. \end{array}$$

Die letzte Zeile lautet also 0 = 3, was in \mathbb{R} nicht erfüllbar ist. Also hat dieses LGS keine Lösung.

(d) Die erweiterte Koeffizientenmatrix repräsentiert das LGS

Wir lesen also direkt ab $x_3 = 3$, $x_2 = 4$, $x_1 = 5$. Auch in diesem Fall hat die Matrix A eine spezielle Form. Sie wird als (3D) Einheitsmatrix bezeichnet.

3

(e) Die erweiterte Koeffizientenmatrix repräsentiert das LGS

Somit ergibt sich
$$x_3 = 3$$
, $x_2 = \frac{4-x_3}{3} = \frac{1}{3}$, $x_1 = \frac{3-3x_3-3x_2}{3} = -\frac{7}{3}$

(f) Die erweiterte Koeffizientenmatrix repräsentiert das LGS

Da die letzte Gleichung immer erfüllt ist und keine Gleichung x_3 enthält, können wir $x_3 = \lambda \in \mathbb{R}$ beliebig wählen. Aus der zweiten Gleichung folgt $x_2 = 1$ und aus der ersten folgt $x_1 = 2$ - Es gibt also unendlich viele Lösungen. Diese haben immer die Form $x_1 = 2$, $x_2 = 1$, $x_3 = \lambda$ beliebig.

1.5 LGS II

Lösen Sie die folgenden LGS:

Stellen Sie dazu das jeweilige LGS in der Form (A|b) dar und bringen Sie deses auf Zeilenstufenform.

Lösung:

(a) Die erweiterte Koeffizientenmatrix ist:

$$(A|b) = \left(\begin{array}{ccc|c} 2 & -3 & 0 & -1 \\ 0 & 1 & 1 & 2 \\ 3 & 1 & 1 & 5 \end{array}\right)$$

4

Durch elementare Zeilenumformungen erhalten wir

$$\begin{pmatrix} 2 & -3 & 0 & | & -1 \\ 0 & 1 & 1 & | & 2 \\ 3 & 1 & 1 & | & 5 \end{pmatrix} \qquad Z_{1} \leftarrow Z_{1}/2 \qquad \begin{pmatrix} 1 & -3/2 & 0 & | & -1/2 \\ 0 & 1 & 1 & | & 2 \\ 3 & 1 & 1 & | & 5 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -3/2 & 0 & | & -1/2 \\ 0 & 1 & 1 & | & 2 \\ 3 & 1 & 1 & | & 5 \end{pmatrix} \qquad Z_{3} \leftarrow Z_{3}-3Z_{1} \qquad \begin{pmatrix} 1 & -3/2 & 0 & | & -1/2 \\ 0 & 1 & 1 & | & 2 \\ 0 & 11/2 & 1 & | & 13/2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -3/2 & 0 & | & -1/2 \\ 0 & 1 & 1 & | & 2 \\ 0 & 11/2 & 1 & | & 13/2 \end{pmatrix} \qquad Z_{3} \leftarrow Z_{3}-\frac{11}{2}Z_{2} \qquad \begin{pmatrix} 1 & -3/2 & 0 & | & -1/2 \\ 0 & 1 & 1 & | & 2 \\ 0 & 0 & -9/2 & | & -9/2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -3/2 & 0 & | & -1/2 \\ 0 & 1 & 1 & | & 2 \\ 0 & 0 & -9/2 & | & -9/2 \end{pmatrix} \qquad Z_{3} \leftarrow -\frac{2}{9}Z_{3} \qquad \begin{pmatrix} 1 & -3/2 & 0 & | & -1/2 \\ 0 & 1 & 1 & | & 2 \\ 0 & 0 & 1 & 1 & | & 2 \\ 0 & 0 & 1 & 1 & | & 2 \\ 0 & 0 & 1 & 1 & | & 2 \\ 0 & 0 & 1 & 1 & | & 2 \\ 0 & 0 & 1 & 1 & | & 1 \end{pmatrix}.$$

Ausgeschrieben als LGS bedeutet dies:

Rückwärtssubstitution von der letzten Zeile führt auf

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

d.h. die Lösung ist eindeutig.

(b) Wir erhalten

$$(A|b) = \begin{pmatrix} 3 & -3 & 0 & -1 \\ 0 & 1 & 1 & 2 \\ 4 & -5 & 1 & 0 \end{pmatrix}$$

Durch elementare Zeilenumformungen erhalten wir

$$\begin{pmatrix} 2 & -3 & 0 & | & -1 \\ 0 & 1 & 1 & | & 2 \\ 4 & -5 & 1 & | & 0 \end{pmatrix} \qquad Z_{1 \leftarrow Z_{1}/2} \qquad \begin{pmatrix} 1 & -3/2 & 0 & | & -1/2 \\ 0 & 1 & 1 & | & 2 \\ 4 & -5 & 1 & | & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -3/2 & 0 & | & -1/2 \\ 0 & 1 & 1 & | & 2 \\ 4 & -5 & 1 & | & 0 \end{pmatrix} \qquad Z_{3 \leftarrow Z_{3}-4Z_{1}} \qquad \begin{pmatrix} 1 & -3/2 & 0 & | & -1/2 \\ 0 & 1 & 1 & | & 2 \\ 0 & 1 & 1 & | & 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -3/2 & 0 & | & -1/2 \\ 0 & 1 & 1 & | & 2 \\ 0 & 1 & 1 & | & 2 \end{pmatrix} \qquad Z_{3 \leftarrow Z_{3}-Z_{2}} \qquad \begin{pmatrix} 1 & -3/2 & 0 & | & -1/2 \\ 0 & 1 & 1 & | & 2 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

Ausgeschrieben bedeutet dies:

Rückwärtssubstitution von der vorletzten Zeile führt mit Setzung $x_3 = \lambda_3$ auf

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{5}{2} - \frac{3}{2}\lambda_3 \\ 2 - \lambda_3 \\ \lambda_3 \end{pmatrix},$$

die Lösung ist also nicht eindeutig. (Die Lösung stellt eine Gerade im \mathbb{R}^3 dar.)

1.6 LGS III

Entscheiden Sie, welche der untenstehenden Aussagen über lineare Gleichungssysteme mit Unbekannten in \mathbb{R} wahr oder falsch sind. Begründen Sie ihre Antwort:

- (a) Wenn ein LGS nicht lösbar ist, so ist der Rang der erweiterten Koeffizientenmatrix größer als die Anzahl der Unbekannten des LGS.
- (b) Jedes homogene LGS besitzt eine Lösung.
- (c) Ein LGS mit 3 Gleichungen und 4 Unbekannten hat unendlich viele Lösungen.
- (d) Jedes homogene LGS mit mehr Gleichungen als Unbekannten hat eine nichttriviale Lösung.

Lösung:

- (a) Falsch. Beispiel $0x_1 = 1$. In diesem Fall ist der Rang von (A|b) = (0,1) gleich 1.
- (b) Richtig. Jedes homogene LGS besitzt die triviale Lösung (d.h. alle Unbekannten haben den Wert Null).
- (c) Falsch. Eine der Gleichungen könnte ja z.B. 0 = 1 sein (oder auch $x_1 = 1$, $x_1 = 2$ o.ä.). (Jedoch: Besitzt ein derartiges LGS eine Lösung, dann auch unendlich viele.)
- (d) Falsch. Beispiel: $x_1 + x_2 = 0$, $x_1 = 0$, $x_2 = 0$ hat nur die triviale Lösung.

1.7 LGS IV

Betrachten Sie das dargestellte ebene Netzwerk mit den (Masse-) Punkten $p_1=(p_{1x},p_{1y}),...,p_7=(p_{7x},p_{7y})$. Die Punkte $p_1,...,p_4$ seien fest; $p_5,\,p_6$ und p_7 sollen frei schwingen. Desweiteren gelte für alle Federkonstanten $\omega_{ij}=1$.

- (a) Stellen Sie LGS_x und LGS_y für das betrachtete Netzwerk auf und bringen Sie diese jeweils auf Zeilenstufenform. (Die auftretenden Brüche sind leider nicht ganz so einfach.)
- (b) Bestimmen Sie den Gleichgewichtszustand (also die Position der Punkte p_5 , p_6 , p_7) durch Einsetzen der folgenden konkreten Werte in die jeweiligen linearen Gleichungssysteme:

$$p_1 = (0,0), p_2 = (5,0), p_3 = (0,4), p_4 = (4,3).$$

Lösung

(a) Für p_{5x} erhalten wir:

$$\begin{array}{rcl} p_{6x} - p_{5x} + p_{7x} - p_{5x} + p_{2x} - p_{5x} & = & 0 \\ \Leftrightarrow & -3p_{5x} + p_{6x} + p_{7x} & = & -p_{2x}. \end{array}$$

Für p_{6x} erhalten wir:

$$\begin{array}{rcl} p_{5x} - p_{6x} + p_{7x} - p_{6x} + p_{5x} - p_{6x} + p_{1x} - p_{6x} & = & 0 \\ \Leftrightarrow & p_{5x} - 4p_{6x} + p_{7x} & = & -p_{1x} - p_{3x}. \end{array}$$

Für p_{7x} erhalten wir:

$$\begin{array}{rcl} p_{3x} - p_{7x} + p_{6x} - p_{7x} + p_{5x} - p_{7x} + p_{4x} - p_{7x} & = & 0 \\ \Leftrightarrow & p_{5x} + p_{6x} - 4p_{7x} & = & -p_{3x} - p_{4x}. \end{array}$$

In Matrixschreibweise ergibt sich LGS_x zu:

$$(A|b) = \begin{pmatrix} -3 & 1 & 1 & -p_{2x} \\ 1 & -4 & 1 & -p_{1x} - p_{3x} \\ 1 & 1 & -4 & -p_{3x} - p_{4x} \end{pmatrix}.$$

Diese bringen wir jetzt auf Zeilenstufenform:

$$\begin{pmatrix} -3 & 1 & 1 & -p_{2x} \\ 1 & -4 & 1 & -p_{1x} - p_{3x} \\ 1 & 1 & -4 & -p_{3x} - p_{4x} \end{pmatrix} \xrightarrow{Z_2 \leftarrow 3Z_2 + Z_1} \begin{pmatrix} -3 & 1 & 1 & -p_{2x} \\ 0 & -11 & 4 & -3p_{1x} - p_{2x} - 3p_{3x} \\ 0 & 4 & -11 & -p_{2x} - 3p_{3x} - 3p_{4x} \end{pmatrix}.$$

$$\begin{vmatrix} z_3 \leftarrow \frac{14}{4}Z_3 + Z_2 & \begin{pmatrix} -3 & 1 & 1 \\ 0 & -11 & 4 \\ 0 & 0 & -105/4 & -3p_{1x} - p_{2x} - 3p_{3x} \\ 0 & 0 & -105/4 & -3p_{1x} - \frac{15}{4}p_{2x} - \frac{45}{4}p_{3x} - \frac{34}{4}p_{4x} \end{pmatrix}.$$

Zusammengefasst: Die Zeilenstufenform von LGS_x ist somit

$$\begin{pmatrix} -3 & 1 & 1 & -p_{2x} \\ 0 & -11 & 4 & -3p_{1x} - p_{2x} - 3p_{3x} \\ 0 & 0 & -105/4 & -3p_{1x} - \frac{15}{4}p_{2x} - \frac{45}{4}p_{3x} - \frac{33}{4}p_{4x} \end{pmatrix}.$$

Es ist leicht zu sehen, dass alle Rechenschritte für das LGS_y dieselben sind wie für das LGS_x (wer das nicht glaubt, sollte das nachrechnen). Wir erhalten also als Zeilenstufenform für LGS_y folgendes System:

$$\begin{pmatrix} -3 & 1 & 1 & -p_{2y} \\ 0 & -11 & 4 & -3p_{1y} - p_{2y} - 3p_{3y} \\ 0 & 0 & -105/4 & -3p_{1y} - \frac{15}{4}p_{2y} - \frac{45}{4}p_{3y} - \frac{33}{4}p_{4y} \end{pmatrix}.$$

Beachten Sie, dass die Variablen in diesem Fall p_{5y} , p_{6y} und p_{7y} sind.

(b) Betrachten wir zunächst LGS_x: Einsetzen der Werte für p_{1x} , p_{2x} , p_{3x} und p_{4x} liefert

$$\left(\begin{array}{ccc|c}
-3 & 1 & 1 & -5 \\
0 & -11 & 4 & -5 \\
0 & 0 & -\frac{105}{4} & 4\frac{207}{4}
\end{array}\right)$$

also $p_{7x} = \frac{69}{35}$. Einsetzen in der zweiten Zeile des LGS liefert $p_{6x} = \frac{41}{35}$. Einsetzen in der ersten Zeile ergibt $p_{5x} = \frac{19}{7}$.

Jetzt zu LGS_y: Einsetzen der Werte für p_{1y} , p_{2y} , p_{3y} und p_{4y} liefert

$$\begin{pmatrix}
-3 & 1 & 1 & 0 \\
0 & -11 & 4 & -12 \\
0 & 0 & -\frac{105}{4} & -\frac{279}{4}
\end{pmatrix}$$

also $p_{7yx} = \frac{93}{35}$. Einsetzen in der zweiten Zeile des LGS liefert $p_{6y} = \frac{72}{35}$. Einsetzen in der ersten Zeile ergibt $p_{5y} = \frac{11}{7}$.

Insgesamt ergibt sich also der Gleichgewichtszustand

$$p_5 = (p_{5x}, p_{5y}) = (\frac{19}{7}, \frac{11}{7}),$$

$$p_6 = (p_{6x}, p_{6y}) = (\frac{41}{35}, \frac{72}{35}),$$

$$p_7 = (p_{7x}, p_{7y}) = (\frac{69}{35}, \frac{93}{35}).$$

1.8 LGS V

Zeigen Sie, dass das folgende LGS (über \mathbb{R}) nur für $\eta = 1$ oder $\eta = 2$ Lösungen besitzt und geben Sie in beiden Fällen alle Lösungen an:

Lösung:

Die erweiterte Koeffizientenmatrix lautet:

$$(A|b) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & \eta \\ 1 & 4 & 10 & \eta^2 \end{pmatrix}$$

Diese bringen wir auf Zeilenstufenform:

Die letzte Zeile der Matrix bedeutet $0 = \eta^2 - 3\eta + 2$. Somit ist das LGS nur lösbar für Werte von η mit $\eta^2 - 3\eta + 2 = 0$. Es gilt

$$\eta^2 - 3\eta + 2 = (\eta - 1)(\eta - 2).$$

Somit können nur Lösungen des LGS für den Fall $\eta=1$ und $\eta=2$ existieren. In jedem Fall kann x_3 frei gewählt werden, d.h. wir setzen $x_3=\lambda$ mit $\lambda\in\mathbb{R}$ beliebig. Wir lesen an der Zeilenstufenform ab:

$$x_3 = \lambda,$$

 $x_2 = \eta - 1 - 3\lambda,$
 $x_1 = 1 - x_2 - x_3 = 1 - \eta + 1 + 3\lambda - \lambda = 2 - \eta + 2\lambda$

d.h.

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 - \eta \\ \eta - 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} \lambda.$$

Konkret erhalten wir also die (unendlich vielen) Lösungen für den Fall $\eta = 1$:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} \lambda,$$

und (unendlich vielen) Lösungen für den Fall $\eta=2$:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} \lambda.$$

1.9 LGS VI

Geben Sie Beispiele für $a, b \in \mathbb{R}$ an (mit Begründung), so dass das folgende lineare Gleichungssystem über \mathbb{R} keine bzw. genau eine bzw. unendlich viele Lösungen besitzt:

$$\begin{array}{rcl}
x_1 & + & x_2 & = & 3 \\
4x_1 & + & ax_2 & = & b.
\end{array}$$

Lösung

Erweiterte Koeffizientenmatrix:

$$(A|b) = \left(\begin{array}{cc|c} 1 & 1 & 3 \\ 4 & a & b \end{array}\right).$$

Zeilenstufenform $(Z_2 \leftarrow Z_2 - 4Z_1)$:

$$\left(\begin{array}{cc|c}1&1&3\\0&a-4&b-12\end{array}\right).$$

- (a) Keine Lösung: Dafür muss rang(A|b) > rang(A) sein. Das gilt z.B. für a-4=0 und $b-12 \neq 0$. Also z.B. für a=4 und b=8 gibt es keine Lösung.
- (b) Genau eine Lösung: Es muss gelten rang(A|b) = rang(A) und rang(A) = n = 2, wobei n die Anzahl der Variablen im LGS bezeichnet. Etwa mit $a 4 \neq 0$, z.B. a = 5, b = 13: $x_2 = 1$, $x_1 = 2$.

(c) <u>Unendlich viele Lösungen:</u> Es muss gelten rang(A|b) = rang(A) und rang(A) < n = 2. Das erhalten wir z.B. durch eine Nullzeile, also a - 4 = 0 und b - 12 = 0. Also für a = 4, b = 12 erhalten wir die Lösungen:

$$\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 3 \\ 0 \end{array}\right) + \left(\begin{array}{c} -1 \\ 1 \end{array}\right) \lambda,$$

mit $\lambda \in \mathbb{R}$ beliebig.

1.10 Gruppen

Sei G eine Gruppe mit aa = e für alle $a \in G$, wobei e das neutrale Element von G bezeichnet. Zeigen Sie, dass G abelsch ist.

Lösung:

Die Behauptung lautet ab = ba für alle $a, b \in G$. Seien $a, b \in G$ beliebig. Nach der Voraussetzung gilt wegen der Eindeutigkeit von inversen Elementen $a = a^{-1}$ und $b = b^{-1}$ sowie $ab = (ab)^{-1}$. Daraus folgt

$$ab = (ab)^{-1} = b^{-1}a^{-1} = ba,$$

also ab = ba, was zu beweisen war.

1.11 Untervektorraum I

Gegeben sei ein homogenes Gleichungssystem Ax = 0 mit $A \in K^{m \times n}$, $x \in K^n$. Zeigen Sie: Die Lösungsmenge $U = \{x \in K^n | Ax = 0\}$ ist ein Untervektorraum von K^n .

Lösung:

Wir überprüfen direkt die Eigenschaften eines Unterraums:

- (a) $U \neq \emptyset$: Homogene Gleichungssysteme besitzen stets die triviale Lösung, deswegen is $0 \in U \neq \emptyset$.
- (b) $u, v \in U \Rightarrow u + v \in U$: Gegeben $u = (u_1, ..., u_n)^T$, $v = (v_1, ..., v_n) \in U$, also Au = Av = 0, d.h.

$$\sum_{i=1}^{n} a_{ij} u_j = 0, \text{ für } i = 1, ..., m$$

und

$$\sum_{i=1}^{n} a_{ij} v_j = 0, \text{ für } i = 1, ..., m.$$

Dann ist

$$0 = \sum_{j=1}^{n} a_{ij} u_j = \sum_{j=1}^{n} a_{ij} v_j = \sum_{j=1}^{n} a_{ij} (u_j + v_j), \text{ für } i = 1, ..., m.$$

Das bedeutet aber, dass u + v Lösungen des LGS und somit $u + v \in U$ ist.

(c) $u \in U, a \in K \Rightarrow \alpha u \in U$: Sei $u \in U, a \in K$. Dann ist

$$\sum_{j=1}^{n} a_{ij}(\alpha u_j) = \sum_{j=1}^{n} \alpha a_{ij} u_j = \alpha \sum_{j=1}^{n} a_{ij} u_j = \alpha \cdot 0 = 0,$$

also $\alpha u \in U$.

1.12 Untervektorraum II

Welche der folgenden Mengen sind Untervektorräume der angegebenen Vektorräume?

- (a) $\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 = x_2 = 2x_3\} \subset \mathbb{R}^3$.
- (b) $\{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^4 = 0\} \subset \mathbb{R}^2$
- (c) $\{(\mu + \lambda, \lambda^2) \in \mathbb{R}^2 : \mu, \lambda \in \mathbb{R}\} \subset \mathbb{R}^2$
- (d) $\{f \in Abb(\mathbb{R}, \mathbb{R}) : f(x) = f(-x) \text{ für alle } x \in \mathbb{R}\} \subset Abb(\mathbb{R}, \mathbb{R})$
- (e) $\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 \ge x_2\} \subset \mathbb{R}^3$
- (f) $\{a \in M(m \times n; \mathbb{R}) : A \text{ ist in Zeilenstufenform}\} \subset M(m \times n; \mathbb{R}).$

Lösung:

(a) Es ist

$$W := \{(x_1, x_2, x_3) \in \mathbb{R} : x_1 = x_2 = 2x_3\} \subset \mathbb{R}^3.$$

Zu zeigen sind die Eigenschaften eines Untervektorraums:

$$UV_1 (0,0,0) \in W$$
, also $W \neq \emptyset$

 UV_2 Es seien $v = (v_1, v_2, v_3) \in W$ und $w = (w_1, w_2, w_3) \in W$. Dann gilt

$$v = (v_1, v_1, \frac{1}{2}v_1), w = (w_1, w_1, \frac{1}{2}w_1),$$

also

$$v + w = (v_1 + w_1, v_1 + w_1, \frac{1}{2}(v_1 + w_1)) \in W$$

UV₃ Es seien $v = (v_1, v_2, v_3) \in W$ und $\lambda \in K$. Es ist

$$v = (v_1, v_1, \frac{1}{2}v_1),$$

also

$$\lambda v = (\lambda v_1, \lambda v_1, \frac{1}{2}\lambda v_1) \in W$$

Also ist W ein Untervektorraum von \mathbb{R}^3

- (b) Nun ist $W := \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^4 = 0\} \subset \mathbb{R}^2$. Für alle $x \in \mathbb{R}n0$ gilt $x^2 > 0$ und $x^4 > 0$, woraus folgt, dass für alle $(x_1, x_2) \in \mathbb{R}^2 n(0, 0)$ gerade $x_1^2 + x_2^4 > 0$ gilt. Also ist $W = \{(0, 0)\}$ und die Bedingungen UV₁ und UV₂ sind trivialerweise erfüllt.
- (c) Die Menge $W:=\{(\mu+\lambda,\lambda^2)\in\mathbb{R}^2:\mu,\lambda\in\mathbb{R}\}\subset\mathbb{R}^2 \text{ ist kein Untervektorraum. Zwar gelten } \mathrm{UV}_1$ und UV_2 , jedoch ist UV_3 nicht erfüllt. Das sieht man wie folgt: Für alle $\lambda\in\mathbb{R}$ ist $\lambda^2\geq 0$. Wähle $\lambda=1,\mu=0,\alpha=-1$. Dann ist $\alpha\cdot(\mu+\lambda,\lambda^2)=(-1)\cdot(1,1)=(-1,-1)\notin W$.
- (d) $W:=\{f\in Abb(\mathbb{R},\mathbb{R}): f(x)=f(-x) \text{ für alle } x\in\mathbb{R}\}$ ist die Nullabbildung sicherlich in W enthalten; das zeigt UV₁. Die Eigenschaft UV₂ folgt für $f,g\in W$ aus

$$(f+q)(x) = f(x) + q(x) = f(-x) + q(-x) = (f+q)(-x).$$

Schließlich folgt UV_3 aus

$$(\lambda f)(x) = \lambda \cdot f(x) = \lambda \cdot f(-x) = (\lambda f)(-x)$$

für alle $f \in W$ und alle $\lambda \in \mathbb{R}$. Also ist W ein Untervektorraum von $Abb(\mathbb{R}, \mathbb{R})$.

(e) Wie bereits in Teil c) gelten für $W := \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 \geq x_2\} \subset \mathbb{R}^3$ die Eigenschaften UV₁ und UV₂, jedoch nicht UV₃. Für $v = (2, 1, 1) \in W$ und $\lambda = -1 \in \mathbb{R}$ folgt

$$\lambda \cdot v = (-2, -1, -1) \notin W$$
, da $x_1 = -2 < -1 = x_2$.

W ist also kein Untervektorraum von \mathbb{R}^3

(f) Die Menge $W := \{a \in M(m \times n; \mathbb{R}) : A \text{ ist in Zeilenstufenform} \}$ ist kein Untervektorraum von $M(m \times n; \mathbb{R})$. Anders als in Aufgabe c) und e) ist hier bereits die Summe zweier Vektoren im Allgemeinen nicht mehr in W enthalten. Für

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in W \text{ und } B = \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix} \in W$$

ist

$$A + B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + B = \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix}$$

nicht in W. Also ist W kein Untervektorraum.

1.13 Vektorraum

Ist X eine nichtleere Menge, V ein K-Vektorraum und Abb(X, V) die Menge aller Abbildungen von X nach V, so ist auf Abb(X, V) durch

$$(f+g)(x) := f(x) + g(x), (\lambda \cdot f)(x) := \lambda f(x),$$

eine Addition und eine skalare Multiplikation erklärt.

Zeigen Sie, dass Abb(X, V) mit diesen Verknüpfungen zu einem K-Vektorraum wird.

Lösung:

Es sind die Eigenschaften V_1 und V_2 zu zeigen. Für V_1 sind die Gruppenaxiome G_1 und G_2 nachzuweisen. G_1 ist dabei klar.

Das Nullelement ist die Abbildung f(x) = 0 für alle $x \in X$, das zur Abbildung $f \in Abb(X, V)$ negative Element ist gegeben durch g mit g(x) = -f(x) für alle $x \in X$, wobei für $f(x) \in V$ auch $-f(x) \in V$ gilt, da V ein Vektorraum ist. Die Kommutativität von Abb(X, V) folgt aus der Kommutativität von V als Gruppe, denn für alle $Q \in Abb(X, V)$ gilt

$$(f+g)(x)f(x) + g(x) = g(x) + f(x) = (g+f)(x)$$
 für alle $x \in X$.

Auch die Eigenschaft \mathbf{V}_2 folgt aus der entsprechenden Eigenschaft für V :

$$((\lambda + \mu) \cdot f)(x) = (\lambda + \mu)f(x) = \lambda f(x) + \mu f(x) = (\lambda f)(x) + (\mu f)(x)$$

für alle $f, g \in Abb(X, V)$ und alle $x \in X$.