In [11]:

```
import numpy as np
import pandas as pd
import seaborn as sb
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
dv=pd.read_csv(r"C:\Users\magam\Downloads\drug200.csv")
dv
```

Out[11]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

In [12]:

```
1 dv.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):

Non-Null Count Dtype # Column ----------------200 non-null int64 0 Age 1 Sex 200 non-null object 2 BP 200 non-null object 3 Cholesterol 200 non-null object 4 Na_to_K 200 non-null float64 5 Drug 200 non-null object

dtypes: float64(1), int64(1), object(4)

memory usage: 9.5+ KB

```
In [13]:
 1 dv.columns
Out[13]:
Index(['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug'], dtype='ob
ject')
In [14]:
 1 dv['Sex'].value_counts()
Out[14]:
Sex
     104
Μ
F
      96
Name: count, dtype: int64
In [15]:
 1 dv['BP'].value_counts()
Out[15]:
BP
          77
HIGH
LOW
          64
NORMAL
          59
```

Name: count, dtype: int64

In [16]:

```
convert={'Sex':{'M':1,'F':0},'BP':{'LOW':1,'NORMAL':2,'HIGH':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Cholesterol':{'Low':1,'Normal':2,'High':3},'Chole
```

Out[16]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	0	3	3	25.355	drugY
1	47	1	1	3	13.093	drugC
2	47	1	1	3	10.114	drugC
3	28	0	2	3	7.798	drugX
4	61	0	1	3	18.043	drugY
195	56	0	1	3	11.567	drugC
196	16	1	1	3	12.006	drugC
197	52	1	2	3	9.894	drugX
198	23	1	2	2	14.020	drugX
199	40	0	1	2	11.349	drugX

200 rows × 6 columns

In [17]:

```
1 x=['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K']
2 y=['drugX','drugY','drugC']
3 all_inputs=dv[x]
4 all_classes=dv['Drug']
```

In [18]:

```
x_train,x_test,y_train,y_test=train_test_split(all_inputs,all_classes,train_size=
clf1=DecisionTreeClassifier(random_state=0)
clf1.fit(x_train,y_train)
```

Out[18]:

```
DecisionTreeClassifier
DecisionTreeClassifier(random_state=0)
```

In [20]:

```
score=clf1.score(x_test,y_test)
print(score)
```

0.9928571428571429

In []:

1