Matemática Discreta

2^{a}	Prova	de	Avaliação	Discreta
_	1014	ac	1 I vanação	Discreta

 $09/05/2014 \perp$

Nome:		

N.º mecanográfico: _____ Curso ____

Espaço reservado aos docentes

Espaço	o resei	vaao	aos	aocent	es	
$E \setminus C$	0	1	2	3	4	5
0	00	16	32	48	64	80
1	-04	12	28	44	60	
2	-08	08	24	40		
3	-12	04	20			
4	-16	00				
5	-20					

Questões	Grupo I	Grupo II - 1	Grupo II - 2	Total
Classificação				

Grupo I

Este grupo é constituído por 5 questões de escolha múltipla. Cada questão tem uma só opção correta que deve assinalar com uma \times no \square correspondente.

Uma resposta correta é cotada com 16 pontos, uma resposta em branco com 0 pontos e uma resposta errada com -4 pontos.

1. Uma empresa vai distribuir 7 bolas de basquetebol iguais e 6 bolas de futebol diferentes por 5 clubes. De quantas maneiras é possível fazer esta distribuição?

$$\square \left(\begin{array}{c} 13\\7 \end{array}\right) \times 6^5;$$

2. Considere um sistema computacional onde se usam endereços de 16 dígitos binários (zeros e uns). O número de endereços que se podem formar com 11 zeros e 5 uns, que terminam em 0001 são:

$$\frac{16!}{11!5!} \times \frac{16!}{11!5!};$$

3.	As Olimpíadas de Matemática vão ser disputadas por 25 escolas de um certo distrito. Qual o número mínimo de concorrentes que tem de existir para que se garanta que pelo menos 11 alunos vêm de uma mesma escola?
	\square 251;
	\square 276;
4.	Numa repartição pública há 45 pessoas para serem atendidas e 3 balcões de atendimento. Sabendo que as pessoas se distribuem pelos 3 balcões de atendimento em número igual, de quantas maneiras diferentes se pode formar a fila do primeiro balcão de atendimento?
	$\square \frac{45!}{30!}$;
5.	Numa turma de 50 alunos, 20 jogam futebol, 28 jogam basquetebol, 16 jogam andebol, 8 jogam futebol e basquetebol, 5 jogam futebol e andebol, 10 jogam basquetebol e andebol, e 2 jogam futebol, basquetebol e andebol. Quantos alunos desta turma não pratica nenhum destes desportos?
	\square 43;
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	\square 12;
	nenhuma das anteriores.

(50 val.)1) (a) Prove, por indução sobre n, que $\frac{1}{1\times 2} + \frac{1}{2\times 3} + \cdots + \frac{1}{n\times (n+1)} = \frac{n}{n+1}$, para todo $n \in \mathbb{N}$.

(70 val.)2) (a) Determine o coeficiente de xy^2z^2 no desenvolvimento de $(x+\frac{y}{x}+3z)^7$.

(b) Calcule o desenvolvimento de $(a+b)^4$ e use-o para determinar $c_0, c_1, c_2, c_3, c_4 \in \mathbb{N}$ tais que

$$6^4 = c_0 5^0 + c_1 5^1 + c_2 5^2 + c_3 5^3 + c_4 5^4.$$

(c) Sabendo que $\sum_{k=0}^{n} \binom{n}{k} = 16$, determine o coeficiente de x^5 no desenvolvimento de $(x^2 + \frac{1}{x})^n$.