

AMENDMENTS TO THE CLAIMS

Please amend claims 3, 6, 8, 16, 19 and 22; and please add new claims 27 - 35; such that the status of the claims is as follows:

1 - 2. (Canceled)

3. (Currently amended) An air bearing slider comprising:

~~a transducer for communicating with a disc;~~

a composite slider body with a front portion composed of a first material and a rear portion composed of a second material different from the first material, ~~the slider body having an air bearing surface defined on a disc opposing face of the slider body, where the air bearing surface comprises the front portion and the rear portion, wherein an interface of separates the first material and the second material comprises a latitudinal plane with respect to the slider body substantially perpendicular to the air bearing surface;~~ and

~~a transducer basecoat portion attached to the rear portion of the slider body and containing the transducer.~~

4. (Original) The slider of claim 3 wherein a thickness of the first material is as much as about 15 times a thickness of the second material.

5. (Previously presented) The slider of claim 3 wherein a thickness of the first material is as little as about half a thickness of the second material.

6. (Currently amended) The slider of claim 3, wherein the transducer basecoat portion comprises the second material.

7. (Original) The slider of claim 6, where a lapping durability of the first material is greater than a lapping durability of the second material.

8. (Currently amended) The An air bearing slider of claim 6, comprising:
a transducer for communicating with a disc;
a composite slider body with a front portion composed of a first material and a rear
portion composed of a second material different from the first material, the slider
body having an air bearing surface defined on a disc opposing face of the slider
body, where the air bearing surface comprises the front portion and the rear
portion, wherein an interface of the first material and the second material
comprises a latitudinal plane with respect to the slider body substantially
perpendicular to the air bearing surface, wherein a lapping durability of the first
material is greater than a lapping durability of the second material, and where the
first material is A₁TiC and the second material is A₁₂O₃; and
a transducer basecoat portion attached to the rear portion of the slider body and
containing the transducer, wherein the transducer basecoat portion comprises the
second material.

9. (Previously presented) A method of manufacturing a slider body comprising the steps of:
forming a composite wafer comprising a layer of a first material and a layer of a second
material different from the first material;

forming on the layer of second material a transducer basecoat portion containing a transducer; and

defining an air bearing surface on the composite wafer, the air bearing surface comprising a leading portion of the first material and a trailing portion of the second material positioned behind the leading portion.

10. (Original) The method of claim 9, where a lapping durability of the first material is greater than a lapping durability of the second material.

11. (Previously presented) The method of claim 9 wherein the composite wafer comprises a plurality of joined slider bodies, wherein the transducer basecoat portion contains a plurality of transducers, wherein at least one transducer resides on each of the slider bodies, the method further comprising severing the composite wafer into a plurality of bars.

12. (Original) The method of claim 11 further comprising severing a bar into a plurality of individual sliders.

13. (Original) The method of claim 9 wherein a thickness of the first material is as much as about 15 times the thickness of the second material.

14. (Original) The method of claim 9 wherein a thickness of the first material is as little as about half the thickness of the second material.

15. (Previously presented) The slider of claim 3 wherein the first material and the second material interface at a single latitudinal plane.

16. (Currently amended) The slider of claim 3 15 wherein the latitudinal plane separates the front portion from the rear portion, wherein the front portion of the slider body is composed entirely of the first material and wherein the rear portion of the slider body is composed entirely of the second material.

17. (Previously presented) The method of claim 9 wherein an interface of the first material and the second material comprises a latitudinal plane which is substantially perpendicular to the air bearing surface.

18. (Previously presented) The method of claim 9 wherein the step of forming the composite wafer is performed before the step of forming the transducer basecoat portion.

19. (Currently amended) A composite air bearing slider **body** comprising:

a transducer;

a composite slider body comprising:

 a front body portion composed of a first material;

 a rear body portion composed of a second material different from the first material, the rear body portion being connected to and positioned behind the front body portion; and

 an air bearing surface (ABS), wherein the air bearing surface comprises a leading ABS portion formed in the front body portion and a trailing ABS portion formed in the rear body portion, wherein the trailing ABS portion is positioned behind the leading ABS portion

a transducer basecoat portion attached to the rear body portion of the slider body and containing the transducer.

20. (Previously presented) The slider body of claim 19 wherein a thickness of the first material is as much as about 15 times a thickness of the second material.

21. (Previously presented) The slider body of claim 19 wherein a thickness of the first material is as little as about half a thickness of the second material.

22. (Currently amended) The slider body of claim 19 ~~further comprising a~~ in which the transducer basecoat portion attached to the rear body portion and comprising comprises the second material.

23. (Previously presented) The slider body of claim 19, wherein a lapping durability of the first material is greater than a lapping durability of the second material.

24. (Previously presented) The slider body of claim 19, wherein the first material is AlTiC and the second material is Al₂O₃.

25. (Previously presented) The slider body of claim 19 wherein the first material and the second material interface at a single latitudinal plane.

26. (Previously presented) The slider body of claim 25 wherein the latitudinal plane separates the front body portion from the rear body portion, wherein the front body portion is composed entirely of the first material and wherein the rear body portion is composed entirely of the second material.

27. (New) The slider of claim 8 wherein a thickness of the first material is as much as about 15 times a thickness of the second material.

28. (New) The slider of claim 8 wherein a thickness of the first material is as little as about half a thickness of the second material.

29. (New) The slider of claim 8 wherein the front portion of the slider body is composed entirely of the first material and wherein the rear portion of the slider body is composed entirely of the second material.

30. (New) An air bearing slider comprising:
a transducer;
a composite slider body including a front portion and a rear portion, wherein:
the front portion comprises AlTiC and
the rear portion comprises A₁O₃; and
a transducer basecoat portion adjacent to the rear portion of the composite slider body,
wherein the transducer basecoat portion comprises A₁O₃.

31. (New) The slider of claim 30 wherein a thickness of the AlTiC is as much as about 15 times a thickness of the A₁O₃.

32. (New) The slider of claim 30 wherein a thickness of the AlTiC is as little as about half a thickness of the A₁O₃.

33. (New) The slider of claim 30 wherein the AlTiC and the A₁O₃ interface at a single latitudinal plane.

34. (New) The slider of claim 33 wherein the latitudinal plane separates the front portion from the rear portion, wherein the front portion of the slider body is composed entirely of AlTiC and wherein the rear portion of the slider body is composed entirely of Al_2O_3 .

35. (New) The slider of claim 33 wherein the latitudinal plane is substantially perpendicular to an air bearing surface of the slider.