

Hệ quản trị Cơ sở dữ liệu

Chương 4: Điều khiển đồng thời

1

Nội dung chi tiết

- Các vấn đề trong truy xuất đồng thời
 - Mất dữ liệu đã cập nhật (lost updated)
 - Không thể đọc lại (unrepeatable read)
 - "Bóng ma" (phantom)
 - Đọc dữ liệu chưa chính xác (dirty read)
- Kỹ thuật khóa (locking)
 - Giới thiệu
 - Khóa 2 giai đoạn (two-phase)
 - Khóa đọc viết
 - Khóa đa hạt (multiple granularity)
 - Nghi thức cây (tree protocol)

2

Nội dung chi tiết (tt)

- $\hfill \square$ Kỹ thuật nhãn thời gian (timestamps)
 - Giới thiệu
 - Nhãn thời gian toàn phần
 - Nhãn thời gian riêng phần
 - Nhãn thời gian nhiều phiên bản (multiversion)
- $\hfill \square$ Kỹ thuật xác nhận hợp lệ (validation)

Vđề mất dữ liệu đã cập nhật										
☐ Xét 2 giao tác										
T ₁ T ₂										
Read(A) Read(A)										
A:=A+10 A:=A+20										
Write(A) Write(A)										
☐ Giả sử T₁ và T₂ được thực hiện đồng thời										
1 2										
	A=50	T ₁	T ₂							
$-$ Dữ liệu đã cập nhật tại t_4 của T_1	t ₁	Read(A)								
bị mất vì đã bị ghi chồng lên ở	t ₂		Read(A)							
	t ₃	A:=A+10								
thời điểm t ₆	t ₄	Write(A)								
	t ₅		A:=A+20							
	t ₆		Write(A)							
		A=60	A=70							

UIT IS	Vđề không thể đọc lại							
☐ Xét 2 gia	o tác							
	T ₁	T ₂						
	Read(A)	Read	d(A)					
	A:=A+10	Print	(A)					
	Write(A)	Read	d(A)					
		Print	(A)					
☐ Giả sử T ₁	và T_2 được thực	hiện đồ	ng the	òi				
-	-		_		1			
,			A=50	T ₁	T ₂	\perp		
− T, tiêi	n hành đọc A ha	ui lân th	t ₁	Read(A)				
_			t ₂		Read(A)	A=50		
cno na	ai kết quả khác	nhau	t ₃	A:=A+10				
			t ₄		Print(A)	A=50		
			t ₅	Write(A)				
			t ₆		Read(A)	A=60		
			t ₇		Print(A)	A=60		
					•			

IS IS	vđề "bóng ma"										
☐ Xét 2 giao	tác T_1 và T_2 đ	tược xử lý	đồng thời								
C	3 là 2 tài khoa		dong anor								
			_								
$-T_I$ rút	1 số tiền ở tà	i khoản A	. rồi đưa v	ào tài k¹	hoản B						
$-T_2$ kiển	m tra đã nhận	ı đủ tiền h	ay chưa?								
	A=70, B=50	T ₁	T ₂								
	t ₁	Read(A)		A=70							
	t ₂	A:=A-50									
	t ₃	Write(A)		A=20							
	t ₄		Read(A)	A=20							
	t ₅		Read(B)	B=50							
	t ₆		Print(A+B)	A+B=70	mất 50 ???						
	t ₇	Read(B)									
	t ₈	B:=B+50									
	to	Write(B)	_		1						

Vđề đọc dữ liệu chưa chính xác

- $\hfill \square$ Xét 2 giao tác T_I và T_2 được xử lý đồng thời
 - T₂ đã đọc dữ liệu được ghi bởi T_I nhưng sau đó T_I yêu cầu hủy việc ghi

	T ₁	T ₂
t ₁	Read(A)	
t ₂	A:=A+10	
t ₃	Write(A)	
t ₄		Read(A)
t ₅		Print(A)
t ₆	Abort	

7

Nội dung chi tiết

- ☐ Các vấn đề truy xuất đồng thời
- ☐ Kỹ thuật khóa (lock)
 - Giới thiệu
 - Khóa 2 giai đoạn (two-phase)
 - Khóa đọc viết
 - Khóa đa hạt (multiple granularity)
 - Nghi thức cây (tree protocol)
- ☐ Kỹ thuật nhãn thời gian (timestamp)
- $\hfill \square$ Kỹ thuật xác nhận tính hợp lệ (validation)

8

Giới thiệu

- ☐ Làm thế nào để bộ lập lịch ép buộc 1 lịch phải khả tuần tự?
- $\hfill \Box$ Bộ lập lịch với cơ chế khóa (locking scheduler)
 - Có thêm 2 hành động
 - Lock
 - Unlock

Kỹ thuật khóa

- Các giao tác trước khi muốn đọc/viết lên 1 đơn vị dữ liệu phải phát ra 1 yêu cầu xin khóa (lock) đơn vị dữ liệu đó
 - Lock(A) hay l(A)
- Yêu cầu này được bộ phận <u>quản lý khóa</u> xử lý
 - Nếu yêu cầu được chấp thuận thi giao tác mới được phép đọc/ghi lên đơn vị đữ liệu

- Sau khi thao tác xong thì giao tác phải phát ra lệnh giải phóng <u>đơn vị dữ liệu</u> (unlock)
 - Unlock(A) hay u(A)

10

Kỹ thuật khóa (tt)

☐ Qui tắc

(1) Giao tác đúng đắn

$$T_i$$
: ... $I(A)$... $r(A)$ / $w(A)$... $u(A)$...

(2) Lịch thao tác hợp lệ

$$S: \qquad \dots \ I_i(A) \ \dots \dots \dots u_i(A) \ \dots$$

không có $I_j(A)$

UIT COMPANDED AND AND AND AND AND AND AND AND AND AN		Bài tậ	ip		
☐ Cho biế	t lịch nào h	ợp lệ? Giao	tác nào là đún	g?	
(S ₁) T ₁	T ₂	T ₃	T ₁	T ₂	T ₃
Lock(A) Lock(B) Read(A) Write(B) Unlock(A) Unlock(B)	Lock(B) Read(B) Write(B) Unlock(B)	Lock(B) Read(B) Unlock(B)	(S ₂) Lock(A) Read(A) Write(B) Unlock(A) Unlock(B)	Lock(B) Read(B) Write(B)	Lock(B) Read(B) Unlock(B)

(S)	Kỹ t	thuật khóa (tt	t)		
□ Nếu	lịch S hợp lệ thì	S có khả tuần tự	khôngʻ	?	
S	T,	T ₂	A	В	
(s)-	Lock(A); Read(A,t) t:=t+100		25	25	
	Write(A,t); Unlock(A)		125		
		Lock(A); Read(A,s) s:=s*2			
		Write(A,s); Unlock(A) Lock(B); Read(B,s)	250		
		s:=s*2			
	Lask(D), Dass(DA)	Write(B,s); Unlock(B)		50	
	Lock(B); Read(B,t) t:=t+100				
	Write(B,t); Unlock(B)			150	

Kỹ thuật khóa 2 giai đoạn (tt)

- Định lý
 - S thỏa qui tắc (1), (2), (3) \Rightarrow S conflict-serializable
- Chứng minh
 - $\;\; Giả sử \; G(S)$ có chu trình
 - $-\ T_1 {\,\rightarrow\,} T_2 {\,\rightarrow\,} \dots T_n {\,\rightarrow\,} T_1$
 - $-\ T_1$ thực hiện lock những đơn vị dữ liệu được unlock bởi T_n
 - $-\ T_1$ có dạng ... lock ... unlock ... lock
 - Điều này vô lý vì T₁ là giao tác thỏa 2PL
 - G(S) không thể có chu trình
 - S conflict-serializable

19

20

Kỹ thuật khóa đọc viết

Vấn đề

T _i	T_j
Lock(A) Read(A) Unlock(A)	
	Lock(A)
	Read(A) Unlock(A)

- Bộ lập lịch có các hành động
 - Khóa đọc (Read lock, Shared lock)
 - RLock(A) hay rl(A)
 - Khóa ghi (Write lock, Exclusive lock)

 WLock(A) hay wl(A)

 - Giải phóng khóa
 - Unlock(A) hay u(A)

Kỹ thuật khóa đọc viết (tt)

- ☐ Cho 1 đơn vị dữ liệu A bất kỳ
 - WLock(A)
 - Hoặc có 1 khóa ghi duy nhất lên A
 - Hoặc không có khóa ghi nào lên A
 - - Có thể có nhiều khóa đọc được thiết lập lên A

22

Kỹ thuật khóa đọc viết (tt)

- Giao tác muốn Write(A)
 - Yêu cầu WLock(A)
 - WLock(A) sẽ được chấp thuận nếu A tự do
 - Sẽ không có giao tác nào nhận được WLock(A) hay RLock(A)
- Giao tác muốn Read(A)
 - Yêu cầu RLock(A) hoặc WLock(A)
 - RLock(A) sẽ được chấp thuận nếu A không đang giữ một WLock nào
 - Không ngăn chặn các thao tác khác cùng xin Rlock(A)
 Các giao tác không cần phải chờ nhau khi đọc A
- Sau khi thao tác xong thì giao tác phải giải phóng khóa trên đơn vị dữ liệu A
 - ULock(A)

23

Kỹ thuật khóa đọc viết (tt)

- ☐ Qui tắc
 - (1) Giao tác đúng đắn

 $T_i: \quad \dots \; rl(A) \; \dots \; r(A) \; \dots \; u(A) \; \dots$

 T_i : ... wl(A) ... w(A) ... u(A) ...

Kỹ thuật khóa đọc viết (tt)

☐ Vấn đề

 Các giao tác đọc và ghi trên cùng 1 đơn vị dữ liệu T₁
Read(B)
Write(B)?

☐ Giải quyết

- Cách 1 yêu cầu khóa độc quyền
- Cách 2 nâng cấp khóa

 $T_i: \quad \dots \ wl(A) \ \dots \ r(A) \ \dots \ w(A) \ \dots \ u(A) \ \dots$

 $T_i: \quad \dots rl(A) \dots r(A) \dots wl(A) \dots w(A) \dots u(A) \dots$

25

Kỹ thuật khóa đọc viết (tt)

☐ Qui tắc

- (2) - Lịch thao tác hợp lệ

S: ... wI_i(A)u_i(A) ...

không có wl_j(A) không có rl_j(A)

26

Kỹ thuật khóa đọc viết (tt)

☐ Ma trận tương thích (compatibility matrices)

		Yêu cầu	lock
		Share	eXclusive
Trạng thái hiện hành	Share	yes	no
niện nann	eXclusive	no	no

Ví dụ (t	t)			
	T ₁	T ₂	T ₃	T ₄
		RL(A)		
			RL(A)	
		WL(B) UL(A)		
		UL(A)	WL(A)	
D. G. (1117) 2 112 2		UL(B)	VVL(A)	
☐ S có khả tuần tự hay không?	RL(B)	OL(D)		
☐ Giao tác nào không thỏa 2PL?	. ,		UL(A)	
				RL(B)
	RL(A)			
				UL(B)
	WL(C)			
	UL(A)			
				WL(B)
				UL(B)
	UL(B)			
	UL(C)			

32

Khóa ở mức độ nào? (tt)

- Xét ví dụ hệ thống ngân hàng
 - Quan hệ TàiKhoản(mãTK, sốDư)
 - Giao tác gửi tiền và rút tiền
 - Khóa relation?
 - Các giao tác thay đổi giá trị của sốDư nên yêu cầu khóa độc quyền
 Tại 1 thời điểm chi có hoặc là rút hoặc là gửi

 - Xử lý đồng thời chậm
 - · Khóa tuple hay disk block?
 - 2 tài khoản ở 2 blocks khác nhau có thể được cập nhật cùng thời điểm
 - Xử lý đồng thời nhanh
 - Giao tác tính tổng số tiền của các tài khoản
 - Khóa relation?
 - Khóa tuple hay disk block?

ur Ký	į thuật	khóa	đa hạ	at (tt)	
			Yêu cầu lock		
		IS	IX	S	х
	IS	yes	yes	yes	no
Trạng thái hiện hành	IX	yes	yes	no	no
	s	yes	no	yes	no
	x	no	no	no	no

Ky tiluạt	khóa đa hạt (tt)	
Nút cha đã khóa bằng phương thức	Nút con có thể khóa bằng các phương thức	
IS	IS, S	
IX	IS, S, IX, X	
s	[S, IS] không cần thiế	t
x	Không có	

Kỹ thuật khóa đa hạt (tt)

- (1) Thỏa ma trận tương thích
- (2) Khóa nút gốc của cây trước
- (3) Nút Q có thể được khóa bởi T_i bằng S hay IS khi cha(Q) đã bị khóa bởi T_i bằng IX hay IS
- (4) Nút Q có thể được khóa bởi T_i bằng X hay IX khi cha(Q) đã bị khóa bởi T_i bằng IX
- (5) T_i thỏa 2PL
- (6) $T_{\rm i}$ có thể giải phóng nút Q khi không có nút con nào của Q bị khóa bởi $T_{\rm i}$

40

Bài tập

- $\hfill \square$ T_2 có thể truy xuất $f_{2.2}$ bằng khóa X được không?
- ☐ T₂ sẽ có những khóa gì?

41

Bài tập (tt)

- $\hfill \Box \hfill T_2$ có thể truy xuất $f_{2,2}$ bằng khóa X được không?
- ☐ T₂ sẽ có những khóa gì?

Nghi thức cây (tt)

- Giả sử
 - Dùng 1 khóa độc quyền: $Lock_i(X)$ hay $l_i(X)$
 - Các giao tác đúng đắn
 - Lịch thao tác hợp lệ
- Qui tắc
 - -~(1) Giao tác $T_{\rm i}$ có thể phát ra khóa đầu tiên ở bất kỳ nút nào
 - $\; (2)$ Nút Q sẽ được khóa bởi T_i khi cha(Q) cũng được khóa bởi T_i
 - (3) Các nút có thể được giải phóng khóa bất cứ lúc nào
 - (4) Sau khi Ti giải phóng khóa trên Q, Ti không được khóa trên Q nữa

49

Ví dụ

 $T_1{:}\; I(A);\; r(A);\; I(B);\; r(B);\; I(C);\; r(C);\; w(A);\; u(A);\; I(D);\; r(D);\; w(B);\; u(B);\; w(D);\; u(D);\; w(C);\; u(C)$ T_2 : I(B); r(B); I(E); r(E); w(B); u(B); w(E); u(E)

 $T_3{:}\; I(E);\; r(E);\; I(F);\; r(F);\; w(F);\; u(F);\; I(G);\; r(G);\; w(E);\; u(E);\; w(G);\; u(G)$

50

Giới thiệu

- Ý tưởng
 - Giả sử không có hành động nào vi phạm tính khả tuần tự
 - Nhưng nếu có, hủy giao tác có hành động đó và thực hiện lại giao tác
- Chọn một thứ tự thực hiện nào đó cho các giao tác bằng cách gán nhãn thời gian (timestamping)
 - Mỗi giao tác T sẽ có 1 nhãn, ký hiệu TS(T)
 - Tại thời điểm giao tác bắt đầu
 - Thứ tự của các nhãn tăng dần
 - Giao tác bắt đầu trễ thì sẽ có nhãn thời gian lớn hơn các giao tác bắt đầu sớm

55

Giới thiệu (tt)

- □ Để gán nhãn
 - Đồng hồ của máy tính
 - Bộ đếm (do bộ lập lịch quản lý)
- ☐ Chiến lược cơ bản
 - Nếu $ST(T_i) < ST(T_j)$ thì lịch thao tác được phát sinh phải tương đương với lịch biểu tuần tự $\{T_i,\,T_j\}$

56

Nhãn thời gian toàn phần

- ☐ Mỗi giao tác T khi phát sinh sẽ được gán 1 nhãn TS(T) ghi nhận lại thời điểm phát sinh của T
- ☐ Mỗi đơn vị dữ liệu X cũng có 1 nhãn thời TS(X), nhãn này ghi lại TS(T) của giao tác T đã thao tác read/write thành công sau cùng lên X
- ☐ Khi đến lượt giao tác T thao tác trên dữ liệu X, so sánh TS(T) và TS(X)

Nhãn thời gian riêng phần

☐ Nhãn của đơn vị dữ liệu X được tách ra thành 2

- RT(X) read
- Ghi nhận TS(T) gần nhất đọc X thành công
- WT(X) write
 - Ghi nhận TS(T) gần nhất ghi X thành công

61

Nhãn thời gian riêng phần (tt)

☐ Công việc của bộ lập lịch

- Gán nhãn RT(X), WT(X) và C(X)
 - Kiểm tra thao tác đọc/ghi xuất hiện vào lúc nào
 - Có xảy ra tình huống
 - Đọc quá trễ
 - Ghi quá trễ
 - Đọc dữ liệu rác (dirty read)
 - Qui tắc ghi Thomas

62

- Nhãn thời gian riêng phần (tt)
- TS(T) < TS(U)
 - U ghi X trước, T đọc X sau
 - TS(T) < WT(X)
 - T không thể đọc X sau U
 - \rightarrow Hủy T

Nhãn thời gian riêng phần (tt)

☐ Qui tắc ghi Thomas

- Nhưng U hủy
 - Giá trị của X được ghi bởi U bị mất
 - Cần khôi phục lại giá trị X trước đó
- Và T đã kết thúc
 - X có thể khôi phục từ thao tác ghi của T
- Do qui tắc ghi Thomas
 - Thao tác ghi đã được bỏ qua
 - Quá trễ để khôi phục X

67

Nhãn thời gian riêng phần (tt)

☐ Tóm lai

- Khi có yêu cầu đọc và ghi từ giao tác T
- Bộ lập lịch sẽ
 - Đáp ứng yêu cầu
 - Hủy T và khởi tạo lại T với 1 timestamp mới
 T rollback
 - Trì hoãn T, sau đó mới quyết định phải hủy T hoặc đáp ứng yêu cầu

68

Nhãn thời gian riêng phần (tt)

Read(T, X)

If WT(X) <= TS(T)
 Read(X);//cho phép dọc X
 RT(X) := max(RT(X),TS(T));
Else
 Rollback{T};
 //hủy T và khởi tạo lại TS mới</pre>

Write(T, X)

//hủy T và khởi tạo lại TS mới

Ví dụ											
	T ₁ TS(T ₁)=100	T ₂ TS(T ₂)=200	A RT(A)=0 WT(A)=0	B RT(B)=0 WT(B)=0	C RT(C)=0 WT(C)=0						
1	Read(A)		RT(A)=100 WT(A)=0			WT(A) < TS(T ₁) T ₁ đọc được A					
2		Read(B)		RT(B)=200 WT(B)=0		WT(B) < TS(T ₂) T ₂ đọc được B					
3	Write(A)		RT(A)=100 WT(A)=100			$RT(A) \le TS(T_1)$ $WT(A) \le TS(T_1)$	T ₁ ghi lêi A được				
4		Write(B)		RT(B)=200 WT(B)=200		RT(B) < =TS(T ₂) WT(B) < TS(T ₂)	T ₂ ghi lêi B được				
5		Read(C)			RT(C)=200 WT(C)=0	$WT(C) < TS(T_2)$ T_2 đọc được C					
6	Read(C)				RT(C)=200 WT(C)=0	WT(C) < TS(T ₁) T ₁ đọc được C					
7	Write(C)					RT(C) < TS(T ₁) T ₁ không ghi lên (C được				

UIT CONTROL STATE		Ví d	ų (tt)					
	T ₁	T ₂	T ₃	A RT=0 WT=0	B RT=0 WT=0	C RT=0 WT=0		
	Read(B)				RT=200 WT=0			
		Read(A)		RT=150 WT=0				
			Read(C)			RT=175 WT=0		
	Write(B)				RT=200 WT=200			
	Write(A)			RT=200 WT=200				
		Write(C)						
			Write(A)					
	Rollback Giả trị của A đã sao lưu bởi T1 → T3 không bị rollback và không cần ghi A							

	Ví dụ (tt)			
T ₁	T ₂	T ₃	T ₄	A
TS=150	TS=200	TS=175	TS=255	RT=0 WT=0
Read(A)				RT=150 WT=0
Write(A)				RT=150 WT=150
	Read(A)			RT=200 WT=0
	Write(A)			RT=200 WT=200
		Read(A)	
			Read(A)	RT=255 WT=200
		Rollback		

Nhãn thời gian riêng phần (tt)

■ Nhân xét

- Thao tác read₃(A) làm cho giao tác T₃ bị hủy
- T₃ đọc giá trị của A sẽ được ghi đè trong tương lai bởi T₂
- Giả sử nếu T₃ đọc được giá trị của A do T₁ ghi thì sẽ không

73

Nhãn thời gian nhiều phiên bản

☐ Ý tưởng

- Cho phép thao tác read₃(A) thực hiện
- ☐ Bên cạnh việc lưu trữ giá trị hiện hành của A, ta giữ lại các giá trị được sao lưu trước kia của A (phiên bản
- ☐ Giao tác T sẽ đọc được giá trị của A ở 1 phiên bản thích hợp nào đó

74

Nhãn thời gian nhiều phiên bản (tt)

- Mỗi phiên bản của 1 đơn vị dữ liệu X có
 - RT(X)
 - Ghi nhận lại giao tác sau cùng đọc X thành công
 - WT(X)
 - Ghi nhận lại giao tác sau cùng ghi X thành công
- Khi giao tác T phát ra yêu cầu thao tác lên X
 - Tìm 1 phiên bản thích hợp của X
 - Đảm bảo tính khả tuần tự
- Một phiên bản mới của X sẽ được tạo khi hành động ghi X thành công

Nhận xét Thao tác đọc Giao tác T chỉ đọc giá trị của phiên bản do T hay những giao tác trước T cập nhật T không đọc giá trị của các phiên bản do các giao tác sau T cập nhật

- ightarrow Thao tác đọc không bị rollback
- Thao tác ghi
 - Thực hiện được bằng cách chèn thêm phiên bản mới
 - Không thực hiện được thì rollback
- Tốn nhiều chi phí tìm kiếm, tốn bộ nhớ
- Nên giải phóng các phiên bản quá cũ không còn được các giao tác sử dụng

79

Nội dung chi tiết

- $\hfill \square$ Các vấn đề truy xuất đồng thời
- ☐ Kỹ thuật khóa (locking)
- \square Kỹ thuật nhãn thời gian (timestamps)
- ☐ Kỹ thuật xác nhận hợp lệ (validation)

80

Giới thiệu

- Ý tưởng
 - Cho phép các giao tác truy xuất dữ liệu 1 cách tự do
 - Kiểm tra tính khả tuần tự của các giao tác
 - Trước khi ghi, tập hợp các đơn vị dữ liệu của 1 giao tác sẽ được so sánh với tập đơn vị dữ liệu của những giao tác khác
 - Nếu không hợp lệ, giao tác phải rollback
- Trong khi nhãn thời gian
 - Lưu giữ lại các phiên bản của đơn vị dữ liệu
- Thì xác nhận tính hợp lệ
 - Quan tâm đến các giao tác đang làm gì

Xác nhận hợp lệ

- Một giao tác có 3 giai đoạn
 - (1) Đọc Read set RS(T)
 - Đọc tất cả các đơn vị dữ liệu có trong giao tác
 - Tính toán rồi lưu trữ vào bộ nhớ phụ
 - Không sử dụng cơ chế khóa
 - (2) Kiểm tra hợp lệ Validate
 - Kiểm tra tính khả tuần tự
 - (3) Ghi Write set WS(T)
 - Nếu (2) hợp lệ thì ghi xuống CSDL
- Chiến lược cơ bản
 - Nếu $T_1,\,T_2,...,\,T_n$ là thứ tự hợp lệ thì kết quả sẽ conflict-serializable với lịch tuần tự $\{T_1,\,T_2,...,\,T_n\}$

82

Xác nhận hợp lệ (tt)

- Bộ lập lịch xem xét 3 tập hợp
 - START
 - Tập các giao tác đã bắt đầu nhưng chưa kiểm tra hợp lệ xong
 - START(T) ghi nhận thời điểm bắt đầu của T
 - VAL
 - Tập các giao tác được kiểm tra hợp lệ nhưng chưa hoàn tất ghi
 Các giao tác đã hoàn tất giai đoạn 2
 - VAL(T) ghi nhận thời điểm T kiểm tra xong
 - FIN
 - Tập các giao tác đã hoàn tất việc ghi
 - Các giao tác đã hoàn tất giai đoạn 3
 - FIN(T) ghi nhận thời điểm T hoàn tất

83

SIS

- Xác nhận hợp lệ (tt)
 - T đã kiểm tra hợp lệ xong
 - T chưa hoàn tất ghi thì U bắt đầu đọc
 - $RS(U) \cap WS(T) = \{X\}$
 - U có thể không đọc được giá trị X ghi bởi T
 - $\to \text{Rollback U}$

Xác nhận hợp lệ (tt)

☐ Qui tắc

- (1) Nếu có T chưa hoàn tất mà U bắt đầu
 - Kiểm tra $RS(U) \cap WS(T) = \emptyset$
- $-\$ (2) Nếu có T chưa hoàn tất mà U kiểm tra hợp lệ
 - Kiểm tra $WS(U) \cap WS(T) = \emptyset$

88

89

Nhận xét

- Kỹ thuật nào hiệu quả hơn???
 - Khóa (locking)
 - Nhãn thời gian (timestamps)
 - Xác nhận hợp lệ (validation)
- Dựa vào
 - Lưu trũ
 - Tỷ lệ với số lượng đơn vị dữ liệu
 - Khả năng thực hiện
 - Các giao tác ảnh hưởng với nhau như thế nào? Nhiều hay ít?

000 tox				
	Khóa	Nhãn thời gian	Xác nhận hợp lệ	
Delay	Trì hoãn các giao tác, ít rollback	Không trì hoān các giao tác, nhưng gây ra rollback		
Rollback		Xử lý rollback nhanh	Xử lý rollback chậm	
Storage	Phụ thuộc vào số lượng đơn vị dữ liệu bị khóa	Phụ thuộc vào nhãn đọc và ghi của từng đơn vị dữ liệu	Phụ thuộc vào nhãn WS và RS của các giao tác hiện hành và 1 vài giac tác đã hoàn tắt sau 1 giao tác bắt đầu nào đó	
		Sử dụng nhiều bộ nhớ hơn		
			ảnh hưởng nhiều ảnh hưởng ít	

Nhận xét (tt)

- Khóa & nhãn thời gian
 - Nếu các giao tác <u>chi thực hiện đọc</u> không thôi thì kỹ thuật nhãn thời gian tốt hơn
 - Ít có tình huống các giao tác cố gắng đọc và ghi cùng 1 đơn vị dữ liệu
 Nhưng kỹ thuật khóa sẽ tốt hơn trong những <u>tình huống xãy ra tranh chấp</u>
 - Kỹ thuật khóa thường hay trì hoãn các giao tác để chờ xin được khóa
 - Dẫn đến đeadlock

 Nếu có các giao tác đọc và ghi cùng I đơn vị dữ liệu thì việc rollback là thường xuyên hơn

92

UT IS	
Qe	
94	