REAL ANALYSIS: ASSIGNMENT 1

DUE DATE: 2021/04/04

Type your solutions by LaTeX and submit the compiled pdf file

- 1. Let (X, \mathfrak{M}, μ) be a measure space, let Y be a non-empty measurable subset of X, and let \mathfrak{M}_Y be the collection of subsets of Y belonging to the σ -algebra \mathfrak{M} . Prove that \mathfrak{M}_Y is a σ -algebra and the measure μ restricted to \mathfrak{M}_Y is also a measure on \mathfrak{M}_Y (and thus (Y, \mathfrak{M}_Y, μ) consists a measure space).
- **2.** Let (X, \mathfrak{M}, μ) be a measure space such that $\mu(X) < \infty$. Define

$$\mathfrak{M}_1 = \{ A \in \mathfrak{M} : \mu(A) = 0 \text{ or } \mu(A) = \mu(X) \} .$$

- (1) Prove that (X, \mathfrak{M}_1, μ) is a measure space.
- (2) Let $f: X \to \mathbb{R}$ be a measurable function with respect to the σ -algebra \mathfrak{M} . Prove that f is measurable with respect to the σ -algebra \mathfrak{M}_1 if and only if there exists $c \in \mathbb{R}$ such that f(x) = c a.e. $[\mu]$.
- **3.** Let (X, \mathfrak{M}) be a measurable space and ;et $\mu_1, \mu_2, \ldots, \mu_k$ be positive measures on this space. Let $c_1, c_2, \cdots, c_k \geq 0$ be non-negative reals and define $\mu : \mathfrak{M} \to \mathbb{R}$ as

$$\mu(E) = \sum_{i=1}^{k} c_i \mu_i(E) \text{ for } E \in \mathfrak{M}.$$

Prove that μ is a measure. (This measure is denoted by $c_1\mu_1 + \cdots + c_k\mu_k$).

4. Suppose that (\mathbb{R}, τ) is the standard topological space, i.e.,

$$\tau = \{A : A \text{ is a countable union of open intervals in } \mathbb{R}\}.$$

Denote by \mathfrak{B} the Borel σ -algebra associated to this topological space. Prove that the following set belongs to \mathfrak{B} .

$$A = \left\{ x \in \mathbb{R} : x = q_1 \sqrt{n_1} + \dots + q_k \sqrt{n_k} \text{ for some } k \in \mathbb{N}, q_1, \dots, q_k \in \mathbb{Q}, \right.$$
and $n_1, \dots, n_k \in \mathbb{N} \right\}$

5. Let (X, \mathfrak{M}, μ) be a measure space such that $\mu(X) < \infty$ and let $f, g, h \in L^1(\mu)$. For $n \in \mathbb{N}$, define

$$B_n = \{x \in X : |f(x)| + |g(x)| \le n\} \in \mathfrak{M}$$
.

Prove that

$$\lim_{n\to\infty} \int_{B_n} h \, d\mu = \int_X h \, d\mu \; .$$

6. Let (X, \mathfrak{M}, μ) be a complete measure space and let $(f_n)_{n=1}^{\infty}$, $(g_n)_{n=1}^{\infty}$ be sequences of measurable functions such that

$$f_m \leq g_n$$
 a.e. $[\mu]$ for all $m, n \in \mathbb{N}$.

Prove that

$$\sup_{n\in\mathbb{N}} f_n \le \inf_{n\in\mathbb{N}} g_n \quad \text{a.e. } [\mu] .$$

7. Let (X, \mathfrak{M}, μ) be a measure space, and let $f \in L^1(\mu)$. Prove that, for all $\epsilon > 0$, there exists a simple measurable function s such that

$$\int_X |f - s| d\mu < \epsilon .$$

Here, the simple function s can assume negative value as well; in other words, s can be represented as $s = \sum_{i=1}^{n} a_i \chi_{A_i}$ for some pairwise disjoint measurable sets A_1, A_2, \ldots, A_n and real numbers a_1, a_2, \ldots, a_n .

8. Let $X = \{1, 2, ..., 3n\}$ for some positive integer $n \in \mathbb{N}$, and let

$$\mathfrak{M}=\{A\subset X: |\{3k-2,\,3k-1,\,3k\}\cap A|=0 \text{ or } 3 \text{ for all } 1\leq k\leq n\}$$
 .

- (1) Prove that (X, \mathfrak{M}) is a measurable space.
- (2) Let $(a_k)_{k=1}^{3n}$ be a sequence of non-negative reals. Define $\mu:\mathfrak{M}\to[0,\infty)$ as

$$\mu(A) = \sum_{i \in A} a_i .$$

Prove that μ is a measure on (X, \mathfrak{M}) and hence (X, \mathfrak{M}, μ) is a measure space.

(3) Suppose that the sequence $(a_k)_{k=1}^{3n}$ given above satisfies $a_1 = a_2 = a_3 = 0$ and $a_k > 0$ for all $k \geq 4$. Prove that the measure space (X, \mathfrak{M}, μ) is not complete and derive the completion of the measure space (X, \mathfrak{M}, μ) .

RECOMMENDING PROBLEMS

1. Let $X = [-\infty, +\infty] = \mathbb{R} \cup \{-\infty, \infty\}$ be the extended real number system, and define a topology τ on X as a collection of subsets of X which can be represented as a countable union of intervals of the form

$$(a, b)$$
, $[-\infty, a)$, $(a, \infty]$ for some $a, b \in X$.

Prove that (X, τ) is a topological space.

2. Prove that an open set in the Euclidean space \mathbb{R}^d can be expressed as a countable union of disjoint open boxes. Here, open box refers to a set of the form

$$(a_1, b_1) \times \cdots \times (a_d, b_d)$$
.

- **3.** Let (X, \mathfrak{M}_1) and (X, \mathfrak{M}_2) be two measurable spaces such that $\mathfrak{M}_1 \subset \mathfrak{M}_2$ (we say that \mathfrak{M}_2 is a refinement of \mathfrak{M}_1), and let Y be a topological space. Let $f: X \to Y$ be a measurable function with respect to the space (X, \mathfrak{M}_1) . Prove that f is measurable with respect to the space (X, \mathfrak{M}_2) as well.
- **4.** Let (X, \mathfrak{M}, μ) be a measure space, and let $f, g \in L^1(\mu)$. Then, define

$$h(x) = \min(f(x), q(x))$$
 for all $x \in X$.

- (1) Prove that $h \in L^1(\mu)$.
- (2) Prove that

$$\int_X h \, d\mu \le \min \left(\int_X f d\mu, \, \int_X g d\mu \right)$$

and explain when the equality holds.

5. Let (X, \mathfrak{M}, μ) be a measure space and let $f \in L^1(\mu)$. Let $(f_n)_{n=1}^{\infty}$ be a sequence of non-negative functions in $L^1(\mu)$ such that

$$\lim_{n\to\infty} f_n = f \text{ a.e. } [\mu] \quad \text{and} \quad \lim_{n\to\infty} \int_X f_n d\mu = \int_X f d\mu \;.$$

For any $A \in \mathfrak{M}$, prove that

$$\lim_{n \to \infty} \int_A f_n d\mu = \int_A f d\mu .$$

(6-8) These problems discuss the local measurability and σ -finite sets. I strongly recommend to spend your time to think about these problems.

- **6.** Let (X, \mathfrak{M}, μ) be a measure space. A set $E \subset X$ is called **locally measurable** if $E \cap A \in \mathfrak{M}$ for all $A \in \mathfrak{M}$ with $\mu(A) < \infty$. Denote the collection of locally measurable sets by \mathfrak{M}_{ℓ} .
- (1) Prove that \mathfrak{M}_{ℓ} is a σ -algebra.
- (2) A function $f: X \to [-\infty, \infty]$ is called **locally measurable** if, for all $Y \in \mathfrak{M}$ with $\mu(Y) < \infty$, the function f restricted to the set Y is measurable with respect to the measurable space (Y, \mathfrak{M}_Y) introduced in problem 2 (of the mandatory part). Prove that a function f is locally measurable if and only if f is measurable with respect to the σ -algebra \mathfrak{M}_{ℓ} .
- (3) Prove or disprove: if (X, \mathfrak{M}, μ) is complete then $(X, \mathfrak{M}_{\ell}, \mu)$ is complete as well.
- 7. Let (X, \mathfrak{M}, μ) be a measure space. A subset $E \subset X$ is called a σ -finite set with respect to the measure μ , if there exist a countable decomposition $\{E_n : n \in \mathbb{N}\}$ of E (i.e., $E = \bigcup_{n=1}^{\infty} E_n$ and $E_i \cap E_j = \phi$ for all $i \neq j$) such that $\mu(E_n) < \infty$ for all n. Prove that, if X is a σ -finite set with respect to the measure μ , then any locally measurable set is measurable.
- **8.** Let (X, \mathfrak{M}, μ) be a measure space and let $f \in L^1(\mu)$. Prove that the set $\{x : f(x) \neq 0\}$ is a σ -finite set with respect to the measure μ .
- 8. Exercise 3, 5-(1), 6, 7, 9, 12 of Chapter 1