Linear System Theory

Solutions to Problem Set 1 Linear Spaces, Linear Maps, and Representations

Issue date: September 23, 2019 Due date: October 7, 2019

Solution 1. (Linear spaces [40 points in total])

- 1. [18 points in total] We verify the axioms of a vector space.
 - Associativity of \oplus : trivial.
 - The identity element of \oplus (that is, the zero vector) is the constant function $\theta(x) = 1$ for all $x \in S$. Indeed $[\theta \oplus f](x) = \theta(x)f(x) = 1f(x) = f(x)$ for all $x \in S$.
 - The inverse of a function f is the function f^- defined as $f^-(x) = \frac{1}{f(x)}$ for all $x \in S$. Indeed $[f^- \oplus f](x) = f^-(x)f(x) = \frac{1}{f(x)}f(x) = 1 = \theta(x)$ for all $x \in S$.
 - Commutativity of \oplus : trivial.
 - Associativity of \odot : for all $\alpha, \beta \in \mathbb{R}$ and $f \in F$, $[\alpha \odot [\beta \odot f]](x) = [\beta \odot f](x)^{\alpha} = f(x)^{\alpha\beta} = [(\alpha\beta) \odot f](x)$.
 - Multiplication identity: $[1 \odot f](x) = f(x)^1 = f(x)$.
 - Distributivity, first property: $[(\alpha + \beta) \odot f](x) = f(x)^{\alpha+\beta} = f(x)^{\alpha}f(x)^{\beta} = [\alpha \odot f](x)[\beta \odot f](x) = [[\alpha \odot f] \oplus [\beta \odot f]](x).$
 - Distributivity, second property: $[\alpha \odot [f_1 \oplus f_2]](x) = (f_1(x)f_2(x))^{\alpha} = f_1(x)^{\alpha}f_2(x)^{\alpha} = [\alpha \odot f_1](x)[\alpha \odot f_2](x) = [[\alpha \odot f_1] \oplus [\alpha \odot f_2]](x).$
- 2. [12 points in total] Suppose that $\alpha \odot f_1 \oplus \beta \odot f_2 = \theta$. Then

$$1 = [\alpha \odot f_1 \oplus \beta \odot f_2](a) = f_1(a)^{\alpha} f_2(a)^{\beta} = 2^{\alpha} 1^{\beta} = 2^{\alpha}$$
$$1 = [\alpha \odot f_1 \oplus \beta \odot f_2](b) = f_1(b)^{\alpha} f_2(b)^{\beta} = 1^{\alpha} 3^{\beta} = 3^{\beta}$$

Therefore, it must hold $\alpha = \beta = 0$, and $\{f_1, f_2\}$ are linearly independent. To show that $\{f_1, f_3\}$ are linearly dependent, it suffices to recognize that $f_3(x) = f_1(x)^2$, or $f_3 = 2 \odot f_1$; hence $2 \odot f_1 \oplus (-1) \odot f_3 = \theta$ with nonzero coefficients.

3. [10 **points in total**] We verify the definition of linearity: For all $f_1, f_2, f \in F$ and $\alpha \in \mathbb{R}$,

$$[\varphi(f_1 \oplus f_2)](x) = \sqrt{[f_1 \oplus f_2](x)}$$

$$= \sqrt{f_1(x)f_2(x)}$$

$$= \sqrt{f_1(x)}\sqrt{f_2(x)}$$

$$= [\varphi(f_1) \oplus \varphi(f_2)](x)$$

and

$$[\varphi(\alpha \odot f)](x) = \sqrt{[\alpha \odot f](x)}$$

$$= \sqrt{f(x)^{\alpha}}$$

$$= \left(\sqrt{f(x)}\right)^{\alpha}$$

$$= [\alpha \odot \varphi(f)](x).$$

Solution 2. (Range and null space [40 points in total])

1. [10 **points in total**] Note that by definition $dim(RANGE(\mathcal{A}))$ is nonnegative. We also have $RANGE(\mathcal{A}) \subseteq F^m$, and therefore $dim(RANGE(\mathcal{A})) \le m$.

Let $\{b_1, \ldots, b_n\}$ be a basis of F^n . Then, RANGE $(A) \subseteq \text{span}\{A(b_1), \ldots, A(b_n)\}$. This follows since for any $y \in \text{RANGE}(A)$, $\exists x \in F^n$ such that A(x) = y, and x can be written as $x = \sum_{i=1}^n \xi_i b_i$, and thus $y = A(x) = \sum_{i=1}^n \xi_i A(b_i) \in \text{span}\{A(b_1), \ldots, A(b_n)\}$. We obtain

$$dim(RANGE(A)) \leq dim(span\{A(b_1), \dots, A(b_n)\}) \leq n.$$

Finally, we have:

$$0 \le dim(Range(A)) \le min\{m, n\}.$$

2. [15 points in total]

Our proof approach is as follows. We first show that:

$$dim(\text{NULL}(\mathcal{B} \circ \mathcal{A})) \leq dim(\text{NULL}(\mathcal{A})) + dim(\text{NULL}(\mathcal{B})),$$

Then, we use the rank-nullity theorem to obtain the statement given in the problem.

Clearly, we have $\text{Null}(\mathcal{A}) \subseteq \text{Null}(\mathcal{B} \circ \mathcal{A})$. This follow since if $x \in F^n$ is such that $\mathcal{A}(x) = 0$, then $\mathcal{B}(\mathcal{A}(x)) = 0$. Next, consider $\tilde{\mathcal{A}}$ as a restriction of \mathcal{A} :

$$\tilde{\mathcal{A}}: \mathrm{Null}(\mathcal{B} \circ \mathcal{A}) \to F^m.$$

For the map above, we have $\text{Null}(\tilde{\mathcal{A}}) = \text{Null}(\mathcal{A})$. Moreover, since $\text{Range}(\tilde{\mathcal{A}})$ is contained in $\text{Null}(\mathcal{B})$ by construction, we have $\dim(\text{Range}(\tilde{\mathcal{A}})) \leq \dim(\text{Null}(\mathcal{B}))$. The rank-nullity theorem applied to $\tilde{\mathcal{A}}$ gives

$$dim(\operatorname{NULL}(\mathcal{B} \circ \mathcal{A})) = dim(\operatorname{NULL}(\tilde{\mathcal{A}})) + dim(\operatorname{RANGE}(\tilde{\mathcal{A}})) \leq dim(\operatorname{NULL}(\mathcal{A})) + dim(\operatorname{NULL}(\mathcal{B})).$$

Subtracting n from both sides and multiplying by -1, we get

$$n - dim(\text{NULL}(\mathcal{B} \circ \mathcal{A})) \ge n - dim(\text{NULL}(\mathcal{A})) - dim(\text{NULL}(\mathcal{B})).$$

Finally, applying the rank-nullity theorem again, we obtain the desired result

$$dim(RANGE(\mathcal{B} \circ \mathcal{A})) > dim(RANGE(\mathcal{A})) + dim(RANGE(\mathcal{B})) - m.$$

Alternative Solution: [15 points in total]

Consider $\tilde{\mathcal{B}}$ as a restriction of \mathcal{B} :

$$\tilde{\mathcal{B}}: \mathrm{RANGE}(\mathcal{A}) \to F^p$$
.

It follows that $\text{NULL}(\tilde{\mathcal{B}}) \subseteq \text{NULL}(\mathcal{B})$. Moreover, $\text{RANGE}(\tilde{\mathcal{B}}) = \text{RANGE}(\mathcal{B} \circ \mathcal{A})$. Applying the rank-nullity theorem to the map $\tilde{\mathcal{B}}$ and subsequently to the map \mathcal{B} , we obtain

$$dim(RANGE(\mathcal{A})) = dim(Null(\tilde{\mathcal{B}})) + dim(RANGE(\tilde{\mathcal{B}}))$$

$$\leq dim(Null(\mathcal{B})) + dim(RANGE(\mathcal{B} \circ \mathcal{A}))$$

$$= m - dim(RANGE(\mathcal{B}) + dim(RANGE(\mathcal{B} \circ \mathcal{A}))$$

We conclude that

$$dim(RANGE(\mathcal{B} \circ \mathcal{A})) \ge dim(RANGE(\mathcal{A})) + dim(RANGE(\mathcal{B})) - m.$$

3. [15 points in total]

We have RANGE($\mathcal{B} \circ \mathcal{A}$) \subseteq RANGE(\mathcal{B}). This follows since for any $y \in$ RANGE($\mathcal{B} \circ \mathcal{A}$), $\exists x \in F^n$ such that $\mathcal{B}(\mathcal{A}(x)) = y$. Letting $z = \mathcal{A}(x) \in F^m$ implies that $\mathcal{B}(z) = y$ and $y \in \text{RANGE}(\mathcal{B})$. Thus,

$$dim(Range(\mathcal{B} \circ \mathcal{A})) \leq dim(Range(\mathcal{B})).$$

Next, assume $x \in \text{NULL}(\mathcal{A})$, i.e., $\mathcal{A}(x) = 0$. Then, we have $x \in \text{NULL}(\mathcal{B} \circ \mathcal{A})$, since $\mathcal{B}(\mathcal{A}(x)) = 0$. This implies that $\text{NULL}(\mathcal{A}) \subseteq \text{NULL}(\mathcal{B} \circ \mathcal{A})$ and

$$dim(Null(A)) \leq dim(Null(B \circ A)).$$

Subtracting n and changing sign, we obtain

$$n - dim(\text{Null}(\mathcal{A})) \ge n - dim(\text{Null}(\mathcal{B} \circ \mathcal{A})).$$

We can use the rank-nullity theorem and conclude

$$dim(RANGE(\mathcal{B} \circ \mathcal{A})) \leq dim(RANGE(\mathcal{A})).$$

Finally, we have that:

$$dim(RANGE(\mathcal{B} \circ \mathcal{A})) \leq min\{dim(RANGE(\mathcal{A})), dim(RANGE(\mathcal{B}))\}.$$

Solution 3. (Linear maps and matrix representations [20 points in total])

1. [10 **points in total**] For i = 1, ..., n, the representation of ν_i in the basis $\{\nu_1, ..., \nu_n\}$ is $e_i = [0, ..., 0, 1, 0, ..., 0]^T$, where the "1" is in the *i*-th position.

Since $\mathcal{A}(\nu_i) = \lambda \nu_i + \nu_{i+1}$, the representation A of \mathcal{A} must satisfy $Ae_i = \lambda e_i + e_{i+1} = [0, \dots, 0, \lambda, 1, 0, \dots, 0]^T$, where the " λ " and the "1" are in the i-th and (i + 1)-th

positions, respectively. Moreover, $\mathcal{A}(\nu_n) = \lambda \nu_n$ implies that $Ae_n = \lambda e_n$. Finally, since Ae_i is the *i*-th column of A,

$$A = \begin{bmatrix} \lambda & & & \\ 1 & \lambda & & \\ & \ddots & \ddots & \\ & & 1 & \lambda \end{bmatrix},$$

where the entries not shown are zeroes [10 points].

2. [10 **points in total**] For i = 1, ..., n, let us define $b_i = \mathcal{A}^{i-1}(b)$, so that the basis becomes $\{b_1, ..., b_n\}$. In vector form, the representation of b_i is given by $e_i = [0, ..., 0, 1, 0, ..., 0]^T$, where the "1" is in the *i*-th position.

For i = 1, ..., n - 1, it holds that $\mathcal{A}(b_i) = \mathcal{A}(\mathcal{A}^{i-1}(b)) = \mathcal{A}^i(b) = b_{i+1}$, hence the representation A of \mathcal{A} must satisfy $Ae_i = e_{i+1}$. Finally, since Ae_i is the i-th column of A,

$$A = \begin{bmatrix} 0 & & & \beta_1 \\ 1 & 0 & & \beta_2 \\ & \ddots & \ddots & & \vdots \\ & & 1 & 0 & \beta_{n-1} \\ & & & 1 & \beta_n \end{bmatrix},$$

where the entries not shown are zeroes and $\beta = [\beta_1, \dots, \beta_n]^T$ is determined as follows: since $\beta = Ae_n$ and e_n is the representation of b_n , β is the representation of $\mathcal{A}(b_n)$ with respect to the basis $\{b_1, \dots, b_n\}$ [10 **points**].