

FORTGESCHRITTENEN-PRAKTIKUM SS 2017

Elektronenspinresonanz

Durchführung: 10.05.17

Anja Beck¹ Clara Rittmann²

Betreuer: Matthias Mustermann

¹anja.beck@tu-dortmund.de

 $^{^2} clara.rittmann@tu-dortmund.de\\$

In halts verzeichn is

1	Theorie	2
	1.1 Magnetisches Moment – Herleitung	2
	1.2 Aufspaltung der Energieniveaus in einem Magnetfeld	2
2	Aufbau und Ablauf des Experiments	3
3	Auswertung	4
4	Diskussion	6

Versuch V28 Theorie

Ziel des Versuchs ist die Berechnung des Landé-Faktors des freien Elektrons mittels der Elektronen-Spin-Resonanz-Methode und die Bestimmung der Flussdichte des Erdmagnetfeldes.

1 Theorie

Im Folgenden werden die theoretischen Grundlagen der Elektronen-Spin-Resonanz erläutert. Hierzu ist vor allem die Herleitung des magnetischen Moments in Folge des Bahndrehimpulses und Spins sowie die Aufspaltung der Energienieveaus in einem Magnetfeld in Abhängigkeit des magnetischen Momentes wichtig.

1.1 Magnetisches Moment – Herleitung

Das magnetische Moment ist das Produkt aus einem Kreisstrom und einer Fläche. Um die Teilchenströme eines Atoms zu berechnen betrachtet man die Wellenfunktionen eines Atoms in Kugelkoordinaten (r, θ, ϕ)

$$\psi_{\rm n,l,m}(r,\theta,phi) = R_{\rm n,l}(r) \Theta_{\rm l,m}(\theta) \Phi_{\rm m}(\phi) \quad . \tag{1}$$

Relevant sind die Hauptquantenzahl $n \in \mathbb{N}$, die Bahndrehimpulsquantenzahl $l = \frac{k}{2}, k \in \mathbb{N}$ und die Orientierungsquantenzahl $m \in (-l, -l+1, ..., l)$. Alle Anteile der Wellenfunktion sind normiert und es gilt

$$\Phi_{\mathrm{m}}(\phi) = \frac{1}{\sqrt{2\pi}} \mathrm{e}^{im\phi} \quad \mathrm{und} \quad \mathrm{R}_{\mathrm{n,l}}(r), \Theta_{\mathrm{l,m}}(\theta) \in \mathbb{R} \quad .$$

Nur die azimutale Anteil des Wellenfunktion trägt zur Teilchenstromdichte $\vec{\mathbf{S}}$ bei, da alle anderen Anteile rein reellwertig sind

$$\vec{\mathbf{S}} = \frac{\hbar}{2i\mathbf{m}_0} \left(\psi^* \nabla \psi - \psi \nabla \psi^* \right) = \frac{\hbar \mathbf{R}^2 \Theta^2 \mathbf{m}}{\mathbf{m}_0 2\pi r \sin \theta} = \vec{\mathbf{S}}_{\phi} \quad . \tag{2}$$

1.2 Aufspaltung der Energieniveaus in einem Magnetfeld

2 Aufbau und Ablauf des Experiments

Versuch V28 Auswertung

Tabelle 1: Stromstärke I_1,I_2 beim Auftreten des Maximums für verschiedene Anregungsfrequenzen ν

ν in MHz	I_1 in mA	I_2 in mA
10.588	$232~\pm~5$	307 ± 5
15.970	$357~\pm~9$	407 ± 5
20.560	$453~\pm~9$	546 ± 4
23.870	$587\ \pm 10$	633 ± 10
29.420	$717\ \pm 10$	787 ± 8

Tabelle 2: Bei der Regression verwendete Werte

ν in MHz	B in mT
10.588	0.66 ± 0.06
15.970	0.44 ± 0.09
20.560	0.81 ± 0.09
23.870	0.4 ± 0.1
29.420	0.6 ± 0.1

3 Auswertung

$$B_{\mathrm{Erde}} = (0.59 \pm 0.04) \, \mathrm{mT}$$

$$g = 2.30 \pm 0.29$$

VERSUCH V28 AUSWERTUNG

 ${\bf Abbildung}$ 1: Fit zur Bestimmung des Landefaktors

Versuch V28 Diskussion

4 Diskussion

Todo list

Abb	ildungsverzeichnis Fit zur Bestimmung des Landefaktors	5
Tabe	ellenverzeichnis	
1	Stromstärke I_1, I_2 beim Auftreten des Maximums für verschiedene Anregungsfrequenzen ν	1
	gungsfrequenzen ν	4