gdpR: An R Package for studying differentially private algorithms

by Jordan A. Awan, Kevin Eng, Robin Gong, Nianqiao Phyllis Ju, and Vinayak A. Rao

Abstract This paper serves as a reference and introduction on using the gdpR R package. The goal of this package is to provide some tools for exploring the impact of different privacy regimes on a Bayesian analysis. A strength of this framework is the ability to target the exact posterior in settings where the likelihood is too complex to analytically express.

1 Introduction

(cliche...) The ease and pervasiveness of modern data collection technologies has raised concerns about data privacy. (Dwork and Roth 2013) introduced the differential privacy framework as a means to rigorously define privacy.

2 Using gdpR

The package is structured around the two functions gdp_sample and new_privacy. The first function is used to draw samples from the posterior. The second function is used to create the privacy model. Since the input to these functions are R functions, there is a great deal of freedom left up to user. The next two sections describe in detail the inputs into these functions and highlight some considerations that should be taken into account in order avoid slow or unexpected behavior.

Sampling

The main function in gdpR is the gdp_sample function. The call signature of the function is:

The three required inputs into gdp_sample function are the privacy model (data_model), the value of the observed privatized statistic (sdp), and the total number of observations in the complete data (nobs) [MAKE SURE NOTATION IS INTRODUCED]. The gdpR package is best suited for problems where the complete data can be represented in tabular form. This is because internally, it is represented as a matrix

The optional arguments are the number of mcmc draws (niter), the burn in period (warmup), number of chains (chains) and character vector that names the parameters. Running multiple chains can be done in parallel using the furrr package. Additionally, progress can be monitored using the progressr package.

The data_model input is a privacy object that can be constructed using the new_privacy constructor. The process of constructing a privacy object will be discussed in the next section.

Privacy Model

Creating a privacy model is done using the new_privacy constructor. The main arguments consist of the four components as outlined in the methodology section.

The internal implementation of the DA algorithm in gdp_sample requires some care in how each component in constructed.

• lik_smpl is an R function that samples from the likelihood. Its call signature should be lik_smpl(theta) where theta is a vector representing the likelihood model parameters being estimated. This function must work with the supplied initial parameter provide in the init_par argument of gdp_sample. The sampler need not be vectorized and vectorizing the sampler will not add any speed benefits.

- post_smpl is a function which represents the posterior sampler. It should have the call signature post_smpl(dmat, theta). Where dmat is the complete data. This sampler can be generated by wrapping mcmc samplers generated from other R packages (e.g. rstan, fmcmc, adaptMCMC). If using this approach, it is recommended to avoid using packages such as mcmc whose implementation clashes with gdp_sample. In the case of mcmc, the Metropolis-Hastings loop is implemented in C which incurs a very large overhead in gdp_sample since it is reinitialized every iteration. In general, repeatedly calling an R function that hooks into C code is slow. (NOT QUITE ACCURATE FIX LATER)
- 11_priv_mech is an R function that represents the log-likelihood of $\eta(s_{sdp} \mid x)$. The function can output the log likelihood up to an additive constant.
- st_calc is an R function which calculates the summary statistic. The optional argument add is a flag which represents whether *T* is additive or not.

3 Examples

2x2 Contingency Table

A common procedure when analyzing contingency tables is to estimate the odds ratio. Something something about safetab to connect back to DP (dont forget citation!). As a demonstration, we analyze the UC Berkeley admissions data, which is often used as an illustrative example of Simpson's paradox. The question is whether the data suggest there is bias against females during the college admissions process. Below is a table of the aggregate admissions result from six departments based on sex.

Below we walk through the process of defining a privacy model.

1. lik_smpl: Conditional on the table total, the table counts follow a multinomial distribution. We can easily draw from this distribution using the rmultinom function in the base stats package. Note, in this example, the return value of one sample from rmultinom is a 4 × 1 matrix. In order to conform with gdp_sample we must convert the matrix to a vector.

```
lik_smpl <- function(theta) {
  c(rmultinom(1, 4526, theta))
}</pre>
```

2. post_smpl: Given confidential data *X* we can derive the posterior analytically using a Dirichlet prior. In this example, we use a flat prior which corresponds to Dirch(1) distribution. A sample from the Dirichlet distribution can be generated using the gamma distribution via the following relation (INSERT)

```
post_smpl <- function(dmat, theta) {
  x <- c(dmat)
  t1 <- rgamma(length(theta), x + 1, 1)
  t1/sum(t1)
}</pre>
```

3. st_calc: The complete data can be represented in two ways. Micro vs cell totals. (what section to introduce?) This function must return a vector.

```
st_calc <- function(dmat) {
  c(dmat)
}</pre>
```

4. 11_priv_mech: Privacy Mechanism Guassian white noise is added to each cell total. Hence given confidential data $(n_{11}, n_{22}, n_{12}, n_{21})$

```
\eta(s_{dp}\mid x) = \prod \phi(s_{sd};n_{ij},100^2) ll_priv_mech <- function(sdp, x) { dnorm(sdp - x, mean = 0, sd = 100, log = TRUE) }
```

Once privacy model has been defined we can run gdp_sample

```
library(DPloglin)
dmod <- new_privacy(post_smpl = post_smpl,</pre>
```

results can be quickly summarized using the summary function

```
#> # A tibble: 4 x 10
#>
   variable mean median
                                             q95 rhat ess_bulk ess_tail
                           sd
                                 mad
                                        q5
#>
    <chr>
            <num>
#> 1 pi_11
            0.248   0.249   0.0258   0.0256   0.203   0.288
                                                          96.1
                                                                  183.
#> 2 pi_21
            0.335 0.335 0.0238 0.0239 0.293 0.373
                                                         107.
                                                                  157.
#> 3 pi_12
            0.102 0.101 0.0305 0.0321 0.0486 0.152 1.02
                                                          34.8
                                                                  100.
#> 4 pi_22
            0.316  0.316  0.0247  0.0256  0.275  0.356  1.00
                                                         119.
                                                                  241.
```

Diagnostic checks can be done using the **Bayesplot** package.

log odds distribution

```
#> 2.5% 50% 97.5%
#> 1.215316 2.321789 6.062528
```


(Insert gdp Analysis Here)

For clean data, a estimate for the odds ratio and a confidence interval can be constructed using Woolf's method (i.e. A wald confidence interval). It uses the fact that the log of the odds ratio is approximately normal for large sample sizes.

$$\log\left(\frac{n_{11}\cdot n_{22}}{n_{12}\cdot n_{21}}\right)\pm z_{\alpha/2}\sqrt{\frac{1}{n_{11}}+\frac{1}{n_{22}}+\frac{1}{n_{12}}+\frac{1}{n_{21}}}$$
 or_confint <- function(x, alpha) { or <- log(x[1] * x[4]/ (x[2] * x[3])) se <- sqrt(sum(1/x)) c(or - qnorm(alpha/2) * se, or + qnorm(alpha/2) * se) } #clean data exp(or_confint(x, .95)) #> [1] 1.848471 1.833718 #privitized data exp(or_confint(sdp, .95)) #> [1] 2.293115 2.274220

4 Summary

This package is cool. You should install it.

References

Dwork, Cynthia, and Aaron Roth. 2013. "The Algorithmic Foundations of Differential Privacy." *Foundations and Trends*® *in Theoretical Computer Science* 9 (3-4): 211–407. https://doi.org/10.1561/0400000042.

Jordan A. Awan
Purdue University
Department of Statistics
West Lafayette, IN 47907
https://www.britannica.com/animal/quokka
jawan@purdue.edu

Kevin Eng Rutgers University Department of Statistics Piscataway, NJ 08854 https://www.britannica.com/animal/quokka ke157@stat.rutgers.edu

Robin Gong
Rutgers University
Department of Statistics
Piscataway, NJ 08854
https://www.britannica.com/animal/quokkaruobin.gong@rutgers.edu

Nianqiao Phyllis Ju
Purdue University
Department of Statistics
West Lafayette, IN 47907
https://www.britannica.com/animal/quokka
nianqiao@purdue.edu

Vinayak A. Rao
Purdue University
Department of Statistics
West Lafayette, IN 47907
https://www.britannica.com/animal/quokkavarao@purdue.edu