Introduction to Modular Arithmetic

forthright48 on July 25, 2015

"In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" upon reaching a certain value—the modulus." - Wiki

The clock is a good example for modular arithmetic. Let's say 12'o clock means 0. Then clock shows the following values, $0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3 \dots$ Every time clock hits 12, it wraps around to 0. Since clock wraps around 12, we say that 12 is the Modulus.

General Concepts

In order to understand modular arithmetic, we need to know the following:

Modular arithmetic deals with Modulo operation. It has the symbol, "%". The expression A%B=C means that when

Modulo Operation %

we divide A with B we get the remainder C. In other words, the modulo operation finds the remainder. For example:

```
5~\%~3=2
15\ \%\ 5=0
24 \% 30 = 24
30 \% 24 = 6
4 \% 4 = 0
```

In mathematics, saying that $A \equiv B \pmod{\mathrm{M}}$ means that both A and B has same remainder when they are divided

Congruence Relation \equiv

by M. For example,

```
5 \equiv 10 \pmod{5}
2 \equiv 7 \pmod{5}
4 \equiv 10 \pmod{3}
```

Range

converted to the corresponding value from the range using Modulo operation. For example for M=3:

In modular arithmetic with modulus M, we only work with values ranging from 0 to M-1. All other values can be

Туре								
Normal Arithmetic	-3	-2	-1	0	1	2	3	
Modular Arithmetic	0	1	2	0	1	2	0	

There are four properties of Modular Arithmetic that we need to learn.

Properties of Modular Arithmetic

Addition

```
Meaning, if we have to find (a_1+a_2+a_3\ldots+a_n)\ \%\ m, we can instead just find
```

if, $a \equiv b \pmod{m}$ and, $c \equiv d \pmod{m}$ then, $a + c \equiv b + d \pmod{m}$

 $((a_1 \% m) + (a_2 \% m) + \dots (a_n \% m)) \% m.$ For example, (13+24+44)~%~3=(1+0+2)~%~3=3~%~3=0.

Subtraction

if, $a \equiv b \pmod{m}$ and, $c \equiv d \pmod{m}$ then, $a-c \equiv b-d \pmod{m}$

```
Meaning, if we have to find (a_1-a_2-a_3\ldots -a_n)\ \%\ m, we can instead just find
((a_1 \% m) - (a_2 \% m) - \dots (a_n \% m)) \% m.
```

For example, (-14-24-44)~%~3=(-2-0-2)~%~3=-4~%~3=-1~%~3=2.

Multiplication

if, $a \equiv b \pmod{m}$ and, $c \equiv d \pmod{m}$ then, $a \times c \equiv b \times d \pmod{m}$

Meaning, if we have to find
$$(a_1 \times a_2 \times a_3 \ldots \times a_n) \% m$$
, we can instead just find $((a_1 \% m) \times (a_2 \% m) \times \ldots (a_n \% m)) \% m$.

For example, $(14 \times 25 \times 44) \% \ 3 = (2 \times 1 \times 2) \% \ 3 = 4 \% \ 3 = 1 \% \ 3 = 1$. **Division**

Modular Division does not work same as the above three. We have to look into a separate topic known as Modular

Inverse in order to find $\frac{a}{b}$ % m. Modular Inverse will be covered in a separate post.

For now just know that, $\frac{a}{b}$ $not \equiv \frac{a \% m}{b \% m}$ (mod m). For example, $\frac{6}{3} \% 3$ should be 2. But using the formula above we get $\frac{0}{0}$ % 3 which is undefined.

Handling Negative Numbers

In some programming language, when modulo operation is performed on negative numbers the result is also negative. For example in C++ we will get -5~%~4=-1. But we need to convert this into legal value. We can convert the result

Coding Tips

into legal value by adding M.

Therefore, in C++ it is better to keep a check for a negative number when doing modulo operation. 1 | res = a % m; if (res < 0) res += m; ?

Modulo Operation is Expensive Modulo Operation is as expensive as a division operator. It takes more time to perform division and modulo operations

than to perform addition and subtraction. So it is better to avoid using modulo operation where possible.

0 to m-1. Then we can write: ?

One possible situation is when we are adding lots of values. Let's say that we have two variables a and b both between

Resource

1. Wiki - Modular Arithmetic - https://en.wikipedia.org/wiki/Modular_arithmetic

if (res >= m) res -= m;

2. AoPS - Introduction to Modular Arithmetic -

This technique will not work when we are multiplying two values.

res = a + b;

III Post Views: 313 Category: CPPS, Number Theory

Previous: Divisor Summatory Function Extended Euclidean Algorithm

http://www.artofproblemsolving.com/wiki/index.php/Modular_arithmetic/Introduction

Your comment.. $\mathsf{B} \quad I \quad \underline{\mathsf{U}} \quad "$ Login with

Comments: 3

Learning Notes on Multiplicative

LCMSUM - LCM Sum

Functions, Dirichlet Convolution, Mobius

Inversion, etc – RobeZH's Blog on SPOJ

Add Anycomment to your site

Sort by newest

Next:

Archives Categories Recent Comments May 2019 (1) **CPPS** (45) My Shopee Interview – Shadman Protik on My Interview Experience with Shopee / Combinatorics (4) April 2019 (1) Garena / Sea Group Data Structure (1) March 2019 (1) Istiad Hossain Akib on SPOJ LCMSUM – Number Theory (36) LCM Sum December 2018 (2) Meta (1) Rifat Chowdhury on MyStory#02 – November 2018 (4) Deciding Where to Study CS Misc (4) **September 2018 (2)** Salman Farsi on Leading Digits of February 2018 (1) Factorial January 2018 (1)

© 2015-2019 Mohammad Samiul Islam

November 2017 (2)

September 2015 (7)

August 2015 (13)

July 2015 (15)