Atome als dreidimensionale Objekte: Schalenmodelle

Quanten- zahl n	Eigenwert W_n in eV	$n^2 \cdot W_n$ in eV	mittlerer Kern- abstand $r_{\rm m}$ in nm	Schalen- name	
00	0	-	00		
4	-0,85	-13,6	1,3	N	
3	-1,51	-13,6	0,72	M	
2	-3,41	-13,6	0,32	L	
1	-13,6	- 13,6	0,08	K	

Die Antreffwahrscheinlichkeit korespondiert mit den Orbitalen.

3 s-Orbital, M-Schale mit n = 3; Energie W_3

2 s-Orbital, L-Schale mit n = 2; Energie W_2

1 s-Orbital; K-Schale mit n = 1; Energie W_1

Unterschiedliche Schalen entsprechen unterschiedlichen Energiewerten

3s-Orbital, M-Schale mit n = 3; Energie W_3

2s-Orbital, L-Schale mit n = 2; Energie W_2

1 s-Orbital; K-Schale mit n = 1; Energie W_1

p-Orbitale Weisen jeweils eine bevorzugte Ausrichtung im Raum auf

p-Orbitale sind nicht mehr kugelsymetisch
p-Orbitale besitzen eine Knotenebene

Wahrscheinlichkeitsfunktionen und p- und d-Orbitale

Für die p-Orbitale können wir die Wahrscheinlichkeitsfunktionen für alle drei Raumrichtungen getrennt betrachten .

Zur Erinnerung:

<u>für alle 3 Dimensionen ist jeweils eine</u> <u>Wahrscheinlichkeitsfunktion dargestellt</u>

Es handelt sich um eine der drei möglichen Entartungen des 3p Orbitals

Entartung der Energieniveaus

3d Orbitale

Hauptquantenzahl, Nebenguantenzahl und magnetische Quantenzahl

n=	Hau	pta	uan [.]	ten	zah
	riuu	РЧ	uuii		Zuii

$$n \in N$$

I= Nebenquantenzahl

is
$$t$$
 and d is $An2adl$

observable when d is d in d is d in d is d is d in d in d is d in d in

m= magnetische Quantenzahl

Die drei Quantenzahlen zusammen:

Nehmen wir ein Atom mit n=3 also in der M-Schale

I=0 (3s), m=0

1 Möglichkeit

l=1 (3p), m=-1,0,1

3 Möglichkeiten

I=2 (3d), m=-2,-1,0,1,2

5 Mölgichkeiten

Die Summe der Möglichkeiten in der M-Schale ist somit 1+3+5=9=3 3=n 3

Für die K-Schale bedeutet das n=1

Für die L-Schale bedeutet das n=2 als n2=22=4

Problem mit Helium oder Neon - Stern-Gerlach-Versuch

Problem: Für Helium mit nur einer K-Schale und n=1 steht nur eine Möglichkeit zur Verfügung. Die ist aber schon von dem einen Elektron im H-Atom besetzt. Auch für Neon benötigt man mit einer voll besetzten L-Schale eigentlich 10 Möglickeiten. Nach der Quantenzahlen n=2 mit der Anorndung in K- und M-Schale besitze ich aber nur s1 und s2 und die 3p-Orbitale.

s=Spinquantenzahl

Elektronen besitzen einen Spin der die Werte s=-1/2 oder s=1/2 annehmen kann. (Sprich: Spin up oder Spin down)

Somit ergibt sich für He nun n=1 aber s=-1/2 und s=1/2 und daraus 2 Möglichkeiten. $2*1^2=2$ Bei Neon sind es dann mit $2*1^2=2$ für die K-Schale + $2*2^2=8$ für die M-Schale also 2+8=10 Möglichkeiten.

Das Periodensystem:

					Hauptgr	ruppen			
		1	11	III	IV	٧	VI	VII	VIII
Perioden	1	1,0 H							4,0 He
	2	6,9 Li	9,0 Be	10,8 B	12,0 C	14,0 N 7	16,0 O 8	19,0 F 9	Ne
	3	23,0 Na	24,3 Mg	27,0 Al	28,1 Si	31,0 P 15	32,1 S 16	35,5 CI 17	39,9 Ar
	4	39,1 K	40,1 Ca	69,7 Ga	72,6 Ge	74,9 As	79,0 Se 34	79,9 Br 35	83,8 Kr 36
	5	85,5 Rb	87,6 Sr 38	114,8 In	118,7 Sn 50	121,8 Sb	127,6 Te	126,9 53	131,3 Xe 54
	6	132,9 Cs	137,3 Ba	204,4 TI 81	Pb	209,0 Bi 83	Po 84	At 85	Rn 86

Aufgaben:

Nr. 1 a) Erläutere, weshalb man die mit dem eindimensionalen, linearen Atommodell gewonnenen Energieniveaus verfeinern muss, wenn sie für das H-Atom angepasst werden.

- b) Nenne die Bedeutung der Quantenzahlen n,l,m,s
- c) Erläutere den Begriff Orbitale.

Nr. 2 a) Bestimm die Anzahl der Elektronen in einem Atom mit den Quantenzahlen n=6 und l=3.

b) Berechne die Anzahl der Energieniveaus, wenn n=4 ist.