CS 228 : Logic in Computer Science

S. Krishna

• Signature τ : set containing relations and constants

- ▶ Signature τ : set containing relations and constants
- ▶ Each relation in τ has an arity

- ▶ Signature τ : set containing relations and constants
- **Each** relation in τ has an arity
- ▶ A FO formula is written over some signature τ ; that is, it uses the relations and constants from τ . It also uses variables denoted x_i , boolean connectives and quantifiers \forall , \exists .

- Signature τ: set containing relations and constants
- **Each** relation in τ has an arity
- ▶ A FO formula is written over some signature τ ; that is, it uses the relations and constants from τ . It also uses variables denoted x_i , boolean connectives and quantifiers \forall , \exists .
- A relation R of arity k is used in the formula as $R(t_1, \ldots, t_k)$ where t_i 's are variables or constants

- ▶ Signature τ : set containing relations and constants
- **Each** relation in τ has an arity
- ▶ A FO formula is written over some signature τ ; that is, it uses the relations and constants from τ . It also uses variables denoted x_i , boolean connectives and quantifiers \forall , \exists .
- A relation R of arity k is used in the formula as $R(t_1, \ldots, t_k)$ where t_i 's are variables or constants
- Equality $t_1 = t_2$ is available irrespective of τ

- ▶ Signature τ : set containing relations and constants
- **Each** relation in τ has an arity
- ▶ A FO formula is written over some signature τ ; that is, it uses the relations and constants from τ . It also uses variables denoted x_i , boolean connectives and quantifiers \forall , \exists .
- A relation R of arity k is used in the formula as $R(t_1, \ldots, t_k)$ where t_i 's are variables or constants
- Equality $t_1 = t_2$ is available irrespective of τ
- ▶ To make sense out of a formula, we need structures

 \blacktriangleright A structure of signature τ consists of a universe, and assigns meanings to all the entities of τ

- A structure of signature τ consists of a universe, and assigns meanings to all the entities of τ
- So, if R is a k-ary relational symbol of τ, the structure specifies which k-tuples of elements from the universe are legitimate relations for R
- If c is a constant in τ, the structure also maps c to some fixed element of the universe

- A structure of signature τ consists of a universe, and assigns meanings to all the entities of τ
- So, if R is a k-ary relational symbol of τ, the structure specifies which k-tuples of elements from the universe are legitimate relations for R
- If c is a constant in τ, the structure also maps c to some fixed element of the universe
- ▶ So, structures of τ give life to τ

- A structure of signature τ consists of a universe, and assigns meanings to all the entities of τ
- So, if R is a k-ary relational symbol of τ, the structure specifies which k-tuples of elements from the universe are legitimate relations for R
- If c is a constant in τ, the structure also maps c to some fixed element of the universe
- ▶ So, structures of τ give life to τ
- Structures also tell you the set of values your variables x_i can assume: these are the elements from the universe

- A structure of signature τ consists of a universe, and assigns meanings to all the entities of τ
- So, if R is a k-ary relational symbol of \(\tau \), the structure specifies which k-tuples of elements from the universe are legitimate relations for R
- If c is a constant in τ, the structure also maps c to some fixed element of the universe
- ▶ So, structures of τ give life to τ
- Structures also tell you the set of values your variables x_i can assume: these are the elements from the universe
- ➤ A structure in PL will just consist of the universe {0,1}, since there is no signature. All variables assume values from this boolean universe.

Satisfiability in PL and FO

▶ The satisfiability of a PL formula depends on the existence of an assignment satisfying it; likewise, the satisfiability of a FO formula φ over signature τ depends on the existence of a structure $\mathcal A$ of τ such that φ is true on $\mathcal A$.

▶ For a wff $\varphi = \forall x \psi$, ψ is said to be the scope of the quantifier x

- ▶ For a wff $\varphi = \forall x \psi$, ψ is said to be the scope of the quantifier x
- ▶ Every occurrence of x in $\forall x\psi$ is bound
- ► Any occurrence of x which is not bound is called free

- ▶ For a wff $\varphi = \forall x \psi$, ψ is said to be the scope of the quantifier x
- ▶ Every occurrence of x in $\forall x\psi$ is bound
- Any occurrence of x which is not bound is called free
- - y is free in Q(x, y) and bound in R(x, y),
 - \rightarrow x is free in P(x, y), and bound in Q(x, y), R(x, y)

- ▶ For a wff $\varphi = \forall x \psi$, ψ is said to be the scope of the quantifier x
- ▶ Every occurrence of x in $\forall x\psi$ is bound
- ► Any occurrence of x which is not bound is called free
- - y is free in Q(x, y) and bound in R(x, y),
 - \rightarrow x is free in P(x, y), and bound in Q(x, y), R(x, y)
- ▶ Given φ , denote by $\varphi(x_1, \ldots, x_n)$, that x_1, \ldots, x_n are the free variables of φ , also $free(\varphi)$
- \blacktriangleright A sentence is a formula φ none of whose variables are free

$$\forall x (R(x,y) \rightarrow \forall y P(y))$$

$$\forall x (R(x,y) \rightarrow \forall y P(y))$$

$$\varphi(t) = \forall x (R(x, t) \to \forall y P(y))$$

Assignments on τ -structures

Assignments

For a τ -structure \mathcal{A} , an assignment over \mathcal{A} is a function $\alpha: \mathcal{V} \to u(\mathcal{A})$ that assigns every variable $x \in \mathcal{V}$ a value $\alpha(x) \in u(\mathcal{A})$. If t is a constant symbol c, then $\alpha(t)$ is $c^{\mathcal{A}}$

Assignments

Binding on a Variable

For an assignment α over \mathcal{A} , $\alpha[x \mapsto a]$ is the assignment

$$\alpha[x \mapsto a](y) = \begin{cases} \alpha(y), y \neq x, \\ a, y = x \end{cases}$$

Assignments

Binding on a Variable

For an assignment α over \mathcal{A} , $\alpha[x \mapsto a]$ is the assignment

$$\alpha[x \mapsto a](y) = \begin{cases} \alpha(y), y \neq x, \\ a, y = x \end{cases}$$

Let $u(A) = \{a, b, c, d\}$, and consider assignment $\alpha : \{x, y, z\} \rightarrow u(A)$ defined by $\alpha(x) = d$, $\alpha(y) = b$, $\alpha(z) = c$. Then,

- ▶ $\alpha[x \mapsto a]$ is the assignment α' where $\alpha'(x) = a, \alpha'(y) = \alpha(y), \alpha'(z) = \alpha(z)$.
- ▶ $\alpha[x \mapsto c]$ is the assignment α'' where $\alpha''(x) = c$, $\alpha''(y) = \alpha(y)$, $\alpha''(z) = \alpha(z)$.

We define the relation $\mathcal{A} \models_{\alpha} \varphi$ (read as φ is true in \mathcal{A} under the assignment α) inductively:

We define the relation $\mathcal{A} \models_{\alpha} \varphi$ (read as φ is true in \mathcal{A} under the assignment α) inductively:

 $\triangleright \mathcal{A} \nvDash_{\alpha} \bot$

We define the relation $\mathcal{A} \models_{\alpha} \varphi$ (read as φ is true in \mathcal{A} under the assignment α) inductively:

- $\triangleright A \nvDash_{\alpha} \bot$
- \blacktriangleright $\mathcal{A} \models_{\alpha} t_1 = t_2 \text{ iff } \alpha(t_1) = \alpha(t_2)$

We define the relation $\mathcal{A} \models_{\alpha} \varphi$ (read as φ is true in \mathcal{A} under the assignment α) inductively:

- $\triangleright A \nvDash_{\alpha} \bot$
- \blacktriangleright $\mathcal{A} \models_{\alpha} t_1 = t_2 \text{ iff } \alpha(t_1) = \alpha(t_2)$
- $\blacktriangleright A \models_{\alpha} R(t_1,\ldots,t_k) \text{ iff } (\alpha(t_1),\ldots,\alpha(t_k)) \in R^A$

We define the relation $\mathcal{A} \models_{\alpha} \varphi$ (read as φ is true in \mathcal{A} under the assignment α) inductively:

- $\triangleright A \nvDash_{\alpha} \bot$
- \blacktriangleright $\mathcal{A} \models_{\alpha} t_1 = t_2 \text{ iff } \alpha(t_1) = \alpha(t_2)$
- $\blacktriangleright A \models_{\alpha} R(t_1, \ldots, t_k) \text{ iff } (\alpha(t_1), \ldots, \alpha(t_k)) \in R^A$
- $\blacktriangleright A \models_{\alpha} (\varphi \to \psi) \text{ iff } A \nvDash_{\alpha} \varphi \text{ or } A \models_{\alpha} \psi$

We define the relation $\mathcal{A} \models_{\alpha} \varphi$ (read as φ is true in \mathcal{A} under the assignment α) inductively:

- $\triangleright A \nvDash_{\alpha} \bot$
- $\blacktriangleright \ \mathcal{A} \models_{\alpha} t_1 = t_2 \text{ iff } \alpha(t_1) = \alpha(t_2)$
- $\blacktriangleright A \models_{\alpha} R(t_1, \ldots, t_k) \text{ iff } (\alpha(t_1), \ldots, \alpha(t_k)) \in R^A$
- $\blacktriangleright \ \mathcal{A} \models_{\alpha} (\varphi \to \psi) \text{ iff } \mathcal{A} \nvDash_{\alpha} \varphi \text{ or } \mathcal{A} \models_{\alpha} \psi$
- $\blacktriangleright A \models_{\alpha} (\forall x) \varphi$ iff for every $a \in u(A)$, $A \models_{\alpha[x \mapsto a]} \varphi$

We define the relation $\mathcal{A} \models_{\alpha} \varphi$ (read as φ is true in \mathcal{A} under the assignment α) inductively:

- $\triangleright \mathcal{A} \nvDash_{\alpha} \bot$
- \blacktriangleright $\mathcal{A} \models_{\alpha} t_1 = t_2 \text{ iff } \alpha(t_1) = \alpha(t_2)$
- \blacktriangleright $A \models_{\alpha} R(t_1, \ldots, t_k)$ iff $(\alpha(t_1), \ldots, \alpha(t_k)) \in R^A$
- $\blacktriangleright \ \mathcal{A} \models_{\alpha} (\varphi \to \psi) \text{ iff } \mathcal{A} \nvDash_{\alpha} \varphi \text{ or } \mathcal{A} \models_{\alpha} \psi$
- $\blacktriangleright \mathcal{A} \models_{\alpha} (\forall x) \varphi$ iff for every $a \in u(\mathcal{A})$, $\mathcal{A} \models_{\alpha[x \mapsto a]} \varphi$
- $\blacktriangleright \mathcal{A} \models_{\alpha} (\exists x) \varphi$ iff there is some $a \in u(\mathcal{A}), \mathcal{A} \models_{\alpha[x \mapsto a]} \varphi$

Last two cases, α has no effect on the value of x. Thus, assignments matter only to free variables.

$$\mathcal{G} = (\{1,2,3\}, E^{\mathcal{G}} = \{(1,2), (2,1), (2,3), (3,2)\})$$

▶ For any assignment α , $\mathcal{G} \models_{\alpha} \forall x \forall y (E(x,y) \rightarrow E(y,x))$ iff

$$\mathcal{G} = (\{1,2,3\}, E^{\mathcal{G}} = \{(1,2),(2,1),(2,3),(3,2)\})$$

► For any assignment α , $\mathcal{G} \models_{\alpha} \forall x \forall y (E(x,y) \rightarrow E(y,x))$ iff for all $a \in \{1,2,3\}$, $\mathcal{G} \models_{\alpha[x \mapsto a]} \forall y (E(x,y) \rightarrow E(y,x))$ iff

```
\mathcal{G} = (\{1,2,3\}, E^{\mathcal{G}} = \{(1,2),(2,1),(2,3),(3,2)\})
```

► For any assignment α , $\mathcal{G} \models_{\alpha} \forall x \forall y (E(x,y) \rightarrow E(y,x))$ iff for all $a \in \{1,2,3\}$, $\mathcal{G} \models_{\alpha[x \mapsto a]} \forall y (E(x,y) \rightarrow E(y,x))$ iff for every $a,b \in \{1,2,3\}$, $\mathcal{G} \models_{\alpha[x \mapsto a,y \mapsto b]} (E(x,y) \rightarrow E(y,x))$

```
\mathcal{G} = (\{1,2,3\}, E^{\mathcal{G}} = \{(1,2),(2,1),(2,3),(3,2)\})
• For any assignment \alpha, \mathcal{G} \models_{\alpha} \forall x \forall y (E(x,y) \to E(y,x)) iff for all a \in \{1,2,3\}, \mathcal{G} \models_{\alpha[x \mapsto a]} \forall y (E(x,y) \to E(y,x)) iff for every a,b \in \{1,2,3\}, \mathcal{G} \models_{\alpha[x \mapsto a,y \mapsto b]} (E(x,y) \to E(y,x))
• for \alpha_1 : \alpha_1(x) = 1, \alpha_1(y) = 1, \mathcal{G} \models_{\alpha_1} (E(x,y) \to E(y,x)),
• for \alpha_2 : \alpha_2(x) = 1, \alpha_2(y) = 2, \mathcal{G} \models_{\alpha_2} (E(x,y) \to E(y,x)),
• for \alpha_3 : \alpha_3(x) = 1, \alpha_3(y) = 3, \mathcal{G} \models_{\alpha_3} (E(x,y) \to E(y,x)),
• for \alpha_4 : \alpha_4(x) = 2, \alpha_4(y) = 1, \mathcal{G} \models_{\alpha_4} (E(x,y) \to E(y,x)),
• i
• for \alpha_9 : \alpha_9(x) = 3, \alpha_9(y) = 3, \mathcal{G} \models_{\alpha_9} (E(x,y) \to E(y,x))
```

 $\mathcal{G} \models_{\alpha} \exists x (E(x,y) \land E(x,z) \land y \neq z)$

```
\mathcal{G} = (\{1,2,3\}, E^{\mathcal{G}} = \{(1,2), (2,1), (2,3), (3,2)\})
   ▶ For any assignment \alpha, \mathcal{G} \models_{\alpha} \forall x \forall y (E(x, y) \rightarrow E(y, x)) iff
        for all a \in \{1, 2, 3\}, \mathcal{G} \models_{\alpha[x \mapsto a]} \forall y (E(x, y) \to E(y, x)) iff
        for every a, b \in \{1, 2, 3\}, \mathcal{G} \models_{\alpha[x \mapsto a, v \mapsto b]} (E(x, y) \to E(y, x))
            • for \alpha_1:\alpha_1(x)=1,\alpha_1(y)=1,\mathcal{G}\models_{\alpha_1}(E(x,y)\to E(y,x)),
            • for \alpha_2: \alpha_2(x) = 1, \alpha_2(y) = 2, \mathcal{G} \models_{\alpha_2} (E(x, y) \rightarrow E(y, x)),
            • for \alpha_3: \alpha_3(x) = 1, \alpha_3(y) = 3, \mathcal{G} \models_{\alpha_2} (E(x,y) \to E(y,x)),
            • for \alpha_4: \alpha_4(x) = 2, \alpha_4(y) = 1, \mathcal{G} \models_{\alpha_4} (E(x, y) \rightarrow E(y, x)),
            • for \alpha_9: \alpha_9(x) = 3, \alpha_9(y) = 3, \mathcal{G} \models_{\alpha_9} (E(x, y) \rightarrow E(y, x))
   ▶ There is an assignment \alpha which satisfies
```

```
\mathcal{G} = (\{1,2,3\}, E^{\mathcal{G}} = \{(1,2), (2,1), (2,3), (3,2)\})
   ▶ For any assignment \alpha, \mathcal{G} \models_{\alpha} \forall x \forall y (E(x, y) \rightarrow E(y, x)) iff
        for all a \in \{1, 2, 3\}, \mathcal{G} \models_{\alpha[x \mapsto a]} \forall y (E(x, y) \to E(y, x)) iff
        for every a, b \in \{1, 2, 3\}, \mathcal{G} \models_{\alpha[x \mapsto a, y \mapsto b]} (E(x, y) \to E(y, x))
            • for \alpha_1:\alpha_1(x)=1,\alpha_1(y)=1,\mathcal{G}\models_{\alpha_1}(E(x,y)\to E(y,x)),
            • for \alpha_2: \alpha_2(x) = 1, \alpha_2(y) = 2, \mathcal{G} \models_{\alpha_2} (E(x, y) \rightarrow E(y, x)),
            • for \alpha_3: \alpha_3(x) = 1, \alpha_3(y) = 3, \mathcal{G} \models_{\alpha_2} (E(x,y) \to E(y,x)),
            • for \alpha_4: \alpha_4(x) = 2, \alpha_4(y) = 1, \mathcal{G} \models_{\alpha_4} (E(x, y) \rightarrow E(y, x)),
            • for \alpha_9: \alpha_9(x) = 3, \alpha_9(y) = 3, \mathcal{G} \models_{\alpha_9} (E(x, y) \rightarrow E(y, x))
   ▶ There is an assignment \alpha which satisfies
        \mathcal{G} \models_{\alpha} \exists x (E(x, y) \land E(x, z) \land y \neq z)
```

 $\alpha(y) = 1, \alpha(z) = 3$, and consider $\alpha(x \mapsto 2)$.

```
\mathcal{G} = (\{1,2,3\}, E^{\mathcal{G}} = \{(1,2), (2,1), (2,3), (3,2)\})
   ▶ For any assignment \alpha, \mathcal{G} \models_{\alpha} \forall x \forall y (E(x, y) \rightarrow E(y, x)) iff
        for all a \in \{1, 2, 3\}, \mathcal{G} \models_{\alpha[x \mapsto a]} \forall y (E(x, y) \to E(y, x)) iff
        for every a, b \in \{1, 2, 3\}, \mathcal{G} \models_{\alpha[x \mapsto a, v \mapsto b]} (E(x, y) \to E(y, x))
            • for \alpha_1:\alpha_1(x)=1,\alpha_1(y)=1,\mathcal{G}\models_{\alpha_1}(E(x,y)\to E(y,x)),
            • for \alpha_2: \alpha_2(x) = 1, \alpha_2(y) = 2, \mathcal{G} \models_{\alpha_2} (E(x, y) \rightarrow E(y, x)),
            • for \alpha_3: \alpha_3(x) = 1, \alpha_3(y) = 3, \mathcal{G} \models_{\alpha_2} (E(x,y) \to E(y,x)),
            • for \alpha_4: \alpha_4(x) = 2, \alpha_4(y) = 1, \mathcal{G} \models_{\alpha_4} (E(x, y) \rightarrow E(y, x)),
            • for \alpha_9: \alpha_9(x) = 3, \alpha_9(y) = 3, \mathcal{G} \models_{\alpha_9} (E(x, y) \rightarrow E(y, x))
   ▶ There is an assignment \alpha which satisfies
```

 $\mathcal{G} \models_{\alpha} \exists x (\mathcal{E}(x,y) \land \mathcal{E}(x,z) \land y \neq z)$ $\alpha(y) = 1, \alpha(z) = 3$, and consider $\alpha[x \mapsto 2]$.

▶ Check this: $\mathcal{G} \nvDash \exists x \forall y E(x, y)$,

```
G = (\{1, 2, 3\}, E^G = \{(1, 2), (2, 1), (2, 3), (3, 2)\})
   ▶ For any assignment \alpha, \mathcal{G} \models_{\alpha} \forall x \forall y (E(x, y) \rightarrow E(y, x)) iff
        for all a \in \{1, 2, 3\}, \mathcal{G} \models_{\alpha[x \mapsto a]} \forall y (E(x, y) \to E(y, x)) iff
        for every a, b \in \{1, 2, 3\}, \mathcal{G} \models_{\alpha[x \mapsto a, y \mapsto b]} (E(x, y) \to E(y, x))
            • for \alpha_1:\alpha_1(x)=1,\alpha_1(y)=1,\mathcal{G}\models_{\alpha_1}(E(x,y)\to E(y,x)),
            • for \alpha_2: \alpha_2(x) = 1, \alpha_2(y) = 2, \mathcal{G} \models_{\alpha_2} (E(x, y) \rightarrow E(y, x)),
            • for \alpha_3: \alpha_3(x) = 1, \alpha_3(y) = 3, \mathcal{G} \models_{\alpha_2} (E(x,y) \to E(y,x)),
            • for \alpha_4: \alpha_4(x) = 2, \alpha_4(y) = 1, \mathcal{G} \models_{\alpha_4} (E(x, y) \rightarrow E(y, x)),
            • for \alpha_9: \alpha_9(x) = 3, \alpha_9(y) = 3, \mathcal{G} \models_{\alpha_9} (E(x, y) \rightarrow E(y, x))
   ▶ There is an assignment \alpha which satisfies
        \mathcal{G} \models_{\alpha} \exists x (E(x, y) \land E(x, z) \land y \neq z)
        \alpha(y) = 1, \alpha(z) = 3, and consider \alpha(x \mapsto 2).
   ▶ Check this: \mathcal{G} \nvDash \exists x \forall v E(x, y), \mathcal{G} \models \forall x \exists v E(x, y)
```

$$\mathcal{W} = abaaa \text{ or,}$$
 $\mathcal{W} = (\{0, \dots, 4\}, <^{\mathcal{W}}, S^{\mathcal{W}}, Q^{\mathcal{W}}_a = \{0, 2, 3, 4\}, Q^{\mathcal{W}}_b = \{1\})$

- $\mathcal{W} = abaaa \text{ or,}$ $\mathcal{W} = (\{0, \dots, 4\}, <^{\mathcal{W}}, S^{\mathcal{W}}, Q^{\mathcal{W}}_a = \{0, 2, 3, 4\}, Q^{\mathcal{W}}_b = \{1\})$
 - ► There is an assignment α for which $\mathcal{W} \models_{\alpha} (Q_a(x) \land Q_a(y) \land S(x,y))$

- $\mathcal{W} = abaaa \text{ or,}$ $\mathcal{W} = (\{0, ..., 4\}, <^{\mathcal{W}}, S^{\mathcal{W}}, Q^{\mathcal{W}}_a = \{0, 2, 3, 4\}, Q^{\mathcal{W}}_b = \{1\})$
 - There is an assignment α for which $\mathcal{W} \models_{\alpha} (Q_a(x) \land Q_a(y) \land S(x,y))$ One possibility : $\alpha(x) = 2, \alpha(y) = 3$
 - ► There is no assignment α which satisfies $\exists x \exists y (Q_b(x) \land Q_b(y) \land x \neq y)$

- $\mathcal{W} = abaaa \text{ or,}$ $\mathcal{W} = (\{0, \dots, 4\}, <^{\mathcal{W}}, S^{\mathcal{W}}, Q^{\mathcal{W}}_a = \{0, 2, 3, 4\}, Q^{\mathcal{W}}_b = \{1\})$
 - There is an assignment α for which $\mathcal{W} \models_{\alpha} (Q_a(x) \land Q_a(y) \land S(x,y))$ One possibility : $\alpha(x) = 2, \alpha(y) = 3$
 - ► There is no assignment α which satisfies $\exists x \exists y (Q_b(x) \land Q_b(y) \land x \neq y)$
 - ▶ Prove or disprove : $W \models \exists x \forall y [Q_b(x) \land x < y \land Q_a(y)]$
 - ▶ Prove or disprove : $W \models \exists x \forall y [Q_b(x) \land x < y \Rightarrow Q_a(y)]$

▶ A formula φ over a signature τ is said to be satisfiable iff for some τ -structure \mathcal{A} and assignment α , $\mathcal{A} \models_{\alpha} \varphi$

- ▶ A formula φ over a signature τ is said to be satisfiable iff for some τ -structure \mathcal{A} and assignment α , $\mathcal{A} \models_{\alpha} \varphi$
- ▶ A formula φ over a signature τ is said to be valid iff for every τ -structure \mathcal{A} and assignment α , $\mathcal{A} \models_{\alpha} \varphi$

- ▶ A formula φ over a signature τ is said to be satisfiable iff for some τ -structure \mathcal{A} and assignment α , $\mathcal{A} \models_{\alpha} \varphi$
- ▶ A formula φ over a signature τ is said to be valid iff for every τ -structure \mathcal{A} and assignment α , $\mathcal{A} \models_{\alpha} \varphi$
- ► Formulae $\varphi(x_1, ..., x_n)$ and $\psi(x_1, ..., x_n)$ are equivalent denoted $\varphi \equiv \psi$ iff for every \mathcal{A} and $\alpha, \mathcal{A} \models_{\alpha} \varphi$ iff $\mathcal{A} \models_{\alpha} \psi$

- ▶ A formula φ over a signature τ is said to be satisfiable iff for some τ -structure \mathcal{A} and assignment α , $\mathcal{A} \models_{\alpha} \varphi$
- ▶ A formula φ over a signature τ is said to be valid iff for every τ -structure \mathcal{A} and assignment α , $\mathcal{A} \models_{\alpha} \varphi$
- Formulae $\varphi(x_1, ..., x_n)$ and $\psi(x_1, ..., x_n)$ are equivalent denoted $\varphi \equiv \psi$ iff for every \mathcal{A} and $\alpha, \mathcal{A} \models_{\alpha} \varphi$ iff $\mathcal{A} \models_{\alpha} \psi$
- ▶ Consider $\varphi_1(x) = \forall y R(x, y)$ and $\varphi_2 = \exists x \forall y R(x, y)$.
- ▶ It is clear that whenever φ_2 is satisfiable on \mathcal{A} , $\mathcal{A} \models_{\alpha[x \mapsto a]} \forall y R(x, y)$, for some $a \in u(\mathcal{A})$. Then one can find the assignment α such that $\mathcal{A} \models_{\alpha} \varphi_1(x)$, $\alpha(x) = a$.
- ▶ Likewise, if $\mathcal{A} \models_{\alpha} \varphi_1(x)$, then

- ▶ A formula φ over a signature τ is said to be satisfiable iff for some τ -structure \mathcal{A} and assignment α , $\mathcal{A} \models_{\alpha} \varphi$
- ▶ A formula φ over a signature τ is said to be valid iff for every τ -structure \mathcal{A} and assignment α , $\mathcal{A} \models_{\alpha} \varphi$
- Formulae $\varphi(x_1, \ldots, x_n)$ and $\psi(x_1, \ldots, x_n)$ are equivalent denoted $\varphi \equiv \psi$ iff for every \mathcal{A} and $\alpha, \mathcal{A} \models_{\alpha} \varphi$ iff $\mathcal{A} \models_{\alpha} \psi$
- ▶ Consider $\varphi_1(x) = \forall y R(x, y)$ and $\varphi_2 = \exists x \forall y R(x, y)$.
- ▶ It is clear that whenever φ_2 is satisfiable on \mathcal{A} , $\mathcal{A} \models_{\alpha[x \mapsto a]} \forall y R(x, y)$, for some $a \in u(\mathcal{A})$. Then one can find the assignment α such that $\mathcal{A} \models_{\alpha} \varphi_1(x)$, $\alpha(x) = a$.
- ▶ Likewise, if $\mathcal{A} \models_{\alpha} \varphi_1(x)$, then $\mathcal{A} \models_{\alpha'[x \mapsto \alpha(x)]} \varphi_2$, and $\alpha'(y)$ can be defined as $\alpha(y)$.
- ▶ Thus, $\varphi_1(x)$, φ_2 agree on satisfiability : equisatisfiable.

For a formula φ and assignments α_1 and α_2 such that for every $x \in free(\varphi), \ \alpha_1(x) = \alpha_2(x), \ \mathcal{A} \models_{\alpha_1} \varphi \text{ iff } \mathcal{A} \models_{\alpha_2} \varphi$

For a formula φ and assignments α_1 and α_2 such that for every $x \in free(\varphi), \ \alpha_1(x) = \alpha_2(x), \ \mathcal{A} \models_{\alpha_1} \varphi \text{ iff } \mathcal{A} \models_{\alpha_2} \varphi$

▶ For example, $\varphi(y) = \forall x (R(x, y) \rightarrow \forall z P(z))$

For a formula φ and assignments α_1 and α_2 such that for every $x \in free(\varphi)$, $\alpha_1(x) = \alpha_2(x)$, $\mathcal{A} \models_{\alpha_1} \varphi$ iff $\mathcal{A} \models_{\alpha_2} \varphi$

- ▶ For example, $\varphi(y) = \forall x (R(x, y) \rightarrow \forall z P(z))$
- ► Consider two assignments α_1, α_2 such that $\alpha_1(y) = \alpha_2(y) = \alpha(say)$

For a formula φ and assignments α_1 and α_2 such that for every $x \in free(\varphi), \ \alpha_1(x) = \alpha_2(x), \ \mathcal{A} \models_{\alpha_1} \varphi \text{ iff } \mathcal{A} \models_{\alpha_2} \varphi$

- ▶ For example, $\varphi(y) = \forall x (R(x, y) \rightarrow \forall z P(z))$
- ► Consider two assignments α_1 , α_2 such that $\alpha_1(y) = \alpha_2(y) = \alpha(say)$
- ▶ Evaluate for all $a, b \in u(A)$, $R(a, \alpha) \rightarrow P(b)$

For a formula φ and assignments α_1 and α_2 such that for every $x \in free(\varphi), \ \alpha_1(x) = \alpha_2(x), \ \mathcal{A} \models_{\alpha_1} \varphi \text{ iff } \mathcal{A} \models_{\alpha_2} \varphi$

- ▶ For example, $\varphi(y) = \forall x (R(x, y) \rightarrow \forall z P(z))$
- ► Consider two assignments α_1, α_2 such that $\alpha_1(y) = \alpha_2(y) = \alpha(say)$
- ▶ Evaluate for all $a, b \in u(A)$, $R(a, \alpha) \rightarrow P(b)$
- $\blacktriangleright \ \mathcal{A} \models_{\alpha_1} \varphi \text{ iff } \mathcal{A} \models_{\alpha_2} \varphi$

For a sentence φ , and any two assignments α_1 and α_2 , $\mathcal{A} \models_{\alpha_1} \varphi$ iff $\mathcal{A} \models_{\alpha_2} \varphi$

For a sentence φ , and any two assignments α_1 and α_2 , $\mathcal{A} \models_{\alpha_1} \varphi$ iff $\mathcal{A} \models_{\alpha_2} \varphi$

No free variables!

Check SAT

• $\varphi = \exists x [(\forall y E(x, y)) \land \forall z [(\forall y E(z, y)) \rightarrow z = x]]$. Does φ evaluate to true under some graph structure?

Check SAT

- ▶ $\varphi = \exists x [(\forall y E(x, y)) \land \forall z [(\forall y E(z, y)) \rightarrow z = x]]$. Does φ evaluate to true under some graph structure?
- ▶ $\psi = \exists x [Q_a(x) \land \forall y [(y < x \land Q_b(y)) \rightarrow (z < x \land y < z \land Q_a(z))]].$ Does ψ evaluate to true under some word structure?