IMU Calibration System Documentation

To run:

- First Run the CalibParams.m file
- Run the Simulink model (Imu_sensor_module).
- Finally run ImuCalibrationGui.m file for,
 - o Capturing data for bias and scale factor estimation
 - o Estimating calibration parameters.
 - o Visualizing sensor outputs before and after calibration.
 - o Saving calibration profiles for later use

Model Structure

The IMU calibration system consists of four interconnected subsystems:

Input Processing Subsystem:

- Accepts three primary inputs: Acceleration (3 \times 1), Angular velocity (3 \times 1), and Quaternion (4 \times 1)
- Processes quaternions through normalization function to ensure unit magnitude
- Converts quaternions to Direction Cosine Matrix (DCM) for proper frame transformation
- Applies matrix multiplication to transform acceleration and gyroscope measurements

Accelerometer Model:

- Implements a 3-axis (X, Y, Z) accelerometer with error characteristics
- Each axis includes:
 - o Gain blocks (Gain_X, Gain_Y, Gain_Z) for scale factor modeling
 - O Constant bias blocks (0.01 m/s² default values)
 - \circ Random noise generators (Noise X/Y/Z)
 - o Drift components with integrators to simulate time-varying errors
 - Summing junctions to combine all error components

Gyroscope Model:

• Implements a 3-axis (X, Y, Z) gyroscope with error characteristics

- Each axis contains:
 - o Gain blocks (Gain_X/Y/Z_gyro) for scale factor modeling
 - o Bias blocks for constant offsets
 - Noise generators to simulate random measurement noise
 - o Drift components with integrators to model temporal instability
 - o Summation blocks to combine true signal with error components

Calibration Subsystem:

- Processes raw sensor outputs (acc_out, gyro_out)
- Outputs both raw measurements (Accel_meas, Gyro_meas) to workspace
- Produces calibrated measurements (Calibrated_acc_output_x/y/z, Calibrated_gyro_output)
- Applies bias and scale factor corrections from calibration parameters

Calibration Process

The calibration process follows these steps:

1. Simulation Setup:

- o Configure simulation to run for 10 seconds (as seen in time settings)
- o Initialize sensor inputs from workspace or signal generators

2. Sensor Error Modeling:

- Accelerometer and gyroscope measurements incorporate:
 - Scale factor errors (via Gain blocks)
 - Fixed biases (0.01 default values)
 - Random noise (Band-Limited White Noise blocks)
 - Temporal drift (through integrator chains)

3. Error Parameter Estimation:

- Collect raw sensor measurements from simulation
- Compute mean values to determine bias offsets

- o Calculate measurement ranges to determine scale factors
- o Apply correction algorithm: Calibrated = (Raw Bias)/Scale

4. Validation:

- o Output signals include both raw and calibrated measurements
- Visualization allows comparison between original and corrected signals

Assumptions

1. Sensor Error Model:

- o Linear error model with additive bias and multiplicative scale factor
- Uncorrelated noise characteristics between axes
- First-order drift characteristics (integrator-based)

2. Coordinate Transformation:

- o Quaternion-based attitude representation
- o Proper frame alignment through Direction Cosine Matrix conversion

3. Calibration Limitations:

o Fixed bias and scale factor parameters (no temperature compensation)

4. Implementation Constraints:

- o 10-second simulation timespan
- o Sample rate determined by solver configuration
- Noise parameters fixed during simulation

The model provides a comprehensive framework for IMU calibration with realistic sensor error characteristics and a structured calibration procedure.