

Orbit ile Sayılarla Tanışıyoruz!

Senaryo

Orbit artık yazı yazmayı öğrendi 📝

Şimdi sırada matematik var! 📊

Çünkü bir robot olmak için sadece konuşmak yetmez; hesap yapmayı da bilmek gerekir!

Bugün Orbit ile birlikte sayıları tanımayı ve onlarla işlem yapmayı öğreneceğiz! 🚀

- 📌 İki sayı tanımla.
- ★ Bu sayılarla toplama, çıkarma, çarpma ve bölme işlemleri yap.
- 🖈 Sonuçları ekranda göster!


```
# 🔢 Sayılarla tanışıyoruz!
sayi1 = 10
sayi2 = 5
# + Toplama
toplam = sayi1 + sayi2
print(" Toplam: ", toplam)
# — Çıkarma
fark = sayi1 - sayi2
print(" Fark: , fark)
# X Çarpma
carpim = sayi1 * sayi2
print(" Çarpım: ", carpim)
# ÷ Bölme
bolum = sayi1 / sayi2
print("■ Bölüm:", bolum)
```

- Sayıları tanımlamayı öğrendim 🔢
- ✓ Matematiksel işlemleri Python'da yapabildim +-×÷
- **vprint()** ile sayıları ekrana yazdırmayı pekiştirdim 💻

Orbit ile Modulo Operatörüyle Günleri Hesaplıyoruz! 7 2 +

Senaryo

Orbit, haftanın günlerini hesaplamak istiyor! 🤔

Mesela, ayın 3. günü Çarşamba ise, 7 gün sonra yani 10. gün, 17. gün ve 24. gün de Çarşamba olur!

Çünkü haftada 7 gün vardır ve 7 gün sonra aynı gün tekrar başlar!
İşte burada **modulo** (%) **operatörü** devreye giriyor!

- 🖈 Ayın 3., 10., 17. ve 24. günlerinin haftanın hangi günü olduğunu bul. 🔍
- 📌 % 7 işlemini kullan! 🔢
- 📌 Sonuçları ekranda göster! 💻


```
# Ayın ilk günü Çarşamba (gün sayısı )

ilk_gun = 3

print(" 3 % 7 =", 3 % 7)

print(" 10 % 7 =", 10 % 7)

print(" 17 % 7 =", 17 % 7)

print(" 24 % 7 =", 24 % 7)

print(" Bu da demek oluyor ki 3., 10., 17. ve 24. günler hep aynı gün, yanı Çarşamba! " " " ")
```

- 🗸 % operatörü ile kalan sayıyı bulmayı öğrendim! 🎉
- ✓ Haftanın günlerini kolayca hesaplayabiliyorum!
- ✓ Robotum Orbit artık tarihleri süper hızlı hesaplıyor! 🙅
- ✓ Python'da basit matematik işlemleri yapabiliyorum!

Orbit ile Sayılar ve Metinler (String) Arasındaki Farkı Öğreniyoruz!

Senaryo

Orbit, ekrana yazı yazmayı ve sayıları yazdırmayı öğrendi!

Ama dikkat! "20" ve 20 aynı şey değil!

Birisi metin (string), diğeri ise sayı (integer).

Bir de "20" + "20" ile 20 + 20 farklı şey yapar! Gel birlikte bakalım! 🚀

- ★ print("20") ne gösterir?
- rint(20 + 20)ne gösterir?
- **★**print("20" + "20") ne gösterir?
- ★ Sonuçları açıklayalım!


```
print("20")  # Metin olarak 20 yazdırır: 20
print(20 + 20) # Sayılar toplandığı için sonuç 40 olur
print("20" + "20") # Metinleri yan yana ekler, sonuç: 2020
print(20 * 2) # Sayıları çarptığı için sonuç 40 olur.
print("20" + "*" + "2") # Metinleri yan yana ekler, sonuç: 20 * 2
```

- ✓ Metin ile sayının farkını öğrendim! ಯ vs 🔢
- 🗸 + operatörünün sayılarla toplama, metinlerle birleştirme yaptığını anladım! 🛨 vs 🔗
- 🔽 Robotum Orbit artık ekranı daha iyi kullanıyor! 🖭 💻

Uygulama-4

Numbers

Orbit ile Sayıları Yuvarlama 🔢 😐

Senaryo

Orbit matematikte biraz daha ileri gidiyor!

Bazen sayıları yuvarlamak gerekiyor, mesela 3.14'ü 3 yapabiliriz.

Hadi Orbit'le bunu deneyelim! 🚀

Görev1: Sayıyı yuvarla!

- 📌 Bir ondalıklı sayı tanımla.
- round() fonksiyonuyla en yakın tam sayıya yuvarla.
- 📌 Sonucu ekrana yazdır! 🔳

Uygulama-4

Numbers

```
sayi1 = 3.14159
print("Orijinal say1:", sayi1)

# Sayıyı yuvarla
yuvarlanmis = round(sayi1)
print("Yuvarlanmış sayı:", yuvarlanmis)
```

© Kazanım

- 🗸 Ondalıklı sayıları nasıl yuvarlayacağımı öğrendim! 🔢
- ✓ Python'da round() fonksiyonunu öğrendim! 🍩🌣

Orbit ile Karekök Buluyoruz!

Senaryo

Bugün Orbit ile karekök bulmayı öğreneceğiz!

Karekök ne demek? Mesela 4'ün karekökü 2'dir çünkü 2×2 = 4! ❖

Bir sayının karekökü, kendisiyle çarpıldığında o sayıyı veren sayıdır!

Python'da bu işlem çok kolay! Hadi deneyelim! 🔊 📐

- 📌 Bir sayı tanımla. 🔢
- ★ math.sqrt() fonksiyonunu kullanarak karekökünü hesapla.
- 🖈 Sonucu ekrana yazdır. 💻
- 📌 Orbit'e bu sayının hangi sayıdan oluştuğunu göster! 🖭

Uygulama-5

Numbers

Not: Eğer karekökünü almak istediğin sayı tam kare değilse, sonuç ondalıklı olabilir!

Örneğin 20'nin karekökü yaklaşık olarak 4.47 olur! 🔍

```
sayi1 = 3.14159
import math # ♠ Matematik kütüphanesini ekliyoruz

sayi = 16 # ☼ Kareköklü sayı
karekok = math.sqrt(sayi) # ♠ Karekökünü hesapla

print("ಔ Sayının kendisi:", sayi)
print("♠ Sayının karekökü:", karekok)
```

- ☑ Bir sayının karekökünü bulmayı öğrendim! 🗾
- ✓ math.sqrt() fonksiyonunu kullandım!
- 🗸 Python'da farklı matematik işlemlerini yapabiliyorum! 💡
- 🔽 Orbit artık bilim robotu gibi hesap yapıyor! 🖭 📊