ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

The ID AA64PFR1 EL1 characteristics are:

Purpose

Reserved for future expansion of information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID registers'.

Configuration

There are no configuration notes.

Attributes

ID AA64PFR1 EL1 is a 64-bit register.

Field descriptions

63 62 61 60	59 58 57 56	55 54 53 52	51 50 49 48	47 46 45 44	43 42 41 40	39 38 37 36	35 34 33 32
PFAR	DF2	MTEX	THE	GCS	MTE_frac	NMI	CSV2_frac
RNDR_trap	SME	RES0	MPAM_frac	RAS_frac	MTE	SSBS	BT
31 30 29 28	27 26 25 24	23 22 21 20	19 18 17 16	15 14 13 12	11 10 9 8	7 6 5 4	3 2 1 0

PFAR, bits [63:60]

Support for physical fault address registers, FEAT_PFAR. Defined values are:

PFAR	Meaning
000000	FEAT_PFAR is not implemented.
0b0001	FEAT_PFAR is implemented.
	Includes support for the
	PFAR ELx and, if EL3 is
	implemented, <u>MFAR_EL3</u>
	registers.

All other values are reserved.

FEAT_PFAR implements the functionality identified by the value 0b0001.

DF2, bits [59:56]

Support for error exception routing extensions, FEAT_DoubleFault2. Defined values are:

DF2	Meaning
000000	FEAT_DoubleFault2 is not implemented.
	Note This does not mean that FEAT_DoubleFault, as identified by ID_AA64PFR0_EL1.RAS >= 0b0010, is not implemented.
0b0001	FEAT_DoubleFault2 is implemented. As ID_AA64PFR0_EL1 .RAS == 0b0010, and also includes support for routing error exceptions:
	 Traps for masked error exceptions, HCRX_EL2.TMEA and SCR_EL3.TMEA. Additional controls for masking SError interrupts, SCTLR2_EL1.NMEA, and SCTLR2_EL2.NMEA. Additional controls for taking external aborts to the SError interrupt vector, SCTLR2_EL1.EASE and SCTLR2_EL2.EASE.

All other values are reserved.

FEAT_DoubleFault2 implements the functionality identified by the value <code>0b0001</code>.

MTEX, bits [55:52]

Additional tag checking modes for MTE. Defined values are:

MTEX	Meaning
0b0000	Support for Memory Tagging when
	Address tagging is enabled.

Ob0001 As 0b0000, and the following additional modes are supported:

- Canonical Tag checking, identified as FEAT MTE CANONICAL TAGS.
- Memory tagging with Address tagging disabled, identified as FEAT_MTE_NO_ADDRESS_TAGS.

Note

ID_AA64PFR1_EL1.MTE identifies Memory Tagging when Address tagging is enabled.

ID_AA64PFR1_EL1.MTE_frac identifies whether or not Asynchronous Faulting and asymmetric Tag Check Fault handling are supported, in conjunction with the value of ID_AA64PFR1_EL1.MTE. Support for Asynchronous Faulting and asymmetric Tag Check Fault handling applies to all tag checking modes, including those introduced by ID_AA64PFR1_EL1.MTEX.

All other values are reserved.

This field is valid only if ID AA64PFR1 EL1.MTE >= 0b0010.

FEAT_MTE4 implements the functionality identified by the value 0b0001.

From Armv8.9, the only permitted value is 0b0001.

THE, bits [51:48]

Support for Translation Hardening Extension. Defined values are:

THE	Meaning
0b0000	Translation Hardening
	Extension is not implemented.

0b0001	The RCW and RCWS instructions, their associated registers and traps are
	supported.
	If EL2 is implemented, the AssuredOnly check, TopLevel
	check, and their associated
	controls are also implemented.
	If EL2 and FEAT_GCS are
	implemented, <u>VTCR_EL2</u> .GCSH
	is implemented.

FEAT_THE implements the functionality identified by the value 0b0001.

GCS, bits [47:44]

Support for Guarded Control Stack. Defined values are:

GCS	Meaning
0b0000	Guarded Control Stack is not
	implemented.
0b0001	Guarded Control Stack is
	implemented.

All other values are reserved.

FEAT_GCS implements the functionality identified by the value 0b0001.

MTE_frac, bits [43:40]

Support for Asynchronous Faulting and asymmetric Tag Check Fault handling. Defined values are:

MTE_frac	Meaning
000000	Asynchronous Faulting is
	supported.
	If ID_AA64PFR1_EL1.MTE
	>= 0b0011, asymmetric Tag
	Check Fault handling is
	supported.
0b1111	Asynchronous Faulting is
	not supported.
	If ID_AA64PFR1_EL1.MTE
	>= 0b0011, asymmetric Tag
	Check Fault handling is not
	supported.

This field is valid only if ID_AA64PFR1_EL1.MTE >= 0b0010.

NMI, bits [39:36]

Non-maskable Interrupt. Indicates support for Non-maskable interrupts. Defined values are:

NMI	Meaning
000000	SCTLR_ELx.{SPINTMASK,
	NMI) and PSTATE.ALLINT with
	its associated instructions are
	not supported.
0b0001	SCTLR ELx.{SPINTMASK,
	NMI} and PSTATE.ALLINT with
	its associated instructions are
	supported.

All other values are reserved.

FEAT_NMI implements the functionality identified by the value 0b0001.

From Armv8.8, the only permitted value is 0b0001.

CSV2_frac, bits [35:32]

CSV2 fractional field. Defined values are:

CSV2_frac	Meaning
0b0000	Either
	<u>ID_AA64PFR0_EL1</u> .CSV2 is not
	0b0001, or the implementation
	does not disclose whether
	FEAT_CSV2_1p1 is
	implemented.
	FEAT_CSV2_1p2 is not
	implemented.
0b0001	FEAT_CSV2_1p1 is
	implemented, but
	FEAT_CSV2_1p2 is not
	implemented.
0b0010	FEAT_CSV2_1p2 is
	implemented.

All other values are reserved.

FEAT_CSV2_1p1 implements the functionality identified by the value 0b0001.

FEAT_CSV2_1p2 implements the functionality identified by the value 0b0010.

From Armv8.0, the permitted values are 0b0000, 0b0001, and 0b0010.

The values 0b0001 and 0b0010 are permitted only when ID AA64PFR0 EL1.CSV2 is 0b0001.

RNDR_trap, bits [31:28]

Random Number trap to EL3 field. Defined values are:

RNDR_trap	Meaning
0b0000	Trapping of RNDR and
	RNDRRS to EL3 is not
	supported.
0b0001	Trapping of RNDR and
	RNDRRS to EL3 is
	supported.
	SCR_EL3.TRNDR is
	present.

All other values are reserved.

FEAT_RNG_TRAP implements the functionality identified by the value 0b0001.

SME, bits [27:24]

Scalable Matrix Extension. Defined values are:

SME	Meaning
000000	SME architectural state and
	programmers' model are not
	implemented.
0b0001	SME architectural state and
	programmers' model are
	implemented.
0b0010	As 0b0001, plus the SME2 ZT0
	register.

All other values are reserved.

FEAT_SME implements the functionality identified by the value 0b0001.

FEAT_SME2 implements the functionality identified by the value 0b0010.

From Armv9.2, the permitted values are 0b0000, 0b0001, and 0b0010.

If implemented, refer to <u>ID_AA64SMFR0_EL1</u> and <u>ID_AA64ZFR0_EL1</u> for information about which SME and SVE instructions are available.

Bits [23:20]

Reserved, res0.

MPAM_frac, bits [19:16]

Indicates the minor version number of support for the MPAM Extension.

Defined values are:

MPAM_frac	Meaning
0b0000	The minor version number
	of the MPAM extension is
	0.
0b0001	The minor version number
	of the MPAM extension is
	1.

All other values are reserved.

When combined with the major version number from ID AA64PFR0 EL1.MPAM, The combined "major.minor" version is:

MPAM		
Extension	MPAM	MPAM_frac
version		
Not	0b0000	0b0000
implemented.		
v0.1 is	0b0000	0b0001
implemented.		
v1.0 is	0b0001	0b0000
implemented.		
v1.1 is	0b0001	0b0001
implemented.		

For more information, see 'The Memory Partitioning and Monitoring (MPAM) Extension'.

RAS_frac, bits [15:12]

RAS Extension fractional field. Defined values are:

RAS_frac Meaning

0000d0	If <u>ID_AA64PFR0_EL1</u> .RAS == 0b0001, RAS
	Extension implemented.
0b0001	If $\underline{ID}_AA64PFR0_EL1$.RAS == 0b0001, as 0b0000
	and adds support for:
	 Additional ERXMISC<m>_EL1 System registers.</m>
	Additional System registers
	ERXPFGCDN EL1, ERXPFGCTL EL1, and
	ERXPFGF EL1, and the SCR EL3.FIEN and
	HCR EL2.FIEN trap controls, to support the
	optional RAS Common Fault Injection Model
	Extension.
	Extension.
	Error records accessed through System registers conform to RAS System Architecture v1.1, which
	includes simplifications to <u>ERR<n>STATUS</n></u> , and
	support for the optional RAS Timestamp and RAS
	Common Fault Injection Model Extensions.

FEAT_RASv1p1 implements the functionality identified by the value 0 b 0 0 0 1.

This field is valid only if $\underline{ID_AA64PFR0_EL1}$.RAS == 0b0001.

MTE, bits [11:8]

Support for the Memory Tagging Extension. Defined values are:

MTE	Meaning
0b0000	Memory Tagging Extension is
	not implemented.
0b0001	Instruction-only Memory
	Tagging Extension is
	implemented.
0b0010	Full Memory Tagging Extension
	is implemented.
	Support for Asynchronous
	Faulting is defined by
	ID_AA64PFR1_EL1.MTE_frac
0b0011	Memory Tagging Extension is
	implemented with support for
	asymmetric Tag Check Fault
	handling.
	Support for Asynchronous
	Faulting and asymmetric Tag
	Check Fault handling is defined
	by
	ID_AA64PFR1_EL1.MTE_frac.

FEAT_MTE implements the functionality identified by the value 0b0001.

FEAT_MTE2 implements the functionality identified by the value 0b0010.

FEAT_MTE3 implements the functionality identified by the value 0b0011.

In Armv8.5, the permitted values are 0b0000, 0b0001, 0b0010, and 0b0011.

From Armv8.7, the value 0b0010 is not permitted.

SSBS, bits [7:4]

Speculative Store Bypassing controls in AArch64 state. Defined values are:

SSBS	Meaning
0b0000	AArch64 provides no
	mechanism to control the use of
	Speculative Store Bypassing.
0b0001	AArch64 provides the
	PSTATE.SSBS mechanism to
	mark regions that are
	Speculative Store Bypass Safe.
0b0010	As 0b0001, and adds the MSR
	and MRS instructions to
	directly read and write the
	PSTATE.SSBS field.

All other values are reserved.

FEAT_SSBS implements the functionality identified by the value 0b0001.

FEAT_SSBS2 implements the functionality identified by the value 0b0010.

BT, bits [3:0]

Branch Target Identification mechanism support in AArch64 state. Defined values are:

BT	Meaning
0b0000	The Branch Target
	Identification mechanism is not
	implemented.

0b0001	The Branch Target
	Identification mechanism is
	implemented.

FEAT_BTI implements the functionality identified by the value 0b0001.

From Armv8.5, the only permitted value is 0b0001.

Accessing ID_AA64PFR1_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID AA64PFR1 EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b0000	0b0100	0b001

```
if PSTATE.EL == ELO then
    if IsFeatureImplemented(FEAT_IDST) then
        if EL2Enabled() && HCR_EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.TID3 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
        X[t, 64] = ID\_AA64PFR1\_EL1;
elsif PSTATE.EL == EL2 then
    X[t, 64] = ID\_AA64PFR1\_EL1;
elsif PSTATE.EL == EL3 then
    X[t, 64] = ID_AA64PFR1_EL1;
```

AArch32 Registers AArch64 Registers AArch32 Instructions AArch64
Instructions

Index by Encoding External Registers

28/03/2023 16:01; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.