Algoritmusok és adatszerkezetek II. Kupacok

Szegedi Tudományegyetem

Fapacok (Treaps)

Emlékeztető

n kulcsból álló **véletlen** építésű bináris keresőfa h magasságának **várható értéke** $\log n$

Adverzaliális műveleti sorrend mellett azonban n magas is lehet

Ötlet

A keresőfa,-és kupactulajdonságot egyidejűleg követeljük meg

- $oldsymbol{0}$ Keresőfa tulajdonság biztosítja a kulcsok O(h) kereshetőségét
- Wupactulajdonság miatt h várható értékben log n

Fapacok (Treaps)

Emlékeztető

n kulcsból álló **véletlen** építésű bináris keresőfa h magasságának **várható értéke** $\log n$

Adverzaliális műveleti sorrend mellett azonban n magas is lehet

Ötlet

A keresőfa,-és kupactulajdonságot egyidejűleg követeljük meg

- $oldsymbol{0}$ Keresőfa tulajdonság biztosítja a kulcsok O(h) kereshetőségét
- Kupactulajdonság miatt h várható értékben log n
 - A kupactulajdonság ne az eltárolt kulcsokra, hanem egy véletlenszerűen generált kiegészítőinformációra teljesüljön!

Kupacok

Felhasználásuk

- Prioritási sor megvalósításánál fontos, hogy a minimális/maximális kulcsot hatékonyan tudjuk visszaadni
- 2 Szintén fontos művelet egy adott kulcs értékének módosítása

Kupacok

Felhasználásuk

- Prioritási sor megvalósításánál fontos, hogy a minimális/maximális kulcsot hatékonyan tudjuk visszaadni
- 2 Szintén fontos művelet egy adott kulcs értékének módosítása

Kupactulajdonság

Azt mondjuk, hogy egy fa rendelkezik a minimum (maximum) kupactulajdonsággal, ha minden p csúcsának minden q fiára

- q = Nil vagy
- p.kulcs < q.kulcs (p.kulcs > q.kulcs)

Példa maximum bináris kupacra

Bináris kupac

Teljes bináris fa, melyre teljesül a kupactulajdonság.

 \Rightarrow mivel legfeljebb egy belső pontnak lehet 2-nél kevesebb fia, így egyszerűen egy tömbbel implementálhatjuk

Példa maximum bináris kupacra

Bináris kupac

Teljes bináris fa, melyre teljesül a kupactulajdonság.

⇒ mivel legfeljebb egy belső pontnak lehet 2-nél kevesebb fia, így egyszerűen egy tömbbel implementálhatjuk

Fapac példa

- A kulcsok keresőfa tulajdonság szerint helyezkednek el
- A véletlen felépítést az extra adattag eredményezi
- A kiegyensúlyozott fáknál megszokott módon állítjuk helyre a megkövetelt tulajdonságokat (pl. (Beszúr(27, 100)))

Vissza a kupacokhoz

n elemű kupacban hogy keresnénk meg a maximális elemet? És egy adott kulcs rákövetkezőjét? Hogy egyesítenénk egy n_1 és egy n_2 kulcsból álló kupacot?

Vissza a kupacokhoz

n elemű kupacban hogy keresnénk meg a maximális elemet?	O(1)
És egy adott kulcs rákövetkezőjét?	O(n)
Hogy egyesítenénk egy n_1 és egy n_2 kulcsból álló kupacot?	$O(n_1 + n_2)$

Kérdés

Lehetne hatékonyabban is?

Binomiális fa

Definíció

 B_k binomiális fa egy rekurzív rendezett fa, amely két összekapcsolt B_{k-1} binomiális fából áll; az egyik fa gyökércsúcsa a másik fa gyökércsúcsának legbaloldalibb gyereke

Binomiális fákkal kapcsolatos állítások

Lemma

Ha B_k binomiális fa, akkor az alábbi állítások teljesülnek:

- 2^k csúcsa van
- 2 i-edik mélységében pontosan $\binom{k}{i}$ csúcs van (i = 0, 1, ..., k)
- **3** a gyökércsúcs fokszáma (fokszám helyett találkozhatunk a rang, illetve rend kifejezésekkel is) k, melynek gyerekeit balról jobbra megszámozva $k-1, k-2, \ldots, 0$ -al, i-dik gyereke egy B_i részfa gyökércsúcsa.

Binomiális fákkal kapcsolatos állítások

Lemma

Ha B_k binomiális fa, akkor az alábbi állítások teljesülnek:

- 1 2 csúcsa van
- 2 i-edik mélységében pontosan $\binom{k}{i}$ csúcs van (i = 0, 1, ..., k)
- 3 a gyökércsúcs fokszáma (fokszám helyett találkozhatunk a rang, illetve rend kifejezésekkel is) k, melynek gyerekeit balról jobbra megszámozva $k-1, k-2, \ldots, 0$ -al, i-dik gyereke egy B_i részfa gyökércsúcsa.

Következmény

n csúcsú binomiális fa minden csúcsának fokszáma legfeljebb log n

Binomiális fák struktúrája

Binomiális kupac

Definíció

Egy H binomiális kupac binomiális fák olyan halmaza, amely

- H minden binomiális fájára rendelkezik a minimumkupac (vagy maximumkupac) tulajdonsággal
- 2 H-ban nincsenek azonos fokszámmal rendelkező binomiális fák.

Binomiális kupac

Definíció

Egy H binomiális kupac binomiális fák olyan halmaza, amely

- H minden binomiális fájára rendelkezik a minimumkupac (vagy maximumkupac) tulajdonsággal
- 2 H-ban nincsenek azonos fokszámmal rendelkező binomiális fák.

Következmény (előző lemma+2. tulajdonság)

n csúcsú binomiális kupac legfeljebb $|\log n| + 1$ binomiális fából áll

Binomiális kupac

Definíció

Egy H binomiális kupac binomiális fák olyan halmaza, amely

- H minden binomiális fájára rendelkezik a minimumkupac (vagy maximumkupac) tulajdonsággal
- 2 H-ban nincsenek azonos fokszámmal rendelkező binomiális fák.

Következmény (előző lemma+2. tulajdonság)

n csúcsú binomiális kupac legfeljebb $|\log n| + 1$ binomiális fából áll

Az előző következmény másképp

A gyökércsúcsok fokszámainak halmaza a $\subseteq \{0, 1, \dots, \lfloor \log n \rfloor \}$

Binomiális kupacok implementációja

```
class Node {
   Object kulcs;
   Node *apa;
   int fokszam;
   Node *gyerek;
   Node *testver;
}
```


Binomiális kupacok implementációja

```
class Node {
   Object kulcs;
   Node *apa;
   int fokszam;
   Node *gyerek;
   Node *testver;
}
```

Megjegyzés

Balgyerek, jobbtestvér ábrázolást használunk

Binomiális kupacok szerveződése

Minimális kulcs keresése

```
BINOMIÁLISKUPACBANMIN(H) {
  y = Nil
 x = H.fej //gyökérlista kezdőeleme
 min = Inf
  while (x != Nil) {
     if (x.kulcs < min) {
        min = x.kulcs
        y = x
     x = x.testver
  return y
```

Minimális kulcs keresése

```
BINOMIÁLISKUPACBANMIN(H) {
  y = Nil
 x = H.fej //gyökérlista kezdőeleme
 min = Inf
  while (x != Nil) {
                                      n kulcs esetén O(\log n)
     if (x.kulcs < min) {
        min = x.kulcs
        y = x
     x = x.testver
  return y
```

Kupacok egyesítése

- H_1, H_2 bináris kupacok nem egyesíthetők hatékonyan, binomiális kupacra azonban $O(\log n)$ algoritmus adható
- Alapötlet
 - Fokszám szerint nemcsökkenő sorrendben fűzzük össze a H_1 -ben és H_2 -ben található binomiális fákat
 - Legfeljebb $\log n_1 + 1 + \log n_2 + 1 \le 2 \log n + 2 = O(\log n)$ hosszú listát kapunk
 - 2 darab k fokszámú binomiális fából egy darab k+1 fokszámú binomiális fa hozható létre (ennek ideje O(1))
 - Számoljuk föl az összefűzött gyökérlistában a megegyező fokszámú binomiális fákat $\Rightarrow O(\log n)$

Kupacba történő beszúrás

Észrevétel

A beszúrás két binomiális kupac egyesítéseként fogható föl, ahol az egyik binomiális kupacot alkotó egyedüli binomiális fa B_0 .

Kupacba történő beszúrás

Észrevétel

A beszúrás két binomiális kupac egyesítéseként fogható föl, ahol az egyik binomiális kupacot alkotó egyedüli binomiális fa B_0 .

Példa

$$B_{0} - B_{2} - B_{3} + B_{0} - B_{1} \Rightarrow B_{0} - B_{0} - B_{1} - B_{2} - B_{3} \Rightarrow B_{1} - B_{1} - B_{2} - B_{3} \Rightarrow B_{2} - B_{2} - B_{3} \Rightarrow B_{4}$$

Minimális kulcsú csúcs kivágása

Észrevételek

- A minimális kulcsnak a gyökérlistában kell lennie $\Rightarrow O(\log n)$
- B_k gyökérelemének eltávolítása után k darab szigorúan monoton csökkenő fokszámú binomiális fára "hullik szét"

Ötlet

 A minimális kulcs eltávolítása után kapott k binomiális fát "fűzzük össze" egy binomiális kupaccá, és azt egyesítsük az eredeti kupaccal

Minimális kulcsú csúcs kivágása – példa

Észrevételek

- A minimális kulcsnak a gyökérlistában kell lennie $\Rightarrow O(\log n)$
- B_k gyökérelemének eltávolítása után k darab szigorúan monoton csökkenő fokszámú binomiális fára "hullik szét"

Kulcs csökkentése

• Az adott csúcsban tárolt kulcsot csökkentsük a kívánt értékre

Kulcs csökkentése

Az adott csúcsban tárolt kulcsot csökkentsük a kívánt értékre
 → bináris kupacoknál megszokott módon javítsunk

Kulcs törlése

 A törölni kívánt csúcsban tárolt kulcsot válasszuk alkalmasan kicsire

Kulcs csökkentése

Az adott csúcsban tárolt kulcsot csökkentsük a kívánt értékre
 bináris kupacoknál megszokott módon javítsunk

Kulcs törlése

 A törölni kívánt csúcsban tárolt kulcsot válasszuk alkalmasan kicsire \to vágjuk ki a minimális kulcsot

Kulcs csökkentése

 Az adott csúcsban tárolt kulcsot csökkentsük a kívánt értékre → bináris kupacoknál megszokott módon javítsunk

Kulcs törlése

 A törölni kívánt csúcsban tárolt kulcsot válasszuk alkalmasan kicsire → vágjuk ki a minimális kulcsot

Bináris vs. binomiális kupac

Kupacműveletek legrosszabb esetbeli viselkedése

Művelet	Bináris	Binomiális
MIN-KERES	O(1)	$O(\log n)$
Sorbol-Min	$O(\log n)$	$O(\log n)$
Beszúr	$O(\log n)$	$O(\log n)^{-1}$
KulcsotCsökkent	$O(\log n)$	$O(\log n)$
Egyesít	O(n)	$O(\log n)$
Töröl	$O(\log n)$	$O(\log n)$

Összegzés

- Kupacokkal prioritási sorokat valósíthatunk meg hatékonyan
- Tetszőleges kulcs hatékony keresését nem támogatja
- Ha egyesíteni is akarunk kupacokat, akkor a binomiális kupac jobb választás
 - Igaz ekkor a MIN-KERES hatékonyságán bukunk

