Løsningsforslag: Ma-111 – 23. mai 2022

NB! La a, b, og c være første, andre og tredje siffer i kandidatnummeret ditt. Bruk disse tallene der det står a, b, og c i oppgave 1, 2, 3, 4, og 5 under.

Eksempel: Om kandidatnummeret ditt er 731, så er a = 7, b = 3, og c = 1.

Oppgave 1

Gitt to vektorer
$$\mathbf{u} = \begin{bmatrix} \mathbf{a} \\ \mathbf{b} + 1 \end{bmatrix}$$
 og $\mathbf{v} = \begin{bmatrix} \mathbf{c} + 1 \\ 2 \end{bmatrix}$. Finn $\frac{1}{2}\mathbf{u} + \frac{1}{2}\mathbf{v}$.

Tegn vektorene \mathbf{u} , \mathbf{v} , og $\frac{1}{2}\mathbf{u} + \frac{1}{2}\mathbf{v}$ som piler i et koordinatsystem.

Løsning:

Regner først ut

$$\frac{1}{2}\mathbf{u} + \frac{1}{2}\mathbf{v} = \begin{bmatrix} a/2\\ (b+1)/2 \end{bmatrix} + \begin{bmatrix} (c+1)/2\\ 2/2 \end{bmatrix} = \begin{bmatrix} \frac{a+c+1}{2}\\ \frac{b+1+2}{2} \end{bmatrix}$$

Hvis f.eks. kandidatnummeret er 352 så er $a=3,\,b=5,\,{\rm og}\ c=2$ slik at

$$\frac{1}{2}\mathbf{u} + \frac{1}{2}\mathbf{v} = \frac{1}{2} \begin{bmatrix} 3 \\ 6 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} \frac{3+3}{2} \\ \frac{6+2}{2} \end{bmatrix} = \begin{bmatrix} \frac{6}{2} \\ \frac{8}{2} \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

Tegner så vektorene. For kandidatnummer 352 vil det Det slik ut.

Oppgave 2

Regn ut vinkelen mellom vektorene \mathbf{u} og \mathbf{v} fra Oppgave 1.

Løsning:

Vil bruke

$$\cos(\theta) = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}$$

Regner ut skalarproduktet av **u** og **v**:

$$\mathbf{u} \cdot \mathbf{v} = \begin{bmatrix} a & b+1 \end{bmatrix} \begin{bmatrix} c+1 \\ 2 \end{bmatrix} = a \cdot (c+1) + (b+1) \cdot 2 = a(c+1) + 2(b+1).$$

Finner lengdene av vektorene:

$$|\mathbf{u}| = \sqrt{a^2 + (b+1)^2}$$
 og $|\mathbf{v}| = \sqrt{(c+1)^2 + 2^2}$.

Derfor blir

$$\cos(\theta) = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|} = \frac{a(c+1) + 2(b+1)}{\sqrt{a^2 + (b+1)^2} \sqrt{(c+1)^2 + 2^2}}$$

Hvis f.eks. kandidatnummeret er 271, så er $a=2,\,b=7$ og c=1 slik at

$$\cos(\theta) = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|} = \frac{2(1+1) + 2(7+1)}{\sqrt{2^2 + (7+1)^2}\sqrt{(1+1)^2 + 2^2}} = \frac{20}{\sqrt{68}\sqrt{8}}$$

så $\theta \approx \cos^{-1}(0.8575) \approx 31^{\circ}$ (eller omtrent 0.54042 radianer).

Oppgave 3

Multipliser matrisa
$$\mathbf{F} = \begin{bmatrix} 2 & \mathbf{b} + \mathbf{1} \\ \mathbf{c} + \mathbf{1} & 2 \end{bmatrix}$$
 med vektoren \mathbf{v} fra Oppgave 1.

Løsning:

Ganger

$$\mathbf{Fv} = \begin{bmatrix} 2 & b+1 \\ c+1 & 2 \end{bmatrix} \begin{bmatrix} c+1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \cdot (c+1) + (b+1) \cdot 2 \\ (c+1) \cdot (c+1) + 2 \cdot 2 \end{bmatrix} = \begin{bmatrix} 2(c+1) + 2(b+1) \\ (c+1)^2 + 4 \end{bmatrix}$$

Hvis kandidatnummeret begynner på a=2, så inneholder $\mathbf{F}\mathbf{v}$ tallene $\mathbf{u}\cdot\mathbf{v}$ og $|\mathbf{v}|^2$. Så med kandidatnummer 271 så blir

$$\mathbf{Fv} = \begin{bmatrix} 2 & 8 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 20 \\ 8 \end{bmatrix}$$

Oppgave 4

Regn om mulig ut AB og BA, når A og B er matrisene

$$\mathbf{A} = \begin{bmatrix} \mathbf{c} - \mathbf{4} & 1 \\ -2 & 1 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 1 & -2 \\ 1 & \mathbf{b} - \mathbf{4} \end{bmatrix}$$

Løsning:

Ganger sammen radene i den første med kolonnene i den andre. Først:

$$\mathbf{AB} = \begin{bmatrix} c - 4 & 1 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 1 & b - 4 \end{bmatrix} = \begin{bmatrix} (c - 4) \cdot 1 + 1 \cdot 1 & (c - 4) \cdot (-2) + 1 \cdot (b - 4) \\ -2 \cdot 1 + 1 \cdot 1 & -2 \cdot (-2) + 1 \cdot (b - 4) \end{bmatrix}$$
$$= \begin{bmatrix} c - 4 + 1 & -2c + b + 8 - 4 \\ -2 + 1 & 4 + b - 4 \end{bmatrix} = \begin{bmatrix} c - 3 & -2c + b + 4 \\ -1 & b \end{bmatrix}$$

mens

$$\mathbf{BA} = \begin{bmatrix} 1 & -2 \\ 1 & b - 4 \end{bmatrix} \begin{bmatrix} c - 4 & 1 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \cdot (c - 4) + (-2) \cdot (-2) & 1 \cdot 1 + (-2) \cdot 1 \\ 1 \cdot (c - 4) + (b - 4) \cdot (-2) & 1 \cdot 1 + (b - 4) \cdot 1 \end{bmatrix}$$
$$= \begin{bmatrix} c - 4 + 4 & 1 - 2 \\ c - 4 - 2b + 8 & 1 + b - 4 \end{bmatrix} = \begin{bmatrix} c & -1 \\ c - 2b + 4 & b - 3 \end{bmatrix}$$

F.eks. hvis kandidatnummeret er 345, så er b = 4 og c = 5 slik at

$$\mathbf{AB} = \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ -1 & 4 \end{bmatrix}$$

$$\mathbf{BA} = \begin{bmatrix} 1 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 5 & -1 \\ 1 & 1 \end{bmatrix}$$

Oppgave 5

Regn om mulig ut CD og DC når C og D er matrisene

$$\mathbf{C} = \begin{bmatrix} \mathbf{a} & 1 \\ 2 & \mathbf{b} \\ \mathbf{c} & -3 \end{bmatrix} \qquad \mathbf{D} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$

Løsning:

Ganger 3×2 matrise **C** med 2×2 matrise **D** og får 3×2 matrise:

$$\mathbf{CD} = \begin{bmatrix} a & 1 \\ 2 & b \\ c & -3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} a \cdot 1 + 1 \cdot 0 & a \cdot 2 + 1 \cdot 3 \\ 2 \cdot 1 + b \cdot 0 & 2 \cdot 2 + b \cdot 3 \\ c \cdot 1 + (-3) \cdot 0 & c \cdot 2 + (-3) \cdot 3 \end{bmatrix}$$

$$= \begin{bmatrix} a + 0 & 2a + 3 \\ 2 + 0 & 4 + 3b \\ c + 0 & 2c - 9 \end{bmatrix} = \begin{bmatrix} a & 2a + 3 \\ 2 & 3b + 4 \\ c & 2c - 9 \end{bmatrix}$$

F.eks. hvis kandidatnummeret er 251, så er a = 2, b = 5 og c = 1 slik at

$$\mathbf{CD} = \begin{bmatrix} 2 & 2 \cdot 2 + 3 \\ 2 & 3 \cdot 5 + 4 \\ 1 & 2 \cdot 1 - 9 \end{bmatrix} = \begin{bmatrix} 2 & 7 \\ 2 & 19 \\ 1 & -7 \end{bmatrix}$$

Det gir ikke mening å gange \mathbf{DC} fordi 2×2 kan ikke ganges med 3×2 matrise (det er ikke like mange kolonner i \mathbf{D} som det er rader i \mathbf{C}).

NB! La d være det sifferet lengst til høyre i ditt kandidatnummer som ikke er 0. Fyll det inn for $\frac{d}{d}$ i matrisa \mathbf{M} i Oppgave 6.

Eksempel: Om kandidatnummeret er 735, så blir d = 5. Om kandidatnummeret er 710, så blir d = 1.

Oppgave 6

Sjekk om
$$\mathbf{M} = \begin{bmatrix} 5 & \mathbf{d} \\ \mathbf{d} & 5 \end{bmatrix}$$
 er ei strekk- eller krympematrise (skaleringsmatrise).

Løsning:

Sjekker de tre kriteriene for at M skal være ei strekk/krympematrise.

Vi har $m_{12} = m_{21} = d \text{ så } \mathbf{M}$ er symmetrisk. Det er ok.

Vi har $tr(M) = 5 + 5 = 10 \ge 0$. Det er også ok.

Vi har $\det(M) = 5 \cdot 5 - d \cdot d = 25 - d^2$. Hvis d = 1, 2, 3, 4, 5, så er $\det(M) \ge 0$ og alle tre kriteriene er oppfylt. Hvis d = 6, 7, 8, 9, så er $\det(M) < 0$, og M er ikke strekk/krympematrise.

Oppgave 7

Finn egenverdiene og egenvektorene til matrisa M fra Oppgave 6.

Løsning:

Bruker formel for egenverdiene

$$g = \frac{1}{2} \left(m_{11} + m_{22} \pm \sqrt{(m_{11} - m_{22})^2 + 4m_{12}^2} \right) = \frac{1}{2} \left(5 + 5 \pm \sqrt{(5 - 5)^2 + 4 \cdot d^2} \right)$$
$$= \frac{1}{2} \left(10 \pm \sqrt{4d^2} \right) = \frac{1}{2} \left(10 \pm 2d \right) = 5 \pm d.$$

Det gir følgende egenverdier. Hvis d = 1: g = 5 + 1 = 6 og h = 5 - 1 = 4.

Hvis
$$d = 2$$
: $g = 5 + 2 = 7$ og $h = 5 - 2 = 3$.

Hvis
$$d = 3$$
: $q = 5 + 3 = 8$ og $h = 5 - 3 = 2$.

Hvis
$$d = 4$$
: $g = 5 + 4 = 9$ og $h = 5 - 4 = 1$.

Hvis
$$d = 5$$
: $q = 5 + 5 = 10$ og $h = 5 - 5 = 0$.

Hvis
$$d = 6$$
: $q = 5 + 6 = 11$ og $h = 5 - 6 = -1$.

Hvis
$$d = 7$$
: $g = 5 + 7 = 12$ og $h = 5 - 7 = -2$.

Hvis
$$d = 8$$
: $g = 5 + 8 = 13$ og $h = 5 - 8 = -3$.

Hvis
$$d = 9$$
: $g = 5 + 9 = 14$ og $h = 5 - 9 = -4$.

Tilhørende egenvektorer er

$$\mathbf{u} = \begin{bmatrix} m_{12} \\ g - m_{11} \end{bmatrix} = \begin{bmatrix} d \\ (5+d) - 5 \end{bmatrix} = \begin{bmatrix} d \\ d \end{bmatrix} \quad \text{og} \quad \mathbf{v} = \begin{bmatrix} m_{12} \\ h - m_{11} \end{bmatrix} = \begin{bmatrix} d \\ (5-d) - 5 \end{bmatrix} = \begin{bmatrix} d \\ -d \end{bmatrix}.$$

Oppgave 8

Regn ut og tegn opp hva matrisa \mathbf{M} fra Oppgave 6 gjør med standardkvadratet (1,1), (-1,1), (-1,-1) og (1,-1). Tegn også inn egenvektorene til \mathbf{M} i samme plott.

Løsning:

Regner først:

$$M \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 & d \\ d & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5+d \\ d+5 \end{bmatrix},$$

$$M \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 & d \\ d & 5 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -5+d \\ -d+5 \end{bmatrix},$$

$$M \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 5 & d \\ d & 5 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \begin{bmatrix} -5 - d \\ -d - 5 \end{bmatrix},$$
$$M \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 5 & d \\ d & 5 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 5 - d \\ d - 5 \end{bmatrix}.$$

Tegner opp for d=1 (rødt), d=5 (blått), og d=9 (stipla linjer). For d=5 så kollapser kvadratet til et linjestykke. For d=9 så går vi rundt origo motsatt vei i det transformerte kvadratet i forhold til standardkvadratet. Egenvektorene vil alle ligge på linje.

NB! Om kandidatnummer ditt slutter på 0,2,4,6, eller 8, så skal du i Oppgave 9 og 10 under bruke

$$\mathbf{p} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \qquad \mathbf{s} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \qquad \mathbf{t} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$

Om kandidatnummeret ditt slutter på 1,3,5,7, eller 9, så skal du bruke

$$\mathbf{p} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \qquad \mathbf{s} = \begin{bmatrix} 1 \\ 4 \end{bmatrix} \qquad \mathbf{t} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

Oppgave 9

Lag matrisa $\mathbf{R}(270^{\circ}, \mathbf{p})$ som roterer punkter i planet 270° mot klokka om punktet \mathbf{p} . (Bruk homogene koordinater.)

Løsning:

Vi trenger matrisa som roterer 270° mot klokka om origo:

$$\mathbf{R}(270^{\circ}) = \begin{bmatrix} \cos(270^{\circ}) & -\sin(270^{\circ}) \\ \sin(270^{\circ}) & \cos(270^{\circ}) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

I homogene koordinater blir den slik:

$$\mathbf{R}(270^{\circ}) = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Løsningsforslag for første variant med: $\mathbf{p} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$.

Trenger translasjonsmatrise for \mathbf{p} og $-\mathbf{p}$:

$$\mathbf{T}(\mathbf{p}) = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{og} \quad \mathbf{T}(-\mathbf{p}) = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

For å roterer om **p** så flytter vi først **p** til origo, roterer om origo, og flytter så tilbake.

Matrisa blir

$$\mathbf{R}(270^{\circ}, \mathbf{p}) = \mathbf{T}(\mathbf{p})\mathbf{R}(270^{\circ})\mathbf{T}(-\mathbf{p}) = \mathbf{T}(\mathbf{p}) \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 3 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$

Løsningsforslag for andre variant med: $\mathbf{p} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$

Trenger translasjonsmatrise for \mathbf{p} og $-\mathbf{p}$:

$$\mathbf{T}(\mathbf{p}) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{og} \quad \mathbf{T}(-\mathbf{p}) = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{bmatrix}$$

For å roterer om \mathbf{p} så flytter vi først \mathbf{p} til origo, roterer om origo, og flytter så tilbake. Matrisa blir

$$\mathbf{R}(270^{\circ}, \mathbf{p}) = \mathbf{T}(\mathbf{p})\mathbf{R}(270^{\circ})\mathbf{T}(-\mathbf{p}) = \mathbf{T}(\mathbf{p}) \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & -3 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$

Oppgave 10

Bruk matrisa $\mathbf{R}(270^{\circ}, \mathbf{p})$ fra Oppgave 9 til å rotere vektorene \mathbf{s} og \mathbf{t} for å vise at vektorene blir rotert slik de skal.

Tegn figur!

Løsning:

Løsningsforslag for første variant med:

$$\mathbf{p} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
 $\mathbf{s} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ $\mathbf{t} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$

Skriver først \mathbf{s} og \mathbf{t} i homogene koordinater: $\mathbf{s} = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$ og $\mathbf{t} = \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix}$. Ganger så sammen:

$$\mathbf{R}(270^{\circ}, \mathbf{p}) \mathbf{s} = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 4 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0+2+2 \\ -2+0+4 \\ 0+0+1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix}$$

og

$$\mathbf{R}(270^{\circ}, \mathbf{p}) \ \mathbf{t} = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 4 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0+1+2 \\ -4+0+4 \\ 0+0+1 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$$

Dette tilsvarer punktene $\mathbf{s}' = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$ og $\mathbf{t}' = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$ i vanlige koordinater.

Tegner opp:

Ser at linjestykkene mellom \mathbf{p} og \mathbf{s} og mellom \mathbf{p} og \mathbf{t} er rotert 270° mot klokka om \mathbf{p} (som er det samme som 90° med klokka).

Løsningsforslag for andre variant med:

$$\mathbf{p} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \qquad \mathbf{s} = \begin{bmatrix} 1 \\ 4 \end{bmatrix} \qquad \mathbf{t} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

Skriver først \mathbf{s} og \mathbf{t} i homogene koordinater: $\mathbf{s} = \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix}$ og $\mathbf{t} = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$. Ganger så sammen:

$$\mathbf{R}(270^{\circ}, \mathbf{p}) \mathbf{s} = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 4 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 0+4-2 \\ -1+0+4 \\ 0+0+1 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$

og

$$\mathbf{R}(270^{\circ}, \mathbf{p}) \mathbf{t} = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 4 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0+2-2 \\ -2+0+4 \\ 0+0+1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$$

Dette tilsvarer punktene $\mathbf{s}' = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ og $\mathbf{t}' = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$ i vanlige koordinater.

Tegner opp:

Ser at linjestykkene mellom \mathbf{p} og \mathbf{s} og mellom \mathbf{p} og \mathbf{t} er rotert 270° mot klokka om \mathbf{p} (som er det samme som 90° med klokka).