## EE4708 - Data Analytics Laboratory 2020

Week 5

### Table of Contents

- 1. Classification
- 2. Nearest Neighbors Classifier
- 3. Naive Bayes Classifier

### Classification



Figure: Classification Example

# Classification (cont.)

#### Definition:

It is the process of learning a predictive model that relates input features to discrete data classes or categories.

### Key-points:

- This model can then be used to classify a new inputs to a particular class or category.
- ▶ If the outcomes are either positive or negative, then it is referred to as binary classification
- ► If the outputs can take more than two classes, then it is referred to as multi-class classification

# Nearest Neighbours Classifier



Figure: Example of Nearest Neighbours where D denotes distance

# k-Nearest Neighbours Classifier

- Considering only the nearest neighbour is not effective in presence of noise
- ► Therefore, the K nearest neighbours are considered in finding the class of a sample
- ► kNN classifier works on the assumption that samples belonging to same class exist in close proximity
- kNN captures the idea of similarity or proximity using some distance metric, generally euclidean distance
- ➤ As the name suggests, the kNN classifier takes the k closest samples in the feature space and based on their labels, assigns a class to given input

# k-Nearest Neighbours



Figure: kNN Example

## kNN: Algorithm Pseudo-code

- 1. Let x be the sample whose class is to be determined and  $x_1, x_2, \ldots, x_n$  be the samples whose classes are known
- 2. Calculate  $D(x, x_i) \ \forall i = 1, 2, ..., n$ ; where D denotes the Euclidean distance between the points.
- 3. Arrange the calculated *n* Euclidean distances in ascending order.
- 4. Let *k* be a chosen positive integer. Take the first *k* distances from the sorted list.
- 5. Find the k-samples corresponding to these k-distances.
- 6. Class of x is given by the majority class among these k-points

### kNN: Choosing k value



Figure: The elbow method showing the optimal K

# kNN (cont.)

- ► There are no pre-defined statistical methods to find the most favorable value of K.
- ► A heuristic method called the elbow curve method can be used to determine an optimal value for K.
- ► The following steps describe the method:
  - 1. Initialize a random K value and start computing.
  - Choosing a small value of K leads to unstable decision boundaries.
  - 3. The substantial K value is better for classification as it leads to smoothening the decision boundaries.
  - 4. Derive a plot between error rate and K denoting values in a defined range.
  - 5. When K increases, the centroids are closer to the clusters centroids. The improvements will decline, at some point rapidly, creating the elbow shape. The curve is called **elbow curve** and the point at elbow is the optimal value for K.

### Naive Bayes Classifier

| Normal (N) Message | Content<br>(Frequency)                          | Probabilities                                                           | Prior<br>Probabilities |
|--------------------|-------------------------------------------------|-------------------------------------------------------------------------|------------------------|
|                    | Dear (8)<br>Friend (5)<br>Food (3)<br>Money (1) | p(Dear N)=8/17<br>p(Friend N)=5/17<br>p(Food N)=3/17<br>p(Money N)=1/17 | p(N)=8/(8+4)<br>=8/12  |
| # N Messages = 8   |                                                 |                                                                         |                        |
| Spam (S) Message   | Dear (2)<br>Friend (1)<br>Food (0)<br>Money (4) | p(Dear S)=2/7<br>p(Friend S)=1/7<br>p(Food S)=0/7<br>p(Money S)=4/7     | p(S)=4/(8+4)<br>=4/12  |
| # S Messages = 4   |                                                 |                                                                         |                        |

#### Test Message: Dear Friend

$$\begin{split} p(N|\text{Test Message}) &\propto p(N) \times p(\text{Dear}|N) \times p(\text{Friend}|N) = 320/3468 = 0.092 \\ p(S|\text{Test Message}) &\propto p(S) \times p(\text{Dear}|S) \times p(\text{Friend}|S) = 8/588 = 0.013 \\ p(N|\text{Test Message}) &> p(S|\text{Test Message}) \end{split}$$

Hence, the test message belongs to Normal Message.

Figure: Spam filtering using Naive Bayes



## Naive Bayes Classifier

- Naive Bayes is a probabilistic classifier which is built using Baye's theorem
- ▶ It works based on the assumption (naive assumption) that all the features are independent of each other
- ▶ Suppose *y* represents the output labels and *x* represents vector of input features, the posterior probability of a class given input features can be calculated using Baye's theorem as follows:

$$P(y|\mathbf{x}) = \frac{P(\mathbf{x}|y)P(y)}{P(\mathbf{x})}$$

▶ Based on the probability P(y|x) and a chosen threshold, the class label of an input can be predicted

## Naive Bayes Classifier

- In naive baye's classifier, this posterior probability is calculated by obtaining the probabilities P(x|y), P(y), P(x) from data
- These calculations are done based on the naive assumption of feature independent
- If  $\mathbf{x} = (x_1, x_2, \dots, x_d)$  are the d features, then feature independent implies:

$$P(y|x_1, x_2, ..., x_d) = \frac{P(x_1, x_2, ..., x_d|y)P(y)}{P(x_1, x_2, ..., x_d)}$$

$$P(y|\mathbf{x}_1, x_2, ..., x_d) = \frac{P(x_1|y)P(x_2|y)...P(x_d|y)P(y)}{P(x_1)P(x_2)...P(x_d)}$$

► The probabilities in the above formula can be calculated from the data

# Naive Bayes (cont.)

### Advantages:

- 1. They are extremely fast for both training and prediction.
- 2. They provide straightforward probabilistic prediction.
- 3. They are often very easily interpretable.
- 4. They have very few (if any) tunable parameters.

#### When to use it?

- Though naive assumptions hold rarely in real datasets, this method works in practice as long as the features have low correlation among them.
- 2. When it is required to learn models quickly with large datasets and make fast predictions
- 3. Mostly used in text classification and spam filtering