Homework 1 Part 2

Stat 435, Spring 2020 Due Friday, April 10, 11:59pm

Kernel smoothing: a simplified analysis of estimation error

Training sample $(x_1, y_1, \dots, (x_n, y_n))$.

Predictor values x_1, \ldots, x_n are considered fixed (not random).

Response values $y_i = f(x_i) + \epsilon_i$, with $\epsilon_1, \dots, \epsilon_n$ independent, $\mathbf{E}(\epsilon_i) = 0$, $\mathbf{V}(\epsilon_i) = \sigma^2$.

Define $\mathbf{y} = (y_1, \dots, y_n), \mathbf{f} = (f(x_1), \dots, f(x_n), \text{ etc.})$

 $K_{\lambda}(x)$: Kernel with bandwidth parameter λ controlling the amount of smoothing.

Define **W**: $n \times n$ weight matrix with $\mathbf{W}_{i,j} = K_{\lambda}(x_i - x_j) / \sum_j K_{\lambda}(x_i - x_j)$. Then $\hat{\mathbf{f}} = \mathbf{W} \mathbf{y}$.

Note: W, $\hat{\mathbf{f}}$, etc will depend on λ . We supress this dependence to simplify notation.

We want to calculate the expectation (over ϵ) of the average squared estimation error:

$$D = \mathbf{E} \left(\frac{1}{n} \| \mathbf{f} - \hat{\mathbf{f}} \|^2. \right)$$

(a) (20 points) Show that

$$D = \frac{1}{n} \left(\| (W - I) \mathbf{f} \|^2 + \sigma^2 \operatorname{trace} \ (\mathbf{W}^T \mathbf{W}) \right)$$

Note: D is the sum of a bias term that depends only on f (not on σ^2 and a variance term that depends only on σ^2 (not of f.

- (b) (20 points) Using a Gaussian kernel ϕ_{σ} , plot squared bias, variance, and their sum for $\sigma = \text{seq(from = 0.01, to = 2, by = 0.01)}$. Print the optimal choice for σ .
- (c) (10 points) Plot the training sample, \mathbf{f} , and $\hat{\mathbf{f}}$ for the optimal choice of σ .