Signatures without RO

Anonymous Submission

No Institute Given

1 Preliminaries

1.1 Signatures

A digital signature scheme consists of three algorithms (Gen, Sgn, Ver). A key generation algorithm Gen, a signing algorithm Sgn and a verification algorithm Ver. Gen is a randomised algorithm that produces a random key pair consisting of a public key pk and a secret key sk. The probabilistic signing algorithm Sgn requires a secret key and a message from the message space M and produces a signature σ . Finally, the verification algorithm Ver takes a public key, a message and a signature as input and returns either 0/reject or 1/accept. A signature scheme is called correct, if every signature on a message generated with a secret key is accepted under the corresponding public key.

Definition 1 (RMA security). A signature scheme $\Pi = (\mathsf{Gen}, \mathsf{Sgn}, \mathsf{Ver})$ is said to be (t, q, ϵ) -secure against existential forgery under the random message attack (EUF-RMA), if for all adversary \mathcal{A} running in time at most t we have

$$\Pr[q\text{-EUF-RMA}_{\Pi}(\mathcal{A})] = 1] \le \epsilon.$$

We say A, (t, q, ϵ) -breaks the EUF-RMA security of the signature if

$$\Pr[q\text{-EUF-RMA}_{\Pi}(\mathcal{A}) = 1] > \epsilon$$

```
\begin{array}{|c|c|c|}\hline \textbf{Game } q\text{-EUF-RMA}_{\varPi}(\mathcal{A})\\ \hline 01 & (sk,pk) \xleftarrow{\$} \textbf{Gen}\\ 02 & \mathcal{Q} \leftarrow \emptyset\\ 03 & \textbf{for } i \in [q]\\ 04 & m_i \xleftarrow{\$} \textbf{M}\\ 05 & \sigma_i \xleftarrow{\$} \textbf{Sgn}(sk,m_i)\\ 06 & \mathcal{Q} \leftarrow \mathcal{Q} \cup (m_i,\sigma_i)\\ 07 & (m*,\sigma^*) \leftarrow \mathcal{A}(pk,\mathcal{Q})\\ 08 & \textbf{if } \textbf{Ver}(pk,m^*,\sigma^*) = 1 \land m^* \notin \{m_1,..,m_q\} \textbf{ then return } 1\\ 09 & \textbf{else return } 0 \\ \hline \end{array}
```

Figure 1.

1.2 Hash Functions

Let $\mathbb{G} = (\mathsf{G}_k)$ be a family of groups, indexed by the security parameter $k \in \mathbb{N}$. We omit the subscript when the reference to the security parameter is clear, thus write G for G_k .

A group hash function H over G with input length l=l(k) consists of two efficient algorithms PHF.Gen and PHF.Eval. The probabilistic algorithm $\kappa \overset{\$}{\leftarrow}$ PHF.Gen(1^k) generates a hash key κ for the security parameter k. Algorithm PHF.Eval is a deterministic algorithm, taking as input a hash function key κ and $X \in \{0,1\}^l$, and returning PHF.Eval(κ, X) \in G. In the context were κ is clear we write PHF.Eval(κ, X) as H(X).

Definition 2 (Correlation Interactibilty). We say an adversary \mathcal{A} , (t, ϵ) -breaks the correlation intractability of a hash function $\mathsf{H} = (\mathsf{PHF}.\mathsf{Gen}, \mathsf{PHF}.\mathsf{Eval})$ with regards to function g if \mathcal{A} runs in time t and

$$\Pr[x \xleftarrow{\$} \mathcal{A}, \mathsf{PHF}.\mathsf{Eval}(\kappa, x) = q(x); \kappa \xleftarrow{\$} \mathsf{PHF}.\mathsf{Gen}] > \epsilon.$$

We call the hash function (t, ϵ) -correlation intractable if such an adversary does not exist.

Definition 3. A group hash function $H=(\mathsf{PHF}.\mathsf{Gen},\mathsf{PHF}.\mathsf{Eval})$ is a $(m,n,n\gamma,\delta)-programmable,$ if there is an efficient trapdoor key generation algorithm PHF.TrapGen and an efficient trapdoor evaluation algorithm PHF.TrapEval with the following properties.

- 1. The probabilistic trapdoor generation algorithm $(\kappa, \eta) \overset{\$}{\leftarrow} \mathsf{PHF.TrapGen}(1^k, g_1, g_2)$ takes as input group elements $g, h \in \mathsf{G}$, and produces a hash function key κ together with trapdoor information η .
- 2. For all generators $g_1, g_2 \in G$, the keys $\kappa \xleftarrow{\$} \mathsf{PHF}.\mathsf{Gen}(1^k)$ and $\kappa' \xleftarrow{\$} \mathsf{PHF}.\mathsf{Gen}(1^k, g_1, g_2)$ are statistically $\gamma\text{-close}$.
- 3. On input $X \in \{0,1\}^l$ and trapdoor information η , the deterministic trapdoor evaluation algorithm $(a_X,b_X) \leftarrow \mathsf{PHF}.\mathsf{TrapEval}(\eta,X)$ produces $a_X,b_X \in \mathbb{Z}$ so that for all $Xin\{0,1\}^l$,

$$\mathsf{PHF.Eval}(\kappa,X) = g_1^{a_X} g_2^{b_X}.$$

4. For all $g_1, g_2 \in \mathsf{G}$, all κ generated by $\kappa \overset{\$}{\leftarrow} \mathsf{PHF.TrapGen}(1^k, g_1, g_2)$, and all $X_1, ..., X_m$ in $\{0, 1\}^l$ and $Z_1, ..., Z_n \in \{0, 1\}^l$ such that $X_i \neq Z_j$ for all i, j, we have

$$\Pr[a_{X_1} = \dots = a_{X_m} = 0 \land a_{Z_1}, \dots, a_{Z_n} \neq 0] \ge \delta$$

where $(a_{X_i},b_{X_i})= \mathsf{PHF.TrapEval}(\eta,X_i)$ and $(a_{Z_i},b_{Z_i})= \mathsf{PHF.TrapGen}(\eta,Z_j),$ and the probability is taken over the trapdoor η produced along with κ .

2 Identification Scheme

Definition 4 (Canonical Tag-based Identification Scheme). A canonical tag-based identification (tag-ID) scheme is defined as the probabilistic algorithms ID := (IGen, P, V) where

- IGen returns a public key and secret key (pk, sk). We assume that pk defines the challenge set ChSet and tag space TgSet.
- The prover algorithm $P = (P_1, P_2)$ is split into two algorithms. P_1 takes the secret key sk and a tag τ from the tag space M as the input and returns a commitment Com and a state St. P_2 takes the secret key sk, the state St and a challenge C as an input and returns a response s.
- The deterministic verifier algorithm V takes the public key pk, the tag τ , the commitment Com, the challenge C and the response s as an input and outputs a decision, 1 (acceptance) or 0 (rejection).

For correctness we require that for all $k \in \mathbb{N}$, $(pk, sk) \in \mathsf{IGen}(1^k)$, all $(Com, St) \in \mathsf{P}_1(sk, \tau)$, all $C \in \mathsf{ChSet}$ and all $s \in \mathsf{P}_2(sk, St, C)$, we have

$$V(pk, Com, C, s) = 1.$$

Figure 2. Canonical Tag-based Identification Scheme

Definition 5 (Dual Tag-ID). A dual canonical tag based identification scheme (dual tag-id) is a identification scheme ID, with an additional algorithm \tilde{V} called the alternative verification algorithm that takes the secret key sk, the tag τ , the commitment Com, the challenge C and the response s as an input and outputs a decision, 1 (acceptance) or 0 (rejection).

For the correctness of this scheme in additional to the correctness defined before we require that for all $k \in \mathbb{N}$, $(pk, sk) \in \mathsf{IGen}(1^k)$, all $(Com, St) \in \mathsf{P}_1(sk, \tau)$, all $C \in \mathsf{ChSet}$ and all $s \in \mathsf{P}_2(sk, St, C)$, we have

$$\tilde{\mathsf{V}}(sk, \tau, Com, C, s) = 1.$$

Definition 6 (Alternative Impersonation). A canonical tag based identification scheme is said to be $(t, q, \epsilon) - \mathsf{IMP}^{\tilde{\mathsf{V}}}$ secure, if for all adversary \mathcal{A} running in time at most t we have

$$\Pr[q\text{-IMP-ALT}_{\mathsf{ID}}^{\tilde{\mathsf{V}}}(\mathcal{A})] = 1] \leq \epsilon.$$

```
Game q-IMP-ALT^{\vee}_{ID}(\mathcal{A})
01 (sk, pk) \leftarrow IGen
02 Q \leftarrow \emptyset
03 for i \in [q]
            \tau_i \stackrel{\$}{\leftarrow} \mathsf{M}
04
            (Com_i, St_i) \stackrel{\$}{\leftarrow} \mathsf{P}_1(sk, \tau_i)
05
            C_i \xleftarrow{\$} \mathsf{ChSet}
06
            s_i \stackrel{\$}{\leftarrow} \mathsf{P}_2(sk, St_i, C_i)
07
            Q \leftarrow Q \cup (\tau_i, Com_i, C_i, s_i)
09 (\tau^*, Com^*, C^*, s^*) \leftarrow \mathcal{A}(pk, \mathcal{Q})
10 if \tau^* \notin \{\tau_1, ..., \tau_q\} \wedge \tilde{\mathsf{V}}(sk, \tau^*, Com^*, C^*, s^*) = 1
        then return 1
12 else return 0
```

Figure 3.

Definition 7 (Uniqueness). We say the identification scheme ID := (IGen, P, ChSet, V) is unique if for every $(sk, pk) \in IGen$ and every $(Com, St) \in P_1(sk, \tau)$,

$$\left|\left\{C \in \mathsf{ChSet} \mid \exists \ s : \mathsf{V}(pk, Com, C, s) = 1 \land \tilde{\mathsf{V}}(sk, Com, \mathcal{C}, s) \neq 1\right\}\right| = 1.$$

This means there exist a (not necessarily polynomial time) function we call the uniqueness function such as f that

$$f(pk, Com) = C.$$

3 Constructions

Definition 8 (Signature scheme). To construct a signature Sig := (Gen, Sgn, Ver) from a 3-round tag-based identification scheme ID := (IGen, P, V) we proceed as in Figure 4.

Definition 9 (Partially valid signature). signature $\sigma = (Com_0, C_0, s_0, Com_1, C_1, s_1)$ is partially valid if $\tilde{\mathsf{V}}(pk_0, Com_0, C_0, s_0) = 1$ or $\tilde{\mathsf{V}}(pk_1, Com_1, C_1, s_1) = 1$ not partially valid if $\tilde{\mathsf{V}}(pk_0, Com_0, C_0, s_0) = 0$ and $\tilde{\mathsf{V}}(pk_1, Com_1, C_1, s_1) = 0$.

```
Gen(par):
                                                                  \mathsf{Sgn}(sk,m):
01 (pk_0, sk_0) \stackrel{\$}{\leftarrow} \mathsf{IGen}
                                                                  14 parse sk = (sk_0, sk_1)
02 (pk_1, sk_1) \stackrel{\$}{\leftarrow} \mathsf{IGen}
                                                                  15 (Com_0, St_0) \stackrel{\$}{\leftarrow} \mathsf{P}_1(sk_0, m)
03 pk := (pk_0, pk_1)
                                                                  16 (Com_1, St_1) \stackrel{\$}{\leftarrow} P_1(sk_1, m)
04 sk := (sk_0, sk_1)
                                                                       k = \mathsf{H}(pk, Com_0, Com_1)
05 return (sk, pk)
                                                                  18 e \leftarrow \text{ChSet}
\mathsf{Ver}(pk,\sigma,m):
                                                                  19 C_0 = d \oplus e
06 parse \sigma = (Com_0, C_0, s_0, Com_1, C_1, s_1) 20
                                                                       C_1 = e
     if C_0 \oplus C_1 \neq \mathsf{H}(pk, Com_0, Com_1)
                                                                       s_0 \stackrel{\$}{\leftarrow} \mathsf{P}_2(sk_0, St_0, C_0)
08
          then return 0
                                                                  22 s_1 \stackrel{\$}{\leftarrow} P_2(sk_1, St_1, C_1)
     if V(pk_0, Com_0, C_0, s_0) = 0
09
                                                                  23 \sigma := (Com_0, C_0, s_0, Com_1, C_1, s_1)
          then return 0
                                                                  24 return \sigma
     if V(pk_1, Com_1, C_1, s_1) = 0
          then return 0
12
      else return 1
13
```

Figure 4. Instantiation 1

3.1 Security

Theorem 1. Let ID be a unique identification scheme and H be a (t'', ϵ'') correlation intractable hash function. Suppose there exists a (t, q, ϵ) -forger \mathcal{F} breaking the security of $\operatorname{Sig}_{\mathsf{ID},\mathsf{H}}$ against the existential forgery under the random message attack. Then there exists an adversary that (t', q, ϵ') -breaks the $\mathsf{IMP}^{\tilde{\mathsf{V}}}$ security of ID with $t' \approx t$ and

$$\epsilon' \ge \frac{1}{2}(\epsilon + \epsilon'')$$

Proof. We define the event of Game G_i winning (returning 1) as X_i . Let (m_i, σ_i) denote the *i*-th random message and its signature. Let (m^*, σ^*) be the forgery output by \mathcal{F} .

Game 0. We define Game 0 as the existential unforgeability experiment with forger \mathcal{F} on the signature scheme Sig_{ID,H} as shown in Figure 5. By definition, we have

$$\Pr[X_0] = \epsilon.$$

Game 1. In G_1 we check if the signature is partially valid or not and set BAD_1 to **true** and abort if it isn't. Which according to Lemma 1 and H being (t'', ϵ'') correlation intractable happens with at most ϵ'' probability and so we have

$$\Pr[X_1] = \Pr[X_0 \land \neg \mathtt{BAD}_1] \ge \Pr[X_0] + \epsilon''.$$

Game 2. In G_2 we pick a random bit b in the beginning of the game and after getting the forged signature σ^* which we parse as

$$\sigma^* = (Com_0^*, C_0^*, s_0^*, Com_1^*, C_1^*, s_1^*),$$

```
G_0 - G_3
                                                                                                                                                                                                                                   G_4
01 b \stackrel{\$}{\leftarrow} \{0,1\}
                                                                                                                                                                                                  /\!\!/ G_2 - G_3 33 b \stackrel{\$}{\leftarrow} \{0, 1\}
 02 BAD_2 \leftarrow \mathbf{true}
                                                                                                                                                                                                  /\!\!/ G_2 - G_3 34 BAD_2 \leftarrow true
 03 (pk_0, sk_0) \stackrel{\$}{\leftarrow} \mathsf{IGen}
                                                                                                                                                                                                                                 35 (pk_0, sk_0) \stackrel{\$}{\leftarrow} IGen
 04 (pk_1, sk_1) \stackrel{\$}{\leftarrow} \mathsf{IGen}
                                                                                                                                                                                                                                   36 (pk_1, sk_1) \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathsf{IGen}
 05 pk := (pk_0, pk_1)
                                                                                                                                                                                                                                   37 pk := (pk_0, pk_1)
 06 sk := (sk_0, sk_1)
                                                                                                                                                                                                                                   38 sk := (sk_0, sk_1)
 07 for i \in [q]
                                                                                                                                                                                                                                   39 	extbf{for}\ i \in [q]
                                                                                                                                                                                                                                                   (Com_{0,i}, St_{0,i}) \stackrel{\$}{\leftarrow} P_1(sk_0, m_i)
                   (Com_{0,i}, St_{0,i}) \stackrel{\$}{\leftarrow} P_1(sk_0, m_i)
                    (Com_{1,i}, St_{1,i}) \stackrel{8}{\leftarrow} P_1(sk_1, m_i)
                                                                                                                                                                                                                                                       (Com_{1,i}, St_{1,i}) \stackrel{\$}{\leftarrow} P_1(sk_1, m_i)
                    k_i = \mathsf{H}(pk, Com_{0,i}, Com_{1,i})
                                                                                                                                                                                                                                                       k_i = \mathsf{H}(pk, Com_{0,i}, Com_{1,i})
                    e_i \xleftarrow{\tt \$} \mathsf{ChSet}
                    C_{0,i} = k_i \oplus e_i
                                                                                                                                                                                                                                                      C_{1-b,i} = k_i \oplus e_i
                   C_{1,i} = e_i
                    s_{0,i} \xleftarrow{\hspace{0.1em}\mathsf{\$}} \mathsf{P}_2(sk_0,St_{0,i},C_{0,i})
                                                                                                                                                                                                                                                       s_{0,i} \overset{\$}{\leftarrow} \mathsf{P}_2(sk_0, St_{0,i}, C_{0,i})
                    s_{1,i} \xleftarrow{\$} \mathsf{P}_2(sk_1,St_{1,i},C_{1,i})
                                                                                                                                                                                                                                                       s_{1,i} \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathsf{P}_2(sk_1,St_{1,i},C_{1,i})
                    \sigma_i := (Com_{0,i}, C_{0,i}, s_{0,i}, Com_{1,i}, C_{1,i}, s_{1,i})
                                                                                                                                                                                                                                                        \sigma_i := (Com_{0,i}, C_{0,i}, s_{0,i}, Com_{1,i}, C_{1,i}, s_{1,i})
                   Q \leftarrow Q \cup (m_i, \sigma_i)
                                                                                                                                                                                                                                                     Q \leftarrow Q \cup (m_i, \sigma_i)
 19 (m*, \sigma^*) \leftarrow A(pk, Q)
                                                                                                                                                                                                                                   51 (m*, \sigma^*) \leftarrow \mathcal{A}(pk, \mathcal{Q})
 20 parse \sigma^* = (Com_0^*, C_0^*, s_0^*, Com_1^*, C_1^*, s_1^*)
                                                                                                                                                                                                                                  52 parse \sigma^* = (Com_0^*, C_0^*, s_0^*, Com_1^*, C_1^*, s_1^*)
 21 \quad \text{if } \tilde{\mathsf{V}}(pk_0,Com_0^*,C_0^*,s_0^*) = 0 \\ \wedge \tilde{\mathsf{V}}(pk_0,Com_0^*,C_0^*,s_0^*) = 0 \\ \# \mathsf{G}_1 \\ - \mathsf{G}_3 \\ \exists 3 \quad \text{if } \tilde{\mathsf{V}}(pk_0,Com_0^*,C_0^*,s_0^*) = 0 \\ \wedge \tilde{\mathsf{V}(pk_0,Com_0^*,C_0^*,s_0^*) = 0 \\ \wedge \tilde{\mathsf{V}}(pk_0,Com_0^*,C_0^*,s_0^*) = 0 \\ \wedge \tilde{\mathsf{V}(pk_0,Com_0^*,C_0^*,s_0^*) = 0 \\ \wedge \tilde{\mathsf{V}(pk_0,Com_0^*,C_0^*,s_0^*) = 0 \\ \wedge \tilde{\mathsf{V}(pk_0,Com_0^*,C_0^*,s_0^*) = 0 \\ \wedge \tilde{\mathsf{V}(pk_0,Com_0^*,C_0^*,c_0^*) = 0 \\ \wedge \tilde{\mathsf{V}(pk_0,Com_0^*,C_0^*,c_0^*) = 0 \\ \wedge \tilde{\mathsf{V}(pk_0,Com_0^*,C_0^*,c_0^*) = 0 \\ \wedge \tilde{\mathsf{V}(pk_0,Com_0^*,C_0^*,c_0^*,
 22 then BAD₁ ← true; abort
                                                                                                                                                                                                 /\!/ G_1 - G_3 54 then BAD_1 \leftarrow true; abort
 23 if \tilde{V}(pk_b, Com_b^*, C_b^*, s_b^*) = 0
                                                                                                                                                                                                  /\!\!/ G_2 - G_3 55 if \tilde{V}(pk_b, Com_b^*, C_b^*, s_b^*) = 0
24 then BAD<sub>2</sub> ← true:
                                                                                                                                                                                                 /\!\!/ G_2 - G_2 56 then BAD_2 \leftarrow true;
                  abort
                                                                                                                                                                                                                   // G<sub>3</sub> 57 abort
                                                                                                                                                                                                                                  58 if C_0^* + C_1^* \neq H(pk, Com_0^*, Com_1^*)
26 if C_0^* + C_1^* \neq H(pk, Com_0^*, Com_1^*)
                      then return 0
                                                                                                                                                                                                                                                         then return 0
28 if V(pk_0, Com_0, C_0, s_0) = 0 \lor V(pk_1, Com_1, C_1, s_1) = 0
                                                                                                                                                                                                                                   60 if V(pk_0, Com_0, C_0, s_0) = 0 \lor V(pk_1, Com_1, C_1, s_1) = 0
                                                                                                                                                                                                                                                         then return 0
                      then return 0
30 if m^* \notin \{m_1, ..., m_a\}
                                                                                                                                                                                                                                   62 if m^* \notin \{m_1, ..., m_a\}
                     then return 0
                                                                                                                                                                                                                                                         then return 0
                                                                                                                                                                                                                                    64 else return 1
 32 else return 1
```

Figure 5.

we check whether $V(pk_b, Com_b^*, C_b^*, s_b^*)$ is zero and set the tag BAD₂ to **true** if it is. Since this change is only internal to the game

$$\Pr[X_1] = \Pr[X_2].$$

Game 3. In G_3 we abort if BAD_2 that we defined in the last game is set to **true**. Since the game would have already aborted if the forged signature was not partially valid signature and b was chosen randomly in the beginning, we have $Pr[BAD_2] \leq \frac{1}{2}$, which implies

$$\Pr[X_3] = \Pr[X_2 \land \neg \mathtt{BAD}_2] \geq \frac{1}{2} \Pr[X_2].$$

Game 4. Game G_4 is exactly like G_3 except instead of always choosing $C_{0,i}$ randomly from the ChSet and then calculating $C_{1,i}$ accordingly, we choose $C_{b,i}$ first and then calculate $C_{1-b,i}$. Since the distribution of $(C_{0,i},C_{1,i})$ does not change we have

$$\Pr[X_4] = \Pr[X_3].$$

We point out that in this game we can choose $(m_i, Com_{b,i}, C_{i,b}, s_{b,i})$ first and then calculate $(Com_{1-b,i}, C_{1-b,i}, s_{1-b,i})$ and thus the signature σ_i accordingly.

Now adversary \mathcal{A} simulates game G_4 . The \mathcal{A} receives pk_b and $(\tau_i, Com_{b,i}, C_{b,i}, s_{b,i})$ from the alternative impersonation game and proceeds to run IGen to obtain pk_{1-b} and calculate signatures on message $m_i := \tau_i$. As pointed out before it is possible to calculate σ_i according to $(\tau_i, Com_{b,i}, C_{b,i}, s_{b,i})$.

It remains to show how \mathcal{A} can break the alternative impersonation from the forged signature $\sigma^* = (Com_0^*, C_0^*, s_0^*, Com_1^*, C_1^*, s_1^*)$ on message m^* output by \mathcal{F} . We know that $\tilde{V}(sk_b, m^*, Com_b^*, C_b^*, s_b^*) = 1$ (by game 2). So \mathcal{A} can win the alternative impersonation game by outputting $(m^*, Com_b^*, C_b^*, s_b^*)$. So putting all of this together we have

$$\Pr[X_4] = \epsilon' \ge \frac{1}{2} (\epsilon + \epsilon'')$$

Lemma 1. Let \mathcal{F} be a forger that (t,q,ϵ) -breaks the RMA security of the signature such that the forged signature it outputs is not partially valid. Then there exists adversary \mathcal{A} that (t'',ϵ'') -breaks the correlation intractability of the hash function H with $t \approx t''$ and

$$\epsilon'' \geq \epsilon$$
.

Proof. The correlation intractability adversary \mathcal{A} runs the unforgeability experiment by running IGen twice and obtaining two pairs of keys we name (sk_0, pk_0) and (sk_1, pk_1) . The adversary now return $pk := (pk_0, pk_1)$ to \mathcal{F} as the public key and also chooses random messages $m_1, ..., m_q$ and signs them with the secret key $sk := (sk_0, sk_1)$ to obtain the signatures $\sigma_1, ..., \sigma_q$ and returns the (m_i, σ_i) pairs to \mathcal{F} .

Eventually, \mathcal{F} returns a message and signature pair (m^*, σ^*) , from which \mathcal{A} extracts the solution that breaks the hash intractability as follows.

First \mathcal{A} parses σ^* as $(Com_0^*, C_0^*, s_0^*, Com_1^*, C_1^*, s_1^*)$. We assume that the forged signature is valid and since it is not partially valid, due to the uniqueness of the identification scheme we can write

$$C_0^* = f(pk_0, Com_0^*)$$

 $C_1^* = f(pk_1, Com_1^*).$

Since we have assumed the forged signature is valid

$$H(pk, Com_0^*, Com_1^*) = C_0^* + C_1^* = f(pk_0, Com_0^*) + f(pk_1, Com_1^*) = g(pk, Com_0^*, Com_1^*)$$

must hold. So \mathcal{A} can (t,ϵ') break the g-correlation intractability of H where g is defined as

$$g(pk = (pk_0, pk_1), Com_0, Com_1) = f(pk_0, Com_0) + f(pk_1, Com_1).$$

Adversary \mathcal{A} succeeds at giving a solution that breaks the correlation intractability of H whenever \mathcal{F} succeeds at forging a valid signature so

$$\epsilon'' \geq \epsilon$$
.

7

4 Instantiation from the q-SDH Assumption

In the following let par := (p, G) be a set of system parameters, where G is a cyclic group of prime order p.

Definition 10 (q-SDH Assumption). We say an adversary A breaks the q-strong Diffie Hellman (q-SDH)assumption if it's running time is bounded by t and

$$\Pr[(s, g^{\frac{1}{s+x}}) \xleftarrow{\$} \mathcal{A}(g, g^x, ..., g^{x^q})] \ge \epsilon,$$

where $g \stackrel{\$}{\leftarrow} \mathsf{G}$ and $x \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*$. We require that the q-SDH assumption holds meaning that no adversary can (t,ϵ) break the q-SDH problem for a polynomial t and a non-negligible ϵ .

IGen(par):	$P_1(sk, au)$:
01 g ← S G	13 $r \overset{\$}{\leftarrow} \mathbb{Z}_p$
02 $x \stackrel{\$}{\leftarrow} \mathbb{Z}_p$	14 $St := (\tau, r)$
03 $sk \coloneqq (g,x)$	15 $\hat{g} \coloneqq g^{\frac{1}{x+ au}}$
$04 X = g^x$	16 $R := g^r$
05 $pk := (g, X)$	17 $\hat{R} \coloneqq \hat{g}^r$
06 $ChSet \coloneqq \mathbb{Z}_p$	18 $Com := (\hat{g}, R, \hat{R})$
07 return (sk, pk)	19 return (Com, St)
$V(pk, \tau, Com, C, s)$:	${\sf P}_2(sk,St,C)$:
08 parse $Com = (\hat{g}, R, \hat{R})$	20 parse $St=(au,r)$
09 if $R = g^s \cdot (X \cdot g^{\tau})^{-C} \wedge$	21 parse $sk = x$
10 $\hat{R} = \hat{g}^s \cdot (g \cdot \hat{g}^{-\tau})^C$	22 return $s = C \cdot (x + \tau) + r \mod p$
11 then return 1	$ ilde{V}(sk, au,Com,C,s)$:
12 else return 0	23 parse $Com = (\hat{g}, R, \hat{R})$
	24 parse $sk = x$
	25 if $\hat{g} = g^{\frac{1}{x+\tau}}$
	26 then return 1
	27 else return 0

Figure 6. Instantiation 1

We describe the identification scheme $\mathsf{ID}_{q-\mathrm{SDH}} \coloneqq (\mathsf{IGen}, \mathsf{P} = (\mathsf{P}_1, \mathsf{P}_2), \mathsf{ChSet}, \mathsf{V})$ and it's alternative verification $\tilde{\mathsf{V}}$ as depicted in figure 4.

Theorem 2. Suppose that there exists a (t, q, ϵ) -forger \mathcal{F} breaking the $\mathsf{IMP}^{\tilde{\mathsf{V}}}$ of the ID_{q-SDH} identification scheme. Then there exists an adversary \mathcal{A} that $(t', q+1, \epsilon')$ - breaks the q+1-SDH assumption with $t \approx t'$ and $\epsilon' \geq ?$.

Proof. The q-SDH adversary \mathcal{A} receives $d_0, ..., d_q$ as inputs where $d_i = g^{x^i}$ and simulates the q-SDH experiment as follows

Key Generation:

The adversary \mathcal{A} first chooses random $\tau_1, ..., \tau_q$ from \mathbb{Z}_p . Let f be a univariate polynomial defined as $f(X) = \prod_{i=1}^q (X + \tau_i)$. Expand f and write $f(X) = \sum_{i=0}^q \alpha_i X^i$ where $\alpha_0, ..., \alpha_q \in \mathbb{Z}_p$ are coefficients of the polynomial f. Adversary \mathcal{A} chooses a random $\theta \in \mathbb{Z}_p^*$, and computes

$$g_1 \leftarrow \prod_{i=0}^q d_i^{\theta \alpha_i}$$

which essentially means $g_1 = g^{\theta f(x)}$. \mathcal{A} can also calculates $X = g_1^x = g^{xf(x)}$ similarly since Xf(X) has a degree equal to q+1.

Adversary \mathcal{A} returns (g_1, X) as the public key to \mathcal{F} . This is indistinguishable from the normal key generation for \mathbb{F} since g_1 is randomly distributed in G and X is correctly computed.

Transcript Generation:

Now adversary \mathcal{A} compute (Com_i, C_i, s_i) for τ_i .

 \mathcal{A} computes $\hat{g}_i = g_1^{\frac{1}{x+\tau_i}}$ for i = 1, ..., q. To do so, let f_i be defined as

$$f_i(X) = \frac{f_i(X)}{X + \tau_i} = \prod_{j=1, j \neq i}^{q} (X + \tau_j).$$

As before, we write f_i as $f_i(X) = \sum_{j=0}^{q-1} \beta_j X^j$ while calculating its coefficient. Now \mathcal{A} can compute

$$\hat{g}_i = \prod_{j=0}^{q-1} d_j^{\theta \beta_j}$$

hence

$$\hat{g}_i = g^{\theta f_i(X)} = g_1^{\frac{1}{x + \tau_i}}.$$

Then \mathcal{A} chooses $C_i, s_i \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ and computes

$$R = g_1^s \cdot (X \cdot g_1^{\tau})^{-C}$$

$$\hat{R} = \hat{g}^s \cdot (g \cdot \hat{g}^{-\tau})^C.$$

Now \mathcal{A} returns $(Com_i = (\hat{g}, R, \hat{R}), C_i, s_i)$ to \mathcal{F} and this is indistinguishable from the normal transcript generation for \mathcal{F} since if we define r to be r = s - Cx then $R = g_1^x$ and $\hat{R} = \hat{g}^x$ and also since s and C are uniformly distributed in \mathbb{Z}_p so is r.

Breaking the q + 1-SDH:

Eventually forger \mathcal{F} returns a forgery $(\tau^*, Com^*, C^*, s^*)$ we assume that \mathcal{F} wins the game and thus $\tau^* \notin \{\tau_1, ..., \tau_q\}$ and $\tilde{\mathsf{V}}(sk, \tau^*, Com^*, C^*, s^*) = 1$ which means if we parse Com^* as $(\hat{g}^*, R^*, \hat{R}^*)$

$$\hat{g} = g_1^{\frac{1}{x+\tau^*}} = g^{\frac{\theta f(x)}{x+\tau^*}}$$

Using long division we can write f(X) as $f(X) = (X + \tau^*)\alpha(X) + \beta$ where the coefficients of $\alpha(X) = \sum_{i=0}^{q-1} \alpha_i X^i$ are easily computable. So we can write $\frac{f(X)}{X + \tau^*}$ as $\alpha(X) + \frac{\beta}{X + \tau^*}$ and

$$\hat{g} = g^{\theta \cdot (\alpha(X) + \frac{\beta}{X + \tau^*})}.$$

Since $\{\tau_1, ..., \tau_q\}$ are the set of roots for f(X) and τ^* is not in this set $X + \tau^*$ does not divide f(X) and so $\beta \neq 0$. Now adversary \mathcal{A} can compute

$$w \leftarrow \left(\hat{g}^{\frac{1}{\theta}} \cdot \prod_{i=0}^{q-1} d_i^{-\alpha_i}\right)^{\frac{1}{\beta}}$$

Hence,

$$w = \left(g_1^{\alpha(X)} \cdot g_1^{\frac{\beta}{x+\tau^*}} \prod_{i=0}^{q-1} d_i^{-\alpha_i}\right)^{\frac{1}{\beta}} = g_1^{\frac{1}{x+\tau^*}}.$$

Adversary \mathcal{A} returns the pair (τ^*, w) as the solution to the q+1-SDH problem.

5 Instantiation from the q-DH Assumption

We describe the identification scheme as in figure 5. In the following we will write $D(\tau)$ shorthand for PHF.Eval (κ, τ) and $d(\tau)$ shorthand for the function computing $(a,b) \leftarrow \mathsf{PHF}.\mathsf{TrapEval}(\eta,\tau)$ and returning ax+b.

Definition 11 (q-DH Assumption). We say an adversary A breaks the q-strong Diffie Hellman (q-SDH)assumption if it's running time is bounded by t and

$$\Pr[g^{\frac{1}{x}} \xleftarrow{\$} \mathcal{A}(g, g^x, ..., g^{x^q})] \ge \epsilon,$$

where $g \stackrel{\$}{\leftarrow} G$ and $x \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*$. We require that the q-DH assumption holds meaning that no adversary can (t, ϵ) break the q-DH problem for a polynomial t and a non-negligible ϵ .

Theorem 3. Suppose that there exists a (t, q, ϵ) -forger \mathcal{F} breaking the $\mathsf{IMP}^{\tilde{\mathsf{V}}}$ of the ID_{q-SDH} identification scheme. Then there exists an adversary \mathcal{A} that $(t', q+1, \epsilon')$ breaks the q+1-SDH assumption with $t \approx t'$ and $\epsilon' \geq ?$.

Proof. The q-SDH adversary \mathcal{A} receives $d_0, ..., d_q$ as inputs where $d_i = g^{x^i}$ and simulates the q-SDH experiment as follows

```
IGen(par):
                                                                   P_1(sk, \tau):
01 g_1, g_2 \stackrel{\$}{\leftarrow} \mathsf{G}
                                                                   14 r \stackrel{\$}{\leftarrow} \mathbb{Z}_p
02 x \stackrel{\$}{\leftarrow} \mathbb{Z}_p
                                                                   15 St := (\tau, r)
03 X = g_2^x
                                                                   16 \hat{g} \coloneqq g^{\frac{1}{d(\tau)}}
04 (\kappa, \eta) \leftarrow PHF.TrapGen(1^k, g_2, X)
                                                                   17 R \coloneqq g^r
05 pk := (g_1, g_2, \kappa)
                                                                   18 \hat{R} \coloneqq \hat{q}^r
06 sk := (pk, x, \eta)
                                                                   19 Com := (\hat{g}, R, \hat{R})
07 ChSet := \mathbb{Z}_p
                                                                   20 return (Com, St)
08 return (sk, pk)
                                                                   P_2(sk, St, C):
V(pk, \tau, Com, C, s):
                                                                   21 parse St = (\tau, r)
09 parse Com = (\hat{g}, R, \hat{R})
                                                                   22 parse sk = x
10 if R = g^s \cdot (X \cdot g^\tau)^{-C} \wedge
                                                                   23 return s = C \cdot d(\tau) + r \mod p
         \hat{R} = \hat{g}^s \cdot (g \cdot \hat{g}^{-\tau})^C
                                                                   \tilde{\mathsf{V}}(sk, \tau, Com, C, s):
12
           then return 1
                                                                         \mathbf{parse}\ Com = (\hat{g}, R, \hat{R})
13 else return 0
                                                                   25 parse sk = x
                                                                   26 if \hat{g} = g^{\frac{1}{x+\tau}}
                                                                   27
                                                                              then return 1
                                                                   28 else return 0
```

Figure 7. Instantiation 1

Key Generation:

The adversary \mathcal{A} first chooses random $\tau_1, ..., \tau_q$ from \mathbb{Z}_p . Let f be a univariate polynomial defined as $f(X) = \prod_{i=1}^q (X + \tau_i)$. Expand f and write $f(X) = \sum_{i=0}^q \alpha_i X^i$ where $\alpha_0, ..., \alpha_q \in \mathbb{Z}_p$ are coefficients of the polynomial f. Adversary \mathcal{A} chooses a random $\theta \in \mathbb{Z}_p^*$, and computes

$$g_1 \leftarrow \prod_{i=0}^q d_i^{\theta \alpha_i}$$

which essentially means $g_1 = g^{\theta f(x)}$. \mathcal{A} can also calculates $X = g_1^x = g^{xf(x)}$ similarly since Xf(X) has a degree equal to q+1.

Adversary \mathcal{A} returns (g_1, X) as the public key to \mathcal{F} . This is indistinguishable from the normal key generation for \mathbb{F} since g_1 is randomly distributed in G and X is correctly computed.