מתמטיקה בדידה - תרגיל בית 11 - שחר פרץ

מידע כללי

ניתן בתאריך: 24.1.2024 תאריך הגשה: 30.1.2024 **מאת:** שחר פרץ **ת.ז.:** תחפשו בקומיטים הקודמים

תרגיל בית 11 - מערכות נציגים, היחס המשרה וחלוקה

שאלה 1 (לבדוק - האם צריך להוכיח יחס שקילות?)

סעיף (א) - הפרכה

 $A=\{\langle a,b
angle\in\mathbb{Z}\mid b>0\}$ בתון: $R_2=\{\langle\langle a,b
angle,\langle c,d
angle
angle\in A^2\mid ad=cb\}$ בתון:

 R_2 צ.ל. הקבוצה $\mathcal{B}:=\{\langle a,1
angle\mid a\in\mathbb{Z}\}\cup\{\langle 1,b
angle\mid b\in\mathbb{Z}\land b>0\}$ ביל. הקבוצה

הוכחה: נשלול קיום נציג. נניח בשלילה ש־ \mathcal{B} הינה מערכת נציגים, ולכן בפרט מתוך רפלקסיביות יחס השקילות נשלול קיום נציג. נניח בשלילה ש־ $\langle a,b \rangle$ הינה מערכת נציגים, ע"פ הגדרת האיברים ב־ $\langle a,b \rangle$, נפלג למקרים: מתקיים ($\langle a,b \rangle$ בהתאם נבחר ($\langle a,b \rangle$ מתאימים. ע"פ הגדרת האיברים ב־ $\langle a,b \rangle$, נפלג למקרים:

- אם $a=0.ar{6}$ אם a=a=a, נעביר אגפים ונקבל a=a=a, ולכן a=a=a, ולכן a=a=a, ועביר אגפים ונקבל a=a=a
- b=1.5 אם ad=bc א

2.€.Д. ■

סעיף (ב) - לתקן

באופן הבא: $\mathbb{R} o \mathbb{R}$ באופן הבא: R_3 כיחס שקילות מעל

$$R_3 = \left\{ \langle f, g \rangle \in (\mathbb{R} \to \mathbb{R})^2 \mid \exists \delta > 0. \forall x \in (-\delta, \delta). f(x) = g(x) \right\}$$

 R_3 אינה מערכת נציגים של $ac:=\{\mathbb{R} o\mathbb{R}\mid x\in\mathbb{R}\setminus(-1,1).f(x)=0\}$ צ.ל.:

הוכחה: נפריך יחידות. לשם כך, נוכיח קיום $f \in \mathbb{R} \to \mathbb{R}, f, g \in \mathcal{A}$ כך ש־ $f R_3 h \wedge g R_3 h$ אך $f \in \mathbb{R} \to \mathbb{R}$ נבחרם באופן. הבא:

$$f = h = \lambda x \in \mathbb{R}.0, g = \lambda x \in \mathbb{R}.\begin{cases} 0 & -1 < x < 1 \\ x & else \end{cases}$$

 $x \in (-\delta,\delta)$ יהי נבחר gR_3h מתקיימת ישירות מתוך רפלקסיביות יחס השקילות gR_3h . נוכיח fR_3h מתקיימת ישירות מתוך רפלקסיביות יחס השקילות g(x)=0. באופן דומה g(x)=0. סה"כ g(x)=0. סה"כ g(x)=0. באופן דומה g(x)=0. סה"כ g(x)=0. כדרוש.

עתה, נוכיח f(x)=0. באופן שקול, משום שידוע $\mathbb{R} \to \mathbb{R}$, יהי $f,g \in \mathcal{A}$, נוכיח f(x)=0. הטענה הזו נכונה f(x)=0. באופן שקול, משום שידוע f(x)=0. שירות מכלל f(x)=0 ופילוג למקרים בהתאם לטווח של f(x)=0.

לסיום, נוכיח $g\neq g$, או באופן שקול לפי כלל g(x), נוכיח $g(x)\neq g(x)$. נבחר g=0, לפיכך מתוך כלל g(x) ופירוק ופירוק f(x)=0, למקרים נראה $g(x)\neq g(x)$ וסה"כ $g(x)\neq g(x)$, כדרוש.

Q.E.D. ■

•	_	ᆫ	• •	
2	11	J	N	ש

(א) סעיף

 $orall a,b \in \mathbb{R}.aResb \iff b-a \in \mathbb{Z}$ יחס שקילות מעל \mathbb{R} , המוגדר באופן הבא:

Res **צ.ל.:** [0,1) קבוצת נציגים של

הוכחה:

- $r-a\in\mathbb{Z}$ נמצא a שבעבורו $a\in\mathbb{R}$, נוכיח קיום $a\in[0,1]$ באופן שקול (שכן $a\in\mathbb{R}$), נמצא שבעבורו $a\in[0,1]$ בי $a\in[0,1]$, נתבונן ב־ $a=r-\lfloor r\rfloor$. יש להוכיח כמה דברים: ראשית, נוכיח $a=r-\lfloor r\rfloor$, ושנית, לפנות כל, נציב $a=r-\lfloor r\rfloor$ שנית, לפי הגדרה, ידוע $a=r-\lfloor r\rfloor$, נעביר ונקבל ש־ $a=r-\lfloor r\rfloor$ בי $a=r-\lfloor r\rfloor$, נכפיל ב־ $a=r-\lfloor r\rfloor$ שנית, לפי הגדרה, ידוע $a=r-\lfloor r\rfloor$, נכפיל ב־ $a=r-\lfloor r\rfloor$, נכפיל ב־ $a=r-\lfloor r\rfloor$, וסה"כ נציב ונקבל $a=r-\lfloor r\rfloor$ וסה"כ נציב ונקבל $a=r-\lfloor r\rfloor$ כדרוש.
- a=b יחידות: יהיו $a,b\in [0,1)\subseteq \mathbb{R}$, ויהי $a,b\in [0,1)\subseteq \mathbb{R}$ ולכן $aResr\wedge bResr$ ונכיח $a,b\in [0,1)\subseteq \mathbb{R}$, וזו סתירה להנחת נניח בשלילה a=b נפלג למקרים: אם a=r-b משני האגפים, ונקבל a=b משום ש־a=b משום ש־a=b וכי a+c=b השלילה, לכן a+c=b נחסר את a+c=b משני האגפים, ונקבל a+c=b משני ש־a+c=b משני בסיס a+c=b משני שלמים שלם, אז a+c=b מודע לא יתכן ש־a+c=b שניהם a+c=b, ולכן a+c=b מודע מספרים שלמים בין a+c=b (כי אין עוד מספרים שלמים בין a+c=b (כי אין עוד מספרים שלמים בין a+c=b (הגענו לסתירה.

Q.E.D. ■

(ב) סעיף

 $\mathcal{P}(\mathbb{N})$ כיחס שקילות מעל $R_1=\{\langle C,D
angle\in\mathcal{P}(\mathbb{N})^2\mid C\cap E=D\cap E\}$ כיחס שקילות מעל נגדיר בהיי

 R_1 **צ.ל.:** $\mathcal{P}(E)$ קבוצת נציגים של

הוכחה:

י בחר $A\cap E=N\cap E$ קיום נציג: יהי $N\in\mathcal{P}(\mathbb{N})$, נוכיח קיום $A\in\mathcal{P}(E)$ כך ש־ $A\cap B\cap B=A\cap B$, ובאופן שקול $A\cap B\cap B=A\cap B$. נבחר $A\cap B\cap B=A\cap B$, וסה"כ צ.ל. $A\cap B\cap B=A\cap B$

$$A \cap B \cap B$$

$$\iff \forall x. x \in A \land x \in A \land x \in B$$

$$\iff \forall x. x \in A \land x \in B \iff x \in A \cap B$$

וסה"כ בפרט $N \cap E \cap E = N \cap E$ כדרוש.

יחידות: יהי $A,B\in\mathcal{P}(E)$, ויהי $A,B\in\mathcal{P}(N)$, ויהי $A,B\in\mathcal{P}(N)$, וניח $A,B\in\mathcal{P}(E)$, מתוך ההנחה $A\cap E=B\cap E$ משום ש־ $A\cap E=B\cap E$ מטרנזיטיביות שוויון קבוצות $A\cap E=B\cap E$ משום ש־ $A\cap E=B\cap E$ אז $A\cap E=B\cap E$ וסה"כ $A=B\cap E$ טחה"כ $A=B\cap E$

2.€.D. ■

שאלה 3

נתון

נתון יחס השקילות מעל $\mathbb{R} imes \mathbb{R}$ המוגדר באופן הבא:

$$S = \{ \langle \langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle \rangle \mid x_1^2 + y_1^2 = x_2^2 + y_2^2 \}$$

(א) סעיף

צ.ל. מחלקת השקילות של $\langle 2,3 \rangle$, כלומר כל המספרים שמקיימים $x_1^2+y_2^2=2^2+3^2=2^2+3^2$ כלומר הקבוצה $x_1^2+y_2^2=2^2+3^2=2^2+3^2=2^2$, או במילים אחרות, כל השוקיים $|x_1|,|x_2|$ של משולש ישר זווית עבורם היתר היא $|x_1|,|x_2|$, או במילים אחרות, לפי נוסחת מעגל, אלו כל הנקודות על מעגל שמרכזו $\langle 0,0 \rangle$ ורדיוסו $\langle 0,0 \rangle$ ורדיוסו באורך $\langle 0,0 \rangle$ ורדיוסו $\langle 0,0 \rangle$

(ב) סעיף

S- המושרית של $\mathbb{R} imes\mathbb{R}$ המושרית מ־ $A:=\{\{\langle x,y
angle\in\mathbb{R}^2\mid x^2+y^2=c\}\mid c\in\mathbb{R}\}$ צ.ל.:

 $A=\mathbb{R}^2/S:=\{[x]_R\mid x\in A\}$ הוכחה: לפי הזהות R=S, צ.ל. שA קבוצת המנה של R, ובאופן שקול, נוכיח ש $R_{A/S}=S$, צ.ל. ש

$$\mathbb{R}^{2}/S$$

$$=\{[x]_{S} \mid \langle x, y \rangle \in \mathbb{R} \times \mathbb{R}\}$$

$$=\{\{\langle a, b \rangle \in \mathbb{R}^{2} \mid \langle a, b \rangle S \langle x, y \rangle\} \mid \langle x, y \rangle \in \mathbb{R}^{2}\}$$

$$=\{\{\langle a, b \rangle \in \mathbb{R}^{2} \mid a^{2} + b^{2} = x^{2} + y^{2}\} \mid \langle x, y \rangle \in \mathbb{R} \times \mathbb{R}\}$$

$$=\{\{\langle a, b \rangle \in \mathbb{R}^{2} \mid a^{2} + b^{2} = c\} \mid c \in \mathbb{R}\}$$

$$(S \text{ definition})$$

$$=\{\{\langle a, b \rangle \in \mathbb{R}^{2} \mid a^{2} + b^{2} = c\} \mid c \in \mathbb{R}\}$$

$$(\ell \text{et } c = x^{2} + y^{2})$$

(ג) סעיף

S היא מערכת הנציגים ליחס השקילות $\mathcal{F} = \{\langle a,r
angle \in \mathbb{R}^2 \mid r > 0 \land a = 0\}$ צ.ל.: הקבוצה

הוכחה:

- קיום נציג: יהי $(a,b) \in \mathbb{R}$, נוכיח קיום $(a,b) \in \mathcal{F}$ כך ש־ $(a,b) \in \mathcal{F}$, ובאופן שקול צ.ל. קיום $(a,b) \in \mathcal{F}$ כך ש־ $(a,b) \in \mathcal{F}$, נוכיח קיום $(a,b) \in \mathcal{F}$ מתקיים אמ"מ $(a,b) \in \mathcal{F}$ מתוך עקרון ההפרדה. לכן, $(a,b) \in \mathcal{F}$ תנאי הקיום $(a,b) \in \mathcal{F}$ מתקיים אמ"מ $(a,b) \in \mathcal{F}$ מתוך עקרון ההפרדה. לכן, צ.ל. $(a,b) \in \mathcal{F}$ בבחר $(a,b) \in \mathcal{F}$ מתקיים אמ"מ $(a,b) \in \mathcal{F}$ בבחר $(a,b) \in \mathcal{F}$ מתקיים אמ"מ $(a,b) \in \mathcal{F}$ מתניך עקרון ההפרדה. לכן, $(a,b) \in \mathcal{F}$ מתניך עקרון הפרדה. לכן, $(a,b) \in \mathcal{F}$ מתניך עקרון הפרדה מיום $(a,b) \in \mathcal{F}$ מתניך עקרון היים $(a,b) \in \mathcal{F}$ מ
- יחידות: יהי $(x,y) \in \mathbb{R} \times \mathbb{R}$, ובאופן שקול $(a_1,b_2) \in \mathbb{R} \times \mathbb{R}$, ויהי $(a_1,b_1), (a_2,b_2) \in \mathcal{F}$, ובאופן שקול $(a_1,b_1), (a_2,b_2) \in \mathcal{F}$, ווהי $(a_1,b_1), (a_1,b_1), (a_2,b_2) \in \mathcal{F}$, ווביר שקול $(a_1,b_1), (a_1,b_1), (a_2,b_2), (a_2,b$

Q.E.D. ■

שאלה 4

 $\Pi_1=\Pi_2$ ונוכיח $\Pi_1\subseteq\Pi_2$ שתי חלוקות של A. נניח Π_1,Π_2 ונוכיח A

ראשית כל, נוכיח טענה פשוטה הדרושה להמשך ההוכחה: יהיו A,B קבוצות, נוכיח להמשך הדרושה להמשך הרושה להמשך אונכיח $A=(A\cap B)\cup (A\setminus B)\cup (A\setminus B)$ זאת בעזרת מעברי שקילות:

$$x \in (A \cap B) \cup (A \setminus B)$$

$$\iff (x \in A \land x \in B) \lor (x \in A \lor x \notin B) \qquad (\cup, \cap, \setminus \text{ definitions})$$

$$\iff x \in A \lor (x \in B \land x \notin B) \qquad (\text{De Morgan})$$

$$\iff x \in A \lor F \iff x \in A \qquad \mathcal{Q}.\mathscr{E}.\mathscr{F}.$$

 $\pi\in\Pi_2$ עתה, ניגש להוכחה. נניח בשלילה שאין שוויון, ולכן על בסיס ההנחה נסיק $\Pi_1\nsubseteq\Pi_1$. ע"פ הגדרת הכלה, קיים עתה, ניגש להוכחה. נניח בשלילה שאין שוויון, ולכן על בסיס ההנחה נסיק $\pi\notin\Pi_1$. ע"פ הגדרת הכלה, קיים $\pi\in\Pi_1\setminus\Pi_1$. $\pi\in\Pi_1$. $\pi\in\Pi_1$. ידוע $\pi\in\Pi_1\cap\Pi_1=\pi$. ומשום ש־ $\pi\in\Pi_1\cap\Pi_1=\pi$. או $\pi\in\Pi_1=\pi$. ידוע $\pi\in\Pi_1=\pi$. ידוע $\pi\in\Pi_1=\pi$. ולכן $\pi\in\Pi_1=\pi$. ולכן מהגדרת $\pi\in\Pi_1=\pi$. נסיק $\pi\in\Pi_1=\pi$. כחלק מהגדרת חלוקה $\pi\in\Pi_1$ וווו, משמע $\pi\in\Pi_1=\pi$. ובאופן שקול $\pi\in\Pi_1$. משום ש $\pi\in\Pi_1$ וווו, משמע $\pi\in\Pi_1=\pi$. ובאופן שקול $\pi\in\Pi_1$ וווו $\pi\in\Pi_1$. המהווה סתירה לפי הגדרת π .

שאלה 5

(א) סעיף

תת־סעיף (i)

A בתון: תהי $\emptyset
eq A$ קבוצה, Π חלוקה של

A אוא יחס שקילות על R_Π ב.ל.:

הוכחה:

- רפלקסיביות: יהי $a\in A$, נוכיח $a\in R_\Pi$, כלומר שקיים $\pi\in \Pi$ כך ש־ $\pi\times \pi$ כך שקול צ.ל. $a\in A$, ובאופן שקול צ.ל. $a\in \pi$ קיים $a\in A$ קיים $a\in \pi$, נבחר $\pi=\pi$, וסה"כ $\pi=\pi$
- $\langle b,a
 angle \in \pi_b imes \pi_b$ כך ש $\pi_b \in \Pi$ סימטריות: יהי $\pi_b \in \pi_b$, נניח $\pi_b \in \pi_a$, ונוכיח $\pi_b \in \pi_a$, ובאופן שקול, נוכיח קיום $\pi_b \in \pi_a$, נניח $\pi_b \in \pi_a$ כך ש $\pi_a \in \pi_a$, ונניח בשלילה $\pi_a \in \pi_a \land b \in \pi_a$, ובאופן שקול $\pi_a \notin \pi_a \lor a \not\in \pi_a$, וסה"כ זו סתירה, כלומר $\pi_a \in \pi_a \lor a \not\in \pi_a$ כדרוש.
- י טרנזיטיביות: יהי $a,b,c\in A$, נניח $a,b,c\in A$, ונוכיח $a,b,c\in A$, מתוך ההנחה קיימים $a,b,c\in A$, ובאופן ש־ $a,b,c\in A$, ובאופן שקול $a,b\in \pi_1 \land b\in \pi_1 \land b\in \pi_1 \land b\in \pi_2 \land c\in \pi_2$, ובאופן שקול $a,b\in \pi_1 \land b\in \pi_1 \land b\in \pi_2 \land c\in \pi_2 \land a\in \pi_1 \land b\in \pi_1 \land b\in \pi_2 \land a\in \pi_2 \land a\in \pi_1 \land b\in \pi_1 \land b\in \pi_2 \land a\in \pi_1 \land b\in \pi_2 \land a\in \pi_1 \land b\in \pi_2 \land a\in \pi_1 \land a\in \pi_2 \land a\in \pi_1 \land a\in \pi_2 \land a\in \pi_1 \land a\in \pi_1$

2.€.D. ■

תת־סעיף (ii) תת

 $A/(R_\Pi)=\Pi$ צ.ל.:

הערה: קבוצת המנה של החלוקה המושרית מוגדרת היטב כי בסעיף הקודם הוכח כי החלוקה המושרית היא יחס שקילות.

 $[x]_{R_\Pi}=X$ נוכיח טענת עזר. יהי $x\in A$, ותהי קבוצה $x\in X\in\Pi$. נוכיח טענת עזר. יהי

- יהי $X imes X \subseteq R_\Pi$, גוכיח $X imes X \subseteq R_\Pi$. אז $X \in \Pi$. משום ש־ $X imes X \subseteq R_R$, אז $X \in R_R$, אז $X \in R_R$ ולפי הגדרה $X imes X \cap X$ ולפי הגדרה $X imes X \cap X$ ולפי הגדרה $X imes X \cap X$ כלומר $X \cap X \cap X$ כדרוש.
- יהי $y\in X$, נוכיח $y\in X$, נוכיח $y\in X$, נוכיח $y\in X$, נוכיח $y\in X$, לפי הגדרת מחלקת השקילות, יהי $y\in X$, ובאופן שקול $x,y\in Y$ נניח $x,y\in Y$ ובאופן שקול $x,y\in Y$, ובאופן שקול $x,y\in Y$ נניח $x,y\in Y$, ידוע $x\in Y$ בשלילה $x\in Y$ כלומר $x\in Y$ כלומר $x\in Y$ כלומר $x\in Y$ כדרוש.

. עתה, נפנה להוכיח את אשר צ.ל.: Π בוכיח את אשר צ.ל.: $\Lambda/(R_\Pi)=\Pi$

- יהי $[x]_{R_\Pi}\in H$ (קיומו של $x\in A$ מתאים נובע מהגדרתה של קבוצת המנה). נוכיח $[x]_{R_\Pi}\in A/(R_\Pi)$ יהי $[x]_{R_\Pi}\in A/(R_\Pi)$ (קיומו של $x\in A$ מתאים נובע מהגדרתה של קבוצה $X\in \Pi$ המקיימת, נקבל שקילות לכך קבוצה $X\in \Pi$ המקיימת $X\in \Pi$ וזו סתירה). לפי טענת העזר, $[x]_{R_\Pi}=X$, ומשום ש $X\in \Pi$ סה"כ $X\in \Pi$ סה"כ $X\in \Pi$ סה"כ דרוש.
- יהי $X\in A/(R_\Pi)$, נוכיח $X\in A/(R_\Pi)$. באופן שקול, צ.ל. $X\in A.[\tilde{x}]_{R_\Pi}=X$. מתוך ההנחה $X\in A/(R_\Pi)$, נסיק $X\in X$, נסמנו $X\in X$, נסמנו $X\in X$, ומהגדרת החלוקה גם $X\in X$. נבחר את X להיות $X\in X$ ונוכיח $X\in X$, אשר מהווה פסוק אמת לפי טענת העזר, כדרוש.

0)	.E		On		
œ.	.0	٠	_	٠	

(ב) סעיף

 $oldsymbol{c}$ ווהי S יחס שקילות מעליה A יחס שקילות מעליה

$R_{A/S}=S$ د.ن

הוכחה: נסתמך על סעיף 5(א)(i) על מנת להסיק ש־ $R_{A/S}$ יחס שקילות. מכאן ואילך, נוכיח באמצעות הכלה דו כיוונית.

- יהי $(x,y) \in S$, נניח $(x,y) \in R_{A/S}$, ולפי הגדרת מכפלה קרטזית $(x,y) \in A$, נוכיח $(x,y) \in R_{A/S}$, נפיח קייםת קיימת $(x,y) \in A$ כך ש־ $(x,y) \in X \times X$ כלומר $(x,y) \in X \times X$, מסימטריות וטרנזיטיביות יחס $(x,y) \in X \times X$, מסימטריות וטרנזיטיביות יחס $(x,y) \in X \times X$ כלומר $(x,y) \in X \times X$ כדרוש.
- $X imes X\subseteq R_{A/S}$ יהי $X:=[y]_S\in A/S$ יהי $X:=[y]_S$, ולכן סה"כ $X:=[y]_S$, וידוע $X:=[y]_S$, וידוע $X:=[y]_S$, ולכן מהגדרת הכלה (לפי הגדרה). נרצה משום ש־ $X:=[y]_S$, באופן שקול $X:=[y]_S$, ולכן מהגדרת הכלה (לפי הגדרה). ברוש.

2.€.D. ■

שאלה 6

(א) סעיף

 $U = \{A \cap B \colon A \in S \land B \in T\} \setminus \{\emptyset\}$ גתון: תהיX קבוצה, יהיו S,T חלוקות של

X צ.ל.: U חלוקה של

הוכחה: נוכיח את שלושת התנאים ההכרחיים ומספקים לכך שUחלוקה:

- $\emptyset \not \in U$ ובאופן שקול, $\forall x \in U.x
 eq \emptyset$, ובאופן שקול ש \ $\emptyset \not \in U$. •
- - נוכיח באמצעות הכלה דו־כיוונית: $\biguplus_{x \in U} x = X$
- נסיק $x\in U$ נסיק יהי $x\in U$ יהי $x\in U$ יהי מין יהי $x\in U$ כלומר קיים $x\in U$ כך ש־ $x\in X$ כך ש־ $x\in X$ משום $x\in X$ אז $x\in X$ ולכן $x\in X$ ומשום $x\in X$ ומשום $x\in X$ אז $x\in X$ ולכן $x\in X$ ומשום ש־ $x\in X$ וגם $x\in X$ חלוקה על $x\in X$ אז $x\in X$ ולכן $x\in X$ ולכן $x\in X$ וגם $x\in X$ וגם $x\in X$
- יהי $X\subseteq \bigoplus_{x\in U} x$ כלומר את קיום $x\in U$ כלומר את קיום $a\in X$ יהי $A\in X$ בחלוקה, כך ש־ $A\in X$ בחלוקה, כך ש־ $A\in X$ בחלות על קבוצות על קבוצות נוספות ב־A ששקול ל־A, A ששקול ל־A, A ששקול ל־A, A ששקול ל־A, A שהיימות קבוצות כאלו ב־A, A מתוך העובדה ש־A, וידוע שקיימות קבוצות כאלו ב־A, A מתוך העובדה ש־A, וילכן לכל A כדרוש. A

(ב) סעיף

S,T,U יחסי שקילות המושרים מהחלוקות R_S,R_t,R_U נ**תון:** יהיו

 $R_S \cap R_T = R_U$ צ.ל.:

הוכחה: נוכיח באמצעות הכלה דו־כיוונית

- $x\in s^2 \wedge x\in t^2$ יהי $s\in S, t\in T$ יהי שקול, נוכיח שקול, או בניסוח שקול, או בניסוח שקול, נוכיח $x\in R_T$ יהי $x\in R_S \wedge x\in R_T$ יהי $x\in R_S \wedge x\in R_T$ יהי $x\in R_S \wedge x\in R_S \wedge x\in R_S$ לא ריקות כך ש־מתוך ההנחה, קיים $x\in R_S \wedge x\in R_S \wedge x\in R_S \wedge x\in R_S$ לא ריקות כך ש־ $x\in R_S \wedge x\in R_S \wedge x\in$
- יהי $s\in S, t\in T$ יהי $s\in S, t\in T$, כלומר $s\in S, t\in T$, נוכיח $s\in S, t\in T$. באופן שקול, נניח שקיימות $s\in S, t\in T$, כלומר $s\in S, t\in T$ ערכה $s\in S, t\in T$ יהי $s\in S, t\in T$, ונוכיח קיום $s\in S, t\in T$ ערכה $s\in S, t\in T$ משום ש"ב $s\in S, t\in T$ משום ש"ב שטענה זו מתקיימת כי $s\in S, t\in T$ משום ש"ב $s\in S, t\in T$ עתה, נוכיח $s\in S, t\in T$ משום ש"ב $s\in S, t\in T$, אזי $s\in S, t\in T$ וסה"כ $s\in S, t\in T$ ולכן $s\in S, t\in T$ כלומר $s\in S, t\in T$

2.€.D. ■

יאלה <i>ד</i>
זגדרה
$orall X \in S$. היו S חלוקות של A . נגדיר S עידון של T אמ"מ T אמ"מ S
זעיף (א)
Π_2 ענה: $\{\{1,2,3,4\}$, ו $\Pi_1=\{\{1,2\},\{3\},\{3\},\{4\}\}$ יענה: ו $\Pi_1=\{\{1,2\},\{3,4\}\}$ ו $\Pi_1=\{\{1,2\},\{3,4\}\}$
זעיף (ב)

A יחסי שקילות מעל R_1,R_2 ויהיוA, ויהיו קבוצה R_1

 $R_1 \subseteq R_2$ צ.ל.: A/R_1 עידון של אמ"מ A/R_2 אמ"מ

הוכחה: נוכיח את כל אחת מהגרירות בנפרד.

 $R_1\subseteq R_2$ עידון של A/R_2 עידון של A/R_2 , נוכיח A/R_2 מתקיים קיום A/R_2 מתקיים לבניח A/R_1 עידון של A/R_1 , נוכיח A/R_2 , נוכיח A/R_2 אודר בה"כ A/R_2 בתבונן ב A/R_1 , המוגדר יהי A/R_1 , המוגדר המנה היא חלוקה, ולכן עידון מוגדר. יהי A/R_2 נבחר בה"כ A/R_1 , מיים A/R_1 , לפי הגדרת קבוצת המנה בעקרון ההחלפה. מתוך ההנחה, קיים A/R_1 , לפי הגדרת קבוצת המנה A/R_2 , סה"כ קיים איזשהו A/R_2 כך ש־ A/R_2 ע"פ הגדרת קבוצת המנה A/R_2 , סה"כ קיים איזשהו A/R_2 כלומר A/R_2 , כלומר A/R_2 , כלומר A/R_2 , כלומר A/R_2 , כלומר A/R_2 כדרוש.

נניח $X\subseteq Y$, ונוכיח X=Y, עידון של X=Y. יהי X=X, ונוכיח קיום X=X, עדון של X=X, עידון של X=X, ומשום ש־X=X, ומשום ש־X=X, אז הגדרת קבוצת המנה, קיים X=X כך ש־X=X, ומשום ש־X=X, ומשום ש־X=X, ומשום ש־X=X, ומשום ש־X=X, ומשום ש־X=X, יהי X=X, יהי הנרות הברדה. מתוך ההנחה וכיח X=X, ע"פ הגדרת הקבוצה ומדרת הקבוצה ומדרת הפרדה. מון ההפרדה. מון המרדה. X=X, יא ידוע X=X, ולכן ע"פ הגדרה X=X, ולכן ע"פ הגדרה ומדרה ומדר

Q.E.D. ■

שאלה 8 (רשות)

נבחר: נבחר את P קבוצת הטבעיים הראשוניים, ונטען $\Pi=A\cup\{\mathbb{N}\setminus\bigcup A\}, A:=\{\{p^n\mid n\in\mathbb{N}\}\mid p\in P\}$ את אינסוף את יחס שקילות בעל אינסוף מחלקות שקילות אינסופיות.

. בעל אינסוף שקילות שקילות חלוקה R_Π חלוקה), בעל אינסוף מחלקות שקילות אינסופיות.

הוכחה: אין לי זמן להוכיח את זה, וזה רגיל רשות כך או אחרת.