Parameter Norm Penalties

Sargur N. Srihari srihari@cedar.buffalo.edu

Regularization Strategies

- 1. Parameter Norm Penalties
- Norm Penalties as Constrained Optimization
- 3. Regularization and Underconstrained Problems
- 4. Data Set Augmentation
- 5. Noise Robustness
- 6. Semi-supervised learning
- 7. Multi-task learning

- 8. Early Stopping
- 6. Parameter tying and parameter sharing
- 7. Sparse representations
- 8. Bagging and other ensemble methods
- 9. Dropout
- 10. Adversarial training
- 11. Tangent methods

Topics in Parameter Norm Penalties

- 1. Overview (limiting model capacity)
- 2. L² parameter regularization
- 3. L¹ regularization

Limiting Model Capacity

- Regularization has been used for decades prior to advent of deep learning
- Linear- and logistic-regression allow simple, straightforward and effective regularization strategies
 - Adding a parameter norm penalty $\Omega(\theta)$ to the objective function J:

$$\widetilde{J}(\theta; X, y) = J(\theta; X, y) + \alpha \Omega(\theta)$$

- where $\alpha\epsilon[0,\theta)$ is a hyperparameter that weight the relative contribution of the norm penalty term Ω
 - Setting α to 0 results in no regularization. Larger values correspond to more regularization

Norm Penalty

When our training algorithm minimizes the regularized objective function

$$\left| \tilde{J}(\boldsymbol{\theta}; X, y) = J(\boldsymbol{\theta}; X, y) + \alpha \Omega(\boldsymbol{\theta}) \right|$$

- it will decrease both the the original objective J on the training data and some measure of the size of the parameters θ
- Different choices of the parameter norm Ω can result in different solutions preferred
 - We discuss effects of various norms

Deep

No penalty for biases

- Norm penalty Ω penalizes only weights at each layer and leaves biases unregularized
 - Biases require less data to fit than weights
 - Each weight specifies how variables interact
 - Fitting weights requires observing both variables in a variety of conditions
- Each bias controls only a single variable
 - We do not induce too much variance by leaving biases unregularized
- w indicates all weights affected by norm penalty
- θ denotes both w and biases

Different or Same αs for layers?

• Sometimes it is desirable to use a separate penalty with a different α for each layer

$$\left| \tilde{J}(\boldsymbol{\theta}; X, y) = J(\boldsymbol{\theta}; X, y) + \alpha \Omega(\boldsymbol{\theta}) \right|$$

 Because it can be expensive to search for the correct value of multiple hyperparameters, it is still reasonable to use same weight decay at all layers to reduce search space

L^2 parameter Regularization

- Simplest and most common kind
- Called Weight decay
- Drives weights closer to the origin
 - by adding a regularization term to the objective function

$$\Omega(\theta) = \frac{1}{2} ||w||_2^2$$

 In other communities also known as ridge regression or Tikhonov regularization

Gradient of Regularized Objective

Objective function (with no bias parameter)

$$\left| \tilde{J}(w; X, y) = \frac{\alpha}{2} w^{T} w + J(w; X, y) \right|$$

Corresponding parameter gradient

$$\left|\nabla_{w} \tilde{J}(w; X, y) = \alpha w + \nabla_{w} J(w; X, y)\right|$$

To perform single gradient step, perform update:

$$\left| \boldsymbol{w} \leftarrow \boldsymbol{w} - \boldsymbol{\varepsilon} \left(\alpha \boldsymbol{w} + \nabla_{\boldsymbol{w}} J \left(\boldsymbol{w}; X, \boldsymbol{y} \right) \right) \right|$$

Written another way, the update is

$$\left| \boldsymbol{w} \leftarrow (1 - \boldsymbol{\varepsilon} \boldsymbol{\alpha}) \boldsymbol{w} - \boldsymbol{\varepsilon} \nabla_{\boldsymbol{w}} J \left(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y} \right) \right|$$

– We have modified learning rule to shrink w by constant factor 1- $\epsilon\alpha$ at each step

To study effect on entire training

- Make quadratic approximation to the objective function in the neighborhood of minimal unregularized cost $\boldsymbol{w}^* = \arg\min_{\boldsymbol{w}} J(\boldsymbol{w})$
- The approximation is given by

$$J(w^*) + \frac{1}{2}(w - w^*)^T H(w - w^*)$$

• Where H is the Hessian matrix of J wrt w evaluated at w^*

Illustration of L^2 regularization

Effect on value of optimal w Solid ellipses:

contours of equal value of unregularized objective J

Dotted circles:

contours of equal value of L^2 regularizer

At point w competing objectives reach equilibrium

Along w_I , eigen value of Hessian of J is small. J does not increase much when moving horizontally away from $\boldsymbol{w^*}$. Because J does not have a strong preference along this direction, the regularizer has a strong effect on this axis. The regularizer pulls w_I close to 0.

Along w_2 , J is very sensitive to movements away from w^* . The corresponding eigenvalue is large, indicating high curvature. As a result, weight decay affects the position of w_2 relatively little

L^1 Regularization

- While L^2 weight decay is the most common form of weight decay there are other ways to penalize the size of model parameters
- L¹ regularization is defined as

$$\left| \mathbf{\Omega}(\boldsymbol{\theta}) = \left| \left| \boldsymbol{w} \right| \right|_1 = \sum_{i} \left| w_i \right|_1$$

which is the sum of the absolute values of the individual parameters

Sparsity and Feature Selection

- The sparsity property induced by L^1 regularization has been used extensively as a feature selection mechanism
- Feature selection simplifies an ML problem by choosing subset of available features
- LASSO (Least Absolute Shrinkage and Selection Operator) integrates an L^1 penalty with a linear model and least squares cost function
- The L^1 penalty causes a subset of the weights to become zero, suggesting that those features can be discarded

Sparsity with Lasso constraint

- With q=1 and λ is sufficiently large, some of the coefficients w_i are driven to zero
- Leads to a sparse model
 - where corresponding basis functions play no role
- Origin of sparsity is illustrated here:

Quadratic solution where w_1^* and w_0^* are nonzero

Minimization with Lasso Regularizer A sparse solution with $w_1 = 0$

