ADATMODELLEK

Adatbázisok 1

Dóka-Molnár Andrea andrea.molnar@math.ubbcluj.ro

BABEŞ-BOLYAI TUDOMÁNYEGYETEM

Matematika és Informatika Kar

Áttekintés/Tematika

- 1. Adatbázis-kezelő rendszerek általános jellemzői.
- 2. Adatmodellezés
 - Egyed/kapcsolat adatmodell
 - Relációs adatmodell
 - Az E/K diagram átalakítása relációs adatmodellé
- 3. A relációs algebra műveletei, használata.
- 4. Az SQL nyelv részei (MSSQL specifikusan).
- 5. Relációs adatbázisok tervezése.
- 6. NoSQL adatbázisok.

Adatmodellek

- Adatmodell = valóság fogalmainak, kapcsolatainak, tevékenységeinek magasabb szintű ábrázolása
- Minden ABKR egy absztrakt adatmodellel dolgozik annak érdekében, hogy az adatokat ne csak bitek sorozataként lássuk.
- Adatmodell egy matematikai formalizmus, mely áll:
 - egy jelölés az adat leírása érdekében
 - műveletek halmaza, mely az illető adatok kezelésére használatos

Adatmodellek osztályozása

Magas szintű vagy Egyed-kapcsolat (ER-Entityszemantikai (SDM) vagy Relationship) adatmodell koncepcionális (conceptual) Kiterjesztett egyed-kapcsolat adatmodellek (AKBR-től (EER-Enhanced Entity-Relationship) független) adatmodell Alacsony szintű vagy ABKR Hierarchikus modell közeli adatmodellek (ABKR-Hálós modell től függő) Relációs modell Objektum-orientált modell

Adatmodellek osztályozása

Magas szintű vagy szemantikai (SDM) vagy koncepcionális (conceptual) adatmodellek (AKBR-től független)	Egyed-kapcsolat (ER-Entity-Relationship) adatmodell	
	Kiterjesztett egyed-kapcsolat (EER- Enhanced Entity-Relationship) adatmodell	
Alacsony szintű vagy ABKR közeli adatmodellek (ABKR-től függő)	Hierarchikus modell	
	Hálós modell	
	Relációs modell	
	Objektum-orientált modell	

- Szemantikai (magas szintű) adatmodell emberközeli,
 lényegretörő, részletek nélküli leírása az adatoknak ↔ pontatlan
- ABKR közeli (alacsony szintű) adatmodellek gépközeli, megadja a részleteket ↔ teljes; de: túlságosan távol vannak a modellezett valóság közvetlen leírásától
- → Az elkészült szemantikai adatmodellt konvertáljuk át ABKR közeli adatmodellre.

Hierarchikus adatmodell

- Az 1970-es évek végéig számított elterjedtnek.
- Fa struktúrával szemléltethető.
- Az adatok között fennálló kapcsolat

szülő-gyermek (1:N)

kapcsolatnak

felel meg.

Iskola hierarchikus felépítése a diákok szemszögéből

Forrás:

Hálós adatmodell

- Az 1970-es évek elején terjedt el.
- Az adatok közötti kapcsolatokat gráfok írják le.

https://regi.tankonyvtar.hu/hu/tartalom/tamop425/0027_INF9/ch01s02.html

Relációs adatmodell

- Jelenleg a legszélesebb körben használatos adatmodell.
- 1980-as években kezdte meg térhódítását. Halmazelméleti alapokra épülő modell.

Relációs adatmodell

Objektumorientált adatmodell

- Az objektumorientált programozás módszertanának egy része; az objektumorientált programozási nyelvek térhódításával terjedt el.
- Objektumorientált tervezés esetén a valós világot objektumok segítségével modellezzük.
- Osztály fő jellemzői: attribútum, kapcsolat, metódus.
- Az objektumorientált adatbázisok hatékonyságukban jelenleg még alulmaradnak a relációs adatbázisokkal szemben.

Objektumorientált adatmodell

Félig struktúrált adatmodell

Relációs adatmodell korlátaira épít: a táblákba kényszerítés helyett az adatok maguk írják le a tartalmukat és a "szerkezetüket". → tetszőlegesen változó séma az idő elteltével és ugyanazon adatbázison belül is.

Unstructured data

The university has 5600 students.
John's ID is number 1, he is 18 years old and already holds a B.Sc. degree.
David's ID is number 2, he is 31 years old and holds a Ph.D. degree. Robert's ID is number 3, he is 51 years old and also holds the same degree as David, a Ph.D. degree.

Semi-structured data

Structured data

ID	Name	Age	Degree
1	John	18	B.Sc.
2	David	31	Ph.D.
3	Robert	51	Ph.D.
4	Rick	26	M.Sc.
5	Michael	19	B.Sc.

Forrás: https://www.researchgate.net/figure/Unstructured-semi-structured-and-structured-data fig4 236860222

Gráf adatmodell

- Adattárolás → gráf segítségével (jellemzően: tulajdonsággráf)
- Tulajdonsággráf

 → adatok rendszerezése csomópontokban,
 élekben és tulajdonságokban

Forrás: https://www.slideshare.net/lyonwj/natural-language-processing-with-graph-databases-and-neo4j

Egyed-kapcsolat adatmodell

Egyed/kapcsolat adatmodell

- Megjelenés: 1976 (P. Chen)
 Szabványosítás (ANSI): 1980-as évek közepe.
- Grafikus formában ábrázolja az adatbázis szerkezetét.
- Nem teljes adatmodell (tartalmaz néhány megszorítást, de műveleteket nem), de: egyszerű grafikus jelölésrendszere révén elterjedt és ma is széles körben használatos.
- Magas fokú adatfüggetlenséget biztosít ↔ adatbázistervezőnek nem kell foglalkoznia az adatbázis fizikai szerkezetével.

Egyed/kapcsolat adatmodell

- Építőelemek:
 - Egyedhalmaz: minden mástól elkülöníthető, azonosítható egyedek, entitások gyűjteménye
 - Tulajdonságok: egyedeket tulajdonságaik jellemeznek
 - Kapcsolatok: egyedek között kapcsolatok észlelhetők
- Ábrázolástechnika: egyed/kapcsolat diagram.
 - Két típusú jelölési rendszer/mód:
 - Chrow's feet, Chen

Egyed (entitás)

- a valós világban létező, logikai vagy fizikai szempontból saját léttel rendelkező dolog (amelyről adatokat szeretnénk tárolni) ↔ konkrét dolgok absztrakciója
- Pl. hely(szín), személy (diák, alkalmazott stb.), fogalom (kurzus, pozíció, munkakör stb.), tárgy (autó, könyv stb.), érzelem (szeretet, gyűlölet), hangya, tojás

Van-e olyan eset, amikor pl. a hangyákat külön entitásoknak tekinthetjük?

Egyedhalmaz

- Hasonló tulajdonságokkal rendelkező egyedek halmaza.
- Pl. járművek, vöröshajú személyek, pilóták, városok stb.
- Megnevezés: főnevek használata

Egyed ↔ objektum, egyedhalmaz ↔ osztály ← **objektum**-**orientált adatmodell**

Példa a jelölésre:

Színészek

Alkalmazottak

Tulajdonságok (attribútumok)

- Azon jellemző(k), amelye(ke)n keresztül az entitások megkülönböztethetők egymástól.
- Értékei egy egyed tulajdonságát írják le.
- Pl. személy neve, címe; jármű márkája, színe stb.
- Példa a jelölésre:

Általános jelölés

- $E(A_1, ..., A_n)$ egy egyedhalmaz sémája, ahol:
 - E egyedhalmaz neve,
 - $A_1, ..., A_n$ attribútumok.
 - dom(A_i) a lehetséges értékek halmaza
 - Legegyszerűbb esetben: csak atomi értékek
 - Bonyolultabb esetek: pl. összetett- vagy többértékű tulajdonság
 - Példa: CsokoládéGyárak (Név, Cím, Helység)
 Filmek (FilmCím, MegjÉv, Stúdió)
 Tanárok (Név, Tanszék)

Általános jelölés

- E(A₁, ..., A_n) sémájú egyedhalmaz előfordulása:
 - A konkrét egyedekből áll.
 - E= $\{e_1, ..., e_m\}$ egyedek (entitások) halmaza, ahol: $e_{i_k} \in Dom(A_k), i=1,...,m, k=1,...,n.$
 - Semelyik két egyed sem egyezik meg minden attribútumán
 => kulcsok

Példa:

Alkalmazottak egyedhalmaz előfordulása

AlkID	Név	Utca	Város
321-12-3123	Jones	Main	Harrison
019-28-3746	Smith	North	Rye
677-89-9011	Hayes	Main	Harrison
555-55-5555	Jackson	Dupont	Woodside
244-66-8800	Curry	North	Rye
963-96-3963	Williams	Nassau	Princeton
335-57-7991	Adams	Spring	Pittsfield

Kulcs

- egy vagy több attribútum, mely egyértelműen meghatároz egy egyedet az egyedhalmazban ↔ semelyik két egyed sem egyezik meg minden attribútumán.
- Kikötés: minden egyed megkülönböztethető → minden egyedhalmaznak van kulcsa
- Példa?

Kulcs

- egy vagy több attribútum, mely egyértelműen meghatároz egy egyedet az egyedhalmazban ↔ semelyik két egyed sem egyezik meg minden attribútumán
- Kikötés: minden egyed megkülönböztethető → minden egyedhalmaznak van kulcsa
- Pl. autó rendszám, személy személyazonosító száma stb.
- Gyakran plusz attribútum bevezetése szükséges

 (pl. FilmID/SzineszID, TeremKod)

 AlkID

 Város
- Jelölés: <u>aláhúzással</u>

Kapcsolatok

- egyedhalmazok előfordulásai közötti relációk
- Megnevezésben: igék, melléknevek használata
- Pl.
 - Tanít kapcsolat Tanárok és Diákok között
 - Vásárol kapcsolat Vevők és Eladók között
 - Kezel kapcsolat Betegek és Orvosok között
- Kapcsolat foka (jel. k):
 - $k = 2 \rightarrow bináris kapcsolat$
 - k > 2 → többágú kapcsolat

Példa

Példa

Példa

Általános jelölés

- $K(E_1, ..., E_k, A_1, ..., A_m)$ egy kapcsolat sémája, ahol:
 - K a kapcsolat neve,
 - E₁, ..., E_k egyedhalmazok sémái,
 - A₁, ..., A_m a kapcsolathoz tartozó attribútumok.
 - k kapcsolat foka
 - k= 2 → bináris kapcsolat, k > 2 → többágú kapcsolat
- $K(E_1, ..., E_k)$ sémájú kapcsolat egy előfordulása: $(e_1, ..., e_k)$, ahol $e_i \in E_i$, i=1,...,k.

Kapcsolat előfordulás:

(223-98-0997,51,1/1/91)

Milyen típusú a Dolgozik kapcsolat? Lehetett volna-e másként ábázolni?

 Kapcsolat típusának meghatározása - a kapcsolat előfordulásaira tett megszorítások által

Kapcsolatokra vonatkozó megszorítások

- **Számosság:** A (bináris) kapcsolatok *számossága* meghatározza azon kapcsolat-előfordulások maximális számát, amelyekben egy egyed részt vehet.
 - A kapcsolat előfordulásaira tett megszorítások határozzák meg a *kapcsolat típusát*.
- A bináris kapcsolattípusok lehetséges számosságai:
 - Egy az egyhez (1:1)
 - Egy a többhöz (1:N); Több az egyhez (N:1)
 - Több a többhöz (M:N)
- Számosságra vonatkozó megszorítás jelölése:
 - Irányított vonal (\rightarrow) "egy"-et jelöl; irányítatlan vonal (\longrightarrow)
 - "több"-et jelöl (a kapcsolathalmaz és az egyedhalmaz között)

Kapcsolatok típusai

- Legyen $K(E_1,E_2)$ bináris kapcsolat
- Egy az egyhez kapcsolat (1:1)
 - Egy E₁-beli egyedhez legfeljebb egy E₂-beli egyed tartozhat és fordítva.
 - Pl. Osztályok-Osztályfőnökök
 VAGY:

Kapcsolatok típusai

- Egy a többhöz kapcsolat (1:n)
 - Egy E_1 -beli egyed kapcsolatba hozható 0 vagy több E_2 -beli egyeddel, egy E_2 -beli egyed azonban legfeljebb egy E_1 -beli egyedhez tartozhat.

Megj.: nem kötelezően szerepel minden egyed a kapcsolatban, pl. házaspár(férfi,nő) *[lásd később]*

Kapcsolatok típusai

- Több a többhöz kapcsolat (n:m)
 - minden E₁-beli egyedhez több E₂-beli egyed tartozhat, és fordítva
 - Pl. Tanárok-Tantárgyak
 VAGY:

bináris, több a többhöz (n:m) típusú kapcsolat

Más lehetőség:

Kapcsolat attribútuma

- Mikortól: az alkalmazott és részleg együttesen határozzák meg, de egyik sem külön.
- Csak több a többhöz (n:m) típusú kapcsolat esetén megengedett.

Attribútum vs. egyedhalmaz

Előnyök, hátrányok?

Attribútum vs. egyedhalmaz

Előny: Olyan értékeket (pl. időpontokat, árakat) is lehetőségünk van tárolni, amelyek még nem szerepelnek a kapcsolatban, de csak ezek a lehetséges értékek (pl. árértékek). + statisztikák készítésekor

Hátrány: megvalósítás esetén

(plusz egyedhalmaz ⇔ plusz tábla, lassabb adatlekérés).⁴¹

- A társult/kapcsolatban levő/megjelenő egyedhalmazok száma (kapcsolat foka) = 1.
- Egyedhalmaz önmagával való kapcsolata = rekurzív kapcsolat
- Példa:

- A társult/kapcsolatban levő/megjelenő egyedhalmazok száma (kapcsolat foka) = 1.
- Egyedhalmaz önmagával való kapcsolata = rekurzív kapcsolat
- Példa: házasság ábrázolása

Kapcsolathalmaz:

Név	Név
Jani	Fruzsi
Kati	Andris
	•••

- A társult/kapcsolatban levő/megjelenő egyedhalmazok száma (kapcsolat foka) = 1.
- Egyedhalmaz önmagával való kapcsolata = rekurzív kapcsolat
- Példa: házasság ábrázolása

Kapcsolathalmaz:

Problémá(k)?

Név	Név
Jani	Fruzsi
Kati	Andris
•••	

- A társult/kapcsolatban levő/megjelenő egyedhalmazok száma (kapcsolat foka) = 1.
- Egyedhalmaz önmagával való kapcsolata = rekurzív kapcsolat
- Példa: házasság ábrázolása
- Probléma: (Név, Név) séma

nem megengedett

Kapcsolat halmaz:

Név	Név
Jani	Fruzsi
Kati	Andris
	•••

- A társult/kapcsolatban levő/megjelenő egyedhalmazok száma (kapcsolat foka) = 1.
- Egyedhalmaz önmagával való kapcsolata = rekurzív kapcsolat
- Probléma: nem derül ki az egyedhalmaznak a kapcsolatban játszott "szerepe".
 - **Példa:** házasság ábrázolása Itt: Melyik él szimbolizálja a feleséget és melyik a férjet?
- Másik probléma: két vagy több azonos attribútumnév nem megengedett ugyanazon relációsémában (lsd. (Név, Név)) (lsd. később)

Példa unáris kapcsolatra

■ Megoldás: élek cimkézése → kapcsolat adott szerepe

Kapcsolathalmaz:

Férj	Feleség
Jani	Fruzsi
Andris	Kati
•••	•••

- Más lehetőség házasság ábrázolására?
- Mi határozza meg a kapcsolat ábrázolásának módját?

K₁ - háromágú kapcsolat A, B és C egyedhalmazok között

Nyíl szerepe többágú kapcsolatoknál megváltozik

K₁ - háromágú kapcsolat A, B és C egyedhalmazok között

 Nyíl szerepe többágú kapcsolatoknál megváltozik: egy konkrét A-beli és egy konkrét B-beli egyed előforduláshoz csak egy C-beli előfordulás tartozik

Példák háromágú kapcsolatra:

Szerződése: 1:n:m típusú

További példa többágú kapcsolatra

Besorol: n:m:p típusú

1.példa:

1.példa: 1 egyedhalmaz + 2 bináris kapcsolat segítségével

Bináris m:n kapcsolat ábrázolása

További példák

Az ilyen jellegű ábrázolásmóddal bánjunk elővigyázatosan – redundáns ábrázolás.

Példa – helyes, nem redundáns

További példák

"Kapcsolat-különlegességek" "az_egy" kapcsolat

"Kapcsolat-különlegességek" "az_egy" kapcsolat

- Öröklődési kapcsolat ("az egy", ISA).
- A "az_egy" B (A "is_a" B), ha a B egyedhalmaz az A egyedhalmaz egy általánosítása, másképp: A egy speciális B.
- A speciális egyed részhalmaz (A)
 az ősének (B) minden kapcsolatát és
 attribútumát örökli ↔ B-nek a kulcsa
 lesz A-nak a kulcsa is.
- Más megnevezés:

A-alosztály, B-(szuper)osztály

Példa "az_egy" kapcsolatra

manager "az_egy" alkalmazott

Újabb példa "az_egy" kapcsolatra

"Attribútum-különlegességek"

Többtényezős kulcs: több attribútumból álló kulcs

"Attribútum-különlegességek"

Többtényezős kulcs: több attribútumból álló kulcs

• Kulcsok (kulcsjelöltek)?

"Attribútum-különlegességek"

Többtényezős kulcs: több attribútumból álló kulcs

- Kulcsok (kulcsjelöltek)?
- Ritkán használjuk, helyette: "több a többhöz" kapcsolat javasolt.

Megszorítások

- Értelmezéstartomány-megszorítások: egy attribútum az értékeit a megadott értékhalmazból vagy értéktartományból veheti fel (lsd. DDL-ben: CHECK)
- Egyértékűségi megszorítások: Abban az esetben, ha az attribútum értéke nem NULL (vagyis létezik), akkor nem létezik a halmaznak 2 eleme, amelyiken megegyeznének az értékei (lsd. DDL-ben: UNIQUE).
- Általános megszorítások: tetszőleges követelmények, amelyeket be kell tartani az adatbázisban.

Tervezési problémák I.

Legyező csapda (fan trap)

 Előfordulás: legalább két egy-a-többhöz (1:N) típusú kapcsolat köti össze az egyedhalmazt

Probléma:

Tervezési problémák I.

Legyező csapda (fan trap)

 Előfordulás: legalább két egy-a-többhöz (1:N) típusú kapcsolat köti össze az egyedhalmazt

Probléma: nem tudjuk megmondani, melyik hallgató melyik csoportba tartozik. – *Feloldás?*

Legyező csapda anomáliájának feloldása

"Hármas hierarchia":

Évfolyamok ← Csoportok ← Hallgatók

Tervezési problémák II.

Megszakítási csapda (chasm trap)

• Előfordulás: ha egy kapcsolat létezése javasolt az egyedhalmazok között, viszont az útvonal nem létezik bizonyos egyedelőfordulások között.

Probléma:

Tervezési problémák II.

Megszakítási csapda (chasm trap)

• Előfordulás: ha egy kapcsolat létezése javasolt az egyedhalmazok között, viszont az útvonal nem létezik bizonyos egyedelőfordulások között.

Probléma:

Ha egy hallgató nem választott

egy projektet sem (másfajta vizsgázási módot választott), nem tudjuk, hogy melyik professzornál kellene vizsgázzon.

72

Megszakítási csapda anomáliájának feloldása

Új kapcsolat bevezetése

 Valósághű modellezés: megfelelő tulajdonságok tartozzanak az egyedhalmazokhoz

- Valósághű modellezés
- Redundancia elkerülése: ugyanazt az információt ne jelenítsük meg több helyen

- Valósághű modellezés
- Redundancia elkerülése: ugyanazt az információt ne jelenítsük meg több helyen
 - pl. Studkönyv(NrMatr.,lakcím,tárgy,dátum,jegy) rossz séma, mert a lakcím annyiszor ismétlődik, ahány vizsgajegye van a diáknak → helyette 2 séma:

Hallgatók(NrMatr.,lakcím) Vizsgajegyek(NrMatr.,tárgy,dátum,jegy).

Redundancia elkerülésének fontossága

- Helygazdálkodás: nem a legfontosabb szempont, de szükséges mérlegelni
- Konzisztencia
- Egyszerűség: a redundancia bonyolítja a modellt
 - Pl. fölöslegesen ne vegyünk fel egyedhalmazokat:
 - pl. naptár(év,hónap,nap) helyett dátum tulajdonság

Megfelelő típusú elemek kiválasztása

Alapkérdés: Mit reprezentálunk attribútumként és mit kapcsolatként vagy épp egyedhalmazként?

Példák:

pl. Vizsgajegy(jegy) helyett – jegy tulajdonság használata

Megfelelő típusú elemek kiválasztása

Alapkérdés: *Mit reprezentálunk attribútumként és mit kapcsolatként vagy épp egyedhalmazként?*

pl. Polgármesteri hivatal – házasságok nyilvántartása

Az adatbázis tervezésének lépései

- 1. A feldolgozandó információ elemzése
- 2. Az információk közti kapcsolatok meghatározása
- 3. Az eredmény ábrázolása (E/K diagram)
- 4. Adatbázisterv készítése (transzformációs lépés)
- 5. Adatbázisterv finomítása (összevonások)
- 6. Megszorítások modellezése, függőségek meghatározása
- 7. Optimális adatbázisterv készítése (dekomponálás, normalizálás)
- 8. Adatbázisterv megvalósítása SQL-ben (DDL segítségével)

Relációs adatmodell

Relációs adatmodell

Sörök (<u>név</u>, ország)

- E. F. Codd (1970) vezette be a "A Relational Model of Data for Large Shared Data Banks" című cikkben (<u>link</u>).
 - Javaslat: az adatokat táblázatokban, relációkban tároljuk.
 - Az elméletére alapozva jött létre a relációs adatmodell, és erre épülve jöttek létre a relációs adatmodellen alapuló relációs ABKR-k (röv. RDBMS-relational DBMS).
- Gyakorlati alkalmazása az 1980-as években vált általánossá.
- Jelenleg a legszélesebb körben használatos adatmodell.

Relációs adatmodell

név	ország
Soproni	Magyar
Kozel	Cseh
Dreher	Német

Sörök (<u>név</u>, ország)

- Lényege: az egyedeket, tulajdonságokat és kapcsolatokat egyaránt táblázatok, ún. adattáblák (relációk) segítségével adja meg.
- Értékorientált: reláción végzett műveletek eredménye reláció + azonosító megadása szükséges két sor megkülönböztetése érdekében (nincs ObjectID – lsd. obj.or. adatmodell)
- Szabványos leíró/lekérdezőnyelvük: SQL.

Relációs adatmodell előnyei

- Egy egyszerű és könnyen megérthető strukturális részt tartalmaz (táblázatos forma).
- Nagyfokú fizikai és logikai adatfüggetlenség biztosítása (fogalmi-logikai-fizikai szint teljes szétválasztása)
- Elméleti megalapozottság, több absztrakt kezelőnyelv megléte (például relációs algebra – az SQL automatikus és hatékony lekérdezés optimalizálásának alapja).
- Műveleti része egyszerű kezelői felület, szabvány: SQL.

Relációs adatmodell értelmezése

- Legyenek: A_1 , A_2 ..., A_n attribútumok.
- $\forall A_i : D_i A_i$ értékeinek tartománya (doméniuma).
 - lacktriangle D_i lehet: egész számok halmaza, karaktersorok halmaza stb.
- R reláció a $D_1, D_2 ..., D_n$ halmazokon, ha $R \subseteq D_1 \times D_2 \times ..., \times D_n \text{ (Descartes-szorzat)}$
- Jelölés: $R(A_1, A_2, ..., A_n)$ (*)
- Relációséma: reláció neve, attribútumok halmazának + további szerkezeti információk (pl. kulcsok-függések, megszorítások stb.) együttese ⇒ (*) tulajdonképp relációséma.
- Mi akkor a reláció?

Relációs adatmodell értelmezése

- Reláció: a konkrét, adatokkal feltöltött, sémára illeszkedő táblázat (a táblázat soraiban tárolt adatokkal együtt).
- Továbbiakban: relációsémára relációként fogunk hivatkozni.

Egy adatbázis relációsémáinak összessége: relációs adatbázisséma.

Relációs adatmodell értelmezése

- Reláció számossága ↔ sorok száma
- Reláció foka \leftrightarrow attribútumok száma (itt: n)

Reláció előfordulás: aktuális sorok halmaza egy relációsémára

vonatkozóan.

Példa relációs adatmodellre

- Egy reláció sémája: Sörök (név, ország)
 - Sörök reláció foka: 2, számossága: 3
- •Adatbázis sémája: Sörök (név, ország), Sörözők (név, város, tulaj), Felszolgál(sör, bár, ár)

Példa relációs adatmodellre

Relációsémák más megadási módja:

Sörök (név:string, ország:string)

Sörözők (név:string, város:string, tulaj:string)

Felszolgál(sör:string, bár:string, ár:int)

Relációs adatmodell tulajdonságai

- A tábláknak és a táblák oszlopainak (attribútumainak) egyértelmű neve, helye, sorszáma van.
 - Az oszlopokra a nevükkel hivatkozunk.
 - Két attribútumnak nem lehet ugyanaz a neve egy táblán belül. (1.tulajd.)
- Tábla oszlopainak sorrendje lényegtelen. (2.tulajd.)
- Reláció **sorainak sorrendje lényegtelen** (a sorokat halmazként kezeli). (3.tulajd.) *Tárolásnál: fontos!*
- A tábla nem tartalmazhat két teljesen azonos sort. (4.tulajd.)

Relációs adatmodell tulajdonságai

- A tábláknak és a táblák oszlopainak (attribútumainak) egyértelmű neve, helye, sorszáma van.
 - Az oszlopokra a nevükkel hivatkozunk.
 - Két attribútumnak nem lehet ugyanaz a neve egy táblán belül. (1.tulajd.)
- Tábla oszlopainak sorrendje lényegtelen. (2.tulajd.)
- Reláció **sorainak sorrendje lényegtelen** (a sorokat halmazként kezeli). (3.tulajd.) *Tárolásnál: fontos!*
- A tábla nem tartalmazhat két teljesen azonos sort. (4.tulajd.)
 - → **Kulcs értelmezése** (5.tulajd.)

Kulcsok

- **Értelmezés**: Legyen $A = \{A_1, A_2 ..., A_n\}$ az R reláció attribútumhalmaza. A $K \subseteq A$ halmaz az R reláció kulcsa, ha:
- 1) a K attribútumain felvett értékek egyértelműen meghatározzák a reláció elemeit;
- 2) K minimális ⇔ K-nak nincs olyan valódi részhalmaza, amelyre ugyanez teljesül.
- Pl. Diákok (BeiktSzám, Név, Cím, Telefonszám)
 - BeiktSzám kulcs.
- Szuperkulcs (superkey) azon attribútumhalmaz, amelyre csak az 1) tulajdonság teljesül.
 - Pl. {BeiktSzám, Név} szuperkulcs.

Kulcsok (folyt.)

- Kulcsjelölt (candidate key) minimális(!) attribútumhalmaz
 - értéke(i) egyedi(ek) minden egyes előfordulásra nézve
 - (2). tulajd. is teljesül)
 - ∃ több kulcsjelölt is *példa?*

Kulcsok (folyt.)

- Kulcsjelölt (candidate key)
 - ∃ több kulcsjelölt is pl. Cégek (CégNév, BejegyzésiSzám, CUI, CIF, AlakulásiÉv, Székhely)
 - CégNév, BejegyzésiSzám, CUI, CIF kulcsjelöltek.
 - Egyet kiválasztunk közülük ↔ elsődleges kulcs (primary key)
 - Többi kulcsjelölt (alternative key) esetén: egyértékűségi megszorítás (lsd. SQL-megszorítások)
- Ha a kulcs csak egy attribútumot tartalmaz → egyszerű kulcs.
 Ellenkező esetben: → összetett kulcs.
- 4. tulajdonság ⇒ mindig kell legyen elsődleges kulcs, ha más nem: a teljes sor mindig egyedi.
- Elsődleges kulcs értéke soha nem lehet null vagy üres.

Kulcsok - példa

Diákok (VNév, KNév, Email, SzemSzám, BeiktSzám, SzakNév)

Kulcsok - példa

Diákok (VNév, KNév, Email, SzemSzám, BeiktSzám, SzakNév)

Külső kulcs (foreign key)

Definíció: Külső kulcs egy KK attribútum(halmaz) egy R_f relációból ú.h.:

- értékeinek halmaza megegyezik egy R_a reláció elsődleges kulcsának az értékhalmazával;
- feladata: az R_f és R_a közötti kapcsolat modellezése.
- R_f reláció, mely hivatkozik; R_a reláció, amelyre hivatkozik.

Külső kulcs (foreign key)

 R_f - reláció, mely hivatkozik

R_a – reláció, amelyre hivatkozik.

Más megnevezés: R_a – apa reláció, R_f – fiú reláció

Child Table child parent **Child References Parent**

Parent Table

Példa külső kulcsra

Részlegek - *apa reláció*

RészlegID	RNév
1	Tervezés
2	Könyvelés
9	Beszerzés

Alkalmazottak–*fiú* reláció

SzemSzám	Név	RészlegID	Fizetés (euró)
111111	Nagy Éva	2	300
222222	Kiss Csaba	9	400
456777	Szabó János	9	900
234555	Szilágyi Pál	2	700
123444	Vincze Ildikó	1	800
333333	Kovács István	2	500

Ábrázolás E/K diagrammal?

Relációk sémája:

Részlegek (RészlegID, RNév)

Alkalmazottak (SzemSzám, Név, RészlegID, Fizetés)

Modellezés E-K diagrammal

Példa külső kulcsra

Modellezés E-K diagrammal

Külső kulcs

 Egy relációban több idegen (külső) kulcs is szerepelhet + ugyanazon reláció kulcsára többször is hivatkozhatunk ugyanazon reláción belül.

Példa:

Külső kulcs

 Egy relációban több idegen (külső) kulcs is szerepelhet + ugyanazon reláció kulcsára többször is hivatkozhatunk ugyanazon reláción belül.

Példa:

Helységek (HelységID, HelységNév)

Személyek (SzemSzám, Név, LakhelyID, SzülHelyID)

Lásd még: hivatkozási épség megszorítás

Az egyed-kapcsolat diagramok átírása relációs modellé

Relációs adatbázisséma meghatározása

- (*Ism.*) **Relációs adatbázisséma**: az adatbázist alkotó relációk sémájának az összessége.
- Relációs adatbázis: a relációkban tárolt konkrét értékek alkotják.
- Relációk "helyességének" biztosítása az adatbázisban egy metodológia szükséges.

Több lehetőség:

- Egyed-kapcsolat adatmodell átírása relációsémákká
- *Normalizálás* egy létező relációs adatbázissémát normalizálás segítségével normálformára hozzuk.
- Object Definition Language segítségével megtervezett objektum-orientált adatbázis-szerkezetet átírunk relációsémákká
- UML diagram átalakítása relációsémákká

Az egyed-kapcsolat diagramok relációs modellé való átírásának lépései

3 lépés:

- 1. Egyedhalmaz → reláció
 - Egyedhalmaz attribútumai a reláció attribútumai lesznek.
- 2. Kapcsolat → reláció
 - A reláció attribútumai: a kapcsolatban résztvevő egyedhalmazok kulcsainak uniója + kapcsolat attribútumai (sok esetben átnevezés szükséges lehet).

Az egyed-kapcsolat diagramok átírása relációs modellé

2. Kapcsolat → reláció

- Legyen K bináris kapcsolat E_1 és E_2 egyedhalmazok között
 - $K_1, K_2 E_1$ -nek, illetve E_2 -nek a kulcsa
- 1:1 típusú kapcsolatok esetén a kapcsolatnak megfelelő reláció (*K*) kulcsjelöltje: ...
- 1:N típusú kapcsolat esetén (E_2 itt az n) K kulcsjelöltje: ...
- Ha N:M típusú kapcsolat áll fenn, K kulcsjelöltje: összetett kulcs...
- Az E/K diagram "A az_egy B" specializáló kapcsolatai esetén: …

Az egyed-kapcsolat diagramok átírása relációs modellé

2. Kapcsolat → reláció

- \blacksquare Legyen K bináris kapcsolat E_1 és E_2 egyedhalmazok között
 - $K_1, K_2 E_1$ -nek, illetve E_2 -nek a kulcsa
- 1:1 típusú kapcsolatok esetén a kapcsolatnak megfelelő reláció (K) kulcsjelöltje: K_1 vagy K_2 .
- 1:N típusú kapcsolat esetén (E_2 itt az N) K kulcsjelöltje: K_2 .
- Ha N:M típusú kapcsolat áll fenn, K kulcsjelöltje: összetett kulcs K_1 és K_2 egyesítése. Fennállhat-e olyan eset, amikor (K_1, K_2) nem elegendő a sor azonosítására?
- Az E/K diagram "A az_egy B" specializáló kapcsolataihoz nem készítünk relációkat. A örökli B attribútumait, B-nek a kulcsa lesz A-nak a kulcsa is.

Az egyed-kapcsolat diagramok relációs modellé való átírásának lépései

3. lépés:Közös kulcsú relációk összevonása

Ha két vagy több relációnak van egy közös kulcsjelöltje
 (1. lépésből legtöbb egy reláció) → a két relációt/relációkat összevonjuk és helyettesítjük egy újabb relációval.

• Előnyök:

- Helytakarékosság
- Összetartozó adatok nincsenek szétdarabolva ↔ lekérdezések megválaszolási ideje csökkenthető

Példa

Nagykereskedő cég egyszerűsített adatbázisa

(leírásért lsd. Varga Ibolya: Adatbázisrendszerek)

Lépésenkénti átírás

I. Egyedhalmaz →reláció

- Egyedhalmazok kulcsai → relációk kulcsai
- A kulcsokat a relációs modell relációi esetében is aláhúzással jelöljük.
- (1) Alkalmazottak (SzemSzám, Név, Fizetés)
- (2) Managerek (SzemSzám)
- (3) Részlegek (<u>RészlegID</u>, Név, Helység)
- (4) Szállítók (SzállID, Név, Helység, UtcaSzám)
- (5) ÁruCsoportok (<u>CsopID</u>, Név)
- (6) Áruk (ÁruID, Név, MértEgys, MennyRakt)
- (7) Vevők (<u>VevőID</u>, Név, Helység, UtcaSzám, Mérleg)
- (8) Szerződések (SzerződID, Dátum, Részletek)
- (9) Tételek (TételID, Dátum)

Lépésenkénti átírás

II. Kapcsolat → reláció

- kulcsok → attribútumok
- (10) Dolgozik(SzemSzám, RészlegID)
- (11) Irányít (SzemSzám, <u>RészlegID</u>)
- (12) Árul (<u>CsopID</u>, RészlegID)
- (13) Tartozik (CsopID, <u>ÁruID</u>)
- (14) Szállít (SzállID, ÁruID, Ár)
- (15) Elhelyez (VevőID, <u>SzerződID</u>)
- (16) Tartalmaz (SzerződID, <u>TételID</u>)
- (17) Szerepel (<u>TételID</u>, ÁruID, RendMenny, SzállMenny)

Lépésenkénti átírás

III. Közös kulcsú relációk összevonása

- (1) Alkalmazottak (<u>SzemSzám</u>, Név, Fizetés, *RészlegID*)
- (2) Managerek (<u>SzemSzám</u>)
- (3) Részlegek (<u>RészlegID</u>, Név, Helység, *ManSzemSzám*)
- (4) Szállítók (SzállID, Név, Helység, UtcaSzám)
- (5) ÁruCsoportok (<u>CsopID</u>, Név, *RészlegID*)
- (6) Áruk (ÁruID, Név, MértEgys, MennyRakt, CsopID)
- (7) Vevők (<u>VevőID</u>, Név, Helység, UtcaSzám, Mérleg)
- (8) Szerződések (SzerződID, Dátum, Részletek, VevőID)
- (9) Tételek (<u>TételID</u>, Dátum, *SzerződID*)
- (14) Szállít (SzállID, ÁruID, Ár)
- (17) Szerepel (<u>TételID</u>, ÁruID, RendMenny, SzállMenny)

Példa (Kapcsolat --> Reláció)

Felt., hogy az alkalmazottaknak van főnökük. Hogyan ábrázolhatjuk?

Példa (Kapcsolat → Reláció)

Példa (Kapcsolat --> Reláció)

A kapcsolatoknak megfelelő sémákban az oszlopokat célszerű átnevezni (pl. a szerepek alapján) + (név,név) séma nem szerepelhetne.

Példa (Kapcsolat → Reláció)

A kapcsolatoknak megfelelő sémákban az oszlopokat célszerű átnevezni (pl. a szerepek alapján) + (név,név) séma nem szerepelhetne.

Többágú kapcsolat

Többágú kapcsolat

- T(<u>K1, K2, K3</u>, attr1, attr2)
 - Nem vonódik össze.
 - Érdemes külön kulcsot definiálni, ha n>=3, ahol n a kapcsolat foka).

COSTS

prod_id time_id promo_id channel_id unit_cost unit_price

PRODUCTS

prod_id prod_name prod_desc prod_subcategory prod subcategory id prod subcategory desc prod_category prod_category_id prod category desc prod weight class prod unit of measure prod_pack_size supplier_id prod_status prod_list_price prod min price prod total prod total id prod src id prod eff from prod eff to prod valid

CHANNELS

channel_id channel_desc channel_class channel_class_id channel_total channel_total id

PROMOTIONS

promo_id
promo_name
promo_subcategory
promo_subcategory_id
promo_category_id
promo_cost
promo_begin_date
promo_end_date
promo_total
promo_total

SALES

prod_id cust_id time_id channel_id promo_id quantity_sold amount_sold

CUSTOMERS

cust id cust first name cust last name cust_gender cust_year_of_birth cust_marital_status cust street address cust postal code cust city cust city id cust_state_province cust_state_province_id country_id cust main phone number cust income level cust credit limit cust email cust total cust total id cust src id cust_eff_from cust eff to

cust valid

TIMES

time id day_name day_number_in_week day number in month calendar week number fiscal week number week_ending_day week ending day id calendar month number fiscal month number calendar month desc calendar_month_id fiscal month desc fiscal_month_id days_in_cal_month days in fis month end of cal month end of fis month calendar_month_name fiscal month name calendar quarter desc calendar_quarter_id fiscal quarter desc fiscal quarter id days_in_cal_quarter days in fis quarter end_of_cal_quarter end of fis guarter calendar_quarter_number fiscal_quarter_number calendar year calendar vear id fiscal vear fiscal_year_id days_in_cal_year days_in_fis_year end_of_cal_year end of fis year

COUNTRIES

country_id
country_iso_code
country_name
country_subregion_id
country_region
country_region_id
country_total
country_total
country_total_id
country_name hist

Többágú kapcsolatra példa

Oracle - Sales History séma

Osztályhierarchia átalakítása relációkká

Három megközelítés:

- 1) Az E/K szempontjainak követése
- 2) Objektumorientált megközelítés
- 3) Nullértékek használata

Osztályhierarchia átalakítása relációkká

Három megközelítés:

- 1) Az E/K szempontjainak követése
- 2) Objektumorientált megközelítés
- 3) Nullértékek használata

Példa – E/K megközelítés

• Egy reláció minden alosztálynak a hierarchiában: kulcsattribútum(ok) + alosztály attribútumai.

Járművek

Rendszám	Gyártó	Ár
CJ-12ABC	Audi	10000
B-45VXZ	Man	45000

Személyautók

Rendszám	Férőhely
CJ-12ABC	5

Példa – E/K megközelítés

• Egy reláció minden alosztálynak a hierarchiában: kulcsattribútum(ok) + alosztály attribútumai.

Járművek

Rendszám	Gyártó	Ár
CJ-12ABC	Audi	10000
B-45VXZ	Man	45000

Személyautók

Rendszám	Férőhely
CJ-12ABC	5

Pl. Találd meg az összes járművet (személyautókat is), amelyet az Audi gyárt.