R-Script Hidden Markov Models

This is run with an R kernel instead of a python kernel in Jupyter Notebook.

More reading:

- https://cran.r-project.org/web/packages/moveHMM/vignettes/moveHMM-guide.pdf
- https://stackoverflow.com/questions/57870575/install-and-run-r-kernel-for-jupyter-notebook

The goal for this notebook is to take the prepped GPS data from the 01-GPS PreProcessing notebook and then to use that to fit multiple different HMM that represent the deer movement model. Different numbers of behavioural states, and different landscape rasters are used to fit the HMM.

The different models are tested using Akaike's Information Criteriont (AIC) and Bayesian Information Criterion (BIC) to see which models are "Best".

The models tested are:

- · Simple 2-state HMM: No landscape information included. Only 2 behaviour states modelled
- 2-state Landscape HMM: 2 behaviour states, raster info as covariate
- 3-state Landscape HMM: 2 behaviour states, raster info as covariate
- 2-state Home-Return HMM: 2 Behaviour states, no raster info, turn angles replaced with angle to centroid value

NOTE: This whole notebook takes hours to run. This isn't a very fast lib.

```
Loading required package: CircStats

Loading required package: MASS

Loading required package: boot

Attaching package: 'arrow'

The following object is masked from 'package:utils':

timestamp
```

ID	Deer ID	timestamp	sex	lat	lon	time_group	geometry	utn eastin
<chr></chr>	<dbl></dbl>	<dttm></dttm>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<int></int>	<arrw_bnr></arrw_bnr>	<db< th=""></db<>
399253139925_gap_1	31	2017-02- 02 00:00:12	f	39.22963	-76.88448	565	01, 01, 00, 00, 00, 66, 2e, b8, 20, fb, 96, 14, 41, 3a, 47, e1, fb, 23, 92, 50, 41	337342
399253139925_gap_1	31	2017-02- 02 01:00:28	f	39.23195	-76.88437	565	01, 01, 00, 00, 00, 68, 13, 3f, fe, 34, 97, 14, 41, c1, 7a, df, 39, 64, 92, 50, 41	337357

Take the GPS data and "prepare it", which calculates some variables and converts to data types required by the moveHMM package. Some different dataframes are created:

- **gps_data_simple**: This has deer ID's, step and turns, position info but not landscape raster info.
- gps_data: This has deer ID's, step and turns, position info and landscape raster info.
- **gps_data_home**: This has all the same fields as the "simple" dataframe, and also the distance and angles to the centroid

This takes a while to run... this isn't a multithreaded library.

The "prepData" command can take UTM or Lat/Lon position data, and the LLangle param can be TRUE, for great circle step and turn calculations, or FALSE for trigonometric calculations.

```
'ID' · 'step' · 'angle' · 'x' · 'y'

'ID' · 'step' · 'angle' · 'x' · 'y' · 'raster_value'
```

Step and Turn comparison

Let's double check that the step and turn calculated in the previous notebooks is the same, or pretty close, to the step and turns calculated by the MoveHMM library

A moveData: 6 × 5

	ID	step	step_distance	angle	turn_angle
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	399253139925_gap_1	257.37552	259.84002	NA	-0.9321692
2	399253139925_gap_1	130.19103	129.57798	2.0515044	2.0603458
3	399253139925_gap_1	406.56052	408.93218	1.5184729	1.5027547
4	399253139925_gap_1	19.70712	19.60042	-2.5065172	-2.5066943
5	399253139925_gap_1	56.52751	56.32712	1.0567136	1.0731928
6	399253139925_gap_1	111.18051	110.40422	-0.2242944	-0.2267500

A moveData: 6 × 6

	ID	step	angle	x	у	raster_value
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	399253139925_gap_1	257.37552	NA	4343952	337342.8	10
2	399253139925_gap_1	130.19103	2.0515044	4344209	337357.2	6
3	399253139925_gap_1	406.56052	1.5184729	4344142	337469.1	5
4	399253139925_gap_1	19.70712	-2.5065172	4343783	337279.7	8
5	399253139925_gap_1	56.52751	1.0567136	4343791	337297.4	10
6	399253139925_gap_1	111.18051	-0.2242944	4343759	337343.9	10

A moveData: 6 × 6

	ID	Х	у	step	angle	raster_value
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	399253139925_gap_1	4343952	337342.8	257.37552	1.6021480	10
2	399253139925_gap_1	4344209	337357.2	130.19103	2.5346283	6
3	399253139925_gap_1	4344142	337469.1	406.56052	0.4744067	5
4	399253139925_gap_1	4343783	337279.7	19.70712	-1.0290833	8
5	399253139925_gap_1	4343791	337297.4	56.52751	1.4776520	10
6	399253139925_gap_1	4343759	337343.9	111.18051	0.4045057	10

Histogram of gps_data\$step

Histogram of gps_data\$angle

Histogram of gps_data_home\$angle

Some Different HMM Models:

Simple 2 State Model

No covariates, 2 states.

When fitting a new model the initial parameters are VERY important. Values not close to the end results may prevent the model from converging or settling on a local minima.

```
Warning message in rbind(parts$upper, chars$ellip_v, parts$lower, deparse.level = 0
L):
    "number of columns of result is not a multiple of vector length (arg 2)"
Warning message in rbind(parts$upper, chars$ellip_v, parts$lower, deparse.level = 0
L):
    "number of columns of result is not a multiple of vector length (arg 2)"
Warning message in rbind(parts$upper, chars$ellip_v, parts$lower, deparse.level = 0
L):
    "number of columns of result is not a multiple of vector length (arg 2)"
```

Value of the maximum log-likelihood: -1671793

Step length parameters:

state 1 state 2 shape 1.041134e+00 1.357803e+00 scale 1.465244e+02 2.900054e+01 zero-mass 1.239168e-06 6.682292e-05

Turning angle parameters:

state 1 state 2 mean -0.12704320 3.1176960 concentration 0.03997021 0.2311387

Regression coeffs for the transition probabilities:

Transition probability matrix:

[,1] [,2]

[1,] 0.7573513 0.2426487

[2,] 0.3038109 0.6961891

Initial distribution:

[1] 0.5677461 0.4322539

Decoding states sequence... ${\tt DONE}$

2 State Model, Landscape included

Decoding states sequence... DONE

HMM numbers to stick into Repast Model

The HMM numbers that are needed for the Repast model. This gets stuck into the python model:

```
class HMM MoveModel 2 States (BaseMoveModel):
    Simple random movement model. Agents move around with a weibull/cauchy step and turn model.
    Not influenced by environmental, time or behaviour states. Just a pure random walk.
    def __init__(self, *args, **kwargs):
       self.movement n states = 2
       self.movement_params = [{'state': 0,
                             'step_params':{'c': 1.38666,
                                          'loc': 1,
'scale': 29.142},
                             'step_params':{'c': 1.0378,
                                          'scale': 148},
                              'turn_params':{'c': 0.04,
                                           'loc': 0.1,
       assert len(self.movement params) == self.movement n states, "Too few movement params for number of m
       self.hmm_covariate_intercept = np.asarray([-8.359713e-01, -2.08067466])
       self.hmm_covariate_coeff = np.asarray([5.790579e-05, 0.01360621])
Value of the maximum log-likelihood: -1671429
Step length parameters:
                 state 1
shape 1.042846e+00 1.356711e+00
scale
         1.471591e+02 2.911879e+01
zero-mass 7.851724e-06 5.814130e-05
Turning angle parameters:
                  state 1 state 2
              -0.1339658 3.1166163
concentration 0.0396948 0.2290252
Regression coeffs for the transition probabilities:
                   1 -> 2 2 -> 1
intercept -2.0696753 -0.777699801
raster_value 0.1238317 -0.005702054
Initial distribution:
```

3 State Model, Landscape included

[1] 0.5663704 0.4336296

Value of the maximum log-likelihood: -1667111

Step length parameters:

state 1 state 2 state 3 shape 1.311337e+00 1.231843e+00 1.470787e+00 scale 3.351919e+02 1.132833e+02 2.408109e+01 zero-mass 1.231680e-06 4.520232e-07 7.615968e-05

Turning angle parameters:

state 1 state 2 state 3 mean -0.06124627 -3.07373644 3.1127951 concentration 0.21499672 0.04074727 0.2042132

Regression coeffs for the transition probabilities:

intercept -0.665865790 raster_value 0.006435542

Initial distribution:

[1] 0.1190081 0.4928453 0.3881465

Decoding states sequence... DONE

3-States Return Home Model

Value of the maximum log-likelihood: -1678211

Step length parameters:

state 1 state 2 state 3 shape 1.362284e+00 1.250077e+00 1.482404e+00 scale 3.482021e+02 1.128641e+02 2.354635e+01 zero-mass 1.584039e-08 8.117776e-08 7.634298e-05

Turning angle parameters:

 state 1
 state 2
 state 3

 mean
 -0.52726790
 1.39373442
 -1.44555407

 concentration
 0.02795376
 0.01007978
 0.00430416

Regression coeffs for the transition probabilities:

intercept -0.577809493 raster_value 0.001308924

Initial distribution:

[1] 0.1158054 0.4998902 0.3843044

Decoding states sequence... DONE

But which is best?

Use the AIC values to decide which model is best.

A data.frame: 4 × 2

Model	AIC
<chr></chr>	<dbl></dbl>
mod_3states	3334279
mod_simple_landscape	3342887
model_simple	3343613
mod_3states_rh	3356480

Looks like the 3 state model performs the best, while the "return home" model is the worst.