HARMONIC ANALYSIS ON THE TWISTED FINITE POINCARÉ UPPER HALF-PLANE

JORGE SOTO-ANDRADE AND JORGE VARGAS

ABSTRACT. We prove that the induced representation from a non trivial character of the Coxeter torus of GL(2, F), for a finite field F, is multiplicity-free; we give an explicit description of the corresponding (twisted) spherical functions and a version of the Heisenberg Uncertainty Principle.

1. Introduction

Let F be a finite field, with q elements, and E be its unique quadratic extension. Put $G = \operatorname{GL}(2, F)$ and denote by K the Coxeter torus of G, realized as the subgroup of all matrices $m_z(z \in E^\times)$ of the maps $w \mapsto zw(w \in E)$ with respect to a fixed F - basis of E. Recall that the finite homogeneous space $\mathcal{H} = G/K$ may be looked upon as the finite analogue of (the double cover of) the classical Poincaré Upper Half Plane (see [4]). Harmonic analysis on \mathcal{H} amounts to decompose the induced representation $\operatorname{Ind}_K^G \mathbf{1}$ from the unit character $\mathbf{1}$ of K to G. We are interested here in the "twisted" version of this, i.e., the decomposition of the induced representation $\operatorname{Ind}_K^G \Phi$ from a non (necessarily) trivial character Φ of K to G. The real analogue of this case has been considered in [1]. We prove that this representation is multiplicity-free, taking advantage of the fact that this is so for $\operatorname{Ind}_K^G \mathbf{1}$ (see [4]) and reducing the computation of the multiplicities in $\operatorname{Ind}_K^G \Phi$ to the ones in $\operatorname{Ind}_K^G \mathbf{1}$. We also give an explicit description of the Heisenberg Uncertainty Principle

2. The Multiplicity One Theorem for $\mathrm{Ind}_K^G \Phi$.

2.1. The case $\Phi = 1$. We consider first the special case $\Phi = 1$ in which the multiplicity one theorem follows from a geometric argument. In fact, we have

$$\operatorname{Ind}_K^G \mathbf{1} \simeq (\mathbf{L}^2(\mathcal{H}), \tau),$$

where $L^2(\mathcal{H})$) stands for the space of all complex functions on \mathcal{H} endowed with the usual canonical scalar product, and τ denotes the natural representation of G in

Soto-Andrade was partially supported by FONDECYT Grants 92-1041 and 1940590, DTI – U. Chile, ICTP, ECOS-France and NSF Grant DMS-9022140 at MSRI. Vargas was partially supported by CONICET, CONICOR, SecytUNC, ICTP and TWAS.

 $L^2(\mathcal{H})$, defined by $(\tau_q f)(z) = f(g^{-1}.z)$, where $z \mapsto g.z$ is the homographic action of G on \mathcal{H} , given by

$$g.z = \frac{az+b}{cz+d}$$
 for $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G, z \in \mathcal{H}.$

Definition 1. For all $z, w \in \mathcal{H}$, we put

$$D(z, w) = \frac{N(z - w)}{N(z - \bar{w})}$$

with the convention that $D(z, w) = \infty$ if $w = \bar{z}$.

Proposition 1. D is an orbit classifying invariant function for the homographic action of G in $\mathcal{H} \times \mathcal{H}$.

Corollary 1. The commutating algebra of $(L^2(\mathcal{H}), \tau)$ is commutative.

This follows from the fact that, the classifying invariant D being symmetric, the G-orbits in $\mathcal{H} \times \mathcal{H}$ are also symmetric.

2.2. The case of general Φ . Let's denote by ϕ the restriction of Φ to F^{\times} . We will prove that every twisting of an irreducible representation π_{θ}^d of G (where the superscript d denotes the dimension of π and θ its character parameter) by the character $(\Phi + \Phi^q)$ is isomorphic to a representation of the form $\pi_{\theta'}^{d'} + \pi_{\theta''}^{d''}$, when restricted to K. In fact we will work with the characters χ_{θ}^d of the irreducible representations π_{θ}^d of G, for which we keep the notations of [5] or [2].

Lemma 1. On K we have

Lemma 1. On
$$K$$
 we have $(\Phi + \Phi^q)\chi^q_{\alpha,\alpha} = \chi^{q-1}_{\Phi(\alpha \circ N)} + \chi^{q+1}_{\phi\alpha,\alpha},$ $(\Phi + \Phi^q)\chi^1_{\alpha,\alpha} = \chi^{q+1}_{\phi\alpha,\alpha} - \chi^{q-1}_{\Phi(\alpha \circ N)},$ $(\Phi + \Phi^q)\chi^{q+1}_{\alpha,\beta} = \chi^{q+1}_{\phi\alpha,\beta} + \chi^{q+1}_{\alpha,\phi\beta},$ $(\Phi + \Phi^q)\chi^{q-1}_{\Lambda} = \chi^{q-1}_{\Phi\Lambda} + \chi^{q-1}_{\Phi^q\Lambda}.$

Now for a character χ of G, we have $\chi \circ \text{Frob} = \chi$ on K, as it follows from the character table. Therefore $\sum_{K} \bar{\Phi}(k^{q})\chi(k) = \sum_{K} \bar{\Phi}(k)\chi(k)$ because Frob is an involutive automorphism.

Hence, the multiplicity of π in $\operatorname{Ind}_K^G \Phi$ equals $\frac{1}{2} \sum_K (\bar{\Phi} + \bar{\Phi}^q)(k) \pi(k)$ and so it is just the average of the multiplicities in $\operatorname{Ind}_K^G \mathbf{1}$ of two representations of G (one of which may be virtual!)

Remark 1. Put $\pi_{\alpha,\alpha}^{q+1} = \pi_{\alpha}^q + \pi_{\alpha}^1$ and $\pi_{\alpha \circ N}^{q-1} = \pi_{\alpha}^q - \pi_{\alpha}^1$ for every $\alpha \in (F^{\times})^{\wedge}$. It is easy to check than in the degenerate cases $\alpha = \beta$ (for $\pi = \pi_{\alpha,\beta}^{q+1}$) and $\Lambda = \Lambda^q$ (for $\pi = \pi_{\Lambda}^{q-1}$) we find for the multiplicities $m_1(\pi)$

$$m_1(\pi_{\alpha,\alpha}^{q+1}) = 1 \qquad (\alpha \in (F^\times)^\wedge) \tag{1}$$

and

$$m_1(\pi_{\alpha \circ N}^{q-1}) = -\delta_{\alpha,1} \qquad (\alpha \in (F^{\times})^{\wedge})$$
 (2)

Using the fact that the multiplicities of the irreducible representations of G in $\operatorname{Ind}_K^G \mathbf{1}$ are at most one and also equations (1) and (2), we get that the multiplicities are also at most one in the more general case of $\operatorname{Ind}_K^G \Phi$.

2.3. The multiplicities $m_{\Theta,d}(\Phi)$ of π_{Θ}^d in $\operatorname{Ind}_K^G \Phi$ for general $\Phi \in (E^{\times})^{\wedge}$. In Table 1 below, π_{Θ}^d denotes an irreducible representation of G, of dimension d and parameter Θ . Then $d \in \{1, q, q+1, q-1\}$ and Θ is of the form $\{\alpha, \beta\}$, with $\alpha, \beta \in (F^{\times})^{\wedge}$ or $\{\Lambda, \Lambda^q\}$ with $\Lambda \in (E^{\times})^{\wedge}$

Table 1. The multiplicities $m_{\Theta,d}(\Phi)$

π_{Θ}^d	$m_{\Theta,d}(\Phi)$
$\pi^1_{\alpha,\alpha}$	$\delta_{lpha^2,\phi}$
$\pi^q_{\alpha,\alpha}$	$\delta_{\alpha^2,\phi} - \delta_{\alpha \circ N,\Phi}$
$\pi^{q+1}_{\alpha,\beta}$	$\delta_{lphaeta,\phi}$
$\pi_{\Lambda,\Lambda^q}^{q-1}$	$\delta_{\lambda,\phi} - \delta_{\Lambda,\Phi} - \delta_{\Lambda^q,\Phi}$

NOTATIONS. Here $\alpha, \beta \in (F^{\times})^{\wedge}$ with $\alpha \neq \beta$ and $\Phi, \Lambda \in (E^{\times})^{\wedge}$ with $\Lambda \neq \Lambda^{q}$, and λ (resp. ϕ) denotes the restriction of the character Λ (resp. Φ) to $(F^{\times})^{\wedge}$.

3. The twisted spherical functions

3.1. The averaging construction. In this section G denotes an arbitrary finite group, K a subgroup of G and Φ a one dimensional representation of K. We notice that the spherical functions for the representation $\operatorname{Ind}_K^G \Phi$ are obtained as weighted averages of the characters of G. More precisely:

Definition 2. Let $L^1(G)$ be the group algebra of G, realized as the convolution algebra of all complex functions of G and let $L^1_{\Phi}(G,K)$ be the convolution algebra of all complex functions f on G such that

$$f(kgk') = \Phi(k)f(g)\Phi(k')$$

for all $g \in G, k, k' \in K$. For any $f \in L^1(G)$ put

$$(P_{\Phi}f)(g) = \frac{1}{|K|} \sum_{k \in K} \Phi^{-1}(k) f(kg)$$

for all $g \in G$.

Notice that the operator P_{Φ} is just convolution with the idempotent function $\varepsilon_K^{\Phi} \in L^1G$ which coincides with $|K|^{-1}\Phi$ on K and vanishes elsewhere. Moreover $L^1_{\Phi}(G,K)$ may be writen as $\varepsilon_K^{\Phi} * L^1G * \varepsilon_K^{\Phi}$ and its elements f are characterized by the properties

$$\varepsilon_K^{\Phi} * f = f = f * \varepsilon_K^{\Phi}$$

Lemma 2. Let χ be the character of an irreducible representation π of G. Then $P_{\Phi}(\chi)(e) \neq 0$ iff π appears in $\operatorname{Ind}_K^G \Phi$.

Lemma 3. $P_{\Phi}(\chi)$ is a non-zero function iff it doesn't vanish for g = e.

Proposition 2. The mapping P_{Φ} is an algebra epimorphism from the center $Z(L^1G)$) of the convolution algebra L^1G onto the center $Z(L^1_{\Phi}(G,K))$ of the convolution algebra $L^1_{\Phi}(G,K)$.

Proof: We have

$$P_{\Phi}(f_{1} * f_{2}) = \varepsilon_{K}^{\Phi} * (f_{1} * f_{2}) = (f_{1} * \varepsilon_{K}^{\Phi}) * f_{2}$$

$$= (f_{1} * \varepsilon_{K}^{\Phi} * \varepsilon_{K}^{\Phi}) * f_{2} = (\varepsilon_{K}^{\Phi} * f_{1}) * (\varepsilon_{K}^{\Phi} * f_{2})$$

$$= P_{\Phi}f_{1} * P_{\Phi}f_{2}.$$

since f_1 is central and ε_K^{Φ} is idempotent. Moreover the dimension d of the image of $Z(L^1G)$) under P_{Φ} is the number of irreducible characters χ of G such that $P_{\Phi}(\chi) \neq 0$; but $P_{\Phi}(\chi) \neq 0$ iff $(P_{\Phi}\chi)(e) \neq 0$ and, the number $(P_{\Phi}(\chi))(e)$ being the multiplicity in $\operatorname{Ind}_K^G \Phi$ of the representation π of G whose character is χ , we see that d is just the number of irreducible representations π of G appearing in $\operatorname{Ind}_K^G \Phi$, i. e. the dimension of the center of $L_{\Phi}^1(G,K)$.

Corollary 2. The nonzero functions that satisfy the functional equation

$$h(x)h(y) = \int_K \bar{\Phi}(k)h(xky) dk$$

linearly span the center of the algebra $L^1_{\Phi}(G,K)$.

Proof: The functions h that satisfy the above functional equation are exactly the complex multiples of the functions $P_{\Phi}(\chi)$; for a proof (see [6]). Therefore the corollary follows.

3.2. Explicit formulae for the twisted spherical functions. Define

$$S_{\Lambda}^{\Phi}(a) = -(q^2 - 1)^{-1} \sum_{(z,w) \in \Gamma_a} \Phi^{-1}(z) \Lambda(w)$$

for $\Lambda \in (E^{\times})^{\wedge}$ and $a \in F^{\times}$, where Γ_a denotes the set of all $(z, w) \in E^{\times} \times E^{\times}$ such that N(w) = aN(z) and $Tr(w) = 2(a+1)^{-1}Tr(z)$.

Then the spherical function ζ_{Λ}^{Φ} of G associated to the cuspidal character χ_{Λ}^{q-1} of G is given on the representatives $d(a,1)=\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$ $(a\in F^{\times})$ for the K - double cosets in G, by

$$\zeta_{\Lambda}^{\Phi}(d(a,1)) = S_{\Lambda}^{\Phi}(a) + q(q+1)^{-1}\delta_{a,1}\delta_{\lambda,\phi},$$

where λ (resp. ϕ) denotes the restriction of the character Λ (resp. Φ) of E^{\times} to F^{\times} . Notice that a=1 corresponds to the origin in \mathcal{H} and a=-1 corresponds to the antipode of the origin in \mathcal{H} . It is not difficult to check that these formulae for the spherical functions are equivalent to the ones given in [4] for the case $\Phi=1$.

3.3. A new form for the cuspidal spherical functions for $\Phi = 1$ (char $F \neq 2$). For $a \neq 1$, one has the following new expression for the spherical functions estimated in [3]

$$\zeta_{\Lambda}^{\Phi}(a) = (q+1)^{-1} \sum_{u \in U} \varepsilon (Tr(u) - (a+a^{-1}))(\varepsilon \omega)(u),$$

for $a \neq 1$, where ε denotes the sign character of F^{\times} .

4. Heisenberg Uncertainty Principle

For this section, G denotes an arbitrary finite group, K any subgroup of G and Φ any linear character of K.

Let \hat{G}^{Φ} be set of all the equivalence classes of irreducible representations of G that contain the character Φ when restricted to K. For each equivalence class we choose, once and for all, a representative (π, V_{π}) . As usual, for each f in $L^1(G)$, the Fourier Transform $\mathcal{F}(f)$, valued in the class (π, V_{π}) , is the linear operator \mathcal{F} in V_{π} defined by

$$\mathfrak{F}(f)(\pi) := \pi(f) := \frac{1}{|G|} \int_G f(g) \pi(g^{-1}) dg := \frac{1}{|G|} \sum_{g \in G} f(g) \pi(g^{-1}).$$

We recall the statement of the Plancherel theorem for a function $f \in L^1_{\Phi}(G,K)$

$$f(g) = \frac{1}{G} \sum_{\pi \in \hat{G}^{\Phi}} d_{\pi} \operatorname{trace}(\pi(f)\pi(g));$$

here $g \in G$ arbitrary and $d_{\pi} := \dim V_{\pi}$.

For any complex valued function f on G, let $|\operatorname{supp}(f)|$ denote the number of elements of the support of f. That is, the number of points of G where f takes nonzero values.

Proposition 3 (Heisenberg Uncertainty Principle). For any nonzero function $f \in L^1_{\Phi}(G,K)$ we have

$$|\operatorname{supp}(f)| (\sum_{\pi \in \operatorname{supp}(\mathcal{F}(f))} d_{\pi}) \ge |G|.$$

Here supp($\mathfrak{F}(f)$) is the subset of \hat{G}^{Φ} where $\mathfrak{F}(f)$ does not vanish.

Proof: For any function f on G we recall that

$$||f||_2^2 = \sum_{x \in G} |f(x)|^2; \ ||f||_{\infty} = \max_{x \in G} |f(x)|; \ ||f||_2^2 \le ||f||_{\infty}^2 |\operatorname{supp}(f)|$$
 (*)

From now on, we fix a G-invariant inner product on V_{π} . Then T^* denotes the adjoint of a linear operator T on V_{π} with respect to this inner product. Also ||T|| denotes the Hilbert-Schmidt norm on End V_{π} defined by $\operatorname{trace}(TS^*)$, for $S, T \in \operatorname{End} V_{\pi}$

Since $f \in L^1_{\Phi}(G, K)$, as we pointed out before, the Plancherel Theorem says that we have that $\operatorname{supp}(f)$ is contained in \hat{G}^{Φ} and that

$$f(x) = \frac{1}{G} \sum_{\pi \in \hat{G}^{\Phi}} d_{\pi} \operatorname{trace}(\pi(f)\pi(x)).$$

The Cauchy–Schwarz inequality applied to the Hilbert-Schmidt inner product says that the first of the two following inequallities is true,

$$\operatorname{trace}(\pi(f)\pi(x)) \le \|\pi(f)\| \|\pi(x)\| \le \|\pi(f)\|,$$

the second inequality follows from the fact that ||T|| = 1 for a unitary operator.

Putting together the last two statements we get

$$||f||_{\infty} \le \frac{1}{G} \sum_{\pi \in \hat{G}^{\Phi}} d_{\pi} ||\mathcal{F}(f)(\pi)||$$

The classical Cauchy–Schwarz inequality and the fact that $d_{\pi} = d_{\pi}^{\frac{1}{2}} d_{\pi}^{\frac{1}{2}}$ imply that

$$||f||_{\infty}^2 \le \frac{1}{|G|^2} \sum_{\pi \in \hat{G}^{\Phi}} d_{\pi} ||\mathcal{F}(f)(\pi)||^2 \sum_{\pi \in \text{supp}(\mathcal{F}(f))} d_{\pi}.$$

Now the L^2 -version of Plancherel Theorem says that

$$||f||_2^2 = \frac{1}{|G|} \sum_{\pi \in \hat{G}^{\Phi}} d_{\pi} ||\mathcal{F}(f)(\pi)||^2.$$

Therefore,

$$||f||_{\infty}^2 \le \frac{1}{|G|} ||f||^2 \sum_{\pi \in \hat{G}^{\Phi}} d_{\pi}.$$

Since f is nonzero, we apply (*) to the above inequality and get the desired result. \Box

REFERENCES

- [1] Galina, E. and Vargas, J., Eigenvalues and eigenspaces for the twisted Dirac operator over SU(n,1) and Spin(2n,1), Trans. Amer. Math. Soc., **345** (1994), 97-113.
- [2] Helversen-Pasotto, A., Représentation de Gelfand-Graev et identités de Barnes, Enseign. Math. 32 (1986), 57-77.
- [3] Katz, N., Estimates for Soto-Andrade sums, J. reine angew. Math. 438 (1993), 143-161.
- [4] Soto-Andrade, J., Geometrical Gel'fand Models, tensor quotients and Weil representations, Proc. Symp. Pure Maths., 47, AMS, Providence, 1987, 305-316.

- [5] Soto-Andrade, J., Répresentations de certains groupes symplectiques, Mém. 55-56, Soc. Math. France, 1975.
- [6] Varadarajan, Spherical functions, Springer, Berlin.

JORGE SOTO-ANDRADE, DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, UNI-VERSIDAD DE CHILE, CASILLA 653, SANTIAGO, CHILE

E-mail address: sotoandr@mate.uncor.edu, sotoandr@abello.dic.uchile.cl

JORGE VARGAS, FAMAF, UNIVERSIDAD NACIONAL DE CÓRDOBA, CIUDAD UNIVERSITARIA, CÓRDOBA, ARGENTINA

 $E\text{-}mail\ address{:}\ \mathtt{vargas@mate.uncor.edu}$