21-238, Math Studies Algebra 2. Department of Mathematical Sciences, Carnegie Mellon University Spring 2012: Monday, Wednesday, Friday, 10:30 am, Doherty Hall 1211.

Luc Tartar, University Professor of Mathematics, Wean Hall 6212, tartar@cmu.edu

Assignment 4 - Friday March 2, 2012. Due Wednesday March 7

Exercise 16: Let E be a field, and let $\frac{P}{Q} \in E(x)$ be a non-zero rational fraction. Assume that $Q = \frac{P}{Q}$ $Q_1^{k_1}\cdots Q_m^{k_m}$, where $k_1,\ldots,k_m\geq 1$ and Q_1,\ldots,Q_m are distinct monic irreducible polynomials of degree

- i) Show that there is a decomposition $\frac{P}{Q} = A + \sum_{i=1}^{m} \frac{B_i}{Q_i^{k_i}}$ with $A, B_1, \dots, B_m \in E[x]$ with $degree(B_i) < k_i d_i$ for $i = 1, \ldots, m$.
- ii) Show that A, B_1, \ldots, B_m are determined in a unique way.

Exercise 17: For $m \geq 1$, let $a, b, c_1, \ldots, c_m, \xi_1, \ldots, \xi_m \in \mathbb{R}$ with $a, c_1, \ldots, c_m \geq 0$, and let f = ax + b + 1 $\sum_{i=1}^{m} \frac{c_i}{\xi_i - x} \in \mathbb{C}(x).$

- i) Show that f maps H into itself, where H is the "upper half plane", i.e. $\{z = \alpha + i\beta \mid \alpha, \beta \in \mathbb{R}, \beta > 0\}$.
- ii) Let $g \in \mathbb{C}(x)$ be such that it has no poles in H and that $g(z) \in H$ for all $z \in H$. Show that if $g \in \mathbb{C}[x]$, it has the form ax + b with $a, b \in \mathbb{R}$ and $a \geq 0$, and that if $g \in \mathbb{C}(x) \setminus \mathbb{C}[x]$, it has the above form f for some

Exercise 18: Let V be a finite-dimensional Euclidean space, let $f \in \mathbb{R}(x)$ have the form of Exercise 17, and let $[a_-, a_+] \subset \mathbb{R}$ (with $a_- < a_+$) be an interval containing no pole of f.

- i) Show that for $A \in L_s(V, V)$ satisfying $a_-I \leq A \leq a_+I$, and any decomposition of $f = \frac{P}{Q}$ with Q having no poles in $[a_-, a_+]$, then Q(A) is invertible, and $P(A)(Q(A))^{-1}$ is an element of $L_s(V, V)$ independent of the representation of f chosen, so that one denotes it f(A).
- ii) Show that if $A_1, A_2 \in L_s(V, V)$ satisfy $a_-I \leq A_1 \leq A_2 \leq a_+I$, then one has $f(A_1) \leq f(A_2)$.

Exercise 19: Let V be a finite-dimensional Euclidean space, and let $M \in L(V, V)$ be such that there exists $\alpha > 0$ such that $(M v, v) \ge \alpha ||v||^2$ for all $v \in V$.

- i) Show that M is invertible, with $||M^{-1}|| \leq \frac{1}{\alpha}$, and that the (complex) eigenvalues λ_i of M satisfy $\Re(\lambda_i) \geq \alpha$
- ii) Show that for every $B \in L(V, V)$, $X = \int_0^\infty e^{-tM^T} B e^{-tM} dt$ defines an element $X \in L(V, V)$, and show that X is the unique solution of $XM + M^T X = B$.
- ii) Show that if $B \in L_s(V, V)$, then $X \in L_s(V, V)$, and if moreover $\beta(M + M^T) \leq B \leq \gamma(M + M^T)$ with $0 \le \beta \le \gamma$, then $\beta I \le X \le \gamma I$.

Exercise 20: Let V be a finite-dimensional Euclidean space, and let $A \in L(V, V)$ be such that there exists $\alpha > 0$ such that $(Av, v) \geq \alpha ||v||^2$ for all $v \in V$. For $C \in L_s(V, V)$ satisfying $C \geq 0$, and $D \in L_s(V, V)$ satisfying $D \geq 0$, one wants to solve $XA + A^TX + XCX = D$, and show that there exists a solution $X \in L_s(V, V)$ satisfying $0 \le X \le \gamma I$, with $\gamma \ge 0$ chosen so that $D \le \gamma (A + A^T) + \gamma^2 C$.

- i) Show that if $X_n \in L_s(V, V)$ satisfies $0 \le X_n \le \gamma I$, and $\mu \ge \gamma ||C||$, there is a unique $X_{n+1} \in L_s(V, V)$ satisfying $X_{n+1} (A + C X_n + \mu I) + (A^T + X_n C + \mu I) X_{n+1} = 2\mu X_n + X_n C X_n + D$, and that $0 \le X_{n+1} \le \gamma I$. ii) If moreover $X_n A + A^T X_n + X_n C X_n \le D$, show that $X_n \le X_{n+1}$, and that $X_{n+1} A + A^T X_{n+1} + A^T X_n C X_n \le D$.
- $X_{n+1}CX_{n+1} \le D.$
- iii) Starting from $X_0 = 0$, show that X_n converges to a solution.