C16-C-301/C16-CM-301/C16-IT-301

BOARD DIPLOMA EXAMINATION, (C-16) OCT/NOV-2018 DCE-THIRD SEMESTER EXAMINATION

ENGINEERING MATHEMATICS-II

Time: 3 hours [Total Marks: 80

PART—A

3×10=30

Instructions: (1) Answer all questions.

- (2) Each question carries **three** marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** Evaluate $\sqrt{1 + \sin 2x \cdot dx}$.
- **2.** Evaluate $\frac{\cos \log x}{x} dx$.
- 3. Evaluate $\int_{0}^{2} \sin^2 x \, dx$.
- **4.** Find the RMS value of $\sqrt{27}$ x^2 over the interval (0, 3).
- **5.** Find $L(t^2)^2$.

- **6.** Find $L^{-1} \frac{2s-5}{(s-2)^2-4}$.
- **7.** Find a_0 in the Fourier series expansion of $F(x) = e^x$ in the interval (,).
- **8.** Solve $(e^x \ 1) \sin y \ dy + e^x \cos y dx = 0$.
- **9.** Solve $(D^2 \ 3D \ 5)y \ 0$.
- **10.** Form differential equation for the family of curves $y Ae^{2x} Be^{2x}$.

Instructions: (1) Answer any five questions.

- (2) Each question carries ten marks.
- (3) The answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** (a) Evaluate $\sin 5x \cdot \cos 7x \cdot dx$.
 - (b) Evaluate $\frac{1}{5 + 4\cos x} dx$.
- **12.** (a) Evaluate $x^3 e^{5x} dx$.
 - (b) Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\sin^{12} x}{\sin^{12} x \cos^{12} x} dx.$
- **13.** (a) Find the area bounded between the parabolas y^2 16x and x^2 16y.
 - (b) Find the volume of the solid generated when the region of the circle x^2 y^2 16 is revolved about a diameter.

14. (a) A curve is drawn to pass through the points given by the following table :

X	1	1.5	2	2.5	3	3.5	4
y	3	3.4	3.7	2.8	2.7	2.6	2.1

Calculate the area bounded by the curve, x-axis and the lines x = 1 x = 4 using trapezoidal rule.

- (b) Find $L\{t.e^{-2t}\sin 3t\}$.
- **15.** (a) Find $L \frac{e^{2t} e^{3t}}{t}$.
 - (b) Find $L^{-1} = \frac{s}{s^{-2}}$.
- **16.** Obtain the Fourier half range Cosine series and Sine series for f(x) x in the interval (0, 0).
- **17.** (a) Solve $x \frac{dy}{dx} = 2y x^2 \log x$.

*

- (b) Solve $(x^2 y^2 a^2)x dx (x^2 y^2 b^2)y dy 0$.
- **18.** (a) Solve $(D^2 3D 2)y \cos 3x$, where $D \frac{d}{dx}$.
 - (b) Solve $(D^2 3D 2)y x^2$, where $D \frac{d}{dx}$.