Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Низкоуровневое программирование

Отчет по лабораторной работе №1 Машина Тьюринга-Поста

Работу

выполнил:

Аникин Д.А.

Группа:

3530901/90004

Преподаватель:

Алексюк А.О.

Санкт-Петербург 2021

Содержание

1	Цель работы	3
2	Правила кодирования	3
3	Построение машины	3
4	Результат построения	4
5	Выволы	5

1. Цель работы

Построить машину Тьюринга-Поста, вполняющую вычитание чисел в десятичном коде (уменьшаемое >= вычитаемому). Выполнить моделирование ее работы в одном из свободно доступных симуляторов.

2. Правила кодирования

Алфавит машины

Алфавит машины состоит из следующих символов: "-" (разделение уменьшаемого и вычитаемого); Символы 1, 2, 3, 4,5, 6, 7, 8, 9, используются для записи чисел в десятичном коде. Символы A, B, C, D, E, F, G, H, I, J являются вспомогательными - они не присутствуют на входной и выходных лентах.

Кодирование входной ленты

Перед запуском машины на входной ленте должны быть представлены уменьшаемое и вычитаемое (уменьшаемое >= вычитаемому). Числа длжны быть разделены символом "-". Головка машины указывает на последний символ представления вычитаемого.

Кодирование выходной ленты

Результатом работы машины при корректных входных данных является разность между введенными числами. Головка машины указывает на первый символ этого представления.

3. Построение машины

Для организации вычитания необходимо поочередно вычитать единицу из каждого разряда (заменить символ десятичной цифры n на n-1) вычитаемого и уменьшаемого, начиная с последнего. После того, как в разряде вычитаемого остается 0, он затирается, а соответствующая положению разряда вычитаемого цифра уменьшаемого маркируется специальным символом - буквой латинского алфавита (0 = A, 1 = B, ..., 9 = J), чтобы игнорировать этот разряд в дальнейшем, так как процесс вычитания для него закончен. Альтернативный вариант - перемещать эти разряды в специальное место на ленте, отведенное для ответа, но он требует большее количество шагов и состояний. Процесс повторяется до тех пор, пока вычитаемое полностью не сотрется с ленты. Далее все маркированные цифры восстанавливаются до своего значения, машина завершает свою работу.

Машина начинает свою работу с состояния СНК0В0, проверяющее младший разряд вычитаемого на равенство нулю.

- Если младший разряд равен нулю, он затирается, производится переход в состояния MARKA0, производящее переход к разряду уменьшаемого. Затем происходит переход в состояние MARKA1, заменяющее цифру на букву, после чего осуществляется переход в состояние MVB0, возвращающее положение головки машины на место последнего оставшегося разряда, затем обратно в состояние CHK0B0.
- В противном случае переходим с состояние SUBB0, вычитающее единицу из разряда и переходящее затем в состояние MVA0 (перемещение к последнего разряду уменьшаемого). В состоянии MVA0 головка машины доходит до "-", происходит переход в MVA1, при котором головка движется влево, пропуская все маркированные разряды, пока не встретит первую цифру. Происходит переход в CHK0A0.

Состояние СНК0А0, проверяет разряд уменьшаемого, по аналогии с СНК0В0, на равенство нулю.

- Если разряд равен нулю, значит необходимо сделать заём из старшего разряда. Из состояния СНК0А0 происходит переход в BORROW0. BORROW0 заменяет 0 на 9 и перемещает головку влево или, если нули закончились, переходит в SUBA0 для вычета единицы.
- Иначе переходим в SUBA0, вычетающее единицу из разряда уменьшаемого и переходящее в состояние MVB0, всё по аналогии с вычитаемым. Стоит отметить, что, если цифра в разряде равна единице, то происходит переход в SUBA1, которое проверяет, не является ли данный разряд старшим (не стоит ли перед ним пустой символ). Если нет, то происходит переход в SUBA3, заменяющее единицу на ноль. Если дав состояние SUBA2, стирающее данный разряд.

Когда вычитаемое полностью стерлось, т.е в состоянии SUBB0 головка переходит к "-", начинается процесс восстановления уменьшаемого. Происхоит переход в RESTORE0, заменяющее буквенное представлени разрядов на численное и двигающее головку влево. При достижении пустого символа, что говорит о том, что все разряды восстановлены, происходит переход в завершающее состояние HALT. Машина останавливает свою работу.

4. Результат построения

Граф управляющего автомата построенной машины показан на Рис. 4.1. Итоговое количество состояний - 16.

Рисунок 4.1. Граф переходов

5. Выводы

В ходе работы была построена машина Тьюринга-Поста, выполняющее вычитание чисел в десятичном коде. В процессе работы постоянно происходит перемещение от разрядов уменьшаемого к вычитаемому и наоборот. Можно уменьшить количество выполняемых шагов и состояний, если построить многоленточную машину Тьюринга.