

Primeiros passos em Internet das Coisas

Implementação de uma Balança IoT

Prof. Dr. Luiz Claudio Marangoni de Oliveira Professor EBTT - NuRIA - GEPIC

Palestrante

Graduado em física aplicada, mestre em engenharia elétrica na área de Microondas e Óptica e Doutor em engenharia mecânica na área de mecânica computacional e projetos mecânicos pela UNICAMP. Atuou nas áreas de instrumentação científica para raios-X, de microeletrônica e sistemas embarcados, e no desenvolvimento e fabricação de novos dispositivos microeletromecânicos MEMS para aplicações ópticas. Atualmente atua como professor EBTT no Instituto Federal de Educação, Ciência e Tecnologia de São Paulo na área automação industrial, sistemas embarcados e desenvolvimento projetos. Entusiasta das novas tecnologias educacionais, coordena o NURIA – Núcleo de Robótica e Inteligência Artificial – criado a partir de projeto CNPq para difusão da robótica educacional e da cultura *Maker* como ferramentas para melhoria da educação.

Proposta do projeto

Adaptar uma balança digital de banheiro para envio das informações medidas para a nuvem e armazenamento em banco de dados

O que é Internet das Coisas ou IoT (Internet of Things) ?

O QUE É A INTERNET DAS COISAS?

embarcar conectividade, sensores e atuadores para compartilhar dados entre múltiplos dispositivos e, assim, agregar mais valor.

Fonte: https://www.slideshare.net/tiago.barros/introduo-a-internet-das-coisas

Áreas de aplicação da internet das coisas

HEALTH BODY

Patient care
Patient surveillance
Elderly monitoring
Fall detection
Remote diagnostic
Equipment
monitoring
Hospital hygiene
Bio wearables
Food sensors

HOME CONSUMER

Thermostats
Lighting
Remote control
appliances
Detection (intrusion
/smoke)
Energy / water
monitoring
Infotainment
Pet feeding

TRANSPORT MOBILITY

Smart car
Traffic routing
Telematics
Package monitoring
Smart parking
Insurance adjustments
Supply chain
Shipping
Public transport

CITIES URBAN PLANNING

Smart lighting
Waste management
Maintenance
Surveillance
Signage
Utilities / Smart grid
Emergency services

INDUSTRYINFRASTRUCTURE

Heat, ventilation and air conditioning Security Smart lighting Transit Emergency alerts Structural integrity Occupancy Energy credits

Fonte: https://www.slideshare.net/tiago.barros/introduo-a-internet-das-coisas

Exemplos em nosso dia-a-dia

PORQUE OS DISPOSITIVOS DA NOSSA CASA AINDA NÃO ESTÃO CONECTADOS À INTERNET?

Cada "coisa" tem suas necessidades específicas de conectividade...

- Alcance (área de cobertura)
- ▶ Taxa de transmissão
- Consumo de energia
- Custo

Fonte: https://www.slideshare.net/tiago.barros/introduo-a-internet-das-coisas

PORQUE OS DISPOSITIVOS DA NOSSA CASA AINDA NÃO ESTÃO CONECTADOS À INTERNET?

...e isto ns leva a precisar de vários protocolos:

- camada fisica e enlace;
- camada de rede;
- camada de transporte;

"É MUITO DIFÍCIL, HOJE, TERMOS UM PADRÃO PARA IOT DA FORMA QUE A GENTE TEM PARA WWW. AS COISAS EM IOT SÃO TÃO DIFERENTES E AS APLICAÇÕES TÃO DIVERSAS, QUE VÁRIOS PADRÕES E PROTOCOLOS IRÃO COEXISTIR."

Tiago Barros

E ISTO LEVA A UM PROBLEMA...

complexidade!

Por onde começar?

Por onde começar?

- Projeto simples e consolidado
- Utilizar um hardware que facilite a integração à internet
- Utilizar plataformas IoT que sejam amplamente adotadas e com muitos tutoriais online
- "Usar e abusar" dos tutoriais online
- Aprender fazendo!

Por onde começar?

- Projeto simples e consolidado: Balança digital
- Utilizar um hardware que facilite a integração à internet: Particle Photon
- Utilizar plataformas IoT que sejam amplamente adotadas e com muitos tutoriais online: Particle Cloud + Google Firebase
- "Usar e abusar" dos tutoriais online: Instructables, Hackster.io e outros
- Aprender fazendo! "Hackear" uma balança digital

Etapas

- 1. Compreender o funcionamento da balança digital Hardware
- 2. Definir as adaptações necessárias
- Implementar e testar as adaptações de Hardware particle Photon + Display
 LCD + HX711 medidor das células de carga
- 4. Implementar a comunicação da balança à nuvem da Particle (Particle cloud)
- 5. Implementar a comunicação da **Particle Cloud ao serviço Firebase** (banco de dados em tempo-real)
- Implementar a exibição dos dados e controle da balança numa página web -Python + RestAPI (Cenas dos próximos capítulos...)

Agora, mãos à obra!!!

Hardware - Balança digital

https://www.particle.io/

Hardware - Particle Photon

- Mesma linguagem de programação do Arduino !!!
- Upload "on the air" faço a programação pela web e já transfiro para o dispositivo

https://www.particle.io/

Hardware - Particle Photon

Integração à web facilitada pelo "Particle Cloud"

Hardware - adaptação células de carga

Conversor A/D - 24 bits e Amplificador

Hardware - Adaptação Display LCD

Display LCD - 16x2

Conversor i2C

Adaptações do Hardware

Diagrama de conexões - balança IoT - alimentação via USB

Software - Interconexões

Diagrama de conexões software - Balança IoT

Balança IoT em operação

Conclusões

- Um balança IoT conectada à um banco de dados online em tempo-real foi implementada com sucesso
- A elaboração do projeto possibilitou a compreensão do framework de interligação à IoT de um dispositivo simples (balança eletrônica) por meio de um serviço de nuvem - Particle
 Cloud - geração de eventos webhooks e atualização em tempo-real por meio da utilização de websockets
- Próximas etapas previstas autenticação do sistema da balança para acesso ao banco de dados, implementação de página web para exibição dos resultados, criação de diferentes usuários para acesso remoto a balança, melhoria do hardware para aumentar a precisão das medidas

Quer aprender mais?

Participe dos nossos grupos de pesquisa:

NURIA - Núcleo de Robótica e Inteligência Artificial Coordenador - Prof. Luiz Marangoni - <u>oliveiralcm@gmail.com</u>

GEPIC - Grupo de Pesquisas em Internet das Coisas Coordenador - Prof. Ricardo Leite - <u>ricbleite@gmail.com</u>

Obrigado!

