Computing Linear Arithmetic Representation of Reachability Relation of One-counter Automata

Authors: Xie Li, Taolue Chen, Zhilin Wu and Mingji Xia

SETTA 2020: Guangzhou, China, November 24-28, 2020

Overview

Introduction to One-counter Automata(OCA) and its Reachability Problem.

Overview

- Introduction to One-counter Automata(OCA) and its Reachability Problem.
- Computing the Reachability Relation of OCA.

Overview

- Introduction to One-counter Automata(OCA) and its Reachability Problem.
- Computing the Reachability Relation of OCA.
- Introduction to Tool ORAREACH.
- Experimental Results of our Tool OCAREACH.

What is One-counter Automata(OCA)

■ DFA with a **counter** where counter value is **non-negative**.

What is One-counter Automata(OCA)

- DFA with a **counter** where counter value is **non-negative**.
- lacksquare Transitions: $q\stackrel{\mathtt{Op}}{ o} q'$ where $\mathtt{Op} \in \{\mathtt{add}(+1),\mathtt{add}(-1),\mathtt{zero}\}$

What is One-counter Automata(OCA)

- DFA with a **counter** where counter value is **non-negative**.
- lacksquare Transitions: $q\stackrel{ extstyle ext$

Example (OCA)

Semantic of OCA

Semantic of OCA: A transition system where the configuration is of the form (q, c) and counter changes corresponds to OCA.

$$(q_1,c_1) \rightarrow_{\mathcal{A}} (q_2,c_2)$$

if $q_1 \stackrel{\mathrm{add}(+1)}{\longrightarrow} q_2$ in the OCA and $c_1+1=c2$, or if $q_1 \stackrel{\mathrm{zero}}{\longrightarrow} q_2$ and $c_1=c_2=0$.

Reachability

Reachability Problem of OCA: whether $(q_s, c_s) \rightarrow_{\mathcal{A}}^* (q_t, c_t)$

Reachability

Reachability Problem of OCA: whether $(q_s, c_s) \rightarrow_{\mathcal{A}}^* (q_t, c_t)$

Example

- $(q_3, 0)$ is reachable from $(q_0, 1)$.
- $(q_3, 0)$ is not reachable from $(q_0, 0)$

Reachability

Reachability Problem of OCA: whether $(q_s, c_s) \rightarrow_{\mathcal{A}}^* (q_t, c_t)$

Example

- $(q_3, 0)$ is reachable from $(q_0, 1)$.
- $(q_3,0)$ is not reachable from $(q_0,0)$

Due to the non-negative requirement, $(q_1, 1)$ is not reachable from

 $ig(q_1,1ig)$ is not reachable from $ig(q_0,0ig)$

■ An OCA can be regarded as a weighted directed graph $G_A = (V, E, \eta)$.

- An OCA can be regarded as a weighted directed graph $G_A = (V, E, \eta)$.
- Path: a sequence of vertices $v_0 \cdot v_1 \cdots v_k$ where $(v_i, v_{i+1}) \in E$.

- An OCA can be regarded as a weighted directed graph $G_A = (V, E, \eta)$.
- **Path**: a sequence of vertices $v_0 \cdot v_1 \cdots v_k$ where $(v_i, v_{i+1}) \in E$.
 - Weight of path
 - Drop of path

- An OCA can be regarded as a weighted directed graph $G_A = (V, E, \eta)$.
- Path: a sequence of vertices $v_0 \cdot v_1 \cdots v_k$ where $(v_i, v_{i+1}) \in E$.
 - Weight of path
 - Drop of path
- **Flow**: a function $f: E \to \mathbb{N}$.

Example

- path: v₀ · v₁ · v₁
- weight: +1, drop: -1

Path Flow and Support

- *s-t* **path flow**: the flow corresponds to a path.
- Support: edge-induced subgraph of path.

Path Flow and Support

- *s-t* **path flow**: the flow corresponds to a path.
- Support: edge-induced subgraph of path.

Example

- Path: $v_0 \cdot v_1 \cdot v_1$
- Pathflow: $f(v_0, v_0) = 0$ $f(v_0, v_1) = 1$ $f(v_1, v_1) = 2$
- Weight: $weight(f) = \sum_{e \in E} f(e) \cdot \eta(e)$

NON-NEGATIVE

NON-NEGATIVE

If we do not require the non-negative of counter.

■ Flow is a path flow ⇔ Requirements on flow.

NON-NEGATIVE

If we do not require the non-negative of counter.

- Flow is a path flow ⇔ Requirements on flow.
 - $v_s \cdots v_t$ where $s \neq t$
 - $V_s \cdots V_s$

NON-NEGATIVE

If we do not require the non-negative of counter.

- Flow is a path flow ⇔ Requirements on flow.
 - $v_s \cdots v_t$ where $s \neq t$
 - $V_s \cdots V_s$
- Weight equals to the value change.

NON-NEGATIVE

If we do not require the non-negative of counter.

- Flow is a path flow ⇔ Requirements on flow.
 - $v_s \cdots v_t$ where $s \neq t$
 - $V_s \cdots V_s$
- Weight equals to the value change.

Non-negative implies the constraint: everywhere along the path, the counter need to be non-negative.

Use **path flow** as certificate of OCA reachability problem.

Use **path flow** as certificate of OCA reachability problem.

- Type-1 Certificate:
 - Flow is a path flow.
 - No positive cycle.
 - Weight correctly added.
 - Path flow can be divided into edge decompositions (which implies non-negative).

Use **path flow** as certificate of OCA reachability problem.

- Type-1 Certificate:
 - Flow is a path flow.
 - No positive cycle.
 - Weight correctly added.
 - Path flow can be divided into edge decompositions (which implies non-negative).
- Type-3 Certificate:

Use **path flow** as certificate of OCA reachability problem.

- Type-1 Certificate:
 - Flow is a path flow.
 - No positive cycle.
 - Weight correctly added.
 - Path flow can be divided into edge decompositions (which implies non-negative).
- Type-3 Certificate:

■ Type-2 Certificate: reverse of type-1 certificate

Definition

Edge Decomposition Edge decomposition of a path flow f is

Definition

Edge Decomposition Edge decomposition of a path flow f is

• $f = \sum_{i \in |E|} f_i + f_{e_i}$ where f_i is also a path flow, $e_i \in E$.

Definition

Edge Decomposition Edge decomposition of a path flow f is

- $f = \sum_{i \in |E|} f_i + f_{e_i}$ where f_i is also a path flow, $e_i \in E$.
- e_i does not appear in support of f_j where j > i.

Definition

Edge Decomposition Edge decomposition of a path flow f is

- $f = \sum_{i \in |E|} f_i + f_{e_i}$ where f_i is also a path flow, $e_i \in E$.
- e_i does not appear in support of f_j where j > i.
- $weight(f_i) + weight(e_i) \ge 0$ for all i.

Definition

Edge Decomposition Edge decomposition of a path flow f is

- $f = \sum_{i \in |E|} f_i + f_{e_i}$ where f_i is also a path flow, $e_i \in E$.
- e_i does not appear in support of f_j where j > i.
- $weight(f_i) + weight(e_i) \ge 0$ for all i.

This definition implies the non-negative requirement of Type-1 certificate.

Decidability of Reachability of OCA

Theorem (Haase)

The reachability can be solved iff we can find a certificate that is of the form

$$(Type-1)^{n_1}(Type-3)^{n_3}(Type-2)^{n_2}$$

where $n_i \in \{0,1\}$

Reachability Relation of OCA

Reachability Relation of OCA:

$$\phi_{\mathcal{A},q_s,q_t}(x_s,x_t)$$

$$\phi_{\mathcal{A},q_s,q_t}(c_s,c_t)$$
 is true iff $(q_s,c_s) \to_{\mathcal{A}}^* (q_t,c_t)$.

$$\phi_{\mathcal{A},q_s,q_t}(x_s,x_t) = \exists (y_e)_{e \in E}.\phi^{T1RC} \lor \phi^{T2RC} \lor \phi^{T3RC} \lor \cdots$$

Type-3 certificate:

$$\phi_{q_s,q_t}^{T3RC}(x_s,x_t,(y_{e,1})_{e\in E})$$

- Positive Cycle.
- Weight of Path flow equals to the change.
- Negative Cycle.

Type-1 certificate:

$$\phi_{q_s,q_t}^{T1RC}(x_s,x_t,(y_{e,1})_{e\in E})$$

■ Weight equals to the counter change.

Type-1 certificate:

$$\phi_{q_s,q_t}^{T1RC}(x_s,x_t,(y_{e,1})_{e\in E})$$

- Weight equals to the counter change.
- Existence of edge decomposition of the path flow.

Type-1 certificate:

$$\phi_{q_s,q_t}^{T1RC}(x_s,x_t,(y_{e,1})_{e\in E})$$

- Weight equals to the counter change.
- Existence of edge decomposition of the path flow.
 - The order of the edge last appears. idx.

Type-1 certificate:

$$\phi_{q_s,q_t}^{T1RC}(x_s,x_t,(y_{e,1})_{e\in E})$$

- Weight equals to the counter change.
- Existence of edge decomposition of the path flow.
 - The order of the edge last appears. idx.
 - Correct concatenation of the splitted path flows.

OCAREACH: Experimental Evaluation

Implemented in Java.

INPUT: file describing the OCA.

OUTPUT: a PA formula ϕ representing reachability relation.

■ Experiment on handcrafted cases.

state num.	2	2	2	2	3	3	4	4	4
transtion num.	1	2	2	5	2	3	3	3	6
zero-test num.	0	1	1	0	0	1	1	1	1
time (s)	0.066	0.062	0.078	0.076	0.066	0.072	0.061	0.079	0.093
size (kB)	0.302	0.404	0.697	0.302	0.133	0.929	0.348	0.325	2.592
state num.	5	6	6	6	7	8	10	10	
transtion num.	6	6	7	8	9	7	11	11	
zero-test num.	1	2	2	2	2	2	2	3	
time (s)	0.087	0.078	0.106	0.091	0.106	0.090	0.116	0.117	
							8.443		

On random cases.

Conclusion and Future Work

We built the gap between the theory and implementation by the tool $\operatorname{OCAREACH}$

Future work:

- Optimize our tool to improve the efficiency.
- More cases and benchmark for experiment.