ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО

МАТЕМАТИКА

23 май 2023 г.

ПРОФИЛИРАНА ПОДГОТОВКА ВАРИАНТ 2

ЧАСТ 1 (Време за работа: 90 минути)

Отговорите на задачите от 1. до 15. включително отбелязвайте в листа за отговори!

1.	Общото уравнение на права, минаваща през точките с координати (3;-7)

A)
$$9x - 5y + 14 = 0$$

Б)
$$2x - 5y + 4 = 0$$

B)
$$x + y + 4 = 0$$

$$\Gamma$$
) $9x + y - 20 = 0$

2. Свободният член в нормалния вид на полинома
$$f(x) = (x^2 + x - 2)^3 + (2x^3 - 1)^7 \text{ е равен на:}$$

$$(5) -7$$

$$\Gamma$$
) 2^7

3. Правоъгълникът
$$ABCD$$
 със страни $AB = 3 \, \mathrm{cm}$ и $AD = 5 \, \mathrm{cm}$ е завъртян на 360° около по-голямата си страна. Обемът на полученото ротационно тяло е:

A)
$$15\pi \text{ cm}^3$$

A)
$$15\pi \text{ cm}^3$$
 B) $11,25\pi \text{ cm}^3$ B) $75\pi \text{ cm}^3$ Γ) $45\pi \text{ cm}^3$

B)
$$75\pi$$
 cm

$$\Gamma$$
) 45 π cm³

4. Хоризонталната асимптота на функцията
$$f(x) = \frac{x+7}{5-3x}$$
 е:

A)
$$x = -\frac{5}{3}$$
 B) $y = -\frac{1}{3}$ Γ) $x = \frac{5}{3}$

Б)
$$y = \frac{1}{3}$$

B)
$$y = -\frac{1}{3}$$

$$\Gamma) \ \ x = \frac{5}{3}$$

дисперсията на X е 1,92, то стойността на p може да е:				
A) 0,2	Б) 0,35	B) 0,49	Γ) 0,71	
6. Дадени с	а векторите $ec{a}$ и	$ec{b}$, за които $\left ec{a} ight =$	$\sqrt{2}$, $ \vec{b} = 3$ и $\measuredangle (\vec{a}; \vec{b})$) = 45°.
Дължина	га на вектора $\vec{u}=3$	$3\vec{a}-2\vec{b}$ e:		
A) $9\sqrt{2}$	Б) 3√6	B) $3\sqrt{2}$	Γ) 6	
_	_	_	разглеждаме точк	
	, ,	зададена с уравнені	мето $3x - 4y + 11 = 0$. К	акво е
2	ието между тях?			
A) $\frac{2}{5}$	Б) $\frac{3}{5}$	B) 1	Γ) 2	
8. В правил	на четириъгълна г	іризма <i>ABCDA₁B₁C₁L</i>	${m Q}_{_1}$ диагоналите $AC_{_1}$ и	$A_{\rm l}C$ ca
взаимноп	ерпендикулярни.,	Да се намери острия	іт ъгъл между $\mathit{BD}_{\scriptscriptstyle 1}$ и B	S_1C_1 .
A) 30°				
Б) 45°				
B) 60°				
Γ) 90°				
9. Функция	Ta $y(x) = \log_{\frac{1}{2}} \left(-x^2 - \frac{1}{2} \right)$	+4x+5) е растяща в	в интервала:	
A) $x \in (-\infty; 1)$	∪[2;5)			
Б) $x ∈ [2;5)$				
B) $x \in (1,2] \cup$	[5;+∞)			
Γ) $x \in (1,2]$				

5. Случайна величина X има биномно разпределение Biig(12;pig). Ако

- 10. Намерете границата $\lim_{x \to \frac{\pi}{4}} \frac{1-\sin 2x}{\left(\frac{\pi}{4}-x\right)}$.
- A) 0
- $\mathrm{E})\ \frac{\sqrt{2}}{2}$
- B) 1
- Γ) 2
- 11. За кои стойности на параметъра p редицата $a_n = \frac{2n-p}{3n+1}$ е растяща?
- A) $p \in \left(-\infty; -\frac{2}{3}\right)$
- $\mathbf{b}) \ p \in \left(-\frac{2}{3}; +\infty\right)$
- B) $p \in \left(-\frac{2}{5}; +\infty\right)$
- Γ) $p \in \left(\frac{2}{3}; +\infty\right)$
- **12.** Най-голямата стойност на функцията $f(x) = \cos x + \frac{x}{2}$ за $x \in [-\pi; \pi]$ е:
- A) $-\frac{\pi}{2} 1$
- Б) $\frac{\pi}{2} 1$
- B) $\frac{\pi}{12} + \frac{\sqrt{3}}{2}$
- $\Gamma) \; \frac{5\pi}{12} \frac{\sqrt{3}}{2}$
- **13.** Множеството от функционални стойности на $y(x) = (x+1)^2 (x-2)^4$ при $x \in [1;4]$ e:

- A) $y \in [0;16]$ B) $y \in [4;400]$ B) $y \in [0;4]$ Γ) $y \in [0;400]$

14. Функцията $f(x) = 3x^4 + 4x^3 - 6x^2 - 12x + 7$:

- А) има локален екстремум само при x = 1
- Б) има локален екстремум само при x = -1
- В) има локални екстремуми при x = 1 и x = -1
- Г) няма локални екстремуми
- 15. Две урни имат следния състав: в първата 6 бели, 4 червени и 15 черни топки, във втората – 15 бели, 2 червени и 8 черни топки. След последователно вадене на топка от едната и от другата урна се оказва, че първо е извадена червена, а след това бяла топка. Каква е вероятността ваденето на топките да е станало първо от втората, а след това от първата урна, при условие че двете последователности вадене на ca равновъзможни?
- A) $\frac{5}{6}$
- Б) $\frac{1}{6}$

МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА

ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО

МАТЕМАТИКА

23 май 2023 г.

ПРОФИЛИРАНА ПОДГОТОВКА ВАРИАНТ 2

ЧАСТ 2 (Време за работа: 150 минути)

Пълните решения с необходимите обосновки на задачите от 16. до 18. включително запишете в листа за отговори!

16. В триъгълна пирамида ABCD равнините (ABD) и (ABC) са перпендикулярни. Ръбовете AD, BD, CD и BC са равни на $2 \, \mathrm{cm}$. Определете максималния обем на пирамидата и дължините на AB и AC, за които той се достига.

17.

- а) Ако a е най-малкият положителен реален корен на уравнението $3x^5-4x^4-11x^3-11x^2-4x+3=0$, $b=4,(7)-10\frac{7}{9}$ и $c=\lim_{x\to 7}\frac{\sin\left(x-7\right)}{\sqrt{2x-5}-3}$, то намерете числата a, b и c.
- б) Да се намерят координатите на точката T, в която допирателната към графиката на функцията $f(x) = 3x^2 7x + 6$ сключва с положителната посока на абсцисната ос ъгъл с мярка 135° . Да се намери уравнението на допирателната в тази точка.
- 18. В правоъгълна координатна система е построен $\triangle ABC$. Точката A е с координати (2;-1). През върха B са построени височина и медиана съответно с уравнения h:2x-y+1=0 и m:x+y+2=0.
- а) Да се намерят координатите на върховете B и C.
- б) Да се намерят координатите на центъра P и дължината на радиуса R на описаната около $\triangle ABC$ окръжност.

МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА

ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО

МАТЕМАТИКА

23 май 2023 г.

ПРОФИЛИРАНА ПОДГОТОВКА

ВАРИАНТ 2

Ключ с верните отговори

No॒	Отговор	Брой точки
1.	В	3
2.	A	3
3.	Γ	3
4.	В	3
5.	A	3
6.	В	4
7.	В	4
8.	В	4
9.	Б	4
10.	A	4
11.	Б	4
12.	В	4
13.	Γ	4
14.	A	4
15.	Б	4
16.	$V=1 \text{ cm}^3$, $AC=\sqrt{6} \text{ cm } \text{ и}$	15
	$AB = \sqrt{10}$ cm	
17.	a) $a = \frac{1}{3}$, $b = -6$ и $c = 3$	15
	б) $T(1;2)$ и $t: y = -x + 3$	
18.	а) $B(-1;-1)$ и $C(-10;5)$	15

$6) P\left(\frac{1}{2};11\right)$	и $R = \frac{3}{2}\sqrt{65}$
-----------------------------------	------------------------------

Задача 16.

Решение:

От равните околни ръбове следва, че върхът D се проектира ортогонално върху равнината на основата в центъра на описаната окръжност за $\triangle ABC$. От перпендикулярността се получава, че върхът D се проектира върху пресечницата AB. Оттук се получава, че $\triangle ABC$ е правоъгълен с хипотенуза AB.

Нека
$$AB = 2x \implies CH = \frac{1}{2}AB = x$$
, като медиана

в правоъгълен триъгълник. От правоъгълните триъгълници $\triangle ABC$ и $\triangle CHD$ се получават

ограниченията
$$\begin{vmatrix} AB > BC \\ CD > CH \end{vmatrix} \Rightarrow \begin{vmatrix} x > 1 \\ x < 2$$
.

$$AC = \sqrt{AB^2 - BC^2} = 2\sqrt{x^2 - 1}$$
 cm

$$DH = \sqrt{CD^2 - x^2} = \sqrt{4 - x^2}$$
 cm

$$S_{\Delta ABC} = \frac{AC.BC}{2} = 2\sqrt{x^2 - 1} \text{ cm}^2$$

$$V = \frac{1}{3} \cdot 2\sqrt{x^2 - 1} \cdot \sqrt{4 - x^2} \implies V = \frac{2}{3} \sqrt{(x^2 - 1)(4 - x^2)} \text{ cm}^3$$

Тъй като функцията $g(t) = \sqrt{t}$, $t \ge 0$ е монотонно растяща, може да разглеждаме $f(x) = (x^2 - 1)(4 - x^2)$ и най-голямата стойност на f(x) и V ще се достига за една и съща стойност на x.

$$f\left(x\right) = -x^4 + 5x^2 - 4$$

$$f'(x) = -4x^3 + 10x = x(\sqrt{10} - 2x)(\sqrt{10} + 2x)$$

$$f(x)$$
 расте за $x \in \left(1; \frac{\sqrt{10}}{2}\right)$ и намалява за $x \in \left(\frac{\sqrt{10}}{2}; 2\right)$.

Най-голямата стойност се достига при $x = \frac{\sqrt{10}}{2}$

$$\Rightarrow AC = \sqrt{6} \text{ cm}, AB = \sqrt{10} \text{ cm}, DH = \frac{\sqrt{6}}{2} \text{ cm}.$$

$$V_{\text{max}} = \frac{1}{3} \cdot \frac{\sqrt{6.2}}{2} \cdot \frac{\sqrt{6}}{2} = 1 \text{ cm}^3$$

Примерни критерии за оценяване и точки по критериите, съпътстващи решението:

$\triangle ABC$ е правоъгълен	2 точки
Въвеждане на неизвестно и определяне на интервала му на изменение	2 точки
Изразяване на обема чрез въведеното неизвестно	5 точки
Изследване на функция и намиране на НГС	3 точки
$V = 1 \text{ cm}^3$, $AC = \sqrt{6} \text{ cm}$ и $AB = \sqrt{10} \text{ cm}$	3 точки

Задача 17.

Решение:

a)

$$3x^5 - 4x^4 - 11x^3 - 11x^2 - 4x + 3 = 0$$

Уравнението е реципрочно от нечетна степен и x = -1 е корен на уравнението.

	3	-4	-11	-11	-4	3
-1	3	-7	-4	- 7	3	0

$$3x^4 - 7x^3 - 4x^2 - 7x + 3 = 0: x^2 \neq 0$$

$$3x^2 - 7x - 4 - \frac{7}{x} + \frac{3}{x^2} = 0$$

$$3\left(x^2 + \frac{1}{x^2}\right) - 7\left(x + \frac{1}{x}\right) - 4 = 0$$

Полагане
$$x + \frac{1}{x} = t \implies x^2 + \frac{1}{x^2} = t^2 - 2$$
.

Следователно се получава уравнението

$$3t^2-6-7t-4=0 \Leftrightarrow 3t^2-7t-10=0$$
 с корени $t_1=\frac{10}{3}$ и $t_2=-1$.

За
$$t_1 = \frac{10}{3}$$
 се получава $x + \frac{1}{x} = \frac{10}{3} \Leftrightarrow 3x^2 - 10x + 3 = 0$ с корени $x_1 = \frac{1}{3}$ и $x_2 = 3$.

За
$$t_2 = -1$$
 се получава $x + \frac{1}{x} = -1 \Leftrightarrow x^2 + x + 1 = 0$ с $D = -3 < 0$ т.е. н.р.к $\Rightarrow a = \frac{1}{3}$.

Забележка: Уравнението може да бъде решено и по схемата на Хорнер.

$$b = 4,(7) - 10\frac{7}{9} = 4 + \frac{7}{10} + \frac{7}{100} + \frac{7}{1000} + \dots - 10\frac{7}{9}$$

Редицата $\frac{7}{10}$; $\frac{7}{100}$; $\frac{7}{1000}$; ... е безкрайно намаляваща геометрична прогресия с първи

член
$$\frac{7}{10}$$
, частно $\frac{1}{10} < 1$ и сума $\frac{7}{10} + \frac{7}{100} + \frac{7}{1000} + \dots = \frac{\frac{7}{10}}{1 - \frac{1}{10}} = \frac{7}{9}$.

Следователно $b = 4 + \frac{7}{9} - 10\frac{7}{9} = -6$ т.е. b = -6.

$$c = \lim_{x \to 7} \frac{\sin(x-7)}{\sqrt{2x-5}-3} = \lim_{x \to 7} \frac{\sin(x-7)(\sqrt{2x-5}+3)}{(\sqrt{2x-5}-3)(\sqrt{2x-5}+3)}$$

$$c = \lim_{x \to 7} \frac{\sin(x-7)(\sqrt{2x-5}+3)}{2x-5-9} = \lim_{x \to 7} \frac{\sin(x-7)(\sqrt{2x-5}+3)}{2(x-7)} = \frac{1}{2}.6 = 3 \text{ T.e. } c = 3.$$

6)
$$f(x) = 3x^2 - 7x + 6$$

$$f'(x) = 6x - 7 = \text{tg}135^{\circ} = -1 \implies 6x - 7 = -1 \implies x = 1$$

Тогава f(1) = 2 и координатите на допирната точка са T(1;2).

Уравнението на допирателната в точката T е t: y = -x + d и тъй като 2 = -1 + d, то t: y = -x + 3.

Примерни критерии за оценяване и точки по критериите, съпътстващи решението:

a) $a = \frac{1}{3}$, $b = -6$ и $c = 3$	12 точки
б) $T(1;2)$ и $t: y = -x+3$	3 точки

Задача 18.

Решение:

а) Тъй като височината и медианата са през върха B , то координатите на точката B са решение на системата: $\begin{vmatrix} 2x-y+1=0\\x+y+2=0 \end{vmatrix}$

Чрез събиране се получава системата
$$\begin{vmatrix} 3x+3=0 \\ x+y+2=0 \end{vmatrix} \Leftrightarrow \begin{vmatrix} x=-1 \\ x+y+2=0 \end{vmatrix} \Leftrightarrow \begin{vmatrix} x=-1 \\ y=-1 \end{vmatrix}$$

Следователно координатите на върха B са (-1;-1).

За да се намерят координатите на върха C, трябва да се намерят уравнението на правата AC и координатите на пресечната точка на медианата m и правата AC.

$$AC \perp h \Rightarrow AC: x + 2y + k = 0$$

 $A \in AC \Rightarrow k = 0$ T.e. $AC: x + 2y = 0$

$$AC \cap m = M \Rightarrow \begin{vmatrix} x + 2y = 0 \\ x + y + 2 = 0 \end{vmatrix}$$

Чрез изваждане се получава системата
$$\begin{vmatrix} y-2=0 \\ x+2y=0 \end{vmatrix} \Leftrightarrow \begin{vmatrix} y=2 \\ x+2y=0 \end{vmatrix} \Leftrightarrow \begin{vmatrix} x=-4 \\ y=2 \end{vmatrix}$$

Следователно координатите на M са (-4,2).

Тъй като M е среда на страната AC , то координатите на върха C са решение на

системата
$$\begin{vmatrix} \frac{2+x_C}{2} = -4 \\ \frac{-1+y_C}{2} = 2 \end{vmatrix} \Leftrightarrow \begin{vmatrix} 2+x_C = -8 \\ -1+y_C = 4 \end{vmatrix} \Leftrightarrow \begin{vmatrix} x_C = -10 \\ y_C = 5 \end{vmatrix}.$$

Следователно координатите на върха C са (-10;5).

б) Ако центърът, точка P, има координати $(\alpha; \beta)$, то окръжността има уравнение: $(x-\alpha)^2 + (y-\beta)^2 = R^2$

Тъй като върховете A, B и C са от окръжността, то се получава системата:

$$\begin{vmatrix} (2-\alpha)^2 + (-1-\beta)^2 = R^2 \\ (-1-\alpha)^2 + (-1-\beta)^2 = R^2 \\ (-10-\alpha)^2 + (5-\beta)^2 = R^2 \end{vmatrix}$$
 T.e.
$$\begin{vmatrix} (2-\alpha)^2 + (1+\beta)^2 = R^2 \\ (1+\alpha)^2 + (1+\beta)^2 = R^2 \\ (10+\alpha)^2 + (5-\beta)^2 = R^2 \end{vmatrix}$$

След изваждане на първите две уравнения се получава уравнението

$$(2-\alpha)^2 - (1+\alpha)^2 = 0 \Leftrightarrow 6\alpha = -3 \Leftrightarrow \alpha = \frac{1}{2}$$

Изваждат се двете уравнения и се получава:

$$\frac{441}{4} + \left(5 - \beta\right)^2 = \frac{9}{4} + \left(1 + \beta\right)^2 \iff 12\beta = 132 \iff \beta = 11$$

Следователно координатите на центъра P са $\left(\frac{1}{2};11\right)$.

Получената стойност за $\beta = 11$ се замества в едно от уравненията

Получената стоиност за
$$\beta = 11$$
 се замес
$$\left(\frac{3}{2}\right)^2 + \left(1+\beta\right)^2 = R^2$$
 т.е. $R^2 = \frac{585}{4} \implies R = \frac{3}{2}\sqrt{65}$.

Примерни критерии за оценяване и точки по критериите, съпътстващи решението:

a) $B(-1;-1)$	2 точки
C(-10;5)	6 точки
б) $P\left(\frac{1}{2};11\right)$ и $R = \frac{3}{2}\sqrt{65}$	7 точки