

MH25609J-85,-10,-12,-15/ MH25609JA-85,-10,-12,-15

PAGE MODE 262144-WORD BY 9-BIT DYNAMIC RAM

DESCRIPTION

The MH25609J, JA is 262144 word x 9 bit dynamic RAM and consists of nine industry standard 256K x 1 dynamic RAMs in plastic leaded chip carrier.

The mounting of plastic leaded chip carrier on a single in-line package provides any application where high densities and large quantities of memory are required.

MH25609JA is a leaded type-memory module, allowing direct insertion to normal through-hole-board like DIP devices.

MH25609J is a socket type-memory module, suitable for easy interchanging or addition of modules.

FEATURES

High-speed

Туре пате	Access time (max) (ns)	Cycle time (min) (ns)	Power dissipation (typ) (mW)
MH25609J-85 MH25609JA-85	85	160	2700
MH25609J-10 MH25609JA-10	100	190	2340
MH25609J-12 MH25609JA-12	120	220	2070
MH25609J-15 MH25609JA-15	150	260	1800

- Utilizes industry standard 256K RAMs in plastic leaded carriers
- 30 pins Single In-line Package
- Single +5V (±10%) supply operation
- Low standby power dissipation 225mW (max)
- Low operation power dissipation.

MH25609J-85/MH25609JA-85	3.47W (max)
MH25609J-10/MH25609JA-10	3.24W (max)
MH25609J-12/MH25609JA-12	2.97W (max)
MH25609J-15/MH25609JA-15	2.75W (max)

- All inputs are directly TTL compatible
- All outputs are three-state and directly TTL compatible
- Includes (0.15μF x 9) decoupling capacitors
- 256 refresh cycles every 4ms, A₈ Pin is not need for refresh
- Common CAS control for eight common Data-In and Data-Out lines.
- Separate CAS (CASP) control for one separate pair of Data-In and Data-Out lines.
- The common I/O feature dictates the use of only early write operation to prevent contention on Data-In and Data-Out.
- Bit nine (DP, QP) controlled by CASP is generally used for parity.

APPLICATION

Main memory unit for computers, Microcomputer memory

FUNCTION

The MH25609J, JA provides, in addition to normal read and early write operations, a number of other functions, e.g., page mode, RAS-only refresh, hidden refresh and $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refresh. The input conditions for each are shown in Table 1.

Table 1 Input conditions for each mode

		Inputs							
Operation	RAS	CAS	w	D	Row address	Column address	0	Refresh	
Read	ACT	ACT	NAC	DNC	APD	APD	VLD	YES	
Early write	ACT	ACT	ACT	VLD	APD	APD	OPN	YES	
RAS-only refresh	ACT	NAC	DNC	DNC	APD	DNC	OPN	YES	
Hidden refresh	ACT	ACT	DNC	DNC	DNC	DNC	VLD	YES	
CAS before RAS refresh	ACT	ACT	DNC	DNC	DNC	DNC	OPN	YES	
Standby	NAC	DNC	DNC	DNC	DNC	DNC	OPN	NO	

Note: ACT: active, NAC: nonactive, DNC: don't care, VLD: valid, APD: applied, OPN: open.

MH25609J-85, -10, -12, -15/ MH25609JA-85, -10, -12, -15

PAGE MODE 262144-WORD BY 9-BIT DYNAMIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-1~7	V
VI	Input voltage	With respect to V _{SS}	-1~7	V
Vo	Output voltage	·	−1~7	V
10	Output current		50	mA
Pd	Power dissipation	Ta = 25°C	9	W
Торг	Operating temperature		0~70	°C
Tstg	Storage temperature		-40∼125	°C

RECOMMENDED OPERATING CONDITIONS (Ta = 0~70°C, unless otherwise noted) (Note 1)

0	Parameter				
Symbol	rarameter	Min	Nom	Max	Unit
Vcc	Supply voltage	4.5	5	5.5	٧
Vss	Supply voltage	0	0	0	٧
VIH	High-level input voltage, all inputs	2.4		6.5	٧
VIL	Low-level input voltage all inputs	-2		0.8	٧

Note 1: All voltage values are with respect to VSS.

ELECTRICAL CHARACTERISTICS ($T_a = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted) (Note 2)

Symbol	Parameter		Test conditions		Limits		Unit
Symbol	' arameter		rest conditions	Min	Тур	Max	Offit
VoH	High-level output voltage		l _{OH} =-5mA	2.4		Vcc	٧
VoL	Low-level output voltage		I _{OL} = 4.2mA	0		0.4	٧
loz	Off-state output current		Q floating 0V≤V _{OUT} ≤5.5V	-20		20	μΑ
T ₁	Input current		$0V \le V_{IN} \le V_{CC}$, Other input pins $= 0V$	-90		90	μА
÷		MH25609-85				630	
	Average supply current from V _{CC} ,	MH25609-10	RAS, CAS cycling			585	mA
CC1(AV)	operating (Note 3, 4)	MH25609-12	t CR = t CW = min, output open			540	IIIA
		MH25609-15	7			495	
I _{CC2}	Supply current from V _{CC} , standby		RAS = CAS = V _{IH} output open	1		40.5	mA
		MH25609-85				540	
	Average supply current from V _{CC} ,	MH25609-10	RAS cycling CAS=VIH			495	
CC3(AV)	refreshing (Note 3)	MH25609-12	t C (RAS) = min, output open			450	mA
		MH25609-15	7			405	
		MH25609-85		1		495	
	Average supply current from V _{CC} ,	MH25609-10	RAS=VIL, CAS cycling			450	
CC4(AV)	page mode (Note 3, 4)	MH25609-12	t _{CPG} = min, output open			405	mA
		MH25609-15				360	
		MH25609-85				585	
	Average supply current from V _{CC} ,	MH25609-10	CAS before RAS refresh cycling			540] _,
CC6(AV)	automatic refreshing (Note 3)	MH25609 - 12	t O (RAS) = min, output open			495	m A
		MH25609-15				450	
C _{I (A)}	Input capacitance, address inputs					60	pF
C _(DQ)	Data input/data output capacitance	9				17	pF
C _{I (W)}	Input capacitance, write control in	put	V _I =V _{SS}			75	ρF
CI (RAS)	Input capacitance, RAS input		f=1MHz			75	pF
CI (CAS)	Input capacitance, CAS input		V _i = 25 mVrms			70	рF
C _{I (CASP)}	Input capacitance, CASP input					13	pF
C _{I (DP)}	Input capacitance					17	pF
C _O (QP)	Output capacitance		$V_0 = V_{SS}$, $f = 1MHz$, $V_i = 25 \text{ mVrms}$	1		12	ρF

Note 2. Current flowing into an IC is positive, out is negative.

^{3.} Icc1(AV), Icc3(AV), Icc4(AV) and Icc6(AV) are dependent on cycle rate. Maximum current is measured at the fastest cycle rate.

^{4.} Icc1(AV) and I_{CC4(AV)} are dependent on output loading. Specified values are obtained with the output open.

TIMING REQUIREMENTS (For Read, Early Write, Refresh, and Page-Mode Cycle)

($T_a = 0 \sim 70^{\circ}C$, $V_{CC} = -5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted, See notes 5, 6 and 7)

						Lim	nits				
Symbol	Parameter	Alternative	MH25	609 - 85	MH25	609-10	MH25	609-12	MH25	609 - 15	Unit
	· ·		Min	Max	Min	Max	Min	Max	Min	Max	
t _{CRF}	Refresh cycle time	t REF		- 4		4		4		4	ms
tw(RASH)	RAS high pulse width	t _{RP}	65		80		90		100		ns
tw(RASL)	RAS low pulse width	t RAS	85	10000	100	10000	120	10000	150	10000	ns
tw(CASL)	CAS low pulse width	t cas	45	10000	50	10000	60	10000	75	10000	ns
tw(CASH)	CAS high pulse width (Note 8)	t _{CPN}	20		20		25		25		ns
th(RAS-CAS)	CAS hold time after RAS	t _{CSH}	85		100		120	,	150		ns
th(CAS-RAS)	RAS hold time after CAS	t _{RSH}	45		50		60		75		ns
td(CAS-RAS)	Delay time, CAS to RAS (Note 9)	t CRP	10		10		10		10		ns
td(RAS-CAS)	Delay time, RAS to CAS (Note 10	t RCD	15	40	15	50	20	60	25	75	ns
tsu(RA-RAS)	Row address setup time before RAS	t ASR	0		0		0		0		ns
tsu(CA-CAS)	Column address setup time before CAS	t ASC	-5		-5		-5		-5		ns
th(RAS-RA)	Row address hold time after RAS	t _{RAH}	10		10		15		20		ns
th(CAS-CA)	Column address hold time after CAS	t _{CAH}	15		15		20		25		ns
th(RAS-CA)	Column address hold time after RAS	t AR	55		65		80		100		ns
t _{THL}	Transition time	t _T	3	50	3	50	3	50	3	50	ns
t _{TLH}	Transition time	1 '1	3	50	3	50	3	50	3	50	ns

Note 5. An initial pause of 500µs is required after power-up followed by any eight RAS or RAS/CAS cycles before proper device operation is achieved.

6. The switching characteristics are defined at t_{THL} = t_{TLH} = 5ns.

Reference levels of input signals are $V_{IH\ min}$, and $V_{IL\ max}$. Reference levels for transition time are also between $V_{IH\ min}$ and $V_{IL\ max}$.

8. Except for page-mode.

9 t_{dlCAS-RAS}) requirement is only applicable for all RAS/CAS cycles.

10. Operation within the td(RAS-CAS) max limit insures that td(RAS) max can be met, td(RAS-CAS) max is specified reference point only; if td(RAS-CAS) is greater than the specified td(RAS-CAS) max limit, then access time is controlled exclusively by ta(CAS) td(RAS-CAS) min = th(RAS-RA) min + 2tTHL(tTHL) + tsu(CA-CAS) min.

SWITCHING CHARACTERISTICS ($T_a = 0 \sim 70^{\circ}\text{C}$, $V_{CC} = 5 \lor \pm 10\%$, $V_{SS} = 0 \lor$, unless otherwise noted)

Read Cycle

						Limis								1
Symbol	Parameter		Alternative Symbol	MH25	609-85	MH25	609 - 10	MH25	609-12	MH25	609-15	Unit		
		Symbol	Min	Max	Min	Max	Min	Max	Min	Max				
t _{CR}	Read cycle time		t _{RC}	160		190		220		260		пѕ		
tsu(R-CAS)	Read setup time before CAS		t _{RCS}	0		0		0		0		ns		
th(CAS-R)	Read hold time after CAS	(Note 11)	t _{RCH}	0		0		0		0		ns		
th(RAS-R)	Read hold time after RAS	(Note 11)	t _{RRH}	10		10		10		10		ns		
tdis(CAS)	Output disable time	(Note 12)	t OFF	0	20	0	25	0	30	0	35	ns		
ta(CAS)	CAS access time	(Note 13)	t CAC		45		50		60		75	ns		
ta(RAS)	RAS access time	(Note 14)	t RAC		85		100		120		150	ns		

Note 11. Either th(RAS-R) or th(CAS-R) must be satisfied for a read cycle.

12. tdiS(CAS) max defines the time at which the output achieves the open circuit condition and is not reference to VoH or VoL

This is the value when t_{d(RAS-CAS)} ≥ t_{d(RAS-CAS)} max. Test conditions; Load = 2TTL, C_L = 100pF.
 This is the value when t_{d(RAS-CAS)} < t_{d(RAS-CAS)} max. When t_{d(RAS-CAS)} ≥ t_{d(RAS-CAS)} will increase by the amount that t_{d(RAS-CAS)} exceeds the value shown. Test conditions; Load = 2TTL, C_L = 100pF.

Write Cycle

						Lim	its				
Symbol	Parameter	Alternativ Symbol	e MH25	MH25609-85		MH25609-10		609-12	MH25609-15		Unit
		37807	Min	Max	Min	Max	Min	Max	Min	Max	1
t cw	Write cycle time	t _{RC}	160		190		220		260		ns
tsu(w-cas)	Write setup time before CAS	(Note 15) I WCS	-10		-10		-10		-10		ns
th(CAS-W)	Write hold time after CAS	t wch	15		20		25		30		ns
th(RAS-W)	Write hold time after RAS	t wca	55	ĺ	70		85		105		ns
th (w-RAS)	RAS hold time after write	t _{RWL}	30		35		40		45		ns
th(W-CAS)	CAS hold time after write	t _{CWL}	30		35		40		45		ns
$t_{\mathbf{W}(\mathbf{W})}$	Write pulse width	t _{wp}	15		20		25		30		ns
tsu(D-CAS)	Data-in setup time before CAS	t _{DS}	0		0		0		0		ns
th(CAS-D)	Data-in hold time after CAS	t _{DH}	15		20		25		30		ns
th(RAS-D)	Data-in hold time after RAS	t _{DHR}	55		70		85		105		ns

Note 15. When t_{su(W-CAS)} < t_{su(W-CAS)} min, Data input will contend with the data output because of the common I/O feature.

MH25609J-85, -10, -12, -15/ MH25609JA-85, -10, -12, -15

PAGE MODE 262144-WORD BY 9-BIT DYNAMIC RAM

Page-Mode Cycle

			Limits								
Symbol Parameter	Parameter	Alternative Symbol	MH25609-85		MH25609-10		MH25609-12		MH25609-15		Unit
		Symbol	Min	Max	Min	Max	Min	Max	Min	Max]
t _{CPG}	Page-mode cycle time	t _{PC}	80		100		120		145		ns
tw(CASH)	CAS high pulse width	t _{CP}	25		40		50		60		ns
t _{CPGRW}	Page-mode read-write cycle time		105		130		155		180		ns

CAS before RAS Refresh Cycle (Note 16)

		Alternative Symbol	Limits								
Symbol	Parameter		MH25609-85		MH25609-10		MH25609-12		MH25609 -15		Unit
			Min	Max	Min	Max	Min	Max	Min	Max	
t SUR (CAS-RAS)	CAS setup time for auto refresh	t _{CSR}	10		10		10		10		ns
the (RAS-CAS)	CAS hold time for auto refresh	t _{CHR}	15		20		25		30		ns
tdR (RAS-CAS)	Precharge to CAS active time	t RPC	0		0		0		0		ns

Note 16. Eight or more CAS before RAS cycles is necessary for proper operation of CAS before RAS refresh mode.

TIMING DIAGRAMS (Note 17) Read Cycle

Early Write Cycle

The center-line indicates the high-impedance state.

Page-Mode Read Cycle

Page-Mode Write Cycle

MH25609J-85, -10, -12, -15/ MH25609JA-85, -10, -12, -15

PAGE MODE 262144-WORD BY 9-BIT DYNAMIC RAM

CAS before RAS Refresh Cycle (Note 19)

