MATH 364: Lecture 23 (11/05/2024)

Today: * dual theorem

Today: * reading off optimaly from primal tableau

* shadow price; = y;

We first present two more results that connect unboundedness of an LP with the infeasibility of its dual LP.

Recall: Lemma 1 (weak duality) $z = \overline{c} \overline{x} \leq \overline{L} \overline{y} = \omega$ for $\overline{x} \in (P), \overline{y} \in (D)$ lemma 2 (strong duality) $y = \overline{c} \overline{x} = \overline{L} \overline{y} = \omega$ then $\overline{x}, \overline{y}$ are optimal for \overline{y} (p) and \overline{y} , respectively.

Lemmas 3 and 4 If (P) is unbounded, then (D) is infeasible. Similarly, if (D) is unbounded, then (P) is infeasible.

It (P) is unbounded, we can push z up without limits. Hence there are no finite w values, i.e., there are no feasible y for (D).

Note: (P) infearible does not imply that (D) is unbounded.

We can create instances where both (P) and (D) are infeasible—see bollow. Here, both (P) and (D) are obviously infeasible.

max $z = x_1 + 2x_2$ s.t. $x_1 + x_2 = 1$ y urs (p) $2x_1 + 2x_2 = 3$ y urs x_1, x_2 urs min $w = y_1 + 3y_2$ s.t. $y_1 + 2y_2 = 1$ (D) $y_1 + 2y_2 = 2$ $y_1 > y_2$ ars

The Dual Theorem Let \bar{X}_B be the optimal basic solution to (P), B be the basis matrix, \bar{G}_B the basic cost vector. Then $\bar{y}^T = \bar{c}_B^T B^{-1}$ is optimal for (D), and $\bar{z}^* = w^* = \bar{c}_B^T B^{-1} \bar{b} = \bar{y}^T \bar{b}$.

while we were working with (P) as a normal max-LP and hence (D) as a normal min-LP, this result holds even when (P) is a general max-LP.

$$\begin{array}{c|cccc}
\hline
2 & \overline{X}_B & \overline{X}_N & \overline{R}_S \\
\hline
1 & -\overline{Q}_S^T & -\overline{Q}_S^T & 0 \\
\hline
0 & B & N & \overline{b}
\end{array}$$

IDEA Start with $\bar{y} = \bar{c}_B^T B^T$. Cheek that \bar{y} is feasible for (D), and then check that $w = \bar{y}^T b = Z$

Optimality of the tableau for (P): - $\overline{c}^T + \overline{c}_0^T \overline{B} A = \overline{0}$

(all numbers under \overline{x} in Row-0, or z-Row, are 70 for optimality)

Setting $\bar{y} = \bar{c} + \bar{b} = \bar{c} + \bar{y} = \bar{c} \Rightarrow \bar{c} = \bar{c} + \bar{y} = \bar{c} \Rightarrow \bar{c} = \bar{c} =$

Consider the optimality criteria for slack variables:

$$\bar{\partial}^{T} + \bar{\zeta}_{0}^{T} B^{-1}(I) \geqslant \bar{\partial}^{T} \Rightarrow \bar{y}^{T} \geqslant \bar{\partial}^{T} \Rightarrow \bar{y}^{T} \bar{\partial}^{T} \bar{\partial}^{T} \Rightarrow \bar{y}^{T} \bar{\partial}^{T} \Rightarrow \bar{y}^{T} \bar{\partial}^{T} \bar{\partial}^{T} \Rightarrow \bar{y}^{T} \bar{\partial}^{T}$$

Hence $\bar{y} = \bar{c}_B B'$ is feasible for (D). But $w^* = \bar{b} \bar{y} = \bar{y}^T \bar{b} = \bar{c}_B B' \bar{b} = Z^*$ in the optimal primal fableau. Hence by Lemma 2 (strong duality), \bar{y} is optimal for (D).

Implication We can read off the optimal dual solution from the optimal primal tableau.

The Row-D (or z-Row) in the optimal tableau is $-\overline{c}^{T} + \overline{c}^{T}_{B}B^{'}A$ (in general), $-\overline{c}^{T}_{B} + \overline{c}^{T}_{B}B^{'}B = \overline{0}$ for \overline{X}_{B} , $-\overline{c}^{T}_{N} + \overline{c}^{T}_{B}B^{'}N$ for \overline{X}_{N} , and in particular, $\overline{0} + \overline{c}^{T}_{B}B^{'}II$ for slack variables

Hence we can read off the optimal is under slack columns for a normal max-4, and more generally as follows.

Expressions in Row-0:

O + CBB'I for slack voviables

O + CBB'(I) for excess variables,

M + CBB'(I) for artificial voviables.

Hence, the optimal value of y: (dual variable for constraint i) in a max-4P:

constraint i is \leq : coefficient of S_i in Row-0

constraint i is z: - (coefficient of li in Row-0)

constraint i is = : (coefficient of a_i in Raw-0) - M

Illustration

max
$$30x_1 + 25x_2$$

s.t. $x_1 + x_2 \le 7$ $y_1 = 0$
 $4x_1 + 10x_2 \le 40$ $y_2 = 0$
 $10x_1$ 730 $y_3 \le 0$
 x_{11} $x_2 = 0$
 $y_1 = 0$

min
$$w = 7y_1 + 40y_2 + 30y_3$$

S.t. $y_1 + 4y_2 + 10y_3 = 30$
(D) $y_1 + 10y_2 = 325$
 $y_1, y_2 = 0, y_3 \le 0$

Optimal tableau (from Lecture 19):

BV
$$\frac{7}{4}$$
 $\frac{1}{4}$ \frac

From the optimal tableau, $y_1=30$, $y_2=0$, $y_3=0$ is optimal for (D). Note that $W=7\times30=210=7$, and hence must indeed be optimal.

Notice how we could read off the y_3 value from under either the e_3 or e_3 column here.

$$y_3 = -(\text{coefficient in Row-0 under } e_3) = 0$$
 $y_3 = (\text{Coefficient in Row-0 under } a_3) - M = M - M = 0.$

Illustration on Farmer Jones LP

$$\max_{S.f.} Z = 30x_1 + 100x_2$$

 $S.f.$ $X_1 + X_2 \le 7 y_1$
 $4x_1 + 10x_2 \le 40 y_2$
 $10x_1 = 30 y_3$
 $x_{1,1}x_2 = 0$

min
$$W=7y_1+40y_2+30y_3$$

S.t. $y_1+4y_1+10y_3=30$ (D)
 $y_1+10y_2=3100$
 $y_1=0, y_2=0, y_3\leq 0$

$$X_1 = 3, X_2 = 2.8, S_1 = 1.2$$
 with $Z^* = 370$.

See the Matlab session on the course web page. We use $BV = \{x_0, x_2, 8, \}$ to directly compute the optimal tableau

Here is the optimal tableau:

Here i	e is the optimal tableau!					110,000 a M - 1			
2	×ı	×2	Bı	82	ℓ_3	a ₃ /	shs		
1	0	0	0	10	1	9999	370		
0	1	0	0	0	-1/10	1/10	3		
0	0	1	0	1/10	· 1/25	-1/25	14/5 = 28		
0	0	0	1	-1/10	3/50	-3/50	6/5 =1.2		

$$y_1 = (\text{coefficient of } S_1 \text{ in } \text{Row-0}) = 0.$$
 $y_2 = (\text{coefficient of } S_2 \text{ in } \text{Row-0}) = 10.$
 $y_3 = -(\text{coefficient of } e_3 \text{ in } \text{Row-0}) = -10.$

Also, $y_3 = (\text{coefficient of } g_3 \text{ in } \text{Row-0}) - M = 9999 - 10,000 = -1.$

Shadow Price of constraint $i = y_i$ (optimal value of dual variable)

Change $b_i \leftarrow b_i + \Delta$, find new optimal solution (X_B^{Δ}) assuming the basis remains same. Then find new optimal Z_A^{\star} , and write $Z_\Delta^{\star} = Z^{\star} + p_i \Delta$. Then p_i is the shadow price.

By strong duality, $Z^* = \mathcal{W}^*$, and $Z^*_\Delta = \mathcal{W}^*_\Delta$.

Optimal dual objective function value with bits

But $w^* = b_1 y_1 + \cdots + b_m y_m$ and $w^* = b_1 y_1 + \cdots + b_{i+2} y_i + \cdots + b_m y_m$

 $\Rightarrow w_{\Delta}^{*} = b_{i}y_{i} + \dots + b_{i}y_{i} + \dots + b_{m}y_{m} + y_{i}\Delta = w^{*} + y_{i}\Delta$

 $\Rightarrow \quad z_{\Delta}^{*} = \omega_{\Delta}^{*} = \omega^{*} + y_{i}\Delta = z^{*} + y_{i}\Delta.$

Hence Pi=yi, i.e., shadow price of constraint i= yi.

Here, $y_1=0$, $y_2=10$, $y_3=-1$. So, shadow price of (land) = 0, that of (labor hows) = 10, and that of (min-corn) = -1.

If the min-corn requirement goes up by 1 wit, i.e., from 30 to 31, the rhs as written here would go up from 30 to 31, and the Z^* value will decrease from 370 to $370 + (-1) \cdot 1 = 369$.

(See the course web page for the AMPL session).