Package 'AgroR'

April 22, 2021

Type Package

Title Experimental statistics

Version 1.0.0

Author

Gabriel Danilo Shimizu, Leandro Simoes Azevedo Goncalves, Rodrigo Yudi Palhaci Marubayashi

Maintainer Gabriel Danilo Shimizu <shimizu@uel.br>

Description Package for the analysis of completely randomized experimental designs (DIC), randomized blocks (DBC) and Latin square (DQL), experiments in double and triple factorial scheme (in DIC and DBC), experiments in subdivided plot scheme (in DIC and DBC) and joint analysis of experiments. The package performed the analysis of variance, ANOVA assumptions and multiple comparison test of means or regression. It can also be used to obtain measurements and graphs, in addition to correlating and other graphs used in agricultural sciences (Agronomy, animal science, food science and related areas)

Encoding UTF-8

RoxygenNote 7.1.1

Imports ggplot2, lmtest, laercio, nortest, ScottKnott, asbio, lme4, crayon, grid, gridExtra, stringr, Hmisc, emmeans, ARTool, multcomp, htmltools, httpuv, scales, ggrepel

Depends R (>= 4.0.0)

RemoteType github

RemoteHost api.github.com

RemoteRepo AgroR

RemoteUsername AgronomiaR

RemoteRef HEAD

RemoteSha 2d632ada5409660df3416bcc5aaf3dc74907dd56

GithubRepo AgroR

GithubUsername AgronomiaR

GithubRef HEAD

GithubSHA1 2d632ada5409660df3416bcc5aaf3dc74907dd56

NeedsCompilation no

R topics documented:

barplot_positive	3
cloro	4
conjdbc	4
conjdic	6
conjfat2.dbc	8
conjfat2.dic	10
correlation	12
croqui	13
DBC	13
DBCT	16
desc	17
desc2fat	18
desc3fat	19
DIC	20
DICT	22
dispvar	24
DQL	25
DQL	27
	29
enxofre	29 29
FAT2DBC	
FAT2DBC.art	31
FAT2DIC	32
FAT2DIC.art	35
FAT3DBC	36
FAT3DIC	37
laranja	38
line_plot	39
logistic_LL	40
mirtilo	41
multidata	41
nitrogenio	43
plot_interaction	44
plot_TH	45
polynomial	46
polynomial2	47
pomegranate	49
porco	49
PSUBDBC	50
PSUBDIC	52
PSUBSUBDBC	54
PSUBSUBDIC	54
question	55
radargraph	56
sensorial	56
simulate1	57
simulate2	57
simulate3	58
sk_graph	58
spider_graph	59
tabledesc	60

barplot_positive 3

Index		64
	weather	63
	transf	62
	tomate	61
	test_two	60

barplot_positive

Graph: Positive barplot

Description

Column chart with two variables that assume a positive response and represented by opposite sides, such as dry mass of the area and dry mass of the root

Usage

```
barplot_positive(
   a,
   b,
   ylab = "Response",
   var_name = c("Var1", "Var2"),
   fill_color = c("darkgreen", "brown")
)
```

Arguments

```
a object of DIC, DBC or DQL functionsb object of DIC, DBC or DQL functionsylab Y axis names
```

Author(s)

Gabriel Danilo Shimizu

See Also

radargraph, sk_graph, plot_TH, correlation, spider_graph, graph, line_plot

```
mspa=rnorm(100,10,1)
msr=rnorm(100,8,1)
trat=rep(paste("T",1:10),e=10)
a=DIC(trat,mspa)
b=DIC(trat,msr)
barplot_positive(a,b)
```

4 conjdbc

cloro

dataset: Sodium dichloroisocyanurate in soybean

Description

An experiment was conducted in a greenhouse in pots at the State University of Londrina. The work has the objective of evaluating the application of sodium dichloroisocyanurate (DUP) in soybean in 4 periods of application in soybean inoculated or not with Rhizobium and its influence on the number of nodules. The experiment was conducted in a completely randomized design with five replications.

Usage

```
data(cloro)
```

Format

data.frame containing data set

f1 categorical vector with factor 1

f2 categorical vector with factor 2

bloco categorical vector with block

resp Numeric vector

See Also

enxofre, laranja, mirtilo, nitrogenio, pomegranate, porco, sensorial, simulate1, simulate2, simulate3, tomate, weather

Examples

data(cloro)

conjdbc

Analysis: Joint analysis of experiments in randomized block design

Description

Function of the AgroR package for joint analysis of experiments conducted in a randomized qualitative or quantitative single-block design with balanced data.

conjdbc 5

Usage

```
conjdbc(
  tratamento,
  bloco,
  local,
  resposta,
  transf = 1,
  norm = "sw",
  homog = "bt",
  theme = theme_bw(),
  indep = "dw",
  mcomp = "tukey",
  quali = T,
  alpha.f = 0.05,
  alpha.t = 0.05,
  grau = NA,
  ylab = "Resposta",
  title = "",
xlab = "",
  fill = "lightblue",
  angulo = 0,
  textsize = 12,
  dec = 3,
  family = "sans",
  errorbar = T
)
```

Arguments

tratamento	Numerical or complex vector with treatments
bloco	Numerical or complex vector with blocks
local	Numeric or complex vector with locations or times
resposta	Numerical vector containing the response of the experiment.
transf	Applies data transformation (default is 1; for log consider 0)
norm	error normality test (default is Shapiro-Wilk)
homog	homogeneity test of variances (default is Bartlett)
indep	error independence test (default is Durbin-Watson)
mcomp	Multiple comparison test (Tukey (default), Scott-Knott and Duncan)
quali	Defines whether the factor is quantitative or qualitative (qualitative)
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Level of significance of the Tukey test (default is 0.05)
grau	Degree of polynomial in case of quantitative factor (default is 1)
ylab	Variable response name (Accepts the expression() function)
title	graph title
xlab	treatments name (Accepts the expression() function)
fill	Defines chart color (to generate different colors for different treatments, define $fill = "trat"$)

6 conjdic

angulo x-axis scale text rotation

textsize font size

dec number of cells family font family

color When the columns are different colors (Set fill-in argument as "trat")

Note

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet

Author(s)

Gabriel Danilo Shimizu

References

FERREIRA, P. V. Estatística experimental aplicada à agronomia. Edufal, 2018.

Examples

```
library(AgroR)
data(mirtilo)
attach(mirtilo)
conjdbc(trat, bloco, exp, resp)
```

conjdic

Analysis: Joint analysis of experiments in completely randomized block design

Description

Function of the AgroR package for joint analysis of experiments conducted in a randomized qualitative or quantitative single-block design with balanced data.

Usage

```
conjdic(
  tratamento,
  bloco,
  local,
  resposta,
  transf = 1,
  norm = "sw",
  homog = "bt",
  indep = "dw",
  mcomp = "tukey",
  quali = T,
  alpha.f = 0.05,
  alpha.t = 0.05,
  grau = NA,
```

conjdic 7

```
theme = theme_bw(),
ylab = "Resposta",
title = "",
xlab = "",
color = "rainbow",
fill = "lightblue",
angulo = 0,
textsize = 12,
dec = 3,
family = "sans",
errorbar = T
```

Arguments

tratamento	Numerical or complex vector with treatments
bloco	Numerical or complex vector with blocks
local	Numeric or complex vector with locations or times
resposta	Numerical vector containing the response of the experiment.
transf	Applies data transformation (default is 1; for log consider 0)
norm	error normality test (default is Shapiro-Wilk)
homog	homogeneity test of variances (default is Bartlett)
indep	error independence test (default is Durbin-Watson)
mcomp	Multiple comparison test (Tukey (default), Scott-Knott and Duncan)
quali	Defines whether the factor is quantitative or qualitative (qualitative)
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Level of significance of the Tukey test (<i>default</i> is 0.05)
grau	Degree of polynomial in case of quantitative factor (default is 1)
ylab	Variable response name (Accepts the expression() function)
title	graph title
xlab	treatments name (Accepts the expression() function)
color	When the columns are different colors (Set fill-in argument as "trat")
fill	Defines chart color (to generate different colors for different treatments, define $fill = "trat"$)
angulo	x-axis scale text rotation
textsize	font size
dec	number of cells
family	font family

Note

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet

Author(s)

Gabriel Danilo Shimizu

8 conjfat2.dbc

References

FERREIRA, P. V. Estatística experimental aplicada à agronomia. Edufal, 2018.

Examples

```
library(AgroR)
data(mirtilo)
attach(mirtilo)
conjdic(trat, bloco, exp, resp)
```

conjfat2.dbc

Analysis: Joint analysis of experiments in randomized block design in a double factorial scheme

Description

Function of the AgroR package for joint analysis of experiments conducted in a randomized block design in a double factorial scheme with qualitative or quantitative factor and balanced data.

Usage

```
conjfat2.dbc(
  fator1,
  fator2,
  local,
  bloco,
  resposta,
  transf = 1,
  norm = "sw",
  homog = "bt",
  indep = "dw",
  mcomp = "tukey",
  alpha.f = 0.05,
  alpha.t = 0.05,
  quali = c(T, T),
  grau = NA,
  geom = "point",
  theme = theme_bw(),
  ylab = "Resposta",
  xlab = "",
  color = "rainbow",
  fill = "lightblue",
  angulo = 0,
  textsize = 12,
  dec = 3,
  family = "sans",
  addmean = T,
  errorbar = T,
  CV = T,
  posi = "right"
```

conjfat2.dbc 9

Arguments

fator1 Numeric or complex vector with factor 1 levels
fator2 Numeric or complex vector with factor 2 levels
local Numeric or complex vector with locations or times

bloco Numerical or complex vector with blocks

resposta Numerical vector containing the response of the experiment. transf Applies data transformation (default is 1; for log consider 0)

norm error normality test (*default* is Shapiro-Wilk)
homog homogeneity test of variances (*default* is Bartlett)
indep error independence test (*default* is Durbin-Watson)

mcomp Multiple comparison test (Tukey (*default*), Scott-Knott and Duncan)

alpha.f Level of significance of the F test (*default* is 0.05)

alpha.t Level of significance of the Tukey test (*default* is 0.05)

quali Defines whether the factor is quantitative or qualitative (*qualitative*) grau Degree of polynomial in case of quantitative factor (*default* is 1)

geom graph type (columns, boxes or segments)
theme ggplot2 theme (*default* is theme_bw())

ylab Variable response name (Accepts the *expression*() function)

xlab treatments name (Accepts the *expression*() function)

color When the columns are different colors (Set fill-in argument as "trat")

fill Defines chart color (to generate different colors for different treatments, define

fill = "trat")

angulo x-axis scale text rotation

textsize font size

dec number of cells family font family

addmean Plot the average value on the graph (*default* is TRUE)

errorbar Plot the standard deviation bar on the graph (In the case of a segment and column

graph) - default is TRUE

CV Plotting the coefficient of variation and p-value of Anova (*default* is TRUE)

Note

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet

Author(s)

Gabriel Danilo Shimizu

References

FERREIRA, P. V. Estatística experimental aplicada à agronomia. Edufal, 2018.

10 conjfat2.dic

Examples

```
library(AgroR)
data(nitrogenio)
attach(nitrogenio)
conjfat2.dbc(Fert, Gen, Experimento, bloco, resp)
```

conjfat2.dic

Analysis: Joint analysis of experiments in randomized block design in a double factorial scheme

Description

Function of the AgroR package for joint analysis of experiments conducted in a randomized block design in a double factorial scheme with qualitative or quantitative factor and balanced data.

Usage

```
conjfat2.dic(
  fator1,
  fator2,
  local,
  bloco,
  resposta,
  transf = 1,
  norm = "sw",
  homog = "bt",
  indep = "dw",
  mcomp = "tukey",
  alpha.f = 0.05,
  alpha.t = 0.05,
  quali = c(T, T),
  grau = NA,
  geom = "point",
  theme = theme_bw(),
  ylab = "Resposta",
  xlab = "",
  color = "rainbow",
  fill = "lightblue",
  angulo = 0,
  textsize = 12,
  dec = 3,
  family = "sans",
  addmean = T,
  errorbar = T,
  CV = T,
  posi = "right"
```

conjfat2.dic

Arguments

fator1 Numeric or complex vector with factor 1 levels
fator2 Numeric or complex vector with factor 2 levels
local Numeric or complex vector with locations or times

bloco Numerical or complex vector with blocks

resposta Numerical vector containing the response of the experiment. transf Applies data transformation (default is 1; for log consider 0)

norm error normality test (*default* is Shapiro-Wilk)
homog homogeneity test of variances (*default* is Bartlett)
indep error independence test (*default* is Durbin-Watson)

mcomp Multiple comparison test (Tukey (*default*), Scott-Knott and Duncan)

alpha.f Level of significance of the F test (*default* is 0.05)

alpha.t Level of significance of the Tukey test (*default* is 0.05)

quali Defines whether the factor is quantitative or qualitative (*qualitative*) grau Degree of polynomial in case of quantitative factor (*default* is 1)

geom graph type (columns, boxes or segments)
theme ggplot2 theme (*default* is theme_bw())

ylab Variable response name (Accepts the *expression*() function)

xlab treatments name (Accepts the *expression*() function)

color When the columns are different colors (Set fill-in argument as "trat")

fill Defines chart color (to generate different colors for different treatments, define

fill = "trat")

angulo x-axis scale text rotation

textsize font size

dec number of cells family font family

addmean Plot the average value on the graph (*default* is TRUE)

errorbar Plot the standard deviation bar on the graph (In the case of a segment and column

graph) - default is TRUE

CV Plotting the coefficient of variation and p-value of Anova (*default* is TRUE)

Note

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet

Author(s)

Gabriel Danilo Shimizu

References

FERREIRA, P. V. Estatística experimental aplicada à agronomia. Edufal, 2018.

12 correlation

Examples

```
library(AgroR)
data(nitrogenio)
attach(nitrogenio)
conjfat2.dic(Fert, Gen, Experimento, bloco, resp)
```

correlation

graph: Correlogram

Description

```
graph: Correlogram
```

Usage

```
correlation(
  data,
  axissize = 12,
  legendsize = 12,
  legendposition = c(0.9, 0.2),
  legendtitle = "Correlation",
  method = "pearson"
)
```

Arguments

```
data data.frame
axissize default is 12
legendsize default is 12
legendposition default is c(0.9,0.2)
legendtitle default is "Correlation"
method default is Pearson
```

Author(s)

Gabriel Danilo Shimizu

```
data("pomegranate")
correlation(pomegranate[,-1])
```

croqui 13

croqui utils: Experimental sketch

Description

Experimental sketching function

Usage

```
croqui(trat, trat1 = NULL, r, design = "dic", pos = "linha", ncol = NA)
```

Arguments

trat	vector with factor A levels
trat1	vector with levels of factor B (Set to NULL if not factorial or psub)
r	number of repetitions
design	$experimental\ design\ ("dic","dbc","dq1","psubdic","psubdbc","fat2dic","fat2dbc")$
pos	posicao da repeticao (linha ou coluna)
ncol	default is NA. Warning!!! Use only in a completely randomized design

Examples

```
Trat=paste("Treatments",1:6)
croqui(Trat,r=3)
set.seed(1)
croqui(Trat,r=3)
```

DBC

Analysis: randomized block design

Description

This is a function of the AgroR package for statistical analysis of experiments conducted in a randomized block and balanced design with a factor considering the fixed model.

Usage

```
DBC(
   tratamento,
   bloco,
   resposta,
   norm = "sw",
   homog = "bt",
   indep = "dw",
   adit = "tukey",
   mcomp = "tukey",
   quali = T,
   alpha.f = 0.05,
```

14 DBC

```
alpha.t = 0.05,
transf = 1,
test = "parametric",
grau = 1,
geom = "bar",
theme = theme_bw(),
outdec = ".",
sup = NA,
CV = TRUE,
ylab = "Resposta",
xlab = "",
textsize = 12,
fill = "lightblue",
angle = 0,
family = "sans",
dec = 3,
addmean = T,
errorbar = T,
posi = "top"
```

Arguments

xlab

fill

textsize

font size

fill = "trat")

tratamento

	1
bloco	Numerical or complex vector with blocks
resposta	Numerical vector containing the response of the experiment.
norm	error normality test (default is Shapiro-Wilk)
homog	homogeneity test of variances (default is Bartlett)
indep	error independence test (default is Durbin-Watson)
adit	Factor additivity test (<i>default</i> is Tukey)
mcomp	Multiple comparison test (Tukey (default), Scott-Knott and Duncan)
quali	Defines whether the factor is quantitative or qualitative (qualitative)
alpha.f	Level of significance of the F test (<i>default</i> is 0.05)
alpha.t	Level of significance of the Tukey test (default is 0.05)
transf	Applies data transformation (default is 1; for log consider 0)
test	"parametric" - Parametric test or "noparametric" - non-parametric test
grau	Degree of polynomial in case of quantitative factor (default is 1)
geom	graph type (columns, boxes or segments)
theme	ggplot2 theme (default is theme_bw())
sup	Number of units above the standard deviation or average bar on the graph
CV	Plotting the coefficient of variation and p-value of Anova (default is TRUE)
ylab	Variable response name (Accepts the expression() function)

treatments name (Accepts the expression() function)

Defines chart color (to generate different colors for different treatments, define

Numerical or complex vector with treatments

DBC 15

angle x-axis scale text rotation

family font family dec number of cells

addmean Plot the average value on the graph (*default* is TRUE)

errorbar Plot the standard deviation bar on the graph (In the case of a segment and column

graph) - default is TRUE

Details

The values of the variance analysis of the DBC single factor are returned, the test of normality of errors (Shapiro-Wilk, Lilliefors, Anderson-Darling, Cramer-von Mises, Pearson and Shapiro-Francia), the test of homogeneity of variances (Bartlett or Levene), the Durbin-Watson error independence test, the multiple comparison test (Tukey, Scott-Knott or Duncan) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. Non-parametric analysis can be used by the Friedman test. Data transformation can be used, using the trans argument. The function also returns a column, box or segment chart for qualitative treatments. The function also returns a graph of standardized residues.

Note

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet

Author(s)

Gabriel Danilo Shimizu

References

Principles and procedures of statistics a biometrical approach Steel & Torry & Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentação em Genética e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

See Also

DIC, DOL

```
library(AgroR)
data(laranja)
attach(laranja)
DBC(trat, bloco, resp)
DBC(tratamento, bloco, resp, test="noparametric")
```

DBCT

DBCT

Analysis: randomized block design evaluated over time

Description

Function of the AgroR package for analysis of experiments conducted in a balanced qualitative, single-factorial randomized block design with multiple assessments over time, however without considering time as a factor.

Usage

```
DBCT(
  tratamento,
  bloco,
  tempo,
  resposta,
  theme = theme_bw(),
  geom = "point",
  fill = "gray",
xlab = "Response",
  ylab = "Independent",
  mcomp = "tukey",
  textsize = 12,
  error = TRUE,
  family = "sans",
  sup = 0,
  addmean = F,
  posi = c(0.1, 0.8),
  legend = "Legend",
  dec = 3
)
```

Arguments

bloco	Numerical or complex vector with blocks
tempo	Numerical or complex vector with times
geom	graph type (columns, boxes or segments)
fill	Defines chart color (to generate different colors for different treatments, define $fill = "trat"$)
xlab	treatments name (Accepts the expression() function)
ylab	Variable response name (Accepts the expression() function)
mcomp	Multiple comparison test (Tukey (default), Scott-Knott and Duncan)
textsize	font size
family	font family
dec	number of cells
trat	Numerical or complex vector with treatments
resp	Numerical vector containing the response of the experiment.

desc 17

alpha.t	Level of significance of the Tukey test (<i>default</i> is 0.05)
alpha.f	Level of significance of the F test (default is 0.05)
color	When the columns are different colors (Set fill-in argument as "trat")
angulo	x-axis scale text rotation

title graph title

Details

The p-value of the analysis of variance, the normality test for Shapiro-Wilk errors, the Bartlett homogeneity test of variances, the independence of Durbin-Watson errors and the multiple comparison test (Tukey, Scott-Knott, LSD or Duncan).

Note

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet

Author(s)

Gabriel Danilo Shimizu

See Also

```
DBC, DICT, DQLT
```

Examples

```
data(simulate2)
attach(simulate2)
DBCT(trat, bloco, tempo, resp)
```

desc

descritive: Descriptive analysis

Description

```
descritive: Descriptive analysis
```

Usage

```
desc(tratamento, resposta, ylab = "Resposta", xlab = "Tratamento", ylim = NA)
```

Arguments

tratamento	Numerical or complex vector with treatments
resposta	Numerical vector containing the response of the experiment.
ylab	Variable response name (Accepts the <i>expression</i> () function)

xlab x name (Accepts the *expression*() function)

18 desc2fat

Author(s)

Gabriel Danilo Shimizu

See Also

desc2fat, tabledesc,dispvar

Examples

library(AgroR)
data("pomegranate")
attach(pomegranate)
desc(trat,WL)

desc2fat

descritive: Descriptive analysis (Two factors)

Description

descritive: Descriptive analysis (Two factors)

Usage

```
desc2fat(fator1, fator2, resposta, ylab = "Response", theme = theme_bw())
```

Arguments

fator1 Numeric or complex vector with factor 1 levels fator2 Numeric or complex vector with factor 2 levels

resposta Numerical vector containing the response of the experiment.

ylab Variable response name (Accepts the *expression*() function)

xlab x name (Accepts the *expression*() function)

Author(s)

Gabriel Danilo Shimizu

```
library(AgroR)
data(cloro)
attach(cloro)
desc2fat(f1,f2,resp)
```

desc3fat

desc3fat

descritive: Descriptive analysis (Three factors)

Description

descritive: Descriptive analysis (Three factors)

Usage

```
desc3fat(
  fator1,
  fator2,
  fator3,
  resposta,
  legend.title = "Legend",
  xlab = "xlab",
  ylab = "ylab",
  theme = theme_bw(),
  plot = "interaction"
)
```

Arguments

fator1	Numeric or complex vector with factor 1 levels
fator2	Numeric or complex vector with factor 2 levels
fator3	Numeric or complex vector with factor 3 levels
resposta	Numerical vector containing the response of the experiment.
legend.title	legend title
xlab	x name (Accepts the expression() function)
ylab	Variable response name (Accepts the expression() function)

theme ggplot theme

plot "interaction" or "box"

Author(s)

Gabriel Danilo Shimizu

```
library(AgroR)
data(enxofre)
attach(enxofre)
desc3fat(f1, f2, f3, resp)
```

20 DIC

DIC

Analysis: completely randomized design

Description

Statistical analysis of experiments conducted in a completely randomized and balanced design with a factor considering the fixed model.

Usage

```
DIC(
  tratamento,
  resposta,
  norm = "sw"
  homog = "bt",
  indep = "dw",
  mcomp = "tukey",
  quali = T,
  alpha.f = 0.05,
  alpha.t = 0.05,
  grau = 1,
  transf = 1,
  test = "parametric",
  p.adj = "holm",
  geom = "bar",
  theme = theme_bw(),
  outdec = ".",
  sup = NA,
  CV = TRUE,
  ylab = "Response",
  xlab = "",
  fill = "lightblue",
  angle = 0,
  family = "sans",
  textsize = 12,
  dec = 3,
  addmean = T,
  errorbar = T,
  posi = "top"
)
```

Arguments

tratamento	Numerical or complex vector with treatments
resposta	Numerical vector containing the response of the experiment.
norm	error normality test (default is Shapiro-Wilk)
homog	homogeneity test of variances (default is Bartlett)
indep	error independence test (default is Durbin-Watson)
mcomp	Multiple comparison test (Tukey (<i>default</i>), Scott-Knott and Duncan)

DIC 21

quali	Defines whether the factor is quantitative or qualitative (qualitative)
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Level of significance of the Tukey test (default is 0.05)
grau	Degree of polynomial in case of quantitative factor (<i>default</i> is 1)
transf	Applies data transformation (default is 1; for log consider 0)
test	"parametric" - Parametric test or "noparametric" - non-parametric test
p.adj	Method for adjusting p values ("none", "holm", "hommel", "hochberg", "bonferroni", "BH", "BY", "fdr")
geom	graph type (columns, boxes or segments)
theme	ggplot2 theme (<i>default</i> is theme_bw())
sup	Number of units above the standard deviation or average bar on the graph
CV	Plotting the coefficient of variation and p-value of Anova (default is TRUE)
ylab	Variable response name (Accepts the expression() function)
xlab	treatments name (Accepts the expression() function)
fill	Defines chart color (to generate different colors for different treatments, define fill = "trat")
angle	x-axis scale text rotation
family	font family
textsize	font size
dec	number of cells
addmean	Plot the average value on the graph (default is TRUE)
errorbar	Plot the standard deviation bar on the graph (In the case of a segment and column graph) - $default$ is TRUE
color	When the columns are different colors (Set fill-in argument as "trat")

Details

Function of the AgroR package for analysis of experiments conducted in a fully randomized, quantitative or qualitative balanced design. The function returns the table of analysis of variance, the assumptions of normality of errors, homogeneity of variances and independence of errors. When the treatment is qualitative, the user can define the multiple comparison test (Tukey, Scott-Knott or Duncan). Data transformation can also be performed by the package, the trans argument represents the lambda value that the user intends to use. Non-parametric Kruskal-Wallis test can also be used, defining the test = "noparametric" argument. Chart type can be defined by the geom = argument. Quantitative treatments can be defined by the quali = F argument, as well as the degree of the polynomial, by the "degree =" argument

Note

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet

Author(s)

Gabriel Danilo Shimizu

DICT DICT

References

Principles and procedures of statistics a biometrical approach Steel & Torry & Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Practical Nonparametrics Statistics. W.J. Conover, 1999

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentação em Genética e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

See Also

```
DBC DQL
```

Examples

```
library(AgroR)
data(pomagranate)
attach(pomegranate)
DIC(trat, WL) # tukey
DIC(trat, WL, mcomp = "sk")
DIC(trat, WL, mcomp = "duncan")
DIC(trat, WL, test = "noparametric")
DIC(trat, WL, transf = 0)
DIC(trat, WL, geom="point")
DIC(trat, WL, ylab = "Perda de massa (%)", xlab="Tratamentos")
```

DICT

Analysis: completely randomized design evaluated over time

Description

Function of the AgroR package for the analysis of experiments conducted in a completely randomized, qualitative, uniform qualitative design with multiple assessments over time, however without considering time as a factor.

Usage

```
DICT(
   tratamento,
   tempo,
   resposta,
   mcomp = "tukey",
   theme = theme_bw(),
   geom = "point",
   xlab = "Independent",
   ylab = "Response",
   dec = 3,
   fill = "gray",
```

DICT 23

```
error = TRUE,
  textsize = 12,
  family = "sans",
  sup = 0,
  addmean = F,
  legend = "Legend",
  ylim = NA,
  posi = c(0.1, 0.8)
)
```

Arguments

tempo	Numerical or complex vector with times
mcomp	Multiple comparison test (Tukey (default), Scott-Knott and Duncan)
geom	graph type (columns, boxes or segments)
xlab	treatments name (Accepts the expression() function)
ylab	Variable response name (Accepts the expression() function)
dec	number of cells
fill	Defines chart color (to generate different colors for different treatments, define $fill = "trat"$)
textsize	font size
family	font family
trat	Numerical or complex vector with treatments
resp	Numerical vector containing the response of the experiment.
alpha.t	Level of significance of the Tukey test (default is 0.05)
alpha.f	Level of significance of the F test (default is 0.05)
color	When the columns are different colors (Set fill-in argument as "trat")
angulo	x-axis scale text rotation
title	graph title

Details

The p-value of the analysis of variance, the normality test for Shapiro-Wilk errors, the Bartlett homogeneity test of variances, the independence of Durbin-Watson errors and the multiple comparison test (Tukey, Scott-Knott, LSD or Duncan).

Note

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet

Author(s)

Gabriel Danilo Shimizu

See Also

```
DIC, DBCT, DQLT
```

24 dispvar

Examples

```
data(simulate1)
attach(simulate1)
DICT(trat, tempo, resp)
```

dispvar

descritive: Boxplot with standardized data

Description

descritive: Boxplot with standardized data

Usage

```
dispvar(
  data,
  Tratamentos = NULL,
  theme = theme_bw(),
  ylab = "Standard mean",
  xlab = "Variable",
  family = "serif",
  textsize = 12,
  fill = "lightblue"
)
```

Arguments

data data.frame containing the response of the experiment.

theme ggplot2 theme (default is theme_bw())

ylab Variable response name (Accepts the *expression*() function)

xlab treatments name (Accepts the *expression*() function)

family font family textsize font size

fill Defines chart color

tratamento Numerical or complex vector with treatments

dec number of cells

Author(s)

Gabriel Danilo Shimizu

```
library(AgroR)
data("pomegranate")
dispvar(pomegranate[,-1])
trat=pomegranate$trat
dispvar(data, trat)
```

DQL 25

DQL Analysis: Latin square design

Description

This is a function of the AgroR package for statistical analysis of experiments conducted in Latin Square and balanced design with a factor considering the fixed model.

Usage

```
DQL(
  tratamento,
  linha,
  coluna,
  resposta,
 norm = "sw",
  homog = "bt",
  indep = "dw",
  adit = "tukey",
  mcomp = "tukey",
  alpha.f = 0.05,
  alpha.t = 0.05,
  quali = T,
  transf = 1,
  grau = 1,
  geom = "bar",
  theme = theme_bw(),
  outdec = ".",
  sup = NA,
  CV = TRUE,
  ylab = "Response",
  xlab = "",
  textsize = 12,
  fill = "lightblue",
  angle = 0,
  family = "sans",
  dec = 3,
  addmean = T,
  errorbar = T,
  posi = "top"
)
```

Arguments

tratamento	Numerical or complex vector with treatments (Declare as factor)
linha	Numerical or complex vector with lines (Declare as factor)
coluna	Numerical or complex vector with columns (Declare as factor)
resposta	Numerical vector containing the response of the experiment.
norm	error normality test (default is Shapiro-Wilk)

26 DQL

homog homogeneity test of variances (*default* is Bartlett) indep error independence test (*default* is Durbin-Watson)

adit Factor additivity test (*default* is Tukey)

mcomp Multiple comparison test (Tukey (default), Scott-Knott and Duncan)

alpha.f Level of significance of the F test (*default* is 0.05)

alpha.t Level of significance of the Tukey test (*default* is 0.05)

quali Defines whether the factor is quantitative or qualitative (qualitative)

transf Applies data transformation (default is 1; for log consider 0) grau Degree of polynomial in case of quantitative factor (*default* is 1)

geom graph type (columns, boxes or segments)
theme ggplot2 theme (default is theme_bw())

Number of units above the standard deviation or average bar on the graph

CV Plotting the coefficient of variation and p-value of Anova (*default* is TRUE)

ylab Variable response name (Accepts the *expression*() function)

xlab treatments name (Accepts the *expression*() function)

textsize font size

fill Defines chart color (to generate different colors for different treatments, define

fill = "trat")

angle x-axis scale text rotation

family font family dec number of cells

addmean Plot the average value on the graph (default is TRUE)

errorbar Plot the standard deviation bar on the graph (In the case of a segment and column

graph) - default is TRUE

title graph title

color When the columns are different colors (Set fill-in argument as "trat")

Details

The values of the variance analysis of the DQL single factor are returned, the test of normality of errors (Shapiro-Wilk, Lilliefors, Anderson-Darling, Cramer-von Mises, Pearson and Shapiro-Francia), the test of homogeneity of variances (Bartlett or Levene), the Durbin-Watson error independence test, the multiple comparison test (Tukey, Scott-Knott or Duncan) or adjustment of regression models up to grade 3 polynomial, in the case of quantitative treatments. Non-parametric analysis can be used by the Friedman test. Data transformation can be used, using the trans argument. The function also returns a column, box or segment chart for qualitative treatments. The function also returns a graph of standardized residues.

Note

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet

Author(s)

Gabriel Danilo Shimizu

DQLT 27

References

Principles and procedures of statistics a biometrical approach Steel & Torry & Dickey. Third Edition 1997

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

Ramalho M.A.P., Ferreira D.F., Oliveira A.C. 2000. Experimentação em Genética e Melhoramento de Plantas. Editora UFLA.

Scott R.J., Knott M. 1974. A cluster analysis method for grouping mans in the analysis of variance. Biometrics, 30, 507-512.

See Also

```
DIC, DBC
```

Examples

```
library(AgroR)
data(porco)
attach(porco)
DQL(trat, linhas, colunas, resp)
```

DQLT

Analysis: Latin square design evaluated over time

Description

Function of the AgroR package for the analysis of experiments conducted in a balanced qualitative single-square Latin design with multiple assessments over time, however without considering time as a factor.

Usage

```
DQLT(
  tratamento,
  linha,
  coluna,
  tempo,
  resposta,
  mcomp = "tukey",
  error = TRUE,
  xlab = "Independent",
  ylab = "Response",
  textsize = 12,
  family = "sans",
  sup = 0,
  addmean = F,
  posi = c(0.1, 0.8),
  geom = "point",
  fill = "gray",
  legend = "Legend",
```

28 **DQLT**

```
ylim = NA,
 dec = 3,
  theme = theme_bw()
)
```

Arguments

linha

	1
coluna	Numerical or complex vector with column
tempo	Numerical or complex vector with times
mcomp	Multiple comparison test (Tukey (default), Scott-Knott and Duncan)
xlab	treatments name (Accepts the expression() function)
ylab	Variable response name (Accepts the expression() function)
textsize	font size
family	font family
geom	graph type (columns, boxes or segments)
fill	Defines chart color (to generate different colors for different treatments of

Defines chart color (to generate different colors for different treatments, define †111

fill = "trat")

dec number of cells

Numerical or complex vector with treatments trat

Numerical vector containing the response of the experiment. resp Level of significance of the Tukey test (*default* is 0.05) alpha.t alpha.f Level of significance of the F test (*default* is 0.05)

Numerical or complex vector with line

When the columns are different colors (Set fill-in argument as "trat") color

x-axis scale text rotation angulo

title graph title

Details

The p-value of the analysis of variance, the normality test for Shapiro-Wilk errors, the Bartlett homogeneity test of variances, the independence of Durbin-Watson errors and the multiple comparison test (Tukey, Scott-Knott, LSD or Duncan).

Note

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet

Author(s)

Gabriel Danilo Shimizu

See Also

```
DQL, DICT, DBCT
```

```
data(simulate3)
attach(simulate3)
DQLT(trat, linhas, colunas, tempo, resp)
```

enxofre 29

enxofre

dataset: sulfur

Description

dataset: sulfur

Usage

```
data(enxofre)
```

Format

data.frame containing data set

f1 categorical vector with factor 1

f2 categorical vector with factor 2

f2 categorical vector with factor 3

bloco categorical vector with block

resp Numeric vector

See Also

cloro,laranja,mirtilo,nitrogenio,pomegranate,porco,sensorial,simulate1,simulate2,simulate3,tomate,weather

Examples

```
data(enxofre)
```

FAT2DBC

Analysis: DBC experiments in double factorial

Description

Analysis: DBC experiments in double factorial

Usage

```
FAT2DBC(
  fator1,
  fator2,
  bloco,
  resposta,
  transf = 1,
  norm = "sw",
  homog = "bt",
  indep = "dw",
  mcomp = "tukey",
  alpha.f = 0.05,
```

30 FAT2DBC

```
alpha.t = 0.05,
quali = c(T, T),
grau = NA,
geom = "bar",
theme = theme_bw(),
outdec = ".",
ylab = "Response",
xlab = "",
legend = "Legend",
color = "rainbow",
fill = "lightblue",
angle = 0,
textsize = 12,
dec = 3,
family = "sans",
point = "mean_se",
addmean = T,
errorbar = T,
CV = T,
sup = NA,
color1 = NA,
posi = "right",
decimal = ".",
ylim = NA
```

Arguments

fator1	Numeric or complex vector with factor 1 levels
fator2	Numeric or complex vector with factor 2 levels
bloco	Numerical or complex vector with blocks
resposta	Numerical vector containing the response of the experiment.
transf	Applies data transformation (default is 1; for log consider 0)
norm	error normality test (default is Shapiro-Wilk)
homog	homogeneity test of variances (default is Bartlett)
indep	error independence test (default is Durbin-Watson)
mcomp	Multiple comparison test (Tukey (default), Scott-Knott and Duncan)
alpha.f	Level of significance of the F test (<i>default</i> is 0.05)
alpha.t	Level of significance of the Tukey test (default is 0.05)
quali	Defines whether the factor is quantitative or qualitative (qualitative)
grau	Degree of polynomial in case of quantitative factor (default is 1)
geom	graph type (columns, boxes or segments)
theme	ggplot2 theme (<i>default</i> is theme_bw())
ylab	Variable response name (Accepts the expression() function)
xlab	treatments name (Accepts the expression() function)
legend	legend title name
color	When the columns are different colors (Set fill-in argument as "trat")

FAT2DBC.art 31

fill Defines chart color (to generate different colors for different treatments, define

fill = "trat")

angle x-axis scale text rotation

textsize font size

dec number of cells family font family

addmean Plot the average value on the graph (*default* is TRUE)

errorbar Plot the standard deviation bar on the graph (In the case of a segment and column

graph) - default is TRUE

CV Plotting the coefficient of variation and p-value of Anova (*default* is TRUE) sup Number of units above the standard deviation or average bar on the graph

color1 color of groups for regression

title graph title

Note

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet

Author(s)

Gabriel Danilo Shimizu

See Also

FAT2DBC.art

Examples

```
library(AgroR)
data(cloro)
attach(cloro)
FAT2DIC(f1, f2, bloco, resp)
```

FAT2DBC.art Analysis: Analysis of Variance of Aligned Rank Transformed Data in FAT2DBC

Description

Apply the aligned rank transform to a factorial model (with optional grouping terms). Usually done in preparation for a nonparametric analyses of variance on models with numeric or ordinal responses, which can be done by following up with anova.art.

32 FAT2DIC

Usage

```
FAT2DBC.art(
  fator1,
  fator2,
  bloco,
  resposta,
  decreasing = T,
  xlab = "Fator",
  ylab = "Response",
  legend.title = "Fator",
  theme = theme_bw()
)
```

Arguments

fator1 Numeric or complex vector with factor 1 levels
fator2 Numeric or complex vector with factor 2 levels

bloco Numerical or complex vector with blocks

resposta Numerical vector containing the response of the experiment.

xlab treatments name (Accepts the *expression*() function)

ylab Variable response name (Accepts the *expression*() function)

legend.title legend title name

Author(s)

Gabriel Danilo Shimizu

See Also

FAT2DBC

Examples

```
resposta=c(339,332,163,230,300,163,172,123,083,161,196,252,346,468,258,335,235,217,174,222,284,136,225,098,110,482,438,492,453,446,171,069,095,046,079,032,038,063,048,160) fator1=as.factor(rep(c("IN","NI"),e=20)) fator2=as.factor(rep(c("Plantio","V1+15","V3+15","R1+15"),e=5,2)) data=data.frame(resposta,fator1,fator2)
```

FAT2DIC

Analysis: DIC experiments in double factorial

Description

Analysis: DIC experiments in double factorial

FAT2DIC 33

Usage

```
FAT2DIC(
  fator1,
  fator2,
  resposta,
  norm = "sw",
homog = "bt",
  indep = "dw",
  mcomp = "tukey",
  alpha.f = 0.05,
  alpha.t = 0.05,
  quali = c(T, T),
  grau = NA,
  transf = 1,
  geom = "bar",
  theme = theme_bw(),
  outdec = ".",
  ylab = "Response",
  xlab = "",
  legend = "Legend",
  color1 = NA,
  color = "rainbow",
  fill = "lightblue",
  textsize = 12,
  addmean = T,
  errorbar = T,
  CV = T,
  dec = 3,
  angle = 0,
  posi = "right",
  decimal = ".",
  family = "sans",
  point = "mean_se",
  sup = NA,
  ylim = NA
)
```

Arguments

fator1	Numeric or complex vector with factor 1 levels
fator2	Numeric or complex vector with factor 2 levels
resposta	Numerical vector containing the response of the experiment.
norm	error normality test (default is Shapiro-Wilk)
homog	homogeneity test of variances (default is Bartlett)
indep	error independence test (default is Durbin-Watson)
mcomp	Multiple comparison test (Tukey (default), Scott-Knott and Duncan)
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Level of significance of the Tukey test (default is 0.05)
quali	Defines whether the factor is quantitative or qualitative (qualitative)

34 FAT2DIC

grau Degree of polynomial in case of quantitative factor (*default* is 1)
transf Applies data transformation (default is 1; for log consider 0)

geom graph type (columns, boxes or segments)
theme ggplot2 theme (*default* is theme_bw())

ylab Variable response name (Accepts the *expression*() function)

xlab treatments name (Accepts the *expression*() function)

legend legend title name

color1 color of groups for regression

color When the columns are different colors (Set fill-in argument as "trat")

fill Defines chart color (to generate different colors for different treatments, define

fill = "trat")

textsize font size

addmean Plot the average value on the graph (*default* is TRUE)

errorbar Plot the standard deviation bar on the graph (In the case of a segment and column

graph) - default is TRUE

CV Plotting the coefficient of variation and p-value of Anova (*default* is TRUE)

dec number of cells

angle x-axis scale text rotation

family font family

sup Number of units above the standard deviation or average bar on the graph

Note

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet

Author(s)

Gabriel Danilo Shimizu

See Also

FAT2DIC.art

```
library(AgroR)
data(cloro)
attach(cloro)
FAT2DIC(f1, f2, resp)
```

FAT2DIC.art 35

FAT2DIC.art	Analysis: Analysis of Variance of Aligned Rank Transformed Data in
	FAT2DIC

Description

Apply the aligned rank transform to a factorial model (with optional grouping terms). Usually done in preparation for a nonparametric analyses of variance on models with numeric or ordinal responses, which can be done by following up with anova.art.

Usage

```
FAT2DIC.art(
  fator1,
  fator2,
  resposta,
  decreasing = F,
  xlab = "Fator",
  ylab = "Response",
  legend.title = "Fator",
  theme = theme_bw()
)
```

Arguments

fator1 Numeric or complex vector with factor 1 levels fator2 Numeric or complex vector with factor 2 levels

resposta Numerical vector containing the response of the experiment.

xlab treatments name (Accepts the *expression*() function)

ylab Variable response name (Accepts the *expression*() function)

legend.title legend title name

Author(s)

Gabriel Danilo Shimizu

See Also

FAT2DIC

```
resposta=c(339,332,163,230,300,163,172,123,083,161,196,252,346,468,258,335,235,217,174,222,284,136,225,098,110,482,438,492,453,446,171,069,095,046,079,032,038,063,048,160) fator1=as.factor(rep(c("IN","NI"),e=20)) fator2=as.factor(rep(c("Plantio","V1+15","V3+15","R1+15"),e=5,2)) data=data.frame(resposta,fator1,fator2)
```

36 FAT3DBC

FAT3DBC

Analysis: DBC experiments in triple factorial

Description

Analysis: DBC experiments in triple factorial

Usage

```
FAT3DBC(
  fator1,
  fator2,
  fator3,
  bloco,
  resposta,
  quali = c(TRUE, TRUE, TRUE),
  mcomp = "tukey",
  fac.names = c("F1", "F2", "F3"),
  interplot = F,
  transf = 1,
  norm = "sw"
  homog = "bt"
  indep = "dw",
  alpha.f = 0.05,
  alpha.t = 0.05,
  ylab = "Response",
  xlab = "",
  sup = NA,
  grau = NA,
  facet = F,
  fill = "lightblue",
  theme = theme_bw(),
  angulo = 0,
  errorbar = T,
  addmean = T,
  family = "sans",
  color = "rainbow",
  dec = 3,
  geom = "bar",
  title = "",
  gr = "identical",
  textsize = 12
)
```

Arguments

fator1 Vetor numerico ou complexo com os niveis do fator 1 (Declarar como fator)
fator2 Vetor numerico ou complexo com os niveis do fator 2 (Declarar como fator)
resposta Vetor numerico com as respostas do experimento.
norm error normality test (default is Shapiro-Wilk)

FAT3DIC 37

homog	homogeneity test of variances (default is Bartlett)
indep	error independence test (default is Durbin-Watson)
alpha.f	Level of significance of the F test (default is 0.05)
alpha.t	Level of significance of the Tukey test (default is 0.05)
ylab	Variable response name (Accepts the <i>expression</i> () function)

Author(s)

Gabriel Danilo Shimizu

Examples

```
library(AgroR)
data(enxofre)
attach(enxofre)
FAT3DBC(f1, f2, f3, bloco, resp)
```

FAT3DIC

Analysis: DIC experiments in triple factorial

Description

Analysis: DIC experiments in triple factorial

```
FAT3DIC(
  fator1,
  fator2,
  fator3,
  resposta,
  quali = c(TRUE, TRUE, TRUE),
  mcomp = "tukey",
  fac.names = c("F1", "F2", "F3"),
  interplot = F,
  alpha.t = 0.05,
  alpha.f = 0.05,
  transf = 1,
  norm = "sw",
  homog = "bt",
  indep = "dw",
  ylab = "Response",
  xlab = "",
  sup = NA,
  grau = NA,
  facet = F,
  fill = "lightblue",
  theme = theme_bw(),
  angulo = 0,
  family = "sans",
```

38 laranja

```
color = "rainbow",
addmean = T,
errorbar = T,
dec = 3,
geom = "bar",
title = "",
gr = "identical",
textsize = 12
```

Arguments

fator1	Vetor numerico ou complexo com os niveis do fator 1 (Declarar como fator)
fator2	Vetor numerico ou complexo com os niveis do fator 2 (Declarar como fator)
resposta	Vetor numerico com as respostas do experimento.
alpha.t	Level of significance of the Tukey test (default is 0.05)
alpha.f	Level of significance of the F test (default is 0.05)
norm	error normality test (default is Shapiro-Wilk)
homog	homogeneity test of variances (default is Bartlett)
indep	error independence test (default is Durbin-Watson)
ylab	Variable response name (Accepts the expression() function)

Author(s)

Gabriel Danilo Shimizu

Examples

```
library(AgroR)
data(enxofre)
attach(enxofre)
FAT3DIC(f1, f2, f3, resp)
```

laranja

dataset: Orange plants under different rootstocks

Description

An experiment was conducted with the objective of studying the behavior of nine rootstocks for the Valencia orange tree. The data set refers to the 1973 evaluation (12 years old). The rootstocks are: T1: Tangerine Sunki; T2: National rough lemon; T3: Florida rough lemon; T4: Cleopatra tangerine; T5: Citranger-troyer; T6: Trifoliata; T7: Clove Tangerine; T8: Country orange; T9: Clove Lemon

```
data(laranja)
```

line_plot 39

Format

```
data.frame containing data set
f1 categorical vector with treatments
bloco categorical vector with block
resp Numeric vector
```

References

Exemplo do Livro Planejamento e Análise Estatística de Experimentos Agronômicos (2013) - Décio Barbin - pg. 72

See Also

cloro,enxofre,mirtilo,nitrogenio,pomegranate,porco,sensorial,simulate1,simulate2,simulate3,tomate,weather

Examples

```
data(laranja)
```

line_plot

graph: line chart

Description

```
graph: line chart
```

Usage

```
line_plot(
   time,
   response,
   factor = NA,
   errorbar = "sd",
   ylab = "Response",
   xlab = "Time",
   legend.position = "right"
)
```

Arguments

errobar

```
time vector containing the x-axis values
response vector containing the y-axis values
factor vector containing a categorical factor
ylab y axis title
xlab x axis title
```

error bars (sd or se)

40 logistic_LL

Author(s)

Gabriel Danilo Shimizu

See Also

```
radargraph, sk_graph, plot_TH, correlation, spider_graph, graph
```

Examples

```
dose=c(0,0,0,2,2,2,4,4,4,6,6,6,8,8,8,10,10,10)
resp=seq(1,18,1)
time=c(dose,dose)
response=c(resp,resp+1)
factor=rep(c("A","B"),e=18)
line_plot(time,response,factor)
```

logistic_LL

Analysis: Logistic regression

Description

Logistic models with three (LL.3()) or four (LL.4()) continuous data parameters

Usage

```
logistic_LL(
   trat,
   resp,
   npar = "LL.3()",
   ylab = "Response",
   xlab = "Independent",
   theme = theme_classic(),
   legend.position = c(0.3, 0.8)
)
```

Arguments

```
trat Numerical or complex vector with treatments

resp Numerical vector containing the response of the experiment.

npar Number of model parameters

ylab Variable response name (Accepts the expression() function)

xlab treatments name (Accepts the expression() function)

theme ggplot2 theme (default is theme_bw())

legend.position

legend position (default is c(0.3,0.8))
```

Examples

```
resp=c(0,0.1,0.2,0.3,0.26,0.24,0.8,1,1.2,1.6,1.4,1.7,3,3.2, 3.3,4.3,4.4,4.5,4.6,4.5,4.7,4.7,4.4,4.9,4.8,4.9,5) trat=rep(c(1:9),e=3) logistic_LL(trat,resp)
```

mirtilo 41

mirtilo

dataset: cutting blueberry

Description

An experiment was carried out in order to evaluate the rooting (resp1) of blueberry cuttings as a function of the cutting size (Treatment Colume). This experiment was repeated three times (Location column) and a randomized block design with four replications was adopted.

Usage

```
data(mirtilo)
```

Format

```
data.frame containing data set
trat categorical vector with treatments
exp categorical vector with experiment
bloco categorical vector with block
resp Numeric vector
```

See Also

cloro,enxofre,laranja,nitrogenio,pomegranate,porco,sensorial,simulate1,simulate2,simulate3,tomate,weather

Examples

```
data(mirtilo)
attach(mirtilo)
```

multidata

Analysis of multiple variables in a command

Description

Analysis of multiple variables in a command

```
multidata(
  data1,
  design = "DIC",
  ylab = NA,
  xlab = NA,
  quali = NA,
  test = NA,
  transf = NA,
  norm = "sw",
```

42 multidata

```
homog = "bt",
indep = "dw",
mcomp = "tukey",
alpha.f = 0.05,
alpha.t = 0.05,
grau = NA,
p.adj = "none",
geom = "bar",
legend = "Legend",
theme = theme_bw(),
sup = NA,
CV = TRUE,
posi = "right",
dec = 3,
addmean = T,
errorbar = T,
fill = "lightblue",
color = "rainbow",
color1 = NA,
angle = 0,
textsize = 12,
family = "sans"
```

Arguments

data1

	of the experiment.
design	experimental design (DIC, DBC, DQL, FAT2DIC, FAT2DBC, PSUBDIC, PSUBDBC)
ylab	Variable response name (Accepts the expression() function)
xlab	treatments name (Accepts the expression() function)
test	parametric or non-parametric testing
transf	Applies data transformation (default is 1; for log consider 0)
norm	error normality test (default is Shapiro-Wilk)
homog	homogeneity test of variances (default is Bartlett)
indep	error independence test (default is Durbin-Watson)
mcomp	Multiple comparison test (Tukey (default), Scott-Knott and Duncan)
alpha.f	Level of significance of the F test (<i>default</i> is 0.05)
alpha.t	Level of significance of the Tukey test (default is 0.05)
p.adj	Method for adjusting p values ("none","holm","hommel", "hochberg", "bonferroni", "BH", "BY", "fdr")
geom	graph type (columns, boxes or segments)
theme	ggplot2 theme (default is theme_bw())
dec	number of cells
fill	Defines chart color (to generate different colors for different treatments, define fill = "trat")
color	When the columns are different colors (Set fill-in argument as "trat")

data.frame containing numerical or complex vector with treatments and response

nitrogenio 43

angle x-axis scale text rotation textsize font size family font family saveplot save the barplot (default is FALSE) file file name and extension to save (saveplot=T) width image width (saveplot=T) image height (saveplot=T) height res image resolution (saveplot=T)

Value

Function of the AgroR package for analysis of experiments conducted in a fully randomized, quantitative or qualitative balanced design. The function returns the table of analysis of variance, the assumptions of normality of errors, homogeneity of variances and independence of errors. When the treatment is qualitative, the user can define the multiple comparison test (Tukey, Scott-Knott or Duncan). Data transformation can also be performed by the package, the trans argument represents the lambda value that the user intends to use. Non-parametric Kruskal-Wallis test can also be used, defining the test = "noparametric" argument. Chart type can be defined by the geom = argument. Quantitative treatments can be defined by the quali = F argument, as well as the degree of the polynomial, by the "degree =" argument

Author(s)

Gabriel Danilo Shimizu

Examples

```
 \begin{array}{l} trat=rep(c(1,2,3,4,5),e=4) \\ dados=c(2,3,4,3.2,4,4.5,5,5.1,8,7,5,6.5,6,7,6.5,6.6,8,8,9.5,8.5) \\ data1=data.frame(trat,r1=dados,r2=dados,r3=dados,r4=dados) \\ multidata(data1, quali = c(F,F,F,F), grau = c(1,2,1,2)) \\ trat=rep(c(1,2,3,4,5),e=4) \\ dados=c(seq(11:20),seq(20,11,-1)) \\ bloco=as.factor(rep(c(paste("B",1:4)),5)) \\ data1=data.frame(trat,bloco,r1=dados,r2=dados,r3=dados,r4=dados) \\ multidata(data1, design = "DBC") \\ \end{array}
```

nitrogenio dataset: nitrogen

Description

dataset: nitrogen

Usage

data(nitrogenio)

44 plot_interaction

Format

data.frame containing a treatment column, a block column, a location column and two response columns

data.frame containing data set

Experimento categorical vector with experiment

Fert categorical vector with factor 1

Gen categorical vector with factor 2

bloco categorical vector with block

resp Numeric vector

See Also

cloro,enxofre,laranja,mirtilo,pomegranate,porco,sensorial,simulate1,simulate2,simulate3,tomate,weather

Examples

```
data(nitrogenio)
attach(nitrogenio)
```

plot_interaction

graph: Interaction plot

Description

```
graph: Interaction plot
```

Usage

```
plot_interaction(a)
```

Arguments

а

FAT2DIC, FAT2DBC, PSUBDIC or PSUBDBC object

Examples

```
resposta=c(339,332,163,230,300,163,172,123,083,161,196,252,346,468,258,
335,235,217,174,222,284,136,225,098,110,482,438,492,453,446,
171,069,095,046,079,032,038,063,048,160)
fator1=rep(c("IN","NI"),e=20)
fator2=rep(c("Plantio","V1+15","V3+15","R1+15"),e=5,2)
a=FAT2DIC(fator1,fator2,resposta)
plot_interaction(a)
```

plot_TH 45

plot_TH

Graph: Climate chart of temperature and humidity

Description

The plot_TH function allows the user to build a column/line graph with climatic parameters of temperature (maximum, minimum and average) and relative humidity (UR). This chart is widely used in scientific work in agrarian science

Usage

```
plot_TH(
  tempo,
  Tmed,
  Tmax,
  Tmin,
  UR,
  xlab = "Time",
  yname1 = expression("Humidity (%)"),
  yname2 = expression("Temperature ("^o * "C)"),
  colormax = "red",
  colormin = "blue",
  colormean = "darkgreen",
  fillbar = "gray80",
  limitsy1 = c(0, 100),
  x = "days",
  breaks = "1 months",
  textsize = 12,
  legendsize = 12,
  titlesize = 12,
  linesize = 1,
  date_format = "%m-%Y",
  sc = 2.5,
  legend.position = "bottom",
  theme = theme_bw()
)
```

Arguments

```
tempo
                  vector times
Tmed
                  vector with mean temperature
Tmax
                  vector with maximum temperature
Tmin
                  vector with minimum temperature
UR
                  humidity relative vector
                  x axis name
xlab
yname1
                  y axis name
yname2
                  secundary y-axis name
                  x scale type (days or data, default is "days")
```

46 polynomial

```
range for x scale when x = "date" (default is 1 months)
breaks
textsize
                  axis text size
legendsize
                  legend text size
titlesize
                  axis title size
linesize
                  line size
date_format
                  date format for x="data"
                  scale to y-axis secundary
sc
legend.position
                  legend position
                  ggplot2 theme
theme
```

Author(s)

Gabriel Danilo Shimizu

See Also

radargraph, sk_graph, barplot_positive, correlation, spider_graph, graph, line_plot

Examples

```
library(AgroR)
data(weather)
attach(weather)
plot_TH(tempo, Tmed, Tmax, Tmin, UR)
```

polynomial

Analysis: Linear regression graph

Description

Linear regression analysis of an experiment with a quantitative factor or isolated effect of a quantitative factor

```
polynomial(
   trat,
   resp,
   ylab = "Response",
   xlab = "independent",
   grau = NA,
   theme = theme_bw(),
   color = "gray",
   posi = "top",
   title = "",
   textsize = 12,
   se = FALSE,
   ylim = NA,
   family = "sans",
```

polynomial2 47

```
pointsize = 3,
  decimal = "."
)
```

Arguments

ylab Dependent variable name (Accepts the *expression*() function) xlab Independent variable name (Accepts the *expression*() function)

grau degree of the polynomial (1,2 or 3) color graph color (*default* is rainbow)

se adds confidence interval (*default* is FALSE)

resposta Numerical vector containing the response of the experiment.
tratamento Numerical vector with treatments (Declare as numeric)

Author(s)

Gabriel Danilo Shimizu

See Also

polynomial2

Examples

```
trat=c(0,0,0,2,2,2,4,4,4,6,6,6)+10
resp=c(12,14,15,23,24,25,50,54,56,80,90,40)
AgroR::polynomial(trat,resp, grau = 3)
```

polynomial2

Analysis: Linear regression graph in double factorial

Description

Linear regression analysis for significant interaction of an experiment with two factors, one quantitative and one qualitative

```
polynomial2(
  fator1,
  resp,
  fator2,
  color = NA,
  grau = NA,
  ylab = "Response",
  xlab = "independent",
  theme = theme_bw(),
  se = F,
  point = "mean_se",
  legend.title = "Tratamentos",
```

48 polynomial2

```
posi = "top",
  decimal = ".",
  textsize = 12,
  ylim = NA,
  family = "sans"
)
```

Arguments

fator1 Numeric or complex vector with factor 1 levels Numerical vector containing the response of the experiment. resp Numeric or complex vector with factor 2 levels fator2 color graph color (default is NA) degree of the polynomial (1,2 or 3) grau Dependent variable name (Accepts the *expression*() function) ylab xlab Independent variable name (Accepts the expression() function) ggplot2 theme (*default* is theme_bw()) theme adds confidence interval (default is FALSE) se legend.title title legend decimal decimal separate textsize font size (default is 12)

Author(s)

family

Gabriel Danilo Shimizu

See Also

polynomial

Examples

```
trat=c(0,0,0,2,2,2,4,4,4,6,6,6)
resp=c(8,7,5,23,24,25,30,34,36,80,90,80)
resp1=c(12,14,15,23,24,25,50,54,56,80,90,40)
resp2=c(12,14,15,3,4,5,50,54,56,80,90,40)
resp=c(resp,resp1,resp2)
fator1=rep(trat,3)
fator2=rep(c("A","B","C"),e=12)
bloco=rep(paste("B",1:3),12)
FAT2DIC(fator1,fator2,resp, quali=c(F,T), grau=c(1,2,3))
```

font family (default is sans)

pomegranate 49

pomegranate

dataset: Pomegranate

Description

An experiment was conducted with the objective of studying different products to reduce the loss of mass in postharvest of pomegranate fruits. The experiment was conducted in a completely randomized design with four replications. Treatments are: T1: External Wax; T2: External + Internal Wax; T3: External Orange Oil; T4: Internal + External Orange Oil; T5: External sodium hypochlorite; T6: Internal + External sodium hypochlorite

Usage

data(pomegranate)

Format

data.frame containing a qualitative treatment column (trat) and a response column.

See Also

cloro,enxofre,laranja,mirtilo,nitrogenio,porco,sensorial,simulate1,simulate2,simulate3,tomate,weather

Examples

data(pomegranate)

porco

dataset: Pig development and production

Description

An experiment whose objective was to study the effect of castration age on the development and production of pigs, evaluating the weight of the piglets. Four treatments were studied: A - castration at 56 days of age; B - castration at 7 days of age; C - castration at 36 days of age; D - whole (not castrated); E - castration at 21 days of age. The Latin square design was used in order to control the variation between litters (lines) and the variation in the initial weight of the piglets (columns), with the experimental portion consisting of a piglet.

Usage

data(porco)

Format

data.frame containing data set

trat categorical vector with treatments
linhas categorical vector with lines
colunas categorical vector with columns
resp Numeric vector

50 PSUBDBC

See Also

cloro,enxofre,laranja,mirtilo,nitrogenio,pomegranate,sensorial,simulate1,simulate2,simulate3,tomate,weather

Examples

```
data(porco)
```

PSUBDBC

Analysis: DBC experiments in split-plot

Description

Analysis: DBC experiments in split-plot

```
PSUBDBC(
  fator1,
  fator2,
  bloco,
  resposta,
  norm = "sw",
homog = "bt",
  alpha.f = 0.05,
  alpha.t = 0.05,
  mcomp = "tukey",
  quali = c(T, T),
  grau = NA,
  transf = 1,
  geom = "bar",
  theme = theme_bw(),
  outdec = ".",
  ylab = "Response",
  xlab = ""
  title = "",
  color = "rainbow",
  color1 = NA,
  textsize = 12,
  dec = 3,
  legend = "Legend",
  errorbar = T,
  addmean = T,
  ylim = NA,
  point = "mean_se",
  fill = "lightblue",
  angle = 0,
  family = "sans",
  posi = "right",
  decimal = "."
```

PSUBDBC 51

Arguments

fator1 Numeric or complex vector with plot levels
fator2 Numeric or complex vector with subplot levels

bloco Numeric or complex vector with blocks

resposta Numeric vector with responses

norm error normality test (*default* is Shapiro-Wilk)
homog homogeneity test of variances (*default* is Bartlett)
alpha.f Level of significance of the F test (*default* is 0.05)
alpha.t Level of significance of the Tukey test (*default* is 0.05)

mcomp Multiple comparison test (Tukey (default), Scott-Knott and

mcomp Multiple comparison test (Tukey (default), Scott-Knott and Duncan)
quali Defines whether the factor is quantitative or qualitative (qualitative)
grau Degree of polynomial in case of quantitative factor (default is 1)
transf Applies data transformation (default is 1; for log consider 0)

geom graph type (columns, boxes or segments)
theme ggplot2 theme (*default* is theme_bw())

ylab Variable response name (Accepts the *expression*() function)

xlab treatments name (Accepts the *expression*() function)

color When the columns are different colors (Set fill-in argument as "trat")

color1 color of groups for regression

textsize font size (*default* is 12)

dec number of cells (default is 3)

legend legend title name

errorbar Plot the standard deviation bar on the graph (In the case of a segment and column

graph) - default is TRUE

addmean Plot the average value on the graph (*default* is TRUE)

ylim y-axis limit

point type for regression ("mean_se", "mean_sd", "mean" or "all")

fill Defines chart color (to generate different colors for different treatments, define

fill = "trat"

angle x-axis scale text rotation family font family (default is sans)

posi legend position

decimal decimal point separation

Note

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet

Author(s)

Gabriel Danilo Shimizu

52 PSUBDIC

Examples

```
library(AgroR)
data(tomate)
attach(tomate)
PSUBDBC(parc, subp, bloco, resp)
```

PSUBDIC

Analysis: DIC experiments in split-plot

Description

Analysis: DIC experiments in split-plot

```
PSUBDIC(
  fator1,
  fator2,
  bloco,
  resposta,
  norm = "sw",
homog = "bt",
  mcomp = "tukey",
  alpha.f = 0.05,
  alpha.t = 0.05,
  quali = c(T, T),
  transf = 1,
  grau = NA,
  geom = "bar",
  theme = theme_bw(),
  outdec = ".",
  ylab = "Response",
  xlab = "",
  fill = "lightblue",
  angle = 0,
  family = "sans",
  color = "rainbow",
  color1 = NA,
  legend = "Legend",
  errorbar = T,
  addmean = T,
  textsize = 12,
  dec = 3,
  ylim = NA,
  posi = "right",
  decimal = ".",
  point = "mean_se"
```

PSUBDIC 53

Arguments

fator1 Numeric or complex vector with plot levels
fator2 Numeric or complex vector with subplot levels

bloco Numeric or complex vector with blocks

resposta Numeric vector with responses

norm error normality test (*default* is Shapiro-Wilk)
homogeneity test of variances (*default* is Bartlett)

mcomp Multiple comparison test (Tukey (default), Scott-Knott and Duncan)

alpha.f Level of significance of the F test (*default* is 0.05)

alpha.t Level of significance of the Tukey test (*default* is 0.05)

quali Defines whether the factor is quantitative or qualitative (qualitative)

transf Applies data transformation (default is 1; for log consider 0) grau Degree of polynomial in case of quantitative factor (*default* is 1)

geom graph type (columns, boxes or segments)
theme ggplot2 theme (default is theme_bw())

ylab Variable response name (Accepts the *expression*() function)

xlab treatments name (Accepts the *expression*() function)

fill Defines chart color (to generate different colors for different treatments, define

fill = "trat")

angle x-axis scale text rotation family font family (default is sans)

color When the columns are different colors (Set fill-in argument as "trat")

color1 color of groups for regression

legend title name

errorbar Plot the standard deviation bar on the graph (In the case of a segment and column

graph) - default is TRUE

addmean Plot the average value on the graph (*default* is TRUE)

textsize font size (*default* is 12)

dec number of cells (default is 3)

ylim y-axis limit
posi legend position

decimal decimal point separation

point type for regression ("mean_se", "mean_sd", "mean" or "all")

Note

The ordering of the graph is according to the sequence in which the factor levels are arranged in the data sheet

Author(s)

Gabriel Danilo Shimizu

54 PSUBSUBDIC

Examples

```
library(AgroR)
data(tomate)
attach(tomate)
PSUBDIC(parc, subp, bloco, resp)
```

PSUBSUBDBC

Analysis: DBC experiments in split-split-plot

Description

Analysis: DBC experiments in split-split-plot

Usage

```
PSUBSUBDBC(fator1, fator2, fator3, bloco, resposta)
```

Arguments

fator1	Vetor numerico ou complexo com os niveis da parcela (Declarar como fator)
fator2	Vetor numerico ou complexo com os niveis da subparcela (Declarar como fator)
fator3	Vetor numerico ou complexo com os niveis da subsubparcela (Declarar como fator)
bloco	Vetor numerico ou complexo com os blocos (Declarar como fator)
resposta	Vetor numerico com as respostas do experimento.

Author(s)

Gabriel Danilo Shimizu

Examples

Falta exemplo

PSUBSUBDIC

Analysis: DIC experiments in split-split-plot

Description

Analysis: DIC experiments in split-split-plot

```
PSUBSUBDIC(fator1, fator2, fator3, bloco, resposta)
```

question 55

Arguments

fator1	Vetor numerico ou complexo com os niveis da parcela (Declarar como fator)
fator2	Vetor numerico ou complexo com os niveis da subparcela (Declarar como fator)
fator3	Vetor numerico ou complexo com os niveis da subsubparcela (Declarar como fator)
bloco	Vetor numerico ou complexo com os blocos (Declarar como fator)
resposta	Vetor numerico com as respostas do experimento.

Author(s)

Gabriel Danilo Shimizu

Examples

Falta exemplo

question	utils: Question	

Description

Choosing the function based on the description of the experiment

Usage

question()

Details

This function allows the user to identify the analyzes that are or are not implemented in the package, according to the response provided by the user.

Value

Returns the possible command to perform the analysis

Author(s)

Gabriel Danilo Shimizu

Examples

library(AgroR)
question()

56 sensorial

radargraph

graph: Circular column chart

Description

Circular column chart of an experiment with a factor of interest or isolated effect of a factor

Usage

```
radargraph(a)
```

Arguments

model

DIC, DBC or DQL object

See Also

```
barplot_positive, sk_graph, plot_TH, correlation, spider_graph, graph, line_plot
```

Examples

```
 \begin{array}{l} trat=rep(c(1,2,"T3",4,5),e=4) \\ dados=c(2,3,4,3.2,4,4.5,5,5.1,8,7,5,7.5,6,7,6.5,6.6,8,8,9.5,8.5) \\ a=DIC(trat,dados, mcomp = "sk") \\ radargraph(a) \end{array}
```

sensorial

dataset: sensorial

Description

set of data from a sensory analysis with six participants in which different combinations (blend) of the grape cultivar bordo and niagara were evaluated. Color (CR), aroma (AR), flavor (SB), body (CP) and global (GB) were evaluated. The data frame presents the averages of the evaluators.

Usage

```
data(sensorial)
```

Format

```
data.frame containing data set

Blend categorical vector with treatment

variable categorical vector with variables

resp Numeric vector
```

See Also

cloro, enxofre, laranja, mirtilo, nitrogenio, pomegranate, porco, simulate1, simulate2, simulate3, tomate, weather

simulate1 57

Examples

```
data(sensorial)
attach(sensorial)
```

simulate1

dataset: Simulated data dict

Description

dataset: Simulated data dict

Usage

```
data(simulate1)
```

Format

data.frame containing a treatment column, a block column, a location column and two response columns

See Also

cloro,enxofre,laranja,mirtilo,nitrogenio,pomegranate,porco,sensorial,simulate2,simulate3,tomate,weather

Examples

```
data(simulate1)
attach(simulate1)
```

simulate2

dataset: simulated data dbct

Description

dataset: simulated data dbct

Usage

```
data(simulate2)
```

Format

data.frame containing a treatment column, a block column, a location column and two response columns

See Also

cloro,enxofre,laranja,mirtilo,nitrogenio,pomegranate,porco,sensorial,simulate1,simulate3,tomate,weather

Examples

```
data(simulate2)
attach(simulate2)
```

sk_graph

simulate3

dataset: simulated data dqlt

Description

dataset: simulated data dqlt

Usage

```
data(simulate3)
```

Format

data.frame containing a treatment column, a block column, a location column and two response columns

See Also

cloro, enxofre, laranja, mirtilo, nitrogenio, pomegranate, porco, sensorial, simulate1, simulate2, tomate, weather

Examples

```
data(simulate3)
attach(simulate3)
```

sk_graph

Graph: Scott-Knott graphics

Description

This is a function of the bar graph for the Scott-Knott test

Usage

```
sk_graph(model, dec = 3, transf = F)
```

Arguments

model

DIC, DBC or DQL object

Author(s)

Gabriel Danilo Shimizu

See Also

```
radargraph, barplot_positive, plot_TH, correlation, spider_graph, graph, line_plot
```

spider_graph 59

Examples

```
 \begin{array}{l} trat=rep(c(1,2,"T3",4,5),e=4) \\ dados=c(2,3,4,3.2,4,4.5,5,5.1,8,7,5,7.5,6,7,6.5,6.6,8,8,9.5,8.5) \\ a=DIC(trat,dados, mcomp = "sk") \\ sk\_graph(a) \end{array}
```

spider_graph

Graph: Spider graph for sensorial analysis

Description

Spider chart or radar chart. Usually used for graphical representation of acceptability in sensory tests

Usage

```
spider_graph(
  resp,
  vari,
  blend,
  legend.title = "",
  xlab = "",
  ylab = "",
  ymin = 0
)
```

Arguments

```
resp vector containing notes
vari vector containing the variables
blend vector containing treatments
legend.title caption title
xlab x axis title
ylab y axis title
ymin minimum value of y
```

Author(s)

Gabriel Danilo Shimizu

See Also

radargraph, sk_graph, plot_TH, correlation, barplot_positive, graph, line_plot

Examples

```
library(AgroR)
data(sensorial)
attach(sensorial)
spider_graph(resp, variable, Blend)
```

60 test_two

tabledesc

descritive: Table descritive analysis

Description

Function for generating a data.frame with averages or other descriptive measures grouped by a categorical variable

Usage

```
tabledesc(data, fun = mean)
```

Arguments

data.frame containing the first column with the categorical variable and the re-

maining response columns

fun function of descriptive statistics (default is mean)

Author(s)

Gabriel Danilo Shimizu

Examples

test_two

Analysis: Test for two samples

Description

Test for two samples (paired and unpaired t test, paired and unpaired Wilcoxon test)

```
test_two(
   trat,
   resp,
   paired = FALSE,
   test = "t",
   alternative = c("two.sided", "less", "greater"),
   conf.level = 0.95,
   var.equal = FALSE
)
```

tomate 61

Arguments

trat categorical vector with the two treatments

resp numeric vector with the response

paired a logical indicating whether you want a paired t-test.

test used (t for test t or w for Wilcoxon test)

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"

(default), "greater" or "less". You can specify just the initial letter.

conf.level confidence level of the interval.

var . equal a logical variable indicating whether to treat the two variances as being equal.

If TRUE then the pooled variance is used to estimate the variance otherwise the Welch (or Satterthwaite) approximation to the degrees of freedom is used.

Details

alternative = "greater" is the alternative that x has a larger mean than y. For the one-sample case: that the mean is positive.

If paired is TRUE then both x and y must be specified and they must be the same length. Missing values are silently removed (in pairs if paired is TRUE). If var.equal is TRUE then the pooled estimate of the variance is used. By default, if var.equal is FALSE then the variance is estimated separately for both groups and the Welch modification to the degrees of freedom is used.

If the input data are effectively constant (compared to the larger of the two means) an error is generated.

Examples

```
resp=rnorm(100,100,5)
trat=rep(c("A","B"),e=50)
test_two(trat,resp)
test_two(trat,resp,paired = T)
```

tomate dataset: tomate dataset

Description

An experiment conducted in a randomized block design in a split plot scheme was developed in order to evaluate the efficiency of bacterial isolates in the development of tomato cultivars. The experiment counted a total of 24 trays; each block (in a total of four blocks), composed of 6 trays, in which each tray contained a treatment (6 isolates). Each tray was seeded with 4 different genotypes, each genotype occupying 28 cells per tray. The trays were randomized inside each block and the genotypes were randomized inside each tray.

```
data(tomate)
```

62 transf

Format

```
data.frame containing data set
parc categorical vector with plot
subp categorical vector with split-plot
bloco categorical vector with block
resp Numeric vector
```

See Also

cloro, enxofre, laranja, mirtilo, nitrogenio, pomegranate, porco, sensorial, simulate1, simulate2, simulate3, weather

Examples

```
data(tomate)
attach(tomate)
```

transf

utils: Data transformation (Box-Cox, 1964)

Description

```
utils: Data transformation (Box-Cox, 1964)
```

Usage

```
transf(
 response,
 fator1,
 fator2 = NA,
 fator3 = NA,
 bloco = NA,
 linha = NA,
 coluna = NA
```

Arguments

response	Numerical vector containing the response of the experiment.
fator1	numeric or complex vector with factor 1 levels
fator2	numeric or complex vector with factor 2 levels
fator3	numeric or complex vector with factor 3 levels
bloco	Numerical or complex vector with blocks
linha	Numerical or complex vector with lines
coluna	Numerical or complex vector with columns

Author(s)

Gabriel Danilo Shimizu

weather 63

Examples

```
data(data1)
attach(data1)
transf(dados,trat)
```

weather

dataset: weather chart

Description

dataset: weather chart

Usage

data(weather)

Format

data.frame containing a treatment column, a block column, a location column and two response columns

See Also

cloro, enxofre, laranja, mirtilo, nitrogenio, pomegranate, porco, sensorial, simulate1, simulate2, simulate3, tomate

Examples

```
data(weather)
attach(weather)
```

Index

* Analise	polynomial, 46
conjdbc,4	polynomial2,47
conjdic, 6	question, 55
conjfat2.dbc,8	transf, 62
conjfat2.dic, 10	* Fatorial
* Conjunta	FAT2DBC, 29
conjdbc,4	FAT2DIC, 32
conjdic, 6	FAT3DBC, 36
conjfat2.dbc,8	FAT3DIC, 37
conjfat2.dic, 10	* Transformacao
* DBC	transf, 62
conjdbc, 4	* croqui
conjdic, 6	croqui, 13
DBC, 13	* datasets
FAT2DBC, 29	cloro, 4
PSUBDBC, 50	enxofre, 29
PSUBDIC, 52	laranja, 38
* DIC	mirtilo, 41
DIC, 20	nitrogenio, 43
FAT2DIC, 32	pomegranate, 49
FAT3DBC, 36	porco, 49
FAT3DIC, 37	sensorial, 56
multidata, 41	simulate1,57
PSUBSUBDBC, 54	simulate2,57
PSUBSUBDIC, 54	simulate3, 58
* DQL	tomate, 61
DQL, 25	weather, 63
* Descritiva	* dbct
desc, 17	DBCT, 16
desc2fat, 18	* dbc
desc3fat, 19	conjfat2.dbc,8
* Experimental	conjfat2.dic, 10
DBC, 13	* despvar
DBCT, 16	dispvar, 24
desc, 17	* dict
desc2fat, 18	DICT, 22
desc3fat, 19	* dqlt
DIC, 20	DQLT, 27
DICT, 22	* experimental
dispvar, <mark>24</mark>	croqui, 13
DQL, 25	* fatorial
DQLT, 27	conjfat2.dbc,8
multidata,41	conjfat2.dic, 10

INDEX 65

* regression polynomial, 46	polynomial2, 47, 47 pomegranate, 4, 29, 39, 41, 44, 49, 50, 56–58,
polynomial2, 47	62, 63
* split-plot	porco, 4, 29, 39, 41, 44, 49, 49, 56–58, 62, 63
PSUBDBC, 50	PSUBDBC, 50 PSUBDIC, 52
barplot_positive, 3, 46, 56, 58, 59	PSUBSUBDBC, 54 PSUBSUBDIC, 54
cloro, 4, 29, 39, 41, 44, 49, 50, 56–58, 62, 63 conjdbc, 4	question, 55
conjdic, 6	question, 33
conjfat2.dbc, 8	radargraph, <i>3</i> , <i>40</i> , <i>46</i> , 56, <i>58</i> , <i>59</i>
conjfat2.dic, 10	
correlation, 3, 12, 40, 46, 56, 58, 59	sensorial, 4, 29, 39, 41, 44, 49, 50, 56, 57,
croqui, 13	58, 62, 63
DBC, 13, 17, 22, 27	simulate1, 4, 29, 39, 41, 44, 49, 50, 56, 57, 57, 58, 62, 63
DBCT, 16, 23, 28	simulate2, 4, 29, 39, 41, 44, 49, 50, 56, 57,
desc, 17	57, 58, 62, 63
desc2fat, 18, 18	simulate3, 4, 29, 39, 41, 44, 49, 50, 56, 57,
desc3fat, 19	58, 62, 63
DIC, 15, 20, 23, 27	sk_graph, 3, 40, 46, 56, 58, 59
DICT, 17, 22, 28	spider_graph, 3, 40, 46, 56, 58, 59
dispvar, 18, 24	
DQL, 15, 22, 25, 28	tabledesc, <i>18</i> , 60
DQLT, 17, 23, 27	test_two, 60
DQL1, 17, 23, 27	tomate, 4, 29, 39, 41, 44, 49, 50, 56–58, 61, 63
enxofre, 4, 29, 39, 41, 44, 49, 50, 56–58, 62,	transf, 62
63	weather, 4, 29, 39, 41, 44, 49, 50, 56–58, 62,
FAT2DBC, 29, 32	63
FAT2DBC. art, 31, 31	
FAT2DIC, 32, 35	
FAT2DIC, 32, 33 FAT2DIC.art, 34, 35	
FAT3DBC, 36	
FAT3DIC, 37	
graph, 3, 40, 46, 56, 58, 59	
laranja, 4, 29, 38, 41, 44, 49, 50, 56–58, 62,	
line_plot, 3, 39, 46, 56, 58, 59	
logistic_LL, 40	
mirtilo, 4, 29, 39, 41, 44, 49, 50, 56–58, 62,	
multidata, 41	
nitrogenio, 4, 29, 39, 41, 43, 49, 50, 56–58, 62, 63	
plot_interaction, 44 plot_TH, 3, 40, 45, 56, 58, 59 polynomial, 46, 48	