

Bowling Ball Laboratory – Guided LT

PSI Physics - Kinematics

Name Da	ate F	Period
---------	-------	--------

<u>Description:</u> The goal of this experiment is to determine the velocity of a bowling ball based on measurements of displacement and time. We will use both an algebraic and a graphical approach to solve this problem.

Materials:

- Bowling ball
- Ramp (bowling ball launcher, car ramp, a board leaned on a chair, etc)
- 5 stop watches
- Meter sticks
- (optional) Masking tape to mark the floor every 3 meters

Procedure:

- 1. Place the ball and ramp in the hallway outside the laboratory and aim it down the center of the hallway..
- 2. Position 5 people with stopwatches along the hallway so that they are 3 m apart The first person should be located 3 m beyond the base of the launcher. Use pieces of tape to mark the locations of the timers and the base of the ramp.
- 3. Designate a sixth person to be in charge of releasing the ball.
- 4. Locate a seventh person beyond the last timer to stop the ball.
- 5. Designate an eighth person to collect data from all timers.
- 6. Three trials should be made from a single height on the ramp. The height should be noted and tape used to mark the launcher in order to get reproducible launches. (You may wish to have a few practice runs before collecting data).
- 7. When the ball reaches the floor all the timers should be started. As the ball passes each person with a stopwatch, they should stop their watch. The data should then be recorded in the below chart.
- 8. Repeat for three trials.

Safety Warning: Be aware of other people in the halls! Allow them to pass.

Bowling Ball Laboratory – Guided LT

PSI Physics - Kinematics

Data Collection:

t Δx	3m	6m	9m	12m	15m
trial 1					
trial 2					
trial 3					

Analysis:

Algebraic Approach

The position of an object traveling at constant velocity (v) is given by:

 $x = x_0 + vt$ defining the initial position as zero ($x_0 = 0$) this becomes

 $x - x_0 = vt$ or $\Delta x = vt$ then solving for v yields

$$v = \frac{\Delta x}{t}$$

To determine if the ball is traveling at a constant velocity, v, we will first assume that it is and then test that hypothesis.

- 1. Calculate the average time, t_{average}, it took the bowling ball to travel the given distance by adding the results from your three trials and dividing by three. Record that result below.
- 2. Calculate the average velocity, v with which the ball traveled that distance by dividing the distance, Δx , by the average time, $t_{average}$. Record that result below.

Δχ	3m	6m	9m	12m	15m
taverage					
V					

Unit 1

Bowling Ball Laboratory –Guided LT PSI Physics – Kinematics

Graphical Approach

- 1. Plot the your data from the last table: distance Δx (on the y-axis) versus time, $t_{average}$ (on the x-axis). Label your axes so that your graph takes up most of the grid and includes (0,0) as one of your points.
- 2. Draw a "best fit" line. A best fit line is a straight line that passes as close as possible to all the points. It does not need to pass through any of the points.
- 3. Determine the slope of the "best fit" line. Show all work determining the slope on the graph below.

Slope = Rise \div Run =	

Bowling Ball Laboratory –Guided LTPSI Physics – Kinematics

C

Conc	clusions:
1.	Look at the values of v you determined in your <i>Algebraic Approach</i> . If the velocity is constant, then your values of v should be the <u>approximately</u> the same at all distances. Do your results for v indicate constant or changing velocity?
2.	In your <i>Graphical Approach</i> you were asked to find the slope of the distance versus time graph. How does this slope compare to your results for v from your algebraic approach?
3.	What would a steeper slope of the position versus time graph indicate?
4.	Did the values of v you calculated in the algebraic approach vary a lot? a. Yes or No? b. If Yes, why do you think your values of v had variations?
	ication: How could you use or change this lab to check the speed of cars on your street? Just list the steps you would take.
6.	The marker posts on a highway are 0.1 miles apart. If a truck is timed taking 5 seconds between posts, how fast is the truck going (in MPH; there are 3600 seconds in an hour)?