

MONASH INFORMATION TECHNOLOGY

FIT9133 Semester 2 2019
Programming Foundations in Python

Week 9: Python Standard Library and External Packages

Chunyang Chen Gavin Kroeger

Update

Assignment 2:

Have released and due date is 18th October, 2019, 11:55pm
 Sunday.

Assignment 1:

- We are going to release the results to you.
- There are some problems with the marks. When its finished I will release.
- If you do not receive it, there are two reasons:
 - You do not attend the interview
 - You are suspected for violating the academic integreity
- The best owl has been selected
 - That's right, it was a competition.

And you can't remember your own name

Module 4 Synopsis

- Module 4 is aimed to introduce you with:
 - Python library and packages
 - Standard packages: Math and Random
 - External packages: NumPy, SciPy, Matplotlib, Pandas
 - Searching algorithms
 - Linear Search
 - Binary Search
 - Sorting algorithms
 - Bubble Sort
 - Selection Sort
 - Insertion Sort

Module 4 Learning Objectives

- Upon completing this module, you should be able to:
 - Utilise a number of useful Python packages for scientific computation and basic data analysis
 - Recognise a suitable algorithm for solving a particular computational problem
 - Contrast different algorithms for searching and sorting

Python Standard Library: Math and Random

Math (math module)

Mathematical functions:

Almost all the return values are of type float

- Power and logarithmic: exp(x), log(x,base), pow(x,y), ...
- Trigonometric: sin(x), cos(x), tan(x), ...
- Hyperbolic: sinh(x), cosh(x), tanh(x), ...
- Mathematical constants:

```
- math.pi (3.141592...)
```

- math.e (2.718281...)
- math.tau (6.283185...)
- Python documentation on math:
 - https://docs.python.org/3/library/math.html

Random (random module)

- Usage:
 - Generate pseudo-random numbers
- Basic function: random()
 - Return a random floating point number in the range [0.0,1.0)
- Random function for "integers":
 - randint(a,b): return a random integer in the range [a,b]

(More on) Random

- Random functions for "sequences":
 - choice (seq): return a random element from the sequence seq
 - shuffle (seq): shuffle the sequence seq in place
 - sample (seq,k): return a k length list of unique elements from the sequence seq
- Python documentation on random:
 - https://docs.python.org/3/library/random.html

Python Standard Library

- Standard libraries
 - Text processing services:
 - string, re, difflib
 - Functional programming modules
 - itertools, operator
 - File and directory access
 - os.path, shutil
 - Data compression and archiving
 - zlib, gzip
 - General operating system service
 - os, io, time, logging
 - ...
- Python documentation on standard library:
 - https://docs.python.org/3/library/

Python External Packages: NumPy, SciPy, Matplotlib, Pandas

NumPy

- numpy:
 - Useful for scientific computing
 - Import statement: import numpy as np
 - "Basis" of many other scientific computing and data analysis packages (e.g. SciPy, Pandas)
- Data structure: n-dimensional (homogeneous) "arrays"
 - 1-dimensional array: an array = np.array([1,2,3])
 - 2-dimensional array:

```
an_array = np.array([[1,2],[3,4]])
an_array = np.array([[1,2,3],[4,5,6],[7,8,9]])
an_array = np.arange(1,10).reshape(3,3)
```

- NumPy reference guide:
 - https://docs.scipy.org/doc/numpy/reference/

SciPy

- scipy:
 - Extension from NumPy
 - Provide a collection of algorithms and functions for scientific computing
- Sub-packages (different scientific domains):
 - Linear algebra
 - Integration and differentiation
 - Statistical distribution
 - Optimisation
 - Clustering
 - Image processing
 - Signal processing
- SciPy reference guide:
 - https://docs.scipy.org/doc/scipy/reference/

Matplotlib

- matplotlib:
 - 2D and 3D plotting library
 - Generate plots, histograms, bar charts, scatterplots, ...
- Simple plotting module: pyplot
 - Import statement: import matplotlib.pyplot as plt
 - Basic commands:

```
plt.plot(), plt.scatter(), plt.bar(), plt.axis(),
plt.show(), ...
```

- Matplotlib documentation:
 - http://matplotlib.org/contents.html

Pandas

- pandas:
 - Useful for data structuring and data analysis
 - Import statement: import pandas as pd
 - (Often) import NumPy together: import numpy as np
- Data structure: "data frames" (tabular-like)
 - Create from a dictionary:

Create from an NumPy array:

(More on) Pandas

- Pandas documentation:
 - http://pandas.pydata.org/pandas-docs/stable/
- 10 Minutes to Pandas:
 - http://pandas.pydata.org/pandas-docs/stable/10min.html
- Pandas Cheat Sheet:
 - https://github.com/pandasdev/pandas/blob/master/doc/cheatsheet/Pandas_Cheat_Sheet.p df

Review Exercise:

Is the following a valid statement for creating a Numpy array?

- A. Yes
- B. No
- C. Not sure

Given the NumPy matrices, which of the following will result in the product of the two matrices as given below?

- A. matrix_1.dot(matrix_2)
- B. matrix_2.dot(matrix_1)
- C. np.dot(matrix_1, matrix_2)
- D. Not sure

What would be the output for the given program?

```
def is_equal(a, b):
    if a == b:
        return True
    else:
        return False

>>> from scipy import vectorize
>>> is_equal_vec = vectorize(is_equal)
>>> list_1 = [1,2,3]
>>> list_2 = [3,2,1]
>>> print(is_equal_vec(list_1,list_2))
```

- A. Some error occurred
- B. [True, False, True]
- C. [False, True, False]
- D. Not sure

Which of the following is a valid statement to produce the given data frame in Pandas?

```
>>> import pandas as pd
>>> nested_dict = ???
>>> df = pd.DataFrame(nested_dict)
```

	red_wine	white_wine
1998	1	3
1999	1	2
2000	2	0

- A. {'white_wine': {1998:1, 1999:1, 2000:2}, 'red_wine': {1998:3, 1999:2, 2000:0}}
- B. {'red_wine': {1998:1, 1999:1, 2000:2}, 'white_wine': {1998:3, 1999:2, 2000:0}}
- C. {'white_wine': {1998:3, 1999:2, 2000:0},
 'red_wine': {1998:1, 1999:1, 2000:2}}
- D. Not sure

Review Question 5

Given the data frame in Question 4 (called df), which of the following can be applied to retrieve the content of the first

row?

	red_wine	white_wine
1998	1	3
1999	1	2
2000	2	0

- A. df[0]
- B. df[0:]
- C. df[0:1]
- D. df.ix[1998]
- E. Not sure

Review Question 6

Given the data frame in Question 4 (called df), which of the following can be applied to add a new column 'table_wine'?

	red_wine	white_wine	table_wine
1998	1	3	1
1999	1	2	1
2000	2	0	1

B.
$$df['table_wine'] = [1,1,1]$$

D. All of the above

