

Laboratorio di Gestione progetto e organizzazione dell'impresa as. 2017-18

[E1] - Economia ed organizzazione aziendale CLASSE 5 IC

Nome	Tipologia assegnata
Cesare Davide	\mathbf{A}
Chiarin Marco	В
Fantinato Filippo	\mathbf{C}
Greggio Nicolò	D
Ladisa Michele	\mathbf{A}
Lodovici Marco	В
Lucchi Manuele	C
Orfei Samuele	D
Quinto Tommaso	\mathbf{A}
Salmaso Gioele	В
Sava' Nuzio Salvatore	C
Vianello Alessandro	D
Zancanaro Marco	\mathbf{A}

Tipologia A

1. Data la funzione di domanda $q = \frac{a - bp^2}{c}$ dove a, b, c sono dei parametri numerici, rappresentare graficamente la funzione assegnando ai parametri i seguenti valori: a = 200, b = 6, c = 10.

In seguito si osservi come varia il comportamento della funzione nei seguenti casi:

- a) mantenendo i valori iniziali per b,c e assegnando ad a i valori di 600, 1200
- b) mantenendo i valori iniziali per a,c e assegnando ad b i valori di 4, 8
- c) mantenendo i valori iniziali per a,b e assegnando ad c i valori di 12, 16
- 2. La domanda e l'offerta di un bene economico vengono espresse dalle relazioni:

$$q_d = 120 - 4p$$
 $q_s = 15p - 18.$

- a) Tramite l'utilizzo del software Matlab/Octave/Excel (o simili) si rappresentino graficamente $q_d(p)$ e $q_s(p)$.
- b) Si determini il prezzo di equilibrio e la quantità domandata ed offerta.
- 3. Si consideri la funzione del costo totale di un bene:

$$C(x) = 0.15x^2 - 30x + 500$$

Mediante l'utilizzo del software Matlab/Octave/Excel (o simili) si calcoli e poi si rappresenti graficamente:

- a) la funzione costo medio unitario $C_u(x) = \left[\frac{C(x)}{x}\right];$
- b) la $C'(x) = \frac{dC_u}{dx}$ rappresentante il costo marginale.
- c) Si determini il punto di fuga ovvero le intersezioni tra $C_u(x)$ e C'(x).

Tutti i grafici e i risultati ottenuti devono essere salvati nel file modello es1_lab_gpoi_cognome_nome.doc (o pdf).

Si consegna al docente il formato elettronico via email *studiofg23@yahoo.it* con oggetto Esercitazione_1_LabGPOI_as2017-18_5IC.

Tipologia B

1. Data la funzione di domanda $q = \frac{a-bp}{c}$ dove a, b, c sono dei parametri numerici, rappresentare graficamente la funzione assegnando ai parametri i seguenti valori: a = 200, b = 4, c = 5.

In seguito si osservi come varia il comportamento della funzione nei seguenti casi:

- a) mantenendo i valori iniziali per b,c e assegnando ad a i valori di 400, 1000
- b) mantenendo i valori iniziali per a,c e assegnando ad b i valori di 2, 6
- c) mantenendo i valori iniziali per a,b e assegnando ad c i valori di 8, 10
- 2. La domanda e l'offerta di un bene economico vengono espresse dalle relazioni:

$$q_d = \frac{12}{p} \qquad q_s = 2p + 5.$$

- a) Tramite l'utilizzo del software Matlab/Octave/Excel (o simili) si rappresentino graficamente $q_d(p)$ e $q_s(p)$.
- b) Si determini il prezzo di equilibrio e la quantità domandata ed offerta.
- 3. Si consideri la funzione del costo totale di un bene:

$$C(x) = x^3 - 50x^2 + 1500x$$

Mediante l'utilizzo del software Matlab/Octave/Excel (o simili) si calcoli e poi si rappresenti graficamente:

- a) la funzione costo medio unitario $C_u(x) = \left[\frac{C(x)}{x}\right];$
- b) la $C'(x) = \frac{dC_u}{dx}$ rappresentante il costo marginale.
- c) Si determini il punto di fuga ovvero le intersezioni tra $C_u(x)$ e C'(x).

Tutti i grafici e i risultati ottenuti devono essere salvati nel file modello es1_lab_gpoi_cognome_nome.doc (o pdf).

Si consegna al docente il formato elettronico via email studiofg23@yahoo.it con oggetto <code>Esercitazione_1_LabGPOI_as2017-18_5IC</code>.

Tipologia C

1. Data la funzione di offerta $q = a + bp^c$ dove a, b, c sono dei parametri numerici, rappresentare graficamente la funzione assegnando ai parametri i seguenti valori: a = 100, b = 6, c = 2.

In seguito si osservi come varia il comportamento della funzione nei seguenti casi:

- a) mantenendo i valori iniziali per b,c e assegnando ad a i valori di 200, 500
- b) mantenendo i valori iniziali per a,c e assegnando ad b i valori di 1, 3
- c) mantenendo i valori iniziali per a,b e assegnando ad c i valori di 1, 3, 4
- 2. La domanda e l'offerta di un bene economico vengono espresse dalle relazioni:

$$q_d = 200 - 14p$$
 $q_s = 5p - 60.$

- a) Tramite l'utilizzo del software Matlab/Octave/Excel (o simili) si rappresentino graficamente $q_d(p)$ e $q_s(p)$.
- b) Si determini il prezzo di equilibrio e la quantità domandata ed offerta.
- 3. Si consideri la funzione del costo totale di un bene:

$$C(x) = x^3 - 30x^2 + 150x + 1000$$

Mediante l'utilizzo del software Matlab/Octave (o simili) si calcoli e poi si rappresenti graficamente:

- a) la funzione costo medio unitario $C_u(x) = \left[\frac{C(x)}{x}\right];$
- b) la $C'(x) = \frac{dC_u}{dx}$ rappresentante il costo marginale.
- c) Si determini il punto di fuga ovvero le intersezioni tra $C_u(x)$ e C'(x).

Tutti i grafici e i risultati ottenuti devono essere salvati nel file modello es1_lab_gpoi_cognome_nome.doc (o pdf).

Si consegna al docente il formato elettronico via email *studiofg23@yahoo.it* con oggetto Esercitazione_1_LabGPOI_as2017-18_5IC.

Tipologia D

1. Data la funzione di offerta $q=\sqrt{c\cdot p-b}$ dove $b,\ c$ sono dei parametri numerici, rappresentare graficamente la funzione assegnando ai parametri i seguenti valori: $b=5,\ c=2.5.$

In seguito si osservi come varia il comportamento della funzione nei seguenti casi:

- a) mantenendo i valori iniziali per c e assegnando a b i valori di 200, 500
- b) mantenendo i valori iniziali per b e assegnando a c i valori di 8, 10
- 2. La domanda e l'offerta di un bene economico vengono espresse dalle relazioni:

$$q_d = \frac{15}{p} \qquad q_s = 2p - 1.$$

- a) Tramite l'utilizzo del software Matlab/Octave/Excel (o simili) si rappresentino graficamente $q_d(p)$ e $q_s(p)$.
- b) Si determini il prezzo di equilibrio e la quantità domandata ed offerta.
- 3. Si consideri la funzione del costo totale di un bene:

$$C(x) = 0.1x^2 + 50x + 600$$

Mediante l'utilizzo del software Matlab/Octave (o simili) si calcoli e poi si rappresenti graficamente:

- a) la funzione costo unitario medio $C_u(x) = \left[\frac{C(x)}{x}\right];$
- b) la $C'(x) = \frac{dC_u}{dx}$ rappresentante il costo marginale.
- c) Si determini il punto di fuga ovvero le intersezioni tra $C_u(x)$ e C'(x).

Tutti i grafici e i risultati ottenuti devono essere salvati nel file modello es1_lab_gpoi_cognome_nome.doc (o pdf).

Si consegna al docente il formato elettronico via email *studiofg23@yahoo.it* con oggetto Esercitazione_1_LabGPOI_as2017-18_5IC.