PROJECT REPORT - TEAM 6 LoanStats - Data Preprocessing

Team Members

Aravind Senthil Kumar
Mohit Kumar Dhiman
Anjani Korkonda Bhattar
Poojith Routhu
Sneha Jyotindrakumar

Contents

1.0	Execut	ive Summary	
2.0		ng	
3.0	key Ob	servations	5
4.0	Data P	reprocessing	6
4.1	Char	nging variable types	ε
4.2	Data	a Cleaning	7
4	.2.1	Missing Values	7
4	.2.2	Resolve inconsistencies	12
4.	.2.3	Outlier Detection & Analysis	13
4.3	Data	a Reduction	27
4	.3.1	Correlation	27
4	.3.2	Principal Component Analysis	28
5.0	Update	ed Data dictionary	30
6.0	Appen	dix	31

1.0 Executive Summary

We started our data pre-processing by obtaining the random sample data set "loan_sample_final" of size 30000 from the main data table "LoanStats modified fall 2018 Group Project 1" where we first checked the data type of all variables in JMP and made necessary corrections.

We then used **Summary table** to find missing data across all fields and found that it constituted less than 5% of the total sample. We also used various combinations of **Missing Data Pattern** and found out that 1089 rows were missing data in 8 fields in the dataset. We further analyzed other missing data in the fields. We then retained, modified or deleted the rows as applicable and saved the new version of the sample as "loan_sample_final_v2".

We tried different methods for modifying the data like contingency tables and distributions for each variable, recoding the necessary variables and formatting them to be used for analysis, and applying formulas for creating new columns.

We tried to take actions on the observed inconsistencies in the data. We also tried to check for various outlier methods like univariate and multivariate outlier analysis to see for the potential outliers. We transformed some variables to best fit the data using Shash transform, Johnson Si transform, etc.

For data reduction we performed bivariate and multivariate correlation analysis between the fields and took necessary actions based on the insights from the analysis for the data preparation.

We also performed the Principal Component Analysis for finding the cumulative percentages of information captured by the principal components. From the observations of PCA we decided to retain 18 Principal Components for modeling purposes for 98% information retain.

Finally, we have two data sets, one with the Principal Components and one with the original continuous fields. We have decided to keep both data sets and try modeling on both data sets to see which provides more accurate results.

2.0 Sampling

- 1. Open the data table LoanStats modified fall 2018 Group Project 1
- 2. Go to Row → Row selection → Select Randomly
- 3. Enter the sample size value as 30000

- 4. When the sample rows are highlighted, go to Rows ightarrow Row selection ightarrow Invert Row Selection
- 5. Go to Rows → Hide and Exclude

- 6. Export this data to excel to remove the headers 'Column1', 'Column2' etc.
- 7. Import it back to JMP and save the sample as loan sample final

3.0 Key Observations

Below are the highlights of our initial observations

- 1. loan_amnt and funded_amnt have a correlation of 0.9997
- 2. There are 1447 rows with no data in any column 4.84% of the total data
- 3. The variables *int_rate*, *emp_length*, *revol_util* are displayed as nominal variables
- 4. *mnths_since_last_deling* has 17,932 missing values
- 5. revol_balance has an extreme outlier value '1746716' in Row 2699
- 6. The following fields have the same set of 1089 values missing
 - a. acc_open_past_24mnths
 - b. bc_open_to_buy
 - c. percent_bc_gt_75
 - d. bc_util
 - e. mort_acc
 - f. total_bal_ex_mort
 - g. num_rev_accts
 - h. total_cur_bal

Note: The above data are just the highlights of our initial observations. For detailed analysis and modifications information, please refer to the <u>Data Preprocessing</u> section

4.0 Data Preprocessing

4.1 Changing variable types

The variables *int_rate*, *emp_length*, *Revol_util* are displayed as nominal variables and need to be changed to continuous variables for further analysis.

emp_length

- a. To change this variable to continuous, the term 'years' has to be removed from the values.
- b. The word 'years' was eliminated using **Recode** and the resultant data was saved in a new column 'emp length2'
- c. By this, the variable emp_length was changed to continuous

2. int_rate

- a. Each value in this variable contains the percentage sign (%)
- b. The symbol was removed by accessing **Columns → Column Info**, changing the Data Type to 'Numeric' and Modeling Type to 'Continuous'

3. revol util

- a. Every value in this variable also contains the percentage sign (%)
- b. Similarly, the symbol was removed by accessing Columns → Column Info, changing the Data Type to 'Numeric' and Modeling Type to 'Continuous'

4.2 Data Cleaning

4.2.1 Missing Values

4.2.1.1 Observations

- 1. Missing data across all fields was identified using **Tables** → **Summary**
- 2. All the fields in the left pane were selected under the Statistics 'N missing'
 - Summary JMP Pro

3. From the obtained Summary table, it was observed that 1447 rows were completely blank and contained no value for any variable.

	member_id	loan_amnt	term	int_rate	installment	grade	emp_title	emp_length	annua
◎ € 29974	•	•		•	•				
◎ € 29975	•	•		•	•				
◎ 6 29976	•	•		•	•				
◎ 👼 29977	•	•		•	•				
◎ 6 29978	•	•		•	•				
◎ € 29979	•	•		•	•				
◎ 6 29980	•	•		•	•				
◎ € 29981	•	•		•	•				
◎ € 29982	•	•		•	•				
◎ € 29983	•	•		•	•				
◎ € 29984	•	•		•	•				
⊚ € 29985	•	•		•	•				
◎ € 29986	•	•		•	•				
◎ € 29987	•	•	•	•	•				
◎ € 29988	•	•		•	•				
◎ € 29989	•	•		•	•				
◎ € 29990	•	•		•	•				
◎ 6 29991	•	•		•	•				
◎ 5 29992 ◎ 5 29993	•	•		•	•				
◎ 59993		•	•		•				
© € 29994	•	•	•						
© € 29995									
© 5 29996 © 5 29997									
© 6 29998			•						
© € 29999			•						
◎ 6 30000		•							
30000			•						

- 4. On further analysis using various combinations of missing data patterns (**Tables** → **Missing Data** Pattern), it was observed that all the below variables were missing data in 1089 common rows:
 - a. acc_open_past_24mnths
 - b. bc_open_to_buy
 - c. percent_bc_gt_75
 - d. bc_util
 - e. mort_acc
 - f. total_bal_ex_mort
 - g. num_rev_accts
 - h. total_cur_bal

4.2.1.2 Deletion

- 1. Based on the above observations, the 1447 rows that were missing data for all the variables were deleted as they provide no information and constitute less than 5% of the total sample. The updated version of the sample was saved as <u>loan sample final v1</u>
- 2. The 1089 rows that were commonly missing the values for the below 8 variables were also deleted. The updated version of the sample was saved as <u>loan_sample_final_v2</u>
- 3. The below table clearly depicts the count of missing values in the
 - a. initial sample
 - b. sample after deleting the 1447 blank rows across all variables and
 - c. sample after deleting the 1089 rows that were commonly missing in 8 variables

	Missing Values				
Variable	Initial Sample	Sample after deleting the 1447 rows with no data	Sample after deleting the 1089 rows commonly missing in the 8 variables listed above in Page 9		
member_id	1447	0	0		
loan_amnt	1447	0	0		
funded_amnt	1447	0	0		
term	1447	0	0		
int_rate	1447	0	0		
installment	1447	0	0		
grade	1447	0	0		
emp_title	3231	1784	1784		
emp_length	1447	0	0		
annual_inc	1447	0	0		
is_inc_v	1455	8	8		
loan_status	1447	0	0		

purpose	1447	0	0
acc_open_past_24mths	2536	1089	0
bc_open_to_buy	2774	1327	238
percent_bc_gt_75	2774	1327	238
bc_util	2792	1345	256
delinq_2yrs	1447	0	0
mths_since_last_delinq	17,932	16,485	16,485
mort_acc	2536	1089	0
open_acc	1447	0	0
total_bal_ex_mort	2536	1089	0
revol_bal	1447	0	0
revol_util	1474	27	27
total_acc	1447	0	0
out_prncp	1447	0	0
total_pymnt_inv	1447	0	0
total_rec_prncp	1447	0	0
total_rec_int	1447	0	0
last_pymnt_amnt	1447	0	0
num_rev_accts	5578	4131	3042
tot_cur_bal	5578	4131	3042
policy_code	1447	0	0

4.2.1.3 Modification

For the remaining missing data, the respective steps taken are provided in the below table.

Field Name	Missing Values	Steps Taken
emp_title	1784	 These are nominal data with no values in common Some values are invalid employee titles Since there is no additional data available from the source, this variable may not be of any use for data analysis or modeling Hence, no modifications were made to this field
is_inc_v	8	 We tried to predict the missing values in this field using the contingency tables by checking with the variables loan_status and purpose No relation could be found between these variables and we replaced them with the nominal value "Unknown" so that we can perform analysis in the future using this nominal variable
bc_open_to_buy	238	 Values missing in same rows as percent_bc_gt_75 We did not impute this field since mean and median were too far and there was no significant correlation with any other field

	000	
percent_bc_gt_75	238	 A new column 'percent_bc_gt_75 2' was added and the median(value=50) was used to fill the missing values using Recode The median is used since the distribution is slightly right skewed Values were missing in same rows as bc_open_to_buy The screenshots and steps of this process are provided below
bc_util	256	 A new column 'bc_util2' was added and the median (value=72.2) was used to fill the missing values using Recode The median is used since distribution is right skewed The screenshots and steps of this process are provided below
mths_since_last_delinq	16,485	 This variable is missing more than 55% of data from the sample No additional data being available from the source, no modifications were made to this variable
revol_util	27	 A new column 'revol_util2' was added and the median (0.604) was used to fill the missing values using Recode The median is used since the distribution is skewed The screenshots and steps of this process are provided below
num_rev_accts	3042	 A new column 'num_rev_accts 2' was added and the median (64) was used to fill the missing values using Recode The median is used since the distribution is right skewed The screenshots and steps of this process are provided below
tot_cur_bal	3042	 Upon analysis, it was observed that if the number of mortgage accounts is 0, total balance except mortgage will be the same as the total current balance Hence, the below formula was applied to get the missing values for total current balance field in the additional column created as 'tot_cur_bal_calc' If mort_acc ==0 => total_bal_ex_mort Else => tot_cur_bal

4.2.2 Resolve inconsistencies

The below inconsistencies were observed in the data set.

- 1. In the variable 'term',
 - a. 1 record marked as 'NA' was replaced with the most occurring value '36 months' using Recode
 - b. The value '45' was changed to '45 months' for data consistency using **Recode**

- 2. In the variable 'policy', there was a record with value '22'. As per data dictionary, the valid value for policy is either 1 or 2. Assuming '22' to be a typo, we replaced it with '2'.
- 3. In the variable 'emp_length 2', the '.' Values were replaced with the mean
 - a. Mean value is obtained from **Analyze** → **Distribution**

b. Replace '.' value by Mean value using Cols→Recode

4.2.3 Outlier Detection & Analysis

We analyzed the distribution on each continuous field to determine the number of outliers. Below are a few fields that we modified because of the presence of too many outliers.

Field Name	Outlier Analysis & Transformation
	Applied continuous fit and Saved Standardized - Gamma
installment	Distribution as new column 'Standardized installments'
	 The screenshots and steps of transformation are provided below
	 Applied continuous fit and Saved SHASH transform as new column
bc_open_to_buy	'SHASH Transform bc_open_to_buy'
	 The screenshots and steps of transformation are provided below
	 Applied continuous fit and Saved Johnson SI transform as new
total_acc	column 'Johnson SI Transform total_acc'
	 The screenshots and steps of transformation are provided below
	 Applied continuous fit and Saved Johnson SI transform as new
total_pymnt_inv	column 'Johnson SI Transform total_pymnt_inv'
	 The screenshots and steps of transformation are provided below
	 Applied continuous fit and Saved Generalized Logarithm transform
total_rec_prncp	as new column 'Generalized Logarithm Transform total_rec_prncp'
	 The screenshots and steps of transformation are provided below
	 Applied continuous fit and Saved Johnson SI transform as new
total_rec_int	column 'Johnson SI Transform total_rec_int'
	 The screenshots and steps of transformation are provided below
	 Applied continuous fit and Saved Johnson SU transform as new
last_pymnt_amnt	column 'Johnson SU Transform last_pymnt_amnt'
	 The screenshots and steps of transformation are provided below

Steps for analyzing outlier and transforming the data to the distribution that fits the best

- 1. Select a column and click on **Analyze** → **Distribution**
- Click the Red arrow and select Continuous Fit → All

3. Save the selected fit

Screenshots for outlier analysis and transformations

1. Acc_open_past_24months: Box-whisker plot

2. bc_open_to_buy: SHASH Transform Box-whisker plot

3. percent_bt_gt_75: Box-whisker plot

4. bc_util: Box-whisker plot

5. open_acc: Johnson SI Transform Box-whisker plot

6. revol_util: Box-whisker plot

7. total_acct: Johnson SI Transform Box-whisker plot

8. total_pymnt_inv: Johnson SI Transform Box-whisker plot

9. Total_rec_prncp: Generalized Logarithm Transform Box-whisker plot

10. total_rec_int: Johnson SI Transform Box-whisker plot

Multivariate Outlier Analysis

To consider the potential outliers with respect to other variables we have done multivariate outlier analysis. We used Mahalanobis Distances to check for the potential outliers.

We included all continuous variables except the variables member_id and policy_code for the analysis.

We can see that the points above the UCL can be considered as potential outliers. But we have to analyze various other parameters to actually eliminate them which depends on other factors and depends on the impact of the variable that we need to predict. So, we haven't excluded any of these from our dataset.

4.3 Data Reduction

4.3.1 Correlation

- The Multivariate Correlation was analyzed for all the continuous variables using
 Analyze → Multivariate Methods → Multivariate.
- The correlation matrix obtained is displayed below

- From the above matrix, it can be observed that loan_amnt and funded_amnt have a correlation of 0.9997
- bc_util and percent_bc_gt_75 have a correlation of 0.8326
- total rec prncp and total pymnt inv have a correlation of 0.9610

 Between loan_amnt and funded_amnt, we decided to hide and exclude the loan amnt column and retain only the funded amnt column

2. Though *percent_bc_gt_75* and *bc_util* have a correlation of 0.8326, we decided to retain both the fields and reduce dimensionality using Principal Component Analysis

4.3.2 Principal Component Analysis

 We performed principle component analysis for the cleaned dataset. The screenshots of the Summary Plots and Eigen Values are provided below.

We excluded the following fields from the analysis

 member_id: This variable is excluded as it doesn't provide any information for building the model since this is unique at row level. (all unique records)

- policy_code: This variable had only one record with value 2 and all other rows are all value 1. So this is considered very insignificant for PCA.
- mths_since_last_delinq: This variable has almost 60% of data missing. So this is excluded from the PCA analysis since this would impact the analysis and cause missing values.

The above analysis shows the cumulative percentages of information captured by the principal components. We can actually go ahead and use these principal components to build our model. Though the question of how many components are to be included is always there and completely depends on the expected accuracy and business needs, we would recommend to use 18 variables as they constitute almost 98% of the available information from all the original continuous variables.

5.0 Updated Data dictionary

In the updated loan_data_dictionary we have updated the column "BrowseNotesFile". In this we have stated whether the variable is included in the dataset or not.

We have also added some extra variables in the dataset and their respective descriptions.

Added variables in the data set:

Field added	Field Description
acc_open_past_24mths 2	Imputed column for acc_open_past_24mths
bc_util 2	Included column for bc_util
emp_length 2	Imputed column for emp_length
num_rev_accts 2	Imputed column for num_rev_accts
percent_bc_gt_75 2	Imputed column for percent_bc_gt_75
revol_util 2	Imputed column for revol_util
tot_cur_bal_calc	Imputed column for tot_cur_bal
SHASH Transform bc_open_to_buy	Transformed variable for bc_open_to_buy
Johnson SI Transform open_acc	Transformed variable for open_acc
Johnson SI Transform total_acc	Transformed varaible for total_acc
Generalized Logarithm Transform	Transformed variable for total_rec_prncp
total_rec_prncp	
Johnson SI Transform total_rec_int	Transformed variable for total_rec_int
Johnson SI Transform total_pymnt_inv	Transformed variable for total_pymnt_inv
Johnson Su Transform last_pymnt_amnt	Transformed variable for last_pymnt_amnt
Std installment	Standerdized column for installment

6.0 Appendix

This section includes trials that did not prove fruitful in our analysis

- 1. We tried to predict the missing values in this field using the contingencies tables by checking with the variables loan_status and the variable purpose
 - a. Is_inc_v & loan status Mosaic plot no relation

b. Is_inc_v & purpose – Mosaic plot – no actual relation

