Final Project

- Any idea is okay, as long as it's in C++ or C#
- Focus should be on delivering a cool project / product
 - Tech stack suggestion: Unity (C#, games), ASP.NET MVC (C#, websites), QT (C#/C++, traditional desktop apps), WPF (C#, traditional desktop apps), WinForms (C#/C++, traditional desktop apps)
- By tomorrow evening, you must:
 - Create a new github repo
 - Create a readme in that repo that outlines your project
 - Submit link to repo on canvas
- Code checkin next Thurs/Friday

Student Observations

- · Balancing time vs space complexity
 - o Really depends on "functional requirements"
- Merge sort: III
 - o Runtime analysis
 - Relies on two fundamental observations:
 - 1. An array of size 1 is already sorted
 - 2. You can merge sorted arrays in linear time

General Mergesort Algorithm

1. Recursively break down a large array until we get to observation #1 (arrays of size 0)

• Shell Sort: IIII

- o Gap values
- O Differentiator between n^2 and an NLogN sort is that at the end of each iteration an n^2 sort will only have moved at most a single value into its appropriate location. NLogN sorts move multiple things into their appropriate location per iteration.

- Shell sort is insertion sort that creates subarrays out of N-spaced elements. As shell sort progresses, N shrinks by some amount (thereby creating less sub-arrays) until N reaches 1. At which point we run normal insertion sort.
- Radix Sort: II
 - o Runtime analysis
 - o Applying with other data

Sort {12, 7, 99, 38, 404}

time	~3
	1

Time - 3			
	1	2	3
0		404, 7	7, 12, 38, 99
1		12	
2	12		
3		38	
4	404		404
5			
6			
7	7		
8	38		
9	99	99	

$$O(N \cdot K)$$
 ? $O(N \cdot RN)$