SHIVAM SHARMA

4802085286| sshar443@asu.edu |github.com/shivam15112003|https://www.linkedin.com/in/ss1511/| https://shivam15112003.github.io/shivam-portfolio/

SUMMARY

Al engineering graduate pursuing an MSc in Robotics & Autonomous Systems (Al). Skilled in ML/DL, computer vision, IoT, gesture interfaces, and cloud-scale Al systems. Actively seeking an internship in robotics software, Al/ML, computer vision, or data science.

EDUCATION

Master of Science in Robotics and Autonomous Systems (AI)

May 2027

Arizona State University, Tempe, AZ

Bachelor of Technology in Artificial Intelligence

Amity University, Noida, Uttar Pradesh, India

Aug 2021- May 2025 9.8/10 GPA

TECHNICAL SKILLS AND CERTIFICATIONS

Programming Languages: Python, SQL, C/C++, JavaScript

Machine Learning & Data:_PyTorch, Transformers (Hugging Face), TensorFlow, scikit-learn, Pandas, NumPy, XGBoost, LightGBM, CatBoost, MLflow, Optuna, Keras, Matplotlib.

Computer Vision & Robotics: OpenCV, ROS2, ONNX, MediaPipe, dlib

NLP: Transformers (Hugging Face), spaCy, Sentence-BERT, NLTK

Certifications: Microsoft AI, Applied AI (IBM/Coursera), Aerial Robotics (University of Pennsylvania), Python for Data Science (NPTEL)

PROFESSIONAL EXPERIENCE

Al Engineer January 2025–June 2025

Salesforce, Gurgaon, Haryana, India - Tech Stack: Python, PyTorch, TensorFlow/Keras, OpenCV, ONNX, MLflow, NumPy, Pandas, scikit-learn, librosa, Matplotlib

- Shipped a **real-time multi-attribute face analytics** service (age band, **emotion**, **attire**, nationality) by fine-tuning **MobileNetV2** and exporting to **ONNX**, enabling **30 FPS** with **<30 ms** per-frame latency and delivering **94–95% macro-F1** on a held-out set.
- Built a driver drowsiness & distraction system by fusing blink-rate, PnP head-pose, and a CNN yawning detector, achieving 0.92 F1 on 20+ hours of dash-cam video and improving safety via real-time alerting.
- Developed a multimodal emotion classifier combining a facial CNN with a BiLSTM over MFCCs (female voice), reaching 91–94% accuracy and accelerating iteration via automated labeling/augmentation (SpecAugment, mixup) with experiment tracking in MLflow.

Data Scientist Intern April 2024–June 2024

Tata Consultancy Services, Noida, Uttar Pradesh ,India -Tech Stack: Python, scikit-learn, Optuna, SMOTE (imblearn), Pandas, NumPy, SHAP, Streamlit, Matplotlib

- Built an early-warning churn score for 500K+ customers using real-world signals; ~25% improvement over the prior approach at identifying likely churners.
- Built a reusable scikit-learn pipeline with target encoding, SMOTE, time-aware cross-validation, and Optuna hyperparameter search; produced a model card with stability/fairness checks.
- Explained drivers with SHAP and delivered a lightweight Streamlit dashboard for Ops; reduced false positives by 18% at fixed recall in back tests.

ACADEMIC PROJECTS

Agentic Robot Control via LLM/VLM (Prompt-to-Action)

Sep 2025 - Dec 2025

- Built agentic AI pipeline turning natural-language prompts into parameterized pick/place/rotate skills (e.g., "pick the small blue block, rotate 90 deg, place on red block"); expanded prompt templates. Tools/Languages: Python, PyTorch, OpenCV, ROS 2/ROS2 (rclpy/rclcpp), inverse kinematics (IK), gripper control.
- Added monocular depth estimation for z-aware scene understanding and kinematic planning; composed perception ->
 planning -> execution with safety checks and recovery using tf2 and ROS 2 nodes.
- Demonstrated precise **grasp/placement** across varied **size/color/rotation** constraints; instrumented runs with **rosbag2** and **ros2 launch**.

Dobot Magician: Agentic Tic-Tac-Toe (Vision + LLM Planning)

Aug 2025 – Sep 2025

- Built computer vision board-state detection: perspective correction, color/edge segmentation, AprilTag corners, camera calibration; commanded Dobot Magician via ROS 2/ROS2 for precise X/O placement. Tools/Languages: OpenCV, AprilTag, ROS 2 (rclcpp), tf2, Python, C++.
- Orchestrated perception -> planning -> actuation with Gemini LLM via function calls (perceive_board, choose_move —
 Minimax + alpha-beta, execute_move); added IK limits, safety bounds, robust recovery for illegal/ambiguous states. Tools:
 ros2 launch, rosbag2, ros2 tracing.
- Achieved ~1.4 s p50 latency and <= 2 mm placement error over 200 games; profiling and logs validated stability.

ROS2 Gesture-to-Robot: Vision-based Tele-operation for Mobile Robots

Jan 2025 - Apr 2025

- Implemented real-time hand/pose interface mapping gestures to TurtleBot navigation and gripper actions; end-to-end latency ~55 ms. Tools/Languages: MediaPipe, OpenCV, ROS 2/ROS2 (Python/C++), Gazebo.
- Reached >= 95% F1 on custom gesture dataset with 2.8 cm mean path error in simulation; added safety gestures and low-pass filtering to reduce jitter.
- Delivered >= 97% gesture-to-action reliability and <= 120 ms safe-stop via ROS 2 safety supervisor (debounce, Kalman smoothing, dead-man open-palm), BehaviorTree.CPP gating of cmd_vel/gripper, and QoS tuning (reliable, sensor_data).