NSW INDEPENDENT TRIAL EXAMS – 2009 MATHEMATICS HSC TRIAL EXAMINATION MARKING GUIDELINES

Question 1

a) 2 marks

Outcomes assessed: - P3, Targeted Performance Band:- 2

Criteria	Marks
Correct evaluation of expression.	1
Correct answer correct to 2 significant figures	1

Sample Answer:-

$$\sqrt{\frac{627}{42+29}} = 2.97169$$
$$= 3.0$$

b) 2 marks

Outcomes assessed: - P3, Targeted Performance Band:- 2

Criteria	Marks
Correct expansion of expression.	1
 Correct values of a and b. 	1

Sample Answer:-

$$(2\sqrt{3}-1)^2 = 12-4\sqrt{3}+1$$

$$= 13-4\sqrt{3}$$

$$a = -4$$

$$b = 13$$

c) 2 marks

Outcomes assessed: - P3, Targeted Performance Band:- 2

Criteria	Marks
 Correct multiplication of both sides of the equation by 15. 	1
Correct solution.	1

Sample Answer:-

$$\frac{2x-1}{3} - \frac{1-3x}{5} = 2$$

$$10x-5-3+9x = 30$$

$$19x = 38$$

$$x = 2$$

d) 2 marks

Outcomes assessed: - H5, Targeted Performance Band: - 3

Criteria	Marks
• Correct integration of sin 2x	1
• Correct answer including c.	1

$$\int (3 + \sin 2x) \, dx = 3x - \frac{1}{2} \cos 2x + c$$

Outcomes assessed: - P3, Targeted Performance Band:- 3

Criteria	Marks
Attempting to solve two inequalities and getting one correct	1
Correct solution.	1

Sample Answer:-

$$|2-3x| > 11$$

 $-11 > 2-3x$
 $3x > 13$
 $x > \frac{13}{3}$
 $2-3x > 11$
 $3x < -9$
 $x < -3$

f) 2 marks

Outcomes assessed: - P3, Targeted Performance Band:- 2

Criteria	Marks
Correct factorization into two factors.	1
Correct factorization into three factors.	1

Sample Answer:-

$$x^{4} - 16 = (x^{2} - 4)(x^{2} + 4)$$
$$= (x - 2)(x + 2)(x^{2} + 4)$$

Question 2 (12 marks)

a) (i) 2 marks

Outcomes assessed: - P7, Targeted Performance Band:- 2

Criteria	Marks
• Correct application of the product rule with correct differentiation of tan x.	1
Correct solution.	1

Sample Answer:-

$$\frac{d}{dx}\left(e^{2x}\tan x\right) = 2e^{2x}\tan x + e^{2x}\sec^2 x$$
$$= e^{2x}\left(2\tan x + \sec^2 x\right)$$

a) (ii) 2 marks

Outcomes assessed: - P7, Targeted Performance Band:- 2

Criteria	Marks
 Correct application of the quotient rule. 	1
Correct solution.	1

$$\frac{d}{dx} \left(\frac{\sin x}{4 - x} \right) = \frac{\left(4 - x \right) \cos x - \sin x \left(-1 \right)}{\left(4 - x \right)^2}$$
$$= \frac{\left(4 - x \right) \cos x + \sin x}{\left(4 - x \right)^2}$$

b) 2 marks

Outcomes assessed: - H3, Targeted Performance Band:- 3

Criteria	Marks
Correct differentiation and gradient of tangent.	1
Correct gradient of normal and equation of normal.	1

Sample Answer:-

$$y = \log_e x - 1$$

$$\frac{dy}{dx} = \frac{1}{2}$$

at
$$x = e$$
, $m_t = \frac{1}{e}$

$$m_n = -e$$
 (Gradient of normal)

equation of normal at point (e, 0)

$$y - 0 = -e(x - e)$$
$$y = e^2 - ex$$

c) (i) 2 marks

Outcomes assessed: - P8, Targeted Performance Band:- 3

<u>Criteria</u>	Marks
Write integral as a power.	1
 Correctly evaluates integral (constant c not necessary) 	1

Sample Answer:-

$$\int \frac{3}{\sqrt{2x-1}} dx = 3 \int (2x-1)^{-\frac{1}{2}} dx$$
$$= 3 \frac{(2x-1)^{\frac{1}{2}}}{\frac{1}{2} \times 2} + c$$
$$= 3\sqrt{2x-1} + c$$

c) (ii) 2 marks

Outcomes assessed: - H5, Targeted Performance Band:- 3

Criteria	Marks
Correct integral	1
Correct evaluation of definite integral	1

$$\int_{\frac{\pi}{12}}^{\frac{\pi}{9}} \sec^2 3x dx = \frac{1}{3} \left[\tan 3x \right]_{\frac{\pi}{12}}^{\frac{\pi}{9}}$$
$$= \frac{1}{3} \left(\tan \frac{\pi}{3} - \tan \frac{\pi}{4} \right)$$
$$= \frac{1}{3} \left(\sqrt{3} - 1 \right)$$

d) 2 marks

Outcomes assessed: - P4, Targeted Performance Band:- 2

Criteria	Marks
Correct rearrangement of trigonometric equation and one correct solution.	1
Two correct solutions.	1

Sample Answer:-

$$2\sin\theta + 1 = 0$$

$$2\sin\theta = -1$$

$$\sin\theta = -\frac{1}{2}$$

$$\theta = \frac{7\pi}{6}, \frac{11\pi}{6}$$

Question 3 (12 marks)

a) (i)

1 mark

Outcomes assessed: - P4, Targeted Performance Band:- 2

, 8	
Criteria	Marks
• Correct length of interval AB.	1
Ommalo A non-	

Sample Answer:-

$$d = \sqrt{(2 - 1)^2 + (4 - 0)^2}$$

$$= \sqrt{3^2 + 4^2}$$

$$= \sqrt{9 + 16}$$

$$= \sqrt{25}$$

$$= 5$$

a) (ii) 1 mark

Outcomes assessed: - P4, Targeted Performance Band:- 2

- State Landing Dung. 2	
Criteria	Marks
Correct equation of circle.	1

$$(x-2)^2 + (y-4)^2 = 25$$

a) (iii) 2 marks

Outcomes assessed: - P4, Targeted Performance Band: - 2

Criteria	Marks
Correct acute angle.	1
Correct answer (ignore accuracy)	1

Sample Answer:-

$$m = \frac{4 - 0}{2 - -1}$$

$$= \frac{4}{3}$$

$$\tan \theta = \frac{4}{3}$$

$$\theta = \tan^{-1} \left(\frac{4}{3}\right)$$

$$\theta = 53^{\circ}$$

$$\angle CAB = 180 - 53$$

=127°

a) (iv) 1 mark

Outcomes assessed: - P4, Targeted Performance Band:- 2

, 1 Botto I of Distriction Date . D		
Criteria	Marks	
Correct midpoint.	1	

Sample Answer:-

Midpoint =
$$\left(\frac{2+-6}{2}, \frac{4+0}{2}\right)$$

= $\left(-2, 2\right)$

a) (v) 1 mark

Outcomes assessed: - P4, Targeted Performance Band: - 2

Criteria	Marks
Correctly shown	1

$$\frac{y-0}{4-0} = \frac{x+6}{2+6}$$

$$\frac{y}{4} = \frac{x+6}{8}$$

$$2y = x+6$$

$$x-2y+6=0$$

a) (vi) 2 marks

Outcomes assessed: - P4, Targeted Performance Band: - 2

Criteria	Marks
 Correct substitution into correct formula.	1
Correct answer	1

Sample Answer:-

$$d = \frac{|(-1)-2(0)+6|}{\sqrt{1+2^2}}$$

$$=\frac{5}{\sqrt{5}}$$

$$=\sqrt{5}$$

a) (vii) 2 marks

Outcomes assessed: - P4, Targeted Performance Band:- 3

Criteria	Marks
Correctly identifies rhombus.	1
Correct reasoning	1

Sample Answer:-

Rhombus.

Diagonals bisect (common midpoint D) and two adjacent sides equal (AB = AC = 5).

b) 2 marks

Outcomes assessed: - P4, H5, Targeted Performance Band:- 3

<u>Criteria</u>	Marks
Correct algebraic/numerical expression involving corresponding sides.	1
Correct answer	1

$$\frac{4}{8} = \frac{6}{4 + CD}$$

$$\frac{1}{3} = \frac{6}{1 + CD}$$

$$4 + CD = 12$$

$$CD = 8$$

Question 4 (12 marks)

a) 3 marks

Outcomes assessed: - H5, Targeted Performance Band:- 3

Criteria	Marks
Correctly generating the series	1
Recognising an AP and correct number of terms	1
Correct solution	1

Sample Answer:-

$$\sum_{x=2}^{20} (3x-5) = 1+4+7+\dots+55$$

$$n = 19$$

$$S_{19} = \frac{19}{2}(1+55)$$

$$= 532$$

b) (i) 2 marks

Outcomes assessed: - P4, Targeted Performance Band: - 3

Criteria	Marks
Correctly completing the square	1
Correctly shown	1

Sample Answer:-

$$4y = x^2 - 2x + 5$$

$$x^2 - 2x = 4y - 5$$

$$x^2 - 2x + 1 = 4y - 4$$

$$(x-1)^2 = 4(y-1)$$

$$\therefore$$
 Vertex = $(1, 1)$

b) (ii) 2 marks

Outcomes assessed: - P4

Targeted Performance Band: - 3

Criteria	Marks
• Correct value of a	1
Correct Focus	1

Sample Answer:-

$$\hat{a} = 1$$

Focus = (1, 2)

c) (i) 1 mark

Outcomes assessed: - H5, Targeted Performance Band:- 2

Criteria	Marks
Correct answer	1

Sample Answer:-

$$l = \theta r$$

$$10 = 15\theta$$

$$\theta = \frac{2}{3}$$

c) (ii) 1 mark

Outcomes assessed: - H5, Targeted Performance Band:- 2

Criteria	Marks
Correct answer for area.	1

Sample Answer:-

$$A = \frac{1}{2}\theta r^2$$
$$= \frac{1}{2} \times \frac{2}{3} \times 15^2$$
$$= 75cm^2$$

d) 3 marks

Outcomes assessed: - H2, H5, Targeted Performance Bands:- 3/4

Criteria Cri	Marks
• Correct conclusion of $\angle ACB = x$	1
• Correct conclusion of two expressions for ∠BDC (must have second expression)	1
Correct answer	1

$$\angle DBC = x$$

$$\angle ABD = 3x$$

$$\angle ABC = 4x$$
 $(\angle DBC + \angle ABD)$

$$\angle ACB = 4x$$
 (base angle of isosceles $\triangle ABC$)

$$\angle BDC = 4x$$
 (base angle of isosceles $\triangle BCD$)

$$\angle BDC = 180 - (x + 4x)$$
 (angle sum of $\triangle BCD$)

$$=180-5x$$

$$4x = 180 - 5x$$
 $(= \angle BDC)$

$$9x = 180$$

$$x = 20^{\circ}$$

Question 5 (12 marks)

a) 2 marks

Outcomes assessed: - H5, Targeted Performance Bands:- 3

	Criteria	Marks
 Correct value of a 		1
 Correct value of n 		1
1 4		

Sample Answer:-

From graph a = 2

Period =
$$\frac{4\pi}{3}$$

Period =
$$\frac{2\pi}{n}$$

$$\frac{2\pi}{n} = \frac{4\pi}{3}$$

$$n=\frac{3}{2}$$

b) (i) 2 marks

Outcomes assessed: - H5, Targeted Performance Bands:- 2

Criteria	Marks
Correct substitution into a correct formula	1
Correct answer	1

Sample Answer:-

$$A = \frac{1}{3} (6 + 2 + 4(10 + 8) + 2 \times 11)$$
$$= \frac{1}{3} \times 102$$
$$= 34$$

b) (ii) 1 marks

Outcomes assessed: - H5, Targeted Performance Band:- 4

, , , , , , , , , , , , , , , , , , , 		7,17,0
	Criteria	Marks
Correct answer		1
1	***************************************	

Sample Answer:-

Distance travelled by the particle in the first 4 seconds of motion.

c) 4 marks

Outcomes assessed: - H5, Targeted Performance Band: - 2/3

Criteria	Marks
• Correct angle at O	1
 Correct use of cosine rule for distance traveled PQ 	1
• Correct answer ms ⁻¹ (Or changing units before use of cosine rule)	1
Correct answer km/h	1

Sample Answer:-

$$\angle O = 73 - 7$$

$$= 66^{\circ}$$

$$d^{2} = 750^{2} + 3000^{2} - 2 \times 750 \times 3000 \cos 66$$

$$= 7732185.106$$

$$d = 2780.680691$$

$$Speed = \frac{2780.680691}{8}$$

$$= 347.5850864m/s$$

$$= 347.5850864 \times 60 \times 60 \div 1000$$

$$= 1251.3063$$

$$= 1251km/h$$

$$d^{2} = 0.75^{2} + 3^{2} - 2 \times 0.75 \times 3 \cos 66$$

$$= 7.732185106$$

$$= 2.780680691$$

$$Speed = \frac{2.780680691}{(8/(60 \times 60))}$$

$$= 1251.306311$$

$$= 1251km/h$$

d) 3 marks

Outcomes assessed: - H3, H5, Targeted Performance Band: - 3/4

Criteria	Marks
 Correct integration of function 	1
• Correct substitution of point to find c	1
• Correct evaluation of c and equation of curve.	1

$$\frac{dy}{dx} = \frac{2x}{x^2 + e}$$

$$y = \ln(x^2 + e) + c$$
Sub the point (0, 2)
$$2 = \ln(e) + c$$

$$c = 1$$

$$y = \ln(x^2 + e) + 1$$

Question 6 (12 marks)

a) (i) 3 marks

Outcomes assessed: - H6, Targeted Performance Band:- 2

<u>Criteria</u>	Marks
• Correct differentiation and evaluation of x values of turning points.	1
Correct turning points.	1
Correct determination of nature of turning points using a recognized method.	1

Sample Answer:-

$$f(x) = x^3 - 3x^2 - 9x + 22$$

$$f'(x) = 3x^2 - 6x - 9$$

Stationary points occur when f'(x) = 0

$$0 = 3x^2 - 6x - 9$$

$$0 = x^2 - 2x - 3$$

$$0 = (x-3)(x+1)$$

$$x = -1, 3$$

$$f(-1) = -1 - 3 + 9 + 22$$

$$= 27$$

$$f(3) = 27 - 27 - 27 + 22$$

$$= -5$$

Turning points (-1, 27), (3, -5)

Test nature of points.

$$f''(x) = 6x - 6$$

Test
$$(-1, 27)$$

$$f''(-1) = -12 < 0$$
 : concave down. $(-1, 27)$ is a maximum

Test
$$(3, -5)$$

$$f''(3) = 12 > 0$$
 : concave up. $(3, -5)$ is a minimum.

a) (ii) 2 marks

Outcomes assessed: - H6, Targeted Performance Band:- 2

 Criteria	Marks
Correct identification of a possible point of inflexion	1
 Correct test and confirmation of point of inflexion	1

Sample Answer:-

$$f''(x) = 6x - 6$$

Possible points of inflexion occur when f''(x) = 0

$$6x - 6 = 0$$

$$6x = 6$$

$$x = 1$$

$$f(1)=1-3-9+22$$

$$=11$$

Possible point of inflexion (1, 11)

Test point of inflexion.

x	-1	1	3
f''(x)	-12	0	12

Change in concavity, \therefore (1, 11) is a point of inflexion.

a) (iii) 2 marks

Outcomes assessed: - H6, Targeted Performance Band: - 3

Criteria	Marks
Correct shape graph	1
Correct graph with all 4 points.	1

a) (iv) 1 marks

Outcomes assessed: - H6, Targeted Performance Band:- 2

Criteria	Marks
Correct answer	1

Sample Answer:-

x > 1

b) 2 marks

Outcomes assessed: - P6, Targeted Performance Band: - 2

Criteria	Marks
• Correct discriminant and assumption $\Delta \ge 0$	1
Correct solution of inequality.	1

Sample Answer:-

For real roots $\Delta \geq 0$.

$$\Delta = k^2 - 4 \times 2 \times 5$$

$$k^2 - 40 \ge 0$$

$$k^2 \ge 40$$

$$k \le -2\sqrt{10} \text{ or } k \ge 2\sqrt{10}$$

c) 2 marks

Outcomes assessed: - H4, Targeted Performance Band: - 4/5

Criteria Cri	Marks
 Correct probability for not surviving. 	1
Correct solution.	1

Sample Answer:-

$$P(\text{Die}) = 1 - 0.35$$

$$= 0.65$$

P(at least one survives) = 1 - P(all die)

$$=1-(0.65)^5$$

$$=0.8839709375$$

Question 7 (12 marks)

a) (i) 2 marks

Outcomes assessed: - H3, H5, Targeted Performance Band:- 3

Criteria Cri	Marks
• Correct differentiation of $\log_e f(x)$	1
 Correct differentiation of cos x and simplification to -tan x 	1

Sample Answer:-

$$\frac{d}{dx}\log_e(\cos x) = \frac{-\sin x}{\cos x}$$
$$= -\tan x$$

a) (ii) 1 marks

Outcomes assessed: - H5, Targeted Performance Band:- 2

• Correct graph	Criteria	Marks
	Correct graph	1

a) (iii) 3 marks

Outcomes assessed: - H3, H8, Targeted Performance Band:- 4

<u>Criteria</u>	Marks
Correct statement for area and correct integration	1
• Correct solution to give $-\log_e\left(\frac{1}{2}\right)$	1
 Correct solution in correct form. log_e (2) 	1

$$A = \int_0^{\frac{\pi}{3}} \tan x \, dx$$

$$= -\left[\ln\left(\cos x\right)\right]_0^{\frac{\pi}{3}}$$

$$= -\left(\ln\left(\cos\frac{\pi}{3}\right) - \ln\left(\cos 0\right)\right)$$

$$= -\left(\ln\left(\frac{1}{2}\right) - \ln 1\right)$$

$$= -\ln\left(\frac{1}{2}\right)$$

$$= \ln 2$$

b) 3 marks

Outcomes assessed: - P5. Targeted Performance Band:- 3

Criteria	Marks
Correct domain	1
• $0 \le y \le 3$ (i.e. ignore 2)	1
Correct range	1

Sample Answer:-

Domain: -

$$9 - x^2 \ge 0$$

$$x^2 \leq 9$$

$$-3 \le x \le 3$$

Range:-

$$0 \le y \le 6$$

c) 3 marks

Outcomes assessed: - H3, H8, Targeted Performance Band: - 4/5

Criteria	Marks
• Correctly changes subject of formula to $x = e^y$	1
Correct expression for volume	1
Correct solution	1

Sample Answer:-

$$x = e^{y}$$

$$V = \pi \int_0^2 e^{2y} dy$$
$$= \frac{\pi}{2} \left[e^{2y} \right]_0^2$$

$$=\frac{\pi}{2}\Big[e^4-e^0\Big]$$

$$= \frac{\pi}{2} \left(e^4 - 1 \right) \text{ units }^3$$

Question 8 (12 marks)

a) (i) 2 marks

Outcomes assessed: - H5

Targeted Performance Band: - 3

<u>Criteria</u>	Marks
 Correct value for r. 	1
Correct solution	1

$$3-6y+12y^2-24y^3....$$

$$r = -2$$

$$\left|-2y\right|<1$$

$$-1 < 2y < 1$$

$$-\frac{1}{2} < y < \frac{1}{2}$$

a) (ii) 2 marks

Outcomes assessed: - H5, Targeted Performance Band:- 3

Criteria Criteria	Marks
• Correct expression for $S_{\infty} = 2\frac{1}{4}$	1
Correct solution	1

Sample Answer:-

$$S_{\infty} = \frac{3}{1 + 2y}$$

$$\frac{9}{4} = \frac{3}{1+2y}$$

$$9+18y=12$$

$$18y = 3$$

$$y = \frac{1}{6}$$

b) (i) 1 marks

Outcomes assessed: - H3, H5, Targeted Performance Band:- 3

Criteria	Marks
Correct solution	1

Sample Answer:-

A = 20

b) (ii) 2 marks

Outcomes assessed: - H3, H5, Targeted Performance Band:- 3

Criteria	Marks
Correct substitution into the formula	1
Correct solution (Ignore decimal places)	1

$$G = 20e^{-0.00005d}$$

$$=20e^{-0.00005\times2000}$$

$$=18.10ms^{-2}$$

b) (iii) 2 marks

Outcomes assessed: - H3, H5, Targeted Performance Band:- 4/5

Criteria	Marks
Correct substitution into the formula	1
• Correct expression $\ln\left(\frac{3}{4}\right) > -0.00005d$	1
Correct solution	1

Sample Answer:-

$$15 > 20e^{-0.00005d}$$

$$\frac{3}{4} > e^{-0.00005d}$$

$$\ln\left(\frac{3}{4}\right) > -0.00005d$$

$$d > \ln\left(\frac{3}{4}\right) \div \left(-0.00005\right)$$

$$d = 5800$$
 metres

b) (iv) 2 marks

Outcomes assessed: - H3, H5, Targeted Performance Band:- 3

Criteria	Marks
Correctly recognizes the use of the derivative	1
Correct solution (ignore units)	1

Sample Answer:-

$$G = 20e^{-0.00005d}$$

$$\frac{dG}{dd} = -0.001e^{-0.00005d}$$

at
$$d = 2000$$

$$\frac{dG}{dd} = -0.001e^{-0.00005 \times 2000}$$

$$=-0.001e^{-0.1}$$

$$=-0.0009 \text{ ms}^{-2} \text{per metre.}$$

At 2000 m, the gravitational pull is decreasing at a rate of 0.0009 ms^{-2} per metre.

Question 9 (12 marks)

2 marks a) (i)

Outcomes assessed: - H4, H5, Targeted Performance Band:- 4/5

	Marks
Correct integration of derivative	1
Correct equation for volume of water	1

Sample Answer:-

$$\frac{dV}{dt} = \frac{1}{8}t - 35$$

$$V = \frac{1}{16}t^2 - 35t + c$$

At
$$t = 0$$
, $V = 4900$

$$4900 = \frac{1}{16} (0)^2 - 35 (0) + c$$

$$c = 4900$$

$$V = \frac{1}{16}t^2 - 35t + 4900$$

(ii) 1 marks

Outcomes assessed: - H4, H5, Targeted Performance Band: - 3

, , , , , , , , , , , , , , , , , , , ,	
Criteria	Marks
Correct solution	1

Sample Answer:-

At
$$t = 30$$

$$V = \frac{1}{16} (30)^2 - 35(30) + 4900$$

$$= 3006.25 \text{ litros}$$

= 3906.25 litres.

a) (iii) 1 marks

Outcomes assessed: - H4, H5, Targeted Performance Band: - 4

Criteria	Marks
Correct solution	1

Sample Answer:-

At
$$t = 16$$

$$\frac{dV}{dt} = \frac{1}{8}(16) - 35$$
$$= -33$$

Water is flowing out of the tank at the rate of 33 litres per minute.

a) (iv) 2 marks

Outcomes assessed: - H4, H5, Targeted Performance Band:- 4/5

Criteria	Marks
• Correct interpretation using either $\frac{dV}{dt} = 0$ or $V = 0$	1
Correct solution for either method.	1

Sample Answer:-

$$\frac{dV}{dt} = 0$$

$$\frac{1}{8}t - 35 = 0$$

$$\frac{1}{8}t = 35$$

$$t = 280 \text{ minutes}$$

$$V = 0$$

$$\frac{1}{16}t^2 - 35t + 4900 = 0$$

$$t = \frac{35 \pm \sqrt{1225 - 1}}{2\left(\frac{1}{16}\right)}$$

$$t = 280 \text{ minutes}$$

b) (i) 1 marks

Outcomes assessed: - H4, H5, Targeted Performance Band: - 5

Criteria	Marks
Correct solution.	1

Sample Answer:-

Jonah deposited =
$$31 \times 400$$

= $$12400$

b) (ii) 3 marks

Outcomes assessed: - H4, H5, Targeted Performance Band: - 4/5

Criteria	Marks
Correctly identifying G.P and 31 terms	1
Correct substitution into correct formula	1
Correct solution.	1

$$S = 400(1.004) + 400(1.004)^{2} + 400(1.004)^{3} + \dots + 400(1.004)^{31}$$
G.P, $a = 400(1.004)$, $r = 1.004$, $n = 31$

$$S = \frac{400(1.004)(1.004^{31} - 1)}{1.004 - 1}$$

$$= 13226.28557$$

$$= $13226$$

b) (iii) 2 marks

Outcomes assessed: - H4, H5, Targeted Performance Band: - 2/3

Criteria	Marks
Correct formula and interest rate.	1
• Correct solution.	1

Sample Answer:-

$$A = P\left(1 + \frac{r}{100}\right)^n$$
, $P = 10000$, $r = 5/4 = 1\frac{1}{4}\%$, $n = 8$

$$A = 10000(1.0125)^8$$

=11044.86101

=\$11045

Question 10 (12 marks)

a) (i) 1 mark

Outcomes assessed: - H4, H5, Targeted Performance Band: - 4

Criteria	Marks
Correct integration of derivative	1

Sample Answer:-

At
$$t = 0$$

$$x = 0 + \frac{16}{1}$$

= 16 metres to the right of O.

a) (ii) 2 marks

Outcomes assessed: - H4, H5, Targeted Performance Band:- 4

Criteria	Marks
Correct velocity equation	1
Correct acceleration equation	1

$$x = t + \frac{16}{t+1}$$

$$= t + 16(t+1)^{-1}$$

$$\dot{x} = 1 - 16(t+1)^{-2}$$

$$= 1 - \frac{16}{(t+1)^2}$$

$$\ddot{x} = 32(t+1)^{-3}$$

$$= \frac{32}{(t+1)^3}$$

a) (iii) 2 marks

Outcomes assessed: - H4, H5, Targeted Performance Band:- 4

Outdown 11, 113, 1 in gereat 1 in 111	
Criteria Cri	Marks
 Correctly equating velocity to 0 and finding time t 	1
Correctly find where particle is at rest.	1

Sample Answer:-

$$\dot{x} = 1 - \frac{16}{\left(t+1\right)^2}$$

$$0 = 1 - \frac{16}{\left(t + 1\right)^2}$$

$$1 = \frac{16}{\left(t+1\right)^2}$$

$$\left(t+1\right)^2 = 16$$

$$t + 1 = \pm 4$$

t = 3 seconds

$$x = t + \frac{16}{t+1}$$

$$x = 3 + \frac{16}{4}$$

$$x = 3 + 4$$

x = 7 metres to the right of the origin.

a) (iv) 1 mark

Outcomes assessed: - H4, H5, Targeted Performance Band:- 4

Tri, Tri, Targette Tollarina Dalla.	
Criteria	Marks
Correct answer	1

Sample Answer:-

As $t \to \infty$

$$\dot{x} = 1 - \frac{16}{\left(\infty + 1\right)^2}$$

$$\dot{x} = 1 \ ms^{-1}$$

b) (i) 1 mark

Outcomes assessed: - H4, H5, Targeted Performance Band:- 4

Substitute described 1211, 115, 2 di Sotod 1 extornida de diditi.			
Criteria	Marks		
Correct answer	1		

Sample Answer:-

Base radius = $\sqrt{r^2 - x^2}$

b) (ii) 2 marks

Outcomes assessed: - H4, H5, Targeted Performance Band:- 4

		Criteria	Marks
	•	Correct height of $2x$	1
	•	Correct formula	1
~			

Sample Answer:-

$$V = \pi (\text{Base Radius})^2 \times \text{height}$$
$$= \pi (r^2 - x^2) \times 2x$$
$$= 2\pi x (r^2 - x^2)$$

b) (iii) 3 marks

Outcomes assessed: - H4, H5, Targeted Performance Band: - 5/6

Criteria	Marks
 Equating derivative to 0 and finding x. 	1
Testing maximum	1
Correct maximum volume.	1

Sample Answer:-

$$V = 2\pi \left(xr^2 - x^3\right)$$

$$\frac{dV}{dx} = 2\pi \left(r^2 - 3x^2\right)$$

Maximum occurs when $\frac{dV}{dx} = 0$

$$0 = 2\pi \left(r^2 - 3x^2\right)$$

$$3x^2 = r^2$$

$$x^2 = \frac{r^2}{3}$$

$$x = \frac{r}{\sqrt{3}}$$

Test for Maximum

$$\frac{d^2V}{dx^2} = -12\pi x$$

at
$$x = \frac{r}{\sqrt{3}}$$

$$\frac{d^2V}{dx^2} = -\frac{12\pi r}{\sqrt{3}} < 0 \quad \therefore \text{ a maximum volume when } x = \frac{r}{\sqrt{3}}$$

Maximum Volume

$$V = 2\pi \cdot \frac{r}{\sqrt{3}} \left(r^2 - \frac{r^2}{3} \right)$$
$$= \frac{2\pi r}{\sqrt{3}} \cdot \frac{2r^2}{3}$$
$$= \frac{4\pi r^3}{3\sqrt{3}}$$
$$= \frac{4\sqrt{3}\pi r^3}{9} \quad \text{cubic units}$$

•