Math 76 Exercises - 7.1 Parametric Equations

- 1. For each pair of parametric equations,
 - (i) Eliminate the parameter to find a Cartesian equation of the curve.
 - (ii) Sketch the graph and label at least three points with both Cartesian coordinates and their corresponding t-values. Draw arrows to indicate the direction of increasing t-values.

$$\chi^2$$
 shift, $(x-2)^2$ compress $\frac{1}{25}(x-2)^2$ to $\frac{1}{25}$

(b)
$$x = \sin t$$

 $y = \cos^2 t$ $(-2\pi \le t \le 2\pi)$
Sin²t + cos²t = 1
 χ^2 + y = 1
 $y = -\chi^2 + 1$

x2 reflect x2 about x-axis	$\frac{\text{Shift}}{\text{up 1}} = \chi^2 + 1$
----------------------------	---

Note the	rt	- 1	3	X	4	1
an	d	0	<u> </u>	y	<	1
for	all	va	lu	es	of	t.

As t increases from

-2 To 2 To 2 To particle traces

the curve back and forth,

two complete circuits.

(c)
$$x = 4\cos t$$

 $y = 5\sin t$ $\left(-\frac{\pi}{2} \le t \le \frac{\pi}{2}\right)$

$$\frac{x}{4} = \cos t$$

$$\frac{y}{5} = \sin t$$

$$\left(\frac{x}{4}\right)^2 + \left(\frac{y}{5}\right)^2 = 1$$

$$\frac{1}{16} \chi^2 + \frac{1}{25} y^2 = 1$$

Ellipse with minor axis [-4,4] and major axis

(d)
$$x = e^t$$

 $y = 4t + 1$

In x Stretch 4 lux shift 4 lux + 1

by 4					
_t -	X	ч			
-2	$\frac{1}{e^2}$	-7			
-1	1 e	-3			
0	1	1			
1	e	5			
2	e	9			

2. Use the graphs of x = f(t) and y = g(t) below to sketch a graph of the parametric curve represented by the equations. Draw arrows to indicate the direction of increasing t-values.

From the graphs, we get the following points:

t	X	y
-3	0	0
•	3	- 2
2	0	≈-1,5
3	1	-1

So the graph of the parametric curve looks like:

