COL774: Machine Learning

Assignment 3 Report

Date: April 7, 2019

Name: Manish Tanwar Entry Number: 2016CS10363

1. Decision Trees:

Part (a):

Train, Test and Validation Accuracy vs No. of Nodes

Figure 1: Accuracy Vs No. of Nodes

Part (c):

Train, Test and Validation Accuracy vs No. of Nodes

Figure 2: Accuracy Vs No. of Nodes

Multisplit Atrributes: Following attributes split multiple times along a branch with their maximum number of split along a path from root to node.

Atrribute	Max No. of
	Split
X1	6
X5	4
X12	4
X13	4
X14	3
X15	3
X16	3
X17	3
X18	4
X19	4
X20	3
X21	3
X22	3
X23	3

Part (d):

Figure 3: Accuracy Vs Depth

Training, Testing and Validation Accuracy

Figure 4: Accuracy Vs Min sample leaf

Training, Testing and Validation Accuracy

Figure 5: Accuracy Vs Min Sample Split

- Best Parameters: max_depth = 4, min_samples_split = 10, min_samples_leaf = 30
- Accuracies Obtained: Test Accuracy: 80.85%, Train Accuracy: 83.20%, Validation Accuracy: 80.52 %

Part (e):

- Best Parameters: max_depth = 50, min_samples_split = 100, min_samples_leaf = 50
- Accuracies Obtained: Test Accuracy: 80.71%, Train Accuracy: 83.18%, Validation Accuracy: 80.45 %

Part (f):

- Best Parameters: n_estimators=120, max_features=2, bootstrap = True
- Accuracies Obtained: Test Accuracy: 79.56%, Train Accuracy: 86.63%, Validation Accuracy: 79.51 %

2. Neural Network:

Implementation Specifications:

- Used Softmax activation function in the output layer.
- Used cross entropy loss as loss function.

Part (a):

One-hot Encoding Dataset Link: https://drive.google.com/drive/folders/1VVqfcNAuw_i5A9KtQhZJur_dFKMND5h1?usp=sharing

Part (c):

• Stopping Criteria:

Stopping criteria is either of these two condition is true:

- 1. $\left|Loss(\theta)^{(t+1)} Loss(\theta)^{(t)}\right| < \epsilon$ (for a sufficiently small ϵ (took $\epsilon = 10^{-7}$)) where $Loss(\theta)^t$ is the loss after t^{th} epoch.
- 2. Constrainted on number of epochs with 1000.

• Accuracy and Trainig Time:

Hiddern Layer	Training Time	Training Accuracy	Testing Accuracy
Units			
5	107 sec	57.24%	52.38%
10	122 sec	58.7%	58.5%
15	107 sec 122 sec 147 sec	58.8%	54%
20	175 sec	96.22%	93.93%
25	175 sec 185 sec	97.72%	95.17%

Training time vs Number of Hidden Layer Units

Training Accuracy and Testing Accuracy vs Number of Hidden Layer Units

Figure 6: Training time vs No. of Hidden Layer Units

Figure 7: Training & Testing Accuracy vs No. of Hidden Layer Units

• Confusion Matrices:

Figure 8: Confusion Matrices for hidden layers units = [5,10,15,20,25]

Part (d): Double Layer:

• Accuracy and Trainig Time:

Hiddern Layer	Training Time	Training Accuracy	Testing Accuracy
Units(for both			
layers)			
5	158 sec	57.14%	55.70%
10	194 sec	79.69%	78.56%
15	$239 \sec$	90.62%	89.38%
20	$294 \mathrm{sec}$	98.37%	96.87%
25	$397 \sec$	99.26%	96.30%

Training time vs Number of Hidden Layer Units 400 300 200 100

Training Accuracy and Testing Accuracy vs Number of Hidden Layer Units

Figure 9: Training time vs No. of Hidden Layer Units

15 Number of Hidden Layer Units 20

Figure 10: Training & Testing Accuracy vs No. of Hidden Layer Units

• Confusion Matrices:

10

0

Figure 11: Confusion Matrices for hidden layers units = [5,10,15,20,25] for both layers

Part (e):

- (i) Single Layer:
 - Accuracy and Trainig Time:

Hiddern Layer	Training Time	Training Accuracy	Testing Accuracy
Units			
5	$6.09 \sec$	54.10%	54.17%
10	$8.7 \mathrm{sec}$	73.02%	71.56%
15	$24 \mathrm{sec}$	79.47%	77.62%
20	31 sec	95.44%	94.5%
25	$20.14 \mathrm{sec}$	95.04%	93.53%

Training Accuracy and Testing Accuracy vs Number of Hidden Layer Units

Figure 12: Training time vs No. of Hidden Layer Units

Figure 13: Training & Testing Accuracy vs No. of Hidden Layer Units

• Confusion Matrices:

Figure 14: Confusion Matrices for hidden layers units = [5,10,15,20,25]