1 Implication

Which of the following implications are always true, regardless of P? Give a counterexample for each false assertion (i.e. come up with a statement P(x, y) that would make the implication false).

- (a) $\forall x \forall y P(x,y) \implies \forall y \forall x P(x,y)$.
- (b) $\forall x \exists y P(x, y) \implies \exists y \forall x P(x, y).$
- (c) $\exists x \forall y P(x,y) \implies \forall y \exists x P(x,y)$.

Solution:

- (a) True. For all can be switched if they are adjacent; since $\forall x, \forall y$ and $\forall y, \forall x$ means for all x and y in our universe.
- (b) False. Let P(x,y) be x < y, and the universe for x and y be the integers. Or let P(x,y) be x = y and the universe be any set with at least two elements. In both cases, the antecedent is true and the consequence is false, thus the entire implication statement is false.
- (c) True. The first statement says that there is an x, say x' where for every y, P(x,y) is true. Thus, one can choose x = x' for the second statement and that statement will be true again for every y. Note: 4c and 4d are not logically equivalent. In fact, the converse of 4d is 4c, which we saw is false.

2 Equivalences with Quantifiers

Evaluate whether the expressions on the left and right sides are equivalent in each part, and briefly justify your answers.

(a)
$$\forall x \left((\exists y \ Q(x,y)) \Rightarrow P(x) \right)$$
 $\forall x \ \exists y \ \left(Q(x,y) \Rightarrow P(x) \right)$ (b) $\neg \exists x \ \forall y \ \left(P(x,y) \Rightarrow \neg Q(x,y) \right)$ $\forall x \ \left((\exists y \ P(x,y)) \land (\exists y \ Q(x,y)) \right)$ $\forall x \ \left(P(x) \Rightarrow (\exists y \ Q(x,y)) \right)$

Solution:

(a) Not equivalent.

Justification: We can rewrite the left side as as $\forall x \ ((\neg(\exists y \ Q(x,y))) \lor P(x))$ and the right side as $\forall x \ \exists y \ (\neg Q(x,y) \lor P(x))$ Applying the negation on the left side of the equivalence

CS 70, Fall 2020, DIS 00

 $(\neg(\exists y Q(x,y)))$ changes the $\exists y$ to $\forall y$, and the two sides are clearly not the same. Another approach to the problem is to consider by linguistic example. Let x and y span the universe of all people, and let Q(x,y) mean "Person x is Person y's offspring", and let P(x) mean "Person x likes tofu". The right side claims that, for all Persons x, there exists some Person y such that either Person y is not Person y's offspring or that Person y likes tofu. The left side claims that, for all Persons y, if there exists a parent of Person y, then Person y likes tofu. Obviously, these are not the same.

(b) Not equivalent.

Justification: Using De Morgan's Law to distribute the negation on the left side yields

$$\forall x \exists y (P(x,y) \land Q(x,y)).$$

But \exists does not distribute over \land . There could exist different values of y such that P(x,y) and Q(x,y) for a given x, but not necessarily the same value.

(c) Equivalent.

Justification: We can rewrite the left side as $\forall x \exists y \ (\neg P(x) \lor Q(x,y))$ and the right side as $\forall x \ (\neg P(x) \lor (\exists y \ Q(x,y)))$. Clearly, the two sides are the same if $\neg P(x)$ is true. If $\neg P(x)$ is false, then the two sides are still the same, because $\forall x \exists y \ (\text{False} \lor Q(x,y)) \equiv \forall x \ (\text{False} \lor Q(x,y))$.

3 XOR

The truth table of XOR (denoted by \oplus) is as follows.

Α	В	$A \oplus B$
F	F	F
F	T	T
Т	F	T
T	T	F

- 1. Express XOR using only (\land, \lor, \neg) and parentheses.
- 2. Does $(A \oplus B)$ imply $(A \vee B)$? Explain briefly.
- 3. Does $(A \lor B)$ imply $(A \oplus B)$? Explain briefly.

Solution:

1. These are all correct:

• $A \oplus B = (A \land \neg B) \lor (\neg A \land B)$ Notice that there are only two instances when $A \oplus B$ is true: (1) when A is true and B is false, or (2) when B is true and A is false. The clause $(A \land \neg B)$ is only true when (1) is, and the clause $(\neg A \land B)$ is only true when (2) is.

CS 70, Fall 2020, DIS 00 2

- $A \oplus B = (A \lor B) \land (\neg A \lor \neg B)$ Another way to think about XOR is that exactly one of A and B needs to be true. This also means exactly one of $\neg A$ and $\neg B$ needs to be true. The clause $(A \lor B)$ tells us *at least* one of A and B needs to be true. In order to ensure that one of A or B is also false, we need the clause $(\neg A \lor \neg B)$ to be satisfied as well.
- $A \oplus B = (A \lor B) \land \neg (A \land B)$ This is the same as the previous, with De Morgan's law applied to equate $(\neg A \lor \neg B)$ to $\neg (A \land B)$.
- 2. Yes. $(A \oplus B) \Longrightarrow (A \land \neg B) \lor (\neg A \land B) \Longrightarrow (A \lor B)$. When $(A \oplus B)$ is true, at least one of A or B is true, which makes $(A \lor B)$ true as well.
- 3. No. When *A* and *B* are both true, then $(A \vee B)$ is true, but $(A \oplus B)$ is false.

4 Truth Tables

Determine whether the following equivalences hold, by writing out truth tables. Clearly state whether or not each pair is equivalent.

(a)
$$P \wedge (Q \vee P) \equiv P \wedge Q$$

(b)
$$(P \lor Q) \land R \equiv (P \land R) \lor (Q \land R)$$

(c)
$$(P \land Q) \lor R \equiv (P \lor R) \land (Q \lor R)$$

Solution:

(a) Not equivalent.

P	Q	$P \wedge (Q \vee P)$	$P \wedge Q$
T	T	T	T
T	F	T	F
F	T	F	F
F	F	F	F

(b) Equivalent.

P	Q	R	$(P \vee Q) \wedge R$	$(P \wedge R) \vee (Q \wedge R)$
T	T	T	T	T
T	T	F	F	F
T	F	T	T	Т
T	F	F	F	F
F	T	T	T	Т
F	T	F	F	F
F	F	T	F	F
F	F	F	F	F

(c) Equivalent.

P	Q	R	$(P \wedge Q) \vee R$	$(P \vee R) \wedge (Q \vee R)$
T	T	T	T	T
T	T	F	T	Т
T	F	T	T	Т
T	F	F	F	F
F	T	T	T	Т
F	T	F	F	F
F	F	T	T	Т
F	F	F	F	F

CS 70, Fall 2020, DIS 00 4