RESILIENCE

REALIZED

Disaster Recovery of Stateful Application in a Multi-Cluster Environment

Orit Wasserman, Red Hat Shyam Ranganathan, Red Hat

Agenda

- Disaster Recovery 101
- Storage Replication
- Multi-cluster Management
- Recovery/Relocate Orchestration
- Demo
- Future work

What is Ceph?

North America 2021

APP

RGW

A web services gateway for object storage, compatible with S3 and Swift HOST/VM

RBD

A reliable, fully-distributed block device with cloud platform integration **CLIENT**

CEPHFS

A distributed file system with POSIX semantics and scale-out metadata management

LIBRADOS

A library allowing apps to directly access RADOS (C, C++, Java, Python, Ruby, PHP)

RADOS

A software-based, reliable, autonomous, distributed object store comprised of self-healing, self-managing, intelligent storage nodes and lightweight monitors

What is Rook?

- Storage made available inside your Kubernetes cluster
- Kubernetes Operators and Custom Resource Definitions (CRDs)
- Automated management
 - Deployment, configuration, upgrades
- Consume like any other K8s storage
 - Storage classes, PVCs, etc.
- Open Source (Apache 2.0)

North America 2021

RESILIENCE REALIZED

Disaster Recovery 101

Why Disaster Recovery?

- Business Continuity in case of a full data center or region failure
- DR site should be isolated from the disaster:
 - High network latency
 - Async replication
- Use HA with Synchronous replication if the network latency allows it

Disaster Recovery and High Availability

RPO and RTO

- Recovery Point Objective (RPO): Amount of acceptable data loss defined from the point of the disaster to the last known backup or recovery point.
- Recovery Time Objective (RTO) Amount of time that an application can be down before it significantly impacts the business.

An Ideal DR Solution

- Low RPO (minutes)
 - Admin triggered DR is usually preferred to accept data loss
- Low RTO (minutes)
- Single pane of glass to orchestrate failover and failback

Example: Rook+Ceph Regional DR

- Standby DR site: Application/Namespace is active on primary site and standby at DR site.
- Two way: Each K8s cluster can be active and standby in the same time
- Asynchronous Persistent Volume Replication
 - Based on Ceph RBD snapshot based mirroring

Regional DR Goal - Recover

Regional DR Goal - Relocate

North America 2021

RESILIENCE REALIZED

Storage Replication

Backups as Replication

Why backups are insufficient

- High RPO and RTO for data
 - Backup frequency is typically in hours, hence RPO is higher
 - Restore before use is required, hence RTO is higher
 - NOTE: It is feasible that a live restored volume is always in place reducing RTO
- Transfer efficiency of data
 - Full data backups are less efficient, but incremental backups increase RTO
 - Entire volume data needs to be examined for detecting incremental changes to backup
 - NOTE: Enhancements like Change Block Tracking can alleviate these concerns
- K8s resources (or cluster data) backups are point-in-time
 - Potentially better served from a declarative source (gitops), providing 0 RPO

Storage System Based Replication

- Storage systems provide mirror/replication features that:
 - Typically leverage periodic snapshots delta transfers between storage instances, providing lower RPO
 - Separate storage and user IO pathways for better transfer efficiency
 - Replicated copies are (near) instantly available, reducing RTO for storage components
- Drawbacks
 - Are NOT storage system agnostic
- Gaps
 - Need additional APIs to manage storage assisted replication in k8s

Storage Replication Management APIs

k8s cluster East k8s cluster West Storage system Storage system Replication West East Management

- Storage systems setup to replicate volumes across fault domains (East-West regions)
- Missing replication management APIs ?
 - Enable storage vendor management for per volume replication

Storage Replication Management APIs

- Add CSI API extensions for VolumeReplication resource management
 - Create/Delete (Enable/Disable replication)
 - spec.replicationState [Primary|Secondary]
 - spec.dataSource points to a PVC requiring replication
 - CSI spec extensions for storage vendor specific actions
- CSI sidecar for reconciliation of VolumeReplication objects

```
apiVersion: replication.storage.openshift.io/vlalpha1
kind: VolumeReplication
metadata:
   name: volumereplication-sample
   namespace: default
spec:
   volumeReplicationClass: volumereplicationclass-sample
   replicationState: primary
   dataSource:
      kind: PersistentVolumeClaim
      name: myPersistentVolumeClaim # should be in same
namespace as VolumeReplication
```

Storage Replication Management APIs

- Enhance capabilities using
 VolumeReplicationClass resource
 - Secrets
 - Replication schedules
 - Vendor specific parameters

```
apiVersion:
replication.storage.openshift.io/vlalpha1
kind: VolumeReplicationClass
metadata:
   name: volumereplicationclass-sample
spec:
   provisioner: example.provisioner.io
   parameters:

replication.storage.openshift.io/replication-secret
-name: secret-name

replication.storage.openshift.io/replication-secret
-namespace: secret-namespace
```

Recovery Management

North America 2021

Recover/Failover:

- Create a new VolumeReplication CR in cluster West
- Set it as primary
- Use the same dataSource as replicationState
- Changes will be detected by the sidecar
- o GRPC to pass information to the driver

Relocate/Failback:

- Update replicationState to secondary in cluster West
- Update replication State to primary in cluster East after it is recovered.
- Changes will be detected by the sidecar
- GRPC to pass information to the driver

Dynamic Provisioning Conundrum

- Initial deployment
 - User created PVCs are provisioned dynamically
- Recover/Relocate:
 - PVCs need to reattach to the replicated volume
 - Dynamic provisioning, without PVC
 spec.dataSource hints would not work!?
 - Orchestration/changes required:
 - Shift to static provisioning post initial deployment
 - PV bound to PVC is recovered on peer clusters
 - Assumption is that PV
 spec.csi.volumeHandle is reusable
 across storage systems
 - Ordering resource creation operations as in (1) (2) and then (3)

North America 2021

RESILIENCE REALIZED

Multi-cluster Management

Cross Cluster Actions

DR requires managing multiple k8s clusters:

- Cluster configuration
 - Cluster configuration equivalence
 - Cluster custom resources and operators equivalence
 - Storage setup (replication setup across homogeneous storage systems)
- Application Recovery/Relocation
 - User access to congruent namespaces
 - Declarative copy of application manifests
 - Rerouting inbound application traffic across clusters (GTM (re)configuration)
- Health monitoring for alerting
- Recovery/Relocation orchestration

Open Cluster Management - 101

"Open Cluster Management is a community-driven project focused on multi-cluster and multicloud scenarios for Kubernetes apps."

- Provides:
 - Cluster registry, Work distribution, Content placement, Vendor neutral APIs
- Leveraged for:
 - Cluster configuration
 - Application lifecycle management
 - Application manifests from a declarative OCM Channel CRD (git/helm/object store)
 - Application placement using OCM PlacementRule CRDs, which determine cluster(s) to deploy the application to
- Gaps for DR:
 - DR orchestration
 - GTM (re)configuration

North America 2021

RESILIENCE REALIZED

Recovery/Relocate Orchestration

Ensuing User Complexity: Deploy

Ensuing User Complexity: Recover

Ensuing User Complexity: Relocate

DROrchestrator: Ramen

Ramen

- K8s orchestrator that provides: "Instant Cloud-Native Workload Recovery and Relocation Across Kubernetes Clusters"
- Orchestrates workload placement and PVC replication across k8s clusters:
 - Enhances OCM PlacementRule scheduling for DR workflows
 - Groups PVCs in an application and orchestrates their replication, leveraging
 VolumeReplication

Ramen: DRPolicy API

North America 2021

DRPolicy is a cluster scoped policy object that:

- Contains a pair of clusters that are storage DR peers in spec.drClusterSet
- Defines a replication schedule (RPO) using spec.schedulingInterval
- Optionally enables choosing a VolumeReplicationClass matching a PVCs CSI provider name, by a label selector using spec.replicationClassSelector

```
apiVersion: ramendr.openshift.io/vlalphal
kind: DRPolicy
metadata:
    name: drpolicy-sample
spec:
    schedulingInterval: "1h" # hourly
    replicationClassSelector:
        matchLabels:
        class: ramen
    drClusterSet:
        - name: east
        s3ProfileName: s3-profile-of-east
        - name: west
        s3ProfileName: s3-profile-of-west
```

Ramen: DRPlacementControl API

North America 2021

DRPlacementControl is a namespaced resource per application, that:

- Reconciles OCM PlacementRule referenced by spec.placementRef
- Placement and schedule for application is controlled by referenced spec.drPolicyRef
- Auto protects PVCs matching spec.pvcSelector
- Provides actions to:
 - Failover to the *spec.failoverCluster*
 - Relocate to the spec.preferredCluster

```
apiVersion: ramendr.openshift.io/vlalpha1
kind: DRPlacementControl
spec:
 preferredCluster: "east" (optional)
 drPolicyRef:
   kind: PlacementRule
   matchLabels:
failoverCluster: [cluster-name] (optional)
action: [Failover|Relocate] (optional)
```

Ramen: Operator Deployments

- Operator at the OCM Hub (multi-cluster control plane)
 - Reconciles DRPlacementControl (DRPC)
 - Orchestrates VolumeReplicationGroup (VRG) resource on managed clusters ("east"/"west")
- Operator at the OCM managed clusters
 - Reconciles VolumeReplicationGroup (VRG) resource
 - Ensure in-cluster VR/PVC states are orchestrated as required

North America 2021

RESILIENCE REALIZED

Demo

North America 2021

RESILIENCE REALIZED

Future Work

Future work and adaptations

- MetroDR use cases
 - Assumption is that storage replication is synchronous (no(?) VolumeReplication required)
 - Requires application orchestration for recovery and relocation on k8s cluster loss
 - Will potentially require storage fencing
- Leverage <u>AnyVolumeDataSource</u> feature gate, to use VolumeReplication as a data source for PVCs
- Improve replication consistency
 - Currently storage assisted replication is only crash consistent
 - Adapt to WIP <u>application consistent snapshots</u> when available

Future work and adaptations...

- Improve volume grouping and replication consistency across a group
 - Applications using multiple PVCs may require that these are point in time consistent
 - Adapt to WIP <u>VolumeGroups</u> proposal when available
- Move towards more storage agnostic data replication schemes
 - Proposals like "<u>Change Block Tracking</u>" can enable shorter RPOs for replication across storage vendors
 - Provide pluggability to add any replication scheme other than VolumeReplication management

Links and References

- Rook
- Ceph
- Open cluster management (OCM)
- VolumeReplication CSI extension
- Ramen orchestrator

North America 2021

RESILIENCE REALIZED

Thank you!