Examen de recuperación de SIN: Test del bloque 2 (1,75 puntos)

ETSINF, Universitat Politècnica de València, 1 de febrero de 2024

Grupo, apellidos y nombre: 1,

Marca cada recuadro con una única opción. Puntuación: $\max(0, (\text{aciertos} - \text{errores}/3) \cdot 1, 75/6)$.

1 A Dada la siguiente tabla de probabilidades:

В	0	0	1	1
C	0	1	0	1
$P(A=0\mid B,C)$	0.921	0.900	0.378	0.273
P(B,C)	0.322	0.412	0.108	0.157

¿Cuál es el valor de $P(A=1,B=1 \mid C=1)$? $P(A=1,B=1 \mid C=1) = 0.201$

A)
$$P(A=1, B=1 \mid C=1) \le 0.25$$

B)
$$0.25 < P(A=1, B=1 \mid C=1) \le 0.50$$

C)
$$0.50 < P(A=1, B=1 \mid C=1) \le 0.75$$

D)
$$0.75 < P(A=1, B=1 \mid C=1) \le 1.00$$

2 B Dado el clasificador en dos clases definido por su frontera y regiones de decisión de la figura de la derecha, ¿cuál de los siguientes vectores de pesos (en notación homogénea) define un clasificador equivalente al dado?

A)
$$\mathbf{w}_1 = (-1, 0, 0)^t$$
 y $\mathbf{w}_2 = (0, 0, -2)^t$.

B)
$$\mathbf{w}_1 = (1,0,0)^t$$
 $\mathbf{w}_2 = (0,0,2)^t$.

C)
$$\mathbf{w}_1 = (0,0,2)^t$$
 $\mathbf{w}_2 = (1,0,0)^t$.

- D) Todos los vectores de pesos anteriores definen clasificadores equivalentes.
- 3 D Supóngase que estamos aplicando el algoritmo Perceptrón, con factor de aprendizaje $\alpha=1$ y margen b=0.1, a un conjunto de 4 muestras bidimensionales de aprendizaje para un problema de 4 clases, c=1,2,3,4. En un momento dado de la ejecución del algoritmo se han obtenido los vectores de pesos $\mathbf{w}_1=(-2,-3,-9)^t$, $\mathbf{w}_2=(-2,-5,-5)^t$, $\mathbf{w}_3=(-2,-7,-11)^t$, $\mathbf{w}_4=(-2,-3,-5)^t$. Suponiendo que a continuación se va a procesar la muestra $(\mathbf{x},c)=((3,4)^t,3)$, ¿cuántos vectores de pesos se modificarán?
 - A) 0
 - B) 2
 - C) 3
 - D) 4

- 4 C La probabilidad de error de un clasificador se estima que es del 7%. Determina cuál es el número mínimo de muestras de test necesario, M, para conseguir que el intervalo de confianza al 95% de dicho error no supere el $\pm 1\%$; esto es, I = [6%, 8%]: M = 2501
 - A) M < 1000.
 - B) $1000 \le M < 2000$.
 - C) $2000 \le M < 3000$.
 - D) $M \ge 3000$.
- 5 A Dado el siguiente conjunto de datos utilizado para entrenar un árbol de clasificación con 5 muestras bidimensionales que pertenecen a 2 clases:

n	1	2	3	4	5
x_{n1}	2	3	5	5	3
x_{n2}	1	1	1	5	4
c_n	1	2	2	2	2

- ξ Cuántas particiones diferentes se podrían generar en el nodo raíz? No consideres aquellas particiones en que todos los datos se asignan al mismo nodo hijo.
- A) 4
- B) 5
- C) 2
- D) 3
- $6\,\overline{\mathrm{A}}\,$ La figura siguiente muestra una partición de 6 puntos bidimensionales en dos clústers, \bullet y \circ :

- ¿Qué punto al ser transferido de clúster minimiza la variación de la suma de errores cuadráticos (SEC), $\Delta J = J J'$ (SEC tras el intercambio menos SEC antes del intercambio)? $\Delta J = 7.2 13.3 = -6.1$
- A) $(3,0)^t$
- B) $(6,2)^t$
- C) $(4,0)^t$
- D) $(2,2)^t$

Examen de recuperación de SIN: Problema del bloque 2 (2 puntos)

ETSINF, Universitat Politècnica de València, 1 de febrero de 2024

Grupo, apellidos y nombre: 1,

Problema sobre regresión logística

La siguiente tabla presenta por filas un conjunto de 2 muestras de entrenamiento de 2 dimensiones procedentes de 2 clases:

Adicionalmente, la siguiente tabla representa una matriz de pesos iniciales con los pesos de cada clase dispuestos por columnas:

\mathbf{w}_1	\mathbf{w}_2
0.	0.
0.	0.
0.25	-0.25

Se pide:

- 1. (0.5 puntos) Calcula el vector de logits asociado a cada muestra de entrenamiento.
- 2. (0.25 puntos) Aplica la función softmax al vector de logits de cada muestra de entrenamiento.
- 3. (0.25 puntos) Clasifica todas las muestras de entrenamiento. En caso de empate, elige cualquier clase.
- 4. (0.5 puntos) Calcula el gradiente de la función NLL en el punto de la matriz de pesos iniciales.
- 5. (0.5 puntos) Actualiza la matriz de pesos iniciales aplicando descenso por gradiente con factor de aprendizaje $\eta = 1.0$.

Solución:

1. Vector de logits para cada muestra de entrenamiento:

n	a_{n1}	a_{n2}
1	0.25	-0.25
2	0.	0.

2. Aplicación de la función softmax:

$$\begin{array}{c|ccc} n & \mu_{n1} & \mu_{n2} \\ \hline 1 & 0.62 & 0.38 \\ 2 & 0.5 & 0.5 \\ \end{array}$$

3. Clasificación de cada muestra:

$$\begin{array}{c|c} n & \hat{c}(x_n) \\ \hline 1 & 1 \\ 2 & 2 \end{array}$$

4. Gradiente:

5. Matriz de pesos actualizada:

$$\begin{array}{c|cc} \mathbf{w}_1 & \mathbf{w}_2 \\ \hline -0.06 & 0.06 \\ 0. & 0. \\ 0.44 & -0.44 \\ \end{array}$$