Descriptive Statistics

Population:
$$\mu = \frac{1}{N} \sum X_i$$
 $\sigma^2 = \frac{1}{N} \sum (X_i - \mu)^2$ $\sigma = \sqrt{\sigma^2}$

Sample:
$$\bar{x} = \frac{1}{N} \sum X_i$$
 $s^2 = \frac{1}{n-1} \sum (X_i - \bar{x})^2$ $s = \sqrt{s^2}$

Coefficient of Variation:
$$c_v = \frac{\sigma}{\mu} \text{ or } \frac{s}{\bar{x}}$$

Normal Distribution/Sampling

If X is normal with mean μ and std dev σ , then $Z = \frac{X - \mu}{\sigma}$. If $n \ge 30$, then $\overline{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$.

Other Distributions

	Mean	Variance
Uniform:	$\mu = \frac{a+b}{2}$	$\sigma^2 = \frac{(b-a)^2}{12}$
Exponential:	$\mu = \frac{1}{\lambda}$	$\sigma^2 = \frac{1}{\lambda^2}$
Poisson:	$\mu = \lambda$	$\sigma^2 = \lambda$

Confidence Intervals/Sample Size Determination

Means:
$$n \ge 30$$
: $\bar{X} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \text{ or } \bar{X} \pm Z_{\alpha/2} \frac{s}{\sqrt{n}}$

$$n < 30: \quad \bar{X} \pm t_{\alpha/2} \frac{\sigma}{\sqrt{n}} \text{ or } \bar{X} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}, df = n - 1$$

$$n = \left(\frac{Z_{\alpha/2} \times \sigma}{E}\right)^2$$

Proportions:
$$\hat{p} \pm Z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$
,
$$n = p(1-p) \left(\frac{Z_{\alpha/2}}{E}\right)^2$$

Confidence Interval

Linear Regression

$$\hat{Y} = b_0 + b_1 X$$
 Error: $e_i = Y_i - \hat{Y}_i$

PI (estimate): $\hat{Y} \pm t_{0.025,df} RMSE$

CI (estimate): $\hat{Y} \pm t_{0.025,df} \frac{RMSE}{\sqrt{n}}$

Confidence Interval (β_i): $b_j \pm t_{0.025,dfError} s_{b_i}$

Discrete Distributions

$$\mu = E(X) = \sum_{X} X \cdot P(X)$$

$$\sigma^{2} = Var(X) = \sum_{X} (X - \mu)^{2} \cdot P(X)$$

$$\sigma = SD(X) = \sqrt{Var(X)}$$

Hypothesis Testing

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$
 or $Z = \frac{\bar{X} - \mu}{s / \sqrt{n}}$

$$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

$$t = \frac{\bar{X} - \mu}{s / \sqrt{n}} \text{ with } df = n - 1$$

	Z-values	
α	One-sided	Two-sided
0.10	1.28	1.645
0.05	1.645	1.96
0.01	2.33	2.575

Two-Sample Hypothesis Testing

Independent:
$$df = n_1 + n_2 - 2$$

$$t = \frac{\bar{x}_1 - \bar{x}_2 - D_0}{se(\bar{x}_1 - \bar{x}_2)}, \text{ where}$$

$$se(\bar{x}_1 - \bar{x}_2) = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Proportions

$$Z = \frac{\hat{p}_1 - \hat{p}_2}{se(\hat{p}_1 - \hat{p}_2)}, \text{ where}$$

$$se(\hat{p}_1 - \hat{p}_2) = \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

Paired:
$$df = n - 1$$
, $t = \frac{\bar{d} - D_0}{s_d / \sqrt{n}}$