Multiparty Schnorr Signatures

Omer Shlomovits

July 8, 2018

1 Simple Schnorr Signature

In this section we describe a multiparty Schnorr signature scheme for elliptic curves based on the work of Boneh et al. [1] section 5.1. The same protocol can be found also in the MuSig paper [2]. We first start by presenting Schnorr signature algorithm:

The public parameters are (\mathbb{G}, g, q) where \mathbb{G} is a group defined by elliptic curve, q is the order of the group and g is the generator of the group. To generate a key pair Alice chooses a private signing key x from the allowed set and the corresponding public key will be $Y = x \cdot G$. To sign a message m Alice chooses a random number k from the allowed set \mathbb{Z}_q . Let $R = k \cdot G$, c = H(Y||R||m) where H is a cryptographic hash function $H: \{0,1\}^* \to \mathbb{Z}_q$. Alice calculates s = k + xc and outputs the signature (R,s). Validation is checked simply by:

$$s \cdot G = R + c \cdot Y \tag{1}$$

This is a key-prefixed variant of the scheme where the public key is hashed together with R, m.

2 Multiparty Schnorr Signature

Multiparty Schnorr signature scheme, also called multi-signature scheme is a set of protocols between n parties such that they can jointly sign a message. The specific protocol we describe uses hash functions $H_0, H_1, H_2 : \{0, 1\}^* \to \mathbb{Z}_q$. These hash functions can be constructed from a single one using proper domain separation The parameters are the same as in the case of single signer signature: (\mathbb{G}, q, G) .

Key Generation: Each party chooses x and computes $Y = x \cdot G$.

Key Aggregation: Compute $apk \leftarrow \prod_{i=1}^n H_1(Y_i, \{Y_1, ..., Y_n\}) \cdot Y_i$.

Signing: Signing is an interactive three round protocol:

Round 1: This is a commitment round. Party i chooses r_i at random and compute

 $R_i = r_i \cdot G$. Let $t_i \leftarrow H_2(R_i)$. Send t_i to all other signers corresponding to $Y_1, ..., Y_n$ and wait to receive $t_j = H_2(R_i)$ from all other signers $j \neq i$.

Round 2: Send R_i to all other signers corresponding to $Y_i, ..., Y_n$ and wait to receive R_j from all other signers $j \neq i$. Check that $t_j = H_2(R_j)$ for all j = 1, ..., n. Round 3: each party:

- 1. Compute apk Key Aggregation with public keys $Y_i, ... Y_n$.
- 2. Compute $a_i = H_1(Y_i, \{Y_1, ..., Y_n\})$.
- 3. Compute $\hat{R} \leftarrow \prod_{j=1}^{n} R_j$ and $c \leftarrow H_0(\hat{R}, apk, m)$.
- 4. Compute $s_i \leftarrow r_i + c \cdot x_i \cdot a_i \mod q$.
- 5. Send s_i to all other signers and wait to receive s_j from other signers $j \neq i$.
- 6. Compute $s \leftarrow \sum_{j=1}^{n} s_j$ and output (\hat{R}, s) as the final signature

Validation is the same as in simple Schnorr (eq. 1).

Conventions and preferred encodings of points and scalars can be found in [3]

References

- [1] Compact Multi-Signatures for Smaller Blockchains, https://eprint.iacr.org/2018/483.pdf. Visited June 6th 2018.
- [2] Simple Schnorr Multi-Signatures with Applications to Bitcoin, https://eprint.iacr.org/2018/068.pdf. Visited July 7th 2018.
- [3] https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki