una distanza D=1 m dal bersaglio.

a. Determinare l'energia minima che i π^+ devono possedere per dar luogo alla reazione.

b. Determinare il raggio minimo R_{min} del rivelatore affinché tutti i K^+ prodotti siano rivelati, nell'ipotesi che l'energia del fascio di pioni sia pari a 1.2 GeV.

c. Determinare la corrente del fascio di pioni necessaria a produrre segnali di K^+ nel rivelatore con

una frequenza di 1 kHz, assumendo una sezione d'urto $\sigma = 0.1$ mb.

 $[m_p = 938 \text{ MeV/c}^2; m_{\pi^+} = 139.6 \text{ MeV/c}^2; m_{K^+} = 493.7 \text{ MeV/c}^2; m_{\Sigma^+} = 1189 \text{ MeV/c}^2].$

Un fascio di pioni incide su un un bersaglio di grafite (C, A=12, Z=6, ρ =2.1 g/cm³) di spessore d=1 cm e sezione tale da contenere tutto il fascio, producendo mesoni K tramite la reazione $\pi^+p \to \Sigma^+K^+$. Al di là del bersaglio è posto un rivelatore di forma circolare di raggio R e spessore trascurabile, posto ad