Stroke Prediction Model

CS 613 – Machine Learning

Authors: Danny Li, Tien Nguyen, Emily Wang

June 8th, 2021

Contents

Introduction
Related/Prior Work
Approach
Datasets
Results
Conclusion
Future Work

Reference

I. Introduction

Benefits of earlier treatment:

- Give greater chance of surviving and recovery
- Reduce likelihood of permanent disability
- Lesser need for extensive rehabilitation

Stroke Risk factors:

- Lifestyle
- Medical factors
- Other factors: age, race, sex, hormones
- → Stroke Prediction Model

II. Related/Prior Work

"Stroke Prediction Using SVM" by R.S Jeena and Sukesh Kumar

- •Same data set from International Stroke Trial Database (Physiological Features)
- •Implemented Support Vector Machine (SVM) with different kernel functions
- •Linear Kernel accuracy of 91%

2020

2016

"Machine Learning Approach to Identify Stroke Within 4.5 Hours" by Hynna Lee et all.

- •Analyzed diffusion-weight imaging and fluid attenuated inversion recovery magnetic resonance imaging as data
- •Implemented logistic regression, SVM and random forest
- •ML algorithms had greater sensitivities (recall) than human readings. (75.8% for logistic regression, 72.7% for SVM, 48.5% for human reading)

III. Approach

- 1. Data preprocessing → imbalance datasets and balanced datasets
- 2. Binary Logistic Regression, Naïve Bayes, and Decision Tree (ID3) classifiers to train and validate the imbalance datasets.
- 3. Implement an ensemble technique: Random Forest Classifier
- 4. Binary Logistic Regression, Naïve Bayes, and Decision Tree (ID3) classifiers to train and validate the balanced datasets.
- Implement cross-validation to improve accuracy and avoid overfitting
- 6. Analyze and compare statistics results

III. Datasets

 International Stroke Trial Database(112 features and 19,435 samples)

- Data preprocessing
 - 18 features dataset (13,079 samples – imbalanced dataset)
 - 12 paper features dataset(13,079 samples)
 - 12 top features dataset (13,079 samples)
 - Entropy

Recall the formula for entropy:

$$H(P(v_1), ..., P(v_n)) = \sum_{i=1}^{n} -P(v_i) \log_n P(v_i)$$

No-stroke: 2.39% Stroke: 97.6%

Comparison of two datasets

- 12 paper features dataset
 - Sex
 - Age
 - Symptoms noted on waking
 - Atrial fibrillation
 - Infarct visible on CT
 - Face deficit
 - Arm/hand deficit
 - Leg/foot deficit
 - Dysphasia
 - Hemianopia
 - <u>Visuospatial disorder</u>
 - Brainstem/cerebellar signs
 - Other deficit

- 12 top features dataset
 - Conscious state at ran
 - Age
 - Symptoms noted on waking
 - CT before randomization
 - Infarct visible on CT
 - Systolic blood pressure at randomization
 - Face deficit
 - Arm/hand deficit
 - Leg/foot deficit
 - Hemianopia
 - Brainstem/cerebellar signs
 - Other deficit

V. Results Statistics Results on Imbalance Datasets

Table 1. Validation Statistics Results for the three datasets

Model	Dataset	Precision	Recall	f-measure	Accuracy
Logistic Regression	18 features	0.975	1	0.987	0.975
	12 paper features	0.975	1	0.987	0.975
	12 features	0.975	1	0.987	0.975
	18 features	0.980	0.940	0.960	0.923
Naive Bayes	12 paper features	0.979	0.96	0.969	0.941
	12 features	0.979	0.946	0.962	0.928
	18 features	0.977	0.985	0.981	0.963
Decision Tree (ID3)	12 paper features	0.975	0.999	0.987	0.973
	12 features	0.976	0.997	0.986	0.973

=> Decision Tree and Logistic Regression classifiers give better precision and recall results

V. Results

Random Forest Classifier on Imbalance Datasets

- Dataset: No-stroke: 0.0239, Stroke: 0.976=> Lowest acceptable accuracy: 0.976
- Previous statistics:

• Precision: 0.975

• Recall: 0.999

• F-measure: 0.987

• Accuracy: 0.973

- Random Forest:
 - $m = \sqrt{p}$
 - Consistent statistic results for all imbalanced datasets

Table 2. Statistics Results for Random Forest Classifier on 12paper-features

Sample Size	Number of Trees	Precision	Recall	f-Measure	Accuracy
6000	1	0.977	0.999	0.988	0.976
	10	0.977	1	0.988	0.977
8000	1	0.977	0.999	0.988	0.975
	10	0.977	1	0.988	0.977
	100	0.977	1	0.988	0.977
	200	0.977	1	0.988	0.977
	300	0.977	1	0.988	0.977
	500	0.977	1	0.988	0.977

Balanced Datasets

- Imbalance datasets: 13,079 samples
 - o 12,767 stroke
 - o 312 no-stroke

- Balanced datasets: 612 samples
 - o 312 stroke
 - o 312 no-stroke

V. Results Statistics Results on Balanced Dataset (12-paper-features)

Model	Dataset	Precision	Recall	f-measure	Accuracy
Logistic Regression	Training	0.665	0.662	0.664	0.673
	Validation	0.723	0.714	0.719	0.699
Naive Bayes	Training	0.722	0.528	0.610	0.68
	Validation	0.73	0.47	0.571	0.611
Decision Tree (ID3)	Training	0.716	0.906	0.8	0.815
	Validation	0.504	0.652	0.569	0.562

[⇒] Logistic Regression works best on the balanced dataset

[⇒] Overfitting with Naïve Bayes and Decision Tree

V. Results Statistics Results of Cross-Validation k-Folds on Balanced Datasets

- Accuracy values are improved for Naïve Bayes and Decision Tree
- Logistic Regression give the highest accuracy

Table 4. Accuracy for Cross-validation of Logistic Regression, Naïve Bayes, and Decision Tree classifiers

K-folds	Logistic Regression	Naive Bayes	Decision Tree
5	0.513	0.569	0.516
10	0.59	0.607	0.555
50	0.662	0.657	0.578
100	0.669	0.665	0.585
500	0.682	0.674	0.594

VI. Conclusion

- Random Forest produced best results with imbalanced dataset
 - Precision of 0.977
 - o Recall of 1
- Logistic Regression produced best results with balanced dataset
 - Accuracy of 0.699
 - o Precision of 0.723
 - Recall of 0.714
- Better results compared to "Stroke Prediction Using SVM" by Jeena and Kumar (97.7% vs 91%)
 - Possible Causes same features but different samples after preprocessing dataset, paper does not mention balance or imbalanced dataset

VII. Future Work

- Explore/Apply other types of machine learning approaches to dataset
 - K-nearest neighbors (KNN)
 - Support vector machine (SVM)
 - Deep learning
- Train different datasets to validate different models

References

- "What Is CVD?" World Heart Federation, 6 May 2021, world-heart-federation.org/what-is cvd/.
- Sandercock, P.A., Niewada, M., Członkowska, A. et al. The International Stroke Trial database. Trials 12, 101 (2011). https://doi.org/10.1186/1745-6215-12-101
- T. R. Dawber, G. F. Meadors, and F. E. Moore. Epidemiological approaches to heart disease: The Framingham study. *American Journal of Public Health and the Nation's Health*, 41:279–286, March 1951.
- P. A. Wolf, R. B. D'Agostino, A. J. Belanger, and W. B. Kannel. Probability of stroke: a risk profile from the Framingham study. *Stroke*, 22:312–318, March 1991
- R. S. Jeena and S. Kumar, "Stroke prediction using SVM," 2016 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), 2016, pp. 600-602, doi: 10.1109/ICCICCT.2016.7988020.
- Lee, Hyunna, et al. "Machine Learning Approach to Identify Stroke Within 4.5 Hours." Stroke, vol. 51, no. 3, 28 Jan. 2020, pp. 860–866., doi:10.1161/strokeaha.119.027611.