NTIN090 — Základy složitosti a vyčíslitelnosti 6. cvičení

Petr Kučera

5. ledna 2023

Připomeňme definici problému Hamiltonovská kružnice:

Problém 1: Hamiltonovská kružnice (HK)

Instance: Neorientovaný graf G = (V, E).

Otázka: Existuje v grafu *G* hamiltonovská kružnice, tj. kružnice procházející

všemi vrcholy?

1. Uvažme rozhodovací verzi problému Obchodního cestujícího

Problém 2: Obchodní cestující

Instance: Množina měst $C = \{c_1, \dots, c_n\}$, hodnoty $d(c_i, c_j) \in \mathbb{N}$ přiřazující každé

dvojici měst vzdálenost a přirozené číslo D.

Otázka: Existuje permutace měst $c_{\pi(1)}, c_{\pi(2)}, \dots, c_{\pi(n)}$, pro kterou platí, že

$$\left(\sum_{i=1}^{n-1} d(c_{\pi(i)}, c_{\pi(i+1)})\right) + d(c_{\pi(n)}, c_{\pi(1)}) \le D?$$

a jeho optimalizační verzi

Problém 3: Obchodní cestující

Instance: Množina měst $C = \{c_1, \dots, c_n\}$, hodnoty $d(c_i, c_j) \in \mathbb{N}$ přiřazující každé

dvojici měst vzdálenost.

Cíl: Nalézt permutace měst $c_{\pi(1)}, c_{\pi(2)}, \dots, c_{\pi(n)}$, pro kterou je

$$\left(\sum_{i=1}^{n-1} d(c_{\pi(i)}, c_{\pi(i+1)})\right) + d(c_{\pi(n)}, c_{\pi(1)})$$

minimální.

Předpokládejme, že rozhodovací verzi problému Овснормі́но сеѕтијíсі́но umíme rozhodnout v polynomiálním čase. To znamená, že máme funkci rozhodniOC(C,d,D), kde $C=\{c_1,\ldots,c_n\}$ je množina měst, $d(c_i,c_j)\in\mathbb{N}$ určuje vzdálenosti mezi nimi a D je limit na vzdálenost a která rozhodne, zda existuje pořadí měst, při němž navštíví obchodní cestující všechna města, vrátí se do svého domovského města a nacestuje přitom vzdálenost nejvýš D. Popište, jak za tohoto předpokladu vyřešit v polynomiálním čase optimalizační verzi Овснормі́но сеѕтијíсі́но, tedy popište algoritmus, který nalezne pořadí měst, při němž nacestuje obchodní cestující nejkratší vzdálenost. Algoritmus bude pracovat

ZSV, 6. cvičení 5. ledna 2023

v polynomiálním čase za předpokladu, že volání funkce rozhodniOC(C, d, D) proběhne v polynomiálním čase.

- 2. Rozmyslete si, jak obtížné je o dané formuli φ zodpovědět následující otázky v závislosti na tom, je-li φ KNF, DNF, či obecná výroková formule.
 - (a) $(\exists a)[\varphi(a) = 1]$?
 - (b) $(\exists \mathbf{a})[\varphi(\mathbf{a}) = 0]$?
 - (c) $(\forall a)[\varphi(a) = 1]$?
 - (d) $(\forall a)[\varphi(a) = 0]$?
- 3. Ukažte, že pro každé m existuje formule φ v KNF s m klauzulemi taková, že libovolná formule ψ v DNF, která je ekvivalentní s φ , obsahuje alespoň 2^m termů.
- 4. (a) Pro každou z následujících formulí popište její ekvivalentní KNF
 - 1. $v \iff \neg x$
 - 2. $v \iff x \lor y$
 - 3. $v \iff x \wedge y$
 - 4. $v \iff (x \implies y)$
 - 5. $v \iff (x \iff y)$
 - (b) Uvažme formuli

$$\varphi \equiv [(x \implies y) \land (y \implies z)] \iff (x \implies z) \tag{1}$$

- (c) Je formule φ splnitelná?
- (d) Je formule φ tautologie?
- (e) Rozmyslete si podrobněji následující obecný postup, který k libovolné formuli φ zkonstruuje v polynomiálním čase formuli ψ v KNF, která je splnitelná, právě když φ je splnitelná.
 - 1. Sestrojíme strom odvození formule φ .
 - 2. S každým uzlem stromu asociujeme novou proměnnou.
 - 3. Sémantiku dané proměnné definujeme jednou z ekvivalencí výše podle toho, jaká logická spojka je v daném uzlu.
 - 4. Přepíšeme jednotlivé ekvivalence do KNF.
 - 5. ψ sestrojíme jako konjunkci zkonstruovaných KNF podformulím, k nimž přidáme proměnnou kořene stromu jako jednotkovou klauzuli.

Ukažte korektnost tohoto postupu a demonstrujte jej na formuli (1). Vznikne tímto postupem formule ψ , která je tautologie?

5. Popište jednoduchý algoritmus pro 3-SAT, který v každém kroku vybere klauzuli $(l_1 \lor l_2 \lor l_3)$ a větví na tří podpřípady dle částečných ohodnocení $\{l_1\}$, $\{\neg l_1, l_2\}$ a $\{\neg l_1, \neg l_2, l_3\}$. Odhadněte složitost tohoto algoritmu v závislosti na počtu proměnných n ve formuli.