Knowledge Check 1

Instructions: Answer the questions below, saving often. Submit your Word document to MyLO for initial feedback, then **discuss** your answers with your tutor in class.

Name: Sachin Kharel

Student ID: 689206

Question 1

What data type is each of the following literal values?

Literal value	Data type			
99	int			
"2.718"	string			
-3.6	float			
False	boolean			
"alpha"	string			
1.1	float			
"False"	string			

Question 2

Given the following variable declarations and initialisations, what is the **value** and **data type** of each of the expressions that follow?

```
a = 42
```

b = 3

c = 2.71

d = "X"

Expression	Value	Туре
25	25	int
4.2 * c	11.38200	float
a // 5	8	int
d + "storm"	" Xstorm"	string
a + 8 * b	66	int

Question 3

What data type would you use to represent each of the following things? Indicate your choice then provide a brief (1-2 sentence) justification.

- The total profit of a company for an unspecified quarter
 Answer: total profit represents any amount, which is a number(can be whole or decimal) we will use float to represent it.
- 2. A randomly generated username in an online game

 Answer: assuming an username can be a mix of alphabets and digits, we will use string for this type of data

Question 4

Create a tracing table showing the execution of the following Python statements.

- alohomora = 16bombarda = 4
- bombarda = 4confringo = 7

4

- 5 bombarda = alohomora + confringo
- 6 print(f"bombarda is {bombarda}")
- 7 confringo = (bombarda + confringo) * alohomora + confringo

Answer:

Line	alohomora	bombarda	confringo	output	
1	16				

2	4			
3		7		
5	23			
6			bombarda is 23	
7		487		

Question 5

Create a tracing table showing the execution of the following Python statements.

```
1 i = 14
```

2 c = "x"

3 s = "echo"

combined = f"{c.upper()}{s.lower()}{i + 1}"

5

6 print("Result is", combined)

Answer:

Line	i	С	S	combined	output	
1	14					
2		x				
3			echo			
4				Xecho15		
6					Result is Xecho15	

Question 6

Create a tracing table showing the execution of the following Python statements.

```
1
         beta = 14
2
         print(f"At this point, beta is {beta}")
3
         if beta < 10:
4
          print("True branch")
5
          beta = beta - 12
6
7
          print("False branch")
8
          beta = beta + 12
9
10
         print(f"Finally, beta is {beta}")
```

Answer:

Line	beta	output		
1	14			
2		At this point, beta is		
7		False branch		
8	26			
10		Finally, beta is 26		

Question 7

Create a tracing table showing the execution of the following Python statements.

```
gamma = 12
print("Position 1")
while gamma <= 10:
print("Position 2")
gamma += 1
print("Position 3")</pre>
```

Answer:

Line	gamma	output				
------	-------	--------	--	--	--	--

1	12			
3		Position 1		
7		Position 3		

Question 8

Create a tracing table showing the execution of the following Python statements.

- for theta in range(8, 30, 3):
- print(f"theta is currently {theta}")

Answer:

Line	theta	output		
1	8			
2		theta is currently 8		
1	11			

2		theta is currently 11
1	14	
2		theta is currently 14
1	17	
2		theta is currently 17
	20	
		theta is currently 20
	23	
		theta is currently 23
	26	
		theta is currently 26
	29	
		theta is currently 29