TCR_EL3, Translation Control Register (EL3)

The TCR EL3 characteristics are:

Purpose

The control register for stage 1 of the EL3 translation regime.

Configuration

This register is present only when EL3 is implemented. Otherwise, direct accesses to TCR EL3 are undefined.

Attributes

TCR EL3 is a 64-bit register.

Field descriptions

63	62	61	60	59	58	57	56	55	54 !	53 52	51	504948	47464544	43	42	
						RES0								DisCH0	HAFT	Ē
RES1	TCMA	TBID	HWU62	HWU61	HWU60	HWU59	HPD	RES1	HDH.	на Тві	RESC	PS	TG0SH0	ORG	N0	
31	30	29	28	27	26	25	24	23	22 2	21 20	19	181716	15141312	11	10	

Unless stated otherwise, any of the bits in TCR_EL3 are permitted to be cached in a TLB.

Bits [63:44]

Reserved, res0.

DisCHO, bit [43] When FEAT D128 is implemented and TCR EL3.D128 == 1:

Disable Contiguous Hint for Start Table.

Meaning
Contiguous Hint of Block or
Page descriptors of the Start
Table are not affected by this
field.
Contiguous Hint of Block or
Page descriptors of the Start
Table are disabled.

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

HAFT, bit [42] When FEAT HAFT is implemented:

Hardware managed Access Flag for Tables.

Enables the Hardware managed Access Flag for Tables.

HAFT	Meaning
0b0	Hardware managed Access Flag
	for Tables is disabled.
0b1	Hardware managed Access Flag for Tables is enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

PTTWI, bit [41] When FEAT_THE is implemented:

Permit Translation table walk Incoherence.

Permits RCWS instructions to have Reduced Coherence property.

PTTWI	Meaning
0b0	Write accesses generated by
	RCWS at EL3 do not have the
	Reduced Coherence property.
0b1	Write accesses generated by
	RCWS at EL3 have the
	Reduced Coherence property.

This bit is permitted to be built as a read-only bit with a fixed value of 0.

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bits [40:39]

Reserved, res0.

D128, bit [38] When FEAT D128 is implemented:

Enable 128-bit Page Table Descriptors.

Enables VMSAv9-128 translation system for the Stage 1 EL3 Translation Process.

D128	Meaning
0b0	Translation system follows
	VMSA-64 translation process.
0b1	Translation system follows
	VMSAv9-128 translation process.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

AIE, bit [37] When FEAT_AIE is implemented:

Enable Attribute Indexing Extension. Control for Attribute Indexing Extension for Stage 1 EL3 Translation Process.

AIE	Meaning
0b0	Attribute Indexing Extension
	Disabled.
0b1	Attribute Indexing Extension
	Enabled.

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

POE, bit [36] When FEAT S1POE is implemented:

POE. Controls setting of permission overlay for EL3 accesses in stage 1 of the EL3 translation regime.

POE	Meaning
0b0	Permission overlay disabled for
	EL3 access in stage 1 of EL3
	translation regime
0b1	Permission overlay enabled for
	EL3 access in stage 1 of EL3
	translation regime.

This bit is not permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

PIE, bit [35] When FEAT_S1PIE is implemented:

Select Permission Model. Controls setting of indirect permission model in Stage 1 EL3 Translation Process.

PIE	Meaning
0b0	Direct permission model.
0b1	Indirect permission model.

This field is res1 when TCR EL3.D128 is set.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

PnCH, bit [34] When FEAT_THE is implemented:

Protected attribute enable. Indicates use of bit[52] of the stage 1 translation table entry for translations using <u>TTBRO EL3</u>.

PnCH	Meaning
0b0	For translations using
	TTBR0_EL3, bit[52] of each
	stage 1 translation table entry
	does not indicate protected
	attribute.
0b1	For translations using
	TTBR0 EL3, bit[52] of each
	stage 1 translation table entry
	indicates protected attribute.

This field is res1 when TCR EL3.D128 is set.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

MTX, bit [33]

When FEAT_MTE_NO_ADDRESS_TAGS is implemented or FEAT_MTE_CANONICAL_TAGS is implemented:

Extended memory tag checking.

This field controls address generation and tag checking when EL3 is using AArch64 where the data address would be translated by tables pointed to by <u>TTBR0_EL3</u>.

This control has an effect regardless of whether stage 1 of the EL3 translation regime is enabled or not.

MTX	Meaning
0d0	This control has no effect on the
	PE.

- Ob1 Bits[59:56] of a 64-bit VA hold a Logical Address Tag, and all of the following apply:
 - Bits[59:56] are treated as 0b0000 when checking if the address is out of range.
 - If FEAT_PAuth is implemented, bits[59:56] are not part of the PAC field.

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

DS, bit [32] When FEAT_LPA2 is implemented:

This field affects whether a 52-bit output address can be described by the translation tables of the 4KB or 16KB translation granules.

DS	Meaning
0b0	Bits[49:48] of translation
	descriptors are res0.
	Bits[9:8] in Block and Page
	descriptors encode shareability
	information in the SH[1:0] field.
	Bits[9:8] in Table descriptors are
	ignored by hardware.
	The minimum value of
	TCR EL3.T0SZ is 16. Any memory
	access using a smaller value
	generates a stage 1 level 0
	translation table fault.
	Output address[51:48] is 0b0000.

Bits[49:48] of translation 0b1 descriptors hold output address[49:48]. Bits[9:8] of table translation descriptors hold output address[51:50]. The shareability information of Block and Page descriptors for cacheable locations is determined by TCR EL3.SH0. The minimum value of TCR EL3.T0SZ is 12. Any memory access using a smaller value generates a stage 1 level 0 translation table fault. All calculations of the stage 1 base address are modified for tables of fewer than 8 entries so that the table is aligned to 64 bytes. Bits[5:2] of TTBR0 EL3 are used to hold bits[51:48] of the output address in all cases.

Note

As FEAT_LVA must be implemented if TCR_EL3.DS == 1, the minimum value of the TCR_EL3.T0SZ field is 12, as determined by that extension.

For the TLBI Range instructions affecting VA, the format of the argument is changed so that bits[36:0] hold BaseADDR[52:16]. For the 4KB translation granule, bits[15:12] of BaseADDR are treated as 0b0000. For the 16KB translation granule, bits[15:14] of BaseADDR are treated as 0b00.

Note

This forces alignment of the ranges used by the TLBI range instructions.

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0, and the Effective value of this bit is 0b0.

Bit [31]

Reserved, res1.

TCMA, bit [30]

When FEAT MTE2 is implemented:

Controls the generation of Unchecked accesses at EL3 when address [59:56] = 0b0000.

TCMA	Meaning
0b0	This control has no effect on the
	generation of Unchecked
	accesses.
0b1	All accesses are Unchecked.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TBID, bit [29]

When FEAT_PAuth is implemented:

Controls the use of the top byte of instruction addresses for address matching.

TBID	Meaning
0b0	TCR_EL3.TBI applies to
	Instruction and Data accesses.
0b1	TCR EL3.TBI applies to Data
	accesses only.

This affects addresses where the address would be translated by tables pointed to by <u>TTBRO_EL3</u>.

For the purpose of this field, all cache maintenance and address translation instructions that perform address translation are treated as data accesses.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

HWU62, bit [28] When FEAT HPDS2 is implemented:

Hardware Use. Indicates implementation defined hardware use of bit[62] of the stage 1 translation table Block or Page entry.

HWU62	Meaning
0b0	Bit[62] of each stage 1
	translation table Block or Page
	entry cannot be used by
	hardware for an
	implementation defined
	purpose.
0b1	Bit[62] of each stage 1
	translation table Block or Page
	entry can be used by
	hardware for an
	implementation defined
	purpose if the value of
	TCR_EL3.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

HWU61, bit [27] When FEAT HPDS2 is implemented:

Hardware Use. Indicates implementation defined hardware use of bit[61] of the stage 1 translation table Block or Page entry.

HWU61	Meaning
0b0	Bit[61] of each stage 1
	translation table Block or Page
	entry cannot be used by
	hardware for an
	implementation defined
	purpose.
0b1	Bit[61] of each stage 1
	translation table Block or Page
	entry can be used by
	hardware for an
	implementation defined
	purpose if the value of
	TCR_EL3.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0 $^{\circ}$

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

HWU60, bit [26] When FEAT_HPDS2 is implemented:

Hardware Use. Indicates implementation defined hardware use of bit[60] of the stage 1 translation table Block or Page entry.

HWU60	Meaning
0b0	Bit[60] of each stage 1
	translation table Block or Page
	entry cannot be used by
	hardware for an
	implementation defined
	purpose.

0b1	Bit[60] of each stage 1 translation table Block or Page entry can be used by hardware for an
	implementation defined purpose if the value of TCR_EL3.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

HWU59, bit [25] When FEAT HPDS2 is implemented:

Hardware Use. Indicates implementation defined hardware use of bit[59] of the stage 1 translation table Block or Page entry.

HWU59	Meaning	
0b0	Bit[59] of each stage 1	
	translation table Block or Page	
	entry cannot be used by	
	hardware for an	
	implementation defined	
	purpose.	
0b1	Bit[59] of each stage 1	
	translation table Block or Page	
	entry can be used by	
	hardware for an	
	implementation defined	
	purpose if the value of	
	TCR_EL3.HPD is 1.	

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

HPD, bit [24] When FEAT_HPDS is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except NSTable, in the translation tables pointed to by <u>TTBRO EL3</u>.

HPD	Meaning
0d0	Hierarchical permissions are enabled.
0b1	Hierarchical permissions are disabled.
	Note
	In this case, bit[61]
	(APTable[0]) and
	bit[59] (PXNTable)
	of the next level
	descriptor
	attributes are
	required to be
	ignored by the PE,
	and are no longer
	reserved, allowing
	them to be used by
	software.

When disabled, the permissions are treated as if the bits are zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bit [23]

Reserved, res1.

HD, bit [22]

When FEAT HAFDBS is implemented:

Hardware management of dirty state in stage 1 translations from EL3.

HD	Meaning
0b0	Stage 1 hardware management of dirty state disabled.
0b1	Stage 1 hardware management of dirty state enabled, only if the HA
	bit is also set to 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

HA, bit [21]

When FEAT_HAFDBS is implemented:

Hardware Access flag update in stage 1 translations from EL3.

HA	Meaning
0b0	Stage 1 Access flag update disabled.
0b1	Stage 1 Access flag update enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

TBI, bit [20]

Top Byte Ignored. Indicates whether the top byte of an address is used for address match for the TTBRO_EL3 region, or ignored and used for tagged addresses.

TBI	Meaning	

0d0	Top Byte used in the address
	calculation.
0b1	Top Byte ignored in the address
	calculation.

This affects addresses generated in EL3 using AArch64 where the address would be translated by tables pointed to by <u>TTBR0_EL3</u>. It has an effect whether the EL3 translation regime is enabled or not.

If FEAT_PAuth is implemented and TCR_EL3.TBID is 1, then this field only applies to Data accesses.

Otherwise, if the value of TBI is 1, then bits[63:56] of that target address are also set to 0 before the address is stored in the PC, in the following cases:

- A branch or procedure return within EL3.
- A exception taken to EL3.
- An exception return to EL3.

For more information, see 'Address tagging in AArch64 state'.

Note

This control detrmines the scope of address tagging. It never causes an exception to be generated.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bit [19]

Reserved, res0.

PS, bits [18:16]

Physical Address Size.

PS	Meaning	Applies when
0b000	32 bits,	
	4GB.	
0b001	36 bits,	
	64GB.	
0b010	40 bits,	
	1TB.	
0b011	42 bits,	
	4TB.	

0b100	44 bits, 16TB.		
0b101	48 bits, 256TB.		
0b110	52 bits, 4PB.		
0b111	56 bits, 64PB.	When FEAT_D128 is implemented	

All other values are reserved.

The reserved values behave in the same way as the <code>0b101</code> or <code>0b110</code> encoding, but software must not rely on this property as the behavior of the reserved values might change in a future revision of the architecture.

If the translation granule is not 64KB and FEAT_LPA2 is not implemented, the value <code>0b110</code> is treated as reserved.

It is implementation defined whether an implementation that does not implement FEAT_LPA supports setting the value of <code>0b110</code> for the 64KB translation granule size or whether setting this value behaves as the <code>0b101</code> encoding.

If the value of <u>ID_AA64MMFR0_EL1</u>.PARange is <code>0b0110</code>, and the value of this field is not <code>0b110</code> or a value treated as <code>0b110</code>, then bits[51:48] of every translation table base address for the stage of translation controlled by TCR_EL3 are <code>0b00000</code>.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

TG0, bits [15:14]

Granule size for the TTBRO EL3.

TG0	Meaning
0b00	4KB.
0b01	64KB.
0b10	16KB.

Other values are reserved.

If the value is programmed to either a reserved value or a size that has not been implemented, then the hardware will treat the field as if it has been programmed to an implementation defined choice of the sizes that has been implemented for all purposes other than the value read back from this register.

It is implementation defined whether the value read back is the value programmed or the value that corresponds to the size chosen.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using <u>TTBR0 EL3</u>.

SH0	Meaning
0b00	Non-shareable.
0b10	Outer Shareable.
0b11	Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is constrained unpredictable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

ORGNO, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using <u>TTBR0 EL3</u>.

ORGN0	Meaning
0000	Normal memory, Outer Noncacheable.
0b01	Normal memory, Outer Write- Back Read-Allocate Write- Allocate Cacheable.
0b10	Normal memory, Outer Write- Through Read-Allocate No Write-Allocate Cacheable.
0b11	Normal memory, Outer Write- Back Read-Allocate No Write- Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using <u>TTBR0 EL3</u>.

IRGN0	Meaning
0b00	Normal memory, Inner Non-
	cacheable.
0b01	Normal memory, Inner Write-
	Back Read-Allocate Write-
	Allocate Cacheable.
0b10	Normal memory, Inner Write-
	Through Read-Allocate No
	Write-Allocate Cacheable.
0b11	Normal memory, Inner Write-
	Back Read-Allocate No Write-
	Allocate Cacheable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bits [7:6]

Reserved, res0.

TOSZ, bits [5:0]

The size offset of the memory region addressed by <u>TTBR0_EL3</u>. The region size is $2^{(64-T0SZ)}$ bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory translation granule size, as described in the AArch64 Virtual Memory System Architecture chapter.

Note

For the 4KB translation granule, if FEAT_LPA2 is implemented and this field is less than 16, the translation table walk begins with a level -1 initial lookup.

For the 16KB translation granule, if FEAT_LPA2 is implemented and this field is less than 17, the translation table walk begins with a level 0 initial lookup.

• On a Warm reset, this field resets to an architecturally unknown value.

Accessing TCR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TCR_EL3

op0	op1	CRn	CRm	op2
0b11	0b110	0b0010	0b0000	0b010

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    X[t, 64] = TCR_EL3;
```

MSR TCR EL3, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b110	0b0010	0b0000	0b010

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    UNDEFINED;
elsif PSTATE.EL == EL2 then
    UNDEFINED;
elsif PSTATE.EL == EL3 then
    TCR_EL3 = X[t, 64];
```

28/03/2023 16:01; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94
Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential