迎接自然语言处理新时代

关键词:自然语言理解 自然语言处理

李 航 华为诺亚方舟实验室 特邀专栏作家

人类的语言具有什么特性?下面是几位最权威 学者的看法。

语言是草根现象,它像是维基百科,聚集了数以 十万计的人的贡献。当人们要找到更好的表达自己思 想方式的时候,就发明了术语、俚语、新说法,其中 一部分积累到语言中,这就是我们得到语言的过程。

——史蒂文·平克 (Steven Pinker)

如果语法没有递归结构,那么它将变得不可接 受的复杂。因为它有了递归的工具,所以它能够产 生无穷多的句子。

——诺姆・乔姆斯基 (Noam Chomsky)

我们通常的概念系统的大部分都具有比喻性。 我们的思考方式,我们所经历的,我们每天做的,都 与比喻有关。

当一个人听到或看到一句话的时候,他使用自己所有的知识和智能去理解。这不仅包括语法,也包括他的词汇知识、上下文知识,更重要的,是对相关事物的理解。

——特里・威诺格拉德 (Terry Winograd)

语言看来是人的认知向外界环境扩展的核心手段。语言的进化也许就是为了扩展我们的认知与外 界环境的积极交互。

——安迪・克拉克 (Andy Clark)

总结起来,不完全规则性、递归性、比喻性、 知识关联性、交互性是人类语言的主要特点。这些 特性密切关联,体现了语言的本质。上述学者对这 些语言特性的研究作出了卓越贡献,他们的论述是 对这些特性的最佳诠释。

本文从语言的特性出发,讨论为什么让计算机 理解人类语言(自然语言)是极其困难的,提出**自 然语言处理研究**应该采取的策略。

为什么自然语言理解很难?

自然语言理解

你说一句话,如何判断别人(或者计算机)是 否真正理解了你的意思?这是一个难解的问题。到 目前为止,自然语言理解主要有两个定义,一个是 基于表示的,一个是基于行为的。对于前者,如果 你说"哈利·波特",别人把它联系到了大脑中的

图1 人通过语言给出命令, 机器人若能正确执行, 就认为它可以"理解"语言

哈利·波特的概念 (表示), 那么就认为他理解了 你的意思。而对于后者,如果你说"给我拿一杯茶 来",别人真的按你说的做了(行为),就认为他理 解了你的意思(图1)。

现在的人工智能研究中,人们开始倾向于采用 后者的定义,因为这样更容易评价任务驱动、端到 端的语言理解系统的能力。

语言的特性

下面结合语言学、认知科学、脑科学的最新研 究成果,对语言的主要特性进行介绍。

不完全规则性

语言具有一定规范,语言的规范可以用语法来 描述, 但是, 几乎所有的语法规则都存在例外。语 法规则中一定有逻辑不一致、功能冗余的现象。正 如语言学家爱德华·萨丕尔 (Edward Sapir) 所说, "所 有语法都有漏洞 (all grammars leak)"。这是为什么?

其中一个重要原因是, 语言不是一个人发明的, 甚至不是一组人发明的, 而是成千上万人经过成千 上万年的时间不断建立起来的,而且在不断演化, 这个过程跟人们构建维基百科的过程非常相似。这 是认知学家平克等人的观点[1,2],也被越来越多的 人接受。

语言的基本单元是词汇和语法规则。为了顺畅 地交流,需要人们对词汇和语法有基本的共识及准 确的使用。另一方面, 词汇和语法又不是一成不变 的。为了更好地表达自己的思想,人们会不断地去 扩展已有词汇和语法规则的使用范围,或者增加新 的词汇和语法规则。

语言中不断有大量的新词汇涌现,但其中大部 分会逐渐消失,只有真正有生命力的表达才能留存 下来。每一个语言的词汇都在不断增加,随着文明 的进步,这个趋势会越来越明显。

语法是相对稳定的。在远古时代,语言曾经历 过"语法大发明"的时期,后来逐渐趋于成熟。但 是即使在现代, 语法也不是一成不变的。首先, 有

一个趋势是语法变得越来越简单。比如, 英语中 以前说 "We shall"、"I shall", 现在逐渐变成 "We will"、"I will"。另外,受其他语言影响,语法也会 发生变异。比如, 非洲美国裔英语(也被称为黑人 英语)是受非洲语言影响而形成的一种英语变种, 在这个语言中, "I working"、"you working" 是正 确的说法,笔者猜测可能是受其他语言的影响。

不完全规则性是语言作为人类交流手段而动态 发展的必然结果。

递归性

现在普遍认为,词汇应该有100万年以上的历 史, 而语法大概只有7万年左右的历史。而正是在 7万年前,智人(Homo Sapiens),也就是现在人类 的祖先, 开始从非洲大陆迁移至欧亚大陆, 与此同 时开始发明各种语言 1。

黑猩猩也能使用一些简单的词汇, 但我们不认 为黑猩猩拥有语言。因为它们不能把词汇组合起来 构成句子。组合性、递归性是语言的重要特点。递 归的例子如下:"她觉得很好","他认为她觉得很好", "我想他认为她觉得很好"……理论上可以无限扩展。

1956年,语言学家乔姆斯基提出了文法体系, 在人类历史上首次用数学模型对语法现象做出严谨 的刻画。乔姆斯基特别指出, 递归性属于语法的重 要特性。只有有了递归这个工具, 我们才能够生成 无穷多的表达,语言才拥有丰富的表达能力 [3]。

比喻性

比喻的本质是把表面不相关联的概念,通过它 们背后的相似性联系起来。比如微信里的"潜水"。 把"潜水"和在微信里"沉默不语"这两个概念联 系起来,就是一个比喻。认知科学家雷可夫等认为 比喻是语言的重要特性,语言中的发明基本都是基 于比喻的[4~6]。

比喻的使用是人类认知能力、语言能力的体现。 中文说"开灯", 英语说"turn on the light", 应该始 于比喻, 开始有一个人或几个人同时发明了这些比 喻,后来变成了固定说法,被广泛使用。据观察,

¹语言学中,只要有口头语就被认为是"语言",而不需要有书面语。

一个英语母语的四岁男孩儿,有创意地说出"open the light"(直译就是开灯)。这个例子说明,人天生就有比喻、创造的能力。

比喻是否能被接受并在语言中使用,具有一定的偶然性。一旦比喻变成固定用法,人们就开始习惯性地使用,而不考虑其缘由。比如,中文中所说的"上厕所"、"下厨房"。这些习惯用法都是比喻性的,但是随着时间的推移,已经很难考证当初为什么做出这样的比喻。²

比喻也依赖于语言使用的环境与文化。据说,在大多数语言里都有"温暖的爱"这个比喻,如英语中说"warm affection",在日语中说"暖かい愛"。这些语言都是温带和寒带的语言,热带的语言里就看不到这样的比喻。

知识关联性

十几年前,脑科学研究中有一个有趣的发现。 当把电极插到猴子的大脑前运动皮质 (pre-motor cortex) 时,有一个脑细胞会在猴子自己吃香蕉和看别 人吃香蕉时,同样处于兴奋状态,也就是说对猴子 来说这个脑细胞对应着"吃香蕉"的概念。³

后来对人脑做类似的实验,但使用功能磁共振。 让人实际做和想象做各种动作,比如张嘴和想象张 嘴,接球和想象接球。结果发现,对同一动作,实 际做和想象做大脑的前运动皮质中发生反应的部位 完全一致。

现在一个得到广泛支持的理论认为,对于同一个概念,大脑用固定的脑细胞去记忆,人理解语言的过程,就是激活相关概念的脑细胞,并关联这些概念的过程^[6]。

表示同一个概念的脑细胞,可以通过不同的方式被激活。例如,有一个细胞表示人在喝水,当你看到人在喝水的时候,或者当你从书中读到人在喝水的时候,这个脑细胞同样会被激活。这也能解释为什么我们在读小说的时候常常有身临其境的感觉。

每个人把自己经历的事件进行编码,存储记忆

在脑细胞中,在与外界的交互中这些脑细胞被激活,相关的记忆被唤醒。所以,不同人对同样的语言会有不同的理解,因为他们的经历不同。但也有许多 共性,因为大家在交流过程中,相互激活对方脑中的表示相同内容的细胞。

发明比喻的时候,大脑中表示两个不同概念的部位都开始兴奋,相关的脑细胞之间产生新的连接,概念之间产生关联,这个过程被称为神经结合(neural binding),是现在脑科学研究的重要课题^[6]。

语言的理解实际上动用了大脑中所有的相关知识,是一个非常复杂的过程。这一点在计算机学家威诺格拉德开发的著名的对话系统 SHRDLU 中也有充分体现^[7]。

交互性

语言作为人类交流的工具,其重要特点就是交互。哲学家克拉克等人认为,与环境的交互是人或者动物作为智能体存在的必要条件,或者说,离开了与环境的交互,智能就无从谈起^[8]。

图2 主动猫与被动猫的实验

脑科学家赫尔德 (Richard Held) 和海恩 (Alan Hein) 的实验能够很好地说明与环境的交互对智能体的重要性 ^[9]。实验对象是一对刚出生的孪生猫,把其中一只当作"主动猫",另一只当作"被动猫"。白天把它们放到转马上,主动猫脚能着地,可以行走;被

² 互联网上有许多关于"上厕所"、"下厨房"语源的讨论。

³ 猴子和人的运动都是由小脑控制,但大脑的前运动皮质也与运动有关。

动猫被放在篮子里,不能行走。主动猫走动时,转马 被带动旋转,这时被动猫也跟着旋转(图2)。晚上 把它们放到黑暗处,让它们吃睡。两个月以后,将 它们放出去。主动猫和一般的猫没有什么不同,可 以正常行走,但被动猫已经失去了行走的能力,走 路时要么撞墙,要么跌倒。赫尔德和海恩对10对 孪生猫做同样的实验,得到同样的结论。

以上实验说明,对人或者动物来说,虽然拥有先 天能力,但在成长的过程中如果不能在与环境的交互 中使用,该能力也会丧失。这一点,语言能力也一样。 当狼孩被发现时, 他已不会说话, 因为在他的成长阶 段没有与人进行语言交互,没有学习语言。

语言的理解需要在与环境(包括社会、文化) 的交互中进行,这点可以在外语学习的过程中体会 到。在外语使用环境中学习外语,最容易理解,提 高也最快。严格地说,语言是不能翻译的,只能解释。 语言必须在其环境中学习与使用。

自然语言理解的困难

人的语言理解是一个非常复杂的过程, 现在科 学对其有了非常粗浅的了解, 离理解明了所有细节 的程度还相差甚远。

同时, 让计算机"理解"人类的语言是极其困 难的,因为当代计算机和人脑拥有完全不同的架构。 在当代计算机上实现不完全规则性和递归性, 意味 着进行复杂的组合计算;实现比喻性、知识关联性、 交互性, 意味着进行全局的穷举计算。是否可行, 仍存在巨大疑问。实现能像人一样理解语言的计算 机,需要有全新的体系架构,意味着计算机科学发 生革命性的进步。

让计算 机处理有限 的语言表 达, 让它看 似很智能, 其实不难, 只要写出有 限的规则就

"给我拿一杯茶来"的同义说法 给我拿杯茶来吧。 你好,能给我一杯茶吗? 我要一杯茶。 我渴了, 那边好像有茶。 一到这个时间,就想喝茶。

有可能做到。这样的系统做出的演示往往具有一定 的欺骗性, 让人误以为实现了语言理解。其实一个 系统能够理解语言意味着理论上能够理解无穷多 的语言表达。例如,表1给出了"给我拿一杯茶来" 的部分同义说法,理论上类似的表达是无穷多的, 一个能理解语言的计算机应该能够判断这样的表达 都是同一个意思。而这不是一件容易的事情。关键 是要让计算机拥有强健的、通用的语言处理能力。

人们的错觉

人们通常认识不到计算机的自然语言理解极具 困难这一事实,可能有以下几个原因。

自然语言具有一定的规律。很多人以为只要写 一些规则就可以实现自然语言理解系统, 这只是看 到了一些非常表面的现象。

人脑的信息处理大部分都是在下意识中进行, 有人说其比例高达98%。意识进行的是顺序处理, 下意识进行的是并行处理。语言处理也一样。也就 是说,人脑进行的大量的语言处理,我们自己是感 受不到的。认为语言理解比较简单实际上是我们的 错觉。正如彩虹、日出、日落, 我们所能直观感受 到的,只是现实中发生的很小一部分。

绝大部分人可以在12岁之前几乎无障碍地学 会自己的母语,在这个过程中,伴随着大脑的发育, 可以在很短的时间内掌握大量的词汇和复杂的语法 规则。这个现象是一种奇迹, 仍然是认知科学研究 的重要课题。

自然语言处理的策略

自然语言处理

自然语言理解是困难的,但是"自然语言处理" 却是可行的。现实中可以让计算机完成一些特定的 语言处理任务, 比如自动问答、机器翻译、多轮对 话,为人们提供帮助,使计算机成为人类的智能助 手。现在已部分实现,在可预见的未来可以基本实 现,这也是现在自然语言处理研究的目标。

图3 计算机问答处理过程是人的问答处理过程的简化

图4 计算机的对话处理过程与人的相似,但适用范围有很大限制

自然语言处理之所以现实可行,主要是因为将 人的语言理解过程进行了合理的简化或者限制,而 这些简化与限制可以回避自然语言理解中的难题, 让计算机表面上像人一样完成语言处理任务。下面 以知识问答和多轮对话为例来说明。

人的知识问答可能有这样的处理:得到问题以后,分析问题的内容,理解问题的意思,进行相关的推理,检索相关的知识,决定回答的内容,最后产生回答。现在计算机做知识问答,没有真正的自然语言理解,通常把其中的困难步骤省略简化。计算机的知识问答一般只有以下步骤:分析问题的内容,检索相关的知识,产生回答(见图3)。

人的对话可能有这样的处理:对方发话以后,分析发话的内容,理解发话的意图,进行相关的推理,决定回话的内容,最后产生回话。如果对话是多轮,还有对话管理机制。现在计算机做多轮对话,没有真正的自然语言理解,通常把对话的领域固定,比如订机票、订酒店,并只能在这个领域内进行(见图 4)。

两大策略

我们认为,自然语言处理可以采用任务驱动与 混合模式两大策略。

任务驱动的自然语言处理就是在具体的应用中构建系统。这是现在自然语言处理通常采用的策略,仍可以加强。任务驱动的好处是,可以帮助解决避开自然语言理解之后仍存在的一些问题,而这些问题在实际应用中也相对容易解决。

可以认为自然语言处理经历了三代技术发展演进,第一代基于规则,第二代基于统计,第三代属于现在,基于深度学习。各自有优势和局限。未来的发展方向应该是将这些不同的技术有效地结合起来,即采用混合模式。

任务驱动

图5 人工智能闭环

能,系统性能提高后又能更好地服务于用户,形成一个闭环。人工智能系统可以在这个闭环中不断改进,提升智能水平。自然语言处理也不例外。当任务确定时,就更容易开展基于人工智能闭环的技术开发。

混合模式

统计方法比起规则方法,能够更好地应对不确

定性。人类的智能,包括语言能力,从数学角度来看,最大的特点就是拥有不确定性。事实证明,统计方法是应对不确定性的最有利工具。

统计方法可以从数据中概括出概率统计规律, 构建模型,拥有举一反三的泛化能力。规则方法则 不具备这一能力。

深度学习本质也是统计方法,其特点是复杂非 线性模型的学习。相比之下,传统的统计方法的模 型都是简单的。事实证明,相比传统的统计方法, 深度学习有更强的模式学习能力,能够更好地处理 复杂的模式识别问题。

规则方法可以有效地利用人给定的知识,而统 计方法和深度学习方法,至少是现在,还没有和知 识推理有效地结合起来。

统计方法、深度学习方法都依赖于数据。在没 有数据或数据稀少的情况下,很难有用武之地。而 规则方法,在这种情况下,至少可以派上一定用场。

综上所述,规则、统计(即统计机器学习)、深度学习三种方法都各有优势和局限(见表2)。可以预见,将三者有效地结合,会使人工智能、自然语言处理的水平大幅度提升,这是自然语言处理未来的发展方向。

表2	三种	方	法	的	比较
V-2	-11	//	12	н Л	101/

	应对不确 定性能力	泛化 能力	模式识 别能力	利用知识程度	需要数 据程度
规则方法	弱	弱	中	大	少
(传统)统计方法	强	强	强	少	大
深度学习	强	强	极强	少	极大

华为研究团队最近提出了受教式人工智能 (Educated AI, EAI) 的想法,认为这是未来人工智能的范式。其核心思想是,人工智能系统拥有基本的处理以及学习能力,在用户的指导下不断提高智能水平 [10]。受教式人工智能采用的就是混合模式,因为人的指导有时是以规则的形式呈现的。

自然语言处理新时代

表 3 总结了现在自然语言处理在各个任务上所

能达到的水平,是从不同数据集上得到的实验结果。 可以看出,自然语言处理距离人们的期待还有一定 的差距,现实中这些任务也只是部分实现了实用化。

表3 现在自然语言处理技术达到的水平

任务	场景	准确率		
对话	单轮对话	80%~90%		
	多轮对话	60%~70%		
自动问答	知识问答	70%~80%		
机器翻译	文章翻译	70%~80%(由BLEU值推算)		

可以预见,在不远的将来,随着自然语言处理 技术的进步,这些性能指标会不断提升。事实上, 近年深度学习在自然语言处理的应用,已使机器翻 译、单轮对话有了令人惊喜的进步。计算机能够"自 如地"进行自然语言处理的时代为期不远。人工智 能闭环会推动技术的不断改进,规则、统计、深度 学习的结合会产生更强大的技术。现在我们正在进 人自然语言处理的一个全新的时代!

致谢:

感谢陈晓博士对本文的评论与建议。

李 航

CCF专业会员, CCCF特邀专栏作家。 华为技术有限公司诺亚方舟实验室主 任。主要研究方向为信息检索、自然语 言处理、机器学习等。

HangLi.HL@huawei.com

参考文献

- [1] Pinker S. The Language Instinct, 1994.
- [2] Pinker S. Linguistics as a Window to Understanding the Brain. *Big Think*, 2013.
- [3] Chomsky N. Three models for the description of language [J]. *IRE Transactions on Information Theory*, 1956, 2(3):113-124.
- [4] Taylor J. Linguistic Categorization: Prototypes in Linguistic Theory, 1996.
- [5] Lakoff G, Johnson M. Metaphors We Live by, 1980.
- [6] Lakoff G. What Studying the Brain Tells Us About Arts

Education, 2013.

- [7] Winograd T. Understanding Natural Language [J]. Cognitive Psychology, 1972, 3(1):1-191.
- [8] Clark A. Supersizing the Mind: Embodiment, Action, and Cognitive Extension, 2010.
- [9] Held R, Hein A. Movement-Produced Stimulation in Development of Visually Guided Behavior [J]. Journal of Comparative and Physiological Psychology, 1963, 56(5):872-6.
- [10]李航, 张宝峰, 霍大伟等. 华为研究的畅想: Educated AI. 中国计算机学会通讯, 2016, 12(1): 62-65.