本节内容

多重中断(套娃警告)

单重中断与多重中断

中断服 中断服 中断服 主程序 务程序1 务程序2 务程序3

	单重中断	多重中断
中	关中断	关中断
断隐	保存断点(PC)	保存断点(PC)
隐指 令	送中断向量	送中断向量
	保护现场	保护现场和屏蔽字
中	-**	开中断
断	执行中断服务程序	执行中断服务程序
服务	- <u>-</u>	关中断
程	恢复现场	恢复现场和屏蔽字
序	开中断	开中断
	中断返回	中断返回

中断屏蔽技术

中断屏蔽技术主要用于多重中断,CPU要具备多重中断的功能,须满足下列条件。

- ①在中断服务程序中提前设置开中断指令。
- ② 优先级别高的中断源有权中断优先级别低的中断源。

每个中断源都有一个屏蔽触发器,1表示屏蔽该中断源的请求,0表示可以正常申请,所有屏蔽触发器组合在一起,便构成一个屏蔽字寄存器,屏蔽字寄存器的内容称为屏蔽字。

中断屏蔽技术

中断屏蔽技术主要用于多重中断,CPU要具备多重中断的功能,须满足下列条件。

- ①在中断服务程序中提前设置开中断指令。
- ② 优先级别高的中断源有权中断优先级别低的中断源。

每个中断源都有一个屏蔽触发器,1表示屏蔽该中断源的请求,0表示可以正常申请,所有屏蔽触发器组合在一起,便构成一个屏蔽字寄存器,屏蔽字寄存器的内容称为屏蔽字。

屏蔽字设置的规律:

- 1. 一般用'1'表示屏蔽, '0'表示正常申请。
- 2. 每个中断源对应一个屏蔽字(在处理该中断源的中断服务程序时,屏蔽寄存器中的内容为该中断源对应的屏蔽字)。
- 3. 屏蔽字中'1'越多,优先级越高。每个屏蔽 字中至少有一个'1'(至少要能屏蔽自身的中断)。

中断屏蔽技术

设某机有4个中断源A、B、C、D, 其硬件排队优先次序为A>B>C>D, 现要求将中断处理次序改为D>A>C>B。 1) 写出每个中断源对应的屏蔽字。

2)按下图所示的时间轴给出的4个中断源的请求时刻,画出CPU执行程序的轨迹。设每个中断源的中断服

务程序时间均为20us。

1)	中断源	~	屏 稱			
	中山冰	A	В	C	D	
	A	1	1	1	0	一 中断源A的屏蔽字为1110
	В	0	1	0	0	中断源B的屏蔽字为0100
	C	0	1	1	0	中断源C的屏蔽字为0110
"400 <u>-</u>	D	1		1		中断源D的屏蔽字为1111

中断系统小结

扩展(了解一哈)

IF (Interrupt Flag) 开/关中断标志。当IF=1时,表示开中断,当IF=0时表示关中断

INTR: 可屏蔽中断请求(interrupt request)信号,输入,用来申请一个硬件中断。当 IF=1 时,若 INTR 保持高电平,则在当前指令执行完毕后就进入中断响应周期

NMI: 非屏蔽中断(non-maskable interrupt)输入信号。与INTR 信号类似,但 NMI 中断不必检查 IF 标志位是否为 1。常用于处理电源掉电紧急情况。

INTA: 中断响应(interrupt acknowledge)信号,输出。响应 INTR 输入。该引脚常用来选通中断向量码以响应中断请求。

IF: Interrupt Flag,存在PSW中,8086芯片的PSW如下

8	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				-/\hat{\chi}	OF	DF	IF	TF	SF	ZF		AF	-7/	PF) .	CF

扩展(了解一哈)

8259A芯片——中断控制器

扩展(了解一哈)

> 条件码:

OF (Overflow Flag)溢出标志。溢出时为1,否则置0。

SF (Sign Flag) 符号标志。结果为负时置1,否则置0.

ZF (Zero Flag)零标志,运算结果为0时ZF位置1,否则置0.

CF (Carry Flag)进位标志,进位时置1,否则置0.

AF(Auxiliary carry Flag)辅助进位标志,记录运算时第3位(半个字节)产生的进位置。有进位时1,否则置0.

PF(Parity Flag)奇偶标志。结果操作数中1的个数为偶数时置1,否则置0.

▶ 控制标志位:

DF (Direction Flag) 方向标志,在串处理指令中控制信息的方向。 IF (Interrupt Flag) 中断标志。

TF(Trap Flag)陷阱标志。

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
50	and the second	29)		OF	DF	IF	TF	SF	ZF		AF		PF		CF

- NMI:不可屏蔽中断请求信号。常用于处 理电源掉电紧急情况。
- · INTR:可屏蔽中断请求信号。