I rok, Fizyka Wtorek, 8:00-10:15 Data wykonania pomiarów: 11 marca 2025 r.

> Prowadząca: dr Iwona Mróz

Ćwiczenie nr 14

Wyznaczanie przyspieszenia ziemskiego przy użyciu wahadła rewersyjnego

1 Wstęp teoretyczny

Ruch harmoniczny prosty to rodzaj ruchu drgającego, w którym ciało porusza się wokół położenia równowagi pod wpływem siły proporcjonalnej do wychylenia, ale przeciwnie skierowanej. Wychylenie ciała od położenia równowagi opisuje funkcja:

$$x(t) = A\cos(\omega t + \varphi)$$

gdzie A to amplituda drgań, ω to częstość kołowa $\left(\omega=2\pi f=\frac{2\pi}{T}\right)$, t to czas, a φ to faza początkowa drgań.

Wahadło matematyczne to masa punktowa zawieszona na nierozciągliwej, nieważkiej nici o długości l. Dla małych kątów wychylenia, jej ruch można przybliżyć ruchem harmonicznym prostym o okresie:

$$T = 2\pi \sqrt{\frac{l}{g}}$$

gdzie q to przyspieszenie ziemskie.

Wahadło fizyczne to dowolne ciało sztywne zawieszone tak, że może się wahać dookoła pewnej osi. Okres drgań wahadła fizycznego wynosi:

$$T = 2\pi \sqrt{\frac{I}{mgl_s}}$$

gdzie I to moment bezwładności ciała względem osi obrotu, m to masa ciała, a l_s to odległość środka masy od osi obrotu. Wprowadzając pojęcie długości zredukowanej $l_0 = \frac{I}{ml_s}$, okres wahadła fizycznego można zapisać analogicznie do wahadła matematycznego:

$$T = 2\pi \sqrt{\frac{l_0}{g}} \tag{1}$$

Wahadło rewersyjne to specjalnie skonstruowane wahadło fizyczne posiadające dwie osie obrotu, dla których okresy wahań są jednakowe. Jeśli odległość między tymi osiami wynosi L, to zgodnie z twierdzeniem Steinera, dla obu osi musi zachodzić warunek $l_0 = L$.

Przyspieszenie ziemskie można wyznaczyć, mierząc okres drgań T wahadła rewersyjnego i odległość L między osiami obrotu, a następnie korzystając z przekształconego wzoru:

$$g = 4\pi^2 \frac{L}{T^2} \tag{2}$$

Metoda ta pozwala na wyznaczenie wartości g bez konieczności określania momentu bezwładności i położenia środka masy wahadła.

Podstawy teoretyczne zostały opracowane w oparciu o książkę Ćwiczenia laboratoryjne z fizyki [1], ze szczególnym uwzględnieniem rozdziału 17 zatytułowanego Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego.

2 Opis doświadczenia

W ramach przeprowadzonego eksperymentu wyznaczano wartość przyspieszenia ziemskiego przy użyciu wahadła rewersyjnego oraz wahadła matematycznego. Przygotowane stanowisko składało się z wahadła rewersyjnego z dwoma ostrzami $(O_1 i O_2)$ oraz przesuwnymi krążkami $(K_1 i K_2)$, a także wahadła matematycznego zamontowanego na tym samym statywie.

Pomiary wykonano w następujących etapach:

- 1. Wahadło rewersyjne zostało zawieszone na ostrzu O_1 , tak aby krążek K_1 znajdował się nad punktem podparcia, a krążek K_2 poniżej. Następnie ustawiono krążek K_2 w początkowej odległości 4 cm od punktu podparcia.
- 2. Dla każdego położenia krążka K_2 (zmienianego co 4 cm) zmierzono czas 20 pełnych wahnięć wahadła o małej amplitudzie i obliczono odpowiedni okres drgań T.
- 3. Następnie wahadło zostało zawieszone na ostrzu O_2 i powtórzono pomiary czasu 20 wahnięć dla tych samych położeń krażka K_2 .
- 4. Na podstawie uzyskanych danych sporządzono wykresy zależności T=f(x) dla obu ustawień wahadła, gdzie x oznacza odległość krążka K_2 od punktu podparcia. Znajdując punkt przecięcia obu krzywych, wyznaczono wartości x_0 oraz T_0 .
- 5. W celu weryfikacji wyznaczono empirycznie okres drgań wahadła dla ustawienia krążka w położeniu x_0 , zawieszając wahadło na dowolnym ostrzu.
- 6. Dodatkowo przeprowadzono pomiar czasu 20 wahnięć wahadła matematycznego o długości L (równej odległości między ostrzami O_1 i $O_2=0.4$ m) i wyznaczono jego okres drgań T_M .
- 7. Dla położeń pośrednich krążka K_2 (29-37 cm) wykonano dokładniejsze pomiary w odstępach co 1 cm, aby precyzyjniej określić punkt przecięcia krzywych.
- 8. W celu oszacowania niepewności pomiarowej przeprowadzono serię 10 pomiarów czasu 20 wahnięć dla stałej odległości krążka $x=20~{\rm cm}.$

Uzyskane dane posłużyły do wyznaczenia przyspieszenia ziemskiego na dwa sposoby: metodą wahadła rewersyjnego oraz metodą wahadła matematycznego, z wykorzystaniem odpowiednich wzorów (równanie 2) oraz do analizy niepewności pomiarowych obu metod.

3 Opracowanie wyników pomiarów

3.1 Tabele pomiarowe

x [cm]	t [s] dla O_1	t [s] dla O_2
4	25,172	25,098
8	24,551	24,037
12	24,192	23,001
16	24,022	21,997
20	24,035	21,119
24	24,197	21,463
28	24,461	20,24
29	24,537	20,427
30	24,627	20,636
31	24,730	20,931
32	24,825	21,337
33	24,932	21,924
34	25,043	22,65
35	25,153	23,65
36	25,272	24,916
37	25,402	26,724
38	25,531	26,724

Tabela 1: Czas 20 wahnięć dla różnych ustawień krążka dla obu osi wahadła rewersyjnego.

x [cm]	T [s] (dla osi O_1)	T [s] (dla osi O_2)
4	1,2586	1,2549
8	1,22755	1,20185
12	1,2096	1,15005
16	1,2011	1,0997
20	1,20175	1,05595
24	1,20985	1,07315
28	1,22305	1,012
29	1,22685	1,04655
30	1,23135	1,02135
31	1,2365	1,0318
32	1,24125	1,06685
33	1,2466	1,0962
34	1,25215	1,1325
35	1,25765	1,1825
36	1,2636	1,2458
37	1,2701	1,3362
38	1,27655	1,3362

Tabela 2: Okresy drgań wahadła rewersyjnego dla różnych ustawień krążka dla obu osi.

Nr	$t(x = 20 \mathrm{cm}) [\mathrm{s}]$
1.	21,132
2.	21,140
3.	21,136
4.	21,135
5.	21,135
6.	21,136
7.	21,134
8.	21,130
9.	21,135
10.	21,133

Tabela 3: Czas 20 wahnięć dla odległości krążka 20 cm.

Typ wahadła	t(x = 37.5 cm) [s]	
Rewersyjne (Oś O1)	25,449	
Rewersyjne (Oś O2)	25,647	
Matematyczne	25,766	

Tabela 4: Czas 20 wahnięć dla obu wahadeł przy $x=37,5~\mathrm{cm}.$

3.2 Okres drgań wahadła rewersyjnego

Wyznaczono punkt przecięcia obu prostych. Dla odległości odpowiadającej temu punktowi (x=37,5 cm) wykonano pomiary czasu dla obu osi, a wyniki umieszczono w tabeli 4. Czasy dla obu osi były bardzo podobne, lecz nieznacznie różne, więc końcowy okres drgań wahadła rewersyjnego ustalono jako średnią arytmetyczną tych dwóch czasów, podzieloną przez liczbę wahnięć. Otrzymana wartość wyniosła $T_0=1.280375 \text{ s.}$

4 Wyznaczanie wartości g

4.1 Wahadło rewersyjne

Na podstawie wartości z tabeli 4 wyznaczono T_1 oraz T_2 , a następnie obliczono $T_0 = 1,28s$ wyrażone wzorem:

$$T_0 = \frac{T_1 + T_2}{2}$$

gdzie:

- T_1 okres dla osi O_1 ,
- T_2 okres dla osi O_2 .

Następnie zastosowano wzór

$$g = 4\pi^2 \frac{l_0}{T^2} \tag{3}$$

gdzie:

- $l_0 = 0.400 \text{ m}$
- $T_0 = 1.28 \text{ s}$

Do wzoru zostały podstawione następujące wartości:

$$g = 4\pi^2 \frac{0,400}{1,28^2} = 9,629 \frac{m}{s^2} \tag{4}$$

4.2 Wahadło matematyczne

Na podstawie tabeli 4 wyznaczono T_0 wyrażone wzorem:

$$T_0 = \frac{t_3}{20} = 1,29 \,\mathrm{s} \tag{5}$$

gdzie:

- T_0 czas jednego wahnięcia,
- t_3 czas dla N=20 wahnięć.

Następnie zastosowano wzór

$$g = 4\pi^2 \frac{l_0}{T_2^2} = 9,48 \frac{m}{s^2} \tag{6}$$

gdzie:

- $l_0 = 0.400 \text{ m}$
- $T_3 = 1.29 \text{ s}$

5 Ocena niepewności pomiaru

Wszystkie obliczenia zostały wykonane, wykorzystując język Python z biblioteką numpy stosując wzory opisane w tej sekcji.

5.1 Niepewność pomiaru czasu

Do obliczenia niepewności pomiaru czasu wykonano 10 dodatkowych pomiarów czasu 20 wahnięć wahadła rewersyjnego dla stałej odległości między krążkami x=20cm. Wartości znajdują się w tabeli 3. Obliczono całkowitą niepewność standardową $u_A(t)$ na podstawie wzoru 7, gdzie $u_A(x)$ oznacza niepewność standardową typu A obliczoną korzystając ze wzoru 8, a $u_B(x)$ oznacza niepewność standardową typu B obliczoną ze wzoru 9. Niepewność wzorcowania $\Delta_d t$ dla zastosowanego stopera wynosi 0.001 s.

$$u_c(x) = \sqrt{u_A^2 + u_B^2} \tag{7}$$

$$u_A(x) = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}$$
 (8)

$$u_B(x) = \frac{\Delta_d x}{\sqrt{3}} \tag{9}$$

Podstawiając wartości otrzymano:

$$u_A(t) = \sqrt{\frac{1}{9}[(21.132 - 21.135)^2 + (21.140 - 21.135)^2 + \dots + (21.133 - 21.135)^2]} = 0.000267 \,\mathrm{s}$$

$$u_B(t) = \frac{0.001}{\sqrt{3}} = 0.000577 \,\mathrm{s}$$

$$u_c(t) = \sqrt{0.000267^2 + 0.000577^2} = 0.00273 \,\mathrm{s}$$

5.2 Niepewność pomiaru okresu

Niepewność okresu obliczono na podstawie praw przenoszenia niepewności:

$$u_c(E) = \sqrt{\sum_{k=1}^{K} \left(\frac{\partial E}{\partial x_k}\right)^2 u^2(x_k)}.$$
 (10)

Okres T wyrażony jest wzorem:

$$T = \frac{t}{N}$$

gdzie N=20 to liczba pełnych okresów. Przekształcając wzór, otrzymujemy:

$$u_c(T) = \sqrt{\left(\frac{\partial}{\partial t}T\right)^2 u^2(t)} = \sqrt{\left(\frac{\partial}{\partial t}\frac{t}{N}\right)^2 u^2(t)} = \sqrt{\frac{1}{N^2} \cdot u^2(t)} = \frac{u_c(t)}{N} = \frac{0.00273}{20} = 0.0001368 \,\mathrm{s}$$

5.3 Niepewność pomiaru długości wahadła

Długość wahadła matematycznego oraz odległość między dwiema osiami wahadła rewersyjnego została zmierzona jednokrotnie za pomocą miarki o niepewności wzorcowania równej $\Delta_d x = 0.01$ mm. Stąd, korzystając z wzoru 9 na niepewność typu B, obliczono wartość niepewności pomiaru długości wahadła, która wyniosła: $u_B(L) = 0.00058$ m.

5.4 Niepewność pomiaru przyspieszenia ziemskiego

Niepewność przyspieszenia ziemskiego obliczono jako niepewność maksymalną Δg na podstawie wzoru z instrukcji do ćwiczenia [2]:

$$\left| \frac{\Delta g}{g} \right| = \left| \frac{u(L)}{L} \right| + \left| 2 \frac{u(T)}{T} \right| \Rightarrow \Delta g = |g| \cdot \left(\left| \frac{u(L)}{L} \right| + 2 \cdot \left| \frac{u(T)}{T} \right| \right) \tag{11}$$

Podstawiając wartości dla wahadła rewersyjnego do powyższego wzoru, otrzymano:

$$\Delta g_{rew} = 9.629 \cdot \left(\frac{0.00058}{0.4} + 2 \cdot \frac{0.0001368}{1.28} \right) = 0.016 \frac{m}{s^2}$$

Podstawiając wartości dla wahadła matematycznego do powyższego wzoru, otrzymano:

$$\Delta g_{mat} = 9.48 \cdot \left(\frac{0.00058}{0.4} + 2 \cdot \frac{0.0001368}{1.29}\right) = 0.016 \frac{m}{s^2}$$

Typ wahadła	$\Delta g \left[\frac{m}{s^2} \right]$
Rewersyjne	0.016
Matematyczne	0.016

Tabela 5: Wartości niepewności przyspieszenia ziemskiego dla obu typów wahadeł.

6 Wnioski

Na podstawie przeprowadzonych pomiarów i analizy danych sformułowano następujące wnioski:

- 1. Wyznaczona wartość przyspieszenia ziemskiego wynosi $g_{rew} = 9.629$, $\Delta g_{rew} = 0.016 \frac{m}{s^2}$ (metodą wahadła rewersyjnego) oraz $g_{mat} = 9.48$, $\Delta g_{mat} = 0.016 \frac{m}{s^2}$ (metodą wahadła matematycznego). Są to wartości zbliżone do wartości tablicowej $g = 9.81 \frac{m}{s^2}$.
- 2. Wykres zależności T = f(x) dla obu osi obrotu wahadła rewersyjnego potwierdza teoretyczne przewidywania. Punkt przecięcia krzywych przy $x_0 = 37,5$ cm odpowiada położeniu, w którym okresy drgań są równe dla obu osi.
- 3. Różnica między zmierzonymi czasami drgań dla obu osi w punkcie przecięcia ($t_{O1}=25,449$ s, $t_{O2}=25,647$ s) wynika z niedokładności metody wyznaczenia tego punktu (rysowanie linii na kartce) i mogłaby zostać zminimalizowana stosując bardziej precyzyjne metody matematyczne.
- 4. Zaletą metody wahadła rewersyjnego jest brak konieczności dokładnego określania położenia środka masy oraz momentu bezwładności wahadła, co eliminuje potencjalne źródła błędów systematycznych.

7 Wykresy

Wykres został załączony na końcu sprawozdania.

Literatura

- [1] Tadeusz Dryński. *Ćwiczenia laboratoryjne z fizyki*. Państwowe Wydawnictwo Naukowe, Warszawa, 1976.
- [2] Instytut Fizyki Doświadczalnej UWr. Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego. https://wfa.uwr.edu.pl/wp-content/uploads/sites/216/2025/03/Mech.14-2024.pdf, 2023. Wstęp do ćwiczenia nr 14, I Pracownia Fizyczna.