I. Part A:

Consider the function g defined on \mathbb{R} as $g(x) = (2 - x)e^x - 2$.

Denote by (G) its representative curve in an orthonormal system $(0; \vec{i}, \vec{j})$.

1. Determine $\lim_{x\to-\infty} g(x)$, and deduce an asymptote to (G).

2. Determine $\lim_{x\to +\infty} g(x)$ and calculate g(2).

3. Calculate g'(x) and set up the table of variations of g(x).

4. a. Show that the equation g(x) = 0 admits exactly two roots one of them is 0.

b. Denote by α the second root of the equation g(x) = 0. verify that $1.58 < \alpha < 1.6$.

5. Copy and complete the table of sign of g.

X	-∞	0	α	+∞
g(x)		0	0	

6. Write the equation of tangent (T) to (G) at the origin O.

7. Draw (T) and (G).

Part B:

Consider the function f defined on \mathbb{R} as $f(x) = \frac{e^{x}-2}{e^{x}-2x}$.

Denote by (C) its representative curve in an orthonormal system $(0; \vec{\imath}, \vec{j})$.

1. Show that the lines of equations y = 0 and y = 1 are asymptote to (C).

2. Show that $f'(x) = \frac{2g(x)}{(e^x - 2x)^2}$, then set up the table of variations of f.

3. Prove that $f(\alpha) = \frac{1}{\alpha - 1}$.

4. Determine the points of intersection of (C) with:

a. The axis of abscissas.

b. The line of equation y = 1.

5. Draw (C).