Improving the Reliability of Next Generation SSDs using WOM-v Codes

Shehbaz Jaffer, Kaveh Mahdaviani and Bianca Schroeder

Awarded Best Paper

FAST 22

Review: SSD Architecture

- > Reading and writing in units of pages
- > Erase in units of blocks
- > Parallel operation in units of different blocks in the same cluster

SSD Storage Principle

- ➤ NAND Flash storage method:
 - Based on MOSFET: Determine whether the stored bit is 0 or 1 based on the voltage

- MOSFET divides voltage range in 1.8~3.3V and discharges over time
- Voltage can only be increased (Program) and reset to zero (Erase)
- The Problem: Fine-grained voltage control leads to reduced lifetime and performance

Motivation

- QLC has entered the data center, PLC is on the way
- As process becomes more advanced, the P/E cycle limit is getting smaller

Reduced Program and Erase (P/E) cycles by Overwrite between Erase: Write Once Memory Code

Binary-WOM Codes

Erase

> Work on bit-level, each bit can only be written in one direction

- Each group could used for twice before erase
- Each voltage in QLC can only be increased and cannot be modified by a single bit

WOM-v Codes

- ➤ Voltage-based WOM Codes
 - WOM-v (k,N) Codes set N to bit number per cell, and k to 1/2/3 for different configuration
 - Tradeoff between coding efficiency and erasing times

WOM-v Codes

Optimize WOM-v Codes

- > Share code words
 - In WOM-v(2,4) + 1 GEN
 - In WOM-v(1,4) + 7 GEN
- More generations

Optimize WOM-v Codes

- > Same-generation transitions
 - Only new data has a lower voltage in the same generation then migrate to new generation
- Writeable times > generation number

WOM-v(3,4)

DATA VOLTAGE LEVEL

Optimize WOM-v Codes

- > Use ECC to increase pages write between erase
 - The unit of write is pages. When a cell in the page reaches the maximum generation, it can't be overwritten
 - Observation I: The generation of each cell in each page is relatively average, and only a few cells will reach max generation first
 - Observation II: SSD itself uses ECC to solve bit errors, and ECC is overprovisioned in the early stage of SSD life
- ➤ Mark the cell as invalid, and read it through ECC
 - Faster recovery than random bit errors due to location determination

Deploy WOM-v Codes to QLC SSDs

- Use LightNVM Module to control SSD flash chips
 - One of the Open Channel SSD implementation in Linux Kernel

Optimizations

➤ No-Read Mode

- Disable same-generation transition to reduce read-before-write performance overhead
- Trade-off between P/E cycles and SSD write performance

➤ GC_OPT Mode

- WOM-v codes allow many pages in EU to be rewritten, but the GC will copy them for reclaim space
- During GC, the contents of valid pages are not copied to other locations, and not erase the blocks with valid pages

Evaluation

- > Platforms
 - FEMU simulated SSDs
 - Add 445 LOC in LightNVM and 240 LOC in FEMU
- > Traces
 - Block traces:

Source	# Traces	Medium	Year
Alibaba [18]	814	SSD	2020
RocksDB/YCSB Trace [25, 30]	1	SSD	2020
Microsoft Cambridge [22]	11	HDD	2008
Microsoft Production [15]	9	HDD	2008
FIU [16]	7	HDD	2010

Erase Operation Reduction

4.4 - 11.1x reduction in erase cycles

Write Performance

< 8% write performance overhead

Read Performance

0.6-22% read performance overhead

Figure 11: *MSR-Production DAPL*

Figure 10: *MSR-Cambridge Web1*

Figure 12: *Alibaba 3*

Extend to MLC SSDs

- Lifespan: MLC(10K)> QLC(3K)
- MLC: 2-bit per cell
- QLC with WOMv(2,4): 2-bit per cell

WOM-v(2,4) QLC endurance > MLC endurance

Conclusion

- > The Problem: The trade-off between SSD life and capacity
- ➤ Main Idea: Map different voltage values to the same content to increase the number of write generations to the same cell
- > Key Designs:
 - WOM-v with share code words for more write GEN on each cell
 - Same-generation transition to write more times in same GEN
 - ECC-based block erase reduction by mark cell with max GEN as invalid
- ➤ Result: 4.4-11.1x reduced erase operations with minimal performance overheads.