UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i: MEK 2200/4200 — Viskøse væsker

og elastiske stoffer.

Eksamensdag: Mandag 4. desember 2006.

Tid for eksamen: 14.30 - 17.30.

Oppgavesettet er på 3 sider.

Vedlegg: Ingen.

Tillatte hjelpemidler: Rottmann: Matematische Formel-

samlung, godkjent kalkulator.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Oppgave 1.

Figur 1: Bøyning av stav.

Kunnskap om bøyning av bjelker og staver har stor betydning for ingeniører som dimensjonerer konstruksjoner. Figuren vise en stav/bjelke der midtlinjen ligger langs x-aksen når det ikke er noen belastning. Vertikalen er langs

(Fortsettes side 2.)

z-retning. Det er ingen tyngde. Bjelken bøyes i xz-planet hvor forskyvningen av senterlinjen i bjelken, w(x), er regnet fra x-aksen. For hvert segment av staven/bjelken kan vi definere en krumningsradius R bestemt ved $\frac{1}{R} = -\frac{d^2w}{dx^2}$ (skal ikke vises). Man kan vise at tøyningen i x-retning er

$$\epsilon_{xx} = \frac{z}{R} \tag{1}$$

- a) La E være Youngs elastisitetsmodul. Finn spenningen P_{xx} .
- b) Spenningskraften setter opp et moment med hensyn på senterflatens skjæringslinje med tverrsnittsflaten som er parallell med y-aksen (som peker inn i papirplanet). Finn dette momentet.
- c) Gi en utledning av (1).

Figur 2: Fordeling av tøyning e_{xx} ved bøyning av en laminert plate.

Laminater – komposittmaterialer – er satt sammen av stive og myke materialer som vist på figuren. Komposittmaterialer brukes blant annet i båter/skip, fly, ski, og mye annet. Vi antar at Hookes lov gjelder for stivt materiale $\mathbf{1}$, med Youngs modul E_1 , og for mykt materiale $\mathbf{2}$, med Youngs modul E_2 , som vist i figuren, med $E_1 > E_2$. Laminatet bøyes. Vi antar at tøyningen i x-retning er gitt ved (skal ikke vises)

$$\epsilon_{xx} = \frac{z}{R}$$

- d) Finn spenningsfeltet P_{xx} . Skissér spenningsfeltet. (P_{xx} kan være diskontinuerlig ved $\pm z_1$.)
- e) Finn maksimal skjærspenning i laminatet. (To-dimensjonal analyse.)

Oppgave 2.

En væskefilm med tykkelse h renner nedover et skråplan. Dette danner vinkelen α med horisontalen. Bevegelsen foregår i tyngdefeltet. Skråplanet har hastighet u_0 i skråplanets retning, som antydet på figuren. Strømningen er inkompressibel, stasjonær, væsken er Newtonsk, tettheten er ρ , dynamisk viskositetskoeffisient er μ . Det er like forhold i x-retningen. Det er ingen skjærspenning eller normalspenning ved z = h. Tyngdeakselerasjonen er g.

- a) Bestem hastighetsprofilet og u_0 når vi krever at volumstrømmen er lik null.
- b) Bestem dissipasjonen i hvert snitt x = konstant.
- c) Finn skjærspenningens arbeid pr. tidsenhet ved veggen.
- d) Finn trykket som funksjon av z.
- e) I sirkulær Couettestrøm strømmer Newtonsk væske mellom to konsentriske, roterende sylindre. Bestem hastighetsprofilet. Bestem den lokale dissipasjonen. Innfør de notasjoner og symboler som er nødvendig. Hint: Anta et hastighetsfelt på formen $\boldsymbol{v} = v(r)\boldsymbol{i}_{\theta}$, der r er radiell avstand og \boldsymbol{i}_{θ} er rettet langs sylinderkonturen. Da er:

$$abla^2 \boldsymbol{v} = \left(\frac{d^2}{dr^2} + \frac{1}{r}\frac{d}{dr} - \frac{1}{r^2}\right)v(r)\boldsymbol{i}_{\theta}.$$

SLUTT