DECISION TREE ALGORITHM USING IRIS DATASET

SUBMITTED BY AKSHAYA

IMPORTING LIBRARIES

```
In [44]:
```

```
import pandas as pd
import numpy as np
!pip install xlrd
from sklearn.datasets import load_iris
import seaborn as sns
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.preprocessing import StandardScaler
```

Requirement already satisfied: xlrd in c:\users\hp\anaconda3\lib\site-packages (1.2.0)

IMPORT DATASET

In [45]:

```
iris=pd.read_csv("C:Documents\Iris_dataset.csv")
iris
```

Out[45]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

```
In [46]:
```

```
iris=iris.drop('Id',axis=1)
```

In [47]:

```
iris.head()
```

Out[47]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

In [48]:

```
iris.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

In [49]:

```
iris.describe()
```

Out[49]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

In [50]:

```
iris.isnull().sum()
```

Out[50]:

SepalLengthCm 0
SepalWidthCm 0
PetalLengthCm 0
PetalWidthCm 0
Species 0
dtype: int64

In [51]:

```
print(iris.Species.nunique())
print(iris.Species.value_counts())
```

Iris-versicolor 50
Iris-setosa 50
Iris-virginica 50

Name: Species, dtype: int64

DATA VISUALIZATION

In [57]:

```
sns.pairplot(iris)
sns.pairplot(iris, hue='Species', markers=['o', 's', 'D'])
```

Out[57]:

<seaborn.axisgrid.PairGrid at 0x263f4b319a0>

In [60]:

```
#extracting the x and y variables

x=iris.iloc[:,:-1].values
y=iris.iloc[:,-1].values
x
y
```

Out[60]:

```
array(['Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-setosa',
                'Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-setosa',
               'Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-setosa',
               'Iris-setosa', 'Iris-setosa', 'Iris-setosa',
               'Iris-setosa', 'Iris-setosa', 'Iris-setosa',
               'Iris-setosa', 'Iris-setosa', 'Iris-setosa',
               'Iris-setosa', 'Iris-setosa', 'Iris-setosa',
               'Iris-setosa', 'Iris-setosa', 'Iris-setosa',
               'Iris-setosa', 'Iris-setosa', 'Iris-setosa',
               'Iris-setosa', 'Iris-setosa', 'Iris-setosa',
               'Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-setosa',
               'Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-versicolor', 'Iris-versicolor',
               'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
               'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
              'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versico
               'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
               'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
               'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
```

```
'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
        'Iris-virginica', 'Iris-virginica'], dtype=object)
Split the dataset into train and testing
In [61]:
from sklearn.model selection import train test split as tts
x train,x test,y train,y test=tts(x,y,test size=0.2,random state=18)
x train
y_train
Out[61]:
array(['Iris-virginica', 'Iris-virginica', 'Iris-versicolor',
        'Iris-virginica', 'Iris-virginica', 'Iris-setosa',
       'Iris-versicolor', 'Iris-virginica', 'Iris-versicolor', 'Iris-virginica', 'Iris-setosa', 'Iris-versicolor',
       'Iris-versicolor', 'Iris-setosa', 'Iris-virginica',
       'Iris-versicolor', 'Iris-virginica', 'Iris-setosa',
        'Iris-versicolor', 'Iris-versicolor', 'Iris-virginica',
        'Iris-versicolor', 'Iris-setosa', 'Iris-setosa', 'Iris-virginica',
        'Iris-virginica', 'Iris-versicolor', 'Iris-virginica',
       'Iris-setosa', 'Iris-versicolor', 'Iris-virginica',
       'Iris-versicolor', 'Iris-setosa', 'Iris-virginica', 'Iris-setosa',
       'Iris-versicolor', 'Iris-setosa', 'Iris-virginica', 'Iris-virginica', 'Iris-setosa', 'Iris-virginica',
        'Iris-virginica', 'Iris-virginica', 'Iris-setosa',
       'Iris-versicolor', 'Iris-setosa', 'Iris-versicolor',
       'Iris-versicolor', 'Iris-setosa', 'Iris-virginica', 'Iris-setosa',
       'Iris-versicolor', 'Iris-virginica', 'Iris-versicolor',
        'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
        'Iris-virginica', 'Iris-virginica', 'Iris-setosa',
        'Iris-virginica', 'Iris-setosa', 'Iris-setosa', 'Iris-versicolor',
       'Iris-virginica', 'Iris-setosa', 'Iris-virginica',
       'Iris-virginica', 'Iris-setosa', 'Iris-setosa',
       'Iris-virginica', 'Iris-versicolor', 'Iris-versicolor',
        'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',
        'Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-versicolor',
       'Iris-versicolor', 'Iris-virginica', 'Iris-setosa', 'Iris-setosa',
       'Iris-setosa', 'Iris-virginica', 'Iris-setosa', 'Iris-versicolor',
       'Iris-setosa', 'Iris-versicolor', 'Iris-setosa', 'Iris-virginica',
        'Iris-versicolor', 'Iris-virginica', 'Iris-setosa', 'Iris-versicolor', 'Iris-setosa', 'Iris-versicolor',
        'Iris-versicolor', 'Iris-setosa', 'Iris-virginica',
       'Iris-virginica', 'Iris-versicolor', 'Iris-setosa',
       'Iris-virginica', 'Iris-versicolor', 'Iris-virginica',
       'Iris-versicolor', 'Iris-versicolor', 'Iris-virginica',
        'Iris-virginica', 'Iris-versicolor', 'Iris-virginica',
        'Iris-setosa', 'Iris-versicolor', 'Iris-versicolor',
       'Iris-virginica', 'Iris-setosa', 'Iris-setosa'], dtype=object)
```

In [62]:

```
#check the size of the train and test
print(x train.shape)
print(x_test.shape)
print(y_train.shape)
print(y test.shape)
(120, 4)
(30, 4)
```

(120,)(30,)

Defining the Decision Tree Algorithm

```
In [64]:
```

```
from sklearn.tree import DecisionTreeClassifier
dtc = DecisionTreeClassifier()
dtc.fit(x_train,y_train)
print('Decision Tree Classifer Created Successfully')
```

Decision Tree Classifer Created Successfully

```
In [65]:
```

```
y_predict = dtc.predict(x_test)
```

Constructing confusion matrix

In [66]:

```
from sklearn.metrics import confusion_matrix
confusion_matrix(y_test, y_predict)
```

Out[66]:

In [67]:

```
from sklearn import tree
import matplotlib.pyplot as plt
```

In []:

```
Visualizing the Decision tree
```

In [69]:

```
fn=['sepal length (cm)','sepal width (cm)','petal length (cm)','petal width (cm)']
cn=['setosa','versicolor','virginica']
fig, axes = plt.subplots(nrows = 1, ncols = 1, figsize = (5,5), dpi = 400)
tree.plot_tree(dtc, feature_names = fn, class_names = cn, filled = True);
```


