

Bei Fragen: martin.bachmann@dlr.de

- Anfertigung gemäß den Richtlinien zum Wissenschaftlichen Arbeiten am Lehrstuhl
- Umfang: mind. 10-15 Seiten (incl. Deckblatt, Inhaltsverzeichnis, Literaturliste)
- Verwendung von mind. drei Zitaten von relevanten Journal Papers (z.B. zur Analyse von Bodenfeuchte mit hyperspektraler Fernerkundung, Messmethoden im Feld etc.)
- Abgabe: **bis 30.11.2022**
- Abgabe per eMail (.doc oder .pdf) an martin.bachmann@dlr.de
 WICHTIG: wg. Spam-Filter bitte nur Uni-Mailadressen verwenden!

1) Beschreibung der spektralen Variabilität von Vegetation

- => Messungen der Datei AUSWERTUNG_Arten.slb verwenden
- => Inhalt der Spektralbibliothek: 4 einzelne Messungen je Art (Linde, Kastanie und Wilder Wein)
- a) Abbildung mit den 3 Arten
- b) In welchen Wellenlängenbereichen unterscheiden sich grüne & welke Blätter, wo ist die spektrale Variabilität hoch, wo klein?
- c) Interpretation: welche Pflanzeninhaltstoffe & Strukturen wirken sich jeweils aus?

2) Zusammenhang LAI – Spektralmessungen

- => Messungen der Datei AUSWERTUNG_LAI.slb verwenden
- a) Abbildung der Spektren der LAI-Serie
- b) Interpretation: wie wirkt sich der LAI auf die Spektren aus
- c) Berechnung des NDVIs oder eines anderen Vegetationsindex, Abbildung Index \Leftrightarrow LAI
- d) Beschreibung des Zusammenhangs

3) Regression der Bodenfeuchte

- => Messungen in AUSWERTUNG_Bodenwasser_corrected.slb
- => jeweils 5 Messungen pro Wasserzugabe,

Zuordung s. Tabelle:

- => bitte die 125 einzelnen Messungen verwenden!
- => optional, wenn Zeit & Lust: zusätzlich auch je 5 Messungen mitteln
- a) Abbildung aller 125 Spektren in einem Plot
- b) Regressionsanalyse zwischen Anzahl der Wasserzugaben und Reflexionsmerkmalen in Python / IDL / R / Excel / ...
 - dies kann ein Spektraler Index, der Reflexionswert eines einzelnen Bandes, oder eine PLS-Regression sein
- c) Angabe des Gütemaßes für die Regression, ggf. Regressionsparameter
- d) Plot, welcher die durch dieses Modell berechnete Wassermenge mit der tatsächlichen vergleicht ("predicted water" Vs. "measured water")
- e) Interpretation des Ergebnisses

Anmerkung – die Erzeugung des "Wasser-Referenz" geht auch ohne viel Tippen:

```
water = np.asarray([0,1,2,3]) # hier im Beispiel sinds 4 Messungen als Numpy-Vektor
water = np.repeat(water, 5) # jedes Element wird hierdurch 5x wiederholt
print(water)
=> [0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3]
```

Messung	Anzahl Sprüher insg.
0-4	trocken
5-9	1
10-14	2
15-19	3
20-24	4
25-29	5
30-34	6
35-39	7
40-44	8
45-49	9
50-54	10
55-59	11
60-64	12
65-69	13
70-74	14
75-79	15
80-84	17
85-89	19
90-94	21
95-99	24
100-104	27
105-109	30
110-114	33
115-119	36
120-124	49

