Nom:	Matricule:	
Mardi le 8 octobre 1996; Durée: 14h40 à 15l	h20	
Aucune documentation permise; aucune calcu	latrice permise.	

Problème 1 (1 point sur 5)

Donner les transformées de Fourier des fonctions suivantes en sachant que: $f(t) \Leftrightarrow F(\omega)$.

Aucun crédit partiel.

a-
$$F(t)$$

b-
$$f(t+a)$$

Nom:	Matricule: .

Problème 2 (1 point sur 5)

On suppose que
$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{\sin(\omega) - \omega \cos(\omega)}{\omega^3} e^{j\omega t} d\omega$$

Pour chacun des 3 énoncés suivants encadrez la bonne réponse (vrai ou faux).

Aucun crédit partiel.

a- La transformée de Fourier de
$$f(t)$$
 est $\frac{\sin(\omega) - \omega \cos(\omega)}{\omega^3}$.

VRAI

FAUX

b-
$$f(t)$$
 est réelle.

VRAI

FAUX

c-
$$f(t)$$
 est impaire.

VRAI

FAUX

Problème 3 (3 points sur 5)

a) 1 point

Calculer la transformée de Fourier de la fonction $f(t) = \begin{cases} t & \text{si } -1 \le t \le 1 \\ 0 & \text{sinon} \end{cases}$.

b) **1 point**

En déduire la transformée de Fourier de la fonction $g(t) = \sin(\omega_0 t) f(t)$.

c) **1 point**

Quelle est la vitesse de convergence asymptotique de la fonction f(t)?