

UNIVERSIDADE FEDERAL DE SANTA CATARINA

Aluno: Aléxei Felipe Paim

Matrícula: 20250264

BLU3040-08754 (20222) - Visão Computacional em Robótica

Laboratório 3

2. Descrição do problema:

Neste laboratório de Visão computacional em Robótica é proposto que o aluno produza um algoritmo que seja capaz de realizar a detecção de alguns objetos predeterminados, tais como as ferramentas mecânicas alicate, Chave de fenda e Chave de boca. Para isso será necessário que o aluno desenvolva e aplique os conhecimentos obtidos nas aulas de extração de características de imagens, assim, o processo que deverá ser realizado está exemplificado na figura 1.

Figura 1 : Diagrama básico do sistema de reconhecimento de objetos que deve ser implementado..(MATSUO, 2022)

Descrição do algoritmo proposto:

Primeiramente, para que seja implementado o sistema básico de reconhecimento de objetos, é necessário a obtenção de imagens que sirvam de referência, para que então a partir destas seja realizado extração de características que permitam uma comparação entre as imagens. a figura 2, ilustra as três imagens de referências usadas neste sistema, com suas respectivas imagens binarizadas e curvas de distância.

Figura 2 : Imagens de referência com binarização e curva de distância

Para que seja realizado os processamentos digitais de imagens e a extração de característica, é criado uma função denominada "f_limiar_pxborda_cd" que recebe como parâmetro uma imagem RGB e um valor de Limiar. Esta função então converte a imagem para escala de cinza e posteriormente após uma limiarização para o tipo binário e então realiza as operações de morfologicas de dilatação e fechamento como mostra a figura 3.

Figura 3 : Processamento digital das imagens do sistema

Seguindo na mesma função, com a imagem processada faz-se o uso função "f_pixels_of_edge", disponibilizado pelo professor Marcos Matsuo, que realiza a detecção de borda atribuindo as posições de cada pixel de borda a dois vetores, sendo um com as posições no eixo vertical e outra com as posições no eixo horizontal. Logo após, com esses dois vetores e utilizando a função disponibilizada, "f_interpolation" é realizado uma interpolação dos valores que então cria uma nova amostragem de pontos em torno do contorno da região dos pixels de borda.

No entanto, para que seja possível obter a curva de distância desta imagem, ainda é necessário o cálculo dos momentos, que é realizado através da função "mpq", onde com esses valores, pode-se também calcular a posição de centróide.

A função "f_shape_from_edge" também fornecida pelo professor Marcos, recebe como parâmetros os novos pontos de bordas interpolados e os pontos do centróide para que assim ela retorne a curva de distância e de ângulo. A curva de distância obtida é ilustrada na figura 4. Então, retornando a curva de distância e também a imagem processada é encerrado a função "f_limiar_pxborda_cd", será utilizada para todas imagens analisadas

Figura 3 : Gráfico da curva de distância da imagem

Antes de partir para a etapa final do código proposto, é preciso explicar o funcionamento da função "f_norm_cc", pois esta função é a responsável por normalizar as curvas e fazer a correlação circular entre elas. Esta função recebe como entrada duas curvas de distância, sendo uma delas a de imagem de referência e outra a de imagem de comparação. Dentro desta função é feito a normalização das curvas através da seguintes equações :

$$x_1(n) = d_1(n) - \overline{d_1}$$
 $x_2(n) = d_2(n) - \overline{d_2}$

$$y_1(n) = \frac{x_1(n)}{\sqrt{\sum x_1^2(n)}}$$
 $y_2(n) = \frac{x_2(n)}{\sqrt{\sum x_2^2(n)}}$

Onde $d_1(n)$ e $d_2(n)$ são os pontos das curvas de distâncias a serem normalizadas e $y_1(n)$ e $y_2(n)$ são as novas curvas normalizadas.

Obtido as curvas normalizadas é realizada a operação de correlação circular entre as curvas para que seja possível obter o máximo valor da curva de correlação que é denominado como valor de singularidade. A curva de correlação circular está ilustrada na figura 4. Após a função encontrar o máximo valor de singularidade ela retorna este valor juntamente com as curvas normalizadas.

Figura 4 : Gráficos de operação de correlação circular e de curva de singularidade respectivamente.

Na etapa final, realiza-se uma leitura dos nomes dos arquivos na pasta do diretório do código, para que através deste seja feito o uso de um laço de repetição que realizará a comparação entre as imagens de referência e as do banco de imagens. Para isso, esta etapa realiza uma verificação para saber qual é o maior valor de singularidade, realizando a operação de correlação circular com as três imagens de referência, o maior valor obtido definirá qual das ferramentas a imagem analisada mais se parece, de tal forma que este processo se repete para todo o banco de imagens.

Com o intuito de salvar os dados obtidos neste sistema básico de reconhecimento de objetos, cria-se uma matriz que guarda o nome da imagem analisada e também a sua atribuição realizada pelo código.

Resultados:

Com o sistema básico de reconhecimento de objetos implementado, é possível afirmar que os resultados apresentados são totalmente satisfatório, os resultados do sistema reconhecimento esta ilustrados na figura 5, que possui as imagens originais com o títulos atribuído pelo sistema e também as curvas de distância utilizadas para classificar a imagem.

Figura 5 : Resultados do sistema básico de reconhecimento de objetos

Outro resultado obtido é o da matriz de saída figura 6, que mostra a imagem analisada juntamente com a sua atribuição do sistema de reconhecimento.

	saida 🗶	
str 30x2 string		
	1	2
1	alicate01.png	Alicate
2	alicate02.png	Alicate
3	alicate03.png	Alicate
4	alicate04.png	Alicate
5	alicate05.png	Alicate
6	alicate06.png	Alicate
7	alicate07.png	Alicate
8	alicate08.png	Alicate
9	alicate09.png	Alicate
10	alicate 10.png	Alicate
11	chave_boca01.png	Chave de boca
12	chave_boca02.png	Chave de boca
13	chave_boca03.png	Chave de boca
14	chave_boca04.png	Chave de boca
15	chave_boca05.png	Chave de boca
16	chave_boca06.png	Chave de boca
17	chave_boca07.png	Chave de boca
18	chave_boca08.png	Chave de boca
19	chave_boca09.png	Chave de boca
20	chave_boca10.png	Chave de boca
21	chave_fenda01.png	Chave de fenda
22	chave_fenda02.png	Chave de fenda
23	chave_fenda03.png	Chave de fenda
24	chave_fenda04.png	Chave de fenda
25	chave_fenda05.png	Chave de fenda
26	chave_fenda06.png	Chave de fenda
27	chave_fenda07.png	Chave de fenda
28	chave_fenda08.png	Chave de fenda
29	chave_fenda09.png	Chave de fenda
30	chave_fenda10.png	Chave de fenda

Figura 5 : Matriz de saída com resultado final do sistema de reconhecimento

Conclusão:

Por fim, conclui-se que esta atividade de laboratório é de suma importância para a fixação dos conteúdos de processamento digital e de extração de características de imagens, de tal forma que após a realização desta atividade, os alunos desenvolveram maiores habilidades em visão Computacional em Robótica

Referências:

MATSUO, Marcos. **LAB 3 - Reconhecimento de Objetos**. Disponível em: https://moodle.ufsc.br/pluginfile.php/5837428/mod_assign/introattachment/0/LAB 3.pdf?forcedownload=1. Acesso em: 11 nov. 2022.