GROUP-4

CAPSTONE PROJECT-1

Customer Segmentation

- RFM Analysis
- K-Means Modelling
- Cohort Analysis

Contents

- Group Members
- Main Steps
- Meeting Schedule
- Methodology
 - RFM Anlysis
 - K-Means Modelling
 - Cohort Analysis

Main Steps

- 1. Data Cleaning & EDA
- 2. RFM Analysis
- 3. RFM Segmentation
- 4. K-Means Modelling
- 5. Cohort Analysis

Schedule

04-06 December 2021: Individual study

06 December 2021 : Data Cleaning & EDA

13:00 (IST)

07 December 2021 : RFM Analysis & Segmentation

20:00 (IST)

08 December 2021 : K-Means Modelling & Cohort Analysis

20:00 (IST)

09 December 2021 : Review

13:00 (IST)

EDA

RFM Analysis

K-Means

Cohort Analysis

Methodology

Columns: 8 Rows: 541.909

#	Column	Non-Null Count	Dtype
0	InvoiceNo	541909 non-null	object
1	StockCode	541909 non-null	object
2	Description	540455 non-null	object
3	Quantity	541909 non-null	int64
4	InvoiceDate	541909 non-null	datetime64[ns]
5	UnitPrice	541909 non-null	float64
6	CustomerID	406829 non-null	float64
7	Country	541909 non-null	object

Missing Values:

	Missing_Number	Missing_Percent
CustomerID	135080	0.249267
Description	1454	0.002683

Descriptive Statistics Quantity UnitPrice CustomerID 541909.00 541909.00 406829.00 count 15287.69 9.55 4.61 mean 218.08 96.76 1713.60 std 12346.00 -80995.00 -11062.06 min 25% 13953.00 1.00 1.25 50% 15152.00 3.00 2.08 75% 10.00 4.13 16791.00 80995.00 18287.00 38970.00 max

Duplicated: 5.268

Number of Uniques:

InvoiceNo	25900
StockCode	4070
Description	4223
Quantity	722
InvoiceDate	23260
UnitPrice	1630
CustomerID	4372
Country	38

Descriptive Statistics (Categorical Columns)

	count	unique		top	freq
InvoiceNo	541909	25900		573585	1114
StockCode	541909	4070		85123A	2313
Description	540455	4223	WHITE HANGING HEART	T-LIGHT HOLDER	2369
Country	541909	38		United Kingdom	495478

- 1. InvoiceNo
- 2. StockCode
- 3. Description
- 4. Quantity
- 5. InvoiceDate
- 6. UnitPrice
- 7. CustomerID
- 8. Country

Methodology

```
25.900 unique invoices3.836 cancelled invoices
```

22.064 others

```
df["invoiceno"].str.startswith('C').value_counts(normalize = True)*100
```

False 98.286059 True 1.713941

- 1. InvoiceNo
- 2. StockCode
- 3. Description
- 4. Quantity
- 5. InvoiceDate
- 6. UnitPrice
- 7. CustomerID
- 8. Country

Methodology

AMAZONFEE: (32 of the 34 AMAZONFEE invoices have been cancelled)

BANK CHARGES: (25 of the 37 BANK CHARGE invoices have been cancelled)

D: Discount (All of the 77 D invoices have been cancelled)

M / m : Manual (244 of the 572 M invoices have been cancelled)

S: Samples (61 of the 63 S invoices have been cancelled. InvNo: 549684 - 572849)

B: Adjust bad debt (2 of the 3 B invoices have been cancelled)

C2: Carriage (2 of the 244 C2 invoices have been cancelled)

DOR: DOTCOM POSTAGE (1 of the 710 DOT invoices has been cancelled)

POST: POSTAGE (126 of the 1256 POST invoices have been cancelled)

PADS: PADS TO MATCH ALL CUSHIONS (Any of the 4 PADS invoices has not been cancelled)

CRUK: CRUK Commission (All of the 16 CRUK invoices have been cancelled)

- 1. InvoiceNo
- 2. StockCode
- 3. Description
- 4. Quantity
- 5. InvoiceDate
- 6. UnitPrice
- 7. CustomerID
- 8. Country

Methodology

```
(df["Quantity"] < 0).value_counts()
False    526054
True    10587</pre>
```

A negative quantity indicates canceled invoices or returned items.

```
\label{eq:df-df-df-df-df-df-df-def} $$ df[(df["InvoiceNo"].str.find("C").isnull()) & (df["Quantity"] < 0)]["Description"].unique() $$ df[(df["Quantity"] < 0
```

```
array([nan, '?', 'check', 'damages', 'faulty', 'Dotcom sales',
       'reverse 21/5/10 adjustment', 'mouldy, thrown away.', 'counted',
       'Given away', 'Dotcom', 'label mix up', 'samples/damages',
       'thrown away', 'incorrectly made-thrown away.', 'showroom', 'MIA',
       'Dotcom set', 'wrongly sold as sets', 'Amazon sold sets',
       'dotcom sold sets', 'wrongly sold sets', '? sold as sets?',
       '?sold as sets?', 'Thrown away.', 'damages/display',
       'damaged stock', 'broken', 'throw away', 'wrong barcode (22467)',
       'wrong barcode', 'barcode problem', '?lost',
       "thrown away-can't sell.", "thrown away-can't sell", 'damages?',
       're dotcom quick fix.', "Dotcom sold in 6's", 'sold in set?',
       'cracked', 'sold as 22467', 'Damaged',
       'mystery! Only ever imported 1800',
       'MERCHANT CHANDLER CREDIT ERROR, STO', 'POSSIBLE DAMAGES OR LOST?',
       'damaged', 'DAMAGED', 'Display', 'Missing', 'wrong code?',
       'wrong code', 'adjust', 'crushed', 'damages/showroom etc',
       'samples', 'damages/credits from ASOS.',
       'Not rcvd in 10/11/2010 delivery', 'Thrown away-rusty',
```

Analysis

1. InvoiceNo

2. StockCode

3. Description

4. Quantity

5. InvoiceDate

6. UnitPrice

7. CustomerID

8. Country

```
print("Max Date : ", df["InvoiceDate"].max())
print("Min Date : ", df["InvoiceDate"].min())
```

Max Date : 2011-12-09 12:50:00 Min Date : 2010-12-01 08:26:00

```
df[df["UnitPrice"] < 0]</pre>
```

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
299983	A563186	В	Adjust bad debt	1	2011-08-12 14:51:00	-11062.06	NaN	United Kingdom
299984	A563187	В	Adjust bad debt	1	2011-08-12 14:52:00	-11062.06	NaN	United Kingdom

```
df[df["StockCode"] == "B"]
```

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
299982	A563185	В	Adjust bad debt	1	2011-08-12 14:50:00	11062.06	NaN	United Kingdom
299983	A563186	В	Adjust bad debt	1	2011-08-12 14:51:00	-11062.06	NaN	United Kingdom
299984	A563187	В	Adjust bad debt	1	2011-08-12 14:52:00	-11062.06	NaN	United Kingdom

Analysis

- 1. InvoiceNo
- 2. StockCode
- 3. Description
- 4. Quantity
- 5. Invoice Date
- 6. UnitPrice
- 7. CustomerID
- 8. Country

```
df[df.InvoiceNo.str.contains("C").isnull()].groupby(by="CustomerID").count()["InvoiceNo"].sort_values(ascending=False).head(3)

CustomerID
17841.0 7676
14911.0 5672
14096.0 5111
Name: InvoiceNo, dtype: int64
```

Customer 17841 is the most purchasing customer.

```
df.groupby(by="CustomerID").sum()["TotalCost"].sort_values(ascending=False).head(3)

CustomerID
14646.0 279489.02
18102.0 256438.49
```

17450.0 187322.17 Name: TotalCost, dtype: float64

5.083179723502304

. Customer 14646 is the most revenue customer.

```
print("Number of avarage un-cancelled invoices per customer :")
print(df[df.InvoiceNo.str.contains("C").isnull()]["InvoiceNo"].unique().shape[0] / \
df[df.InvoiceNo.str.contains("C").isnull()]["CustomerID"].unique().shape[0])
Number of avarage un-cancelled invoices per customer :
```

Analysis

- 1. InvoiceNo
- 2. StockCode
- 3. Description
- 4. Quantity
- 5. InvoiceDate
- 6. UnitPrice
- 7. CustomerID
- 8. Country

df["Country"].value_counts()

United Kingdom	490300
Germany	9480
France	8541
EIRE	8184
Spain	2528
Netherlands	2371
Belgium	2069
Switzerland	1994
Portugal	1510
Australia	1258
Norway	1086
Italy	803
Channel Islands	757
Finland	695
Cyprus	611
Sweden	461
Unspecified	442
Austria	401
Denmark	389
Japan	358
Poland	341
Israel	294
USA	291
Hong Kong	284
Singapore	229
Iceland	182
Canada	151
Greece	146
Malta	127

Analysis

EDA

RFM Analysis

K-Means

Cohort Analysis

Dropped

- Duplicates
- Cancelled Invoices
- Negative UnitPrices
- Negative Quantities
- Missing CustomerIDs

Rows

541.909

Analysis

EDA

RFM Analysis

K-Means

Cohort Analysis

Total revenue per country

Fotal customer per country

```
df.groupby("country")['total_price'].sum().sort_values(ascending=False)
country
United Kingdom
                       7285024.644
Netherlands
                        285446.340
EIRE
                        265262.460
                        228678.400
Germany
France
                        208934.310
Australia
                        138453.810
                          61558.560
Spain
                          56443.950
Switzerland
Belgium
                          41196.340
```

```
df.groupby("country")['customerid'].nunique().sort_values(ascending=False)
country
United Kingdom
                         3920
Germany
                           94
France
                           87
Spain
                           30
                           25
Belgium
                           21
Switzerland
Portugal
                           19
                           14
Italy
                           12
Finland
```

EDA

RFM Analysis

K-Means

Cohort Analysis

Methodology

Focused on the UK market

```
df_uk = df[df["country"]=="United Kingdom"]
df_uk.head(1)
```

```
df_uk.shape
(349203, 12)
```

2. What are the most popular products that are bought in the UK?

```
df_uk.groupby(["stockcode"])["quantity"].sum().sort_values(ascending=False).head(5)
```

```
      stockcode

      23843
      80995

      23166
      76919

      84077
      49086

      22197
      45609

      85099B
      41878
```

EDA

RFM Analysis

K-Means

Cohort Analysis

Methodology

Recencey

requency

Monetary

RFM Metrics

RECENCY

The freshness of the customer activity, be it purchases or visits

E.g. Time since last order or last engaged with the product

FREQUENCY

The frequency of the customer transactions or visits

E.g. Total number of transactions or average time between transactions/ engaged visits

MONETARY

The intention of customer to spend or purchasing power of customer

E.g. Total or average transactions value

CUSTOMER ID	RECENCY (DAY)	FREQUENCY (NUMBER)	MONETARY (TOTAL)
1	4	6	540
2	6	11	940
3	46	1	35
4	23	3	65
5	15	4	179
6	32	2	56
7	7	3	140
8	50	1	950
9	34	15	2630
10	10	5	191
11	3	8	845
12	1	10	1510
13	27	3	54
14	18	2	40
15	5	1	25

EDA

RFM Analysis

K-Means

Cohort Analysis

Methodology

Recencey

ref_date = 2011-12-09

```
df_uk["customer_recency"] = df_uk["ref_date"] - df_uk["last_purchase_date"]
```

```
customer_recency = pd.DataFrame(df_uk.groupby('customerid')['recency_value'].min())
```

requency

```
customer_frequency = pd.DataFrame(df_uk.groupby('customerid')['invoiceno'].nunique())
```

```
df_uk['customer_frequency'] = df_uk.groupby('customerid')['invoiceno'].transform('count')
```

Monetary

```
customer_monetary = pd.DataFrame(df_uk.groupby('customerid')['total_price'].sum())
```

```
df_uk['customer_monetary'] = df_uk.groupby('customerid')['total_price'].transform('sum')
```

EDA

RFM Analysis

K-Means

Cohort Analysis

Methodology RFM Table

customer_rfm = pd.merge(pd.merge(customer_recency, customer_frequency, on='customerid'), customer_monetary, on='customerid')
customer_rfm.head()

	customerid	recency	frequency	monetary
0	12346.000	325	1	77183.600
1	12747.000	2	11	4196.010
2	12748.000	0	209	33053.190
3	12749.000	3	5	4090.880
4	12820.000	3	4	942.340

```
customer_rfm.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3920 entries, 0 to 3919
Data columns (total 4 columns):
     Column
                 Non-Null Count
                                Dtype
    customerid 3920 non-null
                                float64
                                int64
                 3920 non-null
     recency
    frequency
                 3920 non-null
                                int64
                 3920 non-null
     monetary
                                float64
dtypes: float64(2), int64(2)
memory usage: 153.1 KB
```

RFM Table

Analysis

EDA

RFM Analysis

K-Means

```
quantiles = customer_rfm.quantile(q = [0.25,0.50,0.75])
quantiles
```

	recency	frequency	monetary
0.250	17.000	1.000	298.185
0.500	50.000	2.000	644.975
0.750	142.000	5.000	1571.285

```
recency frequency monetary recency score frequency score monetary score
customerid
               325
                           1 77183,600
 12346.000
 12747.000
                           11 4196.010
12748.000
                         209 33053,190
                                                                                     4
 12749.000
                               4090.880
                                                                     3
                                942.340
                                                                     3
                                                                                     3
 12820.000
```

```
def RScore(x,p,d):
    if x <= d[p][0.25]:
        return 4
    elif x <= d[p][0.50]:
        return 3
    elif x <= d[p][0.75]:
        return 2
    else:
        return 1</pre>
```

```
def FMScore(x,p,d):
    if x <= d[p][0.25]:
        return 1
    elif x <= d[p][0.50]:
        return 2
    elif x <= d[p][0.75]:
        return 3
    else:
        return 4</pre>
```

RFM Table

Analysis

EDA

RFM Analysis

K-Means

	recency	frequency	monetary	recency_score	frequency_score	monetary_score	RFM_score	RFM_level
customerid								
14498.0	42	5	1957.32	3	3	4	334	10
17692.0	127	4	740.94	2	3	3	233	8
16209.0	88	5	2262.62	2	3	4	234	9
15277.0	46	1	255.90	3	1	1	311	5
18058.0	9	1	170.16	4	1	1	411	6
16567.0	194	2	865.60	1	2	3	123	6
13851.0	95	3	2651.46	2	3	4	234	9
14004.0	43	7	4582.64	3	4	4	344	11
15937.0	64	1	145.35	2	1	1	211	4
13294.0	189	2	873.74	1	2	3	123	6

RFM Segmentation

Analysis

EDA

RFM Analysis

K-Means

```
def segments(df_rfm):
    if df_rfm['RFM_level'] == 12 :
        return 'champion'
    elif (df_rfm['RFM_level'] == 11) or (df_rfm['RFM_level'] == 10 ):
        return 'loyal_customer'
    elif (df_rfm['RFM_level'] == 9) or (df_rfm['RFM_level'] == 8 ):
        return 'promising'
    elif (df_rfm['RFM_level'] == 7) or (df_rfm['RFM_level'] == 6 ):
        return 'need_attention'
    elif (df_rfm['RFM_level'] == 5) or (df_rfm['RFM_level'] == 4 ):
        return 'hibernating'
    else:
        return 'almost_lost'
```

	RFM_level	General_Segment
Bronz	6.477	776
Gold	10.462	649
Platinium	12.000	423
Silver	8.526	775
Steel	4.497	902
Trash	3.000	395

	recency	trequency	monetary	recency_score	frequency_score	monetary_score	RFM_score	RFM_level	customer_segment
customerid									
15125.0	25	15	11528.48	3	4	4	344	11	loyal_customer
12962.0	7	2	266.39	4	2	1	421	7	need_attention
16078.0	283	1	79.20	1	1	1	111	3	almost_lost
15776.0	133	1	241.62	2	1	1	211	4	hibernating
15537.0	163	1	110.92	1	1	1	111	3	almost_lost

EDA

RFM Analysis

K-Means

Cohort Analysis

Methodology

RFM Segmentation

Analysis

EDA

RFM Analysis

K-Means

```
skew vals = customer rfm.skew().sort values(ascending=False)
skew vals
                   20.217581
monetary
frequency
                   10.751932
                    1.244993
recency
frequency score
                    0.153764
rfm level
                    0.115653
monetary score
                    0.000000
rfm score
                   -0.005586
recency_score
                   -0.009948
```

```
rfm_log = customer_rfm[skew_cols.index].copy()
for col in skew_cols.index.values:
    rfm_log[col] = rfm_log[col].apply(np.log1p)
print(rfm_log[skew_cols.index].skew())

monetary    0.373135
frequency    1.182249
recency    -0.463737
```

```
rfm_before_trans = customer_rfm[skew_cols.index].copy()
pt = PowerTransformer(method='yeo-johnson')
trans= pt.fit_transform(rfm_before_trans)
rfm_after_trans = pd.DataFrame(trans, columns = skew_cols.index)
print(rfm_after_trans.skew())

monetary    -0.013749
frequency    0.215681
recency    -0.063910
```

Analysis

EDA

RFM Analysis

K-Means


```
k_means_model = KMeans(n_clusters = 3, random_state = 42)
k_means_model.fit_predict(rfm_scaled)
labels = k_means_model.labels_
rfm_trans['predicted_clusters'] = labels
rfm_trans
```

EDA

RFM Analysis

K-Means

Cohort Analysis

Methodology

App Launched √ % Active users after App Launches →												
Cohort	Users	Day 0	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10
Jan 25	1,098	100%	33.9%	23.5%	18.7%	15.9%	16.3%	14.2%	14.5%		ion over	12.1%
Jan 26	1,358	100%	31.1%	18.6%	14.3%	16.0%	14.9%	13.2%	12.9%	user lifetime		
Jan 27	1,257	100%	27.2%	19.6%	14.5%	12.9%	13.4%	13.0%	10.8%	11.4%		
Jan 28	1,587	100%	26.6%	17.9%	14.6%	14.8%	14.9%	13.7%	11.9%			
Jan 29	1,758	100%	26.2%	20.4%	16.9%	14.3%	12.7%	12.5%				
Jan 30	1,624	100%	26.4%	18.1%	13.7%	15.4%	11.8%					
Jan 31	1,541	100%	23.9%	19.6%	15.0%	14.8%						
Feb 01	868	100%	/ 24.7%	16.9%	15.8%							
Feb 02	1,143		Retention over product lifetime									
Feb 03	1,253											
All Users	13,487	100%	27.0%	19.2%	15.4%	14.9%	14.0%	13.3%	12.5%	13.1%	12.2%	12.1%

- Acquisition Cohorts: divide users by when they signed up first for your product. For your app users, you
 might break down your cohorts by the day, the week or the month they launched an app, and thereby track
 daily, weekly or monthly cohorts.
- Behavioral Cohorts: divide users by the behaviors they have (or haven't) taken in your app within a given time period. These could be any number of discrete actions that a user can perform – App Install, App Launch, App Uninstall, Transaction or Charged, or any combination of these actions / events.

EDA

RFM Analysis

K-Means

Cohort Analysis

Methodology

ref_date	date	last_purchase_date	customer_recency	recency_value	customer_frequency	customer_monetary	invoice_month	cohort_month	cohort_index
2011- 12-09		2010-12-02	372 days	372	297	5391.21	2010-12-01	2010-12-01	1
2011- 12-09		2010-12-02	372 days	372	297	5391.21	2010-12-01	2010-12-01	1
2011- 12-09		2010-12-02	372 days	372	297	5391.21	2010-12-01	2010-12-01	1
2011- 12-09		2010-12-02	372 days	372	297	5391.21	2010-12-01	2010-12-01	1

cohort_index	1	2	3	4	5	6	7	8	9	10	11	12	13
cohort_month													
2010-12-01	815.0	289.0	263.0	304.0	293.0	323.0	291.0	278.0	289.0	325.0	299.0	405.0	218.0
2011-01-01	358.0	76.0	93.0	84.0	119.0	99.0	90.0	87.0	108.0	117.0	127.0	43.0	NaN
2011-02-01	340.0	64.0	66.0	97.0	98.0	86.0	87.0	96.0	90.0	104.0	25.0	NaN	NaN
2011-03-01	419.0	64.0	109.0	83.0	94.0	69.0	111.0	96.0	119.0	38.0	NaN	NaN	NaN
2011-04-01	277.0	58.0	56.0	60.0	56.0	61.0	61.0	73.0	20.0	NaN	NaN	NaN	NaN
2011-05-01	256.0	48.0	44.0	44.0	53.0	58.0	68.0	23.0	NaN	NaN	NaN	NaN	NaN
2011-06-01	214.0	38.0	31.0	51.0	51.0	69.0	21.0	NaN	NaN	NaN	NaN	NaN	NaN
2011-07-01	169.0	30.0	33.0	39.0	47.0	18.0	NaN						
2011-08-01	141.0	32.0	32.0	34.0	17.0	NaN							
2011-09-01	276.0	63.0	83.0	32.0	NaN								

cohort_index	1	2	3	4	5	6	7	8	9	10	11	12	13
cohort_month													
2010-12-01	100.0	35.5	32.3	37.3	36.0	39.6	35.7	34.1	35.5	39.9	36.7	49.7	26.7
2011-01-01	100.0	21.2	26.0	23.5	33.2	27.7	25.1	24.3	30.2	32.7	35.5	12.0	NaN
2011-02-01	100.0	18.8	19.4	28.5	28.8	25.3	25.6	28.2	26.5	30.6	7.4	NaN	NaN
2011-03-01	100.0	15.3	26.0	19.8	22.4	16.5	26.5	22.9	28.4	9.1	NaN	NaN	NaN
2011-04-01	100.0	20.9	20.2	21.7	20.2	22.0	22.0	26.4	7.2	NaN	NaN	NaN	NaN
2011-05-01	100.0	18.8	17.2	17.2	20.7	22.7	26.6	9.0	NaN	NaN	NaN	NaN	NaN
2011-06-01	100.0	17.8	14.5	23.8	23.8	32.2	9.8	NaN	NaN	NaN	NaN	NaN	NaN
2011-07-01	100.0	17.8	19.5	23.1	27.8	10.7	NaN						
2011-08-01	100.0	22.7	22.7	24.1	12.1	NaN							
2011-09-01	100.0	22.8	30.1	11.6	NaN								