Politechnika Wrocławska Wydział Informatyki i Telekomunikacji

Kierunek: Informatyka algorytmiczna (INA)

PRACA DYPLOMOWA MAGISTERSKA

Mechanizm multilateracji w rozproszonej sieci sensorów audio

Multilateration mechanism in distributed net of audio sensors

Gabriel Budziński

Opiekun pracy dr inż. Przemysław Błaśkiewicz

Słowa kluczowe: multilateracja, sensory audio, synchronizacja czasu

Streszczenie

Problem pozycjonowania w przestrzeni na podstawie emitowanego dźwięku obiektu pozycjonowanego wiąże się z wykorzystaniem możliwie zsynchronizowanych w czasie węzłów (mikrofonów) i pomiarze różnic czasu odbioru dźwięku przez czujniki. W pracy zostanie zbudowana sieć (co najmniej 4 sztuki) sensorów audio połączonych bezprzewodowo między sobą i ze stacją główną. Zadaniem sieci będzie wskazanie lokalizacji w przestrzeni punkowego przedmiotu emitującego dźwięk. Oprócz wyboru i implementacji algorytmu multilateracji zaproponowane zostanie rozwiązanie problemu synchronizacji czasu między sensorami, minimalizacji opóźnienia w komunikacji oraz kalibracji systemu.

Słowa kluczowe: multilateracja, sensory audio, synchronizacja czasu

Abstract

The problem of positioning in space based on the emitted sound of the positioned object involves the use of as closely synchronized nodes (microphones) as possible in time and measuring the differences in the time of sound reception by sensors. In the work, a network (of at least 4 units) of audio sensors connected wirelessly to each other and to the main station will be built. The network's task will be to indicate the location in space of a point-like object emitting sound. In addition to selecting and implementing the multilateration algorithm, a solution to the problem of time synchronization between sensors, minimizing communication delay, and system calibration will be proposed.

Keywords: multilateration, WASN, clock synchronization

Spis treści

1.	Prz	edstawie	ienie problemu	8									
	1.1.	State of	of the art	9									
2.	Spr	zęt syste	emowy	10									
	2.1.	-	r MQTT										
	2.2.	Węzeł		11									
	2.3.	Serwer	r obliczeniowy	11									
3.	Eksperyment zerowy												
			Iziałania										
		3.1.1.	Program węzła	12									
		3.1.2.	Program serwera	12									
		3.1.3.	Opis algorytmu	12									
	3.2.	Ewalua	acja działania systemu	12									
	3.3.	Interpr	retacja wyników i wnioski	12									
4.	Syn	chroniz	zacja czasu	13									
	4.1.		ronizacja programowa										
		4.1.1.	Algorytm synchronizacji NTP										
		4.1.2.	Pomiar różnic zegarów	13									
	4.2.	Synchr	ronizacja sprzętowa										
		4.2.1.											
5.	Metody multilateriacji												
	5.1.	-	vienie zastosowanych metod										
		5.1.1.	Układ równań liniowych										
		5.1.2.	Liniowa metoda najmniejszej sumy kwadratów										
		5.1.3.	Nieliniowa metoda najmniejszej sumy kwadratów	14									
		5.1.4.	Rozkład wedłóg wartości osobliwych (SVD)	14									
	5.2.	Wyniki	ii	14									
		5.2.1.	Interpretacja	14									
		5.2.2.	Wnioski	14									
6.	Pod	sumowa	anie	15									
	aratı			16									

Spis rysunków

1.1.	Egzemplarz problemu multilateracji	•										•			•	8
2.1.	Topologia systemu		 			 										10

Spis tabel

Spis listingów

Skróty

WASN (ang. Wireless Audio Sensor Networks)

Przedstawienie problemu

Multilateracja jest techniką lokalizacji pozwalającą obliczyć nieznane koordynaty punktu na podstawie odległości od innych, znanych punktów. Weźmy dwuwymiarowy egzemplarz naszego problemu (Rys. 1.1), gdzie N - nadajnik, O_i - odbiorniki, d_i - odległości

Rys. 1.1: Egzemplarz problemu multilateracji

Znalezienie koordynatów (x, y) punktu N jest równoważne z rowiązaniem układu równań,

$$\begin{cases} (x - x_1)^2 + (y - y_1)^2 = d_1^2 \\ (x - x_2)^2 + (y - y_2)^2 = d_2^2 \\ (x - x_3)^2 + (y - y_3)^2 = d_3^2 \end{cases}$$
(1.1)

który może zostać przekształcony do postaci

$$\begin{cases} (x^2 + y^2) - 2x_1x - 2y_1y = d_1^2 - x_1^2 - y_1^2 \\ (x^2 + y^2) - 2x_2x - 2y_2y = d_2^2 - x_2^2 - y_2^2 \\ (x^2 + y^2) - 2x_3x - 2y_3y = d_3^2 - x_3^2 - y_3^2 \end{cases}$$
(1.2)

lub w reprezenacji macierzowej,

$$\begin{bmatrix} 1 & -2x_1 & -2y_1 \\ 1 & -2x_2 & -2y_2 \\ 1 & -2x_3 & -2y_3 \end{bmatrix} \begin{bmatrix} x^2 + y^2 \\ x \\ y \end{bmatrix} = \begin{bmatrix} d_1^2 - x_1^2 - y_1^2 \\ d_2^2 - x_2^2 - y_2^2 \\ d_3^2 - x_3^2 - y_3^2 \end{bmatrix}$$
(1.3)

którą można przedstawić jako

$$\mathbf{A} \cdot \mathbf{x} = \mathbf{b} \tag{1.4}$$

Uogólniona forma równania macierzowego problemu multilateracji dla przestrzeni n-wymiarowej i m odbiorników:

$$\begin{bmatrix} 1 & -2x^{(1)} \\ 1 & -2x^{(2)} \\ \vdots & \vdots \\ 1 & -2x^{(m)} \end{bmatrix} \begin{bmatrix} \sum_{i=1}^{n} x_i^2 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} d_1^2 - \sum_{i=1}^{n} x_i^{(1)^2} \\ d_2^2 - \sum_{i=1}^{n} x_i^{(2)^2} \\ \vdots \\ d_m^2 - \sum_{i=1}^{n} x_i^{(m)^2} \end{bmatrix}$$
(1.5)

1.1. State of the art

Napisać coś o [1],[2]

Sprzęt systemowy

Znaczna większość prac adresujacych temat multilateracji opiera się na systemach urządzeń działających w zakresie fal elektromagnetycznych ([1],[2],[3]). W tej pracy poświęcimy uwagę systemowi działającemu w domenie dźwięku, jak ten aspekt wpływa na skuteczność i dokładność rozwiązania problemu multilateracji.

Rys. 2.1: Topologia systemu

2.1. Serwer MQTT

Urządzenia systemowe porozumiewają się przy uzyciu protokołu MQTT, każdy z węzłów oraz serwer łączą się z centralnym brokerem (?), który przekierowuje wiadomości do klientów, które zasubskrybowały dany temat.

2.2. Węzeł

Każdy z węzłów oparty jest o mikrokontroler ESP8266 zaprogramowany przy użyciu Arduino IDE. W systemie występują dwa rodzaje węzłów:

- nadajnik,
- odbiornik.

Nadajnik jest wyposażony jest w przełącznik cewkowy sterowany przez mikrokontroler, który służy do kontrolowania brzęczyka zasilanego napięciem 12V. Wybrano brzęczyk o głośności 90dB w celu zmaksymalizowania zasięgu działania systemu.

Odbiornik natomiast wyposażony jest w mikrofon elektretowy dającego binarny sygnał wyjściowy. Czułość mikrofonu dostrajana jest ręcznie poprzez potencjometr.

2.3. Serwer obliczeniowy

Centralnym urządzeniem systemu jest serwer obliczeniowy kumulujący dane otrzymane z sensorów do rozwiązania problemu multilateracji. Serwer hostowany jest na tej samej maszynie co broker MQTT.

Eksperyment zerowy

Po przygotowaniu komponentów systemu wstępnie zaimplementowano program rozwiązujący problem multilateracji, aby zbadać, czy problem nie jest zbyt trywialny, aby opisać go w pracy, lub przeciwnym razie, na podstawie wyników eksperymentu zastanowić się jakie przeszkody stoją na drodze do rozwiązania o zadowalającej precyzji.

3.1. Opis działania

Program zaimplementowano na podstawie rozwiązania aproksymacyjnego równania 1.4 postaci

$$\hat{\boldsymbol{x}} = \left(A^T A\right)^{-1} A^T \boldsymbol{b} \tag{3.1}$$

zaczerpniętego z artykułu [2].

3.1.1. Program węzła

Algorithm 1 Program nadajnika

- 1: $buzz \leftarrow False$
- 2: $buzzTime \leftarrow 0$
- 3: $lastBuzzTime \leftarrow 0$
- 4: if beep && micros() lastBuzzTime > 500000 then
- 5: $buzzTime \leftarrow micros()$
- 6: publish(buzzTime)
- 7: $lastBuzzTime \leftarrow buzzTime$
- 8: buzzer()
- 9: **end if**

3.1.2. Program serwera

3.1.3. Opis algorytmu

3.2. Ewaluacja działania systemu

3.3. Interpretacja wyników i wnioski

Synchronizacja czasu

- 4.1. Synchronizacja programowa
- 4.1.1. Algorytm synchronizacji NTP
- 4.1.2. Pomiar różnic zegarów
- 4.2. Synchronizacja sprzętowa
- 4.2.1. Synchronizacja z użyciem mikrofonów

Metody multilateriacji

- 5.1. Omówienie zastosowanych metod
- 5.1.1. Układ równań liniowych
- 5.1.2. Liniowa metoda najmniejszej sumy kwadratów
- 5.1.3. Nieliniowa metoda najmniejszej sumy kwadratów
- 5.1.4. Rozkład wedłóg wartości osobliwych (SVD)
- 5.2. Wyniki
- 5.2.1. Interpretacja
- 5.2.2. Wnioski

Podsumowanie

Literatura

- [1] W. Hereman, "Determination of a position in three dimensions using trilateration and approximate distances," *Colorado School of Mines*, 1995.
- [2] A. Norrdine, "An algebraic solution to the multilateration problem," in *Proceedings of the 15th international conference on indoor positioning and indoor navigation, Sydney, Australia*, vol. 1315, 2012.
- [3] S. Wiszniewski, O. Błaszkiewicz, A. Olejniczak, J. Sadowski, and J. Stefański, "Implementation of the innovative radiolocalization system vcs-mlat (voice communication system multilateration)," in 2020 Baltic URSI Symposium (URSI), pp. 95–99, 2020.