Process Technology: TSMC CL013G

Features

- Precise Optimization for TSMC's Eight-Layer Metal 0.13µm CL013G CMOS Process
- High Density (area is 0.073mm²)
- Fast Access Time (1.18ns at typical process, 1.20V, 25°C)
- Fast Cycle Time (1.75ns at typical process, 1.20V, 25°C)
- Two Ports (One Read, One Write)
- · Completely Static Operation
- · Near-Zero Hold Time (Data, Address, and Control Inputs)

High-Speed/Density Two-Port Register File

sram_512x16 512X16, Mux 4, Drive 4

Memory Description

The 512X16 register file is a high-performance, synchronous two-port, 512-word by 16-bit memory designed to take full advantage of TSMC's eight-layer metal, $0.13\mu m$ CL013G CMOS process.

The register file's storage array is composed of eight-transistor cells with fully static memory circuitry. The register file operates at a voltage of $1.2V \pm 10\%$ and a junction temperature range of -40°C to $+125^{\circ}\text{C}$.

Port Description

Port	Description
A	Dedicated Read Port
В	Dedicated Write Port

Pin Description

Pin	Description			
AA[8:0]	Addresses (AA[0] = LSB)			
AB[8:0]	Addresses (AB[0] = LSB)			
DB[15:0]	Data Inputs (DB[0] = LSB)			
CLKA, CLKB	Clock Inputs			
CENA, CENB	Chip Enables			
QA[15:0]	Data Outputs (QA[0] = LSB)			

Area

Area Type ^a	Width (mm)	Height (mm)	Area (mm²)
Core	0.224	0.324	0.073
Footprint	0.234	0.335	0.078

a. The footprint area includes the core area and userdefined power ring and pin spacing areas.

Symbol

Register File Block Diagram

Mission Mode

Figure 1. Two-Port Register File Write-Read Clock Timing (Accessing Same Address)

Rising delays are measured at 50% of VDD and falling delays are measured at 50% of VDD. Rising and falling slews are measured from 10% VDD to 90% VDD.

Figure 2. Two-Port Register File Read-Write Clock Timing (Accessing Same Address)

Rising delays are measured at 50% of VDD and falling delays are measured at 50% of VDD. Rising and falling slews are measured from 10% VDD to 90% VDD.

Read and Write Behavior When Accessing Same Address

Action	Condition ^A	Behavior	
write from port B then	t _{cc} is satisfied (see Figure 1)	write OK read (new data) OK	
read from port A	t _{cc} is not satisfied (see Figure 1)	write fails read fails	
read from port A then	t _{cc} is satisfied (see Figure 2)	write OK read (old data) OK	
write from port B	t _{cc} is not satisfied (see Figure 2)	write fails read fails	

a. Tcc represents the clock collision time and is a general term for Tcwbcra and Tcracwb.

Figure 3. Two-Port Register File Read-Cycle Timing

Rising delays are measured at 50% of VDD and falling delays are measured at 50% of VDD. Rising and falling slews are measured from 10% VDD to 90% VDD.

Figure 4. Two-Port Register File Write-Cycle Timing

Rising delays are measured at 50% of VDD and falling delays are measured at 50% of VDD. Rising and falling slews are measured from 10% VDD to 90% VDD.

Register File Logic Table

CENA	CENB	Data Out	Mode	Function
Н	×	Last Data	Port-A Standby	Address inputs are disabled; data stored in the memory is retained, but the port cannot be accessed for new reads. Data outputs remain stable.
X	н	N/A	Port-B Standby	Address and data inputs are disabled; data stored in the memory is retained, but the port cannot be accessed for new writes.
X	L	N/A	Write	Data on the write port's data input bus DB[n-1:0] is written to the memory location specified on the address bus AB[m-1:0].
L	×	Register File Data	Read	Data on the read port's data output bus QA[n-1:0] is read from the memory location specified on the address bus AA[m-1:0].

Register File Timing: Mission Mode

Parameter	Symbol	Fast@-40C Process 1.32V, -40°C		Fast@0C Process 1.32V, 0°C		Typical Process 1.20V, 25°C		Slow Process 1.08V, 125°C	
	,	Min (ns)	Max (ns)	Min (ns)	Max (ns)	Min (ns)	Max (ns)	Min (ns)	Max (ns)
Port-A cycle time	t _{cyca}	1.20		1.27		1.75		2.75	
Port-B cycle time	t _{cycb}	1.03		1.10		1.52		2.39	
Port-A access time ^{a, b}	t _{aa}	0.74		0.78			1.18		1.87
Port-A address setup	t _{asa}	0.30		0.30		0.38		0.54	
Port-B address setup	t _{asb}	0.30		0.30		0.38		0.54	
Port-A address hold	t _{aha}	0.00		0.00		0.00		0.00	
Port-B address hold	t _{ahb}	0.00		0.00		0.00		0.00	
Port-A chip enable setup	t _{csa}	0.21		0.22		0.28		0.44	
Port-B chip enable setup	t _{csb}	0.21		0.22		0.28		0.44	
Port-A chip enable hold	t _{cha}	0.00		0.00		0.00		0.00	
Port-B chip enable hold	t _{chb}	0.00		0.00		0.00		0.00	
Port-B data setup	t _{dsb}	0.10		0.10		0.11		0.16	
Port-B data hold	t _{dhb}	0.07		0.08		0.12		0.20	
Port-A clock high	t _{ckha}	0.04		0.04		0.06		0.09	
Port-B clock high	t _{ckhb}	0.04		0.04		0.06		0.09	
Port-A clock low	t _{ckla}	0.17		0.18		0.28		0.47	
Port-B clock low	t _{cklb}	0.16		0.17		0.26		0.44	
Port-A clock collision (read follows write)	t _{cwbcra}	0.47		0.50		0.72		1.13	
Port-B clock collision (write follows read)	t _{cracwb}	0.63		0.67		0.93		1.47	
Clock rise slew	t _{ckr}		4.00		4.00		4.00		4.00
Output load factor (ns/pF)	K _{load}		0.87		0.89		1.26		1.90

 $a. \ Parameters \ have \ a \ load \ dependence \ (\textbf{K}_{load}), \ which \ is \ used \ to \ calculate: \ \textit{TotalDelay} = \ \textit{FixedDelay} + (\textit{Kload} \times \textit{Cload}) \ .$

b. Access time is defined as the slowest possible output transition for the typical and slow corners, and the fastest possible output transition for the fast corner.

Pin Capacitance

Pin	Fast@-40C Process 1.32V, -40°C	Fast@0C Process 1.32V, 0°C	Typical Process 1.20V, 25°C	Slow Process 1.08V, 125°C
	Value (pF)	Value (pF)	Value (pF)	Value (pF)
AA[j]	0.006	0.006	0.006	0.005
AB[j]	0.005	0.006	0.005	0.005
DB[i]	0.002	0.003	0.002	0.002
CLKA	0.038	0.038	0.037	0.036
CLKB	0.032	0.033	0.031	0.030
CENA	0.004	0.005	0.004	0.004
CENB	0.003	0.004	0.003	0.003

Power

333.00MHz Operation

Condition	Fast@-40C Process 1.32V, -40°C	Fast@0C Process 1.32V, 0°C	Typical Process 1.20V, 25°C	Slow Process 1.08V, 125°C
	Value (mA)	Value (mA)	Value (mA)	Value (mA)
Port-A AC Current ¹	4.566	4.754	3.920	3.487
Port-B AC Current ¹	3.816	4.078	3.418	3.102
Port-A Peak Current	21.109	20.544	13.028	7.414
Port-B Peak Current	18.732	17.701	10.873	6.115
Port-A Deselected Current ²	1.214	1.397	1.059	1.049
Port-B Deselected Current ²	1.214	1.397	1.059	1.049
Standby Current ³	0.048	0.191	0.044	0.165

¹ Value assumes 50% read and write operations.

Clock Noise Limit

Signal	Fast@-40 1.32V,	C Process -40°C	Fast@00 1.32V	C Process ', 0°C	Typical 1.20V	Process , 25°C	Slow F 1.08V,	Process 125°C
Signal	Pulse Width (ns)	Voltage (V)	Pulse Width (ns)	Voltage (V)	Pulse Width (ns)	Voltage (V)	Pulse Width (ns)	Voltage (V)
CLKA/B	10.000	0.476	10.000	0.461	10.000	0.467	10.000	0.442

The clock noise limit is the maximum CLK voltage allowable for the indicated pulse width without causing a spurious memory cycle or other memory failure.

Power and Ground Noise Limit

Signal	Fast@-40C Process 1.32V, -40°C	Fast@0C Process 1.32V, 0°C	Typical Process 1.20V, 25°C	Slow Process 1.08V, 125°C Voltage (V)	
	Voltage (V)	Voltage (V)	Voltage (V)		
Power	0.132	0.132	0.120	0.108	
Ground	0.132	0.132	0.120	0.108	

The power/ground noise limit is the maximum supply voltage transition allowable without causing a memory failure.

² Value assumes register file is deselected, all addresses switch, and 50% of input pins switch. The logic-switching component of deselected power becomes negligibly small if the input pins are held stable by externally controlling these signals with chip splect.

³ Value is independent of frequency and assumes all inputs and outputs are stable.