NPTEL MOOC, JAN-FEB 2015 Week 5, Module 4

DESIGN AND ANALYSIS OF ALGORITHMS

Heaps

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

Priority queue

- * Need to maintain a list of jobs with priorities to optimise the following operations
 - * delete_max()
 - * Identify and remove job with highest priority
 - * Need not be unique
 - * insert()
 - * Add a new job to the list

Trees

- * Maintain a special kind of binary tree called a heap
 - * Balanced: N node tree has height log N
- * Both insert() and delete_max() take O(log N)
 - * Processing N jobs takes time O(N log N)
- * Truly flexible, need not fix upper bound for N in advance

Heaps

- * Binary tree filled level by level, left to right
- * At each node, value stored is bigger than both children
 - * (Max) Heap PropertyBinary tree filled level by level, left to right

* No "holes" allowed

* Can't leave a level incomplete

* Violates heap property

* Violates heap property

- * insert 12
- * Position of new node is fixed by structure
- Restore heap property along the path to the root

- * insert 12
- * Position of new node is fixed by structure
- Restore heap property along the path to the root

- * insert 12
- * Position of new node is fixed by structure
- Restore heap property along the path to the root

- * insert 12
- * Position of new node is fixed by structure
- Restore heap property along the path to the root

- * insert 12
- * Position of new node is fixed by structure
- Restore heap property along the path to the root

Complexity of insert()

- * Need to walk up from the leaf to the root
 - * Height of the tree
- * Number of nodes at level 0,1,...,i is 20,21, ...,2i
- * K levels filled: $2^0+2^1+...+2^{k-1}=2^k-1$ nodes
- * N nodes: number of levels at most log N + 1
- * insert() takes time O(log N)

- * Maximum value is always at the root
 - * From heap property, by induction
- * How do we remove this value efficiently?

- * Removing maximum value creates a "hole" at the root
- Reducing one value requires deleting last node
- * Move "homeless" value to root

- * Removing maximum value creates a "hole" at the root
- Reducing one value requires deleting last node
- * Move "homeless" value to root

- * Removing maximum value creates a "hole" at the root
- Reducing one value requires deleting last node
- * Move "homeless" value to root

- * Removing maximum value creates a "hole" at the root
- Reducing one value requires deleting last node
- * Move "homeless" value to root

- * Now restore the heap property from root downwards
 - * Swap with largest child
- * Will follow a single path from root to leaf

- * Now restore the heap property from root downwards
 - * Swap with largest child
- * Will follow a single path from root to leaf

* Now restore the heap property from root downwards

* Swap with largest child

* Will follow a single path from root to leaf

* Will follow a single path from root to leaf

* Cost proportional to height of tree

* O(log N)

* Will follow a single path from root to leaf

* Cost proportional to height of tree

* O(log N)

- * Will follow a single path from root to leaf
- * Cost proportional to height of tree
- * O(log N)

10

* Will follow a single path from root to leaf

* Cost proportional to height of tree

* O(log N)

- * Will follow a single path from root to leaf
- Cost proportional to height of tree
- * O(log N)

* Will follow a single path from root to leaf

* Cost proportional to height of tree

* O(log N)

Impementing using arrays

- * Number the nodes left to right, level by level
- * Represent as an array H[0..N-1]
- * Children of H[i] are at H[2i+1], H[2i+2]
- * Parent of H[j] is at
 H[floor((j-1)/2)] for j > 0

Building a heap, heapify()

- * Given a list of values [x₁,x₂,...,x_N], build a heap
- * Naive strategy
 - * Start with an empty heap
 - * Insert each x_j
 - * Overall O(N log N)

- * Set up the array as $[x_1, x_2, ..., x_N]$
 - * Leaf nodes trivially satisfy heap property
 - * Second half of array is already a valid heap
- * Assume leaf nodes are at level k
 - * For each node at level k-1, k-2, ..., 0, fix heap property
 - * As we go up, the number of steps per node goes up by 1, but the number of nodes per level is halved
 - * Cost turns out to be O(N) overall

Better heapify() N/2 nodes already satisfy heap property

4 nodes, height 1 repair

N/2 nodes already satisfy heap property

2 nodes, height 2 repair

4 nodes, height 1 repair

N/2 nodes already satisfy heap property

1 node, height 3 repair

2 nodes, height 2 repair

4 nodes, height 1 repair

N/2 nodes already satisfy heap property

Summary

- * Heaps are a tree implementation of priority queues
 - * insert() and delete_max() are both O(log N)
 - * heapify() builds a heap in O(N)
 - * Tree can be manipulated easily using an array
- * Can invert the heap condition
 - * Each node is smaller than its children
 - * Min-heap, for insert(), delete_min()