رمة	العا	مناور الإمارة (الموضوع الأمار)				
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)				
		التمرين الأول: (04 نقاط)				
	0.25	1.1. تعريف النواة المشعة: هي نواة غير مستقرة تسعى للإستقرار من خلال التفكك التلقائي إلى				
		نواة أكثر إستقرارا مع إنبعاث جسيمة $lpha$ وأ eta وأ eta تكون مرفوقة بالإشعاع γ .				
I	0.25	- تعريف الإشعاع eta^- : هو جُسِيم e^- ناتج عن تحول نترون الى بروتون.				
	0.50	$^{60}_{27}Co ightarrow ^{A}_{Z}X+^{0}_{-1}e$: معادلة التفكك النووي $^{60}_{27}Co ightarrow ^{A}_{Z}X+^{0}_{-1}e$: معادلة التفكك النووي $^{60}_{28}Ni\Leftrightarrow ^{A}_{Z}X\Leftarrow egin{cases} 60=A+0&\Rightarrow A=60\ 27=Z-1&\Rightarrow Z=28 \end{cases}$				
		$m(t)=m_0.e^{-\lambda t}$ التأكد من العلاقة: 1.2				
		$N(t)\!=\!N_0.e^{-\lambda t}$ من قانون التناقص الإشعاعي				
	0.5	$\frac{0.25}{N_{A}} = \frac{M.N(t)}{N_{A}} = \frac{M.N_{0}(t)}{N_{A}}.e^{-\lambda t} \implies m(t) = m_{0}.e^{-\lambda t} 0.25$				
	0.25	$m_0 = 2g$ بيانيا m_0 بيانيا .2. ${f 2}$				
	0.25	3.2. تعريف زمن نصف العمر $t_{1/2}$: هو الزمن اللازم لتفكك أو بقاء نصف عدد الأنوية المشعة				
	0.25	الابتدائية.				
	0.23	$t_{1/2} = 5,2ans$ بالإسقاط نجد $m\left(t_{1/2}\right) = m_0 \ / \ 2 = 1g$: تعيين قيمته بيانيا				
		t _{1/2} کیر او بساوي 5.2 سنة او 1/2 اصغر او بساوي 5.6 سنة				
	0.25	$m\left(t_{1/2}\right) = \frac{m_0}{2} = m_0.e^{-\lambda t_{1/2}} \Rightarrow \lambda = \frac{\ln 2}{t_{1/2}} \ \lambda = \frac{\ln 2}{t_{1/2}} \ \lambda = \frac{\ln 2}{t_{1/2}} \ .4.2$				
3	0.25	$\lambda = \frac{\ln 2}{5,2} = 0,133 ans^{-1} = 4,2 \times 10^{-9} s^{-1}$ حساب قیمته:				
		5.2. حساب عدد الأنوية المشعة الابتدائية:				
	0.25	0.25 $N_0 = \frac{m_0}{M} \cdot N_A = 2 \times 10^{22} \text{ noy}$				
	0.25	A_0 حساب النشاط الإشعاعي A_0				
	0.25	$A_0 = \lambda . N_0 = 8,4 \times 10^{13} \mathrm{Bq}$ 0.25 0.25				
	0.50	$m(t)=0,25m_0=m_0.e^{-\lambda t}$ t=10.4 ans بالإسقاط نجد				

رمة	العا	(t.Št. c a. t.) ži la Nt alic
مجموع	مجزاة	عناصر الإجابة (الموضوع الأول)
		التمرين الثاني: (04 نقاط)
		R (1
	0.25	R الموثرة المؤثرة المؤثر المؤثر المؤثرة المؤثرة المؤثرة المؤثرة المؤثرة المؤثرة ال
		على مركز عطالة الجملة:
	0.25	\overrightarrow{p} قوة الثقل \overrightarrow{p} قوة الثقل عند الثقال عند الثقال عند الثقل عند الثقال عند الثقا
		\overrightarrow{R} رد فعل المستوي R
	0.25	$\sum \overrightarrow{F_{ext}} = m.\overrightarrow{a_G} \Rightarrow \overrightarrow{p} + \overrightarrow{R} = m.\overrightarrow{a_G}$: المعادلة التفاضلية للسرعة: 2.1.1
	0.25	$rac{dv}{dt}+\ g.sinlpha=0$ -ومنه نجد: $-m.\ g.sinlpha=m.a_G$ بالأسقاط:
	0.25	$a_G = \frac{dv}{dt} = -9.8 \sin(20^\circ) = -3.35 m \cdot s^{-2}$: $a_G = -3.1.1$
	0.25	$v_B = 8m \cdot s^{-1}$ بسرعة B بسرعة وصل الى النقطة وصل الى النقطة المتزحلق وصل الى النقطة المتزحلق وصل الى النقطة المتزحلة وصل
	0.23	$x = AB = 3,6m$: من القيم المعطاة لدينا $v_B^2 = (8)^2 = 64m^2 \cdot s^{-2}$ ومنه
	0.25	$\begin{cases} v^2 = 2a'_G x + v_A^2 \\ v^2 = Ax + B \end{cases} \Rightarrow a'_G = \frac{A}{2} = -5 m \cdot s^{-2} : \text{لينا} : a'_G \text{لتسارع التجريبي} : 2.2.1$
2.75		- يمثل ميل المنحنى $A = \frac{64-100}{3.6-0} = -10 m \cdot s^{-2}$
	0.25	a_{G} ان: a_{G}' تساوي a_{G}' ان
	0.25	AB غير صحيحة. التخمين: فرضية إهمال قوى الاحتكاك على المسار AB غير صحيحة.
		المقدار الفيزيائي المميز: قوى الاحتكاك f
	0.07	حساب شدة قوة الاحتكاك f .
	0.25	$\sum \overrightarrow{F_{ext}} = m \cdot \overrightarrow{a_G'} \implies \overrightarrow{p} + \overrightarrow{R} + \overrightarrow{f} = m \cdot \overrightarrow{a_G'}$ بتطبیق القانون الثاني لنیوتن
	0.25	$f=-m(g imes sinlpha+a_G')=131,8 ext{N}$ بالإسقاط نجد
		(2
	0.25	1.2. معادلة المسار:
	0.25	$\sum \overrightarrow{F_{ext}} = m.\overrightarrow{a_G} \Rightarrow \overrightarrow{p} = m.\overrightarrow{a_G}$ يتطبيق القانون الثاني لنيوتن

زمة	العلا	/ 1
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
1.25	0.25	$\begin{cases} Ox: a_x = 0 \\ Oz: a_z = -g \end{cases} \Rightarrow \begin{cases} x(t) = (v_B \cos \alpha)t(1) \\ z(t) = -\frac{1}{2}gt^2 + (v_B \sin \alpha)t + z_0(2) \end{cases}$ بالإسقاط:
	0.25	$z(t) = -\frac{g}{2v_B^2\cos^2\alpha}x^2 + (\tan\alpha)x + z_0$: من (1) و (2) نجد معادلة المسار $a = -\frac{g}{2v_B^2\cos^2\alpha}$ ، $b = \tan\alpha$ ، $c = z_0 = OB$ فتكون الثوابت:
	0.25	$z_{0}=AB\sinlpha=1,23m$: قيمة $z_{0}=AB\sinlpha=1,23m$
		2. 2 . حساب المسافة OD:
	0.25	$z = 0 \Rightarrow -\frac{g}{2v_B^2 \cos^2 \alpha} x^2 + (\tan \alpha)x + z_0 = 0$
		x = OD = 6,4m هنمو $x = OD = 6,4m$ أو: حساب الزمن من (2) تساوي الصفر ومنه نعوض في (1).
		التمرين الثالث: (06 نقاط)
	0.25	1.1.1 1.1.1. طبيعة ثنائي القطب <i>D</i> : مكثفة.
	0.25	التعليل: لأن شدة التيار منعدمة في النظام الدائم.
3.25	0.25	$U_{Dmax} = E = R.I_0 = 100 \times 0,12 = 12$ V التوتر الأعظمي. $2.1.1$
	0.25	U_{c} .1.2.1 التأكد من المعادلة التفاضلية للتوتر U_{c} :
	0.25 0.25	$u_{R}(t) + u_{C}(t) = E \Rightarrow RC\frac{du_{C}}{dt} + u_{C}(t) = E \Rightarrow \frac{du_{C}}{dt} + \frac{1}{RC}u_{C}(t) = \frac{E}{RC}$
	0.25 0.25	$\begin{cases} A = \frac{1}{RC} \\ B = \frac{E}{RC} \end{cases}$ عن الشكل $\frac{du_C}{dt} + A.u_C = B$ من الشكل
		: المعادلة التفاضلية للتوتر u_c تقبل $u_c = E(1-e^{-1/RC})$ حلاً لها:
	0.25 0.25	التعليل: لأن العبارة $u_{\scriptscriptstyle C}=E(1-e^{-t/_{RC}})$ تحقق المعادلة التفاضلية.
	0.25 0.25 0.25	$c = \frac{\tau}{R} = \frac{0.02}{100} = 2 \times 10^{-4} \mathrm{F}$ ، $\tau = 0.02 \mathrm{s}$ من البیان: ثابت الزمن 3.2.1
		(2
	0.25	q(t) : المعادلة التفاضلية لـ: $q(t)$
	0.25	$u_b(t) + u_C(t) = 0 \Rightarrow L\frac{di(t)}{dt} + u_C(t) = 0$
	0.25	$\frac{d^2q(t)}{dt^2} + \frac{1}{LC}q(t) = 0$ ومنه:

امة	العلا	/ 1.\$1 c. : 10 ä.l. N1 al:o
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
	0.25	: بتعويض الحل في المعادلة التفاضلية نجد Q_0 و Q_0 : بتعويض الحل في المعادلة التفاضلية نجد Q_0
	0.25	$Q_0 = CE$ ومن الشروط الابتدائية $T_0 = 2\pi \sqrt{LC}$
	0.25	.3.2 1.3. 2 الوشيعة صرفة (r = 0): لأنه لا يوجد ضياع في الطاقة.
2.75	0.25 0.25	$E_{C max} = \frac{1}{2}C.E^2 = \frac{1}{2} \times 2 \times 10^{-4} \times (12)^2 = 14,4 \text{mJ}$: $E_{C max}$.2.3.2
	0.25 0.25 0.25	$T_0 = 2 \cdot T_{Energie} = 2 \times 10 ms = 20 ms \qquad .3.3.2$ $T_0 = 2 \pi \sqrt{LC} \Rightarrow L = \frac{T_0^2}{4 \pi^2 C} = \frac{\left(0.02\right)^2}{40 \times 2 \times 10^{-4}} = 0,05 \text{H} \text{times } L = \frac{T_0^2}{40 \times 2 \times 10^{-4}} = 0,05 \text{H}$ استنتاج الذاتية L الوشيعة:
		التمرين التجريبي: (06 نقاط)
	0.50	1.1. الصيغ الجزيئية نصف المفصلة مع التسمية: $CH_3COOH:(A)$ الحمض $CH_3COOH:(B)$ الكحول (B) الإيثانول 0.25
	0.25	$CH_{3}COOH(aq) + CH_{3}CH_{2}OH(aq) = CH_{3}COOC_{2}H_{5}(aq) + H_{2}O(l)$ عادلة التفاعل الحادث: 2.1
	0.25	خصائصه: . محدود، لا حراري، بطيء.
	0.25	k = 4 . الكحول أولي فإن ثابت التوازن: $k = 4$.3.1
3.0	0.25	.4.1 $n_0(A)=n_0(B)=2mol$: تبیان أن $n_0(A)=n_0(B)=2mol$.1.4.1
	0.25	$k=rac{x_f^2}{\left(n_0-x_f ight)^2}$ $\Rightarrow n_0=x_f\left(rac{1+\sqrt{k}}{\sqrt{k}} ight)$ عبارة ثابت التوازن
	0.25	$n_0=2mol$ فنجد: $K=4$ و $x_f=1,34mol$ من البيان فإن
0	0.50	0.25. مردود تفاعل الأسترة: 0.25 مردود تفاعل الأسترة: $r\% = \frac{x_f}{x_{max}} \times 100 = \frac{n_{fester}}{n_0\left(A\right)} \times 100 = \frac{1,34}{2} \times 100 = 67\%$ يمكن الاستنتاج دون حساب
	0.25 0.25	5.1. يمكن تحسين المردود: - استعمال مزيج ابتدائي غير متساوي المولات ـ باستبدال حمض الإيثانويك بكلور الإيثانويل

مة	العلا							
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)						
	0.25	2) 1.2. يمكن انجاز متابعة زمنية عن طريق قياس الناقلية أو قياس الـ pH .						
		2.2. جدول التقدم للتفاعل						
		$CH_{3}COOC_{2}H_{5(aq)} + HO^{-}_{(aq)} = CH_{3}COO^{-}_{5(aq)} + C_{2}H_{5}OH_{(\ell)}$ المعادلة						
	0.25	كمية المادة (mol) التقدم ح. الجملة						
		$n_0 = \frac{m}{M}$ $n_0(HO^-) = cV$ 0 0						
		ح. انتقالیة x $n_0 - x$ $cV - x$ x						
		ح. نهائية x_f $cV - x_f$ $cV - x_f$ x_f x_f						
	0.5	$x(t) = 10^{-3} - 0.1 \times [HO^{-}]$: 3.2 يثبات العلاقة: $x(t) = 10^{-3} - 0.1 \times [HO^{-}]$: من جدول التقدم: $x(t) = 10^{-3} - 0.1 \times [HO^{-}]$ من جدول التقدم: 0.25						

العلامة		عناصر الإجابة (الموضوع الأول)									
مجموع	مجزأة		()	وع الاو	رانموص	جابه	صر الإ				
		0.25						x(t) =	f(t)ول	ملة الجد	4. 2 . تک
		$ \begin{array}{ c c c }\hline & t(min) \\\hline & [HO^-] mmol \cdot L^{-1} \\\hline \end{array} $	0 10,00	5 8,00	10 6,00	30 2,50	50 1,00	70 0,40	90 0,10	110 0,04	120 0,04
	-	x(mmol)	0,00	0,20	0,40	0,75	0,90	0,96	0,99	1,00	1,00
			<u> </u>	1	l .	1		x = f(ر ياني: (t)	نحنى الب	رسم الم
		X(m moL)									
3.0	0.75	0.2						0.25 0.25 t(min)			
	0.25	م التفاعل نصف قيمته	لبلوغ تقد	اللازمة	الزمنية	و المدة	a : $t_{1/2}$	التفاعل	ن نصف	ریف زمر	5.2. تع
										عظمية.	
	0.25									ديد قيمتا	
	0.25		v_{VO}	$L = \frac{1}{V} \cdot \frac{\partial}{\partial t}$,	`		ساب الس	
	0.25						, (,		$ol/L \cdot m$	
			v_{vc}	$_{oL}$ (70 mi	$(in) = \frac{1}{0}$	$\frac{1}{1} \cdot \frac{(0,9)}{(7)}$	(7-0.8)	$\frac{3}{2} = 0,0$)2mmol	$/L \cdot \min$	1
	0.25	<u>ب</u> ع لتناق <i>ص</i>	وهذا را۔							تطور الس	i
				ت.	متفاعلاد	ة بين الـ	ت الفعال	تصادمان	刊		

رمة	العا	الأمام الأمام الأمام الثاني الأمام الثاني
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0.25	التمرين الأول: (04 نقاط) 1. دراسة نواة البلوتونيوم 214: 1. النواة الانشطارية: هي نواة ثقيلة قابلة للانقسام عند قذفها بنيترون إلى نواتين خفيفتين أكثر استقرارا مع تحرير طاقة.
1.50	0.25	النواة المشعة: هي نواة غير مستقرة تسعى إلى الاستقرار عن طريق التفكك التلقائي لتتحول إلى نواة أكثر استقرارا مع إصدار إشعاعات.
	0.25	2.1. تركيب نواة البلوتونيوم 241 94 بروتون 147 نيترون
		Pu : Pu كتابة معادلة التفكك الإشعاعي لنواة Pu الواة Pu عنابة معادلة التفكك الإشعاعي الواة Pu .3.1
	0.50	${}_{94}Pu \to {}_{Z}X + {}_{-1}e$ ${}_{94}^{241}Pu \to {}_{95}^{241}Am^* + {}_{-1}^{0}e$
		94 93 -1
	0.25	4.1. إصدار γ ناتج عن انتقال النواة البنت المتشكلة من حالة مثارة إلى حالة أقل طاقة.
		2. انشطار نواة البلوتونيوم 214:
	0.25	$E_{I}(241Pu) = \Delta m.c^{2} = 1818,47 MeV$ البلوتونيوم 241: $E_{I}(241Pu) = \Delta m.c^{2} = 1818,47 MeV$
		حساب طاقة الربط لنواة السيزيوم 141:
	0.25	$E_l({}_{55}^{141}Cs) = \Delta m.c^2 = 1259,05MeV$
	0.25	$\frac{E_{l}(^{241}Pu)}{4} = 7,54 MeV / nuc$
	0.25	$\frac{E_{l}(^{141}Cs)}{A} = 8,93 MeV / nuc$
2.50	0.25	وبالتالي نواة السيزيوم 141 أكثر استقرارا من نواة البلوتونيوم 241. $\frac{E_l(^{141}Cs)}{A} > \frac{E_l(^{241}Pu)}{A}$
		2.2. حساب الطاقة المحررة E_{lib} من انشطار نواة البلوتونيوم 241 :
	0.25	$\left E_{lib} \right = (m_i - m_f).c^2 = 273,49 MeV$ قبل الإجابة باستعمال الإجابة باستعمال الإجابة باستعمال الإجابة باستعمال الإجابة باستعمال الإجابة الإجابة الإجابة باستعمال الإجابة الإجابة باستعمال الإجابة الإجابة باستعمال الإجابة الإجابة باستعمال الإجابة
		3.2. مخطط الحصيلة الطاقوية لتفاعل الانشطار:
		E
		E_2 94 p + 148 n
	0.50	$E_1 \left[\begin{array}{c} {}^{241}_{940}Pu + {}^{1}_{0}n \end{array} \right]$
		$oxed{E_{lib}}$
		$E_3 = \frac{{}^{141}_{55}Cs + {}^{98}_{39}Y + 3{}^{1}_{0}n}{4}$

رمة	العا	عناصر الإجابة (الموضوع الثاني)
مجموع	مجزأة	**
	0.50	4.2. حساب الطاقة المحررة من انشطار $_{1g}$ من البلوتونيوم $_{241}$:
	0.50	$\left E'_{lib}\right = N \cdot \left E_{lib}\right = \frac{m}{M} \cdot N_{A} \cdot \left E_{lib}\right = 6,83 \times 10^{23} MeV$
		التمرين الثاني: (04 نقاط)
		ا. عبارة الطول l_e عند التوازن:
	0.25	الجملة المدروسة: {جسم (s)}
		مرجع الدراسة: الأرضي الذي نعتبره غاليلي $\sum \overrightarrow{F_{ex}} = \overrightarrow{0} \Rightarrow \overrightarrow{p} + \overrightarrow{T_0} = \overrightarrow{0}$ عند التوازن: \overrightarrow{D}
1	0.25	
	0.25	بإسقاط العلاقة الشعاعية وفق المحور الشاقولي: $mg-ky_0=0$ حيث
	0.25	$\mathbf{y}_0 = l_e - l_0 :$
		$l_e = l_0 + \frac{mg}{k}$ وعليه:
		.2
		y = f(t) يجاد المعادلة التفاضلية التي تحققها فاصلة المتحرك $y = f(t)$
	0.25	بتطبيق القانون الثاني لنيوتن على الجملة في المرجع الأرضي الذي نعتبره غاليليا:
	0.25	$\sum \overrightarrow{F_{ext}} = m\overrightarrow{a_G} \Longrightarrow \overrightarrow{P} + \overrightarrow{T} = m\overrightarrow{a_G}$
	0.25	بإسقاط هذه العلاقة الشعاعية وفق المحور الشاقولي:
	0.25	$P-T = ma \Rightarrow mg - k(y + \Delta l) = ma \Rightarrow (mg - k\Delta l) - ky = ma$
	0.25	$rac{d^2y}{dt^2} + rac{k}{m}y = 0$ وعليه $mg - k\Delta l = 0$ من وضعية التوازن:
		.2.2
		T_0 ايجاد عبارة الدور الذاتي T_0
	0.25	: وياشتقاق الفاصلة y مرتين ، نجد y وعليه وعليه وعليه $\frac{d^2y}{dt^2} = -\left(\frac{2\pi}{T_0}\right)^2y$: دينا
	0.25 0.25	
		$T_0 = 2\pi \sqrt{\frac{m}{k}}$
	0.25	Y_m و φ ، T_0 و عيمة كل من φ ، T_0 و يمة كل من
3	0.25	$T_{0}=0,2s$ من البيان $T_{0}=0,2s$ من البيان .
	0.23	$arphi=0$ وعليه $arphi=0$ فإن $y=+Y_m$ ومنه $t=0$ وعليه $arphi=0$.
	0.25	$a_{max} = rac{4\pi^2}{T_0^2} Y_{max}$ حيث $a = -a_{max} = -20 m \cdot s^{-2}$ فإن $t = 0$ فإن Y_m قيمة Y_m عيث .
		$Y_m = 0.02m = 2cm$ وعليه

رمة	العا	/ *1**ti
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0.25	3.2.2. استنتاج قيمة ثابت مرونته النابض:
	0.25	$k = rac{4\pi^2.m}{T_0^2} = 25N.m^{-1}$ ومنه $T_0 = 2\pi\sqrt{rac{m}{k}}$
		التمرين الثالث: (06 نقاط)
	0.25	1. دراسة تفاعل حمض الايتانويك مع الماء
	0.23	1.1. كتابة معادلة التفاعل المنمذج لانحلال حمض الإيثانويك في الماء
		$CH_3 - COOH(aq) + H_2O(l) = CH_3 - COO^-(aq) + H_3O^+(aq)$
		: يجاد النسبة $ au_f$ لتقدم التفاعل بدلالة c و pH بالاستعانة بجدول التقدم $ au_f$
		$CH_3 - COOH(aq) + H_2O(l) = CH_3 - COO^{-}(aq) + H_3O^{+}(aq)$
	0.25	$orall t \geq 0$: $n-x_f$ بوفرة x_f بوفرة x_f
	0.25	$ au_f = rac{x_f}{x_m}$: الدينا
		CH_3-COOH من جدول التقدم: الماء موجود بوفرة ومنه المتفاعل المحد هو الحمض
	0.25	$x_m = n = cV$ وعليه
		$ au_f = \frac{10^{-pH}}{c}$: إذن $x_f = \left[H_3 O^+ \right]_f .V = 10^{-pH}.V$
	0.25	د. حساب قيمة النسبة $ au_f$ لتقدم التفاعل للمحلول S_1 مع الاستنتاج:
	0.25	$ au_f < 1$ نستنتج أن التفاعل غير تام لأن $ au_f = 3.98\%$
		.4.1
3.25		$pH=rac{1}{2}ig(pka-\log cig)$ هي: $c\leq 1,0 imes 10^{-2} mol\cdot L^{-1}$ عبارة في حالة $c\leq 1,0 imes 10^{-2}$
		$pH = pka + log \frac{\left[CH_3COO^-\right]_f}{\left[CH_3COOH\right]_f}$: دينا
	0.25	$[CH_3COOH]_f$
		$\left[CH_{3}COO^{-} ight]_{f}=\left[H_{3}O^{+} ight]_{f}$ من جدول التقدم:
	0.25	وباعتماد الفرضية، فإن $\left[CH_{3}COOH ight]_{f}=C-\left[CH_{3}COO^{-} ight]_{f}$
		$[CH_3COOH]_f = c$
	0.25	$pH-logig[H_3O+ig]_f=pka-logc$ ومنه $pH=pka+lograc{ig[H_3O+ig]_f}{c}$: إذن
		$pH = \frac{1}{2}(pka - logc)$ وعليه

رمة	العا	مناه بالأحادة (المحضوة الثاني)
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0.50	pH $pH = f(-logc)$ يمثيل المنحنى البياني $pH = f(-logc)$ عمثيل المنحنى البياني $-Logc$
		CH_3COOH / CH_3COO^- استنتاج القيمة العددية لثابت الحموضة pka للثنائية 3.4.1
	0.25	$pH = \frac{1}{2}(pka - logc)$ لدينا : نظريا
	0.25	pH = a + blogc معدلة البيان
	0.25	pka = 2a = 4.8 :بالمطابقة، نجد
		ثانيا : دراسة عمود الفضة – حديد:
0.25	0.25	1. القيمة المسجلة على جهاز الفولطمتر: القيمة بالقيمة المطلقة هي القوة المحركة الكهربائية
		E=1,24V للعمود
0.25	0.25	2. كتابة الرمز الاصطلاحي للعمود المدروس: القطب السالب لجهاز الفولطمتر (Com) مربوط بالصفيحة Ag و $U_0 < 0$ ومنه: الصفية Fe تمثل القطب السالب و Ag تمثل القطب الموجب وعليه الرمز الاصطلاحي للعمود هو: Fe Fe^{2+} Ag^+ $Ag \oplus$
		3. كتابة المعادلتين النصفيتين للأكسدة والإرجاع الحادثتين عند القطبين مع استنتاج معادلة
	0.25	التفاعل المنمذج للتحول الذي يحدث أثناء اشتغال العمود:
0.75	0.25	$Ag^+(aq) + e = Ag(s)$:المعادلتان النصفيتان عند القطب الموجب
		$Fe(s) = Fe^{2+}(aq) + 2\acute{e}$ عند القطب السالب:
	0.25	معادلة التفاعل المنمذج للتحول الحادث أثناء اشتغال العمود:
		$2Ag^{+}(aq) + Fe(s) = 2Ag(s) + Fe^{2+}(aq)$
		.4
		$\left[Ag^{+}\right] = c_{1} - \frac{I}{V_{1}.F}t$ تبیان أن: .1.4
1.50	0.25	بالاستعانة بجدول التقدم
	0.25	$\left[Ag^{+}\right] = c_{1} - \frac{I}{V_{1}.F}$ وعليه: $Z = 2$ حيث $Q = I \cdot t = Z \cdot x \cdot F$ مع $\left[Ag^{+}\right] = \frac{n_{1} - 2x}{V_{1}}$

رمة	العلا	الأمامة الأمامة الثانية الأمامة الثانية
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		I تحدید قیمة شدة التیار I
	0.25	$\left[Ag^{+} ight] = c_{1} - \frac{I}{V_{1} \cdot F} t$ ولدينا $\left[Ag^{+} ight] = at + b$ عادلة البيان:
	0.25	$I = -V_1 \cdot \mathbf{F} \cdot a$ ومنه $a = -\frac{I}{V_1 \cdot \mathbf{F}}$:بمطابقة المعادلتين، نجد
	0.25	$I = 16mA$ وعليه $a = -10^{-4} mol \cdot L^{-1} \cdot min^{-1}$ حيث
	0.25	$c_1 = b = 0,2mol \cdot L^{-1}$
		التمرين التجريبي: (06 نقاط)
		1. الطَّاقة الأعظميَّة:
1	0.25 0.25	$E_{Cmax} = \frac{1}{2} \times Q_0 \times U_{Cmax} = \frac{1}{2} \times Q_0 \times E$
1	0.25	$E_{C \max} = 3.96 \times 10^{-4} \mathrm{J}$
	0.25	$C = \frac{Q_0}{F} = 22 \times 10^{-6} \mathrm{F}$
	0.25	.2
	0.25 0.25	1.2. نمط الاهتزازات الذي يبينه البيان (1): اهتزازات حرة غير متخامدة نمط الاهتزازات الذي يبينه البيان (3): اهتزازات حرة متخامدة
5		$b_3(L_3, r_3 = 10\Omega)$: نظام شبه دوري لوجود مقاومة بالدارة فهو يوافق الوشيعة (3): نظام شبه دوري لوجود مقاومة فهما يوافقان الوشيعتين (1) و (2) نظام دوري تنعدم فيهما المقاومة فهما يوافقان الوشيعتين $L_2 < L_1$: $b_2(L_2 = 115m \mathrm{H}, r_2 = 0)$ ، $b_1(L_1 = 260m \mathrm{H}, r_1 = 0)$ فإن: $T_2 < T_1$ حسب عبارة الدور $T_2 < T_2 < T_1$ فإن: البيان (1) يوافق الوشيعة $D_3(L_2 = 115m \mathrm{H}, r_2 = 0)$
	4x0.25	$b_2(L_2 = 115m11, r_2 = 0)$ والبيان (2) يوافق الوشيعة $b_1(L_1 = 260m \mathrm{H} , r_1 = 0)$
	4x0.25	$b_2(L_2=115m{ m H}\;,\;r_2=0)$ لوشيعة الوشيعة الوشيعة $u_C(t)$: $u_C(t)$ المعادلة التفاضلية التي يحققها التوتر بين طرفي المكثفة
		و $i=\frac{dq}{dt}=C\frac{du_C}{dt}$ جيث $u_C+u_L=0 \Rightarrow u_C+L\frac{di}{dt}=0$ بتطبيق قانون جمع التوترات لدينا 0.25 مينا
		$rac{d^2 u_C}{dt^2} + rac{1}{LC} u_C = 0$: نجد LC نجد نجد $LC rac{d^2 u_C}{dt^2} + u_C = 0$ ومنه $dt = C rac{d^2 u_C}{dt^2}$ ومنه $dt = C rac{d^2 u_C}{dt^2}$

زمة	العلا	
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		$u_{C}(t) = u_{Cmax} \cos\left(\frac{2\pi}{T_{0}}t + \varphi\right)$:حل المعادلة التفاضلية بالشكل .2.3.2
		: $arphi$ و ω_0 ، T_0 و U_{Cmax} : ابجاد قیمة کل من
	0.25	(القيمة العظمى التوتر) $u_{C \max} = E = 6V$
	0.25	((1) الدور الذاتي للاهتزازات للبيان $T_0=2\pi\sqrt{L imes C}=rac{2\pi}{\omega_0}=10$
	0.25	(النبض الذاتي للاهتزازات) $\omega_0=rac{2\pi}{T_0}=rac{2\pi}{0.01}=200\pi \ \ rad/s$
	0.25	من البيان (1) لدينا لما $t=0$ يكون:
		(الصفحة الابتدائية) $u_{C}\left(0 ight)=U_{C ext{max}}=U_{C ext{max}}\cosarphi\Rightarrow\cosarphi=1\Rightarrowarphi=0$
		L,C ثبات أن الطاقة الكلية للدارة L,C ثابتة:
		0.25 $u_C = E \cos(\omega_0 t + \varphi)$ $E_T = E_C + E_L = \frac{1}{2}Cu_C^2 + \frac{1}{2}Li^2$
	1	$0.25 i = \frac{dq}{dt} = C\frac{du_C}{dt} = -C\omega_0 E \sin(\omega_0 t + \varphi) 9$
	4x0.25	$T_0^2 = 4\pi^2 L \times C \qquad : E_T = \frac{1}{2} C E^2 \cos^2(\omega_0 t + \varphi) + \frac{1}{2} L (-C\omega_0 E)^2 \sin^2(\omega_0 t + \varphi)^2$ 0.25
		و منه : $C = \frac{1}{2}$ ومنه : $C = \frac{1}{2}$ ومنه : $C = \frac{1}{2}$ نستنتج أن : طاقة الدارة $C = \frac{1}{LC}$ ومنه : $C = \frac{1}{2}$
		$0.25 E_T = 3.96 \times 10^{-4} \mathrm{J}$ قيتها:
	0.50	4.2. تفسير تناقص سعة الاهتزازات في البيان (3):
	0.50	تتناقص سعة الاهتزازات في البيان (3) نتيجة وجود مقاومة (وهي مقاومة الوشيعة b_3) أي هناك المنات الما المنات المنات المنات المنات المنات الما المنات المن
		ضياع للطاقة على شكل حرارة بفعل جول.