Compito di Architetture degli Elaboratori

Appello del 18 Settembre 2014

Tempo a disposizione: 3 ore

Esercizio 1

Si realizzi una rete sequenziale sincrona R con una linea di ingresso x ed una linea di uscita z. La rete riconosce sequenze di sei bit $a_1b_1c_1c_0b_0a_0$ tali che:

- se il numero $C = c_1 c_0$ in notazione binaria vale 0, allora i due numeri $A = a_1 a_0$ e $B = b_1 b_0$ sono entrambi pari;
- se C vale 1, allora A è dispari e B è pari;
- se C vale 2, allora A è pari e B è dispari;
- se C vale 3, allora A e B sono entrambi dispari.

Si assuma che lo zero sia un numero pari. Segue un esempio di funzionamento.

t	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
\boldsymbol{x}	0	1	0	0	1	0	0	1	0	1	0	1	1	1	1	1	1	1
z	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1

Esercizio 2

Estendere il set di istruzioni della macchina a registri con l'operazione SIGNHSUM R_i , R_j , R_k , X. In particolare, si considerino il vettore V di dimensione n pari al valore contenuto in R_k e memorizzato in RAM a partire dall'indirizzo X ed il valore h contenuto in R_j . Se h è positivo, l'operazione restituirà in R_i la somma degli elementi della prima metà di V, mentre se h è negativo l'operazione restituirà in R_i la somma della seconda metà (per metà si intenda la parte intera di n/2).

Esempio: Supponiamo che V = [9, 1, 5, 0, 2, 1, 3, 4, 0] e h = 7. Allora in R_i verrà memorizzato il valore 15. Se invece h = -11 in R_i verrà memorizzato il valore 8.

Esercizio 3

Scrivere una programma in Assembly che, dato un intero k (a 16 bit) e una matrice quadrata M di interi a 16 bit, stampi su video "Vero" se la diagonale principale di M contiene almeno un'occorrenza di k, e stampi "Falso" altrimenti. Segue un esempio.

Esempio: Sia k = 3 e si consideri la matrice in figura.

	21	5	3	12	
M =	4	3	14	11	
<i>IVI</i> =	32	2	5	56	
	4	11	14	3	

Il programma stamperà su video "Vero" poichè la diagonale principale di M contiene due occorrenze di k.