Álgebra Moderna Tarea 4.4

Tomás Ricardo Basile Álvarez 316617194

3 de diciembre de 2020

a) Sea G un grupo de orden 57 tal que G no es cíclico. Encuentra el número de elementos de orden 3 de G

Notamos que $57 = 3 \cdot 19$.

Sea n_{19} el número de 19-subgrupos de Sylow de G. Entonces, por el tercer teorema de Sylow, tenemos que n_{19} debe de cumplir:

- n_{19} divide a 57/19 = 3
- $n_{19} \equiv 1 \pmod{19}$

Por la primera condición, tenemos que $n_{19} = 1,3$ Pero por la segunda condición, no queda de otra más que $n_{19} = 1$.

Entonces, solamente tenemos un subgrupo $P \leq G$ de orden 19. Como 19 es un primo, entonces dicho grupo tiene que ser isomorfo a \mathbb{Z}_{19} y por tanto es cíclico.

Como P es cíclio de orden 19, todos los elementos de P distintos de e tienen orden 19 (ya que si tuvieran orden menor, formarían un subgrupo propio de P, pero como P es de orden primo, no puede tener subgrupos propios).

Por otro lado, todos los elementos de G deben de tener orden 1, 3, 19 (ninguno puede tener orden 57 porque entonces el grupo sería cíclico y se supuso que G no lo era).

Ya sabemos que los 18 elementos de P distintos de e tienen orden 19 y que e tiene orden 1. Además, no hay otros elementos de orden 19 fuera de P porque eso crearía un grupo de orden 19 distinto de P, pero sabemos que sólo existe un grupo de orden 19.

Entonces, todos los demás elementos de G deben de tener orden 3. Como ya consideramos 19 elementos, los que faltan son 57-19=38 elementos.

Por tanto, se tienen 38 elementos de orden 3.

b) Muestra que todo grupo de orden 200 tiene un subgrupo normal de orden 25

Notamos que $200 = 2^3 \cdot 5^2$. Entonces, contemos la cantidad de grupos de orden 25 (que son los 5-subgrupos de G)

Si n_5 es la cantidad de 5-subgrupos de Sylow, entonces por el tercer teorema de Sylow, tenemos que debe de cumplir:

- n_5 divide a 200/25 = 8
- $n_5 \equiv 1 \; (mod \; 5)$

Por la primera condición, tenemos que $n_5 = 1, 2, 4, 8$. Y por la segunda condición tenemos que n_5 solamente puede ser 1.

Entonces, solamente existe un grupo de orden 25. Entonces, $Syl_5(G) = \{P\}$ donde P es el único 5-subgrupo de Sylow. Luego, por el corolario 26.8, tenemos que $P \subseteq G$ si y sólo si $Syl_p(G) = \{P\}$. Por tanto, P es normal en G.

c) Encuentra todas las clases de isomorfismo de grupos de orden 1755 = $13 \times 5 \times 3 \times 3 \times 3$

Primero calculamos la cantidad de subgrupos de Sylow de cada orden. Sea n_{13} la cantidad de subgrupos de orden 13. Por el tercer teorema de Sylow, tenemos que:

- 13 divide a 1755/13 = 135
- $n_{13} \equiv 1 \pmod{13}$

Por la primera condición, tenemos que $n_{13} = 1, 3, 5, 9, 15, 27, 45, 135$. Y por la segunda, las únicas opciones posibles son $n_{13} = 1, 27$

Sea n_5 la cantidad de subgrupos de orden 5. Por el tercer teorema de Sylow, tenemos que:

- 5 divide a 1755/5 = 351
- $n_5 \equiv 1 \pmod{5}$

Por la primera condición, tenemos que $n_{13} = 1, 3, 9, 13, 27, 39, 117, 351$. Y por la segunda, las únicas opciones posibles son $n_{13} = 1, 351$

Sea n_3 la cantidad de subgrupos de orden 3. Por el tercer teorema de Sylow, tenemos que:

- 3 divide a $1755/3^3 = 65$
- $n_3 \equiv 1 \pmod{3}$

Por la primera condición, tenemos que $n_{13} = 1, 5, 13, 65$. Y por la segunda, las únicas opciones posibles son $n_3 = 1, 13$.

Entonces, eso nos deja con varias posibilidades para el grupo que enlistamos ahora:

• $n_3 = 1, n_5 = 1, n_{13} = 1$

En este caso, solamente existe un grupo P de orden $3^3 = 27$, un solo grupo Q de orden 5 y un solo grupo R de orden 13.

Entonces, como cada uno de estos grupos es el único correspondiente a su orden, el corolario 26.8 nos asegura que cada uno de estos grupos son normales.

Luego, como cada uno de los grupos son normales y se intersectan trivialmente (porque tienen órdenes coprimos y la intersección tiene que tener orden que divida a los dos grupos intersectándose). Entonces, por 15.4, $|PQR| = |P||Q||R| = 27 \cdot 5 \cdot 13 = 1755$ y además, $PQR \simeq P \times Q \times R$

Pero además, el grupo P tiene orden $27 = 3^3$, por lo que el teorema 24.12 nos asegura que es isomorfo a $\mathbb{Z}_{27}, \mathbb{Z}_9 \times \mathbb{Z}_3, \mathbb{Z}_3^3, H_3, E_3$.

Por otro lado, como Q tiene orden 5, es isomorfo a \mathbb{Z}_5 y como R tiene orden 13 (que es primo), es isomorfo a \mathbb{Z}_{13}

Por lo tanto, G es isomorfo a alguno de los siguientes:

$$\mathbb{Z}_{27} \times \mathbb{Z}_5 \times \mathbb{Z}_{13} , \mathbb{Z}_9 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_{13} , \mathbb{Z}_3^3 \times \mathbb{Z}_5 \times \mathbb{Z}_{13} , H_3 \times \mathbb{Z}_5 \times \mathbb{Z}_{13} , E_3 \times \mathbb{Z}_5 \times \mathbb{Z}_{13}$$

d) Elabora una tabla (como la elaborada en la clase 24) en donde muestres todos los grupos de orden menor o igual a 15 salvo isomorfismos

La tabla es la siguiente

G	G abeliano	G no abeliano
2	\mathbb{Z}_2	_
3	\mathbb{Z}_3	_
$\parallel 4$	$\mathbb{Z}_4,\mathbb{Z}_2\times\mathbb{Z}_2$	_
5	\mathbb{Z}_5	_
6	\mathbb{Z}_6	$D_{2(3)}$
7	\mathbb{Z}_7	_
8	$\mathbb{Z}_{2^3}, \mathbb{Z}_{2^2} imes \mathbb{Z}_2, \mathbb{Z}_2^3$	$D_{2(4)}, Q_8$
9	$\mathbb{Z}_9,\mathbb{Z}_3 imes\mathbb{Z}_3$	_
10	\mathbb{Z}_{10}	$D_{2(5)}$
11	\mathbb{Z}_{11}	_
12	$\mathbb{Z}_4 \times \mathbb{Z}_3, \mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2$	$Q_{12}, A_4, D_{2(6)}$
13	\mathbb{Z}_{13}	_
14	\mathbb{Z}_{14}	$D_{2(7)}$
15	$\mathbb{Z}_3 imes \mathbb{Z}_5$	_

La justificación se basa en los siguientes resultados vistos en clase:

• Todo grupo de orden p primo es isomorfo a \mathbb{Z}_p (Corolario 9.8) Esto explica los isomorfismos que se tienen en la tabla para 2, 3, 5, 7, 11, 13 • Todo grupo de orden 2p con p primo es isomorfo a \mathbb{Z}_{2p} o a $D_{2(p)}$ (Teorema 10.13)

Esto explica los isomorfismos en la tabla para 6, 10, 14

- Sea G de orden 2^3 , entonces si G es abeliano, es isomorfo a \mathbb{Z}_{2^3} , $\mathbb{Z}_{2^2} \times \mathbb{Z}_2$, \mathbb{Z}_2^3 y si no es abeliano, es isomorfo a $D_{2(4)}$, Q_8 (Teorema 24.10 Esto explica los isomorfismos para el grupo de orden 8.
- Todo grupo de orden 12 es isomorfo a $\mathbb{Z}_4 \times \mathbb{Z}_3$, $\mathbb{Z}_3 \times Z_2 \times \mathbb{Z}_2$, A_4 , $D_{2(6)}$, $Q_{2(6)}$ (Teorema 28.3

Esto explica los isomorfismos del grupo de orden 12.

- Todo grupo de orden 15 es isomorfo a $\mathbb{Z}_3 \times \mathbb{Z}_5$ (Tarea 4.3 ejercicio a) Esto explica el isomorfismo del grupo de orden 15.
- Todo grupo de orden p^2 con p primo es isomorfo a \mathbb{Z}_{p^2} o a $\mathbb{Z}_p \times \mathbb{Z}_p$ (Teorema 24.7)

Lo que explica los isomorfismos de los grupos de orden 4 y 9