12 - Mundo analógico

 $Rafael\ Corsi\ -\ rafael.corsi@insper.edu.br$

Abril - 2017

Introdução

Mundo analógico

Figura 1: Roland Kirk

Música no tempo

Figura 2: Analise temporal - Take Five

https://www.youtube.com/watch?v = PHdU5sHigYQ

Digitalizando

Figura 3: Partitura

Amostragem

Figura 4: Amostragem

Amostragem

- Tempo entre as amostras
 - Taxa de amostragem (Hertz ou samples/second)
- Valor das amostras
 - Discretização (número de bits)

Microcontrolador

Microcontrolador

Figura 5: ADC - DAC

Atmel SAME-70

Figura 6: Analog Front-End Controller (AFEC)

Analog Front-End Controller (AFEC)

- Periférico dedicado a converter sinais analógicos em digitais (ADC)
- 12 bits de resolução
- Ganho programado (PGA)
- Dois tipos de trigger de amostragem : Software e Timer

Analog Front-End Controller (AFEC)

Figura 7: AFE

Analog Front-End Controller (Simplificado)

Figura 8: AFE

Atraso na conversão

– A conversão Analógico-Digital não é instantâneo

Figura 9: Delay

Trigger

- trigger : a conversão pode ser inicializado por software ou pelo periférico timer
- via software o inicio da conversão é realizado via escrita no registrador ADEC CR

Figura 10: ADEC CR

Ou via função do ASF: afec_start_software_conversion(AFEC0);

Handler vs CallBack

Figura 11: CallBack

Desafio

Programação

- 1. Analise o código exemplo e implemente a leitura de temperatura a cada 1 segundo
 - utilize o printf para exebir o valor no terminal
- 2. Utilize um TimerCounter para dar a taxa de amostragem correta (1 segundo)
- 3. Implemente para cada leitura um TimeStamp de quando ela foi executada como a seguir :

20h10 - 17-4-2017 : Temperatura Interna 28C