Module Interface Specification for OCRacle

Phillip Tran

April 8, 2025

1 Revision History

Date	Version	Notes
March 13, 2025	1.0	Initial Document Creation
April 7, 2025	2.0	Addressed comments from Dr. Spencer Smith and Hussein Saad, updated document to reflect implementation

2 Symbols, Abbreviations and Acronyms

See SRS Documentation at https://github.com/ptrandev/OCRacle/blob/main/docs/SRS/SRS.pdf for symbols, abbreviations and acronyms.

Contents

1	Rev	rision I	History	i					
2	Symbols, Abbreviations and Acronyms								
3	Introduction								
4	Notation 1								
5	Module Decomposition								
6	MIS	S of Ar	oplication Module	3					
	6.1	_	le						
	6.2								
	6.3		X						
		6.3.1	Exported Constants						
		6.3.2	Exported Access Programs						
	6.4		ntics						
		6.4.1	State Variables						
		6.4.2	Environment Variables						
		6.4.3	Assumptions						
		6.4.4	Access Routine Semantics						
		6.4.5	Local Functions	. 4					
7	MIS	of In	put Format Module	5					
	7.1	Modul	- le	. 5					
	7.2	Uses		. 5					
	7.3	Syntax	X	. 5					
		7.3.1	Exported Constants	. 5					
		7.3.2	Exported Access Programs						
	7.4	Seman	ntics	. 5					
		7.4.1	State Variables	. 5					
		7.4.2	Environment Variables						
		7.4.3	Assumptions	. 5					
		7.4.4	Access Routine Semantics						
		7.4.5	Local Functions						
8	MIS	of Mo	odel Output Module	7					
	8.1		le	. 7					
	8.2	Uses		. 7					
	8.3		x						
		8.3.1	Exported Constants	. 7					
		8.3.2	Exported Access Programs	. 7					

	8.4	Seman	ntics						7
		8.4.1	State Variables						7
		8.4.2	Environment Variables						7
		8.4.3	Assumptions						7
		8.4.4	Access Routine Semantics					•	7
9	MIS	of Mo	odel Training Module						ç
	9.1	Module	le						Ć
	9.2	Uses .							Ć
	9.3	Syntax	x						Ć
		9.3.1	Exported Constants						Ć
		9.3.2	Exported Access Programs						Ć
	9.4	Seman	ntics						Ć
		9.4.1	State Variables						Ć
		9.4.2	Environment Variables						10
		9.4.3	Assumptions						10
		9.4.4	Access Routine Semantics						10
		9.4.5	Local Functions						10
10	MIS	of Pro	rediction Model Module						11
			le						11
									11
			x						11
			Exported Constants						11
			Exported Access Programs						11
	10.4		ntics						11
			State Variables						11
			Environment Variables						11
									11
			Access Routine Semantics						11
			Local Functions						12
11	MIS	of Im	nage Preprocessing Module						13
			le						13
									13
			X						13
	11.0	•	Exported Constants						13
			Exported Access Programs						13
	11.4		ntics						13
	11.1		State Variables						13
			Environment Variables						13
			Assumptions						13
			Agging Douting Computing	•	•	•	•	•	19

11.4.5 Local Functions	14
12 MIS of Model Evaluation Module	15
12.1 Module	15
12.2 Uses	15
12.3 Syntax	15
12.3.1 Exported Constants	15
12.3.2 Exported Access Programs	15
12.4 Semantics	15
12.4.1 State Variables	15
12.4.2 Environment Variables	15
12.4.3 Assumptions	15
12.4.4 Access Routine Semantics	16
12.4.5 Local Functions	16
13 MIS of Data Loading Module	17
13.1 Module	17
13.2 Uses	17
13.3 Syntax	17
13.3.1 Exported Constants	17
13.3.2 Exported Access Programs	17
13.4 Semantics	17
13.4.1 State Variables	17
13.4.2 Environment Variables	17
13.4.3 Assumptions	17
13.4.4 Access Routine Semantics	17
13.4.5 Local Functions	18
14 MIS of Graphical User Interface Module	19
14.1 Module	19
14.2 Uses	19
14.3 Syntax	19
14.3.1 Exported Constants	19
14.3.2 Exported Access Programs	19
14.4 Semantics	19
14.4.1 State Variables	19
14.4.2 Environment Variables	19
14.4.3 Assumptions	19
14.4.4 Access Routine Semantics	20
14.4.5 Local Functions	20
11.1.0 LOCAL MICOTORIO	20
15 Appendix	22

3 Introduction

The following document details the Module Interface Specifications for OCRacle, an optical character recognition (OCR) program for identifying Latin alphabet characters.

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found at https://github.com/ptrandev/OCRacle/.

4 Notation

The structure of the MIS for modules comes from Hoffman and Strooper (1995), with the addition that template modules have been adapted from Ghezzi et al. (2003). The mathematical notation comes from Chapter 3 of Hoffman and Strooper (1995). For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1|c_2 \Rightarrow r_2|...|c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by OCRacle.

Data Type	Notation	Description
character	char	a single symbol or digit
integer	\mathbb{Z}	a number without a fractional component in $(-\infty, \infty)$
natural number	N	a number without a fractional component in $[1, \infty)$
real	\mathbb{R}	any number in $(-\infty, \infty)$
bounded real	$\mathbb{R}_{\min \leq x \leq \max}$	a real number in the range [min, max]
bounded integer	$\mathbb{Z}_{\min \leq x \leq \max}$	an integer in the range [min, max]
boolean	bool	a value that is either true or false

The specification of OCRacle uses some derived data types: sequences, strings, and tuples. Sequences are lists filled with elements of the same data type. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. In addition, OCRacle uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification.

To describe matrices, the dimensions of the matrix will be described in superscript (i.e. $\mathbb{Z}^{w \times w}$). For all additional notation, reference Section 1.2 of the SRS Document. (Tran, 2025b).

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2
Hardware-Hiding Module	
Behaviour-Hiding Module	Input Format Module Model Output Module Model Training Module Prediction Model Module Application Module Image Preprocessing Module
	Model Evaluation Module Data Loading Module
Software Decision Module	Graphical User Interface Module

Table 1: Module Hierarchy

6 MIS of Application Module

6.1 Module

main

6.2 Uses

- Input Format Module 7
- Model Output Module 8
- Model Training Module 9
- Graphical User Interface Module 14

6.3 Syntax

6.3.1 Exported Constants

N/A

6.3.2 Exported Access Programs

Name	\mathbf{In}	Out	Exceptions
main	-	-	-

6.4 Semantics

6.4.1 State Variables

N/A

6.4.2 Environment Variables

• filePath: string. The path to the input image file from the user.

6.4.3 Assumptions

The Graphical User Interface module 14 is responsible for handling all user inputs and displaying outputs The Application module is responsible for coordinating the interaction between the GUI, Input Format, and Model Output modules.

6.4.4 Access Routine Semantics

main():

• transition: The application is started and the user is able to interact with the GUI to input images and view the model's predictions.

6.4.5 Local Functions

7 MIS of Input Format Module

7.1 Module

input

7.2 Uses

• Image Preprocessing Module 11

7.3 Syntax

7.3.1 Exported Constants

N/A

7.3.2 Exported Access Programs

Name	In	Out	Exceptions	
input	filePath:	$\mathbb{Z}_{0 \le x \le 255}^{w \times w}$	DimensionsError,	FormatError,
	string		FileNotFound	

7.4 Semantics

7.4.1 State Variables

N/A

7.4.2 Environment Variables

• Image: The input image file to be processed by OCRacle.

7.4.3 Assumptions

N/A

7.4.4 Access Routine Semantics

input(filePath):

• output: imageMatrix := preprocessing(filePath). After ensuring that all exceptions are handled, call the preprocessing module 11 to perform the necessary transformations on the input image. ¹

¹By splitting up the file handling concerns with the preprocessing concerns, we are able to ensure that AC3 and AC5 from the MG (Tran, 2025a) are met. This separation of concerns allows for better modularity and maintainability of the code. For instance, if we wanted to be able to support multiple preprocessing methods or allow input of files other than images.

• exceptions:

- A DimensionsError exception is thrown if the input image exceeds the bounds of the n_{min} , n_{max} , m_{min} , and m_{max} parameters as specified by Table 4 in the SRS (Tran, 2025b, 4.2.6).
- A FormatError exception is thrown if the input image is not one of the supported formats specified by R1 in the SRS (Tran, 2025b, 5.1.1).
- A FileNotFound exception is thrown if the input file does not exist.

7.4.5 Local Functions

8 MIS of Model Output Module

8.1 Module

output

8.2 Uses

• Prediction Model Module 10

8.3 Syntax

8.3.1 Exported Constants

• LABELS: ['A'...'Z']

8.3.2 Exported Access Programs

Name	In	Out	Exceptions
output	imageMatrix: $\mathbb{Z}_{0 \le x \le 255}^{w \times w}$	char, $\mathbb{R}_{0\leq x\leq 1}^{1\times L}$	-

8.4 Semantics

8.4.1 State Variables

N/A

8.4.2 Environment Variables

N/A

8.4.3 Assumptions

We assume that the imageMatrix input has been processed by the Input Format Module 7 before being passed to the Model Output Module.

8.4.4 Access Routine Semantics

output(imageMatrix):

- output:
 - confidenceMatrix := predict(imageMatrix). Call the prediction model module 10 to generate a confidence matrix for the input image.

- prediction := LABELS[argmax(confidenceMatrix)]. Return the character representing the highest confidence value in the confidence matrix. When there is a tie, the first most confident character is returned.

9 MIS of Model Training Module

9.1 Module

train

9.2 Uses

- Prediction Model Module 10
- Data Loading Module 13

9.3 Syntax

9.3.1 Exported Constants

N/A

9.3.2 Exported Access Programs

Name	In	Out	Exceptions
train	-	$\mathbb{R}^{m imes n}$	_

9.4 Semantics

9.4.1 State Variables

- dataset: $(\mathbb{Z}_{0 \le x \le 255}^{w \times w}$, char)[]. The dataset of images and their corresponding labels used for training the model.
- epochs: N. The number of epochs to train the model.
- batchSize: N. The number of images to train on in each batch.
- timeStep: \mathbb{R} . The time step for the ADAM optimizer.
- α : \mathbb{R} . The rate at which the model learns.
- ϵ : \mathbb{R} . A small value to prevent division by zero.
- m_t : \mathbb{R} . The first moment for the ADAM optimizer.
- v_t : \mathbb{R} . The second moment for the ADAM optimizer.
- β_1 : \mathbb{R} . The β_1 parameter for the ADAM optimizer.
- β_2 : \mathbb{R} . The β_2 parameter for the ADAM optimizer.

- g_t : $\mathbb{R}^{m \times n}$. The gradient of the model.
- θ_t : $\mathbb{R}^{m \times n}$. The weights of the model.

9.4.2 Environment Variables

N/A

9.4.3 Assumptions

N/A

9.4.4 Access Routine Semantics

train():

- transition: The model is trained on the dataset using the hyperparameters α , β_1 , β_2 , ϵ , m_t , v_t , g_t , θ_t , epochs, batchSize, and timeStep. The ADAM optimizer is used to minimize the cross-entropy loss as specified by TM:ADAM (Tran, 2025b, 4.2.2) and IM1 in the SRS (Tran, 2025b, 4.2.4). For each step, theta is updated using the gradient of the model.
- output: θ . Once the model has been trained and loss has been minimized, the weights of the model are returned.

9.4.5 Local Functions

10 MIS of Prediction Model Module

10.1 Module

model

10.2 Uses

N/A

10.3 Syntax

10.3.1 Exported Constants

N/A

10.3.2 Exported Access Programs

Name	In	Out	Exceptions
predict	imageMatrix: $\mathbb{Z}_{0 \le x \le 255}^{w \times w}$	$\mathbb{R}_{0\leq \mathbf{x}\leq 1}^{1\times L}$	-

10.4 Semantics

10.4.1 State Variables

• model: $\mathbb{R}^{m \times n}$. The representation of the model's weights for the prediction model.

10.4.2 Environment Variables

N/A

10.4.3 Assumptions

We assume that the input image has been preprocessed as specified in the SRS before being passed to the prediction model.

10.4.4 Access Routine Semantics

predict(imageMatrix):

• output: confidenceMatrix. Where each element in the confidence matrix represents the model's confidence in the corresponding character. The model is used to generate a confidence matrix for the input image using a CNN as specified by GD3 in the SRS (Tran, 2025b, 4.2.3). GD3 provides a high-level description of the model's architecture, but the implemented model may differ.

10.4.5 Local Functions

11 MIS of Image Preprocessing Module

11.1 Module

preprocessing

11.2 Uses

N/A

11.3 Syntax

11.3.1 Exported Constants

N/A

11.3.2 Exported Access Programs

Name	In	Out	Exceptions
preprocessing	file: string	$\mathbb{Z}_{0\leq x\leq 255}^{w\times w}$	-

11.4 Semantics

11.4.1 State Variables

N/A

11.4.2 Environment Variables

N/A

11.4.3 Assumptions

All input data has been validated by the Input Format Module before being processed by the Image Preprocessing Module.

11.4.4 Access Routine Semantics

preprocessing(file):

• output: imageMatrix := normalization(bicubicInterpolation(file)). The input file has been transformed such that it conforms to the preprocessing requirements as specified by A3 in the SRS (Tran, 2025b, 4.2.1).

11.4.5 Local Functions

bicubicInterpolation(imageMatrix):

• output: Perform bicubic interpolation such that the imageMatrix is transformed to a $w \times w$ matrix. as specified by TM:BI in the SRS (Tran, 2025b, 4.2.2).

normalization(imageMatrix):

• output: Perform normalization such that the image is turned into a greyscale image with pixel values in the range [0, 1]. as specified by TM:N in the SRS (Tran, 2025b, 4.2.2).

12 MIS of Model Evaluation Module

12.1 Module

accuracy

12.2 Uses

- Model Output Module 8
- Prediction Model Module 10
- Data Loading Module 13

12.3 Syntax

12.3.1 Exported Constants

N/A

12.3.2 Exported Access Programs

Name	In	Out	Exceptions
evaluate	-		-

12.4 Semantics

12.4.1 State Variables

N/A

12.4.2 Environment Variables

N/A

12.4.3 Assumptions

We assume that the Prediction Model Module 10 has been trained before being used to evaluate the model's performance. The evaluation is performed on the test dataset extracted from the Data Loading Module 13.

12.4.4 Access Routine Semantics

evaluate():

• output:

- loss := $-\sum_{i=1}^{n} target_i \log(prediction_i)$. The cross entropy loss is calculated for the model's predictions and the target values as specified by TM:CELF in the SRS (Tran, 2025b, 4.2.2).
- accuracy := $\frac{1}{n} \sum_{i=1}^{n} \operatorname{target}_{i} \times \operatorname{prediction}_{i}$. The accuracy is calculated for the model's predictions as described in the VnV Plan (Tran, 2025c). This fulfills NFR1 in the SRS (Tran, 2025b).
- confusionMatrix := confusionMatrix_{i,j} = $\sum_{k=1}^{n} \operatorname{target}_{k,i} \times \operatorname{prediction}_{k,j}$. A confusion matrix is generated for the model's predictions and the target values.
- classAccuracy := $\frac{1}{n} \sum_{i=1}^{n} \operatorname{target}_{i} \times \operatorname{prediction}_{i}$. The class accuracy is calculated for each class in the confusion matrix and sorted by accuracy descending.

12.4.5 Local Functions

13 MIS of Data Loading Module

13.1 Module

data

13.2 Uses

N/A

13.3 Syntax

13.3.1 Exported Constants

N/A

13.3.2 Exported Access Programs

Name	In	Out	Exceptions
extractTestSamples	-	$\mathbb{R}_{0>x>1}^{w\times w}[], \mathbb{Z}[]$	-
extract Training Samples	-	$\mathbb{R}_{0\geq x\geq 1}^{w\overline{ imes}w\overline{ imes}}[],\ \mathbb{Z}[]$	-

13.4 Semantics

13.4.1 State Variables

N/A

13.4.2 Environment Variables

N/A

13.4.3 Assumptions

N/A

13.4.4 Access Routine Semantics

extractTestSamples():

• output: (images, labels) := processSamples(testImages, testLabels). A tuple containing the test images and their corresponding labels. The test samples are extracted from the EMNIST letters dataset.

extractTrainingSamples():

• output: (images, labels) := processSamples(trainingImages, trainingLabels). A tuple containing the training images and their corresponding labels. The training samples are extracted from the EMNIST letters dataset.

13.4.5 Local Functions

processSamples():

• output: (images, labels). The images are normalized to have a pixel range between 0 and 1 inclusive, as specified by the SRS document (Tran, 2025b). The labels are scaled to start at 0 instead of 1 to align with the model architecture's output as specified by the SRS document (Tran, 2025b).

14 MIS of Graphical User Interface Module

14.1 Module

gui

14.2 Uses

• Hardware-Hiding Module

14.3 Syntax

14.3.1 Exported Constants

N/A

14.3.2 Exported Access Programs

View the Appendix 15 for more information the full range of interactions that the Graphical User Interface Module can have with the user.

Name	In	Out	Exceptions
displayOutput	-	-	-
acceptInput	-	-	-

14.4 Semantics

14.4.1 State Variables

N/A

14.4.2 Environment Variables

• displayWindow: (dimensions: $\mathbb{Z}_+ \times \mathbb{Z}_+$)

• keyboard: (keypress: char)

• mouse: (location: $\mathbb{Z}_+ \times \mathbb{Z}_+$, click: bool)

14.4.3 Assumptions

This behavior will be significantly abstracted by the use of Python Notebook, which will handle all UI elements and interactions with the user. As a result, the GUI modules does not need to have any pre-defined state variables or access routines.

Figure 1: Example of the displayOutput() function. It will display the model's prediction and the confidence matrix to the user in a graphical format.

14.4.4 Access Routine Semantics

displayOutput():

- transition: The output of the model is displayed to the user in the GUI. acceptInput():
 - transition: The user is able to input images to the model in the GUI.

14.4.5 Local Functions

Figure 2: Example of the acceptInput() function. It allows users to input a file path and run the model on the input image.

References

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.

Phillip Tran. Module guide. https://github.com/ptrandev/OCRacle/blob/main/docs/Design/SoftArchitecture/MG.pdf, 2025a.

Phillip Tran. System requirements specification. https://github.com/ptrandev/OCRacle/blob/main/docs/SRS/SRS.pdf, 2025b.

Phillip Tran. Verification and validation plan. https://github.com/ptrandev/OCRacle/blob/main/docs/VnVPlan/VnVPlan.pdf, 2025c.

15 Appendix

- The Python Notebook documentation can be found at https://jupyter-notebook.readthedocs. io/en/latest/user-documentation.html. This informs the full range of interactions that the Graphical User Interface Module 14 can have with the user.
- Generative AI Acknowledgement: ChatGPT-40 was used to generate valid LaTeX for mathematical expressions in this document.