CS2310 Lab 7: Introduction to Sequential Logic

Semester: Jul-Nov 2024

Due: October 22, 2024 (in class)

1 SR Latch

In this question you will implement a SR Latch in two different ways.

- a) Implement the SR Latch with behavirial modelling in Verilog, that is, with an always block. Use the module signature module SR_a(output Q, output Q_bar, input S, input R) for uniformity. [10]
- b) Implement the SR Latch with gate-level modelling in Verilog. Note that you are not allowed to use the always block for this part. Use the module signature module SR_b(output Q, output Q_bar, input S, input R) for uniformity. [10]
- c) Implement a gated SR Latch with behavorial modelling. The truth table for a gated SR Latch is shown below. Use the module signature module SR_c(output Q, output Q_bar, input S, input R, input E) for uniformity. [15]

Enable (E)	Set (S)	Reset (R)	$Q_{ m next}$	$\overline{Q}_{ m next}$
0	X	X	Q	\overline{Q}
1	0	0	Q	\overline{Q}
1	0	1	0	1
1	1	0	1	0
1	1	1	Metastable	Metastable

Note that reset (R) is an active-high signal, i.e., values are reset when R = 1. Also, note that the metastable condition will not be tested in the testbench.

2 D Latch

In this question you will implement a D Latch in two different ways.

- 1. Implement the D Latch using behavirial modelling in Verilog. The module should have the signature module D_a(input D, input en, input rstn, output Q). [10]
- 2. Implement the D Latch using gate-level modelling in Verilog. The module should have the signature module D_a(input D, input en, input rstn, output Q). [15]

Note that rstn is an active-low signal, i.e., values are reset when rstn = 0.