Programming 1 — Homework assignment 7

Deadline: Sunday, December 23, 2018, at 23:55

Single-track railway

Task description

On a single-track railway, a pair of trains can meet only at one of the stations — at the first one, at the last one, or at one of the intermediate stations. Train A is ready to depart from the first station to the last at time $t_{\rm A}$, and train B is ready to depart from the last station to the first at time $t_{\rm B}$. Suppose that there are 6 stations along the track, that the travel times between the successive stations are 20, 40, 30, 50, and 10 time units, and that $t_{\rm A}=35$ and $t_{\rm B}=25$:

If the trains meet at station 1, then train A will have to wait for 140 time units. If they meet at, say, station 4, train B will wait for 40 units. The waiting time will be shortest if they meet at station 3. In this case, train A will wait for 20 units.

After reading the number of stations (n), the travel times between the stations, the number m, and a sequence of m pairs (t_A, t_B) , your program should find the minimum waiting time for each pair (t_A, t_B) and print the sum of those minimum waiting times.

Input

All input numbers are integers. The numbers in the same line are separated by a space.

The first line contains the number $n \in [2, 10^5]$. The second line contains (n-1) numbers from the interval $[1, 10^3]$, which specify the travel times between the stations: the *i*-th number (for $i \in \{1, ..., n-1\}$) specifies the travel time between stations i and i+1). The third line contains the number m. Each of the following m lines contains the numbers $t_A \in [0, 10^8]$ and $t_B \in [0, 10^8]$.

Following are the properties of the individual test cases:

- J1–J4, S1–S20: $m \in [1, 20]$; all travel times between the successive stations are equal.
- J5–J8, S21–S40: $m \in [1, 20]$.
- J9–J10, S41–S50: $m \in [1, 10^5]$.

Output

Print the sum of the minimum waiting times for the individual pairs (t_A, t_B) .

Test case J5

Input:

```
6
20 40 30 50 10
3
35 25
0 85
100 300
```

Output:

65

In the case of $t_{\rm A}=35$ and $t_{\rm B}=25$, the trains, as we have already found out, meet at station 3, with train A waiting for 20 time units. In the case of $t_{\rm A}=0$ and $t_{\rm B}=85$, the trains meet at station 5, and train B waits for 45 time units. In the case of $t_{\rm A}=100$ and $t_{\rm B}=300$, the trains don't meet at all; the waiting time is therefore equal to 0. The sum of the minimum waiting times is thus 20+45+0=65.

Submission

Submit your program as a single file named $DN07_vvvvvvvv$.java, where vvvvvvvv represents your student ID number.