Bootstrap & Bagging

Bootstrap

Consider a dataset $Z=\{(x_1, y_1),...,(x_n, y_n)\}$

Bootstrapped dataset Z^* – is a modification of the original dataset Z, produced by random sampling with replacement

1 2 3 4 5

bootstrapped dataset

Bagging

Bagging (bootstrap aggregation) – a method for averaging predictions and reducing prediction's variance

Algorithm: Bagging

Input: training set $Z=\{(x_1, y_1),...,(x_n, y_n)\}$, B – number of iterations

Machine learning method M

- 1. For b=1...B:
- 2. Draw a bootstrap sample Z^{*b} of size n from training data
- 3. Apply method M to the dataset Z^{*b} and obtain a model $f(x)^{*b}$
- 4. <u>Return</u>: ensemble {**f***1... **f***B}

Prediction with ensemble:

- Regression: $\mathbf{f}(\mathbf{x}) = \frac{1}{n} \sum_{b=1}^{B} f^{*b}(\mathbf{x})$
- Classification: majority vote of all predictions $f^{*b}(x)$, b=1...B

Model f(x) has <u>higher predictive power</u> than any single $f^{*b}(x)$, b=1,..., B

Why does bagging work? Bias-variance trade-off. One may consider the training dataset to be random.

Bagging – is an averaging over a set of possible datasets, removing noisy and non-stable parts of models.

Summary

- ► Bootstrap a method for generating different replicas of the dataset
- ► Bagging (bootstrap aggregation) a method for averaging predictions and reducing prediction's variance
- ► Bagging improves the quality of almost any machine learning method
- Bagging is time consuming for large datasets