Project

June 14, 2018

1 California Housing Price Prediction

```
In [1]: #Imports
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.linear_model import LinearRegression
    from sklearn.metrics import mean_squared_error
    from sklearn.tree import DecisionTreeRegressor
    from sklearn.ensemble import RandomForestRegressor
    from math import sqrt
```

1.1 Loading the data and Exploratory data analysis - EDA

259

Out[2]:	longitude	latitude h	nousing_median_age	total_rooms	total_bedrooms \
0	-122.23	37.88	41	880	129.0
1	-122.22	37.86	21	7099	1106.0
2	-122.24	37.85	52	1467	190.0
3	-122.25	37.85	52	1274	235.0
4	-122.25	37.85	52	1627	280.0
	population	households	s median_income od	cean_proximity	median_house_value
0	322	126	8.3252	NEAR BAY	452600
1	2401	1138	8.3014	NEAR BAY	358500
2	496	177	7.2574	NEAR BAY	352100
3	558	219	5.6431	NEAR BAY	341300

3.8462

NEAR BAY

342200

In [3]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639

565

Data columns (total 10 columns): longitude 20640 non-null float64 latitude 20640 non-null float64 housing_median_age 20640 non-null int64 total_rooms 20640 non-null int64 total_bedrooms 20433 non-null float64 population 20640 non-null int64 20640 non-null int64 households median_income 20640 non-null float64 ocean_proximity 20640 non-null object median_house_value 20640 non-null int64 dtypes: float64(4), int64(5), object(1) memory usage: 1.6+ MB

freq

In [4]: data.describe(include='all')

		•	•				
Out[4]:		longitude	latitude	housing_median_	age	total_room	s \
	count	_	20640.000000	20640.000	000	20640.00000	0
	unique	NaN	NaN		NaN	Na	N
	top	NaN	NaN		NaN	Na	N
	freq	NaN	NaN		NaN	Na	N
	mean	-119.569704	35.631861	28.639	486	2635.76308	1
	std	2.003532	2.135952	12.585	5558	2181.61525	2
	min	-124.350000	32.540000	1.000	000	2.00000	0
	25%	-121.800000	33.930000	18.000	000	1447.75000	0
	50%	-118.490000	34.260000	29.000	000	2127.00000	0
	75%	-118.010000	37.710000	37.000	000	3148.00000	0
	max	-114.310000	41.950000	52.000	000	39320.00000	0
			.				
		total_bedrooms	population			_	\
	count	20433.000000	20640.000000		20	640.000000	
	unique	NaN	Nal			NaN	
	top	NaN	Nal			NaN	
	freq	NaN	Nal			NaN	
	mean	537.870553	1425.47674			3.870671	
	std	421.385070	1132.462122			1.899822	
	min	1.000000	3.000000			0.499900	
	25%	296.000000	787.00000			2.563400	
	50%	435.000000	1166.000000			3.534800	
	75%	647.000000	1725.000000			4.743250	
	max	6445.000000	35682.000000	0 6082.000000		15.000100	
		ocean_proximity	median_house	e_value			
	count	20640	20640.000000				
	unique	5		NaN			
	top	<1H OCEAN		NaN			
	-						

 ${\tt NaN}$

9136

mean	NaN	206855.816909
std	NaN	115395.615874
min	NaN	14999.000000
25%	NaN	119600.000000
50%	NaN	179700.000000
75%	NaN	264725.000000
max	NaN	500001.000000

1.2 Handling missing values

```
In [5]: data.isna().any()
Out[5]: longitude
                               False
        latitude
                               False
                               False
        housing_median_age
        total_rooms
                               False
        total_bedrooms
                                True
        population
                               False
        households
                               False
        median_income
                               False
        ocean_proximity
                               False
        median_house_value
                               False
        dtype: bool
```

```
In [6]: data = data.fillna(data.mean())
```

```
In [7]: data.isna().any()
```

```
Out[7]: longitude
                               False
        latitude
                               False
        housing_median_age
                               False
        total rooms
                               False
        total_bedrooms
                               False
        population
                               False
        households
                               False
        median_income
                               False
        ocean_proximity
                               False
        median_house_value
                               False
        dtype: bool
```

Encoding categorical data

```
In [8]: df_with_dummies = pd.get_dummies( data, columns = ['ocean_proximity'] )
```

Splitting the dataset into training and testing datasets

```
In [9]: train, test = train_test_split(df_with_dummies, test_size=0.3)
        columnKey = train.columns.get_loc('median_house_value')
        median_income_columnKey = train.columns.get_loc('median_income')
```

1.5 Standardizing the data

1.6 Performing Linear Regression

1.6.1 Performing Linear Regression on training data

1.6.2 Predicting output for test dataset using the fitted model

1.6.3 Printing root mean squared error (RMSE) from Linear Regression

1.7 Performing Decision Tree Regression

1.7.1 Performing Decision Tree Regression on training data

1.7.2 Predicting output for test dataset using the fitted model

Predicted values:

1.7.3 Printing root mean squared error (RMSE) from Decision Tree Regressionű

Root mean square error value:

```
Out[17]: 0.6376532036247837
```

1.8 Performing Random Forest Regression

1.8.1 Performing Random Forest Regression on training data

1.8.2 Predicting output for test dataset using the fitted model

Predicted values:

1.8.3 Printing root mean squared error (RMSE) from Random Forest Regression

- 1.9 Performing Linear Regression with one independent variable (Bonus exercise)
- 1.9.1 Extracting just the median_income column from the independent variables (from X_{test})

1.9.2 Performing Linear Regression to predict housing values based on median_income

1.9.3 Predicting output for test dataset using the fitted model

Root mean square error value:

Out [24]: 0.7121860437662826

1.9.4 Plotting the fitted model against training data

Out[25]: [<matplotlib.lines.Line2D at 0x32646afc50>]

1.9.5 Plotting the fitted model against testing data

Out[26]: [<matplotlib.lines.Line2D at 0x32646af470>]

