

Safe Automotive soFtware architEcture (SAFE)

Project Presentation

SAFE project partners

SPONSORED BY THE

SAFE

Content

- Motivation
- Concept Level
- Implementation Level
- Organization

SAFE – Motivation Issues in Safety Analysis*)

The coherency issue

- How do safety analysis results relate to the actual design?
- How can safety engineers keep track with ongoing evolvements and changes in design models?

The plausibility issue

- How can a system designer relate a cut set to "his" model?
- How can he understand, how the cut-set can arise?
- How can the propagation of a failure be traced in the system?

The accuracy issue

- How can mission phases be assessed without over-engineering?
- How can numerical thresholds be assessed?

The completeness issue

- How can a safety designer assert, that all minimal cut sets have been identified?
- How can it be assessed that all relevant effects have been considered?

PART 1 – The Project Challenges

How to keep safety related aspects consistent?

Assessment methodology

We base the entire development cycle around the model!

Why not the safety analysis?

•..

SAFE – Motivation Model Based Safety Analysis

Common Model for Development and Safety Analysis

- To represent safety properties and requirements in the same notation of the development models
- ➤ To perform safety analysis having the possibility to trace back through the results in the system model in order to understand expected behavior

Safety analysis based on formal models

- Facilitates consistency in safety analysis
- Facilitates completeness of safety analysis
- Makes safety analysis more systematic and repeatable

Reduced manual effort in error-prone areas

- Automated support for safety analysis
- Explore various failure scenarios

SAFE – Motivation Model Based

Development Safety Analysis

SAFE – Motivation

Additional perspective - ISO26262

SAFE – Motivation

Scope and Goals

Scope

Automotive electronics architecture
 (system + software + electronic hardware including electrical distribution system)

Goals

- Improve dependability from vehicle to component
- Ensure process compliance to ISO26262
 - at the best cost (automation required, and no over design)
 - matching AUTOSAR requirements
 - > methods
 - to reference supplier chain job split, liability and
 - to respect intellectual property rights
- Early evaluation of safety architecture and reuse (quality and cost driven)
- Demonstrate preservation of functional design choice (safety oriented) on component architecture

SAFE – Motivation Scope with respect to ISO26262

SAFE – Motivation

Approach

SAFE – Motivation

Results

Concept Level

- Open meta-model for description of system, software, hardware
- Assessment process to demonstrate compliance to ISO26262

Implementation Level

- Technology Platform, i.e. set of interfaces, plug-ins and tools to realize open meta-model
- Industrial use cases demonstrating methods and tools

Completive Material

- Training Material
- Recommendation and Guidelines

SAFE

Content

- Motivation
- Concept Level
 - Open Meta-model
 - Assessment Methodology
- Implementation Level
- Organization

Meta-model for Model based Safety Analysis

Hazard analysis and risk assessment

Functional safety concept

Technical safety concept

SAFE – Concept Level HW-SW Safety concept

Summary: Safety Requirement Expression

Meta-model integration approach

ITEA 2 ~ 10039

SAFE

Content

- Motivation
- Concept Level
 - Open Meta-model
 - Assessment Methodology
- Implementation Level
- Organization

Assessment Methodology

SAFE

Objectives

- Tackle the introduction of a comprehensive functional safety process according to ISO26262 to a real engineering team
- Assessment procedure for functional safety
- Process step and adequate measures to allow seamless implementation in the different engineering disciplines

SAFE

Content

- Motivation
- Concept Level
- Implementation Level
 - Technology Platform
 - Industrial use cases
- Organization

SAFE – Implementation Level Meta-model for Model based Safety Analysis

Specialized Plugins

Traceability and requirement import

Failure and cutset analysis

Variability seamless integration

Safety and multi-criteria architecture benchmarking

Safety code generator

SAFE Meta-Model Implementation

Platform

Software platform for mixed criticality

RMF (ReqIF modeling framework) EATOP (EAST-ADL tool platform) ARTOP (AUTOSAR tool platform)

Sphinx

Eclipse

SAFE

Content

- Motivation
- Concept Level
- Implementation Level
 - Technology Platform
 - Industrial use cases
- Organization

SAFE – Implementation Level

Evaluation Scenarios

SAFE

Content

- Motivation
- Concept Level
- Implementation Level
- Organization

SAFE – Project Organization

Consortium

OEMs

BMW-CarlT (G)

Tiers1

- Continental Automotive (G)
- Continental Automotive (Fr)
- Continental Teves (G)
- Valeo EEM(Fr)
- > ZF (G)

Engineering Partner

AVL Software & Function (G)

Silicon Supplier

Infineon Technologies(G)

Tool suppliers & SME

- Aquintos (G)
- Dassault Systemes (Fr)
- ITEMIS France (Fr)
- Pure Systems (G)
- > TTTEch (Aut)

Accreditation body

TÜV NORD Mobilität(G)

Academia

- Fortiss (G)
- FZI, Karlsruhe University (Ge)
- OFFIS (Ge)
- LaBRi, Bordeaux University (Fr)

SAFE – Project Organization

Basic Data

Duration: 36 months

> Timing: 01.07.2011 – 30.06.2014

Partners: 18

Countries: Austria, France, Germany

➤ Budget: 12 M€

Coordinator: Dr. Stefan Voget, Continental Automotive (G)

- OEM Advisory Board
 - Audi (G)
 - Daimler (G)
 - Fiat (It)
 - Renault (Fr)
 - Volvo Technology (Swe)

SAFE – Project Organization Work-Package Structure

PART 1 – The Project

Training Material

Recommendation and Guidelines

Results								
	Moo	Rounent Roquis	Safetton	189° W004 1800 W004	18 (19 (19 (19 (19 (19 (19 (19 (19 (19 (19	Guidalion A Colic	Taining	10.50 K.
	WP1	WP2	WP3	WP4	WP5	WP6	WP7	Status
Concept Level								
Analysis ISO26262 requirement	ts							
Open meta-model								
Assessment process								
Implementation Level								
Technology Platform								
Industrial Use Case Evaluation								
Completive Material								

SAFE – Project Organization

Milestones

SAFE – Miscellaneous Link to **AUT** SAR

AUTOSAR standardizes

- ECU SW architecture
- Basic SW
- Application Interfaces
- Methodology
- Templates –Representation
 - AUTOSAR R4.0 includes safety safe mechanism and documentation report

Model-Based Development

Hazard

Analysis

Functional

Safety Concept

SAFE provides to AUTOSAR

Set up link to ISO26262 and engineering processes

Complement hardware description

Mechanisms for safety code generation

Refined Technical

Safety Concept

Model-Based
Safety
SAFE
Analysis

SAFE – Miscellaneous

Market Impact

OEMs

- Methods and tools that will give the flexibility to develop new architectures with a Safety In the Loop approach
- Possibility to deploy new architectures with a shorter time to market.

First Tiers

- Possibility to demonstrate safety conformity of developed ECUs and automotive subsystems
- Optimize the cost of the development
- Allow reduction of re-certification due to late changes

Semiconductor manufacturers and IP hardware providers

Help to develop and focus on new component architectures capable to support ISO26262.

Tool vendors

- Opportunity to develop an integrated tool-chain, including design and safety analysis in a single process
- Easy to adapt the tools to other embedded domains with strong concerns in Safety like Aerospace and Train.

Content

BACKUP

SAFE – WP 2

Requirements Elicitation

Thank you for your attention

This document is based on the SAFE project in the framework of the ITEA2, EUREKA cluster program Σ ! 3674. The work has been funded by the German Ministry for Education and Research (BMBF) under the funding ID 01IS11019, and by the French Ministry of the Economy and Finance (DGCIS). The responsibility for the content rests with the authors.

