Logika és számításelmélet 11. előadás

NP-teljesség

Emlékeztetőül:

NP-teljes nyelv

Egy *L* probléma **NP-teljes** (a polinom idejű visszavezetésre nézve), ha

- ► *L* ∈ NP
- ► L NP-nehéz, azaz minden $L' \in NP$ esetén $L' \leq_p L$.

Azaz az NP-teljes problémák (ha vannak) az NP-beli problémák legnehezebbjei. Egyikre sem ismeretes polinomiális algoritmus és nem túl valószínű, hogy valaha is lesz ugyanis láttuk, hogy elég egyetlen NP-teljes problémáról bizonyítani, hogy P-beli, ez implikálná, hgy P=NP.

Van-e NP-teljes probléma egyáltalán?

SAT= $\{\langle \varphi \rangle | \varphi \text{ kielégíthatő nulladrendű KNF} \}$

Tétel (Cook)

SAT NP-teljes.

Cook tétel bizonyítás

Bizonyítás:

- ► SAT∈ NP: Adott egy φ input. Egy NTG egy számítási ágán polinom időben előállít egy I interpretációt. Majd szintén polinom időben ellenőrzi, hogy ez kielégíti-e φ -t.
- ► SAT NP-nehéz: ehhez kell, $L \leq_p$ SAT, minden $L \in$ NP-re.
 - Legyen $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ egy L-et eldöntő p(n) polinom időkorlátos NTG. (Feltehető, hogy $p(n) \ge n$.)
 - Legyen továbbá $w = a_1 \cdots a_n \in \Sigma^*$ egy szó.
 - M segítségével megadunk egy polinom időben előállítható φ_w nulladrendű KNF formulát, melyre $w \in L \Leftrightarrow \langle \varphi_w \rangle \in SAT$.
 - M egy számítása w-n leírható egy T táblázattal, melynek
 - első sora # $\sqcup^{p(n)} C_0 \sqcup^{p(n)-n}$ #, ahol $C_0 = q_0 w M$ kezdőkonfigurációja w-n
 - -T egymást követő két sora M egymást követő két konfigurációja (elegendő ⊔-el kiegészítve, elején és a végén egy #-el). Minden sor 2p(n) + 3 hosszú.

-p(n) + 1 sor van. Ha hamarabb jut elfogadó konfigurációba, akkor onnantól kezve ismételjük meg az elfogadó konfigurációt.

kezdőkonf.	#	Ш	Ш	Ц	Ш	Ш	Ш	Ш	Ш	$\overline{q_0}$	$\overline{a_1}$	• •	• 0	l_n	Ш	Ц	Ц	Ш	#
1. konf.	#																		#
2. konf.	#																		#
	#																		#
	#																		#
•	#																		#
•	#																		#
	#																		#
p(n). konf.	#																		#

$$2p(n) + 3$$
 oszlop

- a konfigurációátmenet definíciója miatt bármely két sor közötti különbség belefér egy 2x3-as "ablakba"
- -T magassága akkora, hogy minden, $\leq p(n)$ lépéses átmenetet tartalmazhasson. A \sqcup -ek számát ($\Rightarrow T$ szélességét) pedig úgy, hogy az ablakok biztosan "ne eshessenek le" egyik oldalon se.

p(n) + 1 sor

- $-\varphi_w$ ítéletváltozói $X_{i,j,s}$ alakúak, melynek jelentése: T i-ik sorának j-ik cellájában az s szimbólum van, ahol $s \in \Delta = Q \cup \Gamma \cup \{\#\}$.
- $-\varphi_w$ a w bemenetre M minden lehetséges legfeljebb p(n) lépésű működését leírja. Felépítése: $\varphi_w = \varphi_0 \wedge \varphi_{\text{start}} \wedge \varphi_{\text{move}} \wedge \varphi_{\text{accept}}$.
- $-\varphi_0$ akkor és csak akkor legyen igaz, ha minden cellában pontosan 1 betű van:

$$\varphi_0 := \bigwedge_{\substack{1 \le i \le p(n)+1 \\ 1 \le j \le 2p(n)+3}} \left(\left(\bigvee_{s \in \Delta} X_{i,j,s} \right) \wedge \bigwedge_{s,t \in \Delta, s \ne t} \left(\neg X_{i,j,s} \vee \neg X_{i,j,t} \right) \right)$$

 $-\varphi_{\text{start}}$ akkor és csak akkor legyen igaz, ha T első sora a \sqcup -okkal és #-ekkel a fent említett módon adott hosszúságúra kiegészített kezdőkonfiguráció.

$$\varphi_{\text{start}} := X_{1,1,\#} \wedge X_{1,2,\sqcup} \wedge \cdots \wedge X_{1,2p(n)+2,\sqcup} \wedge X_{1,2p(n)+3,\#}$$

 $-\varphi_{\text{move}}$ akkor és csak akkor legyen igaz, ha minden ablak legális, azaz δ szerinti átmenetet ír le:

$$\varphi_{\text{move}} := \bigwedge_{\substack{1 \le i \le p(n) \\ 2 \le j \le 2p(n) + 2}} \psi_{i,j},$$

ahol
$$\psi_{i,j} \sim \bigvee_{\substack{(b_1,\dots,b_6) \text{legális ablak}}} X_{i,j-1,b_1} \wedge X_{i,j,b_2} \wedge X_{i,j+1,b_3} \wedge X_{i+1,j-1,b_4} \wedge X_{i+1,j,b_5} \wedge X_{i+1,j+1,b_6}$$

b_1	b_2	b_3
b_4	b_5	b_6

De: $\psi_{i,j}$ nem elemi diszjunkció!!! Ezért e helyett:

$$\psi_{i,j} := \bigwedge_{\substack{(b_1,\dots,b_6)\\\text{illegális ablak}}} \neg X_{i,j-1,b_1} \vee \neg X_{i,j,b_2} \vee \neg X_{i,j+1,b_3} \vee \\ \neg X_{i+1,j-1,b_4} \vee \neg X_{i+1,j,b_5} \vee \neg X_{i+1,j+1,b_6}$$

– végezetül: φ_{accept} akkor és csak akkor legyen igaz, ha az utolsó sorban van q_i -t:

$$\varphi_{\text{accept}} = \bigvee_{j=2}^{2p(n)+2} X_{p(n)+1,j,q_i}$$

•

- $w \in L \Leftrightarrow az \ M$ NTG-nek van w-t elfogadó számítása $\Leftrightarrow T$ kitölthető úgy, hogy ϕ_w igaz $\Leftrightarrow \phi_w$ kielégíthető $\Leftrightarrow \langle \varphi_w \rangle \in SAT$,
- hány literált tartalmaz a φ_w formula? Legyen $k = |\Delta|$.

$$\phi_0$$
: $(p(n) + 1)(2p(n) + 3)(k + k(k - 1)) = O(p^2(n)),$

 φ_{start} : 2p(n) + 3 = O(p(n)),

$$\varphi_{\text{move}}: \leq p(n)(2p(n)+1)k^6 \cdot 6 = O(p^2(n)),$$

$$\varphi_{\text{accept}}: 2p(n) + 1 = O(p(n)),$$

azaz $\varphi_w O(p^2(n))$ méretű, így polinom időben megkonstruálható

- tehát $w \mapsto \langle \varphi_w \rangle$ pol. idejű visszavezetés, így $L \leq_p SAT$.
- ullet Ez tetszőleges $L\in {\sf NP}$ nyelvre elmondható. Így SAT NP-nehéz. Mivel NP-beli, ezért NP-teljes is.

További NP-teljes problémák, kSAT

Tétel

Ha L NP-teljes, $L \leq_p L'$ és $L' \in NP$, akkor L' NP-teljes.

Bizonyítás: Legyen $L'' \in NP$ tetszőleges. Mivel L NP-teljes, ezért $L'' \leq_p L$. Mivel a feltételek szerint $L \leq_p L'$, ezért a polinom idejű visszavezetések tranzitívitása miatt $(p_1(p_2(n)))$ is polinom!) L' NP-nehéz. Ebből és a 3. feltételből kövezkezik az állítás.

Tehát polinom idejű visszavezetéssel további nyelvek NP-teljessége bizonyítható.

 $kSAT = \{\langle \varphi \rangle \mid \varphi \text{ kielégíthető KNF és minden tagban pontosan } k különböző literál van \}.$

Az ilyen formulákat *k*KNF-nek nevezzük a továbbiakban.

3SAT NP-teljessége

Tétel

3SAT NP-teljes.

- ► 3SAT NP-beli: lásd SAT
- ► SAT≤_p 3SAT Kell $f : \varphi \mapsto \varphi'$, φ KNF, φ' 3KNF, φ' kielégíthető $\Leftrightarrow \varphi$ kielégíthető, f polinom időben kiszámolható.

$\varphi \mapsto \varphi'$:

ℓ	$\ell \lor X \lor Y, \ \ell \lor X \lor \neg Y, \ \ell \lor \neg X \lor Y, \ \ell \lor \neg X \lor \neg Y$
$\ell_1 \vee \ell_2$	$\ell_1 \vee \ell_2 \vee X, \ell_1 \vee \ell_2 \vee \neg X$
$\ell_1 \vee \ell_2 \vee \ell_3$	$\ell_1 \vee \ell_2 \vee \ell_3$
$\ell_1 \vee \ell_2 \vee \ell_3 \vee \ell_4$	$\ell_1 \vee \ell_2 \vee X, \ \neg X \vee \ell_3 \vee \ell_4$
$\ell_1 \vee \cdots \vee \ell_n \ (n \geq 5)$	$\ell_1 \vee \ell_2 \vee X_1, \neg X_1 \vee \ell_3 \vee X_2, \dots, \neg X_{n-2} \vee \ell_{n-1} \vee \ell_n$

 $X, Y, X_1, \ldots, X_{n-2}$ új ítéletváltozók. φ' ezek konjunkciója.

Megjegyzés: HORNSAT: mint SAT, de klózonként max. 1 pozitív literál lehet. HORNSAT és 2SAT ∈ P.

Egy gráf *k*-színezhető, ha csúcsai *k* színnel színezhetők úgy, hogy a szomszédos csúcsok színei különbözőek.

3Színezés= $\{\langle G \rangle \mid G \text{ 3-színezhető}\}$

Tétel

3Színezés NP-teljes.

- ► 3Színezés NP-beli: egy NTG számítási ágai színezzék ki a gráfot. Egy konkrét színezésről ellenőrizni, hogy helyes-e polinom időben megtehető.
- ► 3SAT≤_p 3Színezés

Elegendő minden φ 3KNF formulához polinom időben elkészíteni egy G_{φ} gráfot úgy φ kielégíthető \Leftrightarrow G_{φ} 3 színezhető.

Legyenek X_1, \ldots, X_n a φ -ben előforduló ítéletváltozók. Továbbá $\varphi = C_1 \wedge \ldots \wedge C_m$, azaz $C_1, \ldots C_m \varphi$ pontosan 3 literálból álló klózai. G_{φ} konstrukciója:

Minden klózhoz tartozik egy ötszög a fenti módon.

Lemma: Legyen G_0 az alábbi gráf és tegyük fel, hogy az X, Y, Z, B csúcsokat 2 színnel kiszíneztük. Akkor és csak akkor létezik ehhez a parciális színezéshez az egész G_0 -ra kiterjeszthető 3-színezés, ha X, Y, Z, B nem mind egyszínű.

A lemma bizonyítása:

- ► Ha *X*, *Y*, *Z*, *B* egyszínű, akkor a maradék 2 színnel kéne az ötszöget kiszínezni, amit nem lehet.
- ► Egyébként megadunk egy színezést. *1. lépés:* első körben csak 2 színt használunk, 1,2,3,4,5-öt színezzük az {*X*, *Y*, *Z*, *B*}-beli szomszédjával ellentétes színűre.

Ez persze még nem jó, mert 1,2,3,4,5 között lehetnek azonos színű szomszédok.

2. *lépés:* bevetjük a 3. színt: ha 1,2,3,4,5 között van ciklikusan, az óramutató járása szerint valahány egymás utáni egyszínű csúcs, akkor minden párosadikat színezzük át a 3. színre.

A visszavezetés bizonyítása:

► Tegyük fel hogy φ kielégíthető, ekkor meg kell adnunk G_{φ} egy 3-színezését. Legyenek a színek piros, zöld és kék. Ha X_i igaz, akkor legyen az X_i csúcs zöld, az $\overline{X_i}$ csúcs piros. Ha hamis, akkor épp fordítva. A legyen kék és B legyen piros. Mivel minden klóz ki van elégítve, így minden ötszöghöz van zöld (az igaz literál) és piros szomszéd (B) is, így a lemma miatt a színezés minden ötszögre kiterjeszthető.

► Tegyük fel most, hogy G_{φ} ki van színezve 3 színnel. Ámnfth. A kék. Mivel $X_1, \ldots, X_n, \overline{X_1}, \ldots, \overline{X_n}$ mind A szomszédai, így egyikük se lehet kék. Továbbá az $(X_i, \overline{X_1})$ párok össze vannak kötve, így minden párban pontosan egy piros és pont egy zöld csúcs van. Ámnfth. B piros (a zöld eset analóg). Mivel az ötszögek ki vannak színezve, ezért a lemma miatt minden ötszögnek van zöld szomszédja. Az " X_i :=igaz $\Leftrightarrow X_i$ csúcs zöld" interpretáció tehát kielégíti φ -t.

Tehát beláttuk, hogy $\varphi \mapsto G_{\varphi}$ visszavezetés. Mivel G_{φ} φ ismeretében az input méretének polinomja időben legyártható, ezért a visszavezetés polinom idejű.

Mivel 3SAT NP-teljes korábbi tételünk miatt 3Színezés is az.

Megjegyzés: 2Színezés ∈ P

3 irányítatlan gráfokkal kapcsolatos probléma

Az alábbi nyelvek esetén G egyszerű, irányítatlan gráf k pedig egy nemnegatív egész. G egy teljes részgráfját **klikknek**, egy üres részgráfját **független ponthalmaznak** mondjuk.

Klikk= $\{\langle G, k \rangle \mid G$ -nek van k méretű klikkje $\}$

Független ponthalmaz=

 $\{\langle G, k \rangle | G$ -nek van k méretű független ponthalmaza $\}$

Legyen $S \subseteq V(G)$ és $E \in E(G)$. Ha $S \cap E \neq \emptyset$, akkor a csúcshalmaz **lefogja** E-t. Ha S minden $E \in E(G)$ élt lefog, akkor S egy **lefogó ponthalmaz**.

[Megjegyzés: Lefogó ponthalmaz a Gazdag jegyzetben csúcslefedés néven szerepel]

Lefogó ponthalmaz= $\{\langle G, k \rangle \mid G$ -nek van k méretű lefogó ponthalmaza $\}$

Ha G-nek van k méretű klikkje/független ponthalmaza, akkor bármely kisebb k-ra is van. Ha van k méretű lefogó ponthalmaz, akkor bármely nagyobb k-ra is van $(k \le |V(G)|)$.

Független Ponthalmaz

Tétel

Klikk, Független ponthalmaz, Lefogó ponthalmaz NP-teljes.

- ► Egy NTG egy számítási ágán vizsgáljon meg egy *k* elemű ponthalmazt. Mindhárom esetben az ellenőrzés polinomiális.
- ► 3SAT≤_p Független csúcshalmaz

Kell: $f : \varphi \mapsto (G_{\varphi}, k)$, φ 3KNF, G_{φ} -ben van k független akkor és csak akkor ha φ kielégíthető.

 (G_{φ}, k) konstrukciója: minden egyes $L_1 \vee L_2 \vee L_3$ klózhoz vegyünk fel egy a többitől diszjunkt háromszöget, a csúcsokhoz rendeljük hozzá a literálokat. Így m darab klóz esetén 3m csúcsot kapunk. Kössük össze éllel ezen felül a komplemens párokat is. k := m.

Független Ponthalmaz

 $\neg X_1 \lor X_2 \lor \neg X_4 \qquad X_1 \lor \neg X_2 \lor X_5$

* Ha φ kielégíthető, akkor minden klózban van kielégített literál, válasszunk klózonként egyet, ezeknek megfelelő csúcsok m elemű független csúcshalmazt alkotnak.

 $\neg X_1 \lor X_2 \lor \neg X_3$

* Ha G_{φ} -ben van m független csúcs, akkor ez csak úgy lehet, ha háromszögenként 1 van. Vegyünk egy ilyet, ezen csúcsoknak megfelelő literálok között nem lehet komplemens pár, hiszen azok össze vannak kötve. Így a független halmaznak megfelelő, (esetleg csak parciális) interpretáció kielégít minden klózt. Ha nincs minden változó kiértékelve, egészítsük ki tetszőlegesen egy interpretációvá.

KLIKK, LEFOGÓ PONTHALMAZ

► Független ponthalmaz ≤_p Klikk

$$f: (G, k) \mapsto (\bar{G}, k)$$

Ez jó visszavezetés, mert ami G-ben klikk az \bar{G} -ban független ponthalmaz és viszont.

Független ponthalmaz \leq_p Lefogó ponthalmaz

$$f: (G, k) \mapsto (G, |V(G)| - k)$$

Ha G-ben van k méretű F független ponthalmaz, akkor van |V(G)| - k méretű lefogó ponthalmaz (F komplementere).

Ha G-ben van |V(G)| - k méretű L lefogó ponthalmaz, akkor van k méretű független ponthalmaz (L komplementere).

Mindkét visszavezetés polinom időben kiszámítható.

Lefogó ponthalmaz hipergráfokban

S egy **hipergráf** (vagy halmazrendszer), ha $S = \{A_1, \ldots, A_n\}$, ahol $A_i \subseteq U$, $(1 \le i \le n)$ valamely U alaphalmazra. $H \subseteq U$ egy **lefogó ponthalmaz**, ha $\forall 1 \le i \le n : H \cap A_i \ne \emptyset$.

Hipergráf Lefogó ponthalmaz= $\{\langle S, k \rangle \mid S \text{ egy hipergráf} \}$ és S-hez van k elemű lefogó ponthalmaz $\}$.

Tétel

Hipergráf lefogó ponthalmaz NP-teljes.

Bizonyítás: Hipergráf lefogó ponthalmaz NP-beli, hiszen polinom időben ellenőrizhető, hogy U egy részhalmaza minden S-beli halmazt metsz-e.

Lefogó ponthalmaz a Hipergráf lefogó ponthalmaz speciális esete, hiszen a gráf a hipergráf speciális esete: egy gráf éleire úgy gondolunk, mint 2-elemű halmazokra, így a gráf éleinek halmaza egy hipergráf. (A visszavezetés az identikus leképezés.

U := V(G), S := E(G), k ugyanaz.

[Megjegyzés: a Gazdag jegyzetben Hitting set]