•	TD 4: physique des particules.
	Exercice 1:
	Sous une rotation RESQ(IR), une fonction d'onde ψ se transforme en $\tilde{\psi}$: $\forall x \in \mathbb{R}^3$, $\tilde{\psi}(x) = \psi(R^*x)$
0	Les rotations autour de l'axe (Ox) sont les éléments de { (0 cost - sint); O EIR} R (0)
	$\psi(R_{\eta}^{-1}(\theta)x) = \psi(x, \cos\theta y + \sin\theta y, -\sin\theta y + \cos\theta y)$ $= \psi(x, y + \theta y, -\theta y + y)$ $= \cos\theta y + \cos\theta y$
•	$0 \xrightarrow{\sim} \psi(x,y,g) + \theta(g\partial_y\psi - y\partial_y\psi)(x,y,g)$
	or par définition de L _x : ψ(R, 160)x) = ψ(x)-iθ(L _x ψ)(x) => L _x φ=i (gg, ψ-yg, ψ) i.e. L _x = ŷĝ, -ĝĵy
	De la même façon: rotations autour de $(0y)$: $\{(\cos\theta \ 0 \ \sin\theta), \theta \in \mathbb{R}\}$ $\Rightarrow \hat{L}_y = \hat{J}\hat{p}_x - \hat{x}\hat{p}_y$
	rotations autour de (03) : $\{(\cos\theta - \sin\theta \ 0); \theta \in \mathbb{R}\}$ $\Rightarrow \hat{L}_3 = \hat{x}\hat{p}_3 - \hat{y}\hat{p}_{2e}$
9	=> L ₃ = *p̂y - ĝp̂=

4) Joil ME su(2): · det (exp(M)) = exp (TrM) = exp(0) = 1 · exp(M) = exp(M) = exp(-M) => exp(M)Texp(M) = exp(-M) exp(M) = I2 car on rappelle que si Aet B dans of (C) commutent (AB=BA) alors expA expB = expB expA = exp(A+B) 5). Loit M = (x B) C su(2): M=-M & x*=-x, B*=-y, 8*=-8 TrM=0 = x+6=0 donc FaER, = ia et M= (ia B) = aiog + Repliog on vient de montrer que su(2) (Vector (iox, ioy, iog) La réciproque est sien sûr vraie donc su(d) = Vector (ive, ivy, ivg) et in, in, in, sont linéairement indépendants donc ils forment une base de suls 6. Ti UESU(2): U-1= Ut U= (x B), det U= 1 => U-1 = (5-B), U+ - (x* y*) et 1=det $U = \alpha \delta - \beta y = |\alpha|^2 + |\beta|^2$ i.e. $U = \begin{pmatrix} \alpha & \beta \\ -\beta^* & \alpha^* \end{pmatrix}$ On vient de montrer que SU(2) C (a B) |x|2+1/3|2=1} L'autre inclusion est claire donc il y a égalité. 7). Or cherche S= (a b) ESL_(C), S'= (d -b) ad-bc=1 t.q. V (x,β) ∈ C2, (α* β*) = U* = S-'US = (d -b) (α β) (α b) (cd) (α) (α* β*) = (adα-bcα*+abβ*+cdβ bdα-α*)+b°β*+dβ (ac(α*-α)-a°β*-c°β -bcα+adα*-abβ*-cdβ) disuffit de prendre a=d=0 b=-c=1: S=(01) Remarque: on a ainsi montré l'équivalence de deux représentations de SU(2), à savoir, la représentation de définition (U+>U) et sa conjuguée (U+>U*).