CLAIMS

A tool for measuring parameters, comprising:

What is claimed is:

1

1.

2	a plate having a surface and a plurality of edges;
3	at least one fixed measurement structure integrated with an edge of the
4	plurality of edges of the plate, the at least one fixed measurement structure
5	including:
6	a recessed portion; and
7	at least one projection extending upward within the recessed
8	portion forming at least one fixed variation measurement structure.
1	2. The tool according to claim 1, wherein the at least one fixed variation
2	measurement structure is provided between a sidewall of the projection and an
3	opposing sidewall formed from the recessed portion.
1	3. The tool according to claim 1, wherein the at least one fixed variation
2	measurement structure includes a first measurement indicia measuring a
3	distance from an edge of the recessed portion to a farthest edge of the at least
4	one projection.
1	4. The tool according to claim 1, wherein the at least one projection is
2	offset from center within the recessed portion.
1	5. The tool according to claim 4, wherein the at least one fixed variation
2	measurement structure includes two measurement indicia, a first of the two
3	measurement indicia measuring a distance from a first edge of the recessed
4	portion to a farthest edge from the first edge of the at least one projection and
5	a second of the two measurement indicia measuring a distance from a second

- 6 edge of the recessed portion to a farthest edge from the second edge of the at
- 7 least one projection.
- 1 6. The tool according to claim 1, further comprising a downslope
- 2 measuring distance structure.
- 1 7. The tool according to claim 6, wherein the downslope measuring
- distance structure includes a measurement indicia from an edge of the
- 3 recessed portion to a portion on the plate.
- 1 8. The tool according to claim 1, wherein the at least one projection is
- 2 positioned at least at one sidewall of the recessed portion.
- 1 9. The tool according to claim 8, wherein the at least one projection
- 2 forming the at least one variation measurement structure is two projections,
- 3 each positioned at sidewalls of the recessed portion.
- 1 10. The tool according to claim 8, wherein the at least one projection
- 2 forms a stepped portion at the one sidewall.
- 1 11. The tool according to claim 8, wherein the at least one projection
- 2 provides a narrow recess closer to a bottom portion of the recessed portion
- with respect to a portion above the at least one projection within the recessed
- 4 portion.
- 1 12. The claim according to claim 8, wherein the at least one projection and
- 2 recessed portion measures maximum and minimum allowable material
- 3 thickness of a specific thickness of the material.
- 1 13. The tool according to claim 1, wherein the at least one projection is at
- 2 least two projections spaced apart from one another within the recessed

3	portion, wherein one of the two projections is formed at the sidewall of the
4	recessed portion and the at least two projections form two variation
5	measurement structures.
1	14. The tool according to claim 1, wherein the at least one projection is
2	four projections, wherein the four projections provide weld bead variation
3	measurements for all wall thicknesses and form at least two variation
4	measurement structures.
1	15. The tool according to claim 14, wherein:
2	a first projection of the four projections is positioned at a first sidewall
3	of the recessed portion;
4	a second projection of the four projections is positioned at an opposing
5	sidewall of the recessed portion; and
6	a third projection and a fourth projection are spaced apart from one
7	another within the recessed portion and from the first projection and the
8	second projection.
1	16. The tool according to claim 15, wherein:
2	a distance measured between inner sidewalls of the third projection
3	and the fourth projection represent a minimum weld bead dimension and a
4	distance measured between outer sidewalls of the third projection and the
5	fourth projection represent a maximum weld bead variation dimension for the
6	minimum weld bead dimension, and
7	a distance measured between sidewalls of the recessed portion
8	represent a maximum weld bead dimension and a distance measured between
9	exposed sidewalls of the first projection and the second projection represent a
10	maximum weld bead variation dimension for the maximum weld bead
11	dimension.

1

17.

The tool according to claim 16, wherein:

2	a space represented between the first minimum weld bead dimension
3	and the maximum weld bead variation dimension is an allowable variation for
4	a weld bead associated with the minimum weld bead dimension; and
5	a space represented between the maximum weld bead dimension and
6	the maximum weld bead variation dimension is an allowable variation for a
7	weld bead associated with the maximum weld bead dimension.
1	18. The tool according to claim 1, wherein the at least one projection is six
2	projections, wherein the six projections form a stepped configuration at each
3	sidewall of the recess and provide weld bead variation measurements for all
4	wall thicknesses.
1	19. The tool according to claim 1, wherein the recessed portion is a
2	stepped configuration forming at least two stepped portions.
1	20. The tool according to claim 1, wherein the recessed portion is a
2	stepped configuration forming a portion lower than remaining portions of the
3	recessed portion.
1	21. The tool according to claim 1, wherein the at least one fixed
2	measurement structure measures at least one of weld bead overlap, weld
3	downslope, allowable maximum and minimum weld bead variation, allowable
4	material thickness variation, convexity and concavity.
1	22. A method for measuring a maximum and minimum allowable material
2	thickness using a tool having a recessed portion with a stepped configuration,
3	the method comprising the steps of:
4	placing a first portion of the recessed portion over a thickness of the
5	material;
6	navigating the first portion over portions of the material;

7	determining whether the first portion slips over the thickness of the
8	material and, if so, then the material thickness is within allowable thickness
9	variation; and
10	determining whether the material enters a second, narrower portion of
11	the recessed portion and, if not, then the material thickness is within allowable
12	thickness variation.
1	23. A method of measuring bead overlap, comprising the steps of:
1	measuring a bead width at a certain location by placing a structure
2	with edges near the bead;
3	rotating the structure approximately 90 degrees;
4	placing the structure lengthwise across the bead;
5	aligning one of the edges of the structure with an outside edge of a
6	weld bead at about the certain location; and
7	count an amount of bead overlaps between the edges of the structure.
1	24. The method of claim 23, comprising the step of centering the structure
2	over the bead when placing the structure lengthwise