Business Data Mining IDS 572, Spring 2020

Team Members

Anuj Chanchlani (674153696)

Pratik Talreja (657488876)

Rashi Desai (663553314)

Q1 Create using the 1-rule, find the relevant sets of classification rules for the decision tree using the Gini index impurity measure

Error rate for Income(low) = $\frac{2}{5}$ Error rare for Income (medium) = $\frac{2}{6}$

Total Error =
$$\frac{5}{14} \left(\frac{2}{5}\right) + \frac{6}{14} \left(\frac{2}{6}\right) + \frac{3}{14} (0) = \frac{1}{7} + \frac{1}{7} = \frac{2}{7} = 0.2857$$

Gini (Low) =
$$1 - ((2/5)^2 + (3/5)^2$$
 = 0.48

Gini (Medium) =
$$1 - ((4/6)^2 + (2/6)^2 = 0.44$$

Gini (High) =
$$1 - ((3/3)^2 + (0/3)^2 = 0$$

Gini (Income) =
$$\frac{5}{14}$$
(0.48) + $\frac{6}{14}$ (0.44) + $\frac{3}{14}$ (0) = 0.36

Error rate for Student(Yes) =
$$\frac{3}{8}$$

Error rate for Student (No) = $\frac{2}{6}$

Total Error =
$$\frac{8}{14} \left(\frac{3}{8} \right) + \frac{6}{14} \left(\frac{2}{6} \right) = \frac{3}{14} + \frac{2}{14} = \frac{5}{14} = 0.3571$$

Gini (Yes) =
$$1-((3/8)^2 + (5/8)^2 = 0.46$$

Gini (No) =
$$1 - ((2/6)^2 + (4/6)^2 = 0.44$$

Gini (Student) =
$$\frac{8}{14}$$
 (0.46) + $\frac{6}{14}$ (0.44) = 0.45

Error rate for Credit Rating (Fair) = $\frac{2}{7}$

Error rare for Credit Rating (Excellent) = $\frac{2}{7}$

Total Error =
$$\frac{7}{14} \left(\frac{2}{7} \right) + \frac{7}{14} \left(\frac{2}{7} \right) = \frac{2}{7} = 0.2857$$

Gini (Fair) =
$$1 - ((2/7)^2 + (5/7)^2 = 0.4081$$

Gini (Excellent) =
$$1 - ((5/7)^2 + (2/7)^2 = 0.4081$$

Gini (Credit Rating) =
$$\frac{7}{14}$$
(0.4081) + $\frac{7}{14}$ (0.4081) = 0.4081

a) Out of the three sets of rules, the lowest misclassification rates belong to:

Income =
$$0.2857$$
 and Credit Rating = 0.2857

- b) Considering "buy-computer" as the target variable, we would select INCOME as the root in a decision tree that is constructed using the Gini index impurity measure as the Gini index for Income is the lowest equated to 0.36
- c) Use the Gini index impurity measure and construct the full decision tree for this data set.

Income = Low -> Credit Rating

Income(Medium) -> Student

Gini (Fair) =
$$1 - ((2/2)^2 + (0/2)^2 = 0$$

Gini (Excellent) =
$$1-((2/3)^2 + (0/3)^2 = 0$$

Gini (Credit Rating) =
$$\frac{2}{14}(0) + \frac{3}{14}(0) = 0$$

Gini (Yes) =
$$1 - ((4/4)^2 + (0/4)^2 = 0$$

Gini (No) =
$$1 - ((2/2)^2 + (0/2)^2 = 0$$

Gini (Student) =
$$\frac{4}{14}(0) + \frac{2}{14}(0)$$
 = 0

Income = Low -> Student; Income = Medium -> Credit Rating

Gini (Yes) = 1-((2/3)² + (1/3)² = 0.44
Gini (No) = 1-((2/2)² + (0/2)² = 0
Gini (Student) =
$$\frac{3}{5}$$
(0.44) + $\frac{2}{5}$ (0) = 0.26

Gini (Fair) =
$$1 - ((2/3)^2 + (1/3)^2 = 0.44$$

Gini (Excellent) =
$$1 - ((2/3)^2 + (0/3)^2 = 0.44$$

Gini (Credit Rating) =
$$\frac{3}{6}(0.44) + \frac{3}{6}(0.44) = 0.44$$

Based on the Gini index impurity measure,

credit rating split on income = low & student split on income = medium has a lower Gini index. Income(high) is a pure node.

The decision tree on the basis of Gini index impurity measure would be:

- d) The decision rules would be:
 - 1) If income = low & credit rating = fair, then buys computer = NO
 - 2) If income = low & credit rating = excellent, then buys computer = YES
 - 3) If income = medium & student = no, then buys computer = NO
 - 4) If income = medium & student = yes, then buys computer = YES
 - 5) If income = high, then buys computer = NO

Decision Rule	Support	Confidence
1	2/14 = 14.3%	2/7 = 28.57%
2	3/14 = 21.43%	3/7 = 42.85%
3	2/14 = 14.3%	2/7 = 28.57%
4	4/14 = 28.57%	4/7 = 57.14%
5	3/14 = 21.43%	3/7 = 42.85%

From the above table, we derive the highest support and confidence for Rule 4 and Rule 5

e) The accuracy of our decision tree model is 100% as we get all pure leaf nodes and we further do not split the tree. Also, the Gini index measure for this decision tree is lower as compared to the other tree.

Q2 Draw a decision tree learned by C5.0 for credit card approved

Target Variable: Credit card approved?

Info (T) =
$$-p_+log_2p_+ - p_-log_2p_-$$

Info (T) =
$$-(4/7)\log_2(4/7) - (3/7)\log_2(3/7) = 0.9852$$

$$\begin{split} & \text{Info}_{\text{Gender= Male}}(T) = -(3/5) log_2(3/5) - (2/5) log_2(2/5) = 0.971 \\ & \text{Info}_{\text{Gender= Female}}(T) = -(1/2) log_2(1/2) - (1/2) log_2(1/2) = 1 \\ & \text{Info}_{\text{Gender}}(T) = \frac{5}{7}(0.971) + \frac{2}{7}(1) = 0.9793 \\ & \text{Gain (Gender)} = 0.9852 - 0.9793 = 0.0059 \end{split}$$

Similarly, for income,

Info (T) =
$$-(4/7)\log_2(4/7) - (3/7)\log_2(3/7) = 0.9852$$

$$\begin{split} & \text{Info}_{\text{Income}=\text{Low}}(T) = \text{-}(3/5) \log_2(3/5) \text{-} (2/5) \log_2(2/5) = 0.971 \\ & \text{Info}_{\text{Income}} = \text{High}(T) = \text{-}(1/2) \log_2(1/2) \text{-} (1/2) \log_2(1/2) = 1 \\ & \text{Info}_{\text{Income}}(T) = \frac{5}{7}(0.971) + \frac{2}{7}(1) = 0.9793 \\ & \text{Gain (Gender)} = 0.9852 \text{-} 0.9793 = 0.0059 \end{split}$$

And for age,

Since age is a numeric attribute, we will place the split point halfway between values 22 and 38. If we take the average of 22-32 and 32-38 interval, we can consider 27 or 35 as our thresholds. We go with 27 here.

Info (T) =
$$-(4/7)\log_2(4/7) - (3/7)\log_2(3/7) = 0.9852$$

$$\begin{split} & \text{Info}_{\text{Age} < 27}(\text{T}) = \text{-}(1/2) \log_2(1/2) \text{-} (1/2) \log_2(1/2) = 1 \\ & \text{Info}_{\text{Age} > = 27}(\text{T}) = \text{-}(3/5) \log_2(3/5) \text{-} (2/5) \log_2(2/5) = 0.971 \\ & \text{Info}_{\text{Gender}}(\text{T}) = \frac{5}{7}(0.971) + \frac{2}{7}(1) = 0.9793 \\ & \text{Gain (Gender)} = 0.9852 \text{-} 0.9793 = 0.0059 \end{split}$$

Since, we have the same gain for all the three attributes, we can choose any one at random for the root node. Let us consider **AGE** as the root node for our decision tree.

Split on Age <27 : Gender

$$\begin{split} & \text{Info}(T) = \text{-}(1/2) \text{log}_2(1/2) \text{-} (1/2) \text{log}_2(1/2) &= 1 \\ & \text{Info}(T1) = \text{-}(1/1) \text{log}_2(1/1) \text{-} (0/1) \text{log}_2(0/1) &= 0 \\ & \text{Info}(T2) = \text{-}(1/1) \text{log}_2(1/1) \text{-} (0/1) \text{log}_2(0/1) &= 0 \\ & \text{Info}_{Gender}(T) = \frac{1}{2}(0) + \frac{1}{2}(0) = 0 \end{split}$$

$$Gain(Gender) = 1 - 0 = 1$$

Split on Age <27 : Income

$$\begin{split} & \text{Info}(T) = \text{-}(1/2) \text{log}_2(1/2) \text{-} (1/2) \text{log}_2(1/2) &= 1 \\ & \text{Info}(T1) = \text{-}(1/2) \text{log}_2(1/2) \text{-} (1/2) \text{log}_2(1/2) = 1 \\ & \text{Info}(T2) = \text{-}(1/1) \text{log}_2(1/1) \text{-} (0/1) \text{log}_2(0/1) = 0 \\ & \text{Info}_{\text{Income}}(T) = \frac{2}{2}(1) + \frac{0}{2}(0) = 1 \\ & \text{Gain}(\text{Income}) = 1 \text{-} 1 = 0 \end{split}$$

Split on Age >=27: Gender

$$\begin{split} & \text{Info}(T) = \text{-}(3/5) \text{log}_2(3/5) \text{-} (2/5) \text{log}_2(2/5) &= 0.884 \\ & \text{Info}(T1) = \text{-}(2/4) \text{log}_2(2/4) \text{-} (2/4) \text{log}_2(2/4) = 1 \\ & \text{Info}(T2) = \text{-}(1/1) \text{log}_2(1/1) \text{-} (0/1) \text{log}_2(0/1) = 0 \\ & \text{Info}_{\text{Gender}}(T) = \frac{4}{5}(1) + \frac{1}{5}(0) = 0.8 \end{split}$$

$$Gain(Gender) = 0.884 - 0.8 = 0.084$$

Split on Age $\geq =27$: Income

$$\begin{split} & Info(T) = \text{-}(3/5)log_2(3/5) \text{-} (2/5)log_2(2/5) &= 0.884 \\ & Info(T1) = \text{-}(0/0)log_2(0/0) \text{-} (0/0)log_2(0/0) = 0 \\ & Info(T2) = \text{-}(3/5)log_2(3/5) \text{-} (2/5)log_2(2/5) &= 0.884 \\ & Info_{Income}(T) = \frac{0}{5}(0) + \frac{5}{5}(0.884) = 0.884 \\ & Gain(Income) = 0.884 - 0.884 = 0 \end{split}$$

From the calculations, we have the gain for split at age<27 for gender more than that at age>=27, therefore, the decision tree per C5.0 will run with gender at age < 27. Also, since the leaf nodes are pure for Gender after split, we stop further splitting.

The decision tree can be constructed as:

Q3 Perform operations on a College data set for 777 different universities and colleges in the US

```
library(dplyr) # data aggregates
library(gplots) # plot means with CI
#a
College = read.csv("College.csv")
dummy = read.csv("College.csv")
str(College)
#There are a total of 19 variables and 777 observations
#'data.frame':777 obs. of 19 variables:
#b
rownames (College) -> College [,1]
College = subset(College, select = -c(X))
#c
summary(College$Apps)
#Code Output
#Min. 1st Qu. Median Mean 3rd Qu. Max.
#81 776 1558 3002 3624 48094
#Mean(3002) is greater than median(1558).
# Therefore, the data is right skewed. The data range is from 81 to 48094
summary(College$Accept)
#code Output
# Min. 1st Qu. Median Mean 3rd Qu. Max.
#72 604 1110 2019 2424 26330
#Mean(2019) is greater than median(1110)
#Therefore, the data is right skewed. Range is from 71 to 26330
summary(College$Enroll)
#Code Output
#Min. 1st Qu. Median Mean 3rd Qu. Max.
#35 242 434 780 902 6392
```

#Mean(780) is greater than median(434)

#Therefore, the data is right skewed. Range is from 35 to 6392

summary(College\$Top10perc)

#code ouput

#Min. 1st Qu. Median Mean 3rd Qu. Max. #1.00 15.00 23.00 27.56 35.00 96.00

#Mean(27.56) is close to median(23). It is not completely normally distributed; The data is skewed to right

summary(College\$Top25perc)

#code output

#Min. 1st Qu. Median Mean 3rd Qu. Max. #9.0 41.0 54.0 55.8 69.0 100.0 #Median(54) is close to mean(55.8). It is close to being normally distributed. Range is 9 to 100

summary(College\$F.Undergrad)

#code output

#Min. 1st Qu. Median Mean 3rd Qu. Max. #139 992 1707 3700 4005 31643 #Mean (3700) is greater than median(1707). It is right skewed. The data range is from 39 to 31643

summary(College\$P.Undergrad)

#code output

#Min. 1st Qu. Median Mean 3rd Qu. Max. #1.0 95.0 353.0 855.3 967.0 21836.0 #Mean(855)is greater than median(353) ##Therefore, the data is right skewed. Data range is 1 to 21836

summary(College\$Outstate)

#code output

```
#Min. 1st Qu. Median Mean 3rd Qu. Max.
#2340 7320 9990 10441 12925 21700
#Mean is 10441 > median is 9990.
#Therefore, the data is right skewed. Range is from 2340 to 21700.
```

summary(College\$Room.Board)

#code output

```
#Min. 1st Qu. Median Mean 3rd Qu. Max.
#1780 3597 4200 4358 5050 8124
#Mean(4358) is close to median(4200). It is close to being normally distributed. Range is
1780 to 8124
```

summary(College\$Books)

#code output

```
#Min. 1st Qu. Median Mean 3rd Qu. Max. #96.0 470.0 500.0 549.4 600.0 2340.0 #Mean(549) is greater than median(500). It is not normally distributed. Range is from 96 to 2340
```

summary(College\$Personal)

summary(College\$Terminal)

#code output

```
#Min. 1st Qu. Median Mean 3rd Qu. Max.
#250 850 1200 1341 1700 6800
#Mean(1341) is greater than median(1200)
#Therefore, the data is right skewed. Range is from 250 to 6800
summary(College$PhD)
#code output
# Min. 1st Qu. Median Mean 3rd Qu. Max.
#8.00 62.00 75.00 72.66 85.00 103.00
#Median(75) is greater than mean(72.66)
#Therefore, the data is left skewed. Data range is 8 to 103
```

```
#code output
# Min. 1st Qu. Median Mean 3rd Qu. Max.
#24.0 71.0 82.0 79.7 92.0 100.0
#Median (82) is greater than mean (79.7)
#Therefore, the data is left skewed. Data range is 24 to 100
summary(College$S.F.Ratio)
#code output
#Min. 1st Qu. Median Mean 3rd Qu. Max.
#2.50 11.50 13.60 14.09 16.50 39.80
#Mean(14.09) is close to median(13.6). it is close to being normally distributed. Data range
is 2.5 to 39.8
summary(College$perc.alumni)
#code output
# Min. 1st Qu. Median Mean 3rd Qu. Max.
#0.00 13.00 21.00 22.74 31.00 64.00
#Mean is 22.74 is close to Median of 21. Range is 0 to 64
summary(College$Expend)
#code output
#Min. 1st Qu. Median Mean 3rd Qu. Max.
#3186 6751 8377 9660 10830 56233
#Mean(9660) is greater than median(8377)
#Therefore, the data is right skewed. Data range is 3186 to 56233
summary(College$Grad.Rate)
#code output
#Min. 1st Qu. Median Mean 3rd Qu. Max.
#10.00 53.00 65.00 65.46 78.00 118.00
#Mean(65.46) is close to median(65). It is close to being normally distributed. Data Range
is 10 to 118
#d.
acceptRate<-(College$Accept/College$Apps)</pre>
College <- cbind(College, acceptRate)</pre>
dummy <- cbind(dummy, acceptRate)</pre>
```

#e.

#By most selective we mean selecting universities with the lowest acceptance rate.

College1 <- dummy[order(acceptRate),] top5 <- top_n(College1,-5)</pre>

*	x +	acceptRate
1	Princeton University	0.1544863
2	Harvard University	0.1561486
3	Yale University	0.2291453
4	Amherst College	0.2305904
5	Brown University	0.2573494

Now we print five most selective public institutions.

Step 1: First subsetting only public institutions.

College2 <- dummy[which(College\$Private == "No"),]

Step 2: Selecting five most selective top5_1 <- top_n(College2,-5)

#f.

table(College1\$Private)
mean(College1\$acceptRate[College1\$Private=="Yes"])#0.754
mean(College1\$acceptRate[College1\$Public=="Yes"])#0.726
#Public institutions are more selective on average. Since average acceptance rate of public universities is 72.6% and private institution is 75.4%

#G

matricRate<-College\$Enroll/College\$Accept
College <- cbind(College1, matricRate)</pre>

#H

```
plot(College$matricRate ~ College$acceptRate, col = c("red", "blue"),
    main="Relationship of accept rate and matric rate",
    xlab="Accepted rate",
    ylab=" Matric Rate",
    pch=16)
abline(lm(College$matricRate ~ College$acceptRate), col="coral", lwd=2.5)
lines(lowess(College1$Grad.Rate ~ College1$matricRate), col="green", lwd=2.5)
legend("topright", fill= c("red", "blue"),
    legend = c("Private", "Public"),
    col = par("col"))
```

Relationship of accept rate and matric rate

#I.acc1 <- College\$acceptRate[College\$Private=="Yes"] mat1 <- College\$matricRate[College\$Private=="Yes"] acc2 <- College\$acceptRate[College\$Private=="No"] mat2 <- College\$matricRate[College\$Private=="No"] install.packages('corrplot') library(corrplot)

```
cor.test(acc1,mat1)
```

#Code output

#Pearson's product-moment correlation

```
#data: acc1 and mat1
#t = 1.0235, df = 563, p-value = 0.3065
#alternative hypothesis: true correlation is not equal to 0
#95 percent confidence interval:
# -0.03953148 0.12514064
#sample estimates:
cor
#0.04309728
```

#correlation between acceptance rate and matriculation of private institutions is *weak*, *positive correlation*. cor=0.04 cor.test(acc2,mat2)

#Code Output

#Pearson's product-moment correlation

```
#data: acc2 and mat2
#t = -0.94132, df = 210, p-value = 0.3476
#alternative hypothesis: true correlation is not equal to 0
#95 percent confidence interval:
# -0.19784190 0.07054418
#sample estimates:
# cor
#-0.06482098
```

#The correlation between acceptance rate and matriculation of public institutions is *weak*, *negatively correlated*. cor= -0.064

#I

library(car) # advanced scatter plots

scatterplotMatrix(~Apps+Accept+Enroll+Top10perc+Top25perc+F.Undergrad+P.Undergrad+Outstate+Room.Board+Books, data=College1, main="Correlations of Numeric Variables in the College Data")

Correlations of Numeric Variables in the College Data

- # We move along each row from left to right, to find relationship between the two variables.
- # For example in case of Apps and Accept, the plot at position 1*2 represents the relations between the two.
- # If the plot shows an uphill pattern from left to right, this indicates a positive relation.
- # If the plot shows a downhill pattern from left to right, this indicates a negative relation.
- # if the plot doesn't show any kind of pattern then no relationship exists.

#K

boxplot(College1\$Outstate~College1\$Private, col = c("green", "orange"))#public institutions has few outliers above upper threshold, and private institutions #has very few outliers above upper threshold legend("topright", fill= c("green","orange"),

L Elite<- rep ("No",nrow(College))

#Elite is the variable created. rep replicates the values in stated in first argument.(ie. No). the second argument is

#number of times, which is Number of rows in this case.

Elite[College\$Top10perc > 50] <- "Yes"

#Above code is used for binning Top 10 perc in two categories ie. above and below 50%. High school exceeding 50% is categorized to Yes

#Below 50% is categorized to NO

Elite <- as.factor(Elite)

#as.factor is used to convert Elite variable fro character to factor data type. It is categorized in two levels(ie. Yes and No)

College1 <- data.frame(College1,Elite)</pre>

#its is used to combine variables and create a single data frame. In this case we join College dataset and Elite variable.

summary(College1\$Elite)

boxplot(College1\$Outstate~College1\$Elite, col = c("darkblue", "maroon"), xlab="Elite/Non Elite",ylab="Instate/Outstate")

#Non-elite has few outliers above upper threshold, and elite universities has no outliers. legend("topright", fill=c("darkblue", "maroon"),

#M

```
par(mfrow=c(4,2))
```

hist(College1\$Apps, col=c("steelblue", "red"), freq=F) hist(College1\$Apps, col=c("steelblue", "red"), freq=F, breaks = 6)

hist(College1\$Accept, col=c("steelblue", "red"), freq=F) hist(College1\$Accept, col=c("steelblue", "red"), freq=F, breaks = 6)

hist(College1\$Enroll, col=c("steelblue", "red"), freq=F) hist(College1\$Enroll, col=c("steelblue", "red"), freq=F, breaks = 6)

hist(College1\$PhD, col=c("steelblue", "red"), freq=F) hist(College1\$PhD, col=c("steelblue", "red"), freq=F, breaks = 6)

Q4 Perform analysis on Auto Dataset

```
#importing libraries
library(corrplot)
library(dplyr)
library(gmodels)
library(gplots)
library(psych)
library(corrplot) # for correlation plot
library(Hmisc)
library(ggplot2) # for plots
library(ggthemes)
install.packages("corrplot")
library(corrplot)
# Assigning dataframe to the data variable
data <- read.csv("Auto.csv")</pre>
#A
# Checking the data
View(data) # There are some cases where "?" are present in the data. We need to remove
them
\# we will first replace all "?" with "NA" and then remove all NA.
data[data == "?"] <- NA
# counting number of NA
sum(is.na(data)) # there are five instances of misisng values.
# removing all the missing values.
data <- na.omit(data)</pre>
View(data)
# dataframe is now free of all missing values.
#B
# for quantitative we can write
is.numeric(datasetname$variablename)
# for qualitative we can write
is.factor(datasetname$variablename)
```

- # Initially, mpg,cylinders, displacement, weight,acceleration, year, origin are numeric
- # Horsepower and name are factors.
- # Now by doing analysis finally whether variables are quantitative or qualitative is decided.

mpg. How to check it?

psych::describe(data\$mpg) # mean and median both are close to one another indicating near normal distribution.

- # Since mean and median are almost equal, it indicates near normal distribution.
- # Let's plot density plot.

plot(density(data\$mpg)) # Proves our speculation.

density.default(x = data\$mpg)

- # Also we can perform mathematical operations on the mpg values and it will still hold relevance.
- # hence mpg should be quantitative.
- # cylinders. How to check it?
- psych::describe(data\$cylinders)
- # Negative value of kurtosis indicates there might be some abnormality in the curve.
- # Let's plot density plot.
- plot(density(data\$cylinders)) # Proves our speculation.

density.default(x = data\$cylinders)

The plot has three peaks i.e. a tri-modal distribution

It would be wise to check whether it can be qualitative or not.

dummy <- as.factor(data\$cylinders)</pre>

We are getting five defined levels.hence cylinders should not be quantitative. Rather it should be qualitative.

Converting cylinders into qualitative data\$cylinders <- as.factor(data\$cylinders)

displacement. How to check it?
psych::describe(data\$displacement)
Let's plot density plot.
plot(density(data\$displacement))

density.default(x = data\$displacement)

range(data\$displacement) # we cannot define displacement in less no of defined levels. Also when we perform mathematical

operations on the displacement values it will hold some relevance. Hence displacement should be quantitative.

horsepower. How to check it? table(data\$horsepower)

```
5 17 1 1 12 1 1 18 3 1 5 1 4 1 3 2 5 1 1 1 152 153 155 158 160 165 167 170 175 180 190 193 198 200 208 210 215 220 225 230
                                                            1
80
7
                                       1
74
3
                                           2
75
14
                                                                                  4
86
5
   2 2 1
63 64 65
              2
66
                 4 1 5 5 5
67 68 69 70 71
                                   3
72
                                              1
76
4
                                                      1
78
                                                         3
79
                                                                3 1
81 82
                                                                       2
83
                                                                              1
85
 62
                                                                           84
    93
       94 95
               96
                     98
```

It would be wise to convert it into quantitative since we cannot segregagte the horsepower

into less number of defined levels.

Hence it should be quantitative. Again performing mathematical operations on the horsepower will hold some relevance.

data\$horsepower <- as.numeric(data\$horsepower)</pre>

weight. How to check it?

psych::describe(data\$weight)

summary(data\$weight) # weight describes weight of cars, Different cars have different weights. Hence it should be numeric

we cannot categorize it into defined levels. Arithmethic operation on the weight will hold relevance.

acceleration. How to check it? psych::describe(data\$acceleration)

summary(data\$weight) # acceleration describes speed of cars, Different cars have different accelerations. Hence it should be numeric

we cannot categorize it into defined levels. Arithmethic operation on the acceleration will hold relevance.

summary(data\$year)
plot(density(data\$year))

density.default(x = data\$year)

Performing arithmetic operations on the year variable will hold no relevance. Hence, year should be qualitative.

converting year to qualitative
data\$year <- as.factor(data\$year)</pre>

summary(data\$origin)
plot(density(data\$origin))

density.default(x = data\$origin)

we se an abnormal curve. Hence it would be wise to convert origin into factor.

Also performing artihtmetic operations on origin will hold no relevance.

converting origin to qualitative
data\$origin <- as.factor(data\$origin)

#C

psych::describe(data\$mpg)
range for mpg is 37.6

psych::describe(data\$displacement)
range for displacement is 387

psych::describe(data\$horsepower)
range for horsepower is 92

psych::describe(data\$weight)
range for weight is 3527

psych::describe(data\$acceleration)
range for acceleration is 16.8

```
# mean of mpg is 23.45. standard deviation is 7.81
# mean of displacement is 194.41. standard deviation is 104.64
# mean of horsepower is 52.16. standard deviation is 29.5
# mean of weight is 2977.58. standard deviation is 849.4
# mean of acceleration is 15.54. standard deviation is 2.76
```

#E

```
newdata \leftarrow data[-c(10:84),]
```

psych::describe(newdata\$mpg) # range is 35.6, mean is 24.37, standard deviation is 7.88.

psych::describe(newdata\$displacement) # range is 387, mean is 187.75, standard deviation is 99.94.

psych::describe(newdata\$horsepower) # range is 92 , mean is 51.63, standard deviation is 29.73.

psych::describe(newdata\$weight) # range is 3348, mean is 2939.64, standard deviation is 812.65.

psych::describe(newdata\$acceleration) # range is 16.3, mean is 15.72, standard deviation is 2.69.

#f draw plots.

lets analyze relation between no of cylinders and displacement

boxplot(data\$displacement ~ data\$cylinders, data=data, main="Effect of cylinders on engine displacement", xlab="No of cylinders", ylab="Displacement",col=c("orange", "lightblue4"))

Effect of cylinders on engine displacement

from the boxplots we can say that more the no of cylinders, more is the displacement produced by it.

lets analyze relation between mpg and displacement

```
\label{eq:continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous
```


from the plot we see that vehicles which produce more engine displacement tend to have low fuel economy i.e mpg.

let's analyze relation between no of cylinders and weight

boxplot(data\$weight ~ data\$cylinders, data=data, main="Effect of cylinders on the weight of the vehicle", xlab="No of cylinders", ylab="Weight",col=c("orange", "lightblue4"))

Effect of cylinders on the weight of the vehicle

from the boxplots we see that as no of cylinders increase the weight of the vehicle also increases.

lets analyze relation between no of cylinders and miles per gallon

boxplot(data\$mpg ~ data\$origin, data=data, main="Relation between origin & miles per gallon", xlab="Origin", ylab="mpg",col=c("orange", "lightblue4"))

From the boxplots we see that vehicles with origin 3 have mpg greater than those with origin 2 and origin 1.

Relation between origin & miles per gallon

lets analyze the relation between horsepower and miles per gallon

 $\label{lem:condition} relation 1 <-lm(mpg \sim horsepower \,,\, data = data) \\ plot(data\$mpg \sim data\$horsepower \,,\, col="lightgray" \,,\, main="Relationship between mpg \& horsepower" \,,\, xlab="Horsepower" \,,\, ylab="Miles per gallon" \,,\, pch=16) \\ abline(relation 1, col = "coral" \,,\, lwd = 2.5) \\$

Relationship between mpg & horsepower

from the plots we can say that vehicles with more horsepower tend to have high fuel economy i.e mpg

lets analyze the relation between weight and miles per gallon

```
\label{lem:condition2} $$ relation2 <-lm(mpg \sim weight , data = data) $$ plot(data\$mpg \sim data\$weight, col="lightgray", main="Relationship between mpg & weight", xlab="Weight", ylab="Miles per gallon", pch=16) $$ abline(relation2, col = "coral", lwd = 2.5) $$
```

Relationship between mpg & weight

from the plot we can say that as weight of vehicle increases mpg decreases. # this means that heavy vehicles are not fuel efficient.

 $\label{eq:continuous_continuous$

Relationship between mpg & acceleration

from the plots we see that miles per gallon increseases as acceleration increases.

g

plot(model)

By looking at the plots we created in part f, we can say that displacement, weight, horsepower, cylinders, year

acceleration, year can be used to predict the mpg. But not sure.

lets use regression to determine best predictors

```
\label{local-continuous} $\operatorname{model}$<-lm(mpg\sim cylinders+displacement+horsepower+weight+acceleration+year+orig in, data = data) $\operatorname{model}$ $\operatorname{summary}(\operatorname{model})$ \\ $\operatorname{par}(\operatorname{mfrow}=c(2,2))$
```


we do see some outliers. Lets remove them and plot a new model.

outliers <- c(387, 323, 328, 275, 245) new <- data[-outliers,]

now only variables have highest significance i.e '***' are selected. Since They are the strongest predictors

of the mpg. For the other factor variables we were getting high significance for only some levels. So we

completely removed it.

model1 <- lm(mpg ~ weight+year+origin, data= new)
summary(model1)</pre>

Q5 Perform analysis on gun deaths in America.

tab <- table(dataset\$month)</pre>

```
#importing libraries
library(corrplot)
library(dplyr)
library(gmodels)
library(gplots)
library(psych)
library(corrplot) # for correlation plot
library(Hmisc)
library(ggplot2) # for plots
library(ggthemes)
library(feather)
dataset = read.csv("gun_deaths.csv")
dataset = na.omit(dataset)
dummy = dataset
#A
#To determine the number of deaths by month we first need to convert the months into
qualitative.
dataset$month <- as.factor(dataset$month)</pre>
new <- data.frame(summary(dataset$month))</pre>
#code output
# 1 2 3 4 5 6 7 8 9 10 11 12
# 8273 7093 8289 8455 8669 8677 8989 8783 8508 8406 8243 8413
#B
#Let's relabel the month to its corresponding name as January to December. It stores the
month name for each corresponding month.
dataset$month<- factor(dataset$month,
  levels = c(1,2,3,4,5,6,7,8,9,10,11,12),
  labels = c("Jan", "Feb", "Mar", "Apr", "May", "June", "July", "Aug", "Sept", "Oct", "Nov", "Dec"))
```

```
# Let's add margins for a better picture
ptab <-addmargins(prop.table(tab))
addmargins(prop.table(tab))
barplot(tab, main = "Bar Plot", col=c("cadetblue", "gold"))
# now let's create a bar plot
options(scipen = 99)</pre>
```

x <- table(as.factor(dataset\$id),dataset\$label)
barplot(x)</pre>

dev.off()
asa

#C

```
tabb <- table(dataset$intent)
tabb <- sort(tabb, decreasing = TRUE)
#code output
#Suicide Homicide Accidental Undetermined
# 62291 33329 1598 797
```

#Let's add margins for a better picture ptab <-addmargins(prop.table(tabb))

#code output

#Suicide Homicide Accidental Undetermined Sum #0.635525175 0.340039790 0.016303627 0.008131408 1.000000000 addmargins(prop.table(tabb)) barplot(tabb, main = "Bar Plot", col=c("cadetblue", "gold"))

D

boxplot(dataset\$age ~dataset\$sex, data=dataset, main="Age of gun death victims by sex", xlab="Sex", ylab="Age",col=c("orange", "lightblue4"))
#The following line of code gives us only gun deaths of females.

female <- dataset[which(dataset\$sex=='F'),]

now lets calculate average age of female gun deaths
female <- na.omit(female)
ans <- mean(female\$age)</pre>

summary(dataset\$education)

Age of gun death victims by sex

#E

ans <- count(dataset[which(dataset\$education=='HS/GED' & dataset\$race =='White' & dataset\$year == 2012 & dataset\$sex == "M"),])

#In 2012, 7794 there were 7994 deaths who were male, white with at least a high school education.

#F

creating a new variable named season storing the season associated with each month

```
dataset$season[dataset$label=="Jan" | dataset$label == "Feb" | dataset$label ==
"Mar"]<-"Winter"
dataset$season[dataset$label=="Apr" | dataset$label == "May" | dataset$label ==
"Jun"]<-"Spring"
dataset$season[dataset$label=="Jul" | dataset$label == "Aug" | dataset$label ==
"Sept"]<-"Summer"
dataset$season[dataset$label=="Oct" | dataset$label == "Nov" | dataset$label ==
"Dec"]<-"Fall"</pre>
```

table(dataset\$season)
#code output

```
# Fall Spring Summer Winter # 24388 25045 25548 23034
```

from the table it is clear that Summer is the season with most gun deaths.

G

Are whites who are killed by guns more likely to die because of suicide or homicide? How does this compare to blacks and Hispanics?

```
#Case A: Whites
count(dataset[ which(dataset$intent=='Suicide' & dataset$race =='White'), ])
#56415
count(dataset[ which(dataset$intent=='Homicide' & dataset$race =='White'), ])
#8293
56415/98015 # i.e. 57.5%
8293/98015 # i.e 8.4 %
#We see from here that in case of white, gun violences involving suicide are more likely to
happen.
#Case B: Blacks
count(dataset[ which(dataset$intent=='Suicide' & dataset$race =='Black'), ])
# 3285
count(dataset[ which(dataset$intent=='Homicide' & dataset$race =='Black'), ])
# 18956
3285/98015 # i.e. 3.35%
19510/98015 # i.e 19.91%
#Therefore, in case of blacks, gun violences involving homicide are more likely to happen.
#Case C: Hispanics
count(dataset[ which(dataset$intent=='Suicide' & dataset$race =='Hispanic'), ])
# 3120
count(dataset[ which(dataset$intent=='Homicide' & dataset$race =='Hispanic'), ])
# 5269
3120/98015 # i.e. 3.1%
```

5634/98015 # i.e 5.7%

#We see that for the case of Hispanics, gun violences involving *homicide* are more likely to happen.

H

we can see that variable police are numeric which does not make sense. It should be factor.

dataset\$police <- as.factor(dataset\$police)</pre>

- # Now in order to check whether the police involved gun deaths are significantly different from other gun
- # deaths, we will use the chi square test. The reason being since both intent and police are factors.

table(dataset\$police)

#code output

- # 0 1
- # 97996 19
- # The police involved gun deaths are very less as compared to the non-police involvement.
- # Assessing relationships between police involvement and other variables.

with intent

table(dataset\$police,dataset\$intent)

#code output

#Accidental Homicide Suicide Undetermined

from the table we see all the gundeaths in which police were involved are homicide. Same is not the case when police were not involved.

with year

table(dataset\$year,dataset\$police)

#code output

```
#2013 32723 7
#2014 32665 5
```

from this we can see that from 2012 to 2014 non police involvement gun violences were more than police involved # gun violences.

with sex

table(dataset\$sex,dataset\$police)

#code output

```
# 0 1
# F 14180 0
# M 83816 19
```

From this we get the information that all police invloved gun deaths involved males.

Whereas in non police involved gun deaths involving males was almost six times more as compared to females

table(dataset\$race,dataset\$police)

#code output

In case of police involvement of non-police involvement, majority of victims belonged to White race.

with education

table(dataset\$education,dataset\$police)

#code output

#

```
0 1
# BA+ 12879 0
# HS/GED 42247 11
# Less than HS 21444 4
# Some college 21426 4
```

In both the cases, majority of the victims were at least High School graduates.

#with age

```
aggregate(dataset$age, by = list(dataset$police) ,FUN = mean)
```

In police involved gun deaths the average age of victims is \sim 36 and for non police invloved is \sim 44.

with place

table(dataset\$place,dataset\$police)

#code output

#			
#		0	1
#	Farm	465	0
#	Home	59619	3
#	Industrial/construction	239	0
#	Other specified	13543	2
#	Other unspecified	8746	8
#	Residential institution	201	0
#	School/instiution	662	0
#	Sports	128	0
#	Street	11003	5
#	Trade/service area	3390	1

police-involved gun violence were mostlyy at Other unspecified place.

in non police involved gun violences were mostly at Home.

Since all the police involved gun violences were Homicide, so keeping homicide category aside they are different

from other intent types.

Q6 Perform analysis on salary class dataset

```
install.packages("arules")
install.packages("arulesViz")
library(rpart)
library(party)
library(readxl)
library(rattle)
library(rpart.plot)
library(RColorBrewer)
library(arules)
library(arulesViz)
# a
# Importing the dataset
dataset <- read_excel("salary-class.xlsx")</pre>
# substituting all "?" with NA and then removing it.
dataset$AGE[dataset$AGE == "?"] <- NA
dataset$EMPLOYER[dataset$EMPLOYER == "?"] <- NA
dataset$DEGREE[dataset$DEGREE == "?"] <- NA
dataset$MSTATUS[dataset$MSTATUS == "?"] <- NA
dataset$[OBTYPE[dataset$[OBTYPE == "?"] <- NA
dataset$SEX[dataset$SEX == "?"] <- NA
dataset$`C-GAIN`[dataset$`C-GAIN` == "?"] <- NA
dataset$`C-LOSS`[dataset$`C-LOSS` == "?"] <- NA
dataset$HOURS[dataset$HOURS == "?"] <- NA
dataset$COUNTRY[dataset$COUNTRY == "?"] <- NA
dataset$INCOME[dataset$INCOME == "?"] <- NA
dataset$EMPLOYER[dataset$EMPLOYER == "?"] <- NA
dataset <- na.omit(dataset)</pre>
dataset$MSTATUS <- as.factor(dataset$MSTATUS)</pre>
dataset$EMPLOYER <- as.factor(dataset$EMPLOYER)</pre>
dataset$DEGREE <- as.factor(dataset$DEGREE)</pre>
dataset$JOBTYPE <- as.factor(dataset$JOBTYPE)</pre>
dataset$SEX <- as.factor(dataset$SEX)</pre>
dataset$COUNTRY <- as.factor(dataset$COUNTRY)</pre>
```

```
dataset$INCOME <- as.factor(dataset$INCOME)

# Splitting the dataset 60%-40%.

set.seed(1234)
ind <- sample(2, nrow(dataset), replace=TRUE, prob=c(0.6, 0.4))
trainData <- dataset[ind==1,]
testData <- dataset[ind==2,]</pre>
```

b

Method = class for classification tree and anova for regression tree.

```
\label{eq:control} \begin{split} & \text{rfit} = \text{rpart}(\text{INCOME} \sim \text{AGE} + \text{EMPLOYER} + \text{DEGREE} + \text{MSTATUS} + \text{JOBTYPE} + \text{SEX} \\ & + \text{`C-GAIN`} + \text{`C-LOSS`} + \text{HOURS} + \text{COUNTRY, data} = \text{trainData,} \\ & \text{method} = \text{"class",parms} = \text{list(split} = \text{"gini"),control} = \text{rpart.control(cp} = 0.01)) \\ & \text{rpart.plot(rfit, type} = 3, \text{cex} = 0.4) \end{split}
```


printcp(rfit)
#code output
#Classification tree:

```
#rpart(formula = INCOME ~ AGE + EMPLOYER + DEGREE + MSTATUS +
     JOBTYPE + SEX + `C-GAIN` + `C-LOSS` + HOURS + COUNTRY, data = trainData,
    method = "class", parms = list(split = "gini"), control = rpart.control(cp = 0.01))
#Variables actually used in tree construction:
# [1] C-GAIN C-LOSS DEGREE JOBTYPE MSTATUS
#Root node error: 4536/17985 = 0.25221
#n = 17985
#CP nsplit rel error xerror xstd
#2 0.039683 2 0.73611 0.75728 0.011622
#3 0.034612 3 0.69643 0.71098 0.011342
#4 0.014440 4 0.66182 0.65564 0.010984
#5 0.010000 7 0.61640 0.63757 0.010861
pred_Test_class <- predict(rfit, newdata = testData, type = "class")</pre>
mean(pred Test class != testData$INCOME)
#0,152
summary(rfit)
# the leaf nodes can be determined by viewing the output with *.
# In all there eight leaves in the tree.
# c
# Looking at the Variable importance we can say that MSTATUS, JOBTYPE and C-GAIN are
the major predictors of the variable
# We get this information from the Variable importance field in the summary(rfit)
# d
install.packages("tidyrules")
library("tidyrules")
rules <- tidyRules(rfit)</pre>
rules
\# For > 50K
# MSTATUS %in% c('Divorced', 'Married-spouse-absent', 'Never-married', 'Separa~ >50K
      0.982 3.89
161
```

```
# MSTATUS %in% c('Married-AF-spouse', 'Married-civ-spouse') & JOBTYPE %in% c('~
>50K
        188
              0.974 3.86
# MSTATUS %in% c('Married-AF-spouse', 'Married-civ-spouse') & JOBTYPE %in% c('~
>50K 146 0.973 3.86
# For \leq 50k
    MSTATUS %in% c('Divorced', 'Married-spouse-absent', 'Never-married', 'Separa~
<=50K 9390
                0.951 1.27
# the other two rules don't meet the criteria.
# so the best two rules are as follows
# MSTATUS %in% c('Married-AF-spouse', 'Married-civ-spouse') & JOBTYPE %in% c('~
<=50K 4125
               0.740 0.989
# MSTATUS %in% c('Married-AF-spouse', 'Married-civ-spouse') & JOBTYPE %in% c('~
<=50K 1722 0.560 0.749
# e
# Second decision tree
# We are not pruning this tree, allowing it to grow
rfit1 = rpart(INCOME ~ AGE + EMPLOYER + DEGREE + MSTATUS + JOBTYPE + SEX
      + `C-GAIN` + `C-LOSS` + HOURS + COUNTRY, data = trainData,
        method = "class",parms = list(split = "gini"),control = rpart.control(minsplit = 0,
minbucket = 0, cp = 0)
rpart.plot(rfit)
printcp(rfit1)
pred Test class <- predict(rfit1, newdata = testData, type = "class")</pre>
# Third decision tree
# We are asigning 500 records to the parent branch and 100 records to the child branch.
rfit2 = rpart(INCOME ~ AGE + EMPLOYER + DEGREE + MSTATUS + JOBTYPE + SEX
      + `C-GAIN` + `C-LOSS` + HOURS + COUNTRY, data = trainData,
      method = "class",parms = list(split = "gini"),control = rpart.control(minsplit = 500,
minbucket = 100, cp = 0.01)
rpart.plot(rfit2)
printcp(rfit2)
pred_Test_class <- predict(rfit2, newdata = testData, type = "class")</pre>
```

```
mean(pred_Test_class != testData$INCOME)
rfit2$cptable
# Calculating accuracies for the trees
pred_Test_class <- predict(rfit, newdata = testData, type = "class")</pre>
pred_Train_class <- predict(rfit, newdata = trainData, type = "class")</pre>
table(pred_Test_class,testData$INCOME)
#code output
#pred_Test_class <=50K >50K
          <=50K 8837 1483
#
          >50K 368 1489
# testing set accuracy is 84.79%
table(pred_Train_class,trainData$INCOME)
#code output
#pred_Train_class <=50K >50K
           <=50K 12945 2292
#
           >50K 504 2244
# training set accuracy is 84.45%
pred_Test_class_1 <- predict(rfit1, newdata = testData, type = "class")</pre>
pred_Train_class_1 <- predict(rfit1, newdata = trainData, type = "class")</pre>
table(pred_Test_class_1,testData$INCOME)
#code output
#pred_Test_class_1 <= 50K > 50K
            <=50K 8004 1104
#
             >50K 1201 1868
# testing set accuracy is 81%
table(pred_Train_class_1,trainData$INCOME)
```

#code output

```
#pred_Train_class_1 <= 50K > 50K
              <=50K 13294 292
#
              >50K 155 4244
# training set accuracy is 97.5%
pred_Test_class_2 <- predict(rfit2, newdata = testData, type = "class")</pre>
pred_Train_class_2 <- predict(rfit2, newdata = trainData, type = "class")</pre>
table(pred_Test_class_2,testData$INCOME)
#code output
#pred_Test_class_2 <= 50K > 50K
            <=50K 8837 1483
            >50K 368 1489
# testing set accuracy is 84.79%
table(pred_Train_class_2,trainData$INCOME)
#code output
#pred_Train_class_2 <= 50K > 50K
              <=50K 12945 2292
              >50K 504 224
# training set accuracy is 84.45%
# for the third decision tree lets take cp = 0.131 and again plot the tree.
rfit2_new = rpart(INCOME ~ AGE + EMPLOYER + DEGREE + MSTATUS + JOBTYPE + SEX
       + `C-GAIN` + `C-LOSS` + HOURS + COUNTRY, data = trainData,
         method = "class",parms = list(split = "gini"),control = rpart.control(minsplit =
500, minbucket = 100, cp = 0.131)
pred_Test_class_2_new <- predict(rfit2_new, newdata = testData, type = "class")</pre>
pred_Train_class_2_new <- predict(rfit2_new, newdata = trainData, type = "class")</pre>
table(pred_Test_class_2_new,testData$INCOME)
#code output
```

#pred_Test_class_2_new <= 50K > 50K

```
#
                <=50K 8143 1275
                 >50K 1062 1697
#
# testing set accuracy is 80.8%
table(pred_Train_class_2_new,trainData$INCOME)
#code output
#pred_Train_class_2_new <= 50K > 50K
                 <=50K 11987 1877
#
                  >50K 1462 2659
# training set accuracy is 81.43%
# for the third decision tree lets take cp = 0.039
rfit2_new_1 = rpart(INCOME ~ AGE + EMPLOYER + DEGREE + MSTATUS + JOBTYPE +
SEX
        + `C-GAIN` + `C-LOSS` + HOURS + COUNTRY, data = trainData,
          method = "class",parms = list(split = "gini"),control = rpart.control(minsplit =
500, minbucket = 100, cp = 0.039))
pred_Test_class_2_new_1 <- predict(rfit2_new_1, newdata = testData, type = "class")</pre>
pred_Train_class_2_new_1 <- predict(rfit2_new_1, newdata = trainData, type = "class")</pre>
table(pred_Test_class_2_new_1,testData$INCOME)
#code output
#pred_Test_class_2_new_1 <= 50K > 50K
#
                   <=50K 8139 1159
#
                    >50K 1066 1813
# testing set accuracy is 81.72%
table(pred_Train_class_2_new_1,trainData$INCOME)
#code output
#pred_Train_class_2_new_1 <= 50K > 50K
               <=50K
                            11983 1693
#
                >50K
                            1466 2843
# training set accuracy is 82.43%
```

- # What do we infer?
- # The three trees differ briefly when it comes to overfitting. Since for the second decision tree i.e one with no pruning
- # has accuracy of about ${\sim}97\%$ when it comes to training set. But falls drastically when we check it for testing set.
- # So if we do not perform pruning at all then overfitting occurs.
- # Decision tree with no pruning is the most accurate on the training data.
- # Decision trees i.e default and the third one when we keep cp=0.01 is the most accurate on the testing data.