

1. Stredná doba telefonátu je 1 minúta. V priemere z oblasti volá 240 účastníkov za hodinu. Riešte pomocou markovových linkových modelov. Pomocou modelu $M/M/\infty$ odhadnite minimálny počet liniek tak, aby systém odmietal maximálne 5% zákazníkov.

2. (3b) Zaťaženie jednolinkového systému je 0.9 [erlang]. Navrhnite minimálnu veľkosť buffera (frontu) tak, aby systém odmietal maximálne 10% požiadaviek. Aké je stredné čakanie vo fronte, ak vieme že vstupný tok je 200 požiad./s?

o	l-0,9 [erlang	J	λ= 9Wp/s	n=1				
P	ar = 0,1		MNU. L. P. ABY Par	- 01		I HIERT TEES		
K	Qu	TIKE	Tu. Eg				9.0,0096 = 0,369	
0	1	0,500	emanded diff		EW. EL	0,184	= 1,50.10-3	900132
1	99	9360	QUHERIO ,365		EW. X	100	- 1,5,7.10	garst
2	0,505	Q1642	Q165 Q045 = 91					
3	0,05	0,0494	403	_				
4	0,0943							
5	0,0043		<u> </u>					
3	1,4587							

3. 8 počítačov majú na starosti 2 servisný pracovníci. Jeden počítač vyžaduje servis raz za 6 dni. Doba servisu trvá 4 hodín. (pracuje sa dňom i nocou). Na riešenie použite Markovov uzavretý model. Ako dlho v priemere sa čaká vo fronte na servis? Aké je využitie servisného pracovníka?

4. V informačnej kancelárii a priemerne uskutoční 60 telefonátov za hodinu. Stredná doba telefonátu je 50 sekúnd. Predpokladáme Markovov model. Nech je v systéme jedna linka. Koľko telefonátov v priemere je odmietnutých v priebehu hodiny? Aké je využitie systému?

$$\begin{array}{lll} & \mathcal{Q}_{0} = 1 & \text{ i.i.d.} \\ & \frac{1}{\mu} = \mathcal{D}_{3} = \frac{1}{6} \frac{5}{6} \text{ m/n} = \frac{1}{70} \text{ h/2} \\ & \mathcal{Q} = 1 \cdot \overline{I}_{0} = 1 - \frac{1}{1 \cdot 2} = 1 - \frac{1}{6} = \frac{5}{6} = 0,8332 = 83,35\% \end{array}$$

OCHIET. CCA. 300 h za hadinu

$$J = \frac{9}{2}$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J \cdot T_0)$$

$$O = \lambda \cdot (1 - J$$