Strecke F _o (s)	Regler G _K (s)	Einstellregeln
$\frac{1}{a_0 + a_1 s + a_2 s^2 + \dots}$	$\frac{r_0 + r_1 s}{2s}$	$r_0 = a_0 \frac{a_1^2 - a_0 a_2}{a_1 a_2 - a_0 a_3}, r_1 = a_1 \frac{a_1^2 - a_0 a_2}{a_1 a_2 - a_0 a_3} - a_0$
		$r_{0} = \frac{1}{D} \begin{vmatrix} a_{0}^{2} & -a_{0} & 0 \\ -a_{1}^{2} + 2a_{0}a_{2} & -a_{2} & a_{1} \\ a_{2}^{2} + 2a_{0}a_{4} - 2a_{1}a_{3} & -a_{4} & a_{3} \end{vmatrix}$ $r_{1} = \frac{1}{D} \begin{vmatrix} a_{1} & a_{0}^{2} & 0 \\ a_{3} & -a_{1}^{2} + 2a_{0}a_{2} & a_{1} \\ a_{5} & a_{2}^{2} + 2a_{0}a_{4} - 2a_{1}a_{3} & a_{3} \end{vmatrix}$ $r_{2} = \frac{1}{D} \begin{vmatrix} a_{1} & -a_{0} & a_{0}^{2} \\ a_{3} & -a_{2} & -a_{1}^{2} + 2a_{0}a_{2} \\ a_{5} & -a_{4} & a_{2}^{2} + 2a_{0}a_{4} - 2a_{1}a_{3} \end{vmatrix}$ $D = \begin{vmatrix} a_{1} & -a_{0} & 0 \\ a_{3} & -a_{2} & a_{1} \\ a_{5} & -a_{4} & a_{3} \end{vmatrix}$
$\frac{K_S}{\prod_{v=1}^{n} (1 + T_v s)}$ $T_1 >> T_{\Sigma} = \sum_{v=2}^{n} T_v$	$ \begin{array}{c} PI \\ K_R \frac{1 + T_R s}{s} \end{array} $	$K_R = \frac{1}{2K_S T_\Sigma}, T_R = T_1$
$\frac{K_S}{\prod_{v=1}^{n} (1 + T_v s)}$ $T_1, T_2 >> T_\Sigma = \sum_{v=3}^{n} T_v$ 2 große Zeitkonstanten	FI $K_R \frac{1 + T_R s}{s}$	$K_R = \frac{1}{2K_S} \frac{T_1^2 + T_1 T_2 + T_2^2}{(T_1 + T_2)T_1 T_2}$ $T_R = \frac{(T_1^2 + T_2^2)(T_1 + T_2)}{T_1^2 + T_1 T_2 + T_2^2}$
	PID $K_R \frac{(1+T_{R1}s)(1+T_{R2}s)}{s}$	$K_R = \frac{1}{2K_S T_\Sigma}$, $T_{R1} = T_1$, $T_{R2} = T_2$

Tabelle 6-3: Einstellregeln zum Betragsoptimum