A PYTHON PROGRAM TO IMPLEMENT K-MEANS MODEL

Ex.No:9B

Date of Experiment: 25/10/2024

AIM:-

To implement a python program using a K-Means Algorithm in a model.

ALGORITHM:-

Step1: Import all the other necessary libraries(numpy as np, matplotlib.pyplot as plt and sklearn.tree,pandas as pd and seaborn as sns).

Step2: Select the number K to decide the number of clusters.

Step3: Select random K points or centroids. (It can be different from the input dataset). Step4:

Assign each data point to their closest centroid, which will form the predefined K clusters. Step5:

Calculate the variance and place a new centroid of each cluster.

Step6: Repeat the fourth steps, which means assign each datapoint to the new closest centroid of each cluster.

Step7: If any reassignment occurs, then go to step-5 else go to FINISH.

Step8: Train the model and plot the graph using scatterplot() function.

AI23331 231501077

IMPLEMENTATION:-

data = pd.read_csv('../input/k-means-clustering/KNN (3).csv') data.head(5)

Text(0.5, 1.0, 'Different Species Visualization')

req_data = data.iloc[:,1:]
req_data.head(5)

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	5.1	3.5	1.4	0.2	Iris-setosi
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Ms-setosa

shuffle_index = np.random.permutation(req_data.shape[0]) #shuffling the row index of our dataset req_data = req_data.iloc[shuffle_index] req_data.head(5)

	SepalLengthCm	SepatWidthCm	PetalLengthCm	PetalWidthCm	Species
45	4.8	3.0	1.4	0.3	Iris-setosa
50	7.0	3.2	4.7	1.4	Iris-versicolor
135	7.7	3.0	6.1	2.3	Iris-virginica
49	5,0	3.3	1.4	0.2	Iris-setosa
89	5.5	2.5	4.0	1.3	Iris-versicolor

```
train size = int(req data.shape[0]*0.7)
train df =
req data.iloc[:train size,:] test df =
req data.iloc[train size:,:] train =
train df.values test = test df.values
y_true = test[:,-1]
print('Train_Shape: ',train_df.shape)
print('Test Shape: ',test df.shape)
  Train_Shape: (105, 5)
  Test_Shape: (45, 5)
from math import sqrt
def euclidean distance(x test, x train):
  distance = 0 for i in
  range(len(x test)-1):
     distance += (x \text{ test}[i]-x \text{ train}[i])**2
  return sqrt(distance)
def get neighbors(x test, x train, num neighbors):
  distances = []
  data = [] for i in x train:
  distances.append(euclidean distance(x test,i))
  data.append(i)
  distances = np.array(distances) data = np.array(data) sort indexes = distances.argsort()
  #argsort() function returns indices by sorting distances
data in ascending order data = data[sort indexes] #modifying our data based on sorted indices,
  so that we can get the
```

```
nearest neighbors return
  data[:num neighbors]
def prediction(x test, x train, num neighbors):
  classes = []
  neighbors = get neighbors(x test, x train, num neighbors)
  for i in neighbors:
     classes.append(i[-1])
  predicted = max(classes, key=classes.count) #taking the most repeated class return
  predicted
def predict classifier(x test):
  classes = []
  neighbors = get neighbors(x test, req data.values, 5)
  for i in neighbors:
     classes.append(i[-1])
  predicted = max(classes,
  key=classes.count) print(predicted) return
  predicted
def accuracy(y_true, y_pred):
  num correct = 0
  for i in range(len(y_true)):
     if y true[i]==y pred[i]:
       num correct+=1
  accuracy = num correct/len(y true)
  return accuracy
```

```
y_pred = []
for i in test:
    y_pred.append(prediction(i, train, 5))
y_pred
```

```
['Iris-virginica',
  'Iris-versicolor',
   'Iris-versicolor',
   'Iris-setosa',
   'Iris-virginica',
   'Iris-setosa',
   'Iris-setosa',
  'Iris-setosa',
   'Iris-virginica',
   'Iris-versicolor',
  'Iris-setosa',
   "Iris-versicolor",
   'Iris-versicolor',
  'Iris-virginica',
   'Iris-setosa',
   'Iris-setosa',
  'Iris-versicolor',
  'Iris-virginica',
   'Iris-virginica'.
  'Iris-setosa',
  'Iris-virginica'.
   'Iris-versicolor',
   'Iris-setosa',
   'Iris-setosa',
   'Iris-versicolor",
  'Iris-setosa',
   'Iris-setosa',
   'Iris-versicolor',
  'Iris-virginica',
   'Iris-versicolor',
   'Iris-virginica',
  'Iris-versicolor',
  'Iris-versicolor',
   'Iris-virginica',
   'Iris-virginica'.
  'Iris-versicolor',
   'Iris-virginica'.
   'Iris-setosa',
  'Iris-setosa',
   'Iris-virginica',
  'Iris-virginica',
   'Iris-setosa',
   'Iris-versicolor',
   'Iris-virginica',
  'Iris-versicolor']
accuracy = accuracy(y_true, y_pred)
```

accuracy

0.95555555555556

test_df.sample(5)

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
113	5.7	2.5	5.0	2.0	Iris-virginica
125	7.2	3.2	6.0	1.8	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica
94	5.6	2.7	4.2	1.3	Iris-versicolor
99	5.7	2.8	4.1	1.3	Iris-versicolor

RESULT:-

Thus the python program to implement the K-Means model has been successfully implemented and the results have been verified and analyzed.