A Intuition of Machine Learning

Namely linear regression and perceptron
Which I really don't have a clue about
But have to present anyway...

Richard Zhong SHUOSC 2017 / 10 / 13

Machine Learning——What? How? When?

- What is Machine Learning?
 - Arthur Samuel:
 - "Field of study that gives computers the ability to learn without being explicitly programmed."
- How to achive Machine Learning?
 - With data
 - With model
- O When to use Machine Learning?
 - With a black-box system or related data
 - o Facing a problem hard to address by explicit programming

1

Types of Machine Learning

- Supervised Learning
 - Knowing a set of history input $X = \{x_1, x_2, ...\}$ and corresponding output $Y = \{y_1, y_2, ...\}$
 - Given a new input x', try to predict y'
- Unsupervised Learning
 - Knowing a lot of input $X = \{x_1, x_2, ...\}$
 - Find the structure within them.
- Reinforce Learning and Others
 - o

Toy Problems

Problem 1

- $X = \{-3, -2, 9, 22\}$ $Y = \{-2, -1, 10, 23\}$
- Given x' = 5, y' = ?

Problem 2

- $X = {\sqrt{2}, \pi, 2.73, \frac{9}{8}}$ $Y = {1, 1, 0, 0}$
- Given x' = 7.26, y' = ?

3

Types of Supervised Learning

- Regression
 - y is a real(continuous) value
 - Given x, want to know exact how much is y
- Classification
 - y is a discrete value
 - Given x, want to know of all possible results, which would y be

House Price Predicting

Area-Price Dataset

Model Formula

- Observation
 - o Somehow all the scatters fall into a region near a line
 - Let's assume this line is y = wx + b
 - Where *w*, *b* is a set of value we don't know yet, or so-called *parameters*
- Next thing to do
 - Get all the x-y pairs in dataset
 - Change *w* , *b* accordingly, to find the best line that is able to describe the data distribution

Mathematics is the gate and key of the sciences. — Roger Bacon

But how do we choose parameters w and b anyway? Well, anything mathematical is good.

- \bigcirc Find a metric of the performance of your model, given w_k, b_k
- Minimize/Maximize the metric in an analytic or arithmetic way
- $\, \bigcirc \,$ Choose the set of parameters that optimizes the metric

Loss Function

Intuition of Mean Square Error(distance)

Loss Function

Formula of MSE

$$J(w,b) = \frac{1}{2m} [(wx_1 + b - y_1)^2 + (wx_2 + b - y_2)^2 + (wx_3 + b - y_3)^2 + \dots + (wx_m + b - y_m)^2]$$
$$= \frac{1}{2m} \sum_{i=1}^m (wx_i + b - y_i)^2$$

Partial Derivative of J(w, b)

$$\frac{\partial J}{\partial w} = \frac{1}{m} \sum_{i=1}^{m} x_i \left(w x_i + b - y_i \right)$$

$$= \frac{1}{m} \left[\sum_{i=1}^{m} (x_i^2) w + \sum_{i=1}^{m} (x_i b) - \sum_{i=1}^{m} (x_i y_i) \right]$$

$$\frac{\partial J}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} (w x_i + b - y_i)$$

$$= \frac{1}{m} \left[\left(\sum_{i=1}^{m} x_i \right) w_i + mb - \sum_{i=1}^{m} y_i \right]$$

Partial Derivative of I(w, b)

Define
$$S_x = \sum_{i=1}^m x_i \mid S_{xy} = \sum_{i=1}^m (x_i y_i)$$

$$\frac{\partial J}{\partial w} = \frac{1}{m} (S_{x^2} w + b S_x - S_{xy})$$

$$\frac{\partial J}{\partial b} = \frac{1}{m} (mb + S_x w - S_y)$$

11

Best set of w, b

Let
$$\frac{\partial J}{\partial w} = \frac{\partial J}{\partial b} = 0$$

$$w = \frac{mS_{xy} - S_x S_y}{mS_{x^2} - (S_x)^2} = 0.6363$$

$$b = \frac{S_{x^2} S_y - S_x S_{xy}}{mS_{x^2} - (S_x)^2} = -8.217$$

Analytic Fitting Result

More Data

Model Formula

- Observation
 - o Somehow all the scatters fall into a region near a plain
 - We can assume this plain is $y = w_1x_1 + w_2x_2 + b$
 - $\circ\,$...and pretend that this is not mathematically annoying
- Next thing to do
 - Get all the $x_1, x_2 y$ pairs in dataset
 - Change w_1 , w_2 , b accordingly, to find the best plain that is able to describe the data distribution

J(w, b) and its Partial Derivative

$$J(w_1, w_2, b) = \frac{1}{2m} \sum_{i=1}^{m} (w_1 x_{i,1} + w_2 x_{i,2} + b)^2$$
$$\frac{\partial J}{\partial w_1} = \frac{1}{m} \sum_{i=1}^{m} x_{i,1} (w_1 x_{i,1} + w_2 x_{i,2} + b)$$
$$\frac{\partial J}{\partial w_2} = \frac{1}{m} \sum_{i=1}^{m} x_{i,2} (w_1 x_{i,1} + w_2 x_{i,2} + b)$$
$$\frac{\partial J}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} (w_1 x_{i,1} + w_2 x_{i,2} + b)$$

Best set of w, b

Let
$$\frac{\partial J}{\partial w_1} = \frac{\partial J}{\partial w_2} = \frac{\partial J}{\partial b} = 0$$
$$w_1 = 6.327$$
$$w_2 = 0.01874$$
$$b = -0.8298$$

Analytic Fitting Result

Generalization

```
Given a set of input X = \{x_1, x_2, x_3, ..., x_m\}, Where x_k = \{x_{k,1}, x_{k,2}, ..., x_{k,n}\}
And a set of output Y = \{y_1, y_2, y_3, ..., y_m\}
```

The linear model predicts

$$y(x_k) = w_0 + w_1 x_{k,1} + w_2 x_{k,2} + \dots + w_n x_{k,n}$$

The loss function is $J(w_0, w_1, w_2, ..., w_n) = \sum_{k=1}^{m} (y(x_k) - y_k)^2$ Optimization is to find $(w_0, w_1, ..., w_n)$ that minimize J.

Vectorization

The fundamental problem of linear algebra is to solve a system of linear equations.

--- Gilbert Strang

$$\begin{pmatrix} 1 & x_{1,1} & x_{1,2} & \cdots & x_{1,n} \\ 1 & x_{2,1} & x_{2,2} & \cdots & x_{2,n} \\ \vdots & & & & & \\ 1 & x_{k,1} & x_{k,2} & \cdots & x_{k,n} \\ \vdots & & & & & \\ 1 & x_{m,1} & x_{m,2} & \cdots & x_{m,n} \end{pmatrix} \cdot \begin{pmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} y(x_1) \\ y(x_2) \\ \vdots \\ y(x_k) \\ \vdots \\ y(x_m) \end{pmatrix}$$

Vectorization

The fundamental problem of linear algebra is to solve a system of linear equations.

— Gilbert Strang

Normal Equation

The fundamental problem of linear algebra is to solve a system of linear equations.

--- Gilbert Strang

$$X \cdot W = Y(X)$$

$$J(W) = sum((Y(x) - Y) \odot^{2})$$

$$\nabla_{W} J(W) = X^{T} X W - X^{T} Y$$

$$min(J(W)) \Leftrightarrow W = (X^T X)^{-1} X^T Y$$

Intuition of Gradient Descent

Model: y(x) = wx + b, Loss: J(w, b)

Meaning of Derivative

Formula

```
Randomly choose w, b

While (\frac{\partial J}{\partial w}! = 0 \quad and \quad \frac{\partial J}{\partial b}! = 0) {
w - = \Delta w \frac{\partial J}{\partial w} \\ \Leftrightarrow \quad J(w, b) - = \Delta J
b - = \Delta b \frac{\partial J}{\partial b}
```

Let's see how this is done by wathcing a matlab program.

Generalization

Gradient Descent Formula

```
While (J(W) is decreasing) {
                                                                   w_0 - = \alpha \frac{\partial J}{\partial w_0}w_1 - = \alpha \frac{\partial J}{\partial w_1}
                                                                 \vdots
w_m - = \alpha \frac{\partial J}{\partial w_m}
```

Where α is called the *Learning Rate*

Learning Rate

Bad Learning Rate

When α is too large, J fail to converge, while when it's to small, J converge too slowly.

Learning Rate

When I do that usually it just gives a good learning rate for my problem ...

---- Andrew Ng

Choose Learning Rate

- \bigcirc Try a value of α that is definitely too small, say 0.0001
- \bigcirc Try a value of α that is definitely too large, say 1
- Try to increase your α with a 3-fold step, say { 0.0003, 0.001, 0.003, 0.01, 0.03, 0.01, 0.03, 0.1 ...}

Data Scaling

Overshoot of parameters

When $\frac{\partial J}{\partial w}$ and $\frac{\partial J}{\partial b}$ is too different ...

Comparison

Gradient Descent And Normal Equation

- Gradient Descent
 - Only need to know $\frac{\partial J}{\partial w}$ (more general)
 - Need to choose α and do data scaling
 - Accuracy depends on α
 - Compatible with big data
- Normal Equation
 - Need to do a lot analytic works
 - No need to choose α and do data scaling
 - Perfectly accurate
 - Slow with large dataset($O(n^3)$ to compute $(X^TX)^{-1}$)

Local Optimal

Let's observe it by watching a matlab program.

Paradox of Gradient Descent

Welcome to the world of Machine Learning

- Gradient Descent is likely to converge at local optimal(or saddle point) unless monotonicity is proven
- Proving a loss function has a global optimal is almost as difficult as to just find it
- It turns out for most problems analytic solution is impossible
- O But people use gradient descent anyway...

Tumor Diagnosis

Tumor Dataset

Tumor Diagnosis

Design Perceptron Loss Function

J is small when: 1.less error points, 2.split line gets closer to error points.

Loss Function

Formula

- O Split line defined by $w_1x_1 + w_2y_2 + b = 0$
- O Distance from point $(x_{i,1}, x_{i,2})$ to this line is $\frac{|w_1x_{i,1} + w_2x_{i,2} + b|}{\sqrt{w_1^2 + w_2^2}}$
- For M is the error points set

$$J(w_1, w_2, b) = \sum_{x_i \in M} \frac{|w_1 x_{i,1} + w_2 x_{i,2} + b|}{\sqrt{w_1^2 + w_2^2}}$$

Simplify Loss Function

Remove Absolute Mark

Predict 1 if
$$w_1x_{i,1} + w_2x_{i,2} + b > 0$$
, for $x_i \in M$
 $|w_1x_{i,1} + w_2x_{i,2} + b| \Leftrightarrow -y_i(w_1x_{i,1} + w_2x_{i,2} + b)$

Simplify Loss Function

Remove 2th Norm

- $\sqrt{w_1^2 + w_2^2}$ can be just consider as a part of the leaning rate
- \circ α of a perceptron will be noisy at the begining but finnaly converge
- ...which gives us a simplified loss function as:

$$J(w_1, w_2, b) = -\sum_{x_i \in M} y_i(w_1 x_{i,1} + w_2 x_{i,2} + b)$$

Simplified Loss Function

Formula

$$J(w_1, w_2, b) = -\sum_{x_i \in M} y_i(w_1 x_{i,1} + w_2 x_{i,2} + b)$$

$$\frac{\partial J}{\partial w_1} = -\sum_{x_i \in M} y_i x_{i,1}$$

$$\frac{\partial J}{\partial w_2} = -\sum_{x_i \in M} y_i x_{i,2}$$

$$\frac{\partial J}{\partial b} = -\sum_{x_i \in M} y_i$$

Formula

```
Randomly choose w_1, w_2, b

While (J(W) \ is \ decreasing) {
w_1 \ -= \alpha \frac{\partial J}{\partial w_1}
w_2 \ -= \alpha \frac{\partial J}{\partial w_2} \Leftrightarrow J(w_1, w_2, b) -= \Delta J
b \ -= \alpha \frac{\partial J}{\partial b}
```

Let's see how this is done by wathcing a matlab program.

Generalization

Given a set of input $T = \{x_1, x_2, x_3, ..., x_m\}$,

Where $x_k = \{x_{k,1}, x_{k,2}, ..., x_{k,n}\}$

And a set of output $Y = \{y_1, y_2, y_3, ..., y_m\}$

Where $y_k \in \{-1, 1\}$ The perceptron predicts a sign function $y(x_k)$, that is:

1, if
$$(w_0 + w_1 x_{k,1} + w_2 x_{k,2} + ... + w_3 x_{k,n}) > 0$$

$$0, \quad if \quad (w_0 + w_1 x_{k,1} + w_2 x_{k,2} + \ldots + w_3 x_{k,n}) = 0$$

$$-1, \quad if \quad (w_0 + w_1 x_{k,1} + w_2 x_{k,2} + \dots + w_3 x_{k,n}) < 0$$

The loss function is

$$J(w_0, w_1, w_2, ..., w_n) = -\sum_{x_i \in M} y_i y(x_i)$$

Optimization is to find $(w_0, w_1, ..., w_n)$ that minimize J.

42

Vectorization

$$XW = Y(X) \Leftrightarrow \begin{pmatrix} 1 & x_{1,1} & x_{1,2} & \cdots & x_{1,n} \\ 1 & x_{2,1} & x_{2,2} & \cdots & x_{2,n} \\ \vdots & & & & \\ 1 & x_{k,1} & x_{k,2} & \cdots & x_{k,n} \\ \vdots & & & & \\ 1 & x_{m,1} & x_{m,2} & \cdots & x_{m,n} \end{pmatrix} \cdot \begin{pmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} y(x_1) \\ y(x_2) \\ \vdots \\ y(x_k) \\ \vdots \\ y(x_m) \end{pmatrix}$$

$$\nabla_{w}J = \sum_{x_{i} \in M} \begin{pmatrix} w_{0} \\ w_{1} \\ \vdots \\ w_{n} \end{pmatrix} = \sum_{x_{i} \in M} \begin{pmatrix} y_{i} \\ y_{i}x_{i,1} \\ \vdots \\ y_{i}x_{i,n} \end{pmatrix} = M^{T}Y(M)|M \in X, sign(Y(x))! = Y$$

MNIST Data Set

MNIST Data

We will test on zeros and ones on it

Future Work

Future Works

- Logistic Regression and non-linear functions
- Simple Neural Network and Backpropagation
- Big Data set and Stochastic Gradient Descent
- Convolutional Network and Computer Vision
- Black magic, Witchcraft and Metaphysics

Acknowledgements

Thanks for listening

Thanks for the extra work done by: Eric Wang, Booker Zhao.