Compiling Tensor Expressions into Einsum

Julien Klaus, Mark Blacher, Joachim Giesen

Friedrich Schiller University Jena

Think about it!

How would you write the following expression in Python?

$$\min_{Z,B,C,D} \sqrt{\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} \left(A_{ijk} - \sum_{l=1}^{L} \sum_{m=1}^{M} \sum_{n=1}^{N} Z_{lmn} B_{li} C_{mj} D_{nk} \right)^{2}}$$

Compiling this Expression

✓ Parse Expression

sqrt(sum[i,j,k]((A[i,j,k]
-sum[n,m,1](Z[n,m,1]*B[n,i]
*C[m,j]*D[k,1]))^2))

✓ Transform Tree Representation (i,j,k);

combine multiplications and summations

✓ Generate Code

for different Python backends

Try it out

•

tec.pythonanywhere.com

 \mathbf{C}

github.com/julien-klaus/tec

Understanding Einsum Notation

Operation	Explicit expression	Einsum notation
Scalar times vector	s*a[j]	,j->j
Vector times vector	a[i]*b[i]	i,i->i
Vector outer product	a[i]*b[j]	i,j->ij
Matrix times vector	A[i,j]*b[j]	ij,j->i
Inner product	sum[i](a[i]*b[i])	i,i->
Batch matrix multiplication	sum[k](A[b,i,k]*B[b,k,j])	bik,bkj->bij
Marginalization (sum over axes)	sum[i,1,n,o](A[i,1,m,n,o])	ilmno->m
Mahalanobis distance	sum[i,j](a[i]*A[i,j]*b[j])	i,ij,j->

Acknowledgments

This work was supported by the Carl Zeiss Foundation within the project Interactive Inference (♣ inference.unijena.de) and from the Ministry for Economics, Sciences and Digital Society of Thuringia (TMWWDG), under the framework of the Landesprogramm ProDigital (DigLeben-5575/10-9).