MAT0122 ÁLGEBRA LINEAR I FOLHA DE SOLUÇÃO

Nome: Gabriel Haruo Hanai Takeuchi Número USP: 13671636

Assinatura

Gabriel Haruo Hanai Takeuchi

Sua assinatura atesta a autenticidade e originalidade de seu trabalho e que você se compromete a seguir o código de ética da USP em suas atividades acadêmicas, incluindo esta atividade.

Exercício: E19 (3.8.10 de PNK) Data: 13/09/22

SOLUÇÃO

¹ For \mathcal{V} to be a vector space, it must satisfy three properties:

- (1) \mathcal{V} must contain the zero vector.
- (2) For every vector v, if \mathcal{V} contains v then it contains αv for every scalar α and is closed under scalar-vector multiplication
- (3) For every pair u and v of vectors, if V contains u and v then it contains u + v

1

 \mathcal{V} satisfies property (1). By hypothesis, every vector of \mathcal{V} has an even number of 1's, and 0 is even by definition. Therefore, \mathcal{V} contains the zero vector [0,0,0,0,0].

 \mathcal{V} satisfies property (2). Suppose a vector $v \in \mathcal{V}$. There are two scalars regarding GF2: 0 and 1. 0v returns the zero vector, included in \mathcal{V} as said previously. 1v returns itself, obviously included in \mathcal{V} .

 \mathcal{V} satisfies property (3). The argument will be divided in cases:

- If u is the zero vector and v is not, then u + v = v, contained in \mathcal{V} .
- If u = v, then u + v equals the zero vector, contained in \mathcal{V} .
- If $u \neq v$:
 - If u, v are 2-1's vectors, then:
 - * 2 1's overlap (example: 11000, 01100), then u + v has 2 1's.
 - * 0 1's overlap (example: 11000, 00011), then u + v has 4 1's.
 - If u, v are 4-1's vectors, then at least 3 1's overlap (example: 11110,01111). Considering the other 2 1's, they are in the form of 01, 10, so u + v must have 3 0's and 2 1's
 - If u is a 2-1's vector and v is a 4-1's vector, then:
 - * 2 1's overlap (example: 11110, 11000), then u + v has 2 1's.
 - * 1 1 overlap (example: 11110,00011), then u + v has 4 1's.

¹This portion of text was extracted from the definition of vector space in PNK.

Either way, u+v will have an even number of 1's. Therefore, $\mathcal V$ is a vector space.

2.

 \mathcal{V} is not a vector space. By hypothesis, if every vector of \mathcal{V} has an odd number of 1's, every vector must have at least a 1. Therefore, \mathcal{V} does **not** have a zero vector and does not satisfy property (1).