Lax Module Functors, Reconstruction, and Hopf Algebras

Tony Zorman
TU Dresden

Based on joint work with

Mateusz Stroiński

Our investigation starts with Kelly's classic notion of **doctrinal adjunctions**:

For monoidal categories \mathscr{C} and \mathfrak{D} , and an adjunction $F \colon \mathscr{C} \rightleftarrows \mathfrak{D} \colon U$, there is a bijection between oplax monoidal structures on F and lax monoidal structures on U.

This result provides a kind of **Tannaka reconstruction** for bimonads, as given by Moerdijk.

There is a bijective correspondence between opmonoidal structures of a monad T on a monoidal category \mathscr{C} , and monoidal structures on \mathscr{C}^T such that the forgetful functor is strong monoidal.

This correspondence lifts to the setting of **oplax** \mathscr{C} -module monads: monads T on \mathscr{M} , for a (left) \mathscr{C} -module category \mathscr{M} , that are equipped with a natural **action** morphism, resembling that of an opmonoidal comultiplication:

$$T_{\mathsf{a}} \colon T(- \triangleright =) \implies - \triangleright T(=).$$

Theorem (Halbig-Z)

There is a bijective correspondence between oplax \mathscr{C} -module structures of a monad T on \mathscr{M} , and \mathscr{C} -module structures on \mathscr{M}^T such that the forgetful functor U^T is a strict \mathscr{C} -module functor.

In contrast to these results stands **Deligne** reconstruction, where one does not require a forgetful functor—at the cost of only recovering the algebraic object of interest up to **Morita equivalence**.

Furthermore, the monads we consider are naturally **lax** module functors. In that case, one obtains a \mathscr{C} -module structure on the **Kleisli category** \mathscr{M}_T of T. Under mild additional assumptions, this induces a unique \mathscr{C} -module structure on \mathscr{M}^T .

Proposition (Stroiński–Z)

Given a left \mathscr{C} -module structure on \mathcal{M}_T , there is, up to isomorphism at most one left \mathscr{C} -module structure on \mathcal{M}_T , such that the canonical inclusion $\iota \colon \mathcal{M}_T \longrightarrow \mathcal{M}^T$ is a strong \mathscr{C} -module functor.

Let us now concentrate on the representation theoretic case. For a field k, suppose that $\mathscr C$ is a k-linear abelian monoidal category, and that $\mathscr M$ is a k-linear abelian left $\mathscr C$ -module category.

Deligne reconstruction works for nice module categories over nice abelian bases

An important ingredient in our study of the module structure of \mathcal{M}^T are **internal** projective objects: objects $X \in \mathcal{M}$ such that acting with any projective in \mathscr{C} is a projective in \mathcal{M} . If X is **closed**—the adjunction

$$- \triangleright X : \mathscr{C} \rightleftharpoons \mathscr{M} : |X, -|$$

exists—this guarantees the right adjoint to be an exact functor.

If X satisfies the additional condition of being a \mathscr{C} -generator, then $\lfloor X, - \rfloor$ even reflects zero objects; in particular, all of the preconditions of **Beck's monadicity theorem** for abelian categories hold:

An adjunction between abelian categories is monadic if and only if the right adjoint is right exact and reflects zero objects.

Naturally, one could instead talk about internal **injective** objects and **%**-cogenerators. This involves studying the adjunction

$$[X,-]: \mathcal{M} \rightleftarrows \mathscr{C} : - \triangleright X.$$

Putting all of these pieces together, we obtain a Deligne-type reconstruction result.

| Theorem (Stroiński–Z)

If \mathscr{C} has enough projectives, then all \mathscr{C} -module categories with enough projectives that have a closed \mathscr{C} -projective \mathscr{C} -generator are of the form $\mathscr{C}^{\lfloor X, - \triangleright X \rfloor}$.

This theorem in particular does not need a rigidity assumption. If this is added, the statement reduces from the monadic to the algebraic case.

If $\mathscr C$ has enough projectives and is rigid, then for all $\mathscr C$ -module categories $\mathscr M$ with enough projectives that have a closed $\mathscr C$ -projective $\mathscr C$ -generator, there exists an algebra object $A \in \mathscr C$ with $\operatorname{mod}_{\mathscr C}(A) \simeq \mathscr M$.

A category having enough injectives may instead be replaced by considering its **ind-completion**. Hopf algebraically, this yields a variant of a result by Ostrik.

Corollary (Stroiński–Z)

Every finite abelian $^H(\text{vect}_{\mathbb{k}})$ -module category \mathcal{M} , with $-\triangleright M$ exact for all $M \in \mathcal{M}$, is equivalent to $\text{comod}_{H_{(\text{vect}_{\mathbb{k}})}}(C)$, for an H-comodule algebra C.

We also obtain a version of the fundamental theorem of Hopf modules for the case of **Hopf trimodules**. The statement is akin to the quasi-bialgebraic case, as proven by Hausser–Nill and Saracco.

Proposition (Stroiński–Z)

A bialgebra *B* admits a twisted antipode if and only if the natural arrow

$$B \otimes -: {}^{B}(\mathsf{Vect}_{\mathbb{k}}) \longrightarrow {}^{B}_{B}(\mathsf{Vect}_{\mathbb{k}})^{B}$$

is an equivalence.

Lastly, the **fusion operators** of a bimonad in the sense of Bruguières–Lack–Virelizier also fit into this framework—they can be seen as coherence morphisms for a natural module action.

Proposition (Stroiński–Z)

Let $F: \mathscr{C} \rightleftarrows \mathfrak{D}: U$ be an opmonoidal adjunction. The bimonad $T \stackrel{\text{def}}{=} UF$ on \mathscr{C} is Hopf if and only if the coherence cells for the natural oplax \mathscr{C}^T -module monad structure on T are isomorphisms.