

University of New South Wales

SCHOOL OF MATHEMATICS AND STATISTICS

Homework 4

Measure Theory

Author: Edward McDonald

Student Number: 3375335

Question 1

For this question, (X, \mathcal{A}, μ) is a measure space.

Lemma 1. The set

$$\{[a,\infty): a \in \mathbb{R}\}$$

generates $\mathcal{B}(\mathbb{R})$.

Proof. Since $[a,b) = [c,\infty)^c \cap [a,\infty)$, by the result of homework week 2, this set generates $\mathcal{B}(\mathbb{R})$.

Hence to prove that $f: X \to \mathbb{R}$ is Borel measurable, it is sufficient to show that $f^{-1}([a,\infty)) \in \mathcal{A}$ for all $a \in \mathbb{R}$.

Lemma 2. If $f, g: X \to \mathbb{R}$ are Borel measurable functions, then f + g is Borel measurable.

Proof. Let $a \in \mathbb{R}$. Then for every $r \in \mathbb{Q}$, we have $f(x) + g(x) \ge a$ if and only if $f(x) \ge r$ and $g(x) \ge a - r$. Hence,

$$(f+g)^{-1}([a,\infty)) = \bigcup_{r \in \mathbb{Q}} \{f^{-1}([r,\infty]) \cap g^{-1}([a-r,\infty))\}$$

Since f and g are Borel measurable, the right hand side is in \mathcal{A} . Hence f+g is Borel measurable. \Box

Lemma 3. The following functions on \mathbb{R} are Borel measurable:

- $s_1(x) = x^2$
- $s_2(x) = \alpha x$, for any $\alpha \in \mathbb{R}$
- $s_3(x) = x^{-1}$, is measurable on the subspace $\mathbb{R} \setminus \{0\}$.
- $s_4(x) = |x|$

Proof. Let $a \in \mathbb{R}$. If a < 0, then $s_1^{-1}([a, \infty)) = \mathbb{R}$ and otherwise $s_1^{-1}([a, \infty)) = (-\infty, -\sqrt{a}) \cup (\sqrt{a}, \infty)$. Hence s_1 is Borel.

For s_2 , the case $\alpha=0$ is trivial. Suppose $\alpha>0$. Then $s_2^{-1}([a,\infty))=[a/\alpha,\infty)$. Similarly, if $\alpha<0$, $s_2^{-1}([a,\infty))=(-\infty,a/\alpha)$. Hence s_2 is Borel for any α .

Now if a > 0, $s_3^{-1}([a, \infty)) = (0, 1/a)$ and if a = 0 $s_3^{-1}([a, \infty)) = (0, \infty)$.

If
$$a < 0$$
, $s_3^{-1}([a, \infty)) = (-\infty, 1/a) \cup (0, \infty)$.

Hence s_3 is Borel since the set (0, 1/a), $(0, \infty)$, $-\infty, 1/a$) and $(0, \infty)$ are Borel on the subspace $\mathbb{R} \setminus \{0\}$.

Now $s_4^{-1}([a,\infty)) = (-\infty, -a] \cup [a,\infty)$ for any $a \in \mathbb{R}$, and so s_4 is measurable. \square

Corollary 1. Let $f: X \to \mathbb{R}$ be measurable. The following functions on X are measurable:

- $f_1 = f^2$
- $f_2 = \alpha f$ for any $\alpha \in \mathbb{R}$.
- $f_3 = 1/f$, measurable on the subspace of X given by $X \setminus \{x : f(x) = 0\}$.
- $f_4 = |f|$.

Proof. We see that f_1 , f_2 and f_4 are measurable since $f_1 = s_1 \circ f$, $f_2 = s_2 \circ f$ and $f_4 = s_4 \circ f$ using s_1 , s_2 and s_4 from lemma 2.

For f_3 , note that $X \setminus \{x : f(x) = 0\} = f^{-1}(\mathbb{R} \setminus \{0\})$, and by definition subsets of $X \setminus \{x : f(x) = 0\}$ are measurable if they are the intersection with some element of A.

See that since $f_3 = s_3 \circ f$, it is measurable.

Lemma 4. If $f, g: X \to \mathbb{R}$ are measurable, then so is fg.

Proof. We may write $fg = \frac{1}{2}((f+g)^2 - f^2 - g^2)$. Hence fg may be written as a composition of measurable functions and is hence measurable.

Corollary 2. If f and g are measurable functions on X, then f/g is measurable on $X \setminus \{x : g(x) = 0\}$.

Proof. Since f is measurable on X, it is measurable on $X \setminus \{x : g(x) = 0\}$. Hence since 1/g is measurable on this set, their product is measurable.

Lemma 5. If $f, g: X \to \mathbb{R}$ are measurable, then so is $\max\{f, g\}$ and $\min\{f, g\}$.

Proof. We may write $\max\{f,g\} = \frac{1}{2}(f+g+|f-g|)$ and $\min\{f,g\} = \frac{1}{2}(f+g-|f-g|)$. Hence these are compositions of measurable functions and so measurable.

Lemma 6. If $f, g: X \to \mathbb{R}$ are measurable, then the sets $\{x: f(x) = g(x)\}$, $\{x: f(x) > g(x)\}$ and $\{x: f(x) \geq g(x)\}$ are measurable.

Proof. We may write these sets respectively as $(f-g)^{-1}(\{0\}), (f-g)^{-1}((0,\infty))$ and $(f-g)^{-1}([0,\infty))$. Hence since f-g is measurable, the result follows. \square

Lemma 7. If $\{f_n\}_{n=1}^{\infty}$ is a sequence of measurable functions on X, then so is $\inf_n f_n$.

Proof. Let $f=\inf_n f_n$ and $a\in\mathbb{R}$. Let $x\in f^{-1}([a,\infty))$. Then for all $n, f_n(x)\geq a,$ so $x\in f_n^{-1}([a,\infty))$. Hence,

$$f^{-1}([a,\infty))\subseteq\bigcap_{n=1}^\infty f_n^{-1}([a,\infty))$$

Similarly, if $f_n(x) \ge a$ for all n, then we must have $f(x) \ge a$. Hence,

$$f^{-1}((-\infty, a]) = \bigcap_{n=1}^{\infty} f_n^{-1}([a, \infty)).$$

Since each f_n is measurable, the right hand side is measurable. Hence f is measurable.

Corollary 3. If $\{f_n\}_{n=1}^{\infty}$ is a sequence of measurable real valued functions on X, then the following functions are measurable:

- $\sup_n f_n$
- $\limsup_{n} f_n$
- $\liminf_n f_n$

Proof. We may write $\sup_n f_n = -\inf_n -f_n$, hence it is measurable.

 $\limsup_n = \inf_n \sup_{k \ge n} f_k$ and $\liminf_n = \sup_n \inf_{k \ge n} f_n$. Hence these functions are measurable.

Question 2

For this question, we consider the measure space (X, \mathcal{A}, μ) and a bounded measurable measurable function $f: X \to [0, \infty)$.

Define $F : [0, \infty) \to [0, \infty]$ by $F(t) = \mu(\{x : f(x) > t\})$.

Lemma 8. F is a decreasing function and F vanishes outside some bounded interval.

Proof. It is clear that F is a decreasing function, since if s > t,

$${x : f(x) > s} \subseteq {x : f(x) > t}.$$

Hence $\mu\{x : f(x) > s\} \le \mu\{x : f(x) > t\}$, so $F(s) \le F(t)$.

Since f is bounded, there is some M such that f(x) < M for all x. Hence for x > M, $F(x) = \mu(\emptyset) = 0$. Thus the support of F is contained in [0, M].

Lemma 9. The limit $\lim_{t\to 0} F(t)$ is finite if and only if the support of f has finite measure.

Proof. We may write
$$\lim_{t\to 0} F(t) = \lim_{n\to\infty} \mu\{x: F(x) > 1/n\} = \mu(\bigcap_{n=1}^{\infty} \{x: F(x) > 1/n\}) = \mu(\{x: F(x) > 0\}).$$

Hence this limit is finite if and only if F is nonzero on a set of finite measure. \Box

Theorem 1. The indefinite Riemann integral,

$$\int_0^\infty F(t) \ dt$$

exists if f has support of finite measure.

Proof. Since F vanishes outside some interval [0, M], we have that

$$\lim_{N \to \infty} \int_0^N F(t) \ dt = \int_0^M F(t) \ dt.$$

Hence we need only consider the integrability of F on [0, M].

Since f has support of finite measure, and F is a decreasing function, we have that F is bounded.

Hence F is a bounded monotone function, so the Riemann integral exists. \square

Suppose f has support of finite measure and let F have support contained in [0, N]. Consider the partition of [0, N] given by $\mathcal{P}_n = \{0, 1/2^n, 2/2^n, \dots, N2^n/2^n\}$. Let L_n be the corresponding lower Riemann sum of F.

Lemma 10. L_n is given by the integral of a simple function bounded above by F, s_n given by

$$s_n = \sum_{k=0}^{2^n N - 1} \chi_{f^{-1}([k/2^n, (k+1)/2^n))}(k/2^n).$$

Proof. Since F is a decreasing function, the infimum of F on the interval $[k/2^n, (k+1)/2^n)$ is $F((k+1)/2^n)$. Hence,

$$L_n = \sum_{k=0}^{2^n N - 1} F((k+1)/2^n) \frac{1}{2^n}$$

Now we compute the integral of s_n ,

$$\int s_n d\mu = \sum_{k=0}^{2^n N - 1} \mu(f^{-1}(\lfloor k/2^n, (k+1)/2^n)) \frac{k}{2^n}$$

$$= \sum_{k=0}^{2^n N - 1} [F(k/2^n) - F((k+1)/2^n)] \frac{k}{2^n}$$

$$= \sum_{k=0}^{2^n N - 1} \sum_{j=1}^k \frac{1}{2^n} [F(k/2^n) - F((k+1)/2^n)]$$

$$= \sum_{j=0}^{2^n N - 1} \sum_{k=j}^{2^n N - 1} \frac{1}{2^n} [F(k/2^n) - F((k+1)/2^n)]$$

$$= \sum_{j=0}^{2^n N - 1} \frac{1}{2^n} [F(j/2^n) - F(N+1)]$$

$$= \sum_{j=1}^{2^n N - 1} \frac{1}{2^n} F(j/2^n)$$

$$= L_n.$$

Lemma 11. The simple functions s_n in the above lemma form a monotonic increasing sequence and converge pointwisely to f.

Proof. Fix $x \in X$ and $n \ge 1$. Then $x \in f^{-1}([k/2^n, (k+1)/2^n))$ for some $0 \le k \le 2^n N$, since f is bounded above by n.

Then $s_n(x) = k/2^n$.

And
$$x \in f^{-1}([2k/2^{n+1},(2k+1)/2^{n+1})) \cup f^{-1}([(2k+1)/2^{n+1},(2k+2)/2^{n+2}))$$
, so $s_{n+1}(x) = k/2^n$ or $s_n(x) = k/2^n + 1/2^n$.

Hence $s_{n+1}(x) \ge s_n(x)$, and so the simple functions s_n form a non-decreasing sequence.

Now
$$|f(x) - s_n(x)| \le 1/2^n$$
, so s_n converges pointwisely to f .

Theorem 2.

$$\int f \ d\mu = \int_0^\infty F(t) \ dt.$$

Proof. Since the simple functions s_n are a non-decreasing sequence that converges pointwisely to f, we have by the Beppo-Levi theorem that

$$\int f \ d\mu = \lim_{n \to \infty} \int s_n \ d\mu = \lim_{n \to \infty} L_n = \int_0^\infty F(t) \ dt.$$

Question 3

Again in this question (X, \mathcal{A}, μ) is a measure space and $f: X \to [0, \infty]$ is a measurable function, with

$$\int f \ d\mu < \infty.$$

Theorem 3.

$$\lim_{n \to \infty} n\mu(\{x : f(x) > n\}) = 0.$$

Proof. We assume that f takes only finite values. This does not change the result since f is integrable, so it can only take the value ∞ on a set of measure zero. Since the value of f on a set of measure zero does not change the integral of f or the value of $\mu(\{x: f(x) > n\})$ for any n, we are free to assume that $f < \infty$.

Let $A_n = f^{-1}([0, n])$, and

$$f_n = f\chi_{A_n} + n\chi_{A_n^c}$$
$$g_n = f\chi_{A_n}$$

Then by definition $f_n \leq f$.

Since by assumption $f < \infty$ everywhere, we have

$$\bigcup_{n=1}^{\infty} A_n = X.$$

Hence the sequences f_n and g_n converges pointwisely to f. So by the Beppo-Levi theorem,

Edward McDonald

$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu = \lim_{n \to \infty} \int g_n d\mu + \lim_{n \to \infty} \int n\chi_{A_n^c} d\mu$$
$$= \int f d\mu + \lim_{n \to \infty} n\mu(\{x : f(x) > n\}).$$

Since by assumption $\int f \ d\mu < \infty$, we conclude the required result.