

SRM Institute of Science and Technology College of Engineering and Technology Department of Mechanical Engineering

Academic Year: 2022-23 Even Semester: VI Mark: 50

Subject Code: 18MEO113T Title: Design of Experiments

Duration: 90 min Type of Test: CLA III

Q.							
N	Part A Question						
o							
	A factor with a range of settings, that is controlled by the user during use is						
	called as –						
4	a) random factor						
1	b) robust factor						
	c) nominal factor						
	d) signal factor						
	In CCD, Experiments +- alpha on the variable axes is used to estimate						
2	a) Main effect b) Interaction effect						
	c) Experimental error d) Quadratic terms						
	The features of Box-Behnken design						
3	a) -5 Levels b) -No Corner points						
	c) +Corner points d) -more tests						
	Box-Behnken designs usually have design points than central composite						
4	design, thus, they are less expensive.						
	a) Less b) More c) Equal d) Not sufficient						
	In Central Composite Design, for spherical CCD the choice of $\alpha =?$						
5	a) (k) ^{1/2} b) 1 c) 0.5 d) $(n_f)^{1/4}$						
	2, (,						
	What is the appropriate statistical test for a factorial decise.						
	What is the appropriate statistical test for a factorial design?						
_	a) ANOVA						
6	b) t-test						
	c) the Modes test						
	d) chi-square						

	When conducting an ANOVA, FDATA will always be within what range?							
	a) Between negative infinity and infinity							
7	b) Between 0 to 1							
	c) Between 0 to infinity							
	d) Between 1 to infinity							
	An analysis of variance comparing three treatment conditions produces df total							
8	= 24. For this ANOVA, what is the value of df Within?							
	a) 2 b) 21 c) 3 <mark>d) 22</mark>							
	What is the primary purpose of ANOVA?							
	a) To compare means of two or more groups							
9	b) To test for a normal distribution							
	c) To evaluate the overall significance of a regression model							
	d) To determine the correlation between two variables							
10	In two-way ANOVA with a=5, b=4, then the total degrees of freedom is							
10	a) 20 b) 21 c) 19 d) 18							
	Dort P. Ougotion							
	Part B Question							
	Answer any TWO (Unit 4)							
	Differentiate first-order and second-order model with graph.							
	• First-order model (Linear function of MEs) $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \epsilon$							
	(Linear function of MEs)							
	(Linear function of MEs) • Second-order model (When there is curvature in the system) $y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$							
11	(Linear function of MEs) • Second-order model (When there is curvature in the system) $y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $2^{\text{nd}} \text{ order model}$							
11	(Linear function of MEs) • Second-order model (When there is curvature in the system) $y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $2^{\text{nd}} \text{ order model}$							
11	(Linear function of MEs) • Second-order model (When there is curvature in the system) $y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $2^{\text{nd}} \text{ order model}$							
11	(Linear function of MEs) • Second-order model (When there is curvature in the system) $y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $2^{\text{nd}} \text{ order model}$ $y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $2^{\text{nd}} \text{ order model}$ $y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $2^{\text{nd}} \text{ order model}$ $y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$							
11	(Linear function of MEs) • Second-order model (When there is curvature in the system) $y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $2^{\text{nd}} \text{ order model}$ $y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $2^{\text{nd}} \text{ order model}$ $y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i < j} \beta_{ij} x_i x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i < j} \beta_{ij} x_i x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i < j} \beta_{ij} x_i x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i < j} \beta_{ij} x_i x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i < j} \beta_{ij} x_i x_i + \sum$							
11	(Linear function of MEs) • Second-order model (When there is curvature in the system) $y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $2^{\text{nd}} \text{ order model}$ $y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $2^{\text{nd}} \text{ order model}$ $y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i x_i + \sum_{i < j} \beta_{ij} x_i x_j + \epsilon$ $y = \beta_0 + \sum_{i=1}^k \beta_{ii} x_i + \sum_{i < j} \beta_{ij} x_i + \sum_{i < $							

13

14

Let the fitted first-order model is

$$\hat{\mathbf{y}} = \hat{\boldsymbol{\beta}}_0 + \sum_{i=1}^k \hat{\boldsymbol{\beta}}_i x_i$$

- Path of steepest ascent:
 The line through the center of the region of interest and normal to the fitted surface
- · The steps along the path are proportional to the regression coefficients.
- The actual step size is determined by the experimenter based on process knowledge or other practical considerations.
- Experiments are conducted along the path of steepest ascent until no further increase in response is observed.

Write three parts in central composite designs.

Three parts:

1.

Factorial or reduced factorial design

Estimate of main effects and interactions

2.

At least one center point experiment

Possible to reveal curvature and estimate the experimental error

3.

Experiments $\pm \alpha$ on the variable axes

Possible to estimate quadratic terms

$$\alpha = \sqrt[4]{N_{FD}}$$

Answer any TWO (Unit 5)

Write the ANOVA techniques.

ANOVA Technique

- Obtain the mean of each sample
- Work out the mean of the sample means
- Obtain variance or mean square (MS) between samples
- Calculate sum of squares for variance within samples (or SS within)

Calculate sum of squares for variance between the samples (or SS between)

- Obtain the variance or mean square (MS) within samples
- Find sum of squares of deviation for total variance
- Finally, find F-ratio.

	Differentiate two way ANOVA with replication and without replication with
	an example
	Two way ANOVA without replication
	– We are testing one set of individual before and after they take a
15	medication to see if it works or not.
	Two way ANOVA with replication
	 Two groups, and the members of those groups are doing more than one thing.
	- For example, two groups of patients from different hospitals trying two
	different therapies.
	Briefly discuss various types of ANOVA.
	ANOVA is two types:
	 One Way ANOVA: Only one factor is investigated
	One independent variable (With 2 levels)
4.0	Analysis of Variance could have one independent variable
16	 Two Way ANOVA: Investigate two factors at the same time
	Two independent variables (can have multiple levels)
	Analysis of Variance could have two independent variables
	 Two way ANOVA without replication
	 Two way ANOVA with replication
	Part C (Unit 4)
17	Explain briefly about the central composite designs (CCD) with necessary
	diagram.

Central Composite designs (CCD)

- A central composite design is the most commonly used response surface designed experiment. Central composite designs are a factorial or fractional factorial design with center points, augmented with a group of axial points (also called star points) that let you estimate curvature. You can use a central composite design to:
 - Efficiently estimate first- and second-order terms.
 - Model a response variable with curvature by adding center and axial points to a previouslydone factorial design.
- Central composite designs are especially useful in sequential experiments because you can often build on previous factorial experiments by adding axial and center points.

Central Composite Design (CCD) has three different design points: edge points as in two- level designs (± 1), star points at $\pm \alpha$; I α 1 \geq I Ithat take care of quadratic effects and centre points,

Three variants exist:

- 1. Circumscribed (CCC)
- 2. Face centered (CCF)
- 3. Inscribed (CCI)

Design for fitting the second-order model

- Central composite design or CCD
- · Box-Behnken Design

. CCI design for two factors

- CCD consists of a 2^k factorial (or 2^{k-p} with resolution V) with n_F factorial runs, 2k axial or star runs, and n_C center runs
- Choice of α
 - Spherical CCD: $\alpha = (k)^{1/2}$
 - Rotatable CCD: α = (n_F)^{1/4}
 - Face-centered CCD: α = 1

CCD for k=3

CCD (Contd.)

- Rotatability: An experimental design is said to be rotatable if the variance of the predicted response at any point is a function of the distance from the centre point alone
- The variance of the predicted response at some point x is $V[\hat{y}(x)] = \sigma^2 x'(X'X)^{-1}x$
- This variance is the same at all points x that are at the same distance from the design centre

OR

The table below shows the height, x, in inches and the pulse rate, y, per minute, for 6 people. Find the correlation coefficient and interpret your result.

18

Х	5	7	4	15	12	9
У	8	9	12	26	16	13

Kindly refer **SET C** answer key

Part C (Unit 5)

An education researcher is comparing four different algebra curricula. Eighth grade students are randomly assigned to one of the four groups. Their state achievement test scores are compared at the end of the year. Use the appropriate statistical procedure to determine whether the curricula differ with respect to math achievement. An alpha criterion of .05 should be used for the test. F_{critical} (3,196)=2.65

19

Γ	\mathbf{n}	mean	\mathbf{sd}
curriculum 1	50	170.5	14.5
curriculum 2	50	168.3	12.8
curriculum 3	50	167.6	17.7
curriculum 4	50	172.8	16.8

Solution

 $Var_1 = 14.5^2 = 210.25$

 $Var_2 = 12.8^2 = 163.84$

 $Var_{3}=17.7^{2}=313.29\,$

 $Var_3 = 16.8^2 = 282.24$

 $MS_{error} = \frac{210.25 + 163.84 + 313.29}{4} = 242.41$ Note: this is just the average within-group variance; it is not sensitive to group mean differences!

Calculating the remaining error (or within) terms for the ANOVA table:

$$df_{error} = 200-4 = 196\,$$

$$SS_{error} = (242.41)(200 - 4) = 47511.38$$

Intermediate steps in calculating the variance of the sample means:

Grand mean
$$(\bar{x}_{grand})$$
 = $\frac{170.5+168.3+167.6}{3}$ = 169.8

Sum of squares $(SS_{means})=16.58$

$$Var_{means}=rac{16.58}{4-1}=5.53$$

 $MS_{between}=(5.53)(50)=276.33$ Note: This method of estimating the variance IS sensitive to group mean differences!

Calculating the remaining between (or group) terms of the ANOVA table:

$$df_{groups}=4-1=3$$

$$SS_{group} = (276.33)(4-1) = 829$$

Test statistic and critical value

$$F = rac{276.33}{242.41} = 1.14$$

$$F_{critical}(3,196)=2.65$$

Decision: fail to reject H0

ANOVA table

source	SS	df	MS	F
group	829	3	276.33	1.14
error	47511.38	196	242.41	
total	48340.38			

OR

Solve using Two-way ANOVA method

20

Obser vation	Α	В	С	D	E	F
1	1200	1000	980	900	750	800
2	1000	1100	700	800	500	700
3	890	650	1100	900	400	350

Solution:

Given problem

Observation	A	В	C	D	E	F
1	1200	1000	980	900	750	800
2	1000	1100	700	800	500	700
3	890	650	1100	900	400	350

	A	В	C	D	E	F	Row total (x_r)
1	1200	1000	980	900	750	800	5630
2	1000	1100	700	800	500	700	4800
3	890	650	1100	900	400	350	4290
Col total (x_c)	3090	2750	2780	2600	1650	1850	14720

$$\sum x^2 = 13010000 \to (A)$$

$$\frac{\sum x_c^2}{r} = \frac{1}{3} \left(3090^2 + 2750^2 + 2780^2 + 2600^2 + 1650^2 + 1850^2 \right)$$

$$= \frac{1}{3}(9548100 + 7562500 + 7728400 + 6760000 + 2722500 + 3422500)$$

$$= \frac{1}{3}(37744000)$$

$$= 12581333.3333 \rightarrow (B)$$

$$\frac{\sum x_r^2}{c} = \frac{1}{6} \left(5630^2 + 4800^2 + 4290^2 \right)$$

$$= \frac{1}{6}(31696900 + 23040000 + 18404100)$$

$$= \frac{1}{6}(73141000)$$

$$= 12190166.6667 \rightarrow (C)$$

$$\frac{(\sum x)^2}{n} = \frac{(14720)^2}{18}$$

$$= \frac{216678400}{18}$$

$$= 12037688.8889 \rightarrow (D)$$

Sum of squares total

$$SS_T = \sum x^2 - \frac{(\sum x)^2}{n} = (A) - (D)$$

= 13010000 - 12037688.8889

= 972311.1111

Sum of squares between rows

$$SS_R = \frac{\sum x_r^2}{c} - \frac{(\sum x)^2}{n} = (C) - (D)$$

= 12190166.6667 - 12037688.8889

= 152477.7778

Sum of squares between columns

$$SS_C = \frac{\sum x_c^2}{r} - \frac{(\sum x)^2}{n} = (B) - (D)$$

= 12581333.3333 - 12037688.8889

= 543644.4444

Sum of squares Error (residual)

$$SS_E = SS_T - SS_R - SS_C$$

= 972311.1111 - 152477.7778 - 543644.4444

= 276188.8889

Source of Variation	Sums of Squares SS	Degrees of freedom DF	Mean Squares MS	F
Between rows	$SS_R = 152477.7778$	r - 1 = 2	$MS_R = \frac{152477.7778}{2} = 76238.8889$	$\frac{76238.8889}{27618.8889} = 2.7604$
Between columns	SS _C = 543644.4444	c - 1 = 5	$MS_C = \frac{543644.4444}{5} = 108728.8889$	$\frac{108728.8889}{27618.8889} = 3.936$
Error (residual)	SS _E = 276188.8889	(r-1)(c-1) = 10	$MS_E = \frac{276188.8889}{10} = 27618.8889$	
Total	SS _T = 972311.1111	rc - 1 = 17		