Student of Games: A unified learning algorithm for both perfect and imperfect information games

- Date: 2023-11-15
- Link
- Authors:
 - Schmid, Martin
 - Moravcik, Matej
 - Burch, Neil
 - Kadlec, Rudolf
 - Davidson, Josh
 - Waugh, Kevin
 - Bard, Nolan
 - Timbers, Finbarr
 - Lanctot, Marc
 - Holland, Zacharias
 - Davoodi, Elnaz
 - Christianson, Alden
 - Bowling, Michael
- Cites:
- Cited by:
- Keywords:
- Collections: #related-to-poker
- Status: #in-progress

0. - Abstract

- Two types of problems with two variants of solutions:
 - Perfect information games search and learning.
 - Imperfect information (poker variants) game-theoretic reasoning and learning.
- Student of Games (SoG) general-purpose algorithm that unifies previous approaches, combining guided search, self-play learning, and game-theoretic reasoning.
 - Shown to produce strong empirical results across perfect and imperfect info games.

1. - Introduction

- For much of Al history, the focus has been to develop algorithms that work for a specific game.
 - Eg. DeepBlue can play chess but not checkers.
- Some efforts have been made for general perfect information game algorithms.
 - Eg. DeepZero can play Go and Chess.
- No unification effort has been made for imperfect information games, and, hereto, no connection has been drawn between perfect and imperfect game solving algorithms.
- SoG uses the following tools to unify perfect and imperfect information game algorithms:
 - Growing-tree counterfactual regret minimization (GT-CFR) anytime local search that builds subgames nonuniformly, expanding the tree toward the most relevant future states while iteratively refining values and policies.
 - Sound self-play learning procedure that trains value-and-policy networks using both game outcomes and recursive sub-searches applied to situations that arose in previous searches.

1.1 - Background and terminology

- This paper uses the Factored-Observation Stochastic Games (FOSG) formalism.
- Definitions:
 - States $w \in \mathcal{W}$, let w^{init} be the starting state.
 - Actions $a \in \mathcal{A}$, actions transition one state to the next, until a terminal state is reached.
 - Let $\mathcal{A}(w) \subseteq \mathcal{A}$ be the set of valid actions at state w.
 - Decision node player, $\mathcal{P}(w)$ makes an action.
 - History $h \in \mathcal{H}$, sequence of states and actions.
 - $h' \sqsubseteq h$ be a prefix history (subsequence).

- Terminal history $z \subset H$, a history that ends in a terminal state, each player receives a utility $u_i(z)$.
- Information state $s_i \in S_i$, set of histories that are indistinguishable to player i.
- Policy $\pi_i : S_i \to \Delta(A)$, policy for player i at info state S_i is a probability distribution over available actions.
- Observations every time a player takes an action a in the state w changing the game state to w', they receive a public, $\mathcal{O}_{\text{pub}}(w, a, w')$, and private observation, $\mathcal{O}_{\text{priv}(i)}(w, a, w')$.
 - In perfect information games:
 - $ullet \ \mathcal{O}_{\mathrm{priv}(i)}(w,a,w') = \mathcal{O}_{\mathrm{pub}}(w,a,w').$
 - Game dynamics only depend on player actions, $\mathcal{T}(w,a) = \mathcal{T}[w,a_{\mathcal{P}(w)}].$
 - In imperfect information games:
 - Information asymmetry players receive information that their opponent's are not privy to.
- Public state $s_{\mathrm{pub}}(h) \in \mathcal{S}_{\mathrm{pub}}$, sequence of public observations encountered along the history h.
 - Eg. in poker, all bets and antes plus all cards dealt on the board.
 - Let $\mathcal{S}_i(s_{\mathrm{pub}})$ be the set of possible info states for player i given the public state s_{pub} .
 - i.e. same public states but different private observations.
 - e.g. we face the same bet sequence and flop cards, but with different hole cards.
- Public belief state $\beta = (s_{\text{pub}}, r)$ where $r \in \Delta[S_1(s_{\text{pub}})] \times \Delta[S_2(s_{\text{pub}})]$ is the range which defines a pair of distributions over possible info states for both players.
 - · Player's level of belief in which state they are in.
 - E.g. if their opponent goes all in, then they should believe they're more likely to be in a state in which their opponent has a stronger hand than a weaker one.
- Policy profile $\pi(\pi_1, \pi_2)$, pair of player policies.
- Expected utility $u_i(\pi_1, \pi_2)$.
- Best response π_i^b , any policy that maximizes the expected utility against the opponent's policy, π_{-i} .
 - $ullet \pi_i^b \in \{\pi_i | u(\pi_i, \pi_{-i}) = \max_{\pi_i'} u_i(\pi_i', \pi_{-i}) \}$
- Nash equilibrium if π_1 is a best response to π_2 and vice versa.
 - For two-player zero-sum games, NEs maximize the players' worst case utility guarantees.
- Approximate equilibrium $u_i(\pi_i^b,\pi_{-i})-u_i(\pi_i,\pi_{-i})\leq \epsilon$ for all players i.
- Strategy exploitability how much, on average, a player will lose against a best response opponent, relative to if they would've played the NE strategy.
 - ullet Exploitability $(\pi) = [\max_{\pi, \prime} u_1(\pi_{1^\prime}, \pi_2) + \max_{\pi_{2^\prime}} u_2(\pi_1, \pi_{2^\prime})]/2$

1.2 - Tree search and machine learning

- Minimax perfect information two-player zero-sum game algorithm:
 - ullet Depth-limited search is performed at the current world state $w_{\mathcal{D}}.$
 - A heuristic evaluation function is used to estimate the value of states beyond the depth limit, $h(w_{t+d})$.
 - These values are then backed-up using game-theoretic reasoning.
- Minimax provided Al's first major milestones.
 - e.g. IBM's super-human DeepBlue chess program.
- Monte Carlo tree search (MCTS) evolution of minimax algorithm for more complex games by building game trees via simulations:
 - Starts with an empty tree rooted at w_t .
 - Expands the tree by adding simulated trajectories.
 - Estimates values from rollouts to the end of the game.
- MCTS allowed for substantially stronger play in Go and other games; however, heuristics and domain knowledge were still required.
- AlphaGo replaced heuristics and domain knowledge with value functions, approximated by deep neural networks, and policies learned via human export data and improved via self-play.
- AlphaGo achieved super-human level play in Go.
- AlphaGo Zero (AlphaZero)- removed the need for initial training from human expert play and any Go-specific features which allowed it to also achieve SotA
 performance in Shogi and chess as well.
- SoG combines search and learning from self-play using minimal domain knowledge and uses counterfactual regret minimization for sound reasoning in imperfect information games.

1.3 - Game-theoretic reasoning and counterfactual regret minimization

- Game theoretic reasoning players must choose their strategy so as to not reveal their hidden information.
 - E.g. a poker player should not play so predictably that their opponent can guess their cards.
 - E.g. you should not always choose rock in row-sham-bow.

- Game theoretic reasoning arises out of player's computing approximate minimax-optimal strategies.
- Counterfactual regret minimization (CFR) iterative, self-play algorithm for computing approximately optimal strategies:
 - Produces policy iterates, $\pi_i^t(s,\cdot) \in \Delta(\mathcal{A})$ for each player i for each info state s such that the player's long-term average regret is minimized.
 - Average policy over all T iterations, $\bar{\pi}^T$ converges to ϵ -NE at a rate of $O(1/\sqrt{T})$.
 - Counterfactual value $v_i^t(s, a)$, value of playing a in state s at time t for iteration i.
 - Counterfactual regret regret of playing a in state s at time t for iteration i: $r^t(s,a) = v^t_i(s,a) \sum_{a \in \mathcal{A}(s)} \pi^t(s,a) v^t_i(s,a)$
 - Cumulative regret $R^T(s,a) = \sum_{t=1}^T r^t(s,a)$
 - Regret matching policy update rule using cumulative regrets:

$$\pi^{t+1}(s,\cdot) = rac{[R^t(s,\cdot)]^+}{\sum_a [R^t(s,a)]^+}$$

- CFR+ modification to the cumulative regret formulation in CFR:
 - $ullet \ Q^t = [Q^{t-1}(s,a) + r^t(s,a)]^+$
 - ullet $\pi^{t+1}(s,a) = Q^t(s,a)/\sum_b Q^t(s,b)$
- Beliefs each player's probability of reaching each information state under their policy (called their range).
 - Necessary for CFR computation.

1.4 - Imperfect information search, decomposition, and re-solving

- Traditional CFR:
 - Used as a game-solving engine, computing entire policies via self-play.
 - Each iteration traverses the entire game tree, starting at the game root.
- Subgame decomposition process by which CFR is used to compute a policy starting at an arbitrary initial public state and ending at a give depth:
 - Computes a policy for a part of the game up to a depth d > 0.
 - Can start at any public state.
 - An oracle provides the counterfactual value each player would receive at depth $\it d.$
 - Paired with a belief distribution r over initial information states, $s \in \mathcal{S}_i(s_{\mathrm{sub}})$.
 - Note: for perfect information games, the probability distribution for both players is a singlet.
- Subgame decomposition:
 - Has been critical for recent Al advancements including HUNL.
 - Analogous to search in perfect information games and traditional Bellman-style bootstrapping.
- Counterfactual value network (CVN) encodes the value function:

$$v_{ heta}(eta) = \{v_i(s_i)\}_{s_i \in \mathcal{S}_i(s_{ ext{pub}}), i \in \{1,2\}}$$

where:

- eta are the player's beliefs over information states for the public info at $s_{
 m pub}$.
- θ are parameters for the network.
- CVN can be used in place of the oracle in subgame decomposition.
- Safe re-solving technique that generates subgame policies from summary information computed by a previous approximate solution.

Two bits of information needed:

- The player's range
- The opponent's counterfactual values.
- Safe re-solving exploitability guarantees:
 - Constructs an auxiliary subgame with specific constraints.
 - Subgame policies are generated in such a way to preserve exploitability guarantees.
 - This allows the computed subgame policies to be substituted for the original policies.
- Continual re-solving algorithm that performs safe re-solving at every decision point.
 - Analogous to classical game search but adapted to suit imperfect information games.

1.5 - Related Work

- SoG compared to AlphaGo:
 - Similarities:
 - Uses search and deep NN learning.
 - Differences:

- Search is sound for imperfect information games.
- SoG compared to DeepStack:
 - Similarities:
 - Uses search and deep NN learning.
 - · Uses game theoretic reasoning and imperfect info search.
 - Differences:
 - Uses less domain knowledge.
 - · Use of self-play rather than poker heuristics.
- SoG is similar to Recurrent Belief-based Learning but uses safe continual re-solving and sound self-play, regardless of the algorithm used in training.
- There have been many other attempts at search in imperfect information games.
 (See paper for more details).

1.6 - Descriptions of challenge domains

· See paper for details about Chess, Go, HUNL, and Scotland Yard.

2. - Results

2.1 - SoG: Algorithm summary

- · SoG trains an agent via sound self-play.
- To make a decision:
 - GT-CFR search with a CVPN is used to generate a policy for the current state.
 - An action is then sampled from this policy.
- CT-CFR search iteration:
 - Regret update phase runs public tree CFR updates on the current tree.
 - Expansion phase adds new public stats using simulation-based expansion trajectories.
- Search queries public belief states that were queried by the CVPN during the CT-CFR regret update phase.
- Data used for updated the value and policy networks during training:
 - Search queries.
 - Must be solved to compute counterfactual value targets for updating the value network.

 try
 - Full-game trajectories from self-play games.
 - Provide targets for updating the policy network.
- In practice, self-play and training happen in parallel:
 - Actors generate self-play data (solve queries).
 - Trainers learn new networks and periodically update the actors.

Sections 2.2. - 2.5

See paper for results graphs and tables.

3. - Discussion

- SoG overview:
 - Purpose unifying algorithm that combines search, learning, and game-theoretic reasoning.
 - Main components:
 - 1. GT-CFR
 - 2. Sound self-play using CVPNs.
 - Strong theoretical and empirical backing.

4. - Materials and Methods

4.1 - Counterfactual value-and-policy networks

- CVPN with parameters θ , represents a function, $f_{\theta}(\beta) = (\mathbf{v}, \mathbf{p}).$
 - Where:
 - $\, \bullet \, \, {\bf v}$ counterfactual values, one per information state per player.
 - p prior policies, one per information sate for the acting player.

4.2 - Search via GT-CFR

- Algorithm:
 - Initial tree \mathcal{L}^0 contains β and its child public states.
 - Each iteration t:
 - Regret update phase runs $\frac{1}{c}$ public tree CFR updates on the tree, \mathcal{L}^t .

- Expansion phase adds public states to \mathcal{L}^t using simulation-based expansion trajectories, producing \mathcal{L}^{t+1} . Where s is defined as the total expansion simulations.
- Simulation details:
 - Search statistics are maintained over information states, accumulated over all expansion phases.
 - Simulation is initialized by sampling:
 - An info state s_i from the given beliefs β_{root} .
 - A world state $w_{
 m root}$ and associated history $h_{
 m root}$ is sampled from s_i .
 - · Actions are selected according to a mixed policy:

$$\pi_{ ext{select}}[s_i(h)] = rac{1}{2}\pi_{ ext{PUCT}}[s_i(h)] + rac{1}{2}\pi_{ ext{CFR}}[s_i(h)]$$

where:

- π_{PUCT} takes into account learned values by using counterfactual values $v_i(s_i, a)$ normalized by the sum of the opponent's reach probability at s_i . (See PUCT paper for more info).
- π_{CFR} takes into account the currently active policy from search by averaging CFR's policy at $s_i(h)$.
- The simulation terminates once a public state outside the tree is encountered, $s_{
 m pub}
 otin \mathcal{L}.$
 - $s_{
 m pub}$ is added to the tree.
 - Visit counts are updated for nodes visited during the simulation.
- ullet Optionally, only the top k actions can be considered during simulation for a given decision.
 - This allows for speed-ups when we expect our optimal policy to be relatively deterministic, e.g. perfect information games.

4.3 - Modified continual re-solving

- Problem:
 - Prior implementations of re-solving have taken advantage of the fact that the current public state, s_{pub} , was included in the previous state's, s_{pub}^{prev} , search tree.
 - Recall that all we need to reconstruct the strategy are the current player's range and the opponent's strategy.
 - If our current state was not included in the search tree for the last state, then we do not have these values.
- Solution:
 - Start the re-solving process in the state closest to the current state that is included in the previous search tree.
 - Initialize the search tree with a single branch from this state to the current state.
 - Only grow the tree under the current state.
 - To compute the opponent's range we use a gadget that mixes the opponent's range from the previous search, $\alpha r + (1-a)r^{\mathrm{prev}}$.
 - In practice, $\alpha=0.5$ improves performance.

4.4 - Performance guarantees for continual re-solving

- See supplementary text for proofs of these theorems.
- Theorem 1 The regret at iteration T for player i is bounded by,

$$R_i^{T, \, ext{full}} \leq \sum_{t=1}^T |\mathcal{F}(\mathcal{L}^t)| \, \epsilon \, + \sum_{s_{ ext{pub}} \in \mathcal{N}(\mathcal{L}^T)} |\mathcal{S}_i(s_{ ext{pub}})| \, U \sqrt{AT}$$

where:

- $\mathcal{N}(\mathcal{L})$ interior of the tree, all non-leaf, non-terminal public states where GT-CFR generates a policy.
- $\mathcal{F}(\mathcal{L})$ frontier of the tree, all nonterminal leaves where GT-CFR uses ϵ -noisy estimates of counterfactual values.
- ${f \cdot}$ ${\it U}$ maximum difference in counterfactual value between any two strategies.
- ullet A maximum number of actions at any information state.
- This can be thought of as the gap in performance between GT-CFR iterations and the highest-value strategy.
- Theorem 2 The exploitability of the final strategy is bounded by,

$$(5D+2)igg(F\epsilon+NU\sqrt{A/T}igg)$$

where:

- *D* number of re-solving steps.
- *T* number of iterations of GT-CFR per re-solving step.
- *N* maximum interior size of the search tree.
- F maximum frontier size of the search tree.
- A maximum number of actions at any information state.

- *U* maximum difference in values between any two strategies.
- General properties of the exploitability of re-solving with GT-CFR:
 - ullet Exploitability decreases with more computation time, T.
 - Exploitability decreases with improved value function error, ϵ .
 - Exploitability only increases linearly with game length, *D*.
- Computational complexity of re-solving with GT-CFR:
 - In general with k children $O(kT^2)$ states visited and CVPN calls, per re-solving step.
 - For perfect information games O(T)

4.5 - Data generation via sound self-play

- SoG generates episodes of data that are then used to train the CVPN.
- Searches performed at different public states should be consistent with both the CVPN and with searches made at previous states.

4.6 - Training process

• See Figure 8 in the paper.

4.7 - Query collection

- Once the episodes are completed, the queries saved during search are used to train the CVPN.
- An FIFO buffer is used to train the CVPN asynchronously.
- See Figure 8 for more details.

4.8 - Computing training targets

- Policy targets are assembled from histories reached in self-play.
- Value targets are computed in two ways:
 - 1. The outcome of the game is used as a TD(1) value target for states along the main line of episodes.
 - 2. Via bootstrapping using GT-CFR on subgames rooted at input queries.
 - This can be thought of as a policy improvement operator.

4.9 - Recursive queries

- Recursive query A query that is generated by the solver itself while running GT-CFR on another query.
- Advantage produce more reasonable answers for the leaves in a search, not just those on the self-play lines.
- To ensure the buffer isn't over run by recursive queries, the probability of generating them is low, between 0.1 and 0.2 in practice.

4.10 - Consistency of training process

• Training converges to optimal values asymptotically as $T \to \infty$.