MOEA/D with DE and PSO: MOEA/D-DE+PSO

Wali Khan Mashwani

Abstract: Hybridization is one of the important research area in evolutionary multiobjective optimization (EMO). It is a method that incorporate good merits of multiple techniques aim at to enhance the search ability of EMO algorithm. In this chapter, we combine two well-known search algorithms, DE and PSO, and developed algorithm known as MOEA/D-DE+PSO. We experimentally studied its performance on two types of continuous multi-objective optimization problems and found better improvement.

1 Introduction

In this paper, we interested in solving multiobjective optimization problem (MOP) of minimization type which is generally formulated as under:

$$minimize F(x) = (f_1(x), f_2(x) \dots, f_m(x))$$
(1)

Subject to $x \in \Omega$, where $\Omega \subseteq R^n$, $x = (x_1, \dots, x_n)^T \in \Omega$ is an n-dimensional vector of the decision variables, Ω is the *decision (variable) space*, $F : \Omega \to R^m$ consist of m real-valued objectives function. Very often, the objectives of the problem (1) are in conflict with one another or incommensurable. Due this conflict among the objectives function, no solution in Ω can optimize all the objectives simultaneously. Instead, one has to find a set of good representative optimal solutions to the problem (1) in the form of best trade-off or compromises among the objectives in terms of Pareto optimality.

Wali Khan Mashwani is a PhD student in the Department of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK e-mail: wkhan@essex.ac.uk & a Faculty member of Kohat University of Science and Technology (KUST), PAKISTAN.

218 Wali Khan Mashwani

Since 1970s, numerous evolutionary multiobjective optimization (EMO) algorithms have been developed aim at finding a set optimal solutions to the problem 1. Among them, MOEA/D [1] is the novel developed paradigm which combines the decomposition strategies with evolutionary algorithm for solving problem (1) differently from existing Pareto dominance based EAs. Surprisingly, MOEA/D also used single algorithm for population evolution with exception [2].

In this paper, we study the combined effect of Differential evolution (DE) [3] and particle swarm optimization (PSO) [4] and developed hybrid version of the MOEA/D [1] known as MOEA/D-DE+PSO for continuous multiobjective optimization. We performed this study inspired by some recent reported work [5, 6, 2, 7].

The rest of this paper is organized as follows: **Section 2** explains the frameworks of MOEA/D-DE+PSO and the parameter settings in carried out experiments, **Section 3** provides a brief discussion on the experimental results, and finally **Section 4** concludes the paper.

2 MOEA/D with DE and PSO: MOEA/D-DE+PSO

The algorithmic steps of MOEA/D with DE and PSO, MOEA/D-DE+PSO is hereby outlined in **Algorithm 1**.

Table 1 Parameter Setting for solving ZDT [8] and CEC'09 Test Problems [9]. Here, N is the size of population, p_m is the mutation probability, η is the distribution index and T is the neighborhood size of subproblem in MOEA/D paradigm, r is a random number. The first column of the table represent the population size for the used test problems.

ZDT	100	$p_m = \frac{1}{n}, n = 10$	$\eta = 20$	25000	T = 0.1N
CEC' 09	600(1000)	$p_m = \frac{1}{n}, n = 30$	$\eta = 20$	300,000	T = 0.1N
PSO & DE	w = 0.3 + r/2	$c_1 = c_2 = 0.4$	$\xi = 0.7$	CR = 1	F = 0.5

3 A Brief Discussion on obtained Experimental Results

We used Inverted generation distance (IGD)-metric [10] to compare and evaluate the performance of both versions of MOEA/D [1], namely, **MOEA/D-DE** and **MOEA/D-DE+PSO** on the ZDT test problems [8] and on the CEC'09 test instances [9]. To compute the IGD-metric values, we have chosen P^* of uniformly distributed points in the PF of size 1000 for all problems during 30 times simulation of each algorithm. We used the parameter setting as described in the **Table 1** in our experimental studies of both MOEA/D-DE and MOEA/D-DE+PSO to solve each test

Algorithm 1 Pseudocode of MOEA/D-DE+PSO

INPUT:

- MOP: the multiobjective optimization problem:
- N: population (i.e., the number of subproblems);
- F_{EVAL} : the maximal number of function evaluations;
- a uniform spread of N weight vectors, $\lambda_1, \ldots, \lambda_N$;
- T: the number of weight vectors in the neighborhood of each weight vector;

```
Output: \{x^{(1)}, x^{(2)}, \dots, x^{(N)}\}\ and \{F(x^{(1)}), \dots, F(x^{(N)})\}\;
```

Step 0 Initialization:

- Uniformly randomly generate a population of size $N, P = \{x^{(1)}, \dots, x^{(N)}\}\$ from the search 0.1: space Ω ;
- Initialize a set of N weight vectors, $\{\lambda^1, \lambda^2, \dots, \lambda^N\}$; 0.2:
- Compute the Euclidian distances between any two weight vectors and then find the T closest weight vectors to each weight vector. For the *ith* subproblem, set $B(i) = \{i_1, \dots, i_T\}$, where $\lambda^{i1}, \dots, \lambda^{iT}$ are the T closest weight vectors to λ^{i} ;
- Compute the F-function value of each member in $P, F(x^i), i = 1, 2, ..., N$;
- 0.5:
- Initialize $z=(z_1,\ldots,z_m)^T$ by problem-specific method; Set $\lceil \zeta_1=0.5N \rceil$; $\zeta_2=N-\zeta_1$; where ζ_1 , the number of subproblems deal by search algorithm A, and ζ_2 , the number of new solutions deal by search algorithm B;
- Set t = 0;

Step 2: Updating Phase of the MOEA/D-DE+PSO:

```
1: while t < F_{EVAL} do
        Randomly divide I = \{1, 2, ..., N\} into two sets, I_A and I_B, such that I_A has \zeta_1 indices and
        I_B has \zeta_2 indices at t;
        for i = 1 : N do
 3:
 4:
           if i \in I_A then
 5:
               Apply search operator A to generate an offspring \tilde{x}^i;
 6:
 7:
               Apply search operator B to generate an offspring \tilde{x}^i;
 8:
 9:
           Mutate \tilde{x}^i with probability p_m, to get \tilde{y}^i;
            Repair \tilde{y}^i to produce an offspring y^i;
10:
            Compute the F-function value of y^i, F(y^i);
11:
            Update of z: For each j = 1, ..., m, f_i(y^i) < z_i, then set z_i = f_i(y^i);
12:
13:
            Update of Neighboring Solutions:
14:
            For each index k \in B(i) = \{i_1, \dots, i_T\}
            if g^{te}(y^i|\lambda^k,z) \leq g(x^k|\lambda^k,z) then
15:
               x^k = y^i and F(x^k) = F(y^i)
16:
17:
            end if
18:
        end for
        Update \zeta_1 and \zeta_2 (Detail can found in Algorithm 2.)
19:
        t = t + 1
20: end while
```

220 Wali Khan Mashwani

Algorithm 2 Updating Procedure of ζ_1 and ζ_2

Step 1: Compute the ζ_1 , the number of subproblems deal by search algorithm A, and ζ_2 is number of subproblems deal by search algorithm B.

step 2: Compute the probability of success (i.e., τ_1) of the search algorithm A

$$\tau_1 = \frac{\frac{\kappa_1}{\zeta_1}}{\frac{\kappa_1}{\zeta_1} + \frac{\kappa_2}{\zeta_2}} \tag{2}$$

Where κ_1 is the total successful reward of search algorithm A out of ζ_1 subproblems. **Step 3:** Replace $\zeta_1 = \lceil N \times \tau_1 \rceil$ and $\zeta_2 = N - \zeta_1$.

problem.

Table 2 and **Table 3** summarizes the IGD-metric values in terms of best (minimum), median, mean, standard deviation (std), worst (maximum), which are found by MOEA/D-DE and MOEA/D-DE+PSO, respectively. A bold data represent the best results for the corresponding algorithm on respective problem. This results show that MOEA/D-DE+PSO is more effective than MOEA/D-DE on most test problems. We didn't includes the plots of the Pareto front (PF) of the used test problems found by MOEA/D-DE and MOEA/D-DE+PSO due page limitation.

Table 2 The IGD-metric value statistics found by MOEA/D-DE, MOEA/D-DE+PSO during 30times independent runs for ZDT test problems [8], ZDT1-ZDT4 and ZDT6.

MOEA/D, MOEA/D-DE+PSO							
ZDT problems	min	median	mean	std	max	Algorithms	
	0.00401	0.00419	0.00421	0.00018	0.00455	MOEA/D-DE	
ZDT1	0.00402	0.00414	0.00415	0.000071	0.00436	MOEA/D-DE+PSO	
				0.000042		MOEA/D-DE	
ZDT2	<u> </u>			0.000052		MOEA/D-DE+PSO	
				0.000662	0.01252		
ZDT3	0.00860	0.00908	0.0202	0.03753	0.19706	MOEA/D-DE+PSO	
	0.01196	0.03056	0.04258	0.03342	0.15796	MOEA/D-DE	
ZDT4	0.00414	0.00709	0.0075	0.0019	0.01158	MOEA/D-DE+PSO	
	0.00856	0.0151	0.01478	0.00405	0.0235	MOEA/D-DE	
ZDT6	0.0069	0.0146	0.0145	0.0045	0.0246	MOEA/D-DE+PSO	

4 Conclusion

Different search algorithms suit different problems. It is natural way to use the desirable properties of multiple algorithms for population evolution self-adaptively

IGD Statistical Results found by MOEA/D-DE andMOEA/D-DE+PSO						
CEC'09	min	median	mean	std	max	Approach-Name
	0.004499	0.073061	0.078707	0.051734	0.193602	MOEA/D-DE
UF1	0.004466	0.018066	0.030952	0.023114	0.063822	MOEA/D-DE+PSO
	0.018233	0.057095	0.062814	0.032670	0.142833	MOEA/D-DE
UF2	0.010218	0.011671	0.011737	0.000756	0.013261	MOEA/D-DE+PSO
	0.027292	0.238281	0.220884	0.084442	0.319024	MOEA/D-DE
UF3	0.003966	0.006314	0.006529	0.002050	0.011023	MOEA/D-DE+PSO
	0.062797	0.070280	0.070560	0.004064	0.077784	MOEA/D-DE
UF4	0.062322	0.071080	0.070883	0.003396	0.076828	MOEA/D-DE+PSO
	0.210113	0.428818	0.426645	0.131033	0.707106	MOEA/D-DE
UF5	0.282111	0.454364	0.490882	0.118561	0.708999	MOEA/D-DE+PSO
	0.244165	0.456803	0.508164	0.142289	0.798462	MOEA/D-DE
UF6	0.186140	0.823351	0.778214	0.157339	0.843885	MOEA/D-DE+PSO
	0.007096	0.106932	0.239466	0.244556	0.648772	MOEA/D-DE
UF7	0.006726	0.008776	0.245517	0.267355	0.674953	MOEA/D-DE+PSO
	0.057705	0.076824	0.079935	0.015975	0.138522	MOEA/D-DE
UF8	0.077700	0.087222	0.088455	0.006532	0.101902	MOEA/D-DE+PSO
	0.047530	0.151860	0.139659	0.035320	0.160975	MOEA/D-DE
UF9	0.035499	0.038980	0.071131	0.051008	0.149478	MOEA/D-DE+PSO
	0.296028	0.427088	0.442905	0.067564	0.672801	MOEA/D-DE
UF10	0.184050	0.187033	0.187158	0.001552	0.190097	MOEA/D-DE+PSO

Table 3 The IGD-metric value statistics found by MOEA/D-DE, MOEA/D-DE+PSO after 30times independent runs for the CEC,09 unconstrained test problems [9], UF1-UF10.

for algorithmic improvement. In this paper, we have proposed the hybrid version of MOEA/D [1] known as MOEA/D-DE+PSO by incorporating DE [3] and PSO [4] for multiobjective optimization. Experimental results shows the improvement of the MOEA/D-DE+PSO over MOEA/D-DE on MOEA/D-DE almost all ZDT problems [8] and CEC'09 test instance [9].

References

- 1. Q. Zhang and H. Li, "MOEA/D," IEEE Trans on EC, vol. 11, no. 6, pp. 712–731, 2007.
- W. Khan and Q. Zhang, "MOEA/D-DRA with Two Crossover Operators," in *Proceeding of the UKCI'10*, 2010, pp. 1–6.
- 3. R.Storn and K.V.Price, "Differential Evolution," *J.Global Opt*, vol. 11, no. 4, pp. 341–359, 1997.
- 4. R.Eberhart and J.Kennedy, "A New optimizer using Particle Swarm Theory," in *Proceedings of MHS* '95, pp. 39–43.
- 5. J. A. Vrugt et al., "AMALGAM," IEEE Trans On EC, vol. 13, no. 2, pp. 243–259, 09.
- 6. J. A. Vrugt et.al, "Improve AMALGAM," PNAS'07, vol. 104, no. 3, pp. 708-701.
- 7. W. Khan, "Integration of NSGA-II and MOEA/D in Multimethod Search Approach," in *GECCO'11 (Companion)*, 2011, pp. 75–76.
- 8. E. Zitzler et al., "Comparsion of MOEAs," EC, vol. 8, no. 2, pp. 173–195, 200.
- 9. Q. Zhang et al., "Test Instances for the CEC'09," Technical Report CES-487.
- 10. E. Zitzler et al, "Performance Assessment of Multiobjective Optimizers: An Analysis and Review," *IEEE Trans on EC*, vol. 7, pp. 117–132, 2003.