

EM600 - Engineering Economics and Cost Analysis

Lecture 02: Understanding Cash Flow Diagrams, Interest Rates and Time Value of Money

Lecture 02 1 of 68

References:

- Park, Chan S. <u>Contemporary Engineering</u>
 <u>Economics</u>. New Jersey: Pearson Prentice
 Hall, 2006 (Chapter 3 & 4)
- Ganguly, A. <u>Engineering Economics Using</u>
 <u>Excel</u>. New Jersey: SSE, 2008

After completing this module you should understand the following:

- Time value of money
- Cash flow diagram: basis, 'how to' and types (arithmetic, geometric gradient)
- Overview of simple and compound interests calculation methods including continuous compounding
- Nominal, periodic and effective interest rates
- Equivalence calculations with nominal and effective interest rates
- Debt Management

Albert Einstein once said:

"The most powerful force in the universe is compound interest."

1. "Albert Einstein quotes" ThinkExist.com. Aug 13, 2008 http://thinkexist.com/quotation/the_most_powerful_force_in_the_universe_is/158830.html.

Lecture 02 4 of 68

Key Definitions

- Market Interest Rate

 Rates of interest paid on deposits and other investments, determined by the interaction of the supply of and demand for funds in the money market.¹

Time Value of Money

 The idea that a dollar now is worth more than a dollar in the future, even after adjusting for inflation, because a dollar now can earn interest or other appreciation until the time the dollar in the future would be received.²

- 1. "market interest rate" Bank-Street.co.uk. May 20, 2008 http://bank-street.co.uk/glossary.html.
- 2. "time value of money" InvestorWords.com. WebFinance, Inc. May 20, 2008 http://www.investorwords.com/4988/time_value_of_money.html.

Lecture 02 5 of 68

Key Definitions

- Purchasing Power
 - The value of money, as measured by the quantity and quality of products and services it can buy.¹
- Actual Dollars
 - The cash flow measured in terms of dollars at the time of the transaction.²

- 1. "purchasing power" InvestorWords.com. WebFinance, Inc. May 20, 2008 http://www.investorwords.com/3959/purchasing_power.html.
- Park, Chan S. <u>Contemporary Engineering Economics</u>. New Jersey: Pearson Prentice Hall, 2006 (Chapter 3)

Lecture 02 6 of 68

Useful Terms:

```
    i = Interest Rate
    N = Number of Years (n = 0, 1, ..., N)
    P = Present Value / Present Worth (n=0)
    F = Future Worth (at some time n)
    A = Annual Worth / Annual Equivalence
    S = Savage Value (n = N)
```

Note:

- P = PV = NPV = PW = NPW
- F = FW
- A = AW = AE (similar to annual cost, AC = EUAC, Equivalent Uniform Annualized Cost)

- Steps to solving a typical cash flow problem:
 - Read the problem & identify key elements (i, N, P,etc)
 - Draw a picture
 - Identify "knowns" and "unknowns"
 - Convert all "knowns" to the same units of time
 - Solve the problem using engineering economic techniques

Typical Cash Flow Diagrams:

Lecture 02 9 of 68

Example 1:

- Consider an initial investment of \$2000
- Investment Period is 3 years
- Interest Rate is 3%
- Future Worth is \$2185
- Draw the cash flow diagram

Two methods:

- Simple Interest
 - Interest is earned only on principal amount during each period.

- Interest earned during each interest period does not earn additional interest in the remaining periods.
- Compounded Interest
 - Interest is earned during each period based on the TOTAL amount at the end of the previous period.
 - TOTAL = original principal + accumulated interest

- Equation
 - Simple interest: F = P(1 + iN)
- Derivation

EOY	Bank Balance at End of Year (EOY)				
0	P				
1	P + iP = P(1 + i)				
2	P + iP + iP = P(1 + 2i)				
3	P + iP + iP + iP = P(1 + 3i)				
-	-				
	-				
	-				
N	P + (iP)N = P(1 + iN)				

Lecture 02 12 of 68

- Equation
 - Compound interest: $F = P(1 + i)^N$
- Derivation

EOY	Bank Balance at End of Year (EOY)				
0	Р				
1	P + iP = P(1 + i)				
2	$P(1+i) + i[P(1+i)] = P(1 + i)^2$				
3	$P(1+i)^2 + i[P(1+i)^2] = P(1+i)^3$				
	•				
	-				
N	- P(1+i) ^{N-1} + i[P(1+i) ^{N-1}] = P(1 + i) ^N				

Example 2:

- \$6000 is deposited in your bank account.
 What is its future value after 5 years assuming:
 - a. 8% simple interest earned annually
 - b. 8% interest compounded annually
- Cash Flow Diagram

Lecture 02 14 of 68

Example 2 contd.

Lecture 02

- Single Cash Flow
 - Equivalence relations: P and F
 - Single present or future cash flow
- Equal (Uniform) Series
 - Equivalence relations: P, F and A
 - Series of cash flows of equal amounts at regular intervals
- Linear (Arithmetic) Gradient Series
 - Equivalence relations: P, F and A
 - Fixed amount (G) increase or decrease at regular intervals
- Geometric Gradient Series
 - Equivalence relations: P, F and A
 - Fixed % rate (g) increase or decrease at regular intervals
- Irregular (Mixed) Series
 - Equivalence relations: P, F and A
 - No regular overall pattern (patterns may exist in portions)

Lecture 02 16 of 68

Five Types of Cash Flows (Chan S. Park, Figure 3.10)

Lecture 02 17 of 68

Equal (Uniform) Series Example:

Borrower Cash Flow

Car Repayment Cash Flows (differing viewpoints between the lender and the borrower)

Compound Amount Factor

- Used to find the future worth (FW) of a present value
- Find F given P, i and N

$$-F = P(1 + i)^{N} = P(F/P, i, N)$$

Same as

Compound Interest

Single Payment Compound Amount Factor (TABLE FACTOR)

- Excel Formula = FV(i,N,A,P,Type)
 - Type = 0 (payments at end of period)
 - Type = 1 (payments at start of period)
 - For this class, assume Type = 0 unless otherwise specified Lecture 02

 \mathbf{g} and \mathbf{l} \mathbf{g}

• Example 3:

Apply figures from example 2 to the three different equations presented:

• $F = P(1 + i)^N$

 $F = 6000(1+0.08)^5 = 6000(1.47) = 8816

•
$$F = P(F/P, i, N)$$

2. INTEREST TABLES

$$F = P(1.4693) = $8816$$

	IIIII		interest	rable :	0.00 76	
9966	Sing	gle Payment		Equal Payment Series		
	Compound	Present	Compound	Sinking	Present	Capit
	Amount	Worth	Amount	Fund	Worth	Recove
	Factor	Factor	Factor	Factor	Factor	Fact
Ţ	$\{F/P,i,N\}$	$\{P/F, i, N\}$	$\{F/A, i, N\}$	$\{A/F, i, N\}$	{P/A, i, N}	(A/P, i
1	1.0800	0.9259	1.0000	1.0000	0.9259	1.080
2	1.1664	0.8573	2.0800	0.4808	1.7833	0.560
3	1.2597	0.7938	3.2464	0.3080	2.5771	0.388
·i	1.3003	0.7350	4.5061	0.2219	3.3121	0.301
5	1.4693	0.6806	5.8666	0.1705	3.9927	0.250
٤	1 5949	0.6302	7.3359	0.1363	4.6229	0.216

Interest Table

3. EXCEL

$$F = FV(i,N,A,P,Type)$$

$$F = FV(8\%,5,0,-6000,0) = $8816$$

Present Worth Factor

- Used to find the present worth (PW) of a future value.
- Find P given F, i and N.
- Opposite of compounding
- Known as "discounting".

$$-P = F(1 + i)^{-N} = F(P/F, i, N)$$

From Compound

Interest Formula

Single Payment Discount Amount Factor (TABLE FACTOR)

- Excel Formula = PV(i,N,A,F,Type)
 - Type assumptions as before

Lecture 02

Present-Worth Factor

- Problem 1:
 - For a value of \$10,000 received in 8 years, at an annual rate of 7%, what is the present worth?
 - How would you solve for i given P, F and N?
 - How would you solve for N given P, F and i?
- Deliverables:
 - Solve each part using 3 methods:
 - Method 1: Basic equation.
 - Method 2: Equation incorporating the economic tables at the back of Chan S. Park.
 - Method 3: Use Excel

Compound-Amount Factor

- Used to find the future worth (FW) of an annuity
- Find F given A, i and N

$$-F = A \left[\frac{(1+i)^N - 1}{i} \right] = A(F/A, i, N)$$

Equal (Uniform) Payment Series Compound Amount Factor (TABLE FACTOR)

- Excel Formula = FV(i,N,A,P,Type)
 - Type = 0 (payments at end of period)
 - Type = 1 (payments at start of period)
 - For this class, assume Type = 0 unless otherwise specified

Sinking-Fund Factor

- Used to find the annual worth (AW) of a future value.
- Find A given F, i and N
- Sinking Fund:
 - Interest bearing account into which a fixed sum is deposited each interest period. (Chan S. Park)
 - Uses
 - Replacing fixed assets
 - Retiring corporate bonds

Equal (Uniform) Payment Series Sinking-Fund Factor (TABLE FACTOR)

$$-A = F\left[\frac{i}{(1+i)^{N}-1}\right] = F(A/F,i,N)$$

- Excel Formula: A = PMT(i,N,P,F,Type)
 - Type = 0 (payments at end of period)
 - Type = 1 (payments at start of period)
 - For this class, assume Type = 0 unless otherwise specified

Capital Recovery (Annuity) Factor

- Used to find the annual worth (AW) of a present value.
- Find A given P, i and N.
- Capital Recovery Factor:
 - Used to determine the revenue requirements needed to address the upfront capital capital costs for projects. (Chan S. Park)
- Annuity
 - A level stream of cash flows for a fixed period of time. (Chan S. Park)

$$- A = P \left[\frac{i(1+i)^{N}}{(1+i)^{N}-1} \right] = P(A/P, i, N)$$

– Excel Formula: A = PMT(i,N,P,F,Type)

Equal (Uniform) Payment Series Capital Recovery Factor

- Type = 0 (payments at end of period)
- Type = 1 (payments at start of period)
- For this class, assume Type = 0 unless otherwise specified

Present-Worth Factor

- Used to find the present worth (PW) of an annuity.
- Find A given P, i and N.
- Uses:
 - Used to determine the what should be invested now in order to withdraw A dollars at the end of each of the next N periods. (Chan S. Park)

$$-P = A \left[\frac{(1+i)^N - 1}{i(1+i)^N} \right] = A(P/A, i, N)$$

Equal (Uniform) Payment Series Present Worth Factor

- Excel Formula: A = PMT(i,N,P,F,Type)
 - Type = 0 (payments at end of period)
 - Type = 1 (payments at start of period)
 - For this class, assume Type = 0 unless otherwise specified

Present-Worth Factor: Linear Gradient

- Used to find the present worth (PW) for a specified gradient amount.
- Find P given G, i and N.
- Uses:
 - Used to determine the what should be invested now in order to withdraw (N-1)G dollars at the end of each of the next N periods. (Chan S. Park)

$$-P = G \left[\frac{(1+i)^{N} - iN - 1}{i^{2}(1+i)^{N}} \right] = G(P/G, i, N)$$

Gradient Series Gradient Present Worth Factor

Gradient-to-Equal-Payment Series Conversion Factor

- Used to find the annual worth (AW) for a specified gradient amount.
- Find A given G, i and N.
- Uses:
 - Used to determine an equal payment series equivalent to the gradient series. (Chan S. Park)

$$- A = G \left[\frac{(1+i)^{N} - iN - 1}{i[(1+i)^{N} - 1]} \right] = G(A/G, i, N)$$

Gradient Series Gradient Uniform Series Factor

- Types of linear gradient series:
 - Strict gradient series
 - Does not correspond to the form that most engineering economic problems take (Chan S. Park)
 - Composite series
 - Splits the problem into two sets of cash flows -
 - 1. Equal (uniform) series
 - 2. Strict gradient series

Strict Gradient Series (Chan S. Park, Figure 3.27)

Composite Series (Chan S. Park, Figure 3.28)

Lecture 02 31 of 68

Present-Worth Factor: Geometric Gradient

- Find P given A, g, i and N.
- Geometric Growth:
 - The year-over-year growth rate of an investment over a specified period of time. (Chan S. Park)
- Compound Growth:
 - Cash flows that increase over time by a constant percentage (g, Geometric Gradient) NOT by a constant amount. (Chan S. Park)
- e.g. price changes caused by inflation

$$P = \begin{cases} A_{1} \left[\frac{1 - (1+g)^{N} (1+i)^{-N}}{i - g} \right] & i \neq g \\ i - g & & (P/A_{1}, g, i, N) \end{cases}$$

$$i \neq g$$

$$i \neq g$$

$$i = g$$

- $P = A_1(P/A_1, g, i, N)$
- There are NO tables for the geometric gradient.

Lecture 02

Present-Worth

- For an uneven series, the problem must be decomposed into single payments:
 - Calculate the present value of each individual payment
 - Sum the results
- Future-Worth
 - Use the present worth and find its equivalent future worth [F = P(F/P,i,N)]
- Annual-Worth
 - Use the present worth and find its equivalent annual worth [A = P(A/P,i,N)]

Nominal Interest Rate:

- Also known as "annual percentage rate (APR)"
- Definition: (Chan S. Park)
 - Yearly cost of a loan including interest, insurance, and the origination fee, expressed as a percentage.
- e.g.
 - 18% APR, compounded monthly = 1.5% per month
 - 2.0% per month = 24% APR
- Does NOT represent the amount of interest earned in a year.
- r = nominal interest rate
- Excel Formula:
 - NOMINAL(effect_rate, npery)
 - effect_rate = effective annual interest rate, i_a
 - npery = # compounding periods per year, M

Periodic Interest Rate:

- The interest rate per compounding period is called a periodic interest rate (or periodic rate).
- Definition: (Chan S. Park)
 - The interest the lender will charge on the amount you borrow. If the lender also charges fees, the periodic interest rate will not be the true interest rate.

$$-i_m = \frac{r}{M}$$
 where,

i_m = periodic interest rate

r = nominal interest rate

M = # of compounding (interest) periods per year

Effective Interest Rate:

- Also known as "annual percentage yield (APY)"
- Represents the interest earned in a year.
- Definition: (Chan S. Park)
 - Rate actually earned or paid in one year, taking into account the affect of compounding.

•
$$i_a = \left(1 + \frac{r}{M}\right)^M - 1$$
 where,

i_a = effective annual interest rate

r = nominal interest rate

M = # of compounding (interest) periods per year

- Excel Formula:
 - EFFECT(nominal_rate, npery)
 - nominal_rate = nominal interest rate, r
 - npery = # compounding periods per year, M

37 of 68

Continuous Compounding

- Definition:
 - The process of calculating interest and adding it to existing principal and interest at infinitely short time intervals. (Chan S. Park)
 - $i_a = e^r 1$, where r = nominal interest rate

	Compounding Period Description and Number of Periods per Year									
	Annually		Semi-annually		Quarterly		Monthly		Daily	
	1		2		4		12		365	
r	i _a	i _m	i _a	i _m	i _a	i _m	i _a	i _m	i _a	i _m
4.00%	4.00%	4.00%	4.04%	2.00%	4.06%	1.00%	4.07%	0.33%	4.08%	0.01%
5.00%	5.00%	5.00%	5.06%	2.50%	5.09%	1.25%	5.12%	0.42%	5.13%	0.01%
6.00%	6.00%	6.00%	6.09%	3.00%	6.14%	1.50%	6.17%	0.50%	6.18%	0.02%
7.00%	7.00%	7.00%	7.12%	3.50%	7.19%	1.75%	7.23%	0.58%	7.25%	0.02%
8.00%	8.00%	8.00%	8.16%	4.00%	8.24%	2.00%	8.30%	0.67%	8.33%	0.02%
9.00%	9.00%	9.00%	9.20%	4.50%	9.31%	2.25%	9.38%	0.75%	9.42%	0.02%
10.00%	10.00%	10.00%	10.25%	5.00%	10.38%	2.50%	10.47%	0.83%	10.52%	0.03%
11.00%	11.00%	11.00%	11.30%	5.50%	11.46%	2.75%	11.57%	0.92%	11.63%	0.03%
12.00%	12.00%	12.00%	12.36%	6.00%	12.55%	3.00%	12.68%	1.00%	12.75%	0.03%

r = nominal interest rate

i_a = effective annual interest rate

i_m = periodic interest rate

- Economic Equivalence:
 - Definition: (Chan S. Park)
 - The process of comparing two different cash amounts at different points in time.
 - Can assess:
 - Single Payments
 - Series of Payments

Economic Equivalence:

- Guiding Principles (Chan S. Park)
 - Equivalence calculations made to compare alternatives require a common time basis.
 - Equivalence depends on interest rate.
 - Equivalence calculations may require the conversion of multiple payment cash flows to a single cash flow.
 - Equivalence is maintained regardless of point of view.

Economic Equivalence:

- Sample problems:
 - You want to deposit \$1000 for 3 years. Is it better to have 5% simple interest or 4% compounded annually?
 - Suppose you borrow \$5000 for a used car from your parents at 9% interest. When you graduate from Stevens in 2 years how much will you owe them?
 - I want to retire in 15 years and buy a motorcycle. Having studied the price increases for a Harley Davidson motorcycle, I estimate I'll need \$25,000. If my mutual funds are paying 13%, how much will I need to deposit now so I can buy my bike?

- Types of unconventional equivalence calculations:
 - Composite cash flows
 - Refer to examples 3.25 & 3.26 (Chan S. Park)
 - Determining an interest rate to establish economic equivalence
 - Refer to example 3.27 (Chan S. Park)
 - Manual = Interpolate
 - Excel = Use the Goal Seek Function

Lecture 02 42 of 68

- Compounding and Payment Period must be in the same order.
- Possible situations:
 - Payment Period = Compounding Period
 - Payment Period < Compounding Period
 - Payment Period > Compounding Period

Payment Period = Compounding Period.

- Identify # compounding periods per year,
 M
 - M = K (payment period)
 - M = CK, therefore, C = 1
- Calculate effective interest rate per period (periodic interest rate),

$$\bullet \quad i = \frac{r}{M}$$

- Determine # of compounding periods,
 - N = M × (number of years)
- Calculate PW, AW or FW using i and N

Note:

 The effective interest rate can be assessed per payment period (periodic interest rate).

$$- i = \left(1 + \frac{r}{M}\right)^C - 1 = \left(1 + \frac{r}{CK}\right)^C - 1 \quad \text{where,}$$

M = number of interest periods per year

C = number of interest periods per payment period

K = Number of payment periods per year

Payment Period < 'OR' > Compounding Period.

- Identify # compounding periods per year (M), the number of payment periods per year (K), the number of interest periods per payment period (C).
- Calculate effective interest rate per period (periodic interest rate),

• Discrete:
$$i = \left(1 + \frac{r}{M}\right)^{C} - 1$$

• Continuous:
$$i = e^{r/K} - 1$$

- Determine # of compounding periods,
 - N = K × (number of years)
- Calculate PW, AW or FW using i and N

Type of Cash Flow	Cash Flow Function		neters Given	Algebraic Notation	Factor Notation
		P	\overline{A}	$\overline{A} \left[\frac{e^{rN} - 1}{re^{rN}} \right]$	$(P/\overline{A}, r, N)$
Ā	$f(t) = \overline{A}$	\overline{A}	P	$P\left[\frac{re^{rN}}{e^{rN}-1}\right]$	$(\overline{A}/P, r, N)$
Uniform (step)		F	\overline{A}	$\overline{A}\bigg[\frac{e^{rN}-1}{r}\bigg]$	$(F/\overline{A}, r, N)$
0	N	\overline{A}	F	$F\bigg[\frac{r}{e^{rN}-1}\bigg]$	$(\overline{A}/P, r, N)$
Gradient (ramp)	f(t) = Gt G	P	G	$\frac{G}{r^2}(1-e^{-rN}) -$	$-\frac{G}{r}(Ne^{-rN})$
Decay	$f(t) = ce^{-jt}$ $j^{t} = \text{decay rate}$ with time	p	c, j	$\frac{c}{r+j}(1-e^{-(r+j)})$	·+ <i>j</i>)N)

• Example 4:

- Find the effective interest rate per quarter at a nominal interest rate of 8%,
 - a. compounded weekly.
 - 52 weeks/year
 - b. compounded daily.
 - 365 days/year

• Example 4:

- a. Weekly Compounding
 - Given:
 - r = 8% per year
 - -M = 52 weeks (compounding periods per year)
 - -C = 52/4 = 13 periods per quarter
 - Find the effective rate, i

$$i = \left(1 + \frac{r}{M}\right)^C - 1 = \left(1 + \frac{8\%}{52}\right)^{13} - 1$$

i = 2.02% per quarter

Example 4:

- b. Daily Compounding
 - Given:
 - r = 8% per year
 - -M = 365 days (compounding periods per year)
 - -C = 365/4 = 91.25 periods per quarter
 - Find the effective rate, i

$$i = \left(1 + \frac{r}{M}\right)^{C} - 1 = \left(1 + \frac{8\%}{365}\right)^{91.25} - 1$$

i = 2.02% per quarter

- Example 5: (Chan S. Park, example 4.9)
 - You own a small pill bottle manufacturing company and generate \$200 cash each day. This daily cash flow is deposited into a special business account for 15 months. The account earns an interest rate of 6%. Compare the accumulated cash values at the end of 15 months, assumin
 - a. daily compounding
 - b. continuous compounding

- Example 5: (Chan S. Park, example 4.9)
 - a. Daily Compounding
 - Given:
 - A = \$200 per day
 - r = 6% per year
 - -M = 365 (compounding periods per year)
 - -N = 15 months = 455 days

Payment Period = Compounding Period

• Find: F

•
$$i = \frac{r}{M} = \frac{6\%}{365} = 0.01644\% \cdot per \cdot day$$

$$F = A(F/A,i,N) = $200(F/A,0.01644\%,455) = $200(472.4095) = $94,482$$

- Example 5: (Chan S. Park, example 4.9)
 - b. Continuous Compounding
 - Given:

$$-\overline{A}$$
 = \$200 × 365 = \$73,000 per year for N years

- r = 6% per year, compounded continuously
- -N = 15 months = 1.25 years

• Find: F
$$-F = \overline{A} \left[\frac{e^{rN} - 1}{r} \right] = \$73,000 \left[\frac{e^{0.06 \times 1.25} - 1}{0.06} \right] = \$73,000(1.298) = \$94,759$$

- Commercial Loans
- Loan versus Lease Financing
- Home Mortgage

Two Types:

- Amortized Loan
 - A loan that is repaid in equal periodic amounts.¹
 - A loan with scheduled periodic payments of both principal and interest.²
- Add-On Interest Loan
 - A method of computing interest whereby interest charges are made for the entire principal amount for the entire term, regardless of any repayments of principal made.¹
 - Outside of the scope of this class.

- 1. Chan S. Park
- 2. "amortized loan" Investopedia.com. Investopedia ®. May 27, 2008 www.investopedia.com/terms/a/amortized_loan.asp

Lecture 02 55 of 68

- Based on Compound Interest method.
- Common in various types of commercial lending.
- Calculations:
 - For a given P, i and N, calculate A (sum of principal and interest repayment)
 - Tabular method:
 - For each payment record the principal paid, the interest paid and the loan balance.
 - Remaining-Balance method:
 - $-B_n$ = remaining balance after n periods = A(P/A, i, N-n)
 - I_n = interest payment during period $n = B_{n-1} \times i$ $I_n = A(P/A, i, N-n+1) \times i$
 - $-P_n$ = interest payment during period n = A(P/F, i, N-n+1)

57 of 68

- Amortized Loan
 - Sample Cash Flow Diagram:

- Example 6: (Chan S. Park, example 4.12)
 - Suppose you secure a home improvement loan in the amount of \$5000 from a local bank. The monthly payment is computed as follows:
 - Contract amount: \$5000
 - Contract Period: 24 months
 - APR: 12%
 - Monthly Installments, A: \$235.37
 - Show how A is calculated.
 - Using the tabular method find P_n, I_n and B_n for each n
 - Using the remaining-balance method find P₆, I₆, B₆

Lecture 02 58 of 68

- Example 6: (Chan S. Park, example 4.12)
 - Calculate monthly installments, A:

$$A = P (A/P, i, N)$$

Given: P = \$5000; N = 24 months; r = 12%

Need i (effective interest rate per payment period / periodic interest rate) and A

$$i = \frac{r}{M} = \frac{12\%}{12} = 1\% \cdot per \cdot month$$

Payment Period = Compounding Period

By Hand:

A = \$235.50

$$A = 5,000(A/P,1\%,24)$$

$$A = 5,000(0.0471)$$

$$A = PMT(1\%, 24, 5000, 0)$$

$$A = $235.37$$

- Example 6: (Chan S. Park, example 4.12)
 - Using the tabular method find P_n, I_n and B_n for each n
 - Best tool for this exercise → EXCEL

Lecture 02 60 of 68

Payment No.	Size of Payment	Principal Payment	Interest Payment	Loan Balance	
1	\$235.37	\$185.37	\$50.00	\$4,814.63	
2	235.37	187.22	48.15	4,627.41	
3	235.37	189.09	46.27	4,438.32	
4	235.37	190.98	44.38	4,247.33	
5	235.37	192.89	42.47	4,054.44	
6	235.37	194.83	40.54	3,859.62	
7	235.37	196.77	38.60	3,662.85	
8	235.37	198.74	36.63	3,464.11	
9	235.37	200.73	34.64	3,263.38	
10	235.37	202.73	32.63	3,060.65	
11	235.37	204.76	30.61	2,855.89	
12	235.37	206.81	28.56	2,649.08	
13	235.37	208.88	26.49	2,440.20	
14	235.37	210.97	24.40	2,229.24	
15	235.37	213.08	22.29	2,016.16	
16	235.37	215.21	20.16	1,800.96	
17	235.37	217.36	18.01	1,583.60	
18	235.37	219.53	15.84	1,364.07	
19	235.37	221.73	13.64	1,142.34	
20	235.37	223.94	11.42	918.40	
21	235.37	226.18	9.18	692.2	
22	235.37	228.45	6.92	463.77	
23	235.37	230.73	4.64	233.04	
24	235.37	233.04	2.33	0.00	

Creating a loan repayment schedule with excel (Chan S. Park, Table 4.3) Lecture 02

61 of 68

- Example 6: (Chan S. Park, example 4.12)
 - Remaining-balance method: find P₆, I₆, B₆

$$P_6 = 235.37(P/F,0.01,24-6+1) = 235.37(P/F,0.01,19) = 235.37(0.8277) = $195.23$$

 $Excel: P_6 = PV(1\%,19,,235.37,0) = 194.83

$$I_6 = 235.37(P/A,0.01,24-6+1)(0.01) = 235.37(17.2260)(0.01) = $40.54$$

$$B_6 = 235.37(P/A,0.01,24-6) = 235.37(16.3983) = $3859.67$$

 $Excel: B_6 = PV(1\%,18,235.37,,0) = 3859.66

Add-On Interest Loan

- Based on Simple Interest method.
- Common in financing appliances and furniture.
- Method:

_Simple interest

$$Total \cdot Add - On \cdot Interest = P(i)(N)$$

$$Principal + Total \cdot Add - On \cdot Interest = P + P(i)(N) = P(1+iN)$$

Monthly · Installments :
$$A = \frac{P(1+iN)}{12N}$$

• Example 7:

Lexus

– Better to lease for 36 months?

OR

Purchase new through loans and keep for 36 months?

• DATA:

- MSRP \$40,000
- Purchase Price \$38,000
- Residual Value at year 3, \$20,000
- Lease Term 36 months
- Mileage Allowance 36,000
- Down Payment, \$3,000
- Security Deposit \$0
- Monthly Leased Payment \$500
- Amount Due at Signing \$500 plus tax & license of \$50
- MARR 0.5% / month
- Interest loan, 1% / month

Lecture 02 64 of 68

Option 1:

Lease for 36 months

Down Payment \$3,000

Security Deposit \$0

Amount Due at Signing \$500 plus tax & license of \$50

Parameters:

$$-P = $3,550$$

$$- A = $500$$

$$- i = 0.5\%/month$$

$$-N = 36$$
 months

Annual Worth, AW

$$AW = A - P(A/P, i, N)$$

$$AW = -500 - 3,550(A/P,0.5\%,36)$$

$$AW = -500 - 3,550(0.0304)$$

$$AW = (\$607.92)$$

Annual Cost = \$608

Lecture 02 65 of 68

Option 2:

 Purchase new through loans and keep for 36 months

Calculate A (Cost of loan):

$$A = P(A/P,i,N)$$

$$A = (38,000 - 3,000)(A/P,1\%,36)$$

$$A = 35,000(0.0332)$$

$$A = \$1162$$

Parameters:

$$-P = $3,000$$

$$- A = $1162$$

$$-S = F = $20,000$$

$$- i = 0.5\%/month$$

$$-N = 36$$
 months

Annual Worth, AW

$$AW = A - P(A/P,i,N) + F(A/F,i,N)$$

$$AW = -1162 - 3,000(A/P,0.5\%,36)$$

$$+20,000(A/F,0.5\%,36)$$

$$AW = -1162 - 3,000(0.0304) + 20,000(0.0254)$$

$$AW = (\$745.20)$$

Lecture 02 66 of 68

- The right investment is a balance of three things:
 - Liquidity
 - How accessible is your money?
 - How quickly can your investment be converted to cash?
 - Short Term versus Long Term investment
 - Risk
 - How safe is your money?
 - Will you make or lose money?
 - State of the economy.
 - Return
 - How much profit do you expect from your investment?

