

Rethinking the Effectiveness of Graph Classification Datasets in Benchmarks for Assessing GNNs

Zhengdao Li^{1,2}, Yong Cao³, Kefan Shuai¹, Yiming Miao^{1*} and Kai Hwang¹

¹The Chinese University of Hong Kong, Shenzhen, China ²Guangzhou University, Guangzhou, China ³Huazhong University of Science and Technology, Wuhan, China {zhengdaoli, kefanshuai}@link.cuhk.edu.cn

yongcao2018@gmail.com

{miaoyiming, hwangkai}@cuhk.edu.cn

Research Questions:

RQ1: Can commonly used graph classification datasets serve the benchmarking purpose which is to effectively distinguish advancements of GNNs compared with other methods?

RQ2: How to measure the effectiveness of existing graph classification datasets?

Observations:

Figure 1: The performance gaps on 16 graph classification datasets are categorized into two types: *Ineffective* (gray) and *Effective* (red) benchmarks. These are sorted in ascending order based on the size of the performance gap. An empirical threshold of 10% is used for categorization, as observed in the inner box of each figure. This box represents the distribution of the accuracy gap for GCN and GIN.

Definition1 ---- Performance gap

Given a dataset D, a baseline method $\mathcal{M}_{\text{type}}^{\text{Baseline}}$, and a graph-based method $\mathcal{M}_{\text{type}}^{\text{Graph}}$, the performance gap $\delta_{\text{type}}(D, R, \mathcal{M}^{\text{Graph}}, \mathcal{M}^{\text{Baseline}})$ (simply denoted by δ_{type}) between baseline and graph-based method is defined as:

$$\delta_{\text{type}} \triangleq R(D, \mathcal{M}_{\text{type}}^{\text{Graph}}) - R(D, \mathcal{M}_{\text{type}}^{\text{Baseline}}), \text{ type } \in \{S, A\},$$

Limitations of the performance gap:

$$R\left(D_{1},\mathcal{M}^{GNN}\right) = 100\%$$

$$= 10\%$$

$$R\left(D_{1},\mathcal{M}^{Baseline}\right) = 90\%$$

$$R\left(D_{1},\mathcal{M}^{Baseline}\right) = 50\%$$

Proposed metric:

Definition 2 ---- Dataset Effectiveness

Given a graph classification dataset D which has |Y| classes, and the performance gap $\delta_{type}(D)$ between two methods \mathcal{M}^1 and \mathcal{M}^2 , the \mathcal{E} to quantify the discriminating degree of \mathcal{M}^1 and \mathcal{M}^2 is defined as follows:

$$\mathcal{E}(D) = \sum_{\mathbf{type} \in \{\mathbf{S}, \mathbf{A}\}} \frac{|\delta_{\mathbf{type}}(D)|}{R^*(|Y|-1)} \cdot \frac{1-R^*}{1-|Y|^{-1}},$$

Figure 3: Effectiveness using Accuracy metric and AUC-ROC metric in terms of structural type and attributed type.

Investigation of low effectiveness

Figure 4: Correlations between graph property sequences and class labels on 9 real-world datasets.

Synthetic dataset generation

Theorem 1:

Given a set of property variables $\{\mathcal{P}_i\}_{i=1}^K$, each \mathcal{P}_i follows a Gaussian distribution $\mathcal{N}(\mu_k, \sigma_k)$ or Uniform distribution $\mathcal{U}(a_k,b_k)$, and given corresponding Pearson correlation coefficients $\{r_i\}_{i=1}^K$ with label variable \mathcal{Y} , with the constraint $\sum_{i=1}^{K} r_i^2 \le 1$, then we have:

$$\mathcal{Y} = \sigma_{\mathcal{Y}} \left(\sum_{i=1}^{K} n_i r_i + n_0 \sqrt{1 - \sum_{i=1}^{K} r_i^2} \right), \tag{1}$$

where σ_{y} is any desired standard deviation, and each n_{i} is mutually independent and follows the same distribution as the corresponding \mathcal{P}_i with the same mean value μ_i but with standard deviation equals to 1. (The proof is based on Cholesky decomposition of a given covariance matrix.)

Algorithm 1: Controllable dataset construction

- 1 **Input**: $\{r_k\}_{k=1}^K$, number of labels C, $\{\mathcal{P}_k\}_{k=1}^K \sim \mathcal{N}(\mu_k, \sigma_k) \text{ or } \mathcal{U}(a_k, b_k);$ 2 **Output**: Dataset \mathbb{D} with size N; 3 for k=1 to K do Sample $n_k \sim \mathcal{N}(0, \sigma_k)$ or $\mathcal{U}(-\sqrt{3}, \sqrt{3})$; $\mathbb{P}_k \leftarrow \mu_k + \sigma_k n_k \text{ or } \frac{a_k + b_k}{2} + \sqrt{\frac{b_k - a_k}{12}} n_k;$ 6 end
- 7 Calculate \mathcal{Y} by the Eq. 2;
- 8 $\mathbb{Y} \leftarrow \text{ROUND}(\text{NORM}(\mathcal{Y}) * C);$
- 9 $\mathbb{D} \leftarrow \{(g_i, y_i)\}_{i=1}^N$
- where each graph g_i has properties $\{\mathbb{P}_k[i]\}_{k=1}^K$, and corresponding label $y_i = \mathbb{Y}[i]$;

Prediction of Effectiveness

Figure 6: Controllable performance gaps by two types of synthetic datasets.

Regressor	Real-world datasets		Synthetic-CC datasets	
	Pearson	P-Value	Pearson	P-Value
Ridge	0.80 ± 0.09	$\leq 1 \times 10^{-6}$	0.87 ± 0.03	$\leq 1 \times 10^{-6}$
SVR	0.80 ± 0.09	$\leq 1 \times 10^{-6}$	0.89 ± 0.04	$\leq 1 \times 10^{-6}$
RF	0.89 ± 0.03	$< 1 \times 10^{-6}$	0.87 ± 0.06	$< 1 \times 10^{-6}$

Table 3: Summary of regression results