Anmerkungen und Lösungen zu

Einführung in die Algebra

Blatt 4

Jendrik Stelzner

Letzte Änderung: 18. November 2017

Aufgabe 4

(a)

Lemma 1. Es sei R_i , $i \in I$ eine Familie von Ringen. Dann trägt $\prod_{i \in I} R_i$ eine Ringstruktur durch

$$(r_i)_{i \in I} + (r'_i)_{i \in I} = (r_i + r'_i)_{i \in I} \quad und \quad (r_i)_{i \in I} \cdot (r'_i)_{i \in I} = (r_i r'_i)_{i \in I}.$$

Beweis. Die Ringaxiome ergeben sich durch direktes Nachrechnen wie in Aufgabe 2 (c). Das Nullelement ist durch $0=(0_{R_i})_{i\in I}$ gegeben, und das Einselement durch $1=(1_{R_i})_{i\in I}$.

Der hier beschrieben Ring ist $A = \prod_{i>1} \mathbb{Z}/p_i$.

(b)

Es gilt $0=(0,0,0,\dots)\in B$. Für $x,y\in B$ mit $x=(x_1,x_2,\dots)$ und $y=(y_1,y_2,\dots)$ gibt es $n,m\geq 1$ mit $x_i=0$ für alle $i\geq n$ und $y_i=0$ für alle $i\geq m$. Dann ist $x-y=(x_1-y_1,x_2-y_2,\dots)$ mit $x_i-y_i=0$ für alle $i\geq \max(n,m)$, und somit $x-y\in B$.

(c)

Für jedes $x \in \mathbb{Z}/n$ gilt $n \cdot x = 0$. Für $x \in B$ mit $x = (x_1, \dots, x_n, 0, 0, \dots)$ gilt deshalb

$$\prod_{i=1}^{n} p_i \cdot x = \prod_{i=1}^{n} p_i \cdot (x_1, \dots, x_n, 0, \dots) = \left(\prod_{i=1}^{n} p_i \cdot x_1, \dots, \prod_{i=1}^{n} p_i \cdot x_n, 0, \dots\right)$$
$$= \left(\prod_{i=2}^{n} p_i \cdot p_1 \cdot x_1, \dots, \prod_{i=1}^{n-1} p_i \cdot p_n \cdot x_n, 0, \dots\right) = (0, \dots, 0, 0, \dots).$$

Somit hat x endliche Ordnung.

(d)

Gilt $\operatorname{ord}(1_R) = \infty$, so git auch $\exp(G) = \infty$. Es sei also $n \coloneqq \operatorname{ord}(1_R) < \infty$. Für jedes $r \in R$ gilt dann

$$n \cdot r = \underbrace{r + \dots + r}_{n} = \underbrace{1_{R} \cdot r + \dots + 1_{R} \cdot r}_{n} = \underbrace{\left(1_{R} + \dots + 1_{R}\right)}_{n} \cdot r = (n \cdot 1_{R}) \cdot r = 0 \cdot r = 0,$$

und deshalb $\operatorname{ord}(r) \mid \operatorname{ord}(1_R)$. Somit gilt dann

$$kgV{ord(r) | r \in R} = ord(1_R).$$

(e)

Für jedes $j \geq 1$ gilt für das Element $x^{(j)} \in B$ mit

$$x_i^{(j)} = \delta_{ij}$$
 für alle $i \ge 1$,

dass $\operatorname{ord}(x^{(j)}) = p_j$. Somit ist $\{\operatorname{ord}(x) \mid x \in B\} \supseteq \{\operatorname{ord}(x^{(j)}) \mid j \ge 1\} = \{p_j \mid j \ge 0\}$ und somit $\exp(B) = \infty$.

(f)

Gebe es eine Ringstruktur auf B, so wäre $\infty = \exp(B) = \operatorname{ord}((1_B) < \infty$.

(g)

Das Einselement von A ist durch $1_A = (1, 1, 1, ...) \notin B$ gegeben. Deshalb ist B kein Unterring von A.