Normal forms

Among the formulas equivalent to a given formula, some are of particular interest (the variables here stand for atoms):

- Conjunctive Normal forms (CNF)
 - $(A \lor B \lor C) \land (D \lor X) \land (\neg A)$
 - ANDs of ORs of literals (atoms or negations of atoms)
 - A clause in this context is a disjunction of literals
- Disjunctive Normal Form (DNF)
 - $(P \land Q \land A) \lor (R \land \neg Q) \lor (\neg A)$
 - ORs of ANDs of literals
 - ▶ A clause in this context is a conjunction of literals

Theorem: Every proposition is equivalent to a formula in CNF!

Theorem: Every proposition is equivalent to a formula in DNF!

Making use of truth tables to convert to DNF

Every proposition can be expressed in DNF (ORs of ANDs)!

Express $(P \rightarrow Q) \land Q$ in DNF

We do it using a truth table

P	Q	$(P \to Q)$	$(P \to Q) \land Q$
T	Т	Т	Т
T	F	F	F
F	Т	Т	T
F	F	Т	F

- Enumerate all the T rows from the conclusion column
 - Row 1 gives $P \wedge Q$
 - Row 3 gives $\neg P \land Q$
- ► Take OR of these formulas
- ▶ Final answer is $(P \land Q) \lor (\neg P \land Q)$

Making use of truth tables to convert to CNF

Every proposition can be expressed in CNF (ANDs of ORs)!

Express
$$(P \to Q) \land Q$$
 in CNF

We do it by using a truth table

P	Q	$(P \to Q)$	$(P \to Q) \land Q$
Т	Т	Т	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	F

- ▶ Enumerate all the F rows from the conclusion column
 - Row 2 gives $P \wedge \neg Q$
 - Row 4 gives $\neg P \land \neg Q$

- HOW & BIVES I / 18
- Row 4 gives $\neg P \land \neg Q$
- Do AND of negations of each of these formulas
- We obtain $\neg (P \land \neg Q) \land \neg (\neg P \land \neg Q)$
- ▶ Finally: equivalent to $(\neg P \lor Q) \land (P \lor Q)$ by De Morgan

Making use of equivalences to convert to CNF/DNF

If $P \leftrightarrow Q$ and P occurs in A, then replacing P by Q in A leads to a proposition B, such that $A \leftrightarrow B$

Example:

- consider the formula $P \to Q \to (P \land Q)$
- we know that classically $(Q \to (P \land Q)) \leftrightarrow (\neg Q \lor (P \land Q))$
- ▶ this is an instance of $(A \rightarrow B) \leftrightarrow (\neg A \lor B)$
- ▶ when replacing $Q \to (P \land Q)$ by $\neg Q \lor (P \land Q)$ in $P \to Q \to (P \land Q)$, we obtain $P \to (\neg Q \lor (P \land Q))$
- $P \to Q \to (P \land Q)$ and $P \to (\neg Q \lor (P \land Q))$ are equivalent

Making use of equivalences to convert to CNF/DNF

We can convert a formula to an equivalent formula in CNF or DNF using "known" equivalences.

Example: express $(P \rightarrow Q) \land Q$ in CNF using known equivalences

- \bullet $(P \rightarrow Q) \land Q$
- \rightarrow \leftarrow $(\neg P \lor Q) \land Q$ using $(A \to B) \leftrightarrow (\neg A \lor B)$

Example: express $\neg(P \land \neg Q) \land \neg(\neg P \land \neg Q)$ in CNF using known equivalences

- $\bullet \quad \boxed{\neg (P \land \neg Q)} \land \neg (\neg P \land \neg Q)$
- $\quad \bullet \quad (\neg P \vee \neg \neg Q) \wedge \boxed{\neg (\neg P \wedge \neg Q)} \text{ using de Morgan}$
- $\blacktriangleright \ \leftrightarrow \ (\neg P \lor \boxed{\neg \neg Q}) \land (\neg \neg P \lor \neg \neg Q) \text{using de Morgan}$
- $ightharpoonup \leftrightarrow (\neg P \lor Q) \land (\neg \neg P) \lor \neg \neg Q)$ using double negation elim.
- $ightharpoonup \leftrightarrow (\neg P \lor Q) \land (P \lor \boxed{\neg \neg Q})$ using double negation elim.
- \leftrightarrow $(\neg P \lor Q) \land (P \lor Q)$ using double negation elim.

a=b f(a) f(a) leads to g(b) f(a) = g(b)

Satisfiability of CNF formulas

Problem definition: Given a CNF formula can we set **T** or **F** value to each variable to satisfy the formula?

- ▶ Example: Consider the formula $(A \lor \neg B) \land (C \lor B)$
- ▶ Is it satisfiable?
- ▶ Satisfiable by setting A = T, B = F and C = T
- Known as CNF Satisfiability or simply SAT

$$\mathcal{P}$$
 vs. $\mathcal{N}\mathcal{P}$

 \mathcal{P} : the class of problems which we can solve in polynomial time \mathcal{NP} : the class of problems where we can verify a potential solution/answer in polynomial time

Clearly, $\mathcal{P} \subseteq \mathcal{NP}$ (solving is a (hard) way of verifying)

What about the other direction? Is $\mathcal{P} = \mathcal{NP}$?

- Status unknown!
- Million dollar question

What do most people believe?

• \mathcal{P} is not equal to \mathcal{NP}

Why haven't we been able to prove it then?

Hard to rule out all possible polytime algorithms?

Hardness for the class \mathcal{NP}

 \mathcal{NP} : the class of problems where we can verify a potential solution/answer in polynomial time

Definition: A problem is \mathcal{NP} -hard if it is at least as hard as any problem in \mathcal{NP} .

More precisely, a problem X is \mathcal{NP} -hard if any problem $Y \in \mathcal{NP}$ can be solved

- using an oracle for solving X
- ightharpoonup plus a polynomial overhead for translating between X and Y

If $\mathcal{P} \neq \mathcal{NP}$ then a problem being \mathcal{NP} -hard means it cannot be solved in polynomial time!

Great, except no one knew how to show existence of a single \mathcal{ND} -hard problem!

More Precise Definition:

- A problem X is \mathbf{NP} - \mathbf{hard} if every problem Y in \mathbf{NP} can be:
 - 1. Reduced to X using an oracle for X (an oracle is like a magical black box that solves X instantly).

More Precise Definition:

- A problem X is \mathbf{NP} - \mathbf{hard} if every problem Y in \mathbf{NP} can be:
 - 1. Reduced to X using an oracle for X (an oracle is like a magical black box that solves X instantly).
 - 2. The reduction process should add only **polynomial overhead**, meaning it doesn't make things much harder computationally.

Why Does This Matter?

If you could solve an $\bf NP$ -hard problem in polynomial time, you could also solve every problem in $\bf NP$ in polynomial time. This connects to the famous $\bf P \neq NP$ question:

• If $\mathbf{P}
eq \mathbf{NP}$, then $\mathbf{NP ext{-}hard}$ problems cannot be solved in polynomial time.

Cook-Levin Theorem (1971/1973):

CNF-Satisfiability (SAT) is \mathcal{NP} -hard

How do you show a problem, say X, is \mathcal{NP} -hard?

- A polytime reduction from any of the known \mathcal{NP} -hard problems, say SAT, to X
- ightharpoonup That is, show how you can solve SAT using an oracle for X
- Plus a polynomial overhead for the translation

Tens of thousands of problems known to be \mathcal{NP} -hard

Significance of SAT

Many practical problems can be encoded into SAT (e.g., formal verification, planning/scheduling, etc.)

A possible solution (valuation) can be verified "efficiently" NP Hard

No known algorithm to solve the problem "efficiently" in all cases

In practice, SAT solvers are very efficient (NP-hardness is the worst case)

Why not consider DNF instead of CNF?

Theorem: Any propositional formula can be expressed in CNF

Theorem: Any propositional formula can be expressed in DNF Theorem: CNF satisfiability is \mathcal{NP} -hard

How hard is DNF satisfiability?

Example of a DNF formula:

$$(A \land \neg B \land C) \lor (\neg X \land Y) \lor (Z)$$

- ▶ Is it satisfiable?
- Trivial to check in polytime!
- Just pick any clause, and set variables to T or F.

Why not use DNFs then?

Because changing a formula from CNF to DNF can cause exponential blowup!

Convert $(A \lor B) \land (C \lor D)$ into DNF

Remember: $P \wedge (Q \vee R) \leftrightarrow (P \wedge Q) \vee (P \wedge R)$

$$(A \lor B) \land (C \lor D)$$

$$\longleftrightarrow ((A \lor B) \land C) \lor ((A \lor B) \land D)$$

$$\leftrightarrow$$
 $(C \land (A \lor B)) \lor (D \land (A \lor B))$

$$\leftrightarrow$$
 $(C \land A) \lor (C \land B) \lor (D \land A) \lor (D \land B)$

Consider the CNF formula: $(P_1 \vee Q_1) \wedge \cdots \wedge (P_n \vee Q_n)$

Expressing this formula in DNF requires 2^n clauses

Algorithms for SAT?

Brute force for SAT with N variables and M clauses needs $2^N\cdot N\cdot M$ time

- ► There are 2^N truth assignments
- lacktriangle For each truth assignment and each clause, verify if it is satisfied in N time

Can we solve SAT faster than 2^N ? Say 1.999999999^N ?

Conjecture (Strong Exponential Time Hypothesis (SETH)): SAT cannot be solved in $(2-\alpha)^N \cdot \operatorname{poly}(N+M)$ time for any constant $\alpha>0$

SAT solvers

Many state-of-the-art SAT solvers are based on the Davis-Putman-Logemann-Loveland algorithm (DPLL)

Basic idea (does a lot of pruning instead of brute force):

- 1. Easy cases
 - Atom p only appears as either p or $\neg p$ (but not both): assign truth value accordingly
- 2. Branch on choosing a variable p and set a truth value to it
 - This choice needs to be done cleverly
 - ▶ If $p = \mathbf{T}$: remove all clauses containing p and remove all literals $\neg p$ from clauses
 - ▶ If $p = \mathbf{F}$: remove all clauses containing $\neg p$ and remove all literals p from clauses
- 3. Keep running the above steps until
 - All clauses have been removed (all true): return SAT
 - One clause is empty (one is false): backtrack in Step 2 and choose a different truth value for p; if it is not possible to backtrack, return UNSAT

Apply the DPLL algorithm to

$$(\neg p \lor q \lor r) \land (p \lor q \lor r) \land (p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor r)$$

Here is a possible run of the algorithm:

```
 \begin{array}{l} (\neg p \lor q \lor r) \land (p \lor q \lor r) \land (p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor r) \\ p = \mathbf{T} \\ (q \lor r) \land (\neg q \lor r) \\ q = \mathbf{T} \\ (r) \\ r = \mathbf{T} \\ \mathsf{SAT} \end{array}
```

Seems hard, but read it slowly and

it all makes sense

. A robot can move between & rooms Ro and Re as follows:
(e) (a) storts in room Ro
(h) when in coar is it
E, when in ream Re it can move to Re or Ro
. To model this system, let us consider the following atomic propositions: po. pr. pe
such that pi means that the about is in room Ro at step is (i.e., after i mores)
and a gir means that the obsolers in room Re at stopi
· we can model the initial state of the above as follows: po i.e. the ober is initially in com Ro (6)
· we can model a kansdrom as follows: (pi → Trin) a (Tpin vpi)), i.e., 6, 6
· we can capture two moves as follows: po ~ (pc - p2) ~ (po - (pp v p2)) ~ (pr - p2) ~ (pp - (p2 up2))
minipolius 151 mue End more
Me: when in Rs, the about an move to Ro
How do we bendly prove that this paperty Soils? we prove its negation, is 7(pi - piss)
· let's show that his fails after & sheps, ie: po 1 (pe pi) 1 (pp (pa)) 1 (pa pz) 1 (ps (zperpe))
· We'l show this using a SAT solver: (1) convert the fronta to a CUF using by ical equivalences (8) use DPLL tocheck whether it is solve) table
(1) 0 ((1 - 770) ((2 + 7(70+10)) ((1 - 70) ((0 - 7(70+10)) (2770+770)
(a) por (po -> ps) ~ (2po - (2po v/ps)) ~ (pa -> ps) ~ (pa - (2po v/ps)) ~ (2po -> ps)
= 60 , (2 lond 1) - c/u -
to po x (1 pout pa) x (21 po upa) x (2 po ut pe) x (22 po vipe ype) x 222 po x 22 po - de las
60 per (7per 17ps) x (per 17ps ups) x (2ps 47ps) x (ps 47ps 4ps) x 2ps x ps - 77 da
CUE?
(e) cx blee por (specific) ~ (porperps) ~ (2 porps) ~ (porperps) ~ 2porpe
Pa=T Pa=F P2=T : the formula is salufiable
This gives us a run of our color: Ro - Ro - Ro, which shows that the property P
does not held, i.e. we obtained a counterexample
•

A robot can move between two rooms R_0 and R_1 as follows:

- 1. It starts in room R_0 .
- 2. When in room R_0 , it can only move to room R_1 .
- 3. When in room R_1 , it can move to R_1 or R_0 .

To model this system, consider the following atomic propositions: p_0, p_1, p_2, \dots where p_i means the robot is in room R_0 at step i (i.e., after i moves) and $\neg p_i$ means the robot is in room R_1 at step i.

We can model the initial state of the robot as follows: p_0 - the robot is initially in room R_0 .

We can model a transition as follows:

$$(p_i \rightarrow \neg p_{i+1}) \land (\neg p_i \rightarrow (p_{i+1} \lor \neg p_{i+1}))$$

i.e., (ii) & (iii)

We can capture two moves as follows:

i.e., (ii) & (iii)

We can capture two moves as follows:

$$p_2 = (p_0 \rightarrow \neg p_1) \wedge (\neg p_0 \rightarrow (p_1 \vee \neg p_1)) \wedge (p_1 \rightarrow \neg p_2) \wedge (\neg p_1 \rightarrow (p_2 \vee \neg p_2))$$

Can we prove that when in room R_1 , the robot will be in room R_1 next? i.e., when in R_1 , the robot can move to R_0 . Call it P.

How do we formally prove that this property fails? We prove its negation, i.e., $\neg(p_i \rightarrow p_{i+1})$.

Let's show that this fails after 2 steps:

$$p_2 = (p_0 \rightarrow \neg p_1) \land (\neg p_0 \rightarrow (p_1 \lor \neg p_1)) \land (p_1 \rightarrow \neg p_2) \land (\neg p_1 \rightarrow (p_2 \lor \neg p_2)) \land \neg (p_1 \rightarrow p_2)$$

We'll show this using a SAT solver:

- 1. Convert the formula to a CNF using logical equivalences.
- 2. Use DPLL to check whether it is satisfiable.

1

$$(p_0 \rightarrow \neg p_1) \land (\neg p_0 \rightarrow (p_1 \lor \neg p_1)) \land (p_1 \rightarrow \neg p_2) \land (\neg p_1 \rightarrow (p_2 \lor \neg p_2)) \land \neg (p_1 \rightarrow p_2)$$

$$\Leftrightarrow (\neg p_0 \vee \neg p_1) \wedge (\neg p_0 \vee p_1 \vee \neg p_1) \wedge (p_1 \vee \neg p_1) \wedge (\neg p_1 \vee p_2 \vee \neg p_2) \wedge (p_1 \wedge \neg p_2)$$

$$\Leftrightarrow (\neg p_0 \vee \neg p_1) \wedge (\neg p_0 \vee p_1) \wedge (\neg p_0 \vee \neg p_1) \wedge (p_1 \vee \neg p_1) \wedge (\neg p_1 \vee p_2) \wedge (\neg p_1 \vee \neg p_2) \wedge (p_1 \wedge \neg p_2 \vee \neg p_2) \wedge (p_2 \wedge \neg p_2 \vee \neg p_2 \vee \neg p_2) \wedge (p_2 \wedge \neg p_2 \vee \neg p_2 \vee \neg p_2) \wedge (p_2 \wedge \neg p_2 \vee \neg p_2 \vee \neg p_2) \wedge (p_2 \wedge \neg p_2 \vee \neg p_2 \vee \neg p_2) \wedge (p_2 \wedge \neg p_2$$