1-1 For one operation, if its worst-case time bound is $\Theta(logN)$, then its amortized time bound must be $O(logN)$. (3 $\%$)
\circ $_{\scriptscriptstyleT}$ \circ $_{\scriptscriptstyleF}$
1-2 All of the Zig, Zig-zig, and Zig-zag rotations not only move the accessed node to the root, but also roughly half the depth of most nodes on the
path. (3 分)
\circ $_{\scriptscriptstyleT}$ \circ $_{\scriptscriptstyleF}$
1-3 In a B+ tree, leaves and nonleaf nodes have some key values in common. (3 $\%$)
\circ $_{\scriptscriptstyleT}$ \circ $_{\scriptscriptstyleF}$
1-4 While accessing a term, hashing is faster than search trees. (3 $\%$)
\circ $_{\scriptscriptstyleT}$ \circ $_{\scriptscriptstyleF}$
1-5 With the same operations, the resulting leftist heap is always more balanced than the skew heap. (3 $\%$)
\circ $_{\scriptscriptstyleT}$ \circ $_{\scriptscriptstyleF}$
1-6 In a red-black tree, an internal red node cannot be a node of degree 1. (4 分)
\circ $_{\scriptscriptstyleT}$ \circ $_{\scriptscriptstyleF}$
1-7 Word stemming is to eliminate the commonly used words from the original documents. (3 分)
О т О г
1-8 Insert { 1, 2, 5, 3, 8, 4, -7, 10, 88, 34, 15, 63, 18, -18, 96 } into an initially empty binomial queue, the resulting roots are 96, -18, -7 and 1. (5 分)
О т О г
1-9 To solve a problem by dynamic programming instead of recursions, the key approach is to store the results of computations for the
subproblems so that we only have to compute each different subproblem once. Those solutions can be stored in an array or a hash table. (3 分)
\circ $_{\scriptscriptstyleT}$ \circ $_{\scriptscriptstyleF}$
1-10 In the 4-queens problem, (x1, x2, x3, x4) correspond to the 4 queens' column indices. During backtracking, (1, 4, 2, ?) will be checked before
$(1,3,4,?)$, and none of them has any solution in their branches. $(4\ \%)$
\circ $_{\scriptscriptstyleT}$ \circ $_{\scriptscriptstyleF}$
1-11 For the recurrence equation $T(N)=aT(N/b)+f(N)$, if $af(N/b)=Kf(N)$ for some constant $K>1$, then $T(N)=\Theta(f(N))$. (5 $\frac{f}{N}$)
\circ $_{\scriptscriptstyleT}$ \circ $_{\scriptscriptstyleF}$
2-1 A B+ tree of order 3 with 21 numbers has at most $_$ nodes of degree 3. (6 $\%$)
A. O 1
B. C 4
c. C 3
D. C 2

2-2 Delete the minimum number from the given leftist heap. Which one of the following statements is TRUE? (6 %)

- A. 8 is NOT the root
 - B. 35 is the right child of 24
 - C. 12 is the right child of 8
 - D. 24 is the left child of 13

2-3 Insert { 9, 8, 7, 2, 3, 5, 6, 4} into an initially empty AVL tree. Which one of the following statements is FALSE? (6 %)

- A. the height of the resulting AVL tree is 3
 - B. 5 is the root
 - C. there are 2 nodes with their balance factors being -1
 - D. 2 and 5 are siblings

2-4 When solving a problem with input size N by divide and conquer, if at each step, the problem is divided into 9 sub-problems and each size of these sub-problems is N/3, and they are conquered in O(N2logN). Which one of the following is the closest to the overall time complexity? (6 %)

- A. O(N2log2N)
 - B. O(N2
 - C. O(N2logN)
 - D. *O(N3logN)*

2-5 For the result of accessing the keys 4 and 8 in order in the splay tree given in the figure, which one of the following statements is FALSE? (6

	\circ				
A.		4 and	11	are	siblings

- B. 4 is the parent of 7
- C 8 is the roo
- D. 7 and 14 are siblings

2-6 Among the following groups of concepts, which group is not totally relevant to a search engine? (6 %)

- A. distributed index, search tree, posting list
 - B. dynamic indexing, stop words, backtracking
 - C. thresholding, page rank, word stemming
 - D. dictionary, precision, inverted file index

5-1 The function $RL_Rotation$ is to do right-left rotation to the trouble-finder tree node $\boxed{\ }$ in an AVL tree.

```
typedef struct TNode *Tree;

struct TNode {
    int key, h;
    Tree left, right;
};

Tree RL_Rotation( Tree T )
{
    Tree K1, K2;
    K1 = T->right;
    K2 = K1->left;

    T->right = (5分);
```

```
K2->right = K1;

/* Update the heights */
K1->h = maxh(Height(K1->left), Height(K1->right)) + 1;
T->h = maxh(Height(T->left), Height(T->right)) + 1;
K2->h = maxh(K1->h, T->h) + 1;
return K2;
}
```

5-2 The function BinQueue_Merge is to merge two binomial queues H1 and H2, and return H1 as the resulting queue.

```
BinQueue BinQueue_Merge( BinQueue H1, BinQueue H2 )
{ BinTree T1, T2, Carry = NULL;
   int i, j;
   H1->CurrentSize += H2-> CurrentSize;
   for ( i=0, j=1; j \leftarrow H1 \rightarrow CurrentSize; i++, j*=2 ) {
      T1 = H1->TheTrees[i]; T2 = H2->TheTrees[i];
       switch( 4*!!Carry + 2*!!T2 + !!T1 ) {
       case 0:
       case 1: break;
       case 2: H1->TheTrees[i] = T2; H2->TheTrees[i] = NULL; break;
       case 4: H1->TheTrees[i] = Carry; Carry = NULL; break;
       case 3: Carry = CombineTrees( T1, T2 );
                                                                                        (5分); break;
       case 5: Carry = CombineTrees( T1, Carry );
              H1->TheTrees[i] = NULL; break;
       case 6:
                                                                                        (5分);
              H2->TheTrees[i] = NULL; break;
       case 7: H1->TheTrees[i] = Carry;
              Carry = CombineTrees( T1, T2 );
              H2->TheTrees[i] = NULL; break;
       } /* end switch */
   } /* end for-loop */
    return H1;
}
```