Finite Volumen Verfahren erster Ordnung

University of Stuttgart

Studentenvortrag December 4, 2022

Presentation Overview

1 Grundlagen

Diskretisierungsverfahren Schwache Form Flussberechnung Raumoperator und Zeitintegration

2 Ergebnisse

Vergleich verschiedener Riemannlöser Konvergenzordnung des SD SineWave01 Testcase Validierung mit Gausspuls

3 Lessons learned

Diskretisierungsverfahren

Finite Differenzen Verfahren

• punktweise Approximation (Punkte im Raum)

Finite Elemente Verfahren

- polynomiale Approximation
- Für unstetige Lösungen nicht geeignet (Verdichtungsstöße und Kontatkunstetigkeiten)

Finite Volumen Verfahren

- Lösung in Gitterzellen
- Integrale Erhaltung direkt mit dem Verfahren verknüpft

Schwache Form

Die hyperbolische Differenzialgleichung

$$\mathbf{U}_t + \nabla \cdot \mathbb{F}^{\mathbf{C}}(\mathbf{U}) = 0 \tag{1}$$

stellt eine Anforderung an die Differenzierbarkeit.

Es treten Unstetigkeiten im Strömungsfeld auf
 ⇒ Schwache Form

$$\int_{\mathbf{V}} \mathbf{U}_t \phi \, d\mathbf{x} + \int_{\mathbf{V}} \nabla \cdot \mathbb{F}^{\mathbf{C}}(\mathbf{U}) \phi \, d\mathbf{x} = 0, \qquad \mathbf{x} = [x, y]^T$$
 (2)

Anwendung des Satzes von Gauß ergibt

$$V_i U_{i,t} + \oint_{\partial V_i} \mathbb{F}^{C}(U_{RP}) \cdot n \, dS = 0 \tag{3}$$

Schwache Form - Lösung des Oberflächenintegrals

 Numerische Lösung des Oberflächenintegrals ⇒ Rand eines Kontrollvolumens (KV) besteht aus stückweise glatten Elementen.

Figure: KV mit stückweise glatten Kanten

Flussbrechnung in mehreren Dimensionen

Vorgehen

- Diskretisierung des Rechengebiets
- 2 Transformation der Zustände in ein lokales Koordinatensystem
- Berechnung des numerischen Flusses (1D Riemann Problem)
- Rücktransformation in globales Koordinatensystem

Die Transformation ist nur zulässig, wenn das Problem rotationsinvariant ist.

$$\Rightarrow f(\alpha \underline{u}) = \alpha f(\underline{u})$$

$$\mathbb{T} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & n_1 & n_2 & 0 \\ 0 & -n_2 & n_1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \tag{4}$$

$$\mathbb{T}^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & n_1 & -n_2 & 0 \\ 0 & n_2 & n_1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(5)

Raumoperator und Zeitintegration

Der Raumoperator ergibt sich zu

$$\mathbf{U}_{i,t} = R_i \approx -\frac{1}{V_i} \sum_{e_{ii}} |e_{ij}| \mathbb{T}^{-1} g(\mathbb{T}\mathbf{U}_i, \ \mathbb{T}(U)_j; \ [1,0]^T)$$
 (6)

mit dem approximierten numerischen Fluss *g*. Dieser wird im lokalen Koordinatensystem ermittelt.

Das FV - Verfahren

$$\frac{\mathbf{U}_i^{n+1} - \mathbf{U}_i}{\Delta t} = R_i \tag{7}$$

wird durch die Zeitintegration mit der Rechteckregel vollständig.

Figure: Lokale Koordinatensysteme im Rechengitter

Vergleich verschiedener Riemann Löser

$T \cap$	$D \cap$	ΩТ	bot	case
10	NO	$_{\rm J}$	esi	cast

Riemann Löser	Rechenzeit $[s]$	$L_1[-]$	$L_2[-]$	$L_{inf}[-]$
Godunov	0,0052	2,13E-1	6,34E-1	3,32
Roe 3	0,0027	2,16E-1	6,35E-1	3,33
HLL	0,0026	2,15E-1	6,32E-1	3,38
HLLE	0,0036	2,15E-1	6,32E-1	3,38
HLLC	0,0029	2,13E-1	6,34E-1	3,32
Lax-Friedrichs	0,0023	2,60E-1	6,99E-1	3,45
Steger-Warming	0,0029	2,19E-1	6,41E-1	3,42
AUSMD	0,0026	2,12E-1	6,31E-1	3,31

Table: Rechenzeit und Diskretisierungsfehler verschiedener Riemann Löser

Druckfeld des SineWaveO1 Testcase

Es wird ein sinusförmiger Dichtepuls transportiert.

Figure: SineWave mit AUSDM auf einem kartesischen 1600x1600 Netz

Konvergenzordnung mit AUSMD Riemann Löser 2D SineWaveO1 Testcase

Die empirische Konvergenzordnung des Verfahrens ergibt sich zu

$$n = \frac{\log(\frac{E_1}{E_2})}{\log(\frac{h_1}{h_2})},$$

wobei E die Diskretisierungsfehler und h den gemittelten Gitterabstand darstellen.

Gitter	Rechenzeit [s]	$L_1[-]$	$L_2[-]$	$L_{inf}[-]$	$n_{L1}[-]$	$n_{L2}[-]$	$n_{Linf}[-]$
100x100	1,02	3,37E-3	4,28E-3	1,11E-2	0,970	0,973	0,954
200x200	8,20	1,72E-3	2,18E-3	5,73E-3	0,987	0,987	0,968
400x400	61,79	1,72E-3	2,18E-3	5,73E-3	0,990	0,992	0,976
800x800	488,60	4,37E-4	5,53E-4	1,49E-3	0,997	0,992	0,977
1600x1600	3985,18	2,19E-4	2,78E-4	7,57E-4			

Table: Rechenzeit, Diskretisierungsfehler und empirische Konvergenzordnung

Druckfeld des Gausspuls

Figure: Gausspuls auf kartesischem Gitter (oben) und unstrukturiertem kreisförmigem Gitter (unten)

Figure '

- Schwache Formulierung der Transportgleichung erlaubt die Abbildung von Unstetigkeiten
- Numerische Lösung ⇒ Rand des KV muss aus stückweise glatten Elementen bestehen
- Bei rotationsinvarianten Problemen kann die Flussberechnung in einem lokalen Koordinatensystem eindimensional erfolgen

The End

Questions? Comments?