Supplemental Example

Predicting Factor Scores vs. True Latent Variables

Table of contents

library(ggplot2)

```
library(lavaan)

This is lavaan 0.6-17
lavaan is FREE software! Please report any bugs.
```

The generating model is basically the same as Example 1 in the manuscript, but with a much larger sample size and an additional predictor w for predicting the latent variable eta.

```
set.seed(1127)
# Simulation condition
num_obs <- 5000 # small sample per group</pre>
# Mean of predictor variable w
mean_w \leftarrow c(1, 2)
gamma <- 0.5 # coefficient of w on eta
# Simulate scalar invariant data with same mean
lambda \leftarrow c(0.9, 0.7, 0.5)
nu \leftarrow c(0, 0, 0)
theta <- diag(1 - lambda^2)
# Group 1
psi1 <- 1.6
alpha1 <- 0
# Group 2
psi2 <- 0.4
alpha2 <- 0.8
```

```
# Function for data generation
gendata <- function(nobs, lambda1, lambda2 = lambda1,</pre>
                     nu1, nu2 = nu1, theta1, theta2 = theta1,
                     psi1, psi2, alpha1, alpha2) {
    zero_p <- 0 * lambda # zero vector of length p (for convenience)</pre>
    vw_psi_theta1 <- rbind(</pre>
        c(1, 0, zero_p),
        c(0, psi1, zero_p),
        cbind(0, zero_p, theta1)
    w_eta_eps1 <- MASS::mvrnorm(nobs,</pre>
        mu = c(mean_w[1], alpha1, 0 * lambda1),
        Sigma = vw_psi_theta1, empirical = TRUE
    w1 <- w_eta_eps1[, 1]
    eta1 <- w1 * gamma + w_eta_eps1[, 2]
    eps1 <- w_eta_eps1[, -(1:2)]
    y1 <- t(nu1 + t(tcrossprod(eta1, lambda1) + eps1))
    vw_psi_theta2 <- rbind(</pre>
        c(1, 0, zero_p),
        c(0, psi2, zero_p),
        cbind(0, zero_p, theta2)
    w_eta_eps2 <- MASS::mvrnorm(nobs,</pre>
        mu = c(mean w[2], alpha2, 0 * lambda),
        Sigma = vw_psi_theta2, empirical = TRUE
    w2 <- w_eta_eps2[, 1]
    eta2 <- w2 * gamma + w_eta_eps2[, 2]
    eps2 \leftarrow w_eta_eps2[, -(1:2)]
    y2 <- t(nu2 + t(tcrossprod(eta2, lambda2) + eps2))
    out <- rbind(cbind(eta1, y1, group = 1, w = w1),
                  cbind(eta2, y2, group = 2, w = w2))
    out <- data.frame(out)</pre>
    out$group <- factor(out$group)</pre>
    colnames(out) <- c("eta", paste0("y", seq_along(lambda)), "group", "w")</pre>
    out
dat_y <- gendata(num_obs, lambda1 = lambda, nu1 = nu, theta1 = theta,
                  psi1 = psi1, psi2 = psi2, alpha1 = alpha1, alpha2 = alpha2)
```

Strict invariance model

The result below confirms that strict invariance is tenable with the simulated data.

```
strict_fit <- cfa(
    "
    f =~ NA * y1 + y2 + y3
    f ~~ c(1, NA) * f
    ",
    data = dat_y,
    # std.lv = TRUE,
    group = "group",
    group.equal = c("loadings", "intercepts", "residuals"),
    likelihood = "wishart"
)
summary(strict_fit)</pre>
```

lavaan 0.6.17 ended normally after 26 iterations

Estimator Optimization method Number of model parameters Number of equality constraints	ML NLMINB 20 9
Number of observations per group: 1 2	5000 5000
Model Test User Model:	
Test statistic Degrees of freedom P-value (Chi-square)	0.000 7 1.000

Parameter Estimates:

1

2

Test statistic for each group:

Standard errors Standard
Information Expected
Information saturated (h1) model Structured

0.000

0.000

Group 1 [1]:

		Estimate	Std.Err	z-value	P(> z)
f =~					
y 1	(.p1.)	1.224	0.014	85.316	0.000
у2	(.p2.)	0.952	0.013	72.621	0.000
у3	(.p3.)	0.680	0.012	56.405	0.000

Intercepts:

		Estimate	Std.Err	z-value	P(> Z)
.y1	(.p8.)	0.450	0.018	24.570	0.000
.y2	(.p9.)	0.350	0.016	21.744	0.000
.y3	(.10.)	0.250	0.014	17.945	0.000

Variances:

		Estimate	Std.Err	z-value	P(> z)
f		1.000			
.y1	(.p5.)	0.190	0.011	17.042	0.000
.y2	(.p6.)	0.510	0.010	51.623	0.000
.уЗ	(.p7.)	0.750	0.011	65.818	0.000

Group 2 [2]:

Latent Variables:

		Estimate	Std.Err	z-value	P(> z)
f =~					
у1	(.p1.)	1.224	0.014	85.316	0.000
у2	(.p2.)	0.952	0.013	72.621	0.000
у3	(.p3.)	0.680	0.012	56.405	0.000

Intercepts:

		Estimate	Std.Err	z-value	P(> z)
.y1	(.p8.)	0.450	0.018	24.570	0.000
.y2	(.p9.)	0.350	0.016	21.744	0.000
.y3	(.10.)	0.250	0.014	17.945	0.000
f		0.956	0.021	46.455	0.000

Variances:

Estimate Std.Err z-value P(>|z|)

```
28.934
                                               0.000
f
                   0.351
                            0.012
.y1
         (.p5.)
                   0.190
                             0.011
                                     17.042
                                               0.000
         (.p6.)
                   0.510
                             0.010
                                     51.623
                                               0.000
.y2
.y3
         (.p7.)
                   0.750
                             0.011
                                     65.818
                                               0.000
```

Regression Factor Scores with Group-Specific Latent Distributions

```
# Regression factor scores
dat_y$fsyr <- lavPredict(strict_fit, assemble = TRUE)$f
dat_y |>
    ggplot(aes(x = eta, y = fsyr, col = group)) +
    geom_point(alpha = 0.1, size = 0.1) +
    geom_smooth(method = "lm", se = FALSE, fullrange = TRUE)
```

[`]geom_smooth()` using formula = 'y ~ x'

Examining Group \times w interaction

The code below shows that using regression factor scores in place of η as the outcome results in a spurious interaction.

```
# No interaction with true latent variable
lm(eta ~ w * group, data = dat_y) |> summary()
Call:
lm(formula = eta ~ w * group, data = dat_y)
Residuals:
            1Q Median
   Min
                           3Q
                                  Max
-4.8370 -0.5796 0.0048 0.5872 4.0928
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.435e-14 2.000e-02 0.00
            5.000e-01 1.414e-02 35.35
                                          <2e-16 ***
            8.000e-01 3.742e-02 21.38
                                          <2e-16 ***
group2
           -8.150e-16 2.000e-02 0.00
w:group2
                                               1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1 on 9996 degrees of freedom
Multiple R-squared: 0.4021, Adjusted R-squared: 0.4019
F-statistic: 2241 on 3 and 9996 DF, p-value: < 2.2e-16
# Spurious interaction with regression factor scores
lm(fsyr ~ w * group, data = dat_y) |> summary()
Call:
lm(formula = fsyr ~ w * group, data = dat_y)
Residuals:
            1Q Median
   Min
                           3Q
                                  Max
-3.2333 -0.4082 -0.0031 0.4119 3.2040
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.335021  0.014083 -23.789  < 2e-16 ***
            0.335021 0.009959 33.640 < 2e-16 ***
            0.714991 0.026348 27.136 < 2e-16 ***
group2
```

w:group2

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7041 on 9996 degrees of freedom

Multiple R-squared: 0.3967, Adjusted R-squared: 0.3965

F-statistic: 2191 on 3 and 9996 DF, p-value: < 2.2e-16
```

Regression Factor Scores with Common Latent Distributions

```
# Function for scoring matrix
compute_a_reg <- function(lambda, theta, psi) {</pre>
    covy <- lambda %*% psi %*% t(lambda) + theta
    ginvcovy <- MASS::ginv(covy)</pre>
    tlam_invcov <- crossprod(lambda, ginvcovy)</pre>
    psi %*% tlam_invcov
}
# Function for computing factor scores with common distributions
compute_fscore <- function(y, lambda, nu, theta,</pre>
                             psi, alpha) {
    y1c <- t(as.matrix(y))</pre>
    meany <- lambda %*% alpha + nu
    y1c <- y1c - as.vector(meany)</pre>
    a_mat <- compute_a_reg(lambda, psi = psi, theta = theta)</pre>
    t(a_mat %*% y1c + as.vector(alpha))
strict_pars <- lavInspect(strict_fit, what = "est")</pre>
fscores_reg3 <- list(</pre>
    `1` = compute_fscore(
        dat_y[dat_y$group == 1, 2:4],
        lambda = strict_pars[[1]]$lambda,
        theta = strict_pars[[1]]$theta,
        nu = strict_pars[[1]]$nu,
        psi = 1,
        alpha = 0.5
    ),
    `2` = compute_fscore(
        dat_y[dat_y$group == 2, 2:4],
        lambda = strict_pars[[2]]$lambda,
        theta = strict_pars[[2]]$theta,
        nu = strict_pars[[2]]$nu,
        psi = 1,
```

`geom_smooth()` using formula = 'y ~ x'

Examining Group \times w interaction

Using the same latent distribution for computing factor scores avoids the spurious interaction.

```
lm(eta ~ w * group, data = dat_y) |> summary()
```

```
Call:
lm(formula = eta ~ w * group, data = dat_y)
Residuals:
   Min
            1Q Median
                           3Q
                                  Max
-4.8370 -0.5796 0.0048 0.5872 4.0928
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.435e-14 2.000e-02
                                  0.00
            5.000e-01 1.414e-02 35.35 <2e-16 ***
            8.000e-01 3.742e-02 21.38 <2e-16 ***
group2
           -8.150e-16 2.000e-02 0.00
                                              1
w:group2
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1 on 9996 degrees of freedom
Multiple R-squared: 0.4021,
                            Adjusted R-squared: 0.4019
F-statistic: 2241 on 3 and 9996 DF, p-value: < 2.2e-16
lm(fsyrc ~ w * group, data = dat_y) |> summary()
Call:
lm(formula = fsyrc ~ w * group, data = dat_y)
Residuals:
   Min
            1Q Median
                           3Q
                                  Max
-3.2333 -0.4464 -0.0035 0.4454 3.2040
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.907e-01 1.456e-02 -19.97 <2e-16 ***
            3.350e-01 1.030e-02 32.54 <2e-16 ***
            5.360e-01 2.724e-02 19.68
group2
                                         <2e-16 ***
w:group2
           -3.509e-16 1.456e-02 0.00
                                              1
```

Residual standard error: 0.7279 on 9996 degrees of freedom Multiple R-squared: 0.3631, Adjusted R-squared: 0.3629 F-statistic: 1899 on 3 and 9996 DF, p-value: < 2.2e-16

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Including \boldsymbol{w} When Computing Regression Factor Scores

Another possible option is to use covariate-informed factor scores [see @xxx] by including w in the strict invariance model.

```
strict_w_fit <- cfa(
    "
    f =~ NA * y1 + y2 + y3
    f ~~ c(1, NA) * f
    f ~ w
    ",
    data = dat_y,
    # std.lv = TRUE,
    group = "group",
    group.equal = c("loadings", "intercepts", "residuals"),
    likelihood = "wishart"
)
summary(strict_w_fit)</pre>
```

lavaan 0.6.17 ended normally after 29 iterations

Estimator	ML
Optimization method	NLMINB
Number of model parameters	22
Number of equality constraints	9
Number of observations per group:	
1	5000
2	5000
Model Test User Model:	
Test statistic	0.000
Degrees of freedom	11
P-value (Chi-square)	1.000
Test statistic for each group:	
1	0.000
2	0.000
Parameter Estimates:	

Information				Expected
Information	saturated	(h1)	model	Structured

Group 1 [1]:

variables:				
	Estimate	Std.Err	z-value	P(> z)
(.p1.)	1.138	0.013	85.322	0.000
(.p2.)	0.885	0.012	73.342	0.000
(.p3.)	0.632	0.011	56.589	0.000
	(.p1.) (.p2.)	Estimate (.p1.) 1.138 (.p2.) 0.885	Estimate Std.Err (.p1.) 1.138 0.013 (.p2.) 0.885 0.012	Estimate Std.Err z-value (.p1.) 1.138 0.013 85.322 (.p2.) 0.885 0.012 73.342

Regressions:

	Estimate	Std.Err	z-value	P(> z)
f ~				
W	0.395	0.016	25.383	0.000

Intercepts:

	<u> </u>	stimate	Std.Err	z-value	P(> z)
.y1	(.10.)	0.000	0.024	0.000	1.000
.y2	(.11.)	0.000	0.021	0.000	1.000
.y3	(.12.)	0.000	0.018	0.000	1.000

Variances:

	E	Istimate	Std.Err	z-value	P(> z)
.f		1.000			
.y1	(.p6.)	0.190	0.009	20.825	0.000
.y2	(.p7.)	0.510	0.009	55.966	0.000
.y3	(.p8.)	0.750	0.011	66.555	0.000

Group 2 [2]:

Latent Variables:

		Estimate	Std.Err	z-value	P(> z)
f =~					
y1	(.p1.)	1.138	0.013	85.322	0.000
у2	(.p2.)	0.885	0.012	73.342	0.000
у3	(.p3.)	0.632	0.011	56.589	0.000

Regressions:

Estimate Std.Err z-value P(>|z|)

```
f ~
                      0.395
                               0.010 41.104
                                                 0.000
   W
Intercepts:
                   Estimate Std.Err z-value P(>|z|)
   .y1
            (.10.)
                      0.000
                               0.024
                                        0.000
                                                 1.000
                      0.000
                                        0.000
                                                 1.000
   .y2
            (.11.)
                               0.021
            (.12.)
                      0.000
                               0.018
                                        0.000
                                                 1.000
   .уЗ
   .f
                      0.632
                               0.029
                                       21.582
                                                 0.000
Variances:
                   Estimate Std.Err z-value P(>|z|)
   .f
                      0.250
                                                 0.000
                               0.010
                                       25.980
                      0.190
                                                 0.000
            (.p6.)
                               0.009
                                       20.825
   .y1
            (.p7.)
                      0.510
                               0.009
                                       55.966
                                                 0.000
   .y2
                                                 0.000
   .уЗ
            (.p8.)
                      0.750
                               0.011
                                       66.555
# Regression factor scores
dat_y$fsyrw <- lavPredict(strict_w_fit, assemble = TRUE)$f</pre>
dat_y |>
    ggplot(aes(x = eta, y = fsyrw, col = group)) +
    geom_point(alpha = 0.1, size = 0.1) +
   geom_smooth(method = "lm", se = FALSE, fullrange = TRUE)
```

[`]geom_smooth()` using formula = 'y ~ x'

Examining Group \times w interaction

The code below shows that using regression factor scores in place of η as the outcome results in a spurious interaction.

```
# No interaction with true latent variable
lm(eta ~ w * group, data = dat_y) |> summary()
```

Call:

lm(formula = eta ~ w * group, data = dat_y)

Residuals:

Min 1Q Median 3Q Max -4.8370 -0.5796 0.0048 0.5872 4.0928

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.435e-14 2.000e-02 0.00 1
w 5.000e-01 1.414e-02 35.35 <2e-16 ***
group2 8.000e-01 3.742e-02 21.38 <2e-16 ***
w:group2 -8.150e-16 2.000e-02 0.00 1
```

```
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1 on 9996 degrees of freedom
Multiple R-squared: 0.4021, Adjusted R-squared: 0.4019
F-statistic: 2241 on 3 and 9996 DF, p-value: < 2.2e-16
# Spurious interaction with regression factor scores
lm(fsyrw ~ w * group, data = dat_y) |> summary()
Call:
lm(formula = fsyrw ~ w * group, data = dat_y)
Residuals:
            1Q Median
                         3Q
                                 Max
-3.4292 -0.4048 -0.0031 0.4059 3.3982
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.517e-09 1.464e-02 0.00 1
           3.953e-01 1.035e-02 38.18 <2e-16 ***
            6.325e-01 2.739e-02 23.09 <2e-16 ***
group2
w:group2
            3.371e-09 1.464e-02 0.00
                                            1
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.732 on 9996 degrees of freedom
Multiple R-squared: 0.4397, Adjusted R-squared: 0.4395
F-statistic: 2615 on 3 and 9996 DF, p-value: < 2.2e-16
```

The caveat is one may need to include all potential predictors in the measurement and scoring model.

Bartlett Factor Scores

Bartlett factor scores are scalar invariant, so it does not lead to spurious interactions.

```
# Regression factor scores
dat_y$fsyb <- lavPredict(strict_fit, method = "Bartlett", assemble = TRUE)$f
dat_y |>
    ggplot(aes(x = eta, y = fsyb, col = group)) +
    geom_point(alpha = 0.1, size = 0.1) +
    geom_smooth(method = "lm", se = FALSE, fullrange = TRUE)
```

`geom_smooth()` using formula = 'y ~ x'

Examining Group \times *w* interaction

The code below shows that using regression factor scores in place of η as the outcome results in a spurious interaction.

```
# No interaction with true latent variable
lm(eta ~ w * group, data = dat_y) |> summary()
```

```
Call:
lm(formula = eta ~ w * group, data = dat_y)
```

```
Residuals:
```

1Q Median 3Q Min Max -4.8370 -0.5796 0.0048 0.5872 4.0928

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 1.435e-14 2.000e-02 0.00 5.000e-01 1.414e-02 35.35 <2e-16 *** 8.000e-01 3.742e-02 21.38 <2e-16 *** group2 -8.150e-16 2.000e-02 0.00 1 w:group2

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1 on 9996 degrees of freedom Multiple R-squared: 0.4021, Adjusted R-squared: 0.4019 F-statistic: 2241 on 3 and 9996 DF, p-value: < 2.2e-16

Spurious interaction with regression factor scores lm(fsyb ~ w * group, data = dat_y) |> summary()

Call:

lm(formula = fsyb ~ w * group, data = dat_y)

Residuals:

1Q Median 3Q Max -3.5478 -0.4898 -0.0038 0.4887 3.5156

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) -3.676e-01 1.597e-02 -23.01 <2e-16 *** 3.676e-01 1.130e-02 32.54 <2e-16 *** group2 5.882e-01 2.989e-02 19.68 <2e-16 *** -1.521e-16 1.598e-02 0.00 1 w:group2

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Residual standard error: 0.7987 on 9996 degrees of freedom Multiple R-squared: 0.3631, Adjusted R-squared: 0.3629 F-statistic: 1899 on 3 and 9996 DF, p-value: < 2.2e-16