MATH1061 Discrete Mathematics I

Problem Set 1 Michael Kasumagic, sID#: 44302669

Due: 5pm, 16^{th} of Augsut, 2024

Question 1: (10 marks)

Use a truth table to determine whether the following statement is a contradiction, a tautology or neither. If it is a contradiction or a tautology, verify your answer using logical equivalences.

$$((p \leftrightarrow q) \land (p \oplus r)) \to (q \lor r)$$

Solution: Given the statement, we will construct a truth table.

p	q	r	$p \leftrightarrow q$	$p\oplus r$	$(p \leftrightarrow q) \land (p \oplus r)$	$q \vee r$	$((p \leftrightarrow q) \land (p \oplus r)) \to q \lor r$
T	Τ	Т	Т	F	F	Τ	Т
T	\mathbf{T}	\mathbf{F}	T	${ m T}$	T	${ m T}$	${ m T}$
\mathbf{T}	F	Τ	F	F	F	${ m T}$	${ m T}$
T	F	F	F	${ m T}$	F	\mathbf{F}	${ m T}$
F	Τ	T	F	${ m T}$	F	${ m T}$	${ m T}$
F	\mathbf{T}	F	F	F	F	${ m T}$	${ m T}$
F	F	Τ	T	${ m T}$	T	${ m T}$	${ m T}$
F	F	F	Γ	\mathbf{F}	F	\mathbf{F}	T

Therefore, the given statement is a tautology.

Let's now verify this with a proof using logical equivalences. For the sake of brevity, we'll label the original statement A.

$$A \equiv ((p \leftrightarrow q) \land (p \oplus r)) \rightarrow (q \lor r)$$

First, we'll expand and simplify $p \leftrightarrow q$.

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$
 (Logical Equivalence of \leftrightarrow)
$$\equiv (\sim p \lor q) \land (\sim q \lor p)$$
 (Logical Equivalence of \to)
$$\equiv (\sim p \land \sim q) \lor (\sim p \land p) \lor (q \land \sim q) \lor (q \land p)$$
 (Distributivity)
$$\equiv (\sim p \land \sim q) \lor \bot \lor \bot \lor \lor (q \land p)$$
 (Negation Law)
$$\equiv (\sim p \land \sim q) \lor (q \land p)$$
 (Identity Law)
$$\therefore A \equiv ((\sim p \land \sim q) \lor (q \land p) \land (p \oplus r)) \to (q \lor r)$$
 (Substitute back into A)

Next, we'll expand and simplify $p \oplus r$.

$$p \oplus r \equiv (p \vee r) \wedge \sim (p \wedge r)$$
 (Logical Equivalence of \oplus)
$$\equiv (p \vee r) \wedge (\sim p \vee \sim r)$$
 (Apply De Morgan's Law)
$$\equiv (p \wedge \sim p) \vee (p \wedge \sim r) \vee (r \wedge \sim p) \vee (r \wedge \sim r)$$
 (Distributivity)
$$\equiv \bot \vee (p \wedge \sim r) \vee (r \wedge \sim p) \vee \bot$$
 (Negation Law)
$$\equiv (p \wedge \sim r) \vee (r \wedge \sim p)$$
 (Identity Law)
$$\therefore A \equiv (((\sim p \wedge \sim q) \vee (q \wedge p)) \wedge ((p \wedge \sim r) \vee (r \wedge \sim p))) \rightarrow (q \vee r)$$
 (Substitute back into A)

Now, we'll attempt to distribute $p \leftrightarrow q$ over $p \oplus r$.

$$(p \leftrightarrow q) \land (p \oplus r)$$

$$\equiv ((\sim p \land \sim q) \lor (q \land p)) \land ((p \land \sim r) \lor (r \land \sim p)) \qquad \text{(Subsittute previous results)}$$

$$\equiv ((\sim p \land \sim q) \land (p \land \sim r)) \lor ((\sim p \land \sim q) \land (r \land \sim p))$$

$$\lor ((q \land p) \land (p \land \sim r)) \lor ((q \land p) \land (r \land \sim p)) \qquad \text{(Distributivity)}$$

$$\equiv ((\sim p \land p) \land (\sim q \land \sim r)) \lor ((\sim p \land \sim p) \land (r \land \sim q))$$

$$\lor ((p \land p) \land (q \land \sim r)) \lor ((\sim p \land p) \land (r \land q)) \qquad \text{(Associativity)}$$

$$\equiv (\bot \land (\sim q \land \sim r)) \lor (\sim p \land (r \land \sim q)) \lor (p \land (q \land \sim r)) \lor (\bot \land (r \land q)) \qquad \text{(Negation Law)}$$

$$\equiv (\bot) \lor (\sim p \land \sim q \land r) \lor (p \land q \land \sim r) \lor (\bot) \qquad \text{(Domination Law)}$$

$$\equiv (\sim p \land \sim q \land r) \lor (p \land q \land \sim r) \qquad \text{(Identity Law)}$$

$$\therefore A \equiv ((\sim p \land \sim q \land r) \lor (p \land q \land \sim r)) \rightarrow (q \lor r) \qquad \text{(Subsittute back into A)}$$

Holy hell.

Next, we'll expand this resultant $\alpha \to \beta$ into $\sim \alpha \lor \beta$.

$$A = ((\sim p \land \sim q \land r) \lor (p \land q \land \sim r)) \to (q \lor r)$$
 (Previous Result)
$$= \sim ((\sim p \land \sim q \land r) \lor (p \land q \land \sim r)) \lor (q \lor r)$$
 (Logical Equivalence of \to)
$$= (\sim (\sim p \land \sim q \land r) \land \sim (p \land q \land \sim r)) \lor (q \lor r)$$
 (Apply De Morgan's Law)
$$= ((p \lor q \lor \sim r) \land (\sim p \lor \sim q \lor r)) \lor (q \lor r)$$
 (Apply De Morgan's Law)
$$= (q \lor r) \lor ((p \lor q \lor \sim r) \land (\sim p \lor \sim q \lor r))$$
 (Commutativty)

Finally, we'll distribute $(q \lor r)$ over the rest of the statement.

$$A = (q \lor r) \lor ((p \lor q \lor \sim r) \land (\sim p \lor \sim q \lor r))$$
 (Previous Result)

$$= ((q \lor r) \lor (p \lor q \lor \sim r)) \land ((q \lor r) \lor (\sim p \lor \sim q \lor r))$$
 (Distributivity)

$$= (q \lor r \lor p \lor q \lor \sim r) \land (q \lor r \lor \sim p \lor \sim q \lor r)$$
 (Associativity)

We're so close now!

To finish it off, we can use associativity to rearrange our statement, find the tautology, then expand it outward, until we show the whole statement evaluates to a tautology.

$$\begin{split} \mathbf{A} &= (q \vee r \vee p \vee q \vee \sim r) \wedge (q \vee r \vee \sim p \vee \sim q \vee r) \\ &= (r \vee \sim r \vee p \vee q \vee q) \wedge (q \vee \sim q \vee p \vee r \vee r) \\ &= (\top \vee p \vee q) \wedge (\top \vee p \vee r) \\ &= (\top \vee q) \wedge (\top \vee r) \end{split} \qquad \text{(Nagation Law and Idempotent Law)}$$

$$= (\top \vee q) \wedge (\top \vee r) \\ &= \top \wedge \top \end{aligned} \qquad \text{(Idempotent Law)}$$

$$\therefore \mathbf{A} \equiv \top \qquad \text{(Conclusion)}$$

And we're done! Therefore, we've proven, by logical equivalence, that the statement

$$((p \leftrightarrow q) \land (p \oplus r)) \rightarrow (q \lor r)$$

is logically equivalent to a tautology.

Question 2: (10 marks)

Using the laws of logical equivalence, show that the following statement is a tautology:

$$((a \to r) \land (b \to r) \land (\sim a \to b)) \to r$$

Solution: Again, we'll label the statement B for the sake of brevity.

$$B \equiv ((a \to r) \land (b \to r) \land (\sim a \to b)) \to r$$

We'll start by expanding each \rightarrow expression into its corresponding $\sim \lor$ expression.

$$\begin{array}{ll} (a \to r) \equiv \sim \!\! a \lor r & \text{(Logical Equivalence of } \to \text{)} \\ (b \to r) \equiv \sim \!\! b \lor r & \text{(Logical Equivalence of } \to \text{)} \\ (\sim \!\! a \to b) \equiv a \lor b & \text{(Logical Equivalence of } \to \text{)} \\ \therefore B \equiv ((\sim \!\! a \lor r) \land (\sim \!\! b \lor r) \land (a \lor b)) \to r & \text{(Subsittute back into B)} \\ \end{array}$$

We will now apply the distributivity law to undistribute r from $(\sim a \lor r) \land (\sim b \lor r)$.

$$(\sim a \lor r) \land (\sim b \lor r) \equiv r \lor (\sim a \land \sim b)$$
 (Distributivity)

$$\therefore B \equiv ((r \lor (\sim a \land \sim b)) \land (a \lor b)) \rightarrow r$$
 (Substitute back into B)

$$\equiv ((a \lor b) \land (r \lor (\sim a \land \sim b))) \rightarrow r$$
 (Associativity)

Next, we'll now distribute $(a \lor b)$ over $r \lor (\sim a \land \sim b)$.

$$(a \lor b) \land (r \lor (\sim a \land \sim b))$$

$$\equiv ((a \lor b) \land r) \lor ((a \lor b) \land (\sim a \land \sim b))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor (((a \lor b) \land \sim a) \land ((a \lor b) \land \sim b))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor (((a \land \sim a) \lor (b \land \sim a)) \land ((a \land \sim b) \lor (b \land \sim b)))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor (((a \lor b) \land \sim a)) \land ((a \land \sim b) \lor (b \land \sim b)))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor ((b \land \sim a) \land (a \land \sim b)) \lor ((a \land a) \lor (b \land a))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor ((b \land \sim a) \land (a \land \sim a))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor ((b \land \sim b) \land (a \land \sim a))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor ((b \land \sim b) \land (a \land \sim a))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor ((b \land \sim a)) \lor ((a \land a) \lor (a \land a))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor ((a \land a) \lor (a \land a))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor ((a \land a) \lor (a \land a))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor ((a \land a) \lor (a \land a))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor ((a \land a) \lor (a \land a))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor ((a \land a) \lor (a \land a))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor ((a \land a) \lor (a \land a))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor ((a \land a) \lor (a \land a))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor ((a \land a) \lor (a \land a))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor ((a \land a) \lor (a \land a))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor ((a \land a) \lor (a \land a))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor ((a \land a) \lor (a \land a))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor ((a \land a) \lor (a \land a))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor ((a \land a) \lor (a \land a))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor ((a \land a) \lor (a \land a))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor ((a \land a) \lor (a \land a))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor ((a \land a) \lor (a \land a))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor ((a \land a) \lor (a \land a))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor ((a \land a) \lor (a \land a))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor ((a \land a) \lor (a \land a))$$

$$\equiv ((a \land r) \lor (b \land r)) \lor ((a \land a) \lor (a \land a))$$

$$\Rightarrow ((a \land r) \lor (b \land r)) \lor ((a \land a) \lor (a \land a))$$

$$\Rightarrow ((a \land r) \lor (b \land r)) \lor ((a \land a) \lor (a \land a))$$

$$\Rightarrow ((a \land r) \lor (b \land r)) \lor ((a \land a) \lor (a \land a))$$

$$\Rightarrow ((a \land r) \lor (a \land a) \lor (a \land a)$$

$$\Rightarrow ((a \land r) \lor (a \land a) \lor (a \land a)$$

$$\Rightarrow ((a \land r) \lor (a \land a) \lor (a \land a)$$

$$\Rightarrow ((a \land r) \lor (a \land a) \lor (a \land a)$$

$$\Rightarrow ((a \land r) \lor (a \land a) \lor (a \land a)$$

$$\Rightarrow ((a \land r) \lor (a \land a) \lor (a \land a)$$

$$\Rightarrow ((a \land r) \lor (a \land a) \lor (a \land a)$$

$$\Rightarrow ((a \land r) \lor (a \land a) \lor (a \land a)$$

$$\Rightarrow ((a \land r) \lor (a \land a) \lor (a \land a)$$

$$\Rightarrow ((a \land r) \lor (a \land a) \lor (a \land a)$$

$$\Rightarrow ((a \land r) \lor (a \land a) \lor (a \land a)$$

$$\Rightarrow ((a \land r) \lor (a \land a) \lor (a \land a)$$

$$\Rightarrow ((a \land r) \lor (a \land a) \lor$$

Finally, let's expand the \rightarrow into its logically equivalent $\sim \lor$ form.

$$B \equiv (r \land (a \lor b)) \to r$$

$$\equiv \sim (r \land (a \lor b)) \lor r$$

$$\equiv (\sim r \lor \sim (a \lor b)) \lor r$$

$$\equiv (\sim r \lor r) \lor \sim (a \lor b)$$

$$\equiv \top \lor \sim (a \lor b)$$

$$\therefore B \equiv \top$$
(Logical Equivalence of \to)
(Applying De Morgan's Law)
(Associativity)

Therefore, we've shown, by use of laws of logical equivalence, that the statement

$$((a \rightarrow r) \land (b \rightarrow r) \land (\sim a \rightarrow b)) \rightarrow r$$

is a tautology. \Box

Question 3: (5 marks)

Show that the following argument is valid, by adding steps using the rules of inference and/or logical equivalences. Clearly label which rule you used in each step.

1.
$$a \wedge w \rightarrow p$$

2.
$$\sim a \rightarrow l$$

3.
$$\sim w \rightarrow m$$

4.
$$\sim p$$

5.
$$e \rightarrow \sim (l \vee m)$$

$$\sim e$$

Solution:

1.
$$a \wedge w \rightarrow p$$

2.
$$\sim a \rightarrow l$$

3.
$$\sim w \rightarrow m$$

4.
$$\sim p$$

5.
$$e \rightarrow \sim (l \vee m)$$

6.
$$(l \lor m) \to \sim e$$
 (Contrapositive of 5.)

7.
$$\sim (a \wedge w)$$
 (Modus Tollens of 1. given 4.)

8.
$$\sim a \vee \sim w$$
 (De Morgan's Law on 7.)

9.
$$l \lor m$$
 (Constructive Dilemma, of 2., 3., given 8.)

10.
$$\underline{\sim}e$$
 (Modus Ponens of 6. given 9.) $\underline{\sim}e$

This shows that the argument is valid. Applying rules of inference and logical equivalence to the same given premises, we've drawn the same conclusion. Therefore the argument is valid. \Box

Question 4: (10 marks)

Let P(x), Q(x), R(x) and S(x) denote the following predicates with domain \mathbb{Z} :

 $P(x): x^2 = 9,$ $Q(x): x^2 = 6,$ $R(x): x \ge 0,$ S(x): x is odd.

Determine whether each of the following statements is true or false, and give brief reasons.

- (a) $\forall x \in \mathbb{Z}, P(x) \to S(x)$
- (b) $\forall x \in \mathbb{Z}, P(x) \to R(x)$
- (c) $\exists x \in \mathbb{Z} : P(x) \land R(x)$
- (d) $\forall x \in \mathbb{Z}, Q(x) \to R(x)$
- (e) $\forall x \in \mathbb{Z}, S(x) \to \sim Q(x)$

Solution: (a)

$$\forall x \in \mathbb{Z}, P(x) \to S(x) \equiv \forall x \in \mathbb{Z}, x^2 = 9 \to x \text{ is odd}$$

is true, because if $x^2 = 9$ then x is either $-\sqrt{9} = -3$ or $\sqrt{9} = 3$, both of which are odd. An alternative view: the statement is true because if $x^2 = 9$, we can conclude that |x||x| = 9. 9's prime factorisation is $3 \cdot 3$, therefore |x| = 3. If |x| = 3, there are two cases which satisfy this: x = 3 and x = -3, both of which are odd.

Solution: (b)

$$\forall x \in \mathbb{Z}, P(x) \to R(x) \equiv \forall x \in \mathbb{Z}, x^2 = 9 \to x \ge 0$$

is false, because I can provide a counter example, namely, x=-3. If x=-3, then $x^2=9$, but $x \ge 0$. In fact, x=-3<0.

Solution: (c)

$$\exists x \in \mathbb{Z} : P(x) \land R(x) \equiv \exists x \in \mathbb{Z} : x^2 = 9 \land x \ge 0$$

is true, because I can provide an example $x \in \mathbb{Z}$, namely, x = 3. If x = 3, then $x^2 = 3^2 = 9$, and $x = 3 \ge 0$.

Solution: (d)

$$\forall x \in \mathbb{Z}, Q(x) \to R(x) \equiv \forall x \in \mathbb{Z}, x^2 = 6 \to x \ge 0$$

is true. Q(x) is false $\forall x \in \mathbb{Z}$, because $\nexists x \in \mathbb{Z}$: $x^2 = 6$. No integer can satisfy this equation. You'd need to expand the domain of x into the reals to solve this, namely $r = \sqrt{6} \in \mathbb{R}$. Since Q(x) is false $\forall x \in \mathbb{Z}$, it doesn't matter if R(x) is true or false, because the statement, $Q(x) \to R(x) \equiv \bot \to R(x) \equiv \top \lor R(x) \equiv \top$, will evaluate to true always. The given statement is an example of a vacuous truth.

Solution: (e)

$$\forall x \in \mathbb{Z}, S(x) \to \sim Q(x) \equiv \forall x \in \mathbb{Z}, x \text{ is odd} \to x^2 \neq 6$$

is true, because if x is odd, or any element in the set of integers for that matter, then it will hold that $x^2 \neq 6$. In fact, no integer can satisfy the equation $x^2 = 6$, you'd need to expand the domain of x into the real numbers to find a solution, namely $r = \sqrt{6} \in \mathbb{R}$. So, Q(x) is false $\forall x \in \mathbb{Z}$, which means $\forall x \in \mathbb{Z}, \sim Q(x)$ is true. So the whole statement, $S(x) \to \sim Q(x) \equiv S(x) \to \top \equiv \sim S(x) \lor \top \equiv \top$ is always true. Another example of a vacuous truth.

5

Question 5: (10 marks)

Find values of a, b and r that show that the following statement is not a tautology, and show your working.

$$r \to ((a \to r) \land (b \to r) \land (\sim a \to b))$$

Solution: We can do this with a truth table.

For the sake of brevity, let $C = r \to ((a \to r) \land (b \to r) \land (\sim a \to b))$

a	b	r	$\sim a$	$a \rightarrow r$	$b \rightarrow r$	$\sim a \rightarrow b$	r	$(a \to r) \land (b \to r) \land (\sim a \to b)$	C
T	T	T	F	T	T	T	T	T	T
T	T	F	F	F	F	T	$\mid F \mid$	F	$\mid T \mid$
T	F	T	F	T	T	T	$\mid T \mid$	T	$\mid T \mid$
T	F	F	F	F	T	T	F	F	$\mid T \mid$
F	T	T	T	T	T	T	$\mid T \mid$	T	$\mid T \mid$
F	T	F	T	T	F	T	F	F	$\mid T \mid$
F	F	T	T	T	T	F	T	F	F
F	F	F	T	T	T	F	F	F	T

 \therefore (a,b,r) = (False, False, True) is an example configuration of variable truth values which causes the statement to evaluate to false. This, in turn, shows that the statement C is not a tautology.

I'm paranoid that proving this by truth table is insufficent, so let's also work through this, just in case, and consider the statement

$$r \to ((a \to r) \land (b \to r) \land (\sim\!\! a \to b)) \equiv \sim\!\! r \lor ((a \to r) \land (b \to r) \land (\sim\!\! a \to b))$$

is true when r is false, or the ands are true.

- 1. $a \to r \equiv \sim a \lor r$: Is true if a is false or r is true.
- 2. $b \to r \equiv \sim b \lor r$: Is true if b is false or r is true.
- 3. $\sim a \rightarrow b \equiv a \lor b$: Is true if a is true or b is true.

By analysing this statement, we can see a weakness. 3. and (2. and 1.) will clash. They can't both be true at the same time, if we select the right configuration of truth values. We will set r to true, because this moves the "responsibility" of making the statement false, from r to the ands, where we've identified a weakness.

Let r be true.

Then $1. \wedge 2. \wedge 3$. must be true.

$$\therefore$$
 1. \equiv True, 2. \equiv True, 3. \equiv True

True
$$\equiv a \rightarrow r \equiv a \rightarrow \text{True} \equiv \sim a \vee \text{True} \equiv \sim a$$

So let a be false.

True
$$\equiv b \rightarrow r \equiv b \rightarrow \text{True} \equiv \sim b \vee \text{True} \equiv \sim b$$

So let b be false.

True
$$\equiv \sim a \rightarrow b \equiv a \lor b \equiv \text{False} \lor \text{False} \equiv \text{False}$$

 \times

This is a contradiction! So our assumption that $1. \land 2. \land 3$. is true must be wrong, and the statement " $r \to ((a \to r) \land (b \to r) \land (\sim a \to b))$ is a tautology" causes a contradiction. Therefore, we can conclude that $r \to ((a \to r) \land (b \to r) \land (\sim a \to b))$ is not a tautology, and can provide a counterexample, namely (a, b, r) = (False, False, True).