3.4 Images and inverse images

Exercise 3.4.1

Let $f: X \to Y$ be a bijective function, and let $f^{-1}: Y \to X$ be its inverse. Let V be any subset of Y. Prove that the forward image of V under f^{-1} is the same set as the inverse image of V under f; thus the fact that both sets are denoted by $f^{-1}(V)$ will not lead to any inconsistency.

Proof. Suppose $f: X \to Y$ is a bijective function, and $f^{-1}: Y \to X$ is its inverse, where V is any subset of Y. Let $f^{-1}(V)$ denote the inverse image of V, and let $(f^{-1})(V)$ denote the forward image of V under f^{-1} . We define

$$f^{-1}(V) = \{ x \in X \mid f(x) \in V \}$$
$$(f^{-1})(V) = \{ f^{-1}(y) \mid y \in V \}$$

- 1. First we show $f^{-1}(V) \subseteq (f^{-1})(V)$.
- 2. Let $z \in f^{-1}(V)$.
- 3. Then $z \in X$ and $f(z) \in V$.
- 4. Since f is bijective, for all y in $V \subseteq Y$, $y = f(x) = f(f^{-1}(y))$.
- 5. Thus $f(z) \in V \implies y \in V$.
- 6. Since f is bijective, for all x in X, $x = f^{-1}(y) = f^{-1}(f(x))$.
- 7. Thus $z \in X \implies z = f^{-1}(y)$.

Exercise 3.4.2

Let $f: X \to Y$ be a function from one set X to another set Y, let S be a subset of X, and let U be a subset of Y.

a. What, in general, can one say about $f^{-1}(f(S))$ and S?

Answer: S is a subset of $f^{-1}(f(S))$, but S may not be equal to $f^{-1}(f(S))$.

Proof. (informal) Let x be an element of X. We have $f(S) = \{f(x) \mid x \in S\}$, and therefore $f^{-1}(f(S)) = \{x \in X \mid f(x) \in f(S)\}$.

Suppose $x \in S$, then $x \in X$ and $f(x) \in f(s)$, thus $x \in f^{-1}(f(S))$ for all $x \in S$, so S is a subset of $f^{-1}(f(S))$. Now instead suppose $x \notin S$. Since we have not stated that f is injective, it is still possible

1

that $f(x) \in f(S)$. Once again $x \in X$ and $f(x) \in f(s)$, thus for some x not in S, x may still be in $x \in f^{-1}(f(S))$. Thus $f^{-1}(f(S))$ may contain more members of X than S does, so they may not be equal. \square

b. What about $f(f^{-1}(U))$ and U?

Answer: $f(f^{-1}(U))$ is a subset of U, but the two sets may not be equal.

Proof. (informal) Let x be an element of X. We have $f^{-1}(U) = \{x \in X \mid f(x) \in U\}$. Then $f(f^{-1}(U)) = \{f(x) \mid x \in f^{-1}(U)\}$. Since f is not stated to be surjective, there may be some y in U for which $y \neq f(x)$ for all x. So when we take the forward image of $f^{-1}(U)$, every element of $f^{-1}(U)$ is in U, but there may be some y in U that are not in $f^{-1}(U)$.

c. What about $f^{-1}(f(f^{-1}(U)))$ and $f^{-1}(U)$?

Answer:

Proof. (informal) As before we have $f^{-1}(U) = \{x \in X \mid f(x) \in U\}$, and $f(f^{-1}(U)) = \{f(x) \mid x \in f^{-1}(U)\}$. This means

$$\begin{split} f^{-1}(f(f^{-1}(U))) &= \{ \, x \in X \mid f(f^{-1}(U)) \in U \, \} \\ &= \{ \, x \in X \mid \{ \, f(x) \mid x \in f^{-1}(U) \, \} \in U \, \} \\ &= \{ \, x \in X \mid \{ \, f(x) \mid x \in \{ \, x \in X \mid f(x) \in U \, \} \, \} \in U \, \} \\ &= (x \in X) \text{ and } (f(x) \text{ is true and } (x \in (x \in X \text{ and } f(x) \in U)) \in U). \\ &= x \in X \text{ and } f(x) \in U(incomplete) \end{split}$$

(good lord...)

Exercise 3.4.3

Let A, B be two subsets of a set X, and let $f: X \to Y$ be a function. Show that

a. $f(A \cap B) \subseteq f(A) \cap f(B)$,

Proof. We prove this statement by showing every element of $f(A \cap B)$ is an element of $f(A) \cap f(B)$.

- 1. Let y be an arbitrary element of $f(A \cap B)$.
- 2. $A \subseteq X$ and $B \subseteq X \implies A \cap B \subseteq X$.
- 3. By definition the image of $A \cap B$ under f is $\{f(x) \mid x \in A \cap B\}$.
- 4. By the axiom of replacement (3.7) y = f(x) for some $x \in A \cap B$.
- 5. $x \in A \cap B \implies x \in A$
- 6. y = f(x) for some $x \in A$
- 7. $x \in A \cap B \implies x \in B$

```
8. y = f(x) for some x \in B
```

9.
$$y = f(x)$$
 for some $x \in A$ and $y = f(x)$ for some $x \in B$

10.
$$y \in \{ f(x) \mid x \in A \} \text{ and } y \in \{ f(x) \mid x \in B \}$$

11. $y \in f(A) \cap f(B)$, as desired.

b. $f(A) \setminus f(B) \subseteq f(A \setminus B)$,

Proof. We prove this statement by showing every element of $f(A) \setminus f(B)$ is an element of $f(A \setminus B)$.

1. Let $y \in f(A) \setminus f(B)$ be arbitrary.

Conditional introduction

- 2. $y \in f(A)$ and $y \notin f(B)$.
- $\exists x \in A \ y = f(x)$
- 4. Suppose x such that $x \in A$ and y = f(x)
 - $4.1. \quad x \in A$
 - 4.2. y = f(x)
 - 4.3. $\forall z \in B \ y \neq f(z)$
 - 4.4. $\forall z \ z \in B \implies y \neq f(z)$
 - 4.5. $\forall z \ y = f(z) \implies z \notin B$
 - 4.6. $y = f(x) \implies x \notin B$
 - $4.7. \quad x \notin B$
 - 4.8. $x \in A, x \notin B, \text{ and } y = f(x).$
 - 4.9. y = f(x) and $x \in A \setminus B$.
- 4.10. $y \in \{ y \mid y = f(x) \text{ for } x \in A \setminus B \}.$

 $y \in f(A) \setminus f(B) \implies y \in f(A \setminus B)$

5. $y \in f(A \setminus B)$

Existential elimination

Conditional elimination

Thus
$$f(A) \setminus f(B) \subseteq f(A \setminus B)$$
.

c. $f(A \cup B) = f(A) \cup f(B)$.

Proof. We prove this statement by showing every element of $f(A \cup B)$ is an element of $f(A) \cup f(B)$ and vice versa. First we do the forward direction:

- 1. Let $y \in f(A \cup B)$ be arbitrary.
- $A \in X$
- $B \in X$
- $A \cup B \in X$
- 5. $y \in \{ f(x) \mid x \in A \cup B \}$
- 6. $\exists x \text{ such that } x \in A \cup B \text{ and } y = f(x)$
- 7. Suppose x such that $x \in A \cup B$ and y = f(x)
 - 7.1. y = f(x)
 - 7.2. $x \in A \cup B$
 - 7.3. $x \in A \text{ or } x \in B$
 - 7.4. $(x \in A \text{ and } y = f(x)) \text{ or } (x \in B \text{ and } y = f(x))$
 - 7.4.1. test

```
7.6.
                 y \in f(A) or y \in f(B)
        7.7.
                 y \in f(A) \cup f(B)
            y \in f(A \cup B) \implies y \in f(A) \cup f(B)
            f(A \cup B) \subseteq f(A) \cup f(B)
      Now in the backwards direction.
            Let y \in f(A) \cup f(B) be arbitrary.
            y \in f(A) or y \in f(B)
     3.
            Case y \in f(A)
       3.1.
                 y \in \{ f(x) \mid x \in A \}
                 \exists x \text{ such that } (x \in A \text{ and } y = f(x))
       3.2.
                 Suppose x such that (x \in A \text{ and } y = f(x))
          3.3.1. x \in A \text{ and } y = f(x)
            Case y \in f(B)
        4.1.
                 y \in \{ y = f(x) \mid x \in B \}
                 \exists x \text{ such that } (x \in B \text{ and } y = f(x))
        4.2.
                 Suppose x such that (x \in B \text{ and } y = f(x))
       4.3.
          4.3.1.
                     x \in B and y = f(x)
            (x \in B \text{ and } y = f(x)) \text{ or } (x \in A \text{ and } y = f(x))
     5.
            y = f(x) and (x \in A \text{ or } x \in B)
            y = f(x) and (x \in A \cup B)
           y \in \{ fx \mid x \in A \cup B \}
           y \in f(A) \cup f(B) \implies y \in \{ f(x) \mid x \in A \cup B \}
           f(A) \cup f(B) \subseteq f(A \cup B)
      Thus we have f(A \cup B) = f(A) \cup f(B).
                                                                                                                           For the first two statements, is it true that the \subseteq relation can be improved to =?
Answer:
Proof.
                                                                                                                           Exercise 3.4.5
Let f: X \to Y be a function from one set X to another set Y.
  a. Show that f(f^{-1}(S)) = S for every S \subseteq Y if and only if f is surjective.
      Proof.
                                                                                                                            b. Show that f^{-1}(f(S)) = S for every S \subseteq X if and only if f is injective.
      Proof.
```

7.5.

 $y \in \{ f(x) \mid x \in A \} \text{ or } y \in \{ y = f(x) \mid x \in B \}$

Exercise 3.4.9

Show that if β and β' are two elements of a set I, and to each $\alpha \in I$ we assign a set A_{α} , then

$$\{x \in A_{\beta} : x \in A_{\alpha} \text{ for all } \alpha \in I\} = \{x \in A_{\beta'} : x \in A_{\alpha} \text{ for all } \alpha \in I\},$$

and so the definition of $\bigcap_{\alpha \in I} A_{\alpha}$ defined in (3.3) does not depend on β .

Proof.

Also explain why (3.4) is true.

Proof.

Exercise 3.4.10

Suppose that I and J are two sets, and for all $\alpha \in I \cup J$ let A_{α} be a set. Show that

$$\bigcup_{\alpha \in I} A_\alpha \cup \bigcup_{\alpha \in J} A_\alpha = \bigcup_{\alpha \in I \cup J} A_\alpha.$$

Proof. We need to show that every element of $\bigcup_{\alpha \in I} A_{\alpha} \cup \bigcup_{\alpha \in J} A_{\alpha}$ is also in $\bigcup_{\alpha \in I \cup J} A_{\alpha}$ and vice versa. We begin in the forward direction.

1.

Now in reverse:

1.

If I and J are non-empty, show that

$$\bigcap_{\alpha \in I} A_\alpha \cap \bigcap_{\alpha \in J} A_\alpha = \bigcap_{\alpha \in I \cup J} A_\alpha.$$

Proof.