Experimental Techniques in Particle Physics

Geant4: Particle Sources

Andreas Nowack

nowack@physik.rwth-aachen.de

RWTH Aachen University

WS 2020/21

Actions in Geant4

User classes

Initialization classes
Invoked at the initialization
G4VUserDetectorConstruction
G4VUserPhysicsList

Material and Geometry

Particles and Processes

Action classes

Invoked during an event loop

G4VUserPrimaryGeneratorAction

G4UserRunAction

G4UserEventAction

G4UserSteppingAction

G4UserStackingAction

G4UserTrackingAction

Primary Particles

Topic of Last Lesson

main()

Geant4 does not provide main().

Note: classes written in Red are mandatory.

G4VUserPrimaryGeneratorAction

minimalistic primary generator action using G4ParticleGun:

```
DetectorPhysPrimaryGeneratorAction::DetectorPhysPrimaryGeneratorAction(
 DetectorPhysDetectorConstruction* DetectorPhysDC): DetectorPhysDetector(DetectorPhysDC) {
 G4int n particle = 1;
                                                                        constructor:
 particleGun = new G4ParticleGun(n particle);
 // default particle
                                                                        initialize particle source
 G4ParticleTable* particleTable = G4ParticleTable::GetParticleTable();
 G4String particleName;
 G4ParticleDefinition* particle = particleTable->FindParticle(particleName="gamma");
 // gun settings
 particleGun->SetParticleDefinition(particle);
 particleGun->SetParticleMomentumDirection(G4ThreeVector(0.,0.,1.));
 particleGun->SetParticleEnergy(10.*MeV);
 particleGun->SetParticlePosition(G4ThreeVector(0*cm,0.*cm,100.*cm));
DetectorPhysPrimaryGeneratorAction::~DetectorPhysPrimaryGeneratorAction() {
                                                                                            destructor
 delete particleGun;
void DetectorPhysPrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent) {
                                                                                start of each event
 particleGun->GeneratePrimaryVertex(anEvent);
```

Particle Gun

 Properties of G4ParticleGun can be modified event by event. Use the following methods in GeneratePrimaries():

```
void SetParticleDefinition(G4ParticleDefinition*)
```

void SetParticleMomentum(G4ParticleMomentum)

void SetParticleMomentumDirection(G4ThreeVector)

void SetParticleEnergy(G4double)

void SetParticleTime(G4double)

void SetParticlePosition(G4ThreeVector)

void SetParticlePolarization(G4ThreeVector)

void SetNumberOfParticles(G4int)

- GeneratePrimaryVertex() can be invoked more than once to generate additional particle tracks. Different particle properties are possible.
- More than one G4ParicleGun can be used in the primary generator action.
- Complex particle sources are possible.

Particle Gun

user interface commands:

Command	Arguments	Description and Restrictions
/gun/List		List available incident particles
/gun/particle	name	Defines the particle type [default <i>geantino</i>], using Geant4 naming convention.
/gun/direction	ex ey ez	Set the momentum direction of generated particles. Does not need to be a unit vector.
<mark>/gun/energy</mark>	E unit	Sets the energy. The units can be eV, keV, MeV, GeV, TeV or PeV.
/gun/position	X Y Z unit	Sets starting position of the particle. The units can be micron, mm, cm, m or km.
/gun/ion	ZAQE	After /gun/particle ion, sets the properties (atomic number Z, atomic mass A, ionic charge Q, excitation energy E in keV) of the ion.
/gun/ionLvl	Z A Q Ivl	After /gun/particle ion, sets the properties (atomic number Z, atomic mass A, ionic charge Q, Number of metastable state excitation level (0-9) of the ion.
/gun/time	t0 unit	Sets the primary particle (event) time [default 0 ns]. The units can be ps, ns, us, ms, or s.
/gun/polarization	n Px Py Pz	Sets the polarization vector of the source, which does not need to be a unit vector.
<mark>/gun/number</mark>	N	Sets the number of particles [default 1] to simulate on each event.

Other Particle Generators

G4GeneralParticleSource

- it is used the same way as G4ParticleGun (globally replace G4ParticleGun with G4GeneralParticleSource)
- configuration via methods and via command line/macro
- specification of spectral, spatial, and angular distributions of the primary source particles
 - spectrum: mono-energetic, linear, exponential, power-law, Gaussian, bremsstrahlung, blackbody, cosmic diffuse gamma ray, or piece-wise fits to data
 - spatial sampling:
 - point source
 - planar sources: circles, annuli, ellipses, squares, or rectangles
 - 1D or 2D beam spots
 - surface or volume sources: sphere, ellipsoid, cylinder, or parallelepipedon
 - angular distribution: unidirectional, isotropic, cosine-law, beam, or arbitrary (user defined)
 - multiple sources: multiple independent sources can be used in the same run

G4HFPFvtInterface

- almost all HEP (High Energy Physics) event generators can store the generated events in ASCII files
- Geant4 can read these ASCII files and can produce G4PrimaryParticle objects associated with a G4PrimaryVertex object.

General Particle Source: Basic Commands equivalent to Particle Gun

Command	Arguments	Description and Restrictions
/gps/List		List available incident particles
/gps/particle	name	Defines the particle type [default <i>geantino</i>], using Geant4 naming convention.
/gps/direction	Px Py Pz	Set the momentum direction [default (1,0,0)] of generated particles using direction cosines.
/gps/energy	E unit	Sets the energy [default 1 MeV] for mono-energetic sources. The units can be eV, keV, MeV, GeV, TeV or PeV. (NB: it is recommended to use /gps/ene/mono instead.)
/gps/position	X Y Z unit	Sets the centre co-ordinates (X,Y,Z) of the source [default (0,0,0) cm]. The units can be micron, mm, cm, m or km. (NB: it is reccomended to use /gps/pos/centre instead.)
/gps/ion	ZAQE	After /gps/particle ion, sets the properties (atomic number Z, atomic mass A, ionic charge Q, excitation energy E in keV) of the ion.
/gps/ionLvl	Z A Q IvI	After /gps/particle ion, sets the properties (atomic number Z, atomic mass A, ionic charge Q, Number of metastable state excitation level (0-9) of the ion.
/gps/time	t0 unit	Sets the primary particle (event) time [default 0 ns]. The units can be ps, ns, us, ms, or s.
/gps/polarization	Px Py Pz	Sets the polarization vector of the source, which does not need to be a unit vector.
/gps/number	N	Sets the number of particles [default 1] to simulate on each event.
/gps/verbose	level	Control the amount of information printed out by the GPS code. Larger values produce more detailed output.

General Particle Source: Source Position and Shape

Command	Arguments	Description and Restrictions
/gps/pos/type	dist	Sets the source positional distribution type: Point [default], Plane, Beam, Surface, Volume.
/gps/pos/shape	shape	Sets the source shape type, after /gps/pos/type has been used. For a Plane this can be <i>Circle, Annulus, Ellipse, Square, Rectangle</i> . For both Surface or Volume sources this can be <i>Sphere, Ellipsoid, Cylinder, Para</i> (parallelpiped).
/gps/pos/centre	X Y Z unit	Sets the centre co-ordinates (X,Y,Z) of the source [default (0,0,0) cm].
/gps/pos/rot1	$R1_x R1_y R1_z$	Defines the first (x' direction) vector R1 [default (1,0,0)], which does not need to be a unit vector, and is used together with /gps/pos/rot2 to create the rotation matrix of the shape defined with /gps/shape.
/gps/pos/rot2	$R2_x R2_y R2_z$	Defines the second vector R2 in the xy plane [default (0,1,0)], which does not need to be a unit vector, and is used tohgether with /gps/pos/rot1 to create the rotation matrix of the shape defined with /gps/shape.
/gps/pos/halfx	len unit	Sets the half-length in x [default 0 cm] of the source.
/gps/pos/halfy	len unit	Sets the half-length in y [default 0 cm] of the source.
/gps/pos/halfz	len unit	Sets the half-length in z [default 0 cm] of the source.
/gps/pos/radius	len unit	Sets the radius [default 0 cm] of the source or the outer radius for annuli.
/gps/pos/inner_radius	len unit	Sets the inner radius [default 0 cm] for annuli.
/gps/pos/sigma_r	sigma unit	Sets the transverse (radial) standard deviation [default 0 cm] of beam position profile.
/gps/pos/sigma_x	sigma unit	Sets the standard deviation [default 0 cm] of beam position profile in x-direction.
/gps/pos/sigma_y	sigma unit	Sets the standard deviation [default 0 cm] of beam position profile in y-direction.
/gps/pos/paralp	alpha unit	Used with a Parallelepiped. The angle [default 0 rad] α formed by the y-axis and the plane joining the centre of the faces parallel to the zx plane at y and +y. Units: deg or rad.
/gps/pos/parthe	theta unit	Used with a Parallelepiped. Polar angle [default 0 rad] θ of the line connecting the centre of the face at z to the centre of the face at +z. The units can only be deg or rad.
/gps/pos/parphi	phi unit	Used with a Parallelepiped. The azimuth angle [default 0 rad] φ of the line connecting the centre of the face at z with the centre of the face at +z. The units can only be deg or rad.
/gps/pos/confine	name	Allows the user to confine the source to the physical volume name [default NULL].

General Particle Source: Source Direction and Angular Distribution

Command	Arguments	Description and restrictions
/gps/ang/type	AngDis	Sets the angular distribution type (<i>iso</i> [default], <i>cos</i> , <i>planar</i> , <i>beam1d</i> , <i>beam2d</i> , <i>focused</i> , <i>user</i>) to either isotropic, cosine-law or user-defined.
/gps/ang/rot1	AR1 _x AR1 _y AR1 _z	Defines the first (x' direction) rotation vector AR1 [default (1,0,0)] for the angular distribution and is not necessarily a unit vector. Used with /gps/ang/rot2 to compute the angular distribution rotation matrix.
/gps/ang/rot2	AR2 _x AR2 _y AR2 _z	Defines the second rotation vector AR2 in the xy plane [default (0,1,0)] for the angular distribution, which does not necessarily have to be a unit vector. Used with /gps/ang/rot2 to compute the angular distribution rotation matrix.
/gps/ang/mintheta	MinTheta unit	Sets a minimum value [default 0 rad] for the θ distribution. Units: deg or rad.
/gps/ang/maxtheta	MaxTheta unit	Sets a maximum value [default π rad] for the θ distribution. Units: deg or rad.
/gps/ang/minphi	MinPhi unit	Sets a minimum value [default 0 rad] for the φ distribution. Units: deg or rad.
/gps/ang/maxphi	MaxPhi unit	Sets a maximum value [default 2π rad] for the φ distribution. Units: deg or rad.
/gps/ang/sigma_r	sigma unit	Sets the standard deviation [default 0 rad] of beam directional profile in radial. The units can only be deg or rad.
/gps/ang/sigma_x	sigma unit	Sets the standard deviation [default 0 rad] of beam directional profile in x-direction. The units can only be deg or rad.
/gps/ang/sigma_y	sigma unit	Sets the standard deviation [default 0 rad] of beam directional profile in y-direction. The units can only be deg or rad.
/gps/ang/focuspoint	X Y Z unit	Set the focusing point (X,Y,Z) for the beam [default (0,0,0) cm]. The units can only be micron, mm, cm, m or km.
/gps/ang/user_coor	bool	Calculate the angular distribution with respect to the user definded co-ordinate system (<i>true</i>), or with respect to the global co-ordinate system (<i>false</i> , default).
/gps/ang/surfnorm	bool	Allows user to choose whether angular distributions are w.r.t the co-ordinate system (<i>false</i> , default) or surface normals (<i>true</i>) for user-defined distributions.

General Particle Source: Energy Spectra

Command	Arguments	Description and Restrictions
/gps/ene/type	EnergyDis	Sets the energy distribution type to one of: <i>Mono</i> (mono-energetic, default), Lin (linear), Pow (power-law), Exp (exponential), Gauss (Gaussian), Brem (bremsstrahlung), Bbody (black-body), Cdg (cosmic diffuse gamma-ray), User (user-defined histogram), Arb (point-wise spectrum), Epn (energy-per-nucleon histogram)
/gps/ene/min	Emin unit	Sets the minimum [default 0 keV] for the energy distribution.
/gps/ene/max	Emax unit	Sets the maximum [default 0 keV] for the energy distribution.
/gps/ene/mono	E unit	Sets the energy [default 1 MeV] for mono-energetic sources.
/gps/ene/sigma	sigma unit	Sets the standard deviation [default 0 keV] in energy for Gaussian or Mono energy distributions.
/gps/ene/alpha	alpha	Sets the exponent α [default 0] for a power-law distribution.
/gps/ene/temp	T	Sets the temperature in kelvins [default 0] for black body and bremsstrahlung spectra.
/gps/ene/ezero	E0	Sets scale E ₀ [default 0] for exponential distributions.
/gps/ene/gradient	gradient	Sets the gradient (slope) [default 0] for linear distributions.
/gps/ene/intercept	intercept	Sets the Y-intercept [default 0] for the linear distributions.
/gps/ene/biasAlpha	alpha	Sets the exponent α [default 0] for a biased power-law distribution. Bias weight is determined from the power-law probability distribution.
/gps/ene/calculate		Prepares integral PDFs for the interally-binned cosmic diffuse gamma ray (<i>Cdg</i>) and black body (<i>Bbody</i>) distributions.
/gps/ene/emspec	bool	Allows user to specify distributions are in momentum (<i>false</i>) or energy (<i>true</i> , default). Only valid for <i>User</i> and <i>Arb</i> distributions.
/gps/ene/diffspec	bool	Allows user to specify whether a point-wise spectrum is integral (<i>false</i>) or differential (<i>true</i> , default). The integral spectrum is only usable for <i>Arb</i> distributions.

General Particle Source: Example

- planar source
 - square, 4 cm by 4 cm
 - centred at (1,2,1) cm
 - by default the normal of this plane is the z-axis
- angular distribution follows the cosine-law.
- energy spectrum
 - linear
 - with gradient m and intercept I₀ equal to 1: I ∝ I₀ + m × E
 - from 2 to 10 MeV.
- 10,000 primaries to be generated.

```
/gps/verbose 2
/gps/particle gamma
/gps/pos/type Plane
/gps/pos/shape Square
/gps/pos/centre 1 2 1 cm
/gps/pos/halfx 2 cm
/gps/pos/halfy 2 cm
/gps/ang/type cos
/gps/ene/type Lin
/gps/ene/min 2 MeV
/gps/ene/max 10 MeV
/gps/ene/gradient 1
/gps/ene/intercept 1
/run/beamOn 10000
```

Comparison

Particle Gun

- simple and intuitive
- shoot one track at a time (one can shoot more than one track within an event)
- easy to handle
 - use set methods to change values (either track by track or event by event)

General Particle Source

- very powerful
- controlled by user interface commands
 - almost impossible to control through set methods
- capability of shooting particles from a surface or a volume
- capability of randomizing kinetic energy, position, and/or direction following pre-defined or user-specified distributions
- support of multiple independent sources with different intensities

What shall I use?

- If you need to shoot primary particles from a surface of a complicated volume, use GPS
- If you need a complicated distribution, use GPS
- Otherwise, use Particle Gun

Exercise: Particle Sources

- Download <u>DetectorPhys_T9.tar.gz</u> and decompress it.
 - This code uses Geant4's histogram functions and produces histograms automatically using the Run Action and the Tracking Action. Starting positions, energies, and directions of each track are stored in histograms.
 - Particle source produces geantinos (no interactions)
- 2. Compile the code, run it, and check the histograms in hist_T9.root:
 - start root: root hist T9.root and open a browser: new TBrowser()
 - use the browser to view the histograms
 - exit root: .q
- 3. Modify GeneratePrimaries() so that the shape of the beam is a square (edge length 5 cm) in X-Y plane at Z = -10 cm and the particle's direction is in Z direction.
 - Include Randomize.hh and use G4UniformRand() in order to get random numbers between 0 and 1.
- 4. Compile your code, run it, and check the histograms.
- 5. Make the kinetic energy of the particles uniformly distributed between 1 and 10 GeV.
- 6. Compile the code, run it, and check the histograms.
- 7. Make the direction of the particles uniformly distributed with an opening angle of 10°.
- 8. Compile the code, run it, and check the histograms.
- 9. Repeat the previous tasks using General Particle Source.

http://geant4-userdoc.web.cern.ch/geant4userdoc/UsersGuides/ForApplicationDeveloper/html/GettingStarted/generalParticleSource.html