Intersections and Unions of Session Types

Coşku Acay Frank Pfenning

Carnegie Mellon University School of Computer Science

ITRS 2016

Overview

- $lue{1}$ Background
 - Message-passing Concurrency
 - Session Types
 - Subtyping
 - Configurations and Reduction
- Intersections and Unions
 - Intersection Types
 - Union Types
 - Reinterpreting Choice
- 3 Algorithmic System
- Metatheory

Plan

- $lue{1}$ Background
 - Message-passing Concurrency
 - Session Types
 - Subtyping
 - Configurations and Reduction
- 2 Intersections and Unions
 - Intersection Types
 - Union Types
 - Reinterpreting Choice
- Algorithmic System
- 4 Metatheory

Setting

- Processes represented as nodes
- Channels go between processes and represented as edges
- Each channel is "provided" by a specific process (e.g. *P* provides *c*, *Q* provides *d* etc.): one-to-one correspondence between channels and processes

- Processes compute internally
- Exchange messages along channels

- Processes compute internally
- Exchange messages along channels

- Processes compute internally
- Exchange messages along channels

- Processes compute internally
- Exchange messages along channels

*Note that communication is synchronous.

Higher-order Messages

• Processes can also send channels they own

Higher-order Messages

• Processes can also send channels they own

Higher-order Messages

• Processes can also send channels they own

- Don't want to send int if expecting string
- Don't try to receive if other process is not sending

- Don't want to send int if expecting string
- Don't try to receive if other process is not sending

Solution: Assign types to each channel

- Don't want to send int if expecting string
- Don't try to receive if other process is not sending

- Don't want to send int if expecting string
- Don't try to receive if other process is not sending

- Don't want to send int if expecting string
- Don't try to receive if other process is not sending

- Don't want to send int if expecting string
- Don't try to receive if other process is not sending

- Don't want to send int if expecting string
- Don't try to receive if other process is not sending

- Don't want to send int if expecting string
- Don't try to receive if other process is not sending

Why linear?

- Sessions are resources: communicating along a channel consumes the old type
- Contraction would violate type safety
- Weakening would work, but we keep things simple

Linear Propositions as Session Types

 $A \otimes B$ $\tau \wedge B$ $\oplus \{lab_k : A_k\}_{k \in I}$ $A \longrightarrow B$ $\tau \supset B$ $&\{lab_k:A_k\}_{k\in I}$ $\mu t.A_t$

send end and terminate send channel of type A and continue as B send value of type τ and continue as B send lab_i and continue as A_i for some $i \in I$ receive channel of type A and continue as B receive value of type τ and continue as B receive lab_i and continue as A_i for some $i \in I$ (equi-)recursive type

Linear Propositions as Session Types

```
\begin{array}{lll} \mathbf{1} & \text{send end and terminate} \\ A \otimes B & \text{send channel of type } A \text{ and continue as } B \\ \tau \wedge B & \text{send value of type } \tau \text{ and continue as } B \\ \oplus \{lab_k: A_k\}_{k \in I} & \text{send } lab_i \text{ and continue as } A_i \text{ for some } i \in I \\ A \multimap B & \text{receive channel of type } A \text{ and continue as } B \\ \tau \supset B & \text{receive value of type } \tau \text{ and continue as } B \\ \& \{lab_k: A_k\}_{k \in I} & \text{receive } lab_i \text{ and continue as } A_i \text{ for some } i \in I \\ \mu t. A_t & \text{(equi-)recursive type} \end{array}
```

Example: Queue Interface

```
type queue = &{ enq : A -o queue
    , deg : +{none : 1, some : A * queue}
}
```

Proof Terms as Concurrent Processes

$$x \leftarrow P_x$$
; Q_x cut (spawn)
 $c \leftarrow d$ id (forward)
close $c \mid \text{wait } c$; P 1
send $c (y \leftarrow P_y)$; $Q \mid x \leftarrow \text{recv } c$; $R_x \mid A \otimes B, A \multimap B$
 $c.lab$; $P \mid \text{case } c \text{ of } \{lab_k \rightarrow Q_k\}_{k \in I}$ & $\{lab_k : A_k\}_{k \in I}, \oplus \{lab_k : A_k\}_{k \in I}$

P, Q, R ::=

Example: An Implementation of Queues

```
type queue = &{ enq : A -o queue
                 , deg : +\{none : 1, some : A * queue\}
                 empty : queue
                 q <- empty = case q of
                   enq \rightarrow x \leftarrow recv q;
                            e <- empty;
                            q \leftarrow elem x e
                   deq -> q.none; close q
                 elem : A -o queue -o queue
                 q \leftarrow elem x r = case q of
                   enq \rightarrow y \leftarrow recv q;
                           r.enq; send r y;
                            q <- elem x r
                   deq -> q.some; send q x;
```

Process Typing

Typing judgement has the form $\Psi \vdash_{\eta} P :: (c : A)$ meaning "process P offers along channel c the session A under the context Ψ ." η tracks recursive variables.

Process Typing

Typing judgement has the form $\Psi \vdash_{\eta} P :: (c : A)$ meaning "process P offers along channel c the session A under the context Ψ ." η tracks recursive variables.

Some examples:

$$\frac{c : A \vdash d \leftarrow c :: (d : A) \quad \text{id}}{\Psi \vdash P_c :: (c : A) \quad \Psi', c : A \vdash Q_c :: (d : D)} \text{ cut}$$

$$\frac{\Psi \vdash P_c :: (c : A) \quad \Psi', c : A \vdash Q_c :: (d : D)}{\Psi, \Psi' \vdash c \leftarrow P_c; \quad Q_c :: (d : D)} \text{ cut}$$

$$\frac{\Psi \vdash P :: (d : A)}{\Psi, c : \mathbf{1} \vdash \text{wait } c; \quad P :: (d : A)} \mathbf{1}L$$

$$\frac{\Psi \vdash P :: (d : A) \quad \Psi' \vdash Q :: (c : B)}{\Psi, \Psi' \vdash \text{send } c \quad (d \leftarrow P_d); \quad Q :: (c : A \otimes B)} \otimes \mathbb{R}$$

Subtyping

- Width and depth subtyping for n-ary choices
- Width: $\&\{lab_k: A_k\}_{k\in I} \le \&\{lab_k: A_k\}_{k\in J}$ whenever $J\subseteq I$
- Depth: $\&\{lab_k:A_k\}_{k\in I} \le \&\{lab_k:A'_k\}_{k\in I}$ whenever $A_i \le A'_i$

Subtyping

- Width and depth subtyping for n-ary choices
- Width: $\&\{lab_k: A_k\}_{k\in I} \le \&\{lab_k: A_k\}_{k\in J}$ whenever $J\subseteq I$
- Depth: $\&\{lab_k:A_k\}_{k\in I} \le \&\{lab_k:A'_k\}_{k\in I}$ whenever $A_i \le A'_i$
- Defined coinductively because of recursive types

Subtyping

- Width and depth subtyping for *n*-ary choices
- Width: $\&\{lab_k: A_k\}_{k\in I} \le \&\{lab_k: A_k\}_{k\in J}$ whenever $J\subseteq I$
- Depth: $\&\{lab_k:A_k\}_{k\in I} \le \&\{lab_k:A'_k\}_{k\in I}$ whenever $A_i \le A'_i$
- Defined coinductively because of recursive types

Introduced to process typing using subsumption:

$$\frac{\Psi \vdash_{\eta} P :: (c : A') \quad A' \leq A}{\Psi \vdash_{\eta} P :: (c : A)}$$
 SubR

$$\frac{\Psi, c: A' \vdash_{\eta} P :: (d:B) \quad A \leq A'}{\Psi, c: A \vdash_{\eta} P :: (d:B)}$$
 SubL

Configurations

- A processes by itself is not very useful in concurrent setting
- Need to be able to talk about interactions

Configurations

- A processes by itself is not very useful in concurrent setting
- Need to be able to talk about interactions
- Use a process configuration, which is simply a set of labelled processes: $\Omega = \operatorname{proc}_{c_1}(P_1), \dots, \operatorname{proc}_{c_n}(P_n)$.

Configurations

- A processes by itself is not very useful in concurrent setting
- Need to be able to talk about interactions
- Use a process configuration, which is simply a set of labelled processes: $\Omega = \operatorname{proc}_{c_1}(P_1), \dots, \operatorname{proc}_{c_n}(P_n)$.
- Typing judgement, $\models \Omega :: \Psi$, imposes a tree structure (ensures linearity)

Reduction

Configurations reduce by interaction. Some examples:

```
\begin{array}{ll} \text{id} & : \operatorname{proc}_c(c \leftarrow d) \multimap \{c = d\} \\ \text{cut} & : \operatorname{proc}_c(x \leftarrow P_x \; ; \; Q_x) \multimap \{\exists a. \operatorname{proc}_a(P_a) \otimes \operatorname{proc}_c(Q_a)\} \\ \text{one} & : \operatorname{proc}_c(\operatorname{close} c) \otimes \operatorname{proc}_d(\operatorname{wait} c \; ; \; P) \multimap \{\operatorname{proc}_d(P)\} \end{array}
```

Plan

- Background
 - Message-passing Concurrency
 - Session Types
 - Subtyping
 - Configurations and Reduction
- Intersections and Unions
 - Intersection Types
 - Union Types
 - Reinterpreting Choice
- Algorithmic System
- 4 Metatheory

Intersections and Unions

What if we want to track more properties of queues?

Intersections and Unions

What if we want to track more properties of queues? Empty, non-empty, even length?

Intersections and Unions

What if we want to track more properties of queues? Empty, non-empty, even length?

These can be defined in the base system:

Intersections and Unions

What if we want to track more properties of queues? Empty, non-empty, even length?

These can be defined in the base system:

```
type empty-queue = &{ enq : A -o queue
    , deg : +{none : 1}
}

type nonempty-queue = &{ enq : A -o queue
    , deg : +{some : A * queue}
}
```

However, there is no way to properly track them!

We cannot track multiple refinements.

We cannot track multiple refinements. Consider

concat : queue -o queue -o queue that concatenates two queues. It has many types but no most general type:

```
concat : empty-queue -o empty-queue -o empty-queue concat : queue -o nonempty-queue -o nonempty-queue concat : nonempty-queue -o queue -o nonempty-queue
```

Intersection Types

- Intersection of two types: $A \sqcap B$
- $c: A \sqcap B$ if channel c offers both behaviors simultaneously

Intersection Types

- Intersection of two types: $A \sqcap B$
- $c: A \sqcap B$ if channel c offers both behaviors simultaneously

$$\frac{\Psi \vdash_{\eta} P :: (c : A) \quad \Psi \vdash_{\eta} P :: (c : B)}{\Psi \vdash_{\eta} P :: (c : A \sqcap B)} \ \sqcap R$$

$$\frac{\Psi, c: A \vdash_{\eta} P :: (d:D)}{\Psi, c: A \sqcap B \vdash_{\eta} P :: (d:D)} \sqcap L_{1} \qquad \frac{\Psi, c: B \vdash_{\eta} P :: (d:D)}{\Psi, c: A \sqcap B \vdash_{\eta} P :: (d:D)} \sqcap L_{2}$$

Intersections Solve the Previous Problem

We can now specify multiple behavioral properties:

```
concat : empty-queue -o empty-queue -o empty-queue
and queue -o nonempty-queue -o nonempty-queue
and nonempty-queue -o queue -o nonempty-queue
```

Union Types

- Union of two types: $A \sqcup B$
- $c: A \sqcup B$ if channel c offers either behavior

Union Types

- Union of two types: $A \sqcup B$
- $c: A \sqcup B$ if channel c offers either behavior
- Dual to intersections

Union Types

- Union of two types: $A \sqcup B$
- $c: A \sqcup B$ if channel c offers either behavior
- Dual to intersections

$$\frac{\Psi \vdash_{\eta} P :: (c : A)}{\Psi \vdash_{\eta} P :: (c : A \sqcup B)} \sqcup \mathbb{R}_{1} \qquad \frac{\Psi \vdash_{\eta} P :: (c : B)}{\Psi \vdash_{\eta} P :: (c : A \sqcup B)} \sqcup \mathbb{R}_{2}$$

$$\frac{\Psi, c : A \vdash_{\eta} P :: (d : D) \quad \Psi, c : B \vdash_{\eta} P :: (d : D)}{\Psi, c : A \sqcup B \vdash_{\eta} P :: (d : D)} \sqcup \mathbb{L}$$

Reasons for Adding Unions

- Maintain the symmetry of the system
- Makes working with internal choice more convenient
- Interpretation of internal choice (we will explain later)

Reasons for Adding Unions

- Maintain the symmetry of the system
- Makes working with internal choice more convenient
- Interpretation of internal choice (we will explain later)

We can also write things like:

```
type queue = empty-queue or nonempty-queue
```

Reinterpreting Choice

Consider &{inl : A, inr : B}

Reinterpreting Choice

Consider &{inl : A, inr : B}

This type says: "I will act as A if you send me inl and I will act as B if you send me inr."

Reinterpreting Choice

Consider &{inl : A, inr : B}

This type says: "I will act as A if you send me inl and I will act as B if you send me inr."

Interpreting and as \sqcap gives

 $\&\{\text{inl}: A, \text{inr}: B\} \approx \&\{\text{inl}: A\} \sqcap \&\{\text{inr}: B\}.$

Reinterpreting Choice - General Case

Generalizing to *n*-ary choice and dualising gives:

$$\&\{lab_k:A_k\}_{k\in I}\triangleq \prod_{k\in I}\&\{lab_k:A_k\}$$

$$\oplus \{lab_k : A_k\}_{k \in I} \triangleq \bigsqcup_{k \in I} \oplus \{lab_k : A_k\}$$

Easy to verify these definitions satisfy the typing rules.

Reinterpreting Choice - General Case

Generalizing to *n*-ary choice and dualising gives:

$$\&\{lab_k:A_k\}_{k\in I}\triangleq \prod_{k\in I}\&\{lab_k:A_k\}$$

$$\oplus \left\{ lab_k : A_k \right\}_{k \in I} \triangleq \bigsqcup_{k \in I} \oplus \left\{ lab_k : A_k \right\}$$

Easy to verify these definitions satisfy the typing rules.

Suggests treating intersections and unions as implicit choice.

Plan

- Background
 - Message-passing Concurrency
 - Session Types
 - Subtyping
 - Configurations and Reduction
- 2 Intersections and Unions
 - Intersection Types
 - Union Types
 - Reinterpreting Choice
- 3 Algorithmic System
- 4 Metatheory

Algorithmic Subtyping

Idea: make $\leq \sqcap L_{\{1,2\}}$ and $\leq \sqcup R_{\{1,2\}}$ invertible so we can apply eagerly.

$$\begin{split} \frac{A_{\{1,2\}} \leq B}{A_1 \sqcap A_2 \leq B} \leq \sqcap L_{\{1,2\}} & \longrightarrow & \frac{\alpha, A_1, A_2 \Rightarrow \beta}{\alpha, A_1 \sqcap A_2 \Rightarrow \beta} \Rightarrow \sqcap L \\ \frac{A \leq B_{\{1,2\}}}{A \leq B_1 \sqcup B_2} \leq \sqcup R_{\{1,2\}} & \longrightarrow & \frac{\alpha \Rightarrow \beta, A_1, A_2}{\alpha \Rightarrow \beta, A_1 \sqcup A_2} \Rightarrow \sqcup R \end{split}$$

Algorithmic Subtyping

Idea: make $\leq \sqcap \mathtt{L}_{\{1,2\}}$ and $\leq \sqcup \mathtt{R}_{\{1,2\}}$ invertible so we can apply eagerly.

$$\begin{split} \frac{A_{\{1,2\}} \leq B}{\overline{A_1 \sqcap A_2 \leq B}} \leq \sqcap L_{\{1,2\}} & \longrightarrow & \frac{\alpha, A_1, A_2 \Rightarrow \beta}{\alpha, A_1 \sqcap A_2 \Rightarrow \beta} \Rightarrow \sqcap L \\ \frac{A \leq B_{\{1,2\}}}{\overline{A \leq B_1 \sqcup B_2}} \leq \sqcup R_{\{1,2\}} & \longrightarrow & \frac{\alpha \Rightarrow \beta, A_1, A_2}{\alpha \Rightarrow \beta, A_1 \sqcup A_2} \Rightarrow \sqcup R \end{split}$$

Also admits distributivity:

$$(A_1 \sqcup B) \sqcap (A_2 \sqcup B) \equiv (A_1 \sqcap A_2) \sqcup B$$
$$(A_1 \sqcup A_2) \sqcap B \equiv (A_1 \sqcap B) \sqcup (A_2 \sqcap B)$$

Turns out to be necessary for soundness of algorithmic typing.

 \bullet Make $\sqcap L_{\{1,2\}}$ and $\sqcup R_{\{1,2\}}$ invertible so we can apply eagerly.

- \bullet Make $\sqcap L_{\{1,2\}}$ and $\sqcup R_{\{1,2\}}$ invertible so we can apply eagerly.
- Delay subtyping to id
- Label cut with it's type

- Make $\sqcap L_{\{1,2\}}$ and $\sqcup R_{\{1,2\}}$ invertible so we can apply eagerly.
- Delay subtyping to id
- Label cut with it's type

$$\frac{\Psi, c : A_{1,2} \vdash_{\eta} P :: (d : D)}{\Psi, c : A_{1} \sqcap A_{2} \vdash_{\eta} P :: (d : D)} \sqcap^{L_{1,2}} \rightarrow \frac{\Psi, c : (\alpha, A, B) \Vdash_{\eta} P :: (d : \beta)}{\Psi, c : (\alpha, A \sqcap B) \Vdash_{\eta} P :: (d : \beta)} \sqcap^{L}$$

$$\frac{\Psi \vdash_{\eta} P :: (c : A_{1,2})}{\Psi \vdash_{\eta} P :: (c : A_{1} \sqcup A_{2})} \sqcup^{R_{1,2}} \rightarrow \frac{\Psi \Vdash_{\eta} P :: (c : A, B, \alpha)}{\Psi \Vdash_{\eta} P :: (c : A \sqcup B, \alpha)} \sqcup^{R}$$

- Make $\sqcap L_{\{1,2\}}$ and $\sqcup R_{\{1,2\}}$ invertible so we can apply eagerly.
- Delay subtyping to id
- Label cut with it's type

$$\frac{\Psi, c : A_{1,2} \vdash_{\eta} P :: (d : D)}{\Psi, c : A_{1} \sqcap A_{2} \vdash_{\eta} P :: (d : D)} \sqcap_{L_{1,2}} \rightarrow \frac{\Psi, c : (\alpha, A, B) \Vdash_{\eta} P :: (d : \beta)}{\Psi, c : (\alpha, A \sqcap B) \vdash_{\eta} P :: (d : \beta)} \sqcap_{L}$$

$$\frac{\Psi \vdash_{\eta} P :: (c : A_{1,2})}{\Psi \vdash_{\eta} P :: (c : A_{1} \sqcup A_{2})} \sqcup_{R_{1,2}} \rightarrow \frac{\Psi \Vdash_{\eta} P :: (c : A, B, \alpha)}{\Psi \Vdash_{\eta} P :: (c : A \sqcup B, \alpha)} \sqcup_{R}$$

$$\frac{\alpha \Rightarrow \beta}{c:\alpha \Vdash_{\eta} d \leftarrow c :: (d:\beta)} \text{ id}$$

$$\frac{\Psi \Vdash_{\eta} P_c :: (c : A) \quad \Psi', c : A \Vdash_{\eta} Q_c :: (d : \alpha)}{\Psi, \Psi' \Vdash_{\eta} c : A \leftarrow P_c; \ Q_c :: (d : \alpha)} \text{ cut}$$

Results

Theorem (Completeness of Algorithmic Subtyping)

Algorithmic subtyping is complete with respect to declarative subtyping.

Theorem (Equivalence of Algorithmic Typing)

Algorithmic typing is sound and complete with respect to declarative typing.

Plan

- Background
 - Message-passing Concurrency
 - Session Types
 - Subtyping
 - Configurations and Reduction
- Intersections and Unions
 - Intersection Types
 - Union Types
 - Reinterpreting Choice
- Algorithmic System
- Metatheory

Type Safety

We have proved progress and preservation for the system extended with intersections and unions.

Type Safety

We have proved progress and preservation for the system extended with intersections and unions.

 $\mathsf{Progress} \to \mathsf{deadlock}\text{-}\mathsf{freedom}$

Type preservation \rightarrow session fidelity

Progress

Theorem (Progress)

If $\models \Omega :: \Psi$ then either

- \bullet $\Omega \longrightarrow \Omega'$ for some Ω' , or
- Ω is poised*.

Proof.

By induction on $\models \Omega :: \Psi$ followed by a nested induction on the typing of the root process. When two processes are involved, we also need inversion on client's typing.

^{*}A process is poised if it is waiting to communicate with its client.

Type Preservation

Theorem (Preservation)

If $\models \Omega :: \Psi$ and $\Omega \longrightarrow \Omega'$ then $\models \Omega' :: \Psi$.

Proof.

By inversion on $\Omega \longrightarrow \Omega'$, followed by induction on the typing judgments of the involved processes. Each branch requires a hand-rolled induction hypothesis.

We introduced intersection and union types to a session-typed process calculus and demonstrated their usefulness.

 Unions work naturally. The elimination rule we give has been shown unsound in the presence of effects (even non-termination).

We introduced intersection and union types to a session-typed process calculus and demonstrated their usefulness.

- Unions work naturally. The elimination rule we give has been shown unsound in the presence of effects (even non-termination).
- More general than refinement system of Freeman and Pfenning

We introduced intersection and union types to a session-typed process calculus and demonstrated their usefulness.

- Unions work naturally. The elimination rule we give has been shown unsound in the presence of effects (even non-termination).
- More general than refinement system of Freeman and Pfenning
- Subtyping resembles Gentzen's multiple conclusion calculus

We introduced intersection and union types to a session-typed process calculus and demonstrated their usefulness.

- Unions work naturally. The elimination rule we give has been shown unsound in the presence of effects (even non-termination).
- More general than refinement system of Freeman and Pfenning
- Subtyping resembles Gentzen's multiple conclusion calculus
- Algorithmic typing mirrors subtyping

Future Work

• Simple: integrate a functional language, extend to shared channels and asynchronous communication

Future Work

- Simple: integrate a functional language, extend to shared channels and asynchronous communication
- More interesting: Add polymorphism and abstract types
 - Polymorphism is non-trivial with equirecursive types

Future Work

- Simple: integrate a functional language, extend to shared channels and asynchronous communication
- More interesting: Add polymorphism and abstract types
 - Polymorphism is non-trivial with equirecursive types
- Applications other than refinements?

The End