Câu 1

Thuật toán:

- Cách 1:
 - + Duyệt theo hàng, với số x ở hàng i, tìm số nguyên tố gần số x nhất gọi là y. Số thao tác biến đổi số x là t=y-x. Gọi S_i là tổng số thao tác biến đổi trên hàng i là $S_i = \sum_{j=1}^m t$. Kết quả tìm được số thao tác biến đổi ít nhất trên hàng là M_1 =min(S_i)
 - + Tương tự duyệt theo cột và tìm được số thao tác biến đổi ít nhất trên cột, gọi là M_2
 - \Rightarrow Kết quả bài toán là MIN(M₁,M₂)
- Cách 2: Nhận xét các số trong bảng có giá trị lớn nhất 10⁶
 - + Sử dụng sàng nguyên tố tính trước các số nguyên tố.
 - + Mỗi số trong bảng tìm được khoảng cách số nguyên tố gần nhất số đó.

Câu 2

Thuật toán:

- Để làm được bài này ta sắp xếp theo thứ tự giảm dần các điểm đầu a_i , nếu có các a_i bằng nhau, sắp xếp các b_i theo thứ tự tăng dần
- Cách 1: đạt 30% số điểm $n \le 20$ duyệt nhị phân tất cả các dãy con, tìm dãy thỏa mãn,
- Cách 2: QHĐ
 - + Gọi f[i] là độ dài dài nhất các đoạn thẳng chứa nhau khi xét đoạn i.
 - + Khi đó f[i]= $\max(f[j])+1$ nếu b[j]
 $\forall j = 1, ..., i-1$
 - + Kết quả bài toán MAX(f[i])
- Cách 3: Cải tiến cách 2, sử dụng cây interval tree tìm max(f[j]) nhanh

Câu 3

Thuật toán:

- Cách 1: với k=1 thì Ta chỉ việc đi lại giữa các đảo bằng những con đường có $h_i=0$. Ta bỏ qua tham số $h_i=0$. Bài toán trở thành cơ bản, tìm đường đi ngắn nhất từ A đến B.
- Cách 2: gọi d[v][h] là chi phí ít nhất khi đi từ đảo A đến đảo v có độ bào mòn trên đường đi này là h. Sử dụng thuật toán dijkstra tìm đường đi ngắn nhất.

-	Cách 3: Cải tiến cách 2 sử dụng Dijstra_heap
	HÉT