Abundance models with detection error

Peter Solymos and Subhash Lele

July 16, 2016 — Madison, WI — NACCB Congress

We can easily generalize this to model abundance surveys. The N-mixture model is the simplest (though unrealistic in practice).

Assumptions

- Replicate surveys,
- independence,
- · closed population.

Specification of the hierarchical model

- True abundance model: $N_i \sim Poisson(\lambda)$ for locations i = 1, 2, ..., n.
- Observation model: $(Y_{i,t} \mid N_i) \sim Binomial(N_i, p)$ for visits t = 1, 2, ..., T.

```
set.seed(1234)
n <- 200
T <- 1
p <- 0.6
lambda <- 4.2
N <- rpois(n = n, lambda = lambda)
Y <- matrix(NA, n, T)
for (t in 1:T) {
    Y[,t] <- rbinom(n = n, size = N, prob = p)
}
table(N = N, Y = apply(Y, 1, max))</pre>
```

```
##
         1
       0
           2
              3 4 5
                     6 7
         0
           0
##
       3
              0 0 0 0
       5 7
           0
##
   1
              0 0 0 0
       5 12 11 0 0 0 0 0
##
##
    3
       1 15 21
              6
                0 0 0 0
       3 4 14 11
                7
##
    4
                   0
                     0
##
   5
       1 2 7 13
                7
                   0 0
      0 2 1
##
             6
##
   7
       0 0 1
              3 4 5 0 0
##
      0
         0
           0
              0 1
           0
              2 0 0 1 1
##
   9
      0 0
   10
      0 0
           0
             1 1 0 0 1
##
    12 0 0
              0 0 0 0 0
           1
```

```
library(dclone)
```

```
## Loading required package: coda
```

```
## Loading required package: parallel
## Loading required package: Matrix
## dclone 2.1-1
                      2016-01-11
library(rjags)
## Linked to JAGS 4.0.1
## Loaded modules: basemod, bugs
model <- custommodel("model {</pre>
    for (i in 1:n) {
        N[i] ~ dpois(lambda)
        for (t in 1:T) {
            Y[i,t] ~ dbin(p, N[i])
    }
    p ~ dunif(0.001, 0.999)
    lambda ~ dlnorm(0, 0.001)
dat \leftarrow list(Y = Y, n = n, T = T)
ini \leftarrow list(N = apply(Y, 1, max) + 1)
fit <- jags.fit(data = dat, params = c("p", "lambda"),</pre>
    n.update = 10000,
    model = model, inits = ini)
## Compiling model graph
##
      Resolving undeclared variables
##
      Allocating nodes
## Graph information:
      Observed stochastic nodes: 200
##
##
      Unobserved stochastic nodes: 202
##
      Total graph size: 408
## Initializing model
summary(fit)
##
## Iterations = 11001:16000
## Thinning interval = 1
## Number of chains = 3
## Sample size per chain = 5000
## 1. Empirical mean and standard deviation for each variable,
##
      plus standard error of the mean:
##
##
             Mean
                        SD Naive SE Time-series SE
## lambda 11.9345 11.8880 0.097065
                                            1.93754
```

gelman.diag(fit)

plot(fit)

Trace of lambda

Density of lambda

Trace of p

Density of p

N = 5000 Bandwidth = 0.04719


```
ifun <- function(model, n.clones) {
    dclone(list(N = apply(Y, 1, max) + 1), n.clones)
}
dcfit <- dc.fit(data = dat,
    params = c("p", "lambda"), model = model,
    inits = ini, initsfun = ifun,
    n.clones = c(1, 2, 4, 8),
    unchanged = "T", multiply = "n")</pre>
```

```
##
## Fitting model with 1 clone
##
## Compiling model graph
##
      Resolving undeclared variables
##
      Allocating nodes
## Graph information:
      Observed stochastic nodes: 200
##
##
      Unobserved stochastic nodes: 202
##
      Total graph size: 408
##
## Initializing model
##
```

```
##
## Fitting model with 2 clones
##
## Compiling model graph
##
      Resolving undeclared variables
      Allocating nodes
##
## Graph information:
      Observed stochastic nodes: 400
##
##
      Unobserved stochastic nodes: 402
##
      Total graph size: 808
## Initializing model
##
##
## Fitting model with 4 clones
##
## Compiling model graph
##
      Resolving undeclared variables
##
      Allocating nodes
## Graph information:
##
      Observed stochastic nodes: 800
##
      Unobserved stochastic nodes: 802
##
      Total graph size: 1608
##
## Initializing model
##
##
## Fitting model with 8 clones
##
## Compiling model graph
##
      Resolving undeclared variables
##
      Allocating nodes
## Graph information:
##
      Observed stochastic nodes: 1600
##
      Unobserved stochastic nodes: 1602
##
      Total graph size: 3208
##
## Initializing model
## Warning in dclone::.dcFit(data, params, model, inits, n.clones, multiply =
## multiply, : chains convergence problem, see R.hat values
summary(dcfit)
##
## Iterations = 2001:7000
## Thinning interval = 1
## Number of chains = 3
## Sample size per chain = 5000
## Number of clones = 8
## 1. Empirical mean and standard deviation for each variable,
      plus standard error of the mean:
```

```
##
##
           Mean
                     SD DC SD Naive SE Time-series SE R hat
## lambda 6.2655 3.0678 8.6771 0.025049
                                             1.10484 2.974
         0.4626 0.1957 0.5534 0.001597
                                             0.03369 4.387
## 2. Quantiles for each variable:
##
##
            2.5%
                    25%
                          50%
                                 75%
## lambda 2.8570 3.6273 5.575 7.6167 13.6665
         0.1718 0.3097 0.423 0.6496 0.8245
```

plot(dcfit)

Trace of lambda

2000 4000 6000 Iterations

Density of lambda

N = 5000 Bandwidth = 0.4612

Trace of p

Density of p

N = 5000 Bandwidth = 0.03031

dctable(dcfit)

```
## $lambda
## n.clones
                  mean
                             sd
                                    2.5%
                                              25%
                                                       50%
                                                                 75%
## 1
           1 7.045741 5.227405 2.418524 3.218200 4.536519 10.067738 20.12716
           2 4.718542 2.708924 2.389454 2.805515 3.879226 5.256660 12.55633
           4 4.892891 2.445407 2.411172 2.898623 3.784789 6.840735 10.17472
## 3
## 4
           8 6.265479 3.067828 2.857031 3.627332 5.574596 7.616673 13.66655
##
       r.hat
## 1 1.805430
## 2 1.946222
```

```
## 3 2.337662
## 4 2.973952
##
## $p
##
    n.clones
                   mean
                               sd
                                       2.5%
                                                   25%
                                                             50%
## 1
            1 0.5076574 0.2686061 0.1168184 0.2341175 0.5220970 0.7335185
            2 0.6208203 0.2372355 0.1890355 0.4491435 0.6078694 0.8429234
            4 0.5969854 0.2446757 0.2317374 0.3445532 0.6244197 0.8134395
## 3
## 4
            8 0.4625521 0.1956510 0.1717936 0.3097417 0.4229773 0.6495672
##
         97.5%
## 1 0.9657970 2.016793
## 2 0.9777050 1.924369
## 3 0.9756111 3.133583
## 4 0.8245064 4.387481
##
## attr(,"class")
## [1] "dctable"
```

plot(dctable(dcfit))

dcdiag(dcfit)

```
## n.clones lambda.max ms.error r.squared r.hat
## 1 1 27.379838 0.9169614 0.13153197 1.806031
```

```
## 2 2 7.382432 0.8686344 0.10603883 1.718781
## 3 4 6.032912 0.1485242 0.01213715 2.847335
## 4 8 9.442417 0.7225159 0.10352928 3.860971
```

plot(dcdiag(dcfit))

pairs(dcfit)

As before it is easy to include covariates in the models. There are various extensions and modifications proposed to this basic model. See Lele et al., Solymos et al, Solymos and Lele, Dail and Madsen. (Here we can advertise our work on single survey method and the poster.)

Single visit abundance model with covariates:

```
set.seed(1234)
n <- 200
x <- rnorm(n)
z <- rnorm(n)
beta <- c(0.9, 0.5)
theta <- c(0.8, -0.5)
Z <- model.matrix(~z)
X <- model.matrix(~x)
p <- plogis(Z %*% theta)
lambda <- exp(X %*% beta)
N <- rpois(n = n, lambda = lambda)
Y <- rbinom(n = n, size = N, prob = p)
table(N = N, Y = Y)</pre>
```

```
##
        Y
##
              1
                     3
                                         11 13
##
         27
              0
                 0
                     0
                        0
                            0
                                      0
                                          0
                               0
                                   0
                                              0
##
         19 25
                 0
                     0
                        0
                            0
                               0
                                   0
                                      0
                                          0
                                              0
     2
          4 17 21
                     0
                        0
                               0
                                          0
                                              0
##
                            0
                                   0
                                      0
##
     3
             3 13 15
                        0
                            0
                               0
                                   0
                                      0
                                   0
                        6
                            0
                               0
##
```

```
##
       0 0 2 5 3 2 0 0 0 0 0
##
        0 0 0 0 0 2 0 0 0
                                  0 0
    6
        0 0 1 0 0 3 1 2 0
##
    7
       0 0 0 0 0 1 0 2 0 0 0
##
    8
##
        0 0 0
                 0 0 0 1 2 1
##
    10 0 0 0 0 0 0 3 0 0 0
##
    13 0 0 0 0 0 0 0 0 1 0
    15 0 0 0 0 0 0 0 0 0 1
##
## naive abundance parameter estimates
m <- glm(Y ~ x, family = poisson("log"))</pre>
coef(m)
## (Intercept)
    0.5473770 0.5715644
library(detect)
## Warning: package 'detect' was built under R version 3.2.4
## Loading required package: Formula
## Loading required package: stats4
## Loading required package: pbapply
## Warning: package 'pbapply' was built under R version 3.2.5
## detect 0.4-0
                    2016-03-02
md <- svabu(Y ~ x | z, zeroinfl = FALSE)</pre>
coef(md)
## sta_(Intercept)
                           sta_x det_(Intercept)
                                                          \det_z
##
        0.6364075
                       0.5712775
                                      3.4375548
                                                     -1.6490555
model <- custommodel("model {</pre>
   for (i in 1:n) {
       N[i] ~ dpois(lambda[i])
       Y[i] ~ dbin(p[i], N[i])
       log(lambda[i]) <- inprod(X[i,], beta)</pre>
       logit(p[i]) <- inprod(Z[i,], theta)</pre>
   }
   for (j in 1:px) {
       beta[j] ~ dnorm(naive[j], 0.1)
   for (j in 1:pz) {
       theta[j] ~ dnorm(0, 0.01)
   }
}")
```

```
dat \leftarrow list(Y = Y, n = n, X = X, Z = Z,
    px = ncol(X), pz = ncol(Z), naive = coef(m))
ini \leftarrow list(N = Y + 1)
fit <- jags.fit(data = dat, params = c("beta", "theta"),</pre>
    n.update = 5000,
    model = model, inits = ini)
## Compiling model graph
##
      Resolving undeclared variables
##
      Allocating nodes
## Graph information:
      Observed stochastic nodes: 200
##
      Unobserved stochastic nodes: 204
##
      Total graph size: 2417
##
## Initializing model
## DC
ifun <- function(model, n.clones) {</pre>
    dclone(list(N = Y + 1), n.clones)
dcfit <- dc.fit(data = dat,</pre>
    params = c("beta", "theta"), model = model,
    inits = ini, initsfun = ifun,
    n.clones = c(1, 2, 4, 8),
   n.update = 5000,
    unchanged = c("px", "pz", "naive"), multiply = "n")
##
## Fitting model with 1 clone
## Compiling model graph
##
      Resolving undeclared variables
##
      Allocating nodes
## Graph information:
##
      Observed stochastic nodes: 200
      Unobserved stochastic nodes: 204
##
##
      Total graph size: 2417
##
## Initializing model
##
##
## Fitting model with 2 clones
##
## Compiling model graph
##
      Resolving undeclared variables
      Allocating nodes
##
## Graph information:
##
      Observed stochastic nodes: 400
##
      Unobserved stochastic nodes: 404
##
      Total graph size: 4017
## Initializing model
```

```
##
##
## Fitting model with 4 clones
##
## Compiling model graph
      Resolving undeclared variables
##
##
      Allocating nodes
## Graph information:
##
      Observed stochastic nodes: 800
##
      Unobserved stochastic nodes: 804
##
      Total graph size: 7217
##
## Initializing model
##
##
## Fitting model with 8 clones
##
## Compiling model graph
##
      Resolving undeclared variables
##
      Allocating nodes
## Graph information:
##
      Observed stochastic nodes: 1600
##
      Unobserved stochastic nodes: 1604
##
      Total graph size: 13617
##
## Initializing model
```

summary(dcfit)

```
##
## Iterations = 2001:7000
## Thinning interval = 1
## Number of chains = 3
## Sample size per chain = 5000
## Number of clones = 8
##
## 1. Empirical mean and standard deviation for each variable,
##
     plus standard error of the mean:
##
##
                         SD DC SD Naive SE Time-series SE R hat
               Mean
## beta[1]
            0.6399 0.03590 0.1015 0.0002931
                                                  0.0034841 1.015
            0.5716 0.01616 0.0457 0.0001319
## beta[2]
                                                  0.0002244 1.001
## theta[1] 3.5078 0.77234 2.1845 0.0063061
                                                  0.1176666 1.019
## theta[2] -1.6721 0.36895 1.0435 0.0030124
                                                  0.0543331 1.016
##
## 2. Quantiles for each variable:
##
##
               2.5%
                        25%
                                50%
                                        75%
                                              97.5%
## beta[1]
             0.5779 0.6145
                                    0.6628
                                            0.7189
                            0.6367
## beta[2]
            0.5398 0.5607
                             0.5716
                                    0.5824
## theta[1] 2.2261 2.8970 3.4633 4.0228 5.0853
## theta[2] -2.4232 -1.9244 -1.6525 -1.3907 -1.0355
```

dcdiag(dcfit)

```
## n.clones lambda.max ms.error r.squared r.hat

## 1 1 44.7174344 16.3539951 0.31932661 1.170655

## 2 2 21.5394647 13.3391346 0.27904243 1.200791

## 3 4 1.6466965 1.7234011 0.08052065 1.024228

## 4 8 0.7267786 0.3135922 0.02513831 1.014386
```

Learning with DC

```
model <- custommodel("model {</pre>
    for (i in 1:n) {
        N[i] ~ dpois(lambda[i])
        Y[i] ~ dbin(p[i], N[i])
        log(lambda[i]) <- inprod(X[i,], beta)</pre>
        logit(p[i]) <- inprod(Z[i,], theta)</pre>
    }
    cf[1:(px + pz)] \sim dmnorm(pr[,1], pr[,2:(px + pz + 1)])
    beta <- cf[1:px]
    theta \leftarrow cf[(px + 1):(px + pz)]
}")
dat \leftarrow list(Y = Y, n = n, X = X, Z = Z,
    px = ncol(X), pz = ncol(Z),
    pr = unname(cbind(c(coef(m), rep(0, ncol(Z))),
        diag(0.01, ncol(X) + ncol(Z))))
ini \leftarrow list(N = Y + 1)
ifun <- function(model, n.clones) {</pre>
    dclone(list(N = Y + 1), n.clones)
}
## function to update prior
## defined as Multivariate Normal distribution
ufun <- function(model, n.clones) {
    cbind(coef(model), solve(vcov(model)))
dcfit <- dc.fit(data = dat,</pre>
    params = c("beta", "theta"), model = model,
    inits = ini, initsfun = ifun,
    update = "pr", updatefun = ufun,
    n.clones = c(1, 2, 4, 8),
    n.update = 5000,
    unchanged = c("px", "pz", "pr"), multiply = "n")
```

```
##
## Fitting model with 1 clone
##
## Compiling model graph
## Resolving undeclared variables
## Allocating nodes
## Graph information:
## Observed stochastic nodes: 200
```

```
##
      Unobserved stochastic nodes: 201
##
      Total graph size: 2428
##
## Initializing model
##
##
## Fitting model with 2 clones
##
## Compiling model graph
##
      Resolving undeclared variables
##
      Allocating nodes
## Graph information:
      Observed stochastic nodes: 400
##
##
      Unobserved stochastic nodes: 401
##
      Total graph size: 4028
##
## Initializing model
##
##
## Fitting model with 4 clones
##
## Compiling model graph
      Resolving undeclared variables
##
      Allocating nodes
##
## Graph information:
##
      Observed stochastic nodes: 800
##
      Unobserved stochastic nodes: 801
##
      Total graph size: 7228
##
## Initializing model
##
##
## Fitting model with 8 clones
##
## Compiling model graph
##
      Resolving undeclared variables
##
      Allocating nodes
## Graph information:
##
      Observed stochastic nodes: 1600
      Unobserved stochastic nodes: 1601
##
##
      Total graph size: 13628
##
## Initializing model
## Warning in dclone::.dcFit(data, params, model, inits, n.clones, multiply =
## multiply, : chains convergence problem, see R.hat values
summary(dcfit)
##
## Iterations = 6001:11000
## Thinning interval = 1
```

Number of chains = 3

```
## Sample size per chain = 5000
## Number of clones = 8
##
## 1. Empirical mean and standard deviation for each variable,
##
      plus standard error of the mean:
##
                              DC SD Naive SE Time-series SE R hat
##
               Mean
                         SD
## beta[1]
             0.7159 0.05312 0.15025 0.0004337
                                                    0.0065051 1.824
## beta[2]
             0.5681 0.01621 0.04586 0.0001324
                                                    0.0004449 1.003
## theta[1] 2.1994 0.45697 1.29250 0.0037311
                                                    0.1069388 2.086
## theta[2] -1.0494 0.21811 0.61692 0.0017809
                                                    0.0336612 1.866
##
## 2. Quantiles for each variable:
##
##
                        25%
               2.5%
                                50%
                                        75%
                                              97.5%
## beta[1]
             0.6371
                     0.6770
                             0.7046
                                     0.7470
                                             0.8368
## beta[2]
             0.5361
                     0.5572
                             0.5685
                                     0.5791
                                             0.5988
## theta[1] 1.3391 1.8951
                             2.2535
                                     2.5801
## theta[2] -1.4289 -1.2190 -1.0572 -0.9010 -0.6427
dcdiag(dcfit)
     n.clones lambda.max
                           ms.error
                                      r.squared
## 1
            1 5.5157831 0.57938641 0.029820352 3.584440
## 2
            2 2.4999785 0.48352025 0.035814958 1.973305
## 3
            4 0.4348400 0.02239688 0.002508366 1.184487
## 4
            8 0.2533176 0.02424999 0.002914900 1.732422
```

Zero-inflated Poisson latent process

This really becomes an issue when T = 1. With T > 1 it is much easier to distinguish non occupied $(O_i = 0)$ or $N_i = 0 | O_i = 1$ locations when all the detection history is 0, and non-detections when some of the detection history is > 0 if p is not too small.

```
set.seed(1234)
n <- 100
T <- 2
p <- 0.6
lambda <- 3.5
q <- 0.25
0 <- rbinom(n, size = 1, prob = q)
N <- 0 * rpois(n = n, lambda = lambda)
Y <- matrix(NA, n, T)
for (t in 1:T) {
        Y[,t] <- rbinom(n = n, size = N, prob = p)
}
table(N = N, Y = apply(Y, 1, max))</pre>
```

```
##
## N
       0
          1
            2
               3 4
                    5
                       6 7
          0
            0
               0
                 0
      82
                    0
          2 0
##
       0
               0 0 0 0 0
    1
```

```
##
        0 0 1 0 0 0 0 0
##
     3
        0 1
              2 3 0 0 0 0
##
        0 0 1 3 0 0 0 0
        0 0 0 1 0 0 0 0
##
     5
##
     6
         0 0
              0
                 0 1 1 0 0
         0 0 0 0 0 0 0 1
##
     9
##
        0 0 0 0 0 0 1 0
     10
library(dclone)
model <- custommodel("model {</pre>
    for (i in 1:n) {
       0[i] ~ dbern(q)
       N[i] ~ dpois(lambda * O[i])
        for (t in 1:T) {
           Y[i,t] ~ dbin(p, N[i])
    }
    p ~ dunif(0.001, 0.999)
    lambda ~ dlnorm(0, 0.001)
    q ~ dunif(0.001, 0.999)
}")
dat \leftarrow list(Y = Y, n = n, T = T)
## initial values are trickier
ini <- list(N = ifelse(rowSums(Y) > 0, 1, 0) * (apply(Y, 1, max) + 1),
    0 = ifelse(rowSums(Y) > 0, 1, 0))
fit <- jags.fit(data = dat, params = c("p", "lambda", "q"),</pre>
    n.update = 10000,
    model = model, inits = ini)
## Compiling model graph
##
      Resolving undeclared variables
##
      Allocating nodes
## Graph information:
##
      Observed stochastic nodes: 200
##
      Unobserved stochastic nodes: 203
##
      Total graph size: 511
##
## Initializing model
summary(fit)
##
## Iterations = 11001:16000
## Thinning interval = 1
## Number of chains = 3
## Sample size per chain = 5000
##
## 1. Empirical mean and standard deviation for each variable,
##
      plus standard error of the mean:
##
##
            Mean
                     SD Naive SE Time-series SE
## lambda 3.9870 1.11639 0.0091153
                                      0.0576736
## p
        0.6303 0.11541 0.0009423
                                       0.0056808
```

```
## q 0.1948 0.04006 0.0003271 0.0004602
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## lambda 2.5479 3.2685 3.7626 4.3952 6.9094
## p 0.3614 0.5625 0.6472 0.7123 0.8111
## q 0.1227 0.1669 0.1925 0.2209 0.2787
```

gelman.diag(fit)

plot(fit)

Trace of lambda

Density of p

Data cloning for zero inflated data: issues might arise with parent values, that is why we do conditional likelihood estimation. It is also possible to use data vloning and JAGS for conditional likelihood estimation as explained in Solymos et al. 2012 (PDF).

Poisson-Poisson mixture

This modification can be suitable in cases when there is e.g. double counting of individuals, or false positives.

```
set.seed(1234)
n <- 200
x <- rnorm(n)
z <- rnorm(n)
beta <- c(0.9, 0.5)
theta <- c(0.8, -0.5)
Z <- model.matrix(~z)
X <- model.matrix(~x)
p <- plogis(Z %*% theta)
lambda <- exp(X %*% beta)
N <- rpois(n = n, lambda = lambda)
Y <- rpois(n = n, lambda = p * N)
table(N = N, Y = Y)</pre>
```

```
## N
         0
           1
              2
                  3 4 5 6 7 8 10
##
       27
           0
               0
                  0
                     0
                       0
                           0
                                 0
                                    0
##
     1
       26 10 4
                  4
                    0
                       0
                           0
                             0
                                 0
##
       15 11 11
                  4
                     1
                       0
                           0
                              0
                                 0
                                    0
##
     3
        4 12 6
                  6 2 1 0
                             0 0
                                    Λ
##
        2 6 3
                  4 5 2 1
     4
         1 2 5
                  0
                    2 2
##
     5
                           0
                              0
                                0
                                    0
##
     6
        0 0
              1
                  0
                    1
                       0
                           0
                              0
                                0
     7
         0 2 0
                  0 3 0 0
                              2 0
##
##
     8
        0 0 0
                 1 1
                       1
                           0 0 0
##
     9
        0 1 0
                  0 0 1
                                    0
                           0 1 1
     10 0 0
              0
                  0 0
##
                       0
                           1
                              0 1 1
     13 0 0 0
##
                  0 0 0 0 0 0 1
##
     15 0 0 0
                  0 0 0 0 0 1 0
m <- glm(Y ~ x, family = poisson("log"))</pre>
## N is of interest for e.g. prediction
model1 <- custommodel("model {</pre>
    for (i in 1:n) {
        N[i] ~ dpois(lambda[i])
        #Y[i] ~ dbin(p[i], N[i])
       Y[i] ~ dpois(p[i] * N[i]) # this is the change
        log(lambda[i]) <- inprod(X[i,], beta)</pre>
        logit(p[i]) <- inprod(Z[i,], theta)</pre>
    }
    for (j in 1:px) {
       beta[j] ~ dnorm(naive[j], 0.1)
    }
    for (j in 1:pz) {
        theta[j] ~ dnorm(0, 0.01)
    }
}")
\#\# more efficient when N is not of interest
model2 <- custommodel("model {</pre>
    for (i in 1:n) {
       Y[i] ~ dpois(p[i] * lambda[i])
        log(lambda[i]) <- inprod(X[i,], beta)</pre>
       logit(p[i]) <- inprod(Z[i,], theta)</pre>
    }
    for (j in 1:px) {
       beta[j] ~ dnorm(naive[j], 0.1)
    }
    for (j in 1:pz) {
        theta[j] ~ dnorm(0, 0.01)
}")
dat \leftarrow list(Y = Y, n = n, X = X, Z = Z,
    px = ncol(X), pz = ncol(Z), naive = coef(m))
ini \leftarrow list(N = Y + 1)
fit1 <- jags.fit(data = dat, params = c("beta", "theta"),</pre>
    n.update = 5000, model = model1, inits = ini)
```

##

```
## Compiling model graph
##
      Resolving undeclared variables
##
      Allocating nodes
## Graph information:
##
      Observed stochastic nodes: 200
##
      Unobserved stochastic nodes: 204
##
      Total graph size: 2617
##
## Initializing model
fit2 <- jags.fit(data = dat, params = c("beta", "theta"),</pre>
    n.update = 5000, model = model2)
## Compiling model graph
      Resolving undeclared variables
##
##
      Allocating nodes
## Graph information:
##
      Observed stochastic nodes: 200
      Unobserved stochastic nodes: 4
##
##
      Total graph size: 2417
##
## Initializing model
coef(fit1)
##
      beta[1]
                 beta[2]
                           theta[1]
                                       theta[2]
   0.5090397  0.5679768  7.2596160  -1.7092087
coef(fit2)
                 beta[2]
      beta[1]
                            theta[1]
                                       theta[2]
## 0.5895744 0.5717896 6.3215477 -1.9587146
ifun <- function(model, n.clones) {</pre>
    dclone(list(N = Y + 1), n.clones)
dcfit1 <- dc.fit(data = dat,</pre>
    params = c("beta", "theta"), model = model1,
    inits = ini, initsfun = ifun,
    n.clones = c(1, 2, 4, 8),
    n.update = 5000,
    unchanged = c("px", "pz", "naive"), multiply = "n")
##
## Fitting model with 1 clone
## Compiling model graph
##
      Resolving undeclared variables
      Allocating nodes
## Graph information:
```

```
Observed stochastic nodes: 200
##
##
      Unobserved stochastic nodes: 204
##
      Total graph size: 2617
##
## Initializing model
##
##
## Fitting model with 2 clones
##
## Compiling model graph
      Resolving undeclared variables
      Allocating nodes
##
## Graph information:
##
      Observed stochastic nodes: 400
##
      Unobserved stochastic nodes: 404
##
      Total graph size: 4417
##
## Initializing model
##
##
## Fitting model with 4 clones
## Compiling model graph
##
      Resolving undeclared variables
##
      Allocating nodes
## Graph information:
##
      Observed stochastic nodes: 800
##
      Unobserved stochastic nodes: 804
      Total graph size: 8017
##
## Initializing model
##
##
## Fitting model with 8 clones
## Compiling model graph
##
      Resolving undeclared variables
##
      Allocating nodes
## Graph information:
##
      Observed stochastic nodes: 1600
##
      Unobserved stochastic nodes: 1604
##
      Total graph size: 15217
## Initializing model
dcfit2 <- dc.fit(data = dat,</pre>
    params = c("beta", "theta"), model = model2,
    n.clones = c(1, 2, 4, 8),
     n.update = 5000,
    unchanged = c("px", "pz", "naive"), multiply = "n")
## Fitting model with 1 clone
##
```

```
## Compiling model graph
##
      Resolving undeclared variables
##
      Allocating nodes
## Graph information:
##
      Observed stochastic nodes: 200
      Unobserved stochastic nodes: 4
##
      Total graph size: 2417
##
##
## Initializing model
##
##
## Fitting model with 2 clones
##
## Compiling model graph
##
      Resolving undeclared variables
##
      Allocating nodes
## Graph information:
##
      Observed stochastic nodes: 400
##
      Unobserved stochastic nodes: 4
##
      Total graph size: 3817
##
## Initializing model
##
##
## Fitting model with 4 clones
##
## Compiling model graph
      Resolving undeclared variables
##
##
      Allocating nodes
## Graph information:
##
      Observed stochastic nodes: 800
##
      Unobserved stochastic nodes: 4
##
      Total graph size: 6617
##
## Initializing model
##
##
## Fitting model with 8 clones
##
## Compiling model graph
      Resolving undeclared variables
##
      Allocating nodes
## Graph information:
      Observed stochastic nodes: 1600
##
##
      Unobserved stochastic nodes: 4
##
      Total graph size: 12217
## Initializing model
## Warning in dclone::.dcFit(data, params, model, inits, n.clones, multiply =
## multiply, : chains convergence problem, see R.hat values
```

coef(dcfit1)

```
## beta[1] beta[2] theta[1] theta[2]
## 0.7416785 0.5768555 0.8943633 -0.5343544
```

coef(dcfit2)

```
## beta[1] beta[2] theta[1] theta[2]
## 1.5825361 0.5706308 -0.6929124 -0.3035158
```