Lecture 3: Polynomials and rational functions

Math 660—Jim Fowler

Wednesday, June 22, 2011

Review

Provided the limit exists, the derivative f'(z) is

$$\lim_{h\to 0}\frac{f(z+h)-f(z)}{h}$$

Why the Cauchy-Riemann equations?

Compute limit in two different directions,

$$\lim_{\epsilon \to 0} \frac{f(z+\epsilon) - f(z)}{\epsilon} = \frac{\partial f}{\partial x}(z)$$

versus

$$\lim_{\epsilon \to 0} \frac{f(z + i\epsilon) - f(z)}{i\epsilon} = \lim_{\epsilon \to 0} -i \frac{f(z + i\epsilon) - f(z)}{\epsilon}$$

and therefore

$$\frac{\partial f}{\partial x}(z) = -i\frac{\partial f}{\partial y}(z).$$

Cauchy-Riemann \Rightarrow analytic

Suppose f(z)=0, and $f:\mathbb{R}^2\to\mathbb{R}^2$ is differentiable at zero. Then

$$f(z) = \left(\frac{\partial f}{\partial x}\right)(0)x + \left(\frac{\partial f}{\partial y}\right)(0)y + c(z)z,$$

where $c(z) \to 0$ as $z \to 0$. Now $z + \overline{z} = 2x$ and $z - \overline{z} = 2iy$, so f(z) equals

$$z - z = 2iy$$
, so $f(z)$ equals
$$\frac{\left(\frac{\partial f}{\partial x}\right)(0) - \left(\frac{\partial f}{\partial y}\right)(0)i}{2z + \frac{\left(\frac{\partial f}{\partial x}\right)(0) + \left(\frac{\partial f}{\partial y}\right)(0)i}{2z + c(z)z}} \bar{z} + c(z)z$$

so $\frac{f(z)}{z} = \left(\frac{\partial f}{\partial z}\right)(0) + \left(\frac{\partial f}{\partial \overline{z}}\right)(0) \cdot \frac{\overline{z}}{z} + c(z)$

- ▶ Analytic refers to power series.
- ► Holomorphic refers to differentiability.
- A theorem relates the two notions.

More on complex derivatives

 $f: \mathbb{C} \to \mathbb{C}$ gives rise to $f: \mathbb{R}^2 \to \mathbb{R}^2$. $i: \mathbb{R}^2 \to \mathbb{R}^2$ is the "rotate by $\pi/4$ " map.

$$Df = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix}.$$

If f is holomorphic, then $Df \circ i = i \circ Df$. If f is holomorphic, then Df is a combination of rotation and scaling.

$$\frac{\partial f}{\partial x} = -i \frac{\partial f}{\partial y}$$

$$i \frac{\partial f}{\partial x} = \frac{\partial f}{\partial y}$$

 $\overline{\partial x}$

Different, or the same?

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$

$$f'(z) = \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x}$$

$$f'(z) = \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y}$$

$$f'(z) = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y}$$

Different, or the same?

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$
$$f'(z) = \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x}$$
$$f'(z) = \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y}$$
$$f'(z) = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y}$$

All the same by the Cauchy-Riemann equations.

Cauchy-Riemann equations

Write a function $f: \mathbb{C} \to \mathbb{C}$ in terms of z and \overline{z} .

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right)$$
$$\frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right)$$

"Analytic means f doesn't depend on \overline{z} ."

$$f(z) = z^2.$$

- $f(z) = z^2$.
- $f(a+bi) = e^a(\cos b + i\sin b).$

- $f(z) = z^2$.
- $f(a+bi) = e^a(\cos b + i\sin b).$
- f(z) = real part of z.

- $f(z) = z^2$.
- $f(a+bi) = e^a(\cos b + i\sin b).$
- f(z) = real part of z.
- f(z) = 17i.

- $f(z) = z^2$.
- $f(a+bi) = e^a(\cos b + i\sin b).$
- f(z) = real part of z.
- f(z) = 17i.
- $f(z) = \overline{z}.$

- $f(z) = z^2$.
- $f(a+bi) = e^a (\cos b + i \sin b).$
- f(z) = real part of z.
- f(z) = 17i.
- $f(z) = \overline{z}$.
- $f(z) = \sin z + i \cos \operatorname{imag} z.$

A formal method

Goal: Given u, find v so that f = u + iv is analytic.

 $\overline{f(z)}$ is a function of \overline{z} .

$$u(x,y)=\frac{f(x+iy)+\overline{f}(x-iy)}{2}.$$

Substitute in x = z/2 and y = -iz/2. Guess

$$f(z) = 2u(z/2, iz/2).$$

Example: $u(x, y) = x^2 - y^2$; then $f(z) = z^2$.

Section 2.1.3 and 2.1.4

polynomials and rational functions

Polynomials

$$p(z) = c_n z^n + \cdots + c_1 z + c_0$$

Theorem (Fund. Theorem of Algebra)

Let p(z) be a polynomial.

Then there exists $z \in \mathbb{C}$ so that f(z) = 0.

Theorem

Every polynomial p(z) can be written as

$$p(z) = \lambda(z - a_1)(z - a_2) \cdots (z - a_n)$$

for complex numbers λ , a_1 , a_2 , ..., a_n .

Zeroes of a polynomial

A polynomial p has a zero of order n at w if

$$p(w) = 0, p'(w) = 0, \dots, p^{(n-1)}(w) = 0$$

but $p^{(n)}(w) \neq 0$.

Equivalently, $(z - w)^n$ divides p(z).

Theorem (Gauss-Lucas)

Let p(z) be a polynomial; if all zeroes of p lie in a half plane, then all zeroes of p' lie in the same half plane.

Proof

$$p(z) = \lambda(z - a_1)(z - a_2) \cdots (z - a_n).$$

$$\frac{p'(z)}{p(z)} = \frac{1}{z-a_1} + \cdots + \frac{1}{z-a_n}$$

$$p(z)$$
 $z-a_1$ $z-a_2$
Let $H=\{z\in\mathbb{C}: \mathrm{imag}(z-a)/b<0\}.$

If
$$a_k \in H$$
 but $z \notin H$, then

If
$$a_k \in H$$
 but $z \notin H$, then

$$a_k \subset II$$
 but $2 \not\subseteq II$, then

$$z-a_k$$
 z

$$z - a_k = imag$$

$$\lim_{n\to\infty}\frac{z-a_k}{n}=\lim_{n\to\infty}\frac{z}{n}$$

$$\operatorname{imag} \frac{z - a_k}{b} = \operatorname{imag} \frac{z - a}{b} - \operatorname{imag} \frac{a_k - a}{b} > 0$$

so imag $b/(z-a_k) < 0$. So

and $p'(z) \neq 0$.

$$\frac{z-a_k}{z}$$
 — imag $\frac{z-a_k}{z}$

$$ag \frac{z-a}{\cdot}$$

 $\operatorname{imag} \frac{b \, p'(z)}{p(z)} = \sum \operatorname{imag} b/(z-a_k) < 0,$

$$z - \frac{1}{2}$$

$$g\frac{a_k-}{a_k}$$

As a consequence of the preceding theorem:

Theorem

Let p(z) be a polynomial; the convex hull of the zeroes of p contains the zeroes of p'.

Vaguely, the zeroes of p' are between the zeroes of p,

like in Rolle's theorem.

a polynomial with four roots

the derivative

the second derivative

the third derivative

