How to choose?

Descriptive statistics, graphs, tests

Descriptive statistics and Visuals

- ▶ Dependent on measurement type and shape of distribution
 - For continuous (Normally distributed) variables
 - ▶ Count, mean, standard deviation (minimum, maximum)
 - Histograms, dot plots, box plots, scatter plots

- For continuous (skewed) variables
 - Count, median, inter-quartile range (minimum, maximum,)
 - Histograms, dot plots, box plots, scatter plots

- For categorical variables
 - Frequency counts, percentages
 - One-way tables, two-way tables
 - ▶ Bar charts, pie charts

Categorical data Frequency Percentage (Row, Column or Total) **Continuous data: Measure of central tendency Descriptive statistics** Mean (non-skewed) Median (skewed) Continuous data: Measure of variation Standard deviation (non-skewed) Inter-quartile range (skewed) **Exploring data Categorical data** Bar chart Clustered bar charts (two categorical variables) Pie chart **Visuals Continuous data** Histogram (with density curve) Box plot (can be plotted against a categorical variable) Scatter plot (two continuous variables)

Deciding Normality

Visual

- Inspect
 - Histogram with density curve
 - QQPlot

Skew

- Calculate standardised skew
 - Approaching normality if between +/-2

Kurtosis

- Calculate standardised kurtosis
 - Approaching normality if between +/-2

Z Scores

- Create standardised scores for variable (Z scores)
 - Approaching normality if 95% between
 - +- 3.29 (sample size > 80)
 - +/- 2.5 (sample size <=80)

Deciding Normality

- There are statistical tests for normality
 - Shapiro-Wilks for small samples
 - Kolmogorov-Smirnov for large samples (>50)
- I have not covered these with you as they will usually return a result to indicate non-normality
 - THIS DOES NOT MEAN YOU CAN'T PROCEED WITH PARAMETRIC TESTS
- I expect you to complete a normality assessment in your CA as I have outlined during the module.
 - If you rely solely on a normality test then you will lose quite a few marks.

Which test?

- What is your measurement type?
 - ▶ For the outcome variable?
 - Continuous (Normal, Skew) or Categorical?
 - If more than one outcomes, are they paired or related?
 - For your independent variable?
 - ▶ Continuous or Categorical (I group, 2 groups, more than 2 groups)
 - For 2 or more than 2 groups: Independent (Unrelated) / Paired (Related)

How to choose your test?

Parametric Difference Tests – Pre-Check

• Levene's test Non-significant result variances homogenous in groups (var.equal=TRUE) T-test • Significant result variances heterogeneous (var.equal=FALSE) • Bartlett's test Non-significant result variances homogeneous in groups (Tukey post-hoc) ANOVA • Significant result variances heterogeneous (Games Howell post-hoc)

Independent variable/ Number of groups	Outcome(Dependent) variable		
	Continuous and Normally distributed (Parametric)	Continuous and skewed / Ordinal (Non-parametric)	Binary (2 categories)
Continuous	Pearson correlation cor.test method='Pearson'	Spearman/Kendall correlation cor.test method='Spearman'/method='Kendall	
2 independent groups	T test t.test var.equal=TRUE/FALSE	Mann-Whitney U test coin::wilcox.test	Chi-square test / Fisher's Exact gmodels::Crosstable fisher=TRUE chisq=TRUE
Paired (related) sample (2 time points)	Paired t test t.test paired=TRUE/FALSE var.equal=TRUE/FALSE	Wilcoxon signed rank test coin::wilcox.test Paired=TRUE	McNemar's test mcnemar.test
>2 independent groups	One-way ANOVA test aov posthoc: Tukey/Games Howell posthoc Userfriendlyscience::onewaypost hoc=tukey/games-howell	Kruskal-Wallis test kruskal.test	Chi-square test / Fisher's Exact Test gmodels::Crosstable fisher=TRUE chisq=TRUE
>2 related samples (>2 time points)	Repeated measures ANOVA Aov	Friedman's Test Friedman.test	