Deep Learning for Smoothing in Dynamical Systems

Hannes Larsson, Songchen Li

2018-01-09

Outline

Background

Dynamical Systems and State Space Models Filtering and Smoothing Black Box Variational Inference Neural Networks

Implementation

BBVI for Smoothing Using RNN

Conclusions

Many dynamical systems can be described by a state space model:

Many dynamical systems can be described by a state space model:

$$\begin{cases} z_{t+1} = f(z_t) + v_{1_t} \\ x_t = g(z_t) + v_{2_t}, \end{cases} \iff \begin{cases} Z_{t+1} | z_t \sim p(z_{t+1} | z_t) \\ X_t | z_t \sim p(x_t | z_t) \end{cases}$$

$$\begin{cases} z_{t+1} = f(z_t) + v_{1_t} \\ x_t = g(z_t) + v_{2_t}, \end{cases} \iff \begin{cases} Z_{t+1} | z_t \sim p(z_{t+1} | z_t) \\ X_t | z_t \sim p(x_t | z_t) \end{cases}$$

- \triangleright $z_1, z_2, ..., z_T$ are hidden states.
- $ightharpoonup x_1, x_2, ..., x_T$ are the *measured* quantities.

$$\begin{cases} z_{t+1} = f(z_t) + v_{1_t} \\ x_t = g(z_t) + v_{2_t}, \end{cases} \iff \begin{cases} Z_{t+1} | z_t \sim p(z_{t+1} | z_t) \\ X_t | z_t \sim p(x_t | z_t) \end{cases}$$

- $ightharpoonup z_1, z_2, ..., z_T$ are hidden states.
- \triangleright $x_1, x_2, ..., x_T$ are the *measured* quantities.
- \triangleright v_1 and v_2 are noise terms.

ightharpoonup Usually we want to estimate z given some observations x

- ightharpoonup Usually we want to estimate z given some observations x
- Filtering online problem

- Usually we want to estimate z given some observations x
- Filtering online problem
- Smoothing offline problem

- Usually we want to estimate z given some observations x
- Filtering online problem
- Smoothing offline problem
- ▶ if f and g linear and v_1 , v_2 Gaussian white noise the optimal solution is the *Kalman filter/smoother*

Smoothing

▶ Offline problem - finding all z as a function of x

$$p(\mathbf{z}|\mathbf{x}) = \frac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{x})}$$

Smoothing

▶ Offline problem - finding all z as a function of x

$$p(\mathbf{z}|\mathbf{x}) = \frac{p(\mathbf{x},\mathbf{z})}{p(\mathbf{x})}$$

- $\mathbf{x} = (x_1, x_2, ..., x_T)$
- $ightharpoonup z = (z_1, z_2, ..., z_T)$

$$p(\mathbf{x},\mathbf{z}) = p(z_0) \Big[\prod_{t=1}^T p(z_t|z_{t-1}) \Big] \Big[\prod_{t=1}^T p(x_t|z_t) \Big]$$

Variational inference

Variational inference

$$p(\mathbf{z}|\mathbf{x}) = \frac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{x})}$$
 $p(\mathbf{x}) = \int p(\mathbf{x}, \mathbf{z}) d\mathbf{z}$

Variational inference

$$p(\mathbf{z}|\mathbf{x}) = \frac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{x})}$$
$$p(\mathbf{x}) = \int p(\mathbf{x}, \mathbf{z}) d\mathbf{z}$$

 \triangleright $p(\mathbf{x})$ is hard to calculate

Variational inference

$$p(\mathbf{z}|\mathbf{x}) = \frac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{x})}$$
 $p(\mathbf{x}) = \int p(\mathbf{x}, \mathbf{z}) d\mathbf{z}$

- \triangleright $p(\mathbf{x})$ is hard to calculate
- ▶ Idea: use approximate posterior $q_{\theta}(\mathbf{z}|\mathbf{x}) \approx p(\mathbf{z}|\mathbf{x})$

▶ Chose $q_{\theta}(\mathbf{x}|\mathbf{z})$ s.t. it maximises the Evidence Lower Bound (ELBO)

$$\mathcal{L} = \mathbb{E}_{q_{ heta}}[\log p(\mathbf{x}, \mathbf{z})] - \mathbb{E}_{q_{ heta}}[\log q_{ heta}(\mathbf{z}|\mathbf{x})]$$

► Chose $q_{\theta}(\mathbf{x}|\mathbf{z})$ s.t. it maximises the Evidence Lower Bound (ELBO)

$$\mathcal{L} = \mathbb{E}_{q_{ heta}}[\log p(\mathbf{x}, \mathbf{z})] - \mathbb{E}_{q_{ heta}}[\log q_{ heta}(\mathbf{z}|\mathbf{x})]$$

 This is equivalent to minimising the Kullback–Leibler divergence

$$D_{\mathsf{KL}}(q||p) = \int_{\Omega} p(\omega) \log \frac{p(\omega)}{q(\omega)} d\omega$$

Black Box Variational Inference

► Still hard to optimise the ELBO

Black Box Variational Inference

- Still hard to optimise the ELBO
- We need the gradient which involves a derivative of an expected value w.r.t. the approximate posterior

$$\mathcal{L} = \mathbb{E}_{q_{\theta}}[\log p(\mathbf{x}, \mathbf{z}) - \log q_{\theta}(\mathbf{z}|\mathbf{x})] =: \mathbb{E}_{q_{\theta}}[f(\mathbf{x}, \mathbf{z})]$$

Black Box Variational Inference

- ► Still hard to optimise the ELBO
- We need the gradient which involves a derivative of an expected value w.r.t. the approximate posterior

$$\mathcal{L} = \mathbb{E}_{q_{ heta}}[\log p(\mathbf{x}, \mathbf{z}) - \log q_{ heta}(\mathbf{z}|\mathbf{x})] =: \mathbb{E}_{q_{ heta}}[f(\mathbf{x}, \mathbf{z})]$$

▶ Idea: Sample z from q_θ and calculate noisy gradient

Black Box Variational Inference: Noisy Gradient

Let
$$q_{\theta}(z_t|x_t,...,x_T) = \mathcal{N}(\mu_t, \sigma_t^2)$$

$$z_t = \mu_t + \sigma_t \epsilon =: g_{\theta}(\epsilon)$$

$$\epsilon \sim \mathcal{N}(0,1) =: \rho(\epsilon)$$

Black Box Variational Inference: Noisy Gradient

• Let
$$q_{\theta}(z_t|x_t,...,x_T) = \mathcal{N}(\mu_t,\sigma_t^2)$$

$$z_t = \mu_t + \sigma_t \epsilon =: g_\theta(\epsilon)$$

 $\epsilon \sim \mathcal{N}(0, 1) =: p(\epsilon)$

Approximate $\nabla_{\theta} \mathcal{L} = \mathbb{E}_{p(\epsilon)}[\nabla f_{\theta}(x, g_{\theta}(\epsilon))] \approx \frac{1}{N} \sum_{i=1}^{N} \nabla f_{\theta}(x, g_{\theta}(\epsilon))$

Black Box Variational Inference: Noisy Gradient

▶ Let
$$q_{\theta}(z_t|x_t,...,x_T) = \mathcal{N}(\mu_t,\sigma_t^2)$$

$$z_t = \mu_t + \sigma_t \epsilon =: g_{\theta}(\epsilon)$$

 $\epsilon \sim \mathcal{N}(0, 1) =: p(\epsilon)$

- Approximate $\nabla_{\theta} \mathcal{L} = \mathbb{E}_{p(\epsilon)}[\nabla f_{\theta}(x, g_{\theta}(\epsilon))] \approx \frac{1}{N} \sum_{i=1}^{N} \nabla f_{\theta}(x, g_{\theta}(\epsilon))$
- ▶ This is called the *reparametrisation trick*

▶ A Neural Network is a function of some input variables.

► A Neural Network is a function of some input variables.

• A neuron: $g_i(\mathbf{x}) = K(\sum_t \omega_t f_t(\mathbf{x}) + b)$

A Neural Network is a function of some input variables.

- A neuron: $g_i(\mathbf{x}) = K(\sum_t \omega_t f_t(\mathbf{x}) + b)$
- \blacktriangleright b is called a bias and ω is called a weight, K is some non-linear function, called an activation function.

A Neural Network is a function of some input variables.

	Input Iayer	Hidden layer	Output layer	
Input 1 Input 2		g ₁ g ₂ g ₃		Output

- A neuron: $g_i(\mathbf{x}) = K(\sum_t \omega_t f_t(\mathbf{x}) + b)$
- \blacktriangleright b is called a bias and ω is called a weight, K is some non-linear function, called an activation function.
- ► Typically some loss function is minimised w.r.t. the weights and biases.

► State Space Models

- State Space Models
- Smoothing

- State Space Models
- Smoothing
- Variational Inference

- State Space Models
- Smoothing
- Variational Inference
- ▶ Black Box Variational Inference

- ► State Space Models
- Smoothing
- Variational Inference
- Black Box Variational Inference
- ► Neural Networks

Implementation

- ► All of the methods here were implemented with Python and TensorFlow.
- TensorFlow is an open source software library commonly used in deep learning.

► RNN: Recurrent neural network, a kind of NN that uses the information from different time steps

- ► RNN: Recurrent neural network, a kind of NN that uses the information from different time steps
- Smoothing: Knowing all the measurements \mathbf{x} , try to find $p(\mathbf{z}|\mathbf{x})$

- ► RNN: Recurrent neural network, a kind of NN that uses the information from different time steps
- Smoothing: Knowing all the measurements \mathbf{x} , try to find $p(\mathbf{z}|\mathbf{x})$

▶ BBVI: Black box variational inference

$$q_{ heta}(\mathbf{z}|\mathbf{x}) \xrightarrow{\mathsf{Optimize}\ heta} \mathsf{Maximize}\ \mathsf{ELBO} \longrightarrow q_{ heta}(\mathbf{z}|\mathbf{x}) pprox p(\mathbf{z}|\mathbf{x})$$

▶ Factorize $q_{\theta}(\mathbf{z}|\mathbf{x})$

$$\begin{cases} q_{\theta}(\mathbf{z}|\mathbf{x}) = q_{\theta}(z_{1}|x_{1},...,x_{T}) \prod_{t=2}^{T} q_{\theta}(z_{t}|z_{t-1},x_{t},...,x_{T}) \\ q_{\theta}(z_{t}|z_{t-1},x_{t},...,x_{T}) \sim \mathcal{N}(\mu_{t}(z_{t-1},x_{t},...,x_{T}),\sigma_{t}^{2}(z_{t-1},x_{t},...,x_{T})) \end{cases}$$

$$q_{ heta}(\mathbf{z}|\mathbf{x}) = q_{ heta}(z_1|x_1,...,x_T) \prod_{t=2}^T q_{ heta}(z_t|z_{t-1},x_t,...,x_T)$$

$$q_{\theta}(\mathbf{z}|\mathbf{x}) = q_{\theta}(z_1|x_1,...,x_T) \prod_{t=2}^{I} q_{\theta}(z_t|z_{t-1},x_t,...,x_T)$$

$$q_{ heta}(\mathbf{z}|\mathbf{x}) = q_{ heta}(z_1|x_1,...,x_T) \prod_{t=2}^{I} q_{ heta}(z_t|z_{t-1},x_t,...,x_T)$$

$$ullet$$
 Output: $oldsymbol{\mu}=\mu_1,\mu_2,...,\mu_{\mathcal{T}}$ $oldsymbol{\sigma}=\sigma_1,\sigma_2,...,\sigma_{\mathcal{T}}$

Train the RNN

Maximising the objective function: ELBO

$$\mathcal{L}(\mathsf{x}, \boldsymbol{\mu}, \boldsymbol{\sigma}) = \mathcal{L}(\mathsf{x}, heta)$$

Train the RNN

▶ Maximising the objective function: ELBO

$$\mathcal{L}(\mathsf{x}, \boldsymbol{\mu}, \boldsymbol{\sigma}) = \mathcal{L}(\mathsf{x}, \theta)$$

• Use the noisy gradients to update θ

Train the RNN

► Maximising the objective function: ELBO

$$\mathcal{L}(\mathsf{x}, \boldsymbol{\mu}, \boldsymbol{\sigma}) = \mathcal{L}(\mathsf{x}, \theta)$$

lacktriangle Use the noisy gradients to update heta

Results

Conclusions

▶ Our BBVI using a RNN recovers the full posterior probability density function obtained by the Kalman smoother.

Conclusions

- ▶ Our BBVI using a RNN recovers the full posterior probability density function obtained by the Kalman smoother.
- ▶ BBVI using RNN is more flexible than the Kalman smoother, because it can also be used for non-linear SSM with noise that is not Gaussian. All we need to do is to rewrite the ELBO according to the new model.

Thank you for listening!

Any questions?