CPSC 340: Machine Learning and Data Mining

K-Means Clustering

Admin

- Assignment 1 is due Sunday night.
- The last possible time to submit is next Wednesday night.
 - Solutions will be posted after that.
 - You will be able to see each other's work after that.
- Assignment 2 coming soon.
- Reminder: midterm on March 1
 - If you need A&D provisions, please email me soon.

Random Forests

- Random forests are one of the best 'out of the box' classifiers.
- Fit deep decision trees to random bootstrap samples of data, base splits on random subsets of the features, and classify using mode.

Random Forests

- Random forests are one of the best 'out of the box' classifiers.
- Fit deep decision trees to random bootstrap samples of data, base splits on random subsets of the features, and classify using mode.

End of Part 1: Key Concepts

Fundamental ideas:

- Training vs. test error.
- Golden rule of ML (test set should not influence training).
- Fundamental trade-off (low training error vs. overfitting).
- Validation sets and cross-validation.
- Parametric vs. non-parametric.
- No free lunch theorem (there is no "best" model).
- Ensemble methods (combining models).

Methods that we focused on:

- Decision trees (greedy recursive splitting using decision stumps).
- Naïve Bayes (generative classifier based on conditional independence).
- K-nearest neighbours (non-parametric classifier with universal consistency).
- Random forests (averaging plus randomization to reduce overfitting).

Application: Classifying Cancer Types

• "I collected gene expression data for 1000 different types of cancer cells, can you tell me the different classes of cancer?"

- We are not given the class labels y, but want meaningful labels.
- An example of unsupervised learning.

Unsupervised Learning

- Supervised learning:
 - We have features x_i and class labels y_i .
 - Write a program that produces y_i from x_i .
- Unsupervised learning:
 - We only have x_i values, but no explicit target labels.
 - You want to do 'something' with them.
- Some unsupervised learning tasks:
 - Outlier detection: Is this a 'normal' x_i ?
 - Data visualization: What does the high-dimensional X look like?
 - Association rules: Which x_{ii} occur together?
 - Latent-factors: What 'parts' are the x_i made from?
 - Ranking: Which are the most important x_i ?
 - Clustering: What types of x_i are there?

Clustering

- Clustering:
 - Input: set of objects described by features x_i .
 - Output: an assignment of objects to 'groups'.
- Unlike classification, we are not given the 'groups'.
 - Algorithm must discover groups.
- Example of groups we might discover in e-mail spam:
 - 'Lucky winner' group.
 - 'Weight loss' group.
 - 'Nigerian prince' group.

Clustering Example

Clustering Example

Data Clustering

- General goal of clustering algorithms:
 - Objects in the same group should be 'similar'.
 - Objects in different groups should be 'different'.
- But the 'best' clustering is hard to define:
 - We don't have a test error.
 - Generally, there is no 'best' method in unsupervised learning.
 - Means there are lots of methods: we'll focus on important/representative ones.
- Why cluster?
 - You could want to know what the groups are.
 - You could want a 'prototype' example for each group.
 - You could want to find the group for a new example x.
 - You could want to find objects related to a new example x.

Clustering of Epstein-Barr Virus

Other Clustering Applications

- NASA: what types of stars are there?
- Biology: are there sub-species?
- Documents: what kinds of documents are on my computer?
- Commercial: what kinds of customers do I have?

K-Means

- Most popular clustering method is k-means.
- Input:
 - The number of clusters 'k'.
 - Initial guesses of the center ("mean") of each cluster.
- Algorithm:
 - Assign each x_i to its closest mean.
 - Update the means based on the assignment.
 - Repeat until convergence.
- Note: not to be confused with k-NN, which is supervised learning.
 - But both require a notion of "distance".

Interactive demo:

https://www.naftaliharris.com/blog/visualizing-k-means-clustering

K-Means Issues

- Guaranteed to converge when using Euclidean distance.
- New object are assigned to nearest mean to cluster them.
- Assumes you know number of clusters 'k'.
 - Lots of heuristics to pick 'k', none satisfying:
 - https://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set
- Each object is assigned to one (and only one) cluster:
 - No possibility for overlapping clusters or leaving objects unassigned.
- It may converge to sub-optimal solution...

K-Means Clustering with Different Initialization

- Classic approach to dealing with sensitivity to initialization:
 - Try several different random starting points, choose the 'best'.
- We'll see a more clever approach next time...

Cost of K-means

Bottleneck is calculating distance from each x_i to each mean w_c:

$$D(x_i, w_c) = \sqrt{\frac{d}{2}(x_{ij} - w_{cj})^2}$$

$$\int_{j=1}^{d} (x_{ij} - w_{cj})^2$$

Cost of K-means

Bottleneck is calculating distance from each x_i to each mean w_c:

$$D(x_i, w_c) = \sqrt{\frac{d}{2}(x_{ij} - w_{cj})^2}$$

$$\int_{j=1}^{d} (x_{ij} - w_{cj})^2$$
of some

- Each time we do this costs O(d) to go through all features. ديا ع
- For each of the 'n' objects, we compute the distance to 'k' clusters.
- Total cost of assigning objects to clusters is O(ndk).
 - Fast if k is not too large.
- Updating means is cheaper: O(nd).

 For each cluster 'c', compute $w_c = \frac{1}{n_c} \sum_{i \in C} x_i$ Loop over objects in cluster.

 La Number of objects in cluster 'c'

Vector Quantization

- K-means originally comes from signal processing.
- Designed for vector quantization:
 - Replace 'vectors' (objects) with a set of 'prototypes' (means).

- Example:
 - Facebook places.
 - What sizes of clothing should I make?

- Usual RGB representation of a pixel's color: three 8-bit numbers.
 - For example, [241 13 50] = \blacksquare .

- Usual RGB representation of a pixel's color: three 8-bit numbers.
 - For example, [241 13 50] = \blacksquare .

- Usual RGB representation of a pixel's color: three 8-bit numbers.
 - For example, [241 13 50] = \blacksquare .

- Usual RGB representation of a pixel's color: three 8-bit numbers.
 - For example, [241 13 50] = \blacksquare .

Unsupervised Learning and Compression

- What we were doing is compressing the data
- Unsupervised learning and data compression have a lot in common
 - Both require understanding the "patterns" in the data
 - The clustering objective is called "distortion" in lossy compression parlance
- There is also a connection with supervised learning
 - We want a model that is simpler than the whole data set
 - kNN is an exception because there is no compression/simplification.

What is K-Means Doing?

- We can interpret K-Means as trying to minimize an objective:
 - Total sum of squared distances from object x_i to their centers $w_{c(i)}$:

The k-means steps:

$$f(w_{i1}, w_{i2}, ..., w_{k_1}, c(1), c(12), ..., c(n)) = \sum_{j=1}^{n} \sum_{j=1}^{d} (x_{ij} - w_{c(i)j})^2$$

$$f(w_{i1}, w_{i2}, ..., w_{k_1}, c(1), c(12), ..., c(n)) = \sum_{j=1}^{n} \sum_{j=1}^{d} (x_{ij} - w_{c(i)j})^2$$

$$f(w_{i1}, w_{i2}, ..., w_{ik_1}, c(1), c(12), ..., c(n)) = \sum_{j=1}^{n} \sum_{j=1}^{d} (x_{ij} - w_{c(i)j})^2$$

$$f(w_{i1}, w_{i2}, ..., w_{ik_1}, c(1), c(12), ..., c(n)) = \sum_{j=1}^{n} \sum_{j=1}^{d} (x_{ij} - w_{c(i)j})^2$$

$$f(w_{i1}, w_{i2}, ..., w_{ik_1}, c(1), c(12), ..., c(n)) = \sum_{j=1}^{n} \sum_{j=1}^{d} (x_{ij} - w_{c(i)j})^2$$

$$f(w_{i1}, w_{i2}, ..., w_{ik_1}, c(1), c(12), ..., c(n)) = \sum_{j=1}^{n} \sum_{j=1}^{d} (x_{ij} - w_{c(i)j})^2$$

- The k-means steps:
 - Optimally update cluster assignments c(i).
 - Optimally update means w_c.
- Convergence follows because:
 - Each step does not increase the objective.
 - There are a finite number of assignments to k clusters.

K-Medians Clustering

- With other distances, k-means may not converge.
- However, changing objective function gives convergent algorithms.
- E.g., we can use the L1-norm: $\sum_{i=1}^{n} \frac{1}{x_{ij}} w_{\alpha(i)}$
- A 'k-medians' algorithm based on the L1-norm:
 - Cluster assignment based on the L1-norm (nearest median).
 - Update 'medians' as median value (dimension-wise) of each cluster.
- This approach is more robust to outliers.

Summary

- Unsupervised learning: fitting data without explicit labels.
- Clustering: finding 'groups' of related objects.
- K-means: simple iterative clustering strategy.
- Vector quantization: replacing measurements with 'prototypes'.
- K-medians: generalization to other distance functions.

- Next time:
 - Non-parametric clustering.