Q-Learning vs. DQN

Comparing learning algorithms on Atari game Space Invaders

By Divyam Garg & John DiNofrio ——

Reinforcement Learning

- Reinforcement learning is one of the three most basic machine learning techniques
- Unlike supervised and unsupervised learning
 - It does not require labeled data
 - It does not need to directly correct every action
- By setting positive and negative rewards, the program can teach itself how to play games or perform actions

Space Invaders

- We used it to teach the computer how to play the Atari game <u>Space Invaders</u>
- We used both Q-Learning and DQN to demonstrate this and compare how the two methods worked

Q Learning

Deep Q Learning

Q-Learning

- Q-Learning is quite simple to implement
- The entire algorithm depends on an array called a Q-Table
- This Q-Table is *n* x *m* dimensions
 - Where *n* is the number of actions possible
 - Where *m* is the number of states possible
- For every current state and action that led it there, the value in the Q-Table will change
 - The value will go up if the reward was positive for that action
 - The value will go down if the reward was negative
 - The value could go up or down if there is no reward this depends on the parameters you set

Q-ta	ıble ir	nitialis	sed a	t zero	After few episodes								Eventually				
	UP	DOWN	LEFT	RIGHT			NP NP	DOWN	LEFT	RIGHT				- An	DOWN	LEFT	PICHT
0	0	0	0	0		0	0	0	0	0		0	0	0	0	0.45	C
1	0	0	0	0		1	0	0	0	0			1	0	1.01	0	(
2	0	0	0	0		2	0	2.25	2.25	0		13	2	0	2.25	2.25	C
3	0	0	0	0		3	0	0	5	0			3	0	0	5	C
4	0	0	0	0		4	0	0	0	0			4	0	0	0	C
5	0	0	0	0		5	0	0	0	0		8	5	0	0	0	C
6	0	0	0	0		6	0	5	0	0		030	6	0	5	0	(
7	0	0	0	0		7	0	0	2.25	0		10	7	0	0	2.25	(
8	0	0	0	0		8	0	0	0	0			8	0	0	0	(

Q-Learning

- For both Q-Learning and DQN, there are certain parameters you can set
 - Learning rate how much new data overwrites old data
 - 0 = no learning 1 = only new info is retained
 - Discount rate short term or long term goals
 - 0 = short-sighted 1 = far-sighted
 - Exploration rate how often the program tries random, new actions
 - 0 = never 1 = always new and random
 - Number of episodes the amount of attempts it gets (how many games)
 - Number of steps the number of actions it can take per episode

Q-Learning on Space Invaders

- **Learning rate** 0.3
- **Discount rate** 0.7
- Exploration rate Started at 1 and exponentially went down
- Number of episodes the amount of attempts it gets (how many games)
- Number of steps Max 50000
- Action space 6 (move left, move right, shoot, move left/shoot, move right/shoot, do nothing)
- **State space** 160 (width of game)

Q-Learning Training

Q-Learning Test 200 Episodes

Q-Learning Test 200 Episodes

Score 50.0

Score 160.0

Score 210.0

Score 155.0

Score 180.0

Score 155.0

Score 80.0

Score 210.0

Score 210.0

Score 180.0

Average Score: 159.0

Q-Learning Training 200 Episodes

Q-Learning Test 200 Episodes

Q-Learning Test 500 Episodes

Score 180.0

Score 105.0

Score 180.0

Score 105.0

Score 90.0

Score 105.0

Score 75.0

Score 155.0

Score 260.0

Score 210.0

Average Score: 146.5

Q-Learning Results

- Unfortunately, the Q-Learning algorithm did not perform very well. It learned the basics and could get a few points in before it died, but it didn't play the game
- The reason for this is the state space
 - The state space for Q-Learning was the position of the spaceship
 - It had no idea where the bullets or ships were
- What it did learn
 - With the little information it had, it knew that it wouldn't get hurt while hiding under the shield
 - It also knew that if it kept shooting with half its body protected away it could get the most points
 - Q-Learning doesn't have the capacity to process that much information and fine two its training

Overcoming Shortcomings with Deep - Q Learning

- The problem with games is that the agent must take in images as perception; therefore, we need to use a convolutional neural network to add precision.
- The state space for DQN is a lot bigger, and it includes every pixel on the screen

 This means that DQN knows where every bullet and enemy is as well as how much shield is left

Implementation of Deep Q-learning Algorithm

- Initialize the environment of the Space-Invaders-Atari 2600 (8 actions possible)
- Preprocessing the frame:
 - Removal of unnecessary pixel (210,160) to (110,84)
 - Normalise for better distribution and resizing the image
- Getting stack frames
- Setting up training and hyper-parameters (state size : 110,84,4)
 - Learning rate: 0.0025 & decay rate = 0.0001
 - Total episodes = 150
 - Batch size = 64
 - Explore probability at start = 1.0
 - \circ Discount = 0.9
 - Memory size = 1000000

Making it work

- Pre-Processing the frame
- Adding 4 frames/state as a single experience in a stack format
- Memory: Storing previous experiences
- Replay Buffer: Avoid reinforcing the same experience (overfitting) and making previous experiences more efficient.
- Creating the hidden layers
 - 3 Conv2d layers activation = 'elu'
 - flatten
 - 2 Dense layers activation = 'softmax'
 - Output layer size = action set (8)

Making it Work

- Exploration :- explore_start = 1.0 and explore_stop = 0.01
 explore_probability = explore_stop + (explore_start explore_stop) * exp(-decay_rate * decay_step)
- Target networks and Loss Function

$$loss = \left(r + \gamma \max_{a'} \hat{Q}(s, a') - Q(s, a)\right)^{2}$$

Deep Q-learning training

TD Error

Gradient of our current predicted Q-value

DQN Training - 50 Episodes

DQN Training (200 Episodes) vs Q-Learning (500 Episodes)

DQN Results - Training 200 Episodes/Test 10 Games

Score 480.0 Score 520.0 Score 260.0 Score 405.0 Score 190.0 Score 855.0 Score 630.0 Score 345.0 Score 305.0

Score 225.0

Average Score: 394.

DQN Results

- DQN performed a lot better than Q-Learning did, but it took a lot more time to train
 - Top Score 855 (compared to Q-Learning's 260)
 - Avg Score 394 (compared to Q-Learning's 146)
- With a very large state space, DQN could find the best move for every scenario
- This also meant that the training time was a lot longer
 - Training just 50 episodes took almost 3 hours
 - Training 50 episodes with Q-Learning only took about 10 minutes
- The DQN algorithm performed much better when we gave it more time to train
 - Q-Learning had a lot fewer steps (by a factor of 100) but a lot more episodes (300 more episodes), and it still did not do as well
- When it comes down to it, DQN actually played the game
 - o It knew where to hide, when to shoot, and the pink think at the top is bonus points
 - Q-Learning had no clue about any of that except how to hide

Code

Use this link to access out GitHub

https://github.com/johndinofrio/ENPM690 Final Project.git

References

https://www.freecodecamp.org/news/an-introduction-to-reinforcement-learning-4339519de419/

https://simoninithomas.github.io/Deep_reinforcement_learning_Course/

https://yilundu.github.io/2016/12/24/Deep-Q-Learning-on-Space-Invaders.html

https://www.youtube.com/watch?v=PnHCvfgC_ZA&list=PL7-jPKtc4r78-wCZcQn5lgyuWhBZ8fOxT&index=4

https://www.youtube.com/watch?v=0g4j2k Ggc4&list=PL7-jPKtc4r78-wCZcQn5lqyuWhBZ8fOxT&index=5

https://www.youtube.com/watch?v=qCJyVX98KJ4