# Lecture 6: POS Tags and HMMs

USC VSoE CSCI 544: Applied Natural Language Processing

Jonathan May -- 梅約納

September 8, 2017

#### Reminders

- HW1 is due today, by 11:59pm (modulo late days)
- HW3 will come out this coming Wednesday (9/13)
- HW2 is due next Friday (9/15)
- Jon will be out of town next week (no office hours): guest lecturer Marjan Ghazvininejad will discuss syntactic parsing (lec. 8 & 9)
- No class 9/22 (2 weeks from today)
- Start thinking about the midterm (10/6; 4 weeks from today)
  - Don't let the reading slip: make sure you have the latest schedule
  - https://www.isi.edu/~jonmay/cs544\_fa17\_web/ (or go to jonmay.net)

## What is Part of Speech (POS) Tagging?

- Given a string
   This is a simple sentence
- Identify parts of speech (syntactic categories)
   This/DET is/VB a/DET simple/ADJ sentence/NOUN

## Why do we care about POS tagging?

- First step toward full syntactic analysis (which is a first step toward full semantic analysis)
  - simpler and faster than full syntactic parsing
  - often good features for other tasks (e.g. sentiment classification, word sense disambiguation)
- Good pedagogical tool for me: illustrates **Hidden Markov Models** (HMMs) which are used for other sequence labeling tasks

## Other sequence labeling tasks

- Named Entity Recognition (NER): label words as beginning to persons (PER), organizations (ORG), locations (LOC), or none of the above
  - Barack/PER Obama/PER spoke/N from/N the/N White/LOC House/LOC today/N ./N
- Information field segmentation: Given specific text type (e.g. classified ad), find which words belong to which "fields" for db creation (price/size/location, author/title/year)
  - 3BR/SIZE apt/TYPE in/N West/LOC Adams/LOC ,/N near/LOC USC/LOC ./N Bright/FEAT ,/N well/FEAT maintained/FEAT ...

## Sequence Labeling: Key Features

- In all of these, deciding the correct label depends on
  - The word to be labeled
    - NER: **Smith** is probably a person
    - POS: **chair** is probably a noun
  - The labels of surrounding words
    - NER: if following word is an organization (e.g. **Corp.**), then this word is more likely to be an organization
    - POS: if preceding word is a modal verb (e.g. will), then this word is more likely to be a verb
- HMM combines these sources probabilistically

# Parts of Speech

- Open class words ("content words")
  - nouns, verbs, adjectives, adverbs
  - mostly content-bearing. refer to objects, actions, features in the world
  - open class = there is no limit to what they are or can describe so new ones are added all the time (email, website, defenestrate)
- Closed class words ("function words")
  - pronouns, determiners, prepositions, connectives
  - there are a limited number of these
  - mostly functional: to tie the concepts of a sentence together

## How Many Parts of Speech Are There?

- Linguistic and practical considerations
- If we're being empirical (we are), corpus annotators decide
  - proper nouns vs common nouns?
  - singluar vs plural nouns?
  - past and present tense verbs?
  - auxiliary and main verbs?
- Commonly used tag sets for English usually have 40-100 tag types. The Penn Treebank has 45 tags.

| Tag   | Description          | Example        | Tag  | Description          | Example     |
|-------|----------------------|----------------|------|----------------------|-------------|
| CC    | coordin. conjunction | and, but, or   | SYM  | symbol               | +,%, &      |
| CD    | cardinal number      | one, two       | TO   | "to"                 | to          |
| DT    | determiner           | a, the         | UH   | interjection         | ah, oops    |
| EX    | existential 'there'  | there          | VB   | verb base form       | eat         |
| FW    | foreign word         | mea culpa      | VBD  | verb past tense      | ate         |
| IN    | preposition/sub-conj | of, in, by     | VBG  | verb gerund          | eating      |
| JJ    | adjective            | yellow         | VBN  | verb past participle | eaten       |
| JJR   | adj., comparative    | bigger         | VBP  | verb non-3sg pres    | eat         |
| JJS   | adj., superlative    | wildest        | VBZ  | verb 3sg pres        | eats        |
| LS    | list item marker     | 1, 2, One      | WDT  | wh-determiner        | which, that |
| MD    | modal                | can, should    | WP   | wh-pronoun           | what, who   |
| NN    | noun, sing. or mass  | llama          | WP\$ | possessive wh-       | whose       |
| NNS   | noun, plural         | llamas         | WRB  | wh-adverb            | how, where  |
| NNP   | proper noun, sing.   | IBM            | \$   | dollar sign          | \$          |
| NNPS  | proper noun, plural  | Carolinas      | #    | pound sign           | #           |
| PDT   | predeterminer        | all, both      | 66   | left quote           | or "        |
| POS   | possessive ending    | 's             | ,,   | right quote          | ' or "      |
| PRP   | personal pronoun     | I, you, he     | (    | left parenthesis     | [, (, {, <  |
| PRP\$ | possessive pronoun   | your, one's    | )    | right parenthesis    | ], ), }, >  |
| RB    | adverb               | quickly, never | ,    | comma                | ,           |
| RBR   | adverb, comparative  | faster         |      | sentence-final punc  | .!?         |
| RBS   | adverb, superlative  | fastest        | :    | mid-sentence punc    | : ;         |
| RP    | particle             | up, off        |      |                      |             |

J&M Fig 5.6: Penn Treebank POS tags

## POS Tags in other languages

- Morphologically rich languages often have compound morphosyntactic tags
  - Noun+A3sg+P2sg+Nom
- Hundreds or thousands of possible combinations
- Predicting these requires more complex methods than what's in today's lecture
  - e.g. soft morphological segmentation (with FST?) + disambiguation

# Why is POS tagging hard?

- Ambiguity
  - glass of water/NOUN vs water/VERB the plants
  - lie/VERB down vs tell a lie/NOUN
  - wind/VERB down vs a mighty wind/NOUN (homographs)

```
time flies like an arrow
```

NOUN VERB MODAL DET NOUN

VERB NOUN

ADJ NOUN VERB

- Sparse data
  - Words we haven't seen before (at all, in this context)
  - Word-Tag pairs we haven't seen before (e.g. if we verb a noun)

## Relevant knowledge for POS tagging

- Remember, we want a model that decides tags based on
  - The word itself
    - Some words may be only nouns e.g. arrow
    - Some words are ambiguous e.g. like, flies
    - Probabilities may help if one tag is more likely than another
  - Tags of surrounding words
    - Two determiners rarely follow each other
    - Two base form verbs rarely follow each other
    - Determiner is almost always followed by adjective or noun
- What might be a problem with putting this information in the models from last lecture?

## A Probabilistic Model for Tagging

- We have a word sequence and we want a tag sequence for those words:
  - P(T|W) ...guess how we're going to represent this again
- P(T|W) = P(W, T)/P(W); P(W, T) = P(T|W)P(W)
- P(W, T) = P(W|T)P(T)
- P(T|W) = P(W|T)P(T)/P(W)
- $argmax_T P(T|W) = argmax_T P(W|T)P(T)/P(W)$
- $argmax_T P(T|W) = argmax_T P(W|T)P(T)$
- Note, btw, that P(W|T)P(T) = P(W, T)

## Simplifying Assumptions

- We want P(W|T) and P(T) where W and T are sequences of length N
- Assumption 1: Each tag is conditioned only on the previous tag (a bigram model; this is why it's called "Markov")
  - $P(T) = \prod_{i=1}^{N} P(t_i | t_{i-1})$
- Assumption 2: Each word is conditioned only on its tag
  - $P(W|T) = \prod_{i=1}^{N} P(w_i|t_i)$
- Put it all together:
  - $P(W,T) = \prod_{i=1}^{N} P(t_i|t_{i-1})P(w_i|t_i) \times P(</s> |t_n)$  where  $t_0 = <s>$
- Notice the similarity to Naive Bayes, except the tag sequence is unknown

## Quiz 1

- "walk" becomes "walked" in the past tense. What kind of morphology is this an example of?
  - inflectional
  - derivational
  - reduplicative

#### Connection to Probabilistic FSA

• One way to view this model: sentences are generated by walking through **states** in a graph. Each state represents a tag



• Probability of moving between states x and y (transition probability) is P(t = y | t = x)

## Example Transition Probabilities

| $t_{i-1} \backslash t_i$ | NNP    | MD VB JJ |        | NN     |        |  |
|--------------------------|--------|----------|--------|--------|--------|--|
| <s></s>                  | 0.2767 | 0.0006   | 0.0031 | 0.0453 | 0.0449 |  |
| NNP                      | 0.3777 | 0.0110   | 0.0009 | 0.0084 | 0.0584 |  |
| MD                       | 0.0008 | 0.0002   | 0.7968 | 0.0005 | 0.0008 |  |
| VB                       | 0.0322 | 0.0005   | 0.0050 | 0.0837 | 0.0615 |  |
| JJ                       | 0.0306 | 0.0004   | 0.0001 | 0.0733 | 0.4509 |  |
|                          |        |          |        |        |        |  |

Table excerpted from J&M draft 3<sup>rd</sup> edition, Fig. 8.5

- Probabilities estimated from WSJ corpus showing, e.g.:
  - Proper Nouns (NNP) often begin sentences: P(NNP|<s>) = 0.28
  - Modal Verbs (MD) nearly always followed by bare verbs (VB)
  - Adjectives (JJ) are often followed by nouns

## Example Transition Probabilities

| $t_{i-1} \setminus t_i$ | NNP    | MD     | VB JJ  |        | NN     |  |
|-------------------------|--------|--------|--------|--------|--------|--|
| <s></s>                 | 0.2767 | 0.0006 | 0.0031 | 0.0453 | 0.0449 |  |
| NNP                     | 0.3777 | 0.0110 | 0.0009 | 0.0084 | 0.0584 |  |
| MD                      | 0.0008 | 0.0002 | 0.7968 | 0.0005 | 0.0008 |  |
| VB                      | 0.0322 | 0.0005 | 0.0050 | 0.0837 | 0.0615 |  |
| JJ                      | 0.0306 | 0.0004 | 0.0001 | 0.0733 | 0.4509 |  |
|                         |        |        |        |        |        |  |

Table excerpted from J&M draft 3<sup>rd</sup> edition, Fig. 8.5

- Table is incomplete in 2 ways. How?
  - All categories should be represented
  - Sum of rows should = 1

#### Connection to Probabilistic FST

VB:flies / .0000302

NN:horse / .00203



• weight on x:y = P(w = y | t = x), i.e. the **emission probability** 

## Example Emission Probabilities

| $t_i \backslash w_i$ | Janet    | will     | back     | the      |  |
|----------------------|----------|----------|----------|----------|--|
| NNP                  | 0.000032 | 0        | 0        | 0.000048 |  |
| MD                   | 0        | 0.308431 | 0        | 0        |  |
| VB                   | 0        | 0.000028 | 0.000672 | 0        |  |
| DT                   | 0        | 0        | 0        | 0.506099 |  |
|                      |          |          |          |          |  |

Table excerpted from J&M draft 3<sup>rd</sup> edition, Fig. 8.6

- MLE probabilities from tagged WSJ corpus showing, e.g.
  - 0.0032% of proper nouns are *Janet*: P(Janet | NNP) = 0.000032
  - About half of determiners are the
  - the can also be a proper noun (Annotation error?)
- Again, in full table, rows would sum to 1

#### What can we do with this model?

- This is a model of the joint probability P(T, W)
- So, if we have a word sequence and a tag sequence, we can get a probability for it

$$P(W,T) = \prod_{i=1}^{N} P(t_i|t_{i-1})P(w_i|t_i) \times P( |t_n)$$

• E.g. P(This/DET is/VB a/DET simple/JJ sentence/NN)?

| <b><s></s></b> | This            | is        | a         | simple       | sentence         |         |
|----------------|-----------------|-----------|-----------|--------------|------------------|---------|
| <s></s>        | DET             | VB        | DET       | <b>II</b>    | NN               |         |
|                | P(DET  <s>)</s> | P(VB DET) | P(DET VB) | P(JJ   DET)  | P(NN JJ)         | P(  NN) |
|                | p(This   DET)   | P(is VB)  | P(a DET)  | P(simple JJ) | P(sentence   NN) |         |

# How to tag an unlabeled sequence?

- Let's say we're just given "This is a simple sentence"
- Recall, in this formulation, we derived P(T, W) in order to solve argmax<sub>T</sub> P(T)P(W|T)
- So try "DT DT DT DT DT", "DT DT DT DT NN", ....
  - There are 45 tags. How many sequences will we try?
  - $45^5 = 184,528,125$

## Greedy Algorithm

tags ordered by frequency for each word

| <s></s> | one | dog | bit |  |
|---------|-----|-----|-----|--|
| <s></s> | CD  | NN  | NN  |  |
|         | NN  | VB  | VBD |  |
|         | PRP |     |     |  |

- Simplest: just choose the most likely tag for each word, i.e.  $\operatorname{argmax}_i P(w_i|t_i)$ 
  - Since we don't consider tag context we get the wrong answer
- Simple: At time i, choose  $\operatorname{argmax}_{i} P(t_{i}|t_{i-1}) P(w_{i}|t_{i})$ 
  - Since t<sub>i-1</sub> and w<sub>i</sub> are determined, O(|T| x N) runtime same as above
  - This uses tag context and gets a better result because P(VBD|NN) and P(</s>|VBD) are high

## Greedy Algorithm

tags ordered by frequency for each word

| <s></s> | one | dog | bit |  |
|---------|-----|-----|-----|--|
| <s></s> | CD  | NN  | NN  |  |
|         | NN  | VB  | VBD |  |
|         | PRP |     |     |  |

- Greedy (argmax<sub>i</sub> $P(t_i|t_{i-1})P(w_i|t_i)$ ) is still suboptimal
  - You commit to a tag before considering subsequent tags
  - It could be the case that ALL possible next tags have low transition probabilities
  - E.g. a tag that is unlikely to be at the end of the sentence could be selected at the wrong time when going left to right

## The Viterbi Algorithm

- A dynamic programming algorithm
  - Break down a problem into smaller parts
  - Compute small parts once and re-use later on
- Yes, that Viterbi
  - All USC CS courses are required to present the Viterbi Algorithm
  - Kidding! But it comes up a lot because it's very useful
- Optimal global solution
  - Will be slower than greedy algorithm, but is <u>guaranteed</u> to return the proper argmax  $\prod_{i=1}^{N} P(t_i|t_{i-1})P(w_i|t_i)\times P(</s>|t_n)$



#### Viterbi as a Decoder

- The problem of finding the best tag sequence for a given word sequence is sometimes called <u>decoding</u>
- This is because, like spelling correction, etc., HMM can also be viewed as a noisy channel model:
  - Someone wants to send us a sequence of tags P(T)
  - During transmission, "noise" converts each tag to a word P(W|T)
  - We try to decode the observed words back to the original tags
- Decoding is a general term in NLP for inferring hidden variables in a test instance (e.g. finding correct spelling of a misspelled word, determining topic or sentiment of an input, determining the underlying syntactic tree)

#### Viterbi Intuition

tags ordered by frequency for each word

| <s></s> | one | dog | bit  |   |
|---------|-----|-----|------|---|
| <s></s> | CD  | NN  | NN - | . |
|         | NN  | VB  | VBD  |   |
|         | PRP |     |      |   |

- Suppose we have already calculated
  - a) the best tag sequence for <s> ... bit that ends in NN
  - b) the best tag sequence for <s> ... bit that ends in VBD
- Then, the best sequence would be either
  - sequence a) extended to include </s> or
  - sequence b) extended to include </s>

#### Viterbi Intuition

tags ordered by frequency for each word

| <s></s> | one | dog | bit |  |
|---------|-----|-----|-----|--|
| <s></s> | CD  | NN  | NN  |  |
|         | NN  | VB  | VBD |  |
|         | PRP |     |     |  |

- But to get
  - a) the best tag sequence for <s> ... bit that ends in NN
- Then we have to extend one of:
  - The best tag sequence for <s> ... dog that ends in NN
  - The best tag sequence for <s> ... dog that ends in VB
- And so on...

## Viterbi High-Level Picture

- Want to find argmax<sub>T</sub>P(T|W) = argmax<sub>T</sub>P(T,W) = argmax<sub>T</sub>P(T)P(W|T)
- Intuition: the best path of length i ending in state t must include the best path of length i-1 to the previous state. So,
  - find the best path of length i-1 to each state
  - consider extending each of these by 1 step, to state t
  - take the best of these options as the best path to state t

## Quiz 2

- In Naive Bayes we model P(Y| X1 X2 X3) as P(Y|X1, X2, X3) by applying...
  - A. The Law of Total Probability
  - B. Bayes' rule
  - C. The Bag of Words Assumption
  - D. The Naive Bayes Assumption

## Viterbi Algorithm

- use a <u>chart</u> v to store partial results as we go
  - T x N table for T possible tags and length N sentence
  - v[t, i] is the probability of the best state sequence for w<sub>1</sub>...w<sub>i</sub> that ends in state t
- fill columns left to right, with
  - $v[t, i] = max_{t'} v[t', i-1] \times P(t|t') \times P(w_i|t_i)$
  - note, the max is over each possible previous tag t'
- also keep a backtrace table b
  - $b[t, i] = argmax_{t'} v[t', i-1] \times P(t|t') \times P(w_i|t_i)$
  - b can be used afterward to find the chain of tags

# Example

| v | w <sub>1</sub> =the | w <sub>2</sub> =doctor | w <sub>3</sub> =is | w <sub>4</sub> =in |  |
|---|---------------------|------------------------|--------------------|--------------------|--|
| N |                     |                        |                    |                    |  |
| V |                     |                        |                    |                    |  |
| D |                     |                        |                    |                    |  |
| Р |                     |                        |                    |                    |  |
| Α |                     |                        |                    |                    |  |

Suppose W = the doctor is in. Our chart is initially empty.

| T->T    | N  | V   | D   | Р   | Α   |     |
|---------|----|-----|-----|-----|-----|-----|
| <s></s> | .3 | .1  | .3  | .2  | .1  | 0   |
| N       | .2 | .4  | .01 | .3  | .04 | .05 |
| V       | .3 | .05 | .3  | .2  | .1  | .05 |
| D       | .9 | .01 | .01 | .01 | .07 | 0   |
| Р       | .4 | .05 | .4  | .1  | .05 | 0   |
| Α       | .1 | .5  | .1  | .1  | .1  | .1  |

| T->W | a  | cat | doctor | in | is | the | very |
|------|----|-----|--------|----|----|-----|------|
| N    | 0  | .5  | .4     | 0  | .1 | 0   | 0    |
| V    | 0  | 0   | .1     | 0  | .9 | 0   | 0    |
| D    | .3 | 0   | 0      | 0  | 0  | .7  | 0    |
| Р    | 0  | 0   | 0      | 1  | 0  | 0   | 0    |
| Α    | 0  | 0   | 0      | .1 | 0  | 0   | .9   |

# Example

| V | w <sub>1</sub> =the | w <sub>2</sub> =doctor | w <sub>3</sub> =is | w <sub>4</sub> =in |  |
|---|---------------------|------------------------|--------------------|--------------------|--|
| N |                     |                        |                    |                    |  |
| V |                     |                        |                    |                    |  |
| D |                     |                        |                    |                    |  |
| Р |                     |                        |                    |                    |  |
| Α |                     |                        |                    |                    |  |

Suppose W = the doctor is in. Our chart is initially empty.

| T->T    | N  | V   | D   | Р   | Α   |     |
|---------|----|-----|-----|-----|-----|-----|
| <s></s> | .3 | .1  | .3  | .2  | .1  | 0   |
| N       | .2 | .4  | .01 | .3  | .04 | .05 |
| V       | .3 | .05 | .3  | .2  | .1  | .05 |
| D       | .9 | .01 | .01 | .01 | .07 | 0   |
| Р       | .4 | .05 | .4  | .1  | .05 | 0   |
| Α       | .1 | .5  | .1  | .1  | .1  | .1  |

| T->W | doctor | in | is | the |
|------|--------|----|----|-----|
| N    | .4     | 0  | .1 | 0   |
| V    | .1     | 0  | .9 | 0   |
| D    | 0      | 0  | 0  | .7  |
| Р    | 0      | 1  | 0  | 0   |
| Α    | 0      | .1 | 0  | 0   |

## Filling in the First Column

| V | w <sub>1</sub> =the | w <sub>2</sub> =doctor | w <sub>3</sub> =is | w <sub>4</sub> =in |  |
|---|---------------------|------------------------|--------------------|--------------------|--|
| N | 0                   |                        |                    |                    |  |
| V | 0                   |                        |                    |                    |  |
| D | .21                 |                        |                    |                    |  |
| Р | 0                   |                        |                    |                    |  |
| Α | 0                   |                        |                    |                    |  |

$$v[N,the] = P(N|~~)*P(the|N) = .3*0=0~~$$

• • •

| T->T    | N  | V   | D   | Р   | Α   |     |
|---------|----|-----|-----|-----|-----|-----|
| <s></s> | .3 | .1  | .3  | .2  | .1  | 0   |
| N       | .2 | .4  | .01 | .3  | .04 | .05 |
| V       | .3 | .05 | .3  | .2  | .1  | .05 |
| D       | .9 | .01 | .01 | .01 | .07 | 0   |
| Р       | .4 | .05 | .4  | .1  | .05 | 0   |
| Α       | .1 | .5  | .1  | .1  | .1  | .1  |

| T->W | doctor | in | is | the |
|------|--------|----|----|-----|
| N    | .4     | 0  | .1 | 0   |
| V    | .1     | 0  | .9 | 0   |
| D    | 0      | 0  | 0  | .7  |
| Р    | 0      | 1  | 0  | 0   |
| Α    | 0      | .1 | 0  | 0   |

#### Second Column

| V | w <sub>1</sub> =the | w <sub>2</sub> =doctor | w <sub>3</sub> =is | w <sub>4</sub> =in |  |
|---|---------------------|------------------------|--------------------|--------------------|--|
| N | 0                   | ?                      |                    |                    |  |
| V | 0                   |                        |                    |                    |  |
| D | .21                 |                        |                    |                    |  |
| Р | 0                   |                        |                    |                    |  |
| Α | 0                   |                        |                    |                    |  |

 $v[N,doctor] = max_{t'} v[t',the]*P(N|t')*P(doctor|N)$ 

max(0,0,.21\*.9\*.4.,0,0) = .0756

| T->T    | N  | V   | D   | P   | Α   |     |
|---------|----|-----|-----|-----|-----|-----|
| <s></s> | .3 | .1  | .3  | .2  | .1  | 0   |
| N       | .2 | .4  | .01 | .3  | .04 | .05 |
| V       | .3 | .05 | .3  | .2  | .1  | .05 |
| D       | .9 | .01 | .01 | .01 | .07 | 0   |
| Р       | .4 | .05 | .4  | .1  | .05 | 0   |
| Α       | .1 | .5  | .1  | .1  | .1  | .1  |

P(N|D)\*P(doctor|N) = .9\*.4

| T->W | doctor | in | is | the |
|------|--------|----|----|-----|
| N    | .4     | 0  | .1 | 0   |
| V    | .1     | 0  | .9 | 0   |
| D    | 0      | 0  | 0  | .7  |
| Р    | 0      | 1  | 0  | 0   |
| Α    | 0      | .1 | 0  | 0   |

## Second Column

| V | w <sub>1</sub> =the | w <sub>2</sub> =doctor | w <sub>3</sub> =is | w <sub>4</sub> =in |  |
|---|---------------------|------------------------|--------------------|--------------------|--|
| N | 0                   | <b>/</b> .0756         |                    |                    |  |
| V | 0                   |                        |                    |                    |  |
| D | .21                 |                        |                    |                    |  |
| Р | 0                   |                        |                    |                    |  |
| Α | 0                   |                        |                    |                    |  |

 $v[N,doctor] = max_{t'} v[t',the]*P(N|t')*P(doctor|N)$ 

max(0,0,.21\*.9\*.4.,0,0) = .0756

| T->T            | N  | V   | D   | P   | Α   |     |
|-----------------|----|-----|-----|-----|-----|-----|
| <b>&lt;</b> \$> | .3 | .1  | .3  | .2  | .1  | 0   |
| N               | .2 | .4  | .01 | .3  | .04 | .05 |
| V               | .3 | .05 | .3  | .2  | .1  | .05 |
| D               | .9 | .01 | .01 | .01 | .07 | 0   |
| Р               | .4 | .05 | .4  | .1  | .05 | 0   |
| Α               | .1 | .5  | .1  | .1  | .1  | .1  |

P(N|D)\*P(doctor|N) = .9\*.4

| T->W | doctor | in | is | the |
|------|--------|----|----|-----|
| N    | .4     | 0  | .1 | 0   |
| V    | .1     | 0  | .9 | 0   |
| D    | 0      | 0  | 0  | .7  |
| Р    | 0      | 1  | 0  | 0   |
| Α    | 0      | .1 | 0  | 0   |

### Second Column

| V | w <sub>1</sub> =the | w <sub>2</sub> =doctor | w <sub>3</sub> =is | w <sub>4</sub> =in |  |
|---|---------------------|------------------------|--------------------|--------------------|--|
| N | 0                   | <b>/</b> .0756         |                    |                    |  |
| V | 0                   | .00021                 |                    |                    |  |
| D | .21                 |                        |                    |                    |  |
| Р | 0                   |                        |                    |                    |  |
| Α | 0                   |                        |                    |                    |  |

 $v[V,doctor] = max_{t'} v[t',the]*P(V|t')*P(doctor|V)$ 

max(0,0,.21\*.01\*.1,0,0) = .00021

| T->T    | N  | V   | D   | Р   | Α   |     |
|---------|----|-----|-----|-----|-----|-----|
| <s></s> | .3 | .1  | .3  | .2  | .1  | 0   |
| N       | .2 | .4  | .01 | .3  | .04 | .05 |
| V       | .3 | .05 | .3  | .2  | .1  | .05 |
| D       | .9 | .01 | .01 | .01 | .07 | 0   |
| Р       | .4 | .05 | .4  | .1  | .05 | 0   |
| Α       | .1 | .5  | .1  | .1  | .1  | .1  |

| T->W | doctor | in | is | the |
|------|--------|----|----|-----|
| N    | .4     | 0  | .1 | 0   |
| V    | .1     | 0  | .9 | 0   |
| D    | 0      | 0  | 0  | .7  |
| Р    | 0      | 1  | 0  | 0   |
| Α    | 0      | .1 | 0  | 0   |

### Second Column

| v | w <sub>1</sub> =the | w <sub>2</sub> =doctor | w <sub>3</sub> =is | w <sub>4</sub> =in |  |
|---|---------------------|------------------------|--------------------|--------------------|--|
| N | 0                   | <b>/</b> .0756         |                    |                    |  |
| V | 0                   | .00021                 |                    |                    |  |
| D | .21                 | 0                      |                    |                    |  |
| Р | 0                   | 0                      |                    |                    |  |
| Α | 0                   | 0                      |                    |                    |  |

| T->T    | N  | V   | D   | Р   | Α   |     |
|---------|----|-----|-----|-----|-----|-----|
| <s></s> | .3 | .1  | .3  | .2  | .1  | 0   |
| N       | .2 | .4  | .01 | .3  | .04 | .05 |
| V       | .3 | .05 | .3  | .2  | .1  | .05 |
| D       | .9 | .01 | .01 | .01 | .07 | 0   |
| Р       | .4 | .05 | .4  | .1  | .05 | 0   |
| Α       | .1 | .5  | .1  | .1  | .1  | .1  |

| T->W | doctor | in | is | the |
|------|--------|----|----|-----|
| N    | .4     | 0  | .1 | 0   |
| V    | .1     | 0  | .9 | 0   |
| D    | 0      | 0  | 0  | .7  |
| Р    | 0      | 1  | 0  | 0   |
| А    | 0      | .1 | 0  | 0   |

### Third Column

| V | w <sub>1</sub> =the | w <sub>2</sub> =doctor | w <sub>3</sub> =is | w <sub>4</sub> =in |  |
|---|---------------------|------------------------|--------------------|--------------------|--|
| N | 0                   | .0756                  | •                  |                    |  |
| V | 0                   | .00021                 |                    |                    |  |
| D | .21                 | 0                      |                    |                    |  |
| Р | 0                   | 0                      |                    |                    |  |
| Α | 0                   | 0                      |                    |                    |  |

 $v[N,is] = \max_{t'} v[t',doctor]*P(N|t')*P(is|N)$ 

.0756 \* .2 \* .1 = .001512

| T->T    | N  | V   | D   | P   | Α   |     |
|---------|----|-----|-----|-----|-----|-----|
| <s></s> | .3 | .1  | .3  | .2  | .1  | 0   |
| N       | .2 | .4  | .01 | .3  | .04 | .05 |
| V       | .3 | .05 | .3  | .2  | .1  | .05 |
| D       | .9 | .01 | .01 | .01 | .07 | 0   |
| Р       | .4 | .05 | .4  | .1  | .05 | 0   |
| Α       | .1 | .5  | .1  | .1  | .1  | .1  |

| .00021 | * .3 * | .1 =   | .0000 | 063 |
|--------|--------|--------|-------|-----|
|        | 0* .9  | * .1 = | = 0   |     |

| T->W | doctor | in | is | the |
|------|--------|----|----|-----|
| N    | .4     | 0  | .1 | 0   |
| V    | .1     | 0  | .9 | 0   |
| D    | 0      | 0  | 0  | .7  |
| Р    | 0      | 1  | 0  | 0   |
| Α    | 0      | .1 | 0  | 0   |

### Third Column

| v | w <sub>1</sub> =the | w <sub>2</sub> =doctor | w <sub>3</sub> =is | w <sub>4</sub> =in |  |
|---|---------------------|------------------------|--------------------|--------------------|--|
| N | 0                   | .0756                  | .001512            |                    |  |
| V | 0                   | .00021                 | .027216            |                    |  |
| D | .21                 | 0                      | 0                  |                    |  |
| Р | 0                   | 0                      | 0                  |                    |  |
| Α | 0                   | 0                      | 0                  |                    |  |

 $v[V,is] = max_{t'} v[t',doctor]*P(V|t')*P(is|V)$ 

</s> A .3 .3 .2 .1 <s> .01 .3 .04 .05 .2 .3 .05 .1 .05 .01 .01 .01 .07 .05 .1 .4 .4 .05 .1 .1 .1

max(.0756\*.4\*.9, .00021\*.05\*.9, 0, 0, 0) = .027216

| T->W | doctor | in | is | the |
|------|--------|----|----|-----|
| N    | .4     | 0  | .1 | 0   |
| V    | .1     | 0  | .9 | 0   |
| D    | 0      | 0  | 0  | .7  |
| Р    | 0      | 1  | 0  | 0   |
| Α    | 0      | .1 | 0  | 0   |

### Fourth Column

| v | w <sub>1</sub> =the | w <sub>2</sub> =doctor | w <sub>3</sub> =is | w <sub>4</sub> =in |  |
|---|---------------------|------------------------|--------------------|--------------------|--|
| N | 0                   | .0756                  | .001512            | 0                  |  |
| V | 0                   | .00021                 | .027216            | 0                  |  |
| D | .21                 | 0                      | 0                  | 0                  |  |
| Р | 0                   | 0                      | 0                  | .0054432           |  |
| Α | 0                   | 0                      | 0                  |                    |  |

$$v[P,in] = max_{t'} v[t',is]*P(P|t')*P(in|P)$$

</s> T->T A D .3 .1 .3 .2 .1 0 <s> 4.3 .05 .4 .01 .04 .3 .3 .05 .05 .2 .01 .9 .01 .01 .07 .05 .4 .4 .05 0 .5 .1 .1

max(.001512\*.3\*1, .027216\*.2\*1, 0, 0, 0) = .0054432

| T->W | doctor | in | is | the |
|------|--------|----|----|-----|
| N    | .4     | 0  | .1 | 0   |
| V    | .1     | 0  | .9 | 0   |
| D    | 0      | 0  | 0  | .7  |
| Р    | 0      | 1  | 0  | 0   |
| А    | 0      | .1 | 0  | 0   |

### Fourth Column

| v | w <sub>1</sub> =the | w <sub>2</sub> =doctor | w <sub>3</sub> =is | w <sub>4</sub> =in |  |
|---|---------------------|------------------------|--------------------|--------------------|--|
| N | 0                   | .0756                  | .001512            | 0                  |  |
| V | 0                   | .00021                 | .027216            | 0                  |  |
| D | .21                 | 0                      | 0                  | 0                  |  |
| Р | 0                   | 0                      | 0                  | .0054432           |  |
| Α | 0                   | 0                      | 0                  | .00027216          |  |

 $v[A,in] = \max_{t'} v[t',is] *P(A|t') *P(in|A)$ 

</s> T->T A D .3 .1 .3 .2 .1 0 <s> .3 .04 .01 .05 .4 .3 .2 .3 .05 .05 .01 .01 .01 .07 .9 .05 .1 .05 .4 .4 .5 .1 .1

max(.001512\*.04\*.1, .027216\*.1\*.1, 0, 0, 0) = .00027216

| T->W | doctor | in | is | the |
|------|--------|----|----|-----|
| N    | .4     | 0  | .1 | 0   |
| V    | .1     | 0  | .9 | 0   |
| D    | 0      | 0  | 0  | .7  |
| Р    | 0      | 1  | 0  | 0   |
| Α    | 0      | .1 | 0  | 0   |

### End of sentence

| v | w <sub>1</sub> =the | w <sub>2</sub> =doctor | w <sub>3</sub> =is | w <sub>4</sub> =in |            |
|---|---------------------|------------------------|--------------------|--------------------|------------|
| N | 0                   | .0756                  | .001512            | 0                  |            |
| V | 0                   | .00021                 | .027216            | 0                  |            |
| D | .21                 | 0                      | 0                  | 0                  | .000027216 |
| Р | 0                   | 0                      | 0                  | .0054432           |            |
| Α | 0                   | 0                      | 0                  | .00027216          |            |

$$v() = max_{t'} v(t',in)*P(|t')$$

| T->T    | N  | V   | D   | Р   | Α   |     |  |
|---------|----|-----|-----|-----|-----|-----|--|
| <s></s> | .3 | .1  | .3  | .2  | .1  | 0   |  |
| N       | .2 | .4  | .01 | .3  | .04 | .05 |  |
| V       | .3 | .05 | .3  | .2  | .1  | .05 |  |
| D       | .9 | .01 | .01 | .01 | .07 | 0   |  |
| Р       | .4 | .05 | .4  | .1  | .05 | 0   |  |
| Α       | .1 | .5  | .1  | .1  | .1  | .1  |  |

| max | (0,                        |
|-----|----------------------------|
|     | 0,                         |
|     | 0,                         |
|     | .0054432*0,                |
|     | .00027216*.1) = .000027216 |
|     |                            |

|   | T->W | doctor | in | is | the |
|---|------|--------|----|----|-----|
|   | N    | .4     | 0  | .1 | 0   |
|   | V    | .1     | 0  | .9 | 0   |
|   | D    | 0      | 0  | 0  | .7  |
| 6 | Р    | 0      | 1  | 0  | 0   |
|   | Α    | 0      | .1 | 0  | 0   |

# Completed Chart

| v | w <sub>1</sub> =the | w <sub>2</sub> =doctor | w <sub>3</sub> =is | w <sub>4</sub> =in |            |
|---|---------------------|------------------------|--------------------|--------------------|------------|
| N | 0                   | .0756                  | .001512            | 0                  |            |
| V | 0                   | .00021                 | .027216            | 0                  |            |
| D | .21                 | 0                      | 0                  | 0                  | .000027216 |
| Р | 0                   | 0                      | 0                  | .0054432           |            |
| Α | 0                   | 0                      | 0                  | .00027216          |            |

| T->T    | N  | V   | D   | Р   | Α   |     |
|---------|----|-----|-----|-----|-----|-----|
| <s></s> | .3 | .1  | .3  | .2  | .1  | 0   |
| N       | .2 | .4  | .01 | .3  | .04 | .05 |
| V       | .3 | .05 | .3  | .2  | .1  | .05 |
| D       | .9 | .01 | .01 | .01 | .07 | 0   |
| Р       | .4 | .05 | .4  | .1  | .05 | 0   |
| Α       | .1 | .5  | .1  | .1  | .1  | .1  |

| T->W | doctor | in | is | the |
|------|--------|----|----|-----|
| N    | .4     | 0  | .1 | 0   |
| V    | .1     | 0  | .9 | 0   |
| D    | 0      | 0  | 0  | .7  |
| Р    | 0      | 1  | 0  | 0   |
| Α    | 0      | .1 | 0  | 0   |

## Following the Backtraces

| v | w <sub>1</sub> =the | w <sub>2</sub> =doctor | w <sub>3</sub> =is | w <sub>4</sub> =in |            |
|---|---------------------|------------------------|--------------------|--------------------|------------|
| N | 0                   | .0756                  | .001512            | 0                  |            |
| V | 0                   | .00021                 | .027216            | 0                  |            |
| D | .21                 | 0                      | 0                  | 0                  | .000027216 |
| Р | 0                   | 0                      | 0                  | .0054432           |            |
| Α | 0                   | 0                      | 0                  | .00027216          |            |
|   | D                   | N                      | V                  | Α                  |            |

| T->T    | N  | V   | D   | Р   | Α   |     |
|---------|----|-----|-----|-----|-----|-----|
| <s></s> | .3 | .1  | .3  | .2  | .1  | 0   |
| N       | .2 | .4  | .01 | .3  | .04 | .05 |
| V       | .3 | .05 | .3  | .2  | .1  | .05 |
| D       | .9 | .01 | .01 | .01 | .07 | 0   |
| Р       | .4 | .05 | .4  | .1  | .05 | 0   |
| Α       | .1 | .5  | .1  | .1  | .1  | .1  |

| T->W | doctor | in | is | the |
|------|--------|----|----|-----|
| N    | .4     | 0  | .1 | 0   |
| V    | .1     | 0  | .9 | 0   |
| D    | 0      | 0  | 0  | .7  |
| Р    | 0      | 1  | 0  | 0   |
| Α    | 0      | .1 | 0  | 0   |

# Do Transition and Emission Probabilities Need Smoothing?

- **Emissions**: Yes, because if there is any word w in the test data such that P(w|t) = 0 for all tags t, then the whole joint probability P(W, T) will go to 0.
- **Transitions**: Not necessarily, but if any transition probabilities are estimated as 0, that tag bigram will never be predicted
- What are some transitions that should NEVER occur in a bigram HMM?
  - \* -> <s>
  - </s> -> \*
  - <s> -> </s>

### Higher-Order HMMs

- Equations thus far have been for bigram HMMs, i.e. transitions P(t<sub>i</sub>|t<sub>i-1</sub>)
- But we can increase the order of the n-gram (i.e. n > 2). e.g. trigram HMMs =  $P(t_i | t_{i-1}, t_{i-2})$  [see collins notes]
- As usual, smoothing the transition distributions becomes more important with higher-order models

#### What Else Can we do?

- Suppose you want to find the likelihood of an input sequence, P(W)
- The HMM models P(T, W); by law of total probability sum over all T and you get P(W)
  - Why do you want to do this?
  - If you have a high P(W) that means your model likes your data; if your data is good data, it's an indication you have a good model
- There are an exponential number of members of T
  - We can use the <u>forward</u> algorithm, which is very similar to Viterbi
  - Replace max with sum (no backpointers needed)

### Second Column, Viterbi Algorithm

| v | w <sub>1</sub> =the | w <sub>2</sub> =doctor | w <sub>3</sub> =is | w <sub>4</sub> =in |  |
|---|---------------------|------------------------|--------------------|--------------------|--|
| N | 0                   | .0756                  |                    |                    |  |
| V | 0                   |                        |                    |                    |  |
| D | .21                 |                        |                    |                    |  |
| Р | 0                   |                        |                    |                    |  |
| Α | 0                   |                        |                    |                    |  |

 $v[N,doctor] = \max_{t'} v[t',the]*P(N|t')*P(doctor|N)$ 

 $\max(0,0,.21^*.9^*.4.,0,0) = .0756$ 

| T->T    | N  | V   | D   | Р   | Α   |     |
|---------|----|-----|-----|-----|-----|-----|
| <s></s> | .3 | .1  | .3  | .2  | .1  | 0   |
| N       | .2 | .4  | .01 | .3  | .04 | .05 |
| V       | .3 | .05 | .3  | .2  | .1  | .05 |
| D       | .9 | .01 | .01 | .01 | .07 | 0   |
| Р       | .4 | .05 | .4  | .1  | .05 | 0   |
| Α       | .1 | .5  | .1  | .1  | .1  | .1  |

P(N|D)\*P(doctor|N) = .9\*.4

| T->W | doctor | in | is | the |
|------|--------|----|----|-----|
| N    | .4     | 0  | .1 | 0   |
| V    | .1     | 0  | .9 | 0   |
| D    | 0      | 0  | 0  | .7  |
| Р    | 0      | 1  | 0  | 0   |
| Α    | 0      | .1 | 0  | 0   |

### Second Column, Forward Algorithm

| V | w <sub>1</sub> =the | w <sub>2</sub> =doctor | w <sub>3</sub> =is | w <sub>4</sub> =in |  |
|---|---------------------|------------------------|--------------------|--------------------|--|
| N | 0                   | .0756                  |                    |                    |  |
| V | 0                   |                        |                    |                    |  |
| D | .21                 |                        |                    |                    |  |
| Р | 0                   |                        |                    |                    |  |
| Α | 0                   |                        |                    |                    |  |

 $v[N,doctor] = \sum_{t'} v[t',the] *P(N|t') *P(doctor|N)$ 

 $\sum (0,0,.21^*.9^*.4.,0,0) = .0756$ 

| T->T    | N  | V   | D   | Р   | Α   |     |
|---------|----|-----|-----|-----|-----|-----|
| <s></s> | .3 | .1  | .3  | .2  | .1  | 0   |
| N       | .2 | .4  | .01 | .3  | .04 | .05 |
| V       | .3 | .05 | .3  | .2  | .1  | .05 |
| D       | .9 | .01 | .01 | .01 | .07 | 0   |
| Р       | .4 | .05 | .4  | .1  | .05 | 0   |
| Α       | .1 | .5  | .1  | .1  | .1  | .1  |

P(N|D)\*P(doctor|N) = .9\*.4

| T->W | doctor | in | is | the |
|------|--------|----|----|-----|
| N    | .4     | 0  | .1 | 0   |
| V    | .1     | 0  | .9 | 0   |
| D    | 0      | 0  | 0  | .7  |
| Р    | 0      | 1  | 0  | 0   |
| А    | 0      | .1 | 0  | 0   |

### Third Column, Forward

| V | w <sub>1</sub> =the | w <sub>2</sub> =doctor | w <sub>3</sub> =is | w <sub>4</sub> =in |  |
|---|---------------------|------------------------|--------------------|--------------------|--|
| N | 0                   | .0756                  | .001512            |                    |  |
| V | 0                   | .00021                 |                    |                    |  |
| D | .21                 | 0                      |                    |                    |  |
| Р | 0                   | 0                      |                    |                    |  |
| Α | 0                   | 0                      |                    |                    |  |

 $v[N,is] = \max_{t'} v[t',doctor]*P(N|t')*P(is|N)$ 

.0756 \* .2 \* .1 = .001512

| T->T    | N  | V   | D   | Р   | Α   |     |
|---------|----|-----|-----|-----|-----|-----|
| <s></s> | .3 | .1  | .3  | .2  | .1  | 0   |
| N       | .2 | .4  | .01 | .3  | .04 | .05 |
| V       | .3 | .05 | .3  | .2  | .1  | .05 |
| D       | .9 | .01 | .01 | .01 | .07 | 0   |
| Р       | .4 | .05 | .4  | .1  | .05 | 0   |
| Α       | .1 | .5  | .1  | .1  | .1  | .1  |

| .00021 | * .3 * | .1 =   | .0000 | 063 |
|--------|--------|--------|-------|-----|
|        | 0* .9  | * .1 = | = O   |     |

| T->W | doctor | in | is | the |
|------|--------|----|----|-----|
| N    | .4     | 0  | .1 | 0   |
| V    | .1     | 0  | .9 | 0   |
| D    | 0      | 0  | 0  | .7  |
| Р    | 0      | 1  | 0  | 0   |
| Α    | 0      | .1 | 0  | 0   |

### Third Column, Viterbi

| v | w <sub>1</sub> =the | w <sub>2</sub> =doctor | w <sub>3</sub> =is | w <sub>4</sub> =in |  |
|---|---------------------|------------------------|--------------------|--------------------|--|
| N | 0                   | .0756                  | .0015183           |                    |  |
| V | 0                   | .00021                 |                    |                    |  |
| D | .21                 | 0                      |                    |                    |  |
| Р | 0                   | 0                      |                    |                    |  |
| Α | 0                   | 0                      |                    |                    |  |

$$v[N,is] = \sum_{t'} v[t',doctor] *P(N|t') *P(is|N)$$

.0756 \* .2 \* .1 = .001512

| T->T    | N  | V   | D   | Р   | A   |     |
|---------|----|-----|-----|-----|-----|-----|
| <s></s> | .3 | .1  | .3  | .2  | .1  | 0   |
| N       | .2 | .4  | .01 | .3  | .04 | .05 |
| V       | .3 | .05 | .3  | .2  | .1  | .05 |
| D       | .9 | .01 | .01 | .01 | .07 | 0   |
| Р       | .4 | .05 | .4  | .1  | .05 | 0   |
| Α       | .1 | .5  | .1  | .1  | .1  | .1  |

| +      |   |    |   |      |          |
|--------|---|----|---|------|----------|
| .00021 | * | .3 | * | .1 = | .0000063 |

= .0015183

| T->W | doctor | in | is | the |
|------|--------|----|----|-----|
| N    | .4     | 0  | .1 | 0   |
| V    | .1     | 0  | .9 | 0   |
| D    | 0      | 0  | 0  | .7  |
| Р    | 0      | 1  | 0  | 0   |
| Α    | 0      | .1 | 0  | 0   |

### Summary

- Part-of-speech tagging is a sequence labeling task
- HMM: A generative model of sentences using hidden state sequence
- HMM uses two sources of information to resolve ambiguity
  - The words themselves
  - The tags of nearby words
- Can be viewed as a probabilistic FSM
- Algorithms for computing probability efficiently:
- Greedy tagging: Fast but suboptimal
- Dynamic Programming algorithms to compute
  - Best tag sequence given words: <u>Viterbi algorithm</u>
  - Likelihood of corpus: Forward algorithm