Locy: Energy-efficient sensing with Android smartphones.

Martin Kukla (Supervisor: Dr Tristan Henderson)

Introduction

• Phone sensing may be utilized by mobile applications to provide **advanced services** such as navigation systems.

- **Phone sensing** fetches raw sensor data (e.g. from an accelerometer) and tries to extract high-level information from it (e.g. a user is walking).
- Phone sensing has **high energy demands**, which is crucially important to mobile phone users.
- To solve the problem:
 - investigate three different devices.
 - establish the energy efficiency of their sensors.
 - leverage results for energy-efficient sensing.
 - build **Locy**, an energy efficient sensing library.
 - evaluate its energy efficiency in real-life scenarios.

Solution

• Energy efficiency of sensors are **different among** the three devices.

However, accelerometer is always more
energy-efficient than
the standard localization sensors.

- Locy leverages an efficient accelerometer:
 - if a user is not moving, it switches off GPS.
 - movement detection based on "peaks" (steps):

Locy uses duty-cycling sampling (sleeping periods interleaves sampling), whose ratio (sampling over sleeping period) is adaptive according to current battery life.

Evaluation

• scenario one:

While a user is staying in one place, Locy is more energy-efficient than the naive GPS localization.

• scenario two:

While a user is half of the time moving and the rest of the time he is staying in one place, Locy is more energyefficient than the naive GPS localization.

Conclusions

Locy is more energy-efficient than the standard Android implementation.

