Introduction to Signal Processing Lecture 3: Geometric Signal Theory

Sivakumar Balasubramanian

Department of Bioengineering Christian Medical College, Bagayam Vellore 632002

Geometric Signal Theory

An interesting and important development that will help understanding signal processing a little easier.

This lecture will present a geometric view of signal and some important signal processing operation.

Requires some getting used to new terminology for the generalization of familiar geometric ideas from 2 or 3 dimensions to ∞ dimensions.

Discrete-time signals as vectors

Consider two finite duration real discrete-time signal

$$x[n] = \{ x_0, x_1 \} = [x_0, x_1]^T$$

 $y[n] = \{ y_0, y_1 \} = [y_0, y_1]^T$

where, $n \in \{0, 1\}$

Some familiar and useful geometric ideas

▶ **Length** of a vector.

$$||x|| = \sqrt{x_0^2 + x_1^2}$$

▶ **Distance** between vectors.

$$||x - y|| = \sqrt{(x_0 - y_0)^2 + (x_1 - y_1)^2}$$

▶ Scalar product or Inner product between vectors.

$$\langle x, y \rangle = x_0 y_0 + x_1 y_1 \implies ||x|| = \langle x, x \rangle$$

$$\langle x, y \rangle = ||x|| ||y|| \cos \theta$$

Extension to N dimensions

Consider the following finite duration signals with N elements,

$$x[n] = \{ x_0, x_1, \dots, x_{N-1} \} = [x_0, x_1, \dots, x_{N-1}]^T$$

 $y[n] = \{ y_0, y_1, \dots, y_{N-1} \} = [y_0, y_1, \dots, y_{N-1}]^T$

where, $x_i, y_i \in \mathbb{C}$

- ▶ **Length** of a vector. $||x|| = \left(\sum_{i=0}^{N-1} |x_i|^2\right)^{\frac{1}{2}}$
- ▶ Distance between vectors. $||x y|| = \left(\sum_{i=0}^{N-1} |x_i y_i|^2\right)^{\frac{1}{2}}$
- ▶ Inner product between vectors. $\langle x, y \rangle = \sum_{i=0}^{N-1} x_i y_i^*$

Extension to infinite dimensions!

Can we extend the geometric ideas to infinite dimensional signals?

Yes, but we need to be careful.

$$x[n] = \{ \boxed{x_0}, x_1, \dots \} = [x_0, x_1, \dots]^T$$
$$y[n] = \{ \boxed{y_0}, y_1, \dots \} = [y_0, y_1, \dots]^T$$

- ▶ Length $||x|| = \left(\sum_{i=0}^{\infty} |x_i|^2\right)^{\frac{1}{2}}$
- ▶ Distance $||x y|| = \left(\sum_{i=0}^{\infty} |x_i y_i|^2\right)^{\frac{1}{2}}$
- ▶ Inner product $\langle x, y \rangle = \sum_{i=0}^{\infty} x_i y_i^*$

The above ideas make sense only when the infinite sums are finite converge, i.e. **the sums must converge**.

Extension to infinite dimension!

We will restrict ourselves to the space of **finite energy** signals, i.e.

$$||x|| = \left(\sum_{i \in \mathbb{Z}} |x_i|^2\right)^{\frac{1}{2}} < \infty$$

Here we have assumed x[n] to start at $-\infty$ and end at ∞ .

$$x[n] = \{\cdots, x_{-1}, \overline{x_0}, x_1, \cdots\} = [\cdots, x_{-1}, x_0, x_1, \cdots]^T$$

This also leads to meaningful inner products,

$$||x||, ||y|| < \infty \implies |\langle x, y \rangle| < \infty$$

This is called the $\ell^2(\mathbb{Z})$ space.

What is the inner product?

▶ Projection of a signal x onto another signal y, or simply a measure of their relative orientations.

$$\langle x, y \rangle = \sum_{i \in \mathbb{Z}} x_i y_i^* = ||x|| ||y|| \cos \theta$$

where, θ is the angle between the signals x and y.

- \triangleright $\langle x, y \rangle$ tells us how much of x is in y and vice versa.
- ▶ x and y are orthogonal, when $\langle x, y \rangle = 0 \implies x \perp y$ For example, let $x = [1, 1]^T$ and $y = [1, -1]^T$. What is $\langle x, y \rangle$?

Bases: Representing a signal in terms of other signals

Can x[n] be represented as a linear combination of $x_0[n]$ and $x_1[n]$? Yes.

$$x[n] = \alpha_0 x_0[n] + \alpha_1 x_1[n]$$

$$\alpha_i = \frac{\langle x_i[n], x[n] \rangle}{\|x_i[n]\|}, i = 0, 1$$

What are the values of α_1 and α_2 ?

Bases: Representing a signal in terms of other signals

- ▶ $\{1,2\}$ and $\{\alpha_0,\alpha_1\}$ are two presentations of x[n].
- ► The difference is the basis.
- ▶ Basis for $\{\alpha_0, \alpha_1\}$ is $\{x_0[n], x_1[n]\}.$
- What is the basis for $\{1,2\}$? \implies the standard basis $e_0 = \{1,0\}$ and $e_1[n] = \{0,1\}$.

Extension of ideas to continuous-time

Consider two continuous time signals, $x(t), y(t) \in \mathbb{C}^{\mathbb{R}}$,

► Length.

$$||x|| = \left(\int_{-\infty}^{\infty} |x(t)|^2 dt\right)^{1/2}$$

Distance.

$$||x - y|| = \left(\int_{-\infty}^{\infty} |x(t) - y(t)|^2 dt\right)^{1/2}$$

▶ Scalar product or Inner product between vectors.

$$\langle x, y \rangle = \left(\int_{-\infty}^{\infty} x(t) y^*(t) dt \right)^{1/2}$$

Note: The above quantities are meaningful only when the integrals converge.

Extension to infinite dimension!

We will restrict ourselves to the space of **finite energy** signals, i.e.

$$||x|| = \left(\int_{-\infty}^{\infty} |x(t)|^2 dt\right)^{1/2} < \infty$$

This is called the $\mathcal{L}^{2}(\mathbb{R})$ space.