

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India

(Autonomous College Affiliated to University of Mumbai)

End Semester Examination	
May 2022	
Max. Marks: 60	Duration: 2 Hrs.
Class: S.Y. Course Code: CS206/IT206 Name of the Course: Operating Systems	Semester: IV Branch: I.T./Comp
Instruction: (1) All questions are compulsory (2) Draw neat diagrams (3) Assume suitable data if necessary	्य :

Q. No.		Max. Mark	CO-BL-PI
1 a)	What is the role of linker and loader? Draw the loader diagram and state its three functions.	6	1-2.2.1.1
b)	Hari wants to translate program from high level language with following requirements 1. One statement at a time 2. It should take less amount of time to analyze the source code and no intermediate object code should be generated. 3. It should be easy to debug as well. So Hari should use which type of software or hardware? and why?	5	1.2.2.1.3
c)	What is meant by dual mode of operation in the context of execution of a process?	4	1-2-2.1.1

			'o vil 4 - the two	4	1-2-2.1.1
2 a)	What is meant by microkernel architecture? What are the two				
2 4)	What is meant by microkerner architecture benefits of this architecture? It is suitable for which				
	environment?				
	Listed below are some operating system abstractions (in the				1-2-1.3.1
b)	left column) and the hardware of	onents or mechanism (in			
	left column) and the hardware c				
	the right column) that they are abstractions of. Match the				
	following.				
	List I List II				
	A Thread	1	Interrupt		
	B Virtual address space	2	Memory		
	C File system	3	CPU		
	D Signal	4	Disk		
				-	2-3-2.1.3
c)	State following statement is true	e or f	alse with justification.	1	2-3-2.1.3
- /	When a user-level process wish	nes to	call a function inside the		
	kernel, it directly jumps to the c	lesire	d function.	4	2-3-2.1.3
d)	Consider four processes P, Q, R	and	S scheduled on a CPU as	4	2-3-2.1.3
	per round robin algorithm with	a tim	e quantum of 4 units. The		
	processes arrive in the order P,	Q, K,	s, all at time t = 0. There		
	is exactly one context switch from R to Q, and exactly	om S	context switches from O to		
	R. There is no context switch fr	om S	to P Switching to a ready		
	process after the termination of	anoth	ner process is also		
	process after the termination of another process is also considered a context switch. Which one of the following is NOT possible as CPU burst time (in time units) of these processes?				
	A. $P = 4, Q = 10, F$				
	B. $P = 2, Q = 9, R$				
	B.T = 2, & = 5, IS				
	C. $P = 4, Q = 12, F$				
	D. $P = 3, Q = 7, R$				
e)	The following C program is exe	cuted	l on a Unix/Linux system:	4	2-3-2.1.3
<i>C)</i>	#include < unistd.h >	carec	1 on a china zman of occur		
	int main ()				
	fine main ()				
	int i;				
	for (i=0; i<10; i++)				
	if $(i\%2 == 0)$ for	rk ()	;		
	return 0 ;				
	The total number of shill				
1	The total number of child proce	created is Justify			

Consider the following threads, T1,T2 and T3 executing on a single processor, synchronized using three binary semaphore variables, S1,S2 and S3, operated upon using standard wait() and signal(). The threads can be context switched in any order and at any time.			*					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-2.1.3	g on a 5 ohore	variables, S1,S2 and S3, operated upon using standard wait() and signal(). The threads can be context			3a)		
$\begin{array}{ c c c c c c }\hline wait(S_3); & wait(S_1); & wait(S_2); \\ print("C"); & print("B"); & print("A"); \\ signal(S_2); & signal(S_3); & signal(S_1); & \\ \hline Which initialization of the semaphores would print the sequence BCABCABCA? \\ \hline \end{array}$			T_3	T_2	T_1			
$\begin{array}{ c c c c c c c c c } \hline wait(S_3); & wait(S_1); & wait(S_2); \\ print("C"); & print("B"); & print("A"); \\ signal(S_2); & signal(S_3); & signal(S_1); & \\ \hline Which initialization of the semaphores would print the sequence BCABCABCA? \\ \hline \end{array}$	ļ		while(true){	while(true){	while(true){			
print("C"); print("B"); print("A"); signal(S ₂); } signal(S ₃); } signal(S ₁); } Which initialization of the semaphores would print the sequence BCABCABCA?			$wait(S_2);$	$wait(S_1);$	$wait(S_3);$			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			print("A");	print("B");	print("C");			
sequence BCABCABCA?			$signal(S_1); $	$signal(S_3); $	$signal(S_2); \}$			
OR			Which initialization of the semaphores would print the					
incomplete code for readers-writers problem, two binary semaphores mutex and wrt are used to obtain synchronization. wait (wrt) writing is performed signal (wrt) wait (mutex) readcount = readcount + 1 if readcount = 1 then S1 S2 reading is performed S3 readcount = readcount - 1 if readcount = 0 then S4 signal (mutex) The values of S1, S2, S3, S4, (in that order) are (A) signal (mutex), wait (wrt), signal (wrt), wait (mutex) (B) signal (wrt), signal (mutex), wait (mutex), wait (wrt) (C) wait (wrt), signal (mutex), wait (mutex), signal (wrt)		zation.	semaphores mutex and wrt are used to obtain synchronization. wait (wrt) writing is performed signal (wrt) wait (mutex) readcount = readcount + 1 if readcount = 1 then S1 S2 reading is performed S3 readcount = readcount - 1 if readcount = 0 then S4 signal (mutex) The values of S1, S2, S3, S4, (in that order) are (A) signal (mutex), wait (wrt), signal (wrt), wait (mutex)					

Q.3 b)	Given a 'claim matrix' or max matrix, an 'allocation matrix' and a 'resource vector' for a set of processes:	6	3-3-2.1.3
	(a) Is there a safe state? If yes, give the order in which the processes should run to completion.		
	(b) If Process P3 requests 1 unit of R3, should we grant this request? If yes, give a in which all processes can run to completion.		
	Allocation Matrix R1 R2 R3 P1 1 0 0 P1 3 2 2 P2 5 1 1 P3 2 1 1 P4 0 0 2 P4 4 2 2		
,	Resource Vector R1 R2 R3 9 3 6		
3 c)	Define a critical section problem. Specify the requirements to be satisfied by the solution to the critical section problem.		3-3-2.1.2
-	. 		

Q.4 a)	State whether the following statement is true or false. 1.Two processes reading from the same virtual address will access the same contents.	2	4-3-2.1.2
	2. Paging approaches suffer from internal fragmentation, which grows as the size of a page grows.		
4 b)	i)If a virtual address is 16 bits and each page is 128B, then each address space can contain how many pages?	3	4-3-2.1.3
	ii) If 8 bits are used in a virtual address to designate an offset within a page, then what is the page size?		
	iii) If a physical address is 24 bits and each page is 4KB then how many bits represent the frame number.?		
4 c)	The collection of tracks under the head at any time is known as	5	5-3-2.1.3
	OR		
	What is Inode? List 3 points about the information it contains. Consider a UNIX file system with 10 direct pointers, 1 indirect pointer, 1 double-indirect pointer, and 1 triple-indirect pointer in the i-node. Assume that disk blocks are 4K bytes and that each pointer to a disk block requires 4 bytes. What is the largest possible file that can be supported with this design?		
4 d)	Draw and compare contiguous file allocation and linked file allocation method wrt fragmentation, reliability and speed of operation.	5	5-2-1.4.1