CHEM STRY MARKI NG SCHEME DELHI -2013 SET 56/1/1

Q no.	Ans wers	Marks
1	4	1
2	Mond Process/ Vapour phase refining method	1
3	4	1
4	4- chl or opent - 1-ene	1
5	CH ₃ CN is for med or ethanenitrile is for med.	1
6	Н ₃ С- СН(СН ₃)- СН ₄ - СНО	1
7	$(CH_3)_3 N < CH_3 NH_2 < (CH_3)_2 NH$	1
8	mRNA, r RNA, t RNA	1
9	$\Delta T_{b} = K_{b} m$	1/2
	$T_b - T_b^0 = 0.52 \text{ K kg mol}^{-1} \text{ x } \frac{18 \text{ g}}{180 \text{ g mol}^{-1}} \text{ x } \frac{1}{1 \text{kg}}$	1/2
	$T_b - 373.15 \text{ K} = 0.052 \text{ K}$	1/2
	$T_{\rm b} = 373.202 {\rm K}$	1/2
10	$\Lambda_{\rm m} = \kappa / C$	1/2
	$\Lambda_{\rm m} = \frac{0.025 \text{ S cm}^{-1}}{0.20 \text{ mol } \text{L}^{-1}}$	1/2
	$\Lambda_{\rm m} = 125 \mathrm{S} \mathrm{c} \mathrm{m}^2 \mathrm{mol}^{-1}$	1
	(deduct ½ mark for wrong or no unit)	
	1	

11		Dspersed phase	Dspersion Medium	
	(i) Smoke (ii) M1 k	Soli d Li qui d	Gas Li qui d	1 1
11		OR		
	Lyophilic sols are solvent at sols	ttracting sols whereas Lyopho	obic sols are Sol vent repelling	1/2 + 1/2
	Lyophobic sols can be easil	y coagul ated		1
12				
	Physis or pti on		Che misorpti on	
	It is not very specific.		It is highly specific.	
	It is usually takes placed decreases with increasing to	ce at low temperature and emperature.	It takes place at high temperature.	
	It is reversible.		It is irreversible.	
	Low ent halpy of adsorption	1.	High ent hal py of ads or pt i on	¹⁄₂ x4=2
13	(a) Na CN solution (b) CO			1+1
14				
	(i)			
	$PCl_5 \xrightarrow{heat} PCl_3 + Cl_2$			1
	(ii)			
	4 H ₂ PO ₃ heat 3 H ₃	$PQ_1 + PH_3$		1
		(Full marks may be given	if equation is not balanced)	

		1
15	(a) Cu, because in +1 oxidation state it has stable $3d^{10}$ configuration. (b) Mh^{2+} , V^{3+} : because of the presence of unpaired electrons.	$\frac{1/2 + 1/2}{1/2 + 1/2}$
	(if only one ion is mentioned deduct ½ mark)	
16	 (i) Due to resonance / diagrammatic representation, C- Q bond acquires a partial double bond character which is difficult to cleave. (ii) Due to sp² hybri disation of 'C of C Q bond. (iii) Due to unstable phenyl cation 	
	(iv) Due to repulsi on bet ween nucleophile and electron rich arenes. (any t wo)	1+1
17	(i) CHCHÖ-H + H' → CHCHÖ-H	1/2
	(ii) $CH_3CH_2 - \overset{\circ}{O}: + CH_3 - CH_2 - \overset{\circ}{O} + CH_3CH_2 - \overset{\circ}{O} - CH_2CH_3 + H_2O$	1/2
	(iii) $CH_3CH_2 \longrightarrow CH_2CH_3 \longrightarrow CH_3CH_2 - O - CH_2CH_3 + H$	1
18	(i) CH ₃ - CH = CH ₂ H ₂ OH CH ₃ - CH - CH ₃ CH ₄ CH ₅ OH	
	(ii)	
	OH OH NO ₂ Conc. HNO ₃ O ₂ N NO ₂ (or by any of her correct suitable, method)	
	(or by any other correct suitable nethod)	1+1

19	 (a) p-type semiconductor (b) Ferromagnetism (c) Inpurity defect / Cation vacancy defect 	1x3=3
20	When K_2SQ_i is dissolved in water, ions are produced. Total number of ions produced = 3	
	i =3	1/2
	$\pi = i CRT$ = $i \times \underline{n} \times R \times T$ V	1/2
	$\pi = 3 \text{ x}$ $\frac{2.5 \times 10^{-2} \text{ g}}{174 \text{ g mol}^{-1}}$ $\frac{1}{2}$ x $\frac{1}{2}$ x $\frac{1}{2}$ 0.0821 Lat mK ¹ mol ⁻¹ x 298 K	1
	$\pi = 5.27 \times 10^3 \text{ at m}$	1
	(deduct ½ mark for wrong or no unit)	
21	The cell reaction: $Fe(s) + 2H^{\dagger}(aq) \rightarrow Fe^{2+}(aq) + H_{2}(g)$	
	$E_{cell} = 0.44 \text{ V}$	
	Ner nst equation	
	$E_{\text{cell}} = E_{\text{cell}}^{0} - \frac{0.059 \log [\text{Fe}^{2+}]}{2}$ $[\text{H}^{+}]^{2}$	1
	$E_{\text{cell}} = 0.44 \text{ V} - \frac{0.059}{2} \log \frac{(0.001 \text{ M})}{(1.\text{ M})^2}$	1/2
	$=0.44 \text{ V-} \frac{0.059}{2} \log (10^3)$	1/2
	= 0.44 V + 0.0885 V	
	=0.5285 V (deduct ½ mark for wrong or no unit)	1

22	 (i) Due to incomplete filling of d-orbitals, transition metals show variable oxidation states. (ii) Because of Lanthanoid Contraction. (iii) Because of their ability to show multiple / variable oxidation states. 	1 x 3=3
	OR	
22	(i) $G_2 O^{2-} + 6Fe^{2+} + 14H \rightarrow 2G^{3+} + 6Fe^{3+} + 7HO$	
	(ii) $2G O_4^{2-} + 2H \rightarrow G_2 O_7^{2-} + HO$	
	(iii) $2 \text{Mn Q}^{-} + 5 \text{C}_2 \text{ Q}^{2-} + 16 \text{H}^{+} \rightarrow 2 \text{Mn}^{2+} + 10 \text{CO}_2 + 8 \text{H}_2 \text{ O}$	1 x 3=3
	(Accept only balanced equation)	1 X 3-3
23	(i) Tri a mmi net ri chl ori dochr o mi u m(III)	1
	(ii) Pot assi u m he xac ynof errat e(III)	1
	(iii) D bromi dobi s-(et hane-1, 2-di a mi ne) cobalt (III) / D bromi dobi s-(et hyl enedi a mi ne) cobalt (III)	1
24	(i) A=C ₆ H ₃ CN B=C ₆ H ₃ COOH C=C ₆ H ₃ CONH ₂	½x3=1 ½
	(ii) $A=C_6 H_5 NH_2$ $B=C_6 H_5 N_2^+ C_1^ C=C_6 H_5 - OH$	½x3=1 ½
25	(i) Buna-S: 1, 3- But adi ene and Styrene	1/2+1/2
	$CH = CH_2$ $CH_2 = CH - CH_2 = CH_2$	
	(ii) Ne oprene: Chl or oprene	
	a	1/2+1/2
l	$CH_{\underline{I}} = C - CH = CH_{\underline{I}}$	/2 / / 2

Del hi - 1 2013

	(iii) Nyl on-6, 6: He xa met hyl ene di a mi ne and Adi pi c aci d Hূ N(CH₂)6-NH₂ HOOC-(CH₂)4-COOH	1/2+1/2
26	(i) Sonali: Concerned for the society, socially active and helpful to others. Principal: Caring commanding and serious about the welfare of students. (or any other suitable values) (ii) Vitamins B and C	1 1 1/2 + 1/2
27.	(a) Sodi u m Benzoate (b) To i npart antiseptic properties (c) Tranquilizers	1 x 3=3

28	 (a) (i) rate=k[A]² [B] (ii) Rate will increase 9 times of the actual rate of reaction. (iii) Rate will increase 8 times of the actual rate of reaction. 	1x3= 3
	$k = \underbrace{2\ 303}_{t} \log \left[\underbrace{A_{0}}_{A_{1}} \right]$	1/2
	$k = \underbrace{2303 \log 100}_{40 \text{min}} \frac{100}{70}$	
	$k = 2303$ x $0.155 = 0.00892 \text{ mi n}^{-1}$	1/2
	$\frac{t_{1/2}}{k} = \frac{0.693}{k}$	1/2
	$t_{1/2} = 77.7 \text{min} \text{n}$	1/2
28	OR	
	(a) $t_{99\%} = \frac{2.303}{k} \log \frac{100}{1}$	1/2
	$t_{90\%} = \frac{2.303}{k} \log \frac{100}{10}$	1/2
	on comparision $\frac{t_{.99\%}}{t_{.90\%}} = \frac{\log 100}{\log 10}$	1/2
	Hence $t_{99\%} = 2 t_{90\%}$ (or solved by any other correct suitable method)	1/2

		1
	(b)	
	Stope = $\frac{-\text{Ea}}{2303}$ R	1
	$-4250 \text{ K} = - \underbrace{\text{Ea}}_{2\ 303\ \text{x}\ 8\ 314\ \text{J}\ \text{K}^1\ \text{mol}^{-1}}$	1
	Ea = 81375 J mol ⁻¹ or 81.375 kJ mol ⁻¹	1
29.	 (i) Because of smaller size of F-atom/shorter bond length, the electron repulsion a mong the lone pairs is greater in F₂ than G₂ (ii) Due to hydrogen bonding in NH₃. 	1+1
	(b)	111
	(ii)	
	HO P OH	

30.	(a) (i) Resonating structures of carboxyl ate i on are more stable than phenoxide i on structures.	
	(ii)—ve charge is dispersing on two electronegative oxygens in carboxylate ion whereas on one oxygen in phenoxide ion	1+1
	(b)	
	Zn- Hg i) CH₃- CO CH₃ → CH₃- CH₂- CH₃ conc. HCl	
	ii)	
	C C C C C C C C C C	
	Benzoyl chloride Benzaldehyde	
	dl. Na OH Δ iii) CH ₃ - CHO \rightarrow CH ₃ - CH OH) -CH ₂ - CHO \rightarrow CH ₃ - CH=CH CHO \rightarrow LH ₂ O	1x3 =3
	(or by any other correct suitable method) OR	
30	(a)	
	(i)	
	H—C—OH + H—C OK	
	(ii)	
	Вт-СН_СООН	

(iii)

(b)

1 x3=3

(i) <u>It hand and Propanal</u>: It hand gives yellow ppt of Iodof or $n(CH_3)$ on addition of NaOH/ I_2 whereas Propanal does not give this test.

(or any at her suitable test)

(ii) <u>Benzoi c aci d and Phenol</u>: Add neutral FeQ_3 to both, phenol gives purple/violet colouration whereas Benzoi c aci d does not give this test or/Add NaHCO3 to both, Benzoi c aci d will give brisk effervescence whereas phenol does not give this test.

1+1

(or any other suitable test)

Sh. S K Munj a Dr (Ms.) Sangeet a Bhati a

Prof. R D Shukla Ml. K M. Abdul Raheem

Dr. K N Uppadhya Mr. D A Mshra

Mr. Rakesh Dhawan Mr. Deshbir Singh

Ms. Neer u Sofat Mr. Akhil esh war Nilshra

Mr. Virendra Singh