Nabin Shrestha 1001746226

Problem 1 :

- 1) True
- 2) Falce
- 3) False
- 4) False
- 5) False
- 6) True
- 7) False
- 8) False
- 9) False
- 10) True

Problem 2:

- a) prime paths
 - 1) no, nz, nz, n4, n1
 - 2) 14, 11, 13, no, nz
 - 3) nz, ns, no, n1
 - 4) nz, nz, no, nz
 - 5) no, n1, n3, n0
 - 6) no, n1, n3, n4
 - 7) nD, nz, n3, n0
 - 8) h3, no, n1, n3
 - 9) n1, n3, no, n1
 - 10) n1, n3, n4, n1
 - 11) n4, n1, n3, n4
 - 12) n3, n0, n2, n3
 - 13) n3, n4, n1, n3
 - b) test path
 - 1) [no, nz, nz, n4, n1, nz, n4]
 - 2) [no, nz, nz, n4, n1, h2, no, nz, nz, n4]
 - 3) (no, n1, n3, n0, n1, n3, n4)
 - 4) [no, n1, n3, n4, n1, n3, n4]
 - 5) [ho, n1, n3, no, n2, n3, n4]
 - 6) [no, nz, nz, no, nz, nz, n4]
 - 7) [no, nz, nz, no, n1, nz, n4]

Problem 3:

a) $Pa = b V (c \Lambda 7d)$ $Pb = a V (c \Lambda 7d)$ $Pc = d V (a \Lambda 7b)$ $Pd = c V (a \Lambda 7b)$

b) Pb 9 n P Pa Po Pd C Ь a T T 1 T T T T T T T F T. T T 2 T F T T T 3 T T F T F 4 T T T T T T 5 T F 6 F T T T F 7 T T T T T F F T T T F F T F 8 T 9 F T · T T F T T F T T T 10 -11 F T F T 12 + F F F T 13 F T T F T T 14 F F T F T T T F F 15 T F T F 16 F F F T T

Problem 3:

continue

- by General Active clause loverage (GACC) with C $\{2, 10, 14\} \times \{4, 12, 16\}$
 - d) Correlated Active clause Coverage (CACC) wit C {2,10,14} x {4,12,16}
 - e) Restricted Active clause Coverage (RACC) wit C (214), (10,12), (14,16)

P. roblem 4

- 1) reachability= true
- 2) injection = m4 == 0 &f m100! = 0
- 3) propagation = true
- 4) test (ases: month 1 = 1 month 2 = 5 year = 2000 day 1 = 1 day 2 = 15

Problem 5

112						
	1	V	3	4	5	6
1 1	1	0	(1	D	D
EL	-	0	0	O	. D	1
t]	D	1	0	1	0	0
14	1		0	0		0
ts	1	0	0	0	0	0
fб	,	D		0		D
				1 3		

```
here
for LC, we have to look for alumn with least number of 1's
min Cov= $, remain = 6
Step 1:
  してこくらう、シェセン
 min lov= { tr}
 marked 6015 = { 1,6}
 remain = 6-2= 4
 Step 2:
 LL= {2}, S= t4
  minCov = { tz, t4}
  marked (015 = {1, 6, 2, 5}
 temain = 4-2=2
 Step 3
  LC= {3}, 5= t1
  min Cov = { tz, tq, t1}
```

$$LC = \{3\}$$
, $S = \{1\}$
min Cov = $\{t_1, t_4, t_1\}$
marked $\{6\} S = \{1, 6, 2, 5, 3, 4\}$
remain = $2-2=0$

Hue, Minimal (lover Set = { tz, ty, t1}