Entwurf, Analyse und Umsetzung von Algorithmen Static Arrays, Dynamic Arrays, Amortized Analysis

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Rolf Backofen

Bioinformatics Group / Department of Computer Science Entwurf, Analyse und Umsetzung von Algorithmen

Static Arrays

Dynamic Arrays Introduction Amortized Analysis

Static Arrays

- Static arrays exist in nearly every programming language
- They are initialized with a fixed size *n*
- Problem: The needed size is not always clear at compile time

Table: Static array with size n = 5

Python:

- We have dynamic sized lists
- Python does automatic resizing when needed

```
# Creates a list of "0"s with init. size 10
numbers = [0] * 10
# Prints number at index 7 ("0")
print("%d" % numbers[7])
# Saves number 42 at index 8
numbers[8] = 42
# Prints the number at index 8 ("42")
print("%d" % numbers[8])
```

- The name "static array" has nothing to do with the keyword static from Java / C++
- Nor is the array allocated before the program starts
- The size of the array is static and can not be changed after creation
- The name "fixed-size array" would be more appropriate

Static Arrays

Dynamic Arrays Introduction Amortized Analysis

Dynamic arrays:

- The array is created with an initial size
- The size can be dynamically modified
- **Problem:** We need a dynamic structure to store the data

Python:

```
greetings = ["Good morning", "ohai"]
greetings.append("Guten morgen")
greetings.append("bonjour")

# Prints text at index 2 ("Guten morgen")
print("%s" % greetings[2])

# Removes all elements
greetings.clear();
```


- Append:
 - Create fixed-size array with the needed size
 - Copy elements from the old to the new array
- Remove:
 - Create fixed-size array with the needed size
 - Copy elements from the old to the new array

First implementation:

- We resize the array before each append
- We choose the size exactly as needed

```
class DynamicArray:
    def __init__(self):
        self.size = 0
        self.elements = []
    def capacity(self):
        return len(self.elements)
```

```
class DynamicArray:
    def append(self, item):
        newElements = [0] * (self.size + 1)
        for i in range(0, self.size):
            newElements[i] = self.elements[i]
        self.elements = newElements
        newElements[self.size] = item
        self.size += 1
```

Dynamic Arrays

Implementation 1

Why is the runtime quadratic?

Runtime:

1	<i>O</i> (1)	write 1 element
1 2	<i>O</i> (1 + 1)	write 1 element, copy 1 element
123	O(1 + 2)	write 1 element, copy 2 elements
1 2 3 4	O(1 + 3)	write 1 element, copy 3 elements
1 2 3 4 5	O(1 + 4)	write 1 element, copy 4 elements
123456	<i>O</i> (1 + 5)	write 1 element, copy 5 elements

Implementation 1

Analysis:

- Let T(n) be the runtime of n sequential append operations
- Let T_i be the runtime of each *i*-th operation
 - Then $T_i = A \cdot i$ for a constant A
 - We have to copy i-1 elements

$$T(n) = \sum_{i=1}^{n} T_i = \sum_{i=1}^{n} (A \cdot i) = A \cdot \sum_{i=1}^{n} i = A \cdot \frac{n^2 + n}{2}$$
$$= O(n^2)$$

- Better resize strategy
- We allocate more space than needed
- We over-allocate a constant amount of elements
 - Amount: C = 3 or C = 100

```
def append(self, item):
    if self.size >= len(self.elements):
        newElements = [0] * (self.size + 100)
        for i in range(0, self.size - 1):
            newElements[i] = self.elements[i]
        self.elements = newElements
    self.elements[self.size] = item
    self.size += 1
```

Dynamic Arrays

Implementation 2

Why is the runtime still quadratic?

Dynamic Arrays

REIBURG

Implementation 2

Runtime for C = 3:

_		
1	<i>O</i> (1)	write 1 element
1 2	<i>O</i> (1)	write 1 element
1 2 3	<i>O</i> (1)	write 1 element
1234	O(1 + 3)	write 1 element, copy 3 elements
1 2 3 4 5	<i>O</i> (1)	write 1 element
1 2 3 4 5 6	<i>O</i> (1)	write 1 element
1234567	O(1 + 6)	write 1 element, copy 6 elements

REIBURG

Analysis:

- Most of the append operations now just cost O(1)
- Every C steps the costs for copying are added: $C, 2 \cdot C, 3 \cdot C, ...$ this means:

$$T(n) = \sum_{i=1}^{n} A \cdot 1 + \sum_{i=1}^{n/C} A \cdot i \cdot C$$

$$= A \cdot n + A \cdot C \cdot \sum_{i=1}^{n/C} i$$

$$= A \cdot n + A \cdot C \cdot \frac{\frac{n^2}{C^2} + \frac{n}{C}}{2}$$

$$= A \cdot n + \frac{A}{2 \cdot C} \cdot n^2 + \frac{A}{2} \cdot n = O(n^2)$$

The factor of n² is getting smaller

Double the size of the array

```
def append(self, item):
    if self.size >= len(self.elements):
        newElements = [0] \
             * \max(1, 2 * \text{self.size})
        for i in range(0, self.size):
            newElements[i] = self.elements[i]
        self.elements = newElements
    self.elements[self.size] = item
    self.size += 1
```

Dynamic Arrays

Implementation 3

Now the runtime is linear with some bumps. Why?

Figure: Runtime of *DynamicArray*

Runtime for C = 2 (Double the size):

<u>†</u>	<i>O</i> (1)	write 1
12	O(1 + 1)	write 1, copy 1 element
1 2 3	O(1 + 2)	write 1, copy 2 elements
1 2 3 4	<i>O</i> (1)	write 1
1 2 3 4 5	O(1 + 4)	write 1, copy 4 elements
1 2 3 4 5 6	<i>O</i> (1)	write 1
1 2 3 4 5 6 7	<i>O</i> (1)	write 1
1 2 3 4 5 6 7 8	<i>O</i> (1)	write 1
123456789	O(1 + 8)	write 1, copy 8 elements

- Now all appends cost O(1)
- Every 2^i steps we have to add the cost $A \cdot 2^i$ (for i = 0, 1, 2, ..., k with $k = floor(log_2(n-1))$
- In total that accounts to:

$$T(n) = n \cdot A + A \cdot \sum_{i=0}^{k} 2^{i} = n \cdot A + A(2^{k+1} - 1)$$

$$\leq n \cdot A + A \cdot 2^{(k+1)}$$

$$= n \cdot A + 2 \cdot A \cdot 2^{(k)}$$

$$\leq n \cdot A + 2 \cdot A \cdot n$$

$$= 3 \cdot A \cdot n$$

$$= O(n)$$

How do we shrink the array?

- If the array is half-full, we can shrink it by half, like for the append operation
- If we append directly after shrinking we have to extend the array again
 - We leave some space for following append operations
 - \Rightarrow We only shrink the array to 75%

Analysis:

- **Difficult:** We have a random number of *append / remove* operations
- We can not exactly predict when resizing is happening

Structure

Static Arrays

Dynamic Arrays
Introduction
Amortized Analysis

Figure: Static array with capacity c_i

Notation:

- We have *n* instructions $O = \{O_1, ..., O_n\}$
- The size after operation i is s_i , with $s_0 := 0$
- The capacity after operation i is c_i , with $c_0 := 0$
- The cost of operation i is $cost(O_i)$ (previously named T_i)

Reallocation: $cost(O_i) < A \cdot s_i$ Insert / Delete (Update): $cost(O_i) < A$.

Dynamic Arrays

Amortized Analysis - Example

Operation		Size s _i	Capactity c _i	Costs $cost(O_i)$	
<i>O</i> ₁	append	realloc.	s_1	<i>c</i> ₁	$A \cdot s_1$
O_2	append		s_2	$c_2 = c_1$	<i>A</i> · 1
O_3	append		s_3	$c_3 = c_1$	A · 1
O_4	remove		s_4	$c_4 = c_1$	<i>A</i> · 1
<i>O</i> ₅	remove	realloc.	s_5	<i>C</i> ₅	$A \cdot s_5$
O_6	append		s_6	$c_6 = c_5$	<i>A</i> ⋅ 1
<i>O</i> ₇	remove		s_7	$c_7 = c_5$	<i>A</i> ⋅ 1
<i>O</i> ₈	append		<i>s</i> ₈	$c_8 = c_5$	<i>A</i> · 1
<i>O</i> ₉	append	realloc.	s_9	<i>c</i> ₉	$A \cdot s_9$
O_n	append		s _n	C _n	<i>A</i> · 1

Implementation:

■ If O_i is an append operation and $s_{i-1} = c_{i-1}$:

$$\Rightarrow$$
 Resize array to $c_i = \left\lfloor \frac{3}{2} s_i \right\rfloor = \text{floor}\left(\frac{3}{2} s_i\right)$

$$\Rightarrow cost(O_i) = A \cdot s_i$$

$$\begin{array}{c|c}
s_{i-1} = 7 \\
\hline
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
c_{i-1} = s_{i-1} = 7
\end{array}
\Rightarrow
\begin{array}{c|c}
s_i = s_{i-1} + 1 = 8 \\
\hline
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}$$

$$12 = c_i = \begin{bmatrix} \frac{3}{2}s_i \end{bmatrix} = 8$$

Figure: Append operation with reallocation

Result: after operation we have $c_i = \frac{3}{2} \cdot s_i$

Implementation:

■ If O_i is an *remove* operation and $s_{i-1} \leq \frac{1}{3}c_{i-1}$:

$$\Rightarrow$$
 Resize array to $c_i = \left\lfloor \frac{3}{2}s_i \right\rfloor = \text{floor}\left(\frac{3}{2}s_i\right)$

$$\Rightarrow cost(O_i) = A \cdot s_i$$

$$\begin{array}{c|c}
s_{i-1} = 5 \\
\hline
1 & 2 & 3 & 4 & 5
\end{array}$$

$$c_{i-1} = 15 \ge 3 \cdot s_{i-1}$$

$$\Rightarrow \begin{array}{c}
s_i = s_{i-1} - 1 \\
\hline
1 & 2 & 3 & 4
\end{array}$$

$$6 = c_i = \frac{3}{2}s_i = 4$$

Figure: Remove operation with reallocation

Result: after operation we have again $c_i = \frac{3}{2} \cdot s_i$

Idea for proof:

- Expensive are only operations where reallocations are necessary
- If we just reallocated, it takes some time until the next reallocation is required.
- **Assumption:** After a costly *reallocation* of size X we have at least X operations of runtime O(1)
- **Then:** Total cost of n operations is maximally $2 \cdot n$

Table: Dynamic Array with $C_{\text{ext}} = \frac{3}{2}$

Operation		Size	Capacity	Costs	
Operation		Si	Ci	$cost(O_i)$	
<i>O</i> ₁	арр.	realloc.	<i>s</i> ₁	$c_1 = 4$	$C_1 \cdot s_1$
O_2	арр.		s_2	$c_2 = c_1$	C_2
O_3	арр.		s_3	$c_3 = c_1$	C_2
O_4	app.		s_4	$C_4 = C_1$	C_2
O_5	арр.	realloc.	<i>s</i> ₅	$c_5 = \lfloor \frac{3}{2}s_5 \rfloor = 7$	$C_1 \cdot s_5$
O_6	арр.		s_6	$c_6 = c_5$	C_2
O_7	арр.		s ₇	$c_7 = c_5$	C_2
<i>O</i> ₈	арр.	realloc.	<i>s</i> ₈	$c_8 = \frac{3}{2}s_8 = 12$	$C_1 \cdot s_8$
		•••			

$$\begin{cases} \text{distance} \\ 4 \ge \left\lfloor \frac{s_1}{2} \right\rfloor \end{cases}$$

distance
$$3 \ge \left| \frac{s_5}{2} \right|$$

33 / 51

To show:

- **Lemma:** If a *reallocation* occurs at O_i the nearest *reallocation* is at O_j with $j i > \frac{s_i}{2}$
- Corollary: $cost(O_1) + \cdots + cost(O_n) \le 4A \cdot n$

Table: Case 1: $\frac{1}{2}s_i$ appends

Table: Case 2: $\frac{1}{2}s_i$ removes

Proof of lemma:

- If a reallocation happens at O_i and then again at O_j , then $j-i \ge s_j/2$
- \blacksquare After operation O_i the capacity is

$$c_i = \left\lfloor \frac{3}{2} \cdot s_i \right\rfloor$$

- Lets consider a operation O_i to O_k with $k-i \le \frac{S_i}{2}$:
 - Case 1: Since the *reallocation* we have inserted at maximum floor $\left(\frac{1}{2} \cdot s_i\right)$ elementsation

$$s_k \le s_i + \left| \frac{s_i}{2} \right| = \left| \frac{3}{2} s_i \right| = c_i$$
 no reallocation needed

Amortized Analysis

Proof of lemma - continued:

■ Case 2: Since the *reallocation* we have removed at maximum $\left|\frac{1}{2}s_i\right|$ elements

$$\begin{aligned}
s_k &\geq s_i - \left\lfloor \frac{s_i}{2} \right\rfloor = \left\lceil \frac{1}{2} s_i \right\rceil \\
\Rightarrow &3 \cdot s_k \geq \left\lceil \frac{3}{2} s_i \right\rceil \geq \left\lfloor \frac{3}{2} s_i \right\rfloor = c_i
\end{aligned}$$

no reallocation needed

Corollary:

$$cost(O_1) + \cdots + cost(O_n) \le 4A \cdot n$$

- Let the *reallocations* be at operations $cost(O_{i_1}), \ldots, cost(O_{i_m})$
- The cost of all *reallocations* are $A \cdot (s_{i_1} + \cdots + s_{i_m})$
- With the lemma we know:

$$i_2 - i_1 > \frac{s_{i_1}}{2}, \quad i_3 - i_2 > \frac{s_{i_2}}{2}, \quad \dots, \quad i_m - i_{m-1} > \frac{s_{i_{m-1}}}{2}$$

■ We can conclude that:

$$i_{2}-i_{1}>rac{s_{i_{1}}}{2} \qquad \Rightarrow \qquad s_{i_{1}}<2(i_{2}-i_{1}) \ i_{3}-i_{2}>rac{s_{i_{2}}}{2} \qquad \Rightarrow \qquad s_{i-2}<2(i_{3}-i_{2}) \ dots \ i_{m}-i_{m-1}>rac{s_{i_{m-1}}}{2} \qquad \Rightarrow \qquad s_{i_{m-1}}<2(i_{m}-i_{m-1}) \ s_{i_{m}}\leq n \qquad (trivial)$$

■ The costs of all reallocations are:

$$\begin{aligned} cost(realloc.) &= A \cdot \left(s_{i_1} + \dots + s_{i_m} \right) \\ &< A \cdot \left(2(i_2 - i_1) + 2(i_3 - i_2) + \dots + 2(i_m - i_{m-1}) + n \right) \\ &= A \cdot \left(2(i_m - i_1) + n \right) \\ &\leq A \cdot (2n + n) = 3A \cdot n \end{aligned}$$

Additionally we have to consider the respective constant costs for a normal append or remove $(\leq A \cdot n)$ therefore in total $\leq 4 \cdot A \cdot n$

Dynamic Arrays

Amortized Analysis - Alternate Proof of Corollary

Table: Case 1: $\frac{1}{2}s_i$ appends

- Total costs of $A \cdot \frac{3}{2} \cdot s_i$ for $\frac{s_i}{2} + 1$ operations
- Cost per operation:

$$\frac{\frac{3}{2}A \cdot s_i}{\frac{1}{2}s_i + 1} \le \frac{\frac{3}{2}A \cdot s_i}{\frac{1}{2}s_i} = 3 \cdot A = \text{const.}$$

Dynamic Arrays

Amortized Analysis - Alternate Proof of Corollary

Array	Costs	
O_i : $\underbrace{\begin{array}{c c} S_i \\ \hline 1 & 2 & 3 & 4 & 5 & 6 \\ \hline C_i \end{array}}$	reallocation $A \cdot s_i$ (linear)	
O_{i+1} : 1 2 3 4 5 \times O_{i+2} : 1 2 3 4 \times O_{i+3} : 1 2 3 \times O_{i+3}	A (constant)A (constant)A (constant)	$\begin{cases} \frac{s_i}{2} \\ \text{times} \end{cases}$
O _j : 12 X	reallocation $A \cdot s_j$ (linear)	

- Runtime analysis for local worst-case sequence
- Same total cost as previous slide

- Idea: "Save first, spend later"
- For each operation we deposit some coins on an "bank account"
 - ⇒ We still have constant costs
- When we have a linear operation (reallocation) we pay with the coins from our "bank account"
- For the "double the size" strategy we have to pay two coins per operation

Dynamic Arrays

Amortized Analysis - Yet Another Proof of Corollary

Double the size:	$cost(O_i)$	deposit / withdraw	accour value
1	<i>O</i> (1)	+2	2
1 2	O(1 + 1)	+2 -1	3
123	O(1 + 2)	+2 -2	3
1234	<i>O</i> (1)	+2	5
1 2 3 4 5	O(1 + 4)	+2 -4	3
1 2 3 4 5 6	<i>O</i> (1)	+2	5
1 2 3 4 5 6 7	<i>O</i> (1)	+2	7
12345678	<i>O</i> (1)	+2	9
1 2 3 4 5 6 7 8 9	O(1 + 8)	+2 -8	3

Figure: Array after realloc. (insert) operation

Why do we need to deposit 2 coints per operation?

- Each newly inserted element has to be copied later (first coin)
- Due to the factor of two there is for each new element also an old one in the array that also has to be copied (second coin)

Figure: Array after realloc. (remove) operation

Shrinking strategy: If array 1/4 full shrink by half

- How many coins do we need per remove operation?
- **Worst case:** The previous remove operation triggered a *reallocation*
- ⇒ Array is half full

Figure: Array after realloc. (remove) operation

Shrinking strategy: If array 1/4 full shrink by half

- Array is half full
- The nearest *reallocation* is after removing $\frac{1}{4}c_i$ elements
- We have to copy $\frac{1}{4}c_i$ elements
- \Rightarrow 1 coin per operation is enough

■ General

- [CRL01] Thomas H. Cormen, Ronald L. Rivest, and Charles E. Leiserson. Introduction to Algorithms. MIT Press, Cambridge, Mass, 2001.
- [MS08] Kurt Mehlhorn and Peter Sanders. Algorithms and data structures, 2008. https://people.mpi-inf.mpg.de/~mehlhorn/ftp/Mehlhorn-Sanders-Toolbox.pdf.

Amortized Analysis

```
[Wik] Amortized analysis
    https:
    //en.wikipedia.org/wiki/Amortized_analysis
```