10.10 1)
$$\left(G(f(x))\right)' = G'(f(x)) \cdot f'(x) = g(f(x)) \cdot f'(x)$$

Ainsi $G(f(x))$ est une primitive de $g(f(x)) \cdot f'(x)$.
On obtient donc la formule $\int g(f(x)) \cdot f'(x) dx = G(f(x))$.

2) (a) si
$$g(x) = \frac{1}{x}$$
, alors $G(x) = \ln(|x|)$:
$$\int \frac{f'(x)}{f(x)} dx = \int \frac{1}{f(x)} \cdot f'(x) dx = \int g(f(x)) \cdot f'(x) dx$$

$$= G(f(x)) = \ln(|f(x)|)$$

(b) si
$$g(x) = e^x$$
, alors $G(x) = e^x$:

$$\int e^{f(x)} \cdot f'(x) dx = \int g(f(x)) \cdot f'(x) dx = G(f(x)) = e^{f(x)}$$

(c) si
$$g(x) = \sin(x)$$
, alors $G(x) = -\cos(x)$:

$$\int \sin(f(x)) \cdot f'(x) dx = \int g(f(x)) \cdot f'(x) dx = G(f(x)) = -\cos(f(x))$$

(d) si
$$g(x) = \cos(x)$$
, alors $G(x) = \sin(x)$:

$$\int \cos(f(x)) \cdot f'(x) dx = \int g(f(x)) \cdot f'(x) dx = G(f(x)) = \sin(f(x))$$

Analyse: primitives Corrigé 10.10