Objetivos

Temario de la clase

- Ecuaciones diferenciales ordinarias (EDOs)
- Problemas de valores/condiciones iniciales
- Metodos Runge-Kutta
- Sistemas dinámicos
- Caos

EDOs en la física

Supongamos que queremos resolver el problema de movimiento balístico en forma numérica.

Las ecuaciones de movimiento son ecuaciones diferenciales ordinarias:

$$\frac{dv}{dt} = f(x, t)$$
$$\frac{dz}{dt} = v$$

donde v = v(z, t), z = z(t).

Para calcular la velocidad podemos hacer diferencias finitas:

$$\frac{dv}{dt} \approx \frac{\Delta v}{\Delta t}$$

como $\Delta v = v(t + \Delta t) - v(t)$ y ahora si pensamos que $t_0 = 0$ y que $t_i = i\Delta t$.

$$v_{i+1} = v_i + \Delta t f(x_i, t_i)$$

Haciendo lo mismo con la posición:

$$x_{i+1} = x_i + \Delta t v_i$$

Método de Euler

Esto que acabamos de hacer es el metodo de Euler y se puede aplicar a cualquier EDO.

Ecuaciones diferenciales de orden superior

Si tenemos una ecuacion diferencial de orden *n*:

$$\frac{\mathrm{d}^n x}{\mathrm{d}t^n} = f(t, x, \frac{\mathrm{d}x}{\mathrm{d}t}, \frac{\mathrm{d}^2 x}{\mathrm{d}t^2}, \dots, \frac{\mathrm{d}^{n-1} x}{\mathrm{d}t^{n-1}})$$

lo que se puede hacer es convertirlas en ecuaciones de primer orden. Redefinimos con nuevas variables:

$$\frac{dx}{dt} = x_1, \qquad \frac{d^2x}{dt^2} = \frac{dx_1}{dt} = x_2, \quad \frac{d^3x}{dt^3} = \frac{dx_2}{dt} = x_3, \dots \frac{d^nx}{dt^n} = f(t, x, x_1, x_2, \dots, x_{n-1})$$

Se convirtieron en n ecuaciones diferencias de primer orden con n variables. Como es un problema de condicion inicial para resolverlo se requiere de todas:

$$x(0) = \alpha_1, x_2(0) = \alpha_2, x_3(0) = \alpha_3, \dots x_{n-1}(0) = \alpha_{n-1}$$

Problemas de Euler

Siempre sub-estima la curvatura de la solución. Para movimiento oscilatorio la energía de la solución de Euler crece con el tiempo.

Podemos mejorar la precisión utilizando la serie de Taylor?

El metodo de Euler solo usa aproximacion de primer orden, podemos usar órdenes superiores?

$$\mathbf{x}(t+\delta) \approx \mathbf{x}(t) + \frac{\mathbf{d}\mathbf{x}}{\mathbf{d}t}\delta + \frac{1}{2!}\frac{\mathbf{d}^2\mathbf{x}}{\mathbf{d}t^2}\delta^2 + \frac{1}{3!}\frac{\mathbf{d}^3\mathbf{x}}{\mathbf{d}t^3}\delta^3 + \cdots$$

El último término que consideremos es el orden de la integración y luego lo que quedaría sería el error de truncamiento.

$$\epsilon = \frac{\delta^m}{(m+1)!} \frac{\mathrm{d}^{m+1} \mathbf{x}}{\mathrm{d}t^{m+1}}$$

El gran problema de esto es que solo disponemos de $\frac{dx}{dt}$ pero no disponemos de los órdenes superiores.

Método de Runge-Kutta de 2do orden

Si queremos ir a segundo orden en la serie de Taylor seria:

$$\mathbf{x}(t+\delta) \approx \mathbf{x}(t) + \frac{d\mathbf{x}}{dt}\delta + \frac{1}{2!}\frac{d^2\mathbf{x}}{dt^2}\delta^2$$
$$\frac{d^2\mathbf{x}}{dt^2} = \frac{d\dot{\mathbf{x}}}{dt} = \frac{df(\mathbf{x}(t), t)}{dt}$$

Debemos ser cuidadosos para evaluar la derivada de la función f con regla de la cadena:

$$\frac{\mathrm{d}f(x(t),t)}{\mathrm{d}t} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t}$$
$$= f_t + f_x f$$

Reemplazando,

$$\mathbf{x}(t+\delta) \approx \mathbf{x}(t) + f(\mathbf{x},t)\delta + \frac{1}{2!}(f_t + f_x f)\delta^2$$

Método de Runge-Kutta

Buscamos entonces una regla de integración que me determine los siguientes coeficientes:

$$\mathbf{x}(t+\delta) \approx \mathbf{x}(t) + c_0 f(x,t) \delta + c_1 f[t + d_0 \delta, x + d_1 \delta f(x,y)] \delta$$

Vamos a hacer ahora una nueva serie de Taylor pero de f,

$$f[t + d_0\delta, x + d_1\delta f(x, y)] = f(t, x) + (f_t\delta d_0 + f_x f \delta d_1)\delta$$

Nos fuimos a segundo orden!:

$$\mathbf{x}(t+\delta) \approx \mathbf{x}(t) + (c_0 + c_1)f(x,t)\delta + c_1 \left[f_t d_0 \delta + d_1 f_x x \delta f(x,y) \right] \delta$$

Para esto se debe cumplir que $c_0 + c_1 = 1$, $c_1d_0 = \frac{1}{2}$, $c_1d_1 = \frac{1}{2}$.

Método de Runge-Kutta de segundo orden

Hay múltiples soluciones a los coeficientes, dos conocidas son:

El método de Euler modificado: $c_0=0,\,c_1=1,\,d_0=\frac{1}{2}\,d_1=\frac{1}{2}$

El método de Ralston: $c_0 = \frac{1}{3}, c_1 = \frac{1}{3}, d_0 = \frac{3}{4} d_1 = \frac{3}{4}$

$$x(t + \Delta t) = x + \frac{1}{2}k_1 + \frac{1}{2}k_2$$

$$k_1 = \delta f(x, t) \tag{1}$$

$$k_2 = \delta f(x + k_1, t + \delta) \tag{2}$$

Es equivalente a tomar el promedio de la pendiente en t y en $t+\Delta t$ y usar la pendiente del promedio en el metodo de Euler para determinar $x(t+\Delta t)$.

Método de Runge-Kutta de segundo orden

Hay múltiples soluciones a los coeficientes, dos conocidas son:

El método de Euler modificado: $c_0 = 0$, $c_1 = 1$, $d_0 = \frac{1}{2}$ $d_1 = \frac{1}{2}$

Li metodo de Luiei modificado. $c_0 = 0$, $c_1 = 1$, $a_0 = \frac{1}{2} a_1$

El método de Heun:
$$c_0 = \frac{1}{2}$$
, $c_1 = \frac{1}{2}$, $d_0 = 1$ $d_1 = 1$

El método de Ralston: $c_0 = \frac{1}{3}$, $c_1 = \frac{1}{3}$, $d_0 = \frac{3}{4}$ $d_1 = \frac{3}{4}$ Algoritmo de Euler modificado:

$$x(t + \Delta t) = x + k_1$$

$$k_1 = \delta f(x, t) \tag{3}$$

$$k_2 = \delta f(x + k_1/2, t + \delta/2)$$
 (4)

Algoritmo de Heun:

$$x(t + \Delta t) = x + \frac{1}{2}k_1 + \frac{1}{2}k_2$$

$$k_1 = \delta f(x, t) \tag{5}$$

$$k_1 = \delta f(x, t)$$

$$k_2 = \delta f(x + k_1, t + \delta)$$
(6)

Es equivalente a tomar el promedio de la pendiente en t y en $t + \Delta t$ y usar la pendiente del promedio en el método de Euler para determinar $x(t + \Delta t)$.

Método de Runge-Kutta de cuarto orden

Los mas utilizados son los de 4to orden:

$$k_1 = \delta f(x, t) \tag{7}$$

$$k_2 = \delta f(x + k_1/2, t + \delta/2)$$
 (8)

$$k_3 = \delta f(x + k_2/2, t + \delta/2)$$
 (9)

$$k_4 = \delta f(x + k_3, t + \delta) \tag{10}$$

$$x(t+\delta) = x(t) + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

En la página se encuentra el método implementado.

Sugerencia importante: la δ conviene incorporarla al f.

$$\tilde{f} = \delta f$$
 luego se calcula con $k_1 = \tilde{f}(x, t)$.

Sistema dinámico

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = f(\mathbf{x}, t)$$

Una o varias variables que evolucionan con el tiempo. Pensado generalmente en sistemas físicos, biológicos.

Caos

Momento angular: $\tau = I\alpha = mL^2\ddot{\theta}$

El torque es: $\tau = -mgL\sin\theta$

Ecuación exacta del péndulo:

$$\ddot{\theta} = -\frac{g}{L}\sin\theta$$

Es una ecuación diferencial ordinaria NO lineal. Esto se lo suele aproximar para θ chico por

$$\ddot{\theta} = -\frac{g}{L}\theta$$

quedando una ecuación lineal. Esto es lo que terminaron viendo en Mecanica Clasica.

Pendulo amortiguado y forzado

Le vamos a agregar amortiguamiento o viscocidad al pendulo para hacerlo mas realista:

Ecuación exacta del péndulo:

$$\ddot{\theta} = -\frac{g}{L}\sin\theta - \beta\dot{\theta}$$

Esta es una ecuación disipativa asi que pronto dejará de oscilar, pero le podemos empezar a dar tincazos (forzado) al péndulo para mantenerlo en movimiento:

$$\ddot{\theta} = -\frac{g}{L}\theta - \beta\dot{\theta} + A\cos(\omega t)$$

Soluciones numéricas usando RK4

Evolución temporal. Espacio de las fases.

Aparición de caos en el péndulo

Notar el atractor. Orbitas "quasi-periodicas".

Poincare plot

Tomamos una fotografia del estado (un punto) por cada ciclo del forzado.

Lorenz 1963

Modelo matemático de convección atmosférica en término de rolos, una capa de fluido es calentada desde abajo y enfriada hacia arriba:

$$\frac{dx}{dt} = \sigma(y - x),$$

$$\frac{dy}{dt} = x(\rho - z) - y,$$

$$\frac{dz}{dt} = xy - \beta z.$$
(11)

Chaos

Atractor de Lorenz. Las alas de la mariposa

