

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Sang Hun OH)	I hereby certify that the documents
)	referred to as enclosed herewith are
Serial No.: 10/749,635)	being deposited with the United States
)	Postal Service, first class postage
Filed: December 30, 2003)	prepaid, in an envelope addressed to
)	the Commissioner for Patents, P.O.
For: "Plasma Ignition Method and)	Box 1450, Alexandria, Virginia
Apparatus")	22313-1450 on this date:
)	
Group Art Unit: Unknown)	February 9, 2004
Examiner: Not Yet Assigned)	
	í	MARTHER
	Ś	Mark G. Hanley
	í	Reg. No. 44,736
	,	

TRANSMITTAL OF PRIORITY DOCUMENT

Commissioner for Patents P.O. Box 1450 Alexandria, Virginia 22313-1450

Sir:

Enclosed herewith is a certified copy of Korean Patent Application Serial No. 10-2002-0086801 filed December 30, 2002, the priority of which is claimed under 35 U.S.C. § 119.

Respectfully submitted,

GROSSMAN & FLIGHT, LLC. Suite 4220 20 North Wacker Drive Chicago, Illinois 60606 (312) 580-1020

By:

Mark G. Hanley

Registration No.: 44,736

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

10-2002-0086801

Application Number

원

2002년 12월 30일

DEC 30, 2002 Date of Application

춬 Applicant(s)

인 :

아남반도체 주식회사

ANAM SEMICONDUCTOR., Ltd.

2003 10 11 년

COMMISSIONER

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【참조번호】 0090

【제출일자】 2002.12.30

【발명의 명칭】 반도체 제조 장치에서의 플라즈마 점화 방법

【발명의 영문명칭】 PLASMA IGNITION METHOD IN A SEMICONDUCTOR MANUFACTURING

SYSTEM

【출원인】

【명칭】 아남반도체 주식회사

【출원인코드】 1-1998-002671-9

【대리인】

【성명】 장성구

【대리인코드】 9-1998-000514-8

【포괄위임등록번호】 1999-068046-1

【대리인】

【성명】 김원준

【대리인코드】 9-1998-000104-8

【포괄위임등록번호】 1999-068052-0

【발명자】

【성명의 국문표기】 오상훈

【성명의 영문표기】 OH,SANG HUN

【주민등록번호】 700117-1932134

【우편번호】 420-807

【주소】 경기도 부천시 원미구 도당동 222

【국적】 KR

【심사청구】 청구

【취지】 특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정에 의

한 출원심사 를 청구합니다. 대리인

장성구 (인) 대리인

김원준 (인)

【수수료】

【기본출원료】 8 면 29,000 원

【가산출원료】 0 면 0 원

【우선권주장료】

0 건

0 원

【심사청구료】

4 항

237,000 원

【합계】

266,000 원

【첨부서류】

1. 요약서·명세서(도면)_1통

【요약서】

[요약]

반도체 제조 장치에서의 플라즈마 점화(plasma ignition) 방법을 개시한다.

본 발명에 따른 플라즈마 점화 방법은, 후속 공정에서의 압력과 동일한 압력을 설정하는 단계와; 기설정 소스 파워(source power) 및 바이어스 파워(bias power)를 설정하는 단계와; Cl₂ 가스를 주입하는 단계와; 잔여 Cl₂ 가스를 제거하고 플라즈마를 점화시키는 단계를 포함하는 것을 특징으로 한다.

즉, 본 발명은, Cl₂ 가스를 사용하여 플라즈마를 점화시킴으로써 보다 안정적인 플라즈마 공정을 확보할 수 있다.

【대표도】

도 1

【명세서】

【발명의 명칭】

반도체 제조 장치에서의 플라즈마 점화 방법{PLASMA IGNITION METHOD IN A SEMICONDUCTOR MANUFACTURING SYSTEM}

【도면의 간단한 설명】

도 1은 본 발명의 바람직한 실시예에 따른 반도체 제조 장치에서의 플라즈마 점화 과정의 흐름도.

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

- 본 발명은 반도체 디바이스 제작에 사용되는 플라즈마 장비의 플라즈마 턴온(turn on) 기술에 관한 것으로, 특히, 안정적인 플라즈마 공정을 확보하는데 적합한 반도체 제조 장치에 서의 플라즈마 점화(ignition) 방법에 관한 것이다.
- 플라즈마 장비, 예컨대, AMAT사의 DPS 장비가 적용되는 금속 식각의 경우, 디바이스의 고집적화 및 고속화로 인해 최근의 반도체 소자 제조 기술에서는 0.25µm이하의 미세 금속 라인 이 요구되고 있으며, 이로 인해 포토 디파인 마진(photo define margin) 확보를 위한 DUV 포토 레지스트의 사용이 일반화되고 있는 추세이다.
- 이러한 포토레지스트는 금속 라인의 반사율(reflectance)에 민감한 바, 정상적인 포토레지스트 패턴 형성을 위해서는 반사율을 줄일 필요가 있으므로, 금속 라인 상부에 옥사이드 계열의 반사 방지막(antireflective layer)을 사용하게 되었다.

- 스카 그런데, 이러한 반사 방지막을 금속 식각 챔버에서 인-시투(In-situ) 식각하는 과정에서, CHF3와 같은 F 계열의 가스를 주로 사용하는데, 이러한 F 계열의 가스는 플라즈마점화에 취약한 면을 가지고 있다.
- -6> 즉, 하기 [표 1]에 나타난 바와 같이, 플라즈마 점화 제 1 공정에서 제 2 공정보다 높은 압력을 사용하여 플라즈마를 턴온시키는 플라즈마 점화 공정을 사용하여 왔다.

<7> [丑 1]

<8>	압력(mTorr) 소		소스파워(W)	스파워(W) 바이어스파워(W)		Ar(sccm)
	제 1 공정	12~20	600~1000	100~200	5~30	50~90
	제 2 공정	6~8	600~1000	100~200	5~30	50~90

- (9) [표 1]에서 알 수 있는 바와 같이, 종래의 공정은, 플라즈마가 초기 형성시에 문제가 발생했을 때, 선 진행 단계에 후속 단계의 플라즈마 점화를 용이하게 하기 위한 것으로, 주로 압력을 높이는 기법을 사용하여 왔다.
- <10>이러한 방법은 상이한 압력 변화, 즉, 후속 단계와의 압력 차이로 인해 결함(defect)을 유발시킬 수 있다는 문제가 제기되었다.

【발명이 이루고자 하는 기술적 과제】

- 본 발명은 상술한 문제를 해결하기 위해 안출한 것으로, Cl₂ 가스를 사용하여 플라즈마를 점화시킴으로써 보다 안정적인 플라즈마 공정을 확보하도록 한 반도체 제조 장치에서의 플라즈마 점화 방법을 제공하는데 그 목적이 있다.
- <12> 이러한 목적을 달성하기 위한 본 발명의 바람직한 실시예에 따르면, 반도체 제조 장치에서의 플라즈마 점화(plasma ignition) 방법에 있어서, 후속 공정에서의 압력과 동일한 압력을 설정하는 단계와; 기설정 소스 파워(source power) 및 바이어스 파워(bias power)를 설정하는

단계와; Cl₂ 가스를 주입하는 단계와; 잔여 Cl₂ 가스를 제거하고 플라즈마를 점화시키는 단계 . 를 포함하는 반도체 제조 장치에서의 플라즈마 점화 방법을 제공한다.

【발명의 구성 및 작용】

- <13>이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 대해 설명하고자 한다.
- .<14>설명에 앞서, 본 발명은 플라즈마 장비를 사용하는 모든 공정에 해당될 수 있으나, 본 실시예에서는 금속 식각 공정을 예들 들어 설명하기로 한다.
- <15>도 1은 본 발명의 바람직한 실시예에 따른 반도체 제조 장치에서의 플라즈마 점화 과정의 흐름도이다.
- <16> 먼저, 플라즈마 점화 공정이 개시되면(S100), 본 발명에서는 하기 [표 2]에 나타난 바와 같이 후속 공정에서의 압력과 동일한 압력을 설정한다(S102).

<17> [丑 2]

<18>	=== , ,,		바이어스파워	Cl ₂	CHF ₃	Ar	
		(mTorr)	(W)	(W)	(sccm)	(sccm)	(sccm)
	제 1 공정	6~8	1~10	0~10	30~150	0~30	0~90
	제 2 공정	6~8	600~1000	100~200	0	5~30	50~90

- 이때, 단계(S104) 및 단계(S106)에서는 소스 파워와 바이어스 파워를, 예를 들어, 1 내지 10W로 각각 설정하고, 본 발명의 주요 특징인 30 내지 150sccm의 Cl₂ 가스를 주입한다.
- <20> 즉, 본 실시예에서는 소스 파워와 바이어스 파워를 플라즈마가 점화되는 파워 범위를 사용하지 않고 단순히 추가적인 Cl₂를 주입하여 제 2 공정을 위한 과정을 설정한다. 이러한 제 1 공정의 진행 시간은, 바람직하게는 15 내지 20초로 설정될 수 있다.
- 시 1 공정이 완료되면(S108), 단계(S110) 및 단계(S112)로 진행하여 Cl₂ 가스를 제거하여 플라즈마를 점화시킨다.

<22> 이 과정에서, 초기 플라즈마 턴온시 제 1 공정에 사용되는 Cl₂가 모두 소진(pumping out)되지 않고 잔여 가스로 남아 플라즈마 점화에 관여한 후 소진된다.

【발명의 효과】

- 약라서, 본 발명은 동일한 압력에서 추가적인 플라즈마 턴온 과정 없이도 플라즈마 점화가 가능한 바, 공정 조건을 다양하게 설정하여 안정적인 플라즈마 공정을 확보할 수 있다.
- 이상, 본 발명을 실시예에 근거하여 구체적으로 설명하였지만, 본 발명은 이러한 실시예에 한정되는 것이 아니라, 후술하는 특허청구범위내에서 여러 가지 변형이 가능한 것은 물론이다.

【특허청구범위】

【청구항 1】

반도체 제조 장치에서의 플라즈마 점화(plasma ignition) 방법에 있어서,

후속 공정에서의 압력과 동일한 압력을 설정하는 단계와;

기설정 소스 파워(source power) 및 바이어스 파워(bias power)를 설정하는 단계와;

Cl 2 가스를 주입하는 단계와;

잔여 Cl_2 가스를 제거하고 플라즈마를 점화시키는 단계를 포함하는 반도체 제조 장치에서의 플라즈마 점화 방법.

【청구항 2】

제 1 항에 있어서,

상기 단계에서의 소스 파워 및 바이어스 파워는 1 내지 10W로 설정되는 것을 특징으로 하는 반도체 금속 라인 식각 방법.

【청구항 3】

제 1 항에 있어서,

상기 Cl_2 가스는 30 내지 150sccm으로 설정되는 것을 특징으로 하는 반도체 제조 장치에서의 플라즈마 점화 방법.

【청구항 4】

제 1 항에 있어서,

상기 단계에서의 압력은 6 내지 8mTorr로 설정되는 것을 특징으로 하는 반도체 금속 라인 식각 방법.

【도면】

