# 实验六:单自由度系统的受迫振动实验

### 1. 实验目的

- 1、学会测量单自由度系统强迫振动的幅频特性曲线;
- 2、学会根据幅频特性曲线确定系统的固有频率和阻尼比。

### 2. 实验仪器及安装示意图

实验仪器: INV1601B 型振动教学实验仪、INV1601T 型振动教学实验台、速度传感器、接触式激振器、配重块。软件: INV1601型 DASP 软件。



图 1 实验仪器的组成及连接示意图

# 3. 实验原理

简谐力作用下的阻尼振动系统, 其运动方程为:

$$m\frac{d^2x}{dt^2} + C\frac{dx}{dt} + Kx = F_0 \sin \omega_e t$$

方程式的解由通解及特解( $x_1 + x_2$ )这二部分组成:

$$x_1 = e^{-st} \left( C_1 \cos \omega_D t + C_2 \sin \omega_D t \right)$$

式中

$$\omega_D = \omega \sqrt{1 - D^2}$$

 $C_1$ 、 $C_2$ 常数由初始条件决定

$$x_2 = A_1 \sin \omega_e t + A_2 \cos \omega_e t$$

其中

$$A_{1} = \frac{q(\omega^{2} - \omega_{e}^{2})}{(\omega^{2} - \omega_{e}^{2})^{2} + 4\varepsilon^{2}\omega_{e}^{2}}$$

$$A_2 = \frac{2q\omega_e \varepsilon}{(\omega^2 - \omega_e^2)^2 + 4\varepsilon^2 \omega_e^2} \qquad q = \frac{F_0}{m}$$

 $x_1$ 代表阻尼自由振动项, $x_2$ 代表阻尼强迫振动项。

有阻尼的强迫振动,当经过一定时间后,只剩下强迫振动部分,有阻尼强迫振动的振幅特性:

$$A = \frac{1}{\sqrt{(1 - u^2)^2 + 4u^2D^2}} x_{st} = \beta x_{st}$$

动力放大系数 
$$\beta = \frac{1}{\sqrt{(1-u^2)^2 + 4u^2D^2}} = \frac{A}{x_{st}}$$

当干扰力确定后,由力产生的静态位移  $x_{st}$  就可随之确定,而强迫振动的动态位移与频率比 u 和阻尼比 D 有关,这种关系即表现为幅频特性。动态振幅 A 和静态位移  $x_{st}$  之比值  $\beta$  称为动力系数,它由频率比 u 和阻尼比 D 所决定。把  $\beta$  、u 、和 D 的关系绘成曲线,称为频率响应曲线,见图 2 。

从图2可以看出

- (1) 当  $\frac{\omega_e}{\omega}$  很小时,即干扰频率比自振频率小很多时,动力系数在任何阻尼系数时均近于 1 。
  - (2) 当  $\frac{\omega_{e}}{\omega}$  很大时,即干扰频率比自振频率高很多时,动力系数则很小(<1)。
- (3) 当 $\frac{\omega_e}{\omega}$ 近于 1 时,动力系数迅速增加,这时阻尼的影响比较明显,在共振点时动力系数  $\beta = \frac{1}{2D}$

(4) 当 
$$\frac{\omega_e}{\omega} = \sqrt{1-D^2}$$
 时,即干扰频率和有阻尼自振频率相同时 
$$\beta = \frac{1}{2D\sqrt{1-\frac{3D^2}{4}}}$$

(5) 动力系数的极大值,除了D=0时在u=1处 $\beta$ 最大以外,当有阻尼存在时,在 $D\leq \frac{1}{\sqrt{2}}$ 时, $u=\sqrt{1-2D^2}$ 处,动力系数 $\beta$ 为最大。

#### 速度和加速度的响应关系式:

$$\frac{x}{x_{st}} = \frac{x}{F_0 / K} = \frac{1}{\sqrt{(1 - u^2) + 4u^2 D^2}} \sin(\omega_e t - \varphi) = \beta \sin(\omega_e t - \varphi)$$

将上式对时间微分可得无量纲速度形式

$$\frac{\mathcal{K}}{F_0 / \sqrt{Km}} = u\beta \cos(\omega_e t - \varphi) = \beta_v \cos(\omega_e t - \varphi)$$

式中

$$\beta_{v} = u\beta = \frac{u^{2}}{\sqrt{(1-u^{2})^{2} + 4u^{2}D^{2}}}$$

无量纲的加速度响应,将上式对时间 t 再微分一次,

$$\frac{\partial \mathcal{L}}{F_0 / m} = -\beta u^2 \sin(\omega_e t - \varphi)$$
$$= -\beta_a \sin(\omega_e t - \varphi)$$

振动幅度最大的频率叫共振频率 $\omega_{\scriptscriptstyle D}$ 、 $f_{\scriptscriptstyle D}$ 、有阻尼时共振频率为

$$\omega_D = \omega \sqrt{1 - D^2}$$

或 
$$f_D = f\sqrt{1-D^2}$$

 $\omega$ 、f ——固有频率; D ——阻尼比。

由于阻尼比较小,所以一般认为:  $\omega_D = \omega$ 



图 2 简谐力作用的位移频率响应曲线



图 3 简谐力作用的加速度响应曲线

根据幅频特性曲线:



图 4 半功率法求阻尼

在 D < 1 时,共振处的动力放大系数  $|\beta_{\max}| = \frac{1}{2D\sqrt{1-D^2}} \approx \frac{1}{2D} = Q$ ,峰值两边,

 $\beta = \frac{Q}{\sqrt{2}}$  处的频率  $f_1$ 、 $f_2$  称为半功率点, $f_1$ 与  $f_2$ 之间的频率范围称为系统的半功率带宽。

代入动力放大系数计算公式 
$$\beta = \frac{1}{\sqrt{\left[1 - \left(\frac{f_{1,2}}{f_0}\right)^2\right]^2 + 4\left(\frac{f_{1,2}}{f_0}\right)^2 D^2}} = \frac{Q}{\sqrt{2}} = \frac{1}{2D\sqrt{2}}$$

当 D 很小时解得: 
$$\left(\frac{f_{1,2}}{f_0}\right)^2 \approx 1 \,\mu\,2D$$
 即:  $f_2^2-f_1^2 \approx 4Df_0^2$  
$$D=\frac{f_2-f_1}{2f_0}$$

# 4. 实验步骤

#### 1、仪器安装

参考仪器安装示意图安装好仪器。质量块可到 2.5kg, 上下都可以放,由于速度传感器不能倒置,只能把质量块放在梁的下面,传感器安装在简支梁的中部。

- 2、开机进入 INV1601 型 DASP 软件的主界面,选择 单通道 按钮。进入单通道示波状态进行波形和频谱同时示波。
- 3、把 INV1601B 型实验仪的频率按钮用手动搜索一下梁当前的共振频率。然后把频率 调到零,逐渐增大频率到 50Hz。每增加一次(约 2—5Hz,在共振峰附近尽量增加测试点数)。
  - 4、在表格中记录频率值和幅值。

# 5. 实验结果和分析

#### 1、实验数据

| 频率(Hz) | 22.7    | 22.0   | 21.5   | 21.0   | 20.5   | 20.0  | 19.5  | 19.0   | 18.5   | 18.0  |
|--------|---------|--------|--------|--------|--------|-------|-------|--------|--------|-------|
| 振幅     | 1215.55 | 461.6  | 308.3  | 258.5  | 190.7  | 154.0 | 127.8 | 107.9  | 92.2   | 79.9  |
| 频率(Hz) | 17.5    | 17.0   | 16.5   | 16.0   | 10.0   | 0.1   | 22.1  | 22.2   | 22.3   | 22.4  |
| 振幅     | 70.5    | 62.6   | 56.5   | 48.8   | 1.56   | 0.306 | 510.4 | 577.88 | 697.9  | 860.3 |
| 频率(Hz) | 22.5    | 22.6   | 22.7   | 22.8   | 22.9   | 23.0  | 24.0  | 23.5   | 23.3   | 23.2  |
| 振幅     | 1107.7  | 1221.7 | 1179.6 | 1142.5 | 1040.6 | 943.3 | 364.6 | 563.0  | 687.7  | 777.7 |
| 频率(Hz) | 23.1    | 23.4   | 23.8   | 24.5   | 25.0   | 28.0  | 31.0  | 34.0   | 37.0   | 40.0  |
| 振幅     | 870.3   | 614.5  | 427.3  | 272.4  | 210.9  | 100.6 | 86.6  | 66.123 | 50.632 | 0.546 |

实验中振幅存在波动,记录的振幅为波动到最大值时的数据。

2、用表中的实验数据绘制出单自由度系统强迫振动的幅频特性曲线。



#### 3、根据所绘制的幅频特性曲线,找出系统的共振频率 $f_{D}$ 。



 $A_{max} = 1229.89$   $f_D = 22.6 Hz$  (精确到实验值精度)

4、计算 $\frac{\sqrt{2}}{2}A_{\max}$ ,根据幅频特性曲线确定  $f_1$ 和  $f_2$ ,  $f_0=f_D$ ,根据公式:  $D=\frac{f_2-f_1}{2f_0}$  计 算阻尼比。



$$\frac{\sqrt{2}}{2}A_{max} = \frac{\sqrt{2}}{2} \times 1229.89 = 869.66$$

对应于曲线中,精确到和实验值一样的小数位数, $f_1=22.4Hz$  and  $f_2=23.1Hz$ 

$$D = \frac{f_2 - f_1}{2f_0} = \frac{23.1 - 22.4}{2 \times 22.6} = 0.01549 = 1.549\%$$

实验 5 中 3 次测量所得阻尼平均值为 2.713%, 其配重为 3kg+加速度传感器, 本次实验配重为 2.5kg+速度传感器, 配重较小, 所以所得阻尼值会小于前者, 是合理的。