

Power System Flexibility, DERMS

Needs for Energy Transition & Power Systems of Future

Akilur Rahman, CTO - Hitachi Energy India, Market Innovation - South Asia

The Power System Evolution - Classic Power Systems

The Power System of the Future will be significantly bigger, more interconnected and much more complex

The Power System Evolution - Future Power Systems

Future Power Grid - Sustainable Energy Ecosystem

Generation

- Offshore wind
- Onshore wind
- Solar
- Hydropower
- Conventional

Transmission and distribution

- Converter station, HVDC, FACTS
- Transmission substation
- Distribution substation

Consumption

- Hydrogen consumption
- Hydrogen production
- Data center
- Transportation (Metro, EV, and rail station)
- Commercial by industry

Sectors

- Utilities
- Renewables
- Transportation
- Data centers
- Industries
- Buildings

Four Levers of Flexibility - Digital and Power Electronics at the Core

Three fundamental technology areas for the Power System evolution: Power Electronics, Digitalization and Sustainable Products and Solutions

Technologies Enabling Future Power System - Power Electronics

From grid following to grid forming converters

- Creating system voltage and frequency
- Contribution to inertia and fault level
- Sink for harmonics and unbalances
- Supporting black start

STATCOM & Enhanced STATCOM

HVDC

- DC links in AC grid & upgrades
- City center infeed
- Power from shore

DC

AC & DC

Grid Edge

- Microgrids
- Mobility
- Industrial electrification
- Renewable integration
- Storage

BESS and Renewable Integration - Grid Forming Converter Control

World's largest Battery Energy Storage System

Challenge

New South Wales aging, coal-fired power plants are expensive, inefficient, hazardous to the environment, and require costly ongoing maintenance.

Solution

The 850MW/1680MWh Waratah Super Battery (WSB), with 288 eks Energy PCS, acts as "shock absorber" for the electrical grid and improves system reliability.

Dalrymple ESCRI (Australia): The world's largest autonomous microgrid

Challenge

To improve the reliability of supply in the lower Yorke Peninsula, which is prone to lightning strikes, while supporting the integration of renewables.

Solution

Virtual Synchronous
Machine with energy
storage to stabilize the
electricity grid and
seamlessly island the
region to enhance reliability
and utilize local wind power.

New Energy Eco-system - distributed energy resources - examples

ElectraNet Pty Ltd

Transmission company with 5,591 km of HV transmission lines in South Australia

Solution: Wind (90 MW), Distributed rooftop solar, PowerStore Battery (30 MW/8 MWh), e-mesh Control System

Installed in a complex & large-scale energy network in South Australia, the solution strengthens power grid and improves reliability services, including fast-acting power response to better balance the overall network.

Skagerak Energi AS

Norwegian utility company serving 176k grid customers

Skagerak Energi

Solution: 5.700 m2 of solar modules (800 kWp), PowerStore Battery (800kVA/1MWh), e-mesh Control System, e-mesh EMS energy management system

Skagerak Energilab includes solarpowered grid edge solution, creating first of its kind power grid that also provides the neighborhood with locally produced electricity and readiness for V2G.

Woodside Energy Ltd.

Largest operator of oil and gas production in Australia

Solution: Gas Turbines (5 x 3.5 MW), PowerStore Battery (2.8 MW/1.43 MWh), e-mesh Control System, Remote monitoring

Developed to support on offshore platform, this solution greatly reduces dependency on diesel, lowering gas consumption by 2000 tons/year, while also lowering CO2 emissions by 5%.

Department of Tourism, ZA

Promoting tourism to islands and remote communities in South Africa

Solution: Solar PV (667 kWp), Diesel (1 x 500 kW), PowerStore Battery (500 kW/837 kWh), e-mesh Control System

Robben Island microgrid enables the island to operate mainly on solar power. using the diesel only as backup, and reducing fuel costs and carbon emissions by approximately 75%.

HVDC Evolution towards Multipurpose Interconnection

Multipurpose / Multiterminal interconnection

- Connects flexibly two (or more) regions or energy markets
- Integrates (renewable) power sources along the corridor
- And/or efficiently supplies load along the corridor

A regional HVDC grid is a system that comprises one protection zone for DC earth faults

HVDC grid: Multi-Multiterminal interconnections

Regional HVDC grids can be further extended by connecting multiple Multiterminal interconnections, and using HVDC Breaker technology for protection

Power Electronics & Advanced Control - Key Technologies for Future

Distributed Energy Resources Management System (DERMS)

- 000

e-mC-E

Storage

e-mesh™

Infinite insight into distributed energy resources

_ 000

e-mC-F

e-m

C-F

e-mC-F

Load

Load

Digitalization of distributed energy resources, helping system owners-operators across the globe to easily transition to this new distributed energy model.

RA-Solar: Renewable Automation: Solar PV BESS: Battery energy storage systems RA-Wind: Renewable Automation: Wind MG: Microgrid systems

New Grid Conditions - Driving Additional Digitalization Needs

Examples of change drivers

- Larger, more distributed systems
- Higher system complexity
- Speed of action remains or even increases
- New types of equipment
- Classic equipment exposed to new types of stress
- Forecasting of various parameters (technical, weather, markets, ...)

Digitalization offers grid operators a more future-proof way to control energy systems with speed, flexibility and reliability as the landscape becomes more complex

Digital Technologies - Enabler for Flexible Power System Operation

HITACHI Inspire the Next