Geographical Roots of Comparative Development

Ömer Özak

Department of Economics Southern Methodist University

Economic Growth and Comparative Development

The Origins of Inequality in Income per Capita across the Globe in 2010

Persistent effects of variations geographical and human characteristics

- Biogeographical conditions that led to the onset of the Neolithic Revolution (Diamond, 1997)
- Migratory distance from Africa and its impact on the distribution of genetic diversity across the globe (Ashraf-Galor, AER 2013)
- Geographical characteristics (climate, soil quality, disease environment, UV radiation, bounty of the sea, latitude)
 - Productivity (Sachs et al. 1999: Andersen-Dalgaard-Selava, RES 2016)
 - Institutions conducive to development (AJR, AER 2001)
 - Cultural characteristics conducive for development (Alesina-Giuliano-Nunn, OJE 2013: Dalgaard-Knudsen-Selava, 2016. Galor-Özak, AER 2016)

- Persistent effects of variations geographical and human characteristics
 - Biogeographical conditions that led to the onset of the Neolithic Revolution (Diamond, 1997)
 - Migratory distance from Africa and its impact on the distribution of genetic diversity across the globe (Ashraf-Galor, AER 2013)
 - Geographical characteristics (climate, soil quality, disease environment, UV radiation, bounty of the sea, latitude)
 - Productivity (Sachs et al, 1999; Andersen-Dalgaard-Selaya, RES 2016)
 - Institutions conducive to development (AJR, AER 2001)
 - Cultural characteristics conducive for development (Alesina-Giuliano-Nunn, O.E. 2013: Dalesaurk-Knudeen-Selava, 2016, Galox-Özek, AER 2016)

- Persistent effects of variations geographical and human characteristics
 - Biogeographical conditions that led to the onset of the Neolithic Revolution (Diamond, 1997)
 - Migratory distance from Africa and its impact on the distribution of genetic diversity across the globe (Ashraf-Galor, AER 2013)
 - Geographical characteristics (climate, soil quality, disease environment, UV radiation, bounty of the sea, latitude)
 - Productivity (Sachs et al, 1999; Andersen-Dalgaard-Selaya, RES 2016)
 - Institutions conducive to development (AJR, AER 2001)
 - Cultural characteristics conducive for development (Alesina-Giuliano-Nunn)
 O. J. S. Dalmand, Knudenn-Solana, 2016. Galov. Özak. AEP 2016.

- Persistent effects of variations geographical and human characteristics
 - Biogeographical conditions that led to the onset of the Neolithic Revolution (Diamond, 1997)
 - Migratory distance from Africa and its impact on the distribution of genetic diversity across the globe (Ashraf-Galor, AER 2013)
 - Geographical characteristics (climate, soil quality, disease environment, UV radiation, bounty of the sea, latitude)
 - Productivity (Sachs et al, 1999; Andersen-Dalgaard-Selaya, RES 2016)
 - Institutions conducive to development (AJR, AER 2001)
 - Cultural characteristics conducive for development (Alesina-Giuliano-Nunn, QJE 2013; Dalgaard-Knudsen-Selaya, 2016, Galor-Özak, AER 2016)

- Persistent effects of variations geographical and human characteristics
 - Biogeographical conditions that led to the onset of the Neolithic Revolution (Diamond, 1997)
 - Migratory distance from Africa and its impact on the distribution of genetic diversity across the globe (Ashraf-Galor, AER 2013)
 - Geographical characteristics (climate, soil quality, disease environment, UV radiation, bounty of the sea, latitude)
 - Productivity (Sachs et al, 1999; Andersen-Dalgaard-Selaya, RES 2016)
 - Institutions conducive to development (AJR, AER 2001)
 - Cultural characteristics conducive for development (Alesina-Giuliano-Nunn, QJE 2013; Dalgaard-Knudsen-Selaya, 2016, Galor-Özak, AER 2016)

- Persistent effects of variations geographical and human characteristics
 - Biogeographical conditions that led to the onset of the Neolithic Revolution (Diamond, 1997)
 - Migratory distance from Africa and its impact on the distribution of genetic diversity across the globe (Ashraf-Galor, AER 2013)
 - Geographical characteristics (climate, soil quality, disease environment, UV radiation, bounty of the sea, latitude)
 - Productivity (Sachs et al, 1999; Andersen-Dalgaard-Selaya, RES 2016)
 - Institutions conducive to development (AJR, AER 2001)
 - Cultural characteristics conducive for development (Alesina-Giuliano-Nunn, QJE 2013; Dalgaard-Knudsen-Selaya, 2016, Galor-Özak, AER 2016)

- Persistent effects of variations geographical and human characteristics
 - Biogeographical conditions that led to the onset of the Neolithic Revolution (Diamond, 1997)
 - Migratory distance from Africa and its impact on the distribution of genetic diversity across the globe (Ashraf-Galor, AER 2013)
 - Geographical characteristics (climate, soil quality, disease environment, UV radiation, bounty of the sea. latitude)
 - Productivity (Sachs et al, 1999; Andersen-Dalgaard-Selaya, RES 2016)
 - Institutions conducive to development (AJR, AER 2001)
 - Cultural characteristics conducive for development (Alesina-Giuliano-Nunn, QJE 2013: Dalgaard-Knudsen-Selava, 2016, Galor-Özak, AER 2016)

- The transition from hunter-gatherer tribes to agricultural communities:
 - Emergence of non-food-producing class:
 - Technological head start and its persistent effect via:
- Variations in biogeographical characteristics conducive for the NR:

- The transition from hunter-gatherer tribes to agricultural communities:
 - Emergence of non-food-producing class:
 - \Rightarrow Knowledge creation (science, technology & written languages)
 - Technological head start and its persistent effect via:
- Variations in biogeographical characteristics conducive for the NR:

- The transition from hunter-gatherer tribes to agricultural communities:
 - Emergence of non-food-producing class:
 - Knowledge creation (science, technology & written languages)
 - Technological head start and its persistent effect via:
 - Urbanization, nation states, colonization
- Variations in biogeographical characteristics conducive for the NR :
 - Origins of the observed patterns of comparative development

- The transition from hunter-gatherer tribes to agricultural communities:
 - Emergence of non-food-producing class:
 - Knowledge creation (science, technology & written languages)
 - Technological head start and its persistent effect via:
 - Urbanization, nation states, colonization
- Variations in biogeographical characteristics conducive for the NR :
 - ullet ullet Origins of the observed patterns of comparative development

- The transition from hunter-gatherer tribes to agricultural communities:
 - Emergence of non-food-producing class:
 - Knowledge creation (science, technology & written languages)
 - Technological head start and its persistent effect via:
 - Urbanization, nation states, colonization
- Variations in biogeographical characteristics conducive for the NR :
 - Origins of the observed patterns of comparative development

- The transition from hunter-gatherer tribes to agricultural communities:
 - Emergence of non-food-producing class:
 - Knowledge creation (science, technology & written languages)
 - Technological head start and its persistent effect via:
 - Urbanization, nation states, colonization
- Variations in biogeographical characteristics conducive for the NR :
 - Origins of the observed patterns of comparative development

- The transition from hunter-gatherer tribes to agricultural communities:
 - Emergence of non-food-producing class:
 - ullet \Longrightarrow Knowledge creation (science, technology & written languages)
 - Technological head start and its persistent effect via:
 - Urbanization, nation states, colonization
- Variations in biogeographical characteristics conducive for the NR :
 - ullet Origins of the observed patterns of comparative development

Variation in the Onset of the Neolithic Revolution

Independent Origins

Source: Diamond (Nature 2002)

- Geographical factors that maximized biodiversity (climate, latitude, landmass)
 - Availability of domesticable species of plants and animals
 - Onset of domestication
- Orientation of continents:
 - Diffusion of agricultural practices along similar latitudes

- Geographical factors that maximized biodiversity (climate, latitude, landmass)
 - Availability of domesticable species of plants and animals
 - Onset of domestication
- Orientation of continents:
 - Diffusion of agricultural practices along similar latitudes

- Geographical factors that maximized biodiversity (climate, latitude, landmass)
 - Availability of domesticable species of plants and animals
 - Sometimes of domestication
- Orientation of continents:
 - Diffusion of agricultural practices along similar latitudes

- Geographical factors that maximized biodiversity (climate, latitude, landmass)
 - Availability of domesticable species of plants and animals
 - Onset of domestication
- Orientation of continents:
 - Diffusion of agricultural practices along similar latitudes

- Geographical factors that maximized biodiversity (climate, latitude, landmass)
 - Availability of domesticable species of plants and animals
 - Sometimes of domestication
- Orientation of continents:
 - \Longrightarrow Diffusion of agricultural practices along similar latitudes

Orientation of Continents

Source: Diamond (Nature 2002)

- The domination of Euro-Asia in the pre-colonial era reflects:
 - Larger number of domesticable species of plants and animals
 - East-West orientation
 - Technological head start and its effect on developmen
- The economic domination of Europeans and their offshoots in the post-colonial era reflects
 - Persistence of technological head start
 - Resistance to infectious diseases evolved in the aftermath of the NR
 - $\circ \implies$ Guns, Germs and Steel
- Variation in the timing of Neolithic Revolution:
 - Comparative development in 1491
 - Comparative development in the contemporary period

- The domination of Euro-Asia in the pre-colonial era reflects:
 - Larger number of domesticable species of plants and animals
 - East-West orientation
 - Technological head start and its effect on development
- The economic domination of Europeans and their offshoots in the post-colonial era reflects
 - Persistence of technological head start
 - Resistance to infectious diseases evolved in the aftermath of the NR
- Variation in the timing of Neolithic Revolution:
 - Comparative development in 1491
 - Comparative development in the contemporary period

- The domination of Euro-Asia in the pre-colonial era reflects:
 - Larger number of domesticable species of plants and animals
 - East-West orientation
 - \Longrightarrow Technological head start and its effect on development
- The economic domination of Europeans and their offshoots in the post-colonial era reflects
 - Persistence of technological head start
 - Resistance to infectious diseases evolved in the aftermath of the NR name of th
- Variation in the timing of Neolithic Revolution:
 - Comparative development in 1491
 - Comparative development in the contemporary period

- The domination of Euro-Asia in the pre-colonial era reflects:
 - Larger number of domesticable species of plants and animals
 - East-West orientation
 - Technological head start and its effect on development
- The economic domination of Europeans and their offshoots in the post-colonial era reflects
 - Persistence of technological head start
 - Resistance to infectious diseases evolved in the aftermath of the NR
- Variation in the timing of Neolithic Revolution:
 - Comparative development in 1491
 - Comparative development in the contemporary period

- The domination of Euro-Asia in the pre-colonial era reflects:
 - Larger number of domesticable species of plants and animals
 - East-West orientation
 - \Longrightarrow Technological head start and its effect on development
- The economic domination of Europeans and their offshoots in the post-colonial era reflects
 - Persistence of technological head start
 - Resistance to infectious diseases evolved in the aftermath of the NR
 - → Guns, Germs and Steel
- Variation in the timing of Neolithic Revolution:
 - Comparative development in 1491
 - Comparative development in the contemporary period

- The domination of Euro-Asia in the pre-colonial era reflects:
 - Larger number of domesticable species of plants and animals
 - East-West orientation
 - ullet Technological head start and its effect on development
- The economic domination of Europeans and their offshoots in the post-colonial era reflects
 - Persistence of technological head start
 - Resistance to infectious diseases evolved in the aftermath of the NR
 - Guns, Germs and Steel
- Variation in the timing of Neolithic Revolution:
 - Comparative development in 1491
 - Comparative development in the contemporary period

- The domination of Euro-Asia in the pre-colonial era reflects:
 - Larger number of domesticable species of plants and animals
 - East-West orientation
 - \Longrightarrow Technological head start and its effect on development
- The economic domination of Europeans and their offshoots in the post-colonial era reflects
 - Persistence of technological head start
 - Resistance to infectious diseases evolved in the aftermath of the NR
 - ⇒ Guns, Germs and Steel
- Variation in the timing of Neolithic Revolution:
 - Comparative development in 1491
 - Comparative development in the contemporary period

- The domination of Euro-Asia in the pre-colonial era reflects:
 - Larger number of domesticable species of plants and animals
 - East-West orientation
 - Technological head start and its effect on development
- The economic domination of Europeans and their offshoots in the post-colonial era reflects
 - Persistence of technological head start
 - Resistance to infectious diseases evolved in the aftermath of the NR
 - ullet \Longrightarrow Guns, Germs and Steel
- Variation in the timing of Neolithic Revolution:
 - Comparative development in 1491
 - Comparative development in the contemporary period

- The domination of Euro-Asia in the pre-colonial era reflects:
 - Larger number of domesticable species of plants and animals
 - East-West orientation
 - Technological head start and its effect on development
- The economic domination of Europeans and their offshoots in the post-colonial era reflects
 - Persistence of technological head start
 - Resistance to infectious diseases evolved in the aftermath of the NR
 - → Guns, Germs and Steel
- Variation in the timing of Neolithic Revolution:
 - Comparative development in 1491
 - Comparative development in the contemporary period

- The domination of Euro-Asia in the pre-colonial era reflects:
 - Larger number of domesticable species of plants and animals
 - East-West orientation
 - Technological head start and its effect on development
- The economic domination of Europeans and their offshoots in the post-colonial era reflects
 - Persistence of technological head start
 - Resistance to infectious diseases evolved in the aftermath of the NR
 - → Guns, Germs and Steel
- Variation in the timing of Neolithic Revolution:
 - Comparative development in 1491
 - Comparative development in the contemporary period

- The domination of Euro-Asia in the pre-colonial era reflects:
 - Larger number of domesticable species of plants and animals
 - East-West orientation
 - Technological head start and its effect on development
- The economic domination of Europeans and their offshoots in the post-colonial era reflects
 - Persistence of technological head start
 - Resistance to infectious diseases evolved in the aftermath of the NR
 - → Guns, Germs and Steel
- Variation in the timing of Neolithic Revolution:
 - Comparative development in 1491
 - Comparative development in the contemporary period

Testable Predictions

• Earlier onset of the Neolithic Revolution:

- During the Malthusian epoch
 - Technological superiority
 - Higher productivity (captured by population density)
- During the contemporary era
 - Technological superiority
 - Higher income per capita (accounting for migration in the post 1500 period)

- Earlier onset of the Neolithic Revolution:
 - During the Malthusian epoch
 - Technological superiority
 - Higher productivity (captured by population density)
 - During the contemporary era
 - Technological superiority
 - Higher income per capita (accounting for migration in the post 1500 period)

- Earlier onset of the Neolithic Revolution:
 - During the Malthusian epoch
 - Technological superiority
 - Higher productivity (captured by population density)
 - During the contemporary era
 - Technological superiority
 - Higher income per capita (accounting for migration in the post 1500 period)

- Earlier onset of the Neolithic Revolution:
 - During the Malthusian epoch
 - Technological superiority
 - Higher productivity (captured by population density)
 - During the contemporary era
 - Technological superiority
 - Higher income per capita (accounting for migration in the post 1500 period)

- Earlier onset of the Neolithic Revolution:
 - During the Malthusian epoch
 - Technological superiority
 - Higher productivity (captured by population density)
 - During the contemporary era
 - Technological superiority
 - Higher income per capita (accounting for migration in the post 1500 period)

- Earlier onset of the Neolithic Revolution:
 - During the Malthusian epoch
 - Technological superiority
 - Higher productivity (captured by population density)
 - During the contemporary era
 - Technological superiority
 - Higher income per capita (accounting for migration in the post 1500 period)

- Earlier onset of the Neolithic Revolution:
 - During the Malthusian epoch
 - Technological superiority
 - Higher productivity (captured by population density)
 - During the contemporary era
 - Technological superiority
 - Higher income per capita (accounting for migration in the post 1500 period)

The Neolithic Revolution & Technological Level: 1000 BCE-1500 CE

	Technology Level 1000BCE-1500CE							
	1000	BCE	1CE		1500CE			
	(1)	(2)	(3)	(4)	(5)	(6)		
Years Since Neolithic Revolution	0.72*** (0.06)	0.47*** (0.12)	0.56*** (0.06)	0.28** (0.12)	•	0.34*** (0.10)		
Continental FE	No	Yes	No	Yes	No	Yes		
Additional Geographical Controls $ \mbox{Adjusted-} R^2 $	No 0.51	Yes 0.60	No 0.31	Yes 0.63	No 0.55	Yes 0.82		
Observations	112	111	134	133	113	112		

Notes: Standardized coefficients from an Ordinary Least Squares (OLS) regression. Heteroskedasticity robust standard error estimates are reported in parentheses; *** denotes statistical significance at the 1% level, ** at the 5% level, and * at the 10% level, all for two-sided hypothesis tests.

The Neolithic Revolution & Technological Level: 2000

	Technology Level 2000CE						
	(1)	(2)	(3)	(4)	(5)	(6)	
Years Since Neolithic Revolution	0.15*	-0.09	-0.09				
	(0.09)	(0.08)	(0.11)				
Years Since Neolithic Revolution (Ancestors)				0.32***	0.09	0.09	
				(0.07)	(0.07)	(0.10)	
Continental FE	No	No	Yes	No	No	Yes	
Additional Geographical Controls	No	Yes	Yes	No	Yes	Yes	
Adjusted- R^2	0.02	0.55	0.59	0.10	0.55	0.59	
Observations	132	131	131	132	131	131	

The Neolithic Revolution and Population Density 1-1500

	Log [Population Density]									
	1CE	500CE	1000CE	1500CE	1CE	500CE	1000CE	1500CE		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
Years Since Neolithic Revolution	0.73***	0.68***	0.58***	0.47***	0.67***	0.67***	0.61***	0.53***		
	(0.05)	(0.06)	(0.06)	(0.07)	(80.0)	(0.09)	(0.10)	(0.11)		
Caloric Suitability (pre-1500CE)					0.22***	0.28***	0.36***	0.45***		
					(0.06)	(0.07)	(0.09)	(0.09)		
Continental FE	No	No	No	No	Yes	Yes	Yes	Yes		
R^2	0.54	0.46	0.33	0.22	0.63	0.57	0.48	0.42		
Adjusted- R^2	0.54	0.45	0.33	0.21	0.61	0.54	0.45	0.39		
Observations	169	169	169	169	169	169	169	169		

The Neolithic Revolution and Population Density 1-1500

The Neolithic Revolution on Population Density in 1500

	Log [Po	Log [Population Density 1500CE]				
	(1)	(2)	(3)	(4)		
Years Since Neolithic Revolution	0.47***	0.54***	0.55***	0.56***		
	(0.07)	(0.12)	(0.12)	(0.12)		
Caloric Suitability (pre-1500CE)		0.45***	0.43***	0.43***		
		(0.09)	(0.09)	(80.0)		
Predicted Genetic Diversity				7.42**		
				(3.34)		
Predicted Genetic Diversity Squared				-6.83**		
				(3.37)		
Continental FE	No	Yes	Yes	Yes		
Additional Geographical Controls	No	No	Yes	Yes		
Adjusted- R^2	0.21	0.39	0.49	0.52		
Observations	168	168	168	168		

The Neolithic Revolution on Population Density in 1500

The Neolithic Revolution on Urbanization in 1-1500

	Log [Urbanization 1-15000					
	1CE	1500CE				
	(1)	(2)	(3)			
Years Since Neolithic Revolution	0.52**	0.35**	-0.15			
	(0.23)	(0.16)	(0.13)			
Caloric Suitability (pre-1500CE)	-0.06	0.08	0.27**			
	(0.18)	(0.18)	(0.13)			
Continental FE	Yes	Yes	Yes			
Additional Geographical Controls	Yes	Yes	Yes			
Adjusted- R^2	0.14	0.20	0.23			
Observations	125	125	125			

The Neolithic Revolution on Urbanization in 1500

	Log [Urbanization 1500CE]					
	(1)	(2)	(3)	(4)		
Years Since Neolithic Revolution	0.38***	0.11	-0.07	0.02		
	(0.09)	(0.11)	(0.10)	(0.12)		
Caloric Suitability (pre-1500CE)		0.01	0.27**	0.31***		
		(0.15)	(0.12)	(0.09)		
Predicted Genetic Diversity				21.00***		
				(6.55)		
Predicted Genetic Diversity Squared				-20.06***		
				(6.97)		
Continental FE	No	Yes	Yes	Yes		
Additional Geographical Controls	No	No	Yes	Yes		
Adjusted- R^2	0.13	0.25	0.45	0.68		
Observations	84	84	84	84		

The Effect of the NR on Population Density and Urbanization in 1500

	Development in 1500CE					
	Log	g [PD]	Lo	g [UR]		
	(1)	(2)	(3)	(4)		
Years Since Neolithic Revolution	0.37***	0.48***	-0.07	0.02		
	(0.09)	(0.12)	(0.10)	(0.12)		
Caloric Suitability (pre-1500CE)	0.39***	0.44***	0.27**	0.31***		
	(0.11)	(0.09)	(0.12)	(0.09)		
Predicted Genetic Diversity		16.97***		21.00***		
		(5.62)		(6.55)		
Predicted Genetic Diversity Squared		-16.68***		-20.06***		
		(5.94)		(6.97)		
Continental FE	Yes	Yes	Yes	Yes		
Additional Geographical Controls	Yes	Yes	Yes	Yes		
Adjusted- R^2	0.66	0.76	0.45	0.68		
Observations	84	84	84	84		

The Effect of the NR on Population Density and Urbanization in 1500

	Development in 1500CE Semi-Partial R^2					
	Log	[UR]				
	(1)	(2)	(3)	(4)		
Years Since Neolithic Revolution	0.05***	0.05***	0.00	0.00		
Caloric Suitability (pre-1500CE)	0.05***	0.06***	0.03**	0.03***		
Predicted Genetic Diversity		0.03***		0.05***		
Predicted Genetic Diversity Squared		0.03***		0.04***		
Continental FE	Yes	Yes	Yes	Yes		
Additional Geographical Controls	Yes	Yes	Yes	Yes		
Adjusted- R^2	0.66	0.76	0.45	0.68		
Observations	84	84	84	84		

Genetic Diversity and Urbanization in 1500

• The Neolithic Revolution has a dual effect on development

- Technological head start ⇒ higher population density
- Comparative advantage in agriculture \Longrightarrow higher population density
 - Positive overall effect on population density
- ullet Technological head start \Longrightarrow higher urbanization
- ullet Comparative advantage in agriculture \Longrightarrow lower urbanization
 - Ambiguous overall effect on urbanization

- The Neolithic Revolution has a dual effect on development
 - Technological head start ⇒ higher population density
 - Comparative advantage in agriculture ⇒ higher population density
 - Positive overall effect on population density
 - ullet Technological head start \Longrightarrow higher urbanization
 - ullet Comparative advantage in agriculture \Longrightarrow lower urbanization
 - Ambiguous overall effect on urbanization

- The Neolithic Revolution has a dual effect on development
 - Technological head start ⇒ higher population density
 - ullet Comparative advantage in agriculture \Longrightarrow higher population density
 - Positive overall effect on population density
 - ullet Technological head start \Longrightarrow higher urbanization
 - ullet Comparative advantage in agriculture \Longrightarrow lower urbanization
 - Ambiguous overall effect on urbanization

- The Neolithic Revolution has a dual effect on development
 - Technological head start ⇒ higher population density
 - ullet Comparative advantage in agriculture \Longrightarrow higher population density
 - Positive overall effect on population density
 - Technological head start ⇒ higher urbanization
 - ullet Comparative advantage in agriculture \Longrightarrow lower urbanization
 - Ambiguous overall effect on urbanization

- The Neolithic Revolution has a dual effect on development
 - Technological head start ⇒ higher population density
 - ullet Comparative advantage in agriculture \Longrightarrow higher population density
 - Positive overall effect on population density
 - Technological head start ⇒ higher urbanization
 - ullet Comparative advantage in agriculture \Longrightarrow lower urbanization
 - Ambiguous overall effect on urbanization

- The Neolithic Revolution has a dual effect on development
 - Technological head start ⇒ higher population density
 - ullet Comparative advantage in agriculture \Longrightarrow higher population density
 - Positive overall effect on population density
 - Technological head start ⇒ higher urbanization
 - \bullet Comparative advantage in agriculture \Longrightarrow lower urbanization
 - Ambiguous overall effect on urbanization

- The Neolithic Revolution has a dual effect on development
 - ullet Technological head start \Longrightarrow higher population density
 - ullet Comparative advantage in agriculture \Longrightarrow higher population density
 - Positive overall effect on population density
 - Technological head start ⇒ higher urbanization
 - \bullet Comparative advantage in agriculture \Longrightarrow lower urbanization
 - Ambiguous overall effect on urbanization

The Neolithic Revolution and Income per Capita in 2000

	Log [GDPpc 2000CE]						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Years Since Neolithic Revolution	0.40***	-0.07	0.01				-0.34**
	(80.0)	(0.10)	(0.09)				(0.15)
Years Since Neolithic Revolution (Ancestors)				0.59***	0.08	0.11	0.40***
				(80.0)	(0.10)	(0.09)	(0.14)
Caloric Suitability (pre-1500CE)		-0.26***	-0.18**		-0.26***	-0.16*	-0.13
		(0.09)	(0.09)		(0.09)	(0.09)	(0.09)
Predicted Genetic Diversity (Ancestors)			7.47***			7.52***	6.48***
			(2.33)			(2.29)	(2.18)
Predicted Genetic Diversity (Ancestors, Sq.)			-7.55***			-7.62***	-6.66***
			(2.36)			(2.32)	(2.20)
Continental FE	No	Yes	Yes	No	Yes	Yes	Yes
Additional Geographical Controls	No	Yes	Yes	No	Yes	Yes	Yes
Legal Origin FE	No	No	Yes	No	No	Yes	Yes
R^2	0.16	0.78	0.84	0.34	0.78	0.84	0.85
Adjusted-R ²	0.15	0.74	0.80	0.34	0.74	0.80	0.81
Observations	111	111	111	111	111	111	111

Genetic Diversity and Income per Capita in 2000

- The Neolithic Revolution increased the exposure and the vulnerability of humans to infectious diseases via the:
 - Rise in population density
 - Domestication of animals
 - Increase in work effort
- Natural selection of individuals who were genetically pre-disposed towards resistance to infectious diseases
 - Reduction in mortality from infectious diseases (Galor and Moay, 2005, 2007)
 - An increase in the prevalence of autoimmune diseases (Franck-Galor-Özak, 2016)
- Variation in the timing of the Neolithic Revolution among the ancestral populations of each region contributed to the variation in life expectancy across regions

- The Neolithic Revolution increased the exposure and the vulnerability of humans to infectious diseases via the:
 - Rise in population density
 - Domestication of animals
 - Increase in work effort
- Natural selection of individuals who were genetically pre-disposed towards resistance to infectious diseases
 - Reduction in mortality from infectious diseases (Galor and Moay, 2005, 2007)
 - An increase in the prevalence of autoimmune diseases (Franck-Galor-Özak, 2016)
- Variation in the timing of the Neolithic Revolution among the ancestral populations of each region contributed to the variation in life expectancy across regions

- The Neolithic Revolution increased the exposure and the vulnerability of humans to infectious diseases via the:
 - Rise in population density
 - Domestication of animals
 - Increase in work effort
- Natural selection of individuals who were genetically pre-disposed towards resistance to infectious diseases
 - Reduction in mortality from infectious diseases (Galor and Moay, 2005, 2007)
 - An increase in the prevalence of autoimmune diseases (Franck-Galor-Özak, 2016)
- Variation in the timing of the Neolithic Revolution among the ancestral populations of each region contributed to the variation in life expectancy across regions

- The Neolithic Revolution increased the exposure and the vulnerability of humans to infectious diseases via the:
 - Rise in population density
 - Domestication of animals
 - Increase in work effort
- Natural selection of individuals who were genetically pre-disposed towards resistance to infectious diseases
 - Reduction in mortality from infectious diseases (Galor and Moay, 2005, 2007)
 - An increase in the prevalence of autoimmune diseases (Franck-Galor-Özak, 2016)
- Variation in the timing of the Neolithic Revolution among the ancestral populations of each region contributed to the variation in life expectancy across regions

- The Neolithic Revolution increased the exposure and the vulnerability of humans to infectious diseases via the:
 - Rise in population density
 - Domestication of animals
 - Increase in work effort
- Natural selection of individuals who were genetically pre-disposed towards resistance to infectious diseases
 - Reduction in mortality from infectious diseases (Galor and Moay, 2005, 2007)
 - An increase in the prevalence of autoimmune diseases (Franck-Galor-Özak, 2016)
- Variation in the timing of the Neolithic Revolution among the ancestral populations of each region contributed to the variation in life expectancy across regions

- The Neolithic Revolution increased the exposure and the vulnerability of humans to infectious diseases via the:
 - Rise in population density
 - Domestication of animals
 - Increase in work effort
- Natural selection of individuals who were genetically pre-disposed towards resistance to infectious diseases
 - Reduction in mortality from infectious diseases (Galor and Moav, 2005, 2007)
 - An increase in the prevalence of autoimmune diseases (Franck-Galor-Özak, 2016)
- Variation in the timing of the Neolithic Revolution among the ancestral populations of each region contributed to the variation in life expectancy across regions

- The Neolithic Revolution increased the exposure and the vulnerability of humans to infectious diseases via the:
 - Rise in population density
 - Domestication of animals
 - Increase in work effort
- Natural selection of individuals who were genetically pre-disposed towards resistance to infectious diseases
 - Reduction in mortality from infectious diseases (Galor and Moav, 2005, 2007)
 - An increase in the prevalence of autoimmune diseases (Franck-Galor-Özak, 2016)
- Variation in the timing of the Neolithic Revolution among the ancestral populations of each region contributed to the variation in life expectancy across regions

- The Neolithic Revolution increased the exposure and the vulnerability of humans to infectious diseases via the:
 - Rise in population density
 - Domestication of animals
 - Increase in work effort
- Natural selection of individuals who were genetically pre-disposed towards resistance to infectious diseases
 - Reduction in mortality from infectious diseases (Galor and Moav, 2005, 2007)
 - An increase in the prevalence of autoimmune diseases (Franck-Galor-Özak, 2016)
- Variation in the timing of the Neolithic Revolution among the ancestral populations of each region contributed to the variation in life expectancy across regions

The Timing of the Neolithic Revolution in Europe and the Middle East

Projected Timing of the Neolithic Revolution in France

Source: (Franck-Galor-Özak, 2016)

The Effect of the NR on the Evolution of Life Expectancy: France 1806-2013

The Neolithic Origins and Mortality: French Towns 1901

	Mortality Rate across Towns (1900)									
	All Diseases		Infectious (Air)		Infectious (Water)		Suicides		Violent Deaths	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Years Since Neolithic Revolution	-0.40***	-0.69***	-0.34***	-0.59***	0.14	0.07	0.10	0.12	-0.07	0.04
	(0.12)	(0.23)	(0.10)	(0.18)	(0.16)	(0.30)	(0.12)	(0.19)	(0.09)	(0.17)
GDP per capita (1901)		0.05		0.12		0.01		0.09		-0.03
		(0.09)		(80.0)		(0.07)		(0.07)		(80.0)
Main Geographical Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Additional Controls	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes
First-stage F-statistic	33.44	13.05	33.44	13.05	33.44	13.05	33.44	13.05	33.44	13.05
Adjusted-R ²	0.02	-0.03	80.0	0.08	0.15	0.18	-0.01	0.00	0.09	0.09
Observations	588	588	588	588	588	588	588	588	588	588

The Neolithic Origins of Diseases: French Departments 2000-2013

	Incidence							Prevalence		
	Arterial ischemic events	Liver dis- ease & cirrhosis	Diabetes	Respiratory failure	Alzheimer's disease & other dementias	Nephropathy		Coronary artery dis- ease	Mecha- nical Heart Disease Heart Disease	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Years Since Neolithic Revolution	0.49***	0.57***	0.58***	0.42**	0.37**	0.50***	1.00***	0.42***	-0.01	
	(0.18)	(0.13)	(0.11)	(0.18)	(0.15)	(0.17)	(0.15)	(0.16)	(0.17)	
GDP per capita (2000-2010)	-0.41***	0.19**	-0.17*	-0.11	-0.08	0.19**	0.48***	-0.37***	-0.37***	
	(0.10)	(0.10)	(0.09)	(0.10)	(0.13)	(0.09)	(0.14)	(0.12)	(0.11)	
Main Geographical Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Population Density (1700)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
First-stage F-statistic	50.19	50.19	50.19	50.19	50.19	50.19	50.19	50.19	50.19	
Adjusted-R ²	0.35	0.52	0.59	0.52	0.26	0.38	0.38	0.21	0.17	
Observations	89	89	89	89	89	89	89	89	89	

The Neolithic Origins of Mortality: French Departments 2000-2013

	Non-Medical Death Rates per 100,000									
	Alcohol Abuse			Accidents			Falls			
	All	Female	Male	All	Female	Male	All	Female	Male	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Years Since Neolithic Revolution	-0.06	0.19	-0.12	-0.08	-0.04	-0.10	-0.24	-0.26	-0.20	
	(0.12)	(0.14)	(0.12)	(0.15)	(0.16)	(0.14)	(0.17)	(0.19)	(0.15)	
GDP per capita (2000-2010)	-0.53***	-0.36***	-0.55***	-0.66***	-0.61***	-0.67***	-0.55***	-0.52***	-0.53***	
	(0.09)	(0.11)	(0.09)	(0.11)	(0.11)	(0.11)	(0.14)	(0.14)	(0.13)	
Main Geographical Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Population Density (1700)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
First-stage F-statistic	50.19	50.19	50.19	50.19	50.19	50.19	49.97	49.97	49.97	
Adjusted-R ²	0.53	0.46	0.52	0.58	0.48	0.61	0.47	0.32	0.53	
Observations	89	89	89	89	89	89	88	88	88	

- Reversal in the role of
 - Land Productivity
 - Distance from the equator
- Persistence in the role of
 - Disease environment
 - Ecological diversity
 - Geographical Isolation
 - Range of land quality
 - Land suitable for large plantations

- Reversal in the role of
 - Land Productivity
 - Distance from the equator
- Persistence in the role of
 - Disease environment
 - Ecological diversity
 - Geographical Isolation
 - Range of land quality
 - Land suitable for large plantations

- Reversal in the role of
 - Land Productivity
 - Distance from the equator
- Persistence in the role of
 - Disease environment
 - Ecological diversity
 - Geographical Isolation
 - Range of land quality
 - Land suitable for large plantations

- Reversal in the role of
 - Land Productivity
 - Distance from the equator
- Persistence in the role of
 - Disease environment
 - Ecological diversity
 - Geographical Isolation
 - Range of land quality
 - Land suitable for large plantations

- Reversal in the role of
 - Land Productivity
 - Distance from the equator
- Persistence in the role of
 - Disease environment
 - Ecological diversity
 - Geographical Isolation
 - Range of land quality
 - Land suitable for large plantations

- Reversal in the role of
 - Land Productivity
 - Distance from the equator
- Persistence in the role of
 - Disease environment
 - Ecological diversity
 - Geographical Isolation
 - Range of land quality
 - Land suitable for large plantations

- Reversal in the role of
 - Land Productivity
 - Distance from the equator
- Persistence in the role of
 - Disease environment
 - Ecological diversity
 - Geographical Isolation
 - Range of land quality
 - Land suitable for large plantations

- Reversal in the role of
 - Land Productivity
 - Distance from the equator
- Persistence in the role of
 - Disease environment
 - Ecological diversity
 - Geographical Isolation
 - Range of land quality
 - Land suitable for large plantations

- Reversal in the role of
 - Land Productivity
 - Distance from the equator
- Persistence in the role of
 - Disease environment
 - Ecological diversity
 - Geographical Isolation
 - Range of land quality
 - Land suitable for large plantations

Land productivity

- 1-1500 CE
 - Positive association with population density
- 2000s
 - Negative association with income per capita
- Absolute latitude
 - 1-1500 CE
 - Negative association with population density
 - 2000s
 - Positive association with income per capita

- Land productivity
 - 1-1500 CE
 - Positive association with population density
 - 2000s
 - Negative association with income per capita
- Absolute latitude
 - 1-1500 CE
 - Negative association with population density
 - 2000s
 - Positive association with income per capita

- Land productivity
 - 1-1500 CE
 - Positive association with population density
 - 2000s
 - Negative association with income per capita
- Absolute latitude
 - 1-1500 CE
 - Negative association with population density
 - 2000s
 - Positive association with income per capita

- Land productivity
 - 1-1500 CE
 - Positive association with population density
 - 2000s
 - Negative association with income per capita
- Absolute latitude
 - 1-1500 CF
 - Negative association with population density
 - 2000s
 - Positive association with income per capita

- Land productivity
 - 1-1500 CE
 - Positive association with population density
 - 2000s
 - Negative association with income per capita
- Absolute latitude
 - 1-1500 CF
 - a megative association with population density
 - 2000s

- Land productivity
 - 1-1500 CE
 - Positive association with population density
 - 2000s
 - Negative association with income per capita
- Absolute latitude
 - 1-1500 CE
 - Negative association with population density
 - 2000s
 - Positive association with income per capita

- Land productivity
 - 1-1500 CE
 - Positive association with population density
 - 2000s
 - Negative association with income per capita
- Absolute latitude
 - 1-1500 CE
 - Negative association with population density
 - 2000s
 - Positive association with income per capita

- Land productivity
 - 1-1500 CE
 - Positive association with population density
 - 2000s
 - Negative association with income per capita
- Absolute latitude
 - 1-1500 CE
 - Negative association with population density
 - 2000s
 - Positive association with income per capita

- Land productivity
 - 1-1500 CE
 - Positive association with population density
 - 2000s
 - Negative association with income per capita
- Absolute latitude
 - 1-1500 CE
 - Negative association with population density
 - 2000s
 - Positive association with income per capita

- Land productivity
 - 1-1500 CE
 - Positive association with population density
 - 2000s
 - Negative association with income per capita
- Absolute latitude
 - 1-1500 CE
 - Negative association with population density
 - 2000s
 - Positive association with income per capita

Reversal in the Role of Land Productivity

	World sample (1)	Non-Colony sample (2)	Ex-Colony sample (3)	World sample (4)	Non-Colony sample (5)	Ex-Colony sample (6)
	Log	Population De	nsity	Log	Income per Ca	pita
		1500			2005	
Log years since Neolithic	1.111*** (0.188)	0.769* (0.447)	1.383*** (0.267)			
Log years since Neolithic (ancestry adjusted)				0.211 (0.322)	-0.100 (0.559)	0.083 (0.382)
Log land productivity	0.568*** (0.053)	0.550*** (0.057)	0.585*** (0.115)	-0.494*** (0.078)	-0.518*** 0.087	-0.456*** 0.141
Log absolute latitude	-0.330*** (0.106)	-0.491*** (0.136)	-0.302** (0.123)	0.375*** (0.142)	0.891** (0.432)	0.139 (0.149)
Continental dummies	Yes	Yes	Yes	Yes	Yes	Yes
Observations R ²	143 0.73	68 0.72	75 0.70	143 0.62	68 0.64	75 0.57

Additional Controls: mean distance to nearest coast & river and % land within 100 km of coast & river. Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

Land Productivity and Population Density in 1500

Conditional on years since Neolithic transition, geographical factors, and continental fixed effects.

Source: Ashraf-Galor (AER 2011)

Land Productivity and Income per Capita in 2005

Conditional on years since Neolithic transition, geographical factors, and continental fixed effects.

Source: Ashraf-Galor (AER 2013)

- The effect is nearly identical in the:
 - World sample
 - Former colonies sample (Acemoglu-Johnson-Robinson, QJE 2002)
 - Non-former colonies sample
 - Reversal in the role of land productivity is largely independent of the forces of colonialism
- Acquired comparative advantage in agriculture & delayed industrial transition (Galor-Mountford, RES, 2008)

- The effect is nearly identical in the:
 - World sample
 - Former colonies sample (Acemoglu-Johnson-Robinson, QJE 2002)
 - Non-former colonies sample
 - Reversal in the role of land productivity is largely independent of the forces of colonialism
- Acquired comparative advantage in agriculture & delayed industrial transition (Galor-Mountford, RES, 2008)

- The effect is nearly identical in the:
 - World sample
 - Former colonies sample (Acemoglu-Johnson-Robinson, QJE 2002)
 - Non-former colonies sample
 - Reversal in the role of land productivity is largely independent of the forces of colonialism
- Acquired comparative advantage in agriculture & delayed industrial transition (Galor-Mountford, RES, 2008)

- The effect is nearly identical in the:
 - World sample
 - Former colonies sample (Acemoglu-Johnson-Robinson, QJE 2002)
 - Non-former colonies sample
 - Reversal in the role of land productivity is largely independent of the forces of colonialism
- Acquired comparative advantage in agriculture & delayed industrial transition (Galor-Mountford, RES, 2008)

- The effect is nearly identical in the:
 - World sample
 - Former colonies sample (Acemoglu-Johnson-Robinson, QJE 2002)
 - Non-former colonies sample
 - Reversal in the role of land productivity is largely independent of the forces of colonialism
- Acquired comparative advantage in agriculture & delayed industrial

- The effect is nearly identical in the:
 - World sample
 - Former colonies sample (Acemoglu-Johnson-Robinson, QJE 2002)
 - Non-former colonies sample
 - Reversal in the role of land productivity is largely independent of the forces of colonialism
- Acquired comparative advantage in agriculture & delayed industrial transition (Galor-Mountford, RES, 2008)

Reversal in the Role of Distance from the Equator

	World sample (1)	Non-Colony sample (2)	Ex-Colony sample (3)	World sample (4)	Non-Colony sample (5)	Ex-Colony sample (6)		
	Log	Population De	nsity	Log	Income per Ca	pita		
		1500		2005				
Log years since Neolithic	1.111*** (0.188)	0.769* (0.447)	1.383*** (0.267)					
Log years since Neolithic (ancestry adjusted)				0.211 (0.322)	-0.100 (0.559)	0.083 (0.382)		
Log land productivity	0.568*** (0.053)	0.550*** (0.057)	0.585*** (0.115)	-0.494*** (0.078)	-0.518*** 0.087	-0.456*** 0.141		
Log absolute latitude	-0.330*** (0.106)	-0.491*** (0.136)	-0.302** (0.123)	0.375*** (0.142)	0.891** (0.432)	0.139 (0.149)		
Continental dummies Observations	Yes 143	Yes 68	Yes 75	Yes 143	Yes 68	Yes 75		
R ²	0.73	0.72	0.70	0.62	0.64	0.57		

Additional Controls: mean distance to nearest coast & river and % land within 100 km of coast & river. Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

Distance from the Equator and Population Density in 1500

Conditional on years since Neolithic transition, geographical factors, and continental fixed effects.

Source: Ashraf-Galor (AER 2011)

Distance from the Equator and Income per Capita in 2005

Conditional on years since Neolithic transition, geographical factors, and continental fixed effects.

Source: Ashraf-Galor (AER 2013)

Origins of the Reversal in the Role of Distance from the Equator

- The effect is qualitatively similar in the:
 - World sample
 - Non-former colonies sample
 - Reversal in the role of distance from the equator is largely independent of the forces of colonialism
- Temperate drift hypothesis: Advanced technologies gradually complemented production in temperate zones

- The effect is qualitatively similar in the:
 - World sample
 - Non-former colonies sample
 - Reversal in the role of distance from the equator is largely independent of the forces of colonialism
- Temperate drift hypothesis: Advanced technologies gradually complemented production in temperate zones

- The effect is qualitatively similar in the:
 - World sample
 - Non-former colonies sample
 - Reversal in the role of distance from the equator is largely independent of the forces of colonialism
- Temperate drift hypothesis: Advanced technologies gradually complemented production in temperate zones

- The effect is qualitatively similar in the:
 - World sample
 - Non-former colonies sample
 - Reversal in the role of distance from the equator is largely independent of the forces of colonialism
- Temperate drift hypothesis: Advanced technologies gradually complemented production in temperate zones

- The effect is qualitatively similar in the:
 - World sample
 - Non-former colonies sample
 - Reversal in the role of distance from the equator is largely independent of the forces of colonialism
- Temperate drift hypothesis: Advanced technologies gradually complemented production in temperate zones

Population Density in 1500 and Income per Capita in 2005 – World Sample

Population Density in 1500 & Income per Capita in 2005 – Ex-Colonies Sample

- This reversal in the relative performance of countries is:
 - Absent in the world sample
 - Present in the former colonies sample
 - Reversal of Fortune is largely triggered by colonialism (Engerman-Sokoloff, 1997; Acemorlu et al., AER 2001, OJE 2002)

- This reversal in the relative performance of countries is:
 - Absent in the world sample
 - Present in the former colonies sample
 - Reversal of Fortune is largely triggered by colonialism (Engerman-Sokoloff, 1997; Acemorlu et al., AER 2001, OJE 2002)

- This reversal in the relative performance of countries is:
 - Absent in the world sample
 - Present in the former colonies sample
 - Reversal of Fortune is largely triggered by colonialism (Engerman-Sokoloff, 1997; Acemoglu et al., AER 2001, QJE 2002)

- This reversal in the relative performance of countries is:
 - Absent in the world sample
 - Present in the former colonies sample
 - Reversal of Fortune is largely triggered by colonialism (Engerman-Sokoloff, 1997; Acemoglu et al., AER 2001, QJE 2002)

- Persistent effect of institutions implemented by colonial powers (Engerman-Sokoloff,
 - 1997; Acemoglu et al., AER 2001, QJE 2002)
 - Exclusive (growth retarding) institutions imposed in densely populated areas
 - Inclusive (growth enhancing) institutions implemented in sparsely populated areas
- Persistent effect of the human capital and diversity brought by the colonists
 - Larger effect of colonizers in sparsely populated areas (Glaeser et al., JEG 2004;
 Easterly-Levine, 2016; Ashraf-Galor, 2014)

- $\bullet \ \ \text{Persistent effect of institutions implemented by colonial powers } \text{$_{\text{Engerman-Sokoloff},}$}$
 - 1997; Acemoglu et al., AER 2001, QJE 2002)
 - Exclusive (growth retarding) institutions imposed in densely populated areas
 - Inclusive (growth enhancing) institutions implemented in sparsely populated areas
- Persistent effect of the human capital and diversity brought by the colonists
 - Larger effect of colonizers in sparsely populated areas (Glaeser et al., JEG 2004;
 Easterly-Levine, 2016; Ashraf-Galor, 2014)

 $\bullet \ \ \text{Persistent effect of institutions implemented by colonial powers } \text{$_{\text{Engerman-Sokoloff},}$}$

1997; Acemoglu et al., AER 2001, QJE 2002)

- Exclusive (growth retarding) institutions imposed in densely populated areas
- Inclusive (growth enhancing) institutions implemented in sparsely populated areas
- Persistent effect of the human capital and diversity brought by the colonists
 - Larger effect of colonizers in sparsely populated areas (Glaeser et al., JEG 2004)
 Easterly-Levine, 2016; Ashraf-Galor, 2014)

Persistent effect of institutions implemented by colonial powers (Engerman-Sokoloff,

1997; Acemoglu et al., AER 2001, QJE 2002)

- Exclusive (growth retarding) institutions imposed in densely populated areas
- Inclusive (growth enhancing) institutions implemented in sparsely populated areas
- Persistent effect of the human capital and diversity brought by the colonists
 - Larger effect of colonizers in sparsely populated areas (Glaeser et al., JEG 2004; Easterly-Levine, 2016; Ashraf-Galor, 2014)

Persistent effect of institutions implemented by colonial powers (Engerman-Sokoloff,

1997; Acemoglu et al., AER 2001, QJE 2002)

- Exclusive (growth retarding) institutions imposed in densely populated areas
- Inclusive (growth enhancing) institutions implemented in sparsely populated areas
- Persistent effect of the human capital and diversity brought by the colonists
 - Larger effect of colonizers in sparsely populated areas (Glaeser et al., JEG 2004; Easterly-Levine, 2016; Ashraf-Galor, 2014)

Population Density in 1500 & Subsequent Changes in Genetic Diversity

Disease environment

 Persistent effect on labor productivity & investment in human capita (Gallup-Sachs, 2001; Andersen-Dalgaard-Selaya, RES 2016)

Geographical isolation

- Reduced trade and technological diffusion (Gallup-Mellinger-Sachs, 1999)
- Persistence of culture conducive for innovations (Ashraf-Galor-Özak, JEEA 2016)
 Özak, 2011)

Range of soil quality

- Emergence of geographical specific human capital ⇒ reduced mobility
 ⇒ ethnic fractionalization (Michalopoulos, AER 2012)
 - Persistent effect of ethnic fractionalization (Excess Leave, QUE 1997)

Ecological diversity & storable crops

Emergence & persistence of state capacity (Fenske, JEEA 2014;
 Mayshar-Moav-Neeman, 2014)

- Disease environment
 - Persistent effect on labor productivity & investment in human capital (Gallup-Sachs, 2001; Andersen-Dalgaard-Selaya, RES 2016)
- Geographical isolation
 - Reduced trade and technological diffusion (Gallup-Mellinger-Sachs, 1999)
 - Persistence of culture conducive for innovations (Ashraf-Galor-Özak, JEEA 2010)
 Özak, 2011)
- Range of soil quality
 - Emergence of geographical specific human capital ⇒ reduced mobility
 ⇒ ethnic fractionalization (Michalopoulos, AER 2012)
- Ecological diversity & storable crops
 - Emergence & persistence of state capacity (Fenske, JEEA 2014;
 Mayshar-Moav-Neeman, 2014)

Disease environment

 Persistent effect on labor productivity & investment in human capital (Gallup-Sachs, 2001; Andersen-Dalgaard-Selaya, RES 2016)

Geographical isolation

- Reduced trade and technological diffusion (Gallup-Mellinger-Sachs, 1999)
- Range of soil quality
 - Emergence of geographical specific human capital ⇒ reduced mobility
 ⇒ ethnic fractionalization (Michalopoulos, AER 2012)
- Ecological diversity & storable crops
 - Emergence & persistence of state capacity (Fenske, JEEA 2014;
 Mayshar-Moav-Neeman, 2014)

- Disease environment
 - Persistent effect on labor productivity & investment in human capital (Gallup-Sachs, 2001; Andersen-Dalgaard-Selaya, RES 2016)
- Geographical isolation
 - Reduced trade and technological diffusion (Gallup-Mellinger-Sachs, 1999)
 - Persistence of culture conducive for innovations (Ashraf-Galor-Özak, JEEA 2010 Özak, 2011)
- Range of soil quality
 - Emergence of geographical specific human capital ⇒ reduced mobility
 ⇒ ethnic fractionalization (Michalopoulos, AER 2012)
- Ecological diversity & storable crops
 - Emergence & persistence of state capacity (Fenske, JEEA 2014;
 Mayshar-Moav-Neeman, 2014)

- Disease environment
 - Persistent effect on labor productivity & investment in human capital (Gallup-Sachs, 2001; Andersen-Dalgaard-Selaya, RES 2016)
- Geographical isolation
 - Reduced trade and technological diffusion (Gallup-Mellinger-Sachs, 1999)
 - Persistence of culture conducive for innovations (Ashraf-Galor-Özak, JEEA 2010;
 Özak, 2011)
- Range of soil quality
 - Emergence of geographical specific human capital ⇒ reduced mobility
 ⇒ ethnic fractionalization (Michalopoulos, AER 2012)
- Ecological diversity & storable crops
 - Emergence & persistence of state capacity (Fenske, JEEA 2014;
 Mayshar-Moav-Neeman, 2014)

- Disease environment
 - Persistent effect on labor productivity & investment in human capital (Gallup-Sachs, 2001; Andersen-Dalgaard-Selaya, RES 2016)
- Geographical isolation
 - Reduced trade and technological diffusion (Gallup-Mellinger-Sachs, 1999)
 - Persistence of culture conducive for innovations (Ashraf-Galor-Özak, JEEA 2010;
 Özak, 2011)
- Range of soil quality
 - Emergence of geographical specific human capital ⇒ reduced mobility
 ⇒ ethnic fractionalization (Michalopoulos, AER 2012)
 - Persistent effect of ethnic fractionalization (Easterly-Levine, QJE 1997)
- Ecological diversity & storable crops
 - Emergence & persistence of state capacity (Fenske, JEEA 2014;
 Mayshar-Moav-Neeman, 2014)

- Disease environment
 - Persistent effect on labor productivity & investment in human capital (Gallup-Sachs, 2001; Andersen-Dalgaard-Selaya, RES 2016)
- Geographical isolation
 - Reduced trade and technological diffusion (Gallup-Mellinger-Sachs, 1999)
 - Persistence of culture conducive for innovations (Ashraf-Galor-Özak, JEEA 2010;
 Özak, 2011)
- Range of soil quality
 - Emergence of geographical specific human capital ⇒ reduced mobility
 ⇒ ethnic fractionalization (Michalopoulos, AER 2012)
 - Persistent effect of ethnic fractionalization (Easterly-Levine, QJE 1997)
- Ecological diversity & storable crops
 - Emergence & persistence of state capacity (Fenske, JEEA 2014;
 Mayshar-Moav-Neeman, 2014)

- Disease environment
 - Persistent effect on labor productivity & investment in human capital (Gallup-Sachs, 2001; Andersen-Dalgaard-Selaya, RES 2016)
- Geographical isolation
 - Reduced trade and technological diffusion (Gallup-Mellinger-Sachs, 1999)
 - Persistence of culture conducive for innovations (Ashraf-Galor-Özak, JEEA 2010;
 Özak, 2011)
- Range of soil quality
 - Emergence of geographical specific human capital ⇒ reduced mobility
 ⇒ ethnic fractionalization (Michalopoulos, AER 2012)
 - Persistent effect of ethnic fractionalization (Easterly-Levine, QJE 1997)
- Ecological diversity & storable crops
- Emergence & persistence of state capacity (Fenske, JEEA 2014)

- Disease environment
 - Persistent effect on labor productivity & investment in human capital (Gallup-Sachs, 2001; Andersen-Dalgaard-Selaya, RES 2016)
- Geographical isolation
 - Reduced trade and technological diffusion (Gallup-Mellinger-Sachs, 1999)
 - Persistence of culture conducive for innovations (Ashraf-Galor-Özak, JEEA 2010;
 Özak, 2011)
- Range of soil quality
 - Emergence of geographical specific human capital ⇒ reduced mobility
 ⇒ ethnic fractionalization (Michalopoulos, AER 2012)
 - Persistent effect of ethnic fractionalization (Easterly-Levine, QJE 1997)
- Ecological diversity & storable crops
 - Emergence & persistence of state capacity (Fenske, JEEA 2014; Mayshar-Moav-Neeman, 2014)

- Disease environment
 - Persistent effect on labor productivity & investment in human capital (Gallup-Sachs, 2001; Andersen-Dalgaard-Selaya, RES 2016)
- Geographical isolation
 - Reduced trade and technological diffusion (Gallup-Mellinger-Sachs, 1999)
 - Persistence of culture conducive for innovations (Ashraf-Galor-Özak, JEEA 2010;
 Özak, 2011)
- Range of soil quality
 - Emergence of geographical specific human capital ⇒ reduced mobility
 ⇒ ethnic fractionalization (Michalopoulos, AER 2012)
 - Persistent effect of ethnic fractionalization (Easterly-Levine, QJE 1997)
- Ecological diversity & storable crops
 - Emergence & persistence of state capacity (Fenske, JEEA 2014; Mayshar-Moav-Neeman, 2014)

- Land suitable for large plantations
 - Inequality:
 - Extractive institutions (Engerman-Sokoloff, 1997)
 - Concentration of landownership:
 - Suboptimal investment in public education (Galor-Moav-Vollrath, RES 2009)
- Soil quality conducive for agriculture
 - Specialization in unskilled-intensive goods
 - Reduces human capital formation & increases fertility & slows that transition to modern prowth powerhouses and

- Land suitable for large plantations
 - Inequality:
 - Extractive institutions (Engerman-Sokoloff, 1997)
 - Concentration of landownership:
 - Suboptimal investment in public education (Galor-Moav-Vollrath, RES 2009)
- Soil quality conducive for agriculture
 - Specialization in unskilled-intensive goods
 - Reduces human capital formation & increases fertility & slows that transition to modern growth (constanting res 200)

- Land suitable for large plantations
 - Inequality:
 - Extractive institutions (Engerman-Sokoloff, 1997)
 - Concentration of landownership:
 - Suboptimal investment in public education (Galor-Moav-Vollrath, RES 2009)
- Soil quality conducive for agriculture
 - Specialization in unskilled-intensive goods
 - Reduces human capital formation & increases fertility & slows thin tensiling to modern growth management are seen.

- Land suitable for large plantations
 - Inequality:
 - Extractive institutions (Engerman-Sokoloff, 1997)
 - Concentration of landownership:
 - Suboptimal investment in public education (Galor-Moav-Vollrath, RES 2009)
- Soil quality conducive for agriculture

- Land suitable for large plantations
 - Inequality:
 - Extractive institutions (Engerman-Sokoloff, 1997)
 - Concentration of landownership:
 - Suboptimal investment in public education (Galor-Moav-Vollrath, RES 2009)
- Soil quality conducive for agriculture
 - Specialization in unskilled-intensive goods

- Land suitable for large plantations
 - Inequality:
 - Extractive institutions (Engerman-Sokoloff, 1997)
 - Concentration of landownership:
 - Suboptimal investment in public education (Galor-Moav-Vollrath, RES 2009)
- Soil quality conducive for agriculture
 - Specialization in unskilled-intensive goods
 - Reduces human capital formation & increases fertility & slows the transition to modern growth (Galor-Mountford, RES 2008)

- Land suitable for large plantations
 - Inequality:
 - Extractive institutions (Engerman-Sokoloff, 1997)
 - Concentration of landownership:
 - Suboptimal investment in public education (Galor-Moav-Vollrath, RES 2009)
- Soil quality conducive for agriculture
 - Specialization in unskilled-intensive goods

- Land suitable for large plantations
 - Inequality:
 - Extractive institutions (Engerman-Sokoloff, 1997)
 - Concentration of landownership:
 - Suboptimal investment in public education (Galor-Moav-Vollrath, RES 2009)
- Soil quality conducive for agriculture
 - Specialization in unskilled-intensive goods
 - Reduces human capital formation & increases fertility & slows the transition to modern growth (Galor-Mountford, RES 2008)

Geographical Origins of Cultural Factors

- Female labor force participation (Alesina-Giuliano-Nunn, QJE 2013), Hansen et al, JEG 2015)
- Individualism (Dalgaard-Knudsen-Selaya, 2016
- Time Preference (Galor-Özak, AER 2016)

Geographical Origins of Cultural Factors

- Female labor force participation (Alesina-Giuliano-Nunn, QJE 2013), Hansen et al, JEG 2015)
- Individualism (Dalgaard-Knudsen-Selaya, 2016)
- Time Preference (Galor-Özak, AER 2016)

Geographical Origins of Cultural Factors

- Female labor force participation (Alesina-Giuliano-Nunn, QJE 2013), Hansen et al, JEG 2015)
- Individualism (Dalgaard-Knudsen-Selaya, 2016)
- Time Preference (Galor-Özak, AER 2016)