Monge

Neal Yan

MOSP 2025

Honestly though I've come to terms with Monge existing- for there to be good theorems there also have to be bad ones, and you need to accept them.

Aprameya Tripathy

Remark. This lecture was originally given at G2 2024; since then, difficulty adjustment has been made.

This is actually about circle homotheties in general; as will be seen, these two concepts are inseparable.

♣1 Motivation

This is primarily a cool, incompletely explored piece of math that can turn up unexpectedly in problems. The 'cool' part becomes more apparent if you try to use it in problem proposals.

♣2 Theory

Fancy geometry parlance

Point *P* is a **similicenter** of two shapes \mathcal{A} , \mathcal{B} if there's a homothety at *P* sending $\mathcal{A} \to \mathcal{B}$. It is said to be an **ex**similicenter or **in**similicenter according to whether said homothety has positive or negative scale factor.

Usually, the shapes in question are circles or polygons with ≤ 4 sides.

Theorem (Monge)

For any three circles ω_1 , ω_2 , ω_3 , pairwise exsimilicenters are collinear. Also, the insimilicenter of two pairs of circles and the exsimilicenter of the third are collinear as well. concur.

Pitot

Quadrilateral ABCD has an incircle iff AB + CD = AD + BC, and has an excircle iff AB + BC = AD + DC or BA + AD = BC + CD.

Theorem

If ABCD is tangential (has an incircle), then the incircles of triangle ABC and ADC are tangent on \overline{AC} and similarly for BCD, BAD, \overline{BD} .

♣3 Problems

Problem 1 (Iran TST). Let ABC be an isosceles triangle with AB = AC and incenter I. Circle ω passes through C and I and is tangent to AI. Circle ω intersects AC and circumcircle of ABC at Q and D, respectively. Let M be the midpoint of AB and AB and

Problem 2 (me). Variable triangles ABC and DEF share a fixed incircle ω and circmcircle Ω . Let ω_a be the A-mixtilinear incircle of $\triangle ABC$ and define ω_d with respect to $\triangle DEF$ similarly. Determine the locus of the intersection of the common external tangents of these two circles. †

Problem 3 (ARML 2024/I10). Circle γ has center O and radius 9. Circle ω_A has radius 2 and is internally tangent to γ at point A. Circle ω_B has radius 3 and is internally tangent to γ at point B. The common external tangents of ω_A and ω_B meet at T. Given that TO = 2AB, compute AB.

Problem 4 (Part of ISL 2022/G6). Let ZBPC be a quadrilateral. Let ω_A and ω_D be the incircles and A and D the incenters of $\triangle ZBC$ and $\triangle PBC$, respectively. If ω_A and ω_D are tangent at a point H on \overline{BC} , then $Q' = \overline{ZP} \cap \overline{AD}$ satisfies (AD; HQ') = -1.

Problem 5 (EGMO 2016/4). Congruent circles ω_1 and ω_2 intersect at points X_1 and X_2 . Consider a circle ω externally tangent to ω_1 at T_1 and internally tangent to ω_2 at point T_2 . Prove that $\overline{X_1T_1} \cap \overline{X_2T_2} \in \omega$.

Problem 6 (ISL 2007/G8). Point P lies on side AB of a convex quadrilateral ABCD. Let ω be the incircle of triangle CPD, and let I be its incenter. Suppose that ω is tangent to the incircles of triangles APD and BPC at points K and L, respectively. Let lines AC and BD meet at E, and let lines E0 and E1 meet at E2. Prove that points E3, and E4 are collinear.

Problem 7 (ELMO SL 2024/G4, by me). In quadrilateral *ABCD* with incenter *I*, points W, X, Y, Z lie on sides AB, BC, CD, DA with AZ = AW, BW = BX, CX = CY, DY = DZ. Define $T = \overline{AC} \cap \overline{BD}$ and $L = \overline{WY} \cap \overline{XZ}$. Let points O_a, O_b, O_c, O_d be such that $\angle O_a ZA = \angle O_a WA = 90^\circ$ (and cyclic variants), and $G = \overline{O_a O_c} \cap \overline{O_b O_d}$. Prove that $\overline{IL} \parallel \overline{TG}$.

Problem 8 (Serbia 2017/6). Let k be the circumcircle of $\triangle ABC$ and let k_a be the A-excircle. Let the two common tangents of k, k_a intersect BC at P, Q. Prove that $\angle PAB = \angle CAQ$.

Problem 9 (ISL 2017/G7). Quadrilateral *ABCD* has incenter *I*. Let I_a , I_b , I_c and I_d be the respective incenters of triangles *DAB*, *ABC*, *BCD* and *CDA*, Suppose that the common external tangents of (AI_bI_d) and (CI_bI_d) meet at *X*, and those of the (BI_aI_c) and (DI_aI_c) meet at *Y*. Prove that $\angle XIY = 90^\circ$.

Problem 10 (ISL 2020/G5). Let ABCD be a cyclic quadrilateral. Points K, L, M, N are chosen on AB, BC, CD, DA such that KLMN is a rhombus with $KL \parallel AC$ and $LM \parallel BD$. Let ω_A , ω_B , ω_C , ω_D be the respective incircles of triangles ANK, BKL, CLM, DMN.

Prove that the common internal tangents to ω_A , and ω_C and the common internal tangents to ω_B and ω_D are

^{*}Haruka Kimura found an absolutely brilliant radical axis solution so there are multiple nice ways to interpret the midpoints.

 $^{^{\}dagger}A$ -mixtilinear incircle of $\triangle ABC$ is inside (ABC) and tangent to \overline{AB} , \overline{AC} , and (ABC). This configuration has many nice properties, actually!

concurrent.