Lesson 5. Equations of Lines and Planes in 3D

1 In this lesson...

• Different ways of writing equations of lines and planes in 3D

2 Equations of lines in 3D

2.1 Vector equations of lines

• A line *L* is determined by a point $P_0(x_0, y_0, z_0)$ and a direction given by a vector \vec{v}

- The **position vector** of a point $P(a_1, a_2, a_3)$ is the vector from the origin O(0, 0, 0) to the point P
- Let \vec{r}_0 be the position vector of P_0 : that is, $\vec{r}_0 =$
- The position vector of every point on L can be expressed as the sum of \vec{r}_0 and a scalar multiple of \vec{v}
- The **vector equation** of line L is
 - Each value of the **parameter** t gives a position vector \vec{r} on the line L
 - Positive values of $t \Leftrightarrow \text{points on one side of } P_0$
 - Negative values of $t \Leftrightarrow \text{points on the other side of } P_0$

	mple 1.
	Find a vector equation for the line that passes through the point $(2, 4, 3)$ and is parallel to the vector $\vec{i} - 2\vec{j} + 1$. Find two other points on the line.
U	. Find two other points on the line.
2 P	arametric equations of lines
• S	suppose $r(t) = \langle x(t), y(t), z(t) \rangle, \vec{v} = \langle a, b, c \rangle$
• S	so, we can write the vector equation $\vec{r} = \vec{r}_0 + t\vec{v}$ as
	$\langle x(t), y(t), z(t) \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$
7	
• 1	The parametric equations of line <i>L</i> are
T	The mumbers of the area called the dimention mumbers of line I
• 1	The numbers a, b, c are called the direction numbers of line L
Exaı	nple 2. Find a set of parametric equations for the line described in Example 1.
3 Sy	ymmetric equations of lines
	By solving the parametric equations to eliminate t , we obtain the symmetric equations of line L :
	by solving the parametric equations to eminitate t, we obtain the symmetric equations of fine L.

	nple 3. Find symmetric equations for the line through $(2, -1, 1)$ and perpendicular to both $\vec{u} = \langle 1, 0, 1 \rangle$ as $-1, 1, 0 \rangle$.
E	quations of a line in 3D are not unique
• V	We can use any point on the line as the starting point $P_0 = (x_0, y_0, z_0)$
• V	We can also use any vector parallel to the line as the direction vector $\vec{v} = \langle a, b, c \rangle$
xa r - 2	nple 4. In Example 1, we considered a line that passes through the point $(2, 4, 3)$ and is parallel to the vec $\vec{j} + 4\vec{k}$.
	Using a different point, find another set of parametric equations for this line.
D.	Using a different direction vector, find another set of parametric equations for this line.

2.5 Parallel lines and skew lines

- Two lines are **parallel** if their directions are given by parallel vectors
- Two lines are **skew lines** if they do not intersect and are not parallel
 - o i.e., they do not lie on the same plane

Example 5. Here are parametric equations for two lines:

$$L_{1}: \begin{cases} x = 1 + t \\ y = -2 + 3t \\ z = 4 - t \end{cases} \qquad L_{2}: \begin{cases} x = 2s \\ y = 3 + s \\ z = -3 + 4s \end{cases}$$

Are they parallel? Are they skew lines?

3 Equations of planes in 3D

3.1 Vector and scalar equations of planes

- A **plane** is determined by
 - a point $P_0(x_0, y_0, z_0)$ on the plane and
 - a **normal vector** \vec{n} orthogonal to the plane
- Let \vec{r}_0 be the position vector of P_0 ; that is, $\vec{r}_0 =$
- Let \vec{r} be the position vector of <u>some</u> point on the plane, say $\vec{r} = \langle x, y, z \rangle$
- $\Rightarrow \vec{r} \vec{r}_0$ is a vector in the plane, and must be orthogonal to the normal vector \vec{n}

- The **vector equation** of the plane is
- Let $\vec{n} = \langle a, b, c \rangle$
- Expanding the vector equation, we obtain

• The **scalar equation** of the plane is

Example 6.

- a. Find an equation of the plane through the point (-1, 4, 2) with normal vector $\vec{n} = (4, 3, 2)$.
- b. Find where the plane intercepts the x-, y- and z-axes. Sketch the plane in the first orthant.

Example 7. Find an equation of the plane that passes through the point (1, 2, 3) and is perpendicular to the line x = 3t, y = 1 + t, z = 2 - t.

Ļ	Practice!							
	Example 8. Find an equation of the plane that passes through the points $P(1, 2, 3)$, $Q(3, 6, -1)$ and $R(5, 0, 2)$							
Example 9. Find the point at which the line								
	x = 1 + 2t, y = 4t, z = 2 - 3t							
	intersects the plane $x + 2y - z + 1 = 0$.							

Example 10. Find an equation of the plane that passes through the point $(1, 2, 3)$ and contains the line $x = 3t$, $y = 1 + t$, $z = 2 - t$.									