

大模型基础: Transformer原理

主讲: 东东东

B站视频链接:

https://www.bilibili.com/video/BV1BZTszKEbv/?share source=copy web&vd source=f23fdab1cf57871b257305ebe143b9c2

大模型基础: Transformer原理

- 1. 大模型是如何生成文本的?
- 2. 大模型的基础 Transformer结构
 - Transformer: 让语言模型拥有上下文理解能力,"注意"到每一个前文词汇
 - 模块化结构:
 - 1.注意力模块 (Attention Module)
 - 2.全连接神经网络模块 (Feed-Forward Network Module/Multilayer Perceptron)

3. Transformer中的注意力(Attention)机制

- - 输入: 初始词向量 = E >注意力层 > 输出: 包含前文信息的词向量=E'
- 让当前词"注意"到每一个前文词汇,"注意力"通过**Q,K,V**计算
 - Q- Query 查询
 - K Keys 键
 - V Values 值
- 根据"注意力"程度,把前文词汇语义信息加入到当前词汇中使大模型能理解文本内容

The cat

1.大模型是如何生成文本/产生对话的?

大模型每次预测下一个"最有可能"的词汇,循环往复

大模型是如何生成文本的?

To date, the cleverest thinker of all time was undoubtedly Einstein, for his theories of Relativity, which completely revolution _____

Transformer (2017)是大模型的基础,现有的各种大模型都基于Transformer中的核心概念-**注意力(Attention)**机制

大模型是如何生成文本的?

大模型每次预测**基于已有文本**的 **下一个"最有可能"**的词汇,循环往复,最终生成大段文字 (见图1, 2, 3)

大模型是如何回答问题的?

循环往旬

大模型是如何回答问题的?

• 和生成文本的原理一样,每次输出下一 **个"最有可能"的词,循环往复**,最终生 成回答

大模型是如何生成文本/回答问题的?

循环往复

大模型是如何回答问题的?

• 和生成文本的原理一样,每次输出**下一个"最有可能"的词,循环往复**,最终生成回答

所有主流大模型的设计基础 – Transformer

为什么是Transformer? Transformer 相比其他自然语言模型的优势

-支持并行输入(充分利用GPU的并行计算能力)

大模型是如何生成文本/回答问题的?

循环往复

大模型是如何回答问题的?

• 和生成文本的原理一样,每次输出**下一个"最有可能"的词,循环往复**,最终生成回答

所有主流大模型的设计基础 – Transformer

为什么是Transformer? Transformer 相比其他自然语言模型的优势

-支持并行输入(充分利用GPU的并行计算能力)

2. 大模型基础 - Transformer结构

注意力模块 (Attention Module),全连接神经网络模块 (Feed-Forward Network Module/Multilayer Perceptron)

Transformer的提出

"Attention Is All You Need", 2017, Google

Transformer结构组成

- 编码器(Encoder), 解码器(Decoder)
 - 注意力模块(Attention Module)
 - 全连接神经网络模块 (Feed-Forward Network Module/Multilayer Perceptron)

语言模型的发展

- 早期模型
 - 编码器(Encoder) +解码器(Decoder)
 - Transformer, 2017
 - T5, 2019
 - · 编码器(Encoder Only)
 - BERT, 2018
- 主流模型: 解码器 (Decoder Only)

Transformer的提出

"Attention Is All You Need", 2017, Google

Transformer结构组成

- 编码器(Encoder), 解码器(Decoder)
 - 注意力模块(Attention Module)
 - · 全连接神经网络模块 (Feed-Forward Network Module/Multilayer Perceptron)

语言模型的发展

- 早期模型
 - 编码器(Encoder) +解码器(Decoder)
 - Transformer, 2017
 - T5, 2019
 - ·编码器(Encoder Only)
 - BERT, 2018
- 主流模型: 解码器 (Decoder Only)
 - ChatGPT, Gemini, Llama, Qwen, ChatGLM, 文心, DeepSeek ...

Transformer结构

- 编码器(Encoder), 解码器(Decoder)
 - 注意力模块(Attention Module)
 - 主要作用:上下文理解
 - 核心概念:注意力机制
 - 前馈神经网络模块 (Feed-Forward Network Module)
 - ~2/3参数
 - 主要作用:知识/记忆存储
- 注意力模块(Attention Module)
 - 主要作用:上下文理解
 - 核心组成:
 - 注意力层
 - Query, Key, Value

Transformer结构

- 编码器(Encoder), 解码器 (Decoder)
 - 注意力模块(Attention Module)
 - 主要作用:上下文理解
 - 核心概念: 注意力机制
 - 前馈神经网络模块 (Feed-Forward Network Module)
 - ~2/3参数
 - 主要作用:知识/记忆存储
- 注意力模块 (Attention Module)
 - 主要作用:上下文理解
 - 核心组成:
 - 注意力层
 - Query, Key, Value
 - 残差连接 (⊕)
 - 避免深层网络梯度消失
 - Y = x + F(x)
 - dY/dx = 1 + dF/dx

图片:

https://paperswithcode.com/method/resid ual-connection

Transformer结构

- 编码器(Encoder), 解码器 (Decoder)
 - 注意力模块(Attention Module)
 - 主要作用:上下文理解
 - 核心概念: 注意力机制
 - 前馈神经网络模块 (Feed-Forward Network Module)
 - ~2/3参数
 - 主要作用:知识/记忆存储
- 注意力模块(Attention Module)
 - 主要作用:上下文理解
 - 核心组成:
 - 注意力层
 - Query, Key, Value
 - 残差连接 (⊕)
 - 避免深层网络梯度消失
 - · 层正则化 (Norm)
 - 稳定&加速训练,增强泛化

3. Transformer中的注意力(Attention)机制

目的:让文本里的每一个词(Token)包含前文信息,模型更好理解文本内容

*词汇信息 --- 词向量表示 (E)

初始词向量 = E →注意力层 → 包含前文信息的词向量=E'

 $E' = E + \Delta E$

 $\Delta E = f(Q,K,V) = Attention(Q,K,V)$

Q, K, V 分别是 查询 (Queries), 键 (Keys)和 值 (Values)

词(Token)的向量表示 - 词向量E

大模型理解语言的方式

- 文本基础构建: 词(Token)
- 词的向量化(Word Embedding)
 - 词向量 E
 - 包含词的含义
 - 可运算
- 词向量的不足之处
 - · 仅反应当前词(单个词)的含义, 缺乏上下文关联

词(Token)的向量表示 – 词向量E

大模型理解语言的方式

- 文本基础构建:词(Token)
- 词的向量化(Word Embedding)
 - 词向量 E
 - 包含词的含义
 - 可运算
- 词向量的不足之处
 - 仅反应当前词(单个词)的含义, 缺乏上下文反应的信息

1."苹果公司发布了新款iPhone,股价应声上涨。"

2."她每天吃一个苹果、医生夸她饮食健康。'

词(Token)的向量表示 – 词向量E

大模型理解语言的方式

- 文本基础构建: 词(Token)
- 词的向量化(Word Embedding)
 - 词向量 E
 - 包含词的含义
 - 可运算
- 词向量的不足之处
 - 仅反应当前词(单个词)的含义, 缺乏上下文反应的信息

上下文对语义的影响

1."苹果公司发布了新款iPhone,股价应声上涨。"

2."她每天吃一个苹果, 医生夸她饮食健康。'

如何让每一个词向量包含前文语义?

让当前词汇"注意"到前文词汇的语义信息,根据注意力程度将前文词汇语义融入到当前词汇中 – 注意力机制

注意力机制 Attention: 让每一个词(向量)"注意"到前文词汇

目的: 让文本里的每一个词向量包含前文有效信息, 让模型更好理解结合上下文的语义内容

如何让文本里的每一个词向量包含前文有效信息?

- 原始词向量E (不包含前文信息, 只包含词本身信息)
- 目标词向量E'(词本身信息+前文信息)
- 如何从E到E'? 注意力机制(Attention)
 - $E' = E + \Delta E$
 - $\Delta E = f(Q,K,V) = Attention(Q,K,V)$

注意力机制 Attention: 让每一个词(向量)"注意"到前文词汇

目的: 让文本里的每一个词向量包含前文有效信息, 模型更好理解文本内容

如何让文本里的每一个词向量包含前文有效信息?

- 原始词向量E (只包含词本身信息)
- 目标词向量E'(词本身信息+前文信息)
- 如何从E到E'? 注意力机制(Attention)
 - $E' = E + \Delta E$
 - $\Delta E = f(Q,K,V) = Attention(Q,K,V)$

注意力机制的核心: Q, K, V

Q,K,V分别是查询(Queries),键(Keys)和值(Values)

目的: 让文本里的每一个词向量包含前文有效信息, 模型更好理解文本内容

如何让文本里的每一个词向量包含前文有效信息?

- 原始词向量E (不包含前文信息, 只包含词本身信息)
- 目标词向量E'(词本身信息+前文信息)
- 如何从E到E'? 注意力机制 (Attention)
 - $E' = E + \Delta E$ ($\Delta E = Attention(Q,K,V)$)

注意力机制的核心: Q, K, V

Q, K, V 分别是 查询 (Queries), 键 (Keys) 和 值 (Values)

键 (Keys)

直(Values)

概念	概念类比(网络搜索)
Query	查询问题: " 适合孩子的北京景点 "
Key	网页标签:"亲子游","博物馆","北京",
V alue	网页内容

目的: 让文本里的每一个词向量包含前文有效信息, 模型更好理解文本内容

如何让文本里的每一个词向量包含前文有效信息?

- 原始词向量E (不包含前文信息, 只包含词本身信息)
- 目标词向量E'(词本身信息(E)+前文信息(ΔE))
- 前文信息(ΔE)~注意力机制(Attention)
 - $\Delta E = Attention(Q,K,V)$
 - $E' = E + \Delta E$

注意力机制的核心: Q, K, V

Q, K, V 分别是 查询 (Queries), 键 (Keys) 和 值 (Values)

概念	概念类比(网络搜索)
Query	查询问题:" 适合孩子的北京景点 "
Key	网页标签:"亲子游","博物馆","北京",
Value	网页内容

目的: 让文本里的每一个词向量包含前文有效信息, 模型更好理解文本内容

如何让文本里的每一个词向量包含前文有效信息?

- 原始词向量E (不包含前文信息, 只包含词本身信息)
- 目标词向量E'(词本身信息(E)+前文信息(ΔE))
- 前文信息(ΔE)~注意力机制(Attention)
 - $\Delta E = Attention(Q,K,V)$
 - $E' = E + \Delta E$

注意力机制的核心: Q, K, V

Q, K, V 分别是 查询 (Queries), 键 (Keys) 和 值 (Values)

查询(Queries)

键 (Keys)

(Values)

让当前词向量增加前文词汇信息

- -检索前文词汇语义信息,让当前词汇分配"注意力"在前文词汇上
- 更相关的前文词汇--- 分配更多"注意力"
- 不相关的前文词汇--- 分配更少"注意力"

注意力程度-Q, K决定(Q,K相关度)

前文词汇语义 - V

概念	概念类比(网络搜索)
Query	查询问题:" 适合孩子的北京景点 "
Key	网页标签:"亲子游","博物馆","北京",
Value	网页内容

网页检索相关信息:

- -分配不同的"注意力"在检索的网页上
- 相关网页--- 分配更多"注意力"
- 不相关网页 --- 分配更少"注意力"

图片: https://www.youtube.com/watch?v=KJtZARuO3JY&t=2989s

如何让**当前词(E)** 获得**前文所有词汇的有效信息 (**ΔE**)**?

- **1. 询问**:对前文每一个词语义信息进行**查询/询问 (Q**)
- 2. 答案:获得前文每一个词得到查询**答案 (K)**
 - 1. 如果被查询的前文词汇的答案K和问题Q相关度高(答案匹配问题)→此词汇对当前词汇重要性高,应该被分配更多的"注意力"-注意力系数 = f(Q,K)
- 3. <u>根据注意力融合</u>: 根据每一个前文词汇分配的"注意力",将**前文** 词汇语义 (V) 融合到当前词汇中
 - 1. 每一个前文词汇的有效信息= 注意力系数f(Q,K) * 语义V
 - 2. 将每一个前文词汇的有效信息 融入到 当前词汇(E)中

如何让**当前词(E)** 获得**前文所有词汇的有效信息 (**ΔE**)**?

- 1. 询问:对前文每一个词语义信息进行查询/询问(Q)
- 2. 答案: 获得前文每一个词得到查询答案 (K)
 - 1. 如果被查询的前文词汇的答案K和问题Q相关度高(答案匹配问题)→此词汇对当前词汇重要性高,应该被分配更多的"注意力"-注意力系数 = f(Q,K)
- 3. <u>根据注意力融合</u>: 根据每一个前文词汇分配的"注意力",将**前文** 词汇语义(V)融合到当前词汇中
 - 1. 每一个前文词汇的有效信息= 注意力系数f(Q,K) * 语义V
 - 2. 将每一个前文词汇的有效信息 融入到 当前词汇(E)中

Q和K是如何反应前文词汇对当前词汇的重要性 (如何计算注意力 系数)?

- 注意力系数 通过向量点积KQ的大小
 - 反映了KQ向量的相似度,如果KQ相似度高
 - 当前词向量答案K和问题Q匹配度高, 当前词向量对于此问题关联度高, 注意力高, 注意力系数高
- 注意力系数 = f(KQ)

Q和K是如何反应前文词汇对当前词汇的重要性 (<mark>如何计算注意力系数</mark>)?

- 注意力系数 通过向量点积KQ的大小
 - 反映了KQ向量的相似度,如果KQ相似度高
 - 当前词向量答案K和问题Q匹配度高,当前词向量对于此问题关联度高, 注意力高,注意力系数高
- 注意力系数 = f(KQ) 为了统一衡量,方便计算,归一化KQ点积的大小,通过 Softmax函数 (0~1)

$$\text{Attention Weights} = \operatorname{softmax} \left(\frac{\mathbf{Q} \mathbf{K}^T}{\sqrt{d_k}} \right)$$

如何让**当前词(E)** 获得**前文所有词汇的有效信息 (**ΔE**)**?

- 1. **询问**:对前文每一个词语义信息进行**查询/询问(Q)**
- 2. <u>答案</u>: 获得前文每一个词得到查询答案 (K)
 - 如果被查询的前文词汇的答案K和问题Q相关度高 (答案匹配问题)→此词汇对当前词汇重要性高, 应该被分配更多的"注意力"-注意力系数=f(Q,K)
- 3. <u>根据注意力融合</u>根据每一个前文词汇分配的"注意力", 将**前文词汇语义(V)融合**到当前词汇中
 - 1. 每一个前文词汇的有效信息= 注意力系数f(Q,K) * 语义V
 - 2. 将每一个前文词汇的有效信息 融入到 当前词汇(E)中

$$E' = E + \Delta E$$

 $\Delta E = \sum (注意力系数*V) = \sum (f(Q,K)*V)_{25}$

Q和K是如何反应前文词汇对当前词汇的重要性 (<mark>如何计算注意力系数</mark>)?

- 注意力系数 通过向量点积KQ的大小
 - 反映了KQ向量的相似度,如果KQ相似度高
 - 当前词向量答案K和问题Q匹配度高,当前词向量对于此问题关联度高, 注意力高,注意力系数高
- 注意力系数 = f(KQ) 为了统一衡量,方便计算,归一化KQ点积的大小,通过 Softmax函数 (0^{-1})

$$\text{Attention Weights} = \operatorname{softmax} \left(\frac{\mathbf{Q} \mathbf{K}^T}{\sqrt{d_k}} \right)$$

如何让**当前词(E)** 获得**前文所有词汇的有效信息 (**ΔE**)**?

- 1. **询问**:对前文每一个词语义信息进行**查询/询问(Q)**
- 2. 答案: 获得前文每一个词得到查询答案 (K)
 - 如果被查询的前文词汇的答案K和问题Q相关度高 (答案匹配问题) → 此词汇对当前词汇重要性高 应该被分配更多的"注意力" - 注意力系数 = f(Q,K)
- 3. <u>根据注意力融合</u>:根据每一个前文词汇分配的"注意力", 将**前文词汇语义(V)融合**到当前词汇中
 - 1. 每一个前文词汇的有效信息= 注意力系数f(Q,K) * 语义V
 - 2. 将每一个前文词汇的有效信息 融入到 当前词汇(E)中

E' = E + ΔE ΔE = Σ (注意力系数 * V) = Σ (f (Q,K) * V) ₂₆

V- Values 值

V=当前词汇的部分语义 (单头Single Head)

E = 当前词汇的全部语义

V和E的区别?

- V包含了E的部分语义,在**多头**机制下,每一个头 (Head) 的V都包含了E的一部分语义
- 假设E的维度是12288, 一共有16头, 那么每头(Head)中 V的维度 = 12288/16 = 768维 多头设计的作用: 并行计算效率增加; 提高稳定性; 多个角度(头) 捕捉语义关系

V- Values 值

V=当前词汇的部分语义 (单头Single Head)

E = 当前词汇的全部语义

V和E的区别?

- V包含了E的部分语义,在**多头**机制下,每一个头 (Head) 的V都包含了E的一部分语义
 - 假设E的维度是12288,一共有16头,那么每头(Head)中 V的维度 = 12288/16 = 768维

多头设计的作用: 并行计算效率增加; 提高稳定性; 多个角度(头) 捕捉语义关系

图片: https://www.youtube.com/watch?v=KJtZARuO3JY&t=2989s

多头(Multi-Head) 机制

- 将语义理解任务分配给多个专家(头)
- 每个专家(头)负责一部分的语义理解 V
- 多个专家组同时进行工作,最后汇总所有专家(头)的结果

V- Values 值

V=当前词汇的部分语义 (单头Single Head)

E = 当前词汇的全部语义

V和E的区别?

 $E' = E + \Delta E$

 $\Delta E = ?$

1. Attention Weights = f(QK)

2. Attention = ΔE = Attention Weights * V

- V包含了E的部分语义,在**多头**机制下,每一个头 (Head) 的V都包含了E的一部分语义
 - 假设E的维度是12288,一共有16头,那么每头(Head)中 V的维度 = 12288/16 = 768维

多头设计的作用: 并行计算效率增加; 提高稳定性; 多个角度(头) 捕捉语义关系

图片: https://www.youtube.com/watch?v=KJtZARuO3JY&t=2989s

多头(Multi-Head) 机制

- 将语义理解任务分配给多个专家(头)
- 每个专家(头)负责一部分的语义理解 V
- 多个专家组同时进行工作,最后汇总所有专家(头)的结果

 ΔE $E' = E + \Delta E$

最终目标: 增强语言模型对文本的理解能力 $\leftarrow \rightarrow$ 如何让<u>当前(每一个)词向量</u>获得<u>前文所有词汇</u>的有效信息?

Ε

 ΔE $E' = E + \Delta E$

最终目标: 增强语言模型对文本的理解能力 $\leftarrow \rightarrow$ 如何让<u>当前(每一个)词向量</u>获得<u>前文所有词汇</u>的有效信息?

Ε

Transformer结构 – 多个注意力(Attention) 和全连接神经网络 (MLP) 模块

结束

主讲: 东东东

B站视频链接:

https://www.bilibili.com/video/BV1BZTszKEbv/?share_source=copy_web&vd_source=f23fdab1cf57871b257305ebe143b9c2