

Banco de Dados I

6 – Transações e Controle de Concorrência

Grinaldo Lopes de Oliveira (grinaldo@gmail.com) Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas

^{*} Material com créditos de colaboração dos professores Márcio Soussa, Leandro Coelho e Pablo Florentino

Agenda

- Aprendendo
 - Transações
 - Controle de Concorrência

Transação

O que é uma Transação

- O termo transação refere-se a uma coleção de operações que forma uma única unidade lógica de trabalho.
 - Por exemplo, uma transferência de dinheiro de uma conta para outra é uma transação consistindo de duas atualizações, uma para cada conta.

Exemplo de Transação

Transferência bancária

BEGIN TRANSACTION

```
update conta1
set saldo = saldo - 100
```

update conta2 set saldo = saldo + 100

COMMIT TRAN

Características de Transações

```
T1: Transação T<sub>1</sub>
A=ler_item (X);
A = A - N;
escrever_item (X,A);
B=ler_item (Y);
B = B + N;
escrever_item (Y,B);
```

```
T2: Transação T<sub>2</sub>
C=ler_item (X);
C = C + M;
escrever_item (X,C);
```

Transações de vários usuários

- (1) executadas concorrentemente
- (2) podem acessar e atualizar o mesmo item de dados

Transações do SGBD

Na execução de uma transação o SGBD deve garantir:

(1) Todas as operações na transação foram completadas com sucesso e seu efeito será gravado permanentemente no BD

(2) Transação NÃO terá nenhum efeito sobre o BD ou outras transações (TRANSAÇÃO FALHAR DURANTE EXECUÇÃO)

Finalização de uma Transação

- Commit Transaction
 - Encerramento da transação com sucesso;
 - Torna as atualizações permanentes;
- Rollback Transaction
 - Término de transação com erro;
 - Retorna o banco de dados à posição anterior à Transação;

O que faz uma transação falhar?

- Computador falhar por hardware, software ou rede
- Erro durante execução de operação na transação: estouro de variáveis
- Condições de exceção detectadas pela transação (necessitam o cancelamento da mesma): saldo insuficiente em conta

🏹 Transação

Falta de energia, ar-condicionado

Estados de uma Transação

Propriedades de uma Transação

ACID

- A: Atomicidade
 - Unidade lógica atômica (tudo ou nada)
- C: Consistência (Preservação)
 - Ao final de uma transação o banco continua consistente
- I: Isolamento
 - A execução de uma transação não deve sofrer interferência de outras transações concorrentes
- D: Durabilidade (Persistência)
 - Após o ponto de confirmação, as alterações devem persistir no banco de dados

Arquitetura de um SGBD Referência

Log de Transações

Características:

- Registro de todas as operações (alterações) realizadas no banco de dados;
- Base para o processo de recuperação (Recovery)
- Atualização anterior à operação realizada sobre os dados;
- Atualização física (I/O), sem utilização de buffer's.

Recuperação de Consistência (Falha de Sistema)

Processo de Recuperação

 11

- → Nada a fazer
- **T2 e T4**
- → Ser refeitas (REDO)
- **T3 e T5**
- → Ser desfeitas (UNDO)
- Checkpoint:

Atualização física dos buffer's do SGBD.

Recuperação de Consistência (Falha de Sistema)

- Processo de Recovery
 - Iniciamos o algoritmo com duas listas (Undo e Redo). Undo com a lista das transações no momento do último checkpoint e Redo vazia;
 - Pesquisamos no log de transações a partir do registro de checkpoint;
 - Se um Begin Transaction for encontrado, adicionamos a transação à lista Undo;
 - Se um Commit for encontrado, move a transação da lista Undo para a Redo;

Refazer as transações → Forward Recovery

Desfazer as transações → Backward Recovery

Transação Distribuída

Two-Phase Commit

- Protocolo para garantir o conceito de transação entre servidores distintos (Transação inter-servidores);
- Opção de efetivar ou cancelar a transação cabe a um Coordenador:
 - FASE1: O coordenador instrui todos os participantes para estarem prontos para efetivar a transação. (Forçar a gravação dos registros de log envolvidos na transação). Os participantes devem responder "Ok" ou "Não Ok" caso tenham conseguido ou não se preparar;
 - FASE2: Se todas as respostas forem "OK", o coordenador deve transmitir um Commit a todos os participantes, caso contrário emite Rollback (algum "Não Ok").

Controle de Concorrência

Problemas de Concorrência

- Atualização Perdida:
 - □ A Transação 1 perde a atualização no tempo T4.

Transação 1	Tempo	Transação 2
	1	
Select P	T1	
	1	
	T2	Select P
	I	
Update P	Т3	
	T4	Update P
	Ī	
	l	

Problemas de Concorrência

- Dependência de Transação não Concluída:
 - A Transação 1 tem acesso um dado que depende da conclusão da Transação 2.

Transação 1	Tempo	Transação 2
	T1	Update P
Select P	T2	
	T3	Rollback
		

Problemas de Concorrência

Análise Inconsistente:

Controle de Concorrência Primitiva

"Princípio da correção"

 Toda transação, se executada de forma isolada, transformará qualquer estado consistente em outro estado consistente.

Controle de Concorrência Escalonador (Scheduler)

 Escalonador : Tem como função assegurar que as transações preservem a consistência quando executadas simultaneamente.

Controle de Concorrência Escalonamento

- Serialização (Serializabilidade, Seriabilização)
 - Requisito abstrato que tem como objetivo assegurar que as transações executem de forma concorrente e ao final o estado do banco continue consistente.
- Escalonamento Serializável:
 - Quando seu efeito sobre o estado do banco de dados é igual ao de algum escalonamento serial.
- Escalonamento não-serializável:
 - Escalonamento que n\u00e3o assegura o estado consistente do banco de dados

Controle de Concorrência Bloqueios

- Como os SGBDs impõem a serialização ?
- A técnica mais comum adotada é a utilização de bloqueios sobre elementos do banco de dados, a fim de evitar um comportamento não serializável. (Pessimista)
- Uma transação obtém bloqueios sobre os elementos do banco de dados para impedir que outras transações acessem esses elementos ao mesmo tempo e, portanto, haja risco da não serialização.
- É utilizada uma tabela de bloqueios
- Há outras técnicas:
 - Timbre de hora Timestamp
 - Técnicas otimistas- Entendem que operações conflitantes são exceção

Bloqueios

Definição:

 Mecanismo que permite a uma transação impedir que outras acessem ou atualizem registros de forma a evitar os problemas de concorrência;

XLOCK:

- Bloqueio exclusivo sobre os registros;
- Utilizado para atualizações;

SLOCK:

- Bloqueio compartilhado sobre os registros;
- Utilizado para consultas.

Bloqueios

Relação entre os Bloqueios:

	XLOCK	SLOCK
XLOCK	Não	Não
SLOCK	Não	Sim

Controle de Concorrência Bloqueios

- Granularidade dos bloqueios
 - Linha (registros)
 - Página de disco
 - Tabela
 - Banco de Dados
- O SGBD decide automaticamente o melhor nível de granularidade (Bloqueio de múltipla granularidade).
- Alguns SGBDs permitem que o usuário altere a granularidade e o tipo do bloqueio.

Atualização Perdida:

Dependência de Transação não Concluída:

Análise Inconsistente:

Deadlock

- Situação onde duas transações estão simultaneamente em estado de espera (Wait), cada uma aguardando pela liberação do bloqueio (Lock) da outra;
- O SGBD deve detectar e quebrar o deadlock (sacrificar uma transação);
- Gráfico de Espera (Wait-For Graph);

Controle de Concorrência Problemas de Concorrência

- Problemas clássicos de concorrência
 - Atualização perdida (Lost Update)
 - Leitura suja (Dirty read)
 - Leitura não-repetitiva (Repeatable-read)
 - Fantasmas (Phantoms)

Controle de Concorrência Problemas de Concorrência

- Atualização perdida (Lost Update)
 - Ocorre quando duas transações que acessam os mesmos itens do banco de dados têm suas operações entrelaçadas, de modo que torne incorreto o valor de algum item.
- Leitura Suja (Dirty read)
 - Ocorre quando uma transação atualiza um item do banco de dados e, por algum motivo, outra transação ler esse item supostamente atualizado.

Controle de Concorrência Problemas de Concorrência

- Leitura Não Repetitiva (Non-Repeatable read)
 - Ocorre quando uma transação lê itens em uma determinada condição e depois outra transação altera e efetiva um novo item que satisfaz a condição da transação anterior. Caso a primeira transação faça novamente uma leitura com a mesma condição, os registros podem aparecer de maneira diferente.
- Fantasmas (Phantoms)
 - Ocorre quando uma transação lê itens em uma determinada condição e depois outra transação insere e efetiva um novo item que satisfaz a condição da transação anterior. Caso a primeira transação faça novamente uma leitura com a mesma condição, um registro "fantasma" irá aparecer

Controle de Concorrência Níveis de Isolamento (Padrão SQL-92)

- Read uncommitted
 - Permite a leitura de dados não efetivados
 - Há ganho de performance, mas perda de segurança.
- Read committed
 - Nível de isolamento Padrão
 - Leitura só pode ser feita em dados efetivados.
- Repeatable Read
 - Registros lidos não serão alterados por outros processos, garantindo releituras idênticas.
- Serializable
 - A mais restrita de todas.
 - Inserções ou deleções não podem ser feitas em conjuntos de registros lidos.

Níveis de Isolamento (SQL-92)

Nível de Isolamento	Leitura Suja (Dirty Read)	Leitura não Repetível (Nonrepeatable Read)	Registro Fantasma (Phantom)
Read Uncommitted	Ocorre	Ocorre	Ocorre
Read Committed	Não ocorre	Ocorre	Ocorre
Repeatable Read	Não ocorre	Não ocorre	Ocorre
Serializable	Não ocorre	Não ocorre	Não ocorre

Controle de Concorrência Níveis de Isolamento (Padrão SQL-92)

- Sintaxe SQL
 - A configuração do nível de isolamento pode ocorrer para todas a transações do banco de dados ou para alguma específica.
- SET TRANSACTION
 - ISOLATION LEVEL

```
[
READ UNCOMMITTED ou
READ COMMITTED *(Padrão)
REPEATABLE READ
SERIALIZABLE
]
```

Debate em Sala de Aula

Uma aplicação está com baixo tempo de resposta em virtude de muitas transações concorrentes e alto grau de bloqueios. O que você faria para minimizar este problema?

Banco de Dados I

6 – Transações e Controle de Concorrência

Grinaldo Lopes de Oliveira (grinaldo@gmail.com) Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas