TEORIA DELLA HISURA

3-ALGEBRA

oto X un inserve un voto

or P(X) Prinserve delle par di X

Definisone

Una \overline{C} algebra di parti di X è un sotto impierne di $\overline{C}(X)$, de indicheremo can $\overline{C}(X)$

- X EQu
- 2) se A∈Q => AceQ (chisson per compositions)

esembi (pansei)

- · 1×, φ ζ ε ma & alpebra, detta bamale
- B(X) € mm 6-alpebra

OSLEW Oxique

- $\chi \in \mathbb{Q} \Rightarrow \chi^{c} = \phi \in \mathbb{Q}$
- Se $(A_m)_{m \geq 1} \subseteq Q_0 \implies \bigcap_{m \geq 1} A_m = (\bigcup_{m \geq 1} A_m^c)^c \in Q_0$ (dissue per whereion unember)

La coppia (X,Q) si aire spasio misma sive e ger element $A \in Q$ si airona instent misma sive.

Ossensione

Le la proprieta 3) vole soes per union Himile, ouvers Le VA, Bell = AUBELL (e prendi An Bell) albane le li dice en alpebra

Everely:

$$Q_1 = \{ X, \phi, fax, fbx, fcxx \in \Theta(X)$$

 $Q_2 = \{ X, \phi, fax, fb, cxx \in \Theta(X) \}$

Some 3-objective? On No ($\{0\}^{c}=\{b,c\}\in Q_{1}$)

: Atou

Le X € finilo Or algebra => Or chapebra lu peucuse unece Or algebra ≠> Or chapebra =

$$Q = \begin{cases} A = \bigcup_{i=1}^{\infty} I_i : I_i = [a_i, b_i) \subset [o_{i'}), I_i \cap I_i = \emptyset & \text{if } \end{cases}$$

consolo, ma 3 0

(1)
$$X = [0,1) \in Q$$
 ($\phi = [a,a)$ $a \in [0,1)$)

$$A = [a_{11}b_{1}) \cup [a_{21}b_{2}) \cup ... \cup [a_{m1}b_{m1}]$$

$$A^{c} = [a_{11}b_{1}) \cup [a_{21}b_{2}) \cup ... \cup [a_{m1}b_{m1}]$$

$$A^{c} = [a_{11}b_{1}) \cup [b_{1}a_{2}) \cup ... \cup [b_{m1}a_{n1}]$$

(3) Siono
$$A = \bigcup_{i=1}^{m} (I_i)$$
 o $B = \bigcup_{j=1}^{m} (I_j)$ elevery or O

Per pour a con prevolioner A= [a,b) e B=[c,d)

$$A \cup B = [a,d) \in \mathbb{Q}$$
 $A \cup B = [a,b) \in \mathbb{Q}$

U generale
$$AUD = \bigcup_{k=1}^{\ell} [x_k, y_k] = \bigcup_{k=1}^{\ell} K_k \in Q$$

=> Or & mm, obblino

Però a usu è una 2 alpebra:

controvenups: $A_{1} = \phi$ $A_{2} = \begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix} \in \mathcal{O} \Rightarrow \mathcal{O} A_{m} = (0, 1) \notin \mathcal{O}$ $A_{3} = \begin{bmatrix} \frac{1}{3}, 1 \end{bmatrix} \Rightarrow \mathcal{O} \text{ was } \hat{\mathbf{c}} \text{ were } \hat{\mathbf{c}} \text{ otherws}$ $A_{m} = \begin{bmatrix} \frac{1}{m}, 1 \end{pmatrix} \Rightarrow \mathcal{O} \text{ was } \hat{\mathbf{c}} \text{ were } \hat{\mathbf{c}} \text{ otherws}$

Justi sustice en X sid

 $Q \in Q(X)$ è un objetuo:

- 1) XED perché X°= p è finito
- (2) $A \in \mathcal{O}$ $\Rightarrow A = (A^c)^c$ è fimilio oppuse $A^c \in \mathcal{A}$ inito $\Rightarrow A^c \in \mathcal{O}$
- 3 ABE Q -> AUBE Q?
 - · le Ae B sous finiti => AUB finits => AUB = QU
 - · be alueur use use è fuer (sopraises A use fuer of the AC fuer) => AC fuer of years of the AC fuer of the AC

Ma (AUB) = AC, BC = AC ē funto => AUBEQU

→ Ou è une olpebra

lu pouerale Que é una 6-alpebre:

: opusesatus

X=N

how Am = 12my, men

Am ED perché è ficilo

∪ Am = ∫ momei posi j' wor è fueto m A ∪ (∪ Am) c = ∫ were i orisposi j' wor è fueto m A ∪ (∪ Am) c = ∫ were i orisposi j' wor è fueto m A ∪ (∪ Am) c = ∫ were i orisposi j' wor è fueto m A ∪ (∪ Am) c = ∫ were i orisposi j' wor è fueto m A ∪ (∪ Am) c = ∫ were i orisposi j' wor è fueto (∪ Am) c = ∫ wor è fueto (∪ Am)

4 L wiseue pri che vervettable

Oc= $A \in \mathcal{O}(X)$: A funto o une cobre oppose A^{c} finto o une cobre X^{c}

→ Q é una 6- objetso (prevoue per esercisio)

assembsique

bio $(Q_i)_{i\in I}$ wa four g_i o di d_i objective, allore g_i olpetive.

(in penerale) soldena (in penerale)

ulari:

- ion = 0 ad (e)
 - ion = X = IsiV ws .
 - · Sio AcQ = nQi -> AcQi ¥icI =>

 AccQi ¥icI => AccQi

 icI
 - · for $(A_m)_{m \geq 1} \subseteq \mathcal{O} \Rightarrow \forall m \geq 1$ $A_m \in \mathcal{O} = \bigcap \mathcal{O}_i$
 - =) Am = Qi YieI => UAm = Qi YieI
 - => WAM & nai = a
 - =) O è mes de alpebra
- B) UQi vou è vou du ma'algebra:

De A, B ∈ UQi = 3 d, j∈ I t.c. A∈ Qi e Be Qj Les raws and now j≠i so

esemms:

$$\chi = \{a, b, c\}$$
 $Q_1 = \{\phi, \chi, \{a\}, \{b\}, c\}\}$
 $Q_2 = \{\phi, \chi, \{b\}, \{a\}, c\}\}$

Q10Q2 = 1 0, x, 108, 168, 16, cx, [a,cx }

Sione $A = \{a\} \in Q_1 \Rightarrow A \in Q_1 \cup Q_2$ $B = \{b\} \in Q_2 \Rightarrow B \in Q_1 \cup Q_2$ $\text{pero'} \quad A \cup B = \{a, b\} \notin Q_1 \cup Q_2$

Definisone

be $E \subset \mathcal{O}(\mathcal{X})$ bi dire 3-objection persona da EL'interpretation di ruire le 3-objective the vouterpoux pli eleveration di E.

Si major con S(E) ed E & pui wicola of alphora the constant poi element of E.

 $\lambda_{e_{\mathcal{I}}}$: $\delta(UQ_{i})$ & demote con VQ_{i}