	Proof of Sherman-Morrison formula
	Sherman-Murrison States that For: A, an invertible PxP matrix; U,V, Px1 Column Vectors; 2, constant
	$(AV + \lambda uv^{\dagger})^{-1} = (A^{-1} - \frac{\lambda A' uv'A'}{1+2v'A'u})$
	We Will Show that:
(*)	$(A + \lambda u v^{T}) \left(A^{-1} - \lambda A^{-1} u v^{T} A^{-1} \right) = I$ $1 + \lambda v^{T} A^{-1} u$
	Now letting K (constant) replace the denominator we can expand the LHS:
	$\Rightarrow (A + \lambda uv^{T})(A^{-1} - K\lambda A^{-1}uv^{T}A^{-1})$
	= I - KZUVTA-1 + ZUVTA-1 +- KZZUVTA-1 UVTA-1
	$= II + (\lambda - k\lambda^2 u V^{T} A^{-1}) u V^{T} A^{-1}$
•	Find K s.t. this expession is $= 0$
	$\lambda - \lambda k - \lambda^2 k u v^{\dagger} A^{-1} = 0$
	$K(1+\lambda uv^{T}A^{-1})=1$
	$\Rightarrow K(1+\lambda V^{T}A^{-1}U)=1$
•	This holds if $K = (1 + \lambda VPA^{-1}U)^{-1}$ Which is exactly as K is defined, thus Proving (**).

-