```
In [1]: import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        import numpy as np
        import random
In [2]: np.random.seed(42)
In [3]: data = {
            "Unemployment_Rate (%)": np.random.normal(loc=5.5, scale=1.5, size=594).clip
            "Flood_Drought_Risk_Score": np.random.randint(0, 11, 594),
            "Crime_Rate (per 1000)": np.random.normal(loc=4, scale=2, size=594).clip(1,
            "Agri_Workforce_%": np.random.normal(loc=45, scale=20, size=594).clip(5, 80)
            "Slum_Population_%": np.random.normal(loc=15, scale=10, size=594).clip(0, 40
            "Credit_Penetration_%": np.random.normal(loc=60, scale=10, size=594).clip(30)
            "Net_Migration_Rate (%)": np.random.normal(loc=0.5, scale=2.5, size=594).cli
            "Political_Unrest_Score": np.random.randint(0, 11, 594),
            "Economic_Vulnerability_Score": np.random.randint(0, 11, 594)
In [4]: df = pd.DataFrame(data)
In [5]: geo = pd.read_csv(r"C:\Users\Admin\Desktop\Ind_adm2_Points.csv", encoding='ISO-8
In [6]: geo
```

Out[6]:

out[6].		ÿCountry	District	Ind_adm2_ID	point_order	State	sub_polygon_id	Lati
	0	India	Andaman Islands	0	326	Andaman and Nicobar	28	11.
	1	India	Andaman Islands	0	327	Andaman and Nicobar	28	11.
	2	India	Andaman Islands	0	328	Andaman and Nicobar	28	11.
	3	India	Andaman Islands	0	329	Andaman and Nicobar	28	11.
	4	India	Andaman Islands	0	330	Andaman and Nicobar	28	11.
	•••					•••		
	784557	India	North 24 Parganas	589	62	West Bengal	45	22.
	784558	India	North 24 Parganas	589	63	West Bengal	45	22.
	784559	India	North 24 Parganas	589	64	West Bengal	45	22.
	784560	India	North 24 Parganas	589	65	West Bengal	45	22.
	784561	India	North 24 Parganas	589	66	West Bengal	45	22.
	784562 rows × 9 columns							
	4							
In [7]:	<pre>geo_df = geo[['District', 'State', 'Latitude', 'Longitude']]</pre>							
In [8]:	<pre>geo_clean = geo_df.groupby(['District', 'State']).agg({</pre>							
In [9]:	<pre>print(geo_clean.head(), len(geo_clean))</pre>							
	Adil L 2 Ahmac 3 Ahmedr	Agra Uti labad	Stat nra Prades tar Prades Gujara Maharashtr Mizora	h 19.284514 h 26.995130 t 22.605426 a 19.217599	78.052783 72.238981 74.692203	594		

```
In [10]: # Adding synthetic target: Historical NPA Rate (%)
          df["Historical_NPA_Rate (%)"] = (
              0.3 * df["Unemployment_Rate (%)"] +
              0.2 * df["Flood_Drought_Risk_Score"] +
              0.2 * df["Crime_Rate (per 1000)"] +
              0.1 * df["Agri_Workforce_%"]/10 +
              0.1 * df["Slum_Population_%"]/10 +
              0.1 * df["Economic_Vulnerability_Score"] +
              np.random.normal(loc=0, scale=1.5, size=594)
          ).round(2).clip(2, 15)
In [11]: final_df = pd.concat([geo_clean, df], axis=1)
In [12]: final_df
Out[12]: _Rate
                                          Crime_Rate
                Flood_Drought_Risk_Score
                                                      Agri_Workforce_% Slum_Population_% Cre
           (%)
                                           (per 1000)
         45071
                                       0
                                            4.980839
                                                              59.685218
                                                                                  12.451002
         92604
                                       5
                                            2.792440
                                                              25.132436
                                                                                  19.436139
                                       5
                                            3.532019
                                                              44.600491
                                                                                  21.170302
         71533
         34545
                                       3
                                            7.693612
                                                              31.669590
                                                                                  18.673887
                                            2.826904
                                                                                  13.908915
         48770
                                       7
                                                              77.122390
         15874
                                       3
                                             1.000000
                                                              41.336435
                                                                                  14.320853
         07349
                                       3
                                            4.058094
                                                              55.065693
                                                                                  13.091826
         33514
                                       1
                                            6.150628
                                                              61.261473
                                                                                  14.631204
         18470
                                            2.924621
                                                              27.818241
                                                                                  12.637639
         00493
                                      10
                                            4.606890
                                                              68.906722
                                                                                   9.719662
In [13]: final_df.describe()
```

file:///C:/Users/Admin/Downloads/CreditChitra.html

```
Out[13]:
                                         Unemployment_Rate
                                                                                        Crime_R
                                                              Flood_Drought_Risk_Score
                    Latitude
                             Longitude
                                                                                         (per 10
          count 594.000000
                             594.000000
                                                  594.000000
                                                                            594.000000
                                                                                        594.000
          mean
                  23.215872
                              81.100989
                                                    5.482519
                                                                              5.070707
                                                                                          4.207
            std
                   5.743757
                               6.245789
                                                    1.444596
                                                                              3.212284
                                                                                          1.957
            min
                   7.835291
                              68.821923
                                                    2.000000
                                                                              0.000000
                                                                                          1.0000
           25%
                  20.570902
                              76.414526
                                                    4.452968
                                                                              2.000000
                                                                                          2.819
           50%
                  24.478686
                              79.429121
                                                    5.517119
                                                                              5.000000
                                                                                          4.174
           75%
                  26.861661
                              85.312213
                                                    6.435704
                                                                              8.000000
                                                                                          5.5444
                  34.599235
                              96.596708
                                                   10.000000
                                                                             10.000000
                                                                                         10.000
           max
         final df.isnull().sum()
In [14]:
                                            0
Out[14]: District
          State
                                            0
          Latitude
                                            0
          Longitude
                                            0
          Unemployment_Rate (%)
                                            0
          Flood_Drought_Risk_Score
                                            0
          Crime_Rate (per 1000)
                                            0
          Agri_Workforce_%
                                            0
          Slum_Population_%
                                            0
          Credit Penetration %
                                            0
          Net_Migration_Rate (%)
                                            0
          Political_Unrest_Score
                                            0
          Economic_Vulnerability_Score
                                            0
          Historical_NPA_Rate (%)
                                            0
          dtype: int64
In [15]: final_df.duplicated().sum()
Out[15]: 0
In [16]:
         final_df_numeric=df.drop(['District','State'],errors='ignore',axis=1)
In [17]:
          plt.figure(figsize=(10,5))
          sns.heatmap(data=final_df_numeric.corr(),annot=True,cmap="viridis")
          plt.title("Heatmap Visualising Data")
          plt.show()
```



```
In [18]:
          def categorize_unemployment(val):
              if val <= 4: return 'Low Risk'</pre>
              elif val <= 7: return 'Medium Risk'</pre>
              else: return 'High Risk'
          def categorize_flood_drought(val):
              if val <= 3: return 'Low Risk'</pre>
              elif val <= 6: return 'Medium Risk'</pre>
              else: return 'High Risk'
          def categorize_crime(val):
              if val <= 3: return 'Low Risk'</pre>
              elif val <= 6: return 'Medium Risk'</pre>
              else: return 'High Risk'
          def categorize_agri(val):
              if val <= 30: return 'Low Risk'</pre>
              elif val <= 60: return 'Medium Risk'</pre>
              else: return 'High Risk'
          def categorize slum(val):
              if val <= 10: return 'Low Risk'</pre>
              elif val <= 25: return 'Medium Risk'</pre>
              else: return 'High Risk'
          def categorize credit(val):
              if val >= 70: return 'Low Risk'
              elif val >= 50: return 'Medium Risk'
              else: return 'High Risk'
          def categorize migration(val):
              if val > 0: return 'Low Risk'
              elif val >= -2: return 'Medium Risk'
              else: return 'High Risk'
```

```
def categorize_political(val):
              if val <= 3: return 'Low Risk'</pre>
              elif val <= 6: return 'Medium Risk'</pre>
              else: return 'High Risk'
         def categorize econ(val):
              if val <= 3: return 'Low Risk'</pre>
              elif val <= 6: return 'Medium Risk'</pre>
              else: return 'High Risk'
In [19]: final df['Unemployment Risk'] = final df['Unemployment Rate (%)'].apply(categori
         final_df['Flood_Drought_Risk'] = final_df['Flood_Drought_Risk_Score'].apply(cate
         final_df['Crime_Risk'] = final_df['Crime_Rate (per 1000)'].apply(categorize_crim
         final_df['Agri_Risk'] = final_df['Agri_Workforce_%'].apply(categorize_agri)
         final_df['Slum_Risk'] = final_df['Slum_Population_%'].apply(categorize_slum)
         final_df['Credit_Risk'] = final_df['Credit_Penetration_%'].apply(categorize_cred
         final_df['Migration_Risk'] = final_df['Net_Migration_Rate (%)'].apply(categorize
         final_df['Political_Risk'] = final_df['Political_Unrest_Score'].apply(categorize
         final_df['Econ_Risk'] = final_df['Economic_Vulnerability_Score'].apply(categoriz
In [20]: risk_map = {'Low Risk': 1, 'Medium Risk': 2, 'High Risk': 3}
In [21]: final_df['Unemployment_Score'] = final_df['Unemployment_Risk'].map(risk_map)
         final_df['Flood_Drought_Score'] = final_df['Flood_Drought_Risk'].map(risk_map)
         final_df['Crime_Score'] = final_df['Crime_Risk'].map(risk_map)
         final_df['Agri_Score'] = final_df['Agri_Risk'].map(risk_map)
         final_df['Slum_Score'] = final_df['Slum_Risk'].map(risk map)
         final_df['Credit_Score'] = final_df['Credit_Risk'].map(risk_map)
         final_df['Migration_Score'] = final_df['Migration_Risk'].map(risk_map)
         final df['Political Score'] = final df['Political Risk'].map(risk map)
         final_df['Econ_Score'] = final_df['Econ_Risk'].map(risk_map)
In [22]: risk_score_columns = [
              'Unemployment_Score', 'Flood_Drought_Score', 'Crime_Score', 'Agri_Score',
              'Slum_Score', 'Credit_Score', 'Migration_Score', 'Political_Score', 'Econ_Sc
         1
         final_df['Total_Lending_Risk_Score'] = final_df[risk_score_columns].sum(axis=1)
         final df['Average Lending Risk Score'] = final df[risk score columns].mean(axis=
In [23]: def overall_risk_category(avg_score):
             if avg_score <= 1.6:</pre>
                  return 'Low Risk'
              elif avg score <= 2.3:</pre>
                  return 'Medium Risk'
              else:
                  return 'High Risk'
         final df['Overall Lending Risk Category'] = final df['Average Lending Risk Score
In [24]: | final_df['Overall_Lending_Risk_Category'].value_counts()
Out[24]: Overall_Lending_Risk_Category
          Medium Risk
                         492
          Low Risk
                          55
          High Risk
                          47
          Name: count, dtype: int64
```

In [53]: final_df.to_csv('CreditChitra:District-Wise_Credit')