TD 3 graphes: Arbres

I. Arbre couvrant de poids minimum (ACPM)

Rappel : Soit G = (X, U) un graphe connexe dont les arêtes sont valuées par des longueurs distinctes, l'arbre partiel minimum de G contient la plus courte arête de chacun des cocycles de G. L'objectif est de déterminer l'arbre partiel minimum du graphe suivant :

- 1. Appliquer l'algorithme de Kruskal pour déterminer l'arbre couvrant minimal.
- 2. Appliquer l'algorithme de Prim pour déterminer l'arbre couvrant minimal.

II. Réseau centralisé

On considère le réseau centralisé suivant G = (X, U) où X = [1, 5] est l'ensemble des noeuds constitué par le processeur central 1 et les terminaux 2, 3, 4 et 5. Les coûts de connexion des différentes paires de noeuds sont indiqués sur le dessin.

Trouver un réseau partiel $H^* = (X, V^*)$ de G permettant de réaliser à moindre coût la connexion de tous les noeuds. Y a-t'il unicité de la solution ?

III. L'agence bancaire

Une banque désire installer au moindre coût un réseau de transmission de données entre son agence centrale située dans le quartier de la Bourse à Paris et sept de ses succursales.

Il s'agit d'un réseau arborescent composé de lignes privées point à point à 2400 bauds avec des possibilités de concentrateur. Le coût de construction d'une ligne entre deux agences est donné par le tableau suivant (en unités monétaires) :

	Bourse	Opéra	Étoile	République	St-Lazarre	Louvre	Neuilly	Chatelet
Bourse	-							
Opéra	5	-						
Étoile	18	17	-					
République	9	11	27	-				
St-Lazarre	13	7	23	20	-			
Louvre	7	12	15	15	15	-		
Neuilly	38	38	20	40	40	35	-	
Châtelet	22	15	25	25	30	10	45	-

Ces coûts ont été déterminés en fonction des distances entre les différentes agences et du chiffre d'affaires de chaque succursale. Déterminer un tel réseau.

IV. Chaînes avec seuil

Soit G = (X, V), X = [1, N], un graphe non orienté avec une valuation des arêtes par une fonction l strictement positive et injective. Soit α désignant un réel ≥ 0 quelconque, on définit :

$$H_{\alpha}^* = (X, V_{\alpha}^*)$$
 avec $V_{\alpha}^* = \{v \in V \text{ tel que } l(v) \leq \alpha\}.$

On définit alors la relation binaire $R_{\boldsymbol{\alpha}}$ suivante :

$$\forall (i,j) \in X^2$$
 , i $R_\alpha \, j \Leftrightarrow il$ existe une chaîne dénotée L_{ij} reliant i et j dans ${H_\alpha}^*$

- (a) Montrer que R_{α} est une relation d'équivalence.
- (b) G étant le graphe connexe valué ci-dessous, déterminer successivement les classes au seuil α = 0, puis α = 4, puis α = 7, enfin α = 9.
- (c) Quelle est la plus petite valeur α de α pour laquelle il y a une seule classe au seuil α ?
- (d) Etablir un lien avec les ACPM.

