1 Forward Phase

$$o_j^{\ell+1} = \sigma\left(\sum_{i=0}^{n^\ell} \sigma_i^\ell w_{ij}^\ell\right)$$

$$o_j^0 = I_j^d$$
 (base case)

where $o_0^\ell=1$ always. Equivalently, $o_0^0=1$ and $w_{i0}^\ell=\delta_{i0}^{({\rm kronecker})}$

2 Backwards Phase

Base case:

$$\begin{split} \delta_j^{L-1} &= o_j^{L-1} (1 - o_j^{L-1}) (o_j^{L-1} - D_j^d) & \qquad (0 \leq j < n^{L-1}) \\ \delta_j^{\ell} &= o_j^{\ell} (1 - o_j^{\ell}) \sum_k w_{jk}^{\ell} \delta_k^{\ell+1} & \qquad 0 \leq j < n^{\ell} \end{split}$$

Note that this is kind of funky for the term which would affect the biases, δ_0^ℓ . because $o_0^\ell=1,\,\delta_0^\ell=0$ always.

3 Stepping

$$\Delta w_{ij}^{\ell} = -\alpha \delta_j^{\ell+1} o_i^{\ell}$$

Note that Δw_{i0}^{ℓ} will always evaluate to zero. So this column is never changed. But Δ_{0j}^{ℓ} can evaluate to nonzero values, so the biases are indeed updated.