

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina: Computação Gráfica AP3 - 2° semestre de 2019.

Nome -

Assinatura -

Observações:

- i) Prova sem consulta e sem uso de máquina de calcular.
- ii) Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas.
- iii) Você pode usar lápis para responder as questões.
- iv) Ao final da prova devolva as folhas de questões e as de respostas.
- v) Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões não serão corrigidas.

Na última página encontra-se a folha de respostas. Preencha corretamente e sem rasuras. Todas as questões tem o mesmo peso.

- 1) No Ray-tracing, se todos os materiais tem índice de reflexão de 100% e a cena é um ambiente fechado, podemos ter o seguinte fenômeno :
 - A A renderização nunca termina
 - B O culling não funcionará
 - C haverá problemas no Z-Buffer
 - D A projeção será afetada
 - E As BSPs não funcionarão
- 2) Se houver uma quantidade muito maior de triângulos do que a GPU é capaz de suportar para tempo real, a solução possível seria:
 - A Utilizar algum algoritmo de Clipping
 - B Utilizar algum algoritmo de Culling
 - C Utilizar Quaternions ao invés de matrizes
 - D Usar um algoritmo de iluminação mais simples
 - E Substituir os triângulos por polígonos de mais lados, para diminuir o número total de primitivas
- 3) Quanto ao Z-Buffer:
 - A Garante a correta projeção de um triângulo
 - B Garante uma correta sobreposição de triângulos
 - C Garante o Clipping de polígonos projetados
 - D Elimina polígonos que estão fora do frustum da camera
 - E É uma etapa feita depois do Swap de buffers

- 4) Malhas de terrenos podem ser bastante extensas e consumir bastante tempo de rendering. Para otimizá-los, podemos
 - A Usar pixel shaders
 - B Iluminar apenas alguns de seus vértices
 - C Criar uma amostragem estatística
 - D Usar Level Of Details
 - E Usar Portais
- 5) um vertex shader:
 - A pode ser programado
 - B podem haver vários numa mesma cena
 - C tem como entrada a estrutura de um pixel
 - D Influencia na rasterização
 - E permite influenciar o modelo de iluminação usado
- 6) A iluminação difusa ocorre porque
 - A As superfícies não são completamente lisas, a nível molecular
 - B Há raios de luz que são secundários, vindos do reflexo de outra superfície
 - C Em função da lei de Snell
 - D Devido a presença de texturas
 - E devido a iluminação ambiente
- 7) Escolha a opção que representa uma superfície **paramétrica**, onde $r \in \mathbb{R}$.

A
$$x = r \sin v$$
; $y = (R + r \cos v) \sin u$; $z = (R + r \cos v) \cos u$

B
$$x^2 + y^2 - z - r^2 = 0$$

C
$$x = r \sin v$$
; $y = (r \cos^3 v)$

$$D \ x = p_{0x} + v_x \; t$$
 ; $y = p_{0y} + v_y \; t$; $z = x = p_{0z} + v_z \; t$;

$$E x = 0$$

8) A matriz de transformação geométrica, em coordenadas homogêneas, que espelha uma forma poligonal 2D em torno do eixo x e, amplia seu tamanho para duas vezes o tamanho original, é dada por:

$$A \begin{bmatrix}
0 & -2 & 0 \\
2 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$B \begin{bmatrix}
-1 & 0 & 2 \\
0 & 1 & 2 \\
1 & 1 & 1
\end{bmatrix}$$

$$C \begin{bmatrix}
-1/2 & 0 & 0 \\
0 & -1/2 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$D \begin{bmatrix}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\mathbf{E} \left[\begin{array}{ccc} -2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

- 9) Assinale a função da OpenGL/GLUT que registra callbacks de redisplay.
 - A glutReshapeFunc(...)
 - B glutKeyboardFunc(...)
 - C glutVisibilityFunc(...)
 - D glutDisplayFunc(...)
 - E glutIdleFunc (...)
- 10) Sobre a estrutura de dados Octree **não** se pode-se afirmar o seguinte fato:
 - A É uma estrutura de subdivisão do espaço
 - B É usada para representar um objeto de forma adaptativa
 - C Pode descrever sólidos
 - D É um tipo de estrutura de árvore
 - E É um tipo de representação *B-rep*
- 11) Sobre uma curva B-Spline pode-se afirmar o seguinte fato:
 - A Permite controle local da curva através da manipulação de seus pontos de controle
 - B Não garante que a curva esteja no fecho convexo do polígono de controle
 - C É formada por um único segmento de curva
 - D É formada por polinômios racionais
 - E Somente é possível criar uma B-spline com n pontos de controle através de uma Bspline de grau *n*-1
- 12) Sobre as matrizes de projeção perspectiva **não** se pode afirmar:
 - A Preservam retas
 - B Podem ser passadas para um vertex shader como uma variável do tipo uniforme
 - C Preservam o paralelismo de retas
 - D Podem ser definidas através da composição de uma transformação projetiva seguida de uma projeção ortográfica
 - E Somente podem ser definidas para um frutrum simétrico

Tabela de respostas. Preencha sem rasuras apenas uma resposta:

Questão	1	2	3	4	5	6	7	8	9	10	11	12
Resposta	Α	В	В	D	Todos	A	A	anulada	D	Е	C	A
					menos							
					C							