

第3章 文法和语言 ——课后作业

习题

2

- 1) 设文法 $G=(V_N, V_T, P, S)$,其中: $V_N=\{S,B,E\}$, $V_T=\{a,b,e\}$
- P产生式为:
- (1) $S \rightarrow aSBE$ (2) $S \rightarrow aBE$ (3) $EB \rightarrow BE$
- (4) $aB \rightarrow ab$ (5) $bB \rightarrow bb$ (6) $bE \rightarrow be$
- (7) **e**E →ee
- L(G)表示的语言是什么?

- $L(G)=\{a^nb^ne^n \mid n\geq 1\}$
- 解:S ⇒aSBE ⇒aaSBEBE ⇒aaaSB<u>EBEB</u>E ⇒...⇒
- aaaSB<u>BEBE</u>E⇒aaaSBBBEEE⇒aaaaB<u>EB</u>BBEEE⇒
- aaaaBBEBBEEE⇒aaaaBBBEBEEE⇒aaaaBBBBEEEE
- ⇒aaaa<u>bB</u>BBEEEE⇒aaaa<u>bb</u>BBEEEE⇒aaaabb<u>bB</u>EEEE
- ⇒aaaabb<u>bb</u>EEEE⇒aaaabbbb<u>eE</u>EE⇒ aaaabbbb<u>ee</u>EE⇒
- $aaaabbbbeeee \implies a^4b^4e^4$
- 同理: S⇒aⁿbⁿeⁿ

习题

2) 已知文法G[A], 写出它定义的语言描述

如: $G[A]: A \rightarrow 0B|1C$ $B \rightarrow 1|1A|0BB$ $C \rightarrow 0|0A|1CC$

L{G[A]}={由0、1符号串组成,串中0和1的个数相同}

1

习题

3)构造一文法,其定义的语言是由算符+,*,(,)和运算对象a构成的算术表达式的集合.

A+a|a*a|(a)|a*(a+a)|a+a*a.....

解:构造文法: G=(Vn,Vt,P,S), 其中Vn={E}, Vt={a,*,(,+,)|}, P: E->E+E|E*E|(E)|a

习题

- 4) G[N]:N→D|ND D→0|1|2|3|4|5|6|7|8|9 G[N]的语言 是什么?
- 【解】:
- G[N]的语言是 V+。V={0,1,2,3,4,5,6,7,8,9} N=>ND=>NDD....=>NDDDD....D=>D.....D
- •
- 或者: 允许0开头的非负整数。

5

6 6

习题

- 5) 写一文法,使其语言是偶正整数的集合。
- (1)允许0打头
- (2)不允许0打头
- 【1答案】: 允许0开头的偶正整数集合的文法
- $\bullet \hspace{0.1cm} E {\longrightarrow} NT|D \hspace{0.5cm} T {\longrightarrow} NT|D \hspace{0.5cm} N {\longrightarrow} D|1|3|5|7|9 \hspace{0.5cm} D {\longrightarrow} 0|2|4|6|8$
- 【答案】: 不允许0开头的偶正整数集合的文法
- E \rightarrow NT|D T \rightarrow FT|G N \rightarrow D|1|3|5|7|9
- D \rightarrow 2|4|6|8 F \rightarrow N|0 G \rightarrow D|0

习题

- 6) 给出生成下述语言的上下文无关文法
- 考虑以下的两个语言,给出其文法,并证明它们都是上下文无关的。
- $L1 = \{a^nb^n | n > = 0\}$
- L2={ $a^mb^n|n,m>=0, n>=m$ }

G[Z]:

Z→aZb|ab

Z=>aZb=>aaZbb=>aaa.

.Z...bbb=> aaa..ab...bbb

 $L(G[Z])=\{a^nb^n|n>=1\}$

8 8

7 7

1

- 2. 考虑以下的两个语言,给出其文法,并证明 它们都是上下文无关的。
- L3= $\{a^nb^{2n}c^m|n,m>=0\}$
- L4= $\{a^nb^mc^{2m}|n,m>=0\}$

9

11

习题

7) 己知文法G=(Vn,Vt,P,S),其中Vn={S,A}, Vt={a,c}, P为:

$$S{\rightarrow}\,aAS\,\mid\,a$$

 $A \rightarrow ScA \mid SS \mid ca$

aaccaa是否可由该文法推导出来?如果可以,请构造aaccaa的语法树.如果不可以,请说明理由_

10

习题

8) 己知文法G=({E}, {+, ×, i, (,)}, P, E), 其中P为: [______

其中P为: E→i E→E+E E→E×E E→(E)

给出句子i×i+i的推导过程,并判断该文法是否有二义性.

推导1: E⇒E+E ⇒E×E+E ⇒i×E+E ⇒i×i+E ⇒i×i+i **推导2:** E⇒E×E⇒i×E⇒i×E+E⇒i×i+E⇒i×i+i 产生两个不同的语法树**: (最左推导)**

习题

- 9) 证明文法G=({E,O},{(,),+,*,v,d},P,E)是二义的
- $E \rightarrow EOE | (E) | v | d$
- 0 →+|*
- 提示: 只要存在一个句型,其语法树不只一棵,则可证明文 法的二义性
- 例如: v*v+v

习题

10)已知文法G[E]: E →T | E+T T →F | T × F F→(E) | i

求句型i×i+i的所有短语,直接短语和句柄。

13

14

记i×i+i 为i₁×i₂+i₃

推导如下:

① $E \Rightarrow F \times i_2 + i_3$ 且 $F \Rightarrow i_4$,则称 i_4 是句型 $i_4 \times i_2 + i_3$ 的相对非终结符F的短语,是相对规则 $F \rightarrow i$ 的直接短语。

 $\begin{array}{ccc} \alpha\beta \ \delta = \ i_1 \times i_2 + i_3 & (\alpha = \epsilon, \ \beta = \ i_1, \ \delta = \times i_2 + i_3) \\ \alpha A \delta = F \times i_2 + i_3 & (\alpha = \epsilon, \ A = F, \ \delta = \times i_2 + i_3) \\ A \Rightarrow \beta = F \Rightarrow i_1 \end{array}$

② $E \rightarrow i_1 \times F + i_3$ 且 $F \rightarrow i_2$,则称 i_2 是句型 $i_1 \times i_2 + i_3$ 的相对非终结符F的短语,是相对规则 $F \rightarrow i$ 的直接短语。

- ③ $E \Rightarrow i_1 \times i_2 + F \perp F \Rightarrow i_3$,则称 i_3 是句型 $i_1 \times i_2 + i_3$ 的相对非终结符F的短语,是相对规则 $F \rightarrow i$ 的直接短语。
- **④**E[±]→T×i₂+i₃ 且T⇒ⁱi₁,则i₁是句型i₁×i₂+i₃的相对于T 的短语。
- ⑤E⇒ i₁ ×i₂+T 且T⇒i₃,则i₃是句型i₁×i₂+i₃的相对于T 的短语。

 $\begin{array}{ll} \alpha\beta \ \delta = i_1 \times i_2 + i_3 & (\alpha = \epsilon, \ \beta = i_1, \ \delta = \times i_2 + i_3) \\ \alpha A \delta = \ T \times i_2 + i_3 & (\alpha = \epsilon, \ A = \ T, \ \delta = \times i_2 + i_3) \\ A \Rightarrow \beta = \ T \Rightarrow i_1 \end{array}$

15

1

. □ E⇒T+i₃ 且T⇒ i₁×i₂,则i₁×i₂是句型i₁×i₂+i₃相 对于T的短语。

②E⇒E+i₃且 E⇒i₁×i₂,则i₁×i₂是句型i₁×i₂+i₃相对于E的短语。

根据短语定义, $\alpha \beta \delta$ 是句型, $\mathbf{S} \stackrel{+}{\Rightarrow} \alpha \mathbf{A} \delta$, $\mathbf{A} \Rightarrow \beta$, 则 β 是句型 $\alpha \beta \delta$ 相对 \mathbf{A} 的短语。

17

 $\begin{array}{c} \alpha\beta \; \delta = \; i_1 \times i_2 + i_3 \quad (\alpha = \epsilon, \; \beta = i_1 \times i_2, \; \delta = + i_3 \;) \\ \alpha A \delta = \; T + i_3 \quad (\alpha = \epsilon, \; A = T, \; \delta = + i_3 \;) \\ A \Rightarrow \beta = \; T \Rightarrow i_1 \times i_2 \end{array}$

⑧E→E 且 E→i₁×i₂+i₃,则i₁×i₂+i₃是句型i₁×i₂+i₃相对于E的短语。

根据短语定义, αβδ是句型,

S ⇒ αAδ, A ⇒ β, 则β是句型αβ δ相对A的短语。

 i_1 , i_2 , i_3 , $i_1 \times i_2 \pi i_1 \times i_2 + i_3 都是句型<math>i_1 \times i_2 + i_3$ 的短语,且 i_4 , i_2 , i_3 均为直接短语,其中 i_4 是最左直接短语(句柄)

$$\alpha\beta$$
 δ =($i_1 \times i_2 + i_3$) (α =(, β = $i_1 \times i_2 + i_3$, δ =))
 α A δ = (E) (α =(, A= E, δ =))
 $A\Rightarrow\beta$ = E \Rightarrow $i_1 \times i_2 + i_3$

E⇒T ⇒F ⇒(E) 同理可以推出($i_1 \times i_2 + i_3$) 是一个句型,也可以推出E⇒ $i_1 \times i_2 + i_3$

F i3 从语法树中可以看出,所以树叶的组合就是其相对应的父亲的短语。

- 1) 给出句子 abbaa 最右推导和最左推导
- 2) 该文法产生式 P 可能有哪些?
- 3) 找出该句子所有的短语、简单短语、句柄。

20

1

最右推导

- S=>ABS=>ABAa=>ABaa=>ASBBaa=>ASBbaa=>ASbbaa=>Abbaa=>abbaa
- 最左推导: S→ABS→aBS→aSBBS→aBBS→abBS→abbS→abbA a→abbaa
- ②产生式P可能有:
- S→ABS|Aa|3
- B→SBB|b
- A→a
- ③短语: a1,b1,b2,a2,a3,b1b2,a2a3,a1b1b2a2a3
- 简单短语: a1,b1,b2,a2,a3
- 句柄:a1