Initial Displacement	3.00 in	Initial Displacement	3.00 in
Natural Frequency ω	6.28 rad/s	Natural Frequency ω	6.28 rad/s
Damping ratio ζ	0.10	Damping ratio ζ	0.20
, , ,		, ,	
Damped Frequency ω_{D}	6.25	Damped Frequency ω_{D}	6.16
Time t, s	y, in	Time t, s	y, in
0	3.00	0	3.00
0.1	2.45	0.1	2.47
0.2	1.09	0.2	1.23
0.3	-0.51	0.3	-0.16
0.4	-1.73	0.4	-1.18
0.5	-2.19	0.5	-1.58
0.6	-1.81	0.6	-1.35
0.7	-0.82	0.7	-0.72
0.8	0.34	0.8	0.01
0.8	1.25	0.9	0.58
1	1.59	1	0.38
1.1		1.1	0.82
	1.33		
1.2	0.62	1.2	0.42
1.3 1.4	-0.23 -0.90	1.3 1.4	0.03 -0.28
1.5	-0.90 -1.16	1.5	-0.28
1.6	-1.16 -0.98	1.6	-0.45
1.7	-0.98 -0.47	1.7	
1.7	0.15	1.7	-0.24
			-0.04
1.9 2	0.64 0.85	1.9 2	0.13 0.22
2.1	0.83	2.1	0.22
2.1	0.72	2.1	0.22
2.2	-0.10	2.2	0.14
2.4	-0.10 -0.46	2.3	-0.06
2.5	-0.62	2.5	-0.11
2.6	-0.53	2.6	-0.11
2.7	-0.26	2.7	-0.12
2.8	0.07	2.8	-0.02
2.9	0.33	2.9	0.03
3	0.45	3	0.06
3.1	0.39	3.1	0.06
3.2	0.20	3.2	0.04
3.3	-0.04	3.3	0.01
3.4	-0.24	3.4	-0.01
3.5	-0.33	3.5	-0.03
3.6	-0.29	3.6	-0.03
3.7	-0.15	3.7	-0.02
3.8	0.03	3.8	-0.01
3.9	0.17	3.9	0.01
4	0.24	4	0.02
4.1	0.21	4.1	0.02
4.2	0.11	4.2	0.01
4.3	-0.02	4.3	0.01
4.4	-0.12	4.4	0.00
4.5	-0.17	4.5	-0.01
4.6	-0.16	4.6	-0.01
4.7	-0.08	4.7	-0.01
4.8	0.01	4.8	0.00
4.9	0.09	4.9	0.00
5	0.13	5	0.00

d, mm		<i>F</i> , N	
	1		102
	2		156
	3		230
	4		317
	5		400
	6		452
	7		530
	8		611
	9		670
	10		739

Time, minutes	Temperature, F	Delta T, Degrees F
0	200	123
1	192	115
2	185	108
3	179	102
4	174	97
5	169	92
10	151	74
15	138	61
20	126	49
25	117	40
30	106	29
60	84	7

Previous Year	Current Year
\$16.00	\$16.80
\$6.40	\$9.25
\$3.75	\$3.80
\$2.20	\$2.20
\$1.25	\$1.45
\$14.00	\$16.00

Table of Contents

Example 5.3	1
Example 5.4	2
Example 5.4 Function displace & displace2 section	4

Example 5.3

```
% SMD.m: Plots displacement of under damped spring-mass-damper system
% Inputs:
y0 = 3.0; % initial displacement, inches
dr = 0.10; % damping ratio
fr = 2*pi; % natural frequency, radians/second
T = 5.0; % total time to be plotted, seconds
N = 100; % number of time intervals to be plotted
% Calculate damped frequency, radians/second
fd = fr*sqrt(1-dr^2);
% Calculate time interval for displacement calculations
tinc = T/N;
for i = 1:N+1
    t(i) = (i-1)*tinc;
    c = cos(fd*t(i));
    s = sin(fd*t(i));
    e = exp(-dr*fr*t(i));
    y(i) = (y0*c + y0*dr*fr/fd*s)*e;
end
figure
plot(t,y,'LineWidth',3,'Color','Red')
title('Response of Spring-Mass-Damper System', 'FontSize', 20)
xlabel('Time, seconds','FontSize',16)
ylabel('Displacement, inches', 'FontSize', 16)
```


Example 5.4

```
% SMD.m: Plots displacement of under damped spring-mass-damper system
% Inputs:
y0 = 3.0; % initial displacement, inches
dr = 0.10; % damping ratio
fr = 2*pi; % natural frequency, radians/second
T = 5.0; % total time to be plotted, seconds
N = 100; % number of time intervals to be plotted
% Calculate damped frequency, radians/second
fd = fr*sqrt(1-dr^2);
% Calculate time interval for displacement calculations
tinc = T/N;
for i = 1:N+1
    t(i) = (i-1)*tinc;
    c = cos(fd*t(i));
    s = sin(fd*t(i));
    e = exp(-dr*fr*t(i));
    y(i) = (y0*c + y0*dr*fr/fd*s)*e;
end
figure
```

```
plot(t,y,'LineWidth',3,'Color','Red')
grid on
title('Response of Spring-Mass-Damper System', 'FontSize', 20)
xlabel('Time, seconds','FontSize',16)
ylabel('Displacement, inches', 'FontSize', 16)
% Compute and plot displacements for a different damping ratio
dr2 = 0.20; % new damping ratio
% Calculate new damped frequency fd
fd2 = fr*sqrt(1-dr2^2);
for i = 1:N+1
    c = cos(fd2*t(i));
    s = sin(fd2*t(i));
    e = exp(-dr2*fr*t(i));
    y2(i) = (y0*c + y0*dr2*fr/fd2*s)*e;
end
hold on
plot(t,y2,'LineWidth',3,'LineStyle',':','Color','Blue')
legend('Damping Ratio = 0.1', 'Damping Ratio = 0.2')
```

Response of Spring-Mass-Damper System

Example 5.4 Function displace & displace2 section

Warning: Function behaves unexpectedly on array inputs. To improve performance,

properly vectorize your function to return an output with the same size and shape as the input arguments.

Warning: Function behaves unexpectedly on array inputs. To improve performance,

properly vectorize your function to return an output with the same size and shape as the input arguments.

Response of Spring-Mass-Damper System

Published with MATLAB® R2022b