

Modèle bayésien hiérarchique comme un PGM (Probabilistic graphical model)

On représente les dépendances entre variables aléatoires avec une flèche:

Aussi appelé un "Réseau bayésien"

individu a son paramètre individuel...

Ne pas oublier que chaque

Et chaque individu peut avoir plusieurs observations ...

Pourquoi Monte-Carlo?

Modèle bayésien hiérarchique

Modèle bayésien hiérarchique comme un PGM (Probabilistic graphical model)

On représente les dépendances entre variables aléatoires avec une flèche:

- 1. Pourquoi Monte-Carlo ? (Exemple de modèle hiérarchique)
- 2. Introduction à la méthode Monte-Carlo (historique, PRNG)
- 3. Algorithmes de simulation i.i.d (PRNG, transformation, rejet)
- 4. Méthodes MCMC (Gibbs, Metropolis)
- 5. Diagonstics de convergence MCMC
- 6. Méthodes MCMC avancées (Langevin, HMC, NUTS)

Modèle bayésien hiérarchique comme un PGM (Probabilistic graphical model)

On représente les dépendances entre variables aléatoires avec une flèche:

