▼ IMPORTING LIBRARIES

```
import numpy as np
import pandas as pd
df=pd.read_csv('/content/LoanApprovalPrediction.csv')
df
```

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantInc
0	LP001002	Male	No	0	Graduate	No	5
1	LP001003	Male	Yes	1	Graduate	No	4
2	LP001005	Male	Yes	0	Graduate	Yes	3
3	LP001006	Male	Yes	0	Not Graduate	No	2
4	LP001008	Male	No	0	Graduate	No	6
609	LP002978	Female	No	0	Graduate	No	2
610	LP002979	Male	Yes	3+	Graduate	No	4
611	LP002983	Male	Yes	1	Graduate	No	3
612	LP002984	Male	Yes	2	Graduate	No	7
613	LP002990	Female	No	0	Graduate	Yes	4

614 rows × 13 columns

df.shape

(614, 13)

df.head()

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncom
0	LP001002	Male	No	0	Graduate	No	584
1	LP001003	Male	Yes	1	Graduate	No	458
2	LP001005	Male	Yes	0	Graduate	Yes	300
3	LP001006	Male	Yes	0	Not Graduate	No	258
4	LP001008	Male	No	0	Graduate	No	600

df.tail()

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantInc
609	LP002978	Female	No	0	Graduate	No	2
610	LP002979	Male	Yes	3+	Graduate	No	4
611	LP002983	Male	Yes	1	Graduate	No	8
612	LP002984	Male	Yes	2	Graduate	No	7
613	LP002990	Female	No	0	Graduate	Yes	4

df.dtypes

Loan_ID	object
Gender	object
Married	object
Dependents	object
Education	object
Self_Employed	object
ApplicantIncome	int64
CoapplicantIncome	float64
LoanAmount	float64
Loan_Amount_Term	float64
Credit_History	float64
Property_Area	object
Loan_Status	object
dtype: object	

▼ FINDING MISSING VALUES

df.isna().sum()

Loan_ID	0
Gender	13
Married	3
Dependents	15
Education	0
Self_Employed	32
ApplicantIncome	0
CoapplicantIncome	0
LoanAmount	22
Loan_Amount_Term	14
Credit_History	50
Property_Area	0
Loan_Status	0
dtype: int64	

```
#FOR FILLING MISSING VALUES
column=['Gender','Married','Dependents','Self_Employed','Loan_Amount_Term','Credit_History','LoanAmount']
for i in column:
```

```
x=df[i].mode()[0]
  df[i].fillna(x,inplace=True)
df.isna().sum()
     Loan_ID
                          0
     Gender
     Married
                          0
     Dependents
     Education
     Self_Employed
                          0
     ApplicantIncome
     CoapplicantIncome
                          0
     LoanAmount
                          0
     Loan_Amount_Term
     Credit_History
                          0
     Property_Area
     Loan_Status
     dtype: int64
```

▼ DROPPING OF COLUMNS

```
df1=df.drop(['Loan_ID'],axis=1)
df1
```

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coapp
0	Male	No	0	Graduate	No	5849	
1	Male	Yes	1	Graduate	No	4583	
2	Male	Yes	0	Graduate	Yes	3000	
3	Male	Yes	0	Not Graduate	No	2583	
4	Male	No	0	Graduate	No	6000	
609	Female	No	0	Graduate	No	2900	

▼ IMPORTING LABEL ENCODER

```
from sklearn.preprocessing import LabelEncoder
encoder=LabelEncoder()
columns=['Gender','Married','Dependents','Education','Self_Employed','Property_Area','Loan_Status']
for i in df1[columns]:
    df1[i]=encoder.fit_transform(df1[i])
df1
```

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coapp
0	1	0	0	0	0	5849	
1	1	1	1	0	0	4583	
2	1	1	0	0	1	3000	
3	1	1	0	1	0	2583	
4	1	0	0	0	0	6000	
	-	-	-	-	-		

▼ SEPARATING X AND Y VARIABLES

```
611
                                              1 1 1 0 0
                                                                                                                                                                                                                                                                                                                                    2072
x=df1.iloc[:,:-1].values
Х
                      array([[ 1., 0., 0., ..., 360., 1., 2.],
                                                    [ 1., 1., 1., ..., 360., 1., 0.],
                                                               1., 1., 0., ..., 360., 1., 2.],
                                                    [ 1., 1., 1., ..., 360., 1., 2.],
                                                    [ 1., 1., 2., ..., 360., 1., 2.],
                                                    [ 0., 0., 0., ..., 360., 0., 1.]])
y=df1.iloc[:,-1].values
 У
                      array([1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 
                                                    0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1,
                                                    1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0,
```

x_test

```
1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1,
1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1,
1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1,
0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,
1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1,
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1,
0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0,
0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,
1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0,
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0,
1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1,
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1,
1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1,
1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1,
1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1,
1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1,
0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0,
1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1,
1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0]
```

▼ SPLITTING INTO TRAINING AND TESTING DATA

```
array([[ 1., 1., 1., 360.,
                                 1., 0.],
        1.,
             0., 0., ..., 360.,
                                 1., 0.],
        1.,
             1., 0., ..., 180.,
                                 1..
                                      2.1,
      . . . ,
             1., 0., ..., 360.,
                                      2.],
        1.,
                                1.,
             1., 2., ..., 360., 0.,
                                      1.],
             1., 3., ..., 300., 1.,
                                      2.]])
      [ 1.,
```

y train

```
array([1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1,
      1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0,
      1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1,
      1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0,
      0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1,
      1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1,
      1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0,
      0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1,
      1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0,
      1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1,
      0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0,
      1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0,
      1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1,
      1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1,
      0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1,
      1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0,
      0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1,
      1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1,
      1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1])
```

y_test

▼ NORMALIZATION USING STANDARD SCALER

```
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
scaler.fit(x train)
x train=scaler.fit transform(x train)
x test=scaler.fit transform(x test)
x train
     array([[ 0.46028731, -1.35685652, -0.7418818 , ..., 0.28421184,
             0.40323892, -0.06786108],
           [0.46028731, 0.7369976, 1.25979929, ..., -2.64203329,
             0.40323892, -0.06786108],
           [0.46028731, 0.7369976, 1.25979929, ..., -0.6912032,
             0.40323892, 1.19789552],
            [0.46028731, 0.7369976, 2.26063983, ..., -0.6912032,
            -2.47991935, -0.06786108],
           [0.46028731, -1.35685652, -0.7418818, ..., 0.28421184,
             0.40323892, -1.33361768],
            [0.46028731, 0.7369976, -0.7418818, ..., 0.28421184,
             0.40323892, -0.06786108]])
```

MODEL CREATION

KNN,NAIVE BAYES AND SVM MODEL

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
```

```
from sklearn.metrics import confusion_matrix,accuracy_score,classification_report
knn_model=KNeighborsClassifier()
nb_model=GaussianNB()
svm_model=SVC()
fnl_model=[knn_model,nb_model,svm_model]
```

PERFORMANCE EVALUATION OF KNN, NAIVE BAYES AND SVM MODEL

```
for i in fnl model:
 print(i)
 i.fit(x_train,y_train)
 y pred=i.predict(x test)
 print("ACCURACY SCORE",accuracy_score(y_test,y_pred))
 print("CLASSIFICATION REPORT", classification report(y test, y pred))
    KNeighborsClassifier()
    ACCURACY SCORE 0.7567567567567568
    ************************
    CLASSIFICATION REPORT
                                  precision
                                             recall f1-score
                                                             support
             0
                    0.81
                            0.39
                                     0.53
                                               64
             1
                    0.75
                            0.95
                                     0.84
                                              121
                                     0.76
                                              185
       accuracy
      macro avg
                    0.78
                            0.67
                                     0.68
                                              185
    weighted avg
                    0.77
                            0.76
                                     0.73
                                              185
    GaussianNB()
    ACCURACY SCORE 0.772972972973
    *************************
    CLASSIFICATION REPORT
                                  precision
                                             recall f1-score
                                                             support
             0
                    0.82
                                     0.57
                                               64
                            0.44
             1
                    0.76
                            0.95
                                     0.85
                                              121
                                     0.77
                                              185
       accuracy
                    0.79
                            0.69
                                     0.71
                                              185
      macro avg
```

	weighted avg	0.78	0.77	0.75	185
--	--------------	------	------	------	-----

SVC()

ACCURACY SCORE 0.7675675675675676

CLASSIFICATI	ON REP	ORT		precision	recall	f1-score	support
e)	0.86	0.39	0.54	64		
1	L	0.75	0.97	0.84	121		
accuracy	/			0.77	185		
macro avg	5	0.81	0.68	0.69	185		
weighted avg	5	0.79	0.77	0.74	185		