# Lec 1. Computational Complexity Crash Course

#project-hardness

Changki Yun (TAMREF) tamref.yun@snu.ac.kr

Seoul National University

September 20, 2022

#### **Course info**

- Course page: https://github.com/koosaga/project-hardness
- Hosts: Aeren, ainta, Karuna, koosaga, leejseo, TAMREF
- Book: https://hardness.mit.edu/
- Time: Tue 22:00-24:00+ KST

## Roadmap of the course

I've managed to guess some main questions of this course.

- How we deduce **NP-hardness** of a problem?
- How hard is **SAT**? what does it imply?
- Among all the NP-hard problems, which are tractible with some parameters fixed?
- Which problems are even hard to approximate, finding efficient approximation is NP-hard?
- Which problems are strongly believed to have polynomial lower bound?

## Roadmap of the course

There are some **optional** topics in this course.

- **Unique Game Conjecture**: I didn't make enough research for this topic to discuss importance.
- How can we classify the complexities of **Counting Problems**?
- We have too little memory to store all the input, how can we solve the problem by online or streaming setup?

## Roadmap of the course

There are some questions out of this course.

- Does a problem have a polynomial memory solution?
- Can we adopt a random algorithm to find a solution with certain probability?

#### **Content**

- 1. Basic Complexities (P, NP and NP-hardness)
- 2. Randomized Complexities
- 3. Higher Complexities

Today is the "Crash course" for complexity theory, to settle basic notions and concepts.

I tried to briefly introduce a variety of topics.

## **Definition of** $\mathbb{P}$

A decision problem is a set membership problem. It can be formulated into "Given a string x, Does it belong to a set A?"

#### $\mathbb{P}$ and $\mathbb{FP}$

- $\mathbb{P}$  is the class of decision problems that can be solved in time bounded by a polynomial p of input size |x|.
  - in short, in "polynomial time".
- IP is the class of functions that can be computed in polynomial time.

In this sense, we just identify a problem to the underlying set.

# Polynomial time, by which machine?

- Standard model of computation theory is the Turing Machine, using tape/head/state/action table.
  - We won't define it precisely due to its complexity.
- Word-RAM model is somewhat more familiar, consists of a sequence of fixed-size bit/arithmetic operations and random accesses, assumed to run in constant time.
- Or, we can just simply assume any fine Programming Laguages as C++, or Python.

Existence of polynomial time algorithm for all models above are in equivalency.

# **Turing Machine as the standard**

- **Church-Turing Thesis** insists that *anything that can be computed at all* is computable in TMs.
- **Extended Church-Turing Thesis** claims that anything that can be computed in polynomial time is in  $\mathbb{P}$ .
  - Some recent results, such as Shor's algorithm are currently inconsistent of the thesis.

#### Reductions

Reduction is the simplest way to compare the "hardness" of problems.

#### Reductions

For a decision problem A, B, we say  $A \leq_p B$  if there is a function  $f \in \mathbb{FP}$  such that  $x \in A \iff f(x) \in B$ .

■ Aliases: "A reduces to B". or "There's a reduction from A to B".

Indeed,  $\leq_p$  is transitive. i.e.  $A \leq_p B$ ,  $B \leq_p C$  leads to  $A \leq_p C$ .

# **Types of reduction**

- (Polynomial-time) **Karp reduction** from A to B is a type of reduction that we learned above, requiring  $f \in \mathbb{FP}$  such that  $x \in A \iff f(x) \in B$ . Note that f(x) must be in B.
- (Polynomial-time) **Cook reduction** from *A* to *B* is a reduction, being a polynomial-time algorithm requiring polynomial *B*-oracles. It generalizes Karp reduction.

Mostly we deal with only Karp reductions.

## $\mathbb{NP}$

To prove the "hardness" of a problem B, we may take an "easier" problem  $A \notin \mathbb{P}$  and prove that  $A \leq_p B$ . And we all know that having a good problem out of  $\mathbb{P}$  is hard.

#### $\mathbb{NP}$

A decision problem A is in  $\mathbb{NP}$ , if there is a problem  $B \in \mathbb{P}$  such that

$$A = \{x \mid \exists^p y \text{ s.t. } (x, y) \in B\}$$

Here  $\exists^p y$  denotes that "there is a polynomial-sized y", and  $\forall^p y$  is analogously defined.

y is called witness. It's hard to find unless  $A \in \mathbb{P}$ .

# List of $\mathbb{NP}$ problems

- Indeed  $\mathbb{P} \subseteq \mathbb{NP}$ , taking  $B = A \times \{0\}$ .
- 4-colorability of graph is an  $\mathbb{NP}$ -problem. Given a graph G with n vertices, a 4-coloring of G can be its witness.
  - $\blacksquare$  The coloring requires at most 2n bits.
  - Validating a given 4-coloring requires  $O(n^2)$  time.
- **SAT** is in NP, indeed.
- HAM CYCLE (Hamiltonian Cycle) problem is in NP.
- **FACTORING** is in NP.
  - Given a positive integer N, is there any integer 1 < a < N such that N/a is also an integer?

## co−NP

Quickly introducing its dual to prevent misconception.

#### $co-\mathbb{NP}$

A problem A is in co $-\mathbb{NP}$  if there is a problem  $B \in \mathbb{P}$  such that

$$A = \{x \mid \forall^p y \text{ s.t. } (x, y) \in B\}$$

It seems tricky, but it states the existence of (anti-)witness y, that falsifies  $x \in A$ .

## co−NP problems

- Indeed,  $\mathbb{P} \subseteq \text{co-}\mathbb{NP}$ .
- It is believed that NP ≠ co-NP. In other words, no NP-complete problems are found to be in co-NP. Also, no co-NP-complete problems are verified to be in NP.
- Surprisingly, **FACTORING** is in co $-\mathbb{NP}$ , as **PRIMES** is in  $\mathbb{P}$ . (AKS primality test)
  - Hence **FACTORING**  $\in \mathbb{NP} \cap \text{co-}\mathbb{NP}$ , implying that we don't know if **FACTORING** is  $\mathbb{NP}$ -complete.

# $\mathbb{NP}$ -hard **and** $\mathbb{NP}$ -complete

We omitted the definition of  $\mathbb{NP}$ -complete.

#### NP-hard

A problem A is  $\mathbb{NP}$ -hard if  $B \leq_p A$  holds for all  $B \in \mathbb{NP}$ . Also, A is  $\mathbb{NP}$ -complete if  $A \in \mathbb{NP} \cap \mathbb{NP}$ -hard.

**SAT** is  $\mathbb{NP}$ -complete, thus **SAT**  $\in \mathbb{P}$  implies that  $\mathbb{P} = \mathbb{NP}$ . We will make a further research on **SAT** in the following lecture.

# **Strongly** NP-complete **problems**

The **SUBSET SUM** problem is  $\mathbb{NP}$ -complete.

#### SUBSET SUM

- Input:  $a_1, \dots, a_n, B$ 
  - Input size:  $\lg a_1 + \cdots + \lg a_n + \lg B$
- Is there any subset  $S \subseteq \{1, \dots, n\}$  with size  $\leq k$ , giving  $\sum_{i \in S} a_i = B$ ?

However, if inputs are given **unary** instead of binary, (i.e. input size is  $a_1 + \cdots + a_n + B$ ) **SUBSET SUM** is in  $\mathbb{P}$  by dynamic programming.

# **Strongly** NP-complete **problems**

## Strongly NP-complete problems

Given a problem A,

- **A** is **(weakly)**  $\mathbb{NP}$ -complete if it's NP-complete with binary input.
- $\blacksquare$  A is **strongly**  $\mathbb{NP}$ -complete if it's NP-complete with even unary input.

Indeed, same definition goes for  $\mathbb{NP}$ -hard problems. The problem **TSP** is strongly  $\mathbb{NP}$ -complete.

Strong  $\mathbb{NP}$ -complete problems are studied in Ch. 6 of the book, which is out of our scope.

# **Intermediate problems**

Most common problems are in dichotomy:  $\mathbb{P}$  or  $\mathbb{NP}$ -complete. Are there problems in  $\mathbb{NP}$  but neither in  $\mathbb{P}$  nor in  $\mathbb{NP}$ -complete?

#### NP-intermediate

A is  $\mathbb{NP}$ -intermediate if  $A \in \mathbb{NP} \setminus (\mathbb{P} \cup \mathbb{NP}$ -complete).

And they are very likely to exist.

#### Theorem. (Ladner 1975)

If  $\mathbb{P} \neq \mathbb{NP}$ , there exists an  $\mathbb{NP}$ -intermediate problem.

## **Candidates of the intermediate problems**

Most of them are currently working as "one-way functions" in cryptography.

- **FACTORING**: no polynomial algorithm for factoring. The best is  $2^{\widetilde{O}(n^{1/3})}$  for *n*-digit numbers.
- **DLP**: Given a prime p and generator g and  $a \in \mathbb{Z}_p$  and upper bound U, is there an integer  $0 \le x \le U$  such that  $g^x = a$ ?
  - Both **FACTORING** and **DLP** are in  $\mathbb{NP} \cap co-\mathbb{NP}$ , thus they are believed to be intermediates.

## Candidates of the intermediate problems

Other intriguing examples follow.

- **GRAPH ISOMORPHISM**: Given a pair G, H of graphs, is there an isomorphism  $\phi: V(G) \to V(H)$  such that  $uv \in E(G) \iff \phi(u)\phi(v) \in E(G)$ ?
  - It's solvable in  $2^{(\lg n)^{O(1)}}$  time, implying its  $\mathbb{NP}$ -completeness gives **quasi-polynomial** solution for all  $\mathbb{NP}$ -complete problems, violating some kinds of **ETH**.
  - If **GRAPH ISOMORPHISM** is NP-complete,  $\Sigma_2 = \Pi_2$  follows. We'll define the class below and discuss its aftermath.
- MINIMUM CIRCUIT PROBLEM: Given a truth table of boolean function f, is there a circuit with  $\leq N$  logic gates?
  - OK...

## $\mathbb{RP}$

Class of problems coping with **Randomized Algorithm** is nothing to do with *hardness*, as they don't have complete problems.

Thus we simply introduce them, and estimate their positions in Complexity Hierarchy.

#### $\mathbb{RP}$

A problem A is in  $\mathbb{RP}$  if there is a polynomial-time algorithm M mapping the input x into {yes, no}, such that

- $Pr[M(x) = yes \mid x \in A] \ge \frac{1}{2}.$
- $Pr[M(x) = no | x \notin A] = 1.$

Thus, yes of M is absolutely true.

 $co-\mathbb{RP}$  is analogously defined.

# **RP-problems**

- **PRIMES**(until 2002) were known to be in  $\mathbb{RP}$  by Miller-Rabin algorithm (1980).
- **POLYNOMIAL ZERO TESTING**: Given  $f \in \mathbb{Z}[x_1, \dots, x_n]$  and a prime p, is f identically zero in  $\mathbb{Z}_p$ ?

Note that the constant 1/2 can be replaced to any  $0 < \alpha < 1$ , giving a few independent runs of M.

## ZPP

 $\mathbb{ZPP}$  are the class adopting a polynomial-time Las-Vegas algorithm. Equivalently,

#### $\mathbb{ZPP}$

A problem A is in  $\mathbb{ZPP}$  if there is a polynomial-time algorithm M mapping the input x into {yes, no, idk}, such that

- $Pr[M(x) = idk] \le \frac{1}{2}.$
- *M* is always correct when it outputs yes or no.

It is known that  $\mathbb{ZPP}=\mathbb{RP}\cap co-\mathbb{RP}$ , being a rare example of precise agreement of some complexity classes.

It is believed that  $\mathbb{P} = \mathbb{ZPP} = \mathbb{RP}$ .

## BPP

 $\mathbb{BPP}$  relaxes both  $\mathbb{RP}$  and  $co-\mathbb{RP}$  by allowing two-sided error.

#### BPP

A problem A is in  $\mathbb{BPP}$  if there is a polynomial-time algorithm M mapping the input x into {yes, no}, such that

- $Pr[M(x) = yes \mid x \in A] \ge \frac{3}{4}.$
- $Pr[M(x) = no \mid x \notin A] \ge \frac{3}{4}.$

We can reach the answer by a majority vote after running M several times.

## $\mathbb{BPP}$

 $\mathbb{BPP}$  relaxes both  $\mathbb{RP}$  and  $co-\mathbb{RP}$  by allowing two-sided error.

#### BPP

A problem A is in  $\mathbb{BPP}$  if there is a polynomial-time algorithm M mapping the input x into {yes, no}, such that

- $Pr[M(x) = yes \mid x \in A] \ge \frac{3}{4}.$
- $Pr[M(x) = no \mid x \notin A] \ge \frac{3}{4}.$

There are no known problems in  $\mathbb{BPP}$  beyond  $\mathbb{RP}$  (or co- $\mathbb{RP}$ ), but at least some facts are known.

- $\mathbb{BPP} \subseteq \Sigma_2 \cap \Pi_2 \subseteq \mathbb{EXPTIME}$ . (Sipser-Lautemann theorem)
- BPP ⊂ PSPACE ⊂ EXPTIME.

# **Higher complexities**

## **Higher Complexities**

A problem A is in:

- **EXPTIME** if it can be solved in  $2^{n^{O(1)}}$  time.
- PSPACE if it can be solved using  $n^{O(1)}$  memory.
- $\blacksquare$  NPSPACE if there is a  $B \in \mathbb{PSPACE}$  such that

$$A = \{x \mid \exists^p y \text{ s.t. } (x, y) \in B\}$$

**EXPSPACE** if it can be solved using  $2^{n^{O(1)}}$  memory.

# **Complexity Separation**

## **Proper inclusions**

- $\mathbb{P} \neq \mathbb{EXPTIME}$ . Thus, if A is  $\mathbb{EXPTIME}$ -complete,  $A \notin \mathbb{P}$ .
- PSPACE ≠ EXPSPACE.

Note that,  $\mathbb{EXPTIME}$ -hardness is defined under relation  $\leq_p$ . We won't employ a notation like  $\leq_e$  or sth.

#### Other inclusions

■ NP ⊆ PSPACE ⊆ EXPTIME.

# **Oracle complexity**

Although it's the last time to treat higher complexities, I decided to introduce the concept of **Oracle machine**.

#### Oracle machine

Given a complexity class C,  $\mathcal D$  and a problem B, the class  $C^B$  is defined to be the problems being in C, assuming the "oracle"  $x \in B$  as a constant-time operation.

Also, 
$$C^{\mathcal{D}} := \bigcup_{B \in \mathcal{D}} C^B$$
.

If C is large enough to conduct a reduction to a  $\mathcal{D}$ -complete problem X, then  $C^{\mathcal{D}} = C^X$ .

e.g. 
$$\mathbb{P}^{\mathbb{NP}} = \mathbb{P}^{\mathbf{SAT}}$$
.

# **Polynomial Hierarchy**

**Polynomial Hierarchy** is an infinite sequence of complexity classes.

## Polynomial Hierarchy

- $\Sigma_0, \Pi_0, \Delta_0 := \mathbb{P}.$
- $\Sigma_{i+1} := \mathbb{NP}^{\Sigma_i}.$
- $\Pi_{i+1} := \operatorname{co-NP}^{\Pi_i}$ .
- $\Delta_{i+1} := \mathbb{P}^{\Sigma_i}$ .

This is neat, but hard to break down.

# **Polynomial Hierarchy**

In fact, the alternative definition of PH can be established.

#### Alternative definition

- $\Sigma_0, \Pi_0 := \mathbb{P}.$
- $\blacksquare A \in \Sigma_{i+1} \iff \exists B \in \Pi_i \text{ s.t. } A = \{x \mid \exists^p y \text{ s.t. } (x,y) \in B\}.$
- $\blacksquare B \in \Pi_{i+1} \iff \exists A \in \Sigma_i \text{ s.t. } B = \{x \mid \forall^p y \text{ s.t. } (x,y) \in A\}.$

## **Inclusions between Polynomial Hierarchies**

There is a set of interwoven inclusion relations between hierarchies.



# **Polynomial Hierarchy Collapse**

## Theorem. (PHC)

If 
$$\Sigma_i = \Pi_i$$
,  $\Sigma_i = \Sigma_j = \Pi_j$  for all  $j \geq i$ .

■ Thus,  $\mathbb{NP}$ -completeness of **GRAPH ISOMORPHISM** removes all complexity classes beyond  $\Sigma_2$ .

# **Higher order SAT**

 $\Sigma_2$  **SAT** is defined as below.

## $\Sigma_2$ -SAT

Given a boolean formula (CNF)  $\phi(\vec{x}, \vec{y})$ , is there an assignment  $\vec{x^0} = (x_1, \dots, x_n)$  such that  $\phi(\vec{x^0}, \vec{y})$  is true regardless of  $\vec{y}$ ?

Known that  $\Sigma_2$ -**SAT** is  $\Sigma_2$ -complete.  $\Sigma_i$ -**SAT** can be defined equivalently.

# QBF

**QBF** is the most comprehensive form of  $\Sigma_k$  **SAT**.

## **QBF**

Given a boolean formula  $\phi(\vec{x_1}, \cdots, \vec{x_k})$ , answer the question:

$$\exists \vec{x_1} \forall \vec{x_2} \exists \cdots Q_k \vec{x_k} \text{ s.t. } \phi(x_1, \cdots, x_k) = \text{true}?$$

while  $Q_i$  is  $\exists$  for j odd, otherwise  $\forall$ .

## **Hardness of QBF**

QBF is PSPACE-complete.

# Beyond the PSPACE?

Mostly, the notion  $\mathbb{NPSPACE}$  is tedious.

## Theorem. (Savitch)

For  $f(n) \ge n$ , NPSPACE $(f(n)) \subseteq PSPACE(f(n)^2)$ . Thus, NPSPACE = PSPACE

Here  $\mathbb{NPSPACE}(f(n))$  denotes the  $\mathbb{NPSPACE}$  problem allowing f(n) extra space.

# Sublinear NPSPACE problems

If  $f(n) = O(\log n)$ , we define  $\mathbb{NL} := \mathbb{NPSPACE}(f(n))$  as the problem could be solved in logarithmic extra r/w memory other than input, and the input is read-only.

## Reachibility problem

Given a directed graph G and  $s, t \in V(G)$ , is there a path from s to t?

The problem above is  $\mathbb{NL}$ -complete. It is weakly believed  $\mathbb{L} \neq \mathbb{NL}$ .

Thank You for Your Attention!