

66 PD Advanced Analytics: Building Your Toolbox

Moderator:

Trevor Fast, FSA, FCA, MAAA

Presenters:

Jeremy Dylan Achin Jeff T. Heaton Syed Muzayan Mehmud, ASA, MAAA, MAAA Trevor James Fast, FSA, FCA, MAAA Advanced Analytics: Building Your Toolbox

Predicting Diabetes Using Gradient Boosted Tree Models

Jeremy Achin
Data Scientist @ DataRobot
jeremy@datarobot.com
June 24, 2014

Outline

 Health Analytics: Predicting Diabetes

 Introduction to Gradient Boosting Machines (GBM)

Predicting Diabetes

Weight

Age

Probability of Diabetes

9,948 Patients

SyncPatient

♣ PatientGuid	UNIQUEID	NOT NULL
- Gender	NVARCHAR(1)	NOT NULL
*YearOfBirth	SMALLINT	NOT NULL
State	NVARCHAR(2)	NOT NULL
PracticeGuid	UNIQUEID	NOT NULL

78,864 Prescriptions

SyncPrescripti

PrescriptionGuid	UNIQUEID	NOT NULL
PatientGuid (FK)	UNIQUEID	NOT NULL
MedicationGuid (FK)	UNIQUEID	NULL
PrescriptionYear	SMALLINT	NULL
	NVARCHAR(50)	NOT NULL
NumberOfRefills	NVARCHAR(50)	NULL
RefillA sNeeded	BIT	NULL
GenericAllowed	BIT	NULL
→ UserG uid	UNIQUEID	NOT NULL

66,487 Medications

ì	ĺ.	Ň
- /	IX.	т
SyncMed id	cation	

MedicationGuid	UNIQUEID	NOT NULL
PatientGuid (FK)	UNIQUEID	NOT NULL
NdcCode	NVARCHAR(50)	NULL
M edicationName	NVARCHAR(256)	NULL
MedicationStrength	NVARCHAR(50)	NULL
→ Start Year	SMALLINT	NULL
StopYear	SMALLINT	NULL
→ Schedule	NVARCHAR(50)	NULL
PagnosisGuid (FK)	UNIQUEID	NULL
→ User Guid	UNIQUEID	NOT NULL

29,015 Lab Observations

SyncL ab Observation

LabO bserv ationGuid	UNIQUEID	NOT NULL
NabPanelG uid (FK)	UNIQUEID	NULL
+ HL7I dentifier	NVARCHAR(255)	NOT NULL
→ HL7T ext	NVARCHAR(255)	NOT NULL
+ HL7CodingSystem	NVARCHAR(255)	NOT NULL
♦ IsLoinc	BIT	NOT NULL
O bservationValue	NVARCHAR(255)	NOT NULL
♦ IsValidValue	BIT	NOT NULL
→ Units	NVARCHAR(255)	NULL
ReferenceRange	NVARCHAR(255)	NULL
A bnormalF lags	NVARCHAR(255)	NULL
ResultStatus	NVARCHAR(255)	NULL
O bservationYear	SMALLINT	NULL
O bservationMethod	NVARCHAR(255)	NULL
UserGuid	UNIQUEID	NULL
♦ IsAbnormalValue	BIT	NULL
S equence	INTEGER	NULL

(4th place)

Difference between Good and Great

Good: Log Loss = 0.41

Difference between Good and Great

F	Great Prediction	Good Prediction	Ground Truth	A - B				
-2	A	В	C	D	F	G	H	- 1
1	Model 1	Model 2	Actual	pred_diff	Bucket		Total Obs	9948
2	0.0930961	0.97076126	0	-0.8776652	1		buckets	10
3	0.04639884	0.881745082	0	-0.8353462	1		Obs per bucket	994.8
4	0.05531521	0.864625378	0	-0.8093102	1			
5	0.13676324	0.943655042	0	-0.8068918	1			
6	0.02168173	0.823185683	0	-0.8015039	1		~	
7	0.03684564	0.81898334	1	-0.7821377	1		Sort &	
8	0.17283439	0.954203549	0	-0.7813692	_1_	\mathcal{I}		
9	0.18117228	0.960672761	1	-0.7795005			Duoko	4
10	0.17332438	0.946835886	0	-0.7735115	1		Bucke	L /
11	0.20196339	0.962739608	0	-0.7607762	1			
12	0.19408966	0.952755667	0	-0.758666	1			
13	0.07146744	0.827419322	0	-0.7559519	1			
14	0.13819089	0.892337068	0	-0.7541462	1			
15	0.17846479	0.929543084	1	-0.7510783	1			
10	0 11001455	0.001000010	4	0 7440704				

When do the models disagree?

Dual Lift (10 Buckets)

Dual Lift (10 Buckets)

Dual Lift (10 Buckets)

Winning Diabetes Algorithms

First Place (Jose A. Guerrero):

Boosted Trees (GBM) + Random Forest

Second Place (Matt Berseth):

Boosted Trees (GBM)

Third Place (Shashishekhar Godbole):

Boosted Trees (GBM) + Random Forest +

- + Neural Networks
- Fourth Place (DataRobot):

Boosted Trees (GBM) +Support Vector Machine +

+ Generalized Linear Mixed Model + Random

Forest

Winning Diabetes Algorithms

First Place (Jose A. Guerrero):

Boosted Trees (GBM) + Random Forest

Second Place (Matt Berseth):

Boosted Trees (GBM)

Third Place (Shashishekhar Godbole):

Boosted Trees (GBM) + Random Forest +

- + Neural Networks
- Fourth Place (DataRobot):

Boosted Trees (GBM) + Support Vector Machine +

+ Generalized Linear Mixed Model + Random Forest

Why does GBM work so well?

Boosted Trees (GBM)

 Single most powerful algorithm out there right now due to the way it automatically captures nonlinearity and interactions.

Boosted Trees (GBM)

 Single most powerful algorithm out there right now due to the way it automatically captures nonlinearity and interactions.

AND

Nonlinearity

Nonlinearity

GBM Capturing Nonlinear Effect of Weight on Diabetes Risk

GBM Capturing Nonlinear Effect of BMI on Diabetes Risk

GBM Automatically Detects Feature Interactions

GBM Automatically Detects Feature Interactions

Model Interpretation

• What are the most important variables?

Relative Importance

Model Interpretation

- How do features interact with the response?
 - Partial dependence plots

Other GBM Success Stories

Web page ranking Google, Bing, Yandex

Data Mining Competitions
Health, Energy, Pharma,
Advertising, E-commerce, ...

Research
GBM @ CERN

How does GBM work?

Decision Trees

Recursive partitioning

9948 Patients 19% Diabetes Rate

Decision Trees

Recursive partitioning

Decision Trees

Recursive partitioning

Gradient Boosting

Tree ensemble fitted in a forward stage-wise manner

Gradient Boosting

Tree ensemble fitted in a forward stage-wise manner

Intuition: Residual Fitting

Free GBM Software

http://scikit-learn.org/dev/modules/ensemble.html#gradient-tree-boosting

http://cran.r-project.org/web/packages/gbm/index.html

GBM Tutorial

http://www.datarobot.com/blog/gradient-boosted-regression-trees/

Summary

Meaningful Model Comparison

GBM:

- One of the most powerful ML algorithms
- Not a black box
- Easy and free to use

Questions?

jeremy@datarobot.com

Unstructured Dataand Deep Learning

June 24, 2014

Jeff Heaton, FLMI, ARA, ACS
EHR Informatics Scientist, RGA Reinsurance Company

Society of Actuaries (SOA) – 2014 Health Meeting

Advanced Analytics: Building Your Toolbox

Preliminaries

Terminology

- Model A set of relationships that uses features to predict labels, and other outcomes.
- Features The data provided to a model.
- Label The expected numeric or categorical output from a particular model, given a set of features. Data items can be labeled or unlabeled.
- Tag A text string used to subset a larger data set. One item can have multiple tags. Gmail is a good example of "tagging".

Preliminaries

Terminology (continued)

- Structured Data Data that is in a form that can easily be queried. Typically rows and columns that can easily be used by a model.
- Semi-Structured Data Does not fit directly into rows and columns, but contains structure. XML/JSON are good examples.
- Unstructured Data Textual data, often written in a human language (e.g. English). No easy way to query and extract information. Also includes images, sound & video (though these are much more difficult).

Preliminaries

Structured Data

1	Feature 1	Feature 2	Feature 3	Label
2	19	18	20	Good
3	1	1	3	Bad
4	10	9	11	Neutral
5	10	10	11	Neutral
6	8	11	9	Neutral
7	1	2	1	Bad
8	20	21	22	Good
9	20	22	1	Good
10	19	22	22	Good
11	20	21	21	Bad
12	20	22	22	Bad
13	10	9	9	Neutral
14	10	10	10	Neutral
15	1	1	1	355

Unstructured Data

Diabetes mellitus

From Wikipedia, the free encyclopedia

"Diabetes" redirects here. For other uses, see Diabetes (disambiguation)

Diabetes mellitus (DM) or simply **diabetes**, is a group of metabolic diseases in which a person has high blood sugar. ^[2] This high blood sugar produces the symptoms of frequent urination, increased thirst, and increased hunger. Untreated, diabetes can cause many complications. Acute complications include diabetic ketoacidosis and nonketotic hyperosmolar coma. Serious long-term complications include heart disease, kidney failure, and damage to the eyes.

Diabetes is due to either the pancreas not producing enough insulin, or because cells of the body do not respond properly to the insulin that is produced.^[3] There are three main types of diabetes mellitus:^[4]

Type 1 DM results from the body's failure to produce insulin. This form
was previously referred to as "insulin-dependent diabetes mellitus"
(IDDM) or "juvenile diabetes".[4]

Preliminaries

What is a model?

Model Functions

- Models are fit/trained with known features and labels
- Hopefully models gains the ability to predict labels based on features
- Labels can be either numeric or categorical

Common Model Types

- Random Forest
- Support Vector Machine
- Neural Network
- Generalized Linear Model (GLM)

Preliminaries

Model Types

- Linear Regression One of the original "models" essentially draw a line through data points to predict.
- Generalized Linear Model (GLM) A family of models (e.g. Logistic Regression) that extend linear regression beyond normally distributed error models.
- Neural Network A model based on the human brain.
 Black box in the sense that output cannot be "explained."
- Classification and Regression Trees (CART) Models based on decision trees. Output can be explained.
- Random Forest Many trees with specialized training method. Quickly becoming the "go to" model. Mostly a black box.

Preliminaries

Electronic Health Records (EHR) 101

What is EHR?

- EHR records contain information on a patent/insured such as:
 - Medical history, immunization dates, diagnoses and medications
 - Treatment plans
 - Allergies
 - Radiology images and laboratory/test results
- Some EHR documents typically contain a variety of codes:
 - ICD10 codes attempt to standardize diagnoses (e.g. coronary artery disease) and treatments (bypass surgery). Scheduled for adoption in USA next year.
 - **ICD9** is widespread in the USA, ICD10 is currently being adopted. SNOMED is a more international standard. Others exists, and crosswalks exist to convert between standards.
 - UNII is a common standard to encode substances (medications). RxNorm is more common in EHR, however Wikipedia uses UNII.
- ICD10/9 and UNII are the primary focus of this talk

Sources of Un/Semi-structured Data

A great deal of data is unstructured

Public Sources

- Data.gov
- Social Media
- Wikipedia
- Public Message Forums
- Open Access Journals
- UCI Machine Learning Repository
- RSS Feeds

Proprietary Sources

- Data Marts
- Closed Journals
- News Archives
- Search Engine Queries
- Subscription Web services

Internal Sources

- Newsletters
- Manuals
- Intranet
- E-Mail Archives

Why use Wikipedia?

Wikipedia is one of several public sources we use

Facts about Wikipedia Information

- Wikipedia articles are tagged according to many criteria, such as EHR code.
- Wikipedia articles are cross-linked providing insights into similarities between multiple articles.
- Tables are easily identified and extracted from Wikipedia.
- Wikipedia contains many articles with information about diagnoses, treatments and medications.
- Wikipedia text can be very valuable when used in conjunction with other data sources.
- Wikipedia is publically edited, and may not always be 100% accurate.
 - Text is often analyzed based on word counts, keyword density and document structure. This mitigates some concerns with inaccurate information.
 - However, it is still important to evaluate insights/data mined from Wikipedia. This is true of any data science project. <u>Always involve a</u> <u>Subject Matter Expert (SME).</u>

Using Wikipedia

How big is Wikipedia (excluding images & video)

Wikipedia's size in 2010, if it were bound and printed.

Wikipedia provides a downloadable XML file containing text of current version

- Always use this offline file, do not access Wikipedia through HTTP.
- Wikipeida offline data is distributed as a very large XML file.
- XML file length: 47.46 GB (April 2014)
- Number of pages: 14,313,024
 - Articles: 5,771,666 (this is what I mainly care about)
 - Redirects: 6,308,100 (sometimes I care about this, for resolving links)
 - Files (media): 854,151
 - Other (templates): 1,379,107

Using Wikipedia

Many articles in Wikipedia have tags. Some of the tags in Wikipedia are EHR codes. We are particularly interested in the following tags. They let us know what an article is about.

Drug/Substance Codes

- CAS number
- ATC code
- PubChem
- IUPHAR ligand
- DrugBank
- ChemSpider
- UNII
- KEGG
- ChEBI
- ChEMBL

Interventions

- ICD10-PCS
- ICD9
- MeSH
- MedlinePlus

Diagnosis

- ICD10-CM
- ICD9
- DiseasesDB
- MedlinePlus
- eMedicine
- MeSH

Using Wikipedia

Embedded tags in Wikipedia (semi-structure)

Using Wikipedia Some uses for Wikipedia data

- Wikipedia tags most diagnosis (e.g. coronary artery disease) and treatments(e.g. bypass surgery) by ICD/drug code.
 - By statistically comparing an "unknown document" to a Wikipedia article, we can get an idea of what the unknown document's topic is and tag it by the same tags Wikipedia uses.
 - Word structure in a Wikipedia articles can give us a general idea of the mortality and morbidity of the topic the diagnosis/procedure the article is describing
- Links between articles highlight medication and treatment relationships
- Word structure and clustering analysis can be used to group similar ICD and drug codes

Using Wikipedia

Making sense of unstructured Wikipedia data

- Tags can usually be found using traditional programming with regular expressions (REGEX).
- Because each Wikipedia article is tagged with multiple coding standards some degree of "code translation," or crosswalk, can be inferred.
- Wikipedia redirects can be used to infer synonymous phrases.
- Links between articles can also be found using traditional programming.
- Making sense of the article text is much more complex
 - Bag of Words Analysis: Simply produce a histogram of word frequencies in the document. Create rules for defining the words that make it into the histogram.
 - Bag of Words with Proximity: Similar to bag of words, except weights words that appear closer to each other.
 - Sentence Structure Analysis: Attempt to locate certain sentence structures within documents.
 - Natural Language Processing: Attempt to extract the "knowledge" contained in the text.

Using Wikipedia Finding ICD/Drug Codes in Wikipedia

Wikipedia Articles Found by Code Type

• ICD10-CM: 4,633

• ICD10-PCS: 122

ICD9: 5,201

UNII: 339

Medical codes some very unusual conditions.

Notes

- A single Wikipedia article is often tagged to a range of codes.
 - For "ear infection" there is a single Wikipedia article, yet codes for left/right ear, initial/subsequent occurrence, and if related to another root cause.
 - Some codes cover very unusual situations that are simply do not have Wikipedia articles.

Using Wikipedia High Coverage Rates are Imposable

- Medical codes tend to be very specific, e.g. left or right arm, left or right ear, initial or subsequent encounter.
- Medical codes some very unusual conditions.

Unusual ICD10 Codes

V9542XA: Spacecraft crash injuring occupant, initial encounter

W59.22XA: Struck by a turtle

V91.07XA: Burn due to water-skis on fire, initial encounter

W22.02XA: Hurt walking into a lamppost, initial encounter

Unusual UNII Codes

ZZ4SNQ91FW: Pale Toadfish

E06K5531Q8: Chicken Foot, Cooked

466251J72G: Pork Brain

Bag of Words

Approaches to unstructured textual data

General Description

- Regular textual data cannot be directly applied to a model.
- Bag of words is one of the oldest, and a common approach for modeling textual data.
- To use a "Bag of Words" you should choose a set of important words.
- Generate a count of the words.
- The word count, or percentage weight of each word, becomes your features.

Effectiveness

- Bag of words counts only individual words (e.g. "United States of America" is 4 different counts.
- No meaning is derived from the underlying sentences.

Bag of Words

Introduction to Bag of Words

Rank	Count	Word
1	245	the
2	209	diabetes
3	149	and
4	75	type
5	66	insulin
6	49	glucose
7	48	mellitus
8	48	with
9	38	are
10	34	for
11	30	disease
12	28	blood
13	26	legend
14	25	may
15	24	which
16	23	from
17	23	risk
18	22	diabetic
19	20	first

- The table to the left is a histogram for the Wikipedia article for diabetes.
- Typically common words (e.g. the, and, are, for, etc.) are removed.
- Key words (the bag) can be designated and their normalized counts can become features for a model.
- Bag of words can be quite valuable for document classification.
- However, bag of words only looks at single word counts. How the words are used is not considered.

Bag of Words

Wikipedia Diabetes Article as a Wordle

Bag of Words Wikipedia ICD Articles as a Wordle

Natural Language Processing (NLP) Overview

- Natural Language Processing (NLP) attempts to extract knowledge from textual data.
- NLP is a very deep, yet ever evolving field of study.
- The Python Natural Language Tool Kit (NLTK) can be used to parse and analyze sentences.
- WordNet is a lexical database that can be used with NLTK. WordNet is used by Google and projects such as IBM Watson.
- NLTK can be used to parse and analyze sentence structure.

Kidney

Natural Language Processing

WordNet Databases

- WordNet organizes nouns and verbs into hierarchies.
- This can be very useful for generalizations with lexically analyzing text.
- WordNet was originally developed by Princeton University.

Natural Language Processing (NLP) Overview

- Natural Language Processing (NLP) attempts to extract knowledge from textual data.
- NLP is a very deep, yet ever evolving field of study.
- The Python Natural Language Tool Kit (NLTK) can be used to parse and analyze sentences.
- WordNet is a lexical database that can be used with NLTK. WordNet is used by Google and projects such as IBM Watson.
- NLTK can be used to parse and analyze sentence structure.

Deep Learning

Key Features & Requirements

Deep Learning Features

- Deep learning models are "deep" with many layers to learn different aspects of the data.
- Deep layers can be trained independently. This scales well.
- Deep learning requires only partially labeled data.

Deep Learning Requirements

- Deep Belief Neural Networks (DBNN) require a fixed length input of features, just like other models.
- DBNN's require binary features.
- Because of the binary feature requirement DBNN's can be difficult to apply to some problems.

Deep Learning Overview

Shallow Learning

- Only a few layers, typical of models such as:
 - Feedforward Neural Networks
 - Support Vector Machines
 - General Linear Models
- Limited ability to create "hidden features", such as our own eyes detecting edges and corners.

Deep Learning

- Feature input to deep neural networks are typically binary. Output label is typically categorical.
- Deep learning algorithms typically have many layers (depth) compared to more shallow learning algorithms.
- Deep Neural Networks started a resurgence in neural network research.
- Deep learning layers are not necessarily neural networks, there is some research into deep Support Vector Machines (SVM).

Shallow Neural Network

Overview

- Typical Artificial Neural Networks (ANN) have a single hidden layer.
- Sigmoidal output with weight and bias links:
 - Weights control sigmoid curvature
 - Bias controls sigmoid position
- Additional hidden layers are counterproductive for several reasons:
 - Vanishing gradient problem
 - Complexity to train

ANN Trying to be Deep

But unsuccessful

Deep Belief Neural Network (DBNN)

Overview

- Multiple layers of Restrictive Boltzmann Machines (binary)
- Training data (10 inputs) trains the next layer (250 neurons) using unsupervised learning.
- Unsupervised training works its way higher until the top 1000 neurons is reached.
- Any labels we have, from the data, are used to train using supervised training.
- Binary features are one of the largest stumbling blocks to DBNN implementation.

Conclusion

Citations

- Samuel R. Bowman. 2013. "Can recursive neural tensor networks learn logical reasoning?"
- Richard Socher, Cliff Lin, Andrew Y. Ng, and Christopher D. Manning, "Parsing Natural Scenes and Natural Language with Recursive Neural Networks". ICML 201
- Richard Socher, John Bauer, Christopher D. Manning and Andrew Y. Ng, "Parsing with Compositional Vector Grammars"
- www.wordle.net For wordle generation.

Conclusion Useful Tools

- R Programming Language
- Python Programming Language
- Numpy/SciPy for numeric processing (Python)
- Scikit-Learn for machine learning (Python)
- Natural Language Toolkit (NLTK) (Python)
- WordNet For lexical meaning
- Theano For deep learning (Python)

#66: Building your toolbox

Syed M. Mehmud

Director and Senior Consulting Actuary Wakely Consulting Group syedm@wakely.com

What is a toolbox?

Things you need

Things you can live without...

- What is complexity science?
 - Difficult to define
 - States of rule 250 at 50 and 100 time steps

- What is complexity science?
 - Difficult to define
 - States of rule 110 at 50 and 100 time steps

What is complexity science?

A complexity model is one where all prior states must be computed in order to observe a certain state

Example

Model is available at:

http://www.soa.org/research/researchprojects/health/research-complex-callmodels-winner.aspx

