

Put 
$$p(AB) = P(AB|C) P(C) + P(AB|C^c) P(C^c)$$

=  $\frac{1}{4}P \Rightarrow p(AB) = p(A)p(B)$  only when  $p = 10^{-1}D$ 

Two coins, coin A: regular coin, and coin B: both sides are heads.

A: Randomly pick one coin and toss once, it gives you H.

B: Toss the same coin a second time, it gives you H.

C: The coin you picked is coin A

Conditional on C

P(A|C) =  $\frac{1}{2}$ 

P(B|C) =  $\frac{1}{2}$ 

P(AB|C) =  $\frac{1}{2}$ 

P(AB|C) =  $\frac{1}{2}$ 

P(AB|C) =  $\frac{1}{2}$ 

P(AB|C) =  $\frac{1}{2}$ 

P(A|C) =  $\frac{1}{2}$ 

P(A|C

## Example

Does  $P(E) \leq P(E|F)$  in general?



Courter example 1

No! And No for the other direction too Counter-example 2 Toss Z coins

E: first top gives H

F: Both towas give H