GLOBOL DT SHOP IND LEWS SPE Workpril 2024 14:48 en - Bussut - Brav - Desport - Soyce - Szendagi.

Motivation:

DT invariants first defined for of cohorert sheares on (Y3-folds

Can virtual fun damental class CXIvin

 $DT = \int_{X_{vir}}$

Behrend

 $DT = \chi_{wt}(\partial_{\chi})$

Ux - constructible turction

X = Criff

 $f: \mathcal{U} \rightarrow \mathcal{F}$

Jx(P) = (-1) dim U X (p (dim u) LP)

Interested in

LOC((M) for M u3-naniford

The moduli spuces carry u -1 shifted symplectic drived of versions

Durboux theorem => (an express the plussion truncation locally is a Critical locally

They X is u-1 shisted symplectic derived scheme, then tolx) has the structure of a d-critical li

 $P \in \mathbb{R}^{-2}$ ariski open $f: \mathcal{U} \rightarrow \mathcal{E}$ 8 arooth (losed embedding $i: \mathcal{R} \hookrightarrow \mathcal{U}$ $i(\mathcal{P}) = \text{trif } f$

St S(x) to month define $S|_{R} = f + I^{2}$ I ideal define S|

Example:

 $U = \sum_{x \in \mathcal{X}} \{ (x^{-1})^{x} \} = \{ (x^{-1})^{x$

L non-trivial

Spec
$$\frac{(x^{n-1})}{(x^{n-1})}$$
 Spec $\frac{(x^{n-1})}{(x^{n})}$ $\frac{(x^{n})}{(x^{n-1})}$

 $\phi_{s}Q = Q[i]$ $\phi_{q}Q = L[i]$ S = f + I2 = Ø + I2 $x^{n} + (x^{2n-2}) = tx^{n} + (x^{2n-2})$

Exumple

U smouth

$$u \stackrel{\circ}{\rightarrow} 4 \qquad S_u = 0$$

$$\int_{u}^{\omega} = 0$$

Canonical bundle and orientations

Thu (X,5) I-critical locus

Then I a line bundle KX on X/red

8 it. for any chart (-(R, U, +, i)

KxlD = itwu &z

An orientation is a line bundle Kx and

1,1/2 102 11 the see of some also

Example:

U be (mooth

$$(u, \circ)$$
 $K_{u} \subseteq w_{u}^{\otimes 2}$

There ularays exists un orientation since ne can take $K^{VZ} = Wu$

It is the classical truncation of the derived with locary and Wu comes from this

Perrone sheaf

Let us almost by PVu_{f} the sheaf of manishing Cy_{c} les on X = Criff

In yeard this is not the same up of Q.

Ned to compre on our laps

This is done by using embedding of critical charts (1,2) (2

Dil a a a

-1 shisted symplectic and chick to derived Artin stock X

det \mathbb{Z}_{X} \longrightarrow $\mathbb{Z}_{\{o(x)} \cong \det(\mathbb{Z}_{X})|_{\{o(x)\}}$

Permise should

A a purmy should on X (X,S) is critical stack

S.t. $P(T \rightarrow X)$ $+ \xrightarrow{yrooth} X$ oriented $= P_T$

Stuck 6+ Local Systems on U 3 - manifold. b - reductive alg. gp.

Moduli of homomorphism $\Pi_{i}(u) \rightarrow 6$ } Loc(M)

Derived stuck:

RLOCL(M) = Map (MB, B6)

MB - Betti stæck , which is the constant stack Unding R to Singular simplicial set Udga

PTVV: Shished symplectic structury for mapping stacks

X, Y are derived stacks

O Y is N - shithed symplectic

DX 0-compact

3 X hus un orientation nich preumbor d

Map(X,Y) ny a v-d

shifted Symplfac sta

For nunifoldy M ·J-compactusy M is compact Orien tatan 4 M bring orientable d = dim M

Bb hus only 2- shifted symplectic structure, which congrand to Sym2 at

PlocMI - Map (MB, Bb) is 2-dim M shifted symplex t

1+ dim M = 3

lens spucis 6=6Ly

L(m,n) = 53/2/m/2

M Action generated by

(21, 21) H (2, 2 m, 22 lin)

Independent of V TI, (N) = R/m R = H

Croup algebra of H is $KH = \frac{K(t)}{(t^m-1)} = \frac{K(t)}{(t-1)} = \frac{K(t)}{(t-1)}$

2 on the root of anily

KH = K

To give ce representation mans giving

$$V = \bigoplus_{i=1}^{m} V_i$$

Diritical structure for quotient sticks
$$X = \begin{bmatrix} U_{12} \end{bmatrix}$$

Continuations

de critical locus structure on U

$$L \rightarrow K_{u} \otimes \left(\det |L_{u/x}\right)^{-0.2}$$

mith un iso morphism

$$K_{u} = w_{u}^{\otimes 2} \stackrel{<}{=} K$$

Orien ta tay

For reductive groups dut g is the trivial rep.

Form L = K $V \Leftrightarrow u \text{ Choice of } s' \in K \setminus D$

PBG CA 40 Rpt & QC

Find ylobul sepure root, so Qc is trinal

PBU > 40 Qpt = Q

So for Lock me uso get

P is Q

 T^3 $6L_1$ $\Pi_1(T_3) = Z^3$ $Loc_T \zeta 6L_1) = \left(\frac{\xi^3}{\zeta}\right)$ Orientations correspond to sections of Opes

Take cohomology

orientations = 1

Get constant sheet $V = \frac{1}{xyz}$

The cohomology $V = \frac{$

 $M = \mathbb{R}^3$ $R L_{oC}(\mathbb{R}^3) = R L_{oC}(3+) = B6$ $Bb \quad \text{cumof have } -1 \text{ shifted sym the bic structure}$