LECTURE 25: FREE PARTICLE MOTION Monday, October 14, 2019

The behavior of a particle in a potential is described by

$$H = \frac{P^2}{2m} + V(x)$$

In free motion, $V(x) \to 0$, so our states are eigenstates of the momentum states:

$$P\left|p\right\rangle = p\left|p\right\rangle$$

and

$$H\left|p\right\rangle = \underbrace{\frac{P^2}{2m}}_{E(p)}\left|p\right\rangle$$

If we want to see the time evolution, we use the Schrödinger equation:

$$i\hbar \frac{\partial}{\partial t} |\varphi\rangle = H |\varphi\rangle$$

$$\left|p\right\rangle (t)=e^{-\imath E(p)t/\hbar}\left|p\right\rangle (t=0)$$

We can also look at the state in terms of a wave packet:

$$\begin{split} |\varphi\rangle &= \int \mathrm{d}p\, \tilde{\varphi}(p)\, |p\rangle \\ \varphi(x) &= \langle x|\, |\varphi\rangle = \frac{1}{\sqrt{2\pi\hbar}} \int \mathrm{d}p\, \tilde{\varphi}(p) e^{\imath px/\hbar} \\ \varphi(x,t) &= \frac{1}{\sqrt{2\pi\hbar}} \int \mathrm{d}p\, \tilde{\varphi}(p,t=0) e^{\imath (px-E(p)t)/\hbar} \end{split}$$

Let's write the momentum as $p = \hbar k$ such that k is the wave number. We will also rescale $E = \hbar \omega$, where $\omega = \omega(k)$. Finally, we will define $\sqrt{\hbar} \tilde{\varphi}(\hbar k) \equiv A(k)$. Finally, we have

$$\varphi(x,t) = \frac{1}{2\pi} \int dk \, A(k) e^{i(kx - \omega t)}$$

If the phase is zero, $x(t) = \underbrace{\frac{\omega}{k}}_{v} t$ where v_p is the phase velocity. Let's construct a wave packet by making

A(k) a Gaussian about \bar{k} . In real space, this means that x(t) is a wave of a frequency \bar{k} with a Gaussian envelope. The wave inside the envelope moves at the phase velocity, but the envelope itself will move at v_g , the group velocity. To see what this means, let's imagine A(k) is two δ functions, $\delta(\bar{k}+\delta k)+\delta(\bar{k})-\delta k$. Now the Fourier transform is relatively simple. We will expand $\omega(\bar{k}+\delta k)\approx\omega(\bar{k})+\delta k\frac{\mathrm{d}\omega}{\mathrm{d}k}\Big|_{\bar{k}}=\bar{\omega}+\delta\omega$:

$$\varphi(x,t) = \frac{1}{2} e^{i[(\bar{k}+\delta k)x - (\bar{\omega}+\delta\omega)t]} + \frac{1}{2} e^{i[(\bar{k}-\delta k)x - (\bar{\omega}-\delta\omega)t]}$$
$$= e^{i(\bar{k}x - \bar{\omega}t)} \cos(\delta kx - \delta\omega t)$$

The crests of the wave (the exponential) move at phase velocity $v_p = \omega/k$. However, the envelope (the cosine) moves at the group velocity $v_g \equiv \frac{\mathrm{d}\omega}{\mathrm{d}k}|_{\bar{k}}$.

Recall that $\omega=E/\hbar=\frac{\hbar k^2}{2m}$ is nonlinear in k. Therefore, $v_p=\frac{\hbar k}{2m}$ and $v_g=\frac{\hbar k}{m}$. Notice that in general, these are not the same number. The fact that $v_p=v_p(k)$ will lead to a spreading of the group, which we call "wave packet spreading." Note that we are talking about particles with mass. For massive particles, there is this phenomenon of dispersion $\omega(k)$. Massive particles have nontrivial dispersion relations.

Recall from last week that

$$(\Delta X)^2 = \left\langle X^2 \right\rangle - \left\langle X \right\rangle^2$$

and Ehrenfest's theorem:

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle A \rangle = \frac{1}{i\hbar} \langle [A, H] \rangle$$

If $H = \frac{P^2}{2m}, [X, P^2] = 2i\hbar P$. Also, $[X^2, P^2] = 2i\hbar \{X, P\}$ and $[\{X, P\}, P^2] = 4i\hbar P^2$.

$$\frac{\mathrm{d}\langle X\rangle}{\mathrm{d}t} = \frac{\langle P\rangle}{m} = v_0 \implies \langle X\rangle = v_0 t + \langle X\rangle_0$$

$$\frac{\mathrm{d}\left\langle X^{2}\right\rangle }{\mathrm{d}t}=\frac{\left\langle \left\{ X,P\right\} \right\rangle }{m}\implies\frac{\mathrm{d}^{2}\left\langle X^{2}\right\rangle }{\mathrm{d}t^{2}}=\frac{1}{\imath\hbar m}\left\langle \left[\left\{ X,P\right\} ,H\right] \right\rangle =\frac{2\left\langle P^{2}\right\rangle }{m^{2}}$$

Therefore

$$\frac{\mathrm{d}\left\langle X^{2}\right\rangle }{\mathrm{d}t}=\frac{2\left\langle P^{2}\right\rangle _{0}t}{m^{2}}+\xi_{0}$$

where $\xi_0 \equiv \left. \frac{\mathrm{d} \langle X^2 \rangle}{\mathrm{d}t} \right|_{t=0} \propto 2 v_0 x_0$ in the classical limit.

$$\langle X^2 \rangle = \frac{\langle P^2 \rangle t^2}{m^2} + \xi_0 t + \langle X^2 \rangle_0$$

Finally we can write

$$(\Delta X)^2 = (\Delta v)_0^2 t^2 + 2\Delta (v_0 x_0) + (\Delta X)_0^2$$

Taking the square root, we can get ΔX , which is like the width of the wave packet as a function of time. It rests on diagonal asymptotes with slope $\pm(\Delta v)_0$, and it intersects t=0 at $(\Delta X)_0$. The initial slope at t=0 is proportional to ξ_0 .