# SYS2041 – Électronique numérique Cours 5 : Tableaux de Karnaugh

Alexandre BRIÈRE



#### Quésaco?

Outil graphique permettant de simplifier les expressions booléennes :

- ⇒ La somme de produit (SDP) la plus simple possible!
- ⇒ Le produit de somme (PDS) le plus simple possible!

Table de vérité :

⇒ Tableau 1D de toutes les combinaisons d'entrées possibles

Tableau de Karnaugh :

⇒ Tableau 2D de toutes les combinaisons d'entrées possibles

## Tableau de Karnaugh à 2 variables

| Α | $\mid B \mid$ | S |
|---|---------------|---|
| 0 | 0             | 0 |
| 0 | 1             | 1 |
| 1 | 0             | 1 |
| 1 | 1             | 0 |



#### Tableau de Karnaugh à 3 variables

| Α | В | C | 5 |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |



Attention : les tableaux de Karnaugh utilisent le code de Gray!

# Tableau de Karnaugh à 3 variables BIS

| Α | В | C | S |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |



#### Tableau de Karnaugh à 4 variables

| A<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1 | В                                                                                                | С                                                                                                                                                       | D                                                                                      | S<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 0                                                                       | 0<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>1<br>1 | 0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1 | 0                                                                                                                         |
| 0                                                                       | 0                                                                                                | 0                                                                                                                                                       | 1                                                                                      | 0                                                                                                                         |
| 0                                                                       | 0                                                                                                | 1                                                                                                                                                       | 0                                                                                      | 0                                                                                                                         |
| 0                                                                       | 0                                                                                                | 1                                                                                                                                                       | 1                                                                                      | 0                                                                                                                         |
| 0                                                                       | 1                                                                                                | 0                                                                                                                                                       | 0                                                                                      | 1                                                                                                                         |
| 0                                                                       | 1                                                                                                | 0                                                                                                                                                       | 1                                                                                      | 1                                                                                                                         |
| 0                                                                       | 1                                                                                                | 1                                                                                                                                                       | 0                                                                                      | 1                                                                                                                         |
| 0                                                                       | 1                                                                                                | 1                                                                                                                                                       | 1                                                                                      | 1                                                                                                                         |
| 1                                                                       | 0                                                                                                | 0                                                                                                                                                       | 0                                                                                      | 0                                                                                                                         |
| 1                                                                       | 0                                                                                                | 0                                                                                                                                                       | 1                                                                                      | 0                                                                                                                         |
| 1                                                                       | 0                                                                                                | 1                                                                                                                                                       | 0                                                                                      | 0                                                                                                                         |
| 1                                                                       | 0                                                                                                | 1                                                                                                                                                       | 1                                                                                      | 0                                                                                                                         |
| 1                                                                       | 1                                                                                                | 0                                                                                                                                                       | 0                                                                                      | 1                                                                                                                         |
| 1                                                                       | 1                                                                                                | 0                                                                                                                                                       | 1                                                                                      | 1                                                                                                                         |
| 1                                                                       | 1                                                                                                | 1                                                                                                                                                       | 0                                                                                      | 1                                                                                                                         |
| 1                                                                       | 1                                                                                                | 1                                                                                                                                                       | 1                                                                                      | 1                                                                                                                         |



#### Tableau de Karnaugh à 5 variables



| CD |    |    |    |  |  |
|----|----|----|----|--|--|
| 00 | 01 | 11 | 10 |  |  |
| 1  | 1  | 1  | 1  |  |  |
| 0  | 0  | 0  | 0  |  |  |
| 0  | 0  | 0  | 0  |  |  |
| 1  | 1  | 1  | 1  |  |  |

#### Tableau de Karnaugh d'une SDP standard

Soit l'équation suivante :

$$\overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + AB\overline{C} + A\overline{B}\overline{C}$$

• Déterminer la valeur binaire de chaque terme :

$$\overline{A}\overline{B}\overline{C}:000$$
  $\overline{A}\overline{B}C:001$   $AB\overline{C}:110$   $A\overline{B}\overline{C}:100$ 

Pour chaque terme, placer un 1 dans la case correspondante :



# Tableau de Karnaugh d'une SDP non standard

Soit l'équation suivante :

$$\overline{A} + A\overline{B} + AB\overline{C}$$

Déterminer la valeur binaire de chaque terme :

 $\overline{A}$ : 000 001 010 011

 $A\overline{B}$ : 100 101

 $AB\overline{C}$ : 110

Pour chaque terme, placer un 1 dans les cases correspondantes :

|   |   | ВС |    |    |    |
|---|---|----|----|----|----|
|   |   | 00 | 01 | 11 | 10 |
| 4 | 0 | 1  | 1  | 1  | 1  |
| Α | 1 | 1  | 1  |    | 1  |

#### Cellules contiguë d'un tableau de Karnaugh



#### Simplification d'une SDP avec un tableau de Karnaugh

#### Étape 1 – Créer des groupes de cases à 1 :

- Un groupe contient 2<sup>n</sup> cases
- Toutes les cases du groupe doivent être contiguës
- Toujours choisir le plus grand groupe possible
- Tous les 1 du tableau doivent être dans un groupe
- Un 1 peu être dans plusieurs groupes

#### Simplification d'une SDP avec un tableau de Karnaugh

#### Étape 2 - Déterminer les termes de produit minimisés :

- Chaque groupe correspond à un terme
- Dans chaque groupe, ne garder que les termes fixes
- Additionner les termes engendrés par chaque groupes

# Simplification d'une SDP avec un tableau de Karnaugh





$$B + \overline{A}C + A\overline{C}D$$

#### Tableau de Karnaugh d'un PDS standard

Soit l'équation suivante :

$$(A+B+C)(A+\overline{B}+C)(\overline{A}+\overline{B}+C)(\overline{A}+B+\overline{C})$$

• Déterminer la valeur binaire de chaque terme :

$$A + B + C : 000$$
  $A + \overline{B} + C : 010$   
 $\overline{A} + \overline{B} + C : 110$   $\overline{A} + B + \overline{C} : 101$ 

Pour chaque terme, placer un 0 dans la case correspondante :

|   |   | ВС |    |    |    |
|---|---|----|----|----|----|
|   |   | 00 | 01 | 11 | 10 |
| 1 | 0 | 0  |    |    | 0  |
| 4 | 1 |    | 0  |    | 0  |

# Tableau de Karnaugh d'un PDS non standard

Soit l'équation suivante :

$$(\overline{A})(A + \overline{B})(A + B + \overline{C})$$

Déterminer la valeur binaire de chaque terme :

 $\overline{A}$ : 100 101 110 111

 $A + \overline{B}$ : 010 011

 $A+B+\overline{C}$ : 001

ullet Pour chaque terme, placer un  $oldsymbol{0}$  dans les cases correspondantes :

|   |   | ВС |    |    |    |
|---|---|----|----|----|----|
|   |   | 00 | 01 | 11 | 10 |
| 4 | 0 |    | 0  | 0  | 0  |
| А | 1 | 0  | 0  | 0  | 0  |

# Simplification d'un PDS avec un tableau de Karnaugh

#### Démarche similaire à la simplification d'une SDP :

- Créer des groupes de cases à **0** (et non 1) :
  - ▶ Un groupe contient 2<sup>n</sup> cases
  - Toutes les cases du groupe doivent être contiguës
  - ► Toujours choisir le plus grand groupe possible
  - ► Tous les 0 du tableau doivent être dans un groupe
  - ▶ Un **0** peu être dans plusieurs groupes
- Déterminer les termes de sommes minimisés :
  - Chaque groupe correspond à un terme
  - Dans chaque groupe, ne garder que les termes fixes
  - Multiplier les termes engendrés par chaque groupes

#### Conversion de PDS et SDP par tableau de Karnaughs

- Toutes les cellules ne contenant pas de 0 dans le tableau de Karnaugh d'un PDS contiennent des 1
- Toutes les cellules ne contenant pas de 1 dans le tableau de Karnaugh d'une SDP contiennent des 0



#### Cas particulier des conditions « indifférentes »

$$DCB = \{7,8,9\} \Rightarrow S = 1$$

| A                                                        | В                                              | C                                                                                                                                                       | $\mid D \mid$                                                                | S                                                                                           |
|----------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1 | 0                                              | 0                                                                                                                                                       | 0                                                                            | 0(0)                                                                                        |
| 0                                                        | 0                                              | 0                                                                                                                                                       | 1                                                                            | 0(1)                                                                                        |
| 0                                                        | 0                                              | 1                                                                                                                                                       | 0                                                                            | 0(2)                                                                                        |
| 0                                                        | 0                                              | 1                                                                                                                                                       | 1                                                                            | 0(3)                                                                                        |
| 0                                                        | 1                                              | 0                                                                                                                                                       | 0                                                                            | 0(4)                                                                                        |
| 0                                                        | 1                                              | 0                                                                                                                                                       | 1                                                                            | 0(5)                                                                                        |
| 0                                                        | 1                                              | 1                                                                                                                                                       | 0                                                                            | 0(6)                                                                                        |
| 0                                                        | 1                                              | 1                                                                                                                                                       | 1                                                                            | 1(7)                                                                                        |
| 1                                                        | 0                                              | 0                                                                                                                                                       | 0                                                                            | 1(8)                                                                                        |
| 1                                                        | 0                                              | 0                                                                                                                                                       | 1                                                                            | 1(9)                                                                                        |
| 1                                                        | 0                                              | 1                                                                                                                                                       | 0                                                                            | Χ̈́                                                                                         |
| 1                                                        | 0                                              | 1                                                                                                                                                       | 1                                                                            | X                                                                                           |
| 1                                                        | 1                                              | 0                                                                                                                                                       | 0                                                                            | X                                                                                           |
| 1                                                        | 0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>0 | 0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1 | 0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1 | 0(0)<br>0(1)<br>0(2)<br>0(3)<br>0(4)<br>0(5)<br>0(6)<br>1(7)<br>1(8)<br>1(9)<br>X<br>X<br>X |
| 1                                                        | 1                                              | 1                                                                                                                                                       | 0                                                                            | Χ                                                                                           |
| 1                                                        | 1                                              | 1                                                                                                                                                       | 1                                                                            | X                                                                                           |



$$S = \overline{A} B C D + A \overline{B} \overline{C}$$
$$S = B C D + A$$

#### Problème : régulation d'une cuve

Le niveau de la cuve est contrôlé par 2 capteurs de niveau  $N_H$  et  $N_B$  et deux capteurs de température  $T_H$  et  $T_B$ .

Une vanne V permet le remplissage tant que le niveau haut n'est pas atteint et une résistance chauffante R assure le chauffage jusqu'à la température maximale  $T_H$ .

Une sécurité de fonctionnement interdit le chauffage si le niveau de remplissage est inférieur au niveau bas  $N_B$ . De plus, si la température est inférieure à la température  $T_B$ , le remplissage est arrêté.

Les capteurs de niveau  $N_H$  et  $N_B$  sont à 1 s'ils détectent du liquide.

Les capteurs de température  $T_H$  et  $T_B$  sont à 1 si la température est respectivement supérieure à  $T_H$  et  $T_B$ .

La vanne est ouverte si V est à 1.

La résistance chauffe si R est à 1.

#### Références

- [1] Sébastien GAGEOT et Franck CRISON : SYS2041 : Systèmes numériques (Laval).
- [2] Thomas FLOYD :

  Systèmes numériques.

  Éditions Reynald Goulet, 2018.