Introduction to Real Analysis

Tianyu Du

Sunday 6th October, 2019

This work is licensed under a Creative Commons "Attribution-NonCommercial 4.0 International" license.

Contents

L		e Axiom of Completeness	2
	1.1	Preliminaries	2
	1.2	Density of Rational Numbers	4
2	\mathbf{Seq}	uences	4
	2.1	Monotone Convergence Theorem	7
	2.2	Series	8
	2.3	Cauchy Criterion	ç
	2.4	Convergence Test for Series	10
		2.4.1 The Comparison Test	11
		2.4.2 The Root Test	12
		2.4.3 Other Tests	13
	2.5	Absolute and Conditional Convergence	13
3	Ton	pology in $\mathbb R$	1.5

1 The Axiom of Completeness

1.1 Preliminaries

Definition 1.1. A set $A \subset \mathbb{R}$ is bounded above if

$$\exists u \in \mathbb{R} \ s.t. \ \forall a \in A, \ u \ge a \tag{1.1}$$

It is said to be **bounded below** if

$$\exists l \in \mathbb{R} \ s.t. \ \forall a \in A, \ l \le a \tag{1.2}$$

Example 1.1. The set of integers, \mathbb{Z} , is neither bounded from above nor below. Sets $\{1, 2, 3\}$ and $\{\frac{1}{n} : n \in \mathbb{N}\}$ are bounded from both above and below.

Notation 1.1. Let $A \subset \mathbb{R}$, we use A^{\uparrow} and A^{\downarrow} to denote collections of upper bounds of A and lower bounds of A. Note that A^{\uparrow} and A^{\downarrow} are potentially empty.

Definition 1.2. A real number $s \in \mathbb{R}$ is the **least upper bound(supremum)** for a set $A \subset \mathbb{R}$ if $s \in A^{\uparrow}$ and $\forall u \in A^{\uparrow}$, $s \leq u$. Such s is denoted as $s := \sup A$.

Definition 1.3. A real number $f \in \mathbb{R}$ is the **greatest lower bound (infimum)** for A if $f \in A^{\downarrow}$ and $\forall l \in A^{\downarrow}$, $l \leq f$. Such f is often written as $f := \inf A$.

Axiom 1.1 (The Axiom of Completeness/Least Upper Bounded Property). $\forall \emptyset \neq A \subset \mathbb{R}$ such that $A^{\uparrow} \neq \emptyset$, $\exists \sup A$.

Definition 1.4. Let $\emptyset \neq A \subset \mathbb{R}$, $a_0 \in A$ is the **maximum** of A if $\forall a \in A, a_0 \geq a$; $a_1 \in A$ is the **minimum** of A if $\forall a \in A, a_1 \leq a$.

Example 1.2. $\mathbb{Q} \subset \mathbb{R}$ does not satisfy the axiom of completeness.

Proposition 1.1. Let $\emptyset \neq A \subset \mathbb{R}$ bounded above, and $c \in \mathbb{R}$. Define $c + A := \{a + c : a \in A\}$. Then

$$\sup(c+A) = c + \sup A \tag{1.3}$$

Proof. Step 1: Show $c + \sup A \in (c + A)^{\uparrow}$:

Let $x \in c+A$, $\exists a \in A \text{ s.t. } x = c+a$. Then, $x = c+a \leq c+\sup A$. Therefore, $x \leq c+\sup A \ \forall x \in A$, which implies what desired.

Step 2: Show $\forall u \in (c+A)^{\uparrow}$, $c + \sup A \leq u$:

Let $u \in (c+A)^{\uparrow}$, then $u \ge c+a \ \forall a \in A \implies u-c \ge a \ \forall a \in A \implies u-c \in A \uparrow \implies u-c \ge \sup A \implies u \ge c + \sup A$.

Hence,
$$\sup(c+A) = c + \sup A$$
.

Lemma 1.1 (Alternative Definition of Supremum). Let $s \in A^{\uparrow}$ for some nonempty $A \subset \mathbb{R}$. The following statements are equivalent:

- (i) $s = \sup A$;
- (ii) $\forall \varepsilon, \exists a \in A, s.t. \ a > s \varepsilon \text{ (i.e. } s \varepsilon \notin A^{\uparrow}).$

Proof. Immediately.

Theorem 1.1 (Nested Interval Property). Let $(I_n)_n$ be a sequence of closed intervals $I_n := [a_n, b_n]$ such that these intervals are *nested* in a sense that

$$I_{n+1} \subset I_n \ \forall n \in \mathbb{N} \tag{1.4}$$

Then,

$$\bigcap_{n\in\mathbb{N}} I_n \neq \emptyset \tag{1.5}$$

Proof. Note that the sequence $(a_n)_{n\in\mathbb{N}}$ is bounded above by any b_k , by the completeness axiom, there exists $a^* := \sup_{n\in\mathbb{N}} a_n$. Since $a^* \in (a_n)^{\uparrow}$, $a^* \geq a_n \ \forall n \in \mathbb{N}$. Further, because a^* is the least upper bound, then for every upper bound b_n , it must be $a^* \leq b_n \ \forall n \in \mathbb{N}$. Therefore, $x^* \in [a_n, b_n] \ \forall n \in \mathbb{N}$. That is, $x^* \in \bigcap_{n \in \mathbb{N}} I_n$.

Note that NIP requires all intervals to be closed. One instance when this fails to hold: $\bigcap_{n\in\mathbb{N}} \left(0,\frac{1}{n}\right) = \emptyset$.

Theorem 1.2 (Archimedean Property).

- (i) $\forall x \in \mathbb{R}, \exists n \in \mathbb{N} \ s.t. \ n > x;$
- (ii) $\forall y \in \mathbb{R}_{++}, \exists n \in \mathbb{N} \ s.t. \frac{1}{n} < y.$

Archimedean property of natural numbers can be interpreted as there is no real number that bounds \mathbb{N} . This interpretation can be seen by considering the negations of above statements:

- (i) $\exists x \in \mathbb{R} \ s.t. \ \forall n \in \mathbb{N}, \ n \leq x;$
- (ii) $\exists y \in \mathbb{R}_{++} \ s.t. \ \forall n \in \mathbb{N}, \ y \leq \frac{1}{n}$.

Proof of (i) by Contradiction. Suppose the negated statement (i) is true, \mathbb{N} is bounded above. By the completeness axiom, there exists $a^* := \sup \mathbb{N}$. $\exists n \in \mathbb{N} \text{ s.t. } a^* - 1 < n$. In this case, $a^* < n + 1 \in \mathbb{N}$, which means $a^* \notin \mathbb{N}^{\uparrow}$ and leads to a contradiction.

Proof of (ii). Let $y^* \in \mathbb{R}_{++}$, take $x = \frac{1}{y}$. By statement (i), there exists $n^* \in \mathbb{N}$ such that $n > \frac{1}{y}$. Because y > 0, $\frac{1}{n} < y$.

1.2 Density of Rational Numbers

Theorem 1.3. For every $a, b \in \mathbb{R}$ such that a < b, there exists $r \in \mathbb{Q}$ such that a < r < b.

The above theorem says \mathbb{Q} is in fact **dense** in \mathbb{R} . More generally, one says a set $A \subset X$ is dense whenever the closure of A, $\overline{A} = X$.

Proof. Step 1: Since b-a>0, by the first Archimedean property, there exists $n\in\mathbb{N}$ such that $n>\frac{1}{b-a}$. Such natural number satisfies $\frac{1}{n}< b-a$.

Step 2: Let m be smallest integer such that m > an. That is, $m-1 \le an < m$. Obviously, $a < \frac{m}{n}$ since n > 0. Further, since $m \le an+1$, with results from step (i), m < bn-1+1 = bn, and $\frac{m}{n} < b$. Therefore $\frac{m}{n} \in (a,b)$.

Theorem 1.4. $\exists \alpha \in \mathbb{R} \ s.t. \ \alpha^2 = 2$.

Proof. Let $\Omega := \{t \in \mathbb{R} : t^2 < 2\}$, which is obviously a set in \mathbb{R} bounded from above. By the completeness axiom, Ω possesses a supremum, and we claim $\alpha := \sup \Omega$ satisfies $\alpha^2 = 2$. Suppose $\alpha^2 > 2$, then there exists $\varepsilon > 0$ such that $\alpha^2 - 2\alpha\varepsilon + \varepsilon^2 > 2$. Therefore, $\alpha > \alpha - \varepsilon \in \Omega^{\uparrow}$, which contradicts the fact that α is the least upper bound. Suppose $\alpha^2 < 2$, then there exists some $\varepsilon > 0$ such that $\alpha + \varepsilon \in \Omega$, which contradicts the assumption that α is an upper bound. Hence, it must be the case that $\alpha^2 = 2$.

2 Sequences

Theorem 2.1 (Triangle Inequality). Let $a, b \in \mathbb{R}$, then $|a + b| \leq |a| + |b|$.

Corollary 2.1. Let $a, b \in \mathbb{R}$, then

$$||a| - |b|| \le |a - b| \tag{2.1}$$

Proof. Note that $|a| = |a-b+b| \le |a-b| + |b|$, which implies $|a| - |b| \le |a-b|$. And $|b| = |b-a+a| \le |b-a| + |a| = |a-b| + |a|$, which implies $|b| - |a| \le |a-b|$. Therefore, by taking the absolute value, $||a| - |b|| \le |a-b|$.

Definition 2.1. A sequence $(a_n) \subset \mathbb{R}$ converges to $a \in \mathbb{R}$ if

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ n \ge N \implies |a_n - a| < \varepsilon$$
 (2.2)

Let $a \in \mathbb{R}$ and $\varepsilon > 0$, the open ball centred at a with radius ε is denoted as

$$V_{\varepsilon}(a) := \{ x \in \mathbb{R} : |x - a| < \varepsilon \} \tag{2.3}$$

Theorem 2.2. The limit of any convergent sequence is unique.

Proof. Let (a_n) be a convergent sequence, assume, for contradiction, that $(a_n) \to L_1$ and $(a_n) \to L_2$ such that $L_1 \neq L_2$. Let $\varepsilon = \frac{|L_1 - L_2|}{3}$, because $(a_n) \to L_1$, there exists $N \in \mathbb{N}$ such that $n \geq N \Longrightarrow |a_n - L_1| < \frac{|L_1 - L_2|}{3}$. Therefore, for every $n \geq N$,

$$|a_n - L_2| = |a_n - L_1 - (L_2 - L_1)| (2.4)$$

$$\geq ||a_n - L_1| - |L_2 - L_1|| \tag{2.5}$$

$$= ||L_1 - L_2| - |a_n - L_1|| \tag{2.6}$$

$$=3\varepsilon - |a_n - L_1| \tag{2.7}$$

$$> 2\varepsilon$$
 (2.8)

Therefore, there does not exist any $N' \in \mathbb{N}$ such that $|a_n - L_2| < \varepsilon$ for every $n \ge \mathbb{N}$.

Definition 2.2. A sequence (a_n) is **divergent** if it does not converge.

Example 2.1. The sequence $(a_n) := (1, -1/2, 1/3, 1/4, -1/5, 1/5, -1/5, 1/5, \cdots)$ is divergent.

Proof. Let $\varepsilon := \frac{2}{5\times 3}$, assume, for contradiction, that $(a_n) \to L$ for some $L \in \mathbb{R}$. Then there exists $N \in \mathbb{N}$ such that for every $n \ge N$, $|a_n - L| < \frac{2}{15}$. Since the sequence is alternating, it must be the case that $|L - \frac{1}{5}| < \frac{2}{15}$. Similarly,

$$\left| -\frac{1}{5} - L \right| = \left| \frac{1}{5} + L \right| \tag{2.9}$$

$$= \left| \frac{1}{5} + L - \frac{1}{5} + \frac{1}{5} \right| \tag{2.10}$$

$$= \left| (L - \frac{1}{5}) - (-\frac{2}{5}) \right| \tag{2.11}$$

$$\geq \left| \left| L - \frac{1}{5} \right| - \frac{6}{15} \right| \tag{2.12}$$

$$= \frac{6}{15} - \left| L - \frac{1}{5} \right| \tag{2.13}$$

$$> \frac{4}{15} \tag{2.14}$$

$$> \varepsilon$$
 (2.15)

the strict inequality suggests there cannot be a $M \in \mathbb{N}$ such that $|a_n - L| < \varepsilon$ for every $n \geq M$.

Alternative Proof. If (a_n) is convergent, then all of its subsequences must converge to the same limit. Obviously, there are subsequences of (a_n) converging to $\frac{1}{5}$ and $-\frac{1}{5}$ respectively, this leads to a contradiction.

Definition 2.3. A sequence is **bounded** if $\exists M \in \mathbb{R}$ such that $\forall n \in \mathbb{N}, |a_n| < M$.

Theorem 2.3. Every convergent sequence is bounded.

Proof. Let $(a_n) \to L$, take $\varepsilon = 1$, then there exists $N \in \mathbb{N}$ such that $|a_n - L| < 1$ for every n > N. Note that $|a_n| - |L| \le ||a_n| - |L|| \le |a_n - L| < \varepsilon$, which implies $|a_n| < |L| + 1$. Let $Q := \max_{n < N} a_n$, take $M := \max\{Q, |L| + 1\}$, then M bounds (a_n) .

Theorem 2.4 (Algebraic Limit Theorem). Let $(a_n) \to a, (b_n) \to b$ be convergent sequences, and $c \in \mathbb{R}$, then

- (i) $(ca_n) \rightarrow ca$;
- (ii) $(a_n + b_n) \rightarrow a + b$;
- (iii) $(a_nb_n) \to ab$;
- (iv) $\left(\frac{a_n}{b_n}\right) \to \frac{a}{b}$, provided $b_n, b \neq 0$.

Proof (i). Let $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $\forall n \geq N$, $|a_n - a| < \frac{\varepsilon}{|c|}$. Then, for every $n \geq N$, $|ca_n - ca| = |c||a_n - a| < \varepsilon$.

Proof (ii). Let $\varepsilon > 0$, there exists $N_1, N_2 \in \mathbb{N}$ such that $|a_n - a| < \frac{\varepsilon}{3} \ \forall n \ge N_1$ and $|b_n - b| < \frac{\varepsilon}{3} \ \forall n \ge N_2$. Take $N := \max\{N_1, N_2\}$, let $n \ge N$,

$$|a_n + b_n - a - b| \le |a_n - a| + |b_n - b| < \frac{2\varepsilon}{3} < \varepsilon \tag{2.16}$$

Proof (iii). Note that

$$|a_n b_n - ab| = |a_n b_n + a_n b - a_n b - ab| \tag{2.17}$$

$$\leq |a_n b_n - a_n b| + |a_n b - ab|$$
 (2.18)

$$\leq |a_n||b_n - b| + |b||a_n - a|$$
 (2.19)

Let $N_1 \in \mathbb{N}$ such that $|a_n - a| < \frac{\varepsilon}{2|b|}$ for every $n \geq N_1$. Because (a_n) is convergent, let M denote its bound such that $|a_n| < M \ \forall n \in \mathbb{N}$. Let $N_2 \in \mathbb{N}$ such that $|b_n - b| < \frac{\varepsilon}{2M}$. Then for every $n \geq N_3 := \max\{N_1, N_2\}, \ |a_n b_n - ab| < \varepsilon$.

Proof (iv). Claim i: when n is sufficiently larger, $|b_n| > 0$ is bounded away from zero by M. Let $\varepsilon = \frac{|b|}{10}$, then there exists $N_1 \in \mathbb{N}$ such that for every $n \geq N_1$, $|b_n - b| < \frac{|b|}{10}$. Note that for every such n,

$$|b_n| = |b_n - b - (-b)| \tag{2.20}$$

$$\ge ||b_n - b| - |b|| \tag{2.21}$$

$$\geq |b| - |b_n - b| \tag{2.22}$$

$$> \frac{9|b|}{10} \tag{2.23}$$

Claim ii: $\left(\frac{1}{b_n}\right) \to \frac{1}{b}$. Let $\varepsilon > 0$, note that

$$\left| \frac{1}{b_n} - \frac{1}{b} \right| = \left| \frac{b}{b_n b} - \frac{b_n}{b_n b} \right| \tag{2.24}$$

$$= \frac{1}{|b_n||b|}|b_n - b| \tag{2.25}$$

from the first claim, $\frac{1}{|b_n|} < \frac{10}{9|b|}$ for every $n \ge N_1$. Since $(b_n) \to b$, there exists $N_2 \in \mathbb{N}$ such that for every $n \ge N_2$, $|b_n - b| < \frac{10\varepsilon}{9|b|^2}$. Consequently, for every $n \ge N_3 := \max\{N_1, N_2\}$, $\left|\frac{1}{b_n} - \frac{1}{b}\right| < \varepsilon$. Then the result is immediate from property (iii) in the algebraic limit theorem.

Theorem 2.5 (Order Limit Theorem). Let $(a_n) \to a$ and $(b_n) \to b$, then

- (i) $a_n \ge 0 \ \forall n \in \mathbb{N} \implies a \ge 0;$
- (ii) $a_n \leq b_n \ \forall n \in \mathbb{N} \implies a \leq b$;
- (iii) $\exists c \in \mathbb{R} \ s.t. \ c \leq b_n \ \forall n \in \mathbb{N} \implies c \leq b;$
- (iv) $\exists c \in \mathbb{R} \ s.t. \ a_n \leq c \ \forall n \in \mathbb{N} \implies a \leq c.$

Proof. (i) Assume, for contradiction, a < 0. Take $\varepsilon = \frac{|a|}{2}$, then for some $N \in \mathbb{N}$, for every $n \ge N$ $a_n \in V_{\varepsilon}(a)$. However, this contradicts the fact that $a_n \ge 0$.

(ii) Consider sequence $(b_n - a_n)$ in which $b_n - a_n \ge 0$ for every $n \in \mathbb{N}$. $(b_n - a_n) \to (b - a)$ by the algebraic limit theorem. By property (i), $b - a \ge 0$.

(iii) and (iv) Consider constant sequence defined as (c_n) such that $c_n = c$ for every $n \in \mathbb{N}$, the results are immediate by applying (ii).

Theorem 2.6 (Squeeze Theorem). Let $(x_n) \to L$ and $(z_n) \to \ell$. If for every $n \in \mathbb{N}$, $x_n \leq y_n \leq z_n$, then $(y_n) \to \ell$.

Proof. Let $\varepsilon > 0$, because both $(x_n) \to \ell$ and $(y_n) \to \ell$,

$$\exists N_1 \ s.t. \ n \ge N_1 \implies |x_n - \ell| < \varepsilon \implies x_n > \ell - \varepsilon \tag{2.26}$$

$$\exists N_2 \ s.t. \ n \ge N_2 \implies |z_n - \ell| < \varepsilon \implies z_n < \ell + \varepsilon \tag{2.27}$$

Take $N_3 := \max\{N_1, N_2\}$, then for every $n \ge N_3$,

$$\ell - \varepsilon < x_n \le y_n \le z_n < \ell + \varepsilon \tag{2.28}$$

$$\implies y_n \in V_{\varepsilon}(\ell)$$
 (2.29)

therefore $(y_n) \to \ell$ by definition.

2.1 Monotone Convergence Theorem

Definition 2.4. A sequence (a_n) is said to be **monotone** if it is either increasing $(a_{n+1} \ge a_n \ \forall n \in \mathbb{N})$ or decreasing $(a_{n+1} \le a_n \ \forall n \in \mathbb{N})$.

Theorem 2.7 (Monotone Convergence Theorem). If a sequence (a_n) is bounded, then it converges.

Proof. WLOG, assume (a_n) is increasing, let $\Gamma := \{a_n : n \in \mathbb{N}\} \subset \mathbb{R}$, because Γ is bounded, $s := \sup_n \Gamma$ is well-defined by the completeness of real numbers.

Claim: $(a_n) \to s$. Let $\varepsilon > 0$, by the definition of supremum, $\exists N \in \mathbb{N}$ such that $a_N > s - \varepsilon$. Because the sequence is increasing and $s + \varepsilon \in \Gamma^{\uparrow}$, $n \ge N \implies s - \varepsilon < a_n < s + \varepsilon$. $(a_n) \to s$ by definition.

2.2 Series

Definition 2.5. Let (a_i) be a sequence, then the *n*-th **partial sum** is defined as $s_n := \sum_{i=1}^n a_i$. And the **infinite sum/series** of (a_n) is defined as

$$\sum_{i=1}^{\infty} a_i = \begin{cases} s & \text{if } (s_n) \to s \\ \text{undefined/diverges} & \text{otherwise} \end{cases}$$
 (2.30)

Example 2.2. $\sum_{i=1}^{\infty} \frac{1}{i^2}$ converges.

Proof. Obviously the corresponding partial sums are increasing because the sequence $(\frac{1}{i^2})$ is positive.

Claim: (s_n) is bounded from above. Let $n \in \mathbb{N}$, observe

$$\sum_{i=1}^{n} \frac{1}{i^2} = 1 + \frac{1}{2 \times 2} + \frac{1}{3 \times 3} + \dots + \frac{1}{n \times n}$$
 (2.31)

$$\leq 1 + \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{(n-1) \times n}$$
 (2.32)

$$=2-\frac{1}{n} \le 2 \tag{2.33}$$

The result is immediate by the monotone convergence theorem.

Example 2.3 (Harmonic Series). $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Proof. Claim: there exists a subsequence of (s_n) diverges, so (s_n) cannot be convergent. Consider the subsequence (s_k) constructed by defining $s_k := s_{2^k}$. Note that

$$s_{2^k} = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \dots + \left(\frac{1}{2^{k-1} + 1} + \dots + \frac{1}{2^k}\right) \tag{2.34}$$

$$>1+\frac{1}{2}k$$
 (2.35)

Clearly, the subsequence is unbounded, and therefore cannot be convergent.

Definition 2.6. Let (a_n) be a sequence, then for every <u>strictly</u> increasing sequence $(n_i)_i$ in \mathbb{N} , (a_{n_i}) is a **subsequence** of (a_n) .

Theorem 2.8. All subsequences of a convergent sequence converge to the same limit as the original sequence.

Proof. Let $(a_n) \to \ell$, let (a_{n_k}) be a subsequence of (a_n) . Let $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $n \geq N \implies a_n \in V_{\varepsilon}(\ell)$. By the definition of subsequences, there exists some $K \in \mathbb{N}$ such that $n_K = N$. Take such K, then for every $k \geq K$, it must be $n_k \geq N$. Therefore $a_{n_k} \in V_{\varepsilon}(\ell)$ for every $k \geq K$, and $(a_{n_k}) \to \ell$ by definition.

Corollary 2.2. A sequence (a_n) must be divergent if there exists two subsequences of it converge to two different limits.

Proof. Immediate by taking the contrapositive form of above theorem.

Theorem 2.9 (Bolzano–Weierstrass). Every bounded sequence contains a convergent subsequence.

Proof. Suppose (a_n) is bounded by certain M>0, that's, for every $n\in\mathbb{N}, -M< a_n< M$. Consider the split $I_1^\ell:=[-M,0]$ and $I_1^u:=[0,M]$. At least one of above closed intervals contain an infinitely many elements of (a_n) . Define the interval as I_2 . At each I_n , one can split it evenly into two closed intervals such that at least one of these sub-intervals contain infinitely many element in the sequence, and I_{n+1} is defined to be such sequence. Note that the sequence of closed intervals constructed from above recursive procedure is in fact nested. Obviously $\lim_{n\to\infty}|I_n|=0$. Further, by the nested interval property, one can show that $\bigcap_{n\in\mathbb{N}}I_n\neq\emptyset$. Then $\bigcap_{n\in\mathbb{N}}I_n$ must be a singleton with a in it. One can construct such that $a_{n_k}\in I_k$. Note that $|I_n|=\frac{1}{2^{n-1}}$, therefore, for every $\varepsilon>0$, one can take $N\geq\log_2\left(\frac{1}{\varepsilon}\right)+1$, so that for every $k\geq N$, by definition of subsequences, $n_k\geq n$, so that $a_{n_k},a\in I_N$. This implies $a_{n_k}\in V_\varepsilon(a)$ and $(a_{n_k})\to a$.

2.3 Cauchy Criterion

Definition 2.7. A sequence (a_n) is a Cauchy sequence if

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ s.t. \ m, n \ge N \implies |a_n - a_m| < \varepsilon \tag{2.36}$$

Proposition 2.1. Every convergent sequence is Cauchy.

Proof. Let $(a_n) \to \ell$, let $\varepsilon > 0$. By the convergence of sequence, $\exists N \in \mathbb{N}$ such that for every $n \ge N$, $|a_n - \ell| < \frac{\varepsilon}{2}$, which turns out to imply $a_n, a_m \in V_{\varepsilon}(\ell)$.

Lemma 2.1. Every Cauchy sequence is bounded.

Proof. Let (a_n) be a Cauchy sequence, take $\varepsilon = 1$, then there exists $N \in \mathbb{N}$ such that for every $m, n \geq N$, $|a_n - a_m| < 1$. In particular, take m = N, for every $n \geq N$, $|a_n - a_N| < 1$, and $|a_n| \leq |a_N| + 1$. Then (a_n) is clearly bounded by:

$$M := \max\{|a_n| : n \le N\} \cup \{|a_N| + 1\}$$
(2.37)

Theorem 2.10 (Cauchy Criterion). A sequence of real numbers is convergent if and only if it's Cauchy.

Proof. (\iff) Suppose (a_n) is Cauchy, by the lemma established above, (a_n) is bounded. By the Bolzano–Weierstrass theorem, there exists a subsequence $(a_{n_k}) \to \ell$.

Claim: $(a_n) \to \ell$. Let $\varepsilon > 0$, there exists $N_1 \in \mathbb{N}$ such that for every $n_k, n \geq N_1, |a_{n_k} - a_n| < \frac{\varepsilon}{2}$. And there exists another $N_2 \in \mathbb{N}$ such that for every $n_k \geq N_2, |a_{n_k} - \ell| < \frac{\varepsilon}{2}$. Take $N_3 := \max\{N_1, N_2\}$. Note that for every $n \geq N_3$, one can choose some $n_k \geq n$ and derive

$$|a_n - \ell| = |a_n - a_{n_k} + a_{n_k} - \ell| \tag{2.38}$$

$$\leq |a_n - a_{n_k}| + |a_{n_k} - \ell| \tag{2.39}$$

$$<\varepsilon$$
 (2.40)

 (\Longrightarrow) Already shown in previous proposition.

2.4 Convergence Test for Series

Theorem 2.11 (*n*-th term test; necessary condition for convergent series). Series $\sum_{i=1}^{\infty} a_i$ converges $\implies \lim_{n\to\infty} a_n = 0$.

Proof. Suppose the partial sums converges to ℓ , by the definition of partial sums, $a_n = s_{n+1} - s_n$. Further, the convergence of partial sums guarantees the convergence of (a_n) . By taking limit on both sides of above identity, it can be shown $\lim_{n\to\infty} a_n = 0$.

Theorem 2.12 (Cauchy Criterion for Series). For series $\sum_{n=1}^{\infty} a_n$, TFAE:

- (i) Series converges;
- (ii) $\forall \varepsilon > 0, \ \exists N \in \mathbb{N} \ s.t. \ \forall n \geq N, \ \left| \sum_{k=n+1}^{\infty} a_k \right| < \varepsilon \ \text{(i.e. } tail \text{ sum sequence converges)};$
- (iii) $\forall \varepsilon > 0, \ \exists N \in \mathbb{N} \ s.t. \ \forall m > n \geq N, \ \left| \sum_{k=n+1}^{m} a_k \right| < \varepsilon.$ (i.e. partial sum is Cauchy)

Proof. (i) \Longrightarrow (ii): Suppose (S_n) converges, let $\varepsilon > 0$, $\exists N \ s.t. \ \forall n \geq N, |S_n - L| < \varepsilon$. Note that

$$L - S_n = \lim_{m \to \infty} \sum_{k=1}^{m} a_k - S_n \tag{2.41}$$

$$= \lim_{m \to \infty} \left[\sum_{k=1}^{m} a_k - S_n \right] \tag{2.42}$$

$$=\lim_{m\to\infty}\sum_{k=n+1}^{m}a_k\tag{2.43}$$

which implies the convergence of tail sums.

 $(ii) \implies (iii)$: Suppose the tail sum converges, let $\varepsilon > 0$, note that

$$\left| \sum_{k=n+1}^{m} a_k \right| = \left| \sum_{k=m+1}^{\infty} a_k - \sum_{k=n+1}^{\infty} a_k \right| \tag{2.44}$$

$$\leq \left| \sum_{k=m+1}^{\infty} a_k \right| + \left| \sum_{k=n+1}^{\infty} a_k \right| \tag{2.45}$$

Both terms can be made arbitrarily small by (ii), specifically, one can choose N_1 and N_2 such that both terms are strictly bounded by $\frac{\varepsilon}{2}$, and $N_3 := \max\{N_1, N_2\}$ is the desired value.

 $(iii) \implies (i)$: Since the partial sum is a Cauchy sequence in a complete space, it must converges, so the series is well-defined.

2.4.1 The Comparison Test

Definition 2.8. A sequence (a_n) is a **geometric sequence** with coefficient r if $a_{n+1} = ra_n$.

Proposition 2.2. Geometric sequences whenever $r \in (-1,1)$. Note that when r = -1, the sequence becomes an alternating sequence, and the convergence property is indefinite.

Proposition 2.3. Let (a_n) be a geometric sequence with coefficient r, then for every $m \in \mathbb{N}$,

$$rS_m^a = ra_0 + r^2 a_0 + \dots + r^{n+1} a_0 \tag{2.46}$$

$$\implies (r-1)S_m^a = r^{n+1}a_0 - a_0 \tag{2.47}$$

$$\implies S_m^a = a_0 \frac{1 - r^{m+1}}{1 - r} \tag{2.48}$$

Theorem 2.13 (The Comparison Test). Let (a_n) and (b_n) be two sequences satisfy $|a_n| \leq b_n$ for every $n \in \mathbb{N}$. Then

- (i) $\sum_{i=1}^{\infty} b_i$ converges $\Longrightarrow \sum_{i=1}^{\infty} a_i$ converges;
- (ii) $\sum_{i=1}^{\infty} a_i$ diverges $\implies \sum_{i=1}^{\infty} b_i$.

Proof. Part 1: Suppose (b_n) converges, it is therefore Cauchy. Let $\varepsilon > 0$. Note that for every m > n:

$$|S_m^a - S_n^a| = \left| \sum_{k=n+1}^m a_k \right| \tag{2.49}$$

$$\leq \sum_{k=n+1}^{m} |a_k| \tag{2.50}$$

$$\leq \sum_{k=n+1}^{m} b_k \tag{2.51}$$

Therefore exists $N \in \mathbb{N}$ such that $\sum_{k=n+1}^{m} b_k \leq \left| \sum_{k=n+1}^{m} b_k \right| < \varepsilon$ for every $m, n \geq N$. Taking such N provides the cutoff needed for (S_n^a) to be Cauchy. Because $(S_n^a) \subset \mathbb{R}$, it converges.

Part 2: The result is immediate by taking the contrapositive form of the previous statement.

2.4.2 The Root Test

Definition 2.9. Let (a_n) be a bounded sequence, then

$$\lim \sup(a_n) := \sup_{\substack{n \to \infty}} \{a_k : k \ge n\}$$
 (2.52)

$$\lim\inf(a_n) := \inf_{\substack{n \to \infty}} \{a_k : k \ge n\}$$
 (2.53)

(2.54)

Theorem 2.14 (The Root Test). Let (a_n) be a sequence in which $a_n \geq 0$ for every $n \in \mathbb{N}$, let $\ell = \limsup a_n^{1/n}$, then

- (i) If $\ell < 1$, then (S_n^a) converges;
- (ii) If $\ell > 1$, then (S_n^a) diverges;
- (iii) If $\ell = 0$, inconclusive.

Proof. Part 1:(Idea: compare with geometric series with r < 1) Suppose $\ell < 1$, pick $r \in (\ell, 1)$, and let $\varepsilon = r - \ell$. By the convergence of supremum, there exists $N \in \mathbb{N}$ such that for every $n \geq N$,

$$\left| \sup_{k \ge n} a_k^{1/k} - \ell \right| < \varepsilon \tag{2.55}$$

$$\implies a_n^{1/n} \le \sup_{k \ge n} a_k^{1/k} < \ell + \varepsilon =: r \tag{2.56}$$

Therefore, for every $n \geq N$, $a_n < r^n$. Because (a_n) is assumed to be a non-negative sequence, then $|a_n| < r^n$. Construct new sequences:

$$b_k = \begin{cases} a_k \ \forall k < N \\ r^k \ \forall k \ge N \end{cases} \tag{2.57}$$

Then, clearly $|a_n| \leq b_k$ for every $k \in \mathbb{N}$. And (b_n) is a sequence with geometric tails (which has coefficient less than one). So $\sum_{k=0}^{\infty} b_k$ converges, which implies $\sum_{k=0}^{\infty} a_k$ converges by the comparison test.

Part 2: Suppose $\ell > 1$.

Note that the necessary condition for $\sum a_n^{1/n}$ to converge is $\lim_{n\to\infty} a_n^{1/n} = 0$, which implies every subsequence of $(a_n^{1/n})$ converges to zero. We are going to prove the divergence of series by constructing a subsequence of $(a_n^{1/n})$ does not converge to zero.

Take $\varepsilon = \ell - 1 > 0$, there exists N such that for every $n \geq N$:

$$\ell - \varepsilon < \sup_{k > n} a_k^{1/k} \tag{2.58}$$

$$\ell - \varepsilon < \sup_{k \ge n} a_k^{1/k}$$

$$\implies 1 < \sup_{k \ge n} a_k^{1/k}$$
(2.58)

By definition of supremum, there exists $n_1 \geq n$ such that

$$a_{n_1}^{1/n_1} > 1 (2.60)$$

For every $n \geq \mathbb{N}$, we can construct a subsequence of $(a_n^{1/n})$ such that every term in it is strictly greater than 1, which means it cannot converge to 0. Therefore, series diverges.

2.4.3 Other Tests

Theorem 2.15 (Limit Comparison Test). Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ satisfy:

- (i) $b_n \ge 0$;
- (ii) $\limsup_{n} \frac{|a_n|}{b_n} < \infty$;
- (iii) $\sum_{n=1}^{\infty} b_n$ converges.

Then $\sum_{n=1}^{\infty} a_n$ converges as well.

Theorem 2.16 (Ratio Test). Given sequence $(a_n)_{n=1}^{\infty}$ such that $a_n \geq 0$, then

- 1. If $\limsup \frac{a_{n+1}}{a_n} < 1$, $\sum_{n=1}^{\infty} a_n$ converges;
- 2. If $\limsup \frac{a_{n+1}}{a_n} > 1$, $\sum_{n=1}^{\infty} a_n$ diverges.

Theorem 2.17 (Integral Test). Let f(x) be a positive and monotone decreasing function on $[1, \infty)$. Consider $(f(x_n))$, then

$$\sum_{n=1}^{\infty} f(n) \text{ conv } \iff \int_{1}^{\infty} f(x) \ dx < \infty$$
 (2.61)

Theorem 2.18 (Alternating Series Test). For an alternating sequence $\sum_{n=1}^{\infty} (-1)^n a_n$, if $(a_n) \searrow 0$, then the series converges.

2.5 Absolute and Conditional Convergence

Corollary 2.3 (Corollary of Comparison Test). If $\sum_{i=1}^{\infty} |a_i|$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.

Definition 2.10. For any series $\sum_{n=1}^{\infty} a_n$, if

- 1. $\sum_{i=1}^{\infty} |a_n|$ converges, $\sum_{n=1}^{\infty} a_n$ converges absolutely;
- 2. $\sum_{i=1}^{\infty} |a_n|$ does not converge, then $\sum_{n=1}^{\infty} a_n$ converges conditionally.

Example 2.4. Alternating harmonic series converges conditionally.

However, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ converges absolutely.

Definition 2.11. $\sum_{n=1}^{\infty} b_n$ is called a **rearrangement** of series $\sum_{n=1}^{\infty} a_n$ if there exists $f: \mathbb{N} \to \mathbb{N}$ such that f is a bijection and $b_{f(k)} = a_k$ for every $k \in \mathbb{N}$.

Theorem 2.19 (Riemann Series Theorem). If series $\sum_{n=1}^{\infty} a_n$ converges <u>conditionally</u>, for every $\alpha \in \mathbb{R}$, there exists a rearrangement $\sum_{n=1}^{\infty} b_n$ converges to α .

Proof. The proof is non-trivial and omitted.

Theorem 2.20. If series $\sum_{n=1}^{\infty} a_n$ converges <u>absolutely</u> to some value $A \in \mathbb{R}$, then every rearrangement $\sum_{n=1}^{\infty} b_n$ converges to A.

Proof. Define partial sum sequences

$$S_n := \sum_{k=1}^n a_k \quad T_m := \sum_{k=1}^m b_k \tag{2.62}$$

Suppose $(S_n) \to A$, want to show: $(T_n) \to A$.

Let $\varepsilon > 0$ fixed.

By convergence of (S_n) , there exists $N_1 \in \mathbb{N}$ such that

$$n \ge N_1 \implies |S_n - A| < \frac{\varepsilon}{2}$$
 (2.63)

Because $\sum_{n=1}^{\infty} a_n$ converges absolutely, by the Cauchy criterion for convergent series (i.e. partial sum sequence is Cauchy), there exists $N_2 \in \mathbb{N}$ such that

$$n > m \ge N_2 \implies \sum_{k=n+1}^{m} |a_k| < \frac{\varepsilon}{2}$$
 (2.64)

Define $N := \max\{N_1, N_2\}, M := \max\{f(k) : 1 \le k \le N\}.$

$$|T_m - S_N| = |b_1 + \dots + b_m - a_1 - \dots - a_N| \tag{2.65}$$

$$= |b_1 + \dots + b_m - b_{f(1)} - \dots - b_{f(N)}|$$
(2.66)

Note that for every $m \geq M$, by construction, $\{b_{f(1)}, \cdots b_{f(N)}\} \subset \{b_1 \cdots, b_m\}$.

Note that for each $b_{f(k)} \in \{b_1 \cdots b_m\}$, either k > N or $k \leq N$. But all $b_{f(k)}$ with $k \leq N$ were subtracted, so $b_{f(k)}$ elements left are all from $\{a_k : k \geq N + 1\}$.

$$\dots = \left| \sum_{k \in \mathcal{I} \ge N+1} a_k \right| \tag{2.67}$$

$$\leq \sum_{k=N+1}^{\infty} |a_k| < \frac{\varepsilon}{2} \tag{2.68}$$

Therefore, for all $m \geq M$,

$$|T_m - A| = |T_M - S_n + S_n - A| \tag{2.69}$$

$$\leq |T_M - S_n| + |S_n - A| \tag{2.70}$$

$$< \varepsilon$$
 (2.71)

The desired result is immediate.

3 Topology in \mathbb{R}

Definition 3.1.

$$V_{\varepsilon}(x_0) := \{ x \in \mathbb{R} : ||x, x_0|| < \varepsilon \}$$

$$(3.1)$$

Definition 3.2. A subset of $\mathcal{O} \subset \mathbb{R}$ is open if

$$\forall x \in \mathcal{O} \ \exists \ \varepsilon > 0 \ s.t. \ V_{\varepsilon}(x) \ s.t. \ V_{\varepsilon}(x) \subset \mathcal{O}$$
 (3.2)

Theorem 3.1. Arbitrary union of open sets is open; Any finite intersection of open sets is open.

Proof. Let \mathcal{O}_{α} open for all $\alpha \in \mathcal{A}$. Let $\mathcal{O} := \bigcup_{\alpha \in \mathcal{A}} \mathcal{O}_{\alpha}$. If $x \in \mathcal{O}$, there exists some $\alpha \in \mathcal{A}$ such that $x \in \mathcal{O}_{\alpha}$. There exists $V_{\varepsilon}(x) \subset \mathcal{O}_{\alpha} \subset \mathcal{O}$. Hence \mathcal{O} is open.

Let $\{\mathcal{O}_i : 1 \leq i \leq n\}$ be a collection of open sets, let $\mathcal{O} := \bigcap_{i=1}^{\infty} \mathcal{O}_i$. If $x \in \mathcal{O}$, there exists $\varepsilon_i > 0$ such that $V_{\varepsilon_i}(x) \subset \mathcal{O}_i$ for every i. Take $\varepsilon := \max\{\varepsilon_i\}$, which exists and is strictly positive by finiteness of index set. Therefore $V_{\varepsilon}(x) \subset \mathcal{O}_i$ for every i, and therefore in \mathcal{O} .

Definition 3.3. x is a **limit point** of A if $\forall \varepsilon > 0$,

$$V_{\varepsilon}(x) \cap A - \{x\} \neq \emptyset \tag{3.3}$$

Remark: this definition does not require x to be an element of A.

Theorem 3.2. x is a limit point A if and only if there exists a sequence $(a_n)_{n=1}^{\infty} \subset A$ such that $\underline{a_n \neq x \ \forall n \in \mathbb{N}}$ and $(a_n)_{n=1}^{\infty} \to x$.

Proof. (\Longrightarrow) Let x be a limit point, take $\varepsilon = \frac{1}{n}$, immediate by the definition of limit point. (\Longleftrightarrow) Trivially by definition of sequential convergence.

Definition 3.4. $X \subset \mathbb{R}$ is **closed** if it contains all its limit points.

Definition 3.5. $x \in A$ is an **isolated point** is it is not a limit point of A.

Definition 3.6. $A \subset X$ is dense in X if $\overline{A} = X$.

Theorem 3.3. Let $x \in \mathbb{R}$, there exists a sequence $(q_n)_{n=1}^{\infty} \subset \mathbb{Q}$ such that $(q_n)_{n=1}^{\infty} \to x$.

Proof. Let $x \in \mathbb{R}$. Note that $\forall u < v \in \mathbb{R}$, there exists $q \in (u,v) \cap \mathbb{Q}$. Hence, for every $n \in \mathbb{N}$, $\exists q_n \in \mathbb{Q}$ such that $x - \frac{1}{n} < q_n < x + \frac{1}{n}$. It is evident that $(q_n)_{n=1}^{\infty} \to x$.

Definition 3.7. The **closure** of A, denoted as \overline{A} , is defined to be the union of A and all limit points of A.

Lemma 3.1. \overline{A} is the smallest closed set containing A.

Proof. It is evident that \overline{A} is a closed set containing A.

Now show the closure is in fact the smallest closed set. Let $B \subsetneq \overline{A}$ be a proper subset of the closure, we are going to show that B is not closed. Let $x \in \overline{A} - B \neq \emptyset$.

Note that $\overline{A} \equiv A \cup A'$, then either $x \in A$ or $x \in A'$. If $x \in A$, then B does not contain A. If $x \in A'$, then B does not contain all limit points of A, so it is not closed.

Theorem 3.4. Equivalent definitions of openness and closedness:

- (i) \mathcal{O} is open if and only if \mathcal{O}^c is closed;
- (ii) \mathcal{O} is closed if and only if \mathcal{O}^c is open.

Proof. (\Longrightarrow) Let \mathcal{O} be an open set, let $(x_n) \to x$ be a convergent sequence in \mathcal{O}^c . It is evident that if $x \in \mathcal{O}$, infinitely many elements in the tail of (x_n) would be in $V_{\varepsilon}(x) \subset \mathcal{O}$, which leads to a contradiction. Therefore \mathcal{O}^c contains all of its limit poitns, and \mathcal{O}^c is therefore closed.

(\Leftarrow) Let \mathcal{O}^c be a closed set, suppose \mathcal{O} is not open, there exists $x \in \mathcal{O}$ such that for all $\varepsilon > 0$, $V_{\varepsilon}(x) \cap \mathcal{O}^c \neq \varnothing$. Then we can construct a sequence in \mathcal{O}^c converge to x, which leads to a contradiction that there is a limit point of a sequence in \mathcal{O}^c not contained by \mathcal{O}^c .

The second part is immediate.

Theorem 3.5. Any intersection of closed sets is closed; any finite union of closed sets is closed.

Proof. Direct result from De Morgan's law and the previous theorem.

Remark: Limit points and boundary points are completely different. Example: let $\Omega = [1,2] \cup 3$, then 3 is a boundary point but not a limit point (i.e. it is isolated). And 0.5 is a limit point but not a boundary point.

Definition 3.8. A set $K \subset \mathbb{R}$ is **compact** if every sequence in K has a convergent subsequence converges to some limit $x \in K$.

Theorem 3.6. A set $K \subset \mathbb{R}$ is compact if and only if it is closed and bounded.

Proof. (\Longrightarrow) Suppose $K \subset \mathbb{R}$ is compact.

Show K is bounded: suppose, for contradiction, K is unbounded, then for every $N \in \mathbb{N}$, one can construct a sequence as following: $a_1 \in K$ and $a_{n+1} > \max\{a_n, n\}$. Such sequence diverges to positive infinity, and every subsequence of it converges to infinity as well (easy to verify). This leads to a contradiction to the compactness of K.

Show K is closed: Suppose, for contradiction, K is not closed, then there exists some limit point of

K say $x \notin K$. Consider the sequence $(x_n) \to x$ in K, because every subsequence of such convergent sequence converges to the same limit $x \notin K$, which leads to a contradiction of compactness.

(\Leftarrow) Let $(x_n) \subset K$, then (x_n) is bounded and therefore possesses a convergent subsequence by Bolzano-Weierstrass Theorem. Further, because K is closed, then the limit point must be in K.

Theorem 3.7 (Nested Compact Set Property). Let $\mathbb{R}^n \supset K_1 \supset K_2 \supset \cdots \supset K_n \supset \cdots$, where $K_n \neq \emptyset$ are all compact sets, then

$$\bigcap_{n\in\mathbb{N}} K_n \neq \emptyset \tag{3.4}$$

Proof. Construct a sequence such that $x_n \in K_n$ for every $n \in \mathbb{N}$. In particular, $(x_n) \subset K_1$. Because K_1 is compact, it has a convergent subsequence $(x_{n_k}) \to x \in K_1$. Then every subsequence of (x_{n_k}) converges to the same limit x.

Note that by dropping out the first element of the subsequence, the resulted sequence starts with x_{n_2} . By the definition of subsequences, $n_2 \geq 2$, therefore, the truncated subsequence is contained in K_2 because of the compactness of K_2 . As a result, $x \in K_2$. Applying the same argument on all natural numbers, it is immediate that $x \in K_n \ \forall n \in \mathbb{N}$. So $x \in \bigcap_{n \in \mathbb{N}} K_n$.

Proof. (Cantor's Argument). Suppose, for contradiction, the intersection is empty. Define $U_n := K_1 \setminus K_n$. Note that $U_n = K_1 \cap K_n^c = K_n^c$, which is open. Further, $\bigcup_{n \in \mathbb{N}} U_n = \bigcup_{n \in \mathbb{N}} K_1 \cap K_n^c = K_1 \cap (\bigcup_{n \in \mathbb{N}} K_n^c) = K_1 \cap (\bigcap_{n \in \mathbb{N}} K_n)^c = K_1 \setminus \bigcap_{n \in \mathbb{N}} K_n = K_1$. Therefore, $C = \{U_n : n \in \mathbb{N}\}$ is an open cover of K_1 . Because K_1 is compact, there exists a finite subcover of C. Take C to be the greatest index in this finite subcover, then for every C is not in the union of the constructed subcover, which leads to a contradiction.

Example 3.1. Note that the closedness itself is not sufficient for the nest compact set property to hold. For instance, the following sequence of closed sets are nested: $F_n := [n, \infty)$, but indeed, for every $x \in \mathbb{R}$, there exists a natural number n > x, so that $x \notin \bigcap_{n \in \mathbb{N}} F_n$. Therefore, $\bigcap_{n \in \mathbb{N}} F_n = \emptyset$.

Definition 3.9. Let $A \subset \mathbb{R}$, an **open cover** for A is a collection of open sets $\{\mathcal{O}_{\lambda} : \lambda \in \Lambda\}$ such that $A \subseteq \bigcup_{\lambda \in \Lambda} \mathcal{O}_{\lambda}$.

Theorem 3.8 (Heine-Borel). Let $K \subset \mathbb{R}$, then the following are equivalent:

- (i) K is (sequentially) compact;
- (ii) K is closed and bounded;
- (iii) Every open cover of K has a finite subcover.

Proof. The equivalence of (i) and (ii) has been proven previously.

Show (iii) \Longrightarrow (ii): suppose every open cover of K has a finite subcover, consider the following cover of K: $\mathcal{C} = \{[-n, n] : n \in \mathbb{N}\}$. Let M be the greatest index in the finite subcover \mathcal{C} , and obviously K is bounded by M.

Suppose, for contradiction, that K is not closed. Let y be a limit point of K but $y \notin K$. Then, for

every $\varepsilon > 0$, $V_{\varepsilon}^{o}(y) \cap K \neq \emptyset$. We've shown that K is bounded, take $M \in \mathbb{R}$ such that $(-M, M) \supset K$. Define the following cover:

$$C := \left\{ (-M, M) \setminus \overline{V_{\varepsilon}(y)} : \varepsilon \in \mathbb{R}_{++} \right\}$$
 (3.5)

Because K is compact, there exists a finite subcover of C, which is clearly a contradiction.