PAINEL

(para a apresentação tipo "pôster")

DIMENSÕES: Largura 80 cm

Altura 100 cm

LOGOTIPOS: IME / XVI ENCONTRO /CNPq

ou FRF

Altura 8 - 10 cm

IDENTIFICAÇÃO:

- * Título
- * Autores Nome completo, um por linha, seguido entre parênteses pelo tipo do trabalho,instituição e E_mail.
- * Orientador Nome completo, titulação, IES, E mail
 - * Secão de Ensino

CONTEÚDO

Deverão estar explicitados:

Introdução,

Objetivo,

Materiais e Método,

Resultados e discussão,

Conclusões e

Referências (principais)

OUTROS

Privilegiar o emprego de ilustrações, esquemas, figuras, gráficos, tabelas etc

XVI Encontro de Iniciação Científica

IDENTIFICAÇÃO DE ALVOS

Análise de alvos por forma ou textura

Autor: Bruno Vieira Costa (Bolsista PIBITI-IME) - brunovieiracosta1@hotmail.com Orientador: Carlos Frederico de Sá Volotão- TC QEM - IME-volotao@ime.eb.br SEÇÃO DE ENGENHARIA CARTOGRÁFICA

Introdução

Neste projeto foi realizado um estudo das diversas técnicas de visão computacional para análise de forma e textura. Ao final foi criada uma aplicação reconhecimentos de numerais manuscritos a partir de uma fotografia genérica.

Palavras-chave: Visão computacional; Processamento de imagens;

Processamento de imagens Segmentação; Identificação de alvos.

Figura 1: Processo total até extração

Desenvolvimento

Os processos estudados foram divididos nos seguintes grupos:

- Captura e formatação:

Foi realizado um estudo dos processos de captura e armazenamento de imagens com auxílio da biblioteca OpenCV[1].

Tratamento

Foram estudados processos de suavização, limiarizaçã, operadores morfológicos e extração de bordas.

Figura 2: Métodos de suavização média, gaussiana e mediana

Segmentação e descrição:

Foram vistos processos extração de atributos por forma e textura utilizando-se de chaincode, turning function, matriz de correlação e momentos de imagem[2] e k-curvatura.

Figura 3: Limiarização comum e adaptativa

- Aprendizagem:

Foram estudados diversos métodos de aprendizagem de máquina para classificação e tomada de decisão como KNN[3], SVM, árvore de decisão e redes neurais.

	^	^	45	n	^	_	^	^	^	n	^	^		_	^	^	^	٥	_
9	U	O																	0
/	1	ļ	1	١	-1	1	1	١	1	1	1	t	١	1	1	1	1	١	1
2	2	2	1	2	2	2	2	2	2	2	a	2	2	2	2	2	9	2	2
E	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3
4	4	4	4	4	Ц	4	4	4	4	4	4	4	4	4	4	4	4	ч	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	Ø	6	6	6	6	6	6	6	6	6	6	b	6	6	6
7	7	7	7	7	7	7	7	7	7	7	٦	7	7	7	7	7	7	7	7
8	Е	8	8	8	8	в	8	8	8	8	8	8	P	ŝ	8	В	8	8	4
٩	9	9	9	9	9	9	9	Î	9	9	9	9	9	9	9	9	9	9	9

Figura 4: Numerais de treinamento

- Implementação

Ao final do período de pesquisa, foi implementado um reconhecedor de caracteres manuscritos utilizando-se de momentos invariantes de Hu sobre imagem de bordas limiarizadas e classificação por KNN.

Figura 5: Esquema de KNN

Resultados

Os resultados foram avaliados quantitativamente por testes automáticos com o auxílio do banco de dados MNIST[4]. Foram realizados 120mil testes. Foi obtido sucesso em 84% dos casos. Levando 12 min e 25 s para serem computados.

Conclusão

Os métodos utilizados formam uma base de conhecimento para futuras pesquisas de aprofundamento e desenvolvimento ciontífico.

Referências bibliográficas

[1]Disponível em: http://opencv.org/ Acesso em: 18 de Out. de 2015. [2]M. K. Hu, "Visual Pattern Recognition by Moment Invariants", IRE Transactions on Information Theory, vol. 17-8, pp.179-187, 1962. [3]Altman, N. S. (1992). "An introduction to kernel and nearest-neighbor nonparametric regression". The American Statistician 46 (3): 175–185. [4]Disponível em: http://yann.lecun.com/exdb/mnist/>. Acesso em: 18 de Out. de 2015.