1. Exercise 2.8

- (a) We know that \overline{g} is the average function of many different hypothesis $g_1, g_2, ..., g_n$ of different data sets. H represents the hypotheses set, where each hypothesis in H is dependent on their respective data set. If the hypothesis in H are in linear combination, then the average of the hypotheses in H should also be a linear combination, proving that $\overline{g} \in H$
- (b) We can imagine a model with two hypotheses, one that will label all datapoints as +1 and another as -1, then the average of those two hypotheses will be 0, which is not in the hypothesis set, therefore $\bar{g} \notin H$
- (c) (b) is a binary classification and \overline{g} is not a binary function since $0 \notin \{+1, -1\}$. Often, with more hypotheses, the average will be a number between $\{-1, 1\}$, it will be unlikely that they are +1 or -1

2. Problem 2.14

- (a) Given that the d_{vc} is finite, we know that the hypothesis can shatter any data set of size d_{vc} . We can claim that $K(d_{vc}) \geq d_{vc}(H)$, since $K(d_{vc})$ assumes that every K hypothesis can shatter the maximum number of points, d_{vc} . Then $K(d_{vc}+1) > K(d_{vc}) \geq d_{vc}(H)$, by transitivity, $K(d_{vc}+1) > d_{vc}(H)$
- (b) Given that the hypothesis has a finite VC dimension, then we have a breakpoint such that $2^{\ell} > \ell^{d_{vc}} + 1$ If we have K hypotheses, then $m_H(\ell) \leq K(\ell^{d_{vc}} + 1)$. By inspection, $2K\ell^{d_{vc}} > K(\ell^{d_{vc}} + 1)$. So here we know that $2^{\ell} > 2K\ell d^{vc} > K(\ell^{d_{vc}} + 1)$, by transitivity, $2^{\ell} > K(\ell^{d_{vc}} + 1)$, which means $2^{\ell} > m_H(\ell)$, if this is true, then it means that there are no hypothesis can shatter 2^{ℓ} points, which means that $d_{vc} \leq \ell$
- (c) **TO DO**
- 3. Problem 2.15

(a)