1)
$$\int e^{3x} (4\cos^3x) - \cos(3x) + 2\cos(x) dx = [\cos(3x) - 4\cos^3x - 3\cos(x)]$$

 $= 5 \int e^{3x} \cos(x) dx = [\cos(x) - \frac{1}{2}(e^{ix} + e^{-ix})] =$
 $= \frac{5}{2} \left[e^{(3+i)x} + e^{(3-i)x} \right] dx = \frac{5}{2} e^{3x} \left(\frac{1}{3+i} e^{ix} + \frac{1}{3-i} e^{-dx} \right) + (=$
 $= \left[\frac{1}{3\pm i} - \frac{3}{10} + \frac{i}{10} \right] = \frac{5}{2} e^{3x} \left(\frac{3}{10} (e^{ix} + e^{-ix}) + \frac{i}{10} (e^{-ix} - e^{ix}) \right) + (=$
 $= \frac{1}{2} e^{3x} \left(3\cos(x) + \sin(x) \right) + C$
2) $\frac{x^2y'' + xy' + y = 5x^2}{y = x^2}, x > 0$
Marx. pum. $y = x^2$ ograp. $y = x^2$

2)
$$\frac{x^2y'' + xy' + y = 5x^2}{y'' + xy' + y = 0}$$

Where, pull. $y = x^2$, ograp. $yp - e$:

 $x^2y'' + xy' + y = 0$ — $3p - e$ runa $4cuu - 7inega$
 $x = e^{\pm} = y'' + y''$

Orlise peinerue: $y(x) = y_{00}(x) + y_z = \ell$, $sin(\ell_n(x)) + \zeta_2(0)(\ell_n(x)) + \chi^2$

3) Шидинивиое решение t, с 12345... У прокарногов « чинерное"

Nингок #1 124816

Одна клегке заполняет NEMION #2 12 48 16 E 2 48 16 32 Cranan za t = In, vo gle knerku zanonker z $t = T_{n-1}$. V.O., ecryoque janonner za 60 e., ro orber: que za 59 cm А размери стакана туч не нумин, вообще петрия The good minder Baron generue N(t) = No 2 (DN~VNot) No - наг. гисло клегок, V - спорост деления $V = 1 e^{-t}$, $N_o = 1$ $N_e = 2^t = 2^{60} m - 05$ ognow

KNETKU Za munggy t(N) = + log. (N/N) , gue glyx knerok: t(Ne) = t (260) = log2 (200) =

= 59 cer