Basic Path Finding

Path Planning

Path Planning

Why not pre-compute all paths?

needs to be very fast (especially for games with many characters)

needs to generate believable paths

Path Planning

• Path Planning in

- partially-known environments is a repeated process
- dynamic environments is also a repeated process

re-planning path as map becomes known

Definition of Path Planning

• Task:

find a feasible (and cost-minimal) path from the current pose to a goal pose

- Two types of constraints:
 environmental constraints (e.g., obstacles)
 dynamics/kinematics constraints
- Generated motion/path should (objective):
 be a feasible path
 minimize cost such as distance, time, unrealistic
 effects, ...

Path Planning

Examples (of what is usually referred to as path planning):

Path Planning

Examples (of what is usually referred to as motion planning):

Piano Movers' problem

Configuration Space

- Configuration is legal if it does not intersect any obstacles and is valid (e.g., does not intersect itself, joint angles are within their limits)
- Configuration Space is the set of legal configurations

Configuration Space

- Configuration is legal if it does not intersect any obstacles and is valid (e.g., does not intersect itself, joint angles are within their limits)
- Configuration Space is the set of legal configurations

What is the dimensionality of this configuration space?

Configuration space for rigid-body objects in 2D world is:
2D if object is circular

- expand all obstacles by the radius of the object r
- planning can be done for a point R (and not a circle anymore)

• Configuration space for rigid-body objects in 2D world is:

- 2D if object is circular

C-Space Transform

- expand all obstacles by the radius of the object r
- planning can be done for a point R (and not a circle anymore)

Configuration space for rigid-body objects in 2D world is:
2D if object is circular

- advantage: planning is faster for a single point
- disadvantage: need to expand obstacles every time map is updated (O(n) methods exist to compute distance transforms)

• Configuration space for arbitrary objects in 2D world is:

- advantage: planning is faster for a single point
- disadvantage: constructing C-space is expensive

Planning as Graph Search Problem

1. Construct a graph representing the planning problem

2. Search the graph for a (hopefully, close-to-optimal) path

The two steps above are often interleaved

Planning as Graph Search Problem

1. Construct a graph representing the planning problem

2. Search the graph for a (hopefully, close-to-optimal) path

The two steps above are often interleaved

Graph Construction

- Cell decomposition
 - X-connected grids

- lattice-based graphs

- -Visibility graphs
- Voronoi diagrams
- Probabilistic roadmaps
- Navmeshes

Graphs Construction

- Once a graph is constructed, we will search it for a least-cost path
- Once again: depending on the planning algorithm, graph construction can be interleaved with graph search

- Exact Cell Decomposition:
 - overlay convex exact polygons over the free C-space
 - construct a graph, search the graph for a path
 - overly expensive for non-trivial environments and/or above 2D

- Approximate Cell Decomposition:
 - overlay uniform grid over the C-space (discretize)

- Approximate Cell Decomposition:
 - construct a graph and search it for a least-cost path

- Approximate Cell Decomposition:
 - construct a graph and search it for a least-cost path

- Approximate Cell Decomposition:
 - construct a graph and search it for a least-cost path
 - VERY popular due to its simplicity
 - expensive in high-dimensional spaces

construct the grid on-the-fly, i.e. while planning – still expensive

- Approximate Cell Decomposition:
 - what to do with partially blocked cells?

- Approximate Cell Decomposition:
 - what to do with partially blocked cells?
 - make it untraversable incomplete (may not find a path that exists)

- Approximate Cell Decomposition:
 - what to do with partially blocked cells?
 - make it traversable unsound (may return invalid path)

so, what's the solution?

- Approximate Cell Decomposition:
 - solution 1:
 - make the discretization very fine
 - expensive, especially in high-D

- Approximate Cell Decomposition:
 - solution 2:
 - make the discretization adaptive
 - various ways possible

How?

- Graph construction:
 - connect neighbors

eight-connected grid

- Graph construction:
 - connect neighbors
 - path is restricted to 45° degrees

- Graph construction:
 - connect neighbors
 - path is restricted to 45° degrees

Will planning in 3D help?

- Graph construction:
 - connect cells to neighbor of neighbors
 - path is restricted to 22.5° degrees

16-connected grid

- Graph construction:
 - connect cells to neighbor of neighbors
 - path is restricted to 22.5° degrees

- Graph construction:
 - lattice graph for computing smooth (realistic) paths

outcome state is the center of the corresponding cell each transition is feasible (constructed beforehand) action template $C(s_1, s_4) = 5$ replicate it online

- Graph construction:
 - lattice graph
 - pros: sparse graph, feasible paths

- cons: possible incompleteness

- Graph construction:
 - lattice graph

- Graph construction:
 - lattice graph

planning on 4D lattice graph:
each state represents < x, y, orientation, velocity>
each edge represents a short feasible motion between corresponding cells

Skeletonization of the C-Space

Skeletonization: construction of a unidimensional representation of the C-space

- Visibility graph
- Voronoi diagram
- Probabilistic road-map
- Navmeshes

• Visibility Graphs [Wesley & Lozano-Perez '79]

- based on idea that the shortest path consists of obstacle-free straight line segments connecting all obstacle vertices and start and goal

Visibility Graphs

- based on idea that the shortest path consists of obstacle-free straight line segments connecting all obstacle vertices and start and goal

Assumption?

Visibility Graphs

- based on idea that the shortest path consists of obstacle-free straight line segments connecting all obstacle vertices and start and goal

Assumption?

- Visibility Graphs [Wesley & Lozano-Perez '79]
 - construct a graph by connecting all vertices, start and goal by obstacle-free straight line segments (graph is $O(n^2)$, where n # of vert.)
 - search the graph for a shortest path

- Visibility Graphs
 - advantages:
 - independent of the size of the environment
 - disadvantages:
 - path is too close to obstacles
 - hard to deal with non-uniform cost function
 - hard to deal with non-polygonal obstacles

- Voronoi diagrams [Rowat '79]
 - voronoi diagram: set of all points that are equidistant to two nearest obstacles
 - based on the idea of maximizing clearance instead of minimizing travel distance

Voronoi diagrams

- compute voronoi diagram (O (n log n), where n # of invalid configurations)
- add a shortest path segment from start to the nearest segment of voronoi diagram
- add a shortest path segment from goal to the nearest segment of voronoi diagram
- compute shortest path in the graph

- Voronoi diagrams
 - advantages:
 - tends to stay away from obstacles
 - independent of the size of the environment
 - disadvantages:
 - can result in highly suboptimal paths

- Voronoi diagrams
 - advantages:
 - tends to stay away from obstacles
 - independent of the size of the environment
 - disadvantages:
 - can result in highly suboptimal remains which environments?

- Probabilistic roadmaps [Kavraki et al. '96]
 - construct a graph by:
 - randomly sampling valid configurations
 - adding edges in between the samples that are easy to connect with a straight line
 - add start and goal configurations to the graph with appropriate edges
 - compute shortest path in the graph

- Probabilistic roadmaps [Kavraki et al. '96]
 - simple and highly effective (especially in >2D)
 - very popular
 - can result in suboptimal paths, no guarantees on suboptimality
 - difficulty with narrow passages

Navmeshes

- pick centers of triangles defining floor plan as graph vertices
- semi-manual but very popular in games
- can result in suboptimal paths, no guarantees on suboptimality

Navmeshes

- pick centers of triangles defining floor plan as graph vertices
- semi-manual but very popular in games
- can result in suboptimal paths, no guarantees on suboptimality

Other disadvantages?

Planning as Graph Search Problem

1. Construct a graph representing the planning problem

2. Search the graph for a (hopefully, close-to-optimal) path

The two steps above are often interleaved

Searching Graphs for a Least-cost Path

• Once a graph is constructed (from skeletonization or uniform cell decomposition or adaptive cell decomposition or lattice or whatever else), We need to search it for a least-cost path

Computes optimal g-values for relevant states

at any point of time:

Computes optimal g-values for relevant states

at any point of time:

one popular heuristic function – Euclidean distance

 $minimal\ cost\ from\ s\ to\ s_{goal}$

- Heuristic function must be:
 - admissible: for every state s, $h(s) \le c *(s, s_{goal})$
 - consistent (satisfy triangle inequality): $h(s_{goal}, s_{goal}) = 0$ and for every $s \neq s_{goal}, h(s) \leq c(s, succ(s)) + h(succ(s))$
 - admissibility follows from consistency and often consistency follows from admissibility

set of candidates for expansion

Computes optimal g-values for relevant states

Main function

 $g(s_{start}) = 0$; all other g-values are infinite; $OPEN = \{s_{start}\}$; ComputePath(); publish solution;

ComputePath function

while $(s_{goal} \text{ is not expanded})$

remove s with the smallest [f(s) = g(s) + h(s)] from *OPEN*;

for every expanded state

for every expanded state
g(s) is optimal
(if heuristics are consistent)

Computes optimal g-values for relevant states

ComputePath function

while $(s_{goal} \text{ is not expanded})$ remove s with the smallest [f(s) = g(s) + h(s)] from OPEN; expand s;

Computes optimal g-values for relevant states

ComputePath function

```
while(s_{goal} is not expanded)
```

remove s with the smallest [f(s) = g(s) + h(s)] from *OPEN*;

insert s into CLOSED;

for every successor s' of s such that s'not in CLOSED

if
$$g(s') > g(s) + c(s,s')$$

$$g(s') = g(s) + c(s,s');$$
insert s' into OPEN;

tries to decrease g(s') using the found path from s_{start} to s

set of states that have already been expanded

Computes optimal g-values for relevant states

```
while (s_{goal}) is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

$$CLOSED = \{\}$$

 $OPEN = \{s_{start}\}$
 $next \ state \ to \ expand: \ s_{start}$

Computes optimal g-values for relevant states

```
while (s_{goal} \text{ is not expanded})
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
```

if
$$g(s') > g(s) + c(s,s')$$

 $g(s') = g(s) + c(s,s')$;
insert s' into OPEN;

$$CLOSED = \{\}$$

 $OPEN = \{s_{start}\}$
 $next \ state \ to \ expand: \ s_{start}$

Computes optimal g-values for relevant states

```
while (s_{goal}) is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```


Computes optimal g-values for relevant states

```
while (s_{goal}) is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

$$CLOSED = \{s_{start}\}$$

 $OPEN = \{s_2\}$
 $next \ state \ to \ expand: \ s_2$

Computes optimal g-values for relevant states

```
while (s_{goal}) is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

$$CLOSED = \{s_{start}, s_2\}$$

 $OPEN = \{s_1, s_4\}$
 $next \ state \ to \ expand: \ s_1$

Computes optimal g-values for relevant states

```
while (s_{goal}) is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

$$CLOSED = \{s_{start}, s_2, s_1\}$$

 $OPEN = \{s_4, s_{goal}\}$
 $next \ state \ to \ expand: \ s_4$

Computes optimal g-values for relevant states

```
while (s_{goal}) is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

$$CLOSED = \{s_{start}, s_2, s_1, s_4\}$$

 $OPEN = \{s_3, s_{goal}\}$
 $next\ state\ to\ expand:\ s_{goal}$

Computes optimal g-values for relevant states

```
while (s_{goal}) is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

$$CLOSED = \{s_{start}, s_2, s_1, s_4, s_{goal}\}$$

 $OPEN = \{s_3\}$
 $done$

g=0

h=3

Computes optimal g-values for relevant states

ComputePath function

```
while(s_{goal} is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED

if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

for every expanded state g(s) is optimal for every other state g(s) is an upper bound we can now compute a least-cost path

g=0

h=3

Computes optimal g-values for relevant states

ComputePath function

```
while(s_{goal} is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED

if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

for every expanded state g(s) is optimal for every other state g(s) is an upper bound we can now compute a least-cost path

g=3

Computes optimal g-values for relevant states

ComputePath function

```
while(s_{goal} is not expanded)
remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;
insert s into CLOSED;
for every successor s of s such that s not in CLOSED

if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
insert s into OPEN;
```

for every expanded state g(s) is optimal

for every other state g(s) is an upper bound why?

we can now compute a least-cost path g=0 h=2 S_{start} g=5 h=0 g=5 g=5 g=5 g=5 g=5 g=5 g=5 g=1

g=3

• Is guaranteed to return an optimal path (in fact, for every expanded state) – optimal in terms of the solution

 Performs provably minimal number of state expansions required to guarantee optimality – optimal in terms of the computations

• A* Search: expands states in the order of f = g+h values ComputePath function

```
while (s_{goal} \text{ is not expanded})

remove s with the smallest [f(s) = g(s) + h(s)] from OPEN;

insert s into CLOSED;

for every successor s' of s such that s' not in CLOSED

if g(s') > g(s) + c(s,s');

g(s') = g(s) + c(s,s');

insert s' into OPEN;
```

- A* Search: expands states in the order of f = g+h values
- Dijkstra's: expands states in the order of f = g values (pretty much)
- Intuitively: f(s) estimate of the cost of a least cost path from start to goal via s

- A* Search: expands states in the order of f = g+h values
- Dijkstra's: expands states in the order of f = g values (pretty much)
- Weighted A*: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1$ = bias towards states that are closer to goal

• Dijkstra's: expands states in the order of f = g values

• A* Search: expands states in the order of f = g+h values

What are the states expanded?

• A* Search: expands states in the order of f = g+h values

for large problems this results in A* being slow

• Weighted A* Search: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1 =$ bias towards states that are closer to goal

what states are expanded?

- research question

- Weighted A* Search:
 - trades off optimality for speed
 - ε-suboptimal:
 - $cost(solution) \le \varepsilon \cdot cost(optimal\ solution)$
 - in many domains, it has been shown to be orders of magnitude faster than A*

Weighted A:* $\varepsilon = 2.5$

13 expansions solution=11 moves