Math 115B Homework #8

Nathan Solomon

March 16, 2025

Problem 0.1.

(a) H is a bilinear form, because H(f,g) = H(g,f) and H is linear in the first argument (therefore also the second). If $a \in \mathbb{R}$ and $f,g,h \in C([0,1])$, then

$$H(af+h,g) = \int_0^1 (af(x)+h(x))g(x)\mathrm{d}x = a\left(\int_0^1 f(x)g(x)\mathrm{d}x\right) + \left(\int_0^1 h(x)g(x)\mathrm{d}x\right) = aH(f,g) + H(h,g).$$

(b) H is not a bilinear form, because if we let v, w be vectors such that $J(v, w) \neq 0$, then H(v, w) is also nonzero, which implies

$$H(v + v, w) = (J(v, w) + J(v, w))^{2}$$

$$= H(v, w) + H(v, w) + H(v, w) + H(v, w)$$

$$= (1 + 1)(H(v, w) + H(v, w))$$

$$\neq H(v, w) + H(v, w).$$

- (c) H is not a bilinear form, because H(1,0)=1, but linearity in the second argument would imply H(x,0)=0 for any $x\in\mathbb{R}$.
- (d) This is a bilinear form, because it gives the determinant of the 2×2 matrix whose columns are the two parameters, and theorem 4.12 states that the determinant is the unique n-linear alternating function from $M_{n \times n}(F)$ to F which maps I_n to 1. Therefore, the determinant of a 2×2 matrix can be thought of as a bilinear form on its rows, or equivalently, on its columns.
- (e) This is a bilinear form. We defined an inner product to be linear in the second argument (first, if you use silly math notation) and conjugate-linear in the first argument (second, if you never bothered to learn quantum mechanics). Since the underlying field of V is \mathbb{R} , H is linear in both arguments.
- (f) H is not a bilinear form, because if $v, w \neq 0$, then

$$H(iv, w) = \langle iv, w \rangle = -i \langle v, w \rangle = -iH(v, w) \neq iH(v, w).$$

Problem 0.2.

- (a) If $\alpha \in k$ and $H_1, H_2 \in \mathbb{B}(V)$, then H_1 and H_2 are both linear in the first argument. Linear combinations of linear functions are linear functions, so $H_1 + H_2$ and αH_1 are also linear in the first argument. By the exact same logic, they're linear in the second argument, so $H_1 + H_2$ and αH_1 are bilinear forms, which implies $\mathbb{B}(V)$ is a vector space (over k).
- (b) Theorem 6.32 states that there is an isomorphism from $\mathbb{B}(V)$ and $M_{n\times n}(F)$, where V is an n-dimensional vector space over F. Therefore the dimension of $\mathbb{B}(V)$ is n^2 .

Problem 0.3.

Since we're given that H is symmetric, H(v, w) = H(w, v), so

$$\begin{split} K(v+w) - K(v) - K(w) &= H(v+w,v+w) - H(v,v) - H(w,w) \\ &= [H(v,v) + H(v,w) + H(w,v) + H(w,w)] - H(v,v) - H(w,w) \\ &= H(v,w) + H(w,v) \\ &= (1+1)H(v,w). \end{split}$$

Since k does not have characteristic 2, we can divide both sides by 2 to get

$$H(v, w) = \frac{1}{2} (K(v + w) - K(v) - K(w)).$$

Problem 0.4.

(a) For any $u, v, w \in V$ and $\alpha \in \mathbb{R}$, we can see that H is linear in the first argument because

$$H(\alpha v + u, w) = \langle \alpha v + u, Tw \rangle = \alpha^* \langle v, Tw \rangle + \langle u, Tw \rangle = \alpha H(v, w) + H(u, w),$$

and it's linear in the second argument because

$$H(v, \alpha w + u) = \langle v, T(\alpha w + u) \rangle = \langle v, \alpha Tw + Tu \rangle = \alpha \langle v, Tw \rangle + \langle v, Tu \rangle = \alpha H(v, w) + H(v, u).$$

(b) T^* is the unique operator such that $\langle v, Tw \rangle = \langle T^*v, w \rangle$ for all $v, w \in V$, so T is Hermitian iff $\langle v, Tw \rangle = \langle Tv, w \rangle$ for all $v, w \in V$. Since V is a real vector space, $\langle Tv, w \rangle = \langle w, Tv \rangle$, so that's equivalent to saying $\langle v, Tw \rangle = \langle w, Tv \rangle$, which is equivalent to saying H(v, w) = H(w, v). Therefore H is symmetric iff T is Hermitian.

Problem 0.5.

Let $\mathcal{B} = (e_1, e_2, \dots, e_n)$ be an orthonormal basis for V, and let $A = \psi_{\mathcal{B}}(H)$ be the matrix representation of H in that basis.

Suppose $H(v, w) = \langle v, Tw \rangle$ for all $v, w \in V$. Then we can let $v = e_i$ and $w = e_j$ be basis vectors, so that $H(v, w) = A_{i,j}$, which implies $A_{i,j} = \langle e_i, Te_j \rangle$. But $\langle e_i, Te_j \rangle$ is just the (i, j)th entry of $[T]_{\mathcal{B}}$. Therefore T is the linear operator such that $[T]_{\mathcal{B}} = A$, which means T exists and is unique.

Problem 0.6.

Suppose for the sake of contradiction that p is not prime, so it is composite. Then there exist smaller positive integers a, b such that ab = p. By the distributive rule,

$$\left(\sum_{i=1}^{a} 1\right) \left(\sum_{i=1}^{b} 1\right) = \sum_{i=1}^{p} 1 = 0.$$

Since a field has no nonzero divisors of zero, either the sum of a ones is zero, or the sum of b ones is zero. But either of those cases would contradict the assumption that p is the smallest positive integer for which

$$\sum_{i=1}^{p} 1 = 0.$$

Therefore p must be prime.

Math 115B: Linear Algebra

Homework 8

Due: Friday, March 14th at 11:59pm PT

- All answers should be accompanied with a full proof as justification unless otherwise stated.
- Homeworks should be submitted through Gradescope, which can be found on the course Canvas (Bruin Learn) page.
- As always, you are welcome and encouraged to collaborate on this assignment with other students in this course! However, answers must be submitted in your own words.
- In this homework assignment k always denotes a field for which $1+1 \neq 0$.
- You are welcome to use results of previous problems on later problems, even if you do not solve the previous parts.
- 1. $(\frac{-}{7*6})$ Determine which of the following mappings given below are bilinear forms. Justify your answers.
 - (a) Let C[0,1] be the set of continuous real valued functions with domain [0,1]. For $f,g \in C[0,1]$, define $H(f,g) := \int_0^1 f(x)g(x)dx$.
 - (b) Let V be a vector space over k, and let $J \in \mathbb{B}(V)$ be nonzero. Define $H: V \times V \to k$ by the formula $H(\vec{v}, \vec{w}) = J(\vec{v}, \vec{w})^2$ for all $\vec{v}, \vec{w} \in V$.
 - (c) The function $H: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ given by the formula $H(t_1, t_2) := t_1 + 2t_2$.
 - (d) The function $D: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ given by the formula $D(\begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} c \\ d \end{pmatrix}) := ad bc$.
 - (e) Let V be a real inner product space, and let $H: V \times V \to \mathbb{R}$ be the function $H(\vec{v}, \vec{w}) := \langle \vec{v}, \vec{w} \rangle$ for all $\vec{v}, \vec{w} \in V$.
 - (f) Let V be a *complex* inner product space, and let $H: V \times V \to \mathbb{C}$ be the function $H(\vec{v}, \vec{w}) := \langle \vec{v}, \vec{w} \rangle$ for all $\vec{v}, \vec{w} \in V$.
- 2. $(\frac{-}{10+5})$ Assume V is a vector space and $\mathbb{B}(V)$ is the set of bilinear forms on V.
 - (a) Prove Theorem 6.31. That is, prove that if $H_1, H_2 \in \mathbb{B}(V)$ and $\alpha \in k$ implies $H_1 + H_2 \in \mathbb{B}(V)$ and $\alpha H_1 \in \mathbb{B}(V)$ and that $\mathbb{B}(V)$ is a vector space over k with respect to these operations.
 - (b) Assume the dimension of V is $n \in \mathbb{Z}^{\geq 0}$. Compute the dimension of $\mathbb{B}(V)$.
- 3. (-15) Let V be a vector space over a field k (whose characteristic we have assumed is not two!) and let H denote a symmetric bilinear form on V. Prove if we define the function K: V × V → k by the formula K(v) := H(v, v) for all v ∈ V, then

$$H(\vec{v}, \vec{w}) = \frac{1}{2} (K(\vec{v} + \vec{w}) - K(\vec{v}) - K(\vec{w}))$$

for all $\vec{v}, \vec{w} \in V$.

- 4. $(\frac{-}{2+8})$ Assume T is a linear operator (endomorphism) on a finite dimensional real inner product space V, and define the function $H: V \times V \to \mathbb{R}$ by the formula $H(\vec{v}, \vec{w}) = \langle \vec{v}, T\vec{w} \rangle$ for all $\vec{v}, \vec{w} \in V$.
 - (a) Prove that H is a bilinear form.
 - (b) Prove that H is symmetric if and only if T is self adjoint.
- 5. $(\frac{-}{13})$ Prove that if V is a finite dimensional real inner product space and H is a bilinear form on V, then there exists a unique linear operator $T:V\to V$ such that $H(\vec{v},\vec{w})=\langle\vec{v},T\vec{w}\rangle$ for all $\vec{v},\vec{w}\in V$. (Hint: Choose an orthonormal basis $\mathcal B$ for V, and let A be the matrix representation of H for this basis. Let $T:V\to V$ be the linear transformation for which $[T(\vec{v})]_{\mathcal B}=A[\vec{v}]_{\mathcal B}$.)
- 6. $(\frac{-}{5})$ Assume k is a field such that, for some positive integer m, $\sum_{i=1}^{m}1=1+1+...+1=0$. Prove the smallest positive integer p for which $\sum_{i=1}^{p}1=0$ is prime. (This prime number is called the *characteristic* of the field k, and if $\sum_{i=1}^{m}1=1+1+...+1\neq 0$ for all positive integers m, we say that k has *characteristic zero*.