Assignment 2

Distance with metric tensor:

- Crystal has lattice parameters of $\{2, 2, 3, 90, 90, 90\}$ (distances in nm and angles in degrees). Atoms are present at $\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right)$ and $\left(\frac{1}{3}, \frac{1}{2}, \frac{1}{4}\right)$.
 - Compute the distance between the atoms.

Angle with metric tensor:

- Consider a monoclinic crystal with lattice parameters a = 4 nm, b = 6 nm, c = 5 nm and β = 98°.
 - What is the angle between the [101] and [$\bar{2}01$] directions.

Drawing directions and planes:

- Consider the unit cell of a cP lattice. Determine the Miller indices of the following directions
 - . Vector starting at $\left(\frac{2}{3},0,1\right)$ and ending at $\left(0,\frac{1}{2},1\right)$
 - Vector starting at $\left(\frac{1}{3},1,0\right)$ and ending at $\left(1,0,\frac{2}{3}\right)$
 - . Vector starting at $\left(\frac{1}{3},1,1\right)$ and ending at $\left(\frac{2}{3},0,0\right)$

Problem in the last slide of Lecture 3-5.