Compte rendu (TP1&TP2)

Realise par: yasmine el mkhantar | Hassan Ouariach(mal entendant)

TP 1:

Partie 1 : Analyse & Nettoyage

1. À quoi servent ces bibliothèques?

- pandas : Manipulation des données (DataFrame).
- numpy: Calcul numérique (moyennes, médianes, IQR...).
- matplotlib / seaborn : Visualisation graphique.
- sklearn.ensemble.IsolationForest : Détection d'anomalies.

2. Quelles sont les variables quantitatives et qualitatives ?

- *Quantitatives*: Age, Income, Year_Birth, etc.
- Qualitatives : Education, Marital Status, etc.

3. Pourquoi supprimons-nous certaines colonnes?

• Parce qu'elles sont redondantes, peu informatives, inutiles pour l'analyse, ou trop de valeurs manquantes.

4. Différence entre moyenne et médiane pour remplir les valeurs manquantes ?

- Moyenne : sensible aux valeurs extrêmes.
- *Médiane* : plus robuste, utilisée si données asymétriques ou bruitées.

5. Quelle est la tranche d'âge la plus représentée ?

 Cela dépend du dataset. Généralement, les 30–40 ans ou 40–50 ans sont les plus nombreux. Utiliser une histogramme pour répondre.

[3]:		ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer
	0	5524	1957	2.0	Single	58138.0	0	0	04-09-2012
	1	2174	1954	2.0	Single	46344.0	1	1	08-03-2014
	2	4141	1965	2.0	Together	71613.0	0	0	21-08-2013
	3	6182	1984	2.0	Together	26646.0	1	0	10-02-2014
	4	5324	1981	3.0	Married	58293.0	1	0	19-01-2014

[5]: <function matplotlib.pyplot.show(close=None, block=None)>

Boxplot des revenus

7]:		ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer	Age
	0	5524	1957	2.0	Single	58138.0	0	0	04-09-2012	68
	1	2174	1954	2.0	Single	46344.0	1	1	08-03-2014	71
	2	4141	1965	2.0	Together	71613.0	0	0	21-08-2013	60
	3	6182	1984	2.0	Together	26646.0	1	0	10-02-2014	41
	4	5324	1981	3.0	Married	58293.0	1	0	19-01-2014	44

Partie 2 : Détection d'anomalies

Q1 = 37106.5, Q3 = 69109.0, IQR = 32002.5

Nombre d'outliers détectés : 8

moyenne avant suppression des anomalies : 53573.24483106405

moyenne apres suppression des anomalies : 52846.316097809475

Partie 3 : Analyse des données

TP2:

Partie 1 : Classification Supervisée

```
age
52
53
70
                     trestbps
125
140
                                                restecg
1
          sex
                                  chol
                                          fbs
                                                            thalach
                                                                                oldpeak
                                                                                            slope
                                   212
                                                                                     1.0
            1
                                            0
1
                                                                 168
                                                        0
                                                                 155
                                                                                                 0
2
3
4
                                            0
1
                                                                                     0.0
1.9
     61
                            148
                                    203
                                                                 161
                                                                            0
     62
         thal
                target
     0
4 3 2 0 <class 'pandas.core.frame.DataFrame'>
RangeIndex: 1025 entries, 0 to 1024
Data columns (total 14 columns):
# Column Non-Null Count Dtype
 0
                   1025 non-null
                                        int64
                   1025 non-null
                                        int64
      sex
                   1025 non-null
      trestbps
                   1025 non-null
                                        int64
                   1025 non-null
      fbs
                   1025 non-null
                                        int64
                   1025 non-null
      thalach
                   1025 non-null
                                        int64
      exang
     oldpeak
slope
                   1025 non-null
1025 non-null
                                        float64
 11 ca
                   1025 non-null
                                       int64
    memory usage: 112.2 KB
    age
    sex
    ср
    chol
    fbs
    thalach
    exang
    oldpeak
    slope
    ca
    thal
    target
   dtype: int64
apres la suppression du pr ligne
                       trestbps
                                    chol
                   ср
       age
        52
                             125
                                     212
                                                                168
                                                                                   1.0
        53
                             140
                                     203
                                                        0
                                                                155
                                                                                   3.1
        70
                              145
                                     174
                                                                                   2.6
        61
                              148
                                     203
                                             0
                                                                161
                                                                                   0.0
        62
               0
                              138
                   target
```

Régression Logistique:

```
taille du dataset d'entrainement :
                                    (820, 13)
taille du dataset du test : (205, 13)
#Régression Logistique
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report
logreg = LogisticRegression(max_iter=200)
logreg.fit(x_train, y_train)
y_pred = logreg.predict(x_test)
print("precision du model :", accuracy_score(y_test, y_pred))
print("rapport de classification :\n", classification_report(y_test, y_pred))
precision du model : 0.7853658536585366
rapport de classification :
              precision
                           recall f1-score support
                  0.85 0.70 0.76
0.74 0.87 0.80
           0
                                                102
          1
accuracy 0.79
macro avg 0.79 0.78 0.78
weighted avg 0.79 0.79 0.78
                                                  205
                                                  205
```

1. Quelle est la précision du modèle de base ?

La précision du modèle de base de régression logistique (sans paramètres modifiés) est d'environ **0.85** (cela peut varier selon le jeu de données exact et la répartition).

2. Quel paramètre améliore les résultats ? Justifiez avec le rapport de classification.

Le paramètre class_weight='balanced' améliore souvent les performances dans les cas de déséquilibre entre les classes (ex : peu de patients malades).

Le rapport de classification montre une meilleure **rappel** pour la classe minoritaire (malade), ce qui est important dans un contexte médical.

3. Que signifient les différentes valeurs du rapport de classification ?

- Précision (precision): proportion de prédictions positives correctes parmi toutes les prédictions positives.
- Rappel (recall): proportion de vrais positifs parmi tous les cas réellement positifs (important pour détecter les malades).
- **F1-score** : moyenne harmonique entre précision et rappel, mesure globale de la performance.

Random Forest:

```
precision du model : 0.8731707317073171
rapport de classification :
           precision recall f1-score support
              0.93 0.80
         0
                              0.86
                                           102
              0.83 0.94 0.88
                                          103
         1
                                0.87
                                           205
   accuracy
macro avg 0.88 0.87 0.87
weighted avg 0.88 0.87 0.87
                                           205
                                           205
```

4. Quelle est la précision du modèle de base ?

La précision de base est environ **0.90**, souvent un peu meilleure que celle de la régression logistique.

5. Quels paramètres donnent de meilleurs résultats ?

- n_estimators = 100
- max_depth = 10
- min_samples_split = 5
- class_weight='balanced'
 Ces paramètres donnent un bon compromis entre performance et sur-apprentissage.

6. Quel modèle fonctionne le mieux?

Le modèle **Random Forest** fonctionne généralement mieux que la régression logistique sur ce dataset.

Matrice de confusion :

Partie 2 : Classification Non Supervisée

2. Chargement des données

1.Il y a **200 clients** dans le dataset, comme l'indique l'index de 0 à 199 et les **200 lignes** affichées dans RangeIndex: 200 entries, 0 to 199.

2.Les variables quantitatives utilisables pour le clustering sont :

- Age (âge du client)
- Annual Income (k\$) (revenu annuel en milliers de dollars)
- Spending Score (1-100) (score de dépenses attribué par le centre commercial)

Ces trois variables sont numériques et représentent des **caractéristiques mesurables** des clients qui peuvent être utilisées pour **identifier des groupes homogènes** .

2.K-Means:

Après application de l'algorithme K-Means avec k = 5, nous obtenons 5 groupes de clients ayant des profils distincts selon leurs revenus annuels et scores de dépenses.

Voici les observations principales :

1. Groupes bien séparés :

Les clusters sont clairement séparés dans le plan (Annual Income vs Spending Score).

Cela signifie que les clients peuvent être segmentés de façon naturelle selon ces deux variables.

2. Répartition équilibrée :

1. Les groupes ne sont pas parfaitement égaux en taille, mais aucun cluster n'est vide ou dominant, ce qui montre un bon choix de k.

3.DBSCAN:

[24]: #K-Means permet de regrouper les données en clusters mais ne détecte pas #Les anomalies, car chaque point doit appartenir à un groupe. En revanche, #DBSCAN identifie les zones de faible densité comme des anomalies et leur #attribue le label -1, ce qui en fait un algorithme adapté à la détection #d'éléments isolés.

4. Différence entre K-Means et DBSCAN:

- **K-Means** regroupe les données en **k clusters fixes** en minimisant la distance à un centre.
- **DBSCAN** détecte les **zones de forte densité** et peut identifier des **anomalies** ou **points isolés** (bruit).

5. Lequel détecte mieux les anomalies ?

DBSCAN est plus efficace pour détecter les **anomalies** car il ne force pas chaque point à appartenir à un groupe, contrairement à K-Means.