Computación Paralela

Departamento de Ciencias de la Computación

Hilos

Ing. Carlos Andrés Pillajo B, Msc. capillajo@espe.edu.ec

28 de noviembre de 2023

Introducción

2 Hilos en Java

Introducción

2 Hilos en Java

Introducción

- Los hilos son unidades de ejecución más pequeñas dentro de un proceso que pueden ejecutarse de forma independiente y concurrente.
- Comparten recursos como memoria y archivos, pero tienen su propio contador de programa, registros y pila de ejecución.
- La implementación de hilos permite aprovechar la concurrencia para mejorar el rendimiento de un programa al realizar múltiples tareas de forma simultánea.

Aplicaciones

- Un navegador web puede tener un hilo para mostrar imágenes o texto, mientras que otro hilo recupera datos de la red.
- Un procesador de texto puede tener un hilo para mostrar gráficos, otro hilo para responder al tecleo del usuario y un tercer hilo para realizar la revisión ortográfica y gramatical en segundo plano.

Aplicaciones

- Pueden crearse a medida que se necesitan y destruirse al finalizar la tarea encomendada.
- Pueden existir siempre y quedar libres al finalizar la tarea encomendada
 - Más eficiente (evita el trabajo de crear y destruir hilos)

Aplicaciones

Eiemplo: Servidor secuencial de ficheros

```
Caché para bloques
Algoritmo
                                                  accedidos recientemente
 Mientras no hava que terminar {
      Esperar a que llegue una petición
      Comprobar que la petición es correcta
      Si (los datos no están en la caché) {
         Realizar operación de E/S bloqueante sobre disco
      Enviar resultado
```

- Sencillo
- Prestaciones pobres: permanece bloqueado
- Ejemplo (cont.): Servidor de ficheros con múltiples hilos

```
    Hilo trabaiador

    Hilo distribuidor

Algoritmo 1
                                         Algoritmo 2
  Mientras no haya que terminar {
                                            Mientras no hava que terminar {
     Esperar a que llegue una petición
                                               Esperar trabajo
     Esperar trabajador libre
                                               Comprobar que la petición es correcta
                                               Si (los datos no están en la caché) {
                                                   Realizar operación de E/S
                                                   bloqueante sobre disco
                                               Enviar resultado
                                               Avisar que está libre
· Mayor complejidad
· Buenas prestaciones
```

Modelos de Programación de Hilos

Hilos a Nivel de Usuario (User-Level Threads)

- Los hilos son gestionados por la aplicación sin intervención del sistema operativo.
- La creación, planificación y sincronización de hilos se realizan en el espacio de usuario.
- Tres librerías principales: POSIX Pthreads, Win32 threads, Java threads.

Hilos a Nivel de Kernel (Kernel-Level Threads)

- La administración de hilos se realiza por el sistema operativo a nivel de kernel.
- Ofrece una mayor concurrencia, pero puede tener más sobrecarga.
- Ejemplos: Windows XP/2000/Vista/7/8, Solaris (de Sun, ahora Oracle), Tru64 UNIX (de Digital, luego Compaq, finalmente HP), Mac OS X (Apple).

Ventajas de los Hilos

Paralelismo

 Permite realizar múltiples tareas al mismo tiempo, aprovechando los recursos del sistema.

Responsividad

• Los hilos pueden mejorar la capacidad de respuesta de una aplicación, ya que una tarea puede continuar ejecutándose mientras otras esperan, en lugar de bloquear todo el proceso.

Desafíos de los Hilos

Sincronización

• Es crucial sincronizar los hilos para evitar problemas como condiciones de carrera y lecturas/escrituras conflictivas.

Overhead

• La creación y gestión de hilos pueden tener un costo, y un exceso de hilos puede conducir a una mayor sobrecarga.

Paralelismo a Nivel de Hilo

Paralelismo de Datos

 Los hilos operan en diferentes conjuntos de datos de manera simultánea.

Paralelismo de Tareas

• Los hilos ejecutan tareas independientes al mismo tiempo.

Bibliotecas y Extensiones de Hilos

- Una biblioteca de hilos proporciona al programador una API para crear y administrar hilos.
- Algunos lenguajes de programación proporcionan bibliotecas o extensiones para trabajar con hilos, como pthread en C/C++, Thread en Java, y threading en Python.

Introducción

2 Hilos en Java

Creación de Threads

- Existen dos formas: crear una nueva clase como subclase de la clase Thread o declarar una clase e implementar la interfaz Runnable.
 - **Uso de la SubClase:** Crear la subclase de Thread y sobreescribir el método run() con el código que se ejecutará por el hilo.
 - Uso de la interface Runnable: La clase debe implementar la interface Runnable, desarrollar el método run() con el código que se ejecutará por el hilo.

Ejecución de un Thread

- Primero se debe instanciar el Thread.
- Ejecutar el método start().
 - Esto es para que la JVM lo pueda ejecutar como un thread realizando la llamada al método run().

Código Uso de la SubClase

```
public class MiThread extends Thread {
       MiThread(String nombreHilo) {
               super(nombreHilo);
       public void run() {
               for(int i = 0; i < 10; i++)
                        System.out.println(i + " - " + getName());
               System.out.println("Hilo finalizado");
       public static void main(String[] args) {
               new MiThread("Julio").start();
               new MiThread("Lucas").start();
```

Código Uso de la interface Runnable

```
public class MiRunnable implements Runnable f
       public void run() {
                for(int i = 0; i < 10; i++)
                       System.out.println(i + " - " + Thread.currentThread().getName());
                System.out.println("Hilo finalizado");
       public static void main(String[] args) {
                new Thread(new MiRunnable(), "Julio").start();
                new Thread(new MiRunnable(), "Lucas").start();
```

Introducción

2 Hilos en Java

Referencias

Ejercicios de programación paralela con OpenMP y MPI. Román, J.E., Alonso, J.M, Alvarruiz, F., Blanquer, I., Guerrero, D., Ibáñez, J.J., Ramos, E. Universitat Politécnica de Valencia