Variables aléatoires

Sujet 1: Le Blevec

.

Ex. 24.1 Mines PSI 2016 On considère un jeu vidéo avec une infinité de tableaux successifs $T_1, T_2, ..., T_n, ...$ La probabilité que le joueur franchisse le tableau T_n (en supposant qu'il soit arrivé jusque là) est $\frac{1}{n}$.

Notamment la probabilité que le joueur franchisse le premier tableau vaut 1 : il réussit au moins ce tableau.

On note par X la variable aléatoire qui donne le nombre de tableaux franchis par le joueur.

- 1) Donner la loi de X.
- 2) Calculer l'espérance de X.

Sujet 2: Avrillon

.

Ex. 24.2 Centrale Python 2018 Soient $n \in \mathbb{N}$, $E_n = \{P \in \mathbb{R}_{n+1}[X], P(0) = 0\}$ et $\phi_n : P \in E_n \mapsto P(X+1) - P(X)$.

- 1) Montrer que la fonction ϕ_n est à valeurs dans $\mathbb{R}_n[X]$ et est linéaire.
- 2) Exprimer A_n , la matrice associée à ϕ_n dans E_n rapporté à la base $\mathcal{B}_n = (X, X^2, ..., X^{n+1})$ et $\mathbb{R}_n[X]$ rapporté à sa base canonique \mathcal{C}_n .

Remarque: on ne demande pas de démontrer que \mathcal{B}_n est bien une base de E_n .

- 3) Écrire une fonction Python A(n) renvoyant la matrice A_n (sous forme d'un tableau numpy).
- 4) Pour $k \in [1; 5]$, calculer avec Python $\det(A_k)$ et afficher ces valeurs.
- 5) Montrer que ϕ_n est un isomorphisme.
- 6) Soit P_n l'unique polynôme tel que $\phi_n(P_n) = X^n$. Calculer avec Python pour $k \in [1; 5]$ le coefficient dominant de P_k . Quelle conjecture ces calculs suggèrent-ils?

Soient $E = \{ P \in \mathbb{R}[X], P(0) = 0 \}, \ \phi : P \in E \mapsto P(X+1) - P(X) \text{ et } H_n = \sum_{k=1}^n \frac{1}{k}.$

- 7) Montrer que ϕ est un isomorphisme.
- 8) On note à nouveau P_n l'unique polynôme tel que $\phi(P_n) = X^n$. Montrer que $(n+1)!P_n$ est à coefficients entiers.
- 9) Démontrer la conjecture émise à la question 6.
- 10) Soit $Q \in \mathbb{R}[X]$. Montrer qu'il existe un unique couple de polynômes $(U; V) \in \mathbb{R}[X]^2$ tels que

$$\forall n \in \mathbb{N}^*, \sum_{k=1}^n Q(k)H_k = U(n)H_n + V(n)$$

Lycée Lafayette Colles 2018/2019

Sujet 3: Chamoux

.

Ex. 24.3 On s'intéresse à la situation suivante : on dispose d'un terrain de jeu infini constitué de cases numérotées par l'ensemble des entiers relatifs et d'un jeton posé sur la case 0.

On effectue des lancers à pile ou face : si la pièce tombe sur pile, on déplace le jeton d'une case vers la droite (sur l'entier immédiatement supérieur), sinon, on déplace le jeton d'une case vers la gauche.

On note X_n la variable aléatoire donnant la position du jeton après n lancers (autrement dit donnant le numéro de la case sur laquelle est posé le jeton).

On note A_n l'événement réalisé lorsque le jeton revient sur la case 0 pour la première fois après n lancers et A l'événement réalisé lorsque le jeton revient sur la case 0 après un nombre quelconque de lancers.

On a donc, par définition, $A = \bigcup_{i=1}^{+\infty} A_i$, la réunion étant disjointe.

- 1) Quelle est la loi suivie par X_0 ? X_1 ?
- 2) Calculer $\mathbb{P}(X_n = 0)$.
- 3) Justifier que pour tout $n \in \mathbb{N}^*$ on a

$$\mathbb{P}(X_n = 0) = \sum_{i=0}^{n} \mathbb{P}(A_i) \mathbb{P}(X_{n-i} = 0)$$

4) Soit $g: t \mapsto \sum_{i=0}^{+\infty} \mathbb{P}(X_i = 0) t^i$ et $h: t \mapsto \sum_{i=0}^{+\infty} \mathbb{P}(A_i) t^i$.

Trouver le rayon de convergence de g et montrer que le rayon de convergence de h est supérieur à celui de g.

5) Déduire des questions précédentes que pour tout t dans un intervalle à préciser

$$g(t) = 1 + g(t)h(t)$$

6) Calculer $\mathbb{P}(A)$.

Sujet 4 : Exos supplémentaires