Notas de estudio para Examen Privado Licenciatura en Física

Diego Sarceño

21 de mayo de 2024

Índice general

Ι	Ter	rmodinámica	3								
1.	1.1. 1.2.	Aceptos Básicos Sistemas Termodinámicos y Cantidades de Estado Equilibrio y Temperatura (Ley Cero de la Termodinámica): Presión, Ecuación de Estado	5								
2.	Primera Ley de la Termodinámia										
		Trabajo y Calor									
			10								
	2.2.	Energía Interna y Primera Ley	1								
	2.3.	Implicaciones de la Primera Ley	1								
	2.4.	Capacidad Calorífica	1								
	2.5.	Procesos Adiabáticos	1:								
		2.5.1. Trabajo Adiabático	1:								
3.	Pro	cesos Cíclicos	1:								
	3.1.	Tipos de Procesos	1:								
			1:								
	3.2.	Ciclo de Carnot	1:								
		3.2.1. Teoremas de Carnot	1								
4.	Seg	unda Ley de la Termodinámica	1!								
	4.1.	Kelvin-Planck	1								
	4.2.	Clauius	15								
	4.3.	La que te venden los divulgadores	15								
	4.4.	Reversibilidad e Irreversibilidad	1								
5.	Entropía										
		Definición de Entropía	10								
		Cambios Irreversibles									
	5.3.	Regresando a la Primera Ley	1								
			1'								

6.	Termodinámica en Acción									
	6.1. Potenciales Termodinámicos	20								
	6.1.1. Energía Interna	20								
	6.1.2. Entalpía, <i>H</i>	20								
	6.1.3. Función de Helmholtz, F	21								
	6.1.4. Función de Gibbs, G	22								
	6.1.5. Relaciones de Maxwell	23								
7.	Tercera Ley de la Termodinámica	25								
	7.1. Enunciados de la Tercera Ley	25								
	7.2. Consecuencias de la Tercera Ley	25								
II	Mecánica Estadística	27								
8.	Entropía y Temperatura	28								
	8.1. Macroestados y Microestados	28								
	8.2. Ensambles	28								
	8.3. Conteos	29								
	8.3.1. Conteos Básicos	29								
	8.3.2. Fórmula de Stirling	31								
II	I Electromagnetismo	32								
ΙV	Mecánica Clásica	33								
\mathbf{V}	Mecánica Cuántica	34								
\mathbf{V}]	I Reducción de Datos	35								
VI	II. Materia Condensada	36								

Parte I Termodinámica

La termo			des de la mater es de la física.	ria que se

Conceptos Básicos

Propósito: La termodinámica busca describir sistemas de muchas partículas (10^{23} típicamente). Gases, líquidos, cristales, estrellas, universo, ..., sistemas macroscópicos y en particular, estudiar los procesos de transferencia de energía (trabajo y calor) entre cuerpos macroscópicos¹.

- Definir cantidades físicas, "variables de estado" que caracterizan un sistema macroscópico: V, T, N, U, \dots
- Relacionar estas cantidades entre sí:
 - 1. Válidas para cualquier sistema en equilibrio:
 - a) Leyes axiomáticas de la termodinámica, como Ley de la Energía, Ley de la Entroía, etc.
 - 2. Específicas
 - a) Por ecuaciones de estado como: fenomenológicas, empíricas, experimentales en la mayoria de los casos.

Es importante mencionar que la termodinámica clásica macroscópica no puede explicar porqué una ecuación de estado describe un sistema partícular.

¹Más adelante se tratará la parte microscópica con la Mecánica Estadística, poder explicativo y predictivo sobre propiedades macroscópicas de la materia, partiendo de una descripción microscópica.

1.1. Sistemas Termodinámicos y Cantidades de Estado

1. Sistema Termodinámico:

Figura 1.1: Representación gráfica de las partes de un sistema termodinámico.

- 2. Tipos de Sistemas: (depende de la frontera)
 - Sistemas aislados: No intercambian energía con el entorno. Los sistemas rígidos no pueden intercambiar trabajo y los adiabáticos no pueden intercambiar calor.
 - Sistemas cerrados: Aquel que intercambia energía y trabajo con su entorno pero la masa permanece constante. Este intercambio de energía puede ser fluctuante aunque la caracterización de estas fluctuaciones no es de interes para la termodinámica.
 - Sistemas abiertos: Aquel que intercambia tanto energía como materia con su entorno.
- 3. Variables de estado: Cualquier cantidad macroscópica que pueda describir el sistema. E, V, N, T, P, S, viscocidad μ , composición química, etc. **no** $\{\vec{r_i}, \vec{p_i}\}$.
 - Cantidades de estado extensivas: estas son aditivas (dependen de la cantidad de sustancia/moles o masa). Ejemplo: volumen, energía o entropía.
 - Cantidades de estado intensivas: son independientes de la cantidad de sustancia del sistema, como la densiada, índice de refracción, presión o temperatura.

1.2. Equilibrio y Temperatura (Ley Cero de la Termodinámica):

- 1. Estado de un sistema: Se define por un conjunto particular de <u>valores</u> de sus variables termodinámicas.
 - Como cada variable describe el sistema como un todo, en general son constantes en el espacio.
 - Las variables pueden variar (lentamente en el tiempo).
- 2. Estado de equilibrio: cada variable tiene un único valor y este valor no cambia en el tiempo.
- 3. Procesos cuasi-estáticos y no cuasi-estáticos: un proceso \equiv un cambio de estado. (normalmente un proceso cuasi-estático se toma como un proceso reversible, aquí haremos una distinción). Un proceso no cuasi-estático puede ser una expansión muy rápida de un gas. Mientras que un proceso cuasi-estático puede ser reversible o irreversible como la expansión muy lenta de un gas con un pistón (δV es muy pequeña).

Temperatura y Ley Cero: La temperatura es una cantidad "desconocida" para la mecánica y electrodinámica, es una cantidad de estado especial para la termodinámica. Esta se define clásicametne mediante un proceso (DS: no hay definición matemática...aún, se verá en la parte de mecánica estadística).

La Ley Cero es una definición de la temperatura: Variable intensiva que es igual en dos sistemas en contacto, en equilibrio sin importar la forma y ubicación de este contacto.

Otra definición de la Ley Cero: Çuando el contacto térmico entre A y B produce que B se caliente y A se enfríe, sin importar donde está este contacto, entonces no hay proceso que pueda calentar A y enfriar B que no induce un trabajo".

ËSTADO DE EQUILIBRIO"≠ ËSTADO ESTACIONARIO", estar en equilibrio implica ser estado estacionario, pero no al contrario.

1.3. Presión, Ecuación de Estado

- 1. Presión: En términos mecánicos es lo que ya se conoce F/A y en términos microscópicos es la suma de las fuerzas que realizan todas las particulas del sistema sobre A.
- 2. Ecuación de Estado: Relación entre variables independietes y la temperatura:

$$F(X, Y, T) = 0$$

Figura 1.2: Diagrama PVT.

Por ejemplo: Ecuación del gas ideal pV = nRT, la ecuación de gas real (expansión del Virial) $pV = Nk_BT + B(T)p + C(T)p^2 + \cdots$, donde $B(T), C(T), \ldots$ son los coeficientes del Virial o la de Van der Waals.

3. Diferenciales Exactos² (e Inexactos): Suponemos una ecuación de estado z = f(x,y). Diferenciación $\mathrm{d} f(\vec{r}) = \vec{\nabla} f(\vec{r}) \cdot \mathrm{d} \vec{r}$. $\mathrm{d} f$ es un diferencial total si su integral no depende del contorno y solo de los extremos. Y este es exacto si f es totalmente diferenciable, es decir, se pueden intercambiar las derivadas cruzadas (DS: Básicamente, el teorema de Clairaut). La implicación que esta tiene en termodinámica son las transformaciones reversibles (que pasan por estados de equilibrio), en estas la ecuación de estado el valor de las variables de estado es independiente del proceso que sigue para llegar a otro estado y esto es válido para cualquier variable de estado.

²Un diferencial es exacto ssi $\left(\frac{\partial f}{\partial x}\right)_y = \left(\frac{\partial f}{\partial y}\right)_x$.

Primera Ley de la Termodinámia

2.1. Trabajo y Calor

La energía total de un sistema puede variar si recibe (cede) trabajo o calor.

1. Trabajo: Sistema sujeto a fuerzas externas. El sistema recibe energía durante una compresión. Con esta idea se tiene la convensión general (DS: Bastante lógico) $\delta W > 0$ si el sistema recibe trabajo y $\delta W < 0$ si el sistema realiza trabajo.

Caso particular¹ procesos cuasi-estáticos, $d\vec{l}$ es infinitesimal, es decir muy lento, entonces la aceleración del pistón es despresiable $\vec{F}_e + \vec{F}_i = 0$, donde F_i es la fuerza ejercida por el sistema (fuerza interna) entonces $\delta W = -\vec{F}_i \cdot d\vec{l}$. Como el proceso es cuasi-estático, el sistema está en equilibrio $\leftarrow \exists$ presión en el sistema $\vec{F}_i = PA\hat{\mathbf{z}}$. Reemplazando en la definición de trabajo $\delta W = -P \, dV$ (P cantidad intensiva, dV cantidad extensiva). \triangle Durante el trabajo infinitesimal la presión es aproximadamente constante en el intervalo [V, V + dV], pero si ΔV es grande, entonces

$$\Delta W = -\int_{V_1}^{V_2} P(V) \,\mathrm{d}V.$$

2. Calor: Es una forma partícular de energía distinta al trabajo, por ejemplo en el calentamiento por entrega de calor no hay un trabajo visible.

Experimento de Joule: Este fue crucial para demostrar la equivalencia entre trabajo mecánico y calor, sentando las bases de la primera Ley de la Termodinámica.

Figura 2.1: Este consiste en un contenedor de agua aislado térmicamente, un sistema de paletas y un peso y una cuerda los cuales pasan por una polea.

¹Para más ejemplos ver p9 de Notas Boyer

El procedimiento es:

- a) Elevación del peso: El peso se levanta a una cierta altura almacenando energía potencial gravitacional.
- b) Al liberar el peso, este desciende, la cuerda hace girar el eje el cual, a su vez, hace girar las paletas.
- c) Las paletas agitan el agua, creando fricción y generando calor.

Joule encontró que el aumento de la temperatura del agua estaba directamente relacionado con la cantidad de trabajo mecánico realizado. Específicamente, pudo determinar la equivalencia entre unidades de trabajo (joules) y unidades de calor (calorías). La relación que encontró es aproximadamente 4.184 joules por caloría.

Joule demostró que el calor podía generarse mediante trabajo mecánico y viceversa, consolidado el concepto moderno de energía.

Además podemos concluir que δQ y δW no son cantidades de estado, dependen del proceso, del camino (Q y W no son diferenciales exactos).

2.1.1. Naturaleza del Calor

Ënergá distribuída de manera desordenada entre partículas. Ës mucho más fácil convertir trabajo en calor que al revés.

Convensión: Misma que para el trabajo: $\delta Q = \delta Q_{\text{entorno}\leftarrow \text{sistema}}$

- $\delta Q > 0$ para un sistema que recibe calor del entorno.
- $\delta Q < 0$ para un sistema que cede calor al entorno.

2.2. Energía Interna y Primera Ley

1. Energía interna: (definición microscópica) U esta es la energía total del sistema, en el sentido mecánico-newtoniano, con N partículas

$$U = \sum_{i=1}^{N} \frac{1}{2} m_i v_i^2 + \sum_{i=1}^{N} \sum_{j>i}^{N} V(\vec{r_i}, \vec{r_j}) + \sum_{i=1}^{N} \vec{F_e}^i \cdot \vec{r_i}.$$

Donde se tiene la energía cinética, la potencial y las fuerzas externas. En general es imposible calcular esta energía y tampoco es el propósito de este curso. DS: como siempre, a esperar a mecánica estadística

(definición macroscópica): Es equivalente a la definición de microscópica si $N \to \infty$. Cantidad de estado que varía cuando el sistema recibe trabajo o calor y que tiene dimensión de energía.

2. Primera Ley de la Termodinámica: Conservación de la energía U (DS: Es básicamente una conservación de la energía, como se ve en física 1, pero con esteroides)

$$dU = \delta Q + \delta W$$
.

Formas estándares de la primera ley:

• Sistemas aislados: dU = 0

• Sistemas cerrados: $dU = \delta Q - P dV$

• Sistemas abiertos: $dU = \delta Q - P dV + \mu dN^2$.

2.3. Implicaciones de la Primera Ley

1. La energía interna es una variable de estado y un diferencial exacto:

$$dU = \left(\frac{\partial U}{\partial T}\right)_{V,N} dT + \left(\frac{\partial U}{\partial V}\right)_{T,N} dV + \left(\frac{\partial U}{\partial N}\right)_{V,T} dN.$$

Y f(V,T,N) se conoce como la ecuación de estado.

2. Procesos Cíclicos: Son procesos de partícular interés. En estos procesos $U_f = U_o$ o, en otras palabras

$$\oint \mathrm{d}U = 0,$$

esto implica $\Delta W + \Delta Q = 0$ $\Delta W = -\Delta Q \neq 0$, en esto se tienen dos casos importantes

• Caso $\Delta W < 0$: motor, fuente de calor en el entorno, pero necesitamos $\Delta Q > 0$.

 \bullet Caso $\Delta Q < 0$: refrigerador, trabajo sobre el sistema, pero se necesita $\Delta W > 0$.

2.4. Capacidad Calorífica

Se define como $\delta Q = c \, dT$, un incremento o decremento de temperatura, donde la constante c es la capacidad calorífica. Recordemos que $dU = \delta Q - P \, dV$ para un sistema cerrado sin fuerzas externas.

$$C_V = \left(\frac{\delta Q}{\delta T}\right)_V$$
, Volumen constante,

$$C_P = \left(\frac{\delta Q}{\delta T}\right)_P$$
, presión constante,

y como consecuencia de la primera ley: V = cte entonces $dU = \delta Q$ por ende $C_V = \left(\frac{dU}{dT}\right)_V$. C_V y C_P son cantidades extensivas, en algunos libros $C_v = \frac{1}{N} \left(\frac{dU}{dT}\right)_V$ capacidad por partícula o por mol (en este caso sería una cantidad intensiva).

Gas Ideal se tienen dos casos, para un gas monoatómico y diatómico

Monoatómico
$$U = \frac{3}{2}Nk_BT$$
,

Diatómico
$$U = \frac{5}{2}Nk_BT$$
.

²En transformaciones cuasi-estáticas

Para todo material en equilibrio se tiene la siguiente relación entre C_V y C_P . Para ello se considerará N = cte (sistema cerrado), como variables se tienen P, V, T; sin embargo, f(P, V, T) = 0 es la ecuación de estado de equilibrio. Por ello se toman dos variables independientes U = U(P, V) = U(P, T) = U(V, T). Además se tienen dos maneras de escribir el diferencial de energía interna: la primera ley y el diferencial total. Con esto:

$$\delta Q - p \, dV = \left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV$$

$$\delta Q = \left(\frac{\partial U}{\partial T}\right)_V dT + \left[p + \left(\frac{\partial U}{\partial V}\right)_T\right] dV$$

dividiendo entre dT se tiene

$$C_P = \underbrace{\left(\frac{\partial U}{\partial T}\right)_V}_{C_V} + \left[p + \left(\frac{\partial U}{\partial V}\right)_T\right] \left(\frac{\delta Q}{\delta T}\right)_P$$

$$C_P - C_V = \left[p + \left(\frac{\partial U}{\partial V} \right)_T \right] \left(\frac{\delta Q}{\delta T} \right)_P.$$

Esta siempre es positiva. Para un gas ideal $\left(\frac{\partial U}{\partial V}\right)_T = 0$, $p = \frac{Nk_BT}{V}$, $\left(\frac{\delta Q}{\delta T}\right)_P = \frac{V}{T}$.

$$C_p - C_V = Nk_B$$

2.5. Procesos Adiabáticos

Es aquel proceso reversible en un sistema térmicamente aislado, por lo que no existe un intercambio de calor entre él y el entorno $\delta Q=0$. Por lo que $\mathrm{d} U=-p\,\mathrm{d} V$, y en un gas ideal $\mathrm{d} U=\left(\frac{\partial U}{\partial T}\right)_V\mathrm{d} T=C_V\,\mathrm{d} T$. Lo que implica que

$$\frac{\mathrm{d}T}{T} = \frac{C_p - C_V}{C_V} \frac{\mathrm{d}V}{V}.$$

Donde $\frac{C_P}{C_V} = \gamma$, número adimensional. Integrando DS: Y haciendo calculito del kinder, como diría Damián se tienen las siguientes equivalencias

$$TV^{\gamma-1} = PV^{\gamma} = T^{\gamma}P^{1-\gamma} = \text{cte.}$$

2.5.1. Trabajo Adiabático

Teniendo $\delta W = -p \, dV$, las equivalencias anteriores y nuevamente calculito del kinder y se llegamos a lo siguiente

$$\Delta W = \frac{1}{\gamma - 1} [P_1 V_1 - P_o V_o] = \frac{N k_B}{\gamma - 1} [T_1 - T_o] = C_v [T_1 - T_o].$$

Es claro que se puede llegar a este resultado directamente desde la primera ley.

Procesos Cíclicos

3.1. Tipos de Procesos

El primer tipo es aquel que tiene una variable de estado constante: isotérmicos, isocóricos, isobáricos y adiabáticos DS: el nombre es bastante claro con lo que implica cada proceso.

3.1.1. Procesos Reversibles e Irreversibles

Un proceso se dice reversible cuando estados sucesivos del mismo procesos difieren infinitesimalmente de estados de equilibrio. Dado esto, existen procesos reversibles termodinámicamente, los cuales cumplen con dos condiciones: ser cuasi-estático y un proceso no disipativo.

3.2. Ciclo de Carnot

El ciclo de Carnot se produce en un equipo o máquina cuando trabaja absorbiendo una cantidad de calor Q_1 de una fuente de mayor temperatura y cendiendo una cantidad de calor Q_2 a la de menor temperatura produciendo un trabajo sobre el exterior.

Figura 3.1: Esquema de una máquina de Carnot.

El rendimiento del ciclo está definido por

$$\eta = 1 - \frac{Q_2}{Q_1}.$$

Y, como se verá más adelante, es el mayor producido por cualquier máquina que funcione cíclicamente entre las mismas fuentes de temperatura.

Como todos los procesos que tienen lugar en el ciclo ideal son reversibles, el ciclo puede invertirse y la máquina absorbería calor de la fuente fría y cedería calor a la fuente caliente, teniendo que suministrar trabajo a la máquina. Si el objetivo de esta máquina es extraer calor de la fuente fría (para mantenerla fría) se denomina máquina frigorífica, y si es ceder calor a la fuente caliente, bomba de calor.

El ciclo de Carnot¹ consta de cuatro etapas: dos procesos isotermos y dos adiabáticos, como se muestra en el siguiente diagrama P-V

Figura 3.2: Ciclo de carnot en el diagrama de Clapeyron.

- AB: Expansión isoterma;
- BC: Expansión adiabática;
- CD: Comprensión isoterma;
- DA: Comprensión adiabática.

3.2.1. Teoremas de Carnot

- 1. No puede existir una máquina térmica que funcionando entre dos fuentes térmicas dadas tenga mayor rendimiento que una de Carnot que funcione entre esas mismas fuentes térmicas.
- 2. Dos máquinas reversibles operando entre las mismas fuentes térmicas tienen el mismo rendimiento.

¹Ver wikipeeeediaaa para la explicación detallada de cada paso.

Segunda Ley de la Termodinámica

4.1. Kelvin-Planck

Es imposible construir un motor que opere en ciclos y extraiga calor de una fuente que convierta el calor extraído exclusivamente en trabajo.

4.2. Clauius

Es imposible construir un frigorífico que, operando en un ciclo, transferencia completamente el calor de una fuente de menor temperatura a una fuente de temperatura mayor.

DS: Raras tus formulaciones pue.

4.3. La que te venden los divulgadores

La cantidad de entropía del universo tiende a incrementarse en el tiempo. Este principio establece la irreversibilidad de los procesos físicos, especialmente durante el intercambio de calor.

4.4. Reversibilidad e Irreversibilidad

Un proceso reversible es un proceso que realiza de tal forma que el sistema y su entorno pueden regresara su sestados iniciales sin producir ningún cambio en el resto del universo. (DS: Si, es otra forma de redactar la reversibilidad.)

Entropía

La entropía es posiblemente el más importante e insuficientemente conocido concepto en fisiología. Es una magnitud física que permite determinar la parte de la energía que no puede utilizarse para producir trabajo y está ligada con el grado de desorden de un sistema.

5.1. Definición de Entropía

Ya se introdujo la integral $\oint dQ/T = 0$. Esto implica que la integral

$$\int_{A}^{B} \frac{dQ}{T}$$

es independiente del camino; por ende, se define entropía como el diferencial exacto

$$dS = \frac{dQ}{T},$$

tal que

$$S(B) - S(A) = \int_{A}^{B} \frac{dQ}{T},$$

y S es una función de estado. Para un proceso adiabático se tiene que dQ = 0. Por eso un proceso adiabático no presenta cambios en la entropía (los procesos adiabáticos también son llamados isoentrópicos).

5.2. Cambios Irreversibles

Ya se tiene la definición de entropía en términos de cambios reversiles. Dado que S es una función de estado

$$\oint \frac{dQ_{rev}}{T} = 0.$$

Entonces

$$\mathrm{d}S = \frac{dQ_{rev}}{T} \ge \frac{dQ}{T}.$$

Consideremos un sistema térmicamente aislado dQ = 0; por lo tanto $dS \ge 0$.

La entropía solo puede mantenerse igual (cambios reversibles) o aumentar (cambios irreversibles). Tomando al universo como un sistema térmicamente aislado.

5.3. Regresando a la Primera Ley

Ahora podermos mostrar una forma más elegante y útil de la 1ra ley

$$dU = dQ + dW$$

pero dQ = T dS y dW = -p dV.

$$\mathrm{d}U = T\,\mathrm{d}S - p\,\mathrm{d}V$$

en esto se asume un proceso reversible. Pero para uno irreversible se tiene que $dQ \leq T dS$ y $dW \geq -dV$. Lo que se nivela y siempre se llega a lo visto para procesos reversibles.

S, V son extensivas y T, p son intensivas¹

$$dU = \underbrace{\left(\frac{\partial U}{\partial S}\right)_{V}}_{T} dS + \underbrace{\left(\frac{\partial U}{\partial V}\right)_{S}}_{-p} dV.$$

DS: Ahora toca profanar la matemática.

$$\frac{p}{T} = \left(\frac{\partial S}{\partial V}\right)_U.$$

Resumen

- $\bullet \ \mathrm{d} U = \! \bar{d} Q + \! \bar{d} W$ siempre es cierto
- dQ = T dS reversibles
- dW = -p dV reversibles
- $dW \ge -p \, dV \, y \, dQ \le T \, dS$ irreversibles.

5.4. Expansión de Joule (Expansión Libre)

Es un proceso irreversible en el cual un gas se expande en un recipiente vacío y aislado. Los gases experimentan un cambio de temperatura durante la expansión libre.

¹Esto funciona por el teorema recíproco y por el teorema de reciprocidad: $\left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x \left(\frac{\partial z}{\partial x}\right)_y = -1.$

Figura 5.1: También se puede lograr moviendo el pistón hacia fuera más rápido que los átomos del gas.

Durante la expansión libre, ningún trabajo es realizado por el gas. El bas pasa a través de los estados que no están en equilibrio termodinámico antes de llegar a su estado fina, lo que implica que no se pueden definir parámetros termodinámicos como valores del gas en su conjunto.

Una expansión libre se consigue típicamente mediante la apertura de una llave de paso que permite que el gas se expanda en un vacío. Aunque sería difícil de lograr en la realidad, es instructivo imaginar una expansión libre causada por un pistón en movimiento más rápido que prácticamente cualquier átomo. Ningún trabajo se hace porque no hay presión sobre el pistón. Sin energía térmica que sale o entra en el pistón. Sin embargo, hay un cambio de entropía.

$$\Delta S = \int_{i}^{f} dS = \int_{V_{o}}^{2V_{o}} \frac{p \, dV}{T} = \int_{V_{o}}^{2V_{o}} \frac{R \, dV}{V} = R \ln 2.$$

Luego de que suceda la expansión de Joule, solo se puede poner el gas a la izquierda comprimiendolo. El método que involucra la menor cantidad de trabajo es una compresión isotérmica, cuyo trabajo para 1 mol de gas es

$$\Delta W = -\int_{2V_o}^{V_o} p \, dV = -\int_{2V_o}^{V_o} \frac{RT}{V} \, dV = RT \ln 2 = T \Delta S_{gas}.$$

El incremento de entropía en una expansión de Joule es $\Delta W/T$.

Paradoja?

■ En la expansión de Joule, el sistema es aislado térmicamente, por lo que no hay flujo/intercambio de calor: $\Delta Q = 0$.

- No hay trabajo realizado: $\Delta W = 0$.
- Por ello $\Delta U = 0$ (para un gas ideal, $\Delta T = 0$).
- \bullet Pero si $\Delta Q=0,$ esto implica que $\Delta S=\Delta Q/T=0?$

El razonamiento anterior es correcto hasta la última parte: la respuesta a la ultima preguna es **NO!** La ecuación dQ = T dS es cierto solamente para procesos reversibles. En general $dQ \leq T dS$, y se tiene $\Delta Q = 0$ y $\Delta S = R \ln 2$, entonces se tiene que $\Delta Q \leq T dS$.

Termodinámica en Acción

6.1. Potenciales Termodinámicos

La energía interna es muy útil, es una función de estado la cual se mantiene cambiando de la misma forma con forme el sistema pase de un estado de equilibrio a otro; sin embargo, a pesar de ser útil, no es única (DS: que triste). Se pueden crear otras funciones de estado dependientes de p, V, T y S en algúna combinación que de como resultado unidades de energía; obviamente, muchas de estas combinaciones no reperesentarán ningún sistema físico, pero algunas si tales como: H = U + pV, F = U - TS y G = U + pV - TS, estas son ecuaciones consitutivas asociadas a un tipo de sistema termodinámico y el calificativo de potencial se debe a que en cierto sentido describe la cantidad de energía potencial disponible en el sistema termodinámico sujeta a ceritas restricciones.

6.1.1. Energía Interna

Directamente, para procesos isocóricos

$$dU = T dS$$
,

y por procesos isocóricos reversibles

$$dU = dQ_{rev} = C_V dT$$
,

por ende

$$\Delta U = \int_{T_1}^{T_2} C_V \, \mathrm{d}T \,.$$

Esto solo es válido para sistemas a volumen constantes, esto se extenderá a sistemas a volumen constante pero para ello se utilizará lo que veremos a continuación.

6.1.2. Entalpía, H

La entalpía se define como: el flujo de energía térmica en los procesos químicos efectuados a presión constante cuando el único trabajo es de presión-volumen

$$H = U + PV$$
.

Esta definición junto con la primera ley, implica que

$$dH = T dS + V dp.$$

Las variables naturales de H son la entropía y la presión. Por lo que podemos dar una forma para un proceso isobárico

$$dH = T dS$$
.

y para un proceso reversible

$$dH = dQ_{rev} = C_p dT,$$

de modo que

$$\Delta H = \int_{T_1}^{T_2} C_p \, \mathrm{d}T \,.$$

Esto muestra la importancia de H para procesos isobáricos reversibles la entalpía representa el calor absorbido por el sistema. También podemos concluir que si S y p son constantes, se tiene $\mathrm{d}H=0$. Y de la segunda ecuación mostrada se concluye que

$$T = \left(\frac{\partial H}{\partial S}\right)_p,$$

У

$$V = \left(\frac{\partial H}{\partial p}\right)_S.$$

6.1.3. Función de Helmholtz, F

También llamada energía de Helmholtz, energía libre de Helmholtz o función trabajo. Es una magnitud extensiva, función de estado y potencial termodinámico, de un sistema termodinámico que mide el trabajo obtenible en un sistema cerrado, en condiciones de temperatura constante. No depende del proceso sufrido, sino del estado final e inicial del sistema. Se usa para ver qué procesos son espontáneos en condiciones de temperatura y volumen constantes. Si el volumen no se mantiene constante, parte del trabajo se efectua en el entorno.

$$F = U - TS$$
.

Mismo procedimiento que la subsección anterior, se tiene que

$$\mathrm{d}F = -S\,\mathrm{d}T - p\,\mathrm{d}V.$$

Las varibles naturales de F son el volumen y la temperatura, por lo que para un proceso isotérmico se puede escribir

$$\mathrm{d}F = -p\,\mathrm{d}V\,,$$

por ende

$$\Delta F = \int_{V_1}^{V_2} p \, \mathrm{d}V \,.$$

F también representa la cantidad máxima de trabajo que puede llegarse a tener de un sistema a temperatura constante. Dado lo anterior, se tienen las siguientes representaciones

$$S = -\left(\frac{\partial F}{\partial T}\right)_V,$$

$$p = - \left(\frac{\partial F}{\partial V}\right)_T.$$

Si $T \vee V$ son constantes, entonces dF = 0.

6.1.4. Función de Gibbs, G

La energía de Gibbs o función de Gibbs (entalpía libre) es un potencial termodinámico que se puede usar para calcular el máximo de trabajo reversible que puede realizarse mediante un sistema termodinámico a una temperatura y presión constantes (isotérmica, isobárica). La energía libre de Gibbs es la cantidad máxima de trabajo de no expansión que se puede extraer de un sistema cerrado termodinámicamente (uno que puede intercambiar calor y trabajo con su entorno, pero no materia). Este máximo solo se puede alcanzar en un proceso completamente reversible. Cuando un sistema se transforma reversiblemente de un estado inicial a un estado final, la disminución de la energía libre de Gibbs equivale al trabajo realizado por el sistema en su entorno, menos el trabajo de las fuerzas de presión.

$$G = H - TS$$
.

De esto, se tiene

$$\mathrm{d}G = -S\,\mathrm{d}T + V\,\mathrm{d}p\,,$$

Las variables naturales de G son la temperatura y la presión (las mejores variables para manipular en un laboratorio). En particular, si T y p son constantes $\mathrm{d}G=0$, lo que implica que G se conserva en cualquier proceso isotérmico e isobárico. Además se tienen las siguientes expresiones para la entropía y el volumen

$$S = -\left(\frac{\partial G}{\partial T}\right)_{p},$$

У

$$V = -\left(\frac{\partial G}{\partial p}\right)_T.$$

Resumen:

Función		Diferencial	Variables Na-	Primeras Deri-	
de Esta-			turales	vadas	
do					
Energía Interna	U	$\mathrm{d}U = T\mathrm{d}S - p\mathrm{d}V$	U = U(S, V)	$T = \left(\frac{\partial U}{\partial S}\right)_V$	$p = -\left(\frac{\partial U}{\partial V}\right)_S$
Entalpía	H = U + pV	dH = T dS + V dp $dF = -S dT - p dV$	H = H(S, p)	$T = \left(\frac{\partial H}{\partial S}\right)_p$	$V = -\left(\frac{\partial H}{\partial p}\right)_{S}$
Función de Helm- holtz	F = U - TS	$\mathrm{d}F = -S\mathrm{d}T - p\mathrm{d}V$	F = F(T, V)	$S = -\left(\frac{\partial \vec{F}}{\partial T}\right)_V$	$p = -\left(\frac{\partial F}{\partial V}\right)_T^S$
Función de Gibbs	G = H - TS	$\mathrm{d}G = -S\mathrm{d}T + V\mathrm{d}p$	G = G(T, p)	$S = -\left(\frac{\partial G}{\partial T}\right)_p$	$V = -\left(\frac{\partial G}{\partial p}\right)_T$

6.1.5. Relaciones de Maxwell

Las relaciones de Maxwell 1 son un conjunto de ecuacioens termodinámicas derivadas del Teorema de Clairaut 2 y de las definiciones de los potenciales termodinámicos.

Con esto se tienen las relaciones de Maxwell

¹Para más ejemplos ver Blundell p.173.

²enlace a la explicacion

$$\begin{split} \left(\frac{\partial T}{\partial V}\right)_S &= -\left(\frac{\partial p}{\partial S}\right)_V, \\ \left(\frac{\partial T}{\partial p}\right)_S &= \left(\frac{\partial V}{\partial S}\right)_p, \\ \left(\frac{\partial S}{\partial V}\right)_T &= \left(\frac{\partial p}{\partial T}\right)_V, \\ \left(\frac{\partial S}{\partial p}\right)_T &= -\left(\frac{\partial V}{\partial T}\right)_p. \end{split}$$

Buscando algo más general, es claro que las relaciones de Maxwell son de la forma

$$\left(\frac{\partial *}{\partial \ddagger}\right)_{\star} = \pm \left(\frac{\partial \dagger}{\partial \star}\right)_{\ddagger},$$

donde los simbolos similares implican variables conjugadas, es decir, aquellas cuyo producto da como resultado unidades de energía. Como T y S, y p y V. Además, que aquellas que tengan el signo negativo son las que tienen a T y V del mismo lado de la ecuación.

Una forma alternativa de encontrar las relaciones de Maxwell es por medio del Jacobiano. Considerando un proceso cíclico descrito en los dos planos, T - S y p - V. La energía interna es una función de estado y por ende no cambia en un ciclo, de modo que

$$\oint T \, dS = \oint p \, dV,$$

$$\iint dp \, dV = \iint dT \, dS,$$

de modo que el trabajo hecho (área bajo el ciclo en el plano p-V) es igual al calor absorbido (área encerrada por el ciclo en el plano T-S). También podemos escribir

$$\iint dp dV \frac{\partial(T, S)}{\partial(p, V)} = \iint dT dS,$$

donde el nuevo término es el Jacobiano de la transformación del plano p-V al plano T-S, lo que implica que

$$\frac{\partial(T,S)}{\partial(p,V)} = 1.$$

Esta ecuación es suficiente para generar las cuatro relaciones de Maxwell por medio de

$$\frac{\partial(T,S)}{\partial(x,y)} = \frac{\partial(p,V)}{\partial(x,y)},$$

donde (x, y) es tomado como (T, p), (T, V), (p, S), (S, V).

Tercera Ley de la Termodinámica

La tercera ley nos da información adicional ya que provee el valor de la entropía a una temperatura en partícular, llamda cero absoluto.

7.1. Enunciados de la Tercera Ley

El tercer principio fue desarrollado por el químico Walter Nernst. Postula que la entropía de un sistema en el cero absoluto es una constante definida.

- Enunciado de Nernst: Cerca del cero absoluto, todas las reacciones de un sistema en equilibrio interno se dan sin cambios en la entropía.
 - Al llegar al cero absoluto cualquier proceso de un sistema físico se detiene.
 - Al llegar al cero absoluto la entropía alcanza un valor mínimo y acelerado.
- Enunciado de Plancks: La entropía de todos los sistemas en equilibrio interno es la misma en el cero absoluto, y debería ser tomada como cero.
- Enunciado de Simon: La contribución a la entropía de un sistema por cada aspecto del sistema que está en equilibrio termodinámico interno tiende a cero como $T \to 0$.

Si la entropía de cada elemento en algún estado cristalino (perfecto) se tomase como cero en el cero absoluto de temperatura, cada sustancia tiene una entropía finita y positiva, pero en el cero absoluto de temperatura la entropía puede llegar a ser cero y eso lo convierte en el caso de una sustancia cristalina perfecta.

7.2. Consecuencias de la Tercera Ley

Teniendo todos los enunciados de la tercera ley, se tienen algunas de las siguientes concecuencias:

1. Las capacidades caloríficas tienden a cero cuando $T \to 0$: Es trivial teniendo $C = T(\frac{\partial S}{\partial T})$.

2. La expansión térmica se detiene: Como $S \rightarrow 0$ cuando $T \rightarrow 0,$ se tiene

$$\left(\frac{\partial S}{\partial p}\right)_T \to 0$$

cuando $T \to 0$, pero por la relación de Maxwell implica que

$$\frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p \to 0$$

por lo que la expansividad isobárica.

- 3. Ningún gas se mantiene como ideal cuando $T \to 0$: Solo hace falta ver las capacidades caloríficas cuando la temperatura tiende a cero.
- 4. La Ley de Curie se rompe: DS: No considero que valga la pena explicar esto, si les es útil revisar Blundell p.197-198.

Parte II Mecánica Estadística

Entropía y Temperatura

8.1. Macroestados y Microestados

Un **microestado** es la especificación detallada de una configuración microscópica de un sistema termodinámico. En otras palabras, un microestado es un punto del espacio fásico de dicho sistema. Mientras que un **macroestado** se refiere a una caracterización de un sistema termodinámico mediante los valores de un número finito de n variables de estado, de las cuales al menos una debe ser extensiva. Un macroestado viene dado por una distribución de probabilidad sobre un conjunto dado de microestados; en función del conjuto de microestados considerando, la distribución toma una u otra forma. Un sistema en equilibrio permanece en un macroestado (macroestado de equilibrio) mientras visita los diferentes microestados accesibles a lo largo de sus fluctuaciones.

8.2. Ensambles

Un ensabmle estadístico (colectividad estadística) se define como un conjunto hipotético de sistemas termodinámicos de características similares que nos permiten realizar un análisis estadístico de dicho conjunto, en otras palabras, un conjunto de microestados. Existen varios tipos de ensambles:

Ensamble Microcanónico: Un ensamble de sistemas termodinámicos que no intercambian energía ni materia con el entorno.

Ensamble Canónico: Un ensamble de sistemas que intercambian energía pero no materia con el entorno.

Ensamble Macrocanónico: Un ensamble de sistemas que intercambian materia y energía con el ambiente.

La forma de función de partición para cada tipo de ensamble es:

Microcanónico: $\Omega(U,V,N)=e^{\beta TS}$, sistema cerrado y aislado (energía constante y entropía máxima).

Canónico: $Z(T, V, N) = e^{-\beta A}$, sistema cerrado con energía variable y temperatura fijada.

Macrocanónico: $\Xi(T, V, \mu) = e^{\beta pV \mathbf{1}}$, sistema abierto.

¹Donde μ es el potencial químico.

8.3. Conteos

Técnicas básicas de conteo y sus fórmulas. Estas serán importantes para la deducción de las estadísticas o distribuiones de Boltzmann, Fermi-Dirac y Bose-Einstein.

8.3.1. Conteos Básicos

Cardinalidad: Sea A un conjunto finito, la cardinalidad de A (|A|) es el número de elementos de A.

Conjuntos Distintos: Dos conjuntos A y B son distintos ssi $A \cap B = \emptyset$.

Regla de la Suma: Sean A y B conjuntos distintos $|A \cup b| = |A| + |B|$, esto es válido para n conjuntos distintos.

Producto Cartesiano: Sea A y B dos conjuntos cualesquiera, el producto cartesiano $A \times B$ se define de la siguiente forma

$$A \times B = \{(a, b) | a \in A, b \in B\}.$$

Igual que la anterior, esto es válido para n conjuntos cualesquiera.

Regla de la Multiplicación: $|A_1 \times \cdots \times A_n| = |A_1| \cdots |A_n|$.

Casos de conteo básico

Disposiciones: Sea A un conjunto con n elementos. Una disposición de rango k del conjunto A es una elección (escogencia) de k elementos de A donde:

- 1. Si se puede repetir
- 2. Si importa el orden

 D_n^k = Conjunto de disposiciones de k elemento del conjunto A.

$$\boxed{\left|D_n^k\right| = n^k.}$$

Permutaciones: Sea A un conjunto con n elementos. Una permutación de rango $k \leq n$ es una elección de k elementos de A donde:

- 1. No se puede repetir
- 2. Si importa el orden

 $\mathcal{P}_n^k =$ Conjunto de permutaciones. $P_n^k = \left|\mathcal{P}_n^k\right| =$ Número de permutaciones.

$$P_n^k = \frac{n!}{(n-k)!}.$$

Ordenaciones: Una ordenación es un caso especial de permutaciones, donde se eligen los n elementos del conjutno A. Osea que una ordenación es una permutación donde k=n.

Número de Ordenaciones =
$$n!$$
.

Permutaciones con Repetición (Boltzmann): Sea A un conjunto con n elementos y vamos a escoger k elementos donde sí importa el orden y el elemento a_i se repite k_i veces. A este tipo de escogencia se le llama permutación con repetición.

Número de Permutaciones con Repetición =
$$\frac{k!}{k_1! \cdots k_n!}$$
.

Debido a que a_i lo escogemos k_i veces y si diferenciamos cada elección de a_i formaríamos un conjunto con k elementos y estos k elementos se pueden ordenar de k! formas, pero luego no lo diferenciamos y tendríamos k_i ordenaciones iguales y por lo tanto dividimos por $k_i!$ para todo i para contar las ordenaciones diferentes.

El ensamble microcanónico es el conjunto de todos los microestados que tienen la distribución permitida de máxima entropía.

Coeficiente Binomial:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Propiedad 1: Simetría

$$\binom{n}{k} = \binom{n}{n-k}.$$

Propiedad 2: Triángulo de Pascal

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}.$$

Binomio de Newton:

$$(x+y)^n \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

Teorema:

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$

Combinaciones (Fermi-Dirac): Sea A un conjunto con n elementos. Una combinación de k elementos en n elementos es una elección de k elementos del conjunto A donde

- 1. No se puede repetir
- 2. No importa el orden

 $C_k^n = \{\text{Combinaciones de k elementos en n elementos.}\}$ Priemro elijamos k elementos en forma ordenada, como si fueran permutaciones y luego dividimos entre todas las ordenaciones de los k elementos.

$$C_k^n = \binom{n}{k}.$$

Distribución (Bose-Einstein): Sea A un conjunto de n elementos. Una distribución es una elección de k elementos de A donde:

- 1. Si se puede repetir
- 2. No importa el orden

 \mathcal{D}_k^n = Distribuciones de k en n.

Número de Distribuciones =
$$\binom{n-1+k}{k}$$
 = $\binom{n-1+k}{n-1}$.

8.3.2. Fórmula de Stirling

La fórmula de Stirling es una aproximación de la función factorial de un número natural n, que es especialmente útil para grandes valores de n.

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

esta aproximación puede representarse también de forma logarítmica

$$\ln n! \approx n \ln n - n + \frac{1}{2} \ln 2\pi n.$$

La precisión de esta fórmula mejora a medida que n aumenta.

Parte III Electromagnetismo

Parte IV Mecánica Clásica

Parte V Mecánica Cuántica

Parte VI Reducción de Datos

Parte VII Materia Condensada