Nom					
Prénom		ſ			
Groupe			Note		
Prof. TD			1,300		
	Algorithmiqu	ie		1	
	Info-spé - S			2]
	Contrôle nº 3 (C3)		3	
	$9\ novembre\ 2020$.	- 13:30		4	
	Feuilles de répo	onses		5	

$R\'{e}ponses~1~$ (Quelques résultats différents – 5~points)

R ns:

Repi	résenter les tables de hachage co	orrespondant a	aux différentes n	néthodes de résol	ution des collisions
	1. Hachage coalescent :	2. Ha	achage linéaire :	3. D	ouble hachage:
0		0		0	
1		1		1	
2		2		2	
3		3		3	
4		4		4	
5		5		5	
6		6		6	
7		7		7	
8		8		8	
9		9		9	
10		10		10	

$R\'{e}ponses~2~$ (Cherche la somme – 4 points)

${\bf Sp\'{e}cifications}:$

La fonction $find_sum(B, sum)$ vérifie s'il existe une branche dans l'arbre B (TreeAsBin) dont la somme des valeurs (entières) est sum.

Réponses 3 (Gap maximum – 4 points)

 $\mathbf{Sp\acute{e}cifications}$: La fonction $\mathtt{maxgap}(B)$ calcule le gap maximum du B-arbre B.

Réponses 4 (What? - 4 points)

 $1. \ \textit{R\'esultats des applications}:$

what(B_3 , 2)	what(B_3 , 7)	what(B_3 , 18)	what(B_3 , 39)	what(B_3 , 41)	what(B_3 , 99)

9	Soit	P 1112	P orbro	non vide et	m un ontion	Que retourne	raha+(P	m) ?
Ζ.	SOIL	B 111	B-arbre	non vide et	x un entier.	Que retourne	wnat(B.	x) (

Réponses 5 (B-arbre : insertion et supression – 3 points)		
1. Arbre après insertion de la valeur 39 (vous pouvez incliner la feuille et dessiner	l'arbre en	mode