

Numéro de session du candidat

Chimie Niveau supérieur Épreuve 2

Jeudi 12 mai 2016 (matin	Jeudi	12	mai	2016	(matin)
--------------------------	-------	----	-----	------	--------	---

2 heures 15 minutes			

Instructions destinées aux candidats

- Écrivez votre numéro de session dans les cases ci-dessus.
- N'ouvrez pas cette épreuve avant d'y être autorisé(e).
- Répondez à toutes les questions.
- Rédigez vos réponses dans les cases prévues à cet effet.
- Une calculatrice est nécessaire pour cette épreuve.
- Un exemplaire non annoté du recueil de données de chimie est nécessaire pour cette épreuve.
- Le nombre maximum de points pour cette épreuve d'examen est de [95 points].

Répondez à toutes les questions. Rédigez vos réponses dans les cases prévues à cet effet.

1.	La phosphine (phosphane, nom selon l'UICPA) est un hydrure de phosphore, dont la formule est PH ₃ .					
	(a)	(i)	Dessinez une structure de Lewis (électrons représentés par des points) de la phosphine.	[1]		
		(ii)	Indiquez l'hybridation de l'atome de phosphore dans la phosphine.	[1]		
		(iii)	Déduisez, en donnant une justification, si la phosphine agit comme un acide de Lewis, une base de Lewis ou ni l'un, ni l'autre.	[1]		
		(iv)	Résumez si vous vous attendez à ce que les liaisons dans la phosphine soient polaires ou non polaires, en donnant une brève justification.	[1]		

(v)	La phosphine possède une masse molaire beaucoup plus élevée que celle de l'ammoniac. Expliquez pourquoi la phosphine a un point d'ébullition beaucoup plus bas que celui de l'ammoniac.	[2]
(vi)	L'ammoniac se comporte comme une base faible de Brønsted–Lowry quand il est en solution dans l'eau.	
	$NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$	
	Résumez ce que signifient les termes « faible » et « base de Brønsted–Lowry ».	[2]
Faible: Base de E	Brønsted–Lowry :	
des	hosphine est généralement préparée en chauffant du phosphore blanc, une variétés allotropiques du phosphore, avec une solution aqueuse concentrée droxyde de sodium. L'équation de la réaction est :	
	$P_4(s) + 3OH^-(aq) + 3H_2O(l) \rightarrow PH_3(g) + 3H_2PO_2^-(aq)$	
(i)	$P_4(s) + 3OH_4(aq) + 3H_2O(l) \rightarrow PH_3(g) + 3H_2PO_2_4(aq)$ Le premier réactif est écrit sous la forme P_4 , et non 4P. Décrivez la différence entre P_4 et 4P.	[1]

Tournez la page

(ii)	L'ion H ₂ PO ₂ ⁻ est amphotère. Résumez ce que signifie amphotère, en donnant les formules des deux espèces dans lesquelles il est converti quand il présente ce comportement.	[2]
(iii)	Indiquez l'état d'oxydation du phosphore dans P ₄ et dans H ₂ PO ₂	[2]
P ₄ :		
H ₂ PO ₂ ⁻ :		
(iv)	L'oxydation est aujourd'hui définie en termes de modification du nombre d'oxydation. Explorez comment les premières définitions de l'oxydation et de la réduction peuvent avoir conduit à des réponses contradictoires pour la conversion de P_4 en $H_2PO_2^-$ et de quelle manière l'utilisation des nombres d'oxydation a réglé ce problème.	[3]

(Suite de la question 1)

(c) 2,478 g de phosphore blanc ont été utilisés pour fabriquer de la phosphine selon l'équation :

$${\rm P_4(s)} + 3{\rm OH^-(aq)} + 3{\rm H_2O(l)} \rightarrow {\rm PH_3(g)} + 3{\rm H_2PO_2^-(aq)}$$

(i)	Calculez la quantité, en mol, de phosphore blanc utilisé.	[1]
(ii)	Ce phosphore a réagi avec 100,0 cm³ d'hydroxyde de sodium aqueux 5,00 mol dm⁻³. Déduisez, en présentant votre développement, lequel est le réactif limitant.	[1]
(iii)	Déterminez la quantité en excès, en mol, de l'autre réactif.	[1]
(iv)	Déterminez le volume de phosphine, mesuré en cm³ à température et pression standard, qui a été produit.	[1]

Tournez la page

(d)		mpuretés provoquent la combustion spontanée de la phosphine dans l'air, pour er un oxyde de phosphore et de l'eau.	
	(i)	200,0 g d'air ont été chauffés par l'énergie dégagée lors de la combustion complète de 1,00 mol de phosphine. Calculez l'élévation de température en utilisant la section 1 du recueil de données et les données ci-dessous.	[1]
		Enthalpie standard de combustion de la phosphine, $\Delta H_c^{\odot} = -750 \mathrm{kJ} \mathrm{mol}^{-1}$	
		Capacité calorifique massique de l'air = $1,00 \mathrm{Jg^{-1}K^{-1}} = 1,00 \mathrm{kJkg^{-1}K^{-1}}$	
	(ii)	L'oxyde formé dans la réaction avec l'air contient 43,6 % en masse de phosphore. Déterminez la formule empirique de l'oxyde, en présentant votre méthode.	[3]
	(iii)	La masse molaire de l'oxyde est approximativement 285 g mol ⁻¹ . Déterminez la formule moléculaire de l'oxyde.	[1]

(iv)	Indiquez l'équation de la réaction de cet oxyde de phosphore avec l'eau.	[1]
(v)	Suggérez pourquoi les oxydes de phosphore ne sont pas des contributeurs principaux des dépôts acides.	[1]
(vi)	Les taux de dioxyde de soufre, un contributeur principal des dépôts acides, peuvent être réduits par les méthodes de captage précombustion ou postcombustion. Résumez une technique de chaque méthode.	[2]
Précombu	istion :	
Postcomb	ustion :	

Tournez la page

2.	Le phosgène, COCl ₂ , est généralement produit par la réaction entre le monoxyde de carbone
	et le chlore, selon l'équation :

$$CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$$

(a)	(i)	Déduisez l'expression de la constante d'équilibre, $K_{\rm c}$, de cette réaction.	[1]
	(ii)	À 600 °C exactement, la valeur de la constante d'équilibre est de 0,200. Calculez la variation standard d'énergie libre de Gibbs, ΔG^{\ominus} , de la réaction, en kJ, en utilisant les sections 1 et 2 du recueil de données. Exprimez votre réponse avec trois chiffres significatifs.	[3]
	(iii)	La variation d'enthalpie standard de formation du phosgène, $\Delta H_{\rm f}^{\ominus}$, est de $-220,1{\rm kJmol^{-1}}$. Déterminez la variation d'enthalpie standard, ΔH^{\ominus} , de la réaction directe de l'équilibre, en kJ, en utilisant la section 12 du recueil de données.	[2]

(Suite de la question 2)

(iv) Calculez la variation standard d'entropie, ∆S^o, en JK⁻¹, de la réaction directe à 25 °C, en utilisant vos réponses des parties (a) (ii) et (a) (iii).
 (Si vous n'avez pas obtenu de réponses dans les parties (a) (ii) et/ou (a) (iii), utilisez les valeurs de +20,0 kJ et de −120,0 kJ respectivement, bien que ce ne soient pas les bonnes réponses.)

[2]

(b) La production de polyuréthanes est une utilisation industrielle importante du phosgène. Le phosgène réagit avec la diamine **X**, dérivée de la phénylamine.

- (i) Classez la diamine **X** comme amine primaire, secondaire ou tertiaire. [1]
 - (ii) La phénylamine, C₆H₅NH₂, est produite par la réduction du nitrobenzène, C₆H₅NO₂. Suggérez comment cette conversion peut être réalisée. [2]

(iii)	Le nitrobenzène peut être obtenu par nitration du benzène en utilisant un mélange d'acides nitrique et sulfurique concentrés. Formulez l'équation de l'équilibre établi lorsque ces deux acides sont mélangés.	[1]
(iv)	Déduisez le mécanisme de la nitration du benzène, en utilisant des flèches incurvées pour indiquer le déplacement des paires d'électrons.	[4]

(Suite de la question 2)

(c) L'autre monomère utilisé dans la production du polyuréthane est le composé **Z** illustré ci-dessous.

(i) Indiquez le nom, en appliquant les règles de l'UICPA, du composé **Z** et la classe de composés à laquelle il appartient.

[2]

Nom :		
Classe :		
(ii)	Déduisez le nombre de signaux que vous vous attendez à trouver dans le spectre de RMN ¹ H du composé Z , en donnant des justifications.	
(ii)	Déduisez le nombre de signaux que vous vous attendez à trouver dans le spectre de RMN ¹ H du composé Z , en donnant des justifications.	
(ii)	Déduisez le nombre de signaux que vous vous attendez à trouver dans le spectre de RMN ¹ H du composé Z , en donnant des justifications.	

Tournez la page

(Suite de la question 2)

Le spectre de masse et le spectre infrarouge (IR) du composé **Z** sont représentés ci-dessous :

Spectre de masse

[Source : http://sdbs.db.aist.go.jp]

Spectre IR

[Source : http://sdbs.db.aist.go.jp]

(iii) Identifiez l'espèce responsable du grand pic à $m/z = 31$ dans le spectre de masse.	[1]
(iv) Identifiez la liaison qui produit le pic légendé Q sur le spectre IR, en utilisant la section 26 du recueil de données.	[1]
(d) La phénylamine peut se comporter comme une base faible. Calculez le pH d'une solution de phénylamine 0,0100 mol dm ⁻³ à 298 K en utilisant la section 21 du recueil de données.	[4]

Tournez la page

3. La réaction entre l'hydrogène et le monoxyde d'azote semble se produire selon le mécanisme illustré ci-dessous.

$$\begin{split} 2\text{NO}(g) & \rightleftharpoons \text{N}_2\text{O}_2(g) & \text{équilibre rapide} \\ \text{N}_2\text{O}_2(g) + \text{H}_2(g) & \to \text{N}_2\text{O}(g) + \text{H}_2\text{O}(g) & \text{réaction lente} \\ \text{N}_2\text{O}(g) + \text{H}_2(g) & \to \text{N}_2(g) + \text{H}_2\text{O}(g) & \text{réaction rapide} \end{split}$$

(a)	(i)	Indiquer l'équation de la réaction globale.	[1]

(ii)	Déduisez l'expression de la vitesse qui est cohérente avec le mécanisme proposé.	[1]

(iii)	Expliquez comment vous essayeriez de confirmer cette expression de la vitesse,		
	en donnant les résultats que vous attendriez.	[3]	

(Suite de la question 3)

(IV)	vitesse prouverait que le mécanisme proposé est correct.	[1]
(v)	Suggérez comment la vitesse de cette réaction pourrait être mesurée expérimentalement.	[1]
(b) La v	rariation d'enthalpie de la réaction entre le monoxyde d'azote et l'hydrogène est de	

-664 kJ et son énergie d'activation est de 63 kJ.

Progression de la réaction

- Représentez le profil des niveaux d'énergie potentielle de la réaction globale, (i) en utilisant les axes fournis, et en indiquant l'enthalpie de la réaction et l'énergie d'activation.
- Cette réaction se produit normalement en utilisant un catalyseur. Dessinez une (ii) ligne pointillée légendée « Catalysée » sur le graphique ci-dessus pour indiquer l'effet du catalyseur.

(Suite de la question à la page suivante)

Tournez la page

[2]

[1]

[1]

(Suite de la question 3)

(iii) Représentez et légendez une deuxième courbe de distribution de l'énergie de Maxwell–Boltzmann représentant le même système, mais à une température supérieure, T_{supérieure}.

Probabilité de cette énergie

(iv)	Expliquez pourquoi une élévation de température augmente la vitesse de cette	
	réaction.	[2]

(Suite de la question 3)

(c) Un des intermédiaires dans la réaction entre le monoxyde d'azote et l'hydrogène est l'hémioxyde d'azote, N₂O. Il peut être représenté par les structures de résonance ci-dessous :

$$: N = \stackrel{+}{N} - \stackrel{\cdots}{0} : \xrightarrow{} : \stackrel{-}{N} = \stackrel{+}{N} = \stackrel{\cdots}{0}$$

(i) Analysez les liaisons dans l'hémioxyde d'azote, en termes de liaisons σ et de liaisons π .

[3]

(ii) Indiquez ce que signifie résonance.

[1]

Le chlorure	e d'étain(II) est un solide blanc couramment utilisé comme agent réducteur.	
(a) (i)	Indiquez pourquoi vous vous attendez à ce que le chlorure d'étain(II) possède une enthalpie de réseau semblable à celle du chlorure de strontium, en utilisant la section 9 du recueil de données.	[1
(ii)	Calculez la variation d'enthalpie molaire lorsque le chlorure de strontium est dissous dans l'eau, en utilisant les sections 18 et 20 du recueil de données.	[2
(iii)	Le chlorure d'étain(II) réagit avec l'eau pour former un précipité de chlorure basique insoluble, Sn(OH)Cl.	
	$SnCl_2(aq) + H_2O(l) \rightleftharpoons Sn(OH)Cl(s) + H^+(aq) + Cl^-(aq)$	
	Suggérez pourquoi le chlorure d'étain(II) est généralement dissous dans de l'acide chlorhydrique dilué.	[1

(Suite de la question 4)

(b) L'étain peut exister également à l'état d'oxydation +4.

$$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Sn}^{2+}(\operatorname{aq}) \qquad E^{\ominus} = +0.15 \,\mathrm{V}$$

Le vanadium peut être réduit de l'état d'oxydation +4 à l'état d'oxydation +3, selon l'équation :

$$VO^{2+}(aq) + 2H^{+}(aq) + e^{-} \rightleftharpoons V^{3+}(aq) + H_2O(l)$$
 $E^{\Theta} = +0.34 V$

(i) Calculez le potentiel de la pile, E^{\ominus} , et la variation d'énergie libre standard, ΔG^{\ominus} , de la réaction entre les ions VO^{2^+} et Sn^{2^+} , en utilisant les sections 1 et 2 du recueil de données.

[2]

E [⊕] :		
ΔG^{\ominus} :		

(ii) Déduisez, en donnant une justification, si une réaction entre Sn²+ (aq) et VO²+ (aq) est spontanée. [1]

(c) Résumez, en donnant la configuration électronique **complète** de l'atome de vanadium, ce que signifie le terme métal de transition.

1	")
1	41
•	

Tournez la page

(Suite de la question 4)

(d) Dans une solution aqueuse de chlorure de vanadium(III), le vanadium existe sous forme de $[V(H_2O)_6]^{3+}$, $[VCl(H_2O)_5]^{2+}$ ou $[VCl_2(H_2O)_4]^+$, selon la concentration des ions chlorure dans la solution.

(1)	Décrivez comment Cl⁻ et H₂O se lient à l'ion vanadium.

(ii) Résumez ce qui arriverait à la longueur d'onde à laquelle les ions complexes de vanadium absorbent la lumière lorsque les molécules d'eau sont progressivement remplacées par des ions chlorure, en utilisant la section 15 du recueil de données. [2]

						-	 		٠		 		٠	-	 	٠	•	 								•				٠	 	٠	

(e) Huit énergies d'ionisation successives du vanadium sont représentées dans le graphique ci-dessous :

(Suite de la question 4)

(i)	Énumérez les sous-niveaux à partir desquels chacun des quatre premiers électrons est perdu.	[1]
Premier	: Deuxième : Troisième : Quatrième :	
(ii)	Résumez pourquoi il y a une augmentation de l'énergie d'ionisation de l'électron 3 à l'électron 5.	[1]
(iii)	Expliquez pourquoi il y a une forte augmentation de l'énergie d'ionisation entre les électrons 5 et 6.	[3]
(iv)	Le vanadium est constitué presque entièrement de ⁵¹ V. Indiquez le nombre de neutrons que possède un atome de ⁵¹ V dans son noyau.	[1]

Tournez la page

5. Le composé **A** et le composé **B** sont des hydrocarbures.

(a) (i) Indiquez le terme utilisé pour décrire des molécules qui sont liées de la même manière que le composé **A** et le composé **B**.

[1]

(ii) Suggérez un test chimique permettant de distinguer le composé **A** du composé **B**, et donnez l'observation attendue pour chacun.

[2]

Tes	st :	•																												
							•				•						 				 -	 		 	•		 -	 		
		٠.					•					 •	 -	٠.		-	 			 -	 -	 	•	 	•					
Ob	se	rva	ati	on	а	ve	C	A	١:																					
Ob	se	rva	ati	on	а	ve	С	В	}:																					

(Suite de la question 5)

(b))	ect						•						•		3 I	R	a	es	С	or	np	09	se	S	A	e [·]	t t	3	et	la	3		[1]
		 	 				 			 				 •		 				•														

(c) Deux signaux se produisent dans le spectre de RMN ¹H du composé **A**. Déduisez leur déplacement chimique et leur multiplicité (dédoublement) attendus, en utilisant la section 27 du recueil de données.

[2]

Signal	1	2
Déplacement chimique / ppm		
Multiplicité		

Veuillez ne pas écrire sur cette page.

Les réponses rédigées sur cette page ne seront pas corrigées.

