EE5311 Tutorial 4 Report - EE22B070

Himanshu Rajnish Borkar 20/02/2025

1. Construct a seven-stage ring oscillator as shown below and find the oscillating frequency.

1(a) Measure the oscillating frequency for $V_{DD} = 1.8 \text{ V}$

Calculations:

Frequency calculations:

We take the difference of the adjacent rise times when the the V_{out} = $V_{\text{DD}}/2$ to get the time period of the waveform, and then reciprocate it to get the waveform's frequency.

Schematic & Code:

Measurements:

 $\boldsymbol{V}_{out}\,\boldsymbol{vs}$ time gives us a pulse like waveform with spikes

From above, we get the frequency to be **2.44 GHz**.

1(b) Plot the oscillating frequency and time period as a function of V_{DD} for V_{DD} = 1 V to 1.8 V in steps of 0.1 V.

Schematic:

Same as 1(a)

Code:

```
sim
.param width_p = 0.84
.param VDDval = 1.8
.ic\ V(Vout) = 0
 .control
 let index = 0
 let N = 9
 let freq_vec = vector(N)
 let vdd vec = vector(N)
 let timeperiod_vec = vector(N)
while index < N
   let vdd = 1.0 + (index * 0.1)
let vdd_vec[index] = vdd
   let vby2 = vdd/2
alterparam VDDval = $&vdd
   reset
   tran 1p 10n
   meas tran t trig V(Vout) val = vby2 rise = 3 targ V(Vout) val = vby2 rise = 4
   let freq = 1/t
   let timeperiod_vec[index] = $&t
   let freq_vec[index] = $&freq
   let index = index + 1
   echo Frequency: $&freq Hz
 print vdd_vec freq_vec
 plot freq_vec vs vdd vec
 plot timeperiod_vec vs vdd_vec
 .endc
```

Measurements:

Time period vs V_{DD}

Frequency vs V_{DD}

Index	vdd_vec	freq_vec
0 1 2 3 4 5 6 7	1.000000e+00 1.100000e+00 1.200000e+00 1.300000e+00 1.400000e+00 1.500000e+00 1.700000e+00 1.800000e+00	4.842260e+08 7.338170e+08 9.955860e+08 1.258760e+09 1.517090e+09 1.766770e+09 2.005390e+09 2.231490e+09 2.444320e+09
		Data Points

1(c) Repeat the experiment (b) with nine inverter stages.

Schematic:

Code:

Same as 1(b)

```
.param width_p = 0.84
.param VDDval = 1.8
.ic V(Vout) = 0
.control
let index = 0
let N = 9
let freq_vec = vector(N)
let vdd_vec = vector(N)
let timeperiod_vec = vector(N)
white index < N
let vdd = 1.0 + (index * 0.1)
let vdd vec[index] = vdd
let vby2 = vdd/2
alterparam VDDval = $&vdd
reset
tran lp l0n
meas tran t trig V(Vout) val = vby2 rise = 3 targ V(Vout) val = vby2 rise = 4
let freq = 1/t
let timeperiod_vec[index] = $&t
let vdd_vec[index] = $&t
let vdd_vec[index] = $&freq
let index = index + 1
echo Frequency: $&freq Hz
end
print vdd_vec freq_vec
plot freq_vec vs vdd_vec
plot timeperiod_vec vs vdd_vec
.endc
```

Measurements:

Time period vs V_{DD}

Frequency vs V_{DD}

Index	vdd_vec	freq_vec
0 1 2 3 4	1.000000e+00 1.100000e+00 1.200000e+00 1.300000e+00 1.400000e+00 1.500000e+00	3.766180e+08 5.707420e+08 7.743350e+08 9.790170e+08 1.179930e+09 1.374110e+09
6 7 8	1,600000e+00 1,700000e+00 1,800000e+00	1.559690e+09 1.735530e+09 1.901010e+09

Data Points