

BIG DATA

(briem.lars@googlemail.com)

Duale Hochschule Baden Württemberg - Standort Karlsruhe

Gliederung

Motivation

Lambda Architektur

Datenmodell

Batch Schicht

Abfrage Schicht

Echtzeit Schicht

Fazit

Literatur / Quellen

Gliederung

Motivation

Lambda Architektur

Datenmodell

Batch Schicht

Abfrage Schicht

Echtzeit Schicht

Fazi

Literatur / Quellen

OHBW Karlsruhe 3 / 98

Anwendungsbeispiel

Webanalyse

Gegeben eine kleine Webanwendung mit verschiedenen Seiten. Führen Sie eine kleine Statistik, welche Seite wie oft aufgerufen wurden.

Einfachste Lösungsmöglichkeit?

Probleme im Beispiel

- Komplexität des Systems
- ► Inkrementelles System
 - Betriebsbedingte Komplexität
 - ► Konsistenz erzielen
- ▶ Fehlende Fehlertoleranz

 \Rightarrow Wie können Besucher anstelle von Seitenaufrufen gezählt werden?

Was ist Big Data

Anforderungen an ein Big Data System

- Robustheit / Fehlertoleranz
 - Ausfallsicherheit
 - ▶ Konsistenz
 - ▶ Menschliche Fehler
- Abfragen und Aktualisierungen in kurzer Zeit
 - ► Unterschiedliche Wartezeiten
- Skalierbarkeit
 - Linear
- Generalisierung

Anforderungen an ein Big Data System

- Erweiterungsmöglichkeit
- Ad hoc Abfragen
- Minimaler Wartungsaufwand
 - ► Einfache Komponenten
 - Keine Komplexität im Anwendungskern
- Möglichkeit zur Fehlersuche
 - ► Rückverfolgung wie Werte entstehen

Gliederung

Motivation

Lambda Architektur

Datenmodell

Batch Schicht

Abfrage Schicht

Echtzeit Schicht

Fazi:

Literatur / Quellen

Gegeben: Menge von Daten

Gesucht: Antwort auf eine Abfrage

Gegeben: Menge von Daten

Gesucht: Antwort auf eine Abfrage

Abfrage = Funktion(alle Daten)

Gegeben: Menge von Daten

Gesucht: Antwort auf eine Abfrage

Batch View = Funktion(alle Daten) Abfrage = Funktion(Batch View)

Gegeben: Menge von Daten

Gesucht: Antwort auf eine Abfrage

Batch View = Funktion(alle Daten) Abfrage = Funktion(Batch View)

Eigenschaften die Batch + Abfrage Schicht erfüllen

- Robustheit / Fehlertoleranz
- Skalierbarkeit
- Generalisierung
- ► Erweiterungsmöglichkeit
- ▶ Ad hoc Abfragen
- Minimaler Wartungsaufwand
- ► Möglichkeit zur Fehlersuche

Probleme

- ▶ Berechnung von Batch View zeitintensiv
- Späte Berücksichtigung neuer Daten

Gegeben: Menge von Daten

Gesucht: Antwort auf eine Abfrage

Batch View = Funktion(alle Daten) Abfrage = Funktion(Batch View)

Gegeben: Menge von Daten

Gesucht: Antwort auf eine Abfrage

Batch View = Funktion(alle Daten)

Echtzeit View = Funktion(Echtzeit View, neue Daten)

Abfrage = Funktion(Batch View, Echtzeit View)

Lambda Architektur

Lambda Architektur

Gliederung

Lambda Architektur

Datenmodell

Batch Schicht

Abfrage Schicht

Echtzeit Schicht

Informationen Ansammlung von Wissen

Daten Nicht ableitbare Information. "Axiom"

der Datenverarbeitung.

Abfragen Abfragen basierend auf allen Daten.

Views Aus den Daten abgeleitete

Informationen. Spezialisierte Sicht auf

die Daten.

Informationen Ansammlung von Wissen

Daten Nicht ableitbare Information. "Axiom"

der Datenverarbeitung.

Abfragen Abfragen basierend auf allen Daten.

Views Aus den Daten abgeleitete

Informationen. Spezialisierte Sicht auf

die Daten.

3

Informationen Ansammlung von Wissen

Daten Nicht ableitbare Information. "Axiom"

der Datenverarbeitung.

Abfragen Abfragen basierend auf allen Daten.

Views Aus den Daten abgeleitete

Informationen. Spezialisierte Sicht auf

die Daten.

Informationen Ansammlung von Wissen

Daten Nicht ableitbare Information. "Axiom"

der Datenverarbeitung.

Abfragen Abfragen basierend auf allen Daten.

Views Aus den Daten abgeleitete

Informationen. Spezialisierte Sicht auf

die Daten.

Rohdaten

Wie roh sollen die Daten sein?

- ▶ So roh wie möglich
- Entfernen von nicht benötigten Daten
 - ▶ JavaScript
 - Stylesheet
 - **.** . . .
- Semantische Normalisierung reduziert Möglichkeiten
- Einfaches Parsen ist möglich

Unveränderlichkeit der Daten

- Kein "Update" wie in inkrementellen Systemen
- ► Toleranz gegenüber menschlichen Fehlern
 - ► Menschen machen Fehler
 - ▶ Fehler können Daten zerstören
 - Unveränderliche Daten nicht löschbar
- ► Finfaches Modell
 - Keine Indexierung nach Änderung (da keine Änderung)
 - Nur Möglichkeit zum Hinzufügen notwendig

Zeitangabe bei jedem Eintrag (Timestamp)

Fakten basiertes Datenmodell

- ▶ Fakt
 - ▶ Atomar
 - ▶ Mit Zeitangabe
 - ▶ Identifizierbar

- + Vergangenheit abfragbar
- + Fehlertolerant
- + Teilweise Informationen ausreichend
- + Kombination aus normalisierten und denormalisierten Daten

Fakten basiertes Datenmodell

:		:
Max	besucht dhbw.de	2010-12-11 09:34:15
Lena	besucht dhbw.de	2010-12-12 12:15:31
Benutzer 123	besucht dhbw.de	2010-12-13 21:43:06

Fakten basiertes Datenmodell

:	1	:
Max	besucht dhbw.de	2010-12-11 09:34:15
Lena	besucht dhbw.de	2010-12-12 12:15:31
Benutzer 123	besucht dhbw.de	2010-12-13 21:43:06
Benutzer 123	Anmeldung (Max)	2010-12-13 21:58:06

Gliederung

Lambda Architektur

Datenmodell

Batch Schicht

Abfrage Schicht

Echtzeit Schicht

Lambda Architektur - Batch Schicht

DHBW Karlsruhe 22 / 98

Batch Schicht - Aufgabe

- Verwaltung Master Datensatz
- ► Berechnung über alle Daten
- ► Berechnung von Batch Views

DHBW Karlsruhe 23 / 98

Datenspeicherung

Anforderungen an den Datenspeicher

- ► Anhängen neuer Daten
- ► Kein Verändern bestehender Daten
- Skalierbar
- ▶ Paralleles Lesen

DHBW Karlsruhe 24 / 98

Verteilte Dateisysteme am Beispiel von HDFS

Komponenten

Master Knoten zur Speicherung von Metadaten zu den Dateien (Namenode) Slave Knoten enthält die Blöcke der einzelnen Dateien (Datanode)

DHBW Karlsruhe 25 / 98

Verteilte Dateisysteme am Beispiel von HDFS

Komponenten

Master Knoten zur Speicherung von Metadaten zu den Dateien (Namenode) Slave Knoten enthält die Blöcke der einzelnen Dateien (Datanode)

DHBW Karlsruhe 25 / 98

Speichern von Dateien

Speichern von Dateien

Speichern von Dateien

Speichern von Dateien

Zugriff auf Block:

Master logs.txt

1, 3, 4

1, 2, 4

1, 2, 3

2, 3, 4

Slave 1

Slave 2

Slave 3

Slave 4

Verteilte Dateisysteme

- Dateien werden in Blöcke aufgeteilt
- Blöcke werden auf verschiedenen Knoten gespeichert
 - ► Typischerweise 3
- + Skalierbarkeit
- + Paralleles Verarbeiten
- + Fehlertoleranz

Komplexer als lokales Dateisystem

Vertikale Teilung der Daten

- Berechnung in Batch Schicht aufwendig
- Nicht alle Berechnungen benötigen alle Daten
- Steigerung der Effizienz durch sinnvolle Filterung
- Baumstrukur optimiert Zugriffszeit

Vertikale Teilung der Daten

- Berechnung in Batch Schicht aufwendig
- ▶ Nicht alle Berechnungen benötigen alle Daten
- Steigerung der Effizienz durch sinnvolle Filterung
- Baumstrukur optimiert Zugriffszeit

Anmeldedaten einer Website

- Verzeichnis pro Tag / Stunde
- Je nach Größe mehrere Dateien.

Vertikale Teilung der Daten - Beispiel

Verzeichnisstruktur

- ► Logins
 - ▶ 2015-02-09
 - ► logins-2015-02-09-part1.txt
 - ▶ logins-2015-02-09-part2.txt
 - ▶ logins-2015-02-09-part3.txt
 - **▶** 2015-02-10
 - ▶ logins-2015-02-10-part1.txt
 - ▶ logins-2015-02-10-part2.txt
 - ▶ logins-2015-02-10-part3.txt
 - ▶ logins-2015-02-10-part4.txt
 - ▶ logins-2015-02-10-part5.txt

Neuberechnung bei neuen Daten

Möglichkeiten zur Aktualisierung der Batch Views

- Komplett neu berechnen
- ▶ Inkrementell neu berechnen

Performance

- ► Komplette Berechnung benötigt mehr Zeit
- Inkrementelle Berechnung benötigt mehr Speicher

DHBW Karlsruhe 31 / 98

Neuberechnung bei neuen Daten

Toleranz gegenüber menschlichen Fehlern

- Bug beheben und komplette Berechnung starten
- Bug beheben und Fehler in den berechneten Daten suchen

Welche Variante?

- Algorithmus zur kompletten Neuberechnung immer notwendig
- ► Zusätzlich evtl. noch inkrementelle Version

Pause

DHBW Karlsruhe 33 / 98

MapReduce Konzept

- Skalierbare Verarbeitung
- ► Aufteilung in Phasen
 - ► Parallele Verarbeitung innerhalb der Phasen

MapReduce Phasen

- Map Umwandlung der Eingabe in Zwischenergebnisse
- Shuffle Sortieren und Gruppieren der Daten nach dem Key
- Reduce Reduzieren der Zwischenergebnisse mit gleichem Key auf weniger Werte (typ. 1)

```
map: (k_1, v_1) \rightarrow \textit{list}(k_2, v_2)
shuffle: \textit{list}(k_2, v_2) \rightarrow (k_2, \textit{list}(v_2))
reduce: (k_2, \textit{list}(v_2)) \rightarrow \textit{list}(k_3, v_3)
```

DHBW Karlsruhe 35 / 98

Datei

Ein Mann läuft.
:
Eine Person kauft eine Lampe.
:
Ein Kind spielt.

DHBW Karlsruhe 36 / 98

DHBW Karlsruhe 36 / 98

- 0, Ein Mann läuft.
- 101, Eine Person kauft eine Lampe.
- 234, Ein Kind spielt.

0, Ein Mann läuft.

101, Eine Person kauft eine Lampe.

234, Ein Kind spielt.

Мар

```
ein, 1
mann, 1
läuft, 1
```

```
eine, 1
person, 1
kauft, 1
eine, 1
lampe, 1
```

```
ein, 1
kind, 1
spielt, 1
```

DHBW Karlsruhe 38 / 98

DHBW Karlsruhe 38 / 98

DHBW Karlsruhe 38 / 98

Beispiel: Zählen von Wörtern - Quellcode

Map Phase

```
map(String key, String value):
  for each word in value.split(" "):
    emit(word, "1");
```

DHBW Karlsruhe 39 / 98

Beispiel: Zählen von Wörtern - Quellcode

Map Phase

```
map(String key, String value):
  for each word in value.split(" "):
    emit(word, "1");
Reduce Phase
reduce (String key, Iterator values):
  int result = 0;
  for each value in values:
    result += value;
```

emit(key, result);

DHBW Karlsruhe 39 / 98

Verarbeiten von log.txt:

Master logs.txt:

1, 3, 4

1, 2, 4

Slave 1

Slave 3

Slave 2

Slave 4

Verarbeiten von log.txt:

Auswahl der Slaveknoten

Master logs.txt:

1, 3, 4 1, 2, 4

Slave 1

Slave 2

Verarbeiten von log.txt:

Map Code berechnen

Map Ausgabe

Map Ausgabe

- Lokalisierung der Dateiblöcke
- 2. Verteilen des Map Codes auf die Knoten
- 3. Ausführen und Zwischenspeichern der Map Ausgabe
- 4. Weitergeben von Referenzen auf die Daten an die jeweiligen Reduce Tasks (Shuffle)
- 5. Sortieren / Gruppieren der Daten (Shuffle)
- Ausführen des Reduce Codes und Speichern der Ausgabe

Hands-on

Aufgabe: Matrix Multiplikation mit MapReduce

Gegeben:
Matrix M mit I Spalten
Matrix N mit I Teilen

- ► In wie viele Map und Reduce Tasks kann das Problem zerlegt werden?
- Was wird in den einzelnen Map und Reduce Tasks gemacht?

DHBW Karlsruhe 43 / 98

Job Größe und Skalierbarkeit

- Skalierbarkeit direkt eingebaut
- Task Größe abhängig von Teilung der Daten
- Kleinere Tasks besser als größere Tasks
- Typischerweise deutlich mehr Map/Reduce Tasks als Worker (Server)

▶ Beispiel von Google (2004)

Map Tasks 200.000 Reduce Tasks 5.000

Worker 2.000

DHBW Karlsruhe 44 / 98

Probleme und Fehlertoleranz

Probleme

- Reduce Job muss auf langsamen Worker warten
- ► Map/Reduce Task stürzt ab
- Ausfall eines Rechners
 - Master
 - ► Slave

Probleme und Fehlertoleranz

Probleme

- Reduce Job muss auf langsamen Worker warten
- ► Map/Reduce Task stürzt ab
- Ausfall eines Rechners
 - Master
 - ▶ Slave

Lösung

- ► Backup Tasks / Spekulative Ausführung
- Neu berechnen auf anderem Knoten

- Map Task erzeugt evtl. viele Daten
 - ► Zählen von Wörtern: Mehrfach der gleiche Eintrag
- Daten werden für Reduce Task über das Netzwerk transportiert
- Erzeugt viel Last im Netzwerk und verlangsamt die Berechnung
- ⇒ Combiner reduziert Datenmenge auf der Map Seite
- ⇒ Combiner kann nicht immer verwendet werden

DHBW Karlsruhe 47 / 98

Мар

ein, 1 mann, 1 läuft, 1

eine, 1 person, 1 kauft, 1 eine, 1 lampe, 1

ein, 1 kind, 1 spielt, 1 Shuffle

OHBW Karlsruhe 47 / 98

DHBW Karlsruhe 47 / 98

DHBW Karlsruhe 47 / 98

Pipe Diagramme

Probleme mit MapReduce

- Komplexität von MapReduce Jobs
- Zusammensetzen verschiedener MapReduce Jobs komplex

⇒ Pipe Diagramme vereinfachen die Darstellung

DHBW Karlsruhe 48 / 98

Pipe Diagramme - Bestandteile

Tupel Key-Value Paar

Funktionen/Filter Betrachten einzelne Tupel und

wenden beliebige Transformation

auf Tupel an

Aggregatoren Betrachten eine Menge an Tupeln

und wenden eine beliebige Funktion

darauf an

Gruppierung Values mit dem gleichen Key in einer

Menge zusammenfassen

Joins Kombination von Daten vgl. SQL

Merges Code wird auf verschiedenen

Datensätzen ausgeführt

DHBW Karlsruhe 49 / 9

Pipe Diagramme - Beispiel Zählen von Wörtern

Pipe Diagramme - Beispiel Zählen von Wörtern

Pipe Diagramme - Beispiel Zählen von Wörtern

MapReduce - Demo

Live Demo

Gliederung

Lambda Architektur

Datenmodell

Batch Schicht

Abfrage Schicht

Echtzeit Schicht

Lambda Architektur - Abfrage Schicht

Abfrage Schicht - Aufgabe

- ▶ Index Erstellung
- Schneller Zugriff auf Batch Views
- ▶ Beantwortung in Echtzeit

Abfrage Schicht - Performanz

- Verteilte Schicht
- ▶ Wartezeit
 - Server haben unterschiedliche Antwortzeiten
 - Wartezeit entspricht langsamstem Server
 - ▶ Viele Server = Hohe Wahrscheinlichkeit für langsamen Server
- ▶ Durchsatz
 - ► Abhängig von Zugriffszeit auf Festplatte
 - Suchen langsamer als Lesen
- ⇒ Daten nicht zufällig verteilen
- ⇒ Daten für gleiche Abfrage nebeneinander speichern

Normalisierung / Denormalisierung

- Normalisierung
 - Daten "sauber" getrennt
 - Änderung einfach
 - Join in Abfragen zeitaufwendig
- Denormalisierung
 - Redundante Datenhaltung
 - Änderung aufwendig
 - ▶ Kein Join → Schnellere Abfragen

Problem

⇒ Bei relationalem System muss Entwickler vorher Verhältnis abwägen

Normalisierung / Denormalisierung

Lösung durch Batch / Abfrage Schicht

- Master Datensatz normalisiert
- ► Batch View/Abfrage Schicht denormalisiert
- ► Redundante Daten in Abfrage Schicht ungefährlich

Bei Fehler wird Abfrage Schicht neu berechnet

Abfrage Schicht - Anforderungen

- Batch beschreibbar
 - Auswechseln wenn neue Batch Views verfügbar sind
- Skalierbar
 - ► Batch Views können beliebig groß sein
- ▶ Zufälliges Lesen
 - Kurze Wartezeit bei Abfragen
- Fehlertolerant
- Kein Zufälliges Schreiben
 - Extreme Reduzierung der Komplexität

⇒ Beispiel Datenbanken: Voldemort oder ElephantDB

Gliederung

Lambda Architektur

Datenmodell

Batch Schicht

Abfrage Schicht

Echtzeit Schicht

Lambda Architektur - Echtzeit Schicht

Echtzeit Schicht - Überblick

Fehlende Anforderung

- Batch Schicht langsame aber einfache Berechnung
- Abfrage Schicht schnelle Abfragen auf berechnete Batch Views
- ► Neue Daten seit letzter Batch Berechnung fehlend

Echtzeit Schicht - Überblick

Aufgaben

- Aktualisierung der Echtzeit Views mit neusten Daten
- ► Effiziente Speicherung der Echtzeit Views

Aktualisierung der Echtzeit Views

1. Versuch

- ▶ Wiederverwenden der Batch Schicht für neuste Daten
- ▶ Neuberechnung bei jedem neuen Datum
- + Einfacher Ansatz ohne Redundanz im Quellcode
- + Ausreichend bei wenigen Minuten Reaktionszeit
- Reaktionszeit größer als 1 Sekunde
- Unnötige Berechnungen

OHBW Karlsruhe 63 / 98

Aktualisierung von Echtzeit Views

2. Versuch

- Wiederverwendung bereits berechneter Echtzeit Views
- ► Inkrementelle Berechnung (vgl. RDBMS)

Consistency Konsistenz Availability Verfügbarkeit

Partition-tolerance Toleranz gegenüber Verteilung

⇒ Nur 2 von 3 möglich

Consistency Konsistenz Availability Verfügbarkeit

Partition-tolerance Toleranz gegenüber Verteilung

⇒ Nur 2 von 3 möglich

Consistency Konsistenz Availability Verfügbarkeit

Partition-tolerance Toleranz gegenüber Verteilung

⇒ Nur 2 von 3 möglich

Consistency Konsistenz Availability Verfügbarkeit

Partition-tolerance Toleranz gegenüber Verteilung

⇒ Nur 2 von 3 möglich

Anforderungen

- ▶ Zufälliges Lesen
- ▶ Skalierbarkeit
- ▶ Fehlertoleranz

Anforderungen

- ▶ Zufälliges Lesen
- ▶ Skalierbarkeit
- ► Fehlertoleranz
- Zufälliges Schreiben

OHBW Karlsruhe 66 / 98

Genauigkeit

- Gleiche Repräsentation der Daten wie in Batch Schicht
- Schätzungen der Werte
 - ► Reduziert Resourcenverbrauch

⇒ Batch Schicht korrigiert Schätzfehler mit der Zeit

Speichermenge

- Kontinuierliches Speicheraufräumen (online compaction)
- ▶ Nebenläufigkeit
- ⇒ Gleiche Komplexität wie voll inkrementelles System
- ⇒ Komplexität nur in kleinem Teil der Daten

Welche Daten sind in einem Echtzeit View

► Noch nicht in Batch View integrierte Daten

Welche Daten sind in einem Echtzeit View

► Noch nicht in Batch View integrierte Daten

Abfrage Echtzeit

Start der Anwendung, keine Daten vorhanden

Welche Daten sind in einem Echtzeit View

▶ Noch nicht in Batch View integrierte Daten

Abfrage	
Echtzeit	

Batch Berechnung ohne Daten fertig.
 Echtzeit Schicht enthält alle Daten.
 Batch Berechnung mit ersten Daten starten.

Welche Daten sind in einem Echtzeit View

► Noch nicht in Batch View integrierte Daten

Abfrage	
Echtzeit	

2. Batch Berechnung fast fertig.Echtzeit Schicht enthält Daten von1. und 2. Batch Berechnung.

Welche Daten sind in einem Echtzeit View

► Noch nicht in Batch View integrierte Daten

2. Batch Berechnung fertig.

Welche Daten sind in einem Echtzeit View

► Noch nicht in Batch View integrierte Daten

Abfrage	
Echtzeit	

Daten aus Echtzeit Schicht gelöscht.

Synchron

- Direkte Kommunikation zur Datenbank
- ► Blockierung bis Aktualisierung fertig

Synchron

- ▶ Direkte Kommunikation zur Datenbank
- ► Blockierung bis Aktualisierung fertig

+ Schnell

- Kein Ausgleich von Lastspitzen

OHBW Karlsruhe 70 / 98

Asynchron

- Aktualisierung wird an Warteschlange übergeben
- ► Tatsächliche Aktualisierung passiert später
- + Höherer Durchsatz
- + Besseres Handling von Lastspitzen
- Keine Kontrolle über Ausführungszeitpunkt

⇒ Vorteilhafter als synchrone Verarbeitung

- Puffer zwischen Eingabe und Verarbeitung
- Verarbeitetes Element wird "konsumiert"

- Puffer zwischen Eingabe und Verarbeitung
- Verarbeitetes Element wird "konsumiert"

```
interface Queue {
  void add(Object item);
  Object poll();
  void acknowledge(Object item);
}
```

- Puffer zwischen Eingabe und Verarbeitung
- Verarbeitetes Element wird "konsumiert"

```
interface Queue {
  void add(Object item);
  Object poll();
  void acknowledge(Object item);
}
```

add Hinzufügen neuer Elementepoll Aktuelles Element abfragen und auf in Bearbeitung setzen

acknowledge Erfolgreiche Bearbeitung bestätigen

Anwendung

Verarbeitung)

Verarbeitung

Anwendung

Anwendung

Anwendung

Anwendung

5 4 3 2

Timeout

Anwendung

Anwendung

Warteschlange mit mehreren Anwendungen?

Warteschlange mit mehreren Anwendungen?

⇒ Sicherstellen, dass jedes Element von jeder Anwendung verarbeitet wird

⇒ Zu viele Aufgaben bei Warteschlange

Besser

- Warteschlange enthält Elemente der letzten X Stunden
- Anwendung kann beliebige Elemente abfragen
- Anwendung verwaltet, welche Elemente erfolgreich abgearbeitet wurden

Besser

- Warteschlange enthält Elemente der letzten X Stunden
- Anwendung kann beliebige Elemente abfragen
- Anwendung verwaltet, welche Elemente erfolgreich abgearbeitet wurden

OHBW Karlsruhe 76 / 98

Stream basierte Verarbeitung

Stream basierte Verarbeitung

- Strom von Daten (Stream)
- Umwandlung und Ausgabe der Daten als Strom
- ▶ Beispiel
 - ▶ Java InputStream

Arten stream basierter Verarbeitung

Eins nach Jedes Tupel getrennt verarbeiten

dem Anderen

Micro Batch Mehrere Tupel zusammen verarbeiten

Arten stream basierter Verarbeitung

Eins nach Jedes Tupel getrennt verarbeiten dem Anderen Micro Batch Mehrere Tupel zusammen verarbeiten

	"Eins nach	Micro Batch
	dem Anderen"	
Kurze Wartezeit	X	
Hoher Durchsatz		X
Mindestens einmal	X	X
Genau einmal	evtl.	X

Eins nach dem Anderen oder Storm Modell

- Benannt nach Apache Storm Projekt
- Verarbeitet unbegrenzten Strom von Tupeln

Bestandteile

Spout Quelle von Tupeln

Bolt Verarbeitung von Streams und Ausgabe neuer Streams

Topology Netzwerk aus Spouts und Bolts

Task Instanz von Spout oder Bolt

DHBW Karlsruhe 80 / 98

Eins nach dem Anderen oder Storm Modell

DHBW Karlsruhe 81 / 98

Verteilung der Tupel auf nachfolgende Bolts

- Analog wie bei MapReduce
 - "fields grouping"
- ▶ Zufällig
 - "shuffle grouping"

DHBW Karlsruhe 82 / 98

Garantierte Berechnung jedes Tupels

Problem

- Ausfall von Worker
- Tupel wird nicht fertig berechnet
- ▶ Teil oder alles muss wiederholt werden
- Eventuell mehrfach in Echtzeit View

DHBW Karlsruhe 83 / 98

Garantierte Berechnung jedes Tupels

Lösung

- Tupel Verarbeitung als gerichteter azyklischer Graph (DAG)
- ▶ Überwachen der Tupel im DAG
- Bei Fehler komplettes Tupel neu bearbeiten

⇒ Garantiert Berechnung mindestens 1 Mal

Garantierte Berechnung jedes Tupels - Beispiel

Tupel DAG für "Zählen von Wörtern"

DHBW Karlsruhe 85 / 98

Stream basierte Verarbeitung - Demo

Live Demo

- Menge von Tupeln zusammen verarbeiten
- + Höhere Genauigkeit
- + Garantiert Berechnung genau 1 Mal
- Größere Wartezeit
- Festgelegte Reihenfolge der Tupel

- Tupel zu Menge zusammenfassen (Batch)
- ▶ Jeder Batch erhält eine ID
- Ergebnis der Berechnung mit Batch ID in Datenbank ablegen
- ▶ Atomare Transaktion

- Tupel zu Menge zusammenfassen (Batch)
- ▶ Jeder Batch erhält eine ID
- Ergebnis der Berechnung mit Batch ID in Datenbank ablegen
- ▶ Atomare Transaktion

- Tupel zu Menge zusammenfassen (Batch)
- ▶ Jeder Batch erhält eine ID
- Ergebnis der Berechnung mit Batch ID in Datenbank ablegen
- ▶ Atomare Transaktion

Beispiel: Ausfall von Update Worker

Batch 2 wird nach Timeout nochmal neu berechnet

Wort	ID	Anzahl
ein	2	489
eine	1	135
lampe	2	876

Beispiel: Ausfall von Partition / Spout

Partition fällt während Verarbeitung von Batch 2 aus

Wort	ID	Anzahl
ein	1	364
eine	1	135
lampe	1	765

Verarbeitungsarten

- ► Innerhalb eines Batches (Batch-Local)
 - ► Benötigt nur Informationen des aktuellen Batches
 - Verarbeitung wie im Storm Modell
- ▶ Über mehrere Batches (Stateful)
 - Globaler Zustand wichtig
 - ► Speicherung mit Batch ID

Erweiterung von Pipe Diagrammen

► Zustandsspeicher hinzufügen

Micro Batch basierte Verarbeitung - Demo

Live Demo

Gliederung

Motivation

Lambda Architektur

Datenmodell

Batch Schicht

Abfrage Schicht

Echtzeit Schicht

Fazit

Literatur / Quellen

Lambda Architektur - Fazit

- + Erfüllt die Anforderungen an ein Big Data System
 - + Fehlertoleranz
 - + Skalierbarkeit
 - + ...
- + Neuberechnung der Daten explizit integriert
- + Reduzierung der Komplexität auf wenige Daten
- Getrennte Frameworks f
 ür Batch und Echtzeit Schicht
 - Programmierung für beide Frameworks
 - Wartung mehrerer Systeme
- Abstraktion aktuell noch nicht ausreichend

Lambda Architektur - Ausblick

- Inkrementelle Berechnung von Batch Views
- ▶ Partielle Neuberechnung
 - ▶ Teil von Batch View neuberechnen, der sich ändert
 - ▶ Rest von altem Batch View übernehmen
- Probabilistische Verarbeitung
 - ▶ z.B. Bloom Filter
- Mehrere Batch Schichten kombiniert
 - Komplette Daten (1 Monat)
 - Partielle Aktualisierung (wenige Stunden)

Gliederung

Motivation

Lambda Architektur

Datenmodell

Batch Schicht

Abfrage Schicht

Echtzeit Schicht

Fazi

Literatur / Quellen

Literatur

- Nathan Marz, James Warren
- Manning
- ► ISBN: 978-1617290343

► Hadoop: The Definitive Guide

- ► Tom White
- ▶ O'Reilly
- ► ISBN: 978-1449311520

Quellen

▶ Internet

- MapReduce: simplified data processing on large clusters - Jeffrey Dean, Sanjay Ghemawat
- datasciencecentral.com
- http://www.emc.com/leadership/digitaluniverse/2014iview/executive-summary.htm
- manning.com
- ▶ oreilly.com
- http://www.infoq.com/interviews/marz-lambdaarchitecture
- storm.apache.org
- wikipedia.org