The Neoclassical Theory of Optimal Growth

Alpha C. Chiang (1999) - Seção 9.3

Apresentação por Fábio Nishida

Julho, 2021

O Modelo Neoclássico de Crescimento Ótimo

Modelo Neoclássico de Crescimento Ótimo (1/7)

- Extensão do modelo de Ramsey de comportamento de poupança (Seção 5.3)
- Baseado no artigo clássico de David Cass^a:
 - Formula o problema por controle ótimo, ao invés de cálculo de variações
 - A força de trabalho (população) cresce a uma taxa constante exógena n>0 (Ramsey assume n=0)
 - A utilidade social está sujeita ao desconto temporal a uma taxa constante $\rho>0$ (Ramsey assume $\rho=0$)
- Função de produção neoclássica:

$$Y = Y(K, L)$$

com retornos de escala constantes, produtos marginais positivos e retornos decrescentes para cada input.

^aDavid Cass, "Optimum Growth in an Aggregate Model of Capital Accumulation," *Review of Economic Studies*, July 1965, pp. 233–240.

Modelo Neoclássico de Crescimento Ótimo (2/7)

• A função produção, linearmente homogênea, pode ser reescrita em termos per capita:

$$y \equiv rac{Y}{L}$$
 (produto médio do trabalho) $k \equiv rac{K}{L}$ (razão capital-trabalho)

Assume-se a função de produção como

$$y = \phi(k)$$
 com $\phi' > 0$ e $\phi''(k) < 0$, $\forall k > 0$ (9.22)

Adicionalmente, assume-se

$$\lim_{k\to 0} \phi'(k) = \infty \quad \text{e} \quad \lim_{k\to \infty} \phi'(k) = 0$$

Modelo Neoclássico de Crescimento Ótimo (3/7)

• Gráfico de $\phi(k)$:

FIGURE 9.1

Modelo Neoclássico de Crescimento Ótimo (4/7)

• O output total Y é alocado em consumo C ou investimento bruto I_g , logo, investimento líquido, $I = \dot{K}$, pode ser escrito como

$$\dot{K} = I_g - \delta K = Y - C - \delta K$$
 ($\delta = \text{taxa de depreciação}$)

• Dividindo \dot{K} por L, e definindo $c \equiv C/L$ para consumo per capita, temos

$$\frac{1}{L}\dot{K} = y - c - \delta k = \phi(k) - c - \delta k \tag{9.23}$$

• Note que, no lado direito de (9.23), todas variáveis são per capita, enquanto no lado esquerdo não são.

Modelo Neoclássico de Crescimento Ótimo (5/7)

• Para reescrevermos a (9.23) com termos per capita, usaremos a relação

$$\dot{K} \equiv \frac{d}{dt}K = \frac{d}{dt}(kL)$$
 $(k \equiv K/L)$

$$= k\dot{L}\left(\frac{L}{L}\right) + L\dot{k}$$
 (regra do produto)
$$= knL + L\dot{k}$$
 $(n \equiv \frac{\dot{L}}{L}$ tx. crescimento do trab.)
$$= L(kn + \dot{k})$$

• Substituindo \dot{K} em (9.23), obtemos

$$\frac{1}{L}L(kn+\dot{k}) = \phi(k) - c - \delta k$$

$$\dot{k} = \phi(k) - c - (n+\delta)k \tag{9.24}$$

Modelo Neoclássico de Crescimento Ótimo (6/7)

- \bullet \dot{k} descreve como a razão capital-trabalho, k, varia ao longo do tempo
- Nível de consumo, c, determina a utilidade/bem-estar da sociedade em todo tempo
- Logo, supõe-se que a função índice de utilidade social tem as seguintes propriedades:

$$U'(c) > 0$$
 $U''(c) < 0$, $\forall c > 0$ (9.25)
 $\lim_{c \to 0} U'(c) = \infty$ e $\lim_{c \to \infty} U'(c) = 0$

• A função U(c) é somada ao longo do tempo e ponderada pelo tamanho do trabalho, L. Logo, a funcional objetivo é dada por

$$\int_{0}^{\infty} U(c)L(t)e^{-\rho t}dt = \int_{0}^{\infty} U(c)L_{0}e^{nt}e^{-\rho t}dt \qquad (L(t) = L_{0}e^{nt})$$

$$= L_{0} \int_{0}^{\infty} U(c)e^{-(\rho - n)t}dt \qquad (9.26)$$

Modelo Neoclássico de Crescimento Ótimo (7/7)

- Cass assume que $L_0 = 1$ e, para garantir convergência, que $\rho n > 0$.
- Logo, definindo $r \equiv \rho n > 0$, a funcional se reduz a

$$\int_0^\infty U(c)e^{-rt}dt\tag{9.26'}$$

Logo, o problema de crescimento ótimo é dado por

Maximizar
$$\int_0^\infty U(c)e^{-rt}dt, \quad \text{sujeito a} \begin{cases} \dot{k} = \phi(k) - c - (n+\delta)k \\ k(0) = k_0, \\ 0 \le c \le \phi[k(t)] \end{cases}$$
(9.27)

em que k é a variável de estado e c é a variável de controle.

*região de controle de c, $[0, \phi[k(t)]$, é demonstrada no slide 12

O Princípio Máximo

O Princípio Máximo (1/3)

A Hamiltoniana é dada por

$$H = U(c)e^{-rt} + \lambda[\phi(k) - c - (n+\delta)k]$$
(9.28)

• O pico de H ocorre entre c = 0 e $c = c_1$ (arbitrário)

FIGURE 9.2

O Princípio Máximo (2/3)

• Como $c = c_1$ é o consumo tal que, no $2^{\mathbf{Q}}$ termo da H (linearmente decrescente em c),

$$\phi(k)-c_1-(n+\delta)k=0,$$

segue que

$$c_1 = \phi(k) - (n + \delta)k$$

e concluímos que $c_1 < \phi(k)$ pois $(n + \delta)k > 0$.

- Logo, o c que maximiza a Hamiltoniana é interior na região de controle $[0,\phi(k)]$
- Então, podemos maximizar H por CPO

$$\frac{\partial H}{\partial c} = U'(c)e^{-rt} - \lambda = 0 \iff U'(c) = \lambda e^{rt}$$

$$\frac{\partial^2 H}{\partial c^2} = U''(c)e^{-rt} < 0 \implies \text{ponto de máximo}$$
(9.29)

O Princípio Máximo (3/3)

O princípio do máximo precisa de duas equações diferenciais:

$$\dot{\lambda} = -\frac{\partial H}{\partial k} = -\lambda [\phi'(k) - (n+\delta)] \tag{9.30}$$

$$\dot{k} = \frac{\partial H}{\partial \lambda} = \phi(k) - c - (n + \delta)k \tag{9.31}$$

- As três equações de (9.29) a (9.31) permitem resolver as três variáveis c, λ e k.
 - Porém, sem o conhecimento da forma específica de U(c) e $\phi(k)$, podemos apenas fazer uma análise qualitativa do modelo.

A Hamiltoniana de Valor Corrente

A Hamiltoniana de Valor Corrente

• Multiplicando (9.28) por e^{rt} e definindo $H_c \equiv He^{rt}$ e $m = \lambda e^{rt}$, obtemos

$$H_c = U(c) + m[\phi(k) - c - (n+\delta)k]$$
 (9.32)

• Neste caso, o princípio máximo requer que $\partial H_c/\partial c = U'(c) - m = 0$, ou seja,

$$m = U'(c) \tag{9.33}$$

que, de fato, maximiza pois $\partial^2 H_c/\partial c^2 < 0$ (por 9.25).

• As equações de movimento das variável de estado e de coestado são:

$$\dot{k} = \frac{\partial H_c}{\partial m} = \phi(k) - c - (n + \delta)k \tag{9.34}$$

$$\dot{m} = -\frac{\partial H_c}{\partial k} + rm = -m[\phi'(k) - (n+\delta)] + rm = -m[\phi'(k) - (n+\delta+r)]$$
 (9.35)

O Diagrama de Fase

O Diagrama de Fase (1/5)

- ullet Como as equações de movimento \dot{k} e \dot{m} estão no espaço $k \times m$
- Porém, como seria necessário eliminar c da equação (9.34) (e é mais complicado), eliminaremos m e faremos o Diagrama de Fase no espaço $k \times c$.
- Primeiro, vamos diferenciar a equação (9.33) em relação a t:

$$m = U'[c(t)] \stackrel{d/dt}{\Longrightarrow} \dot{m} = U''(c)\dot{c}$$

• Substituindo m e \dot{m} em (9.35), obtemos a equação diferencial de \dot{c} :

$$U''(c)\dot{c} = -U'(c)[\phi'(k) - (n+\delta+r)]$$

$$\dot{c} = -\frac{U'(c)}{U''(c)}[\phi'(k) - (n+\delta+r)]$$
(9.36)

O Diagrama de Fase (2/5)

• Para construir o diagrama de fase, começamos com o desenho das curvas quando $\dot{k}=0$ e $\dot{c}=0$, definidas por:

$$\dot{k} = 0 = \phi(k) - c - (n + \delta)k$$

$$c = \phi(k) - (n + \delta)k \qquad \text{[curva para } \dot{k} = 0\text{]}$$

$$(9.37)$$

$$\dot{c} = 0 = -\frac{U'(c)}{U''(c)} \left[\phi'(k) - (n+\delta+r)\right] \left(-\frac{U''(c)}{U'(c)}\right) \tag{a}$$

$$\phi'(k) = n + \delta + r \qquad \text{[curva para } \dot{c} = 0\text{]}$$
 (9.38)

(a) -U''(c)/U'(c) é positivo por suposição em (9.25), então expressão em colchetes precisa ser zero

O Diagrama de Fase (3/5)

O Diagrama de Fase (4/5)

FIGURE 9.3

O Diagrama de Fase (5/5)

- A interseção das duas curvas determinam os valores estacionários de k e c, denotados por \bar{k} e \bar{c} , conhecidos por valores da *regra de ouro modificada*.
- A inclinação $n + \delta$ determina os valores da *regra de ouro* do modelo de Shell (seção 9.2), o qual não considera desconto temporal.
- Como a inclinação de $\phi(k)$ da regra de ouro modificada, $n + \delta + r$, é maior do que da regra de ouro, $n + \delta$, então:

$$\bar{k} < \hat{k}$$
 e $\bar{c} < \hat{c}$

Análise do Diagrama de Fase

Análise do Diagrama de Fase (1/5)

• Para fazermos análise do diagrama de fase, precisamos saber as direções gerais a partir das equações de movimento \dot{k} (9.34) e \dot{c} (9.36):

$$\frac{\partial k}{\partial c} = -1 < 0 \tag{9.39}$$

$$\frac{\partial c}{\partial k} = -\frac{U'(c)}{U''(c)}\phi''(k) < 0 \tag{9.40}$$

pois U''(c)/U''(c) < 0 por (9.25), e $\phi''(k) < 0$ por (9.22).

- Por (9.39), quando c cresce (indo para cima), \dot{k} diminui:
 - $\dot{k}>0$ abaixo da curva $\dot{k}=0$, e $\dot{k}<0$ acima da curva $\dot{k}=0$
- Por (9.40), quando k cresce (indo para cima), \dot{c} diminui:
 - $\dot{c} > 0$ à esquerda da curva $\dot{c} = 0$, e $\dot{c} < 0$ à direta da curva $\dot{c} = 0$

Análise do Diagrama de Fase (2/5)

Análise do Diagrama de Fase (3/5)

Alpha C. Chiang (1999)

Análise do Diagrama de Fase (4/5)

Análise do Diagrama de Fase (5/5)

- Dadas as configurações das curvas $\dot{k}=0$ e $\dot{c}=0$, o estado estacionário é único.
- A constância de $ar{k}$ implica que $ar{y}=\phi(ar{k})$ também seja constante.
- Como $k \equiv K/L$ e $y \equiv Y/L$, no ponto E, temos que Y, K, e L crescem na mesma taxa.
 - condição necessária de um estado estacionário ou equilíbrio de crescimento.
- Única forma da economia ir para o estado estacionário é por meio de um dos ramos estáveis, que levam ao ponto de equilíbrio intertemporal E, (\bar{k}, \bar{c}) .
 - Isso implica que, dado uma razão capital-trabalho inicial k_0 , é necessário escolher um nível de consumo per capita c_0 , tal que (k_0, c_0) esteja em um ramo estável.
- Note que, mesmo em E, o consumo per capita permanece constante, pois assumimos uma função produção estática, Y = Y(K, L).
 - Para tornar possível o aumento do consumo per capita, precisamos incluir o progresso tecnológico (Seção 9.4)

