Junior Engineer Civil Mechanical and Electrical Examination 2023 Paper I

Exam Date	10/10/2023
Exam Time	1:00 PM - 3:00 PM
Subject	Junior Engineer 2023 Electrical Paper I

Section: General Intelligence and Reasoning Q.1 एक निश्चित कूट भाषा में, "SMOKE' को 25 और "BROWSER" को 49 के रूप में कूटबद्ध किया जाता है। उसी भाषा में "ADULTHOOD" को किस प्रकार कृटबद्ध किया जाएगा? **X** 1. 100 2.81 × 3.78 **X** 4.64 Q.2 उस सही विकल्प का चयन करें, जो निम्नलिखित शब्दों के तार्किक और सार्थक क्रम में व्यवस्थापन को इंगित करता है। 1. विशव 2. भारत 3. बैंगलोर 4. एशिया 5. कर्नाटक Ans X 1. 14235 2. 35241 × 3. 21435 × 4.35412 Q.3 दिए गए विकल्पों में से उस संख्या का चयन कीजिए, जो निम्नलिखित शंखला में प्रश्न-चिह्न (?) को प्रतिस्थापित कर सके। 4, 17, 39, 69, 117, 181, ?, 387 Ans X 1.227 × 2.222 **3**. 272 **X** 4.277 Q.4 उस शब्द-युग्म का चयन करें, जो नीचे दिए गए शब्द-युग्म में व्यक्त किए गए संबंध के समान संबंध को सर्वोत्तम ढंग से निरूपित करता है। (शब्दों को सार्थक शब्द माना जाना चाहिए, और शब्द में अक्षरों की संख्या/व्यंजनों/स्वरों की संख्या के आधार पर शब्द एक - दूसरे से . संबंधित नहीं होने चाहिए।) कुक्कुट (Poultry) :टर्की (Turkey) Ans X 1. पालक: हरा (Spinach : Green) 🗶 2. सेब : केला (Apple : Banana) 🥒 3. सब्जी: पालक (Vegetable : Spinach) 🗶 4. चिकन : मांस (Chicken : Meat) Q.5 स्वामी, लव, अखिल, अस्ण, शुभ, विवेक और ज्ञान, ये सात मित्र हैं। इनमें से प्रत्येक की आयु अलग-अलग है। अखिल केवल दो लोगों से बड़ा है। लव, स्वामी से बड़ा है। विवेक केवल तीन लोगों से बड़ा है। स्वामी केवल दो लोगों से छोटा है। ज्ञान न तो सबसे बड़ा है और न ही सबसे छोटा। लव, विवेक से बड़ा है लेकिन शुभ से बड़ा नहीं है। सबसे छोटा कौन है? 🗙 1. ज्ञान 🗶 2. શુभ 🧳 3. अस्ण 🗶 4. अखिल Q.6 उस विकल्प का चयन करें, जो तीसरे शब्द से उसी प्रकार संबंधित है, जिस प्रकार दूसरा शब्द पहले शब्द से संबंधित है। (शब्दों को सार्थक शब्दों के रूप में माना जाना चाहिए, और शब्द, उनमें अक्षरों की संख्या/व्यंजन/स्वरों की संख्या के आधार पर एक दसरे से संबंधित नहीं विचार (Idea) : ख्याल (Notion) :: रिक्त (Vacant) : ? Ans X 1. समृद्ध (Enriched) 🎻 2. खाली (Empty) 🗶 3. अपव्ययी (Squander) 🗶 4. पूर्ण (Full)

Q.7 उस विकल्प का चयन करें, जो तीसरे शब्द से उसी प्रकार संबंधित है, जिस प्रकार दूसरा शब्द पहले शब्द से संबंधित है। (शब्दों को अर्थपूर्ण शब्दों के रूप में माना जाना चाहिए, और शब्द में अक्षरों की संख्या / व्यंजन / स्वरों की संख्या के आधार पर एक दूसरे से संबंधित नहीं किसान (Peasant) : कुटीर (Cottage) :: भिक्षु (Monk) : ? 🗶 1. साधुनी (Nun) Ans 🗶 2. महल (Palace) 🗶 3. धार्मिक (Religious) 🅜 4. मठ (Monastery) Q.8 विकल्पों में से उस आकृति का चयन करें, जो प्रश्न चिहन (?) का स्थान लेकर दिए गए पैटर्न को पूरा कर सकती है। Ans Q.9 उस विकल्प का चयन कीजिए, जो तीसरे शब्द से उसी प्रकार संबंधित है, जिस प्रकार द्सरा शब्द पहले शब्द से संबंधित है। (शब्दों को अर्थपूर्ण शब्दों के रूप में माना जाना चाहिए, और शब्द में अक्षरों की संख्या / व्यंजनों / स्वरों की संख्या के आधार पर एक द्सरे से संबंधित नहीं होना चाहिए।) इंड (Hock) : अनेक (Many) :: एकांत (Solitary) : ? Ans \chi 1. गुम (Lost) \chi 2. अंतिम (Last) 🗶 3. खुश (Happy) 🥒 4. अकेला (Alone) Q.10 निम्नलिखित में से कौन-सी संख्या दी गई शृंखला में प्रश्न-चिह्न (?) के स्थान पर आएगी? 11, 75, 131, 179, 219, ? Ans X 1.243 × 2.233 **3**. 251 **X** 4.237

Q.14 एक ही पासे की दो अलग-अलग स्थितियों को दिखाया गया है। यदि निचली सतह पर '2' है, तो शीर्ष पर संख्या ज्ञात कीजिए। Ans X 1.1 × 2.4 **3**.5 **X** 4.3 ^{Q.15} दी गई आकृति में कितने त्रिभुज हैं? × 1.27 × 2.24 × 3.23 **4**. 25 Q.16 उस समुच्चय का चयन कीजिए, जिसमें संख्याएं उसी प्रकार संबंधित हैं जिस प्रकार निम्नलिखित समुच्चय की संख्याएं संबंधित हैं। (नोट: संख्याओं को उसके घटक अंकों में विभाजित किए बिना, पूर्ण संख्याओं पर ही गणितीय संक्रियाएँ की जानी चाहिए। जैसे 13 - मान लीजिए 13 पर गणितीय संक्रियाएँ जैसे कि 13 में जोड़ना/घटाना/गुणा करना आदि किया जा सकता है। 13 को 1 और 3 में तोड़कर और फिर 1 और 3 पर गणितीय संक्रियाएँ करने की अनुमति नहीं है।) (4, 13, 5)(2, 13, 9)**Ans** X 1. (5, 71, 9) × 2. (5, 17, 9) 3. (5, 19, 9) **X** 4. (5, 91, 9) Q.17 एक निस्चित कूट भाषा में, "RIGHT" को "87" के रूप में कूटबढ़ किया जाता है, और "LEFT" को "59" के रूप में कूटबढ़ किया जाता है। उसी भाषा में "CENTRE" को किस प्रकार क्टबद्ध किया जाएगा? Ans × 1.90 × 2.28 **3**. 101 **X** 4. 110 Q.18 गणितीय चिहों के उस सही संयोजन का चयन कीजिए जिसे क्रिमक रूप से * के स्थान पर रखने पर दिया गया समीकरण संतुलित हो जाएगा। 15*4*5*2*10=20 1. ×÷ − + × 4.++÷× Q.19 उस विकल्प का चयन की जिए जो उन अक्षरों को निरूपित करता है, जिन्हें जब निम्न रिक्त स्थानों में क्रमिक रूप से बाएं से दाएं रखा जाएगा, तो वे अक्षर श्रृंखला को पूरा कर देंगे। Z__MI_CB_IZC_M_ZC__I X 1. CBZIBMBM X 2. CBZBMIBM X 3. CBZBIMBM √ 4. CBZMBIBM


```
Q.25 उस विकल्प का चयन करें, जो उन अक्षरों को निरूपित करता है, जिन्हें बाएं से दाएं की ओर नीचे दिए गए रिक्त स्थानों में रखे जाने पर वे
       अक्षर-शृंखला को पूर्ण करेंगे।
       _A_D_ADAA_AAD_A
Ans 🗳 1. DAADA
        X 2. DADAA
        X 3. AD AAD
        X 4. ADDAD
Q.26 एक ही पासे की तीन अलग-अलग स्थितियां दर्शाई गई हैं। '6' दर्शाने वाले फलक के विपरीत फलक पर कौन-सी संख्या होगी?
Ans × 1.4
        × 2.3
        × 3.2
         4.5
Q.27 दो कथन और उसके बाद I और II क्रमांकित दो निष्कर्ष दिए गए हैं। कथनों को सत्य मानते हुए, भले ही वे सामान्यतः ज्ञात तथ्यों से भिन्न
      प्रतीत होते हों, निर्णय लीजिए कि कौन-से निष्कर्ष कथनों का तार्किक रूप से पालन करते हैं?
       कथन:
       कुछ अपार्टमेंट, बंगले हैं।
       कुछ बंगले, फ्लैट हैं।
       निष्कर्ष:
       l. कुछ अपार्टमेंट, फ्लैट हैं।
       II. कुछ फ्लैट, बंगले हैं।
Ans 💢 1. निष्कर्ष । और ॥ दोनों पालन करते हैं
         🥒 2. केवल निष्कर्ष II पालन करता है
        \chi 3. केवल निष्कर्ष | पालन करता है
        \chi 4. न तो निष्कर्ष | न ही || पालन करता है
Q.28 दिए गए समीकरण को सही बनाने के लिए किन दो चिह्नों को आपस में बदला जाना चाहिए?
       167 + 85 - 5 \times 4 \div 36 = 199
🗶 2. × और +
        🗶 3. ÷ और ×
         🎻 4. ÷ और –
Q.29 कौन-सा अक्षर-समूह दी गई शृंखला में प्रश्न चिह (?) के स्थान पर आकर शृंखला को पूर्ण करेगा??
       PJVG, VBZB, BTDW, HLHR,?
Ans X 1. MDLM
        × 2. MDLN
         J. NDLM
        X 4. NDLN
Q.30 उस विकल्प का चयन की जिए जो पांचवें पद से उसी प्रकार संबंधित है जिस प्रकार द्सरा पद, पहले पद से संबंधित है और चौथा पद, तीसरे
       पद से संबंधित है।
       9:99:12:168::15:?
       1. 255
Ans
        × 2.225
        X 3.250
        X 4. 205
```

```
Q.31 रवीना अपने घर से निकलती है, और 55 m पूर्व की ओर चलती है। फिर वह दाएं मुझती है, और 24 m चलती है। वह फिर से दाएं मुझती
      है, और 68 m चलती है। अंततः वह बाएं मुड़ती है, और 16 m चलती है। वह उस खंभे से कितनी दूर है, जो उसके घर से ठीक 40 m
      दक्षिण में है?
      (मान लीजिए कि सभी मोड़ केवल 90° वाले मोड़ है।)
Ans X 1.44 m
        🥜 2. 13 m
       × 3.33 m
       × 4.27 m
Q.32 उस समुच्चय का चयन कीजिए जिसमें संख्याएँ उसी प्रकार संबंधित हैं जिस प्रकार निम्नलिखित समुच्चयों की संख्याएँ एक न्दूसरे से
      संबंधित हैं।
      (नोट: संख्याओं को उसके घटक अंकों में विभाजित किए बिना, पूर्ण संख्याओं पर संक्रिया की जानी चाहिए। उदाहरण के लिए 13 -
      संक्रिया जैसे कि जोड़ना/घटाना/गुणा करना आदि को 13 पर किया जा सकता है। 13 को 1 और 3 में तोड़कर और फिर 1 और 3 पर
      गणितीय संक्रियाएँ करने की अनुमति नहीं है)
      (5, 9, 27)
      (9, 15, 47)
Ans X 1. (13, 7, 38)
        2. (18, 5, 45)
       X 3. (6, 11, 35)
       x 4. (14, 9, 54)
Q.33 दर्पण को नीचे दिखाए अनुसार 'PQ' पर रखे जाने पर दिए गए संयोजन की सही दर्पण छवि का चयन करें।
        PYETAU
PYETAU SV
       PYETAU<sub>8</sub>×
       X4 U Y T E Y 9
Q.34 एक निश्चित कुट भाषा में, "BOOTS" को "64" के रूप में कुटबद्ध किया जाता है, और "SHOES" को "69" के रूप में कुटबद्ध किया
      जाता है। उसी भाषा में "HEELS" को किस प्रकार क्टबद्ध किया जाएगा?
Ans
     X 1.64
       × 2.74
       × 3.78
        4. 86
Q.35 "%" को प्रतिस्थापित करने के लिए गणितीय चिड़ों के उस सही संयोजन का चयन कीजिए, जो निम्नलिखित समीकरण को संतुलित करता
      64 %8 %3 %6 %4 %8 %2
Ans X 1. +, ×, =,-, ÷ , +
       × 2. ×, ÷, =,-, +, ×

√ 3. ÷, ×, +, =, ×,

       X 4. ÷, ×, +, =,-, +
Q.36 उस विकल्प का चयन करें जो चौथी संख्या से उसी प्रकार संबंधित है, जिस प्रकार से पहली संख्या दूसरी संख्या से संबंधित है और पांचवी
      संख्या छठी संख्या से संबंधित है।
      12:156::?:240::22:506
Ans 🧳 1. 15
       × 2.16
       X 3.14
       X 4. 17
```

```
Q.37 एक निश्चित कूट भाषा में, "BORDER" को ESUHHV और "GLOBAL" को JPRFDP के रूप में कूटबद्ध किया जाता है। उसी भाषा
      में "LATEST" को किस प्रकार क्टबद्ध किया जाएगा?
Ans X 1. OEXJWY
        X 2. PEWUW
        X 4. PEWJVX
Q.38 यदि दर्पण को नीचे दर्शाए गए अनुसार MNपर रखा जाए, तो दी गई आकृति के सही दर्पण प्रतिबिम्ब का चयन की जिए।
       Pge45d
qge42d.1× anA
       2 d 2 4 9 g q
       X3. p2+∂8b
        Pge45d.4
Q.39 निम्नलिखित में से कौन-सी संख्याएँ दी गई शृंखला में प्रश्न-चिह्न (?) का स्थान लेगी?
      4, 17, 34, 53, ?, 105, 136, ?
Ans × 1.78, 177
        × 2. 79, 184
        X 3. 84, 190
        4. 76, 173
Q.40 उस शब्द युग्म का चयन की जिए, जिसमें दिए गए दोनों शब्द एक दूसरे से उसी तरह से संबंधित है, जिस तरह दिए गए युग्म के दोनों
      शब्द एक दूसरे से संबंधित हैं।
      (शब्दों पर सार्थक शब्द के रूप में विचार किया जाना चाहिए, और वे शब्द, शब्द में अक्षरों/व्यंजनों/स्वरों की संख्या के आधार पर एक
      दूसरे से संबंधित नहीं होने चाहिए।)
      पंखा :हवा
Ans 🗙 1. भोजन : भृख
        \chi 2. बोतल : पानी
        🧳 3. स्टोव : आग
        🗶 4. कांच : कटोरा
Q.41 उस विकल्प का चयन की जिए जो चौथे पद से उसी प्रकार संबंधित है जिस प्रकार पहला पद द्सरे पद से संबंधित है और पांचवां पद छठे पद
      से संबंधित है?
      7:18::?:30::10:24
Ans 🗼 1. 13
       X 2. 18
        X 3.28
        X 4. 10
Q.42 कौन-सा अक्षर-समृह दी गई शृंखला में प्रश्न चिह्न (?) के स्थान पर आकर शृंखला को पूर्ण करेगा?
      GZIM, HBFI, ?, JFZA, KHWW
Ans X 1. IRTY
        2. IDCE
        X 3. ICTZ
        X 4. IKBW
Q.43 छह मित्र एक वृत्ताकार स्थिति में बैठे हुए हैं। वे सभी केंद्र की ओर अभिमुख हैं। पलक, कुमुद के ठीक बगल में है। झलक, महक के बाएं
      तीसरे स्थान पर बैठी है। राहत, झलक के दाई ओर चौथे स्थान पर बैठी है। कुमुद, चहक के दाई ओर दूसरे स्थान पर बैठी है।
      महक के बाई ओर ठीक बगल में कौन बैठा है?
       🎻 1. पलक
        2. राहत
        🗶 3. चहक
        🗶 4. कुमुद
```

Q.44	किया जान	प का चयन कीजि री शब्दों के रूप में चाहिए) काशी ::मृतिका		द से उसी प्रकार संबंधित है जिस प्रकार द्सरा शब्द पहले शब्द से संबंधित है (शब्दों को हेए और शब्द में अक्षरों/व्यंजनों/स्वरों की संख्या के आधार पर एक दूसरे से संबंधित नहीं	
Ans	× 1.1	दा			
	2 .	ढालना			
	× 3.8				
	× 4. ā	त ी चड़			
Q.45	R, Pका ए	त्र है। Q, Nकी म	गता है। M, Nका	ा पति है। M, Rकी बहन का पति है। यदि O, Nका पुत्र है, तो Pका Oसे क्या संबंध है?	
Ans	X 1. a	ादा			
	× 2. t				
	3 .				
	× 4.5	ग्राचा∕ताऊ			
Q.46	कागज के कागज के	एक टुकड़े को मोड़ बुले हुए रूप से सब	डने का क्रम और में ासे अधिक मिलती	मोड़े गए कागज को काटने का ढंग नीचे दर्शाया गया है। उस आकृति का चयन करें, जो 11-जुलती हो।	
Λne			 	4	
Ans	1.	1	7		
		R			
	X	_	_		
	2.			7	
		[3	\sum		
	J	~			
	Ť	1			
			لخ		
	3			<u></u>	
	5.				
	X	_			
		R			
		1			
		[3			
	×	7			
		1	\Box		
		L	ΔN		
				J	

Q.47 उस विकल्प का चयन करें, जो उन अक्षरों को निरूपित करता है, जिन्हें नीचे दिए गए रिक्त स्थानों में क्रमिक रूप से बाएं से दाएं रखे जाने पर दी गई अक्षर शृंखला पूरी हो जाएगी। Q_R___UR_A__RLA Ans X 1. ALQUQLU × 2. RALQLAQ X 3. QLUQLAU Q.48 उस विकल्प का चयन करें जिसमें दी गई आकृति अंतर्निहित है (घुमाने की अनुमति नहीं है)। Ans 2. 3. Q.49 उस विकल्प का चयन की जिए, जो दिए गए शब्दों के उस सही क्रम में व्यवस्थापन को दर्शाता है, जिस क्रम में वे अंग्रेजी शब्दकोश में मौजूद होते हैं। 1. Opaque 2. Omission 4. Onward 5. Omnipotence **Ans** X 1. 2, 5, 4, 3, 1 2. 2, 5, 3, 4, 1 **X** 3. 2, 3, 5, 4, 1 **X** 4. 2, 5, 3, 1, 4 Q.50 यदि '+' का अर्थ '-' है, '-' का अर्थ '×' है, '×' का अर्थ ;'÷' है, '÷' का अर्थ '+' है, तो निम्नलिखित संबंध का सही उत्तर क्या होगा? (6-20÷24)×8+6=? Ans × 1.16 **2**. 12 **X** 3. 17 **X** 4. 15

Section : General Awareness

Q.1	भारतीय रिज़र्व बैंक ने था।	_ को एनबीएफसी-एमएफआई (NBFC-MR) के लिए एक व्यापक नियामक फ्रेमवर्क पेश किया
Ans	🗙 1.8 दिसंबर 2013	
	🗙 2. 10 दिसंबर 2015	
	√ 3. 2 दिसंबर 2011	
	4. 5 दिसंबर 2012	
Q.2	निम्नलिखित में से कौन वाडियार वंश वास्तुकला का एक उदाहरण है?	(Wodeyar dynasty) के 24वें शासक के लिए वर्ष 1912 में निर्मित इंडो-सरसेनिक शैली की
Ans	🗶 1. उज्जयंत पैलेस	
	🗶 2. लालगढ़ पैलेस	
	🗶 3. चौमहल्ला पैलेस	
	🥓 4. मैस्र पैलेस	
Q.3	पुना पैक्ट (Poona Pact) निम्नलि	खित में से किस वर्ग या समुदाय को प्रतिनिधित्व प्रदान करने से संबंधित था?
Ans	🗶 1. सिख	
	🥒 2. दमित वर्ग (Depressed o	dass)
	🗙 3. मुस्लिम	
	\chi 4. एंग्लो-इंडियन (Anglo-India	ın)
Q.4	भूमतीय मंतिभाव के अवस्केट 76 के	अनुसार, समय-समय पर विधिक मामलों पर भारत सरकार को सलाह देने का कर्तव्य किसका होगा?
Ans	🗙 1. महाधिवक्ता	
	🗙 2. प्रधानमंत्री	
	🗙 ४. भारत के मुख्य न्यायाधीश	
0.5		प के निचले क्षेत्रों में मध्यम से भारी वर्षा और पहाड़ी क्षेत्रों में भारी हिमपात के लिए निम्नलिखित में
Q.5	से कौन-सा कारक जिम्मेदार है?	प क । नचल क्षत्र। म मध्यम स भार। वया आर पहाड़ा क्षत्र। म भार। ।हमपात क ।लए । नम्नालाखत म
Ans	🗶 1. परम्परागत वर्षा	
	🥓 2. पश्चिमी विक्षोभ	
	🗶 3. दक्षिण पूर्वी मानसून	
	\chi ४. दक्षिण पश्चिम मानसून	
Q.6	निम्नलिखित में से किस व्यक्ति को मूल	कर्तव्यों के लाग् होने से छूट प्राप्त है?
Ans	🗶 1. जिनकी आयु 21 वर्ष से कम है	
	🗶 2. सशब्र कर्मी	
	🗶 3. सभी सरकारी अधिकारी	
	🥒 4. विदेशी, जो भारत आते हैं	
Q.7	निम्नलिखित में से किस नृत्य में मूल नृ दिशाओं में चलते हैं?	त्य संरचना एक वृत्त होती है, जो वामावर्त घुमती है, जहाँ नर्तक संकेंद्रित वृत्त बनाते हैं, जो विपरीत
Ans	🗶 1. सुगी	
	🗙 2. तमाशा	
	🗙 3. रास लीला	
	🥠 4. गरबा	
Q.8	भारत की जनगणना 2011 के अनसार	, निम्नलिखित राज्यों में से किस राज्य में कुल जनसंख्या का सबसे अधिक हिंदू जनसंख्या प्रतिश्वत
	है?	
Ans		
	2. हिमाचल प्रदेश	
	🗙 3. हरियाणा	
	🗶 4. उत्तर प्रदेश	
Q.9		नम्नलिखित में से किस घराने से संबंधित हैं?
Ans	🗶 1. लखनऊ	
	🗶 2. दिल्ली	
	🥒 3. पंजाब	
	🗙 4. फर्स्खाबाद	

```
Q.10 कोपेन की योजना के अनुसार, भारत में किस प्रकार की जलवायु को 'BShw' से निस्पित किया जाता है?
Ans 🧳 1. अर्द्ध शुष्क स्टेपी जलवायु
         🗶 2. ध्रुवीय प्रकार
          🗶 3. उष्ण मस्स्थल
          🗶 4. शुष्क ग्रीष्मकाल वाला मानसून
Q.11 एफ आईएच (HH) हॉकी पुस्त ज्नियर विश्व कप 2021 कहाँ आयोजित किया गया था?
Ans 🧳 1. भुवनेश्वर
         🗶 2. रांची
          🗙 3. कोलकाता
          🗶 4. इंदौर
Q.12 राज्य के नीति निदेशक तत्व (Directive Principles of State Policy) किस देश के संविधान से लिए गए हैं?
         🗶 2. यूनाइटेड किंगडम (UK)
          \chi 3. संयुक्त राज्य अमेरिका (US)
          🧳 ४. आयरलैंड
Q.13 2018 में शुरू किया गया पोषण अभियान किशोर लड़ कियों, गर्भवती महिलाओं, स्तनपान कराने वाली माताओं और किस आयु वर्ग के
       बच्चों की पोषण स्थिति पर केंद्रित है?
Ans \chi 1. 3-6 वर्ष
         🗶 2. 1-3 वर्ष
          🅜 3. 0-6 वर्ष
          🗶 4. 2-5 वर्ष
Q.14 स्टार्ट-अप इंडिया सीड फंड स्कीम के संबंध में निम्नलिखित में से कौन-सा कथन गलत है?
Ans 💢 1. 300 इन्क्यूबेटरों के माध्यम से लाभान्वित होने वाले लाभार्थियों की अनुमानित संख्या 3,600 स्टार्ट-अप है।
         🗶 2. इसे 2021 में लॉन्च किया गया था।
          🗙 3. इसे वाणिज्य एवं उद्योग मंत्रालय द्वारा कार्यान्वित किया जा रहा है।
          🥒 4. सीड फंड के रूप में ₹845 करोड़ प्रदान किए जाएँगे।
Q.15 सिंधु प्रणाली दुनिया की सबसे बड़ी नदी घाटियों में से एक है, इसकी कुल लंबाई भारत में कितने किलोमीटर है?
× 2.3,800 km
          × 3. 2,580 km
          × 4. 2,890 km
Q.16 पोर्टलैंड सीमेंट के मूल घटक क्या है?
Ans 1. CaOCl<sub>3</sub>, MgSO<sub>4</sub>, Al<sub>2</sub>(SO4)<sub>3</sub>, ZnSO<sub>4</sub>
         × 2. CaCl<sub>2</sub>, MgCl<sub>2</sub>, Al<sub>2</sub>(SO4)<sub>3</sub>, ZnSO<sub>4</sub>
         3. ZnSO<sub>4</sub>, CaCl<sub>2</sub>, Al<sub>2</sub>(SO4)<sub>3</sub>, CuSO<sub>4</sub>

√ 4. CaO, SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>

Q.17 मानवीय दुखों से मुक्ति पाने का अष्टांगिक मार्ग निम्नलिखित में से किस धर्म से संबंधित है?
Ans \chi 1. शैव धर्म
          🧳 2. बौद्ध धर्म
          🗶 3. जैन धर्म
          🗶 4. वैष्णव धर्म
```

```
<sup>Q.18</sup> स्तंभों का मिलान कीजिए।
                                                  कृषि के आदिम रूप का नाम
                   राज्य
              1. आंध्र प्रदेश a. पॉड्
              2. झारखंड b. कोमन
              3. ओडिशा
                                             c. कुरुवा
Ans 1. 1-a, 2-b, 3-c
        × 2. 1-c, 2-b, 3-a
        X 3. 1-b, 2-a, 3-c
         4. 1-a, 2-c, 3-b
Q.19 निम्नलिखित में से कौन-सा उपभोक्ता बिंदु पर निवल राष्ट्रीय उत्पाद का कुल मूल्य है?
Ans \chi 1. बाजार मूल्य पर सकल राष्ट्रीय उत्पाद
        🥓 2. बाजार मूल्य पर निवल राष्ट्रीय उत्पाद
        \chi 3. उपादान लागत पर निवल राष्ट्रीय उत्पाद
        \chi 4. उपादान लागत पर सकल राष्ट्रीय उत्पाद
Q.20 राष्ट्रीय संगीत, नृत्य और नाटक अकादमी - संगीत नाटक अकादमी ने नवंबर 2022 में नई दिल्ली में आयोजित अपनी सामान्य परिषद की
       बैठक में _____ को हिंदुस्तानी गायन संगीत के क्षेत्र में उस्ताद बिस्मिल्लाह खां युवा पुरस्कार 2021 से सम्मानित किया।
Ans 🗙 1. कलामंडलम आदित्यन
        🗶 2. स्द्र शंकर मिश्न
         🧳 3. जानकी मिठाईवाला
        \chi 4. पवित्र कृष्णा भट
Q.21 संविधान सभा के सदस्यों ने किस तिथि को भारत के संविधान पर अपने हस्ताक्षर किए थे?
Ans \chi 1. 22 जनवरी 1950 को
        🗶 2. 23 जनवरी 1950 को
        \chi 3. 25 जनवरी 1950 को
         🥒 4. 24 जनवरी 1950 को
Q.22 वाणिज्य और उघोग मंत्रालय द्वारा 2016 में प्रारंभ की गई स्टार्ट-अप बौद्विक संपदा संरक्षण योजना को किस वित्तीय वर्ष तक बढ़ाया गया
Ans X 1. FY 2027
        2. FY 2023
        × 3. FY 2024
        × 4. FY 2026
Q.23 निम्नलिखित में से किन खाघयोज्यों का पोषक मान होता है?
Ans \chi 1. प्रतिऑक्सीकारक
        🥒 2. पोषक संपूरक
        🗶 3. खाघ रंग
        🗶 4. परिरक्षक
Q.24 एक प्रसिद्ध भारतीय अभिनेत्री वैजयंतीमाला निम्नलिखित में से किस नृत्य शैली की भी प्रतिपादक थीं?
Ans 🧳 1. भरतनाट्यम
        🗶 2. ओडिसी
        🗶 3. कुचिपुड़ी
        × 4. कथक
Q.25 निम्नलिखित में से कौन-सा अर्ध-अवश्यक अमीनो अम्ल आपके शरीर की प्रतिरक्षा क्रिया, पाचन, नीद और यौन क्रिया में महत्वपूर्ण
       भूमिका निभाता है?
      🥓 1. हिस्ट्रीडीन
Ans
        🗶 2. ल्यूसीन
        \chi 3. आर्जिनिन
        🗶 4. वेलिन
```

Q.26	निम्नलिखित में से कौन-से सदस्य भारत के उपराष्ट्रपति के निर्वाचन में भाग लेते हैं?
Ans	🗙 1. सभी राज्यों और केंद्र शासित प्रदेशों के विधानसभा सदस्य
	🥒 2. संसद के निर्वाचित और मनोनीत सदस्य
	🗙 3. सभी राज्यों के विधानसभा सदस्य
	🗶 4. संसद के निर्वाचित सदस्य
Q.27	विजयनगर साम्राज्य की स्थापना से पूर्व, हरिहर और बुक्का निम्नलिखित में से किस राजवंश के कुलीन थे?
Ans	🧼 1. वारंगल के काकतीय
	🗶 2. बादामी के चालुक्य
	🗙 3. मदुरै के होयसल
	🗶 4. केरल के चेर
	उस्ताद विलायत खान नामक संगीत वाघयंत्र से संबंधित थे।
Ans	🗙 1. सारंगी
	× 2. तबला✓ 3. सितार
	्र 4. सरोद
Q.29	स्टेपी बायोम (steppe biome) ऑस्ट्रेलिया और अंटार्कटिका को छोड़कर सभी महाद्वीपों पर पाया जाने वाला एक सुखा, घास का मैदान है। यह मुख्य रूप से किस जलवायु में होता है?
Ans	🗶 1. अल्पाइन जलवायु
	🗙 2. उष्णकटिबंधीय जलवायु
	🧼 3. समशीतोष्ण जलवायु
	🗙 ४. महाद्वीपीय जलवायु
Q.30	निम्नलिखित में से किसने फरवरी 2022 में महात्मा गांधी राष्ट्रीय ग्रामीण रोजगार गारंटी अधिनियम के लिए लोकपाल ऐप की शुक्आत की ?
Ans	🗶 1. पर्षोत्तम स्पाला
	🗶 2. पीयूष गोयल
	🥓 3. गिरिराज सिंह
	🗙 ४. सर्वानंद सोनोवाल
_	वर्ल्ड वाइड वेब क्या है?
Ans	🗙 1. एक वेब ब्राउज़र जिसका उपयोग ऑनलाइन कंटेंट तक पहुँचने के लिए किया जाता है।
	✓ 2. इंटरनेट पर अभिगम्य वेबसाइटों और वेब पेजों का संग्रह
	 3. परस्पर जुडे कंप्यूटर नेटवर्क का एक संग्रह 4. इंटरनेट ब्राउज करने के लिए एक सॉफ्टवेयर एप्लिकेशन
Q.32	** **
Q.32	स्तम A म पहाड़िया का, स्तम B म उनक स्थाना/क्षत्रा स सुमालत काजिए।
	स्तंभ A (पहाड़ियाँ) स्तंभ B (स्थान/क्षेत्र)
	 शेवरोय पहाड़ियाँ a. पूर्वी घाट
	2. डोड्डाबेट्टा
	3. खासी पहाड़ियाँ
Ans	★ 1. 1-b, 2-a, 3-c
	✓ 2. 1-a, 2-b, 3-c
	x 3. 1-a, 2-c, 3-b
	★ 4. 1-b, 2-c, 3-a
Q.33	पोषी-गतिकी (trophic dynamics) के संदर्भ में, भेडिया, कोमोडो ड्रैगन और मगरमच्छ को के रूप में
Ans	परिभाषित किया गया है। 🗙 1. अगरदाहारी (detritivores)
AIIS	🗶 1. असदक्षा (detritivores)
	🥒 3. शीर्ष परभक्षी (apex predators)
	🗙 ४. शाकहारी

Q.34	किस जनगणना के दौरान भारत के महापंजीयक ने गणना के लिए पहली बार तीन कोड यानी पुस्प-1, महिला-2 और अन्य-3 प्रदान किए?
Ans	√ 1.2011
	× 2. 2001
	X 3. 1991
	× 4. 1981
	स्वामी विवेकानंद के संगठन ने समाज सेवा और निःस्वार्थ श्रम के माध्यम से मुक्ति के आदर्श पर बल दिया।
Ans	🗶 1. वैदिक समाज
	🗶 2. साधारण बृद्धा समाज
	√ 3. रामकृष्ण मिशन
	🗙 4. बहिष्कृत हितकारिणी सभा
Q.36	कार्बनिक रसायन विज्ञान में किस गुणात्मक विधि का उपयोग असंतुप्त कार्बन-कार्बन आबंध परीक्षण के लिए किया बाता है, बैसे एल्कीन या एल्काइन, लेकिन एरोमेटिक कार्बन-कार्बन आबंध के लिए नहीं ?
Ans	🗙 1. थैलीन रंजक परीक्षण (phthalein dye test)
	🗶 2. आयोडोफॉर्म परीक्षण
	🗙 3. ल्युकप्त परीक्षण
Q.37	निम्नलिखित में से कौन-सी एक संक्रमण धातु नहीं है?
Ans	→ 1. Mg
	★ 2. Cu
	★ 3. Ni
	★ 4. Co
Q.38	इनमें से कौन-सा कार्बनिक यौगिक एक विषाक्त ऐरोमैटिक एमीन है, जिसका सुत्र C6H7Nहै तथा इसका उपयोग मुख्य रूप से पॉलीय्रेथेन फोम, कृषि संबंधी रसायन और कृत्रिम रंजक जैसे विभिन्न प्रकार के उत्पाद बनाने के लिए किया जाता है?
Ans	🗙 1. एक्रिडीन (Acridine)
	🥒 2. एनिलीन (Aniline)
	🗶 3. क्विनोलीन (Quinoline)
	🗶 4. नैपथलीन (Naphthalene)
	1-1
	भारत की जनगणना 2011 के अनुसार, बिहार राज्य की साक्षरता दर कितनी है?
Ans	X 1.63.6%
	★ 2.65.7%
	→ 3. 61.8%
	★ 4.62.4%
Q.40	किस संधि के कारण मैस्र राज्य का लगभग आधा क्षेत्र ईस्ट इंडिया कंपनी को सौंप दिया गया था?
Ans	🗙 1. ндж
	🗶 2. मंगलौर
	🗙 3. डिंडीगुल
	√ 4. सेरिगपट्टम
Q.41	'नवम पेराहेरा (Navam Perahera)' उत्सव किस देश से संबंध रखता है?
Ans	🗶 1. नेपाल
	✓ 2. श्रीलंका
	🗙 3. बांग्लादेश
	× 4. чен
0.42	नेश्चनल एल्युमिनियम कंपनी लिमिटेड (NALCO) का मुख्यालय में स्थित है।
Ans	नजनल एल्यु।मानयम कपना ।लामटङ (।थमाट्ट) का मुख्यालय म ।स्थत ह। × 1. भोपल
. = 13	
	🗙 3. जयपुर
	🗶 ४. चेन्नई

Q.43	संविधान (अनुस्चित जनजाति) आदेश (तीसरा संशोधन) विधेयक, 2022, जिसे लोकसभा द्वारा पारित किया गया है, संविधान (अनुस्चित जनजाति) आदेश, 1950 में निम्नलिखित में से किस राज्य में इसके अनुप्रयोग के संबंध में संशोधन करना चाहता है?
Ans	х 1. उत्तर प्रदेश
	🥒 2. हिमाचल प्रदेश
	🗙 3. ओडिशा
	🗶 4. पश्चिम बंगाल
Q.44	वेब ब्राउजर्स, हाइपरलिंक्स का उपयोग कैसे करते हैं?
Ans	🗶 1. पासवर्ड सुरक्षित रूप से स्ट्रोर करने के लिए
	🥓 2. वेब पेजों और रिसोर्स के बीच नेविगेट करने के लिए
	🗙 3. इंटरनेट ट्रैफिक पैटर्न का विश्लेषण करने के लिए
	🗙 4. वेबसाइटों पर विज्ञापन प्रदर्शित करने के लिए
0.45	'सर्व ट् विन' (Serve to Win) की आत्मकथा है।
Ans	सव दू विच (Serve to will) का आत्मकथा है। x 1. पुलेला गोपीचंद
	🗙 2. राफेल नडाल
	✓ 3. नोवाक जोकोविच
	🗙 4. सेंप्ना विलियम्स
Q.46	7 फरवरी 2023 को सामाजिक न्याय एवं अधिकारिता मंत्रालय, भारत सरकार ने नौ राज्यों में पायलट आधार पर के लिए 12 गरिमा गृह श्रेल्टर होम की स्थापना की है।
Ans	🗙 1. वरिष्ठ नागरिकों
	🗶 2. बाढ प्रभावित व्यक्तियों
	🗙 3. बेघर महिलाओं
	🧈 4. ट्रांसर्जेडर व्यक्तियों
Q.47	निम्नलिखित में से कौन-सा विकल्प, कृत्रिम पारिस्थितिकी तंत्र का निरूपण करता है?
Ans	🧹 1. मछली फार्म, चिडियाघर, ग्रीन हाउस और जल-संवर्धन
	🗙 2. मछली फार्म, वन और महासागर पारिस्थितिकी तंत्र
	🗙 3. चिडियाघर, राष्ट्रीय उद्यान, वन और तालाब पारिस्थितिकी तंत्र
	🗶 4. फसल पारिस्थितिकी तंत्र, वन और चरागाह पारिस्थितिकी तंत्र
Q.48	संघ कश्रेस्की (phylum vertebrata) के साइक्लोस्टोमेटा वर्ग के प्राणियों में कितने क्लोम छिद्र (gill slits) युग्म पाए जाते हैं?
Ans	★ 1.5-13
	★ 2.4-11
	★ 3.7-18
	√ 4. 6-15
Q.49	किस वर्ष जलवायु वर्गीकरण को पहली बार रूसी भाषा में "पृथ्वी के तापीय क्षेत्रों" के रूप में प्रकाशित किया गया था?
Ans	× 1.1991 单
	✓ 2. 1884 申
	★ 3. 1890 ₦
	★ 4. 1895 単
Q.50	60 के दशक के मध्य से 70 के दशक के मध्य के बीच पहले चरण में, निम्नलिखित में से किस राज्य में हरित क्रांति में सफलता प्राप्त नहीं हुईं थीं ?
Ans	√ 1. असम
	🗙 2. पंजाब
	🗙 3. आंध्र प्रदेश
	🗙 ४. तमिलनाडु
	on : General Engineering Electrical
Q.1	88Ω प्रतिरोध के एक तार को खींचकर इसकी मूल लंबाई के दोगुने तक बढ़ाया जाता है। इस खिंचे हुए तार का प्रतिरोध होगा।
Ans	Χ 1.176 Ω
	× 3.22 Ω
	🗶 4.88 Ω

Q.2 एक कार्यशील तल पर सामान्य रूप में लंबवत रखे लैप की कैडल शक्ति 40 कैडल शक्ति है। यदि प्रदीप्ति 10 लक्स है तो दूरी ज्ञात करें।

Ans × 1.2.5 m

🧳 2. 2 m

X 3. 1.414 m

× 4.3 m

Q.3 यह चित्र एक पारेषण लाइन के पश्चगामी लोड फेजर निरूपण (lagging load phasor representation) को दर्शाता है, जहां, V_S, R, X_L, V_R और I क्रमशः प्रेषण सिरे पर वोल्टेज, लाइन प्रतिरोध, लाइन प्रेरकत्व, अभिग्राही सिरे पर वोल्टेज और लाइन धारा को निरूपित करते हैं। उस पारेषण लाइन की पहचान करें, जो इसके लिए सबसे उपयुक्त है।

Ans 🥒 1. 10 kV पारेषण लाइन

\chi 2. 200 kV पारेषण लाइन

\chi 3. 400 kV पारेषण लाइन

\chi 4. 100 kV पारेषण लाइन

Q.4 चुंबकीय परिपर्थों के मामले में, उस पर प्रयुक्त चुंबकन बल की समान मात्रा के लिए, चुंबकीय पदार्थ में उत्पन्न अभिवाह घनत्व (flux density) और वायु में उत्पन्न अभिवाह घनत्व (flux density) के अनुपात को ______ कहा जाता है।

Ans 🥒 1. आपेक्षिक चुंबकशीलता

🗶 2. ईएमएफ

🗶 3. निरपेक्ष चुंबकशीलता

🗶 4. प्रतिष्टंभ

Q.5 समान स्तरों पर टेकों (supports) द्वारा किसी आलंबित शिरोपरि पारेषण लाइन के लिए गलत कथन का चयन करें।

Ans X 1. झोल, चालक के स्पैन की लंबाई के वर्ग के अनुक्रमानुपाती होता है।

🗶 2. झोल (sag), चालक की प्रति इकाई लंबाई के वजन के अनुक्रमानुपाती होता है।

🗙 3. झोल, चालक के तनाव के व्युत्क्रमानुपाती होता है।

🥒 4. झोल, आलंबन टॉवर की ऊंचाई के व्युत्क्रमानुपाती होता है।

Q.6 नीचे दिखाए गए परिपथ में V का मान ज्ञात करें।

Ans × 1.3V

× 2. −1.5V

× 3.0V

√ 4. 1.5V

```
Q.7 एकल मान संघारित चालित मोटर (single value capacitor run motor) में , प्रवर्तन बल-आपूर्ण , रेटेड बल-आपूर्ण का लगभग
                 _ होता है।
      × ¹. 20 से 30%
       × 2. 10 से 20%
        ✓ <sup>3.</sup> 50 से 100%
       × ⁴. 10 से 30%
Q.8 विद्युत चुंबकीय प्रेरण में, फ्लेमिंग के दाएं हाथ के नियम के अनुसार, तर्जनी (forefinger) को निरूपित करती है।
Ans \chi 1. प्रेरित ईएमएफ (EMF) की दिशा
         🥒 2. चुंबकीय क्षेत्र की दिशा
        \chi 3. प्रेरित धारा की दिशा
        🗶 4. चालक की गति की दिशा
Q.9 यदि मशीन, आर्मेचर में 10,000 W यांत्रिक शक्ति उत्पन्न करती है, और 1500 चक्कर प्रति मिनट की गति से घूमती है, तो डीसी शंट
      मशीन के आर्मेचर द्वारा कितना बलाघूर्ण उत्पन्न होगा?
Ans X 1. 0 N-m
        \sqrt{\frac{2.200}{\pi}} N-m
       \times 3. \frac{2}{\pi} N-m
       \times 4. \frac{20}{\pi} N-m
Q.10 उस प्रकाश बल्ब का चयन करें, जो सबसे कम ऊर्जा का उपयोग करके पर्याप्त मात्रा में प्रकाश उत्पन्न करता हो।
Ans \chi 1. प्रतिदीप्त लैंप (Fluorescent lamp)
         🥒 2. एलईडी लैप (LED lamp)
        \chi 3. तापदीप्त लैंप (Incandescent lamp)
        \chi 4. निऑन लैंप (Neon lamp)
Q.11 उस एकल-फेज प्रेरण मोटर का क्या होगा, जिसमें लघुपथित संधारित्र लगा हो?
Ans \chi 1. चलेगी
        🗶 2. उल्टी दिशा में चलेगी
        🧳 3. नहीं चलेगी
        🗶 4. एक ही दिशा में कम गति से चलेगी
Q.12 आउटडोर प्रकार के वितरण ट्रांसफार्मर के लिए, IS (भारतीय मानक) विनिर्देश 1180-1964 के अनुसार, एचवी (hv) साइड पर टैपिंग
Ans \chi 1. 2 स्टेप
         🎻 2. 5 स्टेप
        🗶 3.3 स्टेप

★ 4.6 स्टेप

Q.13
       नीचे दिखाए गए परिपथ में, आश्रित वोल्टेज स्रोत दवारा वितरित शक्ति (पॉवर)
       की गणना करें।
                              10Ω
        45V
Ans

√ 1. -45 W

        × 2.-15 W
        × 3.45 W
        × 4.0 W
```

Q.14	विद्युत और चुंबकीय परिपथ के एप्लिकेशन में, इलेक्ट्रिक आयरन में तापन एलीमेंट का निर्माण का उपयोग करके किया जाता है।
Ans	★ 1. लोह
	🗶 2. टंगस्टन
	★ 3. 荷南
	🥒 4. निक्रोम
	•
	p-n जंक्शन डायोड की विसरण धारिता और में वृद्धि के साथ बढ़ती है।
Ans	√ 1. अल्पसंख्यक वाहकों (minority carriers) के मध्य जीवनकाल; डायोड धारा
	💢 2. अल्पसंख्यक वाहकों (minority carriers) के माध्य जीवनकाल; थर्मल वोल्टेज
	🗙 3. डायोड धारा, थर्मल वोल्टेन
	× 4. थर्मल वोल्टेज; आदर्शता कारक (ideality factor) (η)
Q.16	निम्न में से कौन से घटक, क्षैतिज प्रकार के पवन टरबाइन (horizontal-type wind turbine) में क्रमशः गियरबॉक्स और जेनरेटर बॉक्स से जुड़े होते हैं?
Ans	🗙 1. उच्च-गति शाफ्ट और त्वरणमापी (High speed shaft and accelerometer)
	🗶 2. निम्त-गति शाफ्ट और त्वरणमापी (Low speed shaft and accelerometer)
	🗙 3. उच्च-गति शाफ्ट और निम्न-गति शाफ्ट (High speed shaft and low speed shaft)
	🥒 4. निम्न-गति शाफ्ट और उच्च-गति शाफ्ट (Low speed shaft and high speed shaft)
0.17	नियॉन लैंपों के संबंध में सही विकल्प का चयन कीजिए।
Ans	✓ 1. नियॉन लीप में नियॉन और आर्गन गैस होती है।
	🗙 2. नियॉन ठ्यून का शक्ति गुणक अधिक होता है।
	🗙 3. नियॉन लैप सामान्यतः हरे रंग का उत्सर्जन करता है।
	🗙 4. यदि नियाँन के स्थान पर हीलियम गैस का प्रयोग किया जाए, तो हरा-लाल रंग प्राप्त होता है।
	विद्युत चुंबकीय प्रेरण में , लेन्ज़ का नियम प्रत्यक्ष रूप से का अनुसरण करता है।
Ans	🗙 1. फैराडे के प्रथम नियम
	🗙 2. लाप्लास के नियम
	🗙 3. फैराडे के द्वितीय नियम
Q.19	एक अर्थ-तरंग दिष्टकारी प्रकार के AC वोल्टमीटर द्वारा उत्पन्न विक्षेपण, समान परिमाण वाले वोल्टेज के DC द्वारा उत्पन्न विक्षेपण का कितना गुना होता है?
Ans	ाकतना गुना हाता ह ? ★ 1. 0.40 गुना
Alis	
	√ 2.0.45 गुन
	🗙 3. 0.90 राज
	🗙 4. 0.80 गुना
Q.20	एक चल लौह एमीटर की रेंच को का उपयोग करके विस्तारित किया जा सकता है।
Ans	🗙 1. एमीटर के साथ श्रेणीक्रम में संयोजित शंट
	🗙 2. एमीटर के साथ श्रेणीक्रम में संयोजित मल्ट्रीप्लायर
	🗙 3. एमीटर के साथ समांतर क्रम में संयोजित मल्ट्रीप्लायर
	🥪 4. एमीटर के साथ समांतर क्रम में संयोजित शंट
Q.21	ऑटो-ट्रांसफार्मरों के संबंध में निम्नलिखित में से कौन-से कथन सत्य हैं? (i) एक सामान्यतः ज्ञात ऑटो ट्रांसफार्मर, वैरिएक (variac) का प्रयोग प्रयोगशालाओ और विज्ञान प्रयोगशालाओ में किया जाता है। (ii) पारेषण और वितरण अनुप्रयोग में इस्तेमाल किए जाने पर ऑटो ट्रांसफार्मर का स्पांतरण छोटा (small transformation) होना चाहिए। (iii) ऑटो ट्रांसफार्मर का उपयोग एसी फीडर में वोल्टता बढ़ाने के लिए किया जाता है, और इसे ब्स्टर के रूप में जाना जाता है।
Ans	(III) जाटा ट्रांसफामर का उपयोग एसा फाडर में वाल्यूटता बढ़ान के लिए किया जाता है, जार इस ब्र्स्टर के रूप में जाना जाता है। X 1. केवल (iii)
71.0	× 2. केवल (i)
	× 3. (i) औτ (iii)
	✓ 4. (i), (ii) और (iii)
Q.22	नोड और खुले परिपथ का द्वैत युग्म (dual pair) है।
Ans	
	🗙 2. मेश और KCL
	🗙 3. KVL और लघुपथित परिपथ
	🗙 ४. मेश और खुला परिपथ
	in a second seco

Q.23	आर्मेचर प्रतिक्रिया प्रभाव में उच्च होता है।
Ans	🗶 1. श्रेणी-समांतर नियंत्रण विधि
	🗙 2. ऑर्मेचर नियंत्रण विधि
	🗙 3. ऑर्मेचर और क्षेत्र नियंत्रण विधि, दोनों
	4. क्षेत्र नियंत्रण विधि
Q.24	तुल्यकाली मोटरों के अनुप्रयोगों के संबंध में कौन-सा विकल्प गलत है?
Ans	💢 1. इनका उपयोग बडे भारों (loads) में किया जाता है, जहां स्थिर गति की आवश्यकता होती है।
	💓 2. इनका उपयोग उन कारखानों में किया जाता है, जिनमें बड़ी संख्या में प्रेरण मोटरें अग्रगामी शक्ति गुणक (leading power factor) पर संचालित होती हैं।
	🗙 3. इनका उपयोग ट्रांसमिशन लाइन के अंत में वोल्टेज को विनियमित करने के लिए किया जाता है।
	🗙 4. इनका उपयोग पॉबर हाउस और सबस्टेशन में शक्ति गुणकों (power factors) में सुधार हेतु बस बार (bus bar) के समानांतर किया जाता है।
Q.25	एक परिपथ में तात्क्षणिक धारा i = 4 cos (ωt + θ) Aद्वारा दर्शाई गई है। धारा का RMS मान, है।
Ans	<mark> × ^{1.} शून्य</mark>
	\times 2. $4\sqrt{2}$ A
	\checkmark 3. $2\sqrt{2}$ A
	\times 4. $3\sqrt{3}$ A
Q.26	तुल्यकाली मोटर को स्टार्ट करने के लिए प्रयुक्त अवमंदक वाइंडिंग के संबंध में निम्नलिखित कथनों पर विचार करें, और सही विकल्पों
	के उपयुक्त संयोजन का चयन करें। a) जब कोई मोटर ओवरलोड हो जाती है, तो वह स्कती नहीं है।
	b) तुल्यकाली मोटर को अवमंदक वाईडिंग प्रदान करके स्वतः-प्रवर्तित बनाया जाता है। c) अवमंदक वाईडिंग में लघुपथित ताम्र छडें होती है, जो क्षेत्र घून (फील्ड पोल) के फलक (face) में लगे होते हैं।
	d) चृंकि अवमंदक वाइंडिंग का प्रतिरोध अधिक होता है, इसलिए यह आपूर्ति मेन्स से न्य्न धारा लेती है।
Ans	🗙 1. b और d दोनों सत्य हैं।
	🗶 2. a, b, c, d सभी सत्य हैं।
	💢 3. b और C दोनों सत्य हैं।
	🥜 4. केवल a, b और C सत्य हैं।
Q.27	निम्नलिखित में से कौन-सा DC सर्वोमोटर का वांछनीय अभिलक्षण है?
Q.27 Ans	निम्नलिखित में से कौन-सा DCसर्वोमोटर का वांछनीय अभिलक्षण है? х 1. धीमी अनुक्रिया (Slow response)
	निम्नलिखित में से कौन-सा DC सर्वोमोटर का वांछनीय अभिलक्षण है? × 1. धीमी अनुक्रिया (Slow response) × 2. मशीन का बड़ा आकार
	निम्नलिखित में से कौन-सा DC सर्वोमोटर का वांछनीय अभिलक्षण है?
	निम्नलिखित में से कौन-सा DC सर्वोमोटर का वांछनीय अभिलक्षण है? × 1. धीमी अनुक्रिया (Slow response) × 2. मशीन का बड़ा आकार
Ans	निम्नलिखित में से कौन-सा DC सर्वोमोटर का वांछनीय अभिलक्षण है?
Ans	निम्नलिखित में से कौन-सा DC सर्वोमोटर का वांछनीय अभिलक्षण है?
Ans	निम्नलिखित में से कौन-सा DC सर्वोमोटर का वांछनीय अभिलक्षण है?
Ans	निम्नलिखित में से कौन-सा DC सर्वोमोटर का वांछनीय अभिलक्षण है?
Ans	निम्नलिखित में से कौन-सा DC सर्वोमोटर का वांछनीय अभिलक्षण है? × 1. धीमी अनुक्रिया (Slow response) × 2. मशीन का बड़ा आकार × 3. कम सुदृढ़ (Less robust) • 4. कम जड़त्व 40 mm व्यास और 3.14 × 10-4 Ω-m के विशिष्ट प्रतिरोध के तार के प्रति मीटर लंबाई प्रतिरोध की गणना करें। × 1. 400 Ω
Ans	निम्नलिखित में से कौन-सा DC सर्वोमोटर का वांछनीय अभिलक्षण है?
Q.28 Ans	निम्नलिखित में से कौन-सा DC सर्वोमोटर का बांछनीय अभिलक्षण है?
Q.28 Ans	निम्नलिखित में से कीन-सा DC सर्वोमोटर का बांछनीय अधिलक्षण है?
Q.28 Ans	निम्नलिखित में से कीन-सा DC सर्वोमोटर का बांक्नीय अभिलक्षण है? X 1. धीमी अनुक्रेवा (Slow response) X 2. मशीन का बड़ा आकार X 3. कम स्टूढ (Less robust) 40 mm व्यास और 3.14 × 10-4 Ω -m के विशिष्ट प्रतिरोध के तार के प्रति मीटर लंबाई प्रतिरोध की गणना करे। X 1. 400 Ω X 2. 4 Ω 3. $\frac{1}{4}$ Ω X 4. 40 Ω यिद ट्रांबिस्टर की कॉमन एमिटर कॉन्फिगरेशन धारा लब्धि (current gain) 50 है, तो ट्रांबिस्टर की कॉमन बेस कॉन्फिगरेशन धारा लब्धि (current gain) ज्ञात करें।
Q.28 Ans	िम-नितिश्वित में से कीन-सा DC सर्वोभोटर का बांख्नीय अभिलक्षण है? ※ 1. धीमी अनुकेचा (Slow response) ※ 2. मशीन का बडा अकहर ※ 3. कम सुद्ध (Less robust) ※ 4. कम जड़त्व 40 mm व्यास और 3.14 × 10-4 Ω-m के विशिष्ट प्रतिरोध के तार के प्रति मीटर लंबाई प्रतिरोध की गणना करे। ※ 1. 400 Ω ※ 2. 4 Ω ※ 3. 1/4 Ω ※ 4. 40 Ω 21 दे ट्रॉबिस्टर की कॉमन एमिटर कॉन्किगरेशन घारा लिब्ध (current gain) 50 है, तो ट्रॉबिस्टर की कॉमन बेस कॉन्किगरेशन घारा लिब्ध (current gain) अत करे। ※ 1. 0.97
Q.28 Ans	मिन्नतिखित में से कीन-सा DCसर्वोमोटर का बांखनीय अभिलक्षण है? ※ 1. धीमी अनुकेया (Slow response) ※ 2. मशीन का बड़ा आकार ※ 3. कम सुद्ध (Less robust) ※ 4. कम जडत्व 40 mm व्यास और 3.14 × 10-4 Ω-m के विशिष्ट प्रतिरोध के तार के प्रति मीटर लंबाई प्रतिरोध की गणना करें। ※ 1. 400 Ω ※ 2. 4 Ω ※ 3. 1/4 Ω ※ 4. 40 Ω यदि ट्रॉजिस्टर की कॉमन एमिटर कॉन्किगरेशन धारा लब्धि (current gain) 50 है, तो ट्रॉजिस्टर की कॉमन बेस कॉन्किगरेशन धारा लब्धि (current gain) इत करें। ※ 1.0.97 ※ 2.0.99
Q.28 Ans	ित्रमनिश्चित में से बोग-सा DCसर्वोमोटर का बांछनीय अभिलक्षण है? ★ 1. भीनी अनुक्रेज (Slow response) ★ 2. मशीन का बडा अकर ★ 3. कम सुद्ध (Less robust) ★ 4. कम जडत्व 40 mm व्यास और 3.14 × 10-4 Ω-m के विशिष्ट प्रतिरोध के तार के प्रति मीटर लंबाई प्रतिरोध की गणना करे। ★ 1. 400 Ω ★ 2. 4 Ω ★ 3. 1/4 Ω ★ 4. 40 Ω यदि ट्राजिस्टर की कोमन एमिटर कॉन्फिगरेशन धारा लब्धि (current gain) 50 है, तो ट्राजिस्टर की कॉमन बेस कॉन्फिगरेशन धारा लब्धि (current gain) इत करे। ★ 1. 0.97 ★ 2. 0.99 ★ 3. 1 ★ 4. 0.98 वंडल चालक (bundled conductors) दो या दो से अधिक मुंफित चालकों (stranded conductors) को लपेटकर बनाया जा
Q.28 Ans	तिमनलिखित में से कीन-सा DC सर्वोमोटर का वांछनीय अधिलक्षण है?
Q.28 Ans Q.29 Ans	विम्नलिखित में से कीन-सा DC सर्वोगोरर का वांखनीय अधिलक्षण है? ※ 1. पीनी अनुकेण (Slow response) ※ 2. पर्वोग का बडा अकतः ※ 3. कम पहुंढ (Less robust) ※ 4. कम जडरल 40 mm व्यास और 3.14 × 10-4 Ω-m के विशिष्ट प्रतिरोध के तार के प्रति मीटर लंबाई प्रतिरोध की गणना करे। ※ 1. 400 Ω ※ 2. 4 Ω ※ 3. 1
Q.28 Ans Q.29 Ans	तिम्नलिखित में से कीन-सा DC सर्वोमोरट का वांख्नीय अधिलक्षण है? X 1. पीमी अनुकेष्ण (Slow response) X 2. पर्योग का बड़ा अकर X 3. कम सदृढ (Less robust) ✓ 4. कम बड़त्व 40 mm व्यास और 3.14 × 10.4 Ω-m के विशिष्ट प्रतिरोध के तार के प्रति मीटर लंबाई प्रतिरोध की गणना करें। X 1. 400 Ω X 2. 4 Ω ✓ 3. 1/4 Ω ✓ 4. 40 Ω यदि ट्रांजिस्टर की कोमन एमिटर कोन्किगरेजन घारा लिख्य (current gain) 50 है, तो ट्रांजिस्टर की कोमन बेस कॉन्किगरेजन घारा लिख्य (current gain) ज्ञात करें। X 1. 0.97 X 2. 0.99 X 3. 1 ✓ 4. 0.98 वंडल चालक (bundled conductors) तो चा तो से अधिक गुंफित चालको (stranded conductors) को लपेटकर बनाया जा सकता है, जिन्हे X 1. व्यास्त फेर्यांच्या व्यास्त बहाने के लिए एक साथ बंडल किया जाता है। X 1. व्यास्त फेर्यंच्या व्यास्त व्यास्त व्यास्त बहाने के लिए एक साथ बंडल किया जाता है।

Q.31	त्रिकोणीय तरंग रूप की धारा के RMS मान के लिए व्यंजकहै।
Ans	\times 1. $\sqrt{3}I_{\text{max}}$
	VALUE AND THE PROPERTY OF THE
	\times 2. $\frac{\text{Imax}}{\sqrt{2}}$
	$\sqrt{2}$
	3. Imax
	$\sqrt[4]{3}$
	\times 4. $\frac{\text{Imax}}{2}$
	एक विघृत प्रणाली में 0.8 के उपलब्धता गुणक वाला 800 MW का एक कोयला आधारित विघृत संयंत्र और 0.5 के उपलब्धता गुणक वाला 400 MW का एक पवन चक्की संयंत्र शामिल है। प्रणाली की फर्म पॉवर (firm power) ज्ञात कीजिए।
Ans	✓ 1. 840 MW
	× 2. 1800 MW
	x 3. 1200 MW
	× 4.400 MW
022	
Q.33	तीन-फेज संतुलित स्टार सम्बद्ध निकाय में, निम्नलिखित में से कौन-सा तथ्य
	सत्य होगा? [Ø, फेज वोल्टेज और फेज धारा के बीच का कोण है।]
Ana	
Ans	X 1. अग्रगामी धाराओं के लिए लाइन धाराओं और संगत लाइन वोल्टेजों के बीच का कोण 30° + ∅ होता है।
	X 2. पश्चमामी धाराओं के लिए लाइन धाराओं और संगत लाइन वोल्टेजों के बीच का कोण 30° - ⊘ होता है।
	🧼 3. पश्चगामी धाराओं के लिए लाइन धाराओं और संगत लाइन वोल्टेजों के बीच का कोण 30° + ∅ होता है।
	🗶 4. लाइन धाराओं और संगत लाइन वोल्टेजों के बीच का कोण फेज में होता है।
	स्व-प्रेरकत्व निम्नलिखित में से किस मापदंड पर निर्भर नहीं करता है?
Ans	🗙 1. फेरों की संख्या
	🗶 2. चालक के माध्यम से प्रवाहित धारा
	🗶 ४. पलक्स
	300Ω प्रतिरोध का एक हीटर 10 मिनट के लिए मुख्य आपूर्ति से संयोजित किया जाता है। यदि इस दौरान हीटर में उत्पन्न ऊष्मा 18 J है, तो इससे प्रवाहित धारा ज्ञात कीजिए।
	ह, ता इसस प्रचाहत बारा श्रांत कार्रिया । . 10A
	× 2.0.10 A
	× 3.100 A
	✓ 4. 0.01A
	·
Q.36 Ans	ऑटो ट्रांसफार्मर में कितनी वाइंडिंग होती है? × 1.4
Alis	
	× 2.2 × 3.3
	✓ 4.1
	·
	निम्नलिखित में से क्या पारेषण लाइन के शिरोपरि चालक के लिए उपयुक्त नहीं है?
Ans	1. उच्च आपेक्षिक घनत्व
	🗙 2. उच्च तनन सामर्थ्य
	х 3.
	🗶 ४. उच्च विद्युत चालकता
Q.38	एक RLCश्लेणी परिपथ की अनुनाद आवृत्ति 170 kHz और गुणता गुणक (quality factor) 25 है। परिपथ की बैडविड्थ ज्ञात
Ans	कीचिए। ★ 1. 13.6 kHz
-413	x 2.68 kHz
	✓ 3. 6.8 kHz
	★ 4.50 Hz
	N 7.0012

Q.39 प्रेरकों के एक श्लेणी संयोजन में, L1 और L2 प्रेरकत्व हैं, और Mअन्योन्य प्रेरकत्व है। कुल प्रेरकत्व ज्ञात की जिए। Ans \times 1. L₁ + L₂ - M \checkmark 2. L₁ + L₂ + 2M \times 3. L₁ + L₂ - 2M \times 4. L₁ + L₂ + M Q.40 किसी प्रत्यावर्ती धारा का शिखर मान 8 Aहोने पर, धारा का RMS मान Ans \times 1. $\sqrt{3}$ A \times ². $3\sqrt{2}$ A \checkmark 3. $4\sqrt{2}A$ \times 4. $2\sqrt{3}$ A Q.41 यदि अभिलम्ब समान स्तरों पर हैं और ऊपरी रेखा में तनाव दो गुना तक बढ़ जाता है, तो 🧪 1. अवनमन घटकर पिछले मान का आधा हो जाएगा 🗶 2. अवनमन शून्य हो जाएगा \chi 3. अवनमन दो गुना तक बढ़ जाएगा \chi 4. अवनमन भी चार गुना बढ़ जाएगा Q.42 जब कोई किरायेदार, किराए पर लिए गए किसी स्थान को अपने पट्टे की शर्तों के तहत पुनः किसी अन्य को किराए पर देता है, तो इसे _ कहा जाता है। Ans \chi 1. व्यावसायिक पृष्टा (occupational lease) 🗶 2. स्थायी पहा (perpetual lease) \chi 3. भवन पृहा (building lease) 🎻 4. उप-पहा (sublease) Q.43 जब $C_{gs}=5pF, C_{gd}$ =3pF, और A_{V} = 3 है तो एक उभयनिष्ठ स्रोत (CS) MOSFET प्रवर्धक के लिए निवेशी धारिता ज्ञात करें। Ans X 1. 12 pF × 2.10 pF × 3.15 pF 4. 17 pF Q.44 नीचे दिखाए गए परिपथ में, धारा I का मान ज्ञात करें। 2Ω 20V X 3. 1A × 4. 0A Q.45 वह गुण जहाँ एक कॉइल के चुंबकीय क्षेत्र के कारण दूसरी कॉइल में EMF प्रेरित होता है, _____ कहलाता है। 🧳 1. अन्योन्य प्रेरकत्व 🗶 2. प्रतिरोध 🗙 3. धारिता 🗶 4. स्व-प्रेरकत्व

Q.46	विद्युत एप्लिकेशनों में, विद्युत गीजर की कुंडलियां, से बनी होती है।
Ans	🗙 1. निम्न-प्रतिरोध वाली धातु
	🗶 2. उच्च-प्रेरकत्व वाली धातु
	🥓 3. उच्च-प्रितरोध वाली धातु
	🗙 ४. निम्न-प्रेरकत्व वाली धातु
Q.47	तुल्यकाली मशीन में स्थिर आर्मेचर (stationary armature) के महत्व से संबंधित गलत कथन को पहचाने।
Ans	🥒 1. स्थिर आर्मेचर कॉन्फिगरेशन में, उत्तेजन धारा (exciting current) अपेक्षाकृत अधिक होती है; इसलिए, स्लिप रिंग और ब्रश गियर का निर्माण
	भारी होना चाहिए।
	🗙 2. स्थिर आर्मेचर एक तुल्यकाली मशीन में स्टेटर चुंबकीय क्षेत्र उत्पन्न करने के लिए जिम्मेदार होता है। आर्मेचर द्वारा उत्पन्न चुंबकीय क्षेत्र, मशीन को घुमाने के लिए आवश्यक बलाधूर्ण उत्पन्न करने हेतु रोटर द्वारा उत्पादित चुंबकीय क्षेत्र के साथ अनुयोन्यक्रिया करता है।
	्रुनान का तिए आवस्यक बरान्यून वर्षण करने तर्र रहर द्वरा वर्षाक्षा कुषकाय दान के साथ अनुवास्यक्रिया करता है। 💢 3. स्थिर आर्मेचर को सामान्यतः एक स्थिर फ्रेम में रखा जाता है, जो कुशल शीतलन हेतु एक बड़ा पृष्ठीय क्षेत्र प्रदान करती है। यह आर्मेचर को अतितप्त
	हए बिना उच्च तापमान पर कार्य करने की सुविधा प्रदान करता है, जिसके परिणामस्वरूप उच्च दक्षता और लंबा जीवनकाल (lifespan) प्राप्त होता है।
	🗙 4. स्थिर आर्मेचर एक स्थिर घटक है, जो घूमता नहीं है, जिससे इसके टूटने-फूटने और घिसने का खतरा कम होता है। इसके परिणामस्वस्प एक ऐसी
	मशीन तैयार होती है, जो अत्यधिक विश्वसनीय (reliable) होती है, और उसे न्यूनतम रखरखाव की आवश्यकता होती है।
_	विद्युत मशीन में डबल लेयर वाइंडिंग (double layer winding) के बारे में दिए गए कथनों में से कौन-सा सत्य नहीं है?
Ans	🗙 1. बेहतर emf तरंगस्प प्राप्त होगा।
	🧼 2. अधिक वाइंडिंग होने की वजह से क्षरण प्रतिघात अधिक होगा।
	🗙 3. विनिर्माण में सरल और कॉइल्स की कम लागत होगी।
	🗙 4. फ्रैक्शनल स्लॉट वाइंडिंग (Fractional slot winding) संभव हो सकती है।
Q.49	एक सर्वी-मोटर में कितने टर्मिनल होते हैं?
Ans	★ 1.4
	★ 2.1
	★ 3.2
	✓ 4.3
Q.50	किसी तुल्यकाली मोटर की यांत्रिक हानियों में शामिल हैं।
Ans	🗙 1. स्टेटर में भंबर धारा हानियाँ (Eddy current losses)
	🥒 2. घर्षण और वायुघर्षण हानियाँ (friction and windage losses)
	🗙 3. रोटर वाइंडिंग में जूल हानियाँ
	🗶 4. लैमिनेशन में कोर हानियाँ
Q.51	वाणिज्यिक मल्टीमीटरों में, संगत डीसी और एसी वोल्टेज रेंजों पर समान विक्षेपण प्राप्त करने हेतु, एसी रेंज के लिए गुणक (multiplier)
Ans	X 1. परीक्षण की अवधि पर निर्भर करता है
	🗙 2. समान रखा गया होना चाहिए
	🗙 3. समानुपातिक रूप से ब्रह्मया गया होना चाहिए
	√ 4. समानुपातिक स्प से कम किया गया होना चाहिए
0.50	*
Q.52 Ans	सीआरओ (CRO) की बैडविड्थ, आवृत्तियों की वह रेंज होती है, जिस पर। x 1. क्षैतिज प्रवर्षक (horizontal amplifier) की लब्धि, मध्य-बैंड आवृत्ति लब्धि के 3 db के भीतर होती है
Allo	X 2. क्षैतिज प्रवर्धक (horizontal amplifier) की लब्धि, मध्य-जैंड आवृत्ति लब्धि के 5 db के भीतर होती है
	10-2
	🗙 3. ऊर्घताघर प्रवर्धन (vertical amplifier) की लिब्ध, मध्य-बैंड आवृति लिब्ध के 5 db के भीतर होती है
	🧼 4. ऊर्धवाघर प्रवर्धक (vertical amplifier) की लिब्ध, मध्य-बैंड आवृत्ति लिब्ध के 3 db के भीतर होती है
Q.53	किसी चल कुण्डली मापयंत्र के टर्मिनलों के बीच विभवांतर 100 mV होने पर, यह 10 mAका पूर्ण पैमाना (full scale) विक्षेपण देता है। पूर्ण पैमाना (full scale) विक्षेपण के लिए उस शंट प्रतिरोध की गणना करें, जो 200 Aके अनुरूप होगा?
Ans	× 1.50.02 μΩ
-	$\times 2.50.02 \mathrm{m}\Omega$
	$\sim 3.500.02 \mu\Omega$
	*
	× 4.500.02 mΩ

Q.54	संघारिज-प्रवर्तित प्रेरण चालित मोटर (capacitor start induction run motor) में , जब मोटर पूर्ण गति केतक पहुंच जाती है, तो अपकेंद्री स्विच S खुल जाता है, और संघारिज को अपूर्ति से विसंयोजित कर देता है।
Ans	Security
	✓ ^{2.} 75%
	× ^{3.} 100%
	× 4. 50%
Q.55	एक छादित-धूव ग्रेरण मोटर (shaded-pole induction motor) में, कोर में, जब एक फेज आरोपित किया जाता है,
	तो एक अभिवाह (फ्लक्स) उत्पन्न होता है।
Ans	√ 1. एकल; प्रत्यावती
	🗙 २. तीन, प्रत्यवती
	🗙 3. तीन, स्थिर
	🗙 ४. एकतः, स्थिर
Q.56	निम्नलिखित को बायोमास के रूप में उनके प्रसंस्करण के दौरान मुक्त ऊर्जा के बढ़ते क्रम में व्यवस्थित कीजिए।
	A) खोई B) नगरपालिका ठोस अपशिष्ट
	C) गेहं और चावल का भ्सा D) लकड़ी के र्छर्र
Ans	× 1. C-AB-D
	× 2. D-B-C-A
	✓ 3. AB-C-D
	× 4. B-D-AC
	**
Q.57	फेज अनुक्रम RYBवाले एक संतुलित ACपरिपथ के तीन फेज (R, Yऔर B) स्टार संयोजन में संयोजित हैं। ये तीनों वोल्टेज परिमाण में बराबर होते हैं, और एक दूसरे से के विद्युत कोण पर विस्थापित होते हैं।
Ans	★ 1.90°
	√ 2.120°
	★ 3.360°
	★ 4.240°
Q.58	60 स्लॉट और प्रति स्लॉट 4 चालकों वाले 10-धूव, 3-फेज, 60 Hz स्टार-कनेक्टेड अल्टरनेटर के प्रेरित विद्युत वाहक बल (emf) के
	लाइन मान की गणना करें। तारत्व गुणक (pitch factor) का मान 0.966 है, वितरण गुणक= 0.966 है, प्रति ध्रुव फ्लक्स 0.12 Wb है, और यह ज्यावकत: वितरित (sinusoidally distributed) है।
Ans	x 1.927.36 ∨
	× 2.688.92 V
	✓ 3. 2066.76 V
	× 4.1193.4 V
Q.59	एक 400 W, 100 V के बल्ब को 50 Vस्रोत से संयोजित किया जाता है। बल्ब द्वारा कर्षित धारा है।
Ans	★ 1.0A
	✓ 2.2 A
	× 3.1A
	× 4.4A
ე გი	बड़े पवन विघृत संयंत्र में किस प्रकार के जेनरेटर का उपयोग किया जाता है?
Ans	अर्थ प्रया विश्वा स्था न । किस प्रकार क वनस्टर का उनयान किया जाता है : ✓ 1. प्रेरण जैनेस्टर (Induction generator)
	🗙 2. सपीं बलय मोटर (Slip ring motor)
	🗙 3. DC जेनोटर
	🗙 4. तीन फेज अल्टरनेटर
061	समुन्नत धूर्वो (salient poles) वाली परिवर्ती प्रतिष्टम्भ स्टेपर मोटर (variable reluctance stepper motor) के रोटर के
W.01	ससुन्नत छूवा (Salient poles) वाला पारवता प्रातब्दम्भ स्टपर माटर (variable reluctance stepper motor) के राटर के निर्माण के लिए निम्नलिखित में से किस पदार्थ का उपयोग किया जाता है?
Ans	৵ 1. लेहिचुंबकीय
	🗙 2. अनुचुंबकीय
	🗙 3. प्रतिचुंबकीय
	🗶 4. अचुंबकीय

Q.62	लागत प्राक्कलन (Cost estimation) का उद्देश्य क्या ह ?
Ans	🗶 1. परियोजना की समय-सीमाएं निर्धारित करना
	🗶 2. परियोजना जोखिमों का आकलन करना
	🗙 3. मानव संसाधन आवंटित करना
	🧼 4. परियोजना व्ययों का पूर्वानुमान लगाना
Q.63	एक ट्रांसफॉर्मर में, किस राशि के परिवर्तन से ईएमएफ (EMF) उत्पन्न होता है?
Ans	🗙 1. अवृति
	× 2. घπ
	🗙 3. वेल्टेज
	🧈 4. चुंबकीय फ्लक्स
Q.64	शंट चुंबक द्वारा उत्पन्न फ्लक्स को अनुप्रयुक्त वोल्टेच के साथ ठीक समकोणांतर (quadrature) में लाने के लिए प्रेशर कॉइल के साथ निम्नलिखित में से किसका उपयोग किया जाता है?
Ans	🥒 1. केंद्रीय लिब पर कॉपर शेडिंग बैंड प्रदान किए जाते हैं
	🗶 2. U लिब पर कॉमर शेडिंग बैंड प्रदान किए जाते हैं
	🗙 3. केंद्रीय लिंब पर एल्य्मीनियम शेडिंग बैंड प्रदान किए जाते हैं
	🗙 4. U लिब पर एल्य्मीनियम शेडिंग बैंड प्रदान किए जाते हैं
Q.65	p-n जंक्शन डायोड से प्रवाहित धारा (I) को द्वारा दर्शाया जाता है।
Ans	\times 1. $I_0 = I(e^{qv/\eta KT} - 1)$
	\checkmark 2. $I = I_0 (e^{qv/\eta KT} - 1)$
	800 807 400
	\times 3. $I_0 = I(e^{\eta KT/qv} - 1)$
	\times 4. $I = I_0 (e^{\eta KT/qv} - 1)$
Q.66	एक छादित-श्रूव प्रेरण मोटर (shaded-pole induction motor) में , तांबे की रिंग वाले हिस्से को के रूप में जाना जाता है, और तांबे की रिंग को के रूप में जाना जाता है, जो सामान्यतः एक फेरे वाली (सिंगल-टर्न) कॉइल होती है।
Ans	भाग जाता ह, जार ताब का रिन का कुल ६५ में जाना जाता है, जा सामान्यवः एक कर पाला (स्विनलन्दन) का इस हाता है। X 1. छादित काँइल (shaded coil); छदन घून (shading pole)
Alis	
	🗙 2. জাবিন-ঘূল (shaded pole); জাবেন ঘূল (shading pole)
	🧼 3. छादित-धूव (shaded pole); छादन काँइल (shading coil)
	🗙 4. छिदत काँइल (shaded coil); छादन काँइल (shading coil)
Q.67	निम्नलिखित में से कौन-सा विकल्प न्य्नतम बोली को अस्वीकार करने का वैध कारण बनता है?
Ans	🗶 1. बोलीदाता का हस्ताक्षर नहीं करना
	🥒 2. सभी विकल्प
	🗙 3. अनुचित मुआवजा मिलना
	🗙 4. पर्याप्त विरोध का अभाव
	🗡 स. पद्मा विरोध का अमाव
Q.68	डीसी (DC) मोटर में होने वाली हानियों के संबंध में निम्नलिखित में से कौन सा कथन गलत है?
Ans	🗶 1. ऑर्मेचर प्रतिक्रिया के कारण वायु अंतराल अभिवाह (air gap flux) के विरूपण के कारण अवांछित भार हानियाँ (Stray load losses)
	उत्पन्न होती हैं।
	🗙 2. श्रृन्य भार घूर्णन हानि, लौह हानि और यांत्रिक हानि से बनी होती है।
	💢 3. श्रेणी मोटर में, क्षेत्र ओमीय हानि, आर्मेचर परिपथ हानि का एक भाग होती है।
	🥪 4. ब्रश हानियाँ, यांत्रिक हानियों का एक भाग होती है।
Q.69	एक छादित-धूव प्रेरण मोटर (shaded-pole induction motor) में, मुख्य कोर फ्लक्स (main core flux) रिंग में मौजूद फ्लक्स
	द्वारा होता है, जो धारा द्वारा उत्पन्न होता है।
Ans	🗙 1. समर्थित; स्थिर (constant)
	🥒 2. बिरोधित; परिसंचारी (circulating)
	🗙 3. समर्थित; परिसंचारी (circulating)
	🗙 4. विरोधित; स्थिर (constant)
Q.70	एक संघारित्र, जो 8 J ऊर्जा संग्रहित करता है, और जिसकी धारिता 1 Fहै, उसके सिरों के बीच विभवांतर होता है।
Ans	× 1.2V
	✓ 2.4 V
	X 3.1V
	★ 4.12 V

Q.71	PMMC मापयंत्रों के संबंध में निम्नलिखित में से कौन से कथन गलत हैं?) बलाघूर्ण-भार अनुपात अधिक होता है, जो उच्च यथार्थता प्रदान करता है। I) इन्स्ट्रमेट ट्रांसफॉर्मर का उपयोग करके किसी एकल मापयंत्र का उपयोग कई, विभिन्न धारा वोल्टेज रेंज के लिए किया जा सकता है। II) सकेल एकसमान रूप से विभाजित होता है। V) PMMC मापयंत्रों की लागत चल लौह मापयंत्रों की तुलना में कम होती है।
Ans	🗙 1. केवल l और III
	🥠 2. केवल II और IV
	🗶 3. केवल और
	🗶 4. केवल l और IV
Q.72	प्रतिबाधा 'Z' के टर्मिनलों के बीच वोल्टेच 100∠ 15 V है, और 'Z' के माध्यम से प्रवाहित धारा 20∠ −45 A है। प्रतिघाती शक्ति (reactive power) (Q) ज्ञात करें।
Ans	X 1. Q=6000 VAR
	× 2. Q= 1000 VAR
	x 3. Q=600 VAR
	→ 4. Q = 1732 VAR
0.73	ू प्रत्यावर्ती वोल्टेज के उत्पादन के बारे में निम्नलिखित में से कौन-सा कथन सही नहीं है?
Ans	्रत्याचता चाल्टज के उत्पादन के बार में निम्नालाखत में से कानन्सा कथन सहा नहीं है ? ————————————————————————————————————
	🗙 2. ऑर्मेचर प्रति सेकंड जितनी बार घूर्णन करेगा, ऑर्मेचर वोल्टेज द्वारा उतने ही चक्र उत्पन्न किए जाएंगे।
	🗙 3. धूबों की संख्या में वृद्धि के फलस्वस्य आवृत्ति में वृद्धि होती है।
	<u> </u>
_	विद्युत् केतली में धर्मोस्टैट का उपयोग किसलिए किया जाता है?
Ans	🗙 1. इसका उपयोग केतली के अंदर के तापमान के साथ परिवेशी तापमान की तुलना करने के लिए किया जाता है।
	🧼 2. इसका उपयोग उपयुक्त तापमान पर पहुंचने के बाद तापन एलीमेंट के माध्यम से विद्युत प्रवाह को रोकने के लिए किया जाता है।
	🗙 3. इसका उपयोग केतली के अंदर के तापमान को बनाए रखने के लिए किया जाता है।
	🗙 4. इसका उपयोग तापन एलीमेंट के अधिक गर्म होने की स्थिति में तापमान को कम करने के लिए किया जाता है।
Q.75	किसी अल्टरनेटर में , एकक शक्ति गुणकों (unity power factors) के लिए आर्मेचर प्रतिक्रिया के कारण वोल्टता पात के संबंध में निम्नलिखित में से कौन-सा कथन सत्य है?
Ans	🗙 1. वोल्टता पात स्थिर रहता है, चाहे शक्ति गुणक कुछ भी हो।
	🧼 2. एकक शक्ति गुणकों के लिए वोल्टता पात न्यूनतम होता है।
	🗙 3. एकक शक्ति गुणकों के लिए वोल्टता पात शून्य होता है।
	🗙 4. एकक शक्ति गुणकों के लिए वोल्टता पात अधिकतम होता है।
Q.76	वैषुत-चुंबकत्व में , टोरॉइड (toroid) के अंदर चुंबकीय क्षेत्र की क्षेत्राकृति होती है।
Ans	🗙 1. अतिपरवलियक
	х 3. एकसमान
	🗙 ४. परवलियक
0.77	हल्के भार की क्षतिपूर्ति के बीच प्रदान की गई धातू की पट्टी का उपयोग करके की जाती है।
Ans	१८ के पर का द्वाराकृत के बाद प्रदान का पर वाहु का दहा का उपनान करके का जाता है। 1. श्रेणी चुंबक के केंद्रीय लिंब और डिस्क
	🗶 2. स्थायी चुंबक और डिस्क
	🗙 3. डिस्क और पॉइंटर
	🥒 4. शंट चुंबक के केंद्रीय लिब और डिस्क
	<u> </u>
Q.78	चुंबकीय परिपर्थों के मामले में, चुंबकीय पदार्थ पर आरोपित प्रति इकाई चुंबकन बल के लिए, चुंबकीय पदार्थ के प्रति इकाई क्षेत्रफल पर उत्पन्न अभिवाह (flux) को कहा जाता है।
Ans	🧈 1. निरपेक्ष चुंबकशीलता
	🗙 2. आपेक्षिक चुंबकशीलता
	X 3. EMF
	★ 4. MMF

```
Q.79 ब्रश्नलेस DC मोटर की गति को नियंत्रित करने के लिए निम्नलिखित में से कौन-सी राशि को बदला जा सकता है?
        🧳 1. अनुप्रयुक्त DC स्रोत वोल्टेज
         \chi 2. पवन की दिशा
         🗶 3. पवन का दाब
         🗶 ४. तापमान
Q.80 आकृति में दिखाए गए परिपथ के टर्मिनलों A-B के बीच थेवेनिन का तुल्य वोल्टेज (Thevenin's Equivalent Voltage)
Ans X 1.10 V
          🥠 2. 100 V
         × 3.300 V
         × 4.80 V
Q.81 निम्न में से कौन-सा लैंप, उच्च दीप्त दक्षता (luminous efficiency) के आधार पर स्ट्रीट लाइटनिंग के लिए उपयुक्त है?
Ans \chi 1. कॉम्पैक्ट फ्लोरोसेंट लैंप
         🗶 2. फ्लोरोसेंट लैंप
         🗙 3. तापदीप्त लैंप (Incandescent lamp)
         🥒 4. सोडियम वाष्प लैंप (Sodium vapour lamp)
Q.82 भूमिगत केबलों के परावैद्युत में एकसमान स्थिर-वैद्युत प्रतिबल उत्पन्न करने की विधि को केबलों _____ के रूप में जाना जाता है।
Ans \chi 1. को बिछाने (laying)
         🗶 2. के कवचन (armouring)
          🥓 3. की ग्रेडिंग (grading)
         \chi 4. को जोड़ने (jointing)
Q.83 कॉमन ड्रेन एम्प्लीफायर का इनपुट सिग्नल_____ के माध्यम से गेट पर आरोपित किया जाता है।
Ans \chi 1. इनपुट प्रतिरोध
         🗶 2. इनपुट प्रेरक
         🧳 3. युग्मन संधारित्र
         \chi 4. परिवर्ती प्रतिरोध
Q.84 20 kVA, 6600/220 V, 50 Hz अपचायी आदर्श ट्रांसफार्मर (step-down ideal transformer) की प्राथमिक धारा क्या
Ans 1. 3.03 A
         × 2.1.515 A
         × 3.0 A
         × 4.1.3 A
Q.85 ओमीय हानि को खुला परिपथ परीक्षण के दौरान नगण्य क्यों माना जाता है?
       🦙 🗶 1. क्यों कि ओमीय हानि, अनुप्रयुक्त वोल्टेज के वर्ग के समानुपाती होती है, जो खुला परिपथ परीक्षण में उच्च होता है
         🗙 2. क्यों कि ओमीय हानि, अनुप्रयुक्त धारा के वर्ग के समानुपाती होती है, जो खुला परिपथ परीक्षण में उच्च होती है
         💢 3. क्योंकि ओमीय हानि, अनुप्रयुक्त वोल्टेज के वर्ग के समानुपाती होती है, जो खुला परिपथ परीक्षण में निम्न होता है
         🧪 4. क्योंकि ओमीय हानि, अनुप्रयुक्त धारा के वर्ग के समानुपाती होती है, जो खुला परिपथ परीक्षण में निम्न होती है
Q.86 विद्युत चुंबकीय प्रेरण के संदर्भ में, अन्य कुंडली से जुड़ी एक कुंडली में धारा द्वारा उत्पन्न चुंबकीय अभिवाह (magnetic flux) का
       अंश, _____ कहलाता है।
        🧳 1. युग्मन गुणांक
Ans
         🗶 2. अन्योन्य प्रेरित ईएमएफ
         🗶 3. स्व-प्रेरण
         🗶 ४. अन्योन्य प्रेरण
```

```
Q.87 पवन विद्युत संयंत्र में, निम्नलिखित में से कौन सी विशेषता कुंडलित रोटर तुल्यकाली जेनरेटर (wound rotor synchronous
       generator) को स्क्विरेल केज प्रेरण जेनरेटर (squirrel cage induction generator) से अलग करती है?
        🗙 1. कुंडलित रोटर तुल्यकाली जेनरेटर में स्टेटर साइड को नियंत्रित करने के लिए एक बाहरी तंत्र शामिल होता है।
        🗶 2. कुंडलित रोटर तुल्यकाली जेनरेटर में गियरबॉक्स की आवश्यकता नहीं होती है।
         🥒 3. कुंडलित रोटर तुल्यकाली जेनरेटर में रोटर आउटपुट को नियंत्रित करने के लिए एक बाहरी तंत्र शामिल होता है।
        🗶 4. कुंडलित रोटर तुल्यकाली जेनरेटरों में प्रतिघाती शक्ति क्षतिपूर्ति इकाई की आवश्यकता नहीं होती है।
Q.88 एक 50 Hz सिंगल-फेज ट्रांसफॉर्मर का शुन्य भार अनुपात 2000/200 Vहै। कोर में अधिकतम फ्लक्स 0.05 Wbहै। प्राथमिक फेरों
       की संख्या लगभग कितनी होगी?
        🎻 1. 180 फेरे
        🗶 2. 100 फेरे
        🗶 3. 200 फेरे
        🗶 4. 145 फेरे
Q.89 तापन प्रभाव के मामले में, यदि 1 कैलोरी ऊष्मा ऊर्जा को जूल में परिवर्तित किया जाता है, तो इसका मान _____ होगा।
        🗶 1. 2.563 जूल
        🗶 2. 3.743 जूल
         🅜 3. 4.186 जूल
Q.90 3 kW लोड को 230 V की सिंगल फेज सप्लाई से जोड़ने के लिए उपयुक्त केबल रेटिंग, _____
        X 1.10 A
        × 2.5 A
        × 3.20 A
         🧳 4. 15 A
Q.91 सभी वैद्यत-यांत्रिक रूपांतरण युक्तियों (डिवाइस) में निम्नलिखित में से किस प्रकार के क्षेत्र का उपयोग युग्मन माध्यम (कपलिंग मीडियम)
       के रूप में किया जाता है?
Ans 💢 1. केवल वैद्युत क्षेत्र
        \chi 2. वैद्युत क्षेत्र और चुंबकीय क्षेत्र दोनों
         🥒 3. केवल चुंबकीय क्षेत्र
        🗶 4. केवल तापीय क्षेत्र
Q.92 एक ओवरहेड ट्रांसिमशन लाइन के चालक के अनुप्रस्थ काट का क्षेत्रफल 2 cm² है। यदि चालक पदार्थ का आपेक्षिक घनत्व 9.9
       gm/cm³ है, और पवन दाब 1.5 kg/m लंबाई है, तो चालक का प्रभावी वजन प्रति मीटर लंबाई (kg/m) _
        1. 2.48 kg/m
        × 2.3.48 kg/m
        × 3.4.48 kg/m
        × 4. 5.48 kg/m
        निम्नलिखित परिपथ में टर्मिनल AB में तुल्य प्रेरकत्व (इंडक्टेंस) का मान ज्ञात
        करें।
                                        12H
                                                                   1H
        X 1.36H
         2. 23H
        × 3.26H
        × 4.50H
Q.94 एक श्लेणी RLCपरिषथ में मापदंडों के मान निम्नलिखित है: R = 5 \Omega, L = 0.01 H, C = 100 \muF, वोल्टता-स्रोत (t) = 10 \sin
       1000t। गुणता गुणक (quality factor) का मान कितना है?
        1.2
        X 3. 1.11
        × 4.2.51
```

```
Q.95 समीकरण I = I0 sin (ωt) और E = E0 cos (ωt + π/3) द्वारा निरूपित प्रत्यावतीं धारा और वोल्टेब के बीच कलांतर (phase
      difference) कितना होगा?
      χ 1. π/3
        × 2.4π/3
        🧳 3. 5π/6
        × 4.5π/3
Q.96 एक 220 वोल्ट डीसी (DC) मशीन का आर्मेचर प्रतिरोध 0.5 ohm है। जब मशीन मोटर के रूप में कार्य करती है तो पश्च ईएमएफ
      (back EMF) का मान ज्ञात की जिए, यदि पूर्ण भार आर्मेचर धारा 25 amps है?
       🧳 1. 207.5 V
 Ans
        × 2.209 V
        × 3.210 V
        × 4.207 V
^{
m Q.97} 100 kV एकल फेज़ प्रणाली पर कार्यरत एकल कोर केबल का सबसे किफायती
       आकार ज्ञात कीजिए और परावैद्युत में अधिकतम अनुमेय प्रतिबल 50\sqrt{2}~\text{kV/cm}
        से अधिक न हो।
 Ans × 1.8 cm
        🥒 2.4 cm
        × 3.10 cm
        × 4.0 cm
Q.98
        एक JFET में प्राचल : I_{DSS}= 30 mA, V_{GS}({\sf off})= - 5V, V_{GS}= - 4.5V हैं।
        अपवाह धारा का मान ज्ञात करें।
 Ans X 1. 15 mA
        × 2.0.5 mA
        × 4.30 mA
Q.99 स्पिनिंग रिजर्व के संबंध में निम्नलिखित में से कौन-से कथन सत्य हैं?
      A) यह वह आरक्षित क्षमता है, जो परिचालन में होती है, किन्तु सेवा के लिए उपलब्ध नहीं होती है।
      B) यह आपातकालीन आवश्यकताओं के मामले में एक उपधान (cushion) के रूप में कार्य करता है।
      C) यह एक ऐसी क्षमता है, जो हमेशा बस से जुड़ी रहती है, और आवश्यकता पड़ने पर इसका उपयोग किया जाता है।
 Ans 🗶 1.Aऔर C
        🎻 2. B और C
        🗶 3. A और B
        \chi 4. केवल B
Q.100 यदि किसी 5Hप्रेरक में संचित ऊर्जा 160 जूल है, तो इससे होकर प्रवाहित होने वाली धारा की गणना करें।
Ans X 1.64 A
        X 2.18 A

√ 3.8 A

        × 4.10 A
```