Building Disruptive AI & LLM Technology From Scratch

Contents

1	Ha	allucination-Free LLM with Real-Time Fine-Tuning	6
1	Ent	erprise xLLM for Search & Retrieval	7
	1.1	Efficient database architecture: nested hashes	7
	1.2	From frontend prompts to backend tables	8
	1.3	What is not covered here	9
2	Par	ameters, features, and fine-tuning	11
	2.1		11
	2.2	•	12
	2.3	<u>.</u>	12
	2.4		13
	2.5	Singularization, stemming, auto-correct	14
	2.6	Augmentation, distillation, and frontend tables	14
	2.7	In-memory database, latency, and scalability	15
3	Cas	e study	17
_	3.1	· · · · · · · · · · · · · · · · · · ·	18
	3.2	Sample session	19
	3.3	Web API for enterprise xLLM	29
		3.3.1 Left panel: command menu and prompt box	29
		3.3.2 Right panel: prompt results	29
		3.3.3 Next steps	31
	3.4	Conclusions and references	31
4	Apr	pendix	32
	4.1		32
	4.2	Thirty features to boost LLM performance	44
		4.2.1 Fast search and caching	44
		4.2.2 Leveraging sparse databases	45
		4.2.3 Contextual tokens	45
		4.2.4 Adaptive loss function	45
		4.2.5 Contextual tables	45
		4.2.6 Smart crawling	45
		4.2.7 LLM router, sub-LLMs, and distributed architecture	45
		4.2.8 From one trillion parameters down to two	46
		4.2.9 Agentic LLMs	46
			46
		4.2.11 Distillation done smartly	46
		4.2.12 Reproducibility	47
		4.2.13 Explainable AI	47
		4.2.14 No training, in-memory LLM	47
		4.2.15 No neural network	47
		4.2.16 Show URLs and references	48
		4.2.17 Taxonomy-based evaluation	48
		4.2.18 Augmentation via prompt data	48
		4.2.19 Variable-length embeddings, indexing, and database optimization	48
		4.2.20 Favor backend over frontend engineering	48
		4.2.21 Use NLP and Python libraries with caution	49
		4.2.22 Self-tuning and customization	49

CONTENTS 3

	4.3	4.2.23 Local, global parameters, and debugging	50 50 50 50 51 51 51
II	O	Outperforming Neural Nets and Classic AI	55
5		ilding and evaluating a taxonomy-enriched LLM	57
	5.1	Project and solution	
	5.2	Python code	60
6	LLN	M for Clustering and Predictions	66
	6.1	Project and solution	
	$6.2 \\ 6.3$	Visualizations and discussion	
	0.3	Python code	70
7	Fast	t, High-Quality NoGAN for Data Synthetization	7 8
	7.1	Project description	
	7.2	Solution	
	7.3	Python implementation	81
8	\mathbf{Hie}	erarchical Bayesian NoGAN for Data Synthetization	87
	8.1	Methodology	
		8.1.1 Base algorithm	
		8.1.2 Loss function	
		8.1.4 Acknowledgments	
	8.2	Case studies	
		8.2.1 Synthesizing the student dataset	
		8.2.2 Synthesizing the Telecom dataset	
		8.2.3 Other case studies	
		8.2.4 Auto-tuning the hyperparameters	
	8.3	Conclusion	0.0
	0.0	Python implementation	
		•	
9		3	107
	$9.1 \\ 9.2$	Project and solution	
	9.4	1 ython code	112
II	ΙI	Innovations in Statistical AI	117
10	Bui	ilding a Ranking System to Enhance Prompt Results	119
		Relevancy scores and rankings	120
	10.2	Case study	
		10.2.1 xLLM for auto-indexing, cataloging and glossary generation	
	10.9	10.2.2 xLLM for scientific research	
		Python code	
11			131
		Motivation and architecture	
		Applications	133
		11.2.1 Embeddings and large language models	133

CONTENTS 4

	11.2.2 Generating and evaluating synthetic data	
	11.2.3 Clustering, dataset comparisons, outlier detection	
	11.3 Project and solution	
	11.4 Python code	137
12	Strong Random Generators for Reproducible AI	141
	12.1 Strong Randomness and reproducibility: two key components	
	12.2 Computing the digits of special math constants	
	12.2.1 P-adic valuations	
	12.2.2 Digit blocks, speed of convergence	
	12.2.3 A plethora of interesting pseudo-random sequences	
	12.3 Testing random number generators	
	12.3.1 Theoretical properties of the digits of $\sqrt{2}$	
	12.3.2 Fast recursion and congruential equidistribution	
	12.3.3 Exponential system: predicting the next block	
	12.4 Python code	
	12.4.1 Fast recursion	
	12.4.2 Main code	
	12.4.2 Wall code	100
13		155
	13.1 Quantile convolution	155
	13.2 Truncated Gaussian mixtures and bias detection	
	13.3 Case studies	157
	13.3.1 Conclusion	
	13.4 Python code	159
14	Additional Resources	162
	14.1 Accelerating convergence of parameter estimates	
	14.1.1 First case study	
	14.1.2 Second case study	
	14.2 Generic, all-in-one curve fitting, regression and clustering	
	14.2.1 Solution, R-squared and backward compatibility	
	14.2.2 Model upgrades	
	14.2.3 Case studies	
	14.2.4 Python code	
	14.2.4 I ython code	
	14.3.1 Problem in two dimensions	
	14.3.2 Spatial interpolation of the temperature dataset	
	14.3.3 Python code	
	14.4 Math-free, parameter-free gradient descent	
	14.4.1 Introduction	
	14.4.2 Implementation details	
	14.4.3 General comments about the methodology and parameters	
	14.4.4 Mathematical version of gradient descent and orthogonal trajectories	
	14.4.5 Python code	180
15	Trading the S&P 500 Index	181
-	15.1 Non-standard strategies	
	15.2 Selecting a strategy based on its features	
	15.3 Python code and dataset: 40 years' worth of historical data	
D:		
DΙ	nnograpny	188
Inc	dex	190

Introduction

This book features new advances in game-changing AI and LLM technologies built by GenAItechLab.com. Written in simple English, it is best suited for engineers, developers, data scientists, analysts, consultants and anyone with an analytic background interested in starting a career in AI. The emphasis is on scalable enterprise solutions, easy to implement, yet outperforming vendors both in terms of speed and quality, by several orders of magnitude.

Each topic comes with GitHub links, full Python code, datasets, illustrations, and real life case studies, including from Fortune 100 company. Some of the material is presented as enterprise projects with solution, to help you build robust applications and boost your career. You don't need expansive GPU and cloud bandwidth to implement them: a standard laptop works.

Part I focuses on high performance in-memory agentic multi-LLMs for professional users and enterprise, with real-time fine-tuning, self-tuning, no weight, no training, no latency, no hallucinations, no GPU. Made from scratch, leading to replicable results, leveraging explainable AI, adopted by Fortune 100. With a focus on delivering concise, exhaustive, relevant, and in-depth search results, references, and links. See also the section on 31 features to substantially boost RAG/LLM performance.

Part II discusses related large-scale systems also benefiting from a light-weight but more efficient architecture. It features LLMs for clustering, classification, and taxonomy creation, leveraging the knowledge graphs embedded in and retrieved from the input corpus when crawling. Then, in chapters 7 and 8, I focus on tabular data synthetization, presenting techniques such as NoGAN, that significantly outperform neural networks, along with the best evaluation metric. The methodology in chapter 9 applies to most AI problems. It offers a generic tool to improve any existing architecture relying on gradient descent, such as deep neural networks.

Part III features a collection of methods that you can integrate in any AI system to boost performance. Based on a modern approach to statistical AI, they cover probabilistic vector search, sampling outside the observation range, strong random number generators, math-free gradient descent, beating the slow statistical convergence of parameter estimates dictated by the Central Limit Theorem, exact geospatial interpolation for non-smooth systems, and more. Efficient chunking and indexing for LLMs is the topic of chapter 10. Finally, chapter 15 shows how to optimize trading strategies to consistently outperform the stock market.

About the author

Vincent Granville is a pioneering GenAI scientist and machine learning expert, co-founder of Data Science Central (acquired by a publicly traded company in 2020), Chief AI Scientist at MLTechniques.com, former VC-funded executive, author and patent owner – one related to LLM. Vincent's past corporate experience includes Visa, Wells Fargo, eBay, NBC, Microsoft, and CNET.

Vincent is also a former post-doc at Cambridge University, and the National Institute of Statistical Sciences (NISS). He published in *Journal of Number Theory, Journal of the Royal Statistical Society* (Series B), and *IEEE Transactions on Pattern Analysis and Machine Intelligence*. He is the author of multiple books, available here, including "Synthetic Data and Generative AI" (Elsevier, 2024). Vincent lives in Washington state, and enjoys doing research on stochastic processes, dynamical systems, experimental math and probabilistic number theory.

Index

χ^2 distribution, 147	connected components, 67
k-NN, 52, 132	context, 119
k -means clustering, $\frac{67}{}$	contextual pairs, 45
k-medoids clustering, 67	contextual tables, 45
n-gram, 8	contextual tokens, 45
sorted, 50	contour level, 175, 179
p-adic valuation, 142	contour lines, 175
<i>p</i> -value, 147, 149	convergence
p-value, 147, 149	absolute, 171
abbreviation dictionary, 14	conditional, 171
acronyms, 46, 52	
action, 8, 12, 51	convolution product, 155 copula, 90, 98
activation function, 97	cosine similarity, 54, 134
Adam (stochastic gradient descent), 52	
agent, 12, 18, 29, 46, 53, 119, 130	covariance matrix, 110
multi-agent, 51	Cramér's V, 89
ANN (approximate nearest neighbors search), 44, 54,	crawling
134	smart crawling, 8, 45
	critical line (number theory), 175
probabilistic ANN (pANN), 52, 134	cross-validation, 48, 68, 87, 166
augmentation, 15, 48, 52	customization (LLM), 49
augmented knowledge graph, 15	data distillation 70
taxonomy augmentation, 15, 122	data distillation, 79 database
auto-correct, 14	
auto-encoder, 52	graph database, 53
auto-regressive model, 53	JSON, 48
auto-tuning, 89, 95, 97	key-value pairs, 48
backend, 29, 52, 53, 119	nested hash, 48
	vector database, 48
base, 146	debugging, 49
basin of attraction, 182	deep neural network (DNN), 52, 97, 107
batch, 89, 91, 97	dendrogram, 69
Bayesian hierarchical models, 90	diffusion, 52, 80
benchmarking, 52	diffusion model, 155
Beurling primes, 164	digit block, 143
binary search	digit-preserving, 143
interpolated, 135	dimensionality reduction, 166
binning, 108	Dirichlet character, 164
bit shift, 145	Dirichlet- L function, $\frac{164}{}$
bootstrapping, 69, 166	disembiguation, 51
1. 44.54	distance matrix, 66
caching, 44, 54	distillation, 14 , 46 , 52
cataloging, 122	distributed computing, 46
categorical feature, 89	distribution
CDF regression, 167	logistic, 166
central limit theorem, 162	DNN (deep neural network), 45
chunking, 121, 129	dot product, 133, 165
confidence interval, 69, 162	dummy variable, 89
model-free, 81	dynamical system, 182
confidence region, 166	
congruential equidistribution	ECDF (empirical distribution), 54, 78, 88, 107
asymptotic, 145	embedding, 19, 45, 52

INDEX 191

quantized embedding, 48	in-memory database, 16
variable length embedding, 7, 48, 133	in-memory LLM, 16, 47
empirical density function, 96	indexing, 129
empirical distribution, 67, 167	auto-indexing, 122
multivariate, 54, 78, 87, 90, 96, 107, 135	glossary generation, 122
encoding	text entity index, 48, 119
smart encoding, 68	integer division, 145
EPDF (empirical probability density function), 107	integral probability metrics, 96
epoch (neural networks), 132, 137	interpolation, 182
equidistribution modulo 1, 146	,
Euler product, 164	JSON, 8, 45
evaluation, 107	database, $48, 53$
evaluation metrics, 48, 52, 53	, ,
	kernel, 155
exhaustivity (LLM/RAG output), 119	kernel density estimation, 155
explainable AI, 50, 52, 78, 87, 97	key-value database, 8, 53
feature encoding, 54	knowledge graph, 48, 119, 129
feature engineering, 53	Kolmogorov-Smirnov distance, 67, 78, 89, 90, 96, 109,
	135
feature selection, 166	multivariate, 45, 54, 107
fine-tuning, 52, 130	kriging, 171
exhaustive results, 47, 119	Kilging, 171
in real time, 17	label, 95
LLM parameters, 46	Lagrange multiplier, 165
self-tuning, 49	LangChain, 53
frontend, 52	large language model (LLM)
	,
GAN (generative adversarial network), 13, 78, 107, 155	evaluation, 122
hierarchical GAN, 90	large language models (LLM), 57
NoGAN, 14	Lasso regression, 165
Gaussian mixture model, 110, 155	latency, 15
generative adversarial network, 52, 80, 87, 134, 155	law of the iterated logarithm, 147
GIS, 173	learning rate, 177
GPT, 52	link function, 167
GPU, 47	LLaMA, 45, 53
gradient descent, 69, 88, 97, 110, 132, 179, 181	LLM (large language model)
steepest, 136	agentic LLM, 12
stochastic, 107, 136, 137	debugging, 49
gradient operator, 165	for auto-indexing, 122
graph	for cataloging, 122
graph database, 53	for clustering, 13
knowledge graph, 48	for glossary generation, 122
	for predictive analytics, 13
GRH (Generalized Riemann Hypothesis), 164	in-memory, 16
grid search, 79, 181	LLM router, 8, 46, 119
smart grid search, 47, 111, 181	multi-LLM, 17
Hadamard product, 88	self-tuned, 49
hallucination, 48	
	sub-LLM, 17, 119
hash table	xLLM, 17
inversion, 66	logistic distribution, 166
nested hash, 8, 45, 46, 48, 53, 66, 119, 122	logistic regression, 166
Hellinger distance, 96, 107	loss function, 67, 69, 88, 89, 97, 107, 132, 136, 181
multivariate, 45	adaptive loss, 45 , 107
hierarchical Bayesian model, 98	
hierarchical clustering, 67	matrix
hierarchical deep resampling, 87, 90	positive semidefinite, 110
holdout, 90	mean squared error, 165
Hungarian algorithm, 107, 132	Mersenne twister, 141, 144
hyperparameter, 47, 50, 52, 79, 89	mixture model, 96
hyperrectangles, 78	mixture of experts, 46 , 49 , 119
	model identifiability, 165
identifiability (statistics), 131	modulus (complex number), 175
imputation (missing values), 90	multi-agent system, 51, 53

INDEX 192

multimodal system, 53	rank
multinomial distribution, 78	relevancy rank, 120
multiple root, 171	regularization, 54
multitoken (see token), 52	reinforcement learning, 49, 54, 97
	rejection sampling, 157
nearest neighbors	relevancy
K-NN, 131	relevancy score, 47, 50, 119, 130
approximate (ANN), 131	replicability, 47
probabilistic (pANN), 131	reproducibility, 14, 47
search, 132	resampling, 108
NLG (natural language generation), 53	residue, 145
NLP (natural language processing), 14, 53	retrieval, 48
node (interpolation), 96	retrieval augmentation generation (RAG), 53
NoGAN, 52, 78, 108, 134	Riemann hypothesis
constrained, 108	generalized, 164
probabilistic, 108	Riemann zeta function, 164, 175
normal number, 146	run test, 145
normalization, 53, 54	
notebookML, 122	saddle point, 177
O AI 110	scalability, 15
OpenAI, 110	score
orthogonal trajectory, 175	relevancy rank, 120
overfitting, 47, 67, 78, 165, 181	relevancy score, 29, 47
parameter	smart scoring, 130
in neural networks, 53, 54	search
in xLLM, 53	probabilistic search, 48
parametric bootstrap, 170	vector search, 48
	seed (random number generator), 13, 89
partial derivative, 171 period, 142	self-tuning, 52, 54
PMI (pointwise mutual information), 7, 9, 19, 31, 49,	separator (text), 54
50	similarity metric, 67
pointwise mutual information (PMI), 54, 133	simulated annealing, 97
Poisson process, 137	singularization, 14
positive semidefinite (matrix), 110	steepest descent, 179
prediction interval, 166	stemming, 14
	stopwords, 8, 49
principal component analysis, 90	swap, 88, 97
PRNG (pseudo-random number generator), 14, 47, 141	synonyms dictionary, 14
probability density function, 155	synthetic data, 54, 107, 157, 171, 174
prompt	constrained, 108 , 111
• •	synthetic function, 164
command prompt options, 48 prompt compression, 134	
prompt engineering, 48	taxicab distance, 137
prompt engineering, 48 prompt synthesizer, 122	taxonomy, 53
Python library	augmentation, 122
GenAI-evaluation, 109	taxonomy creation, 57, 122
Sklearn, 67	tensor, 89
Sklearn_extra, 67	TensorFlow, 89
Skiedili-extra, 07	text entity, 12, 29, 46, 48, 52, 119
quantile, 79, 109	sub-entity, 18
extrapolated, 157	text entity ID, 29
quantile function, 91, 155	time complexity, 79
quantile regression, 166	token, 52, 54
quantization, 48	contextual, 45, 66
1	graph token, 119, 121, 130
R-squared, 165, 166	multitoken, 7, 19, 52, 66, 119
Rademacher function, 164	training, 47, 52
radix search, 135	transformer, 13, 45, 47, 52, 54, 97
RAG (retrieval augmentation generation), 15, 53, 119	truncated Gaussian, 157
random walk	unit ball, 137
simple, <u>147</u>	umu Dali, 191

INDEX 193

```
validation set, 78, 90, 166
vanishing gradient, 89
variational auto-encoder, 52
vector database, 48, 54
vector search, 48, 54, 131
vectorization, 79

Wasserstein GAN (WGAN), 97, 107
Weibull distribution, 137
weighted regression, 166
Wiener process, 147

XGboost, 78
xLLM, 17, 57
e-xLLM (for enterprise corpus), 119
```