深圳大学实验报告

课程名称:		数字	电路			
实验项目名称:_	实验一	<u>: 门电</u>	路逻辑	功能及测	训试	
学院:	计算	机与较	《件学院			
专业:	软件	井工程_	(腾班)			
指导教师 :		Ē	『海军			
报告人: <u>黄亮铭</u>	学号: _	2022	<u>155028</u>	班级	: _腾	<u>班</u>
实验时间:	2023	年	04	月	<u> 19</u>	<u>日</u>
实验报告提交时间]:	202	<u>3年04</u>	月 19 日		

教务处制

1 实验	t目的:
(1)	》 熟悉门电路逻辑功能,并掌握常用的逻辑电路功能测试方法;
(2)	》 熟悉 RXS-1B 数字电路实验箱及双踪示波器的使用方法;
(3)	熟悉所用的集成电路的外引脚排列图,了解各引脚功能。
	= // = // = // = //
2 实验	仪器与材料:
(1)) 双踪示波器;
(2)) RXS-1B 数字电路实验箱;
(3)) 万用表;
(4)) 74LS00(四2输入与非门)1片、74LS86(四2输入异或门)1片;

3 实验内容及步骤:

任务一: 异或门逻辑功能测试

- (1) 将一片 74LS86 插入 RXS-1B 数字电路实验箱的任意 14 引脚和 IC 空插座中。
- (2) 按下图连线并测试其逻辑功能。芯片 74LS86 的输入端 1、2、4、5 号引脚分别接至数字电路试验箱的任 4 各电平开关插孔,输出端 3、6、8 分别接至数字电路试验箱的+5V 电源的"+5V"插孔,7 号引脚接至数字电路试验箱+5V 电源的"GND"插孔。

图 4-12 74LS86 外引线排列图

图 4-13 异或门逻辑功能测试接线图

接线如图所示:

(3)将电平开关表格中的预设值设置,观察输出端 A、B、Y 所接电平显示器的发光二极管状态,并测量输出端 Y 的电压值。发光二极管为红色表示输出为高电平(1),发光二极管为绿色表示输出为低电平(0),将电平开关如下表设置,观察输出端 A、B、Y 所接电平显示器的发光二极管状态,并测量输出端 Y 的电压值。发光二极管为红色表示输出为高电平(1),发光二极管为绿色表示输出为低电平(0)。

异或门逻辑功能测试的实验数据如下图:

	40	٨				输 出	
K3	K2	KI	КО	A	В	Y	Uy(直流电
0	0	0	0	0	2	0-	9.16
1	0	0	0		9		4.04
1	1	0	0	0	0	0	9.16
1	1	1	0	0	1 1000	3.68 3.0	4.0
1	1	1	1	0	10	0	only
)	1	0	1	17	James James	0	0.1

(4) 将表中的实验结果与异或门的真值表对比,得出结论: 74LS86 实现了异或逻辑功能; 根据测量的 U_Y 电压值,得出逻辑电平 0 的电压范围为: $0.00 \sim 0.17V$,逻辑电平 1 的电压范围为: $4.03 \sim 5.00V$ 。

任务二: 利用与非门控制输出

(1) 选一片 74LS00, 并按下图接线。

图 4-14 与非门控制输出的接线图

接线如图所示:

(2) 在输入端 A 输入 1kHz 连续脉冲,将 S 端接至数字电路实验箱的任一逻辑电平 开关;用示波器观察 S 端为 0 电平和 1 电平时的输入端 A 和输出端 Y 的波形,并记录。

逻辑电平为0时A和Y的波形

逻辑电平为1时A和Y的波形

4 实验思考与总结分析:

思考题:

- (1) 怎样判断门电路逻辑电路功能是否正常?
- 答:写出逻辑函数的表达式和真值表,与实验结果比对。若相同,则正常;否则不正常。
- (2)如果与非门的一个输入端接连续脉冲,其余端何状态时允许脉冲通过?何状态不允许脉冲通过?

其余输入端为高电平"1"时,允许脉冲通过,输入和输出之间呈反相关系。而有一个输入端为低电平"0"时,将"与非"门封锁,不允许脉冲通过。

(5)与非门又称可控反相门,为什么?

其中一个输入端接高电平,就是反向门,接低电平,就固定输出高电平。这个反向门的开启和关断是可控的,所以称可控反向门。

- (6) 芯片功能常用测试手段有几种?
- 1、离线检测:在 IC 未焊入电路时,可用万用表测量各引脚对应于接地引脚之间的正、反向电阻值,并和完好的 IC 进行必较。
 - 2、在线检测: ①、直流电阻检测, 同离线检测: ②、直流工作电压测量。
- 3、交流工作电压测试法: 用带有 dB 档的万能表,对 IC 进行交流电压近似值的测量。
- 4、 总电流测量:通过测 IC 电源的总电流,来判别 IC 的好坏。由于 IC 内部大多数为直流耦合,IC 损坏时(如 PN 结击穿或开路)会引起后级倒口与截止,使总电流发生变化,所以测总电流可判断 IC 的好坏。观测回路电阻上的电压,即可算出电流值来。

总结:

- (1) 通过完成任务一,得出实验结论: 74LS86 实现了异或逻辑功能; 根据测量的 U_Y 电压值,得出逻辑电平 0 的电压范围为: $0.00 \sim 0.17$ V,逻辑电平 1 的电压范围为: $4.03 \sim 5.00$ V。
 - (2) 通过完成任务二,成功记录输出和输入的波形。

指导教师批阅意见:	
D/thorate	
成绩评定:	
	指导教师签字:
	年 月 日
备注:	
- 1 极生中的项目式中交延署 可担根交际棒灯抽屉	ロボケイロンレーン

- 注: 1、报告内的项目或内容设置,可根据实际情况加以调整和补充。
 - 2、教师批改学生实验报告时间应在学生提交实验报告时间后 10 日内。