RTD 2525/2545/2555 LRH

Flat Panel Display Controller

Preliminary Revision Version 1.00

Last updated: 2008/7/16

FEATURES	4
2. CHIP DATA PATH BLOCK DIAGRAM	8
8. REGISTER DESCRIPTION	9
Global Event Flag	9
Watch Dog	
Input Video Capture	
Input Frame Window	19
FIFO Frequency	22
Scaling Down Control	22
Display Format	27
Display Fine Tune	
Cyclic-Redundant-Check	
FIFO Window	34
Scaling Up Function	34
Frame Sync Fine Tune	38
Sync Processor	40
Macro Vision	
Highlight window Color Processor Control	53
Color Processor Control	58
Contrast/Brightness Coefficient	
Dithering Control (For Display Domain)	00
Overlay/Color Polette/Pockground Color Control	02
Overlay/Color Palette/Background Color Control Image Auto Function	04
Dithering Control (For Input Domain)	60
Embedded Timing Controller	71
TCON Horizontal/Vertical Timing Setting	
Dot Masking	75
Dot Masking	78
Test function	
Embedded OSD	
Digital Filter	89
Color Conversion (Input Domain)	
Paged Control Register	93
Embedded ADC (Page 0)	94
ABL(Page 0)	105
LVR(Page 0)	110
Smith trigger(Page 0)	
MEMORY PLL (Page 0)	
ADC PLL (Page 1)	
DISPLAY PLL (Page 1)	
DCLK Spread Spectrum (Page 1)	128
MCLK Spread Spectrum (Page 1)	132
MULTIPLY PLL FOR INPUT CYRSTAL (Page 1)	
AUDIO DAC (Page 1)	136
Overall HDMI System Function Block (Page 2)	
HDCP 1.3 (Page 2)	148

HDMI Video and Audio Part (Page 2)		152
, ,		
, ,	ge 7)	
	y Domain) (Page 7)	
Pattern Generator in Display Domain (Page 7).		226
Reserved (Page 8)		230
Reserved (Page 9)		231
Reserved (Page A)		232
Reserved (Page C)		232
Register 1(page D)		233
Interrupt Control		.233
DDC		.233
Register 2(nage F)		,243 7/18
Pin_Share		2/18
CEC function		.253
Register 3(page F)		257
CEC Analog Function		.257
Embedded OSD		260
OSD Compression		289
OSD Special Function		2 9 0
4. ELECTRIC SPECIFICATION		30 4
5. MECHANICAL SPECIFICATION		305
6. ORDERING INFORMATION		307
() `		
0.0		
70		
6. ORDERING INFORMATION		

1. Features

General

- Programmable Scaling up and down
- No external memory required.
- Require only one crystal to generate all timing.
- Programmable 3.3V detection for multi-power domain in a system
- 2 channels 8 bits PWM output, and wide range selectable PWM frequency.
- Support input format up to 1920-pixel width
- DDC/CI(MCCS) supported

Analog RGB Input Interface

- Integrated 8-bit triple-channel 210 MHz ADC/PLL (optional)
- Embedded programmable Schmitt trigger of HSYNC
- Support Sync On Green (SOG) and various kinds of composite sync modes
- On-chip high-performance hybrid PLLs
- High resolution true 64 phase ADC PLL
- Auto Black Level Adjustment

Digital Video Input Interface

- Support 8-bit video (ITU 656) format input
- Built-in YUV to RGB color space converter & de-interlace

DVI Compliant Digital Input Interface (Optional)

- Single link on-chip TMDS receiver
- Up to 165Mhz
- Adaptive algorithm for TMDS capability
- Data enable only mode support
- HDCP 1.1 supported (optional)

Auto Detection / Auto Calibration

- Input format detection
- Compatibility with standard VESA mode and support user-defined mode
- Smart engine for Phase/Image position/Color calibration

Scaling

- Fully programmable zoom ratios
- Independent horizontal/vertical scaling
- Advanced zoom algorithm provides high image quality
- Sharpness/Smooth filter enhancement
- Support non-linear scaling from 4:3 to 16:9 or 16:9 to 4:3

Color Processor

- True 10 bits color processing engine
- sRGB compliance
- Advanced dithering logic for 18-bit panel color

depth enhancement

- Dynamic overshoot-smear canceling engine
- Brightness and contrast control
- Programmable 10-bit gamma support
- Peaking/Coring/XVYCC function for video sharpness

VividColorTM

- Independent color management (ICM)
- Dynamic contrast control (DCC)

LiveShow Function

 High-performance RTC (response time compensation) with embedded SDRAM.

Output Interface

- Fully programmable display timing generator
- 1 and 2 pixel/clock panel support and up to 140MHz(RTD2525LRH)/170MHz(RTD2545LR H)/190MHz(RTD2555LRH)
- Support LVDS output interface
- Spread-Spectrum DPLL to reduce EMI
- Fixed Last Line output for perfect panel capability

Host Interface

- Support MCU serial bus interface.
- Support MCU dual edge data latch.

Embedded OSD

- Embedded 16.5K SRAM dynamically stores OSD command and fonts
- Support multi-color RAM font, 1, 2 and 4-bit per pixel
- 16 color palette with 4096 true color selection
- Maximum 8 window with alpha-blending/ gradient/dynamic fade-in/fade-out, bordering/ shadow/3D window type
- Rotary 90,180,270 degree
- Independent row shadowing/bordering
- Programmable blinking effects for each character
- OSD-made internal pattern generator for factory mode
- Support 12x18~4x18 hardware proportional font
- Decompress OSD font

Power & Technology

- 48 pin QFN package
- Embedded voltage regulator
- 0.11um process 3.3V / 1.2V power supplier

48 pin-out List INPUT PORT

Name	I/O	No	Description	Note
B0+	AI	12	Positive BLUE analog input	
В0-	AI	11	Negative BLUE analog input	
G0+	AI	14	Positive GREEN analog input	
G0-	AI	13	Negative GREEN analog input	
R0+	AI	16	Positive RED analog input	
R0-	AI	15	Negative RED analog input	
AVS	I	8	ADC vertical sync input	no power 5V
			General Schmitt trigger	tolerance
AHS	I	9	ADC horizontal sync input	no power 5V
			Adjustable Schmitt trigger	tolerance

PLL

Name	I/O	Pin No	Description	Note
XI	AI	45	Reference clock input from external crystal	3.3V
			or from single-ended CMOS/TTL OSC	tolerance

Host interface

Name	I/O	Pin No	Description	Note
SDA	I/O	41	Serial control I/F data (Open drain w/ ST)	5V tolerance
SCL	О	42	Serial control I/F clock (Open drain w/ ST)	5V tolerance

■ TMDS

Name	I/O	Pin No	Description	Note
REXT	AI	1	Impedance Match Reference.	
RX2P	AI	47	Differential Data Input	
RX2N	AI	48	Differential Data Input	
RX1P	AI	2	Differential Data Input	
RX1N	AI	3	Differential Data Input	
RX0P	AI	4	Differential Data Input	
RX0N	AI	5	Differential Data Input	
RXCP	AI	6	Differential Data Input	
RXCN	AI	7	Differential Data Input	

Video 8 (Optional)

Name	I/O	Pin No	Description
V8_0 ~ V8_7	I	48~7	Video 8 data input (3.3V tolerance)
VCLK	I	47	Video8 clock input (3.3V tolerance)

Power and Ground

Name	I/O	Pin No	Description
ADC_GND	G	10	ADC 1.2V Ground
ADC_VDD	P	17	ADC 1.2V Power
TMDS_VDD	P	46	TMDS 3.3V Power
VCCK	P	19/40	Digital core Power
PVCC	P	20/39	Pad 3.3V Power

LVDS Display Interface

Name	I/O	No	Description
TXE3+	О	21	LVDS Differential Data Output
TXE3-	O	22	LVDS Differential Data Output
TXE2+	О	23	LVDS Differential Data Output
TXE2-	O	24	LVDS Differential Data Output

TXE1+	0	25	LVDS Differential Data Output
TXE1-	0	26	LVDS Differential Data Output
TXE0+	О	27	LVDS Differential Data Output
TXE0-	O	28	LVDS Differential Data Output
TXO3+	O	29	LVDS Differential Data Output
TXO3-	О	30	LVDS Differential Data Output
TXOC+	О	31	LVDS Differential CLK Output
TXOC-	O	32	LVDS Differential CLK Output
TXO2+	0	33	LVDS Differential Data Output
TXO2-	O	34	LVDS Differential Data Output
TXO1+	О	35	LVDS Differential Data Output
TXO1-	0	36	LVDS Differential Data Output
TXO0+	О	37	LVDS Differential Data Output
TXO0-	0	38	LVDS Differential Data Output

■ DDC/CI Channel

Name	I/O	No	Description
DDCSDA	I/O	43	Open drain, no power 5V tolerance with Schmitt trigger pad
DDCSCL	I	44	Open drain, no power 5V tolerance with Schmitt trigger pad

■ PWM

Name	I/O	No	Description
PWM0	О	44	Open drain, with 5V tolerance
PWM1	О	43	Open drain, with 5V tolerance

■ MISC

Name	I/O	No	Description
BJT_B	О	18	Embedded regulator P type BJT control pin out

■ Timing Controller

Realiek,

Name	I/O	No	Description
TCON7	0	44	Timing controller output
TCON9	0	43	Timing controller output

2. Chip Data Path Block Diagram

Figure 1

3. Register Description

Global Event Flag

Register::ID_Reg				0x00		
Name	Bit	R/W	Default	Description	Config	
ID	7:0	R	0x51	MSB 4 bits: 0000 product code		
				LSB 4 bits: 0001 rev. code		

Register:: Host_ctr	·I			0x01	l
Name	Bit	R/W	Default	Description	Config.
Rev	7		0	Reserved	
Reset_chk	6	R/W	0	Reset Check Once scalar is reset, this value will be cleared to 0.The purpose of it is to check if LVR has been triggered. It should be written to 1 ahead, then read itLVR has been triggered if the value is 0,else LVR has not.	
Rev	5:3			Reserved	
PD_EN	2	R/W	1	Power Down Mode Enable	
			70	0: Normal	
		S.		1: Enable power down mode(Default)	
				Turn off ADC RGB Channel/ ADC	
			Ĭ	Band-gap/ SOG/ DPLL/ LVDS/ADC	
				PLL/ SYNC- PROC/ TMDS /	
				HDMI-Audio PLL/m2pll	
	1			Note: For LVDS Power Control, refer to	
. •				following table.	
PS_EN	1	R/W	0	Power Saving Mode Enable	
				0: Normal(Default)	
00				1: Enable power saving mode	
				Turn off ADC RGB channel/ DPLL/	
				LVDS/ ADC PLL/ m2pll	
				When power down or power saving	
				function is enabled, internal mcu clock	
				is forced to crystal clock.	
				Note: For LVDS Power Control, refer to	
				following table.	
Sft_Reset	0	R/W	0	Software Reset Whole Chip (Low	

pulse at least 8ms)	
0: Normal (Default)	
1: Reset	
All registers are reset to default except	
HOST_CTRL and power-on-latch.	

• Power Down/Power Saving control only effective when LVDS/RSD Display Output is double.

Power Control	Port	DATA_TYPE	DISP_TYPE
		CR 28[2]	CR 8E-00[1:0]
Power Down/Power Saving	LVDS Mid	Double [1]	LVDS [01]
CR01 [2]/CR 01[1]	LVDS Even	Double [1]	LVDS [01]
	LVDS Odd	Double [1]	LVDS [01]
Power Up LVDS Mid-Port CR8C-A0 [6]	LVDS Mid	Single [0]	LVDS [01]
Power Up LVDS Even-Port CR8C-A0 [5]	LVDS Even	Single [0]	LVDS [01]
Power Up LVDS Odd-Port CR8C-A0 [4]	LVDS Odd	Single [0]	LVDS [01]

Register:: STATUS	50			0x0	2
Name	Bit	R/W	Default	Description	Config.
ADCPLL_nonlock	7	R	0	ADC_PLL Non-Lock	
		C		If the ADC_PLL non-lock occurs, this bit is set to "1".	
IVS_error	6	R	0	Input VSYNC Error	
		~ (0)		If the input vertical sync occurs within the programmed active period, this bit is set to "1".	
IHS_error	5	R	0	Input HSYNC Error	
	\1			If the input horizontal sync occurs	
				within the programmed active period, this bit is set to "1".	
ODD_Occur	4	R	0	Input ODD Toggle Occur (For internal	
				field odd toggle, refer to CR1A[5])	
20				If the ODD signal (From SAV/EAV or	
20				V16_ODD) toggle occurs, this bit is set to "1".	
V8HV_Occur	3	R	0	Video8 Input Vertical/Horizontal	
•				Sync Occurs	
				If the YUV input V or H sync edge	
				occurs, this bit is set to "1".	
ADCHV_Occur	2	R	0	ADC Input Vertical/Horizontal Sync	
				Occurs	
				Input V or H sync edge occurs; this bit	

				is set to "1".	
Buffer_Ovf1	1	R	0	Input Overflow Status (Frame Sync	
				Mode) *1	
				If an overflow in the input data capture	
				buffer occurs, this bit is set to "1".	
Buffer_Udf1	0	R	0	Line Buffer Underflow Status (Frame	
				Sync Mode)	
				If an underflow in the line-buffer	
				occurs, this bit is set to "1".)

Write to clear status.

Register:: STATU	S1			0x0	0x03	
Name	Bit	R/W	Default	Description	Config.	
Buffer_Ovf2	7	R	0	Line Buffer Overflow Status 1: Line Buffer overflow has occurred since the last status cleared		
Buffer_Udf2	6	R	0	Line Buffer Underflow Status 1: Line Buffer underflow has occurred since the last status cleared		
DENA_Stop	5	R		DENA Stop Event Status 1: If the DENA stop event occurred since the last status cleared		
DENA_Start	4	R	0	DENA Start Event Status 1: If the DENA start event occurred since the last status cleared as an interrupt source		
DVS_Start	3	R	0	DVS Start Event Status 1: If the DVS start event occurred since the last status cleared		
IENA_Stop	2	R	0	IENA Stop Event Status 1: If the IENA stop event occurred since the last status cleared		
IENA_Start	1	R	0	IENA Start Event Status 1: If the IENA start event occurred since the last status cleared		
IVS_Start	0	R	0	IVS Start Event Status 1: If the IVS start event occurred since the last status cleared		

Write to clear status.

^{*1}Only first event of input overflow/underflow is recorded if both of them occurs.

Register::IRQ_CT	TRL0				0x04
Name	Bit	R/W	Default	Description	Config.
IRQ_EN	7	R/W	0	Internal IRQ Enable: (Global)	
				0: Disable these interrupt.	
				1: Enable these interrupt.	
IRQ_ADCPLL	6	R/W	0	IRQ (ADC_PLL Non-Lock)	
				0: Disable the ADC_PLL non-lock	0
				error event as an interrupt source	7.0.
				1: Enable the ADC_PLL non-lock	
				error event as an interrupt source	
IRQ_IHV	5	R/W	0	IRQ (Input VSYNC/HSYNC Error)	
				(DEN across Vsync or Hsync)	
				0: Disable the Input VSYNC/HSYNC	
				error event as an interrupt source	
				1: Enable the Input VSYNC/HSYNC	
				error event as an interrupt source	
IRQ_ODD	4	R/W	0	IRQ (Input ODD Toggle Occur)	
				(EAV/SAV from Video8)	
				0: Disable Input ODD toggle event as	
			10	an interrupt source	
			70	1: Enable the Input ODD toggle event	
	_	C		as an interrupt source	
IRQ_V8_HV	3	R/W	0	IRQ (Video8 Input Hsync/Vertical	
				Sync Occurs)	
				0: Disable the Video8 Input Hsync or	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			Vsync event as an interrupt source	
	. 1			1: Enable the Video8 Input Hsync or	
TO ADO IN		DAY	0	Vsync event as an interrupt sourc	
IRQ_ADC_HV	2	R/W	0	IRQ (ADC Input Hsync/Vertical Sync	:
				Occurs)	
				0: Disable the ADC Input Hsync or	
01				Vsync event as an interrupt source	
				1: Enable the ADC Input Hsync or	
TRO D CC	1	D WY	0	Vsync event as an interrupt source	
IRQ_Buffer	1	R/W	0	IRQ (Line Buffer	
				Underflow/Overflow Status)	
				0: Disable the Line Buffer	
				underflow/overflow event as an	
				interrupt source	
				1: Enable the Line Buffer	
				underflow/overflow event as an	
				interrupt source	

IRQ_IENA	0	R/W	0	IRQ (Input ENA Start Event
				Occurred Status)
				0: Disable IENA start as interrupt
				source
				1: Enable IENA start as interrupt
				source

Register:: HDMI_STATUS0					0x05
Name	Bit	R/W	Default	Description	Config.
HDMI status 0	7:0	R		Reference to CRCB for HMDI Function (Page 2)(write 1 clear)	

Register:: HDMI_STATUS1			0x06		
Name	Bit	R/W	Default	Description	Config.
HDMI status 1	7:0	R		Reference to CRCC for HMDI Function (Page 2)(write 1 clear)	

Register:: New_ado	Register:: New_added_status0 0x07				
Name	Bit	R/W	Default	Description	Config.
Wstate	7	R	. (7)	Wait state status	
New_m_state	6	R		New mode state	
Change_m_happen	5	R		Change mode happen (it will not be triggered while VGIP active signal is low)	
Wstate_IRQ_en	4	R/W	0	IRQ enable of Wait state status 0:disable 1:enable	
New_m_state_IRQen	3	R/W	0	IRQ enable of New mode status 0:disable 1:enable	
Change_m_happen _IRQ_en	2	R/W	0	IRQ enable of change mode happen status 0:disable 1:enable	
DP_IRQ	1	R		Display port IRQ status	
Reserved	0			Reserved	

Register:: New_added_status1 0x			0x08		
Name	Bit	R/W	Default	Description	Config.
Reserved	7:0			Reserved	

Address: 09~0B Reserved

Watch Dog

Address: 0C	WATCH_DOG_CTRL0	Default: 00h
-------------	-----------------	--------------

Bit	Mode	Function
7	R/W	Auto Switch When Input HSYNC/VSYNC Error
		0: Disable (Default)
		1: Enable
		(See CR02[6] and CR02[5])
6	R/W	Auto Switch When Input HSYNC/VSYNC Timeout or Overflow
		0: Disable (Default)
		1: Enable
		(See CR52[4] and CR54[5:4])
5	R/W	Auto Switch When Display VSYNC Timeout
		0: Disable (Default)
		1: Enable
4	R/W	Auto Switch When ADC-PLL Unlock
		0: Disable (Default)
		1: Enable
3	R/W	Auto Switch When Overflow or Underflow (for Frame-Sync Display)
		0: Disable (Default)
		1: Enable
2	R/W	Watch-Dog Action if Event Happened (for Display Timing)
		0: Disable (Default)
		1: Free Run
1	R/W	Watch-Dog Action if Event Happened (for Display Data)
		0: Disable (Default)
		1: Background
		(Turn off overlay function and switch to background display simultaneously)
0	R	Display VSYNC Timeout Flag (for CR0C[5])
	2	0: DVS is present
	0	1: DVS is timeout
V		The line number of Display HS is equal to Display Vertical Total; this bit is set to "1". (Write to
		clear status).

Address: 0D WATCH_DOG_CTRL1 Default: 00h

Bit	Mode	Function
7	R/W	Auto Switch When Input HSYNC Changed
		0: Disable (Default)
		1: Enable
		(See CR58[3])

6	R/W	Auto Switch When Input VSYNC Changed
		0: Disable (Default)
		1: Enable
		(See CR58[2])
5	R/W	Wstate WD enable
		0:Disable(Default)
		1:enable
4	R/W	New_m_state
		0:Disable(Default)
		1:enable
3	R/W	Change_mode_happen
		0:Disable(Default)
		1:enable
2:0		Reserved

Address: 0E~0F Reserved

Input Video Capture

Address: 10 VGIP_CTRL (Video Graphic Input Control Register) Default: 00h

Bit	Mode	Fur	nction	
7		8 bit Random Generator		
,	10 11	0: Disable(Default) 1: Enable		
6	R/W	Input Test Mode:		
		0: Disable (Default)		
		1: Video8 input will go through RGB channel,	AVS=>IVS, AHS=>IHS, V	CLK=>ICLK
5	R/W	VGIP Double Buffer Ready		
	~?	0: Not Ready to Apply		
		1: Ready to Apply		
4		When the list table of CR10[4] is set, then e	nable CR10[5].	
		Finally, hardware will auto load these values	into VGIP double buffer	registers as the
		trigger event happens and clear CR10[5] to	0.	
4	R/W	VGIP Double Buffer Mode Enable (Each regis	ster described below has its	own double buffer)
		0: Disable (Original- Write instantly by MCU v	vrite cycles)	
		1: Enable (Double Buffer Function Write Mode)		
		Register	Trigger Event	
		PLLPHASE(CRB3,CRB4)	Falling edge of Ivactive	

		Add 1-clk Delay to IHS Delay (CR12[4]) HSYNC Synchronize Edge (CR12[3])
		IPH_ACT_STA (CR14[2:0],CR15) Falling edge of Ivactive
		IPV_ACT_STA (CR18[2:0],CR19) Falling edge of Ivactive IV_DV_LINES (CR40)
		IVS_DELAY (for capture) (CR1C,CR1E[1]) Falling edge of Ivactive
		IHS_DELAY (for capture) (CR1D, CR1E[0]) Falling edge of Ivactive
3:2	R/W	Input Pixel Format
		00: Embedded ADC (ADC_HS)(Default)
		01: Embedded TMDS
		10: Video8
		11: Reserved
1	R/W	Input Graphic/Video Mode
		0: From analog input (input captured by 'Input Capture Window') (Default)
		1: From digital input (captured start by 'enable signal', but sill stored in 'capture window size')
0	R/W	Input Sampling Run Enable
		0: No data is transferred (Default)
		1: Sampling input pixels

Address: 11 VGIP_SIGINV (Input Control Signal Inverted Register) Default: 00h

Bit	Mode	Function
7	R/W	Safe Mode
		0: Normal (Default)
		1: Safe Mode Enable, mask 1 frame IVS of every 2 frame IVS, slow down input frame rate.
6	R/W	IVS Sync with IHS Control (Avoid VS bouncing)
		0: Enable (Default)
		1: Disable
5	R/W	HS Signal Inverted for Field Detection
		0: Negative Edge (Default)
	2,0	1: Positive Edge
4	R/W	Input Video ODD Signal Invert Enable
		0: Not inverted (ODD = positive polarity) (Default)
		1: Inverted (ODD = negative polarity)
3	R/W	Input VS Signal Polarity Inverted
		0: Not inverted (VS = positive polarity) (Default)
		1: Inverted (VS = negative polarity)
2	R/W	Input HS Signal Polarity Inverted
		0: Not inverted (HS = positive polarity) (Default)
		1: Inverted (HS = negative polarity)

Default: 00h

1	R/W	Input ENA Signal Polarity Inverted
		0: Not inverted (input high active) (Default)
		1: Inverted (while input low active)
0	R/W	Video Input Clock Polarity
		0: Rising edge latched (Default)
		1: Falling edge latched

Address: 12 VGIP_DELAY_CTRL

Bit	Mode	Function
7	R	6-Iclk-delay HS Level Latched by VS Rising Edge
6	R	HS Level Latched by VS Rising Edge
5	R	HS Level Latched by 6-Iclk-delay VS Rising Edge
4	R/W/D	Add One Clock Delay to IHS Delay
		0: Disable (Default)
		1: Enable
3	R/W/D	HSYNC Synchronize Edge
		0: HSYNC is synchronized by the positive edge of the input clock
		1: HSYNC is synchronized by the negative edge of the input clock
		(HSYNC source is selected by CR48[0] and then synchronized)
2	R/W	VSYNC Synchronize Edge
		0: Latch VS by the negative edge of input HSYNC (Default)
		1: Latch VS by the positive edge of input HSYNC
1:0	R/W	Video Input Clock Delay Control:
		00: Normal (Default)
		01: 1ns delay
		10: 2ns délay
		11: 3ns delay

Address: 13 VGIP_ODD_CTRL (Video Graphic Input ODD Control Register) Default: 00h

Bit	Mode	Function
7	R/W	ODD Inversion for ODD-Controlled-IVS-Delay
	V	0: Not Invert (Default)
		1: Invert
6	R/W	ODD-Controlled-IVS-Delay One-Line Enable
		0: Disable (Default)
		1: Enable
5	R/W	Safe Mode ODD Inversion
		0: Not inverted (Default)
		1: Inverted

4		
	R/W	Force ODD Toggle Enable (Without ODD/EVEN Toggle Select in Safe Mode)
		0: Disable (Default)
		1: Enable
3	R/W	Video 4:2:2->4:4:4 Enable before Scale-Down (Duplicate)
		0: Disable (Default)
		1: Enable
2	R/W	Decode Video8 when ADC or TMDS Active
		0: Disable (Default)
		1: Enable
1	R/W	EAV Error Correction Enable in Video-8
		0: Disable
		1: Enable
0	R/W	Internal ODD Signal Selection
		0: ODD signal from EAV or YPbPr (Default)
		1: Internal Field Detection ODD signal (Also support under VGA, DVI input)
		Hek

Input Frame Window

(All capture window setting unit is 1)

Address: 14	IPH_ACT_STA_H (Input Horizontal Active Start)	Default: 00h
-------------	---	--------------

Bit	Mode	Function
7:4	R/W/D	Input Video Horizontal Active Width High Byte [11:8]
3:0	R/W/D	Input Video Horizontal Active Start High Byte [11:8]

Address: 15 IPH_ACT_STA_L (Input Horizontal Active Start Low) Default: 00h

Bit	Mode	Function
7:0	R/W/D	Input Video Horizontal Active Start Low Byte [7:0]

- In analog mode, **IPH_ACT_STA** means the delay number of pixel clock from the leading edge of HS to the first pixel of each active line. Actual delay number of pixel clock = **IPH_ACT_STA(>=2) +2**,
- In digital mode, **IPH_ACT_STA** means the delay number of pixel clock from the leading edge of DE to the first pixel of each active line. Actual delay number of pixel clock = **IPH_ACT_STA(>=0)**

Address: 16 IPH_ACT_WID_H (Input Horizontal Active Width High) Default: 00h

Bit	Mode	Function
7	R/W	Video8 -C-Port Input Latch Bus MSB to LSB Swap Control:
		0: Normal (Default)
		1: Swap Video8 -C-port MSB to LSB sequence into LSB to MSB
6	R/W	ADC Input G/B Swap
		0: No Swap
		1: Swap
5	R/W	ADC Input R/B Swap
		0: No Swap
		1: Swap
4	R/W	ADC Input R/G Swap
		0: No Swap
		1: Swap
3	R/W	Double Clock Input
	0,	0: Single Clock
()		1: Double Clock
		this bit should be set double clock when using video 8 input
2:0		Reserved

Address: 17		IPH_ACT_WID_L (Input Horizontal Active Width Low)	Default: 00h
Bit	Mode	Function	
7:0	R/W	Input Video Horizontal Active Width Low Byte [7:0]	

This register defines the number of active pixel clocks to be captured.

Address: 18	IPV_ACT_STA_H (Input Vertical Active Start High)	Default: 00h

Bit	Mode	Function
7:4	R/W	Input Video Vertical Active Lines – High Byte [11:8]
		20
3:0	R/W/D	Input Video Vertical Active Start – High Byte [11:8]

Address: 19 IPV_ACT_STA_L (Input Vertical Active Start Low) Default: 00h			Default: 00h
Bit	Mode	Function	()-
7:0	R/W/D	Input Video Vertical Active Start – Low Byte [7:0]	*

The numbers of lines from the leading edge of selected input video VSYNC to the first line of the active window.

The value above should be larger than 1.

Address: 1A IPV_ACT_LEN_H (Input Vertical Active Lines) Default: 00h

Bit	Mode	Function	
7	R	SAV/EAV 2-Bit Error Happened (Set if happened and write to clear)	
6	R	SAV/EAV 1-Bit Error Happened (Set if happened and write to clear)	
5	R	Internal Field Detection ODD Toggle Happened (Set if happened and write to clear)	
		The function should be worked under no input clock	
4:3	R	Number of Input HS between 2 Input VS (LSB bit [1:0])	
2:0	R/W	Reserved	

Address: 1B IPV_ACT_LEN_L (Input Vertical Active Lines) Default: 00h

Bit	Mode	Function
7:0	R/W	Input Video Vertical Active Lines – Low Byte [7:0]

This register defines the number of active lines to be captured.

Address: 1C IVS_DELAY (Internal Input-VS Delay Control Register) Default: 00h

Bit	Mode	Function
7:0	R/W/D	Input VSYNC Delay for Capture[7:0] (Counted by Input HSYNC)
		It's IVS delay for capture and digital filter, not for auto function

Address: 1D IHS_DELAY (Internal Input-HS Delay Control Register) Default: 00h

Bit	Mode	Function
7:0	R/W/D	Input HSYNC Delay for Capture [7:0] (Counted by Input Pixel Clock)
		It's IHS delay for capture and digital filter, not for auto function

Address: 1E VGIP_HV_DELAY Default: 00h

Bit	Mode	Function
7:6	R/W	Input HSYNC Delay for Auto Function (Counted by Input Pixel Clock)

		00: No delay	
		01: 32 pixels	
		10: 64 pixels	
		11: 96 pixels	
5:4	R/W	Input VSYNC Delay for Auto Function (Counted by Input HSYNC)	
		00: No delay	
		01: 3 line	
		10: 7 line	
		11: 15 line	
3	R/W	Select DataEnable or HSync to adjust clock phase	
		0: use DataEable to adjust clock phase (Default)	
		1: use HSync to adjust clock phase (while input source as ADC)	
2		Reserved	70
1	R/W/D	Input VSYNC Delay for Capture[8] (Counted by Input HSYNC)	
0	R/W/D	Input HSYNC Delay for Capture[8] (Counted by Input Pixel Clock)	+ 6

Address: 1F V8 Source Select & YUV422 to YUV444Conversion Default: 00h

Bit	Mode	Function
7	R/W	Reorder the data flow 0: dfilter -> color_conversion -> dithering -> HSD
		1: dfilter -> dithering -> color_conversion -> HSD
6:4		Reserved
3	R/W	Video 4:2:2->4:4:4 Enable before Scale-Down 0: Disable (Default) 1: Enable (This bit should be always enable when in Video8/ HDMI YUV422 mode.)
2	R/W	Video 4:2:2->4:4:4 Mode Select 0: Interpolation (Default) 1: Duplicate (This bit would be work only while CR1F[3] is enable)
1	R/W	Output 444 Format (only work in Interpolation Mode) 0: Y ₀ U ₀ V ₀ , Y ₁ (U ₀ +U ₂)/2 (V ₀ +V ₂)/2, Y ₂ U ₂ V ₂ , Y ₃ (U ₂ +U ₄)/2 (V ₂ +V ₄)/2 1: Y ₀ U ₀ V ₁ , Y ₁ (U ₀ +U ₂)/2 V ₁ , Y ₂ U ₂ (V ₁ +V ₃)/2, Y ₃ (U ₂ +U ₄)/2 V ₃
0	R/W	UV Swap (for YUV422 to YUV444) (only work in Interpolation Mode) 0: Sequence 444 result: Y, U, V 1: Sequence 444 result: Y, V, U

Figure 15: Input HSYNC/VSYNC Delay Path Diagram

Address: 20 V8CLK_SEL (v8clk selection s	setting) Default: 00h
--	-----------------------

Bit	Mode	Function
7:6		Reserved
5:4	R/W	V8clk divider: 00: div 2 (Default)
		01: div 4 10: div 8 11: reserved
3		Reserved
2:0	R/W	V8clk_phase: 000: phase 0 (Default) 001: phase 1 010: phase 2 (not work while div2) 011: phase 3 (not work while div2) 100: phase 4 (not work while div2 & div4) 101: phase 5 (not work while div2 & div4) 110: phase 6 (not work while div2 & div4) 111: phase 7 (not work while div2 & div4)

FIFO Frequency

Address: 22 **FIFO Frequency** Default: 00h

Bit	Mode	Function	
7	R/W	Test Mode	
		0: Disable	
		1: Input data of VGIP Replaced by Background Color in CR6D	
6:3	R/W	Reserved to 0	
2	R/W	Internal Xtal Frequency	
		0: Fxtal	
		1: Fxtal * M2PLL_M / M2PLL_N / 10	
1:0	R/W	FIFO Frequency	
		00: MPLL	
		01: ICLK	
		10: DCLK	
		11: M2PLL	

Scaling Down Control

Address: 23 SCALE_DOWN_CTRL (Scale Down Control Register) Default:00h

Bit	Mode	Function
7	R/W	Vertical scale down function mode selection:
		0: Use line interpolation mode (Default)
		1: Use drop line mode
		(Note: This bit is only valid while CR23[0]=1'b1.)
6	R	Bist for Line Buffer one & two ok
		0: Fail

Default: 00h

		1: Ok
5		Reserved
4	R/W	Line Buffer Bist Function Start (Auto clear to 0 when finish)
		0: Finish
		1: Start
3	R/W	Horizontal non-linear scale down
		0: linear
		1: non-linear
2	R/W	Vertical Scale-Down Compensation
		0: Disable (Default)
		1: Enable
1	R/W	Horizontal scale down function enable:
		0: Disable scale down function (Default)
		1: Enable scale down function
0	R/W	Vertical scale down function enable:
		0: Disable scale down function (Default)
		1: Enable scale down function
		(Note: There is a bit to select interpolation or dropping for vertical scale down at CR24[7].)

Address: 24 Scale_Down_Access_Port Control

Bit	Mode	Function
7	R/W	Enable scale-down access port
6:5		Reserved to 0
4:0	R/W	Scale-down port address

Address: 25-00 V_SCALE_INIT

Bit	Mode	Function
7:6		Reserved
5:0	R/W	Vertical Scale Down Initial Select [5:0]

Scale Down Initial Point Select: for example, if the value is 43, we select the initial point is 43/64

Address: 25-01 V_SCALE_DH (Vertical scale down factor register)

Bit	Mode	Function	
7:3	R/W	Reserved	
2:0	R/W	Vertical Scale Down Factor [18:16]	

Address: 25-02 V_SCALE_DM (Vertical scale down factor register)

Bit	Mode	Function
7:0	R/W	Vertical Scale Down Factor [15:8]

Address: 25-03 V_SCALE_DL (Vertical scale down factor register)

Bit	Mode	Function
-----	------	----------

7.0	DATI	W 42 10 1 D E 4 [7.0]
7:0	K/W	Vertical Scale Down Factor [7:0]

- Registers {V_SCALE_DH, V_SCALE_DM, V_SCALE_DL} = (Yi/Ym)*(2^17).
- The largest scale down ratio is 1/4 (integer part 2 bits)
- Meanwhile, Yi = vertical input length; Ym=vertical memory write length

Address: 25-04 H_SCALE_INIT

Bit	Mode	Function
7:6		Reserved
5:0	R/W	Horizontal Scale Down Initial Select [5:0]

• Scale Down Initial Point Select: for example, if the value is 43, we select the initial point is 43/64

Address: 25-05 H_SCALE_DH

Bit	Mode		Function	4
7:0	R/W	Horizontal Scale Down Factor [23:16]		

Address: 25-06 H_SCALE_DM

Bit	Mode		Function	X	
7:0	R/W	Horizontal Scale Down Factor [15:8]			

Address: 25-07 H_SCALE_DL

	Bit	Mode		Function
I	7:0	R/W	Horizontal Scale Down Factor [7:0]	

- For linear scale down, registers {H_SCALE_DH, HSCALE_DM, HSCALE_DL} = (Xi/Xm)*(2^20).
- Meanwhile, Xi = vertical input length; Xm=vertical memory write length

Address: 25-08 H_SCALE_ACCH

Bit	Mode	Function
7		Reserved
6:0	R/W	Horizontal Scale Down Accumulated Factor [14:8]

Address: 25-09 H_SCALE_ACCL

Bit	Mode	Function	
7:0	R/W	Horizontal Scale Down Accumulated Factor [7:0]	

Address: 25-0A SD_ACC_WIDTHH

Bit	Mode	Function
7:2		Reserved
1:0	R/W	Horizontal Scale Down Accumulated Width [9:8]

Address: 25-0B SD_ACC_WIDTHL

Bit	Mode	Function
7:0	R/W	Horizontal Scale Down Accumulated Width [7:0]

Address: 25-0C SD FLAT WIDTHH

Bit	Mode	Function			
7:3		Reserved			
2:0	R/W	Horizontal Scale Down Flat Width [10:8]			

Address: 25-0D SD_FLAT_WIDTHL

Bit	Mode	Function	
7:0	R/W	Horizontal Scale Down Flat Width [7:0]	

Default: 8'h00

Address: 25-0E, 25-0F reserved

Address: 25-10	Input Pattern Generator Ctrl 0	Default: 8'h00

Bit	Mode	Function					
7	R/W	Pattern reset to initial value					
		0 : 1 frame					
		1 : 16 frame					
6	R/W	Random generator mode					
		$0: x^9 + x^3 + 1$					
		1 : x^29+x^6+x^4+x+1 (Green, Blue, Red)					
5	R/W	Data update (RED)					
		0 : reference data enable(pixel base)					
		1: reference horizontal data enable end(line base)					
4	R/W	Data update (GREEN)					
		0 : reference data enable					
		1: reference horizontal data enable end					
3	R/W	Data update (BLUE)					
		0 : reference data enable					
		1: reference horizontal data enable end					
2	R/W	Pattern generator mode (RED)					
		0 : random generator (ref. CR25-10[6]					
		1 : pattern generator (reg. CR25-11[2])					
1	R/W	Pattern generator mode (GREEN)					
		0 : random generator (ref. CR25-10[6]					
		1 : pattern generator (reg. CR25-11[1])					
0	R/W	Pattern generator mode (BLUE)					
		0 : random generator (ref. CR25-10[6]					
		1 : pattern generator (reg. CR25-11[0])					

Address: 25-11 Input Pattern Generator Ctrl 1

Bit	Mode	Function			
7-3	R/W	Reserved to 0			
2	R/W	Pattern generator (RED)			
		0: Out(n) = Out(n-1)			
		1: Out(n) = Out(n-1) + 1			
1	R/W	Pattern generator (GREEN)			
		Out(n) = Out(n-1)			
		1: Out(n) = Out(n-1) + 1			
0	R/W	Pattern generator (BLUE)			
		0: Out(n) = Out(n-1)			
		1: Out(n) = Out(n-1) + 1			

Address: 25-12 Input Pattern Generator RED Initial Value Default: 8'h01

Bit	Mode	Function
7-0	R/W	RED Initial Value [7:0]

Address: 25-13 Input Pattern Generator GREEN Initial Value Default: 8'h01

Bit	Mode	Function			
7-0	R/W	Green Initial Value [7:0]			

Address: 25-14 Input Pattern Generator BLUE Initial Value Default: 8'h01

	Bit	Mode	Function			
I	7-0	R/W	BLUE Initial Value [7:0]			

Address: 25-15 Input Pattern Generator RED/GREEN/BLUE Initial Value Default: 8'h00

Bit	Mode	Function			
7-6	R/W	Reserved to 0			
5-4	R/W	RED Initial Value [9:8]			
3-2	R/W	GREEN Initial Value [9:8]			
1-0	R/W	BLUE Initial Value [9:8]			

Register::I_YUV444to422 0x26					
Name	Bits	Read/Write	Reset State	Comments	Config
VSD_AS_4TO2I N	7	R/W	0	This bit decides the data flow in I-domain: 0: HSD output as YUV444to422 input data 1: VSD output as YUV444to422 input data	
4TO2_AS_FIFOI N	6	R/W	0	This bit decides the data flow in I-domain: 0: I_BUF output as FIFO input data 1: YUV444to422 output as FIFO input data	
LS_RSV_26_54	5:4	R/W	0	Reserved	
444TO422_EN	3	R/W	0	In I-domain, YUV 444 to 422: 0: Disable 1: Enable	
LS_RSV_26_2	2	R/W	0	Reserved	
INTERPOLATE	1	R/W		In I-domain, YUV 444 to 422: 0: Drop C directly a. uv_mode = 0: Y_0U_0 , Y_1V_0 , Y_2U_2 , Y_3V_2 b. uv_mode = 1: Y_0U_0 , Y_1V_1 , Y_2U_2 , Y_3V_3 1: Interpolation Mode a. uv_mode = 0: $Y_0\overline{(U_0+U_1)/2}$, $Y_1\overline{(V_0+V_1)/2}$, $Y_2\overline{(U_2+U_3)/2}$, $Y_3\overline{(V_2+V_3)/2}$ b. uv_mode = 1: $Y_0\overline{(U_0+U_1)/2}$, $Y_1\overline{(V_1+V_2)/2}$, $Y_2\overline{(U_2+U_3)/2}$, $Y_3\overline{(V_3+V_4)/2}$	
UV_MODE	0	R/W	0	In I-domain, 444to422 U/V type 0: U0 V0 U2 V2 U4 V4 1: U0 V1 U2 V3 U4 V5	
6-60/	S				

- dithering/color_conv => HSD => VSD(drop line) => 444to422 => I_BUF => new_fifo
- dithering/color_conv => HSD => VSD(interpolation) => 444to422 => new_fifo
- dithering/color_conv => HSD => 444to422 => I_BUF => new_fifo (defult setting)

Address: 27 Reserved

Display Format

Address: 28 VDIS_CTRL (Video Display Control Register) Default: 20h

riuuress.		VDIS_CTRE(video Display Control Register)			
Bit	Mode	Function			
7	R/W	Force Display Timing Generator Enable: (Should be set when in Free-Run mode)			
		0: wait for input IVS trigger			
		1: force enable			
6	R/W	Display Data Output Inverse Enable			
	0,0	0: Disable (Default)			
)	1: Enable (only when data bus clamp to 0)			
5	R/W	Display Output Force to Background Color			
		0: Display output operates normally			
		1: Display output is forced to the color as selected by background color (CR6D) (Default)			
4	R/W	Display 18 bit RGB Mode Enable			
		0: All individual output pixels are full 24-bit RGB (Default)			
		1: All individual output pixels are truncated to 18-bit RGB (LSB 2 bits = 0)			
3	R/W	Frame Sync Mode Enable			

		0: Free running mode (Default)
		1: Frame sync mode
2	R/W	Display Output Double Port Enable
		0: Single port output (Default) (Not effective if <u>CR8C-A0[1]=1'b1</u>)
		1: Double port output
1	R/W	Display Output Run Enable
		0: DHS, DVS, DEN & DATA bus are clamped to "0" (Default)
		1: Display output normal operation.
0	R/W	Display Timing Run Enable
		0: Display Timing Generator is halted, Zoom Filter halted (Default)
		1: Display Timing Generator and Zoom Filter enabled to run normally

Steps to disable output: First set CR28[1]=0, set CR28[6], then set CR28[0]=0 to disable output.

Address: 29 VDISP_SIGINV (Display Control Signal Inverted) Default: 00h

	Adaress: 29 VDISP_SIGINV (Display Control Signal Inverted)	'	: 29	Aaaress.
	Bit Mode Function		Mode	Bit
	7 R/W DHS Output Format Select (only available in Frame Sync		R/W	7
	0: The first DHS after DVS is active (Default)			
	1: The first DHS after DVS is inactive			
	6 R/W Display Data Port Even/Odd Data Swap:		R/W	6
	0: Disable (Default)			
	1: Enable			
	5 R/W Display Data Port Red/Blue Data Swap		R/W	5
	0: Disable (Default)			
	1: Enable			
	4 R/W Display Data Port MSB/LSB Data Swap		R/W	4
	0: Disable (Default)			
	1: Enable			
	3 R/W Skew Display Data Output		R/W	3
	0: Non-skew data output (Default)		0	
	1: Skew data output			
	2 R/W Display Vertical Sync (DVS) Output Invert Enable:		R/W	2
	0: Display Vertical Sync output normal active high logic (De			X
	1: Display Vertical Sync output inverted logic			
	1 R/W Display Horizontal Sync (DHS) Output Invert Enable:		R/W	1
	0: Display Horizontal Sync output normal active high logic			
	1: Display Horizontal Sync output inverted logic			
	0 R/W Display Data Enable (DEN) Output Invert Enable:		R/W	0
	0: Display Data Enable output normal active high logic (Def			
_	1 R/W Display Horizontal Sync (DHS) Output Invert Enable: 0: Display Horizontal Sync output normal active high logic 1: Display Horizontal Sync output inverted logic 0 R/W Display Data Enable (DEN) Output Invert Enable:			

1: Display Data Enable output inverted logic

Address: 2A DISP_ADDR (Display Format Address Port)

Bit	Mode		Function		
7	R/W	Display Setting Double buffer enal	Display Setting Double buffer enable		
		0 : Disable			
		1 : Enable			
		Register	Trigger Event	7,0	
		DH_TOTAL	DVS Rising		
		ODD_FIXED_LAST	DVS Rising		
		EVEN_FIXED_LAST		(),	
6	R/W	Display Double Buffer Ready		5	
		0: Not Ready to Apply			
		1: Ready to Apply	X		
		When the list table of DISP_ADDR	[7] is set, then enable DISI	ADDR[6], finally, hardware will	
		auto load these value into RTD as the	e trigger event happens and	clear DISP_ADDR[6] to 0.	
5:0	R/W	Display Format Address			

Address: 2B DISP_DATA (Display Format Data Port)

Bit	Mode		Function
7:0	R/W	Display Format Data	

Address: 2B-00 DH_TOTAL_H (Display Horizontal Total Pixels)

	Bit	Mode	Function
	7:4		Reserved to 0
I	3:0	R/W	Display Horizontal Total Pixel Clocks: High Byte[11:8]

Address: 2B-01 DH_TOTAL_L (Display Horizontal Total Pixels)

Bit	Mode	Function
7:0	R/W Display Horizont	al Total Pixel Clocks: Low Byte[7:0]

Real DH_Total (Target value)= DH_Total (Register value)+ 4

Address: 2B-02 DH_HS_END (Display Horizontal Sync End)

Bit	Mode	Function
7:0	R/W	Display Horizontal Sync End[7:0]:
		Determines the width of DHS pulse in DCLK cycles

Address: 2B-03 DH_BKGD_STA_H (Display Horizontal Background Start)

F	Bit	Mode	Function
7	' :4		Reserved to 0
3	3:0	R/W	Display Horizontal Background Start: High Byte [11:8]

Address: 2B-04 DH_BKGD_STA_L (Display Horizontal Background Start)

Bit	Mode	Function
7:0	R/W	Display Horizontal Background Start: Low Byte [7:0]

Determines the number of DCLK cycles from leading edge of DHS to first pixel of Background region.

Real DH_BKGD_STA (Target value)= DH_BKGD_STA (Register value)+ 10

Address: 2B-05 DH_ACT_STA_H (Display Horizontal Active Start)

Bit	Mode	Function	
7:4		Reserved to 0	7,0,
3:0	R/W	Display Horizontal Active Region Start: High Byte [11:8]	60

Address: 2B-06 DH_ACT_STA_L (Display Horizontal Active Start)

Bit	Mode	Function	
7:0	R/W	Display Horizontal Active Region Start: Low Byte [7:0]	

Determines the number of DCLK cycles from leading edge of DHS to first pixel of Active region.

Real DH_ACT_STA (Target value)= DH_ACT_STA (Register value)+ 10

Address: 2B-07 DH_ACT_END_H (Display Horizontal Active End)

	Bit	Mode	Function
I	7:4		Reserved to 0
Ī	3:0	R/W	Display Horizontal Active End: High Byte [11:8]

Address: 2B-08 DH ACT END L (Display Horizontal Active End)

Bit	Mode	Function
7:0	R/W	Display Horizontal Active End: Low Byte [7:0]

Determines the number of DCLK cycles from leading edge of DHS to the pixel of background region.

Real DH ACT END (Target value)= DH ACT END (Register value)+ 10

Address: 2B-09 DH_BKGD_END_H (Display Horizontal Background End)

Bit	Mode	Function
7:4		Reserved to 0
3:0	R/W	Display Horizontal Background end: High Byte [11:8]

Address: 2B-0A DH_BKGD_END_L (Display Horizontal Background End)

Bi	it	Mode	Function
7:	0	R/W	Display Horizontal Background end: Low Byte [7:0]

Real DH_BKGD_END (Target value) = DH_BKGD_END (Register value)+ 10

Address: 2B-0B DV_TOTAL_H (Display Vertical Total Lines)

Bit	Mode	Function
7:4		Reserved to 0
3:0	R/W	Display Vertical Total: High Byte [11:8]

Address: 2B-0C DV_TOTAL_L (Display Vertical Total Lines)

Bit	Mode	Function
7:0	R/W	Display Vertical Total: Low Byte [7:0]

CR2B-0B, CR2B-0C are used as watch dog reference value in *frame sync* mode, the event should be the line number of display HS is equal to DV Total.

Address: 2B-0D DVS_END (Display Vertical Sync End)

Bit	Mode	Function
7:5		Reserved to 0
4:0	R/W	Display Vertical Sync End[4:0]:
		Determines the duration of DVS pulse in lines

Address: 2B-0E DV_BKGD_STA_H (Display Vertical Background Start)

Bit	Mode	Function
7:4	1	Reserved to 0
3:0	R/W	Display Vertical Background Start: High Byte [11:8]
		Determines the number of lines from leading edge of DVS to first line of background region.

Address: 2B-0F DV_BKGD_STA_L (Display Vertical Background Start)

Bit	Mode	Function
7:0	R/W	Display Vertical Background Start: Low Byte [7:0]

Address: 2B-10 DV_ACT_STA_H (Display Vertical Active Start)

Bit	Mode	Function
7:4	1	Reserved to 0
3:0	R/W	Display Vertical Active Region Start: High Byte [11:8]
		Determines the number of lines from leading edge of DVS to first line of active region.

Address: 2B-11 DV_ACT_STA_L (Display Vertical Active Start)

Bit	Mode	Function
7:0	R/W	Display Vertical Active Region Start: Low Byte [7:0]

Address: 2B-12 DV_ACT_END_H (Display Vertical Active End)

Bit	Mode	Function
7:4	0	Reserved to 0
3:0	R/W	Display Vertical Active Region End: High Byte [11:8]

Address: 2B-13 DV_ACT_END_L (Display Vertical Active End)

Bit	Mode	Function
7:0	R/W	Display Vertical Active Region End: Low Byte [7:0]

Determine the number of lines from leading edge of DVS to the line of following background region.

Address: 2B-14 DV_BKGD_END_H (Display Vertical Background End)

Bit	Mode	Function
7:4		Reserved to 0

Default: 00h

3:0	R/W	Display Vertical Background end: High Byte [11:8]
4 7 7	an 15	DV DV CD DVD I (DV I V (1 ID I I II I

Address: 2B-15 DV_BKGD_END_L (Display Vertical Background End)

Bit	Mode	Function
7:0	R/W	Display Vertical Background End: Low Byte [7:0]

Determine the number of lines from leading edge of DVS to the line of start of vertical blanking.

Address: 2B-16~2B-1F Reserved

Display Fine Tune

Address: 2B-20 DIS_TIMING (Display Clock Fine Tuning Register) Default: 0

Auuress.	2D-20	DIS_TIVITIVE (Display Clock Fine Tuning Register)	Delauit. 0011	
Bit	Mode	Function		
7	R/W	Reserved to 0		
6:4	R/W	Display Output Clock Fine Tuning Control:		
		000: DCLK rising edge correspondents with output display data		
		001: 1ns delay		
		010: 2ns delay		
		011: 3ns delay		
		100: 4ns delay		
		101: 5ns delay		
		110: 6ns delay		
		111: 7ns delay		
3		Reserved		
2		Reserved		
1	R/W	DCLK Output Enable		
		0: Disable		
		1: Enable		
0	R/W	DCLK Polarity Inverted		
	20	0: Disable		
	V	1: Enable		

Address: 2B-21 OSD_REFERENCE__DEN

Bit	Mode	Function
7:0	R/W	Position Of Reference DEN for OSD[7:0]

Address: 2B-22 NEW_DV_CTRL Default: 00h

Bit	Mode	Function
7	R/W	New Timing Enable
		0: Disable

Default: 00h

		1: Enable
6	R/W	Line Compensation Enable
		0: Disable
		1: Enable
5	R/W	Pixel Compensation Enable
		0: Disable
		1: Enable
4	R/W	Reserve to 0
3:0	R/W	DCLK_Delay[11:8]

Default: 00h Address: 2B-23 NEW_DV_DLY

I	Bit	Mode	Function
7	7:0	R/W	DCLK_Delay[7:0]

When CR2B-22[7]=1, DCLK_Delay[11:0] can't be 0.

Address: 2B-24 SSCG_NEW_Timing_Mode Setting

Bit	Mode	Function
7	R/W	SSCG New Timing Mode Even/Odd last line setting iverse
		0: no inverse
		1: inverse
6	R/W	SSCG New Timing Mode Even/Odd last line setting enable
		0: disable
		1: enable
5:0	R/W	Reserve

Cyclic-Redundant-Check

OP_CRC_CTRL (Output CRC Control Register) Address: 2C

Address:	Address: 2C OP_CRC_CTRL (Output CRC Control Register) Default: 00h				
Bit	Mode	Function			
7:6	R/W	CRC Selector			
		00 : CRC after scale-down (before SDRAM)			
	0	01; CRC after scale-down (before SDRAM)			
	Oil	10 : CRC after all processing			
		11 : Reserved			
5:1		Reserved to 0			
0	R/W	Output CRC Control:			
		0: Stop or finish (Default)			
		1: Start			

CRC function = $X^24 + X^7 + X^2 + X + 1$.

Address: 2D OP_CRC_CHECKSUM (Output CRC Checksum)

Bit	Mode	Function
-----	------	----------

7:0	R/W	1 st read=> Output CRC-24 bit 23~16
		2 nd read=> Output CRC-24 bit 15~8
		3 rd read=> Out put CRC-24 bit 7~0

- The read pointer should be reset when 1. OP_CRC_BYTE is written 2. Output CRC Control starts.
- The read back CRC value address should be auto-increase, the sequence is shown above

FIFO Window

Address: 30 FIFO_WIN_ADDR (FIFO Window Address Port)

Bit	Mode	Function	15
7:5		Reserved to 0	
4:0	R/W	FIFO Window Address Port	

Address: 31 FIFO_WIN_DATA (FIFO Window Data Port)

Bit	Mode		Function
7:0	R/W	FIFO Window Data Port	

• Port address will increase automatically after read/write.

Address: 31-00 DRL_H_BSU (Display Read High Byte Before Scaling-Up) Default: 00h

Bit	Mode	Function
7:4	R/W	Display window read width before scaling up: High Byte [11:8]
3:0	R/W	Display window read length before scaling up: High Byte [11:8]

Address: 31-01 DRW_L_BSU (Display Read Width Low Byte Before Scaling-Up) Default: 00h

Bit	Mode	Function
7:0	R/W	Display window read width before scaling up: Low Byte [7:0]

Address: 31-02 DRL_L_BSU (Display Read Length Low Byte Before Scaling-Up) Default: 00h

Bit	Mode	Function
7:0	R/W	Display window read length before scaling up: Low Byte [7:0]

- The setting above should be use 2 as unit
- The setting above should be use 2 as unit

Scaling Up Function

Address: 32 SCALE_CTRL (Scale Control Register)

Bit	Mode	Function
7	R/W	Video mode compensation:
		0: Disable (Default)

Default: 00h

		1: Enable	
6	R/W	Internal ODD-signal inverse for video-compensation	
		0: No invert (Default)	
		1: invert	
5	R	Display Line Buffer Ready	
		0: Busy	
		1: Ready	
4	R/W	Enable Full Line buffer:	
		0: Disable (Default)	
		1: Enable	
3	R/W	Vertical Line Duplication	
		0: Disable	
		1: Enable	
2	R/W	Horizontal pixel Duplication	
		0: Disable	
		1: Enable	
1	R/W	Enable the Vertical Filter Function:	
		0: By pass the vertical filter function block (Default)	
		1: Enable the vertical filter function block	
0	R/W	Enable the Horizontal Filter Function:	
		0: By pass the horizontal filter function block (Default)	
		1: Enable the horizontal filter function block	

• When using H/V duplication mode, FIFO window width set original width, but FIFO window height should be 2X the original height.

Default: 00h

Address: 33 SF_ACCESS_Port

Bit	Mode	Function
7	R/W	Enable scaling-factor access port
6:5	-0	Reserved to 0
4:0	R/W	Scaling factor port address

• When disable scaling factor access port, the access port pointer will reset to 0

Address: 34-00 HOR_SCA_H (Horizontal Scale Factor High)

Bit	Mode	Function
7:4		Reserved
3:0	R/W	Bit [19:16] of horizontal scale factor

Address: 34-01 HOR_SCA_M (Horizontal Scale Factor Medium)

Bit	Mode	Function
7:0	R/W	Bit [15:8] of horizontal scale factor

Default: 00h

Address: 34-02 HOR_SCA_L (Horizontal Scale Factor Low)

Bit	Mode	Function
7:0	R/W	Bit [7:0] of horizontal scale factor

Address: 34-03 VER_SCA_H (Vertical Scale Factor High)

Bit	Mode	Function
7:4		Reserved
3:0	R/W	Bit [19:16] of vertical scale factor

Address: 34-04 VER_SCA_M (Vertical Scale Factor Medium)

Bit	Mode	Function	. 60
7:0	R/W	Bit [15:8] of vertical scale factor	

Address: 34-05 VER_SCA_L (Vertical Scale Factor Low)

Bit	Mode		Function	
7:0	R/W	Bit [7:0] of vertical scale factor		0)

This scale-up factor includes a 20-bit fraction part to present a vertical scaled up size over the stream input. For example, for 600-line original picture scaled up to 768-line, the factor should be as follows:

 $(600/768) \times 2^20 = 0.78125 \times 2^20 = 819200 = C8000h = 0Ch, 80h, 00h.$

Address: 34-06 Horizontal Scale Factor Segment 1 Pixel

Bit	Mode	Function
7:3		Reserved
2:0	R/W	Bit [10:8] of Scaling Factor Segment 1 pixel

Address: 34-07 Horizontal Scale Factor Segment 1 Pixel Default: 00h

Bi	t Mode	Function
7:0	0 R/W	Bit [7:0] of Scaling Factor Segment 1 pixel

Address: 34-08 Horizontal Scale Factor Segment 2 Pixel Default: 00h

Bit	Mode	Function
7:3		Reserved
2:0	R/W	Bit [10:8] of Scaling Factor Segment 2 pixel

Address: 34-09 Horizontal Scale Factor Segment 2 Pixel Default: 00h

Bit	Mode	Function
7:0	R/W	Bit [7:0] of Scaling Factor Segment 2 pixel

Address: 34-0A Horizontal Scale Factor Segment 3 Pixel Default: 00h

	Bit	Mode	Function
	7:3		Reserved
Ī	2:0	R/W	Bit [10:8] of Scaling Factor Segment 3 pixel

Address: 34-0B Horizontal Scale Factor Segment 3 Pixel Default: 00h

Bit	Mode	Function
-----	------	----------

FML ®	$\mathbf{K}\mathbf{E}_{F}$	ALTEK	LRH Series-GR
7:0	R/W	Bit [7:0] of Scaling Factor Segment 3 pixel	
Address:	34-0C	Horizontal Scale Factor Delta 1	Default: 00h
Bit	Mode	Fun	ction
7:5		Reserved	
4:0	R/W	Bit [12:8] of Horizontal Scale Factor delta 1	
Address:	34-0D	Horizontal Scale Factor Delta 1	Default: 00h
Bit	Mode	Fun	ction
7:0	R/W	Bit [7:0] of Horizontal Scale Factor delta 1	2.0
Address:	34-0E	Horizontal Scale Factor Delta 2	Default: 00h
Bit	Mode	Fun	ction
7:5	1	Reserved	
4:0	R/W	Bit [12:8] of Horizontal Scale Factor delta 2	4
Address:	34-0F	Horizontal Scale Factor Delta 2	Default: 00h
Bit	Mode	Fun	ction
7:0	R/W	Bit [7:0] of Horizontal Scale Factor delta 2	
Address:	34-10	Horizontal Filter Coefficient Initial Value	Default: C4h
Bit	Mode	Fun	ction
7:0	R/W	Accumulate Horizontal filter coefficient initial va	ılue
Address:	34-11	Vertical Filter Coefficient Initial Value	Default: C4h
Bit	Mode	Fun	ction
7:0	R/W	Accumulate Vertical filter coefficient initial value	2
Address:	35	FILTER_CTRL (Filter Control Register)	Default: 00h
Bit	Mode	Fun	ction
7	R/W	Enable Chroma Filter Coefficient Access	
		0: Disable (Default)	
		1: Enable	
6	R/W	Select Chroma H/V User Defined Filter Coeffi 0: 1st coefficient table (Default)	cient Table for Access Channel
	0,	1: 2 nd coefficient table	
5	R/W	Select Chroma Horizontal user defined filter c	oefficient table
		0: 1 st Horizontal Coefficient Table (Default)	
		1: 2 nd Horizontal Coefficient Table	
4	R/W	Select Chroma Vertical user defined filter coef	ficient table
		0: 1st Vertical Coefficient Table (Default)	
		1: 2 nd Vertical Coefficient Table	
3	R/W	Enable Luminance Filter Coefficient Access	
ı		0: Disable (Default)	

Default: 00h

		1: Enable
2	R/W	Select Luminance H/V User Defined Filter Coefficient Table for Access Channel
		0: 1 st coefficient table (Default)
		1: 2 nd coefficient table
1	R/W	Select Luminance Horizontal user defined filter coefficient table
		0: 1 st Horizontal Coefficient Table (Default)
		1: 2 nd Horizontal Coefficient Table
0	R/W	Select Luminance Vertical user defined filter coefficient table
		0: 1st Vertical Coefficient Table (Default)
		1: 2 nd Vertical Coefficient Table

- The User Defined Filter Coefficient Table can be modified on-line. Only the non-active coefficient-table can be modified, and then switch it to active.
- When CR35[7] and CR35[3] are zero, the write counter of FILTER_PORT is reset to zero. You should reset counter before another setting.
- If both CR35[7] and CR35[3] are one, you can set chroma and luminance coefficient at the same time.

Address: 36 FILTER_PORT (User Defined Filter Access Port) Default: 00h

Bit	Mode	Function
7:0	W	Access port for user defined filter coefficient table

• When enable filter coefficient accessing, the first write byte is stored into the LSB(bit[7:0]) of coefficient #1 and the second byte is into MSB (bit[8:11]). Therefore, the valid write sequence for this table is c0-LSB, c0-MSB, c1-LSB, c1-MSB, c2-LSB, c2-MSB ... c63-LSB & c63-MSB, totally 64 * 2 cycles. Since the 128 taps is symmetric, we need to fill the 64-coefficient sequence into table only.

Address: 37~3F Reserved

Frame Sync Fine Tune

Address: 40 IVS2DVS_DEALY_LINES (IVS to DVS Lines)

Bit	Mode	Function	
7:0	R/W	IVS to DVS Lines: (Only for FrameSync Mode)	
		The number of input HS from IVS to DVS.	
		Should be double buffer by CR10[5:4]	

Address: 41	IV DV DELAY	CIKO	ODD (Frame Sync Delay Fine Tuning)	Default: 00h
Address: 41	IN DY DELA	I CLN U	DDD (Frame Sync Delay Fine Tunnig)	Default: Ooli

Bit	Mode	Function
7:0	R/W	Frame Sync Mode Delay Fine Tune [7:0]

Default: 00h

Default: 00h

Default: 00h

Applied to all fields when Interlaced_FS_Delay_Fine_Tuning is disabled (CR43[1] = 0)

Only for odd-field when Interlaced_FS_Delay_Fine_Tuning is enabled (CR43[1] = 1)

In Frame Sync Mode , CR41[7:0] represents output VS delay fine-tuning. It delays the number of (CR41[7:0]*16+16) input clocks if CR41[7:0] is not equal to 0. (No delay fine-tune if CR41[7:0]=0)

Address: 42 IV_DV_DELAY_CLK_EVEN (Frame Sync Delay Fine Tuning)

Bit	Mode	Function
7:0	R/W	Frame Sync Mode Delay Fine Tune [7:0] "00" to disable
		Only for even-field when Interlaced_FS_Delay_Fine_Tuning is enabled (CR43[1] = 1)

Address: 43 FS_DELAY_FINE_TUNING

Bit	Mode	Function
7	R/W	Enable measure last line by field
		0 : disable
		1: enable
6	R/W	Reference field in last line measure
		0:0dd
		1 : Even
5:2	R/W	Reserved to 0
1	R/W	Interlaced_FS_Delay_Fine_Tuning
		0: Disable (Default)
		1: Enable
0	R/W	Internal ODD-signal inverse for Interlaced_FS_Delay_Fine_Tuning
		0: No invert (Default)
		1: Invert

Address: 44 LAST_LINE_H

Bit	Mode	Function
7	R/W	Last-line-width / DV-Total Selector :
	0,0	0: CR44 [3:0] and CR45 indicate last-line width counted by display clock (Default)
),	1: CR44 [3:0] and CR45 indicate DHS total number between 2 DVS.
6	R/W	DV sync with 4X clock
		0: Disable
		1: Enable
5	R/W	BIST Test Enable
		0: Disable
		1: Enable (Auto clear when finish)
4	R/W	BIST Test Result

		1: Ok
3:0	R	DV Total or Last Line Width[11:8] Before Sync in Frame Sync Mode

Address: 45 LAST_LINE_L

Bit	Mode	Function
7:0	R	DV Total or Last Line Width[7:0] Before Sync in Frame Sync Mode

Address: 46 Reserved as page selector for new sync-processor feature

Sync Processor

Address: 47 SYNC_SELECT Default: 00h

Bit	Mode	Function
7	R/W	On line Sync Processor Power Down (Stop Crystal Clock In)
		0: Normal Run (Default)
		1: Power Down
6	R/W	HSYNC Type Detection Auto Run
		0: manual (Default)
		1: automatic
5	R/W	De-composite circuit enable
		0: Disable (Default)
		1: Enable
4	R/W	Input Sync. Source selection 0: HS_RAW(SS/CS) (Default)
		1: SOG/SOY
3	R/W	SOG Source Selection
		0: SOG0/SOY0 (Default)
		1: reserved
2	R/W	VGA-ADC HS/VS Source
		0: 1 ST HS/VS (Default)
	0,0	1: reserved
1	R/W	Measured by Crystal Clock (Result shown in CR59) (in Digital Mode)
		0: Input Active Region (Vertical IDEN start to IDEN stop) (measure at IDEN STOP) (Default)
		1: Display Active Region(Vertical DEN start to DEN stop) (measure at DEN STOP)
		The function should work correctly when IVS or DVS occurs and enable by CR50[4].
0	R/W	HSYNC & VSYNC Measured Mode
		0: HS period counted by crystal clock & VS period counted by HS (Analog mode) (Default)
		1: H resolution counted by input clock & V resolution counted by ENA (Digital mode)
		(Get the correct resolution which is triggered by enable signal, ENA)

Address: 48 SYNC_INVERT Default: 00h

Bit	Mode	Function
7	R/W	COAST Signal Invert Enable:
		0: Not inverted (Default)
		1: Inverted
6	R/W	COAST Signal Output Enable:
		0: Disable (Default)
		1: Enable
5	R/W	HS_OUT Signal Invert Enable:
		0: Not inverted (Default)
		1: Inverted
4	R/W	HS_OUT Signal Output Enable:
		0: Disable (Default)
		1: Enable
3	R/W	CS_RAW Inverted Enable
		0: Normal (Default)
		1: Invert
2	R/W	CLAMP Signal Output Enable
		0: Disable (Default)
		1: Enable
1	R/W	HS Recovery in Coast
		0: Disable (Default) (SS/SOY)
		1: Enable (CS or SOG)
0	R/W	HSYNC Synchronize source
		0: AHS (Default)
		1: Feedback HS

Address: 49 SYNC_CTRL (SYNC Control Register)		SYNC_CTRL (SYNC Control Register) Default: 06h
Bit	Mode	Function
7	R/W	CLK Inversion to latch Feedback HS for Coast Recovery
	0	(Coast Recovery means HS feedback to replace input HS)
	V	0: Non Inversion (Default)
X		1: Inversion
6	R/W	Select HS_OUT Source Signal
		0: Bypass (SeHs)(Use in Separate Mode)
		1: Select De-Composite HS out(DeHs) (In Composite mode)
5	R/W	Select ADC_VS Source Signal (Auto switch in Auto Run Mode)
		0: VS_RAW
		1: DeVS

Default: 00h

4	R/W	CLK Inversion to latch ADC HS for Clamp	
		0: Non Inversion (Default)	
		1: Inversion	
3	R/W	Inversion of HSYNC to measure VSYNC	
		0: Non Inversion (Default)	
		1: Inversion	
2	R/W	HSYNC Measure Source(ADC_HS1)	
		0: Select ADC_HS	
		1: Select SeHS or DeHS by CR49[6] (Default)	- O.
1:0	R/W	Measure HSYNC/VSYNC Source Select:	
		00: TMDS	
		01: VIDEO8	
		10: ADC_HS1/ADC_VS (Default)	
		11: CS_RAW/VS_RAW	ĶΟ'

Address: 4A STABLE_HIGH_PERIOD_H

Bit Mode **Function** 7 Even/Odd Field of YPbPr (By Line-Count Mode) R 0: Even 1: Odd The Toggling of Polarity of YPbPr Field Happened (By Line-Count Mode) R 6 0: No toggle 1: Toggle 5 R Even/Odd Field of YPbPr (By VS-Position Mode) 0: Even 1: Odd The Toggling of Polarity of YPbPr Field Happened (By VS-Position Mode) 4 R 0: No toggle 1: Toggle R/W 3 **Odd Detection Mode** 0: Line-Count Mode (Default) 1: VS-Position Mode 2:0 Stable High Period[10:8] R Compare each line's high pulse period, if we get continuous 64 lines with the same one, the period is updated as the stable period.

Address: 4B STABLE_HIGH_PERIOD_L

Bit	Mode	Function
7:0	R	Stable High Period[7:0]
		Compare each line's high pulse period, if we get continuous 64 lines with the same one, the

		period is updated as the stable period.
Address:	Address: 4C VSYNC_COUNTER_LEVEL_MSB Default: 03h	
Bit	Mode	Function
7	R	HSYNC Type Detection Auto Run Result ready
6:4	R	HSYNC Type Detection Auto Run Result
		000: No Signal
		001: Not Support
		010: YPbPr
		011: Serration Composite SYNC
		100: XOR/OR-Type Composite SYNC with Equalizer
		101: XOR/OR-Type Composite SYNC without Equalizer
		110: HSYNC with VS_RAW (Separate HSYNC)
		111: HSYNC without VS_RAW (HSYNC only)
		Reference when Hsync type detection auto run result ready (CR4C[7])
3	R/W	Reserved to 0
2:0	R/W	VSYNC counter level count [10:8] MSB
		VSYNC detection counter start value.
Address:	Address: 4D VSYNC_COUNTER_LEVEL_LSB Default: 00h	
Bit	Mode	Function
7:0	R/W	VSYNC counter level count [7:0] LSB
Address:	4E	HSYNC_TYPE_DETECTION_FLAG
Bit	Mode	Function
7	R	HSYNC Overflow (16-bits)
6	R	Stable Period Change (write clear when CR4E[6]=1 or CR4F[0]=1)
5	R	Stable Polarity Change (write clear when CR4E[5]=1 or CR4F[0]=1)
4	R	VS_RAW Edge Occurs (write clear when CR4E[4]=1 or CR4F[0]=1)
		If VS_RAW edge occurs, this bit is set to "1".
3	R	Detect Capture Window Unlock Repeated 32 Times (write clear when CR4E[3]=1 or
		CR4F[0]=1)
2	R	HSYNC with Equalization (write clear when CR4E[2]=1 or CR4F[0]=1)
1	R	HSYNC Polarity Change (write clear when CR4E[1]=1 or CR4F[0]=1)
0	R	Detect Capture Window Unlock (write clear when CR4E[0]=1 or CR4F[0]=1)
Address:	4F	STABLE_MEASURE Default: 00h
Bit	Mode	Function
7	R	Stable Flag
		0: Period or polarity can't get continuous stable status.
		1: Both polarity and period are stable.

6	R	Stable Polarity
		0: Negative
		1: Positive
		Compare each line's polarity; if we get continuous N 64 lines with the same one, the polarity is
		updated as the stable polarity.
5:4	R/W	Feedback HSYNC High Period Select by ADC Clock:
		00: 32 (Default)
		01: 64
		10: 96
		11: 128
3	R/W	Stable Period Tolerance
		0: ±2 crystal clks (Default)
		1: ±4 crystal clks
2	R/W	VSYNC measure invert Enable
		0: Disable (Default)
		1: Enable
1	R/W	Pop Up Stable Value
		0: No Pop Up (Default)
		1: Pop Up Result, (CR4A[2:0], CR4B[7:0], CR4E[3], CR50[2:0], CR51[7:0])
0	R/W	Stable Measure Start
		0 : Stop (Default)
		1 : Start

Address: 50 Stable_Period_H		Stable_Period_H Default: 00h
Bit	Mode	Function
7	R	Measure One Frame Status
		0: Finished after 1 frame measuring / Measure finished
		1: Measuring Now
6	R	CS_RAW Inverted by Auto Run Mode
	2,0	0: Not inverted
	9	1: Inverted
5	R/W	HS_OUT Bypass PLL into VGIP
		0: Disable (Default)
		1: Enable
4	R/W	Active Region Measure Enable
		0: Disable (Default)
		1: Enable
3	R/W	ADC_VS Source Select in Test Mode
		0: Select ADC_VS Source in Normal Mode or Auto Mode by CR47[6] (Default)

		1: Select ADC_VS Source in Test Mode (Select VS_RAW or DeVS by CR49[5])
2:0	R	Stable Period[10:8]
		Compare each line's period, if we get continuous 64 lines with the same one, the period is updated
		as the stable period.

Address: 51 Stable_Period_L

Bit	Mode	Function
7:0	R	Stable Period[7:0]
		Compare each line's period, if we get continuous 64 lines with the same one, the period is updated
		as the stable period.

Address: 52 MEAS_HS_PER_H (HSYNC Period Measured Result) Default: 8'b000xxxxx

Bit	Mode	Function
7	R/W	Auto Measure Enable
		0: Disable (Default)
		1: Enable
6	R/W	Pop Up Period Measurement Result
		0: No Pop Up (Default)
		1: Pop Up Result
5	R/W	Start a HS & VS period / H & V resolution & polarity measurement (on line monitor)
		0: Finished/Disable (Default)
		1: Enable to start a measurement, auto cleared after finished
4	R	Over-flow bit of Input HSYNC Period Measurement
		0: No Over-flow occurred
		1: Over-flow occurred
3:0	R	Input HSYNC Period Measurement Result: High Byte[11:8]

Address: 53 MEAS_HS_PER_L (HSYNC Period Measured Result)

Bit	Mode	Function
7:0	R	Input HSYNC Period Measurement Result: Low Byte[7:0]

- The result is expressed as the average number of crystal clocks (CR47[0]=0), or input clocks (CR47[0]=1) between 2 HSYNC.
- The result is the total number of crystal/input clocks inside 16-HSYNC periods divided by 16.
- Fractional part of measure result is stored in CR56[3:0].

Address: 54 MEAS_VS_PER_H (VSYNC Period Measured Result)

Bit	Mode	Function
7	R	Input VSYNC Polarity Indicator
		0: negative polarity (high period is longer than low one)
		1: positive polarity (low period is longer than high one)
6	R	Input HSYNC Polarity Indicator

		0: negative polarity (high period is longer than low one)
		1: positive polarity (low period is longer than high one)
5	R	Time-Out bit of Input VSYNC Period Measurement (No VSYNC occurred)
		0: No Time Out
		1: Time Out occurred
4	R	Over-flow bit of Input VSYNC Period Measurement
		0: No Over-flow occurred
		1: Over-flow occurred
3:0	R	Input VSYNC Period Measurement Result: High Byte[11:8]

Address: 55 MEAS_VS_PER_L (VSYNC Period Measured Result)

Bit	Mode	Function	
7:0	R	Input VSYNC Period Measurement Result: Low Byte[7:0]	

- This result is expressed in terms of input HS pulses.
- When measured digitally, the result is expressed as the number of input ENA signal within a frame.

Address: 56 MEAS_HS&VS_HI_H (HSYNC&VSYNC High Period Measured Result)

Bit	Mode	Function	
7:4	R	Input HSYNC High Period Measurement Result: High Byte[11:8] (CR58[0] = 0)	
		Input VSYNC High Period Measurement Result: High Byte[11:8] (CR58[0] = 1)	
3:0	R	Input HSYNC Period Measurement Fractional Result (See CR52,53)	

Address: 57 MEAS_HS&VS_HI_L (HSYNC&VSYNC High Period Measured Result)

Bit	Mode	Function	
7:0	R	Input HSYNC High Period Measurement Result: Low Byte[7:0] (CR58[0] = 0)	
		nput VSYNC High Period Measurement Result: Low Byte[7:0] (CR58[0] = 1)	

- This result of HSYNC high-period is expressed in terms of crystal clocks. When measured digitally, the result of HSYNC high-period is expressed as the number of input clocks inside the input enable signal.
- This result of VSYNC high-period is expressed in terms of input HS pulses

Address: 58 MEAS_HS&VS_HI_SEL (VSYNC High Period Measured Result) Default:00h

Bit	Mode	Function			
7:6	R/W	SYNC_MAX_DELTA			
())	00: Don't care (CR58[3] will never go high)			
		1: 4-clock			
		10: 8-clock			
		11: 16-clock			
5:4	R/W	SYNC_MAX_DELTA			
		00: Don't care (CR58[2] will never go high)			
		01: 2-HSYNC			
		10: 4-HSYNC			

		11: 8-HSYNC
3	R	HSYNC_OVER_RANGE
		Set to 1 if variation of HSYNC larger than HSYNC_MAX_DELTA is detected by on-line
		measurement (CR52[7]=1). Write to clear this flag.
2	R	VSYNC_OVER_RANGE
		Set to 1 if variation of VSYNC larger than VSYNC_MAX_DELTA is detected by on-line
		measurement (CR52[7]=1). Write to clear this flag.
1	R/W	Start Measurement after Mode Detection Auto-mode
		0: Disable 1: Enable (Default)
0	R/W	HSYNC/VSYNC High Period Measurement Result Select
		0: HSYNC
		1: VSYNC
		(See CR56~CR57)

Address: 59 MEAS_ACTIVE_REGION_H (Active Region Measured by CRSTL_CLK Result)

Bit	Mode	Function	
7:0	R/W	ctive Region Measured By Crystal Clock	
		read: Measurement Result: High Byte[23:16]	
		read: Measurement Result: High Byte[15:8]	
		read: Measurement Result: High Byte[8:0]	
		Read pointer is auto increase, if write, the pointer is also reset to 1st result.	

Address: 5A SYNC_TEST_MISC Default: 00h

Bit	Mode	Function		
7	R/W	Clamp Reference Source Selection		
		0: Clamp source from normal HS 1: Clamp source from CS_RAW		
6	R/W	Sync Processor Time-Clock Test Mode		
		0: Normal (Default)		
		1: Enable Test Mode; (switch 70ns-ck to the time-out & polarity counters)		
5:3	R/W	Sync Processor Test Signals Output Selection 000: Disable On-line Sync-Processor Test-Signal Output (Default) 001: adc_vs, adc_hs, adc_field, sog, vs_raw, cs_raw, hs_out, coast		
		010: cs_hs, hs_yprpb_postiv, input_signal_be_inverted, search_finish,		
		load_search_stable48_result, load_finish_stable48_result, cap_hit, cap_miss		
		011: cs_hs ,cap_window ,de_hs ,de_vs ,de_coast ,clamp_mask ,cap_hit ,cap_miss		
		100: cs_raw, hs_for_decmp, auto_det_rdy, auto_result_rdy, flg_cnt_is50ms, flg_cnt_is80ms,		
		hs_for_mv, mv_occur		
		101: mode_det_of, stb_per_chg, stb_pol_chg, vs_raw_vld, cap_32unlock, eq_occur, hs_pol_chg,		
		cap_unlock		
		110: vs1_meas, hs1_meas, meas_clk, ms_now, reg_ms_1_frame_now, hsper_of, vsper_of,		

Default: 00h

Default: 04h

		ms_timeout 111: adc_vs, clamp_mask, hs_clamp_g, hs_clamp_rb, vga_online_clamp3, vga_online_clamp2, vga_online_clamp1, vga_online_clamp0
2:0	R	The Number of Input HS between 2 Input VSYNC. LSB bit [2:0] for YPbPr

Address:5B Reserved

Address: 5C	CTATC	$\mathbf{D}\mathbf{D}\mathbf{C}$	PORT ADDR	
$\Delta n n r o c c \cdot \gamma I$		PRIN	PURI AIIIIR	

Bit	Mode	Function	
7:5	R/W	Reserved	16
4:0	R/W	Sync Processor Access Port Address	

Address: 5D SYNC_PROC_PORT_DATA Default: 00h

Bit	Mode		Function	
7:0	R/W	Sync Processor Access Port Data		KO.

• Port address will increase automatically after read/write.

Address: 5D-00 G_CLAMP_START (Clamp Signal Output Start)

Bit	Mode	Function	
7:0	R/W	tart of Output Clamp Signal Pulse for Y/G Channel[7:0]:	
		Determine the number of input double-pixel between the trailing edge of input	
		HSYNC and the start of the output CLAMP signal.	

Address: 5D-01 G_CLAMP_END (Clamp Signal Output End) Default: 10h

Bit	Mode	Function	
7:0	R/W	End of Output Clamp Signal Pulse for Y/G Channel [7:0]:	
		Determine the number of input double-pixel between the trailing edge of input	
		HSYNC and the end of the output CLAMP signal.	

Address: 5D-02 BR_CLAMP_START (Clamp Signal Output Start) Default: 04h

Bit	Mode	Function
7:0	R/W Start of Output Clamp Signal Pulse for B/Pb and R/Pr Channel [7:0]:	
	Oic	Determine the number of input double-pixel between the trailing edge of input
0		HSYNC and the start of the output CLAMP signal.

Address: 5D-03 BR_CLAMP_END (Clamp Signal Output End) Default: 10h

Bit	Mode	Function	
7:0	R/W	End of Output Clamp Signal Pulse for B/Pb and R/Pr Channel [7:0]:	
		Determine the number of input double-pixel between the trailing edge of input	
		HSYNC and the end of the output CLAMP signal.	

Address: 5D-04 CLAMP_CTRL0 Default:00h

Bit	Mode	Function
-----	------	----------

Default: 00h

Default: 00h

7	R/W	Clamp Trigger Edge Inverse for Y/G Channel	
		0: Trailing edge (Default)	
		1: Leading edge	
6	R/W	Clamp Trigger Edge Inverse for B/Pb and R/Pr Channel	
		0: Trailing edge (Default)	
		1: Leading edge	
5:0	R/W	Mask Line Number before DeVS [5:0]	

Address: 5D-05 CLAMP_CTRL1

Bit	Mode		Function
7	R/W	Clamp Mask Enable	
		0: Disable (Default)	
		1: Enable	
6	R/W	Select Clamp Mask as De VS	. 0
		0: Disable	×O
		1: Enable	
5:0	R/W	Mask Line Number after DeVS [5:0]	• (^)

CR5D-04[5:0] and CR5D-05[5:0] will set number of Mask Line before/after DeVS for Clamp Mask.

Address: 5D-06 CLAMP_CTRL2

Bit	Mode	Function
7	R/W	Clamp Clock Source
		0: ADC_Clock (Default)
		1: Crystal Clock
6	R/W	Clamp Counter Unit (0x5D-00 – 0x5D-03)
		0: Double Pixels (Default)
		1: Single Pixel
5	R/W	ADC1_clamp_enable
		0: Disable (Default)
	0	1: Enable
4	R/W	ADC0_clamp_enable
0		0: Disable (Default)
		1: Enable
3	R/W	ADC-3 Clamp Source
		0: Clamp-G (Default)
		1: Clamp-BR
2	R/W	ADC-2 Clamp Source
		0: Clamp-G (Default)
		1: Clamp-BR

1	R/W	ADC-1 Clamp Source
		0: Clamp-G (Default)
		1: Clamp-BR
0	R/W	ADC-0 Clamp Source
		0: Clamp-G (Default)
		1: Clamp-BR

Address: 5D-07 COAST_CTRL

Bi	Mode	Function	
7:4	R/W	Start of COAST before DeVS Leading Edge [3:0]	
3:0	R/W	End of COAST after DeVS Trailing Edge [3:0]	

Address: 5D-08 CAPTURE_WINDOW_SETTING

Default: 04h

Default: 21h

Bit	Mode	Function	
7	R/W	Coast_sel	
		0: de_coast (Default)	
		1: coast_org	
6	R/W	Capture Miss Limit during Hsync Extraction	
		0: 32 (Default)	
		1: 16	
5	R/W	Capture Window add step as Miss Lock	
		0: ±1 crystal clks (Default)	
		1: ±2 crystal clks	
4:0	R/W	Capture Window Tolerance	
		5'h00: ±6 crystal clks for capture window	
		5'h01 ~ 5'b1F: ±1 ~ ±31 crystal clks for capture window	

Address: 5D-09 DETECTION_TOLERANCE_SETTING

Defaul	14.	00h

Bit	Mode	Function
7	R/W	Reserved to 0
6:5	R/W	Stable Period Tolerance Extension
	0	00: Use 0x4F[3] Setting (Default)
	0,0	01: ±4 crystal clks
		10: ±8 crystal clks
		11: ±16 crystal clks
4:0	R/W	H-sync for De-composite De-bounce Length
		5'h00: Disable De-bounce Function (Default)
		5'h01 ~ 5'h1F: De-bounce 1 ~ 31 crystal clks for de-composite

Address: 5D-0A DEVS_CAP_NUM_H

Bit	Mode	Function
7:4	R/W	Reserved to 0
3:0	R	The munber of Capture window between DeVs high period: High Byte[11:8]

Address: 5D-0B DEVS_CAP_NUM_L

Default: 00h

Default: 00h

Default: 00h

I	Bit	Mode	Function
I	7:0	R	The munber of Capture window between DeVs high period: High Byte[7:0]

Address:5D-0C~0F Reserved

Macro Vision

Address: 5D-10 MacroVision Control

Bit	Mode	Function
7:4	R/W	Skip Line[3:0]
		Skip Lines after Vsync detected
3:2	R/W	Reserved to 0
1	R	MacroVision Detected (On-line monitor)
		When detected Macrovision occurred, this bit set to 1, else clear to 0.
0	R/W	MacroVision Enable
		0: Disable (Default)
		1: Enable

Address: 5D-11 MacroVision Start Line in Even Field

I	Bit	Mode	Function
	7	R/W	Reserved to 0
ϵ	6:0	R	MacroVision Start Line in Even Field [6:0]

Address: 5D-12 Macro Vision End Line in Even Field

Bit	Mode	Function
7	R	Indicate the validity of Macro Vision Line in Even Field
		0: not valid 1: valid
6:0	R	MacroVision End Line 0 [6:0]

Address: 5D-13 MacroVision Start Line in Odd Field

Bit	Mode	Function
7	R/W	Reserved to 0
6:0	R	MacroVision Start Line in Odd Field [6:0]

Address: 5D-14 MacroVision End Line in Odd Field

Bit	Mode	Function
7	R	Indicate the validity of Macro Vision Line in Odd Field
		0: not valid
		1: valid
6:0	R	MacroVision End Line in Odd Field [6:0]

Address: 5D-15 Macro Vision Detect De-bounce Default: 00h

Bit	Mode	Function
7:5	R/W	Reserved to 0

4:0 H-sync for Macro-Vision Detection De-bounce Length 5'h00 ~ 5'h07: De-bounce 7 crystal clks for de-composite (Default) 5'h08 ~ 5'h1F: De-bounce 8 ~ 31 crystal clks for de-composite

Figure 16: Sync processor

Sync processor in Automatic mode

Address 0x5E is reserved

Highlight window

Address: 60 Highlight Window Access Port control Default: 0	ult: 00h
---	----------

Bit	Mode	Function
7	R/W	Enable highlight window access port
6	R/W	Enable highlight window
5:4	0	Reserved
3:0	R/W	Highlight-window port address

Address: 61-00 Highlight Window Horizontal Start

Bit	Mode	Function
7:4		Reserved
3:0	R/W	Highlight window horizontal start[11:8]

Address: 61-01 Highlight Window Horizontal Start

Bit	Mode	Function
7:0	R/W	Highlight window horizontal start[7:0]

Address: 61-02	Highlight Window	Horizontal End
----------------	-------------------------	----------------

Bit	Mode	Function
7:4		Reserved
3:0	R/W	Highlight window horizontal end[11:8]

Address: 61-03 Highlight Window Horizontal End

ĺ	Bit	Mode	Function
	7:0	R/W	Highlight window horizontal end[7:0]

Address: 61-04 Highlight Window Vertical Start

Bit	Mode	Function	. 60
7:4		Reserved	
3:0	R/W	Highlight window vertical start[11:8]	

Address: 61-05 Highlight Window Vertical Start

I	Bit	Mode		Function	(0)
	7:0	R/W	Highlight window vertical start[7:0]		

Address: 61-06 Highlight Window Vertical End

Bit	Mode	Function
7:4		Reserved
3:0	R/W	Highlight window vertical end[11:8]

Address: 61-07 Highlight Window Vertical End

Bit	Mode	Function
7:0	R/W	Highlight window vertical end[7:0]

Highlight window horizontal/vertical reference point is DEN (display background start).

Address: 61-08 Highlight Window Border

Bit	Mode	Function
7:4		Reserved
3:0	R/W	Highlight window border width

Address: 61-09 Highlight Window Border Color

Bit	Mode	Function
7:6		Reserved
5:0	R/W	Highlight window border red color MSB 6bit (red color 2-bit LSB = 00)

Address: 61-0A Highlight Window Border Color

Bit	Mode	Function
7:6		Reserved
5:0	R/W	Highlight window border green color MSB 6bit (green color 2-bit LSB = 00)

Address: 61-0B Highlight Window Border Color

	Bit	Mode	Function	
--	-----	------	----------	--

I	7:6		Reserved
	5:0	R/W	Highlight window border blue color MSB 6bit (blue color 2-bit LSB = 00)

Address:	: 61-0C	Highligh	nt Windov	w Control 0	Defau	ılt : 00h	
Bit	Mode			Function			
7:6	R/W	Contra	st / brigh	tness application control			
		00: Se	t A used o	on full region			
		01: Se	t B used i	nside highlight window			
		10: Se	t A used o	outside highlight window			10
		11: Se	t A used o	utside highlight window, and Set B us	sed inside highli	ght window	<i>)</i>
		Co	ontrast	Application control	Inside window	Outside window	
		(C)	R62[1])				
			0	X	bypass	bypass	
			1	CR61-0C[7:6]=00 CR60[6]=0	Set A	Set A	
			1	CR61-0C[7:6]=01 && CR60[6]=1	Set B	bypass	
			1	CR61-0C[7:6]=10 && CR60[6]=1	bypass	Set A	
			1	CR61-0C[7:6]=11 && CR60[6]=1	Set B	Set A	
		Bri	ightness	Application control	Inside window	Outside window	
		(C	R62[0])	(0)			
			0	X	bypass	bypass	
			1	CR61-0C[7:6]=00 CR60[6]=0	Set A	Set A	
			1	CR61-0C[7:6]=01 && CR60[6)=1	Set B	bypass	
			1	CR61-0C[7:6]=10 && CR60[6]=1	bypass	Set A	
			1	CR61-0C[7:6]=11 && CR60[6]=1	Set B	Set A	
5:4	R/W	Gamma	a applica	tion control			
		00: gai	mma used	l on full region			
	0	01: ga	mma used	l inside window			
	0,0	10: ga	mma used	l outside window			
2		11: res	served				
		Gar	mma	Application control	Inside window	Outside window	
			(67[6])				
			0	X	bypass	bypass	
			1	CR61-0C[5:4]=00 CR60[6]=0	Gamma	Gamma	
			1	CR61-0C[5:4]=01 && CR60[6]=1	Gamma	bypass	
			1	CR61-0C[5:4]=10 && CR60[6]=1	bypass	Gamma	
	l						

4 4₽30	L L				л зепе
3:2	R/W	DCC/ICM appli	ication control		
		00: DCC/ICM เ	used on full region		
		01: DCC/ICM t	used inside window		
		10: DCC/ICM t	used outside window		
		11: Reserved			
		ICM	Application control	Inside window	Outside window
		(CRE0[7])			
		0	X	bypass	bypass
		1	CR61-0C[3:2]=00 CR60[6]=0	ICM	ICM
		1	CR61-0C[3:2]=01 && CR60[6]=1	ICM	bypass
		1	CR61-0C[3:2]=10 && CR60[6]=1	bypass	ICM
		DCC	Application control	Inside window	Outside window
		(CRE4[7])	•		
		0	X	bypass	bypass
		1	CR61-0C[3:2]=00 CR60[6]=0	DCC	DCC
		1	CR61-0C[3:2]=01 && CR60[6]=1	DCC	bypass
		1	CR61-0C[3:2]=10 && CR60[6]=1	bypass	DCC
1:0	R/W	Peaking/Coring	application control		
		00:Full region			
		01: Inside wind	ow		
		10: Outside win	ndow		
		11: Reserved			
				1	<u> </u>
		Peaking	Application control	Inside window	Outside window
		(CR9A[6])			
	0	0	X	bypass	bypass
		1	CR61-0C[5:4]=00 CR60[6]=0	Peaking	Peaking
0	0,	1	CR61-0C[5:4]=01 && CR60[6]=1	Peaking	bypass

Address: 61-0D Highlight Window Control 1 Default: 00h

	Bit	Mode	Function
--	-----	------	----------

(GIMLS)					RH Series-GR
7:6	R/W	sRGB applicati	on control		
		00: sRGB used	on full region		
		01: sRGB used	inside highlight window		
		10: sRGB used	outside highlight window		
		11: Reserved			
		sRGB	Application control	Inside window	Outside window
		(CR62[2])			10
		0	X	bypass	bypass
		1	CR61-0D[7:6]=00 CR60[6]=0	sRGB	sRGB
		1	CR61-0D[7:6]=01 && CR60[6]=1	sRGB	bypass
		1	CR61-0D[7:6]=10 && CR60[6]=1	bypass	sRGB
		_			
5:4	R/W	DCR_APP_CT	RL	KO	
		00: DCR used or	n full region.		
		01: DCR used in	side highlight window.		
		10: DCR used or	utside highlight window.		
		11: Reserved.			
		DCR(Page 7	Application control	Inside window	Outside window
		<u>CRD8[0]</u>)	<i>*</i> . O		
		0	X	bypass	bypass
		1	CR61-0D[5:4]=00 CR60[6]=0	DCR	DCR
		1	CR61-0D[5:4]=01 && CR60[6]=1	DCR	bypass
		1	CR61-0D[5:4]=10 && CR60[6]=1	bypass	DCR
3:0		Reserved to 0			

Inside window left-top point = (horizontal start + border width, vertical start + border width)

Inside window right-bottom point = (horizontal end, vertical end)

Border window left-top point = (horizontal start, vertical start)

Border window right-bottom point = (horizontal end+ border width, vertical end + border width)

Border = border window – inside window

Outside window = screen - border window

Color Processor Control

Address: 62 COLOR_CTRL (Color Control Register)

Default: 00h

Auuress.	02	COLOR_CTRL (Color Colleto Register)
Bit	Mode	Function
7	R/W	sRGB Coefficient Write Ready
		0: Not ready or cleared after finished
		1: Ready to write (wait for DVS to apply)
6	R/W	sRGB Precision
		0: Normal (Default)
		1: Multiplier Coefficient Bit Left Shift
5:3	R/W	sRGB Coefficient Write Enable
		000: Disable
		001: Write R Channel (RRH,RRL,RGH,RGL,RBH,RBL) (address reset to 0 when written)
		010: Write G Channel (GRH,GBL,GGH,GGL,GBH,GBL) (address reset to 0 when written)
		011: Write B Channel (BRH,BRL,BGH,BGL,BBH,BBL) (address reset to 0 when written)
		100: R Offset
		101: G Offset
		110: B Offset
2	R/W	Enable sRGB Function
		0: Disable (Default)
		1: Enable
1	R/W	Enable Contrast Function:
()		0: disable the coefficient (Default)
		1: enable the coefficient
0	R/W	Enable Brightness Function:
		0: disable the coefficient (Default)
		1: enable the coefficient

Address: 63 SRGB_ACCESS_PORT

Bit	Mode	Function
7:0	W	sRGB_COEF[7:0]

- For Multiplier coefficient: 9 bit: 1 bit sign, 8 bit fractional part
- For filling multiplier coefficient, the sequence should be SIGN bit (High Byte), 8 bit fractional (Low Byte)
- For Offset Coefficient: 1 sign, 5 integer, 2 bit fractional part
- sRGB output saturation to 1023 and Clamp to 0
- sRGB Output is 10 bit

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 + RR & RG & RB \\ GR & 1 + GG & GB \\ BR & BG & 1 + BB \end{bmatrix} \begin{bmatrix} R + Roffset \\ G + Goffset \\ B + Boffset \end{bmatrix}$$

Contrast/Brightness Coefficient

Address: 64 Contrast /Brightness Access Port Control

Default: 00h

Bit	Mode	Function
7	R/W	Enable Contrast /Brightness access port
6:4		Reserved
3:0	R/W	Contrast /Brightness port address

Access data port continuously will get address auto increase.

Address: 65-00 BRI_RED_COE (Set A)

Bi	it	Mode	Function
7:0	0	R/W	Brightness Red Coefficient:
			Valid range: -128(00h) ~ 0(80h) ~ +127(FFh)

Address: 65-01 BRI_GRN_COE (Set A)

Bit	Mode	Function	
7:0	R/W	Brightness Green Coefficient: Valid range:	
		Valid range: -128(00h) ~ 0(80h) ~ +127(FFh)	

Address: 65-02 BRI_BLU_COE (Set A)

Bit	Mode	Function
7:0	R/W	Brightness Blue Coefficient:
		Valid range: -128(00h) ~ 0(80h) ~ +127(FFh)

Address: 65-03 CTS_RED_COE (Set A)

Bit	Mode	Function
7:0	R/W	Contrast Red Coefficient:
·		Valid range: 0(00h) ~ 1(80h) ~ 2(FFh)

Address: 65-04 CTS_GRN_COE (Set A)

Bit	Mode	Function
7:0	R/W	Contrast Green Coefficient:
		Valid range: 0(00h) ~ 1(80h) ~ 2(FFh)

Address: 65-05 CTS_BLU_COE (Set A)

Bit	Mode	Function
7:0	R/W	Contrast Blue Coefficient:
		Valid range: 0(00h) ~ 1(80h) ~ 2(FFh)

Address: 65-06 BRI_RED_COE (Set B)

Bit	Mode	Function
7:0	R/W	Brightness Red Coefficient:
		Valid range: -128(00h) ~ 0(80h) ~ +127(FFh)

Address: 65-07 BRI_GRN_COE (Set B)

Bit	Mode	Function	
7:0	R/W	Brightness Green Coefficient: Valid range:	()-
		Valid range: -128(00h) ~ 0(80h) ~ +127(FFh)	4

Address: 65-08 BRI_BLU_COE (Set B)

Bit	Mode	Function
7:0	R/W	Brightness Blue Coefficient:
		Valid range: -128(00h) ~ 0(80h) ~ +127(FFh)

Address: 65-09 CTS_RED_COE (Set B)

Bit	Mode	Function
7:0	R/W	Contrast Red Coefficient:
		Valid range: 0(00h) ~ 1(80h) ~ 2(FFh)

Address: 65-0A CTS_GRN_COE (Set B)

Bit	Mode	Function
7:0	R/W	Contrast Green Coefficient:
		Valid range: 0(00h) ~ 1(80h) ~ 2(FFh)

Address: 65-0B CTS_BLU_COE (Set B)

Bit	Mode	Function
7:0	R/W	Contrast Blue Coefficient:
	2	Valid range: 0(00h) ~ 1(80h) ~ 2(FFh)

When highlight window is disable, coefficient set A is used.

Gamma Control

Address: 66 GAMMA_PORT

Bit	Mode	Function
7:0	R/W	Access port for gamma correction table

• The Gamma Table written to this port should follow the sequences as expressed below: $\{2'b0, g0[9:4]\}, \{g0[3:0]\}, 2'b0, g4[9:8]\}, \{g4[7:0]\},$ <- addr = 0

- When CR67[3] is set to 1, we can directly specify the initial address of Gamma Table in this port.
- When CR67[3] is set to 1, the value of this port is the address of Gamma Table that you are going to R/W.
- When CR67[3] is set to 0, we can read the value of Gamma Table in the following order.

Address: 67	GAMMA CTRL	Default: 00h

Bit	Mode	Function
7	R/W	Enable Access Channels for Gamma Correction Coefficient:
	-7	0: disable these channels (Default)
		1: enable these channels
6	R/W	Gamma table enable
		0: by pass (Default)
		1: enable
5:4	R/W	Color Channel of Gamma Table
		00: Red Channel (Default)
		01: Green Channel
		10: Blue Channel
		11: Red/Green/Blue Channel (R/G/B Gamma are the same)
3	R/W	Gamma Port Address Access Enable

	0: Normal function. (Default)
	1: Gamma Port is used as specifying initial address.
2:0	
2.0	 Reserved to 0

• Access Gamma_Access register will reset GAMMA_PORT index.

Address:	: 68	GAMMA_BIST (Color Control Register) Default: 00h
Bit	Mode	Function
7	R/W	Test_mode
		0: Disable, dither_out = dither_result[9:2]; // truncate to integer number (Default)
		1: Enable, dither_out = dither_result[7:0]; // propagate decimal part for test
6	R/W	sRGB multiplier coefficient precision
		0: 1-bit Shift-left (Default)
		1: 2-bit Shift-left
5:2		Reserved to 0
1	R/W	Gamma BIST_Progress
		0: BIST is done (Default)
		1: BIST is running
0	R	Gamma BIST Test Result(It will go low first during BIST period)
		0: SRAM Fail
		1: SRAM OK
		Collifor

Dithering Control (For Display Domain)

Register:: DITHERING_DATA_ACCESS 0:					
Name	Bits	Read/ Write	Reset State	Comments	Config
DITHERING_DA TA_ACCESS	7:0	W	0	Refer to following description	

A. When CR6A[7:6] is 2'b01, dithering sequence table access is enabled:

- There are three set of dithering sequence table, each table contains 32 elements, s0, s1, ..., s31. Each element has 2 bit to index one of 4 dithering table.
- Input data sequence is {sr3,sr2,sr1,sr0}, {sr7,sr6,sr5,sr4}, ..., {sr31,sr30,sr29,sr28}, {sg3,sg2,sg1,sg0}, ...,

 $\{sg31, sg30, sg29, sg28\}, \ \{sb3, sb2, sb1, sb0\}, \ \dots, \ \{sb31, sb30, sb29, sb28\} \ for \ red, \ green \ and \ blue \ channel.$

• R + (2R+1) * C choose sequence element, where R is Row Number / 2, and C is Column Number / 2.

B. When CR6A[7:6] is 2'b10, dithering table access is enabled:

- For dithering table access, the red, green, blue each channel has 4 dithering table, each table is 2x2 elements, and one element has 4 bit for 10B/8B, the elements should fill 0 to 3, for 10B/6B, the elements should fill 0 to 15.
- Input data sequence is [Dr00 Dr01],[Dr02,Dr03], ..., [Dr30,Dr31],[Dr32,Dr33],
 [Dg00,Dg01],[Dg02,Dg03], ..., [Dg30,Dg31],[Dg32,Dg33], [Db00,Db01],[Db02,Db03], ...,
 [Db30,Db31],[Db32,Db33].

D00	D01
D02	D03

D10	D11
D12	D13

D20	D21
D22	D23

D30	D31
D32	D33

C. When CR6A[7:6] is 2'b11, temporal offset access is enabled:

- There are 16 element for temporal offset table, t0, t1, ..., t15.

 Each element has 2 bit to index one of 4 temporal offset.
- Input data sequence is {t3,t2,t1,t0}, {t7,t6,t5,t4}, {t11,t10,t9,t8}, {t15,t14,t13,t12}.

Register:: DITHE	RING_0	CTRL1		02	x6A
Name	Bits	Read/ Write	Reset State	Comments	Config
Dither_Access	7:6	R/W	0	Enable Access Control	
				00: disable (Default)	
				01: enable access dithering sequence table	
				10: enable access dithering table	
				11: enable access temporal offset	
Dither_en	5	R/W	0	Enable Dithering Function	
				0: disable (Default)	
				1: enable	
Dither_temp	4	R/W	0	Temporal Dithering	
0.0				0: Disable (Default)	
20				1: Enable	
Dither_table	3	R/W	0	Dithering Table Value Sign	
*				0: unsigned	
				1: signed (2's complement)	
Dither_mode	2	R/W	0	Dithering Mode	
				0: New (Default)	
				1: Old	
Dither_V_Fram_M	1	R/W	0	Vertical Frame Modulation	

				0: Disable (Default) 1: Enable	
Dither_VH_Fram_ M	0	R/W	0	Horizontal Frame Modulation 0: Disable (Default) 1: Enable	

Register:: DITHERING_CTRL2				0x61	3
Name	Bits	Read/ Write	Reset State	Comments	Config
Reserved	7:1	R/W	0	Reserved	90
Dither_Table_Ref	0	R/W	1	Table reference 0: By VS/HS 1: By DEN (Default)	

Overlay/Color Palette/Background Color Control

Address: 6C OVERLAY_CTRL (Overlay Display Control Register) Default: 00h

Bit	Mode	Function					
7:6		Reserved to 0					
5	R/W	Background color access enable					
		0: Disable(Reset CR6D Write Pointer to R)					
		1: Enable					
4:2	R/W	Alpha blending level (Also enable OSD frame control register 0x003 byte 1[3:2]					
		000: Disable (Default)					
		001 ~111: 1/8~ 7/8					
1	R/W	Overlay Sampling Mode Select:					
		0: single pixel per clock (Default)					
		1: dual pixels per clock (The OSD will be zoomed 2X in horizontal scan line)					
0	R/W	Overlay Port Enable:					
	0,0	0: Disable (Default)					
0		1: Enable					
		Turn off overlay enable and switch to background simultaneously when auto switch to					
		background.					

Address: 6D BGND_COLOR_CTRL Default: 00h

Bit	Mode	Function			
7:0	R/W	Background color RGB 8-bit value[7:0]			

• There are 3 bytes color select of background R, G, B, once we enable Background color access channel(CR6C[5] and the continuous writing sequence is R/G/B

Address: 6E Default: 00h OVERLAY_LUT_ADDR (Overlay LUT Address) Mode Bit **Function** 7 R/W **Enable Overlay Color Plate Access:** 0: Disable (Default) 1: Enable R/W 6 Reserved to 0 5:0 R/W Overlay 16x24 Look-Up-Table Write Address [5:0]

• Auto-increment while every accessing "Overlay LUT Access Port".

Address: 6F COLOR_LUT_PORT (LUT Access Port)

Bit	Mode	Function	
7:0	W	Color Palette 16x24 Look-Up-Table access port [7:0]	

- Using this port to access overlay color plate which addressing by the above registers.
- The writing sequence into LUT is [R0, G0, B0, R1, G1, B1, ... R15, G15, and B15] and the address counter will be automatic increment and circular from 0 to 47.

Image Auto Function

Address: 70 H_BOUNDARY_H

Ī	Bit	Mode	Function	
Ī	7:4	R/W	orizontal Boundary Start: High Byte [11:8]	
Ī	3:0	R/W	Horizontal Boundary End: High Byte [11:8]	

Address: 71 H_BOUNDARY_STA_L

Bit	Mode		Function
7:0	R/W	Horizontal Boundary Start: Low Byte [7:0]	

Address: 72 H_BOUNDARY_END_L

Bit	Mode Function	on
7:0	R/W Horizontal Boundary End: Low Byte [7:0]	

Address: 73 V_BOUNDARY_H

Bit	Mode	Function	
7:4	R/W	Vertical Boundary Start: High Byte [11:8]	
3:0	R/W	Vertical Boundary End: High Byte [11:8]	

Vertical boundary search should be limited by Vertical boundary start.

Address: 74 V_BOUNDARY_STA_L

Bit	Mode	Function
7:0	R/W	Vertical Boundary Start: Low Byte [7:0]

Address: 75 V_BOUNDARY_END_L

	Bit	Mode	Function	
7	7:0	R/W	Vertical Boundary End: Low Byte [7:0]	

Address: 76 RED_NOISE_MARGIN (Red Noise Margin Register)

Bit	Mode	Function
7:2	R/W	Red pixel noise margin setting register
1:0		Reserved to 0

Address: 77 GRN_NOISE_MARGIN (Green Noise Margin Register)

Bit	Mode	Function	. 60
7:2	R/W	Green pixel noise margin setting register	
1:0		Reserved to 0	()-

Address: 78 BLU_NOISE_MARGIN (Blue Noise Margin Register)

Bit	Mode		Function
7:2	R/W	Blue pixel noise margin setting register	
1:0		Reserved to 0	

Address: 79 DIFF_THRESHOLD

Bit	Mode	Function
7:0	R/W	Difference Threshold
		(Threshold for DIFF no matter $CR7D[2] = 0$ or 1)

Address: 7A AUTO_ADJ_CTRL0 Default: 00h

Bit	Mode	Function	
7	R/W	Field_Select_Enable: Auto-Function only active when Even or Odd field.	
		0: Disable (Default)	
		1: Enable	
6	R/W	Field_Select: Select Even or Odd field. Active when Field_Select_Enable.	
		0: Active when ODD signal is "0" (Default)	
		1: Active when ODD signal is "1"	
5	R/W	Low Pass Filter (121-LPF)	
	0	0: Disable (Default)	
		1: Enable	
4	R/W	Auto Function Acceleration :	
		0: Disable (Default)	
		1: Enable	
		For auto-balance (CR7D[1]=0), this function must be disabled.	
3:2	R/W	Vertical boundary search:	
		00: 1 pixel over threshold (Default)	
		01: 2 pixel over threshold	

		10: 4 pixel over threshold
		11: 8 pixel over threshold
1:0	R/W	Color Source Select for Detection:
		00: B color (Default)
		01: G color
		10: R color
		11: ALL (the result will be divided by 2)

Address: 7B HW_AUTO_PHASE_CTRL0 Default: 00h

Bit	Mode	Function
7:3	R/W	Number of Auto-Phase Step (Valut+1)
		(How many times (steps reference CR7B[2:0]) jumps when using Hardware Auto)
2:0	R/W	Hardware Auto Phase Step
		000: Step =1 (Default)
		001 Step =2
		001 Step =2 010: Step =4
		011: Step =8
		011: Step =8 1xx: Step =16

Address: 7C HW_AUTO_PHASE_CTRL1 Default: 00h

Bit	Mode	Function
7	R/W	Hardware Auto Phase Select Trigger
		0: IVS 1: Vertical Boundary End
6:0	R/W	Initial phase of Auto-Phase (0~127)

Address: 7D AUTO_ADJ_CTRL1 Default: 00h

Bit	Mode	Function
7	R/W	Measure Digital Enable Info when boundary search active
		0: Normal Boundary Search (Default)
	0	1: Digital Enable Info Boundary Search.(Digital mode)
6	R/W	Hardware / Software Auto Phase Switch
		0: Software (Default)
		1: Hardware
5	R/W	Color Max or Min Measured Select:
		0: MIN color measured (Only when Balance-Mode, result must be complemented) (Default)
		1: MAX color measured
4	R/W	Accumulation or Compare Mode
		0: Compare Mode (Default)
		1: Accumulation Mode

3	R/W	Mode Selection For SOD
		0: SOD Edge Mode (Default)
		1: SOD Edge + Pulse Mode
2	R/W	Type Selection For DIFF
		0: DIFF
		1: (DIFF/4) * (DIFF/4)
		Total result for each color is divided by 8 if this bit is 1.
1	R/W	Function (Phase/Balance) Selection
		0: Auto-Balance (Default)
		1: Auto-Phase
0	R/W	Start Auto-Function Tracking Function:
		0: stop or finished (Default)
		1: start

Control Table/ Function	Sub-Function	CR7D.6	CR7D.5	CR7D.4	CR7D.3	CR7D.1	CR7C
Auto-Balance	Max pixel	X	1	0	0	0	X
	Min pixel	X	0	0	0	0	X
Auto-Phase Type	Mode1		1	1	0	1	Th
	Mode2	1	1	1	1	1	Th
Accumulation	All pixel	1	1	1	0	0	0

Table 1 Auto-Tracking Control Table

Address: 7E VER_START_END_H (Active region vertical start Register)

Bit	Mode	Function
7:4	R	Active region vertical START measurement result: bit[11:8]
3:0	R	Active region vertical END measurement result: bit[11:8]

Address: 7F VER_START_L (Active region vertical start Register)

Bit	Mode	Function
7:0	RAG	tive region vertical start measurement result: bit[7:0]

Address: 80 VER_END_L (Active region vertical end Register)

Bit	Mode	Function
7:0	R	Active region vertical end measurement result: bit[7:0]

Address: 81 H_START_END_H (Active region horizontal start Register)

Bit	Mode	Function
7:4	R	Active region horizontal START measurement result: bit [11:8]
3:0	R	Active region horizontal END measurement result: bit[11:8]

Address: 82 H_START_L (Active region horizontal start Register)

Bit	Mode	Function						
7:0	R	Active region horizontal start measurement result: bit[7:0]						
Address: 83		H_END_L (Active region horizontal end Register)						
Bit	Mode	Function						
7:0	R	Active region horizontal end measurement result: bit[7:0]						
Address:	: 84	AUTO_PHASE_3 (Auto phase result byte3 register)						
Bit	Mode	Function						
7:0	R	Auto phase measurement result: bit[31:24]						
Address:	: 85	AUTO_PHASE_2 (Auto phase result byte2 register)						
Bit	Mode	Function						
7:0	R	Auto phase measurement result: bit[23:16]						
Address:	: 86	AUTO_PHASE_1 (Auto phase result byte1 register)						
Bit	Mode	Function						
7:0	R	Auto phase measurement result: bit[15:8]						
Address:	: 87	AUTO_PHASE_0 (Auto phase result byte0 register)						
Bit	Mode	Function						
7:0	R	Auto phase measurement result: bit[7:0]						
		The measured value of R or G or B color max or min. (Auto-Balance)						

When input is 2560x1600, there will be three case for Register 0x84~0x87:

a. Only SOD + Pulse for RGB

2560x1600x255x2x3 = 6266880000 need 33 bits to indicate.

CR 84~87 will give bit [32:1].

b. $(SOD/4)^2 / 8 + Pulse for RGB$

 $2560x1600x(255/4)^2 / 8x2x3 = 12484800000$ need 34 bits to indicate.

CR 84~87 will give bit [33:2]

c. $(SOD/4)^2 / 8 + Pulse$ only for one color

 $2560 \times 1600 \times (255/4)^2 / 8 \times 2 = 4161600000$ need 32 bits to indicate.

CR 84~87 will give bit [31:0]

Dithering Control (For Input Domain)

Register:: DITHERING_DATA_ACCESS 0x88					0x88
Name	Bits	Read/	Reset	Comments	Config

		Write	State		
DITHERING_DA	7:0	W	0	Refer to following description	
TA_ACCESS				rector to rono wing description	

A. When CR88[7:6] is 2'b01, dithering sequence table access is enabled:

- There are three set of dithering sequence table, each table contains 32 elements, s0, s1, ..., s31. Each element has 2 bit to index one of 4 dithering table.
- Input data sequence is {sr3,sr2,sr1,sr0}, {sr7,sr6,sr5,sr4}, ..., {sr31,sr30,sr29,sr28}, {sg3,sg2,sg1,sg0}, ..., {sg31,sg30,sg29,sg28}, {sb3,sb2,sb1,sb0}, ..., {sb31,sb30,sb29,sb28} for red, green and blue channel.
- R + (2R+1) * C choose sequence element, where R is Row Number / 2, and C is Column Number / 2.

B. When CR88[7:6] is 2'b10, dithering table access is enabled:

- For dithering table access, the red, green, blue each channel has 4 dithering table, each table is 2x2 elements, and one element has 4 bit for 10B/8B, the elements should fill 0 to 3, for 10B/6B, the elements should fill 0 to 15.
- Input data sequence is [Dr00 Dr01],[Dr02,Dr03], ..., [Dr30,Dr31],[Dr32,Dr33], [Dg00,Dg01],[Dg02,Dg03], ..., [Dg30,Dg31],[Dg32,Dg33], [Db00,Db01],[Db02,Db03], ..., [Db30,Db31],[Db32,Db33].

D00	D01
D02	D03

D10	D11
D12	D13

D20	X	D21
D22	/	D23

D30	D31
D32	D33

C. When CR88[7:6] is 2'b11, temporal offset access is enabled:

- There are 16 element for temporal offset table, t0, t1, ..., t15. Each element has 2 bit to index one of 4 temporal offset.
- Input data sequence is {t3,t2,t1,t0}, {t7,t6,t5,t4}, {t11,t10,t9,t8}, {t15,t14,t13,t12}.

Register:: DITHERING_CTRL1 0x89					x89
Name	Bits	Read/ Write	Reset State	Comments	Config
Dither_Access	7:6	R/W	0	Enable Access Control	
				00: disable (Default)	
				01: enable access dithering sequence table	
				10: enable access dithering table	
				11: enable access temporal offset	
Dither_en	5	R/W	0	Enable Dithering Function	
				0: disable (Default)	
				1: enable	
Dither_temp	4	R/W	0	Temporal Dithering	
				0: Disable (Default)	
				1: Enable	
Dither_table	3	R/W	0	Dithering Table Value Sign	

				0: unsigned	
				1: signed (2's complement)	
Dither_mode	2	R/W	0	Dithering Mode	
				0: New (Default)	
				1: Old	
Dither_V_Fram_M	1	R/W	0	Vertical Frame Modulation	
				0: Disable (Default)	
				1: Enable	70
Dither_VH_Fram_ M	0	R/W	0	Horizontal Frame Modulation	
IVI				0: Disable (Default)	2
				1: Enable	

Address 0x8A are reserved

Embedded Timing Controller

Address: 8B TCON_ADDR _PORT Default: 00h

I	Bit	Mode	Function
I	7:0	R/W	Address port for embedded TCON access

Address: 8C TCON_DATA_PORT Default: 00h

Bit	Mode	Function
7:0	R/W	Data port for embedded TCON access

Address: 8C-00 TC_CTRL0 (Timing Controller control register1) Default: 01h

Bit	Mode	Function
7	R/W	Enable Timing Controller Function (Global)
		0: Disable (Default)
		1: Enable
	0	All TCON pins will be initialized when enabled and goes low when disabled.
6	R/W	TCON [n] Toggle Function Reset
	O	0: Not reset (Default)
		1: reset by DVS
5	R/W	Inactive Period Data Controlled by internal TCON [13]
		0: DEN (Default)
		1: TCON [13]
4	R/W	TCON_HS compensation
		0: Real TCON_HS = TCON_HS-4
		1: Real TCON_HS = TCON_HS-27

		If setting TCON_HS > DH_Total, then setting TCON_HS must subtract DH_Total.
3		Reserve to 0
2		Reserve to 0
1:0	R/W	DISP_TYPE
		01: LVDS (Default)
		others are reserved

Address: 8C-01 TC CTRL1 (Timing Controller control register1) Default:	Address: 8C-01
--	----------------

Bit	Mode	Function
7:0	R/W	Reserved to 0

Address: 8C-02 Pixel Threshold MSB Default: 00h

Bit	Mode	Function
7	R/W	2-Line Sum of Difference Threshold 1 Value: bit [8], ie:TH1 (also refer to CR8C-03)
6	R/W	2-Line Sum of Difference Threshold 2 Value: bit [8], ie:TH2 (also refer to CR8C-04)
5:0	R/W	Over Difference Line Threshold Value: bit [9:4]
		Notes: Bit[3:0] are zeros

Address: 8C-03 Pixel Threshold High Value for Smart Polarity (TH1) Default: 00h

Bit	Mode	Function
7:0	R/W	2 line Sum of Difference Threshold 1 Value: bit [7:0], ie:TH1 (Also refer to CR8C-02[7])

Address: 8C-04 Pixel Threshold Low Value for Smart Polarity (TH2) Default: 00h

	Bit	Mode	Function
I	7:0	R/W	2 line Sum of Difference Threshold 2 Value: bit [7:0], ie:TH2 (Also refer to CR8C-02[6])

Address: 8C-05 Line Threshold Value for Smart Polarity Default: 00h

Bit	Mode	Function
7	R/W	Measure Dot Pattern over Threshold
	0	1: Run.
	0,0	Auto: always measure (Reference to CR8C-05[5])
0		Manual: start to measure, clear after finish
		0: Stop
6	R	Dot Pattern Sum of Difference Measure Result
		1: Over threshold
		0: Under threshold
5	R/W	Anti-Flicker Auto-Measure Control
		1: Auto
		0: Manual

4:1	R/W	Reserved
0	R/W	Anti-Flicker Measure Mode
		0: Dot-Based (Original)
		1: Pixel-Based

Over Difference Line Threshold Value shall not exceed 0x190.

Address: 8C-06~07 Reserved to 0

TCON Horizontal/Vertical Timing Setting

Address: 8C-08 TCON [0]_VS_LSB (TCON [0] Vertical Start LSB Register)

Ī	Bit	Mode	Function	
	7:0	W	Line number [7:0] at which TCON control generation begins	4

Address: 8C-09 TCON [0]_VS_MSB (TCON [0] Vertical Start/End MSB Register)

Bit	Mode	Function
7:4	W	Line number [11:8] at which TCON control generation ends
3:0	W	Line number [11:8] at which TCON control generation begins

Address: 8C-0A TCON [0]_VE_LSB (TCON [0] Vertical End LSB Register)

Bit	Mode	Function
7:0	W	Line number [7:0] at which TCON control generation ends

Address: 8C-0B TCON [0]_HS_LSB (TCON [0] Horizontal Start LSB Register)

Bit	Mode	Function
7:0	W	Pixel count [7:0] at which TCON goes active

Address: 8C-0C TCON [0]_HS_MSB (TCON [0] Horizontal Start/End MSB Register)

Bit	Mode	Function
7:4	W	Pixel count [11:8] at which TCON goes inactive
3:0	W	Pixel count [11:8] at which TCON goes active

To be triggered on rising edge of the DCLK

Address: 8C-0D TCON [0]_HE_LSB (TCON [0] Horizontal End LSB Register)

Bit Mode	Function
7:0 W	Pixel count [7:0] at which TCON goes inactive

If the register number is large than display format, the horizontal component is always on.

Real TCON_HS = TCON_HS-4, Real TCON_HS = TCON_HS-4

Address: 8C-0E TCON [0]_CTRL (TCON [0] Control Register) Default: 00h

Bit	Mode	Function
7	R/W	TCON [n] Enable (Local)
		0: Disable (TCON [n] output clamp to '0') (Default)
		1: Enable

T .	ı	
6	R/W	Polarity Control
		0: Normal output (Default)
		1: Inverted output
5:4		Reserved to 0
3	R/W	Toggle Circuit Enable/Disable
		0: Normal TCON output (Default)
		1: Toggle Circuit enable
		When using toggle circuit enable mode, the TCON[n] will be 1 clock earlier than TCON[n-1] and
		then toggling together, finally output will be 1 clock delay comparing to toggling result.
2:0	R/W	TCON [13:10] & TCON [7:4] (TCON Combination Select)
		TCON [13] has inactive data controller function.
		TCON [13]~[10] has dot masking function
		TCON [7] has flicking reduce function.
		000: Normal TCON output (Default)
		001: Select TCON [n] "AND" with TCON [n-1]
		010: Select TCON [n] "OR" with TCON [n-1]
		011: Select TCON [n] "XOR" with TCON [n-1]
		100: Select TCON [n-1] rising edge as toggle trigger signal (when toggle enable)
		101: Select TCON [n-1] rising edge as toggle trigger signal, then "AND" (when toggle enable)
		110: Select TCON [n-1] rising edge as toggle trigger signal, then "OR" (when toggle enable)
		111: Select TCON [n] and TCON [n-1] on alternating frames.
		TCON [9:8] (TCON Combination Select)
		000: Normal TCON output
		001: Select TCON [n] "AND" with TCON [n-1]
		010: Select TCON [n] "OR" with TCON [n-1]
		011: Select TCON [n] "XOR" with TCON [n-1]
		100: Select TCON [n-1] rising edge as toggle trigger signal (when toggle enable)
	2,0	101: Select TCON [n-1] rising edge as toggle trigger signal, then "AND" (when toggle enable)
	0	110: Select TCON [n-1] rising edge as toggle trigger signal, then "OR" (when toggle enable)
V		111: Select TCON [n] and TCON [n-1] reference ODD signal as alternating frames.
		TOON OF THE STATE
		TCON [3] (TCON Combination Select)
		000: Normal TCON output
		001: Select TCON [3] "AND" with TCON [2]
		010: Select TCON [3] "OR" with TCON [2]
		011: Select TCON [3] "XOR" with TCON [2]
		100: Select TCON [2] rising edge as toggle trigger signal (when toggle enable)

Default: 00h

@IME	TRH Series-GR
	101: Select TCON [2] rising edge as toggle trigger signal, then "AND" (when toggle enable)
	110: Select TCON [2] rising edge as toggle trigger signal, then "OR" (when toggle enable)
	111: Select reset(ODD=0) or set(ODD=1) TCON [3] by DVS, when toggle function enable
	TCON [2] (Clock Toggle Function)//toggle function is inactive
	00x: Normal TCON output
	010: Select DCLK/2 when TCON [2] is "0"
	011: Select DCLK/2 when TCON [2] is "1"
	100: Select DCLK/4 when TCON [2] is "0"
	101: Select DCLK/4 when TCON [2] is "1"
	110: Select DCLK/8 when TCON [2] is "0"
	111: Select DCLK/8 when TCON [2] is "1"
	TCON [1]
	xx0: Normal TCON output
	xx1: Reverse-Control Signal output
	TCON [0]
	00x: Normal TCON output
	010: EVEN "REV" 18/24-bit function ("REV0" on TCON [0])
	ODD "REV" 18/24-bit function ("REV1" on TCON [1])
	011: ALL "REV" 36/48-bit function ("REV" on TCON [0], can also on TCON [1])
	100: EVEN data Output Inversion Controlled by TCON [0] is "0"
	ODD data Output Inversion Controlled by TCON [1] is "0"
	101: EVEN data Output Inversion Controlled by TCON [0] is "1"
	ODD data Output Inversion Controlled by TCON [1] is "1"

Dot Masking

Address: 8C-5F/67/6F/77 TC_DOT_MASKING_CTRL

Bit	Mode	Function
7:3	R/W	Reserved to 0
2	R/W	Red Dot Masking Enable
		0: Disable (Default)
		1: Enable
1	R/W	Green Dot Masking Enable
		0: Disable (Default)
		1: Enable

0	R/W	Blue Dot Masking Enable
		0: Disable (Default)
		1: Enable

When applying dot masking, the timing setting for TCON will be

Real TCON_Mask_STA = TCON_STA+2

Real TCON_Mask_END = TCON_END +2

TCON [0] ~ TCON [13] Control Registers Address Map

Address	Data(# bits)	Default
0A,09,08	TCON [0]_VS_REG (11)	
0D,0C,0B	TCON [0]_HS_REG (11)	
0E	TCON [0]_CTRL_REG	00
0F	Reserved	0,
12,11,10	TCON [1]_VS_REG (11)	
15,14,13	TCON [1]_HS_REG (11)	
16	TCON [1]_CTRL_REG	00
17	Reserved	
	70,	
1A,19,18	TCON [2]_VS_REG (11)	
1D,1C,1B	TCON [2]_HS_REG (11)	
1E	TCON [2]_CTRL_REG	00
1F	Reserved	
	O	
22,21,20	TCON [3]_VS_REG (11)	
25,24,23	TCON [3]_HS_REG (11)	
26	TCON [3]_CTRL_REG	00
27	Reserved	
70		
2A,29,28	TCON [4]_VS_REG (11)	
2D,2C,2B	TCON [4]_HS_REG (11)	
2E	TCON [4]_CTRL_REG	00
2F	Reserved	
	TOOMS VS PPS (4)	
32,31,30	TCON [5]_VS_REG (11)	
35,34,33	TCON [5]_HS_REG (11)	
36	TCON [5]_CTRL_REG	00

MEML か ソ/		
37	Reserved	
3A,39,38	TCON [6]_VS_REG (11)	
3D,3C,3B	TCON [6]_HS_REG (11)	
3E	TCON [6]_CTRL_REG	00
3F	Reserved	
42,41,40	TCON [7]_VS_REG (11)	
45,44,43	TCON [7]_HS_REG (11)	
46	TCON [7]_CTRL_REG	00
47	Reserved	
4A,49,48	TCON [8]_VS_REG (11)	
4D,4C,4B	TCON [8]_HS_REG (11)	\vee
4E	TCON [8]_CTRL_REG	00
4F	Reserved	
52,51,50	TCON [9]_VS_REG (11)	
55,54,53	TCON [9]_HS_REG (11)	
56	TCON [9]_CTRL_REG	00
57	Reserved	
5A,59,58	TCON [10]_VS_REG (11)	
5D,5C,5B	TCON [10]_HS_REG (11)	
5E	TCON [10]_CTRL_REG	00
5F	TCON [10]_CTRL_REG	
62,61,60	TCON [11]_VS_REG (11)	
65,64,63	TCON [11]_HS_REG (11)	
66	TCON [11]_CTRL_REG	00
67	TCON [11]_CTRL_REG	00
6A,69,68	TCON [12]_VS_REG (11)	
6D,6C,6B	TCON [12]_HS_REG (11)	
6E	TCON [12]_CTRL_REG	00
6F	TCON [12]_CTRL_REG	00
	1	1

72,71,70	TCON [13]_VS_REG (11)	
75,74,73	TCON [13]_HS_REG (11)	
76	TCON [13]_CTRL_REG	00
77	TCON [13]_CTRL_REG	00

Control for LVDS

Address: 8C-A0 LVDS_CTRL0 Default: 00h

riuur Coo	· oc-Au	EVDS_CTREO Default. 0011
Bit	Mode	Function
7		Reserved to 0
5	R/W	Power Up LVDS Even-Port (pin 86~95)
		0: Power down (Default)
		1: Normal
4	R/W	Power Up LVDS Odd-Port (pin 74~83)
		0: Power down (Default)
		1: Normal
3:2	R/W	Watch Dog Model
		00: Enable Watch Dog(Default)
		01: Keep PLL VCO = 1V
		1x: Disable Watch Dog
1	R/W	Reserved to 0
0	R	Watch Dog Control Flag
		0: Watch dog not active (Default)
		1: Watch dog active, Reset PLL and set VCO = 1V

Address: 8C-A1 LVDS_CTRL1 Default: 14h

Bit	Mode	Function
7	R/W	CKLAGL: Inverse the CK port
	0,	0: lead (Default)
()		1: lag T/14
5:3	R/W	STSTL [2:0]: select test attribute
		000: WD
		001: VCOM
		010: IB40u (default)
		011: IBVOCM
		100: PLLTST-fbak

		101: PLLTST-fin	
		110: LVTST-CKDIN	
		111: LVTST-LVDSIN[6]	
2:0	R/W	LVDS Output Common Mode (Default: 100)	
		000 : 1.07v	
		001 : 1.12v	
		010 : 1.17v	
		011 : 1.22v	
		100 : 1.29v (Default)	
		101 : 1.33v	165
		110 : 1.38v	
		111 : 1.43v	

Address: 8C-A2 LVDS_CTRL2 Default: 43h

Address: 8C-A2		LVDS_CTRL2 Derautt: 43n
Bit	Mode	Function
7:6	R/W	SBGL
		00: 1.164V
		01: 1.244V (Default)
		10: 1.324V
		11: 1.404V
5	R/W	ENIB40UX2L: Double the LVDS output swing
		0: 1X
		1: 2X
4	R/W	SIBXL : select 20uA source If DISP_TYPE=LVDS
		0: from Bandgap (Default)
		1: from ADC
3	R/W	PLL lock edge
		0: positive
		1: negative
2:0	R/W	SIBGENL (LVDS Current Source correction),
	0,0	40u: LVDS driving current, 100u: LVDS VOCM(default)
	0	
X		000 : 25uA/62.5uA
		001 : 30uA/75uA
		010 : 35uA/87.5uA
		011 : 40uA/100uA (Default)
		100 : 45uA/112.5uA
		101 : 50uA/125uA
		110 : 55uA/ <mark>137.5uA</mark>

111 : 60uA/<mark>150uA</mark>

Address: 8C-A3 LVDS_CTRL3 Default: 1Ch

Bit	Mode	Function
7	R/W	ENVBPBL: Enable VCO_D2S Current Up
		0: disable (Default)
		1: enable
6	R/W	Reserved to 0
5:3	R/W	SIL [2:0]: PLL charge pump current (I=5uA+5uA*code) (Default: 011)
2:1	R/W	SRL [1:0]: PLL resistor (R=6K+2K*code) (Default: 10)
0	R/W	BMTS: Bit-Mapping Table Select
		0: Table 1 (Default)
		1: Table 2

TCLK+

LVDS	Bit 1	Bit 0	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Bit 6	Bit 5
TXE0	ER1	ER0	EG0	ER5	ER4	ER3	ER2	ER1	ER0	EG0	ER5
TXE1	EG2	EG1	EB1	EB0	EG5	EG4	EG3	EG2	EG1	EB1	EB0
TXE2	EB3	EB2	DEN	VS	HS	EB5	EB4	EB3	EB2	DEN*6	VS*5
TXE3	ER7	ER6	RSV	EB7	EB6	EG7	EG6	ER7	ER6	RSV*7	EB7
TXO0	OR1	OR0	OG0	OR5	OR4	OR3	OR2	OR1	OR0	OG0	OR5
TXO1	OG2	OG1	OB1	OB0	OG5	OG4	OG3	OG2	OG1	OB1	OB0
TXO2	OB3	OB2	DEN	VS	HS	OB5	OB4	OB3	OB2	DEN*2	VS*1
TXO3	OR7	OR6	RSV	OB7	OB6	OG7	OG6	OR7	OR6	RSV*3	OB7

TABLE 1 Bit-Mapping 6bit(5~0)+2bit(7~6)

TCLK+

LVDS	Bit 1	Bit 0	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Bit 6	Bit 5
TXE0	ER3	ER2	EG2	ER7	ER6	ER5	ER4	ER3	ER2	EG2	ER7
TXE1	EG4	EG3	EB3	EB2	EG7	EG6	EG5	EG4	EG3	EB3	EB2
TXE2	EB5	EB4	DEN	VS	HS	EB7	EB6	EB5	EB4	DEN*6	VS*5
TXE3	ER1	ER0	RSV	EB1	EB0	EG1	EG0	ER1	ER0	RSV*7	EB1
TXO0	OR3	OR2	OG2	OR7	OR6	OR5	OR4	OR3	OR2	OG2	OR7
TXO1	OG4	OG3	OB3	OB2	OG7	OG6	OG5	OG4	OG3	OB3	OB2
TXO2	OB5	OB4	DEN	VS	HS	OB7	OB6	OB5	OB4	DEN*2	VS*1
TXO3	OR1	OR0	RSV	OB1	OB0	OG1	OG0	OR1	OR0	RSV*3	OB1

TABLE 2 Bit-Mapping 6bit(7~2)+2bit(1~0)

Address: 8C-A4 LVDS_CTRL4

I	Bit	Mode	Function					
	7:6	R/W	E_RSV: even port reserve signal select					
			11: Always '1'					

Default: 80h

		10: Always '0'
		01: TCON [11]
		00: PWM_0
5:4	R/W	E_DEN: even port data enable signal select
		11: Always '1'
		10: Always '0'
		01: TCON [9]
		00: DENA
3:2	R/W	E_VS: even port VS signal select
		11: Always '1'
		10: DENA
		01: TCON [7]
		00: DVS
1:0	R/W	E_HS: even port HS signal select
		11: Always '1'
		10: DENA
		01: TCON [5]
		00: DHS

Address: 8C-A5 LVDS_CTRL5 Default: 80h

Bit	Mode	Function
7:6	R/W	O_RSV: odd port reserve signal select
		11: Always '1'
		10: Always '0'
		01: TCON [13]
		00: PWM_1
5:4	R/W	O_DEN: odd port data enable signal select
		11: Always '1'
		10: Always '0'
	9	01: TCON [9]
	0	00: DENA
3:2	R/W	O_VS: odd port VS signal select
		11: Always '1'
		10: DENA
		01: TCON [7]
		00: DVS
1:0	R/W	O_HS: odd port HS signal select
		11: Always '1'
		10:DENA

	01: TCON [5]
	00: DHS

Address	s: 8C-A6	LVDS_CTRL6 Default: 02h
Bit	Mode	Function
7	R/W	RSDS Differential pair PN swap (data) (Also refer to CR29[6:4])
		0: No Swap (Default)
		1: Swap
6:4		Reserved to 0
3	R/W	DALAGL: Inverse the Data port
		0: lead (Default)
		1: lag T/14
2	R/W	Reserved
1	R/W	ENDUL: Odd clock pair current double(odd B port)
		0: 1X
		1: 2X (Default)
0		Reserved to 0

Test function

Register::Pin_config_Addr_Port 0x8D							
Name	Name Bit R/W Default Description Co						
Pin_config_Addr_P	7:0	R/W	00	Address port for pin configuration			
ort				control access			

Register::Pin_config	Register::Pin_config_Data_Port 0x8E							
Name	Bit	R/W	Default	Description	Config			
Pin_config_Data_P	7:0	R/W	00	Data port for pin configuration control				
ort				access				

Register::TEST_MODE						
Name	Bit	R/W	Default	Description	Config	
Select_data_test_mo de	7	R/W	0	Select Data Test mode MSB(for 48pin) 0: select Data test mode [15:0] to pin 36~21 1: select Data test mode [29:16] to pin 36~21		
Test mode select	6:5	R/W	00	00:Normal 01:test_output mode Others are Reserved		

	1 7			LKH Series-GR	_
Test_output_Mode	4	R/W	0	0:Select Data test mode	\neg
rest_output_ivioue		IX/ VV	O .		
				Select Data test output to	
				128pin{124~121,114~108,105~100,72~64,	
				54~51} depend on bit6~bit4	
				48pin(36~21)depend on bit7~bit4	
				1:PLL test mode	
				{dpll, m2pll,audio_pll, mpll, ckt_pll27x,	
				ck108_pll27x, dpllstatus,test1out,	
				test2out, fav4, xclk} will be outputted to	
				128pin{124,113,51,71,110,101,108,	
				105,54,67,64}	
				48pin{29,37,21,35,none,none,25,23,27,3	
				3,31}	
				when set to 1, clock frequency of some	
				test pin could be divided by assigning its	
			1	corresponding TST_CLK_CTRL	
Data_Test_mode	3:0	R/W	0	0000: 1'b0, Z0TST[3:0], pclk_tst,	\dashv
Data_1cst_IIIodc	5.0	17 11	ľ		
			1	Red[9:2], Green[9:2], Blue[9:2]	
				through VGIP	1
				0001: 1'b0, Z0TST[3:0], adc_clk,	1
				Red[7:0], Green[7:0], Blue[7:0] After	1
					1
				Scale Down	1
				0010: Z0TST[3:0], adc_clk, IVS_DLY,	1
				IHS DLY, IFD ODD, IENA,	
				VSD DEN, VSD ACT, Auto hs,	
				Auto vs, auto field, 1'b0, COAST,	
				test_s1, test_s2, CLAMP_G,	
				CLAMP_BR, SOG_IN0, SOG_IN1,	
				FAV4,final_pe_com, t_s[1:0],	
				pe extrab, high 88,	
				recur_delay_chain_en, high_127	
				0011: Z0TST[3:0], adc_clk, MCUWR,	
		× ×		MCURD, MCU_ADR_INC, MIN[7:0],	
				MCUWR, MCURD, MADR[7:0],	
				SDMOUT_TST[3:0]	
				0100: 1'b0, adc_clk, RAW_VS,	
				RAW HS, RAW ODD, RAW DEN,	
	1			SDMOUT TST[3:0], Green[9:0],	
			1		
	. 1		1	Red[9:0] through VGIP	
				0101: 1'b0, adc_clk, Red[9:0],	
		ľ	1	Green[9:0], raw_vs, raw_hs, en_flag,	
A				meas_ihs, HSOUT_sync_proc, coast,	1
4 X			1		
				CLAMP_G, CLAMP_BR	1
			1	0110: 1'b0, adc_clk, raw_vs, raw_hs,	
				test s1, test s2, raw filed, Blue[9:0],	1
			1	Green[9:0], hs0 schmitt, hs1 schmitt,	
			1		
				1'b0	1
			1	0111: 3'b0, adc_clk, Green[9:0],	
				iclk_tst, raw_vs, raw_hs, raw_filed,	1
			1	fifo_clk, internal_crystal, test_s1,	
				test_s2, sync_pro_tst[7:0]	1
			1		
				1000: AUDIO_DAC enable signal test	1
			1	pin: dac_2ch_otpin[29:0]	
				1001: VSDMAIN test mode: pclk tst,	1
			1	3'b0, vsd_act, vsd_den, vsd_pr[7:0],	
			1	vsd_y[7:0], vsd_pb[7:0]	
				1010: Auto_soy test mode reserved	
				1011: 6'b0, ADC SNR RGB 8-bitx3	1
			1	output	
			1		
]	1100: Embedded MCU test out mode	

(GIMEN)	LATI Series-(+A
	1101: HDMI test in mode 128 pin HDMI_TST_IN [29:0] assign to {124~121, 114~108, 105~100, 72~64, 54~51} 48 pin HDMI_TST_IN [15:0] assign to {36~21} 1110: HDMI test out mode 128 pin HDMI_TST_OUT [29:0] assign to {124~121, 114~108, 105~100, 72~64, 54~51} 48 pin HDMI_TST_OUT [15:0] assign to {36~21} 1111: 6'b0, ADC_SNR_RGB_8-bitx3- output reserved When set to 0010/0110/0111,test_s1 & test_s2 can be assigned by "Select_Tst_s1s2" Others are reserved

Register::TST_CLK	_CTRL0				0x01
Name	Bits	Read/ Write	Reset State	Comments	Config
DPLL_OEN	7	R/W	0	DPLL frequency output enable	
				0: output disabled	
	_			1: output enabled	
M2pll_OEN	6	R/W	0	M2PLL frequency output enable	
			NO	0: output disabled	
				1: output enabled	
Audio_pll_OEN	5	R/W	0	Audio_PLL frequency output enable	
				0: output disabled	
			•	1: output enabled	
MPLL_OEN	4	R/W	0	MPLL frequency output enable	
				0: output disabled	
				1: output enabled	
CLK108_PLL27X_	3	R/W	0	CLK108_PLL27X frequency output	
OEN	. 1			enable	
				0: output disabled	
				1: output enabled	
Test1out_OEN	2	R/W	0	Test1out frequency output enable	
				0: output disabled	
	,			1: output enabled	
Test2out_OEN	1	R/W	0	Test2out frequency output enable	
				0: output disabled	
				1: output enabled	
Fav4_OEN	0	R/W	0	Fav4 frequency output enable	
				0: output disabled	
¥				1: output enabled	

Register::TST_CLK_CTRL1 0x02							
Name	Bits	Read/ Write	Reset State	Comments	Config		
XCLK_OEN	7	R/W	0	XCLK frequency output enable 0: output disabled 1: output enabled			
CKT_PLL27X_OEN	6	R/W	0	CKT_PLL27X frequency output enable			

			output disabled output enabled	
Rev	5:0	 	Reserved	

Register::TST_CLK	Register::TST_CLK_CTRL2						
Name	Bit	R/W	Default	Description	Config		
MPLL_DIV_CTRL	7:6	R/W	00	MPLL frequency is divided by			
				00:1			
				01:2			
				10:4)		
				11:8			
DPLL_DIV_CTRL	5:4	R/W	00	DPLL frequency is divided by			
				00:1			
				01:2			
				10:4			
				11:8			
M2pll_DIV_CTRL	3:2	R/W	11	M2PLL frequency is divided by			
			4	00:1			
			. 0	01:2			
			70	10:4			
		C	(O.	11:8			
Audio_pll_DIV_CT	1:0	R/W	00	Audio PLL frequency is divided by			
RL				00:1			
				01:2			
				10:4			
				11:8			

Register:: TST_CLK_CTRL3					
Name	Bit	R/W	Default	Description	Config
Fav4_DIV_CTRL	7:6	R/W	00	Fav frequency is divided by	
				00:1	
				01:2	
				10:4	
				11:8	
Test1out _DIV_CTRL	5:4	R/W	00	Test1out frequency is divided by	
				00:1	
				01:2	
				10:4	

				11:8	
Test2out _DIV_CTRL	3:2	R/W	00	Test2out frequency is divided by	
				00:1	
				01:2	
				10:4	
				11:8	
108_pll27xDIV_CTR	1	R/W	0	0:Divided by 1	
L				1:Divided by 4	
Ckt_pll27x	0	R/W	0	0:divided by 1	
DIV_CTRL				1:divided by4	

Register:: Select_Tst_	_s1s2				0x05
Name	Bit	R/W	Default	Description	Config
Reserved	7	R/W	0	Reserved	
Select_Tst_s1	6:4	R/W	001	Select test function of test_s1	
				3'b000: DPLL clock (TIE LOW NOW)	
				3'b001: PLLS fbk clock	
				3'b010: CKOAD2(High Speed)	
			70	3'b011: PLL status	
			(O)	3'b100: HSOUT	
		X		3'b101: ADC clock(from PLLS)(High	
				Speed)	
		$\sim 0^{\circ}$		3'b110: Empty Flag	
				3'b111: BVS(Video8)	
Reserved	3	R/W	0	Reserved	
Select_Tst_s2	2:0	R/W	010	Select test function of test_s1	
18				3'b000: PLLS phase swallow clock	
				(High speed)	
0.0				3'b001: DPLL status(TIE LOW NOW)	
20				3'b010: PLLS phase0 clock(High	
				speed)	
				3'b011: M2PLL clock(Not in APLL)	
				3'b100: HSFB	
				3'b101: TP2_MX5	
				3'b110: Full Flag	
				3'b111: BHS(Video8)	

Register:: Select_Tstir	nclock			()x06
Name	Bit	R/W	Default	Description	Config
DPLL_TST_IN	7	R/W	0	0:Normal	
				1:DCLK enter from pin 34	
ADCPLL_TST_IN	6	R/W	0	0:Normal	
				1:ADC CLK enter from pin 35	
M2PLL_TST_IN	5	R/W	0	0:Normal	
				1:M2PLL CLK enter from pin 36	CO
HDMI_CP_ACLK	4	R/W	0	0:Normal)
_TST_IN				1:HDMI_CP_ACLK enter from pin 37	
HDMI_CP_CLK	3	R/W	0	0:Normal	
_TST_IN				1:HDMI_CP_CLK enter from pin 38	
SCAN_CLK_TST_I	2	R/W	1	0:Normal	
N				1:SCAN CLK enter from pin 21	
DPLL_NDIV2_EN	1	R/W	0	DPLL Test Mode Divider Enable	
				0:use pin 34 div2 as dclk 1:use pin 34 as dclk	
MPLL_TST_IN	0	R/W	0	0:Normal	
				1:MPLL CLK enter from pin 33	

TEST MODE in FIFO

Register:: ADC TEST	Γ MODE				0x07
Name	Bit	R/W	Default	Description	Config
ADC_TEST_MODE	7	R/W	0	0:Disable	
				1:Enable	
ADC_TEST_MODE	6	R/W	0	Useless	
_2	9				
FIFO_TEST_MODE	5	R/W	0	0:Disable	
~0				1:Enable test the CRC from FIFO, and	
00				open the Pattern Gen to d domain.	
				Pattern Gen Seed (R = 01,G=00,B=00)	
ADC_TEST_START	4	R	0	Under ADC_TEST_MODE = 1,	
				ADC_TEST_START will high when the	
				new fifo is full, then read out data from	
				FIFO by sending DCLK from outside test	
				pin.	
Rev	3:0			Reserved	

Register:: ADC TEST MODE ADDR MSB					
Name	Bit	R/W	Default	Description	Config
Rev	7:2			Reserved	
ADC_TEST_ADDR[9:8]	1:0	R/W	0X00	Read the FIFO initial Addr.	

Register:: ADC TEST MODE ADDR LSB					
Name	Bit	R/W	Default	Description Config	
ADC_TEST_ADDR[7:0	R/W	0X04	Read the FIFO initial Addr.	
7:0]				()- '	

Register:: ADC FIFO CRC					
Name	Bit	R/W	Default	Description	Config
NEW_FIFO_CRC[2	7:0	R	0	NEW FIFO CRC	
3:16]					

Register:: ADC FIFO CRC					
Name	Bit	R/W	Default	Description	Config
NEW_FIFO_CRC[1	7:0	R	0	NEW FIFO CRC	
5:8]					

Register:: ADC FIFO CRC 0					
Name	Bit	R/W	Default	Description	Config
NEW_FIFO_CRC[7:	7:0	R	0	NEW FIFO CRC	

Embedded OSD

Address: 90 OSD_ADDR_MSB (OSD Address MSB 8-bit)

Bit	Mode	Function
7:0	R/W	OSD MSB 8-bit address

Address: 91 OSD _ADDR_LSB (OSD Address LSB 8-bit)

Bit	Mode	Function			
7:0	R/W	OSD LSB 8-bit address			

Address: 92 OSD_DATA_PORT (OSD Data Port)

Bit	Mode	Function
7:0	W	Data port for embedded OSD access

Refer to the embedded OSD application note for the detailed.

Address:	: 93	OSD_SCRAMBLE Default: 05h					
Bit	Mode	Function					
7	R/W	BIST Start					
		0: stop (Default)					
		1: start (auto clear)					
6	R	BIST Result					
		0: fail (Default)					
		1: success					
5	R	MCU writes data when OSD ON status (Queue 1 byte data)					
		0: MCU writes data to OSD but not to real position (There is one level buffer here)					
		1: MCU doesn't write data, or data has been written to real position					
4	R	Double_Buffer_Write_Status					
		0: double buffer write out is finish, or data write to double buffer is not ready, or no double buffer					
		function.					
		1: after data write to dbuf and before dbuf write out, such that double buffer is busy.					
3	R/W	OSDADRHSB					
		0: If initial address lower than or equal to 12K					
		1: If initial address higher than 12K					
		The bit will be designed to control 16.5K bytes SRAM. However it will have no effect for					
		WINDOW setting, Also please remember to set {OSDADRHSB, OSDADRMSB(CR90),					
		OSDADRLSB(CR91) } again while you like to R/W a new address.					
2:0	R/W	Double buffer depth (Default=6)					
		000~101=>1~6					

OSD_TEST Address: 94

Bit	Mode	Function
7:0	R/W Testing Pattern	

Address:95~97 Reserved

Digital Filter

Address: 98 DIGITAL_FILTER_CTRL

Bit	Mode	Function
7:4	R/W	Access Port Write Enable
		0000: disable

Default: 00h

		0001: phase access port					
		0010: negative smear access port					
		0011: positive smear access port					
		0100: negative ringing access port					
		0101: positive ringing access port					
		0110: mismatch access port					
		0111: Y(B)/Pb(G)/Pr(R) channel digital filter enable					
		1xxx: noise reduction access port					
3:2	R/W	Two condition occur continuous (ringing to smear)					
		00: disable(hardware is off , depend on firmware)					
		01: only reduce ringing condition					
		10: only reduce smear condition					
		11: no adjust (hardware is on, but do nothing)					
1	R/W	When noise reduction and mismatch occur, select					
		0: mismatch					
		1: noise reduction					
0		Reserved to 0					

Address: 99 DIGITAL_FILTER_PORT Default: 00h

DIGITA	L_FILTE	$R_{CTRL[7:4]} = 0111$					
Bit	Mode	Function					
7	R/W	N (G): function enable					
		unction disable					
		nction enable					
6	R/W	EN (B): function enable					
		anction disable					
		1: function enable					
5	R/W	Pr EN (R): function enable					
		unction disable					
	2,0	1: function enable					
4	R/W	Initial value:					
0: raw data							
		1: extension					
3:0	-	Reserved to 0					

$DIGITAL_FILTER_CTRL[7:4] = 000 \sim 110$					
Bit	Mode	Function			
7	R/W	EN: function enable			

		0: function disable
		1: function enable
6:4	R/W	THD_OFFSET
		Threshold value of phase and mismatch and noise reduction or offset value of smear and ringing
3:2	R/W	DIV: divider value of phase and mismatch or offset value of smear and ringing
		00: 0
		01: 1
		10: 2
		11: 3
1:0		Reserved to 0

THD_OFFSET define:

The THD value definition of phase enhance function

Bit6~4	000	001	010	011	100	101	110	111
Value	112	128	144	160	176	192	208	224

The offset value definition of smear and ringing reduce function

Bit6~4	000	001	010	011	100	110	111
Value	no use	16	32	48	64 80	96	112

The THD value definition of mismatch enhance function

Bit6~4	000	XX1		
Value	1	2		

The THD value definition of noise reduction function

Bit6~4	000	001	010	011	100	101	110	111
Value	0	1	2	3	4	5	6	7

Color Conversion (Input Domain)

Address: 9C YUV_RGB_CTRL (YUV <-> RGB Control Register) Default: 10h

Bit	Mode	Function
7	R/W	Y_OUT Shift
		0: Bypass
		1: Y_Out+64
6	R/W	CbCr_Out_Shift:
		0: Bypass
		1: Cb_Out+512, Cr_Out+512
5		Reserved
4	R/W	Color Conversion Type
		0: YUV->RGB
		1: RGB->YUV (U,V are translated to unsigned 10-bit number)
3	R/W	Enable YUV/RGB coefficient Access:
		0: Disable
		1: Enable
		If this bit is set to 0, the address of the data port will reset to 0, and continuously writes 18 bytes
2	R/W	Cb Cr Clamp
		0: Bypass

		1: Cb-512, Cr-512 (MSB Inversion)
1	R/W	Y Gain/Offset:
		0: Bypass
		1: (Y-64)*1.164
0	R/W	Enable YUV <-> RGB Conversion:
		0: Disable YUV<->RGB conversion (Default)
		1: Enable YUV<->RGB conversion

Address: 9D YUV_RGB_COEF_DATA

Bit	Mode	Function
7:0	W	COEF_DATA[7:0]

YUV->RGB matrix : (CR9C[4] = 0)

-CR9C[1] = 0, CR9C[2] = 1,

 $\begin{array}{ll} R & = h00*Y + h01*(Cb-512) + h02*(Cr-512) \\ G & = h10*Y + h11*(Cb-512) + h12*(Cr-512) \end{array}$

B = h20*Y + h21*(Cb-512) + h22*(Cr-512)

-CR9C[1] = 1, CR9C[2] = 1,

R = h00*(1.164*(Y-64)) + h01*(Cb-512) + h02*(Cr-512)

G = h10*(1.164*(Y-64)) + h11*(Cb-512) + h12*(Cr-512)

B = h20*(1.164*(Y-64)) + h21*(Cb-512) + h22*(Cr-512)

RGB->YUV matrix : (CR9C[4] = 1, CR9C[2:1] = 00)

Y = h00*R + h01*G + h02*B

Cb = h10*R + h11*G + h12*B

Cr = h20*R + h21*G + h22*B

All 'h' coefficients are expressed as 2's complement with 4-bit signed-extension, 2-bit integer and 10-bit fractional number. (0x0400 means 1.0)

When color conversion setting is YUV->RGB (CR9C[4]=0), h00, h10 and h20 is not effective(force to 1.0 internally).

Integer part is only effective for hO2, h21. For other coefficients, integer part must be the same as signed-extension.

Coefficient Sequence (18-byte): h00 (High-byte), h00 (Low-byte), h01 (High-byte), h01 (Low-byte), h02 (Low-byte), h02 (Low-byte), h10 (Low-byte), h10 (Low-byte), h11 (High-byte), h11 (Low-byte), h12 (Low-byte), h20 (High-byte), h20 (Low-byte), h21 (Low-byte), h22 (Low-byte), h22 (Low-byte).

Default value: h00=0105h,h01=0202,h02=0063h,h10=ff69h,h11=fed8h,h12=01c0h,h20=01c0h,h21=fe89h,h22=ff8h

Paged Control Register

Address: 9F PAGE SEL Default: 00h

Bit Mode Function 7.5 R/W Reserved to 0 4:0 R/W Page Selector (CRA0-CRFF) Page 0: Embedded ADC/ABI/LVR/Smith trigger Page 1: PLL Page 2: HDMI/DVI/HDCP Page 3: LiveShowTM Control Page 4: SDRAM Control Page 5: SDR FIFO Control Page 6: Reserved Page 7: Ivvid color/DCC/ICM Page 8: Reserved Page 9: Reserved Page 8: Reserved Page 8: Reserved Page 8: Reserved Page 8: Reserved Page B: DisplayPort Page C: DisplayPort Page C: BiplayPort Page E: MCU Page E: MCU Page E: MCU Page F: MCU Page Iv: SDRAM Pin Control Others: reserved	Address: 9F		PAGE_SEL Default: 00n
4:0 R/W Page Selector (CRA0-CRFF) Page 0: Embedded ADC/ABL/LVR/Smith trigger Page 1: PLL Page 2: HDMI/DVI/HDCP Page 3: LiveShowTM Control Page 4: SDRAM Control Page 5: SDR FIFO Control Page 6: Reserved Page 7: Vivid color/DCC/ICM Page 8: Reserved Page 9: Reserved Page 8: BisiplayPort Page C: DisplayPort Page D: MCU Page F: MCU Page F: MCU Page 10: SDRAM Pin Control Others: reserved	Bit M	ode	Function
4:0 R/W Page Selector (CRA0-CRFF) Page 0: Embedded ADC/ABL/LVR/Smith trigger Page 1: PLL Page 2: HDMI/DVI/HDCP Page 3: LiveShowTM Control Page 4: SDRAM Control Page 5: SDR FIFO Control Page 6: Reserved Page 7: Vivid color/DCC/ICM Page 8: Reserved Page 9: Reserved Page 9: Reserved Page 8: DisplayPort Page C: DisplayPort Page C: DisplayPort Page E: MCU Page F: MCU Page F: MCU Page 10: SDRAM Pin Control Others: reserved	7:5 R	/W	Reserved to 0
Page 0: Embedded ADC/ABL/LVR/Smith trigger Page 1: PLL Page 2: HDMI/DVI/HDCP Page 3: LiveShowTM Control Page 4: SDRAM Control Page 5: SDR FIFO Control Page 6: Reserved Page 7: Vivid color/DCC/ICM Page 8: Reserved Page 9: Reserved Page A: Reserved Page B: DisplayPort Page C: DisplayPort Page C: DisplayPort Page E: MCU Page F: MCU Page F: MCU Page 10: SDRAM Pin Control Others: reserved	4:0 R		
Page 1: PLL Page 2: HDMI/DVI/HDCP Page 3: LiveShowTM Control Page 4: SDRAM Control Page 5: SDR FIFO Control Page 6: Reserved Page 7: Vivid color/DCC/ICM Page 8: Reserved Page 9: Reserved Page 9: Reserved Page B: DisplayPort Page C: DisplayPort Page C: DisplayPort Page B: MCU Page F: MCU Page F: MCU Page F: MCU Page 10: SDRAM Pin Control Others: reserved			Page 0: Embedded ADC/ABL/LVR/Smith trigger
Page 3: LiveShowTM Control Page 4: SDRAM Control Page 5: SDR FFO Control Page 6: Reserved Page 7: Vivid color/DCC/ICM Page 8: Reserved Page 9: Reserved Page 9: Reserved Page 1: DisplayPort Page C: DisplayPort Page D: MCU Page E: MCU Page F: MCU Page F: MCU Page 10: SDRAM Pin Control Others: reserved			Page 1: PLL
Page 4: SDRAM Control Page 5: SDR FIFO Control Page 6: Reserved Page 7: Vivid color/DCC/ICM Page 8: Reserved Page 9: Reserved Page A: Reserved Page B: DisplayPort Page C: DisplayPort Page D: MCU Page E: MCU Page F: MCU Page F: MCU Others: reserved			
Page 5: SDR FIFO Control Page 6: Reserved Page 7: Vivid color/DCC/ICM Page 8: Reserved Page 9: Reserved Page B: DisplayPort Page C: DisplayPort Page D: MCU Page F: MCU Page 10: SDRAM Pin Control Others: reserved			
Page 6: Reserved Page 7: Vivid color/DCC/ICM Page 8: Reserved Page 9: Reserved Page 8: Reserved Page A: Reserved Page C: DisplayPort Page C: DisplayPort Page D: MCU Page E: MCU Page F: MCU Page 10: SDRAM Pin Control Others: reserved			
Page 7: Vivid color/DCC/ICM Page 8: Reserved Page 9: Reserved Page A: Reserved Page B: DisplayPort Page C: DisplayPort Page D: MCU Page F: MCU Page F: MCU Page T: MCU			Page 5: SDR_FIFO Control
Page 8: Reserved Page 9: Reserved Page A: Reserved Page B: DisplayPort Page C: DisplayPort Page D: MCU Page F: MCU Page F: MCU Page I0: SDRAM Pin Control Others: reserved			
Page 9: Reserved Page 8: Reserved Page B: DisplayPort Page C: DisplayPort Page D: MCU Page E: MCU Page F: MCU Page 10: SDRAM Pin Control Others: reserved			
Page A: Reserved Page B: DisplayPort Page C: DisplayPort Page D: MCU Page E: MCU Page F: MCU Page 10: SDRAM Pin Control Others: reserved			
Page B: DisplayPort Page C: DisplayPort Page D: MCU Page E: MCU Page F: MCU Page I0: SDRAM Pin Control Others: reserved			
Page C: DisplayPort Page D: MCU Page E: MCU Page F: MCU Page 10: SDRAM Pin Control Others: reserved			
Page E: MCU Page F: MCU Page 10: SDRAM Pin Control Others: reserved			
Page F: MCU Page 10: SDRAM Pin Control Others: reserved			
Page 10: SDRAM Pin Control Others: reserved			
Page 10: SDRAM Pin Control Others: reserved			
Others: reserved			
Realiek Confildenille			
60°			Key-Co,
	8-6	30	

Embedded ADC (Page 0)

Register::ADC_POWER_SOG_SOY_CONTROL[7:0]						
Name	Bit	R/W	Default	Description	Config	
Reserved	7:6	R/W	0b0	Reserved		
	5:0	R/W		Reserved(SOG0/1 DAC input), 1-A only,		
ADC_SOG1_DAC			0b100000	SOG1 Reserved.		

Register:: ADC_2X_SAMPLE[7:0]					
Name	Bit	R/W	Default	Description	Config
ADC_2X_SAMPLE[7	R/W			
7]			0b0	ADC 2x over sample (0:1x 1:2x)	
ADC_2X_SAMPLE[6	R/W			
6]			0b0	2x Clock Polarity (0:Normal 1:Inverted)	
ADC_2X_SAMPLE[5	R/W			
5]			0b0	1x Clock Polarity (0:Normal 1:Inverted)	
ADC_2X_SAMPLE[4:3	R/W			
4:3]			0ь00000	Reserved	
ADC_2X_SAMPLE[2	R/W		clock input select (0:from CKOAD_V33,	
2]			0b0	1:from CKOAD_V12)	
ADC_2X_SAMPLE[1:0	R/W			
1:0]			0b0	Reserved	

Register:: ADC_CLC	02	XBC			
Name	Bit	R/W	Default	Description	Config
ADC_CLOCK[7]	7	R/W	0ь0	Input Clock Polarity (0:Negative	
				1:Positive)	
ADC_CLOCK[6]	6	R/W	0b0	Output Divider Clock Polarity (0:Normal	
				1:Inverted)	
ADC_CLOCK[5:4]	5:4	R/W	0b0	ADC_OUT_PIXEL Delay (00:1.05n	
				01:1.39n 10:1.69n 11:1.97n)	
ADC_CLOCK[3]	3	R/W	0b0	1X or 2X from APLL (0:1X 1:2X)	
ADC_CLOCK[2]	2	R/W	0b0	Single Ended or Diff. Clock from APLL	
				(0:Diff. 1:Single Ended)	
ADC_CLOCK[1:0]	1:0	R/W	0b1	Duty Stablizer(00: 48% 01:50% 10: 51%	
				11:52%)	

Register:: ADC_TE	ST[7:0]			02	KBD
Name	Bit	R/W	Default	Description	Config
	7	R/W		R,B Clamp Vaule from G (0: No 1: Yes)	
ADC_TEST[7]			0b0	ADC Gain Calibration	
	6:4	R/W		Test Ouput Selection (PAD: SOGIN0,	
				SOGIN1)	
				SOGIN0 (000:X 001:gnd 010:gnd	
				011:gnd 100:gnd 101:vmid 110:voffset	
				111:vdd)	
ADC_TEST[6:4]			0ь000		
ADC_TEST[3]	3	R/W	0b0	Reserved	
ADC_TEST[2]	2	R/W	0b0	Reserved	
	1:0	R/W		Clock Output Divider (00: 1/1 01: 1/2 10:	
ADC_TEST[1:0]			0b00	1/3 11: 1/4)	

Register::RGB gain_	Register::RGB gain_LSB						
Name	Bit	R/W	Default	Description	Config		
Reserved	7:6	R/W	0b0	Reserved			
ADC_GAI_RED[1:0	5:4	R/W	0x0	Red Channel Gain Adjust[1:0]			
ADC_GAI_GRN[1:0]	3:2	R/W	0x0	Green Channel Gain Adjust[1:0]			
ADC_GAI_BLU[1:0	1:0	R/W	0x0	Blue Channel Gain Adjust[1:0]			

Register::RGB offset_LSB						
Name	Bit	R/W	Default	Description	Config	
Reserved	7:6	R/W	0b0	Reserved		
ADC_OFF_RED[1:0	5:4	R/W	0x0	Red Channel Offset Adjust[1:0]		
ADC_OFF_GRN[1:0]	3:2	R/W	0x0	Green Channel Offset Adjust[1:0]		
ADC_OFF_BLU[1:0	1:0	R/W	0x0	Blue Channel Offset Adjust[1:0]		

0XC0

Name	Bit	R/W	Default	Description	Config
ADC_GAI_RED[9:2	7:0	R/W	0x80	Red Channel Gain Adjust[9:2]	
]					

Register::green gain_MSB						
Name	Bit	R/W	Default	Description	Config	
ADC_GAI_GRN[9:2	7:0	R/W	0x80	Green Channel Gain Adjust[9:2]		

Register::blue gain_MSB						
Name	Bit	R/W	Default	Description	Config	
ADC_GAI_BLU[9:2	7:0	R/W	0x80	Blue Channel Gain Adjust[9:2]		
]						

Register::RED OFFSET_MSB					
Name	Bit	R/W	Default	Description	Config
ADC_OFF_RED[9:2	7:0	R/W	0x80	Red Channel Offset Adjust[9:2]	
]					

Register::GREEN OFFSET_MSB 0XC						
Name	Bit	R/W	Default	Description	Config	
ADC_OFF_GRN[9:2	7:0	R/W	0x80	Green Channel Offset Adjust[9:2]		

Register::BLUE OFFSET_MSB 0XCS						
Name	Bit	R/W	Default	Description	Config	
ADC_OFF_BLU[9:2	7:0	R/W	0x80	Blue Channel Offset Adjust[9:2]		

Register:: ADC_POWER[7:0]						
Name	Bit	R/W	Default	Description	Config	
ADC_POWER[7]	7		0	Reserved		
ADC_POWER[6]	6	R/W	0	ADC clock Power On (0: Power Down		

				1: Power On)	
ADC_POWER[5]	5	R/W	060	SOG_ADC0 Power On (0: Power Down	
				1: Power On)	
ADC_POWER[4]	4		0	Reserved	
ADC_POWER[3]	3	R/W	0b1	Bandgap Power On (0: Power Down 1:	
				Power On)	
ADC_POWER[2]	2	R/W	0b0	Red Channel ADC Power On (0: Power	
				Down 1: Power On)	
ADC_POWER[1]	1	R/W	0b0	Green Channel ADC Power On (0: Power	
				Down 1: Power On)	
ADC_POWER[0]	0	R/W	0b0	Blue Channel ADC Power On (0: Power	
				Down 1: Power On)	

Register:: ADC_IBIAS0[7:0]						
Name	Bit	R/W	Default	Description	Config	
ADC_IBIAS0[7:4]	7:4	R/W	0101	Reserved		
ADC_IBIAS0[3:2]	3:2	R/W	0b01	Bias Current of LVDS20U (00:16u		
				01:20u 10:24u 11:28u)		
ADC_IBIAS0[1:0]	1:0	R/W		Reserved		

Register:: ADC_IBIAS1[7:0]						
Name	Bit	R/W	Default	Description	Config	
ADC_IBIAS1[7:6]	7:6	R/W	0b01	Reserved		
ADC_IBIAS1[5:4]	5:4	R/W	01	Reserved		
ADC_IBIAS1[3:2]	3:2	R/W	0b01	Bias Current of LSADC6 (00:16u 01:20u		
				10:24u 11:28u)		
ADC_IBIAS1[1:0]	1:0	R/W	0b01	Bias Current of LSADC10 (00:16u		
				01:20u 10:24u 11:28u)		

Register:: ADC_IBIAS2[7:0]					
Name	Bit	R/W	Default	Description	Config
ADC_IBIAS2[7:5]	7:5	R/W	0b01	Reserved	
ADC_IBIAS2[4:2]	4:2	R/W	0b001	Bias Current of DAC (000:22.5u 001:25u 010:27.5u 011:30u)	
ADC_IBIAS2[1:0]	1:0	R/W	0b01	Bias Current of Audio_DAC (00:32u 01:40u 10:48u 11:56u)	

Register:: ADC_ IBL	AS3[7:0]			0XCA	
Name	Bit	R/W	Default	Description	Config
ADC_IBIAS3[7:6]	7:6	R/W	0b01	Bias Current of ADC_SF (00:15u 01:20u	
				10:25u 11:30	
ADC_IBIAS3[5:3]	5:3	R/W	0b011	Bias Current of 1.2v mbias (000:17.5u	
				001:20u 010:22.5u 011:25u 100:27.5u	
				101:30u 110:32.5u 111:35u)	
ADC_IBIAS3[2:0]	2:0	R/W	0b100	Bias Current of SH,MDAC (000:6u	
				001:8u 010:10u 011:12u 100:14 101:17	
				110:20u 111:24u)	
				Bias Current of SUBADC	
				(000:12u 001:18u 010:24u 011:27u	
				100:30u 101:33u 110:39u 111:45u)	
				SUBADC	
				(000:10u 001:10u 010:10u 011:10u	
				100:20u 101:20u 110:20u 111:20u)	

Register:: ADC_ IBIAS4[7:0]			0XCB		
Name	Bit	R/W	Default	Description	Config
ADC_IBIAS4[7:6]	7:6	R/W	0b01	Bias Current of DPLL20U (00:16u	
				01:20u 10:24u 11:28u)	
ADC_IBIAS4[5:4]	5:4	R/W	0b01	Bias Current of APLL_IB60U (00:48u	
				01:60u 10:72u 11:84u)	
ADC_IBIAS4[3:2]	3:2	R/W	0b01	Reserved	
ADC_IBIAS4[1:0]	1:0	R/W	0b01	Bias Current of M2PLL_20u (00:16u	
				01:20u 10:24u 11:28u)	

Register:: ADC_ VBIAS0[7:0]				0XCC	
Name	Bit	R/W	Default	Description	Config
ADC_VBIAS0[7:6]	7:6	R/W	0b01	Reserved	
ADC_VBIAS0[5:4]	5:4	R/W	0b01	1.5v regulator adjuset (00:1.4 01:1.5	
				10:1.6 11:1.7)	
ADC_VBIAS0[3:2]	3:2	R/W	0b00	Reserved	
ADC_VBIAS0[1:0]	1:0	R/W	0b01	Bandgap Voltage (00:1.15 01:1.25	
				10:1.34 11:1.42)	

Register:: ADC_VBIAS1[7:0]				0XCD	
Name	Bit	R/W	Default	Description	Config
ADC_VBIAS1[7]	7	R/W	0b0	ADC Gain Calibration (0: Normal 1:	
				Calibration)	
ADC_VBIAS1[6]	6	R/W	0b0	R Channel Clamp to -300mV (0: 0mV	
				1:-300mV)	
ADC_VBIAS1[5]	5	R/W	0b0	G Channel Clamp to -300mV (0: 0mV	
				1:-300mV)	
ADC_VBIAS1[4]	4	R/W	0b0	B Channel Clamp to -300mV (0: 0mV	
				1:-300mV)	
ADC_VBIAS1[3]	3	R/W	0b1	SH boot enable (0:no boost, 1: boost)	
ADC_VBIAS1[2]	2	R/W	0b0	SH boot adjuest (0:0.8, 1:0.85)	
ADC_VBIAS1[1:0]	1:0	R/W	0b01	Reserved	

Register:: ADC_CTL	Register:: ADC_CTL_RGB[7:0]					
Name	Bit	R/W	Default	Description	Config	
	7:4	R/W		SH gain(0000:0.95, 0001:1, 0010:1.05,		
				0011:1.1, 0100:1.15, 0101:1.2, 0110:1.25,		
ADC_CTL_RGB[7:4				0111:1.3, 1000:1.35, 1001:1.4,		
]			0b1000	1010:1.45)		
	3	R/W		Dual (0: Input0, 1:force to ground)		
ADC_CTL_RGB[3]			0b0			
	2	R/W		Single Ended or Diff. Input (0: Single		
ADC_CTL_RGB[2]			0b1	Ended 1: Diff)		
ADC_CTL_RGB[1:0	1:0	R/W		Bandwidth (00: 75M 01: 150M 10: 300M		
]			0b10	11: 500M)		

Register:: ADC_CTL_RED[7:0]					
Name	Bit	R/W	Default	Description	Config
		R/W		RGB/YPrPb Clamp (0: RGB 1:YPrPB)	
ADC_CTL_RED[7]	7		0b0	//ADC_VBIAS1[6]==0	
ADC_CTL_RED[6:4		R/W		Clamp Voltage (0V~700mV,	
]	6:4		0b100	Step=100mV)	
		R/W		Offset Depends on Gain	
				(0: RGB Yes, YPrPb No	
ADC_CTL_RED[3]	3		0b0	1:RGB No, YPrPb No)	

ADC_CTL_RED[2:0	2:0	R/W	0b000	Red Channel ADC Fine Tune Delay,	
]				Step=90ps	

Register:: ADC_CTL_GRN[7:0]					
Name	Bit	R/W	Default	Description	Config
ADC_CTL_GRN[7]	7	R/W	0b0	RGB/YPrPb Clamp (0: RGB 1:YPrPB)	
ADC_CTL_GRN[6:		R/W	0b100	Clamp Voltage (0V~700mV,	
4]	6:4			Step=100mV)	
		R/W		Offset Depends on Gain	
				(0: RGB Yes, YPrPb No 1:RGB No,	
ADC_CTL_GRN[3]	3		0b0	YPrPb No)	
ADC_CTL_GRN[2:	2:0	R/W	0b0	Green Channel ADC Fine Tune Delay,	
0]				Step=90ps	

Register:: ADC_CTL_BLU[7:0] 0XD1						
Name	Bit	R/W	Default	Description	Config	
ADC_CTL_BLU[7]	7	R/W	0b0	RGB/YPrPb Clamp (0: RGB 1:YPrPB)		
ADC_CTL_BLU[6:4		R/W		Clamp Voltage (0V~700mV,		
]	6:4		0b100	Step=100mV)		
		R/W		Offset Depends on Gain		
				(0: RGB Yes, YPrPb No 1:RGB No,		
ADC_CTL_BLU[3]	3		0ь0	YPrPb No)		
ADC_CTL_BLU[2:0	2:0	R/W	0b0	Blue Channel ADC Fine Tune Delay,		
]				Step=90ps		

Register:: ADC_SOG_CMP[7:0]					
Name	Bit	R/W	Default	Description	Config
ADC_SOG_CMP[7:	7:4	R/W		SOG0 input MUX select (0000: R0,	
4]			0ь0000	0001:G0, 0010:B0, 0011: SOG0)	
ADC_SOG_CMP[3:	3:0	R/W			
0]			0ь0000	Reserved	

Register:: ADC_DCR_CTRL[7:0]					0XD3
Name	Bit	R/W	Default	Description	Config
ADC_DCR_CTRL[7	7	R/W		Red_0 DC Restore Enable (0:Disable	
]			0	1:Enable)	

ADC_DCR_CTRL[6	6	R/W		Green_0 DC Restore Enable (0:Disable	
]			0	1:Enable)	
ADC_DCR_CTRL[5	5	R/W		Blue_0 DC Restore Enable (0:Disable	
]			0	1:Enable)	
ADC_DCR_CTRL[4	4	R/W		SOG0 DC Restore Enable(0:Disable	
]			0	1:Enable)	
ADC_DCR_CTRL[3	3	R/W			
]			0	Reserved	
ADC_DCR_CTRL[2	2	R/W			
]			0	Reserved	
ADC_DCR_CTRL[1	1	R/W			
]			0	Reserved	
ADC_DCR_CTRL[0	0	R/W			
]			0	Reserved	

Register:: ADC_CLAMP_CTRL0[7:0]				0XD4	
Name	Bit	R/W	Default	Description	Config
ADC_CLAMP_CTR	7	R/W		Red_0 Clamp Enable (0: Disable	
L0[7]			0	1:Enable)	
ADC_CLAMP_CTR	6	R/W		Green_0 Clamp Enable (0: Disable	
L0[6]			0	1:Enable)	
ADC_CLAMP_CTR	5	R/W		Blue_0 Clamp Enable (0: Disable	
L0[5]			0	1:Enable)	
ADC_CLAMP_CTR	4	R/W		SOG0 Clamp Enable(0:Disable	
L0[4]			0	1:Enable)	
ADC_CLAMP_CTR	3	R/W			
L0[3]			0	Reserved	
ADC_CLAMP_CTR	2	R/W			
L0[2]			0	Reserved	
ADC_CLAMP_CTR	1	R/W			
L0[1]			0	Reserved	
ADC_CLAMP_CTR	0	R/W			
L0[0]			0	Reserved	

Register:: ADC_CLAMP_CTRL1[7:0]				0XD5	
Name	Bit	R/W	Default	Description	Config

7	R/W		Red channel clamp voltage (0:
		0	IR=400mV 1: IR=100mV)
6	R/W		Red channel clamp source select (0:
		0	R0=DAC, R1=IR 1: R0=IR, R1=DAC)
5	R/W		Green channel clamp voltage (0:
		0	IR=400mV 1: IR=100mV)
4	R/W		Green channel clamp source select (0:
		0	G0=DAC, G1=IR 1: G0=IR, G1=DAC)
3	R/W		Blue channel clamp mode select (0:
		0	IR=400mv 1: IR=100mV)
2	R/W		Blue channel clamp source select (0:
		0	B0=DAC, B1=IR 1: B0=IR, B1=DAC)
1	R/W		SOG0 clamp -300mV (0: noraml clamp
		0	1:clamp -300m) //IR
0	R/W		
		0	Reserved
	6 5 4 3 2	6 R/W 5 R/W 4 R/W 2 R/W 1 R/W	6 R/W 0 0 5 R/W 0 0 3 R/W 0 0 1 R/W 0 0 0 0 R/W

Register:: ADC_CLA	MP_CT	RL2[7:0]			0XD6
Name	Bit	R/W	Default	Description	Config
ADC_CLAMP_CTR	7:6	R/W		Input0 and SOG0 DC restore resister	
L2[7:6]			0b01	(00:open 01:500k 10:1M 11:5M)	
ADC_CLAMP_CTR	5:4	R/W			
L1[5:4]			0b01	Reserved	
	3	R/W		RGB input range adjust (0: 0.5V-1.0V,	
ADC_CLAMP_CTR				1:0.25V-1.25V)	
L1[3]			0		
ADC_CLAMP_CTR	2	R/W		Red channel clamp to top (0: noraml	
L1[2]			0	1: top)	
ADC_CLAMP_CTR	1	R/W		Green channel clamp to top (0: noraml	
L1[1]			0	1: top)	
ADC_CLAMP_CTR	0	R/W		Blue channel clamp to top (0: noraml	
L1[0]			0	1: top)	

Register::ADC_SOG_DAC_SOY_CONTROL[7:0] 0XD7					XD7
Name	Bit	R/W	Default	Description	Config
Reserved	7:6		0b0	Reserved	
ADC_SOG0_DAC[5	5:0	R/W	0b100000	SOG0 DAC input	

[:0]

Address:D8	PTNPOS H	Default: 00h

Bit	Mode	Function
7:4	R/W	Test Pattern V Position Register [11:8]
		Assign the test pattern digitized position in line after V_Start.
3:0	R/W	Test Pattern H Position Register [11:8]
		Assign the test pattern digitized position in pixel after H_Start.

Address: D9 PTNPOS_V_L

Bit	Mode	Function	
7:0	R/W	Test Pattern V Position Register [7:0]	
		Assign the test pattern digitized position in line after V_Start	

Address:DA PTNPOS_H_L

Bit	Mode	Function
7:0	R/W	Test Pattern H Position Register [7:0]
		Assign the test pattern digitized position in line after H_Start

Use PTNPOS to assign the pixel position after HSYNC leading edge that input signal digitized. Each time the PTNPOS is written, the digitized results will be loaded into PTNRD, PTNGD and PTNBD. For test issue, make the input signal a fixed pattern before PTNPOS is written. Then the same digitized output will be got.

Address: DB PTNRD

Bit	Mode	Function
7:0	R	Test Pattern Red-Channel Digitized Result.

Address: DC PTNGD

Bit	Mode	Function
7:0	R	Test Pattern Green-Channel Digitized Result.

Address:DD PTNBD

Bit	Mode	Function
7:0	R	Test Pattern Blue-Channel Digitized Result.

Address:DE TEST_PATTERN_CTRL Default: 00h

Bit	Mode	Function
7	R/W	Enable Test
		0: Finish (and result sequence is R-G-B) (Default)
		1: Start
6:0		Reserved

Register:: EBD_REG	Register:: EBD_REGLATOR_VOL[7:0] 0				
Name	Bit	R/W	Default	Description	Config
EBD_REGLATOR_	7:6	R/W			
VOL[7:6]			0b00	Reserved	
RBG33	5:4	R/W		Select bandgap output voltage @ TT60	
				00 : Vbg = 1.22 V	
				01 : Vbg = 1.13 V	
				10 : Vbg = 1.32 V	
			00	11 : Vbg = 1.41 V	
VINSEL	3	R/W		Select reference voltage to REG_OP	
			0	0 : from bandgap	

				1 : from "Vdd of power supply*	
				resistance ratio"	
VSEL	2:0	R/W		Select output voltage of regulator	
				000 : 1.203 V	
				001 : 1.143 V	
				010 : 1.085 V	
				011 : 1.246 V	
				100 : 1.298 V	
				101 : 1.355 V	
				110 : 1.424 V	
			000	111 : 1.508 V	

ABL(Page 0)

Address: E2 AUTO_BLACK_LEVEL_CTRL1

Aaaress:	E2	AUTO_BLACK_LEVEL_CTRLT Default: 00n
Bit	Mode	Function
7	R/W	ABL Mode
		0: RBG (Default)
		1: YPbPr
6	R/W	On-line/Off-line ABL Mode
		0: Off-line (Default)
		1: On-line
5:4	R/W	Width of ABL region in each line
		00: 16 pixels (Default)
		01: 32 pixels
		10: 64 pixels
		11: 4 pixels
3	R	R/Pr Channel ABL Result (write clear)
		0: not equal
		1: equal (Black Level = Target Value)
		On-line mode: Black Level - Target Value <= LOCK_MGN
		Off-line mode: Black Level - Target Value <= EQ_MGN
2	R	G/Y Channel ABL Result (write clear)
		0: not equal
		1: equal (Black Level = Target Value)
		On-line mode: Black Level - Target Value <= LOCK _MGN
		Off-line mode: Black Level - Target Value <= EQ_MGN
1	R	B/Pb Channel ABL Result (write clear)
		0: not equal
		1: equal (Black Level = Target Value)
		On-line mode: Black Level - Target Value <= LOCK _MGN
		Off-line mode: Black Level - Target Value <= EQ_MGN
0	R/W	Auto Black Level Enable (write 0 force stop)
		0: Finished/Disable (Default)
		1: Enable to start ABL, auto cleared after finished
		Cleared to 0 when off-line mode completes.

Default: 00h

- Parameters can only be changed when EN_ABL is 0
- The on-line mode never stops unless EN_ABL is 0.
- Off-line mode completes when MAX_FRAME is measured or the result is equal.

• ABL must be disabled before switching On-line/Off-line mode and then enable again.

Address: E3 AUTO_BLACK_LEVEL_CTRL2

Bit	Mode	Function
7:6	R/W	Line averaged for each ABL adjustment
		00: 8
		01: 16
		10: 32 (Default)
		11: 64
5		Reserved
4:0	R/W	Start Vertical Position of ABL in each line
		Determine the start line of auto-black-level after the leading edge of Vsync

Default: 84h

Default: 10h

Default: 82h

Address: E4 AUTO_BLACK_LEVEL_CTRL3

Bit	Mode	Function
7:4	R/W	Y/R/G/B Target value
		0000: 1
		0001: 2 (Default)
		0010: 3
		0011: 4
		1111:16
		(Pb/Pr Target level is fixed 128)
3:2	R/W	Lock Margin
		00: 1 (Default)
		01: 2
		10: 4
		11: 6
1:0	R/W	End Vertical Position of ABL measurement region [9:8]
		Determine the last line of auto-black-level measurement for every frame/field countd by double
		line

• Off-line mode rule:

Measures once for each field / frame, and the offset is the delta.

• On-line mode rule:

If $(delta \le EQ_MGN)$ offset = 0

Else if (delta < L_MGN) offset = +/-1

Else offset = $+/-L_MGN$

ADC offset is updated immediately.

Bit	Mode	Function
7:0	R/W	End Vertical Position of ABL measurement region [7:0]
		Determine the last line of auto-black-level measurement for every frame/field counted by double
		line.

• Note: ABL will fail if End Vertical Position < Start Vertical Position + Average Line(CRC1[7:6])

Address: E6 AUTO_BLACK_LEVEL_CTRL5

Bit	Mode	Function
7:0	R/W	Start Position of ABL in Each Line
		Determine the start position of auto-black-level after the trailing edge of reference signal.
		(When ABL mode in YPbPr, the reference signal is input Hsync. In RGB mode, the reference
		signal is clamp signal.)

Default: 04h

Default: C0h

• In each region, hardware compare the average value in the target region (fixed 16 input pixels after start position of ABL) with target value and add +1/-1 or +L_MGN /- L_MGN to ADC offset. (+ for greater than target value, - for smaller than target value).

Address: E7 AUTO_BLACK_LEVEL_CTRL6

Bit	Mode	Function
7:6	R/W	Large Error Margin (L_MGN) (For on-line Mode)
		00: 2
		01: 4
		10: 6
		11: 8 (Default)
5:4	R/W	Max. Frame/Field Count (For off-line mode)
		00: 4 (Default)
		01: 5
		10: 6
		11: 7
3		Reserved
2:0	R/W	Lines delayed between each measurement region (For on-line Mode)
		000: 16 (Default)
		001: 32
		010: 64
		011: 128
		100: 192
		101: 256
		110: 384
		111: 640

Address: E8 AUTO_BLACK_LEVEL_CTRL7

20000	. 20	
Bit	Mode	Function
7		Reserved
6	R/W	Equal Condition (Off-line mode)
		0: To trigger status until measurement achieve Max Frame/Field Count.
		1: To trigger status once if Black Level - Target Value <= EQ_MGN. (Default)
		(If set 0, the ABL Result will not go low even noise comes for the next frames.)
5	R/W	Measure Pixels Method
		1: Minimum value (Default)
		0: Average value
4	R/W	Measure Error Flag Reset
		0: Normal
		1: Reset
3	R	Measure Error Flag
		0: Normal
		1: Error
		(This flag is occurred when Hsync trailing edge is met during measurement.)
2	R/W	Hsync Start Reference Select
		0: HS leading edge (Default)
		1: HS trailing edge
1:0	R/W	Equal margin (EQ_MGN)
		00: 0 (Default)
		01: 1
		10: 2
		11: 3

Default: 60h

Address: E9 AUTO_BLACK_LEVEL_RED_VALUE

Bit	Mode	Function
7:0	R	Minimum/Average Value of Red Channel in Test Mode (only show MSB 8bit.)

Address: EA AUTO_BLACK_LEVEL_GREEN_VALUE

Bit	Mode	Function
7:0	R	Minimum/Average Value of Green Channel in Test Mode (only show MSB 8bit.)

Address: EB AUTO_BLACK_LEVEL_BLUE_VALUE

Bit	Mode	Function
7:0	R	Minimum/Average Value of Blue Channel in Test Mode (only show MSB 8bit.)

Address: EC AUTO_BLACK_LEVEL_NOISE_VALUE_OF_RED_CHANNEL

Bit	Mode	Function
7:0	R	Noise Value of Red Channel in Test Mode after Equal status is triggered. (only show MSB
		8bit.)

Address: ED AUTO_BLACK_LEVEL_NOISE_VALUE_OF_GREEN_CHANNEL

Bit	Mode	Function
7:0	R	Noise Value of Green Channel in Test Mode after Equal status is triggered. (only show MSB
		8bit.)

Address: EE AUTO_BLACK_LEVEL_NOISE_VALUE_OF_BLUE_CHANNEL

Bit	Mode	Function
7:0	R	Noise Value of Blue Channel in Test Mode after Equal status is triggered. (only show MSB
		8bit.)

Figure-2: Auto Black Level active region – case 1

Figure-3: Auto Black Level active region – case 2

LVR(Page 0)

Address:	F3	POWER_ON_RESET Default: 94h
Bit	Mode	Function
7:6	R/W	Negative Threshold Value For Power on Reset
		00:1.8V
		01:2.2V
		10:2.0V (Default)
		11:2.4V
5:4	R/W	PORMCUVSET (LVR Threshold Voltage)
		00:1.22V
		01:1.13V (Default)
		10:1.32V
		11:1.41V
3:0	R/W	Reserved to 0x04

Smith trigger(Page 0)

Address:F 4 HS_SCHMITT_TRIGGE_CTRL

Default:E1h

Bit	Mode	Function
7	R/W	HSYNC Schmitt Power Down (Only for Schmitt trigger new mode)
		0: Power down
		1: Normal (Default)
6	R/W	Polarity Select
		0: Negative HSYNC (high level)
		1: Positive HSYNC (low level) (Default)
5	R/W	Schmitt Trigger Mode
		0: Old mode
		1: New mode(Default)
4	R/W	Threshold Voltage Fine Tune (only for Schmitt trigger new mode)
		0: 0V (Default)
		1: -0.1V
3:2	R/W	Positive Threshold Voltage
1:0	R/W	Negative Threshold Voltage

- There is a mode of the HSYNC Schmitt trigger.
 - 1. New mode: Fully programmable Schmitt trigger.

The following table will determine the Schmitt Trigger positive and negative voltage:

bit[6]=1 (Pos	sitive HSYNC	C)		bit[6] = 0 (Negative HSYNC)				
bit[3:2]	V_t^+	bit[1:0]	V_t	bit[3:2]	V_t^+	bit[1:0]	$\mathbf{V_t}$	
00	1.4V	00	V_t^+ - 1.2V	00	1.8V	00	$V_t^+ - 1.2V$	
01	1.6V	01	V_{t}^{+} - 1.0V	01	2.0V	01	V_{t}^{+} - 1.0V	
10	1.8V	10	V_{t}^{+} - 0.8V	10	2.2V	10	V_{t}^{+} - 0.8V	
11	2.0V	11	V_{t}^{+} - 0.6V	11	2.4V	11	V_{t}^{+} - 0.6V	

• After we get the threshold voltage by the table, we still can fine tune it:

Final Positive Threshold Voltage = V_t^+ - 0.1* bit[4]

Final Negative Threshold Voltage = V_t - 0.1* bit[4]

MEMORY PLL (Page 0)

Register::MPLL_M				0xF5	
Name	Bits	R/W	Default	Comments	Config
MPLL_M[7:0]	7:0	R/W	4E	MPLL DPM value - 2	

Register::MPLL_N				0xF6	
Name	Bits	R/W	Default	Comments	Config
MPLL_RESERVE1	7	R/W	0	Reserved	

MPLL_BPN	6	R/W	0	MPLLBPN	
				0: N divider enable.	
				1: N divider disable, OUT=ckxtal.	
MPLL_O[1:0]	5:4	R/W	1	MPLL Output Divider	
				00: Div1	
				01: Div2 (Default)	
				10: Div4	
				11: Div8	
MPLL_N[3:0]	3:0	R/W	3	MPLL DPN value - 2	

[●] Assume MPLL_M=0x7D, DPM=0x7D+2=127; MPLL_N=0x0A, DPN=0x0A+2=12; Divider=1/4, F_IN = 24.576MHz. F_MPLL = F_IN x DPM / DPN x Divider = 24.576 x 127 / 12 / 4 = 65.024MHz.

CRF5~CRF6 are double buffer.

Register::MPLL_CRNT				0xF7		
Name	Bits	R/W	Default	Comments	Config	
MPLL_RS[2:0]	7:5	R/W	3	MPLL Loop Filter Resister Control		
				000: 16K		
				001: 18K		
				010: 20K		
				011: 22K (Default)		
				100: 24K		
				101: 26K		
				110: 28K		
				111: 30K		
MPLL_CS[1:0]	4:3	R/W	2	MPLL Loop Filter Capacitor Control		
				00: 18p		
				01: 20p		
				10: 24p (Default)		
				11: 28p		
MPLL_IP[2:0]	2:0	R/W	2	MPLL Charger Pump Current Control		
				Icp=(2.5uA+2.5uA*bit[0]+5uA*bit[1]+10uA*bit[2])		
				Keep DPM/Icp constant=10.67		

Register::MPLL_WD			0xF8				
Name	Bits	R/W	Default	Comments	Config		

MPLL_WDO	7	R	0	MPLL WD Status
				0: Normal
				1: Abnormal
MPLL_WDRST	6	R/W	0	MPLL WD Reset
				0: Normal (Default)
				1: Reset
MPLL_WDSET	5	R/W	0	MPLL WD Set
				0: Normal (Default)
				1: Set
MPLL_FUPDN	4	R/W	1	MPLL Frequency Tuning
				0: Freq Up
				1: Freq Dn(Default)
MPLL_STOP	3	R/W	1	MPLL Frequency Tuning
				0: Disable
				1: Enable (Default)
MPLL_FREEZE	2	R/W	0	MPLL Output Freeze
				0: Normal (Default)
				1: Freeze
				Active high.
MPLL_VCORSTB	1	R/W	0	Reset VCO
				0: Normal (Default)
				1: Reset
				Active high.
MPLL_PWDN	0	R/W	1	Power Down MPLL
				0: Power on
				1: Power down(Default)
				Active high.

Register::MPLL_CAL				0xF9	
Name	Bits	R/W	Default	Comments	Config
MPLL_VCOMD[1:0]	7:6	R/W	3	MPLL VCO Default Mode	
				00: VCO slowest	
				11: VCO fastest (Default)	
MPLL_CALBP	5	R/W	0	MPLL Bypass Calibration	
				0: Reference by Calibration Result(Default)	
				1: Reference by CR-F9[7:6]	
				Active high.	

MPLL_CALSW	4	R/W	0	Calibration Validated
				Go high after power on 1200us.
				0: Reference by CR-F9[7:6]
				1: Refernect by Calibration Result
MPLL_CALLCH	3	R/W	0	Latch Calibration
				Go high after power on 1100us.
				0: Disable Latch
				1: Enable Latch
MPLL_CMPEN	2	R/W	0	CMP Enable
				Go high after power on 1000us.
				0: Diable CMPEN
				1: Enable CMPEN
MPLL_CP	1	R/W	0	CP Control
				0: 1.77pF
				1: 2.1pF
MPLL_RESERVE	0	R/W	1	Reserved for MPLL Phase Swallow Circuit
				0: Path0
				1: Path1

ADC PLL (Page 1)

	(= 0.80 =)	
Address: A0	PLL DIV	CTRL

Address:	,	PLL_DIV_CTRL Default: 08h
Bit	Mode	Function
7	R/W	DDS Tracking Edge
		0: HS positive edge (Default)
		1: HS negative edge
6	R/W	Tracking direction inversion
		0: if HS leads HSFB => phase lead => m, k ↑ (Default)
		1: if HS lags HSFB => phase lag => m, k ↓
5:4	R/W	Waiting HS lines to start counting divider for Fast Lock function
		00: 4 (default)
		01: 3
		10: 2
		11: 1
3:2	R/W	Delay Compensation Mode
		00: Mode 0
		No delay from PLL phase0 to DDS pfd input
		01: Mode 1
		Delay the path from PLL phase0 to DDS pfd input to be around 4.2 ns
		10: Mode 2 (default)
		Delay the path from PLL phase0 to DDS pfd input to be around 4.6 ns
		11: Mode 3
		Delay the path from PLL phase0 to DDS pfd input to be around 5 ns
1	R/W	Reserved to 0
0	R/W	Reserved to 0

Address: A1 Default: 01h I_CODE_M

Bit	Mode	Function
7	R/W	Reserved to 0
6:0	R/W	I_CODE[14:8]

Address: A2	I CODE L	Default: 04h

Bit	Mode	Function
7:0	R/W	I_CODE[7:0]

Address: A3 P_CODE Default: 20h

Bit	Mode	Function
7:0	R/W	P_CODE[7:0]

Address: A4 PFD_CALIBRATED_RESULTS Default: 8'b0xxxxxxx

Bit	Mode	Function
7	R/W	PFD Calibration Enable (auto clear when finished)
		Overwrite 0 to 1 return a new PFD calibrated value.
6:4	R/W	Reserved to 0
3:0	R	PFD Calibrated Results [11:8]

Address: A5 PFD_CALIBRATED_RESULTS Default: 8'bxxxxxxxx

Bit	Mode	Function
7:0	R	PFD Calibrated Results [7:0]

Address: A6 PE_MEARSURE

Bit	Mode	Function
7	R/W	PE Measure Enable (auto clear when finished)
		0: Disable (Default)
		1: Start PE Measurement, clear after finish.
6:4	R/W	Reserved to 0
3:0	R	PE Value Result [11:8]

Default: 8'b0xxxxxxx

Address: A7 PE_MEARSURE Default: 8'bxxxxxxxx

I	Bit	Mode	Function
	7:0	R	PE Value Result [7:0]

Address: A8 PE_MAX_MEASURE Default: 8'b0xxxxxxx

Bit	Mode	Function	
7	R/W	PE Max. Measure Enable	
		0: Disable (Default)	
		1: Start PE Max. Measurement	
6:4	R/W	Reserved to 0	
3:0	R	PE Max Value [11:8]	

Address: A9 PE_MAX_MEASURE Default: 8'bxxxxxxx

Bit	Mode	Function
7:0	R	PE Max Value [7:0]

Address: AA FAST_PLL_CTRL Default: 00h

Bit	Mode	Function	
7	R/W	PE Max. Measure Clear	
): clear (Default)	
		1: write '1' to clear PE Max. Value	
6	R/W	nable APLL Setting	
		0: Disable (Default)	
		1: Enable (Auto clear when finished)	
		When CRAA[5] enabled, enable this bit will write P_CODE, I_CODE, PLL M/N, PLL K, PLLDIV	
		and DDS SUM_I at the end of input vertical data enable	
5	R/W	Enable Fast PLL Mechanism	
		0: Disable (Default)	
		1: Enable (Auto clear when finished)	
4	R/W	Force APLL Setting Enable	

		Force to write PLL M/N, K, PLLDIV and SUM_I while got no V_ACTIVE signal		
		0: Disable (Default)		
		1: Enable (Auto clear when finished)		
3	R/W	DDS SUM_I Setting Updated Enable		
		0: Disable (Default)		
		1: Enable (Auto clear when finished)		
2	R/W	Measure SUM_I		
		0: Disable		
		1: Enable (Auto clear after finish)		
1	R/W	Enable Port AB		
		0: Disable Port AB Access		
		1: Enable Port AB Access		
		When this bit is 0, port address will be reset to 00, and will auto increase when read or write		
0	R/W	Select SUM_I for Read		
		1: Select SUM_I_NOW [26:0] for read		
		0: Select SUM_I_PRE [26:0] for read		

Address: AB FAST_PLL_SUM_I

Bit	Mode	Function	
7:0	R/W	UM_I_PRE (Auto Increase)	
		[00000, SUM_I [26:24]]	
		^d SUM_I [23:16]	
		^d SUM_I [15:8]	
		4 th SUM_I [7:0]	

SUM_I [26] is the signed bit

The operation steps are as following:

SUM_I Access Port Indexing=0,

SUM_I Access Port Indexing=1,

SUM_I selection =1, Fast Lock Function=1

Latch SUM_I_NOW=1

Read SUM_I_NOW from SUM_I_ACCESS_PORT for 4 times:

SUM_I_NOW [26:24]

SUM_I_NOW [23:16]

SUM_I_NOW [15:8]

SUM_I_NOW [7:0]

Calculate new freq. SUM_I_PRE and write to SUM_I_ACCESS_PORT for 4 times:

SUM_I_PRE [26:24]

SUM_I_PRE [23:16]

SUM_I_PRE [15:8]

SUM_I_PRE [7:0]

SUM_I_PRE_SET =1

Write PLL2 M/N code and DDS feed back divider

Write New P/I code

Setting Auto Load =1

Wait for next frame start or polling Reg [2E].6

Address: AC PLL_M (M Parameter Register)

_			
Bi	it	Mode	Function
	7:0	R/W	PLLM[7:0] (PLL DPM value – 3)

Default: 09h

Default: 6Fh

Address: AD PLL_N (N Parameter Register) Default: 20h

Bit	Mode	Function	
7:4	R/W	LLSPHNEXT[3:0] (K) (default is 0000)	
3	R/W	LSNBP	
		N is followed by the value of REG AD [2:0]	
		1: N is always 1	
2:0	R/W	PLLN[2:0] (PLL DPN value – 2) (default is 000)	
		It is supposed to be always bigger than 2	

- PLL1 N modify to only 4-bit.
- Assume PLL1_M=0x0B, P1M=0x0B+3=14; PLL1_N=0x03, P1N=0x03+2=5; K=7; F_IN = 24.576MHz. F_PLL = F_IN x ((P1M+7/16) / P1N) = 24.576 x 14.4375 / 5 = 70.9632MHz
- If the target frequency is F_ADC, the constraint of F_PLL is $(M+-7/16)/N * XTCLK < F_PLL1 < (M+8/16)/N * XTCLK$
- Although the new dds provides +15/-16 phase margin for tracking. However it is better not to set M, N and K to be some freq. that PLL has to swallow +15/-16 phases. Because under that condition, SDM will get saturation problem.
- For NO shrink IC => PLLN setting will have no limitation
- For shrink IC and timing factor predicted as 0.8 => crystal clock 27 MHZ => PLLN can't be 0 while APLL VCO is lower than 167MHZ
 - crystal clock 24.576 MHZ => PLLN can't be 0 while APLL VCO is lower than 84 MHZ
- For shrink IC and timing factor predicted as 0.9 => crystal clock 27 MHZ => PLLN can't be 0 while APLL VCO is lower than 74 MHZ
 - crystal clock 24.576 MHZ => PLLN can't be 0 while APLL VCO is lower than 52 MHZ

Address: AE PLL_CRNT (PLL Current/Resistor Register)

Bit	Mode	Function	
7:5	R/W	PLLVR [2:0] (PLL Loop Filter Resister Control)	
		000: 7K	
		001: 9.5K	
		010: 12K	
		011: 14.5K(Default)	

		100: 17K
		101: 19.5K
		110: 22K
		111: 24.5K
4:0	R/W	PLLSI [4:0] (PLL Charger Pump Current IchDpll) (Default: 00011b)
		Icp = 2.5uA + 2.5uA*bit[0] + 5uA*bit[1] + 10uA*bit[2] + 20uA*bit[3] + 30uA*bit[4]

Keep Icp/DPM constant

Mode

Bit

PLL_WD (PLL Watch Dog Register) Address: AF

	Function
LSTATUS (PLL WD Status)	
Normal (Default)	

Default: 09h

7	R	PLLSTATUS (PLL WD Status)	
		0: Normal (Default)	
		1: Abnormal	
6	R/W	PLLWDRST (PLL WD Reset)	
		0: Normal (Default)	
		1: Reset	
5	R/W	PLLWDSET (PLL WD Set)	
		0: Normal (Default)	
		1: Set	
4:3	R/W	PLLWDVSET[1:0] (PLL WD Voltage Set)	
		00: 2.46V	
		01: 1.92V(Default)	
		10: 1.36V	
		11: 1.00V	
2	R/W	HS_dds2synp latch edge	
		0: falling edge (Default)	
		1: rising	
1	R/W	Reset DDS	
		0: normal (Default)	
	D/W	1: reset whole DDS	
0	R/W	PLLPWDN (PLL Power Down)	
		0: Normal Run	
		1: Power Down (Default)	

HSFB_dds2synp & HS_dds2synp will be both sampled by AF [2]

Address: B0	PLL MIX	Default: 8'b0000 000x

Bit	Mode	Function
7	R/W	PLLSVR3
6		Reserved to 0
5	R/W	PLLSVC3

4		Reserved to 0
3		Reserved to 0
2:1	R/W	ADCKMODE [1:0] (ADC Input Clock Select Mode)
		00: Single Clock Mode (Default)
		01: Single Inverse-Clock Mode
		10: External Clock Mode
		11: Dual Clock Mode (1x and 2x Clock)
0	R	Swallow phase enable (K mask disabled)
		The pll can't enable swallow phase function while pll just be power up. Waiting for 64 clock
		cycles then start to enable phase swallow function.
		While power down, the counter will be reset. While power up, the counter start to work

Address:	: B 1	PLLDIV_H Default: 45h	
Bit	Mode	Function	
7		Reserved to 0	
6	R/W	Phase_Select_Method	
		0: Manual	
		1: Look-Up-Table (default)	
5	R/W	PLLPH0PATH	
		0: Short Path (Default)	
		1: Long Path (Compensate PLL_ADC path delay)	
4	R/W	PLLD2	
		0:ADC CLK=1/2 VCO CLK (Default)	
		1:ADC CLK=1/4 VCO CLK	

Address: B2		PLLDIV_L Default: 2Eh
Bit	Mode	Function
7:0 R/W		PLL Divider Ratio Control. Low-Byte [7:0].
		PLLDIV should be double buffered when PLLDIV_LO changes and IDEN_STOP occurs.

PLL Divider Ratio Control. High-Byte [11:8]. (Default: 5h)

- This register determines the number of output pixel per horizontal line. PLL derives the sampling clock and data output clock (DCLK) from input HSYNC. *The real operation Divider Ratio* = *PLLDIV*+1
- The power up default value of PLLDIV is 053Fh(=1343, VESA timing standard, 1024x768 60Hz, Horizontal time).
- The setting of PLLDIV must include sync, back-porch, left border, active, right border, and front-porch times.
- Control-Register B1 & B2 will filled in when Control-Register B2 is written.

R/W

3:0

Address: B3 PLLPHASE_CTRL0 (Select Phase to A/D) Default: 30h

Bit	Mode	Function
7	R/W	PLLD2X control (Default=0)
6	R/W	PLLD2Y control (Default=0)

5	R/W	PLLX (PLL X Phase control) (Default=1)
4	R/W	PLLY (PLL X Phase control) (Default=1)
3:0	R/W	PLLSCK [4:1] (PLL 32 Phase Pre-Select Control) (Default=0h)

Address: B4 PLLPHASE_CTRL1 (Select Phase to A/D) Default: 00h

Bit	Mode	Function
7	R/W	PLLSCK [0] (PLL 32 Phase Pre-Select Control) (Default=0)
6	R/W	MSB of 128 phase (Only for ADC CLK=1/4 VCO CLK) (Default=0)
5:0	R/W	Phase Select the index of Look-Up-Table[5:0] (Default=0)

- When Phase_Select_Method=1, Phase is selected by CRB4[6:0].
- When Phase_Select_Method=0, PLLD2X, PLLD2Y, PLLX, PLLY, PLLSCLK[4:0] Should be double buffered when PLLSCK[0] is updated

Address: B5 PLL_PHASE_INTERPOLATION Default: 50h

Bit	Mode	Function				
7:6	R/W	PLL Phase Interpolation Control Load (Default: 01)				
5:3	R/W	Phase Interpolation Control Source (Default: 010)				
2:1	R/W	L Add Phase Delay				
		0: Original phase selected by X,Y and 16-phase pre-select				
		1-11: Add 1-3 delay to Original phase selected by X,Y and 32-phase pre-select				
0	R/W	Reserved to 0				

Phase	[XY^^^^]	Phase	[XY ^^^^]	Phase	[XY ^^^^]	Phase	[XY ^^^^]
0	[11 00000]	16	[01 10000]	32	[10 00000]	48	[00 10000]
1	[11 00001]	17	[01 10001]	33	[10 00001]	49	[00 10001]
2	[11 00010]	18	[01 10010]	34	[10 00010]	50	[00 10010]
3	[11 00011]	19	[01 10011]	35	[10 00011]	51	[00 10011]
4	[11 00100]	20	[01 10100]	36	[10 00100]	52	[00 10100]
5	[11 00101]	21	[00 10101]	37	[10 00101]	53	[00 10101]
6	[11 00110]	22	[00 10110]	38	[10 00110]	54	[00 10110]
7	[11 00111]	23	[01 10111]	39	[10 00111]	55	[00 10111]
8	[11 01000]	24	[01 11000]	40	[10 01000]	56	[00 11000]
9	[11 01001]	25	[01 11001]	41	[10 01001]	57	[00 11001]
10	[01 01010]	26	[10 11010]	42	[10 01010]	58	[11 11010]
11	[01 01011]	27	[10 11011]	43	[10 01011]	59	[11 11011]
12	[01 01100]	28	[10 11100]	44	[00 01100]	60	[11 11100]
13	[01 01101]	29	[10 11101]	45	[00 01101]	61	[11 11101]

14	[01 01110]	30	[10 11110]	46	[00 01110]	62	[11 11110]
15	[01 01111]	31	[10 11111]	47	[00 01111]	63	[11 11111]

Address: B6 P_CODE mapping methods

Default:	18h
----------	-----

Default: 02h

Aaaress:	· Du	P_CODE mapping methods Default: 18h								
Bit	Mode	Function								
7:6	R/W	Mapping method:								
		00: normal mapping P_CODE x G value (default)								
		01: nonlinear mapping I	smaller than Q(PE)	2	4	8	16	32	64	
			P_CODE x	1	2	4	8	32	128	128
		10: nonlinear mapping II								
			P_CODE x	1	2	2	8	32	256	256
		11: nonlinear mapping III								
			P_CODE x	1	2	8	16	32	128	512
5:2	R/W	G value								
		0000: 0								
		0001: 1								
		0010: 4								
		0011: 16								
		0100: 64								
		0101: 128								
		0110: 256 (default)								
		0111: 512	0111: 512							
		1000: 1/4	1000: 1/4							
		1001: 1/16								
		1010: 1/64								
		1011: reserved to 0								
		1100: reserved to 0								
		1101: reserved to 0								
		1110: reserved to 0								
		1111: reserved to 0								
1	R/W	Adaptive tracking enable for	r I_CODE							
		0: disable to use adaptive I_C	CODE (default)							
	_	1: enable to use adaptive I_C	CODE							
0	R/W	Adaptive tracking enable for	r P_CODE							
		0: disable to use adaptive P_0	CODE (default)							
		1: enable to use adaptive P_	CODE							

Bit	Mode	Function
7:6	R/W	Threshold value of Q (PE) to decide if starting adaptive tracking
		00: 2 (default)
		01: 4
		10: 8
		11: 15
5:4	R/W	Threshold times to decide if starting adaptive tracking while Q(PE) < Threshold
		value successively
		00: 3 (default)
		01: 7
		10: 11
		11: 15
3	R/W	Mask high speed testing pins (test1out, test2out, fav4)
		0: normal
		1: mask
2	R/W	Adaptive tracking enable => refer to B6 [1:0] to decide if I_CODE or P_CODE
		enables adaptive tracking or not
		0: disable (default)
		1: enable
1:0	R/W	Decrease ratio for adaptive tracking
		Adaptive tracking will be enabled while getting Q (PE) <=2 for over 8 times, and
		it will be triggered only under delay-chain mode
		00: 1/2
		01: 1/4
		10: 1/8 (default)
		11: 1/16

Address: B8 DDS_MIX_1 Default: 06h

Bit	Mode	Function
7:6	R	DDS tracking state [1:0]
		00: not lock
		01: lock
		10: unlock but not using new tracking mode yet
		11: unlock & using new tracking mode
5:4	R/W	Reserved to 0
3:1	R/W	Judge threshold lock already => while Q (PE) keep smaller than threshold for 32 HS
		000: 2
		001: 4
		010: 6

		011: 8 (default)
		100: 16
		101: 32
		110: 64
-	R	111: 120
0	K	PLL lock already
		0: not lock already
		1: lock already
Address:	<i>B9</i>	DDS_MIX_2 Default: 00h
Bit	Mode	Function
7:0	R/W	P_code_max[16:9]
		Set p_code_max value to clamp the GAIN of APLL
Address:	BA	DDS_MIX_3 Default: 00h
Bit	Mode	Function
7:0	R/W	P_code_max[8:1]
		Set p_code_max value to clamp the GAIN of APLL
Address:	BB	DDS_MIX_4 Default: 1Bh
Bit	Mode	Function
7	R/W	P_code_max[0]
		Set p_code_max value to clamp the GAIN of APLL
6	R/W	New mode enable
		0: disable new mode tracking (default)
		1: enable new mode tracking
5:3	R/W	New mode enable threshold
		000: 8
		001: 20
		010: 60
		011: 120 (default)
		100: 200
		101: 450
		110: 800
		111: 1200
2:0	R/W	New mode lock threshold=> while Q (PE) keep smaller than threshold for 32 HS
		000: 2
		001: 4
		010: 6
		011: 8 (default)
		100: 16
	1	1

101: 32	
110: 64	
111: 120	

New mode enable threshold should be larger than new mode lock threshold, otherwise, the track state
will always be at lock state and new mode function will not be enabled while new mode enable threshold
 < Q (PE) < new mode lock threshold

Address: BC DDS_MIX_5 Default: A0h

		_
Bit	Mode	Function
7:6	R/W	Delay chain length select (only valid while new mode enable and track state is 01 10 11)
		00: cnt=7 => 59.6ns
		01: cnt=15 => 117ns
		10: cnt=23 => 184.4ns (default)
		11: cnt=31 => 246.8ns
5:4	R/W	Phase error sample period choose (only valid while new mode enable and track state is 01 10
		11)
		00: every 1 cycle sample
		01: every 2 cycle sample
		10: every 3 cycle sample (default)
		11: every 4 cycle sample
3	R/W	Delay chain reset period select
		0: short reset (2ns) (default)
		1: long reset (1 fbck)
2	R/W	Reset delay chain saturation flag
		0: normal (default)
		1: reset flag
1	R	Delay chain saturation flag
		0: not saturate
		1: saturate => it need to enlarge the sample period or set bigger N code
0	R/W	APLL_free_run enable
		0: normal state (default)
		1: force APLL to free run state

- While we got delay chain saturation flag 1'b1, that means that the big jitter is bigger than what we image and we have to reset the delay chain length setting BC [7:6]. Also we have to enlarge the sampling period & delay chain length
- The choice for sampling period will be set by the rule as following:

 (Delay chain length * 78 +50) * each tap delay + 10(ns) must be < N * T_{XCLK} * sample period

if delay chain saturation flag goes high, then we must enlarge the delay chain length & set bigger sampling period

• While we enable free run mode, DDS will keep reset status until disable free run

Address: BD

DDS_MIX_6

Bit	Mode	Function
7:0	R	Final M code to APLL

• While we like to read final M code & K code, we have to enable measure PE (Page 1-CRA6[7]) first. Otherwise we will get glitch value

Address: BE

DDS_MIX_7

Default: 00h

Bit	Mode	Function
7:4	R	Final K code to APLL
3:1	R/W	Change mode threshold => triggered by any Q (PE) > threshold
		000: 600 (default)
		001: 850
		010: 1100
		011: 1350
		100: 1600
		101: 1850
		110: 2100
		111: 2350
0	R/W	new_mode_i_code_en
		0: while new mode enable, I code will have no effect on SUM_I. All phase error will be
		compensated by P code (default)
		1: while new mode enable, I code will be operated as normal state

• For APLL interrupt status that include 4 different types:

No lock: initial is $1 \Rightarrow$ over lock threshold B8 [3:1] \Rightarrow 1

Wait state: initial is 1 => valid only while u enable new mode => over new mode enable threshold BB [5:3] => 1

New mode state: initial is 1 => valid only while u enable new mode => over new mode lock threshold BB [2:0] => 1

Change mode happen state: initial is 1 => over change mode threshold BE [3:1] => 1

• DISPLAY PLL (Page 1)

Register::DPLL_M				0xBF	
Name	Bits	R/W	Default	Comments	Config
DPLL_M[7:0]	7:0	R/W	4E	DPLL DPM value - 2	

Register::DPLL_N				0xC0	
Name	Bits	R/W	Default	Comments	Config
DPLL_RESERVE1	7	R/W	0	Reserved	
DPLL_BPN	6	R/W	0	DPLLBPN 0: N divider enable.	
DPLL_O[1:0]	5:4	R/W	1	1: N divider disable, OUT=ckxtal. DPLL Output Divider 00: Div1 01: Div2 (Default) 10: Div4	
DPLL_N[3:0]	3:0	R/W	3	11: Div8 DPLL DPN value - 2	

[•] Assume DPLL_M=0x7D, DPM=0x7D+2=127; DPLL_N=0x0A, DPN=0x0A+2=12; Divider=1/4, F_IN = 24.576MHz. F_DPLL = F_IN x DPM / DPN x Divider = 24.576 x 127 / 12 / 4 = 65.024MHz.

CRBF~CRC0 are double buffer.

Register::DPLL_CRNT				0xC1	
Name	Bits	R/W	Default	Comments	Config
DPLL_RS[2:0]	7:5	R/W	3	DPLL Loop Filter Resister Control	
				000: 16K	
				001: 18K	
				010: 20K	
				011: 22K (Default)	
				100: 24K	
				101: 26K	
				110: 28K	
				111: 30K	
DPLL_CS[1:0]	4:3	R/W	2	DPLL Loop Filter Capacitor Control	
				00: 18p	
				01: 20p	
				10: 24p (Default)	
				11: 28p	
DPLL_IP[2:0]	2:0	R/W	2	DPLL Charger Pump Current Control	
				Icp=(2.5uA+2.5uA*bit[0]+5uA*bit[1]+10uA*bit[2])	
				Keep DPM/Icp constant=10.67	

DCLK Spread Spectrum (Page 1)

Register::DPLL_WD				0xC2	
Name	Bits	R/W	Default	Comments	Config
DPLL_WDO	7	R	0	DPLL WD Status	
				0: Normal	
				1: Abnormal	
DPLL_WDRST	6	R/W	0	DPLL WD Reset	
				0: Normal (Default)	
				1: Reset	
DPLL_WDSET	5	R/W	0	DPLL WD Set	
				0: Normal (Default)	
				1: Set	
DPLL_FUPDN	4	R/W	1	DPLL Freqency Tuning	
				0: Freq Up	
				1: Freq Dn(Default)	
DPLL_STOP	3	R/W	1	DPLL Frequency Tuning	
				0: Disable	
				1: Enable (Default)	
DPLL_FREEZE	2	R/W	0	DPLL Output Freeze	
				0: Normal (Default)	
				1: Freeze	
				Active high.	
DPLL_VCORSTB	1	R/W	0	Reset VCO	
				0: Normal (Default)	
				1: Reset	
				Active high.	
DPLL_PWDN	0	R/W	1	Power Down DPLL	
				0: Power on	
				1: Power down(Default)	
				Active high.	

Register::DPLL_CAL			0xC3		
Name	Bits	R/W	Default	Comments	Config
DPLL_VCOMD[1:0]	7:6	R/W	3	DPLL VCO Default Mode	
				00: VCO slowest	
				11: VCO fastest (Default)	

DPLL_CALBP	5	R/W	0	DPLL Bypass Calibration
				0: Reference by Calibration result(Default)
				1: Reference by CRC3[7:6]
				Active high.
DPLL_CALSW	4	R/W	0	Calibration Validated
				Go high after power on 1200us.
				0: Reference by CRC3[7:6]
				1: Refernect by cal result
DPLL_CALLCH	3	R/W	0	Latch Calibration
				Go high after power on 1100us.
				0: Disable Latch
				1: Enable Latch
DPLL_CMPEN	2	R/W	0	CMP Enable
				Go high after power on 1000us.
				0: Diable CMPEN
				1: Enable CMPEN
DPLL_CP	1	R/W	0	CP Control
				0: 1.77pF`
				1: 2.1pF
DPLL_RESERVE	0	R/W	1	Reserved for DPLL Phase Swallow Circuit
				0: Path0
				1: Path1

Register:: Initial DCLK_FINE_1	TUNE	_OFF	SET_MSB	0xC4	
Name	Bits	R/W	Default	Comments	Config
DPLL_LINEAR_CHANGE	7	R/W	0	Linear change offset value function	
				0 : disable	
				1: enable (auto clear when finish)	
				It should work on DDS Spread Spectrum Output	
				function enable.	
				When function is done, the initial offset and	
				DPLLUPDN value would be the target offset and	
				DPLLUPDN value.	
DPLL_EVEN_OLD_EN	6	R/W	0	Only Even / Odd Field Mode Enable	
				0: Disable (Default)	

				1: Enable	
DPLL_EVEN_OD_SEL	5	R/W	0	Even / Odd Field Select	
				0: Even (Default)	
				1: Odd	
DPLL_FUPDN	4	R/W	1	DPLLFUPDN (DPLL Frequency Tuning)	
				0: Freq Up	
				1: Freq Down (Default)	
DCLK_OFFSET[11:8]	3:0	R/W	0	Initial DCLK Offset [11:8] in Fixed Last Line	
				DVTOTAL & DHTOTAL	

Register:: Initial DCLK_FINE_	FUNE	_OFF	SET_LSB	0xC5	
Name	Bits	R/W	Default	Comments	Config
DCLK_OFFSET[7:0]	7:0	R/W	0	Initial DCLK Offset [7:0] in Fixed Last Line	
				DVTOTAL & DHTOTAL	

Register:: DCLK_SPREAD_SPI	ECTR	UM		0xC6		
Name	Bits	R/W	Default	Comments	Config	
DCLK_SPREAD_RANGE	7:4	R/W	0	DCLK Spreading range (0.0~7.5%)		
				The bigger setting, the spreading range will bigger,		
				but not uniform		
DCLK_FMDIV	3	R/W	0	Spread Spectrum FMDIV (SSP_FMDIV)//(0)		
				0: 33K		
				1: 66K		
DCLK_READY	2	R/W	0	Spread Spectrum Setting Ready for Writing (Auto		
				Clear)		
				0: Not ready		
				1: Ready to write		
FREQ_SYNTHESIS_SEL	1:0	R/W	0	Frequency Synthesis Select (F & F-N*dF)		
				00~11: N=1~4		

- The "Spread Spectrum Setting Ready for Writing" means 4 kinds of registers will be set after this bit is set:

 1. DCLK spreading range
 2. Spread spectrum FMDIV
 3. DCLK offset setting
 4. Frequency synthesis select

Register:: EVEN_FIXED_LAST_LINE	_MSI	В	0xC7		
Name	Bits	R/W	Default	Comments	Config
EVEN_FIXED_LAST_LINE[11:8]	6:4	R/W	3	Even Fixed Last Line Length [11:8]	

EVEN_FIXED_DVTOTAL[11:8]	3:0	R/W	0	Even Fixed DVTOTAL [11:8]	

Register:: EVEN_FIXED_LAST_LINE	_LSE	0xC8			
Name	Bits	R/W	Default	Comments	Config
EVEN_FIXED_DVTOTAL[7:0]	7:0	R/W	0	Even Fixed DVTOTAL [7:0]	

Register:: EVEN FIXED_LAST_LINE	_ LEN	NGTI	0xC9		
Name	Bits	R/W	Default	Comments	Config
EVEN_FIXED_DVTOTAL[7:0]	7:0	R/W	0	Even Fixed Last Line Length [7:0]	

- If Even / Odd mode disable, we use EVEN_FIXED_LAST only.
- If Even/Odd mode enable, the even / odd field would be reference different setting.
- Fixed last line value can't be zero, and can't smaller than DH_Sync width.

Register:: FIXED_LAST_LINE_C	TRL			0xCA		
Name	Bits	R/W	Default	Comments	Config	
RSV_CA_76	7:6		0	Reserved to 0		
MEASURE_PHASE	5	R/W	0	Measure the Phase about Fixed DVTOTAL &		
				Last Line DHTOTAL Function		
				0 : Disable		
				1 : Enable (Auto clear when finish)		
MARK_PHASE_TRACKING	4	R/W	0	Mark Phase tracking about Fixed DVTOTAL &		
				Last Line DHTOTAL Function		
				0 : Disable		
				1 : Enable		
NED_FIXED_LAST_LINE_MODE	3	R/W	0	Enable New Design Function in Fixed Last Line		
				Mode		
				0: Disable (Default)		
				1: Enable		
DCLK_DDS	2	R/W	0	DDS Spread Spectrum Test Enable		
				0: Disable (Default)		
				1: Enable		
DCLK_FIXED_LAST_LINE_EN	1	R/W	0	Enable the Fixed DVTOTAL & Last Line		
				DHTOTAL Function		
				0: Disable (Default)		
				1: Enable		

DCLK_DDS_EN	0	R/W	0	Enable DDS Spread Spectrum Output Function	
				0: Disable (Default)	
				1: Enable	

Procedure:

- First, we have set M/N code and then we need to tune DCLK OFFSET to achieve frame-sync, every step of offset frequency is DCLK/ 2^{15} .
- When we finished the frame-sync, we turn on CRCA[1] to let the system running in to free-run mode, at this time, the CRC7, CRC8, CRC9 are the reference DV and DH total and Fixed last Line Length.
- But the free-run mode DVS' should be close to frame-sync mode DVS to achieve pseudo-frame-sync(actually, it is free run mode now)
- Then we use CRC6[1:0] (F-N*dF) to keep DVS' and DVS very closely to achieve pseudo-frame-sync.

Notice:

- In RTD2472RD, when all the setting above is ready, then we open spread spectrum function, the DCLK OFFSET will shift, please keep the DCLK OFFSET keeps steady when we open spread spectrum function.
- In Real free-run mode, the DV_TOTAL refers to CR2B-0B/CR2B-0C, and in Fixed-Last-Line mode, and disable "Even/Odd mode" then the free-run timing DV_TOTAL refers to CRC7/CRC8, at this time CR2B-0B/CR2B-0C serve for Vsync-timeout watch dog reference.

Register:: ODD_FIXED_LAST_LINE_I	MSB	0xCB			
Name	Bits	R/W	Default	Comments	Config
ODD_FIXED_LAST_LINE_LENG[11:8]	6:4	R/W	0	ODD Fixed Last Line Length [11:8]	
ODD_FIXED_DVTOTAL[11:8]	3:0	R/W	0	ODD Fixed DVTOTAL [11:8]	

Register:: ODD_FIXED_LAST_LINE_I	DVT	0xCC			
Name	Bits	R/W	Default	Comments	Config
ODD_FIXED_DVTOTAL[7:0]	7:0	R/W	0	ODD Fixed DVTOTAL [7:0]	

MCLK Spread Spectrum (Page 1)

Register:: MCLK_FINE_TUNE	_OFF	SET_I	MSB	0xCD	
Name	Bits	R/W	Default	Comments	Config

RSV_FA_74	7:4		0	Reserved	
MCLK_OFFSET[11:8]	3:0	R/W	0	MCLK Offset [11:8]	
Register:: MCLK_FINE_TUNE	_OFF	SET_I	LSB	0xCE	
Register:: MCLK_FINE_TUNE Name	OFF Bits		ı	0xCE Comments	Config
			Default		Config

Register:: MCLK_SPREAD_SP	ECTR	RUM		0xCF		
Name	Bits	R/W	Default	Comments	Config	
MCLK_SPREAD_RANGE	7:4	R/W	3	MCLK Spreading range (0.0~7.5%)		
				The bigger setting, the spreading range will bigger,		
				but not uniform		
MCLK_FMDIV	3	R/W	0	Spread Spectrum FMDIV (SSP_FMDIV)//(0)		
				0: 33K		
				1: 66K		
MCLK_READY	2	R/W	0	Spread Spectrum Setting Ready for Writing (Auto		
				Clear)		
				0: Not ready		
				1: Ready to write		
MCLK_DDS	1	R/W	0	DDS Spread Spectrum Test Enable		
				0: Disable (Default)		
				1: Enable		
MCLK_DDS_EN	0	R/W	0	Enable DDS Spread Spectrum Output Function		
				0: Disable (Default)		
				1: Enable		

- The "Spread Spectrum Setting Ready for Writing" means 3 kinds of registers will be set after this bit is set:

 1. MCLK spreading range

 2. Spread spectrum FMDIV

 3. MCLK offset setting

Register:: PHASE_LINE_LSB				0xD0	
Name	Bits	R/W	Default	Comments	Config
PHASE_LINE[7:0]	7:0	R	0	Phase Line [7:0]	

Register:: PHASE_PIXEL_PIXEL				0xD1	
Name	Bits	R/W	Default	Comments	Config
PHASE_PIXEL[7:0]	7:0	R	0	Lead Phase Pixel [7:0]	

Register:: TARGET_DCLK_FINE_TU	NE_C	FFS	0xD2		
Name	Bits	R/W	Default	Comments	Config
RSV_D2_75	7:5		0	Reserved	
TARGET_DPLLUPDB	4	R/W	1	Target DPLLUPDN (DPLL Frequency Tuning	
				Up/Down)	
				0: Freq Up	
				1: Freq Down (Default)	
TARGET_DCLK_OFFSET[11:8]	3:0	R/W	0	Target DCLK Offset [11:8] in Fixed Last Line	
				DVTOTAL & DHTOTAL	

Register:: TARGET_DCLK_FINE_TUI	NE_C	FFS	0xD3		
Name	Bits	R/W	Default	Comments	Config
TARGET_DCLK_OFFSET[7:0]	3:0	R/W	0	Target DCLK Offset [7:0] in Fixed Last Line	
				DVTOTAL & DHTOTAL	

Register::DPLL_RESULT				0xD4	
Name	Bits	R/W	Default	Comments	Config
RSV_D4_74	7:4		0	Reserved	
DPLL_VO2	3	R	0	DPLL CAL OUT2	
DPLL_VO1	2	R	0	DPLL CAL OUT1	
DPLL_CAL[1:0]	1:0	R	0	DPLL calibrated VCO code	

MULTIPLY PLL FOR INPUT CYRSTAL (Page 1)

Register::M2PLL_M				0xE0	
Name	Bits	R/W	Default	Comments	Config

M2PLL_M[7:0]	7:0	R/W	69	M2PLL DPM value – 2 (M)	
				* PLL output=input*(M/P)	

Register::M2PLL_N				0xE1	
Name	Bits	R/W	Default	Comments	Config
M2PLL_CP	7	R/W	0	CP Control	
				0:CP=1.77pF	
				1:CP=2.1pF	
M2PLL_BPN	6	R/W	0	M2PLLBPN=0 , N divder enable	
				M2PLLBPN=1, N divder disable , OUT=ckxtal	
M2PLL_O[1:0]	5:4	R/W	1	M2PLL Output divider	
				00:Div1, 01:Div2, 10:Div4, 11:Div8	
M2PLL_N[3:0]	3:0	R/W	3	M2PLL DPN value - 2	

Note: CRE0~E1 are double buffer

CRE2~E3 are not controlled by software reset.

Register::M2PLL_CRNT				0xE4	
Name	Bits	R/W	Default	Comments	Config
M2PLL_RS[2:0]	7:5	R/W	3	M2PLL Loop Filter Resister Control(Rs)	
				000:16K, 001:18K, 010:20K, 011:22K	
				100: 24K, 101: 26K, 110:28K, 111:30K	
M2PLL_CS[1:0]	4:3	R/W	2	M2PLL Loop Filter Capacitor Control(Cs)	
				00:18p, 01:20p, 10:24p, 11:28p	
M2PLL_IP[1:0]	2:0	R/W	2	M2PLL Charge Pump Current Control	
				Icp=(2.5uA+2.5uA*bit[0]+5uA*bit[1]+10uA*bit[2])	
				Keep DPM/Icp constant=10.67	

Register::M2PLL_WD				0xE5		
Name	Bits	R/W	Default	Comments	Config	
M2PLL_WDO	7	R	0	M2PLL WD Status register		
				0:Normal		
				1:Abnormal		
M2PLL_WDRST	6	R/W	0	M2PLL WD Reset		
				0:Normal		

				1:Reset
M2PLL_WDSET	5	R/W	0	M2PLL WD Set
				0:Normal
				1:Set
M2PLL_VCOMD[1:0]	4:3	R/W	3	M2PLL VCO Default mode
				00: VCO slowest
				11: VCO fastest
M2PLL_FREEZE	2	R/W	0	M2PLL Output Freeze
				0:Normal
				1:Freeze (active high)
M2PLL_VCORSTB	1	R/W	0	RESET VCO (active high)
M2PLL_PWDN	0	R/W	0	Power Down M2PLL (active high)

AUDIO DAC (Page 1)

Register:: BB_POWE	R0		0xF0		
Name	Bits	R/W	Default	Comments	Config
BB_POW_AIN	7	R/W	0	Power down control for AIN buffer (0:power down, 1:power on)	
BB_POW_AINVOL	6	R/W	0	Power down control for AIN volume control (0:power down, 1:power on)	
BB_POW_AOUT	5	R/W	1	Power down control for AOUT amplifier (0:power down, 1:power on)	
BB_POW_DAC	4	R/W	0	Power down control for DAC (0:power down, 1:power on)	
BB_POW_DACVOL	3	R/W	0	Power down control for DAC volume control (0:power down, 1:power on)	
BB_POW_DACVREF	2	R/W	0	Power down control for DAC reference voltage buffer (0:power down, 1:power on)	
BB_POW_DF2SE	1	R/W	0	Power down control for DF2SE (0:power down, 1:power on)	
BB_POW_HPOUT	0	R/W	1	Power down control for HPOUT amplifier (0:power down, 1:power on)	

Register:: BB_POWE	R1		0xF1		
Name	Bits	R/W	Default	Comments	Config

Reserved	7:2		0	Reserved
BB_POW_MBIAS	1	R/W		Power down control for bias generator (0:power down, 1:power on)
BB_POW_VREF	0	R/W		Power down control for analog ground generator (0:power down, 1:power on)

Register:: AIN_CONTROL			0xF2		
Name	Bits	R/W	Default	Comments	Config
Reserved	7		0	Reserved	
BB_EN_AIN	6	R/W	0	Enable AIN (0:disable, 1:enable)	
BB_AINVOL	5:0	R/W	0x27	Volume control for AIN (00h:-58.5dB~37h:24dB)	

Register:: DAC_CONTROL			0xF3			
Name	Bits	R/W	Default	Comments	Config	
Reserved	7:6		0	Reserved		
BB_DACVOL	5:0	R/W		Volume control for DAC output (00h:-58.5dB~37h:24dB)		

Register:: AOUT_COM	NTRO	L	0xF4		
Name	Bits	R/W	Default	Comments	Config
BB_MUTE_AOUT_L	7	R/W	1	Mute control for AOUT_L (0:unmute, 1:mute)	
BB_MUTE_AOUT_R	6	R/W	1	Mute control for AOUT_R (0:unmute, 1:mute)	
BB_MUX_AOUT	5	R/W	0	Source selection for AOUT (0:from DAC, 1:from AIN)	
BB_OUTEN_AOUT	4	R/W	0	Output enable for AOUT (0:disable, 1:enable)	
BB_SWAP_AOUT	3	R/W	0	Swap L/R control for AOUT (0:No swap, 1: Swap L/R)	
Reserved	2:0		0	Reserved	

Register:: HPOUT_CONTROL 0xF5

Name	Bits	R/W	Default	Comments	Config
BB_MUTE_HPOUT_L	7	R/W	1	Mute control for HPOUT_L (0:unmute,	
				1:mute)	
BB_MUTE_HPOUT_R	6	R/W	1	Mute control for HPOUT_R (0:unmute,	
				1:mute)	
BB_MUX_HPOUT	5	R/W	0	Source selection for HPOUT (0:from DAC,	
				1:from AIN)	
BB_OUTEN_HPOUT	4	R/W	0	Output enable for HPOUT (0:disable, 1:enable)	
BB_SWAP_HPOUT	3	R/W	0	Swap L/R control for HPOUT (0:No swap, 1:	
				Swap L/R)	
Reserved	2:0		0	Reserved	

Register:: MBIAS_CO	NTRO	L0	0xF6		
Name	Bits	R/W	Default	Comments	Config
BB_MBIAS_AMP	7:6	R/W	10	Bias current selection for output amplifier	
				(00b:10u, 01b:15u, 10b:20u, 11b:30u)	
BB_MBIAS_DACVREF	5:4	R/W	10	Bias current selection for DACVREF (00b:10u,	
				01b:15u, 10b:20u, 11b:30u)	
BB_MBIAS_DAOP	3:2	R/W	10	Bias current selection for DAOP (00b:10u,	
				01b:15u, 10b:20u, 11b:30u)	
BB_MBIAS_DAREFBUF	1:0	R/W	10	Bias current selection for DAREFBUF	
				(00b:10u, 01b:15u, 10b:20u, 11b:30u)	

Register:: MBIAS_CONTROL1			0xF7		
Name	Bits	R/W	Default	Comments	Config
BB_MBIAS_DF2SE	7:6	R/W	10	Bias current selection for DF2SE (00b:10u, 01b:15u, 10b:20u, 11b:30u)	
BB_MBIAS_IN_MC3	5:4	R/W	10	Bias current selection for input buffer (00b:10u, 01b:15u, 10b:20u, 11b:30u)	
BB_MBIAS_VOL	3:2	R/W	10	Bias current selection for volume control (00b:10u, 01b:15u, 10b:20u, 11b:30u)	
BB_MBIAS_VREF	1:0	R/W	10	Bias current selection for analog ground generator (00b:10u, 01b:15u, 10b:20u, 11b:30u)	

Register:: VREF_CONTROL 0xF8

Name	Bits	R/W	Default	Comments	Config
BB_VREF_VAG	7:6	R/W	01	Analog ground voltage selection	
				(00b:1.717,01b:1.65, 10b:1.58, 11b:1.51)	
BB_DACVREF_MODE	5	R/W	1	DAC reference voltage source (0:internal	
				generation, 1:external given)	
Reserved	4:0		0	Reserved	

Register:: MODULAT	OR_C	ONTRO	L 0x	F9	
Name	Bits	R/W	Default	Comments	Config
BB_MOD_CLK_RATE	7:6	R/W	00	00:mclk(256fs) 01:aclk(128fs) 10:sclk(64fs)	
BB_MOD_RST_N	5	R/W	1	for second time to reset sigma-delta modulator(after reset up sample filter about 22*(1/fs)) 0: Reset 1: No Reset	
BB_DEBUG_EN	4	R/W	0	Debug Mode Enable	
BB_DEBUG_MODE	3:1	R/W	0	Support 8 sets debug mode.	
BB_OUT_L_R_SEL	0	R/W	0	Debug Mode, Adding L or R output 16bits in digital function	

Register:: BIST_CO	Register:: BIST_CONTROL 0xFA								
Name	Bits	R/W	Default	Comments	Config				
BB_BIST_MODE	7	R/W	0	0: Disable					
				1: Enable					
BB_BIST_RST_N	6	R/W	1	0: Reset					
				1: No Reset					
BB_BIST_DONE	5	R	0	0: BIST is running					
				1: BIST done					
BB_BIST_FAIL	4	R	0	0: BIST ok					
				1: BIST fail					

BB_FT_EN	3	R/W	0	For FT and test performance •	
				1:Iinput PCM data from test pin in.	
				0:PCM data from digital circuit.	
BB_48PIN_MODE	2	R/W	0	1:16bits TEST IN (PCM DATA).	BB_48PIN_MODE
				0:22bits TEST IN. (PCM DATA)	
Reserved	1:0		0	Reserved	

Overall HDMI System Function Block (Page 2)

TMDS Receiver

Register:	TMDS_N	MSR		0XA1
Name	Bits	R/W	Reset State	Comments
TMM	7	R/W	0	Transition measurement method 0: Measure the number of transition for N-clock duration (TMDS_NCP[3:0])
				1: Measure the number of transition smaller than 16/64 clock period (TMDS_CTC) for 1-frame duration
MT	6:4	R/W	0	Measure times(exponential of 2) 000: 1 001: 2 010: 4 011: 8
				100: 16 101: Not available 110: Not available 111: Not available This function will do bit [6:4] times, each time lasts for bit [3:0]/12 ms.
NCP	3:0	R/W	0	Numbers of Clock Period, measurement duration (where clock frequency is 12Khz) 0000: 16 0001: 1 0010: 2 0011: 3 1111: 15 This function will do bit [6:4] times, each time lasts for bit [3:0]/12 ms.

Register: TMDS_MRR0				0XA2
Name	Bits	R/W	Reset State	Comments
TMS	7	R/W	0	Transition Measurement 0: Stop measure, Cleared after finish (Default) 1: Start measure
MRS	6:5	R/W	0	Measure Result Select 00: AVE Value (Default)

				01: Max Value 10: Min Value
MS	4:3	R/W	0	Measure Select 00: Measure Hsync transition times before error correction. 01: Measure Hsync transition times after error correction. 10: Measure Data Enable transition times before error correction. 11: Measure Data Enable transition times after error correction.
Reserved	2:1			Reserved
CTC	0	R/W	0	Criterion of Transition Count, duration smaller than 0: 16 clock 1: 64 clock

Register: Th	MDS_MRR1			0XA3
Name	Bits	R/W	Reset State	Comments
Reserved	7		0	Reserved
VMR	6:0	R	0	Value Of Measure Result[6:0] (Item refer to MS)

Register:: TMDS_CTRL				0XA4		
Name	Bits	R/W	Reset State	Comments		
BCD	7	R	Х	B-Channel Detect (DE low 128 clock)(write 1 clear) 0:no 1:yes		
GCD	6	R	Х	G Channel Detect (DE low 128 clock)(write 1 clear) 0: no 1:yes		
RCD	5	R	Х	R Channel Detect (DE low 128 clock)(write 1 clear) 0: no 1: yes		
НО	4	R	х	Hsync Occur (write 1 clear) 0: no 1: yes		
YO	3	R	х	Vsync Occur (write 1 clear) 0: no 1: yes		
CRCTS	2:1	R/W	0	CRC Type Select 00: do CRC only with DE 01: do CRC only with DIEN (Data Island Enable) 10: do CRC with both DE and DIEN 11: reserved		
CRCC	0	R/W	0	CRC Check		

Register:: T	MDS_	CRCOB	2	0XA5
Name	Bits	R/W	Reset State	Comments
CRCOB2	7:0	R		1 st read=> Output CRC-48 bit 47~40 2 nd read=> Output CRC-48 bit 39~32 3 rd read=> Out put CRC-48 bit 31~24 4 th read=> Out put CRC-48 bit 23~16 5 th read=> Out put CRC-48 bit 15~8 6 th read=> Out put CRC-48 bit 7~0

The read pointer should be reset when 1. CRC Output Byte is written 2. CRC Check starts. The read back CRC value address should be auto-increase, the sequence is shown above

Register::	TMDS_	OUTCT	L	0XA6
Name	Bits	R/W	Reset State	Comments
AOE	7	R/W	0	Auto Output Enable 0: Disable (Default) 1: Enable
TRCOE	6	R/W	0	TMDS R Channel Output Enable 0: Disable (Default) 1: Enable
TGCOE	5:	R/W	0	TMDS G Channel Output Enable 0: Disable (Default) 1: Enable
TBCOE	4	R/W	0	TMDS B Channel Output Enable 0: Disable (Default) 1: Enable
OCKE	3	R/W	0	OCLK Enable 0: Disable (Default) 1: Enable
OCKIE	2	R/W	0	OCLK Invert Enable 0: Normal (Default) 1: Enable
Reserved	1	R/W	0	Reserved
CLK25XI NV	0	R/W	0	Input 1x Clock Invert 0: No Invert (Default) 1: Invert

Register:	TMDS_I	PWDCT	L	0xA7
Name	Bits	R/W	Reset State	Comments
DEO	7	R/W	0	DE-only: Generate VS/HS from DE signal 0: Disable (Default) 1: Enable
BRCW	6	R/W	0	B/R channel swap 0: No swap (Default) 1: Swap
PNSW	5	R/W	0	P/N Swap 0:No swap(Default) 1:swap
ICCAF	4	R/W	0	Input Channel control by auto function 0: Manual 1: Auto (Default)
ECC	3	R/W	0	Enable Clock channel: turn on clock channel PLL (For manual use) 0: Disable (Default) 1: Enable
ERIP	2	R/W	0	Enable Red input port (For manual use, cut off 50ohm internal resistor) 0: Disable (Default) 1: Enable
EGIP	1	R/W	0	Enable Green input port (For manual use, cut off 50ohm internal resistor) 0: Disable (Default) 1: Enable
EBIP	0	R/W	0	Enable Blue input port (For manual use, cut off 50ohm internal resistor)

	0: Disable (Default) 1: Enable
--	--------------------------------

Register:: T	Register:: TMDS_ACC0			0XA8
Name	Bits	R/W	Reset State	Comments
Reserved	7:0			Reserved

Register:: TMDS_ACC1				0XA9
Name	Bits R/W Reset State			Comments
Reserved	7:0			Reserved

Register:: TMD	S_ABC	,		0xAA
Name	Bits	R/W	Reset State	Comments
Reserved	7:0	R/W		Reserved to 0

Register:: T	Register:: TMDS_ACC2			0XAB
Name	Bits	R/W	Reset State	Comments
Reserved	7:0	R/W		Reserved to 0

Register:: 7	Register:: TMDS_Z0CC2			0xAC
Name	Bits	R/W	Reset State	Comments
DDCDBN C	7	R/W	1	HDCP DDC DEBOUNCE 0: Disable 1: Enable
HDE	6	R/W	0	HDMI/DVI function enable (HDCP enable is moved to HDCP) 0: Disable, gated clock and cut off TMDS pull up resistor for saving power. 1: Enable,
Reserved	5:0	R/W		Reserved to 0

Register:: TMDS_CPS				0xAD
Name	Bits	R/W	Reset State	Comments
PLL_DIV2_	7	R/W	0	HDMI output clock div 2 (enable this register if 2x clock is needed)
EN				0: disable
				1: enable
RESERVED	6:0		0	Reserved.

Register:: T	Register:: TMDS_RPS			0XAE
Name	Bits	R/W	Reset State	Comments
Reserved	7:0		0	Reserved to 0

Register:: T	Register:: TMDS_WDC			0xAF
Name	Bits	R/W	Reset State	Comments

Reserved	7:0		0	Reserved to 0
----------	-----	--	---	---------------

Register 0xB0~0xB3 are reserved.

Register:: T	Register:: TMDS_DPC0			0XB4
Name	Bits	R/W	Reset State	Comments
dpc_pp	7:4	R	0	PP value of HDMI 1.3 Deep color mode. (If dpc_auto(0xB8[2]) ==0, this bit
				is R/W; otherwise, it is read-only)
dpc_cd	3:0	R	0	CD value of HDMI 1.3 Deep color mode. (If dpc_auto(0xB8[2]) ==0, this bit
				is R/W; otherwise, it is read-only)

Register:: T	MDS_	UDC0		0XB5
Name	Bits	R/W	Reset State	Comments
dpc_bypass_	7	R/W	0	Disable Deep Color Mode
dis				0: disable
				1: enable
reserved	6:3		0	Reserved.
CPTEST	2	R	0	CPTEST 0: normal mode, in which clock and data from analog are used. 1: select TSTCKIN/TSTDIN as input 2X5 clock and data respectively, for TESTING.
НМТМ	1:0	R/W	0	HDCP MP TESTING MODE Force CTL[3:0] always equal to 00:Original 01:CTRL=1001 10:CTRL=1000 11:CTRL=0000

Register:: T	MDS_U	UDC1		0xB6
Name	Bits	R/W	Reset State	Comments
no_clk_in	7	R	0	No clock input.
				0: normal, 1: no clock
cdr_rdy_red	6	R	0	CDR ready of red channel
cdr_rdy_grn	5	R	0	CDR ready of green channel
cdr_rdy_blu	4	R	0	CDR ready of blue channel
reserved	3:0		0	Reserved.

Register:: TMDS_UDC2				0XB7
Name	Bits	R/W	Reset State	Comments
NL	7:5	R/W	0	ERRC_SEL<1:0> 000: original signal 001: 1 cycle debouncing 010: 1+8 cycle debouncing 011: 1+8 cycle debouncing + de masking transition of vs/hs

				100: 1+8 cycle debouncing + de masking transition of vs/hs + masking first 8-line de
NLFW	4:0	R/W	0	DEBUG_SEL

Register:: T	Register:: TMDS_DPC1			0XB8
Name	Bits	R/W	Reset State	Comments
reserved	7:4		0	Reserved.
dpc_clk_sou	3	R/W	0	Select the reference clock of deep color pll
rce				0: recovered tmds clock
				1: original tmds clock
dpc_auto	2	R/W	1	0: manual mode (CD/PP/default_ phase fields are specified by FW)
				1: auto mode (CD/PP/default_ phase are directly decoded by HW)
dpc_default_	1	R/W	0	Default Phase of HDMI 1.3 Deep color mode.
ph				(If $dpc_auto(0xB8[2]) ==0$, this bit is R/W; otherwise, it is read-only)
dpc_pp_vali	0	R/W	0	Phase valid of HDMI 1.3 Deep color mode.
d				(If $dpc_auto(0xB8[2]) ==0$, this bit is R/W; otherwise, it is read-only)

HDCP 1.3 (Page 2)

■ Regist	er:: H	IDCP_	CR	0XC0
Name	Bits	R/W	Reset	Comments
			State	
Reserve	7	R	0	Reserved.
Reserve	6	R	0	Reserved.
IVSP	5	R	0	Indicate VSYNC Polarity
				0: Positive, which means VS pulse is high.
				1: Negative
INVVS	4	R/W	0	Invert VSYNC for HDCP
				High: Inverted
				Low: Not Inverted
IVSPM	3	R/W	0	Indicate VSYNC Polarity Mode:
				High: manual, decided by INVVS
				Low: auto, indicate by IVSP
MADDF	2	R/W	0	MCU Access DDC data first
				0: enable DDC channel and MCU access only when DDC is not busy
				1: disable DDC channel and MCU access only
DKAPDE	1	R/W	0	Device Key Access Port download enable
				High: enable
				Low: disable, this would reset the address of Device Key Access Port to 0.
Enable	0	R/W	0	HDCP Enable
				High: Auto Enable HDCP function, when Tx I2C write Aksv,
				Low: Disable HDCP, except for output.

Register:: H	IDCP_	DKAP		0XC1
Name	Bits	R/W	Reset State	Comments
DKAP	7:0	R/W	0	When enable device key accessing 40x56 table, the 56-bit key table will be transferred to 64-bit pseudo data with 7 th , 15 th , 23rd, 31st, 39 th , 47 th , 55 th bits inserted. The inserted data are '0'.And the write sequence is: {D0-Byte0, D0-Byte1, D0-Byte2, D0-Byte3,D0-Byte4, D0-Byte5, D0-Byte6, D0-Byte7}, {D1-Byte0, D1-Byte1, 1-Byte2,D1-Byte3, D1-Byte4, D1-Byte5, D1-Byte6, D1-Byte7}, Accessing this port must be coded/decoded by REALTEK protection code.

Register:: HDCP_PCR				0xC2
Name	Bits	R/W	Reset State	Comments
Rev	7:5			Reserved
ENC_TOG	4	R	0	ENC toggled.
AVMUTE_ DIS	3	R/W	1	Auto enc_dis when AVMUTE 0: non active 1: active
DDCSEL	2:0	R/W	0	DDC Channel SEL for Key Access 00: DDCSCL1/DDCSDA1 01: DDCSCL2/DDCSDA2 1x: Reserved.
APAI	0	R/W	0	HDCP Accessing Port Auto Increase (For Host Side)

	0: auto increase
	1: keep in the same address.

Register:: H	Register:: HDCP_AP			0XC3
Name	Bits	R/W	Reset State	Comments
AP	7:0	R/W	0	Address port for embedded HDCP access, auto increase after DATA_PORT being accessed. (For Host Side controlled by APAI)

Register:: HDCP_DP				0XC4
Name	Bits	R/W	Reset State	Comments
DP	7:0	R/W	0	Data port for embedded HDCP access

Note:

1. When accessing this DDC register map by DDC, the address should increase automatically, except for the first accessing address is KSV_FIFO , 0x43.

Following register is assigned by "HDCP-address port", "HDCP-data port"

Register:: H	Register:: HDCP_FCR			0xC0
Name	Bits R/W R		Reset	Comments
			State	
Reserved	7	R		Reserved
FC	6:0	R	0	HDCP_frame counter[6:0]

Register::	Register:: HDCP_SIR			0xC1
Name	Bits	R/W	Reset	Comments
			State	
AST	7	R	0	Authst (Means bksv of RTD pass Tx authorization, Tx is ready to do
				HDCP transaction)
AKM	6	R	0	Authkm (Means RTD finish computing KM, ri) //Hidden
ADNE	5	R	0	Authdone (means TX admitted ri value, start to do HDCP transmission)
REA	4	R/W	0	RE_AUTH
ENCM	3	R/W	0	ENC_Method
ENCE	2	R	0	ENC_ERROR
NC	1	R	0	NO CTRL(HDCP1.0: no ctrl[3], HDCP1.1: ctrl is not 1001 nor 0001)
IB	0	R	0	Internal buffer for Ainfo[1].
				Since Ainfo[1] in DDC port is 0 at most of time, we need to know what Tx
				wrote.

HDCP 1.1/1.0 decide flow.

- 1. If HDMI conditions happen, HDCP 1.1 is used.
- 2. When last byte of Aksv is written, Ainfo[1] indicates HDCP 1.0/1.1 mode.

OESS is the same as HDCP 1.0. We could tell it by Ainfo[1] in DDC.

HDCP 1.0/1.1 decide flow (Before Auth)

Initial flow.

HDCP Total Flow

HDCP 1.0/1.1 difference

ItemDescriptionHDCP 1.0HDCP 1.1

1	Fast Reset	No constraint in 1.0	It must be done
2	DDC : Ainfo	Useless	Double buffer
3	DDC : Pj	No this feature	Update per 16 frames
4	DDC : Bcaps[1]	No this feature	It is used to tell if Rx supports 1.1
5	DDC : Bstatus	No this feature	HDMI mode mapping
6	DDC : short read	Read Ri.	Read Ri & Pj.
7	OESS/EESS	Only OESS compatible	Depend on DDC info. Sync.
8	Support protocol	DVI (DE only)	DVI & HDMI (DE & DIEN)
9	CTLx position	CTL3 follows VS	All info must be in opp. window.
10	Error correction	No the requirement	Error correction for ENC_EN/DIS
11	VS polarity distinguishment	No clear description	1. init is neg. 2. VS debouncing befor DE. 3. VS por for open opp window.
12			
13			
14			

Frame counter

HDCP 1.0: Increase by VS(CTL3).

HDCP 1.1 : In OESS mode, increase by ENC_EN

In EESS mode, increase when a. AV_MUTE = false.

& b. AC = 1 or $ENC_EN = 1$.

NOTE:

- 1. HDCP output must be always enable for DVI/HDMI.
- 2. The sub-descriptions i of Ri & j of Pj are the same.

HDMI Video and Audio Part (Page 2)

HDMI IP Data Part

HDMI IP Control Part

HDCP IP

Register:: HDMI_APC				0xC8
Name	Bits	R/W	Reset State	Comments
Reserved	7:1	R/W	0	Reserved to 0

AAIF	0	R/W	0	Address auto increase function
				0: If read/write "HDMI data port" continuously without assign "HDMI
				address port", address would be not added by one automatically.
				1: If read/write "HDMI data port" continuously without assign "HDMI
				address port", address would be added by one automatically.

Register:: HDMI_AP				0xC9
Name	Name Bits R/W Reset			Comments
			State	
AP	7:0	R/W	0	Address port for HDMI

Register:: HDMI_DP				0xCA
Name				Comments
			State	
DP	7:0	R/W	0	Data port for HDMI

HDMI Register in Address Data Port

Access	Name	Description
Addr.		
0x00	HDMI_SCR	System Control
0x01	HDMI_N_VAL	N times of Condition A
0x02	HDMI_BCHCR	BCH Control Bits
0x03	HDMI_AFCR	Audio Flow Control
0x04	HDMI_AFSR	Audio FIFO Status
0x05	HDMI_MAGCR	Manual Audio Gain Coefficient
0x06	HDMI_AAGCR	Auto Audio Gain Control
0x10	HDMI_CMCR	Clock MUX Control
0x11	HDMI_MCAPR	M Code of Audio PLL
0x12	HDMI_SCAPR	S Code of Audio PLL
0x13	HDMI_DCAPR0	MSB of D Code of Audio PLL
0x14	HDMI_DCAPR1	LSB of D Code of Audio PLL
0x15	HDMI_PSCR	Phase Swallow Control
0x16	HDMI_FDDR	FIFO Depth at DE Rising
0x17	HDMI_FDDF	FIFO Depth at DE Falling
0x18	HDMI_MFDDR	Maximum FIFO Depth at DE Rising
0x19	HDMI_MFDDF	Minimum FIFO Depth at DE Falling
0x1A	HDMI_FTR	FIFO Trend Register
0x1B	HDMI_FBR	FIFO Boundary Register
0x1C	HDMI_ICPSNCR0	I Code of Phase Swallow and N/CTS Register 0

0x1D HDMI_ICPSNCR1 I Code of Phase Swallow and N/CTS Register 1 0x1E HDMI_PCPSNCR0 P Code of Phase Swallow and N/CTS Register 0 0x1F HDMI_PCPSNCR1 P Code of Phase Swallow and N/CTS Register 1 0x20 HDMI_ICTPSR0 I Code of Trend for Phase Swallow Register 0 0x21 HDMI_PCTPSR1 I Code of Trend for Phase Swallow Register 1 0x22 HDMI_PCTPSR0 P Code of Trend for Phase Swallow Register 0 0x23 HDMI_PCTPSR1 P Code of Trend for Phase Swallow Register 1 0x24 HDMI_ICBPSR0 I Code of Boundary for Phase Swallow Register 0 0x25 HDMI_ICBPSR1 I Code of Boundary for Phase Swallow Register 1 0x26 HDMI_PCBPSR1 P Code of Boundary for Phase Swallow Register 1 0x27 HDMI_PCBPSR1 P Code of Boundary for Phase Swallow Register 1 0x28 HDMI_NTX1024TR0 Number of Tx in 1024 Tv Register 0 0x29 HDMI_PCBPSR1 Number of Tx in 1024 Tv Register 1 0x20 HDMI_STBPR Stop Time for Boundary PE Register 0x21 HDMI_NCPER N and CTS Phase Error Register 0x22 HDMI_APPNR Action f			
0x1F HDMI_PCPSNCR1 P Code of Phase Swallow and N/CTS Register 1 0x20 HDMI_ICTPSR0 I Code of Trend for Phase Swallow Register 0 0x21 HDMI_ICTPSR1 I Code of Trend for Phase Swallow Register 1 0x22 HDMI_PCTPSR0 P Code of Trend for Phase Swallow Register 0 0x23 HDMI_PCTPSR1 P Code of Trend for Phase Swallow Register 0 0x24 HDMI_ICBPSR0 I Code of Boundary for Phase Swallow Register 1 0x25 HDMI_ICBPSR1 I Code of Boundary for Phase Swallow Register 1 0x26 HDMI_PCBPSR0 P Code of Boundary for Phase Swallow Register 0 0x27 HDMI_PCBPSR1 P Code of Boundary for Phase Swallow Register 1 0x28 HDMI_NTX1024TR0 Number of Tx in 1024 Tv Register 0 0x29 HDMI_PCBPSR1 Number of Tx in 1024 Tv Register 1 0x20 HDMI_STBPR Stop Time for Boundary PE Register 1 0x21 HDMI_STBPR Stop Time for Boundary PE Register 1 0x22 HDMI_NCPER N and CTS Phase Error Register 1 0x24 HDMI_PCBP A ction for Audio PLL Non-Lock Register 1 0x20 HDMI_AAPNR Action for Audio PLL N	0x1D	HDMI_ICPSNCR1	I Code of Phase Swallow and N/CTS Register 1
HDMI_ICTPSR0	0x1E	HDMI_PCPSNCR0	P Code of Phase Swallow and N/CTS Register 0
0x21 HDMI_ICTPSR1 I Code of Trend for Phase Swallow Register 1 0x22 HDMI_PCTPSR0 P Code of Trend for Phase Swallow Register 0 0x23 HDMI_PCTPSR1 P Code of Trend for Phase Swallow Register 1 0x24 HDMI_ICBPSR0 I Code of Boundary for Phase Swallow Register 1 0x25 HDMI_ICBPSR1 I Code of Boundary for Phase Swallow Register 0 0x26 HDMI_PCBPSR0 P Code of Boundary for Phase Swallow Register 0 0x27 HDMI_PCBPSR1 P Code of Boundary for Phase Swallow Register 1 0x28 HDMI_NTX1024TR0 Number of Tx in 1024 Tv Register 0 0x29 HDMI_PCBPSR1 Number of Tx in 1024 Tv Register 1 0x20 HDMI_STBPR Stop Time for Boundary PE Register 0x22 HDMI_STBPR Stop Time for Boundary PE Register 0x22 HDMI_PETR Phase Error Threshold Register 0x22 HDMI_APNR Action for Audio PLL Non-Lock Register 0x30 HDMI_APDMCR Audio PLL Debug Mode Control Register 0x31 HDMI_APMCR Audio and Video Mute Control Register 0x33 HDMI_WOCR1 Watch Dog Control Register 1 <t< td=""><td>0x1F</td><td>HDMI_PCPSNCR1</td><td>P Code of Phase Swallow and N/CTS Register 1</td></t<>	0x1F	HDMI_PCPSNCR1	P Code of Phase Swallow and N/CTS Register 1
0x22 HDMI_PCTPSR0 P Code of Trend for Phase Swallow Register 0 0x23 HDMI_PCTPSR1 P Code of Trend for Phase Swallow Register 1 0x24 HDMI_ICBPSR0 I Code of Boundary for Phase Swallow Register 0 0x25 HDMI_ICBPSR1 I Code of Boundary for Phase Swallow Register 0 0x26 HDMI_PCBPSR0 P Code of Boundary for Phase Swallow Register 0 0x27 HDMI_PCBPSR1 P Code of Boundary for Phase Swallow Register 1 0x28 HDMI_NTx1024TR0 Number of Tx in 1024 Tv Register 0 0x29 HDMI_PCBPSR1 Number of Tx in 1024 Tv Register 1 0x20 HDMI_STBPR Stop Time for Boundary PE Register 0x22 HDMI_NCPER N and CTS Phase Error Register 0x2B HDMI_NCPER N and CTS Phase Error Register 0x2C HDMI_APDMCR Action for Audio PLL Non-Lock Register 0x2D HDMI_APDMCR Audio PLL Debug Mode Control Register 0x30 HDMI_APDMCR Audio PLL Debug Mode Control Register 0x31 HDMI_WCR0 Watch Dog Control Register 0 0x32 HDMI_WCR0 Watch Dog Control Register 1 0x33<	0x20	HDMI_ICTPSR0	I Code of Trend for Phase Swallow Register 0
0x23 HDMI_PCTPSR1 P Code of Trend for Phase Swallow Register 1 0x24 HDMI_ICBPSR0 I Code of Boundary for Phase Swallow Register 0 0x25 HDMI_ICBPSR1 I Code of Boundary for Phase Swallow Register 1 0x26 HDMI_PCBPSR0 P Code of Boundary for Phase Swallow Register 0 0x27 HDMI_PCBPSR1 P Code of Boundary for Phase Swallow Register 1 0x28 HDMI_NTX1024TR0 Number of Tx in 1024 Tv Register 0 0x29 HDMI_PCBPSR1 Number of Tx in 1024 Tv Register 1 0x20 HDMI_STBPR Stop Time for Boundary PE Register 0x22 HDMI_NCPER N and CTS Phase Error Register 0x20 HDMI_PETR Phase Error Threshold Register 0x20 HDMI_AAPNR Action for Audio PLL Non-Lock Register 0x20 HDMI_AAPNR Audio PLL Debug Mode Control Register 0x30 HDMI_AVMCR Audio and Video Mute Control Register 0x31 HDMI_WOCR0 Watch Dog Control Register 0 0x32 HDMI_WOCR1 Watch Dog Control Register 1 0x33 HDMI_DBCR HDMI Double Buffer Control Register 0 0x34	0x21	HDMI_ICTPSR1	I Code of Trend for Phase Swallow Register 1
0x24 HDMI_ICBPSR0 I Code of Boundary for Phase Swallow Register 0 0x25 HDMI_ICBPSR1 I Code of Boundary for Phase Swallow Register 1 0x26 HDMI_PCBPSR0 P Code of Boundary for Phase Swallow Register 0 0x27 HDMI_PCBPSR1 P Code of Boundary for Phase Swallow Register 1 0x28 HDMI_NTX1024TR0 Number of Tx in 1024 Tv Register 0 0x29 HDMI_PCBPSR1 Number of Tx in 1024 Tv Register 1 0x20 HDMI_STBPR Stop Time for Boundary PE Register 0x21 HDMI_NCPER N and CTS Phase Error Register 0x22 HDMI_PETR Phase Error Threshold Register 0x20 HDMI_AAPNR Action for Audio PLL Non-Lock Register 0x22 HDMI_APDMCR Audio PLL Debug Mode Control Register 0x30 HDMI_APDMCR Audio and Video Mute Control Register 0x31 HDMI_WDCR0 Watch Dog Control Register 0 0x32 HDMI_WDCR1 Watch Dog Control Register 1 0x33 HDMI_DBCR HDMI Double Buffer Control Register 0 0x34 HDMI_APTMCR0 Audio PLL Test Mode Control Register 1 0x36 <td< td=""><td>0x22</td><td>HDMI_PCTPSR0</td><td>P Code of Trend for Phase Swallow Register 0</td></td<>	0x22	HDMI_PCTPSR0	P Code of Trend for Phase Swallow Register 0
0x25 HDMI_ICBPSR1 I Code of Boundary for Phase Swallow Register 1 0x26 HDMI_PCBPSR0 P Code of Boundary for Phase Swallow Register 0 0x27 HDMI_PCBPSR1 P Code of Boundary for Phase Swallow Register 1 0x28 HDMI_NTx1024TR0 Number of Tx in 1024 Tv Register 0 0x29 HDMI_PCBPSR1 Number of Tx in 1024 Tv Register 1 0x2A HDMI_STBPR Stop Time for Boundary PE Register 0x2B HDMI_NCPER N and CTS Phase Error Register 0x2C HDMI_PETR Phase Error Threshold Register 0x2D HDMI_AAPNR Action for Audio PLL Non-Lock Register 0x2E HDMI_APDMCR Audio PLL Debug Mode Control Register 0x30 HDMI_AVMCR Audio and Video Mute Control Register 0x31 HDMI_WDCR0 Watch Dog Control Register 0 0x32 HDMI_WDCR1 Watch Dog Control Register 1 0x33 HDMI_WDCR1 Watch Dog Control Register 2 0x34 HDMI_DBCR HDMI Double Buffer Control Register 0 0x34 HDMI_APTMCR0 Audio PLL Test Mode Control Register 1 0x38 HDMI_DPCR0	0x23	HDMI_PCTPSR1	P Code of Trend for Phase Swallow Register 1
0x26 HDMI_PCBPSR0 P Code of Boundary for Phase Swallow Register 0 0x27 HDMI_PCBPSR1 P Code of Boundary for Phase Swallow Register 1 0x28 HDMI_NTX1024TR0 Number of Tx in 1024 Tv Register 0 0x29 HDMI_PCBPSR1 Number of Tx in 1024 Tv Register 1 0x2A HDMI_STBPR Stop Time for Boundary PE Register 0x2B HDMI_NCPER N and CTS Phase Error Register 0x2D HDMI_PETR Phase Error Threshold Register 0x2D HDMI_AAPNR Action for Audio PLL Non-Lock Register 0x2E HDMI_AAPNR Action for Audio PLL Non-Lock Register 0x30 HDMI_AVMCR Audio and Video Mute Control Register 0x31 HDMI_WDCR0 Watch Dog Control Register 0 0x32 HDMI_WDCR1 Watch Dog Control Register 1 0x33 HDMI_WDCR1 Watch Dog Control Register 2 0x34 HDMI_DBCR HDMI Double Buffer Control Register 0 0x35 HDMI_APTMCR0 Audio PLL Test Mode Control Register 1 0x36 HDMI_APTMCR1 Audio PLL Control Register 1 0x38 HDMI_DPCR1 DPLL Control	0x24	HDMI_ICBPSR0	I Code of Boundary for Phase Swallow Register 0
0x27 HDMI_PCBPSR1 P Code of Boundary for Phase Swallow Register 1 0x28 HDMI_NTx1024TR0 Number of Tx in 1024 Tv Register 0 0x29 HDMI_PCBPSR1 Number of Tx in 1024 Tv Register 1 0x2A HDMI_STBPR Stop Time for Boundary PE Register 0x2B HDMI_NCPER N and CTS Phase Error Register 0x2D HDMI_PETR Phase Error Threshold Register 0x2D HDMI_AAPNR Action for Audio PLL Non-Lock Register 0x2E HDMI_APDMCR Audio PLL Debug Mode Control Register 0x30 HDMI_APDMCR Audio and Video Mute Control Register 0x31 HDMI_WDCR0 Watch Dog Control Register 0 0x32 HDMI_WDCR1 Watch Dog Control Register 1 0x33 HDMI_WDCR1 Watch Dog Control Register 2 0x34 HDMI_DBCR HDMI Double Buffer Control Register 0 0x35 HDMI_APTMCR0 Audio PLL Test Mode Control Register 1 0x36 HDMI_APTMCR1 Audio PLL Test Mode Control Register 1 0x38 HDMI_DPCR0 DPLL Control Register 2 0x39 HDMI_DPCR1 DPLL Control Register 3 0x40 HDMI_DPCR3 DPLL Control Re	0x25	HDMI_ICBPSR1	I Code of Boundary for Phase Swallow Register 1
0x28 HDMI_NTx1024TR0 Number of Tx in 1024 Tv Register 0 0x29 HDMI_PCBPSR1 Number of Tx in 1024 Tv Register 1 0x2A HDMI_STBPR Stop Time for Boundary PE Register 0x2B HDMI_NCPER N and CTS Phase Error Register 0x2C HDMI_PETR Phase Error Threshold Register 0x2D HDMI_AAPNR Action for Audio PLL Non-Lock Register 0x2E HDMI_APDMCR Audio PLL Debug Mode Control Register 0x30 HDMI_APDMCR Audio and Video Mute Control Register 0x31 HDMI_WDCR0 Watch Dog Control Register 0 0x32 HDMI_WDCR1 Watch Dog Control Register 1 0x33 HDMI_WDCR1 Watch Dog Control Register 2 0x34 HDMI_DBCR HDMI Double Buffer Control Register 0 0x35 HDMI_APTMCR0 Audio PLL Test Mode Control Register 1 0x36 HDMI_APTMCR1 Audio PLL Test Mode Control Register 1 0x38 HDMI_DPCR0 DPLL Control Register 0 0x39 HDMI_DPCR1 DPLL Control Register 1 0x3A HDMI_DPCR2 DPLL Control Register 3	0x26	HDMI_PCBPSR0	P Code of Boundary for Phase Swallow Register 0
0x29 HDMI_PCBPSR1 Number of Tx in 1024 Tv Register 1 0x2A HDMI_STBPR Stop Time for Boundary PE Register 0x2B HDMI_NCPER N and CTS Phase Error Register 0x2C HDMI_PETR Phase Error Threshold Register 0x2D HDMI_AAPNR Action for Audio PLL Non-Lock Register 0x2E HDMI_APDMCR Audio PLL Debug Mode Control Register 0x30 HDMI_AVMCR Audio and Video Mute Control Register 0x31 HDMI_WDCR0 Watch Dog Control Register 0 0x32 HDMI_WDCR1 Watch Dog Control Register 1 0x33 HDMI_WDCR1 Watch Dog Control Register 2 0x34 HDMI_DBCR HDMI Double Buffer Control Register 0 0x34 HDMI_APTMCR0 Audio PLL Test Mode Control Register 1 0x36 HDMI_APTMCR1 Audio PLL Test Mode Control Register 1 0x38 HDMI_DPCR0 DPLL Control Register 0 0x39 HDMI_DPCR1 DPLL Control Register 1 0x3A HDMI_DPCR2 DPLL Control Register 2 0x3B HDMI_DPCR3 DPLL Control Register 3 0x40 HDMI_AWDSR Audio Watch Dog Status Register	0x27	HDMI_PCBPSR1	P Code of Boundary for Phase Swallow Register 1
0x2A HDMI_STBPR Stop Time for Boundary PE Register 0x2B HDMI_NCPER N and CTS Phase Error Register 0x2C HDMI_PETR Phase Error Threshold Register 0x2D HDMI_AAPNR Action for Audio PLL Non-Lock Register 0x2E HDMI_APDMCR Audio PLL Debug Mode Control Register 0x30 HDMI_AVMCR Audio and Video Mute Control Register 0x31 HDMI_WDCR0 Watch Dog Control Register 0 0x32 HDMI_WDCR1 Watch Dog Control Register 1 0x33 HDMI_WDCR1 Watch Dog Control Register 2 0x34 HDMI_DBCR HDMI Double Buffer Control Register 0 0x35 HDMI_APTMCR0 Audio PLL Test Mode Control Register 0 0x36 HDMI_APTMCR1 Audio PLL Test Mode Control Register 1 0x38 HDMI_DPCR0 DPLL Control Register 0 0x39 HDMI_DPCR1 DPLL Control Register 1 0x3A HDMI_DPCR2 DPLL Control Register 2 0x3B HDMI_DPCR3 DPLL Control Register 3 0x40 HDMI_AWDSR Audio Watch Dog Status Register 0x41 HDMI_PAMICR Packet Acquire Mechanism Interrupt Control Register <	0x28	HDMI_NTx1024TR0	Number of Tx in 1024 Tv Register 0
0x2B HDMI_NCPER N and CTS Phase Error Register 0x2C HDMI_PETR Phase Error Threshold Register 0x2D HDMI_AAPNR Action for Audio PLL Non-Lock Register 0x2E HDMI_APDMCR Audio PLL Debug Mode Control Register 0x30 HDMI_AVMCR Audio and Video Mute Control Register 0x31 HDMI_WDCR0 Watch Dog Control Register 0 0x32 HDMI_WDCR1 Watch Dog Control Register 1 0x33 HDMI_WDCR1 Watch Dog Control Register 2 0x34 HDMI_DBCR HDMI Double Buffer Control Register 0 0x35 HDMI_APTMCR0 Audio PLL Test Mode Control Register 0 0x36 HDMI_APTMCR1 Audio PLL Test Mode Control Register 1 0x38 HDMI_DPCR0 DPLL Control Register 0 0x39 HDMI_DPCR1 DPLL Control Register 1 0x3A HDMI_DPCR2 DPLL Control Register 2 0x3B HDMI_DPCR3 DPLL Control Register 3 0x40 HDMI_AWDSR Audio Watch Dog Status Register 0x41 HDMI_VWDSR Video Watch Dog Status Register 0x42 HDMI_PAMICR Packet Acquire Mechanism Interrupt Control Register <td>0x29</td> <td>HDMI_PCBPSR1</td> <td>Number of Tx in 1024 Tv Register 1</td>	0x29	HDMI_PCBPSR1	Number of Tx in 1024 Tv Register 1
0x2C HDMI_PETR Phase Error Threshold Register 0x2D HDMI_AAPNR Action for Audio PLL Non-Lock Register 0x2E HDMI_APDMCR Audio PLL Debug Mode Control Register 0x30 HDMI_AVMCR Audio and Video Mute Control Register 0x31 HDMI_WDCR0 Watch Dog Control Register 0 0x32 HDMI_WDCR1 Watch Dog Control Register 1 0x33 HDMI_WDCR1 Watch Dog Control Register 2 0x34 HDMI_DBCR HDMI Double Buffer Control Register 0x35 HDMI_APTMCR0 Audio PLL Test Mode Control Register 0 0x36 HDMI_APTMCR1 Audio PLL Test Mode Control Register 1 0x38 HDMI_DPCR0 DPLL Control Register 0 0x39 HDMI_DPCR1 DPLL Control Register 1 0x3A HDMI_DPCR2 DPLL Control Register 2 0x3B HDMI_DPCR3 DPLL Control Register 3 0x40 HDMI_AWDSR Audio Watch Dog Status Register 0x41 HDMI_VWDSR Video Watch Dog Status Register 0x42 HDMI_PAMICR Packet Acquire Mechanism Interrupt Control Register 0x43 HDMI_PTRSV1 Packet Type of RSV1 Packet <	0x2A	HDMI_STBPR	Stop Time for Boundary PE Register
0x2D HDMI_AAPNR Action for Audio PLL Non-Lock Register 0x2E HDMI_APDMCR Audio PLL Debug Mode Control Register 0x30 HDMI_AVMCR Audio and Video Mute Control Register 0x31 HDMI_WDCR0 Watch Dog Control Register 0 0x32 HDMI_WDCR1 Watch Dog Control Register 1 0x33 HDMI_WDCR1 Watch Dog Control Register 2 0x34 HDMI_DBCR HDMI Double Buffer Control Register 0x35 HDMI_APTMCR0 Audio PLL Test Mode Control Register 0 0x36 HDMI_APTMCR1 Audio PLL Test Mode Control Register 1 0x38 HDMI_DPCR0 DPLL Control Register 0 0x39 HDMI_DPCR1 DPLL Control Register 1 0x3A HDMI_DPCR2 DPLL Control Register 2 0x3B HDMI_DPCR3 DPLL Control Register 3 0x40 HDMI_AWDSR Audio Watch Dog Status Register 0x41 HDMI_VWDSR Video Watch Dog Status Register 0x42 HDMI_PAMICR Packet Acquire Mechanism Interrupt Control Register 0x43 HDMI_PTRSV1 Packet Type of RSV1 Packet	0x2B	HDMI_NCPER	N and CTS Phase Error Register
0x2E HDMI_APDMCR Audio PLL Debug Mode Control Register 0x30 HDMI_AVMCR Audio and Video Mute Control Register 0x31 HDMI_WDCR0 Watch Dog Control Register 0 0x32 HDMI_WDCR1 Watch Dog Control Register 1 0x33 HDMI_WDCR1 Watch Dog Control Register 2 0x34 HDMI_DBCR HDMI Double Buffer Control Register 0x35 HDMI_APTMCR0 Audio PLL Test Mode Control Register 0 0x36 HDMI_APTMCR1 Audio PLL Test Mode Control Register 1 0x38 HDMI_DPCR0 DPLL Control Register 0 0x39 HDMI_DPCR1 DPLL Control Register 1 0x3A HDMI_DPCR2 DPLL Control Register 2 0x3B HDMI_DPCR3 DPLL Control Register 3 0x40 HDMI_AWDSR Audio Watch Dog Status Register 0x41 HDMI_VWDSR Video Watch Dog Status Register 0x43 HDMI_PAMICR Packet Acquire Mechanism Interrupt Control Register	0x2C	HDMI_PETR	Phase Error Threshold Register
0x30 HDMI_AVMCR Audio and Video Mute Control Register 0x31 HDMI_WDCR0 Watch Dog Control Register 0 0x32 HDMI_WDCR1 Watch Dog Control Register 1 0x33 HDMI_WDCR1 Watch Dog Control Register 2 0x34 HDMI_DBCR HDMI Double Buffer Control Register 0x35 HDMI_APTMCR0 Audio PLL Test Mode Control Register 0 0x36 HDMI_APTMCR1 Audio PLL Test Mode Control Register 1 0x38 HDMI_DPCR0 DPLL Control Register 0 0x39 HDMI_DPCR1 DPLL Control Register 1 0x3A HDMI_DPCR2 DPLL Control Register 2 0x3B HDMI_DPCR3 DPLL Control Register 3 0x40 HDMI_AWDSR Audio Watch Dog Status Register 0x41 HDMI_VWDSR Video Watch Dog Status Register 0x42 HDMI_PAMICR Packet Acquire Mechanism Interrupt Control Register 0x43 HDMI_PTRSV1 Packet Type of RSV1 Packet	0x2D	HDMI_AAPNR	Action for Audio PLL Non-Lock Register
0x31HDMI_WDCR0Watch Dog Control Register 00x32HDMI_WDCR1Watch Dog Control Register 10x33HDMI_WDCR1Watch Dog Control Register 20x34HDMI_DBCRHDMI Double Buffer Control Register0x35HDMI_APTMCR0Audio PLL Test Mode Control Register 00x36HDMI_APTMCR1Audio PLL Test Mode Control Register 10x38HDMI_DPCR0DPLL Control Register 00x39HDMI_DPCR1DPLL Control Register 10x3AHDMI_DPCR2DPLL Control Register 20x3BHDMI_DPCR3DPLL Control Register 30x40HDMI_AWDSRAudio Watch Dog Status Register0x41HDMI_VWDSRVideo Watch Dog Status Register0x42HDMI_PAMICRPacket Acquire Mechanism Interrupt Control Register0x43HDMI_PTRSV1Packet Type of RSV1 Packet	0x2E	HDMI_APDMCR	Audio PLL Debug Mode Control Register
0x32HDMI_WDCR1Watch Dog Control Register 10x33HDMI_WDCR1Watch Dog Control Register 20x34HDMI_DBCRHDMI Double Buffer Control Register0x35HDMI_APTMCR0Audio PLL Test Mode Control Register 00x36HDMI_APTMCR1Audio PLL Test Mode Control Register 10x38HDMI_DPCR0DPLL Control Register 00x39HDMI_DPCR1DPLL Control Register 10x3AHDMI_DPCR2DPLL Control Register 20x3BHDMI_DPCR3DPLL Control Register 30x40HDMI_AWDSRAudio Watch Dog Status Register0x41HDMI_VWDSRVideo Watch Dog Status Register0x42HDMI_PAMICRPacket Acquire Mechanism Interrupt Control Register0x43HDMI_PTRSV1Packet Type of RSV1 Packet	0x30	HDMI_AVMCR	Audio and Video Mute Control Register
0x33 HDMI_WDCR1 Watch Dog Control Register 2 0x34 HDMI_DBCR HDMI Double Buffer Control Register 0x35 HDMI_APTMCR0 Audio PLL Test Mode Control Register 0 0x36 HDMI_APTMCR1 Audio PLL Test Mode Control Register 1 0x38 HDMI_DPCR0 DPLL Control Register 0 0x39 HDMI_DPCR1 DPLL Control Register 1 0x3A HDMI_DPCR2 DPLL Control Register 2 0x3B HDMI_DPCR3 DPLL Control Register 3 0x40 HDMI_AWDSR Audio Watch Dog Status Register 0x41 HDMI_VWDSR Video Watch Dog Status Register 0x42 HDMI_PAMICR Packet Acquire Mechanism Interrupt Control Register 0x43 HDMI_PTRSV1 Packet Type of RSV1 Packet	0x31	HDMI_WDCR0	Watch Dog Control Register 0
0x34HDMI_DBCRHDMI Double Buffer Control Register0x35HDMI_APTMCR0Audio PLL Test Mode Control Register 00x36HDMI_APTMCR1Audio PLL Test Mode Control Register 10x38HDMI_DPCR0DPLL Control Register 00x39HDMI_DPCR1DPLL Control Register 10x3AHDMI_DPCR2DPLL Control Register 20x3BHDMI_DPCR3DPLL Control Register 30x40HDMI_AWDSRAudio Watch Dog Status Register0x41HDMI_VWDSRVideo Watch Dog Status Register0x42HDMI_PAMICRPacket Acquire Mechanism Interrupt Control Register0x43HDMI_PTRSV1Packet Type of RSV1 Packet	0x32	HDMI_WDCR1	Watch Dog Control Register 1
0x35 HDMI_APTMCR0 Audio PLL Test Mode Control Register 0 0x36 HDMI_APTMCR1 Audio PLL Test Mode Control Register 1 0x38 HDMI_DPCR0 DPLL Control Register 0 0x39 HDMI_DPCR1 DPLL Control Register 1 0x3A HDMI_DPCR2 DPLL Control Register 2 0x3B HDMI_DPCR3 DPLL Control Register 3 0x40 HDMI_AWDSR Audio Watch Dog Status Register 0x41 HDMI_VWDSR Video Watch Dog Status Register 0x42 HDMI_PAMICR Packet Acquire Mechanism Interrupt Control Register 0x43 HDMI_PTRSV1 Packet Type of RSV1 Packet	0x33	HDMI_WDCR1	Watch Dog Control Register 2
0x36 HDMI_APTMCR1 Audio PLL Test Mode Control Register 1 0x38 HDMI_DPCR0 DPLL Control Register 0 0x39 HDMI_DPCR1 DPLL Control Register 1 0x3A HDMI_DPCR2 DPLL Control Register 2 0x3B HDMI_DPCR3 DPLL Control Register 3 0x40 HDMI_AWDSR Audio Watch Dog Status Register 0x41 HDMI_VWDSR Video Watch Dog Status Register 0x42 HDMI_PAMICR Packet Acquire Mechanism Interrupt Control Register 0x43 HDMI_PTRSV1 Packet	0x34	HDMI_DBCR	HDMI Double Buffer Control Register
0x38 HDMI_DPCR0 DPLL Control Register 0 0x39 HDMI_DPCR1 DPLL Control Register 1 0x3A HDMI_DPCR2 DPLL Control Register 2 0x3B HDMI_DPCR3 DPLL Control Register 3 0x40 HDMI_AWDSR Audio Watch Dog Status Register 0x41 HDMI_VWDSR Video Watch Dog Status Register 0x42 HDMI_PAMICR Packet Acquire Mechanism Interrupt Control Register 0x43 HDMI_PTRSV1 Packet	0x35	HDMI_APTMCR0	Audio PLL Test Mode Control Register 0
0x39 HDMI_DPCR1 DPLL Control Register 1 0x3A HDMI_DPCR2 DPLL Control Register 2 0x3B HDMI_DPCR3 DPLL Control Register 3 0x40 HDMI_AWDSR Audio Watch Dog Status Register 0x41 HDMI_VWDSR Video Watch Dog Status Register 0x42 HDMI_PAMICR Packet Acquire Mechanism Interrupt Control Register 0x43 HDMI_PTRSV1 Packet	0x36	HDMI_APTMCR1	Audio PLL Test Mode Control Register 1
0x3A HDMI_DPCR2 DPLL Control Register 2 0x3B HDMI_DPCR3 DPLL Control Register 3 0x40 HDMI_AWDSR Audio Watch Dog Status Register 0x41 HDMI_VWDSR Video Watch Dog Status Register 0x42 HDMI_PAMICR Packet Acquire Mechanism Interrupt Control Register 0x43 HDMI_PTRSV1 Packet Type of RSV1 Packet	0x38	HDMI_DPCR0	DPLL Control Register 0
0x3B HDMI_DPCR3 DPLL Control Register 3 0x40 HDMI_AWDSR Audio Watch Dog Status Register 0x41 HDMI_VWDSR Video Watch Dog Status Register 0x42 HDMI_PAMICR Packet Acquire Mechanism Interrupt Control Register 0x43 HDMI_PTRSV1 Packet Type of RSV1 Packet	0x39	HDMI_DPCR1	DPLL Control Register 1
0x40 HDMI_AWDSR Audio Watch Dog Status Register 0x41 HDMI_VWDSR Video Watch Dog Status Register 0x42 HDMI_PAMICR Packet Acquire Mechanism Interrupt Control Register 0x43 HDMI_PTRSV1 Packet Type of RSV1 Packet	0x3A	HDMI_DPCR2	DPLL Control Register 2
0x41 HDMI_VWDSR Video Watch Dog Status Register 0x42 HDMI_PAMICR Packet Acquire Mechanism Interrupt Control Register 0x43 HDMI_PTRSV1 Packet Type of RSV1 Packet	0x3B	HDMI_DPCR3	DPLL Control Register 3
0x42 HDMI_PAMICR Packet Acquire Mechanism Interrupt Control Register 0x43 HDMI_PTRSV1 Packet Type of RSV1 Packet	0x40	HDMI_AWDSR	Audio Watch Dog Status Register
0x43 HDMI_PTRSV1 Packet Type of RSV1 Packet	0x41	HDMI_VWDSR	Video Watch Dog Status Register
	0x42	HDMI_PAMICR	Packet Acquire Mechanism Interrupt Control Register
0x44 HDMI_PTRSV2 Packet Type of RSV2 Packet	0x43	HDMI_PTRSV1	Packet Type of RSV1 Packet
	0x44	HDMI_PTRSV2	Packet Type of RSV2 Packet

0x45	HDMI_PVGCR0	Packet Variation Global Control Register 0
0x46	HDMI_PVGCR1	Packet Variation Global Control Register 1
0x47	HDMI_PVGCR2	Packet Variation Global Control Register 2
0x48	HDMI_PVSR0	Packet Variation Status Register 0
0x49	HDMI_PVSR1	Packet Variation Status Register 1
0x4A	HDMI_PVSR2	Packet Variation Status Register 2
0x50	HDMI_VCR	Video Control Register
0x51	HDMI_ACRCR	ACR Control Register
0x52	HDMI_ACRSR0	ACR Status Register 0
0x53	HDMI_ACRSR1	ACR Status Register 1
0x54	HDMI_ACRSR2	ACR Status Register 2
0x55	HDMI_ACRSR3	ACR Status Register 3
0x56	HDMI_ACRSR4	ACR Status Register 4
0x57	HDMI_ACS0	Audio Channel Status 0
0x58	HDMI_ACS1	Audio Channel Status 1
0x59	HDMI_ACS2	Audio Channel Status 2
0x5A	HDMI_ACS3	Audio Channel Status 3
0x5B	HDMI_ACS4	Audio Channel Status 4
0x60	HDMI_INTCR	HDMI Interrupt Control Register
0x61	HDMI_ALCR	Audio Layout Control Register
0x62	HDMI_AOCR	Audio Output Control Register
0x70	HDMI_BCSR	HDMI Basic Coding Status Register
0x71	HDMI_ASR0	Audio Status Register 0
0x72	HDMI_ASR1	Audio Status Register 1

Register:: 1	Register:: HDMI_SR			0xCB
Name	Bits	R/W	Reset	Comments
			State	
Reserved	7		0	Reserved
AVMUTE	6	R	0	AV_MUTE flag of General Control Packet
				0: If HW receive Clear _AVMUTE flag of General Control Packet ,this bit
				shall assign to 0 until HW receive Set _AVMUTE
				1: If HW receive Set_AVMUTE flag of General Control Packet ,this bit shall
				assign to 1 until HW receive Clear_AVMUTE
				Note:
				If HW never receives "General Control Packet", this bit shall set to 0.
				If HW receive "General Control Packet" with Clear_AVMUTE flag = 0 &
				Set_AVMUTE flag = 0, this bit shall keep previous value.

				If HW receive "General Control Packet" with Clear_AVMUTE flag = 1 &
				Set_AVMUTE flag = 1, this bit shall keep previous value, but set "General
				Control Packet error flag".
VIC	5	R	0	If VIC(In AVI Infoframe) is different with pervious value ,this bit would
				be assigned to 1 until clear this bit. (write 1 clear for each bit)
SPDIFTYP	4	R	0	SPDIF coding type
E				0: LPCM
				1: Non-LPCM
PLLSTS	3	R	0	PLL status. This bit is global status, we could watch more detail
				information in PLL detail status byte.
				(write 1 clear for each bit)
				1: non-lock
				0: lock
AFIFOOF	2	R	0	0: Audio FIFO isn't overflow for X samples
				1: Audio FIFO is overflow for X sample
				(write 1 clear for each bit)
				If audio FIFO has stayed at overflow state for X-sample periods, this bit
				would be set to '1' until F/W clear this bit.
AFIFOUF	1	R	0	0: Audio FIFO isn't underflow for Y samples
				1: Audio FIFO is underflow for Y sample
				(write 1 clear for each bit)
				If audio FIFO has stayed at underflow state for Y-sample periods, this bit
				would be set to '1' until F/W clear this bit.
MODE	0	R	0	HDMI/DVI mode detected by auto function, even in manual mode, this
				bit could indicate decision of auto function.
				0: DVI
				1: HDMI

FW should read "PLL status" after 0.66ms~3 ms from FW clear this bit.

Register:: HDMI_GPVS				0xCC
Name	Bits	R/W	Reset State	Comments
NPS	7	R	0	Null Packet Status
PIS	6:5	R	0	Packet Input Status 6: RSV1 received 5: RSV0 received
PVS	4:0	R	0	Packet Variation Status 0: AVI infoframe 1: Audio infoframe 2: ACP 3: ISRC1 4: MPEG infoframe

Note. Write 1 Clear

- "Packet variation status":
 "Packet variation status" means packet content variation, bit4 ~ bit 0 corresponds to AVI info-frame, audio info-frame, ACP, ISRC1, and MPEG info-frame respectively.
 Before FW process the corresponding action item, FW should clear the corresponding bit of "Global Packet"
- Then FW read the content of the corresponding packet, polling "Global Packet variation status", check if corresponding bit of "Global Packet variation status" is 0, and execute follow-up action item if this bit is 0. Jump to step 2 if this bit is 1. 3.
- The variation result appears in "Global Packet variation status" after the corresponding packet finish transmitting.

"Packet input status":

- "Packet input status" represents updated status of RSV1, RSV0 respectively. If it is updated, "Packet input status" is assigned to 1 until F/W clear this bit.
 "Null Packet status": When receive null packet, "Null Packet status" is assigned to 1 until F/W clear this bit.
 If one bit of "Packet variation status" is cleared, the corresponding bit of "local variation flag for detail info" is
- 2. 3.
- also cleared.

Register:: HDMI_PSAP 0xCD

Name	Bits	R/W	Reset State	Comments
APSS	7:0	R/W	0	Address for Packet Storage SRAM

Register:: H	IDMI_I	PSDP		0xCE
Name	Bits	R/W	Reset	Comments
			State	
DPSS	7:0	R	0	Data Port for Packet Storage SRAM

BCH is stored in the 1st address of each packet type, its content is stated as following; Bit0: 2-bit error for bch header (0: 2-bit error doesn't occur; 1: 2-bit error occurs) Bit1: 2-bit error for bch block 0 (0: 2-bit error doesn't occur; 1: 2-bit error occurs) Bit2: 2-bit error for bch block 1 (0: 2-bit error doesn't occur; 1: 2-bit error occurs) Bit3: 2-bit error for bch block 2 (0: 2-bit error doesn't occur; 1: 2-bit error occurs) Bit4: 2-bit error for bch block 3 (0: 2-bit error doesn't occur; 1: 2-bit error occurs) Bit5: checksum result (0: checksum error doesn't occur; 1: checksum error occurs)

Packet Type and Address

Packet type	Variation status	Storage (byte)	Address needed	Address
		(+ means BCH)	(8 bits/add)	
AVI info	9+1(global)	16+	17	0~16
Audio info	4+1	8+	9	17~25
ACP	3+1	4+	5	26~30
ISRC1	1+1	18+	19	31~49
ISRC2	X	18+	19	50~68
MPEG info	3+1	8+	9	69~77
RSV0	1, only global	30+	31	78~108
RSV1	1, only global	30+	31	109~139

Table 2 Packet Type and Address SRAM map Table

Following register is assigned by "HDMI-address port", "HDMI-data port"

Register:: H	IDMI_	SCR		0x00
Name	Bits	R/W	Reset	Comments
			State	
Reserved	7:4		0	Reserved to 0
MODE	3	R/W	0	HDMI/DVI switch mode
				0: Auto detect flow is as fig.1
				1: Manual
MSMODE	2	R/W	0	Manual switch HDMI/DVI
				0: DVI
				1: HDMI
CABS	1	R/W	0	DVI/HDMI condition A, B select
				0: condition A: Detect data island preamble + data island guard band (appear
				count is decided by "N")
				condition B: Detect if data island preamble + data island guard band

				appear in continuous 30 or 2 frames(decide by bit 0) 1: condition A: Detect data island preamble + data island guard band & video preamble + video guard band(appear count is decided by "N") condition B: Detect if data island preamble + data island guard band & video preamble + video guard band appear in continuous 30 or 2 frames(decide by bit 0)
FCDDIP	0	R/W	0	Frame count to detect data island packet (Condition B) 0: 2 frames 1: 30 frames

1. HDMI/DVI auto switch mode, the information must be passed to HDCP:

DVI/HDMI decision flow is shown as below.

DVI/ HDMI decide flow

Fig 1

2. Power Saving for HDMI/HDCP:

In Power saving mode, TMDS channel Green/Red are always turn off. HDMI is power down.

There are only TMDS clock input frequency detect and channel blue DE decoder working.

The channel blue DE decoder is active after clock frequency is OK.

Register:: H	IDMI_	N_VAL		0x01
Name	Bits	R/W	Reset State	Comments
NVAL	7:0	R/W	1	N= 00: X 01: 1 FF: 255 N = 1 ~ 255, N can't be assigned to 0x00

Register:: HDMI_BCHCR				0x02
Name	Bits	R/W	Reset	Comments
			State	
Reserved	7:6		0	Reserved to 0
SPCSS	5	R/W	0	SPDIF preamble channel status Source, When PLL is non-lock
				0: Input audio sample (normal)
				1: Internal system
ENRWE	4	R/W	0	Enable noise reduction when BCH error is greater than one.
				1: Enable noise reduction
				0: Disable noise reduction
BCHE	3	R/W	1	BCH function enable
				1: Enable BCH function
				0: Disable BCH function, bit[2:1] are always 2'b00.
BCHES	2	R	0	BCH function's result, one bit error. It is set by this case, and cleared by
				write 1.
				This bit is the result of ORing 5 bits BCH 1 bit error.

				1: One bit error occurs. 0: No error occurs Note: If BCH detect 1-bit error, this bit would be assigned to 1 until clear this bit
BCHES2	1	R	0	BCH function's result, two bits error. It is set by this case, and cleared by write 1. This bit is the result of ORing 5 bits BCH 1 bit error. 1: 2-bit error occurs 0: 2-bit error don't occurs
				If BCH detect 2-bit error, this bit would be assigned to 1 until clear this bit
PE	0	R/W	0	The processing for Packet with two or more BCH error (not include Audio packet) 1: Block Info frame message 0: As correct frame, decided by F/W NOTE! Audio samples always go to FIFO

Register:: I	IDMI_	AFCR		0x03
Name	Bits	R/W	Reset State	Comments
Reserved	7		0	Reserved to 0
AOEM	6	R/W	1	Audio Output Enable mode 1: Auto audio output flow, bit[5:0] could be assigned by HW, but couldn't be assigned by FW. 0: Manual audio output flow, bit[5:0] could be assigned by FW, but couldn't be assigned by HW.
AOC	5	R	0	Audio output on/off control 0: Audio output off, cut off audio output immediately in "manual audio output flow", and audio output is turned on by auto audio output flow gradually in "auto audio output flow". 1: Audio output on, switch on audio output immediately in "manual audio output flow", and audio output is turned on by auto audio output flow gradually in "auto audio output flow".
AUDIO_T EST_ENA BLE	4	R/W	1	0:Disable 1:Generate sine wave to IIS/SPDIF internally This is assigned to "1" in IIS/SPDIF test mode, but it is assigned to "0" in normal mode.
MGC	3	R/W	0	Manual Gain control 1: Enable gain control, gain is decided by "Manual Audio Gain coefficient" 0: Disable gain control, gain = 1
AFIFOWE	2	R/W	0	Audio FIFO write enable 0: Disable, no audio sample would go in audio FIFO. This bit would clear Audio FIFO status, including read/write address, ovfl, unfl, and etc. 1: Enable FIFO audio Write, and enable bit[1:0] function, read control. (If buffer write to target depth, new data read out action is controlled by bit1).
AFIFORE	1:0	R/W	0	Audio FIFO read enable, this bit is only active when bit[2] = 1, 00: No audio frequency read, only drop old data when new data in. 01: Audio sample which read form FIFO repeats previous sample, only drop old data when new data in. 1x: Use audio frequency to read out FIFO.

Audio noise reduction 1

Register:: 1	HDMI_	AFSR		0x04
Name	Bits	R/W	Reset	Comments
			State	
Reserved	7:6		0	Reserved
BISTR	5	R	1	Audio FIFO BIST Result
				0: fail
				1: success
BISTS	4	R/W	0	Audio FIFO BIST Start (embedded test pattern)
				0: stop
				1: start(auto clear)
AFIFOF	3	R	0	Audio FIFO Full (write clear)
				0: Indicate FIFO is not full.
				1: Indicate FIFO is full.
AFIFOE	2	R	0	Audio FIFO Empty(write clear)
				0: Indicate FIFO is not empty.
				1: Indicate FIFO is empty.
Reserved	1:0		0	Reserved to 0

Register:: H	IDMI_	MAGCR		0x05
Name	Bits	R/W	Reset State	Comments
MG	7:0	R/W	0	Manual Gain . Unsigned floating. NOTE, gain value here is always less than 1. $8'h00 = 0$ $8'hFF = 1 - 2^-8$

Only valid when "Manual Gain control" is enabled in "manual audio output flow"

Register:: H	IDMI_I	MAGCR		0x06
Name	Bits	R/W	Reset	Comments

			State	
Reserved	7:6		0	Reserved to 0
AGI	5:3	R/W	4	Auto Gain Incremental
				000 : 2^ -8
				001 : 2^ -7
				010 : 2^ -6
				111:2^-1
AGD	2:0	R/W	4	Auto Gain Delay
				000 : 2^0 sample
				001 : 2^1 samples
				010 : 2^2 samples
				111 : 2^7 samples
				The total meanings of this byte are:
				When function is on, gain increase from 0 to 1 with 'incremental' per
				'delay'.
				When function is off, gain decrease from 1 to 0 with '-inc' per 'delay'.
				So that the default value means increase 2^-5 per 16 samples.

Only valid in "auto audio output flow"

Audio Clock Regeneration

Definition:

 $\begin{array}{ll} \text{fx: frequency of crystal} & \text{fps: frequency after P.S} \\ \text{fv: frequency of video} & \text{ffb: feed back frequency} \\ \text{fa: audio frequency} & \text{P.S: Phase Swallow} \\ \text{fout: } 128 * \text{fa} & \text{p: number of phase} \\ \end{array}$

far : recovered 128 * fa D : P.S density, shift D phase per cycle

 $\begin{array}{ll} \text{fm: freq. of mux-clock} & \text{df: fine tune of D} \\ \text{fvco: frequency after VCO} & \text{T*: Period of f*} \\ \text{NOTE!!! Signed number and detail procedures are not ready.} \end{array}$

Register:: 1	HDMI_	CMCR		0x10
Name	Bits	R/W	Reset	Comments
			State	
ICMUX	7	R/W	0	Input Clock MUX
				1: use video clock as input
				0: use crystal clock as input
OCS	6:5	R/W	2	Output Clock Select
				00: use crystal clock as output clock.
				01: use BCKin as output clock
				1X: use generated clock, far, as output clock (must set when power-saving)
DBDCB	4	R/W	0	Double Buffer Download Control Bit
				Enable is also triggered by HW, ref. "Phase error mode".
				1: write current data to active buffer.
				0: after write done, this bit would be cleared automatically.
				When set this bit to 1, "K", "S", "S1", "M", "D", "O", "DPLLBPN", "In/out
				clk mux", "Phase tracking enable control bits" would fill in after finish
				current audio PLL cycle and then set this bit to 0.
KCAPLL	3:0	R/W	3	K Code of Audio PLL, the value set here adding 1 is real div value
				0000: div 2
				1111: div 17

	If "DPLLBPN" == 1'b1, no div, else, div number is decided by these four
	bits.

NOTE:

- 1. When reading the registers with double buffers, the read-out value is the value in the 2nd buffer, not the value just written.
- 2. The meaning of default value of registers with double buffers is that default values of both 1st registers and 2nd buffer are the value written in spec.

Register:: H	IDMI_I	MCAPR		0x11
Name	Bits	R/W	Reset State	Comments
MC	7:0	R/W	4E	M Code
				00: div 2 FF: div 257

Register:: H	Register:: HDMI_SCAPR			0x12
Name	Bits	R/W	Reset State	Comments
SLC	7	R/W	0	S1 code 0: div 1 1: div 2
SC	6:0	R/W	5	S/2 code

Register:: H	IDMI_I	DCAPRO)	0x13
Name	Bits R/W Reset			Comments
			State	
DCAPR	7:0	R/W	0	D[15:8]

Register:: H	IDMI_I	DCAPR1		0x14
Name	Bits R/W Reset			Comments
			State	
DCAPR	7:0	R/W	0	D[7:0]

Register:: I	HDMI_	PSCR		0x15
Name	Bits	R/W	Reset	Comments
			State	
FDINT	7:5	R/W	7	When max. FIFO depth increase for n times or min. FIFO depth
				decrease for n times, turn FIFO tracking mechanism
				000 : xx
				001 : n=2,don't use this value for normal case
				010 : n=3
				011 : n=4
				100 : n=5
				101 : n=6
				110 : n=7
				111 : n=8
ETCN	4	R/W	0	Enable tracking of CTS & N
				0: disable.
				1: enable.
ETFD	3	R/W	0	Enable tracking of the trend of FIFO depth
				0: disable.
				1: enable.
ETFBC	2	R/W	0	Enable tracking of FIFO boundary condition
				(This bit is suggested to be 1)
				0: disable.
				1: enable.
PECS	1:0	R/W	1	Phase error count source(CTS & N)
				00: phase error counted by video clock
				01 : phase error counted by crystal clock

		10: phase error counted by fps/4, fdds
		11: It is too fast, about 500MHz, to be used

Note. Phase tracking control bits is bit4~bit2.

Register:: H	Register:: HDMI_FDDR			0x16
Name	Bits R/W Reset			Comments
			State	
FDDR	7:0	R	0	FIFO depth at DE rising, this unit is number of samples,

Register:: H	Register:: HDMI_FDDF			0x17
Name	Bits	R/W	Reset State	Comments
FDDF	7:0	R	0	FIFO depth at DE falling

Register:: H	Register:: HDMI_MFDDR			0x18
Name	Bits	R/W	Reset	Comments
			State	
MFDDR	7:0	R	0	Max. FIFO depth at DE rising. Auto clear to 0x00 when up-trend is
				confirmed and frequency up is triggered. Write 1 to clear this byte as
				0x00.the clear action needs video clock to work.

Register:: H	Register:: HDMI_MFDDF			0x19
Name	Bits	R/W	Reset	Comments
			State	
MFDDF	7:0	R	0	Min. FIFO depth at DE falling. Auto clear to 0xFF when down-trend is
				confirmed and frequency down is triggered. Write 1 to clear this byte as
				0x00.the clear action needs video clock to work.
				Write 1 to clear.

Register:: 1	Register:: HDMI_FTR			0x1A
Name	Bits	R/W	Reset	Comments
			State	
TL2DER	7:6	R	0	Trend of latest 2 DE rising.
				0X: the same
				10: trend down, which means FIFO depth goes lower and lower.
				11: trend up, which means FIFO depth goes larger and larger.
TL2DEF	5:4	R	0	Trend of latest 2 DE falling.
				0X: the same
				10: trend down, which means FIFO depth goes lower and lower.
				11: trend up, which means FIFO depth goes larger and larger.
TT	3:0	R/W	7	Target times for summation of one trend to decide the trend.
				Times = value set $+ 1$
				0000 : 1, 1111 : 16

Register:: H	Register:: HDMI_FBR			0x1B
Name	Bits	R/W	Reset	Comments
			State	
TFD	7:3	R/W	Е	Target FIFO depth , the unit is 4 address, and 16 bits in one address.
BAD	2:0	R/W	2	Boundary address distance for triggering Audio PLL tracking where
				boundary address= value set * 4, and 16 bits per address. 4 bytes*16 bits is
				one sample.
				When the value is 2,number of sample is 0,1,31,and 32 will trigger boundary
				condition.
				Value 0 can't be used.

Register:: H	r:: HDMI_ICPSNCR0				0x1C
Name	Bits	R/W	Reset	Comments	
			State		

IC	7:0	R/W	0	I code of N/CTS [15:8]
10	7.0	13/ 11	10	1 couc of 10/C10 [10:0]
Register:: H	IDMI	ICPSNC	R1	0x1D
Name	Bits	R/W	Reset	Comments
			State	
IC	7:0	R/W	0	I code of N/CTS [7:0]
Register:: I				0x1E
Name	Bits	R/W	Reset State	Comments
PC	7:0	R/W	0	P code of N/CTS [15:8]
10	7.0	10/11	U	T Couc of twe 15 [15.0]
Register:: I	IDMI	PCPSNO	CR1	0x1F
Name	Bits	R/W	Reset	Comments
			State	
PC	7:0	R/W	0	P code of N/CTS [7:0]
Register:: I			1	0x20
Name	Bits	R/W	Reset	Comments
ICT	7:0	R/W	State 0	I code of trend [15:8]
101	7.0	17/ 44	U	1 couc of fichia [15.0]
Register:: I	IDMI	ICTPSP	1	0x21
Name	Bits	R/W	Reset	Comments
			State	
ICT	7:0	R/W	0	I code of trend [7:0]
Register:: I			1	0x22
Name	Bits	R/W	Reset	Comments
PCT	7:0	R/W	State 0	D 1 £ 4 1 [15.0]
PCI	7:0	K/W	U	P code of trend [15:8]
Register:: H	IDMI	PCTPSE	21	0x23
Name	Bits	R/W	Reset	Comments
			State	
PCT	7:0	R/W	0	P code of trend [7:0]
Register:: I				0x24
Name	Bits	R/W	Reset	Comments
ICB	7:0	R/W	State 0	I code of boundary [15:8]
ICD	7.0	10/ 44	U	1 coue of boundary [15.0]
Register:: H	IDMI	ICRPSP	1	0x25
Name	Bits	R/W	Reset	Comments
			State	
ICB	7:0	R/W	0	I code of boundary [7:0]
Register:: I				0x26
Name	Bits	R/W	Reset	Comments
PCB	7:0	R/W	State 0	Deads of houndary [15.9]
ГCD	7.0	IX/ VV	U	P code of boundary [15:8]
Register:: I	ЮМІ	PCRPCE	21	0x27
Name	Bits	R/W	Reset	Comments
1.141110	17165	15, 11	State	
PCB	7:0	R/W	0	P code of boundary [7:0]
			_	

Register:: 1	HDMI_	NTx1024	TR0	0x28
Name	Bits	R/W	Reset	Comments
			State	
Reserved	7:4		0	Reserved to 0
RM	3	R/W	0	Restart measure. Measure the length of 1024 Tv by crystal. The result is readable from the following bits. 1: enable measure. Writing 1 would clear the answer. This bit would be auto cleared after measure done. 0: indicating measure is done.
NT	2:0	R	0	Number of Tx for 1024 Tv [10:8] , (How many Tx = 1024 * Tv)

Register:: H	IDMI_I	NTx1024	TR1	0x29
Name	Bits R/W Reset			Comments
			State	
NT	7:0	R/W	0	Number of Tx for 1024 Tv [7:0] , (How many $Tx = 1024 * Tv$)

Register:: H	Register:: HDMI_STBPR			0x2A
Name	Bits R/W Reset		Reset	Comments
			State	
FTB	7:0	R/W	0	The fast time for boundary df repeating. The unit is 16 crystal clock.
				8'h00: 16 crystal clock.
				8'h7F: 128 * 16 crystal clock.

Register:: H	Register:: HDMI_NCPER			0x2B
Name	Bits R/W Reset		Reset	Comments
			State	
NCPER	7:0	R	0	Phase error equals how many numbers of measuring clock, PE[7:0]

NOTE!! The active PI code of CTS&N would have proportional alike relation with Phase error.

The value of this byte is record of the maximum value after last write.

Write this byte when fpec exists would clear the value to 0.

When "pe_mode"==1, delay mode, the max value of phase error is 40. When "pe_mode"==1, clock mode, the max value of phase error is FF.

Register:: H	Register:: HDMI_PETR			0x2C
Name	Bits	R/W	Reset	Comments
			State	
PETR	7:0	R/W	FF	Phase error threshold of audio PLL non-lock

If "Phase error" is greater than phase error threshold, "PLL status" would be automatically assigned to 1 until FW clear it.

Register:: HDMI_AAPNR			0x2D	
Name	Bits	R/W	Reset	Comments
			State	
CMVTC	7	R/W	0	Clear max value (18, 19) when trend condition is sure.
				1: Enable trend to clear max value
				0: Disable this function
CMVBC	6	R/W	0	Clear max value (18, 19) when boundary condition is sure.
				1: Enable boundary to clear max value
				0: Disable this function
SSDMOU	5	R	0	Flag of sum_r of SDM overflow/underflow (Read only)
				1: Overflow or underflow happened
				0: No overflow, no underflow
TEF	4	R/W	0	Trend Error Flag
				1: Detect up and down at the same time. Clear only when disable SDM
				(2D[1] = 0)
				0: Trend is ok.
W1C5	3	W	0	Write 1 to clear bit [5]

PEM	2	R/W	0	Phase Error Mode,
				1: Use delay to calculate, each unit is 0.1 ns.
				0: Use clock to calculate, the clock select is at "PE count source".
ESDM	1	R/W	0	Enable SDM(phase swallow)
				1: Enable
				0: Disable, there won't be phase swallow operating in the loop of PLL.
Reserved	0		0	Reserved

Register:: HDMI_APDMCR				0x2E
Name	Bits	R/W	Reset	Comments
			State	
Reserved	7:6		0	Reserved
EDM	5	R/W	0	Enable Debug Mode
				0: Normal run
				1: Enable when test mode
PST	4	R/W	0	Phase swallow trend
				0: Fast direction
				1: Slow direction
PSC	3:0	R/W	0	Phase Swallow Cycle.
				Any bit is set to 1 for swallow, 0 for hold.

Behavior description of audio PLL non-clock

When system receive new audio or video timing, audio PLL would non-lock, and watch dog mechanism would force audio output to mute state(I2S DAC: MCLK,SCLK, and LRCK normal output, but SDATA output zero), so system should provide a stable fout to I2S DAC in audio mute state.

In the transition form normal fout to mute fout, fout frequency couldn't change too much, for this reason, HW provide double buffers of mechanism of "K", "S", "S1", "M", "D", "O", "DPLLBPN", "In/out clk mux", "Phase tracking enable control bits".

For initial state, a stable fv input to audio PLL, and audio PLL would lock by use suitable "KMSDO"&PI code. The suitable "KMSDO" could be named as "KMSDO1", and it would save in 2nd buffer (The value of 2nd buffer could be applied to audio PLL directly, and that of 1st buffer is used to backup, when "double buffer download control bit" is assigned to 1, the value of 1st buffer would be downloaded to 2nd buffer). F/W should calculate "KMSDO2" of crystal clock input to produce a fout which is the same as present fout , then save KMSDO2 in 1st buffer of KMSDO, F/W also assign "phase tracking control bits" to 000'b in 1st buffer, and assign "input clock mux" to "crystal input" in 1st budder.

When audio PLL is non-lock(change audio frequency or video frequency), the 1st buffer content of "KMSDO", "phase tracking control bits", and "input clock mux" would download to their corresponding 2nd buffers. Then audio PLL would switch input to crystal in, apply KMSDO2, and disable phase tracking at the same time, and provide a stable fout to I2SDAC foe mute state.

In mute state, F/W calculate KMSDO(KMSDO3) of new audio or video timing, assign KMSDO3 in 1st buffer of KMSDO, F/W also assign "enable setting" in 1st buffer of phase tracking enable control, and assign "video input" to second buffer of input clock mux.

Assign PI code, then double buffer download control bit is assigned to 1, audio PLL would switch input to video in, apply KMSDO3, and disable phase tracking at the same time, and provide a fout for new video and audio timing.

Register::	HDMI_	AVMCR		0x30
Name	Bits	R/W	Reset	Comments
			State	
Reserved	7		0	Reserved
AOC	6	R/W	0	Audio output enable/disable control
				1: Enable
				0: Disable
				If this bit is enabled, audio output signal would be controlled by bit4.
				When FW set this bit to 1, then HW will return this bit to 0 if audio PLL
				non-lock if audio PLL non-lock.
AOMC	5	R/W	0	Audio Output Mute Control
				1: Normal output
				0: Mute
				If bit 5 is 0, output of I2S & SPDIF shall be disabled regardless of 1 or 0 in
				this bit for "auto audio output flow".
				When FW set this bit to 1,then HW will return this bit to 0 if audio PLL is
				non-lock
AWD	4	R/W	0	If Audio Watch Dog event occur, audio output would be
				0: Mute
		<u> </u>	_	1: Disable
VE	3	R/W	0	Video Enable
				1: Enable video output
1 1 m c		D #11		0: disable video output
AMPIC	2	R/W	0	Audio Mute Pin Invert Control, execute when mute/disable happens.
				0: when event (audio mute or disable) occur, set this pin to low voltage,
				others maintain high.
				1: when event (audio mute or disable) occur, set this pin to high voltage, others maintain low
VDPIC	1	R/W	0	
VDPIC	1	K/W	0	Video Disable Pin Invert Control
				0: when event (video disable) occurred, set this pin to low voltage, others maintain high.
				1: when event (video disable) occurred, set this pin to high voltage, others
				maintain low.
NFPSS	0	R/W	0	IRQ Output Pin Polarity Inverse
141.1.99		IX/ VV	0	0: no inverse, which means H: IRQ, L: no IRQ
				1: inverse, which means H: no IRQ L: IRQ
				1. Inverse, which means 11. no inv L: inv

Definition:

Disable Video Assign "DE pins", "VS pin", "HS pin", "CTRL(4) pins", "CLK pin", "Data(24) pins" to zero , refer to "Global System"

Mute Audio 1. In I2S application, keep MCLK*4, SCLK*4, and LRCK*4 to normal output,but cut SDATA*4 to zero.

2. In SPDIF application, keep preamble (M,B,W) to normal output, but cut other bits to zero.

SPDIF => Assign all bits to zero.

Register::	HDMI_	WDCR)	0x31
Name	Bits	R/W	Reset State	Comments
ASMFE	7	R/W	1	Auto SET_AVMUTE function enable 0: If HW receives SET_AVMUTE flag, don't mute/disable audio & disable video by HW. 1: If HW receives SET_AVMUTE flag, mute/disable audio & disable video by HW. Note: If "CLEAR_AVMUTE" and "SET_AVMUTE" of the General Control Packet are all 1, keep previous A/V output state, and pull up "General Control Packet error flag"
Reserved	6		1	Reserved to 1
Reserved	5		0	Reserved to 0
AWDCT	4	R/W	0	Audio watch dog for audio coding type(Decode from SPDIF, code type only include LPCM or Non-LPCM) 0: If coding type is different with previous type, don't mute/disable audio by HW. 1: If coding type is different with previous type, mute/disable audio by HW.
AWDAP	3	R/W	0	Audio Watch dog enable for audio PLL 0: If audio PLL is non-lock, don't mute/disable audio by HW. 1: If audio PLL is non-lock, mute audio, mute/disable audio by HW.
AWDFO	2	R/W	0	Audio watch dog function for audio FIFO overflow for "X" sample. 0: If audio FIFO is overflow for X samples, don't mute/disable audio by HW. 1: If audio FIFO is overflow for X samples, mute/disable audio by HW.
AWDFU	1	R/W	0	Audio watch dog function for audio FIFO underflow for "Y" sample. 0: If audio FIFO is underflow for Y samples, don't mute/disable audio by HW. 1: If audio FIFO is underflow for Y samples, mute/disable audio by HW.
CT	0	R/W	0	"SPDIF coding type" is decoded by 0: Channel status bit 1 1: Valid bit

Audio/Video watch dog for "packet acquire mechanism" is listed in Packet acquire mechanism Unit.

Register:: H	Register:: HDMI_WDCR1			0x32
Name	Bits	R/W	Reset State	Comments
AWDCK	7	R/W	0	Audio Watch Dog For TMDS clock 1: If TMDS clock disappears, mute or disable audio. 0: If TMDS clock disappears, doesn't mute or disable audio.
AWDLF	6	R/W	0	Audio Watch Dog For Layout Field Of Audio Sample Packet 1: If layout field is different with previous value, mute or disable audio. 0: If layout field is different with previous value, don't mute or disable audio.
Rev	5		0	Reserved
VWDACT	4	R/W	0	Video Watch Dog For Audio Coding Type 1: If coding type is different with previous type, disable video 0: If coding type is different with previous type, don't disable video
XV	3:0	R/W	0	X Value 0000: 1 0001: 3

		4444 04
		1 1111:31
		1111. 31

Register:: H	IDMI_	WDCR2		0x33
Name	Bits	R/W	Reset	Comments
			State	
VWDAP	7	R/W	0	Video Watch dog enable for audio PLL
				1: If audio PLL is non-lock, disable video
				0: If audio PLL is non-lock, don't disable video
VWDLF	6	R/W	0	Video watch dog for layout field of audio sample packet
				1: If layout field is different with previous value, disable Video.
				0: If layout field is different with previous value, don't disable Video.
VWDAFO	5	R/W	0	Video watch dog function for audio FIFO overflow.
				1: If audio FIFO is overflow for "X" samples, disable Video.
				0: If audio FIFO is overflow for "X" samples, don't disable Video.
VWDAFU	4	R/W	0	Video watch dog function for audio FIFO underfloww.
				1: If audio FIFO is underflow for "Y" samples, disable Video.
				0: If audio FIFO is overflow for "Y" samples, don't disable Video
YV	3:0	R/W	0	Y value
				0000:1
				0001:3
				~
				1111:31

Register:: 1	HDMI_	DBCR		0x34
Name	Bits	R/W	Reset	Comments
			State	
Reserved	7:4		0	Reserved
ALDBFv	3	R/W	0	Auto Load Double Buffer when TMDS clock disappear
				0: If TMDS clock disappear, don't assign "double buffer download control bit" to 1 by HW
				1: If TMDS clock disappear, assign "double buffer download control bit" to 1 by HW.
				Note:
				If this bit is 0, "phase tracking control bits" shall be downloaded to 2 nd buffer
				by assigned "double buffer download control bit" to 1.
				If this bit is 1, "phase tracking control bits" shall be downloaded to 2^{nd} buffer by HW if fv < 25MHz or fv > 165MHz.
ALDBFO	2	R/W	0	Auto Load Double Buffer when FIFO overflow is for X samples.
				0: If audio FIFO is overflow for X samples, don't assign "double buffer download control bit" to 1 by HW
				1: If FIFO is overflow for X samples, assign "double buffer download control bit" to 1 by HW.
				Note:
				If this bit is 0, "phase tracking control bits" shall be downloaded to 2 nd buffer by assigned "double buffer download control bit" to 1.
				If this bit is 1, "phase tracking control bits" shall be downloaded to 2 nd buffer
				by HW if FIFO is overflow for X samples.
ALDBFU	1	R/W	0	Auto Load Double Buffer when FIFO underflow is for Y samples.
112221 0				O: If audio FIFO is underflow for Y samples, don't assign "double buffer download control bit" to 1 by HW
				1: If FIFO is underflow for Y samples, assign "double buffer download control bit" to 1 by HW. Output Description: Output Descr
				Note:
				If this bit is 0, "phase tracking control bits" shall be downloaded to 2 nd buffer
				by assigned "double buffer download control bit" to 1.
				If this bit is 1, "phase tracking control bits" shall be downloaded to 2 nd buffer
				by HW if FIFO is underflow for Y samples.
ALDBPN	0	R/W	0	Auto Load Double Buffer when PLL non-lock.
				This function needs crystal clock to work, which means it can't work when

power down. After PLL non-lock, 0: If audio PLL non-lock occurred, don't assign "double buffer download control bit" to 1 by HW 1: If audio PLL non-lock occurred, assign "double buffer download control bit" to 1 by HW. Note:
If this bit is 0, "phase tracking control bits" shall be downloaded to 2 nd buffer by assigned "double buffer download control bit" to 1. If this bit is 1, "phase tracking control bits" shall be downloaded to 2 nd buffer by HW if "PLL status" is non-lock.

Register:: H	egister:: HDMI_APTMCR0			0x35
Name	Bits	Bits R/W Rese		Comments
			State	
FPS	7:4	R/W	0	1st phase shift amount for a step
SPS	3:0	R/W	0	2 nd phase shift amount for a step

Register:: I	HDMI_	APTMC	R1	0x36
Name	Bits	R/W	Reset	Comments
			State	
Reserved	7		0	Reserved
PLLTM	6	R/W	0	PLL test mode enable
				1: enable
				0: disable
FPSD	5	R/W	0	1 st phase shift direction
				0: upwards
				1: downwards
SPSD	4	R/W	0	2 nd phase shift direction
				0: upwards
				1: downwards
NFPSS	3:0	R/W	0	Number of 1 st phase shift step

In test mode, PLL shift its phase by 16 steps periodically. The steps which are performed in 1^{st} phase each 16 steps could be assigned by "Number of 1^{st} phase shift step", remaining steps are performed in 2^{nd} phase.

Register:: H	IDMI_	DPCR0		0x38
Name	Bits	R/W	Reset	Comments
			State	
DPLLC2	7	R/W	1	DPLLPWDN
				0: power up
				1: power down
DPLLC1	6	R/W	0	DPLLFREEZE
				0: normal
				1: freeze
DPLLC0	5:4	R/W	0	DPLLO
				div 2^(DPLLO)
DPLL_CAL	3	R/W	0	DPLL bypass calibration(active high)
BP				DI EL bypass cambi atton(active mgn)
DPLL_CAL	2	R/W	0	calibration validated (so high often neven on 1200us)
SW				calibration validated (go high after power on 1200us)
DPLL_CAL	1	R/W	0	latch calibration (go high after power on 1100us)
LCH				laten campi ation (go mgn after power on 1100us)
DPLL_CMP	0	R/W	0	cmp enable (go high after power on 1000us)
EN				clip enable (go liigh after power on 1000us)

Register:: H	Register:: HDMI_DPCR1			0x39
Name	Bits	R/W	Reset	Comments

			State	
DPLL_RS	7:5	R/W	3	DPLL Loop Filter Resister Control
				RS: 000:16K 001:18K 010:20K 011:22K
				100: 24K 101: 26K 110:28K 111:30K
DPLL_CS	4:3	R/W	2	DPLL Loop Filter Capacitor Control
				CS= 00:18p, 01:20p, 10:24p, 11:28p
DPLL_IP	2:0	R/W	2	DPLL Charge Pump Current Control
				Icp=(2.5uA+2.5uA*bit[0]+5uA*bit[1]+10uA*bit[2])
				Keep DPM/Icp constant=10.67

Register:: HDMI_	DPCR2	2		0x3A
Name	Bits	R/W	Reset	Comments
			State	
DPLLSTATUS	7	R	0	DPLLSTATUS(DPLL WD Status)
				0:Normal
				1:Abnormal
DPLLWDRST	6	R/W	0	DPLLWDRST(DPLL WD Reset)
				0:Normal
				1:Reset
DPLLWDSET	5	R/W	0	DPLLWDSET(DPLL WD Set)
				0:Normal
				1:Set
DPLL_VCOMD	4:3	R/W	3	DPLL VCO Default mode
				00: VCO slowest, 11: VCO fastest
DPLLRESERVE	2	R/W	1	DPLLRESERVE, phase swallow circuit clock select
				0: fvco, default is 1
				1: fps
DPLLSTOP	1	R/W	1	DPLLSTOP(DPLL Frequency Tuning Enable)
				0:Disable
				1:Enable
DPLL_CP	0	R/W	0	CP Control 0:CP=1.77pF 1:CP=2.1pF

Register:: H	IDMI_I	DPCR3		0x3B
Name	Bits	R/W	Reset	Comments
			State	
DPLL_VO2	7	R	0	DPLL CAL OUT2
DPLL_VO1		R	0	DPLL CAL OUT1
DPLL_CAL	5:4	R	0	DPLL calibrated VCO code
RESERVED	3	R/W	0	Reserved.
DPLLBPN	2	R/W	0	DPLLBPN
				0: divider K enable
				1: divider K disable(K=1)
DPLL_RES	1	R/W	0	DPLL_RESERVE1
ERVE1				
DPLLVCOR	0	R/W	0	RESET VCO (active high)
STB				

Packet Acquire Mechanism

Register:: HI	Register:: HDMI_AWDSR			0x40
Name	Bits			Comments
			State	
Reserved	7:5		0	Reserved to 0
AWDPVSB	4:0	R/W	0	Audio watch dog for Packet variation status bit

If a bit is assigned to 1 and the corresponding bit of "Global Packet variation status" is 1, audio output will be disabled/muted.

Register:: HD	Register:: HDMI_VWDSR			0x41
Name	Bits	R/W	Reset State	Comments
Reserved	7:5		0	Reserved to 0
VWDPVSB	4:0	R/W	0	Video watch dog for Packet variation status bit

If a bit is assigned to 1 and the corresponding bit of "Global Packet variation status" is 1, video output will be disabled.

Register:: HD	egister:: HDMI_PAMICR			0x42
Name	Bits	R/W	Reset	Comments
			State	
Reserved	7:5		0	Reserved to 0
ICPVSB	4:0	R/W	0	IRQ control for Packet variation status bit

If a bit is assigned to 1 and the corresponding bit of "Global Packet variation status" is 1, issue IRQ signal. Note: The corresponding bit of "Global Packet variation status" means bit0 maps to bit 0 of "Global Packet variation status, bit1" maps to bit 1 of "Global Packet variation status",...etc.

Register:: HD	Register:: HDMI_PTRSV1			0x43
Name	Bits	R/W	Reset	Comments
			State	
PT	7:0	R/W	0	Packet Type of RSV1 packet

Register:: HD	MI_PT	RSV2		0x44
Name	Bits	R/W	Reset State	Comments
PT	7:0	R/W	0	Packet Type of RSV2 packet

Register:: HD	MI_PV	GCR0		0x45
Name	Bits	R/W	Reset	Comments
			State	
PVSEF	7:0	R/W	FF	Bit7 ~ Bit0 of packet variation status enable flag

Register:: HD	MI_PV	GCR1		0x46
Name	Bits			Comments
			State	
PVSEF	7:0	R/W	FF	Bit15 ~ Bit8 of packet variation status enable flag

Register:: HD	Register:: HDMI_PVGCR2			0x47
Name	Bits R/W		Reset	Comments
			State	
Reserved	7:4		0	Reserved
PVSEF	3:0	R/W	F	Bit19 ~ Bit16 of packet variation status enable flag

When the bits of enable "Packet Variation Global Control Register" are set, the corresponding "Packet Variation Status Register" bits will OR to "Packet Variation Global Control Register".

Register:: HD	MI_PV	SR0		0x48
Name	Bits	R/W	Reset	Comments
			State	

1	PVS	7:0	R	0	Bit7 ~ Bit0 of packet variation status
	1 , 0	,		0	Dit Dito of packet fullation status

Register:: HD	MI_PV	SR1		0x49
Name	Bits	R/W	Reset	Comments
			State	
PVS	7:0	R	0	Bit15 ~ Bit8 of packet variation status

Register:: HDMI_PVSR2				0x4A
Name	Bits R/W Reset			Comments
			State	
Reserved	7:4		0	Reserved
PVS	3:0	R	0	Bit19 ~ Bit16 of packet variation status

There are 20 bits "Enable flags to global Packet variation". Each bit is set to watching a standard type of received packet content, and checking if it changed from the previous received packet.

If received packet content changed from previous received one, the relative bit in "local variation flag for detail info." register will be set, and it will trigger the "global packet variation status" set.

The following table presents the detail of "local variation flag for detail info."

InfoFrame	Bit	Description		
AVI	0	Y0Y1change		
	1	A0,R0,R1,R2,R3 change		
	2	S0,S1 any bit change		
	3	C0,C1 change		
	4	M0,M1 change		
	5	VIC0 ~ VIC6 change		
	6	PR0 ~ PR6 change		
	7	SC1,SC0 change		
	8	B0,B1,Top bar, bottom bar, left bar, right bar change		
Audio	9	CC0~CC3 change		
	10	CA0~CA7 change		
	11	LSV0~LSV3 change		
	12	DM_INH any bit change		
ACP	13	ACP_Type change		
	14	DVD-audio_type_dependent_generation change		
	15	Copy_Permission, Copy_Number,Quality,& Transaction change		
ISRC1	16	ISRC_status change		
MPEG	17	MB#3~MB#0 change		
	18	FR0 change		
	19	MF1,MF0 change		

Register:: HD	MI_V	CR		0x50
Name	Bits	R/W	Reset	Comments
			State	
EOI	7	R/W	0	EVEN/ODD Inverse
				0: Normal

				1: Inverse
EOT	6	R	0	EVEN/ODD Toggle (write 1 clear)
				0: Progressive
				1: Interlace
SE	5	R	0	EVEN/ODD signal error (write 1 clear)
				0: Normal
				1: Error
RS	4	R/W	0	The reference signal for executing Info-frame automatically.
				0: DEN
				1: VSYNC
DSC	3:0	R/W	0	Down sample control (only valid if Video Down Sampling Auto Mode
				Disable)
				0000: pixel down sample for 1 time(no down sample)
				0001: pixel down sample for 2 times
				0010: pixel down sample for 3 times
				0011: pixel down sample for 4 times
				0100: pixel down sample for 5 times
				0101: pixel down sample for 6 times
				0110: pixel down sample for 7 times
				0111: pixel down sample for 8 times
				1000: pixel down sample for 9 times
				1001: pixel down sample for 10 times
				others: XXX

Register:: H	DMI_A	CRCR		0x51
Name	Bits	R/W	Reset	Comments
			State	
HDIRQ	7	R/W	0	HDMI/DVI change interrupt enable
				0:disable
				1:enable
CSAM	6	R/W	1	Color Space Translation
				0: Manual
				1: Auto
CSC	5:4	R/W	0	Color Space Control (if CSAM=1, CSC will be read-only)
				00: RGB
				01: YCrCb-422
				10: YCrCb-444
				11: Reserved
Reserved	3		0	Reserved to 0
PRDSAM	2	R/W	1	Pixel Repetition down sampling auto mode
				1: auto, the circuit resolve the repeat number, and enable it in next frame.
				The result could be read in bits for repeat number.
				0: manual, F/W sets repeat number, the number is set in bits for repeat
				number.
PUCNR	1	R/W	0	Pop up CTS&N result
				0: No pop up
				1: Pop up result (Pop up CTS&N which is acquired completely. If present
				N&CTS is acquiring, pop up previous complete N&CTS)
				If the info is updating, HW will refuse this command.
PUCSR	0	R/W	0	Pop up channel status result
				0: No pop up
				1: Pop up result (Pop up channel status which is acquired completely. If
				present channel status is acquiring, pop up previous complete channel
				status)

Register:: HD	MI_AC	CRSR0		0x52
Name	Bits	R/W	Reset State	Comments
CTS	7:0	R	0	CTS in usage, CTS[19:12]

Register:: HDMI_ACRSR1				0x53
Name	Bits	R/W	Reset State	Comments
CTS	7:0	R	0	CTS in usage, CTS[11:4]

Register:: HD	MI_AC	CRSR2		0x54
Name	Bits	R/W	Reset State	Comments
CTS	7:4	R	0	CTS in usage, CTS[3:0]
N	3:0	R	0	N in usage, N[19:16]

Register:: HDMI_ACRSR3				0x55
Name	Bits	R/W	Reset State	Comments
N	7:0	R	0	N in usage, N[15:8]

Register:: HD	MI_AC	CRSR4		0x56
Name	Bits	R/W	Reset State	Comments
N	7:0	R	0	N in usage, N[7:0]

Register:: HD	Register:: HDMI_ACS0			0x57
Name	Bits	R/W	Reset	Comments
			State	
CS	7:0	R	0	Channel status bit7~ bit0

Register:: HD	legister:: HDMI_ACS1			0x58
Name	Bits	R/W	Reset State	Comments
			State	
CS	7:0	R	0	Channel status bit 15~ bit 8

Register:: HD	MI_AC	CS2		0x59
Name	Bits	R/W	Reset	Comments
			State	
CS	7:0	R	0	Channel status bit23~ bit 16

Register:: HD	MI_AC	CS3		0x5A
Name	Bits	R/W	Reset State	Comments
CS	7:0	R	0	Channel status bit 31~ bit 24

Register:: HD	MI_AC	CS4		0x5B
Name	Bits	R/W	Reset State	Comments
CS	7:0	R	0	Channel status bit 39~ bit 32

Register:: HDMI_INTCR				0x60
Name	Bits	R/W	Reset	Comments
			State	
PENDING	7	R	0	When IRQ occurred, this bit would be assigned to 1 by HW, and IRQ
				would be pended until FW clear this bit.(write 1 clear)
AVMUTE	6	R/W	0	If get General control packet and the corresponding Set_AVMUTE
				flag & Clear_AVMUTE flag is different with previous values
				0: IRQ don't occur.
				1: IRQ occur.

FIFOD	5	R/W	0	If FIFO depth reach Target (Used for manual audio flow)
				0: IRQ don't occur
				1: IRQ occur
ACT	4	R/W	0	Audio Coding Type
				0: If audio coding type is different with previous value, IRQ doesn't
				occur.
				1: If audio coding type is different with previous value, IRQ occurs.
APLL	3	R/W	0	Audio PLL
				0: If audio PLL is non-lock, IRQ doesn't occur
				1: If audio PLL is non-lock, IRQ occurs
AFIFOO	2	R/W	0	Audio FIFO Overflow
				0: If audio FIFO is overflow for X samples, IRQ doesn't occur.
				1: If audio FIFO is overflow for X samples, IRQ occurs.
AFIFOU	1	R/W	0	Audio FIFO Underflow
				0: If audio FIFO is underflow for Y samples, IRQ doesn't occur.
				1: If audio FIFO is underflow for Y samples, IRQ occurs.
VC	0	R/W	0	1: If video clock is higher than 165Mhz or lower than 25Mhz (refer to
				NL), IRQ doesn't occur.
				0: If video clock is higher than 165Mhz or lower than 25Mhz (refer to
				NL), IRQ occurs.

Register:: HDMI_ALCR				0x61
Name	Bits	R/W	Reset State	Comments
LO1	7:6	R/W	0	Speaker location of I2S #1 & SPDIF OUT#1 00: from SubPacket0 of Audio Sample Packet 01: from SubPacket1 of Audio Sample Packet 10: from SubPacket2 of Audio Sample Packet 11: from SubPacket3 of Audio Sample Packet
LO2	5:4	R/W	1	Speaker location of I2S #2 & SPDIF OUT #2
LO3	3:2	R/W	2	Speaker location of I2S #3 & SPDIF OUT #3
LO4	1:0	R/W	3	Speaker location of I2S #4 & SPDIF OUT #4

Register:: HDMI_AOCR				0x62
Name	Bits	R/W	Reset	Comments
			State	
SPDIFO1	7	R/W	0	SPDIF 1 Output Switch
				0: cutoff
				1: normal
SPDIFO2	6	R/W	0	SPDIF 2 Output Switch
SPDIFO3	5	R/W	0	SPDIF 3 Output Switch
SPDIFO4	4	R/W	0	SPDIF 4 Output Switch
I2SO1	3	R/W	0	I2S 1 Output Switch
				0: cutoff
				1: normal
I2SO2	2	R/W	0	I2S 2 Output Switch
I2SO3	1	R/W	0	I2S 3 Output Switch
I2SO4	0	R/W	0	I2S 4 Output Switch

Register:: HDMI_BCSR				0x70
Name	Bits	R/W	Reset State	Comments
Reserved	7:6		0	Reserved to 0
NVLGB	5	R	0	Video No Leading Guard Band If no leading GB after video preamble (It is only triggered in HDMI mode), this bit would be assigned to 1 until clear this bit Write 1 to clear.
NALGB	4	R	0	Audio No Leading Guard Band If no leading GB after audio preamble (It is only triggered in HDMI

				mode), this bit would be assigned to 1 until clear this bit
				Write 1 to clear.
NATGB	3	R	0	Audio No Trailing Guard Band
				If audio packets without trailing GB, this bit would be assigned to 1 until
				clear this bit.
				Write 1 to clear.
NGB	2	R	0	No Guard Band
				If any type of GB is not synchronous in 3 channels(audio is only 2
				channel), this bit would be assigned to 1 until clear this bit.
				Write 1 to clear.
PE	1	R	0	Packet Error
				If size of Data Island Packet is not times of 32, this bit would be assigned
				to 1 until clear this bit.
				Write 1 to clear.
GCP	0	R	0	General Control Packet error flag:
				If HW receive General Control Packet with Clear_AVMUTE=1 &
				Set_AVMUTE=1, assign this bit to 1 until clear this bit
				Write 1 to clear.

Register:: H	Register:: HDMI_ASR0			0x71
Name	Bits	R/W	Reset State	Comments
Reserved	7:3		0	Reserved to 0
FsRE	2	R	0	Fs Regeneration Error If CTS & N received 0, this bit would be assigned to 1 until clear this bit Write 1 to clear.
FsIF	1	R	0	Fs from InfoFrame If audio frequency from InfoFrame ready, this bit would be assigned to 1 until clear this bit Write 1 to clear.
FsCS	0	R	0	Fs from Channel Status If audio frequency from Channel Status ready, this bit would be assigned to 1 until clear this bit Write 1 to clear.

Register:: HDMI_ASR1 0x72				
Name	Bits	R/W	Reset	Comments
			State	
Reserved	7		0	Reserved
FBIF	6:4	R	0	Frequency bits from info frame
				000: refer to channel status bits
				001: 32k
				010: 44.1k
				011: 48k
				100: 88.2k
				101: 96k
				110: 176.4k
				111: 192k
FBCS	3:0	R	0	Frequency bits from channel status. (pop up with channel status
				simultaneously)
				0010: 22.05k
				0000: 44.1k
				1001: 88.2k
				0011: 176.4k
				0110: 24k
				0100: 48k
				0101: 96k
				0111: 192k
				1100: 32k

Register:: TM	DS_DF	C_SET	0	0x80
Name	Bits	R/W	Reset	Comments
			State	
dpc_en	7	R/W	0	
phase_errcnt_i n	6:4	R/W	0	Max. times of phase error to rise error flag
				3'b000 → count 8 times
				3'b001~3'b111 → count 1~7 times
phase_clrcnt_i n	3:1	R/W	0	Max. times of sync. Signal to clear the phase error counter according to
				"phase_clr_sel"
				$\beta'b000 \rightarrow \text{count } 8 \text{ times}$
				3'b001~3'b111 → count 1~7 times
phase_clr_sel	0	R/W	0	Unit of "phase_clrcnt_in"
				0: Use V sync
				1: Use H sync

Register:: TM	Register:: TMDS_DPC_SET1			0x81
Name	Bits	R/W	Reset State	Comments
set_full_noti	7:4	R/W	0	Set full notifier level (recommend: 3'd7) 3'b000~3'b111→ set 0~7
set_empty_noti	3:0	R/W		Set empty notifier level (recommend: 3'd3) 3'b000~3'b111→ set 0~7

Register:: TM	DS_DF	C_SET	2	0x82
Name	Bits	R/W	Reset State	Comments
fifo_errcnt_in	7:5	R/W	0	Max. times of FIFO error to rise error flag
				3'b000 → count 8 times
				3'b001~3'b111 → count 1~7 times
clr_phase_flag	4	R/W	0	Clear phase error flag
clr_fifo_flag	3	R/W	0	Clear FIFO error flag
dpc_phase_ok	2	R	0	Phase locking OK

dpc_phase_err _flag	1	R	0	Become 1 when phase error than "phase_errcnt_in" number
dpc_fifo_err_fl ag	0	R	0	Become 1 when fifo error than "fifo_errcnt_in" number

Register:: TMDS_DPC_SET3 0x83				
Name	Bits	R/W	Reset State	Comments
dpc_fifo_over_ flag	7	R	0	Become 1 when internal FIFO receive writing signal while it is full.
dpc_fifo_under _flag	6	R	0	Become 1 when internal FIFO receive reading signal while it is empty.
dpc_fifo_over_ xflag	5	R	0	Become 1 when internal FIFO receive writing signal while it is full. If (fifo_under_xflag=1), this flag is not active.
dpc_fifo_under _xflag	4	R	0	Become 1 when internal FIFO receive reading signal while it is empty. If (fifo_over_xflag=1), this flag is not active.
Reserved	3:0		0	reserved

LiveShowTM Control (Page 3)

Register::LS_CTR	L0			0xA1
Name	Bits	Read/Write	Reset State	Comments
LS_BYPASS	7	R/W	0	Display Pixel Resolution
				0: Bypass LiveShow TM Processing
				1: Enable LiveShow TM Procesing
LS_BUF_EN	6	R/W	0	Enable SDRAM Buffer Access
				0: Disable
				1: Enable
LS_PD_EST	5	R/W	0	Level Estimation
				0: Disable
				1: Enable
LS_CPRS_EN	4	R/W	0	Huffman Data Compression
				0: Disable
				1: Enable
LS_GAIN_EN	3	R/W	0	Delta Gain Adjustment
				0: Disable (Delta Gain=1)
				1: Enable
LS_DISP_RES	2	R/W	0	Display Pixel Resolution
				0: 8-bit
				1: 6-bit
SOURCE_RES	1:0	R/W	0	Source Pixel Resolution
				00: 6bit
				01: 5bit
				1x: 4bit
				(Pixel Resolution after rounding in previous path.
				Pixel Resolution for Compression.)

Register::LS_CTRL	l			0xA2
Name	Bits	Read/Write	Reset State	Comments
LS_IN_WIN	7	R/W	0	LiveShow TM Inside Highlight Window
				0: Disable
				1: Enable
LS_OUT_WIN	6	R/W	0	LiveShow TM Outside Highlight Window
				0: Disable

				1: Enable
LS_OFST_EN	5	R/W	0	Offset Compensation
				0: Disable
				1: Enable
LS_NR_EN	4	R/W	0	Low-Bit Noise Reduction
				0: Disable
				1: Enable
LS_NR_MD	3	R/W	0	Low-Bit Noise Reduction Mode
				0: RGB Independent Mode (Old mode:
				RTD2363-like)
				1: RGB Related Mode (New Mode)
LS_NR_THD	2:0	R/W	0	Low-Bit Noise Reduction Threshold
				000°b: 4
				001`b: 6
				010°b: 8
				011`b: 10
				100°b: 12
				101`b: 14
				110°b: 16
				111`b: 18

Register::LS_CPRS_	CTRL			0xA4
Name	Bits	Read/Write	Reset State	Description
IM_CPRS_TYPE	7	R/W	0	Compression Type
				0: Channel G, R reference to B
				1: 3 Independent Channels
LS_MEM_RES	6:5	R/W	0	SDRAM Pixel Resolution
				00: 4-bit
				01: 5-bit
				1x: 6-bit
				(Effective only when LS_CPRS_EN=1, SDRAM
				pixel resolution must always equal or less than
				source pixel resolution (SOURCE_RES))
RGB_YC_SEL	4	R/W	0	New OD algorithm
				0: RGB rounding/compression
				1: YC rounding
DE_BUF_EMPTY_	3	R/W	1	Decode buf empty flag delay option
DLY				0: no delay for decode pre buf empty flag

				1: delay until buf_wr_adr reach 15 to let empty
				flag be normal
LS_RSV_A4_20	2 :0	R/W	0	Reserved

Register::TG_SIZE_	Н		0xA5	
Name	Bits	Read/Write	Reset State	Description
LS_RSV_A5_71	7:1	R/W	0	Reserved
TG_SIZE_H	0	R/W	0	Target Size for Compression (Unit: 64 bit)
				Threshold = {(num_break*6)+∑(num_n*length_n)}/64+7 Note: 1. Header(2x64)+Dummy rounding Effect(3x64)+Reserved Block(2x64) =7x64-bit 2. num_n = number matched for code n criteria. 3. length_n = length of code n, calculated by Huffman tree generation. 4. num_break = number of pixel matched the break criteria. 5. Max. target-size = 256 (unit: 64-bit) Threshold must be set in even number

Register::TG_SIZE_	L		0xA6	
Name	Bits	Read/Write	Reset State	Description
TG_SIZE_L	7:0	R/W	0x00	Target Size for Compression (Unit: 64 bit)
				Threshold =
				$\{(\text{num_break*6}) + \sum (\text{num_n*length_n})\}/64+7$
				Note: 1. Header(2x64)+Dummy rounding Effect(3x64)+Reserved Block(2x64) =7x64-bit 2. num_n = number matched for code n criteria. 3. length_n = length of code n, calculated by Huffman tree generation. 4. num_break = number of pixel matched the break criteria. 5. Max. target-size = 256 (unit: 64-bit)
				Threshold must be set in even number

Register::GRP_NUM_H 0xA7					
Name	Bits	Read/Write	Reset State	Description	
LS_RSV_A7_72	7:3	R/W	0	Reserved	
GRP_NUM_H	2:0	R/W	0	Number of Pixel per Group to be Analyzed and	
				Compressed. (max. group number = 1280)	

Register::GRP_NUM_L				0xA8
Name	Bits	Read/Write	Reset State	Description
GRP_NUM_L	7:0	R/W	0	Number of Pixel per Group to be Analyzed and
				Compressed. (max. group number = 1280)

Register::FAIL_CNT	0xA9			
Name	Bits	Read/Write	Reset State	Description
LS_RSV_A9_74	7:4	R/W	0	Reserved
FAIL_CNT_H	3:0	R	0	The Count of Compression Fail

Register::FAIL_CNT_L					
Name	Bits	Read/Write	Reset State	Description	
FAIL_CNT_L	7:0	R	0	The Count of Compression Fail	
				(Updated when DVS occurred)	

Compression Format:

 $\{1\}$, $\{\text{symbol 0 3-bit code length, 7bit code}\}$, $\{\text{mocode}\}$

Non-Compression Format:

 $\{0\}, \{B0\ 4\text{-bit}\ MSB\}, \{G0\ 4\text{-bit}\ MSB\}, \{R0\ 4\text{-bit}\ MSB\}, \{B1\ 4\text{-bit}\ MSB\}, \{G1\ 4\text{-bit}\ MSB\}, \{R1\ 4\text{-bit}\ MSB\}, \{R$

Register::LS_LUT_ROW_ADDR					
Name	Bits	Read/Write	Reset State	Description	
LS_LUT_ACS_EN	7	R/W	0	LUT Access Enable	
				0: Disabled	
				1: Enabled	
LS_RSV_AE_66	6	R/W	0	Reserved	
LS_LUT_ROW	5:0	R/W	0	LUT Row Selector(Current Frame as index)	

Register::LS_LUT_C	0xAF			
Name	Bits	Read/Write	Reset State	Description
LS_LUT_SEL	7:6	R/W	0	LUT Channel Selector
				00: Red Channel
				01: Green Channel
				10: Blue Channel

				11: All Channels
LS_LUT_COL	5:0	R/W	0	LUT Column Selector (Previous Frame as index)

Register::LS_LUT_I	0xB0			
Name	Bits	Read/Write	Reset State	Description
LS_LUT_DATA	7:0	R/W	0	LUT Data Port

Register::DELTA_GA	0xB1			
Name	Bits	Read/Write	Reset State	Description
LS_RSV_B1_77	7	R/W	0	Reserved
DELTA_GAIN	6:0	R/W	0	Delta Gain Setting
				0x00 -> Gain = 0
				0x40 -> Gain = 1
				0x7F -> Gain =127/64
				(Effective only when LS_GAIN_EN=1)

Register::UDST_THI	D		0xB2	
Name	Bits	Read/Write	Reset State	Description
LS_RSV_B2_77	7	R/W	0	Reserved
UDST_THD	6:0	R/W	0	Undershoot Threshold (2's complement)
				$0x00 \rightarrow THD = 0$
				0x7F -> THD = -127
				(Effective only when LS_OFST_EN =1)

Register::OVST_TH	D		0xB3	
Name	Bits	Read/Write	Reset State	Description
LS_RSV_B3_77	7	R/W	0	Reserved
OVST_THD	6:0	R/W	0	Overshoot Threshold
				0x00 -> THD = 0
				0x7F -> THD = 127
				(Effective only when LS_OFST_EN =1)

Register::UDST_GA	0xB4			
Name	Bits	Read/Write	Reset State	Description
LS_RSV_B4_76	7:6	R/W	0	Reserved
UDST_GAIN	5:0	R/W	0	Undershoot Gain
				0x00 -> Gain = 0/128

	0x3F -> Gain = 63/128
	(Effective only when LS_OFST_EN =1)

Register::OVST_GAIN				0xB5
Name	Bits	Read/Write	Reset State	Description
LS_RSV_B5_76	7:6	R/W	0	Reserved
OVST_GAIN	5:0	R/W	0	Overshoot Gain
				0x00 -> Gain = 0/128
				0x3F -> Gain = 63/128
				(Effective only when LS_OFST_EN =1)

Register::LS_STATU	J S0			0xB6
Name	Bits	Read/Write	Reset State	Comments
LS_RBUF_FULL	7	R	0	Set if BUF_R is full (On-line monitor)
LS_RBUF_EPTY	6	R	0	Set if BUF_R is empty (On-line monitor)
LS_RBUF_UDFW	5	R	0	Set if BUF_R is underflow
LS_WBUF_FULL	4	R	0	Set if BUF_W is full (On-line monitor)
LS_WBUF_EPTY	3	R	0	Set if BUF_W is empty (On-line monitor)
LS_WBUF_OVFW	2	R	0	Set if BUF_W is overflow
Reserved	1		0	Reserved
LS_STATUS0_RST	0	R/W	0	Write 1 to reset BUF and FIFO status (Auto clear
				after done)

Register::LS_STATU	JS1			0xB7
Name	Bits	Read/Write	Reset State	Comments
LS_RFIFO_FULL	7	R	0	Set if FIFO_R is full (On-line monitor)
LS_RFIFO_EPTY	6	R	0	Set if FIFO_R is empty (On-line monitor)
LS_RFIFO_OVFW	5	R	0	Set if FIFO_R is overflow before
				LS_RFIFO_UDFW is set
LS_RFIFO_UDFW	4	R	0	Set if FIFO_R is underflow before
				LS_RFIFO_OVFW is set
LS_WFIFO_FULL	3	R	0	Set if FIFO_W is full (On-line monitor)
LS_WFIFO_EPTY	2	R	0	Set if FIFO_W is empty (On-line monitor)
LS_WFIFO_OVFW	1	R	0	Set if FIFO_W is overflow before
				LS_WFIFO_UDFW is set

LS_WFIFO_UDFW	0	R	0	Set if FIFO_W is underflow before
				LS_WFIFO_OVFW is set

Register::LS_WTLVL_W				0xC0
Name	Bits	Read/Write	Reset State	Comments
Reserved	7		0	Reserved
LS_WTLVL_W	6:0	R/W	0x40	When FIFO depth is over WTLVL, FIFO write
				data $((NUM*LEN)+REM)*64$ = one frame/line
				data
				The assigned value multiplied by 2 is the real
				value.

Register::LS_WTLVL_R				0xC1
Name	Bits	Read/Write	Reset State	Comments
Reserved	7		0	Reserved
LS_WTLVL_R	6:0	R/W	0x40	When FIFO depth is over WTLVL, FIFO write
				data ((NUM*LEN)+REM) * 64 = one frame/line
				data
				The assigned value multiplied by 2 is the real
				value.

Register::LS_MEM_FIFO_RW_NUM_H					
Name	Bits	Read/Write	Reset State	Comments	
LS_MFRW_NO_H	7:0	R/W	0x01	LS_MEN_FIFO_RW_NUM [15:8]	
				The Read/Write times of total memory access.	

Register::LS_MEM_FIFO_RW_NUM_L					
Name	Bits	Read/Write	Reset State	Comments	
LS_MFRW_NO_L	7:0	R/W	0x00	LS_MEM_FIFO_RW_NUM [7:0]	
				The Read/Write times of total memory access.	

Register::LS_MEM_FIFO_RW_LEN 0xC4

Name	Bits	Read/Write	Reset State	Comments
LS_MFRW_LEN	7:0	R/W	0x80	LS_MEM_FIFO_RW_LEN [7:0] The Read/Write number of words in each memory
				access.

Register::LS_MEM_FIFO_RW_REMAIN				0xC5
Name	Bits	Read/Write	Reset State	Comments
LS_MFRW_RM	7:0	R/W	0x80	LS_MEM_FIFO_RW_ REMAIN [7:0] The Read/Write number of words at the last access. This register must be 4X.

Register::LS_MEM_START_ADDR_H 02					
Name	Bits	Read/Write	Reset State	Comments	
LS_RSV_C6_77	7	R/W	0	Reserved	
LS_MEM_ADR_H	6:0	R/W	0x00	LS_MEM_START_ADDR [22:16] Start address of LS memory block (Total 22/23 bits).	

If the columns per bank are 256, and Bank = 4, SDRAM address [22:0] is: 1'b0+R[11:0]+B[1:0]+C[7:0]

If the columns per bank are 256, and Bank = 2, SDRAM address [22:0] is: 2'b0+R[11:0]+B[0]+C[7:0]

If the columns per bank are 512, and Bank = 4, SDRAM address [22:0] is: R[11:0]+B[1:0]+C[8:0]

If the columns per bank are 512, and Bank = 2, SDRAM address [22:0] is: 1'b0+R[11:0]+B[0]+C[8:0]

Register::LS_MEM_START_ADDR_M 0					
Name	Bits	Read/Write	Reset State	Comments	
LS_MEM_ADR_M	7:0	R/W	0x00	LS_MEM_START_ADDR [15:8]	
				Start address of LS memory block (Total 22/23 bits)	

Register::LS_MEM_START_ADDR_L 0						
Name	Bits	Read/Write	Reset State	Comments		
LS_MEM_ADR_L	7:0	R/W	0x00	LS_MEM_START_ADDR [7:0]		
				Start address of LS memory block (Total 22/23		

Register::LS_BIST_	CTRL			0xC9
Name	Bits	Read/Write	Reset State	Comments
LS_TEST	7:6	R/W	0	Reserved for testing
LS_RSV_C9_5	5	R/W	0	Reserved
FREEZE_MODE	4	R/W	0	Freeze mode enable
LS_TEST_EN	3	R/W	0	LiveShow TM Test Enable.
				0: Disable
				1: Enable
LS_TEST_MODE	2	R/W	0	LiveShow TM Test Mode.
				0: Bypass interpolated delta
				1: Bypass LUT4 value
LS_BIST_START	1	R/W	0	LiveShow TM Memory BIST Start.
				Set 1 to start and auto-clear after finished.
LS_BIST_RESULT	0	R	0	LiveShow TM Memory BIST Result.
				0: Failed
				1: Pass

Register::LS_COMP_0	Register::LS_COMP_CHK						
Name	Bits	Read/Write	Reset State	Comments	Config		
LS_RSV_C9_77	7	R/W	0	Reserved			
PREBUF_UDFW	6	R	0	Decompression previous buffer under flow			
PREBUF_STA_CLR	5	R	0	Decompression previous buffer status clear	wclr_out		
REBUF_OVFW_VD UM	4	R	0	Reorder buffer overflow by vsync dummy purge, the previous frame result			
REBUF_OVFW_GD UM_MSB	3:0	R	0	Reorder buffer overflow by group dummy purge, the previous frame result, update by vsync, msb			

Register::LS_COMP_REOVFW					0xCB
Name	Bits	Read/Write	Reset State	Comments	Config
REBUF_OVFW_GD	7:0	R	0	Reorder buffer overflow by group	
UM_LSB				dummy purge, the previous frame	
				result, update by vsync, lsb	

Register::LS_FRAME	0		0xCC		
Name	Bits	Read/Write	Reset State	Comments	Config
CUR_BYPASS_EN	7	R/W	0	In Current frame path, ByPass the conversion path and go through OD_LUT directly: 0: Disable 1: Enable	
LS_RSV_CC_65	6:5	R/W	0	Reserved	
CUR_RGB2YUV_EN	4	R/W	0	In Current frame path, RGB to YUV: 0: Disable 1: Enable	
CUR_444TO422_EN	3	R/W	0	In Current frame path, YUV 444 to 422: 0: Disable 1: Enable	
LS_RSV_CC_21	2:1	R/W	0	Reserved	
UV_MODE	0	R/W	0	In Current/Previous frame path, 444to422 U/V type 0: U0 V0 U2 V2 U4 V4 1: U0 V1 U2 V3 U4 V5	

Register::LS_FRAME1				0xCD	
Name	Bits	Read/Write	Reset State	Comments	Config
CUR_422TO444_EN	7	R/W	0	In Current frame path, YUV 422 to 444: 0: Disable 1: Enable	
CUR_DUPLICATE	6	R/W	0	In Current frame path, YUV 422 to 444: 0: Interpolation Mode 1: Duplication Mode Interpolation Mode: Original sequence: Y0U0, Y1V0, Y2U2, Y3V2, Y4U4, Y5V4, Final sequences: Y0U0V0, Y1((U0+U2)/2)((V0+V2)/2), Y2U2V2, Y3((U2+U4)/2)((V2+V4)/2), Y4U4V4, Duplication Mode: Original sequence: Y0U0, Y1V0, Y2U2, Y3V2, Y4U4, Y5V4,	

				Final sequences: Y0U0V0, Y1U0V0, Y2U2V2, Y3U2V2, Y4U4V4, Y5U5V5,
LS_RSV_CD_5	5	R/W	0	Reserved
CUR_YUV2RGB_EN	4	R/W	0	In Current frame path, YUV to RGB: 0: Disable 1: Enable
PRE_422TO444_EN	3	R/W	0	In Previous frame path, YUV 422 to 444: 0: Disable 1: Enable
PRE_DUPLICATE	2	R/W	0	In Previous frame path, YUV 422 to 444: 0: Interpolation Mode 1: Duplication Mode
LS_RSV_CD_1	1	R/W	0	Reserved
PRE_YUV2RGB_EN	0	R/W	0	In Previous frame path, YUV to RGB: 0: Disable 1: Enable

Register::LS_FRAME2				0xCE	
Name	Bits	Read/Write	Reset State	Comments	Config
CUR_ROUND	7:6	R/W	0	The Current Pixel after RGB->YUV,	
				444->422 rounding mode setting	
				00: no rounding (keep original 10bit)	
				01: 6bit rounding	
				10: 4bit rounding	
				11: 5bit rounding	
EST_VALUE	5:0	R/W	0	User Defined Level Estimation Value:	
				0~63	
				(When Level Estimation Enabled, i.e.	
				CRA1[5]==1, and working under YC rounding mode, CRA4[4] = 1'b1)	

SDRAM Control (Page 4)

Register::SDR_CTR	L0			0xA1	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
SDR_RSV_A1_76	7:6	R/W	0	Reserved	
SDR_WR_DELAY	5:3	R/W	'b011	Delay from Row Active to Write	
				000: Reserved	
				001: Reserved	
				010: 2 MCLK	
				011: 3 MCLK	
				100: 4 MCLK	
				101: 5 MCLK	
				110: Reserved	
				111: Reserved	
SDR_RD_DELAY	2:0	R/W	'b011	Delay from Row Active to Data Valid	
				000: Reserved	
				001: Reserved	
				010: 2 MCLK	
				011: 3 MCLK	
				100: 4 MCLK	
				101: 5 MCLK	
				110: Reserved	
				111: Reserved	

Register::SDR_CTRL1				0xA2		
Name	Bits	Read/	Reset	Comments	Config	
		Write	State			
SDR_CL	7:5	R/W	'b011	CAS Latency of SDRAM		
				000: Reserved		
				001: Reserved		
				010: 2 MCLK		
				011: 3 MCLK		
				100: Reserved		
				101: Reserved		
				110: Reserved		
				111: Reserved		

				If MCLK >100MHz, SDR_CL should be 3 MCLK.	
SDR_RSV_A2_40	4:0	R/W	4	Reserved	

Register::SDR_AREF_TIME				0xA3	
Name	Bits	Read/ Write	Reset State	Comments	Config
SDR_AREF_TIME	7:0	R/W	0x0D	Auto Refresh Time. (The period of initial refresh time in MCLK cycle)	

Register::SDR_PRCG				0xA4	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
SDR_PRCG_BIT	7	R/W	0	Precharge All Banks by	
				0: A8	
				1: A10	
SDR_PRCG_DO	6	R/W	0	Force to Precharge All Banks	
SDR_COL_NUM	5	R/W	0	Columns per Bank	
				0: 256	
				1: 512	
SDR_RESET	4	R/W	0	SDR Reset	
				0: Normal	
				1: Reset	
SDR_PRCG_DLY	3:0	R/W	3	Precharge Delay Cycle (The interval from	
				precharge to next valid command)	

Register::SDR_MEM_TYPE				0xA5	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
SDR_MEM_SIZE	7:6	R/W	0	SDRAM Memory Size	
				00: 1Mx16x1pcs	
				01: 1Mx16x2pcs	
				10: 2Mx32x1pcs	
				11: 2Mx32x2pcs	
SDR_BANK_SEL	5	R/W	0	Banks per SDRAM	
				0: 4 bank	

				1: 2 bank
SDR_ABR_STATUS	4	R	0	Arbiter Recovery Happen
SDR_ABR_REC_EN	3	R/W	0	Arbiter Recovery Enable, Reset State Machine
SDR_CAS_LATN	2:0	R/W	1	CAS Latency for Controller
				000: Reserved
				001: 1
				010: 1
				011: 2
				100: 2
				101: 3
				110: 3
				111: 4

Register::SDR_SLEW_RATE				0xA6		
Name	Bits	Read/	Reset	Comments	Config	
		Write	State			
SDR_RSV_A6_73	7:3	R/W	0	Reserved		
SDR_AUTO_GATI	2	R/W	0	Auto gating CKE		
NG				0: Disable		
				1: Enable		
SDR_CKE_L	1	R/W	0	Force CKE Low (for power-down mode)		
				0: Disable		
				1: Enable		
SDR_CKE_H	0	R/W	0	Force CKE High (for testing)		
				0: Disable		
				1: Enable		

Register::SDR_AREF_CNT				0xA7	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
SDR_AREF_CNT8	7:0	R/W	0x81	Number of Auto Refresh (N*8)	

Register::RESERVED				0xA8	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
Reserved	7:0	R/W	0	Reserved	

Register::RESERVI	ED				0xA9	
Name	Bits	Read/	Reset	Comments		Config
		Write	State			
Reserved	7:0	R/W	0	Reserved		
Register::SDR_RSC	C_AREF				0xAA	
Name	Bits	Read/	Reset	Comments		Config
		Write	State			
SDR_RSC_AREF	7:0	R	0xFF	Token Ring Bit[7:0]		
Register::SDR_RSC	C_MCU			0x.A	AB	
Name	Bits	Read/	Reset	Comments		Config
		Write	State			
SDR_RSC_MCU	7:0	R/W/D	0x20	Token Ring Bit[7:0]		
Register::SDR_RSC	C_CAP1				0xAC	
Name	Bits	Read/	Reset	Comments		Config
		Write	State			
SDR_RSC_CAP1	7:0	R/W/D	0xAA	Token Ring Bit[7:0]		
Register::RESERVI	ED				0xAD	
Name	Bits	Read/	Reset	Comments		Config
		Write	State			
Reserved	7:0	R/W	0	Reserved		
Register::SDR_RSC	C_MAIN				0xAE	
Name	Bits	Read/	Reset	Comments		Config
		Write	State			
SDR_RSC_MAIN	7:0	R/W/D	0x55	Token Ring Bit[7:0]		

Bits

Name

Read/

Reset

Comments

Config

		Write	State		
Reserved	7:0	R/W	0	Reserved	

Register::SDR_RSC_RTC_RD				0xB0	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
SDR_RSC_RTC_RD	7:0	R/W/D	0xAA	Token Ring Bit[7:0]	

Register::SDR_RSC_RTC_WR				0xB1	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
SDR_RSC_RTC_WR	7:0	R/W/D	0x55	Token Ring Bit[7:0]	

(Double-Buffer) Token-Ring access before AREF

Register::RESERVED				0xB2	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
Reserved	7:0	R/W	0	Reserved	

Register::RESERVED				0xB3	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
Reserved	7:0	R/W	0	Reserved	

Register::SDR_ABTR_STATUS0				0xB4	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
SDR_ABTR_RTCR	7	R	0	RTC Read Arbiter Status	
SDR_ABTR_RTCW	6	R	0	RTC Write Arbiter Status	
SDR_ABTR_MAIN	5	R	0	MAIN Read Arbiter Status	
Reserved	4		0	Reserved	
SDR_ABTR_CAP1	3	R	0	CAP1 Write Arbiter Status	
Reserved	2		0	Reserved	
SDR_ABTR_MCU	1	R	0	MCU R/W Arbiter Status	

SDR_ABTR_AREF 0	R	0	AREF Arbiter Status	
-----------------	---	---	---------------------	--

Write-clear

Register::SDR_ABTR_STATUS 1				0xB5	
Name	Bits	Read/ Write	Reset State	Comments	Config
Reserved	7:1		0	Reserved	
SDR_RESET_RDY	0	R	0	SDR Reset Ready	

Register::RESERVED				0xB6	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
Reserved	7:0	R/W	0	Reserved	

Register::RESERVED				0xB7	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
Reserved	7:0	R/W	0	Reserved	

Register::SDR_ADDR_H				0xB8	
Name	Bits	Read/ Write	Reset State	Comments	Config
Reserved	7		0	Reserved	
SDR_ADDR_H	6:0	R/W	0	SDR_ADDR [22:16] If the columns per bank are 256,bit[5:0] is assigned to R[11:6] and bit[6] is reserved. If the columns per bank are 512,bit[6:0] is assigned to R[11:5]	

If the columns per bank are 256, SDRAM address [22:0] is: R[11:0]+B[1:0]+C[7:0]

If the columns per bank are 512, SDRAM address [22:0] is: R[11:0]+B[1:0]+C[8:0]

Register::SDR_ADDR_M				0xB9	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
SDR_ADDR_M	7:0	R/W	0	SDR_ADDR [15:8] If the columns per bank are 256, bit[7:2] is assigned to R[5:0] bit[1:0] is assigned to B[1:0] If the columns per bank are 512,bit bit[7:3] is assigned to R[4:0] bit[2:1] is assigned to B[1:0] bit[0] is assigned to C[8]	

Register::SDR_ADDR_L				0xBA	
Name	Bits	Read/ Write	Reset State	Comments	Config
SDR_ADDR_L	7:0	R/W	0	SDR_ADDR [7:0] Bitp7:0] is assigned to C[7:0] regardless of columns per bank are 256 or 512.	

Register::SDR_ACCESS_CMD				0xBB	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
SDR_ACS_CMD	7:5	R/W	0	SDR_ACCESS_COMMAND (clear to 000 after finish) 000: NOP or Finish 001: Pre-charge (all bank or single bank) 010: Auto-Refresh (step by step or auto arbiter) 011: Load Mode Register (step by step or auto initialization) (Load Mode Register will reset DLL of DRAM, we must idle ~200cycles before next "READ") 100: WRITE command (Buf→SDR) 101: READ command(SDR→Buf) 110: Reserved	
SDR_DBUF_IDX	4:0	R/W	0	DATA_BUFFER_INDEX Specifies the next access byte in the buffer.	

Register::SDR_DATA_BUF				0xBC	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
SDR_DATA_BUF	7:0	R/W	0	SDR_DATA_BUFFER Sequential 8-word (32 byte) READ/WRITE from low to high address auto-increase. DATA_BUFFER_INDEX specifies the next access byte in the buffer.	

- SDR_ACCESS (Read/Write) can be used for MCU acces

 How to modify only one-byte in SDR? Read 32 bytes, only modify one index-select byte, Write 32 bytes.

Register::SDR_MCU_RD_LEN				0xBD	
Name	Bits	Read/ Write	Reset State	Comments	Config
Mcurd_tst_en	7	R/W	0	On-line test mcurd SDRAM enable	
Mcurd_len	6:0	R/W	0	Mcu Read SRAM Length	

Register::phase calibration				0xBE	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		

reserve	7:5	R/W	0	
Ph_cal_up_sel	4	R/W	0	Phase calibration wait event select
				0 : SDRAM write (not include MCU write to
				SDRAM)
				1: display vertical front porch
Phcal_wait_en	3	R/W	0	Calibration wait event (ref. CR_BE[4])
Phcal_en	2	R/W	0	Phase calibration enable
				0: finish
				1: enable (auto-clear by HW)
Rd_ph_db_en	1	R/W	0	Double buffer enable(Update SRAM DATAT
				DQS fine dly)
Rd_ph_db_start	0	R/W	0	Start double buffer (ref. CR_BE[4])
				0: finish
				1: start (auto clear by HW)

Register::calibration_result				0xBF	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
reserve	7	R	0		
Phcal_cnt	6:0	R	0		

Register::SDR_CLK_DLY1				0xC0			
Name	Bits	Read/	Reset	Comments	Config		
		Write	State				
mclko_inv	7	R/W/D	0	Mclk ouput invert			
				0 : non invert			
				1: inert			
reserve	6:0	R/W	0				

Register::SDR_CLK_DLY2				0xC1	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
mclk_fine_tune	7:0	R/W/D	0	Mclk delay fine tune[7:0]	

Register::DQS0_DLY1				0xC2	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
SDR_D0_LFT_OFF	7	R	0	SDRAM Data [15:0] Latch Fine-Tune Status	
				0: Actived	
				1: Inactived	
dqs0_coarse_dly	6:5	R/W/D	0	SDRAM Data [15:0]coarse dly [1:0]	
				00: 0	
				01: 90	
				10: 180	
				11: 270	
reserve	4:0	R/W	0		

Register::DQS0_DLY2				0xC3	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
dqs0_fine_dly	7:0	R/W/D	0	SDRAM Data[15:0] fine dly [7:0]	

Register::DQS1_DLY1				0xC4	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
SDR_D1_LFT_OFF	7	R	0	SDRAM Data [31:16] Latch Fine-Tune Status	
				0: Actived	
				1: Inactived	
dqs1_coarse_dly	6:5	R/W/D	0	SDRAM Data[31:16] coarse dly [1:0]	
				00: 0	
				01: 90	
				10: 180	
				11: 270	
reserve	4:0	R/W	0		

Register::DQS1_DLY2				0xC5	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		

dqs1_fine_dly	7:0	R/W/D	0	SDRAM Data[31:16] fine dly [7:0]	
---------------	-----	-------	---	----------------------------------	--

Register::DQS2_DLY1				0xC6				
Name	Bits	Read/	Reset	Comments	Config			
		Write	State					
SDR_D2_LFT_OFF	7	R	0	SDRAM Data [47:32] Latch Fine-Tune Status				
				0: Actived				
				1: Inactived				
Dqs2_coarse_dly	6:5	R/W/D	0	SDRAM Data[47:32] coarse dly [1:0]				
				00: 0				
				01: 90				
				10: 180				
				11: 270				
reserve	4:0	R/W	0					

Note: reserve for 64 bits SDRAM

Register::DQS2_DLY2				0xC7	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
Dqs2_fine_dly	7:0	R/W/D	0	SDRAM Data[47:32] fine dly [7:0]	

Note: reserve for 64 bits SDRAM

Register::DQS3_DLY1				0xC8		
Name	Bits	Read/	Reset	Comments	Config	
		Write	State			
SDR_D3_LFT_OFF	7	R	0	SDRAM Data [63:48] Latch Fine-Tune Status		
				0: Actived		
				1: Inactived		
Dqs3_coarse_dly	6:5	R/W/D	0	SDRAM Data coarse dly [1:0]		
				00: 0		
				01: 90		
				10: 180		
				11: 270		
reserve	4:0	R/W	0			

Note: reserve for 64 bits SDRAM

Register::DQS3_DLY2				0xC9	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
Dqs3_fine_dly	7:0	R/W/D	0	SDRAM Data[63:48] fine dly [7:0]	

Note: reserve for 64 bits SDRAM

Register::SEC_DQS0_DLY				0xCA	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
Sec_dqs0_fine_dly	7:0	R/W	0	SDRAM Data[15:0] fine dly [7:0]	
				Phase switch setting for on-line mcurd to check	
				phase	

Register::SEC_DQS1_DLY				0xCB	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
Sec_dqs1_fine_dly	7:0	R/W	0	SDRAM Data[31:16] fine dly [7:0]	
				Phase switch setting for on-line mcurd to check	
				phase	

Register::SEC_DQS2_DLY				0xCC	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
Sec_dqs2_fine_dly	7:0	R/W	0	SDRAM Data[47:32] fine dly [7:0]	
				Phase switch setting for on-line mcurd to check	
				phase	

Note: reserve for 64 bits SDRAM

Register::SEC_DQS3_DLY				0xCD	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
Sec_dqs3_fine_dly	7:0	R/W	0	SDRAM Data[63:48] fine dly [7:0] Phase switch setting for on-line mcurd to check	
				phase	

Note: reserve for 64 bits SDRAM

Address: CE~FB Reserved

Register::extended_mode_register				0xFC	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
Mcurd_crc_en	7	R/W	0	CRC Enable for MCU Read from SDRAM only	
reserve	6:5	R/W	0		
Emr_config[11:8]	3:0	R/W	0	extended_mode_register[11:8]	

Register::extended_mode_register				0xFD	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
Emr_config[7:0]	7:0	R/W	0	extended_mode_register[7:0]	

Register::random_g	generator			0xFE	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
Rst_random_sel	7	R/W	0	SDRAM controller random generator reset	
				0: dvs	
				1: ivs	
Rst_crc_sel	6	R/W	0	SDRAM controller CRC reset	
				0: dvs	
				1: ivs	
Random_en	5	R/W	0	SDRAM controller random generator enable	
Crc_start	4	R/W	0	SDRAM controller CRC start	
				0: finish	
				1: start (auto-clear by HW)	
Crc_adr_port	3:0	R/W	0	Address port for CRFF	

Register::CRC_DATA_PORT				0xFF	
Name	Bits	Read/	Reset	Comments	Config
		Write	State		
Crc_data_port	7:0	R	0	CRC Data Port	

Reserved (Page 5) Reserved (Page 6)

Vivid color-Video Color Space Conversion(page 7)

Register:: YUV2	RGB_CT	RL			0xBF
Name	Bits	Read/ Write	Reset State	Comments	Config
Dummy	7:2	R/W	0	Reserved	
Access	1	R/W	0	Enable YUV/RGB coefficient Access 0: Disable 1: Enable	
Enable	0	R/W	0	Enable YUV to RGB Conversion 0: Disable YUV-to-RGB conversion 1: Enable YUV-to-RGB conversion	

Register:: YUV2I	RGB_AC	CESS			0xC0
Name	Bits	Read/ Write	Reset State	Comments	Config
Write_Enabled	7:3	R/W	0	YUV Coefficient Write Enable:	
				00000: K11 high byte	
				00001: K11 low byte	
				00010: K13 high byte	
				00011: K13 low byte	
				00100: K22 high byte	
				00101: K22 low byte	
				00110: K23 high byte	
				00111: K23 low byte	
				01000: K32 high byte	
				01001: K32 low byte	
				01010: Roffset high byte	
				01011: Roffset low byte	
				01100: Goffset high byte	
				01101: Goffset low byte	
				01110: Boffset high byte	
				01111: Boffset low byte	
				10000: Rgain high byte	
				10001: Rgain low byte	
				10010: Ggain high byte	
				10011: Ggain low byte	
				10100: Bgain high byte	
				10101: Bgain low byte	
				10110~11111: reserved	
Cb_Cr_Clamp	2	R/W	0	Cb Cr Clamp	
				0: Bypass	
				1: Cb-(128), Cr-(128)	
Y_Clamp	1	R/W	0	Y Clamp	
				0: Bypass	
				1: Y-(16)	
Y Signed	0	R/W	0	Y Signed Selection	
				0: (Y-16)-> Unsigned	
				1: (Y-16)-> Signed	

Register:: YUV_RGB_COEF_DATA							
Name	Bits	Read/ Write	Reset State	Comments	Config		
COEF	7:0	W	-	COEF_DATA[7:0]			

YUV/RGB matrix
$$\begin{bmatrix} R' \\ G' \\ B' \end{bmatrix} = \begin{bmatrix} K_{11} & 0 & K_{13} \\ K_{11} & -K_{22} & -K_{23} \\ K_{11} & K_{32} & 0 \end{bmatrix} \begin{bmatrix} Y \text{ or } (Y-16) \\ U \text{ or } (U-128) \\ V \text{ or } (V-128) \end{bmatrix} + \begin{bmatrix} R_{\text{offset}} \\ G_{\text{offset}} \\ B_{\text{offset}} \end{bmatrix}$$

Then,

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} R_{gain} \times R' \\ G_{gain} \times G' \\ B_{gain} \times B' \end{bmatrix}$$

Where

• Y: S(9,0) / U(9,0) when CR C0[0]=0

• U, V: S(8,0).

• K11: U(12, 10) 12 bits, 2 bit integer and 10-bit fractional bits. (Default: 0x0400h)

• K13: U(11, 10) 11 bits, 1 bit integer and 10-bit fractional bits (Default: 0x048Fh)

• K22, K23: U(10, 10) 10 bits, all fractional bits (Default: K22: 0x0194h, K23: 0x0252h)

• K32: U(12, 10) 12 bits, 2 bit integer and 10-bit fractional bits (Default: 0x0820h)

• K11': S(15,4)

• Roffset, Goffset, Boffset: S(14,4) 14 bits, 10 bit signed integer and 4-bit fractional bits. (Default: 0x000h)

• K13': S(15,4)

• K22', K23': S(11,2)

• K32': S(13,2)

• Rgain, Ggain, Bgain: U(10, 9) 10bits, 1 bit integer and 9-bit fractional bits. (Default: 0x0200h)

Operation	Description
K11' = K11*Y	U(12,10) * S(9,0) = S(21,10) truncating to $S(15,4)$
K13' = K13*V	U(11,10) * S(8,0) = S(19,10) truncating to $S(14,4)$
R'' = K11' + K13'	S(15,4) + S(14,4) = S(15,4)
R' = R'' + Roffset	S(15,4) + S(14,4) = S(15,4) truncating to $S(13,2)$
K22' = K22*U	U(10,10) * S(9,0) = S(19,10) truncating to $S(13,4)$
K23' = K23*V	U(10,10) * S(8,0) = S(18,10) truncating to $S(13,4)$
G'' = K11'-K22'-K23'	S(15,4)+S(13,4)+S(13,4) = S(15,4)
G' = G'' + Goffset	S(15,4) + S(14,4) = S(15,4) truncating to $S(13,2)$
K32' = K32*U	U(12,10) * S(8,0) = S(20,10) truncating to $S(15,4)$
B'' = K11' + K32'	S(15,4) + S(15,4) = S(15,4)
B' = B'' + Boffset	S(15,4) + S(14,4) = S(15,4) truncating to $S(13,2)$
R=Rgain*R'	U(10,9)*S(13,2)=S(23,11) rounding to $U(10,0)$ (clamp)
G=Ggain*G'	U(10,9)*S(13,2)=S(23,11) rounding to $U(10,0)$ (clamp)
B=Bgain*B'	U(10,9)*S(13,2)=S(23,11) rounding to $U(10,0)$ (clamp)

Address 0xC2~0xC6 are reserved

Vivid color-DCC (Page 7)

Register:: DCC	CTRL	_0		0xc7		
Name	Bits	R/W	Default	Comments	Config	
DCC_EN	7	R/W	0	DCC_ENABLE 0: Disable 1: Enable		
Y_FORMULA	6	R/W	0	Y_FORMULA 0: Y = (2R+5G+B)/8 1: Y = (5R+8G+3B)/16		
SC_EN	5	R/W	0	SOFT_CLAMP 0: Disable		

				1: Enable	
DCC_MODE	4	R/W	0	DCC_MODE	
Dec_Mode		10 11	O	0: Auto Mode	
				1: Manual Mode	
SCG EN	3	R/W	0	SCENE_CHANGE	
SCG_EIV		10 11	O	0: Disable Scene-Change Function	
				1: Enable Scene-Change Function in Auto Mode	
BWL EXP	2	R/W	0	BWL_EXP	
D 11 D_E/11		10 11		0: Disable Black/White Level Expansion	
				1: Enable Black/White Level Expansion in Auto Mode	
PAGE SEL	1:0	R/W	0	DCC_PAGE_SEL	
I/IGE_SEE	1.0	10 11	O	00: Page 0 (for Histogram / Ymin-max / Soft-Clamping /	
				Scene-Change)	
				01: Page 1 (for Y-Curve / WBL Expansion)	
				10: Page 2 (for Calculation Parameter)	
				11: Page 3 (for Testing and Debug)	

Register:: DCC_	CTRL	_1		0xc8		
Name	Bits	R/W	Default	Comments	Config	
GAIN_EN	7	R/W	0	DCC gain control enable 0: Disable 1: Enable Note: DCC gain control enable must delay MOV_AVG_LEN frame after DCC enable.		
DCC_FLAG	6	R	0	1: time to write highlight window position & normalized factor, write to clear		
SAT_COMP_EN	5	R/W	0	Saturation Compensation Enable 0: Disable 1: Enable		
BLD_MODE	4	R/W	0	Blending Factor Control Mode 0: old mode 1: new mode (diff. regions have diff. blending factor)		
Reserved	3:0		0x00	Reserved to 0		

Register:: DCC Address Port				0xc9	
Name	Bits	R/W	Default	Comments	Config
DCC_ADDR	7:0	R/W	0x00	DCC address	

Register:: DCC Data Port				Охса	
Name	Bits	R/W	Default	Comments	Config
DCC_DATA	7:0	R/W	0x00	DCC data	

Register:: NOR_FACTOR_H (page0)			page0)	(ACCESS[C9,CA]) 0x00	
Name	Bits	R/W	Default	Comments	Config
Reserved	7:6			Reserved	
NOR_FAC_H	5:0	R/W	0x00	Bit[21:16] of Normalized Factor;	
				NF=(255/N)*(2^22)	

Register:: NOR_FACTOR_M (page0)			(page0)	(ACCESS[C9,CA]) 0x01	
Name	Bits	R/W	Default	Comments	Config
NOR_FAC_M	7:0	R/W	0x00	Bit[15:8] of Normalized Factor;	
				NF=(255/N)*(2^22)	

Register:: NOR_FACTOR_L (page0)				(ACCESS[C9,CA]) 0x02	
Name	Name Bits R/W Default		Default	Comments	Config
NOR_FAC_L	7:0	R/W	0x00	Bit[7:0] of Normalized Factor;	
				NF=(255/N)*(2^22)	

Register:: BBE_CTRL (page0)				(ACCESS[C9,CA]) 0x03	
Name	Bits	R/W	Default	Comments	Config
BBE_EN	7	R/W	0	BBE_ENA 0: Disable Black-Background Exception 1: Enable Black-Background Exception	
Reserved	6:4			Reserved	
BBE_THD	3:0	R/W	0x4	BBE_THD 8-bit RGB Threshold for Black-Background Exception	

Register:: NFLT	_CTR	L (page	0)	(ACCESS[C9,CA]) 0x04		
Name	Bits	R/W	Default	Comments	Config	
HNFLT_EN	7	R/W	0	HNFLT_ENA 0: Disable Histogram Noise Filter 1: Enable Histogram Noise Filter		
HNFLT_THD	6:4	R/W	0	HNFLT_THD Threshold for Histogram Noise Filter		
YNFLT_EN	3	R/W	0	YNFLT_ENA 0: Disable Ymax / Ymin Noise Filter 1: Enable Ymax / Ymin Noise Filter		
YNFLT_THD	2:0	R/W	0	YNFLT_THD Threshold for Ymax/Ymin Noise Filter (= 4*YNFLT_THD)		

Register:: HIST_	CTRL	(page	0)	(ACCESS[C9,CA]) 0x05	
Name	Bits	R/W	Default	Comments	Config
RH0_LIMITER	7	R/W	0	RH0_LIMITER 0: Disable RH0 Limiter 1: Enable RH0 Limiter	
RH1_LIMITER	6	R/W	0	RH1_LIMITER 0: Disable RH1 Limiter 1: Enable RH1 Limiter	
REAL_MA_LEN	5:3	R		Real MOV_AVG_LEN may be different with MOV_AVG_LEN, if SCG enable	
MOV_AVG_LEN	2:0	R/W	0	MOV_AVG_LEN 000: Histogram Moving Average Length = 1 001: Histogram Moving Average Length = 2 010: Histogram Moving Average Length = 4 011: Histogram Moving Average Length = 8	

		100: Histogram Moving Average Length = 16	
		101~111: reserved	

Register:: SOFT_CLAMP (page0)				(ACCESS[C9,CA]) 0x06	
Name Bits R/W Default				Comments	Config
SOFT_CLAMP	7:0	R/W	0xB0	Slope of Soft-Clamping (= SOFT_CLAMP / 256)	

Register:: Y_MAX_LB (page0)				(ACCESS[C9,CA]) 0x07	
Name Bits R/W Default			Default	Comments	Config
Y_MAX_LB	7:0	R/W	0xFF	Lower Bound of Y_MAX (= 4*Y_MAX_LB)	

Register:: Y_MIN_HB (page0)				(ACCESS[C9,CA]) 0x08	
Name	Name Bits R/W Default			Comments	Config
Y_MIN_HB	7:0	R/W	0x00	Higher Bound of Y_MIN (= 4*Y_MIN_HB)	

Register:: SCG	PERIO	OD (pag	je0)	(ACCESS[C9,CA]) 0x09	
Name	Bits	R/W	Default	Comments	Config
SCG_MODE	7	R/W	0	Scene-Change Control Mode 0: old mode (2553V) 1: new mode (2622)	
Reserved	6:5			Reserved	
SCG_PERIOD	4:0	R/W	0x10	Scene-Change Mode Period = 1~32. Note: SCG_PERIOD >= MOV_AVG_LEN, CRED-05[2:0](page0)	

Register:: SCG_LB (page0)				(ACCESS[C9,CA]) 0x0A	
Name	Name Bits R/W Default			Comments	Config
SCG_LB	7:0	R/W	0x00	SCG_DIFF Lower Bound for Exiting Scene-Change Mode	

Register:: SCG_	НВ (р	age0)		(ACCESS[C9,CA]) 0x0B	
Name Bits R/W Default				Comments	Config
SCG_HB	7:0	R/W	0xFF	SCG_DIFF Higher Bound for Exiting Scene-Change Mode	

Register:: POP	UP_CT	RL (pa	ge0)	(ACCESS[C9,CA]) 0x0C	
Name	Bits	R/W	Default	Comments	Config
Reserved	7:1			Reserved	
POPUP_BIT	0	R		Reg[0D]~Reg[16] are updated every frame. Once POPUP_BIT is read, the value of Reg[0D] ~ Reg[16] will not be updated until Reg[16] is read.	

Register:: SCG_DIFF (page0)				(ACCESS[C9,CA]) 0x0D	
Name	Bits	R/W	Default	Comments	Config
SCG_DIFF	7:0	R		= (Histogram Difference between Current Frame and Average) / 8=DIFF[10:0]>>3	

Register:: Y_MAX_VAL (page0)			2 0)	(ACCESS[C9,CA]) 0x0E	
Name	Bits	R/W	Default	Comments	Config
Y_MAX_VAL	7:0	R		= Max { Y_MAX_LB, (Y Maximum in Current Frame / 4) }	

Register:: Y_MIN_VAL (page0)			0)	(ACCESS[C9,CA]) 0x0F	
Name Bits R/W Default			Default	Comments	Config
Y_MIN_VAL	7:0	R		= Min { Y_MIN_HB, (Y Minimum in Current Frame / 4) }	

Register:: S0_VALUE (page0))	(ACCESS[C9,CA]) 0x10	
Name Bits R/W Default		Default	Comments	Config	
S0_VALUE	7:0	R		Normalized Histogram S0 Value	

Register:: S1_VALUE (page0)				(ACCESS[C9,CA]) 0x11	
Name Bits R/W Default			Default	Comments	Config
S1_VALUE	7:0	R		Normalized Histogram S1 Value	

Register:: S2_VALUE (page0))	(ACCESS[C9,CA]) 0x12	
Name Bits R/W Default			Default	Comments	Config
S2_VALUE	7:0	R		Normalized Histogram S2 Value	

Register:: S3_VALUE (page0))	(ACCESS[C9,CA]) 0x13	
Name Bits R/W Default			Default	Comments	Config
S3_VALUE	7:0	R		Normalized Histogram S3 Value	

Register:: S4_VALUE (page0))	(ACCESS[C9,CA]) 0x14	
Name Bits R/W Default		Default	Comments	Config	
S4_VALUE	7:0	R		Normalized Histogram S4 Value	

Register:: S5_VALUE (page0))	(ACCESS[C9,CA]) 0x15	
Name Bits R/W Default			Default	Comments	Config
S5_VALUE	7:0	R		Normalized Histogram S5 Value	

Register:: S6_VALUE (page0))	(ACCESS[C9,CA]) 0x16	
Name Bits R/W Default			Default	Comments	Config
S6_VALUE	7:0	R	-	Normalized Histogram S6 Value	

Register:: YHL_THD (page0)				(ACCESS[C9,CA]) 0x17	
Name	Bits	R/W	Default	Comments	Config
YHL_THD	7:0	R/W	OXOO	Y_H and Y_L Theshold When DIFF[10:0] < YHL_THD[7:0], Y_H and Y_L keep the previous values	

Register:: DEF_CRV[01] (page1)			e1)	(ACCESS[C9,CA]) 0x00	
Name	Bits	R/W	Default	Comments	Config
DEF_CRV01	7:0	R/W	UAIU	Pre-Defined Y-Curve; Keep DEF_CRV[N] ≥ DEF_CRV[N-1]	

Register:: DEF_CRV[02] (page1)				(ACCESS[C9,CA]) 0x01	
Name	Bits	R/W	Default	Comments	Config
DEF_CRV02	7:0	R/W	0777	Pre-Defined Y-Curve; Keep DEF_CRV[N] ≥ DEF_CRV[N-1]	

Register:: DEF_	CRV[(<mark>)3] (pag</mark>	e1)	(ACCESS[C9,CA]) 0x02	
Name	Bits	R/W	Default	Comments	Config
DEF_CRV03	7:0	R/W	UASU	Pre-Defined Y-Curve; Keep DEF_CRV[N] ≥ DEF_CRV[N-1]	

Register:: DEF_	CRV[0	<mark>4] (pag</mark>	e1)	(ACCESS[C9,CA]) 0x03	
Name	Bits	R/W	Default	Comments	Config
DEF_CRV04	7:0	R/W	UATU	Pre-Defined Y-Curve; Keep DEF_CRV[N] ≥ DEF_CRV[N-1]	

Register:: DEF_	CRV[0	<mark>5] (pag</mark>	e1)	(ACCESS[C9,CA]) 0x04	
Name	Bits	R/W	Default	Comments	Config
DEF_CRV05	7:0	R/W	UAJU	Pre-Defined Y-Curve; Keep DEF_CRV[N] ≥ DEF_CRV[N-1]	

Register:: DEF_CRV[06] (page1)				(ACCESS[C9,CA]) 0x05	
Name	Bits	R/W	Default	Comments	Config
DEF_CRV06	7:0	R/W	UAUU	Pre-Defined Y-Curve; Keep DEF_CRV[N] ≥ DEF_CRV[N-1]	

Name	Bits	R/W	Default	Comments	Config
DEF_CRV07	7:0	R/W	UAIU	Pre-Defined Y-Curve; Keep DEF_CRV[N] ≥ DEF_CRV[N-1]	

Register:: DEF_	CRV[0	<mark>)8] (pag</mark>	e1)	(ACCESS[C9,CA]) 0x07	
Name	Bits	R/W	Default	Comments	Config
DEF_CRV08	7:0	R/W	UAGU	Pre-Defined Y-Curve; Keep DEF_CRV[N] ≥ DEF_CRV[N-1]	

Register:: DEF_	CRV[0	<mark>9] (pag</mark>	e1)	(ACCESS[C9,CA]) 0x08	
Name	Bits	R/W	Default	Comments	Config
DEF_CRV09	7:0	R/W	UAJU	Pre-Defined Y-Curve; Keep DEF_CRV[N] ≥ DEF_CRV[N-1]	

Register:: DEF_	CRV[1	10] (pag	e1)	(ACCESS[C9,CA]) 0x09	
Name	Bits	R/W	Default	Comments	Config
DEF_CRV10	7:0	R/W	UAAU	Pre-Defined Y-Curve; Keep DEF_CRV[N] ≥ DEF_CRV[N-1]	

Register:: DEF_	CRV[1	1] (pag	e1)	(ACCESS[C9,CA]) 0x0A	
Name	Bits	R/W	Default	Comments	Config
DEF_CRV11	7:0	R/W	UADU	Pre-Defined Y-Curve; Keep DEF_CRV[N] ≥ DEF_CRV[N-1]	

Register:: DEF_	CRV[1	2] (pag	e1)	(ACCESS[C9,CA]) 0x0B	
Name	Bits	R/W	Default	Comments	Config
DEF_CRV12	7:0	R/W	UACU	Pre-Defined Y-Curve; Keep DEF_CRV[N] ≥ DEF_CRV[N-1]	

Register:: DEF_CRV[13] (page1)			e1)	(ACCESS[C9,CA]) 0x0C	
Name	Bits	R/W	Default	Comments	Config
DEF_CRV13	7:0	R/W	UNDU	Pre-Defined Y-Curve; Keep DEF_CRV[N] ≥ DEF_CRV[N-1]	

Register:: DEF_CRV[14] (page1)			e1)	(ACCESS[C9,CA]) 0x0D	
Name	Bits	R/W	Default	Comments	Config
DEF_CRV14	7:0	R/W	UALU	Pre-Defined Y-Curve; Keep DEF_CRV[N] ≥ DEF_CRV[N-1]	

Register:: DEF_CRV[15] (page1)			e1)	(ACCESS[C9,CA]) 0x0E	
Name Bits R/W Default		Default	Comments	Config	
DEF_CRV15	7:0	R/W	UALU	Pre-Defined Y-Curve; Keep DEF_CRV[N] ≥ DEF_CRV[N-1]	

Register:: DEF_CRV[16] (page1)			e1)	(ACCESS[C9,CA]) 0x0F	
Name	Bits	R/W	Default	Comments	Config
DEF_CRV16	7:0	R/W	UXUU	Pre-Defined Y-Curve; Keep DEF_CRV[N] ≥ DEF_CRV[N-1] Note: default = 0x00 means 0x100 (256)	

When y-curve boundary is changed (DEF_CRV[16] != 0x00), disable histogram noise filter.

Registers below is effective only when auto mode is disable and black/white level expansion is enabled.

When auto mode is enabled (DCC_MODE=0), Y_BL_BIAS and Y_WL_BIAS are read-only.

Register:: Y_BL_BIAS (page1)			l)	(ACCESS[C9,CA]) 0x10	
Name	Bits	R/W	Default	Comments	Config
Y_BL_BIAS	7:0	R/W	UAUU	Y Offset for Black-Level Expansion (Y_L' = 4*Y_BL_BIAS)	

Register:: Y_WL_BIAS (page1)			1)	(ACCESS[C9,CA]) 0x11	
Name Bits R/W Default		Default	Comments	Config	
Y_WL_BIAS	7:0	R/W	UAUU	Y Offset for While-Level Expansion (1023-Y_H' = 4*Y_WL_BIAS)	

Load double buffer CRED-00 ~ CRED-11 (page1) after write CRED-11 when DCC enable

Register:: SAT_FACTOR (page1)			ge1)	(ACCESS[C9,CA]) 0x12	
Name	Bits	R/W	Default	Comments	Config
Reserved	7:6			Reserved	
SAT_FACTOR	5:0	R/W	0x00	Saturation Compensation Factor = 0 ~ 32.	

Registers below is effective only when auto mode is enabled.

In manual mode (DCC_MODE=1), BLD_VAL will be fixed to 0. It means Y-curve is fully determined by DEF_CUR[01~15]

Register:: BLD_UB (page1)				(ACCESS[C9,CA]) 0x13	
Name	Bits	R/W	Default	Comments	Config
BLD_UB	7:0	R/W	0x00	Upper Bound of Blending Factor	

Register:: BLD_LB (page1)				(ACCESS[C9,CA]) 0x14	
Name	Name Bits R/W Default			Comments	Config
BLD_LB	7:0	R/W	0x00	Lower Bound of Blending Factor	

Register:: DEV_FACTOR (page1)			ge1)	(ACCESS[C9,CA]) 0x15	
Name Bits R/W Default		Default	Comments	Config	
DEV_FACTOR	7:0	R/W	0x00	Deviation Weighting Factor	

Register:: BLD_VAL_SEL (page1)				(ACCESS[C9,CA]) 0x16		
Name	Bits	R/W	Default	Comments	Config	
WL_RANGE	7:6	R/W	0x00	White-Level Range 00: Yi = 512 (Z8) 01: Yi = 576 (Z9) 10: Yi = 640 (Z10) 11: Yi = 704 (Z11)		
WL_BLD_VAL	5:4	R/W	0x00	White-Level Blending Factor 00: 0 (user-defined curve) 01: R/2 10: R 11: 2R		
BL_RANGE	3:2	R/W	0x00	Black-Level Range 00: Yi = 448 (Z7) 01: Yi = 384 (Z6) 10: Yi = 320 (Z5) 11: Yi = 256 (Z4)		
BL_BLD_VAL	1:0	R/W	0x00	Black-Level Blending Factor 00: 0 (user-defined curve) 01: R/2 10: R 11: 2R		

Register:: BLD_VAL (page1)				(ACCESS[C9,CA]) 0x17	
Name	Bits	R/W	Default	Comments	Config
BLD_VAL	7:0	R		= Max{ BLD_UB - [(DEV_VAL*DEV_FACTOR)/256], BLD_LB}	

Register:: DEV_VAL_HI (page1)				(ACCESS[C9,CA]) 0x18	
Name	Bits	R/W	Default	Comments	Config
DEV_VAL_HI	7:0	R		Bit[8:1] of Deviation Value	

Register:: DEV_VAL_LO (page1)				(ACCESS[C9,CA]) 0x19	
Name	Bits	R/W	Default	Comments	Config
DEV_VAL_LO	7	R		Bit[0] of Deviation Value	
Reserved	6:0	1		Reserved	

Register:: SRAM initial value (page2)				(ACCESS[C9,CA]) 0x00~0x8F	
Name	Bits	R/W	Default	Comments	Config
SRAM_XX	7:0	W		Addr 00: SRAM_00 Addr 01: SRAM_01	

	Addr 8F : SRAM_8F	

Register:: SRA	M_BIS	T (page	3)	(ACCESS[C9,CA]) 0x00		
Name	Bits	R/W	Default	Comments	Config	
BIST_EN	7	R/W	0	BIST_EN 0: disable 1: enable		
RAM_Mode	6	R/W	0	RAM_Mode 0: dclk domain mode (normal mode, BIST) 1: MCU domain mode (SCG test)		
Reserved	5:2			Reserved		
BIST_PERIOD	1	R		BIST_Period 0: BIST is done 1: BIST is running		
BIST_OK	0	R		BIST_OK 0: SRAM fail 1: SRAM ok		

ICM (Page 7) Address: D0 ICM Control

	icwi (rage 1)		
Address	: D0	ICM Control	Default: 00h
Bit	Mode	Function	
7	R/W	ICM Enable	
		0: Disable	
		1: Enable	
6	R/W	Y Correction Mode	
		0: dY = (8dU + dV)/8	
		1: $dY = (6dU + dV)/8$	
5	R/W	ICM U/V Delta Range:	
		0: Original -128~+127	
		1: Double -256~254	
4	R/W	CM0 Enable	
		0: Disable	
		1: Enable	
3	R/W	CM1 Enable	
		0: Disable	
		1: Enable	
2	R/W	CM2 Enable	
		0: Disable	
		1: Enable	
1	R/W	CM3 Enable	
		0: Disable	
		1: Enable	
0	R/W	CM4 Enable	
		0: Disable	
		1: Enable	
Address	: D1	ICM_SEL	Default: 00h

Auuless	. D1	ICM_SEL	Derault. von
Bit	Mode	Function	
7:5	R/W	ICM Test Mode	
		000: disable	
		001: bypass U, V result	
		010: bypass hue/saturation result	
		011: bypass dU, dV value	

		1xx: R,B as LUT input, and bypass LUT output to R/G/B output	
4		reserved	
3	R/W	CM5 Enable	
	10,77	0: Disbale	
		1: Enable	
2:0	R/W	CM Select	
		000: Select Chroma Modifier 0 for Accessing Through Data Port	
		001: Select Chroma Modifier 1 for Accessing Through Data Port	
		010: Select Chroma Modifier 2 for Accessing Through Data Port	
		011: Select Chroma Modifier 3 for Accessing Through Data Port	
		100: Select Chroma Modifier 4 for Accessing Through Data Port	
		101: Select Chroma Modifier 5 for Accessing Through Data Port	
		110~111: reserved	
Address	: D2	ICM_ADDR	Default: 00h
Bit	Mode	Function	
7:0	R/W	ICM port address	
Address	: D3	ICM_Data	
Bit	Mode	Function	
7:0	R/W	ICM port data	
ICM AI	DDR will	be increased automatically after each byte of ICM_DATA has been accessed.	
		MST_HUE_HB	Default: x0h
Bit	Mode	Function	Default: Auf
7:4		Reserved	
3:0	W	High Byte[11:8] of Master Hue for Chroma Modifier N.	
Address		MST HUE LB	Default: 00h
Bit	Mode	Function	Default, 60H
7:0	W	Low Byte[7:0] of Master Hue for Chroma Modifier N.	
		HUE SET	Default: 00h
Bit	Mode	Function	Default, 60H
7:6	W	CM[N]_LWID	
7.0		00: CM[N] left width = 64	
		01: CM[N] left width = 128	
		10: CM[N] left width = 256	
		11: CM[N] left width = 512	
5:4	W	CM[N]_LBUF	
		00: $CM[N]$ left Buffer = 0	
		01: CM[N] left Buffer = 64	
		10: CM[N] left Buffer = 128	
2.2	**7	11: CM[N] left Buffer = 256	
3:2	W	CM[N]_RWID	
		00: CM[N] right width = 64 01: CM[N] right width = 128	
		10: CM[N] right width = 128	
		11: CM[N] right width = 512	
1:0	W	CM[N]_RBUF	
		00: CM[N] right Buffer = 0	
		01: CM[N] right Buffer = 64	
		10: CM[N] right Buffer = 128	
		11: CM[N] right Buffer = 256	
Address	: D3-03~	32 U/V Offset	Default: 00h
Bit	Mode	Function	
7:0	W	Addr 03: U Offset 00, -128~127	
		Addr 04: V Offset 00, -128~127	
		Addr 05: U Offset 01, -128~127	
		Addr 06: V Offset 01, -128~127	
		Addr 07: U Offset 02, -128~127	
I	l	Addr 08: V Offset 02, -128~127	
		Addr 09: U Offset 03, -128~127	

```
Addr 0A: V Offset 03, -128~127
Addr 0B: U Offset 04, -128~127
Addr 0C: V Offset 04, -128~127
Addr 0D: U Offset 05, -128~127
Addr 0E: V Offset 05, -128~127
Addr 0F: U Offset 06, -128~127
Addr 10: V Offset 06, -128~127
Addr 11: U Offset 07, -128~127
Addr 12: V Offset 07, -128~127
Addr 13: U Offset 10, -128~127
Addr 14: V Offset 10, -128~127
Addr 15: U Offset 11, -128~127
Addr 16: V Offset 11, -128~127
Addr 17: U Offset 12, -128~127
Addr 18: V Offset 12, -128~127
Addr 19: U Offset 13, -128~127
Addr 1A: V Offset 13, -128~127
Addr 1B: U Offset 14, -128~127
Addr 1C: V Offset 14, -128~127
Addr 1D: U Offset 15, -128~127
Addr 1E: V Offset 15, -128~127
Addr 1F: U Offset 16, -128~127
Addr 20: V Offset 16, -128~127
Addr 21: U Offset 17, -128~127
Addr 22: V Offset 17, -128~127
Addr 23: U Offset 20, -128~127
Addr 24: V Offset 20, -128~127
Addr 25: U Offset 21, -128~127
Addr 26: V Offset 21, -128~127
Addr 27: U Offset 22, -128~127
Addr 28: V Offset 22, -128~127
Addr 29: U Offset 23, -128~127
Addr 2A: V Offset 23, -128~127
Addr 2B: U Offset 24, -128~127
Addr 2C: V Offset 24, -128~127
Addr 2D: U Offset 25, -128~127
Addr 2E: V Offset 25, -128~127
Addr 2F: U Offset 26, -128~127
Addr 30: V Offset 26, -128~127
Addr 31: U Offset 27, -128~127
Addr 32: V Offset 27, -128~127
```

Y-Peaking filter and coring control (For Display Domain) (Page 7)

Address: D6 peaking/coring access port control Default: 00h

Bit	Mode	Function
7	R/W	Enable peaking / coring access port
6	R/W	Peaking/coring Enable
		0: Disable
		1: Enable
5	R/W	Y peaking Coefficient Resolution
		0: n/32
		1: n/64

4:3		Reserved
2:0	R/W	Peaking/coring port address

Address: D7-00 Peaking_Coef0

Bit	Mode	Function
7:0	R/W	Coefficient C0 of Peaking filter:
		Valid Range: -128/32(-128) ~ 127/32 (127) (2's complement)

Address: D7-01 Peaking_Coef1

Bit	Mode	Function
7:0	R/W	Coefficient C1 of Peaking filter:
		Valid Range: -128/32(-128) ~ 127/32 (127) (2's complement)

Address: D7-02 Peaking_Coef2

Bit	Mode	Function
7:0	R/W	Coefficient C2 of Peaking filter:
		Valid Range: -128/32(-128) ~ 127/32 (127) (2's complement)

Address: D7-03 Coring_Min

Bit	Mode	Function
7:5	R/W	Reserved
4:0	R/W	Coring Minimum value

Address: D7-04 Coring_Max_Pos

Bit	Mode	Function
7:0	R/W	Coring Maximum Positive value

Address: D7-05 Coring_Max_Neg

Bit	Mode	Function	1
7:0	R/W	Coring Maximum Negitive value (2's complemen	t)

$$Y'[n] = C0*Y[n] + C1*(Y[n-1] + Y[n+1]) + C2*(Y[n-2] + Y[n+2]) \;, \; -256 < = Y' < = 255$$

 $Ypeak = Y'[n] - Coring_Min, if Y'[n] >= 0,$

 $= Y'[n] + Coring_Min$, if Y'[n] < 0

if $(|Y'[n]| \le Coring_Min)$

Y''[n] = 0,

else if Ypeak >= Coring_Max_Pos

 $Y''[n] = Coring_Max_Pos$

else if Ypeak <= Coring_Max_Neg

 $Y''[n] = Coring_Max_Neg$

else

Y''[n] = Ypeak

 $Yo[n] = Y[n] + Y''[n], 0 \le Yo[n] \le 255$

DCR (Page 7)

Register::DCR Addres	ss Po	ort		0xD8	
Name	Bits	R/W	Default	Comments	Config

DCR_ADDR	7:2		0	DCR address	
RESULT_READ	1	R/W	0	0: Disable Read to refresh measure result.	
				1: Read DCR measure result.	
MEASURE_START	0	R/W	0	0: Finish or disable	
				1: Start DCR computation.	

Register:: DCR Data F	ort			0xD9	
Name	Bits	R/W	Default	Comments	Config
DCR_DATA	7:0	R/W	0x00	DCR data	

Register:: DCR_THES	HOLI	D1		(ACCESS[D8,D9]) 0x00	
Name	Bits	R/W	Default	Comments	Config
THRESHOLD1_VALUE	7:0	R/W	0x08	DCR threshold1. (R+G+B)*0.75	

If we want to set threshold 1 = 200. THRESHOLD $1_VALUE = 200*0.75 = 150$.

Register:: DCR_THES	HOLI	02		(ACCESS[D8,D9]) 0x01	
Name	Bits	R/W	Default	Comments	Config
THRESHOLD2_VALUE	7:0	R/W	0x60	DCR threshold2. (threshold2 > threshold1)	
				(R+G+B)*0.75	

If we want to set threshold 2 = 200. THRESHOLD $2_VALUE = 200*0.75 = 150$.

Register::DCR_ABO	VE_T	H1_N	JM_2	(ACCESS[D8,D9]) 0x02	
Name	Bits	R/W	Default	Comments	Config
ABOVE_TH1_NUM_2	7:0	R	0	Total pixel number above threshold1: bit[23:16]	

Register::DCR_ABO	VE_T	H1_N	JM_1	(ACCESS[D8,D9]) 0x03	
Name	Bits	R/W	Default	Comments	Config
ABOVE_TH1_NUM_1	7:0	R	0	Total pixel number above threshold1: bit[15:8]	

Register::DCR_ABOVE_TH1_NUM_0 (ACCESS[D8,D9]) 0x04

Name	Bits	R/W	Default	Comments	Config
ABOVE_TH1_NUM_0	7:0	R	0	Total pixel number above threshold1: bit[7:0]	

Register::DCR_ABOVE_TH1_VAL_3				(ACCESS[D8,D9]) 0x05	
Name Bits R/W Default			Default	Comments	Config
ABOVE_TH1_VAL_3	7:0	R	0	Total sum (R+G+B) of pixel value above threshold1:	
				bit[31:24]	

Register::DCR_ABOVE_TH1_VAL_2				(ACCESS[D8,D9]) 0x06	
Name	Bits	R/W	Default	Comments	Config
ABOVE_TH1_VAL_2	7:0	R		Total sum (R+G+B) of pixel value above threshold1: bit[23:16]	

Register::DCR_ABOVE_TH1_VAL_1				(ACCESS[D8,D9]) 0x07	
Name	Bits	R/W	Default	Comments	Config
ABOVE_TH1_VAL_1	7:0	R		Total sum (R+G+B) of pixel value above threshold1: bit[15:8]	

Register::DCR_ABOVE_TH1_VAL_0			AL_0	(ACCESS[D8,D9]) 0x08	
Name	Bits	R/W	Default	Comments	Config
ABOVE_TH1_VAL_0	7:0	R		Total sum (R+G+B) of pixel value above threshold1: bit[7:0]	

Register::DCR_ABOVE_TH2_NUM_2			JM_2	(ACCESS[D8,D9]) 0x09	
Name	Bits	R/W	Default	Comments	Config
ABOVE_TH2_NUM_2	7:0	R	0	Total pixel number above threshold2: bit[23:16]	

Register::DCR_ABOVE_TH2_NUM_1			JM_1	(ACCESS[D8,D9]) 0x0A	
Name	Bits	R/W	Default	Comments	Config

ABOVE_TH2_NUM_1 7:0	R	0	Total pixel number above threshold2: bit[15:8]	
---------------------	---	---	--	--

Register::DCR_ABOVE_TH2_NUM_0			JM_0	(ACCESS[D8,D9]) 0x0B	
Name	Bits	R/W	Default	Comments	Config
ABOVE_TH2_NUM_0	7:0	R	0	Total pixel number above threshold2: bit[7:0]	

Register::DCR_ABOVE_TH2_VAL_3			AL_3	(ACCESS[D8,D9]) 0x0C	
Name	Bits	R/W	Default	Comments	Config
ABOVE_TH2_VAL_3	7:0	R	0	Total sum (R+G+B) of pixel value above threshold2:	
				bit[31:24]	

Register::DCR_ABOVE_TH2_VAL_2			AL_2	(ACCESS[D8,D9]) 0x0D	
Name	Bits	R/W	Default	Comments	Config
ABOVE_TH2_VAL_2	7:0	R	0	Total sum (R+G+B) of pixel value above threshold2:	
				bit[23:16]	

Register::DCR_ABOVE_TH2_VAL_1				(ACCESS[D8,D9]) 0x0E	
Name	Bits	R/W	Default	Comments	Config
ABOVE_TH2_VAL_1	7:0	R		Total sum (R+G+B) of pixel value above threshold2: bit[15:8]	

Register::DCR_ABOVE_TH2_VAL_0				(ACCESS[D8,D9]) 0x0F	
Name	Bits	R/W	Default	Comments	Config
ABOVE_TH2_VAL_0	7:0	R		Total sum (R+G+B) of pixel value above threshold2: bit[7:0]	

Register::DCR_HIGH_LV_NUM_R_1				(ACCESS[D8,D9]) 0x10	
Name	Bits	R/W	Default	Comments	Config
HIGH_LV_NUM_R_1	7:0	R	0	Dynamically detect highest level pixel number of red channel. RMAX_NUM[15:8]	

Register::DCR_HIGH_LV_NUM_R_0				(ACCESS[D8,D9]) 0x11	
Name	Bits	R/W	Default	Comments	Config
HIGH_LV_NUM_R_0	7:0	R		Dynamically detect highest level pixel number of red channel. RMAX_NUM[7:0]	

Register::DCR_LOW_LV_NUM_R_1				(ACCESS[D8,D9]) 0x12	
Name	Bits	R/W	Default	Comments	Config
LOW_LV_NUM_R_1	7:0	R		Dynamically detect the lowest level pixel number of red channel. RMIN_NUM[15:8]	

Register::DCR_LOW_LV_NUM_R_0				(ACCESS[D8,D9]) 0x13	
Name	Bits	R/W	Default	Comments	Config
LOW_LV_NUM_R_0	7:0	R		Dynamically detect the lowest level pixel number of red channel. RMIN_NUM[7:0]	

Register::DCR_HIGH_LV_VAL_R				(ACCESS[D8,D9]) 0x14	
Name	Bits	R/W	Default	Comments	Config
HIGH_LV_VAL_R	7:0	R	0	Dynamically detect highest level value of red channel.	

Register::DCR_LOV	LV_	VAL_I	R	(ACCESS[D8,D9]) 0x15	
Name	Bits	R/W	Default	Comments	Config
LOW_LV_VAL_R	7:0	R	0	Dynamically detect the lowest level value of red channel.	

Register::DCR_HIGH_LV_NUM_G_1				(ACCESS[D8,D9]) 0x16	
Name	Bits	R/W	Default	Comments	Config

HIGH_LV_NUM_G_1	7:0	R	0	Dynamically detect the highest level pixel number of green	
				channel. GMAX_NUM[15:8]	

Register::DCR_HIGH_LV_NUM_G_0				(ACCESS[D8,D9]) 0x17	
Name	Bits	R/W	Default	Comments	Config
HIGH_LV_NUM_G_0	7:0	R		Dynamically detect the highest level pixel number of green	
				channel. GMAX_NUM[7:0]	

Register::DCR_LOW_LV_NUM_G_1				(ACCESS[D8,D9]) 0x18	
Name	Bits	R/W	Default	Comments	Config
LOW_LV_NUM_G_1	7:0	R		Dynamically detect the lowest level pixel number of green channel. GMIN_NUM[15:8]	

Register::DCR_LOW	LV_	NUM_	G_0	(ACCESS[D8,D9]) 0x19	
Name	Bits	R/W	Default	Comments	Config
LOW_LV_NUM_G_0	7:0	R		Dynamically detect the lowest level pixel number of green channel. GMIN_NUM[7:0]	
Register::DCR_HIGH	I_LV	_VAL_	G	(ACCESS[D8,D9]) 0x1A	
Register::DCR_HIGH	<mark>I_LV</mark> Bits		G Default		Config

Register::DCR_LOW_LV_VAL_G				(ACCESS[D8,D9]) 0x1B	
Name	Bits	R/W	Default	Comments	Config
LOW_LV_VAL_G	7:0	R	0	Dynamically detect the lowest level value of green channel.	

Register::DCR_HIGH_LV_NUM_B_1				(ACCESS[D8,D9]) 0x1C	
Name	Bits	R/W	Default	Comments	Config

HIGH_LV_NUM_B_1	7:0	R	0	Dynamically detect the highest level pixel number of blue	
				channel. BMAX_NUM[15:8]	

Register::DCR_HIGH_LV_NUM_B_0				(ACCESS[D8,D9]) 0x1D	
Name	Bits	R/W	Default	Comments	Config
HIGH_LV_NUM_B_0	7:0	R	0	Dynamically detect the highest level pixel number of blue	
				channel. BMAX_NUM[7:0]	

Register::DCR_LOW_LV_NUM_B_1			B_1	(ACCESS[D8,D9]) 0x1E	
Name	Bits	R/W	Default	Comments	Config
LOW_LV_NUM_B_1	7:0	R		Dynamically detect the lowest level pixel number of blue channel. BMIN_NUM[15:8]	

Register::DCR_LOW_LV_NUM_B_0			B_0	(ACCESS[D8,D9]) 0x1F	
Name	Bits	R/W	Default	Comments	Config
LOW_LV_NUM_B_0	7:0	R		Dynamically detect the lowest level pixel number of blue channel. BMIN_NUM[7:0]	

Register:: DCR_HIGH_LV_VAL_B			B	(ACCESS[D8,D9]) 0x20			
Name	Bits	R/W	Default	Comments	Config		
HIGH_LV_VAL_B	7:0	R	0	Dynamically detect the highest level value of blue channel.			

Register:: DCR_LOW_LV_VAL_B			В	(ACCESS[D8,D9]) 0x21	
Name	Bits	R/W	Default	Comments	Config
LOW_LV_VAL_B	7:0	R	0	Dynamically detect the lowest level value of blue channel.	

Pattern Generator in Display Domain (Page 7)

 $RTD3182\ supports\ programmable\ patterns,\ such\ as\ gray-level,\ chessboard,\ dot-pattern,\ etc.,\ for$

display image testing.

Register::DISP_PG_R_C	TRL			0xF0		
Name	Bits	R/W	Default	Comments	Config	
PG_ENABLE	7	R/W	0	Dispaly Pattern Gen. Function Enable		
PG_R_CTRL_DUM	6	R/W	0	Dummy		
PG_ROUT_INV_EN	5	R/W	0	Inverse Data Output		
PG_R_CLAMP_EN	4	R/W	0	Adder result clamp to 10'h3FFF		
LINE_R_TOG_EN	3	R/W	0	Data toggled in each pixel-step		
LINE_R_INC_EN	2	R/W	0	Data increment in each line-step		
PIXEL_R_TOG_EN	1	R/W	0	Data toggled in each pixel-step		
PIXEL_R_INC_EN	0	R/W	0	Data incremented in each pixel-step		

Register::DISP_PG_G_C	TRL			0xF1	
Name	Bits	R/W	Default	Comments	Config
PG_G_CTRL_DUM	7:6	R/W	0	Dummy	
PG_GOUT_INV_EN	5	R/W	0	Inverse Data Output	
PG_G_CLAMP_EN	4	R/W	0	Adder result clamp to 10'h3FFF	

LINE_G_TOG_EN	3	R/W	0	Data toggled in each pixel-step	
LINE_G_INC_EN	2	R/W	0	Data increment in each line-step	
PIXEL_G_TOG_EN	1	R/W	0	Data toggled in each pixel-step	
PIXEL_G_INC_EN	0	R/W	0	Data incremented in each pixel-step	

Register::DISP_PG_B_C	TRL			0xF2		
Name	Bits	R/W	Default	Comments	Config	
PG_B_CTRL_DUM	7:6	R/W	0	Dummy		
PG_BOUT_INV_EN	5	R/W	0	Inverse Data Output		
PG_B_CLAMP_EN	4	R/W	0	Adder result clamp to 10'h3FFF		
LINE_B_TOG_EN	3	R/W	0	Data toggled in each pixel-step		
LINE_B_INC_EN	2	R/W	0	Data increment in each line-step		
PIXEL_B_TOG_EN	1	R/W	0	Data toggled in each pixel-step		
PIXEL_B_INC_EN	0	R/W	0	Data incremented in each pixel-step		

Register::DISP_PG_R_I	nitial			0xF3	
Name Bits R/W Default				Comments	Config
PG_R_INIT	7:0	R/W	0	Initial Pattern Value for Red Data [9:2]	

Register::DISP_PG_G_I	nitial			0xF4	
Name Bits R/W Default				Comments	Config
PG_G_INIT	7:0	R/W	0	Initial Pattern Value for Green Data [9:2]	

Register::DISP_PG_B_I	nitial			0xF5	
Name	Bits	R/W	Default	Comments	Config
PG_B_INIT	7:0	R/W	0	Initial Pattern Value for Blue Data [9:2]	

Register::DISP_PG_Pixe	el_Delt	a		0xF6	
Name	Bits	R/W	Default	Comments	Config
PG_PIXEL_DELTA	7:0	R/W	0	Pixel Delta value for incremental	

Register::DISP_PG_Line	_Delta	1		0xF7	
Name Bits R/W Default				Comments	Config
PG_LINE_DELTA	7:0	R/W	0	Line Delta value for incremental	

Register::DISP_PG_Pixel_Step_MSB	0xF8
----------------------------------	------

Name	Bits	R/W	Default	Comments	Config
PG_PIXEL_STEP_M	7:0	R/W	01h	Pixel Step for toggle/incremental, can not be 0	

Register::DISP_PG_Line	e_Step	_MSB		0xF9	
Name Bits R/W Default				Comments	Config
PG_LINE_STEP_M	7:0	R/W	01h	Line Step for toggle/incremental, can not be 0	

Register::DISP_PG Step	_LSB			0xFA		
Name	Bits	R/W	Default	Comments	Config	
LINE_STEP_DUM	7:6	R/W	0	Dummy		
PG_LINE_STEP_L	5:4	R/W	0	Decimal part for Line-step		
PIXEL_STEP_DUM	3:2	R/W	0	Dummy		
PG_PIXEL_STEP_L	1:0	R/W	0	Decimal part for Pixel-step		

Ex: If the pattern is 256 gray level in 640 pixels, the wanted pixel_step is 640/256 = 2.5. Hence, PG_PIXEL_STEP_M = 2h and PG_PIXEL_STEP_L = 2'b10.

 $(\{PG_PIXEL_STEP_M, PG_PIXEL_STEP_L \} = 2.5).$

Reserved (Page 8)	

Reserved (Page 9)	

Reserved (Page A)
Reserved (Page B)
Reserved (Page C)

Register 1(page D)

Interrupt Control

Register::IRQ_Status				0xFF00	
Name	Bits	R/W	Default	Comments	Config
Reserved	7			Reserved	
M2PLL_IRQ_EVENT	6	R/W	0	M2PLL-abnormal Event Status 1. Select M2PLL as clock source, but M2PLL power down, power saving or output disable, clear this bit to disable the interrupt	Rport Wport
CEC_IRQ_EVENT	5	R/W	0	CEC Event Status 1. IF CEC func IRQ event occurred since the last status cleared	Rport Wport
SCA_IRQ_EVENT	4	R/W	0	Scalar-related Event Status 1. IF Scalar integrated IRQ event occurred since the last status cleared	Rport Wport
Reserved	3:1		0	Reserved to 0	
DDC_IRQ_EVENT	0	R/W	0	DDC Event Status 1: If the DDC IRQ event occurred since the last status cleared	Rport Wport

Register:: REV_DUMMY1				0xFF02	
Name	Bits	R/W	Default	Comments	Config
REV_DUMMY1	7:0	R/W	00	Dummy1	

DDC

RTD3580 has three DDC ports. The MCU can access the following three DDC interface:

- DDC_RAM1 (FD80~FDFF) through pin ASDL and ASDA by ADC DDC channel.
- DDC_RAM2 (FE00~FE7F) through pin DSDL and DSDA by DVI DDC channel.

Besides, the DDC_RAM1, DDC_RAM2, can be assigned from 128 to 256bytes. The actual

sizes of each DDC_RAM are determined by the combination of ADDCRAM_ST, DDDCRAM_ST, and HDDCRAM_ST. The DDC RAMs are shared with MCU's XSRAM, configuration must be take care for reserving XSRAM for programming. For example, Set ADDCRAM_ST = 0x2, DDDCRAM_ST = 0x3, , DVI DDC. The XSRAM for MCU is 512 bytes and ADC DDC/HDMI DDC is used with 256 bytes.

The DDC of RTD3580 is compliant with VESA DDC standard. All DDC slaves are in DDC1 mode after reset. When a high to low transition is detected on ASCL/DSCL pin, the DDC slave will enter DDC2 transition mode. The DDC slave can revert to DDC1 mode if the SCL signal keeps unchanged for 128 VSYNC periods in DDC2 transition mode and RVT_A_DDC1_EN / RVT_D_DDC1_EN = 1. In DDC2 transition mode, the DDC slave will lock in DDC2 mode if a valid control byte is received. Furthermore, user can force the DDC slave to operate DDC2 mode by setting

 $A_DDC2 / D_DDC2 = 1.$

Register:: ADC_SEGMENT_ADDRESS 0XFF19					
Name	Bits	R/W	Default	Comments	Config
ADC_SEG_ADDR	7:1	R/W	0x30	ADC slave address for segment control	
Reserved	0			Reserved	

Register:: ADC_SE	GMEN.	T_DATA		0XFF1A	
Name	Bits	R/W	Default	Comments	Config
ADC_SEG_DATA	7:0	R/W		Data Access for Slave ID, ADC_SEGMENT_ADDRESS, in ADC DDC	Rport Wport

Register::ADC_DD	C_en	able		0xFF1B	
Name	Bits	R/W	Default	Comments	Config
A_DDC_ADDR	7:5	R/W	0	ADC DDC Channel Address Least Significant 3 Bits (The default DDC channel address MSB 4 Bits is "A")	
A _SCL_DBN_SEL	4	R/W	0	SCL Debounce Clock Selection 0: De-bounce clock (after clock divider) 1: De-bounce reference clock	
A_DDC_W_STA	3	R/W	0	ADC DDC Write Status (for external DDC access only) It is cleared after write. (No matter what the data are)	Rport
					wport

A_DDCRAM_W_EN	2	R/W	0	ADC DDC SRAM Write Enable (for external DDC access	
				only)	
				0: Disable	
				1: Enable	
A_DBN_EN	1	R/W	1	ADC DDC De-bounce Enable	
				0: Disable	
				1: Enable (with crystal/4)	
A_DDC_EN	0	R/W	0	ADC DDC Channel Enable Bit	
				0: MCU access Enable	
				1: DDC channel Enable	

Register::ADC_DDC_control_1		1	0xFF1C		
Name	Bits	R/W	Default	Comments	Config
A_DBN_CLK_SEL	7:6	R/W	0	De-bounce clock divider	
				00: 1/1 reference clock	
				01: 1/2 reference clock	
				1X: 1/4 reference clock	
A_STOP_DBN_SEL	5:4	R/W	0	De-bounce sda stage	
				0X: latch one stage	
				10: latch two stage	
				11: latch three stage	
A_SYS_CK_SEL	3	R/W	0	De-bounce reference clock	
				0: crystal clock	
				1. Serial flash clock (M2PLL / Flash_DIV)	
A_DDC2	2	R/W	0	Force to ADC DDC to DDC2 mode	
				0: Normal operation	
				1: DDC2 is active	
RST_A_DDC	1	R/W	0	Reset ADC DDC circuit	Rport
				0: Normal operation	Rport
				1: reset (auto cleared)	
					wport
RVT_A_DDC1_EN	0	R/W	0	ADC DDC revert to DDC1 enable(SCL idle for 128	
				VSYNC)	
				0: Disable	
				1: Enable	

Register::ADC_DDC_control_2				0xFF1D	
Name	Bits	R/W	Default	Comments	Config
A_SEG_WR_EN	7	R/W	0	Enable interrupt of ADC segment address write 0: Disable 1: Enable	
Reserved	6:2			Reserved	
A_SEG_WR	1	R/W	0	ADC DDC Segment Write Status 0: no external write after clear 1: new external write after clear It is cleared after write	Wport Rport
A_FORCE_SCL_L	0	R/W	0	Force external SCL bus low 1: Driving SCL = 0 after external SCL = 0 0: Release SCL	

Register::DVI_DDC_enable				0xFF1E	
Name	Bits	R/W	Default	Comments	Config
D_DDC_ADDR	7:5	R/W	0	DVI DDC Channel Address Least Significant 3 Bits	
				(The default DDC channel address MSB 4 Bits is "A")	
D_SCL_DBN_SEL	4	R/W	0	SCL Debounce Clock Selection	
				0: De-bounce clock (after clock divider)	
				1: De-bounce reference clock	
D_DDC_W_STA	3	R/W	0	DVI DDC External Write Status (for external DDC access	XV
				only)	Wport
				It is cleared after write.	
					rport
D_DDCRAM_W_EN	2	R/W	0	DVI DDC External Write Enable (for external DDC access	
				only)	
				0: Disable	
				1: Enable	
D_DBN_EN	1	R/W	1	DVI DDC Debounce Enable	
				0: Disable	
				1: Enable (with crystal/4)	
D_DDC_EN	0	R/W	0	DVI DDC Channel Enable Switch	
				0: MCU access Enable	
				1: External DDC access Enable	

Register::DVI_DDC_control_1				0xFF1F	
Name	Bits	R/W	Default	Comments	Config

D_DBN_CLK_SEL	7:6	R/W	0	De-bounce clock divider	
				00: 1/1 reference clock	
				01: 1/2 reference clock	
				1X: 1/4 reference clock	
D_STOP_DBN_SEL	5:4	R/W	0	De-bounce sda stage	
				0X: latch one stage	
				10: latch two stage	
				11: latch three stage	
D_SYS_CK_SEL	3	R/W	0	De-bounce reference clock	
				0: crystal clock	
				1. Serial flash clock (M2PLL / Flash_DIV)	
D_DDC2	2	R/W	0	Force to DVI DDC to DDC2 mode	
				0: Normal operation	
				1: DDC2 is active	
RST_D_DDC	1	R/W	0	Reset DVI DDC circuit	Rport
				0: Normal operation	Kport
				1: reset (auto cleared)	
					wport
RVT_D_DDC1_EN	0	R/W	0	DVI DDC revert to DDC1 enable(SCL idle for 128	
				VSYNC)	
				0: Disable	
				1: Enable	

Register::DVI_DI	DC_con	trol_2		0xFF20	
Name	Bits	R/W	Default	Comments	Config
Reserved	7:2			Reserved	
D_SEG_WR	1	R/W	0	DVI DDC Segment Write Status 0: no external write after clear 1: new external write after clear It is cleared after write	Wport Rport
D_FORCE_SCL_L	0	R/W	0	Force external SCL bus low 1: Driving SCL = 0 after external SCL = 0 0: Release SCL	

Register::DDCRAM_partition				0xFF21	
Name	Bits	R/W	Default	Comments	Config
Reserved	7:6	-			
ADDCRAM_ST	5:4	R/W	0x3	ADDC RAM Start Address is 0x00 +	
				ADDCRAM_ST*0x80, ADDCRAM SIZE =	

				DDDCRAM_ST - ADDCRAM_ST	
DDDCRAM_ST	3:2	R/W	0x3	DDDC RAM Start Address is 0x80 +	
				DDDCRAM_ST*0x80, DDDCRAM SIZE =	
				HDDCRAM_ST – DDDCRAM_ST	
Reserved	1:0			Reserved	

Register::VSYNC_Sel				0xFF22		
Name	Bits	R/W	Default	Comments	Config	
Reserved	7:4	-				
VS_CON1	3:2	R/W		00: VSYNC1 signal is connected to ADC DDC 01: VSYNC1 signal is connected to DVI DDC 1x: VSYNC1 signal is not connected		
Reserved	1:0		0	Reserved		

DDC-CI

Register::IIC_set_slave				0xFF23		
Name	Bits	R/W	Default	Comments	Config	
IIC_ADDR	7:1	R/W	37	IIC Slave Address to decode		
CH_SEL	0	R/W	0	Channel Select, overridden by HCH_SEL(0xFF2B[0]) = 1		
				0: from ADC DDC		
				1: from DVI DDC		

Register::IIC_sub_in				0xFF24	
Name	Bits	R/W	Default	Comments	Config
IIC_SUB_ADDR	7:0	R	00	IIC Sub-Address Received	

Register::IIC_data	a_in			0xFF25	
Name Bits R/W Default			Default	Comments	Config
IIC_D_IN	7:0	R	00	IIC data received. 16-bytes depth read in buffer mode	RPORT

Register::IIC_data	_out			0xFF26		
Name	Bits	R/W	Default	Comments	Config	
IIC_D_OUT	7:0	W	00	IIC data to be transmitted	Rport	

Register::IIC_state	us			0xFF27		
Name	Bits	R/W	Default	Comments	Config	
A_WR_I	7	R/W	0	If ADC DDC detects a STOP condition in write mode, this bit is set to "1". Write 0 to clear.	Rport	
					Wport	
D_WR_I	6	R/W	0	If DVI DDC detects a STOP condition in write mode, this bit is set to "1". Write 0 to clear.	Rport	
					Wport	
DDC_128VS1_I	5	R/W	0	In DDC2 Transition mode, SCL idle for 128 VSYNC. Write 0 to clear.	Rport	
					Wport	
STOP_I	4	R/W	0	If IIC detects a STOP condition(slave address must match), this bit is set to "1". Write 0 to clear.	Rport	
					Wport	
D_OUT_I	3	R	0	If IIC_DATA_OUT loaded to serial-out-byte, this bit is set to "1". Write IIC_data_out (FF25) to clear.		
D_IN_I	2	R	0	If IIC_DATA_IN latched, this bit is set to "1". Read		
				IIC_data_in (FF24) to clear.		
SUB_I	1	R/W	0	If IIC_SUB latched, this bit is set to "1" Write 0 to clear.	Rport	
					Wport	
SLV_I	0	R/W	0	If IIC_SLAVE latched, this bit is set to "1" Write 0 to clear.	Rport	
					Wport	

Register::IIC_IRQ_c	ontro	ol		0xFF28		
Name	Bit s	R/W	Defaul t	Comments	Config	
AWI_EN	7	R/W	0	O: Disable the A_WR_I signal as an interrupt source 1: Enable the A_WR_I signal as an interrupt source		
DWI_EN	6	R/W	0	O: Disable the D_WR_I signal as an interrupt source 1: Enable the D_WR_I signal as an interrupt source		
DDC_128VSI1_EN	5	R/W	0	0: Disable the 128VS1_I signal as an interrupt source 1: Enable the 128VS1_I signal as an interrupt source		

STOPI_EN	4	R/W	0	0: Disable the STOP_I signal as an interrupt source	
				1: Enable the STOP_I signal as an interrupt source	
DOI_EN	3	R/W	0	0: Disable the D_OUT_I signal as an interrupt source	
				1: Enable the D_OUT_I signal as an interrupt source	
DII_EN	2	R/W	0	0: Disable the D_IN_I signal as an interrupt source	
				1: Enable the D_IN_I signal as an interrupt source	
SUBI_EN	1	R/W	0	0: Disable the SUB_I signal as an interrupt source	
				1: Enable the SUB_I signal as an interrupt source	
SLVI_EN	0	R/W	0	0: Disable the SLV_I signal as an interrupt source	
				1: Enable the SLV_I signal as an interrupt source	

Register::IIC_statu	s2			0xFF29		
Name	Bits	R/W	Default	Comments	Config	
IIC_FORCE_SCL_L	7	R/W	0	Force SCL = 0 when one of the following tow case		
				happen:		
				1. IIC_BUF_FULL = 1 in write mode		
				2. IIC_BUF_EMPTY = 1 in read mode		
FORCE_NACK	6	R/W	0	Force IIC return NACK when one of the following tow		
				case happen:		
				IIC_BUF_FULL = 1 in write mode		
IIC_BUF_OV	5	R/W	0	IIC_DATA_BUFFER Overflow. Write '0' to clear	Rport	
					Wport	
IIC_BUF_UN	4	R/W	0	IIC_DATA_BUFFER Underflow. Write '0' to clear	Rport	
					Wport	
DDC_128VS2_I	3	R/W	0	In DDC2 Transition mode, SCL idle for 128 VSYNC.	Rport	
				Write 0 to clear. Write '0' to clear	Rport	
					Wport	
IIC_BUF_FULL	2	R	0	IIC_DATA_BUFFER Full		
				If IIC_DATA buffer is full, this bit is set to "1". (On-line		
				monitor)		
				The IIC_DATA buffer Full status will be on-line-monitor		
				the condition, once it becomes full, it kept high, if it is		
				not-full, then it goes low.		
IIC_BUF_EMPTY	1	R	0	IIC_DATA_BUFFER Empty		

				If IIC_DATA buffer is empty, this bit is set to "1". (On-line monitor) The IIC_DATA buffer Empty status will be on-line-monitor the condition, once it becomes empty, it	
Reserved	0	R/W	0	kept high, if it is not-empty, then it goes low. Reserved	rport Wport

Register::IIC_IRQ_cor	ntrol2			0xFF2A		
Name	Bits	R/W	Default	Comments	Config	
AUTO_RST_BUF	7	R/W	0	Auto reset IIC_DATA Buffer		
				0: disable		
				1: enable		
				In host (pc) write enable, when IIC write (No START		
				after IIC_SUB), reset IIC_DATA buffer.		
RST_DATA_BUF	6	R/W	0	Reset IIC_DATA buffer	Wport	
				0: Finish	Rport	
				1: Reset		
DATA_BUF_WEN	5	R/W	0	IIC_DATA buffer write enable		
				0: host (pc) write enable		
				1: slave (mcu) write enable		
				Both PC and MCU can read IIC_DATA buffer, but only		
				one can write IIC_DATA buffer.		
Dummy_2	4:3	R/W	0	Reserved		
DDC_BUF_FULL_EN	2	R/W	0	0: Disable the DDC_DATA_BUFFER Full signal as an		
				interrupt source		
				1: Enable the DDC_DATA_BUFFER Full signal as an		
				interrupt source		
DDC_BUF_EMPTY_EN	1	R/W	0	0: Disable the DDC_DATA_BUFFER Empty signal as		
				an interrupt source		
				1: Enable the DDC_DATA_BUFFER Empty signal as		
				an interrupt source		
Reserved	0			Reserved		

Register::IIC_cha	nnel	_control		0xFF2B	0xFF2B		
Name	Bits	R/W	Defaul t	Comments	Config		

Reserved	7:2	-	0	Reserved	
RLS_SCL_SU	1	R/W	0	Set IIC data Setup Time When holding SCL low	
				0: Use Delay Chain (~5ns)	
				1: Use Crystal Clock to increase data setup time relative to	
				SCL clock line	
Reserved	0		0	Reserved	

The access ports below are used for external host interface only.

Register::ADC_[DC_I	NDEX		0XFF2F	
Name Bits R/W		Default	Comments	Config	
A_DDC_INDEX	7:0	R/W	0	DDC SRAM Read/Write Index Register [7:0]	Rport
					Wport

Register::ADC_DDC_A	CCE	SS_PC	RT	0XFF30	
Name	Bits	R/W	Default	Comments	Config
A_DDC_ACCESS_PORT	7:0	R/W	0	DDC SRAM Read/Write Port	Rport
					Wport

Register::DVI_DDC_INDEX				0XFF31	
Name	ne Bits R/W		Default	Comments	Config
D_DDC_INDEX	7:0	R/W	0	DDC SRAM Read/Write Index Register [7:0]	Rport
					Wport

Register::DVI_DDC_AC	CES	S_POF	RT	0XFF32	
Name	Bits	R/W	Default	Comments	Config
D_DDC_ACCESS_PORT	7:0	R/W	0	DDC SRAM Read/Write Port	Rport
					Wport

Register:: DDCCI_RE	MAIN	N_DATA		0XFF35	
Name	Bits	R/W	Default	Comments	Config
Reserved	7:5		0	Reserved	
DDCCI_REMAIN_LEN	4:0	R	0	DDCCI Remaining data length (= write_pointer - read_pointer)	

Register:: DVI_SEGMENT_ADDRESS 0XFF36							
Name	Bits	R/W	Default	Comments	Config		
DVI_SEG_ADDR	7:1	R/W	0x30	DVI DDC slave address for segment control			
Reserved	0			Reserved			

Register:: DVI_SEG	MENT	_DATA		0XFF37	
Name	Bits	R/W	Default	Comments	Config
DVI_SEG_DATA	7:0	R/W	0x00	Data Access for Slave ID, DVI_SEGMENT_ADDRESS,	Rport
				in DVI DDC	Wport

PWM

RTD3580 supports 6 channels of PWM DAC. The resolution of each PWM is 12-bit. PWM0, PWM1, PWM2, are connected to DA0, DA1, DA2, respectively. The figure below represents the PWM clock generator. Based on the clock, we make up the PWM waveform which frequency is 1/4096 of the PWM clock.

The PWM duty registers have 12-bit resolution. These registers have double buffer mechanism. When write the MSB bit, the 12-bit data will be loaded.

The PWM frequency is:

Fpwm=
$$fclk / 2^{M} / (N+1) / 4096$$

The PWM frequency range is:

fclk=27M, fpwm = $6.6KHz \sim 0.2Hz$

fclk=243M, $fpwm = 60KHz \sim 1.8Hz$

PWM clock generator

Register::PWM_CK_SEL 0xFF3A

Name	Bits	R/W	Default	Comments	Config
PWM_CK_SEL_DUMMY	7:6	R/W	0	dummy	
Reserved	5:3			Reserved	
PWM2_CK_SEL	2	R/W	0	PWMx clock generator input source	
				0: Crystal	
				1: PLL output	
PWM1_CK_SEL	1	R/W	0	PWMx clock generator input source	
				0: Crystal	
				1: PLL output	
PWM0_CK_SEL	0	R/W	^	PWMx clock generator input source	
				0: Crystal	
				1: PLL output	

Register::PWM(03_M			0xFF3B		
Name	Bits	R/W	Default	Comments	Config	
Reserved	7:6			Reserved		
PWM2_M	5:4	R/W	0	PWMx clock first stage divider		
PWM1_M	3:2	R/W	0	PWMx clock first stage divider		
PWM0_M	1:0	R/W	0	PWMx clock first stage divider		

Register::PWM45_M				0xFF3C	
Name	Bits	R/W	Default	Comments	Config
PWM_M_DUMMY	7:4	R/W	0	dummy	
Reserved	3:0			Reserved	

Register::PWM0	1_N_N	ISB		0xFF3D		
Name	Bits	R/W	Default	Comments	Config	
PWM1H_N	7:4	R/W	0	PWMx clock Second stage divider MSB[11:8]		
PWM0H_N	3:0	R/W	0	PWMx clock Second stage divider MSB[11:8]		

Register::PWM0_N_LSB				0xFF3E	
Name	Name Bits R/W Default			Comments	Config
PWM0L_N	7:0	R/W	0	PWMx clock Second stage divider LSB[7:0]	

Register::PWM1	_N_LS	SB		0xFF3F	
Name	Bits	R/W	Default	Comments	Config
PWM1L_N	7:0	R/W	0	PWMx clock Second stage divider LSB[7:0]	

Register::PWM23_N_MSB				0xFF40	
Name	Bits	R/W	Default	Comments	Config
Reserved	7:4			Reserved	
PWM2H_N	3:0	R/W	0	PWMx clock Second stage divider MSB[11:8]	

Register::PWM2	_N_LS	SB		0xFF41	
Name Bits R/W Default				Comments	Config
PWM2L_N	7:0	R/W	0	PWMx clock Second stage divider LSB[7:0]	

Register::PWML				0xFF46		
Name	Bits	R/W	Default	Comments	Config	
PWM_W_DB_WR	7	R/W	0	Write 1 to Set PWM_Width if PWM_W_DB_EN = 1'b1. Auto-Clear after PWM_Width was loaded	RPORT	
					WPORT	
PWM_W_DB_MODE	6	R/W	0	PWM Width Setting Double-Buffer Mode 0: Setting active after PWM_W_DB_WR = 1 1: Setting active after PWM_W_DB_WR = 1 & DVS.		
Reserved	5:3			Reserved		
PWM2L	2	R/W	0	0: enable Active H 1: enable Active L		
PWM1L	1	R/W	0	0: enable Active H 1: enable Active L		
PWM0L	0	R/W	0	0: enable Active H 1: enable Active L		

Register::PWM_VS_C	TRL			0xFF47	
Name	Bits	R/W	Default	Comments	Config

PWM_VS_CTRL_DUM	7:6	R/W	0	dummy	
Reserved	5:3			Reserved	
PWM2_VS_RST_EN	2	R/W	0	0: Disable	
				1: Enable PWM2 reset by DVS	
PWM1_VS_RST_EN	1	R/W	0	0: Disable	
				1: Enable PWM1 reset by DVS	
PWM0_VS_RST_EN	0	R/W	0	0: Disable	
				1: Enable PWM0 reset by DVS	

Register::PWM_EN				0xFF48		
Name	Bits	R/W	Default	Comments	Config	
PWM_W_DB_EN	7	R/W	0	0: PWM Width set when write MSB		
				1: PWM Width setting double-buffered enable		
PWM_WIDTH_SEL	6	R/W	0	0: PWMxL_DUT is active		
				1: PWMxL_DUT is inactive, forced to 4'h0 internally		
Reserved	5:3			Reserved		
PWM2_EN	2	R/W	0	0: PWM output disable		
				1: PWM output enable		
PWM1_EN	1	R/W	0	0: PWM output disable		
				1: PWM output enable		
PWM0_EN	0	R/W	0	0: PWM output disable		
				1: PWM output enable		

Register::PWM_Cl	(0xFF49		
Name	Bits	R/W	Default	Comments	Config	
PWM_CK_DUMMY	7:6	R/W	0	Dummy		
Reserved	5:3			Reserved		
PWM2_CK	2	R/W	0	0: Select first stage output 1: Select second stage output		
PWM1_CK	1	R/W	0	0: Select first stage output 1: Select second stage output		
PWM0_CK	0	R/W	0	0: Select first stage output 1: Select second stage output		

Register::PWM0H_DUT				0xFF4A	
Name Bits R/W Default				Comments	Config
PWM0H_DUT	7:0	R/W		PWM0[11:4] duty width When write the MSB bit (PWM_W_DB_EN=0), the 12-bit	RPORT

_				
			data will be loaded.	WPORT

er::PWM	I1H_DU	Т		0xFF4B	
lame	Bits	R/W	Default	Comments	Config
IIH_DUT	7:0	R/W	U	PWM1[11:4] duty width When write the MSB bit (PWM_W_DB_EN=0), the 12-bit data will be loaded.	RPORT WPORT

Register::PWM0	1L_DL	JT		0xFF4C		
Name	Bits	R/W	Default	Comments	Config	
PWM1L_DUT	7:4	R/W	0	PWM1[3:0] duty width	RPORT WPORT	
PWM0L_DUT	3:0	R/W	0	PWM0[3:0] duty width	RPORT WPORT	

Register::PWM2	H_DU	Т		0xFF4D	
Name	Bits	R/W	Default	Comments	Config
PWM2H_DUT	7:0	R/W	U	PWM2[11:4] duty width When write the MSB bit (PWM_W_DB_EN=0), the 12-bit data will be loaded.	RPORT WPORT

Register::PWM2	3L_DU	JT		0xFF4F	
Name	Bits	R/W	Default	Comments	Config
Reserved	7:4			Reserved	
PWM2L_DUT	3:0	R/W	0	PWM2[3:0] duty width	RPORT
					WPORT

Register:: REV_DUMMY3				0xFF53	
Name	Bits	R/W	Default	Comments	Config
REV_DUMMY3	7:0	R/W	00	Dummy3	

Register 2(page E) 0xFF76~0xFF93 Reserved

Pin-Share

Register:: PIN_S	HARE_	CTRL00		0xFF94		
Name	Bits	Read/ Write	Reset State	Comments	Config	
VIDEO8_SEL	7	R/W	0x0	Video8 Source Select 0: Pin47~48, Pin1~7 (QFN48) or Pin62~64, Pin1~6 (QFN64) <default> 1: Pin59, Pin62~63, Pin1~6 (QFN64)</default>		
Reserved	6:3	R/W	0x00	reserved to 0		
SDRAM_en	2	R/W	0x00	SDRAM enable 0: no SDRAM <default> 1: MCM SDRAM</default>		
SDRAM_size	1	R/W	0x0	SDRAM size 0: 1Mx16 SDRAM <default> 1: 1Mx32 SDRAM</default>		
Package_Type	0	R/W	0x0	Package Type 0: 48pin package <default> 1: 64pin package</default>		

Register:: PIN_	SHARE_C	CTRL01		0xFF95	
Name	Bits	Read/ Write	Reset State	Comments	Config
DQM3	7	R/W	0x0	SDR DQM3 (UDQM) – Data Input/Output Mask 0: non-active 1: active	
DQM2	6	R/W	0x0	SDR DQM2 (LDQM) – Data Input/Output Mask 0: non-active 1: active	
DQM1	5	R/W	0x0	SDR DQM1 – Data Input/Output Mask 0: non-active 1: active	
DQM0	4	R/W	0x0	SDR DQM0 – Data Input/Output Mask 0: non-active 1: active	
DDCSCL1	3:2	R/W	0x0	Pin44 (48pin) / Pin58 (64pin) (PAD_DDCSCL1) 00: DDCSCL <io> < open-drain> <default> 01: PWM0 <o> 10: TCON7 <o> 11: AUX-CH_P0</o></o></default></io>	
DDCSDA1	1:0	R/W	0x0	Pin43 (48pin) / Pin57 (64pin) (PAD_DDCSDA1) 00: DDCSDA <io> <open-drain> <default> 01: PWM1 <o> 10: TCON9 <o> 11: AUX-CH_N0/IRQ Effectively only if CRFF95[3:2] != 2'b11,when</o></o></default></open-drain></io>	

CRFF95	[3:2]=11, output	is	AIIX-	CH	N0

Register:: PIN_	SHARE_	CTRL01		0xFF96	
Name	Bits	Read/ Write	Reset State	Comments	Config
DDCSDA2	7:6	R/W	0x0	Pin56 (64pin) (PAD_DDCSDA2) 00: DDCSDA <io> < open-drain> < default> 01: MCK <o> 10: TCON11 <o> 11: AUX-CH_N1</o></o></io>	
AUD_HOUTL	5:4	R/W	0x0	Pin26 (64pin) 00: AUDIO (HOUTL) <default> 01: TCON0 <o> 10: PWM0 <o></o></o></default>	
AUD_HOUTR	3	R/W	0x0	Pin27-28 (64pin) 0: AUDIO (HOUTR, REF) <default> 1: TCON7, TCON5 <o></o></default>	
DDCSDA2	2:0	R/W	0x0	Pin55 (64pin) (PAD_DDCSCL2) 000: DDCSCL <io> < open-drain> < default> 001: SCK <o> 010: TCON8 <o> 011: AUX-CH_P1 100: IRQ <o></o></o></o></io>	

Register:: PIN_SI	HARE_C	CTRL03		0xFF97	
Name	Bits	Read/ Write	Reset State	Comments	Config
Reserved	7:6	R/W	0x0	reserved to 0	
SPDIF0	5:4	R/W	0x0	Pin59 (64pin) (PAD_SPDIF0)	
				00: TCON10 <o> <default></default></o>	
				01: PWM1 <o></o>	
				10: SD0 <o></o>	
				11: SPDIF0 <0>	
				Effectively only if CRFF96[7] = 1'b0	
SCL	3:2	R/W	0x0	Pin42 (48pin) / Pin54 (64pin) (PAD_SCL)	
				00: TCON13 <o> <default></default></o>	
				01: PWM2 <o></o>	
				10: WS <o></o>	
				11: SPDIF0 <0>	
				Effectively only in 1-wire host interface condition	
CEC	1:0	R/W	0x0	Pin30 (64pin) (PAD_CEC)	
				00: CEC <o> <default></default></o>	
				01: PWM1 <o></o>	
				10: TCON3 <0>	
				11: Reserved	

Register:: PIN_D	RIVING	_CTRL10		0xFF98	
Name	Bits	Read/ Write	Reset State	Comments	Config
E2CTRL10_7	7	R/W	0	Driving Current Control – Pin26~28 (64pin)	
				0: Low	
				1: High	
E2CTRL10_6	6	R/W	0	reserved to 0	
E2CTRL10_5_4	5:4	R/W	0x2	Driving Current Control – Pin21~38 (48pin) /	
				Pin33~50 (64pin)	

FACTED 10.2		DAV	0	- TTL x0: 8mA x1: 12mA - LVDS 00: 2.5mA 01: 3.0mA 10: 3.5mA 11: 4.0mA	
E2CTRL10_3	3	R/W	0	Schmitt Trigger Control – Pin30 (64pin) 0: On	
				1: Off	
				reserved to 0	
E2CTRL10_2	2	R/W	0	Slew Rate Control – Pin30 (64pin)	
				0: Fast	
				1: Slow	
				reserved to 0	
E2CTRL10_1	1	R/W	0	Driving Current Control – Pin30 (64pin)	
				0: Low	
				1: High	
E2CTRL10_0	0	R/W	0	reserved to 0	

Register:: PIN_D	RIVING	_CTRL11		0xFF99	
Name	Bits	Read/ Write	Reset State	Comments	Config
E2CTRL11_7	7	R/W	0	Schmitt Trigger Control – Pin41~42 (48pin) / Pin53~54 (64pin) 0: On 1: Off	
E2CTRL11_6	6	R/W	0	Slew Rate Control – Pin41~42 (48pin) / Pin53~54 (64pin) 0: Fast 1: Slow	
E2CTRL11_5	5	R/W	0	Driving Current Control – Pin41~42 (48pin) / Pin53~54 (64pin) 0: Low 1: High	
E2CTRL11_4	4	R/W	0	reserved to 0	
E2CTRL11_3	3	R/W	0	Schmitt Trigger Control – Pin55-56 (64pin) 0: On 1: Off reserved to 0	
E2CTRL11_2	2	R/W	0	Slew Rate Control - Pin55~56 (64pin) 0: Fast 1: Slow reserved to 0	
E2CTRL11_1	1	R/W	0	Driving Current Control – Pin55~56 (64pin) 0: Low 1: High	
E2CTRL11_0	0	R/W	0	reserved to 0	

Register:: PIN_D	RIVING	_CTRL12		0xFF9A	
Name	Bits	Read/ Write	Reset State	Comments	Config
E2CTRL12_7	7	R/W	0	Schmitt Trigger Control — Pin43-44 (48pin) / Pin57-58 (64pin) 0: On 1: Off reserved to 0	
E2CTRL12_6	6	R/W	0	Slew Rate Control - Pin43-44 (48pin) /	

				Pin57-58 (64pin) 0: Fast 1: Slow reserved to 0	
E2CTRL12_5	5	R/W	0	Driving Current Control – Pin43~44 (48pin) / Pin57~58 (64pin) 0: Low 1: High	
E2CTRL12_4	4	R/W	0	reserved to 0	
E2CTRL12_3	3	R/W	0	Schmitt Trigger Control – Pin59 (64pin) 0: On 1: Off	
E2CTRL12_2	2	R/W	0	Slew Rate Control – Pin59 (64pin) 0: Fast 1: Slow	
E2CTRL12_1	1	R/W	0	Driving Current Control – Pin59 (64pin) 0: Low 1: High	
E2CTRL12_0	0	R/W	0	reserved to 0	

Register:: PIN_DI	RIVING	_CTRL13		0xFF9B	
Name	Bits	Read/ Write	Reset State	Comments	Config
E2CTRL13_7	7	R/W	0	Schmitt Trigger Control – SDR CLK	
				0: On	
				1: Off	
E2CTRL13_6	6	R/W	0	Slew Rate Control – SDR CLK	
				0: Fast	
				1: Slow	
E2CTRL13_5	5	R/W	0	Driving Current Control - SDR CLK	
				0: Low	
				1: High	
E2CTRL13_4	4	R/W	0	reserved to 0	
E2CTRL13_3	3	R/W	0	Schmitt Trigger Control – SDR Control	
				0: On	
				1: Off	
E2CTRL13_2	2	R/W	0	Slew Rate Control – SDR Control	
				0: Fast	
				1: Slow	
E2CTRL13_1	1	R/W	0	Driving Current Control - SDR Control	
				0: Low	
				1: High	
E2CTRL13_0	0	R/W	0	reserved to 0	

Register:: PIN_DRIVING_CTRL14				0xFF9C	
Name	Bits	Read/ Write	Reset State	Comments	Config
E2CTRL14_7	7	R/W	0	Schmitt Trigger Control – DQ31~24 (DQ8~11) 0: On 1: Off	
E2CTRL14_6	6	R/W	0	Slew Rate Control – DQ31~24 (DQ8~11) 0: Fast 1: Slow	
E2CTRL14_5	5	R/W	0	Driving Current Control – DQ31~24 (DQ8~11) 0: Low 1: High	
E2CTRL14_4	4	R/W	0	reserved to 0	
E2CTRL14_3	3	R/W	0	Schmitt Trigger Control – DQ23~16 (DQ4~7) 0: On	

				1: Off
E2CTRL14_2	2	R/W	0	Slew Rate Control – DQ23~16 (DQ4~7)
				0: Fast
				1: Slow
E2CTRL14_1	1	R/W	0	Driving Current Control – DQ23~16 (DQ4~7)
				0: Low
				1: High
E2CTRL14_0	0	R/W	0	reserved to 0

Register:: PIN_D	RIVING	_CTRL15		0xFF9D	
Name	Bits	Read/ Write	Reset State	Comments	Config
E2CTRL15_7	7	R/W	0	Schmitt Trigger Control – DQ15~8 (DQ12~15)	
				0: On	
				1: Off	
E2CTRL15_6	6	R/W	0	Slew Rate Control – DQ15~8 (DQ12~15)	
				0: Fast	
				1: Slow	
E2CTRL15_5	5	R/W	0	Driving Current Control-DQ15~8 (DQ12~15)	
				0: Low	
				1: High	
E2CTRL15_4	4	R/W	0	reserved to 0	
E2CTRL15_3	3	R/W	0	Schmitt Trigger Control – DQ7~0 (DQ0~3)	
				0: On	
				1: Off	
E2CTRL15_2	2	R/W	0	Slew Rate Control – DQ7~0 (DQ0~3)	
				0: Fast	
				1: Slow	
E2CTRL15_1	1	R/W	0	Driving Current Control – DQ7~0 (DQ0~3)	
				0: Low	
				1: High	
E2CTRL15_0	0	R/W	0	reserved to 0	

Register:: PIN_D	RIVING	_CTRL16		0xFF9E	
Name	Bits	Read/ Write	Reset State	Comments	Config
E2CTRL16_7	7	R/W	0	Schmitt Trigger Control – SDR Address	
				0: On	
TIA CITTO I I I I I		D 1777		1: Off	
E2CTRL16_6	6	R/W	0	Slew Rate Control – SDR Address	
				0: Fast	
	_			1: Slow	
E2CTRL16_5	5	R/W	0	Driving Current Control – SDR Address	
				0: Low	
				1: High	
E2CTRL16_4	4	R/W	0	reserved to 0	
E2CTRL16_3	3	R/W	0	Schmitt Trigger Control – SDR DQM	
				0: On	
				1: Off	
E2CTRL16_2	2	R/W	0	Slew Rate Control – SDR DQM	
				0: Fast	
				1: Slow	
E2CTRL16_1	1	R/W	0	Driving Current Control – SDR DQM	
				0: Low	
				1: High	
E2CTRL16_0	0	R/W	0	reserved to 0	

Address: 0xFF9F Reserved to 0

CEC function

CEC Control Register

In CEC function, write_reg pulses should have distances larger than 3 XTAL clk period at least.

Register:: cec_cr_	1	0xFFAA							
Name	Bits	R/W	Default	Comments	Config				
Reserved	7:5								
ini_adr_sel	4	R/W	0	1:initial address change 0:use original address					
ini_adr	3:0	R/W	0x1	Initial address when ini_adr_sel = 1					

Register::cec_cr0				0xFFAB	
Name	Bits	R/W	Default	Comments	Config
cec_mode	7:6	R/W	0x0	00: Disable CEC module	
				01: Enable CEC Normal Operation	
				10: PAD Output Test Mode.	
				11: Digital Loopback, Tx Data will be loopback before PAD .	
				Note. 1. As CEC module is disabled, RX will not ACK any transaction which destination address is the same with CECLOCADDR or 0xf.	
test_mode_pad_data	5	R/W	0x1	0: CEC PAD output low	
				1: CEC PAD output high	
test_mode_pad_en	4	R/W	0x0	0: output high impedance	
				1: PAD output enable	
				This bit is active with CEC_Mode=10 only.	
logical_addr	3:0	R/W	0xF	CEC device logical (local) address	

Register::cec_cr1				0xFFAC	
Name	Bits	R/W	Default	Comments	Config
timer_div	7:0	R/W	0x14	DAC ENP(Enable Pulse) divides into Timer Enable Pulse.	
				And Timer Enable Pulse is equal to Input Sample Enable	
				Pulse. Its default value is 0.8MHz divides into 20 to	
				40KHz(25us). °	
				CEC clock frequency is used for the bit timers in the	
				receiver and transmitter modes.	

Register::cec_cr2				0xFFAD	
Name	Bits	R/W	Default	Comments	Config
pre_div	7:0	R/W	0x21	Divisor for CEC DAC Clock	
				BusCLK CECDiv CK_CEC	
				162MHz 202 0.8019MHz	

	27MHz	33	0.8182MHz	

Register::cec_cr3				0xFFAE	
Name	Bits	R/W	Default	Comments	Config
unreg_ack_en	7	R/W	0x0	If rx logical addr = 0xF, when receiving a broadcast	
				signal (destination addr = 0xF) 1 : response	
				ack 2 : non to response	
				ack	
pad_s_ctrl	6:5	R/W	0x1	CEC PAD Current Control of Charge Pump	
				00: 0.75 uA	
				01: 1 uA	
				10: 1.25 uA	
				11: 1.5 uA	
pad_delay	4:0	R/W	0x03	The delay from CEC PAD going high to being	
				disable. Delay: (1+CECPADDELAY)*25us	
				Typical Value: 01~03 (50us~100us)	
				For Normal Mode only.	

Register::cec_rt0				0xFFAF	
Name	Bits	R/W	Default	Comments	Config
cec_rt0_rsv	7:6	R/W	0x0	Reserved Register	
wt_cnt	5:0	R	-	Retry Wait Time	

Register::cec_rt1				0xFFB0	
Name	Bits	R/W	Default	Comments	Config
cec_rt1_rsv	7:5	R/W	0x0		
lattest	4	R	-	1: The last initiator own CEC bus is this device	
retry_no	3:0	R/W	0x5	Maximum re-transmission times for a single frame, when device is a initiator and device detect low impedance error. In continue mode, retry is inactive.	

Register::cec_rx0				0xFFB1	
Name	Bits	R/W	Default	Comments	Config
rx_en	7	R	-	Write 1 to enable Rx As CEC_enable=1 and CECRxEn=0, RX will ACK the transaction which destination address is the same with CECLOCADDR or 0xf	wclr_out
rx_rst	6	R/W	0x0	Write 1 to reset Rx State and its FIFO status After finishing each transaction, software should reset Rx part to clear CECRxEOM, CECRxINT and CECRxFIFOov status bits.	
rx_continuous	5	R/W	0x0	0/1: Normal mode / Continuous mode In continuous mode, RxINT will be set to 1 when Rx receive new 8 bytes or EOM. In normal mode, RxINT will be set to 1 iff Rx receive EOM.	
rx_int_en	4	R/W	0x0	1 : CEC Rx interrupt enable If enabled, hardware will trigger interrupt per 8 bytes received or EOM	
init_addr	3:0	R	-	The latest Initiator Address (when device is a follower)	

Register::cec_rx1				0xFFB2	
Name	Bits	R/W	Default	Comments	Config
rx eom	7	R	=	When EOM is received, RxEn will be reset to 0 and	

				RxINT will be set to 1.	
rx_int	6	R	-	1 : CEC Rx interrupt pending (write 1 to clear)	wclr_out
rx_fifo_ov	5	R	-	1 : Overflow status for CEC 16-byte FIFO	
rx_fifo_cnt	4:0	R	-	The number of byte has been received by Rx	

Register::cec_tx0				0xFFB3		
Name	Bits	R/W	Default	Comments	Con	fig
tx_en	7	R	-	Write 1 to enable Tx transmission		
				Tx will detect signal free time, and then transmission and re-try automatically.	wclr_	_out
tx_rst	6	R/W	0x0	Write 1 to reset Tx State and its FIFO status		
				After finishing each transaction, software should reset Tx part to clear CECTxEOM, CECTxINT and CECTxFIFOud status bits.		
tx_continuous	5	R/W	0x0	Tx continuous mode 0: Normal mode		
				1: Continuous mode, software should clear this bit as the last byte is written into Tx FIFO to indicate the end of transmitting data.		
tx_int_en	4	R/W	0x0	1 : CEC Tx interrupt enable		
				If enabled, hardware will trigger interrupt per 8 bytes transmitted or EOM		
dest_addr	3:0	R/W	0x0	Destination Address (when device is a initiator)		

Register::cec_tx1				0xFFB4	
Name	Bits	R/W	Default	Comments	Config
tx_eom	7	R	-	The transmission has ended.	
tx_int	6	R	-	1 : CEC Tx interrupt pending (write 1 to clear)	wclr_ou t
tx_fifo_ud	5	R	-	1 : Underflow status for CEC 16-byte Tx FIFO	
tx_fifo_cnt	4:0	R	=	The number of byte will been transmitted by Tx	

Note : following table illustrates the status with the combination of CECTxEn, CECTxEOM, CECTxINT and CECTxContinue after transmitting.

	CECTxEn	CECTxEOM	CECTXINT	CECTxContinue
Complete transmission incorrectly and not in Continue Mode	0	0	1	0
Complete transmission correctly and not in Continue Mode	0	1	1	0
Complete transmission incorrectly and in Continue Mode	0	0	1	0
Transmitted 8 bytes correctly and still in Continue Mode, software should push data into Tx fifo as necessary	1	0	1	1
Complete transmission and in Continue Mode	0	1	1	0 (because software clear to 0 after pushing

				remaining datum into TX fifo)
TX fifo is underflow (in continue mode only) Note: this is the same with CECTxFIFOud=1	0	0	1	1

Register::cec_tx_fifo				0xFFB5	
Name	Bits	R/W	Default	Comments	Config
tx_dat	7:0	R/W	-	Tx FIFO data output port	rport wport

Register::cec_rx_fifo				0xFFB6	
Name	Bits	R/W	Default	Comments	Config
rx_dat	7:0	R/W	-	Rx FIFO data input port	rport wport

Register::cec_rx_s	tart0			0xFFB7	
Name	Bits	R/W	Default	Comments	Config
rx_start_low	7:0	R/W	0x8C	Minimum width (3.5ms)	

Register::cec_rx_start1				0xFFB8	
Name	Bits	R/W	Default	Comments	Config
rx_start_period	7:0	R/W	0xBC	Maximum width (4.7ms)	

Register::cec_rx_data0				0xFFB9	
Name	Bits	R/W	Default	Comments	Config
rx data sample	7:0	R/W	0x2A	Sample Time (1.05ms)	

Register::cec_rx_data1				0xFFBA	
Name	Bits	R/W	Default	Comments	Config
rx_data_period	7:0	R/W	0x52,	Minimum data bit width (2.05ms)	

Register::cec_tx_start0				0xFFBB	
Name	Bits	R/W	Default	Comments	Config
tx_start_low	7:0	R/W	0x94	3.7ms (0.025*148)	

Register::cec_tx_start1			0xFFBC		
Name	Bits	R/W	Default	Comments	Config
tx start high	7:0	R/W	0x20	0.8ms (4.5ms – 3.7ms)	

Register::cec_tx_data0				0xFFBD	
Name	Bits	R/W	Default	Comments	Config
tx_data_low	7:0	R/W	0x18	0.6ms	

Register::cec_tx_data1				0xFFBE	
Name	Bits	R/W	Default	Comments	Config
tx_data_01	7:0	R/W	0x24	0.9ms	

Register::cec_tx_c	lata2			0xFFBF	
Name	Bits	R/W	Default	Comments	Config
tx_data_high	7:0	R/W	0x24	0.9ms	

Register 3(page F)

CEC Analog Function

Register::AUT_OI	K_CON'	FROL		0xFFE7	
Name	Bits	R/W	Default	Comments	Config
CEC27k_EN	7	R/W	1	27K pull up resistor enable	
				0: Disable	
				1: Enable	
CEC27K_AUTOK	6	R/W	1	CEC 27K pull up resistor auto calibration enable	
				0: Disable	
				1: Enable	
CEC_ENTST	5	R/W	0	CEC debug enable	
				0: Disable	
				1: Enable	
CEC27K_ADJR	4:0	R/W	0x10	CEC 27K pull up resistor hand mode setting:	

Register::CEC_ANALOG_R				0xFFE8			
Name	Bits	R/W	Default	Comments	Config		
Reserved	7			Reserved to 0			
CEC_TST	6:1	R	-	CEC block debug signal out			
CEC_Z0_OK	0	R	-	CEC 27K Calibration			

Register:: REV_DUMMY4				0xFFE9	
Name	Bits	R/W	Default	Comments	Config
REV_DUMMY4	7:0	R/W	00	Dummy4	

Register::MCU_co	ntrol			0xFFED	
Name	Bits	R/W	Default	Comments	Config
Reserved	7:6			Reserved	
FLASH_CLK_DIV		R/W	2	SPI-FLASH clock divider, its clock source is	
	5:2			selected by MCU_CLK_SEL, default is	
				MCU_CLK_SEL/2	
MCU_CLK_SEL	1	R/W	0	CPU clock source select	
				0: CPU clock is from Crystal divided by DIV	
				1: CPU clock is from PLL divided by DIV	
Reserved	0			Reserved	

Register::MCU_0	Register::MCU_clock_control			0xFFEE	
Name	Bits	R/W	Default	Comments	Config
Reserved	7:6			Rerserved	
MCU_CLK_DIV	5:2	R/W	1	MCU clock is FLASH clock/MCU_CLK_DIV.	
SOF_RST	1	R/W	0	Software reset mcu 0: No effect 1: reset RTD3580	Rport Wport
SCA_HRST	0	R/W	0	Hardware reset for Scalar 0: No effect 1: reset SCALAR module	

Register::RAM_te	est			0xFFEF	
Name	Bits	R/W	Default	Comments	Config
reserved	7:4		0	Reserved	
EXT_RAM_BIST	3	R/W	0	Start BIST function for MCU external RAM (512	
				bytes)	Rport
				0: finished and clear	Wport
				1: start	

EXT_RAM_STA	2	R	0	Test result about MCU external RAM	
				0: fail	
				1: ok	
reserved	1:0		0	Reserved	

Embedded OSD

Addressing and Accessing Register

ADDRESS		BIT						
	7	6	5	4	3	2	1	0
High Byte	A15	A14	A13	A12	A11	A10	A9	A8
Low Byte	A7	A6	A5	A4	A3	A2	A1	A0

Figure 4. Addressing and Accessing Registers

Date				B	IT			
Byte 0	D7	D6	D5	D4	D3	D2	D1	D0
Byte 1	D7	D6	D5	D4	D3	D2	D1	D0
Byte 2	D7	D6	D5	D4	D3	D2	D1	D0

Figure 2. Data Registers

All kind of registers can be controlled and accessed by these 2 bytes, and each address contains 3-byte data, details are described as follows:

Write mode: [A15:A14] select which byte to write

-00: Byte 0 -01:Byte 1 -10: Byte 2 -11: All

*All data are sorted by these three Bytes (Byte0~Byte2)

[A13] Auto Load (Double Buffer)

[A12] Address indicator

- -0: Window and frame control registers.
- -1: Font Select and font map SRAM

[A11:A0] Address mapping

- Font Select and font map SRAM address: 000~EFF 3.75k*3byte
- -Frame control register address: 000~0xx (Latch)
- -Window control register address: 100~1xx (Latch)
- * Selection of SRAM address or Latch address selection is determined by A12!

Example:

Bit [15:14]=00

-All data followed are written to byte0 and address increases.

 $Byte0 \rightarrow Byte0 \rightarrow Byte0...$ (Address will auto increase)

Bit [15:14] =01

-All data followed are written to byte1 and address increases.

Byte1 \rightarrow Byte1... (Address will auto increase)

Bit [15:14] =11

- Address will be increased after each 3-byte data written.

 $Byte0 \rightarrow Byte1 \rightarrow Byte2 \rightarrow Byte0 \rightarrow Byte1 \rightarrow Byte2...$ (Address will auto increase)

Window control registers

- Windows all support shadow/border/3D button
- Window0, 5, 6, 7 support gradient functions.
- Window 4, 5, 6, 7 start/end resolution are 1line(pixel), Window 0, 1, 2, 3 start/end resolution are 4line(pixel),
- All window start and end position include the special effect (border/shadow/3D button) been assigned
- Font comes after windows by 10 pixels, so you should compensate 10 pixels on windows to meet font position

Window 0 Shadow/Border/Gradient

Address: 100h

Byte 0

Bit	Mode	Function
7:6	1	Reserved
5:3	W	Window 0 shadow/border width or 3D button thickness in pixel unit
		000~111: 1 ~ 8 pixel
2:0	W	Window 0 shadow/border height in line unit
		000~111: 1 ~ 8 line
		It must be the same as bit[5:3] for 3D button thickness

Byte 1

Bit	Mode	Function
7:4	W	Window 0 shadow color index in 16-color LUT
		For 3D window, it is the left-top/bottom border color
3:0	W	Window 0 border color index in 16-color LUT
		For 3D window, it is the right-bottom/top border color

Bit	Mode	Function
-----	------	----------

7	W	R Gradient Polarity
		0: Decrease
		1: Increase
6	W	G Gradient Polarity
		0: Decrease
		1: Increase
5	W	B Gradient Polarity
		0: Decrease
		1: Increase
4:3	W	Gradient level
		00: 1 step per level
		01: Repeat 2 step per level
		10: Repeat 3 step per level
		11: Repeat 4 step per level
2	W	Enable Red Color Gradient
1	W	Enable Green Color Gradient
0	W	Enable Blue Color Gradient

Window 0 start position

Address: 101h

Byte 0

Bit	Mode	Function
7:2	W	Window 0 horizontal start [5:0]
1	W	Window 0 horizontal start [11] pixel
0	W	Window 0 vertical start [11] line

Byte 1

Bit	Mode	Function
7:5	W	Window 0 vertical start [2:0] line
4:0	W	Window 0 horizontal start [10:6] pixel

Byte 2

Bit	Mode	Function
7:0	W	Window 0 vertical start [10:3] line

Start position must be increments of four.

Window 0 end position

Address: 102h

Byte 0

Bit	Mode	Function
7:2	W	Window 0 horizontal end [5:0]
1	W	Window 0 horizontal end [11] pixel
0	W	Window 0 vertical end [11] line

Byte 1

Bit	Mode	Function
7:5	W	Window 0 vertical end [2:0] line
4:0	W	Window 0 horizontal end [10:6] pixel

Byte 2

Bit	Mode	Function
7:0	W	Window 0 vertical end [10:3] line

• End position must be increments of four.

Window 0 control

Address: 103h

Byte 0

Bit	Mode	Function
7:0		Reserved

Bit	Mode	Function
7		Reserved

6:4	W	111: 7 level per gradient
		110: 6 level per gradient
		101: 5 level per gradient
		100: 4 level per gradient
		011: 3 level per gradient
		010: 2 level per gradient
		001: 1 level per gradient
		000: 8 level per gradient
3:0	W	Window 0 color index in 16-color LUT

Byte 2 default: 00h

Bit	Mode	Function
7	W	Reserved
6	W	Gradient function
		0: Disable
		1: Enable
5	W	Gradient direction
		0: Horizontal
		1: Vertical
4	W	Shadow/Border/3D button
		0: Disable
		1: Enable
3:1	W	Window 0 Type
		000: Shadow Type 1
		001: Shadow Type 2
		010: Shadow Type3
		011: Shadow Type 4
		100: 3D Button Type 1
		101: 3D Button Type 2
		110: Reserved
		111: Border
0	W	Window 0 Enable
		0: Disable
		1: Enable

Window 1 Shadow/Border/Gradient

Address: 104h

Byte 0

Bit	Mode	Function
7:6	W	Reserved
5:3	W	Window 1 shadow/border width or 3D button thickness in pixel unit
		000~111: 1 ~ 8 pixel
2:0	W	Window 1 shadow/border height in line unit
		000~111: 1 ~ 8 line
		It must be the same as bit[5:3] for 3D button thickness

Byte 1

Bit	Mode	Function
7:4	W	Window 1 shadow color index in 16-color LUT
		For 3D window, it is the left-top/bottom border color
3:0	W	Window 1 border color index in 16-color LUT
		For 3D window, it is the right-bottom/top border color

Byte 2

Bit	Mode	Function
7:0	W	Reserved

Window 1 start position

Address: 105h

Byte 0

Bit	Mode	Function
7:2	W	Window 1 horizontal start [5:0]
1	W	Window 1 horizontal start [11] pixel
0	W	Window 1 vertical start [11] line

Byte 1

Bit	Mode	Function
7:5	W	Window 1 vertical start [2:0] line
4:0	W	Window 1 horizontal start [10:6] pixel

Byte 2

Bit	Mode	Function
7:0	W	Window 1 vertical start [10:3] line

Start position must be increments of four.

Window 1 end position

Address: 106h

Byte 0

Bit	Mode	Function
7:2	W	Window 1 horizontal end [5:0]
1	W	Window 1 horizontal end [11] pixel
0	W	Window 1 vertical end [11] line

Byte 1

Bit	Mode	Function
7:5	W	Window 1 vertical end [2:0] line
4:0	W	Window 1 horizontal end [10:6] pixel

Byte 2

Bit	Mode	Function
7:0	W	Window 1 vertical end [10:3] line

End position must be increments of four.

Window 1 control

Address: 107h

Byte 0

Bit	Mode	Function
7:0		Reserved

Byte 1

Bit	Mode	Function
7:4		Reserved
3:0	W	Window 1 color index in 16-color LUT

Byte 2 default: 00h

Bit	Mode	Function
7:5	W	Reserved
4	W	Shadow/Border/3D button
		0: Disable
		1: Enable
3:1	W	Window 1 Type
		000: Shadow Type 1
		001: Shadow Type 2
		010: Shadow Type3
		011: Shadow Type 4
		100: 3D Button Type 1
		101: 3D Button Type 2
		110: Reserved
		111: Border
0	W	Window 1 Enable
		0: Disable
		1: Enable

Window 2 Shadow/Border/Gradient

Address: 108h

Bit	Mode	Function
7:6	W	Reserved
5:3	W	Window 2 shadow/border width or 3D button thickness in pixel unit
		000~111: 1 ~ 8 pixel
2:0	W	Window 2 shadow/border height in line unit
		000~111: 1 ~ 8 line
		It must be the same as bit[5:3] for 3D button thickness

Byte 1

Bit	Mode	Function
7:4	W	Window 2 shadow color index in 16-color LUT
		For 3D window, it is the left-top/bottom border color
3:0	W	Window 2 border color index in 16-color LUT
		For 3D window, it is the right-bottom/top border color

Byte 2

Bit	Mode	Function
7:0	W	Reserved

Window 2 start position

Address: 109h

Byte 0

Bit	Mode	Function
7:2	W	Window 2 horizontal start [5:0]
1	W	Window 2 horizontal start [11] pixel
0	W	Window 2 vertical start [11] line

Byte 1

Bit	Mode	Function
7:5	W	Window 2 vertical start [2:0] line
4:0	W	Window 2 horizontal start [10:6] pixel

Byte 2

Bit	Mode	Function
7:0	W	Window 2 vertical start [10:3] line

Start position must be increments of four.

Window 2 end position

Address: 10Ah

Byte 0

Bit	Mode	Function
7:2	W	Window 2 horizontal end [5:0]
1	W	Window 2 horizontal end [11] pixel
0	W	Window 2 vertical end [11] line

Byte 1

E	Bit	Mode	Function
7	7:5	W	Window 2 vertical end [2:0] line
4	1:0	W	Window 2 horizontal end [10:6] pixel

Bit	Mode	Function
7:0	W	Window 2 vertical end [10:3] line

End position must be increments of four.

Window 2 control

Address: 10Bh

Byte 0

Bi	t	Mode	Function
7:0	0		Reserved

Byte 1

Bit	Mode	Function
7:4		Reserved
3:0	W	Window 2 color index in 16-color LUT

Byte 2 default: 00h

<u> </u>		
Bit	Mode	Function
7:5	W	Reserved
4	W	Shadow/Border/3D button
		0: Disable
		1: Enable
3:1	W	Window 2 Type
		000: Shadow Type 1
		001: Shadow Type 2
		010: Shadow Type3
		011: Shadow Type 4
		100: 3D Button Type 1
		101: 3D Button Type 2
		110: Reserved
		111: Border
0	W	Window 2 Enable
		0: Disable
		1: Enable

Window 3 Shadow/Border/Gradient

Address: 10Ch

Bit	Mode	Function
7:6	W	Reserved
5:3	W	Window 3 shadow/border width or 3D button thickness in pixel unit
		000~111: 1 ~ 8 pixel
2:0	W	Window 3 shadow/border height in line unit
		000~111: 1 ~ 8 line
		It must be the same as bit[5:3] for 3D button thickness

Byte 1

Bit	Mode	Function
7:4	W	Window 3 shadow color index in 16-color LUT
		For 3D window, it is the left-top/bottom border color
3:0	W	Window 3 border color index in 16-color LUT
		For 3D window, it is the right-bottom/top border color

Byte 2

Bit	Mode	Function
7:0	W	Reserved

Window 3 start position

Address: 10Dh

Byte 0

Bit	Mode	Function
7:2	W	Window 3 horizontal start [5:0]
1	W	Window 3 horizontal start [11] pixel
0	W	Window 3 vertical start [11] line

Byte 1

Bit	Mode	Function
7:5	W	Window 3 vertical start [2:0] line
4:0	W	Window 3 horizontal start [10:6] pixel

Byte 2

Bit	Mode	Function
7:0	W	Window 3 vertical start [10:3] line

Start position must be increments of four.

Window 3 end position

Address: 10Eh

Byte 0

Bit	Mode	Function
7:2	W	Window 3 horizontal end [5:0]
1	W	Window 3 horizontal end [11] pixel
0	W	Window 3 vertical end [11] line

Byte 1

Bit	Mode	Function
7:5	W	Window 3 vertical end [2:0] line
4:0	W	Window 3 horizontal end [10:6] pixel

Bit Mode Function	
-------------------	--

7:0	W	Window 3 vertical end [10:3] line
,.0	• •	White W S Vertical cha [10.8] line

End position must be increments of four.

Window 3 control Address: 10Fh

Byte 0

Bit	Mode	Function
7:0		Reserved

Byte 1

Bit	Mode	Function
7:4		Reserved
3:0	W	Window 3 color index in 16-color LUT

Byte 2 default: 00h

Bit	Mode	Function
7:5	W	Reserved
4	W	Shadow/Border/3D button
		0: Disable
		1: Enable
3:1	W	Window 3 Type
		000: Shadow Type 1
		001: Shadow Type 2
		010: Shadow Type3
		011: Shadow Type 4
		100: 3D Button Type 1
		101: 3D Button Type 2
		110: Reserved
		111: Border
0	W	Window 3 Enable
		0: Disable
		1: Enable

Window 4 Shadow/Border/Gradient

Address: 110h

Bit	Mode	Function
7:6	W	Reserved
5:3	W	Window 4 shadow/border width or 3D button thickness in pixel unit
		000~111: 1 ~ 8 pixel
2:0	W	Window 4 shadow/border height in line unit
		000~111: 1 ~ 8 line

		It must be the same as bit[5:3] for 3D button thickness
Byte 1		
Bit	Mode	Function
7:4	W	Window 4 shadow color index in 16-color LUT
		For 3D window, it is the left-top/ bottom border color
3:0	W	Window 4 border color index in 16-color LUT
		For 3D window, it is the right-bottom/top border color
Byte 2		
Bit	Mode	Function
7:0	W	Reserved
Window	4 start p	oosition
Address	: 111h	
Byte 0	_	
Bit	Mode	Function
7:2	W	Window 4 horizontal start [5:0]
1	W	Window 4 horizontal start [11] pixel
0	W	Window 4 vertical start [11] line
Byte 1	•	
Bit	Mode	Function
7:5	W	Window 4 vertical start [2:0] line
4:0	W	Window 4 horizontal start [10:6] pixel
Byte 2		
Bit	Mode	Function
7:0	W	Window 4 vertical start [10:3] line
Window	4 end po	osition
Address	: 112h	
Byte 0		
Bit	Mode	Function
7:2	W	Window 4 horizontal end [5:0]
1	W	Window 4 horizontal end [11] pixel
0	W	Window 4 vertical end [11] line
Byte 1		
Bit	Mode	Function
7:5	W	Window 4 vertical end [2:0] line
4:0	W	Window 4 horizontal end [10:6] pixel
Byte 2		
Bit	Mode	Function
1	1	

Window 4 vertical end [10:3] line

 \mathbf{W}

7:0

Window 4 control

Address: 113h

Byte 0

Bit	Mode	Function
7:0		Reserved

Byte 1

Bit	Mode	Function
7:4		Reserved
3:0	W	Window 4 color index in 16-color LUT

Byte 2 default: 00h

Bit	Mode	Function
7:5	W	Reserved
4	W	Shadow/Border/3D button
		0: Disable
		1: Enable
3:1	W	Window 4 Type
		000: Shadow Type 1
		001: Shadow Type 2
		010: Shadow Type3
		011: Shadow Type 4
		100: 3D Button Type 1
		101: 3D Button Type 2
		110: Reserved
		111: Border
0	W	Window 4 Enable
		0: Disable
		1: Enable

Window 5 Shadow/Border/Gradient

Address: 114h

Bit	Mode	Function
7:6	W	Reserved
5:3	W	Window 5 shadow/border width or 3D button thickness in pixel unit
		000~111: 1 ~ 8 pixel
2:0	W	Window 5 shadow/border height in line unit
		000~111: 1 ~ 8 line
		It must be the same as bit[5:3] for 3D button thickness

Bit	Mode	Function
7:4	W	Window 5 shadow color index in 16-color LUT
		For 3D window, it is the left-top/bottom border color
3:0	W	Window 5 border color index in 16-color LUT
		For 3D window, it is the right-bottom/top border color

Byte 2

Bit	Mode	Function
7	W	R Gradient Polarity
		0: Decrease
		1: Increase
6	W	G Gradient Polarity
		0: Decrease
		1: Increase
5	W	B Gradient Polarity
		0: Decrease
		1: Increase
4:3	W	Gradient level
		00: 1 step per level
		01: Repeat 2 step per level
		10: Repeat 3 step per level
		11: Repeat 4 step per level
2	W	Enable Red Color Gradient
1	W	Enable Green Color Gradient
0	W	Enable Blue Color Gradient

Window 5 start position

Address: 115h

Byte 0

Bit	Mode	Function
7:2	W	Window 5 horizontal start [5:0]
1	W	Window 5 horizontal start [11] pixel
0	W	Window 5 vertical start [11] line

Byte 1

Bit	Mode	Function
7:5	W	Window 5 vertical start [2:0] line
4:0	W	Window 5 horizontal start [10:6] pixel

Bit	Mode	Function	
7:0	W	Window 5 vertical start [10:3] line	

Window 5 end position

Address: 116h

Byte 0

Bit	Mode	Function	
7:2	W	Window 5 horizontal end [5:0]	
1	W	Vindow 5 horizontal end [11] pixel	
0	W	Window 5 vertical end [11] line	

Byte 1

Bit	Mode	Function	
7:5	W	Window 5 vertical end [2:0] line	
4:0	W	Window 5 horizontal end [10:6] pixel	

Byte 2

Bit	Mode	Function
7:0	W	Window 5 vertical end [10:3] line

Window 5 control

Address: 117h

Byte 0

Bit	Mode	Function
7:0		Reserved

Byte 1

Bit	Mode	Function
7		Reserved
6:4	W	111: 7 level per gradient
		110: 6 level per gradient
		101: 5 level per gradient
		100: 4 level per gradient
		011: 3 level per gradient
		010: 2 level per gradient
		001: 1 level per gradient
		000: 8 level per gradient
3:0	W	Window 5 color index in 16-color LUT

Byte 2 default: 00h

Bit	Mode	Function
7	W	Reserved
6	W	Gradient function
		0: Disable

		1: Enable
5	W	Gradient direction
		0: Horizontal
		1: Vertical
4	W	Shadow/Border/3D button
		0: Disable
		1: Enable
3:1	W	Window 5 Type
		000: Shadow Type 1
		001: Shadow Type 2
		010: Shadow Type3
		011: Shadow Type 4
		100: 3D Button Type 1
		101: 3D Button Type 2
		110: Reserved
		111: Border
0	W	Window 5 Enable
		0: Disable
		1: Enable

Window 6 Shadow/Border/Gradient

Address: 118h

Byte 0

Bit	Mode	Function	
7:6	W	Reserved	
5:3	W	Vindow 6 shadow/border width or 3D button thickness in pixel unit	
		000~111: 1 ~ 8 pixel	
2:0	W	Window 6 shadow/border height in line unit	
		000~111: 1 ~ 8 line	
		It must be the same as bit[5:3] for 3D button thickness	

PS: This is for non-rotary, rotate 270, rotate 90 and 180.

Byte 1

Bit	Mode	Function	
7:4	W	Vindow 6 shadow color index in 16-color LUT	
		For 3D window, it is the left-top/ bottom border color	
3:0	W	Window 6 border color index in 16-color LUT	
		For 3D window, it is the right-bottom/top border color	

Bit N	Mode	Function
-------	------	----------

7	W	R Gradient Polarity
		0: Decrease
		1: Increase
6	W	G Gradient Polarity
		0: Decrease
		1: Increase
5	W	B Gradient Polarity
		0: Decrease
		1: Increase
4:3	W	Gradient level
		00: 1 step per level
		01: Repeat 2 step per level
		10: Repeat 3 step per level
		11: Repeat 4 step per level
2	W	Enable Red Color Gradient
1	W	Enable Green Color Gradient
0	W	Enable Blue Color Gradient

Window 6 start position

Address: 119h

Byte 0

Bit	Mode	Function
7:2	W	Window 6 horizontal start [5:0]
1	W	Window 6 horizontal start [11] pixel
0	W	Window 6 vertical start [11] line

Byte 1

	Bit	Mode	Function
	7:5	W	Window 6 vertical start [2:0] line
-	4:0	W	Window 6 horizontal start [10:6] pixel

Byte 2

Bit	Mode	Function
7:0	W	Window 6 vertical start [10:3] line

Window 6 end position

Address: 11Ah

Bit	Mode	Function
7:2	W	Window 6 horizontal end [5:0]
1	W	Window 6 horizontal end [11] pixel

0	W	Window 6 vertical end [11] line
Byte 1	**	Window o vertical end [11] line
Bit	Mode	Function
7:5	W	Window 6 vertical end [2:0] line
4:0	W	Window 6 horizontal end [10:6] pixel
Byte 2	**	Wildow o horizontal end [10.0] pixel
Bit	Mode	Function
7:0	W	Window 6 vertical end [10:3] line
Window		
Address:		1
Byte 0	11111	
Bit	Mode	Function
7:0		Reserved
Byte 1		
Bit	Mode	Function
7		Reserved
6:4	W	111: 7 level per gradient
		110: 6 level per gradient
		101: 5 level per gradient
		100: 4 level per gradient
		011: 3 level per gradient
		010: 2 level per gradient
		001: 1 level per gradient
		000: 8 level per gradient
3:0	W	Window 6 color index in 16-color LUT
Byte 2		default: 00h
Bit	Mode	Function
7	W	Reserved
6	W	Gradient function
		0: Disable
		1: Enable
5	W	Gradient direction
		0: Horizontal
		1: Vertical
		GL 1 / D 1 / OD 1 / C
4	W	Shadow/Border/3D button

1: Enable

3:1

W

Window 6 Type

		000: Shadow Type 1
		001: Shadow Type 2
		010: Shadow Type3
		011: Shadow Type 4
		100: 3D Button Type 1
		101: 3D Button Type 2
		110: Reserved
		111: Border
0	W	Window 6 Enable
		0: Disable
		1: Enable

Window 7 Shadow/Border/Gradient

Address: 11Ch

Byte 0

Bit	Mode	Function
7:6	W	Reserved
5:3	W	Window 7 shadow/border width or 3D button thickness in pixel unit
		000~111: 1 ~ 8 pixel
2:0	W	Window 7 shadow/border height in line unit
		000~111: 1 ~ 8 line
		It must be the same as bit[5:3] for 3D button thickness

PS: This is for non-rotary, rotate 270, rotate 90 and 180.

Byte 1

Bit	Mode	Function
7:4	W	Window 7 shadow color index in 16-color LUT
		For 3D window, it is the left-top/bottom border color
3:0	W	Window 7 border color index in 16-color LUT
		For 3D window, it is the right-bottom/top border color

Bit	Mode	Function
7	W	R Gradient Polarity
		0: Decrease
		1: Increase
6	W	G Gradient Polarity
		0: Decrease
		1: Increase
5	W	B Gradient Polarity
		0: Decrease

		1: Increase
4:3	W	Gradient level
		00: 1 step per level
		01: Repeat 2 step per level
		10: Repeat 3 step per level
		11: Repeat 4 step per level
2	W	Enable Red Color Gradient
1	W	Enable Green Color Gradient
0	W	Enable Blue Color Gradient

Window 7 start position

Address: 11Dh

Byte 0

Bit	Mode	Function
7:2	W	Window 7 horizontal start [5:0]
1	W	Window 7 horizontal stat [11] pixel
0	W	Window 7 vertical start [11] line

Byte 1

Bit	Mode	Function
7:5	W	Window 7 vertical start [2:0] line
4:0	W	Window 7 horizontal start [10:6] pixel

Byte 2

Bit	Mode	Function
7:0	W	Window 7 vertical start [10:3] line

Window 7 end position

Address: 11Eh

Byte 0

Bit	Mode	Function
7:2	W	Window 7 horizontal end [5:0]
1	W	Window 7 horizontal end [11] pixel
0	W	Window 7 vertical end [11] line

Byte 1

Bit	Mode	Function
7:5	W	Window 7 vertical end [2:0] line
4:0	W	Window 7 horizontal end [10:6] pixel

Bit	Mode	Function
7:0	W	Window 7 vertical end [10:3] line

Window 7 control

Address: 11Fh

Byte 0

Bit	Mode	Function
7:0		Reserved

Byte 1

Bit	Mode	Function
7		Reserved
6:4	W	111: 7 level per gradient
		110: 6 level per gradient
		101: 5 level per gradient
		100: 4 level per gradient
		011: 3 level per gradient
		010: 2 level per gradient
		001: 1 level per gradient
		000: 8 level per gradient
3:0	W	Window 7 color index in 16-color LUT

Byte 2 default: 00h

Bit	Mode	Function
7	W	Reserved
6	W	Gradient function
		0: Disable
		1: Enable
5	W	Gradient direction
		0: Horizontal
		1: Vertical
4	W	Shadow/Border/3D button
		0: Disable
		1: Enable
3:1	W	Window 7 Type
		000: Shadow Type 1
		001: Shadow Type 2
		010: Shadow Type3
		011: Shadow Type 4
		100: 3D Button Type 1
		101: 3D Button Type 2
		110: Reserved
		111: Border

0	W	Window 7 Enable
		0: Disable
		1: Enable

3D Button Type 1

3D Button Type 2

Shadow in all direction

Window mask fade/in out function

Frame control registers

Address: 000h

Byte 0

Bit	Mode	Function
7:0	R/W	Vertical Delay [10:3]
		The bits define the vertical starting address. Total 2048 step unit: 1 line

Vertical delay minimum should set 1

Byte 1

Bit	Mode	Function
7:0	R/W	Horizontal Delay [9:2]
		The bits define the horizontal starting address. Total 1024 step unit:4 pixels

Horizontal delay minimum should set 2

Byte 2 default: xxxx_xxx0b

Bit	Mode	Function
7:6	R/W	Horizontal Delay bit [1:0]
5:3	R/W	Vertical Delay [2:0]
2:1	R/W	Display zone, for smaller character width
		00: middle
		01: left
		10: right
		11: reserved
0	R/W	OSD enable
		0: OSD circuit is inactivated
		1: OSD circuit is activated

- When OSD is disabled, Double Width (address 0x003 Byte1[1]) must be disabled to save power.
- These three bytes have their own double-buffer.

Address: 003h

Byte 0 Default: 00h

Bit	Mode	Function
7	R/W	Specific color blending (blending type 2)
		0: Disable
		1: Enable
6:5	R/W	Window 7special function
		00: disable
		01: blending (blending type 3)
		10: window 7 mask region appear
		11: window 7 mask region transparent
4	R/W	OSD vertical start input signal source select
		0: Select DVS as OSD VSYNC input
		1: Select ENA as OSD VSYNC input
3:0	R/W	Blending color from 16-color LUT (blending type 2)

Byte 1 Default: 00h

Bit	Mode	Function			
7:4	R/W	Char shadow/border color			
3: 2	R/W	Alpha blending type (blending type 1)			
		00: Disable alpha blending			
		01: Only window blending			
		0: All blending			
		11: Window and Character background blending			
1	R/W	Double width enable (For all OSD including windows and characters)			
		0: Normal			
		1: Double			
0	R/W	Double Height enable (For all OSD including windows and characters)			
		0: Normal			
		1: Double			

Total blending area = blending type1 area + blending type 2 area + blending type 3 area

Byte 2 Default: 00h

Bit	Mode	Function		
7:6	R/W	ont downloaded swap control		
		0x: No swap		
		10: CCW		
		11: CW		

5	R	Buffer Empty		
		0: Empty		
		1: Not Empty		
4	R	Buffer Valid		
		0: Done		
		1: Buffer is writing to SDRAM		
3	R/W	Reset Buffer		
		Write 1 to reset and auto-clear after finished.		
2	R/W	Hardware Rotation Enable		
		0: Disable		
		1: Enable (Default)		
		OSD compression function must be enabled simultaneously.		
1	R/W	Global Blinking Enable		
		0: Disable		
		1: Enable		
0	R/W	Rotation		
		0: Normal (data latch 24 bit per 24 bit)		
		1: Rotation (data latch 18 bit per 24 bit)		

Bit	7	6	5	4	3	2	1	0
Firmware	A	В	C	D	E	F	G	Н
CW	A	Е	В	F	С	G	D	Н
CCW	Е	A	F	В	G	С	Н	D

Figure 3 Non-rotated memory alignments

23 6

Figure 4 Rotated memory alignments

Base address offset

Address: 004h

Byte 0

Bit	Mode	Function	
7:0	R/W	Font Select Base Address[7:0]	

Byte 1

Bit	Mode	Function	
7:4	R/W	Font Select Base Address[11:8]	
3:0	R/W	Font Base Address[3:0]	

Byte 2

Bit	Mode	Function	
7:0	R/W	Font Base Address[11:4]	

When OSD Special Function for POP-ON is enabled (OSD[008]), Font Select Base Address here will not be effective.

OSD Compression

Address: 005h

Byte 0

Bit	Mode	Function
7:4	R/W	4-bit value for VLC code 0
3:0	R/W	4-bit value for VLC code 100

Byte 1

Bit	Mode	Function
7:4	R/W	4-bit value for VLC code 1010
3:0	R/W	4-bit value for VLC code 1011

Byte 2

	Bit	Mode	Function
	7:4	R/W	4-bit value for VLC code 1100
Ī	3:0	R/W	4-bit value for VLC code 1101 0

Address: 006h

Byte 0

Bit	Mode	Function
7:4	R/W	4-bit value for VLC code 1101 1
3:0	R/W	4-bit value for VLC code 1110 0

Byte 1

Bit	Mode	Function
7:4	R/W	4-bit value for VLC code 1110 10
3:0	R/W	4-bit value for VLC code 1110 11

Byte 2

Bit	Mode	Function
7:4	R/W	4-bit value for VLC code 1111 00
3:0	R/W	4-bit value for VLC code 1111 01

Address: 007h

Byte 0

Bit	Mode	Function
7:4	R/W	4-bit value for VLC code 1111 100
3:0	R/W	4-bit value for VLC code 1111 101

Bit	Mode	Function
7:4	R/W	4-bit value for VLC code 1111 110
3:0	R/W	4-bit value for VLC code 1111 1110

Byte 2 default: xxxx_xxx0b

Bit	Mode	Function
7:1		reserved
0	R/W	OSD compression (4bit/symbol, VLC code 1111_1111 represents the end of
		data) (only for SRAM)
		0: disable
		1: enable

Note:

- 1. If enable OSD compression or auto load (double buffer), only one byte can be read after writing address at 0x90, 0x91.
- 2. For OSD compression, MSB 4 bits of original byte is first transferred to corresponding VLC code, and then LSB 4 bits is transferred. VLC code is placed from LSB to MSB of compression font. For example, 4-bit value for VLC code 1100 is 4'b0101, and 4-bit value for VLC code 100 is 4'b0001. Original data 0x15 is transferred to compression x0011001.
- 3. OSD double buffer and compression can't be enabled simultaneous.
- 4. When power-down mode or lack of crystal clock, OSD compression font can't be write.
- 5. After OSD enable, it is better to delay 1 DVS to start writing OSD compression data.

OSD Special Function

Address: 008h

Byte 0 Default: 0x00

3		
Bit	Mode	Function
7	R/W	OSD Special Function Enable
		0: Disable
		1: Enable
6	R/W	OSD Special Function Select (Effective only when Bit[7]=1)
		0: ROLL-UP
		1: POP-ON
5	R/W	OSD Vertical Boundary Function Enable
		0: Disable
		1: Enable
4:1	R/W	Reserved to 0
0	R/W	Display Base Select (Effective only when Bit[7:6]=11`b)
		0: Base 0
		1: Base 1

Byte 1 Default: 0x00

Bit	Mode	Function
7:0	R/W	Row Command Base 0 [7:0]

Byte 2 Default: 0x00

Bit	Mode	Function	
7:0	R/W	Row Command Base 1 [7:0]	
Address:	009h		
Byte 0			Default: 0x00
Bit	Mode	Function	
7:4	R/W	Font Select Base 0 [11:8]	
3:0	R/W	Font Select Base 1 [11:8]	
Byte 1			Default: 0x00
Bit	Mode	Function	
7:0	R/W	Font Select Base 0 [7:0]	
Byte 2			Default: 0x00
Bit	Mode	Function	
7:0	R/W	Font Select Base 1 [7:0] (Not effective when ROLL-UP)	
Address:	00Ah		
Byte 0			Default: 0x00
Bit	Mode	Function	
7	R/W	Reserved	
6:4	R/W	OSD Vertical Upper Boundary [10:8]	
3	R/W	Reserved	
2:0	R/W	OSD Vertical Lower Boundary [10:8]	
Byte 1			Default: 0x00
Bit	Mode	Function	
7:0	R/W	OSD Vertical Upper Boundary [7:0]	
Byte 2			Default: 0x00
Bit	Mode	Function	
7:0	R/W	OSD Vertical Lower Boundary [7:0]	
Address:	00Bh		
Byte 0			Default: 0x00
Bit	Mode	Function	
7	R/W	Font Base Address[12]	
6	R/W	Window 6 Special Blending Function	
		0: OFF	
		1: ON	
5:4	R/W	Blending Type of Window 7	
		00: NO Blending for both F/B	
		01: Only Blending for Foreground	
		10: Only Blending for Background	
1	i		

11: Both Blending for F/B

3:2	R/W	Blending Type of Window 6	
		00: NO Blending for both F/B	
		01: Only Blending for Foreground	
		10: Only Blending for Background	
		11: Both Blending for F/B	
2:0		Reserved	
Byte 1		Defa	ult: 0x00
Bit	Mode	Function	
7:0		Reserved	

Byte 2	Default: 0x00
--------	---------------

Bit	Mode	Function
7:0		Reserved

Note:

- 1. When OSD Special Function for POP-ON is enabled, Font Select Base Address in OSD[004] will not be effective anymore.
- 2. When OSD Vertical Boundary Function is enabled, OSD image above upper boundary and below lower boundary will be invisible.
- 3. When ROLL-UP function is enabled, OSD will always start from the row-command pointed by Base0, and after the row-command pointed by Base1 has been dealt with, the next row-command will be the first one in OSD SRAM. Row-command processing will terminate in the row-command before the one pointed by Base0. (For example, R1 is pointed by Base0, and R5 is pointed by Base1. OSD will show R1 as the first row, followed by R2, R3, R4, R5, and R0 as last row.)
- 4. When POP-ON function is enabled, OSD will start from the row command pointed by the base selected as display base(selected by OSD[008][0.0]), and terminate when end-command is encountered. That is, all row-command will be separated into two non-overlay subset which is enclosed by the row-command pointed by base and end-command.

OSD SRAM (Map and font registers)

R0	R1	R2				Rn	End		
C01	C02	B03	C04			C11	C12	C13	•••
						•••			
			Cn1	Cn2			1-bit for	nt start	
	2-bit font start								

	•••
4-bit font start	

16.5k bytes SRAM

1. Row Command

R0	R1	R2	R3	R	Rn	End
100	111	112	113	14	1111	Lina

Row Command R0~Rn represent the start of new row. Each command contains 3 bytes data which define the length of a row and other attributes. OSD End Command represent the end of OSD. R0 is set in address 0 of SRAM.

2. Character/Blank Command (Font Select)

Character Command is used to select which character font is show. Each command contains three bytes which specify its attribute and 1,2 or 4bit per pixel. Blank Command represents blank pixel to separate the preceding character and following character. Use two or more Blank Command if the character distance exceeds 255 pixel.

The Font Select Base Address in Frame Control Register represents the address of the first character in Row 0, that is, C01 in the above figure. The following character/blank is write in the next address. C11 represents the first character in Row1, C12 represents the second character in Row1, and so on.

The address of the first character Cn1 in Row n = Font Select Base Address + Row 0 font base length + Row 1 font base length + ...+Row n-1 font base length.

3. Font

User fonts are stored as bit map data. For normal font, one font has 12x18 pixel, and for rotation font, one has 18x12 pixel. One pixel use 1, 2 or 4 bits.

```
For 12x18 font,
```

One 1-bit font requires 9 * 24bit SRAM

One 2-bit font requires 18 * 24bit SRAM

One 4-bit font requires 36 * 24bit SRAM

For 18x12 font,

One 1-bit font requires 12 * 24bit SRAM

One 2-bit font requires 24 * 24bit SRAM

One 4-bit font requires 48 * 24bit SRAM

Font Base Address in Frame Control Register point to the start of 1-bit font.

For normal (12x18) font:

1-bit Font, if CS = 128, Real Address of Font = Font Base Address + 9 * 128

2-bit Font, if CS = 128, Real Address of Font = Font Base Address + 18 * 128

4-bit Font, if CS = 128, Real Address of Font = Font Base Address + 36 * 128

For rotational (18x12) font:

1-bit Font, if CS = 128, Real Address of Font = Font Base Address + 12 * 128

2-bit Font, if CS = 128, Real Address of Font = Font Base Address + 24 * 128

4-bit Font, if CS = 128, Real Address of Font = Font Base Address + 48 * 128

where CS is Character Selector in Character Command.

Note that Row Command, Font Select and Font share the same OSD SRAM.

When we download the font, we have to set the Frame control 002h byte1 [1:0] to set the method of hardware bit swap. If the OSD is Counter-Clock-Wise rotated, we have to set to 0x01 (the 8 bits of every byte of font SRAM downloaded by firmware will be in a sequence of "7 5 3 1 6 4 2 0" (from MSB to LSB) and should be rearranged to "7 6 5 4 3 2 1 0" by hardware). If it is Clock-Wise rotated, we have to set to 0x10 (the 8 bits of every byte of font SRAM downloaded by firmware will be in a sequence of "6 4 2 0 7 5 3 1" (from MSB to LSB) and should be rearranged to "7 6 5 4 3 2 1 0" by hardware). After we finish the downloading or if we don't have to rotate the OSD, we have to set it to 0x00.

Row Command

Byte 0

Bit	Mode	Function				
7	W	1: Row Start Command				
		0: OSD End Command				
		Each row must start with row-command, last word of OSD map must be				
		end-command				
6	R/W	VBI OSD function enable				
		0: normal OSD function as usual				
		1: support VBI OSD functions like underline, B/F separated blink and 512				
		fonts select				
5	W	Reserved				
4:2	W	Character border/shadow				
		000: None				
		001: Border				
		100: Shadow (left-top)				
		101: Shadow (left-bottom)				
		110: Shadow (right-top)				
		111: Shadow (right-bottom)				
1	W	Double character width				
		0: x1				
		1: x2				
0	W	Double character height				
		0: x1				
		1: x2				

Byte 1

Bit	Mode	Function
7:3	W	Row height (1~32)
2:0	W	Column space
		0~7 pixel column space
		When Char is doubled, so is column space.

Notice:

When character height/width is doubled, the row height/column space definition also twice. If the row height is larger than character height, the effect is just like space between rows. If it is smaller than character height, it will drop last several bottom line of character.

When using 1/2/4LUT font, column space and font smaller than row height, the color of column space and row space is the same as font background color, only 4 bit true color font mode, the

color is transparent

Byte 2

Bit	Mode	Function
7:0	W	Row length unit: font base

Character Command (For blank)

Byte 0

Bit	Mode	Function
7	W	0
6	W	Blinking effect
		0: Disable
		1: Enable
5:0	W	Reserved

Byte 1

Bit	Mode	Function
7:0	W	Blank pixel length

At least 3 pixels, and can't exceed 255 pixels.

Bit	Mode	Function
7:5	W	Reserved
4	W	Reserved
3:0	W	Blank color – select one of 16-color LUT

(0 is special for transparent)

Character Command (For 1-bit RAM font)

Bit	Mode	Function
7	W	1
6	W	Character Blinking effect
		0: Disable
		1: Enable
5:4	W	00
		(Font type
		00: 1-bit RAM Font
		01: 4-bit RAM Font
		1x: 2-bit RAM Font)
3:0	W	VBI OSD disable:
		Character width (only for 1-pixel font, doubled when specifying
		double-width in Row/Blank command register)
		For 12x18 font:
		0100: 4-pixel 0101: 5-pixel 0110: 6-pixel 0111: 7-pixel
		1000: 8-pixel 1001: 9-pixel 1010: 10-pixel 1011:11-pixel
		1100: 12-pixel
		For 18x12 Font (rotated)
		0000: 4-pixel 0001: 5-pixel 0010: 6-pixel 0011: 7-pixel
		0100: 8-pixel 0101: 9-pixel 0110: 10-pixel 0111: 11-pixel
		1000: 12-pixel 1001:13-pixel 1010:14-pixel 1011:15-pixel
		1100: 16-pixel 1101:17-pixel 1110:18-pixel
		VBI OSD enable:
		While VBI OSD enable, 1 bit font will be NO rotated and 12-pixel fonts
		always. Then the [3:0] setting will be as following:
		[3]: character select[8]
		support 512 font while VBI OSD enable
		[2]: additional blinking effect
		{[6], [2]}
		00: NO blink for both F/B
		01: Only blink for Foreground
		10: Only blink for Background
		11: Both blink for F/B
		[1]: Underline enable

underline will be at 17th & 18th line and got the same color with
foreground
[0]: Reserved

When using border/shadow/ effect, the width of the 1-bit font should at least 6 pixel.

Byte 1

	Bit	Mode	Function
Ī	7:0	W	Character Select [7:0]

Byte 2

Bit	Mode	Function
7:4	W	Foreground color
		Select one of 16-color from color LUT
3:0	W	Background color
		Select one of 16-color from color LUT (0 is special for transparent)

Character command (For 2-bit RAM Font)

Byte 0

Bit	Mode	Function
7	W	1
6	W	MSB of Foreground color 11, Background 00
5	W	1
4	W	MSB of Foreground color 10, Foreground 01
3:1	W	Foreground color 11
		Select one of 8 color from color LUT
		Add Byte0 [6] as MSB for 16-color LUT.
0	W	Background color 00 Bit[2]
		Select one of 8 color from color LUT

Byte 1

Bit	Mode	Function
7:0	W	Character Select [7:0]

Bit	Mode	Function
7:6	W	Background color 00 Bit[1:0]
		Select one of 8 color from color LUT
		While 0 is special for transparent
		Add Byte0 [6] as MSB for 16-color LUT.
		Once we fill 0000 or 1000(MSB follow Byte0[6]), BG appears transparent.
5:3	W	Foreground color 10

		Select one of 8 color from color LUT
		Add Byte0 [4] as MSB for 16-color LUT.
2:0	W	Foreground color 01
		Select one of 8 color from color LUT
		Add Byte0 [4] as MSB for 16-color LUT.

Character command (For 4-bit RAM font)

Byte 0

Bit	Mode	Function
7	W	1
6	W	Character Blinking effect
		0: Disable
		1: Enable
5:4	W	01
		(Font type
		00: 1-bit RAM Font
		01: 4-bit RAM Font
		1x: 2-bit RAM Font)
3:0	W	(for Byte1[7] = 0)
		select one color from 16-color LUT as background
		(for Byte1[7] = 1)
		Red color level
		MSB 4 bits for 8 bits color level (LSB 4 bits are 1111)

Byte 1

Bit	Mode	Function
7	W	0: 4bit Look Up Table, 0000'b is transparent.
		1: 3bit specify R,G,B pattern, color level defined in Byte0[3:0],Byte2. One
		mask bit defines foreground or background.
6:0	W	Character Select [6:0]

- When 4-bit look-up table mode, color of column space is the same as background.
- When 4-bit look-up table mode and pixel value is 0000, and byte0[3:0]=0000 means transparent.
- When true color mode and pixel value is 0000, it is transparent •

Bit	Mode	Function
7:4	W	(for Byte1[7] = 1)
		Green color level
		MSB 4 bits for 8 bits color level (LSB 4 bits are 1111)

3:0	W	(for Byte1[7] = 1)
		Blue color level
		MSB 4 bits for 8 bits color level (LSB 4 bits are 1111)

Display Priority

We have four windows with gradient and four windows without gradient, the window priority is as above, character should be always on the top layer of the window.

Pattern gen.

Use OSD to replace display pattern generator.

Chess Board: make a font as below

If we want to fill to the full 1280x1024 screen with character, we need 1280*1024 pixels. Required character is:

Using 12*18 font

 $1280/12 = 106.7 \rightarrow 107$

1024/18 = 56.9 -> 57

107*57 = 6099 character

The required number of character map is larger than RAM size. We must turn on double width

or double height function to reduce the half of character map.

So the basic unit to chessboard is 2x2 pixel. You can use larger chessboard instead of 2x2 pixels unit, such as 4x4 and so on.

Gray level

We can display 256 gray level by gradient window, 8 and 16 gray level by character map. 32 and 64 gray level is not supported.

4. Electric Specification

DC Characteristics

Table 3 Absolute Maximum Ratings

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS
Voltage on Input (5V tolerant)	$V_{\rm IN}$	-1		5	V
Supply Voltage	PVCC	3.0	3.3	3.6	V
Supply Voltage	VCCK	1.08	1.2	1.32	V
Electrostatic Discharge	V _{ESD}			±2.5	kV
Latch-Up	I_{LA}			±100	mA
Ambient Operating Temperature	T_{A}	0		70	°C
Storage temperature (plastic)	T_{STG}	-55		125	°C
Thermal Resistance (Junction to Air)	θ_{JA}			47.4 *	°C/W
Junction Acceptable Temperature	$T_{\rm j}$			125	°C

*

Under 2-layer PCB

Dimension 50 x 70 mm,

Thickness: 1.6mm

Top layer: 65% coverage of Cu, 0.5oz thickness Bottom layer: 95% coverage of Cu, 0.5oz thickness Via Underneath Package: 12 (Diameter: 12 mil)

5. Mechanical Specification

Plastic Quad Flat No-Lead Package 48 Leads 7x7mm² Outline

Symbol -	Dimension in mm			Dimension in inch			
	Min	Nom	Max	Min	Nom	Max	
A	0.75	0.85	1.00	0.030	0.034	0.039	
A_1	0.00	0.02	0.05	0.000	0.001	0.002	
A_2	0.55	0.65	0.80	0.022	0.026	0.032	
A ₃	0.20 REF			0.008 REF			
b	0.18	0.25	0.30	0.007	0.010	0.012	
D/E		7.00BSC		0.276BSC			
D ₁ /E ₁		6.75BSC 0.266BSC			0.266BSC		
D ₂ /E ₂	4.80	5.05	5.30	0.189	0.199	0.209	
e	0.50BSC			0.020BSC			
L	0.30	0.40	0.50	0.012	0.016	0.020	
θ	0°	_	14°	0°	_	14°	
aaa	_	_	0.15	_	_	0.006	
bbb	_	_	0.10	_	_	0.004	
ссс	_	_	0.10	_	_	0.004	
ddd	_	_	0.05	_	_	0.002	
eee	_	_	0.08	_	_	0.003	
fff	_	_	0.10	_	_	0.004	

Notes:

- 1. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
- 2. CONTROLLING DIMENSION: MILLIMETER(mm).
- 3. REFERENCE DOCUMENTL: JEDEC MO-220.

6. Ordering Information

Part	ADC	DVI	OD	Resolution	Output	PKG
RTD2525LRH	210M	Y	Y	1440x900	LVDS	QFN48
RTD2545LRH	210M	Y	Y	1680x1050	LVDS	QFN48
RTD2555LRH	210M	Y	Y	1920x1050	LVDS	QFN48