

Cálculo 1 - HONORS - CM311

Concavidade e Limites no Infinito

Diego Otero otero.ufpr@gmail.com / otero@ufpr.br

- Extremos locais: máximos e mínimos locais.
- Pontos críticos: pontos onde a derivada não existe ou onde a derivada é igual à zero.
- Todo extremo local é um ponto crítico.
- A volta n\u00e3o vale.

Proposição 1.1.

Seja $f:I o\mathbb{R}$ com I um intervalo.

- Se f'(x) > 0 para todo $x \in I$ então f é crescente em I.
- Se f'(x) < 0 para todo $x \in I$ então f é decrescente em I.

Corolário 1.2

- Extremos locais: máximos e mínimos locais.
- Pontos críticos: pontos onde a derivada não existe ou onde a derivada é igual à zero.
- Todo extremo local é um ponto crítico.
- A volta n\u00e3o vale.

Proposição 1.1.

Seja $f:I o\mathbb{R}$ com I um intervalo

- Se f'(x) > 0 para todo $x \in I$ então f é crescente em I.
- Se f'(x) < 0 para todo $x \in I$ então f é decrescente em I.

Corolário 1.2

- Extremos locais: máximos e mínimos locais.
- Pontos críticos: pontos onde a derivada não existe ou onde a derivada é igual à zero.
- Todo extremo local é um ponto crítico.
- A volta não vale.

Proposição 1.1.

Seja $f: I \to \mathbb{R}$ com I um intervalo.

- Se f'(x) > 0 para todo $x \in I$ então f é crescente em I.
- Se f'(x) < 0 para todo $x \in I$ então f é decrescente em I.

Corolário 1.2

- Extremos locais: máximos e mínimos locais.
- Pontos críticos: pontos onde a derivada não existe ou onde a derivada é igual à zero.
- Todo extremo local é um ponto crítico.
- A volta não vale.

Proposição 1.1.

Seja $f: I \to \mathbb{R}$ com I um intervalo.

- Se f'(x) > 0 para todo $x \in I$ então f é crescente em I.
- Se f'(x) < 0 para todo $x \in I$ então f é decrescente em I.

Corolário 1.2

- Extremos locais: máximos e mínimos locais.
- Pontos críticos: pontos onde a derivada não existe ou onde a derivada é igual à zero.
- Todo extremo local é um ponto crítico.
- A volta não vale.

Proposição 1.1.

Seja $f: I \to \mathbb{R}$ com I um intervalo.

- Se f'(x) > 0 para todo $x \in I$ então f é crescente em I.
- Se f'(x) < 0 para todo $x \in I$ então f é decrescente em I.

Corolário 1.2

- Extremos locais: máximos e mínimos locais.
- Pontos críticos: pontos onde a derivada não existe ou onde a derivada é igual à zero.
- Todo extremo local é um ponto crítico.
- A volta não vale.

Proposição 1.1.

Seja $f: I \to \mathbb{R}$ com I um intervalo.

- Se f'(x) > 0 para todo $x \in I$ então f é crescente em I.
- Se f'(x) < 0 para todo $x \in I$ então f é decrescente em I.

Corolário 1.2.

• Considere uma função derivável crescente em um intervalo.

• Considere uma função derivável crescente em um intervalo.

 $\bullet B$

 $A_{\underline{\ }}$

• Considere uma função derivável crescente em um intervalo.

• Considere uma função derivável crescente em um intervalo.

• Considere uma função derivável crescente em um intervalo.

• Considere uma função derivável crescente em um intervalo.

• Considere uma função derivável crescente em um intervalo.

3/8

• Considere uma função derivável crescente em um intervalo.

Definição 1.3.

Suponha que f seja derivável no intervalo aberto I. Para cada $p \in I$, considere a equação da reta tangente ao gráfico de f, no ponto (p, f(p)),

$$r_p(x) = f(p) + f'(p).(x - p).$$

Dizemos que:

- f tem concavidade para cima em I se $f(x) > r_p(x)$ para todo $x, p \in I, x \neq p$.
- f tem concavidade para baixo em I se $f(x) < r_p(x)$ para todo $x, p \in I, x \neq p$.

Definição 1.4

Sendo $f: I \to \mathbb{R}$ e $x_0 \in I$, dizemos que x_0 **é um ponto de inflexão de** f, se a concavidade de f mudar ao passar pelo ponto x_0 .

Definição 1.3.

Suponha que f seja derivável no intervalo aberto I. Para cada $p \in I$, considere a equação da reta tangente ao gráfico de f, no ponto (p, f(p)),

$$r_p(x) = f(p) + f'(p).(x - p).$$

Dizemos que:

- f tem concavidade para cima em I se $f(x) > r_p(x)$ para todo $x, p \in I, x \neq p$.
- f tem concavidade para baixo em I se $f(x) < r_p(x)$ para todo $x, p \in I, x \neq p$.

Definição 1.4

Sendo $f: I \to \mathbb{R}$ e $x_0 \in I$, dizemos que x_0 é um ponto de inflexão de f, se a concavidade de f mudar ao passar pelo ponto x_0 .

Definição 1.3.

Suponha que f seja derivável no intervalo aberto I. Para cada $p \in I$, considere a equação da reta tangente ao gráfico de f, no ponto (p, f(p)),

$$r_p(x) = f(p) + f'(p).(x - p).$$

Dizemos que:

- f tem concavidade para cima em I se $f(x) > r_p(x)$ para todo $x, p \in I, x \neq p$.
- f tem concavidade para baixo em I se $f(x) < r_p(x)$ para todo $x, p \in I, x \neq p$.

Definição 1.4.

Sendo $f: I \to \mathbb{R}$ e $x_0 \in I$, dizemos que x_0 é um ponto de inflexão de f, se a concavidade de f mudar ao passar pelo ponto x_0 .

Teorema 1.5.

Seja $f: I \to \mathbb{R}$ duas vezes derivável em I.

- Se f''(x) > 0 em I, então f é concava para cima em I.
- Se f''(x) < 0 em I, então f é concava para baixo em I.

Exemplo 1.6.

Faça um esboço do gráfico de $f(x) = \frac{x^2 - 4}{x^2 + 4}$

Exemplo 1.7

Faça um esboço do gráfico de $f(x) = e^x/x^2$.

Teorema 1.5.

Seja $f: I \to \mathbb{R}$ duas vezes derivável em I.

- Se f''(x) > 0 em I, então f é concava para cima em I.
- Se f''(x) < 0 em I, então f é concava para baixo em I.

Exemplo 1.6.

Faça um esboço do gráfico de $f(x) = \frac{x^2 - 4}{x^2 + 4}$.

Exemplo 1.7

Faça um esboço do gráfico de $f(x) = e^x/x^2$.

Teorema 1.5.

Seja $f: I \to \mathbb{R}$ duas vezes derivável em I.

- Se f''(x) > 0 em I, então f é concava para cima em I.
- Se f''(x) < 0 em I, então f é concava para baixo em I.

Exemplo 1.6.

Faça um esboço do gráfico de $f(x) = \frac{x^2 - 4}{x^2 + 4}$.

Exemplo 1.7.

Faça um esboço do gráfico de $f(x) = e^x/x^2$.

- Podemos estender o conceito de limite $\lim_{x\to a} f(x)$ da seguinte forma:
- Ao invés de estudar o comportamento da função perto do ponto a, queremos saber como ela se comporta para valores de x arbitrariamente grandes $(x \to +\infty)$, e também para valores arbitrariamente pequenos $(x \to -\infty)$.

Definição 2.1.

Considere uma função f que esteja definida em $(r, +\infty)$, com $r \in \mathbb{R}$. Sendo $L \in \mathbb{R}$, dizemos que o limite de f quando x tende à mais infinito é igual à L se

$$orall arepsilon>0, \exists N>0, ext{ tal que se } x>N ext{ então } |f(x)-L| Em símbolos $\lim_{x o +\infty}f(x)=L.$$$

- Podemos estender o conceito de limite $\lim_{x\to a} f(x)$ da seguinte forma:
- Ao invés de estudar o comportamento da função perto do ponto a, queremos saber como ela se comporta para valores de x arbitrariamente grandes $(x \to +\infty)$, e também para valores arbitrariamente pequenos $(x \to -\infty)$.

Definição 2.1.

Considere uma função f que esteja definida em $(r, +\infty)$, com $r \in \mathbb{R}$. Sendo $L \in \mathbb{R}$, dizemos que o limite de f quando x tende à mais infinito é igual à L se

$$\forall \varepsilon>0, \exists N>0, \text{ tal que se }x>N \text{ então }|f(x)-L|<\varepsilon.$$
 Em símbolos $\lim_{x\to+\infty}f(x)=L.$

- Podemos estender o conceito de limite $\lim_{x\to a} f(x)$ da seguinte forma:
- Ao invés de estudar o comportamento da função perto do ponto a, queremos saber como ela se comporta para valores de x arbitrariamente grandes $(x \to +\infty)$, e também para valores arbitrariamente pequenos $(x \to -\infty)$.

Definição 2.1.

Considere uma função f que esteja definida em $(r, +\infty)$, com $r \in \mathbb{R}$. Sendo $L \in \mathbb{R}$, dizemos que o limite de f quando x tende à mais infinito é igual à L se

$$\forall \varepsilon>0, \exists N>0, \text{ tal que se }x>N \text{ então }|f(x)-L|<\varepsilon.$$
 Em símbolos $\lim_{x\to+\infty}f(x)=L.$

- Podemos estender o conceito de limite $\lim_{x\to a} f(x)$ da seguinte forma:
- Ao invés de estudar o comportamento da função perto do ponto a, queremos saber como ela se comporta para valores de x arbitrariamente grandes $(x \to +\infty)$, e também para valores arbitrariamente pequenos $(x \to -\infty)$.

Definição 2.1.

Considere uma função f que esteja definida em $(r, +\infty)$, com $r \in \mathbb{R}$. Sendo $L \in \mathbb{R}$, dizemos que o limite de f quando x tende à mais infinito é igual à L se

$$\forall \varepsilon>0, \exists N>0, \text{ tal que se }x>N \text{ então }|f(x)-L|<\varepsilon.$$
 Em símbolos $\lim_{x\to+\infty}f(x)=L.$

 \bullet Todas as propriedades de $\lim_{x\to a}$, também valem para $\lim_{x\to\pm\infty}$.

Propriedade 2.2.

Sejam f e g duas funções definidas em $(r; +\infty)$. Suponha que

$$\lim_{x \to +\infty} f(x) = L \quad \text{e} \quad \lim_{x \to +\infty} g(x) = M.$$

- a) $\lim_{x\to+\infty}c=c,\,c\in\mathbb{R}$
- b) $\lim_{x \to +\infty} (f(x) + g(x)) = L + M$
- c) $\lim_{x \to +\infty} (f(x) g(x)) = L M$

- d) $\lim_{x \to +\infty} (f(x).g(x)) = L.M.$
- e) $\lim_{x \to +\infty} \left(\frac{f(x)}{g(x)} \right) = \frac{L}{M}, M \neq 0$
- f) $\lim_{x \to +\infty} (f(x))^n = L^n, n \in \mathbb{N}$

Vale
$$\lim_{x \to +\infty} f(x) = L \Leftrightarrow \lim_{u \to 0^+} f\left(\frac{1}{u}\right) = L$$
.

ullet Todas as propriedades de $\lim_{x \to a}$, também valem para $\lim_{x \to \pm \infty}$.

Propriedade 2.2.

Sejam f e g duas funções definidas em $(r; +\infty)$. Suponha que

$$\lim_{x \to +\infty} f(x) = L \quad \text{e} \quad \lim_{x \to +\infty} g(x) = N$$

- a) $\lim_{x\to+\infty} c = c, c \in \mathbb{R}$
- b) $\lim_{x \to +\infty} (f(x) + g(x)) = L + M.$
- c) $\lim_{x \to +\infty} (f(x) g(x)) = L M$

- d) $\lim_{x \to +\infty} (f(x).g(x)) = L.M$
- e) $\lim_{x \to +\infty} \left(\frac{f(x)}{g(x)} \right) = \frac{L}{M}, \ M \neq 0.$
- f) $\lim_{x \to +\infty} (f(x))^n = L^n, n \in \mathbb{N}$

Vale
$$\lim_{x \to +\infty} f(x) = L \Leftrightarrow \lim_{u \to 0^+} f\left(\frac{1}{u}\right) = L$$
.

 \bullet Todas as propriedades de $\lim_{x\to a}$, também valem para $\lim_{x\to\pm\infty}$.

Propriedade 2.2.

Sejam f e g duas funções definidas em $(r; +\infty)$. Suponha que

$$\lim_{x \to +\infty} f(x) = L \quad \text{e} \quad \lim_{x \to +\infty} g(x) = M.$$

- a) $\lim_{x\to +\infty} c = c, c \in \mathbb{R}$.
- b) $\lim_{x \to +\infty} (f(x) + g(x)) = L + M.$
- c) $\lim_{x\to+\infty} (f(x)-g(x))=L-M.$

- d) $\lim_{x\to+\infty} (f(x).g(x)) = L.M.$
- e) $\lim_{x \to +\infty} \left(\frac{f(x)}{g(x)} \right) = \frac{L}{M}, M \neq 0.$
- f) $\lim_{x\to+\infty} (f(x))^n = L^n, n\in\mathbb{N}.$

Vale
$$\lim_{x \to +\infty} f(x) = L \Leftrightarrow \lim_{u \to 0^+} f\left(\frac{1}{u}\right) = L.$$

 \bullet Todas as propriedades de $\lim_{x\to a}$, também valem para $\lim_{x\to\pm\infty}$.

Propriedade 2.2.

Sejam f e g duas funções definidas em $(r; +\infty)$. Suponha que

$$\lim_{x \to +\infty} f(x) = L \quad \text{e} \quad \lim_{x \to +\infty} g(x) = M.$$

- a) $\lim_{x\to +\infty} c = c, c \in \mathbb{R}$.
- b) $\lim_{x \to +\infty} (f(x) + g(x)) = L + M.$
- c) $\lim_{x \to +\infty} (f(x) g(x)) = L M.$

- d) $\lim_{x\to+\infty} (f(x).g(x)) = L.M.$
- e) $\lim_{x \to +\infty} \left(\frac{f(x)}{g(x)} \right) = \frac{L}{M}, M \neq 0.$
- f) $\lim_{x\to +\infty} (f(x))^n = L^n, n \in \mathbb{N}.$

Vale
$$\lim_{x \to +\infty} f(x) = L \Leftrightarrow \lim_{u \to 0^+} f\left(\frac{1}{u}\right) = L$$
.

Limites Infinitos no Infinito

Exemplo 2.4.

$$\text{Mostre que} \lim_{x \to +\infty} \frac{1}{x} = 0.$$

Exemplo 2.5.

Calcule

a)
$$\lim_{x \to +\infty} \frac{x^2 - 2x + 3}{3x^2 + x + 1}$$

b)
$$\lim_{x \to +\infty} 2x - \sqrt{x^2 + 3}$$

Limites Infinitos no Infinito

Exemplo 2.4.

$$\text{Mostre que} \lim_{x \to +\infty} \frac{1}{x} = 0.$$

Exemplo 2.5.

Calcule

a)
$$\lim_{x \to +\infty} \frac{x^2 - 2x + 3}{3x^2 + x + 1}$$
.

b)
$$\lim_{x \to +\infty} 2x - \sqrt{x^2 + 3}.$$