TRINITY COLLEGE

Year 12 Methods Units 3/4

Section 1 Calculator Free

TIME: 30 minutes

MAKUCING KEY

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

Pens, pencils, drawing templates, eraser.

 $\frac{2x + x + 4}{x^{2} + x^{2}} = (x)^{1}$ (x + x + x + 2) (x + x

Differentiate the following with respect to x

Logarithmic Functions

Test 4 2018

$$\frac{\sqrt{\chi_2 - \chi_3}}{\sqrt{\chi_2 - \chi_3}} = \frac{\chi_p}{p}$$

(c) $\log_3(x^2 - 2x^3)$

(8 marks)

DATE: Thursday 19th July STUDENT'S NAME

Standard Items: INSTRUCTIONS:

 $\frac{1}{2} \frac{1}{2} \frac{1}$

[7]

MARKS: 29

 $[\xi] \frac{(2+3)\xi}{(2+3)} = -\frac{\lambda}{2}$

2. (4 marks

Determine the exact value of the gradient of the function $f(x) = \ln \frac{1 + e^x}{1 - e^x}$ when $x = \ln 2$.

$$f(x) = \ln(1 + e^{x}) - \ln(1 - e^{x})$$

$$f'(x) = \frac{e^{x}}{1 + e^{x}} + \frac{e^{x}}{1 - e^{x}} = -\frac{4}{3}$$

$$f'(\ln(2)) = \frac{e^{\ln 2}}{1 + e^{\ln 2}} + \frac{e^{\ln 2}}{1 - e^{\ln 2}}$$
$$= \frac{2}{3} + \frac{2}{-1}$$

3. (5 marks)

Determine

(a)
$$\int \frac{-4x^2}{2x^3 - 5} dx$$
 $f(\pi) = 2x^3 - 5$ $f'(\pi) = 6x^2$ $f''(\pi) = 6x^2$ $f''(\pi) = 6x^2$ $f''(\pi) = 6x^2$

(b)
$$\int \tan(1-2x) \, dx$$

$$= \int \frac{\sin(1-2\pi)}{\cos(1-2\pi)} dx$$

$$= \int \frac{\sin(1-2\pi)}{\cos(1-2\pi)} dx$$

$$= \frac{1}{2} \int \frac{2\sin(1-2\pi)}{\cos(1-2\pi)} dx$$

$$= \frac{\ln |\cos(1-2x)|}{2} + c$$

3. (4 marks)

The diagram below shows the curves $y = \log_2 x$ and $y = \log_2 (x - 3)$.

(a) Describe the geometrical transformation that transforms the curve $y = \log_2 x$ to the curve $y = \log_2(x-3)$. [1

(b) The point P lines on $y = \log_2 x$ and has an x-coordinate of c. The point Q lies on $y = \log_2(x-3)$ and also has an x-coordinate of c. Given that the distance PQ is 4 units determine the exact value of c.

$$\log_2 c - \log_2 (c-3) = 4$$

$$\log_2 \frac{c}{c-3} = 4$$

[3]

$$x9 = zx + \xi x$$

$$9 - (1+x)9 = (1+x)zx$$

$$\frac{1+x}{9} - 9 = zx$$

$$0 = (9 - \chi +_{\tau} \chi) \chi$$

$$0 = \chi 9 -_{\tau} \chi +_{\xi} \chi$$

$$0 = (9 - 74 - 76) 76$$

$$o = (z-x)(z+x)x$$

$$x p_{2} \chi \int_{2}^{0} - x p \frac{1+\chi}{9} - 9 \int_{2}^{0} = \forall$$

$$x \beta z \chi - \frac{1+\chi}{9} - 9 z =$$

$$\int_{2}^{\infty} \left[\frac{z}{2x} - |Hx|u|g - \chi g \right] =$$

(7 marks)

Luigi's farm currently produces 10.1 tonnes of barley annually. Over an extended period of drought, he has found that the productivity of his land is decreasing but at a slowing rate. He decides that he will keep his barley farm until annual productivity reaches 0, so he uses a logarithmic function to model the annual productivity of his land t years from now.

(a) Using the model $P(t) = A + k \ln(t+1)$ where P(t) is the annual productivity in tonnes after t years, solve for A and k if production drops to 7 tonnes after 1 year. [3]

$$\frac{1}{1} = \frac{1}{1} = \frac{1}$$

(1) 1 1 2 $^$

determine after how many years he will sell his farm.

P(ξ) = 10.1 + $\frac{-15}{(0)}$ | χ ($\xi+1$)

c) At the end of the last year that Luigi runs the farm, at what rate will annual productivity be decreasing?

$$\frac{15-}{(5)^{4}(1+2)01}=(4)9$$

(4 marks)

Given $\log_2 3 = a$ and $\log_2 5 = b$, determine in terms of a and b

(a)
$$\log_2 75$$
 [2] $\alpha + 2b$

(b)
$$\log_2 2.5$$
 [2] $b-1$

6. (2 marks)

Determine the equation of the function shown below.

$$f(x) = \log_3(x+1) - 2$$

Year 12 Methods Units 3/4 Test 4 2018

Section 2 Calculator Assumed Logarithmic Functions

STUDENT'S NAME

MARKING KEY

DATE: Thursday 19th July

TIME: 15 minutes

MARKS: 14

INSTRUCTIONS:

Standard Items: Special Items:

Pens, pencils, drawing templates, eraser.

Up to three (3) approved calculators. One side A4 page of notes.

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

(3 marks)

A scale used to measure the intensity of earthquakes is known as the Richter Scale. The Richter scale is defined by the formula $R = \log \left(\frac{A}{A_0} \right)$ where A is the measure of the amplitude/intensity of the earthquake wave and A_0 is the amplitude/intensity of a standard wave.

A recent earthquake measured 6.8 on the Richter scale. How many times more intense was this earthquake than an earthquake that measured 4.3 on the Richter scale?

$$6.8 = \log\left(\frac{A_1}{A_0}\right) \qquad 4.3 = \log\left(\frac{A_2}{A_0}\right)$$

$$2.5 = \log\left(\frac{A_1}{A_0}\right) - \log\left(\frac{A_2}{A_0}\right)$$

$$2.5 = \log\left(A_1\right) - \log(A_0) - \left[\log A_2 - \log A_0\right]$$

$$2.5 = \log \frac{A_1}{A_2}$$

$$\frac{A_1}{A_2} = 10^{2.5}$$

$$\frac{A_1}{A_2} = 316.23$$
 ... $A_1 \approx 316 A_2$

Page 1 of 3

Page 4 of 4