▼ Исходные данные

Коэф. запаса: safety = 1.3

Степень двухконтурности: m2 = 6

РТ: Воздух

compressor = "КВД"

Число Maxa: M = 0

Геометрическая высота работы (м):

$$H_{\cdot} = 0$$

Массовый расход (кг/с):

Полная температура на входе в К (К):

$$T^*_{K1} = \begin{vmatrix} 418.2 & \text{if compressor} = "КВД" = 418.2 \\ 288.2 & \text{otherwise} \end{vmatrix}$$

Полное давление на входе в К (Па):

$$P*_{K1} = \begin{vmatrix} 316.2 \cdot 10^3 & \text{if compressor} = "КВД" = 316.2 \cdot 10^3 \\ 101325 & \text{otherwise} \end{vmatrix}$$

Степень повышения давления КВД:

$$\pi^*_K = \begin{vmatrix} 1.6 & \text{if compressor} = \text{"Вл"} & = 9.000 \\ \frac{3.2}{1.6} & \text{if compressor} = \text{"КНД"} \\ 9 & \text{if compressor} = \text{"КВД"} \end{vmatrix}$$

Ожидаемый адиабатический КПД ОК:

$$\eta_{K}^{*} = \begin{vmatrix} 0.86 & \text{if compressor} = "Вл" & = 88.00 \cdot \% \\ 0.87 & \text{if compressor} = "КНД" \\ 0.88 & \text{if compressor} = "КВД" \end{vmatrix}$$

Частота вращения ротора (c-1):

$$\omega = \begin{bmatrix} 1570.8 & \text{if compressor} = \text{"КВД"} \end{bmatrix} = 1570.8$$

Относ. диаметр корня 1ой ступени [14, с.7]:

$$\overline{d}_1 = \begin{vmatrix} 0.40 & \text{if compressor} = "Вл" \\ 0.75 & \text{if compressor} = "КНД" \\ 0.65 & \text{if compressor} = "КВД" \end{vmatrix}$$

$0.3 \le \overline{d}_1 \le 0.6 = 0$

Частота вращения ротора (об/мин):
$$n = \frac{60 \cdot \omega}{2 \cdot \pi} = 15000$$

Закон профилирования проточной части (ЗППЧ):

Относ. параметры по относительным ступеням:

$$\begin{pmatrix} z_{\sim} \\ R_{L \sim cp} \\ K_{\sim H} \\ \eta^*_{\sim} \\ \overline{c}_{\sim a1} \\ \overline{H}_{\sim T} \end{pmatrix} = \begin{pmatrix} (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8)^T \\ (0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5 \ 0.5)^T \\ (0.99 \ 0.98 \ 0.97 \ 0.96 \ 0.95 \ 0.95 \ 0.95 \ 0.95 \ 0.95)^T \\ (0.88 \ 0.89 \ 0.905 \ 0.91 \ 0.91 \ 0.905 \ 0.89 \ 0.88)^T \\ (0.435 \ 0.425 \ 0.415 \ 0.405 \ 0.395 \ 0.385 \ 0.375 \ 0.365)^T \\ (0.25 \ 0.29 \ 0.32 \ 0.33 \ 0.35 \ 0.32 \ 0.29 \ 0.27)^T \end{pmatrix}$$

Тип компрессора			I	Номер ступс	ени и $\overline{L}_{CT.i}$			
тип компрессора	I	II	III	IV	Z_{CP}	z - 2	z - 1	Z
Дозвуковой	0,18-0,20	0,24-0,25	0,24-0,25	0,29-0,30	0,30-0,32	0,28-0,29	0,27-0,28	0,26-0,27
Трансзвуковой	0,19-0,22	0,27-0,29	0,30-0,32	0,32-0,33	0,33-0,35	0,31-0,32	0,27-0,28	0,26-0,27
С одной св/зв ступенью	0,23-0,25	0,27-0,29	0,30-0,32	0,32-0,33	0,33-0,35	0,31-0,32	0,27-0,28	0,26-0,27
С 2-мя св/зв ступенями	0,23-0,25	0,27-0,29	0,30-0,32	0,32-0,33	0,33-0,35	0,31-0,32	0,27-0,28	0,26-0,27
С 3-мя св/зв ступенями	0,23-0,25	0,27-0,29	0,30-0,32	0,32-0,33	0,33-0,35	0,31-0,32	0,27-0,28	0,25-0,26

[16, c. 60]

[18, c. 24]

Уточнение параметров:

$$\overline{c}_{\sim a1} = \overline{c}_{\sim a1} -$$
 0.100 if compressor = "Вл" 0.141 if compressor = "КНД" 0.203 if compressor = "КВД"

увеличение несущественно увеличивает π

$$\eta^*_{\sim} = \eta^*_{\sim} + \begin{vmatrix} -0.020 & \text{if compressor} = "Вл" \\ -0.028 & \text{if compressor} = "КНД" \\ -0.017 & \text{if compressor} = "КВД" \end{vmatrix}$$

понижение существенно увеличивает
$$\pi$$

$$\overline{H}_{T} = \overline{H}_{T} +$$
0.0145 if compressor = "Вл"
0.0164 if compressor = "КНД"
0.0173 if compressor = "КВД"

увеличение несущественно увеличивает π

увеличение существенно увеличивает
$$\pi$$

$$\operatorname{stack}\left(R_{L\sim cp}^{T},K_{\sim H}^{T},\eta^*_{\sim}^{T},\overline{c}_{\sim a1}^{T},\overline{H}_{\sim T}^{T}\right) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 \\ 2 & 0.990 & 0.980 & 0.970 & 0.960 & 0.950 & 0.950 & 0.950 \\ 3 & 0.863 & 0.873 & 0.888 & 0.893 & 0.893 & 0.888 & 0.873 & 0.863 \\ 4 & 0.232 & 0.222 & 0.212 & 0.202 & 0.192 & 0.182 & 0.172 & 0.162 \\ 5 & 0.267 & 0.307 & 0.337 & 0.347 & 0.367 & 0.337 & 0.307 & 0.287 \end{bmatrix}$$

$$0.18 \le \overline{H} \sim_{T}^{T} = (1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1)$$
 $\overline{H} \sim_{T}^{T} \le 0.35 = (1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1)$

$$ext{Коэф. теор. напора "средней" ступени [14, c.11]:} \qquad \overline{H}_{Tcp} = rac{\displaystyle\sum_{i=1}^{rows \left(z_{\sim}
ight)}}{rows \left(z_{\sim}
ight)} = 0.3198$$

 $0.25 \le \overline{H}_{Ten} \le 0.32 = 1$

▼ Распределение основных параметров ОК по ступеням

Кинематическая степень реактивности:
$$R_{L\sim cp}(i) = interp \left(lspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, R_{L\sim cp} \right), \frac{z_{\sim}}{rows(z_{\sim})}, R_{L\sim cp}, i \right)$$
 Коэф. уменьшения теор. напора:
$$K_{\sim H}(i) = interp \left(lspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, K_{\sim H} \right), \frac{z_{\sim}}{rows(z_{\sim})}, K_{\sim H}, i \right)$$
 Изоэнтропический КПД:
$$\prod_{m=1}^{\infty} (i) = interp \left(lspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, \eta^*_{\sim} \right), \frac{z_{\sim}}{rows(z_{\sim})}, \eta^*_{\sim}, i \right)$$
 Коэф. расхода:
$$\overline{c}_{max}(i) = interp \left(lspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, \overline{c}_{\sim a1} \right), \frac{z_{\sim}}{rows(z_{\sim})}, \overline{c}_{\sim a1}, i \right)$$
 Коэф. напора:
$$\overline{H}_{\sim T}(i) = interp \left(lspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, \overline{H}_{\sim T} \right), \frac{z_{\sim}}{rows(z_{\sim})}, \overline{H}_{\sim T}, i \right)$$

$$\begin{pmatrix} R_{L,cp} \\ K_{,H} \\ \eta^*, \\ \hline c_{,a1} \\ \hline H_{,T} \end{pmatrix} = \begin{vmatrix} R_{L,cp}(Z,i) = & R_{L\sim cp} \left(\frac{1}{\operatorname{rows}\{z_{\sim}\}}\right) & \text{if } i < 1 \\ R_{L\sim cp} \left(\frac{i}{Z}\right) & \text{otherwise} \\ \\ K_{,H}(Z,i) = & K_{\sim} H \left(\frac{1}{\operatorname{rows}(z_{\sim})}\right) & \text{if } i < 1 \\ \\ K_{\sim} H \left(\frac{i}{Z}\right) & \text{otherwise} \\ \\ \eta^*, (Z,i) = & \eta^*_{\sim} \left(\frac{1}{\operatorname{rows}(z_{\sim})}\right) & \text{if } i < 1 \\ \\ \eta^*_{\sim}(1) & \text{if } i > Z \\ \\ \eta^*_{\sim} \left(\frac{i}{Z}\right) & \text{otherwise} \\ \\ \hline \hline c_{,a1}(Z,i) = & \overline{c_{,a1}} \left(\frac{1}{\operatorname{rows}(z_{\sim})}\right) & \text{if } i < 1 \\ \\ \overline{c_{,a1}}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline \hline c_{,a1}(1) & \text{if } i > Z \\ \\ \hline c_{,a1}(1) & \text{if } i$$

$$\begin{pmatrix} Z_{\text{temp}} \\ i_{\text{temp}} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} R_{L.cp}(Z_{temp}, i_{temp}) \\ K_{.H}(Z_{temp}, i_{temp}) \\ \eta^*.(Z_{temp}, i_{temp}) \\ \overline{c}_{.a1}(Z_{temp}, i_{temp}) \\ \overline{H}_{.T}(Z_{temp}, i_{temp}) \end{pmatrix} = \begin{pmatrix} 0.700 \\ 0.950 \\ 0.863 \\ 0.162 \\ 0.287 \end{pmatrix}$$

Показатель адиаьаты перед К []: $k_{K1} = k_{ad} \left(Cp_{BO3dyx} \left(P^*_{K1}, T^*_{K1} \right), R_B \right) = 1.394$

Полное давление после К [Па]: $P^*_{K3} = \pi^*_{K} \cdot P^*_{K1} = 2846 \cdot 10^3$

Количество итераций []: iteration₃ = 2

Полная температура после К [K]: $T*_{K3} = 805.9$

Показатель адиаьаты после К []: $k_{K3} = 1.354$

Полная плотность перед и после К [кг/м³]: $\begin{pmatrix} \rho^* K1 \\ \rho^* K3 \end{pmatrix} = \frac{1}{R_B} \cdot \begin{pmatrix} \frac{P^* K1}{T^* K1} \\ \frac{P^* K3}{T^* K3} \end{pmatrix} = \begin{pmatrix} 2.633 \\ 12.297 \end{pmatrix}$

Критические скорости перед и после К [м/с]: $\begin{pmatrix} a^*_{\mathbf{C}.\mathbf{BX}} \\ a^*_{\mathbf{C}.\mathbf{BMX}} \end{pmatrix} = \begin{pmatrix} a_{\mathbf{K}p} \big(\mathbf{k}_{\mathbf{K}1} \,, \mathbf{R}_{\mathbf{B}} \,, \mathbf{T}^*_{\mathbf{K}1} \big) \\ a_{\mathbf{K}p} \big(\mathbf{k}_{\mathbf{K}3} \,, \mathbf{R}_{\mathbf{B}} \,, \mathbf{T}^*_{\mathbf{K}3} \big) \end{pmatrix} = \begin{pmatrix} 373.9 \\ 515.9 \end{pmatrix}$

Ср. показатель адиабаты К []: $k_{cp} = k_{ad} \left(Cp_{Bo3dyx.cp} \left(P^*_{K1}, P^*_{K3}, T^*_{K1}, T^*_{K3} \right), R_B \right) = 1.374$

Теоретический напор [Дж/кг]: $H_{TK} = \frac{Cp_{\text{воздух.cp}}\left(P^*_{K1}, P^*_{K3}, T^*_{K1}, T^*_{K3}\right) \cdot T^*_{K1} \cdot \left(\frac{\frac{k_{cp}-1}{k_{cp}}}{\pi^*_{K}} - 1\right)}{\eta^*_{K}} = 410.3 \cdot 10^3$

```
iteration<sub>u</sub>
     <sup>u</sup>1пер
Z_{recomend}
                             = | iteration<sub>u</sub> = 0
       c_{BX}
                                     \rho_{K1} = \rho^*_{K1}
                                       while 0 < 1
       \rho_{K1}
                                           iteration_u = iteration_u + 1
                                             | trace(concat("iteration.u = ", num2str(iteration_u))) |
                                          u_{1 \text{mep}} = \sqrt[3]{\frac{\pi \cdot G \cdot n^2}{900 \cdot \overline{c}_{.a1}(1,0) \cdot \rho_{K1} \cdot \left[1 - \left(\overline{d}_1\right)^2\right]}}
                                          Z_{recomend} = max \left( round \left( \frac{H_{TK}}{\overline{H}_{Tcp} \cdot u_{1 \pi ep}} \right), 1 \right)
                                           c_{\text{BX}} = \overline{c}_{.a1}(Z_{\text{recomend}}, 0) \cdot u_{1 \pi \text{ep}}
                                          \lambda_{\rm BX} = \frac{c_{\rm BX}}{a_{\rm c.BX}^*}

ho'_{K1} = 
ho*_{K1} \cdot \Gamma \mathcal{I} \Phi \left( "
ho", \lambda_{BX}, k_{K1} \right)
                                          \left| \text{ if } \left| \text{eps} \left( \text{"rel"} , \rho'_{K1}, \rho_{K1} \right) \right| \leq \text{epsilon} \right|

\rho_{K1} = \rho'_{K1}

                                           \rho_{K1} = \rho'_{K1}
                                         iterationu
                                            <sup>u</sup>1пер
                                        Z_{recomend} \\
                                                c_{BX}
                                                \lambda_{BX}
                                                \rho_{K1}
```

Количество итераций []: iteration = 2

Окружная скорость на перифкрии перед K [м/c]: $u_{1\text{пер}} = 430.5$

Рекомендуемое количество ступеней []: $Z_{recomend} = 7$

Абс. скорость перед K [м/с]: $c_{BX} = 99.9$

Приведенная скорость перед К []: $\lambda_{BX} = 0.2671$

Плотность перед К [кг/м^3]: $\rho_{K1} = 2.555$

Кольцевая площадь перед К [м²]:
$$F_{BX} = \frac{G \cdot \sqrt{R_B \cdot T^*_{K1}}}{m_q(k_{K1}) \cdot P^*_{K1} \cdot \Gamma \angle \Phi \left(\text{"G"} , \lambda_{BX}, k_{K1} \right)} = 0.1364$$

$$D'_{\text{nep1}} = \frac{2 \cdot u_{1\text{nep}}}{\omega} = 548.2 \cdot 10^{-3}$$

Диамтеры перед К [м]: $D'_{cp1} = \overline{r}_{cp} (\overline{d}_1) \cdot D'_{nep1} = 462.3 \cdot 10^{-3}$

$$D'_{\text{kop1}} = \overline{d}_{1} \cdot D'_{\text{nep1}} = 356.3 \cdot 10^{-3}$$

$$\varphi = 0, \frac{2 \cdot \pi}{360} .. 2 \cdot \pi$$

Рекомендуемое количество ступеней []:

Количество ступеней []:
$$Z = \begin{bmatrix} 1 & \text{if compressor} = "Вл" \end{bmatrix} = 9$$

▲ Нулевые приближения

```
BHA = \begin{bmatrix} 1 & \text{if compressor} = \text{"КВД"} = 1 \\ 0 & \text{otherwise} \end{bmatrix}
```

▼ Расчет ВНА

```
\alpha_{1BHA}
                   \alpha_{3BHA}
 \sigma_{
m BHA}
                    \sigma_{
m BHA}
                d<sub>3BHA</sub>
d<sub>1BHA</sub>
T*<sub>1BHA</sub> T*<sub>3BHA</sub>
P*<sub>1BHA</sub> P*<sub>3BHA</sub>
\rho^*_{1BHA} \rho^*_{3BHA}
k<sub>1BHA</sub> k<sub>3BHA</sub>
<sup>а</sup>кр1ВНА <sup>а</sup>кр3ВНА
                                              for r \in av(N_r)
c<sub>a1BHA</sub> c<sub>a3BHA</sub>
                                                  \alpha_{1BHA_r} = 90^{\circ}
c<sub>u1BHA</sub> c<sub>u3BHA</sub>
                                                  \overline{d}_{1BHA} = \overline{d}_{1}
ca1BHA ca3BHA
                                                   \overline{d}_{3BHA} = \overline{d}_{1BHA}
<sup>c</sup>u1BHA <sup>c</sup>u3BHA
                                                   T^*_{1BHA_r} = T^*_{K1}
 c<sub>1BHA</sub>
                   c<sub>3BHA</sub>
                                                   T^*_{3BHA_r} = T^*_{1BHA_r}
\lambda_{c1BHA} \lambda_{c3BHA}
F<sub>1BHA</sub>
                   F<sub>3BHA</sub>
                                                  P_{1BHA_r} = P_{K1}
                    \epsilon_{
m BHA}
 \varepsilon_{
m BHA}
                                                   k_{1BHA_r} = k_{ad}(Cp_{BO3dyx}(P^*_{1BHA_r}, T^*_{1BHA_r}), R_B)
                                                   a_{\text{Kp1BHA}_r} = a_{\text{Kp}}(k_{1BHA_r}, R_B, T^*_{1BHA_r})
                                                   \overline{c}_{a1BHA_r} = \overline{c}_{.a1}(Z,0)
                                                  \overline{c}_{u1BHA_r} = \overline{r}_{cp}(\overline{d}_{1BHA}) \cdot (1 - R_{L.cp}(Z, 0)) - \frac{\overline{H}_{.T}(Z, 0)}{2 \cdot \overline{r}_{cp}(\overline{d}_{1BHA})} \text{ if BHA} = 1
                                                    c_{a1BHA_r} = c_{a1BHA_r} \cdot u_{1\pi ep}
```

$$\begin{split} &\sigma_{BHA} = 0.9982 \\ &\operatorname{submatrix} \left(\epsilon_{BHA}, \operatorname{av} \left(\operatorname{N}_r \right), \operatorname{av} \left(\operatorname{N}_r \right), 1, 1 \right) = (22.17) \cdot \operatorname{deg} \\ &\operatorname{submatrix} \left(\alpha_{1BHA}, \operatorname{av} \left(\operatorname{N}_r \right), \operatorname{av} \left(\operatorname{N}_r \right), 1, 1 \right) = (90.00) \cdot \operatorname{deg} \\ &\operatorname{submatrix} \left(\alpha_{3BHA}, \operatorname{av} \left(\operatorname{N}_r \right), \operatorname{av} \left(\operatorname{N}_r \right), 1, 1 \right) = (67.83) \cdot \operatorname{deg} \\ &\left(\overline{d}_{1BHA} \right) = \begin{pmatrix} 0.6500 \\ 0.6500 \end{pmatrix} \qquad \begin{pmatrix} F_{1BHA} \\ F_{3BHA} \end{pmatrix} = \begin{pmatrix} 0.1364 \\ 0.1373 \end{pmatrix} \end{split}$$

$$c_{u1BHA_r} = \frac{c_{a1BHA_r}}{\tan(\alpha_{1BHA_r})}$$

$$c_{1BHA_r} = \frac{c_{a1BHA_r}}{\sin(\alpha_{1BHA_r})}$$

$$\lambda_{c1BHA_r} = \frac{c_{1BHA_r}}{a_{p1BHA_r}}$$

$$\sigma_{BHA} = \begin{bmatrix} 1 + \max(0.03, 0.06) \cdot \Gamma/(\Phi("p", \lambda_{c1BHA_r}, k_{1BHA_r}) \cdot \frac{k_{1BHA_r}}{k_{1BHA_r}} + 1 \cdot (\lambda_{c1BHA_r})^2 \end{bmatrix}^{-1} \text{ if } BHA = 1$$

$$\int_{1}^{\infty} 1 \text{ otherwise}$$

$$P^*_{3BHA_r} = P^*_{1BHA_r}^{*} \sigma_{BHA}$$

$$\rho^*_{3BHA_r} = \frac{P^*_{3BHA_r}}{R_n^* T^*_{3BHA_r}}$$

$$k_{3BHA_r} - k_{aq}(Cp_{nonqyq}(P^*_{3BHA_r}, T^*_{3BHA_r}) \cdot R_n)$$

$$a_{kp3BHA_r} = \frac{R_n(k_{3BHA_r}, R_n, T^*_{3BHA_r})}{R_n^* T^*_{3BHA_r}}$$

$$\overline{c}_{a3BHA_r} = \begin{bmatrix} \overline{c}_{a1}(Z, 1) & \text{if } BHA = 1 \\ \overline{c}_{a1BHA_r} & \text{otherwise} \end{bmatrix}$$

$$\overline{c}_{a3BHA_r} = \begin{bmatrix} \overline{c}_{a1}(Z, 1) & \text{if } BHA = 1 \\ \overline{c}_{a1BHA_r} & \text{otherwise} \end{bmatrix}$$

$$\alpha_{3BHA_r} = \begin{bmatrix} \overline{c}_{a1}(\overline{c}_{a1BHA_r}, \overline{c}_{a1BHA_r}) & \text{if } BHA = 1 \end{bmatrix}$$

$$\alpha_{3BHA_r} = \begin{bmatrix} \overline{c}_{a1BHA_r}, \overline{c}_{a1BHA_r} \\ \overline{c}_{a1BHA_r}, \overline{c}_{a1BHA_r} \end{bmatrix}$$

$$\alpha_{3BHA_r} = \begin{bmatrix} \overline{c}_{a1BHA_r}, \overline{c}_{a1BHA_r} \\ \overline{c}_{a1BHA_r}, \overline{c}_{a1BHA_r} \end{bmatrix}$$

$$\alpha_{3BHA_r} = \begin{bmatrix} \overline{c}_{a3BHA_r} \\ \overline{c}_{a1BHA_r} \end{bmatrix}$$

$$\alpha_{3BHA_r} = \frac{\overline{c}_{a1BHA_r}}{\tan(\alpha_{3BHA_r})}$$

$$\alpha_{3BHA_r} = \frac{\overline{c}_{a1BHA_r}}{\sin(\alpha_{3BHA_r})}$$

$$\begin{split} & \text{submatrix} \left(T^*_{1BHA}, \text{av} \left(N_r \right), \text{av} \left(N_r \right), 1, 1 \right) = (418.2) \\ & \text{submatrix} \left(T^*_{3BHA}, \text{av} \left(N_r \right), \text{av} \left(N_r \right), 1, 1 \right) = (418.2) \\ & \text{submatrix} \left(P^*_{1BHA}, \text{av} \left(N_r \right), \text{av} \left(N_r \right), 1, 1 \right) = (316.2) \cdot 10^3 \\ & \text{submatrix} \left(P^*_{3BHA}, \text{av} \left(N_r \right), \text{av} \left(N_r \right), 1, 1 \right) = (315.6) \cdot 10^3 \\ & \text{submatrix} \left(\rho^*_{1BHA}, \text{av} \left(N_r \right), \text{av} \left(N_r \right), 1, 1 \right) = (2.633) \\ & \text{submatrix} \left(\rho^*_{3BHA}, \text{av} \left(N_r \right), \text{av} \left(N_r \right), 1, 1 \right) = (2.628) \\ & \text{submatrix} \left(k_{1BHA}, \text{av} \left(N_r \right), \text{av} \left(N_r \right), 1, 1 \right) = (1.394) \\ & \text{submatrix} \left(k_{3BHA}, \text{av} \left(N_r \right), \text{av} \left(N_r \right), 1, 1 \right) = (1.394) \end{split}$$

$$\begin{split} & \text{submatrix} \Big(a_{Kp1BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (373.9) \\ & \text{submatrix} \Big(a_{Kp3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (373.9) \\ & \text{submatrix} \Big(\overline{c}_{a1BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.232) \\ & \text{submatrix} \Big(\overline{c}_{a1BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.233) \\ & \text{submatrix} \Big(\overline{c}_{a1BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.095) \\ & \text{submatrix} \Big(\overline{c}_{u3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.097) \\ & \text{submatrix} \Big(c_{a1BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (99.9) \\ & \text{submatrix} \Big(c_{a3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (99.9) \\ & \text{submatrix} \Big(c_{u3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (40.7) \\ & \text{submatrix} \Big(c_{1BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (99.9) \\ & \text{submatrix} \Big(c_{3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (107.9) \\ & \text{submatrix} \Big(\lambda_{c3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.267) \\ & \text{submatrix} \Big(\lambda_{c3BHA}, av \Big(N_r \Big), av \Big(N_r \Big), 1, 1 \Big) = (0.288) \\ \end{aligned}$$

$$\begin{pmatrix} F_{1BHA} \\ F_{3BHA} \end{pmatrix} = G \sqrt{R_B} \begin{pmatrix} \frac{\sqrt{T^*_{1BHA_r}}}{m_q(k_{1BHA_r}) \cdot P^*_{1BHA_r}^{-1/1\Phi}({}^*G^*, \lambda_{c_1BHA_r}, k_{1BHA_r}) \cdot sin(\alpha_{1BHA_r})} \\ \frac{\sqrt{T^*_{1BHA_r}}}{m_q(k_{3BHA_r}) \cdot P^*_{3BHA_r}^{-1/1\Phi}({}^*G^*, \lambda_{c_3BHA_r}, k_{3BHA_r}) \cdot sin(\alpha_{3BHA_r})} \\ \frac{\sigma_{1BHA}}{\sigma_{BHA}} = -1 \cdot (\alpha_{3BHA_r} - \alpha_{1BHA_r}) \end{pmatrix} \\ \begin{pmatrix} \alpha_{1BHA} & \alpha_{3BHA} \\ \sigma_{BHA} & \sigma_{3BHA} \\ \sigma_{1BHA} & \sigma_{3BHA} \\ \sigma^*_{1BHA} & \sigma^*_{3BHA} \\ \rho^*_{1BHA} & \rho^*_{3BHA} \\ \sigma_{a_1BHA} & \sigma^*_{a_2BHA} \\ \sigma_{a_1BHA} & \sigma^*_{a_1BHA} \\ \sigma_{a_1BHA} & \sigma^*_{a_2BHA} \\ \sigma_{a_1BHA} & \sigma^*_{a_1BHA} \\ \sigma_{a_1$$

▲ Расчет ВНА:

$$\begin{split} D_{st(1,1),N_{\Gamma}} &= \frac{2^{4}u_{st(1,1),N_{\Gamma}}}{\omega} \\ D_{st(1,1),\tau} &= \overline{t_{0}} \left(D_{st(1,1),N_{\Gamma}} \right)^{2} - \frac{4^{4}F_{st(1,1)}}{\pi} \\ D_{st(1,1),\tau} &= \overline{t_{0}} \left(\frac{D_{st(1,1),1}}{D_{st(1,1),N_{\Gamma}}} \right) D_{st(1,1),N_{\Gamma}} \\ \overline{d}_{st(1,1)} &= \frac{D_{st(1,1),1}}{D_{st(1,1),N_{\Gamma}}} \\ \text{for } i \in 1..Z \\ &\text{trace(coneat("cryneth i = ",num2str(i)))} \\ \left(\frac{\overline{H}_{T_{i}}}{K_{H_{i}}} \right) &= \left(\frac{\overline{H}_{T_{i}}(Z,i)}{K_{H_{i}}(Z,i)} \right) \\ R_{L,cp}(Z,i) \\ R_{I_{i},\tau} &= \overline{H}_{T_{i}} \left(u_{st(i,1),N_{\Gamma}} \right)^{2} \\ L_{1} &= K_{H_{i}}^{1}H_{T_{i,\Gamma}} \\ L^{\phi_{i}} &= L_{\tau_{i}}\eta^{\phi_{i}} \\ \text{iteration}_{12} &= 0 \\ k_{st(1,2),\tau} &= k_{st(i,1),\tau} \\ while 0 < 1 \\ &= iteration_{12} + iteration_{12} + 1 \\ \text{trace} \left(concat(" iteration_{12} - ",num2str(iteration_{12})) \right) \\ k_{12} &= mcan(k_{st(i,1),\tau},k_{st(i,2),\tau}) \\ Cp_{12} &= \frac{k_{12}}{k_{12}-1} R_{R} \\ T^{*}st(i,2),\tau &= T^{*}st(i,1),\tau^{*} + \frac{L_{i}}{Cp_{12}} \\ \pi^{*}_{i} &= \left(1 + \frac{L_{i}}{Cp_{12}^{1}} \right) \\ D^{*}_{st(i,2),\tau} &= P^{*}st(i,1),\tau^{*} \right)^{*}_{i} \\ D^{*}_{st(i,2),\tau} &= P^{*}st(i,1),\tau^{*} \\ D^{*}_{st(i,2),\tau} &= P^{*}st(i,2),\tau^{*} \\ D^{*}_{st(i,2),\tau} &= P^{*}st(i,2),\tau^{*} \\ D^{*}_{st(i,2),\tau} &= P^{*}st(i,2),\tau^{*} \\ D^{*}_{st(i,2),\tau} &= P^{*}_{st(i,2),\tau} \\ D^{*}_{st(i,2),\tau} &= P^{}_{st(i,2),\tau} \\ D^{*}_{st(i,2),\tau} &= P^{*}_{st(i,2),\tau} \\ D^{*}_{s$$

```
if \left| \text{eps}\left(\text{"rel"}, k_{\text{st}(i,2),r}, k'_2\right) \right| < \text{epsilon}
          k_{st(i,2),r} = k'_2
      k_{st(i,2),r} = k'_2
a_{c_{st(i,2),r}}^* = a_{kp}(k_{st(i,2),r}, R_B, T_{st(i,2),r})
T^*_{st(i,3),r} = T^*_{st(i,2),r}
P^*_{st(i,3),r} = P^*_{st(i,2),r}
Cp_{st(i,3),r} = Cp_{BO3JJYX}(P^*_{st(i,3),r}, T^*_{st(i,3),r})
k_{st(i,3),r} = k_{aJ}(Cp_{st(i,3),r},R_{B})
a_{c_{st(i,3),r}}^* = a_{kp}(k_{st(i,3),r}, R_B, T_{st(i,3),r})
\overline{c}_{a_{st(i,3),r}} = \overline{c}_{.a1}(Z,i+1)
iteration_3 = 0
                    =\frac{F_{st(i,1)}\cdot m_{q}\left(k_{st(i,1),r}\right)\cdot \Gamma \mathcal{J}\Phi\left("G",\lambda_{c_{st(i,1),r}},k_{st(i,1),r}\right)\cdot \sin\left(\alpha_{st(i,1),r}\right)\cdot P^{*}_{st(i,1),r}\cdot \sqrt{T^{*}_{st(i,3),r}}}{m_{q}\left(k_{st(i,3),r}\right)\cdot \Gamma \mathcal{J}\Phi\left("G",\lambda_{c_{st(i,3),r}},k_{st(i,3),r}\right)\cdot \sin\left(\alpha_{st(i,3),r}\right)\cdot P^{*}_{st(i,3),r}\sqrt{T^{*}_{st(i,1),r}}}
 while 0 < 1
      iteration_3 = iteration_3 + 1
       trace(concat(" iteration.3 = ", num2str(iteration_3))))
       if (3\Pi\Pi H_i \neq "пер") \land (3\Pi\Pi H_i \neq "кор") \land (3\Pi\Pi H_i \neq "ср")
          D_{st(i,3),N_r} = D_{st(i,1),N_r} \cdot str2num(3\Pi\Pi Y_i)
D_{st(i,3),1} = \sqrt{(D_{st(i,3),N_r})^2 - \frac{4F_{st(i,3)}}{\pi}}
```

$$\begin{split} & \begin{vmatrix} D_{st(i,3),N_{f}} = D_{st(i,1),N_{f}} \\ D_{st(i,3),1} = \int_{Q} \left(D_{st(i,3),N_{f}} \right)^{2} - \frac{4F_{st(i,3)}}{\pi} \\ & \text{if } 3\Pi\Pi^{i}_{i} = \text{'kop''} \\ & \begin{vmatrix} D_{st(i,3),N_{f}} = \sqrt{\left(D_{st(i,1),1} \right)^{2} + \frac{4F_{st(i,3)}}{\pi}} \\ & D_{st(i,3),N_{f}} = \sqrt{\left(D_{st(i,1),1} \right)^{2} + \frac{4F_{st(i,3)}}{\pi}} \\ & \begin{vmatrix} D_{st(i,3),N_{f}} = \sqrt{\left(D_{st(i,1),r} \right)^{2} + \frac{2F_{st(i,3)}}{\pi}} \\ & D_{st(i,3),N_{f}} = \sqrt{\left(D_{st(i,1),r} \right)^{2} + \frac{2F_{st(i,3)}}{\pi}} \\ & D_{st(i,3),1} = \sqrt{\left(D_{st(i,3),N_{f}} - \frac{2F_{st(i,3)}}{\pi} \right)} \\ & D_{st(i,3),r} = \overline{C_{op}(\overline{d}_{st(i,3)}) \cdot D_{st(i,3),N_{f}}} \\ & \overline{C}_{u_{st(i,3),r}} = \overline{C_{op}(\overline{d}_{st(i,3)}) \cdot D_{st(i,3),N_{f}}} \\ & \overline{C}_{u_{st(i,3),r}} = \overline{C_{op}(\overline{d}_{st(i,3),r})} \quad \text{if } \operatorname{atan} \left(\frac{\overline{c}_{a_{st(i,3),r}}}{\overline{c}_{u_{st(i,3),r}}} \right) \geq 0 \\ & \operatorname{atan} \left(\frac{\overline{c}_{a_{st(i,3),r}}}{\overline{c}_{u_{st(i,3),r}}} \right) + 2\pi \quad \text{otherwise} \\ & D_{st(i,3),N_{f}} = u_{st(i,1),N_{f}} \cdot D_{st(i,3),N_{f}} \\ & u_{st(i,3),r} = \overline{c}_{a_{st(i,3),r}} \cdot u_{st(i,3),r} \\ & c_{st(i,3),r} = \frac{\overline{c}_{a_{st(i,3),r}}}{\overline{c}_{st(i,3),r}} \cdot u_{st(i,3),r} \\ & c_{st(i,3),r} = \frac{\overline{c}_{a_{st(i,3),r}}}{\overline{c}_{st(i,3),r}} \\ & c_{st(i,3),r} = \frac{\overline{c}_{st(i,3),r}}{\overline{c}_{st(i,3),r}} \\ & c_{st(i,3),r} = \frac{\overline{c}_{st(i,3),r}}{\overline{c}_{st(i,3),r}}$$

```
\overline{c}_{a_{st(i,2),r}} = mean(\overline{c}_{a_{st(i,1),r}}, \overline{c}_{a_{st(i,3),r}})
 iteration_2 = 0
 F_{st(i,2)} = mean(F_{st(i,1)}, F_{st(i,3)})
  while 0 < 1
       iteration_2 = iteration_2 + 1
       trace(concat(" iteration.2 = ", num2str(iteration_2))))
       if (3\Pi\Pi\Pi_i \neq "пер") \land (3\Pi\Pi\Pi_i \neq "кор") \land (3\Pi\Pi\Pi_i \neq "ср")
           D_{st(i,2),N_r} = mean(D_{st(i,1),N_r},D_{st(i,3),N_r})
           \overline{d}_{st(i,2)} = \sqrt{2 \cdot \text{mean}(\overline{r}_{cp}(\overline{d}_{st(i,1)}), \overline{r}_{cp}(\overline{d}_{st(i,3)}))^2 - 1}
            D_{st(i,2),r} = D_{st(i,2),N_r} \overline{\cdot r_{cp}} (\overline{d}_{st(i,2)})
           D_{st(i,2),1} = \overline{d}_{st(i,2)} \cdot D_{st(i,2),N_r}
       if 3ППЧ<sub>i</sub> = "пер"
           D_{st(i,2),N_r} = D_{st(i,1),N_r}
           \overline{d}_{st(i,2)} = \sqrt{2 \cdot \text{mean}(\overline{r}_{cp}(\overline{d}_{st(i,1)}), \overline{r}_{cp}(\overline{d}_{st(i,3)}))^2 - 1}
            D_{st(i,2),r} = D_{st(i,2),N_r} \overline{\cdot r_{cp}} (\overline{d}_{st(i,2)})
            D_{st(i,2),1} = \overline{d}_{st(i,2)} \cdot D_{st(i,2),N_r}
       if ЗППЧ<sub>i</sub> = "кор"
            D_{st(i,2),1} = D_{st(i,1),1}
           \overline{d}_{st(i,2)} = \sqrt{2 \cdot \text{mean}(\overline{r}_{cp}(\overline{d}_{st(i,1)}), \overline{r}_{cp}(\overline{d}_{st(i,3)}))^2 - 1}
            D_{st(i,2),N_r} = \frac{D_{st(i,2),1}}{\overline{d}_{st(i,2)}}
            D_{st(i,2),r} = D_{st(i,2),N_r} \overline{\cdot r_{cp}} (\overline{d}_{st(i,2)})
       if 3\Pi\Pi\Pi_i = "cp"
            D_{st(i,2),r} = D_{st(i,1),r}
            \overline{d}_{st(i,2)} = \sqrt{2 \cdot mean(\overline{r}_{cp}(\overline{d}_{st(i,1)}), \overline{r}_{cp}(\overline{d}_{st(i,3)}))^2 - 1}
           D_{st(i,2),N_r} = \frac{D_{st(i,2),r}}{\overline{r_{cp}(\overline{d}_{st(i,2)})}}
            D_{st(i,2),1} = \overline{d}_{st(i,2)} \cdot D_{st(i,2),N_r}
```

$$\begin{vmatrix} \overline{c}_{u_{st(i,2),r} = \frac{1}{r_{cp}(\overline{d}_{st(i,2)})} \left(\frac{\mathcal{W}_{st(i,2),N_r}}{D_{st(i,2),r}} \cdot \overline{c}_{u_{st(i,1),r}} \right) \\ O_{st(i,2),r} = \operatorname{triangle} \left(\overline{c}_{a_{st(i,2),r}}, \overline{c}_{u_{st(i,2),r}} \right) \\ O_{st(i,2),N_r} = u_{st(i,1),N_r} \frac{D_{st(i,2),N_r}}{D_{st(i,1),N_r}} \\ u_{st(i,2),N_r} = u_{st(i,1),N_r} \frac{D_{st(i,2),N_r}}{D_{st(i,2),r}} \\ c_{a_{st(i,2),r}} = \overline{c}_{a_{st(i,2),r}} \frac{C_{a_{st(i,2),r}}}{S_{st(i,2),r}} \\ c_{st(i,2),r} = \frac{\overline{c}_{a_{st(i,2),r}}}{\overline{s}_{st(i,2),r}} \\ \sum_{c_{st(i,2),r}} \frac{C_{st(i,2),r}}{\overline{c}_{st(i,2),r}} \\ \frac{D_{st(i,2),r}}{\overline{c}_{st(i,2),r}} \frac{C_{st(i,2),r}}{\overline{c}_{st(i,2),r}} \\ \frac{C_{st(i,2),r}}{\overline{c}_{st(i,2),r}} \frac{C_{st(i,2),r}}{\overline{c}_{st(i,2),r}} \\ \frac{D_{st(i,2),r}}{\overline{c}_{st(i,2),r}} \frac{D_{st(i,2),r}}{\overline{c}_{st(i,2),r}} \\ \frac{D_{st(i,2),r}}{\overline{c}_{st(i,2),r}} \frac{D_{st(i,2),r}}{\overline{c}_{st(i,2),r$$

```
\begin{cases} & |\mathbf{N}^{I}\mathbf{c}_{st(i,a),r} = \frac{1}{a_{3B_{st}(i,a),r}} \\ & | \mathbf{h}_{st(i,a)} = 0.5 \cdot \left(D_{st(i,a),N_r} - D_{st(i,a),1}\right) \\ & | \mathbf{for} \ \ radius \in 1...N_r \\ & | \mathbf{u}_{st(i,a),radius} = \omega \cdot \frac{D_{st(i,a),radius}}{2} \\ & \left(\frac{\varepsilon_{rotor}_{i,av(N_r)}}{\varepsilon_{stator}_{i,av(N_r)}}\right) = \begin{pmatrix} \beta_{st(i,2),av(N_r)} - \beta_{st(i,1),av(N_r)} \\ \alpha_{st(i,3),av(N_r)} - \alpha_{st(i,2),av(N_r)} \end{pmatrix} \\ & | \mathbf{for} \ \ i \in 1...Z \\ & | \mathbf{for} \ \ a \in 1...3 \\ & | \mathbf{for} \ \ r \in 1...N_r \\ & | \mathbf{R}_{st(i,a),r} = 0.5 \cdot D_{st(i,a),r} \\ & | \mathbf{R}_{st(i,a),r} = 0.5 \cdot D_{st(i,a),r} \\ & \left(\frac{R_L \ K_H \ Cp \ \overline{H}_T \ L^* \ T^* \ P^* \ \rho^* \ a^*_c \ \lambda_c \ F \ D \ \overline{d} \ \overline{c}_a \ c_a \ u \ c \ M_c \ \alpha \ \varepsilon_{rotor}}{\pi^* \ \eta^* \ k \ H_T \ L \ T \ P \ \rho \ a_{3B} \ \lambda_c \ F \ R \ h \ \overline{c}_u \ c_u \ w_u \ w \ M_w \ \beta \ \varepsilon_{stator} \end{pmatrix}^T \end{aligned}
```

$$\begin{pmatrix} H_T \\ R_L \end{pmatrix} = \begin{cases} \text{for } i \in 1...Z \\ \\ H_{T.}(r) = \text{interp} \\ \text{pspline} \\ \\ \begin{pmatrix} 1 \\ \text{av}(N_r) \\ N_r \end{pmatrix}, \begin{pmatrix} H_{T_{i,av}(N_r)} - \frac{\Delta H_T(\overline{d} \, \text{st}(i,2))}{2} \\ H_{T_{i,av}(N_r)} \\ H_{T_{i,av}(N_r)} + \frac{\Delta H_T(\overline{d} \, \text{st}(i,2))}{2} \\ \end{pmatrix}, \begin{pmatrix} 1 \\ \text{av}(N_r) \\ N_r \end{pmatrix}, \begin{pmatrix} H_{T_{i,av}(N_r)} - \frac{\Delta H_T(\overline{d} \, \text{st}(i,2))}{2} \\ H_{T_{i,av}(N_r)} + \frac{\Delta H_T(\overline{d} \, \text{st}(i,2))}{2} \\ \end{pmatrix}, \begin{pmatrix} 1 \\ \text{av}(N_r) \\ N_r \end{pmatrix}, \begin{pmatrix} H_{T_{i,av}(N_r)} - \frac{\Delta H_T(\overline{d} \, \text{st}(i,2))}{2} \\ H_{T_{i,av}(N_r)} - \frac{\Delta H_T(\overline{d} \, \text{st}(i,2))}{2} \\ \end{pmatrix}, r \\ R_{L_{i,av}(N_r)} - \frac{\Delta R_L(\overline{d} \, \text{st}(i,2))}{2} \\ R_{L_{i,av}(N_r)} - \frac{\Delta R_L(\overline{d} \, \text{st}(i,2))}{2} \\ \end{pmatrix}, r \\ R_{L_{i,av}(N_r)} - \frac{\Delta R_L(\overline{d} \, \text{st}(i,2))}{2} \\ \end{pmatrix}, r \\ R_{L_{i,av}(N_r)} - \frac{\Delta R_L(\overline{d} \, \text{st}(i,2))}{2} \\ \end{pmatrix}, r \\ \begin{pmatrix} 1 \\ \text{av}(N_r) \\ N_r \end{pmatrix}, \begin{pmatrix} R_{L_{i,av}(N_r)} - \frac{\Delta R_L(\overline{d} \, \text{st}(i,2))}{2} \\ R_{L_{i,av}(N_r)} - \frac{\Delta R_L(\overline{d} \, \text{st}(i,2))}{2} \\ \end{pmatrix}, r \\ \end{pmatrix}, r \\ \end{pmatrix}, r \\ \begin{pmatrix} 1 \\ \text{av}(N_r) \\ \text{N}_r \end{pmatrix}, \begin{pmatrix} R_{L_{i,av}(N_r)} - \frac{\Delta R_L(\overline{d} \, \text{st}(i,2))}{2} \\ R_{L_{i,av}(N_r)} - \frac{\Delta R_L(\overline{d} \, \text{st}(i,2))}{2} \\ \end{pmatrix}, r \\ \end{pmatrix}, r \\ \end{pmatrix}, r \\ \begin{pmatrix} 1 \\ \text{av}(N_r) \\ \text{N}_r \end{pmatrix}, \begin{pmatrix} R_{L_{i,av}(N_r)} - \frac{\Delta R_L(\overline{d} \, \text{st}(i,2))}{2} \\ R_{L_{i,av}(N_r)} - \frac{\Delta R_L(\overline{d} \, \text{st}(i,2))}{2} \\ \end{pmatrix}, r \\ \end{pmatrix}, r \\ \end{pmatrix}, r \\ \end{pmatrix}$$

$$CA = \begin{bmatrix} 1 & \text{if compressor} = "КВД" = 1 \\ 0 & \text{otherwise} \end{bmatrix}$$

▼ Расчет СА

```
α<sub>1CA</sub>
             \alpha_{3CA}
\sigma_{CA}
               \sigma_{CA}
             \overline{d}_{3CA}
T^*_{1CA} T^*_{3CA}
P*<sub>1CA</sub> P*<sub>3CA</sub>
\rho^*_{1CA} \rho^*_{3CA}
k<sub>1CA</sub> k<sub>3CA</sub>
<sup>а</sup>кр1СА <sup>а</sup>кр3СА
                                   for r \in av(N_r)
\overline{c}_{a1CA} \overline{c}_{a3CA}
                                         \alpha_{1CA_r} = \alpha_{st(Z,3),r}
cu1CA cu3CA
                                         \alpha_{3\text{CA}_r} = 90^{\circ} \text{ if CA} = 1
ca1CA ca3CA
                                                           \alpha_{1CA_r} otherwise
cu1CA cu3CA
                                         \overline{d}_{1CA} = \overline{d}_{st(Z,3)}
              c<sub>3CA</sub>
c<sub>1CA</sub>
                                          \overline{d}_{3CA} = \overline{d}_{1CA}
              \lambda_{3CA}
\lambda_{1CA}
                                          T^*_{1CA_r} = T^*_{st(Z,3),r}
              F<sub>3CA</sub>
F<sub>1CA</sub>
                                          T^*_{3CA_r} = T^*_{1CA_r}
 \varepsilon_{\mathrm{CA}}
               \epsilon_{\mathrm{CA}}
                                          P^*_{1CA_r} = P^*_{st(Z,3),r}
                                          iterarion_{CA} = 0
                                          \sigma_{\text{CA}} = 1
                                           while 0 < 1
                                             iterarion_{CA} = iterarion_{CA} + 1
                                              trace(concat("iterarion.CA = ", num2str(iterarion_{CA})))
                                              P^*_{3CA_r} = P^*_{1CA_r} \cdot \sigma_{CA}
```

$$\begin{split} &\sigma_{CA} = 0.9981 \\ &\operatorname{submatrix} \left(\varepsilon_{CA}, \operatorname{av} \left(\operatorname{N}_r \right), \operatorname{av} \left(\operatorname{N}_r \right), 1, 1 \right) = (36.82) \cdot \operatorname{deg} \\ &\operatorname{submatrix} \left(\alpha_{1CA}, \operatorname{av} \left(\operatorname{N}_r \right), \operatorname{av} \left(\operatorname{N}_r \right), 1, 1 \right) = (53.18) \cdot \operatorname{deg} \\ &\operatorname{submatrix} \left(\alpha_{3CA}, \operatorname{av} \left(\operatorname{N}_r \right), \operatorname{av} \left(\operatorname{N}_r \right), 1, 1 \right) = (90.00) \cdot \operatorname{deg} \\ &\left(\overline{d}_{1CA} \right) = \begin{pmatrix} 0.8390 \\ 0.8390 \end{pmatrix} & \begin{pmatrix} F_{1CA} \\ F_{3CA} \end{pmatrix} = \begin{pmatrix} 0.0498 \\ 0.0598 \end{pmatrix} \end{split}$$

$$\begin{vmatrix} \rho^*_{3CA_r} \end{vmatrix} = \frac{1}{R_B} \begin{vmatrix} \frac{P_{3CA_r}}{T^*_{3CA_r}} \\ \frac{k_{1CA_r}}{k_{3CA_r}} \end{vmatrix} = \begin{pmatrix} \frac{k_{a,q}(C_{Pao_{3},qy_q}(P^*_{1CA_r}, T^*_{1CA_r}), R_B)}{k_{a,q}(C_{Pao_{3},qy_q}(P^*_{3CA_r}, T^*_{3CA_r}), R_B)} \end{pmatrix}$$

$$\begin{vmatrix} \frac{a_{kp1CA_r}}{a_{kp3CA_r}} \\ -\frac{a_{kp}(k_{1CA_r}, R_B, T^*_{1CA_r})}{a_{kp3CA_r}} \\ -\frac{a_{kp}(k_{3CA_r}, R_B, T^*_{3CA_r})}{a_{kp}(k_{3CA_r}, R_B, T^*_{3CA_r})} \end{vmatrix}$$

$$\begin{vmatrix} \frac{a_{kp1CA_r}}{a_{kp3CA_r}} \\ -\frac{a_{kp}(k_{3CA_r}, R_B, T^*_{3CA_r})}{a_{kp}(k_{3CA_r}, R_B, T^*_{3CA_r})} \end{vmatrix}$$

$$\begin{vmatrix} \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ -\frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ -\frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ -\frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ -\frac{a_{kp1CA_r}}{a_{kp1CA_r}} \end{vmatrix}$$

$$\begin{vmatrix} \frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ -\frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ -\frac{a_{kp1CA_r}}{a_{kp3CA_r}} \\ -\frac{a_{kp1CA_r}}{a_{kp1CA_r}} \\ -\frac{a_{kp1CA_r}}{a_{kp$$

$$\begin{aligned} & \text{submatrix} \left(T^*_{1CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (826.7) \\ & \text{submatrix} \left(T^*_{3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (826.7) \\ & \text{submatrix} \left(P^*_{1CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (2841.7) \cdot 10^3 \\ & \text{submatrix} \left(P^*_{3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (2836.3) \cdot 10^3 \\ & \text{submatrix} \left(P^*_{3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (11.972) \\ & \text{submatrix} \left(P^*_{3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (11.949) \\ & \text{submatrix} \left(k_{1CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (1.352) \\ & \text{submatrix} \left(k_{3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (1.352) \\ & \text{submatrix} \left(a_{Kp1CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (522.4) \\ & \text{submatrix} \left(\overline{c}_{a1CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (0.162) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (0.162) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (0.162) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (0.121) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (48.9) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (44.1) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (44.1) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (48.9) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (48.9) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (48.9) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (48.9) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (48.9) \\ & \text{submatrix} \left(\overline{c}_{a3CA}, \text{av} (N_r), \text{av} (N_r), 1, 1 \right) = (0.094) \\ \end{aligned}$$

```
1 otherwise
         break if (|eps("rel", \sigma'_{CA}, \sigma_{CA})| < epsilon) \land (iterarion_{CA} = 0)
         | \text{iterarion}_{CA} = -1 \text{ if } (| \text{eps}(\text{"rel"}, \sigma'_{CA}, \sigma_{CA}) | < \text{epsilon}) 
        \sigma_{CA} = \sigma'_{CA}
                                                                         F_{st(Z,3)}
     (F_{1CA})
                                                                    G \cdot \sqrt{R_B \cdot T^*_{3CA_r}}
    (F_{3CA})
                         \left( \overline{m_{q}(k_{3CA_{r}}) \cdot P^{*}_{3CA_{r}} \cdot \Gamma \Pi \Phi("G", \lambda_{3CA_{r}}, k_{3CA_{r}}) \cdot \sin(\alpha_{3CA_{r}})} \right)
    \varepsilon_{\text{CA}_{r}} = \alpha_{3\text{CA}_{r}} - \alpha_{1\text{CA}_{r}}
 \alpha_{1CA} \alpha_{3CA}
 \sigma_{\text{CA}}
                \sigma_{\mathrm{CA}}
 \overline{d}_{1CA} \overline{d}_{3CA}
T*<sub>1CA</sub> T*<sub>3CA</sub>
P*<sub>1CA</sub> P*<sub>3CA</sub>
\rho^*_{1CA} \rho^*_{3CA}
k<sub>1CA</sub> k<sub>3CA</sub>
<sup>а</sup>кр1СА <sup>а</sup>кр3СА
\frac{1}{c_{a1CA}} \frac{1}{c_{a3CA}}
\frac{1}{c_{u1CA}} = \frac{1}{c_{u3CA}}
ca1CA ca3CA
cu1CA cu3CA
 c<sub>1CA</sub> c<sub>3CA</sub>
 \lambda_{1CA} \lambda_{3CA}
 F<sub>1CA</sub> F<sub>3CA</sub>
  \varepsilon_{\mathrm{CA}} \varepsilon_{\mathrm{CA}}
```


▼ Результаты поступенчатого расчета по ср. ЛТ

Относ. погрешность расчета по массовому расходу (кг/с):

$\overline{\Delta}G =$	for $i \in 1Z$
	for $a \in 13$
	$\overline{\Delta}G_{st(i,a)} = \left eps\left("rel", G, \rho_{st(i,a),av(N_r)} \cdot c_{a_{st(i,a),av(N_r)}} \cdot F_{st(i,a)} \right) \right $
	$ar{\Delta}\mathrm{G}$

$\overline{\Delta}G^{T} = \Box$		1	2		3	4	5	6		7	8	9	10	11	12	13	14	15	16	6	17	18	19	.%
1		0.00	0.0	00	0.04	0.00	0.03	0.0	00	0.15	0.00	0.11	0.00	0.08	0.00	0.06	0.00	0.04	1 0.	.00	0.02	0.00	0.03	
$\overline{\mathbf{A}}_{\mathbf{G}}\mathbf{T}$	/ ₀ =		1	2	3	4	5	6	7	8	9	10 1	1 12	13	14 1	5 16	17	18	19					

Количество ступеней ОК: Z = 9

Дискритизация сечений: ii = 1..2Z + 1

Дискритизация ступеней: i = 1..Z

_																
$\pi^{*T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	1	1.392	1.381	1.365	1.319	1.286	1.253	1.203	1.170	1.148						

Степень повышения давления в ЛА: $\pi^*_{\text{ЛА}} = \frac{P^*_{3\text{CA}_{av(N_r)}}}{P^*_{1\text{BHA}_{av(N_r)}}} = 8.970$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
$H_{\mathbf{T}}^{T} =$	1	48.71	52.80	56.08	54.57	54.37	52.65	46.34	41.94	38.93							.10
11	2	48.71	52.80	56.08	54.57	54.37	52.65	46.34	41.94	38.93							
	3	48.71	52.80	56.08	54.57	54.37	52.65	46.34	41.94	38.93							

Действительная работа К (Дж/кг):
$$L_{K} = \sum_{i=1}^{Z} \ L_{i} = 430.1 \cdot 10^{3}$$

Адиабатная работа К [Дж/кг]:
$$L^*_{K} = \sum_{i=1}^{Z} L^*_{i} = 378.5 \cdot 10^3$$

Адиабатная КПД К []:
$$n_{K}^* = \frac{L_K^*}{L_K} = 88.00 \cdot \%$$

Мощность K (Вт):
$$N_K = G \cdot L_K = 14.97 \cdot 10^6$$

submatrix $(Cp, 1, 2Z + 1, av(N_r), av(N_r))^T$	= 1	1 1016.2	2 1024.3	3 3 1024.3	4 1034.0	5 1034.0	6 1045.1	7 1045.1	8 1056.3	9 1056.3	10 3 1067	.5 1067.5	12 5 1078.3	13 1078.3	14 1087.8	15 1087.8	16 1096.2	17 1096.2	18 1103.8	19 1103.8
submatrix $(k, 1, 2Z + 1, av(N_r), av(N_r))^T$	= 1	1 1.394	2 1.390	3 4 1.390 1.	5 384 1.3	6 84 1.37	7 9 1.379	8 1.373	9 1.373	10 1.368	11 1.368		3 14 .363 1.3	15 59 1.359	16 1.355	17 1.355	18 1.352	19 1.352	20 2	1
submatrix $(T^*, 1, 2Z + 1, av(N_r), av(N_r))^T$	= 1			3 465.7	4 ! 516.3 5	5 6	7 9.1 569.		9 619.5	10 668.6	11 668.6	12 715.5	13 1·715.5 7!	4 15 66.3 756.	16 3 792.9	17	18 826.7	19 826.7	20	21
submatrix $(T, 1, 2Z + 1, av(N_r), av(N_r))^T$					1 5 96.3 51				9	10	11	12 1	.3 14	15	16	17	18	19	20 2	1
submatrix $(P^*, 1, 2Z + 1, av(N_r), av(N_r))^T$	1	412.5		_					616.3	650.2	10	698.1 7	12.8 740	13	778.9	790.4	813.5	824.2	18	1.10^3
3domatrix(1 ,1,22 + 1,4v(11r),4v(11r))	1	315.6	439.3	3 439.3	606.5	606.5	828	828	1091.8	1091.8	1404.	.5 1404.5	1759.5	1759.5	2117.2	2117.2	2476.2	2476.2		10
submatrix $(P, 1, 2Z + 1, av(N_r), av(N_r))^T$	1	300.6	2 376.3	3 422.8	526.1	5 588.5	6 724.9	7 808.7	972.5	9 1071.5	10 1266.0	11 1383.0	12 1604.1	13 1734.9	14 1958.5	15 2089.9	16 2313.5	17 2446.6		·10 ³
submatrix $(\rho^*, 1, 2Z + 1, av(N_r), av(N_r))^T$	= 1	1 2.628	2 3.285	3 3.285	4 4.091	5 4.091	6 5.067	7 5.067	8 6.138	9 6.138	10 7.31	.5 7.315	12 8.565	13 8.565	14 9.75	15 9.75	16 10.876	17 10.876	18 11.972	19 11.972
submatrix $(\rho, 1, 2Z + 1, av(N_r), av(N_r))^T$	= 1	1 2.538	2 2.939	3 3.196	4 3.691	5 4.003	6 4.601	7 4.981	8 5.642	9 6.055	10 6.781	11 7.233	12 8.003	13 8.477	14 9.206	15 9.657	16 10.344	17 10.78	18 11.439	19 11.871

 $k_{\text{AD}} = k_{\text{AD}} \left(\text{Cp}_{\text{BO3DJYX.cp}} \left(P^*_{\text{st}(1,1),\text{av}\left(N_r\right)}, P^*_{\text{st}(Z,3),\text{av}\left(N_r\right)}, T^*_{\text{st}(1,1),\text{av}\left(N_r\right)}, T^*_{\text{st}(Z,3),\text{av}\left(N_r\right)} \right), R_B \right) = 1.373$

$F^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
	1	0.1373	0.1218	0.1155	0.1031	0.098	0.0884	0.0846	0.0775	0.0747	0.069	0.0668	0.0624	0.0608	0.0578	0.0568	0.0547	0.0541	0.0514	0.0498		

$\overline{d}^T =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	1	0.6467	0.6726	0.6978	0.7190	0.7397	0.7517	0.7636	0.7734	0.7831	0.7913	0.7995	0.8061	0.8127	0.8173	0.8220	0.8252	0.8284	0.8337	0.8390				

 $\overline{d}_{st(Z,3)} = 0.839$ $\overline{d}_{st(Z,3)} \le 0.9 = 1$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
$\mathbf{D}^{\mathrm{T}} =$	1	354.5	364.3	373.6	381.1	388.2	388.2	388.2	388.2	388.2	388.2	388.2	388.2	388.2	388.2	388.2	388.2	388.2	388.2	388.2			$\cdot 10^{-3}$
D	2	461.6	461.6	461.6	461.6	461.6	456.9	452.3	448.7	445.3	442.4	439.6	437.4	435.3	433.8	432.3	431.3	430.3	428.7	427.1			10
	3	548.2	541.7	535.4	530.0	524.8	516.5	508.4	502.0	495.8	490.6	485.6	481.6	477.7	475.0	472.3	470.5	468.7	465.7	462.7			

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
$R^{T} =$	1	177.3	182.2	186.8	190.5	194.1	194.1	194.1	194.1	194.1	194.1	194.1	194.1	194.1	194.1	194.1	194.1	194.1	194.1	194.1						
11	2	230.8	230.8	230.8	230.8	230.8	228.4	226.2	224.4	222.6	221.2	219.8	218.7	217.6	216.9	216.2	215.7	215.2	214.4	213.6						
	3	274.1	270.8	267.7	265.0	262.4	258.2	254.2	251.0	247.9	245.3	242.8	240.8	238.9	237.5	236.2	235.2	234.3	232.8	231.4						

 $\cdot 10^{-3}$

$h^{T} =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	$\cdot 10^{-3}$
	1	96.8	88.7	80.9	74.5	68.3	64.1	60.1	56.9	53.8	51.2	48.7	46.7	44.7	43.4	42.0	41.1	40.2	38.7	37.2							

$submatrix \left(a *_{c}, 1, 2Z + 1, av \left(N_{r}\right), av \left(N_{r}\right)\right)^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ \hline 1 & 373.9 & 394.4 & 394.4 & 414.9 & 414.9 & 435.3 & 435.3 & 453.7 & 471.0 & 471.0 & 486.8 & 486.8 & 500.2 & 500.2 & 511.9 & 511.9 & 522.4 & 522.4 \end{bmatrix}$
$submatrix \left(a_{3B}, 1, 2Z + 1, av \left(N_{r}\right), av \left(N_{r}\right)\right)^{T} = \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$submatrix \Big(c , 1 , 2Z + 1 , av \Big(N_r \Big) , av \Big(N_r \Big) \Big)^T = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ \hline 1 & 107.9 & 201.3 & 100.9 & 203.3 & 94.2 & 206.6 & 87.7 & 201.3 & 81.6 & 198.3 & 77.0 & 193.7 & 75.9 & 183.0 & 75.0 & 175.2 & 74.0 & 170.2 & 73.5 \\ \hline \end{array}$
$submatrix \Big(w, 1, 2Z, av \Big(N_r \Big), av \Big(N_r \Big) \Big)^T = \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$u^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 \\ 1 & 278.4 & 286.2 & 293.4 & 299.3 & 304.9 & 30$
$c_{a_{st(Z,3),av(N_r)}} = 58.88$ $c_{a_{st(Z,3),av(N_r)}} \le 130 = 1$ Для КС
$submatrix \Big(c_a, 1, 2Z+1, av \Big(N_f \Big), av \Big(N_f \Big) \Big)^T = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\ \hline 1 & 99.9 & 97.3 & 94.3 & 91.5 & 88.8 & 85.5 & 82.4 & 79.6 & 76.9 & 74.4 & 72.0 & 69.7 & 67.5 & 65.4 & 63.4 & 61.5 & 59.6 & 59.3 & 58.9 \\ \hline \end{array}$
$submatrix \Big(c_{u}, 1, 2Z+1, av \Big(N_{r} \Big), av \Big(N_{r} \Big), av \Big(N_{r} \Big) \Big)^{T} = \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$submatrix \Big(w_u, 1, 2Z + 1, av \Big(N_r \Big), av \Big(N_r \Big) \Big)^T = \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\Delta c_{a_{i,av(N_r)}} = \left(c_{a_{st(i,2),av(N_r)}} - c_{a_{st(i,1),av(N_r)}}\right)$
$submatrix \Big(\Delta c_{a}^{}, 1, Z, av \Big(N_{r}^{}\Big), av \Big(N_{r}^{}\Big)\Big)^{T} = \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$submatrix \Big(\Delta c_{a}, 1, Z, av \Big(N_{r}\Big), av \Big(N_{r}\Big)\Big)^{T} \geq -12 = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$

submatrix $(\alpha, 1, 2\cdot Z + 1, av(N_r), av(N_r))^T$	=	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	۰. [
	1	67.83	28.90	69.13	26.74	70.50	24.46	70.13	23.31	70.54	22.04	69.20	21.08	62.72	20.94	57.68	20.56	53.70	20.37	53.18			
T_{cons}		1	2	3	4	5	6	7	Q	a	10	11	12	13	14	15	16	17	18	19	20	21	1
submatrix $(\beta, 1, 2\cdot Z + 1, av(N_r), av(N_r))^T$	= 1	17.38	27.57	16.1	26.82	15.01	26.61	14.21	25.42	13.41	24.45	12.75	23.17	12.39	21.07	11.95	19.39	11.46	18.5	11.42	20	21	.°
_																							-
submatrix $\left(\varepsilon_{\text{rotor}}, 1, Z, \text{av}(N_r), \text{av}(N_r)\right)^T =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	.0
(1) (1)	1	10.19	10.72	11.6	11.21	11.04	10.42	8.68	7.44	7.04													
_																							•
submatrix $\left(\varepsilon_{\text{stator}}, 1, Z, \text{av}(N_r), \text{av}(N_r)\right)^T =$	= 🔲	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	.0
(Stator (1) - (1))	1	40.23	43.76	45.67	47.23	47.16	41.64	36.74	33.14	32.81													l

5 19 7 8 9 10 11 12 13 14 15 16 17 18 0.2269 0.4746 0.2014 0.4436 0.1798 0.3979 0.3659 0.1500 0.3259 0.4211 0.1634 0.1559 0.3422 0.1446 0.1408

14 15 7 9 10 11 12 13 16 17 18 19 0.7598 0.4098 0.7096 0.3814 0.6726 0.3557 0.6374 0.3388 0.5953 0.3384 0.5645 0.3365 0.5413 0.3324

19 8 9 10 11 12 13 14 15 18 0.4432 0.1853 0.1383 0.4137 0.1655 0.3924 0.1505 0.3706 0.1437 0.3404 0.3182 0.1334 0.3030 0.1300

▼ Расчет параметров потока по высоте Л

Относ. диамет р корня при увеличении которого меняется з-н профилирования Л с промежуточного на Ц = const:

с R = const на промежуточный:

[16, c.94-99]

$$\begin{array}{ll} \overline{m} = & \text{for } i \in 1 ... Z \\ \\ m_i = & \begin{vmatrix} -1 & \text{if } \overline{d} \ \operatorname{st}(i,1) \leq \overline{d} \ \operatorname{R2m} \\ \\ 1 & \text{if } \overline{d} \ \operatorname{st}(i,1) \geq \overline{d} \ \operatorname{m2II} \\ \\ -1 + \frac{1 - (-1)}{\overline{d} \ \operatorname{m2II} - \overline{d} \ \operatorname{R2m}} \cdot \left(\overline{d} \ \operatorname{st}(i,1) - \overline{d} \ \operatorname{R2m} \right) \end{array} \right. \text{ otherwise} \\ \\ m \end{array}$$

$$\begin{pmatrix} \overline{d}_{m2II} \\ \overline{d}_{R2m} \end{pmatrix} = \begin{pmatrix} 0.7 \\ 0.3 \end{pmatrix}$$

$$m_i = \begin{bmatrix} 0.73 & \text{if compressor} = "B\pi" \\ m_i & \text{otherwise} \end{bmatrix}$$

$\mathbf{m}^{\mathrm{T}} =$		1	2	3	4	5	6	7	8	9	10	11	12
	1	0.733	0.989	1.000	1.000	1.000	1.000	1.000	1.000	1.000			

```
T*<sub>1BHA</sub> T*<sub>3BHA</sub>
P*<sub>1BHA</sub> P*<sub>3BHA</sub>
ρ*<sub>1BHA</sub> ρ*<sub>3BHA</sub>
Cp<sub>1BHA</sub> Cp<sub>3BHA</sub>
k<sub>1BHA</sub> k<sub>3BHA</sub>
a*c1BHA a*c3BHA
                                                    for i \in 1
cu1BHA cu3BHA
                                                        for r \in 1..N_r
<sup>c</sup>a1BHA <sup>c</sup>a3BHA
                                                                                              \left(T^*_{1BHA_{av(N_r)}}\right)
                                                               \left(T^*_{1BHA_r}\right)
\alpha_{1BHA} \alpha_{3BHA}
                                                               T^*_{3BHA_r}
                                                                                                T^*_{3BHA_{av(N_r)}}
 c<sub>1BHA</sub>
                     c<sub>3BHA</sub>
\lambda_{c1BHA} \lambda_{c3BHA}
                                                              (P^*1BHA_r)
                                                                                               \left(P^*_{1BHA_{av(N_r)}}\right)
                       \varepsilon_{
m BHA}
 \varepsilon_{
m BHA}
                                                               P*3BHA<sub>r</sub>
                                                                                               P^*_{3BHA_{av(N_r)}}
                                                                                               \left( \rho^*_{1BHA_{av\left(N_r\right)}} \right)
                                                               (\rho^*_{1BHA_r})
                                                               ρ*<sub>3BHA</sub><sub>r</sub>
                                                                                              \left( \rho^*_{3BHA_{av(N_r)}} \right)
                                                                                               \left( Cp_{\text{воздух}} \left( P^*_{1BHA_r}, T^*_{1BHA_r} \right) \right)
                                                               \left( Cp_{1BHA_{r}} \right)
                                                               Cp<sub>3BHA</sub><sub>r</sub>
                                                                                               \left( \operatorname{Cp}_{\text{воздух}} \left( \operatorname{P*}_{3\text{BHA}_r}, \operatorname{T*}_{3\text{BHA}_r} \right) \right)
                                                               (k<sub>1BHA</sub><sub>r</sub>
                                                                                            \left(k_{ad}\left(Cp_{1BHA_{r}},R_{B}\right)\right)
                                                                                            \left( k_{aд} \left( C_{p_{3BHA_{r}}}, R_{B} \right) \right)
                                                               k<sub>3</sub>BHA<sub>r</sub>
                                                                                                    \frac{2 \cdot k_{1BHA_{r}}}{k_{1BHA_{r}} + 1} \cdot R_{B} \cdot T^{*}_{1BHA_{r}}
                                                               (a*c1BHA<sub>r</sub>)
                                                               a*c3BHA<sub>r</sub>
                                                             A = \left(1 - R_{L_{i,av(N_r)}}\right) \cdot \omega \cdot \left(R_{st(i,1),av(N_r)}\right)^{m_i + 1}
                                                            B = \frac{H_{T_{i,av}(N_r)}}{2 \cdot \omega}
                                                                                                                            c_{u1BHA_{av(N_r)}}
```



```
P*
                       P
   Cp
                       k
  a*c
                    a_{3B}
     c_{u}
                       c_{a}
                                       = \int for i \in 1...Z
                       β
     \alpha
                                                          for a \in 1...3
     c
                       \mathbf{W}
                                                              for r \in 1..N_r
    \lambda_{\rm c}
                      w_{u}
                                                                  T^*_{st(i,a),r} = T^*_{st(i,a),av(N_r)}
 M_{W}
                     M_{c}
                                                                   P^*_{st(i,a),r} = P^*_{st(i,a),av(N_r)}
                      \mathbf{R}_{\mathbf{L}}
  R_{L}
                                                                  \rho^*_{st(i,a),r} = \rho^*_{st(i,a),av(N_r)}
<sup>ε</sup>rotor <sup>ε</sup>stator ,
                                                                    Cp_{st(i,a),r} = Cp_{BO3ДYX}(P*_{st(i,a),r}, T*_{st(i,a),r})
                                                                     k_{st(i,a),r} = k_{a \perp} (Cp_{st(i,a),r}, R_B)
                                                                    a_{c_{st(i,a),r}}^{*} = \sqrt{\frac{2 \cdot k_{st(i,a),r}}{k_{st(i,a),r} + 1} \cdot R_{B} \cdot T_{st(i,a),r}^{*}}
                                                                     if \Delta H_{Tmax} = 0
                                                                            A_{st(i,a)} = \left(1 - R_{L_{i,av(N_r)}}\right) \cdot \omega \cdot \left(R_{st(i,a),av(N_r)}\right)^{m_i+1} 
                                                                                                                          0 if (a = 1) \land (i = 1) \land (BHA = 0)
                                                                                                                          \frac{\left|\frac{A_{st(i,a)}}{\left(R_{st(i,a),r}\right)^{m_i}} - \frac{B_{st(i,a)}}{\left(R_{st(i,a),r}\right)}\right| \text{ otherwise}
                                                                             c_{a_{st(i,a),r}} = c_{a3BHA_r} \text{ if } (a = 1) \land (i = 1) \land (BHA = 1)
                                                                                                               \sqrt{ \left( c_{a_{st(i,a)},av(N_r)}^{} \right)^2 - 2 \cdot \left( A_{st(i,a)}^{} \right)^2 \cdot \left[ \left( R_{st(i,a),r}^{} \right)^2 - \left( R_{st(i,a),av(N_r)}^{} \right)^2 \right] + 4 \cdot A_{st(i,a)} \cdot B_{st(i,a)} \cdot \ln \left( \frac{R_{st(i,a),r}}{R_{st(i,a),av(N_r)}} \right) \cdot \left| -1 \right| \text{ if } a = 2  if m_i = -1  \sqrt{ \left( c_{a_{st(i,a),av(N_r)}^{}} \right)^2 - 2 \cdot \left( A_{st(i,a)}^{} \right)^2 \cdot \ln \left( \frac{R_{st(i,a),r}}{R_{st(i,a),r}} \right) - 2 \cdot A_{st(i,a)} \cdot B_{st(i,a)} \cdot \left( \frac{1}{R_{st(i,a),av(N_r)}} - \frac{1}{R_{st(i,a),av(N_r)}} \right) \cdot \left| -1 \right| \text{ if } a = 2  if m_i = 0
```

$$\begin{cases} A_{M(i,a)}(m_i-1) & \left(\stackrel{*_{M(i,a)}}{=} , a_{M(i,a)}(m_i-1) \right) & \left(\stackrel{*_{M(i,a)}}{=} , a_{M(i,a)}(m_i-1) \right)$$

$$\begin{split} c_{st(1,a),r} &= \operatorname{unangre} \left({^{\text{C}}a}_{st(i,a),r}, {^{\text{C}}u}_{st(i,a),r} \right) \\ c_{st(i,a),r} &= \frac{c_{st(i,a),r}}{\sin(\alpha_{st(i,a),r})} \\ \lambda_{c_{st(i,a),r}} &= \frac{c_{st(i,a),r}}{a^{*}c_{st(i,a),r}} \\ \begin{pmatrix} T_{st(i,a),r} \\ P_{st(i,a),r} \end{pmatrix} &= \begin{pmatrix} T^{*}s_{t(i,a),r} \\ P^{*}s_{t(i,a),r} \\ P^{*}s_{t(i,a),r} \\ P^{*}s_{t(i,a),r} &= \sqrt{P^{*}st(i,a),r} \\ P^{*}s_{t(i,a),r} &= \sqrt{P$$

```
T*<sub>1CA</sub> T*<sub>3CA</sub>
P*<sub>1CA</sub> P*<sub>3CA</sub>
\rho^*_{1CA} \rho^*_{3CA}
Cp<sub>1CA</sub> Cp<sub>3CA</sub>
k<sub>1CA</sub> k<sub>3CA</sub>
a*c1CA a*c3CA
                                               for i \in Z
cu1CA cu3CA
                                                    for r \in 1...N_r
calCA ca3CA
                                                            \left(T^*_{1CA_r}\right)
                                                                                               T*_{st(i,3),r}
\alpha_{1CA} \alpha_{3CA}
                                                                                              T*_{3CA_{av(N_r)}}
                                                             T*3CA<sub>r</sub>
 c<sub>1CA</sub> c<sub>3CA</sub>
                                                             (P^*_{1CA_r})
                                                                                              P*_{st(i,3),r}
 \lambda_{c1CA} \lambda_{c3CA}
                                                                                             P^*_{3CA_{av\left(N_r\right)}} \bigg)
                                                              P*3CA<sub>r</sub>
 \epsilon_{\mathrm{CA}} \epsilon_{\mathrm{CA}}
                                                             \left(\rho^*_{1CA_r}\right)
                                                                                             \rho^*_{st(i,3),r}
                                                                                             \left[ \rho^*_{3CA_{av(N_r)}} \right]
                                                              \rho^*_{3CA_r}
                                                                                             \left(\operatorname{Cp}_{\operatorname{BO3}\operatorname{JYX}}\left(\operatorname{P*}_{\operatorname{1CA}_{\operatorname{r}}},\operatorname{T*}_{\operatorname{1CA}_{\operatorname{r}}}\right)\right)
                                                             \left( C_{p_{1}CA_{r}} \right)
                                                              Cp<sub>3CA<sub>r</sub></sub>
                                                                                            \left( Cp_{BO3ДУX} \left( P^*_{3CA_r}, T^*_{3CA_r} \right) \right)
                                                             \binom{k_{1CA_r}}{}
                                                                                        \left(k_{ad}\left(Cp_{1CA_{r}},R_{B}\right)\right)
                                                                                    = \left[ k_{ad} \left( Cp_{3CA_r}, R_B \right) \right]
                                                             \left[ \begin{array}{c} k_{3}CA_{r} \end{array} \right]
                                                              (a*c1CA<sub>r</sub>)
                                                             \left(a^* c3CA_r\right)
                                                            |\mathbf{A}| = \left(1 - R_{L_{i,av(N_r)}}\right) \cdot \omega \cdot \left(R_{st(i,3),av(N_r)}\right)^{m_i + 1}
                                                           B = \frac{H_{T_{i,av}(N_r)}}{2 \cdot \omega}
                                                                                                               c_{u_{st(i,3),r}}
                                                              \begin{pmatrix} c_{u1CA_r} \end{pmatrix}
```

$$\begin{pmatrix} c_{a_1C, A_r} \\ c_{a_3C, A_r} \\ c_{a_3C,$$

▼ Результаты расчета параметров потока по высоте Л

$$T^*_{1BHA} = \begin{pmatrix} 418.2 \\ 418.2 \\ 418.2 \end{pmatrix}$$

$$T^*_{3BHA} = \begin{pmatrix} 418.2 \\ 418.2 \\ 418.2 \end{pmatrix}$$

$$P*_{1BHA} = \begin{pmatrix} 316.2 \\ 316.2 \\ 316.2 \end{pmatrix} \cdot 10^{3} \qquad P*_{3BHA} = \begin{pmatrix} 315.6 \\ 315.6 \\ 315.6 \end{pmatrix} \cdot 10^{3}$$

$$\rho^*_{1BHA} = \begin{pmatrix} 2.633 \\ 2.633 \\ 2.633 \end{pmatrix} \qquad \qquad \rho^*_{3BHA} = \begin{pmatrix} 2.628 \\ 2.628 \\ 2.628 \end{pmatrix}$$

$$Cp_{1BHA} = \begin{pmatrix} 1016.2 \\ 1016.2 \\ 1016.2 \end{pmatrix} \qquad Cp_{3BHA} = \begin{pmatrix} 1016.2 \\ 1016.2 \\ 1016.2 \end{pmatrix}$$

$$k_{1BHA} = \begin{pmatrix} 1.394 \\ 1.394 \\ 1.394 \end{pmatrix}$$
 $k_{3BHA} = \begin{pmatrix} 1.394 \\ 1.394 \\ 1.394 \end{pmatrix}$

$$a^*_{c1BHA} = \begin{pmatrix} 373.95 \\ 373.95 \\ 373.95 \end{pmatrix}$$

$$a*_{c3BHA} = \begin{pmatrix} 373.95 \\ 373.95 \\ 373.95 \end{pmatrix}$$

$$c_{1BHA} = \begin{pmatrix} 99.9 \\ 99.9 \\ 99.9 \end{pmatrix} \qquad c_{3BHA} = \begin{pmatrix} 112.6 \\ 108.2 \\ 105.6 \end{pmatrix}$$

$$c_{u1BHA} = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \end{pmatrix} \qquad c_{u3BHA} = \begin{pmatrix} 44.5 \\ 41.6 \\ 39.3 \end{pmatrix}$$

$$c_{a1BHA} = \begin{pmatrix} 99.9 \\ 99.9 \\ 99.9 \end{pmatrix} \qquad c_{a3BHA} = \begin{pmatrix} 103.5 \\ 99.9 \\ 98.0 \end{pmatrix}$$

$$\alpha_{1BHA} = \begin{pmatrix} 90.00 \\ 90.00 \\ 90.00 \end{pmatrix}$$
 $\circ \qquad \qquad \alpha_{3BHA} = \begin{pmatrix} 66.71 \\ 67.39 \\ 68.13 \end{pmatrix}$
 $\circ \qquad \qquad \qquad \circ$

$$\varepsilon_{\text{BHA}} = \begin{pmatrix} 23.29 \\ 22.61 \\ 21.87 \end{pmatrix} \cdot \circ$$

$$\lambda_{c1BHA} = \begin{pmatrix} 0.267 \\ 0.267 \\ 0.267 \end{pmatrix}$$
 $\lambda_{c3BHA} = \begin{pmatrix} 0.301 \\ 0.289 \\ 0.282 \end{pmatrix}$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
$T^{*T} =$	1 418.2	465.7	465.7	516.3	516.3				619.5	668.6	668.6	715.5	715.5	756.3	-			826.7	826.7						
	2 418.2	465.7	465.7	516.3	516.3				619.5	668.6	668.6	715.5	715.5	756.3				826.7	826.7						
	3 418.2	465.7	465.7	516.3	516.3	3 569.	1 569.1	619.5	619.5	668.6	668.6	715.5	715.5	756.3	756.3	792.9	792.9	826.7	826.7						
	4	2	2	4				0		10	4.4	12	10	14	4 =	1.0	17	10	10	20	24	22	22	24	75
т	1 412.0	2	3	4 400.5	5	6	7	8	9	10	11	12	13	14	15	16	700.2	18		20	21	22	23	24	25
$T^1 = -$	 412.0 412.4 	436.9 446.0	460.4 460.7	488.5 496.3	511.9 512.1	542.2 548.8	565.3 565.4	594.9 600.4	616.2 616.3	645.5 650.3	665.8 665.9	694.0 698.1	712.6 712.8	737.6 740.9	753.5 753.7	776.0 779.0	790.2 790.4	811.0 813.6	824.1 824.3						
-	3 412.7	450.3	460.7	500.3	512.1	552.5	565.5	603.7	616.4	653.3	665.9	700.8	712.9	743.2	753.7	780.9	790.4	815.4	824.4						
	5 112.7	T30.3	400.9	300.5	J12.2	332.3	303.3	003.7	010.4	033.3	003.9	700.0	/12.9	775.2	733.0	700.9	790.0	013.4	024.4						
	1	2	3	4		5	6	7	8	9	10	11	12	2	13	14	15	16	17	18	19		20	21]
$P^{*T} =$	1 315.			9.3 60	06.5	606.5	828.0	828.0	1091.8	1091.					1759.5	2117.2	2117.2	2476.2	2476.2	2841.					.10 ³
r · =	2 315.		-		06.5	606.5	828.0	828.0	1091.8	1091.		_			1759.5	2117.2	2117.2	2476.2	2476.2	2841.					.10
	3 315.	6 439.	3 439	9.3 60	06.5	606.5	828.0	828.0	1091.8	1091.	3 1404.	5 1404	4.5 175	59.5	1759.5	2117.2	2117.2	2476.2	2476.2	2841.	.7 284	1.7			
			П	<u> </u>	L				I				ı	I	1		ļ.			•			L	J	
	1	2	3	4		5	6	7	8	9	10	11	12	1	13	14	15	16	17	18	19	2	0	21	
$\mathbf{P}^{\mathrm{T}} = \mathbf{L}$	1 299.3	349.8	421.7	7 496	6.9	587.7	694.1	807.9	940.5	1070.8	1232.1	1382.	.2 1569	9.2 17	733.6	1925.3	2088.1	2281.0	2444.2	2640.3	2807	.9			$\cdot 10^3$
	2 300.5	376.4	422.8	8 526	6.1	588.5	725.5	808.7	973.0	1071.5	1266.4	1383.	.0 1604	1.5	734.9	1958.9	2089.9	2313.8	2446.6	2672.7	2810	.2			
	3 301.2	389.7	423.3	3 54:	1.3	589.0	743.5	809.2	992.7	1071.9	1288.1	1383.	.5 1627	7.6 17	735.8	1981.5	2091.2	2336.2	2448.2	2695.2	2811	.8			
1																					i	ı			1
т	1	2	3	4		5	6	7	8	9	10	11	12		13	14	15	16	17	18	19		20	21	
${\rho^*}^T =$	1 2.62	8 3.28	5 3.28	85 4	.091	4.091	5.067	5.067	6.138	6.13	3 7.31	5 7.3	815 8.	565	8.565	9.750	9.750	10.876	10.876	11.97	72 11.9	972	20	21	
${\rho^*}^T =$	2 2.62	8 3.28 8 3.28	5 3.28 5 3.28	85 4. 85 4.	.091	4.091 4.091	5.067 5.067	5.067 5.067	6.138 6.138	6.13	3 7.31 3 7.31	7.3 7.3	315 8. 315 8.	565 565	8.565 8.565	9.750 9.750	9.750 9.750	10.876 10.876	10.876 10.876	11.97 11.97	72 11.9	972 972	20	21	
${\rho*}^T =$		8 3.28 8 3.28	5 3.28 5 3.28	85 4. 85 4.	.091	4.091	5.067	5.067	6.138	6.13	7.31 7.31	7.3 7.3	315 8. 315 8.	565	8.565	9.750	9.750	10.876	10.876 10.876	11.97	72 11.9	972 972	20	21	
$\rho^{*^T} =$	2 2.62	8 3.28 8 3.28 8 3.28	5 3.28 5 3.28 5 3.28	85 4 85 4 85 4	.091 .091 .091	4.091 4.091 4.091	5.067 5.067 5.067	5.067 5.067 5.067	6.138 6.138 6.138	6.138 6.138 6.138	7.31 3 7.31 3 7.31	7.3 7.3 7.3	815 8. 815 8. 815 8.	565 565 565	8.565 8.565 8.565	9.750 9.750 9.750	9.750 9.750 9.750	10.876 10.876 10.876	10.876 10.876 10.876	11.97 11.97 11.97	72 11.9 72 11.9 72 11.9	972 972 972			
т [2 2.62 3 2.62	8 3.28 8 3.28 8 3.28	5 3.28 5 3.28 5 3.28	85 4 85 4 85 4	.091 .091 .091	4.091 4.091 4.091 5	5.067 5.067 5.067	5.067 5.067 5.067	6.138 6.138 6.138	6.138 6.138 6.138	7.31 3 7.31 3 7.31 10	7.3 7.3 7.3 11	815 8. 815 8. 815 8.	565 565 565	8.565 8.565 8.565	9.750 9.750 9.750	9.750 9.750 9.750	10.876 10.876 10.876	10.876 10.876 10.876	11.97 11.97 11.97	72 11.9 72 11.9 72 11.9	972 972 972 2		21	
$\rho^{\mathrm{T}} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	2 2.62 3 2.62 1 1 2.530	8 3.28 8 3.28 8 3.28 2 2.788	5 3.28 5 3.28 5 3.28 3 3.190	85 4. 85 4. 85 4. 0 3.5	.091 .091 .091	4.091 4.091 4.091 5 3.999	5.067 5.067 5.067 6 4.458	5.067 5.067 5.067 7 4.977	6.138 6.138 6.138 8 5.506	6.136 6.136 6.137 9 6.052	7.31 7.31 7.31 10 6.648	7.3 7.3 7.3 7.3 7.3 7.3	815 8. 815 8. 815 8. 112 90 7.8	565 565 565 175 8	8.565 8.565 8.565	9.750 9.750 9.750 14 9.091	9.750 9.750 9.750 15 9.651	10.876 10.876 10.876 16 10.236	10.876 10.876 10.876 17 10.772	11.97 11.97 11.97 18 11.338	72 11.9 72 11.9 72 11.9 19 11.86	972 972 972 972 2			
$ \rho^{T} = $	2 2.62 3 2.62 1 1 2.530 2 2.537	8 3.28 8 3.28 8 3.28 2 2.788 2.940	5 3.26 5 3.26 5 3.26 3 3.196 3.196	85 4. 85 4. 85 4. 0 3.5 6 3.6	.091 .091 .091 .091	4.091 4.091 4.091 5 3.999 4.003	5.067 5.067 5.067 6 4.458 4.604	5.067 5.067 5.067 7 4.977 4.981	6.138 6.138 6.138 8 5.506 5.644	6.136 6.136 6.136 9 6.052 6.055	7.31: 7.31: 7.31: 10 6.648 6.782	7.3 7.3 7.3 7.3 11 7.23 7.23	815 8. 815 8. 815 8. 815 8. 90 7.8 93 8.0	565 565 565 175 8 04 8	8.565 8.565 8.565 13 8.472 8.477	9.750 9.750 9.750 14 9.091 9.207	9.750 9.750 9.750 15 9.651 9.657	10.876 10.876 10.876 16 10.236 10.345	10.876 10.876 10.876 17 10.772 10.780	11.97 11.97 11.97 18 11.338 11.441	72 11.9 72 11.9 72 11.9 72 11.9 19 11.86	972 972 972 972 2 66 73			
$ \rho^{T} = $	2 2.62 3 2.62 1 1 2.530	8 3.28 8 3.28 8 3.28 2 2.788 2.940	5 3.26 5 3.26 5 3.26 3 3.196 3.196	85 4. 85 4. 85 4. 0 3.5 6 3.6	.091 .091 .091 .091	4.091 4.091 4.091 5 3.999	5.067 5.067 5.067 6 4.458	5.067 5.067 5.067 7 4.977	6.138 6.138 6.138 8 5.506	6.136 6.136 6.137 9 6.052	7.31: 7.31: 7.31: 10 6.648 6.782	7.3 7.3 7.3 7.3 7.3 7.3	815 8. 815 8. 815 8. 815 8. 90 7.8 93 8.0	565 565 565 175 8 04 8	8.565 8.565 8.565	9.750 9.750 9.750 14 9.091	9.750 9.750 9.750 15 9.651 9.657	10.876 10.876 10.876 16 10.236	10.876 10.876 10.876 17 10.772 10.780	11.97 11.97 11.97 18 11.338	72 11.9 72 11.9 72 11.9 72 11.9 19 11.86	972 972 972 972 2 66 73			
$ \rho^{T} = $	2 2.62 3 2.62 1 1 2.530 2 2.537	8 3.28 8 3.28 8 3.28 2 2.788 2.940	5 3.26 5 3.26 5 3.26 3 3.196 3.196	85 4. 85 4. 85 4. 0 3.5 6 3.6	.091 .091 .091 .091	4.091 4.091 4.091 5 3.999 4.003	5.067 5.067 5.067 6 4.458 4.604 4.686	5.067 5.067 5.067 7 4.977 4.981	6.138 6.138 6.138 8 5.506 5.644 5.727	6.136 6.136 6.136 9 6.052 6.055	7.31: 7.31: 7.31: 10 6.648 6.782	7.3 7.3 7.3 7.3 11 7.23 7.23	815 8. 815 8. 815 8. 815 8. 90 7.8 93 8.0	565 565 565 175 8 04 8	8.565 8.565 8.565 13 8.472 8.477	9.750 9.750 9.750 14 9.091 9.207	9.750 9.750 9.750 15 9.651 9.657 9.661	10.876 10.876 10.876 16 10.236 10.345 10.419	10.876 10.876 10.876 17 10.772 10.780	11.97 11.97 11.97 18 11.338 11.441 11.512	72 11.9 72 11.9 72 11.9 72 11.9 19 11.86 11.87	972 972 972 972 2 66 73	0	21	
$ \rho^{T} = $	2 2.62 3 2.62 1 1 2.530 2 2.537	8 3.28 8 3.28 8 3.28 2 2.788 2.940 3.014	5 3.28 5 3.28 5 3.28 3 3.190 3.190 3.190	85 4. 85 4. 85 4. 0 3.5 6 3.6 9 3.7	.091 .091 .091 .091	4.091 4.091 4.091 5 3.999 4.003 4.005	5.067 5.067 5.067 6 4.458 4.604 4.686	5.067 5.067 5.067 7 4.977 4.981 4.983	6.138 6.138 6.138 8 5.506 5.644 5.727	6.136 6.136 6.136 9 6.052 6.055 6.056	7.31 7.31 7.31 10 6.648 6.782 6.867	7.3 7.3 7.3 7.3 7.23 7.23 7.23	815 8. 815 8. 815 8. 12 7.8 3 8.0 5 8.0	565 565 565 75 8 04 8 89 8	8.565 8.565 8.565 13 8.472 8.477 8.480	9.750 9.750 9.750 14 9.091 9.207 9.285	9.750 9.750 9.750 15 9.651 9.657 9.661	10.876 10.876 10.876 16 10.236 10.345 10.419	10.876 10.876 10.876 17 10.772 10.780 10.785	11.97 11.97 11.97 18 11.338 11.441 11.512	72 11.9 72 11.9 72 11.9 72 11.9 19 11.86 11.87	972 972 972 972 2 66 73	0	21	
$ \rho^{T} = $	2 2.62 3 2.62 1 1 2.530 2 2.537 3 2.542	8 3.28 8 3.28 8 3.28 2 2.788 2.940 3.014	5 3.26 5 3.26 5 3.26 5 3.196 3.196 3.196 3.196	85 4 85 4 85 4 0 3.5 6 3.6 9 3.7	.091 .091 .091 .091 .091 .091 .091 .091	4.091 4.091 4.091 5 3.999 4.003 4.005	5.067 5.067 5.067 6 4.458 4.604 4.686	5.067 5.067 5.067 7 4.977 4.981 4.983 8 9	6.138 6.138 6.138 8 5.506 5.644 5.727	6.13i 6.13i 9 6.052 6.055 6.056	10 6.648 6.782 6.867 12 8 1078	7.3 7.3 7.3 7.3 7.23 7.23 7.23 13 1078	815 8. 815 8. 815 8. 12 7.8 3 8.0 5 8.0 14 1088	565 565 565 75 8 04 8 89 8	8.565 8.565 8.565 13 8.472 8.477 8.480	9.750 9.750 9.750 14 9.091 9.207 9.285	9.750 9.750 9.750 15 9.651 9.657 9.661 18 1104	10.876 10.876 10.876 16 10.236 10.345 10.419	10.876 10.876 10.876 17 10.772 10.780 10.785	11.97 11.97 11.97 18 11.338 11.441 11.512	72 11.9 72 11.9 72 11.9 72 11.9 19 11.86 11.87	972 972 972 972 2 66 73	0	21	
$ \rho^{T} = $	2 2.62 3 2.62 1 1 2.530 2 2.537 3 2.542 1 1 1016	8 3.28 8 3.28 8 3.28 2 2.788 2.940 3.014 2 1024	3 3.190 3 3.190 3.190 3 1024 1024	85 4, 85 4, 85 4, 0 3.5 6 3.6 9 3.7 4 1034	.091 .091 .091 .091 .091 .091 .091 .091	4.091 4.091 4.091 5 3.999 4.003 4.005	5.067 5.067 5.067 6 4.458 4.604 4.686 7 1045	5.067 5.067 5.067 7 4.977 4.981 4.983 8 9 1056 10	6.138 6.138 6.138 8 5.506 5.644 5.727	6.133 6.133 6.133 9 6.052 6.055 6.056 11 68 106	10 6.648 6.782 6.867 12 8 1078 8 1078	7.3 7.3 7.3 7.23 7.23 7.23 13 1078	815 8. 815 8. 815 8. 915 8. 10 7.8 13 8.0 15 8.0 14 1088 1088 1088	565 565 565 75 8 04 8 89 8	8.565 8.565 8.565 13 8.472 8.477 8.480 16 1096	9.750 9.750 9.750 14 9.091 9.207 9.285	9.750 9.750 9.750 15 9.651 9.657 9.661 18 1104 1104	10.876 10.876 10.876 16 10.236 10.345 10.419	10.876 10.876 10.876 17 10.772 10.780 10.785	11.97 11.97 11.97 18 11.338 11.441 11.512	72 11.9 72 11.9 72 11.9 72 11.9 19 11.86 11.87	972 972 972 972 2 66 73	0	21	
$ \rho^{T} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} $	2 2.62 3 2.62 1 1 2.530 2 2.537 3 2.542 1 1 1016 2 1016	8 3.28 8 3.28 8 3.28 2 2.788 2.940 3.014 2 1024 1024	3 3.190 3 3.190 3.190 3 1024 1024	85 4, 85 4, 85 4, 0 3.5 6 3.6 9 3.7 4 1034	.091 .091 .091 .091 .091 .091 .091 .091	4.091 4.091 4.091 5 3.999 4.003 4.005 6 1045 1045	5.067 5.067 5.067 6 4.458 4.604 4.686 7 1045	5.067 5.067 5.067 7 4.977 4.981 4.983 8 9 1056 10	6.138 6.138 6.138 8 5.506 5.644 5.727 10 056 106	6.133 6.133 6.133 9 6.052 6.055 6.056 11 68 106	10 6.648 6.782 6.867 12 8 1078 8 1078	7.3 7.3 7.3 7.23 7.23 7.23 13 1078	815 8. 815 8. 815 8. 915 8. 10 7.8 13 8.0 15 8.0 14 1088 1088 1088	565 565 565 75	8.565 8.565 8.565 13 3.472 3.477 3.480 16 1096 1096	9.750 9.750 9.750 14 9.091 9.207 9.285 17 1096 1096	9.750 9.750 9.750 15 9.651 9.657 9.661 18 1104 1104	10.876 10.876 10.876 16 10.236 10.345 10.419 19 2 1104 1104	10.876 10.876 10.876 17 10.772 10.780 10.785	11.97 11.97 11.97 18 11.338 11.441 11.512	72 11.9 72 11.9 72 11.9 72 11.9 19 11.86 11.87	972 972 972 972 2 66 73	0	21	
$ \rho^{T} = \begin{bmatrix} \\ Cp^{T} = \end{bmatrix} $	2 2.62 3 2.62 1 1 2.530 2 2.537 3 2.542 1 1 1016 2 1016	8 3.28 8 3.28 8 3.28 2 2.788 2.940 3.014 2 1024 1024	3 3.190 3 3.190 3.190 3 1024 1024	85 4, 85 4, 85 4, 0 3.5 6 3.6 9 3.7 4 1034	.091 .091 .091 .091 .091 .091 .091 .091	4.091 4.091 4.091 5 3.999 4.003 4.005 6 1045 1045	5.067 5.067 5.067 6 4.458 4.604 4.686 7 1045	5.067 5.067 5.067 7 4.977 4.981 4.983 8 9 1056 10	6.138 6.138 6.138 8 5.506 5.644 5.727 10 056 106	6.133 6.133 6.133 9 6.052 6.055 6.056 11 68 106	10 6.648 6.782 6.867 12 8 1078 8 1078	7.3 7.3 7.3 7.23 7.23 7.23 13 1078	815 8. 815 8. 815 8. 915 8. 10 7.8 13 8.0 15 8.0 14 1088 1088 1088	565 565 565 75	8.565 8.565 8.565 13 3.472 3.477 3.480 16 1096 1096	9.750 9.750 9.750 14 9.091 9.207 9.285 17 1096 1096	9.750 9.750 9.750 15 9.651 9.657 9.661 18 1104 1104	10.876 10.876 10.876 16 10.236 10.345 10.419 19 2 1104 1104	10.876 10.876 10.876 17 10.772 10.780 10.785	11.97 11.97 11.97 18 11.338 11.441 11.512	72 11.9 72 11.9 72 11.9 72 11.9 19 11.86 11.87	972 972 972 972 2 66 73	0	21	25
$\rho^{T} = \begin{bmatrix} \\ \\ \end{bmatrix}$ $Cp^{T} = \begin{bmatrix} \\ \\ \end{bmatrix}$	2 2.62 3 2.62 1 1 1 2.530 2 2.537 3 2.542 1 1 1016 2 1016 3 1016 1 1 1.394	8 3.28 8 3.28 8 3.28 2 2.788 2.940 3.014 2 1024 1024 1024 1024	3 3.196 3 3.196 3 3.196 3 1024 1024 1024 1024	85 4, 85 4, 85 4, 85 3,6 6 3,6 9 3,7 4 1034 1034 1034 1034 1034	.091 .091 .091 .091 .091 .091 .091 .091	4.091 4.091 4.091 5 3.999 4.003 4.005 6 1045 1045 1045 6 1.379	5.067 5.067 5.067 5.067 6 4.458 4.604 4.686 7 1045 1045 7 1.379	5.067 5.067 5.067 7 4.977 4.981 4.983 8 9 1056 10 1056 10	6.138 6.138 6.138 8 5.506 5.644 5.727 10 056 106 056 106 056 106	6.133 6.133 6.133 9 6.052 6.055 6.056 11 68 106 68 106 10 1.368	10 6.648 6.782 6.867 12 8 1078 8 1078 8 1078 11 1.368	11 7.23 7.23 7.23 7.23 13 1078 1078 1078	315 8. 315 8. 315 8. 315 8. 40 7.8 33 8.0 45 8.0 1088 1088 1088 1088 13 1.363	565 565 565 75	8.565 8.565 8.565 13 8.472 8.477 8.480 16 1096 1096 1096 15 1.359	9.750 9.750 9.750 9.750 14 9.091 9.207 9.285 17 1096 1096 1096 1.355	9.750 9.750 9.750 15 9.651 9.657 9.661 18 1104 1104 1104 1104	10.876 10.876 10.876 16 10.236 10.345 10.419 19 2 1104 1104 1104 1104 18 1.352	10.876 10.876 10.876 17 10.772 10.780 10.785 20 21 19 1.352	11.97 11.97 11.97 18 11.338 11.441 11.512	72 11.9 72 11.9 72 11.9 8 11.86 11.87 2 23	972 972 972 972 266 73 78	0 25	21	25
$\rho^{T} = \begin{bmatrix} \\ \\ \end{bmatrix}$ $Cp^{T} = \begin{bmatrix} \\ \\ \end{bmatrix}$	2 2.62 3 2.62 1 1 2.530 2 2.537 3 2.542 1 1 1016 2 1016 3 1016	8 3.28 8 3.28 8 3.28 2 2.788 2.940 3.014 2 1024 1024 1024	3 3.196 3 1024 1024 1024 3 1.390 1.390	85 4, 85 4, 85 4, 85 3,5 6 3,6 9 3,7 4 1034 1034 1034 1034	.091 .091 .091 .091 .091 .091 .091 .091	4.091 4.091 4.091 5 3.999 4.003 4.005 6 1045 1045 1045	5.067 5.067 5.067 5.067 6 4.458 4.604 4.686 7 1045 1045	5.067 5.067 5.067 7 4.977 4.981 4.983 8 9 1056 10 1056 10	6.138 6.138 6.138 8 5.506 5.644 5.727 10 056 106 056 106 056 106 056 106	6.13i 6.13i 6.13i 9 6.052 6.055 6.056 11 68 106 68 106	10 6.648 6.782 6.867 12 8 1078 8 1078 8 1078 11 1.368 1.368	11 7.23 7.23 7.23 7.23 13 1078 1078	315 8. 315 8. 315 8. 315 8. 40 7.8 33 8.0 45 8.0 1088 1088 1088 1088 13 1.363	565 565 565 75 8 04 8 89 8 15 1088 1088 1088	8.565 8.565 8.565 13 8.472 8.477 8.480 16 1096 1096 1096	9.750 9.750 9.750 9.750 14 9.091 9.207 9.285 17 1096 1096 1096 1.355	9.750 9.750 9.750 9.750 15 9.651 9.657 9.661 18 1104 1104 1104	10.876 10.876 10.876 16 10.236 10.345 10.419 19 2 1104 1104 1104	10.876 10.876 10.876 17 10.772 10.780 10.785	11.97 11.97 11.97 18 11.338 11.441 11.512	72 11.9 72 11.9 72 11.9 8 11.86 11.87 2 23	972 972 972 972 266 73 78	0 25	21	25

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
a*c	= 1	373.9	394.4	394.4	414.9	414.9	9 435.3	435.3	453.7	453.7	471.0	471.0	486.8	486.8	500.2	500.2	511.9	511.9	522.4	522.4						
C	2	373.9	394.4	394.4	414.9	414.9	9 435.3	435.3	453.7	453.7	471.0	471.0	486.8	486.8	500.2	500.2	511.9	511.9	522.4	522.4						
	3	373.9	394.4	394.4	414.9	414.9	9 435.3	435.3	453.7	453.7	471.0	471.0	486.8	486.8	500.2	500.2	511.9	511.9	522.4	522.4						
				1	I					T						1						1			1	
т		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
a_{3B}^{1}	= 1	406.0		428.6	440.7	451.	_	473.1	484.3	493.0	503.5		521.1	528.1	536.4	542.2	549.5	554.5	561.0	565.5						
	2	406.3	_	428.8	444.2	451.2		473.2	486.6	493.0	505.4	511.4	522.7	528.2	537.6	542.2	550.5	554.5	561.9	565.6						
	3	406.4	423.9	428.8	446.0	451.2	2 467.7	473.2	487.9	493.0	506.6	511.4	523.7	528.2	538.4	542.3	551.2	554.6	562.5	565.6						
		4	2	2	4	r	c	7	0	0	10	11	12	12	14	15	16	17	10	10	20	21	22	22	24	25
Т	1	112.6	2 243.0	3 104.2	239.8	5 96.3	6 237.2	89.4	228.0	9 83.0	10 222.3	78.3	12 215.2	77.9	201.9	15 77.5	16 192.3	76.9	18 185.9	75.3	20	21	22	23	24	25
$c^{T} =$		108.2	201.0	100.9	203.3	94.2	206.0	87.7	200.8	81.6	198.0	77.0	193.5	75.9	182.8	75.0	175.0	74.0	169.9	72.7						
		105.6	177.6	99.2	182.2	93.0	186.3	86.6	182.8	80.7	181.2	76.1	178.0	74.5	168.9	73.3	162.2	71.9	157.9	70.8						
		100.0	277.0	33.2	102.2	30.0	100.5	00.0	102.0	00.7	10112	7 0.12	17010	75	100.5	75.5	102.2	7 2 1 3	20715	7 0.0						
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
\mathbf{w}^{T}	_ 1	255.8	131.6	266.6	120.6	281.9	119.6	282.5	121.1	284.3	121.0	283.3	122.9	274.4	131.4	267.9	137.3	263.2	141.7	264.7						
vv -	2	336.1	210.4	339.9	202.8	342.8	191.6	335.8	186.0	331.6	180.1	326.0	177.4	314.4	182.2	306.1	185.4	300.2	187.1	298.7						
	3	403.3	286.5	400.6	274.2	394.7	255.0	381.8	243.1	373.0	232.3	363.8	225.5	350.1	227.0	340.2	227.9	333.3	227.2	329.4						
				•												•										
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
$u^{T} =$	1	278.4	286.2	293.4	299.3	304.9	304.9	304.9	304.9	304.9	304.9	304.9	304.9	304.9	304.9	304.9	304.9	304.9	304.9	304.9						
	2	362.5	362.5	362.5	362.5	362.5	358.8	355.3	352.4	349.7	347.5	345.3	343.6	341.9	340.7	339.6	338.8	338.0	336.7	335.5						
	3	430.5	425.4	420.5	416.3	412.2	405.6	399.3	394.3	389.4	385.3	381.4	378.3	375.2	373.1	371.0	369.5	368.1	365.7	363.4						
						-		- 1			10		40	40		4-	46 [4-7	40	10	20				24	25
Т	1	102.5	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
c_a	$= \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	103.5 99.9	97.3	94.4	92.0 91.5	88.8	85.5 85.5	82.4 82.4	79.6 79.6	76.9 76.9	74.4 74.4	72.0 72.0	69.7 69.7	67.5 67.5	65.4 65.4	63.4 63.4	61.5	59.6 59.6	59.3 59.3	58.9 58.9						
	3	98.0	89.6	94.2	91.2	88.8	85.5	82.4	79.6	76.9	74.4	72.0	69.7	67.5	65.4	63.4	61.5	59.6	59.3	58.9						
		50.0	05.0	31.2	31.2	00.0	03.5	02.1	73.0	70.5	7 1. 1	72.0	03.7	07.5	05.1	05.1	01.5	33.0	33.3	30.5						
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
T	1	44.5	216.0	44.1	221.4	37.4	221.3	34.7	213.7	31.2	209.5	31.0	203.6	39.0	191.0	44.7	182.2	48.6	176.2	46.9						
$c_{\mathbf{u}}$	= 1 2	41.6	175.9	35.9	181.6	31.4	187.4	29.8	184.4	27.2	183.5	27.3	180.5	34.8	170.7	40.1	163.8	43.8	159.3	42.6						
	3	39.3	153.3	31.1	157.7	27.6	-	26.5	164.6	24.4	165.2	24.7	163.7	31.7	155.7	36.7	150.1	40.2	146.4	39.3						
			.										<u>'</u>					<u> </u>							· ·	
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
$\mathbf{w_{ij}}^{\mathrm{T}}$	= 1	233.9	70.2	249.3	77.9	267.6	83.6	270.2	91.3	273.7	95.5	274.0	101.3	265.9	113.9	260.3	122.7	256.4	128.7	258.0						
u	2	321.0	186.6	326.6		331.1			168.1	322.5			+	307.1	170.0		174.9	294.2	177.5	292.8]
	3	391.2	272.1	389.3	258.6	384.6	5 240.2	372.8	229.7	365.0	220.1	356.6	214.5	343.5	217.3	334.3	219.5	327.9	219.3	324.1						J

$$\begin{array}{c|c} \Delta c_a = & \text{for } i \in 1..Z \\ & \text{for } a \in 2..3 \\ & \text{for } r \in 1..N_r \\ & \Delta c_{a_{st(i,a),r}} = c_{a_{st(i,a),r}} - c_{a_{st(i,a-1),r}} \\ & \Delta c_a \end{array}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$\Delta c_{o}^{T} =$	1	0.00	7.83	-16.91	-2.36	-3.28	-3.22	-3.10	-2.80	-2.72	-2.51	-2.46	-2.27	-2.23	-2.04	-2.02	-1.89	-1.87	-0.38	-0.38		
—-a	2	0.00	-2.60	-3.01	-2.79	-2.73	-3.22	-3.10	-2.80	-2.72	-2.51	-2.46	-2.27	-2.23	-2.04	-2.02	-1.89	-1.87	-0.38	-0.38		
	3	0.00	-8.41	4.66	-3.01	-2.45	-3.22	-3.10	-2.80	-2.72	-2.51	-2.46	-2.27	-2.23	-2.04	-2.02	-1.89	-1.87	-0.38	-0.38		

			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
[16, c. 81]	$\Delta c_0^T \ge -25 = 1$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1						
[,]	— a —	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1						
		3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1						

		1	2	3	4	5	6	7	8	9	10	11	12
$R_{\tau}^{T} =$	1	0.5386	0.5520	0.5759	0.5927	0.6054	0.6153	0.6229	0.6280	0.6314			
T'L	2	0.7000	0.7000	0.6967	0.6974	0.6978	0.6983	0.6990	0.6994	0.6990			
	3	0.7749	0.7743	0.7639	0.7592	0.7552	0.7519	0.7495	0.7478	0.7457			

		1	2	3	4	5	6	7	8	9	10	11	12
$R_{\tau}^{T} > 0 =$	1	1	1	1	1	1	1	1	1	1			
LL = 0	2	1	1	1	1	1	1	1	1	1			
	3	1	1	1	1	1	1	1	1	1			

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
$\alpha^{T} =$	1	66.71	27.26	64.95	22.57	67.17	21.14	67.17	20.44	67.94	19.56	66.72	18.89	59.97	18.91	54.84	18.65	50.84	18.58	51.47							. c
30	2	67.39	28.94	69.13	26.74	70.50	24.54	70.13	23.36	70.54	22.08	69.20	21.11	62.72	20.97	57.68	20.58	53.70	20.41	54.10							
	3	68.13	30.29	71.71	30.05	72.70	27.34	72.18	25.83	72.39	24.24	71.02	23.05	64.84	22.78	59.93	22.29	56.00	22.03	56.25							
		·					•		•	•	•		•			•			•						•		•
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21					
$\beta^{T} =$	1	23.86	57.77	20.74	49.75	18.35	45.64	16.97	41.11	15.70	37.94	14.72	34.53	14.23	29.86	13.69	26.62	13.09	24.72	12.85			.0				
١٥	2	17.29	27.53	16.10	26.82	15.01	26.52	14.21	25.36	13.41	24.41	12.75	23.14	12.39	21.04	11.95	19.37	11.46	18.46	11.37							
	3	14.06	18.22	13.60	19.43	13.00	19.60	12.47	19.12	11.90	18.68	11.41	18.00	11.11	16.75	10.74	15.66	10.31	15.12	10.30							

12

13

15

10

11

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$3^{\mathrm{T}} < 91.^{\circ} =$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
	3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		

33.91

36.52

29.01

40.26

27.29

11.51

46.04

22.24

10.99

19.81

10.38

48.39 47.91

24.14

46.74

11.14

 $\beta.2 > 91 \Longrightarrow$ поменять 3-н профилирования

	3	4.16	5.82	6.61	6.65	6.78	6.59	5.64	4.92	4.81							
																	_
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
ε ^T =	1	38.38	41.87	47.52	47.71	49.08	48.10	40.53	35.16	32.89							۰.
estator –	2	37.26	41.21	46.92	47.37	48.87	48.14	41.09	36.00	33.70							

41.32

15.63

8.66

12.93

7.42

36.50

11.63

7.01

34.22

	_	2	3	4	5	6	/	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
$\lambda_c^T = \begin{bmatrix} 1 & 0.3 \\ 2 & 2.3 \end{bmatrix}$.3012	0.6161	0.2642	0.5779	0.2321	0.5451	0.2055	0.5025	0.1829	0.4720	0.1663	0.4421	0.1600	0.4036	0.1550	0.3757	0.1502	0.3559	0.1441				
2 0.2	.2893	0.5098	0.2559	0.4900	0.2269	0.4733	0.2014	0.4426	0.1798	0.4204	0.1634	0.3974	0.1559	0.3654	0.1500	0.3419	0.1446	0.3253	0.1391				
3 0.2	.2823	0.4503	0.2516	0.4390	0.2240	0.4279	0.1989	0.4029	0.1779	0.3848	0.1616	0.3656	0.1531	0.3377	0.1465	0.3169	0.1405	0.3024	0.1355				
_																							
			1 2	2 3	4 5	6 7	8	9 10	11 12	13	14 15	16 17	18 1	9									
[16, c. 87] λ	$\lambda_0^T \leq 0.$.85 = 1	1	1 1	1 1	1	1 1	1 1	1	1 1	1 1	1 :	1	1									
. , ,	C	2		1 1	1 1	1	1 1	1 1	1	1 1	1 1	1	1	1									
		3	1	1 1	1 1	1	1 1	1 1	1	1 1	1 1	1	1	1									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
$M_c^T = \begin{bmatrix} 1 & 0. \\ \hline 2 & 2 \end{bmatrix}$	0.2774	0.5820	0.2431	0.5441	0.2135	0.5120	0.1891	0.4708	0.1684	0.4415	0.1532	0.4130	0.1475	0.3763	0.1430	0.3500	0.1387	0.3314	0.1331				
2 2 0.	0.2663	0.4766	0.2353	0.4577	0.2087	0.4419	0.1853	0.4128	0.1655	0.3918	0.1505	0.3701	0.1437	0.3400	0.1383	0.3179	0.1334	0.3024	0.1285				
3 0.	0.2597	0.4189	0.2314	0.4084	0.2060	0.3982	0.1830	0.3747	0.1637	0.3578	0.1488	0.3398	0.1411	0.3137	0.1351	0.2942	0.1297	0.2808	0.1252				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
$M_{W}^{T} = \begin{bmatrix} 1 & 0 \end{bmatrix}$	0.6299	0.3151	0.6220	0.2736	0.6249	0.2582	0.5972	0.2501	0.5768	0.2404	0.5539	0.2359	0.5195	0.2449	0.4941	0.2498	0.4747	0.2525	0.4680				

0.6374

0.7114

0.3393

0.4307

0.5953

0.6628

0.3388

0.4215

0.5645

0.6274

0.3369

0.4135

0.5413

0.6009

0.3329

0.4039

0.5281

0.5824

0.8274

0.9923

0.4989

0.6758

0.7928

0.9341

0.4565

0.6149

0.7598

0.8747

0.4110

0.5451

0.7096

0.8069

0.3822

0.4983

0.6726

0.7565

0.3563

0.4586

$$T^*_{1CA} = \begin{pmatrix} 826.7 \\ 826.7 \\ 826.7 \end{pmatrix} \qquad T^*_{3CA} = \begin{pmatrix} 826.7 \\ 826.7 \\ 826.7 \end{pmatrix} \qquad a^*_{c1CA} = \begin{pmatrix} 522.4 \\ 522.4 \\ 522.4 \end{pmatrix} \qquad a^*_{c3CA} = \begin{pmatrix} 522.4 \\ 522.4 \\ 522.4 \end{pmatrix} \qquad \alpha_{1CA} = \begin{pmatrix} 51.47 \\ 54.10 \\ 56.25 \end{pmatrix} \cdot \alpha_{3CA} = \begin{pmatrix} 90.00 \\ 90.00 \\ 90.00 \end{pmatrix} \cdot \alpha_{3CA} = \begin{pmatrix} 2841.7 \\ 2841.7 \\ 2841.7 \end{pmatrix} \cdot 10^3 \qquad P^*_{3CA} = \begin{pmatrix} 2836.3 \\ 2836.3 \\ 2836.3 \end{pmatrix} \cdot 10^3 \qquad c_{1CA} = \begin{pmatrix} 75.3 \\ 72.7 \\ 70.8 \end{pmatrix} \qquad c_{3CA} = \begin{pmatrix} 48.9 \\ 48.9 \\ 48.9 \end{pmatrix} \qquad \varepsilon_{CA} = \begin{pmatrix} 38.53 \\ 35.90 \\ 33.75 \end{pmatrix} \cdot \alpha_{3CA} = \begin{pmatrix} 11.972 \\ 11.972 \\ 11.972 \end{pmatrix} \qquad \rho^*_{3CA} = \begin{pmatrix} 11.949 \\ 11.949 \\ 11.949 \end{pmatrix} \qquad c_{u1CA} = \begin{pmatrix} 46.9 \\ 42.6 \\ 39.3 \end{pmatrix} \qquad c_{u3CA} = \begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 0.144 \\ 0.139 \\ 0.136 \end{pmatrix} \qquad \lambda_{c3CA} = \begin{pmatrix} 0.094 \\ 0.094 \\ 0.094 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad k_{3CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad k_{3CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad k_{3CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad k_{3CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA} = \begin{pmatrix} 1.352 \\ 1.352 \\ 1.352 \end{pmatrix} \qquad \lambda_{c1CA}$$

Рассматриваемая ступень:
$$j = \begin{cases} j = 1 \\ j = \end{cases}$$
 "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$ j otherwise

▼ Построение треугольников скоростей в 3х сечениях

$$\begin{split} \Delta_c(v,i,j,r) &= \left| \begin{array}{l} \tan(\alpha_{st(i,j),r}) \cdot v & \text{if } \left(\tan(\alpha_{st(i,j),r} \right) \geq 0 \land - \left| c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r} \right) \right| \leq v \leq 0 \right) \\ & \tan(\alpha_{st(i,j),r}) \cdot v & \text{if } \left(\tan(\alpha_{st(i,j),r} \right) < 0 \land 0 \leq v \leq \left| c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r} \right) \right| \right) \\ \Delta_W(v,i,j,r) &= \left| -\tan(\beta_{st(i,j),r}) \cdot v & \text{if } \left(-\tan(\beta_{st(i,j),r} \right) \geq 0 \right) \land \left(-\left| w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r} \right) \right| \leq v \leq 0 \right) \land (j \neq 3) \\ & -\tan(\beta_{st(i,j),r}) \cdot v & \text{if } \left(-\tan(\beta_{st(i,j),r}) < 0 \right) \land \left(0 \leq v \leq \left| w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r} \right) \right| \right) \land (j \neq 3) \\ \Delta_U(v,i,j,r) &= \left| -c_{a_{st(i,j),r}} \quad \text{if } \left(-c_{st(i,j),r} \cdot \cos(\alpha_{st(i,j),r} \right) \leq v \leq w_{st(i,j),r} \cdot \cos(\beta_{st(i,j),r} \right) \right) \land (j \neq 3) \\ & \text{NaN otherwise} \end{split}$$

$$v_{lim} = ceil \left(\frac{max(c, w, u)}{10^2}\right) \cdot 10^2 = 500$$

Дискретизация скорости: $v = -v_{lim}, -v_{lim} + \frac{v_{lim}}{3000} ... v_{lim}$

 $r = av(N_r)$

▲ Построение треугольников скоростей в 3х сечениях

$$\begin{pmatrix} F_{I} & F_{II} \\ D_{2} & R_{2} \end{pmatrix} = \begin{cases} \text{for } i \in 1...Z \\ \text{for } a \in 1...3 \end{cases}$$

$$\begin{cases} \rho_{\cdot}(z) = \text{interp} \left(\text{Ispline} \left(\text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(\rho, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), \text{st}(i, a), 1, N_{p} \right)^{T}, \text{submatrix} \left(R, \text{st}(i, a), 1, N_{p}$$

Кольцевые площади (м^2):

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
$\operatorname{stack}\left(F_{\mathbf{I}}^{T}, F_{\mathbf{II}}^{T}, F^{T}\right) =$	1	0.0196	0.0180	0.0165	0.0152	0.0140	0.0130	0.0121	0.0114	0.0107	0.0101	0.0095	0.0091	0.0087	0.0084	0.0081	0.0079	0.0077	0.0074	0.0071
	2	0.1177	0.1082	0.0990	0.0914	0.0840	0.0781	0.0726	0.0682	0.0640	0.0606	0.0573	0.0547	0.0522	0.0504	0.0487	0.0476	0.0464	0.0445	0.0427
	3	0.1373	0.1218	0.1155	0.1031	0.0980	0.0884	0.0846	0.0775	0.0747	0.0690	0.0668	0.0624	0.0608	0.0578	0.0568	0.0547	0.0541	0.0514	0.0498

Радиус и диаметр двухконтурности (м):

. (TT)		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	– 3
$\operatorname{stack}(R2^{1}, D2^{1}) =$	1	194.1	197.3	200.4	202.9	205.3	204.5	203.8	203.2	202.7	202.2	201.8	201.5	201.1	200.9	200.7	200.5	200.4	200.1	199.9	.10
	2	388.1	394.6	400.7	405.7	410.5	409.0	407.6	406.4	405.3	404.5	403.6	402.9	402.2	401.8	401.3	401.0	400.7	400.2	399.7	

$$\begin{pmatrix} \pi^* \Pi \\ \pi^* I \end{pmatrix} = \begin{cases} \text{for i = 1..Z} \\ \text{for a = 1} \end{cases} \\ \begin{pmatrix} C_{D}(z) = \text{interp} \Big(\text{Ispline} \Big(\text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(C_{D}, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), \text{st}(i, a), 1, N_f \Big)^T, \text{submatrix} \Big(R, \text{st}(i, a), 1, N_f$$

T = T		1	2	3	4	5	6	7	8	9	10	11	12
$\operatorname{stack}(\pi^*_{I}, \pi^*_{II}) =$	1	1.392	1.381	1.365	1.319	1.286	1.253	1.203	1.170	1.148			
, , ,	2	1.392	1.381	1.365	1.319	1.286	1.253	1.203	1.170	1.148			

$$\prod_{i=1}^{Z} \pi^*_{\prod_{i=1}} = 9.003$$

Относ. толщины ЛРК и СА:

$$\overline{c}_{rotor.}(r) = interp \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 13 + \begin{vmatrix} 3 & \text{if compressor} = "B\pi" \\ -3 & \text{if compressor} = "KHД" \\ -1 & \text{otherwise} \end{bmatrix}, \begin{bmatrix} 1 \\ av(N_r) \\ -1 & \text{if compressor} = "B\pi" \\ -1 & \text{if compressor} = "KHД" \\ 0 & \text{otherwise} \end{bmatrix}, \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 13 + \begin{vmatrix} 3 & \text{if compressor} = "B\pi" \\ -3 & \text{if compressor} = "KHД" \\ -1 & \text{otherwise} \end{bmatrix}, \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 1 \\ 0 & \text{otherwise} \end{bmatrix}$$

$$\overline{c}_{stator.}(r) = interp \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 3 \\ 5 \\ 7 \end{bmatrix}, \begin{bmatrix} 1 \\ av(N_r) \\ N_r \end{bmatrix}, \begin{bmatrix} 3 \\ 5 \\ 7 \end{bmatrix}$$

$$r = ORIGIN, ORIGIN + \frac{N_r - ORIGIN}{N_{dis}} .. N_r$$

$$\overline{c}_{BHA} = \begin{vmatrix} for & r \in 1...N_r \\ \overline{c}_{BHA} & \overline{c}_{stator.}(r) \end{vmatrix}$$

$$\overline{c}_{BHA} = \begin{bmatrix} & & 1 & \\ & 1 & 3.00 \\ & 2 & 5.00 \\ & 3 & 7.00 \end{bmatrix} .\%$$

$$\begin{bmatrix}
\overline{c}_{stator} \\
\overline{c}_{rotor}
\end{bmatrix} = \begin{cases}
for i \in 1...Z \\
for r \in 1...N_r
\end{cases}$$

$$\begin{bmatrix}
\overline{c}_{stator}_{i,r} \\
\overline{c}_{rotor}_{i,r}
\end{bmatrix} = \begin{bmatrix}
\overline{c}_{stator.(r)} \\
\overline{c}_{rotor.(r)}
\end{bmatrix}$$

$$\begin{bmatrix}
\overline{c}_{stator} \\
\overline{c}_{rotor}
\end{bmatrix}$$

$$\overline{c}_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 \\ 2 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 \\ 3 & 7.00 & 7.00 & 7.00 & 7.00 & 7.00 & 7.00 & 7.00 & 7.00 & 7.00 \end{bmatrix} \cdot \%$$

$$\overline{c}_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ & 1 & 12.00 & 12.00 & 12.00 & 12.00 & 12.00 & 12.00 & 12.00 & 12.00 & 12.00 \\ & 2 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 & 5.00 \\ & 3 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 & 3.00 \end{bmatrix} .00$$

$$\overline{c}_{CA} = \begin{vmatrix} for & r \in 1 ... N_r \\ \overline{c}_{CA_r} & = \overline{c}_{stator.}(r) \\ \overline{c}_{CA} \end{vmatrix}$$

$$\overline{c}_{CA} = \begin{bmatrix} & & 1 & \\ 1 & 3.00 & \\ 2 & 5.00 & \\ 3 & 7.00 & \end{bmatrix} .07$$

$$\begin{bmatrix}
r_{_inlet_{CA}} \\
\hline r_{_outlet_{CA}}
\end{bmatrix} = \begin{cases}
for \ r \in 1..N_r & \text{if } CA = 1 \\
\hline r_{_inlet_{CA}_r} \\
\hline r_{_outlet_{CA}_r}
\end{bmatrix} = \begin{pmatrix} 0.2 \\ 0.1 \end{pmatrix} \cdot \overline{c}_{stator.}(r)$$

$$\begin{bmatrix}
r_{_inlet_{CA}} \\
\hline r_{_outlet_{CA}}
\end{bmatrix}$$

$$\frac{1}{\text{r_inlet}_{BHA}} = \begin{vmatrix}
 & 1 & \\
 & 1 & 0.600 \\
 & 2 & 1.000 \\
 & 3 & 1.400
\end{vmatrix} .\%$$

$$\frac{T}{r_outlet_{stator}}^T = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 \\ 2 & 0.500 & 0.500 & 0.500 & 0.500 & 0.500 & 0.500 & 0.500 & 0.500 \\ 3 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 & 0.700 \\ \end{bmatrix} .\%$$

$$\frac{1}{\text{r_outlet}_{BHA}} = \begin{bmatrix} & 1 & \\ 1 & 0.300 \\ 2 & 0.500 \\ \hline 3 & 0.700 \end{bmatrix} .\%$$

$$\underline{r}_{inlet_{CA}} =
\begin{vmatrix}
 & 1 & \\
 & 1 & 0.600 \\
 & 2 & 1.000 \\
 & 3 & 1.400
\end{vmatrix}$$
•%

$$\overline{r}_{outlet} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 1.200 & 1.200 & 1.200 & 1.200 & 1.200 & 1.200 & 1.200 & 1.200 & 1.200 \\ 2 & 0.500 & 0.500 & 0.500 & 0.500 & 0.500 & 0.500 & 0.500 & 0.500 \\ 3 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 & 0.300 \\ \end{bmatrix} .\%$$

Относ. удлинение ЛРК и НА:

[16, c. 244]

$$\overline{h}_{rotor}(Z,i) = \begin{vmatrix} \overline{h}_{\sim rotor} \left(\frac{1}{rows(z_{\sim})} \right) & \text{if } i < 1 \\ \overline{h}_{\sim rotor}(1) & \text{if } i > Z \end{vmatrix} \begin{vmatrix} \overline{h}_{\sim stator} \left(\frac{1}{rows(z_{\sim})} \right) & \text{if } i < 1 \\ \overline{h}_{\sim stator}(1) & \text{if } i > Z \end{vmatrix}$$
$$\overline{h}_{\sim rotor} \left(\frac{i}{Z} \right) & \text{otherwise} \end{vmatrix}$$

$$\overline{\underline{h}}_{\sim}(i) = interp \left(cspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, \overline{h}_{\sim}rotor \right), \frac{z_{\sim}}{rows(z_{\sim})}, \overline{h}_{\sim}rotor, i \right)$$

$$\overline{\underline{h}}_{\text{constator}}(i) = interp \left(cspline \left(\frac{z_{\sim}}{rows(z_{\sim})}, \overline{h}_{\sim stator} \right), \frac{z_{\sim}}{rows(z_{\sim})}, \overline{h}_{\sim stator}, i \right)$$

Для компрессора газогенератора

$$\frac{h_{_{PK}}}{S_{_{PK}}}$$
=2,5...4,5 – для первой дозвуковой ступени;

$$\frac{h_{PK}}{S_{PK}}$$
 =2,0...3,5 – для первой околозвуковой ступени;

$$\frac{h_{PK}}{S_{PK}}$$
=1,7...3,0 – для первой сверхзвуковой ступени;

$$\frac{h_{PK}}{S_{PK}}$$
=1,0...2,5 – для последней ступени.

[16, c. 83-84]

▼ Расчет длин хорд по высоте Л

$$\begin{array}{l} \mathsf{chord}_{BHA} = & \mathsf{for} \ i \in I \\ \\ \mathsf{chord}_{BHA}_{av\left(N_r\right)} = \frac{b_{st(i,1)}}{\overline{h}_{stator}(Z,0)} \\ \mathsf{sail} = \frac{R_{st(1,1),N_r} - R_{st(1,1),1}}{R_{st(1,1),av\left(N_r\right)} - R_{st(1,1),1}} \\ \mathsf{for} \ \ r \in 1 ... N_r \\ \\ \mathsf{b}_{BHArop} = \frac{\mathsf{chord}_{BHA}_{av\left(N_r\right)} \cdot \mathsf{sail}}{\mathsf{sail}_{stator} - 1 + \mathsf{sail}} \\ \mathsf{b}_{BHAnep} = b_{BHAkop} \cdot \mathsf{sail}_{stator} \\ \mathsf{b}_{BHA,(z)} = \mathsf{interp} \left[\mathsf{cspline} \left[\begin{pmatrix} R_{st(i,1),N_r} \\ R_{st(i,1),N_r} \end{pmatrix}, \begin{pmatrix} b_{BHAkop} \\ \mathsf{chord}_{BHA_{av\left(N_r\right)}} \\ R_{st(i,1),N_r} \end{pmatrix}, \begin{pmatrix} R_{st(i,1),1} \\ R_{st(i,1),av\left(N_r\right)} \\ R_{st(i,1),N_r} \end{pmatrix}, \begin{pmatrix} b_{BHAkop} \\ R_{st(i,1),N_r} \end{pmatrix}, \begin{pmatrix} b_{BHAnep} \\ \mathsf{chord}_{BHA_{av\left(N_r\right)}} \\ \mathsf{b}_{BHAnep} \end{pmatrix}, \mathsf{z} \\ \mathsf{chord}_{BHA} \\ \mathsf{chord}_{BH$$

$$\left(\begin{array}{c} \mathsf{chord}_{\mathsf{rotor}} \cdot \mathsf{chord}_{\mathsf{stator}} \cdot \mathsf{ehord}_{\mathsf{stator}} \cdot \mathsf{av}(N_{\mathsf{r}}) \\ \mathsf{chord}_{\mathsf{stator}} \cdot \mathsf{av}(N_{\mathsf{r}}) \\ \mathsf{chord}_{\mathsf{stator}} \cdot \mathsf{av}(N_{\mathsf{r}}) \\ \mathsf{sail} = \frac{\mathsf{mean} \left(h_{\mathsf{Si}(\mathsf{i},1)}, h_{\mathsf{st}(\mathsf{i},2)} \right)}{\mathsf{R}_{\mathsf{stator}} (\mathcal{X}, \mathsf{i})} \\ \mathsf{sail} = \frac{\mathsf{R}_{\mathsf{Si}(\mathsf{i},2)}, \mathsf{av}_{\mathsf{r}} - \mathsf{R}_{\mathsf{st}(\mathsf{i},2)}, \mathsf{1}}{\mathsf{R}_{\mathsf{st}(\mathsf{i},2)}, \mathsf{av}_{\mathsf{r}} (\mathsf{N}_{\mathsf{i}})} - \mathsf{R}_{\mathsf{st}(\mathsf{i},2)}, \mathsf{1}} \\ \mathsf{bp}_{\mathsf{K} \mathsf{kop}} = \frac{\mathsf{chord}_{\mathsf{rotor}} \cdot \mathsf{i}_{\mathsf{i}, \mathsf{av}}(\mathsf{N}_{\mathsf{i}})}{\mathsf{sail}} \\ \mathsf{bp}_{\mathsf{K} \mathsf{kop}} = \frac{\mathsf{chord}_{\mathsf{rotor}} \cdot \mathsf{i}_{\mathsf{i}, \mathsf{av}}(\mathsf{N}_{\mathsf{i}})}{\mathsf{sail}} \\ \mathsf{b}_{\mathsf{H} \mathsf{A} \mathsf{kop}} - \mathsf{l}_{\mathsf{r}} \cdot \mathsf{sail} \\ \mathsf{l}_{\mathsf{h} \mathsf{h} \mathsf{A} \mathsf{kop}} - \mathsf{l}_{\mathsf{h}} \cdot \mathsf{sail} \\ \mathsf{l}_{\mathsf{h} \mathsf{h} \mathsf{A} \mathsf{kop}} - \mathsf{l}_{\mathsf{h}} \cdot \mathsf{sail} \\ \mathsf{l}_{\mathsf{h} \mathsf{h} \mathsf{A} \mathsf{kop}} - \mathsf{l}_{\mathsf{h}} \cdot \mathsf{l}_{\mathsf{kop}} \cdot \mathsf{l}_{\mathsf{h}} \cdot \mathsf{l}_{\mathsf{kop}} \\ \mathsf{l}_{\mathsf{h} \mathsf{h} \mathsf{A} \mathsf{lop}} - \mathsf{l}_{\mathsf{h}} \cdot \mathsf{l}_{\mathsf{l}} \cdot \mathsf{l}_{\mathsf{l}} \cdot \mathsf{l}_{\mathsf{l}} \\ \mathsf{l}_{\mathsf{h} \mathsf{h} \mathsf{l} \mathsf{lop}} - \mathsf{l}_{\mathsf{l}} \cdot \mathsf{l}_{\mathsf{l}} \cdot \mathsf{l}_{\mathsf{l}} \\ \mathsf{l}_{\mathsf{h} \mathsf{h} \mathsf{l} \mathsf{lop}} - \mathsf{l}_{\mathsf{l}} \cdot \mathsf{l}_{\mathsf{l}} \cdot \mathsf{l}_{\mathsf{l}} \\ \mathsf{l}_{\mathsf{h} \mathsf{h} \mathsf{l} \mathsf{lop}} - \mathsf{l}_{\mathsf{l}} \cdot \mathsf{l}_{\mathsf{l}} \cdot \mathsf{l}_{\mathsf{l}} \\ \mathsf{l}_{\mathsf{h} \mathsf{h} \mathsf{l}} - \mathsf{l}_{\mathsf{l}} \cdot \mathsf{l}_{\mathsf{l}} \cdot \mathsf{l}_{\mathsf{l}} \\ \mathsf{l}_{\mathsf{h} \mathsf{l}} \cdot \mathsf{l}_{\mathsf{l}} \cdot \mathsf{l}_{\mathsf{l}} - \mathsf{l}_{\mathsf{l}} \cdot \mathsf{l}_{\mathsf{l}} \\ \mathsf{l}_{\mathsf{h} \mathsf{l}} - \mathsf{l}_{\mathsf{l}} \\ \mathsf{l}_{\mathsf{l}} - \mathsf{l}$$

$$\begin{split} \mathsf{chord}_{CA} = & \quad \text{for } i \in Z \\ & \quad \mathsf{chord}_{CA_{av}(N_r)} = \frac{h_{st(i,3)}}{h_{stator}(Z,Z+1)} \\ & \quad \mathsf{sail} = \frac{R_{st(1,1),N_r} - R_{st(1,1),1}}{R_{st(1,1),av}(N_r) - R_{st(1,1),1}} \\ & \quad \mathsf{for } r \in I \dots N_r \\ & \quad b_{CA\kappa op} = \frac{\mathsf{chord}_{CA_{av}(N_r)} \cdot \mathsf{sail}}{\mathsf{sail}_{stator} - 1 + \mathsf{sail}} \\ & \quad b_{CA\pi cp} = b_{CA\kappa op} \cdot \mathsf{sail}_{stator} \\ & \quad b_{CA}(z) = \mathsf{interp} \begin{bmatrix} \mathsf{cspline} \begin{bmatrix} R_{st(i,1),av}(N_r) \\ R_{st(i,1),av}(N_r) \\ R_{st(i,1),N_r} \end{bmatrix} \begin{bmatrix} \mathsf{b}_{CA\kappa op} \\ \mathsf{chord}_{CA_{av}(N_r)} \end{bmatrix} \begin{bmatrix} R_{st(i,1),1} \\ R_{st(i,1),av}(N_r) \\ R_{st(i,1),N_r} \end{bmatrix} \begin{bmatrix} \mathsf{b}_{CA\kappa op} \\ \mathsf{chord}_{CA_{av}(N_r)} \end{bmatrix} \\ & \quad \mathsf{chord}_{CA} \\ & \quad \mathsf{chord}_{CA} \\ & \quad \mathsf{chord}_{CA} \\ & \quad \mathsf{chord}_{CA} \end{aligned}$$

▼ Определение количества Л РК и Н.

$$\begin{aligned} & \stackrel{r}{\mathcal{E}}_{BHA(b:t)=1} \\ & \stackrel{r}{\mathcal{E}}_{BHA} \\ & \stackrel{r}{\operatorname{Inide}}_{BHA} \\ & \stackrel{r}{\operatorname{Inide}}_{BHA} \\ & \stackrel{r}{\operatorname{IBHA}} \\ & \stackrel{r}{\operatorname{BBIA}} \\ & \stackrel{\theta}{\operatorname{BBIA}} \\ & \stackrel{\theta}{\operatorname{BBIA}}$$


```
Z<sub>rotor</sub>
                                   Z<sub>stator</sub>
r_inlet<sub>rotor</sub> r_inlet<sub>stator</sub>
r_outlet<sub>rotor</sub> r_outlet<sub>stator</sub>
       trotor
                                    tstator
                                   istator
       <sup>1</sup>rotor
                                   m<sub>stator</sub>
     m<sub>rotor</sub>
                                  \boldsymbol{\theta}_{stator}
      \theta_{\text{rotor}}
                                   \boldsymbol{\delta}_{stator}
      \delta_{\text{rotor}}
                                                               = \int for i \in 1...Z
                                                                              for r \in av(N_r)
                                   \chi_{\text{stator}}
      \chi_{rotor}
     v_{
m rotor}
                                   v_{
m stator}
  R_{\text{СЛ.rotor}}
                                R<sub>CЛ.stator</sub>
                                  K_{stator}
     K<sub>rotor</sub>
                                  \mathbf{D}_{\text{stator}}
     D_{rotor}
                                   \zeta_{\text{stator}}
      \zeta_{\rm rotor}
                             quality<sub>stator</sub>
{\it quality}_{rotor}
                                   \eta_{stage}
     \eta_{stage}
                                                                                                                         chord_{rotor_{i,\underline{r}}}
                                                                                                                             b/t<sub>PK</sub>i,r
                                                                                       (trotor<sub>i,r</sub>
                                                                                       (tstator<sub>i,r</sub>)
                                                                                       \left(t_{\text{rotor}_{i,r}}\right)
                                                                                                                             \left(\operatorname{chord}_{\operatorname{rotor}_{i,r}}\cdot\operatorname{cos}\left(\beta_{\operatorname{st}(i,1),r}\right)\right)
                                                                                                                = \frac{2}{3} \left[ \frac{\text{chord}_{\text{rotor}_{i,r}}}{\text{chord}_{\text{stator}_{i,r}}} \cos(\alpha_{\text{st}(i,2),r}) \right]
                                                                                                                                \left(\frac{\pi \cdot \text{mean}\left(D_{st(i,2),r}, D_{st(i,3),r}\right)}{t_{stator_{i,r}}}\right) \text{ if } \text{mod}\left(\text{round}\left(\frac{\pi \cdot \text{mean}\left(D_{st(i,2),r}, D_{st(i,3),r}\right)}{t_{stator_{i,r}}}\right), 2\right) = 0
```

 $\varepsilon_{\text{HA}(b/t)=1}$

 $\varepsilon_{PK(b/t)=1}$

$$\begin{vmatrix} \text{while } \gcd\left(Z_{\text{rotor}_{i}}, Z_{\text{stator}_{i}}\right) \neq 1 \\ Z_{\text{rotor}_{i}} = Z_{\text{rotor}_{i}} + 1 \end{vmatrix}$$
 for $r \in 1...N_{r}$
$$\begin{vmatrix} r \text{ inlet}_{\text{stator}_{i,r}} & r \text{ outlet}_{\text{stator}_{i,r}} \\ r_{\text{inlet}|\text{rotor}_{i,r}} & r_{\text{outlet}|\text{rotor}_{i,r}} \end{vmatrix} = \begin{pmatrix} r \text{ inlet}_{\text{stator}_{i,r}} & r \text{ outlet}_{\text{stator}_{i,r}} \\ r_{\text{inlet}|\text{rotor}_{i,r}} & r_{\text{outlet}|\text{rotor}_{i,r}} \end{pmatrix} = \begin{pmatrix} r \text{ inlet}_{\text{stator}_{i,r}} & r \text{ outlet}_{\text{stator}_{i,r}} \\ r_{\text{inlet}|\text{rotor}_{i,r}} & r_{\text{outlet}|\text{rotor}_{i,r}} \\ r_{\text{stator}_{i,r}} & r_{\text{outlet}|\text{rotor}_{i,r}} \end{pmatrix} = \pi \begin{pmatrix} \frac{m \text{can}\left(D_{\text{st}(i,1),r}, D_{\text{st}(i,2),r}\right)}{Z_{\text{rotor}_{i,r}}} \\ \frac{i \text{rotor}_{i,r}}{l \text{stator}_{i,r}} \end{pmatrix} = 2.5 \cdot \begin{pmatrix} \frac{c \text{hord}_{\text{rotor}_{i,r}}}{r_{\text{rotor}_{i,r}}} - 1 \\ \frac{c \text{hord}_{\text{stator}_{i,r}}}{r_{\text{stator}_{i,r}}} - 2 \end{pmatrix} \\ \frac{r_{\text{rotor}_{i,r}}}{m_{\text{stator}_{i,r}}} \end{pmatrix} = 0.23 \cdot \left(2 \cdot \overline{x_{f}}\right)^{2} + 0.18 - \frac{0.002}{deg} \cdot \begin{pmatrix} \beta_{\text{st}(i,2),r} \\ \alpha_{\text{st}(i,3),r} \end{pmatrix} \\ \begin{pmatrix} \theta_{\text{rotor}_{i,r}} \\ \theta_{\text{stator}_{i,r}} \end{pmatrix} = \begin{pmatrix} \frac{c \text{rotor}_{i,r}}{r_{\text{rotor}_{i,r}}} & \frac{1}{r_{\text{rotor}_{i,r}}} \\ \frac{c \text{stator}_{i,r}}{r_{\text{rotor}_{i,r}}} & \frac{1}{r_{\text{rotor}_{i,r}}} \\ \frac{c \text{hord}_{\text{stator}_{i,r}}}{r_{\text{rotor}_{i,r}}} & \frac{1}{r_{\text{rotor}_{i,r}}} \\ \frac{c \text{hord}_{\text{stator}_{i,r}}}{r_{\text{rotor}_{i,r}}} \\ \frac{c \text{hord}_{\text{rotor}_{i,r}}}{r_{\text{rotor}_{i,r}}} & \frac{1}{r_{\text{rotor}_{i,r}}} \\ \frac{c \text{hord}_{\text{rotor}_{i,r}}}{r_{\text{rotor}_{i,r}}} \\ \frac{c \text{hord}_{\text{rotor}_{i,r}}}{r_{\text{rotor}_{i,r}}} & \frac{1}{r_{\text{rotor}_{i,r}}} \\ \frac{c \text{hord}_{\text{rotor}_{i,r}}}{r_{\text{rotor}_{i,r}}} \\ \frac{c \text{hord}_{\text{ro$$

$$\begin{bmatrix} 1, r \\ 0 \text{stator}_{i, r} \end{bmatrix} = \begin{bmatrix} x_{\text{stator}_{i, r}} + \alpha_{\text{st}(i, 2), r} + i_{\text{stator}_{i, r}} \\ - \frac{1}{\sin(0.5 \cdot \theta_{\text{rotor}_{i, r}})} \end{bmatrix}$$

$$\begin{bmatrix} R_{\text{C.T.stator}_{i, r}} \\ R_{\text{C.T.stator}_{i, r} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \frac{c \text{hord}_{\text{rotor}_{i, r}}}{\sin(0.5 \cdot \theta_{\text{stator}_{i, r}})} \\ \frac{c \text{hord}_{\text{stator}_{i, r}}}{\sin(0.5 \cdot \theta_{\text{stator}_{i, r}})} \end{bmatrix} + \begin{bmatrix} \frac{c \text{hord}_{\text{rotor}_{i, r}}}{\sin(0.5 \cdot \theta_{\text{stator}_{i, r}})} \\ \frac{c \text{hord}_{\text{stator}_{i, r}}}{c \text{hord}_{\text{st}(i, 2), r}} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\beta_{\text{st}(i, 2), r})} \\ \frac{c \text{hord}_{\text{st}(i, 2), r}}{\tan(\beta_{\text{st}(i, 2), r})} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\beta_{\text{st}(i, 2), r})} \\ \frac{1}{\tan(\beta_{\text{st}(i, 1), r})} \\ \frac{c \text{hord}_{\text{rotor}_{i, r}}}{c \text{hord}_{\text{rotor}_{i, r}}} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\beta_{\text{st}(i, 2), r})} \\ \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{1}{\tan(\alpha_{\text{st}(i, 3), r})} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{c \text{hord}_{\text{rotor}_{i, r}}}{c \text{hord}_{\text{rotor}_{i, r}}} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{c \text{hord}_{\text{rotor}_{i, r}}}{c \text{hord}_{\text{rotor}_{i, r}}} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{c \text{hord}_{\text{rotor}_{i, r}}}}{c \text{hord}_{\text{rotor}_{i, r}}} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{c \text{hord}_{\text{rotor}_{i, r}}}}{c \text{hord}_{\text{rotor}_{i, r}}} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{c \text{hord}_{\text{rotor}_{i, r}}}}{c \text{hord}_{\text{rotor}_{i, r}}} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{c \text{hord}_{\text{rotor}_{i, r}}}}{c \text{hord}_{\text{rotor}_{i, r}}} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{c \text{hord}_{\text{rotor}_{i, r}}}{c \text{hord}_{\text{rotor}_{i, r}}}} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{c \text{hord}_{\text{rotor}_{i, r}}}}{c \text{hord}_{\text{rotor}_{i, r}}} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{c \text{hord}_{\text{rotor}_{i, r}}}{c \text{hord}_{\text{rotor}_{i, r}}} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{c \text{hord}_{\text{rotor}_{i, r}}}{c \text{hord}_{\text{rotor}_{i, r}}} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tan(\alpha_{\text{st}(i, 2), r})} \\ \frac{c \text{hord}_{\text{rotor$$

$\eta_{\text{stage}_{i,r}} = 1 - \frac{\left(\frac{c_{\text{ast}(i,1),r}}{c_{\text{ust}(i,1),r}}\right)^{2} + \left(R_{L_{i,r}}\right)^{2}}{c_{\text{ast}(i,2),r}} + \frac{\left(\frac{c_{\text{ast}(i,2),r}}{c_{\text{ust}(i,2),r}}\right)^{2} + \left(1 - R_{L_{i,r}}\right)^{2}}{c_{\text{ast}(i,2),r}}$
$ \left[\text{quality}_{\text{rotor}_{i,r}} \cdot \frac{c_{a_{\text{st}(i,1),r}}}{c_{a_{\text{st}(i,1),r}}} + R_{L_{i,r}} - \text{quality}_{\text{stator}_{i,r}} \cdot \frac{c_{a_{\text{st}(i,2),r}}}{c_{a_{\text{st}(i,2),r}}} + \left(1 - R_{L_{i,r}}\right) \right] $
$\left(\varepsilon_{\text{PK}(b/t)=1} Z_{\text{rotor}} r_{\text{inlet}}_{\text{rotor}} r_{\text{outlet}}_{\text{rotor}} t_{\text{rotor}} i_{\text{rotor}} m_{\text{rotor}} \theta_{\text{rotor}} \delta_{\text{rotor}} \chi_{\text{rotor}} v_{\text{rotor}} R_{\text{CJI.rotor}} K_{\text{rotor}} D_{\text{rotor}} \zeta_{\text{rotor}} quality_{\text{rotor}} \eta_{\text{stage}}\right)^{T}$
$\left(\varepsilon_{\text{HA}(b/t)=1} \ \ Z_{\text{stator}} \ \ r_{\text{inlet}}_{\text{stator}} \ \ r_{\text{outlet}}_{\text{stator}} \ \ t_{\text{stator}} \ \ t_{\text{stator}} \ \ m_{\text{stator}} \ \ \theta_{\text{stator}} \ \delta_{\text{stator}} \ \ \chi_{\text{stator}} \ \ v_{\text{stator}} \ \ R_{\text{C.I.stator}} \ \ K_{\text{stator}} \ \ C_{\text{stator}} \ \ \zeta_{\text{stator}} \ \ quality_{\text{stator}} \ \ \eta_{\text{stage}}\right)$

```
\epsilonCA(b/t)=1
    Z_{CA}
r_inlet<sub>CA</sub>
r_outlet_{
m CA}
     t_{CA}
     iCA
    m_{CA}
                                   if CA = 1
    \theta_{\text{CA}}
                                             for r \in av(N_r)
    \delta_{\text{CA}}
                                                    \left| \varepsilon_{CA(b/t)=1_r} = \varepsilon_{(b/t)=1} \left( \alpha_{3CA_r} \right) \right|
    \chi_{\text{CA}}
    v_{\mathrm{CA}}
RСЛ.СА
    K_{CA}
    D_{CA}
                                                   Z_{CA} = \left[ \text{round} \left( \frac{\pi \cdot D_{st(Z,3),r}}{t_{CA_r}} \right) \text{ if } \text{mod} \left( \text{round} \left( \frac{\pi \cdot D_{st(Z,3),r}}{t_{CA_r}} \right), 2 \right) = 0 \right]
                                                           round \left(\frac{\pi \cdot D_{st(Z,3),r}}{t_{CA_r}}\right) + 1 otherwise
                                                    \left| \left( r_{-} \text{inlet}_{CA_r} \quad r_{-} \text{outlet}_{CA_r} \right) \right| = \text{chord}_{CA_r} \cdot \left( \overline{r_{-}} \text{inlet}_{CA_r} \quad \overline{r_{-}} \text{outlet}_{CA_r} \right)
                                                   m_{\text{CA}_{r}} = 0.23 \cdot (2 \cdot \overline{x}_{f})^{2} + 0.18 - \frac{0.002}{\text{deg}} \cdot (\alpha_{3\text{CA}_{r}})^{2}
```

$$\begin{split} \delta_{\text{CA}_r} &= \text{m}_{\text{CA}_r} \cdot \theta_{\text{CA}_r} \cdot \sqrt{\frac{^{\text{i}_{\text{CA}_r}}}{\text{chord}_{\text{CA}_r}}} \\ \chi_{\text{CA}_r} &= \theta_{\text{CA}_r} \cdot \frac{1 + 2 \cdot \left(1 - 2 \cdot \overline{x}_f\right)}{2} \\ v_{\text{CA}_r} &= \chi_{\text{CA}_r} + \alpha_{1\text{CA}_r} + i_{\text{CA}_r} \\ v_{\text{CA}_r} &= \frac{\text{chord}_{\text{CA}_r}}{2 \cdot \sin\left(0.5 \cdot \theta_{\text{CA}_r}\right)} \\ K_{\text{CA}_r} &= \frac{\frac{c_{\text{a3}\text{CA}_r}}{c_{\text{a1}\text{CA}_r}}} \\ D_{\text{CA}_r} &= \left(1 - K_{\text{CA}_r} \cdot \frac{\sin\left(\alpha_{1\text{CA}_r}\right)}{\sin\left(\alpha_{3\text{CA}_r}\right)}\right) + \left(\frac{1}{\tan\left(\alpha_{1\text{CA}_r}\right)} - K_{\text{CA}_r} \cdot \frac{1}{\tan\left(\alpha_{3\text{CA}_r}\right)}\right) \cdot \frac{\sin\left(\alpha_{1\text{CA}_r}\right)}{c_{\text{chord}_{\text{CA}_r}}} \\ \left(\epsilon_{\text{CA}(b/t)=1} \quad Z_{\text{CA}} \quad r_{\text{-inlet}_{\text{CA}}} \quad r_{\text{-outlet}_{\text{CA}}} \quad t_{\text{CA}} \quad t_{\text{CA}} \quad \theta_{\text{CA}} \quad \delta_{\text{CA}} \quad \chi_{\text{CA}} \quad \psi_{\text{CA}} \quad R_{\text{CJLCA}} \quad K_{\text{CA}} \quad D_{\text{CA}}\right)^T \end{split}$$

$$chord_{BHA} = \begin{bmatrix} & & 1 & \\ & 1 & 26.42 \\ & 2 & 29.35 \\ \hline & 3 & 31.71 \end{bmatrix} \cdot 10^{-3}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
$chord_{rotor}^{T} =$	1	54.30	48.94	43.38	39.63	36.89	34.80	33.42	32.84	32.50							10^{-3}
rotor	2	63.23	56.88	50.34	45.95	42.75	40.30	38.68	38.00	37.59							
	3	70.59	63.63	56.39	51.52	47.96	45.24	43.45	42.69	42.25							

Длина хорды Л (м):

$$chord_{CA} = \begin{array}{|c|c|c|}\hline & 1 \\ \hline 1 & 25.80 \\ \hline 2 & 28.65 \\ \hline 3 & 30.96 \\ \hline \end{array} \cdot 10^{-3}$$

$$r_inlet_{BHA} = \begin{bmatrix} \hline & 1 \\ 1 & 0.16 \\ 2 & 0.29 \\ \hline 3 & 0.44 \end{bmatrix} \cdot 10^{-3} \quad r_outlet_{BHA} = \begin{bmatrix} \hline & 1 \\ 1 & 0.08 \\ \hline 2 & 0.15 \\ \hline 3 & 0.22 \end{bmatrix} \cdot 10^{-3}$$

$$r_inlet_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.14 & 0.13 & 0.13 & 0.12 & 0.12 & 0.13 & 0.15 & 0.16 \\ 2 & 0.25 & 0.25 & 0.24 & 0.23 & 0.23 & 0.23 & 0.24 & 0.27 & 0.29 \\ 3 & 0.38 & 0.38 & 0.36 & 0.35 & 0.35 & 0.35 & 0.37 & 0.41 & 0.44 \end{bmatrix}$$

$$r_inlet_{CA} = \begin{bmatrix} & 1 & \\ 1 & 0.15 \\ \hline 2 & 0.29 \\ \hline 3 & 0.43 \end{bmatrix} \cdot 10^{-3} \qquad r_outlet_{CA} = \begin{bmatrix} & 1 \\ 1 & 0.08 \\ \hline 2 & 0.14 \\ \hline 3 & 0.22 \end{bmatrix} \cdot 10^{-3}$$

Радисы входных и выходных кромок профилей Π (мм):

$$r_outlet_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.65 & 0.59 & 0.52 & 0.48 & 0.44 & 0.42 & 0.40 & 0.39 & 0.39 \\ 2 & 0.32 & 0.28 & 0.25 & 0.23 & 0.21 & 0.20 & 0.19 & 0.19 \\ 3 & 0.21 & 0.19 & 0.17 & 0.15 & 0.14 & 0.14 & 0.13 & 0.13 & 0.13 \end{bmatrix} \cdot 10^{-1}$$

$$r_outlet_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.07 & 0.07 & 0.06 & 0.06 & 0.06 & 0.06 & 0.07 & 0.07 & 0.08 \\ 2 & 0.13 & 0.12 & 0.12 & 0.11 & 0.11 & 0.12 & 0.12 & 0.13 & 0.15 \\ 3 & 0.19 & 0.19 & 0.18 & 0.17 & 0.17 & 0.18 & 0.19 & 0.20 & 0.22 \end{bmatrix} \cdot 10^{-1}$$

$$\varepsilon_{\text{BHA}(b/t)=1_{\text{av}(N_r)}} = 23.47.^{\circ}$$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	.°
1	7.41	7.26	7.19	6.95	6.76	6.52	6.16	5.91	5.78							

Угол поворота потока:

$$\varepsilon_{\text{CA(b/t)}=1_{\text{av(N_r)}}} = 33.67 \cdot ^{\circ}$$

$$\frac{\text{chord}_{BHA}}{t_{BHA}} = \begin{vmatrix} 1 & 1 \\ 1 & 3.429 \\ 2 & 2.924 \\ 3 & 2.661 \end{vmatrix}$$

(chord	Γ [1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(chord _{rotor}	_[1	1.779	1.693	1.672	1.592	1.543	1.512	1.617	1.481	1.465						
(t _{rotor})		2	1.613	1.608	1.640	1.591	1.564	1.550	1.672	1.541	1.532						
	Ī	3	1.526	1.559	1.620	1.591	1.579	1.578	1.713	1.585	1.583						

Густота решетки:

$$\frac{\text{chord}_{CA}}{t_{CA}} = \begin{vmatrix} 1 & 1 \\ 1 & 3.455 \\ 2 & 3.488 \\ 3 & 3.479 \end{vmatrix}$$

$$Z_{BHA} = 46$$

Количество Л:

Значения округляются до целого в большую сторону так, чтобы при разъемном корпусе количество Л НА было четным, а количества Л РК и НА были взаимно простыми

 $Z_{CA} = 52$

$$t_{BHA} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 10.04 \\ 3 \\ 11.92 \end{bmatrix} \cdot 10^{-3}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
$t \cdot T =$	1	30.52	28.91	25.95	24.89	23.92	23.01	20.67	22.18	22.18							$\cdot 10^{-3}$
rotor –	2	39.19	35.37	30.70	28.89	27.34	25.99	23.14	24.67	24.53							
	3	46.27	40.82	34.80	32.39	30.38	28.67	25.36	26.93	26.69]

Шаг решетки (м):

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
$t \cdot \cdot T =$	1	11.59	12.33	12.20	12.20	12.45	12.71	13.55	14.87	16.48							1.10^{-3}
stator –	2	14.50	14.80	14.28	14.04	14.14	14.28	15.12	16.51	18.17							
	3	16.92	16.91	16.10	15.67	15.65	15.70	16.53	17.99	19.71							

$$t_{CA} = \begin{bmatrix} 1 \\ 1 \\ 7.47 \\ 2 \\ 8.21 \\ 3 \\ 8.90 \end{bmatrix} \cdot 10^{-3}$$

$$i_{BHA} = \begin{vmatrix} & & 1 \\ 1 & 3.572 \\ 2 & 2.311 \\ \hline 3 & 1.652 \end{vmatrix} \cdot \circ$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
i =	1	1.948	1.732	1.679	1.480	1.357	1.280	1.542	1.202	1.164							.0
rotor –	2	1.533	1.520	1.600	1.477	1.409	1.376	1.680	1.351	1.331							
	3	1.314	1.397	1.551	1.476	1.447	1.445	1.782	1.464	1.458							

Угол атаки:

$$i_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 1 & -0.132 & -0.463 & -0.620 & -0.754 & -0.854 & -0.863 & -0.912 & -0.935 & -0.987 & & & & & & \\ 2 & -0.682 & -0.810 & -0.859 & -0.920 & -0.964 & -0.931 & -0.950 & -0.953 & -0.979 & & & & & & & \\ 3 & -0.997 & -1.029 & -1.018 & -1.035 & -1.043 & -0.982 & -0.979 & -0.967 & -0.973 & & & & & & & & \\ \end{bmatrix}$$

$$i_{CA} = \begin{bmatrix} & 1 & \\ 1 & 3.639 \\ 2 & 3.721 \\ \hline 3 & 3.698 \end{bmatrix}$$

$$m_{BHA} = \begin{array}{|c|c|}\hline & 1\\ 1 & 0.2766\\ 2 & 0.2752\\ \hline 3 & 0.2737\\ \hline \end{array}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
\mathbf{m} , \mathbf{T} =	1	0.2945	0.3105	0.3187	0.3278	0.3341	0.3409	0.3503	0.3568	0.3606						
m _{rotor} =	2	0.3549	0.3564	0.3570	0.3593	0.3612	0.3637	0.3679	0.3713	0.3731						
	3	0.3736	0.3711	0.3708	0.3718	0.3726	0.3740	0.3765	0.3787	0.3798						

Коэф. формы ср. линии профиля по Ховеллу:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
\mathbf{m} , \mathbf{T}	1	0.2801	0.2757	0.2757	0.2741	0.2766	0.2901	0.3003	0.3083	0.3071						
m _{stator} =	2	0.2717	0.2690	0.2697	0.2689	0.2716	0.2846	0.2946	0.3026	0.3018						
	3	0.2666	0.2646	0.2656	0.2652	0.2680	0.2803	0.2901	0.2980	0.2975						

$$m_{CA} = \begin{array}{|c|c|c|}\hline & 1 \\ 1 & 0.2300 \\ \hline 2 & 0.2300 \\ \hline 3 & 0.2300 \\ \hline \end{array}$$

$$\theta_{BHA} = \begin{array}{|c|c|c|}\hline & 1 \\ 1 & 23.18 \\ \hline 2 & 24.19 \\ \hline 3 & 24.29 \\ \hline \end{array}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
$\theta = T = 0$	1	41.01	35.83	33.99	30.62	28.57	25.64	19.44	16.60	14.90] .
orotor –	2	12.09	12.79	13.74	13.52	13.48	12.73	9.75	8.65	8.12							
	3	4.08	6.30	7.13	7.34	7.58	7.33	5.42	4.94	4.80							

Угол изгиба ср. линии профиля:

$$\theta_{\text{stator}}^{\text{T}} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 1 & 48.19 & 53.22 & 60.80 & 61.37 & 63.59 & 63.22 & 54.16 & 47.61 & 44.71 & & & & & & \\ 2 & 47.83 & 53.04 & 60.44 & 61.16 & 63.38 & 63.16 & 54.71 & 48.49 & 45.50 & & & & & & \\ 3 & 47.53 & 52.26 & 59.60 & 60.52 & 62.81 & 62.77 & 54.85 & 48.95 & 45.97 & & & & & & & \\ \end{bmatrix}$$

$$\theta_{\rm CA} = \begin{array}{|c|c|c|}\hline & 1 \\ 1 & 39.82 \\ \hline 2 & 36.69 \\ \hline 3 & 34.27 \\ \hline \end{array}.$$

$$\delta_{\text{BHA}} = \begin{array}{|c|c|c|}\hline & 1 \\ 1 & 3.462 \\ \hline 2 & 3.893 \\ \hline 3 & 4.076 \\ \hline \end{array}.$$

		1	2	3	4	5	6	7	8	9	
δ , $T =$	1	9.054	8.552	8.379	7.953	7.687	7.109	5.356	4.865	4.438	.0
orotor –	2	3.380	3.595	3.831	3.850	3.892	3.717	2.774	2.589	2.448	
	3	1.234	1.872	2.078	2.164	2.248	2.181	1.558	1.485	1.449	

Угол отставания:

$$\delta_{\text{stator}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 9.672 & 10.889 & 12.661 & 12.908 & 13.656 & 14.254 & 12.720 & 11.511 \\ 2 & 9.889 & 11.021 & 12.668 & 12.875 & 13.548 & 14.088 & 12.665 & 11.532 \\ 3 & 10.013 & 10.971 & 12.545 & 12.745 & 13.378 & 13.878 & 12.549 & \dots \end{bmatrix}$$

$$\delta_{\text{CA}} = \begin{array}{|c|c|}\hline & 1 \\ \hline 1 & 4.926 \\ \hline 2 & 4.519 \\ \hline 3 & 4.226 \\ \hline \end{array}.$$

$$\upsilon_{\text{BHA}} = \begin{array}{|c|c|c|}\hline & 1 \\ \hline 1 & 105.16 \\ \hline 2 & 104.40 \\ \hline 3 & 103.80 \\ \hline \end{array} . \circ$$

		1	2	3	4	5	6	7	8	9	
$v_{rotor}^{T} =$	1	46.32	40.39	37.03	33.75	31.34	28.82	25.49	23.19	21.71	
rotor	2	24.87	24.02	23.48	22.45	21.56	20.49	18.94	17.63	16.85	
	3	17.41	18.15	18.12	17.62	17.14	16.51	15.60	14.67	14.17	

Угол установки Л:

$$v_{\text{stator}}^{\text{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 51.22 & 48.72 & 50.91 & 50.37 & 50.50 & 49.64 & 45.07 & 41.52 & 39.95 \\ 2 & 52.17 & 52.45 & 53.90 & 53.02 & 52.80 & 51.76 & 47.37 & 43.87 & 42.18 \\ 3 & 53.05 & 55.15 & 56.12 & 55.05 & 54.61 & 53.45 & 49.23 & 45.80 & 44.05 \end{bmatrix}$$

$$v_{CA} = \begin{bmatrix} & 1\\ & 1 & 75.02\\ \hline 2 & 76.17\\ \hline & 3 & 77.09 \end{bmatrix} \cdot ^{\circ}$$

$$R_{\text{СЛ.BHA}} = \begin{bmatrix} & 1 & \\ 1 & 65.77 \\ 2 & 70.03 \\ \hline 3 & 75.35 \end{bmatrix} \cdot 10^{-3}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
R_{CH} , $T =$	1	77.50	79.54	74.20	75.05	74.75	78.41	98.97	113.77	125.30							$\cdot 10^{-3}$
R _C Л.rotor =	2	300.12	255.27	210.39	195.26	182.18	181.81	227.61	251.83	265.39							
	3	991.62	579.26	453.14	402.35	362.80	354.08	459.67	495.38	504.50							

Радиус дуги ср. линии (м):

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
R_{CR} . $T = $	1	27.65	24.98	21.12	20.30	19.59	20.06	24.34	29.96	34.78							$\cdot 10^{-3}$
R _C Л.stator =	2	30.90	27.77	23.50	22.52	21.72	22.19	26.65	32.54	37.78							
	3	33.61	30.49	25.80	24.66	23.77	24.22	28.87	35.02	40.65							

$$R_{\text{СЛ.CA}} = \begin{bmatrix} & 1\\ 1 & 37.88\\ \hline 2 & 45.51\\ \hline 3 & 52.53 \end{bmatrix} \cdot 10^{-3}$$

$$K_{BHA} = \begin{array}{|c|c|}\hline & 1\\ \hline 1 & 1.0359\\ \hline 2 & 1.0000\\ \hline 3 & 0.9808\\ \hline \end{array}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$K_{\cdots} = \begin{bmatrix} T \\ T \end{bmatrix}$	1	1.0757	0.9750	0.9637	0.9661	0.9673	0.9684	0.9698	0.9702	0.9936						
rotor –	2	0.9740	0.9704	0.9637	0.9661	0.9673	0.9684	0.9698	0.9702	0.9936						
	3	0.9142	0.9680	0.9637	0.9661	0.9673	0.9684	0.9698	0.9702	0.9936						

Фактор диффузорности решетки:

$$K_{CA} = \begin{array}{|c|c|}\hline & 1\\ 1 & 0.8302\\ \hline 2 & 0.8302\\ \hline 3 & 0.8302\\ \hline \end{array}$$

$$D_{BHA} = \begin{array}{|c|c|c|}\hline & 1 \\ 1 & -0.1928 \\ \hline 2 & -0.1544 \\ \hline 3 & -0.1308 \\ \hline \end{array}$$

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$D \cdot T =$	1	0.6655	0.7376	0.7707	0.7702	0.7776	0.7676	0.6925	0.6610	0.6272						
rotor –	2	0.4978	0.5367	0.5831	0.5935	0.6098	0.6092	0.5510	0.5262	0.5036						
	3	0.3865	0.4200	0.4669	0.4811	0.5001	0.5039	0.4569	0.4365	0.4211						

Диффузорность решетки:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$D \cdot T =$	1	0.7528	0.8098	0.8474	0.8716	0.8897	0.8692	0.8375	0.8138	0.8119						
stator –	2	0.6997	0.7572	0.8054	0.8336	0.8555	0.8391	0.8101	0.7890	0.7857						
	3	0.6561	0.7143	0.7693	0.8002	0.8250	0.8121	0.7854	0.7664	0.7621						

$$D_{CA} = \begin{vmatrix} & & 1 \\ 1 & 0.4407 \\ 2 & 0.4115 \\ 3 & 0.3896 \end{vmatrix}$$

		1	
D _{BHA} ≤ 0.6 =	1	1	
BHA = 0.0	2	1	
	3	1	

		1	2	3	4	5	6	7	8	9
$D_{rotor} \stackrel{T}{\leq} 0.6 =$	1	0	0	0	0	0	0	0	0	0
rotor = 0.0 =	2	1	1	1	1	0	0	1	1	1
	3	1	1	1	1	1	1	1	1	1

[18, c. 71]

		1	2	3	4	5	6	7	8	9
$D_{\text{stator}} \stackrel{T}{\leq} 0.6 =$	1	0	0	0	0	0	0	0	0	0
stator = 0.0 =	2	0	0	0	0	0	0	0	0	0
	3	0	0	0	0	0	0	0	0	0

		1	
$D_{CA} \le 0.6 =$	1	1	
2CA = 0.0	2	1	
	3	1	

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$C \cdot T =$	1	0.1472	0.1973	0.2313	0.2391	0.2536	0.2612	0.2490	0.2279	0.2151						
Srotor –	2	0.1351	0.1588	0.1932	0.2027	0.2186	0.2275	0.2184	0.1993	0.1913						
	3	0.1267	0.1370	0.1672	0.1769	0.1924	0.2021	0.1984	0.1822	0.1781						

Коэф. потерь полного давления:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$C_{-1} = \begin{bmatrix} T \\ T \end{bmatrix}$	1	0.2008	0.2201	0.2381	0.2467	0.2562	0.2554	0.2432	0.2373	0.2308						
Stator -	2	0.1452	0.1685	0.1942	0.2080	0.2216	0.2237	0.2144	0.2104	0.2059						
	3	0.1143	0.1372	0.1647	0.1805	0.1960	0.1999	0.1925	0.1899	0.1865						

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$quality_{rotor}^{T} = \begin{bmatrix} & & & \\ & & & \end{bmatrix}$	1	9.978	7.402	6.602	6.625	6.478	6.462	6.726	7.482	8.367						
	2	10.079	9.181	7.969	7.898	7.611	7.495	7.586	8.395	9.353						
	3	7.703	9.988	8.832	8.737	8.409	8.206	7.956	8.673	9.652						

Качество профилей решеток РК и НА:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
quality $T =$	1	6.114	6.504	6.163	6.038	5.914	6.014	6.316	6.495	6.829						
quality _{stator} =	2	8.974	8.067	7.215	6.870	6.577	6.600	6.880	7.029	7.349						
	3	11.638	9.513	8.207	7.665	7.215	7.155	7.410	7.528	7.841						

.%

5 11 12 13 14 15 6 10 КПД элементарной ступени: $\eta_{stage}^{T} = \boxed{\frac{1}{2}}$ 74.02 77.09 71.32 70.40 69.08 68.33 68.43 69.31 70.49 77.74 70.96 68.12 69.41 68.45 69.06 70.25 70.64 74.15 71.27 70.32 67.55 68.82 68.85 67.78 66.71

▶ Результаты расчета количества Л и параметров решеток РК и НА

▼ Подключение симметричного профиля

 $X/B_{subsonic} = submatrix(EXCEL_{AIRFOIL.subsonic}, 2, rows(EXCEL_{AIRFOIL.subsonic}), ORIGIN + 0, ORIGIN + 0)$

Y/B_{subsonic} = submatrix(EXCEL_{AIRFOIL.subsonic}, 2, rows(EXCEL_{AIRFOIL.subsonic}), ORIGIN + 1, ORIGIN + 1)

EXCEL_{AIRFOIL}.supersonic = ...\Emuh сверхзв

 $X/B_{supersonic} = submatrix (EXCEL_{AIRFOIL.supersonic}, 2, rows (EXCEL_{AIRFOIL.supersonic}), ORIGIN + 0, ORIGIN + 0)$

Y/B_{supersonic} = submatrix(EXCEL_{AIRFOIL.supersonic}, 2, rows(EXCEL_{AIRFOIL.supersonic}), ORIGIN + 1, ORIGIN + 1)

 $augment \left(X/B_{subsonic}, Y/B_{subsonic} \right)^{T} = \boxed{\frac{1}{2}}$ 5 8 10 11 12 13 14 15 16 17 18 19 20 0.000 0.010 0.015 0.025 0.050 0.075 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.500 0.600 0.700 0.800 0.900 0.950 1.000 0.114 0.143 0.185 0.255 0.309 0.352 0.416 0.455 0.479 0.493 0.494 0.500 0.486 0.444 0.378 0.285 0.172 0.100 0.000

15 $augment(X/B_{supersonic}, Y/B_{supersonic})^{T} =$ 0.050 0.000 0.100 0.200 0.150 0.300 0.400 0.500 0.600 0.700 0.800 0.850 0.900 0.950 1.000 0.045 0.132 0.208 0.282 0.342 0.430 0.482 0.500 0.482 0.430 0.342 0.282 0.208 0.132 0.045


```
\begin{aligned} \text{AIRFOIL}_{\text{subsonic}}(x, \text{line}, \overline{c}, \theta) &= & \text{if } 0 \leq x \leq 1 \\ & \text{interp}\big(\text{cspline}\big(X/B_{\text{subsonic}}, y/b_{\text{cp.}\Pi}\big(X/B_{\text{subsonic}}, \theta\big) + Y/B_{\text{subsonic}}, \overline{c}\big), X/B_{\text{subsonic}}, y/b_{\text{cp.}\Pi}\big(X/B_{\text{subsonic}}, \theta\big) - Y/B_{\text{subsonic}}, y/b_{\text{cp.}\Pi}\big(X/B_{\text{subsonic}}, \theta\big) - Y/B_{\text{sub
```

$$\begin{aligned} \text{AIRFOIL}_{\text{supersonic}}(\textbf{x}, \text{line}, \overline{\textbf{c}}, \theta) &= & \text{if } 0 \leq \textbf{x} \leq 1 \\ & \text{interp}\big(\text{cspline}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \textbf{y}/\textbf{b}_{\text{cp}, \Pi}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \theta\big) + \textbf{Y}/\textbf{B}_{\text{supersonic}}, \textbf{y}/\textbf{b}_{\text{cp}, \Pi}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \theta\big) + \textbf{Y}/\textbf{B}_{\text{supersonic}}, \textbf{y}/\textbf{b}_{\text{cp}, \Pi}\big(\textbf{X}/\textbf{B}_{\text{supersonic}}, \theta\big) + \textbf{Y}/\textbf{B}_{\text{supersonic}}, \theta\big) + \textbf{Y}/\textbf{$$

$$x = 0,0.005..1$$
 $\dot{j} = 1$

											1			٦
T		1	2	3		4	5		6	7	8		9	
$l_{upper_{stator}}^{T} =$	1	23.18	23.08			21.53	+		1.86	22.82		1.75	27.01	4 .10
Stato1	2	25.85	25.72	+		23.97	+		4.34	25.40		7.54	30.03	_
	3	28.12	28.02	2 26	.98 2	26.18	26	5.15 2	6.62	27.78	30).13	32.86	
														-
T.		1	2	3		4	5		6	7	8		9	
$1_lower_{stator}^{T} =$	1	22.86	22.73			21.16	_		1.49	22.48		1.44	26.69	4 .10
_ 514101	2	25.28	25.10			23.31			3.66	24.78		5.94	29.42	_
	3	27.28	27.10) 25	.98 2	25.20	25	5.14 2	5.60	26.85	29	9.23	31.94	
т.	1			3	4		5	6	7		8	9		_
$area_{stator}^{1} = \frac{1}{2}$			0.99	10.02	9.4		9.35	9.70	_		12.84		.36	10^{-6}
2			2.49	20.47	19.2	_	19.05	19.75	-		26.11		.22	
3	37	.56 30	5.93	33.67	31.6	3 3	31.41	32.59	9 36	.20 4	13.13	51	.59	
т 📗	1	2	3	4			6	7	8	9				
$Sx_{stator}^{T} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	16.3	_	+			5.1	16.7	+	+		.5 .	10 - 9		
	36.1	+	_			5.2	37.6		1		.7			
3	62.6	67.5	67.	5 62	4 64	1.0	67.0	67.3	77.	0 94	.3			
													_	
т.	1	2		3	4	5		6	7	8		9		0
$Sy_{stator}^{T} = \frac{1}{2}$	114.			96.7	88.1		37.1	92.1	107.		0.2	183	· <u>5</u> ·10) - 9
	259.	_		18.7	198.8		96.4	207.3	242.	_	5.1	412	_	
3	459.	5 447	'.9 3	89.9	355.1	35	51.3	371.3	434.	8 56	5.3	739	.7	
													_	
т.	1	2		3	4	5		6	7	8		9		2
$x0_{stator} = \frac{1}{2}$	10.1			9.65	9.36		9.32	9.50	10.0		.92	11.9	·10	$^{-3}$
	11.3	_		0.68	10.35).31	10.50	11.0		.07	13.2	20	
3	12.2	3 12.	13 1	1.58	11.23	11	1.19	11.39	12.0	1 13	.11	14.3	34	
	1	2	3	4	5		6	7	8	9		_		
$y0_{stator}^{T} = \boxed{\frac{1}{2}}$	1.46		1.73			72	1.72	1.52	1.4			10^{-3}		
	1.57	+	1.89	-	_	90	1.90	+			66			
3	1.67	1.83	2.00	1.9	97 2.	04	2.06	1.86	1.7	9 1.8	33			

											_
		1	2	3	4	5	6	7	8	9	
$1_{upper_{rotor}}^{T} =$	1	57.22	51.24	45.31	41.23	38.30	36.02	34.44	33.75	33.36	$\cdot 10^{-3}$
rotor	2	63.72	57.33	50.77	46.33	43.10	40.61	38.95	38.23	37.82	
	3	70.74	63.80	56.56	51.67	48.11	45.37	43.56	42.79	42.35	
		1	2	3	4	5	6	7	8	9	

		1	2	3	4	5	6	7	8	9	
$1_lower_{rotor}^{T} =$	1	54.66	49.26	43.66	39.90	37.15	35.06	33.71	33.16	32.83	$\cdot 10^{-3}$
_io ii or rotor	2	63.31	56.95	50.40	46.01	42.80	40.35	38.74	38.06	37.65	-
	3	70.63	63.66	56.42	51.54	47.98	45.26	43.47	42.71	42.27	

		1	2	3	4	5	6	7	8	9	
$area_{rotor}^{T} =$	1	258.75	210.23	165.14	137.84	119.46	106.28	98.03	94.65	92.69	$\cdot 10^{-6}$
rotor	2	146.21	118.31	92.68	77.22	66.83	59.38	54.73	52.81	51.68	10
	3	109.32	88.82	69.77	58.24	50.47	44.90	41.42	39.99	39.16	

$$Sx_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 801.4 & 500.7 & 327.6 & 220.6 & 163.9 & 122.4 & 85.4 & 67.0 & 58.3 \\ 2 & 157.8 & 120.1 & 89.5 & 65.9 & 52.3 & 41.4 & 30.5 & 24.8 & 22.7 \\ 3 & 53.4 & 54.8 & 43.3 & 33.2 & 27.3 & 22.3 & 16.9 & 14.0 & 13.2 \end{bmatrix} \cdot 10^{-9}$$

$$Sy_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 6345.2 & 4646.9 & 3235.2 & 2467.1 & 1990.5 & 1670.2 & 1479.6 & 1403.7 \\ 2 & 4175.4 & 3039.3 & 2107.2 & 1602.6 & 1290.3 & 1080.7 & 956.1 & 906.2 \\ 3 & 3485.1 & 2552.3 & 1776.9 & 1355.0 & 1093.3 & 917.4 & 812.6 & ... \end{bmatrix} \cdot 10^{-9}$$

		1	2	3	4	5	6	7	8	9	
$x0_{rotor}^{T} =$	1	24.52	22.10	19.59	17.90	16.66	15.72	15.09	14.83	14.68	$\cdot 10^{-3}$
rotor	2	28.56	25.69	22.74	20.75	19.31	18.20	17.47	17.16	16.98	
	3	31.88	28.73	25.47	23.27	21.66	20.43	19.62	19.28	19.08	

		1	2	3	4	5	6	7	8	9	
$y0_{rotor}^{T} =$	1	3.10	2.38	1.98	1.60	1.37	1.15	0.87	0.71	0.63	$\cdot 10^{-3}$
rotor	2	1.08	1.02	0.97	0.85	0.78	0.70	0.56			
	3	0.49	0.62	0.62	0.57	0.54	0.50	0.41	0.35	0.34	

		1	2	3	4	5	6	7	8	9	
Jx = T =	1	27	31	33	29	31	32	28	29	37	$\cdot 10^{-12}$
stator –	2	65	76	82	73	77	80	72	78	98	10
	3	123	143	155	141	149	157	145	162	205	

$$Jxy_{stator}^{T} = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 173 & 183 & 173 & 154 & 156 & 165 & 170 & 209 & 279 \\ 2 & 424 & 453 & 429 & 381 & 387 & 410 & 429 & 531 & 709 \\ 3 & 796 & 850 & 812 & 728 & 744 & 793 & 840 & 1049 & 1405 \end{vmatrix} \cdot 10^{-12}$$

$$Jx0_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2.64 & 2.98 & 3.12 & 2.77 & 2.88 & 2.99 & 2.70 & 2.98 & 3.81 \\ 2 & 7.73 & 8.62 & 8.74 & 7.82 & 8.09 & 8.49 & 8.16 & 9.53 & 12.44 \\ 3 & 18.39 & 19.91 & 19.60 & 17.66 & 18.25 & 19.38 & 19.75 & 24.24 & 32.36 \end{bmatrix} \cdot 10^{-12}$$

$$Jy0_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 325 & 314 & 261 & 230 & 227 & 244 & 301 & 428 & 612 \\ 2 & 820 & 788 & 653 & 575 & 565 & 608 & 749 & 1062 & 1519 \\ 3 & 1571 & 1518 & 1262 & 1114 & 1098 & 1182 & 1459 & 2070 & 2963 \end{bmatrix} \cdot 10^{-12}$$

$$Jxy0_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 6.57 & 6.93 & 6.54 & 5.80 & 5.88 & 6.21 & 6.45 & 7.94 & 10.62 \\ 2 & 16.12 & 17.15 & 16.18 & 14.38 & 14.60 & 15.46 & 16.25 & 20.17 & 26.99 \\ 3 & 30.25 & 32.25 & 30.63 & 27.46 & 28.02 & 29.87 & 31.82 & 39.86 & 53.47 \end{bmatrix} \cdot 10^{-12}$$

$$\alpha_{major_{stator}}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 1.17 & 1.28 & 1.45 & 1.46 & 1.50 & 1.47 & 1.24 & 1.07 & 1.00 \\ 2 & 1.14 & 1.26 & 1.44 & 1.45 & 1.50 & 1.48 & 1.26 & 1.10 & 1.03 \\ 3 & 1.12 & 1.23 & 1.41 & 1.43 & 1.49 & 1.47 & 1.27 & 1.12 & 1.04 \\ \end{bmatrix}. \circ$$

		1	2	3	4	5	6	7	8	9	
$Jx \cdot T =$	1	3392	1751	986	578	389	268	178	142	126	$\cdot 10^{-12}$
Jx _{rotor} =	2	276	192	131	87	64	46	31	24	22	10
	3	59	57	42	29	23	17	12	9	9	

		1	2	3	4	5	6	7	8	9	
Jv = T =	1	199075	131414	81089	56493	42434	33583	28572	26635	25543	$\cdot 10^{-12}$
yrotor –	2	152550	99887	61296	42552	31870	25164	21371	19898	19057	10
	3	142139	93830	57897	40336	30298	23978	20400	19017	18238	

$$Jxy_{rotor}^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 20427 & 11506 & 6672 & 4106 & 2839 & 1999 & 1340 & 1033 & 890 \\ 2 & 4686 & 3209 & 2116 & 1421 & 1050 & 783 & 554 & 442 & 400 \\ 3 & 1771 & 1636 & 1146 & 804 & 615 & 473 & 345 & 280 & 263 \end{bmatrix} \cdot 10^{-12}$$

		1	2	3	4	5	6	7	8	9	
$Jx0_{rotor}^{T} = $	1	910.63	558.14	336.05	224.46	164.68	126.68	103.28	94.10	89.38	$\cdot 10^{-12}$
rotor	2	105.83	70.34	44.31	30.38	22.64	17.53	14.15	12.75	12.09	10
	3	32.42	23.05	14.82	10.35	7.83	6.13	4.97	4.48	4.27	

		1	2	3	4	5	6	7	8	9	
$Jy0_{rotor}^{T} =$	1	43476	28700	17709	12338	9267	7334	6240	5817	5578	$\cdot 10^{-12}$
rotor	2	33311	21812	13385	9292	6959	5495	4667	4345	4161	10
	3	31038	20489	12643	8808	6616	5236	4455	4153	3982	

$$\alpha_{-} major_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 1.04 & 0.89 & 0.84 & 0.74 & 0.68 & 0.61 & 0.48 & 0.40 & 0.36 \\ 2 & 0.31 & 0.32 & 0.35 & 0.34 & 0.33 & 0.31 & 0.26 & 0.22 & 0.21 \\ 3 & 0.13 & 0.18 & 0.20 & 0.20 & 0.20 & 0.20 & 0.17 & 0.15 & 0.15 \end{bmatrix}.$$

		1	2	3	4	5	6	7	8	9	
$Ju \cdot T =$	1	2.50	2.82	2.95	2.63	2.73	2.83	2.56	2.84	3.62	$\cdot 10^{-12}$
stator –	2	7.41	8.24	8.33	7.45	7.71	8.09	7.80	9.14	11.96	10
	3	17.81	19.21	18.85	16.98	17.52	18.61	19.05	23.46	31.39	

$$Jv_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 325 & 314 & 261 & 230 & 227 & 244 & 302 & 428 & 613 \\ 2 & 821 & 789 & 653 & 575 & 566 & 608 & 750 & 1063 & 1519 \\ 3 & 1571 & 1519 & 1262 & 1115 & 1099 & 1183 & 1460 & 2071 & 2964 \end{bmatrix} \cdot 10^{-12}$$

$$Juv_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.00 & 0.00 \\ 2 & -0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.00 & 0.00 & 0.00 \\ 3 & 0.00 & -0.00 & 0.00 & -0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ \end{bmatrix} \cdot 10^{-12}$$

$$Jp_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 327 & 317 & 264 & 233 & 230 & 247 & 304 & 431 & 616 \\ 2 & 828 & 797 & 661 & 583 & 574 & 616 & 757 & 1072 & 1531 \\ 3 & 1589 & 1538 & 1281 & 1132 & 1116 & 1202 & 1479 & 2095 & 2996 \end{bmatrix} \cdot 10^{-12}$$

$$Wp_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 26.3 & 25.6 & 22.3 & 20.3 & 20.1 & 21.2 & 24.8 & 32.3 & 42.3 \\ 2 & 59.9 & 58.1 & 50.5 & 45.9 & 45.3 & 47.8 & 56.0 & 72.7 & 95.1 \\ 3 & 106.3 & 103.6 & 90.2 & 82.2 & 81.3 & 85.9 & 100.6 & 130.8 & 171.1 \end{bmatrix} \cdot 10^{-9}$$

$$stiffness_{stator}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 1.25 & 1.21 & 1.00 & 0.88 & 0.87 & 0.94 & 1.16 & 1.64 & 2.35 \\ 2 & 8.75 & 8.41 & 6.97 & 6.14 & 6.03 & 6.49 & 8.00 & 11.34 & 16.21 \\ 3 & 32.85 & 31.75 & 26.39 & 23.30 & 22.96 & 24.73 & 30.51 & 43.30 & 61.97 \end{bmatrix} \cdot 10^{-12}$$

		1	2	3	4	5	6	7	8	9	
$Ju_{rotor}^{T} =$	1	896.49	551.33	332.33	222.43	163.39	125.87	102.85	93.83	89.16	$\cdot 10^{-12}$
rotor	2	104.86	69.65	43.82	30.06	22.41	17.37	14.05	12.69	12.04	10
	3	32.27	22.86	14.67	10.24	7.74	6.07	4.93	4.45	4.25	

$$Jv_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 43491 & 28707 & 17713 & 12340 & 9269 & 7335 & 6240 & 5817 & 5579 \\ 2 & 33312 & 21812 & 13385 & 9292 & 6959 & 5495 & 4667 & 4345 & 4161 \\ 3 & 31038 & 20489 & 12643 & 8808 & 6616 & 5236 & 4455 & 4153 & 3982 \end{bmatrix} \cdot 10^{-12}$$

		1	2	3	4	5	6	7	8	9	
Juy $T =$	1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.00	0.00	$\cdot 10^{-12}$
Juv _{rotor} =	2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.00	0.00	

$$Wp_{rotor}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 1482.7 & 1085.9 & 756.0 & 576.5 & 465.1 & 390.3 & 345.7 & 328.0 & 317.9 \\ 2 & 963.3 & 701.2 & 486.1 & 369.7 & 297.7 & 249.3 & 220.6 & 209.1 & 202.4 \\ 3 & 802.6 & 587.8 & 409.2 & 312.1 & 251.8 & 211.3 & 187.2 & 177.6 & 172.1 \end{bmatrix} \cdot 10^{-9}$$

		1	2	3	4	5	6	7	8	9				1	2	3	4	5	6	7	8	9	
$CPx_{stator}^{T} =$	1	7.900	7.833	7.479	7.250	7.224	7.359	7.756	8.465	9.259	$\cdot 10^{-3}$ CPx _{ro}	T =	1	19.004	17.130	15.182	13.871	12.913	12.179	11.697	11.494	11.374	$\cdot 10^{-3}$
Stator	2	8.767	8.680	8.280	8.021	7.988	8.134	8.570	9.352	10.227	ro	tor	2	22.131	19.908	17.620	16.083	14.962	14.104	13.540	13.300	13.157	10
	3	9.480	9.400	8.975	8.700	8.669	8.830	9.307	10.158	11.111			3	24.705	22.269	19.737	18.032	16.787	15.833	15.206	14.942	14.786	
		1	2	3	4	5	6	7	8	9				1	2	3	4	5	6	7	8	9	
$CPv_{AAAA} =$	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	$\cdot 10^{-3}$ CPy _{rot}	T =	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	$\cdot 10^{-3}$
$CPy_{stator}^{T} = \frac{1}{2}$	2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	710	ıor	2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

Результат расчета абсолютных геометрических характеристик сечений Л

Абс. координаты профиля:

$$\begin{split} \text{Airfoil(type}, \textbf{x}, \text{line}, \textbf{i}, \textbf{r}) &= & \text{if type} = \text{"BHA"} \\ & \text{AIRFOIL}_{\text{subsonic}} \left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{BHA}_r}, \varepsilon_{\text{BHA}_r} \right) & \text{if } \textbf{M}_{\textbf{c}_{\text{st}(1,1)}, \textbf{r}} < 1 \\ & \text{AIRFOIL}_{\text{supersonic}} \left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{BHA}_r}, \varepsilon_{\text{BHA}_r} \right) & \text{otherwise} \\ & \text{if type} = \text{"rotor"} \\ & \text{AIRFOIL}_{\text{subsonic}} \left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{rotor}_{i,r}}, \varepsilon_{\text{rotor}_{i,r}} \right) & \text{if } \textbf{M}_{\textbf{w}_{\text{st}(i,1)}, \textbf{r}} < 1 \\ & \text{AIRFOIL}_{\text{supersonic}} \left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{rotor}_{i,r}}, \varepsilon_{\text{rotor}_{i,r}} \right) & \text{otherwise} \\ & \text{if type} = \text{"stator"} \\ & \text{AIRFOIL}_{\text{subsonic}} \left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{stator}_{i,r}}, \varepsilon_{\text{stator}_{i,r}} \right) & \text{if } \textbf{M}_{\textbf{c}_{\text{st}(i,2)}, \textbf{r}} < 1 \\ & \text{AIRFOIL}_{\text{supersonic}} \left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{c}_{\text{A}r}}, \varepsilon_{\text{CA}_r} \right) & \text{if } \textbf{M}_{\textbf{c}_{\text{st}(i,2)}, \textbf{r}} < 1 \\ & \text{AIRFOIL}_{\text{subsonic}} \left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{CA}_r}, \varepsilon_{\text{CA}_r} \right) & \text{if } \textbf{M}_{\textbf{c}_{\text{st}(Z,3)}, \textbf{r}} < 1 \\ & \text{AIRFOIL}_{\text{supersonic}} \left(\textbf{x}, \text{line}, \overline{\textbf{c}}_{\text{CA}_r}, \varepsilon_{\text{CA}_r} \right) & \text{otherwise} \\ \end{cases} \end{aligned}$$

Рассматриваемая ступень:

$$j_w = \begin{bmatrix} j = 1 \\ j = \end{bmatrix}$$
 "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$ j otherwise

▼ Построение профилей Л РК и НА

$$\begin{split} AXLEO(type,x,i,r) &= & \left| \frac{y0_{rotor_{i,r}}}{chord_{rotor_{i,r}}} + tan\Big(\alpha_major_{rotor_{i,r}}\Big) \cdot \left(x - \frac{x0_{rotor_{i,r}}}{chord_{rotor_{i,r}}}\right) \text{ if type = "rotor"} \right. \\ & \left. \frac{y0_{stator_{i,r}}}{chord_{stator_{i,r}}} + tan\Big(\alpha_major_{stator_{i,r}}\Big) \cdot \left(x - \frac{x0_{stator_{i,r}}}{chord_{stator_{i,r}}}\right) \text{ if type = "stator"} \right. \\ & \left. NaN \text{ otherwise} \right. \end{split}$$

$$\begin{aligned} \text{AXLE90(type}, \textbf{x}, \textbf{i}, \textbf{r}) &= \left| \frac{y0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}} + \tan\left(\alpha_{-}\text{major}_{rotor_{i,r}} + \frac{\pi}{2}\right) \cdot \left(\textbf{x} - \frac{\textbf{x}0_{rotor_{i,r}}}{\text{chord}_{rotor_{i,r}}}\right) \text{ if } (\text{type} = "rotor") \land \left|\alpha_{-}\text{major}_{rotor_{i,r}}\right| \geq 1 \cdot \circ \\ \frac{y0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}} + \tan\left(\alpha_{-}\text{major}_{stator_{i,r}} + \frac{\pi}{2}\right) \cdot \left(\textbf{x} - \frac{\textbf{x}0_{stator_{i,r}}}{\text{chord}_{stator_{i,r}}}\right) \text{ if } (\text{type} = "stator") \land \left|\alpha_{-}\text{major}_{stator_{i,r}}\right| \geq 1 \cdot \circ \\ \text{NaN otherwise} \end{aligned}$$

$$b_{lim} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{rotor_{j,N_r}}, \text{chord}_{stator_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 80 \cdot 10^{-3}$$

 $r = av(N_r)$

 $r = N_r$

r = 1

$rac{r}{m} = av(N_r)$

■ Построение профилей Л РК и НА

Рассматриваемая ступень:
$$j = j = 1$$

$$j = 1$$
 = 1
 $j = 1$ "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$
 j otherwise

$$b_{\text{Linear}} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{\text{rotor}_{j,N_r}}, \text{chord}_{\text{stator}_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 80 \cdot 10^{-3}$$

▼ Построение плоских решеток профилей Л РК и НА (+ ВНА и СА) на треугольниках скоростей

r = 1

 $r = av(N_r)$

 $r = av(N_r)$

■ Построение плоских решеток профилей Л РК и НА (+ ВНА и СА) на треугольниках скоростей

▼ Радиальные и осевые зазоры и длина К

Радиальный зазор (м) [с.64 казаджан]:

$$\overline{\Delta}$$
r = 0.0025

 $0.0015 \le \overline{\Delta}r \le 0.0035 = 1$

$$\Delta_{\mathbf{r}_{i}} = \overline{\Delta}\mathbf{r} \cdot \mathbf{D}_{\mathrm{st}(i,2), N_{\mathbf{r}}}$$

Относительный осевой зазор () [16, с. 245]:

 $\overline{\Delta}a = 0.17$

 $0.1 \le \overline{\Delta}a \le 0.2 = 1$

Осевой зазор (м):
$$\Delta a_i = \overline{\Delta} a \cdot \text{chord}_{rotor_{i,av(N_r)}}$$

Односторонний осевой зазор (м):

Длина ОК (м):

$$\begin{aligned} \text{Length} &= \begin{bmatrix} \Delta a_1 + \left| \text{chord}_{BHA_{av\left(N_r\right)}} \cdot \sin\left(\upsilon_{BHA_{av\left(N_r\right)}}\right) & \text{if } BHA = 1 & \dots \\ 0 & \text{otherwise} \\ + \sum_{i \, = \, 1}^{Z} \left(\text{chord}_{rotor_{i}, \, av\left(N_r\right)} \cdot \sin\left(\upsilon_{rotor_{i}, \, av\left(N_r\right)}\right) \right) + 2 \cdot \sum_{i \, = \, 1}^{Z} \Delta a_i + \sum_{i \, = \, 1}^{Z} \left(\text{chord}_{stator_{i}, \, av\left(N_r\right)} \cdot \sin\left(\upsilon_{stator_{i}, \, av\left(N_r\right)}\right) \right) \\ + \left| \begin{array}{c} \text{chord}_{CA_{av\left(N_r\right)}} \cdot \sin\left(\upsilon_{CA_{av\left(N_r\right)}}\right) & \text{if } CA = 1 & + \Delta a_Z \\ 0 & \text{otherwise} \\ \end{bmatrix} \end{aligned} \end{aligned}$$

▲ Проточная часть

$$j_{w} = \begin{bmatrix} j = 1 \\ j = \end{bmatrix}$$
 "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$ j otherwise

▼ Поперечная часть ступени

$$\mathbf{r} = \min(\mathbf{D}), \min(\mathbf{D}) + \frac{\max(\mathbf{D}) - \min(\mathbf{D})}{N_{dis}} ... \max(\mathbf{D})$$

$$\mathbf{i}_{rotor} = 1 ... Z_{rotor_{j}}$$

$$\mathbf{i}_{stator} = 1 ... Z_{stator_{j}}$$

$$\Pi_{HA}(r,j) = \begin{bmatrix} \frac{2 \cdot \pi}{Z_{stator_{j}}} & \text{if } D_{st(j,2),1} < r < D_{st(j,2),N_{r}} \\ NaN & \text{otherwise} \end{bmatrix}$$

Запас по температуре (К):

$$\Delta T_{safety} = 50$$

Выбранный материал Л:

$$\begin{split} \text{material_blade}_{i} = & \text{ "\mathbb{K}C-6$K" if } 1123 \leq T^*_{st(i,2),av(N_r)} + \Delta T_{safety} \\ \text{ "$BT41" if } 873 \leq T^*_{st(i,2),av(N_r)} + \Delta T_{safety} < 1123 \\ \text{ "$BT25" if } 753 \leq T^*_{st(i,2),av(N_r)} + \Delta T_{safety} < 873 \\ \text{ "$BT9" otherwise} \end{split}$$

Плотность материала Л (кг/м^3):

$$\rho_blade_i = \begin{bmatrix} 8393 & if material_blade_i = "KC-6K" \\ 7900 & if material_blade_i = "BT41" \\ 4500 & if material_blade_i = "BT25" \\ 4570 & if material_blade_i = "BT23" \\ 4510 & if material_blade_i = "BT9" \\ 4430 & if material_blade_i = "BT6" \\ NaN & otherwise \\ \end{bmatrix}$$

Предел длительной прочности ЛРК (Па):

$$\sigma_blade_long_i = 10^6 \cdot \begin{array}{|l|l|} \hline 125 & if \ material_blade_i = "\text{WC-6K"} \\ \hline 123 & if \ material_blade_i = "BT41" \\ \hline 150 & if \ material_blade_i = "BT25" \\ \hline 230 & if \ material_blade_i = "BT23" \\ \hline 200 & if \ material_blade_i = "BT9" \\ \hline 210 & if \ material_blade_i = "BT6" \\ \hline NaN & otherwise \\ \hline \end{array}$$

material_blade^T

le¹	=		1	2	3	4	5	6	7	8	9
		1	"BT9"	"BT9"	"BT9"	"BT9"	"BT9"	"BT25"	"BT25"	"BT25"	"BT41"

 $\rho_{\text{blade}}^{\text{T}} =$

=		1	2	3	4	5	6	7	8	9
	1	4510	4510	4510	4510	4510	4500	4500	4500	7900

 $\sigma_{blade_long}^{T}$

										_
	1	2	3	4	5	6	7	8	9	$\cdot 10^6$
1	200.0	200.0	200.0	200.0	200.0	150.0	150.0	150.0	123.0	

material_blade
$$_{i}$$
 = "BT23" if compressor = "В π " "BT6" if compressor = "КНД" material_blade $_{i}$ otherwise

Коэф. формы: $\frac{k_n}{k_n} = 6.8$

Модуль Юнга I рода материала Π (Π a): E blade = $210 \cdot 10^9$

Коэф. Пуассона материала Π (): μ steel = 0.3

```
\nu 0_{\text{изг.stator}}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             \nu 0_{\text{изг.rotor}}
                                                                                  \nu 0_{y_{\Gamma \Pi}.stator}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             \nu_{\rm VII.rotor}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          for i \in 1...Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  for r \in av(N_r)
(\nu^0угл.stator_bondage \nu^0угл.rotor_bondage
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     for mode \in 1..6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  \nu 0_{\text{M3}\Gamma.\text{stator}_{\hat{1},\,\text{mode}}} = \nu 0_{\text{M3}\Gamma\text{M5}} \Big( \text{mode}\,, \text{mean} \Big( h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big)\,, \\ E\_\text{blade}\,, \rho\_\text{blade}_{\hat{1}}\,, \text{area}_{\text{stator}_{\hat{1},\,r}}\,, \\ Ju_{\text{stator}_{\hat{1},\,r}} \Big) \Big( h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big( h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big) \Big( h_{\text{st}(\hat{1},\,2)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big( h_{\text{st}(\hat{1},\,3)}\,, h_{\text{st}(\hat{1},\,3)} \Big) \Big( h_{\text{st}(\hat{1},\,3)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  \nu 0_{\text{M3}\Gamma.\text{rotor}_{\hat{i}\,,\,\text{mode}}} = \nu 0_{\text{M3}\Gamma\text{M}} \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}}\,, \text{area}_{\text{rotor}_{\hat{i}\,,\,r}}, \\ \text{Ju}_{\text{rotor}_{\hat{i}\,,\,r}} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}_{\hat{i}\,,\,r} \right) \right) \left( \text{mode}\,, \text{mean} \left( h_{st(\hat{i}\,,\,1)}\,, h_{st(\hat{i}\,,\,2)} \right), \\ \text{E\_blade}\,, \rho\_\text{blade}\,, \rho\_\text{blade
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  \nu 0_{\text{yrn.stator}_{i,\,mode}} = \nu 0_{\text{yrn}} \Big( \text{mode}\,, 0\,, \text{mean} \Big( h_{st(i,\,2)}\,, h_{st(i,\,3)} \Big) \,, \\ \text{Jung}(2\,, \mu\_\text{steel}\,, E\_\text{blade}) \,, \rho\_\text{blade}_i\,, \\ \text{stiffness}_{stator}_{i,\,r}\,, \\ \text{Jp}_{stator}_{i,\,r} \,, \\ \text{Jp}_{st
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               \nu 0_{\text{yr.i.rotor}_{i, \, mode}} = \nu 0_{\text{yr.ii}} \left( \text{mode} \,, 0 \,, \text{mean} \left( h_{\text{st(i,1)}} \,, h_{\text{st(i,2)}} \right) \,, \\ \text{Jung}(2 \,, \mu\_\text{steel} \,, E\_\text{blade}) \,, \rho\_\text{blade}_{i} \,, \\ \text{stiffness}_{\text{rotor}_{i,r}} \,, \\ \text{Jp}_{\text{rotor}_{i,r}} \,, \\ \text{Jp}_{
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  \nu 0_{y_{\Gamma JI}.stator\_bondage_{\hat{1},\,mode}} = \nu 0_{y_{\Gamma JI}} \Big( mode, 1, mean \Big( h_{st(\hat{1},\,2)}, h_{st(\hat{1},\,3)} \Big), \\ Jung(2, \mu\_steel, E\_blade), \rho\_blade_{\hat{1},\,stiffness}_{stator_{\hat{1},\,r}}, \\ Jp_{stator_{\hat{1},\,r}}, Jp_{stator
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             \nu 0_{\text{yrst.rotor\_bondage}_{i, \, mode}} = \nu 0_{\text{yrst}} \left( \text{mode}, 1, \text{mean} \left( h_{\text{st}(i, 1)}, h_{\text{st}(i, 2)} \right), \text{Jung}(2, \mu\_\text{steel}, E\_\text{blade}), \rho\_\text{blade}_i, \text{stiffness}_{\text{rotor}_{i, r}}, \text{Jp}_{\text{rotor}_{i, r}}, \text{Jp}_{\text{rotor}_{i
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          \nu 0_{\text{изг.stator}}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       \nu 0_{\text{изг.rotor}}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ν0<sub>VГЛ.rotor</sub>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          \nu_{\rm V\Gamma J. stator}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     (\nu^0угл.stator_bondage \nu^0угл.rotor_bondage
```

Частота собственных изгибных колебаний (Гц) [9, с.240]:

$stack \left(\nu 0_{y_{\Gamma JI}.stator}, \nu 0_{y_{\Gamma JI}.rotor}\right)^T =$		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1	1283	1523	1748	1962	2173	2377	2548	2678	2165	1176	1405	1648	1866	2079	2291	2480	2627	2089
$\operatorname{stack}\left(\nu 0_{\text{угл.stator}}, \nu 0_{\text{угл.rotor}}\right)^{\mathrm{T}} = \begin{bmatrix} 2\\ 3\\ 4\\ 5\\ 6 \end{bmatrix}$	2	3849	4568	5245	5887	6519	7131	7643	8034	6495	3529	4214	4945	5597	6238	6872	7439	7881	6267
	3	6416	7614	8741	9811	10866	11886	12739	13390	10826	5882	7024	8241	9328	10396	11454	12399	13135	10445
	4	8982	10659	12238	13736	15212	16640	17834	18746	15156	8235	9833	11537	13059	14555	16036	17358	18389	14624
	5	11548	13705	15734	17661	19558	21394	22930	24102	19486	10588	12643	14834	16791	18713	20617	22318	23643	18802
	6	14114	16751	19230	21585	23904	26149	28025	29458	23817	12941	15452	18130	20522	22872	25199	27277	28897	22980

Частота собственных угловых колебаний (Гц) [9, с.243] без и с бандажом:

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1	302	454	632	777	974	1171	1249	1367	1237	376	485	599	696	803	909	998	1083	894
$\operatorname{stack}\left(\nu 0_{M3\Gamma.stator}, \nu 0_{M3\Gamma.rotor}\right)^{T} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	2	1892	2843	3959	4870	6103	7336	7831	8569	7754	2355	3043	3754	4365	5032	5697	6254	6789	5601
	3	5297	7961	11087	13637	17089	20544	21929	23995	21713	6595	8520	10513	12222	14090	15953	17513	19011	15684
	4	10388	15611	21743	26744	33513	40287	43004	47056	42581	12934	16709	20617	23968	27631	31286	34344	37281	30757
	5	17164	25796	35927	44191	55377	66570	71059	77755	70360	21372	27610	34067	39605	45657	51697	56749	61603	50823
	6	25634	38525	53656	65996	82703	99419	106123	116122	105079	31918	41234	50877	59148	68187	77206	84752	92000	75901

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1	2566	3046	3496	3925	4346	4754	5096	5356	4330	2353	2809	3296	3731	4159	4582	4960	5254	4178
$stack (\nu 0_{yгл.stator_bondage}, \nu 0_{yгл.rotor_bondage})^T =$	2	5132	6091	6993	7849	8692	9509	10191	10712	8661	4706	5619	6593	7462	8317	9163	9919	10508	8356
	3	7699	9137	10489	11774	13039	14263	15287	16068	12991	7059	8428	9889	11194	12476	13745	14879	15762	12535
	4	10265	12182	13986	15698	17385	19017	20382	21424	17321	9411	11238	13186	14925	16634	18327	19838	21016	16713
	5	12831	15228	17482	19623	21731	23771	25478	26780	21652	11764	14047	16482	18656	20793	22908	24798	26270	20891
	6	15397	18273	20979	23547	26077	28526	30573	32136	25982	14117	16857	19778	22387	24951	27490	29757	31525	25069

▶ Расчет собственных частот колебаний Л

Pасчетный узел: type = "compressor"

Объем бандажной полки (M^3) : $V_{6\Pi} = 0$

Радиус положения ЦМ бандажной полки (м): $R_{6\Pi} = 0$

▼ Расчет Л на прочность

```
\begin{aligned} & \text{area0}_{rotor}(i,z) = \text{area}_{rotor_{i},N_{r}} \cdot \begin{bmatrix} e^{\left( \overrightarrow{\sigma 0}_{rotor.max}(i,z) \cdot \int_{Z} & z \, dz \right)} & \text{if } z \leq R0_{rotor}(i,z) \\ & 1 \quad \text{otherwise} \\ & \text{N0}_{rotor}(i,z) = \rho\_\text{blade}_{i} \cdot \omega^{2} \cdot \begin{bmatrix} \int_{Z}^{mean\left(R_{st(i,1),N_{r}},R_{st(i,2),N_{r}}\right)} & \text{area0}_{rotor}(i,z) \cdot z \, dz + V_{\delta\Pi} \cdot R_{\delta\Pi} \end{bmatrix} & \text{if type} = \text{"compressor"} \\ & \left( \int_{Z}^{mean\left(R_{st(i,2),N_{r}},R_{st(i,3),N_{r}}\right)} & \text{area0}_{rotor}(i,z) \cdot z \, dz + V_{\delta\Pi} \cdot R_{\delta\Pi} \right) & \text{if type} = \text{"turbine"} \end{aligned} \right) \end{aligned}
                \sigma_{0_{rotor}(i,z)} = \frac{N0_{rotor}(i,z)}{area0_{rotor}(i,z)}
                     area_{rotor.}(i,z) = interp\Big(pspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(area_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(area_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T\Big)
                     area_{stator.}(i,z) = interp \left( pspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( area_{stator}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( area_{stator}, i, i, 1, N_r \right)^T, submatrix \left( area_{stato
          \begin{aligned} N_{rotor}(i,z) &= \rho\_{blade}_{i} \cdot \omega^{2} \cdot \\ & \int_{z}^{mean \left(R_{st(i,1),N_{r}}, R_{st(i,2),N_{r}}\right)} \operatorname{area}_{rotor.}(i,z) \cdot z \, dz + V_{\delta\Pi} \cdot R_{\delta\Pi} \end{aligned} \quad \text{if type = "compressor"} \\ & \left(\int_{z}^{mean \left(R_{st(i,2),N_{r}}, R_{st(i,3),N_{r}}\right)} \operatorname{area}_{rotor.}(i,z) \cdot z \, dz + V_{\delta\Pi} \cdot R_{\delta\Pi} \right) \quad \text{if type = "turbine"} \end{aligned}
                \sigma_{z_{rotor}(i,z)} = \frac{N_{rotor}(i,z)}{area_{rotor}(i,z)}
                      \rho_{1}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,1),st(i,1),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(
                     \rho_{2}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,2),st(i,2),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,2),st(i,2),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2
                     \rho_{3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,3),st(i,3),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(\rho,st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3
                     P_{1}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,1),st(i,1),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,1),st(i,1),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),
                     P_2(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(P,st(i,2),st(i,2),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(P,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(P,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i
                     P_{3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,3),st(i,3),1,N_{r}\Big)^{T}\Big),submatrix\Big(R,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,3),st(i,3),1,N_{r}\Big)^{T},submatrix\Big(P,st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(
                     c_{a1}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_a,st(i,1),st(i,1),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_a,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_a,st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),
                     c_{a2}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(c_a,st(i,2),st(i,2),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(c_a,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(c_a,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),
                     c_{a3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T, submatrix\Big(c_a,st(i,3),st(i,3),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T, submatrix\Big(c_a,st(i,3),st(i,3),1,N_r\Big)^T, submatrix\Big(c_a,st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),
                     c_{u1}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_{u},st(i,1),st(i,1),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(c_{u},st(i,1),st(i,1),1,N_r\Big)^T, submatrix\Big(s_{u},st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st(i,1),st
```

```
c_{u2}(i,z) = interp\Big(lspline\Big(submatrix(R,st(i,2),st(i,2),1,N_r)^1,submatrix(c_u,st(i,2),st(i,2),1,N_r)^1\Big),submatrix(R,st(i,2),st(i,2),1,N_r)^1,submatrix(c_u,st(i,2),st(i,2),1,N_r)^1,submatrix(c_u,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,
         c_{u3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T,submatrix\Big(c_u,st(i,3),st(i,3),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T,submatrix\Big(c_u,st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i
         w_{u1}(i,z) = interp \Big( lspline \Big( submatrix \Big( R \,, st(i,1) \,, st(i,1) \,, 1 \,, N_r \Big)^T \,, submatrix \Big( w_u \,, st(i,1) \,, st(i,1) \,, 1 \,, N_r \Big)^T \Big), submatrix \Big( R \,, st(i,1) \,, st(i
         w_{u2}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(w_u,st(i,2),st(i,2),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(w_u,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(w_u,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(
         w_{u3}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T, submatrix\Big(w_u,st(i,3),st(i,3),1,N_r\Big)^T\Big), submatrix\Big(R,st(i,3),st(i,3),1,N_r\Big)^T, submatrix\Big(w_u,st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st(i,3),st
        qx_{rotor}(i,z) = -\frac{2\pi z}{Z_{rotor_i}} \cdot \begin{bmatrix} \left[ \left( P_2(i,z) - P_1(i,z) \right) + \rho_1(i,z) \cdot c_{a1}(i,z) \cdot \left( c_{a2}(i,z) - c_{a1}(i,z) \right) \right] & \text{if type = "compressor"} \\ \left[ \left( P_3(i,z) - P_2(i,z) \right) + \rho_2(i,z) \cdot c_{a2}(i,z) \cdot \left( c_{a3}(i,z) - c_{a2}(i,z) \right) \right] & \text{if type = "turbine"} \end{aligned}
   \begin{vmatrix} q y_{rotor}(i,z) &= \frac{2\pi\,z}{Z_{rotor_i}} \cdot \\ \begin{bmatrix} \rho_1(i,z) \cdot c_{a1}(i,z) \cdot \left(w_{u2}(i,z) - w_{u1}(i,z)\right) \end{bmatrix} & \text{if type = "compressor"} \\ \left[ \rho_2(i,z) \cdot c_{a2}(i,z) \cdot \left(w_{u3}(i,z) - w_{u2}(i,z)\right) \right] & \text{if type = "turbine"} \\ \end{vmatrix} 
    | \text{qy}_{\text{stator}}(i,z) = -\frac{2\pi z}{Z_{\text{stator}_i}} \cdot \left[ \begin{bmatrix} \rho_2(i,z) \cdot c_{a2}(i,z) \cdot \left( c_{u3}(i,z) - c_{u2}(i,z) \right) \end{bmatrix} \text{ if type = "compressor"} \\ \left[ \rho_1(i,z) \cdot c_{a1}(i,z) \cdot \left( c_{u2}(i,z) - c_{u1}(i,z) \right) \right] \text{ if type = "turbine"} 
qy_{rotor}(i,z1)\cdot(z1-z) dz1
                                                                                                                                                           mean(R_{st(i,2),1}, R_{st(i,3),1}) if type="compressor"
                                                                                                                                         \bigcap \mathsf{lmean} \big( \mathsf{R}_{\mathsf{st}(i,1),1}, \mathsf{R}_{\mathsf{st}(i,2),1} \big) \quad \text{if type="turbine"} 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              qy_{stator}(i,z1)\cdot(z1-z)dz1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       qx_{rotor}(i,z1)\cdot(z1-z) dz1
                                                                                                                                                              mean(R_{st(i,2),1}, R_{st(i,3),1}) if type="compressor"
                                                                                                                                                        mean (R_{st(i,1),1}, R_{st(i,2),1}) if type="turbine"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        qx_{stator}(i,z1)\cdot(z1-z) dz1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        \left( \begin{array}{c} \operatorname{mean} \left( {{R_{st(i,1),N_r}},{R_{st(i,2),N_r}}} \right) & \text{if type="compressor"} \\ \operatorname{mean} \left( {{R_{st(i,2),N_r}},{R_{st(i,3),N_r}}} \right) & \text{if type="turbine"} \end{array} \right)
```

```
q_{rotor}(1, z) uz
shift_x_{rotor}(i, z) =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        N_{rotor}(i,z)
                                                                                                                                             mean(R_{st(i,1),1}, R_{st(i,2),1}) if type="compressor"
                                                                                                                                              mean(R_{st(i,2),1}, R_{st(i,3),1}) if type="turbine"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          mean(R_{st(i,1),N_r}, R_{st(i,2),N_r}) \text{ if type="compressor"}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \operatorname{mean}(R_{\operatorname{st}(i,2),N_r},R_{\operatorname{st}(i,3),N_r}) | \text{ if type="turbine"} 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     (qy_{rotor}(i,z)\cdot z) dz
shift_y_{rotor}(i, z) = z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      N_{rotor}(i,z) \cdot z^2
                                                                                                                                                       mean(R_{st(i,1),1}, R_{st(i,2),1}) if type="compressor"
                                                                                                                                                           mean(R_{st(i,2),1}, R_{st(i,3),1}) if type="turbine"
x0_{\text{rotor.}}(i,z) = \text{interp} \left( \text{lspline} \left( \text{submatrix} \left( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \right)^T, \text{submatrix} \left( x0_{\text{rotor}}, i, i, 1, N_r \right)^T \right), \text{submatrix} \left( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \right)^T, \text{submatrix} \left( x0_{\text{rotor}}, i, i, 1, N_r \right)^T, z \right)
x0_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(x0_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(x0_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T\Big)
y0_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(y0_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T,submatrix\Big(y0_{rotor},i,i,1,N_r\Big)^T,submatrix\Big(y0_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(y0_{rotor},i,i,1,N_r\Big)^T,submatrix\Big(y0_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(y0_{rotor},i,i,1,N_r\Big)^T\Big)
y0_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(y0_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(y0_{stator},i,i,1,N_r\Big)^T, submatrix\Big(y0_{stator},i,i,1,N_r\Big)^T\Big)
\alpha_{major_{rotor.}(i,z)} = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( \alpha_{major_{rotor},i,i,1,N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( \alpha_{major_{rotor},i,i,1,N_r \right)^T \right), submatrix \left( \alpha_{major_{rotor},i,i,1,N_r \right)^T, submatrix \left( \alpha_{major_{rotor},i,i,1,N_r \right)^T \right)
\alpha_{\text{major}_{\text{stator.}}(i,z)} = \text{interp} \Big( \text{lspline} \Big( \text{submatrix} \Big( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big( \alpha_{\text{major}_{\text{stator.}}}(i,i,1,N_r \Big)^T \Big), \text{submatrix} \Big( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big( \alpha_{\text{major}_{\text{stator.}}}(i,i,1,N_r \Big)^T \Big), \text{submatrix} \Big( \alpha_{\text{major}_{\text{stator.}}}(i,i,1,N_r \Big)^T \Big), \text{submatrix} \Big( \alpha_{\text{major}_{\text{stator.}}}(i,i,1,N_r \Big)^T \Big) \Big)
Ju_{rotor.}(i,z) = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Ju_{rotor}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Ju_{rotor}, i, i, 1, N_r \right)^T, submatrix \left( Ju
Ju_{stator.}(i,z) = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Ju_{stator}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Ju_{stator}, i, i, 1, N_r \right)^T, submatrix \left( Ju_
Jv_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Jv_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Jv_{rotor},i,i,1,N_r\Big)^T, su
Jv_{stator.}(i,z) = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Jv_{stator}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( Jv_{stator}, i, i, 1, N_r \right)^T, submatrix \left( Jv_
CPx_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPx_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPx_{rotor},i,i,1,N_r\Big)^T, submatrix\Big(CPx_{rotor},i,i,1,N_r\Big)^T\Big)
CPx_{stator.}(i, z) = interp \left( lspline \left( submatrix \left( R, st(i, 2), st(i, 2), 1, N_r \right)^T, submatrix \left( CPx_{stator}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i, 2), st(i, 2), 1, N_r \right)^T, submatrix \left( CPx_{stator}, i, i, 1, N_r \right)^T, submatrix \left( C
CPy_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPy_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPy_{rotor},i,i,1,N_r\Big)^T, submatrix\Big(CPy_{rotor},i,i,1,N_r\Big)^T\Big)
CPy_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPy_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(CPy_{stator},i,i,1,N_r\Big)^T, submatrix\Big(CPy_{stator},i,i,1,N_r\Big)^T
CPx_{rotor.axis}(i,z) = axis_{X} \Big( CPx_{rotor.}(i,z), CPy_{rotor.}(i,z), x0_{rotor.}(i,z), y0_{rotor.}(i,z), \alpha_{major_{rotor.}}(i,z), 1 \Big)
CPx_{stator.axis}(i,z) = axis_{x} \left( CPx_{stator.}(i,z), CPy_{stator.}(i,z), x0_{stator.}(i,z), y0_{stator.}(i,z), \alpha_{stator.}(i,z), \alpha_{
CPy_{rotor.axis}(i,z) = axis_{y} \left( CPx_{rotor.}(i,z), CPy_{rotor.}(i,z), x0_{rotor.}(i,z), y0_{rotor.}(i,z), \alpha_{major_{rotor.}}(i,z), 1 \right)
CPy_{stator.axis}(i,z) = axis_{v}(CPx_{stator.}(i,z), CPy_{stator.}(i,z), x0_{stator.}(i,z), y0_{stator.}(i,z), \alpha_{major_{stator.}}(i,z), 1)
```

```
Wp_{rotor.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Wp_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Wp_{rotor},i,i,1,N_r\Big)^T, submatrix\Big(Wp_{rotor},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),st(i,2),
  Wp_{stator.}(i,z) = interp\Big(lspline\Big(submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Wp_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T, submatrix\Big(Wp_{stator},i,i,1,N_r\Big)^T\Big), submatrix\Big(R,st(i,2),st(i,2),1,N_r\Big)^T\Big)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  \left(qx_{rotor}(i,z1) \cdot CPy_{rotor.axis}(i,z1) - qy_{rotor}(i,z1) \cdot CPx_{rotor.axis}(i,z1)\right) dz1
                                                                                                                                                                                                                                                                                                                                                                                                                                                          \left(qx_{stator}(i,z1)\cdot CPy_{stator.axis}(i,z1) - qy_{stator}(i,z1)\cdot CPx_{stator.axis}(i,z1)\right) dz1
  \varphi_{\text{uv}_{\text{rotor}}(i,z)} = \text{interp} \left[ \text{lspline} \left[ \text{submatrix} \left( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \right)^T, \text{submatrix} \left( \frac{\pi}{2} - \upsilon_{\text{rotor}}, i, i, 1, N_r \right)^T \right] \right], \text{submatrix} \left( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \right)^T, \text{submatrix} \left( \frac{\pi}{2} - \upsilon_{\text{rotor}}, i, i, 1, N_r \right)^T, \text{submatrix} \left( R, \text{st}(i,2), \text{st}(i,2), 1, N_r \right)^T, \text{st}(i,2), \text
 \left| \phi_{\_} u v_{stator}(i,z) \right| = interp \left( lspline \left( submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T \right), submatrix \left( R, st(i,2), st(i,2), 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, submatrix \left( \frac{\pi}{2} - \upsilon_{stator}, i, i, 1, N_r \right)^T, sub
  Mu_{rotor}(i,z) = axis_{x}(Mx_{rotor}(i,z), My_{rotor}(i,z), 0, 0, \phi_{uv_{rotor}(i,z), 1})
  Mu_{stator}(i,z) = axis_{x}(Mx_{stator}(i,z), My_{stator}(i,z), 0, 0, \varphi_{uv_{stator}}(i,z), 1)
  Mv_{rotor}(i,z) = axis_{y}(Mx_{rotor}(i,z), My_{rotor}(i,z), 0, 0, \phi_{uv_{rotor}(i,z), 1})
   Mv_{stator}(i,z) = axis_{v}(Mx_{stator}(i,z), My_{stator}(i,z), 0, 0, \varphi_{uv_{stator}}(i,z), 1)
```

		1	2	3	4	5	6	7	8	9	
$\mathbf{u} \cdot \mathbf{u} \cdot \mathbf{T} =$	1	-2.510	-2.054	-2.085	-2.115	-2.132	-1.606	-2.172	-2.185	-2.192	.10
u_u _{rotor} =	2	-1.351	-1.351	-1.350	-1.351	-1.351	-1.353	-1.355	-1.357	-1.358	10
	3	-1.523	-1.522	-0.815	-0.815	-0.815	-0.815	-1.522	-1.523	-1.523	

$$v_u_{rotor}^{\ \ T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 4.237 & 4.076 & 4.019 & 3.929 & 3.875 & 3.807 & 3.694 & 3.622 & 3.587 \\ 2 & 1.901 & 1.915 & 1.939 & 1.928 & 1.923 & 1.904 & 1.851 & 1.812 & 1.799 \\ 3 & 1.203 & 1.260 & 1.288 & 1.289 & 1.293 & 1.287 & 1.254 & 1.229 & 1.225 \end{bmatrix} \cdot 10^{-3}$$

 $\cdot 10^{-3}$

 $\cdot 10^{-3}$

$$u_l_{rotor}^{\ T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 29.481 & 29.600 & 29.637 & 28.585 & 27.516 & -14.296 & -9.934 & -9.382 & -8.834 \\ 2 & -19.718 & -20.351 & -20.984 & -20.984 & -20.983 & -20.350 & -18.451 & -17.185 & -16.552 \\ 3 & -18.470 & -22.001 & -23.413 & -23.413 & -23.413 & -23.413 & -21.295 & -19.883 & -19.882 \end{bmatrix}$$

		1	2	3	4	5	6	7	8	9	
$\mathbf{v} = 1 \cdot \mathbf{v} \cdot 1 = \mathbf{v} \cdot \mathbf{v}$	1	-5.196	-4.168	-3.793	-3.326	-3.071	-2.850	-2.880	-2.923	-2.948	$\cdot 10^{-3}$
v_rotor –	2	-1.511	-1.528	-1.556	-1.547	-1.544	-1.528	-1.489	-1.471	-1.468	
	3	-0.990	-1.025	-1.053	-1.055	-1.060	-1.054	-1.023	-1.005	-1.004	

		1	2	3	4	5	6	7	8	9	
$v u_{-4-4} =$	1	0.766	0.804	10.237	10.237	10.240	10.238	10.225	10.217	10.214	10^{-3}
v_u _{stator} =	2	1.085	1.133	1.203	1.208	1.227	1.218	1.132	1.070	1.041	
	3	1.433	1.483	1.559	1.568	1.590	1.583	1.497	1.433	1.403	

$$\mathbf{u}_{-1}^{\mathsf{T}} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ & 1 & 12.342 & 12.334 & -2.137 & -2.146 & -2.210 & -2.164 & -1.812 & -1.567 & -1.464 \\ & 2 & 13.698 & 13.687 & 13.670 & 13.669 & 13.663 & 13.665 & 13.687 & 13.700 & 13.705 \\ & 3 & 14.813 & 14.801 & 14.782 & 14.780 & 14.774 & 14.775 & 14.798 & 14.811 & 14.817 \end{bmatrix} \cdot 10^{-3}$$

		1	2	3	4	5	6	7	8	9	
$\mathbf{v} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	1	-1.735	-1.904	-12.327	-12.327	-12.324	-12.326	-12.341	-12.351	-12.354	.1
'_stator _	2	-1.873	-2.090	-2.405	-2.428	-2.513	-2.477	-2.087	-1.814	-1.692	
	3	-1.994	-2.222	-2.567	-2.607	-2.708	-2.684	-2.287	-2.005	-1.872	

$$\begin{pmatrix} \sigma_{-Protor} & \sigma_{-n}rotor \\ \sigma_{-Dstator} & \sigma_{-n}rotor \\ \sigma_{-Dstator}$$

$$\begin{pmatrix} \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \end{pmatrix} = \begin{bmatrix} \text{for } i \in 1 ... Z \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \end{bmatrix} = \begin{bmatrix} \text{for } i \in 1 ... Z \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{stator.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{stator.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{stator.} & \sigma_{-} P_{stator.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} \\ \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} & \sigma_{-} P_{rotor.} &$$

		1	2	3	4	5	6	7	8	9
$\sigma p \cdot T =$	1	-25.36	-43.41	-69.75	-98.16	-126.08	-151.02	-146.74	-155.42	-151.05
$\sigma_p_{rotor} =$	2	-43.70	-59.19	-87.64	-113.08	-138.10	-159.06	-148.26	-154.01	-151.15
	3	-0.17	-0.20	-0.88	-0.83	-0.78	-0.65	-0.32	-0.17	-0.48

			1	2	3	4	5	6	7	8	9	
$\cdot 10^6$	σ ρ_{-+} =	1	0.78	0.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	.10
10	$\sigma_{p_{stator}} =$	2	144.83	123.74	125.95	125.71	114.39	97.71	86.77	69.31	52.54	
		3	268.54	238.84	243.72	245.47	226.17	193.17	165.54	128.15	96.03	

		1	2	3	4	5	6	7	8	9
$\sigma p_{motor} \leq 70.10^6 =$	1	1	1	1	1	1	1	1	1	1
-Protor - / o 10	2	1	1	1	1	1	1	1	1	1
	3	1	1	1	1	1	1	1	1	1

		1	2	3	4	5	6	7	8	9
$\sigma p_{\text{stater}} \leq 70.10^6 =$	1	1	1	1	1	1	1	1	1	1
-Pstator = 70 10 -	2	0	0	0	0	0	0	0	1	1
	3	0	0	0	0	0	0	0	0	0

$$\sigma_{-n_{rotor}}^{T} = \begin{bmatrix} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 39.17 & 54.70 & 79.76 & 99.20 & 117.75 & 101.61 & 107.20 & 118.76 & 118.43 \\ 2 & 33.26 & 45.23 & 67.36 & 87.13 & 106.69 & 123.25 & 115.91 & 121.96 & 120.57 \\ 3 & 0.14 & 0.16 & 0.70 & 0.67 & 0.63 & 0.52 & 0.26 & 0.14 & 0.39 \end{bmatrix} \cdot 10^{6}$$

		1	2	3	4	5	6	7	8	9	
$\sigma_{n_{stator}}^{T} =$	1	-1.78	-1.39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	.10
- Stator	2	-253.77	-232.86	-258.44	-259.25	-241.04	-204.55	-163.58	-119.70	-86.72	
	3	-380.79	-367.69	-414.61	-421.48	-398.71	-339.21	-260.39	-183.82	-131.07	

		1	2	3	4	5	6	7	8	9
$\sigma n_{\text{mater}} \leq 70 \cdot 10^6 =$	1	1	1	0	0	0	0	0	0	0
-rotor = 70 10 -	2	1	1	1	0	0	0	0	0	0
	3	1	1	1	1	1	1	1	1	1

		1	2	3	4	5	6	7	8	9
$\sigma = 0.410^6 = 0.000$	1	1	1	1	1	1	1	1	1	1
-nstator = 70 10 -	2	1	1	1	1	1	1	1	1	1
	3	1	1	1	1	1	1	1	1	1

$$\begin{pmatrix} \sigma_{rotor} \\ \sigma_{stator} \end{pmatrix} = \begin{cases} \text{for } i \in 1 ... Z \\ \text{for } r \in 1 ... N_r \\ \\ \sigma_{rotor_{i,r}} = \sqrt{\left(\sigma_{-}z_{rotor}(i, R_{st(i,2),r}) + \max\left(\sigma_{-}p_{rotor_{i,r}}, \sigma_{-}n_{rotor_{i,r}}\right)\right)^2 + \tau_{rotor}(i, R_{st(i,2),r})^2} \\ \\ \sigma_{stator_{i,r}} = \sqrt{\left(0 + \max\left(\sigma_{-}p_{stator_{i,r}}, \sigma_{-}n_{stator_{i,r}}\right)\right)^2 + \tau_{stator}(i, R_{st(i,2),r})^2} \\ \\ \begin{pmatrix} \sigma_{rotor} \\ \sigma_{stator} \end{pmatrix}$$

$$\begin{pmatrix} \sigma_{rotor.} \\ \sigma_{stator.} \end{pmatrix} = \begin{cases} \text{for } i \in 1...Z \\ \\ \sigma_{rotor.}(i,z) = \text{interp} \Big(\text{lspline} \Big(\text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{rotor}, i, i, 1, N_r \Big)^T \Big), \text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(\sigma_{rotor}, i, i, 1, N_r \Big)^T, \text{submatrix} \Big(R, \text{st}(i,2), \text{st}(i,2), 1, N_r \Big)^T, \text{submatrix} \Big(R, \text{st}(i,2), 1, N_r \Big) \Big(R, \text{st}(i,2), 1, N_r \Big) \Big(R, \text{st}(i,2), 1, N_r \Big) \Big($$

		1	2	3	4	5	6	7	8	9		
σ_{\cdots}	1	178.23	171.81	180.85	187.05	195.55	171.43	171.26	178.96	217.93	$\cdot 10^6$	$\sigma_{\rm stator}^{\rm T}$ =
$\sigma_{\rm rotor} =$	2	131.00	127.56	139.70	149.69	161.90	172.59	160.88	163.99	190.73	10	stator
	3	5.03	4.08	6.73	5.17	4.15	3.19	2.04	1.34	3.80		

	1	2	3	4	5	6	7	8	9
 1	0.81	0.62	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	144.85	123.76	125.98	125.75	114.43	97.76	86.81	69.34	52.57
3	268.55	238.86	243.74	245.49	226.20	193.19	165.56	128.17	96.05

$$\left(\begin{array}{c} \text{safety}_{rotor} \\ \text{safety}_{stator} \end{array}\right) = \left|\begin{array}{c} \text{for } i \in 1 ... Z \\ \text{for } r \in 1 ... N_r \end{array}\right|$$

$$\left|\begin{array}{c} \text{safety}_{rotor}_{i,\,r} = \left|\begin{array}{c} \underline{\sigma_{_blade_long_i}} \\ \overline{\sigma_{rotor}}_{i,\,r} \end{array}\right| \text{ if } \sigma_{rotor}_{i,\,r} \neq 0 \\ \infty \text{ otherwise} \end{array}\right|$$

$$\left|\begin{array}{c} \text{safety}_{stator}_{i,\,r} = \left|\begin{array}{c} \underline{\sigma_{_blade_long_i}} \\ \overline{\sigma_{stator}}_{i,\,r} \end{array}\right| \text{ if } \sigma_{stator}_{i,\,r} \neq 0 \\ \infty \text{ otherwise} \end{array}\right|$$

$$\left(\begin{array}{c} \text{safety}_{rotor} \\ \text{safety}_{stator} \end{array}\right)$$

		1	2	3	4	5	6	7	8	9
safety _{rotor} $T =$	1	1.12	1.16	1.11	1.07	1.02	0.87	0.88	0.84	0.56
rotor –	2	1.53	1.57	1.43	1.34	1.24	0.87	0.93	0.91	0.64
	3	39.76	48.99	29.72	38.69	48.16	46.96	73.45	112.07	32.4

		1	2	3	4	5	6	7	8	9
$safety_{rotor}^{T} \ge safety =$	1	0	0	0	0	0	0	0	0	0
rotor = safety =	2	1	1	1	1	0	0	0	0	0
	3	1	1	1	1	1	1	1	1	1

		1	2	3	4	5
safety, to to =	1	248.08	320.97	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
saicty stator -	2	1.38	1.62	1.59	1.59	1.75
	3	0.74	0.84	0.82	0.81	

		1	2	3	4	5	6	7	8	9
$safety_{stator} \xrightarrow{T} \ge safety =$	1	1	1	1	1	1	1	1	1	1
stator = salety =	2	1	1	1	1	1	1	1	1	1
	3	0	0	0	0	0	0	0	0	0

Рассматриваемая ступень:

$$j = \begin{vmatrix} j = 1 & \text{if type} = \text{"compressor"} \\ Z & \text{if type} = \text{"turbine"} \end{vmatrix}$$
 = 1 $= 1$

$$\mathbf{b_{limb}} = \frac{\text{ceil}\left(\text{max}\left(\text{chord}_{rotor_{j,N_r}}, \text{chord}_{stator_{j,N_r}}\right) \cdot 10^2\right)}{10^2} = 80 \cdot 10^{-3}$$

Расстояния от оси ЛМ до рассматриваемой ступени (м):

$$Rj = submatrix (R, 2 \cdot j - 1, 2 \cdot j + 1, 1, N_r) = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 177.3 & 230.8 & 274.1 \\ 2 & 182.2 & 230.8 & 270.8 \\ \hline 3 & 186.8 & 230.8 & 267.7 \end{vmatrix} \cdot 10^{-3}$$

Дискретизация по высоте Л:

$$z = \min(Rj), \min(Rj) + \frac{\max(Rj) - \min(Rj)}{100} ... \max(Rj)$$

$$z_{rotor} = \begin{bmatrix} mean(Rj_{1,1},Rj_{2,1}), mean(Rj_{1,1},Rj_{2,1}) + \frac{mean(Rj_{1,N_r},Rj_{2,N_r}) - mean(Rj_{1,1},Rj_{2,1})}{100} ... mean(Rj_{1,N_r},Rj_{2,N_r}) & \text{if type = "compressor"} \\ mean(Rj_{2,1},Rj_{3,1}), mean(Rj_{2,1},Rj_{3,1}) + \frac{mean(Rj_{2,N_r},Rj_{3,N_r}) - mean(Rj_{2,1},Rj_{3,1})}{100} ... mean(Rj_{2,N_r},Rj_{3,N_r}) & \text{if type = "turbine"} \\ \end{bmatrix}$$

▼ Результаты расчета на прочность Л

$$\begin{pmatrix} blade \\ r \end{pmatrix} = \begin{pmatrix} "rotor" \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -2.51 & 4.24 \\ 2 & 29.48 & -5.20 \\ \hline 3 & 0.21 & 0.77 \\ \hline 4 & 12.34 & -1.74 \end{pmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{p_{rotor_{j,r}}} & \sigma_{p_{stator_{j,r}}} \\ \sigma_{n_{rotor_{j,r}}} & \sigma_{n_{stator_{j,r}}} \end{pmatrix} = \begin{pmatrix} -25 & 1 \\ 39 & -2 \end{pmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{pmatrix} 1 \\ 178 \end{pmatrix} \cdot 10^{6}$$

Коэф. запаса:
$$\begin{pmatrix} \text{safety}_{\text{stator}_{j,r}} \\ \text{safety}_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 248.077 \\ 2 \\ 1.122 \end{bmatrix}$$

$$\begin{pmatrix} v_{-}p \\ v_{-}l_{rotor_{j},r} \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} v_{-}u_{rotor_{j},r} \\ v_{-}l_{rotor_{j},r} \end{pmatrix} \text{ if blade = "rotor"} & = \begin{bmatrix} 1 \\ 1 & 4.237 \\ 2 & -5.196 \end{bmatrix} \cdot 10^{-3} \qquad \begin{pmatrix} x0 \\ y0 \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} x0_{rotor_{j},r} \\ y0_{rotor_{j},r} \end{pmatrix} \text{ if blade = "rotor"} & = \begin{bmatrix} 1 \\ 1 & 24.522 \\ 2 & 3.097 \end{bmatrix} \cdot 10^{-3} \qquad \text{chord} = \begin{bmatrix} \text{chord}_{rotor_{j},r} & \text{if blade = "rotor"} & = 54\cdot10^{-3} \\ \text{chord}_{stator_{j},r} & \text{if blade = "stator"} \end{bmatrix}$$

$$\begin{pmatrix} v_{-}u_{stator_{j},r} \\ v_{-}l_{stator_{j},r} \end{pmatrix} \text{ otherwise}$$

$$\begin{pmatrix} x0_{stator_{j},r} \\ y0_{stator_{j},r} \end{pmatrix} \text{ otherwise}$$

$$\begin{pmatrix} \text{blade} \\ \text{r} \end{pmatrix} = \begin{pmatrix} \text{"rotor"} \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j,r}} & v_{-}u_{rotor_{j,r}} \\ u_{-}l_{rotor_{j,r}} & v_{-}l_{rotor_{j,r}} \\ u_{-}u_{stator_{j,r}} & v_{-}u_{stator_{j,r}} \\ u_{-}l_{stator_{j,r}} & v_{-}l_{stator_{j,r}} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -1.35 & 1.90 \\ 2 & -19.72 & -1.51 \\ 3 & -0.02 & 1.08 \\ 4 & 13.70 & -1.87 \end{pmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{p_{rotor_{j,r}}} & \sigma_{p_{stator_{j,r}}} \\ \sigma_{n_{rotor_{j,r}}} & \sigma_{n_{stator_{j,r}}} \end{pmatrix} = \begin{pmatrix} -44 & 145 \\ 33 & -254 \end{pmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{pmatrix} 145 \\ 131 \end{pmatrix} \cdot 10^{6}$$

Коэф. запаса:
$$\begin{pmatrix} safety_{stator_{j,r}} \\ safety_{rotor_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 1.381 2 1.527

$$\begin{pmatrix} v_{-}v_{rotor_{j,r}} \\ v_{-}l_{rotor_{j,r}} \end{pmatrix} \text{ if blade = "rotor" } = \begin{bmatrix} \frac{1}{1 & 1.901} \\ \frac{1}{2} & -1.511 \end{bmatrix} \cdot 10^{-3}$$

$$\begin{pmatrix} v_{-}v_{stator_{j,r}} \\ v_{-}l_{stator_{j,r}} \end{pmatrix} \text{ otherwise }$$

$$\begin{pmatrix} v_{-}v_{stator_{j,r}} \\ v_{-}l_{stator_{j,r}} \end{pmatrix} \text{ otherwise }$$

$$\begin{pmatrix} v_{-}v_{stator_{j,r}} \\ v_{-}l_{stator_{j,r}} \end{pmatrix} \text{ otherwise }$$

$$\begin{pmatrix} v_{-}v_{stator_{j,r}} \\ v_{-}l_{stator_{j,r}} \\ v_{-}l_{stator_{j,r}} \end{pmatrix} \text{ otherwise }$$

$$\begin{pmatrix} \text{blade} \\ \vdots \\ \text{r} \end{pmatrix} = \begin{pmatrix} \text{"stator"} \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -1.35 & 1.90 \\ 2 & -19.72 & -1.51 \\ 3 & -0.02 & 1.08 \\ 4 & 13.70 & -1.87 \end{pmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{p_{rotor_{j,r}}} & \sigma_{p_{stator_{j,r}}} \\ \sigma_{n_{rotor_{j,r}}} & \sigma_{n_{stator_{j,r}}} \end{pmatrix} = \begin{pmatrix} -44 & 145 \\ 33 & -254 \end{pmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{pmatrix} 145 \\ 131 \end{pmatrix} \cdot 10^{6}$$

Коэф. запаса:
$$\begin{pmatrix} safety_{stator_{j,r}} \\ safety_{rotor_{j,r}} \end{pmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 1.381 2 1.527

$$\begin{pmatrix} v_{-} v$$

$$\begin{pmatrix} \text{blade} \\ \text{stator} \end{pmatrix} = \begin{pmatrix} \text{"stator"} \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} u_{-}u_{rotor_{j},r} & v_{-}u_{rotor_{j},r} \\ u_{-}l_{rotor_{j},r} & v_{-}l_{rotor_{j},r} \\ u_{-}u_{stator_{j},r} & v_{-}u_{stator_{j},r} \\ u_{-}l_{stator_{j},r} & v_{-}l_{stator_{j},r} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & -1.52 & 1.20 \\ 2 & -18.47 & -0.99 \\ 3 & -0.01 & 1.43 \\ 4 & 14.81 & -1.99 \end{pmatrix} \cdot 10^{-3}$$

Изгибные напряжения (Па):

$$\begin{pmatrix} \sigma_{p_{rotor_{j,r}}} & \sigma_{p_{stator_{j,r}}} \\ \sigma_{n_{rotor_{j,r}}} & \sigma_{n_{stator_{j,r}}} \end{pmatrix} = \begin{pmatrix} -0 & 269 \\ 0 & -381 \end{pmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} \sigma_{\text{stator}_{j,r}} \\ \sigma_{\text{rotor}_{j,r}} \end{pmatrix} = \begin{pmatrix} 269 \\ 5 \end{pmatrix} \cdot 10^{6}$$

$$\begin{pmatrix} v_{-}v_{rotor_{j,r}} \\ v_{-}l_{rotor_{j,r}} \end{pmatrix} \text{ if blade = "rotor" } = \begin{bmatrix} \frac{1}{1 & 1.433} \\ \frac{1}{2 & -1.994} \end{bmatrix} \cdot 10^{-3} \qquad \begin{pmatrix} x_{0} \\ y_{0} \end{pmatrix} = \begin{bmatrix} x_{0}r_{otor_{j,r}} \\ y_{0}r_{otor_{j,r}} \\ y_{0}r_{otor_{j,r}} \end{bmatrix} \text{ if blade = "rotor" } = \begin{bmatrix} \frac{1}{1 & 12.233} \\ \frac{1}{2 & 1.667} \end{bmatrix} \cdot 10^{-3} \qquad \text{chord} = \begin{bmatrix} \text{chord}_{rotor_{j,r}} & \text{if blade = "rotor" } \\ \text{chord}_{stator_{j,r}} & \text{if blade = "stator" } \end{bmatrix}$$

$$\begin{pmatrix} v_{-}u_{stator_{j,r}} \\ v_{-}l_{stator_{j,r}} \end{pmatrix} \text{ otherwise }$$

$$\begin{pmatrix} v_{-}u_{stator_{j,r}} \\ v_{-}l_{stator_{j,r}} \end{pmatrix} \text{ otherwise }$$

▼ Выбор материала Д

Запас по температуре (K): $\Delta T_{\text{safety}} = 0$

Выбранный материал Д: material_disk_i = "BT23" if compressor = "Вл" "BT6" if compressor = "КНД"

"ВТ9" if compressor = "КВД"

Плотность материала Д (кг/м^3):

Предел длительной прочности Д (Па):

 $\begin{array}{lll} \rho_{disk_i} = & 8266 & if \; material_{disk_i} = "B\%175" \\ & 8320 & if \; material_{disk_i} = "ЭП742" \\ & 8393 & if \; material_{disk_i} = "ЖС-6К" \\ & 7900 & if \; material_{disk_i} = "BT41" \\ & 4500 & if \; material_{disk_i} = "BT25" \\ & 4570 & if \; material_{disk_i} = "BT23" \\ & 4510 & if \; material_{disk_i} = "BT9" \\ & 4430 & if \; material_{disk_i} = "BT6" \\ \end{array}$

NaN otherwise

 $\sigma_{disk_long_i} = 10^6 \cdot \begin{vmatrix} 620 & \text{if material_disk}_i = "B\%175" \\ 680 & \text{if material_disk}_i = "ЭП742" \\ 125 & \text{if material_disk}_i = "ЖС-6К" \\ 123 & \text{if material_disk}_i = "BT41" \\ 150 & \text{if material_disk}_i = "BT25" \\ 230 & \text{if material_disk}_i = "BT23" \\ 200 & \text{if material_disk}_i = "BT9" \\ 210 & \text{if material_disk}_i = "BT6" \\ NaN & \text{otherwise} \end{vmatrix}$

$\rho \operatorname{disk}^{\mathrm{T}} =$		1	2	3	4	5	6	7	8	9
F	1	4510	4510	4510	4510	4510	4510	4510	4510	4510

Рассматриваемая ступень:
$$j = 1$$

$$j =$$
 $j = 1$ $= 1$ $j =$ "Такой ступени не существует!" if $(j < 1) \lor (j > Z)$ j otherwise

▼ Профилирование равнопрочного Д без центрального отв.

$$h(i,z) = \begin{cases} \frac{\rho_{-} \text{disk}_{i} \cdot \omega^{2}}{2} \cdot \frac{1}{\sigma_{-} z_{rotor}(i,R_{st(i,2),ORIGIN})} \cdot \left[\left(R_{st(i,2),ORIGIN}\right)^{2} - z^{2} \right] \\ \text{if } z \leq R_{st(i,2),ORIGIN} \end{cases}$$

$$z = 0, \frac{R_{st(j,2), ORIGIN}}{N_{dis}} .. R_{st(j,2), ORIGIN}$$

