國立中興大學附屬高級中學 109 學年度 第 2 學期第一次期中考 高一數學科試題班級:一年 ___ 班 座號: ___ 姓名: ____ 命題: 孟 審題: 邱 (試題卷5頁+答案卷1頁)

課本內容之參考公式

※ 等差級數和等比級數的求和公式

數列 $\langle a_k \rangle$ 的前 n 項和為 $S_n = a_1 + a_2 + a_3 + ... + a_n$ 。

(1)
$$\langle a_k \rangle$$
 為等差數列,公差為 d ,則 $S_n = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2}$ 。

- (2) $\langle a_k \rangle$ 為等比數列,公比為 r,則① 當 $r \neq 1$ 時, $S_n = \frac{a_1(1-r^n)}{1-r}$ 。② 當 r=1 時, $S_n = na_1$ 。
- ※ 單利與複利的本利和公式

設本金 A 元存入銀行,每期利率為 r。

- (1) 單利:每期計息一次,t 期後的本利和為 A+(Ar)t=A(1+rt)。
- (2) 複利:每期計息一次,t 期後的本利和為 $A(1+r)^t$ 。
- ※ 常用的級數求和公式

(1)
$$1+2+3+...+n=\frac{n(n+1)}{2}$$
 •

(2)
$$1^2+2^2+3^2+\ldots+n^2=\frac{n(n+1)(2n+1)}{6}$$
 \circ

(3)
$$1^3+2^3+3^3+...+n^3= \left(\frac{n(n+1)}{2}\right)^2$$

※ 一維數據的相關公式

若有 n 筆數據 $x_1, x_2, ..., x_n$,則此組數據的

平均數
$$\mu = \frac{1}{n} (x_1 + x_2 + ... + x_n)$$
 ,

變異數為
$$\sigma^2 = \frac{1}{n} \left[(x_1 - \mu)^2 + (x_2 - \mu)^2 + \dots + (x_n - \mu)^2 \right] = \frac{1}{n} (x_1^2 + x_2^2 + \dots + x_n^2) - \mu^2$$

標準差為
$$\sigma = \sqrt{\frac{1}{n}((x_1 - \mu)^2 + (x_2 - \mu)^2 + \dots + (x_n - \mu)^2)} = \sqrt{\frac{1}{n}(x_1^2 + x_2^2 + \dots + x_n^2) - \mu^2}$$
 。

- ※ 二維數據的相關公式
 - (1) 設有 n 對 $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ 的二維數據,且 $\mu_x = \frac{1}{n} (x_1 + x_2 + ... + x_n)$, $\mu_y = \frac{1}{n} (y_1 + y_2 + ... + y_n)$,

則變數
$$x$$
 和變數 y 的相關係數為 $r = \frac{S_{xy}}{\sqrt{S_{xx}}\sqrt{S_{yy}}}$, 其中

$$S_{xx} = (x_1 - \mu_x)^2 + (x_2 - \mu_x)^2 + ... + (x_n - \mu_x)^2$$
, $S_{yy} = (y_1 - \mu_y)^2 + (y_2 - \mu_y)^2 + ... + (y_n - \mu_y)^2$,

$$S_{xy} = (x_1 - \mu_x) (y_1 - \mu_y) + (x_2 - \mu_x) (y_2 - \mu_y) + ... + (x_n - \mu_x) (y_n - \mu_y)$$

(2) 有 n 對 $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ 的二維數據,平均數分別為 μ_x 與 μ_y ,以最小平方法計算出的最適直線(或稱 迴歸直線)方程式可表示為 $L: y-\mu_y=a(x-\mu_x)$,其中

$$a = \frac{S_{xy}}{S_{xx}}$$
, $S_{xx} = (x_1 - \mu_x)^2 + (x_2 - \mu_x)^2 + \dots + (x_n - \mu_x)^2$,

$$S_{xy} = (x_1 - \mu_x) (y_1 - \mu_y) + (x_2 - \mu_x) (y_2 - \mu_y) + ... + (x_n - \mu_x) (y_n - \mu_y)$$

整理後為 L: y=ax+b, 其中 $b=\mu_y-a\mu_x$ 。

第壹部分、選擇題

一、單選題(占24分)

說明:第1題至第4題,每題有5個選項,其中只有一個是正確或最適當的選項,請畫記在答案卡之「選擇(填)題答案區」。各題答對者,得6分;答錯、未作答或畫記多於一個選項者,該題以零分計算。

()1. 假設在小巨蛋球館觀看籃球比賽,已知<u>小延</u>坐在紫色區的席位共有 20 排的座位,此區每一排都比其前一排 多 k 個座位。<u>小延</u>坐在第 10 排,他發現第 10 排與第 11 排共有 235 個座位。則此巨蛋球場的紫色區總 共有多少個座位?

(1)2200 (2)2350 (3)2460 (4)2510 (5)條件不足,無法計算

()2. 設數列 < a_n > 的前 n 項和為 n^2+1 ,其中 n 為正整數 ,求 a_1+a_{2021} 之值=?

(1) 4040 (2) 4041 (3) 4042 (4) 4043 (5) 以上皆非

()3. 已知 1990 年 NBA 先發球員平均薪資為 500 萬美元,2020 年 NBA 先發球員平均薪資為 2048 萬美元。設每十年薪資平均增長率為 r,依此成長率作推算,則 2030 年 NBA 先發球員平均薪資為 x 萬美元,則 x 最接近下列哪一個選項的數值?

(1) 2800 (1) 3000 (3) 3200 (4) 3400 (5) 3600

()4. 請問級數 $(1-\frac{0}{20})(1-\frac{1}{20})+(1-\frac{1}{20})(1-\frac{2}{20})+\cdots+(1-\frac{n}{20})(1-\frac{n+1}{20})+\cdots+(1-\frac{19}{20})(1-\frac{20}{20})$ 的和=? $(1)\frac{133}{20} \quad (2)\frac{135}{20} \quad (3)\frac{137}{20} \quad (4)\frac{139}{20} \quad (5)\frac{141}{20}$

二、多重選題(占24分)

說明:第5題至第7題,每題有5個選項,其中至少有一個是正確的選項,請將正確選項畫記在答案卡之「選擇(填)題答案區」。各題之選項獨立判定,所有選項均答對者,得8分;答錯1個選項者,得4.8分;答錯2個選項者,得1.6分;答錯多於2個選項或所有選項均未作答者,該題以零分計算。

- ()5. 三年甲班 35 人某次考試數學成績 x (分) 與英文成績 y (分) 成績 的散布圖如右圖,每個點代表一位學生的成績。請選出正確的選項?
 - (1)數學成績與英文成績的相關係數大於 0。
 - (2)數學成績的中位數大於英文成績的中位數。
 - (3)數學成績的標準差大於30分。
 - (4)兩科總分大於 160 分者超過 5 位。
 - (5)若將每人的數學成績都加 5 分,且每人的英文成績都減 5 分, 則這兩科新成績的相關係數仍然不變。

國立中興大學附屬高級中學 109 學年度 第2 學期第一次期中考 高一數學科試題 命題:孟 審題:邱 班級:一年 班 座號: 姓名: (試題卷5頁+答案卷1頁)

)6. 表格是 2011 年至 2018 年某國總就業人口與農業就業人口的部分相關數據,各年度的人口以人數計,有些是 以千人計,有些以萬人計,例如 2011 年總就業人口為 1,070.9 萬人,65 歲以上男性農業就業人口為 69.1 千人。 試根據表格資料選出正確的選項。

	就業人口			男性農業就業人口按年齡別分			
年別	總就業 人口 (萬人)	農業就業 人口 (萬人)	男性農業 就業人口 (千人)	39 歲 以下 (千人)	40-49 歲 (千人)	50-64 歲 (千人)	65 歳 以上 (千人)
2011年	1,070.9	54.2	386.3	67.6	85.4	164.2	69.1
2012年	1,086.0	54.4	394.9	67.5	87.0	169.5	70.9
2013年	1,096.7	54.4	391.5	66.6	83.9	171.3	69.7
2014年	1,107.9	54.8	391.2	65.8	79.8	173.0	72.6
2015年	1,119.8	55.5	403.1	71.7	76.9	181.3	73.2
2016年	1,126.7	55.7	404.5	77.4	77.4	176.4	73.3
2017年	1,135.2	55.7	405.1	73.9	78.1	178.3	74.8
2018年	1,143.4	56.1	415.1	72.0	78.8	184.9	79.4

- (1)從2013年至2018年,39歲以下的男性農業就業人口逐年遞減。
- (2)從 2013 年至 2018 年,50 歲至 64 歲之男性農業就業人口逐年遞增。
- (3)表中,每一年的男性農業就業人口占總就業人口的比率都大於百分之五。
- (4)表中,每一年 50 歲至 64 歲之男性農業就業人口都多於 49 歲以下之男性農業就業人口。
- (5)就 65 歲以上之男性農業就業人口而言,2018 年比 2011 年增加了超過一萬人。
-)7. 有 20 筆數據 (x_i,y_i) ,i=1,2,…,20。已知其平均 $\mu_x=3$, $\mu_y=5$,且x與y的相關係數r=0.8,若y對x的 (迴歸直線 L 通過點(2,1)。試問下列哪些選項是正確的?

 - (1) L 通過點(3,5) (2) L 的斜率為 0.8
- (3) L 方程式為 y = 4x 7 (4) x 的標準差大於 y 的標準差
- (5)若 $P_i = 2x_i + 5$ 且 $Q_i = 3y_i + 1$,則 Q 對 P 之迴歸直線的斜率大於 L 的斜率。

第貳部分、選填題(占42分)

說明:1. 第A至G題,將答案畫記在答案卡之「選擇(填)題答案區」所標示的列號(8-22)。

- 2. 每題完全答對給 6 分,答錯不倒扣,未完全答對不給分。
- A. 用黑、白兩色的正六邊形地磚有規律的拼成若干圖形,如圖所示。 依此規律可畫第4圖、第5圖、...,並設 a_n 為第n圖中白色地磚

的總數 (例如 $a_1 = 6$, $a_2 = 10$, $a_3 = 14$)。求 $a_{100} =$

第2圖

第3圖

C. 某次學科能力測驗數學科級分人數累計表,如右附表所示。我們定義此次成績的「頂標、前標、均標、後標、底標」分別為「第88、75、50、25、12百分位數」考生的級分。若此次考試的數學科**頂標**為x級分、**均標**為y級分,則求整數序對 (x,y)=(12 13 (x,y)=(14 (x,y)=(10 (x,y)=(12 (x,y)=(10 (x,y)=(

級分	人數	累計人數
15	3,700	134,495
14	4,630	130,795
13	5,766	126,165
12	5,919	120,399
11	7,891	114,480
10	9,198	106,589
9	8,931	97,391
8	10,317	88,460
7	10,690	78,143
6	10,823	67,320
5	14,298	56,630
4	16,533	42,332
3	14,033	25,799
2	9,732	11,766
1	1,975	2,034
0	59	59
		· · · · · · · · · · · · · · · · · · ·

D. 已知一組資料 x_1 , x_2 , ..., x_{10} 的算術平均數為 6, 且 $x_1^2 + x_2^2 + ... + x_{10}^2 = 400$, A 為任意實數,試求 $(x_1 - A)^2 + (x_2 - A)^2 + ... + (x_{10} - A)^2$ 的最小值為 ①5 ①6 。

E. 二年乙班有 40 人參加英文考試,老師計算成績後,得全班的平均分數為 51 分,標準差為√3 分。但教務處通知: 考試當節有一位考生不僅攜帶寵物「蜜袋鼯」進教室擾亂秩序,還利用行動裝置作弊,其原分數 40 分應改為 0 分。 而其他 39 位考生因當節考試延長 5 分鐘收卷,故不調整分數。那麼修正後此班 40 位同學考試的標準差為 17 分。

F. 一年丙班的小花,其前五次的數學週考成績 $(y \, f)$ 與當週上網時數 $(x \, f)$ 之統計表如下:

當週上網時數(x)	8	10	7	9	6
數學週考成績(y)	70	60	90	50	80

根據最小平方法得迴歸直線方程式,若小花在本週上網7.5小時,預測其本週數學週考成績為 18 19 分。

國立中興大學附屬高級中學 109 學年度 第 2 學期第一次期中考 高一數學科試題班級:一年 ____ 班 座號: ____ 姓名: ____ 命題: 孟 審題: 邱 (試題卷5頁+答案卷1頁)

G. 右表中的每一横列由左至右的四個數皆成等差數列,而每一直行由上而下的四個數皆成等比數列且公比皆為 r ,若 $c_1 < c_2$,則 d_4 之值 = 20 21 22 。

2	a_2	a_3	a_4
b_1	12	b_3	b_4
c_1	c_2	54	C_4
d_1	d_2	d_3	d_4

第叁部分、單選與非選擇混合題(占10分)

說明:

- 1. 第 H-1 題為單選題,有 5 個選項,其中只有一個是正確或最適當的選項,請畫記在答案卡之「選擇(填)題答案區」標示的第 23 題作答。答對者得 2 分;答錯、未作答或畫記多於一個選項者,該題以零分計算。
- 2. 第 H-2 題為非選擇題,答案必須寫在「答案卷」上,同時必須寫出演算過程或理由,否則將予扣分甚至零分。作答務必使用筆尖較粗之黑色墨水的筆書寫,且不得使用鉛筆。

注意:(1).應依據題號順序,於作答區內作答。(2).除另有規定外,書寫時應由左至右、橫式書寫。(3).作答須清晰,如難以辨識時,恐將影響成績評閱並傷及權益。(4).不得於作答區書寫無關之文字、圖案符號等。

設數列 $\langle a_n \rangle$ 滿足: $a_1 = \frac{1}{3} \, \text{且} \, a_n = \frac{1 + a_{n-1}}{3 - a_{n-1}} \, \, (n \, \text{為大於或等於 2 的正整數}) \, \circ$

H-1(占2分)

猜測 a_{2021} 之值為何? 23

 $(1)\frac{2019}{2022}$ $(2)\frac{1010}{1011}$ $(3)\frac{2021}{2022}$ $(4)\frac{2020}{2023}$ $(5)\frac{2021}{2023}$ \circ

H-2(占8分)

- (1) 利用 $a_2 \cdot a_3 \cdot a_4$ 的值,推測數列 $\langle a_n \rangle$ 一般項的通式?(以 n 表示)。(2 分)
- (2) 並利用數學歸納法,證明你的推測是正確的。(6分)

國立中興大學	B 附屬高級中學	109 學年度	第 2 學期第	一次期中	考 高一數學科答案卷
班級:一年	班 座號:	姓名:	命題:孟	審題:邱	(試題卷5頁+答案卷1頁)

混合題 H-2 之答案卷

說明:第 H-2 題為非選擇題,答案必須寫在「答案卷」上,同時必須寫出演算過程或理由,否則將予扣分甚至零分。作答務必使用筆尖較粗之黑色墨水的筆書寫,且不得使用鉛筆。

注意:(1).應依據題號順序,於作答區內作答。(2).除另有規定外,書寫時應由左至右、橫式書寫。(3).作答須清晰,如難以辨識時,恐將影響成績評閱並傷及權益。(4).不得於作答區書寫無關之文字、圖案符號等。

H-2(占8分) (請依題意作答,並將計算過程用黑色墨水筆(不得用鉛筆)寫於下方空白處。)

設數列 $\langle a_n \rangle$ 滿足: $a_1 = \frac{1}{3} \perp a_n = \frac{1 + a_{n-1}}{3 - a_{n-1}}$ (n 為大於或等於 2 的正整數)。

- (1) 利用 $a_2 \cdot a_3 \cdot a_4$ 的值,推測數列 $\langle a_n \rangle$ 一般項的通式?(以 n 表示)。(2分)
- (2) 並利用數學歸納法,證明你的推測是正確的。(6分)

答:

解答

一、單選題 1.(2) 2.(4) 3.(3) 4.(1)

二、多重選題 5.(1)(5) 6.(4)(5) 7.(1)(3)(5)

三、選填題 A. 402 B. 3% C. (12,6) D. 40

E. 8 F. 74 G. 216

8. A	9.A	10.A	11.B	12.C	13.C	14.C
4	0	2	3	1	2	6
15.D	16.D	17.E	18.F	19.F	20.G	21.G
4	0	8	7	4	2	1
22.G	23. (混 H1 單)					
6	5					

H-2(占8分)

設數列 $\langle a_n \rangle$ 滿足: $a_1 = \frac{1}{3} \, \coprod a_n = \frac{1 + a_{n-1}}{3 - a_{n-1}} \, (n \,$ 為大於或等於 2 的正整數)。

(1) 利用 $a_2 \cdot a_3 \cdot a_4$ 的值,推測數列 $< a_n >$ 一般項的通式?(以 n 表示)。(2 分)

(2) 並利用數學歸納法,證明你的推測是正確的。(6分)

Sol:

(2) ①當 n=1 時, $a_1 = \frac{1}{1+2} = \frac{1}{3}$ ∴ n=1 時成立 (1分)

②假設 n=k 時成立,即 $a_k=\frac{k}{k+2}$, k 為正整數 (2分)

③則當 n=k+1 時, $a_{k+1}=\frac{1+a_k}{3-a_k}=\frac{1+\frac{k}{k+2}}{3-\frac{k}{k+2}}=\frac{\frac{2k+2}{k+2}}{\frac{2k+6}{k+2}}=\frac{2k+2}{2k+6}=\frac{k+1}{k+3}=\frac{k+1}{(k+1)+2}$ ∴ n=k+1 時亦成立(2 分)

④故由數學歸納法可知, $a_n = \frac{n}{n+2}$ 對於所有正整數 n 都恆成立 (1分)