Criptografie Simetrica. Functii Hash Tema 1

Asist. Drd. Ioana Leahu

November 22, 2016

Instalare OpenSSL

Pentru a instala biblioteca OpenSSL pe maşina virtuală Ubuntu (Lubuntu) trebuie efectuați următorii paşi:

```
wget https://www.openssl.org/source/openssl-1.0.2j.tar.gz
tar -xzvf openssl-1.0.2j.tar.gz

(alternativ: se descarcă din browser arhiva openssl-1.0.2j.tar.gz şi se dezarhivează utilizând utilitarele instalate în maşina virtuală)

cd openssl-1.0.2j (se schimbă directorul curent in directorul in care s-a efectuat dezarhivarea)
se citeşte conţinutul fişierului INSTALL din directorul openssl-1.0.2j

se execută următoarele comenzi:
./config
make
make test
sudo make install
```

Exemplu fișier Makefile pentru compilarea unui program C ce utilizează funcții din API EVP:

```
INC=/usr/local/ssl/include/
LIB=/usr/local/ssl/lib/
all:
    gcc -I$(INC) -L$(LIB) -o out source.c -lcrypto -ldl
```

Observații:

• un exemplu de maşină virtuală Lubuntu14.04 având instalate biblioteca

OpenSSL și editorul Bless poate fi descărcată de la adresa: http://profs.info.uaic.ro/~olgai/si2016/lubuntu1404_baza.ova;

- la adresa: http://profs.info.uaic.ro/~olgai/si2016/word_dict. txt se găsește un fișier text conținând cuvinte de dicționar englez, util pentru Exercițiul 1;
- detalii privind programarea C utilizând funcţiile din API EVP: https://www.openssl.org/docs/man1.0.2/crypto/crypto.html, sau https://wiki.openssl.org/index.php/EVP.

Exercițiul 1

Biblioteca OpenSSL - Criptare/Decriptare

Scrieți un program C/C++ ce utilizează API EVP pentru operații de criptare și decriptare.

Programul va primi ca date de intrare numele a două fișiere, pt, respectiv ct și un mod de operare (ECB sau OFB). Fișierul ct este rezultatul operației de criptare cu o cheie K (și un vector de inițializare dat

iv = "x01x02x03x04x05x06x07x08x09x0ax0bx0cx0dx0ex0f"

pentru modul OFB) a fişierului pt.

Scopul programului este de a găsi cheia K utilizată pentru criptarea fișierului pt, știind că:

- cheia K are o lungime fixată de 128 biți (16 octeți);
- cheia K este reprezentarea in hexa a unui cuvânt din dicționarul englez cu lungime mai mică de 16 caractere, completat cu caracterul spațiu (cod hexa $\x20$) până la lungimea de 16 caractere;

de exemplu, pentru cuvântul median, cheia

La final, programul va afișa cheia K, cuvântul care stă la baza ei, precum și numărul de incercări efectuate până la găsirea cheii K.

Exercițiul 2

Biblioteca OpenSSL - Funcţii hash

Scrieţi un program C/C++ ce utilizează API EVP pentru implementarea funcțiilor hash.

Programul va primi ca intrare două fișiere text, f_1 și f_2 , ce au același conținut, cu excepția unui singur caracter.

Programul va calcula funcțiile hash asociate celor două fișiere, utilizând algoritmii MD5 și SHA256, rezultând fișierele $h1_md5$, $h2_md5$, respectiv $h1_sha256$, $h2_sha256$. De asemenea, programul va compara fișierele rezultate pentru fiecare algoritm in parte ($h1_md5$ va fi comparat cu $h2_md5$, iar $h1_sha256$ va fi comparat cu $h2_sha256$) la nivel de octet și va afișa numărul de octeți identici in cele două fișiere.

Exercițiul 3

Moduri operare Criptosisteme Bloc

Punctaj maxim: 10 puncte

Implementați o infrastructură de comunicație ce folosește criptosistemul AES pentru criptarea traficului intre două noduri A și B cu următoarele caracteristici:

- se consideră un nod KM (key manager) care deține trei chei pe 128 biți: K_1 , K_2 și K_3 :
 - cheia K_1 este asociată cu modul de operare ECB;
 - cheia K_2 este asociată cu modul de operare OFB (se consideră că vectorul de inițializare are o valoare fixată, cunoscută in prealabil de cele două noduri A şi B);
 - cheia K_3 este utilizată pentru criptarea cheilor K_1 sau K_2 . Cheia K_3 este deținută din start de nodurile A, B și KM.
- Pentru a iniția o sesiune de comunicare securizată, nodul A trimite un mesaj către nodul B în care comunică modul de operare (ECB sau OFB); de asemenea, nodul A transmite un mesaj nodului KM prin care cere cheia corespunzatoare (K_1 pentru modul de operare ECB, respectiv K_2 pentru modul de operare OFB).
- Nodul B, la primirea mesajului de la nodul A, cere nodului KM cheia corespunzatoare (K_1 pentru modul de operare ECB, respectiv K_2 pentru modul de operare OFB).
- nodul KM va cripta cheia cerută (K_1 sau K_2 in funcție de modul de operare ales) ca un singur bloc, utilizând criptosistemul AES cu cheia

 K_3 şi va trimite mesajul astfel obţinut ca răspuns pentru nodurile A şi B;

- cele două noduri A şi B vor decripta mesajul primit de la KM şi vor obține astfel cheia cerută;
- nodul B trimite, după primirea cheii, un mesaj nodului A prin care il anunță că poate să inceapă comunicarea;
- nodul A criptează conținutul unui fișier text utilizând AES, cheia primită de la KM și modul de operare ales. A va transmite nodului B blocurile de criptotext obținute pe rând, iar nodul B va decripta blocurile primite și va afișa rezultatul obținut.

Observații:

- se accepta utilizarea oricărui limbaj de programare și folosirea oricărei librarii criptografice pentru implementare;
- AES poate fi folosit ca algoritm de criptare pus la dispoziție de orice librarie criptografică.
- se cere ca modul de operare (ECB sau OFB) să fie implementat in cadrul temei.
- Nu se cere rezolvarea de eventuale probleme de sincronizare intre noduri, interfață pentru noduri, sau un anumit protocol de comunicare.

Precizări importante

Tema este individuală. Orice tentativă de fraudă este penalizată prin acordarea punctajului 0 tuturor studenților implicați.

Fiecare student(ă) va trimite prin email la adresa ioana.leahu@gmail. com o arhivă cu numele *prenume_nume_student_grupa*, conţinând câte un director pentru fiecare exerciţiu rezolvat, fiecare director având următoarele fişiere:

- fișierele sursă ce conțin implementărea cerinţlor exercițiului respectiv, inclusiv un fișier Makefile pentru compilare, dacă este cazul;
- fișiere de intrare, respectiv (dacă este cazul) de ieșire pentru exercițiul respectiv;
- un document pentru fiecare exercițiu rezolvat in parte, ce va conține:
 - descrierea mediului de lucru utilizat (alte setări decât cele prezentate in acest document);
 - descrierea modului de rezolvare al cerinței exercițiului;
 - testele efectuate pe diverse fişiere de intrare şi observaţiile efectuate.

Termenul de predare al referatului este fix, nu se admit întârzieri decât în cazuri bine justificate, anunțate în prealabil.