Pays : CamerounAnnée : 2014Session : normaleSérie : BAC, série ADurée : 3 hCoefficient : 2

Cette épreuve est constituée de 2 exercices et d'un problème que chaque candidat traitera obligatoirement.

Exercice 1

On s'est intéressé à l'évolution du nombre de visiteurs d'un site touristique sur 8 années. Les résultats de cette enquête sont consignés dans le tableau ci-dessous :

Rang de l'année (X)	1	2	3	4	5	6	7	8
Nombre de visiteurs (Y)	540	560	700	800	875	1120	1370	1500

- **1.** a) Représenter graphiquement le nuage de points de la série statistique (X, Y) ainsi définie.
- (1 cm pour une année en abscisses et 1 cm pour 200 visiteurs en ordonnées.)
- b) Déterminer les coordonnées du point moyen G et représenter ce point.
- **2.** On désigne par S_1 et S_2 les sous séries de la série (X, Y) suivantes :

 S_1 :

Rang de l'année (X)	1	2	3	4
Nombre de visiteurs (Y)	540	560	700	800

 S_2 :

Rang de l'année (X)	5	6	7	8
Nombre de visiteurs (Y)	875	1120	1370	1500

- a) Calculer les coordonnées des points moyens G₁ et G₂ des sous séries S₁ et S₂.
- b) Déterminer une équation cartésienne de la droite de Mayer (G₁G₂).
- c) Estimer alors à l'unité près par excès, le nombre de visiteurs de l'année de rang 10.

Exercice 2

Une urne contient 10 boules indiscernables au toucher. 4 boules sont rouges et le reste est noir.

- 1. On suppose qu'on tire simultanément 2 boules de l'urne. Calculer
- a) La probabilité p_1 d'avoir une boule de chaque couleur.
- b) La probabilité p_2 d'avoir exactement 2 boules rouges.
- c) La probabilité p_3 d'avoir moins de 2 boules rouges.
- **2.** On suppose maintenant qu'on tire une boule de l'urne, qu'on ne remet pas, puis on tire une seconde. Calculer :
- a) La probabilité p_4 d'avoir une boule de chaque couleur.
- b) La probabilité p_5 d'avoir une boule rouge au premier tirage.

Problème

Soit la fonction f définie dans \mathbb{R} par : f(0) = 2 et $f(x) = x \ln x + 2$ si $x \neq 0$.

On désigne par (\mathscr{C}_f) sa courbe représentative dans un repère orthonormé $(O;\vec{i},\vec{j})$.

- **1.** a) Calculer les limites de f aux bornes de son ensemble de définition.
- b) Étudier la continuité de f à droite de 0.
- **2.** a) Montrer que pour tout x > 0, la dérivée $f'(x) = 1 + \ln x$.
- b) En déduire que pour tout x > 0, $f'(x) > 0 \Leftrightarrow x \in \left[\frac{1}{e}; +\infty\right[$.
- 3. Dresser le tableau de variation de f sur son ensemble de définition.
- **4.** *a*) Calculer la limite de $\frac{f(x)-f(0)}{x}$ à droite 0.
- b) Tracer la courbe (\mathscr{C}_f) de f en tenant compte du fait que (\mathscr{C}_f) admet un branche parabolique en + de direction l'axe des ordonnées ($prendre\ 1,5\ cm\ comme\ unité\ sur\ les\ axes$).
- 5. Soit F la fonction définie sur l'intervalle]0; $+\infty[$ par : $F(x) = -\frac{1}{4}x^2 + \frac{x^2 \ln x}{2} + 2x$.
- a) Calculer la dérivée F'(x).
- b) Déterminer la primitive de f sur]0; $+\infty[$ qui s'annule en 1.