

Oppdatering av Janbus N_{γ} bæreevnefaktor

Hooman Rostami

Geotekniker DMR Miljø og Geoteknikk AS e-post:hr@dmr.as

11. November 2021

- Introduksjon
- Bæreevne i klassisk geoteknisk litteratur
- Foreslått løsning for N_{γ} ifølge Martin [2005]
- Bæreevneberegning ifølge Janbu (praksis i Norge)
- Likevektsberegning "limit analysis"
- OptumG2
- Skrålast på vektløs jord i OptumG2
- Skrålast på jord med vekt i OptumG2
- Laboratorieresultater vs foreslått formel
- Konklusjon

Introduksjon

- Bæreevne i klassisk geoteknisk litteratur
- Foreslått løsning for N_{γ} ifølge Martin [2005]
- Bæreevneberegning ifølge Janbu (praksis i Norge)
- Likevektsberegning "limit analysis"
- OptumG2
- Skrålast på vektløs jord i OptumG2
- Skrålast på jord med vekt i OptumG2
- Laboratorieresultater vs foreslått formel
- Konklusjon

Introduksjon

Yngres dag 2021

Presentasjonen er en del av masteroppgaven som ble levert i 2020. Veileder: Arnfinn Emdal

- Introduksjon
- Bæreevne i klassisk geoteknisk litteratur
- Foreslått løsning for N_{γ} ifølge Martin [2005]
- Bæreevneberegning ifølge Janbu (praksis i Norge)
- Likevektsberegning "limit analysis"
- OptumG2
- Skrålast på vektløs jord i OptumG2
- Skrålast på jord med vekt i OptumG2
- Laboratorieresultater vs foreslått formel
- Konklusjon

$$q_{ult} = c \cdot N_c + q \cdot N_q$$

Bæreevnefaktor N_c and N_q etter Prandtl [1921]

$$N_q = \tan^2(\frac{\pi}{2} + \frac{\varphi}{2}) \cdot e^{\pi \cdot \tan \varphi}$$

$$N_c = (N_q - 1) \cdot \cot \varphi$$

Superposisjon og bruddflate ifølge Terzaghi (fra Coduto [2001]).

$$q_{ult} = N_c \cdot c + N_q \cdot p' + \frac{1}{2} \cdot N_{\gamma} \cdot \gamma \cdot B$$

 N_{γ} for φ =30° ifølge ulike kilder (fra Martin [2005]):

- Introduksjon
- Bæreevne i klassisk geoteknisk litteratur
- lacksquare Foreslått løsning for N_γ ifølge Martin [2005]
- Bæreevneberegning ifølge Janbu (praksis i Norge)
- Likevektsberegning "limit analysis"
- OptumG2
- Skrålast på vektløs jord i OptumG2
- Skrålast på jord med vekt i OptumG2
- Laboratorieresultater vs foreslått formel
- Konklusjon

Foreslått løsning for N_{γ} fra Martin [2005]

Yngres dag 2021

Spennings- og hastighetsfelt generert av ABC program

(les mer: geoengineer.org/software/abc)

Forutsetningene i modellen:

- Plan tøyning
- Assosiert flyteregel "Associated flow rule", $\psi=\varphi$
- Sentrisk og vertikal last

Bæreevnefaktorer foreslått av Martin [2005]

(a) N_{γ} i glatt/ru fundament

(b) N_c , N_q og N_γ

- Introduksjon
- Bæreevne i klassisk geoteknisk litteratur
- Foreslått løsning for N_{γ} ifølge Martin [2005]
- Bæreevneberegning ifølge Janbu (praksis i Norge)
- Likevektsberegning "limit analysis"
- OptumG2
- Skrålast på vektløs jord i OptumG2
- Skrålast på jord med vekt i OptumG2
- Laboratorieresultater vs foreslått formel
- Konklusjon

Spenningsfelt for en sentrisk skrålast i vektløs jord med overdekning

$$\sigma'_{v} = N_{a} \cdot (p' + a) - a$$

hvor N_q er definert som:

$$N_q = rac{(1+f_w^2)\cdot N_+}{1+f_w^2\cdot N_+}\cdot e^{(\pi-2\omega)\cdot anarphi}$$

Eksakt løsning for N_q med ulik ruhet, r

Geometri som ble brukt i "method of characteristics":

 z_0 defineres ved 80 % av maks dybde og en faktor, B_0 , beregnes for å beregne N_{γ} .

Følgende figur viser z_0 i forhold til spenningsfeltene.

$$d_0 = \sin(\alpha_{c+} - \omega) \cdot e^{(\alpha_{c+} - \omega) \cdot \tan \varphi} \cdot \frac{1}{1.25 \cdot (2 - r)}$$

 z_0 er relatert til bæreevnefaktoren N_{γ} :

$$d_0 = \frac{1}{2} \cdot \frac{N_{\gamma}}{(N_q - 1)}$$

Dermed blir bæreevneformelen:

$$\sigma'_{\mathbf{v}} = (N_q - 1) \cdot (p' + a) + \frac{1}{2} \cdot \gamma \cdot N_{\gamma} \cdot B_0$$

Figuren viser N_{γ} ut fra Janbus metode:

- Introduksjon
- Bæreevne i klassisk geoteknisk litteratur
- lacksquare Foreslått løsning for N_{γ} ifølge Martin [2005]
- Bæreevneberegning ifølge Janbu (praksis i Norge)
- Likevektsberegning "limit analysis"
- OptumG2
- Skrålast på vektløs jord i OptumG2
- Skrålast på jord med vekt i OptumG2
- Laboratorieresultater vs foreslått formel
- Konklusjon

Likevektsberegning "limit analysis"

Plastisitets teorem:

- Øvre grense (upper bound)
- Nedre grense (lower bound)
- Uten last-deformasjonskurve

Nedre grense teorem:

- Statisk
- Kollaps under samsvar mellom spenningsfelt og bruddkriteriet

Limit analysis, øvre grense

Yngres dag 2021

Øvre grense teorem:

- kinematisk
- Kollaps da arbeidshastigheten "rate of work" = hastigheten på intern spredning av energi

- Introduksjon
- Bæreevne i klassisk geoteknisk litteratur
- Foreslått løsning for N_{γ} ifølge Martin [2005]
- Bæreevneberegning ifølge Janbu (praksis i Norge)
- Likevektsberegning "limit analysis"
- OptumG2
- Skrålast på vektløs jord i OptumG2
- Skrålast på jord med vekt i OptumG2
- Laboratorieresultater vs foreslått formel
- Konklusjon

Finite element limit analysis

Yngres dag 2021

Finite element limit analysis (FELA): en ny type elementmetode som bruker elementmetodens meshing prinsippet for å finne en øvre og nedre grense for en last uten å kjøre hele last-deformasjonskurven.

Denne typen analyse gir mulighet til å utvikle nøyaktigere øvre og nedre grense løsninger for noen av problemene som er vanskelige å utlede med "closed-form" løsning og plastisitets teorem.

mer info: Lyamin and Sloan [2002a] og Lyamin and Sloan [2002b]

 $https://doi.org/10.1002/nme.511 \ og \ https://onlinelibrary.wiley.com/doi/abs/10.1002/nag.198$

Plastisitets teoremet prøver å finne øvre og nedre grense for en lastsituasjon uten å lage en last-deformasjons kurve.

Middelverdi: gjennomsnittet av øvre (upper bound) og nedre grense (lower bound).

Løsningen er en "eksakt" løsning dersom øvre og nedre grense er like.

OptumG2

Yngres dag 2021

OptumG2 er et nytt elementmetodeprogram som kan kjøre øvre/nedre grense analyser. Dette programmet ble brukt for å gi resultatene som presenteres her.

Ulike menyer i OptumG2

Yngres dag 2021

Geometri:

Materialer:

Spesifikasjoner:

Resultater:

"Stage manager" i OptumG2

Yngres dag 2021

- Introduksjon
- Bæreevne i klassisk geoteknisk litteratur
- lacksquare Foreslått løsning for N_γ ifølge Martin [2005]
- Bæreevneberegning ifølge Janbu (praksis i Norge)
- Likevektsberegning "limit analysis"
- OptumG2
- Skrålast på vektløs jord i OptumG2
- Skrålast på jord med vekt i OptumG2
- Laboratorieresultater vs foreslått formel
- Konklusjon

LB/UB analyser, mesh med 10k elementer. φ fra 15° til 45°, inkrement av 0.25° for r=0, 0.2, 0.6 og 0.95. Analyser med MATLAB API. Geometri og mesh ("adaptive meshing"):

(a) Geometri

(b) Mesh for $\varphi = 25^{\circ}$ og r=0.3

Sammenligning av bruddfigur (envelope) mellom teoretisk løsning og Optum:

(b) $\varphi = 45^{\circ} \text{ og r} = 0.95$

Skrålast på vektløs jord i Optum

Yngres dag 2021

Resultater fra beregninger

- Introduksjon
- Bæreevne i klassisk geoteknisk litteratur
- Foreslått løsning for N_{γ} ifølge Martin [2005]
- Bæreevneberegning ifølge Janbu (praksis i Norge)
- Likevektsberegning "limit analysis"
- OptumG2
- Skrålast på vektløs jord i OptumG2
- Skrålast på jord med vekt i OptumG2
- Laboratorieresultater vs foreslått formel
- Konklusjon

Skrålast på jord med vekt i Optum

Yngres dag 2021

LB/UB analyser, mesh med 150k elementer. φ fra 15° til 45°, inkrement av 0.5°. Ruhet fra 0 til 0.8 med 0.1 inkrement.

Geometri og mesh for φ =45° og r=0.8

(a) Geometri

(b) mesh

Geometri og mesh for φ =45° og r=0.25:

(a) Geometri

(b) mesh

Resultater fra vertikal pålasting:

$$N_{\gamma} = \exp\left(8.822 \cdot \tan \varphi^{0.7002} - 3.335\right)$$

R=0.9999, RMSE=0.0309 og SSE=0.0448.

Resultater fra nedre (LB) og øvre grense (UB) for alle ruheter:

Absolutt relativ feil:

Skrålast på jord med vekt i Optum

Foreslått ny formel for N_{γ} :

 $\begin{array}{l} \ln N_{\gamma} = 12.68 \cdot \tan \varphi + 0.3546 \cdot r - 6.968 \cdot \tan \varphi^2 - 2.419 \cdot \tan \varphi \cdot r - 0.02937 \cdot r^2 \\ + 2.522 \cdot \tan \varphi^3 - 1.569 \cdot \tan \varphi^2 \cdot r - 1.05 \cdot \tan \varphi \cdot r^2 - 0.838 \cdot r^3 - 2.78 \end{array}$

R=1.000, RMSE=0.0039 og SSE=0.0083.

◆□ ト ◆園 ト ◆重 ト 重 め へ ○

Skrålast på jord med vekt i Optum

Skrålast på jord med vekt i Optum

Yngres dag 2021

Sammenligning mellom Janbus N_{γ} og foreslått N_{γ}

Yngres dag 2021

$$\begin{split} \sigma_{v}' &= \textit{N}_{q} \cdot (\textit{p}' + \textit{a}) + 0.5 \cdot \textit{N}_{\gamma} \cdot \gamma' \cdot \textit{B}_{0} - \textit{a} \\ \tau_{h} &= \textit{r} \cdot \tan \varphi \cdot \sigma_{v}' \end{split}$$

- Introduksjon
- Bæreevne i klassisk geoteknisk litteratur
- lacksquare Foreslått løsning for N_γ ifølge Martin [2005]
- Bæreevneberegning ifølge Janbu (praksis i Norge)
- Likevektsberegning "limit analysis"
- OptumG2
- Skrålast på vektløs jord i OptumG2
- Skrålast på jord med vekt i OptumG2
- Laboratorieresultater vs foreslått formel
- Konklusjon

Hvilken friksjonvinkel skal brukes?

Yngres dag 2021

Resultater fra laboratorieundersøkelser på Monterey No. 0 sand (fra Lade [1973])

Yngres dag 2021

Resultater fra Grundite clay (fra Lade [1973])

Sammenligning mellom bæreevnefaktor, N_q , ved bruk av friksjonsvinkel fra treaks kontra plantøyning (data fra Hansen [1961])

Vannlig praksis i Denmark ($\varphi_{\it ps} = 1.1 \cdot \varphi_{\it tr}$).

(a) $\varphi_{ps} = \varphi_{tr}$

(b) $\varphi_{ps} = 1.18\varphi_{tr}$

Jordparametere (Leighton Buzzard Sand, egenskaper fra Cavallaro et al.

Parameter	sign	value	Unit
Maximum dry density	Ydry,max	17.94	$[kN/m^3]$
Minimum dry density	Ydry.min	15.06	$[kN/m^3]$
Specific Gravity	G_s	2.679	[]
Esistian anala		-0.220 D : 20.4	191

Sammenligning mellom laboratorieresultater utført av Meyerhof [1981] og foreslått formel:

Numerical solution

[2001]):

Laboratorieresultater vs foreslått formel

Yngres dag 2021

Sammenligning mellom laboratorieresultater fra Aiban and Znidarcic [1995] og foreslått formel:

- (a) Last vs. deformasjon
- (b) N_{γ} vs. vinkel på last

- Introduksjon
- Bæreevne i klassisk geoteknisk litteratur
- Foreslått løsning for N_{γ} ifølge Martin [2005]
- Bæreevneberegning ifølge Janbu (praksis i Norge)
- Likevektsberegning "limit analysis"
- OptumG2
- Skrålast på vektløs jord i OptumG2
- Skrålast på jord med vekt i OptumG2
- Laboratorieresultater vs foreslått formel
- Konklusjon

Hvordan kan dette sammenlignes med dagens praksis? Dagens praksis (i Norge):

- N_{γ} beregnes ut fra Janbus figur (gir høyere N_{γ})
- N_{γ} beregnes med $\varphi = \varphi_{tr}$ (gir lavere N_{γ})
- Assosiert flyteregel "Associated flow" blir brukt dvs. ψ = φ (gir høyere N_γ)
- Superposisjon brukes (gir lavere bæreevne)

Kansellerer disse fire hverandre?

Kan det være lurt å endre dagen praksis?

■ For: Samme N_{γ} for stripe- og punktfundament.

Takk for oppmerksomheten!