Exercise 2

Background

We want to know what is the effect of urbanization on the reproduction of spiders. We have strong evidence to think that spiders have a higher fitness (number of offspring) in urban areas. To test this, we sample the number of spider nests in three different areas: agricultural area, forested area and urban area. The null hypothesis is that there is not difference between the three areas.

Test the hypothesis

First, navigate to your working directory with setwd() and load the dataset called spider-nest.csv into the environment using read.csv(). Familiarize with the dataset and display the boxplot of the count of number of nests per area. This can be done using the function $boxplot(y \sim x)$.

```
setwd('/home/GIT/BEHAVIOURAL-BIOLOGY-2019/non-par_ANOVA')
dataset <- read.csv('spider-nest.csv')
par(mfrow = c(1, 2)) # 1 row, 2 columns in the figure
boxplot(Number.of.nests ~ Area, data = dataset, ylab = 'Number of nests')
boxplot(log10(Number.of.nests) ~ Area, data = dataset, ylab = 'Number of nests')</pre>
```


Counts of objects in an area are rarely normally distributed variables. To check if this is the case, we create a linear model and plot its residuals.

```
par(mfrow = c(1, 2))

model <- lm(Number.of.nests ~ Area, data = dataset)
plot(model, which = 2, main = 'original dataset')

model <- lm(log10(Number.of.nests) ~ Area, data = dataset)
plot(model, which = 2, main = 'log10 - transformed')</pre>
```


Question 1: are these data normally distributed?

Question 2: using the Kruskal-Wallis test, accept or reject the null hypothesis: there is not difference in the number of nests between areas.

```
### ## Kruskal-Wallis rank sum test
## data: dataset$Number.of.nests and dataset$Area
## Kruskal-Wallis chi-squared = 91.152, df = 2, p-value < 2.2e-16</pre>
```

Question 3: using the rank-sum test test, find the areas that differ in number of nests with an overall significance level of $\bar{\alpha} = 0.05$ (use Bonferroni correction). Which ones are different? In R the rank-sum test is implemented in the wilcox.test() function, which contains the parameters paired that determines if the rank-sum test is performed (paired = F), or the signed-rank test is performed (paired = T).

```
##
##
   Wilcoxon rank sum test with continuity correction
##
## data: urban and forest
  W = 8645, p-value < 2.2e-16
  alternative hypothesis: true location shift is not equal to 0
##
##
   Wilcoxon rank sum test with continuity correction
##
## data: urban and agr
## W = 7942, p-value = 6.609e-13
## alternative hypothesis: true location shift is not equal to 0
##
   Wilcoxon rank sum test with continuity correction
##
##
## data: agr and forest
## W = 5973, p-value = 0.01749
## alternative hypothesis: true location shift is not equal to 0
```