Universidade do Minho

Dep. de Matemática e Aplicações

Equações diferenciais "triviais"-

Consulte o ficheiro 'Folha2.nb'.

1. Solução geral e condições iniciais. Consideremos a equação diferencial:

$$\frac{dy}{dx} = x + 10 \operatorname{sen} x.$$

(a) Temos que, para todo o $x \in \mathbb{R}$,

$$y(x) = \int (x + 10 \operatorname{sen} x) dx = \frac{x^2}{2} - 10 \operatorname{cos} x + c, \ c \in \mathbb{R}.$$

Então, a expressão geral (explícita) da solução da equação diferencial é

$$y(x) = \frac{x^2}{2} - 10\cos x + c, \ c \in \mathbb{R}.$$

(b) Encontrada a solução geral, queremos agora determinar a solução particular que passa no ponto $P=(\pi,0)$. Isto é, queremos determinar para que escolha da cosntante c se obtém $y(\pi)=0$. Temos que

$$y(\pi) = 0 \Leftrightarrow \frac{\pi^2}{2} - 10\cos\pi + c = 0 \Leftrightarrow c = -\frac{\pi^2}{2} - 10$$
.

Assim, a solução particular que passa no ponto $P=(\pi,0)$ é a função

$$y$$
: $\mathbb{R} \rightarrow \mathbb{R}$.
$$x \mapsto \frac{x^2}{2} - 10\cos x - \frac{\pi^2}{2} - 10$$

- (c) Consulte o ficheiro 'Folha2.nb'.
- 2. **Velocidade, aceleração e segunda lei de Newton do movimento**. Um carro de massa m desloca-se a uma velocidade constante v_0 quando subitamente tem de travar. Os travões aplicam uma força k até o carro parar.

Valores realistas de m e k são: $m=1000\,kg$ e $k=6500\,N$ ($1N=1Kg\,m/s^2$).

(a) Usando a segunda lei de Newton temos que

$$m\frac{dv}{dt} = -k\,,$$

uma vez que a força atua no sentido contrário ao do movimento do carro. Podemos reescrever esta equação como

$$\frac{dv}{dt} = -\frac{k}{m} \,.$$

Integrando ambos os membros obtemos

$$v(t) = -\frac{k}{m}t + c,$$

onde a constante c pode ser determinada fazendo-se t=0: c=v(0), ou seja, c é a velocidade inicial (i.e., no instante t=0), que designaremos por v_0 .

Assim, a expressão da solução particular que satisfaz $v(0) = v_0$ é: $v(t) = v_0 - \frac{k}{m}t$.

O carro pára para $t=t_p$ tal que $v(t_p)=0$. Então, o carro pára quando $t_p=\frac{mv_0}{k}$.

Consulte o ficheiro 'Folha2.nb' para efetuar simulações com diferentes valores da velocidade inicial.

(b) Uma vez que

$$\frac{dx}{dt} = v(t),$$

temos que

$$\frac{dx}{dt} = v_0 - \frac{k}{m}t.$$

Integrando ambos os membros entre t=0 e $t=t_p$ obtemos

$$x(t_p) - x(0) = \int_0^{t_p} \left(v_0 - \frac{k}{m} t \right) dt = \left(v_0 t - \frac{kt^2}{2m} \right) \Big|_{t=0}^{t=t_p} = v_0 t_p - \frac{kt_p^2}{2m}.$$

Consequentemente,

$$x(t_p) = x_0 + v_0 t_p - \frac{k t_p^2}{2m}$$
.

Como $t_p=rac{mv_0}{k}$, substituindo na equação anterior, obtemos que

$$x(t_p) = x_0 + \frac{mv_0^2}{2k}.$$

Consulte o ficheiro 'Folha2.nb' para efectuar simulações com diferentes valores da velocidade inicial.

2

3. **Queda livre de corpos**. Seja h a altura acima do solo da qual cai a maçã. Pela segunda lei do movimento de Newton temos que

$$m\frac{dv}{dt} = -mg\,,$$

isto é,

$$\frac{dv}{dt} = -g$$
.

Integrando ambos os membros, obtemos

$$v(t) = -qt + c,$$

onde a constante c pode ser determinada fazendo-se t=0: c=v(0), ou seja, c é a velocidade inicial que neste caso é 0. Assim, obtemos que

$$v(t) = -gt.$$

Integrando mais uma vez, obtemos

$$x(t) = -\frac{1}{2}gt^2 + c_1,$$

onde a constante c_1 pode ser determinada tendo em conta que quando t=0, a posição da partícula é x(0)=h. Obtemos então que:

$$x(t) = -\frac{1}{2}gt^2 + h.$$

De modo claro, a maçã atinge o solo no tempo $t=t_s$ em que $x(t_s)=$ 0. Então

$$t_s = \sqrt{\frac{2h}{g}} \,.$$