Discrete Mathematical Structures Tutorial

Portions: POSETS, Lattices

Consider the set U={1,2,3} and A=P{U}, R is the subset relation on A.
Determine if (A,R) is a POSET and draw the Hasse diagram for the same.

2. Solve the question 1 using the set U={1,2,3,4}.

3.

Let $A = \{1, 2, 3, 6, 9, 18\}$, and define \Re on A by $x \Re y$ if $x \mid y$. Draw the Hasse diagram for the poset (A, \Re) .

4. The directed graph G for a relation R on the set A={1,2,3,4} is given. Verify that (A,R) is a POSET and find its Hasse diagram.

LB, UB, LUB, GLB, Lattice.

Let (A, \mathcal{R}) be a poset with $B \subseteq A$. An element $x \in A$ is called a *lower bound* of B if $x \mathcal{R} b$ for all $b \in B$. Likewise, an element $y \in A$ is called an *upper bound* of B if $b \mathcal{R} y$ for all $b \in B$.

An element $x' \in A$ is called a *greatest lower bound* (glb) of B if it is a lower bound of B and if for all other lower bounds x'' of B we have $x'' \mathcal{R} x'$. Similarly $y' \in A$ is a *least upper bound* (lub) of B if it is an upper bound of B and if $y' \mathcal{R} y''$ for all other upper bounds y'' of B.

The poset (A, \mathcal{R}) is called a *lattice* if for any $x, y \in A$ the elements $lub\{x, y\}$ and $glb\{x, y\}$ both exist in A.

Example:

If B={{1},{2},{1,2}} then

 $\{1,2\}, \{1,2,3\}, \{1,2,4\},$ and $\{1,2,3,4\}$ are all upper bounds:

{1,2} is a least upper bound

Can you determine the lower bounds and the greatest lower bound of B?

For $A = \{a, b, c, d, e, v, w, x, y, z\}$, consider the poset (A, \Re) whose Hasse diagram is shown in Fig. 7.23. Find

- a) $glb\{b, c\}$
- **b**) $\mathsf{glb}\{b, w\}$
- **c)** glb $\{e, x\}$ **g)** lub $\{a, v\}$
- d) $lub\{c, b\}$

- e) $lub\{d, x\}$
- f) $lub\{c, e\}$

Figure 7.23

6. Draw the Hasse diagrams and determine which of the following POSETs (A, |) are lattices and why?