## Algorithm Design Techniques

#### Classification

- Implementation Method
- Design Method
- Other Classifications

### Implementation Method

- Recursion or Iteration
- Procedural or Declarative
  - For example: C, PHP/ SQL
- Serial or parallel or Distributed
- Deterministic or Non-Deterministic
- Exact or Approximate

### Design Method

- Greedy Method
- Divide and Conquer
- Dynamic Programming
- Linear Programming
  - A method to allocate scarce resources to competing activities in an optimal manner when the problem can be expressed using a linear objective function and linear inequality constraints.
- Reduction

#### Other Classifications

- Research Area
- Complexity
- Randomized Algorithm

### **Greedy Algorithm**

- Decision is made that is good at that point, without bothering about future.
- i.e local best is chosen.
- Two basic properties:
  - Greedy choice property
  - Optimal substructure

### **Greedy Algorithm**

- Advantages
  - Straightforward
  - Easy to understand
  - Easy to code
- Disadvantges
  - No guarantee that making locally optimal improvement will give globally optimal solution.

### **Greedy Algorithm**

- Applications
  - Selection sort, topological sort
  - Priority queue
  - Huffman coding
  - Prim's and kruskal's algorithm
  - Job scheduling
  - Shortest path in weighted graph[Dijkstra's]

| Character | Frequency |
|-----------|-----------|
| a         | 5         |
| b         | 9         |
| С         | 12        |
| d         | 13        |
| е         | 16        |
| f         | 45        |



| Character     | Frequency |
|---------------|-----------|
| С             | 12        |
| d             | 13        |
| Internal node | 14        |
| е             | 16        |
| f             | 45        |



| Character     | Frequency |
|---------------|-----------|
| Internal node | 14        |
| е             | 16        |
| Internal node | 25        |
| f             | 45        |



| Character     | Frequency |
|---------------|-----------|
| Internal node | 25        |
| Internal node | 30        |
| f             | 45        |



| Character     | Frequency |
|---------------|-----------|
| f             | 45        |
| Internal node | 55        |





| Character | Code-word | Frequency |
|-----------|-----------|-----------|
| f         | 0         | 5         |
| С         | 100       | 9         |
| d         | 101       | 12        |
| a         | 1100      | 13        |
| b         | 1101      | 16        |
| е         | 111       | 45        |

### **Dynamic Programming**

- Dynamic Programming is an algorithm design technique for optimization problems: often minimizing or maximizing.
- Like divide and conquer, DP solves problems by combining solutions to sub-problems.
- Unlike divide and conquer, sub-problems are not independent.
  - Sub-problems may share sub-sub-problems,

### **Dynamic Programming**

- The term Dynamic Programming comes from Control Theory, not computer science. Programming refers to the use of tables (arrays) to construct a solution.
- In dynamic programming we usually reduce time by increasing the amount of space
- We solve the problem by solving sub-problems of increasing size and saving each optimal solution in a table (usually).
- The table is then used for finding the optimal solution to larger problems.
- Time is saved since each sub-problem is solved only once.

## Properties of DP

- Optimal substructure
- Overlapping sub problems

#### Fibonacci series

```
• Fib(n)=0, for n=0
          = 1, for n=1
          =fib(n-1) +fib(n-2), for n>1
       fib(5)
       fib(4)+fib(3)
       (fib(3)+fib(2))+(fib(2)+fib(1))
       ((fib(2)+fib(1))+(fib(1)+fib(0)))+((fib(1)+fib(0))+fib(1))
    (((fib(1)+fib(0))+fib(1))+(fib(1)+fib(0)))+((fib(1)+fib(0)))
    ))+fib(1))
```

### Fibonacci Numbers



### Approaches of DP

- Two approaches:
  - Top-down (Memoization)
    - Problem is broken in subproblems
    - Each subproblem is solved and remembered
  - Bottom-up (Tabulation)
    - Evaluate function starting with smallest possible input argument value.
    - Increase each input argument value slowly
    - Store all computed values in a table.
- DP=Overlapping subproblems+Memoization/Tabulation

#### Memoization solution

```
fibTable={1:0,2:1}
def fibo(n):
   if n<=2:
      return 1
   if n in fibTable:
      return fibTable[n]
   else:
      fibTable[n]=fibo(n-1)+fibo(n-2)
      return fibTable[n]
```

#### **Tabulation solution**

```
def fibo(n):
    fibTable=[0,1]
    for i in range(2,n+1):
        fibTable.append(fibTable[i-1]+fibTable[i-2])
    return fibTable[n]
```

### Longest Common Subsequence (LCS)

Application: comparison of two DNA strings

Ex: 
$$X = \{A B C B D A B\}, Y = \{B D C A B A\}$$

Longest Common Subsequence:

$$X = AB$$
  $C$   $BDAB$ 

$$Y = BDCABA$$

Brute force algorithm would compare each subsequence of X with the symbols in Y

Subsequence need not be consecutive, but must be in order.

3/15/2024

### LCS Example

We'll see how LCS algorithm works on the following example:

- X = ABCB
- Y = BDCAB

What is the Longest Common Subsequence of X and Y?

$$LCS(X, Y) = BCB$$
  
 $X = A B C B$   
 $Y = B D C A B$ 

# LCS Example (0)

BDCAB

|   | j  | 0  | 1 | 2 | 3 | 4 | 5 L |
|---|----|----|---|---|---|---|-----|
| i |    | Yj | В | D | C | A | В   |
| 0 | Xi |    |   |   |   |   |     |
| 1 | A  |    |   |   |   |   |     |
| 2 | В  |    |   |   |   |   |     |
| 3 | C  |    |   |   |   |   |     |
| 4 | В  |    |   |   |   |   |     |

$$X = ABCB$$
;  $m = |X| = 4$   
 $Y = BDCAB$ ;  $n = |Y| = 5$   
Allocate array c[5,4]

ABCB BDCAB

|   | j  | 0  | 1 | 2 | 3 | 4 | 5 |
|---|----|----|---|---|---|---|---|
| i |    | Yj | В | D | C | A | В |
| 0 | Xi | 0  | 0 | 0 | 0 | 0 | 0 |
| 1 | A  | 0  |   |   |   |   |   |
| 2 | В  | 0  |   |   |   |   |   |
| 3 | C  | 0  |   |   |   |   |   |
| 4 | В  | 0  |   |   |   |   |   |

for 
$$i = 1$$
 to m  $c[i,0] = 0$   
for  $j = 1$  to n  $c[0,j] = 0$ 

### LCS Example (2)

RDCAR

|   | j            | 0  | 1   | 2 | 3 | 4 | 5 B |
|---|--------------|----|-----|---|---|---|-----|
| i |              | Yj | (B) | D | C | A | В   |
| 0 | Xi           | 0  |     | 0 | 0 | 0 | 0   |
| 1 | $\bigcirc$ A | 0  | 0   |   |   |   |     |
| 2 | В            | 0  |     |   |   |   |     |
| 3 | $\mathbf{C}$ | 0  |     |   |   |   |     |
| 4 | В            | 0  |     |   |   |   |     |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

## LCS Example (3)

RDC A R

|   | j  | 0  | 1 | 2 | 3 | 4 | 5 E |
|---|----|----|---|---|---|---|-----|
| i |    | Yj | В | D | C | A | В   |
| 0 | Xi | 0  | 0 | 0 | 0 | 0 | 0   |
| 1 | A  | 0  | 0 | 0 | 0 |   |     |
| 2 | В  | 0  |   |   |   |   |     |
| 3 | C  | 0  |   |   |   |   |     |
| 4 | В  | 0  |   |   |   |   |     |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

### LCS Example (4)

ADCD DDC A D

|   | j   | 0  | 1 | 2 | 3   | 4 | 5 E |
|---|-----|----|---|---|-----|---|-----|
| i |     | Yj | В | D | C   | A | В   |
| 0 | Xi  | 0  | 0 | 0 | 0 、 | 0 | 0   |
| 1 | (A) | 0  | 0 | 0 | 0   | 1 |     |
| 2 | В   | 0  |   |   |     |   |     |
| 3 | C   | 0  |   |   |     |   |     |
| 4 | В   | 0  |   |   |     |   |     |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

### LCS Example (5)

ABCB

**BDCAB** 

|   | j  | 0  | 1 | 2 | 3 | 4   | 5        |
|---|----|----|---|---|---|-----|----------|
| i |    | Yj | В | D | C | A   | (B)      |
| 0 | Xi | 0  | 0 | 0 | 0 | 0   | 0        |
| 1 | A  | 0  | 0 | 0 | 0 | 1 - | <b>1</b> |
| 2 | В  | 0  |   |   |   |     |          |
| 3 | C  | 0  |   |   |   |     |          |
| 4 | В  | 0  |   |   |   |     |          |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

### LCS Example (6)

RDCAR

|   | j  | 0  | 1 | 2 | 3 | 4 | 5 |
|---|----|----|---|---|---|---|---|
| i |    | Yj | B | D | C | A | В |
| 0 | Xi | 0  | 0 | 0 | 0 | 0 | 0 |
| 1 | A  | 0  | 0 | 0 | 0 | 1 | 1 |
| 2 | B  | 0  | 1 |   |   |   |   |
| 3 | C  | 0  |   |   |   |   |   |
| 4 | В  | 0  |   |   |   |   |   |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

## LCS Example (7)

BDCAB

|   | j            | 0  | 1 | 2 | 3 | 4 | 5 E |
|---|--------------|----|---|---|---|---|-----|
| i |              | Yj | В | D | C | A | > B |
| 0 | Xi           | 0  | 0 | 0 | 0 | 0 | 0   |
| 1 | A            | 0  | 0 | 0 | 0 | 1 | 1   |
| 2 | $\bigcirc$ B | 0  | 1 | 1 | 1 | 1 |     |
| 3 | C            | 0  |   |   |   |   |     |
| 4 | В            | 0  |   |   |   |   |     |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

## LCS Example (8)

ABCB

|   |           |    |   |   | - | -   |     |
|---|-----------|----|---|---|---|-----|-----|
|   | j         | 0  | 1 | 2 | 3 | 4   | 5   |
| i |           | Yj | В | D | C | A   | (B) |
| 0 | Xi        | 0  | 0 | 0 | 0 | 0   | 0   |
| 1 | A         | 0  | 0 | 0 | 0 | 1 , | 1   |
| 2 | $oxed{B}$ | 0  | 1 | 1 | 1 | 1   | 2   |
| 3 | C         | 0  |   |   |   |     |     |
| 4 | В         | 0  |   |   |   |     |     |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

## LCS Example (10)

RDCAR

|   | j          | 0  | 1                  | 2        | 3 | 4 | 5 E |
|---|------------|----|--------------------|----------|---|---|-----|
| i |            | Yj | B                  | D        | C | A | В   |
| 0 | Xi         | 0  | 0                  | 0        | 0 | 0 | 0   |
| 1 | A          | 0  | 0                  | 0        | 0 | 1 | 1   |
| 2 | В          | 0  | 1                  | _1       | 1 | 1 | 2   |
| 3 | $\bigcirc$ | 0  | \ \ <sub>1</sub> - | <b>1</b> |   |   |     |
| 4 | В          | 0  |                    |          |   |   |     |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

## LCS Example (11)

BDCAB

|   | j          | 0  | 1 | 2 | 3   | 4 | 5 |
|---|------------|----|---|---|-----|---|---|
| i |            | Yj | В | D | (C) | A | В |
| 0 | Xi         | 0  | 0 | 0 | 0   | 0 | 0 |
| 1 | A          | 0  | 0 | 0 | 0   | 1 | 1 |
| 2 | В          | 0  | 1 | 1 | 1   | 1 | 2 |
| 3 | $\bigcirc$ | 0  | 1 | 1 | 2   |   |   |
| 4 | В          | 0  |   |   |     |   |   |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

# LCS Example (12)

BDCAB

|   | j            | 0  | 1 | 2 | 3   | 4          | $-5^{\mathbf{B}}$ |
|---|--------------|----|---|---|-----|------------|-------------------|
| i | -            | Yj | В | D | C   | A          | <u>B</u>          |
| 0 | Xi           | 0  | 0 | 0 | 0   | 0          | 0                 |
| 1 | $\mathbf{A}$ | 0  | 0 | 0 | 0   | 1          | 1                 |
| 2 | В            | 0  | 1 | 1 | 1   | 1          | 2                 |
| 3 | $\bigcirc$   | 0  | 1 | 1 | 2 - | <b>2</b> - | <b>2</b>          |
| 4 | В            | 0  |   |   |     |            |                   |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

### LCS Example (13)

ABCB ABCB

|   | j  | 0  | 1 | 2 | 3 | 4 | 5 B |
|---|----|----|---|---|---|---|-----|
| i |    | Yj | В | D | C | A | В   |
| 0 | Xi | 0  | 0 | 0 | 0 | 0 | 0   |
| 1 | A  | 0  | 0 | 0 | 0 | 1 | 1   |
| 2 | В  | 0  | 1 | 1 | 1 | 1 | 2   |
| 3 | C  | 0  | 1 | 1 | 2 | 2 | 2   |
| 4 | B  | 0  | 1 |   |   |   |     |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

## LCS Example (14)

ABCB BDCAB

|   | j            | 0  | 1   | 2          | 3            | 4        | 5 B      |
|---|--------------|----|-----|------------|--------------|----------|----------|
| i |              | Yj | В   | D          | C            | A        | <b>B</b> |
| 0 | Xi           | 0  | 0   | 0          | 0            | 0        | 0        |
| 1 | $\mathbf{A}$ | 0  | 0   | 0          | 0            | 1        | 1        |
| 2 | В            | 0  | 1   | 1          | 1            | 1        | 2        |
| 3 | C            | 0  | 1   | 1          | _2           | 2        | 2        |
| 4 | B            | 0  | 1 - | <b>→</b> 1 | <b>1 2</b> - | <b>2</b> |          |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

## LCS Example (15)

ABCR ABCR

|   | j  | 0  | 1 | 2 | 3 | 4   | 5 B |
|---|----|----|---|---|---|-----|-----|
| i |    | Yj | В | D | C | A   | B   |
| 0 | Xi | 0  | 0 | 0 | 0 | 0   | 0   |
| 1 | A  | 0  | 0 | 0 | 0 | 1   | 1   |
| 2 | В  | 0  | 1 | 1 | 1 | 1   | 2   |
| 3 | C  | 0  | 1 | 1 | 2 | 2 🔨 | 2   |
| 4 | B  | 0  | 1 | 1 | 2 | 2   | 3   |

if 
$$(X_i == Y_j)$$
  
 $c[i,j] = c[i-1,j-1] + 1$   
else  $c[i,j] = max(c[i-1,j],c[i,j-1])$ 

#### How to find actual LCS - continued

Remember that

$$c[i,j] = \begin{cases} c[i-1,j-1]+1 & \text{if } x[i] = y[j], \\ \max(c[i,j-1],c[i-1,j]) & \text{otherwise} \end{cases}$$

- □ So we can start from c[m,n] and go backwards
- □ Whenever c[i,j] = c[i-1, j-1]+1, remember x[i] (because x[i] is a part of LCS)
- When i=0 or j=0 (i.e. we reached the beginning), output remembered letters in reverse order

42

3/15/2024

# Finding LCS

|   | j  | 0   | 1   | 2          | 3   | 4                | 5 |
|---|----|-----|-----|------------|-----|------------------|---|
| i |    | Yj  | В   | D          | C   | A                | В |
| 0 | Xi | 0   | 0   | 0          | 0   | 0                | 0 |
| 1 | A  | 0 🛌 | 0   | 0          | 0   | 1                | 1 |
| 2 | В  | 0   | 1 ← | <b>-</b> 1 | 1   | 1                | 2 |
| 3 | C  | 0   | 1   | 1          | 2 ← | - 2 <sub>×</sub> | 2 |
| 4 | В  | 0   | 1   | 1          | 2   | 2                | 3 |

3/15/2024

# Finding LCS (2)



LCS (reversed order): B C B

LCS (straight order): **B C B** (this string turned out to be a palindrome)