

---

# HP OpenVMS RTL General Purpose (OTS\$) Manual

Order Number: AA-PV6HE-TK

**January 2005**

This manual documents the general-purpose routines contained in the OTS\$ facility of the OpenVMS Run-Time Library.

**Revision/Update Information:** This manual supersedes the *HP OpenVMS RTL General Purpose (OTS\$) Manual* for OpenVMS Alpha Version 7.3.

**Software Version:** OpenVMS I64 Version 8.2  
OpenVMS Alpha Version 8.2

**Hewlett-Packard Company**  
**Palo Alto, California**

---

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.  
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software  
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government  
under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP  
products and services are set forth in the express warranty statements accompanying such products  
and services. Nothing herein should be construed as constituting an additional warranty. HP shall  
not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries  
in the United States and other countries.

Printed in the US

ZK5933

The HP OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

---

# Contents

|               |   |
|---------------|---|
| Preface ..... | v |
|---------------|---|

## Part I OTS\$ Overview

### 1 Run-Time Library General Purpose (OTS\$) Facility

|                                                            |     |
|------------------------------------------------------------|-----|
| 1.1 Overview .....                                         | 1-1 |
| 1.2 Linking OTS\$ Routines on Alpha and I64 Systems .....  | 1-4 |
| 1.2.1 64-Bit Addressing Support (Alpha and I64 Only) ..... | 1-5 |

## Part II OTS\$ Reference Section

|                                           |        |
|-------------------------------------------|--------|
| OTS\$CALL_PROC (Alpha and I64 Only) ..... | OTS-3  |
| OTS\$CNVOUT .....                         | OTS-5  |
| OTS\$CVT_L_TB .....                       | OTS-7  |
| OTS\$CVT_L_TI .....                       | OTS-9  |
| OTS\$CVT_L_TL .....                       | OTS-11 |
| OTS\$CVT_L_TO .....                       | OTS-13 |
| OTS\$CVT_L_TU .....                       | OTS-15 |
| OTS\$CVT_L_TZ .....                       | OTS-17 |
| OTS\$CVT_T_x .....                        | OTS-19 |
| OTS\$CVT_TB_L .....                       | OTS-24 |
| OTS\$CVT_TI_L .....                       | OTS-27 |
| OTS\$CVT_TL_L .....                       | OTS-29 |
| OTS\$CVT_TO_L .....                       | OTS-31 |
| OTS\$CVT_TU_L .....                       | OTS-34 |
| OTS\$CVT_TZ_L .....                       | OTS-36 |
| OTS\$DIVCx .....                          | OTS-39 |
| OTS\$DIV_PK_LONG .....                    | OTS-42 |
| OTS\$DIV_PK_SHORT .....                   | OTS-46 |
| OTS\$JUMP_TO_BPV (I64 Only) .....         | OTS-48 |
| OTS\$MOVE3 .....                          | OTS-50 |
| OTS\$MOVE5 .....                          | OTS-52 |
| OTS\$MULCx .....                          | OTS-54 |
| OTS\$POWCxCx .....                        | OTS-57 |
| OTS\$POWCxJ .....                         | OTS-60 |
| OTS\$POWDD .....                          | OTS-63 |
| OTS\$POWDJ .....                          | OTS-65 |
| OTS\$POWDR .....                          | OTS-67 |

|                                |         |
|--------------------------------|---------|
| OTS\$POWGG .....               | OTS-69  |
| OTS\$POWGJ .....               | OTS-72  |
| OTS\$POWHH_R3 (VAX Only) ..... | OTS-74  |
| OTS\$POWHJ_R3 (VAX Only) ..... | OTS-76  |
| OTS\$POWII .....               | OTS-78  |
| OTS\$POWJJ .....               | OTS-80  |
| OTS\$POWLULU .....             | OTS-82  |
| OTS\$POWRD .....               | OTS-84  |
| OTS\$POWRJ .....               | OTS-86  |
| OTS\$POWRR .....               | OTS-88  |
| OTS\$POWSJ .....               | OTS-90  |
| OTS\$POWSS .....               | OTS-92  |
| OTS\$POWTJ .....               | OTS-95  |
| OTS\$POWTT .....               | OTS-97  |
| OTS\$POWxLU .....              | OTS-100 |
| OTS\$SCOPY_DDX .....           | OTS-102 |
| OTS\$SCOPY_R_DX .....          | OTS-104 |
| OTS\$SFREE1_DD .....           | OTS-107 |
| OTS\$SFREEN_DD .....           | OTS-108 |
| OTS\$SGET1_DD .....            | OTS-109 |

## Index

## Tables

|     |                                                |     |
|-----|------------------------------------------------|-----|
| 1-1 | OTS\$ Conversion Routines .....                | 1-2 |
| 1-2 | OTS\$ Division Routines .....                  | 1-2 |
| 1-3 | OTS\$ Move Data Routines .....                 | 1-2 |
| 1-4 | OTS\$ Multiplication Routine .....             | 1-2 |
| 1-5 | OTS\$ Exponentiation Routines .....            | 1-3 |
| 1-6 | OTS\$ Copy Source String Routines .....        | 1-3 |
| 1-7 | OTS\$ Return String Area Routines .....        | 1-4 |
| 1-8 | OTS\$ Convenience Routines .....               | 1-4 |
| 1-9 | OTS\$ and Equivalent Math\$ Entry Points ..... | 1-4 |

---

# Preface

This manual provides users of the OpenVMS operating system with detailed usage and reference information on general-purpose routines supplied in the OTS\$ facility of the Run-Time Library.

## Intended Audience

This manual is intended for system and application programmers who write programs that call OTS\$ Run-Time Library routines.

## Document Structure

This manual is organized into two parts as follows:

- Part I contains a brief overview of the OTS\$ routines in Chapter 1.
- Part II, the OTS\$ Reference Section, provides detailed reference information on each routine contained in the OTS\$ facility of the Run-Time Library. This information is presented using the documentation format described in *OpenVMS Programming Concepts Manual*. Routine descriptions appear in alphabetical order by routine name.

## Related Documents

The Run-Time Library routines are documented in a series of reference manuals. A description of how the Run-Time Library routines are accessed and of OpenVMS features and functionality available through calls to the OTS\$ Run-Time Library appears in the *OpenVMS Programming Concepts Manual*. Descriptions of other RTL facilities and their corresponding routines and usages are discussed in the following books:

- *Compaq Portable Mathematics Library*
- *OpenVMS VAX RTL Mathematics (MTH\$) Manual*
- *OpenVMS RTL DECtalk (DTK\$) Manual*<sup>1</sup>
- *HP OpenVMS RTL Library (LIB\$) Manual*
- *OpenVMS RTL Parallel Processing (PPL\$) Manual*<sup>1</sup>
- *OpenVMS RTL Screen Management (SMG\$) Manual*
- *OpenVMS RTL String Manipulation (STR\$) Manual*

The *Guide to the POSIX Threads Library* contains guidelines and reference information for HP POSIX Threads<sup>2</sup>, the HP Multithreading Run-Time Library.

---

<sup>1</sup> This manual has been archived but is available on the OpenVMS Documentation CD-ROM.

<sup>2</sup> HP POSIX Threads was formerly called DECthreads.

Application programmers using any programming language can refer to the *Guide to Creating OpenVMS Modular Procedures* for writing modular and reentrant code.

High-level language programmers will find additional information on calling Run-Time Library routines in their language reference manual. Additional information may also be found in the language user's guide provided with your OpenVMS language software.

For a complete list and description of the manuals in the OpenVMS documentation set, see the *HP OpenVMS Version 8.2 New Features and Documentation Overview*.

For additional information about HP *OpenVMS* products and services, see the following World Wide Web address:

<http://www.hp.com/products/openvms>

## Reader's Comments

HP welcomes your comments on this manual. Please send comments to either of the following addresses:

|          |                                                                                                                |
|----------|----------------------------------------------------------------------------------------------------------------|
| Internet | <b>openvmsdoc@hp.com</b>                                                                                       |
| Mail     | Hewlett-Packard Company<br>OSSG Documentation Group, ZKO3-4/U08<br>110 Spit Brook Rd.<br>Nashua, NH 03062-2698 |

## How To Order Additional Documentation

For information on how to order additional documentation, visit the following World Wide Web address:

<http://www.hp.com/go/openvms/doc/order>

## Conventions

The following conventions are used in this manual:

|                 |                                                                                                                                                                  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ctrl/x          | A sequence such as Ctrl/x indicates that you must hold down the key labeled Ctrl while you press another key or a pointing device button.                        |
| PF1 x           | A sequence such as PF1 x indicates that you must first press and release the key labeled PF1 and then press and release another key or a pointing device button. |
| <b>[Return]</b> | In examples, a key name enclosed in a box indicates that you press a key on the keyboard. (In text, a key name is not enclosed in a box.)                        |

In the HTML version of this document, this convention appears as brackets, rather than a box.

|                    |                                                                                                                                                                                                                                                                                                                                                              |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ...                | A horizontal ellipsis in examples indicates one of the following possibilities: <ul style="list-style-type: none"> <li>• Additional optional arguments in a statement have been omitted.</li> <li>• The preceding item or items can be repeated one or more times.</li> <li>• Additional parameters, values, or other information can be entered.</li> </ul> |
| .                  | A vertical ellipsis indicates the omission of items from a code example or command format; the items are omitted because they are not important to the topic being discussed.                                                                                                                                                                                |
| ( )                | In command format descriptions, parentheses indicate that you must enclose choices in parentheses if you specify more than one.                                                                                                                                                                                                                              |
| [ ]                | In command format descriptions, brackets indicate optional choices. You can choose one or more items or no items. Do not type the brackets on the command line. However, you must include the brackets in the syntax for OpenVMS directory specifications and for a substring specification in an assignment statement.                                      |
| { }                | In command format descriptions, braces indicate a required choice of options; you must choose one of the options listed. Do not type the braces on the command line.                                                                                                                                                                                         |
| <b>bold text</b>   | This typeface represents the introduction of a new term. It also represents the name of an argument, an attribute, or a reason.                                                                                                                                                                                                                              |
| <i>italic text</i> | Italic text indicates important information, complete titles of manuals, or variables. Variables include information that varies in system output ( <i>Internal error number</i> ), in command lines ( <i>/PRODUCER=name</i> ), and in command parameters in text (where <i>dd</i> represents the predefined code for the device type).                      |
| UPPERCASE TEXT     | Uppercase text indicates a command, the name of a routine, the name of a file, or the abbreviation for a system privilege.                                                                                                                                                                                                                                   |
| Monospace text     | Monospace type indicates code examples and interactive screen displays.                                                                                                                                                                                                                                                                                      |
| -                  | In the C programming language, monospace type in text identifies the following elements: keywords, the names of independently compiled external functions and files, syntax summaries, and references to variables or identifiers introduced in an example.                                                                                                  |
| numbers            | A hyphen at the end of a command format description, command line, or code line indicates that the command or statement continues on the following line.                                                                                                                                                                                                     |
|                    | All numbers in text are assumed to be decimal unless otherwise noted. Nondecimal radices—binary, octal, or hexadecimal—are explicitly indicated.                                                                                                                                                                                                             |



# **Part I**

---

## **OTS\$ Overview**

This part of the *HP OpenVMS RTL General Purpose (OTS\$) Manual* contains a general overview of the routines provided by the OpenVMS RTL General Purpose (OTS\$) Facility, and lists them by function.



---

# Run-Time Library General Purpose (OTS\$) Facility

This chapter describes the OpenVMS Run-Time Library General Purpose (OTS\$) Facility. See the OTS\$ Reference Section for a detailed description of each routine within the OTS\$ facility.

Most of the OTS\$ routines were originally designed to support language compilers. Because they perform general-purpose functions, the routines were moved into the language-independent facility, OTS\$.

## 1.1 Overview

The Run-Time Library General Purpose (OTS\$) Facility provides routines to perform general-purpose functions. These functions include data type conversions as part of a compiler's generated code, and some mathematical functions.

The OTS\$ facility contains routines to perform the following main tasks:

- Convert data types (see Table 1–1)
- Divide complex and packed decimal values (see Table 1–2)
- Move data to a specified destination address (see Table 1–3)
- Multiply complex values (see Table 1–4)
- Raise a base to an exponent (see Table 1–5)
- Copy a source string to a destination string (see Table 1–6)
- Return a string area to free storage (see Table 1–7)
- Use convenience routines related to the OpenVMS Calling Standard (see Table 1–8)

Some restrictions apply if you link certain OTS\$ routines on an Alpha system or HP OpenVMS Industry Standard 64 for Integrity Servers (I64) system. See Section 1.2 for more information about these restrictions.

## Run-Time Library General Purpose (OTS\$) Facility

### 1.1 Overview

**Table 1–1 OTS\$ Conversion Routines**

| Routine Name  | Function                                                                                                      |
|---------------|---------------------------------------------------------------------------------------------------------------|
| OTS\$CNVOUT   | Convert a D-floating, G-floating, H-floating, IEEE S-floating or IEEE T-floating value to a character string. |
| OTS\$CVT_L_TB | Convert an unsigned integer to binary text.                                                                   |
| OTS\$CVT_L_TI | Convert a signed integer to signed integer text.                                                              |
| OTS\$CVT_L_TL | Convert an integer to logical text.                                                                           |
| OTS\$CVT_L_TO | Convert an unsigned integer to octal text.                                                                    |
| OTS\$CVT_L_TU | Convert an unsigned integer to decimal text.                                                                  |
| OTS\$CVT_L_TZ | Convert an integer to hexadecimal text.                                                                       |
| OTS\$CVT_TB_L | Convert binary text to an unsigned integer value.                                                             |
| OTS\$CVT_TI_L | Convert signed integer text to an integer value.                                                              |
| OTS\$CVT_TL_L | Convert logical text to an integer value.                                                                     |
| OTS\$CVT_TO_L | Convert octal text to an unsigned integer value.                                                              |
| OTS\$CVT_TU_L | Convert unsigned decimal text to an integer value.                                                            |
| OTS\$CVT_T_x  | Convert numeric text to a D-, F-, G-, H-, IEEE S-, or IEEE T-floating value.                                  |
| OTS\$CVT_TZ_L | Convert hexadecimal text to an unsigned integer value.                                                        |

For more information on Run-Time Library conversion routines, see the CVT\$ reference section in the *HP OpenVMS RTL Library (LIB\$) Manual*.

**Table 1–2 OTS\$ Division Routines**

| Routine Name      | Function                                              |
|-------------------|-------------------------------------------------------|
| OTS\$DIVCx        | Perform complex division.                             |
| OTS\$DIV_PK_LONG  | Perform packed decimal division with a long divisor.  |
| OTS\$DIV_PK_SHORT | Perform packed decimal division with a short divisor. |

**Table 1–3 OTS\$ Move Data Routines**

| Routine Name | Function                |
|--------------|-------------------------|
| OTS\$MOVE3   | Move data without fill. |
| OTS\$MOVE5   | Move data with fill.    |

**Table 1–4 OTS\$ Multiplication Routine**

| Routine Name | Function                        |
|--------------|---------------------------------|
| OTS\$MULCx   | Perform complex multiplication. |

# Run-Time Library General Purpose (OTS\$) Facility

## 1.1 Overview

**Table 1–5 OTS\$ Exponentiation Routines**

| Routine Name   | Function                                                                          |
|----------------|-----------------------------------------------------------------------------------|
| OTS\$POWCxCx   | Raise a complex base to a complex floating-point exponent.                        |
| OTS\$POWCxJ    | Raise a complex base to a signed longword exponent.                               |
| OTS\$POWDD     | Raise a D-floating base to a D-floating exponent.                                 |
| OTS\$POWDR     | Raise a D-floating base to an F-floating exponent.                                |
| OTS\$POWDJ     | Raise a D-floating base to a longword integer exponent.                           |
| OTS\$POWGG     | Raise a G-floating base to a G-floating or longword integer exponent.             |
| OTS\$POWGJ     | Raise a G-floating base to a longword integer exponent.                           |
| †OTS\$POWHH_R3 | Raise an H-floating base to an H-floating exponent.                               |
| †OTS\$POWHJ_R3 | Raise an H-floating base to a longword integer exponent.                          |
| OTS\$POWII     | Raise a word integer base to a word integer exponent.                             |
| OTS\$POWJJ     | Raise a longword integer base to a longword integer exponent.                     |
| OTS\$POWLULU   | Raise an unsigned longword integer base to an unsigned longword integer exponent. |
| OTS\$POWxLU    | Raise a floating-point base to an unsigned longword integer exponent.             |
| OTS\$POWRD     | Raise an F-floating base to a D-floating exponent.                                |
| OTS\$POWRJ     | Raise an F-floating base to a longword integer exponent.                          |
| OTS\$POWRR     | Raise an F-floating base to an F-floating exponent.                               |
| OTS\$POWSJ     | Raise an IEEE S-floating base to a longword integer exponent.                     |
| OTS\$POWSS     | Raise an IEEE S-floating base to an S-floating or longword integer exponent.      |
| OTS\$POWTJ     | Raise an IEEE T-floating base to a longword integer exponent.                     |
| OTS\$POWTT     | Raise an IEEE T-floating base to a T-floating or longword integer exponent.       |

†VAX specific.

**Table 1–6 OTS\$ Copy Source String Routines**

| Routine Name    | Function                                                           |
|-----------------|--------------------------------------------------------------------|
| OTS\$SCOPY_DDXD | Copy a source string passed by descriptor to a destination string. |
| OTS\$SCOPY_R_DX | Copy a source string passed by reference to a destination string.  |

# Run-Time Library General Purpose (OTS\$) Facility

## 1.1 Overview

**Table 1–7 OTS\$ Return String Area Routines**

| Routine Name   | Function                  |
|----------------|---------------------------|
| OTS\$SFREE1_DD | Free one dynamic string.  |
| OTS\$SFREEN_DD | Free $n$ dynamic strings. |
| OTS\$SGET1_DD  | Get one dynamic string.   |

**Table 1–8 OTS\$ Convenience Routines**

| Routine Name     | Function                                                                                  |
|------------------|-------------------------------------------------------------------------------------------|
| OTS\$CALL_PROC   | Perform a call to a procedure that may be either in native code or in a translated image. |
| OTS\$JUMP_TO_BPV | Transfer control to a bound procedure.                                                    |

## 1.2 Linking OTS\$ Routines on Alpha and I64 Systems

On Alpha and I64 systems, if you use the OTS\$ entry points for certain mathematics routines, you must link against the DPML\$SHR.EXE library. Alternately, you can use the equivalent math\$ entry point for the routine and link against either STARLET.OLB or the DPML\$SHR.EXE library. Math\$ entry points are available only on Alpha and I64 systems.

Table 1–9 lists the affected OTS\$ entry points with their equivalent math\$ entry points. Refer to the *Compaq Portable Mathematics Library* for information about the math\$ entry points.

**Table 1–9 OTS\$ and Equivalent Math\$ Entry Points**

| OTS\$ Entry Point | Math\$ Entry Point |
|-------------------|--------------------|
| OTS\$DIVC         | math\$cdiv_f       |
| OTS\$DIVCG_R3     | math\$cdiv_g       |
| OTS\$DIVCS        | math\$cdiv_s       |
| OTS\$DIVCT_R3     | math\$cdiv_t       |
| OTS\$MULCS        | math\$cmul_s       |
| OTS\$MULCT_R3     | math\$cmul_t       |
| OTS\$MULCG_R3     | math\$cmul_g       |
| OTS\$POWCC        | math\$cpow_f       |
| OTS\$POWCGCG_R3   | math\$cpow_g       |
| OTS\$POWCJ        | math\$cpow_fq      |
| OTS\$POWCSCS      | math\$cpow_s       |
| OTS\$POWCSJ       | math\$cpow_sq      |
| OTS\$POWCTCT_R3   | math\$cpow_t       |
| OTS\$POWCTJ_R3    | math\$cpow_tq      |
| OTS\$POWGG        | math\$pow_gg       |
| OTS\$POWGJ        | math\$pow_gq       |

(continued on next page)

**Table 1–9 (Cont.) OTS\$ and Equivalent Math\$ Entry Points**

| OTS\$ Entry Point | Math\$ Entry Point |
|-------------------|--------------------|
| OTS\$POWGLU       | math\$pow_gq       |
| OTS\$POWII        | math\$pow_qq       |
| OTS\$POWJJ        | math\$pow_qq       |
| OTS\$POWLULU      | math\$pow_qq       |
| OTS\$POWRJ        | math\$pow_fq       |
| OTS\$POWRLU       | math\$pow_fq       |
| OTS\$POWRR        | math\$pow_ff       |
| OTS\$POWSS        | math\$pow_ss       |
| OTS\$POWSJ        | math\$pow_sq       |
| OTS\$POWSLU       | math\$pow_sq       |
| OTS\$POWTJ        | math\$pow_tq       |
| OTS\$POWTLU       | math\$pow_tq       |
| OTS\$POWTT        | math\$pow_tt       |

### 1.2.1 64-Bit Addressing Support (Alpha and I64 Only)

On Alpha and I64 systems, the General Purpose (OTS\$) routines provide 64-bit virtual addressing capabilities as follows:

- All OTS\$ RTL routines accept 64-bit addresses for arguments passed by reference.
- All OTS\$ RTL routines also accept either 32-bit or 64-bit descriptors for arguments passed by descriptor.

---

**Note**

---

The OTS\$ routines declared in `ots$routines.h` do not include prototypes for 64-bit data. You must provide your own generic prototypes for any OTS\$ functions you use.

---

See the *OpenVMS Programming Concepts Manual* for more information about 64-bit virtual addressing capabilities.



# **Part II**

---

## **OTS\$ Reference Section**

This section provides detailed descriptions of the routines provided by the OpenVMS RTL General Purpose (OTS\$) Facility.



## **OTS\$CALL\_PROC (Alpha and I64 Only)**

### **Call Special Procedure**

The Call Special Procedure routine performs a call to a procedure that may be either in native code or in a translated image.

#### **Format**

```
OTS$CALL_PROC target-func-value ,target-sig-info ,standard-args ,...
```

#### **Returns**

None.

#### **Arguments**

##### **target-func-value**

OpenVMS usage: function value  
type: quadword address  
access: read only  
mechanism: by value in register R23 (Alpha). by value in register R17 (I64).

Function value for the procedure to be called.

##### **target-sig-info**

OpenVMS usage: TIE signature information  
type: TIE signature block  
access: read only  
mechanism: by reference in register R24 (Alpha). by value in register R17 (I64).

Signature information is used to transform the standard arguments into the form required by a translated image (if needed). The representation of signature information is described in the OpenVMS Calling Standard.

##### **standard-args**

Zero or more arguments to be passed to the called routine, passed using standard conventions (including the AI register).

#### **Description**

When translated code support is requested, the compiled code must call the special service routine, OTS\$CALL\_PROC. The actual parameters to the target function are passed to OTS\$CALL\_PROC as though the target routine is native code that is being invoked directly.

OTS\$CALL\_PROC first determines whether the target routine is part of a translated image.

If the target is in native code, then OTS\$CALL\_PROC completes the call in a way that makes its mediation transparent (that is, control need not pass back through it for the return). The native parameters are used without modification.

## **OTS\$ Routines**

### **OTS\$CALL\_PROC (Alpha and I64 Only)**

If the target is in translated code, then OTS\$CALL\_PROC passes control to the Translated Image Environment (TIE). For additional information, see the *HP OpenVMS Calling Standard*.

#### **Condition Values Returned**

None.

---

## **OTS\$CNVOUT**

### **Convert D-Floating, G-Floating, H-Floating, S-Floating or T-Floating Number to Character String**

The Convert Floating to Character String routines convert a D-floating, G-floating, H-floating, IEEE S-floating, or IEEE T-floating number to a character string in the Fortran E format.

#### **Format**

```
OTS$CNVOUT  D-G-H-S-or-T-float-pt-input-val ,fixed-length-resultant-string  
              ,digits-in-fraction  
OTS$CNVOUT_G  D-G-H-S-or-T-float-pt-input-val ,fixed-length-resultant-string  
              ,digits-in-fraction  
OTS$CNVOUT_H  D-G-H-S-or-T-float-pt-input-val ,fixed-length-resultant-string  
              ,digits-in-fraction (VAX only)  
OTS$CNVOUT_S  D-G-H-S-or-T-float-pt-input-val ,fixed-length-resultant-string  
              ,digits-in-fraction (VAX only)  
OTS$CNVOUT_T  D-G-H-S-or-T-float-pt-input-val ,fixed-length-resultant-string  
              ,digits-in-fraction (VAX only)
```

#### **Returns**

OpenVMS usage: cond\_value  
type: longword (unsigned)  
access: write only  
mechanism: by value

#### **Arguments**

##### **D-G-H-S-or-T-float-pt-input-val**

OpenVMS usage: floating\_point  
type: D\_floating, G\_floating, H\_floating, IEEE S\_floating, IEEE  
T\_floating  
access: read only  
mechanism: by reference

Value that OTS\$CNVOUT converts to a character string. For OTS\$CNVOUT, the **D-G-H-S-or-T-float-pt-input-val** argument is the address of a D-floating number containing the value. For OTS\$CNVOUT\_G, the **D-G-H-S-or-T-float-pt-input-val** argument is the address of a G-floating number containing the value. For OTS\$CNVOUT\_S, the **D-G-H-S-or-T-float-pt-input-val** argument is the address of an IEEE S-floating number containing the value. For OTS\$CNVOUT\_T, the **D-G-H-S-or-T-float-pt-input-val** argument is the address of an IEEE T-floating number containing the value.

##### **fixed-length-resultant-string**

OpenVMS usage: char\_string  
type: character string  
access: write only  
mechanism: by descriptor, fixed length

## OTS\$ Routines

### OTS\$CNVOUT

Output string into which OTS\$CNVOUT writes the character string result of the conversion. The **fixed-length-resultant-string** argument is the address of a descriptor pointing to the output string.

#### **digits-in-fraction**

OpenVMS usage: longword\_unsigned  
type: longword (unsigned)  
access: read only  
mechanism: by value

Number of digits in the fractional portion of the result. The **digits-in-fraction** argument is an unsigned longword containing the number of digits to be written to the fractional portion of the result.

## Condition Values Returned

|                 |                                                                                                                                  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------|
| SS\$_NORMAL     | Normal successful completion.                                                                                                    |
| SS\$_ROPRAND    | Floating reserved operand detected.                                                                                              |
| OTS\$_OUTCONERR | Output conversion error. The result would have exceeded the fixed-length string; the output string is filled with asterisks (*). |

---

## OTS\$CVT\_L\_TB

### Convert an Unsigned Integer to Binary Text

The Convert an Unsigned Integer to Binary Text routine converts an unsigned integer value of arbitrary length to binary representation in an ASCII text string. By default, a longword is converted.

#### Format

```
OTS$CVT_L_TB  varying-input-value,fixed-length-resultant-string [,number-of-digits]  
                [,input-value-size]
```

#### Returns

OpenVMS usage: cond\_value  
type: longword (unsigned)  
access: write only  
mechanism: by value

#### Arguments

##### **varying-input-value**

OpenVMS usage: varying\_arg  
type: unspecified  
access: read only  
mechanism: by reference

Unsigned byte, word, or longword that OTS\$CVT\_L\_TB converts to an unsigned decimal representation in an ASCII text string. (The value of the **input-value-size** argument determines whether **varying-input-value** is a byte, word, or longword.) The **varying-input-value** argument is the address of the unsigned integer.

##### **fixed-length-resultant-string**

OpenVMS usage: char\_string  
type: character string  
access: write only  
mechanism: by descriptor, fixed length

ASCII text string that OTS\$CVT\_L\_TB creates when it converts the integer value. The **fixed-length-resultant-string** argument is the address of a descriptor pointing to this ASCII text string. The string is assumed to be of fixed length (CLASS\_S descriptor).

##### **number-of-digits**

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: read only  
mechanism: by value

Minimum number of digits in the binary representation to be generated. The **number-of-digits** argument is a signed longword containing this minimum number. If the minimum number of digits is omitted, the default is 1. If the actual number of significant digits is less than the minimum number of digits, leading zeros are produced. If the minimum number of digits is zero and the

## **OTS\$ Routines**

### **OTS\$CVT\_L\_TB**

value of the integer to be converted is also zero, OTS\$CVT\_L\_TB creates a blank string.

#### **input-value-size**

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: read only  
mechanism: by value

Size of the integer to be converted, in bytes. The **input-value-size** argument is a signed longword containing the byte size. This is an optional argument. If the size is omitted, the default is 4 (longword).

## **Condition Values Returned**

|                 |                                                                                                                                  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------|
| SS\$_NORMAL     | Normal successful completion.                                                                                                    |
| OTS\$_OUTCONERR | Output conversion error. The result would have exceeded the fixed-length string; the output string is filled with asterisks (*). |

---

## **OTS\$CVT\_L\_TI**

### **Convert Signed Integer to Decimal Text**

The Convert Signed Integer to Decimal Text routine converts a signed integer to its decimal representation in an ASCII text string. This routine supports Fortran Iw and Iw.m output and BASIC output conversion.

#### **Format**

```
OTS$CVT_L_TI  varying-input-value ,fixed-length-resultant-string [,number-of-digits]  
                [,input-value-size] [,flags-value]
```

#### **Returns**

OpenVMS usage: cond\_value  
type: longword (unsigned)  
access: write only  
mechanism: by value

#### **Arguments**

##### **varying-input-value**

OpenVMS usage: varying\_arg  
type: unspecified  
access: read only  
mechanism: by reference, fixed length

A signed integer that OTS\$CVT\_L\_TI converts to a signed decimal representation in an ASCII text string. The **varying-input-value** argument is the address of the signed integer.

On VAX systems, the integer can be a signed byte, word, or longword. The value of the **input-value-size** argument determines whether **varying-input-value** is a byte, word, or longword.

On Alpha and I64 systems, the integer can be a signed byte, word, longword, or quadword. The value of the **input-value-size** argument determines whether **varying-input-value** is a byte, word, longword, or quadword.

##### **fixed-length-resultant-string**

OpenVMS usage: char\_string  
type: character string  
access: write only  
mechanism: by descriptor

Decimal ASCII text string that OTS\$CVT\_L\_TI creates when it converts the signed integer. The **fixed-length-resultant-string** argument is the address of a CLASS\_S descriptor pointing to this text string. The string is assumed to be of fixed length.

##### **number-of-digits**

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: read only  
mechanism: by value

## OTS\$ Routines

### OTS\$CVT\_L\_TI

Minimum number of digits to be generated when OTS\$CVT\_L\_TI converts the signed integer to a decimal ASCII text string. The **number-of-digits** argument is a signed longword containing this number. If the minimum number of digits is omitted, the default value is 1. If the actual number of significant digits is smaller, OTS\$CVT\_L\_TI inserts leading zeros into the output string. If **number-of-digits** is zero and **varying-input-value** is zero, OTS\$CVT\_L\_TI writes a blank string to the output string.

#### **input-value-size**

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: read only  
mechanism: by value

Size of the integer to be converted, in bytes. The **input-value-size** argument is a signed longword containing this value size. If the size is omitted, the default is 4 (longword).

On VAX systems, the value size must be 1, 2, or 4. If value size is 1 or 2, the value is sign-extended to a longword before conversion.

On Alpha and I64 systems, the value size must be 1, 2, 4, or 8. If the value is 1, 2, or 4, the value is sign-extended to a quadword before conversion.

#### **flags-value**

OpenVMS usage: mask\_longword  
type: longword (unsigned)  
access: read only  
mechanism: by value

Caller-supplied flags that you can use if you want OTS\$CVT\_L\_TI to insert a plus sign before the converted number. The **flags-value** argument is an unsigned longword containing the flags.

The caller flags are described in the following table:

| Bit | Action if Set                                                                    | Action if Clear     |
|-----|----------------------------------------------------------------------------------|---------------------|
| 0   | Insert a plus sign (+) before the first nonblank character in the output string. | Omit the plus sign. |

If **flags-value** is omitted, all bits are clear and the plus sign is not inserted.

## Condition Values Returned

|                 |                                                                                                                                                                                             |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS\$_NORMAL     | Normal successful completion.                                                                                                                                                               |
| OTS\$_OUTCONERR | Output conversion error. Either the result would have exceeded the fixed-length string or the <b>input-value-size</b> is not a valid value. The output string is filled with asterisks (*). |

---

## OTS\$CVT\_L\_TL

### Convert Integer to Logical Text

The Convert Integer to Logical Text routine converts an integer to an ASCII text string representation using Fortran L (logical) format.

#### Format

OTS\$CVT\_L\_TL longword-integer-value ,fixed-length-resultant-string

#### Returns

OpenVMS usage: cond\_value  
type: longword (unsigned)  
access: write only  
mechanism: by value

#### Arguments

##### **longword-integer-value**

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: read only  
mechanism: by reference

Value that OTS\$CVT\_L\_TL converts to an ASCII text string. The **longword-integer-value** argument is the address of a signed longword containing this integer value.

##### **fixed-length-resultant-string**

OpenVMS usage: char\_string  
type: character string  
access: write only  
mechanism: by descriptor, fixed length

Output string that OTS\$CVT\_L\_TL creates when it converts the integer value to an ASCII text string. The **fixed-length-resultant-string** argument is the address of a descriptor pointing to this ASCII text string.

The output string is assumed to be of fixed length (CLASS\_S descriptor).

If bit 0 of **longword-integer-value** is set, OTS\$CVT\_L\_TL stores the character T in the rightmost character of **fixed-length-resultant-string**. If bit 0 is clear, it stores the character F. In either case, it fills the remaining characters of **fixed-length-resultant-string** with blanks.

#### Condition Values Returned

|                 |                                                                                                                                                            |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS\$_NORMAL     | Normal successful completion.                                                                                                                              |
| OTS\$_OUTCONERR | Output conversion error. The result would have exceeded the fixed-length string; the output string is of zero length (descriptor LENGTH field contains 0). |

## **OTS\$ Routines**

### **OTS\$CVT\_L\_TL**

#### **Example**

```
5 !+
! This is an example program
! showing the use of OTS$CVT_L_TL.
!-
VALUE% = 10
OUTSTR$ = ' '
CALL OTS$CVT_L_TL(VALUE%, OUTSTR$)
PRINT OUTSTR$
9 END
```

This BASIC example illustrates the use of OTS\$CVT\_L\_TL. The output generated by this program is 'F'.

---

## OTS\$CVT\_L\_TO

### Convert Unsigned Integer to Octal Text

The Convert Unsigned Integer to Octal Text routine converts an unsigned integer to an octal ASCII text string. OTS\$CVT\_L\_TO supports Fortran Ow and Ow.m output conversion formats.

#### Format

```
OTS$CVT_L_TO  varying-input-value ,fixed-length-resultant-string [,number-of-digits]  
                [,input-value-size]
```

#### Returns

OpenVMS usage: cond\_value  
type: longword (unsigned)  
access: write only  
mechanism: by value

#### Arguments

##### **varying-input-value**

OpenVMS usage: varying\_arg  
type: unspecified  
access: read only  
mechanism: by reference

Unsigned byte, word, or longword that OTS\$CVT\_L\_TO converts to an unsigned decimal representation in an ASCII text string. (The value of the **input-value-size** argument determines whether **varying-input-value** is a byte, word, or longword.) The **varying-input-value** argument is the address of the unsigned integer.

##### **fixed-length-resultant-string**

OpenVMS usage: char\_string  
type: character string  
access: write only  
mechanism: by descriptor, fixed length

Output string that OTS\$CVT\_L\_TO creates when it converts the integer value to an octal ASCII text string. The **fixed-length-resultant-string** argument is the address of a descriptor pointing to the octal ASCII text string. The string is assumed to be of fixed length (CLASS\_S descriptor).

##### **number-of-digits**

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: read only  
mechanism: by value

Minimum number of digits that OTS\$CVT\_L\_TO generates when it converts the integer value to an octal ASCII text string. The **number-of-digits** argument is a signed longword containing the minimum number of digits. If it is omitted, the default is 1. If the actual number of significant digits in the octal ASCII text string is less than the minimum number of digits, OTS\$CVT\_L\_TO inserts

## **OTS\$ Routines**

### **OTS\$CVT\_L\_TO**

leading zeros into the output string. If **number-of-digits** is 0 and **varying-input-value** is 0, OTS\$CVT\_L\_TO writes a blank string to the output string.

#### **input-value-size**

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: read only  
mechanism: by value

Size of the integer to be converted, in bytes. The **input-value-size** argument is a signed longword containing the number of bytes in the integer to be converted by OTS\$CVT\_L\_TO. If it is omitted, the default is 4 (longword).

## **Condition Values Returned**

|                 |                                                                                                                                  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------|
| SS\$_NORMAL     | Normal successful completion.                                                                                                    |
| OTS\$_OUTCONERR | Output conversion error. The result would have exceeded the fixed-length string; the output string is filled with asterisks (*). |

---

## OTS\$CVT\_L\_TU

### Convert Unsigned Integer to Decimal Text

The Convert Unsigned Integer to Decimal Text routine converts an unsigned integer value to its unsigned decimal representation in an ASCII text string.

#### Format

```
OTS$CVT_L_TU  varying-input-value ,fixed-length-resultant-string [,number-of-digits]  
                [,input-value-size]
```

#### Returns

OpenVMS usage: cond\_value  
type: longword (unsigned)  
access: write only  
mechanism: by value

#### Arguments

**varying-input-value**  
OpenVMS usage: varying\_arg  
type: unspecified  
access: read only  
mechanism: by reference

An unsigned integer that OTS\$CVT\_L\_TU converts to an unsigned decimal representation in an ASCII text string. The **varying-input-value** argument is the address of the unsigned integer.

On VAX systems, the integer can be an unsigned byte, word, or longword. (The value of the **input-value-size** argument determines whether **varying-input-value** is a byte, word, or longword.)

On Alpha and I64 systems, the integer can be an unsigned byte, word, longword, or quadword. (The value of the **input-value-size** argument determines whether **varying-input-value** is a byte, word, longword, or quadword.)

**fixed-length-resultant-string**

OpenVMS usage: char\_string  
type: character string  
access: write only  
mechanism: by descriptor, fixed length

Output string that OTS\$CVT\_L\_TU creates when it converts the integer value to unsigned decimal representation in an ASCII text string. The **fixed-length-resultant-string** argument is the address of a descriptor pointing to this ASCII text string.

**number-of-digits**

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: read only  
mechanism: by value

## **OTS\$ Routines**

### **OTS\$CVT\_L\_TU**

Minimum number of digits in the ASCII text string that OTS\$CVT\_L\_TU creates. The **number-of-digits** argument is a signed longword containing the minimum number. If the minimum number of digits is omitted, the default is 1.

If the actual number of significant digits in the output string created is less than the minimum number, OTS\$CVT\_L\_TU inserts leading zeros into the output string. If the minimum number of digits is zero and the integer value to be converted is also zero, OTS\$CVT\_L\_TU writes a blank string to the output string.

#### **input-value-size**

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: read only  
mechanism: by value

Size of the integer to be converted, in bytes. The **input-value-size** argument is a signed longword containing this value size. If the size is omitted, the default is 4 (longword).

On VAX systems, the value size must be 1, 2, or 4.

On Alpha and I64 systems, the value size must be 1, 2, 4, or 8.

## **Condition Values Returned**

|                 |                                                                                                                                                                                             |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS\$_NORMAL     | Normal successful completion.                                                                                                                                                               |
| OTS\$_OUTCONERR | Output conversion error. Either the result would have exceeded the fixed-length string or the <b>input-value-size</b> is not a valid value. The output string is filled with asterisks (*). |

---

## OTS\$CVT\_L\_TZ

### Convert Integer to Hexadecimal Text

The Convert Integer to Hexadecimal Text routine converts an unsigned integer to a hexadecimal ASCII text string. OTS\$CVT\_L\_TZ supports Fortran Zw and Zw.m output conversion formats.

#### Format

```
OTS$CVT_L_TZ  varying-input-value ,fixed-length-resultant-string [,number-of-digits]  
                [,input-value-size]
```

#### Returns

OpenVMS usage: cond\_value  
type: longword (unsigned)  
access: write only  
mechanism: by value

#### Arguments

##### **varying-input-value**

OpenVMS usage: varying\_arg  
type: unspecified  
access: read only  
mechanism: by reference

Unsigned byte, word, or longword that OTS\$CVT\_L\_TZ converts to an unsigned decimal representation in an ASCII text string. (The value of the **input-value-size** argument determines whether **varying-input-value** is a byte, word, or longword.) The **varying-input-value** argument is the address of the unsigned integer.

##### **fixed-length-resultant-string**

OpenVMS usage: char\_string  
type: character string  
access: write only  
mechanism: by descriptor, fixed length

Output string that OTS\$CVT\_L\_TZ creates when it converts the integer value to a hexadecimal ASCII text string. The **fixed-length-resultant-string** argument is the address of a descriptor pointing to this ASCII text string. The string is assumed to be of fixed length (CLASS\_S descriptor).

##### **number-of-digits**

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: read only  
mechanism: by value

Minimum number of digits in the ASCII text string that OTS\$CVT\_L\_TZ creates when it converts the integer. The **number-of-digits** argument is a signed longword containing this minimum number. If it is omitted, the default is 1. If the actual number of significant digits in the text string that OTS\$CVT\_L\_TZ creates is less than this minimum number, OTS\$CVT\_L\_TZ inserts leading zeros in the output string. If the minimum number of digits is zero and the integer

## OTS\$ Routines

### OTS\$CVT\_L\_TZ

value to be converted is also zero, OTS\$CVT\_L\_TZ writes a blank string to the output string.

#### input-value-size

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: read only  
mechanism: by value

Size of the integer that OTS\$CVT\_L\_TZ converts, in bytes. The **input-value-size** argument is a signed longword containing the value size. If the size is omitted, the default is 4 (longword).

## Condition Values Returned

|                 |                                                                                                                                  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------|
| SS\$_NORMAL     | Normal successful completion.                                                                                                    |
| OTS\$_OUTCONERR | Output conversion error. The result would have exceeded the fixed-length string; the output string is filled with asterisks (*). |

## Example

```
with TEXT_IO; use TEXT_IO;
procedure SHOW_CONVERT is

    type INPUT_INT is new INTEGER range 0..INTEGER'LAST;
    INTVALUE : INPUT_INT := 256;
    HEXSTRING : STRING(1..11);

    procedure CONVERT_TO_HEX (I : in INPUT_INT; HS : out STRING);
    pragma INTERFACE (RTL, CONVERT_TO_HEX);
    pragma IMPORT_routine (INTERNAL => CONVERT_TO_HEX,
                           EXTERNAL => "OTS$CVT_L_TZ",
                           MECHANISM =>(REFERENCE,
                                         DESCRIPTOR (CLASS => S)));
begin
    CONVERT_TO_HEX (INTVALUE, HEXSTRING);
    PUT_LINE("This is the value of HEXSTRING");
    PUT_LINE(HEXSTRING);
end;
```

This Ada example uses OTS\$CVT\_L\_TZ to convert a longword integer to hexadecimal text.

---

## **OTS\$CVT\_T\_x**

### **Convert Numeric Text to D-, F-, G-, H-, S-, or T-Floating Value**

The Convert Numeric Text to D-, F-, G-, H-, IEEE S-, or IEEE T-Floating routines convert an ASCII text string representation of a numeric value to a D-floating, F-floating, G-floating, H-floating, IEEE S-floating, or IEEE T-floating value.

#### **Format**

```
OTS$CVT_T_D  fixed-or-dynamic-input-string ,floating-point-value [,digits-in-fraction]
               [,scale-factor] [,flags-value] [,extension-bits]
OTS$CVT_T_F  fixed-or-dynamic-input-string ,floating-point-value [,digits-in-fraction]
               [,scale-factor] [,flags-value] [,extension-bits]
OTS$CVT_T_G  fixed-or-dynamic-input-string ,floating-point-value [,digits-in-fraction]
               [,scale-factor] [,flags-value] [,extension-bits]
OTS$CVT_T_H  fixed-or-dynamic-input-string ,floating-point-value [,digits-in-fraction]
               [,scale-factor] [,flags-value] [,extension-bits]
OTS$CVT_T_S  fixed-or-dynamic-input-string ,floating-point-value [,digits-in-fraction]
               [,scale-factor] [,flags-value] [,extension-bits]
OTS$CVT_T_T  fixed-or-dynamic-input-string ,floating-point-value [,digits-in-fraction]
               [,scale-factor] [,flags-value] [,extension-bits]
```

#### **Returns**

OpenVMS usage: cond\_value  
type: longword (unsigned)  
access: write only  
mechanism: by value

#### **Arguments**

##### **fixed-or-dynamic-input-string**

OpenVMS usage: char\_string  
type: character string  
access: read only  
mechanism: by descriptor, fixed-length or dynamic string

Input string containing an ASCII text string representation of a numeric value that OTS\$CVT\_T\_x converts to a D-floating, F-floating, G-floating, H-floating, IEEE S-floating, or IEEE T-floating value. The **fixed-or-dynamic-input-string** argument is the address of a descriptor pointing to the input string.

The syntax of a valid input string is as follows:

## OTS\$ Routines

### OTS\$CVT\_T\_x



VM-0710A-AI

E, e, D, d, Q, and q are the possible exponent letters. They are semantically equivalent. Other elements in the preceding syntax are defined as follows:

| Term   | Description                |
|--------|----------------------------|
| blanks | One or more blanks         |
| digits | One or more decimal digits |

#### **floating-point-value**

OpenVMS usage: floating\_point  
 type: D\_floating, F\_floating, G\_floating, H\_floating, IEEE S\_floating,  
       IEEE T\_floating  
 access: write only  
 mechanism: by reference

Floating-point value that OTS\$CVT\_T\_x creates when it converts the input string. The **floating-point-value** argument is the address of the floating-point value. The data type of **floating-point-value** depends on the called routine as shown in the following table:

| Routine      | floating-point-value Data Type |
|--------------|--------------------------------|
| OTS\$CVT_T_D | D-floating                     |
| OTS\$CVT_T_F | F-floating                     |
| OTS\$CVT_T_G | G-floating                     |
| OTS\$CVT_T_H | H-floating                     |
| OTS\$CVT_T_S | IEEE S-floating                |
| OTS\$CVT_T_T | IEEE T-floating                |

#### **digits-in-fraction**

OpenVMS usage: longword\_unsigned  
 type: longword (unsigned)  
 access: read only  
 mechanism: by value

Number of digits in the fraction if no decimal point is included in the input string. The **digits-in-fraction** argument contains the number of digits. If the number of digits is omitted, the default is zero.

**scale-factor**

OpenVMS usage: longword\_signed  
 type: longword (signed)  
 access: read only  
 mechanism: by value

Scale factor. The **scale-factor** argument contains the value of the scale factor. If bit 6 of the **flags-value** argument is clear, the resultant value is divided by  $10^{scale-factor}$  unless the exponent is present. If bit 6 of **flags-value** is set, the scale factor is always applied. If the scale factor is omitted, the default is zero.

**flags-value**

OpenVMS usage: mask\_longword  
 type: longword (unsigned)  
 access: read only  
 mechanism: by value

User-supplied flags. The **flags-value** argument contains the user-supplied flags described in the following table:

| <b>Bit</b> | <b>Action if Set</b>                                                         | <b>Action if Clear</b>                                                             |
|------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 0          | Ignore blanks.                                                               | Interpret blanks as zeros.                                                         |
| 1          | Allow only E or e exponents.<br>(This is consistent with Fortran semantics.) | Allow E, e, D, d, Q and q exponents.<br>(This is consistent with BASIC semantics.) |
| 2          | Interpret an underflow as an error.                                          | Do not interpret an underflow as an error.                                         |
| 3          | Truncate the value.                                                          | Round the value.                                                                   |
| 4          | Ignore tabs.                                                                 | Interpret tabs as invalid characters.                                              |
| 5          | An exponent must begin with a valid exponent letter.                         | The exponent letter can be omitted.                                                |
| 6          | Always apply the scale factor.                                               | Apply the scale factor only if there is no exponent present in the string.         |

If you omit the **flags-value** argument, OTS\$CVT\_T\_x defaults all flags to clear.

**extension-bits (D-, F-floating, IEEE S-floating)**

OpenVMS usage: byte\_unsigned  
 type: byte (unsigned)  
 access: write only  
 mechanism: by reference

**extension-bits (G-, H-floating, IEEE T-floating)**

OpenVMS usage: word\_unsigned  
 type: word (unsigned)  
 access: write only  
 mechanism: by reference

Extra precision bits. The **extension-bits** argument is the address of a word containing the extra precision bits. If **extension-bits** is present, **floating-point-value** is not rounded, and the first *n* bits after truncation are returned left-justified in this argument, as follows:

## OTS\$ Routines

### OTS\$CVT\_T\_x

| Routine      | Number of Bits Returned | Data Type       |
|--------------|-------------------------|-----------------|
| OTS\$CVT_T_D | 8                       | Byte (unsigned) |
| OTS\$CVT_T_F | 8                       | Byte (unsigned) |
| OTS\$CVT_T_G | 11                      | Word (unsigned) |
| OTS\$CVT_T_H | 15                      | Word (unsigned) |
| OTS\$CVT_T_S | 8                       | Byte (unsigned) |
| OTS\$CVT_T_T | 11                      | Word (unsigned) |

A value represented by extension bits is suitable for use as the extension operand in an EMOD instruction.

The extra precision bits returned for H-floating may not be precise because OTS\$CVT\_T\_H carries its calculations to only 128 bits. However the error should be small.

#### Description

The OTS\$CVT\_T\_D, OTS\$CVT\_T\_F, OTS\$CVT\_T\_G, OTS\$CVT\_T\_H, OTS\$CVT\_T\_S, and OTS\$CVT\_T\_T routines support Fortran D, E, F, and G input type conversion as well as similar types for other languages.

These routines provide run-time support for BASIC and Fortran input statements.

Although Alpha and I64 systems do not generally support H-floating operations, you can use OTS\$CVT\_T\_H to convert a text string to an H-floating value on an Alpha or I64 system.

#### Condition Values Returned

|                 |                                                                                                                                                                                                                                                            |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS\$_NORMAL     | Normal successful completion.                                                                                                                                                                                                                              |
| OTS\$_INPCONERR | Input conversion error; an invalid character in the input string, or the value is outside the range that can be represented. The <b>floating-point-value</b> and <b>extension-bits</b> arguments, if present, are set to +0.0 (not reserved operand -0.0). |

#### Example

```
C+
C This is a Fortran program demonstrating the use of
C OTS$CVT_T_F.
C-
      REAL*4 A
      CHARACTER*10 T(5)
      DATA T/'1234567+23','8.786534+3','-983476E-3','-23.734532','45'/
      DO 2 I = 1, 5
      TYPE 1,I,T(I)
1      FORMAT(' Input string ',I1,' is ',A10)
```

## **OTS\$ Routines** **OTS\$CVT\_T\_x**

```
C+
C B is the return status.
C T(I) is the string to be converted to an
C F-floating point value. A is the F-floating
C point conversion of T(I). %VAL(5) means 5 digits
C are in the fraction if no decimal point is in
C the input string T(I).
C-
      B = OTS$CVT_T_F(T(I),A,%VAL(5),,,)
      TYPE *, Output of OTSCVT_T_F is      ',A
      TYPE *, '
2      CONTINUE
      END
```

This Fortran example demonstrates the use of OTS\$CVT\_T\_F. The output generated by this program is as follows:

```
Input string 1 is 1234567+23      Output of OTSCVT_T_F is      1.2345669E+24
Input string 2 is 8.786534+3      Output of OTSCVT_T_F is      8786.534
Input string 3 is -983476E-3      Output of OTSCVT_T_F is      -9.8347599E-03
Input string 4 is -23.734532      Output of OTSCVT_T_F is      -23.73453
Input string 5 is -45            Output of OTSCVT_T_F is      45000.00
```

## **OTS\$CVT\_TB\_L**

### **Convert Binary Text to Unsigned Integer**

The Convert Binary Text to Unsigned Integer routine converts an ASCII text string representation of an unsigned binary value to an unsigned integer value. The integer value can be of arbitrary length but is typically a byte, word, longword, or quadword. The default size of the result is a longword.

#### **Format**

```
OTS$CVT_TB_L fixed-or-dynamic-input-string ,varying-output-value  
[,output-value-size] [,flags-value]
```

#### **Returns**

OpenVMS usage: cond\_value  
type: longword (unsigned)  
access: write only  
mechanism: by value

#### **Arguments**

##### **fixed-or-dynamic-input-string**

OpenVMS usage: char\_string  
type: character string  
access: read only  
mechanism: by descriptor

Input string containing the string representation of an unsigned binary value that OTS\$CVT\_TB\_L converts to an unsigned integer value. The **fixed-or-dynamic-input-string** argument is the address of a descriptor pointing to the input string. The valid input characters are blanks and the digits 0 and 1. No sign is permitted.

##### **varying-output-value**

OpenVMS usage: varying\_arg  
type: unspecified  
access: write only  
mechanism: by reference

Unsigned integer of specified size that OTS\$CVT\_TB\_L creates when it converts the ASCII text string. The **varying-output-value** argument is the address of the integer. The value of the **output-value-size** argument determines the size in bytes of the output value.

##### **output-value-size**

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: read only  
mechanism: by value

Arbitrary number of bytes to be occupied by the unsigned integer output value. The **output-value-size** argument contains a value that equals the size in bytes of the output value. If the value of **output-value-size** is zero or a negative number, OTS\$CVT\_TB\_L returns an input conversion error. If you omit the **output-value-size** argument, the default is 4 (longword).

**flags-value**

OpenVMS usage: mask\_longword  
 type: longword (unsigned)  
 access: read only  
 mechanism: by value

User-supplied flag that OTS\$CVT\_TB\_L uses to determine how to interpret blanks within the input string. The **flags-value** argument contains this user-supplied flag.

OTS\$CVT\_TB\_L defines the flag as follows:

| Bit | Action if Set  | Action if Clear            |
|-----|----------------|----------------------------|
| 0   | Ignore blanks. | Interpret blanks as zeros. |

If you omit the **flags-value** argument, OTS\$CVT\_TB\_L defaults all flags to clear.

## Condition Values Returned

|                 |                                                                                                                                                                                                                                                                                                               |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS\$_NORMAL     | Normal successful completion.                                                                                                                                                                                                                                                                                 |
| OTS\$_INPCONERR | Input conversion error. OTS\$CVT_TB_L encountered an invalid character in the <b>fixed-or-dynamic-input-string</b> , an overflow of <b>varying-output-value</b> , or an invalid <b>output-value-size</b> . In the case of an invalid character or of an overflow, <b>varying-output-value</b> is set to zero. |

## Example

```

OPTION
    TYPE = EXPLICIT
    &

!+
!   This program demonstrates the use of OTS$CVT_TB_L from BASIC.
!   Several binary numbers are read and then converted to their
!   integer equivalents.
!-
!+
!   DECLARATIONS
!-

DECLARE STRING BIN_STR
DECLARE LONG BIN_VAL, I, RET_STATUS
DECLARE LONG CONSTANT FLAGS = 17      ! 2^0 + 2^4
EXTERNAL LONG FUNCTION OTS$CVT_TB_L (STRING, LONG, &
    LONG BY VALUE, LONG BY VALUE)

!+
!   MAIN PROGRAM
!-

!+
!   Read the data, convert it to binary, and print the result.
!-

```

## **OTS\$ Routines**

### **OTS\$CVT\_TB\_L**

```
FOR I = 1 TO 5
    READ BIN_STR
    RET STATUS = OTS$CVT_TB_L( BIN_STR, BIN_VAL, '4'L, FLAGS)
    PRINT BIN_STR;" treated as a binary number equals";BIN_VAL
NEXT I

!+
! Done, end the program.
!-

GOTO 32767

999 Data      "1111", "1 111", "1011011", "11111111", "00000000"
32767 END
```

This BASIC example program demonstrates how to call OTS\$CVT\_TB\_L to convert binary text to a longword integer.

The output generated by this BASIC program is as follows:

```
1111 treated as a binary number equals 15
1 111 treated as a binary number equals 15
1011011 treated as a binary number equals 91
11111111 treated as a binary number equals 255
00000000 treated as a binary number equals 0
```

---

## **OTS\$CVT\_TI\_L**

### **Convert Signed Integer Text to Integer**

The Convert Signed Integer Text to Integer routine converts an ASCII text string representation of a signed decimal number to a signed integer value. The default size of the result is a longword.

#### **Format**

```
OTS$CVT_TI_L fixed-or-dynamic-input-string ,varying-output-value  
[,output-value-size] [,flags-value]
```

#### **Returns**

OpenVMS usage: cond\_value  
type: longword (unsigned)  
access: write only  
mechanism: by value

#### **Arguments**

##### **fixed-or-dynamic-input-string**

OpenVMS usage: char\_string  
type: character string  
access: read only  
mechanism: by descriptor, fixed-length or dynamic string

Input ASCII text string that OTS\$CVT\_TI\_L converts to a signed integer. The **fixed-or-dynamic-input-string** argument is the address of a descriptor pointing to the input string.

The syntax of a valid ASCII text input string is as follows:

$$\left[ \begin{array}{c} + \\ - \end{array} \quad \text{<integer-digits>} \right]$$

OTS\$CVT\_TI\_L always ignores leading blanks.

##### **varying-output-value**

OpenVMS usage: varying\_arg  
type: unspecified  
access: write only  
mechanism: by reference

Signed integer that OTS\$CVT\_TI\_L creates when it converts the ASCII text string. The **varying-output-value** argument is the address of the signed integer. The value of the **output-value-size** argument determines the size of **varying-output-value**.

##### **output-value-size**

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: read only  
mechanism: by value

## OTS\$ Routines

### OTS\$CVT\_TI\_L

Number of bytes to be occupied by the value created when OTS\$CVT\_TI\_L converts the ASCII text string to an integer value. The **output-value-size** argument contains the number of bytes in **varying-output-value**.

On VAX systems, valid values for the **output-value-size** argument are 1, 2, and 4. The value determines whether the integer value that OTS\$CVT\_TI\_L creates is a byte, word, or longword.

On Alpha and I64 systems, valid values for the **output-value-size** argument are 1, 2, 4, and 8. The value determines whether the integer value that OTS\$CVT\_TI\_L creates is a byte, word, longword, or quadword.

For VAX and Alpha systems, if you specify a 0 (zero) or omit the **output-value-size** argument, the size of the output value defaults to 4 (longword). If you specify any other value, OTS\$CVT\_TI\_L returns an input conversion error.

#### flags-value

OpenVMS usage: mask\_longword  
type: longword (unsigned)  
access: read only  
mechanism: by value

User-supplied flags that OTS\$CVT\_TI\_L uses to determine how blanks and tabs are interpreted. The **flags-value** argument is an unsigned longword containing the value of the flags.

| Bit | Action if Set      | Action if Clear                                                                      |
|-----|--------------------|--------------------------------------------------------------------------------------|
| 0   | Ignore all blanks. | Ignore leading blanks but interpret blanks after the first legal character as zeros. |
| 4   | Ignore tabs.       | Interpret tabs as invalid characters.                                                |

If you omit the **flags-value** argument, OTS\$CVT\_TI\_L defaults all flags to clear.

## Condition Values Returned

|                 |                                                                                                                                                                                                                                                                                                               |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS\$_NORMAL     | Normal successful completion.                                                                                                                                                                                                                                                                                 |
| OTS\$_INPCONERR | Input conversion error. OTS\$CVT_TI_L encountered an invalid character in the <b>fixed-or-dynamic-input-string</b> , an overflow of <b>varying-output-value</b> , or an invalid <b>output-value-size</b> . In the case of an invalid character or of an overflow, <b>varying-output-value</b> is set to zero. |

## **OTS\$CVT\_TL\_L**

### **Convert Logical Text to Integer**

The Convert Logical Text to Integer routine converts an ASCII text string representation of a FORTRAN-77 L format to a signed integer.

#### **Format**

```
OTS$CVT_TL_L fixed-or-dynamic-input-string ,varying-output-value
[,output-value-size]
```

#### **Returns**

|                |                     |
|----------------|---------------------|
| OpenVMS usage: | cond_value          |
| type:          | longword (unsigned) |
| access:        | write only          |
| mechanism:     | by value            |

#### **Arguments**

|                                      |                                               |
|--------------------------------------|-----------------------------------------------|
| <b>fixed-or-dynamic-input-string</b> |                                               |
| OpenVMS usage:                       | char_string                                   |
| type:                                | character string                              |
| access:                              | read only                                     |
| mechanism:                           | by descriptor, fixed-length or dynamic string |

Input string containing an ASCII text representation of a FORTRAN-77 L format that OTS\$CVT\_TL\_L converts to a signed integer value. The **fixed-or-dynamic-input-string** argument is the address of a descriptor pointing to the input string.

Common ASCII text representations of a FORTRAN-77 logical are .TRUE., .FALSE., T, t, F, and f. In practice, an OTS\$CVT\_TL\_L input string is valid if it adheres to the following syntax:



VM-0711A-AI

One of the letters T, t, F, or f is required. Other elements in the preceding syntax are defined as follows:

| <b>Term</b> | <b>Description</b>           |
|-------------|------------------------------|
| blanks      | One or more blanks           |
| characters  | One or more of any character |

## OTS\$ Routines

### OTS\$CVT\_TL\_L

#### **varying-output-value**

OpenVMS usage: varying\_arg  
type: unspecified  
access: write only  
mechanism: by reference

Signed integer that OTS\$CVT\_TL\_L creates when it converts the ASCII text string. The **varying-output-value** argument is the address of the signed integer. The value of the **output-value-size** argument determines the size in bytes of the signed integer.

OTS\$CVT\_TL\_L returns -1 as the contents of the **varying-output-value** argument if the character denoted by "letter" is T or t. Otherwise, OTS\$CVT\_TL\_L sets **varying-output-value** to zero.

#### **output-value-size**

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: read only  
mechanism: by value

Number of bytes to be occupied by the signed integer created when OTS\$CVT\_TL\_L converts the ASCII text string to an integer value. The **output-value-size** argument contains a value that equals the size in bytes of the output value. If **output-value-size** contains a zero or a negative number, OTS\$CVT\_TL\_L returns an input conversion error.

On VAX systems, valid values for the **output-value-size** argument are 1, 2, and 4. The value determines whether the integer value that OTS\$CVT\_TL\_L creates is a byte, word, or longword.

On Alpha and I64 systems, valid values for the **output-value-size** argument are 1, 2, 4, and 8. This value determines whether the integer value that OTS\$CVT\_TL\_L creates is a byte, word, longword, or quadword.

For VAX, Alpha, and I64 systems, if you omit the **output-value-size** argument, the default is 4 (longword).

## Condition Values Returned

|                 |                                                                                                                                                                                                                                             |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS\$_NORMAL     | Normal successful completion.                                                                                                                                                                                                               |
| OTS\$_INPCONERR | Input conversion error. OTS\$CVT_TL_L encountered an invalid character in the <b>fixed-or-dynamic-input-string</b> or an invalid <b>output-value-size</b> . In the case of an invalid character <b>varying-output-value</b> is set to zero. |

---

## OTS\$CVT\_TO\_L

### Convert Octal Text to Unsigned Integer

The Convert Octal Text to Unsigned Integer routine converts an ASCII text string representation of an unsigned octal value to an unsigned integer. The integer value can be of arbitrary length but is typically a byte, word, longword, or quadword. The default size of the result is a longword.

#### Format

```
OTS$CVT_TO_L fixed-or-dynamic-input-string ,varying-output-value
                [,output-value-size] [,flags-value]
```

#### Returns

OpenVMS usage: cond\_value  
type: longword (unsigned)  
access: write only  
mechanism: by value

#### Arguments

##### **fixed-or-dynamic-input-string**

OpenVMS usage: char\_string  
type: character string  
access: read only  
mechanism: by descriptor, fixed-length or dynamic string

Input string containing the string representation of an unsigned octal value that OTS\$CVT\_TO\_L converts to an unsigned integer. The **fixed-or-dynamic-input-string** argument is the address of a descriptor pointing to the input string. The valid input characters are blanks and the digits 0 through 7. No sign is permitted.

##### **varying-output-value**

OpenVMS usage: varying\_arg  
type: unspecified  
access: write only  
mechanism: by reference

Unsigned integer of specified size that OTS\$CVT\_TO\_L creates when it converts the ASCII text string. The **varying-output-value** argument is the address of the unsigned integer. The value of the **output-value-size** argument determines the size in bytes of the output value.

##### **output-value-size**

OpenVMS usage: longword\_signed  
type: longword integer (signed)  
access: read only  
mechanism: by value

Arbitrary number of bytes to be occupied by the unsigned integer output value. The **output-value-size** argument contains a value that equals the size in bytes of the output value. If the value of **output-value-size** is zero or a negative number, OTS\$CVT\_TO\_L returns an input conversion error. If you omit the **output-value-size** argument, the default is 4 (longword).

## OTS\$ Routines

### OTS\$CVT\_TO\_L

#### flags-value

OpenVMS usage: mask\_longword  
type: longword (unsigned)  
access: read only  
mechanism: by value

User-supplied flag that OTS\$CVT\_TO\_L uses to determine how to interpret blanks within the input string. The **flags-value** argument contains the user-supplied flag described in the following table:

| Bit | Action if Set      | Action if Clear            |
|-----|--------------------|----------------------------|
| 0   | Ignore all blanks. | Interpret blanks as zeros. |

If you omit the **flags-value** argument, OTS\$CVT\_TO\_L defaults the flag to clear.

#### Condition Values Returned

|                 |                                                                                                                                                                                                                                                                                                               |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS\$_NORMAL     | Normal successful completion.                                                                                                                                                                                                                                                                                 |
| OTS\$_INPCONERR | Input conversion error. OTS\$CVT_TO_L encountered an invalid character in the <b>fixed-or-dynamic-input-string</b> , an overflow of <b>varying-output-value</b> , or an invalid <b>output-value-size</b> . In the case of an invalid character or of an overflow, <b>varying-output-value</b> is set to zero. |

#### Example

```
OCTAL_CONV: PROCEDURE OPTIONS (MAIN) RETURNS (FIXED BINARY (31));
%INCLUDE $STSDEF;           /* Include definition of return status values      */
DECLARE OTS$CVT_TO_L ENTRY
    (CHARACTER(*),          /* Input string passed by descriptor            */
     FIXED BINARY (31),      /* Returned value passed by reference          */
     FIXED BINARY VALUE,     /* Size for returned value passed by value   */
     FIXED BINARY VALUE)    /* Flags passed by value                      */
RETURNS (FIXED BINARY (31)) /* Return status                                */
OPTIONS (VARIABLE);       /* Arguments may be omitted                    */

DECLARE INPUT CHARACTER (10);
DECLARE VALUE FIXED BINARY (31);
DECLARE SIZE FIXED BINARY(31) INITIAL(4) READONLY STATIC; /* Longword      */
DECLARE FLAGS FIXED BINARY(31) INITIAL(1) READONLY STATIC; /* Ignore blanks*/
ON ENDFILE (SYSIN) STOP;

DO WHILE ('1'B);           /* Loop continuously, until end of file      */
    PUT SKIP (2);
    GET LIST (INPUT) OPTIONS (PROMPT ('Octal value: '));
    STS$VALUE = OTS$CVT_TO_L (INPUT, VALUE, SIZE, FLAGS);
    IF ^STS$SUCCESS THEN RETURN (STS$VALUE);
    PUT SKIP EDIT (INPUT, 'Octal equals', VALUE, 'Decimal')
        (A,X,A,X,F(10),X,A);
END;

END OCTAL_CONV;
```

This PL/I program translates an octal value in ASCII into a fixed binary value. The program is run interactively; press Ctrl/Z to quit.

**OTS\$ Routines**  
**OTS\$CVT\_TO\_L**

```
$ RUN OCTAL
Octal value: 1
1 Octal equals 1 Decimal
Octal value: 11
11 Octal equals 9 Decimal
Octal value: 1017346
1017346 Octal equals 274150 Decimal
Octal value: Ctrl/Z
```

## **OTS\$CVT\_TU\_L**

### **Convert Unsigned Decimal Text to Integer**

The Convert Unsigned Decimal Text to Integer routine converts an ASCII text string representation of an unsigned decimal value to an unsigned integer value. By default, the size of the result is a longword.

#### **Format**

```
OTS$CVT_TU_L fixed-or-dynamic-input-string ,varying-output-value  
[,output-value-size] [,flags-value]
```

#### **Returns**

OpenVMS usage: cond\_value  
type: longword (unsigned)  
access: write only  
mechanism: by value

#### **Arguments**

##### **fixed-or-dynamic-input-string**

OpenVMS usage: char\_string  
type: character string  
access: read only  
mechanism: by descriptor

Input string containing an ASCII text string representation of an unsigned decimal value that OTS\$CVT\_TU\_L converts to an unsigned integer value. The **fixed-or-dynamic-input-string** argument is the address of a descriptor pointing to the input string. Valid input characters are the space and the digits 0 through 9. No sign is permitted.

##### **varying-output-value**

OpenVMS usage: varying\_arg  
type: unspecified  
access: write only  
mechanism: by reference

Unsigned integer that OTS\$CVT\_TU\_L creates when it converts the ASCII text string. The **varying-output-value** argument is the address of the unsigned integer. The value of the **output-value-size** argument determines the size of **varying-output-value**.

##### **output-value-size**

OpenVMS usage: longword\_signed  
type: longword integer (signed)  
access: read only  
mechanism: by value

Number of bytes occupied by the value created when OTS\$CVT\_TU\_L converts the input string. The **output-value-size** argument contains the number of bytes in **varying-output-value**.

On VAX systems, valid values for the **output-value-size** argument are 1, 2, and 4. The value determines whether the integer value that OTS\$CVT\_TU\_L creates is a byte, word, or longword.

On Alpha and I64 systems, valid values for the **output-value-size** argument are 1, 2, 4, and 8. The value determines whether the integer value that OTS\$CVT\_TU\_L creates is a byte, word, longword, or quadword.

For VAX, Alpha, and I64 systems, if you specify a 0 (zero) or omit the **output-value-size** argument, the size of the output value defaults to 4 (longword). If you specify any other value, OTS\$CVT\_TU\_L returns an input conversion error.

**flags-value**

OpenVMS usage: mask\_longword  
type: longword (unsigned)  
access: read only  
mechanism: by value

User-supplied flags that OTS\$CVT\_TU\_L uses to determine how blanks and tabs are interpreted. The **flags-value** argument contains the user-supplied flags as described in the following table:

| <b>Bit</b> | <b>Action if Set</b> | <b>Action if Clear</b>                                                               |
|------------|----------------------|--------------------------------------------------------------------------------------|
| 0          | Ignore all blanks.   | Ignore leading blanks but interpret blanks after the first legal character as zeros. |
| 4          | Ignore tabs.         | Interpret tabs as invalid characters.                                                |

If you omit the **flags-value** argument, OTS\$CVT\_TU\_L defaults all flags to clear.

## Condition Values Returned

|                 |                                                                                                                                                                                                                                                                                                            |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS\$_NORMAL     | Normal successful completion.                                                                                                                                                                                                                                                                              |
| OTS\$_INPCONERR | Input conversion error. OTS\$CVT_TU_L encountered an invalid character in the <b>fixed-or-dynamic-input-string</b> , overflow of <b>varying-output-value</b> , or an invalid <b>output-value-size</b> . In the case of an invalid character or of an overflow, <b>varying-output-value</b> is set to zero. |

## **OTS\$CVT\_TZ\_L**

### **Convert Hexadecimal Text to Unsigned Integer**

The Convert Hexadecimal Text to Unsigned Integer routine converts an ASCII text string representation of an unsigned hexadecimal value to an unsigned integer. The integer value can be of arbitrary length but is typically a byte, word, longword, or quadword. The default size of the result is a longword.

#### **Format**

```
OTS$CVT_TZ_L fixed-or-dynamic-input-string ,varying-output-value  
[,output-value-size] [,flags-value]
```

#### **Returns**

|                |                     |
|----------------|---------------------|
| OpenVMS usage: | cond_value          |
| type:          | longword (unsigned) |
| access:        | write only          |
| mechanism:     | by value            |

#### **Arguments**

##### **fixed-or-dynamic-input-string**

|                |                                               |
|----------------|-----------------------------------------------|
| OpenVMS usage: | char_string                                   |
| type:          | character string                              |
| access:        | read only                                     |
| mechanism:     | by descriptor, fixed-length or dynamic string |

Input string containing the string representation of an unsigned hexadecimal value that OTS\$CVT\_TZ\_L converts to an unsigned integer. The **fixed-or-dynamic-input-string** argument is the address of a descriptor pointing to the input string. The valid input characters are blanks, the digits 0 through 7, and the letters A through F. Letters can be uppercase or lowercase. No sign is permitted.

##### **varying-output-value**

|                |              |
|----------------|--------------|
| OpenVMS usage: | varying_arg  |
| type:          | unspecified  |
| access:        | write only   |
| mechanism:     | by reference |

Unsigned integer of specified size that OTS\$CVT\_TZ\_L creates when it converts the ASCII text string. The **varying-output-value** argument is the address of the unsigned integer. The value of the **output-value-size** argument determines the size in bytes of the output value.

##### **output-value-size**

|                |                   |
|----------------|-------------------|
| OpenVMS usage: | longword_signed   |
| type:          | longword (signed) |
| access:        | read only         |
| mechanism:     | by value          |

Arbitrary number of bytes to be occupied by the unsigned integer output value. The **output-value-size** argument contains a value that equals the size in bytes of the output value. If the value of **output-value-size** is zero or a negative

number, OTS\$CVT\_TZ\_L returns an input conversion error. If you omit the **output-value-size** argument, the default is 4 (longword).

**flags-value**

OpenVMS usage: mask\_longword  
 type: longword (unsigned)  
 access: read only  
 mechanism: by value

User-supplied flags that OTS\$CVT\_TZ\_L uses to determine how to interpret blanks within the input string. The **flags-value** argument contains these user-supplied flags as described in the following table:

| Bit | Action if Set      | Action if Clear            |
|-----|--------------------|----------------------------|
| 0   | Ignore all blanks. | Interpret blanks as zeros. |

If you omit the **flags-value** argument, OTS\$CVT\_TZ\_L defaults the flag to clear.

## Condition Values Returned

|                 |                                                                                                                                                                                                                                                                                                            |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS\$_NORMAL     | Normal successful completion.                                                                                                                                                                                                                                                                              |
| OTS\$_INPCONERR | Input conversion error. OTS\$CVT_TZ_L encountered an invalid character in the <b>fixed-or-dynamic-input-string</b> , overflow of <b>varying-output-value</b> , or an invalid <b>output-value-size</b> . In the case of an invalid character or of an overflow, <b>varying-output-value</b> is set to zero. |

## Examples

```

1. 10      !+
! This BASIC program converts a character string representing
! a hexadecimal value to a longword.
!-
100      !+
! Illustrate (and test) OTS convert hex-string to longword
!-
      EXTERNAL LONG FUNCTION OTS$CVT_TZ_L
      EXTERNAL LONG CONSTANT OTS$_INPCONERR
      INPUT "Enter hex numeric";HEXVAL$
      RET_STAT% = OTS$CVT_TZ_L(HEXVAL$, HEX% )
      PRINT "Conversion error" IF RET_STAT% = OTS$_INPCONERR
      PRINT "Decimal value of ";HEXVAL$;" is";HEX%
      &           IF RET_STAT% <> OTS$_INPCONERR

```

This BASIC example accepts a hexadecimal numeric string, converts it to a decimal integer, and prints the result. One sample of the output generated by this program is as follows:

```

$ RUN HEX
Enter hex numeric? A
Decimal value of A is 10

```

## OTS\$ Routines

### OTS\$CVT\_TZ\_L

```
2. HEX_CONV: PROCEDURE OPTIONS (MAIN) RETURNS (FIXED BINARY (31));
  %INCLUDE $STSDEF;           /* Include definition of return status values */
  DECLARE OTS$CVT_TZ_L ENTRY
    (CHARACTER(*),          /* Input string passed by descriptor      */
     FIXED BINARY (31),      /* Returned value passed by reference   */
     FIXED BINARY VALUE,     /* Size for returned value passed by value*/
     FIXED BINARY VALUE)    /* Flags passed by value                 */
   RETURNS (FIXED BINARY (31)) /* Return status                         */
   OPTIONS (VARIABLE);     /* Arguments may be omitted             */

  DECLARE INPUT CHARACTER (10);
  DECLARE VALUE FIXED BINARY (31);
  DECLARE FLAGS FIXED BINARY(31) INITIAL(1) READONLY STATIC; /*Ignore blanks*/
  ON ENDFILE (SYSIN) STOP;

  DO WHILE ('1'B);          /* Loop continuously, until end of file */
    PUT SKIP (2);
    GET LIST (INPUT) OPTIONS (PROMPT ('Hex value: '));
    STS$VALUE = OTS$CVT_TZ_L (INPUT, VALUE, , FLAGS);
    IF ^STS$SUCCESS THEN RETURN (STS$VALUE);
    PUT SKIP EDIT (INPUT, 'Hex equals', VALUE, 'Decimal')
      (A,X,A,X,F(10),X,A);
  END;
END HEX_CONV;
```

This PL/I example translates a hexadecimal value in ASCII into a fixed binary value. This program continues to prompt for input values until the user presses Ctrl/Z.

One sample of the output generated by this program is as follows:

```
$ RUN HEX
Hex value: 1A
1A      Hex equals      26 Decimal

Hex value: C
C      Hex equals      12 Decimal

Hex value: Ctrl/Z
```

---

## **OTS\$DIVCx**

### **Complex Division**

The Complex Division routines return a complex result of a division on complex numbers.

#### **Format**

```
OTS$DIVC  complex-dividend ,complex-divisor  
OTS$DIVCD_R3  complex-dividend ,complex-divisor (VAX only)  
OTS$DIVCG_R3  complex-dividend ,complex-divisor  
OTS$DIVCS  complex-dividend ,complex-divisor  
OTS$DIVCT_R3  complex-dividend ,complex-divisor
```

Each of these formats corresponds to one of the floating-point complex types.

#### **Returns**

OpenVMS usage: `complex_number`  
type: `F_floating complex, D_floating complex, G_floating complex,`  
`IEEE S_floating complex, IEEE T_floating complex,`  
access: `write only`  
mechanism: `by value`

Complex result of complex division. OTS\$DIVC returns an F-floating complex number. OTS\$DIVCD\_R3 returns a D-floating complex number. OTS\$DIVCG\_R3 returns a G-floating complex number. OTS\$DIVCS returns an IEEE S-floating complex number. OTS\$DIVCT\_R3 returns an IEEE T-floating complex number.

#### **Arguments**

##### **complex-dividend**

OpenVMS usage: `complex_number`  
type: `F_floating complex, D_floating complex, G_floating complex,`  
`IEEE S_floating complex, IEEE T_floating complex`  
access: `read only`  
mechanism: `by value`

Complex dividend. The **complex-dividend** argument contains a floating-point complex value. For OTS\$DIVC, **complex-dividend** is an F-floating complex number. For OTS\$DIVCD\_R3, **complex-dividend** is a D-floating complex number. For OTS\$DIVCG\_R3, **complex-dividend** is a G-floating complex number. For OTS\$DIVCT\_R3, **complex-dividend** is an IEEE T-floating complex number.

##### **complex-divisor**

OpenVMS usage: `complex_number`  
type: `F_floating complex, D_floating complex, G_floating complex,`  
`IEEE S_floating complex, IEEE T_floating complex`  
access: `read only`  
mechanism: `by value`

Complex divisor. The **complex-divisor** argument contains the value of the divisor. For OTS\$DIVC, **complex-divisor** is an F-floating complex number.

## OTS\$ Routines

### OTS\$DIVCx

For OTS\$DIVCD\_R3, **complex-divisor** is a D-floating complex number. For OTS\$DIVCG\_R3, **complex-divisor** is a G-floating complex number. For OTS\$DIVCS, **complex-divisor** is an IEEE S-floating complex number. For OTS\$DIVCS, **complex-dividend** is an IEEE S-floating complex number. For OTS\$DIVCT\_R3, **complex-divisor** is an IEEE T-floating complex number.

### Description

These routines return a complex result of a division on complex numbers.

The complex result is computed as follows:

1. Let (a,b) represent the complex dividend.
2. Let (c,d) represent the complex divisor.
3. Let (r,i) represent the complex quotient.

The results of this computation are as follows:

$$r = (ac + bd)/(c^2 + d^2)$$

$$i = (bc - ad)/(c^2 + d^2)$$

On Alpha and I64 systems, some restrictions apply when linking OTS\$DIVC or OTS\$DIVCG\_R3. See Chapter 1 for more information about these restrictions.

### Condition Values Signaled

|               |                                                    |
|---------------|----------------------------------------------------|
| SS\$_FLTDIV_F | Arithmetic fault. Floating-point division by zero. |
| SS\$_FLTOVF_F | Arithmetic fault. Floating-point overflow.         |

### Examples

```
1. C+
   C This Fortran example forms the complex
   C quotient of two complex numbers using
   C OTS$DIVC and the Fortran random number
   C generator RAN.
   C
   C Declare Z1, Z2, Z_Q, and OTS$DIVC as complex values.
   C OTS$DIVC will return the complex quotient of Z1 divided
   C by Z2: Z_Q = OTS$DIVC( %VAL(REAL(Z1)), %VAL(AIMAG(Z1)),
   C %VAL(REAL(Z2)), %VAL(AIMAG(Z2))
   C-
   COMPLEX Z1,Z2,Z_Q,OTS$DIVC
C+
C Generate a complex number.
C-
Z1 = (8.0,4.0)
C+
C Generate another complex number.
C-
Z2 = (1.0,1.0)
C+
C Compute the complex quotient of Z1/Z2.
C-
+ Z_Q = OTS$DIVC( %VAL(REAL(Z1)), %VAL(AIMAG(Z1)), %VAL(REAL(Z2)),
+ %VAL(AIMAG(Z2)))
TYPE *, ' The complex quotient of ',Z1,' divided by ',Z2,' is'
TYPE *, ',',Z_Q
END
```

## OTS\$ Routines OTS\$DIVCx

This Fortran program demonstrates how to call OTS\$DIVC. The output generated by this program is as follows:

The complex quotient of (8.000000,4.000000) divided by (1.000000,1.000000)  
is (6.000000,-2.000000)

```
2. C+
C      This Fortran example forms the complex
C      quotient of two complex numbers by using
C      OTS$DIVCG_R3 and the Fortran random number
C      generator RAN.
C
C      Declare Z1, Z2, and Z_Q as complex values. OTS$DIVCG_R3
C      will return the complex quotient of Z1 divided by Z2:
C      Z_Q = Z1/Z2
C-
C
C      COMPLEX*16 Z1,Z2,Z_Q
C+
C      Generate a complex number.
C-
C      Z1 = (8.0,4.0)
C+
C      Generate another complex number.
C-
C      Z2 = (1.0,1.0)
C+
C      Compute the complex quotient of Z1/Z2.
C-
C      Z_Q = Z1/Z2
C      TYPE *, ' The complex quotient of ',Z1,' divided by ',Z2,' is'
C      TYPE *, '           ',Z_Q
C      END
```

This Fortran example uses the OTS\$DIVCG\_R3 entry point instead. Notice the difference in the precision of the output generated:

The complex quotient of (8.00000000000000,4.00000000000000) divided by
(1.00000000000000,1.00000000000000) is
(6.00000000000000,-2.00000000000000)

## OTS\$ Routines

### OTS\$DIV\_PK\_LONG

---

## OTS\$DIV\_PK\_LONG

### Packed Decimal Division with Long Divisor

The Packed Decimal Division with Long Divisor routine divides fixed-point decimal data, which is stored in packed decimal form, when precision and scale requirements for the quotient call for multiple precision division. The divisor must have a precision of 30 or 31 digits.

#### Format

```
OTS$DIV_PK_LONG  packed-decimal-dividend ,packed-decimal-divisor  
                  ,divisor-precision ,packed-decimal-quotient ,quotient-precision  
                  ,precision-data ,scale-data
```

#### Returns

OpenVMS usage: cond\_value  
type: longword (unsigned)  
access: write only  
mechanism: by value

#### Arguments

##### **packed-decimal-dividend**

OpenVMS usage: varying\_arg  
type: packed decimal string  
access: read only  
mechanism: by reference

Dividend. The **packed-decimal-dividend** argument is the address of a packed decimal string that contains the shifted dividend.

Before being passed as input, the **packed-decimal-dividend** argument is always multiplied by  $10^c$ , where  $c$  is defined as follows:

```
c = 31 - prec(packed-decimal-dividend)
```

Multiplying **packed-decimal-dividend** by  $10^c$  makes **packed-decimal-dividend** a 31-digit number.

##### **packed-decimal-divisor**

OpenVMS usage: varying\_arg  
type: packed decimal string  
access: read only  
mechanism: by reference

Divisor. The **packed-decimal-divisor** argument is the address of a packed decimal string that contains the divisor.

##### **divisor-precision**

OpenVMS usage: word\_signed  
type: word (signed)  
access: read only  
mechanism: by value

Precision of the divisor. The **divisor-precision** argument is a signed word that contains the precision of the divisor. The high-order bits are filled with zeros.

**packed-decimal-quotient**

OpenVMS usage: varying\_arg  
type: packed decimal string  
access: write only  
mechanism: by reference

Quotient. The **packed-decimal-quotient** argument is the address of the packed decimal string into which OTS\$DIV\_PK\_LONG writes the quotient.

**quotient-precision**

OpenVMS usage: word\_signed  
type: word (signed)  
access: read only  
mechanism: by value

Precision of the quotient. The **quotient-precision** argument is a signed word that contains the precision of the quotient. The high-order bits are filled with zeros.

**precision-data**

OpenVMS usage: word\_signed  
type: word (signed)  
access: read only  
mechanism: by value

Additional digits of precision required. The **precision-data** argument is a signed word that contains the value of the additional digits of precision required.

OTS\$DIV\_PK\_LONG computes the **precision-data** argument as follows:

```
precision-data = scale(packed-decimal-quotient)
+ scale(packed-decimal-divisor)
- scale(packed-decimal-dividend)
- 31 + prec(packed-decimal-dividend)
```

**scale-data**

OpenVMS usage: word\_signed  
type: word (signed)  
access: read only  
mechanism: by value

Scale factor of the decimal point. The **scale-data** argument is a signed word that contains the scale data.

OTS\$DIV\_PK\_LONG defines the **scale-data** argument as follows:

```
scale-data = 31 - prec(packed-decimal-divisor)
```

## OTS\$ Routines

### OTS\$DIV\_PK\_LONG

#### Description

On VAX systems, before using this routine, you should determine whether it is best to use OTS\$DIV\_PK\_LONG, OTS\$DIV\_PK\_SHORT, or the VAX instruction DIVP. To determine this, you must first calculate  $b$ , where  $b$  is defined as follows:

```
b = scale(packed-decimal-quotient)
+ scale(packed-decimal-divisor)
- scale(packed-decimal-dividend)
+ prec(packed-decimal-dividend)
```

If  $b$  is greater than 31, then OTS\$DIV\_PK\_LONG can be used to perform the division. If  $b$  is less than 31, you could use the instruction DIVP instead.

When using this routine on an OpenVMS Alpha system, an I64 system, or on an OpenVMS VAX system and you have determined that you cannot use DIVP, you need to determine whether you should use OTS\$DIV\_PK\_LONG or OTS\$DIV\_PK\_SHORT. To determine this, you must examine the value of **scale-data**. If **scale-data** is less than or equal to 1, then you should use OTS\$DIV\_PK\_LONG. If **scale-data** is greater than 1, you should use OTS\$DIV\_PK\_SHORT instead.

#### Condition Value Signaled

|             |                                |
|-------------|--------------------------------|
| SS\$_FLTDIR | Fatal error. Division by zero. |
|-------------|--------------------------------|

#### Example

```
1
OPTION                                     &
TYPE = EXPLICIT

!+
!  This program uses OTS$DIV_PK_LONG to perform packed decimal
!  division.
!-

!+
!  DECLARATIONS
!-

DECLARE DECIMAL (31, 2)      NATIONAL_DEBT
DECLARE DECIMAL (30, 3)      POPULATION
DECLARE DECIMAL (10, 5)      PER_CAPITA_DEBT

EXTERNAL SUB OTS$DIV PK LONG (DECIMAL(31,2), DECIMAL (30, 3), &
WORD BY VALUE, DECIMAL(10, 5), WORD BY VALUE, WORD BY VALUE, &
WORD BY VALUE)

!+
!  Prompt the user for the required input.
!-

INPUT  "Enter national debt: ";NATIONAL_DEBT
INPUT  "Enter current population: ";POPULATION
```

## OTS\$ Routines OTS\$DIV\_PK\_LONG

```
!+
! Perform the division and print the result.
!
! scale(divd) = 2
! scale(divr) = 3
! scale(quot) = 5
!
! prec(divd) = 31
! prec(divr) = 30
! prec(quot) = 10
!
! prec-data = scale(quot) + scale(divr) - scale(divd) - 31 +
!             prec(divd)
! prec-data = 5      + 3      - 2      - 31 + 31
! prec-data = 6
!
! b = scale(quot) + scale(divr) - scale(divd) + prec(divd)
! b = 5      + 3      - 2      + 31
! b = 37
!
! c = 31 - prec(divd)
! c = 31 - 31
! c = 0
!
! scale-data = 31 - prec(divr)
! scale-data = 31 - 30
! scale-data = 1
!
! b is greater than 31, so either OTS$DIV PK LONG or
! OTS$DIV PK SHORT may be used to perform the division.
! If b is less than or equal to 31, then the DIVP
! instruction may be used.
!
! scale-data is less than or equal to 1, so OTS$DIV_PK_LONG
! should be used instead of OTS$DIV_PK_SHORT.
!
!-
CALL OTS$DIV PK LONG( NATIONAL_DEBT, POPULATION, '30'W, PER_CAPITA_DEBT, &
'10'W, '6'W, '1'W)
PRINT    "The per capita debt is ";PER_CAPITA_DEBT
END
```

This BASIC example program uses OTS\$DIV\_PK\_LONG to perform packed decimal division. One example of the output generated by this program is as follows:

```
$ RUN DEBT
Enter national debt: ? 12345678
Enter current population: ? 1212
The per capita debt is 10186.20297
```

## OTS\$ Routines

### OTS\$DIV\_PK\_SHORT

---

## OTS\$DIV\_PK\_SHORT

### Packed Decimal Division with Short Divisor

The Packed Decimal Division with Short Divisor routine divides fixed-point decimal data when precision and scale requirements for the quotient call for multiple-precision division.

#### Format

```
OTS$DIV_PK_SHORT packed-decimal-dividend ,packed-decimal-divisor  
                      ,divisor-precision ,packed-decimal-quotient  
                      ,quotient-precision ,precision-data
```

#### Returns

OpenVMS usage: cond\_value  
type: longword (unsigned)  
access: write only  
mechanism: by value

#### Arguments

##### **packed-decimal-dividend**

OpenVMS usage: varying\_arg  
type: packed decimal string  
access: read only  
mechanism: by reference

Dividend. The **packed-decimal-dividend** argument is the address of a packed decimal string that contains the shifted dividend.

Before being passed as input, the **packed-decimal-dividend** argument is always multiplied by  $10^c$ , where  $c$  is defined as follows:

$c = 31 - \text{prec}(\text{packed-decimal-dividend})$

Multiplying **packed-decimal-dividend** by  $10^c$  makes **packed-decimal-dividend** a 31-digit number.

##### **packed-decimal-divisor**

OpenVMS usage: varying\_arg  
type: packed decimal string  
access: read only  
mechanism: by reference

Divisor. The **packed-decimal-divisor** argument is the address of a packed decimal string that contains the divisor.

##### **divisor-precision**

OpenVMS usage: word\_signed  
type: word (signed)  
access: read only  
mechanism: by value

Precision of the divisor. The **divisor-precision** argument is a signed word integer that contains the precision of the divisor; high-order bits are filled with zeros.

**packed-decimal-quotient**

OpenVMS usage: varying\_arg  
type: packed decimal string  
access: write only  
mechanism: by reference

Quotient. The **packed-decimal-quotient** argument is the address of a packed decimal string into which OTS\$DIV\_PK\_SHORT writes the quotient.

**quotient-precision**

OpenVMS usage: word\_signed  
type: word (signed)  
access: read only  
mechanism: by value

Precision of the quotient. The **quotient-precision** argument is a signed word that contains the precision of the quotient; high-order bits are filled with zeros.

**precision-data**

OpenVMS usage: word\_signed  
type: word (signed)  
access: read only  
mechanism: by value

Additional digits of precision required. The **precision-data** argument is a signed word that contains the value of the additional digits of precision required.

OTS\$DIV\_PK\_SHORT computes the **precision-data** argument as follows:

```
precision-data = scale(packed-decimal-quotient)
+ scale(packed-decimal-divisor)
- scale(packed-decimal-dividend)
- 31 + prec(packed-decimal-dividend)
```

## Description

On VAX systems, before using this routine, you should determine whether it is best to use OTS\$DIV\_PK\_LONG, OTS\$DIV\_PK\_SHORT, or the VAX instruction DIVP. To determine this, you must first calculate  $b$ , where  $b$  is defined as follows:

```
b = scale(packed-decimal-quotient) + scale(packed-decimal-divisor) -
    scale(packed-decimal-dividend) + prec(packed-decimal-dividend)
```

If  $b$  is greater than 31, then OTS\$DIV\_PK\_SHORT can be used to perform the division. If  $b$  is less than 31, you could use the VAX instruction DIVP instead.

When using this routine on an OpenVMS Alpha system, an I64 system, or on an OpenVMS VAX system and you have determined that you cannot use DIVP, you need to determine whether you should use OTS\$DIV\_PK\_LONG or OTS\$DIV\_PK\_SHORT. To determine this, you must examine the value of **scale-data**. If **scale-data** is less than or equal to 1, then you should use OTS\$DIV\_PK\_LONG. If **scale-data** is greater than 1, you should use OTS\$DIV\_PK\_SHORT instead.

## Condition Value Signaled

SS\$\_FLTDIR

Fatal error. Division by zero.

## **OTS\$ Routines**

### **OTS\$JUMP\_TO\_BPV (I64 Only)**

---

## **OTS\$JUMP\_TO\_BPV (I64 Only)**

### **Jump to Bound Procedure Value**

The Jump to Bound Procedure Value routine transfers control to a bound procedure.

#### **Format**

OTS\$JUMP\_TO\_BPV bound-func-value ,standard-args ,...

#### **Returns**

None.

#### **Arguments**

##### **bound-func-value**

OpenVMS usage: quadword address  
type: address  
access: read only  
mechanism: by value in register R1 (GP)

Function value for the procedure being called.

##### **standard-args**

Zero or more arguments to be passed to the called routine, passed using standard conventions (including the AI register).

#### **Description**

When a procedure value that refers to a bound procedure descriptor is used to make a call, the routine designated in the OTS\_ENTRY field (typically OTS\$JUMP\_TO\_BPV) receives control with the GP register pointing to the bound procedure descriptor (instead of a global offset table). This routine performs the following steps:

1. Load the "real" target entry address into a volatile branch register, for example, B6.
2. Load the dynamic environment value into the appropriate uplevel-addressing register for the target function, for example, OTS\$JUMP\_TO\_BPV uses R9.
3. Load the "real" target GP address into the GP register
4. Transfer control (branch, not call) to the target entry address.

Control arrives at the real target procedure address with both the GP and environment register values established appropriately.

Support routine OTS\$JUMP\_TO\_BPV is included as a standard library routine. The operation of OTS\$JUMP\_TO\_BPV is logically equivalent to the following code:

## OTS\$ Routines

### OTS\$JUMP\_TO\_BPV (I64 Only)

```
OTS$JUMP_TO_BPV::  
    add    gp=gp,24      ; Adjust GP to point to entry address  
    ld8    r9=[gp],16    ; Load target entry address  
    mov    b6=r9  
    ld8    r9=[gp],-8    ; Load target environment value  
    ld8    gp=[gp]        ; Load target GP  
    br     b6              ; Transfer to target
```

Note that there can be multiple OTS\$JUMP\_TO\_BPV-like support routines, corresponding to different target registers where the environment value should be placed. The code that creates the bound function descriptor is also necessarily compiled by the same compiler that compiles the target procedure, thus can correctly select an appropriate support routine.

#### Condition Values Returned

None.

## OTS\$ Routines

### OTS\$MOVE3

---

## OTS\$MOVE3

### Move Data Without Fill

The Move Data Without Fill routine moves up to  $2^{32} - 1$  bytes (2,147,483,647 bytes) from a specified source address to a specified destination address.

#### Format

```
OTS$MOVE3 length-value ,source-array ,destination-array
```

#### Corresponding JSB Entry Point

```
OTS$MOVE3_R5
```

#### Returns

None.

#### Arguments

##### **length-value**

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: read only  
mechanism: by value

Number of bytes of data to move. The **length-value** argument is a signed longword that contains the number of bytes to move. The value of **length-value** may range from 0 to 2,147,483,647 bytes.

##### **source-array**

OpenVMS usage: vector\_byte\_unsigned  
type: byte (unsigned)  
access: read only  
mechanism: by reference, array reference

Data to be moved by OTS\$MOVE3. The **source-array** argument contains the address of an unsigned byte array that contains this data.

##### **destination-array**

OpenVMS usage: vector\_byte\_unsigned  
type: byte (unsigned)  
access: write only  
mechanism: by reference, array reference

Address into which **source-array** will be moved. The **destination-array** argument is the address of an unsigned byte array into which OTS\$MOVE3 writes the source data.

## Description

OTS\$MOVE3 performs the same function as the VAX MOVC3 instruction except that the **length-value** is a longword integer rather than a word integer. When called from the JSB entry point, the register outputs of OTS\$MOVE3\_R5 follow the same pattern as those of the MOVC3 instruction:

|    |                                                   |
|----|---------------------------------------------------|
| R0 | 0                                                 |
| R1 | Address of one byte beyond the source string      |
| R2 | 0                                                 |
| R3 | Address of one byte beyond the destination string |
| R4 | 0                                                 |
| R5 | 0                                                 |

For more information, see the description of the MOVC3 instruction in the *VAX Architecture Reference Manual*. See also the routine LIB\$MOVC3, which is a callable version of the MOVC3 instruction.

## Condition Values Returned

None.

## OTS\$ Routines

### OTS\$MOVE5

---

## OTS\$MOVE5

### Move Data with Fill

The Move Data with Fill routine moves up to  $2^{32} - 1$  bytes (2,147,483,647 bytes) from a specified source address to a specified destination address, with separate source and destination lengths, and with fill. Overlap of the source and destination arrays does not affect the result.

#### Format

```
OTS$MOVE5 longword-int-source-length ,source-array ,fill-value  
           ,longword-int-dest-length ,destination-array
```

#### Corresponding JSB Entry Point

OTS\$MOVE5\_R5

#### Returns

None.

#### Arguments

##### **longword-int-source-length**

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: read only  
mechanism: by value

Number of bytes of data to move. The **longword-int-source-length** argument is a signed longword that contains this number. The value of **longword-int-source-length** may range from 0 to 2,147,483,647.

##### **source-array**

OpenVMS usage: vector\_byte\_unsigned  
type: byte (unsigned)  
access: read only  
mechanism: by reference, array reference

Data to be moved by OTS\$MOVE5. The **source-array** argument contains the address of an unsigned byte array that contains this data.

##### **fill-value**

OpenVMS usage: byte\_unsigned  
type: byte (unsigned)  
access: read only  
mechanism: by value

Character used to pad the source data if **longword-int-source-length** is less than **longword-int-dest-length**. The **fill-value** argument contains the address of an unsigned byte that is this character.

**longword-int-dest-length**

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: read only  
mechanism: by value

Size of the destination area in bytes. The **longword-int-dest-length** argument is a signed longword containing this size. The value of **longword-int-dest-length** may range from 0 through 2,147,483,647.

**destination-array**

OpenVMS usage: vector\_byte\_unsigned  
type: byte (unsigned)  
access: write only  
mechanism: by reference, array reference

Address into which **source-array** is moved. The **destination-array** argument is the address of an unsigned byte array into which OTS\$MOVE5 writes the source data.

## Description

OTS\$MOVE5 performs the same function as the VAX MOVC5 instruction except that the **longword-int-source-length** and **longword-int-dest-length** arguments are longword integers rather than word integers. When called from the JSB entry point, the register outputs of OTS\$MOVE5\_R5 follow the same pattern as those of the MOVC5 instruction:

|    |                                                    |
|----|----------------------------------------------------|
| R0 | Number of unmoved bytes remaining in source string |
| R1 | Address of one byte beyond the source string       |
| R2 | 0                                                  |
| R3 | Address of one byte beyond the destination string  |
| R4 | 0                                                  |
| R5 | 0                                                  |

For more information, see the description of the MOVC5 instruction in the *VAX Architecture Reference Manual*. See also the routine LIB\$MOVC5, which is a callable version of the MOVC5 instruction.

## Condition Values Returned

None.

## OTS\$ Routines

### OTS\$MULCx

---

## OTS\$MULCx

### Complex Multiplication

The Complex Multiplication routines calculate the complex product of two complex values.

#### Format

OTS\$MULCD\_R3 complex-multiplier ,complex-multiplicand (VAX only)

OTS\$MULCG\_R3 complex-multiplier ,complex-multiplicand

OTS\$MULCT\_R3 complex-multiplier ,complex-multiplicand

OTS\$MULCS complex-multiplier ,complex-multiplicand

These formats correspond to the D-floating, G-floating, IEEE S-floating, and IEEE T-floating complex types.

#### Returns

OpenVMS usage: complex\_number

type: D\_floating complex, G\_floating complex, IEEE S\_floating complex, IEEE T\_floating complex,

access: write only

mechanism: by value

Complex result of multiplying two complex numbers. OTS\$MULCD\_R3 returns a D-floating complex number. OTS\$MULCG\_R3 returns a G-floating complex number. OTS\$MULCS returns an IEEE S-Floating complex number. OTS\$MULCT\_R3 returns an IEEE T-floating complex number.

#### Arguments

##### **complex-multiplier**

OpenVMS usage: complex\_number

type: D\_floating complex, G\_floating complex, S\_floating complex, S\_floating complex

access: read only

mechanism: by value

Complex multiplier. The **complex-multiplier** argument contains the complex multiplier. For OTS\$MULCD\_R3, **complex-multiplier** is a D-floating complex number. For OTS\$MULCG\_R3, **complex-multiplier** is a G-floating complex number. For OTS\$MULCS, **complex-multiplier** is a IEEE S-Floating complex number. For OTS\$MULCT\_R3, **complex-multiplier** is an IEEE T-floating complex number.

##### **complex-multiplicand**

OpenVMS usage: complex\_number

type: D\_floating complex, G\_floating complex, IEEE S\_floating complex, IEEE T\_floating complex

access: read only

mechanism: by value

Complex multiplicand. The **complex-multiplicand** argument contains the complex multiplicand. For OTS\$MULCD\_R3, **complex-multiplicand** is a D-floating complex number. For OTS\$MULCG\_R3, **complex-multiplicand** is a

G-floating complex number. For OTS\$MULCS, **complex-multiplicand** is an IEEE S-floating complex number. For OTS\$MULCT\_R3, **complex-multiplicand** is an IEEE T-floating complex number.

## Description

OTS\$MULCx calculates the complex product of two complex values.

The complex product is computed as follows:

1. Let (a,b) represent the complex multiplier.
2. Let (c,d) represent the complex multiplicand.
3. Let (r,i) represent the complex product.

The results of this computation are as follows:

$$(a, b) * (c, d) = (ac - bd) + \sqrt{-1}(ad + bc)$$

$$\text{Therefore : } r = ac - bd$$

$$\text{Therefore : } i = ad + bc$$

On Alpha and I64 systems, some restrictions apply when linking OTS\$MULCG\_R3, OTS\$MULCS, and OTS\$MULCT\_R3. See Chapter 1 for more information about these restrictions.

## Condition Values Signaled

|               |                                                                                                                                                                                                                                                                                                 |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS\$_FLTOVF_F | Floating value overflow can occur.                                                                                                                                                                                                                                                              |
| SS\$_ROPRAND  | Reserved operand. OTS\$MULCx encountered a floating-point reserved operand because of incorrect user input. A floating-point reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of zero. Floating-point reserved operands are reserved for future use by HP. |

## Example

```
C+
C   This Fortran example forms the product of
C   two complex numbers using OTS$MULCD_R3
C   and the Fortran random number generator RAN.
C
C   Declare Z1, Z2, and Z_Q as complex values. OTS$MULCD_R3
C   returns the complex product of Z1 times Z2:
C   Z_Q = Z1 * Z2
C-
```

## OTS\$ Routines

### OTS\$MULCx

```
      COMPLEX*16 Z1,Z2,Z_Q
C+
C   Generate a complex number.
C-
      Z1 = (8.0,4.0)
C+
C   Generate another complex number.
C-
      Z2 = (2.0,3.0)
C+
C   Compute the complex product of Z1*Z2.
C-
      Z_Q = Z1 * Z2
      TYPE *, ' The complex product of ',Z1,' times ',Z2,' is'
      TYPE *, ',',Z_Q
      END
```

This Fortran example uses OTS\$MULCD\_R3 to multiply two complex numbers.  
The output generated by this program is as follows:

```
The complex product of (8.00000000000000,4.00000000000000) times
(2.00000000000000,3.00000000000000) is
(4.00000000000000,32.00000000000000)
```

---

## **OTS\$POWCxCx**

### **Raise a Complex Base to a Complex Floating-Point Exponent**

The Raise a Complex Base to a Complex Floating-Point Exponent routines raise a complex base to a complex exponent.

#### **Format**

```
OTS$POWCC  complex-base ,complex-exponent-value  
OTS$POWCDCD_R3  complex-base ,complex-exponent-value (VAX only)  
OTS$POWCGCG_R3  complex-base ,complex-exponent-value  
OTS$POWCSCS  complex-base ,complex-exponent-value  
OTS$POWCTCT_R3  complex-base ,complex-exponent-value
```

Each of these formats corresponds to one of the floating-point complex types.

#### **Returns**

OpenVMS usage: `complex_number`  
type: `F_floating complex, D_floating complex, G_floating complex,`  
`IEEE S_floating complex, IEEE T_floating complex`  
access: `write only`  
mechanism: `by value`

Result of raising a complex base to a complex exponent. OTS\$POWCC returns an F-floating complex number. OTS\$POWCDCD\_R3 returns a D-floating complex number. OTS\$POWCGCG\_R3 returns a G-floating complex number. OTS\$POWCSCS returns an IEEE S-floating complex number. OTS\$POWCTCT\_R3 returns an IEEE T-floating complex number.

#### **Arguments**

##### **complex-base**

OpenVMS usage: `complex_number`  
type: `F_floating complex, D_floating complex, G_floating complex,`  
`IEEE S_floating complex, IEEE T_floating complex`  
access: `read only`  
mechanism: `by value`

Complex base. The **complex-base** argument contains the value of the base. For OTS\$POWCC, **complex-base** is an F-floating complex number. For OTS\$POWCDCD\_R3, **complex-base** is a D-floating complex number. For OTS\$POWCGCG\_R3, **complex-base** is a G-floating complex number. For OTS\$POWCSCS, **complex-base** is an IEEE S-floating complex number. For OTS\$POWCTCT\_R3, **complex-base** is an IEEE T-floating complex number.

##### **complex-exponent-value**

OpenVMS usage: `complex_number`  
type: `F_floating complex, D_floating complex, G_floating complex,`  
`IEEE S_floating complex, IEEE T_floating complex`  
access: `read only`  
mechanism: `by value`

## OTS\$ Routines

### OTS\$POWCxCx

Complex exponent. The **complex-exponent-value** argument contains the value of the exponent. For OTS\$POWCC, **complex-exponent-value** is an F-floating complex number. For OTS\$POWCDCD\_R3, **complex-exponent-value** is a D-floating complex number. For OTS\$POWCGCG\_R3, **complex-exponent-value** is a G-floating complex number. For OTS\$POWCSCS, **complex-exponent-value** is an IEEE S-floating complex number. For OTS\$POWCTCT\_R3, **complex-exponent-value** is an IEEE T-floating complex number.

#### Description

OTS\$POWCC, OTS\$POWCDCD\_R3, OTS\$POWCGCG\_R3, OTS\$POWCSCS, and OTS\$POWCSCT\_R3 raise a complex base to a complex exponent. The American National Standard FORTRAN-77 (ANSI X3.9-1978) defines complex exponentiation as follows:

$$x^y = \exp(y * \log(x))$$

In this example,  $x$  and  $y$  are of type COMPLEX.

On Alpha and I64 systems, some restrictions apply when linking OTS\$POWCC or OTS\$POWCGCG\_R3. See Chapter 1 for more information about these restrictions.

#### Condition Values Signaled

|                 |                                                    |
|-----------------|----------------------------------------------------|
| MTH\$_INVARGMAT | Invalid argument in math library. Base is (0.,0.). |
| MTH\$_FLOOVEMAT | Floating-point overflow in math library.           |
| SS\$_ROPRAND    | Reserved operand.                                  |

#### Examples

```
1. C+
C This Fortran example raises a complex base to a complex
C power using OTS$POWCC.
C
C Declare Z1, Z2, Z3, and OTS$POWCC as complex values. Then OTS$POWCC
C returns the complex result of Z1**Z2: Z3 = OTS$POWCC(Z1,Z2),
C where Z1 and Z2 are passed by value.
C-
C-
COMPLEX Z1,Z2,Z3,OTS$POWCC
C+
C Generate a complex base.
C-
Z1 = (2.0,3.0)
C+
C Generate a complex power.
C-
Z2 = (1.0,2.0)
C+
C Compute the complex value of Z1**Z2.
C-
      Z3 = OTS$POWCC( %VAL(REAL(Z1)), %VAL(AIMAG(Z1)),
+                      %VAL(REAL(Z2)), %VAL(AIMAG(Z2)))
      TYPE *, ' The value of ',Z1,'**',Z2,' is ',Z3
      END
```

This Fortran example uses OTS\$POWCC to raise an F-floating complex base to an F-floating complex exponent.

The output generated by this program is as follows:

```
The value of (2.000000,3.000000)** (1.000000,2.000000) is  
(-0.4639565,-0.1995301)

2. C+
C   This Fortran example raises a complex base to a complex
C   power using OTS$POWCGCG_R3.
C
C   Declare Z1, Z2, and Z3 as complex values. OTS$POWCGCG_R3
C   returns the complex result of Z1**Z2: Z3 = Z1**Z2.
C-
C+
COMPLEX*16 Z1,Z2,Z3
C+
C   Generate a complex base.
C-
Z1 = (2.0,3.0)
C+
C   Generate a complex power.
C-
Z2 = (1.0,2.0)
C+
C   Compute the complex value of Z1**Z2.
C-
Z3 = Z1**Z2
TYPE 1,Z1,Z2,Z3
1  FORMAT(' The value of (',F11.8,',',',F11.8,')**(',F11.8,
+ ',',',F11.8,') is (',F11.8,',',',F11.8,',').')
END
```

This Fortran example program shows how to use OTS\$POWCGCG\_R3.  
Notice the high precision in the output generated by this program:

```
The value of ( 2.00000000, 3.00000000)**( 1.00000000, 2.00000000) is
(-0.46395650,-0.46395650).
```

## **OTS\$POWCxJ**

### **Raise a Complex Base to a Signed Longword Integer Exponent**

The Raise a Complex Base to a Signed Longword Integer Exponent routines return the complex result of raising a complex base to an integer exponent.

#### **Format**

```
OTS$POWCJ  complex-base ,longword-integer-exponent  
OTS$POWCDJ_R3  complex-base ,longword-integer-exponent (VAX only)  
OTS$POWCGJ_R3  complex-base ,longword-integer-exponent (VAX only)  
OTS$POWCSJ  complex-base ,longword-integer-exponent  
OTS$POWCTJ_R3  complex-base ,longword-integer-exponent
```

Each of these formats corresponds to one of the floating-point complex types.

#### **Returns**

OpenVMS usage: complex\_number  
type: F\_floating complex, D\_floating complex, G\_floating complex,  
IEEE S\_floating complex, IEEE T\_floating complex  
access: write only  
mechanism: by value

Complex result of raising a complex base to an integer exponent. OTS\$POWCJ returns an F-floating complex number. OTS\$POWCDJ\_R3 returns a D-floating complex number. OTS\$POWCGJ\_R3 returns a G-floating complex number. OTS\$POWCGS\_R3 returns an IEEE S-floating complex number. OTS\$POWCGT\_R3 returns an IEEE T-floating complex number. In each format, the result and base are of the same data type.

#### **Arguments**

##### **complex-base**

OpenVMS usage: complex\_number  
type: F\_floating complex, D\_floating complex, G\_floating complex,  
S\_floating complex, T\_floating complex,  
access: read only  
mechanism: by value

Complex base. The **complex-base** argument contains the complex base. For OTS\$POWCJ, **complex-base** is an F-floating complex number. For OTS\$POWCDJ\_R3, **complex-base** is a D-floating complex number. For OTS\$POWCGJ\_R3, **complex-base** is a G-floating complex number. For OTS\$POWCSJ, **complex-base** is an IEEE S-floating complex number. For OTS\$POWCTJ\_R3, **complex-base** is an IEEE T-floating complex number.

##### **longword-integer-exponent**

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: read only  
mechanism: by value

Exponent. The **longword-integer-exponent** argument is a signed longword containing the exponent.

## Description

The OTS\$POWCxJ routines return the complex result of raising a complex base to an integer exponent. The complex result is as follows:

| Base        | Exponent | Result                                                                                                       |
|-------------|----------|--------------------------------------------------------------------------------------------------------------|
| Any         | $> 0$    | The product of $(\text{base}^{**2^i})$ , where $i$ is each nonzero bit in <b>longword-integer-exponent</b> . |
| (0.,0.)     | $< 0$    | Undefined exponentiation.                                                                                    |
| Not (0.,0.) | $< 0$    | The product of $(\text{base}^{**2^i})$ , where $i$ is each nonzero bit in <b>longword-integer-exponent</b> . |
| Not (0.,0.) | 0        | (1.0,0.0)                                                                                                    |

On Alpha and I64 systems, some restrictions apply when linking OTS\$POWCJ, OTS\$POWCSJ, and OTS\$POWCTJ\_R3. See Chapter 1 for more information about these restrictions.

## Condition Values Signaled

|              |                                  |
|--------------|----------------------------------|
| SS\$_FLTDIV  | Floating-point division by zero. |
| SS\$_FLTOVF  | Floating-point overflow.         |
| MTH\$_UNDEXP | Undefined exponentiation.        |

## Example

```

C+
C   This Fortran example raises a complex base to
C   a NONNEGATIVE integer power using OTS$POWCJ.
C
C   Declare Z1, Z2, Z3, and OTS$POWCJ as complex values.
C   Then OTS$POWCJ returns the complex result of
C   Z1**Z2:  Z3 = OTS$POWCJ(Z1,Z2),
C   where Z1 and Z2 are passed by value.
C-
      COMPLEX Z1,Z3,OTS$POWCJ
      INTEGER Z2
C+
C   Generate a complex base.
C-
      Z1 = (2.0,3.0)
C+
C   Generate an integer power.
C-
      Z2 = 2
C+
C   Compute the complex value of Z1**Z2.
C-
      Z3 = OTS$POWCJ( %VAL(REAL(Z1)), %VAL(AIMAG(Z1)), %VAL(Z2))
      TYPE 1,Z1,Z2,Z3
1     FORMAT(' The value of (',F10.8,',',F11.8,')**',I1,' is
      + (',F11.8,',',F12.8,')')
      END

```

The output generated by this Fortran program is as follows:

**OTS\$ Routines**  
**OTS\$POWCxJ**

The value of (2.0000000, 3.0000000)\*\*2 is  
(-5.0000000, 12.0000000).

## **OTS\$POWDD** **Raise a D-Floating Base to a D-Floating Exponent**

The Raise a D-Floating Base to a D-Floating Exponent routine raises a D-floating base to a D-floating exponent.

### **Format**

OTS\$POWDD D-floating-point-base ,D-floating-point-exponent

### **Returns**

OpenVMS usage: floating\_point  
type: D\_floating  
access: write only  
mechanism: by value

Result of raising a D-floating base to a D-floating exponent.

### **Arguments**

#### **D-floating-point-base**

OpenVMS usage: floating\_point  
type: D\_floating  
access: read only  
mechanism: by value

Base. The **D-floating-point-base** argument is a D-floating number containing the base.

#### **D-floating-point-exponent**

OpenVMS usage: floating\_point  
type: D\_floating  
access: read only  
mechanism: by value

Exponent. The **D-floating-point-exponent** argument is a D-floating number that contains the exponent.

### **Description**

OTS\$POWDD raises a D-floating base to a D-floating exponent.

The internal calculations and the floating-point result have the same precision as the base value.

The D-floating result for OTS\$POWDD is given by the following:

| <b>Base</b> | <b>Exponent</b> | <b>Result</b>            |
|-------------|-----------------|--------------------------|
| = 0         | > 0             | 0.0                      |
| = 0         | = 0             | Undefined exponentiation |
| = 0         | < 0             | Undefined exponentiation |
| < 0         | Any             | Undefined exponentiation |

## OTS\$ Routines

### OTS\$POWDD

| Base | Exponent | Result                                        |
|------|----------|-----------------------------------------------|
| > 0  | > 0      | $2^{[\text{exponent} * \log_2(\text{base})]}$ |
| > 0  | = 0      | 1.0                                           |
| > 0  | < 0      | $2^{[\text{exponent} * \log_2(\text{base})]}$ |

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative, or if the base is negative.

#### Condition Values Signaled

|                 |                                                                                                                                                                                                        |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MTH\$_FLOOVEMAT | Floating-point overflow in math library.                                                                                                                                                               |
| MTH\$_FLOUNDMAT | Floating-point underflow in math library.                                                                                                                                                              |
| MTH\$_UNDEXP    | Undefined exponentiation. This error is signaled if <b>D-floating-point-base</b> is zero and <b>D-floating-point-exponent</b> is zero or negative, or if the <b>D-floating-point-base</b> is negative. |

## **OTS\$POWDJ** **Raise a D-Floating Base to a Longword Exponent**

The Raise a D-Floating Base to a Longword Exponent routine raises a D-floating base to a longword exponent.

### **Format**

OTS\$POWDJ D-floating-point-base ,longword-integer-exponent

### **Returns**

OpenVMS usage: floating\_point  
type: D\_floating  
access: write only  
mechanism: by value

Result of raising a D-floating base to a longword exponent.

### **Arguments**

#### **D-floating-point-base**

OpenVMS usage: floating\_point  
type: D\_floating  
access: read only  
mechanism: by value

Base. The **D-floating-point-base** argument is a D-floating number containing the base.

#### **longword-integer-exponent**

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: read only  
mechanism: by value

Exponent. The **longword-integer-exponent** argument is a signed longword that contains the signed longword integer exponent.

### **Description**

OTS\$POWDJ raises a D-floating base to a longword exponent.

The internal calculations and the floating-point result have the same precision as the base value.

The floating-point result is as follows:

| <b>Base</b> | <b>Exponent</b> | <b>Result</b>                                                                                              |
|-------------|-----------------|------------------------------------------------------------------------------------------------------------|
| Any         | > 0             | Product of $(base^{**2^i})$ , where $i$ is each nonzero bit position in <b>longword-integer-exponent</b> . |
| > 0         | = 0             | 1.0                                                                                                        |
| = 0         | = 0             | Undefined exponentiation.                                                                                  |

## OTS\$ Routines

### OTS\$POWDJ

| Base | Exponent | Result                                                                                              |
|------|----------|-----------------------------------------------------------------------------------------------------|
| < 0  | = 0      | 1.0                                                                                                 |
| > 0  | < 0      | $1.0/(base^{**}2^i)$ , where $i$ is each nonzero bit position in <b>longword-integer-exponent</b> . |
| = 0  | < 0      | Undefined exponentiation.                                                                           |
| < 0  | < 0      | $1.0/(base^{**}2^i)$ , where $i$ is each nonzero bit position in <b>longword-integer-exponent</b> . |

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative.

### Condition Values Signaled

|                 |                                                                                                                                                                                                        |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS\$_FLTOVF     | Arithmetic trap. This error is signaled by the hardware if a floating-point overflow occurs.                                                                                                           |
| MTH\$_FLOOVEMAT | Floating-point overflow in math library.                                                                                                                                                               |
| MTH\$_FLOUNDMAT | Floating-point underflow in math library.                                                                                                                                                              |
| MTH\$_UNDEXP    | Undefined exponentiation. This error is signaled if <b>D-floating-point-base</b> is zero and <b>longword-integer-exponent</b> is zero or negative, or if the <b>D-floating-point-base</b> is negative. |

---

## **OTS\$POWDR**

### **Raise a D-Floating Base to an F-Floating Exponent**

The Raise a D-Floating Base to an F-Floating Exponent routine raises a D-floating base to an F-floating exponent.

#### **Format**

OTS\$POWDR D-floating-point-base ,F-floating-point-exponent

#### **Returns**

OpenVMS usage: floating\_point  
type: D\_floating  
access: write only  
mechanism: by value

Result of raising a D-floating base to an F-floating exponent.

#### **Arguments**

##### **D-floating-point-base**

OpenVMS usage: floating\_point  
type: D\_floating  
access: read only  
mechanism: by value

Base. The **D-floating-point-base** argument is a D-floating number containing the base.

##### **F-floating-point-exponent**

OpenVMS usage: floating\_point  
type: F\_floating  
access: read only  
mechanism: by value

Exponent. The **F-floating-point-exponent** argument is an F-floating number that contains the exponent.

#### **Description**

OTS\$POWDR raises a D-floating base to an F-floating exponent.

The internal calculations and the floating-point result have the same precision as the base value.

OTS\$POWDR converts the F-floating exponent to a D-floating number. The D-floating result for OTS\$POWDR is given by the following:

---

| <b>Base</b> | <b>Exponent</b> | <b>Result</b>            |
|-------------|-----------------|--------------------------|
| = 0         | > 0             | 0.0                      |
| = 0         | = 0             | Undefined exponentiation |
| = 0         | < 0             | Undefined exponentiation |

## OTS\$ Routines

### OTS\$POWDR

| Base | Exponent | Result                              |
|------|----------|-------------------------------------|
| < 0  | Any      | Undefined exponentiation            |
| > 0  | > 0      | $2^{[exponent \cdot \log_2(base)]}$ |
| > 0  | = 0      | 1.0                                 |
| > 0  | < 0      | $2^{[exponent \cdot \log_2(base)]}$ |

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative, or if the base is negative.

### Condition Values Signaled

|                 |                                                                                                                                                                                                        |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS\$_FLTOVF     | Arithmetic trap. This error is signaled by the hardware if a floating-point overflow occurs.                                                                                                           |
| MTH\$_FLOOVEMAT | Floating-point overflow in math library.                                                                                                                                                               |
| MTH\$_FLOUNDMAT | Floating-point underflow in math library.                                                                                                                                                              |
| MTH\$_UNDEXP    | Undefined exponentiation. This error is signaled if <b>D-floating-point-base</b> is zero and <b>F-floating-point-exponent</b> is zero or negative, or if the <b>D-floating-point-base</b> is negative. |

---

## **OTS\$POWGG**

### **Raise a G-Floating Base to a G-Floating Exponent**

The Raise a G-Floating Base to a G-Floating Exponent routine raises a G-floating base to a G-floating exponent.

#### **Format**

OTS\$POWGG G-floating-point-base ,G-floating-point-exponent

#### **Returns**

OpenVMS usage: floating\_point  
type: G\_floating  
access: write only  
mechanism: by value

Result of raising a G-floating base to a G-floating exponent.

#### **Arguments**

##### **G-floating-point-base**

OpenVMS usage: floating\_point  
type: G\_floating  
access: read only  
mechanism: by value

Base that OTS\$POWGG raises to a G-floating exponent. The **G-floating-point-base** argument is a G-floating number containing the base.

##### **G-floating-point-exponent**

OpenVMS usage: floating\_point  
type: G\_floating  
access: read only  
mechanism: by value

Exponent to which OTS\$POWGG raises the base. The **G-floating-point-exponent** argument is a G-floating number containing the exponent.

#### **Description**

OTS\$POWGG raises a G-floating base to a G-floating exponent.

The internal calculations and the floating-point result have the same precision as the base value.

The G-floating result for OTS\$POWGG is as follows:

---

| <b>Base</b> | <b>Exponent</b> | <b>Result</b>            |
|-------------|-----------------|--------------------------|
| = 0         | > 0             | 0.0                      |
| = 0         | = 0             | Undefined exponentiation |
| = 0         | < 0             | Undefined exponentiation |
| < 0         | Any             | Undefined exponentiation |

## OTS\$ Routines

### OTS\$POWGG

| Base | Exponent | Result                                        |
|------|----------|-----------------------------------------------|
| > 0  | > 0      | $2^{[\text{exponent} * \log_2(\text{base})]}$ |
| > 0  | = 0      | 1.0                                           |
| > 0  | < 0      | $2^{[\text{exponent} * \log_2(\text{base})]}$ |

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative, or if the base is negative.

On Alpha and I64 systems, some restrictions apply when linking OTS\$POWGG. See Chapter 1 for more information about these restrictions.

## Condition Values Signaled

|                 |                                                                                                                                                                                              |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS\$_FLTOVF     | Arithmetic trap. This error is signaled by the hardware if a floating-point overflow occurs.                                                                                                 |
| MTH\$_FLOOVEMAT | Floating-point overflow in math library.                                                                                                                                                     |
| MTH\$_FLOUNDMAT | Floating-point underflow in math library.                                                                                                                                                    |
| MTH\$_UNDEXP    | Undefined exponent. This error is signaled if <b>G-floating-point-base</b> is zero and <b>G-floating-point-exponent</b> is zero or negative, or if <b>G-floating-point-base</b> is negative. |

## Example

```
C+
C  This example demonstrates the use of OTS$POWGG,
C  which raises a G-floating point base
C  to a G-floating point power.
C-
      REAL*8 X,Y,RESULT,OTS$POWGG
C+
C  The arguments of OTS$POWGG are passed by value. Fortran can
C  only pass INTEGER and REAL*4 expressions as VALUE. Since
C  INTEGER and REAL*4 values are one longword long, while REAL*8
C  values are two longwords long, equate the base (and power) to
C  two-dimensional INTEGER vectors. These vectors will be passed
C  by VALUE.
C-
      INTEGER N(2),M(2)
      EQUIVALENCE (N(1),X), (M(1),Y)
      X = 8.0
      Y = 2.0
C+
C  To pass X by value, pass N(1) and N(2) by value. Similarly for Y.
C-
      RESULT = OTS$POWGG(%VAL(N(1)),%VAL(N(2)),%VAL(M(1)),%VAL(M(2)))
      TYPE *, ' 8.0**2.0 IS ',RESULT
      X = 9.0
      Y = -0.5
C+
C  In Fortran, OTS$POWGG is indirectly called by simply using the
C  exponentiation operator.
C-
      RESULT = X**Y
      TYPE *, ' 9.0**-0.5 IS ',RESULT
      END
```

**OTS\$ Routines**  
**OTS\$POWGG**

This Fortran example uses OTS\$POWGG to raise a G-floating base to a G-floating exponent.

The output generated by this example is as follows:

```
8.0**2.0 IS    64.0000000000000  
9.0**-0.5 IS   0.333333333333333
```

## **OTS\$POWGJ**

### **Raise a G-Floating Base to a Longword Exponent**

The Raise a G-Floating Base to a Longword Exponent routine raises a G-floating base to a longword exponent.

#### **Format**

OTS\$POWGJ G-floating-point-base ,longword-integer-exponent

#### **Returns**

OpenVMS usage: floating\_point  
type: G\_floating  
access: write only  
mechanism: by value

Result of raising a G-floating base to a longword exponent.

#### **Arguments**

##### **G-floating-point-base**

OpenVMS usage: floating\_point  
type: G\_floating  
access: read only  
mechanism: by value

Base that OTS\$POWGJ raises to a longword exponent. The **G-floating-point-base** argument is a G-floating number containing the base.

##### **longword-integer-exponent**

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: read only  
mechanism: by value

Exponent to which OTS\$POWGJ raises the base. The **longword-integer-exponent** argument is a signed longword containing the exponent.

#### **Description**

OTS\$POWGJ raises a G-floating base to a longword exponent.

The internal calculations and the floating-point result have the same precision as the base value.

The floating-point result is as follows:

| <b>Base</b> | <b>Exponent</b> | <b>Result</b>                                                                                              |
|-------------|-----------------|------------------------------------------------------------------------------------------------------------|
| Any         | > 0             | Product of $(base^{**2^i})$ , where $i$ is each nonzero bit position in <b>longword-integer-exponent</b> . |
| > 0         | = 0             | 1.0                                                                                                        |
| = 0         | = 0             | Undefined exponentiation.                                                                                  |

| <b>Base</b> | <b>Exponent</b> | <b>Result</b>                                                                                       |
|-------------|-----------------|-----------------------------------------------------------------------------------------------------|
| < 0         | = 0             | 1.0                                                                                                 |
| > 0         | < 0             | $1.0/(base^{**2^i})$ , where $i$ is each nonzero bit position in <b>longword-integer-exponent</b> . |
| = 0         | < 0             | Undefined exponentiation.                                                                           |
| < 0         | < 0             | $1.0/(base^{**2^i})$ , where $i$ is each nonzero bit position in <b>longword-integer-exponent</b> . |

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative.

On Alpha and I64 systems, some restrictions apply when linking OTS\$POWGJ. See Chapter 1 for more information about these restrictions.

### Condition Values Signaled

|                 |                                                                                                                                                                                              |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS\$_FLTOVF     | Arithmetic trap. This error is signaled by the hardware if a floating-point overflow occurs.                                                                                                 |
| MTH\$_FLOOVEMAT | Floating-point overflow in math library.                                                                                                                                                     |
| MTH\$_FLOUNDMAT | Floating-point underflow in math library.                                                                                                                                                    |
| MTH\$_UNDEXP    | Undefined exponent. This error is signaled if <b>G-floating-point-base</b> is zero and <b>longword-integer-exponent</b> is zero or negative, or if <b>G-floating-point-base</b> is negative. |

## OTS\$ Routines

### OTS\$POWHH\_R3 (VAX Only)

---

## OTS\$POWHH\_R3 (VAX Only)

### Raise an H-Floating Base to an H-Floating Exponent

On VAX systems, the Raise an H-Floating Base to an H-Floating Exponent routine raises an H-floating base to an H-floating exponent.

#### Format

OTS\$POWHH\_R3 H-floating-point-base ,H-floating-point-exponent

#### Returns

OpenVMS usage: floating\_point  
type: H\_floating  
access: write only  
mechanism: by value

Result of raising an H-floating base to an H-floating exponent.

#### Arguments

##### H-floating-point-base

OpenVMS usage: floating\_point  
type: H\_floating  
access: read only  
mechanism: by value

Base. The **H-floating-point-base** argument is an H-floating number containing the base.

##### H-floating-point-exponent

OpenVMS usage: floating\_point  
type: H\_floating  
access: read only  
mechanism: by value

Exponent. The **H-floating-point-exponent** argument is an H-floating number that contains the H-floating exponent.

#### Description

OTS\$POWHH\_R3 raises an H-floating base to an H-floating exponent.

The internal calculations and the floating-point result have the same precision as the base value.

The H-floating result for OTS\$POWHH\_R3 is as follows:

| Base | Exponent | Result                   |
|------|----------|--------------------------|
| = 0  | > 0      | 0.0                      |
| = 0  | = 0      | Undefined exponentiation |
| = 0  | < 0      | Undefined exponentiation |
| < 0  | Any      | Undefined exponentiation |

| Base | Exponent | Result                                        |
|------|----------|-----------------------------------------------|
| > 0  | > 0      | $2^{[\text{exponent} * \log_2(\text{base})]}$ |
| > 0  | = 0      | 1.0                                           |
| > 0  | < 0      | $2^{[\text{exponent} * \log_2(\text{base})]}$ |

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative, or if the base is negative.

## Condition Values Signaled

|                 |                                                                                                                                                                                                        |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS\$_FLTOVF     | Arithmetic trap. This error is signaled by the hardware if a floating-point overflow occurs.                                                                                                           |
| MTH\$_FLOOVEMAT | Floating-point overflow in math library.                                                                                                                                                               |
| MTH\$_FLOUNDMAT | Floating-point underflow in math library.                                                                                                                                                              |
| MTH\$_UNDEXP    | Undefined exponentiation. This error is signaled if <b>H-floating-point-base</b> is zero and <b>H-floating-point-exponent</b> is zero or negative, or if the <b>H-floating-point-base</b> is negative. |

## Example

```

C+
C Example of OTS$POWHH, which raises an H_floating
C point base to an H_floating point power. In Fortran,
C it is not directly called.
C-
      REAL*16 X,Y,RESULT
      X = 9877356535.0
      Y = -0.5837653
C+
C In Fortran, OTS$POWHHH is indirectly called by simply using the
C exponentiation operator.
C-
      RESULT = X**Y
      TYPE *, ' 9877356535.0**-0.5837653 IS ',RESULT
      END

```

This Fortran example demonstrates how to call OTS\$POWHH\_R3 to raise an H-floating base to an H-floating power.

The output generated by this program is as follows:

```
9877356535.0**-0.5837653 IS 1.463779145994628357482343598205427E-0006
```

## OTS\$ Routines

### OTS\$POWHJ\_R3 (VAX Only)

---

## OTS\$POWHJ\_R3 (VAX Only)

### Raise an H-Floating Base to a Longword Exponent

On VAX systems, the Raise an H-Floating Base to a Longword Exponent routine raises an H-floating base to a longword exponent.

#### Format

OTS\$POWHJ\_R3 H-floating-point-base ,longword-integer-exponent

#### Returns

OpenVMS usage: floating\_point  
type: H\_floating  
access: write only  
mechanism: by value

Result of raising an H-floating base to a longword exponent.

#### Arguments

##### H-floating-point-base

OpenVMS usage: floating\_point  
type: H\_floating  
access: read only  
mechanism: by value

Base. The **H-floating-point-base** argument is an H-floating number containing the base.

##### longword-integer-exponent

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: read only  
mechanism: by value

Exponent. The **longword-integer-exponent** argument is a signed longword that contains the signed longword exponent.

#### Description

OTS\$POWHJ\_R3 raises an H-floating base to a longword exponent.

The internal calculations and the floating-point result have the same precision as the base value.

The floating-point result is as follows:

| Base | Exponent | Result                                                                                                     |
|------|----------|------------------------------------------------------------------------------------------------------------|
| Any  | > 0      | Product of $(base^{**2^i})$ , where $i$ is each nonzero bit position in <b>longword-integer-exponent</b> . |
| > 0  | = 0      | 1.0                                                                                                        |
| = 0  | = 0      | Undefined exponentiation.                                                                                  |

| Base | Exponent | Result                                                                                              |
|------|----------|-----------------------------------------------------------------------------------------------------|
| < 0  | = 0      | 1.0                                                                                                 |
| > 0  | < 0      | $1.0/(base^{**2^i})$ , where $i$ is each nonzero bit position in <b>longword-integer-exponent</b> . |
| = 0  | < 0      | Undefined exponentiation.                                                                           |
| < 0  | < 0      | $1.0/(base^{**2^i})$ , where $i$ is each nonzero bit position in <b>longword-integer-exponent</b> . |

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative.

### Condition Values Signaled

|                 |                                                                                                                                                                                                        |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS\$_FLTOVF     | Arithmetic trap. This error is signaled by the hardware if a floating-point overflow occurs.                                                                                                           |
| MTH\$_FLOOVEMAT | Floating-point overflow in math library.                                                                                                                                                               |
| MTH\$_FLOUNDMAT | Floating-point underflow in math library.                                                                                                                                                              |
| MTH\$_UNDEXP    | Undefined exponentiation. This error is signaled if <b>H-floating-point-base</b> is zero and <b>longword-integer-exponent</b> is zero or negative, or if the <b>H-floating-point-base</b> is negative. |

## **OTS\$POWII**

### **Raise a Word Base to a Word Exponent**

The Raise a Word Base to a Word Exponent routine raises a word base to a word exponent.

#### **Format**

OTS\$POWII word-integer-base ,word-integer-exponent

#### **Returns**

OpenVMS usage: word\_signed  
type: word (signed)  
access: write only  
mechanism: by value

Result of raising a word base to a word exponent.

#### **Arguments**

##### **word-integer-base**

OpenVMS usage: word\_signed  
type: word (signed)  
access: read only  
mechanism: by value

Base. The **word-integer-base** argument is a signed word containing the base.

##### **word-integer-exponent**

OpenVMS usage: word\_signed  
type: word (signed)  
access: read only  
mechanism: by value

Exponent. The **word-integer-exponent** argument is a signed word containing the exponent.

#### **Description**

The OTS\$POWII routine raises a word base to a word exponent.

On Alpha and I64 systems, some restrictions apply when linking OTS\$POWII. See Chapter 1 for more information about these restrictions.

## Condition Values Signaled

SS\$\_FLTDIV

Arithmetic trap. This error is signaled by the hardware if a floating-point division by zero occurs.

SS\$\_FLTOVF

Arithmetic trap. This error is signaled by the hardware if a floating-point overflow occurs.

MTH\$\_UNDEXP

Undefined exponentiation. This error is signaled if **word-integer-base** is zero and **word-integer-exponent** is zero or negative, or if **word-integer-base** is negative.

## **OTS\$POWJJ**

### **Raise a Longword Base to a Longword Exponent**

The Raise a Longword Base to a Longword Exponent routine raises a signed longword base to a signed longword exponent.

#### **Format**

OTS\$POWJJ longword-integer-base ,longword-integer-exponent

#### **Returns**

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: write only  
mechanism: by value

Result of raising a signed longword base to a signed longword exponent.

#### **Arguments**

##### **longword-integer-base**

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: read only  
mechanism: by value

Base. The **longword-integer-base** argument is a signed longword containing the base.

##### **longword-integer-exponent**

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: read only  
mechanism: by value

Exponent. The **longword-integer-exponent** argument is a signed longword containing the exponent.

#### **Description**

The OTS\$POWJJ routine raises a signed longword base to a signed longword exponent.

On Alpha and I64 systems, some restrictions apply when linking OTS\$POWJJ. See Chapter 1 for more information about these restrictions.

## Condition Values Signaled

SS\$\_FLTDIV

Arithmetic trap. This error is signaled by the hardware if a floating-point division by zero occurs.

SS\$\_FLTOVF

Arithmetic trap. This error is signaled by the hardware if a floating-point overflow occurs.

MTH\$\_UNDEXP

Undefined exponentiation. This error is signaled if **longword-integer-base** is zero and **longword-integer-exponent** is zero or negative, or if **longword-integer-base** is negative.

## OTS\$ Routines

### OTS\$POWLULU

---

## OTS\$POWLULU

### Raise an Unsigned Longword Base to an Unsigned Longword Exponent

The Raise an Unsigned Longword Base to an Unsigned Longword Exponent routine raises an unsigned longword integer base to an unsigned longword integer exponent.

#### Format

OTS\$POWLULU  unsigned-lword-int-base, unsigned-lword-int-exponent

#### Returns

OpenVMS usage: longword\_unsigned  
type: longword (unsigned)  
access: write only  
mechanism: by value

Result of raising an unsigned longword integer base to an unsigned longword integer exponent.

#### Arguments

##### **unsigned-lword-int-base**

OpenVMS usage: longword\_unsigned  
type: longword (unsigned)  
access: read only  
mechanism: by value

Unsigned longword integer base. The **unsigned-lword-int-base** argument contains the value of the integer base.

##### **unsigned-lword-int-exponent**

OpenVMS usage: longword\_unsigned  
type: longword (unsigned)  
access: read only  
mechanism: by value

Unsigned longword integer exponent. The **unsigned-lword-int-exponent** argument contains the value of the integer exponent.

#### Description

OTS\$POWLULU returns the unsigned longword integer result of raising an unsigned longword integer base to an unsigned longword integer exponent. Note that overflow cannot occur in this routine. If the result or intermediate result is greater than 32 bits, the low-order 32 bits are used.

On Alpha and I64 systems, some restrictions apply when linking OTS\$POWLULU. See Chapter 1 for more information about these restrictions.

**Condition Values Signaled**

MTH\$\_UNDEXP

Both the base and exponent values are zero.

## OTS\$ Routines

### OTS\$POWRD

---

## OTS\$POWRD

### Raise an F-Floating Base to a D-Floating Exponent

The Raise an F-Floating Base to a D-Floating Exponent routine raises an F-floating base to a D-floating exponent.

#### Format

OTS\$POWRD F-floating-point-base ,D-floating-point-exponent

#### Returns

OpenVMS usage: floating\_point  
type: D\_floating  
access: write only  
mechanism: by value

Result of raising an F-floating base to a D-floating exponent.

#### Arguments

##### F-floating-point-base

OpenVMS usage: floating\_point  
type: F\_floating  
access: read only  
mechanism: by value

Base. The **F-floating-point-base** argument is an F-floating number containing the base.

##### D-floating-point-exponent

OpenVMS usage: floating\_point  
type: D\_floating  
access: read only  
mechanism: by value

Exponent. The **D-floating-point-exponent** argument is a D-floating number that contains the exponent.

#### Description

OTS\$POWRD raises an F-floating base to a D-floating exponent.

The internal calculations and the floating-point result have the same precision as the base value.

OTS\$POWRD first converts the F-floating base to D-floating. The D-floating result for OTS\$POWRD is as follows:

| Base | Exponent | Result                   |
|------|----------|--------------------------|
| = 0  | > 0      | 0.0                      |
| = 0  | = 0      | Undefined exponentiation |
| = 0  | < 0      | Undefined exponentiation |

| Base | Exponent | Result                          |
|------|----------|---------------------------------|
| < 0  | Any      | Undefined exponentiation        |
| > 0  | > 0      | $2^{[exponent * \log_2(base)]}$ |
| > 0  | = 0      | 1.0                             |
| > 0  | < 0      | $2^{[exponent * \log_2(base)]}$ |

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative, or if the base is negative.

## Condition Values Signaled

|                 |                                                                                                                                                                                                    |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS\$_FLTOVF     | Arithmetic trap. This error is signaled by the hardware if a floating-point overflow occurs.                                                                                                       |
| MTH\$_FLOOVEMAT | Floating-point overflow in math library.                                                                                                                                                           |
| MTH\$_FLOUNDMAT | Floating-point underflow in math library.                                                                                                                                                          |
| MTH\$_UNDEXP    | Undefined exponentiation. This error is signaled if <b>F-floating-point-base</b> is zero and <b>D-floating-point-exponent</b> is zero or negative, or if <b>F-floating-point-base</b> is negative. |

## Example

```

C+
C  This Fortran example uses OTS$POWRD, to raise an F-floating point
C  base to a D-floating point exponent. The result is a D-floating value.
C-
      REAL*4 X
      REAL*8 Y,RESULT,OTS$POWRD
      INTEGER M(2)
      EQUIVALENCE (M(1),Y)
      X = 9768.0
      Y = 9.0

C+
C  The arguments of OTS$POWRD are passed by value.
C-
      RESULT = OTS$POWRD(%VAL(X),%VAL(M(1)),%VAL(M(2)))
      TYPE *, ' 9768.0**9.0 IS ',RESULT
      X = 7689.0
      Y = -0.587436654545

C+
C  In Fortran, OTS$POWRD is indirectly called by the exponentiation operator.
C-
      RESULT = X**Y
      TYPE *, ' 7689.0**-0.587436654545 IS ',RESULT
      END

```

This Fortran example uses OTS\$POWRD to raise an F-floating base to a D-floating exponent. Notice the difference in the precision of the result produced by this routine in comparison to the result produced by OTS\$POWRR. The output generated by this program is as follows:

```

9768.0**9.0 IS 8.0956338648832908E+35
7689.0**-0.587436654545 IS 5.2155199252836588E-03

```

## OTS\$ Routines

### OTS\$POWRJ

---

## OTS\$POWRJ

### Raise an F-Floating Base to a Longword Exponent

The Raise an F-Floating Base to a Longword Exponent routine raises an F-floating base to a longword exponent.

#### Format

OTS\$POWRJ F-floating-point-base ,longword-integer-exponent

#### Returns

OpenVMS usage: floating\_point  
type: F\_floating  
access: write only  
mechanism: by value

Result of raising an F-floating base to a longword exponent.

#### Arguments

##### F-floating-point-base

OpenVMS usage: floating\_point  
type: F\_floating  
access: read only  
mechanism: by value

Base. The **F-floating-point-base** argument is an F-floating number containing the base.

##### longword-integer-exponent

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: read only  
mechanism: by value

Exponent. The **longword-integer-exponent** argument is a signed longword that contains the longword exponent.

#### Description

OTS\$POWRJ raises an F-floating base to a longword exponent.

The internal calculations and the floating-point result have the same precision as the base value.

The floating-point result is as follows:

| Base | Exponent | Result                                                                                                     |
|------|----------|------------------------------------------------------------------------------------------------------------|
| Any  | > 0      | Product of $(base^{**2^i})$ , where $i$ is each nonzero bit position in <b>longword-integer-exponent</b> . |
| > 0  | = 0      | 1.0                                                                                                        |
| = 0  | = 0      | Undefined exponentiation.                                                                                  |

| <b>Base</b> | <b>Exponent</b> | <b>Result</b>                                                                                       |
|-------------|-----------------|-----------------------------------------------------------------------------------------------------|
| < 0         | = 0             | 1.0                                                                                                 |
| > 0         | < 0             | $1.0/(base^{**2^i})$ , where $i$ is each nonzero bit position in <b>longword-integer-exponent</b> . |
| = 0         | < 0             | Undefined exponentiation.                                                                           |
| < 0         | < 0             | $1.0/(base^{**2^i})$ , where $i$ is each nonzero bit position in <b>longword-integer-exponent</b> . |

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative.

On Alpha and I64 systems, some restrictions apply when linking OTS\$POWRJ. See Chapter 1 for more information about these restrictions.

### Condition Values Signaled

|                 |                                                                                                                                                                                                    |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS\$_FLTOVF     | Arithmetic trap. This error is signaled by the hardware if a floating-point overflow occurs.                                                                                                       |
| MTH\$_FLOOVEMAT | Floating-point overflow in math library.                                                                                                                                                           |
| MTH\$_FLOUNDMAT | Floating-point underflow in math library.                                                                                                                                                          |
| MTH\$_UNDEXP    | Undefined exponentiation. This error is signaled if <b>F-floating-point-base</b> is zero and <b>longword-integer-exponent</b> is zero or negative, or if <b>F-floating-point-base</b> is negative. |

## OTS\$ Routines

### OTS\$POWRR

---

## OTS\$POWRR

### Raise an F-Floating Base to an F-Floating Exponent

The Raise an F-Floating Base to an F-Floating Exponent routine raises an F-floating base to an F-floating exponent.

#### Format

OTS\$POWRR F-floating-point-base ,F-floating-point-exponent

#### Returns

OpenVMS usage: floating\_point  
type: F\_floating  
access: write only  
mechanism: by value

Result of raising an F-floating base to an F-floating exponent.

#### Arguments

##### F-floating-point-base

OpenVMS usage: floating\_point  
type: F\_floating  
access: read only  
mechanism: by value

Base. The **F-floating-point-base** argument is an F-floating number containing the base.

##### F-floating-point-exponent

OpenVMS usage: floating\_point  
type: F\_floating  
access: read only  
mechanism: by value

Exponent. The **F-floating-point-exponent** argument is an F-floating number that contains the exponent.

#### Description

OTS\$POWRR raises an F-floating base to an F-floating exponent.

The internal calculations and the floating-point result have the same precision as the base value.

The F-floating result for OTS\$POWRR is as follows:

| Base | Exponent | Result                   |
|------|----------|--------------------------|
| = 0  | > 0      | 0.0                      |
| = 0  | = 0      | Undefined exponentiation |
| = 0  | < 0      | Undefined exponentiation |
| < 0  | Any      | Undefined exponentiation |

| Base | Exponent | Result                                             |
|------|----------|----------------------------------------------------|
| > 0  | > 0      | $2^{[\text{exponent} \times \log_2(\text{base})]}$ |
| > 0  | = 0      | 1.0                                                |
| > 0  | < 0      | $2^{[\text{exponent} \times \log_2(\text{base})]}$ |

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative, or if the base is negative.

On Alpha and i64 systems, some restrictions apply when linking OTS\$POWRR. See Chapter 1 for more information about these restrictions.

## Condition Values Signaled

|                 |                                                                                                                                                                                                    |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS\$_FLTOVF     | Arithmetic trap. This error is signaled by the hardware if a floating-point overflow occurs.                                                                                                       |
| MTH\$_FLOOVEMAT | Floating-point overflow in math library.                                                                                                                                                           |
| MTH\$_FLOUNDMAT | Floating-point underflow in math library.                                                                                                                                                          |
| MTH\$_UNDEXP    | Undefined exponentiation. This error is signaled if <b>F-floating-point-base</b> is zero and <b>F-floating-point-exponent</b> is zero or negative, or if <b>F-floating-point-base</b> is negative. |

## Example

```

C+
C This Fortran example demonstrates the use
C of OTS$POWRR, which raises an F-floating
C point base to an F-floating point power.
C-
      REAL*4 X,Y,RESULT,OTS$POWRR
      X = 8.0
      Y = 2.0

C+
C The arguments of OTS$POWRR are passed by value.
C-
      RESULT = OTS$POWRR(%VAL(X),%VAL(Y))
      TYPE *,' 8.0**2.0 IS ',RESULT
      X = 9.0
      Y = -0.5

C+
C In Fortran, OTS$POWRR is indirectly called by simply
C using the exponentiation operator.
C-
      RESULT = X**Y
      TYPE *,' 9.0**-0.5 IS ',RESULT
      END

```

This Fortran example uses OTS\$POWRR to raise an F-floating point base to an F-floating point exponent. The output generated by this program is as follows:

```

8.0**2.0 IS    64.00000
9.0**-0.5 IS   0.3333333

```

## **OTS\$POWSJ** Raise an S-Floating Base to a Longword Exponent

The Raise an IEEE S-Floating Base to a Longword Exponent routine raises an IEEE S-floating base to a longword exponent.

### **Format**

OTS\$POWSJ S-floating-point-base ,longword-integer-exponent

### **Returns**

OpenVMS usage: floating\_point  
type: S\_floating  
access: write only  
mechanism: by value

Result of raising an IEEE S-floating base to a longword exponent.

### **Arguments**

#### **S-floating-point-base**

OpenVMS usage: floating\_point  
type: S\_floating  
access: read only  
mechanism: by value

Base. The **S-floating-point-base** argument is an IEEE S-floating number containing the base.

#### **longword-integer-exponent**

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: read only  
mechanism: by value

Exponent. The **longword-integer-exponent** argument is a signed longword that contains the longword exponent.

### **Description**

OTS\$POWSJ raises an IEEE S-floating base to a longword exponent.

The internal calculations and the floating-point result have the same precision as the base value.

The floating-point result is as follows:

| <b>Base</b> | <b>Exponent</b> | <b>Result</b>                                                                                              |
|-------------|-----------------|------------------------------------------------------------------------------------------------------------|
| Any         | > 0             | Product of $(base^{**2^i})$ , where $i$ is each nonzero bit position in <b>longword-integer-exponent</b> . |
| > 0         | = 0             | 1.0                                                                                                        |
| = 0         | = 0             | Undefined exponentiation.                                                                                  |

| Base | Exponent | Result                                                                                              |
|------|----------|-----------------------------------------------------------------------------------------------------|
| < 0  | = 0      | 1.0                                                                                                 |
| > 0  | < 0      | $1.0/(base^{**2^i})$ , where $i$ is each nonzero bit position in <b>longword-integer-exponent</b> . |
| = 0  | < 0      | Undefined exponentiation.                                                                           |
| < 0  | < 0      | $1.0/(base^{**2^i})$ , where $i$ is each nonzero bit position in <b>longword-integer-exponent</b> . |

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative.

On Alpha and I64 systems, some restrictions apply when linking OTS\$POWSJ. See Chapter 1 for more information about these restrictions.

### Condition Values Signaled

|                 |                                                                                                                                                                                                    |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS\$_FLTOVF     | Arithmetic trap. This error is signaled by the hardware if a floating-point overflow occurs.                                                                                                       |
| MTH\$_FLOOVEMAT | Floating-point overflow in math library.                                                                                                                                                           |
| MTH\$_FLOUNDMAT | Floating-point underflow in math library.                                                                                                                                                          |
| MTH\$_UNDEXP    | Undefined exponentiation. This error is signaled if <b>S-floating-point-base</b> is zero and <b>longword-integer-exponent</b> is zero or negative, or if <b>S-floating-point-base</b> is negative. |

## **OTS\$POWSS**

### **Raise an S-Floating Base to an S-Floating Exponent**

The Raise an IEEE S-Floating Base to an IEEE S-Floating Exponent routine raises a IEEE S-floating base to an IEEE S-floating exponent.

#### **Format**

OTS\$POWSS S-floating-point-base ,S-floating-point-exponent

#### **Returns**

OpenVMS usage: floating\_point  
type: IEEE S\_floating  
access: write only  
mechanism: by value

Result of raising an IEEE S-floating base to an IEEE S-floating exponent.

#### **Arguments**

##### **S-floating-point-base**

OpenVMS usage: floating\_point  
type: IEEE S\_floating  
access: read only  
mechanism: by value

Base that OTS\$POWSS raises to an IEEE S-floating exponent. The **S-floating-point-base** argument is an IEEE S-floating number containing the base.

##### **S-floating-point-exponent**

OpenVMS usage: floating\_point  
type: IEEE S\_floating  
access: read only  
mechanism: by value

Exponent to which OTS\$POWSS raises the base. The **S-floating-point-exponent** argument is an IEEE S-floating number containing the exponent.

#### **Description**

OTS\$POWSS raises an IEEE S-floating base to an IEEE S-floating exponent.

The internal calculations and the floating-point result have the same precision as the base value.

The S-floating result for OTS\$POWSS is as follows:

| <b>Base</b> | <b>Exponent</b> | <b>Result</b>            |
|-------------|-----------------|--------------------------|
| = 0         | > 0             | 0.0                      |
| = 0         | = 0             | Undefined exponentiation |
| = 0         | < 0             | Undefined exponentiation |
| < 0         | Any             | Undefined exponentiation |

| Base | Exponent | Result                                        |
|------|----------|-----------------------------------------------|
| > 0  | > 0      | $2^{[\text{exponent} * \log_2(\text{base})]}$ |
| > 0  | = 0      | 1.0                                           |
| > 0  | < 0      | $2^{[\text{exponent} * \log_2(\text{base})]}$ |

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative, or if the base is negative.

On Alpha and I64 systems, some restrictions apply when linking OTS\$POWSS. See Chapter 1 for more information about these restrictions.

## Condition Values Signaled

|                 |                                                                                                                                                                                              |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS\$_FLTOVF     | Arithmetic trap. This error is signaled by the hardware if a floating-point overflow occurs.                                                                                                 |
| MTH\$_FLOOVEMAT | Floating-point overflow in math library.                                                                                                                                                     |
| MTH\$_FLOUNDMAT | Floating-point underflow in math library.                                                                                                                                                    |
| MTH\$_UNDEXP    | Undefined exponent. This error is signaled if <b>S-floating-point-base</b> is zero and <b>S-floating-point-exponent</b> is zero or negative, or if <b>S-floating-point-base</b> is negative. |

## Example

The following example demonstrates the use of OTS\$POWSS.

```

C+
C This Fortran example demonstrates the use of
C OTS$POWSS, which raises an IEEE S-floating
C point base to an IEEE S-floating point power.
C-

OPTIONS /FLOAT=IEEE_FLOAT
REAL*4 X,Y,RESULT,OTS$POWSS
X = 10.0
Y = 3.0

C+
C The arguments of OTS$POWSS are passed by value.
C-

RESULT = OTS$POWSS(%VAL(X),%VAL(Y))
TYPE *,' 10.0**3.0 IS ',RESULT
X = 9.0
Y = -0.5

C+
C In Fortran, OTS$POWSS is indirectly called by
C simply using the exponentiation operator.
C-

RESULT = X**Y
TYPE *,' 9.0**-0.5 IS ',RESULT
END

```

## **OTS\$ Routines**

### **OTS\$POWSS**

This Fortran example uses OTS\$POWSS to raise an IEEE S-floating point base to an IEEE S-floating point exponent. The output generated by this program is as follows:

```
10.0**3.0 IS    1000.000
9.0**-0.5 IS   0.3333333
```

---

## **OTS\$POWTJ**

### **Raise a T-Floating Base to a Longword Exponent**

The Raise a T-Floating base to a Longword Exponent routine raises an IEEE T-floating base to a longword exponent.

#### **Format**

OTS\$POWTJ T-floating-point-base ,longword-integer-exponent

#### **Returns**

OpenVMS usage: floating\_point  
type: IEEE T\_floating  
access: write only  
mechanism: by value

Result of raising an IEEE T-floating base to a longword exponent.

#### **Arguments**

##### **T-floating-point-base**

OpenVMS usage: floating\_point  
type: IEEE T\_floating  
access: read only  
mechanism: by value

Base. The **T-floating-point-base** argument is an IEEE T-floating number containing the base.

##### **longword-integer-exponent**

OpenVMS usage: longword\_signed  
type: longword (signed)  
access: read only  
mechanism: by value

Exponent. The **longword-integer-exponent** argument is a signed longword that contains the longword exponent.

#### **Description**

OTS\$POWTJ raises an IEEE T-floating base to a longword exponent.

The internal calculations and the floating-point result have the same precision as the base value.

The floating-point result is as follows:

---

| <b>Base</b> | <b>Exponent</b> | <b>Result</b>                                                                                              |
|-------------|-----------------|------------------------------------------------------------------------------------------------------------|
| Any         | > 0             | Product of $(base^{**2^i})$ , where $i$ is each nonzero bit position in <b>longword-integer-exponent</b> . |
| > 0         | = 0             | 1.0                                                                                                        |
| = 0         | = 0             | Undefined exponentiation.                                                                                  |

## OTS\$ Routines

### OTS\$POWTJ

| Base | Exponent | Result                                                                                              |
|------|----------|-----------------------------------------------------------------------------------------------------|
| < 0  | = 0      | 1.0                                                                                                 |
| > 0  | < 0      | $1.0/(base^{**}2^i)$ , where $i$ is each nonzero bit position in <b>longword-integer-exponent</b> . |
| = 0  | < 0      | Undefined exponentiation.                                                                           |
| < 0  | < 0      | $1.0/(base^{**}2^i)$ , where $i$ is each nonzero bit position in <b>longword-integer-exponent</b> . |

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative.

On Alpha and I64 systems, some restrictions apply when linking OTS\$POWTJ. See Chapter 1 for more information about these restrictions.

## Condition Values Signaled

|                 |                                                                                                                                                                                                    |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS\$_FLTOVF     | Arithmetic trap. This error is signaled by the hardware if a floating-point overflow occurs.                                                                                                       |
| MTH\$_FLOOVEMAT | Floating-point overflow in math library.                                                                                                                                                           |
| MTH\$_FLOUNDMAT | Floating-point underflow in math library.                                                                                                                                                          |
| MTH\$_UNDEXP    | Undefined exponentiation. This error is signaled if <b>T-floating-point-base</b> is zero and <b>longword-integer-exponent</b> is zero or negative, or if <b>T-floating-point-base</b> is negative. |

---

## **OTS\$POWTT**

### **Raise a T-Floating Base to a T-Floating Exponent**

The Raise an IEEE T-Floating Base to an IEEE T-Floating Exponent routine raises an IEEE T-floating base to an IEEE T-floating exponent.

#### **Format**

OTS\$POWTT T-floating-point-base ,T-floating-point-exponent

#### **Returns**

OpenVMS usage: floating\_point  
type: IEEE T\_floating  
access: write only  
mechanism: by value

Result of raising an IEEE T-floating base to an IEEE T-floating exponent.

#### **Arguments**

##### **T-floating-point-base**

OpenVMS usage: floating\_point  
type: IEEE T\_floating  
access: read only  
mechanism: by value

Base that OTS\$POWTT raises to an IEEE T-floating exponent. The **T-floating-point-base** argument is an IEEE T-floating number containing the base.

##### **T-floating-point-exponent**

OpenVMS usage: floating\_point  
type: IEEE T\_floating  
access: read only  
mechanism: by value

Exponent to which OTS\$POWTT raises the base. The **T-floating-point-exponent** argument is an IEEE T-floating number containing the exponent.

#### **Description**

OTS\$POWTT raises an IEEE T-floating base to an IEEE T-floating exponent.

The internal calculations and the floating-point result have the same precision as the base value.

The T-floating result for OTS\$POWTT is as follows:

| <b>Base</b> | <b>Exponent</b> | <b>Result</b>            |
|-------------|-----------------|--------------------------|
| = 0         | > 0             | 0.0                      |
| = 0         | = 0             | Undefined exponentiation |
| = 0         | < 0             | Undefined exponentiation |
| < 0         | Any             | Undefined exponentiation |

## OTS\$ Routines

### OTS\$POWTT

| Base | Exponent | Result                                             |
|------|----------|----------------------------------------------------|
| > 0  | > 0      | $2^{[\text{exponent} \times \log_2(\text{base})]}$ |
| > 0  | = 0      | 1.0                                                |
| > 0  | < 0      | $2^{[\text{exponent} \times \log_2(\text{base})]}$ |

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or negative, or if the base is negative.

On Alpha and I64 systems, some restrictions apply when linking OTS\$POWTT. See Chapter 1 for more information about these restrictions.

## Condition Values Signaled

|                 |                                                                                                                                                                                              |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SS\$_FLTOVF     | Arithmetic trap. This error is signaled by the hardware if a floating-point overflow occurs.                                                                                                 |
| MTH\$_FLOOVEMAT | Floating-point overflow in math library.                                                                                                                                                     |
| MTH\$_FLOUNDMAT | Floating-point underflow in math library.                                                                                                                                                    |
| MTH\$_UNDEXP    | Undefined exponent. This error is signaled if <b>T-floating-point-base</b> is zero and <b>T-floating-point-exponent</b> is zero or negative, or if <b>T-floating-point-base</b> is negative. |

## Example

The following example demonstrates the use of OTS\$POWTT.

```
C+
C This Fortran example demonstrates the use of
C OTS$POWTT, which raises an IEEE T-floating
C point base to an IEEE T-floating point power.
C-
OPTIONS /FLOAT=IEEE_FLOAT
REAL*8 X,Y,RESULT,OTS$POWTT
X = 10.0
Y = 3.0
C+
C The arguments of OTS$POWTT are passed by value.
C-
RESULT = OTS$POWTT(%VAL(X),%VAL(Y))
TYPE *, ' 10.0**3.0 IS ',RESULT
X = 9.0
Y = -0.5
C+
C In Fortran, OTS$POWTT is indirectly called by
C simply using the exponentiation operator.
C-
RESULT = X**Y
TYPE *, ' 9.0**-0.5 IS ',RESULT
END
```

**OTS\$ Routines**  
**OTS\$POWTT**

This Fortran example uses OTS\$POWTT to raise an IEEE T-floating point base to an IEEE T-floating point exponent. The output generated by this program is as follows:

```
10.0**3.0 IS    1000.0000000000  
9.0**-0.5 IS   0.33333333333333
```

## **OTS\$POWxLU**

### **Raise a Floating-Point Base to an Unsigned Longword Integer Exponent**

The Raise a Floating-Point Base to an Unsigned Longword Integer Exponent routines raise a floating-point base to an unsigned longword integer exponent.

#### **Format**

|                |                                                             |
|----------------|-------------------------------------------------------------|
| OTS\$POWRLU    | floating-point-base ,unsigned-lword-int-exponent            |
| OTS\$POWDLU    | floating-point-base ,unsigned-lword-int-exponent            |
| OTS\$POWGLU    | floating-point-base ,unsigned-lword-int-exponent            |
| OTS\$POWSLU    | floating-point-base ,unsigned-lword-int-exponent            |
| OTS\$POWTLU    | floating-point-base ,unsigned-lword-int-exponent            |
| OTS\$POWHLU_R3 | floating-point-base ,unsigned-lword-int-exponent (VAX only) |

#### **Returns**

OpenVMS usage: floating\_point  
type: F\_floating, D\_floating, G\_floating, H\_floating, IEEE S\_floating,  
IEEE T\_floating  
access: write only  
mechanism: by value

Result of raising a floating-point base to an unsigned longword integer exponent. OTS\$POWRLU returns an F-floating number. OTS\$POWDLU returns a D-floating number. OTS\$POWGLU returns a G-floating number. OTS\$POWSLU returns an IEEE S-floating number. OTS\$POWTLU returns an IEEE T-floating number.

On VAX systems, OTS\$POWHLU\_R3 returns an H-floating number.

#### **Arguments**

##### **floating-point-base**

OpenVMS usage: floating\_point  
type: F\_floating, D\_floating, G\_floating, H\_floating, IEEE S\_floating,  
IEEE T\_floating  
access: read only  
mechanism: by value

Floating-point base. The **floating-point-base** argument contains the value of the base. For OTS\$POWRLU, **floating-point-base** is an F-floating number. For OTS\$POWDLU, **floating-point-base** is a D-floating number. For OTS\$POWGLU, **floating-point-base** is a G-floating number. For OTS\$POWHLU\_R3, **floating-point-base** is an H-floating number. For OTS\$POWSLU, **floating-point-base** is an IEEE S-floating number. For OTS\$POWTLU, **floating-point-base** is an IEEE T-floating number.

##### **unsigned-lword-int-exponent**

OpenVMS usage: longword\_unsigned  
type: longword (unsigned)  
access: read only

mechanism: by value

Integer exponent. The **unsigned-lword-int-exponent** argument contains the value of the unsigned longword integer exponent.

## Description

The OTS\$POWxLU routines return the result of raising a floating-point base to an unsigned longword integer exponent. The floating-point result is as follows:

| <b>Base</b> | <b>Exponent</b> | <b>Result</b>                                                                                            |
|-------------|-----------------|----------------------------------------------------------------------------------------------------------|
| Any         | > 0             | Product of $(base * 2^i)$ , where $i$ is each nonzero bit position in <b>longword-integer-exponent</b> . |
| > 0         | = 0             | 1.0                                                                                                      |
| = 0         | = 0             | Undefined exponentiation.                                                                                |
| < 0         | = 0             | 1.0                                                                                                      |

On Alpha and I64 systems, some restrictions apply when linking OTS\$POWRLU, OTS\$POWGLU, OTS\$POWSLU, and OTS\$POWTLU. See Chapter 1 for more information about these restrictions.

## Condition Values Signaled

|                 |                                                                                                                                                |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| MTH\$_FLOOVEMAT | Floating-point overflow in math library.                                                                                                       |
| MTH\$_FLOUNDMAT | Floating-point underflow in math library. This can only occur if the caller has floating-point underflow enabled.                              |
| MTH\$_UNDEXP    | Undefined exponentiation. This occurs if both the <b>floating-point-base</b> and <b>unsigned-longword-integer-exponent</b> arguments are zero. |

## **OTS\$SCOPY\_DDXD**

### **Copy a Source String Passed by Descriptor to a Destination String**

The Copy a Source String Passed by Descriptor to a Destination String routine copies a source string to a destination string. Both strings are passed by descriptor.

#### **Format**

OTS\$SCOPY\_DDXD source-string ,destination-string

#### **Corresponding JSB Entry Point**

OTS\$SCOPY\_DDXD6

#### **Returns**

OpenVMS usage: word\_unsigned  
type: word (unsigned)  
access: write only  
mechanism: by value

Number of bytes not moved to the destination string if the length of **source-string** is greater than the length of **destination-string**. The value is 0 (zero) otherwise.

#### **Arguments**

##### **source-string**

OpenVMS usage: char\_string  
type: character string  
access: read only  
mechanism: by descriptor

Source string. The **source-string** argument is the address of a descriptor pointing to the source string. The descriptor class can be unspecified, fixed length, dynamic, scalar decimal, array, noncontiguous array, or varying.

##### **destination-string**

OpenVMS usage: char\_string  
type: character string  
access: write only  
mechanism: by descriptor

Destination string. The **destination-string** argument is the address of a descriptor pointing to the destination string. The class field determines the appropriate action.

See the Description section for further information.

## Description

OTS\$SCOPY\_DXDX copies a source string to a destination string. It passes the source string by descriptor. If the length of the source string is greater than the length of the destination string, OTS\$SCOPY\_DXDX returns the number of bytes not moved to the destination string. If the length of the source string is less than or equal to the length of the destination string, it returns 0 (zero). All error conditions except truncation are signaled; truncation is ignored.

An equivalent JSB entry point is provided, with R0 being the first argument (the descriptor of the source string), and R1 the second (the descriptor of the destination string). On return, R0 through R5 and the PSL are as they would be after a VAX MOVC5 instruction. R0 through R5 contain the following:

|    |                                                                   |
|----|-------------------------------------------------------------------|
| R0 | Number of bytes of source string not moved to destination string  |
| R1 | Address one byte beyond the last copied byte in the source string |
| R2 | 0                                                                 |
| R3 | Address one byte beyond the destination string                    |
| R4 | 0                                                                 |
| R5 | 0                                                                 |

For further information, see the *VAX Architecture Reference Manual*.

The actions taken by OTS\$SCOPY\_DXDX depend on the descriptor class of the destination string. The following table describes these actions for each descriptor class:

| Descriptor Class | Action                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S, Z, SD, A, NCA | Copy the source string. If needed, space fill or truncate on the right.                                                                                                                                                                                                                                                                                                                                                          |
| D                | If the area specified by the destination descriptor is large enough to contain the source string, copy the source string and set the new length in the destination descriptor.<br><br>If the area specified is not large enough, return the previous space allocation if any, and then dynamically allocate the amount of space needed. Copy the source string and set the new length and address in the destination descriptor. |
| VS               | Copy source string to destination string up to the limit of the destination descriptor's MAXSTRLEN field with no padding. Adjust the string's current length field (CURLEN) to the actual number of bytes copied.                                                                                                                                                                                                                |

## Condition Values Signaled

|                 |                              |
|-----------------|------------------------------|
| OTS\$_FATINTERR | Fatal internal error.        |
| OTS\$_INVSTRDES | Invalid string descriptor.   |
| OTS\$_INSVIRMEM | Insufficient virtual memory. |

## **OTS\$SCOPY\_R\_DX**

### **Copy a Source String Passed by Reference to a Destination String**

The Copy a Source String Passed by Reference to a Destination String routine copies a source string passed by reference to a destination string.

#### **Format**

```
OTS$SCOPY_R_DX word-int-source-length-val ,source-string-address  
                  ,destination-string
```

#### **Corresponding JSB Entry Point**

```
OTS$SCOPY_R_DX6
```

#### **Returns**

OpenVMS usage: word\_unsigned  
type: word (unsigned)  
access: write only  
mechanism: by value

Number of bytes not moved to the destination string if the length of the source string pointed to by **source-string-address** is greater than the length of **destination-string**. Otherwise, the value is 0 (zero).

#### **Arguments**

##### **word-int-source-length-val**

OpenVMS usage: word\_unsigned  
type: word (unsigned)  
access: read only  
mechanism: by value

Length of the source string. The **word-int-source-length-val** argument is an unsigned word integer containing the length of the source string.

##### **source-string-address**

OpenVMS usage: char\_string  
type: character string  
access: read only  
mechanism: by reference

Source string. The **source-string-address** argument is the address of the source string.

##### **destination-string**

OpenVMS usage: char\_string  
type: character string  
access: write only  
mechanism: by descriptor

Destination string. The **destination-string** argument is the address of a descriptor pointing to the destination string. OTS\$SCOPY\_R\_DX determines the appropriate action based on the descriptor's CLASS field. The descriptor's LENGTH field alone or both the POINTER and LENGTH fields can be modified if

## OTS\$ Routines OTS\$SCOPY\_R\_DX

the string is dynamic. For varying strings, the string's current length (CURLEN) is rewritten.

### Description

OTS\$SCOPY\_R\_DX copies a source string to a destination string. It passes the source string by reference preceded by a length argument. The length argument, **word-int-source-length-val**, is passed by value.

If the length of the source string is greater than the length of the destination string, OTS\$SCOPY\_R\_DX returns the number of bytes not moved to the destination string. If the length of the source string is less than or equal to the length of the destination string, it returns 0 (zero). All conditions except truncation are signaled; truncation is ignored.

An equivalent JSB entry point is provided, with R0 being the first argument, R1 the second, and R2 the third, if any. The length argument is passed in bits 15:0 of the appropriate register. On return, R0 through R5 and the PSL are as they would be after a VAX MOVC5 instruction. R0 through R5 contain the following:

|    |                                                                   |
|----|-------------------------------------------------------------------|
| R0 | Number of bytes of source string not moved to destination string  |
| R1 | Address one byte beyond the last copied byte in the source string |
| R2 | 0                                                                 |
| R3 | Address one byte beyond the destination string                    |
| R4 | 0                                                                 |
| R5 | 0                                                                 |

For additional information, see the *VAX Architecture Reference Manual*.

The actions taken by OTS\$SCOPY\_R\_DX depend on the descriptor class of the destination string. The following table describes these actions for each descriptor class:

| Descriptor Class | Action                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S, Z, SD, A, NCA | Copy the source string. If needed, space fill or truncate on the right.                                                                                                                                                                                                                                                                                                                                                           |
| D                | If the area specified by the destination descriptor is large enough to contain the source string, copy the source string and set the new length in the destination descriptor.<br><br>If the area specified is not large enough, return the previous space allocation (if any) and then dynamically allocate the amount of space needed. Copy the source string and set the new length and address in the destination descriptor. |
| VS               | Copy source string to destination string up to the limit of the descriptor's MAXSTRLEN field with no padding. Adjust the string's current length (CURLEN) field to the actual number of bytes copied.                                                                                                                                                                                                                             |

**OTS\$ Routines**  
**OTS\$SCOPY\_R\_DX**

**Condition Values Signaled**

|                 |                              |
|-----------------|------------------------------|
| OTS\$_FATINTERR | Fatal internal error.        |
| OTS\$_INVSTRDES | Invalid string descriptor.   |
| OTS\$_INSVIRMEM | Insufficient virtual memory. |

**Example**

A Fortran example that demonstrates the manipulation of dynamic strings appears at the end of OTS\$SGET1\_DD. This example uses OTS\$SCOPY\_R\_DX, OTS\$SGET1\_DD, and OTS\$SFREE1\_DD.

---

## OTS\$FREE1\_DD

### Strings, Free One Dynamic

The Strings, Free One Dynamic routine returns one dynamic string area to free storage.

#### Format

OTS\$FREE1\_DD dynamic-descriptor

#### Corresponding JSB Entry Point

OTS\$FREE1\_DD6

#### Returns

None.

#### Argument

**dynamic-descriptor**

OpenVMS usage: quadword\_unsigned  
type: quadword (unsigned)  
access: modify  
mechanism: by reference

Dynamic string descriptor. The **dynamic-descriptor** argument is the address of the dynamic string descriptor. The descriptor is assumed to be dynamic and its class field is not checked.

#### Description

OTS\$FREE1\_DD deallocates the described string space and flags the descriptor as describing no string at all. The descriptor's POINTER and LENGTH fields contain 0.

#### Condition Value Signaled

|                 |                       |
|-----------------|-----------------------|
| OTS\$_FATINTERR | Fatal internal error. |
|-----------------|-----------------------|

#### Example

A Fortran example that demonstrates the manipulation of dynamic strings appears at the end of OTS\$SGET1\_DD. This example uses OTS\$FREE1\_DD, OTS\$SGET1\_DD, and OTS\$SCOPY\_R\_DX.

## **OTS\$ Routines**

### **OTS\$SFREEN\_DD**

---

## **OTS\$SFREEN\_DD**

### **Strings, Free n Dynamic**

The Free *n* Dynamic Strings routine takes as input a vector of one or more dynamic string areas and returns them to free storage.

#### **Format**

OTS\$SFREEN\_DD descriptor-count-value ,first-descriptor

#### **Corresponding JSB Entry Point**

OTS\$SFREEN\_DD6

#### **Returns**

None.

#### **Arguments**

##### **descriptor-count-value**

OpenVMS usage: longword\_unsigned  
type: longword (unsigned)  
access: read only  
mechanism: by value

Number of adjacent descriptors to be flagged as having no allocated area (the descriptor's POINTER and LENGTH fields contain 0) and to have their allocated areas returned to free storage by OTS\$SFREEN\_DD. The **descriptor-count-value** argument is an unsigned longword containing this number.

##### **first-descriptor**

OpenVMS usage: quadword\_unsigned  
type: quadword (unsigned)  
access: modify  
mechanism: by reference

First string descriptor of an array of string descriptors. The **first-descriptor** argument is the address of the first string descriptor. The descriptors are assumed to be dynamic, and their class fields are not checked.

#### **Description**

OTS\$SFREEN\_DD6 deallocates the described string space and flags each descriptor as describing no string at all. The descriptor's POINTER and LENGTH fields contain 0.

#### **Condition Values Signaled**

|                 |                       |
|-----------------|-----------------------|
| OTS\$_FATINTERR | Fatal internal error. |
|-----------------|-----------------------|

---

## OTS\$SGET1\_DD

### Strings, Get One Dynamic

The Get One Dynamic String routine allocates a specified number of bytes of dynamic virtual memory to a specified string descriptor.

#### Format

OTS\$SGET1\_DD word-integer-length-value ,dynamic-descriptor

#### Corresponding JSB Entry Point

OTS\$SGET1\_DD\_R6

#### Returns

None.

#### Arguments

##### **word-integer-length-value**

OpenVMS usage: word\_unsigned  
type: word (unsigned)  
access: read only  
mechanism: by value

Number of bytes to be allocated. The **word-integer-length-value** argument contains the number of bytes. The amount of storage allocated is automatically rounded up. If the number of bytes is zero, a small number of bytes is allocated.

##### **dynamic-descriptor**

OpenVMS usage: quadword\_unsigned  
type: quadword (unsigned)  
access: modify  
mechanism: by reference

Dynamic string descriptor to which the area is to be allocated. The **dyn-str** argument is the address of the dynamic string descriptor. The CLASS field is not checked but it is set to dynamic (CLASS = 2). The LENGTH field is set to **word-integer-length-value** and the POINTER field is set to the string area allocated (first byte beyond the header).

#### Description

OTS\$SGET1\_DD allocates a specified number of bytes of dynamic virtual memory to a specified string descriptor. This routine is identical to OTS\$SCOPY\_DXDX except that no source string is copied. You can write anything you want in the allocated area.

If the specified string descriptor already has dynamic memory allocated to it, but the amount allocated is either greater than or less than **word-integer-length-value**, that space is deallocated before OTS\$SGET1\_DD allocates new space.

## OTS\$ Routines

### OTS\$SGET1\_DD

#### Condition Values Signaled

|                 |                              |
|-----------------|------------------------------|
| OTS\$_FATINTERR | Fatal internal error.        |
| OTS\$_INSVIRMEM | Insufficient virtual memory. |

#### Example

```
PROGRAM STRING_TEST

C+ This program demonstrates the use of some dynamic string
C manipulation routines.
C-

C+ DECLARATIONS
C-

IMPLICIT NONE
CHARACTER*80      DATA_LINE
INTEGER*4         DATA_LEN, DSC(2), CRLF_DSC(2), TEMP_DSC(2)
CHARACTER*2        CRLF

C+ Initialize the output descriptor. It should be empty.
C-
CALL OTS$SGET1_DD(%VAL(0), DSC)

C+ Initialize a descriptor to the string CRLF and copy the
C character CRLF to it.
C-
CALL OTS$SGET1_DD(%VAL(2), CRLF_DSC)
CRLF = CHAR(13)//CHAR(10)
CALL OTS$SCOPY_R_DX( %VAL(2), %REF(CRLF(1:1)), CRLF_DSC)

C+ Initialize a temporary descriptor.
C-
CALL OTS$SGET1_DD(%VAL(0), TEMP_DSC)

C+ Prompt the user.
C-
WRITE(6, 999)
999 FORMAT(1X, 'Enter your message, end with Ctrl/Z.')
C+
C Read lines of text from the terminal until end-of-file.
C Concatenate each line to the previous input. Include a
C CRLF between each line.
C-
DO WHILE (.TRUE.)
  READ(5, 998, ERR = 10) DATA_LEN, DATA_LINE
  FORMAT(Q,A)
  CALL OTS$SCOPY_R_DX( %VAL(DATA_LEN),
1           %REF(DATA_LINE(1:1)),
2           TEMP_DSC)
  CALL STR$CONCAT( DSC, DSC, TEMP_DSC, CRLF_DSC )
END DO
```

**OTS\$ Routines**  
**OTS\$SGET1\_DD**

```
C+          The user has typed Ctrl/Z.  Output the data we read.  
C-  
10         CALL LIB$PUT_OUTPUT( DSC )  
C+          Free the storage allocated to the dynamic strings.  
C-  
          CALL OTS$SFREE1_DD( DSC )  
          CALL OTS$SFREE1_DD( CRLF_DSC )  
          CALL OTS$SFREE1_DD( TEMP_DSC )  
C+          End of program.  
C-  
          STOP  
          END
```

This Fortran example program demonstrates the manipulation of dynamic strings using OTS\$SGET1\_DD, OTS\$SFREE1\_DD, and OTS\$SCOPY\_R\_DX.



---

# Index

## C

---

Complex numbers  
    division of, OTS-40  
    multiplication of, OTS-55  
Conversions  
    binary text to unsigned integer, OTS-24  
    floating-point to character string, OTS-5  
    hexadecimal text to unsigned integer, OTS-36  
    integer to binary text, OTS-7, OTS-9  
    integer to decimal text, OTS-15  
    integer to Fortran L format, OTS-11  
    integer to hexadecimal text, OTS-17  
    integer to logical text, OTS-11  
    integer to octal text, OTS-13  
    logical text to integer, OTS-29  
    numeric text to floating-point, OTS-19  
    octal text to unsigned integer, OTS-31  
    signed integer text to integer, OTS-27  
    unsigned decimal to integer, OTS-34  
Copying strings, OTS-102

## D

---

Division  
    complex number, OTS-40  
    packed decimal, OTS-44, OTS-47  
Dynamic length strings  
    allocating, OTS-109  
    deallocating, OTS-107, OTS-108

## E

---

Exponentiation  
    complex base to complex exponent, OTS-58  
    complex base to signed integer exponent,  
        OTS-61  
    D-floating base, OTS-63, OTS-65, OTS-67  
    F-floating base, OTS-84, OTS-86, OTS-88  
    G-floating base, OTS-69, OTS-72  
    H-floating base, OTS-74, OTS-76  
    S-floating base, OTS-90, OTS-92  
    signed longword base, OTS-80  
    T-floating base, OTS-95, OTS-97  
    word base to word exponent, OTS-78

## M

---

Memory allocation  
    for dynamic length strings, OTS-109  
    freeing dynamic length strings, OTS-107,  
        OTS-108  
Multiplication  
    of complex numbers, OTS-55

## O

---

OTS\$CALL\_PROC routine, OTS-3  
OTS\$CNVOUT routine, OTS-5  
OTS\$CNVOUT\_D routine, OTS-5  
OTS\$CNVOUT\_G routine, OTS-5  
OTS\$CNVOUT\_H routine, OTS-5  
OTS\$CNVOUT\_S routine, OTS-5  
OTS\$CNVOUT\_T routine, OTS-5  
OTS\$CVT\_L\_TB routine, OTS-7  
OTS\$CVT\_L\_TI routine, OTS-9  
OTS\$CVT\_L\_TL routine, OTS-11  
OTS\$CVT\_L\_TO routine, OTS-13  
OTS\$CVT\_L\_TU routine, OTS-15  
OTS\$CVT\_L\_TZ routine, OTS-17  
OTS\$CVT\_TB\_L routine, OTS-24  
OTS\$CVT\_TI\_L routine, OTS-27  
OTS\$CVT\_TL\_L routine, OTS-29  
OTS\$CVT\_TO\_L routine, OTS-31  
OTS\$CVT\_TU\_L routine, OTS-34  
OTS\$CVT\_TZ\_L routine, OTS-36  
OTS\$CVT\_T\_x routine, OTS-19  
OTS\$DIVCD\_R3 routine, OTS-39  
OTS\$DIVCG\_R3 routine, OTS-39  
OTS\$DIVCT\_R3 routine, OTS-39  
OTS\$DIVCx routine, OTS-39  
OTS\$DIV\_PK\_LONG routine, OTS-42  
OTS\$DIV\_PK\_SHORT routine, OTS-46  
OTS\$JUMP\_TP\_BPV routine, OTS-48  
OTS\$MOVE3 routine, OTS-50  
OTS\$MOVE5 routine, OTS-52  
OTS\$MULCD\_R3 routine, OTS-54  
OTS\$MULCG\_R3 routine, OTS-54  
OTS\$MULCS\_R3 routine, OTS-54  
OTS\$MULCT\_R3 routine, OTS-54

OTS\$POWCxCx routine, OTS-57  
OTS\$POWCxJ routine, OTS-60  
OTS\$POWDD routine, OTS-63  
OTS\$POWDJ routine, OTS-65  
OTS\$POWDLU routine, OTS-100  
OTS\$POWDR routine, OTS-67  
OTS\$POWGG routine, OTS-69  
OTS\$POWGJ routine, OTS-72  
OTS\$POWGLU routine, OTS-100  
OTS\$POWHH\_R3 routine, OTS-74  
OTS\$POWHJ\_R3 routine, OTS-76  
OTS\$POWHLU\_R3 routine, OTS-100  
OTS\$POWII routine, OTS-78  
OTS\$POWJJ routine, OTS-80  
OTS\$POWLULU routine, OTS-82  
OTS\$POWRD routine, OTS-84  
OTS\$POWRJ routine, OTS-86  
OTS\$POWRLU routine, OTS-100  
OTS\$POWRR routine, OTS-88  
OTS\$POWSJ routine, OTS-90  
OTS\$POWSLU routine, OTS-100  
OTS\$POWSS routine, OTS-92

OTS\$POWTJ routine, OTS-95  
OTS\$POWTLU routine, OTS-100  
OTS\$POWTT routine, OTS-97  
OTS\$SCOPY\_DDXD routine, OTS-102  
OTS\$SCOPY\_R\_DX routine, OTS-104  
OTS\$SFREE1\_DD routine, OTS-107  
OTS\$SFREEN\_DD routine, OTS-108  
OTS\$SGET1\_DD routine, OTS-109

## R

---

Run-time library routines  
    general purpose, 1-1

## S

---

Strings  
    copying by descriptor, OTS-102  
    copying by reference, OTS-104  
    dynamic length  
        allocating, OTS-109  
        deallocating, OTS-107, OTS-108



