

Funzioni a più Variabili

e Vettoriali

Introduzione

di vaviabili: f: B"-B.

Studieremo funzioni reali di piu' variabili (sempre reali) a valori scalari o vettoriali:

 $f:A\subseteq \mathbb{R}^n \longrightarrow \mathbb{R}^N \pmod{n \ge 2 \text{ e } N \ge 1}$

Se K=4 e n z 2 la funzione e detta funzione scalare a più variabili (dove n sava il numero

Se N > 2 e n > 2, f si dice funcione vertoriale a più vaviabili

Graficare Funzioni a Più Variabili

e indichiamo con G(f) il grafico della funzione. Già prendendo f: A = B -> [z=f(x,y),

Ricordiano che nel caso di una funzione scalare di una sola variabile $f: A \subseteq \mathbb{R} \longrightarrow \mathbb{R} \Rightarrow y = f(x)$

con x, y \in A] e dunque G(f) \(\subseteq \text{R}^3

Se poi andiamo ad aumentore la quantità di vaviabili e molto più complicato graficave f.

Curve di Livello di una Funzione a Più Variabili

Sia f. AcR²→B, fissato un pavametro ter definisco carva di livello Ct = {(x,y) ∈ A: f(x,y)+t}

G(f) e un pavaboloide

fe un insieme di tipo curva contenuto in A.

Esempio di calcolo Curve di Livello:

definizione una circonferenza di

Limiti e Continuita di Funzioni a Più Variabili

Ricordiamo che perfunzioni f:B→B l'operazione di limite e definita:

$$\lim_{x\to\infty} f(x) = L \in \mathbb{R} \iff \forall \varepsilon > 0 \exists S = S(x_0, \varepsilon) > 0 : |f(x) - L| < \varepsilon$$

"
$$\lim_{x \to a^+} f(x) = \lim_{x \to b} f(x) = U \quad \forall x \in (a,b) \quad U \quad (x_0 - \delta, x_0 + \delta), \quad x \neq x_0$$

Nella seconda funziono definiamo (x-f, xo+f) como intorno (sterico) del punto xo:

II	Voc	gio	dell	l'into	ONO	وا ر	de fii	nito	da	ξ																	
Per	de	?¥ini	ive i	rac	aa <i>i</i>	in C	dime	nsi <i>o</i>	wi s	(10evi	iovi	defi	niaw	, la	Lun	ziona	e di	Slai	n≥o.	eucli	dea	. d	(0.0) = [(x,-x	ر (۱	/4-Y2) ^E
			e q							Ľ																	
										ľ											\ .	. O²					
			cio' (,															e v	aggi	o v	30	
ℓ'ii	nsie	me	Br	(po)	-B(Po, r):=	} P	e B°	: d	(p,	ρ _ο) «	r}	= {	х,ч)	E B	: (x	- _{ko})	+ (,	1-40)	< V ²	\					
(ا	l.,	.1.				J																	
			ques.	71 >	i ra ppe	29+1	μ	251U1	MOL	MAG (une:																
		Aε																									
(ڼ)	un	ρui	nto	ροΕ	ß's	si da	ice	pun	ło	di :	fron	lierc	Sé	2	B(Po, V) ^	A 7	f ø	е	B	ſρο,	r) () (B	/A)	<i>‡0</i>	
A	para	ole	Sono	que	ei pu	inti	do	ie :	5j 11	ntevs	e COEV	10	A e	Α°,	;]	boro	له ما	i A	_ 1	Deno	tiaw	w l	a f	ront	ieva	di A	
(O)	ne	7)A																								
(ii)	L	ı insi	eme	Ae	e, qe	Ho	chi	iu so	se		ogni	pur	ito o	di f	ronti	eva	di	Α	app	ar fie	ne	ad	Α.				
(<i>iii</i>)) L'	insie	me	A e	: de	Ho	ap	erto	se		A no	on o	ion fic	ene	ness	un	pun	to c	ella	Sko	fre	mtie	ra.				
							L										ľ							(1) 0	di 1	4, Å	
			eme			ľ																					
																		Q/		\ <u>\</u> \(\)	۸۸	ر د د د	1) 1	d 1	J /		
m			endo			Ľ																				J.	
	Cio	e's	celto	an f	ountc	Po	e' d	i ac	cu Mu	lazi	one	ł.c.	ogn	i su	o jn	torne	<i>(</i> 01	nten	ga d	lmev	10 1	Pui	nto	di 1	1.		
(vii) Pr	ende	endo	un	pun	to p	,EA	Si	dia	e cl	ne	ρο e'	un	pur	to	isola	to s	se p	o No	n e	un	punt	o di	occ	amul	a Zion	9,

cioè se 3 v>0: B(po,v) DA = {po} Quindi un punto isolato e un punto che non e di accumulazione. Limiti e Continuità a Più Variabili Limiti a Piu Variabili Ovvia mente come por le funzioni a singola variabile, possiamo applicare l'operazione di limite anche a funzioni a piu variabili. Definiamo quindi il limite di funzioni di 2 variabili come: Flim &(x,y) = LER ==> se VE>0 38= J(po, E)>0 +.c. |f(x,y)-L|<E Jlim f(ρ)=L V (x,4) & B(po,8) (A/{po}) Aggiungiamo a questa definizione anche il teorema di unicità del limite, che dice che data f: As B2-B e sia po EA punto di accumulazione di A, supponiamo che lim f(p)=L, allova L e unico. Calcolo dei Limiti Definiamo il Teorema sul Calcolo dei Limiti definendo £, 9: A \(\mathbb{R}^2 \rightarrow \mathbb{R}, \rho_0 \(\mathbb{R}^2 \) e punto di accumulazione di A, supponiamo che $\exists \lim_{\rho \to \rho} f(\rho) = L \in \exists \lim_{\rho \to \rho} g(\rho) = M$, on $\exists l \in \mathbb{R}$, allova: (i) 3 lim (f(p)+g(p))= L+M (ii) 3 lim (f(p) g(h)) = L·11 (iii) Seg(p) \$0 Up & (A\{p}) & M\$0: 3 | 1 m | \$\frac{\p(p)}{g(p)} = \frac{\p}{m}\$

Cal	Wo	di	un	Lin	nite	che	No	n Esi	ste														<u> </u>					
<i>(</i>)	,		1		Yu																		-					_
lal	⁄∞laı	ie (x	lim y)→	(0,0)	X2+	4 ²																	-					_
																												_
N ₀ .	Loun	:ha	1100	cto	M20	ميل		ا	- C-	1:1ر	uaio	w _o	1,-	Ma v	0	100 100	ا ما	<u>ا</u> کے	ove s	•••	(; () a: c: .	اما	del L	<u>1</u>	0	0110	_
OE.	(CV 11)	IIIO	162	316	neu	114	Mire	. 10	. 30	ווופ	انهما	116	4-	,,,	E 7	VUIN	ite i	1 10	DICI	nica (<i></i> v	mu	, ,	UCIC	11/11/1	۲	0770	
di	re c	he	il	imi	e e	siste	; (=	> -	lin	n fl	x,m	x) =	L	Vm 6	R													
								()	(y) -	(0,0)																		
	,	\		do V	2		m /		m														<u> </u>					_
	(x,n	nx)	m	χ ₊	2 X 2		(W+.	()	m+ -	7													-					_
	1		m			r		١.				1					lı.											_
Y.	lim ,→lo	20)	m t	4	non	e'	unic	Y	m,	mo	6an	n bie	2 PE	3V 00	gvn'	m Sa	elto											_
,																												
Qı	uesto	tec	Nica	e,	und	sła	nda	nd r	nel o	aply	e l'e	rsiste	9130	di	ur	limi	е,	e 11	ne	lla s	osti	tuz!	one	si e	lipino	a al	DVQ	
										Ţ																		
il	imi	e e	siste	, 9	Wo.	No	n es	iste,	ορ	pure	111	ρu	o' e	siste	ve	mo	ne	on C	eve	in	luev	ła/	e il	lim	ite			_
_			I .	m	x	_	V	٠.0															-					_
tse	mpic); 	lim >0	mx	X +1	= O	V N	1 E II	1														-					_
_																												_
6	77	-iY	Mi	+0	ì	di	u	no		t	Mi	2 ic	ne	2	λ	Pil		V	ar	ia	Di							
Sic	1	: A	⊊Ŗ³	_,	R	eρ	ьE Р	١.															L					
	0				-																		-	1		1 .		_
(i)	Į e	٠ de	eHa	COY	ntinu	a ir	Po	se	Po	e'	punto	o is	olato	oli	Α,	орр	lre	Po	e'	un t	o d	ioa	LU MI	<i>l</i> lazi	one	diA	е	_
	. ا ـ					-	 	P1.	١ ـ	PI	\																	_
ω	уте	m po	YWWE	ru yyı	ente		p⇒p	+10	1 -	t ipo																		_
(ii)	f s	i die	e (on t	inuo	Su	Α	Se	₹ e	CON	linu		PoE	Α														
,													100	Ĺ														
																							_					
																							-					_
																							-					_
			1	1	1					1			1	1		1								1	1	1 '		

Estensione delle precedenti nozioni in 18 m > 3

Possiamo estendere le definizioni viste fin'ova in B2 ad uno spazio maggiore (Bm, con m>3):

(i) Distanza Euclidea: avendo p= (x1,...,xn) e q= (y1,...,yn) definiano la distanza euclidea in Rm, como

d(p,q):= \((x1-41)^2 + ... + (xn-yn)^2.

$$d(\rho,q) = \int_{-\infty}^{\infty} \left(x_{q-q}\right)^{\frac{1}{2}} \cdots + \left(x_{n-q}\right)^{\frac{1}{2}}$$

(ii) Intorno di un Punto: avendo po= (xi,...,xi) E R'e un rER>O, definiamo come intorno l'insieme

(iv) Limite: avendo f: A⊆B"→B e po∈B e punto di accumulazione di A, allora possiamo dire

(iv) limite: avendo
$$f: A \subseteq \mathbb{R}^n \to \mathbb{R}$$
 e $p_0 \in \mathbb{R}$ e punto di occumulazione di A, allora possiamo dive che $\lim_{\rho \to \rho_0} f(\rho) = L \in \mathbb{R}$, solo se $\forall \xi > 0 \exists \xi = J(\rho_0, \xi) : |f(\rho) - L| < \xi \quad \forall \rho \in B(\rho_0, \xi) \cap (A \setminus \{\rho_0 \xi\})$.

(v) Continuità: avenolo definito il limite la definizione cambia solo nel limite (che da Bi passa a **B"**).

Calcolo Differenziale per Funzioni

a Più Variabili

Derivate Parziali e Gradiente

Sia
$$f: A \subseteq \mathbb{R}^2 \longrightarrow \mathbb{R}$$
, con A aperto e avendo $\rho_0 - (\kappa_0, \gamma_0) \in A$

Dato che A e aperto, 3600 t.c. [x-80, x+80] x [y-80, y+80] CA, in particolare abbiamo 2 segmenti:

Pertanto possiamo definire dei vapporti incrementali:

$$\frac{f(x,y_0) - f(x_0,y_0)}{x - x_0} \times = \frac{f(x,y_0) - f(x_0,y_0)}{x - x_0}$$

$$\frac{f(x,y_0) - f(x_0,y_0)}{x - x_0} \times = \frac{f(x_0,y_0) - f(x_0,y_0)}{x - x_0}$$

Piano Tangente al Grafico

Sia f: B2 -> B, po=(xo, yo) EB2 e == f(x,y) possia mo definire un piano II tangente alla funzione po (xo, yo,

esseve valori qualunque.

In 2 dimensioni (f: R-B) possia mo definire una vetta tangente in polxo, yo) come y= f'(xo) (x-xo) + f(xo)= $m(x-x_0) + y_0 = 3 \lim_{x \to x_0} \frac{f(x) - [m(x-x_0) + f(x_0)]}{|x-x_0|} = 0$

Prenduamo l'ultima definizione e portiamola a piu variabili:

$$\frac{1}{1+x} \frac{f(x,y) - [a(x-x_0) + b(y-y_0) + f(x_0,y_0)]}{(x-x_0)^2 + (y-y_0)^2} = 0$$

quel limite e dunque: piano f e della differenziabile ne punto po(xo, yo).

Differenziale

Supportiano ora che abbiano f: A & R differenziabile (vale il limite 1) e nella dimostrazione

Pongo
$$y = y_0 : \lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0} = \alpha$$

Da questo limite possiamo definire che $\frac{3df}{dx} = a$ eanalogamente possiamo di mostrare $\frac{3df}{dx} = b$ Con ciò appena dimostrato possiamo dave la definizione di differenziale come l'applicazione lineare

L:
$$\mathbb{R}^2 \to \mathbb{R}$$
 definita: $L(v_1, v_2) := \frac{\partial f}{\partial x}(\rho_0)v_1 + \frac{\partial f}{\partial y}(\rho_0)v_2$ con $v_1, v_2 \in \mathbb{R}^2$ the possiamo definive anche con la notazione: $L = \frac{\partial f}{\partial x}(\rho_0) = \frac{\partial f}{\partial x}(\rho_0) dx + \frac{\partial f}{\partial y}(\rho_0) dy$.

Quindi grazie a futti questi strumenti possiamo definive che si dice esiste un piano tangente al grafico v_1 nel punto v_2 , v_3 , v_4 , v_4 , v_5 , v_6 , v_7 , v_8 , $v_$

Differenziabilita per Spazi a 18m m>3

Come per i limiti e le nozioni di base, anche il concetto di differenziabilità e estendibile a m>3 variabi i. Consideria mo $A \subseteq \mathbb{R}^n$, con A insieme a perto e $f: A \longrightarrow \mathbb{R}$ e avendo $p_0 \in A$ $p_0 = (x_1, ..., x_n^n)$ e ρ=(x1,...,xn), possiamo definire la devivata parziale i-esima dif in po se: 3 of (po)-1 m f(po+hei)-f(po) εβ

Grazie a questi strumenti possiamo videfinive il concerto di Differenziabilita' in 12º con n >3, dicendo che avendo f: A∈B"→B con n≥3 e po (xo, yo) ∈A, fe' della differenziabile in po se esiste un'appli cazione lineare $L:\mathbb{R}^n \longrightarrow \mathbb{R}$ $+.c.: \exists \lim_{p \to p_0} \frac{f(p) - f(p_0) - f(p_0)}{g(p_0, p_0)} = 0$

																												_
('	app	liaz	ione	line	ove	ρε	v Cu	; ;	limit	e va	le	dei	ie es	seve	L	= 04	(po)											_
						1	1				l.																	_
)(2 ¥	e` d	i \$ \$1	even	zia b	ile	nel	Pun.	ło	Po,	allo	a:																_
<i>[</i> :1	75	74 (p	1																									_
		'		N																								_
(ننز)	df	(_{Po})	(v) :	Σ	<u>) fi</u>	(Pa) v.	= \	7£ (g	o) o	se	σ	- (v.	٠	υn) _E (B n											
				i=1	OXi				<u>.</u>																			
1			. 34	Ol'		H																						_
u		70		u	16		וטו	a	6																			_
6	v, bi	o Mc	di	باد	بزارة		.l li	milo	1	m	_	ΧY²		Ou	ماء	1:00	.↓e	esis:	te.	MO 1	ODIA	0055	io m	o Son	n plice	M D N	+	_
									'														7 W 10 W	, XII	Pilce	, IN C 11	116	
٧iS	olvei	lo p	ev s	osti.	uzio	ne	<u>0</u>).	Per	rise	lvevl	o us	sia.W	o i	me	tode	o de	le d	DOYO	linat	-е p	olar	i :						
																				<u>'</u>								_
(or	rside	via 1	w lo	seg	uen	e <u>s</u>	ostitu	roisi	e:																			_
(d											-					2 2			8						_
\rightarrow	χ=	V 60S	9			ດວດ		0.0	. d c	2пт	->		×	y'	-	→	- P	60s Ø	P San	0	= -	<u>x</u>	<i>6</i> 80	3 sen	<u>ø</u>	=		_
	<i>u</i> =	O sen	d	u	on		e	Us	.01	CII			1×'	1+42			1p	os, A	+ p'sa	d	1	^	lcos'() +se	<u>ีฮ</u> ที่ฮ			_
	7																											
	ρ	cos	.e se	n² <u>O</u> en° O																								
	'	ωs ⁴	g tz	en' B																								_
. 1		, 1,				,					r i	,	,		11								,		,			_
Lι	uso	delle	COC	ovdin	ate	pola	νi	non	ai p	evme	He	di v	isolv	eve	l'ese	પ્લં <u>ટ</u> ા	o, n	ia a	i a	iuto	ne	llap	plica	Zione	e de	lla	ovem	2
4	1 0	on Pu	onto																									_
										= 1							م بر	- √ x	2+42	=> 0	efin	5',0N	е					
				χy²	1	ا	(ps	e ser	g	L_,		Λ.	_ x	y ²		V2 0	_) c _	хy	2	r Vi	5 (x2	↓u²)	_,			
		0 (\sqrt{x}	4 + 4	<u>, T</u>	< P	Vos'	g) + Se	<u>",'ප</u>	=>		0	٧×'	4+ y L		Y - F				۲ ⁴ +	, `	, ,,	- (~	77	=>			
				<u> </u>				(.	COMP (re 7	<u></u>																	_
								1	1016	[0,2	z π]																	
								-	, 50	مرساد	ر.																	_

										v2															XY	2		
-	o a	pplic	hia m	10	=>	lim ×,y→	0,0	0 3	د آ	^ Y '+ y'	- { - x	im y→0	,0 ,0	Ž X°	'+y'	=;	0	<u>ر</u> -	۸ ۲ ۲	<u>ار</u> د	0	=> (x,4	ım) →(q	,0)	×¹+	- ۲	#	L
	J	יאט ייט	3,06 0	"						,																	7//	H
	il	limit	e inii	ziale																								H
																												t
																												r
																												İ
																												Γ
																												L
																												L
																												Ļ
																												L
																												L
																												L
																												H
																												F
																												H
																												H
																												t
																												İ
																												Ī
																												L
																												L
																												L
																												L
			-																									L
																												L
																												H
																												H
																												H