CPT-S 415

Big Data

Yinghui Wu EME B45

CPT-S 415 Big Data

Data Mining & Graph Mining

- Classification
- Graph Classification
 - discrimitive feature-based classification
 - kernel-based classification

Classification

Classification vs prediction

✓ Classification:

- predicts categorical class labels
- classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data

✓ Prediction:

- models continuous-valued functions, i.e., predicts unknown or missing values
- ✓ Typical Applications
 - credit approval
 - target marketing
 - medical diagnosis
 - treatment effectiveness analysis

Classification in two-steps

- ✓ Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction: training set
 - The model is represented as classification rules, decision trees, or

Existing Classification Methods

Classification by Decision Trees

- ✓ Decision tree
 - A flow-chart-like tree structure
 - Internal node denotes a test on an attribute
 - Branch represents an outcome of the test
 - Leaf nodes represent class labels or class distribution
- ✓ Decision tree generation consists of two phases
 - Tree construction
 - At start, all the training examples are at the root
 - Partition examples recursively based on selected attributes
 - Tree pruning
 - Identify and remove branches that reflect noise or outliers
- ✓ Use of decision tree: Classifying an unknown sample
 - Test the attribute values of the sample against the decision tree

Algorithm for Decision Tree Induction

✓ Basic algorithm (a greedy algorithm)

- Tree is constructed in a top-down recursive divide-and-conquer manner
- At start, all the training examples are at the root
- Attributes are categorical (if continuous-valued, they are discretized in advance)
- Examples are partitioned recursively based on selected attributes
- Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)

✓ Conditions for stopping partitioning

- All samples for a given node belong to the same class
- There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
- There are no samples left

Training Dataset

age	income	student	credit_rating
<=30	high	no	fair
<=30	high	no	excellent
3140	high	no	fair
>40	medium	no	fair
>40	low	yes	fair
>40	low	yes	excellent
3140	low	yes	excellent
<=30	medium	no	fair
<=30	low	yes	fair
>40	medium	yes	fair
<=30	medium	yes	excellent
3140	medium	no	excellent
3140	high	yes	fair
>40	medium	no	excellent

Extracting Classification Rules from Trees

- ✓ Represent the knowledge in the form of IF-THEN rules
- One rule is created for each path from the root to a leaf
- ✓ Each attribute-value pair along a path forms a conjunction
- ✓ The leaf node holds the class prediction
- Rules are easier for humans to understand
- ✓ Example

```
IF age = "<=30" AND student = "no" THEN buys_computer = "no"
IF age = "<=30" AND student = "yes" THEN buys_computer = "yes"
IF age = "31...40" THEN buys_computer = "yes"
IF age = ">40" AND credit_rating = "excellent" THEN
buys_computer = "yes"
IF age = ">40" AND credit_rating = "fair" THEN buys_computer = "no"
```

Over fitting?

Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- ✓ Assume there are two classes, P and N (e.g., yes/no)
 - Let the set of examples S contain p elements of class P
 and n elements of class N
 - The amount of information, needed to decide if an arbitrary example in S belongs to P or N is defined as

$$I(p,n) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$$

Information Gain in Decision Tree Induction

Gain (S, Humidity)= .94- (7/14).985-(7/14).592=.151

Molecular Structures classification

Known

Task: predict whether molecules are toxic, given set of known examples

Classification

- Task: assigning class labels in a discrete class label set Y to input instances in an input space X
- Ex: Y = { toxic, non-toxic }, X = {valid molecular structures}

Training the classification model using the training data

Assignment of the unknown (test) data to appropriate class labels using the model

Graph Classification Methods

- ✓ Graph classification Structure Based/Frequent feature based
- Graph classification Direct Product Kernel
 - Predictive Toxicology example dataset
- ✓ Vertex classification Laplacian Kernel

Feature based Graph Classification

Discriminative Frequent Pattern-Based Classification

Pattern-Based Classification on Transactions

		_	
Attributes	Class	Mining	
A, B, C	1	Mining	
Α	1	min_sup=3	
A, B, C	1	iiiii_sup=	
С	0		
A, B	1	1	
A, C	0	-	
B, C	0	-	

	Frequent Itemset
	AB
3	AC
	ВС

Augmented

	Α	В	C		AB	AC	BC	Class
	1	1	1		1	1	1	1
ſ	1	0	0		0	0	0	1
ſ	1	1	1		1	1	1	1
ſ	0	0	1		0	0	0	0
ſ	1	1	0		1	0	0	1
	1	0	1		0	1	0	0
	0	1	1		0	0	1	0

Support

Pattern-Based Classification on Graphs

2017/11/9

Substructure-Based Graph Classification

√ Basic idea

- ✓ Extract graph substructures $F = \{g_{1,...}, g_n\}$
- ✓ Represent a graph with a feature vector $\mathbf{X} = \{x_1, ..., x_n\}$
 - where \mathcal{X}_i is the frequency of \mathcal{S}_i in that graph
- Build a classification model

✓ Different features and representative work

- Fingerprint
- Maccs keys
- Tree and cyclic patterns [Horvath et al.]
- Minimal contrast subgraph [Ting and Bailey]
- Frequent subgraphs [Deshpande et al.; Liu et al.]
- Graph fragments [Wale and Karypis]

Recall: two basic frequent pattern mining methods

- ✓ Apriori: Join two size-k patterns to a size-(k+1) pattern
 - Itemset: $\{a,b,c\} + \{a,b,d\} \rightarrow \{a,b,c,d\}$

 ✓ Pattern Growth: Depth-first search, grow a size-k pattern to size-(k+1) one by adding one element

Fingerprints (fp-n)

Maccs Keys (MK)

Each Fragment forms a fixed dimension in the

Dia	zepam
-----	-------

Key position	Key description	Key code
: 111	4M RING	0
: 14	S-S	0
: 19	7M RING	1
: 45	C=CN	0
: 78	C=N	1
92	OC(N)C	1
163 :	6M RING	1

Fragments
for bioactivity

NH₂

Cycles and Trees (CT) [Horvath et al., KDD'04]

Identify
Bi-connected
components

Bounded
Cyclicity
Using
Bi-connected
components

Fixed number of cycles

Delete
Bi-connected
Components
from the
compound

Left-over Trees

Frequent Subgraphs (FS) [Deshpande et al., TKDE'05]

Discovering Features

Chemical Compounds

Topological features – captured by graph representation

Discovered Subgraphs

Frequent
Subgraph
Discovery

Min.

Support.

Frequent Subgraph-Based Classification [Deshpande et al., TKDE'05]

✓ Frequent subgraphs

 A graph is **frequent** if its support (occurrence frequency) in a given dataset is no less than a minimum support threshold

Feature generation

- Frequent topological subgraphs by FSG
- Frequent geometric subgraphs with 3D shape information

√ Feature selection

Sequential covering paradigm

✓ Classification

- Use SVM to learn a classifier based on feature vectors
- Assign different misclassification costs for different classes to address skewed class distribution

http://www.kernel-machines.org/

Graph Fragments (GF)[Wale and Karypis, ICDM'06]

 Tree Fragments (TF): At least one node of the tree fragment has a degree greater than 2 (no cycles).

 Path Fragments (PF): All nodes have degree less than or equal to 2 but does not include cycles.

- Acyclic Fragments (AF): TF U PF
 - Acyclic fragments are also termed as free trees.

Graph Fragment (GF)[Wale and Karypis, ICDM'06]

- ✓ All graph substructures up to a given length (size or # of bonds)
 - Determined dynamically → Dataset dependent descriptor space
 - Complete coverage → Descriptors for every compound
 - Precise representation → One to one mapping
 - Complex fragments → Arbitrary topology
- ✓ Recurrence relation to generate graph fragments of length I

$$F(G,l) = \begin{cases} \emptyset, & \text{if } G \text{ has fewer than } l \text{ edges or } l = 0 \\ eF(G \backslash e, l - 1) \cup F(G \backslash e, l), & \text{otherwise,} \end{cases}$$

Minimal Contrast Subgraphs [Ting and Bailey, SDM'06]

- ✓ A contrast graph is a subgraph appearing in one class of graphs and never in another class of graphs
 - Minimal if none of its subgraphs are contrasts
 - May be disconnected
 - Allows succinct description of differences
 - But requires larger search space
- ✓ Main idea
 - Find the maximal common edge sets
 - These may be disconnected
 - Apply a minimal hypergraph transversal operation to derive the minimal contrast edge sets from the maximal common edge sets
 - Must compute minimal contrast vertex sets separately and then minimal union with the minimal contrast edge sets

Contrast subgraph example

Kernel based Graph Classification

Classification with Graph Structures

- Graph classification (betweengraph)
 - Each full graph is assigned a class label
- Example: Molecular graphs
 - B E D

 Toxic

- ✓ Vertex classification (within-graph)
 - Within a single graph, each vertex is assigned a class label
- Example: Webpage (vertex) / hyperlink (edge) graphs

Relating Graph Structures to Classes?

- ✓ Two step process:
 - Devise kernel that captures property of interest
 - Apply kernelized classification algorithm, using the kernel function.
- Graph kernels looked at
 - Classification of Graphs
 - Direct Product Kernel
 - Classification of Vertices
 - Laplacian Kernel
- ✓ With support vector machines (SVM), one of the more well-known kernelized classification techniques.

Graph Kernels

- Kernel is a type of similarity function
 - K(x, y)>0 is the "similarity" of x and y
 - a feature representation f can define a kernel: f(x) = (f1(x), f2(x)... fk(x))
 - $K(x,y) = f(x)f(y) = sum f_i(x) f_i(y)$
- Motivation:
 - Kernel based learning methods doesn't need to access data points
 - rely on the kernel function between the data points
 - Can be applied to any complex structure provided a kernel function on them
- ✓ Basic idea:
 - Map each graph to some significant set of patterns
 - Define a kernel on the corresponding sets of patterns

Graph Kernel-Based Classification

Walk-based kernels (RW Kernel)

Intuition – two graphs are similar if they exhibit similar patterns when performing random walks

Random walk kernel

- ✓ Basic Idea: count the matching random walks between the two graphs
- Marginalized Kernels (Gärtner '02, Kashima et al. '02, Mahé et al.'04) $K(G_1,G_2) = \sum_{h_1} \sum_{h_2} p(h_1)p(h_2)K_L(l(h_1),l(h_2))$
 - h_1 and h_2 are paths in graphs G_1 and G_2
 - $p(h_1)$ and $p(h_2)$ are probability distributions on paths
 - $K_L(l(h_1), l(h_2))$ is a kernel between paths, e.g.,

$$K_L(l_1, l_2) = \begin{cases} 1 & \text{if } l_1 = l_2, \\ 0 & otherwise. \end{cases}$$

Direct Product Kernel

Input Graphs

$$G_1 = (V_1, E_1)$$

$$G_2 = (V_2, E_2)$$

Direct Product

$$G_X = G_1 \times G_2$$

Intuition

Vertex set: each vertex of V_1 paired with *every* vertex of V_2

Edge set: Edges exist only if both pairs of vertices in the

Direct Product Vertices

$$V(G_x) = \{(a, b) \in V_1 \times V_2\}$$

Direct Product Edges

$$E(G_x) = \{((a,b),(c,d)) | (a,c) \in E_1 \text{ and } (b,d) \in E_2\}$$

Direct Product Graph - example

Type-A

Type-B

Type-A	A	В	\mathbf{C}	D
A	0	1	1	0
В	1	0	0	1
$^{\mathrm{C}}$	1	0	0	1
D	0	1 0 0 1	1	0

A B C D E	A	В	\mathbf{C}	D	\mathbf{E}
A	0	1	1	1	1
В	1	0	0	0	0
\mathbf{C}	1	0	0	0	0
D	1	0	0	0	0
\mathbf{E}	1	0	0	0	0

Direct Product Graph Example

Type-A	A	В	\mathbf{C}	D
A	0	1	1	0
В	1	0	0	1
\mathbf{C}	1	0	0	1
D	0 1 1 0	1	1	0

Type-B A B C D E	A	В	\mathbf{C}	D	\mathbf{E}
A	0	1	1	1	1
В	1	0	0	0	0
$^{\mathrm{C}}$	1	0	0	0	0
D	1	0	0	0	0
E	1	0	0	0	0

Intuition: multiply each entry of Type-A by *entire matrix* of Type-B

Direct Product Kernel

- \checkmark . Compute direct product graph G_x
- 2. Compute the maximum in- and outdegrees of *Gx*, *di* and *do*.
- Compute the decay constant indexed by all possible walks
- 4. Compute the infinite weighted geometric series of walks (array A).
- 5. Su common walks on G1 and G2 are the walks of G1xG2

Direct Product Graph of Type-A and Type-B

$$k_{\times(g_1,g_2)} = \sum_{i,j=1}^{|V_{g_1 \times g_2}|} \left[\sum_{\ell=0}^{\infty} \lambda_{\ell} M_{g_1 \times g_2}^{\ell} \right]_{ij}$$

Kernel Matrix

$$K(G_1, G_1), K(G_1, G_2), ..., K(G_1, G_n)$$

 $K(G_2, G_1), K(G_2, G_2), ..., K(G_2, G_n)$
...
 $K(G_n, G_1), K(G_n, G_2), ..., K(G_n, G_n)$

- Compute direct product kernel for all pairs of graphs in the set of known examples.
- This matrix is used as input to SVM function to create the classification model.
 - *** Or any other kernelized data mining method

Summary

- ✓ Basics in data mining: what are several basic tasks in data mining? Comparing with statistics? Databases? A wide range of interesting applications (pattern recognition, business rule mining, scientific data...)
- Graph mining: graph pattern mining, classification, clustering
- Frequent graph pattern mining
 - Apriori methods
 - Pattern growth
- Graph classification
 - Feature-based
 - Kernel-based
 - Model learning: decision trees, SVM...

Related techniques

- Graph mining:
 - Frequent Subgraph
 - Mining Anomaly Detection
 - Kernel
 - –alternatives to the direct product and other "walk-based" kernels.
- ✓ gBoost extension of "boosting" for graphs
 - Progressively collects "informative" frequent patterns to use as features for classification / regression.
 - Also considered a frequent subgraph mining technique (similar to gSpan in Frequent Subgraph).
- ✓ Tree kernels similarity of graphs that are trees.

Related techniques

Decision Trees

- Classification model → tree of conditionals on variables, where leaves represent class labels
- Input space is typically a set of discrete variables
- Bayesian belief networks
 - Produces directed acyclic graph structure using Bayesian inference to generate edges.
 - Each vertex (a variable/class) associated with a probability table indicating likelihood of event or value occurring, given the value of the determined dependent variables.
- Support Vector Machines
 - Traditionally used in classification of real-valued vector data.
 - Support kernel functions working on vectors.

Related – Ensemble Classification

- Ensemble learning: algorithms that build multiple models to enhance stability and reduce selection bias.
- Some examples:
 - Bagging: Generate multiple models using samples of input set (with replacement), evaluate by averaging / voting with the models.
 - Boosting: Generate multiple weak models, weight evaluation by some measure of model accuracy.

Related techniques – Evaluating, Comparing Classifiers

- ✓ A very brief, "typical" classification workflow:
 - 1. Partition data into training, test sets.
 - 2. Build classification model using only the training set.
 - Evaluate accuracy of model using only the test set.
- Modifications to the basic workflow:
 - Multiple rounds of training, testing (cross-validation)
 - Multiple classification models built (bagging, boosting)
 - More sophisticated sampling (all)

A big picture

Papers to review

- ✓ Yan, Xifeng, and Jiawei Han. "gspan: Graph-based substructure pattern mining." Data Mining, 2002. ICDM 2003.
- ✓ Inokuchi, Akihiro, Takashi Washio, and Hiroshi Motoda. "An apriori-based algorithm for mining frequent substructures from graph data." *Principles of Data Mining and Knowledge Discovery*. Springer Berlin Heidelberg, 2000. 13-23.
- ✓ Yan, Xifeng, and Jiawei Han. "CloseGraph: mining closed frequent graph
 patterns." Proceedings of the ninth ACM SIGKDD international conference on Knowledge
 discovery and data mining. ACM, 2003.
- Kudo, Taku, Eisaku Maeda, and Yuji Matsumoto. "An application of boosting to graph classification." Advances in neural information processing systems. 2004.
- ✓ Kashima, Hisashi, and Akihiro Inokuchi. "Kernels for graph classification." *ICDM Workshop on Active Mining*. Vol. 2002. 2002.
- Saigo, Hiroto, et al. "gBoost: a mathematical programming approach to graph classification and regression." *Machine Learning* 75.1 (2009): 69-89.
- ✓ Horváth, Tamás, Thomas Gärtner, and Stefan Wrobel. "Cyclic pattern kernels for predictive graph mining." *KDD*, 2004.
- ✓ Ting, Roger Ming Hieng, and James Bailey. "Mining Minimal Contrast Subgraph Patterns." *SDM*. 2006.