First proof. This is immediate from (??): if we replace k by n-k, then the factors in the denominator simply interchange. Second proof. The theorem can be proved even without knowing a formula for $\binom{n}{l}$, by a bijective argument. Associate to every subset of an *n*-element set its complement: $A \mapsto X \setminus A$. This is a bijection, and it sends k-element subsets to (n-k)-element subsets. Thus there are as many k-element subsets as there are (n-k)-element subsets.