EDA Case study

Aditya Anand (adityaanand2701@gmail.com)

Amol Kumar (amol.mee@gmail.com)

Agenda

- Brief Description of Cleaning & preparing data
 App_data
- Uni-Variate & Bi-Variate Analysis of App_data
- Brief Description of Cleaning & preparing data
 Prev_app
- Uni-Variate & Bi-Variate Analysis of Prev_app
 Merging two DataFrame and getting insights
 Final Insights

Brief Description of Cleaning & preparing data – App_data

- 1. Dropped all columns which has more than 40% null values
- 2. Impute the missing values in remaining column
 - 1. Replaced the null values with mode in case of categorical column
 - 2. Replaced the null values with mean in case of numerical column with no outliers (outliers are identified using box plot)
 - 3. Replaced the null values with median in case of numerical column with outliers (outliers are identified using box plot)
- 3. Dropped the rows which has XNA values in Gender
- 4. Converted all DAYS related column to Year
- 5. Created Bins for Income and Age
- 6. Splitted the dataframe based on 'TARGET' column

Checking Imbalance in data	Observation: Approx. 92 % of clients are non defaulter

TARGET Variable - Defaulter vs Non-Defaulter

Checking Income Type of different target group

Observation:

Students & Businessman never default
Working class clients are more in % with payment difficulties as compared to non
payment difficulties so chance of defaulting is more
Pensioners clients chance of defaulting is less

Checking Gender of different target group

Observation:

Female applied for loan more than male Increase in % of payment difficulties for male client and decrease in payment difficulties for female client so chances for male to default is more

Checking Education of different target group

Observation:

Increase in payment difficulties for secondary educated people->chance of defaulting more Decrease in payment difficulty for higher educated people -> chance of defaulting is less

Checking Age Group of different target group

Observation:

Decrease in % of payment difficulties for Senior citizen-> chance of defaulting less Increase in % of payment difficulties for young clients-> chance of defaulting more

Checking Family Status of different target group

Observation:

Decrease in payment difficulties for married one-> chance of defaulting less Increase in payment difficulty with single & civil marriage-> chances are more

Checking Car Flag of different target group

Observation:

Decrease in payment difficulty people having car -> chance of defaulting less

Checking Income Group of different target group

Observation:

Increase in % of payment difficulties for low range income people-> chances are more Decrease in % of payment difficulties for high range income people-> less chance

Checking Region Rating of different target group

Observation:

People living in 2 rating apply for loan more than others
Increase payment difficulties for those living in rating 3->Chances are more to default

AMT_CREDIT vs Education Type

Observation:

Higher education people having more outliers. People with academic degree has more amt_credit as compared with other

AMT_CREDIT vs Age Group

Observation:

Middle age & senior citizen has more credit than other

AMT_CREDIT vs Income Type

Observation:

Comercial associate & state servant with payment difficulties have higher number of credit

AMT_CREDIT vs Family Count

Observation:

People with family cnt less and the AMT_CREDIT is low are having more chances with payment difficulties and people with large family cnt and with larger AMT_CREDIT are having less chances with payment difficulties

AMT_CREDIT vs Goods Price

Observation:

Credit linearly increases with good price

Top 10 Correlation for client with payment difficulties

AMT CDEDIT	AMT AMMUTTY	0.753405
AMI_CREDIT	AMI_ANNULTY	0.752195
AMT_ANNUITY	AMT_CREDIT	0.752195
AMT_GOODS_PRICE	AMT_ANNUITY AMT_CREDIT AMT_ANNUITY	0.752295
AMT_ANNUITY	AMT_GOODS_PRICE	0.752295
	LIVE_CITY_NOT_WORK_CITY	
LIVE_CITY_NOT_WORK_CITY	REG_CITY_NOT_WORK_CITY	0.778540
REG_REGION_NOT_WORK_REGION	LIVE_REGION_NOT_WORK_REGION	0.847885
LIVE_REGION_NOT_WORK_REGION	REG_REGION_NOT_WORK_REGION	0.847885
DEF_60_CNT_SOCIAL_CIRCLE	DEF_30_CNT_SOCIAL_CIRCLE	0.869016
DEF_30_CNT_SOCIAL_CIRCLE	DEF_60_CNT_SOCIAL_CIRCLE	0.869016
CNT_CHILDREN	CNT_FAM_MEMBERS	0.885484
	CNT_CHILDREN	
REGION_RATING_CLIENT_W_CITY	REGION_RATING_CLIENT	0.956637
REGION_RATING_CLIENT	REGION_RATING_CLIENT_W_CITY	0.956637
	AMT_GOODS_PRICE	
AMT_GOODS_PRICE	AMT_CREDIT	0.982783
OBS_60_CNT_SOCIAL_CIRCLE	OBS_30_CNT_SOCIAL_CIRCLE	0.998270
OBS_30_CNT_SOCIAL_CIRCLE	OBS_60_CNT_SOCIAL_CIRCLE	0.998270
FLAG_EMP_PHONE	DAYS_EMPLOYED	
DAYS_EMPLOYED	FLAG_EMP_PHONE	

Top 10 Correlation for client without payment difficulties

AMT AMMITTY	AMT CREDIT	0 771006
AMI_ANNUITY	AMI_CREDIT	0.7/1290
AMT_CREDIT	AMT_ANNUITY	0.771296
AMT_GOODS_PRICE	AMT_CREDIT AMT_ANNUITY AMT_ANNUITY	0.776421
	AMT_GOODS_PRICE	
LIVE_CITY_NOT_WORK_CITY	REG_CITY_NOT_WORK_CITY	0.830381
REG_CITY_NOT_WORK_CITY	LIVE_CITY_NOT_WORK_CITY	0.830381
DEF_60_CNT_SOCIAL_CIRCLE	DEF_30_CNT_SOCIAL_CIRCLE	0.859328
DEF_30_CNT_SOCIAL_CIRCLE	DEF_60_CNT_SOCIAL_CIRCLE	0.859328
REG_REGION_NOT_WORK_REGION	LIVE_REGION_NOT_WORK_REGION	0.861861
LIVE_REGION_NOT_WORK_REGION	REG_REGION_NOT_WORK_REGION	0.861861
CNT_CHILDREN	CNT_FAM_MEMBERS	0.878569
CNT_FAM_MEMBERS	CNT_CHILDREN	0.878569
REGION_RATING_CLIENT_W_CITY		
REGION_RATING_CLIENT	REGION_RATING_CLIENT_W_CITY	0.950148
AMT_GOODS_PRICE	AMT_CREDIT	0.987024
AMT_CREDIT	AMT_GOODS_PRICE	0.987024
OBS_30_CNT_SOCIAL_CIRCLE	OBS_60_CNT_SOCIAL_CIRCLE	0.998510
OBS_60_CNT_SOCIAL_CIRCLE	OBS_30_CNT_SOCIAL_CIRCLE	0.998510
FLAG_EMP_PHONE	DAYS_EMPLOYED	0.999758
DAYS_EMPLOYED	FLAG_EMP_PHONE	0.999758

Brief Description of Cleaning & preparing data – Prev_app

- 1. Dropped all columns which has more than 40% null values
- 2. Impute the missing values in remaining column
 - 1. Replaced the null values with mode in case of categorical column
 - 2. Replaced the null values with mean in case of numerical column with no outliers (outliers are identified using box plot)
 - 3. Replaced the null values with median in case of numerical column with outliers (outliers are identified using box plot)
- 3. Replacing XNA & XAP Values with NaN values

Checking Contract Status

Observation:

Most of the loan are approved by the bank

Contract Status vs Contract Type

Observation:

Number of approved consumer loans are much higher than any other and also number of unused consumer loan are higher

Contract Status vs Client Type

Observation:

All contract status of repeater are higher than other

Checking Reject Reason

Observation:

HC & limit are the important reason of rejecting the previous application

AMT_Credit vs Contract Status

Observation:

When AMT_CREDIT is low more chance of loan to be cancelled & unused

AMT_Annuity vs Contract Status

Observation:

Loan application for people with lower AMT_ANNUITY gets cancelled or Unused more and application with high AMT ANNUITY also got refused more

Merging two DataFrame and getting insights

Effect Of Own Car on Loan Approval

Observation:

People with car has less chance of default. The bank can add more weightage to car ownership while approving a loan amount

Merging two DataFrame and getting insights

Effect Of Gender on Loan Approval

Observation:

Female have less chance of default than man. The bank can add more weightage to female while approving a loan amount.

CODE GENDER

Final Insights

- Less Chances to be a defaulter
 - State servant clients
 - Senior citizen
 - High Income clients
 - Female clients
 - Higher education clients (female)
 - Clients who's previous loan status was approved
- More chances to be a defaulter
 - Civil marriage clients (male)
 - Previously refused loan clients
 - Lower secondary education clients

Thank You