Analise II: Prova 1

06 de abril de 2017

Orientações gerais

- 1) As soluções devem conter o desenvolvimento e ou justificativa. Questões sem justificativa ou sem raciocínio lógico coerente não pontuam.
- 2) A interpretação das questões é parte importante do processo de avaliação. Organização e capricho também serão avaliados.
- 3) Não é permitido a consulta nem a comunicação entre alunos.

Seja $f:[a,b] \to \mathbb{R}$ uma função limitada e integrável.

(a) Mostre que $\mathcal{A}:=\{x\in[a,b]:\ f$ é contínua em $x\}$ é denso em [a,b].

Solution: Seja $\mathcal{D} := [a, b] \setminus \mathcal{A}$. Da caracterização da integrabilidade, $m(\mathcal{D}) = 0$. Note que \mathcal{D} é o conjunto dos pontos de descontinuidade de f.

Suponha por contradição que \mathcal{A} não é denso. Assim, existe $c \in [a,b]$ e um intervalo fechado I com $int(I) \neq \emptyset$ tal que $c \in I$ e $I \cap \mathcal{A} = \emptyset$. Portanto, $I \subset \mathcal{A}^c = \mathcal{D}$. Como $m(\mathcal{D}) = 0$, temos que m(I) = 0, o que é uma contradição.

Seja $f:[a,b]\to\mathbb{R}$ uma função limitada e integrável.

(a) (5 points) Mostre que $H(x) := \int_a^x f(t)dt - \int_x^b f(t)dt$, $x \in [a,b]$ é contínua.

Solution: Para provar que H(x) é contínua, será suficiente provar que $H_1(x) := \int_a^x f(t)dt$ e $H_2(x) := \int_x^b f(t)dt$ são funções contínuas. De fato, se M > 0 é tal que $|f(x)| \le M, x \in [a,b]$. Então para x < y temos que

$$|H_1(y) - H_1(x)| = |\int_x^y f(s)ds| \le \int_x^y |f(s)|ds \le M \int_x^y ds \le M|x - y|.$$

Similarmente, $|H_1(y) - H_1(x)| = |\int_x^y f(s)ds| \le M \int_x^y ds \le M|x-y|$ para x > y. Assim, $H_1(x)$ é uma função Lipschitziana e portanto contínua. A continuidade de $H_2(x)$ segue os mesmos passo que $H_1(x)$.

(b) (5 points) Prove que se $\int_a^b f(x)dx \neq 0$, então existe um $c \in (a,b)$ tal que $\int_a^c f(t)dt = \int_c^b f(t)dt$.

Solution: Do item anterior, H(x) é contínua em [a,b]. Note que $H(a) = -\int_a^b f(s)ds = -H(b)$ e como $H(b) \neq 0$ temos que H(a) > 0 > H(b) ou H(b) > 0 > H(a). Do teorema do valor intermédiario, existe $c \in (a,b)$ tal que H(c) = 0. Isto é $\int_a^c f(t)dt = \int_c^b f(t)dt$.

Questão 4

Seja $g \ge 0$ integrável. Se $\int_a^b g(x)dx = 0$, então $\int_a^b f(x)g(x)dx = 0$, $\forall f$ limitada e integrável.

Solution: Seja f limitada e integrável. Logo, existe M > 0 tal que $|f(x)| \leq M$ para $x \in [a, b]$. Usando as propriedades da integral,

$$\left| \int_{a}^{b} f(x)g(x)dx \right| \leq \int_{a}^{b} \left| f(x) \right| g(x)dx \leq M \int_{a}^{b} g(x)dx = 0,$$

onde a primeira desigualdade temos usado que $g(x) \ge 0$.

Seja $f:\mathbb{R} \to \mathbb{R}$ uma função Lipschitziana com constante de LipschitzK>0,isto é,

$$|f(x) - f(y)| \le K|x - y|$$
, para todo $x, y \in \mathbb{R}$.

(a) (10 points) Prove que se X tem medida nula, então f(X) tem medida nula.

Solution: Seja $\varepsilon > 0$. Já que m(X) = 0, da definição de medida nula, temos que existem intervalos $I_1, I_2, \ldots, I_n, \ldots$ tais que $X \subset \bigcup_{i=1}^{\infty} I_i$ e $\sum_{i=1}^{\infty} |I_i| < \varepsilon/K$. Considere $J_i = f(I_i)$, para $i \in \mathbb{N}$. Certamente $f(X) \subset \bigcup_{i=1}^{\infty} f(I_i)$ e $\sum_{i=1}^{\infty} |f(I_i)| \le \sum_{i=1}^{\infty} K|I_i| < \varepsilon$. Como f é Lipschitz, f é contínua e da continuidade $f(I_i)$ é também um intervalo. Portanto, a sequência de intervalos $\{J_i = f(I_i)\}_{i \in \mathbb{N}}$ satisfaz as propriedades suficientes para dizer que f(X) tem medida nula.

(b) (10 points) Prove ou forneça um contraexemplo, da afirmação: " $f \circ g$ é integrável se g é integrável e f é Lipschitziana".

Solution: A afirmação é verdadeira. Como f é Lipschitziana, ela é contínua. Usando continuidade, vemos que $D_{f \circ g} \subset D_g$, onde D_g é o conjunto de descontinuidade de g e $D_{f \circ g}$ é o conjunto de descontinuidade de $f \circ g$. Já que $m(D_g) = 0$ temos que $m(D_{f \circ g}) = 0$, o que implica que $f \circ g$ é integrável.

Prove a convergência de

(a) (8 points) $\int_0^\infty \frac{1}{1+e^x} dx$

Solution: Usar o teste de comparação. Observe que $\frac{1}{1+e^x} \le \frac{1}{e^x}$.

(b) (8 points) $\int_0^1 \frac{1}{x^s} dx$, para s < 1.

Solution: Usando mudança de variável, temos que $\int_0^1 \frac{1}{x^s} dx = \int_0^\infty e^{-v(1-s)} dv$. Já que 1-s>0, a última integral imprópria converge.

(c) (4 points)
$$\int_0^\infty \cos(x^2) dx$$

Solution: Escreva $\int_0^\infty \cos(x^2) dx = \int_0^1 \cos(x^2) dx + \int_1^\infty \cos(x^2) dx$. Para analisar a convergência da integral, analisaremos $\int_1^\infty \cos(x^2) dx$. Usando mudança de variável,

$$\int_{1}^{\infty} \cos(x^2) dx = \frac{1}{2} \int_{1}^{\infty} \frac{\cos(u)}{\sqrt{u}} du.$$

A última integral imprópria converge, devido ao critério de Dirichlet.