UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS FÍSICAS

ESCUELA ACADÉMICO PROFESIONAL DE FÍSICA

SYLLABUS

I DATOS GENERALES

Nombre de Curso : Mecánica Clásica I

• Duración del curso : 16 semanas

• Número de créditos : 4

Código : CFO405Ciclo Académico : 2020-II

Prerequisito : Ecuaciones diferenciales

Física II

Horas Semanales
 5 hrs. (3 hrs. T y 2 hrs. P)
 Profesores
 Lic. Renato Tovar Landeo

II SUMILLA

Asignatura de nivel profesional obligatorio, para estudiantes del tercer año de la carrera de Física de la Facultad de Ciencias Físicas de la UNMSM. Su naturaleza es esencialmente teórico-práctica, de sólida formación científica. Su propósito es desarrollar conocimientos de mecánica clásica, habilidades y destrezas para manejar técnicas, métodos y procedimientos que corrientemente usan los físicos para explicar y modelar los fenómenos físicos que se presentan en la naturaleza, aplicarlos en la solución de problemas y en proyectos preliminares de investigación. Desarrolla actitudes críticas, solidarias, creativas, democráticas y búsqueda de la verdad. Orientado a crear y difundir conocimientos, cultivar ciencia y tecnología. Contenido: Fundamentos y elementos de la mecánica newtoniana, teoría y aplicaciones representativas de la mecánica clásica de una partícula y de un sistema de partículas a nivel intermedio; estática del sólido rígido; gravitación.

III OBJETIVOS

- Describir el movimiento de las partículas y sistemas de partículas en sistemas de coordenadas generalizadas.
- III.2 Describir el movimiento de los cuerpos rígidos utilizando la composición de movimientos.
- III.3 Describir la dinámica de sistemas de partículas con y sin ligaduras.
- **III.4** Estudiar el movimiento oscilatorio.
- III.5 Aplicar los principios variacionales al estudio de los sistemas mecánicos.
- **III.6** Integrar las ecuaciones de movimiento

IV CONTENIDO TEMÁTICO

IV CONTENIDO TEMATICO			
NOMBRE UNIDAD	Duración	TEMAS	CONTENIDO
Cinemática del punto y del cuerpo rígido	2 semanas	Descripción del movimiento	Sistemas de coordenadas ortogonales y curvilíneas. Velocidad y aceleración del punto material. Sistema de coordenadas intrínsecas. Composición de movimientos.
	1 semana	Cinemática del cuerpo Rígido	Velocidad y aceleración del cuerpo rígido. Composición de movimientos en el cuerpo rígido. Movimiento plano- paralelo.
Dinámica del punto material.	1 semana	Problema directo e inverso de la dinámica.	Ecuaciones diferenciales del movimiento del punto material. Teoremas generales de la dinámica. Campo potencial.
	1 semana	Ecuaciones de Lagrange de segundo orden	Deducción de las ecuaciones de Lagrange. Integral de energía e integral de Jacobi. Ecuaciones canónicas.
Solución de las ecuaciones e movimiento para un punto material	1 semana	Movimiento relativo	Movimiento relativo en sistemas inerciales de referencia
	1 semana	Movimiento en un campo de fuerzas centrales.	Campo de fuerzas centrales. Problema de Kepler.
	1 semana	Problema de dos cuerpos	Problema de dos cuerpos. Dispersión elástica y captura de partículas. Sección eficaz. Desintegración de partículas.
Movimiento relativo en sistemas no inerciales de referencia.	1 semana	Movimiento del sistema de referencia	Posición del sistema de referencia. Traslación y variación de la orientación del sistema de referencia. Pocisión, velocidad y aceleración del punto material con respecto a diversos sistemas de referencia.
	1 semana	Ecuaciones de movimiento en sistemas no inerciales.	Ecuaciones de movimiento del punto material con respecto a sistemas no inerciales. Fuerzas de inercia. Leyes de conservación de la energía y el momento cinético respecto a sistemas de referencias no inerciales.
Dinámica del sistema de partículas	1 semana	Sistema de partículas	Ecuaciones de movimiento del sistema de partículas. Centro de masas. Teoremas sobre el movimiento del centro de masas. Teoremas de conservación de un sistema de partículas.
	1 semana	Movimiento en presencia de ligaduras.	Movimiento restringido del punto. Movimiento de la partícula por una superficie y línea. Movimiento restringido de un sistema de partículas. Integral de energía. Coordenadas generalizadas.
Oscilaciones pequeñas.	2 semanas	Oscilaciones pequeñas	Propiedades de la Ecuaciones diferenciales de las oscilaciones pequeñas. Análisis del carácter pequeño del movimiento del sistema. Coorddenadas principales. Ocilaciones pequeñas amortiguadas. Oscilaciones forzadas de un sistema mecánico.

V SISTEMA DE EVALUACIÓN

NOTA FINAL = (EP+EF+PP)/3

EP = Examen Parcial (Octava semana)

EF = Examen Final (Decimo Sexta semana)

PP = Promedio de Prácticas (6 prácticas calificadas, cada 2 semanas)

VI METODOLOGÍA

Por parte del maestro, el método tendrá un carácter inductivodeductivo, lógico, intuitivo – visual, activo y flexible; usando técnicas grupales para el desarrollo de contenidos y exposición participativa, siguiendo el contenido temático del curso.

Por parte de los estudiantes, participarán activamente en clase, a nivel individual y grupal; realizarán trabajos permanentes de resolución de problemas y análisis de casos prácticos, en un contexto de aprendizaje significativo y experiencial.

VII EVALUACIÓN

En el aspecto formal, legal y normativo, se asume el criterio de evaluación permanente, formativo, reflexivo procesual e integral con carácter cognitivo y metacognitivo, en conformidad con el reglamento y estatuto de la Universidad y las directivas de la Facultad de Ciencias Físicas.

En el aspecto funcional y operativo, se asume los criterios comprensión y diseño de modelos matemáticos y métodos analíticos para la representación de sistemas dinámicos; expresado en la evaluación planteamiento y resolución de problemas y casos tecnológicos, en tareas domiciliarias, prácticas calificadas y exámenes.

VIII BIBLIOGRAFÍA

- Arnold, V. I. (1989). *Mathematical methods of classical mechanics* (Vol. 60). Springer Science & Business Media.
- Goldstein, H. (1996). Mecánica clásica. Reverté.

- Landau, L. D., & Lifshitz, E. M. (1978). Mecánica (Vol. 1). Reverté.
- French, A. P. (1978). *Mecánica newtoniana* (Vol. 3). Reverté.
- Taraphdar, C. (2007). The Classical Mechanics.
- Baez, J. C. (2005). Lectures on Classical Mechanics. Manuscript.*
 This material is based upon work supported by the National Science Foundation under.
- Hestenes, D. (1999). *New foundations for classical mechanics*. Springer Science & Business Media.
- Deriglazov, A. (2010). Classical mechanics: Hamiltonian and Lagrangian formalism. Springer Science & Business Media.
- Huang, T. C. (1975). *Mecánica para ingenieros*. Fondo Educativo Interamericano.
- Kotkin, G. L., Serbo, V. G., & Busheva, L. (1980). *Problemas de mecánica clásica*. Mir.