Unmanned Surface Vehicle (USV) for Waste Collection

Proposed Solution:

Bio-inspired USV that efficiently collects surface waste from water bodies. The USV features biomimetic fin-based propulsion for agility and energy efficiency, allowing it to navigate smoothly through water with minimal disturbance. It incorporates a dual navigation system: manual control via a radio transmitter for primary navigation and autonomous mode using Pixhawk flight controller and Raspberrypi for more complex, pre-programmed waste collection routes. The primary mission is to aid in environmental clean-up efforts by collecting floating waste on water surfaces, such as plastic debris, leaves, and other pollutants.

Conceptual Design Approach:

3D Model / Design:

a) Isometric View

b) Top View

c) Side View

d) Front View

e) Back View

2D Draft:

Technical Requirements and Specifications:

Functional Requirements:

- 1. **Primary Navigation via Radio Transmitter:** Allows for direct, manual control by the operator to navigate around large or concentrated waste areas.
- 2. **Autonomous Navigation using Pixhawk:** Capable of self-guided routes to follow predetermined paths along water surfaces for routine waste collection.
- 3. **Waste Collection Mechanism:** Equipped with a front-mounted One-Way Mechanical Barrier collection system that captures and stores floating debris.
- 4. **Bio-Inspired Undulating Fin from knife fish:** Designed for energy-efficient, low-disturbance movement, particularly beneficial in sensitive or ecologically significant areas.
- 5. **Obstacle Avoidance:** Equipped with Camera to detect and avoid obstacles such as rocks, buoys, or other vessels.

Navigation and Control System:

- In manual mode Pixhawk receives input from the radio transmitter, enabling direct control.
- In autonomous mode, Pixhawk manages movement based on GPS waypoints and real-time IMU adjustments, providing stability and autonomous navigation for waste collection.

1. Waste Collection System:

- One-Way Mechanical Barrier: Positioned at the front of the USV, this system includes a rake system that collects up floating debris as the USV moves through the water. The collected waste is stored in a detachable bin or basket located at the back of the USV for easy removal and disposal.
- Mesh Filter: A mesh filter integrated into the collection system ensures that only debris and waste are collected, allowing water to flow through and reducing drag on the vehicle.

2. Propulsion System: Biomimetic Fin Design:

Inspired by the efficient movement of marine animals, the fin-based propulsion system enhances maneuverability and minimizes disturbances in the water. The fins:

- Operate with oscillating movement, mimicking natural swimming, which reduces energy usage and maintains a quiet presence, avoiding excessive disruption to aquatic life.
- Provide versatile maneuverability, especially beneficial for navigating around obstacles or reaching confined spaces where waste tends to accumulate.

3. Pixhawk 2.4.8 for Autonomous Stability and Control:

- > IMU (Inertial Measurement Unit): Provides stability control by tracking roll, pitch, and yaw, essential for steady movement and accurate waste collection.
- GPS Module: Enables precise navigation for autonomous operations, allowing the USV to follow defined paths or return to base when necessary.

4. 1080p HD Camera:

Integrated camera captures surface images for obstacle detection and visual navigation using YOLO v7 algorithms.

5. Raspberry Pi as Companion Computer:

The Raspberry Pi serves as the companion computer, handling image processing (YOLO v7), sensor data integration, and supporting autonomous navigation alongside the Pixhawk controller.

6. Waste Bin Full Detection:

An IR sensor detects when the waste bin is full, triggering the USV to return to the home position for unloading.

7. Home Position for Waste Unloading:

> The USV autonomously returns to a pre-programmed home position using Pixhawk and GPS waypoints for waste unloading.

Hull Design and Structural Integrity

The hull is designed to ensure:

- Stability and Buoyancy: Lightweight, corrosion-resistant materials are used for the hull to prevent rusting and degradation over time.
- Waterproof Compartment for Electronics: The Pixhawk, raspberry pi 4, GPS module and other control electronics are secured in a waterproof compartment using acrylic pipe enclosed by resin, ensuring safety and durability in aquatic environments.
- ➤ Waste Collection Payload: The USV's waste tank capacity is 25.97 liters (2.597 × 10^7 mm³), providing sufficient space for surface debris collection during extended operations without frequent unloading.

Software stacks:

- ➤ Autodesk Fusion 360: Used for designing the USV components (hull, waste collection system, propulsion), including part modeling and assemblies.
- > ANSYS 2024 R1: Analyzes structural integrity and hydrodynamics, simulating stress, strain, and fluid flow to ensure durability and efficiency.
- ➤ **QGroundControl**: Provides mission planning, waypoint navigation, and real-time telemetry for precise monitoring and control of the USV.
- ➤ ROS 2: Manages sensor integration (GPS, IMU, ultrasonic), processing data for autonomous navigation and obstacle avoidance.
- ➤ **Gazebo**: Simulates USV dynamics, navigation, and waste collection in 3D for design validation and optimization before deployment.
- ➤ YOLO v7: Processes visual input from the camera for real-time obstacle detection and navigation assistance.

Electronic circuit Design:

Thrust Force Formula:

F= 1 PAV2C+

P- Density of the fluid [kg/m3]

Undulating A - Effective area of the Surface [m2] -> Fins

v- velocity of the fluid [m/s]

Ct = Thrust Lo-efficient [No dimension]

Ft = 1 PAV2C+

 $F_E = \frac{1}{2} \times 1000 \times 0.248 \times (1.5)^2 \times 1.5$

 $F_{t} = 418.5 \text{ N} \Rightarrow F_{t} = 418.5 \times 2 \Rightarrow F_{t} = 837 \text{ N}$

Here we have used Undulating Gropulsion System on both Sides. The above calculation for One of the Undulating fin. For Both we had multiplied two. Drag force :

 $F_d = \frac{1}{2} PAV^2 c_d$

P- Density of the fluid [kg/ms]

A - Effective area of the Surface [m2] - Submerged

3

v- velocity of the fluid [m/s]

Cd - Drag Co-efficient [No dimension]

Fd = 1 PAV2 Col

= 1 x 1000 x 1.683 x 0.04 x 0.8

Fd = 26.928 x 2

Fd = 53-856 N

By Lonsidering the both Undulating fins we had multiplied by two.

Total Velocity:

V= \(\frac{2F_{\frac{1}{2}}}{QA(1)}

F & Ft = Thrust force [N] and Thrust co-efficient.

P- Density of the fluid [kg/m3].

A - Area of the Undulating fin.

C4 - Co-efficient of the thrust.

V= V= FAC+

V= \[\frac{2x 837}{1000 \times 0.248 \times 1-5} \]

V= 2.121 m/s

Relation between motor RPM:

V= 217 f A

f- Frequency of oscillation [in HZ]

A- Area of the Undulating Fin.

V= 271 A

Rewriting.

f= 2.121

2 x 3-14 x 0-248

f= 1.36 Hz

Converting Oscillation into

RPM= f x60

RPM= 1.36×60

RPM= 81-6

Buoyancy formula:

B= PxVxg

g- specific gravity

0- density of the fluid [kg/m3]

v- volume of the USV

B= PV9

B= 1000x 0-301x 9-81

B = 2952-81 N

Converting N into kg

B= 301 Kg

Torque Calculation:

T = YXF+ x Sin O

Ft: Average thrust produced

r- Distance from the pivot point of the center of the fin or where the fone applied O- Angle between the direction of force and the lever arm

T= YX F+ X Sin O

T = 0.17 x 337 x 8n [83]

T = 5.2 Nm

Power Calculation:

S.NO	COMPONENTS	POWER (W)	AMPERE (A)	
1	STEPPER MOTOR	69	6	
2	PIXHAWK	8.5	1.7	
3	RASPBERRY PI 5	8	1.6	
4	GPS	0.5	0.03	
5	CAMERA	1.7	0.3	
6	OTHERS	1.3	0.37	
TOTAL		89	10	

Preliminary Analysis and Simulations:

Hydrodynamic and Structural Analysis:

- Drag Coefficient Testing: Computational Fluid Dynamics (CFD) simulations confirmed that the hull and fin designs minimize water resistance, optimizing speed and efficiency for waste collection.
- Finite Element Analysis (FEA): Ensured the hull's durability under potential forces from wave impact and collected debris.

a) Velocity Flow

b) Static Pressure Flow

c) Drag Force

Source: Ansys report

Project Tentative Budget:

S.No	MATERIAL	QUANTITY	COST (INR)	
1	Pizhawk kit	1	₹ 14,231.00	
2	Raspberry Pi	1	₹ 7,917.00	
3	GPS Module Ubloz NEO	1	₹ 1,302.00	
4	Pixhawk Power Module	1	₹ 486.00	
5	Camera H-264 (1080p)	1	₹ 4,400.00	
6	Raspberry Pi 4 model B - 8 GB RAM	1	₹ 7,200.00	
7	Raspberry Pi 4 model B - Heat Sink	1	₹ 150.00	
8	NEMA17 4.4Kgcm Stepper Motor	1	₹ 439.00	
9	Battery 11.1 v 10000mAH	1 ₹ 9,000		
10	water proofing sheet	1	₹ 1,679.00	
11	Acrylic Round Tube	1	₹ 1,249.00	
12	22AVG Extension Copper Cable Vire	1 roll	₹ 660.00	
13	power switch	1	₹ 210.00	
14	GLASS FUSE	10	₹ 110.00	
15	PPM Encoder	1	₹ 1,900.00	
16	Radio Transmitter	1	₹ 6,399.00	
17	Ultra Sonic sensor	1 ₹ 499.0		
18	EPDM Rubber Sheet	1 roll	₹ 1,500.00	
19	Poly Carbonate sheets (8°4) feet	2	₹ 20,000.00	
20	laser cutting material (ss) 5mm thickness	-	₹ 10,876.00	
21	(ss) 304 sq pipe 18"18"1.5	1	₹ 6,200.00	
22	MISCELLANEOUS COST	-	₹ 30,000.00	
	TOTAL	₹ 1,26,407.00		

- **Production Cost**: ₹1,26,407 per unit.
- > Operational Expenses: ₹85,000 ₹100,000/month.
- > Revenue: Sales, subscriptions, data analytics, recycling partnerships.
- **Expansion**: Pilot phase, regional expansion, nationwide growth.
- **Funding**: ₹50-70 lakh.

SOURCE: Business Model Canvas

Project Timeline:

Team Expertise:

Technical Skill Matrix											
Team member Names	List of skills Sets										
Team member Names	3D Modeling	Mechancial Fabrication	Embedded System	Programming	Electrical / Circuit Design	ROS2	ML/AI				
HARISHINI J	Rookie *	Not Applicable *	Master *	Master *	Pro +	Rookie *	Rookie *				
ABINESH T	Pro 🔻	Pro -	Rookie *	Master *	Not Applicable 🔻	Novice *	Not Applicable *				
SUMEETH KUMAR	Not Applicable -	Not Applicable -	Pro •	Pro 🔻	Pro +	Pro •	Master *				
AROCKIA SUBHIKSHA C	Not Applicable *	Not Applicable -	Master -	Master *	Pro •	Rookie *	Not Applicable				
HARIHARAN K	Pro 🔻	Pro •	Rookie *	Novice *	Rookie +	Not Applicable *	Not Applicable *				
GOWTHAM C	Rookie +	Rookie +	Novice *	Novice *	Pro +	Rookie +	Not Applicable *				
SRIDHARSHAN P	Pro 🔻	Novice *	Not Applicable *	Novice *	Rookie +	Not Applicable *	Not Applicable *				
RAHUL SRINIVAS P	Master *	Novice -	Not Applicable *	Novice *	Rookie *	Not Applicable *	Not Applicable 🔻				
SRIDHARAN I	Not Applicable -	Rookie +	Not Applicable *	Pro +	Rookie +	Not Applicable *	Novice *				
SACHINDEEPAK C	Not Applicable 🔻	Rookie *	Not Applicable *	Pro •	Rookie *	Not Applicable *	Master *				