恶意软件分类方法

汇报人: 张鹏

目录

60/

01 引言

02 恶意软件灰度图像分割

03 实验与评估

04 结论与展望

引言

恶意软件威胁与增长

威胁日益严重

恶意软件数量激增,对网络安全构成严重 威胁

增长趋势明显

随着技术发展,恶意软件增长趋势愈发明显

02

恶意软件灰度图像分割

基于节类别的分割方法

灰度阈值分割

利用灰度阈值进行图像分割

边缘检测分割

通过边缘检测算法进行分割

Malware Website

区域生长分割

基于像素相似性的区域生长分割

同一家族恶意软件的灰度图像比较。这些恶意软件样本来自微软恶意软件数据集,它只显示了两个恶意软件家族的样本进行比较。

Kelihos ver3

Obfuscator.ACY

恶意软件灰度图像的两种分割方法

数据集选择与处理

实验结果

Model	Dataset(,tag)	Accuracy (training set)	Logloss (test set
VGG16	S1	99.98%	0.0401
	S2	99.94%	0.0547
	S3	99.94%	0.0411
	S4(.text+.rdata+.rsrc)	99.95%	0.0577
	S5(.text+.rdata+.rsrc)	99.84%	0.0889
	S5(imgs-1024+.text+.rsrc)	99.99%	0.0521
ResNet50	S1	100%	0.0316
	S2	100%	0.0330
	S3	100%	0.0265
	S4(.text+.data+.rsrc)	99.99%	0.0383
	S4(.text+.rdata+.rsrc)	99.97%	0.0320
	S4(.text+.rdata+.data)	99.93%	0.0452
	S4(.rdata+.data+.rsrc),T1	99.30%	0.0587
	S4(.text+.rdata+.data+.rsrc)	99.91%	0.0364
	S5(.text+.rdata+.rsrc)	99.95%	0.0446
	S5(.text+.rdata+.data+.rsrc)	99.93%	0.0505
	S5(imgs-1024+.text+.rsrc),T2	99.98%	0.0279
	S5(imgs-1024+.text+.rdata)	100%	0.0292
	S5(imgs-1024+.text+.data)	99.98%	0.0286
	S5(imgs-1024+.text+.rdata+.data+.rsrc)	99.97%	0.0385

评估指标与讨论

01

准确率与误报率 评估分类器性能,分析误 报原因 02

时间复杂度 分析分类器运行时间,优 化算法效率

讨论与总结 总结实验成果,提出改进 方向

结论与展望

方法效果与鲁棒 性

分类效果优异

方法准确率高, 误报率低

鲁棒性良好

对未知恶意软件也有较好识别能力

研究局限与改进方向

数据样本不足

需扩大恶意软件样本库,提高分类准 确性

实时检测挑战

需加强实时检测能力,应对不断变化 的恶意软件威胁

Report Analysis 02

分类方法局限

需探索更多分类方法,提高分类效率 和精度

未来研究方向与前景

研究趋势

深入探索恶意软件行为特征

前景展望

提升恶意软件检测与防御能力

谢谢