Метод межъязыковой адаптации диалоговых систем

Коробков Никита

Факультет Прикладной математики - Процессов управления Научный руководитель: ст. преподаватель Мишенин А.Н.

10 июня 2019г.

Диалоговая система

Диалоговая система — это набор программ и алгоритмов позволяющих человеку вести диалог с программой в манере свойственной человеческой.

Этапы работы диалоговой системы

- ▶ Распознование речи
- Выделение намерения
- ▶ Выделение атрибутов
- ▶ Выполнение запроса
- Формирование ответа

Межъязыковая адаптация

Построение решения задачи для одного языка, с опорой на готовое решение для другого.

Цель

Используя рабочую технологию извлечения атрибутов из команды на одном языке, построить технологию выделения атрибутов для другого языка.

При этом:

- Не использовать машинный перевод;
- ▶ Затратить меньше ресурсов чем для построения модели для первого;
- ▶ Достичь сравнимой с первой моделью точности.

Формализация задачи

Пусть существует множество команд на языке 1 E, множество комманд на языке 2 S и конечное множество значений атрибута K Каждой команде из E однозначно соответствует элемент множества K. Соответствие обозначим J_e

$$J_e: E \to K$$

Функция переводчик:

$$T: E \rightarrow S$$

Целью данной работы является получение функции $J_s:S\to K$ сопоставляющей любой команде на втором языке значение атрибута. При этом должны выполняться два условия.

1.

$$\forall s \in S \quad J_s(s) = J_e(T^{-1}(s))$$

 $\forall e \in E \quad J_s(T(e)) = J_e(e)$

2. Функция J_s не должна зависеть от функции T.

Набор данных

13784 команды на английском языке 7 типов намерения:

Таблица: Примеры запросов из набора данных SNIPS

Категория	Пример
Get weather	What is the forecast at 12 am in Helsinki.
Play music	Play some 1954 songs on my Itunes.
Book restaurant	Book four people at a Madagascar bar.
Search creative work	Find me the Lace and Whiskey soundtrack.
Add to playlist	Add this artist to spring music.
Rate book	Give this textbook a 5 out of 6 rating.
Search movie schedule	Where is Road to the Stage playing.

Векторное представление предложений

Есть необходимость представлять предложения на естественном языке в виде чисел так, чтобы это представление отражало какие-то характеристики предложения.

Переформулировка задачи адаптации

Модели векторного представления предложений

Таблица: Технологии векторного представления предложений

Технология	Архитектура	Доступные модели	λ
fastText-avg	двуслойная	157 языков	300
Tast Text-avg	нейронная сеть	137 ASBINOB	300
ELMo-avg	двуслойная	27 языков	1024
	двунаправленная RNN	ZI NSBIKUB	
USE	глубокая	только английский	512
	усредняющая сеть	только англииский	512

Таблица: Точность классификации для линейных моделей, основанных на векторах предложений для разных языков

Модель	Английский	Шведский	Финский
FastText-avg	91.9%	88.3%	84.4%
ELMo-avg	97.7%	96.0%	95.3%
USE	96.8%	_	_

Линейная модель

Попробуем найти связь вектора второго языка с вектором первого языка в виде линейного преобразования:

$$V_1 = V_2 * A$$

Для решения переопределенных систем пользуемся методом наименьших квадратов.

$$A^{(i)} = (V_2^T V_2)^{-1} V_2^T V_1^{(i)}, i \in [1, \lambda_1]$$

Нейронная сеть

Аппроксимируем связь между предложением на шведском языке представленном fastText векторами слов и USE векторами для английского языка при помощи нейронной сети.

Архитектура нейронной сети

Предсказание метки

Для линейной модели, предсказанной меткой класса считалась метка ближайшего к предсказанному USE вектора. Точность такого подхода для USE векторов без преобразований – 94.3%

Для нейронной сети, мы также пробовали прогонять полученный моделью вектор через предобученный линейный классификатор для получения предсказанной метки. Точность этого подхода для USE векторов без преобразований — 96.8%

Результаты линейная модель

Таблица: Точность модели с линейным преобразованием векторов предложений со шведского языка

Шведский	Английский	Точность	Ошибка
FastText-avg	ELMo-avg	86.2	0.00745
FastText-avg	USE	89.6%	0.00083
ELMo-avg	ELMo-avg	89.1%	0.00682
ELMo-avg	USE	91.5%	0.00081

Таблица: Точность модели с линейным преобразованием с финского языка

Финский	Английский	Точность	Ошибка
FastText-avg	USE	88.6%	0.00089

Результаты нейронная сеть

Таблица: Точность модели с нейронной сетью для шведского языка

Модули	Метод предсказания	Точность	Ошибка
GRU	Ближайший сосед	94.2%	0.00068
GRU	USE классификатор	96.4%	0.00068
LSTM	Ближайший сосед	93.7%	0.00069
LSTM	USE классификатор	96.1%	0.00069

Таблица: Точность модели с нейронной сетью для финского языка

ſ	Модули	Метод предсказания	Точность	Ошибка
Ī	GRU	Ближайший сосед	94.0%	0.00069
ĺ	GRU	USE классификатор	96.4%	0.00069

Выводы

- ▶ Точность модели переноса знаний с нейронной сетью достигает точности модели для английского языка. Метод показывает реальную эффективность в задаче переноса опыта.
- Финский и английский языки находятся в различных языковых семьях. Точность адаптации для финского языка существенно не отличается от точности для шведского, следовательно метод является устойчивым по отношению к выбору языка.
- Нейронная сеть для аппроксимации USE векторов не использует знаний о предмете, следовательно технологию можно использовать для широкого круга задач.

Спасибо за внимание

Тестирование моделей векторов предложений

Для проверки полезности выделенной из предложения информации для классификации по намерениям, мы обучили линейный классификатор.

$$y = f(W * x)$$

Где x - вектор предложения, y - вероятности классов Точность измеряли как процент правильно предсказанных меток.

При обновлении весов максимизировали логарифмическую функцию правдоподобия.

$$E = -\frac{1}{n} \sum_{i \in 1...n} \sum_{j \in 1...k} [y * log(\hat{y})]$$

Тестирование

Для тестирования линейной модели преобразования векторов мы использовали кросс-валидацию. Модель обучалась и тестировалась 5 раз на различных подвыборках данных. В таблицах представлены средние значения точности.

Нейронная сеть и USE классификатор используемый для тестирования обучались на 10000 запросов. Результаты представлены для тестовой выборки в 3784 запроса.

fastText

Простой метод получения векторов слов основанный на оригинальной архитектуре Continuous Bag Of Words (CBOW).

Использует информацию о подсловах.

Для получения вектора предложения усредняем вектора всех слов.

Существуют обученные модели для большинства языков.

CBOW

Архитектура основанная на двунаправленной рекуррентной сети с LSTM модулями обученная на задаче предсказания слова по контексту.

Вектор слова зависит от контекста в каждом конкретном случае.

Усредняем вектора слов для получения вектора предложения.

Universal Sentence Encoder

Архитектура предложена в апреле 2018 года исследовательской группой Google.

Основывается на глубокой нейронной сети для преобразования векторов слов к вектору предложений.

Обучается на различных задачах обработки языка.

Доступна предобученная модель только для английского.