Lineare Algebra S2

Raphael Nambiar Version: 20. April 2022

Vektorgeometrie

Begriffe

Kollinear: Es existiert eine Gerade g, zu der beide Vektoren parallel sind.

Komplanar: Existiert eine Ebene e, zu der alle drei Vektoren parallel.

Ortsvektor: Beginnt vim Ursprung. Schreibweise: $\vec{r}(P)$

$$|\vec{a}| = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \sqrt{x^2 + y^2 + z^2}$$

Skalarprodukt

$$\vec{a} \cdot \vec{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \cdot \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = a_x b_x + a_y b_y + a_z b_z$$
$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos(\varphi)$$
$$\cos(\varphi) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$

Orthogonal

Wenn zwei Vektoren senkrecht zueinander sind.

$$\vec{a} \cdot \vec{b} = 0$$

Orthogonale Projektion

Projektion des Vektores \vec{b} auf den Vektor $\vec{a}_{\dot{a}}$ $\vec{b}_a = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \cdot \vec{a}$

$$\varphi$$
 \vec{b}_a

$$\begin{aligned}
o_a &= \frac{\vec{a} \cdot \vec{a}}{|\vec{a}|^2} \cdot \vec{a} \\
&| \vec{b}_a \mid = \frac{|\vec{a}| \cdot |\vec{b}|}{|\vec{a}|} \\
&| \vec{b}_a \mid = | \vec{a} | \cdot \cos(\varphi)
\end{aligned}$$

Zwischenwinkel

$$\varphi = \cos^{-1}(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|})$$

Einheitsvektor

$$ec{e}_a = rac{1}{|ec{a}|} \cdot ec{a}$$
 $|ec{e}_a| = 1$

Vektorprodukt

$$\begin{array}{c|c}
 & a_1 & b_1 \\
 & a_2 & b_2 \\
 & a_3 & b_3 \\
 & a_1 & b_1 \\
 & a_1 & b_2 \\
 & a_1 & b_2 \\
 & a_2 & b_1 \\
 & a_1 & b_2 \\
 & a_2 & b_1 \\
 & a_2 & b_2 \\
 & a_3 & b_2 - a_2 b_1 \\
 & a_1 & b_2 & a_2 b_1 \\
 & a_2 & b_2 & a_2 & b_2 \\
 & a_2 & b_2 & a_3 & b_2 \\
 & a_3 & b_2 - a_2 & b_1 \\
 & a_1 & b_2 & a_2 & b_2 \\
 & a_2 & b_2 & a_3 & b_2 \\
 & a_1 & b_2 & a_2 & b_2 \\
 & a_2 & b_2 & a_3 & b_2 \\
 & a_1 & b_2 & a_2 & b_2 \\
 & a_2 & b_2 & a_3 & b_2 \\
 & a_1 & b_2 & a_2 & b_2 \\
 & a_2 & b_2 & a_3 & b_2 \\
 & a_2 & b_2 & a_3 & b_2 \\
 & a_1 & b_2 & a_2 & b_2 \\
 & a_2 & b_2 & a_3 & b_2 \\
 & a_2 & b_2 & a_3 & b_2 \\
 & a_3 & b_2 & a_3 & b_2 \\
 & a_1 & b_2 & a_2 & b_2 \\
 & a_2 & b_2 & a_3 & b_2 \\
 & a_3 & b_2 & a_3 & b_2 \\
 & a_1 & b_2 & a_2 & b_1 \\
 & a_2 & b_2 & a_3 & b_2 \\
 & a_3 & b_2 & a_3 & b_2 \\
 & a_1 & b_2 & a_2 & b_1 \\
 & a_2 & b_1 & a_2 & b_2 \\
 & a_3 & b_2 & a_3 & b_2 \\
 & a_1 & b_2 & a_2 & b_1 \\
 & a_2 & b_1 & a_2 & b_2 \\
 & a_3 & b_2 & a_3 & b_2 \\
 & a_1 & b_2 & a_2 & b_2 \\
 & a_2 & b_1 & a_2 & b_2 \\
 & a_3 & b_2 & a_3 & b_2 \\
 & a_3 & b_2 & a_3 & b_2 \\
 & a_4 & b_2 & a_3 & b_2 \\
 & a_1 & b_2 & a_2 & b_1 \\
 & a_2 & b_1 & a_2 & b_2 \\
 & a_3 & b_2 & a_3 & b_2 \\
 & a_4 & b_2 & a_3 & b_2 \\
 & a_4 & b_2 & a_3 & b_2 \\
 & a_1 & b_2 & a_2 & b_1 \\
 & a_2 & b_1 & b_2 & a_2 \\
 & a_3 & b_2 & a_3 & b_2 \\
 & a_4 & b_2 & a_3 & b_2 \\
 & a_1 & b_2 & a_2 & b_1 \\
 & a_2 & b_2 & a_3 & b_2 \\
 & a_3 & b_2 & a_3 & b_2 \\
 & a_4 & b_2 & b_2 & b_3 \\
 & a_1 & b_2 & b_2 & b_3 \\
 & a_2 & b_1 & b_2 & b_2 \\
 & a_3 & b_2 & b_3 & b_3 \\
 & a_1 & b_2 & b_2 & b_3 \\
 & a_2 & b_1 & b_2 & b_3 \\
 & a_3 & b_2 & b_3 & b_3 \\
 & a_1 & b_2 & b_3 & b_3 \\
 & a_2 & b_1 & b_2 & b_3 \\
 & a_3 & b_2 & b_3 & b_3 \\
 & a_1 & b_2 & b_3 & b_3 \\
 & a_2 & b_1 & b_2 & b_3 \\
 & a_3 & b_1 & b_2 & b_3 \\
 & a_1 & b_2 & b_3 & b_3 \\
 & a_1 & b_2 & b_3 & b_3 \\
 & a_2 & b_1 & b_2 & b_3 \\
 & a_3 & b_1 & b_2 & b_3 \\
 & a_1 & b_2 & b_3 & b_3 \\
 & a_1 & b_2 & b_3 & b_3 \\
 & a_2 & b_1 & b_2 & b_3 \\
 & a_1 & b_2 & b_3 & b_3 \\
 & a_2 & b_1 & b_2 & b_3 \\
 & a_1 & b_2 & b_3 & b_3 \\$$

$$\mid \vec{a} \times \vec{b} \mid = \mid \vec{a} \mid \cdot \mid \vec{b} \mid \cdot \cos(\alpha)$$

$$\vec{a} \times \vec{b} \text{ ist orthogonal zu } \vec{a} \text{ und zu } \vec{b}$$

$$|\vec{a} \times \vec{b}| = A$$
Dreieck $= \frac{1}{3} A$

Geraden

Normalenvektor

Parameterdarstellung

Koordinatendarstellung

Koordinatendarstellung zu Parameterdarstellung

Parameterdarstellung zu Koordinatendarstellung

Abstand Punkt zu Geraden

Lage Geraden

Identisch: Parallel:

Schneidend:

Windschief:

Lage Bestimmen

Ebene

Normalenvektor der Ebene (orthogonal zur Ebene)

Auf der Ebene E senkrecht stehnder Vektor \vec{n} .

$$\vec{n} = \vec{a} \times \vec{b}$$

Parameterdarstellung

$$E: \vec{r}(P) + \lambda \cdot \vec{a} + \mu \cdot \vec{b}$$

P: Aufpunkt

$$\vec{a} = \overrightarrow{PQ}$$
; $\vec{b} = \overrightarrow{PR}$ = Richtungsvektoren

Koordinatendarstellung

$$E: ax + by + cz + d = 0$$

Parameterdarstellung zu Koordinatendarstellung

$$E: \begin{pmatrix} 2\\4\\1 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1\\3\\1 \end{pmatrix} + \mu \cdot \begin{pmatrix} 2\\4\\-4 \end{pmatrix}$$

$$(1) \vec{n} = \begin{pmatrix} 1\\3\\1 \end{pmatrix} \times \begin{pmatrix} 2\\4\\-4 \end{pmatrix} = \begin{pmatrix} -14\\6\\-4 \end{pmatrix}$$

(2) Koordinatendarstellung E: -14x + 6y - 4z + d = 0

(3) Aufpunkt einsetzen:
$$\begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix} \Rightarrow E: -14 \cdot 2 + 6 \cdot 4 - 4 \cdot 1 + d = 0$$

(4) d ausrechnen: $E: -14 \cdot 2 + 6 \cdot 4 - 4 \cdot 1 + d = 0 \Rightarrow d = 8$

(5) E: -14x + 6y - 4z + 8 = 0 $\Rightarrow \frac{-14x + 6y - 4z + 8 = 0}{2} \Rightarrow E: -7x + 3y - 2z + 4 = 0$

Koordinatendarstellung zu Parameterdarstellung

Abstand Punkt zu Geraden

Lage Geraden

Identisch:

Parallel:

Schneidend:

Windschief:

Lage Bestimmen

Linearen Gleichungssysteme

Rang

Matrix muss in Zeilenstufenform sein.

$$\begin{array}{lllll} rg(A) &=& \mathsf{Gesamtanzahl} & \mathsf{Zeilen} & \mathsf{-} & \mathsf{Anzahl} & \mathsf{Nullzeilen} \\ \mathsf{A} &=& \begin{pmatrix} 1 & 2 & 3 \\ 0 & 6 & 4 \\ 0 & 3 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 3 \\ 0 & 6 & 4 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \begin{array}{l} \mathsf{rang}(\mathsf{A}) = 2 \\ \mathsf{rang}(\mathsf{A}|\mathsf{b}) = 2 \end{array}$$

Lösbarkeit von LGS

Das LGS $A \cdot \vec{x} = \vec{c}$ ist genau dann lösbar, wenn $rg(A) = rg(A|\vec{c})$. Es hat genau eine Lösung, falls **zusätzlich** gilt: rg(A) = n. Es hat unendlich viele Lösungen, falls **zusätzlich** gilt: rg(A) < n.

Matrizen

Begriffe

Quadratische Matrix: gleich viele Zeilen und Spalten **Hauptdiagonale:** Die Diagonale von links oben nach rechts unten

Untere- und obere Dreiecksmatrix

Beispiel	(a) (1. L. J.) .0 .4 5. .0 .2 6.	(b) (1
Beschreibung	unles des Happdia. alles Nyl.	den des Haptig. alles IVII.
Bezeichnung	Ober Dreichmatin	Unlose Dejectionals L=Lower

Symmetrische Matrix : symmetrisch bzgl. Hauptdiagonale

$$\begin{pmatrix} 1 & 5 & 6 \\ 5 & 2 & 3 \\ 6 & 3 & 1 \end{pmatrix}$$

Multiplikation / Rechenregeln

Transponieren

TBD

Inverse

Matrix muss quadratisch sein: $n \times n \rightarrow 2 \times 2, 3 \times 3$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad-bc} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

3x3 und grösser

→ Gauss - Jordan

$$\begin{pmatrix} 2 & 1 & 1 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 & 1 & 0 \\ 0 & 2 & 1 & 1 & 0 & 1 \end{pmatrix} : 2 \qquad \qquad \begin{pmatrix} 1 & 1/2 & 1/2 & 1/2 & 0 & 0 \\ 3 & 0 & 1 & 0 & 1 & 0 \\ 0 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} -2/3 & 1 & 0 & 0 \\ 0 & 3/2 & -1/2 & -3/2 & 1 & 0 \\ 0 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} -2/3 & -1/3 & -1/3 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} -2/3 & -1/3 & -1/3 & 0 & 0 \\ 0 & 1 & 1/3 & 1 & -2/3 & 0 & 0 \\ 0 & 0 & 1/3 & -2 & 4/3 & 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} -1/3 & 1 & 1/3 & 1 & 1/3 & 1 \\ 0 & 0 & 1 & 1/3 & 1 & -2/3 & 0 & 1/3 & 1 & 1/3$$

Determinante

2x2

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a \cdot d - b \cdot c$$

3x3 Regel von Sarrus

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \cdot e \cdot i + b \cdot f \cdot g + c \cdot d \cdot h - g \cdot e \cdot c - h \cdot f \cdot a - i \cdot d \cdot b.$$

Laplacescher Entwicklungssatz (>3x3)

Vorzeichen:

Entwickeln nach derjenigen Zeile oder Spalte, in der die meisten Nullen stehen (hier gelb)

$$A = \begin{bmatrix} \underline{a_{00}} & \underline{a_{01}} & \underline{a_{02}} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{bmatrix}$$

Die
$$2 \times 2$$
-Matrix hat genau dann ein Invese wenn $ad - bc \neq 0$ $\det(A) = \underbrace{+\underline{a_{00}} \cdot \det\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}}_{\mathbf{a_{21}} \cdot \det\begin{bmatrix} a_{10} & a_{12} \\ a_{20} & a_{22} \end{bmatrix}} + \underbrace{a_{02} \cdot \det\begin{bmatrix} a_{10} & a_{11} \\ a_{20} & a_{21} \end{bmatrix}}_{\mathbf{a_{20}} \cdot \det\begin{bmatrix} a_{10} & a_{11} \\ a_{20} & a_{21} \end{bmatrix}}$

 $= +a_{00}(a_{11}a_{22}-a_{12}a_{21})-a_{01}(a_{10}a_{22}-a_{12}a_{20})+a_{02}(a_{10}a_{21}-a_{11}a_{20})$

 $= +a_{00}a_{11}a_{22} + a_{01}a_{12}a_{20} + a_{02}a_{10}a_{21} - a_{00}a_{12}a_{21} - a_{01}a_{10}a_{22} - a_{02}a_{11}a_{20}$

det **Dreiecksmatrix** = Produkt der Hauptdiagonale Rechenregeln

- (1) Für die Einheitsmatrix E gilt: det(E) = 1
- (2) Für jede $n \times n$ -Dreiecksmatrix U gilt: $\det(U) = u_{11} \cdot u_{22} \cdot ... \cdot u_{nn}$
- (3) Für jede quadratische Matrix A gilt: $det(A^T) = det(A)$
- (4) Für alle $n \times n$ -Matrizen A und B gilt: $\det(A \cdot B) = \det(A) \cdot \det(B)$
- (5) Für jede invertierbare Matrix A gilt: $\det(A^{-1}) = \frac{1}{\det(A)}$
- (6) Für jede $n \times n$ -Matrix A und jedes $\lambda \in \mathbb{R}$ gilt: $\det(\lambda \cdot A) = \lambda^n \cdot \det(A)$

$$2 \times 2 \rightarrow det(5 \cdot A) = 5^2 \cdot det(A)$$

$$3 \times 3 \rightarrow det(5 \cdot A) = 5^3 \cdot det(A)$$

Geometrische Interpretation der Determinante

2x2

Fläche von \vec{a} und \vec{b} = Betrag von $det \begin{vmatrix} a1 & b1 \\ a2 & b2 \end{vmatrix}^{\frac{5}{4}}$

3x3

Fläche von \vec{a} , \vec{b} und \vec{c} = Betrag von $det \begin{vmatrix} a1 & b1 & c1 \\ a2 & b2 & c2 \\ a3 & b3 & c3 \end{vmatrix}$

