

Introduction to Arboviruses & Arboviral Genomic Surveillance

Ruklanthi (Rukie) de Alwis

Date: 3rd July 2024

Venue: Meeting Room 7C, Duke-NUS Medical School

Centre for Outbreak Preparedness

Global Burden of Arboviruses

FIGURE 1

Global burden of Flavivirus and Alphavirus infections (A) Map showing arbovirus-reported outbreaks in the 21st century (B) The number of cases of some arbovirus diseases worldwide (data provided from WHO) (C) The number of cases of some arbovirus diseases in America (data provided from PAHO). CCHFV: Crimean-Congo hemorrhagic fever virus. CHIKV: Chikungunya virus. DENV: Dengue virus. JEV: Japanese encephalitis virus. KFDV: Kyasanur forest disease virus. RVFV: Rift Valley fever virus. YFV: Yellow fever virus. ZIKV: Zika virus.

- A range of arboviruses causing human diseases
- Different arboviruses circulating in different parts of the world
- Some arboviruses show geographical restriction
- Major arboviruses of concern belong to Flavivruses and alphaviruses
- Dengue and Zika are flaviviruses

Centre for Outbreak Preparedness

Closer look at Flaviviruses

Flaviviruses

Taking a closer look at Dengue and Zika

Dengue – Global burden

- Disease broad spectrum (rash, fever to hemorrhaging, shock)
- 390 million infections, 96 million cases yearly
- Arbovirus *Aedes aegypti & albopictus*
- Location tropical & subtropical regions

Zika – Global burden

Disease

- Mostly asymptomatic or mild fever
- Chronic disease congenital, neurological
- Global burden of cases not well characterized
- Arbovirus Aedes aegypti & albopictus

Transmission Cycles of Dengue and Zika virus

Transmission cycles of DENV

Transmission cycles of ZKV

Rather, IA et al, Frontiers in Micro, 2017

Dengue and Zika virus structure & genome

- Dengue and Zika have complex viral structures with surface glycoproteins assembled into an icosahedral virus
- Envelope or E protein is the target of neutralizing antibodies
- Enveloped virus
- 11 Kb Genome encoding 3 structural & 7 non-structural proteins.
- 1 long single stranded RNA strand genome and translated to one long polypeptide

Common methods of diagnosing Flaviviruses

TABLE 4 Methods for the diagnosis of human Flavivirus infections.

Methods		Advantages		Limitations	References
Virus isolation	:	Direct pathogen detection Most specific and conclusive diagnosis	:	Time consuming Laborious Requirement of acute sample Biosafety Laboratory considerations of level 2–4	(Goncalves et al., 2017) (Musso and Desprès, 2020) (Samuel Sulca Herencia, 2019)
RT-PCR	:	Detection of viral nuclei acids High sensitivity and specificity Rapidity	:	Require careful handling to prevent cross-contamination Require specialized instrumentation Expensive	
Viral antigen capture		Detection of acute of DENV based on the capture of soluble NS1 Easy to perform	:	Only available for DENV Less accurate than viral isolation Requirement of acute sample	
Serology		Detection through the capture of IgG/IgM or virus neutralization assays Qualitative and quantitative serological diagnosis tests	•	Limited specificity and sensitivity False interpretation of DENV diagnostic might occur during the secondary DENV infection	

Phylogeny of DENV and ZKV

DENV viruses (based on whole genomes)

ZKV viruses (based on whole genomes)

De Alwis R et al, 2021, EMI

Historically mostly E and NS5 protein sequenced

DENV phylogeny based on E protein sequences

DENV phylogeny based on NS5 sequences

High genome diversity at locations of E, NS2 and NS5

Utility of whole genome sequencing of DENV and ZKV

Discussion

hankow

ASIA PATHOGEN GENOMICS Initiative