graphs

9. 4.01.0			
<u>type</u>	<u>edges</u>	multiple edges allowed	loops allowed
simple	undirected	_	_
multigraph	undirected	+	-
pseudograph	undirected	+	+
simple directed	directed	_	_
directed multigraph	directed	+	+
mixed	both	+	+

multigraph = can have multiple edges conneting the same two vertices

· sum of all degrees = 2 x edges (undirected graph)

graph's -> degree (greatest among its vertices degrees) -> 3 4) order (number of nodes)-> 5 [V(6)] L) size (number of edges) $\rightarrow 5 |E(6)|$ in simple: $9 \le \binom{p}{2}$

pendant vertex; degree of I odd vertex: odd number of degree even vertex, our number of degree

* an undirected graph has an even number of vertices of odd degree there cannot be a graph which has 5 vertices, and each vertex houre degree 3.

$$deg^{-}(\alpha) = 2$$

$$deg^{+}(\alpha) = 3$$

complete graph, contains exactly one edge between each pair of distirct vertices

cycle: consists of a vertices and a edges (n=3) A [

wheel: is obtained by adding an additional untex to a cycle, and connecting this new vertex to each of the vertices

n-cubes

n-dimentional hypercube, or n-cube. is a graph with 2 representing all bit strings of length n, where there is an edge between two vertices that differ in exactly one bit position

bipartite graph:

if vertex set can be divided into two sets such that there is no edge inside the subsets.

simple pathi does not contain an edge more than once.

evler path; a path that contains every edge of a graph exactly once rea graph with eulor path has exactly two vertices of odd degree (iff)

euler circuit; when evler path ends at the starting node.

hamilton path; a path that passes through each vertex exactly one. hamilton circuit; when hamilton path ends at the starting node

degrees deg (a)=2 Jeg(b)=4

deg(c)=2 deg(d)=3

deg(e)=3 sum: 14

adjercy matrix

a b c d e number of a - 1 - - 1 non-zero b 1 - 1 1 entries: 14 c - 1 - 1 -

(raslanti) in cidence matrix

er ez ez ez ez ez ez ez number of

a 1 1 - - - - non-zero

b 1 - 1 - 1 1 - entries: Ill

d - - - 1 1 - 1

isomorphic graphs

#node 6, = #node Gz #edge 6, = # edge Gz dügen derecelvi aynı olmal. elenator tak tak eglegter.
ad; makax lei egibe isomorfik (aynı)
graph)
yai

definition = if there is a lone-to-one and onto func from 6, to 62 (while their adjoincy proporties are same)

Strongly connected graph = when there is a path between any two vertices. It (at the same time, the graph can also be weakly connect weakly connected graph = not strong but after removing directions; it it is some connected (underlying graph)

A the number of different paths of length r from v; to v; , equals to (i,j) the entry of Ar (A is the adjacency matrix)

spanning tree

subset of 6, all vertices covered with minimum possible number of edges (simple graph) (no cycles and cannot be disconnected)

• every connected and undrected 6 has at least one spanning tree

to find minimum spanning tree

1) kruskals algorithm keep including min edges [NO CYCLES] to cold and leading min edges [NO CYCLES] to cold and l

(edge lu bichirine bagli darak ekleriyor)
choox one totex keep including min edges with
no cycles edge 12 @ 3 is min 2) prims algorithm

shortest path algorithm (dijkstra's algorithm)

* planar graph (haritalar) It ayr, renk kullanarak ginilebilirler (on falla)