MULTIPLE LINEAR REGRESSION

CON 2012: Consumer Big Data Analysis I

Instructor: Tae-Young Pak

Spring 2022

•000

A: variation in y explained by x

B: variation in y not explained by x

$$R^2 = \frac{\text{explained variation in y}}{\text{variation in y}} = 1 - \frac{RSS}{TSS} = \frac{ESS}{TSS}$$

$$= \frac{A}{A+B}$$

Data preprocessing using residual

- ullet Practically, residual indicates variation in y that is not explained by the model
- In the SLR case, it is just area B
- We can exploit this fact to isolate variation in y that is not explained by "something"

Example: isolating variation in housing price index not explained by money supply

- Housing price is going up
- Some politicians argue that it is due to low interest rate and increased money supply
- This is not a matter of debate; just remove variation in housing price index due to changes in money supply and see how the remaining variation changes over time
- ullet But how? \Rightarrow regress housing price index on money supply and take residuals
- This residual indicates variation in housing price index not explained by money supply (\$\Rightarrow\$ i.e., what has happened to housing price index if we take out the influence of fluctuating money supply)

Example: isolating variation in housing price index unrelated to money supply

Changes in housing price index, currency in circulation, and residual:

- Housing price index from the KB bank monthly housing price trend click here
- M2 currency data from the Bank of Korea Economic Statistics System Click here

Multiple linear regression: regression with more than one predictor

- ullet So far, we have seen simple linear regressions where a single predictor x was used to model the outcome variable y
- In many applications, there is more than one variable that influences the outcome
- ullet Multiple linear regression offers a more realistic setup where the outcome variable y is explained by multiple predictor

Examples:

- The market price of a house depends on location, the number of bedrooms, the number of bathrooms, the year the house was built, the square footage of the lot and a number of other factors
- Your letter grade would depend on hours of study, completion of prerequisites, and other possible distractors

Multiple linear regression (MLR) with k predictors:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon$$

- Much like the SLR case, our goal here is to estimate PRL, $E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k$, using data
- The estimated regression is written as, $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \cdots + \hat{\beta}_k x_k$
- Uses the LS estimator to estimate beta parameters

Example: The simplest multiple regression model is the regression with two predictors:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

If the estimated model takes the following form,

$$\hat{y} = 50 + 10x_1 + 7x_2$$

then, it is a plane in a three dimensional space with different slopes in x_1 and x_2 direction.

$$RSS = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{1i} - \hat{\beta}_2 x_{2i} - \dots - \hat{\beta}_k x_{ki})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} \hat{\varepsilon}_i^2$$

⇒ Just like the SLR case, the LS estimator is obtained by minimizing the RSS with respect to betas

⇒ Two solutions: analytic approach, gradient descent

Goodness of fit:

- \bullet We've learned one measure of model fit, R^2
- ullet The problem of R^2 is that it never goes down; it always increase with more predictors irrespective of whether they predict the outcome variable or not
- ullet This means that R^2 will always favor the model with more predictors \Rightarrow this is no good (curse of dimensionality; overfitting)
- ullet A solution to this problem is to use adjusted R^2
- \bullet Adjusted R^2 is R^2 times a penalty term, which penalizes R^2 for the addition of a predictor with no explanatory power
- ullet From this time on, model fit (or, goodness of fit) refers to adjusted R^2

Adjusted \mathbb{R}^2

Adjusted
$$R^2 = 1 - \frac{RSS(n-1)}{TSS(n-k-1)}$$

Interpretation of $\hat{\beta}$:

If the estimated model is $\hat{y}=\hat{eta}_0+\hat{eta}_1x_1+\hat{eta}_2x_2+\cdots+\hat{eta}_kx_k$,

 $\hat{eta}_1=rac{\partial \hat{y}}{\partial x_1}$: changes in y for a unit increase in x_1 while holding other x variables constant

 $\hat{\beta}_2=rac{\partial \hat{y}}{\partial x_2}$: changes in y for a unit increase in x_2 while holding other x variables constant

:

 $\hat{eta}_k=rac{\partial \hat{y}}{\partial x_k}$: changes in y for a unit increase in x_k while holding other x variables constant

 $\Rightarrow \hat{\beta}_k$: marginal effect of x_k on y

A Venn diagram representation of the MLR

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3$$

$$\begin{split} R^2 &= \frac{\text{explained variation in y}}{\text{variation in y}} == 1 - \frac{RSS}{TSS} = \frac{ESS}{TSS} \\ &= \frac{A+B+C+D+E}{A+B+C+D+E+F} \end{split}$$

MLR example: predicting salary of the major league baseball players using their stats.

R code:

```
library(ISLR)
mlb <- data.frame(Hitters)
mlb \leftarrow mlb[, c(-14:-16, -20)]
mlb <- na.omit(mlb)
corr.mat <- cor(mlb)
round(corr.mat, 2)
res.lm <- lm(Salary ~ HmRun, data = mlb)
summary(res.lm)
res.lm <- lm(Salary ~ HmRun + Errors, data = mlb)
summary(res.lm)
res.lm <- lm(Salary ~ HmRun + Errors + RBI, data = mlb)
summary(res.lm)
res.lm <- lm(Salary ~ HmRun + Errors + RBI + Assists, data = mlb)
summary(res.lm)
res.lm <- lm(Salary ~ ., data = mlb)
summary(res.lm)
```

	AtBat	Hits	HmRun	Runs	RBI	Walks	Years	CAtBat	CHits	CHmRun	CRuns	CRBI	CWalks	Assists	Errors	Salary	
AtBat	1.00	0.96	0.56	0.90	0.80	0.62	0.01	0.21	0.23	0.21	0.24	0.22	0.13	0.34	0.33	0.39	
Hits	0.96	1.00	0.53	0.91	0.79	0.59	0.02	0.21	0.24	0.19	0.24	0.22	0.12	0.30	0.28	0.44	
HmRun	0.56	0.53	1.00	0.63	0.85	0.44	0.11	0.22	0.22	0.49	0.26	0.35	0.23	-0.16	-0.01	0.34	
Runs	0.90	0.91	0.63	1.00	0.78	0.70	-0.01	0.17	0.19	0.23	0.24	0.20	0.16	0.18	0.19	0.42	
RBI	0.80	0.79	0.85	0.78	1.00	0.57	0.13	0.28	0.29	0.44	0.31	0.39	0.23	0.06	0.15	0.45	
Walks	0.62	0.59	0.44	0.70	0.57	1.00	0.13	0.27	0.27	0.35	0.33	0.31	0.43	0.10	0.08	0.44	
Years	0.01	0.02	0.11	-0.01	0.13	0.13	1.00	0.92	0.90	0.72	0.88	0.86	0.84	-0.09	-0.16	0.40	
CAtBat	0.21	0.21	0.22	0.17	0.28	0.27	0.92	1.00	1.00	0.80	0.98	0.95	0.91	-0.01	-0.07	0.53	
CHits	0.23	0.24	0.22	0.19	0.29	0.27	0.90	1.00	1.00	0.79	0.98	0.95	0.89	-0.01	-0.07	0.55	
CHmRun	0.21	0.19	0.49	0.23	0.44	0.35	0.72	0.80	0.79	1.00	0.83	0.93	0.81	-0.19	-0.17	0.52	
CRuns	0.24	0.24	0.26	0.24	0.31	0.33	0.88	0.98	0.98	0.83	1.00	0.95	0.93	-0.04	-0.09	0.56	
CRBI	0.22	0.22	0.35	0.20	0.39	0.31	0.86	0.95	0.95	0.93	0.95	1.00	0.89	-0.10	-0.12	0.57	
CWalks	0.13	0.12	0.23	0.16	0.23	0.43	0.84	0.91	0.89	0.81	0.93	0.89	1.00	-0.07	-0.13	0.49	
Assists	0.34	0.30	-0.16	0.18	0.06	0.10	-0.09	-0.01	-0.01	-0.19	-0.04	-0.10	-0.07	1.00	0.70	0.03	
Errors	0.33	0.28	-0.01	0.19	0.15	0.08	-0.16	-0.07	-0.07	-0.17	-0.09	-0.12	-0.13	0.70	1.00	-0.01	
Salary	0.39	0.44	0.34	0.42	0.45	0.44	0.40	0.53	0.55	0.52	0.56	0.57	0.49	0.03	-0.01	1.00	

Call:

lm(formula = Salary ~ HmRun, data = mlb)

Residuals:

Min 1Q Median 3Q Max -748.73 -275.49 -79.27 184.72 1829.00

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 330.594 43.551 7.591 5.64e-13 ***
HmRun 17.671 2.995 5.900 1.13e-08 ***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 424.6 on 261 degrees of freedom Multiple R-squared: 0.1177,Adjusted R-squared: 0.1143 F-statistic: 34.81 on 1 and 261 DF, p-value: 1.125e-08

Call:

lm(formula = Salary ~ HmRun + Errors, data = mlb)

Residuals:

Min 1Q Median 3Q Max -747.95 -276.62 -80.35 184.84 1829.63

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 331.8135 55.6398 5.964 8.02e-09 ***

HmRun 17.6699 3.0011 5.888 1.20e-08 ***
Errors -0.1406 3.9780 -0.035 0.972

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Residual standard error: 425.4 on 260 degrees of freedom Multiple R-squared: 0.1177,Adjusted R-squared: 0.1109 F-statistic: 17.34 on 2 and 260 DF, p-value: 8.548e-08

```
Call:
```

lm(formula = Salary ~ HmRun + Errors + RBI, data = mlb)

Residuals:

Min 1Q Median 3Q Max -891.81 -244.35 -74.08 172.32 2021.19

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 147.511 61.623 2.394 0.0174 * HmRun -9.687 5.559 -1.743 0.0826 . Errors -6.895 3.937 -1.751 0.0811 .

RBI 10.881 1.902 5.720 2.93e-08 ***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 401.6 on 259 degrees of freedom Multiple R-squared: 0.2166,Adjusted R-squared: 0.2076 F-statistic: 23.87 on 3 and 259 DF, p-value: 1.128e-13

Call:

lm(formula = Salary ~ HmRun + Errors + RBI + Assists, data = mlb)

Residuals:

Min 1Q Median 3Q Max -876.98 -245.03 -71.01 174.30 1993.03

Coefficients:

Estimate Std. Error t value Pr(>|t|) 61.8343 2.437 0.0155 * (Intercept) 150.6908 HmRun -8.2976 5.8837 -1.410 0.1597 Errors -9.5253 5.3525 -1.780 0.0763 . RBT 10.5173 1.9687 5.342 2.02e-07 *** Assists 0.1853 0.2552 0.726 0.4684

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 401.9 on 258 degrees of freedom Multiple R-squared: 0.2182,Adjusted R-squared: 0.2061 F-statistic: 18.01 on 4 and 258 DF, p-value: 4.698e-13

lm(formula = Salary ~ ., data = mlb)

1.3952

0.9359

-0.7088

0.2441

-1.3608

Call:

CRuns

CRBI

CWalks

Assists

Errors

```
Residuals:
     Min
                  Median
                                 3Q
                                         Max
-1045.42 -198.12 -46.87 130.82 1978.47
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 139.2160
                        85.7474
                                 1.624 0.105745
             -1.9485
                         0.6491 -3.002 0.002958 **
At.Bat.
Hits
              7.8422
                         2.4651
                                 3.181 0.001654 **
HmRun
              3,4940
                         6.3897
                                  0.547 0.584999
Runs
             -2.9357
                         3.0791 -0.953 0.341299
RBI
             -0.2564
                         2.6782
                                -0.096 0.923816
Walks
              6.8261
                         1.8796
                                  3.632 0.000342 ***
Years
             -4.6778
                        12.7686 -0.366 0.714415
CA+Ra+
             -0.2115
                         0.1399 -1.512 0.131909
CHits
              0.2425
                         0.6950
                                 0.349 0.727434
CHmRun
             -0.4994
                         1,6770 -0,298 0,766128
```

4.5180 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 328.3 on 247 degrees of freedom Multiple R-squared: 0.5008, Adjusted R-squared: 0.4705 F-statistic: 16.52 on 15 and 247 DF. p-value: < 2.2e-16

0.7691

0.7175

0.2265

1.814 0.070902 .

1.304 0.193302

1.077 0.282339

-0.301 0.763515

0.3404 -2.082 0.038332 *

Multicollinearity

- \bullet When two or more predictors are highly correlated, it is difficult to get the reliable estimates of their impact on y
- To put it simply, you cannot tease apart the net effect of each predictor
- ullet Everything else being constant, the standard error associated with \hat{eta} will be inflated by the extent of the correlation with other predictors in the model
- This potential problem is known as multicollinearity

Multicollinearity

- ullet It could be the reason why predictors that are believed to be key in predicting y do not result statistically significant when conducting hypothesis test
- Not a mistake in model specification, but rather an undesirable characteristic of data

Consequences:

- \diamond High $se(\hat{\beta})$; low t-values; null hypothesis not rejected
- ⋄ Little influence on out-of-sample prediction accuracy
- $\diamond~$ Not an issue in ML unless one is interested in interpreting a predictor's effect on y

Solution: remove the predictors causing high collinearity or merge the similar predictors into one

- ⋄ Feature selection (more broadly, regularization)
- ⋄ Principal Component Analysis (PCA)

Detecting multicollinearity

- Variance inflation factor (VIF): an index of how much $var(\hat{\beta})$ is inflated due to the correlation with other predictors
- ullet VIF of the j-th predictor:

$$VIF_j = \frac{1}{1 - R_j^2}$$

 R_j^2 is the R^2 from a regression of x_j on other predictors

 $\bullet~VIF_j>10$ is evidence that the estimation of β_j is being substantially affected by multicollinearity

R code:

res.lm <- lm(Salary ~ ., data = mlb)
summary(res.lm)</pre>

install.packages("car")
library(car)
vif(res.lm)

R results:

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	139.2160	85.7474	1.624	0.105745	
AtBat	-1.9485	0.6491	-3.002	0.002958	**
Hits	7.8422	2.4651	3.181	0.001654	**
HmRun	3.4940	6.3897	0.547	0.584999	
Runs	-2.9357	3.0791	-0.953	0.341299	
RBI	-0.2564	2.6782	-0.096	0.923816	
Walks	6.8261	1.8796	3.632	0.000342	***
Years	-4.6778	12.7686	-0.366	0.714415	
CAtBat	-0.2115	0.1399	-1.512	0.131909	
CHits	0.2425	0.6950	0.349	0.727434	
CHmRun	-0.4994	1.6770	-0.298	0.766128	
CRuns	1.3952	0.7691	1.814	0.070902	
CRBI	0.9359	0.7175	1.304	0.193302	
CWalks	-0.7088	0.3404	-2.082	0.038332	*
Assists	0.2441	0.2265	1.077	0.282339	
Errors	-1.3608	4.5180	-0.301	0.763515	

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 328.3 on 247 degrees of freedom Multiple R-squared: 0.5008,Adjusted R-squared: 0.4705 F-statistic: 16.52 on 15 and 247 DF, p-value: < 2.2e-16

> vif(res.lm) At.Bat. Hits HmRun Runs RBT 22.224918 30.083441 7.612143 15.034975 11.681897 Walks CAtBat CHits CHmRun Years 4.051448 9.108170 248.889543 493.383447 46.196936 CRBT CWalks CRuns Assists Errors 157.764854 130.860319 19.638823 2.625633 2.166027

Log transformation

- Converts a skewed distribution to a normal distribution/less-skewed distribution by reducing scale
- Produces approximately equal spreads
- Often converts a curved relationship between predictor and outcome into a linear relationship
 Improves model fit!!!

Log function

R code:

summary(res.lm)

```
res.lm <- lm(Salary ~ CHmRun, data = mlb)
summary(res.lm)
mlb$log_CHmRun <- log(mlb$CHmRun+1)
hist(mlb$log_CHmRun, main=NULL, xlab="log(CHmRun)")
plot(mlb$log_CHmRun, mlb$Salary, cex=.6, ylab="Salary",
xlab="log(CHmRun)
```

plot(mlb\$CHmRun, mlb\$Salary, cex=.6, ylab="Salary", xlab="CHmRun")

hist(mlb\$CHmRun, main=NULL, xlab="CHmRun")

res.lm <- lm(Salary ~ log_CHmRun, data = mlb)

R results:

```
Call:
lm(formula = Salary ~ CHmRun, data = mlb)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 336.4512
                       31.0408 10.839
                                         <2e-16 ***
CHmRun
             2.8809
                        0.2891
                                 9.964
                                         <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 384.7 on 261 degrees of freedom
Multiple R-squared: 0.2756, Adjusted R-squared: 0.2728
F-statistic: 99.27 on 1 and 261 DF. p-value: < 2.2e-16
Call:
lm(formula = Salary ~ log_CHmRun, data = mlb)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -134.89
                         68.68 -1.964
                                         0.0506 .
log CHmRun
             187.77
                                         <2e-16 ***
                          18.07 10.391
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

What if there is a non-linear relationship?

Degree-n polynomial regression

- ullet Non-linear relationship between x and y is modeled as an nth-degree polynomial in x.
- General form:

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \dots + \beta_n x_i^n + \varepsilon_i$$

e.g., 2nd-degree polynomial regression (quadratic regression):

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \varepsilon_i$$

e.g., 3rd-degree polynomial regression (cubic regression):

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \varepsilon_i$$

e.g., 4th-degree polynomial regression (quartic regression):

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \beta_4 x_i^4 + \varepsilon_i$$

Why polynomials?

Wage against age using the 4th-degree polynomial regression

$$\mathsf{Wage}_i = \beta_0 + \beta_1 \mathsf{age}_i + \beta_2 \mathsf{age}_i^2 + \beta_3 \mathsf{age}_i^3 + \beta_4 \mathsf{age}_i^4 + \varepsilon_i$$

Things to consider for polynomial regression

- Be cautious about how many polynomial terms to include... (not too many)
- Test significance of the coefficient estimate on the highest-degree term; if the null is not rejected, go for a polynomial regression at lower degree (why?)
- Multicollinearity not a problem
- Does not yield intuitive interpretation (if $n \geq 3$)
- May not be the best model for a small sample...

Feature selection (or, variable selection) is intended to select the "best" subset of predictors... But why bother?

- Increased interpretability of model
- Reduced training time
- Principle of parsimony
 - Unnecessary explanatory variables only add noise to the estimation of other quantities
 - Degrees of freedom are wasted
- Avoid overfitting

Prior to feature selection:

- Identify outliers and address them using a suitable transformation (e.g., log transformation)
- Scale the variables (if needed)

Backward elimination

- a Estimate a fully specified model (a model that includes all predictors)
- b Remove one explanatory variable with the highest p-value, greater than $lpha_{crit}$
- c Re-estimate the model and goto b
- $\operatorname{\mathbf{d}}$ Stop when all p-values are less than α_{crit}
 - \Rightarrow If prediction is the goal, then about 15-30% cut-off may work the best

Backward elimination: example ($\alpha_{crit} = 0.25$)

```
library(ISLR)
mlb <- data.frame(Hitters)
mlb <- mlb[, c(-14:-16, -20)]
mlb <- na.omit(mlb)
res.lm <- lm(Salary ~ ., data = mlb)
summary(res.lm)
res.lm <- lm(Salarv ~ . -RBI, data = mlb)
summary(res.lm)
res.lm <- lm(Salarv ~ . -RBI -CHmRun, data = mlb)
summary(res.lm)
res.lm <- lm(Salary ~ . -RBI -CHmRun -Errors, data = mlb)
summary(res.lm)
res.lm <- lm(Salary ~ . -RBI -CHmRun -Errors -Years, data = mlb)
summary(res.lm)
res.lm <- lm(Salary ~ . -RBI -CHmRun -Errors -Years -HmRun, data = mlb)
summary(res.lm)
res.lm <- lm(Salary ~ . -RBI -CHmRun -Errors -Years -HmRun -Runs, data = mlb)
summary(res.lm)
res.lm <- lm(Salary ~ . -RBI -CHmRun -Errors -Years -HmRun -Runs -CHits, data = mlb)
summary(res.lm)
```

Call:
lm(formula = Salary ~ ., data = mlb)

Residuals:

Min 1Q Median 3Q Max -1045.42 -198.12 -46.87 130.82 1978.47

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 139.2160 85.7474 1.624 0.105745 At.Bat. -1.94850.6491 -3.002 0.002958 ** Hits 7.8422 2.4651 3.181 0.001654 ** HmRun 3,4940 6.3897 0.547 0.584999 Runs -2.9357 3.0791 -0.953 0.341299 RBI -0.2564 2.6782 -0.096 0.923816 Walks 6.8261 1.8796 3.632 0.000342 *** Years -4.6778 12.7686 -0.366 0.714415 CA+Ra+ -0.2115 0.1399 -1.512 0.131909 CHits 0.2425 0.6950 0.349 0.727434 CHmRun -0.4994 1,6770 -0,298 0,766128 CRuns 1.3952 0.7691 1.814 0.070902 . CRBI 0.9359 0.7175 1.304 0.193302 CWalks -0.7088 0.3404 -2.082 0.038332 * Assists 0.2441 0.2265 1.077 0.282339 Errors -1.3608 4.5180 -0.301 0.763515

Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1

Residual standard error: 328.3 on 247 degrees of freedom Multiple R-squared: 0.5008,Adjusted R-squared: 0.4705 F-statistic: 16.52 on 15 and 247 DF, p-value: < 2.2e-16

Call:

lm(formula = Salary ~ . - RBI, data = mlb)

Residuals:

Min 1Q Median 3Q Max -1044.17 -197.69 -47.43 131.12 1978.49

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 139.6581 85.4517 1.634 0.103454 At.Bat. -1.95480.6443 -3.034 0.002671 ** Hits 7.7725 2.3503 3.307 0.001083 ** HmRun 3.0243 4.0845 0.740 0.459743 Runs -2.8669 2.9880 -0.959 0.338255 Walks 6.7908 1.8395 3.692 0.000274 *** Years -4.7295 12.7317 -0.371 0.710603 CAtBat -0.2112 0.1396 -1.513 0.131599 CHits 0.2525 0.6857 0.368 0.712960 CHmRun -0.4513 1.5970 -0.283 0.777707 CRuns 1.3851 0.7604 1.822 0.069729 . CRBI 0.9094 0.6609 1.376 0.170018 CWalks -0.7044 0.3365 -2.093 0.037364 * Assists 0.2443 0.2261 1.080 0.280970 Errors -1.3889 4.4995 -0.309 0.757826

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Residual standard error: 327.6 on 248 degrees of freedom Multiple R-squared: 0.5008, Adjusted R-squared: 0.4726 F-statistic: 17.77 on 14 and 248 DF, p-value: < 2.2e-16

Call:

lm(formula = Salary ~ . - RBI - CHmRun, data = mlb)

Residuals:

Min 1Q Median 3Q Max -1065.51 -193.07 -47.03 131.64 1977.66

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	139.3269	85.2856	1.634	0.103596	
AtBat	-1.9480	0.6427	-3.031	0.002695	**
Hits	7.6796	2.3230	3.306	0.001086	**
HmRun	2.6079	3.8026	0.686	0.493454	
Runs	-2.6315	2.8643	-0.919	0.359120	
Walks	6.7507	1.8306	3.688	0.000278	***
Years	-4.5117	12.6848	-0.356	0.722383	
CAtBat	-0.2209	0.1351	-1.635	0.103270	
CHits	0.3855	0.4978	0.774	0.439426	
CRuns	1.2429	0.5689	2.185	0.029848	*
CRBI	0.7362	0.2468	2.983	0.003142	**
CWalks	-0.6798	0.3245	-2.095	0.037204	*
Assists	0.2497	0.2248	1.111	0.267715	
Errors	-1.4319	4.4886	-0.319	0.749989	

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1

Residual standard error: 327 on 249 degrees of freedom Multiple R-squared: 0.5006,Adjusted R-squared: 0.4745 F-statistic: 19.2 on 13 and 249 DF, p-value: < 2.2e-16

Call:

lm(formula = Salary ~ . - RBI - CHmRun - Errors, data = mlb)

Residuals:

Min 1Q Median 3Q Max -1065.03 -192.51 -47.14 133.61 1984.78

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	133.2771	83.0009	1.606	0.109595	
AtBat	-1.9753	0.6358	-3.107	0.002111	**
Hits	7.7739	2.2999	3.380	0.000841	***
HmRun	2.4845	3.7760	0.658	0.511168	
Runs	-2.6618	2.8576	-0.932	0.352492	
Walks	6.7798	1.8250	3.715	0.000251	***
Years	-4.2282	12.6309	-0.335	0.738096	
CAtBat	-0.2179	0.1345	-1.620	0.106505	
CHits	0.3654	0.4929	0.741	0.459243	
CRuns	1.2634	0.5642	2.239	0.026024	*
CRBI	0.7363	0.2464	2.988	0.003087	**
CWalks	-0.6840	0.3237	-2.113	0.035597	*
Assists	0.2050	0.1755	1.168	0.243848	

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 326.4 on 250 degrees of freedom Multiple R-squared: 0.5004,Adjusted R-squared: 0.4764 F-statistic: 20.87 on 12 and 250 DF, p-value: < 2.2e-16

Call:

Im(formula = Salary ~ . - RBI - CHmRun - Errors - Years, data = mlb) lm(formula = Salary ~ . - RBI - CHmRun - Errors - Years - HmRun, data = mlb)

Residuals:

Min 1Q Median 3Q Max -1061.24 -191.19 -48.26 131.72 1990.64

Coefficients:

Estimate Std. Error t value Pr(>|t|) 1.739 0.083241 . (Intercept) 117.0817 67.3226 At.Bat. -3.103 0.002133 ** -1.9362 0.6239 Hits 7.6854 2.2807 3.370 0.000871 *** HmRun 2.4811 3.7693 0.658 0.510981 Runs -2.62672.8506 -0.921 0.357694 Walks 6.7740 1.8217 3.718 0.000247 *** CAt.Bat. -0.23900.1187 -2.013 0.045132 * CHits 0.3982 0.4822 0.826 0.409621 CRuns 1.2868 0.5589 2.303 0.022124 * CRRT 0.7383 0.2459 3.003 0.002946 ** CWalks -0.6854 0.3231 -2.121 0.034882 * Assists 0.2123 0.1738 1.221 0.223065

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 325.8 on 251 degrees of freedom Multiple R-squared: 0.5002,Adjusted R-squared: 0.4783 F-statistic: 22.83 on 11 and 251 DF, p-value: < 2.2e-16 Residuals: Min 1Q Median 3Q Max -1090.2 -192.8 -53.3 132.5 1998.6

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 114.6923 1.708 0.088863 . 67.1491 0.6124 -3.037 0.002639 ** At.Bat. -1.8600Hits 7.4479 2.2494 3.311 0.001066 ** Runs -1.97982.6728 -0.741 0.459550 Walks 6.5845 1.7968 3.665 0.000302 *** -0.2380 CAt.Bat. 0.1185 -2.008 0.045748 * CHits 0.3731 0.4801 0.777 0.437855 CRuns 1.2628 0.5571 2.267 0.024247 * CRBT 0.8122 0.2186 3.716 0.000249 *** CWalks -0.6771 0.3225 -2.100 0.036760 * Assists 0.1800 0.1666 1.081 0.280892

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 325.5 on 252 degrees of freedom Multiple R-squared: 0.4993, Adjusted R-squared: 0.4794 F-statistic: 25.13 on 10 and 252 DF, p-value: < 2.2e-16

```
Call:
```

lm(formula = Salary ~ . - RBI - CHmRun - Errors - Years - HmRun Runs, data = mlb)

Residuals:

Min 1Q Median 3Q Max -1064.25 -190.10 -50.53 125.74 1989.48

0.2066

Coefficients:

Estimate Std. Error t value Pr(>|t|)

66.8077 1.785 0.075479 . (Intercept) 119.2438 At.Bat. -1.8602 0.6119 -3.040 0.002612 ** Hits 6.5516 1.8945 3.458 0.000638 *** 6.0713 1.6564 3.665 0.000301 *** Walks CAt.Bat. -0.2525 0.1168 -2.161 0.031608 * 0.4442 1.142 0.254409 CHits 0.5074 CRuns 1.0575 0.4828 2.190 0.029419 * CRBT 0.2182 0.8192 3.755 0.000215 *** CWalks -0.6193 0.3126 -1.981 0.048681 *

0.1625

Assists

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1.271 0.204887

Residual standard error: 325.2 on 253 degrees of freedom Multiple R-squared: 0.4982, Adjusted R-squared: 0.4804 F-statistic: 27.91 on 9 and 253 DF, p-value: < 2.2e-16

Call:

lm(formula = Salary ~ . - RBI - CHmRun - Errors - Years - HmRun Runs - CHits, data = mlb)

Residuals:

Min 1Q Median 3Q Max -1129.26 -183.77 -42.84 120.66 1994.69

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 117.03909 66.81986 1.752 0.081056 . At.Bat. -2.152940.55594 -3.873 0.000137 *** Hits 7.48931 1.70846 4.384 1.71e-05 *** 6.27913 1.64735 Walks 3.812 0.000173 *** CAtBat -0.13623 0.05738 -2.374 0.018339 * 0.40236 CRuns 1.36286 3.387 0.000818 *** CRBT 0.82517 0.21823 3.781 0.000195 *** 0.27490 -2.873 0.004412 ** CWalks -0.78973 1.285 0.200017 Assists 0.20893 0.16261

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 325.4 on 254 degrees of freedom Multiple R-squared: 0.4956, Adjusted R-squared: 0.4797 F-statistic: 31.2 on 8 and 254 DF, p-value: < 2.2e-16