Grundlagen der künstlichen Intelligenz – First-Order Logic

Matthias Althoff

TU München

November 14, 2019

Organization

- Representation Revisited
- 2 Syntax and Semantics of First-Order Logic
- 3 Using First-Order Logic
- 4 Knowledge Engineering in First-Order Logic

The content is covered in the Al book by the section "First-Order Logic".

Matthias Althoff First-Order Logic November 14, 2019 2 / 44

Learning Outcomes = xam - related

- You understand the advantages and disadvantages of first-order logic compared to propositional logic.
- You understand the difference between objects, relations, and functions in first-order logic.
- You can create and evaluate sentences in first-order logic. Specifically, you can create terms, atomic sentences, complex sentences, and use quantification.
- You understand and can apply nested quantification.
- You understand the difference between assertions and queries in first-order logic.
- You understand and are able to engineer knowledge in first-order logic.

Advantages and Disadvantages of Propositional Logic

i.e you ask KB be ask accordingly

- Propositional logic is <u>declarative</u> (in contrast to procedural as in many programming languages, e.g., C): pieces of syntax correspond to facts. no programming needed
- © Propositional logic <u>allows partial/disjunctive/negated information</u>; e.g.. "There is a pit in [2,2] or [3,1]" (unlike most data structures and databases).
- © Propositional logic is **compositional**: meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$.
- Meaning in propositional logic is <u>context-independent</u> (unlike natural language, where meaning depends on context).
- Propositional logic has <u>very limited expressive power</u>
 (unlike natural language);
 e.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square.

First-Order Logic (FOL)

Whereas propositional logic assumes the world contains *facts*, first-order logic (like natural language) assumes the world contains

- <u>Objects</u>: corresponds to nouns in natural language.
 <u>Examples</u>: people, houses, numbers, theories, Angela Merkel, colors, football games, . . .
- <u>Relations</u>: corresponds to verbs and adjectives. Relations can be unary or n-ary.
 - *Unary examples*: red, round, bogus, prime, multi-storied, ... *N-ary examples*: brother of, bigger than, inside, part of, occurred after, owns, comes between, ...

more unique

- <u>Functions</u>: relations where each input is related to exactly one output.
 - *Examples*: father of, best friend, third inning of, one more than, end of, ...

Objects, Relations, and Functions: Examples

"One plus two equals three."

Objects: one, two, three, one plus two

Relations: equals Functions: plus

"Squares neighboring the Wumpus are smelly."

Objects: squares, Wumpus

Relations: smelly (unary), neighboring (n-ary)

Functions: -

"Evil King John ruled England in 1200."

Objects: King John, England, 1200 Relations: evil (unary), ruled (n-ary)

Functions: -

Logics in General

	nature of being	its methods, validity	
Language	Ontological Commitment	Epistemological & Stope	
	(What exists in the world)	Commitment (What an agent	
	,	believes about facts)	
Propositional logic	facts	true/false/unknown	
First-order logic	facts, objects, relations	true/false/unknown	
Temporal logic	facts, objects, relations, times	true/false/unknown	
Probability theory	facts	degree of belief	
Fuzzy logic	$facts + degree \; of \; truth$	known interval value	

Syntax of FOL; Basic Elements

Syntactic element	Representation of	Examples
Constants	Objects	KingJohn, 2, TUM,
P <u>redicates</u>	R <u>elations</u>	$Brother, >, \dots$
Functions	Functions	Sqrt, LeftLegOf,

Syntactic elei	ment	Examples
Variables		x, y, a, b, \dots
Connectives		$\land, \lor, \lnot, \Rightarrow, \Leftrightarrow$
Equality		=
Quantifiers		,∀,∃
	V.	4
	Universal	Existential

Syntax of FOL: Backus-Naur Form


```
Sentence ::= AtomicSentence | ComplexSentence
 AtomicSentence ::= Predicate | Predicate (Term, ...) | Term = Term
ComplexSentence := (Sentence) | [Sentence] | \neg Sentence |
                        Sentence ∧ Sentence | Sentence ∨ Sentence |
                        Sentence \Rightarrow Sentence \mid Sentence \Leftrightarrow Sentence \mid
                        Quantifier Variable, . . . Sentence
              Term := Function(Term, ...) | Constant | Variable
        Quantifier := \forall \mid \exists
          Constant := A | X_1 | John | ...
           Variable ::= a \mid x \mid s \mid ...
         Predicate := True | False | After | Loves | ...
          Function ::= Mother | LeftLeg | ...
```

Operator precedence (descending order): \neg , =, \land , \lor , \Rightarrow , \Leftrightarrow . Convention: Constants are uppercase and variables are lowercase.

Syntax of FOL: Examples

You can fool all of the people some of the time:

ComplexSentence

No car over 10 years old will be repaired if it is severely damaged:

$$\forall x \quad \underbrace{car} \quad \left(\begin{array}{c} x \end{array} \right) \land \left(\begin{array}{c} age \quad \left(\begin{array}{c} x \end{array} \right) > 10 \right) \Rightarrow \left(\underbrace{sevDam} \left(\begin{array}{c} x \end{array} \right) \Rightarrow \neg \underbrace{repair} \left(\begin{array}{c} x \end{array} \right) \right) \\ Predicate \quad Var. \quad Predicate \quad Predi$$

ComplexSentence

$$\exists \forall x \ car(x) \land (age(x) > 10) \land sevDam(x) \Rightarrow \neg repair(x)$$

Running Example

Matthias Althoff First-Order Logic November 14, 2019 11 / 44

think of it as way of creating new objects of instead of introducing new constants

Backus-Naur Form of terms

Term := Function(Term, ...) | Constant | Variable

- A term is a logical expression that refers to an object.
- Constant symbols are therefore terms, but it is not always convenient to have a distinct symbol, e.g., LeftLeg(John) instead of LeftLegOfJohn.
- Think of a term just as a complicated kind of name, rather than a "subroutine call" that returns a value.
- The semantics of terms is straightforward and thus not further detailed.

Atomic Sentences

Backus-Naur Form of atomic sentences

AtomicSentence ::= Predicate | Predicate (Term, ...) | Term = Term

 An atomic sentence is formed from a predicate symbol optionally followed by a parenthesized list of terms. A <u>predicate</u> can be seen as a function that only <u>returns true</u> or <u>false</u>.

Example: Brother(Richard, John) meaning that Richard is the brother of John.

Atomic sentences can have complex terms as arguments.

Example: Married(Father(Richard), Mother(John)) meaning that the father of Richard is married to the mother of John.

Atomic Sentences (2)

 A further option to form an atomic sentence is by using equality of terms.

Equality can signify that two terms refer to the same object.

Example: Father(John) = Henry.

Equality can also be used to insist that two terms are not the same object.

Example:

$$\exists x, y \mid Brother(x, Richard) \land Brother(y, Richard) \land \neg(x = y).$$

ot the same

Complex Sentences

Backus-Naur Form of complex sentences

```
ComplexSentence ::=(Sentence)|[Sentence]|\negSentence|
Sentence \land Sentence|Sentence \lor Sentence|
Sentence \Rightarrow Sentence|Sentence \Leftrightarrow Sentence|
Quantifier Variable, . . . Sentence
```

- We can use <u>logical connectives</u> to construct more complex sentences using the syntax from propositional logics.
- Examples:
 - $\neg Brother(LeftLeg(Richard), John)$ $Brother(Richard, John) \land Brother(John, Richard)$ $King(Richard) \lor King(John)$ $\neg King(Richard) \Rightarrow King(John)$

Universal Quantification ()

All variables

- It is difficult to express general rules in propositional logic, e.g., "Squares neighboring the Wumpus are smelly", which required explicitly listing all cases in propositional logic.
- In FOL this is very easy, e.g., "All kings are persons" can be written as

$$\forall x \; King(x) \Rightarrow Person(x),$$

where the symbol x is called a variable (see slide 9).

A universally quantified expression is <u>true</u> if it is t<u>rue for every object</u>.

The running example has 5 objects:

 $x \rightarrow Richard the Lionheart$

 $x \rightarrow \text{King John}$

 $x \rightarrow \text{Richard's left leg}$

 $x \rightarrow John's left leg$

The sentence $King(x) \Rightarrow Person(x)$ is true for all objects and thus $\forall x \ King(x) \Rightarrow Person(x)$

First-Order Logic

is true.

 $x \rightarrow \text{the crown}$

Existential Quantification (3

 In FOL, the existential quantifier is used to express a statement about some object; e.g., "King John has a crown on his head" can be written as

$$\exists x \ Crown(x) \land OnHead(x, John).$$

An existentially quantified expression is <u>true</u> if it is t<u>rue for at least one object</u>.

The running example has 5 objects:

 $x \rightarrow Richard the Lionheart$

 $x \rightarrow \text{King John}$

 $x \rightarrow \text{Richard's left leg}$

 $x \rightarrow John's left leg$

 $x \rightarrow \text{the crown}$

The sentence $Crown(x) \wedge OnHead(x, John)$ is

true for the fifth object and thus

 $\exists x \quad Crown(x) \land OnHead(x, John) \text{ is true.}$

Common Mistakes to Avoid

Typically,
 is the main connective with ∀
 Common mistake: using ∧ as the main connective with ∀:

$$\forall x \ At(x, TUM) \land Smart(x)$$

means "Everyone is at TUM and everyone is smart" instead of "Everyone at TUM is smart". $\forall_X \text{ At}(x, TUM) \Rightarrow Smart(X)$

Typically,
 is the <u>main connective with</u>

 Common mistake: using ⇒ as the main connective with ∃:

$$\exists x \ At(x, TUM) \Rightarrow Smart(x)$$

is true if there is anyone who is not at TUM instead of "Someone at TUM is smart". $\exists_{X} A_{\xi}(X, TUM) \land Smort(X)$

Scope of Quantifiers

- The scope of a quantifier is the range in the formula where the quantifier "engages in".
- Parentheses make the scope explicit:

$$\forall x (\exists y \ Brother(x, y) \land \forall y \ Sibling(x, y))$$

★ The scope of quantifiers is often implicit:

$$\forall x \exists y \exists z P(x, y, z)$$

$$\forall x (\exists y (\exists z P(x, y, z)))$$

is the same as

and

$$\forall x \exists y \exists z \, P_1(x,y,z) \land P_2(x,y,z) \in$$

is the same as

$$\forall x \exists y \exists z \, P_1(x, y, z) \land P_2(x, y, z)$$

$$\forall x \exists y \exists z \, (P_1(x, y, z) \land P_2(x, y, z)).$$

Scope of Quantifiers: Examples

What does this mean?

$$\exists x \, Smart(x) \land Nice(x).$$

"Someone is smart and nice."

What does this mean?

$$\exists x \, Smart(x) \land \exists x \, Nice(x).$$

"Someone is smart and someone is nice." This is identical to

$$\exists x \, Smart(x) \land \exists y \, Nice(y).$$

How to write the following sentence without parentheses?

$$\exists x (Smart(x) \land \exists x (Nice(x))).$$

This is identical to

$$\exists x (Smart(x) \land \exists x (Nice(x))).$$
$$\exists x Smart(x) \land \exists x \ Nice(x).$$

20 / 44

Nested Quantifiers

- We often want to express more complex sentences using multiple quantifiers.
- Quantifiers of the same type:

```
\forall x \forall y is the same as \forall y \forall x. \exists x \exists y is the same as \exists y \exists x.
```

Why? Consecutive quantifiers of the same type can be written as one quantifier with several variables:

```
\forall (x,y) \quad Brother(x,y) \Rightarrow Sibling(x,y) \text{ is the same as}
 \forall x \forall y \quad Brother(x,y) \Rightarrow Sibling(x,y)
```

• Quantifiers of different type:

 $\exists x \forall y \text{ is } \mathbf{not} \text{ the same as } \forall y \exists x.$

Example: $\langle x | b \rangle v \in Y$ $\forall y (\exists x | Loves(x,y))$ "Everyone is loved by at least one person". $\exists x (\forall y | Loves(x,y))$ "There is a person who loves everyone".

<u>Different Quantifiers</u> Associated with the Same Variable

 Confusion arises when two quantifiers are used with the same variable name, e.g.,

$$\forall x \Big(Crown(x) \lor \Big(\exists x \quad Brother(Richard, x) \Big) \Big),$$

where the x is universally and existentially quantified.

- The rule is that the variable belongs to the innermost quantifier.
 - In the above example, $\forall x$ has no effect.
 - Solution: Use different variable names with nested quantifiers:

$$\forall x \Big(Crown(x) \lor \Big(\exists z \quad Brother(Richard, z) \Big) \Big).$$

Connections between ∀ and ∃

Important

23 / 44

Quantifier duality: \forall and \exists can be expressed by each other using negation:

 $\forall x \; Likes(x, IceCream)$ is equivalent to $\neg \exists x \; \neg Likes(x, IceCream)$

 $\exists x \; Likes(x, Broccoli)$ is equivalent to $\neg \forall x \; \neg Likes(x, Broccoli)$

De Morgan rules for quantified sentences

$$\forall x \quad \neg P \equiv \quad \neg \exists x \quad P$$

$$\neg \forall x \quad P \equiv \quad \exists x \quad \neg P$$

$$\forall x \quad P \equiv \quad \neg \exists x \quad \neg P$$

$$\exists x \quad P \equiv \quad \neg \forall x \quad \neg P$$

We do not need both \forall and \exists , just as we do not need both \land and \lor , but we keep it for readability. e.q $A \land B = \neg A \lor \neg B$

Tweedback Questions

Brothers are siblings:

```
A \forall x, y Brother(x, y) \land Sibling(x, y).
B \forall x, y Brother(x, y) \Rightarrow Sibling(x, y).
```

One's mother is one's female parent:

• A first cousin is a child of a parent's sibling:

Α

$$\forall x, y \mid FirstCousin(x, y) \Leftrightarrow$$

 $\forall p, ps \mid Parent(p, x) \land Sibling(ps, p) \land Parent(ps, y).$

$$\forall x, y \mid FirstCousin(x, y) \Leftrightarrow \exists p, ps \mid Parent(p, x) \land Sibling(ps, p) \land Parent(ps, y).$$

Assertions and Queries in First-Order Logic

how to fill & retrieve KB

 Sentences are added to a knowledge base using <u>Tell</u>. Such sentences are called <u>assertions</u>, e.g.,

John is a king:
$$Tell(KB, King(John))$$

Richard is a person: $Tell(KB, Person(Richard))$
All kings are persons: $Tell(KB, \forall x \ King(x) \Rightarrow Person(x))$

 \bullet We can ask questions of the knowledge base using $\underline{\mathtt{Ask}},$ called $\underline{\mathtt{queries}},$ e.g.,

returns true.

For some queries a yes/no answer is undesirable, e.g.,

$$Ask(KB, \exists x \ Person(x)).$$

With <u>AskVars</u> we obtain a <u>stream of answers</u>:

AskVars(
$$KB$$
, $\exists x \ Person(x)$),

which returns $\{x/John\}$ and $\{x/Richard\}$.

Example 1: Formalizing Overtaking in First-Order Logic

German Traffic Code Straßenverkehrsordnung §5(4)

When changing the lane to the left lane during overtaking, no following road users shall be endangered. [...] During overtaking, the driver has to change from the fast lane to the right lane as soon as possible. The road user being overtaken shall not be obstructed.

Formalizing Overtaking (Objects and Predicates)

Objects required:

- real numbers for denoting times
- Traffic participants for identifying other traffic participants
- @ ego a constant for ego vehicle

Predicates required:

- \bigcirc is-time(t) true iff t is a real number
- is-traffic-part(id) true iff id is a traffic participant or ego
- 3 sd-rear (id_1,id_2) id_1 is safely located behind id_2 [Safe distance]
- \P follows(id_1, id_2) id_1 follows id_2

Function required:

• veh-being-overtaken — returns the vehicle being overtaken

Formalizing Overtaking (Semantics)

predicates		meaning (semantics)
$\overline{overtaking(t)}$	iff	$t \in [t_1, t_4)$
begin-overtake(t)	iff	$t \in [t_1; t_2)$
merging(t)	iff	$t = t_3$
finish-overtake(t)	iff	$t\in [t_3,t_4)$

Matthias Althoff First-Order Logic November 14, 2019 28 / 44

Formalizing Overtaking (Translation to First-Order Logic)

When changing the lane to the left lane during overtaking, no following road users shall be endangered.

$$\forall t, id \quad \textit{is-time}(t) \land \textit{begin-overtake}(t) \land \textit{follows}(id, ego) \\ \Rightarrow \textit{sd-rear}(id, ego)$$

② During overtaking, the driver has to change from the fast lane to the right lane as soon as possible.

$$\forall t, id \quad is\text{-}time(t) \land veh\text{-}being\text{-}overtaken(t) = id \Rightarrow \\ merging(t) \Leftrightarrow sd\text{-}rear(id, ego)$$

The road user being overtaken shall not be obstructed.

$$\forall t, id \quad is\text{-}time(t) \land veh\text{-}being\text{-}overtaken(t) = id \land finish\text{-}overtake(t) \Rightarrow sd\text{-}rear(id, ego)$$

Example 2: Wumpus World (Sensing and Acting)

- Comparison with propositional logic: The first-order axioms are much more concise.
- Percept vector: The agent perceives three elements and a time step, e.g., Percept([Stench, Breeze, Glitter], 5), or Percept([Stench, None, None], 6), where Percept is a binary predicate.
- Percept data implies facts about the current state, e.g.,
 ∀ t, s, g Percept([s, Breeze, g], t) ⇒ Breeze(t),
 ∀ t, s, b Percept([s, b, Glitter], t) ⇒ Glitter(t).
 Note the quantification of time: In propositional logic, we need copies of
 - Note the quantification of time: In propositional logic, we need copies of sentences for each time step.
- Actions are represented by logical terms:
 Turn(Right), Turn(Left), Forward, Shoot, Grab, Climb.
- **The best action** is determined by the query $AskVars(\exists a \; BestAction(a,5))$.
- Simple reflex behavior (see reflex agent), e.g., $\forall t \ Glitter(t) \Rightarrow BestAction(Grab, t)$.

Wumpus World (Environment)

- **Propositional logic:** Name each square (e.g., *Square*_{1,2}), but then we would have to "hand code" facts, such as which squares are adjacent.
- First-order logic: Complex term in which row and column appear as integers. Adjacency can be defined as:

$$\forall x, y, a, b \quad Adjacent([x, y], [a, b]) \Leftrightarrow (x = a \land (y = b - 1 \lor y = b + 1)) \lor (y = b \land (x = a - 1 \lor x = a + 1)).$$

- Pit: Unary predicate that is true of squares containing pits.
- Wumpus: Constant since only one exists.
- **Predicate** At(Agent, s, t): Agent is at square s at time t.
- **Wumpus' location is fixed** by $\forall t \ At(Wumpus, [2,2], t)$.
- Objects can only be at one location at a time: $\forall x, s_1, s_2, t \quad At(x, s_1, t) \land At(x, s_2, t) \Rightarrow s_1 = s_2.$

Wumpus World (Combining Knowledge)

• Infer properties from agent's percept:

```
\forall s, t \ At(Agent, s, t) \land Breeze(t) \Rightarrow Breezy(s)
```

Infer locations of pits:

```
\forall s \; Breezy(s) \Leftrightarrow \exists r \; Adjacent(r,s) \land Pit(r)
```

 Quantification over time: Just one successor-state axiom for each predicate, rather than a different copy for each time step, e.g.,

 $\forall t \; HaveArrow(t+1) \Leftrightarrow (HaveArrow(t) \land \neg Action(Shoot, t)).$

Knowledge Engineering Process (1)

We describe the general process of knowledge-base construction:

- Identify the task
 - Example: does the Wumpus knowledge base need to answer questions about actions or is it sufficient to answer questions about the environment?
- Assemble the <u>relevant knowledge</u> from experts in their domain Example: what does it mean when a cave in Wumpus world is smelly?
- 3 Decide on vocabulary of predicates, functions, and constants. The resulting vocabulary is also known as the ontology of a domain. Example: Should pits in Wumpus world be represented by constants or unary predicates?
- **4** Encode general knowledge about the domain. This often reveals misconceptions, requiring us to go back to step 3. Example: $\forall s, t \ At(Agent, s, t) \land Breeze(t) \Rightarrow Breezy(s)$

Knowledge Engineering Process (2)

- ⑤ Encode a description of the specific problem instance. This step is simple if the ontology is well thought out. Problem instances come from sensors or are added as sentences.
 - Example: There is no pit in square [1,1]: $\neg Pit([1,1])$.
- **©** Pose queries to the inference procedure. This is the reward: We get answers without writing an application-specific solution algorithm. Example: Where are the pits? $AskVars(KB, \exists x \ Pit(x))$
- **Debug the knowledge base**. If knowledge is missing, some queries cannot be answered.
 - Example: if the knowledge base includes a diagnostic rule for finding the Wumpus,

$$\forall s \; Smelly(s) \Rightarrow Adjacent(Home(Wumpus), s),$$

instead of the biconditional, then the agent will never be able to prove the absence of Wumpus.

Detailed Example: One-Bit Full Adder

Short Excursion into Digital Circuits: Half Adder

A half adder takes as input two boolean variables A and B and produces two outputs: sum S and carry C. The carry represents an overflow into the next digit of a multi-digit addition.

Truth table:

Inputs		Outputs	
Α	В	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Short Excursion into Digital Circuits: Full Adder

A full adder adds binary numbers and accounts for values carried in as well as out. A one-bit full adder adds three one-bit numbers, often written as A, B, and C_{in} .

Truth table:

	Inputs			Οu	tputs
4	4	В	C_{in}	S	C_{out}
	0	0	0	0	0
	0	1	0	1	0
	1	0	0	1	0
	1	1	0	0	1
	0	0	1	1	0
	0	1	1	0	1
	1	0	1	0	1
	1	1	1	1	1

Detailed Example: First Steps

Identify the task:

- Does the circuit actually add properly? (circuit verification)
- Other questions, e.g., timing analysis, are not required in this analysis.

Assemble the <u>relevant knowledge</u>:

- Composed of wires and gates; Types of gates: AND, OR, XOR, NOT.
- Irrelevant: size, shape, color, cost of gates.

Oecide on a vocabulary:

- Each gate, terminal, and circuit is represented by a predicate: $Gate(X_1)$, $Terminal(T_1)$, $Circuit(C_1)$.
- Each gate can be of one type only (AND, OR, XOR, NOT), so that a function can specify it: $Type(X_1) = XOR$. Alternatives: $Type(X_1, XOR)$ or $XOR(X_1)$.
- We use the function $In(1, X_1)/Out(1, X_1)$ to return the first input/output terminal for gate X_1 .
- Pred. Arity(c, i, j) says circuit c has i input and j output terminals.
- Predicates for gate connections: $Connected(Out(1, X_1), In(1, X_2))$.
- The function Signal(t) returns the signal value (1 or 0) at terminal t.

Detailed Example: Domain Knowledge (1)

- Encode general knowledge of the domain:
- 1. If two terminals are connected, then they have the same signal:

$$\forall t_1, t_2 \quad Terminal(t_1) \land Terminal(t_2) \land Connected(t_1, t_2) \Rightarrow Signal(t_1) = Signal(t_2).$$

2. The signal at every terminal is either 1 or 0:

$$\forall t \ Terminal(t) \Rightarrow Signal(t) = 1 \lor Signal(t) = 0.$$

3. Connected is commutative:

$$\forall t_1, t_2 \quad Connected(t_1, t_2) \Leftrightarrow Connected(t_2, t_1).$$

4. There are four types of gates:

$$\forall g \quad Gate(g) \land Type(g) = k \Rightarrow k = AND \lor k = OR \lor k = XOR \lor k = NOT.$$

Detailed Example: Domain Knowledge (2)

5. An AND gate's output is 0 if and only if any of its inputs is 0:

$$\forall g \quad Gate(g) \land Type(g) = AND \Rightarrow$$

$$Signal(Out(1,g)) = 0 \Leftrightarrow \exists n \, Signal(In(n,g)) = 0.$$

6. An OR gate's output is 1 if and only if any of its inputs is 1:

$$\forall g \quad \textit{Gate}(g) \land \textit{Type}(g) = \textit{OR} \Rightarrow \\ \textit{Signal}(\textit{Out}(1,g)) = 1 \Leftrightarrow \exists \textit{n Signal}(\textit{In}(\textit{n},g)) = 1.$$

7. An XOR gate's output is 1 if and only if its inputs are different:

$$\forall \ g \quad \textit{Gate}(g) \land \textit{Type}(g) = \textit{XOR} \Rightarrow \\ \textit{Signal}(\textit{Out}(1,g)) = 1 \Leftrightarrow \textit{Signal}(\textit{In}(1,g)) \neq \textit{Signal}(\textit{In}(2,g)).$$

8. A NOT gate's output is different from its input:

$$\forall g \ Gate(g) \land Type(g) = NOT \Rightarrow Signal(Out(1,g)) \neq Signal(In(1,g)).$$

Detailed Example: Domain Knowledge (3)

9. The gates (except for NOT) have two inputs and one output:

10. A circuit has terminals up to its input and output arity:

$$\forall \ c, \ i, \ j \quad \textit{Circuit}(c) \land \textit{Arity}(c, i, j) \Rightarrow \\ \forall \ n \quad (n \leq i \Rightarrow \textit{Terminal}(\textit{In}(n, c))) \land (n > i \Rightarrow \textit{In}(n, c) = \textit{Nothing}) \land \\ \forall \ n \quad (n \leq j \Rightarrow \textit{Terminal}(\textit{Out}(n, c))) \land (n > j \Rightarrow \textit{Out}(n, c) = \textit{Nothing}).$$

11. Gates, terminals, signals, gate types, and Nothing are all distinct:

$$\forall \ g, \ t \quad \textit{Gate}(g) \land \textit{Terminal}(t) \Rightarrow \\ g \neq t \neq 1 \neq 0 \neq \textit{OR} \neq \textit{AND} \neq \textit{XOR} \neq \textit{NOT} \neq \textit{Nothing}.$$

12. Gates are circuits:

$$\forall g \; Gate(g) \Rightarrow Circuit(g).$$

Matthias Althoff

Detailed Example: Encode Problem

Sencode the specific problem instance: First, we categorize the circuit and its gates:

$$Circuit(C_1) \land Arity(C_1, 3, 2)$$

 $Gate(X_1) \land Type(X_1) = XOR$
 $Gate(X_2) \land Type(X_2) = XOR$
 $Gate(A_1) \land Type(A_1) = AND$
 $Gate(A_2) \land Type(A_2) = AND$
 $Gate(O_1) \land Type(O_1) = OR$.

Second, we specify the connections:

$Connected(Out(1, X_1), In(1, X_2))$	$Connected(In(1, C_1), In(1, X_1))$
$Connected(Out(1, X_1), In(2, A_2))$	$Connected(In(1, C_1), In(1, A_1))$
$Connected(Out(1, A_2), In(1, O_1))$	$Connected(In(2, C_1), In(2, X_1))$
$Connected(Out(1, A_1), In(2, O_1))$	$Connected(In(2, C_1), In(2, A_1))$
$Connected(Out(1, X_2), Out(1, C_1))$	$Connected(In(3, C_1), In(2, X_2))$
$Connected(Out(1, O_1), Out(2, C_1))$	$Connected(In(3, C_1), In(1, A_2))$

Detailed Example: Pose Queries

- O Pose queries to the inference procedure:
 - What combination of inputs causes the first output of C_1 (the sum bit) to be 0 and the second output of C_1 (the carry bit) to be 1?

$$\exists i_1, i_2, i_3 \quad Signal(In(1, C_1)) = i_1 \land Signal(In(2, C_1)) = i_2 \land Signal(In(3, C_1)) = i_3 \land Signal(Out(1, C_1)) = 0 \land Signal(Out(2, C_1)) = 1.$$

AskVars provides three answers (details on inference are presented in the next lecture):

$$\{i_1/1, i_2/1, i_3/0\}, \{i_1/1, i_2/0, i_3/1\}, \{i_1/0, i_2/1, i_3/1\}.$$

What are the possible values of all terminals?

$$\exists i_1, i_2, i_3, o_1, o_2 \quad Signal(In(1, C_1)) = i_1 \land Signal(In(2, C_1)) = i_2 \land Signal(In(3, C_1)) = i_3 \land Signal(Out(1, C_1)) = o_1 \land Signal(Out(2, C_1)) = o_2.$$

The result is the complete input/output table from slide 37.

- First-order logic is far more powerful than propositional logic.
- Knowledge representation languages should be declarative, compositional, expressive, context independent, and unambiguous.
- The syntax of first-order logic <u>builds on that of propositional</u> logic. It adds terms to represent objects, and has universal and existential quantifiers.
- Developing a knowledge base in first-order logic requires analyzing the domain, choosing a vocabulary, and encoding the axioms required to support the desired queries.