0

Ex. 1) Use Lagrange's interpolation formula to fit a polynomial to the following data.

∞	-1	0	2	3
y	-8	3	1	2

Hence find y(-2), y(1) and y(4).

Ans:
$$y = \frac{2}{3} \propto (x-2)(x-3)$$

 $+ \frac{1}{2} (x+1)(x-2)(x-3) - \frac{1}{6} \propto (x+1)(x-3)$
 $+ \frac{1}{6} (x+1)(x-2)(x-2)$
 $= \frac{1}{6} \left[7x^3 - 31x^2 + 28x + 18 \right]$ is the

required 3rd degree polynomial.

Ex. 2) Express the function

$$\frac{x^2 + 6x - 1}{(x^2 - 1)(x - 4)(x - 6)}$$
 as a sum of

partial fractions using Lagrangees formula.

Ans:
$$\frac{3}{(x^2-1)(x-4)(x-6)} = \frac{3}{35} \frac{1}{(x+1)} + \frac{1}{5} \frac{1}{(x-1)} - \frac{13}{10} \frac{1}{(x-4)} + \frac{71}{70} \frac{1}{(x-6)}$$

Ex. 3) Fit a polynomial of 3rd degree

x	0	1	3	4
y	-12	0	6	12

Ans: $y = x^3 - 7x^2 + 18x - 12$

Ex.4) Determine $\infty(0)$ by inverse interpolation.

X	1	2.	2.5	3
y	-6	-1	5.625	16

Ans: 2.122

Finite differences and difference operators.

Consider set of points (∞ i, yi) $i = 0,1, \cdots$ n which satisfies the function $y = f(\infty)$.

Let us assume that the set of values of oc are evenly spaced and

 $x_i - x_{i-1} = h$ for i = 1, -h

The forward difference operator Δ is defined such that

 $\Delta f(x) = f(x+h) - f(x)$

This difference $\Delta f(\infty)$ being the difference between forward value of the function (i.e., the value of the function at next point α th) and the present value (i.e., the value of the function at current point α) is called the first forward difference or forward difference of the first order.

Now,
$$\Delta^2 f(\infty) = \Delta \left[\Delta f(\alpha) \right]$$

$$= \Delta \left[f(\alpha + h) - f(\alpha) \right]$$

$$= \Delta [f(\alpha + h)] - \Delta f(\alpha)$$

$$= f(\alpha + 2h) - f(\alpha + h) - [f(\alpha + h) - f(\alpha)]$$

$$= f(\alpha + 2h) - 2f(\alpha + h) + f(\alpha)$$

Here $\Delta^2 f(\infty)$ gives forward difference of second order or second order forward difference of $f(\infty)$.

Now
$$y_0 = f(\infty)$$
, $y_1 = f(\alpha_1) = f(\alpha_0 + h)$

$$y_2 = f(\alpha_2) = f(\alpha_1 + h)$$

$$= f(\alpha_0 + 2h)$$

$$= f(\alpha_2)$$

$$A y_0 = \Delta f(\infty_0) = f(\infty_0 + h) - f(\infty_0)$$

$$= y_1 - y_0$$

$$\Delta y_1 = y_2 - y_1$$
 $\Delta y_2 = y_3 - y_2$

$$\Delta^2 y_0 = y_2 - 2y_1 + y_0$$

Calculate Byo and Byo?

Ex. D Prepare the forward difference table

for
$$y = x^2 + x + 1$$
 $x = 0, 1, -... 5$

Soln: Here oc changes from 0,1,...5

$$x_{i+1} - x_i = 1$$
 $i = 0, 1, -4$.
i.e., $h = 1$

\int_{∞}	0	1	2	3	4	5
y	1	3	7	13	21	31

Forward difference table:

oc -	y	ΔΥ	Δ ² y	∆3y	44	54
0	1	∆y0 = 2				
1	3		$\Delta^2 y_0 = 2$			
2	7		$\Delta^2 y_1 = 2$	$\Delta^3 y_0 = 0$ $\Delta^3 y_1 = 0$	144° = 0	.5.
3	13		$\Delta^2 y_2 = 2$		D441 = 0	Δ90 = 0
4	21		$\Delta^{3}y_{3} = 2$	$\Delta y_2 = 0$		
5	31	A44 = 10				

Ex. 2) Determine $\Delta f(\alpha)$ where $f(\alpha) = \alpha^2 + \alpha + 1 \quad \text{with i)} h = 1, \text{ii)} h = 2$

Solo: We have $f(x) = x^2 + x + 1$

i) h=1 $\Delta f(\alpha) = f(x+1) - f(x)$ = f(x+1) - f(x) $= (x+1)^2 + (x+1) + 1 - (x^2 + x + 1)$ $= x^2 + 3x + 3 - x^2 - x - 1$ = 2x + 2

ii) Calculate Of(oc) for h = 2.