Systemy operacyjne

Lista zadań nr 11

Na zajęcia 4 stycznia 2024

Przed przystąpieniem do rozwiązywania zadań zapoznaj się z dokumentem: The Second Extended File System Internal Layout¹. W zadaniach 2–6 rozważamy pierwszą korektę ext2 (ang. revision 1).

UWAGA! W trakcie prezentacji należy być gotowym do zdefiniowania pojęć oznaczonych wytłuszczoną czcionką.

Zadanie 1. Wyjaśnij czym są **punkty montażowe**, a następnie wyświetl listę zamontowanych systemów plików i wyjaśnij co znajduje się w poszczególnych kolumnach wydruku. Które z punktów montażowych dają dostęp do instancji **pseudo systemów plików?** Na podstawie mount (8) wyjaśnij znaczenie następujących atrybutów punktów montażowych: «relatime», «noexec» i «nodev», a następnie podaj scenariusz, w którym ich zastosowanie jest pożądane.

Wskazówka: Rozważ semantykę wymienionych atrybutów w kontekście systemu plików na przenośnym dysku USB.

Zadanie 2. Korzystając z pól **superbloku** (ang. *superblock*) podaj wzór na wyliczenie wartości: rozmiaru **bloku**, liczby i-węzłów i bloków przechowywanych w **grupie bloków** (ang. *block group*), liczby wpisów **tablicy deskryptorów grup bloków** (ang. *block group descriptor table*). Wymień składowe należące do grupy bloków oraz podaj ich rozmiar w blokach. Które grupy bloków przechowują kopie zapasową superbloku i tablicy deskryptorów grup bloków?

Zadanie 3. Podstawowymi operacjami na systemie plików są: wyzeruj lub zapal bit w bitmapie i-węzłów albo bloków, wczytaj / zapisz i-węzeł albo **blok pośredni** (ang. *indirect block*) albo blok danych. Podaj listę kroków niezbędnych do realizacji funkcji dopisującej n bloków na koniec pliku. Zakładamy, że poszczególne kroki funkcji są zawsze wdrażane **synchronicznie**. Zadbaj o to by funkcje nie naruszyły **spójności systemu plików** w przypadku awarii zasilania. Dopuszczamy powstawanie wycieków pamięci.

Zadanie 4. Przy pomocy wywołania systemowego rename (2) można przenieść atomowo plik do katalogu znajdującego się w obrębie tego samego systemu plików. Czemu «rename» zakończy się błędem «EXDEV» kiedy próbujemy przenieść plik do innego systemu plików? Powtórz polecenia z zadania 3 dla funkcji przenoszącej plik między dwoma różnymi katalogami w obrębie tego samego systemu plików. Zakładamy, że w katalogu docelowym jest wystarczająco dużo miejsca na dodanie wpisu. Pamiętaj, że wpis katalogu nie może przecinać granicy między blokami!

Zadanie 5. Przy pomocy wywołania systemowego unlink(2) można usunąć plik niebędący katalogiem. Powtórz polecenia z zadania 3 dla funkcji usuwającej plik zwykły z katalogu. Kiedy możliwe jest odwrócenie operacji usunięcia pliku tj. odkasowania (ang. undelete)? Zauważ, że usunięcie pliku nie odbiera procesom możliwości czytania jego zawartości, o ile go otworzyły przed wywołaniem unlink(2). Kiedy w takim razie plik zostanie faktycznie usunięty z dysku?

Zadanie 6. Wyjaśnij co robi system plików ext2 przy tworzeniu **dowiązania twardego** (ang. *hard link*) i **symbolicznego** (ang. *symbolic link*). Gdzie jest przechowywana zawartość dowiązania symbolicznego? Jak za pomocą dowiązania symbolicznego stworzyć w systemie plików pętlę? Kiedy jądro systemu operacyjnego ją wykryje i zwróci błąd «ELOOP»? Czemu pętli nie da się zrobić z użyciem dowiązania twardego?

Zadanie 7. Czemu fragmentacja systemu plików jest szkodliwym zjawiskiem? Zreferuj artykuł The new ext4 filesystem: current status and future plans². Opisz w jaki sposób odroczony przydział bloków (ang. delayed allocation) [§3.2] zapobiega powstawaniu fragmentacji. Wytłumacz jak zakresy (ang. extents) [§2.2] pomagają w ograniczaniu rozmiaru metadanych przechowujących adresy bloków należących do danego pliku. Czy po defragmentacji systemu plików ext4 liczba wolnych bloków może wzrosnąć? Jak mógłby wyglądać najprostszy algorytm defragmentacji [§3.3]?

¹https://www.nongnu.org/ext2-doc/ext2.html

²https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf

Zadanie 8. Przy użyciu programu debugfs (8) dla wybranej instancji systemu plików ext4 (np. **partycja** przechowująca główny system plików Twojej instalacji systemu Linux) pokaż:

- fragmentację systemu plików (freefrag) i informacje o grupach bloków (stats),
- zakresy bloków z których składa się wybrany duży plik (extents),
- że dowiązanie symboliczne może być przechowywane w i-węźle (idump),
- do jakiego pliku należy wybrany blok (blocks, icheck, ncheck),
- reprezentację liniową małego katalogu (bdump).

Ostrzeżenie! Narzędzie debugfs działa domyślnie w trybie tylko do odczytu, więc możesz go bezpiecznie używać na swoim komputerze. Trybu do odczytu i zapisu używasz na własną odpowiedzialność!

Zadanie 9 (bonus). Na podstawie §3 artykułu A Directory Index for Ext2³ opisz strukturę danych HTree i operację wyszukiwania wpisu katalogu o zadanej nazwie. Następnie wyświetl reprezentację HTree dużego katalogu, np. /var/lib/dpkg/info, używając polecenia htree programu debugfs(8).

Zadanie 10 (bonus). Czym różni się **księgowanie metadanych** od **księgowania danych**? Na podstawie wydruku polecenia logdump programu debugfs i opisu struktur dyskowych ext4⁴ opisz format **dziennika**. Opisz znaczenie poszczególnych bloków z których może składać się pojedyncza **transakcja**. Czemu operacje składowane w dzienniku muszą być **idempotentne**?

https://www.kernel.org/doc/ols/2002/ols2002-pages-425-438.pdf

⁴https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout