d'où
$$\begin{cases} x = 3 \mod(13) \\ x = 9 \mod(19) \end{cases}$$
 soit $M=13 \times 19 = 247$
le système admet une solution unique modulo M $x=3\times19\times y_1+9\times13\times y_2$ avec $y_1=13^{-1} \mod(19)$ $y_2=19^{-1} \mod(13)$ on a $19=13+6$
$$13=6\times2+1 \Longrightarrow 1=13-6\times2$$

$$1=13\cdot(19-13)\times2$$

$$1=13\times3-19\times2$$
 donc $13^{-1} \mod(19)=3 \mod(19)\Longrightarrow y_1=3$
$$19^{-1} \mod(13)=-2 \mod(13)\Longrightarrow y_2=11$$
 $x=3\times19\times3+9\times13\times11=1458$ $1458\div247=5.902$ $1458-247\times5=223.$ $x=223 \mod(19\times13)$

TD ARITHMETIQUE L2 MI: 19-20

EXERCICE 1

Soit n un entier naturel non nul et $q \in \mathbb{R}$ ou \mathbb{C} . On pose $(n)_q = 1 + q + \dots + q^{n-1}$, $(n!)_q = (1)_q (2)_q \dots (n)_q$ $\binom{n}{k}_q = \frac{(n!)_q}{(k!)_q ((n-k)!)_q} \text{ et } (0!)_q = 1.$

a) Montrer que
$$(n!)_q = \frac{(q-1)(q^2-1)\cdots(q^n-1)}{(q-1)^n}$$
 avec $q \neq 1$

b) Montrer que
$$\binom{n}{k}_q = \binom{n}{n-k}_q$$

c) Montrer que
$$\binom{n}{k}_q = \binom{n-1}{k-1}_q + q^k \binom{n-1}{k}_q = \binom{n-1}{k}_q + q^{n-k} \binom{n-1}{k-1}_q$$

EX 2

Soit G un groupe tel que l'application $x \mapsto x^{-1}$ soit un morphisme. Montrer que G est commutatif.

EX 3

Montrer qu'un sous-groupe d'indice 2 dans un groupe G est distingué dans G.

EX 4

Soit $f: G \longrightarrow H$ un morphisme de groupes finis. Soit G' un sous-groupe de G. Montrer que

l'ordre de f(G') divise les ordres de G' et de H.

EX 5

Soit f: G—H un morphisme de groupes finis. Soit G' un sous-groupe de G d'ordre premier à l'ordre de H. Montrer que G'= ker(f).

Ex 6

Démontrer que pour tout $n \in \mathbb{N}$,

1. n^3 - n est divisible par 6,

 $2.n^5$ - n est divisible par 30,

3. n^7 - n est divisible par 42.

Ex 7

Pour tout $n \in \mathbb{N}$, on définit deux propriétés :

 $P_n: 3 \text{ divise } 4^n-1 \text{ et } Q_n: 3 \text{ divise } 4^n+1$.

2. Montrer que P_n est vraie pour tout $n \in \mathbb{N}$.

3. Que penser de l'assertion : $\exists n_0 \in \mathbb{N}$ tel que $\forall n \geq n_0 \ Q_n$ est vraie.

Ex 8

Démontrer par récurrence que :

a) $2^{2\times 3^n} - 1$ est divisible par 3^{n+1} pour tout entier $n \ge 0$. b) $5^{3^n} + 1$ est divisible par 3^{n+1} pour tout entier $n \ge 0$.:

Ex 9

1. Montrer que pour tout $n \in \mathbb{N}$ et tout $p \in \mathbb{Z}$: $p \binom{n}{p} = n \binom{n-1}{p-1}$

2.Calculer pour tout n

$$S_0 = \sum_{p=0}^{n} {n \choose p}$$
 ; $S_1 = \sum_{p=0}^{n} p {n \choose p}$; $S_2 = \sum_{p=0}^{n} p^2 {n \choose p}$

EX 10

Soit $\sigma:\mathbb{Z}\longrightarrow\mathbb{N}$ qui à $n\in\mathbb{Z}$ associe le nombre de diviseurs positifs de n .

- a) Soit p un nombre premier et $\alpha \in \mathbb{N}^*$. Calculer $\sigma(p^{\alpha})$.
- b) Soient $a, b \in \mathbb{Z}$ premiers entre eux ,et $\varphi : \operatorname{div}(a) \times \operatorname{div}(b) \longrightarrow \operatorname{div}(ab)$ définie par $\varphi(k, l) = kl$ montrer que φ est une bijection .div(n) désigne l'ensemble des diviseurs positifs d'un entier n
- c) En déduire une relation entre $\sigma(ab)$, $\sigma(a)$ et $\sigma(b)$ si a et b sont premiers entre eux .
- d) Soit n un entier naturel, $p_1^{\alpha_1}$. $p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ la décomposition en nombre premiers de n. Exprimer $\sigma(n)$ en fonction des α_i .

Ex 11

On suppose que

n est un entier ≥ 2 tels que $2^n - 1$ est premier.

Montrer que n est un nombre premier.

Ex 12

Soient a et p deux entiers supérieurs à 2.

Montrer que si $a^p - 1$ est premier alors a=2 et p est premier.

Ex 13

Soit p un nombre premier, $p \ge 5$. Montrer que p^2 - 1 est divisible par 24.

EX 14

Résoudre dans Z² les équations suivantes :

a)
$$17x + 6y = 1$$
 b) $27x + 25y = 1$ c) $118x + 35y = 1$ d) $39x + 26y = 1$

EX 15

1. Résoudre dans Z les équations : $x^2 = 2 \mod 6$; $x^3 = 3 \mod 9$.

2. Résoudre dans \mathbb{Z}^2 les équations suivantes :

$$5x^2 + 2xy - 3 = 0$$
; $y^2 + 4xy - 2 = 0$.

Ex 16

Résoudre dans \mathbb{Z}

$$1) \begin{cases} x = 2 \mod 10 \\ x = 5 \mod 13 \end{cases} \quad 2) \begin{cases} x = 4 \mod 6 \\ x = 7 \mod 9 \end{cases} \quad 3) \begin{cases} 5x = 4 \pmod{27} \\ 12x = 9 \pmod{51} \end{cases}$$

Ex 17

Une bande de 17 pirates dipose d'un butin de N pièces d'or d'égale valeur. Ils décident de se le partager équitablement et de donner le reste au cuisinier (non pirate). Celui i reçoit 3 pièces. Mais une dispute éclate et 6 pirates sont tués. Tout le butin est reconstitué et partagé entre les survivants comme précédemment; le cuisinier reçoit alors 4 pièces. Dans un naufrage ultérieur, seul le butin, 6 pirates et le cuisinier sont sauvés. Le butin est à nouveau partagé de la même manière et le cuisinier reçoit 5 pices.

Quelle est alors la fortune minimale que peut espérer le cuisinier lorsqu'il décide d'empoisonner le reste des pirates?

EX18

Combien l'armée de Han Xing comporte-t-elle de soldats (au minimum) si, rangés par 3 colonnes, il reste deux soldats, rangés par 5 colonnes, il reste trois soldats et, rangés par 7 colonnes, il reste deux soldats?

Exercice 19

résoudre dans $\mathbb Z$ le système de congruence :

$$\begin{cases} x \equiv 3 \mod 4 \\ x \equiv -2 \mod 3 \\ x \equiv 7 \mod 5 \end{cases}$$

Ex 20

Trouver le reste de la division euclidienne de 10^{2020} par 42.