

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/31, C07K 14/35, C12N 15/62, G01N 33/569, C12Q 1/68

A2

(11) International Publication Number:

WO 97/09429

(43) International Publication Date:

13 March 1997 (13.03.97)

(21) International Application Number:

PCT/US96/14675

(22) International Filing Date:

30 August 1996 (30.08.96)

(74) Agents: MAKI, David, J. et al.; Seed and Berry L.L.P., 6300 Columbia Center, 701 Fifth Avenue, Seattle, WA 98104-7092 (US).

(30) Priority Data:

08/523,435	1 September 1995 (01.09.95)	US
08/532,136	22 September 1995 (22.09.95)	US
08/620,280	22 March 1996 (22.03.96)	US
08/658,800	5 June 1996 (05.06.96)	US
08/680,573	12 July 1996 (12.07.96)	US
	· · · · · · · · · · · · · · · · · · ·	

- (71) Applicant: CORIXA CORPORATION [US/US]; Suite 464, 1124 Columbia Street, Seattle, WA 98104 (US).
- (72) Inventors: REED, Steven, G.; 2843 122nd Place N.E., Bellevue, WA 98005 (US). SKEIKY, Yasir, A., W.; 8327 25th Avenue N.W., Seattle, WA 98117 (US). DILLON, Davin, C.; 21607 N.E. 24th Street, Redmond, WA 98053 (US). CAMPOS-NETO, Antonio; 9308 N.E. Midship Court, Bainbridge Island, WA 98110 (US). HOUGHTON, Raymond; 2636 242nd Place S.E., Bothell, WA 98021 (US). VEDVICK, Thomas, H.; 1301 Spring Street, Seattle, WA 98104 (US). TWARDZIK, Daniel, R.; 10195 South Beach Drive, Bainbridge Island, WA 98110 (US).
- (81) Designated States: AL, AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: COMPOUNDS AND METHODS FOR DIAGNOSIS OF TUBERCULOSIS

(57) Abstract

Compounds and methods for diagnosing tuberculosis are discl sed. The compounds provided include polypeptides that contain at least one antigenic portion of one or more *M. tuberculosis* secretory or n n-secretory proteins, and DNA sequences encoding such polypeptides. Diagnostic kits containing such polypeptides or DNA sequences and a suitable detection reagent may be used for the detection of *M. tuberculosis* infection in patients and biological samples. Antibodies directed against such polypeptides are also provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑÜ	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
cz	Czech Republic	LU	Luxembourg	TG	Togo
	-	LV	Larvia	TJ	Tajikistan
DE	Germany Denmark	MC	Monaco	TT	Trinidad and Tobago
DK		MD	Republic of Moldova	UA	Ukraine
EE	Estonia	MG	Madagascar	UG	Uganda
ES	Spain	ML	Mali	us	United States of America
FI	Finland	MN	Mongolia	uz.	Uzbekistan
FR	France	MR MR	Mauritania	VN	Viet Nam
GA	Gabon	MK	Warning	*11	V PG- 1 10014

Description

COMPOUNDS AND METHODS FOR DIAGNOSIS OF TUBERCULOSIS

5

10

15

25

Technical Field

The present invention relates generally to the Mycobacterium tuberculosis infection. The invention is more particularly related to polypeptides comprising a Mycobacterium tuberculosis antigen, or a portion or other variant thereof, and the use of such polypeptides for the serodiagnosis of Mycobacterium tuberculosis infection.

Background of the Invention

Tuberculosis is a chronic, infectious disease, that is generally caused by 20 infection with Mycobacterium tuberculosis. It is a major disease in developing countries, as well as an increasing problem in developed areas of the world, with about 8 million new cases and 3 million deaths each year. Although the infection may be asymptomatic for a considerable period of time, the disease is most commonly manifested as an acute inflammation of the lungs, resulting in fever and a nonproductive cough. If left untreated, serious complications and death typically result.

Although tuberculosis can generally be controlled using extended antibiotic therapy, such treatment is not sufficient to prevent the spread of the disease. Infected individuals may be asymptomatic, but contagious, for some time. In addition,

10

15

20

25

although compliance with the treatment regimen is critical, patient behavior is difficult to monitor. Some patients do not complete the course of treatment, which can lead to ineffective treatment and the development of drug resistance.

Inhibiting the spread of tuberculosis will require effective vaccination and accurate, early diagnosis of the disease. Currently, vaccination with live bacteria is the most efficient method for inducing protective immunity. The most common Mycobacterium for this purpose is Bacillus Calmette-Guerin (BCG), an avirulent strain of Mycobacterium bovis. However, the safety and efficacy of BCG is a source of controversy and some countries, such as the United States, do not vaccinate the general public. Diagnosis is commonly achieved using a skin test, which involves intradermal exposure to tuberculin PPD (protein-purified derivative). Antigen-specific T cell responses result in measurable incubation at the injection site by 48-72 hours after injection, which indicates exposure to Mycobacterial antigens. Sensitivity and specificity have, however, been a problem with this test, and individuals vaccinated with BCG cannot be distinguished from infected individuals.

While macrophages have been shown to act as the principal effectors of *M. tuberculosis* immunity, T cells are the predominant inducers of such immunity. The essential role of T cells in protection against *M. tuberculosis* infection is illustrated by the frequent occurrence of *M. tuberculosis* in AIDS patients, due to the depletion of CD4 T cells associated with human immunodeficiency virus (HIV) infection. Mycobacterium-reactive CD4 T cells have been shown to be potent producers of gamma-interferon (IFN-γ), which, in turn, has been shown to trigger the antimycobacterial effects of macrophages in mice. While the role of IFN-γ in humans is less clear, studies have shown that 1,25-dihydroxy-vitamin D3, either alone or in combination with IFN-γ or tumor necrosis factor-alpha, activates human macrophages to inhibit *M. tuberculosis* infection. Furthermore, it is known that IFN-γ stimulates human macrophages to make 1,25-dihydroxy-vitamin D3. Similarly, IL-12 has been shown to play a role in stimulating resistance to *M. tuberculosis* infection. For a review of the immunology of *M. tuberculosis* infection see Chan and Kaufmann, in

10

15

20

25

Tuberculosis: Pathogenesis, Protection and Control, Bloom (ed.), ASM Press, Washington, DC, 1994.

Accordingly, there is a need in the art for improved diagnostic methods for detecting tuberculosis. The present invention fulfills this need and further provides other related advantages.

Summary of the Invention

Briefly stated, the present invention provides compositions and methods for diagnosing tuberculosis. In one aspect, polypeptides are provided comprising an antigenic portion of a soluble *M. tuberculosis* antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications. In one embodiment of this aspect, the soluble antigen has one of the following N-terminal sequences:

- (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Cys-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu (SEQ ID No. 115);
- (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser (SEQ ID No. 116);
- (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg (SEQ ID No. 117);
- (d) Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro (SEQ ID No. 118);
- (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val (SEQ ID No. 119);
- (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro (SEQ ID No. 120);
- (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Thr-Ala-Ala-Ser-Pro-Pro-Ser (SEQ ID No. 121);
- (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly (SEQ ID No. 122);

- (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Leu-Thr-Ser-Leu-Asn-Ser-Leu-Ala-Asp-Pro-Asn-Val-Ser-Phe-Ala-Asn (SEQ ID No. 123);
- (j) Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-Ile-Lys-Val-Thr-Asp-Ala-Ser; (SEQ ID No. 129)
- (k) Ala-Gly-Asp-Thr-Xaa-Ile-Tyr-Ile-Val-Gly-Asn-Leu-Thr-Ala-Asp; (SEQ ID No. 130) or
- (l) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID No. 131)

15

25

30

5

wherein Xaa may be any amino acid.

In a related aspect, polypeptides are provided comprising an immunogenic portion of an *M. tuberculosis* antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications, the antigen having one of the following N-terminal sequences:

- (m) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID No. 132) or
- (n) Asp-Pro-Pro-Asp-Pro-His-Gln-Xaa-Asp-Met-Thr-Lys-Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe; (SEQ ID No. 124)
- 20 wherein Xaa may be any amino acid.

In another embodiment, the antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID Nos. 1, 2, 4-10, 13-25, 52, 94 and 96, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos. 1, 2, 4-10, 13-25, 52, 94 and 96 or a complement thereof under moderately stringent conditions.

In a related aspect, the polypeptides comprise an antigenic portion of a *M. tuberculosis* antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications, wherein the antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the

15

20

25

30

sequences recited in SEQ ID Nos. 26-51, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos. 26-51 or a complement thereof under moderately stringent conditions.

In related aspects, DNA sequences encoding the above polypeptides, recombinant expression vectors comprising these DNA sequences and host cells transformed or transfected with such expression vectors are also provided.

In another aspect, the present invention provides fusion proteins comprising a first and a second inventive polypeptide or, alternatively, an inventive polypeptide and a known *M. tuberculosis* antigen.

In further aspects of the subject invention, methods and diagnostic kits are provided for detecting tuberculosis in a patient. The methods comprise:

(a) contacting a biological sample with at least one of the above polypeptides; and (b) detecting in the sample the presence of antibodies that bind to the polypeptide or polypeptides, thereby detecting *M. tuberculosis* infection in the biological sample. Suitable biological samples include whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid and urine. The diagnostic kits comprise one or more of the above polypeptides in combination with a detection reagent.

The present invention also provides methods for detecting M. tuberculosis infection comprising: (a) obtaining a biological sample from a patient; (b) contacting the sample with a first and a second oligonucleotide primer in a polymerase chain reaction, the first and the second oligonucleotide primers comprising at least about 10 contiguous nucleotides of a DNA sequence encoding the above polypeptides; and (c) detecting in the sample a DNA sequence that amplifies in the presence of the first and second oligonucleotide primers.

In a further aspect, the present invention provides a method for detecting *M. tuberculosis* infection in a patient comprising: (a) obtaining a biological sample from the patient; (b) contacting the sample with an oligonucleotide probe comprising at least about 15 contiguous nucleotides of a DNA sequence encoding the above polypeptides; and (c) detecting in the sample a DNA sequence that hybridizes to the oligonucleotide probe.

15

30

In yet another aspect, the present invention provides antibodies, both polyclonal and monoclonal, that bind to the polypeptides described above, as well as methods for their use in the detection of *M. tuberculosis* infection.

These and other aspects of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

Brief Description of the Drawings and Sequence Identifiers

Figure 1A and B illustrate the stimulation of proliferation and interferony production in T cells derived from a first and a second *M. tuberculosis*-immune donor, respectively, by the 14 Kd, 20 Kd and 26 Kd antigens described in Example 1.

Figure 2 illustrates the reactivity of two representative polypeptides with sera from *M. tuberculosis*-infected and uninfected individuals, as compared to the reactivity of bacterial lysate.

Figure 3 shows the reactivity of four representative polypeptides with sera from *M. tuberculosis*-infected and uninfected individuals, as compared to the reactivity of the 38 kD antigen.

Figure 4 shows the reactivity of recombinant 38 kD and TbRall 20 antigens with sera from *M. tuberculosis* patients, PPD positive donors and normal donors.

Figure 5 shows the reactivity of the antigen TbRa2A with 38 kD negative sera.

Figure 6 shows the reactivity of the antigen of SEQ ID No. 60 with sera from M. tuberculosis patients and normal donors.

SEO. ID NO. 1 is the DNA sequence of TbRa1.

SEQ. ID NO. 2 is the DNA sequence of TbRa10.

SEQ. ID NO. 3 is the DNA sequence of TbRall.

SEQ. ID NO. 4 is the DNA sequence of TbRa12.

SEQ. ID NO. 5 is the DNA sequence of TbRa13.

SEQ. ID NO. 6 is the DNA sequence of TbRa16.

SEQ. ID NO. 7 is the DNA sequence of TbRa17. SEQ. ID NO. 8 is the DNA sequence of TbRa18. SEQ. ID NO. 9 is the DNA sequence of TbRa19. SEQ. ID NO. 10 is the DNA sequence of TbRa24. 5 SEQ. ID NO. 11 is the DNA sequence of TbRa26. SEQ. ID NO. 12 is the DNA sequence of TbRa28. SEQ. ID NO. 13 is the DNA sequence of TbRa29. SEQ. ID NO. 14 is the DNA sequence of TbRa2A. SEQ. ID NO. 15 is the DNA sequence of TbRa3. 10 SEQ. ID NO. 16 is the DNA sequence of TbRa32. SEQ. ID NO. 17 is the DNA sequence of TbRa35. SEQ. ID NO. 18 is the DNA sequence of TbRa36. SEQ. ID NO. 19 is the DNA sequence of TbRa4. SEQ. ID NO. 20 is the DNA sequence of TbRa9. 15 SEQ. ID NO. 21 is the DNA sequence of TbRaB. SEQ. ID NO. 22 is the DNA sequence of TbRaC. SEQ. ID NO. 23 is the DNA sequence of TbRaD. SEQ. ID NO. 24 is the DNA sequence of YYWCPG. SEQ. ID NO. 25 is the DNA sequence of AAMK. 20 SEQ. ID NO. 26 is the DNA sequence of TbL-23. SEQ. ID NO. 27 is the DNA sequence of TbL-24. SEQ. ID NO. 28 is the DNA sequence of TbL-25. SEQ. ID NO. 29 is the DNA sequence of TbL-28. SEQ. ID NO. 30 is the DNA sequence of TbL-29. 25 SEQ. ID NO. 31 is the DNA sequence of TbH-5. SEQ. ID NO. 32 is the DNA sequence of TbH-8. SEQ. ID NO. 33 is the DNA sequence of TbH-9. SEQ. ID NO. 34 is the DNA sequence of TbM-1. SEQ. ID NO. 35 is the DNA sequence of TbM-3. 30 SEQ. ID NO. 36 is the DNA sequence of TbM-6. SEO. ID NO. 37 is the DNA sequence of TbM-7. SEQ. ID NO. 38 is the DNA sequence of TbM-9. SEO. ID NO. 39 is the DNA sequence of TbM-12. SEQ. ID NO. 40 is the DNA sequence of TbM-13. 35 SEQ. ID NO. 41 is the DNA sequence of TbM-14. SEQ. ID NO. 42 is the DNA sequence of TbM-15.

SEQ. ID NO. 43 is the DNA sequence of TbH-4. SEQ. ID NO. 44 is the DNA sequence of TbH-4-FWD. SEQ. ID NO. 45 is the DNA sequence of TbH-12. SEQ. ID NO. 46 is the DNA sequence of Tb38-1. 5 SEQ. ID NO. 47 is the DNA sequence of Tb38-4. SEQ. ID NO. 48 is the DNA sequence of TbL-17. SEQ. ID NO. 49 is the DNA sequence of TbL-20. SEO. ID NO. 50 is the DNA sequence of TbL-21. SEQ. ID NO. 51 is the DNA sequence of TbH-16. 10 SEQ. ID NO. 52 is the DNA sequence of DPEP. SEQ. ID NO. 53 is the deduced amino acid sequence of DPEP. SEQ. ID NO. 54 is the protein sequence of DPV N-terminal Antigen. SEQ. ID NO. 55 is the protein sequence of AVGS N-terminal Antigen. SEQ. ID NO. 56 is the protein sequence of AAMK N-terminal Antigen. 15 SEQ. ID NO. 57 is the protein sequence of YYWC N-terminal Antigen. SEQ. ID NO. 58 is the protein sequence of DIGS N-terminal Antigen. SEQ. ID NO. 59 is the protein sequence of AEES N-terminal Antigen. SEQ. ID NO. 60 is the protein sequence of DPEP N-terminal Antigen. SEQ. ID NO. 61 is the protein sequence of APKT N-terminal Antigen. 20 SEQ. ID NO. 62 is the protein sequence of DPAS N-terminal Antigen. SEQ. ID NO. 63 is the deduced amino acid sequence of TbM-1 Peptide. SEQ. ID NO. 64 is the deduced amino acid sequence of TbRa1. SEQ. ID NO. 65 is the deduced amino acid sequence of TbRa10. SEQ. ID NO. 66 is the deduced amino acid sequence of TbRa11. 25 SEQ. ID NO. 67 is the deduced amino acid sequence of TbRa12. SEQ. ID NO. 68 is the deduced amino acid sequence of TbRa13. SEQ. ID NO. 69 is the deduced amino acid sequence of TbRa16. SEQ. ID NO. 70 is the deduced amino acid sequence of TbRa17. SEQ. ID NO. 71 is the deduced amino acid sequence of TbRa18. 30 SEQ. ID NO. 72 is the deduced amino acid sequence of TbRa19. SEQ. ID NO. 73 is the deduced amino acid sequence of TbRa24. SEQ. ID NO. 74 is the deduced amino acid sequence of TbRa26. SEQ. ID NO. 75 is the deduced amino acid sequence of TbRa28. SEO. ID NO. 76 is the deduced amino acid sequence of TbRa29. 35 SEQ. ID NO. 77 is the deduced amino acid sequence of TbRa2A. SEO. ID NO. 78 is the deduced amino acid sequence of TbRa3.

SEQ. ID NO. 79 is the deduced amino acid sequence of TbRa32. SEQ. ID NO. 80 is the deduced amino acid sequence of TbRa35. SEQ. ID NO. 81 is the deduced amino acid sequence of TbRa36. SEQ. ID NO. 82 is the deduced amino acid sequence of TbRa4. SEQ. ID NO. 83 is the deduced amino acid sequence of TbRa9. 5 SEQ. ID NO. 84 is the deduced amino acid sequence of TbRaB. SEQ. ID NO. 85 is the deduced amino acid sequence of TbRaC. SEQ. ID NO. 86 is the deduced amino acid sequence of TbRaD. SEQ. ID NO. 87 is the deduced amino acid sequence of YYWCPG. 10 SEQ. ID NO. 88 is the deduced amino acid sequence of TbAAMK. SEQ. ID NO. 89 is the deduced amino acid sequence of Tb38-1. SEQ. ID NO. 90 is the deduced amino acid sequence of TbH-4. SEQ. ID NO. 91 is the deduced amino acid sequence of TbH-8. SEQ. ID NO. 92 is the deduced amino acid sequence of TbH-9. 15 SEQ. ID NO. 93 is the deduced amino acid sequence of TbH-12. SEQ. ID NO. 94 is the DNA sequence of DPAS. SEQ. ID NO. 95 is the deduced amino acid sequence of DPAS. SEQ. ID NO. 96 is the DNA sequence of DPV. SEQ. ID NO. 97 is the deduced amino acid sequence of DPV. 20 SEQ. ID NO. 98 is the DNA sequence of ESAT-6. SEQ. ID NO. 99 is the deduced amino acid sequence of ESAT-6. SEQ. ID NO. 100 is the DNA sequence of TbH-8-2. SEQ. ID NO. 101 is the DNA sequence of TbH-9FL. SEQ. ID NO. 102 is the deduced amino acid sequence of TbH-9FL. 25 SEQ. ID NO. 103 is the DNA sequence of TbH-9-1. SEQ. ID NO. 104 is the deduced amino acid sequence of TbH-9-1. SEQ. ID NO. 105 is the DNA sequence of TbH-9-4. SEQ. ID NO. 106 is the deduced amino acid sequence of TbH-9-4. SEQ. ID NO. 107 is the DNA sequence of Tb38-1F2 IN. 30 SEQ. ID NO. 108 is the DNA sequence of Tb38-1F2 RP. SEQ. ID NO. 109 is the deduced amino acid sequence of Tb37-FL. SEQ. ID NO. 110 is the deduced amino acid sequence of Tb38-IN. SEQ. ID NO. 111 is the DNA sequence of Tb38-1F3. SEQ. ID NO. 112 is the deduced amino acid sequence of Tb38-1F3. 35 SEQ. ID NO. 113 is the DNA sequence of Tb38-1F5. SEQ. ID NO. 114 is the DNA sequence of Tb38-1F6.

SEQ. ID NO. 115 is the deduced N-terminal amino acid sequence of DPV. SEQ. ID NO. 116 is the deduced N-terminal amino acid sequence of AVGS. SEO. ID NO. 117 is the deduced N-terminal amino acid sequence of AAMK. SEQ. ID NO. 118 is the deduced N-terminal amino acid sequence of YYWC. 5 SEQ. ID NO. 119 is the deduced N-terminal amino acid sequence of DIGS. SEQ. ID NO. 120 is the deduced N-terminal amino acid sequence of AAES. SEQ. ID NO. 121 is the deduced N-terminal amino acid sequence of DPEP. SEQ. ID NO. 122 is the deduced N-terminal amino acid sequence of APKT. SEQ. ID NO. 123 is the deduced N-terminal amino acid sequence of DPAS. 10 SEQ. ID NO. 124 is the protein sequence of DPPD N-terminal Antigen. SEO ID NO. 125-128 are the protein sequences of four DPPD cyanogen bromide fragments. SEQ ID NO. 129 is the N-terminal protein sequence of XDS antigen. SEQ ID NO. 130 is the N-terminal protein sequence of AGD antigen. 15 SEQ ID NO. 131 is the N-terminal protein sequence of APE antigen. SEQ ID NO. 132 is the N-terminal protein sequence of XYI antigen.

Detailed Description of the Invention

20

25

30

As noted above, the present invention is generally directed to compositions and methods for diagnosing tuberculosis. The compositions of the subject invention include polypeptides that comprise at least one antigenic portion of a *M. tuberculosis* antigen, or a variant of such an antigen that differs only in conservative substitutions and/or modifications. Polypeptides within the scope of the present invention include, but are not limited to, soluble *M. tuberculosis* antigens. A "soluble *M. tuberculosis* antigen" is a protein of *M. tuberculosis* origin that is present in *M. tuberculosis* culture filtrate. As used herein, the term "polypeptide" encompasses amino acid chains of any length, including full length proteins (*i.e.*, antigens), wherein the amino acid residues are linked by covalent peptide bonds. Thus, a polypeptide comprising an antigenic portion of one of the above antigens may consist entirely of the antigenic portion, or may contain additional sequences. The additional sequences may be derived from the native *M. tuberculosis* antigen or may be heterologous, and such sequences may (but need not) be antigenic.

WO 97/09429 PCT/US96/14675

11

An "antigenic portion" of an antigen (which may or may not be soluble) is a portion that is capable of reacting with sera obtained from an *M. tuberculosis*-infected individual (*i.e.*, generates an absorbance reading with sera from infected individuals that is at least three standard deviations above the absorbance obtained with sera from uninfected individuals, in a representative ELISA assay described herein). An "*M. tuberculosis*-infected individual" is a human who has been infected with *M. tuberculosis* (*e.g.*, has an intradermal skin test response to PPD that is at least 0.5 cm in diameter). Infected individuals may display symptoms of tuberculosis or may be free of disease symptoms. Polypeptides comprising at least an antigenic portion of one or more *M. tuberculosis* antigens as described herein may generally be used, alone or in combination, to detect tuberculosis in a patient.

10

15

20

25

30

The compositions and methods of this invention also encompass variants of the above polypeptides. A "variant," as used herein, is a polypeptide that differs from the native antigen only in conservative substitutions and/or modifications, such that the antigenic properties of the polypeptide are retained. Such variants may generally be identified by modifying one of the above polypeptide sequences, and evaluating the antigenic properties of the modified polypeptide using, for example, the representative procedures described herein.

A "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. In general, the following groups of amino acids represent conservative changes: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his.

Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino acids that have minimal influence on the antigenic properties, secondary structure and hydropathic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the

15

20

25

protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

In a related aspect, combination polypeptides are disclosed. A "combination polypeptide" is a polypeptide comprising at least one of the above antigenic portions and one or more additional antigenic *M. tuberculosis* sequences, which are joined via a peptide linkage into a single amino acid chain. The sequences may be joined directly (*i.e.*, with no intervening amino acids) or may be joined by way of a linker sequence (*e.g.*, Gly-Cys-Gly) that does not significantly diminish the antigenic properties of the component polypeptides.

In general, *M. tuberculosis* antigens, and DNA sequences encoding such antigens, may be prepared using any of a variety of procedures. For example, soluble antigens may be isolated from *M. tuberculosis* culture filtrate by procedures known to those of ordinary skill in the art, including anion-exchange and reverse phase chromatography. Purified antigens may then be evaluated for a desired property, such as the ability to react with sera obtained from an *M. tuberculosis*-infected individual. Such screens may be performed using the representative methods described herein. Antigens may then be partially sequenced using, for example, traditional Edman chemistry. *See* Edman and Berg, *Eur. J. Biochem.* 80:116-132, 1967.

Antigens may also be produced recombinantly using a DNA sequence that encodes the antigen, which has been inserted into an expression vector and expressed in an appropriate host. DNA molecules encoding soluble antigens may be isolated by screening an appropriate *M. tuberculosis* expression library with anti-sera (e.g., rabbit) raised specifically against soluble *M. tuberculosis* antigens. DNA sequences encoding antigens that may or may not be soluble may be identified by screening an appropriate *M. tuberculosis* genomic or cDNA expression library with sera obtained from patients infected with *M. tuberculosis*. Such screens may generally be performed using techniques well known in the art, such as those described in Sambrook

10

15

20

25

30

et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989.

DNA sequences encoding soluble antigens may also be obtained by screening an appropriate *M. tuberculosis* cDNA or genomic DNA library for DNA sequences that hybridize to degenerate oligonucleotides derived from partial amino acid sequences of isolated soluble antigens. Degenerate oligonucleotide sequences for use in such a screen may be designed and synthesized, and the screen may be performed, as described (for example) in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY (and references cited therein). Polymerase chain reaction (PCR) may also be employed, using the above oligonucleotides in methods well known in the art, to isolate a nucleic acid probe from a cDNA or genomic library. The library screen may then be performed using the isolated probe.

Regardless of the method of preparation, the antigens described herein are "antigenic." More specifically, the antigens have the ability to react with sera obtained from an *M. tuberculosis*-infected individual. Reactivity may be evaluated using, for example, the representative ELISA assays described herein, where an absorbance reading with sera from infected individuals that is at least three standard deviations above the absorbance obtained with sera from uninfected individuals is considered positive.

Antigenic portions of *M. tuberculosis* antigens may be prepared and identified using well known techniques, such as those summarized in Paul, *Fundamental Immunology*, 3d ed., Raven Press, 1993, pp. 243-247 and references cited therein. Such techniques include screening polypeptide portions of the native antigen for antigenic properties. The representative ELISAs described herein may generally be employed in these screens. An antigenic portion of a polypeptide is a portion that, within such representative assays, generates a signal in such assays that is substantially similar to that generated by the full length antigen. In other words, an antigenic portion of a *M. tuberculosis* antigen generates at least about 20%, and preferably about 100%, of the signal induced by the full length antigen in a model ELISA as described herein.

10

15

20

25

Portions and other variants of *M. tuberculosis* antigens may be generated by synthetic or recombinant means. Synthetic polypeptides having fewer than about 100 amino acids, and generally fewer than about 50 amino acids, may be generated using techniques well known in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. *See* Merrifield, *J. Am. Chem. Soc.* 85:2149-2146, 1963. Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Applied BioSystems, Inc., Foster City, CA, and may be operated according to the manufacturer's instructions. Variants of a native antigen may generally be prepared using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis. Sections of the DNA sequence may also be removed using standard techniques to permit preparation of truncated polypeptides.

Recombinant polypeptides containing portions and/or variants of a native antigen may be readily prepared from a DNA sequence encoding the polypeptide using a variety of techniques well known to those of ordinary skill in the art. For example, supernatants from suitable host/vector systems which secrete recombinant protein into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify a recombinant protein.

Any of a variety of expression vectors known to those of ordinary skill in the art may be employed to express recombinant polypeptides as described herein. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a DNA molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are *E. coli*, yeast or a mammalian cell line, such as COS or CHO. The DNA sequences expressed in this manner may

15

20

25

30

encode naturally occurring antigens, portions of naturally occurring antigens, or other variants thereof.

In general, regardless of the method of preparation, the polypeptides disclosed herein are prepared in substantially pure form. Preferably, the polypeptides are at least about 80% pure, more preferably at least about 90% pure and most preferably at least about 99% pure. For use in the methods described herein, however, such substantially pure polypeptides may be combined.

In certain specific embodiments, the subject invention discloses polypeptides comprising at least an antigenic portion of a soluble *M. tuberculosis* antigen (or a variant of such an antigen), where the antigen has one of the following N-terminal sequences:

- (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Cys-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu (SEQ ID No. 115);
- (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser (SEQ ID No. 116);
- (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg (SEQ ID No. 117);
- (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro (SEQ ID No. 118);
- (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val (SEQ ID No. 119);
- (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro (SEQ ID No. 120);
- (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Thr-Ala-Ala-Ser-Pro-Pro-Ser (SEQ ID No. 121);
- (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly (SEQ ID No. 122);
- (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Gln-Thr-Ser-Leu-Leu-Asn-Ser-Leu-Ala-Asp-Pro-Asn-Val-Ser-Phe-Ala-Asn (SEQ ID No. 123);

10

15

20

- (j) Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-Ile-Lys-Val-Thr-Asp-Ala-Ser; (SEQ ID No. 129)
- (k) Ala-Gly-Asp-Thr-Xaa-Ile-Tyr-Ile-Val-Gly-Asn-Leu-Thr-Ala-Asp; (SEQ ID No. 130) or
- (l) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID No. 131)

wherein Xaa may be any amino acid, preferably a cysteine residue. A DNA sequence encoding the antigen identified as (g) above is provided in SEQ ID No. 52, the deduced amino acid sequence of which is provided in SEQ ID No. 53. A DNA sequence encoding the antigen identified as (a) above is provided in SEQ ID No. 96; its deduced amino acid sequence is provided in SEQ ID No. 97. A DNA sequence corresponding to antigen (d) above is provided in SEQ ID No. 24, a DNA sequence corresponding to antigen (c) is provided in SEQ ID No. 25 and a DNA sequence corresponding to antigen (I) is disclosed in SEQ ID No. 94 and its deduced amino acid sequence is provided in SEQ ID No. 95.

In a further specific embodiment, the subject invention discloses polypeptides comprising at least an immunogenic portion of an *M. tuberculosis* antigen having one of the following N-terminal sequences, or a variant thereof that differs only in conservative substitutions and/or modifications:

- (m) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID No. 132) or
 - (n) Asp-Pro-Pro-Asp-Pro-His-Gln-Xaa-Asp-Met-Thr-Lys-Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe; (SEQ ID No. 124)
- 25 wherein Xaa may be any amino acid, preferably a cysteine residue.

In other specific embodiments, the subject invention discloses polypeptides comprising at least an antigenic portion of a soluble *M. tuberculosis* antigen (or a variant of such an antigen) that comprises one or more of the amino acid sequences encoded by (a) the DNA sequences of SEQ ID Nos. 1, 2, 4-10, 13-25, 52, 94

15

20

25

30

and 96, (b) the complements of such DNA sequences, or (c) DNA sequences substantially homologous to a sequence in (a) or (b).

In further specific embodiments, the subject invention discloses polypeptides comprising at least an antigenic portion of a *M. tuberculosis* antigen (or a variant of such an antigen), which may or may not be soluble, that comprises one or more of the amino acid sequences encoded by (a) the DNA sequences of SEQ ID Nos. 26-51, (b) the complements of such DNA sequences or (c) DNA sequences substantially homologous to a sequence in (a) or (b).

In the specific embodiments discussed above, the *M. tuberculosis* antigens include variants that are encoded DNA sequences which are substantially homologous to one or more of DNA sequences specifically recited herein. "Substantial homology," as used herein, refers to DNA sequences that are capable of hybridizing under moderately stringent conditions. Suitable moderately stringent conditions include prewashing in a solution of 5X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50°C-65°C, 5X SSC, overnight or, in the event of cross-species homology, at 45°C with 0.5X SSC; followed by washing twice at 65°C for 20 minutes with each of 2X, 0.5X and 0.2X SSC containing 0.1% SDS). Such hybridizing DNA sequences are also within the scope of this invention, as are nucleotide sequences that, due to code degeneracy, encode an immunogenic polypeptide that is encoded by a hybridizing DNA sequence.

In a related aspect, the present invention provides fusion proteins comprising a first and a second inventive polypeptide or, alternatively, a polypeptide of the present invention and a known *M. tuberculosis* antigen, such as the 38 kD antigen described above or ESAT-6 (SEQ ID Nos. 98 and 99), together with variants of such fusion proteins. The fusion proteins of the present invention may also include a linker peptide between the first and second polypeptides.

A DNA sequence encoding a fusion protein of the present invention is constructed using known recombinant DNA techniques to assemble separate DNA sequences encoding the first and second polypeptides into an appropriate expression vector. The 3' end of a DNA sequence encoding the first polypeptide is ligated, with or

10

15

20

25

30

without a peptide linker, to the 5' end of a DNA sequence encoding the second polypeptide so that the reading frames of the sequences are in phase to permit mRNA translation of the two DNA sequences into a single fusion protein that retains the biological activity of both the first and the second polypeptides.

A peptide linker sequence may be employed to separate the first and the second polypeptides by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well known in the art. Suitable peptide linker sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., Gene 40:39-46, 1985; Murphy et al., Proc. Natl. Acad. Sci. USA 83:8258-8562, 1986; U.S. Patent No. 4,935,233 and U.S. Patent No. 4,751,180. The linker sequence may be from 1 to about 50 amino acids in length. Peptide linker sequences are not required when the first and second polypeptides have non-essential N-terminal amino acid regions that can be used to separate the functional domains and prevent steric hindrance.

In another aspect, the present invention provides methods for using the polypeptides described above to diagnose tuberculosis. In this aspect, methods are provided for detecting *M. tuberculosis* infection in a biological sample, using one or more of the above polypeptides, alone or in combination. In embodiments in which multiple polypeptides are employed, polypeptides other than those specifically described herein, such as the 38 kD antigen described in Andersen and Hansen, *Infect. Immun.* 57:2481-2488, 1989, may be included. As used herein, a "biological sample" is any antibody-containing sample obtained from a patient. Preferably, the sample is whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid or urine. More

WO 97/09429 PCT/US96/14675

preferably, the sample is a blood, serum or plasma sample obtained from a patient or a blood supply. The polypeptide(s) are used in an assay, as described below, to determine the presence or absence of antibodies to the polypeptide(s) in the sample, relative to a predetermined cut-off value. The presence of such antibodies indicates previous sensitization to mycobacteria antigens which may be indicative of tuberculosis.

In embodiments in which more than one polypeptide is employed, the polypeptides used are preferably complementary (i.e., one component polypeptide will tend to detect infection in samples where the infection would not be detected by another component polypeptide). Complementary polypeptides may generally be identified by using each polypeptide individually to evaluate serum samples obtained from a series of patients known to be infected with *M. tuberculosis*. After determining which samples test positive (as described below) with each polypeptide, combinations of two or more polypeptides may be formulated that are capable of detecting infection in most, or all, of the samples tested. Such polypeptides are complementary. For example, approximately 25-30% of sera from tuberculosis-infected individuals are negative for antibodies to any single protein, such as the 38 kD antigen mentioned above. Complementary polypeptides may, therefore, be used in combination with the 38 kD antigen to improve sensitivity of a diagnostic test.

There are a variety of assay formats known to those of ordinary skill in the art for using one or more polypeptides to detect antibodies in a sample. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988, which is incorporated herein by reference. In a preferred embodiment, the assay involves the use of polypeptide immobilized on a solid support to bind to and remove the antibody from the sample. The bound antibody may then be detected using a detection reagent that contains a reporter group. Suitable detection reagents include antibodies that bind to the antibody/polypeptide complex and free polypeptide labeled with a reporter group (e.g., in a semi-competitive assay). Alternatively, a competitive assay may be utilized, in which an antibody that binds to the polypeptide is labeled with a reporter group and allowed to bind to the immobilized antigen after incubation of the antigen with the sample. The extent to which components of the sample inhibit the

10

15

20

binding of the labeled antibody to the polypeptide is indicative of the reactivity of the sample with the immobilized polypeptide.

The solid support may be any solid material known to those of ordinary skill in the art to which the antigen may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681.

The polypeptides may be bound to the solid support using a variety of techniques known to those of ordinary skill in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "bound" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the antigen and functional groups on the support or may be a linkage by way of a cross-linking agent). Binding by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the polypeptide, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of polypeptide ranging from about 10 ng to about 1 µg, and preferably about 100 ng, is sufficient to bind an adequate amount of antigen.

Covalent attachment of polypeptide to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the polypeptide. For example, the polypeptide may be bound to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the polypeptide (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).

PCT/US96/14675

10

15

20

25

30

In certain embodiments, the assay is an enzyme linked immunosorbent assay (ELISA). This assay may be performed by first contacting a polypeptide antigen that has been immobilized on a solid support, commonly the well of a microtiter plate, with the sample, such that antibodies to the polypeptide within the sample are allowed to bind to the immobilized polypeptide. Unbound sample is then removed from the immobilized polypeptide and a detection reagent capable of binding to the immobilized antibody-polypeptide complex is added. The amount of detection reagent that remains bound to the solid support is then determined using a method appropriate for the specific detection reagent.

More specifically, once the polypeptide is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin or Tween 20TM (Sigma Chemical Co., St. Louis, MO) may be employed. The immobilized polypeptide is then incubated with the sample, and antibody is allowed to bind to the antigen. The sample may be diluted with a suitable diluent, such as phosphate-buffered saline (PBS) prior to incubation. In general, an appropriate contact time (i.e., incubation time) is that period of time that is sufficient to detect the presence of antibody within a *M. tuberculosis*-infected sample. Preferably, the contact time is sufficient to achieve a level of binding that is at least 95% of that achieved at equilibrium between bound and unbound antibody. Those of ordinary skill in the art will recognize that the time necessary to achieve equilibrium may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20[™]. Detection reagent may then be added to the solid support. An appropriate detection reagent is any compound that binds to the immobilized antibody-polypeptide complex and that can be detected by any of a variety of means known to those in the art. Preferably, the detection reagent contains a binding agent (such as, for example, Protein A, Protein G, immunoglobulin, lectin or free antigen) conjugated to a reporter group. Preferred

15

20

25

reporter groups include enzymes (such as horseradish peroxidase), substrates, cofactors, inhibitors, dyes, radionuclides, luminescent groups, fluorescent groups and biotin. The conjugation of binding agent to reporter group may be achieved using standard methods known to those of ordinary skill in the art. Common binding agents may also be purchased conjugated to a variety of reporter groups from many commercial sources (e.g., Zymed Laboratories, San Francisco, CA, and Pierce, Rockford, IL).

The detection reagent is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound antibody. An appropriate amount of time may generally be determined from the manufacturer's instructions or by assaying the level of binding that occurs over a period of time. Unbound detection reagent is then removed and bound detection reagent is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.

To determine the presence or absence of anti-M. tuberculosis antibodies in the sample, the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cut-off value. In one preferred embodiment, the cut-off value is the average mean signal obtained when the immobilized antigen is incubated with samples from an uninfected patient. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered positive for tuberculosis. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., Clinical Epidemiology: A Basic Science for Clinical Medicine, Little Brown and Co., 1985, pp. 106-107. Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive

15

20

25

rates (i.e., sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (i.e., the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for tuberculosis.

In a related embodiment, the assay is performed in a rapid flow-through or strip test format, wherein the antigen is immobilized on a membrane, such as nitrocellulose. In the flow-through test, antibodies within the sample bind to the immobilized polypeptide as the sample passes through the membrane. A detection reagent (e.g., protein A-colloidal gold) then binds to the antibody-polypeptide complex as the solution containing the detection reagent flows through the membrane. The detection of bound detection reagent may then be performed as described above. In the strip test format, one end of the membrane to which polypeptide is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing detection reagent and to the area of immobilized polypeptide. Concentration of detection reagent at the polypeptide indicates the presence of anti-M. tuberculosis antibodies in the sample. Typically, the concentration of detection reagent at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of polypeptide immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of antibodies that would be sufficient to generate a positive signal in an ELISA, as discussed above. Preferably, the amount of polypeptide immobilized on the membrane ranges from about 25 ng to about 1 μg, and more preferably from about 50 ng to about 500 ng. Such tests can typically be performed with a very small amount (e.g., one drop) of patient serum or blood.

10

15

30

Of course, numerous other assay protocols exist that are suitable for use with the polypeptides of the present invention. The above descriptions are intended to be exemplary only.

In yet another aspect, the present invention provides antibodies to the inventive polypeptides. Antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In one such technique, an immunogen comprising the antigenic polypeptide is initially injected into any of a wide variety of mammals (e.g., mice, rats, rabbits, sheep and goats). In this step, the polypeptides of this invention may serve as the immunogen without modification. Alternatively, particularly for relatively short polypeptides, a superior immune response may be elicited if the polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The immunogen is injected into the animal host, preferably according to a predetermined schedule incorporating one or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific for the polypeptide may then be purified from such antisera by, for example, affinity chromatography using the polypeptide coupled to a suitable solid support.

Monoclonal antibodies specific for the antigenic polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein, Eur. J. Immunol. 6:511-519, 1976, and improvements thereto. Briefly, these methods involve 20 the preparation of immortal cell lines capable of producing antibodies having the desired specificity (i.e., reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a 25 myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks,

15

20

colonies of hybrids are observed. Single colonies are selected and tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.

Antibodies may be used in diagnostic tests to detect the presence of *M. tuberculosis* antigens using assays similar to those detailed above and other techniques well known to those of skill in the art, thereby providing a method for detecting *M. tuberculosis* infection in a patient.

Diagnostic reagents of the present invention may also comprise DNA sequences encoding one or more of the above polypeptides, or one or more portions thereof. For example, primers comprising at least 10 contiguous oligonucleotides of the subject DNA sequences may be used in polymerase chain reaction (PCR) based tests. Similarly, probes comprising at least 15 contiguous oligonucleotides of the subject DNA sequences may be used for hybridizing to specific sequences. Techniques for both PCR based tests and hybridization tests are well known in the art. Primers or probes may thus be used to detect *M. tuberculosis* infection in biological samples, preferably sputum, blood, serum, saliva, cerebrospinal fluid or urine. DNA probes or primers comprising oligonucleotide sequences described above may be used alone, in combination with each other, or with previously identified sequences, such as the 38 kD antigen discussed above.

The following Examples are offered by way of illustration and not by way of limitation.

EXAMPLES

EXAMPLE 1

5

10

15

20

25

30

PURIFICATION AND CHARACTERIZATION OF POLYPEPTIDES FROM M. TUBERCULOSIS CULTURE FILTRATE

This example illustrates the preparation of *M. tuberculosis* soluble polypeptides from culture filtrate. Unless otherwise noted, all percentages in the following example are weight per volume.

M. tuberculosis (either H37Ra, ATCC No. 25177, or H37Rv, ATCC No. 25618) was cultured in sterile GAS media at 37°C for fourteen days. The media was then vacuum filtered (leaving the bulk of the cells) through a 0.45 μ filter into a sterile 2.5 L bottle. The media was then filtered through a 0.2 μ filter into a sterile 4 L bottle. NaN₃ was then added to the culture filtrate to a concentration of 0.04%. The bottles were then placed in a 4°C cold room.

The culture filtrate was concentrated by placing the filtrate in a 12 L reservoir that had been autoclaved and feeding the filtrate into a 400 ml Amicon stir cell which had been rinsed with ethanol and contained a 10,000 kDa MWCO membrane. The pressure was maintained at 60 psi using nitrogen gas. This procedure reduced the 12 L volume to approximately 50 ml.

The culture filtrate was then dialyzed into 0.1% ammonium bicarbonate using a 8,000 kDa MWCO cellulose ester membrane, with two changes of ammonium bicarbonate solution. Protein concentration was then determined by a commercially available BCA assay (Pierce, Rockford, IL).

The dialyzed culture filtrate was then lyophilized, and the polypeptides resuspended in distilled water. The polypeptides were then dialyzed against 0.01 mM 1,3 bis[tris(hydroxymethyl)-methylamino]propane, pH 7.5 (Bis-Tris propane buffer), the initial conditions for anion exchange chromatography. Fractionation was performed using gel profusion chromatography on a POROS 146 II Q/M anion exchange column

10

20

25

30

4.6 mm x 100 mm (Perseptive BioSystems, Framingham, MA) equilibrated in 0.01 mM Bis-Tris propane buffer pH 7.5. Polypeptides were eluted with a linear 0-0.5 M NaCl gradient in the above buffer system. The column eluent was monitored at a wavelength of 220 nm.

The pools of polypeptides eluting from the ion exchange column were dialyzed against distilled water and lyophilized. The resulting material was dissolved in 0.1% trifluoroacetic acid (TFA) pH 1.9 in water, and the polypeptides were purified on a Delta-Pak C18 column (Waters, Milford, MA) 300 Angstrom pore size, 5 micron particle size (3.9 x 150 mm). The polypeptides were eluted from the column with a linear gradient from 0-60% dilution buffer (0.1% TFA in acetonitrile). The flow rate was 0.75 ml/minute and the HPLC eluent was monitored at 214 nm. Fractions containing the eluted polypeptides were collected to maximize the purity of the individual samples. Approximately 200 purified polypeptides were obtained.

The purified polypeptides were then screened for the ability to induce T-cell proliferation in PBMC preparations. The PBMCs from donors known to be PPD skin test positive and whose T cells were shown to proliferate in response to PPD and crude soluble proteins from MTB were cultured in medium comprising RPMI 1640 supplemented with 10% pooled human serum and 50 µg/ml gentamicin. Purified polypeptides were added in duplicate at concentrations of 0.5 to 10 µg/mL. After six days of culture in 96-well round-bottom plates in a volume of 200 µl, 50 µl of medium was removed from each well for determination of IFN-γ levels, as described below. The plates were then pulsed with 1 µCi/well of tritiated thymidine for a further 18 hours, harvested and tritium uptake determined using a gas scintillation counter. Fractions that resulted in proliferation in both replicates three fold greater than the proliferation observed in cells cultured in medium alone were considered positive.

IFN-γ was measured using an enzyme-linked immunosorbent assay (ELISA). ELISA plates were coated with a mouse monoclonal antibody directed to human IFN-γ (Chemicon) in PBS for four hours at room temperature. Wells were then blocked with PBS containing 5% (W/V) non-fat dried milk for 1 hour at room temperature. The plates were then washed six times in PBS/0.2% TWEEN-20 and

15

25

30

samples diluted 1:2 in culture medium in the ELISA plates were incubated overnight at room temperature. The plates were again washed and a polyclonal rabbit anti-human IFN-γ serum diluted 1:3000 in PBS/10% normal goat serum was added to each well. The plates were then incubated for two hours at room temperature, washed and horseradish peroxidase-coupled anti-rabbit IgG (Jackson Labs.) was added at a 1:2000 dilution in PBS/5% non-fat dried milk. After a further two hour incubation at room temperature, the plates were washed and TMB substrate added. The reaction was stopped after 20 min with 1 N sulfuric acid. Optical density was determined at 450 nm using 570 nm as a reference wavelength. Fractions that resulted in both replicates giving an OD two fold greater than the mean OD from cells cultured in medium alone, plus 3 standard deviations, were considered positive.

For sequencing, the polypeptides were individually dried onto BiobreneTM (Perkin Elmer/Applied BioSystems Division, Foster City, CA) treated glass fiber filters. The filters with polypeptide were loaded onto a Perkin Elmer/Applied BioSystems Division Procise 492 protein sequencer. The polypeptides were sequenced from the amino terminal and using traditional Edman chemistry. The amino acid sequence was determined for each polypeptide by comparing the retention time of the PTH amino acid derivative to the appropriate PTH derivative standards.

Using the procedure described above, antigens having the following 20 N-terminal sequences were isolated:

- (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Xaa-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu (SEQ ID No. 54);
- (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser (SEQ ID No. 55);
- (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg (SEQ ID No. 56);
- (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro (SEQ ID No. 57);
- (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val (SEQ ID No. 58);

10

15

- (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro (SEQ ID No. 59);
- (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Ala-Ala-Ala-Ala-Pro-Pro-Ala (SEQ ID No. 60); and
- (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly (SEQ ID No. 61);

wherein Xaa may be any amino acid.

An additional antigen was isolated employing a microbore HPLC purification step in addition to the procedure described above. Specifically, 20 µl of a fraction comprising a mixture of antigens from the chromatographic purification step previously described, was purified on an Aquapore C18 column (Perkin Elmer/Applied Biosystems Division, Foster City, CA) with a 7 micron pore size, column size 1 mm x 100 mm, in a Perkin Elmer/Applied Biosystems Division Model 172 HPLC. Fractions were eluted from the column with a linear gradient of 1%/minute of acetonitrile (containing 0.05% TFA) in water (0.05% TFA) at a flow rate of 80 µl/minute. The eluent was monitored at 250 nm. The original fraction was separated into 4 major peaks plus other smaller components and a polypeptide was obtained which was shown to have a molecular weight of 12.054 Kd (by mass spectrometry) and the following N-terminal sequence:

20 (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Gln-Thr-Ser-Leu-Leu-Asn-Asn-Leu-Ala-Asp-Pro-Asp-Val-Ser-Phe-Ala-Asp (SEQ ID No. 62).

This polypeptide was shown to induce proliferation and IFN- γ production in PBMC preparations using the assays described above.

Additional soluble antigens were isolated from *M. tuberculosis* culture filtrate as follows. *M. tuberculosis* culture filtrate was prepared as described above. Following dialysis against Bis-Tris propane buffer, at pH 5.5, fractionation was performed using anion exchange chromatography on a Poros QE column 4.6 x 100 mm (Perseptive Biosystems) equilibrated in Bis-Tris propane buffer pH 5.5. Polypeptides

10

20

25

30

were eluted with a linear 0-1.5 M NaCl gradient in the above buffer system at a flow rate of 10 ml/min. The column eluent was monitored at a wavelength of 214 nm.

The fractions eluting from the ion exchange column were pooled and subjected to reverse phase chromatography using a Poros R2 column 4.6 x 100 mm (Perseptive Biosystems). Polypeptides were eluted from the column with a linear gradient from 0-100% acetonitrile (0.1% TFA) at a flow rate of 5 ml/min. The eluent was monitored at 214 nm.

Fractions containing the eluted polypeptides were lyophilized and resuspended in 80 µl of aqueous 0.1% TFA and further subjected to reverse phase chromatography on a Vydac C4 column 4.6 x 150 mm (Western Analytical, Temecula, CA) with a linear gradient of 0-100% acetonitrile (0.1% TFA) at a flow rate of 2 ml/min. Eluent was monitored at 214 nm.

The fraction with biological activity was separated into one major peak plus other smaller components. Western blot of this peak onto PVDF membrane revealed three major bands of molecular weights 14 Kd, 20 Kd and 26 Kd. These polypeptides were determined to have the following N-terminal sequences, respectively:

- (j) Xaa-Asp-Ser-Glu-Lys-Ser-Ala-Thr-Ile-Lys-Val-Thr-Asp-Ala-Ser: (SEQ ID No. 129)
- (k) Ala-Gly-Asp-Thr-Xaa-Ile-Tyr-Ile-Val-Gly-Asn-Leu-Thr-Ala-Asp; (SEQ ID No. 130) and
- (l) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID No. 131), wherein Xaa may be any amino acid.

Using the assays described above, these polypeptides were shown to induce proliferation and IFN- γ production in PBMC preparations. Figs. 1A and B show the results of such assays using PBMC preparations from a first and a second donor, respectively.

DNA sequences that encode the antigens designated as (a), (c), (d) and (g) above were obtained by screening a *M. tuberculosis* genomic library using ³²P end labeled degenerate oligonucleotides corresponding to the N-terminal sequence and containing *M. tuberculosis* codon bias. The screen performed using a probe

15

20

corresponding to antigen (a) above identified a clone having the sequence provided in SEQ ID No. 96. The polypeptide encoded by SEQ ID No. 96 is provided in SEQ ID No. 97. The screen performed using a probe corresponding to antigen (g) above identified a clone having the sequence provided in SEQ ID No. 52. The polypeptide encoded by SEQ ID No. 52 is provided in SEQ ID No. 53. The screen performed using a probe corresponding to antigen (d) above identified a clone having the sequence provided in SEQ ID No. 24, and the screen performed with a probe corresponding to antigen (c) identified a clone having the sequence provided in SEQ ID No. 25.

The above amino acid sequences were compared to known amino acid sequences in the gene bank using the DNA STAR system. The database searched contains some 173,000 proteins and is a combination of the Swiss, PIR databases along with translated protein sequences (Version 87). No significant homologies to the amino acid sequences for antigens (a)-(h) and (l) were detected.

The amino acid sequence for antigen (i) was found to be homologous to a sequence from *M. leprae*. The full length *M. leprae* sequence was amplified from genomic DNA using the sequence obtained from GENBANK. This sequence was then used to screen an *M. tuberculosis* library and a full length copy of the *M. tuberculosis* homologue was obtained (SEQ ID No. 94).

The amino acid sequence for antigen (j) was found to be homologous to a known *M. tuberculosis* protein translated from a DNA sequence. To the best of the inventors' knowledge, this protein has not been previously shown to possess T-cell stimulatory activity. The amino acid sequence for antigen (k) was found to be related to a sequence from *M. leprae*.

In the proliferation and IFN-γ assays described above, using three PPD positive donors, the results for representative antigens provided above are presented in Table 1:

15

20

TABLE 1 RESULTS OF PBMC PROLIFERATION AND IFN-y ASSAYS

Sequence	Proliferation	IFN-γ	
(a)	+	•	
(c)	+++	+++	
(d)	++	++	
(g) .	+++	+++	
(h)	+++	+++	

In Table 1, responses that gave a stimulation index (SI) of between 2 and 4 (compared to cells cultured in medium alone) were scored as +, as SI of 4-8 or 2-4 at a concentration of 1 µg or less was scored as ++ and an SI of greater than 8 was scored as +++. The antigen of sequence (i) was found to have a high SI (+++) for one donor and lower SI (++ and +) for the two other donors in both proliferation and IFN-y assays. 10 These results indicate that these antigens are capable of inducing proliferation and/or interferon-y production.

EXAMPLE 2 USE OF PATIENT SERA TO ISOLATE M. TUBERCULOSIS ANTIGENS

This example illustrates the isolation of antigens from M. tuberculosis lysate by screening with serum from M. tuberculosis-infected individuals.

Dessicated M. tuberculosis H37Ra (Difco Laboratories) was added to a 2% NP40 solution, and alternately homogenized and sonicated three times. resulting suspension was centrifuged at 13,000 rpm in microfuge tubes and the supernatant put through a 0.2 micron syringe filter. The filtrate was bound to Macro Prep DEAE beads (BioRad, Hercules, CA). The beads were extensively washed with 20 mM Tris pH 7.5 and bound proteins eluted with 1M NaCl. The NaCl elute was dialyzed overnight against 10 mM Tris, pH 7.5. Dialyzed solution was treated with

DNase and RNase at 0.05 mg/ml for 30 min. at room temperature and then with α-D-mannosidase, 0.5 U/mg at pH 4.5 for 3-4 hours at room temperature. After returning to pH 7.5, the material was fractionated via FPLC over a Bio Scale-Q-20 column (BioRad). Fractions were combined into nine pools, concentrated in a Centriprep 10 (Amicon, Beverley, MA) and screened by Western blot for serological activity using a serum pool from *M. tuberculosis*-infected patients which was not immunoreactive with other antigens of the present invention.

The most reactive fraction was run in SDS-PAGE and transferred to PVDF. A band at approximately 85 Kd was cut out yielding the sequence:

(m) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID No. 132), wherein Xaa may be any amino acid.

Comparison of this sequence with those in the gene bank as described above, revealed no significant homologies to known sequences.

15

25

30

10

EXAMPLE 3

PREPARATION OF DNA SEQUENCES ENCODING M. TUBERCULOSIS ANTIGENS

This example illustrates the preparation of DNA sequences encoding

M. tuberculosis antigens by screening a M. tuberculosis expression library with sera
obtained from patients infected with M. tuberculosis, or with anti-sera raised against
M. tuberculosis antigens.

A. PREPARATION OF M. TUBERCULOSIS SOLUBLE ANTIGENS USING RABBIT ANTI-

Genomic DNA was isolated from the *M. tuberculosis* strain H37Ra. The DNA was randomly sheared and used to construct an expression library using the Lambda ZAP expression system (Stratagene, La Jolla, CA). Rabbit anti-sera was generated against secretory proteins of the *M. tuberculosis* strains H37Ra, H37Rv and Erdman by immunizing a rabbit with concentrated supernatant of the *M. tuberculosis*

15

20

25

cultures. Specifically, the rabbit was first immunized subcutaneously with 200 µg of protein antigen in a total volume of 2 ml containing 100 µg muramyl dipeptide (Calbiochem, La Jolla, CA) and 1 ml of incomplete Freund's adjuvant. Four weeks later the rabbit was boosted subcutaneously with 100 µg antigen in incomplete Freund's adjuvant. Finally, the rabbit was immunized intravenously four weeks later with 50 µg protein antigen. The anti-sera were used to screen the expression library as described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989. Bacteriophage plaques expressing immunoreactive antigens were purified. Phagemid from the plaques was rescued and the nucleotide sequences of the *M. tuberculosis* clones deduced.

Thirty two clones were purified. Of these, 25 represent sequences that have not been previously identified in *M. tuberculosis*. Proteins were induced by IPTG and purified by gel elution, as described in Skeiky et al., *J. Exp. Med.* 181:1527-1537, 1995. Representative partial sequences of DNA molecules identified in this screen are provided in SEQ ID Nos. 1-25. The corresponding predicted amino acid sequences are shown in SEQ ID Nos. 64-88.

On comparison of these sequences with known sequences in the gene bank using the databases described above, it was found that the clones referred to hereinafter as TbRA2A, TbRA16, TbRA18, and TbRA29 (SEQ ID Nos. 77, 69, 71, 76) show some homology to sequences previously identified in *Mycobacterium leprae* but not in *M. tuberculosis*. TbRA11, TbRA26, TbRA28 and TbDPEP (SEQ ID Nos. 66, 74, 75, 53) have been previously identified in *M. tuberculosis*. No significant homologies were found to TbRA1, TbRA3, TbRA4, TbRA9, TbRA10, TbRA13, TbRA17, TbRA19, TbRA29, TbRA32, TbRA36 and the overlapping clones TbRA35 and TbRA12 (SEQ ID Nos. 64, 78, 82, 83, 65, 68, 76, 72, 76, 79, 81, 80, 67, respectively). The clone TbRa24 is overlapping with clone TbRa29.

10

15

20

25

30

B. <u>Use of Patient Sera to Identify DNA Sequences Encoding</u> M. TUBERCULOSIS ANTIGENS

The genomic DNA library described above, and an additional H37Rv library, were screened using pools of sera obtained from patients with active tuberculosis. To prepare the H37Rv library, *M. tuberculosis* strain H37Rv genomic DNA was isolated, subjected to partial Sau3A digestion and used to construct an expression library using the Lambda Zap expression system (Stratagene, La Jolla, Ca). Three different pools of sera, each containing sera obtained from three individuals with active pulmonary or pleural disease, were used in the expression screening. The pools were designated TbL, TbM and TbH, referring to relative reactivity with H37Ra lysate (*i.e.*, TbL = low reactivity, TbM = medium reactivity and TbH = high reactivity) in both ELISA and immunoblot format. A fourth pool of sera from seven patients with active pulmonary tuberculosis was also employed. All of the sera lacked increased reactivity with the recombinant 38 kD *M. tuberculosis* H37Ra phosphate-binding protein.

All pools were pre-adsorbed with *E. coli* lysate and used to screen the H37Ra and H37Rv expression libraries, as described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989. Bacteriophage plaques expressing immunoreactive antigens were purified. Phagemid from the plaques was rescued and the nucleotide sequences of the *M. tuberculosis* clones deduced.

Thirty two clones were purified. Of these, 31 represented sequences that had not been previously identified in human *M. tuberculosis*. Representative sequences of the DNA molecules identified are provided in SEQ ID NOS.: 26-51 and 100. Of these, TbH-8 and TbH-8-2 (SEQ. ID NO. 100) are non-contiguous DNA sequences from the same clone, and TbH-4 (SEQ. ID NO. 43) and TbH-4-FWD (SEQ. ID NO. 44) are non-contiguous sequences from the same clone. Amino acid sequences for the antigens hereinafter identified as Tb38-1, TbH-4, TbH-8, TbH-9, and TbH-12 are shown in SEQ ID NOS.: 89-93. Comparison of these sequences with known sequences in the gene bank using the databases identified above revealed no significant homologies to TbH-4, TbH-8, TbH-9 and TbM-3, although weak homologies were

found to TbH-9. TbH-12 was found to be homologous to a 34 kD antigenic protein previously identified in *M. paratuberculosis* (Acc. No. S28515). Tb38-1 was found to be located 34 base pairs upstream of the open reading frame for the antigen ESAT-6 previously identified in *M. bovis* (Acc. No. U34848) and in *M. tuberculosis* (Sorensen et al., *Infec. Immun.* 63:1710-1717, 1995).

Probes derived from Tb38-1 and TbH-9, both isolated from an H37Ra library, were used to identify clones in an H37Rv library. Tb38-1 hybridized to Tb38-1F2, Tb38-1F3, Tb38-1F5 and Tb38-1F6 (SEQ. ID NOS. 107, 108, 111, 113, and 114). (SEQ ID NOS. 107 and 108 are non-contiguous sequences from clone Tb38-1F2.) Two open reading frames were deduced in Tb38-IF2; one corresponds to Tb37FL (SEQ. ID. NO. 109), the second, a partial sequence, may be the homologue of Tb38-1 and is called Tb38-IN (SEQ. ID NO. 110). The deduced amino acid sequence of Tb38-1F3 is presented in SEQ. ID. NO. 112. A TbH-9 probe identified three clones in the H37Rv library: TbH-9-FL (SEQ. ID NO. 101), which may be the homologue of TbH-9 (R37Ra), TbH-9-1 (SEQ. ID NO. 103), and TbH-9-4 (SEQ. ID NO. 105), all of which are highly related sequences to TbH-9. The deduced amino acid sequences for these three clones are presented in SEQ ID NOS. 102, 104 and 106.

20

30

EXAMPLE 4

Purification and Characterization of a Polypeptide from Tuberculin Purified Protein Derivative

An M. tuberculosis polypeptide was isolated from tuberculin purified protein derivative (PPD) as follows.

PPD was prepared as published with some modification (Seibert, F. et al., Tuberculin purified protein derivative. Preparation and analyses of a large quantity for standard. The American Review of Tuberculosis 44:9-25, 1941).

M. tuberculosis Rv strain was grown for 6 weeks in synthetic medium in roller bottles at 37 °C. Bottles containing the bacterial growth were then heated to 100°C in water vapor

15

20

25

for 3 hours. Cultures were sterile filtered using a 0.22 μ filter and the liquid phase was concentrated 20 times using a 3 kD cut-off membrane. Proteins were precipitated once with 50% ammonium sulfate solution and eight times with 25% ammonium sulfate solution. The resulting proteins (PPD) were fractionated by reverse phase liquid chromatography (RP-HPLC) using a C18 column (7.8 x 300 mM; Waters, Milford, MA) in a Biocad HPLC system (Perseptive Biosystems, Framingham, MA). Fractions were eluted from the column with a linear gradient from 0-100% buffer (0.1% TFA in acetonitrile). The flow rate was 10 ml/minute and eluent was monitored at 214 nm and 280 nm.

Six fractions were collected, dried, suspended in PBS and tested individually in *M. tuberculosis*-infected guinea pigs for induction of delayed type hypersensitivity (DTH) reaction. One fraction was found to induce a strong DTH reaction and was subsequently fractionated furtherby RP-HPLC on a microbore Vydac C18 column (Cat. No. 218TP5115) in a Perkin Elmer/Applied Biosystems Division Model 172 HPLC. Fractions were eluted with a linear gradient from 5-100% buffer (0.05% TFA in acetonitrile) with a flow rate of 80 µl/minute. Eluent was monitored at 215 nm. Eight fractions were collected and tested for induction of DTH in *M. tuberculosis*-infected guinea pigs. One fraction was found to induce strong DTH of about 16 mm induration. The other fractions did not induce detectable DTH. The positive fraction was submitted to SDS-PAGE gel electrophoresis and found to contain a single protein band of approximately 12 kD molecular weight.

This polypeptide, herein after referred to as DPPD, was sequenced from the amino terminal using a Perkin Elmer/Applied Biosystems Division Procise 492 protein sequencer as described above and found to have the N-terminal sequence shown in SEQ ID No.: 124. Comparison of this sequence with known sequences in the gene bank as described above revealed no known homologies. Four cyanogen bromide fragments of DPPD were isolated and found to have the sequences shown in SEQ ID Nos.: 125-128.

10

15

EXAMPLE 5

SYNTHESIS OF SYNTHETIC POLYPEPTIDES

Polypeptides may be synthesized on a Millipore 9050 peptide synthesizer using FMOC chemistry with HPTU (O-Benzotriazole-N,N,N',N'tetramethyluronium hexafluorophosphate) activation. A Gly-Cys-Gly sequence may be attached to the amino terminus of the peptide to provide a method of conjugation or labeling of the peptide. Cleavage of the peptides from the solid support may be carried trifluoroacetic mixture: cleavage following out using the acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides may be precipitated in cold methyl-t-butyl-ether. The peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of 0-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the Following lyophilization of the pure fractions, the peptides may be peptides. characterized using electrospray mass spectrometry and by amino acid analysis.

This procedure was used to synthesize a TbM-1 peptide that contains one and a half repeats of a TbM-1 sequence. The TbM-1 peptide has the sequence GCGDRSGGNLDQIRLRRDRSGGNL (SEQ ID No. 63).

20

EXAMPLE 6

USE OF REPRESENTATIVE ANTIGENS FOR SERODIAGNOSIS OF TUBERCULOSIS

This Example illustrates the diagnostic properties of several representative antigens. Figures 1 and 2 present the reactivity of representative antigens with sera from *M. tuberculosis*-infected and uninfected individuals, as compared to the reactivity of bacterial lysate and the 38 kD antigen.

Assays were performed in 96-well plates were coated with 200 ng antigen diluted to 50 µL in carbonate coating buffer, pH 9.6. The wells were coated

15

20

25

30

overnight at 4°C (or 2 hours at 37°C). The plate contents were then removed and the wells were blocked for 2 hours with 200 μL of PBS/1% BSA. After the blocking step, the wells were washed five times with PBS/0.1% Tween 20TM. 50 μL sera, diluted 1:100 in PBS/0.1% Tween 20TM/0.1% BSA, was then added to each well and incubated for 30 minutes at room temperature. The plates were then washed again five times with PBS/0.1% Tween 20TM.

The enzyme conjugate (horseradish peroxidase - Protein A, Zymed, San Francisco, CA) was then diluted 1:10,000 in PBS/0.1% Tween 20TM/0.1% BSA, and 50 μL of the diluted conjugate was added to each well and incubated for 30 minutes at room temperature. Following incubation, the wells were washed five times with PBS/0.1% Tween 20TM. 100 μL of tetramethylbenzidine peroxidase (TMB) substrate (Kirkegaard and Perry Laboratories, Gaithersburg, MD) was added, undiluted, and incubated for about 15 minutes. The reaction was stopped with the addition of 100 μL of 1 N H₂SO₄ to each well, and the plates were read at 450 nm.

Figure 2 shows the ELISA reactivity of two recombinant antigens isolated using method A in Example 3 (TbRa3 and TbRa9) with sera from *M. tuberculosis* positive and negative patients. The reactivity of these antigens is compared to that of bacterial lysate isolated from *M. tuberculosis* strain H37Ra (Difco, Detroit, MI). In both cases, the recombinant antigens differentiated positive from negative sera. Based on cut-off values obtained from receiver-operator curves, TbRa3 detected 56 out of 87 positive sera, and TbRa9 detected 111 out of 165 positive sera.

Figure 3 illustrates the ELISA reactivity of representative antigens isolated using method B of Example 3. The reactivity of the recombinant antigens TbH4, TbH12, Tb38-1 and the peptide TbM-1 (as described in Example 4) is compared to that of the 38 kD antigen described by Andersen and Hansen, *Infect. Immun.* 57:2481-2488, 1989. Again, all of the polypeptides tested differentiated positive from negative sera. Based on cut-off values obtained from receiver-operator curves, TbH4 detected 67 out of 126 positive sera, TbH12 detected 50 out of 125 positive sera, 38-1 detected 61 out of 101 positive sera and the TbM-1 peptide detected 25 out of 30 positive sera.

The reactivity of four antigens (TbRa3, TbRa9, TbH4 and TbH12) with sera from a group of *M. tuberculosis* infected patients with differing reactivity in the acid fast stain of sputum (Smithwick and David, *Tubercle 52*:226, 1971) was also examined, and compared to the reactivity of *M. tuberculosis* lysate and the 38 kD antigen. The results are presented in Table 2, below:

TABLE 2

REACTIVITY OF ANTIGENS WITH SERA FROM M. TUBERCULOSIS PATIENTS

	Acid Fast		ELISA Values								
Patient	Sputum	Lysate	38kD	TbRa9	Тън12	ТъН4	TbRa3				
Ть01В93І-2	++++	1.853	0.634	0.998	1.022	1.030	1.314				
Ть01В93І-19	++++	2.657	2.322	0.608	0.837	1.857	2.335				
Ть01В93І-8	+++	2.703	0.527	0.492	0.281	0.501	2.002				
Ть01В93І-10	+++	1.665	1.301	0.685	0.216	0.448	0.458				
Ть01В93І-11	+++	2.817	0.697	0.509	0.301	0.173	2.608				
Ть01В93І-15	+++	1.28	0.283	0.808	0.218	1.537	0.811				
Tb01B93I-16	+++	2.908	>3	0.899	0.441	0.593	1.080				
Ть01В93І-25	+++	0.395	0.131	0.335	0.211	0.107	0.948				
Ть01В93І-87	+++	2.653	2.432	2.282	0.977	1.221	0.857				
Ть01В93І-89	+++	1.912	2.370	2.436	0.876	0.520	0.952				
Тъ01В94І-108	+++	1.639	0.341	0.797	0.368	0.654	0.798				
Тъ01В94І-201	+++	1.721	0.419	0.661	0.137	0.064	0.692				
Ть01В93І-88	++	1.939	1.269	2.519	1.381	0.214	0.530				
Ть01В93І-92	++	2.355	2.329	2.78	0.685	0.997	2.527				
Ть01В94І-109	++	0.993	0.620	0.574	0.441	0.5	2.558				

							
	Acid Fast			ELIS	A Values		
Patient	Sputum	Lysate	38kD	TbRa9	Тън12	ТъН4	TbRa3
Tb01B94I-210	++	2.777	>3	0.393	0.367	1.004	1.315
Tb01B94I-224	++	2.913	0.476	0.251	1.297	1.990	0.256
Ть01В93І-9	+	2.649	0.278	0.210	0.140	0.181	1.586
Ть01В93І-14	+	>3	1.538	0.282	0.291	0.549	2.880
Ть01В93І-21	+	2.645	0.739	2.499	0.783	0.536	1.770
Tb01B93I-22	+	0.714	0.451	2.082	0.285	0.269	1.159
Ть01В93І-31	+	0.956	0.490	1.019	0.812	0.176	1.293
Ть01В93І-32	_	2.261	0.786	0.668	0.273	0.535	0.405
Ть01В93І-52	_	0.658	0.114	0.434	0.330	0.273	1.140
Ть01В93І-99	_	2.118	0.584	1.62	0.119	0.977	0.729
Tb01B94I-130	-	1.349	0.224	0.86	0.282	0.383	2.146
Ть01В94І-131	_	0.685	0.324	1.173	0.059	0.118	1.431
AT4-0070	Normal	0.072	0.043	0.092	0.071	0.040	0.039
AT4-0105	Normal	0.397	0.121	0.118	0.103	0.078	0.390
3/15/94-1	Normal	0.227	0.064	0.098	0.026	0.001	0.228
4/15/93-2	Normal	0.114	0.240	0.071	0.034	0.041	0.264
5/26/94-4	Normal	0.089	0.259	0.096	0.046	0.008	0.053
5/26/94-3	Normal	0.139	0.093	0.085	0.019	0.067	0.01

Based on cut-off values obtained from receiver-operator curves, TbRa3 detected 23 out of 27 positive sera, TbRa9 detected 22 out of 27, TbH4 detected 18 out of 27 and TbH12 detected 15 out f 27. If used in combination, these four antigens would have a theoretical sensitivity of 27 out of 27, indicating that these antigens should complement each other in the serological detection of *M. tuberculosis* infection.

25

In addition, several of the recombinant antigens detected positive sera that were not detected using the 38 kD antigen, indicating that these antigens may be complementary to the 38 kD antigen.

The reactivity of the recombinant antigen TbRall with sera from M. tuberculosis patients shown to be negative for the 38 kD antigen, as well as with sera from PPD positive and normal donors, was determined by ELISA as described above. The results are shown in Figure 4 which indicates that TbRall, while being negative with sera from PPD positive and normal donors, detected sera that were negative with the 38 kD antigen. Of the thirteen 38 kD negative sera tested, nine were positive with TbRall, indicating that this antigen may be reacting with a sub-group of 38 kD antigen negative sera. In contrast, in a group of 38 kD positive sera where TbRall was reactive, the mean OD 450 for TbRall was lower than that for the 38 kD antigen. The data indicate an inverse relationship between the presence of TbRall activity and 38 kD positivity.

The antigen TbRa2A was tested in an indirect ELISA using initially 50 µl of serum at 1:100 dilution for 30 minutes at room temperature followed by washing in PBS Tween and incubating for 30 minutes with biotinylated Protein A (Zymed, San Francisco, CA) at a 1:10,000 dilution. Following washing, 50 µl of streptavidin-horseradish peroxidase (Zymed) at 1:10,000 dilution was added and the mixture incubated for 30 minutes. After washing, the assay was developed with TMB substrate as described above. The reactivity of TbRa2A with sera from *M. tuberculosis* patients and normal donors in shown in Table 3. The mean value for reactivity of TbRa2A with sera from *M. tuberculosis* patients was 0.444 with a standard deviation of 0.309. The mean for reactivity with sera from normal donors was 0.109 with a standard deviation of 0.029. Testing of 38 kD negative sera (Figure 5) also indicated that the TbRa2A antigen was capable of detecting sera in this category.

TABLE 3

REACTIVITY OF TBRA2A WITH SERA FROM M. TUBERCULOSIS PATIENTS AND FROM NORMAL DONORS

		
Serum ID	Status	OD 450
Tb85	TB	0.680
Tb86	TB	0.450
Тъ87	TB	0.263
ТЪ88	TB	0.275
Тъ89	TB	0.403
Tb91	TB	0.393
Ть92	TB	0.401
Тъ93	TB	0.232 ·
Ть94	TB	0.333
Тъ95	TB	0.435
Тъ96	TB	0.284
Тъ97	TB	0.320
Tb99	TB	0.328
Ть100	TB	0.817
Ть101	TB	0.607
Ть102	TB	0.191
Ть103	TB	0.228
Тъ107	TB	0.324
Tb109	TB	1.572
Ть112	TB	0.338
DL4-0176	Normal	0.036
AT4-0043	Normal	0.126
AT4-0044	Normal	0.130
AT4-0052	Normal	0.135
AT4-0053	Normal	0.133
AT4-0062	Normal	0.128
AT4-0070	Normal	0.088
AT4-0091	Normal	0.108
AT4-0100	Normal	0.106
AT4-0105	Normal	0.108
AT4-0109	Normal	0.105

The reactivity of the recombinant antigen (g) (SEQ ID No. 60) with sera from *M. tuberculosis* patients and normal donors was determined by ELISA as described above. Figure 6 shows the results of the titration of antigen (g) with four

M. tuberculosis positive sera that were all reactive with the 38 kD antigen and with four donor sera. All four positive sera were reactive with antigen (g).

From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for the purpose of illustration, various modifications may be made without deviating from the spirit and scope of the invention.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANTS: Corixa Corporation
- (ii) TITLE OF INVENTION: COMPOUNDS AND METHODS FOR DIAGNOSIS OF TUBERCULOSIS
- (iii) NUMBER OF SEQUENCES: 132
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: SEED and BERRY LLP
 - (B) STREET: 6300 Columbia Center. 701 Fifth Avenue
 - (C) CITY: Seattle
 - (D) STATE: Washington
 - (E) COUNTRY: USA
 - (F) ZIP: 98104-7092
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0. Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 27-AUG-1996
 - (C) CLASSIFICATION:

GGGCGCCGGT	CTAACCGGGC	GTTCCCGCGT	CCGGTCGCGC	GTGTGCGCGA	AGAGTGAACA	1020
GGGTGTCAGC	AAGCGCGGAC	GATCCTCGTG	CCGAATTC			1058

(2) INFORMATION FOR SEQ ID NO:46:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 327 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

CGGCACGAGA GACCGATGCC	GCTACCCTCG	CGCAGGAGGC	AGGTAATTTC	GAGCGGATCT	60
CCGGCGACCT GAAAACCCAG	ATCGACCAGG	TGGAGTCGAC	GGCAGGTTCG	TTGCAGGGCC	120
AGTGGCGCGG CGCGGCGGG	ACGGCCGCCC	AGGCCGCGGT	GGTGCGCTTC	CAAGAAGCAG	180
CCAATAAGCA GAAGCAGGAA	CTCGACGAGA	TCTCGACGAA	TATTCGTCAG	GCCGGCGTCC	240
AATACTCGAG GGCCGACGAG	GAGCAGCAGC	AGGCGCTGTC	CTCGCAAATG	GGCTTCTGAC	300
CCGCTAATAC GAAAAGAAAC	GGAGCAA				327

(2) INFORMATION FOR SEQ ID NO:47:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 170 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:	
CGGTCGCGAT GATGGCGTTG TCGAACGTGA CCGATTCTGT ACCGCCGTCG TTGAGATCAA	60
CCAACAACGT GTTGGCGTCG GCAAATGTGC CGNACCCGTG GATCTCGGTG ATCTTGTTCT	120
TCTTCATCAG GAAGTGCACA CCGGCCACCC TGCCCTCGGN TACCTTTCGG	170
(2) INFORMATION FOR SEQ ID NO:48:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 127 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:	

GATCCGGCGG CACGGGGGGT GCCGGCGGCA GCACCGCTGG CGCTGGCGGC AACGGCGGGG 60
CCGGGGGTGG CGGCGGAACC GGTGGGTTGC TCTTCGGCAA CGGCGGTGCC GGCGGCACG 120
GGGCCGT 127

(2) INFORMATION FOR SEQ ID NO:49:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 81 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:

Val Gln Cys Arg Val Trp Leu Glu Ile Gln Trp Arg Gly Met Leu Gly
1 5 10 15

Ala Asp Gln Ala Arg Ala Gly Gly Pro Ala Arg Ile Trp Arg Glu His
20 25 30

Ser Met Ala Ala Met Lys Pro Arg Thr Gly Asp Gly Pro Leu Glu Ala 35 40 45

Thr Lys Glu Gly Arg Gly Ile Val Met Arg Val Pro Leu Glu Gly Gly 50 55 60

Gly Arg Leu Val Val Glu Leu Thr Pro Asp Glu Ala Ala Ala Leu Gly 65 70 75 80

Asp Glu Leu Lys Gly Val Thr Ser 85

(2) INFORMATION FOR SEQ ID NO:89:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 95 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:

(2)

Thr 1	Asp	Ala	Ala	Thr 5	Leu	Ala	Gln	G1u	Ala 10	Gly	Asn	Phe	G Tu	Arg 15	Πe
Ser	G1 <i>y</i>	Asp	Leu 20	Lys	Thr	Gln	Пe	Asp 25	G1n	Val	Glu		Thr 30	Ala	Gly
Ser	Leu	G1n 35	Gly	Gln	Trp	Arg	Gly 40	Ala	Ala	Gly	Thr	A1a 45	Ala	Gln	Ala
Ala	Va1 50	Val	Arg	Phe	Gln	G1u 55	Ala	Ala	Asn	Lys	G1n 60	Lys	G1n	Glu	Leu
Asp 65	G1u	Ile	Ser	Thr	Asn 70	Ile	Arg	Gln	Ala	G1 <i>y</i> 75	Val	Gln	Tyr		Arg 80
Ala	Asp	Glu		G1n 85	Gln	Gln	Ala	Leu	Ser 90	Ser	G1n	Met		Phe 95	
INFO	RMAT	ION	FOR	SEQ	ID N	0:90):								
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 166 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear															
xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	90:						
Met '	Thr (Sln (Ser (iln '	Thr \	/al ⁻	Thr \	/al /	Asn (Sin G	iln G	:7., 1	ו בר	ALL A	cn

Arg Ala Asn Glu Val Glu Ala Pro Met Ala Asp Pro Pro Thr Asp Val

Ala	Ala	G1n 275	Ala	Va1	Glu	Thr	A1a 280	Ala	Gln	Asn	Gly	Va 1 285	Gln	Ala	Met
Ser	Ser 290	Leu	G1y	Ser	G1n	Leu 295	Gly	Ser	Ser	Leu	Gly 300	Ser	Ser	G1y	Leu
Gly 305	Ala	G1y	Val	Ala	Ala 310	Asn	Leu	Gly	Arg	Ala 315	Ala	Ser	Val	Gly	Ser 320

Leu Ser Val Pro Gln Ala Trp Ala Ala Ala Asn Gln Ala Val Thr Pro 325 330 335

Ala Ala Arg Ala Leu 340

(2) INFORMATION FOR SEQ ID NO:107:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1256 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:

CATCGGAGGG	AGTGATCACC	ATGCTGTGGC	ACGCAATGCC	ACCGGAGNTA	AATACCGCAC	60
GGCTGATGGC	CGGCGCGGGT	CCGGCTCCAA	TGCTTGCGGC	GGCCGCGGGA	TGGCAGACGC	120
TTTCGGCGGC	TCTGGACGCT	CAGGCCGTCG	AGTTGACCGC	GCGCCTGAAC	TCTCTGGGAG	180
AAGCCTGGAC	TGGAGGTGGC	AGCGACAAGG	CGCTTGCGGC	TGCAACGCCG	ATGGTGGTCT	240
GGCTACAAAC	CGCGTCAACA	CAGGCCAAGA	CCCGTGCGAT	GCAGGCGACG	GCGCAAGCCG	300

CGGCATACAC	CCAGGCCATG	GCCACGACGC	CGTCGCTGCC	GGAGATCGC	GCCAACCACA	360
TCACCCAGGC	CGTCCTTACG	GCCACCAACT	TCTTCGGTAT	CAACACGATO	CCGATCGCGT	420
TGACCGAGAT	GGATTATTTC	ATCCGTATGT	GGAACCAGGC	AGCCCTGGCA	ATGGAGGTCT	480
ACCAGGCCGA	GACCGCGGTT	AACACGCTTT	TCGAGAAGCT	CGAGCCGATG	GCGTCGATCC	540
TTGATCCCGG	CGCGAGCCAG	AGCACGACGA	ACCCGATCTT	CGGAATGCCC	TCCCCTGGCA	600
GCTCAACACC	GGTTGGCCAG	TTGCCGCCGG	CGGCTACCCA	GACCCTCGGC	CAACTGGGTG	660
AGATGAGCGG	CCCGATGCAG	CAGCTGACCC	AGCCGCTGCA	GCAGGTGACG	TCGTTGTTCA	720
GCCAGGTGGG	CGGCACCGGC	GGCGGCAACC	CAGCCGACGA	GGAAGCCGCG	CAGATGGGCC	780
TGCTCGGCAC	CAGTCCGCTG	TCGAACCATC	CGCTGGCTGG	TGGATCAGGC	CCCAGCGCGG	840
GCGCGGGCCT	GCTGCGCGCG	GAGTCGCTAC	CTGGCGCAGG	TGGGTCGTTG	ACCCGCACGC	900
CGCTGATGTC	TCAGCTGATC	GAAAAGCCGG	TTGCCCCCTC	GGTGATGCCG	GCGGCTGCTG	960
CCGGATCGTC	GGCGACGGGT	GGCGCCGCTC	CGGTGGGTGC	GGGAGCGATG	GGCCAGGGTG	1020
CGCAATCCGG	CGGCTCCACC	AGGCCGGGTC	TGGTCGCGCC	GGCACCGCTC	GCGCAGGAGC	1080
GTGAAGAAGA	CGACGAGGAC	GACTGGGACG	AAGAGGACGA	CTGGTGAGCT	CCCGTAATGA	1140
CAACAGACTT	CCCGGCCACC	CGGGCCGGAA	GACTTGCCAA	CATTTTGGCG	AGGAAGGTAA	1200
AGAGAGAAAG	TAGTCCAGCA	TGGCAGAGAT	GAAGACCGAT	GCCGCTACCC	TCGCGC	1256

(2) INFORMATION FOR SEQ ID NO:108:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 432 base pairs

(B)	TYPE: nucleic acid
(C)	STRANDEDNESS: single
(D)	TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:

CTAGTGGATG	GGACCATGGC	CATTTTCTGC	AGTCTCACTG	CCTTCTGTGT	TGACATTTTG	60
GCACGCCGGC	GGAAACGAAG	CACTGGGGTC	GAAGAACGGC	TGCGCTGCCA	TATCGTCCGG	120
AGCTTCCATA	CCTTCGTGCG	GCCGGAAGAG	CTTGTCGTAG	TCGGCCGCCA	TGACAACCTC	180
TCAGAGTGCG	CTCAAACGTA	TAAACACGAG	AAAGGGCGAG	ACCGACGGAA	GGTCGAACTC	240
GCCCGATCCC	GTGTTTCGCT	ATTCTACGCG	AACTCGGCGT	TGCCCTATGC	GAACATCCCA	300
GTGACGTTGC	CTTCGGTCGA	AGCCATTGCC	TGACCGGCTT	CGCTGATCGT	CCGCGCCAGG.	360
TTCTGCAGCG	CGTTGTTCAG	CTCGGTAGCC	GTGGCGTCCC	ATTTTTGCTG	GACACCCTGG	420
TACGCCTCCG	AA					432

(2) INFORMATION FOR SEQ ID NO:109:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 368 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:

Met Leu Trp His Ala Met Pro Pro Glu Xaa Asn Thr Ala Arg Leu Met

1 5 10 15

Ala	a Gl	y A1	a G1	y Pr	o Ala	Pro) Met	25	ıAla	a Ala	a Ala	A A 1	a G1 30		p Gln	
Thr	· Lei	35	r Ala	a Ala	a Leu	Asp	A1a 40	G]n	Ala	a Val	Glu	Le:	u Th	r Al	a Arg	•
Leu	Asr 50	i Sei	r Lei	ı Gly	/ Glu	A1a 55	Trp	Thr	Gly	Gly	Gly 60	Sei	^ Asi	p Ly	s Ala	-
Leu 65	Ala	Ala	a Ala	1 Thr	Pro	Met	Va1	Val	Trp	Leu 75	Gln	Thr	· A1a	a Sei	r Thr 80	
Gln	Ala	Lys	Thr	Arg 85	Ala	Met	Gln	Ala	Thr 90	Ala	Gln	Ala	Ala	41a 95	a Tyr	
Thr	Gln	Ala	Met 100		Thr	Thr	Pro	Ser 105	Leu	Pro	Glu	Ile	Ala 110		Asn	
His	Ile	Thr 115		Ala	Val	Leu	Thr 120	Ala	Thr	Asn	Phe	Phe 125	Gly	Ile	Asn	
Thr	Ile 130	Pro	Ile	Ala	Leu	Thr 135	Glu	Met	Asp	-	Phe 140	Ile	Arg	Met	Trp	
Asn 145	Gln	Ala	Ala	Leu	Ala 150	Met	Glu	Va1	Tyr	Gln 155	Ala	Glu	Thr	Ala	Val 160	
Asn	Thr	Leu	Phe	G1u 165	Lys	Leu	G1u		Met 170	Ala :	Ser	Ile	Leu	Asp 175	Pro	
G1y	Ala	Ser	G]n 180	Ser	Thr	Thr ,		Pro : 185	I le	Phe (Gly I		Pro 190	Ser	Pro	
Gly	Ser	Ser	Thr	Pro	Val (alý (Gln I	Leu f	Pro	Pro /	41a /	Ala	Thr	Gln	Thr	

Leu Gly Gln Leu Gly Glu Met Ser Gly Pro Met Gln Gln Leu Thr Gln Pro Leu Gln Gln Val Thr Ser Leu Phe Ser Gln Val Gly Gly Thr Gly Gly Gly Asn Pro Ala Asp Glu Glu Ala Ala Gln Met Gly Leu Leu Gly Thr Ser Pro Leu Ser Asn His Pro Leu Ala Gly Gly Ser Gly Pro Ser Ala Gly Ala Gly Leu Leu Arg Ala Glu Ser Leu Pro Gly Ala Gly Gly Ser Leu Thr Arg Thr Pro Leu Met Ser Gln Leu Ile Glu Lys Pro Val Ala Pro Ser Val Met Pro Ala Ala Ala Ala Gly Ser Ser Ala Thr Gly Gly Ala Ala Pro Val Gly Ala Gly Ala Met Gly Gln Gly Ala Gln Ser Gly Gly Ser Thr Arg Pro Gly Leu Val Ala Pro Ala Pro Leu Ala Gln Glu Arg Glu Glu Asp Asp Glu Asp Asp Trp Asp Glu Glu Asp Asp Trp

(2) INFORMATION FOR SEQ ID NO:110:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 12 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:

Met Ala Glu Met Lys Thr Asp Ala Ala Thr Leu Ala 1 5 10

(2) INFORMATION FOR SEQ ID NO:111:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 396 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:

GATCTCCGGC GACCTGAAAA CCCAGATCGA CCAGGTGGAG TCGACGGCAG GTTCGTTGCA 60
GGGCCAGTGG CGCGGCGCG CGGGGACGGC CGCCCAGGCC GCGGTGGTGC GCTTCCAAGA 120
AGCAGCCAAT AAGCAGAAGC AGGAACTCGA CGAGATCTCG ACGAATATTC GTCAGGCCGG 180
CGTCCAATAC TCGAGGGCCG ACGAGGAGCA GCAGCAGGCG CTGTCCTCGC AAATGGGCTT 240
CTGACCCGCT AATACGAAAA GAAACGGAGC AAAAACATGA CAGAGCAGCA GTGGAATTTC 300
GCGGGTATCG AGGCCGCGC AAGCGCAATC CAGGGAAATG TCACGTCCAT TCATTCCCTC 360
CTTGACGAGG GGAAGCAGTC CCTGACCAAG CTCGCA 396

(2) INFORMATION FOR SEQ ID NO:112:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 80 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:

Ile Ser Gly Asp Leu Lys Thr Gln Ile Asp Gln Val Glu Ser Thr Ala

5 10 15

Gly Ser Leu Gln Gly Gln Trp Arg Gly Ala Ala Gly Thr Ala Ala Gln 20 25 30

Ala Ala Val Val Arg Phe Gln Glu Ala Ala Asn Lys Gln Lys Gln Glu
35 40 45

Leu Asp Glu Ile Ser Thr Asn Ile Arg Gln Ala Gly Val Gln Tyr Ser 50 55 60

Arg Ala Asp Glu Glu Gln Gln Gln Ala Leu Ser Ser Gln Met Gly Phe 65 70 75 80

- (2) INFORMATION FOR SEQ ID NO:113:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 387 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:

GTGGATCCCG ATCCCGTGTT TCGCTATTCT ACGCGAACTC GGCGTTGCCC TATGCGAACA	60
TCCCAGTGAC GTTGCCTTCG GTCGAAGCCA TTGCCTGACC GGCTTCGCTG ATCGTCCGCG	120
CCAGGTTCTG CAGCGCGTTG TTCAGCTCGG TAGCCGTGGC GTCCCATTTT TGCTGGACAC	180
CCTGGTACGC CTCCGAACCG CTACCGCCCC AGGCCGCTGC GAGCTTGGTC AGGGACTGCT	240
TCCCCTCGTC AAGGAGGAA TGAATGGACG TGACATTTCC CTGGATTGCG CTTGCCGCGG	300
CCTCGATACC CGCGAAATTC CACTGCTGCT CTGTCATGTT TTTGCTCCGT TTCTTTTCGT	360
ATTAGCGGGT CAGAAGCCCA TTTGCGA	387
(2) INFORMATION FOR SEQ ID NO:114:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 272 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:

CGGCACGAGG ATCTCGGTTG GCCCAACGGC GCTGGCGAGG GCTCCGTTCC GGGGG	GCGAGC 60
TGCGCGCCGG ATGCTTCCTC TGCCCGCAGC CGCGCCTGGA TGGATGGACC AGTTG	SCTACC 120
TTCCCGACGT TTCGTTCGGT GTCTGTGCGA TAGCGGTGAC CCCGGCGCGC ACGTC	GGGAG 180
TGTTGGGGGG CAGGCCGGGT CGGTGGTTCG GCCGGGGACG CAGACGGTCT GGACG	GAACG 240
GGCGGGGTT CGCCGATTGG CATCTTTGCC CA	272

Claims

- 1. A polypeptide comprising an antigenic portion of a soluble *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen has an N-terminal sequence selected from the group consisting of:
 - (a) Asp-Pro-Val-Asp-Ala-Val-Ile-Asn-Thr-Thr-Cys-Asn-Tyr-Gly-Gln-Val-Val-Ala-Ala-Leu (SEQ ID No. 115);
 - (b) Ala-Val-Glu-Ser-Gly-Met-Leu-Ala-Leu-Gly-Thr-Pro-Ala-Pro-Ser (SEQ ID No. 116);
 - (c) Ala-Ala-Met-Lys-Pro-Arg-Thr-Gly-Asp-Gly-Pro-Leu-Glu-Ala-Ala-Lys-Glu-Gly-Arg (SEQ ID No. 17);
 - (d) Tyr-Tyr-Trp-Cys-Pro-Gly-Gln-Pro-Phe-Asp-Pro-Ala-Trp-Gly-Pro (SEQ ID No. 118);
 - (e) Asp-Ile-Gly-Ser-Glu-Ser-Thr-Glu-Asp-Gln-Gln-Xaa-Ala-Val (SEQ ID No. 119);
 - (f) Ala-Glu-Glu-Ser-Ile-Ser-Thr-Xaa-Glu-Xaa-Ile-Val-Pro (SEQ ID No. 120);
 - (g) Asp-Pro-Glu-Pro-Ala-Pro-Pro-Val-Pro-Thr-Ala-Ala-Ser-Pro-Pro-Ser (SEQ ID No. 121);
 - (h) Ala-Pro-Lys-Thr-Tyr-Xaa-Glu-Glu-Leu-Lys-Gly-Thr-Asp-Thr-Gly (SEQ ID No. 122);
 - (i) Asp-Pro-Ala-Ser-Ala-Pro-Asp-Val-Pro-Thr-Ala-Ala-Gln-Leu-Thr-Ser-Leu-Leu-Asn-Ser-Leu-Ala-Asp-Pro-Asn-Val-Ser-Phe-Ala-Asn (SEQ ID No. 123); and
 - (j) Ala-Pro-Glu-Ser-Gly-Ala-Gly-Leu-Gly-Gly-Thr-Val-Gln-Ala-Gly; (SEQ ID No. 131)

wherein Xaa may be any amino acid.

- 2. A polypeptide comprising an immunogenic portion of an *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen has an N-terminal sequence selected from the group consisting of:
 - (a) Asp-Pro-Pro-Asp-Pro-His-Gln-Xaa-Asp-Met-Thr-Lys-Gly-Tyr-Tyr-Pro-Gly-Gly-Arg-Arg-Xaa-Phe; (SEQ ID No. 124) and
 - (b) Xaa-Tyr-Ile-Ala-Tyr-Xaa-Thr-Thr-Ala-Gly-Ile-Val-Pro-Gly-Lys-Ile-Asn-Val-His-Leu-Val; (SEQ ID No. 132), wherein Xaa may be any amino acid.
- 3. A polypeptide comprising an antigenic portion of a soluble *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID Nos. 1, 2, 4-10, 13-25, 52, 94 and 96, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos. 1, 2, 4-10, 13-25, 52, 94 and 96 or a complement thereof under moderately stringent conditions.
- 4. A polypeptide comprising an antigenic portion of a *M. tuberculosis* antigen, or a variant of said antigen that differs only in conservative substitutions and/or modifications, wherein said antigen comprises an amino acid sequence encoded by a DNA sequence selected from the group consisting of the sequences recited in SEQ ID Nos. 26-51, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos. 26-51 or a complement thereof under moderately stringent conditions.
- 5. A DNA molecule comprising a nucleotide sequence encoding a polypeptide according to any one of claims 1-4.
- 6. A recombinant expression vector comprising a DNA molecule according to claim 5.

- 7. A host cell transformed with an expression vector according to claim 6.
- 8. The host cell of claim 7 wherein the host cell is selected from the group consisting of *E. coli*, yeast and mammalian cells.
- 9. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting a biological sample with one or more polypeptides according to any of claims 1-4; and
- (b) detecting in the sample the presence of antibodies that bind to at least one of the polypeptides, thereby detecting *M. tuberculosis* infection in the biological sample.
- 10. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting a biological sample with a polypeptide having an N-terminal sequence selected from the group consisting of sequences provided in SEQ ID No: 129 and 130; and
- (b) detecting in the sample the presence of antibodies that bind to at least one of the polypeptides, thereby detecting M. tuberculosis infection in the biological sample.
- 11. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting a biological sample with one or more polypeptides encoded by a DNA sequence selected from the group consisting of SEQ ID Nos. 3, 11 and 12, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos. 3, 11 and 12; and
- (b) detecting in the sample the presence of antibodies that bind to at least one of the polypeptides, thereby detecting *M. tuberculosis* infection in the biological sample.

- 12. The method of any one of claims 9-11 wherein step (a) additionally comprises contacting the biological sample with a 38 kD *M. tuberculosis* antigen and step (b) additionally comprises detecting in the sample the presence of antibodies that bind to the 38 kD *M. tuberculosis* antigen.
- 13. The method of any one of claims 9-11 wherein the polypeptide(s) are bound to a solid support.
- 14. The method of claim 13 wherein the solid support comprises nitrocellulose, latex or a plastic material.
- 15. The method of any one of claims 9-11 wherein the biological sample is selected from the group consisting of whole blood, serum, plasma, saliva, cerebrospinal fluid and urine.
- 16. The method of claim 15 wherein the biological sample is whole blood or serum.
- 17. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting the sample with a first and a second oligonucleotide primer in a polymerase chain reaction, the first and the second oligonucleotide primers comprising at least about 10 contiguous nucleotides of a DNA molecule according to claim 5; and
- (b) detecting in the sample a DNA sequence that amplifies in the presence of the first and second oligonucleotide primers, thereby detecting M. tuberculosis infection.
- 18. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting the sample with a first and a second oligonucleotide primer in a polymerase chain reaction, the first and the second oligonucleotide primers comprising at

least about 10 contiguous nucleotides of a DNA sequence selected from the group consisting of SEQ ID Nos. 3, 11 and 12; and

- (b) detecting in the sample a DNA sequence that amplifies in the presence of the first and second oligonucleotide primers, thereby detecting M. tuberculosis infection.
- 19. The method of claims 17 or 18 wherein the biological sample is selected from the group consisting of whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid and urine.
- 20. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting the sample with one or more oligonucleotide probes comprising at least about 15 contiguous nucleotides of a DNA molecule according to claim 5; and
- (b) detecting in the sample a DNA sequence that hybridizes to the oligonucleotide probe, thereby detecting M. tuberculosis infection.
- 21. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting the sample with one or more oligonucleotide probes comprising at least about 15 contiguous nucleotides of a DNA sequence selected from the group consisting of SEQ ID Nos. 3, 11 and 12; and
- (b) detecting in the sample a DNA sequence that hybridizes to the oligonucleotide probe, thereby detecting M. tuberculosis infection.
- 22. The method of claims 20 or 21 wherein the biological sample is selected from the group consisting of whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid and urine.

- 23. A method for detecting M. tuberculosis infection in a biological sample, comprising:
- (a) contacting the biological sample with a binding agent which is capable of binding to a polypeptide according to any one of claims 1-4; and
- (b) detecting in the sample a protein or polypeptide that binds to the binding agent, thereby detecting M. tuberculosis infection in the biological sample.
- 24. A method for detecting M. tuberculosis infection in a biological sample, comprising:
- (a) contacting the biological sample with a binding agent which is capable of binding to a polypeptide having an N-terminal sequence selected from the group consisting of sequences provided in SEQ ID No: 129 and 130; and
- (b) detecting in the sample a protein or polypeptide that binds to the binding agent, thereby detecting M. tuberculosis infection in the biological sample.
- 25. A method for detecting *M. tuberculosis* infection in a biological sample, comprising:
- (a) contacting the biological sample with a binding agent which is capable of binding to a polypeptide encoded by a DNA sequence selected from the group consisting of SEQ ID Nos. 3, 11 and 12, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos. 3, 11 and 12; and
- (b) detecting in the sample a protein or polypeptide that binds to the binding agent, thereby detecting M. tuberculosis infection in the biological sample.
- 26. The method of any one of claims 23-25 wherein the binding agent is a monoclonal antibody.
- 27. The method of any one of claims 23-25 wherein the binding agent is a polyclonal antibody.

- 28. A diagnostic kit comprising:
- (a) one or more polypeptides according to any of claims 1-4; and
- (b) a detection reagent.
- 29. A diagnostic kit comprising:
- (a) one or more polypeptides having an N-terminal sequence selected from the group consisting of sequences provided in SEQ ID No: 129 and 130; and
 - (b) a detection reagent.
 - 30. A diagnostic kit comprising:
- (a) one or more polypeptides encoded by a DNA sequence selected from the group consisting of SEQ ID Nos. 3, 11 and 12, the complements of said sequences, and DNA sequences that hybridize to a sequence recited in SEQ ID Nos. 3, 11 and 12; and
 - (b) a detection reagent.
- 31. The kit of any one of claims 28-30 wherein the polypeptide(s) are immobilized on a solid support.
- 32. The kit of claim 31 wherein the solid support comprises nitrocellulose, latex or a plastic material.
- 33. The kit of any one of claims 28-30 wherein the detection reagent comprises a reporter group conjugated to a binding agent.
- 34. The kit of claim 33 wherein the binding agent is selected from the group consisting of anti-immunoglobulins, Protein G, Protein A and lectins.
- 35. The kit of claim 33 wherein the reporter group is selected from the group consisting of radioisotopes, fluorescent groups, luminescent groups, enzymes, biotin and dye particles.

- 36. A diagnostic kit comprising a first polymerase chain reaction primer and a second polymerase chain reaction primer, the first and second primers each comprising at least about 10 contiguous nucleotides of a DNA molecule according to claim 5.
- 37. A diagnostic kit comprising a first polymerase chain reaction primer and a second polymerase chain reaction primer, the first and second primers each comprising at least about 10 contiguous nucleotides of a DNA sequence selected from the group consisting of SEQ ID Nos. 3, 11 and 12.
- 38. A diagnostic kit comprising at least one oligonucleotide probe, the oligonucleotide probe comprising at least about 15 contiguous nucleotides of a DNA molecule according to claim 5.
- 39. A diagnostic kit comprising at least one oligonucleotide probe, the oligonucleotide probe comprising at least about 15 contiguous nucleotides of a DNA sequence selected from the group consisting of SEQ ID Nos. 3, 11 and 12.
- 40. A monoclonal antibody that binds to a polypeptide according to any of claims 1-4.
- 41. A polyclonal antibody that binds to a polypeptide according to any of claims 1-4.
- 42. A fusion protein comprising two or more polypeptides according to any one of claims 1-4.
- 43. A fusion protein comprising one or more polypeptides according to any one of claims 1-4 and ESAT-6 (SEQ ID No. 99).

44. A fusion protein comprising a polypeptide having an N-terminal sequence selected from the group of sequences provided in SEQ ID Nos. 129 and 130.

Fig. 1A

Fig. 1B SUBSTITUTE SHEET (RULE 26)

Fig. 1C

Fig. 1D SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)