

ABSTRACT OF THE DISCLOSURE

A low cost and scalable processes for producing nanostructured $\text{LiFe}_x\text{M}_{1-x}\text{PO}_4$ and nanostructured $\text{LiFe}_x\text{M}_{1-x}\text{PO}_4/\text{C}$ composite powders, where $1 \leq x \leq 0.1$ and M is a metal cation,
5 such as Mn, Co, Ni, and V. Electrodes made of either nanostructured $\text{LiFe}_x\text{M}_{1-x}\text{PO}_4$ powders or nanostructured $\text{LiFe}_x\text{M}_{1-x}\text{PO}_4/\text{C}$ composite powders exhibit good electrochemical properties. The electronic conductivity of nanostructured $\text{LiFe}_x\text{M}_{1-x}\text{PO}_4$ powders is enhanced by intimately mixing them with ultrafine carbon particles. Thus, the use of nanostructured $\text{LiFe}_x\text{M}_{1-x}\text{PO}_4/\text{C}$ composite powders will lead to high power density, low cost and environmentally friendly
10 rechargeable Li-ion batteries.