

Introduction to Bioinformatics

Phylogenetic Trees - UPGMA

Marc-Thorsten Hütt mhuett@constructor.university

Felix Jonas fjonas@constructor.university

Johannes Falk jfalk@constructor.university

October 23, 2024

Lectures - Phylogenetics

- What is this session about?
 - UPGMA algorithm is finalized.
 - Neighbor-joining algorithm is introduced.
- How can you revise the material after the session?
 - Read Baxevanis/Oullette chapters 14.1, 14.2
 - Read Durbin et al. chapter 7.3 (first half)
 - alternative reading: Hütt/Dehnert chapters 3.3.1 3.3.3

UPGMA (Unweighted Pair Group Mean Average)

Introduction to Bioinformatics

UPGMA - Visualization

UPGMA - Visualization

UPGMA - Visualization

Triangle inequality

Let d_{xy} be the distance (the dissimilarity) between two sequences.

■ Metric distances obey the triangle inequality:

$$D_{ik} \leqslant D_{ij} + D_{jk}$$

In words: The dissimilarity between two sequences can not be larger than the sum of each sequence and a third.

■ A uniform molecular clock assumes an ultrametric distance

$$D_{\mathfrak{i}k}\leqslant \max\{D_{\mathfrak{i}\mathfrak{j}},D_{\mathfrak{j}k}\}$$

Inequality in ultrametric distances

$$D_{\mathfrak{i} k} \leqslant \text{max}\{D_{\mathfrak{i} \mathfrak{j}}, D_{\mathfrak{j} k}\}$$

- We assume that we have three distances d_1, d_2, d_3 , for which holds: $d_1 \le d_2 \le d_3$.
- The ultrametric distance is only satisfied, if $d_2 \equiv d_3$

UPGMA (Unweighted Pair Group Mean Average)

- Initialization:
 - Assign each sequence i to its own cluster C_i
 - For the tree, define one leaf for each sequence, and place at height zero
- Iteration:
 - Find the two clusters i and j for which d_{ij} is minimal.
 - Merge C_i and C_j to a new cluster C_k
 - \blacksquare Add a node k to the tree with daughter nodes i and j and place it at height $d_{ij}/2$
- Termination
 - \blacksquare When only two clusters i,j remain, place the root at height $d_{ij}/2$
- Result: a unique rooted and ultrametric tree.
- UPGMA can be used if we know that we have an ultrametric tree. (this is usually not the case).

Distance between two clusters

$$d_{ij} = \frac{1}{|C_i||C_j|} \sum_{p \in C_i; q \in C_j} d_{pq}$$

Introduction to Bioinformatics

Simplified distance

$$d_{kl} = \frac{d_{il}|C_{i}| + d_{jl}|C_{j}|}{|C_{i}| + |C_{j}|}$$

UPGMA - Example

Example from Wikipedia (UPGMA article). JC69 (Jukes-Cantor) genetic distance matrix D₁ from 5S ribosomal RNA sequence alignment of the bacteria:

- a) Bacillus subtilis
- b) Bacillus stearothermophilus
- c) Lactobacillus viridescens
- d) Acholeplasma modicum
- e) Micrococcus luteus

	а	b	С	d	е
а	0	17	21	31	23
b	17	0	30	34	21
С	21	30	0	28	39
d	31	34	28	0	43
е	23	21	39	43	0

UPGMA - Example

- Smallest distance in D_1 is 17. Let $\mathfrak u$ denote the new node that connects $\mathfrak a$ and $\mathfrak b$. We set $\delta(\mathfrak a,\mathfrak u)=\delta(\mathfrak b,\mathfrak u)=D_1(\mathfrak a,\mathfrak b)/2$. That means $\mathfrak a$ and $\mathfrak b$ are equidistant from $\mathfrak u$.
- Update the distance matrix D_1 into a new distance matrix D_2 where α and α are merged into one row and one column:

$$\begin{split} D_2((a,b),c) &= (D_1(a,c)\times 1 + D_1(b,c)\times 1)/(1+1) &= (21+30)/2 = 25.5 \\ D_2((a,b),d) &= (D_1(a,d) + D_1(b,d))/2 &= (31+34)/2 = 32.5 \\ D_2((a,b),e) &= (D_1(a,e) + D_1(b,e))/2 &= (23+21)/2 = 22.0 \end{split}$$

UPGMA - Example

		(a,b)	С	d	е
New matrix D ₂ :	(a,b)	0	25.5	32.5	22
	С	25.5	0	28	39
	d	32.5	28	0	43
	е	22	39	43	0

 \blacksquare Smallest distance in D₂ is 22. Let v denote the new node that connects (a, b) and e. Because of the ultrametric constraint, $\delta(a, v) = \delta(b, v) = \delta(e, v) = 22/2 = 11.$ For the length between u and v holds:

$$\delta(u, v) = \delta(e, v) - \delta(a, u) = 11 - 8.5 = 2.5.$$

■ Update the distance matrix D_2 into a new distance matrix D_3 where (a,b)and e are merged into one row and one column

UPGMA – Example – Final ultrametric tree

Meets the ultrametric properties: $D_{ik} \leqslant \text{max}\{D_{ij}, D_{jk}\}$

Another example

http://www.slimsuite.unsw.edu.au/teaching/upgma/

Problems of UPGMA

■ UPGMA assumes the same evolutionary speed on all lineages: "molecular clock".

- There is evidence that substitution rates can vary considerably between species
- Turtle mitochondrial DNA has a molecular clock that is slowed down up to 14-fold compared to small mammals.
- Substitution rates depend on: Generation times, population size, intensity of natural selection, ...

Source: (figure) UC Museum of Paleontology Understanding Evolution, https://evolution.berkeley.edu/molecular-clocks/; BY-NC-SA 4.0

(turtle mDNA): J C Avise, et al., Mitochondrial DNA evolution at a turtle's pace[...], Molecular Biology and Evolution, Volume 9, Issue 3, May 1992

UPGMA from non-ultrametric trees

UPGMA from non-ultrametric trees

Corresponding distance matrix:

	а	b	С	d
а	0	17	21	27
b	17	0	12	18
С	21	12	0	14
d	27	18	14	0

For non-ultrametric data, UPGMA creates wrong results

Ultrametric vs. Additive Trees

а

b

If a distance matrix is to be represented by a tree, it must satisfy the four-point condition:

$$D_{ij} + D_{mn} \leqslant \max\{D_{im} + D_{jn}, D_{jm} + D_{in}\}$$

Neighbor-Joining

Neighbor-Joining

- Distance based method (like UPGMA)
- As for UPGMA we need an initial distance matrix D.
- Initialization:
 - Define a tree T with one leaf for each sequence

Idea behind Neighbor-Joining

$$\begin{split} d_{ij} &= d_{ik} + d_{kj} \\ d_{lj} &= d_{lk} + d_{kj} \\ d_{li} &= d_{lk} + d_{ki} \end{split}$$

$$d_{kl} = \frac{1}{2}(d_{il} + d_{jl} - d_{ij}),$$

Source: Hütt M., Dehnert M., Methoden der Bioinformatik. (Second edition)

Neighbor-Joining – Which nodes to join?

$$\{r_a, r_b, r_c, r_d\} = \{0.7, 0.7, 1.0, 1.0\}$$

Approach:

Calculate an approx. average distance r_1 to all other leaves:

$$r_{l} = \frac{1}{|\mathcal{L}| - 2} \sum_{i \in \mathcal{L}} d_{il}$$

(note: we do not divide by $|\mathcal{L}|$ but $|\mathcal{L}|-2$)

Find the two leaves i and j for which $Q_{ij}=d_{ij}-r_i-r_j$ is minimal.

Neighbour-Joining - Which nodes to join?

$$Q_{\mathfrak{i}\mathfrak{j}}=d_{\mathfrak{i}\mathfrak{j}}-r_{\mathfrak{i}}-r_{\mathfrak{j}}$$

Q-Matrix:

	а	b	С	d
а	0	-1.1	-1.2	-1.1
b	-	0	-1.1	-1.2
С	-	_	0	-1.1
d	-	-	-	0

Select smallest values.

$$\{r_a, r_b, r_c, r_d\} = \{0.7, 0.7, 1.0, 1.0\}$$

Neighbor-Joining

- Iteration:
 - For each leaf l, compute the approx. average distance r_l to all other leaves:

$$r_{l} = \frac{1}{|\mathcal{L}| - 2} \sum_{i \in \mathcal{L}} d_{il}$$

(note: we do not divide by $|\mathcal{L}|$ but $|\mathcal{L}| - 2$)

- Find the two leaves i and j for which $Q_{ij} = d_{ij} r_i r_j$ is minimal.
- Insert a new node k to the tree. The branch lengths from k to i and j are given by:

$$d_{ik} = \frac{1}{2}(d_{ij} + r_i - r_j), \quad d_{jk} = d_{ij} - d_{ik}$$

 \blacksquare Add k to the distance matrix and remove i and j. Update the distance matrix via:

$$d_{kl} = \frac{1}{2}(d_{il} + d_{jl} - d_{ij}),$$

where l runs over all remaining entries.

Neighbor-Joining

- Termination
 - When $|\mathcal{L}| = 2$: add an edge between the last two elements of \mathcal{L} .
- Result: an unrooted tree
- The tree can be rooted e.g. via an outgroup

Neighbor-Joining – Example – See also UPGMA

Example from Wikipedia (UPGMA article). JC69 (Jukes-Cantor) genetic distance matrix D₁ from 5S ribosomal RNA sequence alignment of the bacteria:

- a) Bacillus subtilis
- b) Bacillus stearothermophilus
- c) Lactobacillus viridescens
- d) Acholeplasma modicum
- e) Micrococcus luteus

	а	b	С	d	е
а	0	17	21	31	23
b	17	0	30	34	21
С	21	30	0	28	39
d	31	34	28	0	43
е	23	21	39	43	0

■ Compute the average distances:

$$\begin{aligned} \{r_{\alpha}, r_{b}, r_{c}, r_{d}, r_{e}\} &= \{30.67, 34., 39.33, 45.33, 42.\} \\ \text{E.g. } r_{\alpha} &= \frac{1}{5-2}(d_{\alpha b} + d_{\alpha c} + d_{\alpha d} + d_{\alpha e}) \end{aligned}$$

Compute the corrected distances:

	a	Ь	С	d	е
а	0	-47.67	-49.	-45.	-49.67
b	-47.67	0	-43.33	-45.33	-55.
С	-49.	-43.33	0	-56.67	-42.33
d	-45.	-45.33	-56.67	0	-44.33
е	-49.67	-55.	-42.33	-44.33	0

$$Q_{ab} = 17 - 30.67 - 34 = -47.67$$

	а	b	С	d	е
а	0	-47.67	-49.	-45.	-49.67
b	-47.67	0	-43.33	-45.33	-55.
С	-49.	-43.33	0	-56.67	-42.33
d	-45.	-45.33	-56.67	0	-44.33
е	-49.67	-55.	-42.33	-44.33	0

Minimal distance is between c and d. We add a new node k_1 that connects c and d. We calculate:

$$d_{ck_1} = 0.5 \cdot (d_{cd} + r_c - r_d) = 0.5 \cdot (28 + 39.33 - 45.33) = 11$$

 $d_{dk_1} = 17$

- We have now a new node k_1 that connects c and d in our tree.
- We now need to update the distance matrix:

	а	b	С	d	е
а	0	17	21	31	23
b	17	0	30	34	21
С	21	30	0	28	39
d	31	34	28	0	43
е	23	21	39	43	0

	а	b	е	k1
а	0	17	23	12
b	17	0	21	18
е	23	21	0	27
k1	12	18	27	0

E.g.
$$d_{k_1a} = 0.5 \cdot (d_{ca} + d_{da} - d_{cd}) = 0.5(21 + 31 - 28) = 12$$

■ New corrected distances:

	а	b	е	k1
а	-52.	-37.	-38.5	-42.5
b	-37.	-56.	-42.5	-38.5
е	-38.5	-42.5	-71.	-37.
k1	-42.5	-38.5	-37.	-57.

- The smallest distances are between b, e or a, k_1 .
- lacksquare Select two (e.g. a and k_1) and proceed ...

Neighbor-Joining – Example – Final Tree

Neighbor-Joining - Comparison with UPGMA

Rooting

radial tree from neighbor-joining

inclusion of an outgroup

corresponding rooted tree

Source: Hütt M., Dehnert M., Methoden der Bioinformatik. (Second edition)

Bootstrap

Source: Hütt M., Dehnert M., Methoden der Bioinformatik. (Second edition)