Contents

1	1° de Bachillerato (16 años)			1	
	1.1 Números reales y complejos			1	
		1.1.1	Valor absoluto	1	
		1.1.2	Distancia en la recta real	2	
		1.1.3	Números complejos	2	
		1.1.4	Operaciones entre números complejos en forma trigonomé	trica	3
	1.2	Trigor	nometría	3	
		1.2.1	Razones trigonométricas de la suma de ángulos	3	
		1.2.2	Razones trigonométricas de la resta de ángulos	4	
		1.2.3	Razones trigonométricas del ángulo doble	4	
		1.2.4	Transformaciones de sumas de razones trigonométricas		
			en productos	5	
		1.2.5	Resolución general de triángulos	7	

1 1° de Bachillerato (16 años)

Del libro Matemáticas I (1º de Bachillerato) de Apuntes marea Verde.

1.1 Números reales y complejos

1.1.1 Valor absoluto

- 10 No negatividad: $|a| \ge 0$.
- 10 Simetría: |a|=|-a|. Si a>0, entonces

$$|a| = a$$
$$= -(-a)$$
$$= |-a|$$

Si a = 0, entonces

$$|a| = |0|$$
$$= |-0|$$
$$= |-a|$$

Si a < 0, entonces

$$|a| = -a$$
$$= |-a|$$

- 10 Definición positiva: Si |a| = 0, entonces a = 0.
- 10 Valor absoluto y producto: $|a \times b| = |a| \times |b|$.
- 10 Desigualdad triangular: $|a + b| \le |a| + |b|$.

1.1.2 Distancia en la recta real

- 12 La distancia está definida por $\operatorname{dist}(x,y) = |x-y|$ y verifica las siguientes propiedades:
 - $-\operatorname{dist}(x,y) = 0 \text{ syss } x = y$
 - $-\operatorname{dist}(x,y) = \operatorname{dist}(y,x)$
 - $-\operatorname{dist}(x,y) \le \operatorname{dist}(x,z) + \operatorname{dist}(z,y)$

1.1.3 Números complejos

- 21 Operaciones en forma binómica:
 - -(x+iy) + (u+iv) = (x+u) + i(y+v).
 - (x + iy)(u + iv) = (xu yv) + i(xv + yu).
- 27 Propiedades del módulo, del conjugado y del argumento de un número complejo:
 - $-\overline{z+w} = \overline{z} + \overline{w}$
 - $-\overline{z-w} = \overline{z} \overline{w}$
 - $\overline{z \cdot w} = \overline{z} \cdot \overline{w}.$
 - $-\arg(\overline{z}) = -\arg(z).$
 - $-z \in \mathbb{R} \iff z = \overline{z}.$
 - $-z\cdot\overline{z}=|z|^2$
 - $|\overline{z}| = |z|.$
 - $-|z \cdot w| = |z| \cdot |w|$
 - $-\left|\frac{z}{w}\right| = \frac{|z|}{|w|}$
 - $-|z| = 0 \iff z = 0$
 - $\Re(z) = \frac{z + \overline{z}}{2}$
 - $-\Im(z) = \frac{z \overline{z}}{2i}$

$$-\Re(z) \le |z|
-\Im(z) \le |z|
-|z| \le \Re(z) + \Im(z)
-||z| - |w|| \le |z + w| \le |z| + |w|$$

1.1.4 Operaciones entre números complejos en forma trigonométrica

• 29 Para multiplicar números complejos expresados en forma polar o en trigonométrica basta multiplicar sus módulos y sumar sus argumento

$$z \cdot z' = r(\cos \alpha + i\alpha) \cdot r'(\cos \beta + i\beta)$$

= $(r \cdot r')((\cos \alpha \cos \beta - \alpha \beta) + i(\alpha \cos \beta - \cos \alpha \beta))$
= $(r \cdot r')(\cos(\alpha + \beta) + i(\alpha + \beta))$

- Para dividir números complejos, basta dividir sus módulos y restar sus argumentos.
- El inverso de un número complejo distinto de cero tiene como módulo, el inverso del módulo, y como argumento, el opuesto del argumento.
- Para elevar un número complejo a una potencia, se eleva el módulo a dicha potencia, y se multiplica el argumento por el exponente.

1.2 Trigonometría

1.2.1 Razones trigonométricas de la suma de ángulos

- 116 $(a+b) = (a)\cos(b) + \cos(a)(b)$
- $116 \cos(a+b) = \cos(a)\cos(b) (a)(b)$

• 117
$$\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$$

$$\tan(a+b) = \frac{(a+b)}{\cos(a+b)}$$

$$= \frac{(a)\cos(b) + \cos(a)(b)}{\cos(a)\cos(b) - (a)(b)}$$

$$= \frac{(a)\cos(b) + \cos(a)(b)}{\cos(a)\cos(b) + \cos(a)(b)}$$

$$= \frac{(a)\cos(b) + \cos(a)(b)}{\cos(a)\cos(b) - (a)(b)}$$

$$= \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$$

1.2.2 Razones trigonométricas de la resta de ángulos

•
$$117(-a) = -(a)$$

•
$$117 \cos(-a) = \cos(a)$$

•
$$117 \tan(-a) = -\tan(a)$$

• 118
$$(a - b) = (a)\cos(b) - \cos(a)(b)$$

• 118
$$\cos(a - b) = \cos(a)\cos(b) + (a)(b)$$

• 118
$$\tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}$$

1.2.3 Razones trigonométricas del ángulo doble

•
$$118(2a) = 2(a)\cos(a)$$

•
$$118 \cos(2a) = \cos^2(a) - (a)$$

• 118
$$\tan(2a) = \frac{2\tan(a)}{1-\tan^2(a)}$$

• 119
$$\left(\frac{a}{2}\right) = \pm \sqrt{\frac{1 - \cos(a)}{2}}$$

• 119
$$\cos\left(\frac{a}{2}\right) = \pm\sqrt{\frac{1+\cos(a)}{2}}$$

• 119
$$\tan\left(\frac{a}{2}\right) = \pm\sqrt{\frac{1-\cos(a)}{1+\cos(a)}}$$

1.2.4 Transformaciones de sumas de razones trigonométricas en productos

• Fórmula de Simpson de seno por coseno: $\alpha\cos\beta = \frac{(\alpha+\beta)+(\alpha-\beta)}{2} \quad \text{(en ProofWiki Simpson's formulas/Sine by cosine)}$

$$\frac{(\alpha + \beta) + (\alpha - \beta)}{2}$$

$$= \frac{(\alpha \cos \beta + \cos \alpha \beta) + (\alpha \cos \beta - \cos \alpha \beta)}{2}$$

$$= \frac{2\alpha \cos \beta}{2}$$

$$= \alpha \cos \beta$$

• 120 $(a)+(b)=2\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$ (En ProofWiki Prosthaphaeresis formulas/Sine plus sine).

$$\begin{split} &2\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)\\ &=2\frac{\left(\frac{\alpha+\beta}{2}+\frac{\alpha-\beta}{2}\right)+\left(\frac{\alpha+\beta}{2}-\frac{\alpha-\beta}{2}\right)}{2} &\text{F\'ormula de Simpson}\\ &=\frac{2\alpha}{2}+\frac{2\beta}{2}\\ &=\alpha+\beta \end{split}$$

• 120 $(a)-(b)=2\cos\left(\frac{a+b}{2}\right)\left(\frac{a-b}{2}\right)$ (en ProofWiki Prosthaphaeresis formulas/sine minus sine)

$$\begin{split} &2\cos\left(\frac{\alpha+\beta}{2}\right)\left(\frac{\alpha-\beta}{2}\right)\\ &=2\frac{\left(\frac{\alpha-\beta}{2}+\frac{\alpha+\beta}{2}\right)+\left(\frac{\alpha-\beta}{2}-\frac{\alpha+\beta}{2}\right)}{2} &\text{F\'ormula de Simpson}\\ &=\frac{2\alpha}{2}-\frac{2\beta}{2}\\ &=\alpha-\beta \end{split}$$

• Fórmula de Simpson de coseno por coseno: $\cos\alpha\cos\beta = \frac{\cos(\alpha-\beta) + \cos(\alpha+\beta)}{2} \quad \text{(en ProofWiki Simpson's Formulas/Cosine by Cosine)}^2$

$$\frac{\cos(\alpha - \beta) + (\alpha + \beta)}{2}$$

$$= \frac{(\cos \alpha \cos \beta + \alpha \beta) + (\cos \alpha \cos \beta - \alpha \beta)}{2}$$

$$= \frac{2\cos \alpha \cos \beta}{2}$$

$$= \cos \alpha \cos \beta$$

• 120 $\cos a + \cos b = 2\cos\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$ (en ProofWiki Prosthaphaeresis Formulas/Cosine plus Cosine).

$$\begin{split} &2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)\\ &=2\frac{\cos\left(\frac{\alpha-\beta}{2}-\frac{\alpha-\beta}{2}\right)+\cos\left(\frac{\alpha+\beta}{2}+\frac{\alpha-\beta}{2}\right)}{2} &\text{F\'ormula de Simpson}\\ &=\cos\frac{2\beta}{2}+\cos\frac{2\alpha}{2}\\ &=\cos\alpha+\cos\beta \end{split}$$

-120

 $\cos a - \cos b = -2\left(\frac{a+b}{2}\right)\left(\frac{a-b}{2}\right) \quad \text{(en ProofWiki Prosthaphaeresis Formulas/Cosine minus Cosine)}.$

$$-2\left(\frac{\alpha+\beta}{2}\right)\left(\frac{\alpha-\beta}{2}\right)$$

$$= -2\frac{\cos\left(\frac{\alpha+\beta}{2} - \frac{\alpha-\beta}{2}\right) - \cos\left(\frac{\alpha+\beta}{2} + \frac{\alpha-\beta}{2}\right)}{2}$$

$$= -\left(\cos\frac{2\beta}{2} - \cos\frac{2\alpha}{2}\right)$$

$$= \cos\alpha - \cos\beta$$
Fórmula de Simpson

1.2.5 Resolución general de triángulos

• 129 Teorema del coseno: Sea $\triangle ABC$ un triángulos cuyos lados a,b,c son tales que a es opuesto de A, b es opuestos de B y c es opuesto de C. Entonces,

$$c^2 = a^2 + b^2 - 2ab\cos C$$

(En ProofWiki Law of cosines).

Caso de triángulo rectángulo

Sea $\triangle ABC$ un triángulo rectángulo tal que $\angle A$ recto.

$$\begin{array}{ll} a^2=b^2+c^2 & \text{Teorema de Pitágoras} \\ c^2=a^2-b^2 & \text{Despejando } c^2 \\ =a^2-2b^2+b^2 & \text{Sumando } 0=b^2-b^2 \text{ a la derecha} \\ =a^2-2ab\left(\frac{b}{a}\right)+b^2 & \text{Multiplicando } 2b^2 \text{ por } \frac{a}{a} \\ =a^2+b^2-2ab\cos C & \text{Por la definición de } \cos C=\frac{b}{a} \end{array}$$

Caso del triángulo acutángulo Sea $\triangle ABC$ un triángulo acutángulo.

Sea BD perpendicular a AC y se definen h=BD, e=CD y f=AD. Los triángulos $\triangle CDB$ y $\triangle ADB$ son rectángulos. Por tanto,

$$c^2 = h^2 + f^2 \qquad \qquad \text{Teorema de Pitágoras}$$

$$= a^2 - e^2 + f^2 \qquad \qquad \text{Teorema de Pitágoras}$$

$$= a^2 - e^2 + f^2 + 2e^2 - 2e^2 + 2ef - 2ef \qquad \text{Sumando } 2e^2 - 2e^2 + 2ef - 2ef$$

$$= a^2 + (e^2 + f^2 + 2ef) - 2e(e + f) \qquad \qquad \text{Agrupando}$$

$$= a^2 + (e + f)^2 - 2e(e + f) \qquad \qquad \text{Cuadrado del binomio}$$

$$= a^2 + b^2 - 2eb \qquad \qquad \text{Sustituyendo } b = e + f$$

$$= a^2 + b^2 - 2ab\cos C \qquad \qquad \text{Definición de } \cos C = \frac{e}{a}$$

Caso del triángulo obtusángulo Sea $\triangle ABC$ un triángulo obtusángulo.

Se extiende AC y sea BD perpendicular a AC. Se define h=BD, e=CD y f=AD.

Entonces $\triangle CDB$ y $\triangle ADB$ son triángulos rectángulos. Por tanto,

$$c^2 = h^2 + f^2 \qquad \text{Teorema de Pitágoras}$$

$$= a^2 - e^2 + f^2 \qquad \text{Teorema de Pitágoras}$$

$$= a^2 - (b+f)^2 + f^2 \qquad \text{Por definición de } e \neq f$$

$$= a^2 - b^2 - f^2 - 2bf + f^2 \qquad \text{Expandiendo el cuadrado del binomio}$$

$$= a^2 - b^2 - 2bf \qquad \text{Cancelando } f^2 - f^2$$

$$= a^2 - b^2 - 2bf + 2b^2 - 2b^2 \qquad \text{Sumando y restando } 2b^2$$

$$= a^2 + b^2 - 2b(b+f) \qquad \text{Reagrupando}$$

$$= a^2 + b^2 - 2be$$

$$= a^2 + b^2 - 2ab \cos C \qquad \text{Por definición de } \cos C = \frac{e}{a}$$

• 129 Teorema de Pitágoras: Sea $\triangle ABC$ un triángulo rectángulo c como su hipotenusa. Entonces,

$$a^2 + b^2 = c^2$$

$$c^{2} = a^{2} + b^{2} - 2ab \cos\left(\frac{\pi}{2}\right)$$
$$= a^{2} + b^{2}$$