CS 4705: Programming Assignment 2

We want to explore the impact of different architectures and parameters on network predictive accuracy.

Here is an example of an architecture (this is different to the baseline, e.g., we have a dense layer of 256 instead of 1024):

Architecture of a CNN

The baseline code is attached to the assignment description.

This code has instructions for the 2 steps, which are running the experiments described below, and then coding a TensorFlow version of the model specification.

Modification to Architecture

Consider the code fragments for implementing a CNN to classify the MNIST fashion domain.

We refer to a model using the parameter set [(64,2),(32,2),(0.3,0.3)], which refers to

[(convolution layer1 filters, convolution layer1 kernel size), (convolution layer2 filters, convolution layer2 kernel size), (convolution layer1 Dropout-probability, convolution layer2 Dropout-probability)].

Thus [(64,2),(32,2), (0.3,0.3)] is the parameter set for the baseline model---see the provided code.

Table 1: Baseline model parameters

Туре	# filters	Kernel-size	activation	Dropout probability	Size			
Convolution	64	2x2	ReLU					
Pooling		2x2						
Dropout				0.3				
Convolution	32	2x2	ReLU					
Pooling		2x2						
Dropout				0.3				
Dense			ReLU		256			
dense		softmax						

A **modification to a parameter** means that we replace only that parameter. So in changing the baseline model:

- the filters modification (x,y) means that we run a model with parameter set [(x,2),(y,2),(0.3,0.3)].
- the kernel modification (j,k) means that we run a model with parameter set [(64,j),(32,k),(0.3,0.3)].
- the dropout modification (a,b) means that we run a model with parameter set [(64,2),(32,2), (a,b)].
- 1. Compile the basic model
- 2. Compare different architectures

I will divide the class into 2 different groups, based on last digit in your student number:

1: number ending in {0-4}

2: number ending in {5-9}

Each group will have a subset of 11 architectures to explore.

Report your results in a table, reporting predictive accuracy on the test set:

Architecture parameters i, accuracy i

Table 2: 7 experiments for each group based on single-parameter-type modification

Group	Filters	Kernel	Dropout	Extra Layer
1	(32,16)	(5,3)	(3, .25)	[(64,2),(32,2), (0.3,0.3)]
	(64,64)	(3,2)	(.25, .25)	
2	(128,64)	(5,5)	(.4,.4)	[(32,2),(32,2), (0.3,0.3)]
	(64,64)	(3,3)	(.25, .25)	
3	(32,32)	(3,3)	(.5, .25)	[(64,2),(64,2), (0.3,0.3)]
	(64,64)	(4,4)	(.25, .25)	
4	(32,32)	(3,3)	(.35, .25)	[(32,2),(16,2), (0.25,0.25)]
	(32,16)	(5,5)	(.2, .2)	[(16,2),(16,2), (0.25,0.25)]

Each group will have 4 architectures with multiple simultaneous modifications, as defined below:

Group 1

Туре	Layer#	Туре	# filters	Kernel-size	activation	Dropout probability	Size	Туре	Layer#	Туре	# filters	Kernel-size	activation	Dropout probability	•
Convolution	1	Convolution	32	2x2	ReLU			Convolution	1	Convolution	32	5x5	ReLU		Г
		Pooling		2x2						Pooling		2x2			Ι
		Dropout				0.3				Dropout				0.2	
Convolution	2	Convolution	16	2x2	ReLU			Convolution	2	Convolution	16	5x5	ReLU		
		Pooling		2x2						Pooling		2x2			Π
		Dropout				0.3				Dropout				0.2	ı
Decision		Dense			ReLU		256	Decision		Dense			ReLU		
Output		dense	softmax			10	Output	dense	softmax				Г		
Туре	Layer#	Туре	# filters	W1 -!		Donor and much ability		_		Tuna				Dropout probability	
Convolution		Type	# fliters	Kernel-size	activation	Dropout probability	Size	Type	Layer#	Туре	# filters	Kernel-size	activation	Propout probability	
Convolution	1	Convolution	128	2x2	ReLU	Dropout probability	Size	Convolution	_	Convolution		3x3	ReLU	Propout probability	-
Convolution	1					Dropout probability	Size		_	••				Propout probability	
Convolution	1	Convolution		2x2		0.3	Size		1	Convolution		3x3		0.3	
		Convolution Pooling		2x2			Size		1	Convolution Pooling	128	3x3			
		Convolution Pooling Dropout	128	2x2 2x2	ReLU		Size	Convolution	1	Convolution Pooling Dropout	128	3x3 3x3	ReLU		
		Convolution Pooling Dropout Convolution	128	2x2 2x2 2x2	ReLU		Size	Convolution	2	Convolution Pooling Dropout Convolution	128	3x3 3x3 3x3	ReLU		
Convolution Convolution Decision		Convolution Pooling Dropout Convolution Pooling	128	2x2 2x2 2x2	ReLU	0.3	256	Convolution	2	Convolution Pooling Dropout Convolution Pooling	128	3x3 3x3 3x3	ReLU	0.3	

Group 2

Туре	Layer#	Туре	# filters	Kernel-size	activation	Dropout probability	Size	Туре	Layer#	Туре	# filters	Kernel-size	activation	Dropout probability	Size
Convolution	1	Convolution	32	4x4	ReLU			Convolution	1	Convolution	32	5x5	ReLU		
		Pooling		2x2						Pooling		2x2			
		Dropout				0.3				Dropout				0.2	
Convolution	2	Convolution	32	4x4	ReLU			Convolution	2	Convolution	32	5x5	ReLU		
		Pooling		2x2						Pooling		2x2			
		Dropout				0.3				Dropout				0.3	
Decision		Dense			ReLU		256	Decision		Dense			ReLU		256
Output		dense	softmax					Output		dense	softmax				
Туре	Layer#	Туре	# filters	Kernel-size	activation	Dropout probability	Size	Туре	Layer#	Туре	# filters	Kernel-size	activation	Dropout probability	Size
Convolution	1	Convolution	64	2x2	ReLU			Convolution	1	Convolution	64	5x5	ReLU		
		Pooling		2x2						Pooling		3x3			
		Dropout				0.3				Dropout				0.4	
Convolution	2	Convolution	64	2x2	ReLU			Convolution	2	Convolution	64	5x5	ReLU		
		Pooling		2x2						Pooling		3x3			
		Dropout				0.3				Dropout				0.3	
Decision		Dense			ReLU		256	Decision		Dense			ReLU		256
Output		dense			softmax		10	Output		dense			softmax		10

Assignment [100 marks]

Each person must turn in:

- a. [40 marks] Jupyter notebook code showing the TensorFlow modifications
- b. [20 marks] A table describing the results of the experiments on 11 models
- c. [40 marks] A brief summary of why any significantly different results occur due to modifications to the architecture.