

Bias/Variance Tradeoff and Ensemble Methods

Rishabh Iyer
University of Texas at Dallas

Last Time

- PAC learning
- Bias/variance tradeoff
 - small hypothesis spaces (not enough flexibility) can have high bias
 - rich hypothesis spaces (too much flexibility) can have high variance
- Today: more on this phenomenon and how to get around it

High Variance or Overfitting

If we allow very complicated predictors, we could overfit the training data.

Examples: Regression (Polynomial of order k – degree up to k-1)

Effect of Model Complexity

If we allow very complicated predictors, we could overfit the training data.

Intuition

- Bias
 - Measures the accuracy or quality of the algorithm
 - High bias means a poor match
- Variance
 - Measures the precision or specificity of the match
 - High variance means a weak match
- We would like to minimize each of these
- Unfortunately, we can't do this independently, there is a tradeoff

Bias-Variance Analysis in Regression

- Dataset: $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$
- True function is $y = f(x) + \epsilon$
 - Where noise, ϵ , is normally distributed with zero mean and standard deviation σ
- Given a set of training examples, $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})$, we fit a hypothesis $g(x) = w^T x + b$ to the data to minimize the squared error

$$\sum_{i} \left[y^{(i)} - g(x^{(i)}) \right]^2$$

Some Terminology

Expected Label (given $\mathbf{x} \in \mathbb{R}^d$):

$$\bar{y}(\mathbf{x}) = E_{y|\mathbf{x}}[Y] = \int_{y} y \Pr(y|\mathbf{x}) \partial y.$$

Expected Test Error (given h_D):

$$E_{(\mathbf{x},y)\sim P}\left[\left(h_D(\mathbf{x})-y
ight)^2
ight] = \iint\limits_{x}\left(h_D(\mathbf{x})-y
ight)^2\Pr(\mathbf{x},y)\partial y\partial \mathbf{x}.$$

Expected Classifier (given A):

$$ar{h} = E_{D \sim P^n} \left[h_D \right] = \int h_D \Pr(D) \partial D$$

Expected Test Error (given A):

$$E_{\substack{(\mathbf{x},y)\sim P\\D\sim P^n}}\left[\left(h_D(\mathbf{x})-y\right)^2\right] = \int_D \int_{\mathbf{x}} \int_y \left(h_D(\mathbf{x})-y\right)^2 \mathrm{P}(\mathbf{x},y) \mathrm{P}(D) \partial \mathbf{x} \partial y \partial D$$

Probability Reminder

Variance of a random variable, Z

$$Var(Z) = E[(Z - E[Z])^{2}]$$

= $E[Z^{2} - 2ZE[Z] + E[Z]^{2}]$
= $E[Z^{2}] - E[Z]^{2}$

• Properties of Var(Z)

$$Var(aZ) = E[a^{2}Z^{2}] - E[aZ]^{2} = a^{2}Var(Z)$$

$$E_{\mathbf{x},y,D} \left[[h_D(\mathbf{x}) - y]^2 \right] = E_{\mathbf{x},y,D} \left[\left[(h_D(\mathbf{x}) - \bar{h}(\mathbf{x})) + (\bar{h}(\mathbf{x}) - y) \right]^2 \right]$$

$$= E_{\mathbf{x},D} \left[(\bar{h}_D(\mathbf{x}) - \bar{h}(\mathbf{x}))^2 \right] + 2 E_{\mathbf{x},y,D} \left[(h_D(\mathbf{x}) - \bar{h}(\mathbf{x})) (\bar{h}(\mathbf{x}) - y) \right]$$

$$+ E_{\mathbf{x},y} \left[(\bar{h}(\mathbf{x}) - y)^2 \right]$$

$$E_{\mathbf{x},y,D} \left[[h_D(\mathbf{x}) - y]^2 \right] = E_{\mathbf{x},y,D} \left[\left[\left(h_D(\mathbf{x}) - \bar{h}(\mathbf{x}) \right) + \left(\bar{h}(\mathbf{x}) - y \right) \right]^2 \right]$$

$$= E_{\mathbf{x},D} \left[\left(\bar{h}_D(\mathbf{x}) - \bar{h}(\mathbf{x}) \right)^2 \right] + 2 E_{\mathbf{x},y,D} \left[\left(h_D(\mathbf{x}) - \bar{h}(\mathbf{x}) \right) \left(\bar{h}(\mathbf{x}) - y \right) \right]$$

$$+ E_{\mathbf{x},y} \left[\left(\bar{h}(\mathbf{x}) - y \right)^2 \right]$$

The middle term of the above equation is 0 as we show below

$$E_{\mathbf{x},y,D} \left[\left(h_D(\mathbf{x}) - \bar{h}(\mathbf{x}) \right) \left(\bar{h}(\mathbf{x}) - y \right) \right] = E_{\mathbf{x},y} \left[E_D \left[h_D(\mathbf{x}) - \bar{h}(\mathbf{x}) \right] \left(\bar{h}(\mathbf{x}) - y \right) \right]$$

$$= E_{\mathbf{x},y} \left[\left(E_D \left[h_D(\mathbf{x}) \right] - \bar{h}(\mathbf{x}) \right) \left(\bar{h}(\mathbf{x}) - y \right) \right]$$

$$= E_{\mathbf{x},y} \left[\left(\bar{h}(\mathbf{x}) - \bar{h}(\mathbf{x}) \right) \left(\bar{h}(\mathbf{x}) - y \right) \right]$$

$$= E_{\mathbf{x},y} \left[0 \right]$$

$$= 0$$

Returning to the earlier expression, we're left with the variance and another term

$$E_{\mathbf{x},y,D}\left[\left(h_D(\mathbf{x})-y\right)^2\right] = \underbrace{E_{\mathbf{x},D}\left[\left(h_D(\mathbf{x})-\bar{h}(\mathbf{x})\right)^2\right]}_{\text{Variance}} + E_{\mathbf{x},y}\left[\left(\bar{h}(\mathbf{x})-y\right)^2\right]$$

Returning to the earlier expression, we're left with the variance and another term

$$E_{\mathbf{x},y,D}\left[\left(h_D(\mathbf{x})-y\right)^2\right] = \underbrace{E_{\mathbf{x},D}\left[\left(h_D(\mathbf{x})-\bar{h}(\mathbf{x})\right)^2\right]}_{\text{Variance}} + E_{\mathbf{x},y}\left[\left(\bar{h}(\mathbf{x})-y\right)^2\right]$$

We can break down the second term in the above equation as follows:

$$E_{\mathbf{x},y} \left[\left(\bar{h}(\mathbf{x}) - y \right)^{2} \right] = E_{\mathbf{x},y} \left[\left(\bar{h}(\mathbf{x}) - \bar{y}(\mathbf{x}) \right) + \left(\bar{y}(\mathbf{x}) - y \right)^{2} \right]$$

$$= \underbrace{E_{\mathbf{x},y} \left[\left(\bar{y}(\mathbf{x}) - y \right)^{2} \right]}_{\text{Noise}} + \underbrace{E_{\mathbf{x}} \left[\left(\bar{h}(\mathbf{x}) - \bar{y}(\mathbf{x}) \right)^{2} \right]}_{\text{Bias}^{2}} + 2 E_{\mathbf{x},y} \left[\left(\bar{h}(\mathbf{x}) - \bar{y}(\mathbf{x}) \right) \left(\bar{y}(\mathbf{x}) - y \right) \right]$$

Returning to the earlier expression, we're left with the variance and another term

$$E_{\mathbf{x},y,D}\left[\left(h_D(\mathbf{x})-y\right)^2\right] = \underbrace{E_{\mathbf{x},D}\left[\left(h_D(\mathbf{x})-\bar{h}(\mathbf{x})\right)^2\right]}_{\text{Variance}} + E_{\mathbf{x},y}\left[\left(\bar{h}(\mathbf{x})-y\right)^2\right]$$

We can break down the second term in the above equation as follows:

$$E_{\mathbf{x},y} \left[\left(\bar{h}(\mathbf{x}) - y \right)^{2} \right] = E_{\mathbf{x},y} \left[\left(\bar{h}(\mathbf{x}) - \bar{y}(\mathbf{x}) \right) + \left(\bar{y}(\mathbf{x}) - y \right)^{2} \right]$$

$$= \underbrace{E_{\mathbf{x},y} \left[\left(\bar{y}(\mathbf{x}) - y \right)^{2} \right]}_{\text{Noise}} + \underbrace{E_{\mathbf{x}} \left[\left(\bar{h}(\mathbf{x}) - \bar{y}(\mathbf{x}) \right)^{2} \right]}_{\text{Bias}^{2}} + 2 E_{\mathbf{x},y} \left[\left(\bar{h}(\mathbf{x}) - \bar{y}(\mathbf{x}) \right) \left(\bar{y}(\mathbf{x}) - y \right) \right]$$

The third term in the equation above is 0

The third term in the equation above is 0, as we show below

$$E_{\mathbf{x},y} \left[\left(\bar{h}(\mathbf{x}) - \bar{y}(\mathbf{x}) \right) (\bar{y}(\mathbf{x}) - y) \right] = E_{\mathbf{x}} \left[E_{y|\mathbf{x}} \left[\bar{y}(\mathbf{x}) - y \right] \left(\bar{h}(\mathbf{x}) - \bar{y}(\mathbf{x}) \right) \right]$$

$$= E_{\mathbf{x}} \left[E_{y|\mathbf{x}} \left[\bar{y}(\mathbf{x}) - y \right] \left(\bar{h}(\mathbf{x}) - \bar{y}(\mathbf{x}) \right) \right]$$

$$= E_{\mathbf{x}} \left[\left(\bar{y}(\mathbf{x}) - E_{y|\mathbf{x}} \left[y \right] \right) \left(\bar{h}(\mathbf{x}) - \bar{y}(\mathbf{x}) \right) \right]$$

$$= E_{\mathbf{x}} \left[\left(\bar{y}(\mathbf{x}) - \bar{y}(\mathbf{x}) \right) \left(\bar{h}(\mathbf{x}) - \bar{y}(\mathbf{x}) \right) \right]$$

$$= E_{\mathbf{x}} \left[0 \right]$$

$$= 0$$

This gives us the decomposition of expected test error as follows

$$\underbrace{E_{\mathbf{x},y,D}\left[\left(h_D(\mathbf{x})-y\right)^2\right]}_{\text{Expected Test Error}} = \underbrace{E_{\mathbf{x},D}\left[\left(h_D(\mathbf{x})-\bar{h}(\mathbf{x})\right)^2\right]}_{\text{Variance}} + \underbrace{E_{\mathbf{x},y}\left[\left(\bar{y}(\mathbf{x})-y\right)^2\right]}_{\text{Noise}} + \underbrace{E_{\mathbf{x}}\left[\left(\bar{h}(\mathbf{x})-\bar{y}(\mathbf{x})\right)^2\right]}_{\text{Bias}^2}$$

Bias, Variance, and Noise

This gives us the decomposition of expected test error as follows

$$\underbrace{E_{\mathbf{x},y,D}\left[\left(h_D(\mathbf{x}) - y\right)^2\right]}_{\text{Expected Test Error}} = \underbrace{E_{\mathbf{x},D}\left[\left(h_D(\mathbf{x}) - \bar{h}(\mathbf{x})\right)^2\right]}_{\text{Variance}} + \underbrace{E_{\mathbf{x},y}\left[\left(\bar{y}(\mathbf{x}) - y\right)^2\right]}_{\text{Noise}}$$

$$+\underbrace{E_{\mathbf{x}}\left[\left(\bar{h}(\mathbf{x})-\bar{y}(\mathbf{x})\right)^{2}\right]}_{\mathrm{Bias}^{2}}$$

Variance: Captures how much your classifier changes if you train on a different training set. How "overspecialized" is your classifier to a particular training set (overfitting)? If we have the best possible model for our training data, how far off are we from the average classifier?

Bias: What is the inherent error that you obtain from your classifier even with infinite training data? This is due to your classifier being "biased" to a particular kind of solution (e.g. linear classifier). In other words, bias is inherent to your model.

Noise: How big is the data-intrinsic noise? This error measures ambiguity due to your data distribution and feature representation. You can never beat this, it is an aspect of the data.

Bias, Variance, and Noise

$$\underbrace{E_{\mathbf{x},y,D}\left[\left(h_D(\mathbf{x}) - y\right)^2\right]}_{\text{Expected Test Error}} = \underbrace{E_{\mathbf{x},D}\left[\left(h_D(\mathbf{x}) - \bar{h}(\mathbf{x})\right)^2\right]}_{\text{Variance}}$$

$$+\underbrace{E_{\mathbf{x},y}\left[\left(\bar{y}(\mathbf{x})-y\right)^{2}\right]}_{\text{Noise}}$$

$$+\underbrace{E_{\mathbf{x}}\left[\left(\bar{h}(\mathbf{x}) - \bar{y}(\mathbf{x})\right)^{2}\right]}_{\text{Bias}^{2}}$$

2-D Example

50 fits (20 examples each)

Bias

Variance

Noise

Bias-Variance Tradeoff

Large bias, Small variance – poor approximation but robust/stable

Small bias, Large variance – good approximation but instable

Bias

- Low bias
 - 5
- High bias
 - 3

Bias

- Low bias
 - Linear regression applied to linear data
 - 2nd degree polynomial applied to quadratic data
- High bias
 - Constant function applied to non-constant data
 - Linear regression applied to highly non-linear data

Variance

- Low variance
 - 5
- High variance
 - [

Variance

- Low variance
 - Constant function
 - Model independent of training data
- High variance
 - High degree polynomial

Bias/Variance Tradeoff

- (bias²+variance) is what counts for prediction
- As we saw in PAC learning, we often have
 - Low bias ⇒ high variance
 - Low variance ⇒ high bias
 - How can we deal with this in practice?

Detecting High Variance/Bias

Detecting High Variance

Regime 1 (High Variance)

In the first regime, the cause of the poor performance is high variance.

Symptoms:

- 1. Training error is much lower than test error
- 2. Training error is lower than ϵ
- 3. Test error is above ϵ

Remedies:

- Add more training data
- Reduce model complexity -- complex models are prone to high variance
- Bagging (will be covered later in the course)

Detecting High Bias

Regime 2 (High Bias)

Unlike the first regime, the second regime indicates high bias: the model being used is not robust enough to produce an accurate prediction.

Symptoms:

1. Training error is higher than ϵ

Remedies:

- Use more complex model (e.g. kernelize, use non-linear models)
- Add features
- Boosting (will be covered later in the course)

How to select the right model?

Model Spaces with increasing complexity:

- Nearest-Neighbor classifiers with varying neighborhood sizes k = 1,2,3,...
 Small neighborhood => Higher complexity
- Decision Trees with depth k or with k leaves
 Higher depth/ More # leaves => Higher complexity
- Regression with polynomials of order k = 0, 1, 2, ...
 Higher degree => Higher complexity
- Kernel Regression with bandwidth h
 Small bandwidth => Higher complexity

How can we select the right complexity model?

Held out Validation Set

We would like to pick the model that has smallest generalization error.

Can judge generalization error by using an independent sample of data.

Hold - out procedure:

n data points available $D \equiv \{X_i, Y_i\}_{i=1}^n$

1) Split into two sets: Training dataset Validation dataset NOT test $D_T = \{X_i, Y_i\}_{i=1}^m \qquad D_V = \{X_i, Y_i\}_{i=m+1}^n \text{ Data } !!$

2) Use D_T for training a predictor from each model class:

 $\widehat{f}_{\lambda} = \arg\min_{f \in \mathcal{F}_{\lambda}} \widehat{R}_{T}(f)$ $\longrightarrow \text{Evaluated on training dataset } D_{T}$

Held out Validation Set

3) Use Dv to select the model class which has smallest empirical error on D_v

$$\widehat{\lambda} = \arg\min_{\lambda \in \Lambda} \widehat{R}_V(\widehat{f}_\lambda)$$

$$\longrightarrow \text{Evaluated on validation dataset } D_V$$

4) Hold-out predictor

$$\widehat{f} = \widehat{f}_{\widehat{\lambda}}$$

Intuition: Small error on one set of data will not imply small error on a randomly sub-sampled second set of data

Ensures method is "stable"

Cross Validation

K-fold cross-validation

Create K-fold partition of the dataset.

Form K hold-out predictors, each time using one partition as validation and rest K-1 as training datasets.

Final predictor is average/majority vote over the K hold-out estimates.

	Total number of examples ▶	training	validation
Run 1		$\Rightarrow \widehat{f}_1$	
Run 2		$\Rightarrow \widehat{f}_2$	
Run K		$\Rightarrow \widehat{f}_K$	

Ensemble Methods

Reduce Variance Without Increasing Bias

• Averaging reduces variance: let $Z_1, ..., Z_N$ be i.i.d random variables

$$Var\left(\frac{1}{N}\sum_{i}Z_{i}\right) = \frac{1}{N}Var(Z_{i})$$

- Idea: average models to reduce model variance
- The problem
 - Only one training set
 - Where do multiple models come from?

Bagging: Bootstrap Aggregation

- Take repeated bootstrap samples from training set D (Breiman, 1994)
- Bootstrap sampling: Given set D containing N training examples, create D' by drawing N examples at random with replacement from D
- Bagging:
 - Create k bootstrap samples D_1 , ..., D_k
 - Train distinct classifier on each D_i
 - Classify new instance by majority vote / average

Bagging: Bootstrap Aggregation

Bagging

Data	1	2	3	4	5	6	7	8	9	10
BS 1	7	1	9	10	7	8	8	4	7	2
BS 2	8	1	3	1	1	9	7	4	10	1
BS 3	5	4	8	8	2	5	5	7	8	8

- Build a classifier from each bootstrap sample
- In each bootstrap sample, each data point has probability $\left(1 \frac{1}{N}\right)^N$ of not being selected
 - Expected number of distinct data points in each sample is then

$$N \cdot \left(1 - \left(1 - \frac{1}{N}\right)^N\right) \approx N \cdot (1 - \exp(-1)) = .632 \cdot N$$

Bagging

Data	1	2	3	4	5	6	7	8	9	10
BS 1	7	1	9	10	7	8	8	4	7	2
BS 2	8	1	3	1	1	9	7	4	10	1
BS 3	5	4	8	8	2	5	5	7	8	8

- Build a classifier from each bootstrap sample
- In each bootstrap sample, each data point has probability $\left(1 \frac{1}{N}\right)^N$ of not being selected
 - If we have 1 TB of data, each bootstrap sample will be ~ 632GB (this can present computational challenges, e.g., you shouldn't replicate the data)

Decision Tree Bagging

Decision Tree Bagging (100 Bagged Trees)

Bagging Results

	Without Bagging	With Bagging	
Data Set	$ar{e}_S$	$ar{e}_B$	Decrease
waveform	29.1	19.3	34%
heart	4.9	2.8	43%
breast cancer	5.9	3.7	37%
ionosphere	11.2	7.9	29%
diabetes	25.3	23.9	6%
glass	30.4	23.6	22%
soybean	8.6	6.8	21%

Breiman "Bagging Predictors" Berkeley Statistics Department TR#421, 1994

Random Forests

Random Forests

- Ensemble method specifically designed for decision tree classifiers
- Introduce two sources of randomness: "bagging" and "random input vectors"
 - Bagging method: each tree is grown using a bootstrap sample of training data
 - Random vector method: best split at each node is chosen from a random sample of m attributes instead of all attributes

Random Forest Algorithm

- For b = 1 to B
 - Draw a bootstrap sample of size N from the data
 - Grow a tree T_b using the bootstrap sample as follows
 - ullet Choose m attributes uniformly at random from the data
 - Choose the best attribute among the m to split on
 - Split on the best attribute and recurse (until partitions have fewer than s_{min} number of nodes)
- Prediction for a new data point x
 - Regression: $\frac{1}{B}\sum_b T_b(x)$
 - Classification: choose the majority class label among $T_1(x), ..., T_B(x)$

Random Forest Demo

A <u>demo</u> of random forests implemented in JavaScript

When Will Bagging Improve Accuracy?

- Depends on the stability of the base-level classifiers
- A learner is unstable if a small change to the training set causes a large change in the output hypothesis
 - If small changes in D cause large changes in the output, then there will likely be an improvement in performance with bagging
- Bagging can help unstable procedures, but could hurt the performance of stable procedures
 - Decision trees are unstable
 - k-nearest neighbor is stable