Advanced Machine Learning

Multi-Target Prediction: Methods Part 2

Learning goals

 Know how to leveraging and constucting the target similarity in multi-target learning

KRONECKER KERNEL RIDGE REGRESSION

- In MTP with target features, we often use kernel methods.
- Consider the following pairwise model representation in the primal:

$$f(\mathbf{x}, \mathbf{t}) = \boldsymbol{\omega}^{\top} \left(\phi(\mathbf{x}) \otimes \psi(\mathbf{t}) \right),$$

where ϕ is feature mapping for features and ψ is feature mapping for target (features) and \otimes is Kronecker product. **TODO: Define t**

• This yields Kronecker product pairwise kernel in the dual:

$$f(\mathbf{x},\mathbf{t}) = \sum_{(\mathbf{x}',\mathbf{t}') \in \mathcal{D}} \alpha_{(\mathbf{x}',\mathbf{t}')} \cdot k(\mathbf{x},\mathbf{x}') \cdot g(\mathbf{t},\mathbf{t}') = \sum_{(\mathbf{x}',\mathbf{t}') \in \mathcal{D}} \alpha_{(\mathbf{x}',\mathbf{t}')} \Gamma((\mathbf{x},\mathbf{t}),(\mathbf{x}',\mathbf{t}')),$$

where k is kernel for feature map ϕ , g kernel for feature map ψ and $\alpha_{(\mathbf{x'},\mathbf{t'})}$ are dual parameters determined by:

$$\min_{\boldsymbol{\alpha}} \ || \Gamma \boldsymbol{\alpha} - \boldsymbol{z} ||_2^2 + \lambda \boldsymbol{\alpha}^{\top} \Gamma \boldsymbol{\alpha}, \text{ where } \boldsymbol{z} = \text{vec}(\boldsymbol{Y})$$

Commonly used in zero-shot learning.

Stock et al., A comparative study of pairwise learning methods based on kernel ridge regression, Neural Computation 2018.

EXPLOITING RELATIONS IN REGULARIZATION TERMS

Graph-based regularization for tree-type relations in targets:

$$\min_{\Theta} \|Y - \Phi\Theta\|_F^2 + \lambda \sum_{m=1}^I \sum_{m' \in \mathcal{N}(m)} \|\boldsymbol{\theta}_m - \boldsymbol{\theta}_{m'}\|^2,$$

where $\mathcal{N}(j)$ is the set of targets related to target j.

- The graph or tree is given as prior information.
- Can be extended to a weighted version aware of the similarities (or correlations).

Gopal and Yang, Recursive regularization for large-scale classification with hierarchical and graphical dependencies, KDD 2013.

HIERARCHICAL MULTI-LABEL CLASSIFICATION

 Hierarchies can also be used to define specific loss functions, such as the Hierarchy-loss:

$$L_{Hier}(\mathbf{y}, f) = \sum_{m: v_m \neq \hat{v}_m} c_m \mathbb{1}_{[anc(y_m) = anc(\hat{y}_m)]},$$

• This is rather common in multi-label classification problems.

Bi and Kwok, Bayes-optimal hierarchical multi-label classification, IEEE Transactions on Knowledge and Data Engineering, 2014.

PROBABILISTIC CLASSIFIER CHAINS

- Estimate the joint conditional distribution $\mathbb{P}(\mathbf{y} \mid \mathbf{x})$.
- For optimizing the subset 0/1 loss:

$$L_{0/1}(\mathbf{y},\hat{\mathbf{y}}) = \mathbb{1}_{[\mathbf{y}\neq\hat{\mathbf{y}}]}$$

• Repeatedly apply the *product rule* of probability:

$$\mathbb{P}(\mathbf{y} \mid \mathbf{x}) = \prod_{j=m}^{I} \mathbb{P}(y_m \mid \mathbf{x}, y_1, \dots, y_{m-1}).$$

 Learning relies on constructing probabilistic classifiers for estimating

$$\mathbb{P}(y_m|\mathbf{x},y_1,\ldots,y_{m-1}),$$

independently for each m = 1, ..., I.

PROBABILISTIC CLASSIFIER CHAINS

• Inference relies on exploiting a probability tree:

- For subset 0/1 loss one needs to find $f^*(\mathbf{x}) = \arg \max_{\mathbf{v}} \mathbb{P}(\mathbf{y} \mid \mathbf{x})$.
- Greedy and approximate search techniques with guarantees exist.
- Other losses: compute the prediction on a sample from $\mathbb{P}(\mathbf{y} \mid \mathbf{x})$.

Dembczynski et al., An analysis of chaining in multi-label classification, ECAI 2012.

LOW-RANK APPROXIMATION

- Low rank materializes the idea that some structure is shared across different targets.
- Typically perform a low-rank approximation of the parameter matrix:

$$\min_{\Theta} \| Y - \Phi \Theta \|_F^2 + \lambda \operatorname{rank}(\Theta)$$

Chen et al., A convex formulation for learning shared structures from multiple tasks, ICML 2009.

LOW-RANK APPROXIMATION

- Θ : parameter matrix of dimensionality $p \times I$
- p: the number of (projected) features
- /: the number of targets
- Assume a low-rank structure of *A*:

- We can write $\Theta = UV$ and $\Theta \mathbf{x} = UV\mathbf{x}$
- V is a $p \times \hat{l}$ matrix
- U is an $\hat{I} \times I$ matrix
- \hat{I} is the rank of Θ

OVERVIEW OF METHODS

- Popular for multi-output regression, multi-task learning and multi-label classification.
- Linear as well as nonlinear methods.
- Algorithms:
 - Principal component analysis, Canonical correlation analysis,
 Partial least squares.
 - Singular value decomposition, Alternating structure optimization.
 - Compressed sensing, Output codes, Landmark labels, Bloom filters, Auto-encoders.

