LUNDS TEKNISKA HÖGSKOLA **MATEMATIK**

SVAR ENDIMENSIONELL ANALYS DELKURS B1 2013 - 04 - 06 kl 08 - 13

1. a)
$$x = 0$$
.

b)
$$x = -\frac{3}{2}$$
.

c)
$$x = 3$$
.

2. a)
$$a = -1$$
. $x = 1$, $x = \sqrt{2}$, $x = -\sqrt{2}$.

b) x=1 är en lokal minimipunkt och $x=-\frac{1}{3}$ är en lokal maximipunkt.

3. a) Sneda asymptoter:
$$y=x\pm\frac{\pi}{2}$$
. Stationära punkter: $x=\pm\frac{1}{2}$. Funktionens graf:

b) Ekvationen har en lösning då $a>\frac{\pi}{4}-\frac{1}{2}$ eller $a<-\frac{\pi}{4}+\frac{1}{2}$, två lösningar då $a=\frac{\pi}{4}-\frac{1}{2}$ eller $a=-\frac{\pi}{4}+\frac{1}{2}$, och tre lösningar då $-\frac{\pi}{4}+\frac{1}{2}< a<\frac{\pi}{4}-\frac{1}{2}$.

b) Eftersom
$$(\arcsin x + \arccos x)' = \frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-x^2}} = 0$$
 för $-1 < x < 1$, så gäller $\arcsin x + \arccos x = \arcsin 0 + \arccos 0 = \frac{\pi}{2}$ för $-1 < x < 1$.

5. a)
$$-2$$
.

b)
$$\infty$$
 då $c > 1$, e då $c = 1$, 0 då $0 < c < 1$.

6. a)
$$-\frac{2}{5}$$
.