



NVLAP LAB CODE 100396-0

• P.O. Box 489 • 1350 Tolland Road • Rollinsville, CO 80474 • Phone: (303) 258-0100 • FAX: (303) 258-0775 • • www.criteriontech.com •

# EMC QUALIFICATION TEST REPORT PHASE IV TECHNOLOGY RFID AIRPLANE TIRE PRESSURE TESTER, IHHR

## **TESTED TO CONFORM WITH:**

# 

# INDUSTRIAL, SCIENTIFIC AND MEDICAL (ISM)

Test Report Number: 090119-1365EM

Date of Issue: September 29, 2009

Date of Test Completion: September 25, 2009

Manufacturer's Address: 2820 Wilderness Place, Unit C

Boulder, CO 80301

Approved by:

Laboratory Director



#### **EMC QUALIFICATION TEST REPORT** 090119-1365EM FOR PHASE IV TECHNOLOGY

#### **DISCLAIMERS**

This report is the confidential property of the client. For the protection of our clients and ourselves, extracts from this test report cannot be produced without prior written approval from Criterion Technology. Reproduction of the complete report can be performed at the client's discretion.

The client is aware that Criterion Technology has performed testing in accordance with the applicable standard(s). Test data is accurate within ANSI parameters for Emissions testing, unless a specific level of accuracy has been defined in writing prior to testing, by Criterion Technology and the client.

Criterion Technology reports apply only to the specific Equipment Under Test (EUT) sample(s) tested under the test conditions described in this report. If the manufacturer intends to use this report as a document demonstrating compliance of this model, additional models of this product must have electrical and mechanical characteristics identical to the device tested for this report. Criterion Technology shall have no liability for any deductions, inferences, or generalizations drawn by the client or others from Criterion Technology issued reports.

Total liability is limited to the amount invoiced for the testing of this EUT and the contents of this report are not warranted.

Compliance with the appropriate governmental standards is the responsibility of the manufacturer.

Any questions regarding this report should be directed to:

Laboratory Director Criterion Technology Corp. P.O. Box 489 1350 Tolland Road Rollinsville, Colorado 80474 Phone: (303) 258-0100

Fax: (303) 258-0775

mailto:laboratory\_director@criteriontech.com

NVLAP Note: Criterion Technology is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) for the specific scope of accreditation under Lab Code 100396-0.

The NVLAP Logo on the front cover of this report applies only to data taken for the above test methods.

This report may contain data which is not covered by the NVLAP accreditation.

This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

Criterion Technology has been accredited by the following groups: NVLAP(#100396-0), FCC(#90688), BSMI(#SL2-IN-007R), VCCI(#1255) 3&10 meter site (#R-2826), Immunity Shield room(#C-3118), Open Area Site(#C-3119), Nemko(#ELA-214), NMi (EU Competent Body Accreditation) and Industry Canada(#IC 3301). The National Institute for Standards and Technology (NIST) has designated Criterion Technology a Conformity Assessment Body (CAB) for Taiwan (BSMI # SL2-IN-E-007R).

ALL CRITERION TECHNOLOGY INSTRUMENTATION AND ACCESSORIES USED TO TEST PRODUCTS FOR COMPLIANCE TO THE INDICATED STANDARDS ARE CALIBRATED REGULARLY IN ACCORDANCE WITH ISO 9002, ISO 17025, ANSI/NCSL Z540-I-1994 AND ARE TRACEABLE TO NATIONAL STANDARDS.

# **TABLE OF CONTENTS**

| HZ TO 1000 MHZ                               |
|----------------------------------------------|
| HZ TO 1000 MHZ6<br>E 1GHZ6                   |
| E 1GHZ                                       |
| E 1GHZ                                       |
|                                              |
|                                              |
| 8                                            |
| 9                                            |
| 10                                           |
| 10                                           |
| 11                                           |
| 12                                           |
|                                              |
|                                              |
| - 30 MHZ TO 1 GHZ12<br>E – 30 MHZ TO 1 GHZ13 |
| - 30 MHZ TO 1 GHZ12                          |
| - 30 MHZ TO 1 GHZ                            |
| 20 MHZ TO 1 GHZ                              |
| - 30 MHZ TO 1 GHZ                            |
| - 30 MHZ TO 1 GHZ                            |
| - 30 MHZ TO 1 GHZ                            |
| 230 MHZ TO 1 GHZ                             |
| - 30 MHZ TO 1 GHZ                            |
| `-<br>_E<br>_E<br>- 1                        |

# EMC QUALIFICATION TEST REPORT RFID AIRPLANE TIRE PRESSURE TESTER, IHHR

#### 1.0 EXECUTIVE SUMMARY

#### 1.1 PURPOSE

The purpose of this report is to present EMC test data and demonstrate conformity to the requirements of the prescribed standards for Emissions and/or Immunity.

#### 1.2 CONFORMITY

The test article was tested to the standards listed in Table I with the indicated conformity status. All test methods were performed in accordance to with the standards listed.

TABLE I. EMISSIONS CONFORMITY SUMMARY

| TEST TYPE | COMPLIANCE<br>STANDARD  | TESTING<br>TECHNIQUE                                                                          | TEST<br>DESCRIPTION            | PRODUCT<br>CLASSIFICATION | CONFORMITY<br>STATUS |
|-----------|-------------------------|-----------------------------------------------------------------------------------------------|--------------------------------|---------------------------|----------------------|
| EMISSIONS | FCC Part 15<br>ICES-003 | IEC/EN 55011<br>(below 1GHz)<br>  FCC Title 47 Part 15<br>  Section 31 (a)(3)<br>(above 1GHz) | Untentional Radiated Emissions | Class A                   | PASSED               |
|           | 1013-003                | ⋈ FCC 15.249         ⋈ EN 300 328         ⋈ EN 300 330         ⋈ RSS 210E sec. 2              | Intentional Radiated Emissions |                           | PASSED               |

## 1.3 EQUIPMENT UNDER TEST (EUT)

EUT NAME: RFID AIRPLANE TIRE PRESSURE TESTER

EUT MODEL/PART NUMBER(S): IHHR
EUT SERIAL NUMBER(S): 000261

# **EMC QUALIFICATION TEST REPORT**

090119-1365EM FOR PHASE IV TECHNOLOGY

#### 2.0 EMISSIONS TEST STANDARDS

**EN 55011 for ISM Equipment** Class A FCC Part 15, Subpart B Class A FCC 15.249 Class A EN 300 328 Class A EN 300 330 Class A RSS 210E sec.2 Class A

#### 2.1 ☑ UNINTENTIONAL RADIATED EMISSIONS – 30 MHZ TO 1000 MHZ

Measurements for Radiated Emissions were performed over the frequency range of 30 MHz to 1000 MHz in the horizontal and vertical antenna polarities to the requirements of:

EN 55011 for ISM Equipment

#### **Testing Conditions**

Date of Test: January 21, 2009

Temperature: 18° C Relative Humidity: 21 % Test Voltage: Battery Test Operator: **LWS** 

#### **Test Location**

#### Criterion Technology Open Area Test Site

#### **Test Distance**

Antenna Distance: 10 meter(s) Final Measurement(s)

#### **Test Equipment**

☐ Hewlett-Packard Tracking Generator, HP 85645A ☐ Rohde and Schwarz Receiver, ESHS-30 ☒ Rohde and Schwarz Receiver, ESVS-30 ☐ Chase BiLog Antenna, Model CB6111 ☐ Antenna Research, Horn Antenna, Model DRG118/A ☐ EMCO BiConnical Antenna, Model 3108 ☐ EMCO Log Periodic Antenna, Model 3146

Test Accessories: See Appendix C for support equipment details

#### **Test Results of Radiated Emissions**

Test Status: PASSED Frequency Range: 30 MHz to 1000 MHz

Minimum Margin to Limit: -8.57 dB at 46.1169 MHz

#### Remarks

See: APPENDIX A for EUT Photographs **APPENDIX B** for Data Sheets

#### 2.2 ☑ UNINTENTIONAL RADIATED EMISSIONS ABOVE 1GHZ

Measurements for Radiated Emissions were performed over the frequency range of 1 GHz to 2 GHz in the horizontal and vertical antenna polarities to the requirements of:

FCC 47CFR15.31 Class A

**Testing Conditions** 

Date of Test: January 26, 2009

Temperature: 15° C Relative Humidity: 22 % Test Voltage: Battery Test Operator: **LWS** 

**Test Location** 

**Criterion Technology Open Area Test Site** 

**Test Distance** 

Antenna Distance: 3 meter(s) Final Measurement(s)

Test Equipment

☑ Hewlett-Packard Quasi-Peak Adapter, HP 85650A ☐ Hewlett-Packard Tracking Generator, HP 85645A

☐ Rohde and Schwarz Receiver, ESHS-30

☐ Rohde and Schwarz Receiver, ESVS-30

☐ Mini Circuits Pre-Amp #2 ☐ Veratech Pre-Amp #3

☐ Chase BiLog Antenna, Model 1121 ☐ Antenna Research, Horn Antenna, Model DRG118/A

☐ EMCO BiConnical Antenna, Model 3108 ☐ EMCO Log Periodic Antenna, Model 3146

Test Accessories: See Appendix C for support equipment details

**Test Results of Radiated Emissions** 

Test Status: PASSED Frequency Range: 1 GHz to 2 GHz

Minimum Margin to Limit: -13.92 dB at 1440.2064 MHz

Remarks

See: APPENDIX A for EUT Photographs **APPENDIX B** for Data Sheets

# **EMC QUALIFICATION TEST REPORT**

090119-1365EM FOR PHASE IV TECHNOLOGY

#### 2.3 **☒ INTENTIONAL RADIATOR - BLUETOOTH**

Measurements for Intentional Radiated Emissions were performed over the frequency range of 1 GHz to 25 GHz the horizontal and vertical antenna polarities to the requirements of:

FCC 15.249 EN 300 328 Class A **RSS 210E sec.2** Class A

#### **Testing Conditions**

Date of Test: January 23, 2009

13º C Temperature: 24 % Relative Humidity: Test Voltage: Battery Test Operator: **LWS** 

#### **Test Location**

## Criterion Technology Open Area Test Site

#### **Test Distance**

Antenna Distance: 10 meter(s) Final Measurement(s)

## **Test Equipment**

| X | Hewlett-Packard Spectrum Analyzer, HP 8566B   Hewlett-Packard Quasi-Peak Adapter, HP 85650 |
|---|--------------------------------------------------------------------------------------------|
|   | Hewlett-Packard Tracking Generator, HP 85645A                                              |
|   | Rohde and Schwarz Receiver, ESHS-30                                                        |
|   | Mini Circuits Pre-Amp #2 ☑ Veratech Pre-Amp #3                                             |
|   | Chase BiLog Antenna, Model 1121 🛛 Antenna Research, Horn Antenna, Model DRG118/A           |
|   | EMCO BiConnical Antenna, Model 3108                                                        |
| X | EMCO Active Loop, 6502                                                                     |
|   |                                                                                            |

Test Accessories: See Appendix C for support equipment details

#### **Test Results of Radiated Emissions**

Test Status: PASSED Frequency Range: 1 GHz to 25 GHz

> Minimum Margin to Limit: dB at 4.883 GHz -3.4

#### Remarks

See: APPENDIX A for EUT Photographs APPENDIX B for Data Sheets

## 2.4 X INTENTIONAL RADIATOR - RFID

Measurements for *Intentional Radiated Emissions* were performed over the frequency range of 100 kHz to 1.4 MHz the horizontal and vertical antenna polarities to the requirements of:

FCC 15.249 Class A
EN 300 330 Class A
RSS 210E sec.2 Class A

#### **Testing Conditions**

Date of Test: May 15, 2009

Temperature: 21° C
Relative Humidity: 26 %
Test Voltage: Battery
Test Operator: LWS

#### **Test Location**

#### **Criterion Technology Open Area Test Site**

#### **Test Distance**

Antenna Distance: 10 meter(s) Final Measurement(s)

#### **Test Equipment**

| Mewiett-Packard Spectrum Analyzer, HP 8566B     | M Hewlett-Packard Quasi-Peak Adapter, HP 85650A |
|-------------------------------------------------|-------------------------------------------------|
| ☐ Hewlett-Packard Tracking Generator, HP 85645A | A                                               |
| □ Pohde and Schwarz Receiver ESHS-30 □          | Robde and Schwarz Receiver, ESVS-30             |

Conde and Schwarz Receiver, ESVS-50

☐ Mini Circuits Pre-Amp #2 ☒ Veratech Pre-Amp #3

□ Chase BiLog Antenna, Model 1121
 ☑ Antenna Research, Horn Antenna, Model DRG118/A
 □ EMCO BiConnical Antenna, Model 3108
 □ EMCO Log Periodic Antenna, Model 3146

☑ EMCO Active Loop, 6502

Test Accessories: See Appendix C for support equipment details

#### **Test Results of Radiated Emissions**

Test Status: PASSED Frequency Range: 100 kHz to 1.4 MHz

Minimum Margin to Limit: FCC: -22.10 dB at 1342 kHz

Minimum Margin to Limit: EN 300 330: -30.00 dB at 268.4 kHz

#### Remarks

See: **APPENDIX A** for EUT Photographs **APPENDIX B** for Data Sheets

#### OCCUPIED BANDWIDTH 2.5

Measurements for bandwidth, band edges, number of channels were performed in accordance with the Operations to the Requirements of:

#### FCC Part 15

#### **Testing Conditions**

Date of Test: September 25, 2009

Temperature: 16° C Relative Humidity: 39 % Test Voltage: battery Test Operator: **LWS** 

#### **Test Location**

#### **Criterion Technology Open Area Test Site**

## Test Equipment

Hewlett-Packard Spectrum Analyzer, HP 8566B Rohde and Schwarz Receiver, ESVS-30

Test Accessories: See Appendix C for support equipment details

#### **Test Results**

Test Status: PASSED Frequency Range: 1 GHz to 2.5 GHz

Occupied Bandwidth: <u>-6dB = 81.967557 MHz</u> Occupied Bandwidth: -20dB = 86.313186 MHz

#### Remarks

See: APPENDIX A for EUT Photographs APPENDIX B for Data Sheets

## 3.0 APPENDIX A: EUT PHOTOGRAPHS

## 3.1 RADIATED EMISSIONS – FRONT VIEW



#### 3.2 RADIATED EMISSIONS - REAR VIEW



#### 4.0 APPENDIX B: DATA SHEETS

#### UNINTENTIONAL RADIATED EMISSIONS PLOT - 30 MHZ TO 1 GHZ 4.1

Date: January 21, 2009 S/N: 000261

Criterion Technology EUT: RFID airplane tire pressure tester, IHHR Manufacturer: Phase IV Technology

**Tester: LWS** SpiD: 090119-1365

EUT Information: 5022-a, h=1 and 2m, d=10m Test Information: 10m, battery, EN 55011 Class A Test Cond: Temp: 18° C

Humidity: 21 %



#### 090119-1365EM FOR PHASE IV TECHNOLOGY

#### UNINTENTIONAL RADIATED EMISSIONS TABLE - 30 MHZ TO 1 GHZ 4.2

#### Notes:

The third column below contains alpha characters which pertain to the type of measurements made. The following are the definitions for those characters: q = Quasi Peak, m = Maximized (cable, rotation and antenna height), s = scanned but no data taken, and a = average. For the first character in column four, a '-' indicates that value is below the limit while an '\*' indicates that value is above the limit

If the list is sorted using "I-sort", then quasi-peak and average levels are weighted higher than peak levels and are moved to the front of the scan list.

The following keys help to better understand the data:

TT: Turntable position in degrees Hght: Height of antenna in centimeters Az: Azimuth, V = Vertical, H= Horizontal

Criterion Technology Wed Jan 21 15:35:48 2009 EUT: RFID airplane tire pressure tester, IHHR

S/N: 000261

Manufacturer: Phase IV Technology

Tester: LWS

Special ID: 090119-1365

EUT Information: 5022-a, h=1 and 2m, d=10m Test information: 10m, EN 55011 Class A

Table 1: Scan List, sorted by margin to limit X11A10, -21.5dB filter

| Freq, MHz | Value dBuV/m | Sts | MArgin to X11A10   | TT  | <u>Hght</u> | <u>Az</u> | Comment               |
|-----------|--------------|-----|--------------------|-----|-------------|-----------|-----------------------|
|           |              |     | <u>limits (dB)</u> |     |             |           |                       |
| 46.1169   | 30.97        | m   | -8.57              | 357 | 100         | V         |                       |
| 90.9665   | 30.88        | m   | -8.66              | 114 | 194         | V         | 13M clk               |
| 94.4534   | 29.69        | m   | -9.85              | 356 | 100         | V         | 8.58M clk             |
| 152.9249  | 29.61        | m   | -9.93              | 120 | 107         | V         |                       |
| 77.2992   | 27.69        | m   | -11.85             | 270 | 200         | Н         | 8.58M clk             |
| 68.7104   | 25.33        | m   | -14.21             | 0   | 200         | Н         | 8.58M clk             |
| 95.9450   | 25.19        | q   | -14.35             | 91  | 100         | Н         | 12M clk               |
| 104.0545  | 24.92        | q   | -14.62             | -2  | 100         | V         | 13M clk               |
| 111.6544  | 24.43        | m   | -15.11             | 270 | 100         | V         | 8.58M clk             |
| 228.0000  | 23.24        | m   | -16.30             | 91  | 200         | Н         | 12M clk               |
| 108.0525  | 23.02        | q   | -16.52             | 91  | 100         | V         | 12M clk               |
| 84.4710   | 22.99        | q   | -16.55             | -2  | 100         | V         |                       |
| 144.0000  | 22.06        | q   | -17.48             | 0   | 200         | V         | 12M clk               |
| 226.6679  | 21.04        | q   | -18.50             | 91  | 200         | Н         |                       |
| 195.0000  | 20.97        | q   | -18.57             | 91  | 100         | V         | 13M clk               |
| 226.9376  | 20.95        | q   | -18.59             | 91  | 200         | Н         |                       |
| 223.3088  | 20.94        | q   | -18.60             | 91  | 200         | Н         | 8.588M clk            |
| 84.0000   | 20.79        | q   | -18.75             | -2  | 100         | V         | 12M clk               |
| 42.9440   | 20.67        | q   | -18.87             | 91  | 100         | V         | 8.58M clk             |
| 130.0000  | 20.63        | q   | -18.91             | 270 | 100         | Н         | 13M clk               |
| 51.9950   | 20.59        | q   | -18.95             | -2  | 100         | V         | 13M clk               |
| 137.4208  | 20.50        | q   | -19.04             | 179 | 100         | V         | 8.58M clk             |
| 156.0000  | 20.48        | q   | -19.06             | 270 | 100         | V         | 12M clk, 13M clk      |
| 132.0000  | 20.41        | q   | -19.13             | 270 | 100         | V         | 12M clk               |
| 146.0096  | 20.39        | q   | -19.15             | 91  | 100         | V         | 8.58M clk             |
| 197.5424  | 20.15        | q   | -19.39             | 179 | 100         | V         | 8.58M clk, 8.588M clk |
| 188.9536  | 20.14        | q   | -19.40             | -2  | 100         | V         | 8.58M clk, 8.588M clk |
| 86.2710   | 19.76        | q   | -19.78             | 270 | 200         | V         |                       |
| 146.4165  | 19.49        | q   | -20.05             | 91  | 100         | V         |                       |
| 204.0000  | 19.48        | q   | -20.06             | 0   | 200         | V         | 12M clk               |
| 47.4795   | 19.40        | q   | -20.14             | 91  | 100         | V         |                       |

| Sheet 14 of 32 |       | 090 | EMC QUALIFICATI<br>119-1365EM FOR PH | CRITERION TECHNOLOGY |     |   |            |
|----------------|-------|-----|--------------------------------------|----------------------|-----|---|------------|
| 154.5984       | 19.30 | q   | -20.24                               | 270                  | 100 | V | 8.58M clk  |
| 85.8880        | 19.23 | q   | -20.31                               | -2                   | 100 | V | 8.58M clk  |
| 124.9601       | 19.23 | q   | -20.31                               | 91                   | 200 | Н |            |
| 143.0000       | 18.69 | q   | -20.85                               | 179                  | 100 | V | 13M clk    |
| 192.0000       | 18.60 | q   | -20.94                               | 0                    | 200 | V | 12M clk    |
| 206.1312       | 18.38 | q   | -21.16                               | 270                  | 200 | Н | 8.588M clk |
| 253.3605       | 25.38 | q   | -21.16                               | 91                   | 200 | Н |            |
| 51.5328        | 18.28 | q   | -21.26                               | 91                   | 100 | V | 8.58M clk  |
| 216.0000       | 18.22 | q   | -21.32                               | 270                  | 200 | Н | 12M clk    |
| 221.0000       | 18.20 | a   | -21.34                               | 91                   | 200 | Н | 13M clk    |

Table 2: Scan List for X11A10, sorted by Frequency, -21.5dB filter

| Freq, MHz | Final Value dBuV/m | <u>Sts</u> | MArgin to X11A10 limits (dB) | <u>TT</u> | <u>Hght</u> | <u>Az</u> | Comment               |
|-----------|--------------------|------------|------------------------------|-----------|-------------|-----------|-----------------------|
| 42.9440   | 20.67              | q          | -18.87                       | 91        | 100         | V         | 8.58M clk             |
| 46.1169   | 30.97              | m          | -8.57                        | 357       | 100         | V         |                       |
| 47.4795   | 19.40              | q          | -20.14                       | 91        | 100         | V         |                       |
| 51.5328   | 18.28              | q          | -21.26                       | 91        | 100         | V         | 8.58M clk             |
| 51.9950   | 20.59              | q          | -18.95                       | -2        | 100         | V         | 13M clk               |
| 68.7104   | 25.33              | m          | -14.21                       | 0         | 200         | Н         | 8.58M clk             |
| 77.2992   | 27.69              | m          | -11.85                       | 270       | 200         | Н         | 8.58M clk             |
| 84.0000   | 20.79              | q          | -18.75                       | -2        | 100         | V         | 12M clk               |
| 84.4710   | 22.99              | q          | -16.55                       | -2        | 100         | V         |                       |
| 85.8880   | 19.23              | q          | -20.31                       | -2        | 100         | V         | 8.58M clk             |
| 86.2710   | 19.76              | q          | -19.78                       | 270       | 200         | V         |                       |
| 90.9665   | 30.88              | m          | -8.66                        | 114       | 194         | V         | 13M clk               |
| 94.4534   | 29.69              | m          | -9.85                        | 356       | 100         | V         | 8.58M clk             |
| 95.9450   | 25.19              | q          | -14.35                       | 91        | 100         | Н         | 12M clk               |
| 104.0545  | 24.92              | q          | -14.62                       | -2        | 100         | V         | 13M clk               |
| 108.0525  | 23.02              | q          | -16.52                       | 91        | 100         | V         | 12M clk               |
| 111.6544  | 24.43              | m          | -15.11                       | 270       | 100         | V         | 8.58M clk             |
| 124.9601  | 19.23              | q          | -20.31                       | 91        | 200         | Н         |                       |
| 130.0000  | 20.63              | q          | -18.91                       | 270       | 100         | Н         | 13M clk               |
| 132.0000  | 20.41              | q          | -19.13                       | 270       | 100         | V         | 12M clk               |
| 137.4208  | 20.50              | q          | -19.04                       | 179       | 100         | V         | 8.58M clk             |
| 143.0000  | 18.69              | q          | -20.85                       | 179       | 100         | V         | 13M clk               |
| 144.0000  | 22.06              | q          | -17.48                       | 0         | 200         | V         | 12M clk               |
| 146.0096  | 20.39              | q          | -19.15                       | 91        | 100         | V         | 8.58M clk             |
| 146.4165  | 19.49              | q          | -20.05                       | 91        | 100         | V         |                       |
| 152.9249  | 29.61              | m          | -9.93                        | 120       | 107         | V         |                       |
| 154.5984  | 19.30              | q          | -20.24                       | 270       | 100         | V         | 8.58M clk             |
| 156.0000  | 20.48              | q          | -19.06                       | 270       | 100         | V         | 12M clk, 13M clk      |
| 188.9536  | 20.14              | q          | -19.40                       | -2        | 100         | V         | 8.58M clk, 8.588M clk |
| 192.0000  | 18.60              | q          | -20.94                       | 0         | 200         | V         | 12M clk               |
| 195.0000  | 20.97              | q          | -18.57                       | 91        | 100         | V         | 13M clk               |
| 197.5424  | 20.15              | q          | -19.39                       | 179       | 100         | V         | 8.58M clk, 8.588M clk |
| 204.0000  | 19.48              | q          | -20.06                       | 0         | 200         | V         | 12M clk               |
| 206.1312  | 18.38              | q          | -21.16                       | 270       | 200         | Н         | 8.588M clk            |
| 216.0000  | 18.22              | q          | -21.32                       | 270       | 200         | Н         | 12M clk               |
| 221.0000  | 18.20              | q          | -21.34                       | 91        | 200         | Н         | 13M clk               |
| 223.3088  | 20.94              | q          | -18.60                       | 91        | 200         | Н         | 8.588M clk            |
| 226.6679  | 21.04              | q          | -18.50                       | 91        | 200         | Н         |                       |
| 226.9376  | 20.95              | q          | -18.59                       | 91        | 200         | Н         |                       |
| 228.0000  | 23.24              | m          | -16.30                       | 91        | 200         | Н         | 12M clk               |
| 253.3605  | 25.38              | q          | -21.16                       | 91        | 200         | Н         |                       |

**Table 3: Complete Scan List Sorted by Frequency** 

|           | •                               | ·                     |     |     |      |    |                          |                       |
|-----------|---------------------------------|-----------------------|-----|-----|------|----|--------------------------|-----------------------|
| Freq, MHz | I-val before xducr factors dBuV | Final value<br>dBuV/m | Sts | TT  | Hght | Az | Time                     | Comment               |
| 34.3552   | 20.52                           | 14.41                 | q   | 179 | 100  | V  | Wed Jan 21 11:44:39 2009 | 8.58M clk             |
| 36.0000   | 24.11                           | 17.21                 | q   | 270 | 200  | V  | Wed Jan 21 12:13:32 2009 | 12M clk               |
| 39.0000   | 24.37                           | 16.16                 | q   | 0   | 200  | V  | Wed Jan 21 11:03:14 2009 | 13M clk               |
| 42.9440   | 31.11                           | 20.67                 | q   | 91  | 100  | V  | Wed Jan 21 10:35:58 2009 | 8.58M clk             |
| 46.1169   | 43.02                           | 30.97                 | m   | 357 | 100  | V  | Wed Jan 21 14:24:46 2009 |                       |
| 47.4795   | 32.24                           | 19.40                 | q   | 91  | 100  | V  | Wed Jan 21 10:36:02 2009 |                       |
| 48.0000   | 29.93                           | 16.81                 | q   | 91  | 100  | V  | Wed Jan 21 10:36:04 2009 | 12M clk               |
| 51.5328   | 32.98                           | 18.28                 | q   | 91  | 100  | V  | Wed Jan 21 10:36:08 2009 | 8.58M clk             |
| 51.9950   | 35.45                           | 20.59                 | q   | -2  | 100  | V  | Wed Jan 21 10:16:04 2009 | 13M clk               |
| 60.0000   | 33.00                           | 16.85                 | q   | 0   | 200  | Н  | Wed Jan 21 10:56:59 2009 | 12M clk               |
| 60.1216   | 33.12                           | 16.98                 | q   | 0   | 200  | Н  | Wed Jan 21 10:57:01 2009 | 8.58M clk             |
| 65.0000   | 33.08                           | 17.02                 | q   | 270 | 200  | V  | Wed Jan 21 12:14:32 2009 | 13M clk               |
| 68.7104   | 41.21                           | 25.33                 | m   | 0   | 200  | Н  | Wed Jan 21 10:57:06 2009 | 8.58M clk             |
| 72.0000   | 32.79                           | 17.29                 | q   | 0   | 200  | Н  | Wed Jan 21 10:57:09 2009 | 12M clk               |
| 77.2992   | 42.58                           | 27.69                 | m   | 270 | 200  | Н  | Wed Jan 21 12:07:13 2009 | 8.58M clk             |
| 78.0000   | 31.77                           | 16.91                 | q   | 0   | 200  | Н  | Wed Jan 21 10:57:15 2009 | 13M clk               |
| 84.0000   | 34.52                           | 20.79                 | q   | -2  | 100  | V  | Wed Jan 21 10:16:22 2009 | 12M clk               |
| 84.4710   | 36.71                           | 22.99                 | q   | -2  | 100  | V  | Wed Jan 21 10:10:34 2009 |                       |
| 85.8880   | 32.90                           | 19.23                 | q   | -2  | 100  | V  | Wed Jan 21 10:16:24 2009 | 8.58M clk             |
| 86.2710   | 33.37                           | 19.76                 | q   | 270 | 200  | V  | Wed Jan 21 12:20:14 2009 |                       |
| 90.9665   | 43.83                           | 30.88                 | m   | 114 | 194  | V  | Wed Jan 21 14:30:03 2009 | 13M clk               |
| 94.4534   | 42.13                           | 29.69                 | m   | 356 | 100  | V  | Wed Jan 21 15:09:17 2009 | 8.58M clk             |
| 95.9450   | 37.38                           | 25.19                 | q   | 91  | 100  | Н  | Wed Jan 21 14:02:33 2009 | 12M clk               |
| 104.0545  | 35.95                           | 24.92                 | q   | -2  | 100  | V  | Wed Jan 21 10:16:39 2009 | 13M clk               |
| 108.0525  | 33.63                           | 23.02                 | q   | 91  | 100  | V  | Wed Jan 21 10:36:52 2009 | 12M clk               |
| 111.6544  | 34.78                           | 24.43                 | m   | 270 | 100  | V  | Wed Jan 21 11:53:12 2009 | 8.58M clk             |
| 117.0000  | 27.95                           | 18.02                 | q   | 179 | 100  | Н  | Wed Jan 21 11:38:32 2009 | 13M clk               |
| 120.0000  | 24.78                           | 15.25                 | q   | 179 | 100  | V  | Wed Jan 21 11:45:52 2009 | 12M clk               |
| 120.2432  | 26.35                           | 16.81                 | q   | 270 | 200  | V  | Wed Jan 21 12:15:18 2009 | 8.58M clk             |
| 124.9601  | 28.75                           | 19.23                 | q   | 91  | 200  | Н  | Wed Jan 21 10:50:31 2009 |                       |
| 128.8320  | 25.42                           | 15.87                 | q   | 91  | 100  | Н  | Wed Jan 21 10:30:34 2009 | 8.58M clk             |
| 130.0000  | 30.16                           | 20.63                 | q   | 270 | 100  | Н  | Wed Jan 21 12:00:24 2009 | 13M clk               |
| 132.0000  | 29.98                           | 20.41                 | q   | 270 | 100  | V  | Wed Jan 21 11:53:33 2009 | 12M clk               |
| 137.4208  | 30.05                           | 20.50                 | q   | 179 | 100  | V  | Wed Jan 21 11:46:07 2009 | 8.58M clk             |
| 143.0000  | 28.35                           | 18.69                 | q   | 179 | 100  | V  | Wed Jan 21 11:46:09 2009 | 13M clk               |
| 144.0000  | 31.78                           | 22.06                 | q   | 0   | 200  | V  | Wed Jan 21 11:04:33 2009 | 12M clk               |
| 146.0096  | 30.29                           | 20.39                 | q   | 91  | 100  | V  | Wed Jan 21 10:37:22 2009 | 8.58M clk             |
| 146.4165  | 29.43                           | 19.49                 | q   | 91  | 100  | V  | Wed Jan 21 10:37:24 2009 |                       |
| 152.9249  | 40.04                           | 29.61                 | m   | 120 | 107  | V  | Wed Jan 21 14:36:14 2009 |                       |
| 154.5984  | 29.88                           | 19.30                 | q   | 270 | 100  | V  | Wed Jan 21 11:53:46 2009 | 8.58M clk             |
| 156.0000  | 31.20                           | 20.48                 | q   | 270 | 100  | V  | Wed Jan 21 11:53:49 2009 | 12M clk, 13M clk      |
| 163.1872  | 25.74                           | 14.65                 | q   | 270 | 200  | Н  | Wed Jan 21 12:08:15 2009 | 8.58M clk, 8.588M clk |
| 168.0000  | 28.38                           | 16.80                 | q   | 270 | 100  | V  | Wed Jan 21 11:53:55 2009 | 12M clk               |
| 169.0000  | 25.97                           | 14.32                 | q   | 270 | 100  | V  | Wed Jan 21 11:53:58 2009 | 13M clk               |
| 171.7760  | 29.31                           | 17.68                 | q   | -2  | 100  | V  | Wed Jan 21 10:17:29 2009 | 8.58M clk, 8.588M clk |
| 176.0757  | 26.99                           | 15.52                 | q   | 91  | 100  | V  | Wed Jan 21 10:37:41 2009 |                       |
|           |                                 |                       |     |     |      |    |                          |                       |

# **EMC QUALIFICATION TEST REPORT**

090119-1365EM FOR PHASE IV TECHNOLOGY

| 180.0000 | 28.20 | 16.04 | q | 270 | 100 | V | Wed Jan 21 11:54:05 2009 | 12M clk               |
|----------|-------|-------|---|-----|-----|---|--------------------------|-----------------------|
| 180.3648 | 29.36 | 17.14 | q | 91  | 100 | V | Wed Jan 21 10:37:46 2009 | 8.58M clk, 8.588M clk |
| 182.0000 | 30.28 | 18.00 | q | 0   | 200 | V | Wed Jan 21 11:05:03 2009 | 13M clk               |
| 188.9536 | 32.09 | 20.14 | q | -2  | 100 | V | Wed Jan 21 10:17:41 2009 | 8.58M clk, 8.588M clk |
| 192.0000 | 30.45 | 18.60 | q | 0   | 200 | V | Wed Jan 21 11:05:08 2009 | 12M clk               |
| 195.0000 | 32.67 | 20.97 | q | 91  | 100 | V | Wed Jan 21 10:37:57 2009 | 13M clk               |
| 197.5424 | 31.48 | 20.15 | q | 179 | 100 | V | Wed Jan 21 11:46:51 2009 | 8.58M clk, 8.588M clk |
| 204.0000 | 30.60 | 19.48 | q | 0   | 200 | V | Wed Jan 21 11:05:16 2009 | 12M clk               |
| 206.1312 | 29.65 | 18.38 | q | 270 | 200 | Н | Wed Jan 21 12:08:49 2009 | 8.588M clk            |
| 208.0000 | 29.21 | 17.85 | q | 270 | 200 | Н | Wed Jan 21 12:08:52 2009 | 13M clk               |
| 214.7200 | 29.14 | 17.91 | q | 270 | 200 | Н | Wed Jan 21 12:08:55 2009 | 8.588M clk            |
| 216.0000 | 29.40 | 18.22 | q | 270 | 200 | Н | Wed Jan 21 12:08:57 2009 | 12M clk               |
| 221.0000 | 29.09 | 18.20 | q | 91  | 200 | Н | Wed Jan 21 10:51:41 2009 | 13M clk               |
| 223.3088 | 31.54 | 20.94 | q | 91  | 200 | Н | Wed Jan 21 10:51:44 2009 | 8.588M clk            |
| 226.6679 | 31.22 | 21.04 | q | 91  | 200 | Н | Wed Jan 21 10:51:46 2009 |                       |
| 226.9376 | 31.08 | 20.95 | q | 91  | 200 | Н | Wed Jan 21 10:51:48 2009 |                       |
| 228.0000 | 33.17 | 23.24 | m | 91  | 200 | Н | Wed Jan 21 10:51:51 2009 | 12M clk               |
| 231.9115 | 34.52 | 24.91 | q | 91  | 200 | Н | Wed Jan 21 10:51:53 2009 | 8.588M clk            |
| 234.0000 | 33.39 | 23.82 | q | 91  | 200 | Н | Wed Jan 21 10:51:55 2009 | 13M clk               |
| 240.0000 | 32.66 | 23.45 | q | 91  | 200 | Н | Wed Jan 21 10:51:58 2009 | 12M clk               |
| 240.4909 | 33.09 | 23.93 | q | 91  | 200 | Н | Wed Jan 21 10:52:00 2009 | 8.588M clk            |
| 244.7805 | 32.95 | 24.23 | q | 91  | 200 | Н | Wed Jan 21 10:52:02 2009 |                       |
| 247.0000 | 32.46 | 24.00 | q | 91  | 200 | Н | Wed Jan 21 10:52:04 2009 | 13M clk               |
| 249.0705 | 32.37 | 24.19 | q | 91  | 200 | Н | Wed Jan 21 10:52:07 2009 | 8.588M clk            |
| 253.3605 | 33.11 | 25.38 | q | 91  | 200 | Н | Wed Jan 21 10:52:09 2009 |                       |
| 257.6805 | 31.68 | 24.00 | q | 91  | 200 | Н | Wed Jan 21 10:52:11 2009 | 8.588M clk            |
| 260.0000 | 31.70 | 23.85 | q | 91  | 200 | Н | Wed Jan 21 10:52:13 2009 | 13M clk               |
| 266.2607 | 26.53 | 18.48 | q | 91  | 200 | Н | Wed Jan 21 10:52:16 2009 | 8.588M clk            |
| 273.0000 | 25.43 | 17.48 | q | 91  | 200 | Н | Wed Jan 21 10:52:19 2009 | 13M clk               |
| 274.8411 | 22.90 | 14.95 | q | 270 | 200 | Н | Wed Jan 21 12:09:37 2009 | 8.588M clk            |
| 283.4507 | 22.57 | 14.91 | q | 270 | 200 | V | Wed Jan 21 12:17:07 2009 | 8.588M clk            |
| 286.0000 | 19.93 | 12.35 | q | 91  | 200 | V | Wed Jan 21 10:45:24 2009 | 13M clk               |
| 287.9808 | 23.04 | 15.54 | q | 270 | 200 | Н | Wed Jan 21 12:09:44 2009 |                       |
| 292.0192 | 22.86 | 15.49 | q | 91  | 200 | Н | Wed Jan 21 10:52:31 2009 | 8.588M clk            |
| 299.0000 | 21.59 | 14.28 | q | 179 | 200 | Н | Wed Jan 21 11:33:44 2009 | 13M clk               |
| 300.6080 | 19.17 | 11.78 | q | 91  | 200 | Н | Wed Jan 21 10:52:36 2009 | 8.588M clk            |
| 309.1968 | 22.72 | 15.09 | q | 91  | 200 | Н | Wed Jan 21 10:52:38 2009 | 8.588M clk            |
| 317.7856 | 23.91 | 16.66 | q | 91  | 100 | Н | Wed Jan 21 10:32:32 2009 | 8.588M clk            |
| 326.3744 | 21.51 | 14.54 | q | 91  | 200 | Н | Wed Jan 21 10:52:42 2009 | 8.588M clk            |
| 334.9632 | 24.10 | 17.56 | q | 91  | 200 | Н | Wed Jan 21 10:52:45 2009 | 8.588M clk            |
| 343.5520 | 21.59 | 15.45 | q | 91  | 200 | Н | Wed Jan 21 10:52:47 2009 | 8.588M clk            |
| 352.1408 | 23.66 | 17.91 | q | 91  | 200 | Н | Wed Jan 21 10:52:49 2009 | 8.588M clk            |
| 360.7296 | 20.68 | 15.51 | q | 91  | 200 | Н | Wed Jan 21 10:52:52 2009 | 8.588M clk            |
| 369.3184 | 22.74 | 17.21 | q | 91  | 200 | Н | Wed Jan 21 10:52:54 2009 | 8.588M clk            |
| 377.9072 | 22.66 | 17.32 | q | 270 | 200 | V | Wed Jan 21 12:17:38 2009 | 8.588M clk            |
| 386.4960 | 22.16 | 17.23 | q | 91  | 200 | Н | Wed Jan 21 10:52:58 2009 | 8.588M clk            |
| 395.0848 | 22.14 | 17.60 | q | 270 | 200 | Н | Wed Jan 21 12:10:14 2009 | 8.588M clk            |
| 395.1431 | 21.16 | 16.63 | q | 270 | 200 | Н | Wed Jan 21 12:10:17 2009 |                       |
| 403.6736 | 22.19 | 18.15 | q | 91  | 200 | Н | Wed Jan 21 10:53:05 2009 | 8.588M clk            |

| 412.2624 | 23.64 | 20.03 | q | 270 | 200 | Н | Wed Jan 21 12:10:21 2009                           | 8.588M clk               |
|----------|-------|-------|---|-----|-----|---|----------------------------------------------------|--------------------------|
| 412.3034 | 23.64 | 20.03 | q | 270 | 200 | Н | Wed Jan 21 12:10:23 2009                           |                          |
| 420.8512 | 20.55 | 16.98 | q | 270 | 200 | Н | Wed Jan 21 12:10:26 2009                           | 8.588M clk               |
| 429.4400 | 23.29 | 19.78 | q | 270 | 200 | Н | Wed Jan 21 12:10:28 2009                           | 8.588M clk               |
| 438.0438 | 21.94 | 18.62 | q | 270 | 200 | Н | Wed Jan 21 12:10:30 2009                           | 8.588M clk               |
| 446.6176 | 21.87 | 18.82 | q | 270 | 200 | Н | Wed Jan 21 12:10:32 2009                           | 8.588M clk               |
| 455.2161 | 24.63 | 21.69 | q | 270 | 200 | Н | Wed Jan 21 12:10:38 2009                           | 8.588M clk               |
| 463.7922 | 21.35 | 18.61 | q | -2  | 100 | Н | Wed Jan 21 10:26:28 2009                           | 8.588M clk               |
| 472.3999 | 22.88 | 20.27 | q | 270 | 200 | Н | Wed Jan 21 12:10:43 2009                           | 8.588M clk               |
| 480.9797 | 24.51 | 22.06 | q | 270 | 100 | v | Wed Jan 21 11:56:20 2009                           | 8.588M clk               |
| 489.5897 | 20.41 | 18.39 | q | 91  | 100 | Н | Wed Jan 21 10:33:21 2009                           | 8.588M clk               |
| 498.1697 | 20.83 | 19.16 | q | 270 | 200 | Н | Wed Jan 21 12:10:51 2009                           | 8.588M clk               |
| 506.7392 | 19.30 | 17.51 | q | 270 | 200 | Н | Wed Jan 21 12:10:53 2009                           | 8.588M clk               |
| 515.3299 | 23.31 | 21.45 | q | 270 | 200 | Н | Wed Jan 21 12:10:56 2009                           | 8.588M clk               |
| 523.9339 | 19.20 | 17.74 | q | 0   | 200 | Н | Wed Jan 21 11:00:46 2009                           | 8.588M clk               |
| 532.5199 | 21.67 | 20.33 | q | 270 | 200 | Н | Wed Jan 21 12:11:00 2009                           | 8.588M clk               |
| 541.0944 | 20.48 | 19.03 | q | 270 | 200 | Н | Wed Jan 21 12:11:02 2009                           | 8.588M clk               |
| 541.1264 | 20.08 | 18.63 | q | 270 | 200 | Н | Wed Jan 21 12:11:05 2009                           |                          |
| 549.7059 | 19.97 | 18.71 | q | 91  | 100 | Н | Wed Jan 21 10:33:40 2009                           | 8.588M clk               |
| 558.2837 | 19.80 | 18.90 | q | 270 | 100 | Н | Wed Jan 21 12:03:38 2009                           | 8.588M clk               |
| 566.8637 | 19.61 | 18.95 | q | 270 | 200 | Н | Wed Jan 21 12:11:11 2009                           | 8.588M clk               |
| 575.4496 | 19.86 | 19.36 | q | 91  | 100 | Н | Wed Jan 21 10:33:46 2009                           | 8.588M clk               |
| 584.0384 | 19.23 | 18.59 | q | 91  | 200 | V | Wed Jan 21 10:46:48 2009                           | 8.588M clk               |
| 592.6272 | 20.27 | 19.61 |   | 270 | 100 | Н | Wed Jan 21 12:03:47 2009                           | 8.588M clk               |
| 601.2160 | 19.64 | 19.01 | q | 91  | 200 | V | Wed Jan 21 12:03:47 2009  Wed Jan 21 10:46:53 2009 | 8.588M clk               |
| 609.8048 | 20.65 |       | q | 91  | 100 | Н |                                                    |                          |
|          |       | 20.50 | q |     |     |   | Wed Jan 21 11:33:55 2009                           | 8.588M clk               |
| 618.3936 | 20.39 | 20.58 | q | 0   | 200 | V | Wed Jan 21 11:07:42 2009                           | 8.588M clk<br>8.588M clk |
| 626.9824 | 19.61 | 20.00 | q | 270 | 100 | Н | Wed Jan 21 12:03:55 2009                           |                          |
| 635.5712 | 19.42 | 20.04 | q | 91  | 100 | Н | Wed Jan 21 10:34:02 2009                           | 8.588M clk               |
| 644.1600 | 20.09 | 20.84 | q | 91  | 100 | Н | Wed Jan 21 10:34:04 2009                           | 8.588M clk               |
| 652.7488 | 20.34 | 21.11 | q | 270 | 100 | Н | Wed Jan 21 12:04:02 2009                           | 8.588M clk               |
| 661.3376 | 20.52 | 21.28 | q | 91  | 100 | Н | Wed Jan 21 10:34:09 2009                           | 8.588M clk               |
| 669.9264 | 20.67 | 21.37 | q | 91  | 100 | H | Wed Jan 21 10:34:11 2009                           | 8.588M clk               |
| 678.5152 | 19.80 | 20.59 | q | 270 | 100 | Н | Wed Jan 21 12:04:08 2009                           | 8.588M clk               |
| 687.1040 | 19.92 | 20.81 | q | 91  | 100 | Н | Wed Jan 21 10:34:15 2009                           | 8.588M clk               |
| 695.6928 | 20.77 | 21.86 | q | 270 | 100 | Н | Wed Jan 21 12:04:13 2009                           | 8.588M clk               |
| 704.2816 | 20.80 | 22.09 | q | 270 | 100 | Н | Wed Jan 21 12:04:15 2009                           | 8.588M clk               |
| 712.8704 | 21.65 | 22.88 | q | 270 | 100 | Н | Wed Jan 21 12:04:17 2009                           | 8.588M clk               |
| 721.4592 | 23.39 | 24.76 | q | 91  | 100 | Н | Wed Jan 21 10:34:24 2009                           | 8.588M clk               |
| 730.0480 | 22.01 | 23.40 | q | 270 | 100 | Н | Wed Jan 21 12:04:21 2009                           | 8.588M clk               |
| 738.6368 | 22.49 | 23.95 | q | 270 | 100 | Н | Wed Jan 21 12:04:24 2009                           | 8.588M clk               |
| 747.2256 | 20.93 | 22.32 | q | 91  | 100 | Н | Wed Jan 21 10:34:31 2009                           | 8.588M clk               |
| 755.8144 | 22.73 | 24.43 | q | 270 | 100 | Н | Wed Jan 21 12:04:28 2009                           | 8.588M clk               |
| 764.4032 | 20.56 | 22.48 | q | 270 | 100 | Н | Wed Jan 21 12:04:30 2009                           | 8.588M clk               |
| 772.9920 | 20.42 | 22.52 | q | 91  | 100 | Н | Wed Jan 21 10:34:38 2009                           | 8.588M clk               |
| 781.5808 | 20.91 | 23.13 | q | 91  | 100 | Н | Wed Jan 21 10:34:40 2009                           | 8.588M clk               |
| 790.1696 | 19.50 | 21.66 | q | 270 | 100 | Н | Wed Jan 21 12:04:37 2009                           | 8.588M clk               |
| 798.7584 | 20.51 | 22.68 | q | 91  | 100 | Н | Wed Jan 21 10:34:45 2009                           | 8.588M clk               |
| 807.3472 | 18.88 | 21.46 | q | -2  | 100 | Н | Wed Jan 21 10:03:00 2009                           | 8.588M clk               |
|          |       |       |   |     |     |   |                                                    |                          |

| CRITERION TECHNOLOGY | <b>EMC QUALIFICATION TEST REPORT</b>  | Sheet 19 of 32 |
|----------------------|---------------------------------------|----------------|
|                      | 090119-1365EM FOR PHASE IV TECHNOLOGY |                |

| 815.9360 | 19.81 | 22.77 | q | 270 | 100 | Н | Wed Jan 21 12:04:43 2009 | 8.588M clk |
|----------|-------|-------|---|-----|-----|---|--------------------------|------------|
| 824.5248 | 19.01 | 22.29 | q | 91  | 100 | Н | Wed Jan 21 10:34:51 2009 | 8.588M clk |
| 833.1136 | 19.58 | 22.80 | q | 270 | 100 | Н | Wed Jan 21 12:04:48 2009 | 8.588M clk |
| 841.7024 | 19.06 | 22.29 | q | 270 | 100 | Н | Wed Jan 21 12:04:50 2009 | 8.588M clk |
| 850.2912 | 19.68 | 22.67 | q | 0   | 200 | V | Wed Jan 21 11:22:07 2009 | 8.588M clk |
| 858.8800 | 19.42 | 22.33 | q | 0   | 200 | V | Wed Jan 21 11:22:09 2009 | 8.588M clk |
| 867.4688 | 19.73 | 22.36 | q | 0   | 200 | V | Wed Jan 21 11:22:11 2009 | 8.588M clk |
| 876.0576 | 19.90 | 22.66 | q | 270 | 200 | V | Wed Jan 21 12:19:46 2009 | 8.588M clk |
| 884.6464 | 19.90 | 22.53 | q | -2  | 100 | V | Wed Jan 21 10:21:27 2009 | 8.588M clk |
| 893.2352 | 20.80 | 23.42 | q | 91  | 100 | Н | Wed Jan 21 10:35:08 2009 | 8.588M clk |
| 901.8240 | 19.85 | 22.60 | q | 270 | 100 | Н | Wed Jan 21 12:05:05 2009 | 8.588M clk |
| 910.4128 | 20.35 | 22.99 | q | 270 | 100 | Н | Wed Jan 21 12:05:07 2009 | 8.588M clk |
| 919.0016 | 19.91 | 22.77 | q | 91  | 100 | Н | Wed Jan 21 10:35:15 2009 | 8.588M clk |
| 927.5904 | 20.27 | 23.40 | q | 0   | 200 | V | Wed Jan 21 11:22:26 2009 | 8.588M clk |
| 936.1792 | 20.32 | 23.96 | q | 0   | 200 | V | Wed Jan 21 11:22:28 2009 | 8.588M clk |
| 944.7680 | 20.11 | 24.03 | q | 0   | 200 | V | Wed Jan 21 11:22:30 2009 | 8.588M clk |
| 953.3568 | 20.15 | 24.33 | q | 0   | 200 | V | Wed Jan 21 11:22:33 2009 | 8.588M clk |
| 961.9456 | 19.89 | 24.37 | q | 0   | 200 | V | Wed Jan 21 11:22:35 2009 | 8.588M clk |

Minimum Margin to Limit: <u>-8.57</u> dB at <u>46.1169</u> MHz

#### UNINTENTIONAL RADIATED EMISSIONS PLOT - ABOVE 1 GHZ 4.3

**Criterion Technology** 

EUT: RFID airplane tire pressure tester, IHHR

Manufacturer: Phase IV Technology

**Tester: LWS** 

EUT Information: d=3m, FCC P15-A, h=1 and 2m Test Information: 3m, battery, FCC Part 15 Class A Test Cond: Temp: 15° C

Date: January 26, 2009

S/N: 000261

SpiD: 090119-1365

Humidity: 22 %



#### 090119-1365EM FOR PHASE IV TECHNOLOGY

#### UNINTENTIONAL RADIATED EMISSIONS TABLE - ABOVE 1 GHZ 4.4

#### Notes:

The third column below contains alpha characters which pertain to the type of measurements made. The following are the definitions for those characters: q = Quasi Peak, m = Maximized (cable, rotation and antenna height), s = scanned but no data taken, and a = average. For the first character in column four, a '-' indicates that value is below the limit while an '\*' indicates that value is above the limit

If the list is sorted using "I-sort", then quasi-peak and average levels are weighted higher than peak levels and are moved to the front of the scan list.

The following keys help to better understand the data:

TT: Turntable position in degrees

Hght: Height of antenna in centimeters Az: Azimuth, V = Vertical, H= Horizontal

Criterion Technology Mon Jan 26 16:09:04 2009 EUT: RFID airplane tire pressure tester, IHHR

S/N:000261

Manufacturer: Phase IV Technology

Tester: LWS

Special ID: 090119-1365

EEUT Information: d=3m, FCC P15-A, h=1 and 2 m

Test information: 3m, FCC part 15 Class A

Table 1: Scan List, sorted by margin to limit FCCA3, -70.0dB filter

| Freq, MHz | Value dBuV/m | <u>Sts</u> | Margin to FCCA3              | <u>TT</u> | <u>Hght</u> | <u>Az</u> | Comment |
|-----------|--------------|------------|------------------------------|-----------|-------------|-----------|---------|
| 1440.2064 | 46.07        | m          | <u>limits (dB)</u><br>-13.92 | 47        | 100         | V         | 60M clk |
| 1200.1720 | 38.69        | m          | -21.30                       | 46        | 100         | V         | 60M clk |
| 1140.1634 | 37.67        | m          | -22.32                       | 297       | 100         | V         | 60M clk |
| 1080.1548 | 36.17        | m          | -23.82                       | 50        | 100         | V         | 60M clk |
| 1020.1462 | 35.32        | m          | -24.67                       | 276       | 112         | V         | 60M clk |
| 1320.1892 | 32.79        | m          | -27.20                       | 281       | 100         | V         | 60M clk |
| 1247.9445 | 30.21        | m          | -29.78                       | 270       | 99          | V         |         |
| 1380.1918 | 25.41        | m          | -34.58                       | 58        | 100         | V         | 60M clk |
| 1261.0205 | 22.24        | m          | -37.75                       | 43        | 104         | V         | 60M clk |

Table 2: Scan List for FCCA3, sorted by Frequency, -70.0dB filter

| Freq, MHz | Final Value dBuV/m | <u>Sts</u> | Margin to FCCA3    | <u>TT</u> | <u>Hght</u> | $\underline{Az}$ | Comment |
|-----------|--------------------|------------|--------------------|-----------|-------------|------------------|---------|
|           |                    |            | <u>limits (dB)</u> |           |             |                  |         |
| 1020.1462 | 35.32              | m          | -24.67             | 276       | 112         | V                | 60M clk |
| 1080.1548 | 36.17              | m          | -23.82             | 50        | 100         | V                | 60M clk |
| 1140.1634 | 37.67              | m          | -22.32             | 297       | 100         | V                | 60M clk |
| 1200.1720 | 38.69              | m          | -21.30             | 46        | 100         | V                | 60M clk |
| 1247.9445 | 30.21              | m          | -29.78             | 270       | 99          | V                |         |
| 1261.0205 | 22.24              | m          | -37.75             | 43        | 104         | V                | 60M clk |
| 1320.1892 | 32.79              | m          | -27.20             | 281       | 100         | V                | 60M clk |
| 1380.1918 | 25.41              | m          | -34.58             | 58        | 100         | V                | 60M clk |
| 1440.2064 | 46.07              | m          | -13.92             | 47        | 100         | V                | 60M clk |

**Table 3: Complete Scan List Sorted by Frequency** 

| Freq, MHz | I-val before xducr<br>factors dBuV | Final value<br>dBuV/m | Sts | TT  | Hght | Az | Time                     | Comment |
|-----------|------------------------------------|-----------------------|-----|-----|------|----|--------------------------|---------|
| 1020.1462 | 51.38                              | 35.32                 | m   | 276 | 112  | V  | Mon Jan 26 15:10:45 2009 | 60M clk |
| 1080.1548 | 52.00                              | 36.17                 | m   | 50  | 100  | V  | Mon Jan 26 15:14:50 2009 | 60M clk |
| 1140.1634 | 53.15                              | 37.67                 | m   | 297 | 100  | V  | Mon Jan 26 15:19:27 2009 | 60M clk |
| 1200.1720 | 53.73                              | 38.69                 | m   | 46  | 100  | V  | Mon Jan 26 15:23:41 2009 | 60M clk |
| 1247.9445 | 45.00                              | 30.21                 | m   | 270 | 99   | V  | Mon Jan 26 15:02:21 2009 |         |
| 1261.0205 | 36.96                              | 22.24                 | m   | 43  | 104  | V  | Mon Jan 26 15:28:13 2009 | 60M clk |
| 1320.1892 | 47.10                              | 32.79                 | m   | 281 | 100  | V  | Mon Jan 26 15:32:37 2009 | 60M clk |
| 1380.1918 | 39.31                              | 25.41                 | m   | 58  | 100  | V  | Mon Jan 26 16:03:21 2009 | 60M clk |
| 1440.2064 | 59.59                              | 46.07                 | m   | 47  | 100  | V  | Mon Jan 26 16:09:04 2009 | 60M clk |

Minimum Margin to Limit: <u>-13.92</u> dB at <u>1440.2064</u> MHz

#### EMISSIONS PLOT - INTENTIONAL RADIATOR - 1 GHZ TO 18 GHZ - BLUETOOTH 4.5

**Criterion Technology** Date: January 23, 2009

EUT: RFID airplane tire pressure tester, IHHR S/N: 000261

Manufacturer: Phase IV Technology

**Tester: LWS** SpiD: 090119-1365

EUT Information: d=3m, FCC P15-A, h=1 and 2m

Test Information: 3m, battery, FCC 15.249, EN 300 328, RSS 210E sec.2, Class A Test Cond: Temp: 13° C Humidity: 24 %





Frequency in MHz

## 4.6 EMISSIONS TABLE – INTENTIONAL RADIATOR - 1 GHZ TO 18 GHZ - BLUETOOTH

#### RFID AIRPLANE TIRE PRESSUE TESTER

| Fundamenal<br>Freq (GHz) | <u>band</u><br>position | Pwr Out<br>(dbuv/m) @<br>3 M | <u>Orientation</u> | rcv ant | <u>TT</u> |
|--------------------------|-------------------------|------------------------------|--------------------|---------|-----------|
| 2.4027                   | lower                   | 91.67                        | Stand              | Vrt/100 | 249       |
| 2.4027                   | lower                   | 92.30                        | Side               | Hrz/100 | 266       |
| 2.4027                   | lower                   | 87.41                        | Flat               | Vrt/100 | 97        |
| 2.4415                   | middle                  | 87.82                        | Stand              | Vrt/100 | 110       |
| 2.4415                   | middle                  | 91.52                        | Side               | Hrz/100 | 267       |
| 2.4415                   | middle                  | 89.02                        | Flat               | Vrt/100 | 252       |
| 2.4802                   | upper                   | 85.45                        | Stand              | Vrt/100 | 250       |
| 2.4802                   | upper                   | 89.89                        | Side               | Hrz/100 | 267       |
| 2.4802                   | upper                   | 88.02                        | Flat               | Hrz/100 | 250       |

| Harmonic # |        | Frequency | F val unit<br>on side | Adjustment<br>for Duty<br>Cycle | Adjusted<br>F val | FCC<br>limit<br>(dbuV<br>/m) | Margin to<br>Limit (db) | Pol/Ht  | <u>AZ</u> | COMMENTS    |
|------------|--------|-----------|-----------------------|---------------------------------|-------------------|------------------------------|-------------------------|---------|-----------|-------------|
| 2 Fo       | lower  | 4.8054    | 48.87                 | 0                               | 48.87             | 54                           | -5.13                   | V/131   | 1         |             |
| 2 Fo       | middle | 4.883     | 50.6                  | 0                               | 50.6              | 54                           | -3.40                   | H134    | 157       |             |
| 2 Fo       | upper  | 4.9604    | 49.28                 | 0                               | 49.28             | 54                           | -4.72                   | H/167   | 159       |             |
| 3 Fo       | lower  | 7.2081    | 43.62                 | 0                               | 43.62             | 54                           | -10.38                  | H/119   | 5         |             |
| 3 Fo       | middle | 7.3245    | 40.46                 | 0                               | 40.46             | 54                           | -13.54                  | Hrz/117 | 0         |             |
| 3 Fo       | upper  | 7.4406    | 34.79                 | 0                               | 34.79             | 54                           | -19.21                  | H/169   | 159       |             |
| 4 Fo       | lower  | 9.6108    | 50.29                 | 0                               | 50.29             | 54                           | -3.71                   | H/102   | 21        |             |
| 4 Fo       | middle | 9.766     | 48.73                 | 0                               | 48.73             | 54                           | -5.277                  | H/126   | 177       |             |
| 4 Fo       | upper  | 9.9208    | 52.23                 | 0                               | 52.23             | 54                           | -1.77                   | H/129   | 170       |             |
| 5 Fo       | lower  | 12.0135   | 32.67                 | 0                               | 32.67             | 54                           | -21.33                  | H/100   | 0         | Noise Floor |
| 5 Fo       | middle | 12.2075   | 40.46                 | 0                               | 40.46             | 54                           | -13.54                  | H/100   | 0         | Noise Floor |
| 5 Fo       | upper  | 12.401    | 46.92                 | 0                               | 46.92             | 54                           | -7.08                   | H/100   | 0         | Noise Floor |

Notes: Harmonics from 12.0 GHz thru 25 GHz ( $10^{\rm th}$  harmonic) are substantially below the noise floor, spec limit, and unobservable below the noise floor.

4.7

# EMISSIONS TABLE - INTENTIONAL RADIATOR - 100 KHZ TO 1.4 MHZ - RFID RFID AIRPLANE TIRE

## PRESSUE TESTER, IHHR RFID TRANSMITTER

|                           | INTENTIONAL RADIATOR |                               |                                      |                         |    |             |  |  |  |
|---------------------------|----------------------|-------------------------------|--------------------------------------|-------------------------|----|-------------|--|--|--|
| Fundamental<br>Freq (kHz) | Orienta<br>tion      | Pwr Out<br>(dbuv/m) @<br>10 M | FCC 10m<br>Pout limit<br>(dbuv/m)    | Margin to<br>limit (db) | ш  | COMMENTS    |  |  |  |
| 134.2                     | Stand                | 15.1*                         | 54.55                                | 39.45                   | 90 | noise floor |  |  |  |
| 134.2                     | Side                 | 15.2*                         | 54.55                                | 39.35                   | 90 | noise floor |  |  |  |
| 134.2                     | Flat                 | 15.2*                         | 54.55                                | 39.35                   | 90 | noise floor |  |  |  |
|                           |                      |                               | <u>EN</u><br>300 330<br><u>limit</u> |                         |    |             |  |  |  |
| 134.2                     | Stand                | -36.5                         | 36.4<br>dbua/m                       | -72.9                   | 0  | noise floor |  |  |  |
| 134.2                     | Side                 | -36.4                         | 36.4<br>dbua/m                       | -72.8                   | 0  | noise floor |  |  |  |
| 134.2                     | Flat                 | -36.5                         | 36.4<br>dbua/m                       | -72.9                   | 0  | noise floor |  |  |  |

|            | INTENTIONAL RADIATOR HARMONICS |                           |                             |                       |                         |                             |                         |           |             |  |  |
|------------|--------------------------------|---------------------------|-----------------------------|-----------------------|-------------------------|-----------------------------|-------------------------|-----------|-------------|--|--|
|            |                                |                           |                             |                       |                         |                             |                         |           |             |  |  |
|            |                                |                           |                             |                       |                         |                             |                         |           |             |  |  |
| Harmonic # |                                | <u>Frequency</u><br>(kHz) | F val unit on side (dbuV/m) | FCC limit<br>(dbuV/m) |                         | FCC Margin<br>to Limit (db) |                         | <u>AZ</u> | Comments    |  |  |
|            |                                | (KI12)                    | side (dbd v/iii)            | 10 m                  |                         | to Limit (db)               |                         |           |             |  |  |
| 2 Fo       | Side                           | 268.4                     | 15.1                        | 49                    |                         | -33.50                      |                         | 90        | noise floor |  |  |
| 3 Fo       | Side                           | 402.6                     | 14.4                        | 45.10                 |                         | -30.70                      |                         | 90        | noise floor |  |  |
| 4 Fo       | Side                           | 536.8                     | 14.1                        | 42.60                 |                         | -28.50                      |                         | 90        | noise floor |  |  |
| 5 Fo       | Side                           | 671                       | 13.8                        | 40.70                 |                         | -26.90                      |                         | 90        | noise floor |  |  |
| 6 Fo       | Side                           | 805.2                     | 14.5                        | 39.00                 |                         | -24.50                      |                         | 90        | noise floor |  |  |
| 7 Fo       | Side                           | 939.4                     | 13.9                        | 38                    |                         | -23.80                      |                         | 90        | noise floor |  |  |
| 8 Fo       | Side                           | 1073.6                    | 13.1                        | 37                    |                         | -23.40                      |                         | 90        | noise floor |  |  |
| 9 Fo       | Side                           | 1207.8                    | 12.9                        | 35.50                 |                         | -22.60                      |                         | 90        | noise floor |  |  |
| 10 Fo      | Side                           | 1342                      | 12.5                        | 34.60                 |                         | -22.10                      |                         | 90        | noise floor |  |  |
| Harmonic # |                                | <u>Frequency</u>          | db uA/m                     | EN300 330             | EN 300 330              | EN 300 330                  | EN 300 330              |           |             |  |  |
|            |                                | <u>(kHz)</u>              |                             | limit<br>operating    | <u>limit</u><br>standby | Margin to<br>Limit (db)     | Margin to<br>Limit (db) |           |             |  |  |
|            |                                |                           |                             | operating             | standby                 | operating                   | standby                 |           |             |  |  |
| 2 Fo       | Side                           | 268.4                     | -36.2                       | 15.3                  | -6.2                    | -51.50                      | -30.00                  | 0         | noise floor |  |  |
| 3 Fo       | Side                           | 402.6                     | -37.1                       | 15.3                  | -6.2                    | -52.40                      | -30.90                  | 0         | noise floor |  |  |
| 4 Fo       | Side                           | 536.8                     | -37.5                       | 15.3                  | -6.2                    | -52.80                      | -31.30                  | 0         | noise floor |  |  |
| 5 Fo       | Side                           | 671                       | -37.8                       | 15.3                  | -6.2                    | -53.10                      | -31.60                  | 0         | noise floor |  |  |
| 6 Fo       | Side                           | 805.2                     | -37.2                       | 15.3                  | -6.2                    | -52.50                      | -31.00                  | 0         | noise floor |  |  |
| 7 Fo       | Side                           | 939.4                     | -37.5                       | 15.3                  | -6.2                    | -52.80                      | -31.30                  | 0         | noise floor |  |  |
| 8 Fo       | Side                           | 1073.6                    | -37.6                       | 15.3                  | -6.2                    | -52.90                      | -31.40                  | 0         | noise floor |  |  |
| 9 Fo       | Side                           | 1207.8                    | -37.9                       | 15.3                  | -6.2                    | -53.20                      | -31.70                  | 0         | noise floor |  |  |
| 10 Fo      | Side                           | 1342                      | -38                         | 15.3                  | -6.2                    | -53.30                      | -31.80                  | 0         | noise floor |  |  |

<sup>\*</sup> Measurement at system noise floor

Date: January 23, 2009

SpiD: 090119-1365

Humidity: 39 %

S/N: 000261

2.399761557 GHz

#### 4.8 OCCUPIED BANDWIDTH

**Criterion Technology** 

-6 dB upper Bandedge:

EUT: RFID airplane tire pressure tester, IHHR

Manufacturer: Phase IV Technology

**Tester: LWS** 

Test Cond: Temp: 16° C

-6 dB lower Bandedge: <u>2.481729114 GHz</u>

-6 dB Occupied Bandwidth: 81.967557 MHz

 -20 dB lower Bandedge:
 2.484426401 GHz

 -20 dB upper Bandedge:
 2.398113215 GHz

-20 dB Occupied Bandwidth: 86.313186 MHz



5.0 APPENDIX C: PRODUCT INFORMATION FORM

#### CRITERION TECHNOLOGY PRODUCT INFORMATION FORM

| <b>General</b> Information                                 | <b>Date:</b> <u>3-10-09</u>               |
|------------------------------------------------------------|-------------------------------------------|
| Company Name: Phase IV Technology                          |                                           |
| Company Address: 2820 Wilderness Place, Unit C             |                                           |
| Boulder, CO 80301 USA                                      |                                           |
| Bodider, CO 00301 CSA                                      |                                           |
| Contacts:                                                  |                                           |
| Compliance Engineer: Bill Soderborg                        | Phone 303-452-5717 Email:Bill@percept.com |
|                                                            | Phone: <u>303-931-</u> 1632 Email:        |
| 2 to g. 2 ng met i v to 2 to monmer .                      |                                           |
| <b>Test Description</b>                                    |                                           |
| De-BugFormal (Initial)X                                    | Formal (Re-Verification)                  |
| `                                                          |                                           |
| Market Information (Check all that Apply)                  |                                           |
| USA X Canada X Euro. Union X Taiwan                        | Japan New Zealand Australia               |
| Other                                                      |                                           |
|                                                            |                                           |
| Product Information                                        |                                           |
| Name: <u>RFID airplane tire pressure tester</u> Model Numb | per: IHHR Serial Number: 000261           |
|                                                            |                                           |
| Product Dimensions: About 18 inches long by 3 inches       | in diameter Weight: less than 2 pounds    |
|                                                            |                                           |
| Product Power Source:                                      |                                           |
| Battery                                                    |                                           |
| Type Bosch 12 volt                                         |                                           |
| Redundant Power Supplies N/A                               |                                           |
| AC Supply                                                  |                                           |
| Input Voltage Range(s)                                     |                                           |
| Phases N/A Delta Wye _                                     | <u></u>                                   |
| Current Less than 0.5 A DC                                 |                                           |
| Frequency N/A                                              |                                           |
| Manufacturer Bosch                                         |                                           |
|                                                            |                                           |
| Topology                                                   |                                           |
| Linear N/A Switching Mode N/A                              | Switching Frequency N/A                   |
|                                                            |                                           |
| Support Equipment (if used): N/A                           |                                           |
|                                                            |                                           |
| I/O Cables – Manufacturer, P/N, Len                        | gth:                                      |
| Serial Port N/A                                            |                                           |
| Parallel Port                                              |                                           |
| SCSI Port                                                  |                                           |
| Other USB port to a Memory sti                             | ck                                        |
|                                                            |                                           |
| Operation Software:                                        |                                           |
| Name PDA custom program                                    | Version Number                            |
|                                                            |                                           |
| <b>Operating Modes: (Please Include Cycle Time)</b>        |                                           |
| Continuous RFID read, save and Blu                         | uetooth connection Less than one second   |
|                                                            |                                           |
| Time necessary for EUT to be exercised and able to ful     | lly respond: Less than 1 second(s).       |
| •                                                          |                                           |
| Operation Pass/Fail Criteria:                              |                                           |
| Display will go out or change format                       |                                           |
| · · <del>- · · · · · · · · · · · · · · · · ·</del>         |                                           |

# **EMC QUALIFICATION TEST REPORT**

090119-1365EM FOR PHASE IV TECHNOLOGY

Test Type – Emissions (Please check all that apply): **Information Technology Equipment** Class A Class B Oscillator/Clock Frequencies (MHz) Industrial, Scientific, Medical Equipment Class A X Class B Oscillator/Clock Frequencies (MHz) Y4 8.5888 MHz, Y1 8.5888, Y2 32.768, X1 32.768 kHz, X2 13.0000, Y3 12.0 **Unintentional Radiator** Class A X Class B Oscillator/Clock Frequencies (MHz) Receiver Type (Regen., Superhet., Direct Conv., Homodyne) Local Oscillator Frequencies Frequency Range **Intentional Radiator** Fundamental Frequency Range) 2.4 Ghz, 32.768 Local Oscillator Frequencies Power Output (to antenna) Integral Antenna (Yes/No) Unintentional radiator -Modulation Type (AM, CM, Pulse, Spread Spectrum) RFID, Bluetooth

#### TEST CRITERIA ATTACHMENT

Control Circuits (Microprocessor/Micro-controller) Oscillator/Clock Frequencies (MHz)

#### **EMISSIONS**

To be compliant with C63.4-2003 test methodology, for the emissions testing, the equipment must be exercising all of the functionality within the capability of the Equipment under test. In addition, the equipment must be equipped in the configuration of maximum capability which will be offered to customers.. The test software installed in the Equipment Under Test (EUT) must exercise all of the modules in this maximum capability configuration.

Description of the maximum capability configuration: The USB port is connected, the Bluetooth is constantly searching and the unit operates all of the circuits continuously

Name and revision # of the test software used for the emissions test: Not given

## 6.0 APPENDIX D: TEST EQUIPMENT AND CALIBRATION STATUS

| Manufacturer           | Name/Description                    | Model Number      | Serial Number        | Cal. Due Date |  |
|------------------------|-------------------------------------|-------------------|----------------------|---------------|--|
| Haefely Trench         | Surge Generator                     | PSURGE 6.1        | 083-906-07           | 4/10/2009     |  |
| 3                      | EFT Tester                          | PEFT Junior       | 583-333-51           | 4/10/2009     |  |
| Haefely Trench         |                                     |                   |                      |               |  |
| Haefely Trench         | Surge Coupler                       | FP-Surge 32.1     | 083-925-05           | 4/10/2009     |  |
| Haefely Trench         | Interrupter tester                  | Pline 1610        | 083-970-07           | 4/10/2009     |  |
| Amplifier Research     | Power Amplifier                     | 100W1000M1        | 20214                | 6/1/2009      |  |
| EMCO                   | Active Loop                         | 6502              | 2626                 | 6/19/2009     |  |
| Amplifier Research     | E-Field Probe                       | FP2080            | 20236                | 7/16/2009     |  |
| Veratech               | Preamp (AMP2)                       | unknown           | N/A                  | 7/18/2009     |  |
| EMCO                   | biconnical antenna                  | 3108              | 9103-2441            | 7/22/2009     |  |
| Amplifier Research     | Power Amplifier                     | 150A100A          | 20183                | 7/22/2009     |  |
| EMCO                   | log periodic antenna                | 3146              | 9004-2763            | 7/23/2009     |  |
| Chase                  | Bilog 30 - 1000 MHz                 | CB6111            | 1121                 | 7/23/2009     |  |
| Rohde/ Schwarz         | VHF/UHF Receiver                    | ESVS-30           | 863342014            | 9/4/2009      |  |
| Rohde/ Schwarz         | LISN                                | ESH2-Z5           | 828739-001           | 9/4/2009      |  |
| Rohde/ Schwarz         | HF Receiver                         | ESHS-30           | 826003/011           | 9/4/2009      |  |
| Tegam                  | Current Probe                       | 925236-1          | 12588                | 11/19/2009    |  |
| Microwave Technologies | Standard Gain Horn & Harmonic Mixer | 12A-18 & HP1197OK | 19527JE & 2332A01314 | 11/26/2009    |  |
| EMCO                   | Horn                                | 3160-08           | 1147                 | 11/28/2009    |  |
| FCC                    | EM Clamp                            | F2031             | 309                  | 12/7/2009     |  |
| FCC                    | CDN                                 | FCC-801-M3-25     | 9714                 | 12/7/2009     |  |
| Amplifier Research     | Directional Coupler                 | DC2600            | 302981               | 12/7/2009     |  |
| Solar Electronics      | LISN                                | 8012-50-R-24-BNC  | 892310               | 12/7/2009     |  |
| Haefely Trench         | Test Mag                            | Mag 100           | 80162                | 12/12/2009    |  |
| Hewlett Packard        | Signal Generator                    | HP 8648D          | 3642000145           | 1/7/2010      |  |
| Hewlett Packard        | Quasi Peak Adapter                  | 85650A            | 2403A07322           | 3/3/2010      |  |
| Hewlett Packard        | Spectrum Analyzer                   | HP 8566B          | 2421A00527           | 3/5/2010      |  |
| Hewlett Packard        | Spectrum Analyzer Display           | HP 85662A         | 2403A07322           | 3/5/2010      |  |
| Hewlett Packard        | Tracking Generator                  | HP85645A          | 3210A00124           | 3/6/2010      |  |
| Haefely Trench         | ESD Gun                             | PESD 1600         | H605100              | 4/3/2010      |  |
| Califorina Instruments | AC Power Source Pacs-1              | 5001iX-CTS-411    | 55637/ 72242         | 3/24/2011     |  |
| î                      |                                     |                   | I                    |               |  |

#### 7.0 APPENDIX E: TEST DIRECTIVES, STANDARDS AND METHODS

#### 7.1.1 EUROPEAN DIRECTIVES, STANDARDS AND METHODS

89/336/EEC: Council Directive of 03 May 1989 on the Approximation of the Laws of the Member States Relating to Electromagnetic Compatibility, OJEC No. L 139/19-26, Aug 1993.

BS DD ENV 50204 (CENELEC): Testing and Measurement Techniques; Radiated Electromagnetic Field from Digital Radio Telephones - Immunity Test, 1996.

EN 55011 (CENELEC): ISM Radio-Frequency Equipment Radio Disturbance Characteristics - Limits and Methods of Measurement, 2007.

EN 55014-1 (CENELEC): Part 1. Electromagnetic Compatibility Requirements for Household Appliances, Electric Tools and Similar Apparatus - Part 1. Emission - Product Family Standard, 2006.

EN 55022 (CENELEC): ITE - Radio-Frequency Equipment Radio Disturbance Characteristics - Limits and Methods of Measurement, 2006.

EN 55024 (CENELEC): ITE - Immunity Characteristics - Limits and Methods of Measurement, 2003.

EN 55103-1: Product Family standard for audio, video, audio - visual and entertainment lighting control apparatus for professional use. Part 1: Emissions, April 1997.

EN 55103-2: Product Family standard for audio, video, audio - visual and entertainment lighting control apparatus for professional use. Part 2: Immunity, April 1997.

EN 60601-1-2 (CENELEC): Medical Electrical Equipment. Part 1. General Requirements for Safety - Section 1.2. Collateral Standard: Electromagnetic Compatibility - Requirements and Tests, A1:2006, A2: 2007.

EN 61000-6-1: EMC- Part 6-1. Generic Standard-Immunity for residential, commercial and light-industrial Environments 2007.

EN 61000-6-2: EMC- Part 6-2. Generic Standard-Immunity for Industrial Environments, 2005.

EN 61000-6-3: EMC- Part 6-3. Generic Standard-Emissions for residential, commercial and light-industrial Environments 2007.

EN61000-6-4 (CENELEC): EMC - Generic Emission Standard, Part 6-4: Industrial Environment, 2007.

EN 61000-3-2 (CENELEC): EMC - Part 2. Limits for Harmonic Current Emissions (Equipment Input Current ≤16 A per phase), with Amendment 14, 2006.

EN 61000-3-3 (CENELEC): EMC - Part 3. Limitation of Voltage Fluctuation and Flicker in Low-Voltage Supply Systems for Equipment with Rated Current ≤16 A, 1998, A1:2001, A2:2005, A3:2006.

EN 61000-4-7 (CENELEC): EMC – Part 4-7 Testing and measurement techniques – General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto: 2002, incorporating corrigenda Nos. 1:2004 and 2:2005.

EN 300 328 v1.7.1: Electromagnetic compatibility and Radio spectrum Matters (ERM); Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz ISM band and using wide band modulation techniques; Harmonized EN covering essential requirements under article 3.2 of the R&TTE Directive, 2006.

EN 300 330 v1.4.1: Electromagnetic compatibility and Radio spectrum Matters (ERM); Short Range Devices (SRD); Radio equipment in the frequency range 9 kHz to 25 MHz and inductive loop system in the frequency range 9 kHz to 30 MHz, 2005.

EN 61000-4-2 (CENELEC): EMC - Part 4. Testing and Measurement Techniques; Section 2. Electrostatic Discharge Immunity Test, with Amendments 1 & 2, 2001.

# **EMC QUALIFICATION TEST REPORT**

090119-1365EM FOR PHASE IV TECHNOLOGY

EN 61000-4-3 (CENELEC): EMC - Part 4. Testing and Measurement Techniques; Section 3. Radiated, Radio-Frequency, Electromagnetic Field Immunity, 2006.

EN 61000-4-4 (CENELEC): EMC - Part 4. Testing and Measurement Techniques; Section 4. Electrical Fast Transient/Burst Immunity Test, incorporating corrigendum no. 1: January 2007.

EN 61000-4-5 (CENELEC): EMC - Part 4. Testing and Measurement Techniques; Section 5. Surge Immunity Test, 2006.

EN 61000-4-6 (CENELEC): EMC - Part 4. Testing and Measurement Techniques; Section 6. Immunity to Conducted Disturbances, Induced by Radio-Frequency Fields, 2005, A1: 2007.

EN 61000-4-8 (CENELEC): EMC - Part 4. Testing and Measurement Techniques; Section 8. Power Frequency Magnetic Field Immunity Test, 1993 with the incorporation of amendment A1:2001.

EN 61000-4-11 (CENELEC): EMC - Part 4. Testing and Measurement Techniques; Section 11. Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests, 2004

EN 61326 (CENELEC): Electrical Equipment for Measurement, Control and Laboratory Use - EMC Requirements, 1997, with the incorporation of amendments A1:1998, A2:2001 and A3:2003.

7.1.2 47 CFR FCC PART 15 RADIO FREQUENCY DEVICES: OCT 2008

Subpart A General.

Subpart B Unintentional Radiators.

Subpart C Intentional Radiators.

Subpart D Unlicensed Personal Communications Service Devices.

- 7.1.3 47 CFR FCC PART 22 PUBLIC MOBILE SERVICES: OCT 2008
- 7.1.4 47 CFR FCC PART 24 PERSONAL COMMUNICATIONS SERVICES; OCT 2008
- 7.1.5 **JAPAN**

VCCI V-3

7.1.6 **CANADA** 

ICES-001: Interference-Causing Equipment Standard - ISM RF Generators, 2006.

ICES-003: Interference-Causing Equipment Standard - Digital Apparatus, 2004.

7.1.7 AUSTRALIA/NEW ZEALAND

SAA AS/NZ 3548: Limits and Methods of Measurement of Radio Disturbance Characteristics of ITE, 1997.

AS/NZS CISPR22

7.1.8 TAIWAN

CNS13438, 2006.

7.1.9 **KOREA** 

KN22, September 29, 2005

KN24, 1998

THIS PAGE INTENTIONALLY LEFT BLANK