WERKSTUDENT - DUCKENEERS GMBH

MACHINE LEARNING ENGINEER

MAKSYM SEVKOVYCH

Ingo Steinwart Universität Stuttgart

30.06.2023

1 DevDuck und Duckeneers GmbH

2 Projekt

3 Meine Aufgaben bei der Duckeneers GmbH

DEVDUCK UND DUCKENEERS GMBH

DEVDUCK UND DUCKENEERS GMBH

DevDuck GmbH

Branche: Web Development

Gründung: 2020 **Mitarbeiter:** 13

Duckeneers GmbH

Branche: Al Solutions

Gründung: 2021 **Mitarbeiter:** 7

<mark>2</mark>

card detection: Erkennung der Karten/Labels auf einem Bild

document understanding: Erkennung der Informationen auf einer Karte

surveillance: Überwachung der Lieferungen mit den gewonnenen Informationen

Abbildung: Ein geschwärztes Beispiel aus dem Datensatz des Modells der Kartenerkennung. Bereitgestellt von der Duckeneers GmbH.

Abbildung: Ein geschwärztes Beispiel aus dem Datensatz des Modells zur Übersetzung von Bild zu Text. Bereitgestellt von der Duckeneers GmbH

MEINE AUFGABEN BEI DER DUCKE-NEERS GMBH

AUFGABEN - MACHINE LEARNING

Analyse des Datensatzes der Kartenerkennung

Implementierung einer Pipeline zur automatisierten Anwendung der Modelle zur Kartenerkennung

Implementierung von Auswertungsmetriken

Bestimmung eines optimalen Schwellwerts

Implementierung einer Pipeline zur automatisierten Auswertung der Modelle

Bereinigung des Datensatzes der Kartenerkennung

ANALYSE DES DATENSATZES

Abbildung: Eine Visualisierung der Verteilung der Karten in den Trainingsdaten mit eingezeichneten 80% Clustern. Bereitgestellt von der Duckeneers GmbH

ANALYSE DES DATENSATZES

Abbildung: Eine Visualisierung der Verteilung der Karten in den Validierungsdaten mit eingezeichneten 80% Clustern. Bereitgestellt von der Duckeneers GmbH

ANWENDUNGSPIPELINE & VISUALISIERUNG

Abbildung: Eine Visualisierung der Vorhersagen des grounding Dino Modells. Bereitgestellt von der Duckeneers GmbH

AUSWERTUNGSMETRIK

Metrik: Zur Analyse von Objekterkennungsaufgaben wird **Intersection over Union (IoU)**-Metrik verwendet

$$\mathcal{I}(A_g, A_p) = \frac{A_g \cap A_p}{A_g \cup A_p}, \qquad A_g, A_p \in \mathbb{N}^2,$$

mit A_q tatsächliche Box und A_p vorhergesagte Box

OPTIMALER SCHWELLWERT

Abbildung: Eine Visualisierung des Verlaufs der richtig erkannten Karten in Bezug auf den zulässigen IoU-Wert. Bereitgestellt von der Duckeneers GmbH

AUSWERTUNGSPIPELINE

Pipeline: zur automatisierten Auswertung der Modellergebnisse mit IoU-Metrik

Aggregation: der Auswertungsergebnisse

BEREINIGUNG DES DATENSATZES

Bereinigung: des Datensatzes mit cleanvision Framework

Anpassung: des Datensatzes zu 200/800/1000 Verhältniss

AUFGABEN - DEVOPS

Poetry: Python Package management

Python Linter: Tools zur Formattierung von Code

Pre-Commit: Tool zur automatischen Vereinheitlichung von Code

GitLab Pipeline: CI/CD Pipeline zur überwachten Code Versionierung

