Probability Theory

Gennaro De Luca, PhD Arizona State University

The lecture is based on the slides developed by Prof. Yu Zhang from ASU School of Computing and Augmented Intelligence

Objectives

Objective

Define
Probability
Space and
Conditional
Probability

Objective

Discuss Bayes Rule

The Bayes Rule

Let (Ω, \mathcal{B}, P) be a probability space, and let $\{H_j\}$ be pairwise disjoint events in \mathcal{B} , with $\bigcup_{j=1,\dots,n} H_j = \Omega$ and $P(H_j) > 0, \ \forall j$.

- Then $\forall B \subseteq \mathcal{B}$ where P(B) > 0,

$$P(H_j \mid B) = P(H_j)P(B \mid H_j) / \sum_{i=1,\dots,n} P(H_i)P(B \mid H_i), \forall j$$

Bayes' Theorem

Given events A and B, where $P(B) \neq 0$, P(A|B) = P(B|A)P(A) / P(B).

The Bayes Rule

Why is this at all helpful?

- Lets us build one conditional from its reverse
- Often one conditional is tricky but the other one is simple
- Foundation of many systems (e.g., tracking, localization)

In the running for most important Al equation!

Independence of Events

Let (Ω, \mathcal{B}, P) be a probability space, $\forall A,B \in \mathcal{B}$, we say A and B are independent if P(A,B) = P(A)P(B).

- Splits the joint distribution factors into a product of two simple ones.
- Usually, variables are not independent! But we can use independence as a modelling assumption:
 - Independence can be a simplifying assumption.
 - Empirical joint distributions: at best "close" to independent.

Conditional Independence

P(Toothache, Cavity, Catch)

If I have a cavity, the probability that the probe catches it does *not* depend on whether I have a toothache:

- P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if I do not have a cavity:

- P(+catch | +toothache, -cavity) = P(+catch | -cavity)

"Catch" is conditionally independent of "Toothache" given "Cavity":

– P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Conditional Independence

Unconditional (absolute) independence very rare (why?).

Conditional independence is our most basic and robust form of knowledge about uncertain environments.

-X is conditionally independent of Y given Z (i.e., $X \perp\!\!\!\perp Y|Z$)

if and only if $\forall x,y,z: P(x,y \mid z) = P(x \mid z)P(y \mid z)$,

or, equivalently, if and only if $\forall x,y,z: P(x \mid z,y) = P(x \mid z)P(y \mid z)$.