

Gerth Stølting Brodal
University of Aarhus

Joint work with Gabriel Moruz presented at ESA'06

Perfectly Balanced Search Trees

Skewed Binary Search Trees — Average Node Depth

$$\leq \frac{1}{-\alpha \log_2 \alpha - (1-\alpha) \log_2 (1-\alpha)} \cdot \frac{n+1}{n} \cdot \log_2 (n+1) - 2$$

$$H(\alpha)$$

Nievergelt and E. M. Reingold, 1972

$1/H(\alpha)$

Comparisons

$$n = 50.000$$

Running Time

Best running time achieved for $\alpha \approx 0.3$!?

Conclusion

Skewed binary search trees

can beat

Perfectly balanced binary search trees!

Why?

Why?

The costs going left and right are different!

Possible reasons

- Number of instructions
- Branch mispredictions
- Cache faults (what is a good memory layout?)

• ...

Expected Cost

$$\mathsf{cost}(\alpha) = (\alpha \cdot \{\mathsf{left\ cost}\} + (1 - \alpha) \cdot \{\mathsf{right\ cost}\}) / H(\alpha)$$

left cost = 1 and right cost = 3

Expected Cost

 $\mathsf{cost}(\alpha) = (\alpha \cdot \{\mathsf{left\ cost}\} + (1 - \alpha) \cdot \{\mathsf{right\ cost}\}) / H(\alpha)$

left cost = 1 and right cost = 0...28

Experimental setup

- AMD Athlon XP 2400+
- 2.0 GHz
- 256 KB L2 cache
- 64 KB L1 data cache
- 64 KB L1 instruction cache
- 1GB RAM
- Linux 2.6.8.1
- GCC 3.3.2
- Tree nodes = 12 bytes
- No unsuccesful searches

Search Code

```
while(root!=NULLV)
{
   if(key==t[root].key)
     return root;
   if(key>t[root].key)
     root=t[root].right;
   else
     root=t[root].left;
}
```

Branch Mispredictions

$$n = 50.000$$

Simple Layouts

Random – $O(\frac{\log n}{H(\alpha)})$ I/Os

Inorder – $O(\frac{\log n}{H(\alpha)} - \log B)$ I/Os

BFS – $O(\frac{\log n}{H(\alpha)} - \log B)$ I/Os

DFSr – $O(\frac{\alpha + (1-\alpha)/B}{H(\alpha)} \cdot \log n)$ I/Os.

Running Time for Simple Layouts

DFS < Inorder < BFS < Random DFS achieves the best performance for $\alpha \approx 0.2$!

Cache Faults for Simple Layouts

DFS \approx expected left cost = 1 and right cost = 1/B.

Blocked Layouts — k-level blocking

- layout the nodes of the first k levels
- recurse on subtrees
- a search uses $O(\log_B n/H(\alpha))$ I/Os

Blocked Layouts — pqDFSk

- layout the k heavest nodes in order of decreasing size
- recurse on subtrees in order of decreasing size
- a search uses $O(\log_{B\alpha+1} n)$ I/Os

Blocked Layouts — veb

- top = $\lceil \sqrt{n} \rceil$ heavest nodes
- recurse on top and bottom trees in order of decreasing size
- a search uses $O(\log_{B\alpha+1} n)$ I/Os

Running Time for Blocked Layouts

vEB achieves the fastest running time for $\alpha \approx .25$

Cache Faults for Blocked Layouts

vEB achieves the smallest number of cache faults

Experimental Summary

Conclusion

Skewed binary search trees

beat

Perfectly balanced binary search trees

because

The costs going left and right are different!