Felix Becker

Data Competency Courses: Neural Networks and Deep Learning Introduction

Lecture Machine Learning vom 29-31.3.2023

Felix Becker (material in collaboration with Lars Gabriel and Mario Stanke) Institut für Mathematik und Informatik Universität Greifswald

Data Competency Networks and Deep Learning Introduction Felix Becker

Administratives

- Time frame: 9:00-16:00 from march 29th to 31th
- Lunch break: ~12:00-13:00
- Course material (slides, code, data sets, ...):
 - https://github.com/DataCompetency/KI-Block
 - https://moodle.uni-greifswald.de/course/view.php?id=5405
- Questions and feedback outside of the course (moodle forum):
 - https://moodle.uni-greifswald.de/mod/forum/view.php?id=146549
- AppHub Uni Greifswald:
 - https://apphub.wolke.uni-greifswald.de/
- Course instructors: Felix Becker (Days 1-2.5), Stefan Simm (Day 2.5-3)

Prerequisites

Felix Becker

- Connection to the network of the University of Greifswald
- Basic programming skills in any language
- Basic calculus and linear algebra (derivation, matrix multiplication)

$$\nabla E(\theta) = \left(\frac{\partial E(\theta)}{\partial \theta_0}, \cdots, \frac{\partial E(\theta)}{\partial \theta_n}\right)^T, \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \cdot \begin{pmatrix} 3 & 2 & 1 \\ 4 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 11 & 4 & 1 \\ 25 & 10 & 3 \\ 3 & 16 & 5 \end{pmatrix}$$

Familiarity with numpy syntax

```
(1): import numpy as np

(3): A = np.array([1,2,1,3,4],[5,6])
B = np.array([3,2,1],[4,1,0])
C = np.matmul(A,B)
C

(3): array([11, 4, 1],
[25, 10, 3],
[39, 16, 5]])
```

Felix Becker

However, don't worry too much about your mathematical background...

I strongly believe that there are no difficult ideas in deep learning.

(...) machine learning, and especially deep learning, exhibits comparatively little mathematical theory—maybe too little—and is engineering oriented.

François Chollet (Creator of the keras deep learning library), Deep Learning with Python

Natural Language Processing, Generative pre-trained transformer (GPT)

- GPT-3¹: Task-agnostic language model with 175 billion parameters
- Recently GPT-4: Multimodal model with probably even more parameters

¹Language Models are Few-Shot Learners, Brown et al., 2020

Text-to-image models

Felix Becker

Image Credits: Stability AI

Generate an image from a text prompt

Felix Becker

AlphaFold

 End-to-end 3D structure prediction starting from a protein sequence

²Highly accurate protein structure prediction with AlphaFold, Brown Mann Ryder Subbiah et al., 2020

Reinforcement Learning

Felix Becker

- AlphaZero: Beat the top ranked Go player in the world ("superhuman")
- Uses neural networks to make an educated guess on the best actions (policy) and their expected outcome

³A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play, Silver et al., 2018

ResNet

Felix Becker

 ResNet ⁴are very deep networks with great performance in image classification

⁴Deep residual learning for image recognition, He et al., 2016

KI-Block 2023 - Overview

Felix Becker

