

PROJET ACTUARIAT NON VIE

Provisionnement non vie

Groupe 2

Élaboré par : Mensi IHEB Guemira MARWA Morjane RIMÉL Encadré par : Mr.Ksouri Najed

2020- 2021

Table des matières

In	trod	uction Générale	1
1	Ana	lyse des triangles & Estimation de Chain Ladder	2
	1.1	Chargement de données	2
	1.2	Analyse des triangles	4
		1.2.1 Analyse de triangle des ouvertures	4
		1.2.2 Analyse de triangle des règlements	6
		1.2.3 Analyse de triangle des charges	8
	1.3	Estimation Chain Ladder	10
		1.3.1 Présentation du modèle	10
		1.3.2 Application	10
2	Esti	mation des provisions avec les modèles Mack & bootstrap	13
	2.1	Calcul des provisions à l'aide de modèle Mack	13
		2.1.1 Présentation du modèle	
		2.1.2 Application Pour le triangle de nombre	14
		2.1.3 Application Pour le triangle des règlements	
	2.2	Calcul des provisions à l'aide de modèle Bootstrap	
		2.2.1 Présentation du modèle	
		2.2.2 Application Pour le triangle de nombre	23
		2.2.3 Application Pour le triangle de règlements	
3	Cal	cul et interprétation des Loss Ratio	27
	3.1	Calcul le montant de la prime acquise	27
	3.2	Calcul les Loss Ratio S/P de chaque année	
	3.3	Calcul les S/P de chaque année et interpréter les résultats	
C	onclu	sion Générale	30

Table des figures

1.1	Présentation de la triangle de méthode de Chain Ladder
1.2	Triangle des ouvertures
1.3	Triangle de règlements
1.4	Triangle de provisionnement ASP
1.5	Triangle des ouvertures Cumulés
1.6	Le nombre de sinistres cumulés par nombre de survenance
1.7	Triangle des cadences des ouvertures
1.8	Tableau de statistiques descriptives
1.9	Triangle des règlements cumulés
-	Les règlements cumulés par nombre de survenance
	Triangle des cadences des règlements
	Statistiques descriptives de règlements
	Triangle cumulés des charges
	Les charges cumulés par nombre de survenance
	Triangle des cadences des charges
	Statistique descriptives des charges
	Estimation de nombre de tardifs
	Estimation de PSAP REG
	Estimation de PSAP_CHARG
1.19	Estiliation de FSAF_CHARG
2.1	Les hypothéses de la méthode Mack
$\frac{2.1}{2.2}$	Formule de MSEP
2.3	Ecart-type du MSEP
$\frac{2.3}{2.4}$	Triangle de nombre et de règlements sous R
$\frac{2.4}{2.5}$	Triangle de nombre cumulés sous R
$\frac{2.5}{2.6}$	Estimation de nombre de tardifs
$\frac{2.0}{2.7}$	
	11
2.8	Les valeurs complet de triangle de nombre
2.9	Graphique d'estimation pour les différents années de survenance
2.10	Triangle de règlements sous R
2.11	Triangle de règlements cumulés sous R
	Estimation de PSAP règlements
	Les facteurs de développement estimés sous R
	Les valeurs complets de triangle de règlements
	Graphiques de l'estimation de nombre de règlements par le modèle Mack
	Processus de le méthode bootstrap
	Estimation de nombre de tardiffs
2.18	Graphique d'estimation de nombre de tardifs $\dots \dots \dots$
	Compariason de ecdf de triangle de nombre et la loi log normal $\dots \dots \dots$
2.20	Estimation de nombre de tardifs de chaque année
2.21	Estimation de triangle de règlements
2.22	Graphique d'estimation de triangle de règlements
2.23	Compariason de ecdf de triangle de règlements et la loi log normal
2.24	Estimation de nombre de tardifs de chaque année
3.1	Triangle de règlements complet
3.2	Tableau de Loss Ratio et PSAP estimé
3.3	Tableau de Loss Ratio de chaque année de survenance et chaque année de développement 2

Introduction Générale

La particularité des compagnies d'assurance est le cycle de production inversé. Pour chaque contrat d'assurance souscrit, l'assureur perçoit une prime, en contrepartie il s'engage à payer des indemnités en cas de survenance d'un sinistre. Cela suppose que l'assureur ne peut connaître à l'avance le coût final d'un contrat. Pour faire face à ses engagements l'assureur doit constituer des provisions techniques, qui correspondent aux charges à prévoir face aux sinistres déclarés ou non des contrats d'assurance en cours. Les provisions techniques tiennent donc une place très importante dans le passif des sociétés d'assurance (environ 80% du passif) et assurent la solvabilité de celles-ci.

L'évaluation de ces provisions représente un enjeu majeur pour une compagnie d'assurance. Elle est nécessaire pour suivre l'activité de la compagnie. Elle permet de déterminer entre autres une charge finale prévisible des sinistres par année de survenance et par suite, l'estimation d'un loss ratio (S/P). Ainsi, la compagnie peut apprécier la rentabilité de ses différentes branches d'activité, calculer des cadences de règlement et de charge,...

Notre objectif dans ce projet est de déterminer les provisions à fin de calculer un S/P en appliquant plusieurs méthodes telles que la méthode Chain Ladder, Bootstrap, Mack, etc.

Chapitre 1

Analyse des triangles & Estimation de Chain Ladder

1.1 Chargement de données

Afin d'analyser la branche d'activité automobile et d'estimer la valeur de provisionnement de sinistre à payer PSAP, nous avons chargé les données ci-dessous sous formes triangulaire en utilisant le logiciel **Excel**. La construction du triangle est important pour le calcul des provisions pour sinistre à payer et le calcul de nombre de tardifs des sinistres. Le calcul des provisions pour sinistre à payer se fait à partir d'un triangle de règlement ou de charge ainsi que le calcul de nombre de tardifs se fait à partir d'un triangle de nombre. Ces triangles comportent en ligne les années de survenance et en colonne les années de développement des sinistres.

Pour mieux comprendre ces triangles, Nous définissons les variables suivantes :

- $Y_{i,j}$: L'ensemble des règlements ou le nombre des sinistres survenus l'année i et réglés ou ouverts l'année j.
- $C_{i,j}$: Les règlements ou le nombre cumulés des sinistres survenus l'année i jusqu'à l'année j de développement des sinistres .Ses valeurs cumulés de $C_{i,j}$ seront très utile dans la partie analyse et estimation que nous allons aborder ensuite.
- $C_{i,n}$: La charge finale du sinistre.

Le calcul des valeurs cumulés se fait en suivant par cette formule : $% \left(1\right) =\left(1\right) \left(1\right$

$$C_{i,j} = \sum_{k=0}^{j} Y_{i,j}$$
 avec $j \in \{0, ..., 9\}$

Années de	Triangle des ouvertures											
survenance	0	1	2	3	4	5	6	7	8	9		
2005	Y2005,0	Y2005,1	Y2005,2						Y2005,8	Y2005,9		
2006	Y2006,0	Y2006,1							Y2006,8			
2007												
2008												
2009						Y2009,6						
2010												
2011												
2012												
2013	Y2013,0	Y2013,1										
2014	Y2014,0											

FIGURE 1.1 – Présentation de la triangle de méthode de Chain Ladder

Le tableau ci-dessus présente un exemple du triangle des règlements décumulés :

- La partie supérieure du triangle représente les règlements décumulés.
- La partie inférieure est celle à estimer, elle constitue les provisions que la compagnie doit mettre de côté pour faire face à ses engagements.

En fonction des spécificités de chaque méthode d'estimation (Chain Ladder, Mack, bootstrap), nous utiliserons soit le triangle des règlements décumulés ou le triangle des règlements cumulés.

Les figures ci-dessous représentent les différents triangles que nous avons chargés sous excel :

• Triangle des ouvertures :

représente le nombre des sinistre survenus en années i et ouverts dans l'année j.

Triangle des ouver	tures									
Nombre	1	2	3	4	5	6	7	8	9	10
2005	624	322	18	10	4	2	0	0	0	0
2006	728	522	44	8	6	2	0	0	0	0
2007	898	672	54	14	0	0	0	0	0	0
2008	1074	522	70	8	0	0	0	0	0	0
2009	1002	556	34	20	2	0	0	0	0	0
2010	1022	512	38	20	2	0	0	0	0	0
2011	1192	546	84	24	0	0	0	0	0	0
2012	1028	668	76	0	0	0	0	0	0	0
2013	936	514	0	0	0	0	0	0	0	0
2014	708	0	0	0	0	0	0	0	0	0

FIGURE 1.2 – Triangle des ouvertures

• Triangle de règlements :

représente les règlements des sinistre survenus en années i et réglés dans l'année j.

Triangle	e des règlen	nents									
REG		1	2	3	4	5	6	7	8	9	10
	2005	36 609	2 862 411	3 935 321	2 095 595	1 290 952	321 695	372 374	157 453	69 881	238 807
	2006	180 719	3 642 170	6 023 883	3 834 373	1 241 274	1 517 333	430 739	53 828	178 878	0
	2007	282 378	2 138 076	4 071 675	2 631 444	1 700 472	626 767	249 988	289 890	0	0
	2008	391 555	3 410 032	4 428 036	2 834 058	1 139 435	506 107	310 503	0	0	0
	2009	772 740	4 033 083	4 744 673	2 822 642	1 155 507	1 185 645	0	0	0	0
	2010	669 755	4 832 157	5 511 217	1 721 320	895 628	0	0	0	0	0
	2011	1 416 740	5 510 686	5 440 159	3 493 828	0	0	0	0	0	0
	2012	1 713 396	6 558 620	4 931 486	0	0	0	0	0	0	0
	2013	849 519	3 419 035	0	0	0	0	0	0	0	0
	2014	537 256	0	0	0	0	0	0	0	0	0

Figure 1.3 – Triangle de règlements

• Triangle de provisionnement ASP :

représente les règlements des sinistre survenus en années i et réglés dans l'année j.

Triangl	e des provis	ions SAP									
SAP		1	2	3	4	5	6	7	8	9	10
	2005	7 587 623	10 780 206	7 273 623	5 160 250	3 870 640	2 856 823	2 236 027	1 740 929	1 595 607	1 226 200
	2006	10 143 281	16 815 804	11 796 843	8 421 714	5 442 397	3 277 159	2 085 027	1 442 905	1 206 864	0
	2007	13 200 370	20 084 527	15 096 005	11 292 974	7 946 136	5 911 143	4 811 260	3 948 213	0	0
	2008	16 757 136	17 425 518	13 088 125	8 455 995	6 839 888	5 446 608	4 713 193	0	0	0
	2009	15 036 964	17 369 780	11 319 293	8 807 460	7 150 017	4 993 769	0	0	0	0
	2010	14 763 677	14 813 669	9 492 920	7 457 970	6 028 319	0	0	0	0	0
	2011	13 681 785	16 860 851	12 266 575	9 474 203	0	0	0	0	0	0
	2012	11 888 735	14 691 195	11 383 120	0	0	0	0	0	0	0
	2013	11 612 334	18 288 437	0	0	0	0	0	0	0	0
	2014	9 468 550	0	0	0	0	0	0	0	0	0

FIGURE 1.4 – Triangle de provisionnement ASP

1.2 Analyse des triangles

1.2.1 Analyse de triangle des ouvertures

En utilisant la formule des valeurs cumulés , nous avons obtenus le triangle de nombre des sinistres cumulés présenté dans la figure suivante :

Triangle	des ouver	tures								
NB	0	1	2	3	4	5	6	7	8	9
2005	624	946	964	974	978	980	980	980	980	980
2006	728	1250	1294	1302	1308	1310	1310	1310	1310	
2007	898	1570	1624	1638	1638	1638	1638	1638		
2008	1074	1596	1666	1674	1674	1674	1674			
2009	1002	1558	1592	1612	1614	1614				
2010	1022	1534	1572	1592	1594					
2011	1192	1738	1822	1846						
2012	1028	1696	1772							
2013	936	1450								
2014	708									

FIGURE 1.5 – Triangle des ouvertures Cumulés

• Analyse à partir de graphe :

On commence notre analyse par un graphique qui nous montre le nombre de sinistres cumulés par nombre de survenance :

On remarque la présence d'une grande évolution de nombres des sinistres au cours des années surtout entre les années 2008-2012.

De plus, il y a une irrégularité des cadences de nombre de sinistres selon les années de survenances. Cela reflète des irrégularités dans la gestion des sinistres et l'augmentation des sinistres au cours ces années.

De plus, nous avons réalisé l'analyse de triangle à partir de la construction de tringle de cadences.

Figure 1.6 – Le nombre de sinistres cumulés par nombre de survenance

• Analyse du triangle des cadences :

L'analyse du triangle des cadences nous permet de détecter entre autres la présence des gros sinistres qui biaisent le triangle et ne permettent pas d'aboutie à des estimations fiables.Donc, Il est nécessaire de les isolés et de les traités séparément du reste des sinistres.

On définit les coefficients individuels du triangle de cadences comme suit :

$$\lambda_{i,j} = \frac{C_{i,j+1}}{C_{i,j}}$$

avec , $C_{i,j+1}$: Le nombre de sinistres cumulé de l'année j+1 . $C_{i,j}$: Le nombre de sinistres cumulé de l'année j.

Triangle	des cade	ences								
NB	0	1	2	3	4	5	6	7	8	9
2005		151,60%	101,90%	101,04%	100,41%	100,20%	100,00%	100,00%	100,00%	100,00%
2006		171,70%	103,52%	100,62%	100,46%	100,15%	100,00%	100,00%	100,00%	
2007		174,83%	103,44%	100,86%	100,00%	100,00%	100,00%	100,00%		
2008		148,60%	104,39%	100,48%	100,00%	100,00%	100,00%			
2009		155,49%	102,18%	101,26%	100,12%	100,00%				
2010		150,10%	102,48%	101,27%	100,13%					
2011		145,81%	104,83%	101,32%						
2012		164,98%	104,48%							
2013		154,91%								
2014										

Figure 1.7 - Triangle des cadences des ouvertures

En analysant ce triangle de cadence, On remarque la présence d'une large irrégularité entre la 1^{re} et les restes années de développements qui ont des valeurs autour de 100%.

Alors, on peut conclure qu'il existe une grande volatilité entre les deux années de développement.

On remarque également l'existence des valeurs atypique surtout pour les années 2006 et 2007 de la première année de développement avec des valeurs respectivement de 171.70% et 174.83%.

• Analyse Statistiques descriptives :

Afin d'approfondir notre analyse, nous avons réalisé une analyse descriptive de triangle de cadence. La figure ci-dessous montre le résultat obtenu :

Analyse des ca	adences								
Facteur	1	2	3	4	5	6	7	8	9
Moyenne	157,56%	103,40%	100,98%	100,19%	100,07%	100,00%	100,00%	100,00%	100,00%
Ecartype	9,86%	1,05%	0,31%	0,18%	0,09%	0,00%	0,00%	0,00%	0,00%
Coef Variation	6,26%	1,01%	0,31%	0,18%	0,09%	0,00%	0,00%	0,00%	0,00%
Min	147,70%	102,35%	100,67%	100,00%	99,98%	100,00%	100,00%	100,00%	100,00%
Max	167,42%	104,45%	101,29%	100,37%	100,16%	100,00%	100,00%	100,00%	100,00%

Figure 1.8 – Tableau de statistiques descriptives

En se basant sur ces résultats, on remarque aussi la présence des valeurs atypique pour la 1^{re} année de développement à celle des restes années avec une moyenne de 157.56% et de coefficient de variation de 6.26%.

• Conclusion :

Pour conclure, le triangle de nombre de sinistre cumulés présente des irrégularités entre la première année de développement et les restes années .Ses irrégularités sont liés probablement au mauvais gestion des sinistres ou de retard d'ouvertures des sinistres.

Nous remarquons aussi l'instabilité des coefficients individuels du triangle des cadences des ouvertures avec des valeurs atypiques de 171.70% et 174.83% pour les années de 2006 et 2007.

Par ailleurs, Les coefficients de variation sont très volatiles pour la première et la deuxième année de développement respectivement de 6.26% et 1.01%.

Si nous décidons d'appliquer les méthodes de calcul des provisions avec la méthode d'estimation de Chain Ladder sur ce triangle de nombres de sinistres afin d'estimer le nombre des sinistres tardifs, nous risquons d'obtenir des résultats aberrants qui ne reflètent pas la réalité. Pour y remédier, nous décidons de retrancher ses valeurs atypiques dans le but d'avoir une estimation plus sure .

1.2.2 Analyse de triangle des règlements

En utilisant la formule des valeurs cumulés , nous avons obtenus le triangle des règlements cumulés présenté dans la figure suivante :

Triang	le des règle	ments								
REG	0	1	2	3	4	5	6	7	8	9
2005	36 609	2 899 020	6 834 341	8 929 936	10 220 887	10 542 583	10 914 957	11 072 410	11 142 291	11 381 098
2006	180 719	3 822 889	9 846 772	13 681 145	14 922 419	16 439 751	16 870 490	16 924 318	17 103 196	
2007	282 378	2 420 454	6 492 129	9 123 573	10 824 045	11 450 811	11 700 799	11 990 689		
2008	391 555	3 801 586	8 229 622	11 063 680	12 203 114	12 709 222	13 019 725			
2009	772 740	4 805 823	9 550 496	12 373 139	13 528 646	14 714 291				
2010	669 755	5 501 912	11 013 129	12 734 448	13 630 076					
2011	1 416 740	6 927 426	12 367 585	15 861 413						
2012	1 713 396	8 272 016	13 203 502							
2013	849 519	4 268 553								
2014	537 256									

Figure 1.9 – Triangle des règlements cumulés

• Analyse à partir de graphe :

Ce graphique nous montre le règlement de sinistres cumulés par nombre de survenance :

Figure 1.10 — Les règlements cumulés par nombre de survenance

On remarque la présence des irrégularités et d'une grande évolution de règlements de sinistres au cours des années surtout pour l'année 2006.

Cela nous montre des irrégularités dans la gestion des sinistres et la présence des gros sinistres avec un coût de règlement important.

• Analyse du triangle des cadences :

La figure ci-dessous présente le triangle des cadences de règlements cumulés :

Triangle	des cade	ences								
NB	0	1	2	3	4	5	6	7	8	9
2005		7918,95%	235,75%	130,66%	114,46%	103,15%	103,53%	101,44%	100,63%	102,14%
2006		2115,38%	257,57%	138,94%	109,07%	110,17%	102,62%	100,32%	101,06%	
2007		857,17%	268,22%	140,53%	118,64%	105,79%	102,18%	102,48%		
2008		970,90%	216,48%	134,44%	110,30%	104,15%	102,44%			
2009		621,92%	198,73%	129,55%	109,34%	108,76%				
2010		821,48%	200,17%	115,63%	107,03%					
2011		488,97%	178,53%	128,25%						
2012		482,78%	159,62%							
2013		502,47%								
2014										

FIGURE 1.11 – Triangle des cadences des règlements

En analysant ce triangle de cadence, On remarque la présence d'une large irrégularité pour les premières

cinq années. De plus, il existe des valeurs très atypiques pour la première années de développement de 7918.95%, 2115.38% et 970.90% pour respectivement les années 2005,2006 et 2008.

Puis, les valeurs commencent à stabiliser pour atteindre des valeurs normales à partir de la 5^{re} année de développement.

• Analyse Statistiques descriptives :

Afin d'approfondir notre analyse, la figure ci-dessous représente le résultat de la statistique descriptive de cette triangle des cadences de règlements :

Analyse des c									
Facteur	1	2	3	4	5	6	7	8	9
Moyenne	1642,22%	214,38%	131,14%	111,47%	106,40%	102,69%	101,41%	100,84%	102,14%
Ecartype	2270,00%	35,28%	7,67%	3,91%	2,68%	0,51%	0,88%	0,21%	0,00%
Coef Variation	138,23%	16,46%	5,85%	3,51%	2,52%	0,49%	0,87%	0,21%	0,00%
Min	-627,78%	179,10%	123,48%	107,56%	103,73%	102,19%	100,53%	100,63%	102,14%
Мах	3912,23%	249,66%	138,81%	115,38%	109,08%	103,20%	102,29%	101,06%	102,14%

Figure 1.12 – Statistiques descriptives de règlements

En se basant sur ces résultats, on remarque aussi la présence des valeurs atypique pour les premières cinq ans surtout pour la 1^{re} année de développement avec une moyenne de 1642.22%. De plus on remarque la présence d'une immense volatilité avec des valeurs de coefficients de variations allant de 138.23% de la 1^{re} année jusqu'à 0.21% de la 8^{me} année.

• Conclusion : Pour conclure, le triangle de règlements de sinistre cumulés présente des irrégularités comme celle ce nombres de sinistre ce qui nous confirme la présence du mauvais gestion des sinistres ou de retard de règlement de ces sinistres.

1.2.3 Analyse de triangle des charges

En utilisant la formule des valeurs cumulés , nous avons obtenus le triangle des charges cumulés présenté dans la figure suivante :

T	Triangle des charges										
	REG	0	1	2	3	4	5	6	7	8	9
	2005	7 624 232	13 679 226	14 107 964	14 090 186	14 091 527	13 399 406	13 150 983	12 813 339	12 737 898	12 607 298
	2006	10 324 000	20 638 693	21 643 615	22 102 859	20 364 816	19 716 910	18 955 517	18 367 223	18 310 060	
	2007	13 482 748	22 504 981	21 588 134	20 416 547	18 770 181	17 361 955	16 512 059	15 938 902		
	2008	17 148 691	21 227 104	21 317 747	19 519 674	19 043 002	18 155 830	17 732 919			
	2009	15 809 704	22 175 604	20 869 790	21 180 599	20 678 662	19 708 060				
	2010	15 433 433	20 315 582	20 506 049	20 192 418	19 658 395					
	2011	15 098 525	23 788 277	24 634 160	25 335 616						
	2012	13 602 131	22 963 211	24 586 622							
	2013	12 461 852	22 556 990								
	2014	10 005 806									

FIGURE 1.13 - Triangle cumulés des charges

• Analyse à partir de graphe :

Ce graphique nous montre le charge de sinistres cumulés par nombre de survenance :

FIGURE 1.14 – Les charges cumulés par nombre de survenance

On remarque la croissance des charges de sinistres au cours des années et il atteints le maximum l'année 2011.

Cela nous montre des irrégularités dans la gestion des règlements des sinistres et la gestion de provisionnement des sinistres à payer.

\bullet Analyse du triangle des cadences :

La figure ci-dessous présente le triangle des cadences de charge cumulés :

Triangle des cadences										
NB	NB 0 1 2				4	5	6	7	8	9
2005		179,42%	103,13%	99,87%	100,01%	95,09%	98,15%	97,43%	99,41%	98,97%
2006		199,91%	104,87%	102,12%	92,14%	96,82%	96,14%	96,90%	99,69%	
2007		166,92%	95,93%	94,57%	91,94%	92,50%	95,10%	96,53%		
2008		123,78%	100,43%	91,57%	97,56%	95,34%	97,67%			
2009		140,27%	94,11%	101,49%	97,63%	95,31%				
2010		131,63%	100,94%	98,47%	97,36%					
2011		157,55%	103,56%	102,85%						
2012		168,82%	107,07%							
2013		181,01%								
2014										

Figure 1.15 – Triangle des cadences des charges

En analysant ce triangle de cadence, On remarque la présence d'une large irrégularité pour le première année. De plus, il existe des valeurs très atypiques pour la première années de développement de 199.91% et 181.01% pour respectivement les années 2006 et 2013.

Puis, les valeurs commencent à stabiliser pour atteindre des valeurs normales à partir de la 2^{re} année de développement.

• Analyse Statistiques descriptives :

Afin d'approfondir notre analyse, la figure ci-dessous représente le résultat de la statistique descriptive de cette triangle des cadences de règlements :

Analyse des ca									
Facteur	1	2	3	4	5	6	7	8	9
Moyenne	161,03%	101,25%	98,71%	96,10%	95,01%	96,76%	96,95%	99,55%	98,97%
Ecartype	23,66%	4,12%	3,89%	3,01%	1,40%	1,21%	0,37%	0,14%	0,00%
Coef Variation	14,69%	4,07%	3,94%	3,13%	1,47%	1,25%	0,38%	0,14%	0,00%
Min	137,37%	97,13%	94,81%	93,09%	93,61%	95,55%	96,58%	99,41%	98,97%
Max	184,70%	105,38%	102,60%	99,11%	96,41%	97,98%	97,32%	99,69%	98,97%

FIGURE 1.16 – Statistique descriptives des charges

En se basant sur ces résultats, on remarque que pour a 1^{re} année de développement la présence d'une valeurs atypique avec une moyenne de 161.03%. De plus on remarque la présence d'une grande volatilité pour les quatre premières années avec des valeurs de coefficients de variations allant de 14.69% jusqu'à 3.13%.

• Conclusion : Pour conclure, le triangle des charges de sinistre cumulés présente des irrégularités comme celle de règlement dde sinistre ce qui nous confirme la présence du mauvais gestion des provisionS SAP ou de retard de règlement de ces sinistres.

1.3 Estimation Chain Ladder

1.3.1 Présentation du modèle

La méthode Chain Ladder est très répandue dans le milieu professionnel grâce à sa simplicité. Elle présente l'avantage de s'appliquer à des triangles de toutes natures tels que le triangle des règlements ou le triangle des charges . Elle est basée sur les facteurs de développement f_j qui sont supposés constants pour toutes années d'origine.

Les facteurs de développement de Chain Ladder sont estimés par :

$$f_j = \frac{\sum_{i=0}^{n-j-1} C_{i,j+1}}{\sum_{i=0}^{n-j-1} C_{i,j}}$$

Les charges ultimes sont définies par :

$$\hat{C}_{i,n} = C_{i,n-i} \prod_{h=n-i}^{j-1} f_h$$

On déduit alors l'estimation de la provision ultime par année de survenance et la provision globale :

$$\hat{R}_i = \hat{C}_{i,n} - C_{i,n-i}$$

$$\hat{R} = \sum_{i=1}^{n-1} \hat{R}_i$$

1.3.2 Application

Estimation de nombre des tardifs

En appliquant la méthode de Chain Ladder, on trouve les résultats suivants :

Triangle	des ouver	tures									
NB	0	1	2	3	4	5	6	7	8	9	NB Tardifs
2005	624	946	964	974	978	980	980	980	980	980	0
2006	728	1 250	1 294	1 302	1 308	1 310	1 310	1 310	1 310	1 310	0
2007	898	1 570	1 624	1 638	1 638	1 638	1 638	1 638	1 638	1 638	0
2008	1 074	1 596	1 666	1 674	1 674	1 674	1 674	1 674	1 674	1 674	0
2009	1 002	1 558	1 592	1 612	1 614	1 614	1 614	1 614	1 614	1 614	0
2010	1 022	1 534	1 572	1 592	1 594	1 595	1 595	1 595	1 595	1 595	1
2011	1 192	1 738	1 822	1 846	1 849	1 850	1 850	1 850	1 850	1 850	4
2012	1 028	1 696	1 772	1 789	1 792	1 793	1 793	1 793	1 793	1 793	21
2013	936	1 450	1 501	1 516	1 518	1 519	1 519	1 519	1 519	1 519	69
2014	708	1 110	1 149	1 161	1 163	1 163	1 163	1 163	1 163	1 163	455
											551
		0	1	2	3	4	5	6	7	8	
		156,84%	103,52%	100,99%	100,16%	100,06%	100,00%	100,00%	100,00%	100,00%	

FIGURE 1.17 – Estimation de nombre de tardifs

Avec la méthode de Chain Ladder on estime dans 9 ans qu'on a 1516 sinistre pour l'année 2013 et 1163 sinistres pour l'année 2014 ce qui montre la décroissance des sinistres comparant à celle des années précédentes

De plus Le nombre de tardifs estimé est de $\bf 551$ sinistres ainsi que le facteur de développement f_j devient stable à 100% dans le 5^{me} année . Ce qui montre que tous les sinistres sont réglées après 5 ans au plus tard .

Estimation de PSAP règlements

Après l'application du modèle Chain Ladder , la figure ci-dessous représente l'estimation obtenu ainsi les valeurs des facteurs de développement :

Triangle des reglement											
NB	0	1	2	3	4	5	6	7	8	9	PSAP_REG
2005	36 609	2 899 020	6 834 341	8 929 936	10 220 887	10 542 583	10 914 957	11 072 410	11 142 291	11 381 098	0
2006	180 719	3 822 889	9 846 772	13 681 145	14 922 419	16 439 751	16 870 490	16 924 318	17 103 196	17 469 761	366 564
2007	282 378	2 420 454	6 492 129	9 123 573	10 824 045	11 450 811	11 700 799	11 990 689	12 097 230	12 356 504	365 815
2008	391 555	3 801 586	8 229 622	11 063 680	12 203 114	12 709 222	13 019 725	13 184 976	13 302 128	13 587 226	567 501
2009	772 740	4 805 823	9 550 496	12 373 139	13 528 646	14 714 291	15 106 616	15 298 354	15 434 284	15 765 080	1 050 789
2010	669 755	5 501 912	11 013 129	12 734 448	13 630 076	14 548 528	14 936 434	15 126 012	15 260 411	15 587 480	1 957 404
2011	1 416 740	6 927 426	12 367 585	15 861 413	17 595 333	18 780 982	19 281 737	19 526 467	19 699 965	20 122 185	4 260 772
2012	1 713 396	8 272 016	13 203 502	17 191 857	19 071 217	20 356 317	20 899 075	21 164 333	21 352 384	21 810 019	8 606 517
2013	849 519	4 268 553	8 607 635	11 207 726	12 432 920	13 270 703	13 624 538	13 797 465	13 920 059	14 218 401	9 949 848
2014	537 256	3 635 339	7 330 745	9 545 127	10 588 571	11 302 074	11 603 420	11 750 694	11 855 102	12 109 187	11 571 932
											38 697 141
		0	1	2	3	4	5	6	7	8	
		676,65%	201,65%	130,21%	110,93%	106,74%	102,67%	101,27%	100,89%	102,14%	

FIGURE 1.18 – Estimation de $PSAP_REG$

On Trouve la valeur de la provision des sinistres à payer ultime estimé à partir du triangle vaut 38 697 141. En se basant sur ces résultats on remarque que le facteur de développement f_j avoir des valeurs atypiques

notamment pour les 2^{res} années avec des valeurs de 676,65% ET 201.65% . Ce qui montre qu'il y a un retard dans le règlement des sinistres

Estimation de PSAP charges

Triangle	riangle des charges										
REG	1	2	3	4	5	6	7	8	9	10	PSAP
2005	7 624 232	13 679 226	14 107 964	14 090 186	14 091 527	13 399 406	13 150 983	12 813 339	12 737 898	12 607 298	0
2006	10 324 000	20 638 693	21 643 615	22 102 859	20 364 816	19 716 910	18 955 517	18 367 223	18 310 060	18 122 330	-187 731
2007	13 482 748	22 504 981	21 588 134	20 416 547	18 770 181	17 361 955	16 512 059	15 938 902	15 871 118	15 708 393	-230 509
2008	17 148 691	21 227 104	21 317 747	19 519 674	19 043 002	18 155 830	17 732 919	17 186 145	17 113 057	16 937 599	-795 320
2009	15 809 704	22 175 604	20 869 790	21 180 599	20 678 662	19 708 060	19 052 612	18 465 148	18 386 620	18 198 104	-1 509 956
2010	15 433 433	20 315 582	20 506 049	20 192 418	19 658 395	18 684 227	18 062 830	17 505 884	17 431 435	17 252 713	-2 405 681
2011	15 098 525	23 788 277	24 634 160	25 335 616	24 280 015	23 076 824	22 309 338	21 621 456	21 529 505	21 308 766	-4 026 850
2012	13 602 131	22 963 211	24 586 622	24 275 684	23 264 244	22 111 390	21 376 012	20 716 908	20 628 804	20 417 300	-4 169 323
2013	12 461 852	22 556 990	22 821 457	22 532 842	21 594 017	20 523 930	19 841 348	19 229 564	19 147 785	18 951 465	-3 605 525
2014	10 005 806	15 701 070	15 885 155	15 684 261	15 030 780	14 285 933	13 810 814	13 384 974	13 328 051	13 191 400	3 185 594
											-13 745 300
		0	1	2	3	4	5	6	7	8	
		156,92%	101,17%	98,74%	95,83%	95,04%	96,67%	96,92%	99,57%	98,97%	

FIGURE 1.19 – Estimation de $PSAP_CHARG$

Chapitre 2

Estimation des provisions avec les modèles Mack & bootstrap

2.1 Calcul des provisions à l'aide de modèle Mack

2.1.1 Présentation du modèle

Les méthodes déterministes comme la méthode de chain ladder, bien qu'elles sont simples à comprendre et à mettre en œuvre, présentent des limites et sont fragiles aux valeurs aberrants et atypique pour l'estimation des provisions . Pour corriger ces limites, les méthodes stochastiques ont été introduites.

Ces dernières présentent l'avantage de fournir la distribution des provisions, de mesurer la volatilité des provisions et de fournir des intervalles de confiance. Parmi les modèles les plus connu, le modèle de Mack présente comme un bon modèle pour le calcul et l'estimation des provisions.

La méthode Chain Ladder Standard vu précédemment ne permet pas de quantifier l'erreur de prédiction lors de l'estimation des provisions. Pour y remédier Thomas Mack introduit en 1993 l'approche Stochastique qui permet de corriger ce défaut. La méthode de Mack repose sur les hypothèses suivantes :

Pour $i, j \in \{0, ..., n-1\}$

(H1): Les règlements cumulés $(C_{i,j})$ sont indépendants par année de survenance

(H1): Il existe des paramètres $(\lambda_j)_{j>0}$ tels que :

$$\mathbb{E}[C_{i,j+1}/C_{i,j,\dots,C_{i,1}}] = \mathbb{E}[C_{i,j+1}/C_{i,j}] = \lambda_j C_{i,j}$$

(H3): Il existe des paramètres $(\sigma_j)_{j\geq 0}$ tels que :

$$Var[C_{i,j+1}/C_{i,j,...,C_{i,1}}] = Var[C_{i,j+1}/C_{i,j}] = \sigma_j^2 C_{i,j}$$

Figure 2.1 – Les hypothéses de la méthode Mack

avec :

Sous les hypothèses (H1) et (H2) ont peut calculer les différents valeurs de facteurs de développement f_j

$$\hat{f}_j = \frac{\sum_{i=0}^{n-j-1} C_{i,j+1}}{\sum_{i=0}^{n-j-1} C_{i,j}}$$

Les coefficients de développement estimés par la méthode de Mack coïncident avec ceux estimés par la méthode de Chain Ladder. Donc les provisions estimées par les deux méthodes sont égales.

De plus, l'apport de Mack par rapport à Chain Ladder déterministe est la possibilité de quantifier l'erreur de prédiction. L'erreur quadratique moyenne de prévision (msep) des provisions représente l'écart moyen entre les valeurs estimées et les valeurs observées réellement.

Alors , le msep du montant total des provisions pour l'ensemble du portefeuille est donnée par la formule ci-dessous :

$$\widehat{msep}(\widehat{R}) = \sum_{i=1}^{n} \left(\widehat{msep}(\widehat{R}_{i}) + 2\widehat{C}_{in}^{2} \sum_{i'=i+1}^{n} \widehat{C}_{i',j} \sum_{j=n+1-i}^{n-1} \frac{\sigma_{j}^{2}}{\widehat{\lambda}_{j}^{2} \sum_{i'=1}^{n+1-j} C_{i',j}} \right)$$

FIGURE 2.2 – Formule de MSEP

Dans le but de déterminer un intervalle de confiance pour nos provisions calculées par année de survenance, il est nécessaire de définir l'écart type des. L'écart type est déduit du msep calculé précédemment. En effet il est définit par :

$$\widehat{sep}(\widehat{R}_i) = \sqrt{\widehat{msep}(\widehat{R}_i)}$$

FIGURE 2.3 – Ecart-type du MSEP

L'intervalle de confiance à 95% est donné par : $[\hat{R}_i \pm 1.96 \ s\hat{e}p(\hat{R}_i)]$. Cette hypothèse peut être remise en cause du fait de la distribution symétrique de la loi normale qui ne semble pas se vérifier dans la pratique.

Afin d'estimer le triangle de nombre et le triangle de règlements cumulés, nous avons utilisé cette fois le language **R** à l'aide de bibliothèque **openxlsx** pour l'importation des triangles et la bibliothèque **ChainLadder** afin de faire l'appelle au méthode d'estimation stochastique Mack.

2.1.2 Application Pour le triangle de nombre

Importation des données

On commence par l'importation de triangle de nombres et le triangle de règlements.Il faut noter que la partie inférieure de triangle pour l'estimation doit contenir des valeurs manquants **NA** afin que le modèle de **MackChainLadder** accepte ses valeur.

les deux figures ci-dessous présentent le résultat obtenu après l'importation :

```
> tri_nb
> my_data
                                                       dev
              2
                 3
                                        10
                                                origin
                                                                2
                                                                    3
                                                                                         9
                                                                                           10
2005
      624
           322
                               0
                                      0
               18
                   10
                            2
                                   0
                                         0
                                                  2005
                                                         624
                                                              322 18
                                                                      10
                                                                           4
                                                                              2
                                                                                  0
                                                                                     0
                                                                                         0
                                                                                            0
2006
      728
           522
                44
                    8
                        6
                            2
                               0
                                   0
                                      0 NA
                                                  2006
                                                         728
                                                              522
                                                                   44
                                                                       8
                                                                           6
                                                                              2
                                                                                  0
                                                                                     0
                                                                                         0
                                                                                           NA
2007
      898
           672
                54
                   14
                        0
                            0
                               0
                                   0
                                     NA
                                        NA
                                                  2007
                                                         898
                                                              672
                                                                   54
                                                                              0
                                                                                     0
                                                                      14
                                                                           0
                                                                                  0
                                                                                       NA
                                                                                           NA
                70
2008 1074
           522
                    8
                        0
                           0
                               0
                                 NΑ
                                     NA
                                        NΑ
                                                  2008
                                                        1074
                                                              522
                                                                   70
                                                                       8
                                                                           0
                                                                              0
                                                                                  0
                                                                                    NΑ
                                                                                       NA
                                                                                           NA
2009 1002
           556
                34
                   20
                           0
                              NA NA
                                     NA
                                        NΑ
                                                  2009
                                                        1002
                                                              556
                                                                   34
                                                                      20
                                                                              0
                                                                                NA
                                                                                    NA
                                                                                       NA
                                                                                           NA
                        2
2010 1022
                38
                   20
           512
                          NA
                              NΑ
                                 NA
                                     NΑ
                                        NΑ
                                                                           2
                                                  2010
                                                        1022
                                                              512
                                                                   38
                                                                      20
                                                                             NΑ
                                                                                NA
                                                                                    NΑ
                                                                                       NA
                                                                                           NΑ
     1192
           546
                84
                   24
                       NA
                          NΑ
                              NA
                                 NΑ
                                        NΑ
                                                                      24 NA
                                                  2011
                                                        1192
                                                              546
                                                                  84
                                                                             NA NA NA NA
                                                                                           NΑ
                76 NA
2012
     1028
           668
                      NA NA NA NA NA
                                        NΑ
                                                              668
                                                  2012
                                                        1028
                                                                  76
                                                                      NA
                                                                         NA
                                                                             NΑ
                                                                                NΑ
                                                                                    NΑ
                                                                                       NΑ
                                                                                           NΑ
2013
      936
           514
                NΑ
                   NΑ
                       NΑ
                          NΑ
                             NΑ
                                 NΑ
                                     NA
                                        NΑ
                                                  2013
                                                         936
                                                              514
                                                                  NA
                                                                      NA
                                                                         NA NA
                                                                                NA
                                                                                    NA
2014
      708
            NA NA NA NA NA NA NA
                                        NΑ
                                                         708
                                                  2014
                                                               NA NA NA NA NA NA NA
                                                                                           NA
```

Figure 2.4 – Triangle de nombre et de règlements sous R

Ensuite, nous avons calculé les triangles cumulés de nombre.

```
> tri_nb_cumul
      dev
origin
                2
                     3
                                      6
                                                      9
                                                        10
  2005
        624 946
                  964
                        974
                              978
                                   980
                                        980
                                              980
                                                   980 980
  2006
        728 1250 1294 1302 1308 1310
                                       1310 1310 1310
                                                         NA
  2007
        898 1570 1624 1638 1638
                                  1638
                                       1638
                                             1638
                                                         NA
  2008 1074 1596 1666 1674 1674 1674 1674
                                                         NΑ
                                                     NA
                                               NA
  2009 1002 1558 1592 1612 1614
                                  1614
                                          NΑ
                                               NΑ
                                                     NA
                                                         NA
  2010 1022 1534 1572 1592
                             1594
                                               NΑ
                                                     NΑ
                                                         NΑ
                                    NΑ
                                          NA
  2011 1192 1738 1822
                       1846
                               NΑ
                                    NΑ
                                          NΑ
                                               NΑ
                                                     NA
                                                         NA
  2012 1028 1696 1772
                         NA
                               NA
                                    NA
                                          NA
                                               NA
                                                     NA
                                                         NΑ
  2013
        936 1450
                    NA
                         NA
                               NA
                                    NA
                                          NA
                                               NA
                                                     NA
                                                         NA
  2014
        708
               NA
                    NA
                         NA
                               NA
                                    NΑ
                                          NA
                                               NA
                                                     NA
                                                         NA
```

Figure 2.5 – Triangle de nombre cumulés sous R

Estimation de nombre de tardifs

> tri_mack_nb

On commence notre estimation par les nombres de tardifs et voici le résultat obtenu : D'après ce résultat,

```
MackChainLadder(Triangle = tri_nb_cumul, est.sigma = "Mack")
     Latest Dev.To.Date Ultimate
                                       IBNR Mack.S.E CV(IBNR)
2005
                              980 0.00e+00 0.00e+00
        980
                  1.000
                                                          NaN
                                                                               Totals
2006
     1,310
                  1.000
                            1,310 0.00e+00 0.00e+00
                                                          NaN
                                                                            14,586.00
                                                                 Latest:
2007
      1,638
                  1.000
                            1,638 0.00e+00 0.00e+00
                                                          NaN
                                                                                 0.96
                                                                  Dev:
2008
      1,674
                  1.000
                            1,674 4.55e-13 5.49e-13
                                                        1.207
                                                                  Ultimate: 15,136.59
2009
     1.614
                  1.000
                            1.614 0.00e+00 5.98e-13
                                                          Inf
                                                                  IBNR:
                                                                               550.59
     1,594
                  0.999
2010
                            1,595 8.84e-01 1.55e+00
                                                        1.752
                                                                  Mack.S.E
                                                                                96.21
2011
     1,846
                  0.998
                            1,850 3.96e+00 3.85e+00
                                                        0.972
                                                                  CV(IBNR):
                                                                                 0.17
                  0.988
2012
                            1,793 2.13e+01 7.18e+00
                                                        0.336
     1,772
                  0.955
2013
     1,450
                            1,519 6.91e+01 1.86e+01
                                                        0.269
2014
        708
                  0.609
                                                        0.205
                            1,163 4.55e+02 9.35e+01
```

Figure 2.6 – Estimation de nombre de tardifs

on peut remarquer que le nombre de tardifs par l'estimation ponctuel vaut **550.59** qui presque égale à celle de chain ladder de **551**.Par ailleurs, on peut estimer l'intervalle de confiance de cette estimation qui vaut [362.0184; 739.1616]

De plus, on peut afficher les facteurs pour les différents années de développements comme mentionné dans la figure ci-dessous :

```
> tri_mack_nb$f
[1] 1.568438 1.035162 1.009873 1.001592 1.000555 1.000000 1.000000 1.000000
[9] 1.000000 1.000000
```

FIGURE 2.7 – Les facteurs de développement estimés sous R

On remarque que les facteurs de développement obtenus par la méthode de Mack sont presque égaux aux celles de la méthode de Chain Ladder.

Afin d'avoir tous les valeurs estimés par la méthode de Mack , On peut les afficher en utilisant la bibliothèque de chainladder. La figure ci-dessous montre le résultat obtenu :

```
> tri_mack_nb$FullTriangle
      dev
origin
          1
  2005
             946.000
                     964.000 974.000 978.000
                                                 980.000
                                                          980.000
                                                                    980,000
        624
       728 1250.000 1294.000 1302.000 1308.000 1310.000 1310.000 1310.000
       898 1570.000 1624.000 1638.000 1638.000 1638.000 1638.000 1638.000
  2008 1074 1596.000 1666.000 1674.000 1674.000 1674.000 1674.000 1674.000
  2009 1002 1558.000 1592.000 1612.000 1614.000 1614.000 1614.000 1614.000
  2010 1022 1534.000 1572.000 1592.000 1594.000 1594.884 1594.884 1594.884
  2011 1192 1738.000 1822.000 1846.000 1848.939 1849.965 1849.965 1849.965
  2012 1028 1696.000 1772.000 1789.495 1792.344 1793.338 1793.338 1793.338
        936 1450.000 1500.984 1515.803 1518.217 1519.059 1519.059 1519.059
  2014
       708 1110.454 1149.500 1160.848 1162.697 1163.342 1163.342 1163.342
      dev
origin
              9
                      10
       980.000
                980.000
  2005
  2006 1310.000 1310.000
  2007 1638.000 1638.000
  2008 1674.000 1674.000
  2009 1614.000 1614.000
  2010 1594.884 1594.884
  2011 1849.965 1849.965
  2012 1793.338 1793.338
  2013 1519.059 1519.059
  2014 1163.342 1163.342
```

FIGURE 2.8 – Les valeurs complet de triangle de nombre

On peut aussi avoir des graphiques dans le but de mieux interpréter les résultats comme montre la figure ci-dessous pour la dernière année, la prévision est supérieure aux nombre de sinistres effectués, De plus, on peut vérifier la 3^{me} hypothèse de modèle de Mack que les résidus sont non structurés.

Afin d'avoir plus de visibilité sur l'estimation des tardifs pour les différents années de survenances au cours la période de développement, on peut avoir le graphique suivant avec l'intervalle de confiance

 ${\it Figure 2.9-Graphique d'estimation pour les différents années de survenance}$

On peut conclure que les nombre de tardifs commencent à diminuer pour les dernières années.

2.1.3 Application Pour le triangle des règlements

Importation des données

le figure ci-dessous présentent le résultat obtenu après l'importation de triangle des règlements :

> my_	_data_reg	•								
	1	2	3	4	5	6	7	8	9	10
2005	36608.63	2862411	3935321	2095595	1290951.6	321695.3	372373.9	157453.26	69881.21	238807.3
2006	180718.75	3642170	6023883	3834373	1241273.5	1517332.9	430738.7	53828.12	178877.78	NA
2007	282378.06	2138076	4071675	2631444	1700471.8	626766.9	249987.6	289889.88	NA	NA
2008	391554.66	3410032	4428036	2834058	1139434.9	506107.5	310503.4	NA	NA	NA
2009	772739.93	4033083	4744673	2822642	1155506.6	1185645.0	NA	NA	NA	NA
2010	669755.47	4832157	5511217	1721320	895627.7	NA	NA	NA	NA	NA
2011	1416739.71	5510686	5440159	3493828	NA	NA	NA	NA	NA	NA
2012	1713396.00	6558620	4931486	NA	NA	NA	NA	NA	NA	NA
2013	849518.55	3419035	NA	NA	NA	NA	NA	NA	NA	NA
2014	537255.57	NA	NA	NA	NA	NA	NA	NA	NA	NA

Figure 2.10 – Triangle de règlements sous R

Ensuite, nous avons calculé les triangles cumulés de nombre et de règlement.

```
> tri_reg_cumul
      dev
oriain
                                                                                                     10
         36608.63 2862411 3935321 2095595 1290951.6
  2005
                                                       321695.3 372373.9 157453.26
                                                                                     69881.21 238807.3
                  3642170 6023883 3834373 1241273.5 1517332.9 430738.7
  2006
        180718.75
                                                                           53828.12 178877.78
                                                                                                     NA
        282378.06 2138076 4071675 2631444 1700471.8
                                                       626766.9 249987.6 289889.88
 2007
                                                                                            NA
                                                                                                     NA
 2008
        391554.66 3410032 4428036 2834058 1139434.9
                                                       506107.5 310503.4
                                                                                            NA
                                                                                                     NA
                                                                                 NA
        772739.93 4033083 4744673 2822642 1155506.6 1185645.0
 2009
                                                                       NA
                                                                                 NA
                                                                                            NA
                                                                                                     NA
 2010 669755.47 4832157 5511217 1721320
                                                                       NA
                                                                                 NA
                                                                                            NA
                                                                                                     NA
 2011 1416739.71 5510686 5440159 3493828
                                                   NΑ
                                                             NA
                                                                       NA
                                                                                 NA
                                                                                            NΑ
                                                                                                     NA
 2012 1713396.00 6558620 4931486
                                                   NA
                                                             NΑ
                                                                                                     NA
                                        NA
                                                                       NA
                                                                                 NA
                                                                                            NA
        849518.55 3419035
  2013
                                NA
                                        NA
                                                   NA
                                                             NA
                                                                       NA
                                                                                 NA
                                                                                            NA
                                                                                                     NA
  2014
        537255.57
                                NA
                                        NA
                                                   NA
                                                             NA
                                                                       NA
                                                                                 NA
                                                                                            NA
                                                                                                     NA
```

Figure 2.11 – Triangle de règlements cumulés sous R

Estimation de PSAP règlements

On commence notre estimation par les règlements cumulés et voici le résultat obtenu :

```
> tri_mack_reg
MackChainLadder(Triangle = tri_reg_cumul, est.sigma = "Mack")
```

Latest 2005 11,381,098 2006 17,103,196 2007 11,990,689 2008 13,019,725 2009 14,714,291 2010 13,630,076 2011 15,861,413 2012 13,203,502 2013 4,268,553	0.9790 17,469,761 0.9704 12,356,504 0.9582 13,587,226 0.9333 15,765,080 0.8744 15,587,480 0.7883 20,122,185 0.6054 21,810,019 0.3002 14,218,401	0 366,564 365,815 567,501 1,050,789 1,957,404 4,260,772 8,606,517 9,949,848	0 19,779 48,949 180,900 217,396 513,454 914,076 1,619,289 3,156,442	0.054 0.134 0.319 0.207 0.262 0.215 0.188 0.317	Latest: Dev: Ultimate: IBNR: Mack.S.E CV(IBNR):	Totals 115,709,799.07 0.75 154,406,939.69 38,697,140.62 15,110,060.61 0.39
2013 4,268,553 2014 537,256						

Figure 2.12 – Estimation de PSAP règlements

D'après ce résultat, on peut remarquer que le règlement des sinistres par l'estimation ponctuel vaut 38 697 140.69 qui égale à celle de chain ladder de 38 697 140.

Par ailleurs, on peut estimer l'intervalle de confiance avec 95% une estimation qui vaut $[29\ 615\ 718, 7956; 68\ 312\ 859, 4156]$ Cependant l'intervalle de confiance obtenu est très large mais moins risqué . puisque le seuil de l'intervalle et le risque sont proportionnelles .

De plus, on peut afficher les facteurs pour les différents années de développements comme mentionné dans la figure ci-dessous :

```
> tri_mack_nb$f
[1] 1.568438 1.035162 1.009873 1.001592 1.000555 1.000000 1.000000 1.000000
[9] 1.000000 1.000000
```

Figure 2.13 – Les facteurs de développement estimés sous R

On remarque que les facteurs de développement obtenus par la méthode de Mack sont presque égaux aux celles de la méthode de Chain Ladder.

Afin d'avoir tous les valeurs estimés par la méthode de Mack , On peut les afficher en utilisant la bibliothèque de chainladder. La figure ci-dessous montre le résultat obtenu :

```
tri_mack_nb$FullTriangle
      dev
              946.000
                        964.000
                                   974.000
                                            978.000
                                                       980.000
                                                                 980.000
                                                                           980.000
  2005
         624
             1250.000
                       1294.000
                                 1302.000
                                           1308.000
  2006
                                                     1310.000
                                                                1310.000
                                                                          1310.000
         898
             1570.000
                       1624.000
                                 1638.000
                                           1638.000
                                                     1638.000
                                                                1638.000
                                                                          1638.000
             1596.000
                                 1674.000
1612.000
  2008
       1074
                       1666.000
                                           1674.000
                                                     1674,000
                                                                1674.000
                                                                          1674.000
  2009
             1558.000
                                           1614.000
                                                     1614.000
                                                                1614.000
                                                                          1614.000
       1002
                       1592.000
  2010
       1022
             1534.000
                       1572.000
                                 1592.000
                                           1594.000
                                                     1594.884
                                                                1594.884
                                                                          1594.884
                       1822.000
1772.000
  2011
       1192
             1738.000
                                 1846.000
                                           1848.939
                                                     1849.965
                                                                1849.965
                                                                          1849.965
                                           1792.344
1518.217
  2012
       1028
             1696.000
                                 1789.495
                                                     1793.338
                                                                1793.338
                                                                          1793.338
                       1500.984
                                 1515.803
                                                                1519.059
  2013
                                                      1519.059
        936
             1450.000
                                                                          1519.059
        708
  2014
             1110.454
                       1149.500
                                 1160.848
                                           1162.697
                                                     1163.342
                                                               1163.342
                                                                          1163.342
origin
        980.000
                   980,000
  2005
  2006
       1310.000
                 1310.000
       1638.000
                 1638.000
  2007
  2008
       1674.000
                 1674.000
  2009
       1614.000
                 1614.000
  2010
       1594.884
                 1594.884
  2011
       1849.965
                 1849.965
  2012
       1793.338
                 1793.338
  2013
2014
       1519.059
                 1519.059
       1163.342
                 1163.342
```

FIGURE 2.14 – Les valeurs complets de triangle de règlements

On peut aussi avoir des graphiques dans le but de mieux interpréter les résultats comme montre la figure suivante :

D'après le premier graphique on remarque que pour la dernière année, nous avons obtenu une estimation des valeurs de règlement des sinistres avec une large Intervalle d'erreur particulièrement pour l'année 2014. De plus, on peut aussi vérifier la 3^{me} hypothèse de modèle de Mack que les résidus sont non structurés.

 ${\tt Figure}~2.15-{\tt Graphiques}~{\tt de}~{\tt l'estimation}~{\tt de}~{\tt nombre}~{\tt de}~{\tt r\`eglements}~{\tt par}~{\tt le}~{\tt mod\`ele}~{\tt Mack}$

Afin d'avoir plus de visibilité sur l'estimation des règlements pour les différents années de survenances au cours la période de développement, on peut avoir le graphique suivant avec l'intervalle de confiance

On peut conclure que les nombre de tardifs commencent à diminuer pour les dernières années.

2.2 Calcul des provisions à l'aide de modèle Bootstrap

2.2.1 Présentation du modèle

Le bootstrap est une méthode de ré-échantillonnage qui utilise les simulations MonteCarlo à la place des calculs statistiques complexes. Il a été présenté pour la première fois par Quenouille en 1949 et améliorer par Jacknife dans le but de réduire le biais de l'estimateur et d'en déduire la variance. Il présente l'avantage de donner une distribution prédictive des provisions et d'en déduire les quantiles d'ordre extrêmes. Les étapes du bootstrap dans le cadre d'un GLM sont :

- Estimation des paramètres, des valeurs prévues $(\mu_{i,j})$ et la provision $\hat{R} = \sum_{i+j>n} \mu_{i,j}$
- Calcul des résidus de Pearson r_{ij}
- b=1,..,B le processus est définit comme suit :

Figure 2.16 – Processus de le méthode bootstrap

2.2.2 Application Pour le triangle de nombre

On commence par appliquer le modèle de bootstrap sur le triangle de nombre cumulés afin d'estimer le nombre des tardifs. La figure ci-dessous présente le résultat obtenu :

> tri_boot_nb BootChainLadder(Triangle = tri_nb_cumul, R = 999, process.distr = "gamma") Latest Mean Ultimate Mean IBNR IBNR.S.E IBNR 75% IBNR 95% 2005 0.000 980 980 0.00 0.00 0.0 Totals 2006 1,310 1,310 0.00 0.00 0.000 0.0 Latest: 14,586 2007 0.00 0.000 1,638 1,638 0.00 0.0 Mean Ultimate: 15,138 2008 1,674 0.00 0.00 0.0001.674 0.0 Mean IBNR: 552 0.000 2009 1,614 1,614 0.00 0.00 0.0 IBNR.S.E 67 2010 1,595 0.865 0.82 1.594 2.32 4.9 Total IBNR 75%: 595 2011 1,850 4.14 5.07 6.067 14.4 Total IBNR 95%: 672 1,793 2012 10.71 27.122 41.8 21.111,450 2013 1,520 69.58 19.29 80.504 105.2 2014 708 1,164 456.07 60.68 493.420 558.2

Figure 2.17 – Estimation de nombre de tardiffs

On peut conclure que les nombre des tardiffs obtenus par le modèle bootstrap vaut **552** ce qui est presque égale aux valeurs obtenus par les modèles de chain ladder et Mack.

Le point commun de ces trois méthodes d'estimation de provisionnement c'est qu'ils reposent sur les hypothèses de Chain Ladder. De plus, on remarque puisque on passe d'une année de survenance à une autre l'intervalle de confiance à 95% devient plus importante.

La première graphique permet de tracer la distribution d'ouverture de sinistre et à l'aide de la deuxième graphique de la courbe ecdf, on peut remarquer que cette distribution se rassemble à la loi Lognormal. En utilisant les graphiques des boites à moustaches, on peut vérifier la variabilité des ouvertures des sinistres selon les années de survenance ce qui est apparu important pour les dernières années de 2013 et 2014.

Figure 2.18 – Graphique d'estimation de nombre de tardifs

La figure ci-dessous confirme notre remarque que la triangle de nombre a la même distribution de la lognormal.

 ${\tt Figure}~2.19-{\tt Compariason}~{\tt de}~{\tt ecdf}~{\tt de}~{\tt triangle}~{\tt de}~{\tt nombre}~{\tt et}~{\tt la}~{\tt loi}~{\tt log}~{\tt normal}$

Afin de bien suivre et visualiser le nombre de tardifs de chaque année, on utilise la commande CDR() sous R, on obtient le résultat suivant :

> CDR	(B)				
	IBNR	IBNR.S.E	CDR(1)S.E	CDR(1)75%	CDR(1)95%
2005	0.0000000	0.000000	0.000000	0.0000000	0.00000
2006	0.0000000	0.000000	0.000000	0.0000000	0.00000
2007	0.0000000	0.000000	0.000000	0.0000000	0.00000
2008	0.0000000	0.000000	0.000000	0.0000000	0.00000
2009	0.0000000	0.000000	0.000000	0.0000000	0.00000
2010	0.9411225	2.580732	2.580732	0.8979597	5.94692
2011	4.1027428	4.800511	3.740700	5.2862470	11.36415
2012	21.8187772	10.929334	9.954443	26.9274467	41.26080
2013	68.6068118	19.835708	16.988440	78.9533025	98.04363
2014	456.1771412	64.838186	61.715025	495.7087627	561.05864
Total	551.6465956	69.147985	65.201960	594.6473699	656.97412

FIGURE 2.20 – Estimation de nombre de tardifs de chaque année

2.2.3 Application Pour le triangle de règlements

On commence par l'application du modèle de bootstrap sur le triangle de nombre cumulés afin d'estimer le triangle de règlements. La figure ci-dessous présente le résultat obtenu :

```
> tri_boot_nb
BootChainLadder(Triangle = tri_reg_cumul, R = 999, process.distr = "gamma")
         Latest Mean Ultimate
                               Mean IBNR
                                           IBNR.S.E
                                                      IBNR 75%
                                                                 IBNR 95%
2005 11,381,098
                   11,381,098
                                                             0
                                                  0
                                                                                               Totals
2006 17,103,196
                   17,483,620
                                  380,424
                                            429,493
                                                       592,364
                                                                1,204,357
                                                                                             1.16e + 08
                                                                1,009,528
                                                                            Latest:
                                            349,568
                                                       556,405
2007 11,990,689
                   12,355,755
                                  365,066
                                                                                             1.55e+08
                                                                            Mean Ultimate:
2008 13,019,725
                   13,573,267
                                  553,541
                                            426,468
                                                       795,430
                                                                1,331,747
                                                                            Mean IBNR:
                                                                                             3.92e+07
2009 14,714,291
                   15,743,565
                               1,029,275
                                            564,476
                                                     1,392,189
                                                                2,005,006
                                                                            IBNR.S.E
                                                                                             8.69e+06
2010 13,630,076
                   15,610,297
                               1,980,221
                                            750,154
                                                     2,413,820
                                                                3,284,743
                                                                            Total IBNR 75%: 4.45e+07
2011 15,861,413
                   20,118,807
                               4,257,394 1,145,385
                                                     4,927,340
                                                                6,295,826
                                                                            Total IBNR 95%: 5.33e+07
                               8,552,074 1,821,647 9,688,941 11,762,360
2012 13,203,502
                   21,755,576
2013 4,268,553
                   14,215,416 9,946,863 2,529,138 11,498,826 14,369,311
2014
        537,256
                   12,702,469 12,165,213 7,250,827 16,675,932 23,749,142
```

Figure 2.21 – Estimation de triangle de règlements

On peut conclure que les provisions de règlements estimés par le modèle bootstrap vaut 3.92e+07 ce qui est un peu supérieur aux valeurs obtenus par les modèles de chain ladder et Mack.

FIGURE 2.22 – Graphique d'estimation de triangle de règlements

La première graphique permet de tracer la distribution des provisions des règlements et à l'aide de la deuxième graphique de la courbe ecdf, on peut remarquer que cette distribution se rassemble à la loi Lognormal. En utilisant les graphiques des boites à moustaches, on peut vérifier la variabilité des provisions selon les années de survenance ce qui est apparu important pour les années entre 2011 et 2013.

La figure ci-dessus confirme notre remarque que la triangle de règlements a aussi la même distribution de la lognormal.

FIGURE 2.23 – Compariason de ecdf de triangle de règlements et la loi log normal

Afin de bien suivre et visualiser les $\mathbf{PSAP}_{\mathbf{REG}}$ de chaque année, on utilise la commande $\mathbf{CDR}()$ sous R, on obtient le résultat suivant :

> CDR	(B) ´		•		
	IBNR	IBNR.S.E	CDR(1)S.E	CDR(1)75%	CDR(1)95%
2005	0.0	0.0	0.0	0.0	0.0
2006	348421.2	419260.5	419260.5	591084.1	1147263.8
2007	365382.5	377953.9	257794.7	503602.7	836159.1
2008	551332.1	444153.1	283874.1	712967.1	1059128.6
2009	992390.0	588458.5	403823.2	1251996.8	1790407.0
2010	1953992.8	765737.1	552750.5	2306636.8	2937535.2
2011	4229914.9	1171616.1	798254.6	4797012.1	5798561.3
2012	8568581.3	1779243.4	1393122.3	9472657.2	10981220.6
2013	10010728.6	2563536.3	2119602.5	11198375.7	13841763.2
2014	11427262.0	7102349.6	6715718.7	15659125.8	22815993.1
Total	38448005.3	8727707.6	7772585.6	43440112.7	52173705.0

FIGURE 2.24 – Estimation de nombre de tardifs de chaque année

Chapitre 3

Calcul et interprétation des Loss Ratio

3.1 Calcul le montant de la prime acquise

Afin de calculer le montant de la prime acquise, nous avons utilisé la méthode de Bornhuetter-Ferguson avec le tringle de réglements. La méthode de Bornhuetter-Ferguson est une méthode mixte, conjuguant la méthode des cadences (prise en compte de la sinistralité passée) et les Loss Ratios S/P.

On rappelle que :

$$S/P = \frac{Charge\ sinistres}{Prime\ acquises}$$

Pour le calcule de la prime acquise , nous avons utilisé le triangle de règlements mentionné dans la figure suivante :

REG	0	1	2	3	4	5	6	7	8	9	PSAP_REG
2005	36 609	2 899 020	6 834 341	8 929 936	10 220 887	10 542 583	10914957	11 072 410	11 142 291	11 381 098	0
2006	180719	3 822 889	9 846 772	13 681 145	14 922 419	16 439 751	16870490	16 924 318	17 103 196	17 469 761	366 564
2007	282378	2 420 454	6 492 129	9 123 573	10 824 045	11 450 811	11 700 799	11 990 689	12 097 230	12 356 504	365 815
2008	391 555	3 801 586	8 229 622	11 063 680	12 203 114	12 709 222	13019725	13 184 976	13 302 128	13 587 226	567 501
2009	772740	4 805 823	9 550 496	12 373 139	13 528 646	14 714 291	15106616	15 298 354	15 434 284	15 765 080	1050789
2010	669755	5 501 912	11 013 129	12 734 448	13 630 076	14 548 528	14 9 36 4 34	15 126 012	15 260 411	15 587 480	1957404
2011	1 416 740	6 927 426	12 367 585	15 861 413	17 595 333	18 780 982	19 281 737	19 526 467	19 699 965	20 122 185	4260772
2012	1 713 396	8 272 016	13 203 502	17 191 857	19 071 217	20 356 317	20 899 075	21 164 333	21 352 384	21 810 019	8606517
2013	849519	4 268 553	8 607 635	11 207 726	12 432 920	13 270 703	13 624 538	13 797 465	13 920 059	14 218 401	9949848
2014	537 256	3 635 339	7 330 745	9 545 127	10 588 571	11 302 074	11 603 420	11750 694	11 855 102	12 109 187	11 571 932
											38 697 141
	pc	4,44%	30,02%	60,54%	78,83%	87,44%	93,33%	95,82%	97,04%	97,90%	100,00%
	1-pc	95,56%	69,98%	39,46%	21,17%	12,56%	6,67%	4,18%	2,96%	2,10%	0,00%

Figure 3.1 – Triangle de règlements complet

En prenant la supposition de l'exercice demandé que la première année de survenance est une année complète (ie tous les sinistres ont été réglé) et que le S/P de cette année là est de 95%, on peut considérer que la charge utlime de l'année 2005 est de **11381098**.

En utilisant la formule indiqué ci-dessus, on peut calculer la prime acquise avec :

$$Prime\ acquises = \frac{Charge\ sinistres}{S/P} = \frac{11381098}{0.95} = 11980103$$

De plus, les valeurs \mathbf{pc} représentent la proportion des charges ultimes au cours des années de développement qui s'augmente jusqu'à atteindre 100%

Les valeurs de $\mathbf{1-pc}$ sont utile pour calculer les provisions selon cette méthode.

3.2 Calcul les Loss Ratio S/P de chaque année

En prenant l'hypothèse de l'exercice qu'il existe une évolution annuelle de la prime acquise de 4%, alors on déduit la formule suivante :

$$Prime\ acquises_i = Prime\ acquises_{i-1} \times 1.04$$

Après le calcule de prime acquises de différents année de 2005 jusqu'à 2014, nous avons calculé les valeurs de Loss ratio qui restent en utilisant la formule de S/P.

Finalement, voici le résultat obtenu dans la figure suivante :

REG	1-рс	Prime acquises	Loss Ratio Estimé	PSAP
2005	0,00%	11 980 103	95,00%	-
2006	2,10%	12 459 308	137,27%	358 873
2007	2,96%	12 957 680	93,36%	358 139
2008	4,18%	13 475 987	98,71%	555 593
2009	6,67%	14 015 027	110,13%	1 028 741
2010	12,56%	14 575 628	104,70%	1 916 332
2011	21,17%	15 158 653	129,96%	4 171 369
2012	39,46%	15 764 999	135,44%	8 425 928
2013	69,98%	16 395 599	84,90%	9 741 072
2014	95,56%	17 051 423	69,53%	11 329 120
				37 885 166

Figure 3.2 – Tableau de Loss Ratio et PSAP estimé

D'après ce tableau, on a calculé les PSAP en suivant cette formule :

$$PSAP = (1 - pc) \times Primeacquises \times LossratioEstim$$

Par ailleurs, nous avons remarqué que la branche d'automobile à des valeurs S/P supérieurs à 100% pour les années des 2006, 2009, 2010,2011 et 2012 avec une grande valeur dans l'année 2006 de 137.27% qui est une valeur atypique de Loss ratio. Alors l'entreprise d'assurance dans ces années n'a pas pu couvert ces charges probablement à cause de retard de règlements sinistres ou d'augmentation de nombre de sinistres ou de la survenance de gros sinistre et des sinistres inattendues.

3.3 Calcul les S/P de chaque année et interpréter les résultats

La figure ci-dessous nous montre la résultat obtenue :

S/P	0	1	2	3	4	5	6	7	8	9
2005	0,31%	24,20%	57,05%	74,54%	85,32%	88,00%	91,11%	92,42%	93,01%	95,00%
2006	1,45%	30,68%	79,03%	109,81%	119,77%	131,95%	135,40%	135,84%	137,27%	
2007	2,18%	18,68%	50,10%	70,41%	83,53%	88,37%	90,30%	92,54%		
2008	2,91%	28,21%	61,07%	82,10%	90,55%	94,31%	96,61%			
2009	5,51%	34,29%	68,14%	88,28%	96,53%	104,99%				
2010	4,60%	37,75%	75,56%	87,37%	93,51%					
2011	9,35%	45,70%	81,59%	104,64%						
2012	10,87%	52,47%	83,75%							
2013	5,18%	26,03%								
2014	3,15%									

FIGURE 3.3 – Tableau de Loss Ratio de chaque année de survenance et chaque année de développement

On remarque que le ratio S/P reste toujours inférieur à 100% sauf pour l'année de 2006 à partir de la troisième année de développement et pour l'année 2009 et 2011 à la dernière année de développement. Alors l'entreprise d'assurance dans ces années n'a pas pu couvert ces charges probablement à cause de retard de règlements sinistres ou d'augmentation de nombre de sinistres ou de la survenance de gros sinistre et des sinistres inattendues particulièrement pour l'année de 2006.

Conclusion Générale

Dans ce projet, on été capable d'utiliser les connaissances et les méthodes qu'on a apprises dans le module "Actuariat non vie" pour analyser des données triangulaires d'une branche d'activité automobile afin de faire le best estimate de la provision pour sinistres à payer. L'utilisation de ces techniques révèle en particulier que

le calcul des provisions par la méthode de Chain Ladder, qui est une estimation par la moyenne, conduit à une dotation parfois peu prudent puisqu'on a trouvé plusieurs valeurs atypiques. C'est pour cette raison que

l'approche stochastique est au cœur des discussions relatives à la refonte au niveau européen des indicateurs de solvabilité des entreprises d'assurance.