AP Statistics Chapter 5 – Probability: What are the Chances?

5.1: Randomness, Probability and Simulation

Probability

The **probability** of any outcome of a chance process is a number between 0 and 1 that describes the proportion of times the outcome would occur in a very long series of repetitions.

Simulation

The imitation of chance behavior, based on a model that accurately reflects the situation, is called a **simulation**.

Performing of a Simulation - The 4-Step Process

- 1. State: Ask a question of interest about some chance process.
- **2. Plan**: Describe how to use a chance device to imitate one repetition of the process. Tell what you will record at the end of each repetition.
- **3. Do**: Perform many repetitions of the simulation.
- **4. Conclude**: Use the results of your simulation to answer the question of interest.

5.2: Probability Rules

Sample Space

The **sample space** S of a chance process is the set of all possible outcomes.

Probability Models

Descriptions of chance behavior contain two parts:

A **probability model** is a description of some chance process that consists of two parts:

- a sample space S and
- a probability for each outcome.

For example: When a fair 6-sided die is rolled, the Sample Space is $S = \{1, 2, 3, .4.5, 6\}$. The probability for a fair die would include the probabilities of these outcomes, which are all the same.

Outcome	1	2	3	4	5	6
Probability	1/6	1/6	1/6	1/6	1/6	1/6

Event

An **event** is any collection of outcomes from some chance process. That is, an event is a subset of the sample space. Events are usually designated by capital letters, like A, B, C, and so on.

For example: For the probability model above we might define event A = die roll is odd. The elements of the sample space S that fits this event are $\{1, 3, 5\}$. The probability of the event A, written as P(A) is the 3/6 or $\frac{1}{2}$. So we would write P(A) = 0.5, in decimal form.

The Basic Rules of Probability

- For any event A, $0 \le P(A) \le 1$.
- If S is the sample space in a probability model, P(S) = 1.
- In the case of equally likely outcomes,

 $P(A) = \frac{\text{number of outcomes corresponding to event } A}{\text{total number of outcomes in sample space}}$

- Complement rule: $P(A^C) = 1 P(A)$
- Addition rule for mutually exclusive events: If A and B are mutually exclusive, P(A or B) = P(A) + P(B). Also be familiar with the notation: $P(A \cup B)$.

Mutually Exclusive Events

Two events A and B are **mutually exclusive** (or **disjoint**) if they have no outcomes in common and so can never occur together—that is, if P(A and B) = 0. Alternate notation: $P(A \cap B)$.

For example: Using a deck of playing cards and drawing a card at random, the events A = card is a King, and B = card is a Queen are mutually exclusive because a single card cannot be both a King <u>and</u> a Queen. Thus we can calculate the probability of A or B as the sum of their individual probabilities - P(A or B) = P(A) + P(B).

General Addition Rule

If *A* and *B* are any two events resulting from some chance process, then P(A or B) = P(A) + P(B) - P(A and B)

Venn Diagrams and Probability

The complement A^c contains exactly the The events A and B are mutually exclusive outcomes that are not in A. (disjoint) because they do not overlap. That is, they have no outcomes in common. S A^C The intersection of events A and B $(A \cap B)$ The union of events A and B ($A \cup B$) is the is the set of all outcomes in both events A set of all outcomes in either event A or B. and B. $A \cap B$ $A \cup B$ S S

5.3: Conditional Probability and Independence

Conditional Probability

The probability that one event happens given that another event is already known to have happened is called a **conditional probability**.

Suppose we know that event A has happened. Then the probability that event B happens given that event A has happened is denoted by $P(B \mid A)$. The symbol "" is read as "given that," so we read $P(B \mid A)$ as the probability that B occurs given that A has already occurred.

Calculating Conditional Probability

To find the conditional probability $P(A \mid B)$, use the formula

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

The conditional probability $P(B \mid A)$ is given by

$$P(B \mid A) = \frac{P(B \cap A)}{P(A)}$$

The General Multiplication Rule

The probability that events A and B both occur can be found using the general multiplication rule

$$P(A \cap B) = P(A) \cdot P(B \mid A),$$

where $P(B \mid A)$ is the conditional probability that event B occurs given that event A has already occurred.

Conditional Probability and Independence

Two events A and B are **independent** if the occurrence of one event does not change the probability that the other event will happen. In other words, events A and B are independent if $P(A \mid B) = P(A)$ and $P(B \mid A) = P(B)$.

The Multiplication Rule for Independent Events

If A and B are independent events, then the probability that A and B both occur is

$$P(A \cap B) = P(A) \cdot P(B)$$