4.2 Supplement: Derivatives of Product and Quotients

The Product Rule - If y = f(x) = F(x)S(x) and if F'(x) and S'(x) exist, then

$$f'(x) = F(x)S'(x) + S(x)F'(x)$$

Or, we could write...

Example: Find y' if $y = 2x^2(3x^4 - 5)$.

Example: Find f'(x) if $f(x) = (x^2 + 3)(\sqrt[4]{x} + \sqrt[8]{x^3})$.

Example: Find f'(t) if $f(t) = 10^t \log t$.

Example: Find f'(x) if $f(x) = \pi x \log x^5$.

Example: Find y' if $y = \left(3w^2 + 4\log_3\left(\frac{6}{w^2}\right)\right)(2^w + 3e^w)$.

The Quotient Rule - If
$$y = f(x) = \frac{T(x)}{B(x)}$$
 and if $T'(x)$ and $B'(x)$ exist, then

$$f'(x) = \frac{B(x)T'(x) - T(x)B'(x)}{[B(x)]^2}$$

Or, we could write...

Example: Find
$$f'(x)$$
 if $f(x) = \frac{2\sqrt{x}}{x^2 - 3x + 1}$.

Example:
$$\frac{d}{du} \frac{4u^2 e^u}{\log_7 u + 5 \ln u}.$$

Example; Find
$$y'$$
 if $y = \frac{2x-1}{(x^3+2)(x^2-3)}$.

Example: Find
$$\frac{dy}{dx}$$
 if $y = \frac{x^5 - 3x + 1}{23\sqrt[4]{x}}$.

Example: Find f'(x) if $f(x) = \frac{e^2 - 4(3^x) - 3\ln x}{4e^x - \sqrt{x} + \ln \pi + \log x}$.

Example: Suppose that the number x of DVD players a retail chain is willing to sell per week at a price of p is given by

$$x = \frac{100p}{0.1p + 1}$$

where $10 \le p \le 70$.

a) Find dx/dp.

b) Find the supply and rate of change of supply when the price is \$40. Then, **interpret** your results.

c) Estimate the supply if price is increased to \$41 per DVD player.