

$$p_{z} \sim \text{BAB}(N_{z}, \hat{\rho}_{z})$$
 (1a)

$$\hat{\rho}_{z} = \text{mean} (d_{i} \in \mathbb{d}_{z})$$
 (1b)

$$d_i = D_i (f_i + s_i (1 + q_i))$$
 (1c)

$$D_i \sim \operatorname{Exp}(1/\bar{D})$$
 (1d)

$$f_i \sim \mathsf{Unif}(\mathsf{0}, \mathsf{1})$$
 (1e)

$$s_i \sim Pois(\bar{s})$$
 (1f)

$$g_i \sim \operatorname{Exp}(1/\bar{g})$$
 (1g)
 $\phi \sim \operatorname{BAB}(N, 1 - e^{-\bar{s}})$ (1h)

(1h)

a: Duration selling sex

$$p_7 \sim \text{BAB}(N_7, \hat{\rho}_7)$$
 (2a)

$$\hat{\rho}_{z} = \operatorname{mean}(x_{i} \in x_{z}) \tag{2b}$$

$$x_i \sim \text{Pois}(Q_i \omega')$$
 (2c)

$$Q_i \sim \text{Gamma}(\alpha, \beta)$$
 (2d)

b: Rates of partnership change

Guide: gray: fixed variable/distribution, red: target, purple: intermediate, blue: observed. Variables: p₂: proportion of population, N_z : effective sample size, $\hat{\rho}_z$: empirically estimated p_z mean, \mathbb{d}_z : range of reported durations selling sex, d_i : reported duration at survey, D_i : total (eventual) duration, f_i : censoring fraction, s_i : number of times stopped selling sex, q_i : relative gap length, \bar{D} : true D mean, \bar{s} : true s mean, \bar{q} : true g mean, ϕ : proportion who stopped selling sex at least once, x: range of reported partner numbers, x_i : reported partner numbers, Q_i : partnership change rate, ω' : effective recall period, α , β : parameters of Q_i distribution. Distributions: U: uniform / uninformative, BAB: beta approximation of binomial distribution.