

Skript Einführung in die Funktionalanalysis

Mitschrift der Vorlesung "Einführung in die Funktionalanalysis" von Prof. Dr. Wilhelm Winter

Jannes Bantje

19. Januar 2015

Aktuelle Version verfügbar bei:

■ Bittorrent Sync B6WH2DISQ5QVYIRYIEZSF4ZR2IDVKPN3I

Vorwort — Mitarbeit am Skript

Dieses Dokument ist eine Mitschrift aus der Vorlesung "Einführung in die Funktionalanalysis, WiSe 2014", gelesen von Prof. Dr. Wilhelm Winter. Der Inhalt entspricht weitestgehend dem Tafelanschrieb. Für die Korrektheit des Inhalts übernehme ich keinerlei Garantie! Für Bemerkungen und Korrekturen – und seien es nur Rechtschreibfehler – bin ich sehr dankbar. Korrekturen lassen sich prinzipiell auf drei Wegen einreichen:

- Persönliches Ansprechen in der Uni, Mails an ⊠j.bantje@wwu.de (gerne auch mit annotieren PDFs)
- *Direktes* Mitarbeiten am Skript: Den Quellcode poste ich auf GitHub (siehe oben), also stehen vielfältige Möglichkeiten der Zusammenarbeit zur Verfügung: Zum Beispiel durch Kommentare am Code über die Website und die Kombination Fork + Pull Request. Wer sich verdient macht oder ein Skript zu einer Vorlesung, die ich nicht besuche, beisteuern will, dem gewähre ich gerne auch Schreibzugriff.

Beachten sollte man dabei, dass dazu ein Account bei github.com ontwendig ist, der allerdings ohne Angabe von persönlichen Daten angelegt werden kann. Wer bei GitHub (bzw. dem zugrunde liegenden Open-Source-Programm "git") – verständlicherweise – Hilfe beim Einstieg braucht, dem helfe ich gerne weiter. Es gibt aber auch zahlreiche empfehlenswerte Tutorials im Internet.¹

• Indirektes Mitarbeiten: TEX-Dateien per Mail verschicken.

Dies ist nur dann sinnvoll, wenn man einen ganzen Abschnitt ändern möchte (zB. einen alternativen Beweis geben), da ich die Änderungen dann per Hand einbauen muss! Ich freue mich aber auch über solche Beiträge!

Vorlesungshomepage

https://wwwmath.uni-muenster.de/u/wilhelm.winter/wwinter/funktionalanalysis.html

¹zB. https://try.github.io/levels/1/challenges/1☑, ist auf Englisch, aber dafür interaktives LearningByDoing

Inhaltsverzeichnis

1.	Metr	ische Räume und der Satz von Baire	1			
	1.1.	Definition: Metrischer Raum	1			
	1.2.	Definition: Offen, abgeschlossen und Abschluss	1			
	1.3.	Definition: Stetigkeit, gleichmäßige Stetigkeit, Isometrie	1			
	1.4.	Definition: Cauchy-Folge und Vollständigkeit	1			
	1.5.	Satz: Existenz einer eindeutigen Vervollständigung metrischer Räume	2			
	1.6.	Definition: Raum der beschränkten, stetigen Abbildungen	3			
	1.7.	Bemerkung: $d_{W,X}$ als Metrik auf $C(W,X)$	3			
	1.8.	Proposition: X vollständig $\Rightarrow C - B(W, X)$ und $C8W, X$ vollständig	3			
	1.9.	Proposition über eine Folge von Bällen	4			
		Satz von Baire	4			
		Bemerkungen zum Satz von Baire	5			
		Korollar: Satz der gleichmäßigen Beschränktheit	6			
2	Norm	nierte Räume, Hahn-Banach Sätze	7			
	2.1.	Definition: Topologischer Vektorraum	7			
	2.2.	Proposition: Unterräume topologischer Vektorräume sind topologische Vektorräume	7			
	2.3.	Proposition: Normierte Vektorräume sind topologische Vektorräume	7			
	2.4.	Proposition: Stetigkeit einer linearen Abbildung zwischen topologischen Vektorräumen	7			
	2.5.	Definition: Stetige Funktionale und Operatoren	8			
	2.6.	Bemerkung: Vektorraumstruktur auf $\mathcal{L}(X,Y)$, Algebrastruktur auf $\mathcal{L}(X,X)$	8			
	2.7.	Proposition: Stetigkeit linearer Abbildungen mittels Normabschätzung	8			
	2.8.	Definition: Operatornorm	9			
	2.9.	Propostion: $\mathcal{L}(X,Y)$ ist ein normierter Raum mit der Operatornorm	9			
		Definition: Normierte \mathbb{K} -Algebra	9			
		Beispiele für normierte Algebren	9			
	2.11.	Proposition: Norm auf dem Produkt normierter Räume	10			
		Proposition und Definition: Norm auf dem Quotientenraum	10			
		Definition: Banachraum und Banachalgebra	11			
		Beispiel für eine Banachalgebra	11			
		Proposition: Produkte und Quotienten von Banachräumen	11			
		Definition: Sublineare Abbildung	11			
		Beispiele für sublineare Abbildungen	12			
		Proposition: Die sublinearen Abbildungen $\mathcal{S}(X)$ sind nach unten induktiv geordnet				
		Proposition: Minimale Elemente in $\mathcal{S}(X)$ sind genau die lineare Abbildungen	12			
		Satz von Hahn-Banach	12			
			13			
		Satz (Hahn-Banach): Existenz einer linearen Fortsetzung (mit sublinearer Schranke) Satz (Hahn-Banach): Existenz einer linearen Fortsetzung (mit Halbnorm)	13 14			
		Satz (Hahn-Banach): Existenz einer stetigen linearen Fortsetzung	14			
		Definition: Konvexe Teilmenge eines K-Vektorraums, konvexe Hülle	14			
		Satz (Hahn-Banach): Existenz einer linearen Fortsetzung (mit konvexer Teilmenge)	14			
	2.27.	Satz (Hahn-Banach): Existenz einer linearen Fortsetzung (zwei konvexe Teilmengen)	15			
3.	Operatoren zwischen Banachräumen, Satz von der offenen Abbildung					
	3.1.	Proposition: Y vollständig $\Rightarrow \mathcal{L}(X,Y)$ ist vollständig $\dots \dots \dots \dots \dots \dots$	16			
	3.2.	Corollar: Dualraum ist vollständig und $\mathcal{L}(X,X)$ ist Banachalgebra, falls X Banachraum	16			
	3.3.	Definition und Proposition: lineare Isometrie $\iota_X: X \to X^{**}$	16			
	3.4.	Definition und Proposition: Die transponierte Abbildung	17			
	3.5.	Satz: Prinzip der gleichmäßigen Beschränktheit für Banachräume	18			

Inhaltsverzeichnis

	3.6.	Corollar	18
	3.7.	Corollar	18
	3.8.	Satz: Prinzip der offenen Abbildung	19
	3.9.	Corollar: Satz von der inversen Abbildung	19
	3.10.	Corollar	20
		Corollar	20
4	L^p -R $^{\sharp}$	iume und der Satz von Riesz-Fischer	21
••	4.1.	Erinnerung: $L^1(\mu)$ ist ein Banachraum	21
	4.2.	Beispiele für L^1 -Räume	21
	4.3.	Definition und Proposition: Der Raum $L^p(\mu)$	21
	4.4.	Proposition: Speziallfall der Youngschen Ungleichung	22
	4.5.	Satz: Höldersche Ungleichung	22
	4.6.	Satz: Minkowskische Ungleichung	23
	4.7.	Corollar: $L^p(\mu)$ ist ein normierter Vektorraum für $1 \leqslant p < \infty$	23
	4.8.	Definition und Proposition: Der normierte Raum $L^{\infty}(\mu)$ und	23
	4.9.	Beispiele für L^p -Räume	24
		Proposition: Lineare Isometrie $\iota_p: L^p(\mu) \to L^q(\mu)^*$	24
	4.10.	Satz von Riesz-Fischer	24
	4.11.	Satz von Riesz-Fischer	24
5.	Schw	ache Topologien, Reflexivität	26
	5.1.	Definition: Schwache Topologie	26
	5.2.	Bemerkungen zu schwachen Topologie	26
	5.3.	Proposition: Die schwache Topologie ist Hausdorffsch	26
	5.4.	Proposition: Äquivalenz zu schwacher Konvergenz	26
	5.5.	Corollar	27
	5.6.	Beispiel: Konvergenz impliziert schwache Konvergenz, aber nicht umgekehrt	27
	5.7.	Proposition	27
	5.8.	Definition: Die w^* -Topologie auf X^*	27
	5.9.	Bemerkungen zur w^* -Topologie auf X^*	27
		Satz (Banach-Alaoglu)	28
		Erinnerung: separabel, 1. abzählbar, 2. abzählbar	29
		Satz: Metrisierbarkeit von $\overline{B_{X^*}(0,1)}$ bezüglich der w^* -Topologie $\dots \dots \dots$	29
		Definition: Reflexiver normierter Raum	30
		Proposition: Abgeschlossene Unterräume von reflexiven Banachräumen sind reflexiv	30
		Proposition: Für Banachräume gilt: X reflexiv $\iff X^*$ reflexiv $\dots \dots$	30
	5.16.	Satz: Einheitskugel eines Banachraumes X liegt \mathbf{w}^* -dicht in Einheitskugel von X^{**}	31
	5.17.	Corollar	32
		Satz	32
	5.19.	Bemerkung	32
6.	Gleic	hmäßig konvexe Räume, noch einmal L^p	33
	6.1.	Definition und Proposition: Gleichmäßig konvexer Raum	33
	6.2.	Beispiel für gleichmäßig konvexe Räume	33
	6.3.	Definition und Proposition: Strikt konvexer Raum	34
	6.4.	Proposition	34
	6.5.	Bemerkung	35
	6.6.	Proposition: Jensensche Ungleichung	35
	6.7.	Proposition	35
	6.8.	Satz: Für $1 ist L^p(\mu) gleichmäßig konvex$	36
	6.9.	Satz	36
		Corollar: $L^p(\mu)$ ist für $1 reflexiv$	37
	• •	(r)	

		Satz: Isometrischer Isomorphismus $\iota_p\colon L^p(\mu)\to L^q(\mu)^*$	
7.	Hilbe	erträume und selbstadjungierte Operatoren	38
	7.1.	Definition: Hermitesche Form, Skalarprodukt	38
	7.2.	Bemerkung: Einfache Eigenschaften von hermiteschen Formen	38
	7.3.	Beispiele für hermitesche Formen	38
	7.4.	Proposition (Cauchy-Schwarz-Ungleichung)	38
	7.5.	Proposition: Ein Skalarprodukt definiert eine Norm	38
	7.6.	Bemerkungen über Cauchy-Schwarz und die Stetigkeit von $\langle \cdot, \cdot \rangle$	39
	7.0. 7.7.	Proposition über Zusammenhang von Norm und Skalarprodukt mit dem Parallelogramm-	33
	1.1.	gesetz	39
	7.8.	<u> </u>	40
		Bemerkung	
	7.9.	Definition: Prä-Hilbertraum und Hilbertraum	40
		Proposition	40
		Proposition	40
		Korollar	41
		Definition: Orthogonal, Orthonormalsystem und Hilbertraumbasis	42
		Bemerkung	42
	7.15.	Proposition über Schnitt und Summe eines Unterraumes mit seinem orthogonalen Kom-	
		plement	42
		Definition: Summierbar	42
		Proposition	42
		Proposition	43
		Proposition: Kriterium für die Summierbarkeit orthogonaler Vektoren	43
		Proposition	44
		Definition und Proposition: Summe von Hilberträumen	44
	7.22.	Satz	45
	7.23.	Bemerkung	45
	7.24.	Beispiele für Basen von Hilberträumen	46
	7.25.	Definition und Proposition: Der zu $T \in \mathcal{L}(\mathcal{H}_1,\mathcal{H}_2)$ adjungierte Operator T^*	46
	7.26.	Proposition	46
	7.27.	Proposition	47
		Definition: Selbstadjungierter Operator	47
		Bemerkung	47
		Proposition	48
		Definition und Proposition	48
		Satz	48
8.	Komp	pakte Operatoren und ein Spektralsatz	50
	8.1.	Definition: Spektrum eines Bachnachraumes	50
	8.2.	Bemerkung zum Zusammenhang von Spektralwerten und Eigenwerten	50
	8.3.	Proposition	50
		Corollar	50
Α.	Anha	ng	51
	A.1.		51
	A.2.	Abschluss einer konvexen Menge ist konvex	51
Ind	dex		Α
Αb	bildur	nasverzeichnis	В

Todo list B

IV

1. Metrische Räume und der Satz von Baire

1.1. Definition

Ein **metrischer Raum** ist ein Paar (X, d), wobei X eine Menge und $d: X \times X \to [0, \infty)$ ist, sodass

1)
$$d(x,y) = 0 \iff x = y \ \forall x, y \in X$$

2)
$$d(x,y) = d(y,x) \ \forall x,y \in X$$

3)
$$d(x,z) \leq d(x,y) + d(y,z) \ \forall x,y,z \in X$$

1.2. Definition

Sei (X, d) ein metrischer Raum

• Eine Teilmenge $U \subseteq X$ heißt **offen**, falls für jedes $x \in U$ ein $\varepsilon > 0$ existiert, so dass

$$B(x,\varepsilon) := \{ y \in X \mid d(x,y) < \varepsilon \} \subset U$$

- Eine Teilmenge $A \subset X$ heißt **abgeschlossen**, falls $X \setminus A$ offen ist (als Teilmenge von X).
- $\mathcal{T}X := \{U \subset X \mid U \text{ offen}\}$ ist die Topologie auf X (die von der Metrik d induziert wird)
- Falls $W \subset X$ eine Teilmenge ist, dann bezeichnet \overline{W} den **Abschluss** von W, d.h. die kleinste abgeschlossene Teilmenge von X, die W enthält. Es gilt

$$\overline{W} = \bigcap_{A \subset X \text{abg.}, W \subset A} A$$

Für metrische Räume gilt: $\overline{W} = \{\lim_n x_n \mid (x_n)_n \subset W \text{ konvergente Folge}\}$. Warum gilt $W \subset \overline{W}$?

1.3. Definition

Eine Abbildung $f: X \to Y$ zwischen zwei metrischen Räumen (X, d_X) und (Y, d_Y) heißt

- stetig in $x \in X$, falls $\forall \varepsilon > 0 : \exists \delta > 0 : \forall x' \in X : d_X(x,x') < \delta \Longrightarrow d_Y\big(f(x),f(x')\big) < \varepsilon$
- stetig, falls f in jedem Punkt $x\in X$ stetig ist. (Äquivalent: Für jede offene Menge V in Y ist $f^{-1}(V)$ offen in X)
- gleichmäßig stetig, falls $\forall \varepsilon > 0 : \exists \delta > 0 : \forall x, x' \in X : d_X(x, x') < \delta \Longrightarrow d_Y \big(f(x), f(x') \big) < \varepsilon.$
- f heißt Isometrie, falls $\forall x, x' \in X : d_X(x, x') = d_Y(f(x), f(x'))$.

automatisch injektiv

• f heißt **isometrischer Isomorphismus**, falls f bijektiv und isometrisch ist.

 f^{-1} auch

1.4. Definition

Eine Folge $(x_n)_{n\in\mathbb{N}}$ in einem metrischen Raum (X,d) heißt **Cauchy-Folge**, falls

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n, k > N : d(x_n, x_k) < \varepsilon.$$

(X,d) heißt **vollständig**, falls jede Cauchy-Folge in X konvergiert.

1.5. Satz

Sei (X,d) ein metrischer Raum. Dann existiert ein vollständiger metrischer Raum (\tilde{X},\tilde{d}) und eine Isometrie $\iota:X\hookrightarrow \tilde{X}$, sodass $\overline{\iota(X)}=\tilde{X}$ (d.h. $\iota(X)$ ist dicht in \tilde{X}). (\tilde{X},\tilde{d}) heißt **Vervollständigung** von (X,d) und ist eindeutig bis auf isometrische Isomorphie.

Beweis

Eindeutigkeit: Angenommen, (\hat{X},\hat{d}) ist ein weiterer vollständiger metrischer Raum und $\kappa:X\to\hat{X}$ eine Isometrie mit $\overline{\kappa(X)}=\hat{X}$. Definiere $\gamma:\hat{X}\to\hat{X}$ wie folgt: Falls $y\in\hat{X}$, wähle eine Folge $(x_n)_{n\in\mathbb{N}}$ in X, sodass $y=\lim_{n\to\infty}\kappa(x_n)$. Setze nun

$$\gamma(y) := \lim_{n \to \infty} \iota(x_n) \in \tilde{X}$$

Zu zeigen: γ ist ein isometrischer Isomorphismus.

Injektivität: Seien $y, y' \in \hat{X}$ mit $\gamma(y) = \gamma(y')$. Dann existieren Folgen $(x_n)_n, (x'_n)_n$ in X mit

$$\lim_{n \to \infty} \iota(x_n) = \lim_{n \to \infty} \iota(x'_n)$$

Existenz: Konstruktion von (\tilde{X}, \tilde{d}) : Setze $Y := \{(x_n)_{n \in \mathbb{N}} \mid (x_n)_n \text{ ist Cauchy-Folge in } X\}$. Definiere

$$(x_n)_n \sim (x'_n) : \iff \lim_{n \to \infty} d(x_n, x'_n) = 0$$

 \sim ist eine Äquivalenzrelation auf Y. Definiere nun $\tilde{X}:=Y/\sim$ und $\tilde{d}:\tilde{X}\times\tilde{X}\to[0,\infty)$ durch

$$\tilde{d}([(x_n)_n],[(x'_n)_n]) := \lim_{n \to \infty} d(x_n,x'_n)$$

 \widetilde{d} ist eine wohldefiniert, d.h. falls $[(x_n)_n]=[(y_n)_n]$ und $[(x_n')_n]=[(y_n')_n]$, dann ist

$$\lim_{n \to \infty} d(x_n, x_n') = \lim_{n \to \infty} d(y_n, y_n').$$
 (leichte Übung)

Weiter ist $\left(d(x_nx_n')\right)_n$ eine Cauchy-Folge in dem vollständigen Raum $[0,\infty)$ und somit konvergent: Sei dazu $\varepsilon>0$. Dann existiert ein $N\in\mathbb{N}$, sodass $d(x_n,x_m)\leqslant \frac{\varepsilon}{2}$ und $d(x_n',x_m')\leqslant \frac{\varepsilon}{2}$ für alle $n,m\geqslant N$. Dann gilt nach der Vierecksungleichung (siehe Anhang A.1)

$$\left| d(x_n, x_n') - d(x_m, x_m') \right| \leqslant d(x_n, x_m) + d(x_n', x_m') \leqslant \varepsilon$$

Einbettung von X: Definiere nun $\iota:X\to \tilde{X}$ durch $x\mapsto [(x,x,x,\ldots)]\in \tilde{X}.\ \iota$ ist Isometrie, da

$$\tilde{d}(\iota(x),\iota(y)) = \lim_{n\to\infty} d(x,y) = d(x,y)$$

Sei nun $[(x_n)_n]\in \tilde{X}$ und $\varepsilon>0$. Da $(x_n)_n$ eine Cauchy-Folge ist, gibt es ein $N\in\mathbb{N}$, sodass für alle $n,m\geqslant N$ gilt $d(x_n,x_m)<\varepsilon$. Dann gilt

$$\tilde{d}(\iota(x_N), [(x_n)_n]) = \lim_{n \to \infty} d(x_N, x_n) < \varepsilon$$

Vollständigkeit von (\tilde{X},\tilde{d}) : Sei $(\overline{x}^m)_m$ eine Cauchyfolge in \tilde{X} .

$$\Longrightarrow \forall \varepsilon>0: \exists M(\varepsilon) \in \mathbb{N}: \forall m,m'>M: \tilde{d}\Big(\overline{x}^m,\overline{x}^{m'}\Big)<\frac{\varepsilon}{3}$$

Wenn $\overline{x}^m=[(x_n^m)_n]$ und $\overline{x}^{m'}=\Big[(x_n^{m'})_n\Big]$, dann gilt also für alle $m,m'>M(\varepsilon)$

$$\lim_{n \to \infty} d\left(x_n^m, x_n^{m'}\right) < \frac{\varepsilon}{3}$$
 [*]

Achtung Wortspiel: Beweis vervollständigen ;-D

 $\overline{x} \in \tilde{X}$

Für alle m ist $(x_n^m)_n$ eine Cauchyfolge, also gilt

$$\forall m: \exists N(m): \forall n, n' \geqslant N(m): d(x_n^m, x_{n'}^m) < \frac{1}{m}$$
 [**]

Setze nun $z_n:=x^n_{N(n)}$. Behauptung: $(z_n)_n$ ist eine Cauchyfolge. Sei $\varepsilon>0$. Dann gilt für $n,m>N=\max\{M(\varepsilon),\frac3\varepsilon\}$ für ein k>N(m),N(n)

$$d(z_n,z_m) = d\left(x_{N(n)}^n,x_{N(m)}^m\right) \leqslant \underbrace{d\left(x_{N(n)}^n,x_k^n\right)}_{\stackrel{[\overset{\bullet}{\bullet}]}{<\frac{1}{n}}<\frac{1}{N}\leqslant\frac{\varepsilon}{3}} + \underbrace{d\left(x_k^n,x_k^m\right)}_{\stackrel{[\overset{\bullet}{\bullet}]}{\leqslant\frac{\varepsilon}{3}}} + \underbrace{d\left(x_k^m,x_{N(m)}^m\right)}_{\stackrel{[\overset{\bullet}{\bullet}]}{<\frac{1}{m}}<\frac{1}{N}\leqslant\frac{\varepsilon}{3}} < \varepsilon$$

 $d(z_n, z_m)$ ist unabhängig von k, also kann man kbeliebig groß wählen

 $\Rightarrow (z_n)_n$ ist eine Cauchyfolge, also

$$\forall \varepsilon > 0 : \exists N_z(\varepsilon) : \forall n, m > N_z(\varepsilon) : d(z_n, z_m) < \varepsilon$$
 [#]

Es bleibt zu zeigen: $\lim_{m\to\infty} \overline{x}^m = [(z_n)_n]$. Sei dazu $\varepsilon>0$. Dann gilt für $m\geqslant \max\left\{\frac{2}{\varepsilon},N_z(\varepsilon)\right\}$

$$\tilde{d}\big(\overline{x}^m,[(z_n)_n]\big) = \lim_{n \to \infty} d\Big(x_n^m,x_{N(n)}^n\Big) \leqslant \lim_{n \to \infty} \left(\underbrace{d\Big(x_n^m,x_{N(m)}^m\Big)}_{\stackrel{[^{\star \bullet}]}{<} \frac{1}{m} \leqslant \frac{\varepsilon}{2}} + \underbrace{d\Big(x_{N(m)}^m,x_{N(n)}^n\Big)}_{=d(z_m,z_n) \stackrel{[^{\mathfrak{s}}]}{<} \frac{\varepsilon}{2}}\right) < \varepsilon$$

Also gilt $\overline{x}^m \xrightarrow{m \to \infty} [(z_n)_n]$ und (\tilde{X}, \tilde{d}) ist vollständig.

1.6. Definition

Sei (W, \mathcal{T}) ein topologischer Raum und (X, d) ein metrischer Raum. Sei

$$C_b(W, X) = \{ f : W \to X \mid f \text{ stetig und beschränkt} \}$$

versehen mit der Metrik $d_{W,X}$, definiert durch

$$d_{W,X}(f,g) = \sup_{t \in W} d(f(t), g(t))$$

1.7. Bemerkung

Auf $C(W,X)=\{f:W\to X \text{ stetig}\}$ ist $d_{W,X}$ eine **erweiterte Metrik**, d.h. der Wert ∞ ist möglich. $\tilde{d}_{W,X}:=\min\{1,d_{W,X}\}$ ist eine "echte" Metrik auf C(W,X).

1.8. Proposition

Falls X vollständig ist, dann sind $C_b(W,X)$ und C(W,X) vollständig (bezüglich $d_{W,X}$ bzw. $\tilde{d}_{W,X}$).

Beweis

Sei $(f_n)_n$ eine Cauchy-Folge in $C_b(W,X)$, also

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n, m > N : \sup_{t \in W} d(f_n(t), f_m(t)) < \varepsilon$$

 \Rightarrow für alle t ist $\left(f_n(t)\right)_n$ eine Cauchyfolge in X. Da X vollständig ist, existiert ein $x_t \in X$ sodass $f_n(t) \xrightarrow{n \to \infty} x_t$. Definiere $f(t) := x_t$ punktweise.

Vorbereitung: Es gilt $\forall \varepsilon > 0 : \exists N_t \text{ sodass } d(x_t, f_{N_t}(t)) \leqslant \varepsilon$. Weiter ist

$$\sup_{t \in W} d(f_n(t), f_m(t)) \leqslant \varepsilon \ \forall n, m \geqslant N_t$$

$$\Rightarrow \forall t : d(f_n(t), f_m(t)) \leqslant \varepsilon \ \forall n, m \geqslant N$$

Beweis zu Ende führen

1.9. Proposition

Sei (X,d) ein vollständiger metrischer Raum und $\left(\overline{B}(x_n,\varepsilon_n)\right)_{n\in\mathbb{N}}$ mit $\overline{B}(x_{n+1},\varepsilon_{n+1})\subseteq \overline{B}(x_n,\varepsilon_n)$ und $\varepsilon_n\xrightarrow{n\to\infty} 0$. Dann existiert genau ein Punkt in $\bigcap_{n\in\mathbb{N}}\overline{B}(x_n,\varepsilon_n)$.

Beweis

Existenz: Behauptung: Die Folge der Mittelpunkte $(x_n)_{n\in\mathbb{N}}$ ist eine Cauchy-Folge: Sei $\varepsilon>0$. Finde $N\in\mathbb{N}$, sodass $\varepsilon_n\leqslant \varepsilon$ für alle $n\geqslant N$. Dann gilt für alle $n\geqslant N$

$$d(x_n, x_m) \leqslant \varepsilon_m \leqslant \varepsilon$$
,

da $x_n \in \overline{B}(x_m, \varepsilon)$ ist. Da X vollständig ist, existiert ein $x \in X$ mit $x_n \xrightarrow{n \to \infty} x$.

Behauptung: $x\in\bigcap_{n\in\mathbb{N}}\overline{B}(x_n,\varepsilon_n)$. Wähle dazu ein $N\in\mathbb{N}$. Dann ist $(x_n)_{n\geqslant N}$ eine Cauchy-Folge in $\overline{B}(x_N,\varepsilon_N)$. $\overline{B}(x_N,\varepsilon_N)$ ist ein abgeschlossener Teilraum von X und somit vollständig. Also ist $x\in\overline{B}(x_N,\varepsilon_N)$. Da N beliebig war, gilt $x\in\overline{B}(x_n,\varepsilon_n)$ für jedes $n\in\mathbb{N}$.

Eindeutigkeit: Es seien $x,y\in\bigcap_{n\in\mathbb{N}}\overline{B}(x_n,\varepsilon_n)$, also $x,y\in\overline{B}(x_n,\varepsilon_n)$ für alle $n\in\mathbb{N}$. Dann gilt

$$d(x,y) \leqslant d(x,x_n) + d(x_n,y) \leqslant 2 \cdot \varepsilon_n \xrightarrow{n \to \infty} 0$$

für jedes $n \in \mathbb{N}$ und somit $d(x,y) = 0 \Leftrightarrow x = y$.

1.10. Satz von Baire²

Es gelten folgende äquivalente Formulierungen:

- a) Sei (X,d) ein vollständiger metrischer Raum und A_0,A_1,\ldots eine Folge abgeschlossener Teilmengen. Falls $\bigcup_{n\in\mathbb{N}}A_n$ eine offene Kugel enthält, so auch eines der A_n .
- b) In einem vollständigen metrischen Raum hat eine abzählbare Vereinigung von abgeschlossenen Mengen ohne innere Punkte keine inneren Punkte.
- c) In einem vollständigen metrischen Raum ist ein abzählbarer Durchschnitt von dichten offenen Mengen wieder dicht.

Beweis

Zunächst die Äquivalenz:

- a)⇒b): Klar, da b) Kontraposition von a) ist.
- b) \Rightarrow c): Sei $U_n \subseteq X$ offen und dicht $\Rightarrow X \setminus U_n \subseteq X$ abgeschlossen und hat somit keine inneren Punkte. Aus b) folgt nun

$$\bigcup_{n\in\mathbb{N}} X \setminus U_n = X \setminus \bigcap_{n\in\mathbb{N}} U_n$$

hat keine inneren Punkte. Also ist $\bigcap_{n\in\mathbb{N}}U_n$ dicht in X.

c)⇒a): ebenso.

Wir wollen nun a) durch Widerspruch beweisen, d.h. wir nehmen an, dass gilt: Jede offene Kugel schneidet $X \setminus A_k$ für jedes $k \in \mathbb{N}$. Dazu wollen wir Folgen $(x_k)_{k \in \mathbb{N}} \subset X$, $(\varepsilon_k)_{k \in \mathbb{N}} \subset (0,1]$ finden mit

(i)
$$\varepsilon_k < \frac{1}{k+1}$$
,

(ii)
$$\overline{B}(x_{k+1}, \varepsilon_{k+1}) \subset (X \setminus A_k) \cap B(x_k, \varepsilon_k) \subset \overline{B}(x_k, \varepsilon_k)$$
,

²nach René Louis Baire, https://de.wikipedia.org/wiki/René_Louis_Baire ☑

(iii)
$$\overline{B}(x_k, \varepsilon_k) \subset \bigcup_{n \in \mathbb{N}} A_n$$

für $k \in \mathbb{N}$. Dann gilt

$$\bigcup_{n\in\mathbb{N}}A_n\stackrel{\text{(iii),(ii)}}{\supset}\bigcap\overline{B}(x_k,\varepsilon_k)\stackrel{\text{(ii)}}{\subset}\bigcap_{k\in\mathbb{N}}(X\setminus A_k)\cap B(x_k,\varepsilon_k)\subset\bigcap_{k\in\mathbb{N}}X\setminus A_k=X\setminus\left(\bigcup_{k\in\mathbb{N}}A_k\right)$$

Aber wegen (i) und (ii) existiert nach Proposition 1.9 ein $x\in\bigcap_{k\in\mathbb{N}}\overline{B}(x_k,\varepsilon_k)$. ot

Wir suchen also eine Abbildung $\overline{c}: \mathbb{N} \to X \times (0,1], k \mapsto (x_k, \varepsilon_k)$ mit (i),(ii),(iii) für $k \in \mathbb{N}$. Setze

$$\begin{split} P_m := \left\{ c: \{0,\dots,m\} \to X \times (0,1] \, \middle| \, \begin{array}{l} \text{(i),(iii) gilt für } k \in \{0,\dots,m\}, \\ \text{(ii) gilt für } k \in \{0,\dots,m-1\} \end{array} \right\} \\ P_\infty := \left\{ c: \mathbb{N} \to X \times (0,1] \, \middle| \, \text{(i),(ii),(iii) gilt für } k \in \mathbb{N} \right\} \end{split}$$

Die Menge $P := (\bigcup_{m \in \mathbb{N}} P_m) \cup P_{\infty}$ ist partiell geordnet bezüglich \prec :

$$c \prec c' \text{ falls } m \leqslant m' \text{ und } c' \big|_{\{0,\dots,m\}} = c, \text{ bzw.} c' = c \text{ falls } m = m' = \infty$$

P ist nicht leer, denn nach Vorraussetzung existiert (x_0, ε_0) mit $0 < \varepsilon_0 < 1$ und $\overline{B}(x_0, \varepsilon_0) \subset \bigcup_{n \in \mathbb{N}} A_n$, d.h. $0 \mapsto (x_0, \varepsilon_0) \in P_0$. Jede total geordnete Teilmenge $\emptyset \neq \Gamma$ von P besitzt eine obere Schranke:

• Falls Γ ein $c \in P_{\infty}$ enthält, so ist c obere Schranke.

warum?

- Ebenso falls Γ ein $c \in P_{\overline{m}}$ enthält und $\Gamma \cap P_{m'} = \emptyset$ für alle $\overline{m} < m' \in \mathbb{N} \cup \{\infty\}$.
- Falls $\Gamma \subset \bigcup_{\mathbb{N}} P_m$, aber $\Gamma \not\subset \bigcup_{m \leqslant \overline{m}} P_m$ für jedes \overline{m} , so definieren wir eine obere Schranke in P_{∞} durch Einschränkung.

wie genau?

Mit dem Lemma von Zorn folgt, dass P ein maximales Element \overline{c} besitzt. Behauptung: $\overline{c} \in P_{\infty}$ wie gewünscht:

Falls $\overline{c} \in P_m$ für ein $m \in \mathbb{N}$, so gilt nach Annahme, dass $(X \setminus A_m) \cap B(x_m, \varepsilon_m) \neq \emptyset$. Dann existiert aber $(x_{m+1}, \varepsilon_{m+1}) \in X \times (0, 1]$ mit $\varepsilon_{m+1} < \frac{1}{m+2}$ und

$$\overline{B}(x_{m+1}, \varepsilon_{m+1}) \subset (X \setminus A_m) \cap B(x_m, \varepsilon_m)$$

Definiere $\overline{\overline{c}}: \{0, \dots, m+1\} \to X \times (0,1]$ durch

$$k \longmapsto \begin{cases} (x_k, \varepsilon_k), & \text{falls } k = m+1 \\ \overline{c}(k), & \text{falls } k \in \{0, \dots, m\} \end{cases}$$

dann gilt $\overline{c} \prec \overline{\overline{c}} \in P_{m+1}$. mathsection zur Maximalität von \overline{c} .

1.11. Bemerkungen

(i) Die Aussage gilt auch für lokalkompakte Hausdorffräume.

(Übung)

- (ii) Tatsächlich genügt eine schwächere Form des Auswahlaxioms(DC); das abzählbare Auswahlaxiom jedoch nicht.
- (iii) Falls X **separabel** ist (d.h. falls eine abzählbare dichte Teilmenge von X existiert), dann lässt sich der Satz auch ohne (AC) beweisen. (Übung)

1.12. Korollar: Satz der gleichmäßigen Beschränktheit

Sei (X,d) ein vollständiger metrischer Raum. Sei $F\subset C(X,\mathbb{R})$ eine Menge, die **punktweise gleichmäßig beschränkt** ist, d.h. für jedes $x\in X$ existiert $K_x\in\mathbb{R}$, sodass

$$|f(x)| \leqslant K_x \ \forall f \in F.$$

Dann existieren $\emptyset \neq U \subset X$ offen und $K \in \mathbb{R}$ so, dass

$$|f(x)| \leqslant K \ \forall x \in U, f \in F$$

Beweis

Definiere

$$X \supset A_n := \left\{ x \in X \mid |f(x)| \leqslant n \forall f \in F \right\} = \bigcap_{f \in F} f^{-1}([-n, n])$$

Also sind die $A_n\subset X$ abgeschlossen. Es ist $\bigcup_{n\in\mathbb{N}}A_n=X$, wegen der Voraussetzung von punktweiser gleichmäßiger Beschränktheit. Außerdem enthält dies eine nichtleere offene Menge. Also existiert ein n und $U\subset X$ nichtleer und offen mit $U\subset A_n$.

2. Normierte Räume, Hahn-Banach Sätze

2.1. Definition

Sei X ein \mathbb{K} -Vektorraum mit einer Topologie \mathcal{T} . Wir sagen, X ist ein **topologischer Vektorraum**, falls Addition und Skalarmultiplikation stetig sind:

$$\begin{array}{lll} +\colon X\times X\to X &, & (x,y)\mapsto x+y\\ \cdot\colon \mathbb{K}\times X\to X &, & (\lambda,x)\mapsto \lambda\cdot x \end{array}$$

2.2. Proposition

Sei X ein topologischer \mathbb{K} -Vektorraum und $Y\subset X$ ein Untervektorraum. Dann sind Y und \overline{Y} topologische Vektorräume mit der Unterraumtopologie.

Beweis

- Klar für Y.
- Zu zeigen: \overline{Y} ist ein Untervektorraum. Seien $x_0,y_0\in \overline{Y}$ und sei U eine offene Menge in X mit $x_0+y_0\in U$. Dann existieren offene Mengen V,W von X mit $x_0\in V,y_0\in W$ und $V+W\subset U$, da die Addition stetig ist. Da $x_0\in \overline{Y}$ und $x_0\in V$, existiert $x_1\in Y$ mit $x_1\in V$. Analog existiert $y_1\in Y$ mit $y_1\in W$. Daher ist $x_1+y_1\in Y\cap U$. Da U eine beliebige offene Umgebung um x_0+y_0 ist, folgt $x_0+y_0\in \overline{Y}$.

Skalarmultiplikation genauso.

2.3. Proposition

Ein normierter Vektorraum $(X, \|\cdot\|)$ ist ein topologischer Vektorraum bezüglich der von $\|\cdot\|$ induzierten Topologie.

Beweis

Es gilt

$$\|(x+y) - (x'+y')\|_X \le \|x-x'\|_X + \|y-y'\|_X$$

Daher ist $+: X \times X \to X$ gleichmäßig stetig bezüglich der Norm $\|(z,z')\|_{X \times X} := \|z\|_X + \|z'\|_X$ auf $X \times X$. Ähnlich folgt

$$\|\lambda x - \lambda' x'\|_{X} = \|\lambda(x - x') + (\lambda - \lambda')x'\|_{X} \leqslant |\lambda| \cdot \|x - x'\|_{X} + |\lambda - \lambda'| \cdot \|x'\|_{X}$$

Daher ist $\cdot \colon \mathbb{K} \times X \to X$ stetig, denn falls $(\lambda_i)_{i \in I}$ ein Netz in \mathbb{K} und $(x_i)_{i \in I}$ ein Netz in X ist mit $\lambda_i \to \lambda$, $x_i \to x$, dann gilt $\lambda_i x_i \to \lambda x$, also $\|\lambda_i x_i - \lambda x\|_X \to 0$.

2.4. Proposition

Seien X,Y topologische Vektorräume, $T:X\to Y$ linear. Dann sind äquivalent:

- (1) T ist stetig.
- (2) T ist stetig in 0.
- (3) T ist stetig in einem Punkt \overline{x} .

Beweis

 $(1) \Rightarrow (2) \Rightarrow (3)$ ist klar. Wir zeigen $(3) \Rightarrow (1)$:

Für $y\in X$ definiere $L_y\colon X\to X$, $x\mapsto y+x$. Dann ist L_y bijektiv und stetig. Da auch L_{-y} stetig ist, ist L_y ein Homöomorphismus. Sei nun T in \overline{x} stetig. Sei $x_0\in X$. Wir zeigen: T ist stetig in x_0 . Setze $y:=\overline{x}-x_0$. Dann ist

$$T(x_0) = T(x_0 + y - y) = T(-y) + T(x_0 + y) = L_{T(-y)} \circ T \circ L_y(x_0)$$

Da $L_y(x_0)=\overline{x}$, T stetig in \overline{x} ist und L_y , $L_{T(-y)}$ stetig sind, ist somit T stetig in x_0 .

2.5. Definition

Für topologische Vektorräume X, Y definieren wir

$$\mathcal{L}(X,Y) = \{T \colon X \to Y \mid T \text{ linear und stetig} \}$$

Wir schreiben $X^* := \mathcal{L}(X, \mathbb{K})$ für den **Dualraum** von X. Die Elemente von X^* heißen (stetige) **Funktionale**. Die Elemente von $\mathcal{L}(X, X)$ heißen (stetige) **Operatoren** auf X.

2.6. Bemerkung

 $\mathcal{L}(X,Y)$ und $\mathcal{L}(X,\mathbb{K})=X^*$ sind Vektorräume, wobei die Vektorraumstruktur punktweise definiert ist. $\mathcal{L}(X,X)$ ist sogar eine Algebra mittels Komposition.

2.7. Proposition

Seien X,Y normierte Vektorräume, $T\colon X\to Y$ linear. Dann ist T stetig genau dann, wenn ein $\mu\geqslant 0$ existiert, sodass

$$\|T(x)\|_Y\leqslant \mu\cdot \|x\|_X \quad \forall x\in X$$

Ein stetiger Operator zwischen normierten Vektorräumen heißt deswegen auch beschränkt.

Beweis

" \Leftarrow ": Klar: Wenn $x_n \to 0$, dann $T(x_n) \to 0$, denn $\|T(x_n)\| \leqslant \mu \|x_n\| \to 0$. Also ist T stetig in 0 und nach 2.4 überall stetig.

 $"\Rightarrow"$: Angenommen T ist stetig. Dann setzen wir

$$\mu := \sup \left\{ \frac{1}{\|x\|_X} \cdot \|T(x)\|_Y \, \middle| \, x \in X \setminus \{0\} \right\}$$

Falls $\mu=\infty$, dann existieren $x_n\in X$ mit $\frac{1}{\|x_n\|_X}\cdot\|T(x_n)\|_Y\geqslant n$. Betrachte $x_n':=\frac{1}{n\cdot\|x_n\|_X}\cdot x_n$, dann $\|x_n'\|=\frac{1}{n}$, also $x_n'\to 0$. Aber es gilt $T(x_n')\not\to 0$, denn

$$||T(x_n')||_Y = \frac{1}{n \cdot ||x_n||_X} \cdot ||T(x_n)||_Y \geqslant 1$$

für alle n, mathsection T also $\mu < \infty$.

 $^{^3}$ Aus der linearen Algebra: $X^*=\operatorname{Hom}(X,\mathbb{R})=\{T:X o Y\,|\,T ext{ linear}\}$. Die Elemente von X^* heißen Funktionale.

2.8. Definition

Seien X,Y normierte Vektorräume, $T \in \mathcal{L}(X,Y)$. Die **Norm** (oder **Operatornorm**) von T ist

$$\|T\| = \sup \left\{ \frac{1}{\|x\|_X} \cdot \|T(x)\|_Y \, \bigg| \, x \in X \setminus \{0\} \right\} = \sup \left\{ \|T(x)\|_Y \, \bigg| \, x \in X \text{ mit } \|x\|_X = 1 \right\}$$

Nach 2.7 ist $||T|| < \infty$ und $||Tx||_Y \leqslant ||T|| \cdot ||x||_X$ für alle $x \in X$.

2.9. Proposition

Seien X,Y normierte Räume, betrachte $\mathcal{L}(X,Y)$ mit $\|\cdot\|$. Dann ist $\mathcal{L}(X,Y)$ ein normierter Raum.

Beweis

- $||T|| \geqslant 0$ für alle $T \in \mathcal{L}(X, Y)$.
- · Es gilt

$$\begin{split} \|T\| = 0 \iff \forall x \in X, \|x\|_X = 1: \|Tx\|_Y = 0 \iff \forall x \in X, \|x\|_X = 1: Tx = 0 \\ \iff \forall x \in X: Tx = 0 \\ \iff T = 0 \end{split}$$

• Sei $\lambda \in \mathbb{K}$, $T \in \mathcal{L}(X,Y)$. Dann gilt

$$\|\lambda \cdot T\| = \sup_{\|x\|_X = 1} \|\lambda \cdot T(x)\|_Y = \sup_{\|x\|_X = 1} |\lambda| \cdot \|Tx\|_Y = |\lambda| \cdot \sup_{\|x\|_X = 1} \|Tx\|_Y = |\lambda| \cdot \|T\|_Y$$

• Seien $T_1, T_2 \in \mathcal{L}(X, Y)$ und $x \in X$ mit $||x||_X = 1$. Dann gilt

$$||(T_1 + T_2)(x)||_V = ||T_1x + T_2x||_V \le ||T_1x||_V + ||T_2x||_V$$

Damit folgt weiter

$$||T_1 + T_2|| = \sup_{\|x\|_X = 1} ||(T_1 + T_2)(x)||_Y \leqslant \sup_{\|x\|_X = 1} (||T_1 x||_Y + ||T_2 x||_Y)$$

$$\leqslant \sup_{\|x\|_X = 1} \sup_{\|x'\|_X = 1} (||T_1 x||_Y + ||T_2 x'||_Y)$$

$$= ||T_1|| + ||T_2||$$

2.10. Definition

Eine \mathbb{K} -Algebra A heißt **normiert**, falls A mit einer Norm $\|\cdot\|$ versehen ist, so dass $(A, \|\cdot\|)$ ein normierter Vektorraum und

$$||ab|| \le ||a|| \cdot ||b|| \quad \forall a, b \in A$$

Falls A unital ist, d.h. es existiert ein Einselement 1_A , dann gilt $||1_A|| \leq 1$.

Bemerkung

Wenn $||1_A|| < 1$, dann $||1_A|| = ||1_A \cdot 1_A|| \le ||1_A|| \cdot ||1_A|| \Rightarrow ||1_A|| = 0$. Also $1_A = 0$ und damit $A = \{0\}$.

2.11. Beispiele

- (i) $C(\Omega,\mathbb{K})$, wobei Ω ein kompakter Hausdorffraum und die Multiplikation punktweise ist. Betrachte $\|.\|_{\infty}$. Für $f,g\colon\Omega\to K$ gilt dann $\|f\cdot g\|_{\infty}\leqslant\|f\|_{\infty}\cdot\|g\|_{\infty}$
- (ii) $\mathcal{L}(X,X)$ für einen normierten Raum X mit $\|.\|$, denn für $S,T\in\mathcal{L}(X,X)$ gilt

$$\|ST\| = \sup_{\|x\|_X = 1} \|S(T(x))\|_X \leqslant \sup_{\|x\|_X = 1} \left(\|S\| \cdot \|Tx\|_X \right) = \|S\| \cdot \|T\|.$$

2.12. Proposition

Seien X,Y normierte Räume. Dann ist $X\times Y$ ein normierter Raum mit

$$\begin{split} \|(x,y)\|_1 &:= \|x\|_X + \|y\|_Y \quad \text{für } (x,y) \in X \times Y \\ \text{oder} & \|(x,y)\|_\infty := \max\{\|x\|_X, \|y\|_Y\} \end{split}$$

Beide Normen sind äquivalent.

Beweis

Übung! □

2.13. Proposition und Definition

Sei X ein normierter Raum und $Y\subseteq X$ ein abgeschlossener Unterraum. Dann ist $X/Y=\{x+Y\mid x\in X\}$ ein normierter Raum mit

$$||x + Y||_{X/Y} := \inf\{||x + y||_X | y \in Y\}$$

Die Quotientenabbildung $q: X \twoheadrightarrow X/Y$, $x \mapsto x + Y$ ist stetig, linear und $||q|| \leqslant 1$ und offen, d.h. bildet offene Mengen in X auf offene Mengen in X/Y ab.

Bemerkung

Daraus folgt, dass Normtopologie und Quotiententopologie auf X/Y gleich sind.

Beweis

- a) X/Y ist ein Vektorraum mit (x + Y) + (x' + Y) = (x + x') + Y.
- b) Sei $\overline{x} = x + Y \in X/Y$. Es gilt
 - $\|\overline{x}\| \geqslant 0$ ist klar für alle $\overline{x} \in X/Y$
 - Angenommen $\|\overline{x}\|_{X/Y}=0$, d.h. $\inf_{y\in Y}\|x+y\|_X=0$. Also existiert eine Folge $(y_n)_n\subset Y$ mit $\|x+y_n\|_X\xrightarrow{n\to\infty}0\Rightarrow y_n\xrightarrow{n\to\infty}-x$. Also ist -y und damit auch y in Y, da Y abgeschlossen ist. Damit ist $\overline{x}=0$
- c) Sei $0 \neq \lambda \in \mathbb{K}$, $x \in X$. Dann gilt

$$\|\lambda\cdot\overline{x}\|_{\scriptscriptstyle X/Y} = \inf_{y\in Y} \|\lambda x + y\|_X = \inf_{y\in Y} \|\lambda x + \lambda y\|_X = \inf_{y\in Y} |\lambda|\cdot\|x + y\|_X = |\lambda|\cdot\|\overline{x}\|_{\scriptscriptstyle X/Y}$$

d) Seien $\overline{x}, \overline{y} \in X/Y$. Dann gilt

$$\begin{split} \|\overline{x} + \overline{y}\|_{X/Y} &= \inf_{z \in Y} \|x + y + z\|_X = \inf_{z, z' \in Y} \|x + y + z + z'\|_X \leqslant \inf_{z, z' \in Y} \Bigl(\|x + z\|_X + \|y + z'\|_X \Bigr) \\ &= \|\overline{x}\|_{X/Y} + \|\overline{y}\|_{X/Y} \end{split}$$

Damit ist $||.||_{X/Y}$ eine Norm auf X/Y.

e) Linearität von q ist klar. Es gilt

$$\|\overline{x}\|_{\scriptscriptstyle X/Y} = \inf_{y \in Y} \|x + y\|_X \leqslant \|x\|_X$$

Also

$$||q|| = \sup_{||x||_X = 1} ||q(x)||_{X/Y} \leqslant \sup_{||x||_X = 1} ||x||_X = 1$$

f) Zu zeigen: q ist offen. Sei $x\in X$, $\varepsilon>0$. Betrachte die offene Kugel $B(x,\varepsilon)\subset X$. Wir zeigen $B(\overline{x},\varepsilon)\subset q(B(x,\varepsilon))$. Sei also $\overline{z}=z+Y$ in $B(\overline{x},\varepsilon)$. Dann gilt $\|\overline{x}-\overline{z}\|_{X/Y}<\varepsilon$, worauf folgt

$$\inf_{y \in Y} \|x - z + y\|_X < \varepsilon$$

 $\Rightarrow \text{ es existiert } y \in Y: \|x-z+y\|_X < \varepsilon. \text{ Es gilt } \overline{z} = \overline{z-y} \in q(B(x,\varepsilon)) \text{, da } z-y \in B(x,\varepsilon).$ Sei $V \subset X$ offen, zeige $q(V) \subset X/Y$ offen. Für $x \in V$ finde $\varepsilon > 0$, sodass $B(x,\varepsilon) \subset V$. Dann folgt $B(\overline{x},\varepsilon) \subseteq q\big(B(x,\varepsilon)\big) \subseteq q(V)$.

2.14. Definition

Ein **Banachraum** ist ein vollständiger, normierter Raum. Eine **Banachalgebra** ist eine vollständige normierte Algebra.

2.15. Beispiel

 $C(\Omega, \mathbb{K})$, wobei Ω ein kompakter Hausdorffraum ist, ist eine Banachalgebra.

2.16. Proposition

Produkte und Quotienten (nach abgeschlossenen Unterräumen) von Banachräumen sind wieder Banachräume.

Beweis

Produkt $X \times Y$: Es gilt $\|(x,y)\|_{\infty} = \max\{\|x\|,\|y\|\}$. Sei $((x_n,y_n))_n \subset X \times Y$ eine Cauchyfolge. Dann sind $(x_n)_n$ und $(y_n)_n$ Cauchyfolgen und es gilt $x_n \to x$ und $y_n \to y$ und somit auch $(x_n,y_n) \to (x,y)$.

Quotient X/Y: Sei X ein Banachraum und $Y \subseteq X$ ein abgeschlossener Unterraum.

Falls $\overline{x}, \overline{y} \in X/Y$, so existiert $y' \in X$, sodass $\overline{y} = \overline{y'}$ und

$$||x - y'||_X \leqslant 2 \cdot ||\overline{x} - \overline{y}||_{X/Y}$$

Sei nun $(\overline{x}_n)_n$ eine Cauchyfolge in X/Y. Es gibt eine Teilfolge $(\overline{x}_{n_k})_k$, sodass

$$\sum_{k=1}^{\infty} \left\| \overline{x}_{n_{k-1}} - \overline{x}_{n_k} \right\|_{X/Y} < \infty$$

Falls $(\overline{x}_{n_k})_k$ konvergiert, dann auch $(\overline{x}_n)_n$. Wir dürfen also ohne Einschränkungen annehmen, dass bereits $\sum_{n=1}^\infty \lVert \overline{x}_{n-1} - \overline{x}_n \rVert < \infty$ gilt. Wähle $x_1' \in \overline{x}_1$. Wähle induktiv $x_n' \in X$ mit

$$\|x'_{n-1} - x'_n\|_X \le 2 \cdot \|\overline{x_{n-1}} - \overline{x_n}\|_{X/Y}$$

und $x_n' \in \overline{x}_n$. Dann gilt $\sum_{n=1}^\infty \left\| x_{n-1}' - x_n' \right\|_X < \infty$. Daher ist $(x_n')_n$ eine Cauchyfolge in X. Also existiert $x \in X$ mit $x_n \to x$. Dann gilt auch $\overline{x}_n \to \overline{x}$.

2.17. Definition

Sei X ein \mathbb{R} -Vektorraum. Eine Abbildung $\varphi \colon X \to \mathbb{R}$ heißt **sublinear**, falls gilt:

(i)
$$\varphi(\lambda \cdot x) = \lambda \cdot \varphi(x)$$
, für $x \in X$, $\lambda \in [0, \infty)$

(ii)
$$\varphi(x+y) \leqslant \varphi(x) + \varphi(y)$$
, für $x, y \in X$.

Setze $S(X) := \{ \varphi \colon X \to \mathbb{R} \mid \varphi \text{ sublinear} \}$. S(X) ist partiell geordnet mit

$$\varphi\leqslant\psi:\iff\varphi(x)\leqslant\psi(x),\quad x\in X$$

2.18. Beispiele

(i) Halbnormen⁴ sind sublinear.

(ii)

Benutze: $0 = \varphi(0) = \varphi(x - x) \leqslant \varphi(x) + \varphi(-x)$.

2.19. Proposition

Sei X ein \mathbb{R} -Vektorraum. $\mathcal{S}(X)$ ist nach unten **induktiv geordnet**, d.h. jede nichtleere total geordnete Teilmenge besitzt eine untere Schranke.

Beweis

Sei $\emptyset \neq (\varphi_i)_I \subseteq \mathcal{S}(X)$ total geordnet. Setze $\varphi(x) := \inf_{i \in I} \varphi_i(x)$, dann gilt

$$-\varphi_i(-x) \leqslant \varphi_i(x) \implies -\varphi(-x) \leqslant \varphi(x) \leqslant \varphi_i(x) < \infty$$

ebenso $-\varphi(x) \leqslant \varphi(-x) \leqslant \varphi_i(-x)$ für $x \in X$, $i \in I$. Insbesondere gilt $-\infty < \varphi(x) < \infty$, $x \in X$. Die Sublinearität von φ und $\varphi \leqslant \varphi_i$, $i \in I$ sind klar (Warum?).

2.20. Proposition

Sei X ein \mathbb{R} -Vektorraum und $\varphi \in \mathcal{S}(X)$. Dann ist φ in $\mathcal{S}(X)$ minimal genau dann, wenn φ linear ist.

Beweis

"\(= ": Sei $\psi \leqslant \varphi$ mit ψ sublinear und φ linear. Dann folgt $\psi(x) \leqslant \varphi(x)$ und $\psi(-x) \leqslant \varphi(-x)$ für $x \in X$.

$$\implies -\psi(x) \leqslant \psi(-x) \leqslant \varphi(-x) = -\varphi(x)$$

Daraus folgt $\varphi(x) \leqslant \psi(x)$ und somit muss $\varphi = \psi$ gelten. Also ist φ minimal.

" \Rightarrow ": Sei $\varphi \in \mathcal{S}(X)$ minimal. Zu $\overline{x} \in X$ definiere $\varphi_{\overline{x}} \colon X \to \mathbb{R}$ durch

$$\varphi_{\overline{x}}(x) := \inf_{\lambda \geqslant 0} \left(\varphi(x + \lambda \cdot \overline{x}) - \lambda \cdot \varphi(\overline{x}) \right)$$

Es gilt $\varphi_{\overline{x}}(x) \in (-\infty, \infty)$, denn für $x \in X, \lambda \geqslant 0$ ist

$$\varphi(\lambda \cdot \overline{x}) = \varphi(x + \lambda \cdot \overline{x} - x) \leqslant \varphi(x + \lambda \cdot \overline{x}) + \varphi(-x)$$

$$\iff -\varphi(\lambda \cdot \overline{x}) \geqslant -\varphi(-x) - \varphi(x + \lambda \cdot \overline{x})$$

$$\iff -\varphi(-x) \leqslant \varphi(x + \lambda \cdot \overline{x}) - \lambda \cdot \varphi(\overline{x}) \stackrel{\text{2.17 (ii)}}{\leqslant} \varphi(x)$$

 $\varphi_{\overline{x}}$ ist sublinear:

⁴Es "fehlt" nur die positive Definitheit einer Norm.

(i) Sei $\mu > 0$. Dann gilt für $x \in X$.

$$\varphi_{\overline{x}}(\mu \cdot x) = \inf_{\lambda \geqslant 0} \left(\varphi(\mu \cdot x + \lambda \cdot \overline{x}) - \lambda \cdot \varphi(\overline{x}) \right) = \inf_{\lambda \geqslant 0} \mu \cdot \left(\varphi\left(x + \frac{\lambda}{\mu} \cdot \overline{x}\right) - \frac{\lambda}{\mu} \cdot \varphi(\overline{x}) \right)$$
$$= \mu \cdot \inf_{\lambda' \geqslant 0} \left(\varphi(x + \lambda' \cdot \overline{x}) - \lambda' \varphi(\overline{x}) \right)$$
$$= \mu \cdot \varphi_{\overline{x}}(x)$$

 $\varphi_{\overline{x}}(0 \cdot x) = 0$ ist klar.

(ii) Zu $x, y \in X$, $\varepsilon > 0$ wähle $\lambda_x, \lambda_y \geqslant 0$ mit

$$\varphi_{\overline{x}}(x) \geqslant \varphi(x + \lambda_x \cdot \overline{x}) - \lambda_x \cdot \varphi(\overline{x}) - \varepsilon$$
$$\varphi_{\overline{x}}(y) \geqslant \varphi(y + \lambda_y \cdot \overline{x}) - \lambda_y \cdot \varphi(\overline{x}) - \varepsilon$$

Setze $\lambda := \lambda_x + \lambda_y$, dann gilt

$$\begin{split} \varphi_{\overline{x}}(x) + \varphi_{\overline{x}}(y) &\geqslant \varphi(x + \lambda_x \cdot \overline{x}) + \varphi(y + \lambda_y \cdot \overline{x}) - \lambda \cdot \varphi(\overline{x}) - 2\varepsilon \\ &\geqslant \varphi(x + y + \lambda \cdot \overline{x}) - \lambda \cdot \varphi(\overline{x}) - 2\varepsilon \\ &\geqslant \varphi_{\overline{x}}(x + y) - 2\varepsilon \end{split} \tag{nach Definition}$$

Da $\varepsilon>0$ beliebig war, gilt $\varphi_{\overline{x}}(x)+\varphi_{\overline{x}}(y)\geqslant \varphi_{\overline{x}}(x+y)$. Also ist $\varphi_{\overline{x}}$ sublinear.

 $\varphi_{\overline{x}}\leqslant \varphi$ ist klar mit $\lambda=0$. Da φ minimal ist, folgt $\varphi_{\overline{x}}=\varphi$. Wir erhalten

$$\varphi(x) + 1 \cdot \varphi(\overline{x}) \leqslant \varphi(x + 1 \cdot \overline{x}) \overset{\text{sublinear}}{\leqslant} \varphi(x) + 1 \cdot \varphi(\overline{x})$$

für jedes $x, \overline{x} \in X$. Also ist φ additiv und somit linear.

2.21. Satz von Hahn-Banach

Sei X ein \mathbb{R} -Vektorraum und $\varphi \in \mathcal{S}(X)$. Dann existiert $\psi \colon X \to \mathbb{R}$ linear mit $\psi \leqslant \varphi$.

X ist nicht zwangsweise endlichdimensional!

Beweis

Sei $\mathcal{S}_{\varphi} := \{ \varphi' \in \mathcal{S}(X) \mid \varphi' \leqslant \varphi \} \ni \varphi$. Nach Proposition 2.19 ist $\mathcal{S}(X)$ und damit auch \mathcal{S}_{φ} nach unten induktiv geordnet. Nach dem Lemma von Zorn enthält \mathcal{S}_{φ} ein minimales Element ψ . ψ ist auch minimal in $\mathcal{S}(X)$ (Warum?). Also ist ψ linear nach Proposition 2.20.

Wichtige Folgerungen: Fortsetzungs- und Trennungssätze.

2.22. Satz

Sei X ein \mathbb{R} -Vektorraum und $\varphi\colon X\to\mathbb{R}$ sublinear. Sei $Y\subset X$ ein linearer Unterraum und $\psi\colon Y\to\mathbb{R}$ linear mit $\overline{\psi}\leqslant \varphi\big|_Y$. Dann existiert $\overline{\psi}\colon X\to\mathbb{R}$ linear mit $\overline{\psi}\big|_Y=\psi$ und $\overline{\psi}\leqslant \varphi$.

Beweis

Definiere $\tilde{\varphi} \colon X \to \mathbb{R}$ durch $\tilde{\varphi}(x) := \inf_{y \in Y} \left(\varphi(x-y) + \psi(y) \right)$, $x \in X$. Es gilt $0 \leqslant \varphi(x+y-x-y) \leqslant \varphi(x-y) + \varphi(-x) + \varphi(y)$, womit folgt

$$\varphi(x-y) + \psi(y) \geqslant \varphi(-y) - \varphi(-x) - \psi(-y) \geqslant -\varphi(-x) > -\infty \qquad \forall x \in X, y \in Y$$

Also ist $\tilde{\varphi}$ wohldefiniert. Analog zu 2.20 folgt, dass $\tilde{\varphi}$ sublinear ist. Nach dem Satz von Hahn-Banach (2.21) existiert ein $\overline{\psi}\colon X\to\mathbb{R}$ linear mit $\overline{\psi}\leqslant \tilde{\varphi}\leqslant \varphi$. Es bleibt nur $\overline{\psi}|_Y=\psi$ zu zeigen.

Aus $\tilde{\varphi}(y_0) = \inf_{y \in Y} \varphi(y_0 - y) + \psi(y)$ folgt $\tilde{\varphi}|_Y \leqslant \psi$ mittels $y = y_0$. Weiter folgt aus 2.20, dass ψ minimal in $\mathcal{S}(Y)$ ist. Also muss insgesamt gelten:

$$\overline{\psi}\big|_Y\leqslant \tilde{\varphi}\big|_Y\leqslant \psi\quad\Longrightarrow\quad \psi=\overline{\psi}\big|_Y\qquad \qquad \Box$$

2.23. Satz

Sei nun X ein \mathbb{K} -Vektorraum und $p\colon X\to\mathbb{R}$ eine Halbnorm. Sei $Y\subset X$ ein Untervektorraum und $\psi\colon Y\to\mathbb{K}$ linear mit $|\psi(y)|\leqslant p(y)$ für $y\in Y$. Dann existiert $\overline{\psi}\colon X\to\mathbb{K}$ linear mit $\overline{\psi}\big|_Y=\psi$ und

$$|\overline{\psi}(x)| \leqslant p(x) \quad \text{ für } x \in X$$

Beweis

Sei zunächst $\mathbb{K}=\mathbb{R}$. p ist sublinear und es gilt $\psi\leqslant p|_Y$. Nach 2.22 existiert eine lineare Fortsetzung $\overline{\psi}\colon X\to\mathbb{R}$ mit $\overline{\psi}\leqslant p$. Es gilt auch

$$-\overline{\psi}(x) = \overline{\psi}(-x) \leqslant p(-x) = p(x) \quad \Longrightarrow \quad \left|\overline{\psi}(x)\right| \leqslant p(x) \quad \text{ für } x \in X$$

Sei nun $\mathbb{K}=\mathbb{C}$. Definiere $\psi_1:=\mathrm{Re}(\psi)\colon Y\to\mathbb{R}$. Dann ist ψ_1 \mathbb{R} -linear (warum?). Es gilt $|\psi_1(y)|\leqslant |\psi(y)|\leqslant p(y)$, $y\in Y$. Es existiert also ein \mathbb{R} -lineares $\overline{\psi}_1\colon X\to\mathbb{R}$ mit

$$\overline{\psi}_1(y) = \psi_1(y), \;\; y \in Y \quad \text{ und } \quad \left| \overline{\psi}_1(x) \right| \leqslant p(x), \;\; x \in X$$

Definiere jetzt $\overline{\psi}\colon X \to \mathbb{C}$ durch $\overline{\psi}(x) := \overline{\psi}_1(x) - i \cdot \overline{\psi}_1(i \cdot x)$, $x \in X$. Dann ist $\overline{\psi}$ \mathbb{C} -linear (warum?). Weiter gilt $\overline{\psi}(y) = \psi(y)$ für $y \in Y$. $(\operatorname{Re}(\overline{\psi}\big|_Y) = \operatorname{Re}(\psi)$ und $\overline{\psi}\big|_Y$ und ψ sind beide \mathbb{C} -linear). Zu $x \in X$ wähle $\lambda \in \mathbb{C}$ mit $|\lambda| = 1$ und

$$\left|\overline{\psi}(x)\right| = \lambda \cdot \overline{\psi}(x) = \overline{\psi}(\lambda \cdot x) = \overline{\psi}_1(\lambda \cdot x) \leqslant p(\lambda \cdot x) = |\lambda| \cdot p(x) = p(x)$$

2.24. Satz

Sei X ein normierter \mathbb{K} -Vektorraum, $Y\subset X$ ein Unterraum und $\psi\colon Y\to \mathbb{K}$ linear und stetig. Dann existiert eine stetige, lineare Fortsetzung $\overline{\psi}:X\to\mathbb{K}$ mit $\|\overline{\psi}\|_{\mathcal{L}(X,\mathbb{K})}=\|\psi\|_{\mathcal{L}(Y,\mathbb{K})}$.

Beweis

Definiere eine Halbnorm durch $p(x):=\|x\|\cdot\|\psi\|$. Wegen 2.7 gilt $|\psi(x)|\leqslant p(x)$, also besitzt ψ nach Satz 2.23 eine lineare Fortsetzung $\overline{\psi}$ mit $|\overline{\psi}(x)|\leqslant p(x)=\|\psi\|\cdot\|x\|$, $x\in X$. Es folgt $\|\overline{\psi}\|\leqslant \|\psi\|$. $\|\psi\|\leqslant \|\overline{\psi}\|$ ist trivial, da $\psi|_Y=\overline{\psi}$.

2.25. Definition

Sei X ein \mathbb{K} -Vektorraum. Sei $M \subset X$ eine Teilmenge. M heißt **konvex**, falls für $a, b \in M$, $\lambda \in [0,1]$ gilt

$$(1 - \lambda) \cdot a + \lambda \cdot b \in M$$

Ist X ein topologischer Vektorraum und $M\subset X$ konvex, so ist auch \overline{M} konvex.⁵ Ist $N\subset X$ eine beliebige Teilmenge, so definieren wir die **konvexe Hülle** von N durch

$$\operatorname{conv}(N) := \bigcap_{\substack{N \subset M \subset X \\ M \text{ konyex}}} M$$

conv(N) ist konvex. (warum?)

2.26. Satz

Sei X ein \mathbb{R} -Vektorraum, $\emptyset \neq M \subset X$ konvex, $\varphi \in \mathcal{S}(X)$. Dann existiert $\psi \colon X \to \mathbb{R}$ linear mit $\psi \leqslant \varphi$ und

$$\inf_{y \in M} \varphi(y) = \inf_{y \in M} \psi(y)$$
 [*]

⁵für normierte Vektorräume siehe Anhang A.2

Beweis

Setze $\mu := \inf_{y \in M} \varphi(y)$. Falls $\mu = -\infty$, so folgt die Behauptung aus dem Satz von Hahn-Banach 2.21. [*] ist dann trivialerweise erfüllt. Sei also $\mu \in \mathbb{R}$. Definiere $\tilde{\varphi} \colon X \to \mathbb{R}$ durch

$$\tilde{\varphi}(x) := \inf_{y \in M, \lambda \geqslant 0} \Bigl(\varphi(x + \lambda \cdot y) - \lambda \cdot \mu \Bigr), \quad x \in X$$

Es gilt $\varphi(x+\lambda\cdot y)-\lambda\cdot\mu\geqslant -\varphi(-x)$ für $x\in X,y\in M,\lambda\geqslant 0$ (siehe 2.20). Also ist $\tilde{\varphi}(x)\geqslant -\varphi(-x)>-\infty$ und $\tilde{\varphi}$ somit wohldefiniert. $\tilde{\varphi}$ ist sublinear:

- (i) $\tilde{\varphi}(\gamma \cdot x) = \gamma \cdot \tilde{\varphi}(x)$, für $x \in X$, $\gamma \in \geq 0$, wie in 2.22.
- (ii) Seien $x, z \in X$ und $\varepsilon > 0$. Wähle $y_x, y_z \in M$, $\lambda_x, \lambda_z \geqslant 0$ mit

$$\tilde{\varphi}(x) \geqslant \varphi(x + \lambda_x \cdot y_x) - \lambda_x \cdot \mu - \varepsilon \quad \text{ und } \quad \tilde{\varphi}(x) \geqslant \varphi(z + \lambda_z \cdot y_z) - \lambda_z \cdot \mu - \varepsilon$$

Es folgt

$$\tilde{\varphi}(x) + \tilde{\varphi}(z) \geqslant \varphi(x + z + \lambda_x \cdot y_x + \lambda_z \cdot y_z) - (\lambda_x + \lambda_z) \cdot \mu - 2\varepsilon$$

$$= \varphi\left(x + z + (\lambda_x + \lambda_z) \cdot \underbrace{\left(\frac{\lambda_x}{\lambda_x + \lambda_z} \cdot y_x + \frac{\lambda_z}{\lambda_x + \lambda_z} \cdot y_z\right)}_{\in M}\right) - (\lambda_x + \lambda_z) \cdot \mu - 2\varepsilon$$

$$\geqslant \tilde{\varphi}(x + z) - 2\varepsilon$$

Da $\varepsilon > 0$ beliebig war, gilt $\tilde{\varphi}(x) + \tilde{\varphi}(z) \geqslant \tilde{\varphi}(x+z)$ für alle $x, z \in X$.

Nach Hahn-Banach (2.21) existiert $\psi \colon X \to \mathbb{R}$ linear mit $\psi \leqslant \tilde{\varphi} \leqslant \varphi$. Für $y \in M$ gilt

$$-\psi(y) = \psi(-y) \leqslant \tilde{\varphi}(-y) \leqslant \varphi(-y+1 \cdot y) - 1 \cdot \mu = -\mu$$

also $\mu \leqslant \psi(y) \leqslant \varphi(y)$, woraus [*] folgt.

2.27. Satz

Sei X ein normierter \mathbb{R} -Vektorraum und $A,B\subset X$ nichtleere konvexe Teilmengen mit

$$dist(A, B) := \inf\{\|a - b\| \mid a \in A, b \in B\} > 0$$

Dann existiert $\psi \colon X \to \mathbb{R}$ stetig und linear mit $\psi(A) \cap \psi(B) = \emptyset$.

Beweis

 $A-B:=\{a-b\,|\,a\in A,b\in B\}\subset X$ ist konvex. (Warum?) Nach Satz 2.26 existiert, da Normen sublinear sind, $\psi\colon X\to\mathbb{R}$ linear mit $\psi\leqslant \|.\|$, und

$$0 < \operatorname{dist}(A, B) = \inf_{y \in A - B} \|y\| = \inf_{y \in A - B} \psi(y) = \inf_{a \in A} \psi(a) - \sup_{b \in B} \psi(b).$$

3. Operatoren zwischen Banachräumen. Die Sätze von der offenen Abbildung und vom abgeschlossenen Graphen

3.1. Proposition

RevChap3

Seien X, Y normierte Vektorräume, Y vollständig. Dann ist $\mathcal{L}(X, Y)$ vollständig bezüglich $\|.\|_{\mathcal{L}(X, Y)}$.

Beweis

Sei $(T_n)_{n\in\mathbb{N}}\subseteq\mathcal{L}(X,Y)$ eine Cauchy-Folge bezüglich $\|.\|_{\mathcal{L}(X,Y)}$. Für $x\in X$ ist dann auch $(T_nx)_{n\in\mathbb{N}}\subset Y$ Cauchy bezüglich $\|.\|_Y$. (Warum?)⁶ Da Y ein Banachraum ist, folgt $T_nx\xrightarrow{n\to\infty}y$ für ein $y\in Y$. Wir definieren $T:X\to Y$ durch $T(x):=\lim_{n\to\infty}T_n(x)$ für $x\in X$. T ist linear: Klar (Warum?).

T ist stetig: $(T_n)_{n\in\mathbb{N}}$ ist Cauchy, also auch $(\|T_n\|)_{n\in\mathbb{N}}\subset\mathbb{R}$ eine Cauchyfolge (Warum?)⁷. Dann existiert $C\geqslant 0$ mit $\|T_n\|_{\mathcal{L}(X,Y)}\leqslant C$, $n\in\mathbb{N}$, also gilt $\|Tx\|_Y\leqslant C\cdot\|x\|$, $x\in X$, woraus $\|T\|_{\mathcal{L}(X,Y)}\leqslant C$ und die Stetigkeit von T folgt. Also ist $T\in\mathcal{L}(X,Y)$.

Falls $\varepsilon > 0$, so existiert $n_0 \in \mathbb{N}$ mit $||T_n - T_m||_{\mathcal{L}(X,Y)} < \varepsilon$ für $n, m \geqslant n_0$. Insbesondere:

$$\|(T_n - T_m)x\|_Y \leqslant \|T_n - T_m\|_{\mathcal{L}(X,Y)} \cdot \|x\|_X < \varepsilon \cdot \|x\|_X$$

für $n, m \ge n_0, x \in X$. Weiter gilt

$$||(T_n - T)x||_Y \le ||(T_n - T_m)x||_Y + ||(T_m - T)x||_Y \le ||T_n - T_m||_{\mathcal{L}(X,Y)} \cdot ||x||_X + ||(T_m - T)x||_Y$$

$$\le \varepsilon \cdot ||x||_X + \varepsilon \cdot ||x||_X$$

für $n,m\geqslant n_0$ und m groß genug, $x\in X$. Damit folgt nun $\|T_n-T\|_{\mathcal{L}(X,Y)}\leqslant \varepsilon$ für $n\geqslant n_0$, also $T_n\to T$ bezüglich $\|.\|_{\mathcal{L}(X,Y)}$.

3.2. Corollar

- (i) Der Dualraum X^* eines normierten \mathbb{K} -Vektorraumes X ist vollständig.
- (ii) Falls $\{0\} \neq X$ ein Banachraum ist, so ist $\mathcal{L}(X,X)$ eine Banachalgebra.

Beweis

- (i) $X^* = \mathcal{L}(X, \mathbb{K})$ und \mathbb{K} ist vollständig. Wende 3.1 an.
- (ii) $\mathcal{L}(X,X)$ ist ein Banachraum nach 3.1. $\mathcal{L}(X,X)$ ist eine normierte Algebra:
 - $\|\operatorname{id}_X\|_{\mathcal{L}(X,X)} = 1$

(Warum?)

• Für $S,T\in\mathcal{L}(X,X)$, $x\in X$ gilt

$$||(S \circ T)x||_X \le ||S|| \cdot ||Tx||_X \le ||S|| \cdot ||T|| \cdot ||x||_X$$

Also ist $||S \circ T|| \leq ||S|| \cdot ||T||$.

3.3. Definition und Proposition

Sei X ein normierter Raum. Definiere $\iota_X \colon X \to X^{**} \ (= (X^*)^*)$ durch

$$x \longmapsto (\varphi \mapsto \varphi(x))$$

für $x \in X$. Die Abbildung ι_X ist eine lineare Isometrie.

$$\begin{array}{c|c} {}^{6}\text{mit } \|T_{n}x-T_{m}x\|_{Y} \leqslant \|T_{n}-T_{m}\|\cdot\|x\| \\ {}^{7}\text{mit } \|T_{n}\| = \|T_{n}-T_{n_{0}}+T_{n_{0}}\| \leqslant \|T_{n}-T_{n_{0}}\| + \|T_{n_{0}}\| \end{array}$$

Beweis

Wohldefiniertheit: Die Linearität von $\iota_X(x)$ ist klar. Mit

$$|\iota_X(x)(\varphi)| = |\varphi(x)| \le ||\varphi||_{X^*} \cdot ||x||_X = ||x||_X \cdot ||\varphi||_{X^*}$$

folgt $\varphi \in X^*$ und somit $\|\iota_X(x)\|_{X^{**}} \leq \|x\|_X$, also ist $\iota_X(x)$ stetig.

 ι_X ist linear: Für $\alpha, \beta \in \mathbb{K}, x, y \in X, \varphi \in \mathcal{L}(X, \mathbb{K}) = X^*$ gilt

$$\iota_X(\alpha \cdot x + \beta \cdot y)(\varphi) = \varphi(\alpha \cdot x + \beta \cdot y) = \alpha \circ \varphi(x) + \beta \cdot \varphi(y) = \alpha \cdot \iota_X(x)(\varphi) + \beta \cdot \iota_X(y)(\varphi)$$
$$= (\alpha \cdot \iota_X(x) + \beta \cdot \iota_X(y))(\varphi)$$

Isometrie: Es bleibt zu zeigen: $\|\iota_X(x)\|_{X^{**}}\geqslant \|x\|_X$ für $0\neq x\in X$. Sei $Y:=\mathbb{K}\cdot x$ und $\psi:Y\to\mathbb{K}$ gegeben durch $\psi(\alpha\cdot x):=\alpha\cdot \|x\|_X$. Dann ist $Y\subset X$ ein linearer Unterraum und $\psi(Y)\to\mathbb{K}$ linear mit $\|\psi\|=1$. Nach Satz 2.24 existiert $\overline{\psi}.X\to\mathbb{K}$ linear mit $\overline{\psi}(x)=\psi(x)=\|x\|_X$ und $\|\overline{\psi}\|=\|\psi\|=1$. Es gilt

$$\|\iota_X(x)\|_{X^{**}} \geqslant |\iota_X(x)(\overline{\psi})| = |\overline{\psi}(x)| = \|x\|_X.$$

3.4. Definition und Proposition

Seien X,Y normierte Räume. Definiere eine Abbildung . $^{\mathrm{tr}}\colon \mathcal{L}(X,Y) \to \mathcal{L}(Y^*,X^*)$ durch $T \mapsto T^{\mathrm{tr}} = (\varphi \mapsto \varphi \circ T)$. . $^{\mathrm{tr}}$ ist eine lineare Isometrie und das Diagramm

$$\begin{array}{ccc} X & \xrightarrow{\iota_X} & X^{**} \\ \downarrow^T & & \downarrow^{T^{\mathrm{tr}\,\mathrm{tr}}} = (T^{\mathrm{tr}})^{\mathrm{tr}} \\ Y & \xrightarrow{\iota_Y} & Y^{**} \end{array}$$

kommutiert für jedes $T \in \mathcal{L}(X,Y)$. Für $\iota_{X^*} : X^* \to X^{***}$ und $\iota_X^{\mathrm{tr}} : X^{***} \to X^*$ gilt $\iota_X^{\mathrm{tr}} \circ \iota_{X^*} = \mathrm{id}_{X^*}$.

Beweis

(i) Für $T, S \in \mathcal{L}(X, Y)$, $\alpha, \beta \in \mathbb{K}$, $\varphi \in Y^*$ gilt

$$(\alpha \cdot T + \beta \cdot S)^{\mathrm{tr}}(\varphi) = \varphi \circ (\alpha \cdot T + \beta \cdot S)^{\underset{=}{\mathsf{linear}}} \alpha \cdot (\varphi \circ T) + \beta \cdot (\varphi \circ S) = \alpha \cdot T^{\mathrm{tr}}(\varphi) + \beta \cdot S^{\mathrm{tr}}(\varphi) \\ = (\alpha \cdot T^{\mathrm{tr}} + \beta \cdot S^{\mathrm{tr}})(\varphi)$$

(ii) Für $x \in X$, $\psi \in Y^*$ gilt $(\iota_Y T(x))(\psi) = \psi(T(x))$; weiter gilt

$$(T^{\operatorname{tr} \operatorname{tr}} \iota_X(x))(\psi) = ((T^{\operatorname{tr}})^{\operatorname{tr}} \iota_X(x))(\psi) = (\iota_X(x) \circ T^{\operatorname{tr}})(\psi) = \iota_X(x)(T^{\operatorname{tr}}(\psi))$$
$$= T^{\operatorname{tr}}(\psi)(x) = \psi \circ T(x)$$
$$= \iota_Y(T(x))(\psi)$$

 $\Rightarrow T^{\operatorname{tr}\operatorname{tr}}\iota_X(x)=\iota_Y\big(T(x)\big)=\iota_Y\circ T(x). \text{ Also } T^{\operatorname{tr}\operatorname{tr}}\circ\iota_X=\iota_Y\circ T. \text{ Also kommutiert das Diagramm.}$

(iii) Es ist $|(T^{\mathrm{tr}}\psi)(x)| = |\psi T(x)| \leqslant \|\psi\|_{Y^*} \cdot \|Tx\|_Y \leqslant \|\psi\|_{Y^*} \cdot \|T\|_{\mathcal{L}(X,Y)} \cdot \|x\|_X$. Also ist $\|T^{\mathrm{tr}}\psi\|_{X^*} \leqslant \|\psi\|_{Y^*} \cdot \|T\|_{\mathcal{L}(X,Y)}$ und damit folgt

$$||T^{\operatorname{tr}}||_{\mathcal{L}(Y^*,X^*)} \leqslant ||T||_{\mathcal{L}(X,Y)}$$

Ebenso ist $\|T^{\mathrm{tr}\,\mathrm{tr}}\|_{\mathcal{L}(X^{**},Y^{**})} \leqslant \|T^{\mathrm{tr}}\|_{\mathcal{L}(Y^{*},X^{*})} \leqslant \|T\|_{\mathcal{L}(X,Y)}$. Andererseits gilt $\|T\|_{\mathcal{L}(X,Y)} \leqslant \|T^{\mathrm{tr}\,\mathrm{tr}}\|_{\mathcal{L}(X^{**},Y^{**})}$ nach 3.3 und da das Diagramm kommutiert (Warum?).

$$\Rightarrow \|T\|_{\mathcal{L}(X,Y)} \leqslant \|T^{\mathrm{tr}}\|_{\mathcal{L}(Y^*,X^*)} \leqslant \|T\|_{\mathcal{L}(X,Y)}$$

also ist .tr eine Isometrie.

(iv) Für $\varphi \in X^*$, $x \in X$ gilt

$$(\iota_X^{\mathrm{tr}} \circ \iota_{X^*}(\varphi))(x) = \iota_{X^*}(\varphi) \circ \iota_X(x) = \iota_X(x)(\varphi) = \varphi(x)$$

$$\Rightarrow \iota_X^{\mathrm{tr}} \circ \iota_{X^*}(\varphi) = \varphi, \text{ also } \iota_X^{\mathrm{tr}} \circ \iota_{X^*} = \mathrm{id}_{X^*}.$$

3.5. Satz: Prinzip der gleichmäßigen Beschränktheit für Banachräume

Sei X ein Banachraum und Y ein normierter Raum. Sei $M \subset \mathcal{L}(X,Y)$, sodass die Menge

$$\left\{x\mapsto \left\|Tx\right\|_{Y}\,\middle|\, T\in M\right\}\subset C(X,\mathbb{R})$$

punktweise **gleichmäßig beschränkt** ist, d.h. für $x \in X$ existiert $C_x \geqslant 0$ mit $||Tx||_Y \leqslant C_x$, $T \in M$. Dann existiert $C \geqslant 0$ mit $||T||_{\mathcal{L}(X,Y)} \leqslant C$, $T \in M$.

Beweis

Nach Corollar 1.12 (Prinzip der gleichmäßigen Beschränktheit für metrische Räume) existieren eine offene Kugel $\emptyset \neq B(x_0,\varepsilon) \subset X$ und $K\geqslant 0$ mit $\|Tx\|_Y\leqslant K$ für $x\in B(x_0,\varepsilon)$, $T\in M$. Für $x\in X$ mit $\|x\|\leqslant 1$ gilt

$$\begin{aligned} \|Tx\|_X &= \frac{e}{\varepsilon} \cdot \left\| T\left(\frac{\varepsilon}{2} \cdot x\right) \right\|_Y = \frac{2}{\varepsilon} \cdot \left\| T\left(\frac{\varepsilon}{2} \cdot x + x_0 - x_0\right) \right\|_Y \\ &\leqslant \frac{2}{\varepsilon} \cdot \left(\left\| T\left(\frac{\varepsilon}{2} \cdot x + x_0\right) \right\|_Y + \left\| T\left(\frac{x_0}{\varepsilon B(x_0, \varepsilon)}\right) \right\|_Y \right) \\ &\leqslant \frac{2}{\varepsilon} (K + K) = \frac{4K}{\varepsilon} \end{aligned}$$

$$\Rightarrow ||T||_{\mathcal{L}(X,Y)} \leqslant \frac{4K}{\varepsilon} =: C.$$

3.6. Corollar

Sei Z ein metrischer Raum und $N\subset Z$ eine Teilmenge, so dass gilt: Für alle $\varphi\in Z^*$ existiert $C_{\varphi}\geqslant 0$ mit $|\varphi(z)|\leqslant C_{\varphi}$, $z\in N$. Dann ist N beschränkt.

Beweis

 $\iota_Z:Z\to Z^{**}$ ist eine Isometrie nach 3.3. Wende Satz 3.5 an mit $X=Z^*$, $Y=\mathbb{K}$ und $M=\iota_Z(N)\subset Z^{**}=\mathcal{L}(Z^*,\mathbb{K})$. Für $\varphi\in X=Z^*$ existiert $C_\varphi\geqslant 0$ mit $|T\varphi|=|\iota_Z(z)(\varphi)|=|\varphi(z)|\leqslant C_\varphi$, wo $T=\iota_Z(z)\in M$ für ein $z\in N$. Nach 3.5 folgt: Es existiert ein $C\geqslant 0$ mit $\|z\|_Z=\|\iota_Z(z)\|_{Z^{**}}\leqslant C$, $z\in N$.

3.7. Corollar

Sei X ein Banachraum und Z ein normierter Raum. $M\subset \mathcal{L}(X,Z)$ eine Teilmenge, so dass gilt: Für alle $\varphi\in Z^*$ und $x\in X$ existiert $C_{x,\varphi}\geqslant 0$ mit

$$|\varphi(T(x))| \leqslant C_{x,\varphi}, \quad T \in M$$

Dann ist M beschränkt.

Beweis

Für jedes $x \in X$ folgt aus Corollar 3.6 mit $N := \{T(x) \mid T \in M\}$, dass N beschränkt ist. Es folgt, dass $\{x \mapsto \|T(x)\| \mid T \in M\}$ ist punktweise gleichmäßig beschränkt. Mit Satz 3.5 folgt: M ist beschränkt. \square

3.8. Satz: Prinzip der offenen Abbildung

Seien X,Y Banachräume, $T\in\mathcal{L}(X,Y)$ surjektiv. Dann ist T offen, d.h. für eine offene Menge $U\subset X$ ist $T(U)\subset Y$ offen.

Beweis

(i) Sei $0 \in W \subset X$ offen, dann existiert $\emptyset \neq V \subset Y$ offen mit $V \subset \overline{T(W)}$: $0 \in W \subset X \Rightarrow B(0,\varepsilon) \subset W$ für ein $\varepsilon > 0$. Dann gilt

$$X = \bigcup_{n \in \mathbb{N}} n \cdot B(0, \varepsilon) = \bigcup_{n \in \mathbb{N}} n \cdot W$$

Aus der Surjektivität von T folgt $Y=\bigcup_{n\in\mathbb{N}}n\cdot T(W)=\bigcup_{n\in\mathbb{N}}n\cdot \overline{T(W)}$. Nach dem Satz von Baire (1.10) folgt: Ein $n\cdot \overline{T(W)}$ enthält eine nichtleere offene Teilmenge, also auch $\overline{T(W)}$.

(ii) Sei $= \in M \subset X$ offen, dann ist 0 ein innerer Punkt von $\overline{T(M)}$:

Die Abbildung $X \times X \to X$, $(x_1, x_2) \mapsto x_1 - x_2$ ist stetig.⁸ \Rightarrow es gibt $0 \in W \subset X$ offen mit

$$W - W = \{x_1 - x_2 \mid x_1, x_2 \in W\} \subset M$$

Es folgt

$$\overline{T(M)}\supset \overline{T(W-W)}=\overline{T(W)-T(W)}\overset{\text{(Warum?)}}{\supset}\overline{T(W)}-\overline{T(W)}\overset{\text{(i)}}{\supset}V-V$$

für $\emptyset \neq V$ offen in Y wie in (i). Aber $0 \in V - V = \bigcup_{y \in V} \{y\} - V$ ist offen in Y. Also ist 0 ein innerer Punkt von $\overline{T(M)}$.

(iii) Ist $0 \in N \subset X$ offen, so existiert $0 \in Z \subset Y$ offen mit $Z \subset T(M)$:

Sei $\varepsilon_0>0$. Wähle $\varepsilon_i>0$, $1\leqslant i\in\mathbb{N}$ mit $\sum_{i=1}^\infty \varepsilon_i<\varepsilon_0$. Nach (ii) gilt: Zu ε_i , $i\in N$ existiert ein $\delta_i>0$ mit $B_Y(0,\delta_i)\subset\overline{T(B_X(0,\varepsilon_i))}$. Es gilt $\delta_i\xrightarrow{i\to\infty}0$. Sei nun $y\in B_Y(0,\delta_0)=:Z$. Dann gilt $y\in\overline{T(B_X(0,\varepsilon_0))}$. \Rightarrow es existiert $x_0\in B_X(0,\varepsilon)$ mit $\|y-T(x_0)\|_Y<\delta_1$. Folglich existiert $x_1\in B_X(0,\varepsilon_1)$ mit $\|y-T(x_0)-T(x_1)\|_Y<\delta_2$. Per Induktion folgt

$$\exists x_i \in B_X(0, \varepsilon_i) \text{ mit } \left\| y - \sum_{j=0}^i T(x_i) \right\|_Y < \delta_{i+1}, \qquad i \in \mathbb{N}$$

 $\sum_{i\in\mathbb{N}}x_i$ konvergiert in X und $\left\|\sum_{i\in\mathbb{N}}x_i\right\|_X<2\cdot\varepsilon_0$, es gilt $T\left(\sum_{i\in\mathbb{N}}x_i\right)=y$. $(x_i\in N,$ falls $B(0,2\varepsilon_0)\subset N)$

(iv) Sei $U \subset X$ offen. Dann ist $T(U) \subset Y$ offen:

Zu $x \in U$ existiert $0 \in N \subset X$ offen mit $x + N \subset U$, also $T(x) + T(N) \subset T(U)$. Nach (iii) existiert $0 \in Z \subset Y$ offen mit $Z \subset T(N)$, also $T(x) + Z \subset T(U)$. Aber $T(x) \in T(x) + Z$ ist offen in Y und T(U) ist Umgebung von T(x). $x \in U$ war beliebig, also ist T(U) offen. \square

3.9. Corollar: Satz von der inversen Abbildung

Seien X,Y Banachräume, $T\in\mathcal{L}(X,Y)$ bijektiv. Dann gilt $T^{-1}\in\mathcal{L}(Y,X)$, d.h. T ist ein Homöomorphismus.

Beweis

Nach Satz 3.8 ist T offen und somit ist T^{-1} stetig.

⁸Banachräume sind topologische Vektorräume

3.10. Corollar

Sei X ein Vektorraum und seien $\mathcal{T}_1, \mathcal{T}_2$ zwei Topologien auf X, die durch Banachraumnormen $\|\cdot\|_1$ und $\|\cdot\|_2$ induziert sind. Falls $\mathcal{T}_1 \subset \mathcal{T}_2$, so gilt bereits $\mathcal{T}_1 = \mathcal{T}_2$.

Beweis

 $\mathcal{T}_1 \subset \mathcal{T}_2 \Rightarrow (X, \mathcal{T}_2) \xrightarrow{\mathrm{id}_X} (X, \mathcal{T}_1)$ ist stetig und bijektiv, also ist id_X nach 3.9 ein Homöomorphismus. \square

3.11. Corollar

Sei X ein Banachraum mit abgeschlossenen Teilräumen X_1, X_2 , sodass $X_1 \cap X_2 = \{0\}$ und $X = X_1 + X_2$. Dann sind X und $X_1 \times X_2$ als topologische Vektorräume isomorph.

Beweis

Die Abbildung $X_1 \times X_2 \to X$, $(x_1, x_2) \mapsto x_1 + x_2$ ist linear und bijektiv. Sie ist stetig, wegen

$$||x_1 + x_2||_X \le ||x_1||_X + ||x_2||_X = ||(x_1, x_2)||_{1, X_1 \times X_2}$$

Mit Corollar 3.9 folgt die Behauptung.

4. L^p -Räume und der Satz von Riesz-Fischer

RevChap4

4.1. Erinnerung

Sei (X, Σ, μ) ein **Maßraum**. $f: X \to (-\infty, \infty]$ heißt **messbar**, falls $f^{-1}(E) \in \Sigma$ gilt für $E \subset \mathcal{B}(\mathbb{R})$ (Borelmengen). $s: X \to (-\infty, \infty]$ heißt **einfach**, falls s(X) endlich. Für $f: X \to [0, \infty]$ messbar setze

Def. hinzufügen

$$\int f \, \mathrm{d}\mu := \sup \biggl\{ \int s \, \mathrm{d}\mu \, \bigg| \, s \text{ einfach, messbar }, 0 \leqslant s \leqslant f \biggr\}$$

Für $f: X \to (-\infty, \infty]$ messbar setze $\int f \, \mathrm{d}\mu := \int f_+ \, \mathrm{d}\mu - \int f_- \, \mathrm{d}\mu$, falls $\int f_- \, \mathrm{d}\mu < \infty$. Betrachte

$$\mathcal{L}^1(\mu) := \left\{ f: X o \mathbb{R} \; \mathsf{messbar} \, igg| \, \int \lvert f
vert \, \mathrm{d} \mu < \infty
ight\}$$

mit der Halbnorm $\|f\|_1 := \int |f| \,\mathrm{d}\mu$. Setze nun $\mathcal{N}^1 := \{f: X \to \mathbb{R} \text{ messbar } |\int |f| \,\mathrm{d}\mu = 0\}$. $L^1(\mu)$ ist ein topologischer Vektorraum (Topologie induziert durch $\|\cdot\|_1$) und $\mathcal{N}^1 \subset \mathcal{L}^1(\mu)$ ist ein abgeschlossener Untervektorraum (Übung). Definiere

$$L^1(\mu) := \mathcal{L}^1/\mathcal{N}^1$$

 $\|\cdot\|_1$ induziert eine Norm $\|\cdot\|_1$ auf $L^1(\mu)$ via

$$\left\|f+\mathcal{N}^1\right\|_1:=\left\|f\right\|_1\quad,\quad f\in\mathcal{L}^1(\mu) \tag{"Übung"}$$

 $(L^1(\mu), \|\cdot\|_1)$ ist ein Banachraum (Ana III, 9.23).

4.2. Beispiele

- (i) $L^1(\mathbb{R}^n):=L^1(\mathbb{R}^n,\Lambda,\lambda)$, wobei Λ die Lebesgue-messbaren Mengen sind und λ das Lebesgue-Maß ist.
- (ii) $\ell^1(\mathbb{N}) = L^1(\mathbb{N}, \mathcal{P}(\mathbb{N}), \delta) = \{f : \mathbb{N} \to \mathbb{R} \mid \sum |f(n)| < \infty \}$, wobei δ das Zählmaß¹⁰ ist.

4.3. Definition und Proposition

Für einen Maßraum (X, Σ, μ) definiere

$$\mathcal{L}^p(\mu) := \left\{ f: X o \mathbb{R} \; \mathsf{messbar} \, \middle| \, \int |f|^p \mathrm{d}\mu < \infty
ight\}$$
 $\mathcal{N}^p := \left\{ f: X o \mathbb{R} \; \mathsf{messbar} \, \middle| \, \int |f|^p \mathrm{d}\mu = 0
ight\}$

 $\mathcal{L}^p(\mu)$ und \mathcal{N}^p sind Vektorräume; wir setzen

$$L^p(\mu) := \mathcal{L}^p(\mu)/\mathcal{N}^p$$

Definiere $\|\cdot\|_p:\mathcal{L}^p(\mu)\to [0,\infty)$ durch $\|f\|_p:=\left(\int |f|^p\mathrm{d}\mu\right)^{1/p}$. $\|\cdot\|_p$ induziert eine Abbildung $\|\cdot\|_p:L^P(\mu)\to [0,\infty)$ via $\|f+\mathcal{N}^p\|_p:=\|f\|_p$, für $f\in\mathcal{L}^p$.

 $^{^{9}}X$ Menge, Σ eine σ -Algebra, μ Maß

¹ºsiehe auch http://de.wikipedia.org/wiki/Zählmaß_(Maßtheorie) ☑

Beweis

 $\mathcal{L}^p(\mu)$ ist Vektorraum: Für $f,g\in\mathcal{L}^p(\mu)$ und $\alpha,\beta\in\mathbb{R}$

$$\int |\alpha \cdot f + \beta \cdot g|^p d\mu \leqslant \int (|\alpha \cdot f| + |\beta \cdot g|)^p d\mu \leqslant \int (2 \cdot \sup\{|\alpha \cdot f|, |\beta \cdot g|\})^p d\mu$$

$$\leqslant \int (2^p \cdot \sup\{|\alpha \cdot f|^p, |\beta \cdot g|^p\}) d\mu$$

$$\leqslant \int 2^p \cdot (|\alpha \cdot f|^p + |\beta \cdot g|^p) d\mu < \infty$$

 \mathcal{N}^p ist Vektorraum: Übung.

 $\|\cdot\|_p$ wohldefiniert auf $L^p(\mu)$: Übung.

4.4. Proposition

Für $\alpha, \beta \geqslant 0$, p, q > 1 mit $\frac{1}{p} + \frac{1}{q} = 1$. Dann gilt

$$\alpha \cdot \beta \leqslant \frac{\alpha^p}{p} + \frac{\beta^q}{q} \tag{#}$$

Dies ist ein Spezialfall der Youngschen Ungleichung, Wikipedia-Link .

Beweis

$$\frac{1}{p} + \frac{1}{q} = 1 \iff p + q = pq \iff (p - 1)(q - 1) = 1 \iff p(q - 1) = q \iff q(p - 1) = p$$

Falls $\beta = \alpha^{p-1}$, so gilt $\alpha \cdot \beta = \alpha^p$ und

$$\frac{\alpha^p}{p} + \frac{\beta^q}{q} = \frac{\alpha^p}{p} + \frac{(\alpha^{p-1})^q}{q} = \frac{\alpha^p}{p} + \frac{\alpha^p}{q} = \alpha^p = \alpha \cdot \beta$$

Also gilt Gleichheit in [#]. Für festes $\alpha\geqslant 0$ betrachte $f_\alpha:[0,\infty)\to [0,\infty)$ gegeben durch $f_\alpha(\beta):=\frac{\alpha^p}{p}+\frac{\beta^q}{q}-\alpha\cdot\beta$. Dann ist f_α stetig auf $[0,\infty)$ und differenzierbar auf $(0,\infty)$. Es gilt $f'_\alpha(\beta)=\beta^{q-1}-\alpha$ und weiter

$$f'_{\alpha}(\beta) = 0 \iff \beta^{q-1} = \alpha \iff \beta = \alpha^{p-1}$$

 $f_{\alpha}''(\alpha^{p-1})\geqslant 0$, also hat f_{α} bei $\beta=\alpha^{p-1}$ ein lokales Minimum. Es gilt $f_{\alpha}(\alpha^{p-1})=0\leqslant f_{\alpha}(0)$, also hat f_{α} bei $\beta=\alpha^{p-1}$ ein globales Minimum. \Rightarrow [#].

4.5. Satz: Höldersche Ungleichung

Sei (X, Σ, μ) ein Maßraum. Seien $p, q \geqslant 1$ mit $\frac{1}{p} + \frac{1}{q} = 1$, $f \in \mathcal{L}^p(\mu)$, $g \in \mathcal{L}^q(\mu)$. Dann gilt $f \cdot g \in \mathcal{L}^1 \mu$ und

$$||f \cdot g||_1 \le ||f||_p \cdot ||g||_q$$

Die entsprechenden Aussagen gelten dann auch für $L^p(\mu)$, $L^q(\mu)$, $L^1(\mu)$.

Beweis

Klar, falls $\|f\|_p=0$ oder $\|g\|_q=0$ (Warum?). Sei also $\|f\|_p,\|g\|_q\neq 0$. Nach Proposition 4.4 gilt für $x\in X$

$$0 \leqslant \underbrace{\frac{|f(x)|}{\|f\|_p} \cdot \underbrace{\frac{|g(x)|}{\|g\|_q}}_{\text{messbar}} \leqslant \underbrace{\frac{1}{p} \cdot \frac{|f(x)|^p}{\|f\|_p^p} + \frac{1}{q} \cdot \frac{|g(x)|^q}{\|g\|_q^q}}_{\text{integrierbar}}$$

 $|f|^p, |g|^q \in \mathcal{L}^1(\mu)$, also $|f \cdot g| \in \mathcal{L}^1(\mu)$. Es gilt

$$\frac{\int |f \cdot g| \mathrm{d}\mu}{\|f\|_p \cdot \|g\|_q} \leqslant \frac{1}{p} \cdot \frac{\int |f|^p \mathrm{d}\mu}{\|f\|_p^p} + \frac{1}{q} \cdot \frac{\int |g|^q \mathrm{d}\mu}{\|g\|_q^q} = \frac{1}{p} + \frac{1}{q} = 1$$

 $\Rightarrow \inf |f \cdot g| d\mu \leqslant ||f||_p \cdot ||g||_q.$

4.6. Satz: Minkowskische Ungleichung

Für $1\leqslant p<\infty$, $f,g\in\mathcal{L}^p(\mu)$ (bzw. $L^p(\mu)$) gilt die Minkowski-Ungleichung

$$||f + g||_p \le ||f||_p + ||g||_p$$

Beweis

Sei $||f+g||_p>0$ (sonst trivial). Es gilt

$$|f+g|^p = |f+g|^{p-1} \cdot |f+g| \le |f+g|^{p-1} (|f|+|g|)$$

Sei q>1 mit $\frac{1}{p}+\frac{1}{q}=1$. Es gilt $|f+g|^{p-1}\in\mathcal{L}^q(\mu)$, da $|f+g|^{(p-1)q}=|f+g|^p\in\mathcal{L}^1(\mu)$. Nach Hölder 4.5 gilt

$$\begin{split} \int &|f+g|^p \mathrm{d}\mu \leqslant \int &|f+g|^{p-1}|f| \mathrm{d}\mu + \int &|f+g|^{p-1}|g| \mathrm{d}\mu \leqslant \|f\|_p \cdot \left\||f+g|^{p-1}\right\|_q + \|g\|_p \cdot \left\||f+g|^{p-1}\right\|_q \\ &= \left(\|f\|_p + \|g\|_p\right) \cdot \left(\int |f+g|^{(p-1)q} \mathrm{d}\mu\right)^{\frac{1}{q}} \\ &= \left(\|f\|_p + \|g\|_p\right) \cdot \left(\int |f+g|^p \mathrm{d}\mu\right)^q \end{split}$$

Also gilt

$$\left(\int |f+g|^p d\mu\right)^{1-\frac{1}{q}} = \left(\int |f+g|^p d\mu\right)^{\frac{1}{p}} \le ||f||_p + ||g||_p$$

4.7. Corollar

 $L^p(\mu)$ ist ein normierter Vektorraum für $1\leqslant p<\infty$.

4.8. Definition und Proposition

$$\mathcal{L}^{\infty}(\mu) := \{ f : X \to \mathbb{R} \text{ messbar} \, | \, \exists C \geqslant 0 : |f| \leqslant C \text{ fast "uberall} \}$$
$$\mathcal{N}^{\infty} := \{ f : X \to \mathbb{R} \, | \, f = 0 \text{ fast "uberall} \}$$

Wir definieren $L^{\infty}(\mu) := \mathcal{L}^{\infty}(\mu)/\mathcal{N}^{\infty}$. Wir definieren eine Norm auf $\mathcal{L}^{\infty}(\mu)$ durch

$$||f||_{\infty} := \inf\{C \mid |f| \leqslant C \text{ fast "uberall}\}$$
, $f \in \mathcal{L}^{\infty}(\mu)$

Dies induziert wieder eine Norm auf $L^\infty(\mu)$ durch $\|f+\mathcal{N}\|_\infty := \|f\|_\infty$. Damit ist $(L^\infty(\mu), \|\cdot\|_\infty)$ ein normierter Vektorraum. Für $f \in L^1(\mu), g \in L^\infty(\mu)$ gilt $f \cdot g \in L^1(\mu)$ und $\|f \cdot g\|_1 \leqslant \|f\|_1 \cdot \|g\|_\infty$

Beweis

Übung.

4.9. Beispiele

- (i) $(\mathbb{R}^n, \|\cdot\|_p)$, $1 \leqslant p < \infty$, also $X = \{1, \dots, n\}, \Sigma = \mathcal{P}(X), \mu = \mathsf{Z\ddot{a}hlma}$.
- (ii) $(\ell^p(\mathbb{N}), \|\cdot\|_p)$, $1 \leqslant p \leqslant \infty$, also $X = \mathbb{N}, \Sigma = \mathcal{P}(\mathbb{N}), \mu = Z \ddot{a}hlma \dot{b}$. Dabei ist

$$\ell^p(\mathbb{N}) = \left\{ (a_n)_n \, \middle| \, a_n \in \mathbb{R}, \sum_{n \in \mathbb{N}} |a_n|^p < \infty \right\}$$

für $p < \infty$ bzw. $\ell^p(\mathbb{N}) = \{ \text{beschränkte Folgen} \}$ für $p = \infty$.

4.10. Proposition

Sei (X, Σ, μ) ein Maßraum, p, q > 1 mit $\frac{1}{p} + \frac{1}{q} = 1$, bzw. p = 1, $q = \infty$. Die Abbildung $\iota_p : L^p(\mu) \to L^q(\mu)^*$, gegeben durch

$$\iota_p(f)(g) := \int f \cdot g \, \mathrm{d}\mu$$

ist eine lineare Isometrie.

Beweis

 $\iota_p(f):L^q(\mu) o\mathbb{R}$ ist linear und wohldefiniert: Übung!

 ι_p linear und wohldefiniert: Übung!

 $\iota_p(f)$ ist beschränkt durch $\|f\|_p$ nach Hölder (4.5), also ist ι_p beschränkt durch 1. Noch zu zeigen: Zu $f \in L^p(\mu)$ existiert $g \in L^q(\mu)$ mit $|\iota_p(f)(g)| = \|f\|_p \cdot \|g\|_q$. (Denn dann $\|\iota_p(f)\|_{L^q(\mu)^*} \geqslant \|f\|_p$) Gegeben $f \in L^p(\mu)$, setze $g := \mathrm{sgn}(f) \cdot |f|^{p-1}$. Dann ist $|g|^q = |f|^p$, also $g \in L^q(\mu)$. Weiter gilt

$$\int f \cdot g \, \mathrm{d}\mu = \int |f \cdot g| \mathrm{d}\mu = \int |f|^p \mathrm{d}\mu = \left(\int |f|^p \mathrm{d}\mu\right)^{\frac{1}{p}} \cdot \left(\int |f|^p \mathrm{d}\mu\right)^{\frac{1}{q}} = \|f\|_p \cdot \|g\|_q$$

Für p=1 und $q=\infty$ Übung.

4.11. Satz von Riesz-Fischer

Sei (X, Σ, μ) ein Maßraum. $L^p(\mu)$ ist vollständig für $p \in [1, \infty]$.

Beweis

Für $p=\infty$: Übung. Sei also $p<\infty$ und sei $(f_n)_{n\in\mathbb{N}}\subset L^p(\mu)$ Cauchy.

Behauptung: Es gibt $E_l \subset X$, $l \in \mathbb{N}$, messbare Teilmenge mit $\mu(E_l) < \infty$ und sodass für $E := \bigcup_{l \in \mathbb{N}} E_l$ gilt $\chi_{X \setminus E} \cdot f_n = 0$ in $L^p(\mu)$ für $n \in \mathbb{N}$. Beweis: Übung!

Wähle $n_0 < n_1 < \ldots$ mit $\|f_n - f_{n_k}\|_p < \frac{1}{2^k}$ für $n > n_k$, $k \in \mathbb{N}$. Für jedes $l, k \in \mathbb{N}$ gilt $\left|f_{n_{k+1}} - f_{n_k}\right| \in L^p(\mu)$ und $\chi_{E_l} \in L^q(\mu)$ (wobei $\frac{1}{p} + \frac{1}{q} = 1$), also ist nach Hölder (4.5) auch $\left|f_{n_{k+1}} - f_{n_k}\right| \cdot \chi_{E_l} \in L^1(\mu)$. Weiter gilt für $j \in \mathbb{N}$, $l \in \mathbb{N}$

$$\sum_{k=0}^{j} \left\| \left| f_{n_{jk+1}} - f_{n_k} \right| \cdot \chi_{E_l} \right\|_1 \leqslant \sum_{k=0}^{j} \left\| f_{n_{k+1}} - f_{n_k} \right\|_p \cdot \left\| \chi_{E_l} \right\|_q \leqslant \sum_{k=0}^{j} \frac{1}{2^k} \cdot \left\| \chi_{E_l} \right\|_q$$

 $\left(\sum_{k=0}^{j} \left|f_{n_{k+1}} - f_{n_k}\right| \cdot \chi_{E_l}\right)_{j \in \mathbb{N}}$ ist aufsteigende Folge von integrierbaren Funktionen. Nach dem Satz von Lebesgue über monotone Konvergenz gilt: $\sum_{k=0}^{\infty} \left|f_{n_{k+1}} - f_{n_k}\right|$ konvergiert auf E_l fast überall. Da abzählbare Vereinigungen von Nullmengen Nullmengen sind, folgt: $\sum_{k=0}^{\infty} \left|f_{n_{k+1}} - f_{n_k}\right|$ konvergiert auf E fast überall. Also konvergiert $\sum_{k=0}^{\infty} \left|f_{n_{k+1}} - f_{n_k}\right|$ auf X fast überall. $\Rightarrow \sum_{k=0}^{\infty} f_{n_{k+1}} - f_{n_k}$ konvergiert auf X fast überall. Also konvergiert auch $(f_{n_k})_{k \in \mathbb{N}}$ auf X fast überall. Setze

vlt strukturiert übereinander?

$$f(x) := \begin{cases} \lim_{k \to \infty} f_{n_k}, & \text{ falls der Limes existiert} \\ 0, & \text{sonst} \end{cases}$$

f ist messbar (Limes messbarer Funktionen). Weiter gilt $|f_{n_k}|^p \to |f|^p$ fast überall. Noch zu zeigen: $f \in L^p(\mu)$: Die Folge $\|f_{n_k}\|_p^p$ ist beschränkt, da $(f_n)_{n \in \mathbb{N}}$ eine Cauchyfolge bezüglich $\|\cdot\|_p$ ist. Es gilt

 $|f|^p \stackrel{\text{f.\"u.}}{=} \\ \liminf |f_{n_k}|^p$

$$\int |f|^p d\mu \leqslant \liminf_{k \to \infty} \int |f_{n_k}|^p d\mu < \infty$$

nach dem Lemma von Fatou. Also gilt $f\in L^p(\mu)$. Noch zu zeigen: $f_n\xrightarrow{n\to\infty} f$ bezüglich $\|\cdot\|_p$. Sei dazu $j\in\mathbb{N}$. Sei $n\geqslant n_j$. Für i>j gilt

$$\|f_n - f_{n_i}\|_p \le \|f_n - f_{n_j}\|_p + \|f_{n_j} - f_{n_i}\|_p < 2 \cdot \frac{1}{2^j}$$

Weiter gilt $\left|f_n-f_{n_i}\right|^p\xrightarrow{i o\infty}\left|f_n-f\right|^p$ fast überall. Mit dem Lemma von Fatou folgt

$$\int |f_n - f|^p d\mu \le \liminf \int |f_n - f_{n_i}|^p d\mu \le \left(2 \cdot \frac{1}{2^j}\right)^p$$

$$\Rightarrow \|f_n - f\|_p \leqslant 2 \cdot \frac{1}{2^j}$$
, falls $n \geqslant n_j$, also $\|f_n - f\|_p \xrightarrow{n \to \infty} 0$.

5. Schwache Topologien, Reflexivität

5.1. Definition

RevChap5

Sei X ein normierter \mathbb{K} -Vektorraum. Die **schwache Topologie** $\mathcal{T}_X^{\mathrm{w}}$ ist die gröbste¹¹ Topologie auf X, sodass alle $\varphi \in X^*$ stetig sind.

5.2. Bemerkung

- (i) Jedes $\varphi \in X^*$ ist (nach Definition von $X^* = \mathcal{L}(X,\mathbb{K})$) stetig bezüglich $\mathcal{T}_X^{\|\cdot\|}$, d.h. $\mathcal{T}_X^{\mathrm{w}} \subset \mathcal{T}_X^{\|\cdot\|}$. Mit anderen Worten: Die Abbildung $\mathrm{id}_X : \left(X,\mathcal{T}_X^{\|\cdot\|}\right) \to \left(X,\mathcal{T}_X^{\mathrm{w}}\right)$ ist stetig.
- (ii) Mengen der Form $\varphi^{-1}(U)$ für $U\subset K$ offen, $\varphi\in X^*$ bilden eine Subbasis für $\mathcal{T}_X^{\mathrm{w}}$. Mengen der Form

$$\bigcap_{i=1}^n arphi_i^{-1}(U_i) \quad , \qquad U_i \subset \mathbb{K} \; \mathsf{offen}, arphi_i \in X^*$$

bilden eine Basis für $\mathcal{T}_X^{\mathrm{w}}$.

5.3. Proposition

 $(X, \mathcal{T}_X^{\mathrm{w}})$ ist Hausdorffsch.

Beweis

Seien $x \neq y \in X$. Nach Hahn-Banach existiert $\varphi \in X^*$ mit $\varphi(x) \neq \varphi(y)$. Setze $\varepsilon := \frac{|\varphi(x) - \varphi(y)|}{2} > 0$, dann sind $\varphi^{-1} \big(B_{\mathbb{K}}(\varphi(x), \varepsilon) \big)$ und $\varphi^{-1} \big(B_{\mathbb{K}}(\varphi(y), \varepsilon) \big)$ disjunkte offene Umgebungen von x bzw. y. \square

5.4. Proposition

Sei X ein normierter Raum, $x \in X$, $(x_{\lambda})_{\Lambda} \subset X$ ein Netz. Dann sind äquivalent:

- (i) $x_{\lambda} \xrightarrow{w} x$, d.h. $x_{\lambda} \to x$ in \mathcal{T}_{X}^{w}
- (ii) $\varphi(x_{\lambda}) \to \varphi(x)$ für alle $\varphi \in X^*$.

Beweis

(i) \Rightarrow (ii): Sei $\varphi \in X^*$, $\varepsilon > 0$. $\varphi(x) \in B_{\mathbb{K}}\big(\varphi(x), \varepsilon\big) \subset \mathbb{K}$ offen. φ stetig bezüglich $\mathcal{T}_X^{\mathrm{w}}$

$$\Rightarrow x \in \varphi^{-1}\Big(B_{\mathbb{K}}\big(\varphi(x),\varepsilon\big)\Big) \underset{\text{w-offen}}{\subset} X$$

 $x_{\lambda} \xrightarrow{\mathrm{w}} x \Rightarrow \exists \overline{\lambda} \in \Lambda \text{ mit } x_{\lambda} \in \varphi^{-1}\big(B_{\mathbb{K}}(\varphi(x),\varepsilon)\big) \text{, falls } \lambda \geqslant \overline{\lambda} \text{. Dann folgt } \varphi(x_{\lambda}) \in B_{\mathbb{K}}(\varphi(x),\varepsilon) \text{ falls } \lambda \geqslant \overline{\lambda} \text{, also } \varphi(x_{\lambda}) \to \varphi(x) \text{ in } \mathbb{K}.$

(ii) \Rightarrow (i): Sei $x \in V \subset X$ w-offen. Nach 5.2(ii) existieren $\varphi_1, \dots, \varphi_m \in X^*$, U_1, \dots, U_m offen in $\mathbb K$ mit

$$x \in \phi_1^{-1}(U_1) \cap \ldots \cap \varphi_m^{-1}(U_m) \subset V$$

Wegen (ii) existieren $\lambda_1,\dots,\lambda_m\in\Lambda$ mit $\varphi_i(x_\lambda)\in U_i$, falls $\lambda\geqslant\lambda_i,\,i=1,\dots,m$. Wähle $\overline{\lambda}\in\Lambda$ mit $\overline{\lambda}\geqslant\lambda_1,\dots,\lambda_m$. Dann gilt $\varphi_i(x_\lambda)\in U_i$, falls $\lambda\geqslant\overline{\lambda},\,i=1,\dots,m$. Damit ist $x_\lambda\in\varphi_i^{-1}(U_i)$, falls $\lambda\geqslant\overline{\lambda},\,i=1,\dots,m$. Also gilt $x_\lambda\in\bigcap_{i=1}^m\varphi_i^{-1}(U_i)\subset V$, falls $\lambda\geqslant\overline{\lambda}$.

¹¹ auch: "dollste"

5.5. Corollar

Wenn $x_{\lambda} \xrightarrow{\mathrm{w}} x$, dann gilt: $(x_{\lambda})_{\Lambda} \subset X$ ist beschränkt.

Beweis

Prinzip der gleichmäßigen Beschränktheit (siehe 3.5).

5.6. Beispiel

Im Allgemeinen gilt

$$x_{\lambda} \xrightarrow{\|\cdot\|} x \xrightarrow{\Leftrightarrow} x_{\lambda} \xrightarrow{w} x$$

Betrachte $X=\ell^2(\mathbb{N})$ mit $\|\cdot\|_2$. Sei $e_n\in\ell^2(\mathbb{N})$ gegeben durch $e_n(m):=\delta_{n,m}$. Dann gilt $e_n\not\to 0$ für $n\to\infty$ in $\mathcal{T}^{\|\cdot\|_2}$, denn $\|e_n-0\|_2=\|e_n\|_2\equiv 1\not\to 0$. Aber $e_n\stackrel{\mathrm{w}}{\to} 0$ für $n\to\infty$: Wir werden später sehen, dass $\ell^2(\mathbb{N})^*\cong\ell^2(\mathbb{N})$ via $\langle a\,|\,b\rangle=\sum\overline{a}(k)b(k)$. Es gilt aber

$$\langle a \, | \, e_n \rangle = \sum \overline{a(k)} e_n(k) = \overline{a(n)} \xrightarrow{n \to \infty} 0.$$

 $\Rightarrow e_n \xrightarrow{\mathrm{w}} 0 \text{ für } n \to \infty.$

Direktes Argument: Übung.

5.7. Proposition

Seien X,Y metrische Räume, $T\in\mathcal{L}(X,Y)$ ein beschränkter (d.h. normstetiger) linearer Operator. Dann ist T auch stetig bezüglich der schwachen Topologie auf X und Y.

Beweis

Zu zeigen: Falls $U\subset Y$ schwach-offen ist, so ist $T^{-1}(U)$ schwach-offen in X. Wir können annehmen, dass U von der Form $\varphi^{-1}(B_{\mathbb{K}}(\lambda,\varepsilon))$, $\varphi\in Y^*, \lambda\in\mathbb{K}, \varepsilon>0$ ist, da diese Mengen eine Subbasis bilden. Es gilt nun

$$T^{-1}\Big(\varphi^{-1}\big(B_{\mathbb{K}}(\lambda,\varepsilon)\big)\Big) = \Big(\underbrace{\varphi \circ T}_{\varepsilon X^*}\Big)^{-1}\big(B_{\mathbb{K}}(\lambda,\varepsilon)\big) \underset{\text{w-offen}}{\subset} X \qquad \qquad \Box$$

5.8. Definition

Sei X ein normierter Raum. Die \mathbf{w}^* -Topologie $\mathcal{T}^{\mathbf{w}^*}$ ist die gröbste Topologie auf X^* , sodass alle $\iota_X(x) \in X^{**}$ stetig sind.

5.9. Bemerkung

- (i) Es gilt $\mathcal{T}_{X^*}^{\mathrm{w}^*}\subset\mathcal{T}_{X^*}^{\mathrm{w}}\subset\mathcal{T}_{X^*}^{\|\cdot\|_{X^*}}$
- (ii) Mengen der Form $W(\varphi,x\varepsilon):=\{\psi\in X^*\,|\,|\psi(x)-\varphi(x)|<\varepsilon\}$ bilden eine Subbasis für $\mathcal{T}_{X^*}^{w^*}$. Mengen der Form $\{\psi\,|\,\psi(x)\in U\},\,U\subseteq\mathbb{K}$ offen, bilden ebenfalls eine Subbasis für $\mathcal{T}_{X^*}^{w^*}$.
- (iii) Ein Netz $(\varphi_{\lambda})_{\lambda \in \Lambda} \subset X^*$ konvergiert w^* gegen $\varphi \in X^*$ genau dann, wenn $\iota_X(x)(\varphi_{\lambda}) = \varphi_{\lambda}(x) \xrightarrow{\lambda} \varphi(x) = \iota_X(x)(\varphi)$ für jedes $x \in X$.
- (iv) $\mathcal{T}_{X^*}^{\mathrm{w}^*}$ ist Hausdorff. Beweis: Übung.

5.10. Satz (Banach-Alaoglu)

Sei X ein normierter Raum. Dann ist die abgeschlossene Einheitskugel in X^*

$$\overline{B_{X^*}(0,1)} = \{ \varphi \in X^* \, | \, \|\varphi\|_{X^*} \leqslant 1 \}$$

w*-kompakt.

Beweis

Für $x\in X$ setze $F_x:=\mathbb{K}$ und $F:=\prod_{x\in X}F_x$. Wir versehen F mit der Produkttopologie \mathcal{T}_F^Π . Definiere eine Abbildung $\kappa:X^*\to F$ durch $\kappa(\varphi)_x:=\varphi(x),\,x\in X$. Dann ist κ injektiv (warum?) und $\mathcal{T}^{\mathrm{w}^*}$ stimmt überein mit der durch κ und \mathcal{T}_F^Π induzierten Topologie auf X^* . Diese besteht aus den Mengen $\left\{\kappa^{-1}(U)\,\middle|\,U\in\mathcal{T}_F^\Pi\right\}$. Eine Basis für \mathcal{T}_F^Π sind Mengen der Form

$$\prod_{x\in X}U_x,\quad U_x\subset \mathbb{K}$$
 offen

mit $U_x=\mathbb{K}$ für alle bis auf endlich viele $x\in X$. Eine Basis, für die durch κ und \mathcal{T}_F^Π induzierte Topologie auf X^* sind Mengen der Form

$$\kappa^{-1} \left(\prod_{x \in X} U_x \right) = \underbrace{\bigcap_{i=1}^n \{ \varphi \, | \, \varphi(x_i) \in U_{x_i} \}}_{\text{bilden Basis für } \mathcal{T}_{\mathbf{v}^*}^{\mathbf{w}^*}, \, 5.9(ii)}$$

mit U_x wie oben. Dabei erhalten wir die x_i durch $\kappa^{-1} \left(\prod_{x \in X} V_x\right) = \{\varphi \mid \varphi(x_i) \in U_{x_i}\}$, wobei

$$V_x = \begin{cases} \mathbb{K}, & \text{falls } x \neq x_i \\ U_{x_i}, & \text{falls } x = x_i \end{cases}$$

Falls $\|\varphi\| \leqslant 1$, so gilt $|\varphi(x)| \leqslant \|x\|_X$, also

$$\kappa\Big(\overline{B_{X^*}(0,1)}\Big) \subset \underbrace{\prod_{x \in X} \overline{B_{\mathbb{K}}(0,\|x\|)}}_{\text{kompakt nach Tychonov}} \subset F$$

Bleibt zu zeigen: $\kappa\Big(\overline{B_{X^*}(0,1)}\Big)\subset F$ ist abgeschlossen. Sei $f\in\overline{\kappa\Big(\overline{B_{X^*}(0,1)}\Big)}$. Dies definiert eine Abbildung $\varphi_f:X\to\mathbb{K}$ durch $\varphi_f(x):=f_x$. Falls nun φ_f linear und stetig ist mit $\|\varphi_f\|\leqslant 1$, so gilt $\kappa(\varphi_f)=f$, denn $\kappa(\varphi_f)(x)=\varphi_f(x)=f_x$. Damit folgt $f\in\kappa\Big(\overline{B_{X^*}(0,1)}\Big)$ und damit $\overline{B_{X^*}(0,1)}$ kompakt.

Additivität: Seien $y, z \in X$, $\varepsilon > 0$. Dann ist

$$W_{\varepsilon} := \left\{g \in \prod_{x \in X} \overline{B_{\mathbb{K}}(0,\|x\|)} \middle| \begin{array}{c} |g_{y+z} - f_{y+z}| < \varepsilon \\ |g_{y} - f_{y}| < \varepsilon \\ |g_{z} - f_{z}| < \varepsilon \end{array} \right\} \underset{\text{offen }}{\subset} \prod_{x \in X} \overline{B_{\mathbb{K}}(0,\|x\|)}$$

 $f\in \overline{\kappa\Big(\overline{B_{X^*}(0,1)}\Big)}\Rightarrow \exists g\in W_\varepsilon\cap\kappa\Big(\overline{B_{X^*}(0,1)}\Big). \text{ Sei } g'\in \overline{B_{X^*}(0,1)} \text{ mit } \kappa(g')=g. \ g'\in X^* \text{ ist linear, also gilt auch } g_{y+z}=g_y+g_z \text{ und daher}$

$$|f_{y+z} - (f_y + f_z)| < \varepsilon + \varepsilon + \varepsilon = 3\varepsilon$$

 $\varepsilon > 0$ war beliebig, also $f_{y+z} = f_y + f_z$ und $\varphi_f(y+z) = \varphi_f(y) + \varphi_f(z)$. Also ist φ additiv;

Skalarmultiplikation: analog.

Es gilt
$$|\varphi_f(x)|=|f_x|\leqslant \|x\|$$
, $x\in X$, also $\|\varphi_f\|_{X^*}\leqslant 1$.

5.11. Erinnerung

- (a) Ein topologischer Raum heißt
 - (i) **separabel**, falls X eine abzählbare dichte Teilmenge enthält.
 - (ii) **1. abzählbar**, falls gilt: Jedes $x \in X$ besitzt abzählbar viele Umgebungen U_i , $i \in \mathbb{N}$, sodass jede Umgebung V von x wenigstens ein U_i enthält.
 - (iii) **2. abzählbar**, falls gilt: \mathcal{T}_X besitzt eine abzählbare Basis, d.h. es gibt offene Mengen W_i , $i \in N$, sodass für jedes $V \subset X$ offen gilt: $V = \bigcup_{W_i \subset V} W_i$.
- (b) 2. abzählbar \Rightarrow 1. abzählbar und separabel.
- (c) Ist X kompakt und 1. abzählbar, so besitzt jede Folge in X eine konvergente Teilfolge. Beweisskizze: $(x_n)_{\mathbb{N}} \subset X$, setze $A_n := \overline{\{x_n, x_{n+1}, \ldots\}}$. Dann ist $\bigcap_{\mathbb{N}} A_n$ nichtleer wegen Kompaktheit, also hat $(x_n)_{\mathbb{N}}$ einen Häufungspunkt. Benutze nun 1. abzählbar.
- (d) Sei X kompakt und Hausdorff. Dann ist X metrisierbar $\iff X$ ist 2. abzählbar. " \implies " ist eine einfache Übung. " \iff " Urysohn, Metrisierungssätze. Den Satz von Urysohn hatten wir auch in "Grundlagen der Analysis, Topologie und Geometrie" im letzen Semester bewiesen.

5.12. Satz

Sei X ein separabler normierter Raum. Dann ist $\overline{B_{X^*}(0,1)}$ bezüglich $\mathcal{T}_{X^*}^{w^*}$ metrisierbar. Insbesondere ist $\overline{B_{X^*}(0,1)}$ bezüglich $\mathcal{T}_{X^*}^{w^*}$ 2. abzählbar und kompakt, und jede Folge besitzt eine konvergente Teilfolge.

Beweis

Sei $\{x_n \mid n \in \mathbb{N}\} \subset B_X(0,1)$ dicht. Definiere eine Abbildung $d: X^* \times X^* \to [0,\infty)$ durch

$$d(\varphi, \psi) := \sum_{n \in \mathbb{N}} \frac{1}{2^n} \cdot \left| \varphi(x_n) - \psi(x_n) \right|$$

Dann ist d eine Metrik: d ist offensichtlich symmetrisch und erfüllt die Dreiecksungleichung. Zu zeigen: d ist definit: $\varphi \neq \psi \Rightarrow \exists x \in B_X(0,1)$ mit $\varphi(x) \neq \psi(x)$. Also existiert x_n mit $\varphi(x_n) \neq \psi(x_n)$. Dann ist $d(\varphi,\psi) \neq 0$.

Sei nun $(\varphi_{\lambda})_{\lambda \in \Lambda} \subset \overline{B_{X^*}(0,1)}$ ein Netz und $\varphi \in \overline{B_{X^*}(0,1)}$. Es genügt zu zeigen

$$\varphi_{\lambda} \xrightarrow{\mathbf{w}^*} \varphi \iff d(\varphi_{\lambda}, \varphi) \longrightarrow 0$$

denn dann stimmen $\mathcal{T}_{X^*}^{\mathrm{w}^*}$ und $\mathcal{T}_{X^*}^d$ überein. (Warum?)

"\Rightarrow": Es gelte $arphi_{\lambda} \xrightarrow{\mathrm{w}^*} arphi$, also $arphi_{\lambda}(x_n) o arphi(x_n)$ für $n \in \mathbb{N}$ (nach 5.9(iii)). Sei $\varepsilon > 0$. Wähle $n_0 \in \mathbb{N}$ mit $\sum_{n \geqslant n_0} \frac{1}{2^n} < \frac{\varepsilon}{4}$. Wähle $\overline{\lambda} \in \Lambda$ mit $|arphi_{\lambda}(x_n) - arphi(x_n)| < \frac{\varepsilon}{4}$ falls $n < n_0$, $\lambda \geqslant \overline{\lambda}$. Dann gilt für $\lambda \geqslant \overline{\lambda}$

$$d(\varphi_{\lambda}, \varphi) \leqslant \sum_{n < n_0} \frac{1}{2^n} \cdot \left| \varphi_{\lambda}(x_n) - \varphi(x_n) \right| + \sum_{n \geqslant n_0} \frac{1}{2^n} \cdot \underbrace{\left| \varphi_{\lambda}(x_n) - \varphi(x_n) \right|}_{\leqslant 2}$$
$$< 2 \cdot \frac{\varepsilon}{4} + 2 \cdot \frac{\varepsilon}{4} = \varepsilon$$

"\(\sigma^n\): Übung mit: $\forall n. \varphi_{\lambda}(x_n) \to \varphi(x_n)$ und $\{x_n\}$ dicht $\Rightarrow \varphi_{\lambda}(x) \to \varphi(x)$ für jedes $x \in X$.

Nachtrag (zum Beweis von 5.12)

Topologien sind durch Konvergenz von Netzen bestimmt: Sei (X, \mathcal{T}) ein topologischer Raum.

$$\begin{array}{ll} U\subset X \text{ offen } &\iff \forall x\in U: \exists x\in V\subset U, V\in \mathcal{T}\\ U\subset X \text{ nicht offen } &\iff \exists x\in U: \text{ für jedes } x\in V\subset X \text{ gilt } V\cap (X\setminus U)\neq \emptyset\\ &\stackrel{(\#)}{\iff} \exists x\in U, \exists \text{ Netz } (x_{\lambda})_{\lambda\in \Lambda}\subset X\setminus U \text{ mit } x_{\lambda}\to x \end{array}$$

Auswahlaxiom nötig $\stackrel{(\#)}{\Longleftrightarrow} \text{ ist trivial.} \stackrel{(\#)}{\Longrightarrow} : \Lambda := \{V \mid x \in V \subset X \text{ offen}\} \text{ ist gerichtet bezüglich "\subset".} \text{ Zu jedem } V \in \Lambda \text{ wähle } x_V \in (X \setminus U) \cap V. \text{ Dann gilt } (x_v)_{v \in \Lambda} \subset X \setminus U \text{ und } x_v \to x.$

5.13. Definition

Der normierte Raum X heißt **reflexiv**, falls die kanonische Abbildung $\iota_X: X \to X^{**}$ ein Isomorphismus ist. (ι_X ist Isomorphismus genau dann, wenn ι_X surjektiv ist.)

5.14. Proposition

Sei X ein reflexiver Banachraum und $Y \subset X$ ein abgeschlossener Teilraum. Dann ist Y reflexiv.

Beweis

Sei $\kappa:Y\hookrightarrow X$ die Inklusion. Dann ist $\kappa\in\mathcal{L}(Y,X)$ und nach 3.4 kommutiert das Diagramm

$$Y \stackrel{\iota_Y}{\hookrightarrow} Y^{**}$$

$$\kappa \downarrow \qquad \qquad \downarrow_{\kappa^{\text{tr tr}}}$$

$$X \stackrel{\iota_X}{\hookrightarrow} X^{**}$$

Sei $f \in Y^{**}$, dann existiert $x \in X$ mit $\iota_X(x) = \kappa^{\operatorname{tr}\operatorname{tr}}(f)$. Für $\varphi \in X^*$ gilt

$$\varphi(x) = \iota_X(x)(\varphi) = \kappa^{\operatorname{tr}\operatorname{tr}}(f)(\varphi).$$

Aber $(\kappa^{\mathrm{tr}})^{\mathrm{tr}}(f) = f \circ \kappa^{\mathrm{tr}}$ und $\kappa^{\mathrm{tr}}(\varphi) = \varphi \circ \kappa = \varphi|_Y$, also $\varphi(x) = f(\varphi|_Y)$ für jedes $\varphi \in X^*$. Falls $x \notin Y$, so existiert nach Hahn-Banach ein $\psi \in X^*$ mit $\psi|_Y = 0$, $\psi(x) \neq 0$. Damit folgt

$$0 \neq \varphi(x) = f(\psi|_Y) = 0$$

also gilt $x\in Y$. Weiter gilt $\iota_Y(x)=f$, denn $\kappa^{\mathrm{tr}\,\mathrm{tr}}$ ist injektiv. Andernfalls existiert $0\neq g\in Y^{**}$ mit $\kappa^{\mathrm{tr}\,\mathrm{tr}}(g)=0$, also existiert $\sigma\in Y^*$ mit $g(\sigma)\neq 0$. Nach Hahn-Banach existiert $\rho\in X^*$ mit $\rho|_Y=\sigma$. Nun gilt

$$0 = \kappa^{\operatorname{tr}\operatorname{tr}}(q) = q(\rho|_Y) = \rho(q) \neq 0$$

 $\Rightarrow \kappa^{\mathrm{tr}\,\mathrm{tr}}$ ist injektiv.

5.15. Proposition

Für einen Banachraum X gilt: X reflexiv $\iff X^*$ reflexiv.

Beweis

" \Rightarrow ": $\iota_X: X \xrightarrow{\cong} X^{**}$ ist ein isometrischer Isomorphismus. Nach Blatt 6, Aufgabe 2 ist $\iota_X^{\mathrm{tr}}: X^{***} \to X^*$ auch ein isometrischer Isomorphismus. Nach 3.4 gilt $\iota_X^{\mathrm{tr}} \circ \iota_{X^*} = \mathrm{id}_{X^*}$, also ist $(\iota_X^{\mathrm{tr}})^{-1} = \iota_{X^*}$ ebenfalls ein isometrischer Isomorphismus.

П

5.16. Satz

Sei X ein Banachraum. Dann gilt

$$\overline{B_X(0,1)} \subset \overline{B_{X^{**}}(0,1)}$$

Beweis

Zu zeigen: Zu $f\in \overline{B_{X^{**}}(0,1)}$ und $\varepsilon>0$, $\varphi_1,\ldots,\varphi_n\in X^*$, existiert $x\in \overline{B_X(0,1)}$ mit $|f(\varphi_i)-\varphi_i(x)|<\varepsilon$ für $i=1,\ldots,n$. Behauptung: Es gilt (gegeben $f,\varphi_1,\ldots,\varphi_n$)

$$\inf_{x \in \overline{B_X(0,1)}} \sum_{i=1}^n \left| f(\varphi_i) - \varphi_i(x) \right|^2 = 0$$

Sei $h(x):=\sum_{i=1}^n \left|f(\varphi_i)-\varphi_i(x)\right|^2$ und $\inf_{x\in\overline{B_X(0,1)}}h(x)=:\mu\geqslant 0$. Wähle $(x_k)_{k\in\mathbb{N}}\subset\overline{B_X(0,1)}$ mit $\lim_{k\to\infty}h(x_k)=\mu$. Nach Übergang zu einer Teilfolge dürfen wir annehmen, dass $\left(\varphi_i(x_k)\right)_{k\in\mathbb{N}}$ gegen $\gamma_i\in\mathbb{K}$ konvergiert für $i=1,\dots,n$. Setze $\delta_i:=f(\varphi_i)-\gamma_i$, dann gilt $\mu=\sum_{i=1}^n\left|\delta_i\right|^2$. Für $y\in\overline{B_X(0,1)}$, $t\in[0,1]$ gilt

$$\mu \leqslant h\left(\underbrace{(1-t)\cdot x_k + t\cdot y}\right) = \sum_{i=1}^n \left| f(\varphi_i) - (1-t)\cdot \varphi_i(x_k) - t\cdot \varphi_i(y) \right|^2$$

$$= \sum_{i=1}^n \left| f(\varphi_i) - \varphi(x_k) - t\cdot \left(\varphi_i(y) - \varphi_i(x_k)\right) \right|^2$$

$$= \sum_{i=1}^n \left| f(\varphi_i) - \varphi_i(x_k) \right|^2 + t^2 \cdot \sum_{i=1}^n \left| \varphi_i(y) - \varphi_i(x_k) \right|^2$$

$$- 2t \cdot \operatorname{Re} \sum_{i=1}^n \left(\varphi_i(y) - \varphi_i(x_k) \right) \cdot \overline{\left(f(\varphi_i) - \varphi_i(x_k) \right)}$$

$$\xrightarrow{k \to \infty} \sum_{i=1}^n \left| f(\varphi_i) - \gamma_i \right|^2 + t^2 \cdot \sum_{i=1}^n \left| \varphi_i(y) - \gamma_i \right|^2 - 2t \cdot \operatorname{Re} \sum_{i=1}^n \left(\varphi_i(y) - \gamma_i \right) \cdot \overline{\delta_i}$$

$$\xrightarrow{= \mu}$$

Nach Abziehen von μ folgt für t > 0

$$\begin{split} 0 \leqslant t \cdot \sum_{i=1}^{n} & \left| \varphi_i(y) - \gamma_i \right|^2 - 2 \cdot \operatorname{Re} \sum_{i=1}^{n} \left(\varphi_i(y) - \gamma_i \right) \cdot \overline{\delta_i} \\ \xrightarrow{t \searrow 0} & 2 \cdot \operatorname{Re} \sum_{i=1}^{n} \left(\varphi_i(y) - \gamma_i \right) \cdot \overline{\delta_i} \leqslant 0 \text{ für alle } y \in \overline{B_X(0,1)} \end{split}$$

Für $\underline{y} \in \overline{B_X(0,1)}$ gilt $\operatorname{Re} \sum_{i=1}^n (\varphi_i(y) - \gamma_i) \cdot \overline{\delta_i} \leqslant 0$. Definiere $\varphi := \sum_{i=1}^n \overline{\delta_i} \cdot \varphi_i \in X^*$, dann gilt für $y \in \overline{B_X(0,1)}$

$$\operatorname{Re} \varphi(y) \leqslant \operatorname{Re} \sum_{i=1}^{n} \gamma_i \overline{\delta_i}$$

also $\|\varphi\|_{X^*}\leqslant \operatorname{Re}\sum_{i=1}^n \gamma_i\cdot \overline{\delta_i}$. Aber

$$\varphi(x_k) = \sum_{i=1}^n \overline{\delta_i} \cdot \varphi_i(x_k) \xrightarrow{k \to \infty} \sum_{i=1}^n \overline{\delta_i} \cdot \gamma_i,$$

das heißt $\left|\sum_{i=1}^n \overline{\delta_i} \cdot \gamma_i\right| \leqslant \|\varphi\| \leqslant \operatorname{Re} \sum_{i=1}^n \gamma_i \cdot \overline{\delta_i}$ und somit $\sum_{i=1}^n \overline{\delta_i} \cdot \gamma_i = \|\varphi\|_{X^*}$. Wir erhalten

$$\mu = \sum_{i=1}^{n} \overline{\delta_i} \delta_i = \sum_{i=1}^{n} \overline{\delta_i} (f(\varphi_i) - \gamma_i) = f(\varphi) - \|\varphi\|_{X^*} \leq 0$$

5.17. Corollar

Sei X ein Banachraum, $f \in \overline{B_{X^{**}}(0,1)}$, $\varphi_1,\ldots,\varphi_n \in X^*$. Falls $\overline{B_X(0,1)}$ w-kompakt ist, so existiert $x \in \overline{B-X(0,1)}$ mit $f(\varphi_i) = \varphi_i(x)$, $i=1,\ldots,n$.

Beweis

Definiere $h:X\to\mathbb{R}$ durch $h(x):=\sum_{i=1}^n |f(\varphi_i)-\varphi_i(x)|^2$ ist stetig auf X bezüglich $\mathcal{T}_X^{\mathrm{w}}$, nimmt also auf $\overline{B_X(0,1)}$ ihr Minimum an.

5.18. Satz

Sei X ein Banachraum. Dann sind äquivalent:

- (i) X ist reflexiv.
- (ii) $\overline{B_X(0,1)}$ ist w*-kompakt.
- (iii) $\mathcal{T}_{X^*}^{\mathrm{w}} = \mathcal{T}_{X^*}^{\mathrm{w}^*}$.

Beweis

- (i) \Rightarrow (ii): $\overline{B}_{X^{**}}(0,1)$ ist w^* -kompakt nach 5.10. Nach 5.15 ist X^* reflexiv, daher stimmen auf X^{**} die w^* und die w -Topologie überein. $\Rightarrow \overline{B_{X^{**}}(0,1)}$ ist w -kompakt. Aber unter $X\cong X^{**}$ stimmen die jeweiligen w -Topologien überein; ebenso $\overline{B}_X(0,1)\cong \overline{B}_{X^{**}}(0,1)$.
- (ii) \Rightarrow (i): Es gilt $(X, \mathcal{T}_X^{\mathrm{w}}) \subset (X^{**}, \mathcal{T}_{X^{**}}^{\mathrm{w*}})$ in der Relativtopologie (warum?). $\overline{B_X(0,1)}$ kompakt $\Rightarrow \overline{B_X(0,1)} \subset \overline{B_{X^{**}}(0,1)}$ w*-abgeschlossen und w*-dicht. Also folgt $\overline{B_X(0,1)} = \overline{B_{X^{**}}(0,1)}$ und somit $X = X^{**}$.
- (iii) \Rightarrow (i): $\overline{B_{X^*}(0,1)}$ ist \mathbf{w}^* -kompakt nach Banach-Alaoglu (5.10). Mit (iii) folgt, dass $\overline{B_{X^*}(0,1)}$ w-kompakt ist. Da (ii) \Rightarrow (i) folgt, dass X^* reflexiv ist und somit ist nach 5.16 auch X reflexiv.

5.19. Bemerkung

- a) Sei X ein normierter Raum. Falls X^* separabel (bezüglich $\mathcal{T}_{X^*}^{\|\cdot\|}$) ist, so ist X separabel (bezüglich $\mathcal{T}_{X^*}^{\|\cdot\|}$)
- b) Für einen Banachraum X gilt: X reflexiv $\iff \overline{B}_X(0,1)$ ist folgenkompakt bezüglich $\mathcal{T}_X^{\mathrm{w}}$.

Beweis

- a) Übung.
- b) " \Rightarrow ": leicht.
 - "⇐": nicht so leicht.

6. Gleichmäßig konvexe Räume, noch einmal L^p

6.1. Definition und Proposition

Ein normierter Raum X heißt **gleichmäßig konvex**, falls eine der folgenden äquivalenten Bedingungen erfüllt ist:

RevChap6

(i) Für jedes $\varepsilon > 0$ existiert $\delta > 0$, sodass für $x, y \in X$ mit $||x||, ||y|| \le 1$ gilt:

$$||x - y|| \ge \varepsilon \implies \left\| \frac{1}{2}(x + y) \right\| \le 1 - \delta$$

(ii) Für jedes $\varepsilon > 0$ existiert $\delta > 0$, sodass für $x, y \in X$ mit ||x||, ||y|| = 1 gilt:

$$||x - y|| \ge \varepsilon \implies \left\| \frac{1}{2}(x + y) \right\| \le 1 - \delta$$

(iii) Für $(x_n)_{\mathbb{N}}, (y_n)_{\mathbb{N}} \subset X$ mit $||x_n|| = ||y_n|| = 1$ für alle $n \in \mathbb{N}$ gilt:

$$\lim_{n \to \infty} \left\| \frac{1}{2} (x_n + y_n) \right\| = 1 \implies \lim_{n \to \infty} \|x_n - y_n\| = 0$$

(iv) Für $(x_n)_{\mathbb{N}}, (y_n)_{\mathbb{N}} \subset X$ mit $\limsup_n \|x_n\| = \limsup_n \|y_n\| = 1$ gilt:

$$\lim_{n \to \infty} \left\| \frac{1}{2} (x_n + y_n) \right\| = 1 \implies \lim_{n \to \infty} \|x_n - y_n\| = 0$$

Beweis

(i)⇒(ii)⇒(iii): trivial.

(iii) \Rightarrow (iv): einfach. Zeige zunächst: Aus $\limsup \|x_n\|, \limsup \|y_n\| \leqslant 1$ und $\lim_{n\to\infty} \left\|\frac{1}{2}(x_n+y_n)\right\| = 1$ folgt $\lim_{n\to\infty} \|x_n\| = \lim_{n\to\infty} \|y_n\| = 1$.

(iv) \Rightarrow (i): Angenommen (i) gilt nicht, d.h. $\exists \varepsilon > 0$ und für jedes $\delta_n = \frac{1}{n+1}$ existieren $x_n, y_n \in X$ mit $\|x_n\|, \|y_n\| \leqslant 1, \|x_n - y_n\| \geqslant \varepsilon$ und $\left\|\frac{1}{2}(x_n + y_n)\right\| > 1 - \frac{1}{n+1}$. \nleq zu (iv).

6.2. Beispiel

 $(\mathbb{R}^n,\|\cdot\|_p)$ ist gleichmäßig konvex für $1 aber nicht für <math>p = 1, p = \infty$

Abbildung 1: Einheitskugeln für p=2, p=1 und $p=\infty$. Nur für $p \notin \{1,\infty\}$ ist (ii) aus 6.1 erfüllt. Anschaulich gesprochen bedeutet dies, dass nur in gleichmäßig konvexen Räumen Bälle auch tatsächlich "rund" sind.

Abbildung 2: Die Tatsache, dass ||x|| und ||x'|| in dieser Zeichnung nicht gleich sind, weißt schon darauf hin, dass diese Zeichnung in Wahrheit "degeneriert".

6.3. Definition und Proposition

Ein gleichmäßig konvexer normierter \mathbb{R} -Vektorraum ist **strikt konvex**, d.h. für alle $0 \neq x, y \in X$ mit ||x+y|| = ||x|| + ||y|| existiert $\lambda > 0$ mit $x = \lambda \cdot y$.

Beweis

Seien x,y wie angegeben; $\mathbb{E}\|x\|=1$. Setze $x':=\frac{x+y}{\|x+y\|}$, $a:=\frac{x+x'}{2}$, $\alpha:=\|a\|$, $\beta:=\|x+y-a\|$ Es gilt

$$||x + y - x'|| = \left(1 - \frac{1}{||x + y||}\right) \cdot ||x + y|| = ||x + y|| - 1 = 1 + ||y|| - 1 = ||y||$$

also $\beta = \|x+y-a\| \leqslant \left\|\frac{x+y-x}{2}\right\| + \left\|\frac{x+y-x'}{2}\right\| \leqslant \frac{\|y\|}{2} + \frac{\|y\|}{2} = \|y\|$. Weiter gilt $\alpha = \|a\| \leqslant \frac{\|x\|}{2} + \frac{\|x'\|}{2} = 1$ und

$$1 + ||y|| = ||x + y|| \le ||a|| + ||x + y - a|| = \alpha + \beta \le 1 + ||y||$$

also $1\leqslant \alpha\leqslant 1$. Wegen $\|x\|=1$, $\|x'\|=1$ und $\left\|\frac{1}{2}(x+x')\right\|=\|a\|=\alpha=1>1-\delta$ für jedes $\delta>0$ erhalten wir aus gleichmäßiger Konvexität $\|x-x'\|\leqslant \varepsilon$ für jedes $\varepsilon>0\Rightarrow x=x'$ und $y=\|y\|\cdot x$. \square

6.4. Proposition

Sei X ein normierter \mathbb{R} -Vektorraum, $a \in X$, $W \subset X$ konvex und abgeschlossen.

- (i) Ist W strikt konvex, so existiert höchstens ein $x \in W$ mit $||a x|| = \inf_{y \in W} ||a y||$.
- (ii) Ist X vollständig und gleichmäßig konvex, so existiert genau ein $x \in W$ mit $\|a-x\| = \inf_{y \in W} \|a-y\|$

Beweis

Wir dürfen ohne Einschränkungen a=0 annehmen. Für $a\in W$ ist nichts zu beweisen; für $a\not\in W$ gilt $\inf_{y\in W}\|a-y\|>0$ (denn W ist abgeschlossen). Ohne Einschränkungen dürfen wir außerdem $\inf_{y\in W}\|a-y\|=1$ annehmen.

(i) Sei $x, x' \in W$ mit $||a - y|| = ||a - x'|| = \inf_{y \in W} ||a - y||$, also ||x|| = ||x'|| = 1. Dann gilt

$$1 = \inf_{y \in W} ||a - y|| \le \left\| \underbrace{\frac{1}{2}(x + x')}_{\in W} \right\| \le \frac{1}{2} ||x|| + \frac{1}{2} ||x'|| = 1$$

Es folgt aus strikter Konvexität, dass $x=\lambda \cdot x'$ für ein $\lambda\geqslant 0$. Wegen $\|x\|=\|x'\|=1$ folgt $\lambda=1$ und x=x'.

 \not Ewieder a=0

(ii) Wähle eine Folge $(x_n)_{\mathbb{N}} \subset W$ mit

$$\lim_{n \to \infty} ||x_n|| = \lim_{n \to \infty} ||a - x_n|| = \inf_{u \in W} ||a - y|| = 1$$

Behauptung: Diese Folge ist Cauchy. W ist konvex, also folgt $\frac{1}{2}(x_n+x_m)\in W$. Es gilt dann

$$1 \leqslant \left\| \frac{1}{2} (x_n + x_m) \right\| \leqslant \frac{1}{2} (\|x_n\| + \|x_m\|) \quad \text{für } n, m \in \mathbb{N}$$
 [#]

Angenommen $(x_n)_{\mathbb{N}}$ sei nicht Cauchy. Dann existiert $\varepsilon>0$, so dass gilt: Für jedes $N\in\mathbb{N}$ existieren n,m>N mit $\|x_n+x_m\|>\varepsilon$. Wir können daher Teilfolgen $(x_{n_k})_{k\in\mathbb{N}}$, $(x_{m_k})_{k\in\mathbb{N}}$ bilden mit $\liminf_k \|x_{n_k}-x_{m_k}\|\geqslant \varepsilon$. Es gilt aber $\lim_{k\to\infty} \|x_{n_k}\|=\lim_{k\to\infty} \|x_{n_k}\|=1$ und wegen [#] gilt $\lim_{k\to\infty} \left\|\frac{1}{2}(x_{n_k}+x_{m_k})\right\|=1$ zu 6.1 (iv).

6.5. Bemerkung

Der Beweis von (ii) zeigt auch: Sei X gleichmäßig konvex und $(x_n)_{\mathbb{N}} \subset X$ eine Folge mit $\limsup_n \|x_n\| \leqslant 1$ und $\lim_{n \to \infty} \left\| \frac{1}{2} (x_n + x_m) \right\| = 1$. Dann gilt $\lim_{n \to \infty} \|x_n\| = 1$ und $(x_n)_{\mathbb{N}}$ ist Cauchy.

6.6. Proposition: Jensensche Ungleichung

Für $\alpha, \beta \geqslant 0, p \geqslant r > 0$ gilt $(\alpha^p + \beta^p)^{\frac{1}{p}} \leqslant (\alpha^r + \beta^r)^{\frac{1}{r}}$.

Beweis

Setze $A := (\alpha^r + \beta^r)^{\frac{1}{r}} \ (\neq 0 \text{ oBdA})$. Dann gilt

$$1 = \frac{1}{A^r} \cdot (\alpha^r + \beta^r) = \left(\underbrace{\frac{\alpha}{A}}_{\leq 1}\right)^r + \left(\underbrace{\frac{\beta}{A}}_{\leq 1}\right)^r \geqslant \left(\frac{\alpha}{A}\right)^p + \left(\frac{\beta}{A}\right)^p$$

$$\Rightarrow \left(\tfrac{1}{A^p}\cdot(\alpha^p+\beta^p)\right)^{\frac{1}{p}}\leqslant 1=\left(\tfrac{1}{A^r}(\alpha^r+\beta^r)\right)^{\frac{1}{r}}. \text{ K\"{u}rzen von } \tfrac{1}{A} \text{ liefert die Behauptung.} \qquad \Box$$

6.7. Proposition

Sei (X, Σ, μ) ein Maßraum, $1 < p, q < \infty$ mit $\frac{1}{p} + \frac{1}{q} = 1$ und $f, g \in L^p(\mu)$.

(i) Falls
$$p \geqslant 2$$
, so gilt $||f + g||_p^p + ||f - g||_p^p \leqslant 2^{p-1} (||f||_p^p + ||g||_p^p)$.

(ii) Falls
$$p < 2$$
, so gilt $||f + g||_p^q + ||f - g||_p^q \leqslant 2 \cdot \left(||f||_p^p + ||g||_p^p\right)^{q-1}$.

Beweis

(i) Nach 6.6 gilt für $\gamma, \delta \in \mathbb{R}$

$$(|\gamma + \delta|^p + |\gamma - \delta|^p)^{\frac{1}{p}} \le (|\gamma + \delta|^2 + |\gamma - \delta|^2)^{\frac{1}{2}} = 2^{\frac{1}{2}} \cdot (\gamma^2 + \delta^2)^{\frac{1}{2}}$$
 [*]

[p>2] Sei $r:=rac{p}{p-2}$, sodass $rac{1}{2}+rac{1}{r}=1$. Die Höldersche Ungleichung (4.5) für \mathbb{R}^2 liefert für (γ^2,δ^2) und (1,1)

$$\gamma^2 \cdot 1 + \delta^2 \cdot 1 \leqslant \left((\gamma^2)^{\frac{p}{2}} + \left(\delta^2 \right)^{\frac{p}{2}} \right)^{\frac{2}{p}} \cdot (1^r + 1^r)^{\frac{1}{r}} = \left(|\gamma|^p + |\delta|^p \right)^{\frac{2}{p}} \cdot 2^{\frac{p-2}{p}}$$

Es folgt

$$\sqrt{2} \cdot \left(\gamma^2 + \delta^2\right)^{\frac{1}{2}} \leqslant 2^{\frac{p}{2p}} \cdot \left(\left|\gamma\right|^p + \left|\delta\right|^p\right)^{\frac{1}{p}} \cdot 2^{\frac{p-2}{2p}} = 2^{\frac{p-1}{p}} \cdot \left(\left|\gamma\right|^p + \left|\delta\right|^p\right)^{\frac{1}{p}}$$

Mit [*] folgt $|\gamma + \delta|^p + |\gamma - \delta|^p \le 2^{p-1} \cdot (|\gamma|^p + |\delta|^p)$. Integration liefert (i).

Für p=2 folgt die Aussage mit Pythagoras.

6.8. Satz

Sei (X, Σ, μ) ein Maßraum, $1 . Dann ist <math>L^p(\mu)$ gleichmäßig konvex.

Beweis

Seien $(f_n)_{\mathbb{N}}, (g_n)_{\mathbb{N}} \subset L^P(\mu)$ Folgen mit $\|f_n\|_p = \|g_n\|_p = 1$ für $n \in \mathbb{N}$ und $\lim_{n \to \infty} \left\| \frac{1}{2} (f_n + g_n) \right\|_p = 1$. Zu zeigen: $\|f_n - g_n\|_p \xrightarrow{n \to \infty} 0$, dann gilt 6.1(iii). Nach 6.7 gilt

$$\underbrace{\|f_n + g_n\|_p^p}_{n \to \infty} + \|f_n - g_n\|_p^p \leqslant 2^p$$

Falls $p \geqslant 2$ bzw. für p < 2

$$\underbrace{\|f_n + g_n\|_p^q}_{n \to \infty_{\Delta 2q}} + \|f_n - g_n\|_p^q \leqslant 2^q$$

 $\text{Also folgt } \|f_n - g_n\|_p^p \xrightarrow{n \to \infty} 0 \text{ bzw. } \|f_n - g_n\|_p^q \xrightarrow{n \to \infty} 0. \text{ Also gilt } \|f_n - g_n\|_p \xrightarrow{n \to \infty} 0.$

6.9. Satz

Sei X ein gleichmäßig konvexer Banachraum. Dann ist X reflexiv.

Beweis

Sei $f\in X^{**}$, $\|f\|_{X^{**}}=1$. Zu zeigen: $f\in\iota(X)$. Wir wählen $\varphi_n\in X^*$ mit $\|\varphi_n\|_{X^*}=1$ und $f(\varphi_n)>1-\frac{1}{n+1}$ für $n\in\mathbb{N}$. Nach (dem Beweis von) 5.16 gilt für $n\in\mathbb{N}$

$$\inf_{x \in \overline{B}_X(0,1)} \sum_{i=0}^n \left| f(\varphi_i) - \varphi_i(x) \right|^2 = 0$$

 $\Rightarrow \exists (x_n)_{n\in\mathbb{N}}\subset X \text{, sodass } \|x_n\|_X=1 \text{ und } |f(\varphi_m)-\varphi_m(x_n)|<\frac{1}{2(n+1)} \text{ für } 0\leqslant m\leqslant n \text{ also auch } 1-\frac{3}{2(m+1)}\leqslant \varphi_m(x_n)\leqslant 1. \text{ Behauptung: } (x_n)_\mathbb{N} \text{ ist Cauchy. Es gilt für } n\geqslant m$

$$\underbrace{1 - \frac{3}{2(m+1)} + 1 - \frac{3}{2(m+1)}}_{\underbrace{-n, m \to \infty}} \leq \varphi_m(x_m) + \varphi_m(x_n) = \varphi_m(x_m + x_n) \leq \|\varphi_m\| \cdot \|x_m + x_n\|_X$$

$$\leq ||x_m||_X + ||x_n||_X = 2$$

 $\Rightarrow \left\| \frac{1}{2} (x_m + x_n) \right\|_X \xrightarrow{n, m \to \infty} 1. \text{ Mit Bemerkung 6.5 folgt, dass } (x_n)_{\mathbb{N}} \text{ Cauchy ist. Sei } \overline{x} := \lim_{n \to \infty} x_n.$ Es gilt $\left\| \overline{x} \right\|_X = 1.$ Behauptung: $\iota_X(\overline{x}) = f$. Für $n \geqslant m$ gilt

$$\left| f(\varphi_m) - \underbrace{\varphi_m(x_n)}_{n \to \infty} \right| < \frac{1}{2(n+1)}$$

 φ_m ist stetig, also ist $f(\varphi_m)=\varphi_m(\overline{x})=\iota(\overline{x})(\varphi_m)$ für jedes $m\in\mathbb{N}$. Sei $\tilde{x}\in X$ ein weiterer Punkt mit $\|\tilde{x}\|=1$ und $f(\varphi_m)=\varphi_m(\tilde{x})$, $m\in\mathbb{N}$. Das obige Argument für die Folge $(\overline{x},\tilde{x},\overline{x},\tilde{x},\ldots)$ liefert: $(\overline{x},\tilde{x},\overline{x},\tilde{x},\ldots)$ ist Cauchy $\Rightarrow \overline{x}=\tilde{x}$.

Noch zu zeigen: $f(\varphi) = \varphi(\overline{x})$ für alle $\varphi \in X^*$. Das obige Argument für $(\varphi, \varphi_1, \varphi_2, \ldots)$ an Stelle von $(\varphi_0, \varphi_1, \varphi_2, \ldots)$ liefert eine Folge $(y_n)_{\mathbb{N}} \subset X$ mit $\|y_n\| = 1$, $(y_n)_{\mathbb{N}}$ ist Cauchy; Dann erfüllt $\overline{y} := \lim_{n \to \infty} y_n$ die Gleichung $f(\varphi_m) = \varphi_m(\overline{y})$, $m \geqslant 1$. $f(\varphi) = \varphi(\overline{y})$. $\Rightarrow \overline{y} = \overline{x}$. Damit folgt $\iota(\overline{x})(\varphi) = \varphi(\overline{x}) = \varphi(\overline{y}) = f(\varphi)$ für jedes $\varphi \in X^*$, also ist $\iota(\overline{x}) = f$.

6.10. Corollar

Für einen Maßraum (X, Σ, μ) und $1 ist <math>L^p(\mu)$ reflexiv.

Beweis

Kombiniere die Aussagen aus 6.8 und 6.9.

6.11. Satz

Sei (X, Σ, μ) ein Maßraum, $\frac{1}{p} + \frac{1}{q} = 1$. Dann ist die Abbildung $\iota_p \colon L^p(\mu) \to L^q(\mu)^*$ gegeben durch $\iota_p(f)(g) := \int fg \, \mathrm{d}\mu$ ein isometrischer Isomorphismus.

Beweis

 ι_p ist eine lineare Isometrie nach Proposition 4.10, wir müssen also nur Surjektivität zeigen. $\iota_p(L^p(\mu))$ ist vollständig, also abgeschlossen in $L^q(\mu)^*$. Falls $\iota_p(L^p(\mu)) \subsetneq L^q(\mu)$, so existiert nach Hahn-Banach (2.27) ein $0 \neq \psi \in L^q(\mu)^{**}$ mit $\psi(\iota_p(L^p(\mu))) = 0$. $L^q(\mu)$ ist reflexiv, also existiert $g \in L^q(\mu)$ mit $\iota(g) = \psi$, d.h. $\varphi(g) = \iota_p(g)(\varphi) = \psi(\varphi)$, $\varphi \in L^q(\mu)^*$. Für $f \in L^p(\mu)$ gilt dann

$$0 = \psi(\iota_p(f)) = \iota_p(f)(g) = \int fg \, \mathrm{d}\mu \implies g = 0 \not \sharp \ \, \mathrm{zu} \, \, \psi \neq 0 \qquad \qquad \Box$$

6.12. Bemerkung

Weiter kann man zeigen, dass die kanonische Abbildung $\iota_\infty:L^\infty(\mu)\to L^1(\mu)^*$, $\iota_\infty(f)(g)=\int fg\,\mathrm{d}\mu$, ein isometrischer Isomorphismus ist. (ohne Beweis) Die Isometrie $\iota_1:L^1(\mu)\to L^\infty(\mu)^*$ ist jedoch nicht surjektiv! (Übung)

7. Hilberträume und selbstadjungierte Operatoren

7.1. Definition

RevChap7

Sei X ein \mathbb{K} -Vektorraum. Eine **hermitesche Form** auf X ist eine Abbildung $\langle \cdot, \cdot \rangle \colon X \times X \to \mathbb{K}$ mit

$$\begin{split} \langle x\,,\,y+y'\rangle &= \langle x\,,\,y\rangle + \langle x\,,\,y'\rangle \\ \langle x\,,\,\alpha\cdot y\rangle &= \alpha\cdot \langle x\,,\,y\rangle \\ \langle x\,,\,y\rangle &= \overline{\langle y\,,\,x\rangle} \end{split} \qquad \text{für } x,y,y'\in X,\alpha\in\mathbb{K} \end{split}$$

 $\langle\cdot\,,\,\cdot\rangle$ heißt positiv semidefinit, falls $\langle x\,,\,x\rangle\geqslant 0$ für $x\in X$ und positiv definit, falls $\langle x\,,\,x\rangle>0$ für $0\neq x\in X$. In diesem Fall heißt $\langle\cdot\,,\,\cdot\rangle$ auch Skalarprodukt.

7.2. Bemerkung

Für eine hermitesche Form $\langle \cdot, \cdot \rangle$ und $x, x', y \in X$, $\alpha \in \mathbb{K}$ gilt

$$\langle x + x', y \rangle = \langle x, y \rangle + \langle x', y \rangle \quad , \qquad \langle \alpha \cdot x, y \rangle = \overline{\alpha} \cdot \langle x, y \rangle \quad \text{ und } \quad \langle x, x \rangle \in \mathbb{R}$$

7.3. Beispiele

- (i) Auf \mathbb{C}^n definiert $\langle \underline{x}\,,\,y\rangle:=\sum_{i=1}^n\overline{x}_i\cdot y_i$ ein Skalarprodukt.
- (ii) Auf $L^2(\mathbb{R})$ definiert $\langle f\,,\,g
 angle:=\int\!fg\,\mathrm{d}\lambda$ ein Skalarprodukt. Auf

$$L^2_{\mathbb{C}}(\mathbb{R}) := \left\{ f \colon \mathbb{R} o \mathbb{C} \,\middle|\, \mathrm{Re}\, f \; \mathrm{und} \; \mathrm{Im}\, f \; \mathrm{messbar}, \int ar{f} f \mathrm{d}\mu < \infty
ight\} / \mathcal{N}$$

definiert $\langle f, g \rangle := \int \bar{f}g \, d\lambda$ ein Skalarprodukt.

(iii) Auf $\ell^2_{\mathbb{C}}(\mathbb{N})$ definieren wir ein Skalarprodukt durch $\langle (a_n)\,,\,(b_n)\rangle:=\sum_{n\in\mathbb{N}}\overline{a}_nb_n$.

7.4. Proposition (Cauchy-Schwarz-Ungleichung)

Sei X ein \mathbb{K} -Vektorraum mit einer positiv semidefiniten hermiteschen Form. Dann gilt für $x,y\in X$

$$\left| \langle x \,,\, y \rangle \right|^2 \leqslant \langle x \,,\, x \rangle \cdot \langle y \,,\, y \rangle$$

Beweis

Für $\lambda \in \mathbb{K}$, $x, y \in X$ gilt:

$$0 \leqslant \langle x + \lambda y, x + \lambda y \rangle = \langle x, x \rangle + \lambda \cdot \langle x, y \rangle + \overline{\lambda} \cdot \langle y, x \rangle + \lambda \overline{\lambda} \langle y, y \rangle$$

Falls $\langle y\,,\,y\rangle \neq 0$, so setze $\lambda:=-\frac{\langle y\,,\,x\rangle}{\langle y\,,\,y\rangle}$. Es folgt

$$0 \leqslant \langle x \,,\, x \rangle - \frac{\langle y \,,\, x \rangle \cdot \langle x \,,\, y \rangle}{\langle y \,,\, y \rangle} + \overline{\lambda} \bigg(\langle y \,,\, x \rangle - \frac{\langle y \,,\, x \rangle}{\langle y \,,\, y \rangle} \langle y \,,\, y \rangle \bigg) = \langle x \,,\, x \rangle - \frac{\left| \langle x \,,\, y \rangle \right|^2}{\langle y \,,\, y \rangle}$$

Falls $\langle x\,,\,x\rangle\neq 0$, so vertausche die Rollen von x und y. Falls $\langle x\,,\,x\rangle=\langle y\,,\,y\rangle=0$ gilt, so setzen wir $\lambda:=-\langle y\,,\,x\rangle.$

7.5. Proposition

Sei X ein \mathbb{K} -Vektorraum mit Skalarprodukt. Dann definiert $x\mapsto \|x\|:=\langle x\,,\,x\rangle^{\frac{1}{2}}$ eine Norm auf X.

Beweis

 $\|\cdot\|$ ist positiv definit, also ist auch $\langle\cdot,\cdot\rangle$ positiv definit. Weiter gilt

$$\|\lambda \cdot x\| = \langle \lambda \cdot x \,,\, \lambda \cdot x \rangle^{\frac{1}{2}} = \left(\overline{\lambda}\lambda \cdot \langle x \,,\, x \rangle\right)^{\frac{1}{2}} = |\lambda| \cdot \|x\|$$

Die Dreieckungleichung gilt, da

$$||x + y||^{2} = \langle x + y, x + y \rangle = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle \leqslant \langle x, x \rangle + (\langle x, x \rangle \langle y, y \rangle)^{\frac{1}{2}} + \langle y, y \rangle$$

$$= ||x||^{2} + 2 \cdot ||x|| \cdot ||y|| + ||y||^{2} = (||x|| + ||y||)^{2}$$

$$\Rightarrow ||x+y|| \leqslant ||x|| + ||y||.$$

7.6. Bemerkung

- (i) Die Cauchy-Schwarz Ungleichung schreibt sich auch als $|\langle x, y \rangle| \leq ||x|| \cdot ||y||$.
- (ii) Die Abbildung $\langle \cdot, \cdot \rangle \colon X \times X \to \mathbb{K}$ ist stetig:

$$|\langle x, y \rangle - \langle x', y' \rangle| = \dots \leq ||x - x'|| \cdot ||y|| + ||x'|| \cdot ||y' - y||$$

7.7. Proposition

Für einen normierten Raum \boldsymbol{X} sind äquivalent:

- (i) Es gilt das Parallelogrammgesetz: $\|x+y\|^2+\|x-y\|^2=2\Big(\|x\|^2+\|y\|^2\Big)$ für alle $x,y\in X$.
- eventuell Bild von Parallelogramm hinzufügen
- (ii) $\langle x\,,\,y\rangle \coloneqq \frac{1}{4}\Big(\|x+y\|^2-\|-x+y\|^2+i\cdot\|i\cdot x+y\|^2-i\cdot\|-i\cdot x+y\|^2\Big)$ für $\mathbb{K}=\mathbb{C}$ bzw. $\langle x\,,\,y\rangle \coloneqq \frac{1}{4}\Big(\|x+y\|^2-\|x-y\|^2\Big)$ für $\mathbb{K}=\mathbb{R}$ definiert ein Skalarprodukt auf X. In diesem Fall gilt $\langle x\,,\,x\rangle = \|x\|^2$ für alle $x\in X$; insbesondere ist $\langle\cdot\,,\,\cdot\rangle$ stetig auf $X\times X$.

Reweis

- (ii) \Rightarrow (i): Es gilt $||x||^2 = \langle x, x \rangle$ für $x \in X$. und (i) folgt durch einfache Rechnung.
- (i) \Rightarrow (ii): $\langle \cdot , \cdot \rangle \colon X \times X \to X$ ist stetig (klar). Linearität (für $\mathbb{K} = \mathbb{C}$):

$$\langle x \,,\, y + y' \rangle = \frac{1}{4} \Big(\|x + y + y'\|^2 - \|-x + y + y'\|^2 + i\|ix + y + y'\|^2 - i\|-ix + y + y'\|^2 \Big) \ [^{\bigstar}]$$

$$\langle x \,,\, y \rangle + \langle x \,,\, y' \rangle = \frac{1}{4} \Big(\|x + y\|^2 - \|-x + y\|^2 + i\|ix + y\|^2 - i\|-ix + y\|^2 + \|x + y'\|^2 + \|-x + y'\| + i\|ix + y'\| - i\|-ix + y'\| \Big)$$

$$[^{\bigstar \bigstar}]$$

Vergleich der Imaginärteile: Es gilt

$$||x + y + y'||^2 = -||x + y - y'||^2 + 2||x + y||^2 + 2||y'||$$

$$\begin{aligned} \left\| x + y + y' \right\|^2 &= - \left\| x - y + y' \right\|^2 + 2 \| x + y' \| + 2 \| y \|^2 \\ &= - \frac{1}{2} \Big(\left\| x + y - y' \right\|^2 + \left\| x - y + y' \right\|^2 \Big) + \left\| x + y \right\|^2 + \left\| x + y' \right\|^2 + \left\| y' \right\|^2 + \left\| y \right\|^2 \end{aligned}$$

 $\Rightarrow \text{Realteile von [*] und [**] stimmen "uberein....} \Rightarrow \langle x\,,\,y\rangle + \langle x\,,\,y'\rangle = \langle x\,,\,y+y'\rangle. \Rightarrow \langle x\,,\,\alpha\cdot y\rangle = \alpha\cdot\langle x\,,\,y\rangle \text{ für }\alpha\in\mathbb{N}\setminus\{0\} \text{ (}\langle x\,,\,0\rangle = 0 \text{ ist trivial). Damit folgt auch }\langle x\,,\,\alpha\cdot y\rangle = \alpha\cdot\langle x\,,\,y\rangle \text{ für }\alpha\in\mathbb{Z}.$ Es gilt nun für $\alpha=\frac{m}{n}\in\mathbb{Q}$

$$\langle x, \alpha \cdot y \rangle = \frac{n}{n} \cdot \left\langle x, \frac{m}{n} \cdot y \right\rangle = \frac{m}{n} \cdot \left\langle x, \frac{n}{n} \cdot y \right\rangle = \alpha \cdot \left\langle x, y \right\rangle$$

Mit der Stetigkeit von $\langle \cdot \,, \, \cdot \rangle$ folgt nun $\langle x \,, \, \alpha \cdot y \rangle = \alpha \cdot \langle x \,, \, y \rangle$ für $\alpha \in \mathbb{R}$. $\langle x \,, \, i \cdot y \rangle = i \cdot \langle x \,, \, y \rangle$ ist trivial und damit ist $\langle x \,, \, \alpha \cdot y \rangle = \alpha \cdot \langle x \,, \, y \rangle$ für $\alpha \in \mathbb{C}$. Also ist $\langle \cdot \,, \, \cdot \rangle$ linear in der zweiten Variablen. $\langle x \,, \, y \rangle = \overline{\langle y \,, \, x \rangle}$ ist trivial.

7.8. Bemerkung

Ist X ein $\mathbb C$ -Vektorraum und $q\colon X\times X\to \mathbb C$ eine **Sesquilinearform** (d.h. q ist linear in der zweiten Variable und konjugiert linear in der ersten), dann ist q durch die Abbildung $n_q\colon X\to \mathbb C$, $n_q(x):=q(x,x)$ eindeutig bestimmt durch die **Polarisierungsidentität**

$$q(x,y) = \frac{1}{4} \Big(n_q(x+y) - n_q(-x+y) + i \cdot n_q(ix+y) - i \cdot n_q(-ix+y) \Big).$$

7.9. Definition

Ein \mathbb{K} -Vektorraum \mathcal{H} heißt **Prä-Hilbertraum**, falls \mathcal{H} ein Skalarprodukt besitzt. \mathcal{H} heißt **Hilbertraum**, falls \mathcal{H} vollständig ist bzgl. der durch $\langle \cdot, \cdot \rangle$ induzierten Norm.

7.10. Proposition

Sei $\mathcal H$ ein Prä-Hilbertraum und $\overline{\mathcal H}^{\|\cdot\|}$ die Vervollständigung bezüglich $\|x\|=\langle x\,,\,x\rangle^{\frac12}.$ Dann ist $\overline{\mathcal H}^{\|\cdot\|}$ in kanonischer Weise ein Hilbertraum.

Beweis

 $(\mathcal{H},\|\cdot\|) \hookrightarrow \left(\overline{\mathcal{H}}^{\|\cdot\|},\|\cdot\|_{\overline{\mathcal{H}}^{\|\cdot\|}}\right) \text{ ist isometrisch mit dichtem Bild. } \|\cdot\| \text{ erfüllt das Parallelogrammgesetz}$ und daher auch $\|\cdot\|_{\overline{\mathcal{H}}^{\|\cdot\|}}$. Mit 7.7 folgt, dass $\overline{\mathcal{H}}^{\|\cdot\|}$ ein Skalarprodukt besitzt, welches die Norm $\|\cdot\|_{\overline{\mathcal{H}}^{\|\cdot\|}}$ induziert und auf \mathcal{H} mit $\langle\cdot\,,\,\cdot\rangle$ übereinstimmt. Das Skalarprodukt auf $\overline{\mathcal{H}}^{\|\cdot\|}$ ist wegen Stetigkeit hierdurch eindeutig bestimmt.

7.11. Proposition

Sei \mathcal{H} ein Hilbertraum und $\kappa \colon \mathcal{H} \to \mathcal{H}^*$ definiert durch $\kappa(x)(y) := \langle x, y \rangle, x, y \in \mathcal{H}$. Dann gilt

- (i) κ ist konjugiert linear, d.h. $\kappa(\alpha x + \alpha' x') = \overline{\alpha}\kappa(x) + \overline{\alpha'}\kappa(x')$ mit $x, x' \in \mathcal{H}, \alpha, \alpha' \in \mathbb{K}$.
- (ii) κ ist isometrisch (insbesondere injektiv).
- (iii) κ ist surjektiv.

Beweis

Es gilt $\kappa(x) \in \mathcal{H}^*$, da $\kappa(x) \colon \mathcal{H} \to \mathbb{K}$ offensichtlich linear ist. Weiter ist $\kappa(x)$ stetig, da

$$|\kappa(x)(y)| = |\langle x, y \rangle| \le ||x|| \cdot ||y|| \Longrightarrow ||\kappa(x)||_{\mathcal{U}_*} \le ||x||$$

- (i) klar.
- (ii) Es gilt $\kappa(x) \left(\frac{1}{\|x\|} x \right) = \frac{1}{\|x\|} \langle x \,,\, x \rangle = \|x\|$. Daraus folgt $\|\kappa(x)\|_{\mathcal{H}^*} \geqslant \|x\|$, also auch $\|\kappa(x)\|_{\mathcal{H}^*} = \|x\|$.

(iii) Sei $\varphi \in \mathcal{H}^*.$ Ohne Einschränkungen gelte $\|\varphi\|_{\mathcal{H}^*}=1.$

Behauptung: Es gibt $\overline{x} \in \mathcal{H}$ mit $\|\overline{x}\| = 1$ und $\varphi(\overline{x}) = 1$. Wähle $(x_n)_{\mathbb{N}} \subset \mathcal{H}$ mit $\|x_n\| = 1$ und $0 \leqslant \varphi(x_n) \xrightarrow{n \to \infty} 1$. Zu $1 > \varepsilon > 0$ existiert $N \in \mathbb{N}$ mit $\varphi(x_n) > 1 - \frac{\varepsilon}{8}$ für $n \geqslant N$, also $\varphi(x_n + x_m) > 2 - \frac{\varepsilon}{4}$. Aus dem Parallelogrammgesetz folgt für $n, m \geqslant N$

$$||x_n - x_m||^2 = 2 \cdot ||x_n||^2 + 2 \cdot ||x_m||^2 - ||x_n + x_m||^2 \le 4 - \left(2 - \frac{\varepsilon}{4}\right)^2 \le \varepsilon$$

Es folgt, dass $(x_n)_{\mathbb{N}}$ eine Cauchyfolge ist. $\overline{x}:=\lim_{n\to\infty}x_n$ erfüllt die Behauptung.

Behauptung: $\varphi=\kappa(\overline{x})$, d.h. $\varphi(y)=\kappa(\overline{x})(y)$ für $y\in\mathcal{H}$. Sei $\mathbb{K}=\mathbb{R}$. Für $\lambda>0$ gilt wegen der Dreiecksungleichung und $\|\varphi\|_{\mathcal{H}_*}\leqslant 1$

$$-\frac{1}{\lambda}(\|\overline{x} - \lambda \cdot y\| - \|\overline{x}\|) \leqslant -\frac{1}{\lambda}(\varphi(\overline{x} - \lambda \cdot y) - \varphi(\overline{x})) = \varphi(y)$$

und

$$\varphi(y) = \frac{1}{\lambda} \left(\varphi(\overline{x} + \lambda \cdot y) - \underbrace{\varphi(\overline{x})}_{=1} \right) \leqslant \frac{1}{\lambda} \cdot \left(\|\overline{x} + \lambda \cdot y\| - \underbrace{\|\overline{x}\|}_{=1} \right)$$

also insgesamt

$$\underbrace{-\frac{1}{\lambda}\Big(\|\overline{x}-\lambda\cdot y\|-\|\overline{x}\|\Big)}_{\stackrel{\lambda\to 0}{\longrightarrow} \langle \overline{x}\,,y\rangle} \leqslant \varphi(y) \leqslant \underbrace{\frac{1}{\lambda}\cdot \Big(\|\overline{x}+\lambda\cdot y\|-\|\overline{x}\|\Big)}_{\stackrel{\lambda\to 0}{\longrightarrow} \langle \overline{x}\,,y\rangle}$$

nach l'Hospital. Im Detail:

$$\|\overline{x} + \lambda y\| - \|\overline{x}\| = \langle \overline{x} + \lambda y, \overline{x} + \lambda y \rangle^{\frac{1}{2}} - \|\overline{x}\| = \left(\langle \overline{x}, \overline{x} \rangle + \langle \overline{x}, \lambda y \rangle + \lambda^{2} \langle y, y \rangle \right)^{\frac{1}{2}} - \langle \overline{x}, \overline{x} \rangle^{\frac{1}{2}}$$

ist in $\lambda=0$ differenzierbar nach λ mit

$$\frac{\mathrm{d}}{\mathrm{d}t}(\cdots) = \left(2\langle \overline{x}\,,\,y\rangle + 2\lambda\|y\|^2\right)^{-\frac{1}{2}} \frac{1}{2}(\cdots)^{-\frac{1}{2}} \xrightarrow{\lambda \to 0} \langle \overline{x}\,,\,y\rangle$$

Wir erhalten $\varphi(y) = \langle \overline{x}, y \rangle = \kappa(\overline{x})(y)$, also $\varphi = \kappa(\overline{x})$.

Für $\mathbb{K}=\mathbb{C}$: \mathcal{H} ist reeller Vektorraum und $\langle\cdot\,,\,\cdot\rangle_{\mathbb{R}}:=\mathrm{Re}(\langle\cdot\,,\,\cdot\rangle)$. Es gilt dann $\varphi(y)=\rho(y)-i\cdot\rho(y)$ mit $\rho(\cdot):=\mathrm{Re}(\varphi(\cdot))$. Es gilt nämlich

$$\operatorname{Im}(\varphi(y)) = -\operatorname{Re}(i \cdot \varphi(y)) = -\operatorname{Re}(\varphi(i \cdot y)) = -\rho(i \cdot y)$$

Es ist $\rho(y) = \langle \overline{x} \,,\, y \rangle_{\mathbb{R}} = \operatorname{Re}(\langle \overline{x} \,,\, y \rangle)$ für ein $\overline{x} \in \mathcal{H}$. Also gilt $\varphi(y) = \rho(y) - i \cdot \rho(i \cdot y) = \ldots = \langle \overline{x} \,,\, y \rangle$.

7.12. Korollar

Hilberträume sind reflexiv.

Beweis

Das Diagramm

$$\begin{array}{ccc} \mathcal{H} & \stackrel{\iota_{\mathcal{H}}}{\longrightarrow} & \mathcal{H}^{**} \\ \downarrow^{\kappa} & & \downarrow^{\kappa^{\mathrm{tr}}} \\ \mathcal{H}^{*} & \stackrel{\varphi \mapsto \overline{\varphi}}{\longrightarrow} & \mathcal{H}^{*} \end{array}$$

kommutiert, da gilt

$$\kappa^{\mathrm{tr}} \circ \iota_{\mathcal{H}}(x)(y) = \kappa^{\mathrm{tr}}(\iota_{\mathcal{H}}(x))(y) = \iota_{\mathcal{H}}(x) \circ \kappa(y) = \kappa(y)(x) = \langle y \,, \, x \rangle = \overline{\langle x \,, \, y \rangle} = \overline{\kappa(x)(y)}$$

Die Abbildungen $\kappa, \kappa^{\mathrm{tr}}$ und $(\varphi \mapsto \overline{\varphi})$ sind surjektive Isometrien, also ist auch $\iota_{\mathcal{H}} \colon \mathcal{H} \to \mathcal{H}^{**}$ eine surjektive Isometrie.

7.13. Definition

Sei \mathcal{H} ein Hilbertraum.

- (i) $x, y \in \mathcal{H}$ heißen **orthogonal**, $x \perp y$, falls $\langle x, y \rangle = 0$.
- (ii) $A, B \subset \mathcal{H}$ heißen **orthogonal**, falls $x \perp y$ für alle $x \in A, y \in B$.
- (iii) Für $A \subset \mathcal{H}$ heißt $A^{\perp} := \{x \in \mathcal{H} \mid \langle x \,,\, y \rangle = 0 \text{ für alle } y \in A\}$ orthogonales Komplement von A.
- (iv) $\{x_i\}_I \subset \mathcal{H}$ heißt **Orthonormalsystem**, falls $\langle x_i, x_j \rangle = \delta_{ij}$, $i, j \in I$.
- (v) $\{x_i\}_I \subset \mathcal{H}$ heißt **Hilbertraumbasis** (bzw. Basis), falls es ein maximales Orthonormalsystem ist.

7.14. Bemerkung

- (i) Für $x \perp y \in \mathcal{H}$ gilt der Satz des Pythagoras: $\|x + y\|^2 = \|x\|^2 + \|y\|^2$.
- (ii) Wir werden sehen, dass jeder Hilbertraum eine Hilbertraumbasis besitzt.
- (iii) Im Allgemeinen ist eine Hilbertraumbasis keine Vektorraumbasis (Hamelbasis).

7.15. Proposition

Sei \mathcal{H} ein Hilbertraum, $\mathcal{H}_0 \subset \mathcal{H}$ ein abgeschlossener Unterraum. Dann gilt $\mathcal{H}_0 \cap \mathcal{H}_0^{\perp} = \{0\}$ und $\mathcal{H}_0 + \mathcal{H}_0^{\perp} = \mathcal{H}$. Wir schreiben in diesem Fall auch $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_0^{\perp}$.

Beweis

 $\mathcal{H}_0 \cap \mathcal{H}_0^{\perp} = \{0\}$ ist klar (warum?). Sei $x \in \mathcal{H}$. Dann ist $\kappa(x) \in \mathcal{H}^*$ gegeben durch $\kappa(x)(y) = \langle x\,,\,y \rangle$, und $\kappa(x)|_{\mathcal{H}_0} \in \mathcal{H}_0^*$. $\mathcal{H}_0 \subset \mathcal{H}$ abgeschlossen, ist also selbst ein Hilbertraum. Sei $\kappa_0 \colon \mathcal{H}_0 \to \mathcal{H}_0^*$ der konjugiert lineare, isometrische Isomorphismus aus 7.11. Nach 7.11 existiert $x_0 \in \mathcal{H}_0$ mit $\kappa_0(x_0) = \kappa(x)|_{\mathcal{H}_0}$. Das heißt für $y \in \mathcal{H}_0$ gilt

$$\langle x_0, y \rangle = \kappa_0(x_0)(y) = \kappa(x) \big|_{\mathcal{H}_0}(y) = \kappa(x)(y) = \langle x, y \rangle$$

Daraus folgt $\langle x-x_0\,,\,y\rangle=0$ für jedes $y\in\mathcal{H}_{\prime}$, also ist $x_1:=x-x_0\in\mathcal{H}_0^{\perp}$ (und $x=x_0+x_1$).

7.16. Definition

Sei $\mathcal H$ ein Hilbertraum. Eine Familie $\{x_i\}_{i\in I}\subset \mathcal H$ heißt **summierbar** zu $x\in \mathcal H$, falls gilt: Zu $\varepsilon>0$ existiert $\overline J\subset\subset I$ endlich, sodass $\underline{\mathrm{für}}$ alle $\overline J\subset J\subset\subset I$ endlich gilt $\left\|\sum_{i\in J}x_i-x\right\|<\varepsilon$.

Wir schreiben dann auch $x = \sum_{i \in I} x_i$. (Warum kann es höchstens ein solches x geben?) Formulierung mit Netzen:

$$\left(\sum_{i \in J} x_i\right)_{\{J \mid J \subset \subset I \text{ endlich}\}} \longrightarrow x \qquad \text{oder} \qquad \sum_{i \in J} x_i \xrightarrow{J \subset \subset I} x$$

Dabei ist $\{J \mid J \subset\subset I \text{ endlich}\}$ gerichtet bezüglich Inklusion.

7.17. Proposition

Sei \mathcal{H} ein Hilbertraum, $\{x_i\}_{i\in I}\subset\mathcal{H}$.

(i) $\{x_i\}_{i\in I}$ ist genau dann summierbar, wenn gilt: Zu jedem $\varepsilon>0$ existiert $\overline{J}\subset\subset I$ endlich, sodass $\left\|\sum_{i\in J'}x_i\right\|<\varepsilon$ für jedes $J'\subset\subset I$ endlich mit $J'\cap\overline{J}=\emptyset$.

(ii) $\{x_i\}_{i\in I}$ ist genau dann summierbar zu $x\in\mathcal{H}$, wenn gilt: Es sind höchstens abzählbar viele der $x_i\neq 0$ und für jede Abzählung x_{i_0},x_{i_1},\ldots dieser x_i gilt

$$x = \lim_{n \to \infty} \sum_{k=0}^{n} x_{i_k}.$$

Beweis

(i) Angenommen $\sum_{i\in I} x_i \in \mathcal{H}$ existiert. Sei $\varepsilon>0$. Dann existiert $\overline{J}\subset I$, sodass für $\overline{J}\subset J\subset I$ gilt $\left\|\sum_{i\in J} x_i - \sum_{i\in I} x_i\right\| < \frac{\varepsilon}{2}$. Für $J'\subset I$, $J'\cap \overline{J}=\emptyset$ gilt

$$\left\| \sum_{i \in J'} x_i \right\| = \left\| \sum_{i \in J' \cup \overline{J}} x_i - \sum_{i \in \overline{J}} x_i \right\| \leqslant \left\| \sum_{i \in J' \cup \overline{J}} x_i - \sum_{i \in I} x_i \right\| + \left\| \sum_{i \in \overline{J}} x_i - \sum_{i \in I} x_i \right\| < \varepsilon$$

Zur Rückrichtung: Für $n \in \mathbb{N}$ existiert $J_n \subset\subset I$ endlich, sodass für $J' \subset\subset I$ mit $J' \cap J_n = \emptyset$ gilt $\left\|\sum_{i \in J'} x_i\right\| < \frac{1}{n+1}$. Aber dann ist

$$\left(\sum_{i \in J_0 \cup J_1 \cup \dots \cup J_n} x_i\right)_{n \in \mathbb{N}} \subset \mathcal{H}$$

eine Cauchyfolge. Für den Limes x gilt $x=\sum_{i\in I}x_i$ (Warum? Zu $\varepsilon>0$ wähle n mit $\frac{1}{n+1}<\frac{\varepsilon}{2}$ und $\left\|x-\sum_{i\in J_0\cup J_1\cup\ldots\cup J_n}x_i\right\|<\frac{\varepsilon}{2}.$ Setze $\overline{J}:=J_n$)

(ii) Angenommen $\{x_i\}_{i\in I}$ ist summierbar. Seien die J_n wie oben. Dann ist $\bigcup_{n\in\mathbb{N}}J_n$ abzählbar. Falls $I\ni i\not\in \bigcup_{n\in\mathbb{N}}J_n$, so gilt $\|x_i\|<\frac{1}{n+1}$ für jedes $n\in\mathbb{N}$, also $x_i=0$.

Die Rückrichtung ist klar. (sonst noch einmal an Analysis I. erinnern ...) □

7.18. Proposition

Sei $\mathcal H$ ein Hilbertraum, $z\in\mathcal H$, $\alpha,\beta\in\mathbb K$, $\{x_i\}_{i\in I},\{y_i\}_{i\in I}$ summierbare Familien. Dann gilt

$$\alpha \cdot \sum_{i \in I} x_i + \beta \cdot \sum_{i \in I} y_i = \sum_{i \in I} (\alpha \cdot x_i + \beta \cdot y_i) \qquad \text{ und } \qquad \left\langle \sum_{i \in I} x_i \,,\, z \right\rangle = \sum_{i \in I} \langle x_i \,,\, z \rangle$$

Beweis

Übung. □

7.19. Proposition

Sei $\{x_i\}_{i\in I}\subset\mathcal{H}$ eine Familie paarweise orthogonaler Vektoren. Dann ist $\{x_i\}_{i\in I}$ summierbar genau dann, wenn $\sum_{i\in I}\|x_i\|^2$ endlich ist. In diesem Fall gilt

$$\left\| \sum_{i \in I} x_i \right\|^2 = \sum_{i \in I} \left\| x_i \right\|^2$$

Beweis

Falls $\{x_i\}_{i\in I}$ summierbar ist, so gilt

$$\left\| \sum_{i \in I} x_i \right\|^2 = \left\langle \sum_{i \in I} x_i , \sum_{j \in I} x_j \right\rangle \stackrel{7.18}{=} \sum_{i \in I} \left\langle x_i , \sum_{j \in I} x_j \right\rangle \stackrel{7.18}{=} \sum_{i \in I} \left(\sum_{j \in I} \left\langle x_i , x_j \right\rangle \right) = \sum_{i \in I} \left\| x_i \right\|^2$$

Äquivalenz: Übung mit

$$\left\| \sum_{i \in I} x_i \right\|^2 \xleftarrow{J \subset \subset I} \left\| \sum_{i \in J} x_i \right\|^2 = \sum_{i \in J} \|x_i\|^2 \xrightarrow{J \subset \subset I} \sum_{i \in I} \|x_i\|^2$$

für $J \subset\subset I$ endlich und 7.17.

7.20. Proposition

Sei $\{x_i\}_{i\in I}\subset\mathcal{H}$ ein Orthonormalsystem, $x\in\mathcal{H}$.

- (i) Es gilt $\sum_{i \in I} |\langle x_i, x \rangle|^2 \leqslant ||x||^2$, (Besselsche Ungleichung¹²).
- (ii) Es gilt $\sum_{i \in I} |\langle x_i, x \rangle|^2 = ||x||^2$ (Parselvalsche Gleichung¹³) genau dann, wenn

$$x = \sum_{i \in I} \langle x_i \,,\, x \rangle \cdot x_i.$$

Beweis

(i) Für $J \subset\subset I$ endlich gilt

$$0 \leqslant \left\| x - \sum_{i \in J} \langle x_i, x \rangle x_i \right\|^2 = \langle x, x \rangle - \sum_{i \in J} \langle \langle x_i, x \rangle x_i, x \rangle - \sum_{i \in J} \langle x, \langle x_i, x \rangle x_i \rangle$$

$$+ \sum_{i \in J} \sum_{j \in J} \langle \langle x_i, x \rangle x_i, \langle x_j, x \rangle x_j \rangle$$

$$= \langle x, x \rangle - \sum_{i \in J} \overline{\langle x_i, x \rangle} \langle x_i, x \rangle - \sum_{i \in J} \langle x_i, x \rangle \overline{\langle x_i, x \rangle} + \sum_{i \in J} \overline{\langle x_i, x \rangle} \langle x_i, x \rangle$$

$$\Rightarrow \textstyle \sum_{i \in J} \lvert \langle x_i \,,\, x \rangle \rvert^2 \leqslant \lVert x \rVert^2 < \infty \text{, also gilt } \textstyle \sum_{i \in I} \lvert \langle x_i \,,\, x \rangle \rvert^2 \leqslant \lVert x \rVert^2.$$

(ii) Die Rechnung aus (i) zeigt auch:

$$\sum_{i \in J} |\langle x_i \,,\, x \rangle|^2 \xrightarrow{J \subset \subset I} \|x\|^2 \iff \sum_{i \in J} \langle x_i \,,\, x \rangle \cdot x_i \xrightarrow{J \subset \subset I} x \qquad \qquad \Box$$

7.21. Definition und Proposition

Seien \mathcal{H}_i für $i \in I$ Hilberträume. Dann ist

$$\bigoplus_{i \in I} \mathcal{H}_i := \left\{ (x_i)_{i \in I} \middle| x_i \in \mathcal{H}_i, \sum_{i \in I} ||x_i||_{\mathcal{H}_i}^2 < \infty \right\}$$

ein Hilbertraum mit $\langle (x_i)_{i\in I}\,,\, (y_i)_{i\in I} \rangle := \sum_{i\in I} \langle x_i\,,\, y_i \rangle_{\mathcal{H}_i}.$

¹²nach Friedrich Wilhelm Bessel, http://de.wikipedia.org/wiki/Friedrich Wilhelm Bessel

¹³nach Marc-Antoine Parseval, http://de.wikipedia.org/wiki/Marc-Antoine_Parseval♂

Beweis

Übung! □

7.22. Satz

Sei $\mathcal H$ ein Hilbertraum und $\{x_i\}_{i\in I}\subset \mathcal H$ ein Orthonormalsystem. Dann sind äquivalent:

- (i) $\{x_i\}_{i\in I}$ ist eine Hilbertraumbasis.
- (ii) Falls $x \perp x_i$ für alle $i \in I$, so gilt x = 0.
- (iii) Es gibt einen isometrischen Isomorphismus $igoplus_{i\in I}\mathcal{H}_i\cong\mathcal{H}$

$$(\lambda_i \cdot x_i)_{i \in I} \longmapsto \sum_{i \in I} \lambda_i \cdot x_i$$

wobei $\mathcal{H}_i = \mathbb{K} \cdot x_i$ der von x_i erzeugte Unterhilbertraum ist.

- (iv) Für jedes $x \in \mathcal{H}$ gilt $x = \sum_{i \in I} \langle x_i \, , \, x \rangle \cdot x$.
- (v) Für alle $x,y \in \mathcal{H}$ gilt $\langle x\,,\,y \rangle = \sum_{i \in I} \langle x\,,\,x_i \rangle \cdot \langle x_i\,,\,y \rangle$.
- (vi) Für alle $x \in \mathcal{H}$ gilt die Parsevalsche Gleichung $\|x\|^2 = \sum \lvert \langle x_i \,,\, x \rangle \rvert^2.$

Beweis

(i) \Rightarrow (ii): Falls $0 \neq x \perp x_i$ für $i \in I$, so ist $\{x_i\}_{i \in I} \cup \left\{\frac{1}{\|x\|} \cdot x\right\}$ ein Orthonormalsystem. $\not z$

- (ii) \Rightarrow (iii): $\gamma \colon \bigoplus_{i \in I} \mathcal{H}_i \to \mathcal{H}$, $(\lambda_i \cdot x_i)_I \mapsto \sum \lambda_i \cdot x_i$ ist eine wohldefinierte lineare Isometrie nach 7.19. Außerdem erhält γ das Skalarprodukt. $\gamma(\bigoplus_{i \in I} \mathcal{H}_i)$ ist vollständig, also abgeschlossen in \mathcal{H} . Falls $\gamma(\bigoplus_{i \in I} \mathcal{H}_o) \neq \mathcal{H}$, so ist nach 7.15 $\gamma(\bigoplus_{i \in I} \mathcal{H}_i)^{\perp} \not\{0\}$. $\not\{$ zu (ii).
- (iii) \Rightarrow (iv): Für $x \in \mathcal{H}$ existieren $\lambda_i \in \mathbb{K}$, sodass $x = \gamma ((\lambda_i \cdot x_i)_{i \in I}) = \sum_{i \in I} \lambda_i \cdot x_i$ gilt. Es gilt

$$\langle x_j, x \rangle = \left\langle x_j, \sum_{i \in I} \lambda_i \cdot x_i \right\rangle = \sum_{i \in I} \langle x_j, \lambda_i \cdot x_i \rangle = \sum_{i \in I} \lambda_i \cdot \delta_{ij} = \lambda_j$$

Damit folgt (iv).

- (iv)⇒(v): Klar.
- $(v) \Rightarrow (vi)$: Klar.
- (vi) \Rightarrow (i): Falls $x \perp x_i$ für alle $i \in I$, so gilt $||x||^2 = \sum_{i \in I} |\langle x_i, x \rangle|^2 = 0$. Also ist x = 0 und damit das Orthonormalsystem maximal.

7.23. Bemerkung

- (i) Jeder Hilbertraum besitzt eine Basis (Lemma von Zorn).
- (ii) Wegen 7.22 (iii) ist ein Hilbertraum bis auf isometrischen Isomorphismus durch die Mächtigkeit seiner Basis eindeutig bestimmt.
- (iii) Jeder separable Hilbertraum ist isometrisch isomorph zu \mathbb{K}^n für ein $n \in \mathbb{N}$ oder zu $\ell^2(\mathbb{N})$.

7.24. Beispiele

- (i) $\{e_i\}_{i\in\mathbb{N}}$ bzw. $\{e_i\}_{i\in\mathbb{Z}}$ bilden Basen von $\ell^2(\mathbb{N})$ bzw. $\ell^2(\mathbb{Z})$, wobei $e_i(j)=\delta_{ij}$ ist.
- (ii) $\left(e^{2\pi int}\right)_{n\in\mathbb{N}}$ bilden eine Basis von $L^2([0,1])$.

7.25. Definition und Proposition

Seien \mathcal{H}_1 , \mathcal{H}_2 Hilberträume und $T \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_{\in})$. Dann existiert genau ein Operator $T^* \in \mathcal{L}(\mathcal{H}_2, \mathcal{H}_1)$, sodass für alle $x \in \mathcal{H}_1$, $y \in \mathcal{H}_2$ gilt

$$\langle T^*y, x \rangle_{\mathcal{H}_1} = \langle y, Tx \rangle_{\mathcal{H}_2}$$
 [#]

Die Abbildung *: $\mathcal{L}(\mathcal{H}_1,\mathcal{H}_2) \to \mathcal{L}(\mathcal{H}_2,\mathcal{H}_1)$ ist konjugiert linear und isometrisch. Weiter gilt $T^{**} = T$. Ist \mathcal{H}_3 ein weiterer Hilbertraum und $S \in \mathcal{L}(\mathcal{H}_2,\mathcal{H}_3)$, so gilt

$$(S \circ T)^* = T^* \circ S^*$$

Beweis

Sei $\kappa_i \colon \mathcal{H}_i \to \mathcal{H}_i^*$ wie in 7.11. Wir haben

$$\begin{split} \langle T^*y\,,\,x\rangle_{\mathcal{H}_1} &= \langle y\,,\,Tx\rangle_{\mathcal{H}_2} \\ \iff &\kappa_1(T^*y)(x) = \kappa_2(y)(Tx) \\ \iff &\kappa_1(T^*y) = \kappa_2(y) \circ T \\ \iff &\kappa_1(T^*y) = T^{\mathrm{tr}} \circ \kappa_2(y) \\ \iff &T^*y = \kappa_1^{-1} \circ T^{\mathrm{tr}} \circ \kappa_2(y) \end{split} \qquad \qquad \text{für } y \in \mathcal{H}_2$$

Also definieren wir $T^*:=\kappa_1^{-1}\circ T^{\mathrm{tr}}\circ\kappa_2\in\mathcal{L}(\mathcal{H}_2,\mathcal{H}_1)$. Durch [#] ist T^* eindeutig bestimmt. κ_1^{-1} und κ_2 sind Isometrien; da außerdem $\|T^{\mathrm{tr}}\|=\|T\|$, gilt $\|T^*\|=\|T\|$ und somit ist $T\mapsto T^*$ isometrisch. κ_1^{-1} ist konjugiert linear, also auch $T\mapsto T^*$. Weiter gilt

$$(ST)^* = \kappa_1^{-1} (ST)^{\mathrm{tr}} \kappa_3 = \kappa_1^{-1} T^{\mathrm{tr}} S^{\mathrm{tr}} \kappa_3 = \kappa_1^{-1} T^{\mathrm{tr}} \kappa_2 \kappa_2^{-1} S^{\mathrm{tr}} \kappa_3 = T^* S^*$$

Des weiteren erfüllt $T^{**}=(T^*)^*\in\mathcal{L}(\mathcal{H}_1,\mathcal{H}_2)$ für alle $x\in\mathcal{H}_1,y\in\mathcal{H}_2$

$$\langle T^{**}x, y \rangle_{\mathcal{H}_2} = \langle x, T^*y \rangle_{\mathcal{H}_1}$$

Ebenso gilt $\langle Tx, y \rangle_{\mathcal{H}_2} = \overline{\langle y, T_x \rangle_{\mathcal{H}_2}} = \overline{\langle T^*y, x \rangle_{\mathcal{H}_1}} = \langle x, T^*y \rangle_{\mathcal{H}_1}$ für alle $x \in \mathcal{H}_1$, $y \in \mathcal{H}_2$. Folglich muss $T^{**}x = Tx$ gelten.

7.26. Proposition

Für $T \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ gilt:

$$||T|| = \inf \left\{ \lambda \in \mathbb{R} \left| \left| \langle y, Tx \rangle_{\mathcal{H}_2} \right| \leq \lambda \cdot ||y|| \cdot ||x|| \forall x \in \mathcal{H}_1, y \in \mathcal{H}_2 \right\} \right.$$
$$= \sup \left\{ \left| \langle y, Tx \rangle \right|_{\mathcal{H}_2} \left| x \in \overline{B}_{\mathcal{H}_1}(0, 1), y \in \overline{B}_{\mathcal{H}_2}(0, 1) \right. \right\}$$

Beweis

Sei γ die rechte Seite der oberen Gleichung. Es gilt $\left|\langle y\,,\,Tx\rangle_{\mathcal{H}_2}\right|\leqslant \|T\|\cdot\|y\|\cdot\|x\|$ für $x\in\mathcal{H}_1,\,y\in\mathcal{H}_2$, also ist $\gamma\leqslant\|T\|$. Weiter gilt

$$\left\|Tx\right\|^{2} = \left|\left\langle Tx \,,\, Tx\right\rangle\right| \leqslant \gamma \|Tx\| \cdot \|x\| \leqslant \gamma \cdot \|T\| \cdot \|x\|^{2}$$

also ist $||Tx|| \leqslant \sqrt{\gamma} \cdot \sqrt{||T||} \cdot ||x||$ für $x \in \mathcal{H}_1$ und es folgt $||T|| \leqslant \sqrt{\gamma} \cdot \sqrt{||T||}$. Also gilt $\sqrt{||T||} \leqslant \sqrt{\gamma} \Rightarrow ||T|| \leqslant \gamma$ und somit insgesamt $\gamma = ||T||$. Die zweite Gleichheit ist klar.

gleiche Werte auf allen Elementen, Hahn-Bannach

7.27. Proposition

Sei \mathcal{H} ein \mathbb{K} -Hilbertraum, $T \in \mathcal{L}(\mathcal{H})$ und $\beta \geqslant 0$. Falls $|\langle x \,,\, Tx \rangle| \leqslant \beta \|x\|^2$ für alle $x \in \mathcal{H}$, so gilt für $x,y \in \mathcal{H}$

$$|\langle y, Tx \rangle + \langle Ty, x \rangle| \leq 2\beta \cdot ||x|| \cdot ||y||$$

Falls $\mathbb{K} = \mathbb{C}$, gilt sogar

$$|\langle y, Tx \rangle| + |\langle Ty, x \rangle| \leq 2\beta \cdot ||x|| \cdot ||y||$$

In diesem Fall gilt also $T=0 \iff \langle x, Tx \rangle = 0$ für alle $x \in \mathcal{H}$.

Beweis

Für alle $x, y \in \mathcal{H} \setminus \{0\}$ gilt (für 0 ist die Ungleichung trivial)

$$2|\langle y, Tx \rangle + \langle Ty, x \rangle| = |\langle x + y, T(x + y) \rangle - \langle x - y, T(x - y) \rangle| \le \beta ||x + y||^2 + \beta ||x - y||^2$$
$$\le 2\beta (||x||^2 + ||y||^2)$$

Ersetze x durch $\left(\frac{\|y\|}{\|x\|}\right)^{\frac{1}{2}} \cdot x$ und y durch $\left(\frac{\|x\|}{\|y\|}\right)^{\frac{1}{2}} \cdot y$. Dann folgt

$$2 \cdot |\langle y, Tx \rangle + \langle Ty, x \rangle| \leq 2 \cdot \beta \cdot \left(||x|| \cdot ||y|| + ||x|| \cdot ||y|| \right) = 2 \cdot 2 \cdot \beta \cdot ||x|| \cdot ||y||$$
 [*]

Falls $\mathbb{K} = \mathbb{C}$, so gilt für $\rho, \sigma \in \mathbb{R}_+$ geeignet

das stimmt noch nicht so ganz ...

$$\begin{aligned} |\langle y \,,\, Tx \rangle| + |\langle Ty \,,\, x \rangle| &= \left| e^{i(\rho + \sigma)} \cdot \langle y \,,\, Tx \rangle + e^{i(\rho - \sigma)} \cdot \langle x \,,\, Ty \rangle \right| \\ &= \left| e^{i\rho} \cdot \left(\langle y \,,\, T(e^{i\sigma} \cdot x) \rangle + \langle e^{i\sigma} \cdot x \,,\, Ty \rangle \right) \right| \\ &= \left| \langle y \,,\, T(e^{i\sigma} \cdot x) \rangle + \overline{\langle y \,,\, T(e^{i\sigma} \cdot x) \rangle} \right| \\ &\dots \leqslant 2 \cdot \beta \cdot \|x\| \cdot \|y\| \end{aligned}$$

7.28. Definition

 $T \in \mathcal{L}(\mathcal{H})$ heißt **selbstadjungiert**, falls $T = T^*$. Wir setzen

$$\mathcal{L}(\mathcal{H})_{s.a.} := \{ T \in \mathcal{L}(\mathcal{H}) \mid T \text{ selbstadjungiert} \}$$

7.29. Bemerkung

Für T selbstadjungiert gilt

$$\|T\|=\inf\left\{\lambda\in\mathbb{R}\ \Big|\ |\langle x\,,\,Tx
angle|\leqslant\lambda\|x\|^2 \ \text{für alle}\ x\in\mathcal{H}
ight\}$$

Beweis

Sei β das Infimum auf der rechten Seite. Dann gilt

$$2 \cdot |\langle x, Tx \rangle| = |\langle y, Tx \rangle + \langle Ty, x \rangle| \stackrel{7.27}{\leqslant} 2 \cdot \beta ||x|| \cdot ||y||$$

Nach 7.26 folgt $||T|| \leqslant \beta \leqslant ||T||$.

7.30. Proposition

Falls $\mathbb{K} = \mathbb{C}$ und $T \in \mathcal{L}(\mathcal{H})$, so gilt

$$T$$
 selbstadjungiert $\iff \langle x, Tx \rangle \in \mathbb{R}$ für alle $x \in \mathcal{H}$

Beweis

Um " \Rightarrow " zu zeigen, betrachte $\langle x , Tx \rangle = \langle Tx , x \rangle = \overline{\langle x , Tx \rangle}$ für $x \in \mathcal{H}$. Für die Rückrichtung betrachte $\langle x , Tx \rangle = \langle Tx , x \rangle = \langle x , T^*x \rangle$. Dann ist $\langle x , (T-T^*)x \rangle = 0$ für $x \in \mathcal{H}$. Es folgt dann $T-T^*=0$. \square

7.31. Definition und Proposition

Seien $R, S, T \in \mathcal{L}(\mathcal{H})$ selbstadjungiert. Wir schreiben

- $T \ge 0$, falls $\langle x, Tx \rangle \ge 0$ für alle $x \in \mathcal{H}$ gilt.
- $T \geqslant S$, falls $T S \geqslant 0$

">" ist eine partielle Ordnung auf $\mathcal{L}(\mathcal{H})_{\mathrm{s.a.}}$, das heißt $T \geqslant T$; $T \geqslant S$, $S \geqslant T \Rightarrow S = T$, $T \geqslant S$, $S \geqslant R \Rightarrow T \geqslant R$ (folgt mit 7.29). Es gilt $-\|T\| \operatorname{id}_{\mathcal{H}} \leqslant T \leqslant \|T\| \cdot \operatorname{id}_{\mathcal{H}}$. Falls $T \geqslant 0$ ist, so gilt

$$\left|\left\langle y, Tx\right\rangle\right|^2 \leqslant \left\langle x, Tx\right\rangle \cdot \left\langle y, Ty\right\rangle$$

insbesondere gilt $\langle x \,,\, Tx \rangle = 0 \iff Tx = 0$

Beweis

Übung, für die letzte Aussage benutze 7.4 und: $(y,x) \mapsto \langle y,Tx \rangle$ ist positiv semidefinit hermitesch.

7.32. Satz

Sei $(T_j)_{j\in I}\subset \mathcal{L}(\mathcal{H})_{\mathrm{s.a.}}$ ein monoton wachsendes und beschränktes Netz selbstadjungierter Operatoren. Dann konvergiert $(T_j)_{j\in I}$ punktweise gegen ein $T\in \mathcal{L}(\mathcal{H})_{\mathrm{s.a.}}$, das heißt $T_jx\to Tx$ in Norm für jedes $x\in \mathcal{H}$. Wir schreiben auch $T_j\xrightarrow{\mathrm{s.o.}} T$, d.h. $(T_j)_{j\in I}$ konvergiert gegen T in der **starken Operatortopologie**.

Beweis

Nach Polarisierung (vergleiche Bemerkung 7.8) gilt (für $\mathbb{K}=\mathbb{C}$)

$$\left\langle x\,,\,T_{j}y\right\rangle =\frac{1}{4}\Big(\left\langle x+y\,,\,T_{j}(x+y)\right\rangle +\left\langle x-y\,,\,T_{j}(x-y)\right\rangle +i\left\langle ix+y\,,\,T_{j}(ix+y)\right\rangle -i\left\langle ix-y\,,\,T_{j}(ix-y)\right\rangle \Big)$$

Die rechte Seite konvergiert (warum?), also auch die linke Seite. \Rightarrow Für jedes $x \in \mathcal{H}$ konvergiert $\langle x, T_i(\cdot) \rangle \colon \mathcal{H} \to \mathbb{C}$ gegen ein $\varphi_x \colon \mathcal{H} \to \mathbb{C}$. Aber $\varphi_x \in \mathcal{H}^*$ (warum?). Es gilt

$$\|\varphi_x\|_{\mathcal{H}^*} \leqslant \limsup_j \|T_j\| \|x\| < \infty.$$

Die Abbildung $x \mapsto \kappa^{-1}(\varphi_x)$ ist linear (warum?). Definiere $T \colon \mathcal{H} \to \mathcal{H}$ durch $T(x) \coloneqq \kappa^{-1}(\varphi_x)$. Es gilt $\|T(x)\| = \|\varphi_x\|$, also $\|T\| \leqslant \limsup_i \|T_i\| \leqslant \infty$. Damit ist $T \in \mathcal{L}(\mathcal{H})$. Außerdem gilt für $x, y \in \mathcal{H}$

$$\langle Tx, y \rangle = \kappa(Tx)(y) = \varphi_x(y) = \lim_{j} \langle x, T_j y \rangle = \lim_{j} \langle T_j x, y \rangle = \overline{\lim_{j} \langle y, T_j x \rangle} = \overline{\varphi_y(x)} = \overline{\langle Ty, x \rangle}$$

$$= \langle x, Ty \rangle$$

Also ist T auch selbstadjungiert. Es gilt für $\lim_j \langle x\,,\, T_j y \rangle = \langle x\,,\, Ty \rangle$ für $x,y \in \mathcal{H}$, das heißt $T_j \xrightarrow{\text{w.o.}} T$ $(T_j \to T \text{ in der schwachen Operatortopologie})$. Für $j \geqslant j'$ gilt $T_j - T_{j'} \geqslant 0$, also nach 7.31 für $x \in \mathcal{H}$

$$\left\langle (T_{j} - T_{j'})(x), (T_{j} - T_{j'})(x) \right\rangle \leqslant \left\langle x, (T_{j} - T_{j'})(x) \right\rangle \cdot \left\langle (T_{j} - T_{j'})(x), (T_{j} - T_{j'})^{2}(x) \right\rangle$$

$$\leqslant \left\langle x, (T_{j} - T_{j'})(x) \right\rangle \cdot \left(2 \cdot \limsup_{j} ||T_{j}|| \right)^{3} \cdot ||x||^{2} < \varepsilon$$

falls j' groß genug ist. Also $\|T_j(x-)-T_{j'}(x)\|<\varepsilon$ falls $j\geqslant j'$ groß. Damit folgt dann $T_j(x)\to T(x)$ in Norm (warum?).

8. Kompakte Operatoren und ein Spektralsatz

8.1. Definition

RevChap8

Sei X ein \mathbb{K} -Banachraum und $T \in \mathcal{L}(X)$. Wir definieren das **Spektrum** von T als

auch $\operatorname{spec}(T)$

$$\sigma(T) := \{ \lambda \in \mathbb{K} \mid T - \lambda \cdot \mathrm{id}_X \text{ ist nicht invertierbar} \} \subset \mathbb{K}$$

Die Resolventenmenge ist $\operatorname{res}(T) := \rho(T) := \mathbb{K} \setminus \sigma(T)$. Wir schreiben $R(T, \lambda) := (T - \lambda \cdot \operatorname{id}_X)^{-1}$ für die Resolvente von T in $\lambda \in \rho(T)$.

8.2. Bemerkung

- (i) Jeder Eigenwert von T ist ein Spektralwert.
- (ii) Für X endlichdimensional gilt auch die Umkehrung, für beliebige X jedoch nicht: Sei $X=\ell^2(\mathbb{N})$, dann ist $S\in\mathcal{L}\big(\ell^2(\mathbb{N})\big)$ gegeben durch $S(x_0,x_i,\ldots):=(0,x_0,x_1,\ldots)$ (unilateraler Shift) linear, stetig und sogar isometrisch, aber nicht surjektiv. Dann ist $0\in\sigma(S)$, aber 0 ist kein Eigenwert, da S injektiv ist.

8.3. Proposition

Seien X,Y Banachräume und $T\in\mathcal{L}(X,Y)$ bijektiv (also injektiv). Falls für $S\in\mathcal{L}(X,Y)$ gilt

$$||T - S||_{\mathcal{L}(X,Y)} < ||T^{-1}||_{\mathcal{L}(Y,X)}^{-1},$$

so ist auch S bijektiv.

Beweis

Es gilt $S=T\left(\operatorname{id}_X-T^{-1}(T-S)\right)$. Für $k\leqslant l$ gilt mit $C:=\left\|T^{-1}\right\|\cdot \|T-S\|<1$

$$\left\| \sum_{n=k}^{l} \left(T^{-1} (T-S) \right)^{n} \right\| \leqslant \sum_{n=k}^{l} \left\| \left(T^{-1} (T-S) \right)^{n} \right\| \leqslant \sum_{n=k}^{l} \left\| T^{-1} \right\| \cdot \left\| T - S \right\|^{n} = \sum_{n=k}^{l} C^{n}$$

also ist $\sum_{n=0}^{\infty} \left(T^{-1}(T-S)\right)^n$ konvergent in $\mathcal{L}(X,X)$. Weiter ist $\left(\sum_{n=0}^{\infty} \left(T^{-1}(T-S)\right)^n\right)T^{-1} \in \mathcal{L}(Y,X)$ das Inverse von S (warum?).

8.4. Corollar

Für $T \in \mathcal{L}(X)$ ist die Resolventenmenge offen in \mathbb{K} .

A. Anhang

A.1. Vierecksungleichung

Sei (X, d) ein metrischer Raum und $x, y, u, v \in X$. Dann gilt

$$|d(x,y) - d(u,v)| \le d(x,u) + d(y,v)$$

Beweis

Einerseits gilt nach der Dreiecksungleichung

$$d(x,y) \leqslant d(x,u) + d(u,v) + d(v,y) \quad \Longrightarrow \quad d(x,y) - d(u,v) \leqslant d(x,u) + d(y,v)$$

Andererseits aber auch

$$d(u,v) \leqslant d(u,x) + d(x,y) + d(y,v) \implies d(u,v) - d(x,y) \leqslant d(x,u) + d(y,v)$$

Insgesamt folgt also die Behauptung.

A.2. Abschluss einer konvexen Menge ist konvex

Sei X ein topologischer Vektorraum, von dem wir der Einfachheit halber annehmen, dass die Topologie von einer Norm induziert wird. Sei $M\subset X$ konvex. Dann ist auch \overline{M} konvex.

Beweis

Seien $a,b\in\overline{M}$, $\lambda\in[0,1]$. Dann existieren für jedes $\varepsilon>0$ Elemente $a',b'\in M$ mit $\|a-a'\|<\varepsilon$ und $\|b-b'\|<\varepsilon$. Dann gilt

$$\| \left((1 - \lambda) \cdot a + \lambda \cdot b \right) - \left((1 - \lambda) \cdot a' + \lambda \cdot b' \right) \| = \| (1 - \lambda) \cdot (a - a') + \lambda \cdot (b - b') \|$$

$$\leqslant |1 - \lambda| \cdot \|a - a'\| + |\lambda| \cdot \|b - b'\|$$

$$\leqslant |1 - \lambda + \lambda| \cdot \varepsilon = \varepsilon$$

Da $\varepsilon > 0$ beliebig war, folgt somit $(1 - \lambda) \cdot a + \lambda \cdot b \in \overline{M}$.

A. Anhang 51

Index

Die **Seitenzahlen** sind mit Hyperlinks zu den entsprechenden Seiten versehen, also anklickbar

abzählbar, 29
 abzählbar, 29

abgeschlossen, 1 Abschluss, 1 Algebra, 8

Banachalgebra, 11 Banachraum, 11 Besselsche Ungleichung, 44

Cauchy-Folge, 1 Cauchy-Schwarz-Ungleichung, 38

Distanz dist, 15 Dualraum, 8

einfach, 21 erweiterte Metrik, 3

Funktionale, 8

gleichmäßig beschränkt, 18 gleichmäßig konvex, 33 gleichmäßig stetig, 1

Hamelbasis, 42 hermitesche Form, 38 positiv definit, 38 positiv semidefinit, 38 Hilbertraum, 40

Hilbertraumbasis, 42 Homöomorphismus, 19 Hölder-Ungleichung, 22

induktiv geordnet, 12 Isometrie, 1 isometrischer Isomorphismus, 1

Jensen-Ungleichung, 35

kanonische Inklusion, 16 konjugiert linear, 40 konvex, 14 konvexe Hülle, 14

lokalkompakt, 5

Maßraum, 21 messbar, 21 metrischer Raum, 1 Minkowski-Ungleichung, 23

normierte K-Algebra, 9

offen, 1 Operator

beschränkter Operator, 8

Operatoren, 8 Operatornorm, 9 orthogonal, 42 orthogonales Komplement, 42 Orthonormalsystem, 42

Parallelogrammgesetz, 39 Parselvalsche Gleichung, 44 Polarisierungsidentität, 40 Prä-Hilbertraum, 40 punktweise gleichmäßig beschränkt, 6

reflexiv, 30 Resolvente, 50 Resolventenmenge, 50 Riesz-Fischer, 24

Satz des Pythagoras, 42 schwache Topologie, 26 selbstadjungiert, 47 separabel, 5, 29 Sesquilinearform, 40 Skalarprodukt, 38 Spektrum, 50

starke Operatortopologie, 48

stetig, 1, 7 strikt konvex, 34 sublinear, 11 summierbar, 42

topologischer Vektorraum, 7 transponierte Abbildung, 17

unilateraler Shift, 50

unital, 9

Vervollständigung, 2 vollständig, 1

w*-Topologie, 27

Young-Ungleichung, 22

Index A

Abbildungsverzeichnis

1. Einheitskugeln für $p=2,p=1$ und $p=\infty$	33
2. Zeichnung zum Beweis von 6.3	34
Todo's und andere Baustellen	
Achtung Wortspiel: Beweis vervollständigen ;-D	2
Beweis zu Ende führen	3
RevChap3	16
RevChap4	21
Def. hinzufügen	21
vlt strukturiert übereinander?	25
RevChap5	26
RevChap6	33
RevChap7	38
eventuell Bild von Parallelogramm hinzufügen	39
stimmt noch nicht so ganz, aber passt schon	41
das stimmt noch nicht so ganz	47
RevChap8	50

B Abbildungsverzeichnis