1

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

Кафедра комплексной информационной безопасности электронновычислительных систем (КИБЭВС)

ИССЛЕДОВАНИЕ ОДНОФАЗНЫХ ВЫПРЯМИТЕЛЕЙ Отчет по лабораторной работе №3

по дисциплине «Электроника и схемотехника»

Студенты гр. 728-2
М.С.Морошкин
Д.Р.Геворгян
Принял:
Преподаватель кафедры
КИБЭВС
А. С. Семенов

720.0

1 Введение

Целью практической работы является: исследование однофазных одно- и двухполупериодных схем выпрямления и сглаживания LC-фильтров; построение вольтамперных характеристик неуправляемого и управляемого выпрямителей.

2 Основная часть

2.1 Ход выполнения задания

Задание 1

Была построена схема бестрансформаторного однофазного мостового неуправляемого выпрямителя (рис 2.1).

Рисунок 2.1 - Схема выпрямителя.

Рисунок 2.2 – Экран осциллографа задания

Рисунок 2.3 - Работа анализатора

Для расчета qn использовалась формула:

qn= Um ог/ Ucp.

Для $r_{\text{h}}1 = 100$ Om, $r_{\text{h}}2 = 5$ Om, $r_{\text{h}}3 = 2$ kOm.

Таблица 1 - Результаты измерений

U2m, B	Ucp, B	Іср, мА	Um ог, B	qn
39,91	5,791	-57,34	8,9936	1,553031
39,24	3,604	-600,06	5,5919	1,551582
39,72	6,028	-3	9,3977	1,559008

Для трех различных значений $r_{\scriptscriptstyle H}$ коэффициент пульсации практически не изменяется.

Для различных значений Е амплитуда меняется значительно (рис 2.4-2.5).

Рисунок 2.4 – Экран осциллографа задания (E=1 B)

Рисунок 2.5 – Экран осциллографа задания (Е= 196 В)

Задание 2

Была модифицирована схема рисунка 2.1 подключив к ней сглаживающий С-фильтр (рис 2.6)

Рисунок 2.6 – Схема модифицированного выпрямителя.

Рисунок 2.7 – Экран осциллографа задания

Рисунок 2.8 - Работа анализатора

Для расчета qn1 использовалась формула:

Для расчета кс использовалась формула:

kc = qn/qn1.

Таблица 2 - Результаты измерений

C1, mkФ	U2m, B	Ucp, B	Icp, mA	Um or, B	qn1	kc
150	10.6	12.17	120.5	18.2	1.49	1.04
150	11.3	3.65	608.8	11.3	3.09	0.5
150	0.94	18.59	9.3	19.1	1.02	1.51

Для трех различных значений $r_{\scriptscriptstyle H}$ коэффициент пульсации уменьшается при уменьшении или увеличении $r_{\scriptscriptstyle H}$, при этом коэффициент сглаживания увеличивается.

Задание 3

Была модифицирована схема рисунка 2.1 подключив к ней сглаживающий CLC-фильтр (рис 2.7).

Рисунок 2.9 – Схема модифицированного выпрямителя.

Рисунок 2.10 – Экран осциллографа задания

Рисунок 2.11 – Определение амплитуды

Амплитуда равна -39,9 В.

Рисунок 2.12 – Работа анализатора

Рисунок 2.13 – Работа анализатора

Для расчета qn1 использовалась формула:

Для расчета кс использовалась формула:

kc = qn/qn1.

Таблица 3 - Результаты измерений

U2m, B	Ucp, B	Іср, мА	Um or, B	qn1	kc
39,9	13,2	-130,7	0,596	0,0452	34,359
39,6	2,922	-486,9	0,298	0,102	15,21
39,5	18,61	-9,299	1,2	0,064	24,3595

Значения kc в таблицах 2 и 3 отличаются (значения в таблице 3 значительно больше), следовательно сглаживающий СLС-фильтр справляется лучше чем сглаживающий С-фильтр.

Для трех различных значений $r_{\scriptscriptstyle H}$ коэффициент пульсации уменьшается при уменьшении или увеличении $r_{\scriptscriptstyle H}$, при этом коэффициент сглаживания увеличивается.

Задание 4

Была построена схема двухполупериодного выпрямителя без фильтра (рис 2.14).

Рисунок 2.14 - Схема выпрямителя.

Рисунок 2.15 – Экран осциллографа задания

Рисунок 2.16 – Работа анализатора

Для расчета qn1использовалась формула:

qn1= Um o Γ / Ucp.

Таблица 4 - Результаты измерений

U2m, B	Ucp, B	Іср, мА	Um ог, B	qn1
19,7807	10,89	-54,44	7,9851	0,7333
19,6225	10,54	-100,4	7,7076	0,7377
19,9932	11,41	-5,421	125,744*10-3	11*10-9

Значения qn1 в таблицах 1 и 4 отличаются (значения в таблице 4 меньше), следовательно двухполупериодный выпрямитель справляется лучше чем однополупериодный выпрямитель.

Задание 5

Была построена схема двухполупериодного выпрямителя с C-фильтром (рис 2.13).

Рисунок 2.17 - Схема выпрямителя.

Рисунок 2.18 – Экран осциллографа задания

Рисунок 2.19 – Определение амплитуды

Рисунок 2.20 – Работа анализатора

Для расчета qn1 использовалась формула:

$$qn1 = Um \text{ or/ Ucp.}$$

Для расчета кс использовалась формула:

$$kc = qn/qn1$$
.

Таблица 5 - Результаты измерений

С1, мкФ	U2m, B	Ucp, B	Іср, мА	Um ог, В	qn1	kc
500	19,7518	14,32	-141,8	0,168	0,0117	132,73
50	20,2641	12,17	-120,5	0,113	0,0092	168,65
5000	19,82	14.37	-142,3	0,747	0,0519	2,087

Значения qn1 в таблицах 2 и 5 отличаются (значения в таблице 5 значительно меньше), следовательно двухполупериодный выпрямитель с Сфильтром справляется лучше чем однополупериодный выпрямитель с Сфильтром.

3. Заключение

В ходе выполнения практической работы были исследованы однофазные одно- и двухполупериодные схемы выпрямления и сглаживания LC-фильтров; построены вольтамперных характеристик неуправляемого и управляемого выпрямителей.