Eine Woche, ein Beispiel 9.3. field extension with RS

Goal: construct an equivalence between two categories.

$$RS^{cc} = \begin{cases} Obj: Cpt conn RS \\ Mor: non-const holo morphisms \end{cases} \longleftrightarrow \begin{cases} Obj: F/C \text{ field ext s.t.} \\ trdeg_CF = 1 \\ F/C \text{ f.g. as a field} \end{cases} = \text{field}_{C(t)/C}^{op}$$

$$Mor: morphism \text{ as fields/C} \end{cases}$$

$$M(Y)$$

$$\downarrow f$$

$$X$$

$$M(X)$$

which obeys the following slogan:

(ramified) covering \approx (function) field extension

1. For requiring F/C f.g. as a field, we avoid examples like C(t). Do they corresponds to some non-cpt Riemann surface? If so, how to enlarge the category RS ??

2. field cutve means fields over C which are fin ext of C(t) abstractly;

morphisms don't need to fix C(t). Do you have a better name for RS and field a (+)/c?

https://math.stackexchange.com/questions/633628/threefold-category-equivalence-algebraic-curves-riemann-surfaces-and-fields-of https://math.stackexchange.com/questions/1286286/link-between-riemann-surfaces-and-galois-theory

- 1. field of meromorphic functions 2. Galois covering
- 3 valuations
- 4. quadratic extension of C(x): hyperelliptic curve
- 5. miscellaneous.

```
1. field of meromorphic functions
Def. For X RS,
                            M(X) = \{ \text{meromorphic fcts on } X \}

= \{ f : X \longrightarrow | P' \text{ holomorphic } \} - \{ 1 \} \}

\frac{x \text{ cpt}}{\text{conn}} \{ \text{rational fcts on } X \}
Ex Verify that
                            \mathcal{M}(\mathbb{CP}^1) \cong \mathbb{C}(z)
                           M(C/2[:]) = Frac (C[x,y]/(y2-x(x+1)(x-1)))
       Later we will show that, for X ERSCC,
                       \infty + > [(x) \hookrightarrow (X)M) to (X)M \longleftrightarrow (x) \supset E
Ex. For
                  f: \mathbb{CP}' \longrightarrow \mathbb{CP}' z \mapsto z^3
      compute
              1) f^*: \mathbb{C}(T) \hookrightarrow \mathbb{C}(S) [\mathbb{C}(S): \mathbb{C}(T)] & a \mathbb{C}(T)-basis
             2) Gal (C(S)/C(T))
             3) \mathbb{C}(S)^{2/32}
             4) Aut (CP')
Ex. For
                       f: \mathbb{CP}' \longrightarrow \mathbb{CP}' z \longmapsto z + \frac{1}{z},
        do the same work.
Ex. For
                        f: \mathbb{CP}' \longrightarrow \mathbb{CP}' z \longmapsto z^3 - 3z
        compute the same stuff. Why isn't C(S)/C(\tau) Galois this time?
```

Prop. For $d \in \mathbb{N}_{>0}$, $f: Y \to X$ proper holo morphism between conn RSs, $[\mathcal{M}(Y):f^*\mathcal{M}(X)]=d.$

Cor. For X cpt conn, $\exists \ C(x) \hookrightarrow M(x) \quad \text{s.t.} \ [M(x): C(x)] < +\infty$ In ptc, F/c fig as a field, trdege F = 1.

To show the proposition, one need the following black box to find a basis. Black box (meromorphic fcts seperate points) $X: RS, x, y \in X \times y$, then

 $\exists g \in \mathcal{M}(x)$ st. $g(x) \neq g(y)$ $g(x), g(y) \in \mathbb{C}$.

 $\exists g \in M(x)$ s.t. $ord_x g = -1$, g(y) = 0. (stronger)

I prefer using Riemann-Roch when X is cpt, and Stein manifold when X is not.

Ex. Using the black box, show that, for X. RS, {x,,..,xn}∈X, ∃g∈M(X) st. ord, g = -1, $g(x_i) \in \mathbb{C}$ $\forall i \in \{2, ..., n\}$ $g(x_i) \neq g(x_j)$ $\forall i \neq j, i, j \in \{2, ..., n\}$

Proof of prop [MIY]: $f^*M(X)$] $\geqslant d$: Fix $x_0 \in X$ s.t. $\#f^{-1}(x_0) = d$. Denote $f^{-1}(x_0) = \{y_1, \dots, y_d\}$. For each i, let giem (Y) be a meromorphic fet st ordx, $g_i = -1$ $g_i(y_j) \in \mathbb{C}$ $\forall j \neq i$ then $\{g_1, \dots, g_d\} \subseteq M(Y)$ are $f^*M(X)$ -linear independent. Check ordy ($\sum f_i q_i$) \approx ordy f_i

 $[\mathcal{M}(Y):f^*\mathcal{M}(X)] \leq d$ Vg EM(Y), need to find a, ef*M(X) s.t. $g^{d} + a_{d-1}g^{d-1} + \cdots + a_{o} = 0$ in M(Y)The fcts $Q_i(z) = (-1)^i \sum_{\substack{\{k_1,\dots,k_1 \in \{i,\dots,d\}\}}} g(z_{k_1}) \cdots g(z_{k_d})$

f'(f(z)) = {z, ..., zd}, multiplicity is counted satisfy the conditions.

Use Riemann extension theorem to show a (2) ef M(X), see [Donaldson, p148]. By primitive element theorem, $[M(Y): f^*M(X)] \leq d$.

2. Galois covering

Def. Let
$$f: Y \to X$$
 be a proper holo map between two conn RSs.

 f is Galois, if $M(Y)/f*M(x)$ is a Galois extension.

Normal

Prop.
$$f: Y \longrightarrow X$$
 is Galois/normal \Leftrightarrow deg $f = \# Aut_f(Y)$ \Leftrightarrow $f^{-1}(x_0)$ is an $Aut_f(Y)$ -torsor, $\forall x_0 \in X - f(Ram(f))$ \Leftrightarrow $Aut_f(Y) \circ f^{-1}(x_0)$ transitively, $\forall x_0 \in X$ \Leftrightarrow $Y/Aut_f(Y) \supseteq X$, i.e. f can be written as $Y \longrightarrow Y/G$

Ex. For
$$f: Y \rightarrow X$$
, suppose that $[\forall y_1, y_2 \in Y \text{ s.t. } f(y_1) = f(y_2),] \Rightarrow e(y_1) = e(y_2)$
Show that f is Galois by computing $\# Aut_f(Y)$.

Hint. Use geodesics to divide
$$X$$
 into several smaller triangles. If geodesics are hard, take $g:X \longrightarrow CIP'$ non-constant, and reduce the problem to $g \circ f$.

This proof is not completely rigorous, and you are encouraged to find a reference to rigorously prove it, or read this discussion on stackexchange: https://math.stackexchange.com/questions/1952655/ramification-index-and-inertia-degree-same-for-all-the-primes-then-is-the-exten

You may need the following materials for completing the proof, relating with questions about geodesic triangulations.

google: geodesic triangulations

https://math.stackexchange.com/questions/1661331/proof-of-equivalence-of-conformal-and-complex-structures-on-a-riemann-surface?rq=1 https://arxiv.org/pdf/2103.16702.pdf

(If a non geodesic triangulation is given, in a sufficiently fine subdivision one can replace all edges by geodesics, which leaves the Euler characteristic unchanged.)

copied from p2, in https://www.mathematik.uni-muenchen.de/~forster/eprints/gaussbonnet.pdf

http://czamfirescu.tricube.de/CTZamfirescu-o8.pdf

[Thm 2] http://www-fourier.univ-grenoble-alpes.fr/~ycolver/All-Articles/91c.pdf

https://mathoverflow.net/questions/138267/what-prevents-a-cover-to-be-galois

E.g. Consider the covering $f: CP' \longrightarrow CP'$ Z -3Z This is not a Galois covering. Consider the Galois closure

$$CP'$$

$$C(u) = C(s)[R]/(R^2 + s^2 - 4)$$

$$U + \frac{1}{u}$$

$$CP'$$

$$C(s) = C(T)[s]/(s^3 - 3s - T)$$

$$CP'$$

$$C(T)$$

Determination of the Galois closure

min
$$(S, C(T)) = x^3 - 3x - T$$
 in $C(T)[x]$
= $x^3 - 3x - (S^3 - 3S)$
= $(x - S)(x^2 + Sx + S^2 - 3)$ in $C(S)[x]$

To decompose the polynomial x^2+Sx+S^2-3 , we have to add root of discriminant: $\int \Delta := \sqrt{S^2 - 4(S^2 - 3)} = \int 3 \sqrt{-S^2 + 4}.$

$$\sqrt{\Delta} := \sqrt{S^2 - 4(S^2 - 3)} = \sqrt{3}\sqrt{-S^2 + 4}$$

Therefore, the Galois closure of $\mathbb{C}(S)/\mathbb{C}(T)$ is $\mathbb{C}(S)[R]/(R^2+S^2-4) \cong \mathbb{C}(\frac{S+iR}{2}) \stackrel{\triangle}{=} \mathbb{C}(U)$

where

$$S = \frac{S+iR}{2} + \frac{S-iR}{2} = \mathcal{U} + \frac{1}{\mathcal{U}}$$

The picture from the RS side is as follows:

only ramified pts are drawn

affine version

How to know the genus of the RS corresponding to the Galois closure?

https://mathoverflow.net/questions/152/how-do-you-see-the-genus-of-a-curve-just-looking-at-its-function-field

Do we have any Galois closure whose ramification information is not minimal as we expected?

E.g. 2. For $E = \mathcal{C}/\Lambda$, since $\pi_i(E, o) \cong \mathbb{Z} \oplus \mathbb{Z}$. E has three unramified coverings of deg 2.

When $\Lambda = \mathbb{Z}[i]$, what are the crspd field extensions? There are more deg 2 ramified coverings from the higher genus RS, but we don't discuss them here.

normalized equation

$$y^2 = \chi(x+1)(x-1)$$

$$y^{2} = 4x^{3} - 11x - 7 \qquad \triangle = 8$$

$$= (x+1)(4x^{2} - 4x - 7)$$

$$= 4(x+1)(x - \frac{1}{2} + 5)(x - \frac{1}{2} - 5)$$

$$j(2i) = (\frac{11}{2})^3 \cdot 1728 = 66^3$$
 $g_2(2i) = \frac{11 \cdot \Gamma(\frac{1}{4})^8}{2^8 \pi^2}$ $g_3(2i) = \frac{7 \cdot \Gamma(\frac{1}{4})^{12}}{2^{12} \pi^3}$ equation is given by $y^2 = 4 \times^3 - g_2 \times -g_3$

Ex. 1) Show that

Autes (C/1)[2] = Z/1Z + Z/1Z + Z/1Z

no matter C/A has CM or not.

3) Find all index 2 subfields of $M(C/\Lambda)$. hard!

See

The Zariski-Riemann Space of Valuation Rings by Bruce Olberding https://link.springer.com/chapter/10.1007/978-3-030-89694-2_21

Lec 2: Spaces of valuations http://math.stanford.edu/~conrad/Perfseminar/ The other part also worth reading, if you have problem reading the berkeley notes.

 $https://math.stackexchange.com/questions/\verb|1886| 52/finite-extensions-of-rational-functions|$

5. miscellaneous.

· genus of a fct field F? · non-cpt RS, infinite covering · Spv for higher dimensional varieties, high rank pts · RS/scheme structures reconstruction · gp structures on valuations of $C[x,y,z]/(y^2z-x(x-z)(x+z))$

· cyclic extension

· maximal abelian extension/unramified extension/unramified outside some places

https://math.stackexchange.com/questions/2836916/what-are-the-abelian-extensions-of-bbb-cx