

2005 Physics

Intermediate 2

Finalised Marking Instructions

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments.

Physics – Marking Issues

The current in a resistor is 1.5 amperes when the potential difference across it is 7.5 volts. Calculate the resistance of the resistor.

1.	Answers V=IR 7.5=1.5R R= 5.0Ω	Mark + Comment (½) (½) (½) (1)	Issue Ideal answer
2.	5·0 Ω	(2) Correct answer	GMI 1
3.	5.0	(1½) Unit missing	GMI 2 (a)
4.	4·0 Ω	(0) No evidence/wrong answer	GMI 1
5.	Ω	(0) No final answer	GMI 1
6.	$R = \frac{V}{I} = \frac{7.5}{1.5} = 4.0 \Omega$	(1½) Arithmetic error	GMI 7
7.	$R = \frac{V}{I} = 4.0 \Omega$	(½) Formula only	GMI 4 and 1
8.	$R = \frac{V}{I} = \underline{\qquad} \Omega$	(½) Formula only	GMI 4 and 1
9.	$R = \frac{V}{I} = \frac{7.5}{1.5} = \underline{\qquad} \Omega$	(1) Formula + subs/No final answer	GMI 4 and 1
10.	$R = \frac{V}{I} = \frac{7.5}{1.5} = 4.0$	(1) Formula + substitution	GMI 2 (a) and 7
11.	$R = \frac{V}{I} = \frac{1.5}{7.5} = 5.0 \Omega$	(½) Formula but wrong substitution	GMI 5
12.	$R = \frac{V}{I} = \frac{75}{1.5} = 5.0 \Omega$	(½) Formula but wrong substitution	GMI 5
13.	$R = \frac{I}{V} = \frac{7.5}{1.5} = 5.0 \Omega$	(0) Wrong formula	GMI 5
14.	$V = IR 7.5 = 1.5 \times R R = 0.2 \Omega$	(1½) Arithmetic error	GMI 7
15.	$V = IR$ $R = \frac{I}{V} = \frac{1.5}{7.5} = 0.2 \Omega$	(½) Formula only	GMI 20

2005 Physics Intermediate 2

Marking scheme

Section A

- 1. E 11. A
- 2. D 12. A
- 3. C 13. B
- 4. C 14. B
- 5. E 15. B
- 6. B 16. B
- 7. D 17. D
- 8. A 18. C
- 9. C 19. E
- 10. C 20. D

2005 Physics Intermediate 2

Sam	ple Aı	nswer and Mark Allocation	Notes	Marks
21.	(a)	$E_{K} = \frac{1}{2} \text{ m } v^{2} $ $= \frac{1}{2} \times 1.5 \times 10^{2} $ $= 75 \text{ J} $ (1)		2
	(b)	$E_{W} = Fd$ (½) $75 = F \times 1.5$ (½) F = 50 N (1)		2
Note	alter	rnative answer for (b)		
		$v^{2} = u^{2} + 2as$ $10^{2} = 0 + 3a$ $a = 33.3 \text{ m/s}^{2}$ (1) $F = ma$ $F = 1.5 \times 33.3$ $F = 50 \text{ N}$ (1)		
	(c)	momentum before collision = $1.5 \times 2 = 3$ (½) momentum after collision = $(1.5 \times 1.2) + (0.25v)(\frac{1}{2})$ 3 = 1.8 + 0.25v v = 4.8 m/s (1)		2
	(d)	measure distance (½) (from release to jack) with tape (½) measure time (½) (from release to jack) with stopwatch (½) calculate average speed using speed = distance/time (1)		3
				Total 9

Sam	ple Aı	nswer and Mark Allocation	Notes	Marks	
22.	(a)	(i) C or 60s	(1)		1
		(ii) E or 110s	(1)		1
	(b)	air resistance OR air friction	(1)		
		weight OR gravity force	(1)	not gravity	2
	(c)	$W = m g = 90 \times 10 = 900 N$	$\binom{1/2}{2}$ $\binom{1/2}{2}$ $\binom{1}{2}$		
		force of friction = 900 N	(1)		3
					Total 7

Sam	ple Aı	nswer and Mark Allocation	Notes	Marks
23.	(a)	$\begin{array}{ll} \text{(i)} & E_P = m \ g \ h \\ & = 8000 \times 10 \times 500 \\ & = 40 \ 000 \ 000 \ J \\ & = 40 \ MJ \end{array} \qquad \begin{array}{ll} \text{(1/2)} \\ \text{(1/2)} \\ \text{(1/2)} \\ \text{(1/2)} \end{array}$		2
		(ii) 40 MW (1) (Note: ½ unit deduction)		1
		(iii) % eff. = $\frac{P_{\text{out}}}{P_{\text{in}}} \times 100$ (½)		
		$80 = \frac{P_{\text{out}}}{40 \times 10^{6}} \times 100 $ (½) $P_{\text{out}} = 32 \text{ MW} $ (1)		2
				_
	(b)	$I_{p} V_{p} = I_{s} V_{s} $ $1280 \times 25 \ 000 = I_{s} \times 400 \ 000 $ $I_{s} = 80 \ A $ $(1/2)$ $(1/2)$ $(1/2)$		2
				Total 7

Sam	ple Aı	nswer	and Mark Allocation		Notes	Marks
24.	(a)	E_{H}	= c m Δ T = 2100 × 0·6 × 36 = 45360 J	(½) (½) (1)		2
	(b)	E _H	= 1 m = $2.34 \times 10^5 \times 0.6$ = 140 400 J	(½) (½) (1)		2
	(c)	(i) 	total E_H = 45 360 + 140 400 = 185 760 J E = P t 185 760 = 120 t t = 1548 s No heat (energy) enters the ice cream	(1) (½) (½) (1)		3
						Total 8

Sample Ar	nswer and Mark Allocation	Notes	Marks
25. (a)	(i) $R_{tot} = 15 + 25 = 40 \Omega$ (1) V = I R (½) $20 = I \times 40$ (½) I = 0.5 A (1)		3
	(ii) $V = I R$ (½) = 0.5×15 (½) = $7.5 V$ (1)		2
	(iii) + 20 V - (A) (1)		2
(b)	voltage across $R_2 = 8 \text{ V}$ (1) $P = \frac{V^2}{R}$ (½)		
	$= \frac{8^{2}}{25}$ $= 2.56 \text{ W} $ (1)		3
Note: alter	rnative answer to (b)		
	voltage across $R_2 = 8V$ (1)		
	V = IR $8 = I \times 25$ I = 0.32 (A) (1)		
	$P = IV$ $P = 0.32 \times 8$ $P = 2.56W$ (1)		
			Total 10

Sample Answer and Mark Allocation				Notes	Marks
26.	(a)	moving OR changing magnetic field induces voltage in the coil	(1) (1)		2
	(b)	increases	(1)		1
	(c)	stronger magnet OR more turns OR larger or more cups	Any Two (1)(1)		2
	(d)	electrons move alternately in opposite directions in the circuit	$\binom{1/2}{2}$ $\binom{1/2}{2}$		1
					Total 6

Sample Answer and Mark Allo	Notes	Marks		
27. (a) NPN (1)	MOSFET	(1)		2
(b) (electronic) <u>switch</u>		(1)		1
(c) voltage across 5.5 k. = 9 - 2.4 = 6.6 V	Ω resistor	(1)		
$\frac{\mathbf{V}_1}{\mathbf{V}_2} = \frac{\mathbf{R}_1}{\mathbf{R}_2}$		$\binom{1/2}{2}$ $\binom{1/2}{2}$		
$\frac{2.4}{6.6} = \frac{R_1}{5500}$ $R_1 = 2\ 000\ \Omega$		(1)		3
Note: alternative answer to (c)		, ,		
voltage across 5.5 k.	Ω resistor = 6.6 V	(1)		
V = IR $6.6 = I \times 5500$ I = 0.0012 (A)		(1)		
$V = IR$ $2 \cdot 4 = 0.0012 \times R$ $R = 2000 \Omega$		(1)		
				Total 6

Sam	ple Aı	nswer and Mark Allocation	Notes	Marks	
28.	(a)	$v = f \lambda$ $340 = 400 \times \lambda$ $\lambda = 0.85 \text{ m}$	(½) (½) (1)		2
	(b)	$V = IR = 0.025 \times 16$ = 0.4 (V)	$\binom{1/2}{2}$ $\binom{1/2}{2}$		
		$V gain = \frac{V_{out}}{V_{in}}$	(1/2)		
		$=\frac{0.4}{0.002}$	(½)		
		= 200	(1)		
		Note: ½ unit deduction if any unit given			3
					Total 5

Sam	ple Aı	nswer and Mark Allocation	Notes	Marks
29.	(a)	energy (1)	1
	(b)	$d = vt 1.5 \times 10^{11} = 3 \times 10^{8} \times t t = 500 s$ $(\frac{1}{2})$)	2
	(c)	(i) microwaves (1)	1
		(ii) X-rays OR gamma rays (1)	1
		(iii) electrons removed from or added to atom or molecule (1		1
				Total 6

Sample Answer and Mark Allocation	Notes	Marks
30. (a) (i) 40° (Note: ½ unit deduction) (1)		1
(ii) 59 ° (1) (Note: ½ unit deduction)		1
(b) (i)		
		2
(ii) $P = \frac{1}{f}$ 1		
$= \frac{1}{0.05} \tag{1/2}$		
= (+) 20 D (1)		
		2
		Total 6

Sam	Sample Answer and Mark Allocation				Notes	Marks
31.	(a)	(i)	slows neutrons	(1)		1
		(ii)	absorbs neutrons	(1)		1
	(b)	(i)	number of decays per second	(1)		1
		(ii)	time taken for activity (to fall) to half (its original value)	(1)		1
		(iii)	Time (years)Activity (Bq)0 16×10^{12} 30 8×10^{12} 60 4×10^{12} 90 2×10^{12} 120 1×10^{12} 150 0.5×10^{12}	(1)		
			Activity = 5×10^{11} Bq	(1)		2
	(c)	(i)	a measure of the radiation's biological effect	(1)		1
		(ii)	H = D Q $276 \times 10^{-6} = D \times 2.3$ D = 120×10^{-6} (Gy) E = D m = $120 \times 10^{-6} \times 90$ = 0.0108 J	(½) (½) (½) (½) (½) (1)		3
						Total 10

[END OF MARKING INSTRUCTIONS]