4.7 L'Hopital's Rule

Wednesday, November 15, 2023

Objectives:

- 1. Review limits
- a. Introduce L'Hopital's rule for exaluating limits.

Recell: Evaluating limits

•
$$\lim_{x \to 4} \frac{x^2 - 16}{x - 4}$$
 \longrightarrow 0 (indeterminate)

Algebraically (by factorization)

$$\lim_{x \to 4} \frac{(x-4)(x+4)}{x-4} = \lim_{x \to 4} x+4 = 8$$

•
$$\lim_{x\to\infty} \frac{4x^2-5x}{1-3x^2} \to \infty$$
 (indeterminate)

Algebraically (by "multiplying by 1" technique) $\lim_{x\to\infty} \frac{4x^2-5x}{1-3x^2} \frac{(1/x^2)}{(1/x^2)} = \lim_{x\to\infty} \frac{4-5x}{1-3} = -\frac{4}{3}$

showed by ST (Czvit do algebraically)

$$\lim_{x\to 0}\frac{\sin(x)}{x}=1$$

exponential grows faster than polynomial

$$\lim_{x\to\infty}\frac{e^{x}}{x^{2}}=DNE$$

What if
$$\lim_{X\to 0} \frac{e^X}{x^2} = uND \longrightarrow \frac{1}{0}$$
 (undefined)

What if
$$\lim_{x\to -\infty} \frac{e^x}{x^2} = 0 \longrightarrow \frac{1}{\infty}$$
 (goes to 0)

L'Hopital's Rule

Gozl: Evaluating indeterminate limits using oderivative rules.

the Rule: If
$$\lim_{x\to 2} \frac{f(x)}{g(x)} = 0$$
 or $\lim_{x\to 2} \frac{f(x)}{g(x)} = 0$
where $= can be any real number or infinite,

then$

$$\lim_{x\to 2\partial} \frac{f(x)}{g(x)} = \lim_{x\to 2\partial} \frac{f'(x)}{g'(x)}$$

where f'(x) and g'(x) are the derivatives of f(x) and g(x) respectively.

•
$$\lim_{x \to 4} \frac{x^2 - 16}{x - 4} \to \frac{0}{0}$$

LH

 $\Rightarrow \lim_{x \to 4} \frac{2x}{1} = \frac{2(4)}{1} = 8$

$$\begin{array}{ccc} \text{LH} & & & & \\ & & & \\ & & & \\ & & \times & \hline{} & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

Other indeterminate Forms

Examples:

$$\frac{1}{x-7-00} = \frac{e^{x}}{1/x} \rightarrow 0$$

LH go on forever.

Alternative:
$$\lim_{x\to 7-\infty} \frac{x}{e^x} = \lim_{x\to 7-\infty} \frac{x}{e^{-x}} \longrightarrow \frac{-\infty}{\infty}$$

$$\frac{LH}{x - 3 - 20} = 0$$

Use log technique

| let
$$y = x^{1/x}$$
.

| $ln(y) = ln(x^{1/x})$
| $ln(y) = \frac{1}{2} ln(x)$ | $ln(y) = \frac{1}{2} ln(y) = \frac{1}{$