Econometria 1

Pedro Henrique Rocha Mendes *

Lista 3

(Texto para as questões 1 a 3) Os governos dos estados brasileiros estão interessados em implementar ações com o intuito de melhorar a taxa de aprovação (ou de não-repetência) dos alunos de escolas estaduais. Resultados de estudos econométricos previamente realizados apontam que a qualidade da escola pública em que foi cursado o ensino fundamental é uma das principais causas do desempenho do aluno no ensino médio. Seja assumido que é possível obter, a partir dos dados disponíveis, uma medida razoavelmente precisa para a qualidade das escolas públicas, denotada por "quali_pub". Também será assumido que os governos estaduais são capazes de alterar a variável em questão. Com base nisso, seja, por simplicidade, considerada uma política pública estadual que procura aumentar a taxa de aprovação explorando, para isso, a via de aumento da qualidade das escolas públicas de ensino fundamental. Você foi contratado para estimar o impacto provável desta política como subsídio à decisão que definirá se ela vai ou não ser implementada. Os dados disponíveis compreendem três variáveis, (i) o desempenho, no ensino médio, de alunos que cursaram o ensino fundamental em escolas públicas, taxa_aprov, (ii) quali_pub, (iii) nível educacional dos pais dos alunos, educ_pais. A partir destes dados é possível estimar duas Funções de Regressão Populacional (FRPs) distintas.

```
• FRP 1: taxa\_aprov_i = \alpha_0 + \alpha_1 \ quali\_pub_i + e_i
```

• FRP 2: $taxa_aprov_i = \beta_0 + \beta_1 \ quali_pub_i + \beta_2 \ educ_pais_i + u_i$

Ao comparar as duas FRPs, deve-se levar em conta a existência de correlação entre quali_pub e educ_pais, justificada pela conjectura de que a capacidade de selecionar a melhor escola para os filhos é diretamente proporcional ao nível educacional. Além disso, há evidência de que o desempenho no ensino médio é positivamente correlacionado com a educação dos pais.

1)

No enunciado acima, há três relações que conectam as três variáveis. Represente essas relações a partir de um diagrama de flechas tal como o que consta na nota de aula 4. Para isso, considere

^{*}RA: 11201811516

duas convenções, quais sejam: (a) a causalidade deve ser indicada com uma flecha unidirecional, \rightarrow , em cujo início está a variável-causa e, em, cujo término, a variável-consequência e; (b) a correlação deve ser indicada com uma flecha bidirecional, " \leftrightarrow ".

No curto prazo:

No longo prazo:

2)

Explique porque o coeficiente β_1 é uma medida mais adequada do que o coeficiente α_1 para o impacto da política pública. Tome por base (i) o diagrama elaborado na questão anterior e (ii) a interpretação ceteris paribus da regressão múltipla.

Segundo Wooldridge¹, sabendo que quali_pub_i é correlacionada com educ_pais_i, em uma mesma amostra, a relação entre os estimadores de α_1 e β_1 (respectivamente, $\hat{\alpha}_1$ e $\hat{\beta}_1$) é

¹WOOLDRIDGE, Jeffrey M., **Introductory econometrics: A modern approach**, [s.l.]: Cengage learning, 2015.

$$\hat{\alpha}_1 = \hat{\beta}_1 + \hat{\beta}_2 \hat{\delta}_1 \tag{1}$$

onde $\hat{\delta}_1$ é o coeficiente de inclinação da regressão simples de educ_pais_i sobre quali_pub_i. Considerando $\hat{\delta}_1$ depende apenas das variáveis independentes da amostra, podendo ser tratado como fixo, a esperança de $\hat{\alpha}_1$ é

$$E(\hat{\alpha}_1) = E(\hat{\beta}_1 + \hat{\beta}_2 \hat{\delta}_1)$$

$$= E(\hat{\beta}_1) + E(\hat{\beta}_2) \hat{\delta}_1$$

$$= \beta_1 + \beta_2 \hat{\delta}_1$$
(2)

Já o viés de $\hat{\alpha}_1$, definido como $E(\hat{\alpha}_1) - \alpha_1$, ao substituir $E(\hat{\alpha}_1)$ pela equação (2)

$$Vi\acute{e}s(\hat{\alpha}_1) = \beta_1 + \beta_2 \hat{\delta}_1 - \alpha_1 \tag{3}$$

Para que não houvesse viés entre $\hat{\alpha}_1$ e $\hat{\beta}_1$, α_1 deve ser igual a β_1 . Porém, $\alpha_1 = \beta_1 + \beta_2 \hat{\delta}_1$, o que faz com que seu viés seja $\beta_2 \hat{\delta}_1$, justamente o coeficiente omitido na FRP 1. Logo, o coeficiente β_1 é mais adequado que o coeficiente α_1 por representar melhor o efeito *ceteris paribus* de uma variação de quali_pub_i em taxa_aprov_i, pois isola melhor, sem a influência da variável omitida, tal efeito. Caso não haja correlação entre quali_pub_i e educ_pais_i, ambas as FRPs poderão ser utilizadas para estimar o efeito *ceteris paribus* da variação de quali_pub_i em taxa_aprov_i.

3)

O que ocorreria caso os resultados da estimação da FRP 1 fossem tomados por base para decidir quanto à implementação da política?

Caso β_2 tenha valores relevantes, possivelmente a taxa de aprovação não terá o efeito estimado pela implementação da política pública ou, no mínimo, será menor do que o esperado.

4)

Uma medida para a discriminação de gênero no mercado de trabalho é dada pela estimativa pontual para o parâmetro δ na FRP a seguir, em que W_i é o salário recebido pelo i-ésimo indivíduo, "educ_i" capta o nível educacional e X contém variáveis explicativas socioeconômicas adicionais. Os indivíduos que declararam possuir sexo masculino são indicados com d_mas_i = 1, e indivíduos que declararam possuir sexo feminino como d_mas_i = 0.

$$\log(W_i) = \beta_0 + \beta_1 \operatorname{educ}_i + \beta_3 X_i + \delta \operatorname{dmas}_i$$

Argumente porque a estimativa pontual de δ é uma medida para a porção do diferencial salarial

associada à discriminação de gênero. Embase sua resposta no conceito do coeficiente de uma variável binária.

Uma variável binária, ao captar se um atributo é ou não possuído, indica nesse caso se existe disparidade salarial entre gêneros. Caso a variável d_mas_i seja relevante, ou seja, mostre a existência de um diferencial salarial, se observará na regressão uma diferença de nível entre as retas que representam o salário recebido por indivíduos do sexo masculino e feminino, mostrando que, *ceteris paribus*, existe uma diferença salarial entre os dois gêneros.

5)

Um pesquisador estimou uma FRP em que a variável dependente é o tempo de internação hospitalar, devido a doenças respiratórias, de idosos com pelo menos 65 anos. Foram considerados 763 municípios da Amazônia Legal brasileira. A FPR estimada correspondeu à: dias_leito = β_0 + β_1 idade_média_i + β_2 DCNT_i + β_3 PIB_i + u_i , a qual será referida, doravante, como "equação original". A primeira explicativa é a idade média da população municipal, DNCT \equiv mortalidade devido a doenças crônicas não-transmissíveis, uma medida do nível de saúde da população e PIB \equiv produto interno bruto municipal, uma medida para a capacidade de contratar serviços de saúde e comprar medicação. Uma vez obtidos os resultados, o pesquisador decidiu fazer um teste, ampliando a FRP com a inclusão do Índice de Desenvolvimento Humano municipal (IDH). Os resultados seguem na tabela abaixo. Explique porque, mesmo sendo a soma dos quadrados dos resúduos (SQR) inferior na equação ampliada, esta apresentou o mesmo R^2 ajustado.

Estatística / FRP	Sem IDH	Com IDH	
SQE	3.047.142,10	3.047.833,81	
SQR	393.843,77	393.152,06	
SQT	3.440.985,87	3.440.985,87	
Graus de liberdade da SQR	759	758	
Graus de liberdade da SQT	762	762	
R ² ajustado	0,8851	0,8851	

Embora a soma de quadrados do resíduo tenha diminuído, mostrando uma menor diferença entre os valores obtidos na regressão e a média da variável independente, a soma de quadrados do erro, que representa a diferença entre os valores obtidos na regressão e os valores da variável dependente aumentou, levando a um R² constante. Isso mostra que a variável IDH não é relevante para compreender o tempo de internação hospitalar, devido a doenças respiratórias, de idosos com pelo menos 65 anos.

6)

Quais dos seguintes itens podem fazer que os estimadores de MQO sejam enviesados? Explique sua escolha.

- a. Heterocedasticidade
- b. Omitir uma variável importante

Em uma regressão linear múltipla, a heterocedasticidade viola uma das hipóteses-base da obtenção da regressão, que é o erro possuir a mesma variância dada a quaisquer valores das variáveis explicativas². Já omitir uma variável importante, como demonstrado na questão dois, pode enviesar um estimador de MQO, já que impossibilita a obtenção do efeito *ceteris paribus* a partir do coeficiente estimado.

Referências

WOOLDRIDGE, Jeffrey M. **Introductory econometrics: A modern approach**. [s.l.]: Cengage learning, 2015.

2 Ibid			