

GANPAT UNIVERSITY

U. V. Patel College of Engineering

Arduino architecture and basic programming.

2CEIT6PE9: Internet of Things

B.Tech Semester: VI

Computer Engineering/ Information Technology

Enrolment No: 19012012009 Name: Priyank Bhavsar

Aim: Arduino architecture and basic programming.

Theory:

Arduino is an open-source physical computing platform designed to make experimenting with electronics and programming more fun and intuitive. Arduino has its own unique, simplified programming language and a lots of premade examples and tutorials exists. With Arduino you can easily explore lots of small-scale sensors and actuators like motors, temperature sensors, etc.

Microcontroller	ATmega328P
Operating Voltage	5V
Input Voltage (recommended)	7-12V
Input Voltage (limit)	6-20V
Digital I/O Pins	14 (of which 6 provide PWM output)
PWM Digital I/O Pins	6
Analog Input Pins	6
DC Current per I/O Pin	20 mA
DC Current for 3.3V Pin	50 mA
Flash Memory	32 KB (ATmega328P)
	of which 0.5 KB used by bootloader
SRAM	2 KB (ATmega328P)
EEPROM	1 KB (ATmega328P)
Clock Speed	16 MHz
Length	68.6 mm
Width	53.4 mm
Weight	25 g

Experiment

1. Working with LED

a. LED ON

Circuit:

b. LED Blinking

```
Code:
    #define red 13
    void setup()
    {
        pinMode(red, OUTPUT);
    }

    void loop()
    {
        digitalWrite(red, HIGH);
        delay(1000);
        digitalWrite(red, LOW);
        delay(1000);
}
```

Circuit:

c. LED ON/OFF using push button

Circuit:

d. Working with RGB LED

Code:

```
#define r 1
#define b 3
#define g 4
void setup()
 pinMode(r, OUTPUT);
 pinMode(b, OUTPUT);
 pinMode(g, OUTPUT);
void loop()
 digitalWrite(r, HIGH);
 delay(2000);
 digitalWrite(r, LOW);
 delay(2000);
 digitalWrite(b, HIGH);
 delay(2000);
 digitalWrite(b, LOW);
 delay(2000);
 digitalWrite(g, HIGH);
 delay(2000);
 digitalWrite(g, LOW);
 delay(2000);
```

Circuit

2. Increase and decrease the brightness of LED Code:

```
int a = 0;
void setup() {
   pinMode(13, OUTPUT);
}

void loop() {
   for (a = 0; a < 256; a++) {
      analogWrite(13, a);
      delay(5);
   }
   for (a = 255; a >= 0; a--) {
      analogWrite(13, a);
      delay(5);
   }
   delay(5);
}
```

Circuit:

3. Increase and decrease the brightness of LED using potentiometer Code:

```
#define inp A2
#define out 3
void setup()
{
    pinMode(out, OUTPUT);
    pinMode(inp, INPUT);
}

void loop()
{
    int input_value = analogRead(inp);
    int t = map (input_value,0,1023,0,255);
    analogWrite(out,t);
}
```

Circuit:

