Calculus 1

Esercizi tutorato 5

1. Calcolare, se esistono, i seguenti limiti:

(a)
$$\lim_{x \to +\infty} x + \frac{1}{x}$$

(b)
$$\lim_{x \to -\infty} 4x^{2023} + x^{2022} + 2^x$$

(c)
$$\lim_{x\to 0} x^2 + x^{-2}$$

(d)
$$\lim_{x\to 0} \log |x| e^x \cos x$$

(e)
$$\lim_{x\to 0} \log|\sin x|$$

(f)
$$\lim_{x\to 0} \sin(\log|x|)$$

(g)
$$\lim_{x \to \frac{1}{2}^+} \tan(\pi x) \sin(\pi x)$$

$$(h) \lim_{x \to 0} \frac{1}{x} + \cos x$$

Soluzioni:
$$(a) + \infty$$
; $(b) - \infty$; $(c) + \infty$; $(d) - \infty$; $(e) - \infty$; $(f) \not\exists \lim$; $(g) - \infty$; $(h) \not\exists \lim$.

2. Calcolare i limiti agli estremi del dominio delle seguenti funzioni.

•
$$f(x) = x^3 + 2x^2 + e^x$$

•
$$g(x) = \cos\left(\frac{1}{1+x^2}\right)$$

$$h(x) = \sqrt{1 - 2 \ln x}$$

•
$$p(x) = |1 - x|$$

•
$$q(x) = \arctan(\log x)$$

•
$$r(x) = \ln(1 + \cos x)$$

•
$$s(x) = (2+x)^{(1-x^2)}$$

Soluzioni:
$$f(-\infty) = -\infty$$
, $f(+\infty) = +\infty$; $g(-\infty) = g(+\infty) = 1$; $h(0^+) = +\infty$, $h(\sqrt{e}) = 0$; $p(-\infty) = p(+\infty) = +\infty$; $q(0^+) = -\pi/2$, $q(+\infty) = \pi/2$; $r(\pi + 2k\pi) = -\infty$; $s((-2)^+) = +\infty$, $s(+\infty) = 0$.

3. Scrivere due funzioni f(x) e g(x) che abbiano i seguenti limiti.

•
$$\lim_{x\to 0} f(x) = 1$$
 e $\lim_{x\to +\infty} f(x) = 0$

•
$$\lim_{x\to 1^+} g(x) = -\infty$$
 e $\lim_{x\to 1^-} g(x) = +\infty$

4. Verificare, usando la definizione, che

$$\lim_{x\to -\infty} x^3 = -\infty, \qquad \lim_{x\to 1} \frac{1}{|x-1|} = +\infty.$$