

XỬ LÝ ẢNH VÀ VIDEO SỐ

Lab-06: Nén ảnh dùng SVD

I. Thông tin chung

Mã số bài tập: Lab-06

Loại bài tập: Bài tập nhóm

Thời lượng dự kiến: 3 tuần

Deadline nộp bài:

Hình thức: Bài tập nhóm

Hình thức nộp bài:

GV phụ trách: Lý Quốc Ngọc, Phạm Minh Hoàng,

Thông tin liên lạc với GV: {lqngoc, pmhoang}@fit.hcmus.edu.vn

II. Chuẩn đầu ra cần đạt

III. Mô tả bài tập

Bài tập này giúp sinh viên làm quen với:

- Thư viện xử lý ảnh OpenCV
- Cài đặt các phân đoạn ảnh cơ bản.

IV. Nội dung bài tập

*Lưu ý quan trọng:

- Tất cả các bài tập trong môn học, sinh viên phải tổ chức cấu trúc thư mục chứa thư viện OpenCV như video hướng dẫn.
- Tất cả các bài tập sẽ được chạy dưới dạng command line (trừ khi có yêu cầu khác).

Bài tập gồm các yêu cầu sau: Viết chương trình cài đặt các phương pháp phân đoạn ảnh theo bảng bên dưới

Luu ý:

- Chương trình phải hiển thị được ảnh đầu vào và ảnh kết quả sau khi xử lý
- Tham số dòng lệnh được đặt theo nguyên tắc sau

<ProgramName.exe> <Command> <InputPath> <OutputPath>

- ProgramName: tên chương trình đặt theo cú pháp MSSV_Lab05.exe
- Command: tên câu lệnh tùy thuộc từng câu (xem bảng dưới)
- InputPath: đường dẫn file ảnh đầu vào
- OutputPath: đường dẫn file kết quả

CommandArguments: tham số câu lệnh tùy thuộc từng câu có hoặc không (xem bảng dưới)

Câu	Yêu cầu	Tên câu lệnh	Tham số câu lệnh	Ðiểm
1	Nén ảnh bằng SVD	compress	k: số thành phần	5
			được giữ lại	
2	Giải nén	decompress		5

V. Hướng dẫn thực hành

1. Nén ảnh dùng SVD

SVD là phương pháp phân tích ma trận A kích thước m x n thành 3 ma trận: U, Σ , V sao cho A = U ΣV^T . Trong đó U là ma trận vuông kích thước m x m, Σ là ma trận đường chéo kích thước m x n, và V là ma trận vuông kích thước n x n.

Các phần tử trên ma trận đường chéo chính của Σ gọi là các singular value $(\sigma_1, \sigma_2,...)$. Giả sử chỉ tồn tại r singular value khác 0, đồng nghĩa A có thể biểu diễn thành tổng các tích ma trận rank 1, và r cũng chính là rank(hạng) của ma trận A

$$A = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + ... + \sigma_r u_r v_r^T$$

Sắp xếp các singular value theo chiều giảm dần $(\sigma_1 > \sigma_2 > ... > \sigma r)$ sau đó chọn k thành phần đầu tiên (k < r). Các ma trận U, V cũng sẽ giảm kích thước xuống lần lượt thành $(m \ x \ k)$ và $(k \ x \ n)$. Khi đó ta có thể biểu diễn ảnh bằng ma trận U_k , V_k , và Σ_k với kích thước nhỏ hơn so với ma trận A.

Phục hồi lại ảnh bằng cách áp dụng công thức $A_k = U_k \; \Sigma_k \; V_k^{\; T}.$

2. Tham khảo

http://timbaumann.info/svd-image-compression-demo/

https://docs.opencv.org/3.4/df/df7/classcv_1_1SVD.html#details

VI. Các yêu cầu & quy định chi tiết cho bài nộp

Yêu cầu tổ chức thư mục

- Đặt tên chương trình: <MSSV>_BT06
- Tổ chức chương trình thành 3 thư mục
 - Source: chứa các file dùng để biên dịch chương trình, xóa thư mục
 Demo và file *.sdf
 - o Release: chứa file *.exe, *.dll (chỉ chứa các file dll cần thiết)
 - o Docs: chứa file báo cáo.

VII. Các kết quả mong đợi

- Chương trình:
 - o Được build dưới dạng Release, có các file dll đi kèm.
 - o Chương trình được thực thi bằng command line.
- Mã nguồn:
 - o Chú thích đầy đủ.
 - Đặt tên biến và tên hàm đúng theo qui định.
- Báo cáo:
 - o Có đầy đủ thông tin cá nhân: họ tên, MSSV.
 - Sao chép lại bảng trong mục IV vào file báo cáo, những yêu cầu nào đã hoàn thành 100% thì ghi "100%" vào ô bên cạnh. Nếu 50% < mức độ hoàn thành < 100% thì ghi "50%", nếu hoàn thành <50% xem như không hoàn thành và khỏi ghi.</p>
 - Hướng dẫn sử dụng chương trình rõ ràng, có hình ảnh minh họa hoặc clip demo (nếu thấy cần thiết).

VIII. Cách đánh giá

Tiêu chí đánh giá	Tỉ lệ điểm
Trình bày mã nguồn	3
Code trong sáng, rõ ràng	
Chú thích đầy đủ	
Đặt tên biến, tên hàm	
Thực hiện đủ yêu cầu chức năng	5
Báo cáo	2

IX. Các quy định khác

- Đối với mỗi hàm phải chú thích đầy đủ. Bạn nào thiếu sẽ bị trừ 50% số điểm.
- Các bạn được phép trao đổi ý tưởng với nhau nhưng phải tự làm bài và tự bảo quản bài làm.
- Mọi hình thức copy bài sẽ bị 0đ toàn bộ cho các bên liên quan, miễn phúc khảo
- Đặt tên bài làm đúng quy định
- Đặt tên biến, tên hàm có ý nghĩa và chú thích rõ ràng