Homework 7

Page 138-139, Chinese textbook

Question 2

Considering a buck chopper circuit shown in the Fig. 5-1a, with E=200V, $R=10\Omega$, L is large enough and $E_m=50V$. Use the pulse width modulation method, calculate the average output voltage U_o and the average output current I_o when $T=40\mu s$ and $t_{on}=20\mu s$.

Question 5

Considering a boost chopper circuit shown in the Fig. 5-2a, with E=50V, L and C are large enough and $R=25\Omega$. Use the pulse width modulation method, calculate the average output voltage U_o and the average output current I_o when $T=50\mu s$ and $t_{on}=20\mu s$.

Question 11

Try to analyze the maximum voltage, maximum current and average current of the switch and the rectifier diode in forward circuit and flyback circuit during operation.

Question 12

Try to analyze the maximum voltage, maximum current and average current of the switch and the rectifier diode in full-bridge, half-bridge and push-pull circuit during operation.

Answer 5.2

Because L is large enough, the load current is continuous.

The average value of output voltage is

$$U_0 = rac{t_{on}}{T}E = rac{20}{40} imes 200V = 100V$$

The average value of output current is

$$I_0 = \frac{U_0 - E_{\scriptscriptstyle M}}{R} = \frac{100 - 50}{10} A = 5A$$

Answer 5.5

The average value of output voltage is

$$U_o = \frac{T}{t_{off}}E = \frac{50}{50-20} \times 50V = 83.3333V$$

The average value of output current is

$$I_o = rac{U_o}{R} = rac{83.3333}{25} A = 3.33333 A$$

Answer 5.11

The maximum voltage

The maximum voltage					
	switch	rectifier diode			
Forward circuit	$\bigg(1+\frac{N_1}{N_3}\bigg)U_i$	$U_irac{N_2}{N_3}$			
Flyback circuit	$U_i + U_o rac{N_1}{N_3}$	$U_i rac{N_2}{N_1} + U_o$			
The maximum current					
	switch	rectifier diode			
Forward circuit	$I_drac{N_2}{N_1}$	$I_d rac{N_3}{N_1}$			
Flyback circuit	$I_d rac{N_2}{N_1}$	I_d			
The average current					
	switch	rectifier diode			
Forward circuit	$I_d rac{N_2}{2N_1}$	$I_d rac{N_3}{2N_1}$			
Flyback circuit	$I_d rac{N_2}{2N_1}$	$rac{I_d}{2}$			

Answer 5.12

The full-bridge circuit

	maximum voltage	maximum current	average current
switch	U_{i}	$I_d rac{N_2}{N_1}$	$I_d rac{N_2}{2N_1}$
rectifier diode	$U_irac{N_2}{N_1}$	I_d	$rac{I_d}{2}$

The half-bridge circuit

	maximum voltage	maximum current	average current		
switch	U_i	$I_d rac{N_2}{N_1}$	$I_d rac{N_2}{2N_1}$		
rectifier diode	$U_irac{N_2}{2N_1}$	I_d	$rac{I_d}{2}$		
The push-pull circuit					
	maximum voltage	maximum current	average current		
switch	$2U_i$	$I_d rac{N_2}{N_1}$	$I_d rac{N_2}{2N_1}$		
rectifier diode	$U_irac{N_2}{N_1}$	I_d	$rac{I_d}{2}$		