Lecture 8: QR-factorization, continued

Amos Ron

University of Wisconsin - Madison

February 12, 2021

Outline

- QR factorization, computational details
 - The first step
 - The second step
 - The general step

Outline

- QR factorization, computational details
 - The first step
 - The second step
 - The general step

The first step
The second step
The general step

Blank page

- Input: The original matrix $A_0 := A$.
- Output: The matrix H_1 , the matrix $A_1 := H_1A_0$.
- We need the first column of A_1 to be "good":

 $A_1e_1 = ae_1$, for some real number a.

- Input: The original matrix $A_0 := A$.
- Output: The matrix H_1 , the matrix $A_1 := H_1A_0$.
- We need the first column of A₁ to be "good":

$$A_1e_1 = ae_1$$
, for some real number a .

With $x := A_0e_1$ the first column of A_0 , we need $y := A_1e_1$ to be 'good': of the form ae_1 .

Since $A_1 = H_1 A_0$, we have that $y = H_1 x$:

$$y = A_1 e_1 = (H_1 A_0) e_1 = H_1 (A_0 e_1) = H_1$$
:

That's just rudimentary linear algebra: if C = AB then A maps to the columns of B to the colomns of C, and B maps the rows of C to the rows of C

With $x := A_0e_1$ the first column of A_0 , we need $y := A_1e_1$ to be 'good': of the form ae_1 .

Since $A_1 = H_1A_0$, we have that $y = H_1x$:

We can find such a matrix H_1 provided

$$||x||_2 = ||y||_2 = |a|,$$

so we choose

$$a=\pm||x||_2.$$

Summary of the first step

- $x := A_0 e_1$. Set $y := ||x||_2 e_1$.
- $w := \frac{x-y}{||x-y||_2}$.
- Define $H_1 := I 2ww'$. Then $A_1 = H_1A_0$.

Creating the matrix H_2

- Input: The matrix A₁, whose first column is "good".
- Output: The matrix H_2 , the matrix $A_2 := H_2A_1$.
- We need the first two columns of A₂ to be "good":
- First, we will make sure that

$$A_1e_1=A_2e_1.$$

- ② Second, $x := A_1e_2$, then $y := A_2e_2$ is H_2x . So, we need first to choose y, and then to construct H_2 so it maps x to y.
- **3** We choose y(1) = x(1) this ensures that $A_1e_1 = A_2e_1$.
- **4** We choose $y(2) := ||x(2 : m)||_2$. This ensure that $||x||_2 = ||y||_2$.
- y(i) = 0 for $i \ge 0$, since y should be 'good': A suitable second column in an upper triangular matrix.

Creating the matrix H_2

Summary of the second step

• $x := A_1 e_2$. Choose

$$y = x(1)e_1 + ||x(2:m)||_2e_2.$$

- $w := \frac{x-y}{||x-y||_2}$.
- $H_2 := I 2ww'$, $A_2 = H_2A_1 = H_2H_1A_0$.

Creating the matrix H_j

- Input: The matrix A_{j-1} , whose first j-1 columns are "good".
- Output: The matrix H_j , the matrix $A_j := H_j A_{j-1}$.
- 2

$$y = \sum_{i=1}^{j-1} x(i)e_i + ||x(j:m)||_2 e_j.$$

- $w := \frac{x-y}{||x-y||_2}.$
- **1** Define $H_j := I 2ww'$. Then $A_j = H_j A_{j-1}$.

Justifying the process

Question: How do we know that

$$A_j e_i = A_{j-1} e_i, \quad i = 1, \dots, j-1$$
?

Justifying the process

Question: How do we know that

$$A_j e_i = A_{j-1} e_i, \quad i = 1, \dots, j-1$$
?

This is straight linear algebra argument, based on the following:

- For i < j, w(i) = 0, since x(i) = y(i).
- Therefore, the first j-1 columns of 2ww' are zero. So, the first j-1 columns of H_i are identity.
- If v is one of the first j-1 columns of A_{j-1} , then v(k) = 0, k > j.
- Conclusion: $H_i v = v$, for such v.

The first step The second step The general step

Mini demo!!