Note

• Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps.

```
In [1]: # Dependencies and Setup
import pandas as pd

# File to Load (Remember to Change These)
file_to_load = "Resources/purchase_data.csv"

# Read Purchasing File and store into Pandas data frame
df = pd.read_csv(file_to_load)
```

Player Count

Display the total number of players

Purchasing Analysis (Total)

- Run basic calculations to obtain number of unique items, average price, etc.
- Create a summary data frame to hold the results
- Optional: give the displayed data cleaner formatting
- · Display the summary data frame

```
unique_items = len(df['Item ID'].value_counts())
In [4]:
        unique_items
        average price = df['Price'].mean()
        average price = round(average price,2)
        average price
        number_of_purchases = len(df)
        number_of_purchases
        Total revenue = df['Price'].sum()
        Total_revenue
        Summary_purchases = pd.DataFrame({"Number of Unique Items": [unique_it
                                          "Average Price": [average_price],
                                          "Number of Purchases": [number_of_pur
                                          "Total Revenue": [Total revenue]})
        Summary_purchases["Average Price"] = Summary_purchases["Average Price"]
        Summary_purchases["Total Revenue"] =Summary_purchases["Total Revenue"]
        Summary_purchases
```

Out[4]:

	Number of Unique Items	Average Price	Number of Purchases	Total Revenue
0	179	\$3.05	780	\$2,379.77

Gender Demographics

- Percentage and Count of Male Players
- Percentage and Count of Female Players
- Percentage and Count of Other / Non-Disclosed

```
In [5]: # Group by gender
    gender_groups = df.groupby(['Gender'])
    genders = gender_groups.nunique()

#Total Gender
    total_gender = genders["SN"].sum()

# Count and percentage of players
    Count_players = genders["SN"].unique()
    Percentage_players= genders["SN"]/ total_gender

#Summary Table
    Gender_demographics = pd.DataFrame({"Percentage of Players": Percentage of Players Count":Count_players})

# Formatting the percentage of players
    Gender_demographics["Percentage of Players"] = Gender_demographics["Percentage of Players"]
```

Out [5]:

Percentage of Players Players Count

Gender		
Female	14.06%	81
Male	84.03%	484
Other / Non-Disclosed	1.91%	11

Purchasing Analysis (Gender)

- Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. by gender
- · Create a summary data frame to hold the results
- Optional: give the displayed data cleaner formatting
- Display the summary data frame

In [6]: # Purchase Analysis purchase_count = gender_groups['Purchase ID'].count() Average_purchase = gender_groups['Price'].mean() Total purchase = gender groups['Price'].sum() Avg_Total = Total_purchase / Count_players Purchase_Analysis = pd.DataFrame({"Purhcase Count": purchase_count, "Average Purchase Price": Average pu "Total Purchase Price": Total purchas "Average Total Purchase": Avg_Total} # Formatting the columns Purchase_Analysis["Average Purchase Price"] = Purchase_Analysis["Avera Purchase_Analysis["Total Purchase Price"] = Purchase_Analysis["Total F Purchase Analysis["Average Total Purchase"] = Purchase Analysis["Average Total Purchase"] # Naming the first column Purchase Analysis.index.name = "Gender" Purchase_Analysis.head()

Out[6]:

	Purhcase Count	Average Purchase Price	Total Purchase Price	Average Total Purchase
Gender				
Female	113	\$3.20	\$361.94	\$4.47
Male	652	\$3.02	\$1,967.64	\$4.07
Other / Non- Disclosed	15	\$3.35	\$50.19	\$4.56

Age Demographics

- · Establish bins for ages
- Categorize the existing players using the age bins. Hint: use pd.cut()
- Calculate the numbers and percentages by age group
- Create a summary data frame to hold the results
- Optional: round the percentage column to two decimal points
- Display Age Demographics Table

```
In [7]: # Age Demographics
        # Establishing bins for ages and creating labels
        age_bins = [0,9,14,19,24,29,34,39,100]
        age_labels = ["<10","10-14", "15-19","20-24","25-29","30-34","35-39","
        #categorized the existing players by age group
        df["Age Demographics"] = pd.cut(df["Age"], age bins, labels=age labels)
        #New dataframe
        age_demographics = df.groupby("Age Demographics")
        #Total age count of players by age
        total age = age demographics["SN"].nunique()
        # calculating the age percentage
        age percent = total age/total players
        # Summary data frame to hold the values
        age_demographics_analysis = pd.DataFrame({"Total Count": total_age,
                                     "Percentage of Players":age percent})
        age_demographics_analysis["Percentage of Players"] = age_demographics
        age_demographics_analysis
```

Out[7]:

Total Count Percentage of Players

Age Demographics		
<10	17	2.95%
10-14	22	3.82%
15-19	107	18.58%
20-24	258	44.79%
25-29	77	13.37%
30-34	52	9.03%
35-39	31	5.38%
40+	12	2.08%

Purchasing Analysis (Age)

- Bin the purchase data data frame by age
- Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. in the table below
- Create a summary data frame to hold the results
- Optional: give the displayed data cleaner formatting
- Display the summary data frame

```
In [8]: # Purchase Analysis on the basis of Age
        #Count purchase by age
        Purchase_count =age_demographics['Purchase ID'].count()
        # Average purchase price by age demographics
        avg purchase age = age demographics['Price'].mean()
        # Total Purchase value by age_demographics
        total_purchase_value = age_demographics['Price'].sum()
        # Average purchase per person by age
        avg purchase per person = total purchase value/total age
        Age_Purchase_Analysis = pd.DataFrame({"Purchase Count": Purchase_count
                                               "Average Purchase Price": avg_pur
                                               "Total Purchase Value":total_purc
                                                "Average Purchase Total per Pers
        Age Purchase Analysis["Average Purchase Price"] = Age Purchase Analysi
        Age_Purchase_Analysis["Total Purchase Value"] = Age_Purchase_Analysis[
        Age Purchase Analysis[ "Average Purchase Total per Person"] = Age Purchase Total per Person"]
        Age_Purchase_Analysis
```

Out[8]:

Purchase Average Purchase Total Purchase Average Purchase Total per Count Price Value Person

Age Demographics

<10	23	\$3.35	\$77.13	\$4.54
10-14	28	\$2.96	\$82.78	\$3.76
15-19	136	\$3.04	\$412.89	\$3.86
20-24	365	\$3.05	\$1,114.06	\$4.32
25-29	101	\$2.90	\$293.00	\$3.81
30-34	73	\$2.93	\$214.00	\$4.12
35-39	41	\$3.60	\$147.67	\$4.76
40+	13	\$2.94	\$38.24	\$3.19

Top Spenders

- Run basic calculations to obtain the results in the table below
- · Create a summary data frame to hold the results
- · Sort the total purchase value column in descending order
- Optional: give the displayed data cleaner formatting
- Display a preview of the summary data frame

```
In [9]: # Top Spenders Analyis
        Spender_data = df.groupby('SN')
        Count_spender_data = Spender_data['Purchase ID'].count()
        # average purchase by SN
        average purchase price = Spender data['Price'].mean()
        # Sum of purchase total
        purchase_total_spender = Spender_data['Price'].sum()
        # Summary Data
        Top_Spender = pd.DataFrame({"Purchase Count": Count_spender_data,
                                   "Average Purchase Price": average purchase
                                    "Total Purchase Value": purchase_total_spe
        # Formatting the columnns & Sort the table
        Top_Spender_Formatted = Top_Spender.sort_values(["Total Purchase Value
        Top_Spender_Formatted["Average Purchase Price"] = Top_Spender_Formatte
        Top_Spender_Formatted["Total Purchase Value"] = Top_Spender_Formatted[
        Top_Spender_Formatted.head()
```

Out[9]:

	Purchase Count	Average Purchase Price	Total Purchase Value
SN			
Lisosia93	5	\$3.79	\$18.96
ldastidru52	4	\$3.86	\$15.45
Chamjask73	3	\$4.61	\$13.83
Iral74	4	\$3.40	\$13.62
Iskadarya95	3	\$4.37	\$13.10

Most Popular Items

- Retrieve the Item ID, Item Name, and Item Price columns
- Group by Item ID and Item Name. Perform calculations to obtain purchase count, average item price, and total purchase value
- · Create a summary data frame to hold the results
- · Sort the purchase count column in descending order
- Optional: give the displayed data cleaner formatting
- Display a preview of the summary data frame

```
In [10]: # Most Popular Item
         items_id = df[['Item ID', 'Item Name', 'Price']]
         # Grouped by Item Name & ID
         items_data = items_id.groupby(['Item ID','Item Name'])
         #count the items
         purchase_items = items_data['Price'].count()
         # Counting items per item
         purchase_item_count = items_data['Price'].sum()
         #Total items
         total purchase items = purchase item count/purchase items
         # Creating the summary table
         Popular_item = pd.DataFrame({"Purchase Count": purchase_items,
                                      "Item Price":total_purchase_items,
                                     "Total Purchase Items": purchase item cour
         Popular_item_formatted = Popular_item.sort_values(["Purchase Count"],a
         Popular_item_formatted["Item Price"] = Popular_item_formatted["Item Pr
         Popular_item_formatted["Total Purchase Items"] = Popular_item_formatte
         Popular_item_formatted
```

Out[10]:

		Purchase Count	Item Price	Total Purchase Items
Item ID	Item Name			
92	Final Critic	13	\$4.61	\$59.99
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
145	Fiery Glass Crusader	9	\$4.58	\$41.22
132	Persuasion	9	\$3.22	\$28.99
108	Extraction, Quickblade Of Trembling Hands	9	\$3.53	\$31.77

Most Profitable Items

- Sort the above table by total purchase value in descending order
- Optional: give the displayed data cleaner formatting
- Display a preview of the data frame

In [11]: # Most Profitable Items

Popular_item_formatted = Popular_item.sort_values(["Purchase Count"],a

Popular_item_formatted["Item Price"] = Popular_item_formatted["Item Pr Popular item formatted["Total Purchase Items"] = Popular item formatte

Popular_item_formatted.head()

Out[11]:

		Purchase Count	Item Price	Total Purchase Items
Item ID	Item Name			
92	Final Critic	13	\$4.61	\$59.99
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
145	Fiery Glass Crusader	9	\$4.58	\$41.22
132	Persuasion	9	\$3.22	\$28.99
108	Extraction, Quickblade Of Trembling Hands	9	\$3.53	\$31.77

In [13]: # Observations For Heroes Of Pymoli

- # 1. The gender demographics reveals that the number of male players i
- # 2. The purchases analysis reveals that the male players play an inte
- # 3. The age-group between 20-24 have the highest purchase count compa
- # 4. 'Final Critic' is the popular game in the list