Fernando Mendoza 9637984

Worked on Problem 1 with Blake Johnson

Problem 1.

a. State Space = {(Rock, Rock), (Rock, Paper), (Rock, Scissors), (Paper, Rock), (Paper, Paper), (Paper, Scissors), (Scissors, Rock), (Scissors, Paper), (Scissors, Scissors)}

Action Space = {Rock, Paper, Scissors}

State Transition Model $T(S,A,S') \rightarrow P(S' | A,S) = P(S',A,S) / P(A,S)$ $P(A,S) = \mu(A|S) P(S)$ $P(S' | A,S) = P(S',A,S) / (\mu(A|S) * P(S))$

Entry = (P(S'|A=Rock,S), P(S'|A=Paper,S), P(S'|A=Scissors,S))

S/	Rock,Rock	Rock,Paper	Rock,Scissors	Paper,Rock	Paper,Paper	Paper,Scissors	Scissors,Rock	Scissors,Paper	Scissors, Scissors
S'									
Rock,Rock	(1,0,0)	(0,0,0)	(0,0,0)	(1,0,0)	(0,0,0)	(0,0,0)	(1,0,0)	(0,0,0)	(0,0,0)
Rock,Paper	(0,0,0)	(1,0,0)	(0,0,0)	(0,0,0)	(1,0,0)	(0,0,0)	(0,0,0)	(1,0,0)	(0,0,0)
Rock,Scissors	(0,0,0)	(0,0,0)	(1,0,0)	(0,0,0)	(0,0,0)	(1,0,0)	(0,0,0)	(0,0,0)	(1,0,0)
Paper,Rock	(0,1,0)	(0,0,0)	(0,0,0)	(0,1,0)	(0,0,0)	(0,0,0)	(0,1,0)	(0,0,0)	(0,0,0)
Paper,Paper	(0,0,0)	(0,1,0)	(0,0,0)	(0,0,0)	(0,1,0)	(0,0,0)	(0,0,0)	(0,1,0)	(0,0,0)
Paper,Scissors	(0,0,0)	(0,0,0)	(0,1,0)	(0,0,0)	(0,0,0)	(0,1,0)	(0,0,0)	(0,0,0)	(0,1,0)
Scissors,Rock	(0,0,1)	(0,0,0)	(0,0,0)	(0,0,1)	(0,0,0)	(0,0,0)	(0,0,1)	(0,0,0)	(0,0,0)
Scissors,Paper	(0,0,0)	(0,0,1)	(0,0,0)	(0,0,0)	(0,0,1)	(0,0,0)	(0,0,0)	(0,0,1)	(0,0,0)
Scissors, Scissors	(0,0,0)	(0,0,0)	(0,0,1)	(0,0,0)	(0,0,0)	(0,0,1)	(0,0,0)	(0,0,0)	(0,0,1)

$$P(R=1|S=s,A=a) \Rightarrow P(R=1,S=s,A=a)/(\mu(A=a|S=s) * P(S=s))$$

 $P(R=0|S=s,A=a) \Rightarrow P(R=0,S=s,A=a)/(\mu(A=a|S=s) * P(S=s))$
 $P(R=-1|S=s,A=a) \Rightarrow P(R=-1,S=s,A=a)/(\mu(A=a|S=s) * P(S=s))$

Reward Distribution

Entry = (P(R=1|S=s,A=a), P(R=0|S=s,A=a), P(R=-1|S=s,A=a))

State/	Rock,Rock	Rock,Paper	Rock,Scissors	Paper,Rock	Paper,Paper	Paper,Scissors	Scissors,Rock	Scissors,Paper	Scissors, Scissors
Action									
Rock	(0,1,0)	(0,0,1)	(1,0,0)	(0,1,0)	(0,0,1)	(1,0,0)	(0,1,0)	(0,0,1)	(1,0,0)
Paper	(1,0,0)	(0,1,0)	(0,0,1)	(1,0,0)	(0,1,0)	(0,0,1)	(1,0,0)	(0,1,0)	(0,0,1)

Scissors	(0,0,1)	(1,0,0)	(0,1,0)	(0,0,1)	(1,0,0)	(0,1,0)	(0,0,1)	(1,0,0)	(0,1,0)

b. $V^{\pi^*}(s) = \max \{R(S,A) + \gamma \sum_{s'} [P(S',A,S) / (\pi(A|S) * P(S)) * V^{\pi^*}(s')]\}$

c. ?

Problem 2

a.
$$V^{\pi}(s) =$$

Problem 3

a. A person who is Radical (R) is Electable (E) if he/she is Conservative (C) otherwise is not electable.

From the statement we know that R implies E. Because if the person is radical then the person is also electable.

We also know that C implies E because if the person is electable if the person is conservative.

Finally we know that E implies C because if the person is not conservative then we know that the person was electable.

Conclusion: R -> (E<->C)

Problem 4

```
[(F -> P) \cup (D -> P)] -> [(F \cap D) -> P]
                                                                                     //simplify ->
[(\neg F \cup P) \cup (\neg D \cup P)] \rightarrow [\neg (F \cap D) \cup P]
                                                                                     //simplify ->
\neg [(\negF \cup P ) \cup (\negD \cup P)] \cup [\neg (F \cap D) \cup P]
                                                                                     //factor -
[\neg (\neg F \cup P) \cap \neg (\neg D \cup P)] \cup [\neg F \cup \neg D \cup P]
                                                                                     //factor -
[F \cap \neg P \cap D \cap \neg P] \cup \neg F \cup \neg D \cup P
                                                                                     //remove ¬P
[\mathsf{F} \cap \neg \mathsf{P} \cap \mathsf{D}\,] \cup \neg \mathsf{F} \cup \neg \mathsf{D} \cup \mathsf{P}
                                                                                     //distribute ¬F
[(F \cup \neg F) \cap (\neg P \cup \neg F) \cap (D \cup \neg F)] \cup \neg D \cup P
                                                                                     //simplify
[(\neg P \cup \neg F) \cap (D \cup \neg F)] \cup \neg D \cup P
                                                                                     //distribute ¬D
\neg P \cup \neg F \cup \neg D \cup P
                                                                                     //simplify
True
```

This statement is valid because (P $\cup \neg$ P) is always true and (true \cup anything) is always true