Elementary Number Theory Course Notes

Isaac Holt

December 7, 2022

1 Quadratic Residues and Non-Residues

Consider the equation $x^2 \equiv a \pmod{p}$.

Definition 1.0.1. Let $a \in \mathbb{Z}$, p be an odd prime, $p \not | a$. $a \pmod{p}$ is a quadratic residue (QR) mod p if for some $x \in \mathbb{Z}$, $x^2 \equiv a \pmod{p}$.

If there doesn't exist such an x, $a \pmod{p}$ is a quadratic non-residue (NQR).

Lemma 1.0.2. For p an odd prime, there are $\frac{p-1}{2}$ QRs and $\frac{p-1}{2}$ NQRs.

Proof. Define the map $f: \{1, \ldots, \frac{p-1}{2}\} \to Q$, $f(x) := x^2 \pmod{p}$, where $Q := \{x^2 \pmod{p}\}$ is the set of all QRs.

f is clearly surjective, since $\{x^2 \pmod{p} : 1 \le x \le p-1\} = \{x^2 \pmod{p} : 1 \le x \le \frac{p-1}{2}\}$, since if $\frac{p+1}{2} \le x \le p-1$, $-x \pmod{p} \in \{1, \dots, \frac{p-1}{2}\}$ and $x^2 \equiv (-x)^2 \pmod{p}$.

Suppose that f(a) = f(b), so $a^2 \equiv b^2 \pmod{p} \Rightarrow (a - b)(a + b) \equiv \pmod{p}$. $2 \le a + b \le p - 1$ so $a + b \not\equiv 0 \pmod{p}$, hence $a \equiv b \pmod{p} \Rightarrow a = b$.

So f surjective and injective so is bijective, so $|Q| = \frac{p-1}{2}$. The remaining $\frac{p-1}{2}$ elements are the NQRs.

Lemma 1.0.3. Let $a \in \mathbb{Z}$, $a \in \mathbb{Z}$, p be an odd prime, $p \not| ab$. Let Q denote the QRs mod p and N denote the NQRs mod p.

- 1. If $a \in Q$ and $b \in Q$ then $ab \in Q$.
- 2. If $a \in Q$ and $b \in N$, then $ab \in N$.
- 3. If $a \in N$ and $b \in N$, then $ab \in Q$.

Proof.

- 1. If $a \in Q$ and $b \in Q$, for some $x \in \mathbb{Z}$ and $y \in \mathbb{Z}$, $x^2 \equiv a \pmod{p}$ and $y^2 \equiv b \pmod{p}$, so $ab \equiv x^2y^2 \pmod{p} \equiv (xy)^2 \pmod{p}$ so for some $z, z^2 \equiv ab \pmod{p}$ (z = xy). So $ab \in Q$.
- 2. Suppose $ab \notin N$, for $a \in Q$, $\in N$. Since $ab \not\equiv 0 \pmod{p}$, $ab \in Q$. So for some $w \in \mathbb{Z}$, $ab \equiv w^2 \pmod{p}$. Since $a \in Q$, for some $t \in \mathbb{Z}$, $a \equiv t^2 \pmod{p}$ so $t^2b \equiv w^2 \pmod{p}$. Cancelling t^2 on both sides, $b \equiv w^2\bar{t}^2 \pmod{p} \equiv (w\bar{t})^2 \pmod{p}$. But $b \in N$, so we have a contradiction.
- 3. We write $a^{-1} \cdot Q := \{1 \le b \le p-1 : a \cdot b \in Q\} = \{a^{-1}x : x \in Q \ (a^{-1} \text{ is such that } a^{-1}a \equiv 1 \pmod p).$

As $a \in N$, $a^{-1} \in N$ (if $a^{-1} \in Q$ then as $a \in N$, 2. implies that $a^{-1}a \equiv 1 \in N \pmod{p}$ which is not true since $1 \equiv 1^2 \pmod{p}$).

Thus for every $x \in Q$, $a^{-1}x \in N \Rightarrow a^{-1}Q \subseteq N$.

 $a^{-1}x \equiv a^{-1}y \pmod{p} \Rightarrow x \equiv y \pmod{p}$. AS $1 \leq x, y \leq p-1, x=y$. Thus, the map $Q \to a^{-1}Q$ given by $x \to a^{-1}x$ is injective and bijective.

Therefore $|a^{-1}Q| = |Q| = |N| \Rightarrow a^{-1}Q = N$ so if $b \in N$, $b \in a^{-1}Q$ so $ab \in Q$.

Definition 1.0.4. Let p be an odd prime. The **Legendre symbol** written as $(\frac{a}{p})$ is defined for $a \in \mathbb{Z}$ as

Properties of the Legendre symbol:

• (multiplicativity): if $a, b \in \mathbb{Z}$ then

$$(\frac{ab}{p}) = (\frac{a}{p})(\frac{b}{p})$$

• (periodicity mod p): if $a \equiv b \pmod{p}$ then

$$(\frac{a}{p}) = (\frac{b}{p})$$

Theorem 1.0.5. (Euler's criterion): if p is an odd prime and $a \in \mathbb{Z}$ with $p \nmid a$ then

$$a^{\frac{p-1}{2}} \equiv (\frac{a}{p}) \pmod{p}$$

Proof. Let g be a primitive root mod p.

 $\{g^r \pmod{p}: 1 \le r \le p-1\} = 1, \dots, p-1 \Rightarrow \{g^{2r}: 1 \le r \le \frac{p-1}{2}\}$ gives the QRs uniquely. There are the following cases:

1. a is a QR. Then for some $1 \le r \le \frac{p-1}{2}$, $g^{2r} \equiv a \pmod{p}$. Then

$$a^{\frac{p-1}{2}} \equiv (g^{2r})^{\frac{p-1}{2}} \equiv (g^r)^{p-1} \equiv (g^{p-1})^r \equiv 1^r \equiv 1 \equiv (\frac{a}{p}) \pmod{p}$$

2. a is not a QR. Then for some $1 \le r \le \frac{p-1}{2}$, $a \equiv g^{2r-1} \pmod{p}$. So $a^{\frac{p-1}{2}} \equiv (g^{2r})^{\frac{p-1}{2}} g^{\frac{p-1}{2}}$.

But $x = g^{-\frac{p-1}{2}} \equiv -1 \pmod{p}$, since $x^2 \equiv 1 \pmod{p} \Rightarrow x \equiv \pm 1 \pmod{p}$ and since g is primitive, $x \not\equiv 1 \pmod{p}$.

So
$$a^{\frac{p-1}{2}} \equiv -1 \pmod{p} \equiv (\frac{a}{p}) \pmod{p}$$

Remark. Euler's crtierion is hard to use if p is large.

Corollary 1.0.6. -1 is a QR mod p iff $p \equiv 1 \pmod{4}$.

Proof. $(-1)^{\frac{p-1}{2}} \equiv (\frac{-1}{p}) \pmod{p}$ by Euler's criterion. The power $\frac{p-1}{2}$ is even iff $p \equiv 1 \pmod{4} \Rightarrow (-1)^{\frac{p-1}{2}} = 1$ iff $p \equiv 1 \pmod{4}$.

Theorem 1.0.7. (Law of quadratic reciprocity - QRL): Let p, q be distinct odd primes. Then

$$(\frac{p}{q})(\frac{q}{p}) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}$$

Proof. TODO

Corollary 1.0.8.

$$\left(\frac{2}{p}\right) = \left(-1\right)^{\frac{p^2 - 1}{8}}$$

1.1 Algorithm for computing $(\frac{a}{p})$

p is an odd prime, $a \in \mathbb{Z}$. TODO: make this clearer.

- 1. Use the division algorithm to divide a = kp + r, $0 \le r \le p 1$, hence $\left(\frac{a}{p}\right) = \left(\frac{r}{p}\right)$.
- 2. If r=0 or r=1, $(\frac{0}{p})=0$, $(\frac{1}{p})=1$ so we are done.
- 3. If $r \neq 0$ and $r \neq 1$, factor $r = p_1^{a_1} \dots p_k^{a_k}$, then $(\frac{r}{p}) = (\frac{p_1}{p})^{a_1} \dots (\frac{p_k}{p})^{a_k}$
- 4. If $2|a_i$, then $(\frac{p_i}{p})^{a_i} = 1$.
- 5. If $2 / a_i$, $(\frac{p_i}{p})^{a_i} = (\frac{p_i}{p})$
- 6. If $p_i = 2$, use the above corollary: $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$.
- 7. If $p_i \neq 2$, use QRL to write $(\frac{p_i}{p}) = (\frac{p}{p_i})(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}$ and go to step 1 to calculate $(\frac{p}{p_i})$

1.2 Application of Legendre Symbols

Theorem 1.2.1. There are infinitely many primes of the form 4n + 1.

Proof. Assume the contrary, so let $p_1 < \cdots < p_k$ be a finite list of primes, with $p_i \equiv 1 \pmod{4}$ for every i.

Let $N = (2p_1 \dots p_k)^2 + 1$. Since N > 1, for some prime p, p|N. $p \neq p_i$ for every i. $N \equiv 0 \pmod{p}$, hence $(2p_1 \dots p_k)^2 \equiv -1 \pmod{p}$. Thus -1 is a QR mod p.

By Euler's criterion, $(-1)^{\frac{p-1}{2}} \equiv 1 \pmod{p}$, so $p \equiv 1 \pmod{4}$.

But $p \notin \{p_1, \ldots, p_k\}$ and $p \equiv 1 \pmod{4}$ so we have a contradiction.

2 Sums of two squares

2.1 Sums of two squares

Given $n \in \mathbb{N}_0$, can we represent n as a sum of two squares, i.e. do there exist $a, b \in \mathbb{Z}$ such that $a^2 + b^2 = n$.

Equivalently, find solutions $x, y \in \mathbb{Z}$ to the equation

$$x^2 + y^2 = n$$

Lemma 2.1.1. If n, m are both sums of two squares, so is $n \cdot m$.

Proof. Let
$$n=a^2+b^2, \ m=c^2+d^2, \ a,b,c,d\in\mathbb{Z}$$
. Then $nm=(a^2+b^2)(c^2+d^2)=(a^2c^2+b^2d^2)+(b^2c^2+a^2d^2)=(ac+bd)^2-b^2c^2+a^2d^2-2acbd=(ac+bd)^2-(ad-bc)^2$

Corollary 2.1.2. If $n = p_1^{e_1} \cdots p_k^{e_k}$ and all the powers $p_i^{e_i}$ are sums of two squares then n is also.

We focus on prime powers: $n = p^a$.

If $a = 2b, b \in \mathbb{N}$, then $n = p^{2b} = (p^b)^2 = (p^b)^2 + 0^2$ so n is a sum of two squares.

If a = 2b + 1, $n = (p^b)^2 \cdot p$.

If n = p is a prime, is n a sum of two squares.

Theorem 2.1.3. A prime p is a sum of two squares iff either p = 2 or $p \equiv 1 \pmod{4}$.

Proof. (\Rightarrow): For every $n, n^2 \equiv 0$ or 1 (mod 4)

Therefore if $p = x^2 + y^2$, $p = x^2 + y^2 \mod 4 \in \{0, 1, 2\}$. The only p equivalent to 0 or 2 (mod 4) is p = 2, otherwise, $p \equiv 1 \pmod 4$.

(\Leftarrow): Suppose p=2 or $p\equiv 1\pmod 4$. If p=2, $p=1^2+1^2$. If $p\equiv 1\pmod 4$, $\left(\frac{-1}{p}\right)=1$, so we can solve $u^2+1\equiv 0\pmod 4$, $1\leq u\leq \frac{p-1}{2}$. We will find small $A,B\in\mathbb{N}_0$ such that $A^2+B^2\equiv 0\pmod p$ using u. If $0< A^2+B^2< 2p$, $A^2+B^2=p$.

Let $k = \text{floor}(\sqrt{p})$, so $k \in \mathbb{N}$ and $k < \sqrt{p} < k + 1$. Consider the set $\{a + b \cdot u \pmod{p} : 0 \le a, b \le k\}$. There are $(k + 1)^2$ pairs (a, b). Since $(k + 1)^2 > (\sqrt{p})^2 = p$. By the pigeon-hole principle, we can find two pairs $(a_1, b_1) \ne (a_2, b_2)$ such that $a_1 + b_1 u \equiv a_2 + b_2 u \pmod{p}$.

So $(b_2 - b_1)u \equiv a_1 - a_2 \pmod{p} \Rightarrow Bu \equiv \pm A \pmod{p}$ where $B = |b_2 - b_1| \le k < \sqrt{p}$, $A = |a_1 - a_2| \le k < \sqrt{p}$ and at least one of A and B is > 0.

So $A^2 + B^2 \equiv (Bu)^2 + B^2 \equiv B^2(u^2 + 1) \equiv 0 \pmod{p}$

Since at least one of A and B is > 0, $A^2 + B^2 > 0$. Since $A, B < \sqrt{p}$, $A^2 + B^2 < 2p$. Also, $p|(A^2 + B^2)$, hence $A^2 + B^2 = p$.

Corollary 2.1.4. A positive integer n > 1 written as $n = m^2 p_1 \cdots p_k$, with $p_1, \cdots p_k$ distinct primes (n can always be written in this way) is a sum of two squares iff for every p_i either $p_i = 2$ or $p_i \equiv 1 \pmod{4}$.

Remark. There is a theorem due to Lagrange that says that every $n \in \mathbb{N}_0$ can be represented as the sum of four squares.

3 Continued Fractions

3.1 Pell equations

Definition 3.1.1. A **Pell equation** is an equation of the form $x^2 - dy^2 = \pm 1$, where $d \ge 1$ is not a square.

Remark. If $x, y \neq 0$ and both are large, then as $(x - \sqrt{d}y)(x + \sqrt{d}y) = x^2 - dy^2 = \pm 1$,

$$\left| \frac{x}{y} - \sqrt{d} \right| \left| \frac{x}{y} + \sqrt{d} \right| = \left| \left(\frac{x}{y} \right)^2 - d \right| = \frac{1}{y^2}$$

So if $x^2 - dy^2 = \pm 1$ has a solution $(x, y) \in \mathbb{N}_0^2$, then $\frac{x}{y}$ approximates $\pm \sqrt{d}$.

3.2 Continued fractions

Definition 3.2.1. A finite continued fraction (finite CF) is an expression of the form

$$[a_0; a_1, \dots, a_n] = a_0 + \frac{1}{a_1 + \frac{1}{a_n}}$$

where $a_i \in \mathbb{R}, n \geq 0$.

Mostly, $a_0 \in \mathbb{Z}$ and $a_1, \ldots, a_n \in \mathbb{N}$. In this case, $[a_0, \ldots, a_n]$ is called an **ellipse**.

Proposition 3.2.2. Any $\frac{a}{b} \in \mathbb{Q}$ can be expressed as a finite CF.

Proof. (Not a full proof). Suppose for simplicity that $a \ge b$ (if not, take $a_0 = 0$). By the division algorithm, $a = a_0 b + r_1$, $0 \le r_1 < b$ hence $\frac{a}{b} = a_0 + \frac{r_1}{b} = a_0 + \frac{1}{b/r_1}$.

Now divide b by r_1 : $b = a_1 r_1 + r_2$, $0 \le r_2 < r_1$, so $\frac{b}{r_1} = a_1 + \frac{r_2}{r_1}$ so

$$\frac{a}{b} = a_0 + \frac{1}{a_1 + \frac{1}{r_1/r_0}}$$

We continue with this: $r_i = a_{i+1}r_{i+1} + r_{i+2}$ until r_{i+1} divides r_1 (i.e. $r_{i+2} = 0$). This must occur as $0 \le r_{i+1} < r_i$.

The continued fraction is $[a_0; a_1, \ldots, a_n]$ where $r_{n+1} = 0$.

Definition 3.2.3. Given a finite CF $\alpha = [a_0; a_1, \dots, a_n]$, the a_i are called **partial quotients** of α .

The truncated CF's $[a_0; a_1, \dots a_j] = \frac{p_j}{q_j}$, with $0 \le j \le n$, $p_j \in \mathbb{Z}$, $q_j \in \mathbb{N}$, are called the **convergents** of α .

For
$$j = 0, j = 1$$
 we have $\frac{p_0}{q_0} = [a_0] = a_0 \Rightarrow p_0 = a_0, q_0 = 1$. $\frac{p_1}{q_1} = a_0 + \frac{1}{a_1} = \frac{a_1 a_0 + 1}{a_1} \Rightarrow p_1 = q_1 a_0 + 1, q_1 = a_1$.

Proposition 3.2.4. Given a finite CF, $[a_0; a_1, \ldots, a_n], n \ge 1$, $[[p_k, p_{k-1}], [q_k, q_{k-1}]] = [[a_1, 1], [1, 0]] \cdots [[a_k, 1], [1, 0]]$ TODO: make these matrices.

Hence $p_0 = a_0$, $q_0 = 1$, $p_1 = a_0a_1 + 1$, $q_1 = a_1$, $p_k = a_kp_{k-1} + p_{k-2}$, $q_k = a_kq_{k-1} + q_{k-2}$.

Lemma 3.2.5. Let $\alpha = [a_0; a_1, \dots, a_n]$ be a finite CF with convergents $\frac{p_k}{q_k}$, $0 \le k \le n$. For every $k \ge 0$, $q_{k+1} \ge q_k$ and if $k \ge 1$ then $q_{k+1} > q_k$.

Proof. If k = 0, $q_1 = a_1 \ge 1 = q_0$. Inductively, if $q_{k-1} > 0$ for $k \ge 1$ then $q_{k+1} = a_{k+1}q_k + q_{k-1} \ge a_{k+1}q_k \ge q_k$ since $a_{k+1} \ge 1$.

6

Lemma 3.2.6. For every $k \ge 1$, $p_k q_{k-1} - p_{k-1} q_k = (-1)^{k+1}$.

Proof. By the previous proposition,

$$[[p_k, p_{k-1}], [q_k, q_{k-1}]] = [[a_1, 1], [1, 0]] \cdots [[a_k, 1], [1, 0]]$$

$$p_k q_{k-1} - q_k p_{k-1} = \det[[p_k, p_{k-1}], [q_k, q_{k-1}]] = \det[[a_1, 1], [1, 0]] \cdots \det[[a_k, 1], [1, 0]] = (-1)^{k+1}.$$

Corollary 3.2.7. $\frac{p_k}{q_k} - \frac{p_{k-1}}{q_{k-1}} = \frac{p_k q_{k-1} - p_{k-1} q_k}{q_k q_{k-1}} = \frac{(-1)^{k+1}}{q_k q_{k-1}}$ So the convergents get closer as k increases.

Proposition 3.2.8. The even-numbered convergents are growing: $\frac{p_0}{q_0} < \frac{p_2}{q_2} < \cdots$ and the odd-numbered convergents are decreasing: $\frac{p_1}{q_1} > \frac{p_3}{q_3} > \cdots$. Moreover, for every $k \geq 1$ such that $2k+1 \leq n$,

$$\frac{p_{2k}}{q_{2k}} \le \alpha \le \frac{p_{2k+1}}{q_{2k+1}}$$

and

$$\left|\alpha - \frac{p_m}{q_m}\right| \le \frac{1}{q_m q_{m-1}}$$

for every $m \leq n - 1$.

Definition 3.2.9. In general, if $\alpha \in \mathbb{R}$ (not necessarily rational), for j > 0:

- 1. $a_j := \text{floor}(\alpha_j) \text{ where } \{a_j\} := \alpha_j a_j$
- 2. Define $\alpha_{j+1} := \frac{1}{\{\alpha_i\}}$. $(\alpha_0 = \alpha)$

The continued fraction for α is $[a_0; a_1, a_2, \ldots]$.

This could continue indefinitely if $a \notin \mathbb{Q}$.

Definition 3.2.10. An **infinite CF** is the limit, if it exists, of a sequence of finite CF's: $\{[a_0; a_1, ..., a_n]\}_{n\geq 0}$ given a $\{a_i\}_{i\geq 0}$ with $\forall i, a_i \geq 1$.

Proposition 3.2.11. If $a_0 \in \mathbb{Z}$ and $\forall ige1, a_i \in \mathbb{N}$, then $\{[a_0; a_1, \ldots, a_n]\}_{n \geq 0} \subset \mathbb{Q}$ converges.

Proof. Use the Cauchy criterion: $[a_0; a_1, \ldots, a_n] = \frac{p_n}{q_n}$ are the convergents. $\forall m \geq 1$ $1, q_{m+1} > q_m, q_m \in \mathbb{N}$. Let $\alpha_n = \frac{p_n}{q_n}$. If $m \le n$,

$$\left| \alpha_n - \frac{p_m}{q_m} \right| \le \frac{1}{q_m q_{m+1}}$$

Let $\epsilon > 0$. Then for some N, if $m \geq N$, $q_{m+1} > q_m > \frac{1}{\sqrt{2}}$. Then with $n \geq m \geq N$,

$$\left| \frac{p_n}{q_n} - \frac{p_m}{q_m} \right| \le \frac{1}{q_m q_{m+1}} < \sqrt{\epsilon} \sqrt{\epsilon} = \epsilon$$

Thus $\{\frac{p_k}{q_k}\}_k$ is a Cauchy sequence.

Definition 3.2.12. An infinite CF $\alpha = [a_0; a_1, a_2, \ldots]$ is (eventually) periodic if for some $m \in \mathbb{N}_0$ and $k \geq 1$, if n > m, $\forall j \in \mathbb{N}_0$, $a_{n+jk} = a_n$. That is,

$$\alpha = [a_0; a_1, \dots, a_m, a_{m+1}, \dots, a_{m+k}, \dots] = [a_0; \dots, a_m, \overline{a_{m+1}, \dots, a_{m+k}}]$$

k is the **period** of the CF of α .

Lemma 3.2.13. If $d \in \mathbb{N}$, d is not a square, the CF of \sqrt{d} is eventually periodic with initial part of length 1.

Theorem 3.2.14. The eventually periodic $\alpha \notin \mathbb{Q}$ are preicisely of the form $a + b\sqrt{d}$, $a, b \in \mathbb{Q}$, $d \in \mathbb{N}$, d is not a square.

Example 3.2.15. Find simplified expression for $\alpha = [1; 3, \overline{4, 2}] = [1; 3, \beta]$. $\beta = [4; 2, \beta]$ so

$$\beta = 4 + \frac{1}{2 + \frac{1}{\beta}} = 4 + \frac{\beta}{2\beta + 1}$$

so simplifying, we get $2\beta^2 - 8\beta - 4 = 0 \Leftrightarrow \beta^2 - 4\beta - 2 = 0$, which has a positive root $2 + \sqrt{6}$ (β must be positive).

This can be used to simplify the expression for α .

3.3 Application to Pell Equations

Theorem 3.3.1. Let $x^2 - dy^2 = \pm 1$, $d \in \mathbb{N}$, d is not a square. Suppose the CF of \sqrt{d} has period k.

If $\{\frac{p_m}{q_m}\}_{m\geq 0}$ are the convergents of \sqrt{d} . Then for every $n\in\mathbb{N}$,

$$p_{kn-1}^2 - dq_{kn-1}^2 = (-1)^{kn}$$

In particular, if k is even then $x^2 - dy^2 = 1$ has an infinite collection of solutions

$$(x,y)=(p_{kn-1},q_{kn-1}),n\in\mathbb{N}_0$$

If k is odd then $x^2 - dy^2 = -1$ has soltuions

$$(x,y) = (p_{(2n-1)k-1}, q_{(2n-1)k-1})$$

and $x^2 - dy^2 = 1$ has soltuions

$$(x,y) = (p_{2kn-1}, q_{2kn-1})$$

3.4 Path independence of line integrals

In general, line integrals depend on the path between the end points. However, there is a type of vector field for which the line integral is **path independent**, known as a **conservative** vector field.

Example 3.4.1. Calculate the integral $\int_C \underline{F} \cdot d\underline{x}$ for $\underline{F} = (y \cos x, \sin y)$ between (0,0) and (1,1) on the paths C_1 , the straight line from (0,0) to (1,1) and C_2 , the straight line from (0,0) to (1,0) and then to (1,1).

 C_1 is parameterised as $\underline{x}(t)=(t,t)$ for $0\leq t\leq 1$ so $\frac{d\underline{x}}{dt}=(1,1)$. $\underline{F}(\underline{x}(t))=(t\cos t,\sin t)$ so

$$\int_{C_1} \underline{F} \cdot d\underline{x} = \int_0^1 \underline{F}(\underline{x}(t)) \cdot \frac{d\underline{x}}{dt} dt = \sin(1)$$