Das folgende Differenzenschema verdeutlicht noch einmal die Voraussetzungen zu dieser Aufgabe.

- 3. Formulieren und beweisen Sie die Umkehrung der Aussage in Aufgabe 2.
- 4. Die k-ten Differenzen der Folge $(a_n)_{n=0,...,\infty}$ seien konstant gleich c $(c \neq 0)$. Weiterhin sei

$$b_{i,1} := \Delta^i(a_1)$$
 für $i = 1, ..., k$

Stellen Sie a_n in expliziter Form in Abhängigkeit von $a_1,\ b_{i,1},\ c$ und n dar.

Beispiel: Potenzsummen / Faulhabersche Summen

Für die natürlichen Zahlen n und k sei

$$S(n,k) := 1^k + 2^k + 3^k + \ldots + n^k \qquad (= \sum_{i=1}^n i^k)$$
 (5.10)

Aufgaben:

- 1. Beschreiben Sie S(n, k) (für festes k) rekursiv in n (ohne Auslassungspunkte und ohne Summenzeichen).
- 2. Schreiben Sie (am besten in der Sprache eines Computeralgebra Systems) ein Programm zur Auswertung von S(n, k).
- 3. Zeigen Sie: S(n,k) ist stets als Polynom in k n vom Grad k+1 darstellbar.
- 4. Stellen Sie die entsprechenden Polynome für $k = 0, \dots, 6$ auf.

Einige konkrete Differenzenschemata zu S(n, k):