Model wzrostu Solowa

Łukasz Woźny

December 20, 2007

1 Gospodarka dynamiczna

- reprezentatywne gospodarstwo domowe: $\max_{\{c_t, l_t\}} \sum_{t=0}^{\infty} \beta^t u(c_t, 1 l_t)$, gdzie $u : \mathbb{R}_+ \times [0, 1] \to \mathbb{R}$ jest rosnąca, ściśle wklęsła i dwuktornie ciągle rożniczkowalna, $0 < \beta < 1$;
- technologia produkcji jednego dobra: funkcja zagregowanej produkcji $y_t = F(k_t, l_t)$, gdzie $F : \mathbb{R}_+ \times [0, 1] \to \mathbb{R}_+$ jest rosnąca, ściśle wklęsła z każdym argumentem i słabo wypukła łącznie, dwuktornie ciągle rózniczkowalna, ma stałe korzyści skali, tj. $(\forall A > 0) F(Ak, Al) = AF(k, l), F(0, l) = 0$, oraz $\lim_{k\to 0} F'_1(k, h) = \infty$, $\lim_{k\to \infty} F'_1(k, h) = 0$;
- dynamika: $c_t + i_t = y_t$, $k_{t+1} = (1 \delta)k_t + i_t$, $0 < \delta \le 1$;
- \bullet wyposażenie: k_0 i jednostka czasu w każdym okresie.

2 Model Solowa

Decyzje ad hoc gospodarstwa domowego:

- $l_t = 1$
- $i_t = sy_t$, gdzie $0 \le s \le 1$

Zdefiniujmy $f(k_t) = F(k_t, 1)$ oraz $g(k) = (1 - \delta)k + sf(k)$.

Twierdzenie 1 Istnieją dwa rozwiązania równania g(k) = k: k = 0 oraz $k^{ss} > 0$. Jeżeli $k_0 > k^{ss}$ wtedy ciąg $\{k_t\}$ jest malejący i zbieżny do k^{ss} . Jeżeli $0 < k_0 < k^{ss}$ wtedy ciąg $\{k_t\}$ jest rosnący i zbieżny do k^{ss} . Jeżeli $k_0 = 0$ wtedy ciąg $\{k_t\}$ jest stały o wartościach 0. Jeżeli $k_0 = k^{ss}$ wtedy ciąg $\{k_t\}$ jest stały o wartościach k^{ss} .

Wartość k^{ss} nazywamy stanem ustalonym. Wartość ta spełnia równanie $sf(k^{ss})=\delta k^{ss}.$

Dynamika kapitału $\gamma_t^k := \frac{k_{t+1}-k_t}{k_t} = s\frac{f(k_t)}{k_t} - \delta$ i produktu: $\gamma_t^y := \frac{y_{t+1}-y_t}{y_t} \simeq \gamma_t^k \frac{f'(k_t)k_t}{f(k_t)}$. Zauważmy, że dynamika kapitału i produktu w stanie ustalonym jest stała i równa 0.

Czy gospodarka ze stopą oszczędności s jest dynamicznie efektywna? Tak, jeżeli $s=s^{gr}$, gdzie s^{gr} rozwiązuje $\delta=f'(k^{ss}(s^{gr}))$.

3 Wnioski

- konwergencja
- zerowe tempo wzrostu
- dynamiczna (nie) efektywność
- dekompozycja i reszta Solowa