Logica e Reti Logiche

Esercitazione

Francesco Pasquale

23 marzo 2023

Esercizio 1. Dimostrare per induzione che

1. Per ogni $n \ge 1$,

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \quad e \quad \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6};$$

2. Per ogni $n \ge 1$, $n^3 - n$ è divisibile per 3

Nell'esercizio precedente abbiamo dimostrato che $\frac{n(n+1)}{2}$ è una espressione in forma chiusa della somma $\sum_{k=1}^{n} k$ e che $\frac{n(n+1)(2n+1)}{6}$ lo è della somma $\sum_{k=1}^{n} k^2$.

Esercizio 2. Trovare una espressione in forma chiusa di $\sum_{k=1}^{n} (k+3)^2$.

Esercizio 3. Si consideri la seguente ricorrenza

$$\begin{cases} a_1 = 1 \\ a_{n+1} = 2a_n + 1, & \text{per ogni } n \geqslant 1 \end{cases}$$

Trovare una espressione in forma chiusa per a_n (ossia scrivere a_n in funzione di n) e dimostrare per induzione che è corretta.

Esercizio 4. Sia $\{a_n\}$ la successione definita dalla seguente ricorrenza

$$\begin{cases} a_0 &= 1 \\ a_1 &= 2 \\ a_2 &= 3 \\ a_n &= a_{n-1} + a_{n-2} + a_{n-3} \quad \text{per ogni } n \geqslant 3 \end{cases}$$

Dimostrare per induzione che $a_n \leq 2^n$ per ogni $n \geq 0$.

Esercizio 5. Sia $\{F_n : n \in \mathbb{N}\}$ la successione dei numeri di Fibonacci,

$$\begin{cases} F_1 = F_2 = 1 \\ F_n = F_{n-1} + F_{n-2} & \text{per } n \geqslant 3 \end{cases}$$

Dimostrare per induzione che $\sum_{i=1}^n F_i^2 = F_n F_{n+1}$, per ogni $n \geqslant 1$.

Esercizio 6. Scrivere le tabelle di verità¹ delle seguenti formule:

1.
$$(p \rightarrow q) \lor \neg p$$

2.
$$(p \to (q \to p)) \to ((p \to q) \to (p \to r))$$

3.
$$(p \to (p \equiv q)) \lor \neg (p \lor q)$$

4.
$$(p \wedge q) \vee (\neg p \wedge \neg q)$$

Esercizio 7. Scrivere come formule proposizionali le frasi seguenti:

- 1. Condizione sufficiente affinché x sia dispari è che x sia primo e maggiore di 2;
- 2. Fiorello va al cinema solo se si sta proiettando una commedia;
- 3. Condizione necessaria e sufficiente perché uno sceicco sia felice è avere vino, donne e canti;
- 4. Condizione necessaria affinché una successione s sia convergente è che s sia limitata.

Esercizio 8. Per ognuna delle seguenti tabelle di verità, trovare una formula corrispondente

p	q	r	???
T	Т	Т	T
T	Т	F	Т
T	F	Т	F
Т	F	F	F
F	Т	Т	T
F	Т	F	F
F	F	Т	F
F	F	F	F

p	q	r	???
T	Т	Т	F
T	Т	F	Т
T	F	Т	F
T	F	F	Т
F	Т	Т	Т
F	Т	F	Т
F	F	Т	F
F	F	F	F

Esercizio 9. Sia X la formula seguente

$$((p \to q) \land (q \to r)) \lor (r \equiv \neg p)$$

Scrivere due formule equivalenti a X, una in forma normale congiuntiva e l'altra in forma normale disgiuntiva.

 $^{^1\}mathrm{Ricordiamo}$ le tabelle di verità dei connettivi principali

p	q	$\neg p$	$p \lor q$	$p \wedge q$	$p \rightarrow q$	$p \equiv q$	$p \downarrow q$	$p \mid q$
Т	Т	F	T	T	Т	Т	F	F
T	F	F	T	F	F	F	F	Т
F	Т	T	T	F	Т	F	F	Т
F	F	Т	F	F	Т	Т	Т	Т

Esercizio 10. Per ognuna delle seguenti formule, dire se è una tautologia, una contraddizione, o una contingenza.

1.
$$(p \to q) \to (q \to p)$$

2.
$$(p \to q) \to (\neg p \to \neg q)$$

3.
$$(p \rightarrow q) \rightarrow (\neg q \rightarrow \neg p)$$

4.
$$p \rightarrow \neg p$$

5.
$$p \equiv \neg p$$

6.
$$(p \equiv q) \equiv (\neg p \equiv \neg q)$$

7.
$$\neg(p \land q) \equiv (\neg p \land \neg q)$$

8.
$$\neg (p \land q) \equiv (\neg p \lor \neg q)$$

9.
$$(\neg p \lor \neg q) \equiv \neg (p \lor q)$$

10.
$$\neg (p \lor q) \equiv (\neg p \land \neg q)$$

11.
$$(p \equiv (p \land q)) \equiv (q \equiv (p \lor q))$$

Esercizio 11. Ridurre le formule seguenti, che contengono le costanti t (True) e f (False) a formule che o non contengono né t né f, oppure sono uguali o a t o a f:

1.
$$((\mathtt{t} \to p) \land (q \lor \mathtt{f})) \to ((q \to \mathtt{f}) \lor (r \to \mathtt{t}))$$

2.
$$(p \lor t) \rightarrow q$$

3.
$$\neg (p \lor t) \equiv (f \rightarrow q)$$

4.
$$(\neg(p \lor f) \land (q \equiv t)) \rightarrow (r \land t)$$

Esercizio 12. 1. Definire il connettivo \wedge in termini dei connettivi \neg e \rightarrow

- 2. Definire il connettivo \equiv in termini dei connettivi \wedge e \rightarrow
- 3. Definire il connettivo \vee in termini del connettivo \rightarrow
- 4. Definire il connettivo \neg in termini del connettivo \rightarrow e di f

Esercizio 13. 1. Definire ognuno dei connettivi \land , \rightarrow , \equiv , in termini dei connettivi \lor e \neg ;

2. Definire ognuno dei connettivi \vee , \rightarrow , \equiv , in termini dei connettivi \wedge e \neg .

Esercizio 14. 1. Definire i connettivi \vee e \neg in termini del connettivo \downarrow

2. Definire i connettivi \wedge e \neg in termini del connettivo \mid

Esercizio 15. Scrivere le formule $(p \to \neg q) \lor r$ e $(p \lor q) \land (\neg r \to p)$ in notazione polacca.

Esercizio 16. Scrivere le formule dell'Esercizio 6 in notazione polacca.

Esercizio 17. Ad ogni sequenza \mathcal{F} di simboli e lettere possiamo associare un numero in questo modo: contiamo +1 per ognuno dei simboli \rightarrow , \land , \lor e \equiv , contiamo 0 per il simbolo \neg e contiamo -1 per ogni lettera; infine associamo a \mathcal{F} la somma dei numeri.

Sia \mathcal{F} una sequenza di lettere e simboli. Dimostrare, per induzione sulla lunghezza di \mathcal{F} , che \mathcal{F} è una f.b.f. in notazione polacca se e solo se il numero associato a \mathcal{F} è -1 e la somma dei simboli di ogni segmento iniziale proprio (sottostringa iniziale) è maggiore o uguale a 0.