z-scores

PSY 3307

Jonathan A. Pedroza, PhD

Cal Poly Pomona

2022-02-10

Agenda

- distributions
- z-scores
- using z-scores

Distributions

- raw distribution is where the scores of a distribution are on whatever scale of the variable you are looking at
 - Ex: looking at number of minutes studying for all students in your class/sample
- z-score distribution is a distribution where all the scores are in standard deviation units
- probability distribution is the distribution ranges from 0 to 1 of the likelihood of something happening (0 = not happening, 1 = event will definitely happen)
 - Probability Density Functions is a mathematical formula to specify the distributions

z-score

Sample z-score

$$z = \frac{X - \overline{X}}{S}$$

Population z-score

$$z=rac{X-\overline{X}}{\sigma}$$

Getting raw scores from a z-score

$$X=(z)(S)+\overline{X}$$

z-scores

- **z-score** is a statistic that indicates the distance a score is from the mean when measured in standard deviation units
 - o positive values are above the mean
 - o negative values are below the mean

z-score Example

- Get a score of 90 to the mean of 60
 - deviate of 30
- Standard deviation of 10
- Now means that the +30 score is 3 SD above the mean
 - 30 score doesn't tell us much
 - o 3 sd tells us much more
 - also tells us that the z-score is 3

z-distribution to interpret scores

- **z-distribution** is transforming all raw scores into z-scores
- a z-score of 0 is the mean
- the z-distribution also represents that everything has been standardized
 - every variable is now comparable and on the same scale

JP Reminders

- A z-distribution will always have the same shape as the raw score distribution
- the mean is and will always be zero
- the standard deviation is 1, even when the standard deviation of the raw scores is a different value (e.g., 10, 15, 100)
- z-scores that are greater in either the positive or negative direction mean that values are less likely to occur

Comparing Apples to Oranges

- When using the z-distribution, every variable is put on the same scale
- often referred to as standardized scores

Standard Normal Curve

- **Standard Normal Curve** is a perfect normal z-distribution that serves as the model of any approximately normal z-distribution
- Approach is most common with
 - large sample (or population)
 - interval or ratio scores
 - o come close to forming a normal distribution
- While z-scores past +-3SD are possible, they occur .0013 of the time, which is why we often only look at +-3SD

Relative Frequency Using the z-Distribution

- Calculate the z-score for one observation
- Multiply by N
- Answer will be the number of observations between the mean and the z-score you calculated
- Then you can add up the other half to see all the observations that are at or below the score that the one observation had

Example

```
z_score = -1
N = 100
 .3413*100
## [1] 34.13
50 - 34.13
## [1] 15.87
#15.87% of scores were at or below the z-score we calculated
```

Using the z-Table

- In your Book at the end, you'll see the z-distribution
- There are two ways to show this
 - Area between mean and the z-score along with area beyond z in tail
 - z-scores with the tenths position on the column and the hundredths position on the top row

Using z-Scores to Describe Sample Means

- **Sampling Distribution of Means** is the frequency distribution showing all possible sample means when samples are drawn from a population
- Every time a population is sampled from, they will always be slightly different, with some means being higher and some being lower
- **Central Limit Theorem** statistical concept that defines the mean, standard deviation, and shape of a sampling distribution
 - Always follows some rules
 - A sampling distribution is always an approximately normal distribution
 - mean of sampling distribution equals mean of underlying raw score population used to create the sampling distribution
 - \mu is the mean of the means
 - standard deviation of the sampling distribution is related to the standard deviation of the raw score population

Central Limit Theorem

• The use of this concept is that we can assume that our sample is representative of the population without having to sample the whole population