

MRT Technology (Suzhou) Co., Ltd

Phone: +86-512-66308358 Fax: +86-512-66308368 www.mrt-cert.com

Report No.: 1608RSU01803 Report Version: Issue Date: 09-19-2016

RF Exposure Evaluation Declaration

FCC ID: 2AC9MGPT2541GNAC

APPLICANT: Wuxi Mitrastar Technology Co., Ltd

Application Type: Certification

Equipo para acceso Fibra Óptica **Product:**

GPT-2541GNAC Model No.:

MitraStar **Trademark:**

FCC Classification: Digital Transmission System (DTS)

Unlicensed National Information Infrastructure (UNII)

Reviewed By : Robin Wu)

Approved By : Marlinchen

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standards through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

FCC ID: 2AC9MGPT2541GNAC

Page Number: 1 of 6

Revision History

Report No.	Version	Description	Issue Date	Note
1608RSU01803	Rev. 01	Initial report	09-19-2016	Valid

1. PRODUCT INFORMATION

1.1. Equipment Description

Product Name	Equipo para acceso Fibra Óptica				
Model No.	GPT-2541GNAC				
Brand Name	MitraStar				
Wi-Fi Specification	802.11a/b/g/n/ac				
Frequency Range	2.4GHz:				
	For 802.11b/g/n-HT20:				
	2412 ~ 2462 MHz				
	For 802.11n-HT40:				
	2422 ~ 2452 MHz				
	5GHz:				
	For 802.11a/n-HT20:				
	5180~5240MHz				
	For 802.11n-HT40:				
	5190~5230MHz				
	For 802.11ac-VHT80:				
	5210MHz				
Type of Modulation	802.11b: DSSS				
	802.11g/a/n/ac: OFDM				
Maximum Average Output	For 2.4GHz Band:				
Power	802.11b: 20.22dBm				
	802.11g: 20.18dBm				
	802.11n-HT20: 23.08dBm				
	802.11n-HT40: 22.82dBm				
	For 5GHz Band:				
	802.11a: 26.97dBm				
	802.11n-HT20: 26.98dBm				
	802.11n-HT40: 27.48dBm				
	802.11ac-VHT80: 20.50dBm				

1.2. Antenna Description

Antenna Type	Frequency	Tx	Per Chain Max		Max CDD Directional		Beam
	Band	Paths	Antenna Gain (dBi)		Antenna Gain (dBi) Gain		Forming
	(MHz)				(dBi)		Directional
			Ant 0	Ant 1	Power	PSD	Gain (dBi)
PCB Antenna	2400 ~ 2483.5	2	1.0	1.0	1.0	4.01	4.01

Antenna	Frequency	Tx	Per Chain Max Antenna			CDD Directional		Beam Forming	
Туре	Band	Paths		Gain	(dBi)		Gain	(dBi)	Directional
	(MHz)		Ant 0	Ant 1	Ant 0	Ant 1	Power	PSD	Gain (dBi)
PCB Antenna	5150 ~5250	4	1.0	1.0	1.0	1.0	1	7.02	7.02

- The EUT supports Cyclic Delay Diversity (CDD) technology at 802.11a mode, and that CDD signal is correlated.
- 2. The EUT supports Beam Forming technology at 802.11n/ac mode, and that Beam Forming signal is correlated.
- (1) Correlated signals include, but are not limited to, signals transmitted in any of the following modes:
 - Basic methodology with N_{ANT} transmit antennas, each with the same directional gain G_{ANT} dBi, being driven by N_{ANT} transmitter outputs of equal power. Directional gain is to be computed as follows: Directional gain = G_{ANT} + 10 log(N_{ANT}) dBi

For example: $5150 \sim 5250 MHz$ Directional Gain = $1 + 10*log_{10}$ 4= 7.02 dBi

- (2) If all antennas have the same gain, G_{ANT} , Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.
 - For power spectral density (PSD) measurements on all devices,

Array Gain = $10 \log(N_{ANT}/N_{SS})$ dB. Where $N_{SS} = 1$.

• For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for NANT \leq 4;

Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any NANT;

Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less, for 20-MHz channel widths with NANT ≥ 5.

2. RF Exposure Evaluation

2.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Average Time				
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	(Minutes)				
(A) Limits for Occupational/ Control Exposures								
300-1500			f/300	6				
1500-100,000			5	6				
(B) Limits for General Population/ Uncontrolled Exposures								
300-1500			f/1500	6				
1500-100,000			1	30				

f= Frequency in MHz

Calculation Formula: $Pd = (Pout*G)/(4*pi*r^2)$

Where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

r = distance between observation point and center of the radiator in cm

Pd is the limit of MPE, 1mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

Report No.: 1608RSU01803

2.2. Test Result of RF Exposure Evaluation

Product	Equipo para acceso Fibra Óptica
Test Item	RF Exposure Evaluation

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 4.01dBi for 2.4GHz, 7.02dBi for 5GHz in logarithm scale.

For 2.4GHz ISM Band:

Test Mode	Frequency Band (MHz)	Maximum Average Output Power (dBm)	Power Density at $R = 20 \text{ cm}$ (mW/cm^2)	Limit (mW/cm²)
802.11b/g/n-HT20/ n-HT40	2412 ~ 2462	23.08	0.1018	1

For 5GHz UNII Band:

Test Mode	Frequency Band (MHz)	Maximum Average Output Power (dBm)	Power Density at $R = 20 \text{ cm}$ (mW/cm^2)	Limit (mW/cm²)
802.11a/n-HT20/ n-H40/ac-VHT80	5180 ~ 5240	27.48	0.5610	1

CONCULISON:

Both of the WLAN 2.4GHz Band and WLAN 5GHz Band can transmit simultaneously. Therefore the Max Power Density at R (20 cm) = $0.1018 \text{mW/cm}^2 + 0.5610 \text{mW/cm}^2 = 0.6628 < 1 \text{mW/cm}^2$. So the EUT complies with the requirement.