Chapter 1

研究背景及意义

高降压比 DC/DC 变换器在工业、汽车、电信领域得到广泛应用。随着数据中心和云计算的不断发展,对电能传输的效率等指标提出了更高要求。在数据中心领域,流行的降压比为 60V/48V/24V 到 5V/3.3V/1.8V。

Buck 电路是一种典型的 DC/DC 拓扑结构。Buck 电路结构简单,实现成本低,在电力电子与工业领域应用广泛。但是,对于一个二级 Buck 电路,要提高降压比,需要 MOS 管承受窄导通时间带来的大电流,这就在材料上对功率开关提出了极高要求。同时,高降压比所需要的极低占空比需要更高效的 PWM,实际实施困难。这些因素限制了二级 Buck 电路的应用。

串联电容 Buck 电路 (Series-capacitor Buck,SC-Buck) 把开关电容和多相 Buck 结合到一起,形成一种新的 Buck 电路的拓扑结构。与传统的 Buck 电路相比,SC-Buck 规模更小,效率更高,具有电流自平衡功能。如图 1-1 所示,两个电感交错放置于电路中,消除输出电容 C_o 上的电流纹波,同时还能分别减小两个电感的尺寸。图 1-2 表明,分到每条支路上的电压只有输入电压的一半。

实现高降压比的另一个趋势是使用磁性元件。实现方法有带倍流整流的全桥变换器 (full-bridge converter with current-doubler rectifier),LLC,Sigma变换器和分接电感 Buck 变换器 (tapped inductor Buck converter) 等。在轻载时,全桥变换器无法实现所有主开关管的零电压开关 (Zero-voltage Switching),导致轻载时转换效率下降,而且输出端的大电感会影响功率密度。在谐振频率下,LLC 具有较高效率,但是系统不在谐振频率时的动

态效率很低。为了解决这个问题,提出了将 LLC 和 Buck 结合的 Sigma 变换器。LLC 负责谐振频率下的高效功率传输,Buck 变换器负责瞬态响应。但是,由于 LLC 变换器在稳态时处理大部分的功率,Buck 变换器在过渡时处理大部分的功率,因此 LLC 变换器和 Buck 变换器都必须设计成能够处理整个系统的功率。如此的并行结构将增大控制的复杂度。

Tapped inductor Buck 转换器最初用于处理高降压比功率转换电路。然而,交错电感的漏感与开关电容产生共振,产生额外的电压环。基于混合变压器的 Buck 变换器(Hybrid-transformer-based Buck,HTB)增加了一个开关(S3)和一个电感,以获得软开关操作和较低的电压环,如图 1-3 所示。利用交错电感的漏感作为谐振电感,交错串联电容 Buck(Series-capacitor tapped Buck,SC-TaB)变换器如图 1-4 所示。SC-TaB 中的开关管 S_3 可以直接连接负载,也可以直接接地,另一种 SC-TaB 电路如图 1-5 所示。后者的两相交错配置的电路图如图 1-6 所示。开关管接地可以让控制更为简单。

SC-TaB 和 2ph-SC 的主要优点是实现了所有开关管的 ZVS,提高了转换效率。然而,随着降压比的增大,耦合电感的匝数比也随之增大,高匝数比会给耦合电感带来更多的应力,影响转换效率。为了克服这一缺点,并考虑到 SC-Buck 具有倍增降压比的能力,通过引入电容 C_1 ,提出了一种新的变换器拓扑,如图 1-7 所示。新拓扑结构被称为交错串联电容分接 Buck 变换器(ISC-TaB)。该转换器将 SC-Buck 和 SC-TaB 的优点结合到一起。与传统的 SC-TaB 相比,它的降压比提高了一倍,使得该变换器更适合用于高降压比场合。

图 1.1: SC-Buck

图 1.2: SC-Buck 波形图

图 1.3: HTB-Buck

图 1.4: SC-TaB,S₃ 接入负载

图 1.5: SC-TaB,S₃ 接地

图 1.6: 2ph SC-TaB

图 1.7: ISC-TaB

Chapter 2

电路分析

2.1 电路结构

图 2.1: SC-TaB

电路采用了六个开关管,电容 C_1 将电路的两相分离。

图 2.2: 2ph SC-TaB

图 2.3: ISC-TaB

图 2.4: ISC-TaB

Chapter 3

分析

3.1 电压转换率

为了简化分析,使用 V_{cr2} 来表示开关周期内 C_{r2} 上的平均电压。 T_s 是 开关周期, DT_s 表示从 t0 到 t3 的时间。根据(1),在 [t0,t3] 期间, L_{r2} 两端的平均电压为:

$$V_{\rm Lr2} = \frac{\frac{V_{\rm in}}{2} - V_o - V_{\rm Cr2}}{1 + \frac{L_m}{L_{r2}} \cdot \frac{(n+1)^2}{n^2}}$$
(3.1)

根据图 7 所示的电流关系, L_m 上的电压在 [t0,t3] 期间为:

$$V_{\rm Lm} = \frac{L_m}{L_{r2}} \cdot \left(1 + \frac{1}{n}\right) \cdot V_{\rm Lr2} \tag{3.2}$$

考虑到公式 1 和公式 2, L_{r2} 上的伏秒平衡关系为:

$$V_{\text{Lr}2} \cdot D + (-V_{\text{Cr}2} + nV_o) \cdot (1 - D) = 0$$
(3.3)

 L_m 上的伏秒平衡关系也可写为为:

$$V_{\rm Lm} \cdot D + (1 - D)(-nV_o) = 0 \tag{3.4}$$

考虑公式 (3) 到 (6),并假设 $L_{r1} = L_{r2} = L_r$,则 ISC-TaB 电路的电压转换比为:

$$\frac{V_o}{V_{\rm in}} = \frac{D}{2 \cdot \left(n + 1 + \frac{L_r}{L_m} \cdot \frac{n^2}{n+1}\right)}$$
(3.5)

Buck, SC-Buck, SC-TaB 和 ISC-TaB 的电压转换关系图已经绘制在图 9 中。如(7)和图 9 所示,建议的 ISC-TaB 转换器的转换比为 SC-TaB 的一半。如前所述,当前提出的的 ISC-TaB 是一种适用于高降压 DC/DC 应用的拓扑。

3.2 波形推到

S1 和 S4 的电流波形可以基于电压转换器的输入给出。iS4 的派生变形将在本节中以示例的方式给出。 P_{in} 代表当前变压器的总输入功率。 I_{S4-avg} 则是 I_{S4} 的平均值:

$$I_{S4_{avg}} = \frac{P_{in}/2}{V_{in}/2} \tag{3.6}$$

为了获得 i_{S4} 的最小值, L_{r2} 的电流在 [t0,t3] 假设是线性的。那么 i_{S4} 的最小值可由以下关系推导

$$i_{S4_{min}} = I_{S4_{avg}} - \frac{DT_s}{2} \cdot \frac{V_{Lr2}}{L_r}$$
 (3.7)