

Algorithms and Data Structures 2 CS 1501

Fall 2022

Sherif Khattab

ksm73@pitt.edu

Announcements

- Upcoming Deadlines
 - Homework 4: this Friday @ 11:59 pm
 - Lab 3: next Monday @ 11:59 pm
 - Assignment 1: Monday Oct 10th @ 11:59 pm
- Live support session for Assignment 1
 - Over Zoom this Friday @ 5:00 pm
- Student Support Hours of the teaching team are posted on the Syllabus page

Previous lecture

- Digital Searching Problem
 - Searching when keys are represented as a sequence of digits (e.g., bits) or alphabetic characters
 - Digital Search Trees
 - Radix Search Tries

This Lecture

- R-way Radix Search Tries
- De La Briandais (DLB) Tries

Adding to Radix Search Trie (RST)

- Input: key and corresponding value
- if root is null, set root ← new node
- current node ← root
- for each bit in the key
 - if bit == 0,
 - if left child of current node is null, create a new node and attach as the left child
 - move to left child
 - either recursively or by setting current ← current.left
 - if bit == 1,
 - if right child of current node is null, create a new node and attach as the right child
 - move to right child
 - either recursively or by setting current ← current.right
- insert corresponding value into current node

Insert:

4 0100

3 0011

2 0010

6 0110

Searching in Radix Search Trie (RST)

- Input: key
- current node ← root
- for each bit in the key
 - if current node is null, return key not found
 - if bit == 0,
 - move to left child
 - either recursively or by setting current ← current.left
 - if bit == 1,
 - move to right child
 - either recursively or by setting current ← current.right
- if current node is null or the value inside is null
 - return key not found
- else return the value stored in current node

Search:

Search:

3 0011

Search:

3 0011

Search:

3 0011

Search:

3 0011

Search:

3 0011

Search:

Search:

Search:

Search:

Search:

RST analysis

- Runtime?
- O(b), the bit length of the key
 - However, this time we don't have full key comparisons
- Would this structure work as well for other key data types?
- Characters?
 - Characters are the same as 8-bit ints (assuming simple ascii)
- Strings?
- May have huge bit lengths
- How to store Strings?

Larger branching factor tries

- In our binary-based Radix search trie, we considered one bit at a time
- What if we applied the same method to characters instead of bits in a string?
 - What would this new structure look like?
 - O How many children per node?
 - up to R (the alphabet size)
 - Also called R-way radix search tries

Adding to R-way Radix RST

- if root is null, set root ← new node
- current node ← root
- for each character c in the key
 - Find the cth child
 - if child is null, create a new node and attach as the cth child
 - move to child
 - either recursively or by current ← child
- if at last character of key, insert value into current node

sea

Another trie example

Another trie example

Another trie example

Analysis

- Runtime of add and search hit?
- O(w) where w is the character length of the string
 - So, what do we gain over RSTs?
 - \blacksquare w < b
 - e.g., assuming fixed-size encoding $w = \frac{b}{\lceil \log R \rceil}$
 - tree height is reduced

Search Miss

- Search Miss time for R-way RST
 - \bigcirc Require an average of $log_R(n)$ nodes to be examined
 - Proof in Proposition H of Section 5.2 of the text
- Average tree height with 2²⁰ keys in an RST?
 - $O \log_2 n = \log_2 2^{20} = 20$
- With 2²⁰ keys in a large branching factor trie, assuming 8-bits at a time?
 - $O \log_{R} n = \log_{256} 2^{20} = \log_{256} (2^8)^{2.5} = \log_{256} 256^{2.5} = 2.5$

Implementation Concerns

```
See TrieSt.javaO Implements an R-way trie
```

Basic node object:

Where R is the branching factor

```
private class Node {
    private Object val;
    private Node[] next;
    private Node(){
        next = new Node[R];
    }
}
```

- Non-null val means we have traversed to a valid key
- Again, note that keys are not directly stored in the trie at all

R-way trie example

Summary of running time

	insert	Search h:t	Search
binog BT	0(1)	$\theta(b)$	A (log n) aserg
multi-Way RST	(w) (h)	$\theta(\omega)$	Hiss Of (log n) average A (log n)

R-way RST's nodes are large!

- Considering 8-bit ASCII, each node contains 28 references!
- This is especially problematic as in many cases, a lot of this space is wasted
 - O Common paths or prefixes for example, e.g., if all keys begin with "key", thats 255*3 wasted references!
 - At the lower levels of the trie, most keys have probably been separated out and reference lists will be sparse

Solution: De La Briandais tries (DLBs)

Main idea: replace the array inside the node of the R-way trie with a linked-list

DLB Nodelets

Two alternative implementations:

```
private class DLBNode {
    private Object val;
    private T character;
    private Node sibling;
    private Node child;
}
```

If search terminates on a node with non-null value, key is found; otherwise, not found.

```
private class DLBNode {
    private Object val;
    private Character character;
    private Node sibling;
    private Node child;
}
```

Add a sentinel character (e.g., ^) to each key before add and search If search encounters null, key not found; otherwise, key is found

Adding to DLB Trie

- if root is null, set root ← new node
- current node ← root
- for each character c in the key
 - Search for c in the linked list headed at current using sibling links
 - if not found, create a new node and attach as a sibling to the linked list
 - move to child of the found node
 - either recursively or by current ← child
- if at last character of key, insert value into current node and return

DLB Example

DLB analysis

- How does DLB performance differ from R-way tries?
- Which should you use?

	search hit	
R-Way RST		
DLB	O(WR)	

Runtime Comparison for Search Trees/Tries

	Search h:t	Search wiss (avery)	insert
BST	$\Theta(n)$	(logn)	$\Theta(\nu)$
RB-BST	Allogn)	Allos .	O(logn)
DST	A(b)	Allogn)	D(b)
RST	$\theta(b)$	A(logn)	f(b)
R-way RST	(ACW)	0((09n)	$\theta(\nu)$
DIB	H(WR)	O(ligh. P)	H(W.R)

Final notes on Search Tree/Tries

- We did not present an exhaustive look at search trees/tries, just the sampling that we're going to focus on
- Many variations on these techniques exist and perform quite well in different circumstances
 - Ternary search Tries
 - O R-way tries without 1-way branching
- See the table at the end of Section 5.2 of the text

- Q: When creating a DST, does it have to start handling keys starting with the leftmost bit, or can it also handle them by starting with the rightmost bit?
- The algorithm can go either way on the bitstring of the key as long as the direction is the same for all operations

- Q: Would a trie be able to contain a value with less bits than the root, and if so how?
- In a trie, none of the nodes (including the root) contains any key
- If the questions is "can a trie contain keys of different bit lengths?",
 - the answer is yes
 - Interior nodes have non-null values in that case
 - The trie here has three keys
 - 011
 - 111
 - 11

- Q: How is a Trie different from a Red-Black BST?
- a trie is different from a search tree because trie doesn't store the keys inside its nodes but a search tree does
- More in the next question

- Q: when would you use a DST or an RST?
- Q: What's the application of RST?
- DST and RST are efficient in checking if a target key is a prefix of any of the keys in the tree
 - e.g., making routing decisions in the Internet
- DSTs are preferred over BSTs when bits of keys are randomly distributed (i.e., the probability of each bit being zero is 0.5)
 - The DST will be balanced in this case without having to use the more complicated Red-Black BST
- RSTs are preferred over BSTs when bit lengths of keys are close to *log n*
 - The RST will be balanced in this case without having to use the more complicated Red-Black BST
- Note that DST and RST don't provide the extra operations (e.g., predecessor and successor) provided by BST

- Q: how can any node in 3's subtree replace 3 in DST example
- Because all nodes in 3's subtree share a common prefix with length 1 with 3
 - The node that replaces 3 will still be found using the DST search algorithm

0011

0110

0101

For simplicity, we replace 3 with any leaf in its subtree

- Q: Could you spend more time going through new lecture
- Sometimes, addressing the muddiest points takes up a large portion of class time
- Usually, new material is embedded between the muddiest points responses

- Q: Is the insertion position for DST based on the first bit that is different from the last insert? Or is it based on the relative comparison to last insert?
- DST Add Algorithm for adding a key k and a corresponding value
 - if root is null, add k at the root and return
 - current ← root
 - if k is equal to the current node's key, replace value and return
 - if current bit of k is 0,
 - if left child is null, add k as left child
 - else continue to left child
 - if current bit of k is 1,
 - if left child is null, add k as right child
 - else continue to right child

- Q: When is DST preferable to radix search trie?
- A: When bit lengths of keys are >> log n

- Q: I don't understand the advantage of making another node in the DLB instead of the tree structure.
- A: DLB saves space when the number of children per node in an R-way RST is small

- Q: How does DLB save space over r way trie?
 Example please?
- Let's the set of keys:
 - ksm1 ... ksm9
- How big does an 256-way RST take vs. a DLB trie?

R-way RST

```
private class Node {
    private Object val;
    private Node[] next;

    private Node(){
        next = new Node[R];
    }
}
```

Each node takes 4*(R+1) = 4*257 = 1028 bytes, assuming 4 bytes per reference variable

R-way RST

R-way RST

We will end up with 4 + 9 = 13 nodes

Total space is 13*1028 = 13,364 bytes

DLB Trie

```
private class DLBNode<T> {
    private Character character;
    private Object val;
    private Node sibling;
    private Node child;
}
```

Each node takes 4*4 = 16 bytes, assuming 4 bytes per reference variable

DLB Trie

CS 1501 – Algorithms & Data Structures 2 – Sherif Khattab

DLB Trie

- We will end up with 12 nodes
- Total space is 12*16 = 192 bytes
- Compare to 13,364 bytes with an R-way RST

- Q: What determines the number of bits you use for the bit representation of a key in DSTs and RSTs?
- Typically, the number of bits is determined by the application
 - e.g., keys are Pitt usernames, PeopleSoft IDs, English sentences, etc.
- It is better to re-encode the keys to have a bit length of log n
 bits each
 - Requires extra space to store the mapping from old keys to new keys
 - sometimes not possible: e.g., when *n* is not known in advance
- Better yet, we can assign bit lengths based on frequency of access:
 - Shorter bitstrings for more frequently accessed keys
 - Results in smaller average search time

- Q: what is the meaning of life
- I think this is outside the scope of this course
- You can build algorithms to make people's life better
 - Keep people and societal impact as a major factor in design decisions