2-Algebraic Geometry

Songun Lee

August 6, 2024

Abstract

Clausen-Scholze's analytic stacks rely heavily on D(X). The definition of analytic ring explicitly contains D(R), and every geometric content is given by the 6-functor formalism. These developments parallel the evolution of noncommutative geometry into derived noncommutative geometry. This paper presents speculations about 2-Algebraic Geometry, drawing significant inspiration from Clausen-Scholze's work.

Contents

1	Intr	roduction	4			
2	2-Algebra					
		2-Additive Space				
	2.2	2-Ring				
	2.3	Initial Object				
	2.4	2-Module				
3	2-Geometry					
	3.1	Defining $f_!$				
		2-Algebraic Stack				
4	Cor	nclusion				

1 Introduction

In this paper, we explore the concept of 2-algebraic geometry, a vertical categorification of usual algebraic geometry. Our approach is heavily influenced by the work of Clausen and Scholze.

Throughout this work, we will ignore set-theoretic issues and assume that all categories appearing as objects are presentable.

2 2-Algebra

categorical level	(1,0)	$(\infty,0)$	$(\infty,1)$
additive space	abelian group	spectra	stable category
additive map	f(0) = 0 f(a+b) = f(a) + f(b)	(-)	cocompleteness
addition	abelian group	spectra	stable category
multiplication	unital commutative	E_{∞}	symmetric monoidal
distributive law	distributive law	E_{∞} -algebra	internal hom
algebraic map	f(1) = 1	(-)	symmetric monoidal

Speculation 2.1. We need another enlargement of 2-rings, similar to enlarging commutative rings to E_{∞} ring spectra, before defining 3-rings.

2.1 2-Additive Space

We begin by introducing the notion of a 2-additive space, which generalizes the concept of an additive space to higher categories.

Definition 2.2 (2-Additive Space). A 2-additive space is a stable category.

A 2-additive map $f: R \to S$ is an adjoint pair $f_* \vdash f^*: R \to S$.

Any 2-additive space V has a dual space, which is the opposite category as a stable category.

Remark 2.3. While the direction of morphism might be confusing, it is correct algebraic direction. This will be clearer when we define 2-Ring.

The following table illustrates the progression of additive structures across different categorical levels:

We see that the usual condition of f(0) = 0, f(a) + f(b) = f(a+b) is replaced with cocompleteness, which is equivalent to having an adjoint f^* .

We have analogues of usual linear algebraic constructions. For example, kernel and cokernel can be defined as follows:

Theorem 2.4. For any 2-additive spaces S and T, hom(S,T) has a natural 2-additive space structure, which will be denoted as [S,T].

Theorem 2.5. The category of 2-additive spaces forms a closed monoidal category, with $[S,T]=S^{op}\otimes T$

Proof.

2.2 2-Ring

We now extend the notion of a ring to the 2-categorical setting. A 2-ring is a E_{∞} -algebra in the category of 2-additive spaces, which unwinds as:

Definition 2.6 (2-Ring). A 2-ring is a closed symmetric monoidal stable category.

An algebraic morphism $f: R \to S$ is an adjoint pair $f^* \dashv f_*: S \to R$ such that f^* is symmetric monoidal.

The distributive law becomes cocompleteness of \otimes , which is witnessed by internal hom.

The following table illustrates the progression of ring-like structures across different categorical levels:

Theorem 2.7. For any 2-ring homomorphism $f: R \to S$, S is enriched over R, with $[-,-]_R$ being $f_*([-,-]_S)$.

2.3 Initial Object

Theorem 2.8. The initial object among 2-Rings is the category of Spectra.

2.4 2-Module

Definition 2.9. A module over a 2-Ring R is a 2-additive space M, with a monoidal 2-additive map $R \to \text{End}(M)$.

Theorem 2.10. An R-module M is naturally R-enriched.

3 2-Geometry

Following Clausen-Scholze, we derive all geometric content, including the correct choice of Grothendieck topology, from the 6-functor formalism.

This section will be a near copy of the work of Clausen-Scholze.

3.1 Defining $f_!$

Definition 3.1 (open immersion). A 2-ring homomorphism $f: R \to S$ is an open immersion $f^{\text{op}}: \operatorname{Spec} S \to \operatorname{Spec} R$ when f^* is localization and admits further left adjoint that satisfies

Definition 3.2 (proper). A 2-ring homomorphism $f: R \to S$ is a proper map $f^{\text{op}}: \operatorname{Spec} S \to \operatorname{Spec} R$ when f_* admits further right adjoint, commutes with pullback, and satisfies projection formula.

Definition 3.3 (!-able map). A $f^{\text{op}}: \operatorname{Spec} S \to \operatorname{Spec} R$ is a !-able map if it can be written as $\operatorname{Spec} S \to \operatorname{Spec} S' \to \operatorname{Spec} R$ where the former is an open immersion and the latter is a proper map.

Theorem 3.4 (6-functor formalism of 2-rings).

3.2 2-Algebraic Stack

Definition 3.5 (!-topology). A !-able map $f:R\to S$ is a !-cover if $R=\lim^! S^{\times_R n}$

Definition 3.6 (2-sheaf). A 2-sheaf X satisfies descent condition for every !-hypercovers such that

Definition 3.7 (2-scheme).

4 Conclusion