The cohomology ring of $G_2(\mathbb{C}^4)$ Torgeir Aambø

1 Introduction

In this little write-up I want to calculate the cohomology ring of $G_2(\mathbb{C}^4)$, i.e. the Grassmannian manifold consisting of all 2-dimensional subspaces of \mathbb{C}^4 . To do this we use the Serre spectral sequence we get from the fibration

$$U(2) \longrightarrow V_2(\mathbb{C}^4) \longrightarrow G_2(\mathbb{C}^4)$$

where $V_2(\mathbb{C}^4)$ is the Stiefel manifold, i.e. the collection of 2-frames in \mathbb{C}^4 , and U(2) is the unitary group. I won't do the calculation of the cohomology rings of $V_2(\mathbb{C}^4)$ and U(2), but the latter we can easily get from the homeomorphism $U(n) \simeq U(1) \times SU(n-1)$, giving in particular $U(2) \simeq S^1 \times S^3$, and the former can be calculated by induction and the following fibration

$$S^{2(n-k)+1} \longrightarrow V_k(\mathbb{C}^n) \longrightarrow V_{k-1}(\mathbb{C}^n).$$

We then have

$$H^*(V_2(\mathbb{C}^4)) = \Lambda(a_5, a_7)$$
 and $H^*(U(2)) = \Lambda(a_1, a_3)$

where a_i lies in degree i.

From the fibration

$$U(2) \longrightarrow V_2(\mathbb{C}^4) \longrightarrow G_2(\mathbb{C}^4)$$

we get a spectral sequence E_r which uses the cohomology of $G_2(\mathbb{C}^4)$ with coefficients from the cohomology of U(2) to calculate the cohomology of $V_2(\mathbb{C}^4)$. Since we now already know the cohomology ring of $V_2(\mathbb{C}^4)$ we can guess what the cohomology of $G_2(\mathbb{C}^4)$ has to be in order for the spectral sequence to calculate the correct cohomology ring. This is the approach of this write-up.

2 Calculation

We start on the E_2 page. On the zeroth column, we get only the cohomology of U(2), hence we at least see

Since we know that $H^*(V_2(\mathbb{C}^4))$ has no elements in degree 1, we know that $H^2(G_2(\mathbb{C}^4)) \cong H^1(V_2(\mathbb{C}^4))$, as the generator a_1 has to be killed by a differential. Call the generator for the group $H^2(G_2(\mathbb{C}^4))$ that is the image of a_1 for x. By multiplications by the other generators and itself we then know we have

4	a_1a_3	a_1a	u_3x	$a_1 a_3 x^2$		$a_1 a_3 x^3$		$a_1 a_3 x^4$
3	a_3	a_3	x	a_3x^2		a_3x^3		a_3x^4
2								
1	a_1	a_1	x	a_1x^2		$a_1 x^3$		a_1x^4
0	1	<i>x</i>	;	x^2		x^3		x^4
	0	1 9	2 3	$_{\it A}$	5	6	7	8

We know that the differential is a derivation, hence we get that $d_2(a_1x) = d_2(a_1)x + (-1)^{|x|}a_1d_2(x) = d_2(a_1)x = x^2$ since $d_2(x) = 0$. The same calculation for higher powers of x and for a_1a_3 and a_1a_3x , gives us isomorphisms all the way to the right

Here we see a problem. The generator a_3 never gets killed by a differential, but the cohomology of $V_2(\mathbb{C}^4)$) has no elements in degree 3, so it cant survive. The only degree a differential starting from a_3 can land in is 4, and the only possible non-zero cohomology in degree 4 comes from $H^4(G_2(\mathbb{C}^4))$, which by the likes of it so far has already been killed by a d_2 differential. Hence we got to have a d_4 differential hitting another generator in $H^4(G_2(\mathbb{C}^4))$, hence we need higher dimensional cohomology in this degree. We call this new generator which is the image of a_3 under the d_3 differential for y. Looking back at the E_2 page, we then have new elements

Now, what does this new information and new elements give us? By the same calculation as previously, we get that $d_2(a_1y) = xy$, but here have more information. We know that $H^*(V_2(\mathbb{C}^4))$ has a generator in degree 5, and this new generator a_1y is the only generator left in total degree 5 in the spectral sequence. Thus it can't die by a d_2 differential. And since it's image is xy, this image has to be zero, which gives us the first of two relations on the cohomology ring of our Grassmannian, namely xy = 0. Hence, as far as we know so far, our E_2 page looks like this:

As far as I'm aware, we can't squeeze any more information out of the E_2 page yet. Let us pass to the E_3 page and see which generator we are left with after all the isomorphisms kill the generators. We have

and we see that all the d_3 differentials either start or land in places which are zero, hence $E_3 = E_4$. On the E_4 page however, we know that we at least have one differential, namely the one we used to justify the generator y's existence. By the derivation property of the differentials, we also get that $d_4(a_1a_3y) = a_1y^2$, hence we at least have an E_4 page looking like

We are also lucky enough to know that $H^*(V_2(\mathbb{C}^4))$ has a generator in degree 7, which we see is a_3y since it is the only one left in the correct total degree. But what happens to the differential $d_4(a_3y) = y^2$ you ask? Do we have $y^2 = 0$ then, same as last time? Actually, no. Since we know that a_1y and a_3y both are non-zero generators in $H^*(V_2(\mathbb{C}^4))$, their product $a_1a_3y^2$ is also a generator in degree 12, hence it has to be non-zero, and then y^2 has to be non-zero in $H^8(G_2(\mathbb{C}^4))$. But, it still has to die in the spectral sequence though, and the solution is the second relation on the cohomology ring, namely $x^4 = y^2$. This ensures that y^2 is already killed on the E_2 page, and hence that a_3y isn't killed on the E_4 page.

To retrospectively correct some things now that we have all the information, we first note that we were lucky we didn't bother writing more that 8 columns, because everything in row 0 and columns above 8 either is a product of x's and y's, or contain powers of x greater or equal to 5 or powers of y greater or equal to 3, making $x^5 = xx^4 = xy^2 = (xy)y = 0$ and $y^3 = yx^4 = 0$. Hence our generators a_1x^4 and $a_1a_3x^4$ never was killed by any d_2 differentials, since their images are $x^5 = 0$ and $a_3x^5 = 0$ respectively. Hence we still have $a_1x^4 = a_1y^2$ and $a_1a_3x^4 = a_1a_3y^2$ on the E_4 page. Also, we get that $a_3x^4 = a_3y^2$, which means that a_3y^2 was killed by a d_2 differential on the E_2 page, and hence it does not show up on the E_4 page. The final form of the E_2 page is then

and the final form of the E_4 page is

Since all higher degree differentials, i.e. d_5 and above miss any generators due to being too long, we have $E_5 = E_{\infty}$. We can also see this because we have arrived at the correct cohomology ring for $V_2(\mathbb{C}^4)$, namely the final page

$$a_{1}a_{3}x^{4} = a_{1}a_{3}y^{2}$$

$$a_{3}y$$

$$a_{1}y$$

$$a_{1}y$$

$$0 \quad 1$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$$

Hence we are done, and we have found the correct cohomology ring for our Grassmannian $G_2(\mathbb{C}^4)$. By all our extensive calculations and work, we finally

can say that $H^*(G_2(\mathbb{C}^4)) = \mathbb{Z}(x,y)/(xy,x^4-y^2)$ or if we add the degrees into the names of the generators, $H^*(G_2(\mathbb{C}^4)) = \mathbb{Z}(a_2,a_4)/(a_2a_4,a_2^4-a_4^2)$. Hence the calculation is finished, and we are done.