Example: Reducible MC (Section 2.1)

Transition matrix

$$\label{eq:p:initial} $$ P := \{\{1,\,0,\,0,\,0,\,0\},\,\{1\,/\,3,\,0,\,1\,/\,3,\,1\,/\,3,\,0\},$$$ $\{0,\,2\,/\,3,\,0,\,0,\,1\,/\,3\},\,\{0,\,0,\,0,\,2\,/\,3,\,1\,/\,3\},\,\{0,\,0,\,0,\,2\,/\,3,\,1\,/\,3\}\};$$$ P // MatrixForm$$

Out[107]//MatrixForm=

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} & 0 \\ 0 & \frac{2}{3} & 0 & 0 & \frac{1}{3} \\ 0 & 0 & 0 & \frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & \frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

Powers of transition matrix P

Out[108]//MatrixForm=

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ \frac{1}{3} & \frac{2}{9} & 0 & \frac{2}{9} & \frac{2}{9} \\ \frac{2}{9} & 0 & \frac{2}{9} & \frac{4}{9} & \frac{1}{9} \\ 0 & 0 & 0 & \frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & \frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

Out[109]//MatrixForm=

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ \frac{11}{27} & 0 & \frac{2}{27} & \frac{10}{27} & \frac{4}{27} \\ \frac{2}{9} & \frac{4}{27} & 0 & \frac{10}{27} & \frac{7}{27} \\ 0 & 0 & 0 & \frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & \frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

Out[110]//MatrixForm=

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ \frac{103}{243} & 0 & \frac{4}{243} & \frac{92}{243} & \frac{44}{243} \\ \frac{22}{81} & \frac{8}{243} & 0 & \frac{110}{243} & \frac{59}{243} \\ 0 & 0 & 0 & \frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 0 & \frac{2}{2} & \frac{1}{3} \end{pmatrix}$$

Out[111]//MatrixForm= 22 472 11 252 19 683 59 049 59 049 59 049 32 28 114 14 041 16862 59 049 59 049 1 0 0 3

Out[112]//MatrixForm=

	(1	0	0	0	0
	498 111 911	1024	0	1328298088	664 149 556
	1 162 261 467	3 486 784 401	O	3 486 784 401	3 486 784 401
	996 223 822	0	1024	1660373378	830 186 177
	3 486 784 401	O	3 486 784 401	3 486 784 401	3 486 784 401
	0	0	0	2_	1_
		Ü		3	3
	0	0	Θ	2_	<u>1</u>
(\	J	Ū	3	3 /

Out[113]//MatrixForm=

(1	0	0	0
102 556 855 384 550 365 030 831	33 554 432	Θ	273 484 947 692 134 295 564 0
239 299 329 230 617 529 590 083	717 897 987 691 852 588 770 249	O	717 897 987 691 852 588 770 2
205 113 710 769 100 730 061 662	. 0	33 554 432	341 856 184 615 167 894 620 9
717 897 987 691 852 588 770 249	O	717 897 987 691 852 588 770 249	717 897 987 691 852 588 770 2
0	0	0	$\frac{2}{3}$
O	0	0	$\frac{2}{3}$

In[114]:= N[MatrixPower[P, 50] // MatrixForm]

Out[114]//MatrixForm=

Can you split the transition matrix into components that correspond to irreducible MCs?