EXPERIMENT 3 APPLICATION OF THEVENIN AND NORTON THEOREMS

It took me about 3 hours to complete.

3.3 Preliminary Work

1. i.

ii.

$$9.52 v = 2.8 \text{ kg}$$
; $V_{4} = R_{4}$.
 $i = 3.4 \text{ mA}$ $V_{4} = 1 \text{ kg} \cdot 3.4 \text{ mA}$
 $V_{4} = 3.4 \text{ v}$

iii.

My calculations are same

ii.

iii.

My calculations are same (just significant figures differ).

EXPERIMENT 3 REPORT SHEET

Name & Surname: Derya Tınmaz

Date: 26.11.2020

Experimental Work:

1. Take the screenshots of both circuit and DC operating point simulation results and fill the table given below with calculated and measured values.

	Calculated	Measured
$\mathbf{E}_{\mathtt{TH}}$	9.52 V	9.52V

2. Take the screenshots of both circuit and DC operating point simulation results and fill the table given below with calculated and measured values.

	Calculated in Preliminary Work	Measured/ Calculated in LTSpice
$\mathbf{I}_{ ext{SC}}$	X	5.25mA
\mathbf{R}_{TH}	1.8 kΩ	1.8 kΩ

3. Take the screenshots of both circuit and transient simulation results.

Voltage: 3.39 V Current:3.4mA

5. Take the screenshots of both circuits and DC operating point simulation results and fill the table given below with calculated and measured values. Compare your results with previous step.

	Calculated in Preliminary Work	Measured/ Calculated in LTSpice
I_N	1.37 mA	1.32 mA
$\mathbf{R}_{ ext{N}}$	3.8 kΩ	3.78 kΩ

6. Take the screenshots of both circuit and transient simulation results. Compare your results with your calculations.

Voltage: 1.6V Current:0.9mA My calculations and my results are same (just significant figures differ).

Conclusion

1.Discuss experimental results from Norton and Thevenin equivalent circuits. Norton and Thevenin equivalent circuits make complicated circuits simple without changing the actual voltage and current values on the resistor.

2. Compare Thevenin and Norton equivalent circuit results with your calculation and simulation results.

My calculations and my results are same (just significant figures differ).