Devoir maison 8: correction

Partie I: Étude d'une fonction auxiliaire

Soit g la fonction définie sur]0; $+\infty[$ par :

$$g(x) = \ln(x) + 3x - 3.$$

1. Déterminer les limites de g en $+\infty$ et 0. On sait que :

$$\lim_{x \to 0^+} \ln(x) = -\infty$$

$$\lim_{x \to 0^+} 3x = 0$$

$$\lim_{x \to 0^+} -3 = -3$$

Par somme de limites, on en déduit que :

$$\lim_{x \to 0^+} \ln(x) + 3x - 3 = -\infty$$

Ensuite, on a:

$$\lim_{x \to +\infty} \ln(x) = +\infty$$

$$\lim_{x \to +\infty} 3x = +\infty$$

$$\lim_{x \to +\infty} -3 = -3$$

Par somme de limites, on en déduit que :

$$\lim_{x \to +\infty} \ln(x) + 3x - 3 = +\infty$$

2. Déterminer le sens de variation de la fonction g sur]0; $+\infty[$. Pour déterminer le sens de variation de g, il est nécessaire de calculer sa dérivée :

$$g'(x) = \frac{1}{x} + 3$$

Cette fonction est strictement positive pour x > 0, par conséquent, la fonction g est croisante sur]0; $+\infty[$.

- **3.** Démontrer que l'équation g(x) = 0 admet une unique solution α sur]0; $+\infty[$. La fonction g est croissante de]0; $+\infty[$ vers $]-\infty; +\infty[$ et la fonction g est continue par somme de fonctions continues, donc par le théorème des valeurs intermédiaires, on en déduit qu'il existe un unique $\alpha \in]0$; $+\infty[$ tel que $g(\alpha) = 0$ car $0 \in]-\infty; +\infty[$.
- **4.** Calculer g(1) puis déterminer le signe de g sur]0; $+\infty[$. On sait que $g(1) = \ln(1) + 3 3 = 0$, on en déduit que $\alpha = 1$, par unicité, et que le tableau de signes de g est le suivant :

х	0		1		+∞
g(x)		-	0	+	

Partie II : Étude d'une fonction f

On considère la fonction f, définie sur]0; $+\infty[$ par :

$$f(x) = \left(3 - \frac{1}{x}\right)(\ln(x) - 2).$$

1. a. On admet que la fonction f est dérivable sur]0; $+\infty[$ et on note f' sa dérivée. Démontrer que, pour tout x de]0; $+\infty[$, on a :

$$f'(x) = \frac{g(x)}{x^2}.$$

On utilise la formule de dérivation d'un produit :

$$f'(x) = \frac{1}{x^2} \times (\ln(x) - 2) + \left(3 - \frac{1}{x}\right) \times \frac{1}{x}$$

$$= \frac{(\ln(x) - 2)}{x^2} + \frac{3}{x} - \frac{1}{x^2}$$

$$= \frac{(\ln(x) - 2)}{x^2} + \frac{3x}{x^2} - \frac{1}{x^2}$$

$$= \frac{(\ln(x) - 2) + 3x - 1}{x^2}$$

$$= \frac{\ln(x) + 3x - 3}{x^2}$$

$$= \frac{g(x)}{x^2}$$

b. Dresser le tableau de variation de la fonction f sur]0; $+\infty[$.

La justification des limites aux bornes est la suivante :

$$\lim_{x \to 0^+} 3 - \frac{1}{x} = -\infty$$

$$\lim_{x \to 0^+} \ln(x) - 2 = -\infty$$
donc, par produit de limites :
$$\lim_{x \to 0^+} f(x) = +\infty$$

$$\lim_{x \to +\infty} 3 - \frac{1}{x} = 3$$

 $\lim_{x \to +\infty} \ln(x) - 2 = +\infty$

2022-2023

donc, par produit de limites : $\lim_{x \to +\infty} f(x) = +\infty$

- **2.** Résoudre l'équation f(x) = 0 sur]0; $+\infty[$ puis dresser le tableau de signes de f sur l'intervalle]0; $+\infty[$. La fonction f est continue pour x > 0:
 - □ la fonction f est décroissante de]0;1] vers [-4;+∞[: d'après le théorème des valeurs intermédiaires, il existe un unique α ∈]0;1[tel que f(α) = 0.
 - la fonction f est croissante de [1;+∞[vers [-4;+∞[: d'après le théorème des valeurs intermédiaires, il existe un unique $\beta \in]1;+\infty[$ tel que $f(\beta)=0$.

On en déduit le tableau de signes suivant :

х	0		α		β		+∞
f(x)		+	0	_	0	+	

On peut trouver α et β en résolvant l'équation suivante :

$$f(x) = 0$$

$$\Leftrightarrow \left(3 - \frac{1}{x}\right)(\ln(x) - 2) = 0$$

$$\Leftrightarrow 3 - \frac{1}{x} = 0 \text{ ou } \ln(x) - 2 = 0$$

$$\Leftrightarrow \frac{1}{x} = 3 \text{ ou } \ln(x) = 2$$

$$\Leftrightarrow x = \frac{1}{3} \text{ ou } \ln(x) = e^2$$

Finalement, $\alpha = \frac{1}{3}$ et $\beta = e^2$.

Partie III : Étude d'une fonction F admettant pour dérivée la fonction f

On admet qu'il existe une fonction F dérivable sur]0; $+\infty[$ dont la dérivée F' est la fonction f. Ainsi, on a : F' = f.

On note \mathscr{C}_F la courbe représentative de la fonction F dans un repère orthonormé $\left(0, \overrightarrow{\iota}, \overrightarrow{J}\right)$. On ne cherchera pas à déterminer une expression de F(x).

1. Étudier les variations de F sur]0; $+\infty[$. La dérivée de F est f, on peut donc en déduire le tableau de variation de F, mais sans les valeurs à l'intérieur :

2. La courbe \mathscr{C}_F représentative de F admet-elle des tangentes parallèles à l'axe des abscisses? Justifier la réponse.

La courbe \mathscr{C}_F représentative de F admet des tangentes parallèles à l'axe des abscisses quand la dérivée de F, c'est-à dire f, s'annule en changeant de signe; cela a lieu deux fois, en $x = \frac{1}{3}$ et en $x = e^2$.