Лабораторная работа №7. Эффективность рекламы

Вариант 28

Смородова Дарья Владимировна 2022 March 26th

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	10
5	Выводы	15
6	Список литературы	16

List of Tables

List of Figures

3.1	График решения уравнения модели Мальтуса	8
3.2	График логистической кривой	9
4.1	Код программы	10
4.2	График распространения рекламы для первого случая	11
	График распространения рекламы для второго случая	12
4.4	График распространения рекламы для третьего случая	13
4.5	График изменения скорости распространения рекламы для второго	
	случая	14

1 Цель работы

Целью данной лабораторной работы является изучение задачи об эффективности рекламы, написание кода и построение графика распространения рекламы в трёх случаях, а также определение для второго случая, в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

2 Задание

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

$$\begin{aligned} &1. \ \frac{dn}{dt} = (0.48 + 0.000081n(t))(N-n(t)) \\ &2. \ \frac{dn}{dt} = (0.000049 + 0.82n(t))(N-n(t)) \\ &3. \ \frac{dn}{dt} = (0.6t + 0.3sin(3t)n(t))(N-n(t)) \end{aligned}$$

При этом объем аудитории N=1655, в начальный момент о товаре знает 18 человек. Для случая 2 определите, в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

3 Теоретическое введение

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным. ¹

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих.

Модель рекламной кампании описывается следующими величинами. Считаем, что dn/dt - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $\alpha_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных

¹Кулябов Д.С. Эффективность рекламы.

покупателей, $\alpha_1(t)>0$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает сарафанное радио). Этот вклад в рекламу описывается величиной $\alpha_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением (1):

$$dn/dt = (\alpha_1(t) + \alpha_2(t)n(t))(N - n(t)))$$

При $\alpha_1(t)\gg \alpha_2(t)$ получается модель типа модели Мальтуса, решение которой имеет вид (рис.3.1):

Figure 3.1: График решения уравнения модели Мальтуса

В обратном случае, при $\alpha_1(t) \ll \alpha_2(t)$ получаем уравнение логистической кривой (рис.3.2):

Figure 3.2: График логистической кривой

4 Выполнение лабораторной работы

- 1. Выполнять данную лабораторную работу я буду в программе OpenModelica.
- 2. Напишем программу для построения графиков распространения рекламы (рис.4.1):

```
model lab07

parameter Real N = 1655;
parameter Real n0 = 18;

Real n1(start = n0);
Real n2(start = n0);
Real n3(start = n0);

equation

der(n1) = (0.48 + 0.000081*n1) * (N - n1);
der(n2) = (0.000049 + 0.82*n2) * (N - n2);
der(n3) = (0.6 * time + 0.3*sin(3*time)*n3) * (N - n3);

end lab07;
```

Figure 4.1: Код программы

3. Получим график распространения рекламы для первого случая (рис.4.2):

Figure 4.2: График распространения рекламы для первого случая

4. Получим график распространения рекламы для второго случая (рис.4.3):

Figure 4.3: График распространения рекламы для второго случая

5. Получим график распространения рекламы для третьего случая (рис.4.4):

Figure 4.4: График распространения рекламы для третьего случая

6. Получим график изменения скорости распространения рекламы для второго случая (рис.4.5):

Figure 4.5: График изменения скорости распространения рекламы для второго случая

По графику видно, что значение графика производной максимально в начальный момент времени t0=0.

5 Выводы

В ходе данной лабораторной работы, мы изучили задачу об эффективности рекламы, написали код и построили графики распространения рекламы для трёх случаев, а также определили для второго случая, в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

6 Список литературы

1. Кулябов Д.С. Эффективность рекламы / Д.С. Кулябов. - Москва: - 7 с.