Theoretical Computer Science

Administrative Information

Lecture 5 - Manuel Mazzara

Mid-term Exam

When: Thursday, 4 March 2021 09:30-~11:30

Where: 108 (here) and possibly another room

+ online for abroad students only

What:

Formal Languages, FSA, Pumping Lemma, PDA (only in part)

FSA Design

Design and drawing exercise where you have to demonstrate an understanding of the basic principles and functioning of FSAs

Assignment 1

In Moodle – please respect the deadline!

There will be Assignment 2 around Week 9 (release) and 10 (submission)

Theoretical Computer Science

Regular Languages and closure

Lecture 5 - Manuel Mazzara

Regular Languages

A regular language is a language recognized by a FSA

 Regular languages are very useful in <u>input parsing and programming</u> <u>language design</u>

- We will see models that are equivalent to languages recognized by FSA
 - Regular expressions
 - Specific type of **generative grammars**

Representations of Regular Languages

Closure for languages

- $\mathcal{L} = \{L_i\}$: **family** of languages
- \mathcal{L} is **closed w.r.t. operation OP** if and only if, for every L₁, L₂ $\in \mathcal{L}$, L₁ OP L₂ $\in \mathcal{L}$.
- R: regular languages (recognized by FSAs)
- R is closed w.r.t. set-theoretic operations, concatenation and "*"

Theoretical Computer Science

Pumping Lemma for Regular Languages

Lecture 5 - Manuel Mazzara

Representations of Regular Languages

- ullet We are given a **Regular Language** L
- ullet It means that Language L comes in one of the standard representations:
 - Deterministic Finite State Automata
 - Nondeterministic Finite State Automata
 - Regular expressions
 - Regular grammars

All finite languages are regular

You can easily build an FSA to recognize a finite language!

Some infinite languages are regular – not all

There are languages that are not regular

What does it mean?

These languages cannot be represented in any of these standard representations

Examples of non regular languages

$$\{a^n b^n : n \ge 0\}$$

 $\{ww^R : w \in \{a,b\}^*\}$

- How can we prove that a language is not regular?
- Can we prove that there is no FSA that accepts it?
- This is not easy to prove! How would you prove it?

Proving that a language is not regular

- To prove that a language is regular, we can just find an FSA (or another standard representation) for it
- To prove that a language is not regular, we need to prove that there is no possible FSA (or another standard representation) for it
- This is possible in principle. For each specific language, a technical proof with ad-hoc argument could be built
- Here, however, we will show something more powerful: a generalization

Such generalization is known with the name of...

Pumping Lemma

The Pigeonhole Principle (1)

4 pigeons

3 pigeonholes

The Pigeonhole Principle (2)

A pigeonhole must contain at least two pigeons

Generalization

n pigeons

Straightforward results

n pigeons m pigeonholes n > m

There is a pigeonhole with at least 2 pigeons

25

Example (1)

FSA with 4 states

Example (2)

The path aab has no repetition of state

States can be repeated

Simple fact

If the path for string x is greater than 4 then a state must be repeated

Anyone called me?

FSA and Pigeonhole Principle

- If in a path $\frac{\text{transitions} \geq \text{states}}{\text{then a state is }}$
- Transitions are pigeons
- States are pigeonholes
- If a string has length greater than the number of states,
 there has to be a repeated state in the visit

Cycles

There is a cycle: q1 ----aabab---> q1

If one goes trough the cycle once, then one can also go through it 2,3, ..., n times

Languages and Cycles (1)

- Consider an infinite regular language
- The FSA recognizing it has *m* states

Languages and Cycles (2)

Take string x belonging to L and with length greater than m

A state has to be repeated in the walk

Pumping Lemma for Regular Languages

- It is an essential property of all regular languages
- All sufficiently long words in a regular language may be pumped, i.e. have a middle section of the word repeated an arbitrary number of times, to produce a new word that also belong to the same language
- We will not give the proof here, just the intuition
- The pumping lemma is used to prove that a particular language is non-regular
 - You will see a few examples in the tutorial and lab sessions

Formally

- If x ∈ L and |x| ≥ |Q|, then there exists a q ∈ Q and a w ∈ I⁺ such that:
 - -x = ywz
 - $-\delta^* (q_0,y) = q$
 - $-\delta^*$ (q,z) = q' \in F
 - $-\delta^*$ (q,w) = q
 - $-yw^nz$ ∈ L, $\forall n \ge 0$

• This is the *Pumping Lemma* (one can "pump" w)

Pumping Lemma, graphically

The "Pigeonhole" principle

• If *p* pigeons are placed into fewer than *p* holes, some holes must hold more than one pigeon

 The sequence of states traversed during the recognition of a string must have a repeated state (in our formal definition we called it q)

A negative consequence of pumping lemma

- Is the language $L = \{a^nb^n \mid n > 0\}$ recognized by some FSA?
- Let us suppose it is, then:
- Consider $x = a^m b^m$, m > |Q| and let us apply the Pumping Lemma
- Possible cases:

$$-x = ywz, w = a^k, k > 0 ====> a^{m-k}a^{(k^*r)}b^m \in L, \forall r : NO$$
 $-x = ywz, w = b^k, k > 0 ====> a^mb^{(k^*r)}b^{m-k} \in L, \forall r : NO$
 $-x = ywz, w = a^kb^s, k, s > 0 ====> a^{m-k}(a^kb^s)^rb^{m-s} \in L \forall r : NO$

Levels of expressiveness

- In order to "count" an arbitrary n we need an infinite memory!
- Fixed vs finite
 - FSA and regular languages are about fixed memory
- From the toy example {aⁿbⁿ} to more concrete cases:
 - Checking well-balancing of brackets (typically used in programming languages)
 cannot be done with fixed memory
- We therefore need more powerful models (PDA)

Theoretical Computer Science

Introduction to Pushdown Automata

Lecture 5 - Manuel Mazzara

A bit of context

The mechanical view of FSAs

Adding a (destructive) external memory

What is a stack?

- Everyone should know at this point!
- If not "Learn stack the <u>fun way</u> (data structure)":
 - https://www.youtube.com/watch?v=PRHZoY2YE2U

What is a stack (boring way)

- a
- b
- (

- a
- b
- (

- a
- b
- (

b
а
Z_0

- a
- b
- C

C	;
k)
a	à
Z	7 - 0

Insert in the following order the symbols

- a
- b
- C

Read from the stack

Trying to tell something new...

- Who invented the stack idea?
- Alan Turing's 1946 paper on the Automatic Computing Engine (ACE), the first electronic computer developed in UK
- "To arrange for the splitting up of operations into subsidiary operations"
- Theory of <u>subroutines</u>
- Two instructions: <u>BURY</u> and <u>UNBURY</u>

Pushdown automata

- Finite state automata can be enriched with a stack
 - → Pushdown Automata (PDA)
- PDAs differ from finite state machines in two ways:
 - They can use the top of the stack to decide which transition has to be made
 - They can manipulate the stack as part of performing a transition

Moves of a PDA

Depending on

- the symbol read from the input (but it could also read nothing)
- the symbol read from the top of the stack
- the state of the control device

the PDA

- changes its state
- moves ahead the scanning head
- changes the symbol read from the stack with a string α (possibly empty)

Of course, we will formally dissect this kind of automata and understand where they are useful