An efficient optimization framework for gray-box conservation law simulation Thesis proposal defense

PhD candidate: Han Chen

Committee: Qiqi Wang (chair), Karen Willcox, Youssef Marzouk

External evaluator: Hector Klie

Massachusetts Institute of Technology

May 5, 2015

- Background.
- Thesis objective.
- Estimate gradient by twin model.
- Optimization framework.
- Application to turbulent flow optimization.
- Expected contribution.
- Proposed schedule.

- Background.
- > Thesis objective.
- Estimate gradient by twin model.
- Optimization framework.
- Application to turbulent flow optimization.
- Expected contribution.
- Proposed schedule.

- ➤ Interested in optimization constraint by conservation law simulation.
- Conservation law simulation can be expensive.
- The design space can be high-dimensional.
- ➤ Efficient sensitivity (adjoint) analysis may not be available.

A forest of oil wells in California, 1937

Internal cooling of turbine airfoil
Source: http://www.amaterastyo.biz/eng/technologies.html

Design space can be high-dimensional.

- Gray-box conservation law simulation:
 - adjoint not available.
 - governing PDE and its implementation not available.
 - > can output space(-time) solutions.

	PDE and implementation	space(-time) solution	Adjoint
Black-box	×	X	×
Gray-box	×	V	X
Open-box	V		~

- High-dimensional design space.
 - > large number of parameters required to parameterize the space(-time) dependent design.

- ➤ If black-box, use derivative-free optimization, (pattern search methods [Tarma03], evolution based methods[Eberhart 10, Davis 10])
 - > not require derivative evaluation.
 - not suitable for high-dimension optimization.
- ➤ If open-box, use gradient-based optimization, (quasi-Newton methods [John 77]: BFGS, L-BFGS, etc.)
 - requires efficient gradient evaluation, generally using adjoint.
 - > suitable for high-dimension optimization.
- ➤ If gray-box,

- ➤ Develop a method to estimate the gradient by using the space(-time) solution from the gray-box simulation.
- ➤ Formulate an optimization framework that uses the estimated gradient for efficient high-dimensional optimization.
- Given a fixed computational budget, assess how much design objective improvement can be achieved by using the proposed framework.

- Background.
- Thesis objective.
- Estimate gradient by twin model.
- Optimization framework.
- Application to turbulent flow optimization.
- Expected contribution.
- Proposed schedule.

(objective 1)

(objective 2)

(objective 3)

Estimate the gradient:

- ➤ infer the conservation law from the space(-time) solution.
- > apply adjoint to estimate gradient.

Example: infer flux F(u) from space-time solution.

$$\begin{split} &\frac{\partial u}{\partial t} + \frac{\partial F(u)}{\partial x} = c(x) \\ &u(t=0,x) = u_0(x) \\ &u(t,x=0) = u(t,x=1) \end{split}$$

Propose to infer the flux or the source term that reproduce the space(-time) solution. The inferred conservation law is called twin model.

➤ The governing PDE is a conservation law. Flux and source terms are functionals.

$$\times \dot{u} = \mathcal{L}(u, c) / \frac{\partial u}{\partial t} + \frac{\partial F(u)}{\partial x} = c$$

➤ The flow quantities only depend on the flow quantities in an older time inside a domain of dependence.

- > Space-(time) solution can provide large number of samples.
- ➤ The inference can be independent of the design space dimensionality

The inference can boil down to an optimization problem.

$$\frac{\partial u}{\partial t} + \frac{\partial F(u)}{\partial x} = c(x)$$

$$u(t = 0, x) = u_0(x)$$

$$u(t, x = 0) = u(t, x = 1)$$

$$\begin{split} &\frac{\partial \tilde{u}}{\partial t} + \frac{\partial \tilde{F}(\tilde{u})}{\partial x} = c(x) \\ &\tilde{u}(t=0,x) = u_0(x) \\ &\tilde{u}(t,x=0) = \tilde{u}(t,x=1) \end{split}$$

$$\min_{\tilde{F}} \left\{ L(\tilde{F}) \equiv \int_t \int_x \|u - \tilde{u}\| \ dt \ dx
ight\} \, ,$$

where $\|\cdot\|$ is a norm to be chosen.

- Parameterize the flux or source term polynomial, Fourier, wavelet, etc
 - we choose a family of sigmoid functions with various centers. $\tilde{F}(\cdot) = \sum_{i=1}^{n} \xi_i s(\cdot)$

Basis selection

matching pursuit [Adler 96, Billing07]: forward selection, backward pruning; regularization [Stone 77, Schwarz 78, Tibshirani 96]: AIC/BIC, Lasso, elastic net

> we choose Lasso regularization for basis selection. $\min_{\tilde{F}} \left\{ L(\tilde{F}) + \lambda \sum_{i=1}^{n} |\xi_i| \right\}$

- Parameterize the flux or source term polynomial, Fourier, wavelet, etc
 - we choose a family of sigmoid functions with various centers. $\tilde{F}(\cdot) = \sum_{i=1}^{n} \xi_i s(\cdot)$

> Basis selection

matching pursuit [Adler 96, Billing07]: forward selection, backward pruning; regularization [Stone 77, Schwarz 78, Tibshirani 96]: AIC/BIC, Lasso, elastic net

> we choose Lasso regularization for basis selection. $\min_{\tilde{F}} \left\{ L(\tilde{F}) + \lambda \sum_{i=1}^{n} |\xi_i| \right\}$

- ➤ Parameterize the flux or source term polynomial, Fourier, wavelet, etc
 - we choose a family of sigmoid functions with various centers.

$$\tilde{F}(\cdot) = \sum_{i=1}^{n} \xi_i s(\cdot)$$

- Basis selection matching pursuit [Adler 96, Billing07]: forward selection, backward pruning; regularization [Stone 77, Schwarz 78, Tibshirani 96]: AIC/BIC, Lasso, elastic net
 - ightharpoonup we choose Lasso regularization for basis selection. $\min_{\tilde{F}} \left\{ L(\tilde{F}) + \lambda \sum_{i=1}^{n} |\xi_i| \right\}$

- Parameterize the flux or source term polynomial, Fourier, wavelet, etc
 - we choose a family of sigmoid functions with various centers.

With various cente
$$\tilde{F}(\cdot) = \sum_{i=1}^{n} \xi_i s(\cdot)$$

- Basis selection matching pursuit [Adler 96, Billing07]: forward selection, backward pruning; regularization [Stone 77, Schwarz 78, Tibshirani 96]: AIC/BIC, Lasso, elastic net
 - ightharpoonup we choose Lasso regularization for basis selection. $\min_{\tilde{F}} \left\{ L(\tilde{F}) + \lambda \sum_{i=1}^{n} |\xi_i| \right\}$

- Parameterize the flux or source term polynomial, Fourier, wavelet, etc
 - we choose a family of sigmoid functions with various centers.

$$\tilde{F}(\cdot) = \sum_{i=1}^{n} \xi_i s(\cdot)$$

- Basis selection matching pursuit [Adler 96, Billing07]: forward selection, backward pruning; regularization [Stone 77, Schwarz 78, Tibshirani 96]: AIC/BIC, Lasso, elastic net
 - > we choose Lasso regularization for basis selection. $\min_{\tilde{F}} \left\{ L(\tilde{F}) + \lambda \sum_{i=1}^{n} |\xi_i| \right\}$

- Parameterize the flux or source term polynomial, Fourier, wavelet, etc
 - we choose a family of sigmoid functions with various centers.

$$\tilde{F}(\cdot) = \sum_{i=1}^{n} \xi_i s(\cdot)$$

- Basis selection matching pursuit [Adler 96, Billing07]: forward selection, backward pruning; regularization [Stone 77, Schwarz 78, Tibshirani 96]: AIC/BIC, Lasso, elastic net
 - > we choose Lasso regularization for basis selection. $\min_{\tilde{F}} \left\{ L(\tilde{F}) + \lambda \sum_{i=1}^{n} |\xi_i| \right\}$

- Parameterize the flux or source term polynomial, Fourier, wavelet, etc
 - we choose a family of sigmoid functions with various centers.

$$\tilde{F}(\cdot) = \sum_{i=1}^{n} \xi_i s(\cdot)$$

- Basis selection matching pursuit [Adler 96, Billing07]: forward selection, backward pruning; regularization [Stone 77, Schwarz 78, Tibshirani 96]: AIC/BIC, Lasso, elastic net
 - ightharpoonup we choose Lasso regularization for basis selection. $\min_{\tilde{F}} \left\{ L(\tilde{F}) + \lambda \sum_{i=1}^{n} |\xi_i| \right\}$

Consider an optimization objective: [Kucuk 06]

$$\min_{c \in \mathbb{R}} \left\{ J(u) \equiv \int_{x=0}^{1} \left| u(x, t=1; c) - u^*(x) \right|^2 \mathrm{d}x \right\}$$

constrained by Buckley-Leverett flow, where c is a constant source term to be optimized. u^* is a given spatial profile.

- Background.
- Thesis objective.
- Estimate gradient by twin model.
- Optimization framework.
- Application to turbulent flow optimization.
- Expected contribution.
- Proposed schedule.

(objective 1)

(objective 2)

(objective 3)

- MFO methods include
 - pattern search MFO [Booker 99].
 - trust-region MFO [Wild 13, March 12, Robinson 06].
 - Bayesian MFO [Kennedy 01, March 11].
- Choose Bayesian MFO as our optimization framework:
 - uses all high-fidelity model evaluation to find the next design.
 - can fuse sampled data of different types: co-Kriging [Chung 02].
 - the next candidate design is optimal under a Bayesian metric.

- Gaussian process modeling:
 - > J(c): the objective calculated by the gray-box model.
 - $ightharpoonup \epsilon(c)$: the error in the objective's gradient calculated by the twin model.
- Relates gray-box model's objective with twin model's gradient:

$$\begin{cases} g(c) = \nabla J(c) + \epsilon(c) \\ \cos \left[\nabla J(c_1), \epsilon(c_2)\right] = 0 \\ \cos \left[J(c_1), \epsilon(c_2)\right] = 0 \end{cases} \quad \text{for any } c, c_1, c_2,$$

where g(c) is the objective's gradient calculated by the twin model.

 \triangleright Update J(c) Bayesianly

- Find the next design to evaluate the gray-box model [Snoek 12]
 - \rightarrow Define "improvement": max $\{J(c_{best}) J(c), 0\}$.
 - Choose the next design as the maximizer of the expected improvement.

- Source parameterized by 10 design variables.
- Optimization problem:

$$\min_{c\in\mathbb{R}^{10}}\left\{J(u)\equiv\int_{x=0}^{1}\left|u(x,t=1;c)-u^{*}(x)\right|^{2}\mathrm{d}x\right\}\,,$$

where $u^*(x) = u^*(x, t = 1; c^*)$, u^* generated by gray-box model.

github.com/septfleur/twinmodel.git

- > Background.
- > Thesis objective.
- Estimate gradient by twin model.
- Optimization framework.
- > Application to turbulent flow optimization.
- > Expected contribution.
- Proposed schedule.

(objective 1)

(objective 2)

(Objective 2)

(objective 3)

- Optimize the geometry of an internal cooling hole in turbine airfoil to minimize the time averaged pressure loss. [Coletti 13]
- Model as a 2-D return bend problem.
- Design space can be high-dimension.

Internal cooling of turbine airfoil Source: http://www.amaterastvo.biz/eng/technologies.html

- \blacktriangleright Flow is turbulent and incompressible, $Re \sim 40,000$, $Mach \sim 0.05$
- Candidate simulation models:
 - > Time averaged quantities:
 - RANS models: Reynolds stress models, eddy viscosity models (e.g. mixing length models, $k-\omega$ models), etc [Wilcox 98]
 - Space-time dependent quantities: LES, DNS, etc
- Apply twin model optimization framework:
 - Gray-box model: time averaged quantities of LES simulation.
 - > Twin model: a RANS model with adaptive eddy viscosity modelling.

- Background.
- Thesis objective.
- Estimate gradient by twin model.
- Optimization framework.
- Application to turbulent flow optimization.
- Expected contribution.
- Proposed schedule.

(objective 2)

(objective 3)

Expected contributions

- Develop an efficient method to estimate gradients when the governing PDE is not available.
- Provide an optimization framework based on gray-box conservation law simulation in high-dimensional design problems.
- A demonstration of the twin model optimization framework in a high-dimensional turbulent flow optimization, showing superior objective function improvement given a fixed computational budget.

Proposed schedule

[Autor, 90]

References I

RC. Eberhart et al.

Particle swarm optimization.

Encyclopedia of machine learning, 2010.

L. Davis

Handbook of genetic algorithms.

New York: Van Nostrand Reinhold, 1991.

K. Tamara et al.

Optimization by direct search: new perspective on some classical and modern methods.

SIAM review, 45.3:385-482, 2003.

D. Dennis et al.

Quasi-Newton methods, motivation and theory.

SIAM review, 19.1:46-89, 1977.

References II

R. Adler

Comparison of basis selection methods.

Signals, systems and computers, Thirtieth Asilomar Conference on. Vol. 1. IEEE, 1996.

S. Billing et al.

Feature subset selection and ranking for data dimensionality reduction.

Pattern analysis and machine intelligence, IEEE transactions on 29.1 (2007): 162-166.

G. Schwarz

Estimating the dimension of a model.

The annals of statistics 6.2 (1978): 461-464.

References III

M. Stone

An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion.

Journal of the royal statistical society. series B (methodological) (1977): 44-47.

R. Tibshirani

Regression shrinkage and selection via the lasso.

Journal of the royal statistical society. series B (methodological) (1996): 267-288.

I. Kucuk

An efficient computational method for the optimal control problem for the Burgers equation.

Mathematical and computer modelling 44.11 (2006): 973-982.

References IV

A. Booker

A rigorous framework for optimization of expensive functions by surrogates.

Structural optimization 17.1 (1999): 1-13.

S. Wild et al.

Global convergence of radial basis function trust-region algorithms for derivative-free optimization.

SIAM Review 55.2 (2013): 349-371.

A. March

Multifidelity methods for multidisciplinary system design Dissertation, Massachusetts Institute of Technology (2012)

References V

T. Robinson

Multifidelity optimization for variablecomplexity design.

Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Portsmouth, VA. 2006.

M. Kennedy et al.

Bayesian calibration of computer models

Journal of the royal statistical society, series B (statistical methodology) 63.3 (2001): 425-464.

A. March et al.

Gradient-based multifidelity optimisation for aircraft design using Bayesian model calibration

Aeronautical Journal, 115.1174 (2011): 729.

References VI

Using gradients to construct cokriging approximation models for high-dimensional design optimization problems.

AIAA paper 317 (2002): 14-17.

J. Snoek et al.

Practical Bayesian optimization of machine learning algorithms. Advances in neural information processing systems, 2012.

F. Coletti et al.

Optimization of a U-Bend for Minimal Pressure Loss in Internal Cooling Channels-Part II: Experimental Validation. Journal of Turbomachinery 135.5 (2013): 051016.

D. Wilcox

Turbulence modeling for CFD.

Vol. 2. La Canada, CA: DCW industries, (1998)

References VII

