

Continuité

1

Calculer les limites suivantes :

$$\lim_{x \to 3} -x^2 + 4x + 1 \; ; \; \lim_{x \to -\infty} -5x^9 - 7x^3 + 10x^2 + 8 \; ; \; \lim_{x \to -\infty} \left(-3x^3 + 1 \right)^5 \left(x^4 - 7 \right) \; ; \; \lim_{x \to +\infty} \left| 7 - x \right| - 4x \; .$$

$$\lim_{x\to 4^+} \frac{7x+5}{x-4} ; \lim_{x\to 5^-} \frac{5-x}{x^2-25}.$$

$$\underbrace{4.}_{x \to +\infty} \lim_{x \to +\infty} \sqrt{\frac{3x^4 + x + 3}{6x^4 - 3x + 4}} \lim_{x \to +\infty} \sqrt{4x^2 + 1} - x \lim_{x \to +\infty} \sqrt{4x^2 + 3} - 2x \lim_{x \to 16} \frac{\sqrt{x} - 4}{x - 16} \lim_{x \to 3} \frac{x - 3}{3 - \sqrt{x} + 6}$$

$$\underbrace{\text{Sin}}_{x \to 0} \frac{\sin(3x)}{4x} \quad \lim_{x \to 0} \frac{5x}{\tan(2x)} \quad \lim_{x \to 0} \frac{\tan(2x)}{\sin(4x)}$$

2.

La figure ci-contre représente la courbe représentative d'une fonction f :

1. Déterminer graphiquement D_f le domaine de définition de la fonction f.

2. En déduire graphiquement les limites suivantes :

 $\lim_{x \to +\infty} f(x) \text{ et } \lim_{x \to 6^+} f(x) \text{ et } \lim_{x \to 6^-} f(x) \text{ et } \lim_{x \to 3^+} f(x) \text{ et } \lim_{x \to 3^-} f(x) \text{ et } \lim_{x \to 1^+} f(x) \text{ et } \lim_{x \to 0^-} f(x)$

 $\lim_{x \to \infty} f(x)$ (justifier) puis interpréter ce dernier résultat.

3. .

<u>a.</u> Est-ce que la fonction f est continue à gauche du point $x_0 = 0$.

b. Est-ce que la fonction f est continue à gauche du point $x_0 = 3$.

 $\underline{\mathbf{c}}$ Est-ce que la fonction f est continue à droite du point $\mathbf{x}_0 = 3$.

Continuité

3.

- 1. Etudier la continuité de f en $x_0 = 5$ avec : $\begin{cases} f(x) = \frac{x^2 2x 15}{x^2 25} ; x \in \mathbb{R} \setminus \{-5, 5\} \\ f(5) = 8 \end{cases}$
- 2. Etudier la continuité de f en $x_0 = -1$ avec : $\begin{cases} f(x) = \frac{2}{x^3 + 1} ; x \in \mathbb{R} \setminus \{-1\} \\ f(-1) = 3 \end{cases}$.
- 3. Etudier la continuité de f en $x_0 = 3$ avec : $\begin{cases} f(x) = \frac{\sqrt{x} \sqrt{3}}{x 3} ; x \in [0, +\infty[\setminus \{3\}]] \\ f(3) = \frac{1}{2\sqrt{3}} \end{cases}$
- 4. Etudier la continuité de f en $x_0 = 2$ avec : $\begin{cases} f(x) = \frac{x^2 4}{\sqrt{2} \sqrt{x}} ; x \in]0, 2[\cup]2, +\infty[\\ f(2) = 8\sqrt{2} \end{cases}$
- 5. Etudier la continuité de f en $x_0 = 0$ avec : $\begin{cases} f(x) = \frac{\sin x}{\sqrt{x+1}-1} ; x \in]-1, 0[\cup]0, +\infty[\\ f(0) = 0 \end{cases}$

4.

La figure ci-contre représente la courbe représentative d'une fonction f

- 1. Énoncer le théorème des valeurs intermédiaires
- **2.** Donner deux intervalles tel que on peut utiliser le théorème des valeurs intermédiaires .
- 3. Trouver un intervalle, on ne peut pas appliquer le théorème des valeurs intermédiaires.
- 4. En déduire graphiquement le nombre des solutions f(x) = 3 puis donner un encadrement des solutions.

5.

Soit f la fonction numérique de la variable x définie sur \mathbb{R} par : $f(x) = x^6 + 2x^4 - 1$.

1. Montrer que : l'équation $x^6 + 2x^4 - 1 = 0$ admet au moins une solution sur [0;1].

Continuité

- **2.** On considère la fonction g définie sur \mathbb{R} par : $g(x) = x^3 6x^2 + 9x + 1$.
 - ${\color{red}\underline{a}}_{}$ Dresser le tableau de variations de g sur ${\mathbb R}$.
 - **b.** Montrer que : l'équation g(x) = 0 admet une unique solution sur $\mathbb R$ on note cette solution par α . déterminer un encadrement de α .
 - $\underline{\underline{c}}$ Déterminer le signe de g(x) sur $[1,+\infty[$.

6.

Soit f la fonction numérique de la variable x définie par : $\begin{cases} f\left(x\right) = \frac{1}{x+1} \; ; \; 0 \le x < \frac{1}{2} \\ f\left(x\right) = 2x + ax^2 \; ; \; \frac{1}{2} \le x \le 1 \end{cases}$ avec a est réel donné .

1. Déterminer la valeur de a pour que f est continue en $x_0 = \frac{1}{2}$.

7.:

Soit f la fonction numérique de la variable x définie et continue sur $\mathbb R$ dont le tableau est le suivant :

X	-∞ -6	-2	5	7	+∞
f(x)	1	7		2	
` ,	\ \ \	, <i>7</i>	,	^	7
	-10		–4		-∞

- **1.** Déterminer le nombre des solutions : $x \in \mathbb{R} / f(x) = 0$.
- **2.** Déterminer le nombre des solutions : $x \in]-\infty, 5]/f(x) = 3$.
- 3. Déterminer la valeur de la solution $x \in \mathbb{R} / f(x) = 7$.
- **4.** Déterminer : $f(]-\infty;-6]$) et $f(]-\infty;-2]$) et f([-6,-2]) et $f(]7,+\infty[)$ et $f(\mathbb{R})$.
- **5.** Est-ce qu'une restriction g de la fonction f sur $I = I =]-\infty, -6]$ admettra une fonction réciproque.
- **6.** Est-ce qu'une restriction h de la fonction f sur I =]-2,7[admettra une fonction réciproque.

8.

On considère la fonction g définie sur \mathbb{R} par : $f(x) = x^3 + x^2 - 4x + 1$.

- ${\color{red} \underline{1}}_{\bullet}$ Dresser le tableau de variations de g sur ${\mathbb R}$.
- **2.** Montrer que : l'équation f(x) = 0 admet trois solutions distinctes dans \mathbb{R} .

9.

- **1.** Montrer que : $\sqrt[4]{3} \times \sqrt[3]{2} \times \sqrt[12]{3^9 \times 2^8} = 6$.
- **2.** Mettre le dominateur rationnel $\frac{2}{\sqrt[3]{5}-1}$.

10.

Déterminer l'ensemble de définition des fonctions suivantes :

Continuité

1.
$$f(x) = \sqrt{x^2 - 9}$$
.

2.
$$f(x) = \sqrt[5]{(x+7)(x-1)}$$
.

3.
$$f(x) = \sqrt[3]{4-x} - \sqrt{x+1}$$
.

11.

1. On considère l'équation suivante : (E) : $\sqrt[3]{x+1}-2=0$

a. Déterminer l'ensemble de définition de l'équation (E).

<u>b.</u> Résoudre l'équation (E).

2. Résoudre l'équation : $(x+5)^3 = 2$.

12.

Calculer les limites suivantes :

1. $\lim_{x \to +\infty} \sqrt[3]{x^3 + x + 1}$ et $\lim_{x \to -\infty} \sqrt[5]{x^4 + 1}$ et $\lim_{x \to 4^-} \frac{\sqrt[6]{4 - x}}{x}$ et $\lim_{x \to 2^+} \frac{x}{\sqrt[5]{x - 2}}$.

13.

Soit f la fonction numérique de la variable x définie par : $f(x) = x - \sqrt[3]{1+x}$.

1. ..

a. Déterminer domaine de définition de f .

 $\underline{\mathbf{b}}_{\underline{\mathbf{c}}}$ Calculer : $\lim_{x \to +\infty} \mathbf{f}(\mathbf{x})$ puis interpréter géométriquement le résultat .

2. Calculer: $\lim_{x \to -1^+} \frac{f(x)+1}{x+1}$ puis interpréter géométriquement le résultat .

14.

Soit f la fonction numérique de la variable x définie par : $\begin{cases} f(x) = \sqrt[3]{7+x} & ; x < 1 \\ f(x) = \frac{4}{1+\sqrt{x}} & ; x \ge 1 \end{cases}$

1. Calculer: $\lim_{x\to +\infty} f(x)$ puis interpréter géométriquement le résultat.

2. Etudier la continuité de f au point $x_0 = 1$.

15.

Soit f la fonction numérique de la variable x définie par : $f(x) = 2\sqrt{x+1} - x$.

<u>1.</u>

 $\underline{\mathbf{a}}$ Déterminer $\mathbf{D}_{\mathbf{f}}$ domaine de définition de \mathbf{f} .

 $\underline{\mathbf{b}}$ Calculer: $\lim_{x\to +\infty} f(x)$.

Continuité

 $\underline{\underline{\mathbf{c}}}$ Montrer que : f est continue sur $\mathbf{D}_{\mathbf{f}}$.

2.

- <u>a.</u> Etudier la dérivabilité à droite de la fonction f au point $x_0 = -1$.
- $\underline{\mathbf{b}}. \quad \text{Montrer que}: \mathbf{f}'(\mathbf{x}) = \frac{-\mathbf{x}}{\sqrt{\mathbf{x}+1}(1+\sqrt{\mathbf{x}+1})} \text{ sur }]-1,+\infty[.$
- $\underline{\mathbf{c}}$ Dresser le tableau de variations de f sur \mathbf{D}_{f} .
- **d.** Montrer que: l'équation $[0,+\infty[$; f(x)=0 admet une unique solution.

3. .. Soit g la restriction de f sur $[0,+\infty[$.

- <u>a.</u> Montrer que la restriction g admet une fonction réciproque g^{-1} définie sur l'intervalle J dont le déterminera .
- **b.** Montrer que : la fonction réciproque g^{-1} est dérivable sur l'intervalle $]0,+\infty[$.
- $\underline{\mathbf{c}}$ Calculer: $\mathbf{g}(3)$ et $(\mathbf{g}^{-1})'(1)$.
- $\underline{\underline{d}}_{\underline{l}} \quad La \ figure \ ci-contre \ représente la \ courbe \ représentative \ de \ la \ fonction \ f \ . Construire \ dans \ le \ même \ repère \left(O,\vec{i},\vec{j}\right)$ la courbe \ représentative $\left(C_{g^{-1}}\right)$ \ de la \ restriction \ g^{-1} \ \ de \ la \ fonction \ f \ .

4. ..

- <u>a.</u> Vérifier que : $f(x) = 2 (\sqrt{x+1} 1)^2$ pour tout x de $[0, +\infty[$.
- **b.** Déterminer : $g^{-1}(x)$ pour tout x de J.

5. ..

- <u>a.</u> Déterminer graphiquement le nombre et le signe des solutions (si on a de solutions) des équations suivantes :
 - $x \in]-1,+\infty[; f(x)=5 .$
 - $x \in]-1,+\infty[; f(x)=\frac{3}{2}.$
 - $x \in]-1,+\infty[; f(x)=-1]$