MATH356 - Probability

Based on lectures from Fall 2024 by Prof. Asoud Asgharian. Notes by Louis Meunier

Contents

1 Prerequisites	2
2 Probability	
2.1 Sample Space	2
3 Combinatorics - Finite σ -fields	5
3.1 Counting	5
3.2 Conditional Probability	
4 Random Variables and Probability Distributions	6
4.1 Discrete and Continuous Random Variables	7
4.2 Functions of a Random Variable	8
5 Moments and Moment Generating Functions	9

§1 Prerequisites

 \hookrightarrow **Definition 1.1** (limsup, liminf of sets): Let $\{A_n\}_{n>1}$ be a sequence of sets. We define

$$\overline{\lim}_{n\to\infty} = \limsup_{n\to\infty} A_n := \{x : x \in A_n \text{ for infinitely many } n\} = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$

and

$$\underline{\lim}_{n\to\infty} = \liminf_{n\to\infty} A_n := \{x : x \in A_n \text{ for all but finitely many } n\} = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k.$$

If $\lim \inf A_n = \lim \sup A_n$, we say A_n converges to this value and write $\lim_{n \to \infty} A_n = \lim \inf A_n = \lim \sup A_n$

 \hookrightarrow **Proposition 1.1**: lim inf A_n ⊆ lim sup A_n

Example 1.1: Let $A_n = \{n\}$. Then $\liminf A_n = \limsup A_n = \emptyset = \lim A_n$. Let $A_n = \{(-1)^n\}$. Then $\liminf A_n = \emptyset$, $\limsup A_n = \{-1, 1\}$.

- \hookrightarrow **Definition 1.2** (sigma-field): A non-empty class of subsets of a set Ω which is closed under countable unions and complement, and contains \emptyset is called a *σ-field* or *σ-algebra*.
- \hookrightarrow **Definition 1.3** (Borel sigma-algebra): The *σ*-algebra generated by the class of all bounded, semi-closed intervals is called the *Borel algebra* of subsets of \mathbb{R} , denoted $\mathfrak{B}, \mathfrak{B}(\mathbb{R})$.
- **→Theorem 1.1**: Every countable set is Borel.

PROOF.
$$\{x\} = \bigcap_{n=1}^{\infty} \left(x - \frac{1}{n}, x\right]$$
 for any $x \in \mathbb{R}$, so $A := \{x_n : n \in \mathbb{N}\} = \bigcup_{n=1}^{\infty} \{x_n\} \in \mathfrak{B}$.

 \hookrightarrow Theorem 1.2: $\mathfrak{B} = \sigma$ ({open sets in ℝ}).

§2 Probability

§2.1 Sample Space

2.1 Sample Space 2

- → Definition 2.1 (Random/statistical experiment): A *random/statistical experiment* (stat. exp.) is one in which
- 1. all outcomes are known in advance;
- 2. any performance of the experiment results in an outcome that is not known in advance;
- 3. the experiment can be repeated under identical conditions.
- \hookrightarrow Definition 2.2 (Sample space): The *sample space* of a stat. exp. is the pair (Ω, \mathcal{F}) where Ω the set of all possible outcomes and \mathcal{F} a σ -algebra of subsets of Ω .

We call points $\omega \in \Omega$ sample points, $A \in \mathcal{F}$ events. If Ω countable, we call (Ω, \mathcal{F}) a discrete sample space.

- \hookrightarrow **Definition 2.3**: Let (Ω, 𝒯) be a sample space. A set function *P* is called a *probability measure* or simply *probability* if
- 1. $P(A) \ge 0$ for all $A \in \mathcal{F}$
- 2. $P(\Omega) = 1$
- 3. For $\{A_n\} \subseteq \mathcal{F}$, disjoint, then $P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n)$.
- \hookrightarrow Theorem 2.1: P monotone ($A \subseteq B \Rightarrow P(A) \le P(B)$) and subtractive $P(B \setminus A) = P(B) P(A)$.
- **Theorem 2.2**: For all $A, B \in \mathcal{F}$, $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- \hookrightarrow Corollary 2.1: *P* subadditive; for any *A*, *B* ∈ \mathcal{F} , $P(A \cup B) \leq P(A) + P(B)$.
- \hookrightarrow Corollary 2.2: $P(A^c) = 1 P(A)$.

2.1 Sample Space

→Theorem 2.3 (Principle of Inclusion/Exclusion): Let $A_1, ..., A_n \in \mathcal{F}$. Then

$$\begin{split} P\bigg(\bigcup_{k=1}^{n}A_{k}\bigg) &= \sum_{k=1}^{n}P(A_{k})\\ &- \sum_{k_{1}< k_{2}}P\Big(A_{k_{1}}\cap A_{k_{2}}\Big)\\ &+ \sum_{k_{1}< k_{2}< k_{3}}P\Big(A_{k_{1}}\cap A_{k_{2}}\cap A_{k_{3}}\Big)\\ &+ \ldots + (-1)^{n}P\bigg(\bigcap_{k=1}^{n}A_{k}\bigg). \end{split}$$

 \hookrightarrow Theorem 2.4 (Bonferroni's Inequality): For $A_1, ..., A_n$,

$$\sum_{i=1}^n P(A_i) - \sum_{i < j} P\Big(A_i \cap A_j\Big) \le P\bigg(\bigcup_{i=1}^n A_i\bigg) \le \sum_{i=1}^n P(A_i).$$

Theorem 2.5 (Boole's Inequality): $P(A \cap B) \ge 1 - P(A^c) - P(B^c)$.

 \hookrightarrow Corollary 2.3: For $\{A_n\} \subseteq \mathcal{F}$,

$$P(\cap_{n=1}^{\infty} A_n) \ge 1 - \sum_{n=1}^{\infty} P(A_n^c)$$

Theorem 2.6 (Implication Rule): If A, B, C ∈ \mathcal{F} and A and B imply C (i.e. $A \cap B \subseteq C$) then $P(C^c) \leq P(A^c) + P(B^c)$.

Theorem 2.7 (Continuity): Let $\{A_n\}$ ⊆ \mathcal{F} non-decreasing i.e. $A_n \supseteq A_{n-1} \forall n$, then

$$\lim_{n \to \infty} P(A_n) = P\left(\bigcup_{n=1}^{\infty} A_n\right).$$

Let $\{A_n\}$ non-increasing, then

$$\lim_{n\to\infty} P(A_n) = P\bigg(\bigcap_{n=1}^{\infty} A_n\bigg).$$

Finally, more generally, for $\{A_n\}$ such that $\lim_{n\to\infty}A_n=A$ exists, then

$$P(A) = \lim_{n \to \infty} P(A_n).$$

§3 Combinatorics - Finite σ -fields

§3.1 Counting

We consider now $\Omega = \{\omega_1, ..., \omega_n\}$ finite sample spaces, and consider $\mathcal{F} = 2^{\Omega}$.

 \hookrightarrow **Definition 3.1** (Permutation): An ordered arrangement of r distinct objects is called a permutation. The number of ways to order n distinct objects taken r at a time is

$$P_r^n = \frac{n!}{(n-r)!}.$$

 \hookrightarrow **Definition 3.2** (Combination): The number of combinations of n objects taken r at a time is the number of subsets of size r that can be formed from n objects,

$$C_r^n = \binom{n}{r} = \frac{P_r^n}{r!} = \frac{n!}{r!(n-r)!}.$$

 \hookrightarrow Theorem 3.1: The number of unordered arrangements of r objects out of a total of n objects when sampling with replacement is

$$\binom{n+r-1}{r}$$
.

§3.2 Conditional Probability

Theorem 3.2: Let $A, H ∈ \mathcal{F}$. We denote by P(A | H) the probability of A given H has occured. We have, in particular,

$$P(A \mid H) = \frac{P(A \cap H)}{P(H)},$$

if $P(H) \neq 0$.

Definition 3.3: We say two events *A*, *B* are independent if $P(A \mid B) = P(A)$, or equivalently $P(A \land B) = P(A)P(B)$.

→Proposition 3.1 (Multiplication Rule):

$$P\left(\bigcap_{j=1}^{n} A_j\right) = \prod_{i=1}^{n} P\left(A_i \mid \bigcap_{j=0}^{i-1} A_j\right),$$

taking $A_0 := \Omega$ by convention.

Proposition 3.2 (Law of Total Probability): Let $\{H_n\}$ ⊆ \mathcal{F} be a partition of \mathcal{F} , namely $H_i \cap H_j = \emptyset$ for all $i \neq j$, and $\bigcup_{j=1}^{\infty} H_j = \Omega$. If $P(H_n) > 0 \,\forall n$, then

$$P(B) = \sum_{n=1}^{\infty} P(B \mid H_n) P(H_n) \ \forall \ B \in \mathcal{F}.$$

Theorem 3.3 (Baye's): Let { H_n } be a partition of Ω with all strictly nonzero measure and let B ∈ 𝒯 with nonzero measure. Then

$$P(H_n \mid B) = \frac{P(H_n)P(B \mid H_n)}{\sum_{n=1}^{\infty} P(H_n)P(B \mid H_n)}.$$

→ Definition 3.4 (Mutual Independence): A family of sets A is said to be *mutually independent* iff \forall finite sub collections $\{A_{i_1},...,A_{i_k}\}$, the following holds

$$P(\bigcap_{j=1}^k A_{i_j}) = \prod_{j=1}^k P(A_{i_j}).$$

§4 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

We tacitly fix some sample space (Ω, \mathcal{F}) .

 \hookrightarrow **Definition 4.1** (Random Variable): A real-valued function $X: \Omega \to \mathbb{R}$ is called a *random variable* or *rv* if

$$X^{-1}(B)\in\mathcal{F}$$

for all $B \in \mathfrak{B}_{\mathbb{R}}$.

 \hookrightarrow Theorem 4.1: X an $rv \Leftrightarrow for all <math>x \in \mathbb{R}$,

$$\{X\leq x\}\in\mathcal{F}.$$

- **Theorem 4.2**: If *X* a rv, then so is aX + b for all $a, b \in \mathbb{R}$.
- **Theorem 4.3**: Fix an rv *X* defined on a probability space $(Ω, \mathcal{F}, P)$. Then, *X* induces a measure on the sample space $(\mathbb{R}, \mathfrak{B}_{\mathbb{R}})$, denote *Q* and given by

$$Q(B) := P\big(X^{-1}B\big)$$

for any Borel set B.

Remark 4.1: If X a random variable, then the sets $\{X = x\}$, $\{a < x \le b\}$, $\{X < x\}$, etc are all events.

 \hookrightarrow **Definition 4.2** (Distribution Function): An \mathbb{R} -valued function F that is non-decreasing, right-continuous and satisfies

$$F(-\infty) = 0, F(+\infty) = 1$$

is called a distribution function or df.

 \hookrightarrow Theorem 4.4: { $x \mid F$ discontinuous} is at most countable.

 \hookrightarrow **Definition 4.3**: Given a random variable *X* and a probability space (Ω, \mathcal{F}, P) , we define the df of *X* as

$$F(x) = P(X \le x)$$
.

Remark 4.2: It is not obvious a priori that this is indeed a df.

 \hookrightarrow Theorem 4.5: If Q a probability on $(\mathbb{R}, \mathfrak{B}_{\mathbb{R}})$, then there exists a df F where

$$F(x) = Q(-\infty, x],$$

and conversely, given a df F, there exists a unique probability on $(\mathbb{R}, \mathfrak{B}_{\mathbb{R}})$.

§4.1 Discrete and Continuous Random Variables

 \hookrightarrow **Definition 4.4**: *X* called "discrete" if ∃ countable set E ⊂ ℝ such that $P(X \in E) = 1$.

 \hookrightarrow **Proposition 4.1**: Suppose E = $\{x_n\}_{n=1}^{\infty}$ and put $p_n := P(X = x_n)$. Then,

$$\sum_{n=1}^{\infty} p_n = 1,$$

where $\{p_n\}$ defines a non-negative sequence.

Definition 4.5 (PMF): Such a sequence $\{p_n\}$ satisfying $0 \le p_n = P(X = x_n)$ for a sequence $\{x_n\}$ and $\sum p_n = 1$ is called a *probability mass function* (pmf) of X. Then,

$$F_X(x) = P_X((-\infty, x]) = \sum_{n: x_n \le x} p_n$$

and

$$X(\omega) = \sum_{n=1}^{\infty} x_n \mathbb{1}_{\{X = x_n\}}(\omega).$$

 \hookrightarrow **Definition 4.6**: *X* called *continuous* if *F* induced by *X* is absolutely continuous, i.e. if there exists a non-negative function f(t) such that

$$F(x) = \int_{-\infty}^{x} f(t) \, \mathrm{d}t$$

for all $x \in \mathbb{R}$. Such a function f is called the *probability density function* (pdf) of X.

 \hookrightarrow Theorem 4.6: Let *X* continuous with pdf *f*. Then

$$P(B) = \int_{B} f(t) \, \mathrm{d}t$$

for every $B \in \mathfrak{B}_{\mathbb{R}}$.

→Theorem 4.7: Every nonnegative real function f that is integral over \mathbb{R} and such that $\int_{-\infty}^{\infty} f(x) dx = 1$ is the PDF of some continuous X.

§4.2 Functions of a Random Variable

 \hookrightarrow Theorem 4.8: Let *X* be an rv and *g* a Borel-measurable function on \mathbb{R} . Then, *g*(*X*) also an rv.

Theorem 4.9: Let Y = g(X) as above. Then, $P(Y \le y) = P(X ∈ g^{-1}(-\infty, y])$.

Example 4.1: Let *X* be an RV with Poisson distribution; we write $X \sim \text{Poisson}(\lambda)$; where

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

for $k \in \mathbb{N} \cup \{0\}$. Let $Y = X^2 + 3$. We say that X has *support* $\{0, 1, 2, \text{dots}\}$ (more generally, where X can take values), and so Y has support on $\{3, 4, 7, ...\} =: B$. Then

$$P(Y = y) = P(X = \sqrt{y-3}) = \frac{e^{-\lambda}\lambda^{\sqrt{y-3}}}{\sqrt{y-3}!},$$

for $y \in B$ and P(Y = y) = 0 for $y \notin B$.

Theorem 4.10: Let *X* cont. rv with pdf f_*X*. Let Y = g(X) be differentiable for all *x* and with either strictly positive or negative derivative. Then, Y = g(X) also a continuous rv with pdf given by

$$h(y) = \begin{cases} f_x(g^{-1}(y)) \mid \frac{\mathrm{d}}{\mathrm{d}y} g^{-1}(y) \mid \text{ for } \alpha < y < \beta \\ 0 \text{ else} \end{cases},$$

where

$$\alpha := \min\{g(-\infty), g(\infty)\}, \beta := \max\{g(-\infty), g(\infty)\}.$$

 \hookrightarrow Theorem 4.11: Let *X* continuous rv with cdf $F_X(x)$. Let $Y = F_X(X)$. Then, $Y \sim \text{Unif } (0, 1)$.

Proof.

$$P(Y \le y) = P(F_X(X) \le y)$$
$$= P(X \le F_X^{-1}(y)).$$

Theorem 4.12: Let *X* continuous rv with pdf f_X and y = g(x)

§5 Moments and Moment Generating Functions

Definition 5.1 (Expected Value): Let *X* be a discrete (continuous) rv with PMF (PDF) $p_k = P(X = x_k)$ (*f*). If $\sum |x_k| p_k < \infty$ ($\int |x| f_X(x) dx < \infty$) then we say the *expected value* of *X* exists, and write

$$\mathbb{E}(X) = \sum x_k p_k \Big(= \int x \cdot f(x) \, \mathrm{d}x \Big).$$

Theorem 5.1: If *X* symmetric about *α* ∈ \mathbb{R} , i.e. $P(X \ge \alpha + x) = P(X \le \alpha - x)$ for all $x \in \mathbb{R}$ (or in the continuous case, $f(\alpha - x) = f(\alpha + x)$), then $\mathbb{E}(X) = \alpha$.

\hookrightarrow Theorem 5.2: Let *g* Borel-measurable and *Y* = *g*(*X*). Then,

$$\mathbb{E}(Y) = \sum_{j=1}^{\infty} g(x_j) P_X(X = x_j).$$

If *X* continuous,

$$= \int g(x)f(x) \, \mathrm{d}x.$$

 \hookrightarrow **Definition 5.2**: For *α* > 0, we say $\mathbb{E}(|X|^{\alpha})$ (if it exists) is the *α*-th moment of *X*.

Example 5.1: Let *X* such that $P(X = k) = \frac{1}{N}$, k = 1, ..., N, namely $X \sim \text{Unif}_{\{1,...,N\}}$. Then

$$\mathbb{E}(X) = \sum_{k=1}^{N} \frac{k}{N} = \frac{N+1}{2}.$$

 \hookrightarrow Theorem 5.3: If the *t*th moment of *X* exists, so does the *s*th moment for s < t.

 →Theorem 5.4: If $\mathbb{E}(|X|^k) < \infty$ for some k > 0, then

$$n^k P(|X| > n) \to 0$$

as $n \to \infty$.