Examenul național de bacalaureat 2021 Proba E. c)

Matematică *M_st-nat*

Varianta 4

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că 3(4-i)+3i(1+i)=9, unde $i^2=-1$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 4$. Calculați $(f \circ f)(2)$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_3(x^2 2x + 4) = 1$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să fie divizibil cu 10.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(2,4) și B(3,a), unde a este număr real. Determinați numărul real a, știind că punctele O, A și B sunt coliniare.
- **5p 6.** Se consideră $E(x) = \cos x + \cos 2x + \cos 3x$, unde x este număr real. Arătați că $E\left(\frac{\pi}{4}\right) = 0$.

SUBIECTUL al II-lea (30 de puncte

- **1.** Se consideră matricele $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $A(x,y) = \begin{pmatrix} x+3y & 4y \\ -2y & x-3y \end{pmatrix}$, unde x și y sunt numere reale.
- **5p** a) Arătați că $\det(A(1,1)) = 0$.
- **5p b**) Demonstrați că, dacă matricea A(x, y) este inversabilă, atunci $|x| \neq |y|$.
- **5p** c) Determinați perechile (m,n), de numere întregi, pentru care $A(m,n) \cdot A(-m,n) = I_2$.
 - **2.** Pe mulțimea $A = [0, +\infty)$ se definește legea de compoziție $x \circ y = 4^{xy} (1 x y)$.
- **5p a)** Arătați că $2 \circ 0 = 2$.
- **5p b)** Arătați că $x \circ \frac{1}{x} \ge 5$, pentru orice $x \in A$, $x \ne 0$.
- **5p** c) Demonstrați că, dacă m și n sunt numere naturale impare, atunci $m \circ n$ este număr natural impar.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = x^3 3\ln x$.
- **5p** a) Arătați că $f'(x) = \frac{3(x-1)(x^2+x+1)}{x}, x \in (0,+\infty).$
- **5p b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x=1, situat pe graficul funcției f.
- **5p** c) Demonstrați că $x^3 \ge 3 \ln x + 1$, pentru orice $x \in (0, +\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = xe^x$.
- **5p** a) Arătați că $\int_{0}^{2} \frac{f(x)}{e^{x}} dx = 2$.
- **5p b**) Arătați că $\int_{-1}^{1} (f(x) + e^x) dx = \frac{e^2 + 1}{e}$.
- **5p** c) Demonstrați că $\int_{-1-a}^{-1+a} f(x) dx \ge -\frac{2a}{e}$, pentru orice $a \in (0, +\infty)$.