Семинар 15

Построение линейных отображений

Утверждение. Пусть V и U – векторные пространства над полем F. Пусть e_1, \ldots, e_n – некоторый базис векторного пространства V и u_1, \ldots, u_n – произвольный набор векторов другого пространства U. Тогда существует единственное линейное отображение $\phi: V \to U$ такое, что $\phi(e_i) = u_i$.

Этот критерий позволяет эффективно отвечать на вопросы следующего вида: существует ли отображение $\phi\colon F^2\to F^2$, со следующим свойством

$$\phi\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}-1\\1\end{pmatrix}, \quad \phi\begin{pmatrix}1\\-1\end{pmatrix} = \begin{pmatrix}2\\0\end{pmatrix}, \quad \phi\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}1\\1\end{pmatrix}$$

В данном случае векторы

$$v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

являются базисом, а

$$v_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{2}(v_1 + v_2)$$

По утверждению, векторы v_1 и v_2 можно отправить куда угодно и тогда найдется единственное $\phi \colon F^2 \to F^2$ со свойствами

 $\phi\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}-1\\1\end{pmatrix}, \quad \phi\begin{pmatrix}1\\-1\end{pmatrix} = \begin{pmatrix}2\\0\end{pmatrix}$

Теперь осталось лишь проверить, удовлетворяет ли наше ϕ последнему свойству. С одной стороны мы хотим, чтобы

$$\phi\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}1\\1\end{pmatrix}$$

С другой стороны, как мы выяснили $v_3 = \frac{1}{2}(v_1 + v_2)$. Значит

$$\phi(v_3) = \frac{1}{2}(\phi(v_1) + \phi(v_2)) = \frac{1}{2}\left(\begin{pmatrix} -1\\1 \end{pmatrix} + \begin{pmatrix} 2\\0 \end{pmatrix}\right) = \frac{1}{2}\begin{pmatrix} 1\\1 \end{pmatrix}$$

Не сходится. Значит, не существует. Если бы сошлось, то существовал бы.

Отметим, что наивный подход к проверке наличия такого отображения заключается в том, чтобы задать отображение ϕ в виде $x\mapsto Ax$, где $A=\left(\begin{smallmatrix} a&b\\c&d\end{smallmatrix}\right).^1$ Тогда условия на ϕ можно переписать как систему линейных уравнений на a,b,c,d. Три вектора, по две координаты, будет всего 6 условий и 4 неизвестные. Это намного неприятнее, чем предложенный выше метод.

А что если нам даны векторы v_1, \ldots, v_k в F^n не порождающие все F^n ? Выше мы разобрали случай $\langle v_1, \ldots, v_k \rangle = F^n$. На самом деле был изложен способ понять, существует ли линейное отображение

$$\psi \colon \langle v_1, \dots, v_k \rangle \to F^m$$

такое, что $\psi(v_i) = u_i$. Если такое отображение не существует на подпространстве $\langle v_1, \dots, v_k \rangle$, то очевидно, что оно не существует на всем пространстве F^n . То есть в негативном случае задача решается проще. Однако, если же отображение $\psi \colon \langle v_1, \dots, v_k \rangle \to F^m$ найдется. То искомое ϕ можно построить так. Пусть v_1, \dots, v_s – базис в $\langle v_1, \dots, v_k \rangle$. Так как это линейно независимое множество в F^n его можно дополнить до базиса в F^n . То есть мы можем найти векторы $w_{s+1}, \dots, w_n \in F^n$ такие, что $v_1, \dots, v_s, w_{s+1}, \dots, w_n$ являются базисом F^n . Отображение ψ отображает v_1, \dots, v_s в u_1, \dots, u_s . Отправим векторы w_{s+1}, \dots, w_n в 0. Это нам даст отображение уже на всем пространстве F^n , которое продолжает желаемое отображение и обладает свойством, что v_i идут в u_i . Тут не важно, во что отправить w_i . Как мы видим таких отображений будет много.

 $^{^{1}}$ В следующем разделе как раз показано, что все линейные отображения между F^{n} и F^{m} задаются умножением на матрицу.

Отображение с заданным ядром и образом

Существование

Пусть V и U – векторные пространства. Если $\varphi \colon V \to U$ линейное отображение, то мы знаем, что $\dim \ker \varphi + \dim \operatorname{Im} \varphi = \dim V$. Оказывается, если нам заданы два подпространства $E \subseteq V$ и $W \subseteq U$ такие, что $\dim E + \dim W = \dim V$, то обязательно найдется линейное отображение $\varphi \colon V \to U$ такое, что $E = \ker \varphi$ и $W = \operatorname{Im} \varphi$.

Для доказательства напомним способ поиска линейного отображения. Его я резюмирую в виде следующего утверждения.

Утверждение. Пусть V и U – векторные пространства над полем F и пусть e_1, \ldots, e_n – базис V. Тогда для любого набора $u_1, \ldots, u_n \in U$ существует единственное линейное отображение $\varphi \colon V \to U$ такое, что $\varphi(e_i) = u_i$. И любое линейное отображение может быть получено таким образом.

Давайте выберем базис подпространства E, пусть это будет e_1, \ldots, e_k . Так как это линейно независимое множество лежащее в $E \subseteq V$, то его можно дополнить до базиса V (может быть пустым множеством). Пусть дополненное множество будет $e_1, \ldots, e_k, e_{k+1}, \ldots, e_n$. В частности это означает, что $\dim V = n$. Теперь выберем базис W, пусть это будет f_1, \ldots, f_s . Так как $\dim E + \dim W = n$. Значит s = n - k. То есть векторов f_1, \ldots, f_s столько же сколько векторов e_{k+1}, \ldots, e_n . Тогда мы можем положить

По утверждению существует единственное линейное отображение $\varphi \colon V \to U$ с такими свойствами. Из построения очевидно, что e_1, \dots, e_k лежат в ядре φ , то есть $E = \langle e_1, \dots, e_k \rangle \subseteq \ker \varphi$. С другой стороны, образ φ состоит из

$$f(v) = f(x_1e_1 + \dots + x_ne_n) = x_1f(e_1) + \dots + x_nf(e_n) = x_{k+1}f_1 + \dots + x_nf_s, \quad x_i \in F$$

То есть $\text{Im } \varphi = \langle f_1, \dots, f_s \rangle = W$. То есть нам осталось показать, что $E = \ker \varphi$. Так как одно пространство лежит в другом, то нам достаточно показать, что их размерности равны. Но действительно

$$\dim E = n - \dim W = n - \dim \operatorname{Im} \varphi = \dim \ker \varphi$$

Матрица отображения в координатах

Теперь предположим, что мы выбрали базисы в пространствах V и U, тогда их можно отождествить с F^n и F^m соответственно. В этом случае поиск линейного отображения $\varphi \colon F^n \to F^m$ равносилен поиску матрицы $C \in \mathrm{M}_{m\,n}(F)$, так как любое такое отображение задается по правилу $\varphi(x) = Cx$. Давайте предположим, что подпространства заданы в виде

$$E = \{ y \in F^n \mid Ax = 0 \} \quad W = \langle f_1, \dots, f_s \rangle$$

При этом f_1, \ldots, f_s линейно независимы (то есть базис W), а строки матрицы A линейно независимы (то есть мы выбрали матрицу A наиболее экономным способом). Теперь составим матрицу $B = (f_1 | \ldots | f_s)$.

Обратим внимание, что количество столбцов в матрице B равно s, а количество строк в матрице A я обозначу r. Я утверждаю, что r=s и матрица C=BA задает требуемое линейное отображение. Мы знаем, что размерность пространства заданного системой линейных уравнений вычисляется как $\dim E = n - \operatorname{rk} A$. Но так как в матрице A строки линейно независимы, то $\operatorname{rk} A = r$. С другой стороны, мы знаем, что $\dim E + \dim W = n$ причем $\dim W = s$ по определению. Из этих двух равенств и получаем, что r=s.

Теперь рассмотрим отображение $\varphi \colon F^n \to F^m$ по правилу $x \mapsto BAx$. Ясно, что $E \subseteq \ker \varphi$. С другой стороны, $\operatorname{Im} \varphi = \langle BA \rangle$. Но

$$BA = (f_1|\dots|f_s)A = \left(\left.\sum_{i=1}^s a_{i1}f_i\right|\dots\right|\left.\sum_{i=1}^s a_{in}f_i\right)$$

То есть $\langle BA \rangle \subseteq \langle B \rangle$. Теперь нам надо доказать, что указанные вложения являются равенствами. Начнем с ядра. Надо показать, что $\ker \varphi \subseteq E$. Пусть $x \in \ker \varphi$, то есть BAx = 0. Обозначим y = Ax, тогда By = 0. Но это значит, что $By = y_1f_1 + \ldots + y_sf_s = 0$. И так как f_i линейно независимы, то y = 0. А это означает, что Ax = 0, то есть $x \in E$. Но теперь из условий $\dim E + \dim W = n$ и $\dim \ker \varphi + \dim \operatorname{Im} \varphi = n$ и совпадения $E = \ker \varphi$ следует совпадения $W = \operatorname{Im} \varphi$, потому что одно лежит в другом.