

Trabajo final de grado

Análisis de patrones de comportamiento con cámaras de vigilancia

Licenciatura en Informática

Giulietti, Sebastian Emilio.

Resumen

Introducir un nuevo producto en un mercado con alto nivel de competencia puede ser un desafío, sin embargo, con el uso de la tecnología se puede optimizar el alcance de las estrategias de ventas y campañas publicitarias. Conocer las características demográficas de los consumidores, como estos recorren el salón y cuáles son los productos que más inspeccionan, otorgan una ventaja competitiva a los gerentes permitiéndoles tomar decisiones más efectivas para maximizar la exposición de un producto durante la etapa de lanzamiento. El análisis del comportamiento de las personas no se limita solo los clientes, sino que también, se utiliza para administrar y controlar recursos de ventas.

Integrando inteligencia artificial a una plataforma de video se puede recolectar esta información tan valiosa para las empresas. Con unidades de procesamiento grafico cada día más potentes podemos analizar las imágenes provenientes cientos de cámaras y contar con los resultados casi en tiempo real.

La implementación del sistema permitió acceder a detalles del comportamiento de los clientes y características de estos que no se hubiese podido lograr sin el uso de esta tecnología. Y gracias a esto, se mejoraron los procesos, se optimizo el uso de los recursos y se avanzó en el camino hacia la transformación digital de las estrategias de marketing y administración de la compañía.

Palabras Clave: Inteligencia Artificial, Aprendizaje profundo, Cámaras de video, Analítica

Abstract

Introducing a new product in highly competitive market could be a challenge,

however, with the use of technology, the scope of sales strategies and advertising campaigns

could be optimized. Knowing the demographic characteristics of consumers, how they move

through the salon and which products they inspect the most, give managers a competitive

advantage, allowing them to make more effective decisions to maximize the exposure of a

product during the launch stage. People behavior analysis is not just limited to customers but

is also used to manage and control sales resources.

By integrating artificial intelligence into a video platform, this valuable information

can be collected for companies. With ever more powerful graphic processing units we can

analyze the images from hundreds of cameras and count on the results almost in real time.

The implementation of the system allowed access to details of customer behavior

and customer characteristics that could not have been achieved without the use of this

technology. And thanks to this, processes were improved, the use of resources was optimized,

and progress was made on the road to digital transformation of the company's marketing and

management strategies.

Keywords: Artificial Intelligence, Deep Learning, Video cameras, Analytics

3

Tabla de contenidos.

Título	8
Introducción	8
Antecedentes	8
Descripción del área problemática	9
Justificación	10
Objetivo general	11
Objetivos específicos	11
Marco referencial	11
Dominio del problema	11
TICs	15
Competencias	20
Diseño metodológico	21
Recolección de datos	23
Planificación del proyecto	24
Relevamiento	24
Relevamiento estructural	24
Relevamiento funcional	26
Relevamiento de documentación	30
Proceso de negocios	30
Diagnóstico y propuesta	30
Propuesta	31
Objetivos, Límites y Alcances del Prototipo	31
Objetivos del prototipo	31
Límites	31
Alcance	31

No Contempla	32
Descripción del sistema	32
Requerimientos funcionales	32
Requerimientos no funcionales	32
Diagrama de Casos de uso	33
Descripción de Casos de uso	34
Diagrama de comunicación	43
Diagramas de actividades	43
Diagrama de clase	45
Base de datos Multimedia	46
Diccionario de datos	46
Prototipos de interfaces de pantallas	48
Diagrama de Despliegue	49
Seguridad	49
Análisis de costos	52
Análisis de riesgos	56
Conclusiones	57
Demo	58
Referencia	59
Anexo	61
Anexo A - Segmentación de mercado	61
Anexo B – Diseño de Lavout	62

Índice de tablas

Tabla 1 - Parámetros de configuración de cámara	25
Tabla 2 - Cálculo de servidor de grabación	25
Tabla 3 - Calculo de servidor de administración	26
Tabla 4 -Calculo de servidor de analítica	26
Tabla 5 - Cálculo de Workstation	26
Tabla 6 - Caso de uso Seleccionar Cámara	34
Tabla 7 - Caso de uso Seleccionar un día y una hora	35
Tabla 8 - Caso de uso Seleccionar un intervalo de tiempo	36
Tabla 9 - Caso de uso Generar HeatMap	37
Tabla 10 - Caso de uso Extraer Fondo	38
Tabla 11 - Caso de uso Procesar Regiones (Blobs)	39
Tabla 12 - Caso de uso Aplicar Filtros	40
Tabla 13 - Caso de uso Exportar Metadatos	41
Tabla 14 – Matriz de trazabilidad de requerimientos	42
Tabla 15 – Costos de Desarrollo	52
Tabla 16 – Costos de equipamiento para desarrollo	53
Tabla 17 – Costo Operativo	54
Tabla 18 – Costo de Licencias	55
Tabla 19 – Tabla de riesgos	57
Tabla 20 - Eiemplo de tabla para segmentación de mercado	61

Índice de ilustraciones

llustración 1 – Proceso de CNN	14
Ilustración 2 - Secuencia de embalaje	15
Ilustración 3 - Planificacion del proyecto	24
Ilustración 4 – Organigrama	27
Ilustración 5 – Proceso de negocios	30
Ilustración 6 – Diagrama de casos de uso	33
Ilustración 7 - Diagrama de Comunicación – Mostrar HeatMap	43
Ilustración 8 – Diagrama de actividad – Procesar fondo	43
Ilustración 9 - Diagrama de actividad - Procesar Segmento	44
Ilustración 10 - Diagrama de Actividad - Exportar Metadato	44
Ilustración 11 – Diagrama de clase	45
Ilustración 12 - Pantalla Principal	48
Ilustración 13 - Item Picket	48
Ilustración 14 – Date and Time Picket	49
Ilustración 15 -Diagrama de despliegue	49
Ilustración 16- Layout de tienda	62

Título

Análisis de patrones de comportamiento con cámaras de vigilancia

Introducción

Por cuestiones de seguridad una gran cantidad de comercios, si no es que todos, cuentan con un sistema de cámaras ya instalado. Utilizando los dispositivos existentes un sistema informático es capaz de analizar las imágenes en tiempo casi real sin intervención humana, volcando toda la información relevante a una base de datos.

Al analizar los datos utilizando técnicas de inteligencia artificial se pueden descubrir los patrones de comportamiento de las personas desde el momento que ingresan a la tienda, trazando todo el recorrido que realizan, el tiempo que permanecen y cuando se retiran. Los datos se presentan por medio de gráficos para que sean fácilmente interpretados y de esta forma asistir en la toma de decisiones con el afán de mejorar experiencia de compra de los clientes e incrementar las ventas del negocio.

En este documento no analizaremos en profundidad las estrategias de marketing. Describiremos rápidamente cuales son las más relevantes y queda para el lector profundizar en cada una de ellas para terminar de comprender el fundamento de las decisiones que se toman. Este proyecto se enfoca en el aspecto tecnológico y como se utilizan las herramientas disponibles al momento del desarrollo para que la experiencia de los consumidores pueda ser mejorada, dando como resultado un mejor retorno de inversión.

Antecedentes

En el libro Mercadotecnia, Laura Fischer y Jorge Espejo definen "La mercadotecnia personalizada es propia de la década de los años noventa del siglo XX. Aparece gracias a los importantes avances tecnológicos en administración de bases de datos." (Fischer & Espejo , 2011, p. 24). Algunos de los avances de los que se mencionan en el libro son dispositivos de radio frecuencia, sistemas de video y sensores de movimiento. Este tipo de dispositivos se emplea hace décadas con muy buenos resultados. Los datos recabados permitieron mejorar las estrategias de marketing. Estos dispositivos tienen las grandes limitaciones técnicas, requieren mucho mantenimiento y la tecnología se está volviendo obsoleta con el pasar de los años. Actualmente, con los avances en inteligencia artificial y machine learning es posible

reemplazar todos esos dispositivos antiguos por sistemas más avanzados que recolectan y procesan información proveniente de cámaras de alta definición en fracción de segundos.

Descripción del área problemática

La mayoría de los comercios tienen un esquema bien establecido para el comportamiento del recorrido de los compradores dentro de un supermercado: se supone que el cliente típico viaja por los pasillos de la tienda, deteniéndose en los sectores de las diferentes categorías, deliberando sobre su conjunto de consideración, eligiendo el mejor (maximización de la utilidad), y luego continuar de manera similar hasta que se complete la ruta. A pesar de la común presunción en este escenario, se han realizado pocas investigaciones para Comprender los patrones de viaje reales dentro de un supermercado. (Jeffrey, Eric, & Peter, 2005)

Lo que da lugar a las siguientes preguntas que se realiza a el autor

¿Cómo viajan realmente los compradores por la tienda? ¿Pasan por cada pasillo, o saltan de un área a otra en una manera directa? ¿Pasan gran parte de su tiempo moviéndose por el anillo exterior de la tienda (es decir, la "pista de carreras") o pasan la mayor parte de su tiempo en ciertas secciones de la tienda? ¿La mayoría de los compradores siguen un patrón único y dominante, o son bastante heterogéneos?

El análisis del comportamiento de los clientes dentro del local es una estrategia que se utiliza hace tiempo, los que estamos presentando es una alternativa adaptada a la tecnología actual, utilizando como método de observación imágenes provenientes del sistema de cámaras ya instalado, en implementaciones anteriores se utilizaban dispositivos de identificación por radio frecuencia (RFID) para trazar el recorrido de los carros de supermercado.

La gran limitación de este método es que para poder monitorear los movimientos del cliente se requería de un dispositivo transmisor RFID en el carro y receptores RFID distribuidos por el local. Lo que conlleva a una inversión de hardware y mantenimiento. También se restringía el análisis del comportamiento a supermercados. Utilizando cámaras podemos ampliar el análisis a pequeños comercios, shoppings o cadenas de minoristas.

Justificación

Los clientes no solo buscan realizar compras solo por el producto en sí, el cliente se quiere identificar con la marca. Sentirse contenido y cómodo es uno de los factores que llevan a que se concrete la compra. El proyecto se basó en que la experiencia de un potencial cliente puede ser mejorada con el uso de la tecnología.

Los análisis realizados por el sistema dan como resultado que la tienda personalice sus espacios para que el cliente se mueva con comodidad dentro del local. La ubicación de los productos es un factor muy importante para que el cliente realice la compra. Entender como los clientes se desplazan por la tienda y el tiempo que destinan a cada uno de los sectores permite organizar el diseño de manera tal que los productos con mayor tendencia se exhiban en los sectores de mayor flujo de circulación.

Observar los patrones de circulación dentro de la tienda nos permite identificar momentos y sectores de congestión, lo que genera incomodidad en los compradores. El sistema nos ayuda a ser reactivos y tomar acciones efectivas en tiempo real mejorando la experiencia de compra del cliente logrando una mejor tasa de conversión.

Una larga cola de espera para ser atendido o al momento de realizar el pago desalienta a los potenciales compradores por eso es importante minimizar los tiempos de espera, a su vez tener agentes de venta ociosos cuesta dinero. Identificar en tiempo real el momento en los que se requiere mayor personal de atención al cliente disminuye el tiempo de espera en los momentos de mayor intensidad y optimiza la utilización de los agentes de ventas.

La inteligencia artificial nos permite analizar la demografía de nuestros potenciales compradores. Comprender quienes son nuestros consumidores en las diferentes locaciones geográficas posibilitan la personalización de cada sucursal. También se utiliza esta información para estrategias de expansión del negocio.

En una entrevista realizada por el portal Retail Customer Experience a Stephanie Weagle directora de marketing de BriefCam se describe uno de los beneficios de utilizar esta tecnología.

En lugar de especular sobre la demografía de los clientes, con los datos de análisis de video, los minoristas pueden descubrir a quién están atrayendo y enfocarse mejor en las experiencias de los clientes en función de los datos recopilados a través de análisis de video. (Weagle, 2018)

Objetivo general

Analizar el comportamiento de los clientes en la tienda

Objetivos específicos

- Determinar las características demográficas de los clientes por medio del análisis de imágenes.
- Descubrir las áreas de mayor tránsito de la tienda mediante el análisis del video.
- Determinar sectores del salón con mayor tránsito para diseñar campañas publicitarias más efectivas.
- Integrar el sistema de analítica con la plataforma de video existente

Marco referencial

Dominio del problema

Marketing

El marketing es la realización de aquellas actividades que tienen por objeto cumplir las metas de una organización, al anticiparse a los requerimientos del consumidor o cliente y al encauzar un flujo de mercancías aptas a las necesidades y los servicios que el productor presta al consumidor o cliente. (McCarthy, 1960)

Heatmap

Los mapas de calor son representaciones gráficas bidimensionales de datos donde los valores de una variable se muestran como colores. Los mapas de calor son convincentes por dos razones. Primero, la naturaleza intuitiva de la escala de colores en relación con la temperatura minimiza la cantidad de aprendizaje necesaria para comprenderla. Por experiencia, sabemos que el

amarillo es más cálido que el verde, el naranja es más cálido que el amarillo y el rojo es caliente. No es difícil darse cuenta de que la cantidad de calor es proporcional al nivel de la variable representada. En segundo lugar, los mapas de calor muestran los datos directamente sobre el estímulo. Debido a que los datos no podrían estar más cerca de los elementos a los que pertenecen, se requiere un pequeño esfuerzo mental para leer un mapa de calor. (Bojko, 2009)

Contador de personas

Conocer el número exacto de personas en un edificio, piso de construcción o una habitación individual puede ser crítico para el éxito de las operaciones comerciales o de rescate. Por lo tanto, los centros comerciales deben conocer el número exacto de personas presentes en sus instalaciones, en cualquier momento. Por lo tanto, a menudo compran e implementan sistemas de conteo de personas y videovigilancia. Cada uno de estos sistemas está típicamente dedicado a una sola tarea; ya sea contando o monitoreando a las personas dentro de un área determinada. Aunque operan dentro de la misma área y realizan tareas relacionadas, generalmente no interactúan de ninguna manera y, por lo tanto, no se benefician de la información recopilada por el otro sistema. Además, los sistemas de conteo de personas generalmente estiman la cantidad de personas que pasan a través de una puerta contando la cantidad de veces que un haz de luz, p. luz infrarroja, se interrumpe. Aunque es muy simple, dicho sistema puede ser muy eficiente en escenarios en los que no pasan dos personas u objetos en las líneas de producción industrial al mismo tiempo. (Gouton , Lefloch , Alaya , Hardeberg , & Picot-Clemente, 2008)

Visión computarizada - Computer Vision (CV)

Un conjunto de números que representan la intensidad en el espectro de color. Algoritmos similares a cómo funciona el cerebro humano, utilizando Machine Learning, nos permite entrenar efectivamente un algoritmo para un conjunto de datos para que el algoritmo entienda que representan todos estos números con una organización especifica.

El gran truco de la visión por computadora es extraer descripciones del mundo de imágenes o secuencias de imágenes. Esto es inequívocamente útil. Tomar fotografías no suele ser destructivo y, a veces, discreto. También es fácil y (ahora) barato. Las descripciones que buscan los usuarios pueden diferir ampliamente entre las aplicaciones. Por ejemplo, una técnica conocida como estructura del movimiento hace posible extraer una representación de lo que se representa y cómo se movió la cámara desde una serie de imágenes. (Forsyth & Ponce, 2002)

Inteligencia Artificial – Artificial Intelligence (AI)

Definimos la IA como el estudio de agentes que reciben percepciones del entorno y realizan acciones. Cada uno de estos agentes implementa una función que asigna secuencias de percepción a acciones, y cubrimos diferentes formas de representar estas funciones, como agentes reactivos, planificadores en tiempo real y sistemas teóricos de decisión. Explicamos el papel del aprendizaje al extender el alcance del diseñador a entornos desconocidos, y mostramos cómo ese papel restringe el diseño del agente, favoreciendo la representación y el razonamiento explícito del conocimiento. Tratamos la robótica y la visión no como problemas definidos de forma independiente, sino como algo que ocurre al servicio de alcanzar objetivos. Destacamos la importancia del entorno de la tarea para determinar el diseño apropiado del agente. (Stuart, 2016)

Aprendizaje Automático - Machine Learning (ML)

En el curso Machine Learning Crash Course Google define ML como

Un programa o sistema que construye (entrena) un modelo predictivo a partir de datos de entrada. El sistema utiliza el modelo aprendido para hacer predicciones útiles a partir de datos nuevos (nunca antes vistos) extraídos de la misma distribución que la utilizada para entrenar el modelo. El aprendizaje automático también se refiere al campo de estudio relacionado con estos programas o sistemas. (Google, 2020)

Redes Neuronales Convolucionales - Convolutional Neural Network (CNN)

Para implementar ML sobre imágenes de forma efectiva utilizamos CNN para la clasificación de imágenes, extrayendo progresivamente representaciones de la imagen. Siguiendo con la documentación proporcionada por Google en su curso de ML encontramos como es el proceso que realizan las Redes Neuronales Convolucionales

En lugar de preprocesar los datos para derivar características como texturas y formas, una CNN toma solo los datos de píxeles sin procesar de la imagen como entrada y "aprende" cómo extraer estas características y, en última instancia, inferir qué objeto constituyen.

Ilustración 1 – Proceso de CNN

Fuente: Unite AI - www.unite.ai

Red neuronal recurrent - Recurrent Neural Network (RNN)

Las CNN se utilizan para analizar imágenes, si lo que buscamos es analizar videos su utilizan RNN. La salida del CNN se utiliza para alimentar un Temporally Sensitive Model, que según el curso de machine learning el funcionamiento es el siguiente.

Una red neuronal que se ejecuta intencionalmente varias veces, donde partes de cada ejecución alimentan la próxima ejecución. Específicamente, las capas ocultas de la ejecución anterior proporcionan parte de la entrada a la misma capa oculta en la siguiente ejecución. Las redes neuronales recurrentes son particularmente útiles para evaluar secuencias, de modo que las capas ocultas pueden aprender de ejecuciones anteriores de la red neuronal en partes anteriores de la secuencia.

Ilustración 2 - Secuencia de embalaje

Fuente: Machine Learning Crash Course Google - (Google, 2020)

Sistema de administración de video - Video Management System (VMS)

Soluciones que ofrecen una gestión centralizada de todas las cámaras, servidores y usuarios, y proporcionan un sistema de reglas extremadamente flexible impulsado por horarios y eventos. Consta de los siguientes componentes principales: El servidor de administración y uno o más servidores de grabación (Milestone, 2020)

TICs

Lenguaje de programación C # (pronunciado "si sharp")

Se utiliza para muchos tipos de aplicaciones, incluidos sitios web, sistemas basados en la nube, dispositivos IoT, aprendizaje automático, aplicaciones de escritorio, controladores integrados, aplicaciones móviles, juegos y utilidades de línea de comandos. C#, junto con el tiempo de ejecución compatible, las

bibliotecas y las herramientas conocidas colectivamente como .NET (Griffiths, 2020)

Como podemos ver es un leguaje ampliamente utilizado y también compatible con una gran cantidad de plataformas y no solo en el entorno de Microsoft como lo era en el pasado.

En junio de 2016, Microsoft lanzó la versión 1.0 de .NET Core, una versión multiplataforma de .NET, que permite que las aplicaciones web, microservicios y aplicaciones de consola escritas en C # se ejecuten en macOS y Linux, así como en Windows. Este impulso a otras plataformas ha ido de la mano con la adopción de Microsoft del desarrollo de código abierto. En la historia temprana de C #, Microsoft guardaba todo su código fuente, pero hoy, casi todo lo que rodea a C # se desarrolla al aire libre, con contribuciones de código. (Griffiths, 2020)

Una de las características que lo hace uno de los leguajes más aceptados es la variedad de técnicas de programación que admite.

Ofrece características orientadas a objetos, genéricos y programación funcional. Es compatible con la escritura dinámica y estática. Proporciona potentes funciones orientadas a listas y conjuntos, gracias a Language Integrated Query (LINQ). Tiene soporte intrínseco. (Griffiths, 2020)

Marco de trabajo .Net - Framework .NET

Los servicios que ofrece .NET Framework a las aplicaciones en ejecución son los siguientes: Administración de la memoria, sistema de tipos comunes, biblioteca de clases extensa.

Es un entorno de ejecución administrado. Consta de dos componentes principales: Common Language Runtime (CLR), que es el motor de ejecución que controla las aplicaciones en ejecución, y la biblioteca de clases de .NET Framework, que proporciona una biblioteca de código probado y reutilizable

al que pueden llamar los desarrolladores desde sus propias aplicaciones. (Microsoft, 2020)

.NET Framework también brinda marcos y tecnologías de desarrollo que según el fabricante son las siguientes.

ASP.NET para aplicaciones web, ADO.NET para el acceso a los datos,
Windows Communication Foundation para las aplicaciones orientadas a
servicios y Windows Presentation Foundation para las aplicaciones de
escritorio de Windows.

Para finalizar es importante mencionar que .NET permite la interoperabilidad de lenguajes dando a las aplicaciones desarrolladas con este marco la posibilidad de integrar componentes de diferentes lenguajes, como bien lo describe el fabricante en la siguiente definición.

Los compiladores de lenguajes cuya plataforma de destino es

.NET Framework emiten un código intermedio denominado Lenguaje
intermedio común (CIL), que, a su vez, se compila en tiempo de ejecución a
través de Common Language Runtime. Con esta característica, las rutinas
escritas en un lenguaje son accesibles para otros lenguajes, de modo que los
programadores puedan centrarse en crear aplicaciones en su lenguaje
preferido.

Milestone SDK

Es un marco de desarrollo que agrega módulos a .NET y permite una integración rápida con el VMS. Según el fabricante estas son las características principales.

El kit de desarrollo de software de la plataforma de integración Milestone (SDK de MIP) es un conjunto de herramientas integrales que facilita la creación de aplicaciones o controladores de dispositivos que funcionarán para el software de gestión de video (VMS) Milestone XProtect®.

El marco de desarrollo le permite integrar sin problemas aplicaciones, hardware, cámaras y otros dispositivos, todo de Milestone Technology Partners, clientes finales o proveedores externos. Esto incluye Driver Framework, lanzado junto con 2019 R3, que permite a los socios desarrollar e integrar más tipos de cámaras y dispositivos IoT en Milestone XProtect.

Estos forman una solución que se puede administrar en el software XProtect.

La arquitectura abierta de XProtect junto con el SDK de MIP permiten infinitas posibilidades para agregar características y funcionalidades para crear nuevas y potentes soluciones de vigilancia. (Milestone System, 2020)

Aforge

Es un marco de código abierto C # diseñado para desarrolladores e investigadores en los campos de Visión por Computadora e Inteligencia Artificial: procesamiento de imágenes, redes neuronales, algoritmos genéticos, lógica difusa, aprendizaje automático, robótica, etc. (AFORGE, 2020)

El marco se proporciona no solo con diferentes bibliotecas y sus fuentes, sino con muchas aplicaciones de muestra, que demuestran el uso de este marco, y con archivos de ayuda de documentación, que se proporcionan en formato de Ayuda HTML. La documentación también está disponible en línea. (AFORGE, 2020)

ML.NET

ML.NET es un marco de aprendizaje automático gratuito, de código abierto y multiplataforma para la plataforma de desarrolladores .NET. Permite entrenar, construir y enviar modelos personalizados de aprendizaje automático utilizando C # o F # para una variedad de escenarios de ML.

ML.NET incluye características como el aprendizaje automático automatizado (AutoML) y herramientas como ML.NET CLI y ML.NET Model Builder, que facilitan aún más la integración del aprendizaje automático en sus aplicaciones.

Se puede usar ML.NET para integrar modelos personalizados de aprendizaje automático en sus aplicaciones .NET. ¡Puede usar ML.NET para muchos

escenarios, como análisis de sentimientos, predicción de precios, recomendación de productos, pronósticos de ventas, clasificación de imágenes, detección de objetos y más (Microsoft, 2020)

En este punto es importante diferenciar entre IA y ML

La Inteligencia Artificial (IA) es una rama de la informática que implica entrenar computadoras para hacer cosas que normalmente requieren inteligencia humana. Machine Learning (ML) es un subconjunto de IA que implica que las computadoras aprendan y encuentren patrones en los datos para poder hacer predicciones sobre los nuevos datos por sí mismos. (Microsoft, 2020)

TensorFlow

Es una plataforma de código abierto de extremo a extremo para el aprendizaje automático. Cuenta con un ecosistema integral y flexible de herramientas, bibliotecas y recursos comunitarios que permite a los investigadores impulsar el estado del arte en ML y los desarrolladores crean y despliegan fácilmente aplicaciones basadas en ML.

TensorFlow proporciona una colección de flujos de trabajo para desarrollar y entrenar modelos usando Python, JavaScript o Swift, y para implementar fácilmente en la nube, en las instalaciones, en el navegador o en el dispositivo sin importar el idioma que use. (Google Brain Team, 2020)

SQL

Pronunciado "si-quiu-el" significa Lenguaje de consulta estructurado. SQL se utiliza para comunicarse con una base de datos.

Según ANSI (American National Standards Institute), es el lenguaje estándar para los sistemas de gestión de bases de datos relacionales. Las sentencias SQL se utilizan para realizar tareas como actualizar datos en una base de datos o recuperar datos de una base de datos.

Algunos sistemas comunes de administración de bases de datos relacionales que usan SQL son: Oracle, Sybase, Microsoft SQL Server, Access, Ingres, etc.

Aunque la mayoría de los sistemas de bases de datos usan SQL, la mayoría de ellos también tienen sus propias extensiones propietarias adicionales que generalmente solo se usan en su sistema. (Microsoft, 2020)

Competencias

En la siguiente sección se detallan las empresas que lideran en el sector.

BriefCam

Como ventaja se destaca la integración con una gran cantidad de plataformas de video. Y algoritmos muy eficientes para la detección de objetos.

Una desventaja es que para poder utilizar el software hay que adquirir también un hardware especifico

Es el proveedor líder de la industria de la tecnología VIDEO SYNOPSIS® para la revisión y búsqueda rápida de videos, alertas en tiempo real e información cuantitativa de videos. Al transformar el video en bruto en inteligencia procesable, BriefCam acorta drásticamente el tiempo para atacar las amenazas de seguridad al tiempo que aumenta la seguridad y optimiza las operaciones.

Los productos BriefCam utilizan la última tecnología de aprendizaje profundo para mejorar la seguridad y la eficiencia, y son implementados por las principales agencias de aplicación de la ley, gobiernos y compañías de Fortune 500 en todo el mundo (BriefCam, 2020)

Agent Video Intelligence

La ventaja principal es que las soluciones de Agent Vi pueden implementarse en las instalaciones de la infraestructura del cliente, o entregarse como un SaaS basado en la nube.

Como desventaja encontramos que los componentes de integración con otras plataformas no se mantienen actualizados.

Es el proveedor líder mundial de soluciones de análisis de video de arquitectura abierta impulsadas por IA. La oferta integral de Agent Vi incluye productos de software para el análisis automático de video de vigilancia en vivo o grabado, que permite la detección en tiempo real de eventos de interés, el seguimiento de objetos y la extracción rápida de eventos y datos del video grabado. (AgentVI, 2020)

FootfallCam

Es una solución simple y económica que brinda una excelente relación precio / prestaciones siendo esta la principal ventaja

Podemos observar que requiere de cámaras especificas por lo que tener que implementar esta solución en un cliente que ya cuenta con cámaras puede ser una desventaja

Las soluciones de recuento de personas de FootfallCam es un contador de personas diseñado en el Reino Unido para optimizar las operaciones comerciales de manera eficiente. Desde cadenas minoristas hasta centros comerciales, desde aeropuertos hasta lugares públicos, nuestro mostrador de personal ofrece una comprensión integral de las actividades del consumidor para que pueda impulsar el crecimiento del negocio (FootfallCam, 2020)

Diseño metodológico

Se empleo Lenguaje de Modelado Unificado, o UML por sus siglas en inglés, para el modelado de los componentes bajo el paradigma de programación Orientada a Objetos. En el sitio web UML.com se describe al lenguaje de modelado como

Los modelos nos ayudan al dejarnos trabajar en un nivel más alto de abstracción. Un modelo puede hacer esto ocultando o enmascarando detalles, resaltando el panorama general o enfocándose en diferentes aspectos del prototipo. (OMG, n.d.)

Se utilizo la metodología AGILE para lograr rápidos en el desarrollo de software sin disminuir su calidad con un marco SCRUM como el que se define en la Guía de Ken Schwaber y Jeff Sutherland

Un marco dentro del cual las personas pueden abordar problemas de adaptación complejos, al tiempo que ofrecen productos productivos y creativos del mayor valor posible. El marco Scrum consta de equipos Scrum y sus roles, eventos, artefactos y reglas. Cada componente dentro del marco cumple un propósito específico y es esencial para el éxito y el uso de Scrum. (Schwaber & Sutherland, 2017)

El proyecto se desarrolló usando como base el VMS de Milestone Systems que es una plataforma de video abierta por medio de un SDK llamado Milestone Integration Platform (MIP). Por medio de MIP se obtienen imágenes de las cámaras tanto en tiempo real como las almacenadas. La comunicación de un componente MIP es bidireccional, lo que significa que no solo obtenemos imágenes, sino que también marcamos la base de datos de Milestone con metadatos para reutilizar la aplicación Smart Client mostrando los resultados del proceso de análisis en un entorno ampliamente implementado y conocido por los usuarios finales.

Diseñada para el software de gestión de vídeo (VMS) sobre IP XProtect®,
XProtect Smart Client es una aplicación cliente potente y fácil de usar para las
operaciones diarias de una instalación de seguridad. Su interfaz mejorada
ofrece funciones potentes e intuitivas para gestionar cualquier instalación de
Milestone con independencia de su tamaño.

Mediante la Milestone Integration Platform y la exclusiva arquitectura de plugin se pueden integrar en XProtect Smart Client diversos tipos de aplicaciones de sistemas empresariales y de seguridad. Estas integraciones también incluyen opciones de filtrado especiales controladas por funciones de metadatos de integraciones de socios, para que criterios de búsqueda como cruces de línea, objetos en campos y LPR puedan utilizarse en las búsquedas directamente desde la pestaña Búsqueda, lo que se traduce en un ahorro de tiempo y una mayor eficacia. (Milestone, 2020)

Para que las imágenes puedan ser analizadas de forma automática primero debemos prepararlas, esto significa que se deben aplicar filtros, para esta tarea se utilizaron las

herramientas que ofrece el marco de trabajo Afore. Luego de la aplicación de diferentes filtros se obtiene una representación binaria de las áreas de interés.

Con Tensorflow se realiza el análisis mediante un modelo entrenado para identificar patrones y objetos que dan como resultado los metadatos buscados para insertar tanto en una base de datos propia como en la base de datos de Milestone.

La implementación del back-end se desplegó sobre un servidor físico llamado Servidor de Analítica que se comunicó con el servidor VMS por medio de una red LAN. En este servidor convive la aplicación de analítica desarrollada y la base de datos SQL de Microsoft.

La interfaz de usuario o front--end se desarrolló utilizando el framework .NET que permite compilar el desarrollo para múltiples plataformas.

Los reportes se presentaron en formato PDF que incluyen imágenes que representan el heatmap con capas de colores donde se identifican los objetos y patrones. Así mismo se incluyen tablas con información detallada de los objetos que se mueven en la escena.

Recolección de datos

Se realizo el análisis de los procedimientos y documentos utilizados actualmente como también el estudio de los sistemas que se utilizan. El proceso de recolección de información se realizó en el siguiente orden

- Observación de los procesos relacionados con la observación de los clientes para la toma de decisiones al diseñar estrategias de marketing.
- 2) Estudio de los sistemas que se emplean
- 3) Análisis de herramientas y desarrollos disponibles que se puedan implementar en el campo de análisis de imágenes.
- 4) Análisis de plataformas de video que permitan la integración de desarrollos personalizados.

Planificación del proyecto

El siguiente diagrama de Gantt expone el tiempo previsto para cada una de las actividades que se llevaran a cabo a lo largo del proyecto.

Ilustración 3 - Planificacion del proyecto

Fuente: Elaboración propia

Relevamiento

Relevamiento estructural

Los requerimientos de los servidores varían de acuerdo con la cantidad de cámaras instaladas, la resolución, los cuadros por segundo o FPS por su sigla en inglés y el tipo de compresión. En el proyecto se trabajó sobre una estructura modelada por lo tanto el equipamiento tecnológico necesario para una instalación con 20 cámaras es el siguiente.

Cámaras

Fabricante	Axis
Modelo	P3227-LVE
FPS	30
Compresión	H.264
Bitrate	15592.5
Cantidad de movimiento	80%

Tabla 1 - Parámetros de configuración de cámara Fuente: Elaboración Propia

Servidor de Grabación

Procesador	Intel Xeon E5-2603 v4
Memoria	16 GB RAM
Conectividad	2 Gigabit NICs
Sistema Operativo	Windows Server 2016 x64 Standard/Datacenter
Volumen de SO y Aplicación	2 x 300 GB mínimo RAID 1
Volumen de base de datos Live	6 x 15K RPM 450GB RAID 1 / RAID10
Volumen de base de datos Archive	12 x 7.2K RPM 8TB RAID 5
Ancho de banda entre cámaras y	304.54 Mbps
servidor	
Ancho de banda entre 1 cliente y el	15.22 Mbps
servidor	
Ancho de banda total	319.76 Mbps
IOPS estimados:	390.30
Throughput total de los discos	129.43 MB/sec

Tabla 2 - Cálculo de servidor de grabación Fuente: Calculador de servidores Milestone Systems

Servidor de administración

Procesador	Intel Xeon E5-2603 v4
Memoria	12 GB RAM
Conectividad	1 Gigabit NICs
Sistema Operativo	Windows Server 2016 x64 Standard/Datacenter
SQL	SQL Express
Volumen de SO y Aplicación	300 GB 10K RPM RAID 1

Tabla 3 - Calculo de servidor de administración Fuente: Calculador de servidores Milestone Systems

Servidor de Analítica

Procesador	Intel Xeon E5-2603 v4
Memoria	16 GB RAM
Conectividad	1 Gigabit NICs
Sistema Operativo	Windows Server 2016 x64 Standard/Datacenter
Volumen de SO y Aplicación	300 GB 10K RPM RAID 1

Tabla 4 -Calculo de servidor de analítica Fuente: Elaboración propia

Workstation Cliente

Procesador	Intel i-7700k
Aceleración por Hardware	Intel Quick Symc or NVIDIA GPU versión 6.x o
	superior
Memoria	16 GB RAM
Conectividad	1 Gigabit NICs
Sistema Operativo	Microsoft® Windows® 10 Enterprise
Volumen de SO y Aplicación	300 GB 10K RPM

Tabla 5 - Cálculo de Workstation Fuente: Calculador de servidores Milestone Systems

Relevamiento funcional

Dado que el sistema puede ser implementado por una gran variedad de negocios, vamos a modelar una organización con una estructura organizada según las funciones de la mercadotecnia, como la investigación de mercados, la distribución, el desarrollo de nuevos productos, las ventas, la publicidad y las relaciones con los clientes

Ilustración 4 – Organigrama Fuente: Elaboración propia

Director de mercadotécnica y comercial

Los encargados en la dirección de la mercadotecnia se dedican esencialmente a coordinar las actividades para alcanzar los objetivos, tomar decisiones y resolver problemas mediante las fases de planeación, ejecución y control de su trabajo. Básicamente se enfrentan a dos cuestiones: determinar las metas y desarrollar planes para alcanzarlas

Gerente de ventas

Es la persona que se encarga de aumentar las ventas, a través de un liderazgo eficiente del talento humano, durante un plazo de tiempo determinado. Dirige y organiza al departamento de ventas; además es quien debe motivar e incentivar a su equipo de trabajo para obtener mejores resultados.

Gerente de distribución

Se encargan de organizar la recepción, almacenamiento y entrega de bienes a los clientes o puntos de venta. Pueden ser empleados por fabricantes, minoristas o empresas mayoristas que utilizan sus propios medios de transporte

Gerente de publicidad

Planificar, dirigir y coordinar las actividades de publicidad y relaciones públicas de la empresa u organización. Diseñar y planificar campañas publicitarias. Diseñar la estrategia de publicidad.

Gerente de productos.

Cubre muchas partes distintas de la producción; desde el manejo y desarrollo del producto, calidad, procedimientos de envío y producción en serie, hasta precios y estrategias.

Su papel incluye implementar estrategias tanto de corto como de largo plazo para la región, a la vez que garantiza que concuerden con nuestras estrategias globales.

Nombre Proceso: Segmentación de mercados.

Roles: Gerente de productos

Ejecución:

1) Conocer las necesidades del consumidor.

- 2) Crear un producto y un programa de mercadotecnia para alcanzar ese submercado y satisfacer sus necesidades.
- 3) Producir una variedad distinta para cada segmento del mercado.

Nombre Proceso: Diseño de producto.

Roles: Gerente de producto

Ejecución:

1) Desarrollo del concepto: Definición del concepto de producto.

2) Planeación del producto: Establecer arquitectura de producto.

3) Ingeniería de producto: Construir y probar prototipo.

4) Producción piloto: Producir unidades piloto.

5) Introducción al mercado: Lanzamiento a producción de volumen

Nombre Proceso: Diseño de Layout de la tienda.

Roles: Gerente de Ventas

Ejecución:

- 1) Elegir el tipo de diseño básico. De cuadricula, lazo, circulación libre, diagonal o angular.
- 2) Diagramar el diseño.
- 3) Analizar el flujo de tránsito y el comportamiento de los clientes.
- 4) Posicionar el área de pago.
- 5) Posicionar los productos para una exposición máxima.
- 6) Añadir accesorios, publicidades y pantallas.
- 7) Crear zonas de confort y otras amenidades.

Nombre Proceso: Montaje de Vidriera.

Roles: Gerente de publicidad

Ejecución:

1) Condiciones: Imagen de la marca, productos de mayor tendencia.

Diseño: Selección de colores acordes con la campaña.

3) Boceto: Plasmar la idea que se quiere realizar.

4) Maqueta: Reproducción física a escala del proyecto.

Nombre Proceso: Compra.

Roles: Comprador

Ejecución:

1) Concienciación: El usuario se da cuenta que tiene una necesidad, problema o

motivación que quiere solucionar.

2) Investigación: Conocer y recopilar información sobre su problema, necesidad o

motivación.

3) Decisión: Investigación en profundidad sobre qué alternativas existen en el

mercado para solucionarlo. Entre todas las alternativas, el usuario selecciona

aquella que le encaja mejor.

4) Acción: Compra del producto.

Proceso: Atención al público.

Roles: Empleados de ventas. Compradores

Ejecución:

1) Contacto: El usuario acudirá con determinadas expectativas: ser tratado con

amabilidad, obtener una respuesta rápida, resolver una duda o problema

2) Obtención de información: Escuchar la voz del cliente y comprender

correctamente sus demandas.

3) Resolución: No solo importa resolver la cuestión, sino también el cómo se

resuelve.

4) Finalización: Confirmar de forma expresa que la demanda del cliente ha sido

satisfecha y despedirlo conforme al protocolo establecido.

29

Relevamiento de documentación

Los documentos utilizados para la realización del proyecto son los que referencian la segmentación del mercado y el diseño de la tienda. Ambos documentos se encuentran para su consulta en los anexos A y B respectivamente.

Proceso de negocios

Ilustración 5 – Proceso de negocios Fuente: Elaboración propia

Diagnóstico y propuesta

De los procesos modelados para la organización se encuentran los siguientes problemas que pueden ser mejorados mediante el uso del sistema.

Proceso: Segmentación de mercados.

Problema: Se requiere información demográfica de los clientes

Causa: No se cuenta con información demográfica de cada persona que ingresa a las sucursales

Proceso: Diseño de Layout de la tienda.

Problema 1: Congestión en sectores de la tienda

Causa 1: Diseño inadecuado falta de información de los movimientos de los clientes

dentro del salón

Problema 2: La posición de los productos y publicidades no es optima

Causa 2: Falta de información del comportamiento de los clientes y en qué sectores

se detienen con más frecuencia.

Proceso: Atención al público.

Problema: Los clientes pasan mucho tiempo en espera de atención personalizada

Causa: La falta de estadísticas detalladas de la ocupación del por hora y día.

Propuesta

Mediante la implementación del sistema se logró mejorar la experiencia del cliente

e incrementar las ventas. Los datos recolectados brindaron información valiosos sobre el

comportamiento de los consumidores que fueron utilizados para el diseño de nuevos

productos, la reubicación de los productos exhibidos, la remodelación de los mostradores de

atención, exhibidores, publicidades y sectores de caja.

Se reporto una mejora en atención al cliente al reducir los tiempos poniendo a

disposición de los consumidores agentes de ventas y cajeros en los momentos de mayor

demanda.

Objetivos, Límites y Alcances del Prototipo

Objetivos del prototipo

Detectar las áreas de mayor actividad de la tienda por medio de la identificación de

patrones de comportamiento utilizando cámaras de video.

Límites

Se analiza el comportamiento de las personas desde que ingresan el local comercial

hasta que se retiran.

Alcance

Integrar con el sistema de analítica con la plataforma de video.

31

- Analizar el comportamiento del cliente desde que ingresa al salón de ventas hasta que se retira.
- Presentar de los datos recolectados en un HeatMap utilizando la plataforma de video.

No Contempla

Analíticas para identificación demográfica

Descripción del sistema

Requerimientos funcionales

RF01	Integración con la plataforma de video
RF02	Integración con el servidor de grabación para acceder a la base de datos
	multimedia.
RF03	Integración con la aplicación Smart Client para mostrar la interfaz de usuario.
RF04	Identificar objetos en la escena
RF05	Crear un HeatMap con información del movimiento.
RF06	Exportar metadatos a la plataforma de video

Tabla 7: Requerimientos Funcionales

Fuente: Elaboración Propia

Requerimientos no funcionales

RNF01	La Interfaz de usuario fácil de usar y fácil de aprender
RNF02	Credenciales con permiso de acceso a la plataforma de video.
RNF03	Un cámara con campo de visión del salón ubicada a entre 2 y 3 metros con lente
	de 2.8 mm y una resolución mínima D1.
RNF04	Conexión entre servidores y cámaras con velocidad 1Gb o superior.
RNF05	El sistema debe tener la capacidad de analizar imágenes provenientes de
	cualquier fuente.
RNF06	Los datos deben estar encriptados en todo momento
RNF07	La base de datos y los eventos se deben mantener durante 5 años
RNF08	El sistema debe ser capaz de operar con al menos 20 usuarios concurrentes

RNF09	El sistema deberá funcionar con cualquier versión del sistema operativo
	Windows 8.1 o superior.

Tabla 8: Requerimientos No Funcionales Fuente: Elaboración propia

Diagrama de Casos de uso

Ilustración 6 – Diagrama de casos de uso Fuente: Elaboración propia

Descripción de Casos de uso

Nombre caso de uso	Seleccionar cámara	
Prioridad	Alta	
Complejidad	Baja	
Tipo de caso de uso	Concreto	
Actor	Usuario	
Objetivo	Permite al Usuario seleccionar una cámara del VMS	
Precondiciones	Debe existir al menos una cámara en el VMS	
Eventos	Alternativas	
1. El usuario ingresa a la aplicación de visualización de cámaras Smart Client 2. El usuario selecciona la solapa HeatMap 3. El usuario selecciona el botón "Seleccionar Cámara". 4. El sistema muestra la interfaz "ítem Picker" 5. El usuario expande un ítem servidor. 6. El usuario despliega un ítem grupo de cámaras 7. El usuario selecciona una cámara y hace doble click en una cámara 8. Fin		
Post Condición	Éxito: El usuario selecciona una cámara	
Post Condicion	Fracaso: No se selecciona ninguna cámara	
Restricciones de Tiempo	Ninguna	
Interfaces Requeridas	Interfaz de plug-in para Smart Client, Item Picker	
Autor	Giulietti, Sebastian Emilio	

Tabla 6 - Caso de uso Seleccionar Cámara Fuente: Elaboración Propia

<u></u>			
Nombre caso de uso	Seleccio	onar un día y una hora	
Prioridad	Alta		
Complejidad	Baja		
Tipo de caso de uso	Concret	:0	
Actor	Usuario)	
Objetivo	Permite	e al Usuario seleccionar un intervalo de tiempo	
Precondiciones	Ninguna	a	
Eventos		Alternativas	
 El usuario ingresa a la aplicación de visualización de cámaras Smart Client El usuario selecciona la solapa HeatMap El usuario selecciona el botón para desplegar la ventana de selección de fecha El sistema muestra la interfaz "date/time picker" El usuario selecciona un día y una hora El usuario selecciona aceptar 6.1 El usuario cancela la selección de fecha y hora 			
7. Fin			
Post Condición	Éxito: El usuario selecciona un día y hora		
	Fracaso	e: No se selecciona un día y una hora	
Restricciones de Tiempo	Ningun	a	
Interfaces Requeridas	Interfaz	de plug-in para Smart Client, "date/time picker"	
Autor	(Giulietti, Sebastian Emilio	

Tabla 7 - Caso de uso Seleccionar un día y una hora Fuente: Elaboración Propia

Nombre caso de uso	Seleccionar un intervalo de tiempo	
Prioridad	Alta	
Complejidad	Baja	
Tipo de caso de uso	Concreto	
Actor	Usuario	
Objetivo	Permite al Usuario seleccionar un intervalo de tiempo	
Precondiciones	Ninguna	
Eventos	Alternativas	
El usuario ingresa a la aplicación de visualización de cámaras Smart Client El usuario selecciona la solapa HeatMap El usuario selecciona un día y una		
hora inicial utilizando "Se un día y una hora"	· 1	
El usuario selecciona un día y una hora final utilizando "Seleccionar un día y una hora"		
5. Fin		
Post Condición	Éxito: El usuario selecciona un intervalo de tiempo	
	Fracaso: No se selecciona un intervalo de tempo	
Restricciones de Tiempo	Ninguna	
Interfaces Requeridas	Interfaz de plug-in para Smart Client, "date/time picker"	
Autor	Giulietti, Sebastian Emilio	

Tabla 8 - Caso de uso Seleccionar un intervalo de tiempo Fuente: Elaboración Propia

Nombre caso de uso	Generar HeatM	1 ар			
Prioridad	Alta				
Complejidad	Alta				
Tipo de caso de uso	Concreto				
Actor	Usuario	Usuario			
Objetivo	Permite al Usu	e al Usuario seleccionar un intervalo de tiempo			
Precondiciones		onada, tiempo inicial y tiempo final seleccionado. menor que tiempo final. Existir grabaciones en el cionado			
Eventos		Alternativas			
 El usuario ingresa a visualización de Client. 	cámaras Smart				
El usuario selecci HeatMap.	ona la solapa				
3. El usuario seleccio utilizando "Seleccio					
4. El usuario selecciona tiempo utilizando intervalo de tiempo	"Seleccionar un				
5. El usuario presid "Buscar".	ona el botón				
6. El sistema inicia el una ventana con el p		6.1. El sistema muestra un error si alguno de los campos no está correcto.			
7. El sistema cierra finalizar el análisis.	la ventana al	7.1. El usuario cancela el análisis.			
8. El sistema muestra HeatMap generada	_				
9. Fin					
Post Condición	Heatmap de n	tema muestra una imagen que representa el movimiento en el intervalo seleccionado			
	grabaciones.	No se puede generar la imagen por falta de s.			
Restricciones de Tiempo	Ninguna				
Interfaces Requeridas	Interfaz de plu Picker"	olug-in para Smart Client, "date/time picker", "item			
Autor	Giulietti, Seba	stian Emilio			

Tabla 9 - Caso de uso Generar HeatMap Fuente: Elaboración Propia

Nombre caso de uso	Extraer Fondo				
Prioridad	Alta	Alta			
Complejidad	Alta				
Tipo de caso de uso	Abstracto				
Actor	Sistema				
Objetivo	Permite al siste	ema generar un modelo para rotular los pixeles de			
	la imagen com	o pixeles fijos pertenecientes al fondo			
Precondiciones	Contar con cua	dros suficientes para realizar el análisis			
Eventos		Alternativas			
1. El algoritmo recibe	un stream de				
video del servidor d	e grabación				
2. Construir un model	o del fondo con				
una red neuronal					
3. Extraer fondo					
4. Fin					
Post Condición	Éxito: El sister	ma almacena en memoria una imagen del fondo			
	Fracaso: No	se puede generar la imagen por falta de			
	grabaciones.				
Restricciones de	< 60 seg				
Tiempo					
Interfaces	Ninguna				
Requeridas					
Autor	Giulietti, Sebastian Emilio				

Tabla 10 - Caso de uso Extraer Fondo Fuente: Elaboración Propia

		7-1.1.			
Nombre caso de uso	Procesar Regio	nes (Blobs)			
Prioridad	Alta				
Complejidad	Alta				
Tipo de caso de uso	Abstracto				
Actor	Sistema				
Objetivo	determinado	ema identificar objetos en la escena de un tamaño			
Precondiciones	Una imagen co	n el fondo sustraído			
Eventos		Alternativas			
El sistema recibe u fondo sustraído					
 El sistema aplica fil- identificación de regi eficiente 					
_	El sistema genera una lista de todas las regiones de la imagen con un tamaño mayor a h x w.				
5. El sistema almacena una lista	a las regiones en				
6. Fin					
Post Condición	identificas	ma almacena en memoria una lista de las regiones			
	Fracaso: No se mala calidad.	e pueden identificar regiones por una imagen de			
Restricciones de Tiempo	< 60 seg				
Interfaces Requeridas	Ninguna				
Autor	Giulietti, Seba	stian Emilio			

Tabla 11 - Caso de uso Procesar Regiones (Blobs) Fuente: Elaboración Propia

Nombre caso de uso	Aplicar Filtros			
Prioridad	Alta			
Complejidad	Ваја			
Tipo de caso de uso	Abstracto			
Actor	Sistema			
Objetivo	•	n una imagen con el fondo sustraído para mejorar e del algoritmo de identificación de regiones		
Precondiciones	Una imagen co	n el fondo sustraído		
Eventos		Alternativas		
 El sistema recibe u fondo sustraído El sistema aplica fil identificación de region 	tros para que la			
eficiente 3. Fin				
5. FIII				
Post Condición	Éxito: El sister	na almacena en memoria una imagen de filtrada		
	Fracaso: No se pueden aplicar el filtro y se almacena una imagen negra			
Restricciones de Tiempo	< 1 seg			
Interfaces Requeridas	Ninguna			
Autor	Giulietti, Seba	stian Emilio		

Tabla 12 - Caso de uso Aplicar Filtros Fuente: Elaboración Propia

Nombre caso de uso	Exportar Meta	datos			
Prioridad	Alta				
Complejidad	Ваја				
Tipo de caso de uso	Abstracto				
Actor	Sistema	Sistema			
Objetivo		la base de datos de la plataforma de video e los objetos identificados en la imagen			
Precondiciones	Lista de region	es identificadas en un cuadro			
Eventos		Alternativas			
 El sistema tor región de una lis 	ta de regiones				
2. El sistema extrac la región y la memoria	e información de a almacena en				
3. El sistema crea formato de meta					
4. El sistema envía servidor de ever					
 Se repite el pro el siguiente eler de regiones 	cedimiento para nento de la lista	5.1. No quedan más elementos en la lista de regiones			
6. Fin					
Post Condición	la región dete				
	Fracaso: No e	existe ninguna región identificada			
Restricciones de Tiempo	< 5 seg				
Interfaces Requeridas	Ninguna				
Autor	Giulietti, Seba	astian Emilio			

Tabla 13 - Caso de uso Exportar Metadatos Fuente: Elaboración Propia

		Seleccionar cámara	Seleccionar un día y una hora	Seleccionar un intervalo de tiempo	Extraer Fondo	Procesar Regiones (Blobs)	Aplicar Filtros	Exportar Metadatos
F001	Integración con el servidor VMS para acceder a las cámaras.	Х						
F002	Integración con el servidor de grabación para acceder a la base de datos multimedia.	Х		X				
F003	Integración con la aplicación Smart Client para mostrar la interfaz de usuario.	X	X	X				
F004	Identificar objetos en la escena				Х	Х		
F005	Crear un HeatMap con información del movimiento.				Х	Х	х	Х
F006	Exportar metadatos al VMS							х

Tabla 14 – Matriz de trazabilidad de requerimientos Fuente: Elaboración propia

Diagrama de comunicación

Ilustración 7 - Diagrama de Comunicación – Mostrar HeatMap Fuente: Elaboración propia

Diagramas de actividades

Eliminar Fondo

Ilustración 8 – Diagrama de actividad – Procesar fondo Fuente: Elaboración propia

Procesar Blobs

Exportar Metadata

Ilustración 9 - Diagrama de actividad - Procesar Segmento Fuente: Elaboración Propia

Ilustración 10 - Diagrama de Actividad - Exportar Metadato Elaboración propia

Diagrama de clase

Ilustración 11 – Diagrama de clase Fuente: Elaboración propia

Base de datos Multimedia

El video, audio y metadatos recibidos son almacenado en una base de datos dedicada desarrollada por Milestone Systems de alta performance, optimizada para grabar y almacenar contenido multimedia.

La base de datos soporta varias características únicas del VMS como almacenamiento multietapa por capas, reducción de fotogramas, escalación de calidad de grabación de video (SVQR), encriptación y adición de firmas digitales a las grabaciones.

La estructura de carpetas tiene la estructura "\mdb-number\camera-ID\media-type" donde los datos son guardados en bloques continuos con un tamaño de 16kb.

La carpeta mdb-number contiene 3 archivos que indexan el contenido del banco de almacenamiento.

- Config.xml que contiene información de la versión, el nombre, el tamaño máximo que puede alcanzar el banco, el tiempo de retención máximo del banco y la contraseña de encriptación.
- Cache.xml representa en formato xml la tabla de contenidos del banco de almacenamiento para las grabaciones recibidas durante una hora. Las columnas más relevantes de la tabla son el FQID de la cámara, tamaño del bloque, tipo de entrada, hora de inicio del bloque, hora del fin del bloque.
- Cache_archive.xml. representa la misma información que el archivo cache.xml pero con información almacenada en todo el banco.

Diccionario de datos

mdb-number: Es un FQID que representa la configuración de almacenamiento, esta configuración contiene información de cuanto espacio se tiene asignado para el almacenamiento.

camera-ID: El FQID que identifica unívocamente a una cámara dentro del sistema.

media-type: el FQID que representa el tipo de contenido que se almacenara en la ubicación, este puede ser Video, Audio, Metadatos

FQID (Fully Qualified ID): Contiene un conjunto completo de campos para contactar a un servidor y obtener más detalles. El propósito es identificar un elemento al nivel donde contiene suficiente información para contactar al servidor correcto, en un protocolo

relevante, y obtener más información para el elemento de ese servidor. La clave se compone de:

- 1) **ServerId.Id Guid**: identifica un servidor específico o un conjunto de configuración.
- 2) Parentid Guid: el FQID padre lo contendrá en el campo Objectid
- 3) **ObjectId Guid**: una identificación única para este objeto (Item)

Si un FQID no tiene un padre, el parentId es Guid.Empty.

Para facilitar la búsqueda y ayudar a mostrar opciones de selección relevantes para los usuarios, están presentes los siguientes campos de tipo:

- 1) FolderType: identifica si se trata de algún tipo de agrupación o colección
- **2) Kind Guid**: identifica qué tipo de objeto identifica este FQID. La clase Kind contiene un conjunto de valores predefinidos para todos los tipos conocidos de Milestone.

Metadato: Mensaje para intercambiar la coordenada de una figura geométrica y descripción entre el servidor de analítica y la plataforma de video.

```
<?xml version="1.0" encoding="UTF-8"?>
<tt:MetadataStream xmlns:tt="http://www.onvif.org/ver10/schema">
  <tt:VideoAnalytics>
    <tt:Frame UtcTime="2013-10-08T08:40:42.042+02:00">
      <tt:Object ObjectId="1">
        <tt:Appearance>
          <tt:Transformation>
            <tt:Translate x="-1.0" y="-1.0"/>
            <tt:Scale x="0.003125" y="0.00416667"/>
          </tt:Transformation>
          <tt:Shape>
            <tt:BoundingBox left="20.0" top="30.0" right="100.0" bottom="80.0"/>
            <tt:CenterOfGravity x="60.0" y="50.0"/>
          </tt:Shape>
          <tt:Class>
            <tt:ClassCandidate>
              <tt:Type>Animal</tt:Type>
              <tt:Likelihood>0.9</tt:Likelihood>
            </tt:ClassCandidate>
          </tt:Class>
        </tt:Appearance>
        <tt:Behaviour>
          <tt:Idle/>
        </tt:Behaviour>
      </tt:Object>
    </tt:Frame>
  </tt:VideoAnalytics>
  <tt:Extension>
    <OriginalData>U29tZU9yaWdpbmFsRGF0YSBlbmNvZGVkIGluIEJBU0U2NA==</OriginalData>
  </tt:Extension>
        </tt:MetadataStream>
```

Prototipos de interfaces de pantallas

Pantalla principal del plugin

Ilustración 12 - Pantalla Principal Fuente: Elaboración propia

Item Picker

Ilustración 13 - Item Picket Fuente: Milestone SDK

Date and time Picker

Ilustración 14 – Date and Time Picket Fuente: Milestone SDK

Diagrama de Despliegue

Ilustración 15 -Diagrama de despliegue Fuente: Elaboración propia

Seguridad

La seguridad que se utiliza para proteger los datos en tránsito como los archivados será delegado a la plataforma de video. A continuación, se describe cuáles son los mecanismos utilizados.

Acceso a la aplicación

La plataforma de video ofrece como medio de autenticación dos tipos de usuarios. Estos pueden ser, usuarios básicos o usuarios de Windows a su vez los usuarios de Windows pueden ser locales o usuarios de Active Directory.

Los usuarios básicos ingresan al sistema con la combinación usuario contraseña. Donde la contraseña debe cumplir con el con la misma requerimientos de complejidad configurados en el Sistema Operativo en el que está instalado el servidor de administración de la plataforma de video. Los usuarios básicos no cumplen con Reglamento General de Protección de Datos (GDPR).

Los usuarios de Windows ingresan al sistema de forma automática tomando como el usuario que esta autenticado el sistema operativo donde se está ejecutando el cliente. En este caso la complejidad de la contraseña estará definida por el controlador de dominio.

Active Directory (AD), es un servicio de directorio implementado por Microsoft para redes de dominio en Windows. Esta función está incluida en todos los sistemas operativos de Windows. Identifica recursos en la red para que los usuarios o aplicaciones puedan accederlos.

Los usuarios pueden ser administrados de forma individual o en grupos. Un grupo contiene cualquier número de usuarios. De esta manera administrar los usuarios que tienen acceso al sistema es definido en el controlador de dominio, cualquier cambio que se haga sobre los grupos de AD será reflejado inmediatamente en la plataforma de video.

Los grupos de usuarios o usuarios se asignan a roles dentro del sistema. Los roles determinan el nivel de acceso que se tiene sobre cada una de cámaras, se puede asignar acceso de solo ver imágenes en vivo, acceso a las grabaciones y sobre qué grupo o grupos de cámaras aplican estos accesos.

El sistema incorpora de manera predeterminada el role administrador que tiene acceso a la totalidad del sistema y el rol Operador que solo tiene acceso a todas las cámaras para visualización en vivo y no tiene acceso a las configuraciones del sistema.

Se pueden crear tantos roles como sean necesarios y cada rol puede contener usuarios o grupos de usuarios sin restricciones.

Política de respaldo de información

La configuracion del sistema se almacena en la base de datos SQL denominada Surveillance, para manter un respaldo del sistema se realizan copias de la base de datos de manera automatica semanalmente y manualmente antes de realizar cambios en la configuracion del sistema.

Las copias de seguridad se almacenan en una carpeta compartida que solo los usuarias aministradores tienen acceso ubicada en una unidad de al amacenamiento conectado en red (NAS). La unidad esta conectaeda en una red aislada.

La base de datos multimedia que contiene video, audio y metadatos es almacenado en unidades de disco estan formadas por arreglos del tipo RAID 1 con tolerancia de un disco en falla para el almacenamiento en vivo, un arreglo del tipo RAID 1 requiere 2 unidades de disco y la informacion es respaldada de espejo, es decir, los datos que se almacenan en un disco se replican en el otro.

Para el archivado a largo plazo RAID 5 tambien con tolerancia de un disco dañado, en este caso la cantidad de discos requeridos es de tres o mas. Los datos se almacenan distribuidos en tres de los discos almacenando en el cuarto valor que representa la paridad calculada de los tres primeros. Si uno de los discos falla este puede ser reemplazado por uno nuevo y los datos pueden ser calculados utilizando el disco de paridad, si el disco de paridad es el que falla, simplemente se vuelven a calcular los valores.

Para sistemas que requieran mayor seguridad para la configuracion del archivado a largo plazo se puede utilizar RAID 6 con tolerancia de dos discos en dañados. Para esta confiuracion se requieren como minimo cinco discos, de los cuales 2 son destinados para los valores de paridad.

Tanto los servidores como los equipos de comunicación (switchs y routers) cuentan con fuentes de alimentacion redundatnes. Cada una de las fuentes de los equipos se conectan a unidades de respaldo de energia (UPS) independientes, tieniendo un total de 2 UPSs cada una conectada a distintas fases del suministro electrico. El sistema de generadores electricos para casos de cortes prolongados queda a cargo del cliente que sera el responsable de mantenerlo.

Análisis de costos

A continuación, vamos a desglosar los gastos que se tienen para los diferentes aspectos de la implementación del sistema.

Costos de desarrollo

La tabla a continuación muestra los honorarios que percibirá lo integrantes del equipo de desarrollo. Los valores sugeridos se obtuvieron de Cámara Nacional de la Industria Electrónica, Telecomunicaciones e Informática (CANIETI, 2020)

Puesto	Cantidad	Honorarios por hora	Cantidad de horas	Total
Ingeniero Líder de Desarrollo	1	\$ 489	640	\$ 313,241.60
Ingeniero de Software	2	\$ 350	640	\$ 223,744.00
Analista Funcional	4	\$ 210	640	\$ 134,246.40
Tester	1	\$ 334	40	\$ 13,376.00
Documentador / Arquitecto	1	\$ 426	320	\$ 136,192.00

Tabla 15 – Costos de Desarrollo

Fuente: Elaboración propia

Costos equipamiento para equipo de desarrollo

La tabla muestra los costos para de los puestos de trabajo del equipo, los valores fueron obtenidos de los e-shops de los fabricantes Lenovo y Microsoft. (Lenovo, 2020) y (Microsoft, 2020), los valores del alquiler de la oficina compartida del sitio web del proveedor (WeWork, 2020)

Recurso	Descripción	Cantidad	Costo	Total
ThinkPad T495s (14", AMD)	Laptop	7	\$ 79,212.28	\$ 554,485.94
Alquiler de WeWork	Oficina Estándar para 7 personas	4	\$ 109,136	\$ 436,544.00
Suscripción Visual Studio Professional	Entorno de desarrollo	7	\$ 3,645	\$ 25,514.72

Tabla 16 – Costos de equipamiento para desarrollo Fuente: Elaboración propia

Costo Operativo

La tabla describe los costos de los equipos requeridos para la implementación del sistema, los valores obtenidos del proveedor Razberi Technologies (Razberi, 2020)

Recurso	Código	Descripción	Cantidad	Costo	Total
Servidor de	M4-16-960G-S16	Razberi Core™ Video Management Servers	2	\$ 211,915.20	\$ 423,830.40
Administración					
Servidor de	V08-4210-16-24T4-S16	Razberi Core™ Milestone Recording Servers	2	\$ 273,798.00	\$ 547,596.00
Grabación					
Servidor de	A08-4210-128-0T0-	Razberi Core™ Video Analytics Servers	1	\$ 334,567.80	\$ 334,567.80
analítica	1QT40N-WIN10				
Estación de trabajo	Dell Precision 3630	Estación de trabajo de escritorio en torre	3	\$ 45,976.03	\$ 137,928.09
Monitores 27"	UltraSharp UP2716D	Monitor LED 27"	9	\$ 256,632.00	\$ 2,309,688.00
Switch	WS-C3650-24TS-E	Switch PoE 24 puertos	1	\$ 139,258.56	\$ 139,258.56
Fortinet	FortiGate-40F	Firewall	1	\$ 11,018.70	\$ 11,018.70
Cámara	AXIS P3224	Cámara Full HD tipo minidomo	10	\$ 15,324.01	\$ 153,240.10
UPS	CYBERPOWER 183071	CyberPower Smart App Sistema UPS en	1	\$ 166,460.28	\$ 166,460.28
		línea, 6000VA/6000W			
Rack	SR-1980-GAC-V2	Gabinete para Servidores 19"	1	\$ 14,809.58	\$ 14,809.58

Tabla 17 – Costo Operativo

Fuente: Elaboración propia

Costo de Licencias

Para el licenciamiento del sistema operativo se requieren las licencias detalladas en la siguiente tabla. Los valores fueron obtenidos de Milestone Systems (Milestone, 2020) y Microsoft. (Microsoft, 2020)

Código	Descripción	Cantidad	Precio	Total
XPCOBT	XProtect Corporate Base License	1	\$215,372.45	\$215,372.45
XPCODL	XProtect Corporate Device License	10	\$22,261.25	\$222,612.51
	Care Plus for XProtect Corporate Base		\$38,906.44	\$38,906.44
YXPCOBT	License por un año	1		
	Care Plus for XProtect Corporate Device		\$4,059.80	\$40,597.98
YXPCODL	License por un año	10		
SQL Standard 2019 + CAL + 2 cores	Licencia para motor SQL Estándar 2019	2	\$20,303.19	\$40,606.37
Windows server 2019 + CAL + 16	Windows Server Standard 2019, 1		\$62,924.96	314,624.80
cores	Licencia, 16-Core, 64-bit,	5		
	Licencia para Sistema operativo		\$12,065.76	\$48,263.04
Windows 10 Pro for Workstations	Windows 10 Pro	4		

Tabla 18 – Costo de Licencias Fuente: Elaboración propia

El costo del desarrollo, implementacion y soporte por 1 año del sistema es de un total de \$6,996,725.76 (Seis millonies novecientos noventa y seis mil tetecientos veinticinco con tetenta y seis)

Análisis de riesgos

En la siguiente tabla se enumeran los riesgos detectados para el desarrollo del proyecto, los valores para la probabilidad de ocurrencia pueden ser Alta, Intermedia o Baja y su impacto en el proyecto en caso de ocurrencia se mide 1 como bajo al 5 como muy alto

	Riesgo	T. Riesgo	P. Ocurr	Impac	Contingencia
1	Falla en el hardware de servidores management	Tecnico	Ваја	5	Microsoft cluster. El servidor management y el servidor de eventos se instala en dos servidores y ante la caida de uno de los servidores el otro toma el control (Activo/Pasivo)
2	Falla en el servidor de base de datos	Tecnico	Baja	5	SQL Cluster. 2 servidores SQL funcionan en paralelo, ante la caida de uno el otro que contiene una replica de la base de datos toma el control (Activo / Pasivo)
3	Falla en servidor de grabacion	Tecnico	Baja	5	Failover server. Milestone cuenta con la posiblidad de instalar un servidor de grabacion que toma la configuracion de un servidor de grabacion con con fallas. La configuracion puede ser Hot 1 a 1 o cold 1 a muchos-
4	Corte de suministro electico	Tecnico	Media	3	Las UPS cuentan con una automonia de 2 horas, pasado ese tiempo el grupo electrogeno provisto por el cliente deberia estar operativo
5	Falla en camaras	Tecnico	Baja	2	Un equipo de mantenimiento in-site debera reemplazar el equipo dañado
6	Climatizacion del datacenter deficiente	Tecnico	Baja	4	La cuadrilla de mantenimiento debera contar con los materiales, capacitacion y disponibilidad

					inmediata para la reparacion del equipo defectuoso
7	Filtracion de privacidad	Operativo	Alta	4	Todo el personal afectado al sistema debera firamar un convenio de privaciad
8	Falla en el sistema de comunicaciones	Tecnico	Baja	5	Contar con equipos de respaldo y personal capacitado para el reemplazo de los mismos.
9	Falla en el sistema de video	Tecnico	Media	5	Contar con soporte por parte del proveedor 24/7
10	Personal no capacitado	Negocio	Alta	2	Capacitar a todo el personal afectado al sistema

Tabla 19 – Tabla de riesgos Fuente: Elaboración propia

Conclusiones

Integrar técnicas de análisis de video para mejorar la experiencia de las personas en diferentes ámbitos de la vida es un camino que ya se empezó a transitar. Cuando los circuitos de cámaras de vigilancia eran analógicos solo se usaban para lo que su nombre lo indica, vigilancia. Con el correr de los años y el desarrollo de las cámaras de red las imágenes podían viajar a cualquier parte del mundo en cuestión de segundos. Lo que trajo aparejado el gran problema de que se recibían cientos o miles de horas video para analizar en muy poco tiempo por la cantidad de cámaras. Por un tiempo eran personas las que analizaban esas imágenes. Pero estar sentado frente a una pantalla por muchas horas hace que se pierda la concentración y detalles importantes se dejan de observar. No fue hasta que se empezó a utilizar la inteligencia artificial para analizar las imágenes, logrando así que los operadores de lo sistema de cámaras tengan una nueva función, analizar los reportes o solo pequeñas porciones de video previamente analizados casi en tiempo real por un sistema de analítica. El proyecto se inició bajo este concepto de simplificar la tarea de los tomadores de decisiones que requieren información específica del comportamiento y características de los potenciales compradores.

Luego de implementar el proyecto se logró acceso a información detallada de los

clientes y su comportamiento dentro de la tienda pudiendo usar a estos datos para tomar

decisiones estratégicas en diferentes sectores de la compañía creando nuevos procesos y

modificando los existentes.

Durante el desarrollo del proyecto se logró materializar todo lo aprendido durante

el recorrido de diferentes cátedras de la carrera algo que ya se había comenzado en el primer

seminario, pero con mucha más intensidad y más profundamente en este trabajo.

Estoy convencido que la implementación de este trabajo será el punto de partida

para nuevos desarrollos similares, este fue el primer paso para continuar aprendiendo e

investigando inteligencia artificial y machine learning para realizar aplicaciones cada vez más

complejas.

Demo

El codigo fuente esta disponible para consultar y descargar desde Github.

https://github.com/giuliettiseba/Analytics

Esta disponible un video demostrativo del prototipo

https://youtu.be/h4oBQ19HLcs

58

Referencia

- AFORGE. (2020). AFORGE. Obtenido de AFORGE: http://www.aforgenet.com/
- AgentVI. (2020). AgentVI. Obtenido de AgentVI: https://www.agentvi.com/
- Bojko, A. (2009). *Informative or Misleading? Heatmaps Deconstructed*.
- Briefcam. (2020). Briefcam. Obtenido de Briefcam: https://www.briefcam.com/
- BriefCam. (2020). BriefCam. Obtenido de BriefCam: https://www.briefcam.com/
- CANIETI. (2020). Cámara Nacional de la Industria Electrónica, Telecomunicaciones e Informática. Obtenido de Cámara Nacional de la Industria Electrónica, Telecomunicaciones e Informática: http://www.canieti.org/
- Darren, G. (2017). Which Store Layout Suits Your Business Best? Obtenido de dotActiv: https://www.dotactiv.com/blog/best-store-layout-for-retail
- Fischer, L., & Espejo, J. (2011). Mercadotecnia. Ciudad De Mexico: Mercadotecnia.
- FootfallCam. (2020). FootfallCam. Obtenido de FootfallCam: https://www.footfallcam.com/
- Forsyth, D., & Ponce, J. (2002). *Computer Vision: A Modern Approach*. Prentice Hall Professional Technical Reference.
- Google. (2020). *Machine Learning Crash Course*. Obtenido de https://developers.google.com/machine-learning/crash-course: https://developers.google.com/machine-learning/crash-course
- Google Brain Team. (2020). *TensorFlow*. Obtenido de TensorFlow: https://www.tensorflow.org/
- Gouton , P., Lefloch , D., Alaya , C., Hardeberg , J., & Picot-Clemente , R. (2008). *Real-time* people counting system using a single video camera.
- Griffiths, I. (2020). *Programming C# 8.0: Build Cloud, Web, and Desktop Applications*. O'Reilly.
- Jeffrey , S. L., Eric, T. B., & Peter, S. F. (2005). *An Exploratory Look at Supermarket Shopping Path.* International Journal of Research in Marketing.
- Lenovo. (13 de 6 de 2020). *Lenovo Pro*. Obtenido de Lenovo Pro: https://www.lenovo.com/mx/es/laptops/thinkpad/serie-t/T495s/p/22TP2TT495S
- McCarthy, J. (1960). Basic Marketing.
- Microsoft. (2020). Dot Net. Obtenido de Dot Net: https://dotnet.microsoft.com/
- Microsoft. (13 de 6 de 2020). *Microsoft Store*. Obtenido de Microsoft Store: https://www.microsoft.com/en-us/store/

- Microsoft. (2020). *ML.NET*. Obtenido de https://dotnet.microsoft.com/apps/machinelearning-ai.
- Microsoft. (2020). *SQL Server technical documentation*. Obtenido de SQL Server technical documentation: https://docs.microsoft.com/en-us/sql/sql-server/
- Milestone. (2020). Milestone. Obtenido de Milestone: https://www.milestonesys.com/
- Milestone System. (2020, 3 23). *Milestone SDK*. Retrieved from Milestone Systems: https://www.milestonesys.com/community/developer-tools/sdk/
- OMG. (s.f.). What is UML. Obtenido de UML: https://www.uml.org/
- Razberi. (13 de 6 de 2020). Razberi. Obtenido de Razberi: http://www.razberi.net/
- Schwaber, K., & Sutherland, J. (2017). scrumguides.org. Obtenido de The Definitive Guide to Scrum: The Rules of the Game: https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf Stuart, R. (2016). Artificial Intelligence: A Modern Approach. Pearson.
- Weagle, S. (21 de September de 2018). Transforming video content analytics into retail business intelligence.
- WeWork. (13 de 6 de 2020). *WeWork*. Obtenido de WeWork: https://www.wework.com/es-LA/workspace/private-office/standard-office

Anexo

Anexo A - Segmentación de mercado

Geográfico	
País	
Ciudad	
Densidad	
Idioma	
Clima	
Segmentación demográfica	
Edad	
Raza	
Características físicas	
Psicográfico	
Estilo de vida	
Personalidad	
Actitudes	

Tabla 20 - Ejemplo de tabla para segmentación de mercado Fuente: Elaboración propia.

Anexo B – Diseño de Layout

Ilustración 16- Layout de tienda Fuente: Which Store Layout Suits Your Business Best? (Darren, 2017)