Lecture 7

NFTs & Account Abstraction

NFT Landscape

NFT Standards explosion

Use Case

ERC-6066: Signature Validation Method for NFTs (Access

Verification)

ERC-4955: Vendor Metadata Extension for NFTs (3D models)

ERC-4519:

Non-Fungible Tokens Tied to Physical Assets (IOT) Manipulating Fungibility

ERC-1155: ERC-3525:

Multi Token Semi-Fungible Standard Token

ERC-721:

Non-Fungible Token Standard Marketplace ERC-2309: ERC-721

Consecutive Transfer

Extension

ERC-2981: NFT Royalty Standard

ERC-4910: Royalty Bearing NFTs

Rental and Services

ERC-4907: Rental ERC-5007: Time NFT,

NFT, an Extension ERC-721 Time

of EIP-721 Extension

NFT Speedrun

The ERC721 Standard

https://eips.ethereum.org/EIPS/eip-721

function name() public view returns (string)
function symbol() public view returns (string)

```
function balanceOf(address _owner) external view returns (uint256);
function ownerOf(uint256 _tokenId) external view returns (address);
function safeTransferFrom(address _from, address _to, uint256 _tokenId, bytes data) external payable;
function safeTransferFrom(address _from, address _to, uint256 _tokenId) external payable;
function approve(address _approved, uint256 _tokenId) external payable;
function setApprovalForAll(address _operator, bool _approved) external;
function getApproved(uint256 _tokenId) external view returns (address);
function isApprovedForAll(address _owner, address _operator) external view returns (bool);
```

```
event Transfer(address indexed _from, address indexed _to, uint256 indexed _tokenId);
event Approval(address indexed _owner, address indexed _approved, uint256 indexed _tokenId);
event ApprovalForAll(address indexed _owner, address indexed _operator, bool _approved);
```

NFT Architecture - A visual

Onchain?

HTTPS?

IPFS?

setTokenURI()

Metadata

Frontend

NFT Storage

Storage Types

Storage Comparison

IPFS - Interplanetary Filesystem

An IPFS Implementation:

Content Addressing + Network Agnostic

- *MUST* support addressability using CIDs.
- *MUST* expose operations (eg. retrieval, provision, indexing) on resources using CIDs.
- *MUST* verify that the CIDs it resolves match the resources they address, at least when it has access to the resources' bytes.
- *SHOULD* name all the important resources it exposes using CIDs.
- SHOULD expose the logical units of data that structure a resource (eg. a CBOR document, a file or directory, a branch of a B-tree search index) using CIDs.
- *SHOULD* support incremental verifiability, notably so that it may process content of arbitrary sizes.
- MAY rely on any transport layer. The transport layer cannot dictate or constrain the way in which CIDs map to content.

Internet vs IPFS - Centralized vs Decentralized Web

IPFS - Directed Acyclic Graphs (DAG)

Directed - Has definite direction / path Acyclic - No circles, all paths are unique Graph - Tree like data structure

Merkle Trees are hashed trees: CIDs!!

IPFS - CID

From V0 to V1:

\$ ipfs cid format -v 1 -b base32 QmbWqxBEKC3P8tqsKc98xmWNzrzDtRLMiMPL8wBuTGsMnR
bafybeigdyrzt5sfp7udm7hu76uh7y26nf3efuylqabf3oclgtqy55fbzdi

Arweave - Permanent Data Storage

- Users pay miners a once off fee
- Miners choose what information to incorporate.
- Proof of Access + blockhash list to prevent downloading entire ledger

NFT Extensions
Fractional, Soulbound, Composable

ERC1155 - Fractional NFTs

```
interface ERC1155 /* is ERC165 */ {
safeTransferFrom()
safeBatchTransferFrom();
balanceOf(address _owner, uint256 _id)
balanceOfBatch(address[] calldata _owners, uint256[] calldata _ids)
setApprovalForAll()
isApprovedForAll()
```

interface ERC1155Mintable {
create()
Sets supply
mint()
Track supply
singleTransfer
setURI()

Limit contract sprawl - 450k contracts deployed

One contract for FT, NFT and SFT/fractional

Soul Bound NFTs

- ERC721 Just delete the transfer function
- ERC1155 Similarly disable transfer
- ERC5484 Consensual Soulbound Tokens
 - Agree to burn. May be issuer or owner triggered
- ERC5114 Soulbound Badge
 - In review
 - Can be attached to existing NFTs
 - Makes normal NFTs soulbound.

- A non transferable and immutable record
 - Medical Records
 - o Governmental Records
 - Certifications
- Ownership and verification
 - \circ Loss?
 - Authenticity?
 - o Value

cNFT / dNFT - Mutable NFTs (Gaming)

Composable - A base NFT which may have items added onto it.

Eg. A game character which gets weapons and armour

Dynamic - A general change which occurs to a base NFT

Automatic - Example, AI aging or growing an NFT animal

Interactive - User performs an action, NFT upgrades

Account Abstraction & Gasless Transactions

Towards User Onboarding

From the eyes of a NFT trader

Driving towards mass adoption - EIP 4337

- 1. Massively improve ease of use for users
 - a. Abstract away the need for wallets
 - b. Abstract away the need to store private keys securely
 - c. Allow more traditional financial user operations continuous payments (prelevement à la source)
- 2. Easier user onboarding experience for crypto projects Web2.5
 - a. Sponsored gas payments by projects instead of user payments paymaster
 - b. Wallet projects offers familiar Auth mechanisms MFA, session cookies, password, social media logins...
 - c. Wallet recovery!!!
- 3. Avoid a hard fork!!!
 - a. Hard forks are extremely intensive remember the adoption of the Euro?
 - b. General interface for contracts to make payments no more difference between wallet and contract
 - c. Introduce new players into the transaction value chain

Recap - EOAs vs Smart Contract

- Randomly generate seed phrase → generate private key → Public key on elliptic curve → Address
- Able to sign transactions with private key
- No code execution

- Contains executable code
- No keys cannot initiate its own transactions!
- Execution passed around as the bytes in the data field of a transaction

Recap - Transaction lifecycle

EIP 4337 - Architecture (Approximate)

A proxy collecting many transactions. Batching!

RPC call to bundler

Back to normal transaction flow. No protocol changes!

User - Bringing Abstraction

EIP 4337 - UserOperation / Pseudo-transaction

Signed Transaction nonce: "0x0", maxFeePerGas: "0x1234", maxPriorityFeePerGas: "0x1234", gas: "0x55555", to:"0x07a565b7ed7d7a695fe0", value: "0x1234", data: "0xabcd", **v**: "0x26", r: "0x223a7c9bcf20e", **s**: "0x28cc7704971491663", hash: "0xeb0d46df3870f8a30e"

sender	The address of the smart contract account
nonce	Anti-replay protection; also used as the salt for first-time account creation
initCode	Code used to deploy the account if not yet on-chain
callData	Data that's passed to the sender for execution
callGasLimit	Gas limit for execution phase
verificationGasLimit	Gas limit for verification phase
pre Verification Gas	Gas to compensate the bundler
maxFeePerGas	Maximum fee per gas
maxPriorityFeePerGas	Maximum priority fee per gas
paymasterAndData	Paymaster Contract address and any extra data required for verification and execution (empty if self-sponsored)
signature	Used to validate a UserOperation along with the nonce during verification

EIP 4337 - Contract Interactions

Initiators call target contract to perform the execution and return the result

EntryPoint.sol

- Singleton contract!
- validateUserOp();
 - o Bundler
- handleOps() {
 validateUserOp();
 validatePaymasterOp();
 }
- handleAggregatedOps();

Paymaster.sol

- validatePaymasterOp();
 - o EntryPoint.sol
- deposit();
- withdrawTo();
- stake();
 - Proof of Stake
- postOp();
 - EntryPoint.sol

A new payment system

Time to think about finals

Final Project - Groups

Group 1

Arina
Brian
Josephine
Duy Tung
Joakim

Group 2

Jinane

Cesar

Kathleen

Sami

Group 3

Jean-Baptiste
Grace
Anmool
Jahad
Xuanzheng

Check out the final project repo

https://github.com/Dauphine-Digital-Economics/Final Project/tree/main