Real Analysis: Homework #1

Due on Mar 4, 2024 at 10:00am

Professor Yakun Xi Monday

Shuang Hu

Problem 1

Complete the proof of Proposition 1.2.

Proof. • choose $N_0 \in \mathbb{N}$ such that $\frac{1}{N_0} < \frac{1}{b-a}$,

$$(a,b) = \bigcup_{n=N_0}^{\infty} \left(a,b-\frac{1}{n}\right].$$

• choose $N_0 \in \mathbb{N}$ such that $\frac{1}{N_0} < \frac{1}{b-a}$,

$$(a,b) = \bigcup_{n=N_0}^{\infty} \left[a + \frac{1}{n}, b \right),$$

• $(a,b) = (a,\infty) \cap \left(\cap_{n=1}^{\infty} \left(b - \frac{1}{n}, \infty \right) \right)^c,$

 $(a,b) = (-\infty,b) \cap \left(\bigcap_{n=1}^{\infty} \left(-\infty, a + \frac{1}{n}\right)\right)^c,$

 $(a,b) = [b,\infty)^c \cap \left(\cup_{n=1}^{\infty} \left[a + \frac{1}{n}, \infty \right) \right),$

 $(a,b) = (-\infty,a]^c \cap \left(\cup_{n=1}^\infty \left(-\infty, b - \frac{1}{n} \right] \right).$

By the definition of generated σ -algebra, it means $(a,b) \in \mathcal{M}(\mathcal{E}_i)$, $\forall i = 3,4,5,6,7,8$. By Lemma 1.1, $\mathcal{B}_{\mathbb{R}} \subset \mathcal{M}(\mathcal{E}_i)$. Then we complete the proof of Proposition 1.2.

Problem 2

Let \mathcal{M} be an infinite σ -algebra

- 1. \mathcal{M} contains an infinite sequence of disjoint sets.
- 2. $\operatorname{card}(\mathcal{M}) \geq \aleph$.

Proof. (1). \mathcal{M} be an infinite σ -algebra means that there exists at least \aleph_0 distinct non-empty sets $\{\mathcal{S}_i\}_{i=1}^{\infty} \subset \mathcal{M}$. Unfortunately, $\{\mathcal{S}_i\}_{i=1}^{\infty}$ isn't a sequence of disjoint sets in general. So, we should check the following lemma:

Lemma 1. $\forall n \in \mathbb{N}$, if $\{S_i\}_{i=1}^n \subset \mathcal{M}$ are distinct non-empty sets, there exists a sequence of disjoint non-empty sets $\{\mathcal{T}_i\}_{i=1}^n$ such that $\mathcal{T}_i \in \mathcal{M}$, and $\bigcup_{i=1}^n \mathcal{T}_i = \bigcup_{i=1}^n S_i$.

Proof. For n = 1, just set $\mathcal{T}_1 = \mathcal{S}_1$. Assume the lemma holds for n = k, consider $\{\mathcal{S}_i\}_{i=1}^{k+1}$. By the assumption, there exists a sequence of disjoint non-empty sets $\{\tilde{\mathcal{S}}_i\}_{i=1}^k \subset \mathcal{M}$ such that $\bigcup_{i=1}^k \mathcal{S}_i = \bigcup_{i=1}^k \tilde{\mathcal{S}}_i$. For \mathcal{S}_{k+1} , there are three distinct cases:

- $\exists i \leq k, \, \mathcal{S}_{k+1} \subset \tilde{\mathcal{S}}_i$.
- $\forall i < k, \, \mathcal{S}_{k+1} \cap \tilde{\mathcal{S}}_i = \emptyset.$
- Other cases.

For case 1, we choose $\mathcal{T}_j = \tilde{\mathcal{S}}_j$ for $j \leq k$ and $j \neq i$, $\mathcal{T}_i = \tilde{\mathcal{S}}_i \setminus \mathcal{S}_{k+1}$, $\mathcal{T}_{k+1} = \mathcal{S}_{k+1}$. For case 2, we choose $\mathcal{T}_i = \tilde{\mathcal{S}}_i$ for $i \leq k$, $\mathcal{T}_{k+1} = \mathcal{S}_{k+1} \setminus \left(\bigcup_{i=1}^n \tilde{\mathcal{S}}_i \right)$. Then the sequence $\{\mathcal{T}_i\}_{i=1}^n$ satisfies the condition in Lemma 1. By induction, we complete the proof.

The lemma means that $\forall n, \exists$ a sequence of distinct non-empty disjoint sets $\{\mathcal{T}_i\}_{i=1}^n$ such that $\mathcal{T}_i \in \mathcal{M}$. Then, $\{\mathcal{T}_i\}_{i=1}^{\infty}$ is just the sequence of disjoint sets.

(2) Choose the sequence $\{\mathcal{T}_i\}_{i=1}^{\infty}$ in (1), as $\{\mathcal{T}_i\}$ are non-empty disjoint sets, $\forall \mathcal{S}_1, \mathcal{S}_2 \subset \mathbb{N}$ and $\mathcal{S}_1 \neq \mathcal{S}_2$,

$$(\cup_{i\in\mathcal{S}_1}\mathcal{T}_i)\neq(\cup_{j\in\mathcal{S}_2}\mathcal{T}_j)$$
.

And by the definition of σ -algebra, $\forall S \subset \mathbb{N}, \cup_{i \in S} \mathcal{T}_i \in \mathcal{M}$. It means that:

$$\operatorname{card}(\mathcal{M}) \ge \operatorname{card}(2^{\mathbb{N}}) = \aleph.$$

Problem 3

An algebra \mathcal{A} is a σ -algebra iff \mathcal{A} is closed under countable increasing unions.

Proof. " \Rightarrow ": Just by the definition of σ -algebra.

" \Leftarrow ": \mathcal{A} is an algebra, so we just need to check its countable unions.

Choose a series of non-empty sets $\{S_i\}_{i=1}^{\infty} \subset \mathcal{M}$, mark $\mathcal{F}_i := \bigcup_{j=1}^{i} S_j$, it's clear that $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots$. And by the definition of algebra, $\mathcal{F}_i \in \mathcal{A}$. As \mathcal{A} is closed under countable increasing unions,

$$\bigcup_{i=1}^{\infty} S_i = \bigcup_{i=1}^{\infty} F_i \in \mathcal{A}.$$

So \mathcal{A} is closed under countable unions, i.e. \mathcal{A} is a σ -algebra.

Problem 4

If \mathcal{M} is the σ -algebra generated by \mathcal{E} , then \mathcal{M} is the union of the σ -algebras generated by \mathcal{F} as \mathcal{F} ranges over all countable subsets of \mathcal{E} .

Proof. We complete this proof by three steps. Mark

$$\tilde{\mathcal{M}} := \cup_{\mathcal{F} \subset \mathcal{E}, |\mathcal{F}| = \aleph_0} \mathcal{M}(\mathcal{F}).$$

First, we show $\tilde{\mathcal{M}}$ is a σ -algebra. For the countable unions, we choose $\{\mathcal{S}_i\}_{i=1}^{\infty} \subset \tilde{\mathcal{M}}$. WLOG, assume $\mathcal{S}_i \in \mathcal{M}(\mathcal{F}_i)$, where $\mathcal{F}_i \subset \mathcal{E}$ and $\operatorname{card}(\mathcal{F}_i) = \aleph_0$. Mark $\tilde{\mathcal{F}} = \bigcup_{j=1}^{\infty} \mathcal{F}_j$, as $\mathcal{F}_i \subset \tilde{\mathcal{F}}$, $\mathcal{S}_i \in \mathcal{M}(\mathcal{F}_i) \subset \mathcal{M}(\tilde{\mathcal{F}})$, i.e.

$$\bigcup_{i=1}^{\infty} \mathcal{S}_i \in \mathcal{M}(\tilde{\mathcal{F}}).$$

 $\operatorname{card}(\mathcal{F}_i) = \aleph_0 \text{ means } \operatorname{card}(\tilde{\mathcal{F}}) = \aleph_0, \text{ i.e. } \mathcal{M}(\tilde{\mathcal{F}}) \subset \tilde{\mathcal{M}}, \text{ so } \cup_{i=1}^n \mathcal{S}_i \subset \tilde{\mathcal{M}}.$

On the other hand, $\tilde{\mathcal{M}}$ is closed under complement as $\forall \mathcal{F} \subset \mathcal{E}$, $\mathcal{M}(\mathcal{F})$ is closed under complement. So $\tilde{\mathcal{M}}$ is a σ -algebra.

Second, we show that $\tilde{\mathcal{M}} \subset \mathcal{M}$. As $\forall \mathcal{F} \subset \mathcal{E}$, $\mathcal{M}(\mathcal{F}) \subset \mathcal{M}$, it's clear that

$$\tilde{\mathcal{M}} = \cup_{\mathcal{F} \subset \mathcal{E}, |\mathcal{F}| = \aleph_0} \mathcal{M}(\mathcal{F}) \subset \mathcal{M}.$$

Finally, we show $\mathcal{M} \subset \tilde{\mathcal{M}}$. As $\tilde{\mathcal{M}}$ be a σ -algebra, if $\mathcal{E} \subset \tilde{\mathcal{M}}$, we can see $\mathcal{M} = \mathcal{M}(\mathcal{E}) \subset \tilde{\mathcal{M}}$. $\forall \mathcal{S} \in \mathcal{E}, \exists \mathcal{F} \subset \mathcal{E}, |\mathcal{F}| = \aleph_0$, s.t. $\mathcal{S} \in \mathcal{F}$, i.e.

$$\mathcal{S}\in\mathcal{F}\subset\mathcal{M}(\mathcal{F})\subset\tilde{\mathcal{M}}.$$

So $\mathcal{E} \subset \tilde{\mathcal{M}}$, it means $\mathcal{M} \subset \tilde{\mathcal{M}}$.

Problem 5

If μ_1, \ldots, μ_n are measures on (X, \mathcal{M}) and $a_1, \ldots, a_n \in [0, \infty)$, then $\sum_{j=1}^{n} a_j \mu_j$ is a measure on (X, \mathcal{M}) .

Proof. First, choose $S \in \mathcal{M}$, as $a_j \geq 0$ and $\mu_j(S) \geq 0$, $\sum_{1}^{n} a_j \mu_j(S) \geq 0$, i.e. $\sum_{1}^{n} a_j \mu_j$ is a map from \mathcal{M} to $[0, \infty]$.

Then, as $\forall j$, $\mu_j(\emptyset) = 0$, $\sum_{1}^{n} a_j \mu_j(\emptyset) = 0$.

Finally, choose a sequence of disjoint sets $\{E_j\}_{j=1}^{\infty} \subset \mathcal{M}$,

$$\sum_{1}^{n} a_{j} \mu_{j}(\bigcup_{k=1}^{\infty} E_{k}) = \sum_{j=1}^{n} \sum_{k=1}^{\infty} a_{j} \mu_{j}(E_{k}). \tag{1}$$

We claim that

$$\sum_{j=1}^{n} \sum_{k=1}^{\infty} a_j \mu_j(E_k) = \sum_{k=1}^{\infty} \sum_{j=1}^{n} a_j \mu_j(E_k).$$
 (2)

If LHS = ∞ , i.e. $\exists j_0 \le n$, $\sum_{k=1}^{\infty} a_{j_0} \mu_{j_0}(E_k) = \infty$,

$$RHS \ge \sum_{k=1}^{\infty} a_{j_0} \mu_{j_0}(E_k) = \infty.$$

If LHS $<\infty$, i.e. $\forall j \leq n$, $\sum_{k=1}^{\infty} a_j \mu_j(E_k)$ is convergent, as $n<\infty$, $\exists M>0$ such that $\forall j \leq n$, $\sum_{k=1}^{n} a_j \mu_j(E_k) \leq M$. By dominant convergent theorem(DCT), (2) is true. From (2), (1) and the first two steps, $\sum_{k=1}^{n} a_j \mu_j$ is a measure.