Functors Applicatives

d.morgan1

July 2022

1 Functors

Functors increase the level of generality in Haskell. Think of them as functions over a range of parameterised types such as lists, trees.

Functors have both an infix notation where (<) = fmap, e.g. fmap (>1) [1,2,3] and a prefix notation where fmap (g.h) = fmap g. fmap h, e.g. (>1) <\$> (Just 1)

Functor Laws

- 1. fmap id = id
- 2. fmap (g.h) = fmap g . fmap h

Application of Composition (f.g) x, f.g x, f g x, f g x

Structural Induction Suppose S is some recursively defined structure (e.g. [a] or Tree a) that has substructure (e.g. sublist, subtree) and there is partial ordere.g. length or number of nodes. Structural induction implies if...

- 1. P is true for all minimum structures, and (Base Case)
- 2. P(x') is true for x' any immediate substructure of x (Induction)

2 Applicatives

Functors can map a function over each element in a structure. Suppose we wish to generalise the idea to allow functions with any number of arguments to be mapped.

Applicative Laws

- 1. pure id <*> x = x mapping identity has no effect
- 2. pure (g x) = pure g <*> pure x pure distribution
- 3. x <*> pure y = pure (-> g y) <*> x $effectful\ function\ disregards\ evaluation\ order$
- 4. $x \iff (y \iff z) = (pure (.) \iff x \iff y) \iff z$ associativity

Corollary g < x = pure g < x

Effectful Programming Applicative functors abstract the idea of applying pure functions to effectful arguments, where the effects depend on the underlying functor. Effects may be: possibility of failure, having many ways to succeed or I/O actions.

Applicative Style

```
Note that: fmap g x = pure g <*> x, so this means pure g <*> x1 <*> x2 <*> ... <*> xn is same as g <$> x1 <*> x2 <*> ... <*> xn
```