Reparameterized SGLMM (Spatial Generalized Linear Mixed Model): A Review

Frances Lin

June 2022

1. Introduction

The SGLMM (spatial generalized linear mixed model) is a hierarchical model that introduces spatial dependence through a GMRF (Gaussian Markov random field) (Besag et al., 1991). Although the SGLMM was initially proposed for prediction for count data, it has later been applied to estimation and prediction for other types of data (e.g. binary) and found applications in many fields (e.g. ecology, geology, and forestry).

The SGLMM has been the dominant model for areal data because of its flexible hierarchical specification, the availability of the software WinBUGS for data analysis (Lunn et al., 2000) and various theoretical and computational advantages over the competitive model named automodel. However, SGLMMs suffer from two major shortcomings: i) variance inflation due to spatial confounding and ii) computational challenges posed by high dimensional latent variables (random effects). On the other hand, while a new model named RHS model seeks to alleviate confounding by introducing synthetic predictors that are orthogonal to the fixed-effects predictors (Reich et al., 2006), failing to account for the underlying graph, the RHS model can result in random-effects structure with negative spatial dependence (i.e. repulsion) that is not typically applied in practice.

A new model that is able to alleviate confounding, and, at the same time, include patterns of positive spatial dependence (i.e. attraction) and exclude patterns of repulsion is proposed. While other dimension reduction methods have been proposed (Higdon, 2002; Cressie & Johannesson, 2008; Banerjee et al., 2008; Furrer et al., 2006; Rue & Tjelmeland, 2002), these methods focus on spatial point-referenced models. The proposed model is one of the first dimension reduction techniques for spatial areal models.

2. Traditional SGLMM (Spatial Generalized Linear Mixed Model)

Undirected graphs

Let

$$G = (V, E)$$

be an undirected, labelled graph, where $V = \{1, 2, ..., n\}$ is a set of vertices (nodes) and $E = \{i, j\}$ is a set of edges, where $i, j \in V$, $i \neq j$. Each vertex represents an area of interest and each edge represents

the proximity of areas i and j. G is represented using an adjacency matrix A, which is a nxn matrix with diag(A) = 0 and entries $A_{ij} = 1\{(i, j) \in E, i \neq j\}$, where $1(\cdot)$ is an indicator function.

The traditional SGLMM

Further let $Z = (Z_1, ... Z_n)^T$ be the random field of interest, where Z_i is the random variable associated with vertex i. Then, the first stage of the model is given by

$$q(E(Z_i|\beta, W_i)) = X_i\beta + W_i, \tag{1}$$

where g is a link function, X_i is the ith row of the design matrix X, β is a p-vector of regression parameters and W_i is a spatial random effect associated with vertex i. Different types of data require different canonical choices of the link function g. For example, for binary spatial data, it is the logit function, for count data, it is the natural logarithm function, and for normal data, it is the identity function (Nelder & Wedderburn, 1972).

GMRF prior for the random effects

The field of random effects $W = (W_1, ..., W_n)^T$, through which spatial dependence is incorporated, is assumed to follow the intrinsic conditionally autoregressive or GMRF prior

$$p(W|\tau) \propto \tau^{rank(Q)/2} exp(-\frac{\tau}{2}W^T Q W),$$
 (2)

where τ is a smoothing parameter and Q = diag(A1) - A is a precision matrix. The precision matrix Q incorporates both dependence and prior uncertainty. W_i and W_j , $i \neq j$, are independent given their neighbors $iff \ Q_{ij} = Q_{ji} = 0 \ iff \ (i,j) \notin E$, and uncertainty about W_i is inversely proportional to the degree of vertex i.

For spatial data over a continuous domain, i.e. point-referenced data or geostatistical data, a SGLMM can be formulated by replacing the GMRF with a GP (Gaussian process) (Diggle et al., 1998; De Oliveira, 2000; Christensen & Waagepetersen, 2002). In addition, since the GMRF prior (2) is improper (Q is singular), the SGLMM is restricted to a Bayesian or restricted maximum likelihood (REML) analysis.

3. Spatial confounding

The automodel

Recall that SGLMM's closest competitor the automodel, a Markov random-field model that incorporates dependence directly, is given as

$$g(E(Z_i|\beta, \eta, Z_{-i})) = X_i\beta + \eta \sum_{(i,j)\in E} Z_j^*,$$
 (3)

where g is a (canonical) link function, Z_{-i} is the field excluding the ith observation, and η is dependence parameter ($\eta > 0$ implies attraction; $\eta < 0$ implies repulsion). $Z_j^* = Z_j - \mu_j$ for the centred automodel,

where μ_j is the independence expectation of Z_j (i.e. $\mu_j = E(Z_j|\beta, \eta = 0) = g^{-1}(X_j\beta)$). $Z_j^* = Z_j$ for the uncentred automodel.

The sum term $\sum_{(i,j)\in E} Z_j^*$ is called the autocovariate, and it is considered as a synthetic predictor. For the centred automodel, the autocovariate makes the dependence parameter easily interpretable (η captures the relativity of an observation to its neighbours, conditional on the hypothesized regression component). On the other hand, for the uncentred automodel, the autocovariate not only poses conceptual challenge but also shows spatial confounding. I.e. the uncentred autocovariate is not easy to interpret, and β and η also tend to be strongly correlated.

The RHS model

The traditional SGLMM can also shown to be confounded. More specifically, introduction of the random effects can inflate the variance of the posterior distribution of β . This is because the traditional model contains predictors that are collinear with X, and this collinearity causes the variance inflation (Reich et al., 2006).

Consider P be a projection onto C(X)

$$P = X(X^T X)^{-1} X^T$$

and let P^{\perp} be the projection onto C(X)'s complement such that $P^{\perp} = I - P$, then equation (1) can be rewritten as

$$g(E(Z_i|\beta, W_i)) = X_i\beta + K_i\gamma + L_i\delta,$$

where K and L are orthogonal bases for C(X) and $C(X)^{\perp}$ respectively and γ and δ are random coefficients. K and X now share the same column space, and this is the source of the spatial confounding.

Setting $\gamma = 0$, the first stage of the RHS model is given by

$$g(E(Z_i|\beta,\delta)) = X_i\beta + L_i\delta,$$

and, compared to equation (2), the prior for the random effects δ becomes

$$p(\delta|\tau) \propto \tau^{(n-p)/2} exp(-\frac{\tau}{2}\delta^T Q_R \delta),$$

where $Q_R = L^T Q L$.

The traditional SGLMM and RHZ model both share very similar approach to that of the automodel. The traditional SGLMM model makes use of synthetic predictors K and L, and the RHZ model makes use of L.

The traditional SGLMM is analogous to the uncentred automodel since both models include predictors K and the uncentred autocovariate, respectively, that lead to spatial confounding. The RHZ model is analogous to the centred automodel since both models are designed to fit only residual structure of the data.

4. Sparse reparameterization of the areal SGLMM

The RHZ model does not allow parsimonious fitting of the residual clustering. Because the geometry corresponding to the projection P^{\perp} fails to account for the underlying graph G, the RHZ model permits structure of negative spatial dependence (i.e. repulsion) in the random effects. However, neighboring observation tends to be similar, rather than dissimilar, in practice. The proposed reparameterized model considers an alternative projection that captures the geometry of the models, thus allowing patterns of positive spatial dependence (i.e. attraction). Utilizing the geometry of the models also leads to dimension reduction of the random effects naturally.

The reparameterized model

The random effects for the reparameterized model i) allow patterns of positive spatial dependence (i.e. attraction) and exclude patterns of repulsion and ii) have dimension much smaller than n.

.

Assume M a matrix that contains the first $q \ll n$ eigenvectors of the Moran operator and further assume positive spatial dependence $\lambda_q > 0$.

Replacing L with M in the RHS model, the first stage of the reparameterized model is given by

$$g(E(Z_i|\beta,\delta_S)) = X_i\beta + M_i\delta_S,$$

and the prior for the random effects δ_S becomes

$$p(\delta_S|\tau) \propto \tau^{q/2} exp(-\frac{\tau}{2}\delta_S^T Q_S \delta_S),$$

where $Q_S = M^T Q M$.

The sparse reparameterized SGLMM model is more closely analogous to the centred automodel than it is to the RHZ model. Both the sparse SGLMM model and centred automodel account for X and the underlying graph.

On the other hand, the RHZ model accounts for X but does not account for the underlying graph. The uncentred automodel does not fit residual structure to X but does account for the underlying graph by including (uncentred) autocovariate that sums the neighbors.

5. Dimension reduction for spatial models

Reference

Bolin, D. (2015). Lecture 5: Intrinsic GMRFs Gaussian Markov random fields. Personal Collection of D. Bolin, Chalmers University of Technology, Gothenburg Sweden.

Haran, M. (2011). Gaussian random field models for spatial data. Handbook of Markov Chain Monte Carlo, 449-478.

Hughes, J., & Haran, M. (2013). Dimension reduction and alleviation of confounding for spatial generalized linear mixed models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(1), 139-159.