

# Forecasting: principles and practice

Rob J Hyndman

4 Hierarchical forecasting

#### **Outline**

- 1 Hierarchical and grouped time series
- 2 Optimal forecast reconciliation
- 3 hts package for R
- 4 Application: Australian tourism
- 5 Lab Session 5

# **Forecasting the PBS**



# **ATC drug classification**

- Alimentary tract and metabolism
- B Blood and blood forming organsC Cardiovascular system
- D Dermatologicals

Α

- G Genito-urinary system and sex hormonesH Systemic hormonal preparations, excluding sex hormones
  - and insulins
- J Anti-infectives for systemic useL Antineoplastic and immunomodulating agents
- M Musculo-skeletal system
- N Nervous system
- P Antiparasitic products, insecticides and repellents
- R Respiratory system
- S Sensory organs

V Various

# **ATC drug classification**



# Australian tourism



#### **Australian tourism**

- Quarterly data on visitor night from 1998:Q1 2013:Q4
- From: *National Visitor Survey*, based on annual interviews of 120,000 Australians aged 15+, collected by Tourism Research Australia.
- Split by 7 states, 27 zones and 76 regions (a geographical hierarchy)
- Also split by purpose of travel
  - Holiday
  - Visiting friends and relatives (VFR)
  - Business
  - Other
- 304 bottom-level series



# Spectacle sales



- Monthly UK sales data from 2000 2014
- Provided by a large spectacle manufacturer
- Split by brand (26), gender (3), price range (6), materials (4), and stores (600)
- About 1 million bottom-level series

A hierarchical time series is a collection of several time series that are linked together in a hierarchical structure.



A hierarchical time series is a collection of several time series that are linked together in a hierarchical structure.



#### **Examples**

- Pharmaceutical sales
- Tourism demand by state and region

A grouped time series is a collection of time series that can be grouped together in a number of non-hierarchical ways.



9

A grouped time series is a collection of time series that can be grouped together in a number of non-hierarchical ways.



#### **Examples**

- Spectacle sales by brand, gender, stores, etc.
- Tourism by state and purpose of travel

## The problem

- How to forecast time series at all nodes such that the forecasts add up in the same way as the original data?
- 2 Can we exploit relationships between the series to improve the forecasts?

# The problem

- How to forecast time series at all nodes such that the forecasts add up in the same way as the original data?
- Can we exploit relationships between the series to improve the forecasts?

#### The solution

- Forecast all series at all levels of aggregation using an automatic forecasting algorithm.

  (e.g., ets, auto.arima, ...)
- Reconcile the resulting forecasts so they add up correctly using least squares optimization (i.e., find closest reconciled forecasts to the original forecasts).
  - This is available in the **hts** package in R.

#### **Outline**

- 1 Hierarchical and grouped time series
- 2 Optimal forecast reconciliation
- 3 hts package for R
- 4 Application: Australian tourism
- 5 Lab Session 5





y<sub>t</sub>: observed aggregate of all series at time t.

 $y_{X,t}$ : observation on series X at time t.

**b**<sub>t</sub>: vector of all series at bottom level in time *t*.



y<sub>t</sub>: observed aggregate of all series at time t.

 $y_{X,t}$ : observation on series X at time t.

**b**<sub>t</sub>: vector of all series at bottom level in time *t*.

$$\mathbf{y}_{t} = \begin{pmatrix} y_{t} \\ y_{A,t} \\ y_{B,t} \\ y_{C,t} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} Y_{A,t} \\ y_{B,t} \\ y_{C,t} \end{pmatrix}$$



y<sub>t</sub>: observed aggregate of all series at time t.

 $y_{X,t}$ : observation on series X at time t.

**b**<sub>t</sub>: vector of all series at bottom level in time t.

$$\mathbf{y}_{t} = \begin{pmatrix} y_{t} \\ y_{A,t} \\ y_{B,t} \\ y_{C,t} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{S}} \underbrace{\begin{pmatrix} y_{A,t} \\ y_{B,t} \\ y_{C,t} \end{pmatrix}}_{\mathbf{b}_{t}}$$













 $y_t = Sb_t$ 

# Hierarchical and grouped time series

Every collection of time series with aggregation constraints can be written as

$$\mathbf{y}_t = \mathbf{S}\mathbf{b}_t$$

#### where

- $\mathbf{y}_t$  is a vector of all series at time t
- **b**<sub>t</sub> is a vector of the most disaggregated series at time t
- **S** is a "summing matrix" containing the aggregation constraints.

Let  $\hat{\mathbf{y}}_n(h)$  be vector of initial h-step forecasts, made at time n, stacked in same order as  $\mathbf{y}_t$ .

Let  $\hat{\mathbf{y}}_n(h)$  be vector of initial h-step forecasts, made at time n, stacked in same order as  $\mathbf{y}_t$ . (In general, they will not "add up".)

Let  $\hat{\mathbf{y}}_n(h)$  be vector of initial h-step forecasts, made at time n, stacked in same order as  $\mathbf{y}_t$ . (In general, they will not "add up".)

Reconciled forecasts must be of the form:

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

for some matrix **P**.

Let  $\hat{\mathbf{y}}_n(h)$  be vector of initial h-step forecasts, made at time n, stacked in same order as  $\mathbf{y}_t$ . (In general, they will not "add up".)

Reconciled forecasts must be of the form:

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

for some matrix P.

- **P** extracts and combines base forecasts  $\hat{\mathbf{y}}_n(h)$  to get bottom-level forecasts.
- S adds them up

## **Optimal combination forecasts**

#### Main result

The best (minimum sum of variances) unbiased forecasts are obtained when  $\mathbf{P} = (\mathbf{S}' \Sigma_h^{-1} \mathbf{S})^{-1} \mathbf{S}' \Sigma_h^{-1}$ , where  $\Sigma_h$  is the h-step base forecast error covariance matrix.

# **Optimal combination forecasts**

#### Main result

The best (minimum sum of variances) unbiased forecasts are obtained when  $\mathbf{P} = (\mathbf{S}' \Sigma_h^{-1} \mathbf{S})^{-1} \mathbf{S}' \Sigma_h^{-1}$ , where  $\Sigma_h$  is the h-step base forecast error covariance matrix.

$$\tilde{\mathbf{y}}_n(h) = \mathbf{S}(\mathbf{S}' \Sigma_h^{-1} \mathbf{S})^{-1} \mathbf{S}' \Sigma_h^{-1} \hat{\mathbf{y}}_n(h)$$

**Problem:**  $\Sigma_h$  hard to estimate, especially for h > 1.

#### **Solutions:**

- Ignore  $\Sigma_h$  (OLS)
- Assume  $\Sigma_h$  diagonal (WLS) [Default in hts]
- Try to estimate  $\Sigma_h$  (GLS)

#### **Features**

- Covariates can be included in initial forecasts.
- Adjustments can be made to initial forecasts at any level.
- Very simple and flexible method. Can work with any hierarchical or grouped time series.
- Conceptually easy to implement: regression of base forecasts on structure matrix.

#### **Outline**

- 1 Hierarchical and grouped time series
- 2 Optimal forecast reconciliation
- 3 hts package for R
- 4 Application: Australian tourism
- 5 Lab Session 5

# hts package for R

#### hts: Hierarchical and Grouped Time Series

Methods for analysing and forecasting hierarchical and grouped time series

Version: 5.1.5

Depends:

R (> 3.2.0), forecast (> 8.1)

Imports: SparseM, Matrix, matrixcalc, parallel, utils, methods, graphics, grl

LinkingTo: Rcpp ( $\geq$  0.11.0), RcppEigen

Suggests: testthat, knitr, rmarkdown Published: 2018-03-26

Author: Rob J Hyndman, Alan Lee, Earo Wang, Shanika Wickramasuriya

Maintainer: Rob J Hyndman < Earo. Wang at gmail.com > BugReports: https://github.com/earowang/hts/issues

License: GPL (> 2)

URL: http://pkg.earo.me/hts

20

# **Example using R**

```
library(hts)

# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))</pre>
```

### **Example using R**

```
library(hts)

# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))</pre>
```



### **Example using R**

```
library(hts)

# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))</pre>
```



```
# Forecast 10-step-ahead using WLS combination method
# with auto.arima() used at each node
fc <- forecast(y, h=10, fmethod='arima')</pre>
```

### forecast.gts() function

#### **Usage**

```
forecast(object, h,
  method = c("comb", "bu", "mo", "tdgsf", "tdgsa", "tdfp"),
  fmethod = c("ets", "rw", "arima"),
  weights = c("wls", "ols", "mint", "nseries"),
  covariance = c("shr", "sam"),
  positive = TRUE,
  parallel = FALSE, num.cores = 2, ...)
```

#### **Arguments**

num, cores

| object     | Hierarchical time series object of class gts.               |
|------------|-------------------------------------------------------------|
| h          | Forecast horizon                                            |
| method     | Method for distributing forecasts within the hierarchy.     |
| fmethod    | Forecasting method to use                                   |
| weights    | Weights used for "optimal combination" method.              |
| covariance | Shrinkage estimator or sample estimator for GLS covariance. |
| positive   | If TRUE, forecasts are forced to be strictly positive       |
| parallel   | If TRUE, allow parallel processing                          |

If parallel = TRUE, specify how many cores to be used

### **Outline**

- 1 Hierarchical and grouped time series
- 2 Optimal forecast reconciliation
- 3 hts package for R
- 4 Application: Australian tourism
- 5 Lab Session 5



### **Domestic visitor nights**

Quarterly data: 1998 - 2006.

From: *National Visitor Survey*, based on annual interviews of 120,000 Australians aged 15+.

collected by Tourism Research Australia.

























## **Reconciled forecasts**



## **Reconciled forecasts**







# **Reconciled forecasts**



- Select models using all observations;
- Re-estimate models using first 12 observations and generate 1- to 8-step-ahead forecasts;
- Increase sample size one observation at a time, re-estimate models, generate forecasts until the end of the sample;
- In total 24 1-step-ahead, 23 2-steps-ahead, up to 17 8-steps-ahead for forecast evaluation.

**Training sets** 

Test sets 
$$h = 1$$

**Training sets** 

Test sets 
$$h = 1$$



Training sets Test sets h = 1time

Training sets Test sets h = 1time











































## Hierarchy: states, zones, regions

| Bottom       1736.92       1742.69       1722.79       1752.74       1666.73       1687.43       173         WLS       1705.21       1715.87       1703.75       1729.56       1627.79       1661.24       169         GLS       1704.64       1715.60       1705.31       1729.04       1626.36       1661.64       169         States         Base       399.77       404.16       401.92       407.26       395.38       401.17       40         Bottom       404.29       406.95       404.96       409.02       399.80       401.55       40         WLS       398.84       402.12       400.71       405.03       394.76       398.23       39                                                                                                            | Forecast horizon |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|--|--|--|--|--|
| Base       1762.04       1770.29       1766.02       1818.82       1705.35       1721.17       175         Bottom       1736.92       1742.69       1722.79       1752.74       1666.73       1687.43       175         WLS       1705.21       1715.87       1703.75       1729.56       1627.79       1661.24       169         GLS       1704.64       1715.60       1705.31       1729.04       1626.36       1661.64       169         States         Base       399.77       404.16       401.92       407.26       395.38       401.17       40         Bottom       404.29       406.95       404.96       409.02       399.80       401.55       40         WLS       398.84       402.12       400.71       405.03       394.76       398.23       39 | Ave              |  |  |  |  |  |  |  |  |  |
| Bottom 1736.92 1742.69 1722.79 1752.74 1666.73 1687.43 1773   WLS 1705.21 1715.87 1703.75 1729.56 1627.79 1661.24 1693   GLS 1704.64 1715.60 1705.31 1729.04 1626.36 1661.64 1693   States  Base 399.77 404.16 401.92 407.26 395.38 401.17 403   Bottom 404.29 406.95 404.96 409.02 399.80 401.55 404.96   WLS 398.84 402.12 400.71 405.03 394.76 398.23 398.23 398.24   WLS 398.84 402.12 400.71 405.03 394.76 398.23 398.23                                                                                                                                                                                                                                                                                                                                   |                  |  |  |  |  |  |  |  |  |  |
| WLS 1705.21 1715.87 1703.75 1729.56 1627.79 1661.24 169 GLS 1704.64 1715.60 1705.31 1729.04 1626.36 1661.64 169  States  Base 399.77 404.16 401.92 407.26 395.38 401.17 40 Bottom 404.29 406.95 404.96 409.02 399.80 401.55 40 WLS 398.84 402.12 400.71 405.03 394.76 398.23 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 57.28            |  |  |  |  |  |  |  |  |  |
| GLS 1704.64 1715.60 1705.31 1729.04 1626.36 1661.64 169  States  Base 399.77 404.16 401.92 407.26 395.38 401.17 40  Bottom 404.29 406.95 404.96 409.02 399.80 401.55 40  WLS 398.84 402.12 400.71 405.03 394.76 398.23 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18.22            |  |  |  |  |  |  |  |  |  |
| States       Base     399.77     404.16     401.92     407.26     395.38     401.17     40       Bottom     404.29     406.95     404.96     409.02     399.80     401.55     40       WLS     398.84     402.12     400.71     405.03     394.76     398.23     39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90.57            |  |  |  |  |  |  |  |  |  |
| Base       399.77       404.16       401.92       407.26       395.38       401.17       40         Bottom       404.29       406.95       404.96       409.02       399.80       401.55       40         WLS       398.84       402.12       400.71       405.03       394.76       398.23       39                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90.43            |  |  |  |  |  |  |  |  |  |
| Bottom 404.29 406.95 404.96 409.02 399.80 401.55 <b>40</b> WLS 398.84 402.12 400.71 405.03 394.76 398.23 <b>39</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |  |  |  |  |  |  |  |  |  |
| WLS 398.84 402.12 400.71 405.03 394.76 398.23 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01.61            |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 04.43            |  |  |  |  |  |  |  |  |  |
| GLS 398.84 402.16 400.86 405.03 394.59 398.22 <b>3</b> 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99.95            |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99.95            |  |  |  |  |  |  |  |  |  |
| Regions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |  |  |  |  |  |  |  |  |  |
| Base 93.15 93.38 93.45 93.79 93.50 93.56 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 93.47            |  |  |  |  |  |  |  |  |  |
| Bottom 93.15 93.38 93.45 93.79 93.50 93.56 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 93.47            |  |  |  |  |  |  |  |  |  |
| WLS 93.02 93.32 93.38 93.72 93.39 93.53 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 93.39            |  |  |  |  |  |  |  |  |  |
| GLS 92.98 93.27 93.34 93.66 93.34 93.46 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 93.34            |  |  |  |  |  |  |  |  |  |

#### **Outline**

- 1 Hierarchical and grouped time series
- 2 Optimal forecast reconciliation
- 3 hts package for R
- 4 Application: Australian tourism
- 5 Lab Session 5

# **Lab Session 5**