You must justify your answers to receive full credit.

1. Let A be the matrix

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -4 & 5 \\ 0 & 1 & 1 \\ -3 & 5 & -4 \end{bmatrix},$$

and T be the linear transformation $T(\mathbf{x}) = A\mathbf{x}$.

- a) What is the domain of T?
- b) What is the codomain of T?
- c) Is T onto? (Hint: you can use a theorem.)
- d) Find the kernel of T.
- e) Is T one-to-one?
- f) Find the image of $e_1 + e_2$ under T.

2. For each of the transformations below:

- (i) decide whether it is linear, and explain your answer,
- (ii) if it is linear, find its standard matrix.

a)
$$f: \mathbb{R}^4 \to \mathbb{R}^2$$
 given by $f\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}\right) = \begin{bmatrix} \sqrt{2}x_1 + x_2 - x_3 \\ 0 \end{bmatrix} + x_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

- b) $g: \mathbb{R}^2 \to \mathbb{R}^3$ given by $g(\mathbf{x}) = \mathbf{0}$.
- c) $h: \mathbb{R}^2 \to \mathbb{R}^2$ given by rotation through an angle of $\frac{\pi}{2}$ counterclockwise about the point (-1,1).
- 3. Let $F: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation satisfying

$$F\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}5\\2\\8\end{bmatrix}, \quad F\left(\begin{bmatrix}3\\1\end{bmatrix}\right) = \begin{bmatrix}-1\\4\\12\end{bmatrix}.$$

Find the standard matrix of F.

4. Let

$$A = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}.$$

Calculate the following matrices, or explain why they are not defined.

a) AB

b) BAB^T

c) $B + I_3$

d) $x^T B$

 $e) B^3$

 $f) A^3$

- g) A^{30}
- 5. Suppose A is an invertible matrix such that

$$A^{-1} = \begin{bmatrix} 1 & -1 & 0 & 2 \\ 0 & 1 & 1 & 0 \\ 2 & -2 & 3 & 5 \\ 1 & 0 & 1 & 3 \end{bmatrix}.$$

Find A.

- 6. State whether each of the following statements is (always) true or (sometimes) false. If it is true, give a brief justification; if it is false, give a counterexample with an explanation.
 - a) If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation and $\{T(\mathbf{v_1}), T(\mathbf{v_2}), T(\mathbf{v_3})\}$ span \mathbb{R}^m , then T is onto.
 - b) If $S: \mathbb{R}^3 \to \mathbb{R}^3$ is onto and $T: \mathbb{R}^3 \to \mathbb{R}^3$ is one-to-one, then $S \circ T$ is one-to-one.
 - c) If A is a square matrix, then $(A^2)^T = (A^T)^2$.
 - d) Each column of the matrix product AB is a linear combination of the columns of B.
 - e) For all 2×2 matrices A, it is true that $(A + I_2)(A I_2) = A^2 I_2$.
 - f) For all 2×2 matrices A, P, it is true that $A = PAP^{-1}$. (Hint: Try $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.)
- 7. **Optional Problem**: Consider a group of 5 students. Student 1 is friends on Facebook with each of the other four students. Also, Student 4 is Facebook friends with Student 3 and Student 5. There are no other Facebook friendships among the 5 students.

Let A be a 5×5 matrix, where the entry in row i and column j is 1 if Student i and Student j are Facebook friends, and 0 if Student i and Student j are not Facebook friends. So A is a symmetric matrix. (We assume Facebook does not allow a student to be friends with himself or herself, so all diagonal entries of A are zero.)

- a) Write down the matrix A.
- b) Let u be the vector $\begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}$. Calculate $A\mathbf{u}$. What is the meaning of the ith entry of $A\mathbf{u}$?
- c) Calculate A^2 . What is the meaning of the (i, j)-entry of A^2 , when $i \neq j$? This is the beginnings of the subject of "algebraic graph theory".