#### ~ 군집분석이란?

• <u>데이터 간의 유사도를 정의하고, 그 유사도에 가까운 것부터</u> 순서대로 합쳐 가는 방법으로 <u>그룹(군집)을 형성한 후 각 그룹의 성격을 파악하거나 그룹</u> 간의 비교분석을 통해서 데이터 전체의 구조에 대한 이해를 돕고자 하는 탐색적인 분석 방법

#### 군집 분석의 목적

- 데이터 셋 전체를 대상으로 서로 유사항 개체 들을 몇 개의 군집으로 세분화하여 대상 집단을 정확하게 이해하고,효율적으로 활용하기 위함.
  - 군집 분석으로 그룹화된 군집은 변수의 특성이 그룹 내적으로는 동일하고, 외적으로는 이질적인 특성을 가짐
  - 군집 분석의 용도는 <u>고객의 충성도에 따라서 몇 개의 그룹으로 분류하고, 그룹별로 맞춤형 마케팅 및 프로모션 전략을</u> 수립하는 데 활용됨

#### 계층적 군집분석

- 데이터를 유사도에 따라 계층적으로 묶어주는 군집분석 방법
- 예를 들어, 고객 데이터를 구매 패턴과 구매 금액에 따라 묶어주는 것이나, 상품 데이터를 재료, 맛, 가격 등에 따라 묶어주는 것이 대표적인 예임
- 이렇게 묶인 군집들은 덴드로그램 형태로 시각화되어 나타남

#### <u>비계층적 군집분석(Non-Hierarchical Clustering)</u>

- 계층 구조를 형성하지 않고 데이터 포인트들을 클러스터로 그룹화하는 방법으로, 주로 K-means와 같은 알고리즘이 사용됨
  - K-means의 경우, <u>미리 정해진 클러스터 개수(K)를 기준으로</u> 중심점을 설정하고, 각 데이터 포인트가 가장 가까운 중심점에 속하게 클러스터링하는 방식으로 진행됨
- 비계층적 군집분석 사례:

- 마케팅 <u>고객 데이터를 분석하여 고객 세분화(customer segmentation)를 수행하고, 각 세분화된 고객 그룹에 맞춘 마케팅</u> 전략을 수립할 수 있음
- 。 이미지 분석 이미지 픽셀을 클러스터링하여 각 클러스터의 대표 색상을 추출하여 이미지 색상 분석이나 색상 분류를 할 수 있음
- 유전자 데이터 분석 유전자 데이터에서 유전자 클러스터를 식별하고, 유전자 간의 관련성을 분석할 수 있음
- 문서 데이터 분석 문서 데이터를 분석하여 유사한 내용을 가진 문서들을 클러스터링하여 문서 분류를 할 수 있음
- 고객 행동 분석 웹사이트 방문 고객의 행동 패턴을 분석하여 고객 세분화 및 맞춤형 서비스 제공에 활용할 수 있음

## 군집분석 사례 - 신한카드(고객들을 군집 분석해서 고객마다 원하는 카드혜택이 다르게 하고, 고객 특성을 새롭게 정의함으로써 고객 특성별로 특화된 카드 상품을 만드는 데 활용)

- 신한카드는 2014년부터 빅데이터를 활용하여 고객의 소비 특성을 파악하여 고객 분류를 하고, 각 고객 그룹에 맞는 카드 혜택과 유형을 정했음
- 그래서 나온 것이 바로 Code 9(코드나인)이라고 하는 것임
- 고객정보와 카드 결제내역을 군집분석하여 남녀 고객을 위와 같이 총 18가지로 분류하고 각 분류별로 Rookie, It-Girl 같은 명칭을 지었음
- 각 고객군집의 특성을 파악해서 카드 이름도 지은 것 같음







# 10강. 분할적 군집분석

- · K-Means와 DBSCAN
- · 퍼지군집화 / EM 알고리즘 / SOM
- · 엘보우 기법

## ■비지도학습의 종류



## ■분할적 군집분석

계층적 관계가 없는 다수의 군집들을 만드는 방법

#### 중심점 기반

· K-Means 군집화

#### 밀도 기반

· DBSCAN 군집화

#### 확률 기반

· 퍼지군집화

#### 분포 기반

· EM알고리즘

#### 그래프 기반

· 자기조직화지도(SOM)

## ■K-Means 군집화

각 데이터와 중심점의 <mark>거리를 측정 후</mark> 가장 가까운 그룹에 할당하여 K개의 군집으로 묶는 방법

```
1 import matplotlib.pyplot as plt
2
3 x1, y1 = 300, 350
4 x2, y2 = 200, 150
5
6 plt.xlim(100, 400)
7 plt.ylim(100, 400)
8 plt.scatter([x1, x2], [y1, y2])
9 plt.show()
```



```
1 center_coordinate_x = (x1 + x2)/2
2 center_coordinate_y = (y1 + y2)/2
3 print(center_coordinate_x, center_coordinate_y)
```

```
4 plt.xlim(100, 400)
5 plt.ylim(100, 400)
6 plt.scatter(center_coordinate_x, center_coordinate_y, color = 'red')
7 plt.scatter([x1, x2], [y1, y2])
8 plt.show()
```

#### 250.0 250.0

















- · 알고리즘의 이해와 적용이 쉬움
- · 데이터에 대한 사전 정보가 특별히 필요 없음
- · 초기 군집의 수를 정의하는데 어려움
- · 초기 중심점 설정에 따라 결과가 다르게 나옴
- · 노이즈나 이상치에 매우 민감
- · 범주형 데이터에서 사용 불기
- → K-Modes 군집화 활용

#### 최적의 군집 개수 K를 결정하는 방법?

#### 엘보우 기법(Elbow Method)

WCSS 값과 군집의 개수를 두고 비교 한 그래프를 통해 최적의 K 값을 선택하는 기법

$$WCSS = \sum_{C_k}^{C_n} (\sum_{d_i inC_i}^{d_m} distance(d_i, C_k)^2)$$

(Within Clusters Sum of Squares)

C: 군집(Cluster)의 중심 값



## DBSCAN 군집화

데이터의 <mark>밀도를 기반</mark>으로 서로 가까운 데이터들을 군집으로 묶는 방법

• 데이터 밀도: 정보 작성의 기초가 되는 데이터에서 단위 길이, 단위 면적, 단위 부피마다 기억된 문자 수. (어휘 혼종어 정보·통신 )

## ■ DBSCAN 군집화

#### 데이터의 밀도를 기반으로 서로 가까운 데이터들을 군집으로 묶는 방법





2) Epsilon 거리 내 모든 데이터 탐색



3) Min Points 이상이면 군집에 할당



4) Min Points 이하이나 군집에 속한 포인트는 Border Point





## DBSCAN 군집화

#### 데이터의 밀도를 기반으로 서로 가까운 데이터들을 군집으로 묶는 방법





2) Epsilon 거리 내 모든 데이터 탐색



3) Min Points 이상이면 군집에 할당



4) Min Points 이하이나 군집에 속한 포인트는 Border Point





## ■ DBSCAN 군집화

#### 데이터의 밀도를 기반으로 서로 가까운 데이터들을 군집으로 묶는 방법





2) Epsilon 거리 내 모든 데이터 탐색



3) Min Points 이상이면 군집에 할당



4) Min Points 이하이나 군집에 속한 포인트는 Border Point





## BDBSCAN 군집화

#### 데이터의 밀도를 기반으로 서로 가까운 데이터들을 군집으로 묶는 방법





2) Epsilon 거리 내 모든 데이터 탐색



3) Min Points 이상이면 군집에 할당 4개



4) Min Points 이하이나 군집에 속한 포인트는 Border Point





## BDBSCAN 군집화

#### 데이터의 밀도를 기반으로 서로 가까운 데이터들을 군집으로 묶는 방법





2) Epsilon 거리 내 모든 데이터 탐색



3) Min Points 이상이면 군집에 할당



4) Min Points 이하이나 군집에 속한 포인트는 Border Point





## DBSCAN 군집화

#### 데이터의 밀도를 기반으로 서로 가까운 데이터들을 군집으로 묶는 방법

1) 포인트 임의로 선택



2) Epsilon 거리 내 모든 데이터 탐색



3) Min Points 이상이면 군집에 할당



4) Min Points 이하이나 군집에 속한 포인트는 Border Point





## ■ DBSCAN 군집화

데이터의 밀도를 기반으로 서로 가까운 데이터들을 군집으로 묶는 방법





2) Epsilon 거리 내 모든 데이터 탐색



3) Min Points 이상이면 군집에 할당



4) Min Points 이하이나 군집에 속한 포인트는 Border Point





## ■ DBSCAN 군집화

데이터의 밀도를 기반으로 서로 가까운 데이터들을 군집으로 묶는 방법

