Universidad de la República - Facultad de Ingeniería - IMERL: Matemática Discreta 2, semipresencial

Primer parcial - 3 de diciembre de 2015. Duración: 3 horas

N° de parcial	Cédula	Apellido y nombre

Ejercicio 1.

- a. Probar que 2 es raíz primitiva módulo 53.
- **b**. Hallar todos los $x \in \mathbb{Z}$ tales que $x^{19} \equiv 32 \pmod{53}$.
- c. Archibaldo y Baldomero quieren pactar una clave común empleando el protocolo Diffie-Hellman. Para ésto fijan el primo 53 y la raíz primitiva g=2. Archibaldo selecciona el número m=28 y le remite el número 49 a Baldomero. Baldomero selecciona el número n=5. ¿Cuál es la clave k común que acordaron Archibaldo y Baldomero?

Ejercicio 2.

a. Sea (G, *) un grupo finito y H un subgrupo de G. Definimos la siguiente relación en G:

$$g \sim g' \Leftrightarrow g * (g')^{-1} \in H.$$

Probar que la relación definida es una relación de equivalencia.

- b. Sean G, K grupos finitos y $f: G \to K$ un homomorfismo de grupos. Probar que $\mathrm{Ker}(f)$ es un subgrupo de G.
- c. Probar el teorema de órdenes para grupos:

Sean G y K dos grupos finitos y $f: G \to K$ un homomorfismo de grupos. Entonces

$$|G| = |\operatorname{Ker}(f)||\operatorname{Im}(f)|.$$

Ejercicio 3.

- a. Sea $f:G\to K$ un homomorfismo de grupos y $g\in G$ un elemento de orden o(g) finito. Probar que $o(f(g))\mid o(g)$.
- **b.** Para los pares de grupos G y K, determinar si existen homomorfismos no triviales $f: G \to K$. Si existen encontrarlos todos, de lo contrario justificar por qué no existen.
 - i) $G = \mathbb{Z}_6$ el grupo de enteros módulo 6 y $K = S_3$ el grupo de permutaciones de 3 elementos.
 - ii) $G=S_6$ el grupo de permutaciones de 6 elementos y $K=\mathbb{Z}_7$ el grupo de enteros módulo 7
- c. Sean $G = D_{12}$ el grupo dihedral y $K = S_3 \times U(8)$ el producto cartesiano de los grupos S_3 (permutaciones de 3 elementos) y U(8) ¿Son isomorfos estos grupos? De serlo, dar un isomorfismo entre ellos, de lo contrario justificar por qué no lo son.