

Trabalho 1 – Simulador de SO com Modelo de 5 Estados

Ricardo Matono (44448), João Rouxinol (44451) e André Rato (45517)

Ano Letivo 2020/2021

Sistemas Operativos 1 Docente: Luís Rato

Índice

Introdução	3
Características do Simulador	3
Implementação do Simulador	4
Estruturas	4
Estados	4
Filas	4
Mudanças de Estado	4
Time Quantum	4
Criação de Programas	5
Execução	5
Main	5
Exemplo de Input/Output	5

Introdução

É pretendida a implementação, utilizando a linguagem C, de um simulador de SO considerando um modelo de 5 estados (NEW, READY, RUNNING, BLOCKED e EXIT), utilizando dois algoritmos de escalonamento (RR – Round Robin Standard – e VRR – Virtual Round Robin).

Os processos são definidos por um conjunto de pseudo-instruções-máquina representadas por número, que representam alternadamente:

- o tempo que o processo fica no CPU (estado RUNNING);
- o tempo que o processo gasta no estado BLOCKED após chegar ao 1º lugar da fila.

Cada processo é iniciado no instante indicado na primeira posição do array correspondente ao mesmo, ou seja, o instante inicial de um processo é o valor em programas[i][0].

Para que um processo seja dado como terminado, é necessário que, no instante após o último valor diferente de zero, o processo termina.

Características do Simulador

A implementação do simulador de processos deve ter em consideração as seguintes características:

- 1. a mudança entre estados é infinitamente rápida (os processos ficam nos diversos estados 1 instante de tempo, seguindo-se outra mudança de estado, e assim sucessivamente);
- 2. quando um processo é criado, o estado do mesmo muda para NEW e permanece nesse estado durante 1 instante de tempo;
- 3. quando um processo sai do estado NEW muda para READY; se a fila READY estiver vazia e o CPU (estado RUNNING) não estiver ocupado por um processo, pode mudar diretamente para RUNNING;
- 4. os instantes da fila BLOCKED, para cada processo, só contam se este estiver no primeiro lugar da fila;
- 5. quando um processo termina, passa do CPU (estado RUNNING) para o estado EXIT, onde permanece 1 instante de tempo;
 - 6. após 1 instante de tempo em EXIT, os processos desaparecem do sistema;
- 7. o escalonamento a implementar deve compreender 2 algoritmos, RR e VRR, ambos com Quantum = 3;
- 8. os processos que saem de BLOCKED, passam para READY, no caso de RR, e para READY-AUX, no caso de VRR;
- 9. o número máximo de programas a dar entrada no sistema é de 10, e cada programa tem a dimensão máxima de 10 (1 instante inicial e 9 instruções alternadas de CPU e BLOCK);

10. se no mesmo instante puderem entrar processos na fila de READY vindos de RUNNING, BLOCKED e NEW, o primeiro a entrar na fila é o processo da fila de BLOCKED, o segundo o processo que estava no CPU (estado RUNNING) e por último o processo NEW;

11. o programa deve ter como output o estado de cada processo em cada instante.

Implementação do Simulador

• Estruturas

É utilizada uma estrutura de nome *program*, utilizada para guardar a informação correspondente a cada programa a ser executado. Tem como componentes:

- int now: processo na qual o programa está a executar;
- int state: estado na qual o programa se encontra;
- int start: instante em que o programa começa a ser iniciado;
- int cycle[11]: conjunto de processos do programa.

Estados

Os estados são representados por inteiros, tais que:

- $0 \gg \text{Exit}$;
- 1 » Ready;
- 2 » Run;
- 3 » Block:
- 4 » Processo não criado;
- 5 » New;
- 6 » Processo terminado:
- 7 » Auxiliar (uso exclusivo do algoritmo VRR).

• Filas

As filas são representadas por inteiros, tais que:

- 0 » Ready queue;
- 1 » Block queue;
- 2 » Auxiliar queue (uso exclusivo do algoritmo VRR).

Os métodos responsáveis por realizar operações nas filas são os mesmos nos três casos: o método *front* retorna o id do programa que está na frente da fila que foi passada como argumento, sem o retirar da mesma; o método *enqueue* tem como função colocar o id de um programa no final da fila desejada; por fim, mas não menos importante, o método *dequeue* é responsável por retirar o elemento mais antigo da fila, ou seja, aquele que está em primeiro lugar.

Mudanças de Estado

As mudanças de estado são efetuadas na função *state_change*, que recebe como argumentos o id do programa (*program_id*) e uma variável que indica se o algoritmo escolhido é RR ou VRR (*is_vrr*). Todas as transições são feitas de acordo com as características do simulador e do algoritmo escolhido.

Time Quantum

O time quantum e as suas mudanças de estado são geridos pela função *quantum_change*, que recebe como argumentos o id do programa (*program_id*) e uma

variável que indica se o algoritmo escolhido é RR ou VRR (*is_vrr*). O quantum limita o número de ciclos que cada processo pode estar no CPU continuamente. Após atingido o limite, o processo volta para a READY queue, entrando um novo processo para o CPU e o quantum time é restabelecido.

• Criação de Programas

Utilizando a função *create*, os programas são criados tendo em conta o array bidimensional declarado na *main*, o time quantum recebido como argumento na função e o algoritmo escolhido (*is_vrr*). É a partir daqui que o programa começa a ser executado, ou seja, é aqui que são tomadas as decisões iniciais relacionadas com o início dos programas.

Execução

A execução dos programas e correspondentes processos é feita utilizando a função *run*. Esta função recebe como argumento o time quantum e uma variável que indica qual o algoritmo de escalonamento escolhido (*is_vrr*). É nesta função que se encontram todas as condições para cada mudança de estado poder ocorrer.

• Main

É na função *main* que o array bidimensional de programas é definido, assim como o time quantum e o algoritmo de escalonamento. Para a escolha do algoritmo de escalonamento e do valor de time quantum, faz-se o seguinte:

- para o algoritmo de escalonamento, alterar o valor da variável *run_mode* para VRR, se o método pretendido for Virtual Round Robin, ou para RR, caso o algoritmo pretendido for Round Robin Standard;
- para o time quantum, basta alterar o valor da variável *quantum_time* para o valor pretendido.

Exemplo de Intput/Output

- Input:

```
int programas[5][10] = {
      {0, 3, 1, 2, 2, 4, 1, 1, 1, 1 } ,
      {1, 2, 4, 2, 4, 2, 0, 0, 0, 0, 0 } ,
      {3, 1, 6, 1, 6, 1, 6, 1, 0, 0 } ,
      {3, 6, 1, 6, 1, 6, 1, 6, 0, 0 } ,
      {5, 9, 1, 9, 0, 0, 0, 0, 0, 0 }
};
```

- Output:

RR VRR

Inst	P01	P02	P03	P04	P05	Inst	P01	P02	P03	l P04	P05
1	NEW		į į	j	i i	1	NEW	i I		i	i
2	RUN	NEW			i i	2	RUN	NEW	į i	į	i i
3	RUN	RDY			!!	3	RUN	RDY			l I
4	RUN	RDY	NEW	NEW	!!	4	RUN	RDY	NEW	NEW	!!
5	BLK	RUN	RDY	RDY		5	BLK	RUN	RDY	RDY	!!
6	RDY	RUN	RDY	RDY	NEW	6	AUX	RUN	RDY	RDY	NEW
7 8	RDY RDY	BLK BLK	RUN BLK	RDY RUN	RDY RDY	7	RUN	BLK	RDY	RDY	RDY
9	RDY	BLK	BLK	RUN	RDY	8 9	RUN BLK	BLK BLK	RDY RUN	RDY RDY	RDY
10	RDY	BLK	BLK	RUN	RDY	10	BLK	BLK	BLK	RUN	RDY
11	RUN	RDY	BLK	RDY	RDY	11	BLK	AUX	BLK	RUN	RDY
12	RUN	RDY	BLK	RDY	RDY	12	BLK	AUX	BLK	RUN	RDY
13	BLK	RDY	BLK	RDY	RUN	13	AUX	RUN	BLK	RDY	RDY
14	BLK	RDY	BLK	RDY	RUN	14	AUX	RUN	BLK	RDY	RDY
15	BLK	RDY	BLK	RDY	RUN	15	RUN	BLK	BLK	RDY	RDY
16	BLK BLK	RUN RUN	BLK RDY	RDY RDY	RDY	16	RUN	BLK	BLK	RDY	RDY
17 18	BLK	BLK	RDY	RUN	RDY RDY	17 18	RUN RDY	BLK BLK	BLK BLK	RDY RDY	RDY
19	RDY	BLK	RDY	RUN	RDY	19	RDY	BLK	AUX	RDY	RUN
20	RDY	BLK	RDY	RUN	RDY	20	RDY	BLK	AUX	RDY	RUN
21	RDY	BLK	RDY	BLK	RUN	21	RDY	BLK	RUN	RDY	RDY
22	RDY	BLK	RDY	BLK	RUN	22	RDY	BLK	BLK	RUN	RDY
23	RDY	RDY	RDY	BLK	RUN	23	RDY	AUX	BLK	RUN	RDY
24	RDY	RDY	RUN	RDY	RDY	24	RDY	AUX	BLK	RUN	RDY
25	RUN	RDY	BLK	RDY	RDY	25	RDY	RUN	BLK	BLK	RDY
26	RUN	RDY	BLK	RDY	RDY	26	RDY	RUN	BLK	BLK	RDY
27 28	RUN RDY	RDY RUN	BLK BLK	RDY RDY	RDY RDY	27	RUN	EXT	BLK	BLK	RDY
29	RDY	RUN	BLK	RDY	RDY	28 29	BLK BLK		BLK AUX	BLK BLK	RUN
30	RDY	EXT	BLK	RUN	RDY	30	BLK		AUX	AUX	RUN
31	RDY		RDY	RUN	RDY	31	AUX		RUN	AUX	RDY
32	RDY		RDY	RUN	RDY	32	AUX	i i	BLK	RUN	RDY
33	RDY		RDY	RDY	RUN	33	AUX	j I	BLK	RUN	RDY
34	RDY		RDY	RDY	RUN	34	AUX		BLK	RUN	RDY
35	RDY		RDY	RDY	RUN	35	RUN		BLK	RDY	RDY
36	RUN		RDY	RDY	BLK	36	BLK		BLK	RDY	RUN
37 38	BLK RDY		RUN BLK	RDY RUN	RDY RDY	37	BLK		BLK	RDY	RUN
39	RDY		BLK	RUN	RDY	38 39	BLK AUX		AUX RUN	RDY RDY	RUN BLK
40	RDY		BLK	RUN	RDY	40	RUN		EXT	RDY	AUX
41	RDY		BLK	BLK	RUN	41	EXT	i		RDY	RUN
42	RDY		BLK	BLK	RUN	42		i		RDY	RUN
43	RDY		BLK	BLK	RUN	43	i	j		RDY	RUN
44	RUN		RDY	BLK	RDY	44				RUN	RDY
45	BLK		RUN	RDY	RDY	45				RUN	RDY
46 47	RDY		EXT	RDY	RUN	46				RUN	RDY
47	RDY RDY			RDY RDY	RUN RUN	47				BLK	RUN
49	RDY	i		RUN	RDY	48 49				AUX AUX	RUN
50	RDY			RUN	RDY	50				RUN	RDY
51	RDY		i i	RUN	RDY	51		i		RUN	RDY
52	RUN			RDY	RDY	52	i	j		RUN	RDY
53	EXT			RDY	RUN	53		į		RDY	RUN
54				RDY	RUN	54		ļ I		RDY	RUN
55 56				RDY	RUN	55				RDY	RUN
56 57				RUN RUN	EXT	56				RUN	EXT
58				RUN		57				RUN	
59				BLK		58 59		 		RUN BLK	
60	i			RUN	i i	60				RUN	
61	i		i i	RUN	i i	61				RUN	i i
62	ļ			RUN	ļ ļ	62		i		RUN	i i
63			ļ	RUN		63		j l		RUN	j j
64				RUN	!	64		ļ I		RUN	ļ ļ
65				RUN		65				RUN	ļ ļ
66 67				EXT		66				EXT	
		·			I	67					