1. Find the singularity and classify them:

a)
$$\cos \frac{1}{z}$$
,

b)
$$\frac{1}{z^2 \sin z}$$

c)
$$\frac{z^2+1}{(z+1)(z-1)^2}$$

$$d) \frac{\sin z}{z^4}$$

e)
$$\frac{e^z-1}{z}$$

$$f) \ \frac{z}{e^{z^2} - 1}$$

g)
$$e^{1/z}$$

h)
$$\frac{1}{z(z^2+1)}$$

i)
$$\frac{e^z \sinh z}{z^3}$$

2. Find the residue at all singular points:

a)
$$\frac{z^4}{(z^2+1)^2}$$

$$b) \quad \frac{e^{1/z}}{1-z}$$

c)
$$\frac{\sin z}{z}$$

d)
$$e^{\frac{1}{z^2}}$$
.

3. Find the Taylor series expansion of the following functions:

a)
$$\frac{1}{(z-2)(z-i)}$$
 about $z=0$ inside the solid disc $|z| < 1$,

b)
$$\frac{1}{1-z}$$
 about $z=2i$ and specify the region of convergence.

4. Find the laurent series of the function $f(z) = \frac{z^2 - 2z + 3}{z - 2}$ about z = 1 in the region |z - 1| > 1.

5. Find Laurent series of the following function and specify the region of convergence

1

a)
$$(z-3)\sin(\frac{1}{z+2})$$
 about $z = -2$,

- b) $\frac{e^{2z}}{(z-1)^3}$ about z=1.
- 6. Find the Laurent series about z = 0 of the function $f(z) = z^2 e^{1/z}$ defined on $\mathbb{C} \setminus \{0\}$.
- 7. Find all posible Lauret series expansion of the function $f(z) = \frac{1}{z(1-z)(2-z)}$ in the region
 - a) 0 < |z| < 1,
 - b) 1 < |z| < 2,
 - c) 2 < |z|.
- 8. Find the Laurent series of the function $f(z) = \frac{e^z}{(z-1)^2}$ about z=1 in the region $0 < |z-1| < \infty$.
- 9. Evaluate

a)
$$\oint_{|z|=2} \frac{5z-2}{z(z-1)} dz$$
,

b)
$$\oint_{|z|=1} z^2 \sin \frac{1}{z} dz$$
,

$$c) \quad \oint_{|z|=1} \frac{\sin z}{z^6} dz,$$

d)
$$\oint_{|z|=2} \frac{e^z}{z^2 - 2z - 3} dz$$
.

10. Evaluate $\oint_{\mathbf{C}} \frac{z^3+3}{z(z-i)^2} dz$, where **C** is the contour shown in the figure

11. Evaluate

a)
$$\oint_{|z|=3} \frac{\sin \pi z^2 + \cos \pi z^2}{z^2 - 3z + 2} dz,$$

- b) $\oint_{\mathbf{C}} \frac{dz}{(z-a)^n}$, $n \in \mathbb{N}$ where **C** is a circle of radius r center at z=a.
- 12. Evaluate $\oint_{\mathcal{C}} \frac{z}{z^2 + 4} dz$ where **C** is the contour shown in the figure

