

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar Villamos Energetika Tanszék

Stock András

ELEKTROMOS AUTÓK HAJTÁSLÁNC KOCEPCIÓJÁNAK VIZSGÁLATA, TERVEZÉSE

KONZULENS

Vörös Gábor

BUDAPEST, 2021

Tartalomjegyzék

Összefoglaló	3
1. Bevezetés	4
2. Kiválasztott jármű	5
3. Vontatási követelmények	6
3.1 A járművek mozgatását befolyásoló erők	6
3.1.1 Elméleti összefoglaló	6
3.1.2 Számítások	7
3.2 Járművek vonóerő méretezése	10
4. Motorillesztés	12
4.1 Elméleti összefoglaló	12
4.2 Motor választása	14
Irodalomjegyzék	19

Összefoglaló

A félév során megvizsgáltam az elektromos autók és villamos hajtásláncuk alapvető tulajdonságait, illetve a velük szemben támasztott követelményeket. Ennek keretében választottam a Mercedes 300 SL típusú autót, aminek meghatároztam a menettulajdonságait, és specifikáltam a hajtáslánc főbb elemeit: a motort, az invertert és az áttételt. A félév folyamán felépítettem egy egyszerű hajtáslánc modellt, majd meghatároztam a főbb komponensek alapvető paramétereit, és a jármű menettulajdonságai által támasztott követelményekhez, teljesítmény, nyomaték, fordulatszám tartomány, illesztettem.

Ezt követően az általam előírt feltételeknek leginkább megfelelő motort kellett illeszteni a hajtáslánchoz. Ennek keretében meg kellett választani az áttételt. A motor feszültségét és áramát figyelembe véve a munkapontban, választottam invertert, amely teljesíteni tudja a motor feszültségigényét delta és csillagkapcsolásban is.

1. Bevezetés

Elektromos hajtásrendszer esetén sincs másképp, mint bármilyen szolgáltatás, vagy termék bevezetése előtt. Minden tervezési folyamat egy igényfelméréssel kezdődik, azaz a gyártónak/szolgáltatónak a – Mire van szüksége a végfelhasználónak? – kérdésre kell megtalálni a válaszokat.

Egy elektromos autó esetében a vevők akkor lesznek elégedettek, hogyha az autó jó vezetési élménnyel rendelkezik, a jármű élettartama megfelelő hosszúságú, és hatékonyan üzemeltethető. Ezeknek a követelményeknek a nem teljesülését a teljesítményromlás, tönkremenetel, illetve a rövid hatótáv jellemzik. Továbbá fontos szempont, hogy az autóval ki lehessen állni egy mélygarázsból is, amik általában 25 % emelkedővel rendelkeznek.

A feladatom során ezeknek az igényeknek a figyelembevételével történő elektromos hajtáslánc tervezést hajtottam végre.

2. Kiválasztott jármű

A feladatomhoz a Mercedes 300 SL típusú autót választottam, amelyet sokan csak sirályszárnyas Mercedesként ismernek. A formája, menetteljesítménye alapján az ötvenes évekbeli autóépítés csúcsát jelentette ez a versenyautóból átalakított személygépjármű. Egyedi megjelenése és ritkasága miatt, a tehetős gyűjtők egyik kedvenc típusa.

A jármű paramaméterei a következők [1]:

• saját tömeg: 1295 kg

• maximális tömeg: 1515 kg

• szélesség: 1790 mm

• magasság: 1300 mm

• légellenállási tényező: 0.38

• gyorsulás (0-100 km/h): 10 s

• végsebesség: 220 km/h

• teljesítmény: 215 Le (160 kW)

nyomaték: 275 Nm

• kerék sugara: 0.3375 m

Mivel az autó még ma is megfelelő tulajdonságokkal rendelkezik, hogy a forgalommal lépést tartson, ezért csupán az élmény javításáért más követelményeket fogalmaztam meg néhány területen:

• gyorsulás (0-100 km/h): 6s

végsebesség: 250 km/h

• teljesítmény: 250 Le (186 kW)

• nyomaték: 300 Nm

A feladatot továbbiakban az általam választott értékekkel végeztem, valamint a maximális tömeget vettem figyelembe, ahol a számítások megkövetelték.

3. Vontatási követelmények

3.1 A járművek mozgatását befolyásoló erők

3.1.1 Elméleti összefoglaló

A járműre ható erők határozzák meg, hogy mekkora teljesítménnyel kell rendelkeznie a jármű motorjának, annak érdekében, hogy képes legyen az autót a teljes sebességtartományon mozgatni, valamint a maximális sebesség kivételével, egy esetleges előzés miatt, mindig rendelkezzen gyorsítási tartalékkal, hogy az előzés biztonságosan kivitelezhető legyen.

Rendeltetésszerű használat esetén a személygépkocsikra két erő hat: az F_v vonóerő és az F_{ve} vontatási ellenállás. Newton II. törvényét alkalmazva:

$$F_v - F_{ve} = m * a$$

F_v – vonóerő, a jármű által kifejtett erő, sebesség irányába mutat [N]

F_{ve} – vontatási ellenállás, a jármű mozgását akadályozó erők összege, sebességgel ellentétes irányú [N]

$$F_{ve} = F_{l\acute{e}g} + F_{g\ddot{o}rd} + F_{em}$$

F_{lég} – légellenállás [N]

F_{görd} – gördülési ellenállás [N]

F_{em} – emelkedési ellenállás [N]

A légellenállás és a gördülési ellenállás összegeként a menetellenéllás értékét kapjuk meg:

$$F_m = F_{l\acute{e}g} + F_{g\ddot{o}rd}$$

A légellenállás a következőképpen számítható:

$$F_{l \neq g} = \frac{1}{2} * \rho_l * A * c_d * v^2$$

A – homlokfelület nagysága [m²]

c_d – légellenállási együttható

ρ₁ – légsűrűség [kg/m³]

A gördülési ellenállás számítása:

$$F_{g\ddot{o}rd} = \mu_g * m * g$$

Ahol a gördülési súrlódási tényező, $\mu_g = 0.007$ közelítő értékű gumiabroncs és aszfalt esetén.

Az emelkedési ellenállás a következő képlettel számítható:

$$F_{em} = m * g * sin \propto$$

Az α –t, az emelkedési szöget az emelkedő százalékos értékéből lehet kiszámtani:

$$i = 100 * tg\alpha$$

3.1.2 Számítások

A feladatom első részében a fentebb részletezett erőket számoltam ki a választott járműre, a teljes sebességtartományon, illetve a 0-25% emelkedőkre.

Az általam előírt 6s alatti 0 – 100km/h –ra történő gyorsulásból kiszámítható a gyorsulás kezdeti, lineáris szakasza:

$$a = \frac{dv}{dt} = 4.63 \frac{m}{s^2}$$

A homlokfelület a magasság és szélesség szorzatából számolható:

$$A = magasság * szélesség = 2.327 m^2$$

Ezt követően kiszámoltam a 0, 5, 10, 25% – os emelkedők szögét radiánban:

i ₀ =	0 %	$\alpha_0 =$	0
i ₅ =	5 %	$\alpha_5 =$	0,049958
i ₁₀ =	10 %	α_{10} =	0,099669
i ₂₅ =	25 %	$\alpha_{25} =$	0,244979

3.1. táblázat Különböző emelkedőkhöz tartozó szögek

Ezután elvégeztem a vontatási ellenállását számítását 0% – os emelkedőre (ebben az esetben ez megegyezik a menetellenállással), majd ábrázoltam a sebesség függvényében.

Sebesség [km/h]	Menetellenállás [N]
0	104.0351
20	120.196
50	205.0409
100	508.0586
200	1720.129
250	2629.182

3.2. táblázat Menetellenállás – sebesség adatok

3.1. ábra Vontatási ellenállás – sebesség diagram

A számításokat elvégeztem az összes emelkedőre, majd egy közös diagramban ábrázoltam.

	0%	5%	10%	25%
0 km/h	104.0351 N	846.1104 N	1582.979 N	3708.575 N
20 km/h	120.196 N	862.2714 N	1599.14 N	3724.736 N
50 km/h	205.0409 N	947.1163 N	1683.985 N	3809.581 N
100 km/h	508.0586 N	1250.134 N	1987.003 N	4112.598 N
200 km/h	1720.129 N	2462.205 N	3199.074 N	5324.669 N
250 km/h	2629.182 N	3371.258 N	4108.127 N	6233.722 N

3.3. táblázat Vontatási ellenállások

3.2. ábra Vontatási ellenállás – sebesség diagram

A menetellenállás a vontatási görbék közül a 0% – os görbéhez tartozó jelleggörbéről olvasható le.

3.2 Járművek vonóerő méretezése

A járművek hajtását a maximális vontatási teljesítményre és az indítási gyorsítási igényére tervezik. A vonóerő szempontjából a jármű hajtását úgy kell méretezni, hogy a rendelkezésre álló vonóerő nagyobb legyen, mint a tervezés alapjául szolgáló vontatási ellenállás jelleggörbe. A jármű gyorsítási tartaléka a vonóerő és a vontatási ellenállás különbsége: $F_v - F_{ve}$

A gyorsítási tartalék induláskor a legnagyobb, és vízszintes terepen (0% – os emelkedő) és maximális sebességnél zérusra csökken. Ebben a munkapontban a vonóerő már nem nagyobb, mint a jármű pillanatnyi vontatási ellenállása, azaz nincsen gyorsítási tartalék, a jármű nem tud tovább gyorsítani.

A sebesség tartásához szükséges vontatási teljesítmény a következő képlettel számolható:

$$P = F_{ve} * v$$

Az indítási gyorsítási igényre való méretezéskor Newton II. törvényét felhasználva történik a méretezés. A megfelelő számításokat elvégezve, az így kapott vonóerő görbét illesztettem a vontatási ellenállás görbékhez.

Sebesség [km/h]	Vonóerő [N]
0	7015
20	7015
50	7015
100	7015
200	3330
250	2665.7

3.4. táblázat Vonóerő adatok

3.3. ábra Illesztett vonóerő diagram

4. Motorillesztés

A hajtáslánc tervezés következő lépése az előző fejezetben kiszámolt paraméterek és elvárt vonóerő alapján egy állandómágneses szinkron motor illesztése. A feladat során előre megkapott motorspecifikációk közül kellett kiválasztani a számomra legmegfelelőbbet.

4.1 Elméleti összefoglaló

A motor ω_v és a kerekek ω_k szögsebessége közötti arányt az áttétel adja meg:

r – kerék sugara [m]

P – motor teljesítménye [W]

M – motor nyomatéka [Nm]

A jármű sebessége és a motor szögsebessége közötti átszámítás idealizált esetben (feltételezzük, hogy nincsen megcsúszás, kipörgés) a következő módon történik:

$$v = r * \omega_k$$

A feladat során használt állandómágneses szinkrongépek helyettesítőkapcsolása a következő:

4.1. ábra Szinkrongépek helyettesítőkapcsolása [2]

 $U_p - p\'olusfesz\"ults\'eg~[V]$

 X_a – armatúra reaktancia $[\Omega]$

 X_s – szórási reaktancia [Ω]

 R_a – armatúra ellenállás $[\Omega]$

U_k – kapocsfeszültség [V]

 $I_a - armatúra \'aram \; [A]$

 $X_{d}\operatorname{-szinkron\ raktancia\ }X_{d}=X_{a}+X_{s}\left[\Omega \right]$

4.2. ábra Kiálló pólusú gép vektorábrája [2]

Az Ia armatúraáram felbontható Id és Iq áramokra:

$$I_d = I_a * cos\theta_p$$

$$I_q = I_a * sin\theta_p$$

A feszültségegyenletek:

$$U_d = R_a * I_d - X_q * I_q$$

$$U_q = U_p + R_a * I_q + X_d * I_d$$

A nyomatékegyenlet:

$$M = \frac{3}{2} * p[\Psi_p * I_q + (L_d - L_q) * I_d * I_q]$$

p – póluspárok száma

Elméleti nyomatékcsúcsok:

$$\xi_{mr} = \frac{\Psi_p}{\left(L_d - L_q\right) * I_a}$$

$$\vartheta_p = \arccos\left(\frac{-\xi_{mr} \pm \sqrt{\xi_{mr}^2 + 8}}{4}\right)$$

4.2 Motor választása

D_out		PSZI_p	Ra				la_max	
(mm)	li (mm)	(Wb)	(Ohm)	Ld (H)	Lq (H)	р	(A)	M (Nm)
140	100	0,064464	1,71E-05	0,000259	0,000378	4	108	42
140	100	0,096697	3,85E-05	0,000582	0,000851	4	72	42
140	100	0,128929	6,84E-05	0,001035	0,001512	4	54	42
160	100	0,07536	1,3E-05	0,000262	0,000389	4	142	64
160	100	0,11304	2,93E-05	0,000589	0,000875	4	94	64
160	100	0,15072	5,21E-05	0,001047	0,001555	4	71	64
180	100	0,086226	1,03E-05	0,000262	0,000398	4	180	93
180	100	0,12934	2,31E-05	0,000589	0,000896	4	120	93
180	100	0,172453	4,1E-05	0,001047	0,001592	4	90	93
200	100	0,097087	8,28E-06	0,000254	0,000406	4	223	130
200	100	0,14563	1,86E-05	0,000572	0,000913	4	149	130
200	100	0,194173	3,31E-05	0,001016	0,001622	4	111	130
220	100	0,107921	6,83E-06	0,000247	0,000412	4	270	175
220	100	0,161882	1,54E-05	0,000555	0,000927	4	180	175
220	100	0,215842	2,73E-05	0,000987	0,001648	4	135	175
240	100	0,118714	5,73E-06	0,000236	0,000417	4	323	230
240	100	0,178071	1,29E-05	0,000532	0,000939	4	215	230
240	100	0,237428	2,29E-05	0,000946	0,001669	4	161	230

4.1. táblázat A rendelkezésre álló motorok és paramétereik

Annak érdekében, hogy az illesztett motor elérje az előírt 300 Nm-es nyomatékot, értelemszerűen két 130 Nm-es motor aktív hosszát kellett megnövelni. Két motor alkalmazásakor az armatúra áram és a pólusok számán kívül minden másik paramétert a kétszeresére kell növelni. Az aktív hossz növelésével arányosan nő a motor többi paraméterének az értéke (D_{out}, Ψ_p, R_a, L_d, Lq, M), a kívánt nyomaték elérése érdekében 1.15 –szeresére növeltem az aktív hosszt. A továbbiakban így ezekkel az értékekkel számoltam.

	D_out (mm)	li (mm)	PSZI_p (Wb)	Ra (Ohm)	Ld (H)	Lq (H)	р	la_max (A)	M (Nm)
Motor				1,90E-					
1	460	230	0,2232990259	05	0,0005842	0,0009338	4	223	299
Motor				4,28E-					
2	460	230	0,3349485377	05	0,0013156	0,0020999	4	149	299
Motor				7,61E-					
3	460	230	0,4465980518	05	0,0023368	0,0037306	4	111	299

4.2. táblázat A kiválasztott motorok módosított paraméterekkel

A fentebb részletezett adatokat eziután mindegyik motorra kiszámoltam a munkapontban (100km/h), hogy a különbségeket látva az igényeknek leginkább megfelelőt lehessen választani.

v [km/h]	0	20	50	100	125	150	175	200	225	250
v [m/s]	0	5,55	13,88	27,77	34,72	41,66	48,61	55,55	62,5	69,44
ω_k [rad/s]	0	16,46	41,15	82,3	102,88	123,46	144,03	164,61	185,19	205,76
ω_v [rad/s]	0	123,99	309,99	619,99	774,99	929,99	1084,99	1239,99	1394,99	1549,99
M [Nm]	300	300	300	300	240	200	171,43	150	133,33	120

4.3. táblázat A kiszámolt nyomaték

4.3. ábra Nyomaték – villamos szögsebesség diagram

U _p [V]	138,4442885
ξ_{mr}	-2,864247492
$artheta_p[^\circ]$	106,875334
I _d [A]	-64,73472691
I _q [A]	213,3973175
U _d [V]	-1,24E+02
$U_q[V]$	1,15E+02
U _{kdelta} [V]	169 7990254
U _{kstar} [V]	168,7880254
M [Nm]	292,3494358 314,8851805
2.2 [11111]	21.,0301000

4.4. táblázat Az 1. motorhoz tartozó kiszámolt értékek

U _p [V]	207,666432
ξ_{mr}	-2,866220532
$artheta_p[^\circ]$	106,8668186
I _d [A]	-43,23205649
I _q [A]	142,5902847
U _d [V]	-1,86E+02
U _q [V]	1,72E+02
U _{kdelta} [V]	253,3550967
U _{kstar} [V]	438,8238998
M [Nm]	315,5712129

4.5. táblázat A 2. motorhoz tartozó kiszámolt értékek

U _p [V]	276,888577
ξ_{mr}	-2,886645051
$artheta_p[^\circ]$	106,7791093
I _d [A]	-32,04378273
$I_{q}\left[A ight]$	106,2741548
U _d [V]	-2,46E+02
U _q [V]	2,30E+02
U _{kdelta} [V]	336,9561954
U _{kstar} [V]	583,6252503
M [Nm]	313,3939216

4.6. táblázat A 3. motorhoz kiszámolt értékek

A választásnál figyelembe kell venni, hogy a nagyobb feszültségeken üzemelő motoron kisebb veszteségek keletkeznek, azonban az alacsonyabb feszültségű rendszerek

szigetelését egyszerűbb megvalósítani, valamint a 400 V –os rendszerek sokkal elterjedtebbek a piacon, mint a 800 V –os rendszerek. Ezek miatt a választásom az első motorra és egy 400 V –os inverterre esett.

Irodalomjegyzék

- [1] https://www.auto-data.net/en/mercedes-benz-sl-coupe-w198-300-sl-215hp-41187 2021. szeptember
- [2] Állandómágneses szinkrongépek alapjai prezentáció, Robert Bosch Kft. 2021. október
- [3] Vincze Gyuláné, Balázs Gergely György Villamos járművek 2012. 4-8 oldal, 14-15 oldal
- [4] E-mobilitás prezentáció, Robert Bosch Kft. 2021. szeptember
- [5] A villamos hajtásláncról rendszerszinten prezentáció, Robert Bosch Kft. 2021. október
- [6] Nagy Zsolt Villamos autók hajtásának vizsgálata szakdolgozat, 2017. 29-32 oldal