### A PYTHON PROGRAM TO IMPLEMENT ADA BOOSTING

**Ex.No.:8** 

Date of Submission: 10/10/2024

AIM:-

To implement a python program for Ada Boosting.

#### **ALGORITHM:-**

Step1: Import the necessary libraries(pandas as pd, numpy as np and plot\_decision\_regions from mlxtend.plotting)

Step2: Create a dataframe and fill values and labels in the data frame and display it.

Step3: Import seaborn as sns and plot a scatter plot with the data frame components as the parameters.

Step4: Add a new component to the data frame called "weights" which equals the inverse of the cumulative dimensions of the data frame and display it.

Step5: Import "DecisionTreeClassifier" from sklearn.tree and create an object.

Step6: Assign the variables "x" and "y" the range of values from the data frame.

Step7: Fit the first tree and then plot the tree using "plot\_tree" imported from sklearn.tree.

Step8: Plot the decision regions using the above trained tree as the classifier.

Step9: Introduce a new component in the dataframe called "y\_pred" to store the values predicted by the above use decision tree and display the decision tree.

Step10: Create a function which returns half the values of log of (1-error)/(error) and calculate the weight of the decision tree.

Step11: Create a function to update the weights of the instances such that the weight is multiplied by exp(-alpha) if correctly classified and multiplied by exp(alpha) if misclassified.

Step12: Create a new component of the data frame called "updated\_weights" and apply the created function on the columns in the data frame and store the resulting values in the new component and display the data frame.

Step13: Add all the values in the "updated\_weights" component and add a new component called "normalized\_weights" which equals the division of each individual instance value by the sum of values of all instances and display the updated data frame.

Step14: Calculate the sum of the values of the "normalized values" component and display it.

Step15: Add a new component called "cumsum\_upper" the cumulative sum of the

"normalized\_weights" values.

Step16: Add another component called "cumsum lower" which is the difference between the

"cumsum upper" and "normalized weights" and display all the components of the data frame.

Step17: Follow the above 16 steps two more times for 2 new data frames and 2 new decision

trees(second\_df,third\_df,dt2and dt3 respectively)

Step18: Compare the predicted values of all the decision trees.

Step19: Multiply alpha1, alpha2 and alpha3 by 1 and add all the values.

Step20: Find the sign of the resulting values from the previous step.

Step21: Multiply alpha1 by1, alpha2 and alpha3 by -1 and add the values and find the sign of the resulting value.

#### **IMPLEMENTATION:-**

import pandas as pd

import numpy as np

from mlxtend.plotting import plot\_decision\_regions

df = pd.DataFrame()

df['X1']=[1,2,3,4,5,6,6,7,9,9]

df['X2']=[5,3,6,8,1,9,5,8,9,2]

df['label']=[1,1,0,1,0,1,0,1,0,0]

df

|   | Х1 | Х2 | label |
|---|----|----|-------|
| 0 | 1  | 5  | 1     |
| 1 | 2  | 3  | 1     |
| 2 | 3  | 6  | 0     |
| 3 | 4  | 8  | 1     |
| 4 | 5  | 1  | 0     |
| 5 | 6  | 9  | 1     |
| 6 | 6  | 5  | 0     |
| 7 | 7  | 8  | 1     |
| 8 | 9  | 9  | 0     |
| 9 | 9  | 2  | 0     |

# import seaborn as sns

sns.scatterplot(x=df['X1'],y=df['X2'],hue=df['label'])

<AxesSubplot:xlabel='X1', ylabel='X2'>



df['weights']=1/df.shape[0]

|   | X1 | Х2 | label | weights |
|---|----|----|-------|---------|
| 0 | 1  | 5  | 1     | 0.1     |
| 1 | 2  | 3  | 1     | 0.1     |
| 2 | 3  | 6  | 0     | 0.1     |
| 3 | 4  | 8  | 1     | 0.1     |
| 4 | 5  | 1  | 0     | 0.1     |
| 5 | 6  | 9  | 1     | 0.1     |
| 6 | 6  | 5  | 0     | 0.1     |
| 7 | 7  | 8  | 1     | 0.1     |
| 8 | 9  | 9  | 0     | 0.1     |
| 9 | 9  | 2  | 0     | 0.1     |

 $from\,sklearn.tree\,import\,DecisionTreeClassifier$ 

dt1 = DecisionTreeClassifier(max\_depth=1)

x = df.iloc[:,0:2].values

y = df.iloc[:,2].values

# Step 2 - Train 1st Model

dt1.fit(x,y)

DecisionTreeClassifier(max\_depth=1)

from sklearn.tree import plot\_tree

### plot\_tree(dt1)

```
[Text(0.5, 0.75, 'X[1] <= 2.5 \cdot 1 = 0.5 \cdot 1
```

gini = 0.0 samples = 2 value = [2, 0] gini = 0.469 samples = 8 value = [3, 5]

### plot\_decision\_regions(x,y,clf=dt1,legend=2)

<AxesSubplot:>



 $df['y\_pred'] = dt1.predict(x)$ 

df

|   | Х1 | Х2 | label | weights | y_pred |
|---|----|----|-------|---------|--------|
| 0 | 1  | 5  | 1     | 0.1     | 1      |
| 1 | 2  | 3  | 1     | 0.1     | 1      |
| 2 | 3  | 6  | 0     | 0.1     | 1      |
| 3 | 4  | 8  | 1     | 0.1     | 1      |
| 4 | 5  | 1  | 0     | 0.1     | 0      |
| 5 | 6  | 9  | 1     | 0.1     | 1      |
| 6 | 6  | 5  | 0     | 0.1     | 1      |
| 7 | 7  | 8  | 1     | 0.1     | 1      |
| 8 | 9  | 9  | 0     | 0.1     | 1      |
| 9 | 9  | 2  | 0     | 0.1     | 0      |

```
def calculate_model_weight(error):
  return 0.5*np.log((1-error)/(error))
# Step - 3 Calculate model weight
alpha1 = calculate_model_weight(0.3)
alpha1
     0.42364893019360184
# Step -4 Update weights
def update_row_weights(row,alpha=0.423):
  if row['label'] == row['y_pred']:
    return row['weights']* np.exp(-alpha)
  else:
    return row['weights']* np.exp(alpha)
df['updated_weights'] = df.apply(update_row_weights,axis=1)
```

## df

|   | Х1 | X2 | label | weights | y_pred | updated_weights |
|---|----|----|-------|---------|--------|-----------------|
| 0 | 1  | 5  | 1     | 0.1     | 1      | 0.065508        |
| 1 | 2  | 3  | 1     | 0.1     | 1      | 0.065508        |
| 2 | 3  | 6  | 0     | 0.1     | 1      | 0.152653        |
| 3 | 4  | 8  | 1     | 0.1     | 1      | 0.065508        |
| 4 | 5  | 1  | 0     | 0.1     | 0      | 0.065508        |
| 5 | 6  | 9  | 1     | 0.1     | 1      | 0.065508        |
| 6 | 6  | 5  | 0     | 0.1     | 1      | 0.152653        |
| 7 | 7  | 8  | 1     | 0.1     | 1      | 0.065508        |
| 8 | 9  | 9  | 0     | 0.1     | 1      | 0.152653        |
| 9 | 9  | 2  | 0     | 0.1     | 0      | 0.065508        |

df['updated\_weights'].sum()

## 0.9165153319682015

 $df['normalized\_weights'] = df['updated\_weights']/df['updated\_weights'].sum()$ 

|   | Х1 | Х2 | label | weights | y_pred | updated_weights | normalized_weights |
|---|----|----|-------|---------|--------|-----------------|--------------------|
| 0 | 1  | 5  | 1     | 0.1     | 1      | 0.065508        | 0.071475           |
| 1 | 2  | 3  | 1     | 0.1     | 1      | 0.065508        | 0.071475           |
| 2 | 3  | 6  | 0     | 0.1     | 1      | 0.152653        | 0.166559           |
| 3 | 4  | 8  | 1     | 0.1     | 1      | 0.065508        | 0.071475           |
| 4 | 5  | 1  | 0     | 0.1     | 0      | 0.065508        | 0.071475           |
| 5 | 6  | 9  | 1     | 0.1     | 1      | 0.065508        | 0.071475           |
| 6 | 6  | 5  | 0     | 0.1     | 1      | 0.152653        | 0.166559           |
| 7 | 7  | 8  | 1     | 0.1     | 1      | 0.065508        | 0.071475           |
| 8 | 9  | 9  | 0     | 0.1     | 1      | 0.152653        | 0.166559           |
| 9 | 9  | 2  | 0     | 0.1     | 0      | 0.065508        | 0.071475           |

df['normalized\_weights'].sum()

1.0

 $df['cumsum\_upper'] = np.cumsum(df['normalized\_weights'])$ 

 $df['cumsum\_lower'] = df['cumsum\_upper'] - df['normalized\_weights']$ 

 $df[['X1','X2','label','weights','y\_pred','updated\_weights','cumsum\_lower','cumsum\_upper']]$ 

|   | Х1 | Х2 | label | weights | y_pred | updated_weights | cumsum_lower | cumsum_upper |
|---|----|----|-------|---------|--------|-----------------|--------------|--------------|
| 0 | 1  | 5  | 1     | 0.1     | 1      | 0.065508        | 0.000000     | 0.071475     |
| 1 | 2  | 3  | 1     | 0.1     | 1      | 0.065508        | 0.071475     | 0.142950     |
| 2 | 3  | 6  | 0     | 0.1     | 1      | 0.152653        | 0.142950     | 0.309508     |
| 3 | 4  | 8  | 1     | 0.1     | 1      | 0.065508        | 0.309508     | 0.380983     |
| 4 | 5  | 1  | 0     | 0.1     | 0      | 0.065508        | 0.380983     | 0.452458     |
| 5 | 6  | 9  | 1     | 0.1     | 1      | 0.065508        | 0.452458     | 0.523933     |
| 6 | 6  | 5  | 0     | 0.1     | 1      | 0.152653        | 0.523933     | 0.690492     |
| 7 | 7  | 8  | 1     | 0.1     | 1      | 0.065508        | 0.690492     | 0.761967     |
| 8 | 9  | 9  | 0     | 0.1     | 1      | 0.152653        | 0.761967     | 0.928525     |
| 9 | 9  | 2  | 0     | 0.1     | 0      | 0.065508        | 0.928525     | 1.000000     |

```
indices=[]
for i in range(df.shape[0]):
    a = np.random.random()
    for index,row in df.iterrows():
        if row['cumsum_upper']>a and a>row['cumsum_lower']:
            indices.append(index)
    return indices

index_values = create_new_dataset(df)
index_values

[6, 6, 0, 6, 7, 5, 1, 8, 4, 6]

second_df = df.iloc[index_values,[0,1,2,3]]
second_df
```

def create\_new\_dataset(df):

|   | Х1 | Х2 | label | weights |
|---|----|----|-------|---------|
| 6 | 6  | 5  | 0     | 0.1     |
| 6 | 6  | 5  | 0     | 0.1     |
| 0 | 1  | 5  | 1     | 0.1     |
| 6 | 6  | 5  | 0     | 0.1     |
| 7 | 7  | 8  | 1     | 0.1     |
| 5 | 6  | 9  | 1     | 0.1     |
| 1 | 2  | 3  | 1     | 0.1     |
| 8 | 9  | 9  | 0     | 0.1     |
| 4 | 5  | 1  | 0     | 0.1     |
| 6 | 6  | 5  | 0     | 0.1     |

```
dt2 = DecisionTreeClassifier(max_depth=1)
```

```
x = second_df.iloc[:,0:2].values
y = second_df.iloc[:,2].values
```

dt2.fit(x,y)

DecisionTreeClassifier(max\_depth=1)

# $plot\_tree(dt2)$

```
 [ Text(0.5,\ 0.75,\ 'X[0] <= 3.5 \\  \  ) = 0.48 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \  ) = 10 \\  \ )
```

```
X[0] <= 3.5
gini = 0.48
samples = 10
value = [6, 4]
gini = 0.0 gini =
```

gini = 0.0 samples = 2 value = [0, 2] gini = 0.375 samples = 8 value = [6, 2]

# plot\_decision\_regions(x, y, clf=dt2, legend=2)

## <AxesSubplot:>



 $second\_df['y\_pred'] = dt2.predict(x)$ 

## second\_df

|   | Х1 | Х2 | label | weights | y_pred |
|---|----|----|-------|---------|--------|
| 6 | 6  | 5  | 0     | 0.1     | 0      |
| 6 | 6  | 5  | 0     | 0.1     | 0      |
| 0 | 1  | 5  | 1     | 0.1     | 1      |
| 6 | 6  | 5  | 0     | 0.1     | 0      |
| 7 | 7  | 8  | 1     | 0.1     | 0      |
| 5 | 6  | 9  | 1     | 0.1     | 0      |
| 1 | 2  | 3  | 1     | 0.1     | 1      |
| 8 | 9  | 9  | 0     | 0.1     | 0      |
| 4 | 5  | 1  | 0     | 0.1     | 0      |
| 6 | 6  | 5  | 0     | 0.1     | 0      |

 $alpha2 = calculate\_model\_weight(0.1)$ 

```
alpha2
```

### 1.0986122886681098

```
# Step 4 - Update weights
def update_row_weights(row,alpha=1.09):
    if row['label'] == row['y_pred']:
        return row['weights'] * np.exp(-alpha)
    else:
        return row['weights'] * np.exp(alpha)

second_df['updated_weights'] = second_df.apply(update_row_weights,axis=1)
second_df
```

|   | Х1 | Х2 | label | weights | y_pred | updated_weights |
|---|----|----|-------|---------|--------|-----------------|
| 6 | 6  | 5  | 0     | 0.1     | 0      | 0.033622        |
| 6 | 6  | 5  | 0     | 0.1     | 0      | 0.033622        |
| 0 | 1  | 5  | 1     | 0.1     | 1      | 0.033622        |
| 6 | 6  | 5  | 0     | 0.1     | 0      | 0.033622        |
| 7 | 7  | 8  | 1     | 0.1     | 0      | 0.297427        |
| 5 | 6  | 9  | 1     | 0.1     | 0      | 0.297427        |
| 1 | 2  | 3  | 1     | 0.1     | 1      | 0.033622        |
| 8 | 9  | 9  | 0     | 0.1     | 0      | 0.033622        |
| 4 | 5  | 1  | 0     | 0.1     | 0      | 0.033622        |
| 6 | 6  | 5  | 0     | 0.1     | 0      | 0.033622        |

second\_df['nomalized\_weights'].sum()

#### 0.99999999999999

 $second\_df['cumsum\_upper'] = np.cumsum(second\_df['nomalized\_weights'])$   $second\_df['cumsum\_lower'] = second\_df['cumsum\_upper'] - second\_df['nomalized\_weights']$   $second\_df[['X1','X2','label','weights','y\_pred','nomalized\_weights','cumsum\_lower','cumsum\_upper']]$ 

|   | X1 | Х2 | label | weights | y_pred | nomalized_weights | cumsum_lower | cumsum_upper |
|---|----|----|-------|---------|--------|-------------------|--------------|--------------|
| 6 | 6  | 5  | 0     | 0.1     | 0      | 0.038922          | 0.000000     | 0.038922     |
| 6 | 6  | 5  | 0     | 0.1     | 0      | 0.038922          | 0.038922     | 0.077843     |
| 0 | 1  | 5  | 1     | 0.1     | 1      | 0.038922          | 0.077843     | 0.116765     |
| 6 | 6  | 5  | 0     | 0.1     | 0      | 0.038922          | 0.116765     | 0.155687     |
| 7 | 7  | 8  | 1     | 0.1     | 0      | 0.344313          | 0.155687     | 0.500000     |
| 5 | 6  | 9  | 1     | 0.1     | 0      | 0.344313          | 0.500000     | 0.844313     |
| 1 | 2  | 3  | 1     | 0.1     | 1      | 0.038922          | 0.844313     | 0.883235     |
| 8 | 9  | 9  | 0     | 0.1     | 0      | 0.038922          | 0.883235     | 0.922157     |
| 4 | 5  | 1  | 0     | 0.1     | 0      | 0.038922          | 0.922157     | 0.961078     |
| 6 | 6  | 5  | 0     | 0.1     | 0      | 0.038922          | 0.961078     | 1.000000     |

 $index\_values = create\_new\_dataset(second\_df) \\$   $third\_df = second\_df.iloc[index\_values,[0,1,2,3]] \\$   $third\_df$ 

|   | Х1 | Х2 | label | weights |
|---|----|----|-------|---------|
| 1 | 2  | 3  | 1     | 0.1     |
| 6 | 6  | 5  | 0     | 0.1     |
| 5 | 6  | 9  | 1     | 0.1     |
| 1 | 2  | 3  | 1     | 0.1     |
| 5 | 6  | 9  | 1     | 0.1     |
| 8 | 9  | 9  | 0     | 0.1     |
| 8 | 9  | 9  | 0     | 0.1     |
| 8 | 9  | 9  | 0     | 0.1     |
| 5 | 6  | 9  | 1     | 0.1     |
| 8 | 9  | 9  | 0     | 0.1     |

dt3 = DecisionTreeClassifier(max\_depth=1)

 $X = second\_df.iloc[:,0:2].values$ 

y = second\_df.iloc[:,2].values
dt3.fit(X,y)

DecisionTreeClassifier(max\_depth=1)

plot\_decision\_regions(X, y, clf=dt3, legend=2)

<AxesSubplot:>



 $third_df['y_pred] = dt3.predict(X)$ 

third\_df

 $alpha3 = calculate\_model\_weight(0.7)$  alpha3

```
-0.4236489301936017
print(alpha1,alpha2,alpha3)
 0.42364893019360184 1.0986122886681098 -0.4236489301936017
query = np.array([1,5]).reshape(1,2)
dt1.predict(query)
 array([1])
dt2.predict(query)
 array([1])
dt3.predict(query)
 array([1])
alpha1*1 + alpha2*(1) + alpha3*(1)
1.09861228866811
np.sign(1.09)
   1.0
query = np.array([9,9]).reshape(1,2)
dt1.predict(query)
 array([1])
dt2.predict(query)
  array([0])
dt3.predict(query)
```

```
array([0])

alpha1*(1) + alpha2*(-1) + alpha3*(-1)

-0.2513144282809062

np.sign(-0.25)
```

## **RESULT:-**

Thus the python program to implement Adaboosting has been executed successfully and the results have been verified and analyzed.