MA219 – Linear Algebra 2020 Autumn Semester

[You are expected to write proofs / arguments with reasoning provided, in solving these questions.]

Homework Set 5 (due by Thursday, November 12 by 11:59 pm, on Microsoft Teams) (Updated.)

Throughout this homework (and this course), \mathbb{F} denotes an arbitrary field.

Question 1. Suppose V,W are \mathbb{F} -vector spaces, and $T:V\to W$ is an \mathbb{F} -linear transformation.

- (1) Show that $T(\mathbf{0}_V) = \mathbf{0}_W$ and that T(-v) = -T(v) for all $v \in V$.
- (2) Suppose T is a bijection of sets. Prove that the inverse map T^{-1} is also a linear transformation.

Question 2. Prove that the notion of linear isomorphism is an equivalence relation of \mathbb{F} -vector spaces.

Question 3. Suppose V, W are \mathbb{F} -vector spaces. Show that Lin(V, W), the space of linear maps : $V \to W$, is a vector space.

Question 4. Suppose $A, B \in \mathbb{F}^{m \times n}$ for some integers $m, n \geq 1$. Prove that A = B if and only if Av = Bv for all vectors $v \in \mathbb{F}^n$.

Question 5. Suppose \mathbb{F} is a field, and $T : \mathbb{F}^2 \to \mathbb{F}^2$ is the linear operator $T(x_1, x_2) := (x_2, -x_1)$, where $(x_1, x_2)^T = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$ is with respect to the standard ordered basis $\mathcal{B} = (\mathbf{e}_1, \mathbf{e}_2)$.

- (1) What is the matrix of T given by $[T]_{\mathcal{B},\mathcal{B}}$?
- (2) What is the matrix of T given by $[T]_{\mathcal{B},\mathcal{B}'}$, where $\mathcal{B}' = (\mathbf{e}_1 + \mathbf{e}_2, -\mathbf{e}_1)$?
- (3) What is the transition matrix of \mathcal{B}' into \mathcal{B} ? Meaning, find the matrix P such that $[v]_{\mathcal{B}} = P[v]_{\mathcal{B}'}$ for all $v \in \mathbb{F}^2$.
- (4) Suppose \mathbb{F} has characteristic not 2 (so 2 = 1 + 1 in \mathbb{F}). What is the coordinate vector of $(2, -1)^T$ in the standard basis, when written out in the basis \mathcal{B}' ?

Question 6. Suppose $\mathbb{F} = \mathbb{R}$, $V = \mathbb{R}^2$, and $\theta \in \mathbb{R}$. Suppose $T : V \to V$ is the linear transformation that rotates a vector counterclockwise by θ (radians). Compute the matrix of T with respect to the standard basis of V.