Deep Learning for Developers

Julien Simon, Principal Technical Evangelist @julsimon

Amazon Al for every developer

Neural Networks

The neuron

$$u = \sum_{i=1}^n w_i x_i$$

$$x = [x_{1,} x_{2,} \dots x_{1}]$$

 $w = [w_{1,} w_{2,} \dots w_{1}]$

Activation

The neural network

The training process

- The difference between the predicted output and the actual output (aka ground truth) is called the prediction loss.
- There are different ways to compute it (loss functions).
- The purpose of training is to iteratively minimize loss and maximize accuracy for a given data set.
- We need a way to adjust weights (aka parameters) in order to gradually minimize loss
 - → Backpropagation + optimization algorithm

1974 - Backpropagation

Paul Werbos
Artificial Intelligence pioneer
IEEE Neural Network Pioneer Award

The back-propagation algorithm acts as an error correcting mechanism at each neuron level, thereby helping the network to learn effectively.

Stochastic Gradient Descent (SGD)

Imagine you stand on top of a mountain with skis strapped to your feet. You want to get down to the valley as quickly as possible, but there is fog and you can only see your immediate surroundings. How can you get down the mountain as quickly as possible? You look around and identify the steepest path down, go down that path for a bit, again look around and find the new steepest path, go down that path, and repeat—this is exactly what gradient descent does.

Tim Dettmers

University of Lugano 2015

The « step size » is called the learning rate

There is such a thing as « learning too well »

- If a network is large enough and given enough time, it will perfectly learn a data set (universal approximation theorem).
- But what about new samples? Can it also predict them correctly?
- In other words, does the network generalize well or not?
- To prevent overfitting, we need to know when to stop training.
- The training data set is not enough.

Data sets

set

Training set: this data set is used to adjust the weights on the neural network.

Validation set: this data set is used to minimize overfitting. You're not adjusting the weights of the network with this data set, you're just verifying that any increase in accuracy over the training data set actually yields an increase in accuracy over a data set that has not been shown to the network before.

Testing set: this data set is used only for testing the final weights in order to benchmark the actual predictive power of the network.

Training

Training data set

Learning rate

Trained neural network

Hyper parameters

Validation

set

Stop training when validation accuracy stops increasing

network

of each

epoch

Saving parameters at the end of each epoch

Convolutional Neural Networks

Le Cun, 1998: handwritten digit recognition, 32x32 pixels Feature extraction and downsampling allow smaller networks

Long Short Term Memory (LSTM) Networks

- A LSTM neuron computes the output based on the input and a previous state.
- LSTM networks have memory
- They're great at predicting sequences, e.g. machine translation

Apache MXNet

Multi-GPU Scaling With MXNet

Demos

- Image classification with pre-trained models (CNN)
- 2. Image classification from scratch (MLP, CNN)
- 3. Machine Translation with Sockeye (LSTM)
- 4. Al, loT and robots

AI, IoT and robots

Device domain IoT domain Robot domain Internet domain

Resources

http://mxnet.io

https://github.com/awslabs/sockeye

https://aws.amazon.com/blogs/ai/

http://medium.com/@julsimon

https://github.com/juliensimon/aws/tree/master/mxnet

Thank you!

http://aws.amazon.com/evangelists/julien-simon@julsimon

