Paper Title¹

Author1_Name Author1_Surname² Author2_Name Author2_Surname³ Author3_Name Author3_Surname⁴

June 24, 2021

¹The views expressed are not necessarily those of XYZ.

²Author1 affiliation e.g. University of Cape Town

³Author2 affiliation

⁴Author3 affiliation

Bank Funding Diversification and Investor Similarity

- Reason for abc is . . .
 - ► Then subpoint main and other consideration to abc

$$\varphi(x,y) = \begin{cases} 1 & \text{if } |I(x,y) - \overline{I(x,y)}| > JND_{ST}(x,y), \\ 0 & \text{otherwise} \end{cases}$$
 (1)

Bank Funding Diversification and Investor Similarity

- Reason for abc is . . .
 - ► Then subpoint main and other consideration to abc

$$\varphi(x,y) = \begin{cases} 1 & \text{if } |I(x,y) - \overline{I(x,y)}| > JND_{\text{ST}}(x,y), \\ 0 & \text{otherwise} \end{cases}$$
 (1)

- Another point
 - ▶ "a quote from someone" (Author (2018))

 \rightarrow Resulting thought?

Another point

 \rightarrow Another resulting thought?

Bank Funding Diversification and Investor Similarity

- Reason for abc is . . .
 - ► Then subpoint main and other consideration to abc

$$\varphi(x,y) = \begin{cases} 1 & \text{if } |I(x,y) - \overline{I(x,y)}| > JND_{\text{ST}}(x,y), \\ 0 & \text{otherwise} \end{cases}$$
 (1)

- Another point
 - ▶ "a quote from someone" (Author (2018))

 \rightarrow Resulting thought?

Another point

 \rightarrow Another resulting thought?

■ Two images in same line

■ Two images in same line

- ightarrow and a right arrowidentical
- O Juiversity of Cape Tours. Yunives H.

- Follow up point a
- However, Follow up point b

H2: The average similarity of the funds investing in an issuer increases the issuer's funding liquidity risk. The issuer cannot substitute the loss of funding from similar investors in a crisis.

■ Example formula:

$$Similarity_{it} = \sum_{f} w_{fit} Similarity_{fit}$$

■ Example formula 2:

$$\begin{split} \log (\textit{vol}_{\textit{it}}/\textit{vol}_{\textit{it}-1}) &= \beta_{\textit{i}} + \beta_{\textit{t}} + \gamma_{1} \textit{Similarity}_{\textit{it}-1} + \gamma_{2} \textit{Similarity}_{\textit{it}-1} \times \textit{Crisis}_{\textit{t}} \\ &+ \delta \textit{Controls}_{\textit{it}-1} + \varepsilon_{\textit{it}}, \end{split}$$

where β_i are abc, β_t are abc, Crisis_t is an abc.)

Let $S_i^{\mathcal{G}}$ be number of i's neighbors active in network \mathcal{G} .

$$u_i(\mathbf{a}) = \begin{cases} \pi(S_i^R, S_i^C) - c(w_i) & \text{if } a_i^R = a_i^C = 1\\ 0 & \text{otherwise} \end{cases}$$
 (2)

Assumption: key assumption here.

Cf. [Author, YYYY], [Author et al., YYYY], [Author and Author, YYYY].

¹Example footnote 1.

Let $S_i^{\mathcal{G}}$ be number of i's neighbors active in network \mathcal{G} .

$$u_i(\mathbf{a}) = \begin{cases} \pi(S_i^R, S_i^C) - c(w_i) & \text{if } a_i^R = a_i^C = 1\\ 0 & \text{otherwise} \end{cases}$$
 (2)

Assumption: key assumption here.

Cf. [Author, YYYY], [Author et al., YYYY], [Author and Author, YYYY].

Block to appear as you scroll

1 Item 1:

Description of item.

 $\implies a_i^R = 1$ requires abc to be true.

¹Example footnote 1.

Let $S_i^{\mathcal{G}}$ be number of i's neighbors active in network \mathcal{G} .

$$u_i(\mathbf{a}) = \begin{cases} \pi(S_i^R, S_i^C) - c(w_i) & \text{if } a_i^R = a_i^C = 1\\ 0 & \text{otherwise} \end{cases}$$
 (2)

Assumption: key assumption here.

Cf. [Author, YYYY], [Author et al., YYYY], [Author and Author, YYYY].

Block to appear as you scroll

II Item 1:

Description of item.

 $\implies a_i^R = 1$ requires abc to be true. ¹

2 Item 2:

Description of item.

 $\implies a_i^C = 1$ requires abc to be true.²

¹Example footnote 1.

Let $S_i^{\mathcal{G}}$ be number of *i*'s neighbors active in network \mathcal{G} .

$$u_i(\mathbf{a}) = \begin{cases} \pi(S_i^R, S_i^C) - c(w_i) & \text{if } a_i^R = a_i^C = 1\\ 0 & \text{otherwise} \end{cases}$$
 (2)

Assumption: key assumption here.

Cf. [Author, YYYY], [Author et al., YYYY], [Author and Author, YYYY].

Block to appear as you scroll

1 Item 1:

Description of item.

$$\implies a_i^R = 1$$
 requires abc to be true. ¹

2 Item 2:

Description of item.

$$\implies a_i^C = 1$$
 requires abc to be true.²

3 Item 3:

Description of item.

$$\implies a_i^R = 1$$
 or $a_i^C = 1$ requires abc to be true. ²

¹Example footnote 1.

Conclusion

- Example point 1
- Example point 2
- Example point 3
 - Example subpoint 1
 - Example subpoint 2
- Example point 3

Conclusion

- Example point 1
- Example point 2
- Example point 3
 - Example subpoint 1
 - Example subpoint 2
- Example point 3

Thank you!