CS2102 Database Systems

Last Lecture

BCNF Definition:

A table R is in BCNF, if every non-trivial and decomposed
 FD has a superkey as its left hand side

BCNF Check:

- Check if there exists a "more but not all" closure
- **E.g.**, a table R(X, Y, Z), with $\{X\}^+ = \{X, Y\}$

BCNF Decomposition

- □ If we have a table a table R(X, Y, Z), with $\{X\}^+ = \{X, Y\}$
- Then decompose R into R1(X, Y) and R2(X, Z)
- Repeat until all tables are in BCNF

Properties of BCNF

- Good properties
 - No update or deletion anomalies
 - Small redundancy
 - The original table can always be reconstructed from the decomposed tables
- Bad properties
 - Dependencies may not be preserved in the decomposed table

Dependency Preservation

- Given: Table R(A, B, C)
 - with AB \rightarrow C, C \rightarrow B
- Keys: {AB}, {AC}
- BCNF Decomposition
 - \square R₁(B, C)
 - \square R₂(A, C)

- Non-trivial and decomposed FDs on R_1 : $C \rightarrow B$
- Non-trivial and decomposed FDs on R₂: none
- The other FD, AB \rightarrow C, cannot be derived from the FDs on R₁ and R₂, i.e., it is "lost"
- This why we say that a BCNF decomposition may not always preserve all FDs

Dependency Preservation

- Let S be the given set of FDs on the original table
- Let S' be the set of FDs on the decomposed tables
- We say that the decomposition preserves all FDs, if and only if S and S' are equivalent, i.e.,
 - Every FD in S' can be derived from S
 - Every FD in S can be derived from S'
- Example:
 - \square S = {A \rightarrow B, B \rightarrow C, A \rightarrow C}
 - \Box S' = {A \rightarrow B, B \rightarrow C}
 - S' can obviously be derived from S
 - S can also be derived from S', since $A \rightarrow B$, $B \rightarrow C ==> A \rightarrow C$ (just check $\{A\}^+$ given S')
 - Hence, S and S' are equivalent

FD Equivalence: Example

- \blacksquare S = {A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H}
- $S' = \{A \rightarrow CD, E \rightarrow AH\}$
- Prove that S and S' are equivalent
- First, prove that S' can be derived from S
 - □ Given S, we have $\{A\}^+ = \{ACD\}$, so $A \rightarrow CD$ is implied by S
 - □ Given S, we have {E}⁺ = {EADHC}, so E→AH is implied by S
 - Hence, S' can be derived from S

FD Equivalence: Example

- \blacksquare S = {A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H}
- \blacksquare S' = {A \rightarrow CD, E \rightarrow AH}
- Prove that S and S' are equivalent
- Second, prove that S can be derived from S'
 - □ Given S', we have $\{A\}^+ = \{ACD\}$, so $A \rightarrow C$ is implied by S'
 - □ Given S', we have $\{AC\}^+ = \{ACD\}$, so $AC \rightarrow D$ is implied by S'
 - □ Given S', we have {E}⁺ = {EADHC}, so E→AD and E→H are implied by S'
 - Hence, S can be derived from S'

Dependency Preservation

- What is the point of preserving FDs?
- It makes it easier to avoid "inappropriate" updates

- We have two tables $R_1(B, C)$, $R_2(A, C)$
- We have $C \rightarrow B$ and $AB \rightarrow C$
- Due to AB→C, we are not supposed to have two tuples (a1, b1, c1) and (a1, b1, c2)
- But as we store A and C separately in R₁ and R₂, it is not easy to check whether such two tuples exist at the same time
- □ That is, if someone wants to insert (a1, b1, c2), it is not easy for us to check whether (a1, b1, c1) already exists
- This could be undesirable, depending on the application

Roadmap

- BCNF
 - Small redundancy
 - Lossless join property
 - But may not preserve all FDs
- Third Normal Form (3NF)
 - Not as strict as BCNF
 - Small redundancy (not as small as BCNF, though)
 - Lossless join property
 - Preserve all FDs

Third Normal Form (3NF)

- Definition: A table satisfies 3NF, if and only if for every non-trivial and decomposed FD
 - Either the left hand side is a superkey
 - Or the right hand side is a prime attribute (i.e., it appears in a key)

Example:

- Non-trivial and decomposed FDs: $C \rightarrow B$, $AC \rightarrow B$, $AB \rightarrow C$
- Keys: {AB}, {AC}
- \rightarrow AC \rightarrow B is OK, since AC is a key of R
- AB→C is OK, since AB is a key of R
- So R is in 3NF

Third Normal Form (3NF)

- Definition: A table satisfies 3NF, if and only if for every non-trivial and decomposed FD
 - Either the left hand side is a superkey
 - Or the right hand side is a prime attribute (i.e., it appears in a key)
- Another example:
 - □ Non-trivial and decomposed FDs: $A \rightarrow B$, $B \rightarrow C$, $AC \rightarrow B$, $AB \rightarrow C$
 - Keys: {A}
 - \Box A \rightarrow B is OK, since A is a superkey of R

BCNF vs. 3NF

- BCNF: For any non-trivial and decomposed FD,
 - The left hand side is a super- i key

"Every attribute must depend ONLY on superkeys!"

"No exception!"

- 3NF: For any non-trivial and decomposed FD,
 - Either the left hand side is a super-key
 - Or the right hand side is a prime attribute

"Exceptions can be made for prime attributes :P"

BCNF vs. 3NF

- BCNF: For any non-trivial and decomposed FD,
 - The left hand side is a super- i key
- 3NF: For any non-trivial and decomposed FD,
 - Either the left hand side is a super-key
 - Or the right hand side is a prime attribute
- 3NF is more "lenient" than BCNF
- Therefore,
 - Satisfying BCNF ==> satisfying 3NF, but not necessarily vice versa
 - Violating 3NF ==> violating BCNF, but not necessarily vice versa

3NF Check

- Input: a table R
- Compute the closure for each subset of the attributes in R
- Derive the keys of R
- 3. For each closure $\{X_1, ..., X_k\}^+ = \{Y_1, ..., Y_m\}$, check if
 - {Y₁, ..., Y_m} does not contain all attributes, and
 - there is an attribute in $\{Y_1, ..., Y_m\}$ that is not in $\{X_1, ..., X_K\}$ and is not a prime attribute
- 4. If such a closure does not exist, then R is in 3NF

3NF Check: Example

- \blacksquare R(A, B, C, D) with FDs AB \rightarrow C, C \rightarrow D, and D \rightarrow A
 - 1. Compute the closure for each subset of the attributes in R

3NF Check: Example

R(A, B, C, D) with FDs AB \rightarrow C, C \rightarrow D, and D \rightarrow A 2. Derive the keys of R

Keys: AB, BC, BD

3NF Check: Example

Keys: AB, BC, BD

- \blacksquare R(A, B, C, D) with FDs AB \rightarrow C, C \rightarrow D, and D \rightarrow A
 - 3. For each closure $\{X_1, ..., X_k\}^+ = \{Y_1, ..., Y_m\}$, check if
 - (i) {Y₁, ..., Y_m} does not contain all attributes, and
 - (ii) there is an attribute in $\{Y_1, ..., Y_m\}$ that is not in $\{X_1, ..., X_K\}$ and is not a prime attribute

 - \Box {BC}⁺= {ABCD}, {BD}⁺= {ABCD}, {CD}⁺= {ACD}

In 3NF

■ R(A, B, C, D) with FDs B \rightarrow C, B \rightarrow D

- \blacksquare R(A, B, C, D) with FDs B \rightarrow C, B \rightarrow D
 - 1. Compute the closure for each subset of the attributes in R

 - \Box {BC}⁺= {BCD}, {BD}⁺= {BCD}, {CD}⁺= {CD}

 - $| \{BCD\}^+ = \{BCD\}, \{ACD\}^+ = \{ACD\}$

- \blacksquare R(A, B, C, D) with FDs B \rightarrow C, B \rightarrow D
 - 2. Derive the keys of R

$$\Box$$
 {BC}⁺= {BCD}, {BD}⁺= {BCD}, {CD}⁺= {CD}

$$| \{BCD\}^+ = \{BCD\}, \{ACD\}^+ = \{ACD\}$$

- \blacksquare R(A, B, C, D) with FDs B \rightarrow C, B \rightarrow D
 - 2. Derive the keys of R keys: AB

 - \Box {BC}⁺= {BCD}, {BD}⁺= {BCD}, {CD}⁺= {CD}

 - $| \{BCD\}^+ = \{BCD\}, \{ACD\}^+ = \{ACD\} | \{ACD\}^+ = \{ACD$

- \blacksquare R(A, B, C, D) with FDs B \rightarrow C, B \rightarrow D
 - 2. Derive the keys of R keys: AB

 - $| \{BCD\}^{+} = \{BCD\}, \{ACD\}^{+} = \{ACD\}$

 - 3. For each closure $\{X_1, ..., X_k\}^+ = \{Y_1, ..., Y_m\}$, check if
 - (i) {Y₁, ..., Y_m} does not contain all attributes, and
 - (ii) there is an attribute in $\{Y_1, ..., Y_m\}$ that is not in $\{X_1, ..., X_K\}$ and is not a prime attribute

Not in 3NF

■ R(A, B, C, D) with FDs A \rightarrow B, B \rightarrow C, C \rightarrow D, and D \rightarrow A

In 3NF

- R(A, B, C, D) with FDs A \rightarrow B, B \rightarrow C, C \rightarrow D, and D \rightarrow A
 - 1. Compute the closure for each subset of the attributes in R

 - The others are all {ABCD}
 - 2. Find the keys: A, B, C, D
 - 3. For each closure $\{X_1, ..., X_k\}^+ = \{Y_1, ..., Y_m\}$, check if
 - (i) {Y₁, ..., Y_m} does not contain all attributes, and
 - (ii) there is an attribute in $\{Y_1, ..., Y_m\}$ that is not in $\{X_1, ..., X_K\}$ and is not a prime attribute

■ R(A, B, C, D, E) with FDs AB \rightarrow C, DE \rightarrow C, B \rightarrow E

- R(A, B, C, D, E) with FDs AB \rightarrow C, DE \rightarrow C, B \rightarrow E
 - 1. Compute the closure for each subset of the attributes in R
 - 2. Derive the keys of R

- 3. For each closure $\{X1, ..., X_k\}^+ = \{Y1, ..., Y_m\}$, check if
 - (i) {Y1, ..., Y_m} does not contain all attributes, and
 - (ii) there is an attribute in $\{Y1, ..., Y_m\}$ that is not in $\{X1, ..., X_K\}$ and is not a prime attribute
- 4. If such a closure does not exist, then R is in 3NF

- R(A, B, C, D, E) with FDs AB \rightarrow C, DE \rightarrow C, B \rightarrow E
 - 1. Compute the closure for each subset of the attributes in R
 - 2. Derive the keys of R
 - Notice that A, B, and D do not appear in the r.h.s. of any FD
 - So all keys must contain ABD
 - {ABD}+ = {ABCDE}, so ABD is the only key
 - 3. For each closure $\{X1, ..., X_k\}^+ = \{Y1, ..., Y_m\}$, check if
 - (i) {Y1, ..., Y_m} does not contain all attributes, and
 - (ii) there is an attribute in $\{Y1, ..., Y_m\}$ that is not in $\{X1, ..., X_K\}$ and is not a prime attribute
 - 4. If such a closure does not exist, then R is in 3NF

- R(A, B, C, D, E) with FDs AB \rightarrow C, DE \rightarrow C, B \rightarrow E
 - 1. Compute the closure for each subset of the attributes in R

- 2. Derive the keys of R: ABD is the only key
- 3. For each closure $\{X1, ..., X_k\}^+ = \{Y1, ..., Y_m\}$, check if
 - (i) {Y1, ..., Y_m} does not contain all attributes, and
 - (ii) there is an attribute in $\{Y1, ..., Y_m\}$ that is not in $\{X1, ..., X_K\}$ and is not a prime attribute
- 4. If such a closure does not exist, then R is in 3NF

- R(A, B, C, D, E) with FDs AB \rightarrow C, DE \rightarrow C, B \rightarrow E
 - 1. Compute the closure for each subset of the attributes in R
 - $\{A\}^+ = \{A\}, \{B\}^+ = \{BE\}$

Not in 3NF

- Violation found!
- 2. Derive the keys of R: ABD is the only key
- 3. For each closure $\{X1, ..., X_k\}^+ = \{Y1, ..., Y_m\}$, check if
 - (i) {Y1, ..., Y_m} does not contain all attributes, and
 - (ii) there is an attribute in $\{Y1, ..., Y_m\}$ that is not in $\{X1, ..., X_K\}$ and is not a prime attribute
- 4. If such a closure does not exist, then R is in 3NF

3NF Decomposition

- Given: A table NOT in 3NF
- Objective: Decompose it into smaller tables that are in 3NF
- Example
 - Given: R(A, B, C, D)
 - \square FDs: AB \rightarrow C, C \rightarrow B, A \rightarrow D
 - Keys: {AB}, {AC}
 - \square R is not in 3NF, due to A \rightarrow D
 - 3NF decomposition of R: $R_1(A, B, C), R_2(A, D)$

BCNF Decomposition vs. 3NF Decomposition

 A BCNF decomposition may perform multiple splits, each of which divides a table into two

 A 3NF decomposition has only one split, which divides the table into two or more parts

3NF Decomposition Algorithm

- Given: A table R, and a set S of FDs
 - e.g., R(A, B, C, D) $S = \{A \rightarrow BD, AB \rightarrow C, C \rightarrow D, BC \rightarrow D\}$
- Step 1: Derive a minimal basis of S
 - e.g., a minimal basis of S is $\{A \rightarrow B, A \rightarrow C, C \rightarrow D\}$
- Step 2: In the minimal basis, combine the FDs whose left hand sides are the same
 - e.g., after combining $A \rightarrow B$ and $A \rightarrow C$, we have $\{A \rightarrow BC, C \rightarrow D\}$
- Step 3: Create a table for each FD remained
 - $R_1(A, B, C), R_2(C, D)$
- Step 4: If none of the tables contains a key of the original table R, create a table that contains a key of R (any key would do)

- Given a set S of FDs, the minimal basis of S is a simplified version of S
 - Also called the minimal cover of S
- Previous example:
 - \square S = {A \rightarrow BD, AB \rightarrow C, C \rightarrow D, BC \rightarrow D}
 - \square A minimal basis: $\{A \rightarrow B, A \rightarrow C, C \rightarrow D\}$
- How simplified?
- Four conditions.
- Condition 1: Every FD in the minimal basis can be derived from S, and vice versa.

- Previous example:
 - \square S = {A \rightarrow BD, AB \rightarrow C, C \rightarrow D, BC \rightarrow D}
 - \square A minimal basis: $\{A \rightarrow B, A \rightarrow C, C \rightarrow D\}$
- Condition 2: Every FD in the minimal basis is a non-trivial and decomposed FD.
- Example in S: A→BD does not satisfy this condition
- \blacksquare That is why A \rightarrow BD is not in the minimal basis

- Previous example:
 - \square S = {A \rightarrow BD, AB \rightarrow C, C \rightarrow D, BC \rightarrow D}
 - \square A minimal basis: $\{A \rightarrow B, A \rightarrow C, C \rightarrow D\}$
- Condition 3: No FD in the minimal basis is redundant.
- That is, no FD in the minimal basis can be derived from the other FDs in the minimal basis.
- Example in S: BC \rightarrow D can be derived from C \rightarrow D
- That is why BC→D is not in the minimal basis

- Previous example:
 - $S = \{A \rightarrow BD, AB \rightarrow C, C \rightarrow D, BC \rightarrow D\}$
 - □ A minimal basis: $\{A \rightarrow B, A \rightarrow C, C \rightarrow D\}$
- Condition 4: For each FD in the minimal basis, none of the attributes on the left hand side is redundant
- That is, if we remove an attribute from the left hand side, then the resulting FD is a new FD that cannot be derived from the original set of FDs
- Example:
 - □ Consider AB→C
 - \Box If we remove B from the left hand side, we have A \rightarrow C
 - \rightarrow C can be derived from S, since $\{A\}^+ = \{ABDC\}$ given S
 - This indicates that A→C is "hidden" in S
 - \Box There, we can add A \rightarrow C into S, without introducing extraneous information
 - \bigcirc Once A \rightarrow C is added, AB \rightarrow C becomes redundant and can be removed
 - □ Effectively, this indicates that B is redundant in AB→C
 - \Box This is why AB \rightarrow C is not in the minimal basis

Minimal Basis: Conditions

- Let S be a set of FDs
- Its minimal basis M is a set of FDs, such that
 - every FD in S can be derived from M, and vice versa
 - every FD in M is a non-trivial and decomposed FD
 - if any FD is removed from M, then some FD in S cannot be derived from M
 - for any FD in M, if we remove an attribute from its left hand side, then the FD cannot be derived from S

- $S = \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}, M = \{A \rightarrow B, B \rightarrow C\}$
- M is a minimal basis of S
 - every FD in S can be derived from M, and vice versa
 - every FD in M is a non-trivial and decomposed FD
 - if any FD is removed from M, then some FD in S cannot be derived from M
 - for any FD in M, if we remove an attribute from its left hand side, then the FD cannot be derived from S

- $S = \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}, M = \{A \rightarrow B, AB \rightarrow C\}$
- Is M a minimal basis of S?
 - every FD in S can be derived from M, and vice versa
 - every FD in M is a non-trivial and decomposed FD
 - if any FD is removed from M, then some FD in S cannot be derived from M
 - for any FD in M, if we remove an attribute from its left hand side, then the FD cannot be derived from S

This condition is not satisfied

- $S = \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}, M = \{A \rightarrow BC, B \rightarrow C\}$
- Is M a minimal basis of S?
 - every FD in S can be derived from M, and vice versa
 - every FD in M is a non-trivial and decomposed FD
 - if any FD is removed from M, then some FD in S cannot be derived from M
 - for any FD in M, if we remove an attribute from its left hand side, then the FD cannot be derived from S

This condition is not satisfied

- $S = \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}, M = \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$
- Is M a minimal basis of S? This condition is not satisfied
 - every FD in S can be derived from M, and vice versa
 - every FD in M is a non-trivial and decomposed FD
 - if any FD is removed from M, then some FD in S cannot be derived from M
 - for any FD in M, if we remove an attribute from its left hand side, then the FD cannot be derived from S

- $S = \{A \rightarrow B, A \rightarrow C, C \rightarrow B\}, M = \{A \rightarrow B, AB \rightarrow C, C \rightarrow B\}$
- Is M a minimal basis of S?
 - every FD in S can be derived from M, and vice versa
 - every FD in M is a non-trivial and decomposed FD
 - if any FD is removed from M, then some FD in S cannot be derived from M
 - for any FD in M, if we remove an attribute from its left hand side, then the FD cannot be derived from S

This condition is not satisfied

3NF Decomposition Algorithm

- Given: A table R, and a set S of FDs
 - Step 1: Derive a minimal basis of S
 - Step 2: In the minimal basis, combine the FDs whose left hand sides are the same
 - Step 3: Create a table for each FD remained
 - Step 4: If none of the tables contain a key of the original table R, create a table that contains a key of R
- How to find the minimal basis of S?
- Solution: start from the FDs on R, and then simplify it step by step

Algorithm for Minimal Basis

- Step 1: Transform the FDs, so that each right hand side contains only one attribute
- Step 2: Remove redundant attributes on the left hand side of each FD
- Step 3: Remove redundant FDs

- Given: a set S of FDs
- Example: $S = \{A \rightarrow BD, AB \rightarrow C, C \rightarrow D, BC \rightarrow D\}$
- Step 1: Transform the FDs, so that each right hand side contains only one attribute
- Result: $S = \{A \rightarrow B, A \rightarrow D, AB \rightarrow C, C \rightarrow D, BC \rightarrow D\}$
- Reason:
 - Condition 2 for minimal basis:Each FD is a non-trivial and decomposed FD

- Result of the previous step:
 - \square S = {A \rightarrow B, A \rightarrow D, AB \rightarrow C, C \rightarrow D, BC \rightarrow D}
- Step 2: Remove redundant attributes on the left hand side of each FD
- Both $AB \rightarrow C$ and $BC \rightarrow D$ have more than one attribute on the lhs
- Let's check AB→C first
- Is A redundant?
- If we remove A, then $AB \rightarrow C$ becomes $B \rightarrow C$
- Whether this removal is OK depends on whether B→C is implied by S
 - If B→C is implied by S, then the removal of A is OK, (since the removal does not add extraneous information into S)
- Is $B \rightarrow C$ implied by S?
- Check: Given S, we have {B}+ = {B}, which does NOT contain C
- Therefore, B→C is not implied by S, and hence, A is NOT redundant

- Result of the previous step:
 - \subseteq S = {A \rightarrow B, A \rightarrow D, AB \rightarrow C, C \rightarrow D, BC \rightarrow D}
- Step 2: Remove redundant attributes on the left hand side of each FD
- Both $AB \rightarrow C$ and $BC \rightarrow D$ have more than one attribute on the lhs
- Let's check AB→C first
- Is B redundant?
- If we remove B, then $AB \rightarrow C$ becomes $A \rightarrow C$
- Whether this is OK depends on whether A→C is implied by S
- Is A→C implied by S?
- Check: Given S, we have {A}+ = {ABCD}, which contains C
- Therefore, A→C is implied by S, and hence, B is redundant in AB→C
- Thus, we can simplify $AB \rightarrow C$ to $A \rightarrow C$
- Result: $S = \{A \rightarrow B, A \rightarrow D, A \rightarrow C, C \rightarrow D, BC \rightarrow D\}$

- Result of the previous step:
 - \square S = {A \rightarrow B, A \rightarrow D, A \rightarrow C, C \rightarrow D, BC \rightarrow D}
- Step 2: Remove redundant attributes on the left hand side of each FD
- Now let's check BC→D
- Is B redundant?
- If we remove B, then $BC \rightarrow D$ becomes $C \rightarrow D$
- Whether this is OK depends on whether $C \rightarrow D$ is implied by S
- Is C→D implied by S?
- Yes, it is explicitly in S already
- Therefore, C→D is implied by S, and hence, B is redundant
- Thus, we can simplify $BC \rightarrow C$ to $C \rightarrow D$
- Result: $S = \{A \rightarrow B, A \rightarrow D, A \rightarrow C, C \rightarrow D\}$
- Now there is no redundant attribute on the left hand side of any FD

- Result of the previous step:
- $S = \{A \rightarrow B, A \rightarrow D, A \rightarrow C, C \rightarrow D\}$
- Step 3: Remove redundant FDs
- Is A → B redundant?
- i.e., is A→B implied by other FDs in S?
- Let's check
- Without $A \rightarrow B$, we have $\{A \rightarrow D, A \rightarrow C, C \rightarrow D\}$
- Given those FDs, we have {A}+ = {ACD}, which does not contain B
- Therefore, $A \rightarrow B$ is not implied by the other FDs

- Result of the previous step:
- $S = \{A \rightarrow B, A \rightarrow D, A \rightarrow C, C \rightarrow D\}$
- Step 3: Remove redundant FDs
- Is A → D redundant?
- i.e., is A→D implied by other FDs in S?
- Let's check
- Without $A \rightarrow D$, we have $\{A \rightarrow B, A \rightarrow C, C \rightarrow D\}$
- Given those FDs, we have {A}+ = {ABCD}, which contains D
- \blacksquare Therefore, A \rightarrow D is implied by the other FDs
- Hence, A→D is redundant and should be removed
- Result: $S = \{A \rightarrow B, A \rightarrow C, C \rightarrow D\}$

- Result of the previous step:
- $S = \{A \rightarrow B, A \rightarrow C, C \rightarrow D\}$
- Step 3: Remove redundant FDs
- Is A → C redundant?
- i.e., is A→C implied by other FDs in S?
- Let's check
- Without $A \rightarrow C$, we have $\{A \rightarrow B, C \rightarrow D\}$
- Given those FDs, we have {A}+ = {AB}, which does not contain C
- \blacksquare Therefore, A \rightarrow C is not implied by the other FDs

- Result of the previous step:
- $S = \{A \rightarrow B, A \rightarrow C, C \rightarrow D\}$
- Step 3: Remove redundant FDs
- Is C→D redundant?
- i.e., is C→D implied by other FDs in S?
- Let's check
- Without $C \rightarrow D$, we have $\{A \rightarrow B, A \rightarrow C\}$
- Given those FDs, we have {C}⁺ = {C}, which does not contain D
- Therefore, C→D is not implied by the other FDs
- Final minimal basis: $\{A \rightarrow B, A \rightarrow C, C \rightarrow D\}$

■ Given: $S = \{BC \rightarrow DE, A \rightarrow E, D \rightarrow A, E \rightarrow B\}$

- Given: $S = \{BC \rightarrow DE, A \rightarrow E, D \rightarrow A, E \rightarrow B\}$
- Step 1: Transform the FDs, so that each right hand side contains only one attribute
- Result: $S = \{BC \rightarrow D, BC \rightarrow E, A \rightarrow E, D \rightarrow A, E \rightarrow B\}$
- Step 2: Remove redundant attributes on the left hand side of each FD
- Both BC→D and BC→E have more than one attributes on the left hand side

- Result of the previous step:
- \blacksquare S = {BC \rightarrow D, BC \rightarrow E, A \rightarrow E, D \rightarrow A, E \rightarrow B}
- Step 2: Remove redundant attributes on the left hand side of each FD
- Let's check BC→D first
- Is B redundant?
- If we remove B, then $BC \rightarrow D$ becomes $C \rightarrow D$
- Whether this removal is OK depends on whether C→D is implied by S
- Is $C \rightarrow D$ implied by S?
- Check: Given S, we have {C}⁺ = {C}, which does NOT contain D
- Therefore, C→D is not implied by S, and hence, B is NOT redundant

- Result of the previous step:
- \blacksquare S = {BC \rightarrow D, BC \rightarrow E, A \rightarrow E, D \rightarrow A, E \rightarrow B}
- Step 2: Remove redundant attributes on the left hand side of each FD
- Let's check BC→D first
- Is C redundant?
- If we remove C, then $BC \rightarrow D$ becomes $B \rightarrow D$
- Whether this removal is OK depends on whether B→D is implied by S
- Is $B \rightarrow D$ implied by S?
- Check: Given S, we have {B}⁺ = {B}, which does NOT contain D
- Therefore, B→D is not implied by S, and hence, C is NOT redundant

- Result of the previous step:
- \blacksquare S = {BC \rightarrow D, BC \rightarrow E, A \rightarrow E, D \rightarrow A, E \rightarrow B}
- Step 2: Remove redundant attributes on the left hand side of each FD
- Now let's check BC→E
- Is B redundant?
- If we remove B, then BC \rightarrow E becomes C \rightarrow E
- Whether this removal is OK depends on whether C→E is implied by S
- Is $C \rightarrow E$ implied by S?
- Check: Given S, we have {C}⁺ = {C}, which does NOT contain E
- Therefore, C→E is not implied by S, and hence, B is NOT redundant

- Result of the previous step:
- $S = \{BC \rightarrow D, BC \rightarrow E, A \rightarrow E, D \rightarrow A, E \rightarrow B\}$
- Step 2: Remove redundant attributes on the left hand side of each FD
- Now let's check BC \rightarrow E
- Is C redundant?
- If we remove C, then $BC \rightarrow E$ becomes $B \rightarrow E$
- Whether this removal is OK depends on whether B→E is implied by S
- Is B→E implied by S?
- Check: Given S, we have $\{B\}^+ = \{B\}$, which does NOT contain E
- Therefore, B→E is not implied by S, and hence, C is NOT redundant
- So there is no redundant attribute on the left hand side of any FD

- Result of the previous step:
- \blacksquare S = {BC \rightarrow D, BC \rightarrow E, A \rightarrow E, D \rightarrow A, E \rightarrow B}
- Step 3: Remove redundant FDs
- Is BC → D redundant?
- i.e., is BC→D implied by other FDs in S?
- Let's check
- Without BC \rightarrow D, we have $\{BC\rightarrow E, A\rightarrow E, D\rightarrow A, E\rightarrow B\}$
- Given those FDs, we have {BC}+ = {BCE}, which does not contain D
- Therefore, BC→D is not implied by the other FDs

- Result of the previous step:
- $S = \{BC \rightarrow D, BC \rightarrow E, A \rightarrow E, D \rightarrow A, E \rightarrow B\}$
- Step 3: Remove redundant FDs
- Is BC → E redundant?
- i.e., is BC→E implied by other FDs in S?
- Let's check
- Without BC \rightarrow E, we have {BC \rightarrow D, A \rightarrow E, D \rightarrow A, E \rightarrow B}
- Given those FDs, we have {BC}+ = {ABCDE}, which contains E
- Therefore, BC→E is implied by the other FDs, and can be removed
- Result: $S = \{BC \rightarrow D, A \rightarrow E, D \rightarrow A, E \rightarrow B\}$

- Result of the previous step:
- \blacksquare S = {BC \rightarrow D, A \rightarrow E, D \rightarrow A, E \rightarrow B}
- Step 3: Remove redundant FDs
- Is $A \rightarrow E$ redundant?
- i.e., is A → E implied by other FDs in S?
- Let's check
- Without $A \rightarrow E$, we have $\{BC \rightarrow D, D \rightarrow A, E \rightarrow B\}$
- Given those FDs, we have {A}+ = {A}, which does not contain E
- Therefore, $A \rightarrow E$ is not implied by the other FDs

- Result of the previous step:
- \blacksquare S = {BC \rightarrow D, A \rightarrow E, D \rightarrow A, E \rightarrow B}
- Step 3: Remove redundant FDs
- Is D \rightarrow A redundant?
- i.e., is D→A implied by other FDs in S?
- Let's check
- Without D \rightarrow A, we have {BC \rightarrow D, A \rightarrow E, E \rightarrow B}
- Given those FDs, we have {D}+ = {D}, which does not contain A
- \blacksquare Therefore, D \rightarrow A is not implied by the other FDs

- Result of the previous step:
- \blacksquare S = {BC \rightarrow D, A \rightarrow E, D \rightarrow A, E \rightarrow B}
- Step 3: Remove redundant FDs
- Is E→B redundant?
- i.e., is E→B implied by other FDs in S?
- Let's check
- Without $E \rightarrow B$, we have $\{BC \rightarrow D, A \rightarrow E, D \rightarrow A\}$
- Given those FDs, we have {E}⁺ = {E}, which does not contain B
- \blacksquare Therefore, $E \rightarrow B$ is not implied by the other FDs
- So the final minimal basis is: {BC→D, A→E, D→A, E→B}

- $S = \{A \rightarrow C, AC \rightarrow D, AD \rightarrow B\}$
- Transform the FDs to ensure that the right hand side of each FD has only one attribute
- 2. Check if we can remove any attribute from the left hand side of any FD
- See if any FD can be derived from the other FDs. Remove those FDs one by one

- $S = \{A \rightarrow C, AC \rightarrow D, AD \rightarrow B\}$
- Transform the FDs to ensure that the right hand side of each FD has only one attribute
- Result: $S = \{A \rightarrow C, AC \rightarrow D, AD \rightarrow B\}$
- 2. Check if we can remove any attribute from the left hand side of any FD
- Both AC→D and AD→D have more than one attribute on the left hand side
- Let's check AC → D first

- Previous result: $S = \{A \rightarrow C, AC \rightarrow D, AD \rightarrow B\}$
- Check if we can remove any attribute from the left hand side of any FD
- Let's check AC→D first
- Is A redundant?
- If we remove A, then $AC \rightarrow D$ becomes $C \rightarrow D$
- Whether this removal is OK depends on whether C→D is implied by S
- Is $C \rightarrow D$ implied by S?
- Check: Given S, we have {C}⁺ = {C}, which does NOT contain D
- Therefore, C→D is not implied by S, and hence, A is NOT redundant in AC→D

- Previous result: $S = \{A \rightarrow C, AC \rightarrow D, AD \rightarrow B\}$
- Check if we can remove any attribute from the left hand side of any FD
- Let's check AC→D first
- Is C redundant?
- If we remove C, then $AC \rightarrow D$ becomes $A \rightarrow D$
- Whether this removal is OK depends on whether A→D is implied by S
- Is $A \rightarrow D$ implied by S?
- Check: Given S, we have {A}⁺ = {ABCD}, which contain D
- Therefore, A→D is implied by S, and hence, we can simplify AC→D to A→D
- Result: $S = \{A \rightarrow C, A \rightarrow D, AD \rightarrow B\}$

- Previous result: $S = \{A \rightarrow C, A \rightarrow D, AD \rightarrow B\}$
- Check if we can remove any attribute from the left hand side of any FD
- Now let's check AD → B
- Is A redundant?
- If we remove A, then $AD \rightarrow B$ becomes $D \rightarrow B$
- Whether this removal is OK depends on whether D→B is implied by S
- Is $D \rightarrow B$ implied by S?
- Check: Given S, we have {D}⁺ = {D}, which does NOT contain B
- Therefore, D→B is not implied by S, and hence, A is NOT redundant in AD→B

- Previous result: $S = \{A \rightarrow C, A \rightarrow D, AD \rightarrow B\}$
- Check if we can remove any attribute from the left hand side of any FD
- Now let's check AD → B
- Is D redundant?
- If we remove D, then $AD \rightarrow B$ becomes $A \rightarrow B$
- Whether this removal is OK depends on whether A→B is implied by S
- Is $A \rightarrow B$ implied by S?
- Check: Given S, we have {A}⁺ = {ABCD}, which contain B
- Therefore, A→B is implied by S, and hence, we can simplify AD→B to A→B
- Result: $S = \{A \rightarrow C, A \rightarrow D, A \rightarrow B\}$

- Previous result: $S = \{A \rightarrow C, A \rightarrow D, A \rightarrow B\}$
- 3. Remove redundant FDs
- No FD is redundant
- Final minimal basis: $S = \{A \rightarrow C, A \rightarrow D, A \rightarrow B\}$

3NF Decomposition

- Input: A table R with a set of FDs
 - 1. Find a minimal basis of the FDs
 - 2. Combine the FDs whose left hand sides are the same
 - After that, for each FD, construct a table that contains all attributes in the FD
 - 4. Check if any of the tables contain a key for R; if not, then create a table that contains a key for R
- Example: R(A, B, C, D, E), with BC \rightarrow DE, A \rightarrow E, D \rightarrow A, E \rightarrow B
 - \square Minimal basis: BC \rightarrow D, A \rightarrow E, D \rightarrow A, E \rightarrow B
 - No FDs can be combined
 - Corresponding tables: $R_1(B, C, D)$, $R_2(A, E)$, $R_3(A, D)$, $R_4(B, E)$
 - Keys of R: AC, BC, CD, CE
 - R₁ contains a key of R

3NF Decomposition

- Input:
- Why do we need this step?
- 1. Find
- Com
 To ensure lossless join decomposition
- attributes in the FD
- 4. Check if any of the tables contain a key for R; if not, then create a table that contains a key for R
- Example: R(A, B, C, D, E), with BC→DE, A→E, D→A, E→B
 - \square Minimal basis: BC \rightarrow D, A \rightarrow E, D \rightarrow A, E \rightarrow B
 - No FDs can be combined
 - Corresponding tables: $R_1(B, C, D)$, $R_2(A, E)$, $R_3(A, D)$, $R_4(B, E)$
 - Keys of R: AC, BC, CD, CE
 - R₁ contains a key of R

3NF Decomposition: Adding Key for Lossless Join

- \blacksquare R(A, B, C, D), with A \rightarrow B, C \rightarrow D
 - \square Minimal basis: A \rightarrow B, C \rightarrow D
 - \square Corresponding tables: $R_1(A, B)$, $R_2(C, D)$
 - Notice that R₁ and R₂ cannot be used to reconstruct R
 - This is why we require the following:
 - Check if any of the tables contain a key for R; if not, then create a table that contains a key for R
 - In this case, R has only one key: AC
 - Therefore, we add a table R₃(A, C)

Exercise: 3NF Decomposition

- R(A, B, C, D, E), with A \rightarrow B, A \rightarrow C, B \rightarrow C, E \rightarrow C, E \rightarrow C,
 - Find a minimal basis of the FDs
 - 2. Combine the FDs whose left hand sides are the same
 - After that, for each FD, construct a table that contains all attributes in the FD
 - 4. Check if any of the tables contain a key for R; if not, then create a table that contains a key for R

Exercise: 3NF Decomposition

- R(A, B, C, D, E), with $A \rightarrow B$, $A \rightarrow C$, $B \rightarrow C$, $E \rightarrow C$, $E \rightarrow C$
 - Find a minimal basis
 - One attribute on the right: $A \rightarrow B$, $A \rightarrow C$, $B \rightarrow C$, $E \rightarrow C$, $E \rightarrow D$
 - Remove redundant attributes on the left: $A \rightarrow B$, $A \rightarrow C$, $B \rightarrow C$, $E \rightarrow C$, $E \rightarrow D$
 - Remove redundant FDs: $A \rightarrow B$, $B \rightarrow C$, $E \rightarrow C$, $E \rightarrow D$

Exercise: 3NF Decomposition

- R(A, B, C, D, E), with $A \rightarrow B$, $A \rightarrow C$, $B \rightarrow C$, $E \rightarrow C$, $E \rightarrow D$
 - 1. Minimal basis: $A \rightarrow B$, $B \rightarrow C$, $E \rightarrow C$, $E \rightarrow D$
 - Combine the FDs whose left hand sides are the same: $A \rightarrow B$, $B \rightarrow C$, $E \rightarrow CD$
 - For each FD, construct a table that contains all attributes in the FD:
 - $R_1(A, B), R_2(B, C), R_3(C, D, E)$
 - Check if any of the tables contain a key for R; if not, then create a table that contains a key for R:
 - Key for R is $\{AE\}$, which is not contained in R_1 , R_2 , or R_3 .
 - □ Create another table R₄(A, E)
 - Final result: R₁(A, B), R₂(B, C), R₃(C, D, E), R₄(A, E)

Exercise 2: 3NF Decomposition

- R(A, B, C, D, E), with A \rightarrow B, AB \rightarrow C, C \rightarrow DE, E \rightarrow C, E \rightarrow D
 - Find a minimal basis of the FDs
 - 2. Combine the FDs whose left hand sides are the same
 - After that, for each FD, construct a table that contains all attributes in the FD
 - 4. Check if any of the tables contain a key for R; if not, then create a table that contains a key for R

Exercise 2: 3NF Decomposition

- R(A, B, C, D, E), with A \rightarrow B, AB \rightarrow C, C \rightarrow DE, E \rightarrow C, E \rightarrow D
 - Find a minimal basis
 - One attribute on the right: $A \rightarrow B$, $AB \rightarrow C$, $C \rightarrow D$, $C \rightarrow E$, $E \rightarrow C$, $E \rightarrow D$
 - Remove redundant attributes on the left: $A \rightarrow B$, $A \rightarrow C$, $C \rightarrow D$, $C \rightarrow E$, $E \rightarrow C$, $E \rightarrow D$
 - Remove redundant FDs: $A \rightarrow B$, $A \rightarrow C$, $C \rightarrow D$, $C \rightarrow E$, $E \rightarrow C$

Exercise 2: 3NF Decomposition

- R(A, B, C, D, E), with $A \rightarrow B$, $AB \rightarrow C$, $C \rightarrow DE$, $E \rightarrow C$, $E \rightarrow D$
 - Minimal basis: $A \rightarrow B$, $A \rightarrow C$, $C \rightarrow D$, $C \rightarrow E$, $E \rightarrow C$
 - Combine the FDs whose left hand sides are the same: $A \rightarrow BC$, $C \rightarrow DE$, $E \rightarrow C$
 - For each FD, construct a table that contains all attributes in the FD:
 - $R_1(A, B, C), R_2(C, D, E), R_3(C, E)$
 - Check if any of the tables contain a key for R; if not, then create a table that contains a key for R:
 - Key for R is $\{A\}$, which is contained in R_1
 - Final result: $R_1(A, B, C)$, $R_2(C, D, E)$, $R_3(C, E)$

Summary

- Poorly designed tables give rise to redundancy, update anomalies, and deletion anomalies
- BCNF eliminates these problems
 - BCNF: For any non-trivial and decomposed FD on a table R, its left hand side is a super-key for R
- But BCNF does not always preserve all FDs
 - We may need to perform a join of multiple tables to check whether an FD holds
- 3NF: slightly weaker than BCNF; has update and deletion anomalies in some rare cases, but preserves all FDs
 - 3NF: For any non-trivial and decomposed FD on a table R, either its left hand side is a super-key for R, or its right hand side is a prime attribute

BCNF or 3NF?

- BCNF is only inferior to 3NF in the sense that sometimes it does not preserve all FDs
- So, go for BCNF if we can find a BCNF decomposition that preserves all FDs
- If such a decomposition cannot be found
 - Go for BCNF if preserving all FDs is not important
 - Go for 3NF otherwise

Assignment 3

- Will be announced this evening
- 10 multiple choice questions
- Due on April 18, 11:59pm