PLCs & Ladder Logic Introduction and examples

Programmable Logic Controller (PLC)

Industrial digital computer

Image source:

https://assets.new.siemens.com/siemens/assets/api/uuid:4914a9f5-b3fd-4f6e-a529-71982b690203/width:1125/quality:high/version:1556178605/s7-1200-cpu1215c.png

Programmable Logic Controller (PLC)

- Industrial digital computer
- Provides control solutions for industrial environments

Programmable Logic Controller (PLC)

- Industrial digital computer
- Provides control solutions for industrial environments
- Designed to be operated by engineers with limited knowledge of computers and programming languages

Ladder Logic

 Graphical language used to write machine code for PLCs

Ladder Logic

- Graphical language used to write machine code for PLCs
- Every software is built using diagrams

Ladder Logic

- Graphical language used to write machine code for PLCs
- Every software is built using diagrams
- Every diagram is made up of symbols, representing input and output elements, and lines, which connect and organize these symbols logically into the diagrams

Building a diagram

 A diagram starts with two vertical lines called power rails, between which circuits are connected

Building a diagram

- A diagram starts with two vertical lines called power rails, between which circuits are connected
- One or more horizontal lines (rungs) are added connecting the two power rails

LIGHT BUTTON

Building a diagram

- A diagram starts with two vertical lines called power rails, between which circuits are connected
- One or more horizontal lines (rungs) are added connecting the two power rails
- Input and output symbols are placed on the rungs and identified by descriptive labels

LIGHT BUTTON

Building a diagram

• A diagram starts with two

Every rung starts with one or more input symbols and ends with one output symbol

placed on the rungs and identified by descriptive labels

Examples of inputs

Sensors

Examples of outputs

Lights

Understanding a diagram

 A diagram in Ladder Logic is always read from left to right and from top to bottom

Rung A

Understanding a diagram

- A diagram in Ladder Logic is always read from left to right and from top to bottom
- Each rung on a diagram defines one operation in the control process

Rung A

Understanding a diagram

- A diagram in Ladder Logic is always read from left to right and from top to bottom
- Each rung on a diagram defines one operation in the control process
- When a diagram is executed, the power flow cycles through the rungs following the same criteria as the reading

Symbols

NORMALLY
OPEN CONTACT CLOSED CONTACT

COIL

()

Simple Example

BUTTON	LIGHT
true	true
false	false

Simple Example

BUTTON	LIGHT
true	true
false	false

Simple Example

BUTTON	LIGHT
true	true
false	false

NOT Example

BUTTON	LIGHT
true	false
false	true

NOT Example

BUTTON	LIGHT
true	false
false	true

NOT Example

BUTTON	LIGHT
true	false
false	true

BUTTON A	BUTTON B	LIGHT
true	true	true
true	false	false
false	true	false
false	false	false

BUTTON A	BUTTON B	LIGHT
true	true	true
true	false	false
false	true	false
false	false	false

BUTTON A	BUTTON B	LIGHT
true	true	true
true	false	false
false	true	false
false	false	false

BUTTON A	BUTTON B	LIGHT
true	true	true
true	false	false
false	true	false
false	false	false

BUTTON A	BUTTON B	LIGHT
true	true	true
true	false	true
false	true	true
false	false	false

BUTTON A	BUTTON B	LIGHT
true	true	true
true	false	true
false	true	true
false	false	false

BUTTON A	BUTTON B	LIGHT
true	true	true
true	false	true
false	true	true
false	false	false

BUTTON A	BUTTON B	LIGHT
true	true	true
true	false	true
false	true	true
false	false	false