HM472114-3,HM472114-4, HM472114P-3,HM472114P-4

1024-word × 4-bit Static Random Access Memory

• Low Operating Power 200mW (typ)

Single +5V Supply Voltage

Completely Static Memory
 Directly TTL Compatible
 All Inputs and Outputs

• Common Data Inputs and Output

• Three-state Outputs

● DC Standby Mode · · · · · · Reduces V_{CC}

• N-channel Si Gate MOS Technology

Interchangeable with Intel 2114L Series

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Value	Unit V	
Terminal Voltage	V_T	-0.3 to +7		
Power Dissipation	P_{τ}	1.0	W	
Operating Temperature	Tope	0 to +70	r	
Storage Temperature (Ceramic)	Tite	-65 to +150	r	
Storage Temperature (Plastic)	Tate	-55 to +125	ဗ	

■ RECOMMENDED DC OPERATING CONDITIONS

Item	Symbol	min.	typ.	max.	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Input Voltage	V _{IL}	-0.3		0,8	V
	V_{IH}	2.0		Vcc+1.0	V
Operating Temperature	Tope	0	_	70	ဗ

■ PIN ARRANGEMENT

-HM472114-3,HM472114-4,HM472114P-3,HM472114P-4

■ DC AND OPERATING ELECTRICAL CHARACTERISTICS $(V_{cc}=5V\pm10\%, Ta=0\sim+70\%)$

Item	Symbol Test Condition		min.	typ.	max.	Unit	
Input Leakage Current	I_{LI}	$V_{i\pi} = 0 \sim 5.5 \text{V}$	_		10	μA	
I/O Leakage Current	ILO	$\overline{CS} = 2.0 \text{V}, V_{l=0} = 0.4 \sim V_{CC}$	_	_	10	μA	
Supply Current	I _{CC}	$V_{in}=5.5\mathrm{V}$, $I_{I-ij}=0\mathrm{mA}$		35	60	mA	
Input Voltage	V _{II} .		-0.5	_	0.8	V	
	V_{IH}		2.0	_	$V_{cc} + 1.0$	V	
	Vol	$I_{OL} = 2.1 \text{mA}$	_	_	0.4	V	
Output Voltage	T/	$I_{OH} = -0.6 \mathrm{mA}, V_{CC} = 4.5 \mathrm{V}$	2.4	_	_	17	
	V_{OH}	$I_{OH} = -1.0 \text{mA}, V_{CC} = 4.75 \text{V}$	2.4		-	V	

■ CAPACITANCE (Ta=25%, f=1MHz)

Item	Symbol	Test Condition	min.	typ.	max	Unit
Input Capacitance	$C_{i\pi}$	$V_{in} = 0 \text{V}$	_	3	5	pF
I/O Capacitance	C_{I+O}	$V_{l \sim 0} = 0 \text{ V}$	_	5	10	pF

■ AC ELECTRICAL CHARACTERISTICS (Vcc=5V±10%,Ta=0 to +70°C)

• AC TEST CONDITIONS

 Input High Levels
 2.0V

 Input Low Levels
 0.8V

 Input Rise and Fall Times
 10ns

 Input and Output Timing Levels
 1.5V

Output Load 1 TTL + C_{L} = 100pF

•READ CYCLE

Item	Symbol	HM472114-3, HM472114P-3		HM472114-4,	**	
		min.	max.	min.	max.	Unit
Read Cycle Time	t_{RC}	300		450	_	ns
Access Time	t _A	_	300	_	450	ns
CS-to-Output Valid	tco		100	_	120	ns
CS-to-Output Active	tcx	20	_	20	_	ns
Output 3-state from Deselection	totd	_	80	_	100	ns
Output Hold from Address Change	t _{OHA}	50	T	50	_	ns

HM472114-3,HM472114-4,HM472114P-3,HM472114P-4-

■ WRITE CYCLE

Item	2	HM472114-3, HM472114P-3		HM472114-4,	Unit	
	Symbol	min.	max.	min.	max.	
Write Cycle Time	twc	300		450	_	ns
Address to Write Setup Time	t _{AW}	20	_	50	_	ns
Write Pulse Width	tw	150	_	200		ns
Write Release Time	twr	0	_	0		ns
Output 3-state from Write	torw	_	80		100	ns
Data-to-Write Time Overlap	t _{DW}	150	_	200		ns
Data Hold from Write Time	t _{DH}	0	_	0		ns

- Notes: 1) $\overline{\text{CS}}$ and $\overline{\text{WE}}$ are paced in the WRITE state during low level period (t_w).
 - 2) t_{AW} is an interval from the address setting through fall of the pulse, CS or WE.
 - t_W is from the earlier rise pulse of CS or WE till the end of the light cycle (t_{WC}).
 - 4) During this period the pulse is output so that the input signal which is the same in phase with the output may be applied to the I/O terminal.
 - 5) During this period, when the $\overline{\text{CS}}$ signal is at low level, the pulse is output so that the input signal which is the same in phase with the output data may be applied, if required. Do not however apply the input signal of reverse phase.