Amendments to the Claims

1	Claim 1 (currently amended): A computer program product for emolecular governments product for emolecular governments
2	random bits, the computer program product embodied on one or more computer readable media
3	and comprising:
4	computer-readable program code means for providing an input value comprising C
5	random bits;
б	computer-readable program code means for generating an output sequence [[of]]
7	comprising N pseudo-random bits using the provided C-bit input value as [[an]] a short exponent
8	\underline{x} of a 1-way function $\underline{G^{***x} \mod P}$ that comprises comprising modular exponentiation modulo a
9	safe N-bit prime number P, wherein a length in bits, C, of the input value is substantially shorter
10	than a length in bits, N, of the generated output sequence and a base \underline{G} of the modular
11	exponentiation is a fixed generator value;
12	computer-readable program code means for separating the N bits of the generated N-bit
13	output sequence into a C-bit portion and an (N-C)-bit portion; and
14	computer-readable program code means for using C selected bits the C-bit portion of the
15	generated N-bit output sequence as the provided input value for a next iteration of the computer-
.16	readable program code means for generating while using all N - C remaining bits the (N-C)-bit
17	portion of the generated N-bit output sequence as pseudo-random output bits, until a desired
18	number of pseudo-random output bits have been generated.
1	Claim 2 (original): The computer program product according to Claim 1, wherein the 1-way
2	function is based upon an assumption known as "the discrete logarithm with short exponent"
	Serial No. 09/753,727 -4- RSW920000091US1

3 assumption.

Claims 3 - 5 (canceled)

- Claim 6 (currently amended): The computer program product according to Claim 1, wherein $\underline{C} =$
- 2 160 the length of the input value is 160 bits and N = 1024, a length of the safe prime number is
- 3 1024 bits.
- Claim 7 (currently amended): The computer program product according to Claim 1, wherein C is
- 2 greater than or equal to 160 and N is greater than or equal to 1024, the length of the input value is
- 3 at least 160 bits and the length of the generated output sequence is at least 1024 bits.

Claim 8 (canceled)

- Claim 9 (currently amended): The computer program product according to Claim 1, wherein the
- 2 (N-C)-bit portion is N C remaining bits are concatenated to pseudo-random output bits
- 3 previously generated by the computer-readable program code means for generating.
- Claim 10 (currently amended): The computer program product according to Claim 1, wherein
- 2 the (N-C)-bit portion is N C remaining bits are selected from the N bits of the generated output
- 3 sequence as a contiguous group of (N-C) bits from the generated N-bit output sequence.

Serial No. 09/753,727

RSW920000091US1

-5-

1	Claim 11 (currently amended): The computer program product according to Claim 1, wherein
2	the (N-C)-bit portion is N - C remaining bits are selected from the N bits of the generated output
3	sequence as a non-contiguous group of (N-C) bits from the generated N-bit output sequence.
1	Claim 12 (previously presented): The computer program product according to Claim 1, further
2	comprising computer-readable program code means for using the desired number of generated
3	pseudo-random bits as input to an encryption operation.
1	Claim 13 (currently amended): A system for efficiently generating pseudo-random bits in a
2	computing environment, comprising:
3	means for providing an input value comprising C random bits;
4	means for generating an output sequence [[of]] comprising N pseudo-random bits using
5	the provided C-bit input value as [[an]] a short exponent \underline{x} of a 1-way function $\underline{G^{**}x \mod P}$ that
6	comprises comprising modular exponentiation modulo a safe N-bit prime number P, wherein a
7	length in bits, C, of the input value is substantially shorter than a length in bits, N, of the
8	generated output sequence and a base G of the modular exponentiation is a fixed generator value
9	means for separating the N bits of the generated N-bit output sequence into a C-bit
10	portion and an (N-C)-bit portion; and
11	means for using C selected bits the C-bit portion of the generated N-bit output sequence
12	as the provided input value for a next iteration of the means for generating while using all N - C
13	remaining bits the (N-C)-bit portion of the generated N-bit output sequence as pseudo-random
14	output bits, until a desired number of pseudo-random output bits have been generated.
	Serial No. 09/753,727 -6- RSW920000091US

- 1 Claim 14 (original): The system according to Claim 13, wherein the 1-way function is based
- 2 upon an assumption known as "the discrete logarithm with short exponent" assumption.

Claims 15 - 17 (canceled)

- Claim 18 (currently amended): The system according to Claim 13, wherein the length of the
- 2 input value is 160 bits C = 160 and a length of the safe prime number is 1024 bits N = 1024.
- Claim 19 (currently amended): The system according to Claim 13, wherein the length of the
- input value \underline{C} is at least 160 [[bits]] and the length of the generated output sequence \underline{N} is at least
- 3 1024 [[bits]].

Claim 20 (canceled)

- Claim 21 (currently amended): The system according to Claim 13, wherein the N = C remaining
- 2 bits are (N-C)-bit portion is concatenated to pseudo-random output bits previously generated by
- 3 the means for generating.
- Claim 22 (currently amended): The system according to Claim 13, wherein the N C remaining
- 2 bits are selected from the N bits of the generated output sequence as (N-C)-bit portion is a
- 3 contiguous group of (N-C) bits from the generated N-bit output sequence.

Serial No. 09/753,727

-7-

RSW920000091US1

1	Claim 25 (Currently amended). The system according to Claim 101
2	bits are selected from the N bits of the generated output sequence as (N-C)-bit portion is a non-
3	contiguous group of (N-C) bits from the generated N-bit output sequence.
1	Claim 24 (previously presented): The system according to Claim 13, further comprising means
2	for using the desired number of generated pseudo-random output bits as input to an encryption
3	operation.
1	Claim 25 (currently amended): A programmatic method for efficiently generating pseudo-
2	random bits, comprising the steps of:
3	providing an input value comprising C random bits;
4	generating an output sequence [[of]] comprising N pseudo-random bits using the
5	provided C-bit input value as [[an]] a short exponent x of a 1-way function $G^{**x \mod P}$ that
6	comprises comprising modular exponentiation modulo a safe N-bit prime number P, wherein a
7	length in bits, C, of the input value is substantially shorter than a length in bits, N, of the
8	generated output sequence and a base \underline{G} of the modular exponentiation is a fixed generator value;
9	separating the N bits of the generated N-bit output sequence into a C-bit portion and an
10	(N-C)-bit portion; and
11	using C selected bits the C-bit portion of the generated N-bit output sequence as the
12	provided input value for a next iteration of the generating step while using all N - C remaining
13	bits the (N-C)-bit portion of the generated N-bit output sequence as pseudo-random output bits,
	Serial No. 09/753,727 -8- RSW920000091US1

- 14 until a desired number of pseudo-random output bits have been generated.
- Claim 26 (original): The method according to Claim 25, wherein the 1-way function is based
- 2 upon an assumption known as "the discrete logarithm with short exponent" assumption.

Claims 27 - 29 (canceled)

- Claim 30 (currently amended): The method according to Claim 25, wherein the length of the
- input value is at least C = 160 [[bits]] and a length of the safe prime number is at least N = 1024
- 3 [[bits]].

Claim 31 (canceled)

- Claim 32 (currently amended): The method according to Claim 25, wherein the length of the
- 2 input value is at least 160 bits and the length of the generated output sequence is at least 1024
- 3 bits C is greater than or equal to 160 and N is greater than or equal to 1024.

Claim 33 (canceled)

- Claim 34 (currently amended): The method according to Claim 25, wherein the N = C remaining
- 2 bits are (N-C)-bit portion is concatenated to pseudo-random output bits previously generated by
- 3 the generating step.

Serial No. 09/753,727

-9-

RSW920000091US1

RSW920000091US1

Serial No. 09/753,727

1	Claim 35 (currently amended): The method according to Claim 25, wherein the N - C remaining
2	bits are (N-C)-bit portion is selected from the N bits of the generated output sequence as a
3	contiguous group of (N-C) bits from the generated N-bit output sequence.
1	Claim 36 (currently amended): The method according to Claim 25, wherein the N - C remaining
2	bits are (N-C)-bit portion is selected from the N bits of the generated output sequence as a non-
3	contiguous group of (N-C) bits from the generated N-bit output sequence.
1	Claim 37 (previously presented): The method according to Claim 25, further comprising the step
2	of using the desired number of generated pseudo-random output bits as input to an encryption
3	operation.
	Claim 38 (canceled)
1	Claim 39 (currently amended): An encryption system, comprising:
2	means for providing an input value comprising C random bits;
3	means for generating an output sequence [[of]] comprising N pseudo-random bits using
4	the provided <u>C-bit</u> input value as [[an]] a short exponent \underline{x} of a 1-way function $\underline{G^{**}x}$ mod \underline{P} that
5	comprises comprising modular exponentiation modulo a safe N-bit prime number P, wherein a
6	length in bits, C, of the input value is substantially shorter than a length in bits, N, of the
7	generated output sequence and a base \underline{G} of the modular exponentiation is a fixed generator value

-10-

Serial No. 09/753,727

means for separating the N bits of the generated N-bit output sequence into a C-bit 8 portion and an (N-C)-bit portion: 9 means for using C selected bits the C-bit portion of the generated N-bit output sequence 10 as the provided input value for a next iteration of the means for generating while using all N - C 11 remaining bits the (N-C)-bit portion of the generated N-bit output sequence as pseudo-random 12 output bits, until a desired number of pseudo-random output bits have been generated; and 13 means for using the desired number of generated pseudo-random bits as input to an 14 15 encryption operation. Claim 40 (original): The encryption system according to Claim 39, wherein the 1-way function 1 is based upon an assumption known as "the discrete logarithm with short exponent" assumption. 2 Claims 41 - 43 (canceled) Claim 44 (currently amended): The encryption system according to Claim 39, wherein the length 1 of the input value is 160 bits and a length of the safe prime number is 1024 bits C = 160 and N =2 3 1024. Claims 45 - 46 (canceled) Claim 47 (currently amended): The encryption system according to Claim 39, wherein the N = C 1 remaining bits are (N-C)-bit portion is concatenated to pseudo-random output bits previously 2 RSW920000091US1

-11-

- 3 generated by the means for generating.
- Claim 48 (new): The computer program product according to Claim 1, wherein N is greater than 1
- or equal to (C * 6). 2
- Claim 49 (new): The system according to Claim 13, wherein N is greater than or equal to (C * 1
- 2 6).
- Claim 50 (new): The method according to Claim 25, wherein N is greater than or equal to (C * 1
- 2 6).
- Claim 51 (new): The encryption system according to Claim 39, wherein N is greater than or 1
- equal to (C * 6). 2
- Claim 52 (new): A programmatic method for efficiently generating pseudo-random bits, 1
- 2 comprising the steps of:
- providing an N-bit input value in which (N-C) uppermost contiguous ones of the bits are 3
- all set to zeroes and in which C lowermost contiguous ones of the bits are random; 4
- generating an output sequence comprising N pseudo-random bits using the provided N-bit 5
- input value as an effectively-short, C-bit exponent x of a 1-way function G**x mod P that 6
- comprises modular exponentiation modulo a safe N-bit prime number P, wherein a base G of the 7
- modular exponentiation is a fixed generator value; 8

Serial No. 09/753,727

-12-

RSW920000091US1

9	separating the N bits of the generated N-bit output sequence into a C-bit portion and an
10	(N-C)-bit portion;
ŢĮ.	creating a new N-bit input value in which the (N-C) uppermost contiguous ones of the
12	bits are all set to zeroes and in which the lowermost C contiguous ones of the bits are set to the
13	C-bit portion; and
14	using the new N-bit input value as the provided input value for a next iteration of the
15	generating step while using the (N-C)-bit portion of the generated N-bit output sequence as
16	pseudo-random output bits, until a desired number of pseudo-random output bits have been
17	generated.