Project Development Phase

Delivery of Sprint 2

Team ID	PNT2022TMID16902
Project Name	Classification of Arrhythmia by Using Deep Learning with 2-D ECG Spectral Image Representation

Task 1:

Model Building:

Adding CNN Layers:

Code:

```
#ADDING CNN LAYERS

model.add(Conv2D(32,(3,3),input_shape=(64,64,3),activation='relu'))#con
volution layer model.add(MaxPooling2D(pool_size=(2,2)))#MaxPooling2D
for downsampling the input
model.add(Conv2D(32,(3,3),activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())#flatten the dimension of the
image
```

Adding Dense Layers:

Code:

```
#ADDING DENSE LAYERS
model.add(Dense(32)) #deeply connected neural network
layers. model.add(Dense(6,activation='softmax'))
```

Model Summary:

Code:

```
#MODEL SUMMARY
model.summary() #summary of the model
```

Output:

Configure the Learning Process:

Code:

```
#CONFIGURE THE LEARNING PROCESS
  model.compile(optimizer='adam',loss='categorical_crossentropy',metrics
=
['accuracy'])
```

Train the Model:

Code:

```
#TRAIN THE MODEL
model.fit_generator(generator=x_train,steps_per_epoch =
len(x_train), epochs=10, validation_data=x_test,validation_steps =
len(x_test))
```

Output:

```
| Sprint_2.jpynb | Spri
```

Save the Model:

Code:

```
#SAVE THE MODEL model.save('ECG.h5')
```

Test the Model:

Code:

Output: