Real Analysis Qualifying Exam Spring 1995

In problems 1 through 4, (X, M, μ) is a measure space. In problems 9 and 10, |E| denotes the Lebesgue measure of the measurable set E.

- **1.** Let $w: X \to [0, \infty)$ be measurable, and let $v(E) = \int_E w d\mu$ for $E \in M$. Prove: (a) v is a measure on M and (b) $\int f dv = \int f w d\mu$ for each nonnegative measurable function f on X.
- **2.** Suppose $0 , <math>(f_n)$ is a sequence of measurable functions on X, $f_n \to f$ a.e. and $||f_n||_p \to ||f||_p < \infty$. Prove $||f_n f||_p \to 0$. Hint: Find $\alpha > 0$ s.t. $|f_n - f|^p \le \alpha(|f_n|^p + |f|^p)$ and apply Fatou's lemma.
- **3.** Let $I \subseteq \mathbb{R}$ be an open interval, and let f be a function on $X \times I$ such that
 - (i) $\forall t \in I, f(\cdot, t) \in L_1(\mu)$, and
 - (ii) $\exists g \in L_1(\mu)$ such that $\left| \frac{\partial f}{\partial t}(x,t) \right| \leq g(x) \quad \forall (x,t) \in X \times I$.

Prove:

$$\frac{d}{dt} \int f(x,t) d\mu(x) = \int \frac{\partial f}{\partial t}(x,t) d\mu(x).$$

4. Suppose $\mu(X) < \infty$. A family \mathcal{F} of measurable functions on X is said to be uniformly integrable if given $\varepsilon > 0$, $\exists \delta > 0$ such that

$$E \in M$$
, $\mu(E) < \delta$ and $f \in \mathcal{F} \Rightarrow \int_{E} |f| d\mu < \varepsilon$.

Prove Vitali's theorem: Suppose

- (i) $\{f_n\} \subset L_1(\mu)$ is uniformly integrable,
- (ii) $f_n \to f$ a.e. for some function f, and
- (iii) $|f| < \infty$ a.e.

Thus $f \in L_1(\mu)$ and $||f_n - f||_1 \to 0$.

- **5.** Show that for $1 \leq p \leq \infty$, the closed unit ball of $\ell_p(\mathbb{N})$ is not compact.
- **6.** Let $1 \leq p \leq \infty$, $f \in (\mathbb{R})$ and $g \in L_p(\mathbb{R})$. Prove $||f * g||_p \leq ||f||_1 \cdot ||g||_p$.
- 7. Suppose $f \in L_2(\mathbb{R}^+)$. Prove that

$$x^{-\frac{1}{2}} \int_0^x f dt \to 0 \text{ as } x \to 0^+.$$

8. Fix a Lebesgue measurable function f on \mathbb{R}^+ and define

$$\phi(p) = \left\{ \int_0^\infty |f(x)|^p e^{-x} dx \right\}^{\frac{1}{p}} \quad (0$$

Prove: (a) $p < q \Rightarrow \phi(p) \leq (q)$.

- (b) If $\phi(p) = \phi(q) < \infty$ for some 0 , then <math>|f| = const a.e.
- **9.** (a) Fix $0 < \varepsilon < 1$. Construct a closed set $K \subset [0,1]$ such that $|K| > 1 \varepsilon$ and K contains no rationals.
 - (b) Does there exist a Borel set $E \subset [0,1]$ such that $0 < |E \cap I| < |I|$ for each nonempty open interval $I \subset [0,1]$?
- 10. Let $E \subset \mathbb{R}$ be a Lebesgue measurable set such that
 - (i) $(E+k) \cap E = \emptyset \quad \forall k \in \mathbb{Z} \setminus \{0\} \text{ and (ii) } E + \mathbb{Z} = \mathbb{R}.$

Prove that |E|=1. Hint: Let I=(0,1]. Then $I=\bigcup_k I\cup (E+k)$ and $E=\bigcup_k (I+k)\cup E$.