

LESOTHO -

TUTORIAL 1

BIDM 313 • Discrete Mathematics

Department : Faculty of Information & Communication Technology

Program/Class : BSIT Y3S1, BSBT Y3S1, BSSM Y3S1

Semester : 1

Commence Date : (Week 1)

Deadline Date : (Week 1)

Unit Controllers : K.Rantai¹ & T. Liphoto²

Contact Number : $53^1 \& 57^2$

E-mail : khauta@limkokwing.ac.ls¹

tumisang.liphoto@limkokwing.ac.ls²

Questions & Instructions:

1. Proofs

Using the applicable methods, prove the below statements

- a. If $(3n)^2$ is even the n is even
- b. $x \times y$ is odd if and only if x and y are odd
- c. If x and y are even numbers then, 4 divides $(x-y)^2$

2. Mathematical Induction

Use mathematical induction to prove that

a.
$$1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$$

- b. $n^3 + 2n$ is divisible by 3
- c. $3^n > n^2$ for all n > 2
- d. $n! > 2^n$ for all $n \ge 4$

3. Quantifiers

- a. Let Q(x, y, z) denote the statement $x^2 + y^2 = z^2$. What is the truth value of the value of Q(3,4,5)? What is the truth value of Q(2,2,3)? How many values of (x, y, z) make the predicate true?
- b. Let P(x) be the predicate "x must take a discrete mathematics course" and Q(x) be the predicate "x is a computer science student". The universe of discourse for both P(x) and Q(x) is all LUCT students.
 - i. Express the statement "Every computer science student must take a discrete mathematics course".
 - ii. Express the statement "Everybody must take a discrete mathematics course or be a computer science student".
- c. What is the truth value of $\forall x \forall y ((x < y) \rightarrow (x^2 < y^2))$? Consider that the domain of discourse for x and y are elements of \Re .

4. Conditional Propositions and Logic Equivalence

a. Proposition p: Thabo is smart

Proposition *q* : Thabo is honest

Construct the following

- Thabo is not smart but is honest
- ii. Either Thabo is smart, or she is not smart but honest
- iii. If Thabo is smart, then she is not honest
- b. Using a truth table show that the following is a tautology $((t \rightarrow w) \land \neg w) \rightarrow \neg w$
- c. Prove the following

i.
$$\neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg q$$

ii.
$$(p \land q) \rightarrow (p \lor q) \equiv T$$