DIP Final Project

Fine-tune Yolov7 pretrained model with Visdrone-Dataset.

資工三 B09902053 何碩宸 資工三 B09902060 馮楷 資工三 B09902073 朱俊能

Fine-Tune with VisDrone Dataset

Original YOLOv7

YOLOv7 with VisDrone Dataset

Thanks for listening (?

With VisDrone Dataset, YOLOv7 seems to perform perfectly, and we hardly can think of a way to make it even better. Therefore, we have modified our team's final project goal.

DIP Final Project

Fine-tune Yolov7 pretrained model with Vision Dataset.
without additional datasets.

資工三 B09902053 何碩宸 資工三 B09902060 馮楷 資工三 B09902073 朱俊能

Outline

Model & Methods

Method 1: Local Histogram Equalization

Method 2: Betti Number Filtering

Experiment

Model & Methods

Model: the pretrained YOLOv7 model

Dataset: VisDrone-Dataset-

- Methods:
 - a. Local histogram equalization
 - b. Betti number
 - c. Parallel programming

Outline

Model & Methods

Method 1: Local Histogram Equalization

Method 2: Betti Number Filtering

Experiment

Local Equalization

Original YOLOv7

Local Histogram Equalization

Two Problems...

Both are detections without pre-processing.

Two Problems...

But with local histogram equalization, the results turn to be terrible.

Local Equalization W or W/O Betti Number Filtering

Local Equalization W/O Betti Number

Local Equalization W Betti Number

Outline

Model & Methods

Method 1: Local Histogram Equalization

Method 2: Betti Number Filtering

Experiment

Betti Number

In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of n-dimensional simplicial complexes.

Algorithm

 Delfinado, C. J. a., & Edelsbrunner, H. (1993, July 1). An Incremental Algorithm for Betti Numbers of Simplicial Complexes*.

Goal: find "holes" on a picture

1-Dimensional Betti Number Filtering

Detect objects(holes) with sizes in specified range(eg. 20*20~80*80).

A 640*640 picture with holes

1. Detect Objects with Sizes Smaller than 80x80

A 640*640 picture with holes

```
poolU
 [[0\ 0\ 0\ 0\ 1\ 0\ 0\ 1]
 [0\ 0\ 0\ 0\ 0\ 0\ 0]
        0 0 0 0 01
 [0 0 0 0 1 0 0 1]]
```

Holes with size smaller than 80*80

2. Detect Objects with Sizes Smaller than 20x20

[00q)			. () () 1]
0]	0	0				0	0	0]
[0]	0	0		•		0	0	0]
01	0	0				٥	0	01
01	0	0	•	•	•	0	0	01
0]	Ö	Ŏ				Ŏ	Ö	ĭ]]

Holes smaller than 20*20

```
[0\ 0\ 0\ 0\ 0\ 0\ 1]
 0 0 0 0 0 0 0]
```

Aggregate 4x4 neighbors to one

3. Detect Objects with Sizes within 20x20 ~ 80x80

A 640*640 picture with holes

```
poolU-poolL U
 [0 0 0 0 1 0 0 0]
 [0 0 0 0 0 0 0 0]
```

Holes(Objects) detected by our model

Local Equalization only with holes

Easier for Yolov7 to Detect

Outline

Model & Methods

Method 1: Local Histogram Equalization

Method 2: Betti Number Filtering

Performance

Performances on a representable Image in Testing Data

Outcome

Original yolov7 model on raw image : 18 persons, 6 bicycles, 16 cars

Original yolov7 model on betti_filtered image : 22 persons, 9 bicycles, 18 cars

Fine-Tuned model on raw image : 25 persons, 15 bicycles, 19 cars

Fine-Tuned model on betti_filtered image : 24 persons, 11 bicycles, 22 cars

Details

Original YOLOv7 model

YOLOv7 model with our enhancement

Conclusion

- 1. Topological data analysis has a growing potential on image processing such that it stands for a great feature of geometry of the image.
- However, there are still some issue that needs to be addressed. One of a significant problem is its long gradient path, which will lower the accuracy and training time of the model.
- 3. Another problem is that it is hard to accelerate the calculation by hardware, and thus need more care on the algorithm design.

Thanks for listening