《大学物理 AII》作业 No.02 波动方程

班级	学号	姓名	成绩	
1、理解波克 2、掌握描述 并能与振动 3、掌握相位 立面简谐波 4、理解波氏 就是能量的	动产生的条件、传述放的特征量:周期的特征量相区分。位传播、波形传播或的波函数。理解或的能量密度、能流	***本章教学要求**播的特性及波的分類、频率、波长、波朗、频率、波长、波思 意义,并能根据质 放函数与波形曲线、 能流密度及波的 制及应用。	类。 8速的物理意义及其 点简谐运动方程或排 振动曲线和行波的	居相互关系, 振动曲线建 J关系。
一、填空题 1 、 和 依次落后。	在 ^g ,而非振动原	芝 间 的 传 播 形 月 5点本身。沿波传播	成 波 动 , 波 动 d 番的方向上,各质点	专播的是 (的
和势能是 (填守恒或 ²	变化的(填同	的传播。在机械波 同相或反相),介质元 总是从前一个质元_	上的总机械能是	的
		.于波传播方向_ 5振幅的关系为		
种现象称为察者接收到方向运动,	7	接收到的波动频率 。若波源静止 ;若观察者的频率将 接收到的频率将	,观察者向着波源 静止,波源向着远 ;若波源和观	运动,则观 离观察者的 察者同时相
5. 一平面	简谐波的表达式,	$y = A\cos\omega(t - x/u) =$	$A\cos(\omega t - \omega x/u)$,	其中 <i>x/u</i> 表
示			;	ωx/u 表

示		
71		
/J \		

6. 一平面简谐波, 波速为 50m/s, 振动周期为 0.01s, 则波长为。 在波的传播方向上,有两质点的振动相位差为 $2\pi/5$,此两质点相距

7. 如图所示,一平面简谐波沿 Ox 轴负方向传播,波长为 λ , $L_1 = |OP_1|$, $L_2 = |OP_2|$ 若 P_1 点处质点的振动方程为 $y_1 = A\cos(\omega t + \varphi)$,则 P_2 点处质点的振动方程

二、选择题

1. 图示为一沿x轴正向传播的平面简谐波在t=0时刻的波形。若振动以余弦 函数表示,且此题各点振动初相取 $-\pi$ 到 π 之间的值,则

- (B) 0 点的初位相为 $\varphi_0 = -\frac{1}{2}\pi$ 。
- (C) 2 点的初位相为 $\varphi_2 = 0$ 。
- (D) 3 点的初位相为 $\varphi_3 = 0$ 。

-] (A) 1/2, 1/2, -0.05
- (B) 1/2, 1, -0.05

- (C) 1/2, 1/2, 0.05
- (D) 2, 2, 0.05
- 3. 一简谐横波沿 Ox 轴传播。若 Ox 轴上 P_1 和 P_2 两点相距 $\lambda/4$ (其中 λ 为该波 的波长),则在波的传播过程中,这两点振动速度的
- [] (A)方向总是相同。 (B)方向总是相反。
- - (C)方向有时相同,有时相反。 (D)大小总是不相等。

4. 一简谐波沿 Ox 轴正方向传播,t=1s 时刻波形曲线如左下图所示,其周期为 2s。则 P 点处质点的振动速度 v 与时间 t 的关系曲线为:

- 5. 一平面简谐波在弹性介质中传播,在介质质元从最大位移处运动到平衡位置的过程中:
- [](A) 它的动能转换成势能。
 - (B) 它的势能转换成动能。
 - (C) 它从相邻的一段质元获得能量,其能量逐渐增大。
 - (D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小。

三、计算题

1. 一列平面简谐波在介质中以波速 u = 6m/s 沿 x 轴负向传播,原点 O 处质元的振动曲线如图所示。

- (2)画出 x=24 m 处质元的振动曲线。
- (3)画出 t=3 s 时的波形曲线。

- 2. 如图所示为一平面简谐波在 t=0 时刻的波形图,O 点位移为 $\sqrt{2}A/2$ 。设此简谐波的频率为 10Hz,且此时质点 P 的运动方向向上,求
 - (1) 该波的波动方程;
 - (2) 在距原点 O 沿 x 正方向为 100m 处质点的振动方程与振动速度表达式。

3. 一平面简谐横波沿 x 轴正向传播,振幅 A=10cm,圆频率 ω = 2π rad·s⁻¹,当 t=0 时,x=1m 处的 a 质点振动状态为处于平衡位置且向 y 轴负向运动;此时 x=2m 处的 b 质点振动状态为 y_b = 5.0cm 且向 y 轴正向运动。设该波波长 λ > 1m,求波的表达式。