Clean your desk! Transformers for unsupervised clustering of document images

Pooja Sethi ¹

¹Department of Computer Science, Stanford University

Introduction

Suppose a busy scientist had a mixture of machine learning papers, handwritten notes, and receipts she last ordered takeout from on her desk. Could we organize her documents without any supervision? I explore the use of Transformers that jointly model text, layout (position), and visual features for **unsupervised document clustering**.

Figure 1. The LayoutLMv2 architecture, taken from [2].

Problem Statement

- 1. **Document Embedding** Given a document d_i , preprocess it into its constituent text, bounding boxes, and images. Then, using a model m_{encoder} , return its embedding e_{di} .
- 2. **Document Clustering** Given the embeddings e_{di} for N documents, use a model m_{cluster} to divide them into k clusters, such that each cluster is at least size 1 but no larger than N.

Datasets: Receipts (SROIE), Documents (RVL-CDIP), and Machine Learning Papers

Figure 2. Examples of document images from each of the three datasets. SROIE had 626 images, RVL-CDIP had 1000, and ML Papers had 30. Preprocessing (OCR) via Impira [1] returns words and bounding boxes.

Methods: What's different about BERT, LayoutLM, and LayoutLMv2?

The BERT, LayoutLM [3], and LayoutLMv2 [2] encoders all use the Transformer architecture, with slight differences.

Table 1. The similarities and differences between these encoders are summarized here.

	BERT	LayoutLM	LayoutLMv2
Inputs			
Text Embeddings	\checkmark	\checkmark	\checkmark
Segment Embeddings	\checkmark	\checkmark	\checkmark
1-D Position Embeddings	\checkmark	\checkmark	\checkmark
2-D Position Embeddings		\checkmark	\checkmark
Visual Token Embeddings			\checkmark
Attention			
Self-Attention	\checkmark	\checkmark	
Spatial-Aware Self-Attention			\checkmark
Pretraining Objectives			
Masked Language Modeling (MLM)	\checkmark		
Next Sentence Prediction (NSP)	\checkmark		
Masked Visual Language Modeling (MVLM)		\checkmark	\checkmark
Multi-label Document Classification (MDC)		\checkmark	
Text-Image Alignment (TIA)			\checkmark
Text-Image Matching (TIM)			\checkmark

Results: SROIE and RVL-CDIP

Table 2. Unsupervised Clustering Results with No Labels Metrics: (Silhouette Coefficient / Calinski-Harabasx (CH) score)

Method	SROIE	RVL-CDIP
	(n = 626)	(n=1000)
Baselines Bag-of-Words (BoW) ResNet-18 AlexNet	0.093 / 27.5 0.101 / 69.888 0.116 / 75.764	0.134 / 90.3 0.047 / 57.977 0.070 / 69.955
LayoutLM Base [CLS] token [SEP] token Average all tokens	0.155 / 88.406 0.194 / 378.588 0.128 / 41.326	0.155 / 107.911 0.248 / 118.642 0.055 / 42.778
LayoutLM Large [SEP] token	0.156 / 44.062	0.057 / 36.746
LayoutLMv2 Base [CLS] token [SEP] token Average image tokens Average all tokens	0.150 / 84.804 0.281 / 713.625	0.131 / 223.778 0.091 / 126.566 0.187 / 666.915 0.130 / 262.591
LayoutLMv2 Large Average image tokens	0.079 / 78.228	0.056 / 96.490

LayoutLMv2 was typically the best performing model, although text-heavy documents may still be better off with LayoutLM. The [CLS] output was not the best representation.

Analysis: Visualizing Cluster Predictions

These t-SNE plots show document embeddings from four $m_{
m encoder}$ models on the SROIE dataset. In quadrant order: Bag of Words (BoW), AlexNet, and LayoutLM (Base), and LayoutLMv2 (Base).

Conclusions

- Multi-modal learning of document representations, using text, positional, and visual features, is beneficial. LayoutLMv2 typically outperforms LayoutLM. However, LayoutLM may still be a better choice for text-heavy documents.
- The [CLS] token output may not always be the best choice of document representation. The [SEP] token output and the average of the image token outputs performed better on SROIE and RVL-CDIP.

Future Work

- Does finetuning on domain-specific datasets improve the [CLS] representation?
- Can we learn to mask out less important details of the document?

References

- 1] Impira.

 Available at https://impira.com.
- [2] Yang Xu et al.
 Layoutlmv2: Multi-modal pre-training for visually-rich document understanding.
 In Association for Computational Linguistics (ACL), 2021.
- [3] Yiheng Xu et al.
 Layoutlm: Pre-training of text and layout for document image understanding.
 In Association for Computing Machinery (ACM), 2020.