

TIE EILE COR

88 12 30 03

INSTALLATION RESTORATION PROGRAM PHASE II—CONFIRMATION/QUANTIFICATION STAGE 2 VOLUME II

APPENDICES (A — U)

FINAL REPORT FOR:

TYNDALL AIR FORCE BASE

FLORIDA

TACTICAL AIR COMMAND LANGLEY AIR FORCE BASE, VIRGINIA 23665

AUGUST 1988

APPROVED FOR PUBLIC RELEASE DISTRIBUTION IS UNLIMITED

Prepared by:
ENVIRONMENTAL SCIENCE AND ENGINEERING, INC.
P.O. BOX ESE
GAINESVILLE, FLORIDA 32602-3052

U.S. AIR FORCE CONTRACT NO. F33615-84-D-4401, DELIVERY ORDER NO.14
ESE PROJECT NO. 86-378

Prepared for:
U.S. AIR FORCE TECHNICAL PROGRAM MANAGER
1Lt. DALE DIETZEL
U.S. AIR FORCE OCCUPATIONAL & ENVIRONMENTAL
HEALTH LABORATORY (USAFOEHL)
TECHNICAL SERVICES DIVISION (TS)
BROOKS AIR FORCE BASE, TEXAS 78235-5501

E

NOTICE

This report has been prepared for the United States Air Force by Environmental Science and Engineering, Inc. (ESE) for the purpose of aiding in the implementation of the Air Force Installation Restoration Program. It is not an endorsement of any product. The views expressed herein are those of the contractor and do not necessarily reflect the official views of the publishing agency, the United States Air Force, or the Department of Defense.

Copies of this report may be purchased from:

National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

Federal government agencies and their contractors registered with Defense Technical Center should direct requests for copies of this report to:

Defense Technical Information Center Cameron Station Alexandria, Virginia 22314

APPENDIX A
RESUMES OF KEY PROJECT PERSONNEL

Acces	sion For	
	GRA&I	-
DTIC :	TAB	4 5
Unann	ounced	
Justi	fication	·————
By Distr	ibution	/
Avai	labilit	
Dist	Avail a	-
A-1		***

ESE PROFESSIONAL

RESUME

JOHN D. BONDS, Ph.D. Senior Scientist/Project Manager

SPECIALIZATION

Project Management, Atmospheric Chemistry, Water Chemistry, Industrial Hygiene, Quality Assurance, Hazardous Waste

RECENT EXPERIENCE

Initial Assessment for Hazardous Wastes at Army Installations, Team

Leader—Comprehensive study at 48 Army installations to determine both
past and present history with respect to the use of hazardous
substances, quantities used, disposal methods and disposal sites. Also
includes a current assessment of safety practices and compliance with
regulations.

Initial Assessment Studies for the United States Air Force, Team

Leader—Comprehensive studies at 2 Air Force bases to determine both
past and present history with regard to the use and disposal of toxic
and hazardous materials. Conducted in accordance with the Department
of Defense Installation Restoration Program policies.

Initial Assessment Studies for the Naval Energy and Environmental Support Activity, Team Leader—Evaluating 2 Naval installations with regard to past hazardous waste generation, storage, treatment, and disposal practices. Investigations include records review, aerial and ground site surveys, employee interviews, and limited sampling and analysis including geophysical techniques. Determine extent of contamination at former disposal/spill sites, potential for contaminant migration, and potential effects on human health and the environment.

Phase II Confirmation Studies to Determine the Presence and Migration of Hazardous Wastes from Military Installations, Team Leader—Five comprehensive field studies to determine the actual sites where hazardous substances were used, their current concentrations in soils, surface waters and groundwater, and an assessment of the quantities which may migrate from the installation. The study also included recommendations for decontamination operations.

Determination of Hazardous Chemicals in Landfills, Project Manager--Several studies in which field sampling techniques and laboratory methods were developed to determine the existence and concentrations of explosive gases generated by landfill operations, priority pollutants escaping to the atmosphere and contaminating the groundwater.

Preparation of Quality Assurance Guidelines for EPA Project Officers, Project Manager--Preparation of QA guidelines for use by EPA project officers in selecting contractors for projects requiring sampling and analysis. Also included guidelines for quality assurance audits of the field sampling and analysis portion of any awarded contract. EPA publication 600/9-79-046 entitled Quality Assurance Guidelines for IERL-Ci Project Officers was produced under this project.

D-MR1AF.1/JDB-HZ.1 03/19/85

J.D. BONDS, Ph.D. Page 2

Air Compliance Testing of Industrial Sources, Project Manager--Various projects involving compliance testing at petroleum refineries, Kraft pulp mills, power plants, iron and aluminum smelting operations, and various other industries.

Ambient Air Monitoring, Project Manager--Various projects to determine ambient air concentrations of sulfur oxides, particulates, nitrogen oxides, carbon monoxide, photochemical oxidants, priority pollutant organics, and hydrocarbons.

EDUCATION

Ph.D. 1969 Analytical Chemistry University of Alabama

B.S. 1963 Chemistry University of Alabama

U.S. EPA Air Pollution Training Institute: Quality Assurance for Air Pollution Measurement Systems—workshop graduate (1977)

ASSOCIATIONS

American Chemical Society

American Industrial Hygiene Association

Air Pollution Control Association

REPORTS AND PUBLICATIONS

More than 50 reports and publications on Installation Assessments, source air emissions, hazardous materials and quality assurance.

D-MRIAF.1/JDB-HZ.2 03/19/85

ESE PROFESSIONAL RESUME

SPECIALIZATION

Hazardous Waste Investigations, Aquatic Impact Assessment, Fisheries and Invertebrate Response to Resource Utilization, Aquatic Chemistry

RECENT EXPERIENCE

Hazardous Waste Records Search, Naval Air Station, Adak, Alaska, Task

Manager—Project involved evaluation of past and present hazardous

waste disposal practices on Naval Air Station Adak in Adak, Alaska.

Responsible for evaluation of disposal practices for wastes from

laboratories and medical facilities. Also contributed to final report.

Environmental Assessment of Titan Vehicle Launch Facility, Task

Manager—Conducted analysis of ground water and surface water quality
and quantity at Cape Canaveral Air Force Station. Also evaluated
water quality and biological impacts associated with the reactivation
of a Titan T34D/7 vehicle launch facility. Responsibilities included
background data evaluation, impact analysis, and report preparation.

Cyanide Contamination Assessment, Staff Scientist--Assisted in evaluation of ground water and surface water contamination by cyanide from a photographic laboratory. Responsibilities included review of methodology and field sampling procedures, and evaluation of data to determine extent of contamination.

AMAX Pine Level Phosphase Mine, Enivornmental Impact Statement, Task Manager—Evaluated baseline water quality data and potential impacts associated with effluent discharge from a phosphate mining operation. Responsibilities included analysis of water quality data and significance of impacts. Also assisted in Write-up of water quality section for final EIS document.

Evaluation of Toxicity of Inorganics in Leachate from Landfill, Project Manager--Evaluated chemical properties of a landfill leachate for toxicity to fish species. Responsibilities included project management, client interaction, and review of analytical data.

MX Missile Environmental Impact Study, Aquatic Ecologist -- Evaluated likely impacts on aquatic environments associated with the deployment of the MX missile system. Responsibilities included review of existing ecological data and evaluation of likely impacts due to the project.

Dredge and Fill Permitting, Project Manager-Responsible for development of dredge and fill permit applications for federal and state agencies. Responsibilities included developing mitigation plans and permit applications, representing the interests of the client to the agencies, and coordinating client interaction.

D-MR1TZ.1/RLS-HZ.1 02/17/86 R.L. Schulze, M.S. Page 2

Predictive Water Quality Modeling Study of Major Reservoir in Texas,

Project Manager—Conducted predictive modeling study to assess future
water quality and trophic state conditions for a reservoir under
construction. Major nutients, major ions, heavy metals and pesticide
loading rates were calculated. Responsibilities included statistical
data analysis, interpretation, and report preparation.

Continued Monitoring of Water Quality in Big Slough and Horse Creek

Phosphate Mine Area, Aquatic Chemist—Conducted continued water quality
monitoring and data analysis of surface water and ground water quality
in creeks in Big Slough and Horse Creek Basins. Responsibilities
included data analysis, interpretation, and report preparation.

Evaluation of the Effects of Shoreline Development on Benthic Invertebrate Communities, Task Manager—Evaluated the response by benthic invertebrate communities to varying degrees of shoreline development along finger canals.

EDUCATION

M.S.	1980	Environmental Engineering	University of Florida
B.S.	1976	Biology	University of South
			Florida

ESE

WILLIAM G. ELLIOTT, B.S. Associate Geologist

PROFESSIONAL RESUME

SPECIALIZATION

Geophysics, Stratigraphy, Engineering Geology, Hydrogeology, Ground Water Monitoring and Evaluation, Sampling Techniques.

RECENT EXPERIENCE

Adcom Wire Company, Jacksonville, Florida, Project Manager-Work included ground water contamination assessment and evaluation of remedial alternatives. Supervised chemical stabilization of contaminated soil, and developed and executed method involving EP Toxicity Test to isolate and neutralize lead contamination in soils of waste lagoon. Achieved closure of lagoon in accordance with RCRA, and managed negotiation of consent order with state regulatory agency.

Initial Assessment Study, U.S. Navy NEESA - NACIP, Team Geologist—Conducted initial assessment study of naval installations in Texas and Louisiana. Identified and evaluated potential sources of ground water/surface water contamination. Ranked sites for confirmation study using variation of MITRE model, and made recommendation for Phase II study of geohyrology of various sites.

Remedial Investigation, U.S. Army Toxic and Hazardous Materials Agency, Louisiana Army Ammunition Plant, Task Geologist—Developed geotechnical plan for remedial investigation. Evaluated site geohydrology and stratigraphy, and defined the extent and level of ground water contamination and impact on adjacent areas from disposal of explosive wastes at the four study sites.

Ground Water Contamination Study, Seymour Recycling, Seymour, Indiana, Project Geophysicist—Conducted downhole geophysical logging and aquifer evaluation testing at a former hazardous waste management facility. Performed aquifer characterization tests and borehole geophysics to evaluate migration potential of ground water contaminants at an uncontrolled hazardous wastesite.

Confirmation Study, U.S. Air Force IRP, Tyndall AFB, Panama City, Florida, Project Geologist-Developed technical operations plan for Phase II ground water and surface water confirmation study.

Contamination Assessment, Confidential Client, Project Geologist -- Developed field sampling plan and site-specific methods for investigation of volatile organic contaminants (xylene) in unsaturated soils at an industrial site in Puerto Rico.

Ground Water Contamination Assessment, U.S. Army Toxic and Hazardous Materials Agency, Sharpe Army Depot, Stockton, California, Project Geologist/Geophysicist--During contamination assessment, supervised the installation of deep monitor wells and contaminant recovery wells,

D-MR1AF.2/WGE-HZ.1 02/15/86 W.G. Elliott Page 2

performed downhole geophysical logging of monitor wells, and conducted aquifer tests.

Water Contamination Study, Polk County, Florida, Project
Hydrogeologist—Investigated contamination of drinking water wells near
Loughman, Florida. Responsibilities included supervising monitor well
installation, aquifer testing, field sampling, contamination assessment
report preparation, and recommendations for remedial actions.

U.S. Army Toxic and Hazardous Materials Agency, Vint Hill Farms
Station, Virginia, Project Geologist/Geophysicist--During installation
assessment, performed downhole geophysical logging and field sampling
of monitor wells. Performed ground water and surface water sampling as
part of the confirmation study.

Engineering Analyses, U.S. Navy, O.I.C.C. Trident, Kings Bay, Georgia, Project Geologist—Performed sedimentological and engineering analyses of channel sediments, calculated design contraints for dredged material containment area, and projected biological and water quality impacts from maintenance dredging of a submarine turning basin.

Land Survey, U.S. Navy, O.I.C.C. Trident, Kings Bay, Georgia, Project Geologist—Performed land survey to determine lateral and vertical extent of contamination of salt marsh by dredged material spill, collected and analyzed sediment cores to determine sediment source. Prepared field maps and graphics.

Carolina Galvanizing Corporation, Aberdeen, North Carolina, Project Geophysicist/Geologist--Performed computer modeling of ground water contaminant plume migration using water quality data. Also modeled pumping and treating of ground water to reduce levels of contaminants below applicable standards.

EDUCATION

B.S. 1982 Graduate courses in Geology University of Florida
 B.S. University of Florida

PROFESSIONAL ASSOCIATIONS
Geological Society of America
Southeastern Geological Society
American Water Resources Association

CERTIFICATIONS

1984--Certification of Training for Hazardous Waste Site Investigations.

1985--Certification of Training for Radiation Safety During Borehole Geophysical Logging.

D-MR1AF.2/WGE-HZ.2 02/15/86

ESE PROFESSIONAL RESUME

MARK J. JORDAMA, M.S. Geologist

SPECIALIZATION

Hydrogeology, Coastal Plain Stratigraphy, Marine and Terrestrial Contamination Assessments, Ground Water Monitoring and Evaluation, Geophysical Surveying

RECENT EXPERIENCE

Contamination Assessment, Amoco Facility, Port Everglades, FL, Field Team Leader and Co-Author--Conducted soil sampling survey across a 10-acre site to delineate the extent of contamination from waste oil reclamation and tank bottom discharge practices. One-hundred and six soil samples collected; analyses included volatile organics, priority pollutant metals, and polychlorinated biphenyls. Results used to assist client with the location of future construction plans on the property.

Contamination Assessment, Gulf Oil Company Service Station,

Gainesville, FL, Project Manager—Coordinated and conducted field
effort to install monitor wells, collect ground water samples. and
conduct slug tests to evaluate aquifer characteristics. Analytical
results from ground water samples were used to evaluate the extent of
contamination and prepare recommendations for remedial action; senior
author of final report.

Phase II Contamination Assessment, Camp Lejeune Marine Corps Base, Jacksonville, NC, Field Geologist—Conducted surface geophysical and subsurface geophydrologic investigations as part of the Department of Defense Installation Restoration Program (DOD-IRP). Work included soilgas surveying; monitor well installation; and surface water, sediment, soil, and ground water sampling in an effort to identify and quantify the source and extent of specific contaminant occurrences.

Contamination Assessment of Ground Water at Martin Marietta Facility, Ocala, FL, Team Member--Produced computer maps of contaminant plume concentrations for volatile organics and various metals which occur in ground water underlying the site.

Phase II Contamination Assessment, Tyndall Air Force Base, Panama City, FL, Project Geologist/Field Team Leader—Performed surface geophysical and subsurface geohydrologic investigations as part of the DOD-IRP. Field work included electromagnetic conductivity surveying; monitor well installation; and surface water, sediment, soil, and ground water sampling in an effort to identify and quantify the source and extent of specific contaminant occurrences.

Contamination Assessment of Ground Water at General Electric Facility,

Daytona Beach, FL, Team Member—Co-author of report which utilized soilgas and ground water chemistry data to delineate the concentration and
extent of a hydrogen cyanide contamination plume underlying the site.

D-MR1GL.2/MJJ.1 01/16/87 Mark J. Jordana Page Two

Contamination Assessment at Container Corporation of America Facility, Jacksonville, FL, Project Geologist/Field Team Leader -- Work included electromagnetic conductivity surveying; soil sampling; and field and laboratory analysis for polycyclic aromatic hydrocarbons, cyanides, sulfides and volatile organics to delineate the extent of contamination produced by tank bottom discharge from a coal gasification facility previously located at the site. Senior author of final report.

Naturally Occurring Radioactivity in Ground Water Study, Project

Manager and Senior Author--Key researcher for a study on the natural
occurrence of radionuclides in ground water nationwide. This work,
conducted for the U.S. Environmental Protection Agency (EPA);
classified the relative risk of occurrence of uranium, radium-226, and
radon for each of 3073 counties nationwide.

Contamination Assessment of Ground Water at Stoller Chemical Company Facility, Charleston, SC, Project Geologist/Field Team Leader-Work included aquifer testing to determine geohydrologic parameters at the site and monitor well installation and sampling to determine the extent and concentration of the contaminant plume in the subsurface. Co-authored final report, which was submitted to the S.C. Department of Health and Environmental Control (DHEC).

Wastewater Characterization Study, Savannah River Plant, Aiken, SC, Field Team Leader--Performed wastewater sampling at the Department of Energy's Savannah River Plant F and H area treblers. This project involved the design, installation, and sampling of flow-proportional, integrated samplers at both treblers. Samples were collected, packaged, and shipped off-plant to an analytical lab daily.

Regional Stratigraphic Analysis, Savannah River Plant, Aiken, SC, Project Geologist/Field Team Leader and Senior Author-Developed a data base of subsurface control for the off-plant region adjacent to the Savannah River Plant. The data base included geophysical well logs and auger descriptions from more than 500 locations in five counties of southwestern South Carolina. Constructed four cross-sections delineating the regional subsurface stratigraphy of the region.

Education

M.S. 1984 Geology University of South Carolina
B.A. 1982 Geology University of North Carolina at
Wilmington

Continuing Education

Defining Formation Characteristics Using Well Logs, given by Schlumberger Educational Services, December, 1985.
REM III (Superfund) Health and Safety Training Seminar, November 1986

D-MR1GL.2/MJJ.2 01/16/87

ESE PROFESSIONAL RESUME

DAVE W. KNOTHE Staff Scientist/Project Manager

SPECIALIZATION

Project Management, Field and Laboratory Operations Management, Hazardous Waste, Environmental Health/Industrial Hygiene Project Coordination and Analytical Chemistry

RECENT EXPERIENCE

Confirmation Surveys for the U.S. Air Force Installation/Restoration Program, Task Manager—Analytical support and coordination of Stage 1 Investigations at Cape Canaveral Air Force Base as part of a task order contract to design and implement IRP Phase II Confirmation Surveys for OEHL. Surface waters, ground waters, soil borings and sediments are being sampled and analyzed for various screening parameters including total organic carbon (TOC), total organic halogens (TOX), phenols, oil and grease, pH, specific conductance, PCBs, and selected metals and pesticides. This study will include a characterization of the extent of contamination, contaminant migration modeling, risk assessment and evaluation of various remedial measures.

Contamination Survey, Longhorn Army Ammunition Plant, Marshall, Texas, Environmental Protection Systems, Inc., Project Chemist—Technical responsibilities included site inventory, analyses of ground water, surface water, soil and sediment sampling for priority pollutants and explosives. A ranking scheme was developed and engineering report with recommendations was prepared.

Contamination Survey, Lone Star Army Ammunition Plant, Texarkana,

Texas, Environmental Protection Systems Systems, Inc., Project Chemist—
Specific responsibilities included a site inventory, analyses of ground water, surface water, soil and sediment sampling for priority pollutants and explosives.

Water Quality Management Studies of Coffeeville, Reservoir, Tombigbee Waterway, Alabama, Environmental Protection Systems, Inc., Field and Laboratory Support Chemist—Sampling and analysis of water, sediments and organisms from 25+ stations in the Coffeeville Reservoir and the Tombigbee River and preparation of a report on the conditions and the effects of industrial discharges and dewatering at the Coffeeville Dam on water quality.

Monitoring Well/Lysimeter Sampling Program, Redstone Arsenal, Alabama, Environmental Protections Systems, Inc., Project Manager—Duties included development of a ground water monitoring program for quality assessment.

Hazardous Waste Stream Characterization, Pensacola Naval Air Station, Florida, Environmental Protection Systems, Inc. Project Manager—Analytical responsibility involved development of a statistically representative sampling program for wastewater sampling at the Naval Air Station.

D-MR1GL.3/DWK.1 03/26/87

A-9

D.W. Knothe Page 2

Environmental Audit Program for a Marine Terminal Facility and Land Disposal Operation, Mississippi, Environmental Protection Systems, Inc., Project Manager—Involved with the design and implementation of a comprehensive audit program for an industrial site receiving miscellaneous drilling fluids.

Industrial Hygiene Surveys for Local, State and Federal Governments, Environmental Protection Systems, Inc., Project Manager-Industrial Hygiene Surveys for a wide range of hazardous materials.

EDUCATION

B.S. 1979 Chemistry University of West Florida
B.S. 1977 Biology University of West Florida

PROFESSIONAL AFFILIATION

The American Chemical Society American Industrial Hygiene Association The American Board of Industrial Hygiene (IHIT)

PUBLICATIONS

Knothe, D. 1982. Rapid Extraction of Explosives from Water for HPLC. In: Baker - 10 SPE Applications Guide, Vol. 1, J.T. Baker Chemical Co., Phillipsburg, NJ, p. 30.

Sanfilippo, R.D., McGriff, E.C., Knothe, D.W. and Jacobs, L. 1983.

Longhorn Army Ammunition Plant Contamination Survey. Report Thiokol
No. 16651 U.S. Army Toxic and Hazardous Agency, Aberdeen Proving
Grounds, Maryland.

D-MR1GL.3/DWK.2 03/26/87

ESE PROFESSIONAL RESUME

DILMA M. HALE, Ph.D. Senior Associate Scientist

SPECIALIZATION

Inorganic Analysis; Atomic Absorption and Stripping Voltammetry, Organic Residue Analysis, Pesticide Residue and Environmental Fate; Gas Chromatography, Fluorometry

RECENT EXPERIENCE

Contamination Assessment of Hazardous Sites, Florida Department of Environment Regulation, Laboratory Coordinator—Scheduled sampling, analysis, and data reporting for hazardous sites, including:
(1) Tri-City Oil site, Temple Terrace, Florida,—emergency analysis of soils and water contaminated by spills and leaks from storage tanks; (2) Peak Oil, Inc.,—sampling and analysis to delineate contamination from an oil recycling company; and (3) City of Belleview, Florida—analysis of samples contaminated by a leaking underground storage tank.

Water/Soil/Sludge Process Waste Treatment, Treatment Technology, Laboratory Coordinator—Responsibilities included monitoring project budget and schedule, and data management. Coordinated the total laboratory effort in the analysis and evaluation of lagoon sediments contaminated with munition compounds, including the determination of nitroaromatic compounds (TNT, 2,4-DNT and 2,6-DNT, RDX) and trace metals (Cd, Pb, Cr, Hg) in core sediments and leachates.

Kinetic Studies of 1,1-Dimethylhydrazine (UDMH), USATHAMA, Project Chemist -- Investigated the stability and kinetics of the degradation of 1,1-dimethylhydrazine by high performance liquid chromatography (HPLC). Helped prepare final report for Army methods development project for U.S. Army Toxic and Hazardous Materials Agency.

Florida Department of Environmental Regulation, Emergency Overload and Response, Project Manager--Scheduled the sampling, analyses and data reporting for 18 tasks.

Methods of Treatment of Drinking Water, Project Chemist--Study included aeration and adsorption for pesticide removal. Report prepared for the Office of Drinking Water.

RTP Treatability Study, Laboratory Coordinator--Assessed the applicability of treatment processes to pesticide waste streams. Studied the effect of pH on the hydrolysis of prometon, linuron, methamyl, and 2,4-D. Also investigated the effect of chemical oxidants and carried out kinetic studies.

Florida Acid Deposition Study, Project Chemist -- Investigated the effects of acid deposition on materials.

D-MR1GL.2/DVH-HZ.1 05/28/86

D.M. Hale, Ph.D. Page 2

Pesticides Best Available Technology, Project Chemist--Prepared summary tables of pesticide and priority pollutant methods, wrote technical sections of major reports, edited and provided technical direction for reports to the U.S. Environmental Protection Agency.

Test Procedures for Pesticides in Effluents, Principal Investigator—Developed methods for the analysis of certain organochlorine and organotin pesticides using gas chromatography and atomic absorption spectrophotometry. Wrote project final report for U.S. Environmental Protection Agency.

Research Associate, University of New Hampshire, 1979 to 1980.

Involved in Anodic stripping voltammetric studies of Cd and Pb; conducted investigations of Cu-fulvic acid interactions, and Pb; investigations of Cu-fulvic acid interactions, and interferences by Ca, by ion-selective electrodes and ASV for University of New Hampshire.

Postdoctoral Research Associate, Carleton University, Ottawa, Canada, 1977 to 1978.

Studies included U(IV)- and U(VI)-organic acid interactions, by dialysis, ultrafiltration and gel filtration chromatography, using fluorometric determination for U; performed analysis of trace metals in a sea-water matrix using graphite furnace atomic absorption spectrometry.

Postdoctoral fellow, Institute of Environmental Science, University of Southern Mississippi, 1976 to 1977.

Investigated the fate of pentachlorophenol and its degradation products by GC and GC-MS. Developed analytical method involving derivatization with diazomethane to form the methyl esters and analysis by gas chromatography.

EDUCATION

DOCALION			
Ph.D.	1976	Inorganic Environmental Chemistry	University of South Florida
M.S.	1971	Inorganic Chemistry	University of South Florida
B.A.	1968	Chemistry	College of Notre

ASSOCIATIONS

American Chemical Society Sigma Xi

PUBLICATIONS

Publications on Inorganic Chemistry, Residue Analysis, Trace Metals, and X-ray Crystallography

D-MR1GL.2/DVH-HZ.2 05/28/86

ESE

WILLIAM COULOMBE, B.S. Quality Assurance Supervisor

PROFESSIONAL RESUME

SPECIALIZATION

Quality Assurance (QA), Water Quality, Ambient Air Monitoring

RECENT EXPERIENCE

Effluent Study, Chevron U.S.A. Inc., Project Quality Assurance Supervisor—Study conducted at four port terminals in Florida. Reponsible for preparation and implementation of the project QA plan.

Confirmation Studies, U.S. NAVY Laboratory Quality Assurance Coordinator—Environmental monitoring to assess contamination at sites in Puerto Rico and Charleston, South Carolina. Responsible for overseeing proficiency testing, coordinating on-site QA/QC inspections, establishing QC procedures, processing control charts, monitoring compliance with the laboratory QA/QC plan, and preparing monthly QA/QC reports.

Pure Compound and Effluent Toxicity Tests, GLP Quality Assurance Unit, Quality Assurance Supervisor—Quality assurance supervisor for aquatic bioassay toxicity tests including static and flow-through tests, acute and chronic. Responsible for auditing tests and review of all final reports.

Detroit River Plume Study, Project Quality Assurance Supervisor-Performed water quality, dye study, bioassay testing for the City of Detroit. Responsible for preparation and implementation of the project QA plan.

Environmental Contamination Assessments and Preconstruction Survey, Project Quality Assurance—Survey performed for the Florida Department of Environment Regulation. Responsible for implementing the QA plan, including field and laboratory audits, and data validation.

Remedial Investigation/Feasibility Study, State of New Jersey, Project Quality Assurance Supervisor—Study conducted in Hudson County New Jersey. Responsible for preparation and implementation of the project QA plan.

Presurvey For Phase II Stage 2 Installation Restoration Program,
Project Quality Assurance Supervisor—Environmental monitoring to
assess contamination at Tyndall Air Force Pase and Panama City,
Florida. Responsible for preparation and implementation of the
project QA plan.

Contamination Assessment, Lockhaven, Pennsylvania, Project Quality
Assurance Supervisor—Environmental monitoring and a hazardous waste
site closure study conducted for American Chemical and Color
Corporation, Lockhaven, Pennsylvania. Responsible for preparation
and implementation of the project QA plan.

D-MR1AF.1/WC-EA.1 10/28/86 W. Coulombe, B.S. Page 2

Analytical Services for a Pilot-Plant Testing Program to Evaluate the Effectiveness of Activated Carbon Adsorption Technology, Project Quality Assurance Supervisor—Analyses were performed for the U.S. Environmental Protection Agency using a mobile laboratory at the site of the pilot plant. Responsible for implementing the QA plan, conducting a field audit at the mobile laboratory, and data validation.

Pilot Study to Assess the Applicability of Treatment Processes to Pesticide Waste Streams, Project Quality Assurance Supervisor—Research and development study conducted for the U.S. Environmental Protection Agency. Responsible for implementing the project QA plan, conducting laboratory audits and data validation.

Determination of Organic Compounds Contributions to COD of Waste Effluent, Project Quality Assurance Supervisor—Research and development study on effluent from a pharmaceutical plant conducted for the U.S. Environmental Protection Agency. Responsible for implementing the project QA plan, conducting laboratory audits, and data validation.

Remedial Investigation/Feasibility Study, Confidential Client,
Project Quality Assurance Supervisor—Surveys performed for the
Florida Department of Environmental Regulation. Responsible for
implementing the QA plan, including field and laboratory audits and
data validation.

Landfill Environmental Monitoring Program, Project Quality Assurance Supervisor—Ground water and soil monitoring and analysis performed for the Alachua County Department of Environmental Services, Gainesville, Florida. Responsible for preparation and implementation of the project QA plan.

Contamination Assessment, Florida Power Corporation, Project Quality Assurance Supervisor -- Study conducted in St. Petersburg, Florida. Responsible for preparation and implementation of the project QA plan.

EDUCATION

B.S. 1975 Zoology University of Florida

D-MR1 AF. 1/WC-EA. 2 10/28/86 KAREN T. BROWN, B.S. Associate Scientist Quality Assurance

ESE PROFESSIONAL RESUME

SPECIALIZATION

Quality Assurance, Laboratory Analysis, Analytical Coordination, Data Handling, Trace Metals Analysis, Gas Chromatography, Atomic/Emission Spectroscopy

RECENT EXPERIENCE

Specific experience includes data validation, QA audits, writing QA plans and reports; one year working experience in gas chromatography; atomic emission spectroscopy, with two years work experience in ICAPAES and DCPAES; and one year work experience in furnace and flame AA.

Associate Scientist, Quality Assurance (QA), (August 1986 to Present)—Responsible for data validation of many types of chemical and biological analyses; preparation of project QA plans and reports. Ultimate responsibility is to assure ESE data is of the highest quality.

Gate Lands, Project QA Supervisor--Feasibility study conducted in Jacksonville, Florida. Responsible for preparation and implementation of the project QA plan.

Installation Restoration Project, Phase II, Wake Island Air Field, Project QA Supervisor-Responsible for preparation and implementation of project QA plan.

Asbestos QA Plan -- Responsible for preparation of ESE's generic asbestos QA plan.

Confirmation Studies, U.S. Navy-Environmental monitoring to assess contamination at sites in Puerto Rico and Charleston, South Carolina. Responsible for processing control charts, monitoring compliance with the laboratory QA/QC plan, and preparing monthly QA/QC reports.

Florida Acid Deposition Study, QA Supervisor—Responsible for introducing performance evaluation samples for field and lab analysts; and reporting results.

Acute Toxicity Studies, Chevron U.S.A., Inc., Project Quality Assurance Supervisor--Responsible for implementation of the project QA plan.

Toxicology QA Plan-- Responsible for updating ESE's generic toxicology QA plan.

D-MR1AF.2/KTB.1 01/16/87 K.T. BROWN, B.S. Page Two

Associate Scientist, Group Leader, Atomic Spectroscopy (January 1985 to August 1986)—Responsible for scheduling metals analysis and supervising five laboratory technicians. Knowledgeable in trace element analysis and data reduction of a wide range of sample matrices by AA and ICAP spectrophotometric techniques.

Rocky Mountain Arsenal, Environmental Program—Responsible for scheduling metals analysis, data evaluation, and analysis of samples by AA and ICAP Spectrophotometric techniques.

Florida/Maryland Acid Deposition Study—Responsible for trace metals portion of multi-year study investigating acid rain. Analyses performed using ICAPES and Flame Atomic Emission Spectroscopy.

St. Johns River Power Park Bioassay Test Program—Responsible for scheduling metals analysis, data evaluation, and analysis of samples by AA and ICAP spectrophotometric techniques. Developed oyster tissue digestion procedure for the analysis of copper.

Sharpe Army Depot Environmental Program—Determined quantatively As and Se by Furnace AA.

Westvaco-St. Johns Department, Lake City, Florida, Quality Control Chemist (February 1984 to January 1985)—Supervised QC Lab. Responsible for quality of raw materials and finished resin. Analyzed aliphatic and aromatic compounds by GC. Trained laboratory testers and technicians for routine physical testing of samples. Held monthly QA meetings.

Florida Citrus Commission, Gainesville, Florida, Student Lab Technician (May 1981 to August 1983)—Research project objective was to establish a criterion for distinguishing the geographical origin of orange juice by its mineral content. Responsible for analysis of orange juice for its trace metal content by DCPAES, AA, and ICAPAES. Also, responsible for data reduction and sample preparation.

EDUCATION

B.S. 1983 Chemistry University of Florida

D-MR1AF.2/KTB.2 01/16/87

ESE

PATRICK A. RHOADS, B.A. Chief Technician

PROFESSIONAL RESUME

SPECIALIZATION

Aquatic Toxicity Testing, Aquatic and Terrestrial Ecology, Hazardous Waste Field Sampling--Ground Water, Soils, Sediments, Industrial Wastewater, and Storm Water Runoff

RECENT EXPERIENCE

Omnivest Remedial Study, Project Team Member--Involved drilling survey effort to determine the extent of contamination by unknown chemicals throughout a closed landfill. Responsible for field preparation, core sampling, sample preparation and shipping, and decontamination of equipment and personnel.

Phoenix Nike Site Pump Test, USATHAMA. Project Team Member--Work consisted of pump test to determine hydrogeology of project area to estimate extent of possible contamination onsite and offsite. Responsible for field preparation, monitor well sampling, sample shipment, and around-the-clock equipment monitoring.

Sampling Effort, Madison County, Florida, Project Team Member--Team member of a sampling survey of drums containing unknown chemicals found at the Madison County landfill. Responsible for field preparation, sampling, and decontamination.

USATHAMA Demonstration of Air Stripping Technology, Project Team Member--Pilot demonstration of air stripping technology for the treatment of ground water contaminated with trichloroethylene. Responsible for breakdown, repair, and maintenance of the air stripper system. Loading, transporting, and delivery of same to Sharpe Army Depot, CA. Set up and test the system and sampling during the pilot demonstration.

Organic Chemical Industry Study for EPA/EGD. Project Team Member--Development of BAT (1984) Effluent Guidelines Limitations for the organic chemicals industry. Responsible for field preparation, industrial wastewater sampling, sample preservation and shipping.

Ardmore Farms Remedial Study, Project Team Member--Survey effort to determine the extent of oil contamination in the sediments of a storm water runoff pond. Responsible for field preparation, surface water, and sediment core sampling and sample preparation.

NAVFAC Camp Le Jeune Confirmation Study, Project Team Member-Confirmation study of possible ground water contamination at Camp Le Jeune M.C.B., N.C. Responsible for ground water, soil, surface water, and sediment sampling, sample preparation and shipping.

D-MR1MS.2/PAR-HAZ.1 11/01/85 P.A. RHOADS Page 2

Storm Water Runoff Study, Confidential Client. Project Team Member-Confirmation study of contamination in storm water runoff for a confidential client in Gainesville, Florida. Responsible for storm water sampling and sample preparation.

Pharmaceutical Chemical Industry Study for EPA/EGD, Project Team

Member--Development work for BCT. Effluent Guidelines Limitations
for the pharmaceutical industry. Responsible for field preparation,
industrial wastewater sampling, sample preservation, and shipping.

EDUCATION

BA 1975 Zoology University of South Florida
Graduate Studies Limnology University of Florida
Hazardous Training Course ESE

D-MR1MS.2/PAR.2 11/01/85

ESE

JOHN R. MAXWELL, B.A. Ecologist

PROFESSIONAL RESUME

SPECIALIZATION

Biota Sampling for Hazardous Waste Assessment, Wildlife Resource Inventories, Vegetation Wildlife Habitat Mapping, Computer-Oriented Data Reduction, Photographic Documentation and Interpretation

RECENT EXPERIENCE

Field Team Leader, Aerial Photography Review and Biological Sample Collection—Toxic chemical deactivation project at Alabama Army Ammunition Plant, conducted for USATHAMA. Responsible for collection of mammalian, avian and vegetation samples for chemical analysis. Also collected soil, sediment, and ground and surface water samples.

Army Installation Restoration Project, West Virginia Ordnance Works, Team Member--Collected soil, stream and lake sediment, and water samples. Performed lab analysis for nitroaromatic compounds in soils.

Two Proposed Phosphate Mines in South Florida, Field Team Leader-Collected mammal and vegetation samples for laboratory analysis of radiation and Florida levels.

Ecological Survey of Proposed Power Plant, Site in Maryland, Field Team Leader--Conducted small and medium mammal trapping program to determine population estimates.

Aerial Photography Review, Aerial Survey, Small Mammal Trapping, and Endangered Species Survey-Surveys were conducted for siting a 300-MW coal-fired power plant in southern New Jersey.

EDUCATION

B.A. 1975 Biology Trenton State College

D-MR1MS.2/JRM-MIL-HZ.1 09/24/85

THIS PACE INTENTIONALLY LEFT BLANK

APPENDIX B

ANALYTICAL DATA FOR STATE OF FLORIDA PRIMARY AND SECONDARY DRINKING WATER STANDARDS FOR TYNDALL AFB SUPPLY WELLS

USAF HOSPITAL TYNDALL (TAC)

Tvndall Air Force Base, Florida

DRINKING WATER INVENTORY **JANUARY 1984**

Prepared by:

DANIEL R. MORTON, ILT, USAF BSC Chief, Bioenvironmental Engineering

Reviewed by:

WILLIAM PROTZER, Capt, USAF, MC, FS Chief, Aeromogical Services

Approved by:

PREDERICK GOSLIN, Colonel, USAF, MC, FS

Commander

THIS PAGE INTENTIONALLY LEFT BLANK

SUBSTANCE &	EPA	BASE WATER	WELL #1	WELL #2	WELL #2A
STANDARD FOR COMMUNITY WESTEMS	R PUBLIC- ATER	SUPPLY - BAY COUNTY	AFESC Pavements Bldg 9705	Communications Bldg 722	Drone Launch Bldg 8523
Free Available C	hlorine mg/L	0.5mg/L	0.6mg/L		0.8mg/L
Fluoride	1.8mg/L	regulated ±	3.4, 3.6, 3.95, 3.8*		1.35, 1.4, 1.85, 1.6*
На	6.5 - 8.5	7.6	7.7		7.5
Coliform Bacteri	a <4/100ml	<1/100ml	<1/100ml		<1/100ml
Arsenic	0.5mg/L	<10µg/L	<10µg/L		<10µg/L
Barium	1.0mg/L	<1000µg/L	<200µg/L		<1000μg/L
Cadmium	0.01mg/L	<10µg/L	<10μg/L		<10µg/L
Chromium	0.05mg/L	<50jug/L	<50μg/L		<50μg/L
Lead	0.05mg/L	<20μg/L	<20µg/L		<20µg/L
Mercury	0.002mg/L	<2µg/L	<2µg/L		<2µg/L
Nitrate (N)	10.0mg/L	<0.1 mg/L	<0.1 mg/L		<0.1mg/L
Selenium	0.01mg/L	<10µg/L	<10µg/L		<10µg/L
Silver	0.05mg/L	<10µg/L	<10µg/L		<10µg/L
Endrin	0.0002mg/L	<0.02µg/L	<0.2μg/L		<0.02µg/L
Lindane	0.004mg/L	<0.01µg/L	<0.1µg/L		<0.01µg/L
Methoxychlor	0.1mg/L	<0.2µg/1.	<0.2μg/L		<0.20µg/L
l'oxaphene	0.005mg/L	<1.0µg/L	<1.0μg/L		<1.0µg/L
2, 4-D	0.1mg/L	<0.02µg/L	<0.06µg/L		<0.06µg/L
2. 4. 5,-TP	0.01mg/L	<0.06µg/L	<0.06µg/L		<0.06µg/L
Total Tribalomet	hanes mg/L	<100µg/L	N/A		N/A
Furbidity	17U	<1 TU	<1 TU		<1 TU
Radium 226 & 22	8 5pCi/L	<5pCi/L	<5pCi/L		<5pCi/L
Gross Alpha	15pCi/L	<1pCi/L	<1pCi/L		<1pCi/L
Chloride	250mg/L	2.2mg/L	<20mg/L		20mg/L
Color 15 c	olor units	7 units	<5 units		10 units
Copper	1mg/L	<20µg/L	<20µg/L		<20µg/L
Corrosivity	none	+2.26LI	-0.67LI		-0.83LI
Foaming Agents	0.5mg/L	<.1 mg/L	<.1mg/L		<.1mg/L
Iron	0.3mg/L		0.2mg/L		0.166mg/L
Manganese	0.05mg/L	<50μg/L	<50μg/L		<50µg/L
	shold Odor	None Detected	None		None
Sulfate	250mg/L	18mg/L	16mg/L		1mg/L
TOS	500mg/L	87mg/L	257mg/L		239mg/L
Zine	5mg/L	233µg/L	<50µg/L		<50µg/L
Sodium	160mg/L**	4.8mg/L	34.4mg/L		12.3mg/L
					

^{*}Ambient Fluoride from Bay Co. supplier - level maintained 0.9-1.2 (by CE) in base supply lines

^{*}Indicates Repeat Samples

^{**}State Standard - Primary

SUBSTANCE & EPA STANDARD FOR PUBLIC-	WELL #3 DRONE CONTROL -CLOSED-	WELL #4 COMMISSARY STORAGE-CLOSED-	WELL #4A AMMO STORAGE	WELL #5 2021 COMM
COMMUNITY WATER SYSTEMS	Bldg 8510	Bldg 1502	Bldg 7001	Bldg 652
Free Available Chlorine mg/L			0.2mg/L	0.8mg/L
Fluoride 1.8mg/L			2.6, 3.0, 2.8, 2.75*	1.4mg/L
pti 6.5 - 8.5			7.7	6.9
Militarm Bucteria (4/100ml			<1/100ml	<1/100ml
Arrenic 0.05mg/L		 	<10µg/L	<10µg/L
1.0mg/L			<1000µg/L	<200µg/L
Cacmium 0.01mg/L			<10µg/L	<10µg/L
Chromium 0.05mg/L			<50μg/L	<5ปµg/L
Lead 0.05mg/L		· · · · · · · · · · · · · · · · · · ·	<20µg/L	<20ug/L
Mercury 0.002mg/L			<2µg/L	Ciμg/L
Nitrate (N) 10.0mg/L			0.3mg/L	<0.1 mg/L
Sclenium 0.01 mg/L			<10µg/L	<10µg/L
Silver 0.05mg/L			<i l<="" td="" ύμg=""><td>$<\!10\mathrm{ag/L}$</td></i>	$<\!10\mathrm{ag/L}$
Endrin 9.0002mg/L			<0.02µg/L	<0.02µg/L
Lindane 0.004mg/L			<0.01µg/L	<0.01µg/∟
Methoxychlor 0.1mg/L			<0.20µg/L	<0.20µg/L
Foxuphene 9.005mg/L			<1.0µg/L	<1.0µg/L
2. 4-1) 0.1 mg/L			<0.06μg/L	<ก.กิธินุ ศ /L
2, 4, 5,-TP 0.01mg/L			<0.06µg/L	<0.06µg/L
Total Tribalomethanes mg/L			N/A	N/A
Furbidity 1 TU			3.3 TU	<1 TU
Radium 226 & 228 5pCi/L			<5pCi/L	<5pCi/L
Gross Alpha 15pCi/L			3 ± 2pCi/L	2 ± 1pCi/L
Chloride 250mg/L			100mg/L	120mg/L
Color 15 color units			<5 units	10 units
Copper 1mg/L			<20µg/L	23μ ς /L
Corrosivity None			-0.5LI	-0.45LI
Foaming Agents 0.5mg/L			<.1mg/L	0.45mg/L
iron 0.3mg/L			1.766mg/L	0.487/0.543 *
Wanganese 0.05mg/L			<50µg/L	<50µg/L
Odor #3 Threshold Odor			None	None
Sulfate 250mg/L			89mg/L	22mg/L
TDS 500mg/L			636mg/L	444mg/L
sinc 5mg/L			<0.50mg/L	<50µg/L
oodium 160mg/L			143.2mg/L	27.7mg/L

^{*}Indicates Repeat Samples

DRINKING WATER ANALYSES RESULTS

SUBSTANCE & EPA STANDARD FOR PUBLIC- COMMUNITY WATER SYSTEMS	WELL #5A SALVAGE @ Bldg 6033	WELL #6 WHERRY HOUSING Blag 2675	WELL #6A POL AREA @ Bldg 6055	WELL #7 FORMER COLD STORAGE Bldg 250
Free Available Chlorine mg/	0	0	2.7mg/L	0
Fluoride 1.8mg/I	1.8mg/L	1.4mg/L	0.4mg/L	7mg/L #
pH 6.5 - 8.5	7.8	8.2	6.8	7.1
Coliform Bacteria <4/100m	1 <1/100ml	<1/100ml	<1/100ml	<1/100ml
Arsenic 0.05mg/	<10µg/L	<10µg/L	<10μg/L	<10µg/L
Barium 1.0mg/I	<1000µg/L	<200µg/L	<1000µg/L	<200µg/L
Cadmium 0.01mg/	<10µg/L	<10µg/L	<10μg/L	<10µg/L
Chromium 0.05mg/	<50μg/L	<50μg/L	<50μg/L	<50μg/L
Lead 0.05mg/	<20µg/L	<20μg/L	<20µg/L	<20µg/L
Mercury 0.002mg/l	<2μg/L	<1μg/L	<2µg/L	<1µg/L
Nitrate (N) 10.0mg/	<0.1mg/L	<0.1mg/L	<0.1mg/L	<0.1mg/L
Selenium 0.01mg/	<10µg/L	<10µg/L	<10µg/L	0.01µg/L
Silver 0.05mg/	<10µg/L	<10µg/L	<10µg/L	0.05µg/L
Endrin 0.0002mg/L	<0.02µg/L	<0.02μg/L	<0.02µg/L	<0.02µg/L
Lindane 0.004mg/L	<0.01µg/L	<0.01μg/L	<0.01µg/L	<0.01µg/L
Methoxychlor 0.1mg/L	<0.20µg/L	<0.20µg/L	<0.20µg/L	<0.20µg/L
Toxaphene 0.005mg/	<1.0µg/L	<1.0µg/L	<1.0µg/L	<1.0µg/L
2, 4-D 0.1mg/I	. <0.06µg/L	<0.06µg/L	<0.06µg/L	<0.06µg/L
2, 4, 5,-TP 0.01mg/	<0.06μg/L	<0.06μg/L	<0.06µg/L	<0.06µg/L
Total Trihalomethanes 0.1	N/A	N/A	N/A	N/A
Turbidity 1 TU	<1 TU	<1 TU	4 TU	1 TU
Radium 226 & 228 5pCi/L	<5pCi/L	<5pCi/L	<5pCi/L	<5pCi/L
Gross Alpha 15pCi/L	2 ± 1.0pCi/L	2 ± 1.0pCi/L	1 ± 1.0pCi/L	2 ± 1.0pCi/L
Chloride 250mg/L	104mg/L	120mg/L	20mg/L	184mg/L
Color 15 color units	5 units	10 untis	10 units	<5 units
Copper 1mg/L	<20μg/L	<20µg/L	<20µg/L	<20µg/L
Corrosivity None	+.78LI	-0.5LI	-0.86LI	-1.30LI
Foaming Agents 0.5mg/L	<.1mg/L	<.1mg/L	<.1mg/L	<.1mg/L
Iron 0.3mg/L	0.586mg/L	0.396mg/L	1.608mg/L	<0.1mg/L
Manganese 0.05mg/L	, <50μg/L	<50μg/L	<50μg/L	<50µg/L
Odor #3 Threshold Odor	None	None	None	None
Sulfate 250mg/L	29mg/L	30mg/L	1 mg/L	83mg/L
TDS 500mg/L	401 mg/L	480mg/L	253mg/L	624mg/L
Zinc 5mg/L	175μg/L	<50µg/L	87µg/L	30.1µg/L
Sodium 160mg/L	81.6mg/L	38.2mg/L	49.3mg/L	93.2mg/L

#One Sample Only - Pump Failure has prevented follow-up re-sampling @Inactive as of 30 January 1984 according to DEMWW

SUBSTANCE & EPA STANDARD FOR PUBLIC- COMMUNITY WATER	WELL #7A BOY SCOUT AREA Blog 3003	GOLF COURSE	WELL #9 DRONE MAINTENANCE	WELL #10 POL AREA Blog 6065
SYSTEMS 0.2	Didg ands	Bldg 3029	Bldg 9308	Plog 6/103
Free Available Chlorine mg/1	0	1.0mg/L	0.2mg/L	0.2mg/L
Fluoride 1.8mg/L	0.7mg/L	0.9mg/L	1.6mg/L	1.2mg/L
он 6.5 - 8.5	7.7 units	7.7	7.5	7.5
Coliform Bacteria <4/100ml	<1/100ml	<1/100ml	<1/100ml	<1/100ml
Arsenic 0.05mg/L	<10µg/L	<10µg/L	<10µg/L	<10µg/L
Barium 1.0mg/L	<200µg/L	<1000µg/L	<1000µg/L	<200µg/L
Cadmium 0.01mg/L	<10µg/L	<10µg/L	<10µg/L	<10ug/1.
Chromium 0.05mg/L	<50µg/L	<50ug/L	<50բg/Լ	<10µg/L
Lead 0.05mg/L	<20µg/L	<20ug/1.	<20jug/L	<20µg/L
Mercury 0.002mg/L	<1jig/L	<2)(g/ L	<2μg/L	<1µg/L
Nitrate (N) 10.0mg/L	<0.1mg/L	<0.1 mg/J.	<0.1 mg/L	$<0.1\mathrm{mg/L}$
Sclenium 0.01 mg/L	<10µg/L	<10µg/L	<10µg/L	<10µg/L
Silver 0.05mg/L	<10µg/1.	<10յւg/L	<10µg/L	<10ug/L
Endrin 0.0002mg/L	<.02μg/L	<0.02µg/L	<0.02µg/L	<0.02µg/1.
Lindane 0.004mg/L	<.01µg/L	<0.01µg/L	<0.01µg/L	<0.01µg/L
Methoxychlor 0.1mg/L	<.20μg/L	<0.20µg/L	<0.20µg/L	<0.20µg/L
Foxaphene 0.005mg/L	<1.0µg/L	<1.0µg/L	<1.0µg/L	<1.0µg/L
2, 4-D 0.1mg/L	<0.06µg/L	<0.06µg/L	<0.06µg/L	<0.06µg/L
2, 4, 5,-TP 0.01mg/L	<0.06µg/L	<0.06µg/L	<0.06µg/L	<0.06µg/L
Total Trinalomethanes mg/L	N/A	N/A	N/A	N/A
Turbidity 1 TU	<1 TU	1 TU	1 TU	2 TU
Radium 226 & 228 5pCi/L	<5pCi/L	<5pCi/L	<5pCi/L	<5pCi/L
Gross Alpha 15pCi/L	3 ± tpCi/L	2 ± 2pCi/L	3 ± 2pCi/L	4 ± 2pCi/L
Chloride 250mg/L	48mg/L	140mg/L	184mg/L	112mg/L
Color 15 color units	10 units	<5 units	<5 units	5 units
Copper 1mg/L	<20μg/L	<20μg/i,	<20µg/L	<20µg/L
Corresivity None	-0.5L1	-0.4Ll	-0.83LI	-0.63LI
Forming Agents 0.5mg/L	<0.1 mg/l,	0.1mg/L	<0.1 mg/L	<0.1mg/L
Iron 0.3mg/L	0.421 mg/L	0.187mg/L	0.296mg/L	0.224mg/L
Manganese 0.05mg/L	<50µg/L	<50µg/L	<50μg/L	<50µg/L
Ogor #3 Threshold Odor	None	None	None	Nore
Sulfate 250mg/L	38mg/L	fidmg/L	40mg/L	32mg/L
FDS 500mg/L	Colong/L	485mg/L	563mg/L	480mg/L
Zine 5mg/L	157µg/L	<50μg/L	<50µg/L	<50µg/L
Sodium 160mg/L	35.4mg/L	72.6mg/L	i06.2mg/l,	73.2mg/L

Silver			<u> </u>	· · · · ·		
Free Available Chlorine mg/L	STANDARD FO	R PUBLIC-	ALERT FACILITY	PRIME BEEF		
Phonride		thlorine mg/I				
Dil						
Coliform Racteria C4/100ml C1/100ml						
Arsenic 0.05mg/L <10µg/L <10µg/L <500µg/L <500µg/L <600µg/L <						
Harium			····	<10ug/L		
Cadmium 0.01mg/L <10ug/L						
Chromitim 0.05mg/L <50µg/L <10µg/L <20µg/L <						
Cough						
Mercury 0.002mg/L (2µg/L (2µg/L (2µg/L (0.1mg/L (0.02mg/L (0.02µg/L (0.02µg/L (0.02µg/L (0.02µg/L (0.02µg/L (0.02µg/L (0.01µg/L (0.01µg/L (0.01µg/L (0.01µg/L (0.01µg/L (0.01µg/L (0.01µg/L (0.00µg/L (0						
Nitrate (N) 10.0mg/L	[
Scientium 0.01mg/L <10ug/L <						
Silver	Scienium				<u> </u>	
Endrin 0.0002mg/L						
Lincipine 0.004mg/L	Endrin					
Methoxychlor 0.1 mg/L <0.20μg/L <0.20μg/L <0.20μg/L Toxaphene 0.005 mg/L <1.0μg/L	Lindone		<0.01µg/L			
Toxaphene 0.005mg/L <1.0µg/L <1.0µg/L <1.0µg/L <2.4-D	Methoxychlor	0.1mg/L		<0.20µg/L		
2. 4-D 0.1 mg/L	<u> </u>	0.005mg/L	<1.0µg/L	<1.0µg/L		
N/A	2. 4~D	0.1mg/L	<0.06µg/L	<0.06µg/L		
N/A N/A	2. 4, 5,-TP	0.01 mg/L	<0.06µg/L	<0.06µg/L		
Turbidity		U.I thanes mg/L	N/A	N/A		
Cross Alpha 15pCi/L 4 ± 2pCi/L ClpCi/L	Turbidity		1 TU	8 TU		
Chloride 250mg/L 259mg/L 48mg/L Color 15 color units 10 units 5 units Copper 1mg/L 47µg/L <20µg/L Corrosivity None -0.1LI # Foaming Agents 0.5mg/L <0.1mg/L # Iron 0.3mg/L 0.62mg/L 0.449mg/L Manganese 0.05mg/L <50µg/L <50µg/L Odor #3 Threshold Odor None None Sulfate 250mg/L 36mg/L 5mg/L TDS 500mg/L 879mg/L 304mg/L Zinc 5mg/L <50µg/L 77µg/L	Radium 226 & 22	8 5pCi/L	<5pCi/L	<5pCi/L		
Color 15 color units 10 units 5 units Copper 1mg/L 47µg/L <20µg/L Corrosivity None -0.1LI # Foaming Agents 0.5mg/L <0.1mg/L # Iron 0.3mg/L 0.62mg/L 0.449mg/L Manganese 0.05mg/L <50µg/L <50µg/L Odor #3 Threshold Odor None None Sulfate 250mg/L 36mg/L 5mg/L TDS 500mg/L 879mg/L 304mg/L Zinc 5mg/L <50µg/L 77µg/L	Gross Alpha	15pCi/L	4 ± 2pCi/L	<1pCi/L		
Copper 1 mg/L 47 µg/L <20 µg/L Corrosivity None -0.1 LI # Foaming Agents 0.5 mg/L <0.1 mg/L	Chloride	250mg/L	259mg/L	48mg/L		
Corrosivity None -0.1Li #	Color 1	5 color units	10 units	5 units		
Foaming Agents 0.5mg/L <0.1mg/L #	Copper	1mg/L	47µg/L	<20μg/L		
100	Corrosivity	None	-0.1LI	*		
Manganese 0.05mg/L <50µg/L <50µg/L Odor #3 Threshold Odor None None Sulfate 250mg/L 36mg/L 5mg/L TDS 500mg/L 879mg/L 304mg/L Zinc 5mg/L <50µg/L	Foaming Agents	0.5mg/L	<0.1 mg/L			
Odor #3 Threshold Odor None None Sulfate 250mg/L 36mg/L 5mg/L TDS 500mg/L 879mg/L 304mg/L Zinc 5mg/L <50μg/L	lron	0.3mg/L	0.62mg/L	0.449mg/L		
Sulfate 250mg/L 36mg/L 5mg/L TDS 500mg/L 879mg/L 304mg/L Zinc 5mg/L <50µg/L 77µg/L	Manganese	0.05mg/L	<50µg/L	<50µg/L		
TDS 500 mg/L 879 mg/L 304 mg/L Zinc 5 mg/L <50 μg/L 77 μg/L	Odor #3 Th	reshold Odor	None	None		
Zinc 5mg/L <50μg/L 77μg/L	Sulfate	250mg/L	36mg/L	5mg/L		
	TDS	500mg/L	879mg/L	304mg/L		
Sodium 160mg/L 221mg/L 37mg/L	Zine	5mg/L	<50µg/L	77µg/L		
	Sodium	160mg/L	221 mg/L	37mg/L		

[#]Pump broken at this time; unable to collect samples. 9 December 1983

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX C
SCOPE OF WORK AS OUTLINED BY OFHL

INSTALLATION RESTORATION PROGRAM PHASE II - QUANTIFICATION (STAGE 2) TYNDALL AFB, FLORIDA

I. DESCRIPTION OF WORK

The overall objective of the Phase II investigation is to define the magnitude, extent, direction and rate of movement of identified contaminants. A series of staged field investigations may be required to meet this objective. The contractor shall recommend any additional investigations required beyond this stage (Stage 2), including an estimate of costs.

The purpose of this task is to undertake a field investigation at Tyndall AFB FL (1) to determine the magnitude of contamination and the potential for migration of contaminants in the various environmental media; and (2) to identify potential environmental consequences and health risks of migrating pollutants based on State or Federal standards for those contaminants.

The Phase I and Phase II Stage 1 IRP Reports (mailed under separate cover) incorporated the background, description and previous work for the sites in this task, 'except Zone 11, a new site). To accomplish this survey effort, the contractor shall take the following actions:

A. General

- 1. Well and Boring Installation
- a. All groundwater monitoring wells shall be in accordance with the U.S. EPA Publication 330/9-S1-002, NEIC Manual for Groundwater/Subsurface Investigations at Hazardous Waste Sites for monitoring well installation.
- b. All drilling, development, purging, sampling and analytical methods must conform to State requirements. The contractor shall notify the state regulatory personnel as to the start date of field operations (drilling and sampling). This notification must be made as far in advance as possible.
- c. Wells shall be of sufficient depth to collect samples representative of aquifer quality and to intercept contaminants if they are present. Wells drilled to intercept floating contaminants shall be screened approximately two feet above the groundwater elevation, where possible.
- d. Wells shall be installed upgradient and/or downgradient of sites, as addressed in Item IB. If groundwater gradients are not clearly known at any site, sufficient 2 inch piezometers shall be used to determine the gradient, before monitoring wells are emplaced.
- e. The contractor shall monitor all drilling operations with an OVA or similar instrument to identify potential generation of hazardous and or toxic materials. In addition, the contractor shall monitor drill cuttings for discoloration and odor. During drilling operations, if soil cuttings are suspected to be hazardous (based on OVA measurements, odors, or discoloration), the contractor shall place them in new, contractor-supplied containers and test

them as specified in IA1g. All investigation-derived hazardous wastes, including any contaminated well development/purging water, shall be containerized for disposal by Tyndall AFB personnel. Results of this monitoring shall be included in the drilling logs.

- $\ensuremath{\text{f.}}$ Monitoring wells shall be installed using the following specifications:
- (1) All new wells and borings shall be drilled using appropriate techniques. The contractor's on-site geologist shall select the drilling technique based on local geology and shall prepare drilling logs for all wells installed. Hollow-stem auger shall be used where applicable.
- (2) Each well shall be constructed of 4-inch diameter Schedule 40 PVC casing except where otherwise specified. Each well shall be provided with a minimum of 10 feet of Schedule 40 mill slot screen the same diameter as the casing. Screens shall be installed to intercept the groundwater surface, with approximately two feet of screen above the water level where possible. Flush-joint threaded fittings shall be used exclusively (no glued fittings). Screens shall be capped at the bottom. The exact length of screen and slot size of screen shall be determined by the contractor's onsite geologist.
- (3) Each well shall be sand packed with 8-12 mesh silica from the bottom of the well to the top of the screen. A bentonite seal, 1 foot minimum, shall be emplaced above the sand pack. Type I Portland cement grout shall be emplaced from the top of the bentonite to the ground surface.
- (4) The well casing shall be cut off to provide a two- to three-foot stick-up, and a solid cap installed on the casing. A steel guard pipe four feet long shall be placed over the exposed casing and seated in the cement. A locking lid with lock shall be installed on the guard pipe. Steel guard posts, three-inch diameter and six feet long, shall be installed at three points around the well head. Casings shall be provided with vent/drain holes. A concrete pad shall be placed around each well and shall be sloped to drain away from the casing.
- (5) Each well installed in a traffic area or any other area specified by the Tyndall AFB Point of Contact (POC) shall be installed with a flush completion. The PVC casing must be out off below ground surface, a locking cap with lock provided, and a flat cover installed over the well head. No guard posts shall be installed around flush-completion wells.
- (6) Each well shall be developed as soon as practical after completion by airlift, pumping, or bailing until the discharge water is clear and free of sediment to the fullest extent possible.
- (7) The drilling rig and tools shall neceive thorough initial cleaning and be decontaminated after each borehole. As a minimum, drill bits shall be steam cleaned, washed with clean water, and allowed to dry after each borehole is installed. Drilling shall proceed from the "least" to the "most" contaminated areas, if possible.

- g. All cuttings shall be removed and the general area cleaned following the completion of each well and boring. Only those drill cuttings suspected as being a hazardous waste (based on discoloration, odor, or organic vapor detection instrument) shall be properly containerized (according to local civil engineering office requirements) by the contractor for eventual government disposal. The suspected hazardous waste shall be tested by the contractor for EP Toxicity. A maximum of ten EP Toxicity tests shall be performed. The contractor is not responsible for ultimate disposal of the drill cuttings. Disposal will be conducted by base personnel.
- h. All wells shall be surveyed after installation is complete. Elevations shall be determined to the nearest 0.01 foot by surveying from the nearest USCGS or USGS benchmark. Horizontal location shall be determined to an accuracy of 1.0 foot. This information shall be recorded on the site maps.
- i. Any borehole not completed as a monitoring well shall be abandoned by grouting from bottom to top with bentonite-cement grout. The contractor shall also evaluate all monitoring wells installed in IRP Phase II Stage 1 at Tyndall AFB and recommend the well abandonment technique to be used as each well is abandoned in the future. The abandonment of completed monitoring wells is not a part of this study.
- j. The contractor shall install a maximum of 17 wells. Total footage shall not exceed 300 linear feet (including screens).
- k. The exact location and number of monitor wells for each site shall be determined in the field by the contractor in consultation with the USAFOEHL and Tyndall AFB POCs. The approximate locations and recommended number of wells for sites under investigation are given in the site specific sections of the task.
- 2. Sampling, analysis and data collection shall be conducted as follows:
- a. Water levels shall be measured at all monitoring wells as feet below the ground surface or below the top of casing elevation to the nearest 0.01 feet. Report in terms of mean sea level. Measure static water levels in wells prior to sampling at time of well development.
- b. Wells shall be purged prior to sampling. Purging will be complete when three well volumes of water have been displaced or when the pH, temperature, specific conductance, color, and odor of the discharge are noted to stabilize. Conduct purging operations using a submersible pump where possible. Conduct all sampling using a PH baller. Any deviation from these procedures must be reported and explained in the monthly, draft and final reports.
- c. Soil samples shall be obtained from hollow-stem incling operations through the use of split-spoon samplers. Samples shall be collected every five feet for visual classification.

- d. Surface water/sediment samples are specified at several sites. One surface water sample and one sediment sample shall be obtained at each sample location specified. Samples shall be obtained so as to not cause cross-contamination; obtain downstream samples first, and obtain the water sample at each location before the sediment sample.
- e. All sampling equipment, including components of sampling interface, shall be decontaminated prior to use, between samples, and between sampling locations to avoid cross-contamination. Sampling equipment and interface shall be thoroughly washed with a laboratory-grade detergent followed by clean water, solvent (methanol) and distilled water rinses. Sufficient time shall be allowed for the solvent to evaporate and the equipment to dry completely. The monofilament line or steel wire used to lower bailers into the well shall be dedicated to each well or discarded after each use. The calibrated water level indicator for measuring well volume and fluid elevation must be decontaminated before use in each well.
- f. Locations where surface water or sediment samples are taken, or where soil exploratory borings are drilled shall be marked with a permanent marker, and the location marked on a project map of the site.
- g. All water samples collected shall be analyzed on site by the contractor for pH, temperature, and specific conductance. Sampling, maximum holding time, and preservation of samples shall strictly comply with the following references: Standard Methods for the Examination of Water and Wastewater, 15th Ed. (1980), pp. 35-42; ASTM, Section 11, Water and Environmental Technology; Methods for Organic Chemical Analysis of Municipal Waters and Wastes, EPA Manual 600/4-82-057; and Methods for Chemical Analysis of Waters and Wastes, EPA Manual 600/4-79-020, pp. xiii to xix (1983). All chemical analyses (water and solid) shall meet the required limits of detection for the applicable EPA method identified in Attachment 1. Summarize sampling methods used, detection levels, and holding times in a table included in the Appendix of the draft and final reports.
- h. The contractor shall split all water and soil samples. One set of samples shall be analyzed by the contractor and the other set of samples shall be delivered immediately (the same collection day) to the Tyndall AFB POC. The Tyndall POC will select 10% of the split samples for subsequent snipment and analysis and deliver them to the contractor within 24 hours of receipt. The contractor shall supply all packing and snipping materials for the Tyndall POC's use in packaging the split samples. The contractor shall accept from the Tyndall POC the packaged samples for immediate snipment (within 24 hours) through overnight delivery to:

USAFOEHL/SA Bldg 140 Brocks AFB TX 78237-5501

The samples sent to the USAFCEHL/SA shall be accompanied by the following information:

- (1) Purpose of sample (analyte)
- (2) Installation name (base)
- (3) Sample number (on containers)
- (4) Source/location of sample
- (5) Contract task numbers and title of project
- (6) Method of collection (bailer, suction pump, air-lift pump, etc.)
 - (7) Volumes removed before sample taken
- (8) Special conditions (use of surrogate standard, special nonstandard preservations, etc.)

(9) Preservatives used

Forward this information with each sample by properly completing an AF Form 2752 (copy of form and instruction on proper completion mailed under separate cover). In addition, copies of field logs documenting sample collection should accompany the samples.

Maintain chain-of-custody records for all samples, field blanks, and quality control duplicates.

- i. The contractor shall collect and analyze an additional 10% of all samples, for each parameter, for field quality control purposes, as indicated in Attachment 1. Include internal quality control data (lab blanks, lab spikes, and lab duplicates) in the report, as well as field quality control data.
- j. For those methods which employ gas chromatography (GC) as the analytical technique (i.e., E601, E602, E608, SW8010, SW8020, etc.), positive identification is required for all analytes having concentrations higher than the Method Detection Limit (MDL); confirm positive concentrations by second-column GC. Analytes which cannot be confirmed shall be reported as "Not Detected" in the body of the report. Include the results of all second-column GC confirmational analyses in the report appendix along with other naw analytical data.

Base the quantification of confirmed analytes upon first-column analysis. The maximum number of second-column confirmational analyses shall not exceed fifty percent 50% of actual number of field samples include field QA/QC samples. The total number of samples for each GC method listed in Attachment 1 includes this allowance.

K. All naw data including QA/QC data and standards shall be anonived at the prime contractor's laboratory for a period of not less than five years. Upon request, these data shall be supplied to the USAFOEHL.

3. Health and Safety

The contractor shall comply with USAF, OSHA, EPA, State and local health and safety regulations regarding the proposed work effort. Use EPA guidelines for designating the appropriate levels of protection at study sites. Prepare a written Health and Safety Plan for the proposed work effort and coordinate it directly with applicable regulatory agencies. Provide an information copy of the Health and Safety Plan to the USAFOEHL prior to commencing field operations (i.e., drilling and sampling).

- B. In addition to items delineated in A above, conduct the following specific actions at sites specified on Tyndall AFB:
 - 1. Zone 2 (Lynn Haven DFSP)
- a. Install two monitoring wells, each approximately 15 feet deep, to replace previously installed wells LH-2-6 and LH 2-5.
- b. Collect one surface water/sediment sample from the drainage ditch below the oil/water separator.
- c. Collect one groundwater sample from each of the five existing and two new monitoring wells at the Zone.
- d. Analyze each sample collected (seven groundwater and one surface water/sediment) for purgeable organics, petroleum hydrocarbons and lead.
 - 2. Zone 5 (Small Arms Repair Area)
- a. Collect one groundwater sample from each of the three existing monitoring wells at the Zone.
- b. Analyze each sample collected for purgeable organics, acid extractable organics, and priority pollutant metals scan.
 - 3. Zone 6 (Highway 98 Fire Training Area)
- a. Install one upgradient monitoring well near the entrance to the site. Install one downgradient monitoring well, approximately 400 feet east of existing well T6-2. Each well shall be approximately 10 feet deep.
- b. Obtain one groundwater sample from each well at the line, the three existing wells plus the two new wells. Analyze each sample if we total for purgeable organics, acid extractable organics, petholeum hydrocandins and lead.
 - -. Zone 7 Southeast Runway Extension Burnal Site
- a. Collect one groundwater sample from each of the three existing monitoring wells at the Zone. Collect one water sample from base well No. 11 at the Alert Facility.

2. Analyze each sample collected (4 total) for purgeable organics, base/neutral and acid extractable organics, and priority pollutants metals scan.

5. Dne 8 ("6000" Area Landfill)

- L Conduct a geophysical survey in the Zone, utilizing magnetometer techniques to define the extent of the landfill. Conduct a second geophysical survey using bulk ground conductivity techniques to attempt to define any lachate plume.
- t. Based upon the results of the geophysical surveys, install one upgradient and one downgradient monitoring well at the Zone. Each well shall be approximately 15 feet deep.
- c. Collect one groundwater sample from each well at the Zone, well T8-1 (existing) and the two new wells. Analyze each sample collected (three total) for prograble organics, base/neutral and acid extractable organics, and priority pollutant metals scan.

6. Done 9 (POL Area B)

-

*

- a. Install one upgradient monitoring well, approximately 200 feet southwest of Tank 514. Install one downgradient monitoring well on the south side of Florita Avenue near the facility entrance. Each well shall be approximately 20 feet deep.
- t. Collect one groundwater sample from each well at the Zone, wells 9-1 and 9-2 (existing) and the two new wells. Analyze each sample [four total] for purgeable organics, EDB, petroleum hydrocarbons and lead.

7. Zone 10 (Shellbank Fire Training Area)

- a. Install one groundwater monitoring well upgradient of the site and two wells cowngradient (between the site and Shoal Point Bayou . Each well shall be approximately 15 feet deep.
- b. Collect one groundwater sample from each well at the Zone 'three total' and analyze for purgeable organics, acid extractable organics, petroleum hydrocarbons and lead.

8. Zone 3 (POL Area A)

- a. Install one upgradient groundwater monitoring well outsite the facility fence to the west of the storage tanks. Install two downgradient monitoring wells within the fenced area between the tanks and Shoal Point Bayou. Each well shall be approximately 15 feet deep.
- t. Collect one groundwater sample from each well at the Zone, the four existing wells and the three new wells. Analyze each sample (seven total for purgeable organics, EDB, petroleum hydrocarbons and lead.

9. Zone 11 (Active Fire Training Area)

- a. Install one upgradient monitoring well and two downgradient monitoring wells at the Zone. Each well shall be approximately 15 feet deep.
- b. Emplace three soil borings in areas of visible soil contamination. Each boring shall be approximately 10 feet deep with split-spoon samples collected at 5-foot intervals. Select one soil sample per boring for analysis as specified below.
- c. Collect two sets of surface water/sediment samples, one upstream of the oil/water separator and one at the effluent point.
- d. Collect one groundwater sample from each monitoring well at the Zone.
- e. Analyze each sample specified above (three soil, two surface water/sediment and three groundwater) for purgeable organics, acid extractable organics, petroleum hydrocarbons and lead.

C. Data Review

- 1. Tabulate field and analytical laboratory results, including field and laboratory parameters and QA/QC data, and incorporate them into the monthly R&D Status Reports. Forward them to the USAFOEHL for review as soon as they become available as specified in Item VI below. Field and laboratory parameters shall include times and dates of sample collection, extraction and analysis.
- 2. Upon completion of all analyses, tabulate and incomporate all results into an Informal Technical Information Report (Atch 1, Seq 3 as specified in Item VI below) and forward the report to USAFCEHL for review.
- 3. Data/results, generated throughout this undertaking, indicating a possibility of health risk (for example, contaminated drinking water aquifer) shall be reported immediately via telephone to the USAFOEHL program manager. Follow the telephone notification with a written notice and lab raw data (e.g. chromatograms, etc.) within three days.

D. Reporting

- 1. Technical Field Operations Plan: The contractor shall develop a Technical Field Operations Plan based upon the technical requirements for the proposed work effort. This plan shall be explicit with regards to field procedures. Include, but do not limit the plan to, field decontamination operations, sampling protocol, QA/QC field and laboratory procedures, field schedule, etc. A guideline for the plan is provided under separate cover. The plan shall be submitted before field operations begin, but no later than three weeks after date of contract award. Ten copies of the plan shall be submitted, as specified in Sequence 20, Item VI.
- 2. A draft report delineating all findings of this field investigation shall be prepared and forwarded to the USAFOEHL (as specified in Sequence 4,

Item VI below) for Air Force review and comment. This report shall include a discussion of the regional/site specific hydrogeology, well and boring logs, data from water level surveys, geophysical surveys, groundwater surface and gradient maps, water quality, sediment and soil analysis results, available geohydrologic cross sections, and laboratory and field quality assurance/quality control information. The report shall follow the USAFOEHL supplied format (mailed under separate cover). The format is an integral part of this delivery order.

- 3. Results, conclusions and recommendations concerning the sites listed in this task which were produced in the technical report(s) of the previous staged work of IRP Phase II (mailed under separate cover), shall be used in the data reduction to plot any trends and arrive at the conclusions and recommendations of this effort's technical report (Sequence 4, Item VI below). The technical report of this effort shall be accomplished so that the report will reflect the combined up-to-date trend of each of the IRP Phase II sites listed herein.
- 4. The results section of the report shall include water, sediment and soil analyses results, field quality control sample data, internal laboratory control data (lab blanks, lab spikes, and lab duplicates), and laboratory quality assurance procedures. Provide second column confirmation results and include which columns were used, the conditions, and retention times. Summarize the specific collection techniques, analytical method, holding time, and limit of detection for each analyte (Standard Methods, EPA, etc.).
- 5. The recommendation section shall address each site and list sites by categories. Category I shall consist of sites where no further action (including remedial action) is required. Data for these sites are considered sufficient to rule out significant public health or environmental hazards. Category II sites are those requiring additional monitoring or work to quantify or further assess the extent of current or future contamination. Category III sites are sites that will require remedial actions (ready for IRP Phase III or IV actions). Recommendations for Category III sites shall include any possible influence on sites in Categories I and/or II due to their connection to the same hydrological system. Any dependency between sites in different categories shall be clearly stated. The contractor shall include a list of candidate remedial action alternatives including Long Term Monitoring (LTM) as remedial action and corresponding rationale, that, as a minimum, should be considered in selecting the remedial action for a given site. The list shall encompass alternatives that could potentially attain applicable environmental standards. For dontaminants that do not have standards, the contractor may use EPA recommended safe levels for noncarcinogens (Health Advisory or Suggested-No-Adverse-Response Levels). If not specifically requested, comprehensive cost or technical analyses of alternatives shall not be included. However, in those situations where field survey data indicate immediate connective action is necessary, the contractor shall present specific, detailed recommendations. For each category above, the contractor shall summarize the results of field data, environmental or regulatory criteria, or other pertinent information supporting conclusions and recommendations.

6. For those sites in need of additional Phase II effort, identify specific requirements for future monitoring needed to determine the magnitude, extent, and rate and direction of movement of detected contaminants. Identify potential environmental consequences of discovered contamination, where known. Provide estimates of costs by line items for any additional investigation beyond this stage along with estimates of time required to accomplish the investigation. Only the cost requirement of Sequence No 2 need be submitted as requested in paragraph VI below.

E. Meetings

The contractor's project leader shall attend two meetings to take place at times to be specified by the USAFOEHL. The meetings shall take place at Tyndall AFB for a duration of one day each.

II. SITE LOCATION AND DATES

Tyndall AFB FL Date to be established

III. BASE SUPPORT

- A. The Base Point of Contact (POC) will receive from the contractor the split samples and then select 10% of them, package them, and then deliver them back to the contractor within 24 hours for subsequent overnight shipment to USAFOEHL as stated in paragraph IA2h.
- B. Base personnel will assign the disposal points within the installation of all hazardous and nonhazardous drill cuttings, contaminated groundwater, and contaminated sampling equipment.
 - C. Base personnel will designate an equipment staging area.
 - D. Base personnel will mark underground utilities where required.
 - Base personnel will designate an equipment decontamination area.
- F. The base will provide space for trailer with access to telephone and electrical service.
- IV. GOVERNMENT FURNISHED PROPERTY: None
- V. GOVERNMENT POINTS OF CONTACT
 - USAFOEHL Monitor Dee Ann Sanders USAFOEHL/TS Brooks AFB TX 78235-5501 AV 240-2158 (512) 536-2158
 - 3. MAJCOM Monitor
 Col Jerry Dougherty
 Hq TAC/SGPB
 Langley AFE VA 23665-5001
 AV 432~3322

(854) 764-3322

2. Base Moniton
15t William Shelton
USAF Hosp Tyndall/SGPB
Tyndall AFB FL 32+03-5300
AV 970-4474
(904, 253-4474

Extractables - EPA Methods 625 and 8270

Base/Neutral Extractables

Acenaphthene Acenaphthylene Anthracene Aldrin Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Benzo(ghi)perylene Benzyl butyl phthalate b-BHC w-BHC Bis(2-chloroethyl)ether Bis(2-chloroethoxy)methane Bis(2-ethylhexyl)phthalate Bis(2-chloroisopropyl)ether 4-Bromophenyl phenyl ether Chlordane 2-Chloronaphthalene 4-Chlorophenyl phenyl ether Chrysene 4.4'-DDD 4.4'-DDE 4.41-DDT Dibenzo(a,h)anthracene Di-n-butylphthalate 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine Dieldrin Diethyl phthalate Dimethyl phthalate 2.4-Dinitrotoluene 2,6-Dinitrotoluene Di-n-octylphthalate Endosulfan sulfate Endrin aldehyde Fluoranthene Fluorene Heptachlor Heptachlor epoxide Hexachlorobenzene Hexachlorobutadiene Hexachloroethane Indeno(1,2,3-cd)pyrene Isophorone

Naphthalene
Nitrobenzene
N-Nitrosodi-n-propylamine
PCB-1016
PCB-1221
PCB-1232
PCB-1242
PCB-1248
PCB-1254
PCB-1260
Phenanthrene
Pyrene
Toxaphene
1,2,4-Trichlorobenzene

Acid Extractables

4-Chloro-3-methylphenol
2-Chlorophenol
2,4-Dichlorophenol
2,4-Dimethylphenol
2,4-Dinitrophenol
2-Methyl-4,6-dinitrophenol
2-Nitrophenol
4-Nitrophenol
Pentachlorophenol
Phenol
2,4,6-Trichlorophenol

Purgeable Organic Compounds - EPA Methods 601-602, 8010-8020, and 8240.

Benzene Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane 2-Chloroethylvinyl ether Chloroform Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1.1-Dichloroethene

trans-1,2-Dichloroethene 1,2-Dichloropropane cis-1.3-Dichloropropene trans-1,3-Dichloropropene Ethyl benzene Methylene chloride 1.1.2.2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene (TCE) Trichlorofluoromethane Vinyl chloride ortho, meta and para xylene (8020 only)

Acid Extractables (E604)

4-Chloro-3-methylphenol
2-Chlorophenol
2,4-Dichlorophenol
2,4-Dimethylphenol
2,4-Dinitrophenol
2-Methyl-4,6-dinitrophenol
2-Nitrophenol
4-Nitrophenol
Pentachlorophenol
Phenol
2,4,6-Trichlorophenol

 f_{Metals} scan in water shall consist of an ICP scan for priority pollutant and other metals using E200.7 as follows:

Element	Estimated Detection Limit, mg/£
Aluminum	0.050
Arsenic	0.060
Antimony	0.035
Barium	0.002
Beryllium	0.001
Boron	0.010
Cadmium	0.008
Calcium	0.045
Chromium	0.001
Cobalt	0.006
Copper	0.001
Iron	0.008
Lead	0.050
Magnesium	0.035
Manganese	0.002
Molybdenum	0.008
Nickel	0.010
Potassium	0.050
Selenium	0.090
Silica (SiO2)	0.060
Silver	0.007
Sodiuma	0.030
Thallium	0.10
Vanadium:	0.008
Zinc	0.003

plus method E245.1 for mercury, with a detection limit of 0.0002 mg/l. Report all results as mg/l.

 8 EP Toxicity in soil (contaminated drill cuttings) shall be determined using procedures specified in SW-846, Test Methods for Evaluating Solid Wastes, 2nd Ed.

 $^{^{\}rm D}$ Total number of samples includes second-column confirmation on 50% of field samples (to include the field QC samples).

^aMethod references are as follows:

"E" Methods:

E100 through E500 Methods

(Water Only)

Methods for Chemical Analysis of Water and Wastes,

EPA Manual 600/4-79-020 (USEPA, 1983)

E600 Series Methods

Methods for Organic Chemical Analysis of Municipal and

Industrial Wastewater

USEPA

Federal Register, Vol 49, No 209, 26 Cct 1984

E200.7 Method

Inductively Coupled Plasma-Atomic Emission Spectrometer Method for Trace Element Analysis of Water and Wastes

USEPA

Federal Register, Vol 49, No 209, 26 Oct 1984

"SW" Methods: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 2nd Edition (USEPA, 1984)

bPurgeable aromatic compounds shall be analyzed using method SW8020 at Zones 3 and 9 (fuel spill areas), so that xylene can be included among the analytes. All other analyses for purgeable aromatics shall be by method E602.

CDetection limits for all parameters analyzed by GC shall be as stated in the respective methods. Report results for organics in water as ug/1; in soil as mg/kg. Positive identification is required for all analytes having concentrations higher than the method detection limit; confirm positive concentrations by second-column GC. Analytes which cannot be confirmed shall be reported as "Not Detected" in the body of the report. Include the results of both first and second-column data in the appendix of the report. Base the quantification of confirmed analytes upon the first-column analysis.

dDetection limits for all parameters analyzed by GC/MS shall be as stated in the respective methods. Report results for organics in water as ug/2; in soil as mg/kg.

Report results for metals in water as mg/l; in soil as mg/kg. Report no more than two significant figures for any metals concentration.

ANALYTICAL METHODS, DETECTION LIMITS, AND NUMBER OF SAMPLES

WATER

PARAMETER	METHOD ^a	DETECTION LIMIT	NO. SAMPLES	QA	TOTAL SAMPLES
Purgeable Organic Compounds	≅ E601 602	c	31	3	51 h
	E601 SW5030/ SW8020 ⁵ —	c	11	1	18 ^h
Base/Neutral and Acid Extractable Organic Compounds	E625	đ	7	1	8
1,2-Dibromoethane (EDB)	E502.1	С	11	1	18 ^h
Acid Extractable Organics	E504	е	16	2	27 ⁿ
Petroleum Hydrocarbons	E418.1	100µg/l	32	3	3 5
Lead	E239.2	0.005 mg/l ^e	32	3	35
Priority Pollutant Metal Scan	E200.7 E245.1	£	10	1	11

SOILS

PARAMETER	METHOD ^a	DETECTION LIMIT	NC. SAMPLES	ÇA	TOTAL SAMPLES
Purgeable Organic Compounds	SW5030/ SW8240	đ	6	1	7
Petroleum Hydrocarbons	SW3550/ E418.1	130mg/kg	6	•	7
Lead (Pb,	SW3050/ SW7420	53mg/kg ^e	ó	:	7
EP Toxicity	SW-346	ē	:3	1	• •

Attachment 1

VI. In addition to sequence numbers 1, 5, and 11 in Attachment 1 to the contract, which are applicable to all orders, the sequence numbers listed below are applicable to this order. Also shown are data applicable to this order.

Seg	uence No.	Para No.	Block 10	Block 11	Block 12	Block 13	Block 14
20	(TOP)	ID	OTIME	86 JUN 30	86 JUL 1		10
7	(Health & Safety)	IA3	OTIME	86 JUN 30	86 JUL 1		3
3	(Prelim Data)	IC2	OTIME	# *	**		3
2	(Cost)	ID6	OTIME	87JAN:)9	870CT09		3
4	(Tech Report)	ID	ONE/R	86 DEC09	87 JAN09	87 OCT09	*
14			MONTHLY	86 JUL 9	86 JUL 10	***	3
15			MONTHLY	86 JUL 9	86 JUL 10	***	3

^{*}Two draft reports (25 copies of each) and one final report (50 copies plus the original camera ready copy) are required. Incorporate Air Force comments into the second draft and final reports as specified by the USAFOEHL. Supply the USAFOEHL with a final copy of the first draft, second draft, and final reports for acceptance prior to distribution. Distribute remaining 24 copies of each draft report and 49 copies of the final report as specified by the USAFOEHL.

 $^{^{**}}$ Upon completion of the total analytical effort before submission of the first draft report.

^{***}Submit monthly hereafter.

ANALYSES BY ZONE - TYNDALL AFB WATER

SOLID

ANALYTE	SONE	ZONE	ZONES	ZONE 7	ZONE	ZONE	ZONE	SONE	ZONE	ZONE	ZONE
									:	,	
PURCEABLE ORGANICS (EDUIADUZ)	×	~	٠	- -	<u>~</u>		m		ٽ		
PURGEABLE ORGANICS (E601&SW8020)						ā		7	- <u>-</u> <u></u>		
PURCEABLE ORGANICS (SW8240)						· · · · · · · · · · · · · · · · · · ·					2
BASE/NEUFRAL AND ACID EXTRACT- ABLE ORGANICS (E625)				#	٣						
ACID EXTRACTABLE ORGANICS (E604)		~	ν		***		~				
EDB						=	-	7			
PETROLEUM HYDROCARBONS	x c		2			a	٣	7	ۍ.		5
LEAD	8		2			- - -	~	7			2
PHICHITY POLLUTANT METAL SCAN		~		a	٣						

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX D
QUALITY ASSURANCE PLAN

QUALITY ASSURANCE REPORT
INSTALLATION RESTORATION PROGRAM
PHASE II, STAGE 2
TYNDALL AIR FORCE BASE, FLORIDA

Prepared for:

R. SCHULTZ ESE Project Manager

Prepared by:

W. COULOMBE ESE Project QA Supervisor

ESE. No. 86-378-0700-2140

March 1987

THIS PAGE INTENTIONALLY LEFT BLANK

1.0 INTRODUCTION

This report contains results of QA audits conducted during Phase II,
Stage 2 activities conducted at Tyndall AFB, Florida. A QA supervisor
was assigned to this project from ESE's independent QA Division to
monitor the project from initiation to preparation of the final report.
A simplified description of the distinction between QA and QC at ESE is
as follows:

- QC procedures comprise a portion of the total integrated QA program and are performed routinely by laboratory analysts/field personnel to obtain a prescribed standard of performance (e.g., calibration of instruments), and
- 2. QA procedures include a system of checks to verify the QC by an independent auditor (e.g., audit the calibration procedure).

A summary of the QA activities performed for the project is as follows:

- Pre-sampling system audit;
- 2. Field audit;
- 3. Laboratory systems audit; and
- 4. Data validation of analytical field groups TYNDL1, TYNDL2, TYNDL3, TYNDL4, TYNDL5, TYNDL6, TYNDL7, and TYNDLS.

2.0 QUALITY ASSURANCE AUDITS

A pre-sampling systems audit was performed on Oct. 6, 1986, through a meeting with the project manager, laboratory coordinator, field team leader, and project QA supervisor. The Technical Operations Plan (TOP) was reviewed with these key project members to assure that the procedures described in the manual would be implemented.

A QA field audit was performed on Oct. 16, 1986 by the project QA supervisor. Ground water sampling was observed at the following wells:

Well Designation	Sample No.
T3-4	TYNDL6*4
T8-1	TYNDL5*5
T6-1	TYNDL4*1
T6-2	TYNDL4*2
T6-3	TYNDL4*3

Well development was observed at Well T6-5.

All observed field activities were consistent with TOP and standard ESE practice, with two exceptions:

- The plan states that new monitoring wells will be allowed to equilibrate for no less than 14 days after well development (pg. 4-12). A 5-day minimum equilibration time was actually being used. According to the Site Geologist, the change was approved by the Air Force.
- Field notes were being recorded in pencil during the ground water monitoring. The field team leader was informed that ink was required and the field crew immediately switched to using pen.

A laboratory systems audit was performed Jan. 23, 1987, to determine if the custody procedures from field to laboratory were consistent with the requirements of the TOP. Results of the review indicated acceptable custody documentation procedures. Standard custody procedures include the following activities.

The field team sampler or leader documents the sample fraction collected and time and date of collection onto a chain-of-custody logsheet, which is routed with the samples to the laboratory. The laboratory coordinator or designate checks in the samples and assures that all samples on the logsheet have been received. A QA Supervisor verifies that the chain-of-custody documentation and keypunching of sample site collection dates and times are correctly entered into the computer system.

3.0 QA DATA VALIDATION

QA data validation consists of the following:

- Selection of a portion of the reported values at random and tracing through the raw data to assure that all calculations are free of errors, and the documentation of all raw data is adequate to support the reported values;
- Verifying that all samples were analyzed within contract required holding times;
- 3. Verifying that instruments were properly calibrated;
- 4. Verifying that method blanks, standard matrix spike duplicates, sample matrix spikes, and references are analyzed at the required frequency and meet standard ESE acceptance criteria;
- 5. Verify that the analytical methods employed were consistent with contract requirements.

As part of ESE's standard QC program, the following procedures are followed:

- 1. Samples are analyzed according to contract requirements;
- 2. Each analytical lot contains three standards and one calibration blank and has a correlation coefficient >0.995 except for GC/MS and ICAP analysis, where a one-point standardization is used;
- 3. Each analytical lot contains one control spike and replicate spike per 20 samples and one sample spike per 20 samples except for GC/MS analysis, where surrogate compounds are spiked into all samples, QC samples are analyzed, and a frequency of one control spike and sample spike per 20 samples are analyzed; and
- 4. Data reduction and reporting are free of errors, and reported values are supported by the raw data.

Field QA samples are part of the field sampling effort. Blind duplicate samples were collected at a frequency of 10 percent of all the samples

collected with the same matrix during a field effort. QA procedures employed for field QA samples were to assure that the duplicates were collected at the required frequency and to investigate discrepancies found in sample duplicates.

Tracing through the raw data (Item 1) revealed no calculation errors, and the reported values were adequately supported by the raw data.

Instruments employed in the analyses were properly calibrated (Item 3) in accordance with EPA requirements and the analytical methods employed met contract requirements (Item 5).

Sample holding times (Item 2) were determined and compared to the current maximum holding times specified by EPA (see Table 3-1) (Federal Register, Vol. 49, No. 209, October 26, 1984, revised Vol. 50, No. 3, January 4, 1985). These EPA holding time requirements apply to water samples only; however, ESE uses the time as a goal for analysis of soil samples.

All water samples were analyzed within holding times except the volatile fraction (GC) of sample TYNDL6*8 had to be re-injected due to carry-over from a previous sample (see Table 3-2). The re-injection was performed 2 days after the 14-day holding time. Resampling was not warranted because additional data for this sample is available for sample TYNDL6*5 (a field duplicate) and the second column analysis (see Table 3-3), both run within holding times.

All soil samples were analyzed within the holding time goals except the petroleum hydrocarbon fraction for samples TYNDL7*1,*2 which exceeded the 28-day holding time by 1 day. EPTOX holding times were assessed by applying the water holding times to the leachate. All samples were analyzed within holding times except the herbicide fraction which exceeded the 7-day extraction holding time by 2 days.

Table 3-1. EPA Holding Times for Parameters Analyzed During the Tyndall AFB Phase II Stage 2 Study

Parameter	EPA Holding Times
Hydrocarbons	28 days
Metals except Hg	6 months
Hg	28 days
624 compounds	14 days
601/602 compounds	14 days
625 compounds	7 days to extraction 40 days after extraction
EDB	14 days
608	7 days to extraction 40 days after extraction
Herbicides	7 days to extraction 40 days after extraction

Table 3-2. Holding Times for Tyndall Analytical Data

Sample Number(s)	Parameters(s)	Collection Date	Extraction Date	Analysis Date	No. of Days
TYNDL1*1	hydrocarbons	10/15/86		11/12/86	28
TYNDL1*1	Pb	10/15/86	_	11/25/86	41
TYNDL1*1	SW 8240	10/15/86	_	10/23/86	8
TYNDL1*2,3	hydrocarbons	10/16/86	_	11/12/86	27
TYNDL1*2	Pb	10/16/86		11/25/86	40
TYNDL1*2,3	SW 8240	10/16/86		10/24/86	8
TYNDL1*3	РЪ	10/16/86		01/22/87	98
TYNDL2*1-4,9	601/602	10/14/86		10/21/86	7
TYNDL2*1-4,9	hydrocarbons	10/14/86		10/29/86	15
TYNDL2*1-3,9	Pb	10/14/ 86		11/25/86	42
TYNDL2*4	РЪ	10/14/ 86		10/29/86	15
TYNDL2*5,7,8	601/602	10/22/86		10/29/86	7
TYNDL2*5,7,8	hydrocarbons	10/22/86	_	11/06/86	15
TYNDL2*5,7,8	Pb	10/22/86		11/25/86	34
TYNDL3*1-4	601/602	10/13/86	_	10/22/86	9
TYNDL3*1-4	604	10/13/86	10/15/86	10/20/86	2/7
TYNDL3*1-4	ICAP Batch 34962	10/13/86	_	11/23/86	41
TYNDL3*1-4	ICAP Batch 35477	10/13/86		01/14/87	92
TYNDL3*1-4	Hg	10/13/86	_	10/30/86	17
TYNDL4*14,15	601/602	10/14/86		10/23/86	9
TYNDL4*14,15	604	10/14/86	10/20/86	11/04/86	6/15
TYNDL4*14,15	hydrocarbons	10/14/86		10/28/86	14
TYNDLA*14,15	Pb	10/14/86		11/25/86	42
TYNDLA*1-3	601/602	10/16/86		10/27/86	11
TYNDL4*1-3	604	10/16/86	10/20/86	11/04/86	4/15
TYNDLA*1-3	hydrocarbons	10/16/86		10/29/86	13
TYNOL4*1-3	Pb	10/16/86		11/25/86	40
TYNDL4*7-13	601/602	10/20/86		10/28/86	8
TYNDL4*7-13	604	10/20/86	10/24/86	11/06/86	4/13
TYNDL4*7-13	hydrocarbons	10/20/86		10/24/86	4
TYNDL4*7-13	Pb	10/20/86		11/25/86	36
TYNDL4*4,5	601/602	10/21/86		10/29/86	8
TYNDL4#4,5	604	10/21/86	10/24/86	11/06/86	3/12
TYNDL4*4,5	hydrocarbons	10/21/86		10/26/86	5
TYNDLA*4,5	Pb	10/21/86		11/25/86	35

Table 3-2. Holding Times for Tyndall Analytical Data (Continued, Page 2 of 3)

Sample Number(s)	Parameters(s)	Collection Date	Extraction Date	Analysis Date	No. of Days
TYNDL5#9,2	601/602	10/09/86	_	10/21/86	12
TYNDL5*9,2	625	10/09/86	10/10/ 8 6	11/06/86	1/27
TYNDL5*9,2	ICAP Batch 34962	10/09/86		11/23/86	45
TYNDL5*9,2	Hg	10/09/86	_	11/05/86	27
TYNDL5*9,2	As, Be	10/09/86	_	01/14/87	93
TYNDL5*1,3,4	601/602	10/10/86		10/21/86	11
TYNDL5*1,3,4	625	10/10/86	10/10/86	11/06/86	0/26
TYNDL5*1,3,4	ICAP Batch 34962	10/10/86		11/23/86	44
TYNDL5*1,3,4	Hg	10/10/86		11/05/86	26
TYNDL5*1,3,4	As, Be	10/10/86		01/14/87	96
TYNDL5*5	601/602	10/16/86		10/27/86	11
TYNDL5*5	625	10/16/86	10/21/86	11/10/86	5/20
TYNDL5*5	ICAP	10/16/86		02/23/87	129
IYNDL5*5	Hg	10/16/86		11/12/86	27
TYNDL5*6,8	601/602	10/17/86	_	10/27/86	10
TYNDL5*6,8	625	10/27/86	10/21/86	11/10/86	4/19
TYNDL5*6,8	ICAP	10/17/86		02/23/87	128
TYNDL5*6,8	Hg	10/17/86		11/12/86	26
TYNDL5*7	601/602	10/23/86		11/01/86	9
TYNDL5*7	625	10/23/86	10/27/86	11/09/86	4/1:
CYNDL5*7	ICAP	10/23/86		12/01/86	39
TYNDL5*7	Hg	10/23/86	_	11/19/86	27
TYNDL6*9,10	601/602	10/13/86		10/22/86	
				(neat)	
				10/27/86	
				(diluted)	14
TYNDL6*9	hydrocarbons	10/13/86		10/22/86	9
TYNDL6*10	hydrocarbons	10/13/86		10/30/86	17
TYNDL6*9,10	EDB	10/13/86		10/27/86	14
ryndl6*9,10	Pb	10/13/86	_	11/25/86	43
TYNDL6*1-3	601/602	10/15/ 86	_	10/27/86	12
TYNDL6*1-3	hydrocarbons	10/15/86	_	10/30/86	15
TYN TL 6*1-3	EIDB	10/15/86	_	10/27/86	12
TYNDL6*1,2	Pb	10/15/86		11/25/86	41
CYNDL6*3	Рb	10/15/86	_	12/12/ 86	58
TYNDL6*4	601/602	10/16/ 8 6	-	10/27/ 8 6	11
TYNDL6*4	hydrocarbons	10/16/ 86	·	10/30/86	14
TYNDL6*4	EDB.	10/16/86	_	10/27/86	11
TYNDL6*4	Pb	10/16/86		11/25/86	57
ryndl6*5,6	601/602	10/17/86	_	10/30/86	13
TYNDL6*8	601/602	10/17/86		11/01/86	
				(neat)	15*
				11/02/86	
				(repeat)	16*

Table 3-2. Holding Times for Tyndall Analytical Data (Continued, Page 3 of 3)

Sample Number(s)	Parameters(s)	Collection Date	Extraction Date	Analysis Date	No. of Days
TYNDL6*5,6,8	hydrocarbons	10/17/86		10/30/86	13
TYNDL6*5,6,8	ED8	10/17/86	_	10/27/86	10
TYNDL6*5,6,8	Pb	10/17/86		11/25/86	56
TYNDL6*11,12	601/602	10/21/86		10/29/86	8
TYNDL6*11,12	hydrocarbons	10/21/86	_	11/06/86	16
TYNDL6*11,12	EDB	10/21/86		10/27/86	6
TYNDL6*11,12	Pb	10/21/86		11/25/86	35
TYNDL6*7	601/602	10/23/86		11/01/86	9
TYNDL6*7	hydrocarbons	10/23/86		11/06/86	7
TYNDL6*7	Pb	10/23/86		12/12/86	50
TYNDL7*1-3	hydrocarbons	10/14/86	_	11/12/86	29†
TYNDL7*1-3	Pb	10/14/86		11/25/86	42
TYNDL7*1-3	SW 8240	10/14/86	_	10/22/86	8
		EP TOX Extraction	1		
TYNDLS*1,2	608	10/14/86	10/16/86	10/20/86	2/4
TYNDLS*1,2	herbicides	10/14/86	10/23/86	11/02/86	9/101
TYNDLS*1,2	ICAP	10/14/86		11/24/86	41
TYNDLS*1,2	Hg	10/14/86	_	10/30/86	16
TYNDLS*1,2	Se	10/14/86	_	12/09/86	56
TYNDLS*3	608	10/21/86	10/28/86	11/28/86	7/31
TYNDLS*3	herbicides	10/21/86	10/23/86	11/11/86	2/19
TYNDLS*3	ICAP	10/21/86	· · ·	11/24/86	34
TYNDLS*3	Hg	10/21/86	_	10/30/86	9
TYNDLS*3	Se	10/21/86	_	12/09/86	49
TYNDLS*3	As	10/21/86	_	11/17/86	27
TYNDLS*1.2	As	10/14/86		11/17/86	34

Source: ESE, 1987.

^{*}Exceeds EPA holding time.
†Exceeds ESE imposed holding time goal.

Table 3-3. Holding Times for First and Second Column Gas Chromatograph Data for Tyndall AFB

ample Number	Collection Date	First Column Analysis Date	No. of Days	Second Column Analysis Date	No. of Days
YNDL 2*4	10/14/86	10/21/86	7	10/28/86	14
YNDL 2*7	10/22/86	10/24/86	7	10/30/86	8
YNDL 2*8	10/22/86	10/24/86	7	10/31/86	9
YNDL 2*9	10/14/86	10/21/86	7	10/28/86	14
YNDL 3*3	10/13/86	10/22/86	9	10/27/86	14
YNDL 3*4	10/13/86	10/22/86	9	10/27/86	14
YNDL 4*2	10/16/86	10/27/86	11	10/29/86	13
YNDL 4*3	10/16/86	10/27/86	11	10/29/86	13
YNDL 4*4	10/21/86	10/29/86	8	10/31/86	10
YNDL 4*5	10/21/86	10/29/86	8	10/31/86	10
YNDL 4*8	10/20/86	10/28/86	8	10/31/86	11
YNDL 4*10	10/20/86	10/28/86	8	10/30/86	10
YNDL 4*11	10/20/86	10/28/86	8	10/30/86	10
YNDL 4*13	10/20/86	10/28/86	8	10/30/86	10
YNDL 4*14	10/14/86	10/23/86	9	10/28/86	14
YNDL 4*15	10/14/86	10/23/86	9	10/31/86	17*
YNDL 5*4	10/10/86	10/21/86	11	10/27/86	17*
YNDL 5*5	10/16/86	10/27/86	11	10/29/86	13
YNDL 5*7	10/23/86	11/01/86	9	10/31/86	8
YNDL 5*9	10/09/86	10/21/86	12	10/27/86	18*
YNDL 6*2	10/15/86	10/27/86	12	10/29/86	14
YNDL 6*5	10/17/86	10/30/86	13	10/29/86	12
YNDL 6*6	10/17/86	10/30/86	13	10/29/86	12
YNDL 6*7	10/23/86	11/01/86	9	10/31/86	8
YNDL 6*8	10/17/86	11/02/86	16*	10/29/86	12
YNDL 6*9	10/13/86	10/27/86	14	10/27/86	14
YNDL 6*10	10/13/86	10/27/86	14	10/27/86	14
YNDL 6*11	10/21/86	10/29/86	8	10/31/86	10
YNDL 6*12	10/21/86	10/29/86	8	10/31/86	10

^{*}Exceeds holding time.

Source: ESE, 1987.

Standard matrix (deionized water/standard soil) spikes are used to assess the precision and accuracy of the analytical measurement system (Item 4). ESE's standard acceptance criteria (Table 3-4) were used for each parameter analyzed. All standard matrix spikes were within the criteria. Internal laboratory QC results are included in Appendix Q of this report.

Sample matrix spikes are run to determine if there is a matrix interference. All sample matrix spikes met the acceptance criteria with the following exceptions:

Sample No.	Parameter	Recovery
TYNDL4*1	Lead	133
TYNDL4*4	Lead	131
TYNDL2*9	Petroleum Hydrocarbons	22

The control spikes associated with these samples were acceptable indicating that the analytical system was in control and the recoveries outside the criteria are due to a matrix interference.

Table 3-4. Precision and Accuracy Criteria

Parameter	Method Criteria	
	Precision (Max RPD)	Accuracy (% Recovery)
Soil		
Petroleum Hydrocarbons	20	70 - 125
Lead	20	80 - 120
Volatiles (GCMS)		
Toluene-D(8)		50 - 160
Bromofluorobenzene		50 - 160
l,2-Dichloroethane		50 - 160
Water Volatiles (GC)		
Carbon Tetrachloride	31	55 - 131
1,1-Dichloroethane	30	57 - 121
1,2-Dichloroethane	27	63 - 135
1,1,1-Trichloroethane	32	53 - 125
Ethylbenzene	35	48 - 144
Toluene	29	59 - 135
Xylene	30	56 - 134
Petroleum Hydrocarbons	20	70 - 125
henolic Compounds		
4-Chl'-3-Meth'Phenol	41	39 - 130
2,4-Dinitrophenol	53	28 - 128
Pentachlorophenol	34	48 - 122
Phenol	47	33 - 130

Table 3-4. Precision and Accuracy Criteria (Continued, Page 2 of 2).

Parameter	Method Criteria	
	Precision (Max RPD)	Accuracy (% Recovery)
2-Chlorophenol	34	49 - 130
Pentachlorophenol	34	48 - 122
Metals	20	80 - 120
Base Neutral/Acids (GCMS)		
Nitrobenzene-D(5)	39	41 - 119
2-Fluorobiphenyl	37	44 - 118
Naphthalene-D(8)	50	30 - 120
Phenol-D(5)	80	15 - 103
2-Fluorophenol	67	20 - 140

Notes:

Relative Percent Difference (RPD) =
$$\frac{|R_1 - R_2|}{(R_1 + R_2)} \times 100$$

 R_1 and R_2 = Concentration at Replicate Control Spike 1 and 2, respectively.

90 Recovery = 100 x [(spike sample conc.)(sample + spike vol.) - (sample vol.)(sample conc.)] (spike conc.)(spike volume)

Source: ESE, 1987.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX E
PROJECT SAFETY PLAN

INSTALLATION RESTORATION PROGRAM
PHASE II, STAGE 2
PROJECT SAFETY PLAN
TYNDALL AIR FORCE BASE, FLORIDA

Prepared for:

OCCUPATIONAL AND ENVIRONMENTAL HEALTH LABORATORY Brooks Air Force Base, Texas

Prepared by:

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC.
Gainesville, Florida

ESE No. 86-373

September 1986

THIS PAGE INTENTIONALLY LEFT BLANK

1.0 POLICY AND RESPONSIBILITY

The purpose of this safety plan is to protect individuals and the environment during Installation Restoration Program (IRP) Phase II, Stage 2 site investigative activities at Tyndall Air Force Base (AFB). This plan includes preventive and protective measures against health hazards, fire and explosion hazards, and mechanical hazards which may exist or occur during field and laboratory activities.

It is the policy of the corporate management of Environmental Science and Engineering, Inc. (ESE) that an effective health and safety program be implemented for this project at Tyndall AFB to protect individuals and the environment. Each and every individual at the site must regard and conduct himself as a member of the "safety team" and adhere to the prescribed site safety plan to ensure his own safety as well as that of his fellow workers and the public.

A key element of this plan is the reliance upon the "buddy system" for all site activities at all times. This system requires that all activities at the site be conducted using a minimum of 2-person teams.

Overall responsibility for safety during the site investigative activities rests with the Project Manager. His responsibilities include:

- 1. Preparing an effective site and laboratory safety plan for the project.
- 2. Categorizing the project staff as to the levels of potential exposure to dangerous levels of hazardous materials.
- Assuring that adequate and appropriate safety training and equipment are available for project personnel,
- 4. Arranging for medical examinations for specified project personnel, and
- 5. Designating a Site Safety Supervisor.

The responsibilities of the Site Safety Supervisor include:

- 1. Implementing all safety procedures and operations onsite;
- 2. Updating equipment or procedures based upon new information gathered during the site inspection;
- 3. Upgrading or downgrading the levels of personnel protection based upon site observations (downgrading requires the approval of the Project Manager);
- 4. Determining and posting locations and routes to medical facilities, including poison control centers and arranging emergency transportation to medical facilities (as required);
- 5. Notifying (as required) local public emergency officers (i.e., police and fire department) of the nature of the team's operations, and making emergency telephone numbers available to all team members;
- 6. Assuring that at least one member of the field team is available to stay behind and notify emergency services if the Site Safety Supervisor must enter an area of maximum hazard or only entering this area after he has notified emergency services (police department);
- 7. Observing work party members for symptoms of exposure or stress; and
- 8. Arranging for the availability of emergency medical care and first aid, as necessary onsite.

The Site Safety Supervisor has the ultimate responsibility to stop any operation that threatens the health or safety of the team or surrounding populace or causes significant adverse impact to the environment.

The responsibilities of the Field Team Leader include:

 Assuring and enforcing compliance with the Project Safety Plan,

- Controlling site entry of unauthorized personnel or coordinating with United States Air Force (USAF). authorities to limit site access,
- 3. Coordinating site activities such that they may be performed in an efficient and safe manner consistent with the Project Safety Plan,
- 4. Enforcing the "buddy system" onsite, and
- 5. Assuring the ready access and availability of all safety equipment.

The responsibilities of all personnel onsite include:

- 1. Complying with all aspects of the Project Safety Plan, including strict adherence to the "buddy system;"
- 2. Obeying the orders of the Field Team Leader and the Site Safety Supervisor; and
- 3. Notifying the Field Team Leader or Site Safety Supervisor of hazardous or potentially hazardous incidents or working situations.

2 .O SITE CHARACTERIZATION AND SPECIFIC SAFETY PLAN

Descriptive detail on Tyndall AFB is given in Table 2-1. The various procedures and precautions that will be followed in assuring preservation of health and safety during all site activities are presented in the plan. The recommended safety precautions and procedures presented are based on a thorough evaluation of the literature and an assessment of the potential hazards at the site, including:

- 1. The types of materials present at the site,
- 2. The physical description of the site,
- 3. The routes of potential exposure,
- 4. The anticipated levels of hazardous materials present,
- 5. The acceptable levels of exposure as prescribed by the Occupational Safety and Health Administration (OSHA) and EPA,
- 6. The duration of potential exposure, and
- 7. The mitigation of potential exposure by existing routine laboratory and field safety practices.

Guidance for the determination of the hazard potential of chemical compounds was obtained from the following sources:

Identification and Listing of Hazardous Waste, 40 CFR, Part 261.

Dangerous Properties of Industrial Materials, 5th Ed., N. Irving Sax. 1979.

Threshold Limit Values to Chemical Substances and Physical Agents in the Workroom Environment, ACGIH, 1984.

Table 2-1. Site Safety Plan

General Information

Site: Tyndall AFB

Location: Panama City, Florida

Field Work Tasks: Geographical Survey

Installation of Monitoring Wells

Surveying Well Locations

Surface Water and Sediment Sampling

Ground Water Sampling

Soil Sampling

Work Date (Planned): October 1986

Site Characteristics: Tyndall AFB can be described as a low hazard area. Although expected air concentrations are low, personnel should be careful about skin contact with waters and sediments.

Status: Active Air Force Base

Known Chemical Hazards Onsite: Organics, Heavy Metals, Phenolics

Characteristics of Waste Onsite: States: Liquid and Solid

Hazards: Corrosive, Ignitable, Volatile, Toxic, Unknown

<u>Hazard Evaluation</u>: Level D protection is required unless air monitoring reveals any appreciable air levels of organics during the preliminary survey. Due to the presence of petroleum products, care should be exercised in walking near site areas to prevent injury or contamination. Air monitoring for airborne organics will be conducted on a daily basis during well drilling and sampling activities.

Personal Protective Equipment: Many different job functions are involved in this investigation. Each job presents a special set of circumstances with varying personal protection equipment (PPE) needs. The following narrative describes the specific PPE for each operation.

- 1. Well Drilling
 - a. Hard hats will be worn at all times in the vicinity of the drilling rig.
 - b. Goggles or safety glasses will be worm at all times.
 - c. Safety shoes will be worn in the vicinity of the rig.

Table 2-1. Site Safety Plan (Continued, Page 2 of 4)

- d. Gloves will be worn to protect hands from cables, etc. These gloves should fit tightly to avoid getting caught in machinery.
- e. No loose-fitting clothing or free long hair is permitted near the rig.
- f. Hands will be kept out of the way of moving parts of the machinery when drilling is in progress.
- g. Daily inspection of all ropes, cables, bolts, and moving parts of the rig is mandatory.
- h. A first aid kit and fire extinguisher will be available at all times.
- i. Rubber gloves will be worn during well development to avoid direct contact with contaminated water.
- j. Organic vapor respirators (half-mask, air-purifying type) are to be issued to all personnel participating in drilling operations. These respirators are to be immediately accessible to each person at all well sites.
- k. Fresh cartridges shall be placed in organic vapor masks as needed. The guidelines regarding frequency of change of canisters shall be strictly observed. Cartridges should be changed when odors become noticeable or breathing resistance becomes significant.
- The water supply available for drilling use shall be maintained in a ready state to wash down any personnel receiving significant accidental exposure to gases or vapors emanating from the ground.
- m. One self-contained breathing apparatus (SCBA) unit shall be immediately available for emergency use during well drilling operations in areas of greatest potential contamination.
- n. All crews will consist of at least two persons.
- o. There will be no smoking except in the command post area or inside vehicles. In no case will smoking materials or matches be disposed of onsite except in proper ashtrays.
- p. No drilling will occur during impending electrical storms.
- q. Cotton coveralls or disposable Tyvek® suits or equivalent should be worn at all times during drilling operations.

2. Surface Water and Ground Water Sampling

- a. Surface water and ground water sampling involve the handling of water containing unknown amounts of chemical contaminants. Safety glasses and safety shoes are to be worn at all times.
- b. Organic vapor air-purifying respirators of the half-mask type must be available if needed. Disposable Tyvek®, chemically resistant outer clothes will be worn to minimize body contact with contaminated water.

Table 2-1. Site Safety Plan (Continued, Page 3 of 4)

- c. If strong odors of organics are detected, the respirator should be worn as a precautionary measure.
- d. Impermeable gloves will be worn to prevent skin contact whenever handling the waste samples.
- e. Collectable samples must be closed to the atmosphere as soon as practical to lessen inhalation hazards.
- f. This sampling job requires Level D protection, and more detail is provided in a later section.

3. Soil/Sludge/Sediment Sampling

- a. Soils, sludges, and sediments may be sources of concentrated toxic heavy metals. Care must be taken to prevent skin contact.
- b. Additional precautions are similar to the section on surface water sampling.
- c. All soil, sludge, and sediment sampling requires Level D protection.

WORK SCHEDULE LIMITATIONS

1. All work will be completed in daylight hours only.

Surveillance Equipment and Materials: Explosimeter, photoionization detector, various vapor and gas detector tubes and hand pumps, personal sampling pumps with organic vapor adsorption tubes, Century OVA

Decontamination Procedures:

1. Wash and rinse with approved water source at station located strategically between sites and command post.

Emergency Precautions:

Acute Exposure Symptoms

First Aid

Chemical splash to skin Chemical splash to eyes Unconsciousness--vapor inhalation 10- to 15-minute water flush, evaluate 15-minute water flush, evaluate Remove affected individual to clean area, administer cardiopulmonary resuscitation (CPR), artificial respiration, or oxygen, as necessary, and evaluate.

Table 2-1.	. Site	Safety	Plan	(Continued,	Page	4	of	4)
------------	--------	--------	------	-------------	------	---	----	----

EQUIPMENT CHECKOUT			
SCBA	<u>x</u>	Cylinders	
Air-Purifying Respirator	X	Cartridges	<u>X</u>
Explosimeter Vapor Detector		Eye Wash Kit	
0 ₂ Indicator		First Aid Kit	X
Air Sample Pump and Tubes		Drinking Water Supply	<u> </u>
Radiation Survey Meter	-	Personal Clothing	X
Radiation Contamination Meter		Decontamination Materials	X
Other: Fire Extinguishers, So	ram Em	ergency Escape Unit	<u>X</u> <u>X</u>
Approved by:			
			
			

Source: ESE, 1985.

3.0 CONTINGENCY PLANS

3.1 FIRE CONTROL

Flammable materials are known to be stored at some sites. No smoking will be allowed in these areas. Fire extinguishers (10 #ABC), buckets, and shovels will be available at drilling sites and at the command post for use on small fires. The Site Safety Supervisor will post the telephone number of the nearest fire station and local law enforcement agencies in case of a major fire emergency.

3.2 SPILL CONTROL

The chances of a chemical spill are minimal at this site. In the event a drum ruptures and its contents spill, the Site Safety Supervisor and Field Team Leader will be notified immediately. The important factors are that no personnel are overexposed to vapors, gases, or mists, and that the liquid does not ignite. Waste spillage must not be allowed to contaminate any local water source. Small dikes will be erected to contain spills, if necessary, until proper disposal can be completed. Subsequent to cleanup activities, the Site Safety Supervisor will survey the area to ensure that no toxic or explosive vapors remain.

3.3. ACCIDENTS AND ACCIDENT REPORTING

All accidents must be reported to the Site Safety Supervisor immediately. Prompt reporting is essential to the prevention of future incidents in addition to the well being of the affected individual or individuals. The Site Safety Supervisor will notify the Project Manager of any serious accidents. The Site Safety Supervisor or other key members of the field team will be trained in first aid and cardiopulmonary resuscitation (CPR). First aid will be administered to affected personnel under the direction of the Site Safety Supervisor. For serious accidents, the nearest ambulance service will be contacted for transport of injured personnel to the local hospital. The Site Safety Supervisor will have established contact and liasion with medical authorities at a nearby medical facility whose personnel will be knowledgeable of the activities of the field team. Telephone numbers and addresses of ambulance and medical services will be posted onsite.

4 .0 AIR MONITORING

An air monitoring program is paramount to the well being of onsite and offsite personnel. A preliminary survey will be made prior to the initiation of any site work. This survey will be conducted with a Century Organic Vapor detector, an explosimeter, and a radiation survey meter. Once this survey has been completed, adjustments to the types of personal protective equipment needed may be necessary.

In addition to this preliminary site survey, air monitoring may be continued on at least a daily basis and more often, if onsite conditions proved unstable during the field activities. Well drilling operations will be monitored several times during the drilling activities to assure that the level of personnel protection is adequate. Based on this survey, the level of protection may be upgraded. The Site Safety Supervisor will be present in the vicinity of all hazardous operations to make on-the-spot mesurements as necessary. Long-term personal air monitoring will be performed only if survey instruments show significant (greater than 30 parts per million (ppm) total organic vapor) air levels for sustained periods. This equipment will be available at the site for use. All air monitoring results will be recorded and will become part of the permanent record.

5.0 PERSONAL PROTECTIVE EQUIPMENT LEVELS

- 5.1 PERSONAL PROTECTIVE EQUIPMENT--LEVEL A
 - Open-circuit, pressure-demand, self-contained breathing apparatus (SCBA);
 - Totally encapsulated suit;
 - Gloves, inner (surgical type);
 - 4. Gloves, outer, chemical protective;
 - 5. Boots, chemical protective, steel toe and shank; and
 - 6. Booties, chemical protective.

Criteria

- 1. Sites known to contain hazards which:
 - a. Require the highest level of respiratory protection (as stated above).
 - b. Will cause illness as a result of personal exposure,
 - c. Permit a reasonable determination that personal exposure could occur to any part of the body; or
- 2. Sites for which the Project Manager and/or Site Safety Supervisor make a reasonable determination that, based on the lack of information to the contrary, the site may be described as stated directly above.

5.2 PERSONAL PROTECTIVE EQUIPMENT--LEVEL B

- 1. Open-circuit, pressure-demand SCBA;
- 2. Chemical protective
 - a. Overalls and long-sleeved jacket, or
 - b. Coveralls;
- 3. Gloves, inner (surgical type);
- 4. Gloves, outer, chemical protective;
- 5. Boots, chemical protective, steel toe and shank; and
- 5. Booties, chemical protective.

Criteria

- 1. Sites known to contain hazards which contain the highest level of respiratory protection as stated above and which:
 - a. Will cause illness as a result of personal exposure,
 - b. Permit a reasonable determination that personal exposure could occur to any part of the body not covered by Level 3 protective clothing is unlikely; and
- 2. Sites for which the Project Manager and/or Site Safety Supervisor make a reasonable determination that, based on the lack of information to the contrary, the site may be described as stated directly above.

5.3 PERSONAL PROTECTIVE CLOTHING--LEVEL C

- Full face-piece air purifying respirator;
- Emergency escape oxygen pack (carried);
- 3. Chemical protective
 - a. Overalls and long-sleeved jacket, or
 - b. Coveralls;
- 4. Gloves, inner (surgical type);
- 5. Gloves, outer, chemical protective;
- 6. Boots, chemical protective, steel toe and shank; and
- 7. Booties, chemical protective.

Criteria

- 1. Sites known to contain hazards which:
 - a. Do not require a level of respiratory protection greater than the level afforded by air-purifying respirators (nominal protection of 10) as stated above,
 - b. Will cause illness as a result of personal exposure, or
 - c. Permit a reasonable determination that personal exposure areas of the body not covered by Level C protective clothing is unlikely; and

2. Sites for which the Project Manager and/or Site Safety Supervisor make a reasonable determination that, based on the lack of information to the contrary, the site may be described as stated directly above.

5 .4 PERSONAL PROTECTIVE EQUIPMENT--LEVEL D

- 1. Coveralls, cotton;
- Boots/shoes, safety;
- 3. Safety glasses;
- 4. Hard hat with optional face shield; and
- 5. Air-purifying respirator (readily available).

Criteria

Sites where the Project Manager and/or Site Safety Supervisor make a reasonable determination that hazards due to exposure to hazardous materials are unlikely.

5.5. ADDITIONAL PERSONAL PROTECTION

In addition to personal protective equipment, field personnel having duties on or near the hazard site should have ready access to:

- 1. A fully stocked, industrial-size, first aid kit;
- An eyewash kit;
- 3. At least 3 gallons (gal) of potable water in a pressurized container to permit decontamination in event of accidental skin or eye contact with chemicals;
- 4. Field instrumentation (Geiger counter, oxygen meters, explosion meters, pH meters, photoionization meters, etc.); and
- 5. Litmus paper.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX F

MONITOR WELL BORING LOGS AND CONSTRUCTION DATA

APPENDIX F
MONITOR WELL CONSTRUCTION SUMMARY

Well Designation	Total Length (ft)	Screen Length (ft)	Screened Interval* (ft)	Casing Length† (ft)	Casing Interval* (ft)
LH2-8	21.2	15	-3.5 to -18.5	6.2	+2.2 to -3.5
LH2-9	22.2	15	-3.5 to -18.5	7.2	+3.2 to -3.5
T3-5	21.0	15	-3.0 to -18.0	6.0	+2.5 to -3.0
T3-6	21.0	15	-3.5 to -18.5	6.0	+2.0 to -3.5
T3-7	23.1	15	-4.0 to -19.0	8.1	+3.6 to -4.0
T6-4	21.2	15	-3.5 to -18.5	6.2	+2.2 to -3.5
T6-5	22.7	15	-4.0 to -19.0	7.7	+3.2 to -4.0
T8-3	20.0	15	-2.0 to -17.0	5.0	+2.5 to -2.0
T8-4	22.8	15	-3.5 to -18.5	7.8	+3.8 to -3.5
T9-3	22.3	15	-4.0 to -19.0	7.3	+2.3 to -4.0
T9-4	21.2	15	-3.0 to -18.0	6.2	+2.2 to -3.0
T10-1	23.3	15	-4.5 to -19.5	8.3	+3.3 to -4.5
T10-2	22.6	15	-4.3 to -19.3	7.6	+2.6 to -4.3
T10-3	22.2	15	-4.5 to -19.5	7.2	+2.2 to -4.5
T11-1	22.3	15	-4.5 to -19.5	7.2	+2.3 to -4.5
T11-2	22.2	15	-4.0 to -19.0	7.2	+2.2 to -4.0
T11-3	22.2	15	-3.5 to -18.5	7.2	+2.2 to -3.5
TOTALS	373.5	255.0		118.5	

Note: Monitor well construction summaries for wells installed during the Phase II, Stage I investigation are included in Thiess et al., 1984.

*Screened interval and cased interval referenced to ground level.
†Casing length also includes bottom plug as well as casing interval listed.

Source: ESE, 1987.

Boring No. LH2-8 Hole Size 12 Nomemen Slot Octo." Screen Length IS' Mat'1 Sch 40 PVC Diameter 4" T.D. Casing Length 6.2' Mat'1 Sch 40 PVC Diameter 10 No 86 Finish 10 115 86 Contractor ESE Driller PAThamas Drill type Howard Agant 10 186 187 Contractor ESE Driller PAThamas Drill type Howard Penetratic Construction Depth (feet) Sample Lithology, Color Construction Lingth 18° SP, Sand, fine the rad, ga, poonly ganded, H. browning and 10186/2, and plants, lose, lose, and prompts, and date, shread, prompts, and date, shread, prompts, and date, shread, prompts, and date, shread, ga, poonly ganded, prompts, lose, however, and ga, poonly ganded, prompts, lose, however, and date, shread, prompts, and date, shread below 18 the state of the road date, shreaded below 18 the show 18					
Screen Length 15' Mat'1 Sch 40 PVC Diameter .4" T.D. Casing Length 6.2' Mat'1 Sch 40 PVC Diameter 4" T.D. Date Start 10 10 15 Finish 10 15 86 Contractor ESE Driller PAThamas Drill Type Hollow STEM Avc 27 MSL (1c)2 Depth (feet) Sample Lithology, Color Sketch of Construction Standard Penetratic General Avc 27 MSL (1c)2 Depth (feet) Sample Lithology, Color Sketch of Construction Standard Penetratic General Avc 27 MSL (1c)2 Depth (feet) Sample Lithology, Color Sketch of Construction Standard Penetratic General Avc 27 MSL (1c)2 Depth (feet) Sample Lithology, Color Sketch of Construction Standard Penetratic General Avc 27 MSL (1c)2 Depth (feet) Sample Lithology, Color Sketch of Construction Standard Penetratic General Avc 27 MSL (1c)2 Depth (feet) Sample Lithology, Color Sketch of Construction Standard Penetratic General Policy Penetratic General Penetratic G	Boring No.	LH2-8		Location Coordinates	N 455,523.7
Diameter 14" T.D. Casing Length 6.2' Mat'l Sth 40 PVC Diameter 4" T.D. Date Start 10 10 80 Finish 10 15 86 Contractor ESE Driller PAThamas Drill Type Hollow Stem Avcore Depth (feet) Sample Lithology, Color Construction Depth Pooling anadad, H. browning gang 10486/2, and plantic, loose day, pership garded part yellow St833, not plantic, loose, Most, ~ Sm. thick originals, most, ~ Sm. thick originals, fine to and gangerials, most or smy garded, buff 10427/2, not plantic, loose to mod daire, softwarded throughout. 35-80 To See Sand, fine to med gangerials, most or mod daire, softwarded throughout. See Sand, fine to med gangerials, most or mod daire, softwarded throughout. See Sand, fine to med gangerials, most or mod daire, softwarded the bound of the softwarded does gangerials, most or softwarded does gangerials, most or softwarded does gangerials, most or softwarded does ganded does gangerials, most or softwarded does ganded does	Hole Size	2" Nomina	Slot o.c.o."		E 1,631,897-7
Casing Length 6.2' Mat'1 Sth 40 PVC Diameter 4"T.D. Date Start 10 10 86 Finish 10 15 86 Contractor ESE Driller PAThomas Drill Elevation 48.93' MSL (16)22 Depth (feet) Sample Lithology, Color Sketch of Construction Standard Penetratic Blow Count Blow Count Construction Standard Penetratic Blow Count Construction Should, Inserter and gar, Poorly ganded, Party yellow Stally, and plastic, loss, Most, ~ S. M.M. thick Oragination of Above to ~ 2.5 ft, baccuse Construction SEE SP, Sand, fine-to-mad. gar, Poorly ganded, Party yellow Stally and Lithology Attached SM, Sand, fine-to-mad. gar, Poorly ganded, Party yellow SM, Sand, fine-to-mad. gar, SANDAR fine-to-coness SM, Sand, fine-to-coness Gar, ~ 15.2016, Tilf, Mod. ganded, H. brown orace/i, mod gended doek ganay SM311, ~ 2576, Tilf, St. to- Plastic, dance, saturaled SM, Sand, fine-to-coness SM,	Screen Leng	sth_IS'	Mat'1 Sch 40 PVC	Filter Materials Co.	AMSE Blast SAND
Diameter 4" T.D. Date Start 10 10 56 Finish 10 15 36 Contractor EST Driller PAThers Drill Type Hollow Stem Average Depth (feet) Sample Lithology, Color Sketch of Construction Depth (feet) SP, Sand, fine termed and graph of the stempth of the	Diameter	,4" I.D.		Grout Type Tupe I	Portland
Date Start 10 10 86 Finish 10 15 86 Top of Well Elevation 48.83 MSL Contractor ESE Driller PAThoms Drill Type Hollow STEM Averne Depth (feet) Sample Lithology, Color Construction Standard Penetratic Blow Count Depth (feet) Sample Lithology, Color Construction Standard Penetratic Blow Count Depth (feet) Sample Lithology, Color Construction Standard Penetratic Blow Count Depth (feet) Sample Lithology, Color Construction Standard Penetratic Blow Count Depth (feet) Sample Lithology, Color Construction Standard Penetratic Blow Count SP, Sand, fine-to-rad gn., Poonly ganded, polity glow STE SEE SP, Sand, fine-to-rad gn., Poonly ganded, polity glow STE SEE Affactive dead gn., Poonly ganded, buff 10427/2, not plastic, lose to road dance, saturated below 4 ft. SM Sand, fine-to-cases gn., 715-20-6 f. It mod., gn. gn. to lose plastic, med dance, saturated SM Sand, fine-to-cases gn., 715-20-6 f. It mod., gn. gn. to lose plastic, med dance, saturated SM Sand, fine-to-cases gn., 715-20-6 f. It mod., gn. gn. to lose plastic, med dance, saturated SM Sand, fine-to-cases gn., 715-20-6 f. It mod., gn. gn. to lose plastic, med dance, saturated	Casing Leng	th	6.2' Mat'1 Sch 40 PVC	Development CENT	aifugal Pump-1750
Depth (feet) Sample Lithology, Color Sketch of Construction Blow Count Length SP, Sand, fine-to-rad an., Poonly ganded, H. browning any love/2, wet plantic, lease, day, massive bedded 1.5-35 20" SP, continuation of Above to -2 S ft, becomes SP, Sand, fine-to-rad ag., Poonly ganded, palty yellow ST8/3, not plastic, losse, Mosst, S man. Huck coagnuic nich beautions (dank gang 2:543/0) throughout 35-80 15-80 15-9. Sand, fine-to-rad ga., Poonly ganded, buff love/2, not plastic, losse to road dance, satvanted below 4 ft. SM Sand, fine-to-cases ag., ris-20% s.ll, mod., ganded, diversions fine to recept, method plastic, not dance, satvanted below 4 ft. SM Sand, fine-to-cases ag., ris-20% s.ll, mod., ganded, diversions fine to recept, method plastic, not dance, satvanted show should plastic, and dance, satvanted status fine to recept, method, plastic, not dance, satvanted status fine to recept, method, plastic, satvanted status fine to recept show should ganded, down agang still, respect of s.ll, slove, plastic, dance, satvanted	Diameter	4" T.D.		Static Water Level	+ 2.68 MSL (1022
Depth (feet) Sample Lithology, Color Construction Standard Penetration (feet) Sample Lithology, Color Construction Blow Count Blow Count SP, Sand, Fine-to-rad gar, Poorly ganded, H. browningamy 10486/2, wit plastic, lose, day, massive backled to -2.5 ft, baccases SP, Sand, Fine-to-rad gar, Poorly ganded, pater yellow 518/3, mot plastic, lose, most, ~ 5 mm. thick organic aich boursons (dank gang 2543/0) throughout. SP, Sand, fine-to-rad gar, Poorly ganded, buff 10487/2, not plastic, lose to mod dense, saturated balow 4 ft. SM Sanch, fine-to-coases gar, ~ 15-20% s. 14, mod. ganded, H. brown isneed, mut-to-sl. plastic, mud dense, saturated balow 4 ft. SM Sanch, fine-to-coases gar, ~ 15-20% s. 14, mod. ganded, H. brown isneed, mod. ganded, down ganded, gand	Date Start_	10/10/56	Finish 10 15 86	Top of Well Elevatio	n +8.83 MSL
Sample Lithology, Color Construction Blow Count 18° SP, Sand, Fine-to-road, gn., Poonty ganded, II. brownesh gamy 104Re/z, not plastic, loose, dny, massive bedded 1.5-35 20° SP, continuation of above to -2.5 ft, become SP, Sand, Fine-to-road, gn., Poonty ganded, polity yellow 548/3, not plastic, loose, Maist, ~ 5 mm. thick 0 agmic aich beaizens (dock gamy 2.543/0) throughout 3-7-80 3-4-5 Attached 3-7-5-7-8 Attached 5-80 Told ganded, buff 104R7/2, not plastic, loose to road device, satvanted below 4 ft. SM Sand, Fine-to-conser ga., ~15-20° or 11t, mod. ganded, H. brown 104E/1, not-to-sl. plastic, med device, SAM, Sand, Fine-to-conser SM, Sand, Fine-to-conser Nod, qanded, dook gamy 543/1, ~257/6 silt, stov. Plastic, dance, satvanted	Contractor_	ES€_	Driller PAThoma	5Drill Type_	HOLLOW STEM AVEET
Sample Lithology, Color Construction Blow Count 18° SP, Sand, Fine-to-road, gn., Poonty ganded, II. brownesh gamy 104Re/z, not plastic, loose, dny, massive bedded 1.5-35 20° SP, continuation of above to -2.5 ft, become SP, Sand, Fine-to-road, gn., Poonty ganded, polity yellow 548/3, not plastic, loose, Maist, ~ 5 mm. thick 0 agmic aich beaizens (dock gamy 2.543/0) throughout 3-7-80 3-4-5 Attached 3-7-5-7-8 Attached 5-80 Told ganded, buff 104R7/2, not plastic, loose to road device, satvanted below 4 ft. SM Sand, Fine-to-conser ga., ~15-20° or 11t, mod. ganded, H. brown 104E/1, not-to-sl. plastic, med device, SAM, Sand, Fine-to-conser SM, Sand, Fine-to-conser Nod, qanded, dook gamy 543/1, ~257/6 silt, stov. Plastic, dance, satvanted				Skarch of	
Lingth DO-1-5 18" SP, Sand, fine-to-rad ga., poorly ganded, it browning gamy 10786/2, not plastic, loose, day, massive backed 1.5-35 20" SP, continuation of above to -2.5 ft, baccuse SP/Sand, fine-to-rad ga., Poorly ganded, pate yellow SY8/3, not plastic, loose, most, ~ Sma, thick organic nich basicons (dark gany 2.543/0) throughout SP, Sand, fine-to-rad, ga., Poorly ganded, buff 10187/2, not plastic, loose to rad duses, saturated below 4 ft. SM Sand, fine-to-craese ga., ~15-20'6 5:14, mod. Janded, H. brown 101966/1, mot-to-st plastic, mid duse, SALURIO SM, SAND, fine-to-craese ga, mod. ganded dook gany SY3/1, ~25-76 5:14, stov. plastic, duse, saturated	11	Sample	Lithology, Color	1 .	1
SP, Sand, Fine-to-rud, ga., pooling ganded, H. browning gamy 10786/2, not plastic, loose, dry, massive bedded 1.5-35 20° SP, continuation of above to -2.5 ft., baccuse SP, Sand, Fine-to-rud, ga., poorly ganded, pate yellow SY8/3, not plastic, loose, most, ~ 5 mm. thick organic rich basicores (dock gary 2.543/0) throughout SP, Sand, Fine-to-rud, ga., poorly ganded, buff 10187/2, not plastic, loose to rud classe, saturated below 4 ft. SM Sand, Fine-to-craese ga., ~15-20°6 5:14, mod. Janded, H. brown 10466/1, mot-to-st plastic, mid dense, saturated SM, Sand, Fine-to-craese SM, Sand, Fine-to-craese ga., ~15-20°6 5:14, st. tov. plastic, dense, saturated					
Poonly gended, H. brownish gamy 10/86/2, ust plastic, losse, day, massive backled 20" SP, continuation of Above to -2.5 ft, becomes SP, Smad, first-to-raid, ga., Poonly gended, pale yellow SY8/3, not plastic, losse, Moist, ~ 5 mm. thick organic nich houseans (dock gamy 2.543/0) throughout Throughout SP, Smad, first-to-raid, ga., Poonly, genedad, buff 10487/2, not plastic, bose to mod duce, saturated below 4 ft. SM Smad, first-to-comes ga., ~ 15-20% s. It, mod. genedad, H. brown 1046/1, not-to-st plastic, med dusse, Saturated SM, Sand, first-to-comes SM, SAND, SM, SM, SM, SM, SM, SM, SM, SM, SM, SM	0.0-1.5				3 11 5
1.5-35 20" SP, continuation of above to -2.5 ft., becomes to -2.5 ft., becomes SP, Smid, Fine-to-mid. ga., Poorty granded, pole yellow 548/3, not plastic, losse, Most, ~5 mm. thick Organic nich boarsons (dock gany 2.543/0) throughout. 3.5-80 MT =4" SP, Smid, Fine-to-med. ga., Poorty granded, buff 10427/2, not plastic, losse to nod dence, satvanted below 4 ft. SM Sand, Fine-to-cames ga., ~15-20% 5:14, mod. g nated, H. brown 1048e/1, mot-to-sl. plastic, med dense, saturated SM, Sand, fine-to-coase qa, mod. gended, dock garay 543/1, ~25% 5:14, sl. tov. plastic, dense, satvanted		_			3 - 4 - 5
1.5-35 20" SP, continuation of above to -2.5 ft., becomes to -2.5 ft., becomes SP, Smid, Fine-to-mid. ga., Poorty granded, pole yellow 548/3, not plastic, loose, Moist, ~5 mm. thick Organic nich boarsons (dock gany 2.543/0) throughout. 3.5-80 MT =4" SP, Smid, Fine-to-med. ga., Poorty granded, buff 10487/2, not plastic, loose to mod dunce, saturated below 4 ft. SM Sand, Fine-to-craese ga., ~15-20% 5.14, mod. g nated, H. brown indee/1, not-to-st. plastic, med dunce, saturated SM, Sand, fine-to-craese ga., ~15-20% 5.14, show. plastic, dunce, saturated			gamy WYR6/2, not plastic,		
SEE SP, Smid, Fine-to-rud, ga. Poonly granded, pole yellow SY8/3, not plastic, loose, Moist, ~ 5 mm. thick Organic rich horizons (dock gary 2.543/0) throughout SP, Sand, fine-to-rud, gr., Poonly granded, buff 104R7/2, not plastic, loose to roud dense, satvanted below 4 Ft. SM Sand, fine-to-coarse ga., ~15-20% 5.1t, mod. granded, th. brown 104e6/1, not-to-sl plastic, med dense, saturated SM, Sand, fine-to-coarse qr., mod. granded, dock grany SY3/1, ~25% 5.1t, sl. tov. plastic, dunse, satvanted			loose, day, massive bedded	İ	
SEE SP, Smid, Fine-to-rud, ga. Poonly granded, pole yellow SY8/3, not plastic, loose, Moist, ~ 5 mm. thick Organic rich horizons (dock gary 2.543/0) throughout SP, Sand, fine-to-rud, gr., Poonly granded, buff 104R7/2, not plastic, loose to roud dense, satvanted below 4 Ft. SM Sand, fine-to-coarse ga., ~15-20% 5.1t, mod. granded, th. brown 104e6/1, not-to-sl plastic, med dense, saturated SM, Sand, fine-to-coarse qr., mod. granded, dock grany SY3/1, ~25% 5.1t, sl. tov. plastic, dunse, satvanted	1,5.2	30"	SP 1 1 7 1 -		
SP, Smid, Fine-to-ried, ga., Poorty graded, pole yellow 518/3, not plastic, loose, Moist, ~ 5 mm. thick Organic rich horizons (donk gamy 2.543/0) throughout. SP, Smid, Fine-to-mid ga., Poorty graded, buff 10427/2, not plastic, loose to mod dense, saturated below 4 ft. SM Smid, Fine-to-coases ga., ~ 15-20% 5.1t, mod. ganded, H. brown iones/1, not-to-sl plastic, med dense, Saturated SM, Sand, Fine-to-coases SM, SAND, SM, SM, SM, SM, SM, SM, SM, SM, SM, SM	1.2.2.2	20	· · · · · · · · · · · · · · · · · · ·		7-5-7-8
SP, Sand, Fine-to-rad, ga., Poorthy gended, pate yellow ST8/3, not plastic, loose, Moist, ~ S.m. Huck Organic nich housens (dank gany 2.543/0) throughout SP, Sand, Fine-to-rad, ga., Poorthy graded, buff 10427/2, not plastic, bose to mod. dense, saturated below 4 ft. SM Sand, Fine-to-coarse gr., ~15-20% 5.1t, mod. graded, H. brown 10486/1, not-to-sl. plastic, med dense, SALENTED SM, Sand, Fine-to-coarse SALENTED SM, Sand, Fine-to-coarse ga., Mod. graded, dook grany SY311, ~25% 5:1t, sl. tov. plastic, dense, saturated		!	10 - 2 - 3 ++ , Bricons 8 -		
ST8/3, not plastic, losse, Moist, ~ 5 mm. Huck Organic rich horizons (dont gany 2.543/0) Throughout. SP, Sand, fine-to-mid. gr., Poorly, granded, buff 104R7/2, not plastic, losse to mod dense, saturated below 4 ft. SM Sand, fine-to-coarse gr., ~15-20% 5.1t, mod. granded, H. brown ionee/1, not-to-sl. plastic, med dense, Saturated SM, Sand, fine-to-coarse gr., Mod. granded dook grany SY3/1, ~25% 5.1t, sl. tov. Plastic, dense, saturated		ľ	SP Sand Frank and an	2FE	
ST8/3, not plastic, losse, Moist, ~ 5 mm. Huck Organic rich horizons (dont gany 2.543/0) Throughout. SP, Sand, fine-to-mid. gr., Poorly, granded, buff 104R7/2, not plastic, losse to mod dense, saturated below 4 ft. SM Sand, fine-to-coarse gr., ~15-20% 5.1t, mod. granded, H. brown ionee/1, not-to-sl. plastic, med dense, Saturated SM, Sand, fine-to-coarse gr., Mod. granded dook grany SY3/1, ~25% 5.1t, sl. tov. Plastic, dense, saturated			Soorly graded pale vellow	ال المالم	
Moist, ~ 5 mm. thick Organic rich horizons (dark gang 2:543/0) throughout. SP, Smid, fine-to-mid. gr., Poorly graded, buff 10427/2, not plastic, loose to road dense, satvanted below 4 ft. SM Smid, fine-to-conser gr., ~ 15-20% 5.1t, mod. graded, H. brown 10486/1, not-to.8. plastic, med dense, SALVANDA SM, Sand, fine-to-conser SALVANDA 15.0.19.0 SM, Sand, fine-to-conser SM, SAND, fine-to-c				ATTACHED	
Organic aich horizons (dark gany 2.543/0) throughout. SP, Sand, fine-to-md. gn., Poonly graded, buff 10487/2, not plastic, loose to rood dense, satvanted below 4 ft. SM Sand, fine-to-coases ga., ~15-20% 5.1t, mod. granded, H. brown 10486/1, not-to-sl. plastic, med dense, Satvanted SM, Sand, fine-to-coase qa, mod. granded, dook grany 543/1, ~25% 5:1t, sl. tov. plastic, dense, satvanted					}
Throughout SP. Sand, fine-to-and. gn., Poorly graded, buff 104R7/2, not plastic, loose to mud. dence, saturated below 4 ft. SM Sand, fine-to-ccarea ga., ~15-20% 5:1t, mod. graded, H. brown 10486/1, not-to-sl. plastic, med dense, saturated SM, Sand, fine-to-coarse qa., mod. graded, doork grany 5431, ~25% 5:1t, sl. tov. plastic, dense, saturated			organic nich horizons		•
Throughout SP. Sand, fine-to-med. gn., Poorly graded, buff 104R7/2, not plastic, loose to mod dence, saturated below 4 ft. SM Sand, fine-to-ccarea ga., ~15-20% 5:1t, mod. graded, H. brown 10486/1, not-to-sl. plastic, med dense, saturated SM, Sand, fine-to-coarse qa., mod. graded, doek grany 5431, ~25% 5:1t, sl. tov. plastic, dense, saturated			(dark gary 2.543/0)		
10427/2, not plastic, losse to mod dence, saturated below 4 ft. SM Sand, Fine-to-coasse ge., ~15-20% s.lt, mod. granded, H. brown nones/1, not-to.s. plastic, med dense, saturated SM, Sand, Fine-to-coasse qe., mod. granded, doek grany 543/1, ~25% s.lt, sl. tov. plastic, dense, saturated	1		throughout.		
10427/2, not plastic, lose to mod dence, saturated below 4 ft. SM Sand, Fine-to-coasse ge., ~15-20% s.lt, mod. granded, H. brown nones, not-to.s. plastic, med dense, saturated SM, Sand, Fine-to-coasse qe., mod. granded, doek grany 54311, ~25% s.lt, sl. tov plastic, dense, saturated	3.5-8.0	<u>-</u>	ا د د کدی چ		
10427/2, not plastic, losse to mod dence, saturated below 4 ft. SM Sand, Fine-to-coasse ge., ~15-20% s.lt, mod. granded, H. brown nones/1, not-to.s. plastic, med dense, saturated SM, Sand, Fine-to-coasse qe., mod. granded, doek grany 543/1, ~25% s.lt, sl. tov. plastic, dense, saturated		WT <u>∓</u> 4'	Dooly sanded hill		
to mod dence, saturated below 4 ft. SM Sand, fine-to-coarse ge., ~15-20% 5.1t, mod. granded, H. brown 10486/1, not-to-sl. planstic, med dense, saturated SM, Sand, fine-to-coarse qe., mod. granded, doek grand 543/1, ~25% 5:1t, sl. to v. planstic, dense, saturated		ļ		,	
Below 4 ft. SM SAND, five-to-correct ge., ~15-20% 5.1t, mod. granded, H. brown 10486/1, not-to-sl. plastic, med dense, satisfied SM, SAND, five-to-correct qe., mod. qeaded, doek grany 543/1, ~25% 5.1t, sl. tov. plastic, dense, saturaled				i	
ge., ~15-20% s.lt, mod. granded, H. brown longed, not-to-sl. plastic, med dense, Satisfied SM, Sand, fine - to-comese que, mod. quaded, dark quant 54311, ~25% silt, sl. tov. plastic, dense, saturated		ļ	below 4 ft.		
ge., ~15-20% s.lt, mod. granded, H. brown longed, not-to-sl. plastic, med dense, Satisfied SM, Sand, fine - to-comese que, mod. quaded, dark quant 54311, ~25% silt, sl. tov. plastic, dense, saturated	8.0-15.0		SM 5. 15 1		
granded, H. brown 10486/1, not-to-sl. plastic, med dense, Satisfied SM, Sand, fine - to-comese que, mod. quaded, down quant 543/1, ~ 25% silt, sl. tov. plastic, dense, saturated			ae. ~ 15-20% = 14 mad		•
not-to.sl. plastic, med dense, Satisfied SM, Sand, fine to comese que, mod. quaded dark quant 543/1, ~25% silt, sl. tov. plastic, dense, saturated			granded, H. brown 10486/1		
SATIRATED SM, SAND, Fine - to-comese que, Mod. quaded, down quant 54311, ~ 25% silt, sl. tov. Plastic, dense, saturated					
PINSTIC, dense, saturated			Saturated		
PINSTIC, dense, saturated	15.0.19.0		SM, SAND FINE - to GENERICA		
PINSTIC, dense, saturated		·	mad gended dock gray		
PINSTIC, dense, saturated		}	543/1, ~ 25% silt, show		
19.0' END OF BORING 1			pinstic, danse, saturated	}	
	19.0'		END OF BORING 1		•

Logged By: JORGANA	_ Client: DEHL - JANDALL AFB
Drilling Contractor: ESE Driller's Name: PAUL THOMAS	Location: ZCNE # 2 - LYNN HAVEN FACILITY
	Job Number:
Well Number: LH2-8	Date/Time: Start 10/10/86 Finish 10/15/86
Comments (Lost circulation interval, Water level char	nges, Hole collapse interval, etc.):
•	
Deaths in Reference	
Depths in Reference to Ground Level	
to dioding Ester	
Protective Casing + 2.45	Laskina O
Protective Casing	Locking Cap
	Protective Pipe Cl / 11
Top of Well Casing + 2.2	Protective Pipe Type, Diameter Steel, 6"
G.L. 100777.	Cement/Gravel Pad
Top of Cement—	
Top or comment	
Bottom of	
Bottom of Protective Casing	
- 4 O · V - 1	
Ground Water ————————————————————————————————————	
	Tuz= = 0 - 11
	Type of Grout TYPE I PORTLAND
	Type Sch 40 PVC(TRI-LOC) Diameter 4" I.D.
	Diameter 4" T.D.
	Countings
	Type FLUSH - THREADED
	Number 3 Depths -13.5' - 8.5' - 3.5'
Top of -1.7'	Ospins
Bentonite Seal ————————————————————————————————————	Type of Plug BENTONITE PELLETS
Top of Gravel Pack - 2.8'	Type of Plug DENTONTIE TELLETS
	_
Top of Screen — -3.5'	Gravel Pack: COMESE BLAST SANT
· · ·	Material College Densi Digit
	Screen: Sch 40 PVC (TRI-LOC)
	Diameter 4" I.D.
	Length 15 ft.
	Slot SizeO. O/O "
Bottom of Screen - 18.5	12 V .
-10 01	Bore Hole Diameter 12 NOMINAL
Total Deptil	
of Bore Hole	1
	Theraded Bottom - NOT TO SCALE
	Dotton NOT TO SCALE
•	Plug
F-3	ン

Boring No.	LH2-8 SHEET 1 OF 2
1 1	
10 10 8	6
1500	More on site, set up and level ria
1210	
13.0	Open hole with 6" I.D. Hollow Stem Augen and
	NOTE: Solid = TON SECULOMENT NOW - ENGROVAL
	NOTE: Split spooning will be conducted at
	a later date immediately adjacent well
1520	Continue augening, advance to 15 ft.
1525	Continue Augening; Advance to 20 ft, terminate boising
	Retrievable plug become detached, augens filled with
	termation materials to -12 ft. rugers pulled man
	hole, cleaned, plug neathached Augens newsented into bouchole, lower 10 ft. must be
1535	
1550	nudailled
1220	Reach 20 ft. depth terminate boising well casing inscreted
	of boulde filled with sand
1600	Well pulled From bonehole, augens pulled from bonehole, NEW
1400	plate attached to cutting End of augen, hole abandoned
1605	Augus disassembled New site selected
1630	Augens disassembled cleaned, NEW site selected Open NEW hole with 6" I D. Hollow Stem Augen and
	refrievable plug; advance to 10 ft.
1640	Augering continues, advance to 20 ft. tenminate boning
	WELL set at -19 ft. Augus pulled from bornehold
1645	Added gravel pack; sounded at -28 ft after
	4 bags (400 lbs.) sand added
	Added bentonite pellets; sounded at - 1.7 ft. after
14.50	1/2 buckets (75 lbs) pellet, added
1620	Water Added to facilitate swelling of bentonite
1655	Equipment disassembled and cleaned
1705	Depart site for day
	interest Al 100
	DATE SIGNED
	SOURCE: Environmental Science and Engineering, Inc., 1980

Boring No.	LH2-8	(con't)				SHEE	:T	2	_OF	2_
10/15										
	- 4			·						
0830	Move	onto s	its SE	t 12	riq	- ()	1	-1		
0835	Duone	split	ZDOON	trom	0.0 = 1.5	5 +4.	<u>at .</u>	Site		
		uell LH	5-78 W	HUCENT	to pru	Alonsh 1	-wb	IMERCI	 -	
0840	Dagre			£	1.5-3	S £4.				
0812	Dug	holes	fon	Brokert	VF NOS	ts: 00	olec	tive	core	<u> </u>
		and po	1	grouted	into	DIACE				
0900	Desan		sile	1						
	1									
					·····					
										
										
										
								 -	 -	
										
	·									
										
 										
										
							 .			
										
		· · · · · · · · · · · · · · · · · · ·								
										
										
			10	15/86		Mul	SION		nde	
			SOURCE.	Ford tones	ntal Scienc	,	•	•	nc -	1981

Boring No	LH2-9		Location Coordinates	
Hole Size_	2" Nominal	Slot 0.010"		E 1,631,532.8
Screen Leng	sth_ 151	Mac'l Sch 40 PVC	Filter Materials Con	MSF Blast SAND
	4" I.D.		Grout Type Type I	Pontland
Casing Leng	sch_ 7.2'	Mat'1 Sch 40 PVC	Development CENT	Rifugal Pump-2000
	4" T.D,			+ 1.60' MSL (10 22 80
`	10/10/86	Finish 1015 86		
Contractor_		Driller PAThoma		HOLLOW STEM AVEET
Depth (feet)	Sample	Lithology, Color	Sketch of Construction	Standard Penetration
0.0-1.5		5M Smd, fine-to-ned. gr., -5% silt, poorly graded dk. gray 10484/1 (top 6" soil honizon) grading to 11. gray-to-buff 10487/2 (lower 10"), not-to-sl. plastic, loose, moist		3 - 3 - 6
1.5-3.5	Ì	SP SAND, FINE-to-medige poorly graded, white 7.5488/0, Not plastic, Medidense, Moist to Saturated, Massive bedding	SEE	5-7-18-20
3.5-4.0		SP, Soud, continued from Above		
6.0-8.5	-	5M Sand, Fine qn., ~ 10% sill poonly graded, 1t brown 104R5/2, sl. plastic, med dense, saturated		
8.5-13.0		5M SAND, FINE GR., ~20.25 % silt, mod. graded, dk. beown 104R2/2, sl. plastic - to - plastic, dense, saturated, HNU Roading & I PPM (continued)		•

				- 	· ————————————————————————————————————
	Boring No	. LH2-9	(continued)	Location Coordinates	N 456,019.6
	Hole Size	12" Nomina	Slot 0.010"		E 1,631,532.8
1	Screen Le	ngth_IS'	Mat'1 Sch 40 PVC	Filter Materials Co.	MISE BLAST SAND
	Diameter_	4" I.D.		Grout Type Type I	Pontland
١	Casing Le	ngth	Mat'1 Sch 40 PVC	Development Cen	terfugal Pump
		4" T.D.		Static Water Level	+ 1.60 'MSL (10 72 86)
1	Date Star	101086	Finish 101586	Top of Well Elevation	1 + 7.80 MSL
1	Contracto	r ESE	Driller PAThoma	5Drill Type_	HOLLOW STEM AVGER
		T			<u> </u>
	Depth (feet)	Sample	Lithology, Color	Sketch of Construction	Standard Penetration Blow Count
	13.0-16.0		SM, SAND, FINE QR., ~5% sit, poorly - to-mod. graded, but 104R6/2, sl. plastic, med dunse, saturated		
	16.0-18.0		SM, Sand, continuation of above, becomes ~ 10% silt, MEd. brown SMR3/1		
	180-19.0		SM, SAND, continuation of above, becomes -20% silt, dark brown 104R2/2		•
	19.0'		END OF BORING		•
			1		•

Logged By: Jordana		Client: OEHL - TYNDALL AFB
Orilling Contractor ESE		Location: ZONE # 2 - LYNN HAVEN FACILITY
Drilling Contractor: ESE Driller's Name: PAUL THO	MAS	Job Number: 86378
Well Number: LH2-9		Date/Time: Start 10 10 86 Finish 10 15 86
Comments (Lost circulation interva	I Water level change	s. Hole collapse interval, etc.):
COMMINE (FOST CHESISION MISSIAS	i, water lever change	of the desirence and the state of the state
Depths in Reference		
to Ground Level		
•		
Top of +3.6'		
Protective Casing		
•	J J-	Protective Pipe Type, Diameter 5 6 "
Top of Well Casing + 3.2		Type, Diameter
O, VOLIZIO		Cement/Gravel Pad
Top of Cement—————		
	V = A	
Bottom of Protective Casing -1.3		
Protective Casing		
Ground Water — - 3		
		T T D
•	r 1 /4_	Type of Grout TYPE I PORTLAND
		Casing:
		Type Sch 40 PVC (TRI-Loc) Diameter 4" I.D.
		Couplings:
		Type FLUSH - THREADED Number 3 Depths -13 5' -9.5' -3.5'
		Depths 13 5', - 9 5', - 3 5'
Top of Bentonite Seal - 1.3'		
Bentonite Seal		Type of Plug BENTONITE FELLETS
Top of Gravel Pack -2.4		
•		
Top of Screen 3.5 '	·· - -	Gravel Pack: COARSE BLAST SAND
Top of Screen		Waterial Collection
		Type Sch 40 PVC (TRI-LCC)
		Diameter 4 T.D.
		Length IS
		Slot Size O. O.O."
Bottom of Screen - 18.5'		Bore Hole Diameter 12" Nominal
Total Depth 19.0'		Dore note Diameter
of Bare Hole		
OF DOIS HOTE	7_	1 1
	Tha	ended NOT TO SCALE
	Bol	ton Pluc
		3

Boring No, LI	17 -9		I	
		•	SHEET	OF
10/10/86				
1715	MOVE ON SITE, SET	- 2 Aud 1-		· * * · · · · ·
1720	MOVE ON SITE, SET	ole well carin		creon
1725	Open hole with 6			Auger
	and retrievable	plug Advance		
1730		HNU " reading	NEGATI	ve at
1725	-13 ft.		, , ,	
1735	Continue Augering, Ad	1		nmirr varns
1740		Augens		NOW
	borehole; begin	· · · · · · · · · · · · · · · · · · ·	1	pnek
1145	Continue gravel pack	Emplacement,	sounded	<u>at</u> _
	-2.4 Ft after	4 bags (400		added
	Added bentonite pell	ets; sounded kets (75 lbs)	11.1	3 Ft
1750		ilitate swelling		aenton.
	stored All equipa 3-day layoff	ant on Ric	y for	drill
1905	3-day layoft		'	
1905	Depart site for de			
10 15 86				
101,2100				
0905	More onto site, set	up rig		
0910	Drove split spood From	2.16-0.0	ft, at si	ite
	immediately adjusten	t to previou	ly empla	ud
0915	Drove Split spoon for	om 1.5 - 3.5	- []	
0920	Drove split spoon to	1	profectiv	
	cover And posts	<i>j</i> , , , , ,	into place	
0940	Depart from site			
······································			1	
	10/15/86	\mathcal{M}	1//	

•

Boring No.	T3-5	5	Location Coordinates	и 398,639.6
	١2*	\$10t 0.010"		E 1,655,804.1
	gth 15 ft.	Mat'1 SCH 40 PVC	Filter Materials C	Apple BLAKT SAND
DiameterCasing Len	日本 (1.0 元)。 gch (4.0 行)。 リュエン			Figal Pump-300 GML 2.2' MSL (10/12/86)
	10/7/86	Pinish 10/10/20. Driller Paul TH	Top of Well Elevation	
Depth (feet)	Sample	* Lithology, Color	Sketch of Construction	Standard Penetratica Blow Count

Depth (feet)	Sample	* Lithology, Color	Sketch of Construction	Standard Penetratica Blow Count
0'-15'		SMIBML - NEINE GRAINED IOYREIZ - WHITE ~1070 SID, MORLY GRADED MOTPLATIE, LOSE, DRY		2-3-6
1.5°- 3.5°	3′_₹	SM/ML " SAME AT @ 1.5" GRADET ABRUPTLY TO -2.5" TO: TO POSELY GRADED MED. FINE SOND ~ 109-ENT IGYEY LY - DK. YELSH. BROWN GRADING BELOW WATER TABLE TO EXTREMELY FINE OFRENCED FLOWING SAND	SEE AHAC'LED	5-3-3- 5
Zo'	-	END OF BORING * Day eighter of abandmed hule opposes 25 fort found included mely		

SMIRCE: Environmental Science and Engineering, Inc., 19

Logged By: ELLIOTT TORDANA	Client: OEHL - TYNDALL AFB
Drilling Contractor: ESE	Location: ZONE # 3 - POL AREA A
Driller's Name: PAUL THOMAS	Job Number:
Well Number: T3-5	Date/Time: Start 10/1/86 Finish 10/10/86
Comments (Lost circulation interval, Water level	changes, Hole collapse interval, etc.):
Depths in Reference	
to Ground Level	
Top of +2.7	
Protective Casing	Locking Cap
	Protective Pipe
Top of Well Casing + 2.5	Protective Pipe Type, Diameter STEEL, 6"
0,2000	Cement/Gravel Pad
Top of Cement	/
u	1
u	
Bottom of Protective Casing -1.0	И
Protective Casing	
Ground Water ————————————————————————————————————	
\mathcal{U}	Ture T Promove
	Type of Grout TYPE I PORTLAND
r I	И
\mathcal{A}	
	Casing:
	Type SCH 40 PVC (TRI-LOC
	Diameter 4 T.D. Couplings:
7.1	Type FLUSH - THREADED
	Number
op of -10'	7
tentonite Seal	Type of Plug BENTONITE PELLE
op of Gravel Pack — 2.0 '	Type of Find
	Graval Back: O
ap of Screen -3.0	Gravel Pack: Conese BLAST SAN
	₹ {
	Screen: Sur No. Duc Co.
, be a second of the second of	Screen: Type Sch 40 PVC (TRI-LO
	Diameter 4" T.D. Length 15 ft.
/	Slot Size O.O.O."
	3
	1 1.
ottom of Screen - 18.0	Bore Hole Diameter 12" NOM INAL
otal Depth 18.5'	Bore Hole Diameter 12 NOM INAL
of Bore Hole	
•	Threaded
•	Bo Hom NOT TO SCALE
F_	Plug
· mar mar	riva

Boring No. T3-5	SHEET 1 OF Z
Indades	
10/2/86	
0700 LOADING SUPPLIES @ STORKE ARE	P) (0) 10 DIE CHECKIN (0145)
OBBO PICKING UP DRUMS FROM CE	
0815 ON DIE - BOTTING UP RIG	
CR25 MOVE RIG - CLEAR NEW SITE	
0835 SETTING UP, LEVEL RIG, UNLOAD	
0845 DROVE SOUT SOUND FROM D' TO !	•
0850 DRAVE SUIT FROM 1.5 123	
OFF OPEN HOLE W/6" I.P. HOLLOW STEW ALGE	
0905 ADVANCING TO 10' - WATER TO	er - 3'
0910 ADVALEIRE TO 15	
0915 ADVANCED TO 20 - ENO OF BLEIN	
220 ASSEMBLE OVE + SET INSIDE ANGE	= (15'soese + 15'solio)
0925 PHI MIGERS W COSING NOTE -18"	WAIT FOR BOTTOM TO FILL
0935 ATEMPT TO SET CATING - POD O	
	WIE ALBERON HEAVED - PINTHING DIC NO
940 TRIPOUT - DULL OVE CASING	\
0950 BREAKING DOWN ANGERT - WE WIL	- RE-DRILL + OVERORILL 5
1000 DESTACT - HOVE HEAVED TO -3	
RE-TAP W TAP +DIE	
1010 RESTART- ABYTIME HOLE TO +-5	
1015 ADVANCE TO 15'	
120 ROTTOMED HOLE (3-\$-22' (2'0)	er)
1022 SETTING CHING IN HOLE - (15'50	•
1030 CADIS SET 0 -17.9' PALLING AW	EFEC + ADDIE SAND
1040 CHEX 1120 LEVEL - WELL BLOCKE	DA-15'- SAID : CORRES BOOKEN
1045 LEANE SITE TO CALL PROJECT MANAGE	·
	WANCER IF POSSIBLE, MUD ROTTORY FRANCE
1130 DETERMED TO SITE + CLEAN UP PACK	
145 DILLER OF HOLE, SET UP ON HOUS	
200 DEN DEN HOLE ADMINE W 5 t TO 20	· · · · · · · · · · · · · · · · · · ·
1215 INSTALL COSING - ANGERS FLUED W SON'S	
MO OUL CASIF - INTECT - EXTERNAL ON	•
Y AUGER - CABIR ALREADY FLUINK	TO INSIDE MI SAND
1230 - SHUT DOWN - FALL BACK + REGROUP	
_10/1	86
 	ATE SIGNED
SOURCE: Ear	vironmental Science and Engineering, Inc., 1980

. ,	T3-5 (continued) SHEET 2 OI	F
عرانق عد		
1:15	More onto site select NEW Well LOCATION, seeings and EIE!	9.4
1120	United supplies and Equipment assemble well among Ands	ار <u>سرح س:</u>
1.25	Doon hale w/ 6" I.D. He in Sten Avera and remises	<u> : د.</u>
:.20	plug, Advance to 5 fd.	
1130	Continue Angering Advance to 15 Ft - 10T@ -6'	
1132	Advance to 20 ft. LERMINATE GOOMS	
	NOTE: All completion material (ie tand said said said	
	moved immediately adjacent to buseful to the expect	7~
	SAND DACK emplacement (due to clean NATION : =	
1140	Well est meder Angres (15 St. scown 5 St so in	
 .	well chained pulled up to 19 ft, permitted of	
	kning from migras	<u> </u>
'	- Augus namered from bombleto well out to	- ;
		
	MIXING W/ FORMATION SANGE COLORES	
	- Sounded @ -20 ft, after 400 100 4 02	
1150	Added benton to pellet, sounded @ -10 Ex offer	
	1/2 byckets	
1155	Addid water to facilitate surling it solves of	:2
1200	Apprex 4 FL of sAND MEMORIAL OF WELL CARD	æ.
1205	Pins set us to do one in vanu development in any a	بدن
	to Rome it ship spiral bines as more ?	3 4.
		20,00
1230	HMU MEMSUREMENTS taken @ WE' hard saus = Lager - w	^ `
	SAND (hindsome methed), and are when simped was	7 ,2
	was dechanged (a) & son and has	
124)	The the professor Dock Cha	
1305	Poste and protective raises govered into since	
1315	She drawed	
1320	luespret trunk +, has	
·	•	
	10/036 Allahar	
	F-INTE SIGNED	~~

i

-

: :

• . . ,

Boring No	T3-6		Location Coordinates	N 398,456.4
•	2" Nomina th 15'		Filter Materials Con Grout Type Type I	E 1,655,773.5 mar Blast Sand
Diameter	4" T.D.	Finish 10/16/86 Driller PAThema	Static Water Level Top of Well Elevation	+ 1.3' MSL (10 17 86
Depth (feet)	Sample Longth	Lithology, Color	Sketch of Construction	Standard Penetration Blow Count
0.0-1.5		SM SAND, FINE QR., ~ 10% silt, poorly graded, dk. gray 10484/1, not plastic, loose, day, at _1.0 ft becomes: SP, Sand, fine gr., poorly graded, yellow 10487/8, not plastic, loose, day	1	3 - 4 - 7
1.5-3.5	1 . *	SP SAND, FINE-to-MD. qa. PODRIN GRADE, PALE brown 1048/4, NOT plastic, losse-to-med. dense, moist-to-wet., MASSIVE bedding	See	6-7-7-9
35-16.0	wr. ≣ 4′	SP Sand, fine que, poonly graded, light gray 104R7/2, not plastic, med. dense, wet - to - saturated below 4 ft.		
16.0-20.0	·	SP, Smd, fine que, poorly ganded, dk. gamish brown 2.544/2, not plastic - to -sl. plastic, med. dence, salvanted		•
20.0		END OF BORING		

SOURCE: Environmental Science and Engineering, Inc., 1980

Logged By: VERMANA Drilling Contractor: Fact Thomas	Client: CEHL - THINGELL 1-=3
Drilling Contractor:	Location: Zene 3 - Por Premp A
Driller's Name: PALL THOMAS	Job Number: <u>96379</u>
Well Number: 13-6	Date/Time: Start 10/1019/ Finish 16/19/2
Comments (Lost circulation interval, Water level	changes, Hole collapse interval, etc.):
Depths in Reference	
to Ground Level	
Top of +2.4'	Looking Co.
Protective Casing	Locking Cap
·	Protective Pipe Type, Diameter
Top of Well Casing +2.0	Type, Diameter
0, 200720	Cement/Gravel Pad
Top of Cement—	
	И
Bottom of	/ 1
Bottom of Protective Casing - 1.5	
Ground Water ————————————————————————————————————	
Y]	Type of Grout
/	V
	Casing: Casing:
· /	Type School Profile - 100 Profile - 100 Diameter 4 1 1 1
1/	Couplings:
Y]	Couplings: Type FLASH THEALE Number 3
	Depths
op of	
Sentonite Seal	Type of Plug KENTAL TELEST
op of Gravel Pack 2 5	
	Granal Back:
op of Screen	Gravel Pack: CART TAN
, , , , , , , , , , , , , , , , , , , ,	
, pagan , pagan , pagan	Screen:
	Type CEH CHES
	Diameter 4 Length 15 5 5
	Slot SizeC C C
1.	
	1 · .
\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	1 5.1
lettem of Seman - (4 5'	1:
ottom of scient	Bore Hole Diameter 12 1, MIN, M
Total Depth -19 FI	
کم Bore Hole	
\	Threader NOT TO SCALE
	Βωπεμ
	ذ الحاد
· F-	15

Boring No	13-6 SHEET 1	OF
10/10/2	-7,	
<u>iditel k</u>	<u> </u>	
0343	-5 MOYE ONTO SITE, CLEAR ADEA SUL 20060 15	
	Unding a cond chelming and a	·
CAIC	2 Re Mound the city setting and literally	
	Supplier and equipment uncaned	
0.920	O Open hale with a I II Hills Sten From	
· · · · · · · · · · · · · · · · ·	Rotal Flag advance to 5 fl 10	<u> </u>
0925		
0930		
<u>C935</u>	5 All completion mampials (gomes sack then to a	
	positioned mudiately adapted in business	- 2
	AN Atomic is some a EMILANIANT	
<u> </u>	Pull magnes of change is to 19 Et a come	
	The state of the s	·
	- Well of at - 19 24 and 15 6 + 30 24	<u>-</u>
	- Tana sack added used about And and would -	
	Courn't boilers	
	NOTE: DUE to DURE SMITTLE No contrato of Engage	<u> </u>
	collapse of business contract mixing from	. ~
	sonds of sand sock morals	
0942	Sand sack sounded @ - 25 Et ofte 3/2	
0.20	ford market polit ended a - 1.5 Et a-ta 11/2	·,
0935	Added when to feel and quelled a solution a solution	-
1000	Egyptient classed and loaded to move the	
1010	Town - King	
1245	Protective scetch to ex during the and to the to	NS 114
	garried into place	
1300	Depart site for day	
10/16/36		
<u> ०१५०</u>	Move on site set up nig	
0945	Docue split special immediately adjacent well from CC 1	5 41.
	drove split space from 15-35 ft.	
0955	Depont s.te	
	10/16/86	/ :
	DATE SIGNED	
	COURCE: Englemental integer and Engineering In	ac 1980

	•				
	Boring No.	T3-]		Location Coordinates	
	•	12" Nominal	Slot 0.010"		E 1,655, 200.9
	Screen Len	igth_ 15'	Mat'1 Sch 40 PVC	Filter Materials Con	
		4" I.D.		Grout Type Type I	
	Casing Len	gth_ 9.1'	Mat'1 Sch 40 PVC	Development CENT	rifugal Pump-1756M
1		4" T.D.			5.59 MSL (10/19/86)
	Date Start	10 15 86	Finish 10/16/86	Top of Well Elevation	
	Contractor	ESE	Driller PAThoma	Drill Type_	HOLLOW STEM AVECTE
	Depth (feet)	Sample	Lithology, Color	Sketch of Construction	Standard Penetration Blow Count
2	0015	Langth			
	0.0-1.5	15"	SP, Sand, fine gr., poorly geoded, white 104881, not plastic, loose, day, massive budding		2 - 3 - 5
	1.5-3.5	24*	SP, Sand, continuation of above, at -2.3' becomes: SM, Sand, finegre, ~5- 10% silt, poorly graded		2-3-4-6
			dk. brown 104R3/3 from 2.3-3.c ft, becomes 1t. grayish brown 104R7/2 from 3.0-3.5ft. sl. plastic, med. dense, moist -to-wet		
	3.5-8.0	M. <u>₹</u> 4.2,	SM Sand, fine -to-comes gr, -10-15% silt, mod gracked, brown 7.54R4/4, sl. plask, loose-to-med deuse, moist - to-saturated below 4.5ft.		
	\$. ⊙-2 0. 0	·	SM, Smd, fine-to-med gr, -15% silt, poorly graced, It brownish gray loreolz, sl. plastic-to-plastic, med. dense, becomes graylores/1 from 15-20 ft.		
П	20.0		END OF BORING !		·

Logged By: Tondana	Client:	OEHL- TYNDALL AFB
Drilling Contractor: ESE	Location:	ZONE #3 - POL AREA A
Drilling Contractor: ESE Driller's Name: PAUL THOMAS		ber: 96378
Weil Number: 13-7	Date/Tim/	e: Start 10 15 84 Finish 10 16 84
Comments (Lost circulation interval, Water le		
Continuents (Cost cuconstion authors)' water is	ei changes, noie cons	shad unrestant atorit
		•
Deaths in Reference	 	
Depths in Reference		
to Ground Level		
Top of + 3.8		
Protective Casing T 3.0	——	—— Locking Cap
	1	Restautive Dine Cl \ / #
ر برد ا ر ی در	=	Protective Pipe Type, Diameter Steel, 6"
Top of Well Casing + 3.6	~ 1	Type, Diameter
0, 10177.0	100000	Cement/Gravel Pad
Top of Cement—		
	 	
VI .		
2.44.	 	
Bottom of Protective Casing -2.0'		
Ground Water - 4.5'		
Gloding Water		
		Type of Grout TYPE I PORTLAND
		— Type of Grout ————————————————————————————————————
	F	Casing: Carrier Discharge
		Type Sch 40 PVC (TRI-LOC) Diameter 4" T.D.
[]	1 1	Couplings: Type FLUSH - THREADED
		Number 3
		Depths -14.0', -9.0', - 4.0'
Top of Bentonite Seal -2.2'		
Bentonite Seal		Type of Plug BENTONITE PELLETS
Top of Gravel Pack -3.3'		- type of Plug Destroyer
Top or Graver Pack		
Top of Screen -4.0'	-	- Gravel Pack: COARSE BLAST SAND
Top of Screen	ㅋ	Material Comese Dunsi Jand
	뎤.	
	3+	Screen: 5 110 Dus (
	의 :	Type SCH 40 FVC (TRI-LOC)
٠٠٠٠	달시 -	Diameter 4 T.D.
		Length
	덬	Slot Size O. O.O.
	뭐니	
	31	
-1001	덟	15. 10
Bottom of Screen -19.0'	끅	- Bore Hole Diameter 12" NCM INAL
Total Depth -19.5'	T . ⋅	
of Bore Hole		
	\	
•	inanded	NOT TO SCALE
	Threaded Bottom Plucy	
F-1	3 DCHOM	
-	Plua	
	٠	

Boring No.	
10/15	
10/15	
1600	Areaux ou site set vou level ria
1605	Unload Equipment and supplier proports to do !!
1610	Cook hole w/ 6" ID Hollow Stem Angen and
	Returnable plug, advance to 5 ft.
1615	Advanced to 15 Ft.
1620	Advanced to 20 ft, terminated bring
	Set well words augens (15' scnew, & \$1 acted)
	Popped out retrievable plug, will set & -195 ft
	pulled up augens
16.25	Added gravel pack, sounded @ 3.3 ft often
	50 lbs added buntou to pullets
1630	Added water to facilitate swelling of busho te
18.79	pollets cleaned egypount and landed it
	pack outo mid any 2000 to the
1645	Drillers prepare to travel to Grany FL to retrieve
	commitment split spron apparatus; depart site fois day
10/16	
1010	Arrive on site set up rig
1015	Drove split spech (immediated adjacent to well)
	facon 0.0-1.5 ft.
1020	Drove solit spoon from 1.5-35 ft.
1025	Duy holes for puretive posts, granted purketive
	cover and posts into place
1042	Departed site
	10/16/86 M/
	DATE SIGNED
	SOURCE: Ford comments 1 Science and Fordingering Inc. 1980

F-19

Boring No. To-4		Location Coordinates N 386,657.7
Hole Size 12"	Slot U DIC "	E 1,660,567. L
Screen Length 15 ft	Mat'1 SCH 40 PVC	Filter Materials Cince Fine TAND
Diameter 4" T.C.		Grout Type TUDE T PORTLAND
Casing Length 6,2 Ft.	Mat'1 Sch 40 PVC	Development CENTRIPULA PUMP - 205 GAL
Diameter 4 T.D		Static Water Level +20.51 msc (10/19/8
Date Start 10 3 30	Finish 10/1/86	Top of Well Elevation † 26 22' MSC
Contractor ESE	Driller Paul Tro	MAR Drill Type House Com Acces

Depth (feet)	Sample Lear	Lithology, Color	Sketch of Construction	Standard Penetration Blow Count
0.0 - 51		SM, SAND, FINE-TO MEDIGE, NICYLO SITT DECLAR QUE SLETARE (TO COLOTED) TOTRUTU DECLAR OF CAME COMMING STOUN 2985 LA COMMING STOUN 2985		5-3-10
1533	# # **	Sin Sand Thermond of the sand	ZEE Americal	
		SM SANT FRE-FILMER GO , A DILLE TOARK ENLIN DIRECT MED FLIRBY GOALLE MED LOSE, THE DAMP SOLUTION TO S' DIMTE		
JP 2.	·	END 67 87 2 NG		

SOMERCE: Environmental Science and Engineering, Inc., 19 P. F-20

Logged By: VORDANA	Client: UEHL - IANDALL AFB
Orilling Contractor: ESE	Location: Zone # 6 - HWY 98 FTA
Driller's Name: PAUL THOMAS	Job Number:
Well Number: T6-4	Date/Time: Start 10/8/86 Finish 10/9/86
Comments (Lost circulation interval, Water level c	
Comments (Lost Circulation interval, water level C	manges, note conspse interval, etc.,.
Depths in Reference	
to Ground Level	
Top of Protective Casing +2.4	Locking Cap
Protective Casing Taring	Locking Cap
	Protective Pipe
Top of Well Casing +2.2	Protective Pipe Type, Diameter STEEL, 6
0' 1007200	Cement/Gravel Pad
Top of Cement	1 ·
	Λ
	1
Bottom of 101	
Bottom of Protective Casing -1.0	<i>A</i>
_ 40' 1 _ 1	
Ground Water —	
	Type of Grout PORTLAND TYPE I
1/1	Type of Grout TOKTLAND 1 TIPE 1
	/
VI 1	
ן גו	Casing: C 10 D(C T)
. [/]	Casing: Sch 40 PVC (TRI-LOC)
	Diameter 4 I.D.
	Couplings: Type FLUSH - THREADED Number 3
	Number 3
VI I	Depths -13.5' -8.5', -3.5'
Top of	
Top of Bentonite Seal - 1.0'	Type of Plug BENTONITE PELLETS
-2.D'	Type of Plug DENTONITE JELLETS
Top of Gravel Pack	7.7.
Tag at \$2000 - 3.5'	Gravel Pack:
Top of Screen	Gravel Pack: COARSE BLAST SAND
	<u>.</u> -{
, ,	• • • • • • • • • • • • • • • • • • • •
	Type Sch 40 PK (TRI-LOC)
, ,	Diameter 4" T.D.
1	Length 15 ft.
	Slot Size O.O.O."
	'. .'-[
	.,1
	<i>:</i> .}
	$\langle \cdot \rangle$
Bottom of Screen - 18.5	Bore Hole Diameter 12" Non INAL
10.01	Bore Hole Diameter
Total Deptil	
of Bore Hole	
\	MAT TA AAA. T
Threaded NOT TO SCALE	
D 1 D1	
Bottom Plug	
	F-21
	

l =	ing No. TG-4 SHEET - OF
1	· · · · · · · · · · · · · · · · · · ·
	15/ २/४८
	1345 - Move onto site set-us and level 20
	1350 - Unisad supplier and Equipment
	1405 - Doug 501 - FRIGH Spent CO-15 54
	Opened hole will to I >
	1415 - Advanced to 10 ft.; WIT @ 4 ft
	1+20 - Advanced to 10 th, will compare busing
	1425 - SEL WELL MAINE OF ALGER (15 SERVING
	- D. Annance will regard up to 10 2- 11-
	Expression of States = -
	- Post out netrievable of a contraction
	<u> </u>
	145 - And aske see early a - 3 1 2 - 1-20
 -	Put bags (securios)
	1 billet (50 160)
	140 - Wazu nidad of his to face of the
	nexamine peliet
	1445 - Equipment cleaned and parked in Do-17-15
	bast hotel dia
	150 - Depart From site
	0930 - Protective CABING and Doct an are we was
	steen Andrea Liniah Tanin - Carrier -
	dellen = = a=o co st No- Indiant
11,	! 36
- ,	- Wall prepared by the godingst
	
	rolaise. Markette -inc.

•

Boring No.	T6-5	<u> </u>	Location Coordinates	
iole Size_	2" Nomina	Slot 0.010"		E 1,660, 197.6
Screen Leng	th_15'	Mat'1 Sch 40 PVC	Filter Materials Con	
lameter	4" I.D.		Grout Type Type I	
asing Leng	th	Mat'1 Sch 40 PVC	Development CEN	mitigal Pump - 300
lameter	4" T.D.			20.73' MSL (10/19/30
ate Start_	10/8/86	Finish 10 16 86	Top of Well Elevation	+ 29.37 MSL
Contractor_	ESE	Driller PAThoma	Drill Type_	HOLLOW STEM AVGER
Depth (feet)	Sample Length	Lithology, Color	Sketch of Construction	Standard Penetratio Blow Count
0.0-1.5	18.	SP FILL, SAND, FINE que!	·	3-3-6
1.5-3.5	18"	poorly graded, white-to It. gray 7.54880, not plastic, loose, dry, HNU Reading L IPPM SP, FILL, sand, continued as above, sharp contact at -2.5 ft. becomes:	See	4-4-4-8
3.5-20.0	WT € 6	SM, SAND, fine qr., ~10% s. It, brown at top 104R4/3 (Soir Horizon) becomes buff at base 104R6/3, not plastic, loose - to - med. dense, day - to - sl. moist SP, SAND, fine to - med. gr., white 2.548/0 to -12 ft becomes dark brown 104R3/2 from -12 to - 20 ft., poorly graded, not plastic, moist - to - saturated below - 6 ft., MEd.	AHAChed	•

Environmental Science and Engineering, Inc., 1980 F-23 SOURCE:

OF BORING

dense

END

20.0

Logged By: JORDANA		Client: OEHL - TYNDALL AFB
		Location: ZONE # 6 - HWY 98 FTA
Drilling Contractor: ESE Driller's Name: PAUL TH	OMAS	Job Number: \$6378
Well Number: T6-5		Date/Time: Start 10 9 36 Finish 10 16 86
Comments (Lost circulation interva	il, Water level changes	
	•	
Depths in Reference	,	
to Ground Level		
Top of 139		
Protective Casing + 3.9	·	
		Protective Pipe
137		Protective Pipe Type, Diameter STEEL, 6
Top of Well Casing + 3.2	 	
O' 10/7/2/10		Cement/Gravel Pad
Top of Cement————	f Y	•
	и и	
	ν	
Bottom of Protective Casing -2.0'		
Protective Casing		
Ground Water - 6.0		
		T. TD
		Type of Grout TYPE I PORTLAND
	\square	•
	I	
		Casing: Suita Buck
•	\mathbf{r}_{1} \mathbf{p}_{1}	Type Sch 40 PVC (TRI-LOC) Diameter 4" T.D.
	v ra	Couplings:
		Type FLUSH - THREADED
		Number 2 Depths - 14.0', - 9.0', - 4.0'
7-0-04		Depths = 14.0°, = 1.0°, = 1.0°
Top of Bentonite Seal -2.3	ra vi	2 2 -
2.11	-	Type of Plug RENTONITE TELLETS
Top of Gravel Pack		
-4.0		
Top of Screen		Material COARSE DLAST JAND
	1 - 1 - 2 - 2 - 2	
	··	Screen: Sau 110 Pic (500 100)
		Type Sch 40 PVC(TRI-LOC)
		Length 15 H
		Slot Size O. O.O.
~19.01		
	-	Bore Hole Diameter 12" NOM INAL
Total Depth 19.5'		
of Bore Hole	7 _	
	Thread	NOT TO SCALE
	Thread BoHom t F-24	N
	DO TOM T	109
	F-24	

POLITE NO.	76-5 SHEET 1 OF 2
10/2/96	
1510	More on site set in and level era
	Unicad SUDDIFF And EQUIPMENT ASSEMBLE SCHOOL AND CALLED
1525	Dove soll sein from 00-15 CL
1530	Print 501 - 501 A GUM 15-35 PL CON 2010 W. T.
	ID Holley Stone Avora and astronable
1535	Adjunced Augen to 20 ft WTQ - 6 54 END OF TOLLING
1540	SEL WELL KEINE OF ALGEN (15 A SCRUM 5 A STATE
	Algers removed from boneful = - We == 6
	- 2 0 1 4.
15745	Anted gamet pack; sounded @ - 3 5 Ex aller 4
	(2) (bs) sand added
1557)	But wit all to added sounding would not am as-
	After 21/2 backet (07-16) find & -35-54
1600	* SANT DAR. ADDROVED AND CONTROL ATTO CONTROL
•	CAUSED SAND SAND OND HENTINE & DO T
1,5Q	Die and see geringst gave with a seen that
	questionable deside the built of aut area -
سسے ہے۔	Depart the fin the name
	· · · · · · · · · · · · · · · · · · ·
10/2 76	
0900	France on she set-up no
500	Poil NEIL FROM LOSIE
0915	Great beneficle to evalues
0925	DopAnt S.te
	·
10/15/3	<u>sc</u>
1215	More onto site, set up and level ria
1240	Open hole with 6" I.D. Hollow Stom Augen and
	retrievable plus advance to 5 ft.
1245	Continue myering; advance to 10 ft.
1250	Continue purposing advance to 20 ft; bearing
1255	WEIL set inside Augens, lower 3 ft. of Augens
	filled with sand, priventing will from being set
	At propen depth -
	
	

Boring No	TG-S (CONTINUED) SHEET Z OF Z
1300	Pulled well up, pulled Augers from bonehole, dismixubl
	And cleaned Augenes
1325	Re-entered borehole; Advanced to 5 ft.
1330	Continued Augening advanced to 10 ft.
1335 1340	Continued Augraing Advanced to 15 ft. Continued Augraing Advanced to 20 ft. teaminated
	bosinis : well set mende ancies of -19 5 ft
1342	boring; well set inside avgens at -19.5 ft. Avgens pulled from hole; gravel pack added sounded at - 3.4 ft. after 31/2 bogs (3.50 lbs)
	sand Added
1350	Added bentonite pellets, sounded at -2.3 ft. often
·	Added to facilitate swelling of bunton to pullets
.1355	Equipment disassembled and cleanled; stoud file transport
1400	EP Toxicity SAMPLE taken from cuttings pile due
1410	Depart site for day
10 16 80	
1135	Holes duy for protective posts: protective cover and
1200	Depart site for day
	3
	
	·
	10/16/86 Man (Lordanna)
-	STORED
	SOURCE: Environmental Science and Engineering, Inc., 198

. . . .

,				
Boring No	· 18-3		Location Coordinates	N 397,666.7
Hole Size		Slot 0.010 "		E 1,653,973.3
Screen Le	ngth IS'	Mat'1 Sch 40 PVC	Filter Materials C	CARSE BLAST SAND
Diameter_	4" I.D	·	Grout Type TYPE	I PORTANO
Casing Le	ngth_ 5.0 '	Mac'1 Sch 40 PVC	Development CENTR	Frank Pump - 173 CAR
Diameter_		, ,	Static Water Level +	6-41 MSL (10/96)
Date Star	t 10/1/86	Finish 10 9 86	Top of Well Elevation	+ 10.34' MSL
Contracto	r ESE	Driller Paul THO	Drill Type	below STEM AVGER
Depth (feet)	Sample	Lithology, Color	Sketch of Construction	Standard Penetration Blow Count
0'- 1.5'	6. 7	SM - SLITY MED FINE GRAINED SIND MIDDISHT BLACK COLOR RESIONE IN MATRIX BLACKEH GROW (NO HAN RESPONSE) HAT PLASTIC JOENSE, COMPACT, MOIST	ATRICHED	3-4-6
1.5'- 3.5	1.8	SM - SAME AS B -1.5', SATURATED Q-3.5'		4-5-7-14
		SM SAME - LEAVET BLACK ROSIONE ON HANDS, NO HAN RESPONSE		
18,		Evo et Boring		
		, •		

SCHIRCE: Environmental Science and Engineering, Inc., 1980

Logged By: ELLICIT		Client: CEHL - Tyndal AFR
Drilling Contractor: ESE		Location: ZENE # 9 - GCCC AREA LANDFILL
Driller's Name: PANE THO	MAS	Job Number: 36378
Well Number: T3-3		Date/Time: Start 10/1/86 Finish 10/9/86
Comments (Lost circulation interva	Water level changes	Hole colleges interval atc b
Comments (Last and station interve	ii, water ierei change.	, riole conspec interval, etc.,
Depths in Reference		
to Ground Level		
Top of + 2.8 Protective Casing		
Protective Casing T 2:0	-	Locking Cap
	l -	Protective Pipe
Top of Well Casing +2.5'		Protective Pipe Type, Diameter Str E 6"
O'RODICE		,
<u> </u>		Cement/Gravel Pag
Top of Cement		
Bottom of O. 6.4	ν	
Protective Casing — C. 1		
Ground Water 3.5'		
Ground Water	┞┸ ┤ ├ ─ ┼─	
	IЛ И	T T D
		Type of Grout Type I PORTANIL
	I $ I $	·
		•
		Casing: Type Sch 4C PVC (TR1-LCC) Diameter 4" I.D.
•		Diameter 4" I.D.
		Couplings: Type FLISH THREADED
	VI YI	Number 3
		Number 3 Depths -12.c., -7.c., -2.c.
Top of Bentonite Seai - 0.9'	rj rj	,
Bentonite Seai		Type of Plug BENTENITE PETLETT
Top of Gravel Pack - 2.0'		•
- 2.0		Gravel Pack:
Top of Screen		Gravel Pack: CORESE BLAST SAND
	-	Screen: C. IIA Dire (
		Type Sch 40 PVC (TRI-LCC)
		Diameter 4" I.D. Length 15 ft
		Slot Size O.C.IC. II
	- [[]]	
- 17.0 °		17 "
-17 C/		Bore Hole Diameter 12" NUMINAL
Total Depth		
of Bore Hole	7	
	Thresded	NOT TO SCALE
	Bettom Pl	مر
	F-28	<u>ر</u>

Boring No. T8-3	SHEET 1 OF 1
10/1/86	
1655 WAVE ONTO SITE, ST WP RIG	
1700 Levering Rig	
1705 mulan Supplies	
1710 Deave prof 5000 0 101.5	
1715 DRAVE TOLIT Speed From 1.5' 78 3.5'	
1720 ACCULHAGE WILLS + RETRIEVABLE DING	
133 PONDACINE 12 2,	
1735 ADVANCING TO US	
1740 ADVANCED TO 18 END OF BORING	
1742 ATTEMBLING DIK IN DELL (15, ZCEOCH 12, 2010)	
1750 pre DOWN 1 SET (3-172", DWLING ANGERS	- Stick no = 2.8
1800 APPED SONO - SONNOCO @ - 2' AFTER 4 FOR	
1805 ADDING PENTALITE PENETT - DIMERO G - 7.4 A	
OUT OF PRINCIT - NOED TO MORE TO THE	12 w 10 - 2.0'
1812 DACKING ND CIENTING MICERS	
1830 Depart TITE FOR Day	
	
10/8/86	·
07-15 Added 2/s broket bentonite pellets, sound	od @ 0.9 ±+
0955 Post holes dua	
1005 Departed site	
1019186	
Posts and protective chang growted	into place [peatcamed by
	ite geoligist - time
NACERTAIN)	
1610 - Well completion inspected by s	te geologist
	and II
10/9/36	Man fordance
DÁ1E ' F-29	SIGNED
	ence and Engineering, Inc., 1980

•

				· · · · · · · · · · · · · · · · · · ·
Boring No.	T8-4		Location Coordinates	N 397,440.0
Hole Size 12" Nominal Slot 0.010"			E 1,654,C2C.7	
		Filter Materials Con	HRSE BLAST SAND	
	4" T.D.		Grout Type Tupe	I PairHand
Casing Len	gth 7.8 ft.	Mat'1 Sch. 40 PVC	Development Contr	. Figal Pump-215GAL
Diameter 4" T.D.			Static Water Level +	7.53'MSL (ic) 19/26)
Date Start 10/9/86 Finish 10/16/86		Top of Well Elevation	+14,24 MSL	
Contractor ESE Driller Paul Thomas		Drill Type	tollow Stem Auger	
Depth (feet)	Sample	Lithology, Color	Sketch of Construction	Standard Penetration Blow Count
	Length		<u> </u>	

Depth (feet)	Sample	Lithology, Color	Sketch of Construction	Standard Penetration Blow Count
0.C 1.5	18 11	SP, SAVD, Fine-to-mid ge, poosity granded, It brown top 6" (suit horizon) 104RB/1 becomes white 104RB/1 lower 12", nut plantic, locse, day to st. mo.st		2 - 2 - 3
1.5-3.5	24"	SP, SAND, fine gr., white 10488/1, pucify graded, NOT plastic, love, slightly Moist, MASSIVE budding		3-7-7-10
3.5 - 9.0 '	ML ₹ 40,	SP, continued as about becomes sphurated below 4'	Attached	•
90-140'		5M, Sand, Fine gr., ~25% 5. It, dank buown 54R3/2, slightly plastic, saturated, HNV reading ~ 1 PPM (headspace method)		
14-19 '		SM, same as above becoming grayish brown 10485/2, reduced to		radacca.
19.51	-	~ 100% silt at base of section END OF BCRING-F-30		

Logged By: Tordana	Clients	OEHL-TYNDALL APB
Drilling Contractor: ESE		on: Zone 48 - 6000 Area Lindfil
Drilling Contractor: ESE Driller's Name: PAVL THOM	185 Job Ni	umber: 86378
Well Number: T8-4	Date/T	ime: Start 10 9 86 Finish 10 16 86
Comments (Lost circulation interval,	Water level changes, Hole c	ollapse interval, etc.):
Probables covers and	noch stick sun	relatively high due to to avoid inadventent damage
Indecting space was	bosis story ob	in the state of th
obscurity of location	on in an Altempt	to avoid inadventent damage
Depths in Reference	•	
to Ground Level		
700.04		
Top of + 4.0' Protective Casing		Locking Cap
Protective Casing————————————————————————————————————		• •
امدا		Protective Pipe Type, Diameter_STEEL, 6"
Top of Well Casing +3.8	<u>4</u> ——7	Type, Diameter
0, 2000	7 7 7	Cement/Gravel Pad
Top of Cement		
	1 /I '	
I I		
Bottom of 1 11	1 1/1	
Protective Casing	4 T.	
_4 /	_	
Ground Water ————————————————————————————————————	¥	
	1 1/1	Type of Grout TYPE I PORTLAND
ſ		Type of Grout TAPE I TORTLAND
	1 1	
	1 1	
	/ [- -	Casing: Sou Un Dice (TRU-100)
· · · · · · · · · · · · · · · · · · ·	1 1/	Type Sch 40 PVC (TRI-LOC)
	a ri	
<i>Y</i>	1 И	Couplings: FLUSH - THREADED Number 3
i	a i	Number 3
7an at		Depths -13.5', -8.5', -3.5
Top of Bentonite Seal - 1,4	1 I J	
-2 5'		Type of Plug BENTONITE PELLETS
Top of Gravel Pack -2.5'		
		Gravel Pack: C
Top of Screen -3.5'	-	Gravel Pack: CARSE BLAST SAND
,		Screen: S No Dis (779)
١.		Type SCH 40 PVC (TRI-LOC)
•		Diameter 4"I.D.
· [:	-	Length 15 Ff. Slot Size 0.010"
• ₂		Slot Size O. C. O. "
1.		
 		
ļ.·		
Bottom of Screen - 18.5'		in II . in
-10 5'	-	Bore Hole Diameter 12" NOM INAL
Total Deptili — — — — — — —		
of Bore Hole	ρ.	
	Threaded Bottom Plva	
	الا ال	NOT TO SCALE
	Dottom Ylva	
	F-31 -	١

Boring No.	T9-4 SHEET OF
10/9/96	
1620	Arrive at Zune 8 AREA, Suzvey area with Joselana,
	Schulze Dietzel and Hunten present
1715	
	to set up on site
1130	Daill aig becomes stuck in soft sand, must be
	RMSED ON JACKS and dug out -
1325	Depart site for day
1930	Depart site tou day
10 10 36	·
0645	AMERINE ON SITE SET US AND LEVEL DIG
0643	
	Unload supplies and equipment, ASSEMBLE WELL CASING
0715	Doore split speen from 0.0 - 1.5 ft.
· C72C	Drave split spice from 1.5.35 ft.
0125	Com hele wil 6" I.D. bellow stem Augere and
	REPRIEVABLE Plug
	Advanced to 5 ft; WT to 4 ft.
0730	Advanced to 15 ft
0735	Advanced to 19.5 ft., End of being
0740	Set will inside of Augen (15 ft. schur, 5 ft. iclid
·	- Pop out retremeble plug; pulled up migus
	- WEIL SEF (a) 19.5 H.
0745	Added games pack; sounded @ - 2.5 ft. offer
	350 lbs gravel Added (31, BAGS)
0750	Added bentonite pellets, sounded @ -1.4 ft. atten
	75 lbs pellete added (1/2 buckets)
0155	Water added to have to tracilitate swelling of
0300	Eaviount cleaned, site cleaned
,0925	Depart site for day
10/16	DEPART SIRE FROM
1055	Posts and protective coming another into place
1120	Dearnt site
	10/16/86 Mark Comband
**	DATE STENED
	F-32 SOURCE: Environmental Science and Engineering, Inc., 198
	MANNON FRATIONMENTS SCIENCE SUG SUSTINESSINES INC. 136.

.

;

Boring No	· T9-3		Location Coordinates	N 390, 851.2		
Hole Size 12" Nominal Slot 0.010"				E 1,655,686.1		
Screen Le	ngth 15	Mat'1 Sch 40 PVC	Filter Materials Comese BLAST SAND			
Diameter_	4" T.D		Grout Type TYPE I PORTLAND			
Casing Le	ngth 6.8'		Development CENTER	gal Pump - 200 GAL		
Diameter_	· 4" I.D			20.00 MSL (10/19/36)		
Date Star	10/5/8	Finish 10 6 86	Top of Well Elevation	1 + 28.42 MSL		
Contractor	r ESE	Driller Paul THOM	Drill Type_	Howar STEM Augen		
Depth (feet)	Sample	Lithology, Color	Sketch of Construction	Standard Penetration Blow Count		
[# COSTA	LECE MINUSON				
0'-	0.5	SP- PORRY GRADED FINE CRAINED SAND LUDTO BLY 104RC/2- LT, EDMINSH GRAY		2-4-6		
		DEG. MATIL PRESENT RANDOMLY DIETR.	SEE Attached			
3.5	2 1.0	SP-SAME ATO (15) ENDOPT BECOMING MOIST DOWNING	SHEET	4-2-2-4		
5'-		22 Seconding Satheries				
6	=					
10' - 20'		ST- FIRE GRAINED SAMD - BLACK, IN AN OILY		•		
		BLACK MATTELL, DENSE/ COMBITE, SLIPLASTIC, SATURATED W/ OILY REPROSES. CENT SHEEK) IN "OIL" COOR				
		HUM; HENDEDERE OF BACKERSOND & I FORM				
-20'	_	END OF BORING F-33		:		

SOURCE: Environmental Science and Engineering, Inc., 1980

		Client: CEHL THOOL AFB		
Drilling Contractor: ESE		Location: SOL AREA SOO Job Number: \$278		
Driller's Name: PAW Turn	15			
Weil Number: T9-3		Date/Time: Start 1015 Finish 1068		
Comments (Lost circulation interva-	i, Water level changes	, Hole collapse interval, etc.):		
J				
Depths in Reference	 _			
to Ground Level				
Top of + 2.6		Locking Cap		
Protective Casing				
	l -	Protective Pipe Type, Diameter 6" 5184		
Top of Well Casing + 2.3	ا بر کیا	Type, Diameter 22 310		
9 10000		Cement/Gravel Pad		
Top of Cement				
•				
Bottom of Protective Casing -1.5'				
•				
Ground Water				
		_		
		Type of Grout Type I PORTLAND		
		•		
	r 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
		Type SOLED 40 DIC (TELLOC		
·		Diameter 4" 1.D.		
		Couplings:		
		Type FUSH THERADED Number 3		
		Depths9',-4',+1'		
Top of		, ,		
Bentonite Seal		Type of Plug 12" BENTON TO DELLETS		
Top of Gravel Pack -2.5				
		Gravel Pack:		
Top of Screen		Malenal COARSE BLAST SAND		
·				
		Screen:		
		Type SCHED, 40 OKC TE: - LOC)		
		Diameter 4" 1, 0,		
		Siot Size O.O.o."		
•				
	1			
		•		
Bottom of Screen -19		Bore Hole Diameter 17 hours		
Total Depth — -20				
of Bore Hole	1			
	THREADE			
	Bottemy	NOT TO SCALE		

DUE W/HJA + BOTTEM CAD
IOLS W/HJA + BOTTEM CAR
IDER W/HJA + BOTTON CAP
ace ~ 50000)
300
ckeconno -
ERS - 3.5 strong
<i></i>
Test -
०००० इन्हर
COUT IN POSTS + WELL,
I portraid
T box rand

(UKP ·
MCE .

	•				
Hole Size 12" NOMINAL Slot 0, 010" Screen Length 15' Mat'1ScH 40 PVC Filter Materials COARST BLAST SAND Diameter 4" T.D. Casing Length 5.7' Mat'1ScH 40 PVC Development CENTRIFUGAL PUMP - 153 G Static Water Level + 15, 10' MSL (10 19) Poste Start 10 766 Finish 10 666 Top of Well Elevation + 23, 94' MSL Contractor ESE Driller Payl: Thomas Drill Type Hollow Stem Auge Depth (feet) Sample Lithology, Color Sketch of Construction Standard Penetration Show all 1010 Sight Show all 1010 Sight Show all 1010 Sight Show Show Show Show Show Show Show Show	Boring No.	· <u> </u>	4		
Screen Length 15' Mat'1 Sch 40 PVC Filter Materials (OMBST BLAST SAND Diameter 4" T.D. Casing Length 5.7' Mat'1 Sch 40 PVC Development CENTRIFYCAL PUMP-153 George Diameter 4" T.D. Diameter 4" T.D. Date Start 10 1866 Finish 6686 Top of Well Elevation + 23.94' MSL Contractor ESE Driller Payl Thomas Drill Type Hollow Stem Auge Contractor Sample Lithology, Color Sketch of Construction Standard Penetration Show Count SM/SP - Fine Grants Sketch of Construction Show Count SM/SP - Fine Grants Sketch of Construction Show Count SM/SP - Fine Grants Sketch of Show Count SM/SP - Fine Grants Sketch of Show Count SM/SP - Fine Grants Sketch of Construction Show Count SM/SP - Fine Grants Sketch of Show Show Show Show Show Show Show Show	Hole Size	12" Nomin	JAL S106 0. 010"		
Diameter 4" T.D. Casing Length S.7" Mat'l Sch 40 PVC Development CENTRIFUGAL PUMP-153 G Diameter 4" T.D. Date Start 10 5/86 Finish 10 6/86 Top of Well Elevation + 23.94" MSL Contractor ESE Driller PAUL THOMAS Drill Type HOLLOW STEM AUGE Depth (feet) Sample Lithology, Color Construction Standard Penetration (feet) SM/SP - Fine Grantic Show Count SM/SP - Fine Grantic Show Show Show N ~ 1070 Sill Sill Show Count SM/SP - Fine Grantic Show Show Show Show N ~ 1070 Sill Show Show N ~ 1070 Sill Show Show Show Show Show Show Show Show	Screen Ler	ngth15'	Mat'1 Sch 40 PYC	Filter Materials Co	ARSE BLAST SAND
Diameter 4" I.D. Date Start 10 4 65 Finish 6 6 6 Top of Well Elevation + 23.94 MSL Contractor ESE Driller PAUL THOMAS Drill Type HOLLOW STEM AUGE Depth (feet) Sample Lithology, Color Construction Standard Penetration SM/SP - Fine Grantes Supply 1 - Grantes SUPPLY SAMPLES SAMPLE SUPPLY SAMPLES SAMPLE SHEET ATACHEO SHEET SUPPLY ON MATERIX, SEE ATACHEO SHEET STEAKE, ON MATERIX, SEE ATACHEO SHEET STEAKE, ON MATERIX, S	•	4" I.D.		_	
Date Start 10 1866 Finish 10 1666 Top of Well Elevation + 23,94 MSL Contractor ESE Driller PAUL THOMAS Drill Type HOLLON STEM AUGE Depth (feet) Sample Lithology, Color Sketch of Construction Blow Count SM/SP - Fine GRADIES SAND 10 10 10 10 51LT SUS / 1 - GRADIES SHEET 4'- CO' -1' SM/SP - OILY FINE GRADIED SAND BLEEK - OILY FINE SPLANTIC, DOWNER STINKATED, STRONG GROW	Casing Ler	ngth	Mat'1 Sch 40 PVC	Development CENTRI	FUGAL PUMP-153 GA
Contractor ESE Driller PAUL THOMAS Drill Type HOLLOW STEM AUGE Depth (feet) Sample Lithology, Color Sketch of Construction Standard Penetration SM/SP - Five GRANCES SNOW 1070 SILT SU 5/1 - GRAN, NOT PLASTE ATACHEO SHEET SM/SP - OILY FINE GRANCE SAND BLACK - OILY MATTER, SLIPHASTED, STRANG GRANCE STURMED, STRANG GRANCE STURMED, STRANG GRANCE Drill Type HOLLOW STEM AUGE Sketch of Construction Standard Penetration Blow Count SET ATACHEO SHEET	Diameter_	4" T.D.	<u></u>		
Depth (feet) Sample Lithology, Color Construction Standard Penetration SM/SP - Fine GRANATO SNOW IN 1070 SILT SUS 5/1 - GRAN, NOT PLASTIC ATACHEO SHEET SM/SP - OLLY FINE GRANATO SHEET SL. PLASTIC, OSISE, STORATEO, STROKE OSOFT	Date Start	10/3/86	Finish 6/6/66		. ^
(feet) Sample Lithology, Color Construction SM/SP - Five GRANCE SMOD N ~ 10 % SILT SUS / 1 - GRAN, NOT PLASTIC ATACHEO SHEET SMSP - OLLY FINE GRANCE SAND BLEEK - OIL MATTERIX, STURATED, STROKE OPER	Contractor	ESE	Driller PAUL TH	OMAS Drill Type	HOLLOW STEM AUGEN
SHOW IN 1070 SILT SUST, DOWN SHEET		Sample	Lithology, Color		Standard Penetration Blow Count
SMSP- OLLY FINE SOL TIME SELECT - OLL MATTER SL. PLASTIC, DONSE, SATURATED, STRONG ODDR			545/1 - GRAY, NOT PLATE		
SCHINED SAND BLEX - OIL MATTER, SL. PLATIC, DONSE, SATHRATED, STRONG OBOR				SHEET	
SATHRATED, STRONG ORDE	20'	6.5 <u>5</u>	GRAINED SAND		
			SLIPLASTIC, DONSE, SATURATED, STRONG ODDR		
			•		
			-		
			,		
		·			

SOURCE: F-36
SCHERCE: Environmental Science and Engineering, Inc.,

Logged By: W. Ellist		Client: OE	HL TYNDAU AFTS
Drilling Contractor:		Location: PC	APEA 500
Driller's Name: PAW Trame	5	Job Number:	86-378
Well Number:		Date/Time: S	tart 1=196 Finish 10/6/86
Comments (Lost circulation interval	Water level change	es. Hole collapse	interval, etc.):
Commitants (cost circulation interval	, 11 4 (0) 10 (0) 5 (10) 5	56, 656,65	
B			
Depths in Reference			
to Ground Level			
Top of +2.4			Laskins Oss
Protective Casing T2.1			Locking Cap
· · · · · · · · · · · · · · · ·			Protective Pipe
2'		-	Type, Diameter Steel, 6"
Top of Well Casing			
0 17 (10 m)		0220	Cement/Gravel Pad
Top of Cement————			
-	ν		
	\mathcal{A}		
Bottom of Protective Casing -1.0'			
Protective Casing - 1.0			
-7'			
Ground Water ———	け オ		
			Type of Grout Type I FORTLAND
			Type of Grout
	/ 		Casing: Type SCH 40 DVC (TE; -Loc) Diameter 4" L.D.
			Diameter 4" L.Q.
			Couplings
•			Type TILL H THEEACED
			Number
Top of			Deptins
Top of Bentonite Seal			V 9
-7'			Type of Plug 12 BENTONITE PELLETS
Top of Gravel Pack			
			Gravel Pack:
Top of Screen	 		Material COARSE BLAST SOND
•			
			- Screen:
		-	Type SCH 40 DIC (TEI -LOC)
			Diameter 411.0.
•			Slot Size _QQQ'
			310t 3124
-121			, _ 4, ·
Bottom of Screen	• • • • • • • • • • • • • • • • • • •		- Bore Hole Dismeter 12 Hom. NAC
Total Depth			
of Bore Hole	<u>_</u> ,	TI PEADED	
	· · · · · · · · · · · · · · · · · · ·	BAR PLACE	NAT TA 864. T
		- 1	NOT TO SCALE

Boring No. 79-4	SHEET OF
10/3/80	
1520 SET UP RIG ON SITE DIE W/ DOS	THOLE DIGGERS TO -5'- OILY SAND -4'
1540 (COLLECTED ED TOXICITY SAME (B) -4' w/ SOLIT SEDEN (B)	LE TOHETHINGLENZ-ST STROKE ODOR
@ -4' w/ sout sound @ !	5:45 425 (\$ 4490000 STEPZ)
HOW RENDING! SAMPLE	: 200 pom HEADSDACE)
	cound: 41 ppm
1545 OPEN HUE W/ HSA+ OFTE INNOVER	DLUG LOVANCE TO 5'- OILM CUTTINGS
1550 AMERETO 10' - DILY SHO C	
1555 ADMICE TO IS' SILVE SAUD CH	TING T
1600 ADVANCED TO 30', PILL ANGER	- 40 1 OFF ROTON, SET CATING
NANCER W/15'SCREW, 5'S	wis stick up 20
1610 SOTTING CASING IN HOLE (3-18	
1672 BOOMES - CHES SHOOD 650	
1625 ADDING BENTONITE PELLETS - SON	NDEO Q-1'AFTER 1/2 DAIL
1630 ADDITE HED TO FEHETS	
1635 DACKING UP, WASHING ANGERS	
1645 PILL OF SITE	
10/6/80	
10/10/02	**************************************
Man Marin Contraction	STELLCONER+ GROWT WELL+ PORTS
•	S SEE STORY STORY
W OLAN	
	
in)=	AC NET
	ATE SIGNED
SOURCE: En	vironmental Science and Engineering, Inc., 1980
300000. 00	

				·	
Boring N	٥			Location Coordinates	N 396,724.9
Hole Size	e	12" N	CHIMM S10E 0.010"		E 1,655,781.3
Screen L	ength	15'	Mat'1 Sca 40 PVC	Filter Materials Co	MARSE BLAST SAND
Diameter	4"			Grout Type Type	I PORTLAND
Casing L	ength	8.3	Mat'1 Sch 40 PIC	Development CENTRIS	FUGAL PUMP - 147 GAL
Diameter	<u> 4"</u>			· · · · · · · · · · · · · · · · · · ·	3.96'MSL (10/19/86)
Date Star	rt j	0/4/8	s Finish 10/6/86	Top of Well Elevation	+ 14.13'MSL
Contracto		SE		Drill Type_	HOLLOW STEM AUGER
Depth (feet)	1.	ample	Lithology, Color	Sketch of Construction	Standard Penetration Blow Count
<u> </u>	*	477	WSES MUHSELL		
1.5	\	0.6	CYSTER SHELL RIL MATERIAL - MAN-MADE	-	6-13-13
7.75				526	
		-		ATTACHED	
1.5 -	1_		SP - MED. GRAINED SAND		
3.5	2	1.5'	1010 SLIT, possed 1042718 - YELLOW NOT PLASTIC, LOWER TO COMPACT - HOIST		7-10-11-12
5 ⁴ 9	3		SP - same as 0 1.5-3.5'		•
q'-	Ť		She stuty file grants		
	4		SAND SAUL - OLIR GRAY		
15'-	5		SIMIML SO/SO MIL, SILT + V. FILE GIR. EARLO		
20'-	6		SHY/Z- OLIVE GRAY SHIP AS (315)		
	_		and at account		

SMIRCE: Environmental Science and Engineering, Inc., 19

Logged By: W. Bush		Client: OFHL TYMON AFT		
Drilling Contractor:		Location: SKL BANK FTA		
Driller's Name: PANY TOMAS		Job Number: <u>\$6-37</u> \$		
Well Number: T/0-)		Date/Time: Start 10/4/5C Finish 10/4/5E		
Comments (Lost circulation interval, Water	level changes	s, Hole collapse interval, etc.):		
Depths in Reference				
to Ground Level				
Top of				
Protective Casing +3.6	-	Locking Cap		
*** ** Wall Carlos +3 2'	===7 ``	Type, Diameter STEL 6"		
Top of Well Casing +3.3		CompatiCassal Bad		
Top of Cement		Cementidravel Pad		
Top or cament				
r)				
Bottom of Protective Casing -1.5				
Protective Casing				
Ground Water — — — — — — — — — — — — — — — — — — —	4			
		_		
	_ 	Type of Grout TERE I PORTLAND		
\sim				
[]		Occion (
		Type SCH 40 DVC TRI-LOCE		
		Diameter 4" 1.0.		
		Couplings: Type TLUSH THREADEO		
		Number 3 Depths -9.5-4.5,+0.5		
Top of		Deptins		
Bentonite Seal ————		Type of Plug BESTEWITE CHLETT		
Top of Gravel Pack		Type of Plug		
1 • 1	[:]	a		
Top of Screen -4.5		Gravel Pack: Material COARSS BLAST 52NO		
(· ,[:::				
		Type SCH40 OVC TRI-LOC		
		Diameter 4"1.0, Length 15		
1 1		Slot Size _O. O.O."		
Bottom of Screen - 19.5				
Total Depth - 20	フト	Bore Hole Diameter 12 NOONNAME		
of Bore Hole	- [
	THE	CANCED GOTHAN		
		Fence NOT TO SCALE		
		• =		

Bering No. Tio-1	SHEET OF
10/4/00	
1730 SEKING RIC UP ON SITE, RULDADING	
1740 DEAK 18" SELIT SOON FROM 0'TO - 1.5"	
1745 Deare 24' SOLIT Sparen From 1.5' to 3.5'	ADVANCE TO 5'WI HSA
150 ADVANCE TO 10', ANGRE STACKED KELLY NO	EA D
155 ADVANCE TO 15'	
300 ADVANCE TO 20' - EMP OF BORING	
SIG ASSEMBLE DIG, STRINGT TO SET CASING THE	LE VERVED HOTO -9
815 TRIP OUT AUGER - BOTTOM END DENT, - ROL	
840 REDBILL STROTHE @ - P' - REELIER +A	
945 ADVANCING TO 15	
850	
855 ASSEMBLING PIC IN ALGORE - 15 COMEN	5'SOLID, 2,5'RISER
900 pur Auges - wer set 8 - W/3's	
705 ADDING SAHO - SOULDED @ -3' AFTER 4	
15 ADDING BOTTONITE POLICES - SOLHOED @ -	
920 packing up, and Had Topquets, secure	· · · · · · · · · · · · · · · · · · ·
130 LENG SIE FOR DAY	(sp. 11/2 pari
<u> </u>	
10/1/86	·
· (
1600 INSTALL STELL PRATETIVE POSTS	STELL CAVER + PAD, GROWT
· · · · · · · · · · · · · · · · · · ·	
WELL - ZBAGS TYPE I PORTLAND	
·	
·	
·	
· · · · · · · · · · · · · · · · · · ·	
·	
·	•
·	
·	
· · · · · · · · · · · · · · · · · · ·	
·	
·	
· · · · · · · · · · · · · · · · · · ·	SIGNED

.1.

Foring No	. TIO.	2	Location Coordinates	N 396, 417.4
Hole Size	12" NO	MINML \$100 0.010"		E 1,655,868.2
Screen Le	ngth 15	Mat'1 Scu 40 PVC	Filter Materials Co	DHESE BLAST SAND
Diameter	4" I.D.		Grout Type Type	I PORTLAND
Casing Le	ngth 7.41	Mat'1 SCH 40 PVC		ICAL PUMP - 110 GAL
Diameter_			Static Water Level +	4.38'MSL (10/19/86
Date Star	10/5/80	Finish of 68	Top of Well Elevation	
Contracto	r ESE	Driller PAUL TH	OMAS Drill Type	tollow STEM AVGER
Depth (feet)	Sample	Lithology, Color	Sketch of Construction	Standard Penetration Blow Count
}	- LENGER	uscs museum		
0'-		FRACE, CLAY FILL, GRANCE	_	37-35-50
		CONCRETE FRAGS		
1.5°-	2 0.3	FILL TOP 0.1' - CONCERTE FRIGS.	SEE	12-10-10-16
		SP BOTTON O.Z'. WED. GRANES PERLY GRADED SAND MYR7/8- YOLLOW	Attached	
ĺ	[HOT PLASTIC, LOUSE,		
<'-	3	moist to SL, maist		
8.5		SP SAME AS 8 1.5"	, ,	ļ
8.5'-	4	SP/SM- SILTY MED. TINE GRANDS SAND		
		10/84/5-600x conf.		
q.5 '	-	COMERIVE SATIRATED		
		HERE 9.5 +ERIDING TO 1042911- U.DK-GRAY COLOR		1
15'-	_	I INCR. PLASTICITY +		
20'	•	MOSTREE, INC. CLAY		ì
ZO'		END OF BORING F=42		1

Logged By: W. ELLING		Client: COLL TUNONLAFB
Drilling Contractor:		Location: Significant FTA
Driller's Name: Danies		Job Number: <u>86-378</u>
Well Number: 10 - 2-		Date/Time: Start 10/5/86 Finish 10/6/86
Comments (Lost circulation interva-	l, Water level change:	s, Hole collapse interval, etć.):
. 3° Cast circulation interva		
. 3		
Depths in Reference		
to Ground Level		
Top of , a a i		
Top of +2.9 Protective Casing		Locking Cap
	! !.	Protective Pine
		Protective Pipe Type, Diameter SPEL C"
Top of Well Casing + 2.6	14 TI	
0 _ NOTICE		Cement/Gravel Pad
Top of Cement		
	r, 1	
	r) U	
Bottom of Protective Casing - 1.9		
Protective Casing		
Ground Water		
Glouid Water		
		Type of Grout TYPE I PORTLAND
		7,000.000.000
		Casing:
		TITE SCH UD PYC (TRITLYC)
		Olameter 4" T.D. Couplings:
		Type FLASU THORADED
		Number 2
Too of		Depths -9.3, -4.3, +0.7
Top of Bentonite Seal - 1.9'	ИИ	_
2	-	Type of Plug BENTONITE PELLETS
Top of Gravel Pack		
Top of Sames -4.3'	 	
Top of Screen		Material COARSE BLAST SAND
	1	
	·	Screen:
		Type SCHUD BYC (TRI-COC)
		Diameter 4 1.D.
!		Slot Size O.O.O.
.4 5 '		
Bottom of Screen -19.3	-	Bore Hole Diameter 12"Nom. NAL
Total Depth — 20		
of Bore Hole		•
	Ties	DEP
		m plug
	F_43	

Boring No. TIO-Z	SHEET	_1_	OF	
10/5/86				
OBIS LONDING SUPPLIES @ STORAGE BLDG				
0830 SETTING UP RIG ON SITE NULLARDING				
0850 FILELING BIG UP CLEANING EQUIP.				
AZO DEOK IR" SPLITS DOWN FROM 0'TO -1.5				
0925 DROVE 24' SOLIT SOUND FROM 1:5'TO 3.5'				
0930 SETTING UP LEAD FLICHT HOLLOW THE AUGSP (HS	कास्त्र भराजा कि	ADVABLE	مببد	(CH)
0935 ODEN HOLE + ADVANCE TO 5'- DRILLING THROW				
840 ADMINING TO 10'- WATER THREE - 49'				
09.42 " DMANCING TO 12"				
0950 ADVANCING TO 20' - POTTOM @-18'				
955 ASSEMBLING DIK IN ANGER - 15'SCOREN 5'	Jaria 12.5'	zisee		
1000 DIK CAENG DOWN + SET @ - 19.3'	3,2,			 ·
005 ADDING SAND - SOLLOWO G - 3 'AFTER GUZ A				
1010 ADDING DELLETS - SOUNDED O - 1.9' AFTER	•			
015 Southis OFF RISER FOR 201 STICK 4P	1_1_1_			
WELL IS BECHARGING VERY SLOWLY				
030 DACK 40 WASH OFF AWGES				
OUD LEAVE SITE				
				
10/6/70				
, , , , , , , , , , , , , , , , , , , ,				
1200 - 10000 - 0000 - 0000	- 4 6 6	-		
1700 - INSTALL PROTIDOTS, STEEL CONER, PA	D 14 a Kan	<u> </u>		
MITHE TOSOLAND (CHAGS)				
				
				
 				 -
				
10/5/86	WGE			
DATE	SIC	NED		_
F-44 SOURCE: Environmental Science	ce and Engine	ring,	Inc.,	1980

,				
Boring No	· T 10		Location Coordinates	N 396, 173,0
Hole Size	12" NOMI	NAL Slot 0.010"		E 1,655, 573.1
Screen Le	ingth_15'	Mat'l SA40 DYC	Filter Materials	PSE BLASTING SAND
Diameter_	4" 1.0	2	Grout Type TYPE	PORTLAND
Casing Le	ingth	Mat'1 Sch 40 PVC		IEAL PUMP - 180 GAL
Diameter_	4" I.D.	-	Static Water Level +	8.58 MSL (10/19/86)
Date Star	10 4 86	Finish 10/686	Top of Well Elevation	1 + 13.35 MSL
Contracto	r ESE	Driller PAUL THO	MAS Drill Type	HOLLOW STEM AUGER
	T	 	 	<u> </u>
Depth			Sketch of	Standard Penetration
(feet)	Sample	Lithology, Color	Construction	Blow Count
} }	- LONGTA			
0'-	1 15	SO/SM - Sliry MEDIE, TE		7 1-14
1.5'		VITING GR. SAD		3/2/4
		10 0 ALT		
		TO SLIGHTLY	SEE	
		To scientey	ATACHEO	
h5'-	Z 20'	SP WED, GR. COTZ	SHEET	1 / /2
3.5		בשוקם - עם ביושב		5/6/6/9
		by RBI - white		
		ust plastic, lesse,		
		maist #		
4	<u> </u>			•
	1			
5	1	Se		
		_		
			}	
10'	1	SM - ELTY FAE GR. 3240		
		SL. PLASTIC		
]	CHESTE, SATIRATED	j	
15	1 . <u>l</u>	5m/ml	y :	
]	/ML		
]	·	,	
}	}			
20		SM/ML - SAME AS 15'		
.				
20' .	ľ	EMPOF BARING	1	
1	· · · · · · · · · · · · · · · · · · ·	F=45	\$	

SOURCE: Environmental Science and Engineering, Inc., 1980

Logged By: W.G. ELLE		Client: TYNDAL AF	B
Drilling Contractor:		Location: SHELL BA	WE FIRETRAINING
Driller's Name: DAUL THOMAS		Job Number: 86 -37	~
Well Number: 110-3		Date/Time: Start 19	Finish Wires
Comments (Lost circulation interval,	Water lavel abance		
	Mater level change	, noie conapse interval, etc.,	•
ATACLEO			
•			
Depths in Reference			
to Ground Level			

Top of +2.6'		Locking Cap)
Protective Casing		Ţ.,	
,		Protective P	ameter STEEL 6"
Top of Well Casing +2.2		Type, D	ameter 31825
Top of Well Casing 222222	7 4	Cament/Grav	ei Pad
S. 10077.0			
Top of Cement—————			
1			
. 1			
Bottom of Protective Casing - 1.5'			
Protective Casing			
Ground Water	1		
diodilo Mater	7 7		
ľ		Type of Gro	us Type I portago
l,	1 1	Type of Gio	
1			
ŀ			•
	a n	•	
į.	1 	Casing:	CH 40 DYC (TRI-LACE
·	1 Y I	Diamete	r_4" 1.0.
		Couplings:	
į,		Type 31	WAT LINGENDED
		Number Deaths	-9.5' +-4.5, +0.5'
Top of	1 1		
Bentonite Seal	a ()	_	N
2-1	-	Type of Plug	YZ BENTON, TE DELLETS
Top of Gravel Pack			
-45	·		
Top of Screen	• • 	Materia	COMPOSE BLAST SAND
1			
4	,		
i		Type ≤	OHYG PYC
į		Diamete	4.1.D.
•		Length	
i		Slot Siz	0.0,0
l			
1			
i i			
Rottom of Screen -19.5			- <i>n</i> ·
Pottom of Scient	-	Bore Hole D	lameter 12 Hominac
Total Depth			
of Bore Hale	The	40 60	
		Bargim more	
		Luci	NOT TO SCALE
	•		

F-46

ring	No	TIO	<u> </u>	· · · · · · · · · · · · · · · · · · ·			SI	IEET	OF
10	14/80			·					
	<u>'</u>		,	•					
580	Sen	ring Rig	WP 14	NPACKIN	s Tools.	+ Supprie	<u> </u>		
525		ve 18" -						Hnas	
					E DOTTH	· · · · · · · · · · · · · · · · · · ·		spense)	
					W/ ROTES	LOIC BOOM	~		wis 6"i
		-004 HV 6	4	xe to	5 - MAK	11"	NOI B	Correction to	
210		ANKINE T				ART IS A STATE OF THE PARTY OF			
		•		100 cm CO 1	18 20' - B	~~~~~		-,-,	
					K in Hot		- 15/	22175	'a (3
~		, K	-195	945 - 3	S'STICK	# 0 - 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	. 1.3.3.		De-Alexander
حيب					Sano				
			-						
					3 A	-1.5 AFT	61,13	Bucket	
		OFF PV			•		·		
<u>\</u>		eine no	•	•					
15	TAKE	RIG TO	WAZY RA	ck to D	E.CON.				
									
1010	6/84				 				
									
1200	3 - (1)				>+ STEP				
		TYP	e I bok	2 ahas	sment (<u> </u>	B Bed Z	<u> </u>	
									
									
									
			~						
			·				·		
		-,,-	·						
	·						 	 	
			·						
									
					10/4/85		USE		

. . . .

_ •				
Boring No.	·		Location Coordinates	N 391,709.8
Hole Size	12" NOMIN	ML Slot 0.010"		E 1,662,222.5
Screen Les	ngth 15	Mat'1 Sch 40 PVC	Filter Materials Co	ARSE BLAST SAND
Diameter_	4" I.D.		Grout Type Type .	I PORTLAND
Casing Ler	ngth7.3 '	Mat'1 SCH 40 PVC	Development CENTRIP	ICAL PUMP - 183 GAL
	4" I.D.		Static Water Level +	6.95 MSL (10/19/36)
Date Start	10 5 00	Finish 15/6/76	Top of Well Elevation	+ 13.24' MSL
Contractor	ESE	Driller PAUL THE	Drill Type_	HOLLOW STEM AVCER
Depth (feet)	Sample	Lithology, Color	Sketch of Construction	Standard Penetration Blow Count
	D LautiTA	user husel		
0'-	0.6	SP/SM - POTPLY GRACED FILE GRAIN TOV. TIME GRAINED SAME - 1910 SILT + TIME ORGANIC MATERIAL 545/1 - SRAY - NOT TRASTIC, LOSSE TO DENSE, DRY	SBE ATROHEO	4-8-10
		•	SHEET	
1.5'- 3.5	2 1.1	SPISM SOME AS ABOVE, RECOMING WOIST TO VERY MOIST @ -3.5'		6-8-10-12
ラ ′		SM- SAME AS ABOVE, EXCEPT COLOR'S LOYRS/3 - BROWN		
10'				
15	·			
20' 20'	. —	eno of Bosing ~		
	- ,	F-48		

Logged By: W. ELL-TT		Client: OBUL TYPORLL	AFR
Drilling Contractor:		Location: ACTIVE FTA	
Driller's Name: PAL Trams		Job Number: 86-378	
Well Number: TII-1		Date/Time: Start 10 3 8	Finish W16/86
Comments (Lost circulation interval, Water	level changes		
Comments (cost chediation interval, water	ievei changes,	noie conspse interval, etc.,.	
Depths in Reference			
to Ground Level		•	
Top of			
Protective Casing +2.6		Locking Cap	
Protective Casing————————————————————————————————————		• .	
		Protective Pipe	500 G"
Top of Well Casing -2.3	—¬¬	Type, Diame	Her STEEL, 6"
	-	Cement/Gravel P	ad
0'_10000		Cement/Gravel P	
Top of Cement—————			
r A			
1/1			
Bottom of	r a		
Protective Casing————			
-4'	Γ		
Ground Water —	- 1-1 -		
		~	
	/ /	———— Type of Grout $\frac{1}{2}$	YEE I POSTLAND
r 1			
	1/1		
		Casing:	·
		Type SCH	40 PVC (Tei-Loca)
[/[17	Diameter	4" 1.0.
	<i>V</i>	Couplings:	y Threaded
	1/1	lype <u>Fila</u>	3
		Depths = 9	3 15',-45',+0.5'
Top of	ra		
Bentonite Seal			BENTANTE DELLETT
3 1		Type of Plug 12	BEMIONLE DETTELL
Top of Gravel Pack			
ان کا رسید			
Top of Screen -4.5		Material <u>Co</u>	MOSE BLAST SAND
		Screen:	
		Type SCH	40 PVC (TRI-LOC)
		Diameter	41.0.
		Length	<u> </u>
		Slot Size	0,00"
- 八八八	****		
Bottom of Screen -19.5		A ****	12" HOMINAL
	<u> </u>	Bore Hole Diame	HOW TO HOW HALL
Total Depth	-		
of Bore Hole			•
	/ THE	EADED	NOT TO SELL T
	g_~	ran ping	NOT TO SCALE

oring No. Til-		SHEET	OF
10/5/86			
130 SETTING RIG UP ON) Site (W) casing		
745 DROVE 18" SOLT			
150 DEOR 24' DOWN F	785 12 25 Cm	1 11-15 11/1150 11-1	QG
155 ADVANCED TO 5 , 10	12 12 2.3	S HOLL SO HE STAR	Y
BOD ADVANCED TO 15',	22 20015	(- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	ar'aiem
SOT SET CASING IN HE	CO ASSEMBLE PI	13 SCEED , S 3500	
ADDING SAND -S	BLE 10 - 2'	3045	STC 40 2E
ADDING BENTONITE	SAFIGE OF SAFIGE	-2' Un Buch	
	_		ET AND HZO
15 WASHING OF ANGER	es because the Edition	<u></u>	
0/6/86			
SIGNE			
			
140 INSTRUCTE PRO			
GROUT WELL W	1 ZBAGS TYPEIP	DRILAND CEMENT	
			
			
	<u> </u>		
			
			
			
	12/=/22	WGE	

. .

:

.

. ~				
Boring No.	T11-2		Location Coordinates	
Hole Size	12" N	IGMINM STOR 0.010"		E 1,662,569.1
	ngth15'		Filter Materials Co	
	4" T.D.		Development CENTRI	
	agth	Mat'l 3ch 40 PYC	Static Water Level +	4 35 MSL (1010)
	4" I.D.	Finish 6 76	Top of Well Elevation	
1	E3E	1)	omms Drill Type	
				T
Depth	1		Sketch of	Standard Penetrat
(feet)	Sample	Lithology, Color	Construction	Blow Count
	LENGTH	uses munistr		
0'-	}	smlsp	-	4-5-6
1.5				7556
	1			\$
	1			
			SEE	
1.5'-			1	
3.5		5n/5p	AHAChEd	15-16-22-30
	1		Sheet	
			-	·
	ļ			
5	1			
-9	<u>-</u>			
		}		
10'		Sm		
	}			
15'				
20'		Sm .		
3.5		END - BORING		
20'		F-51'		
	! - :	,		

SCHIRCE: Environmental Science and Engineering, Inc.,

Drilling Contractor:	<u> </u>				
					ACTIVE FTA
Driller's Name: PANL	<u>rov</u>	<u> </u>		_ Job Number	r: 86-318
Well Number: TII-2-				Date/Time:	Start 10 7 5 Finish 10 7 82
Comments (Lost circulation intervi	el, W	fater level	chan	iges, Hole collaps	e interval, etc.):
				• .	
Depths in Reference					
to Ground Level					
Top of + 2.6					– Locking Cap
Protective Casing	·}		_		- Locking Cap
	Ł		ì		- Protective Pipe
	1 1		5		- Protective Pipe Type, Diameter STEL 6"
Top of Well Casing +2.2	٠,	4	ן ץ		Type, Diameter
0'_ 100000	4	4			- Cement/Gravel Pad
	┨/	1	$I \nearrow I$		•
Top of Cement————	- ۴	ł	1/		
		1			
	f .	,l	/	•	
Bottom of a o	u	i .	1 1		
_/.\\	1/	.]		1	
		1		•	
Ground Water9'	1/	· [
Gibund Water	T	3			
		'}	1/		•••
	「 <i>/</i>	·]	r-		- Type of Grout TIPE I PERTLAND
	1	Ì			
	1/	1	1 1		
	Ι΄.	.)	/		
		1	1/		
	١,	.l	 - -		- Casing:
	/	}	1/		Type SCH 40 DVC (TRI-LOC
	1/	1	ار ۲		Diameter 471.D.
	r	ſ	1		Couplings:
		1	1/1	1	Type FLASH THORAGEO
	ر ا	1	ار ا		Number Depths -9, -4, +1
Top of] .			Depins
		1	$oldsymbol{ol}}}}}}}}}}}}}$		
Bentonite Seal —		1			- Type of Plug BENTENITE FELLETS
Top of Gravel Pack - 3	J				- The or Lind
TOP OF GIAVES PACK	· ·	Į I	\Box		
-4'	1.	l	-		- Gravel Pack:
Top of Screen			-		Material COARSC GLAST SAND
·	Ι΄.		۱ ۱		
	1		l · · l		
	1 .				- Screen:
	Ι.		l'.l		Type SCH 40 TR, LOC PYC
			۱ . ا		Diameter 4.1.D.
•	l .		1.4		Length
	1	*****	١. ا		Slot Size O.610 "
			•		
	٠. ا	*****	1. 1		
	١.		'		
	J' '		ا. ۱		
	ا ا		'		
Bottom of Screen	-		••		- Bore Hole Diameter 17" NomiNAL
Total Depth	Į. ·	· · · · · · · · · · · · · · · · · · ·	.i.]		
of Bore Hole				_	
50.0 11010				Threaded	
				Bathan	NOT TO SCALE
			F	es Plus	NOT TO SCALE
			F-	34 T	

•		
Boring No	SHEET	OF
10/5/86		
1830 SET RIG UP ON SITE, LINLOAD		
1840 DROVE SOLT Speed O ED 15', DROVE 24" Spe	100 FRom 1.5 13 3.5	
1845 OPEN HOLE W/HSA WITH RETERNACIO BOTTOM	pung (6'1.0.) , AOVA	PCE TO 5
1850 ADVANCE TO 10" WATER TABLE ~- 199"	,	
855 ADVANCETO 15'	· · · · · · · · · · · · · · · · · · ·	
900 ADVANCE TO 20'- INSTALL CASING (15's	Scored , 5'solio , 2.5	(R. 3ER)
905 INSTALL & SANDPACK TOWN AUGERS		<u>) </u>
1910 INSTALL PELLET (0 - 2'AFTER YZRUCKET	19 to - 25 stic	< up/
1920 BREAK ANGERS DOWN	L (SAMED OF	E)
925 CLEANUP, PACKUP	 	
930 LEAKE SITE FOR DAY		
	 	
10/7/86		
1450 GROWTED WELL, INSTAUCO STEL CO	WER + POSTS	
		
		
		
		
		
		
		
		
		
10/1/26	WGE	

Boring No.	·	>	Location Coordinates	N 391,396.2
Hole Size	12" NOMINI	M_ Slot 0.010"		E 1,662,629.7
Screen Le	ngth15'	Mat'1 Sch 40 PVC	Filter Materials Co	ARSE BLAST SAND
Diameter_	4" I.D.		Grout Type TYPE	I PORTLAND
Casing Ler	ngth6.2	Mat'1 SCH 40 PVC		FUCAL PUMP-184 GA
Diameter	4"I.D.		Static Water Level +	2.58 MSL (10/19/30
Date Start	10/1/86	Finish why	Top of Well Elevation	+8.43 MSL
Contractor	ESE	Driller Daw Tuona	gDrill Type_	ME HSA
Depth (feet)	Sample	Lithology, Color	Sketch of Construction	Standard Penetration Blow Count
0'- 1.5'	1 0.9	SM - PROPLY GRACED SILTY SAND - ~ 10 B FLT LOYEC 3 - PALE BEDOND LOT PLATIC, LOSE TO DONE, DRY TO MOIST, THD BLACK	SEE ATTACHED	6-8-10
1.5 - 35 ₃₅ .	2 (.1	SM. SAME AS Q 1.5', ENDERT GERAMINE SATURATED Q -3.5'	SHEET	7-2-3-5
3.5		SM - SANG AS ABOUR		
-20' BND 0	F Bornia			
		,	-	

SOURCE: Environmental Science and Engineering, Inc., 19

Logged By: W.ELLIOTT		Client: CENL TYMORIL AFB
Drilling Contractor:		Location: ACTIVE FIX
Driller's Name: PAW Time	~A\\(\mathbf{Z}\)	Job Number: 96-3-78
Well Number: 11-3		Date/Time: Start 10/1/96 Finish 10/1/96
Comments (Lost circulation interva		
Comments (East and all and milette	.,	
Depths in Reference to Ground Level		
Top of		
Protective Casing +2.5		Locking Cap
Top of +2.5'		Marchaell or Miles
-	l *	Protective Pipe Type, Diameter STEEL, 6
Top of Well Casing +2.2		rype, braniera
0/ 10/10		Cement/Gravel Pad
Top of Cement		
	M 71	
Bottom of 3 A		
Protective Casing -2.0	$r_1 = r_1$	
Ground Water	H H	
	ri ri	a comment some con
		Type of Grout Type I PORTLAND
	M	
	u i	
	[/	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 	Casing:
•		Type Schoo. 40 PVC (TR; -Loc) Diameter 4" 1,0.
	ri la	Couplings:
		Number
		Number
Top of	14 14	Ospins
Bentonite Seal		VI-4-
_'		Type of Plug 1/2" Bestern TE DELIGTE
Top of Gravel Pack		
Top of Screen - 3.5	:. - -	Gravel Pack:
Top of Screen — 3,3	-	Material COARSE BLAST SAND
		Screen:
		Type SHED. 40 DIC (TRI - LOC)
İ		Diameter 4" \.0 \
•		Slot Size
Bottom of Screen -18/5		17"
BORROW OF SCIENT		Bore Hole Diameter 12 Nominal
Total Depth		
OI DOIS HOIS	\	
	THREA	DED BOTTOM PLUG V NOT TO SCALE

Boring	No	<u> </u>	3	 .			:	HEET	- OF	-
10	1/25									
1400	- TAK	e eig 18	Fivi h	120 Ta	NX+ CAL	L FBR	Succies	- <u> </u>		
440		अंह था अ								
		waris .	EVEL. U	ANLOAO	Equip +	Sh Q-L-VE	~			
500		= 18" Sout	_		-	-14				
505		5 24" Sout				. ,				
510		CED TO10'	•							
		XEO TO 70		~60 · F	10 0 30 8	ine				
520		MBLED DU					aueo iis	AUGE	> . D uise	
		e + 01c			_				7	
530		Aucees					SOUNDE	0 3 -3	AFTER	BAC
		BESTONTE	,							_
		S OFF AVG							AP.	
	•	SPONT, F	-							
	_	a grant								
	•	up Site	•	•	•	 -				
	A STATE OF THE STA	<u> </u>	, ,,,,,,,,	Fed all	3116			·		
	····									
										
										
										
								·		
										
		 								
						 -				
										
		~~~~								
										
	- ,,,	,,,-								
					1 -1		101			
				_10	DATE		MAE	SIGN	ED	
					F-56					

APPENDIX G
GEOPHYSICAL TRACING FOR ZONE 8

APPENDIX G ELECTROMAGNETIC CONDUCTIVITY METHODS

An electromagnetic (EM) survey is a noncontact geophysical technique employing the use of two metallic coils and an electronics module. The transmitter coil is separated from the receiver coil by a specified distance. When energized, the transmitter coil induces circular eddy current loops into the earth, the magnitude of each current loop being a function of subsurface conditions. Each of these current loops generates a secondary magnetic field proportional to the value of the current flowing within the loop. A portion of this secondary magnetic field is intercepted by the receiver coil and results in an output voltage. The magnitude of this voltage is linearly related to the terrain (ground) conductivity (Evans, 1982). The units of conductivity measurements are millimhos per meter (mmhos/m).

Conductivities vary for different soil and rock types; thus, it is difficult to calibrate EM instruments to permit the determination of the absolute subsurface conductivity in unknown terrain. The subsurface is seldom uniform, more often being layered within the penetration depths of the instrument, further complicating calibration attempts. However, taking all of these factors into consideration, a qualitative reconnaissance of subsurface conditions can be conducted by noting the relative lateral changes along a traverse. An EM survey can be used as a rapid and effective method for evaluating subsurface characteristics and to infer the location and extent of potential subsurface contamination based on changes in the electric conductivity of the soils.

Elevated conductivity measurements can result from the presence of buried metal objects, making it essential that all locations with anomalous EM readings be cross-referenced with a magnetometer. A magnetometer detects perturbations in the geomagnetic field (for example, anomalies created by

buried ferromagnetic objects). The system utilized by Environmental Science and Engineering, Inc. (ESE), a fluxgate gradiometer, maintains the ability to sense vertical field gradients while remaining insensitive to horizontal gradient components (Evans, 1982). This allows the instrument to sense the vertical field of subsurface targets in the presence of horizontal interference targets such as steel fences.

APPENDIX G

Results of EM Survey at Area "6000" Landfill (Zone 8)

Location		Sp	ecific Conductan	ce
Destination	x-coordinate	y-coordinate	(mmhos/m)	Comments
ı	146	82	0.5	
2	145	77	2.1	
3	144	72	0.7	
4	143	67	0.1	
5	142	62	0.0	
6	141	57	0.0	
7	141	53	0.0	
8	140	48	0.0	
9	139	43	0.0	
10	138	38	0.0	
11	134	34	0.0	
12	131	31	0.0	
13	127	27	0.0	
14	124	24	0.0	
15	120	20	0.0	
16	124	31	0.0	
17	121	35	0.0	
18	168	85	4.6	*Close to FLA AVE.
19	163	85	0.7	
20	158	85	1.0	
21	153	85	0.3	
22	148	85	1.5	
23	143	85	0.0	
24	138	85	0.0	
25	133	85	0.0	
26	128	85	0.2	
27	123	85	0.9	
28	118	85	1.0	
29	113	85	0.0	
30	108	85	2.2	
31	103	85	1.6	
32	98	85	1.0	
33	168	80	7.5	*Close to FLA AVE
34	163	80	1.3	CLOSE CO LLES AVE
35	153	80	1.2	
36	148	80	1.5	
37	143	80	2.2	
38	133	80	0.0	
39	128	80	0.6	
40	123	80	0.4	

APPENDIX G

Results of EM Survey at Area "6000" Landfill (Zone 8) (Continued, Page 2 of 4)

Location		Sp	ecific Conductance	
Destination	x-coordinate	y-coordinate	(mahos/m)	Comments
41	118	80	0.1	
42	112	80	1.7	*Evidence of
43	109	77	9.0	destroyed asphalt
44	105	73	52.0	road visible at
45	101	70	14.0	surface.
46	97	67	0.0	
47	93	69	0.7	
48	88	70	5.2	*remnants of asphalt road
49	83	71	2.7	*measured=0.0 approx. 5 ft away
50	87	74	0.0	,
51	91	76	0.0	
52	96	79	3.2	*measured=0.0 approx. 10 ft away
53	80	67	0.0	
54	77	63	0.0	
55	74	59	0.0	
56	70	61	0.0	
57	66	64	0.0	
58	62	67	0.0	
59	84	66	1.4	
60	85	61	0.0	
61	85	56	0.0	
62	86	51	0.0	
63	84	47	0.0	
64	82	42	0.3	*asphalt at surface
65	79	38	0.0	aspeste de surrece
66	77	34	0.0	
67	74	29	0.9	
68	71	29	0.0	
69	66	28	0.0	
70	64	33	0.0	
70 71	62	38	0.0	
72	61	43	0.0	
73	63	47	0.0	
74	66	51	0.0	
7 5	71	51	0.0	
76	76	51	0.0	
76 77	76 81	51	1.8	*metal debris at surface
77 78	66	24	0.0	uneral deptis at antiace
76 79	65	24 19	5.2	*wire bundles at surface
80		· ·		-wile printles at surface
	65	14	0.0	
81	64	09	0.0	

APPENDIX G

Results of EM Survey at Area "6000" Landfill (Zone 8) (Continued, Page 3 of 4)

Location			ecific Conductan	ce
Destination	x-coordinate	y-coordinate	(manhos/m)	Comments
82	64	04	0.0	
83	6 1	28	0.0	
84	56	28	0.0	
85	51	27	0.0	
86	48	27	0.0	
87	48	22	0.0	
88	49	17	0.0	
8 9	49	12	0.0	
90	49	32	0.0	
91	50	37	0.0	
92	50	42	3.4	*magnetometer detects metal
93	51	47	2.4	*metal at both sites
94	52	52	0.0	
95	46	27	0.0	
96	41	27	0.0	
97	37	28	0.0	
98	38	32	0.0	
99	39	37	0.0	
100	41	42	0.0	
101	38	46	0.2	
102	35	51	1.5	
103	33	55	2.7	
104	30	60	1.9	
105	28	64	2.3	
106	23	61	1.6	
107	19	5 9	2.0	
108	15	56	1.6	
109	01	54	1.0	
110	06	51	1.5	
111	21	68	1.8	
112	26	71	1.8	
113	32	74	1.3	
114	37	77	1.8	
115	42	80	1.9	
116	48	84	1.6	
117	53	87	0.2	
118	59	90	0.5	
119	65	93	0.7	
120	76	96	0.2	
121	81	96	0.1	
122	86	96	0.2	

APPENDIX G

Results of EM Survey at Area "6000" Landfill (Zone 8) (Continued, Page 4 of 4)

Location Destination	Specific Conductance on x-coordinate y-coordinate (mmhos/m) Comments					
123	91	96	0.3			
124	96	96	0.2			
125	106	96	0.9			
126	111	96	1.4			
127	116	96	2.8			
128	121	96	2.7			
129	126	96	2.1			
130	131	96	0.0			
131	141	96	1.0			
132	146	96	3.9			

Note: Results of the magnetometer survey along with comments from field

observations.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX H

PIEZOMETERS; MONITOR WELLS; SURFACE WATER, GROUND WATER, SEDIMENT, AND SOIL SAMPLING LOCATIONS;
AND SAMPLE NUMBERING SYSTEM

APPENDIX H

PIEZOMETERS; MONITOR WELLS; SURFACE WATER, GROUND WATER, SEDIMENT, AND SOIL SAMPLING LOCATIONS; AND SAMPLE NUMBERING SYSTEM

LOCATION DESIGNATIONS

In an effort to maintain consistency with Stage 1 field work, ground water monitoring wells followed the same numbering system. The first characters of the well number represent the site location:

T = Tyndall AFB, and

LH = Lynn Haven DFSP.

The second digit is the zone number. The third digit is the specific well within the zone. Approximate well locations were designated in the Stage 2 scope of work (App. C) with some adjustments made in light of the piezometer water-level results. All well locations were staked and cleared for drilling through Base Civil Engineering prior to well installation. Both new and existing monitor well numbers and the ground water sampling site designations and corresponding sample numbers are presented in Table H-1.

The location designations for piezometers were selected by the Project Geologist based on the need for water-level data at a particular site. The first two characters for each piezometer number were PZ; the second digit is the zone number and the third digit is the specific piezometer within the zone. All piezometers were removed upon completion of the field work.

The sampling location designations for the sediment, surface water, and soil sampling sites were designated in the Stage 2 scope of work. The sediment and surface water sampling locations were strictly adhered to, whereas the soil sampling locations were modified at Zone 11 due to the

Table H-1. Monitor Well Numbers and Ground Water Sampling Zone Designations and Sample Numbers

Zone	Monitor Well #	Ground Water Sampling Site Designation	CLASS Sample Identification No
2	1	GLH2-1	TYNDL2*1
2	2	GLH2~2	TYNDL2*2
2	3	GLH2-3	TYNDL2*3
2	4	GLH2-4	TYNDL2*4
2	7	GLH2-7	TYNDL2*5
*2	8	GLH2-8	TYNDL2*7
*2	9	GLH2-9	TYNDL2*8
3	1	GT 3-1	TYNDL6*1
3	2	GT 3-2	TYNDL6*2
3	3	GT 3-3	TYNDL6*3
3	4	GT 3-4	TYNDL6*4
*3	5	GT 3-5	TYNDL6*5
* 3	6	GT 3-6	TYNDL6*6
* 3	7	GT 3-7	TYNDL6*7
5	1	GT 5-1	TYNDL3*1
5	2	GT 5-2	TYNDL3*2
5	3	GT 5-3	TYNDL3*3
6	1	GT 6-1	TYNDL4*1
6	2	GT 6-2	TYNDL4*2
6	3	GT 6-3	TYNDL4*3
*6	4	GT 6-4	TYNDL4*4
*6	5	GT 6-5	TYNDL4*5
7	1	GT7-1	TYNDL5*1
7	2	GT 7-2	TYNDL5*2
7	3	GT 7-3	TYNDL5*3
†7		BWT7-11	TYNDL5*9
8	1	GT8-1	TYNDL5*5
* 8	3	GT8-3	TYNDL5*6
*8	4	GT8-4	TYNDL5*7
9	1	GT 9-1	TYNDL6*9
9	2	GT9-2	TYNDL6*10
*9	3	GT9-3	TYNDL6*11
* 9	4	GT 9-4	TYNDL6*12

Table H-1. Monitor Well Numbers and Ground Water Sampling Zone
Designations and Sample Numbers (Continued, Page 2 of 2)

Zone	Monitor Well #	Ground Water Sampling Site Designation	CLASS Sample Identification No.
*10	1	GT 10-1	TYNDL4*7
*10	2	GT 10-2	TYNDL4*8
*10	3	GT 10-3	TYNDL4*9
*11	1	GT 11-1	TYNDL4*11
* 11	2	GT 11-2	TYNDL4*12
*11	3	GT 11-3	TYNDL4*13

^{*}Denotes new monitor well.

[†]Denotes base well No. 11.

existence of the non-penetrable concrete pad underlying the first training pit. The sediment, surface water, and soil sampling site designations and sample numbers are provided in Table H-2.

SAMPLE NUMBERING AND MANAGEMENT SYSTEM

CLASS SYSTEM

All water, soil, and sediment samples were tracked through ESE's Chemical Laboratory Analysis and Scheduling System (CLASS). Prior to the sampling trip, computer-generated sampling logsheets and sample container labels were provided by ESE's laboratory. Each sample was identified by a unique designation. An additional 1- or 2-digit alphanumeric code designated different sample fractions, with separate labels printed for each fraction. The sampling logsheets also served as chain-of-custody forms (see App. 0). The sample designations were entered into the computer system prior to sampling to facilitate tracking of samples through analysis, QC review, and reporting of results. The unique sample identification designations are included in Tables H-1 and H-2.

GROUND WATER SAMPLE NUMBERING SYSTEM

Ground water samples were identified by an alphanumeric code as a station identification in addition to the unique sample designations (see Table H-1). This code appeared on all logsheets and sample labels, serving to identify the sample to those directly involved in the project. The first character "G" denotes a ground water sample; the next character(s) denotes the site location (T = Tyndall AFB; LH = Lynn Haven DFSP). The following character is the zone number, which is followed by the number of the specific well within the zone.

SURFACE WATER, SEDIMENT, AND SOIL SAMPLE NUMBERING SYSTEM

Each of these samples were identified by a code beginning with "SW" for surface water, "SD" for sediment, or "SO" for soil samples. This sample-type designation was followed by a site location code similar to the system used for ground water samples, with characters for facility (Tyndall AFB or Lynn Haven DFSP), zone, and specific site within the zone included in the code. These sampling site designations are presented in Table H-2.

Table H-2. Sediment, Surface Water, and Soil Sampling Zone Designation and Sediment Sample Numbers

Zone	Sediment/Surface Water/Soil Sampling Site Designation	CLASS Sample Identification No.	
Sediment			
2	SDLH2-1	TYNDL7*3	
11	SDT 11-1	TYNDL7*1	
11	SDT11-2	TYNDL7*2	
Surface Water			
2	SWLH2-1	TYNDL2*9	
11	SWT 11-1	TYNDL4*14	
11	SWT11-2	TYNDL4*15	
Soil			
<u>1</u> 1	SOT11-1	TYNDL1*1	
11	SOT 11-2	TYNDL1*2	
11	SOT11-3	TYNDL1*3	

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX I

ANALYTICAL DATA FOR BAY COUNTY WATER SUPPLY

City of Tallahassee Water Quality Lab

Explanation of Report

The enclosed report(s) are for samples analyzed for one or more of the following synthetic organic chemical catagories as designated in FAC 17-22

Purgeable
Acid Fraction
Base/Neutral
Pesticide

Purgeable For samples analyzed for the purgeable catagory, the individual compounds are listed in the report.

NPD - No Peaks Detected BDL - Below Detection Limit

Acid Fraction Unless a specific compound is listed in these Base/Nuetral catagories is found, only the catagory will be shown on the report with the designation NPD. If any compound which is a part of these catagories is present a "+" will appear next to the catagory and compounds found will be shown on the report.

Pesticides This catagory is shown on the report as chlorinated Hydrocarbon Screen. Although shown as Chlorinated Hydrocarbons this report catagory includes the pesticides listed in 17-22. As with the Acid Fraction and Base/Neutral catagories only those compounds found will be reported.

* CITY OF TALLAHASSEE *

* WATER QUALITY LAB *

* 3805 Springhill Rd. *

* Tallahassee, FL. 32304 *

* HRS Lab ID # - 51097 *

* DER Lab ID # - EL0046 *

LAB LOG* - 28576
STATION CODE - NA
DESCRIPTION - BAY COUNTY WATER & WASTEWATER
COLLECTED - 10/23/84 TIME COLLECTED - NR
COLLECTED BY - NR
SAMPLING METHOD -GRAB

PARAMETER CHLOROFORM BROMODICHLOROMETHANE DIBROMOCHLOROMETHANE BROMOFORM 1,1,1-TRICHLOROETHANE TRICHLOROETHENE TETRACHLOROETHENE METHYLENECHLORIDE 1,2-DICHLOROETHANE CARBON TETRACHLORIDE ETHYLENE DIBROMIDE (EDB) CHLORINATED HYDOCARBON SCREEN BASE NEUTRAL METHOD 625 ACID FRACTION METHOD 625 CHLOROMENZENE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,1,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE BROMOMETHANE CHLOROETHANE 2-Chloroethylvinyl ether CHLOROMETHANE 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene TRICHLOROFLUOROMETHANE	T 115 00000010000000000000000000000000000	T1111111111111111111111111111111111111	De t.692182152 67
1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene TRICHLOROFLUOROMETHANE ETHYLBENZENE VINYLCHLORIDE XYLENE(ortho, meta, para) BENZENE TOLUENE	NPD NPD	ug/1 ug/1	1

'nν

the water spigot

WATER AND WASTEWATER ANALYSIS

5806 HIGHWAY 22 PANAMA CITY, FLORIDA 32404 (904) 871-1900 - 871-1901 **Laboratory I.D. 81148**

System Name:	Вау	County Wa	ater Plant			
Address:	340	O Transmit	ter			
Sample Site: _	sin	k inside	lab			
Date and Time (Collected	March	27, 1986 12:35 p.1	Collector	Stacey Brown	
heck One: 1. Community Public Water System			2. 🗆 Noi	n-Community Public Wate	er System	
Check One:	heck One: 1. Ground Water			2. 🗆 Sur	face Water	
Check One:	1.	Raw		2. 🗆 Tre	ated	
PARAMETI	ER	RESULT	PARAMETER	RESULT	PARAMETER	RESULT
Arsenic as As		*0.001	Chloride as Cl	12.5	Total Hardness as CaCO ₃	56
Barium as Ba *0.10			Color*	3	Total Alkalinity as CaCO ₃	20
Cadmium as Cd		*0.001	Copper as Cu	0.013	N.C.H. as CaCO ₃	36
Chromium as Cr		*0.002	Corrosivity	-2.0	Bicarbonate as HCO3	12
Lead as Pb		0.004	Foaming Agents	*0.01	Calcium as Ca	15.4
Mercury as Hg		*0.001	Hydrogen Sulfide		Magnesium as Mg	1.4
Selenium as Se		*0.001	Iron as Fe	0.03	Carbon Dioxide as CO2	5.0
Silver as Ag	·	*0.001	Manganese as Mn	0.001	Bicarbonate as CaCO ₃	20
Nitrate as N		0.04	Odor*	0	Carbonate as CaCO ₃	0
Fluoride as F		0.06	pH*	7.0	Hydroxide as CaCO ₃	0
Turbidity, *NTU		1.0	Sulfate as SO.	24	Sodium as Na	4.4
			Total Solids	88		
Endrin		ND	Zinc as Zn	0.123	pHs*	
Lindane		ND	·		Stability Index* 2pHs-pH	
Methoxychlor	1 	ND		i	Saturation Index* pH-pHs	1
Toxaphene		ND				
2, 4-D	2, 4-D ND		*less than			
2, 4-5 TP Silvex		ND	ND none detected			
Trihalomethanes						

NOTE: *All results in mg/l except those denoted.
Analysis in accordance with Chapter 17-22 FAC,
Section 104-105.

Methods are those listed in Standard Methods For The Examination of Water and Wastewater, 14th Edition, 1975.

Date and Time Received March 27, 1986

Ken a 5/1

ch 27, 1986 12:45 p.m.

Date Reported_

I-3

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX J

PIEZOMETER WATER LEVELS

APPENDIX J

Table J-1. Piezometer Water-Level Measurements, September 30, 1986

Piezometer Designation	Top of Casing Elevation*	Depth to Water From TOC (ft)	Water-Table Elevation*
P26-1	21.24	4.34	16.90
PZ6-2	19.90	2.69	17.21
PZ8-1	10.79	4.20	6.59
PZ8-2	15.75	7.08	8.67
PZ9-3	27.64	6.72	20.92
PZ10-1	12.32	†	
PZ10-2	13.43	8.20	5.23
PZ10-3	12.71	4.12	8.59
PZ11-1	12.18	4.37	7.81
PZ11-2	8.29	4.65	3.64
PZ11-3	8.82	5.00	3.82

^{*}Elevations are given in feet relative to mean sea level.

[†]Dry to bottom of casing.

Table J-2. Piezometer Construction Summary

Well Designation	Total Length (ft)	Screen Length (ft)	Screened Interval* (ft)	Casing Length† (ft)	Casing Interval* (ft)
P26-1	13.0	5.0	-6.5 to -11.5	8.0	+1.5 to -6.5
PZ6-2	12.5	5.0	-6.0 to -11.0	7.5	+1.5 to -6.0
PZ8-1	13.6	10.0	-2.0 to -12.0	3.6	+1.6 to -2.0
PZ8-2	12.4	5.0	-4.5 to -9.5	7.4	+2.9 to -4.5
PZ9-3	18.0	10.0	-6.5 to -16.5	8.0	+1.5 to -6.5
PZ10-1	10.3	8.0	-0.5 to -8.5	2.3	+1.8 to -0.5
PZ10-2	17.3	10.0	-6.0 to -16.0	7.3	+1.3 to -6.0
PZ10-3	12.0	9.0	-1.5 to -10.5	3.0	+1.5 to -1.5
PZ11-1	11.3	10.0	-0.0 to -10.0	1.3	+1.3 to -0.0
PZ11-2	13.5	5.0	-7.0 to -12.0	8.5	+1.5 to -7.0
PZ11-3	13.5	<u>5.0</u>	-7.0 to -12.0	8.5	+1.5 to -7.0
TOTALS	147.4	82.0		65.4	

^{*}Screened and cased intervals referenced to ground level.

APPENDIX K
MONITOR WELL WATER LEVELS

APPENDIX K
MONITOR WELL WATER LEVEL MEASUREMENTS

Well Designation	Date of Measurement	Top of Casing Elevation*	Depth to Water From Top of Casing (ft)	Water-Table Elevation
LH2-1	10/22/86	10.1	6.41	3.7
LH2-2	10/22/86	6.8	4.90	1.9
LH2-3	10/22/86	6.6	5, 11	1.5
UH2-4	10/22/86	7.8	6.03	1.8
LH2-7	10/22/86	8.5	5.61	2.9
LH2-8	10/22/86	8.83	6.15	2.68
LH2-9	10/22/86	7.80	6.20	1.60
T3-1	10/19/86	10.9	7.74	3.2
T3-2	10/19/86	8.9	6.53	2.4
T3-3	10/19/86	5.8	4.80	1.0
T3-4	10/19/86	7.8	5.11	2.7
T3-5†	10/17/86	7.28	6.10	1.18
T3-6†	10/17/86	7.88	6.55	1.33
T3-7	10/19/86	13.26	7.67	5.59
T5-1	10/19/86	13.6	8.98	4.6
T5-2	10/19/86	13.4	9.28	4.1
T5-3	10/19/86	12.6	7.97	4.6
T6-1	10/19/86	28.9	7 .9 5	20.9
T6-2	10/19/86	24.6	4. <i>7</i> 0	19.9
T6-3	10/19/86	29.0	8.20	20.8
16-4	10/19/86	26.22	5.71	20.51
T6-5	10/19/86	29.37	8.64	20.73
T7-1	**	13.3	_	_
T7-2	10/19/86	12.3	5.15	7.1
T7-3	10/19/86	10.9	4.10	6.8
17-4	10, 13, 60	-	_	-
T8-1	10/19/86	15.7	7.03	8.7
T8-3	10/19/86	10.84	4.43	6.41
T8-4	10/19/86	14.24	6.71	7.53

APPENDIX K
MONITOR WELL WATER LEVEL MEASUREMENTS
(Continued, Page 2 of 2)

Well Designation	Date of Measurement	Top of Casing Elevation*	Depth to Water From Top of Casing (ft)	Water-Table Elevation*
T9-1	10/19/86	20.7	7.11	13.6
T9-2	10/19/86	22.6	6.65	15.9
T9-3	10/19/86	28.42	8.42	20.00
T9-4	10/19/86	23.94	8.84	15.10
T10-1	10/19/86	14.13	10.17	3.96
T10-2	10/19/86	14.77	10.39	4.38
T10-3	10/19/86	13.35	4.77	8.58
T11-1	10/19/86	13.24	6.29	6.95
T11-2	10/19/86	12.97	8.62	4.35
T11-3	10/19/86	8.43	5.85	2.58

^{*}All elevations given in feet relative to mean sea level.

[†]Inaccessible—POL facility locked date of measurements.

^{**}Inaccessible—well is on the flight line.

ffNot a monitor well (Base Well No. 11).

APPENDIX L

MAP COORDINATES

APPENDIX L

COORDINATES AND TOP OF CASING ELEVATIONS FOR MONTOR WELLS INSTALLED DURING PHASE 11, STACE 1 AND 2 STUDIES AT TYNDALL AFB

Well Designation	UTM Coo	UTM Coordinates	Elevation, Top	
Marber	Northing	East ing	of Casing (ft, msl)	
*(H2-1	455765	1 629 479	10.9	
*LH2-2	456030	1 629 600	6.8	
*LH2-3	426024	1 630 191	9.9	
*LH2~4	610957	1 630 806	7.8	
*LH2~7	454821	1 630 885	8.5	
11.H. 2-8	455523.7162	1631897,6933	8.83	
tt.H. 2-9	456019.5552	1631532, 7703	7.80	
* 13-1	398884	1655311	10.9	
* T3-2	398863	1655474	8.9	
* T3-3	398846	1655749	5.8	
* T3-4	398124	1655575	7.8	
t T.3-5	398638,5697	1655804.0827	7.28	
96.	398456.3903	1655773.4899	7.88	
1 T.3-7	398428.4383	1655200.9359	13.26	
* 17-	396811	1654383	13.6	
* T5-2	398955	1654358	13.4	
* 15-3	398937	1654525	12.6	
* 16-1	386396	9110991	28.9	
* T6-2	386819	1660404	24.6	
* T6-3	386328	1660440	29.0	
+ 1.64	386657, 7033	1660567.0850	26.22	
† T.6-5	386272.4093	1660197.5984	29.37	
* 17-1	387323	1663607	13.3	
* T7-2	388044	1663875	12.3	
* 17-3	387411	9777/991	10.9	

APPENDIX L

COCRDIMATES AND TOP OF CASING ELEVATIONS FOR MONITOR WELLS INSTALLED DURING PHASE II, STACE I AND 2 STUDIES AT TYNDALL APB (Continued, Page 2 of 2)

Well Designation	UTM Coordinates	rdinates	Elevation, Top	
Number	Northing	East ing	of Casing (ft, unsl)	
*T 8-1	397780	1654564	15.7	
† T.8-3	397666.6763	1653978.8123	10.84	
+ T.8-4	397440.0116	1654020.7259	14.24	
* T.9-1	391171	1655892	7.02	
* T.9-2	390885	1656017	22.6	
11.9-3	390851,1563	1655686.1104	28.42	
1.1	391122.8751	1655803.4411	23.94	
110-1	396724.8754	1655781.3198	14.13	
TT 10-2	396417.4401	1655868.1802	14.77	
fT10-3	396173.0211	1655573.0608	13.35	
T11-1	391709.8313	1662222.4961	13.24	
TT11-2	391511.2668	1662569.1190	12.97	
fT11-3	391396.9281	1662629.6801	8.43	

* Installed during Phase II, Stage 1 of survey. † Installed during Phase II, Stage 2 of survey.

Sources: Thiess, et al., 1984. ESE, 1987.

L-2

THIS PAGE INTENTIONALLY LEFT BLANK

TY MOI

HK'D

DAT

L - 2

DRAWING NO

TYNDALL AIR FORCE BASE MONITOR WELL LOCATIONS

ESE PROJECT NUMBER	SCALE	
<u> </u>		
<u> </u>		
<u></u>		
DRAWN/REVISED BY		DATE

DRAWING TITLE

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC.

APPROVED FOR ISSUE BY

DATE

APPENDIX M

GROUND WATER SAMPLING LOGS

Well Number:	L42-	— i Dat	:e: 131	1 (3)	Time	s: <u>5 }</u>	· /
Boring Diamete	r: 6"		Well	Casing Dia	meter	2 "	
Annular Space	Length:	5 - ـــر ا		Stickup	»:	2.2	
WATER LEVEL							
Held:	7.00		_				
Cut:	O-S 3		_				
DTW:	6.45		Top o	f Casing			
COLUMN OF WATE	R IN WELL						
Ca	sing Lengt	h:	15.5		_		
DTW To	p of Casin	8:	6.u s		_		
Column of We	cer in Wel	1:	۲.۶	<u> </u>	_		
AOLINE 10 PR B	ENOARD						
Gallons per	foot of A.	S. (from	chart)			3 4	
Column of Wa	ter or Len	gth of A.	S. (whic	hever is l	(ess)	x _ 3 º	<u>``</u>
'Volume of An	nular Spac					3.5	
Gallons per	foot of Ca	gnie	•			<u>1.3)</u>	<u> </u>
Column of Wa	ter					x 9.0	٠
Volume of Ca	sing					•	
Total Volume	(Volume o	f A.S. +	Volume o	f Casing)		•	
Number of Vo	lumes to b	e Evacuat	ed:			x 3 = 3	
Total Volume	to be Eve	custed				•	7 -
Method of Purg	ing (pump,	beiler,	et c.):	< '~ >			
PIELD ANALYSES		ert		Mid		End	
Time	10:	37_	<u> </u>	્ય 3		54	
pii		9		^ _		<.7	
Conductivity	- 4	2		35		1-3	
Temperature	27.	9		<u> </u>		21	
Total Volume P	urged:	÷5 30	gallons		_		
Sample Time:	1 51	ς	Samp	le Number:		· ,	<
FRACTIONS							
3 C	77	a.	F	Ħ	M	N	NF
0 P	B	RP	RS	S	τ	υP	z
NOTES							
		_					
Signed/Sampler	:	Lou.				Date: -	
Signed/Reviewe		1/4	4				122/86
3 1							

	L112-	- 1	Dace:	101,41		Time:			
III wommer.				Well Car		eter:	1	- '1	
ring Diamete		<u>u</u>	11.5		Stickup:		1.2		
mular Space	Length:		, _ ,						
TER LEVEL	- 0								
Derd:	7.0								
, , , , , , , , , , , , , , , , , , ,	> 6		-	Top of	Casing				
U1 W .	4.4		-	tob or	CESTUS				
OLUMN OF WAT				15.5					
	esing L			15.5		•			
	op of C			111		•			
Column of W				1	_	•			
OLUME TO BE	REMOVED	•						.39	
Gallons per	foot o	of A.S.	(from ((MATT)	awam in 1)	x	11.1	
Column of W			h of A.S	s. (waten	dage to .	•••		4.3	
Volume of A					,			.163	
Gallons per	foot	of Casi	ag					. 1 . }	
			_				T.		
Column of 1			_				·	1.8	
Column of 1	Water Casing						-	1.8	
Volume of V	Water Casing me (Vol	uma of	A.S. +	Valume of	Casing)		-	6.1	
Column of 1	Water Casing me (Vol	uma of	A.S. +	Volume of	Casing)		x 3	6·1	
Column of Volume of Volume of Volume of Volume of Volume	Water Casing me (Vol Volumes me to b	ume of to be	A.S. + Evacuat	ed	_		x 3	6.1	
Column of Volume of Volume of Volume of Volume of Volume	Water Casing me (Vol Volumes me to b	ume of to be	A.S. + Evacuat mated bailer,	etc.): _	CONT		x 3	6.1 -3 5 5.4 -3	
Column of Volume of Volume of Volume of Volume of Volume Total Volumethod of Pu	Water Casing me (Vol Volumes me to b arging (to be Evacopump,	A.S. + Evacuat wated bailer,	etc.):	CONT	·	x 3	(.) -> 5 (.) -> End	
Column of Volume of Volume of Volume of Total Volume of Total Volumethod of Pu	Water Casing me (Vol Volumes me to b arging (to be Evacopump,	A.S. + Evacuat wated bailer,	3 10:	CCLT Mid		x 3	(-1 -3 5 (-4 -2 End	
Column of the Volume of the Total Volume of Total Volume of Total Volumethod of Putting AMALTS	Water Casing me (Vol Volumes me to b arging (to be Evacopump,	A.S. + Evacuat uated bailer, rt H	3 10:	CCLT Mid		x 3 - 19	End 15	
Column of the Volume of the Total Volume of the Total Volumethod of Puttle AMALYS Time pi	Water Casing me (Vol Volumes me to b arging (to be Evac.	A.S. + Evacuat uated bailer, rt h	eccs): 10:	Mid		x 3 - 19 0 3 5 5	End 15	
Column of the Volume of the Total Volume of the Total Volume of the Total Volumethod of Purish AMALTS Time ph Conductive	Casing me (Vol Wolumes me to b arging (scs 10: 5.6 6.4	A.S. + Evacuate uated bailer, rt H	2 10 5 - 5	Mid 411 5 2 64		x 3 - 19 0 3 5 5	End 15	
Column of Notice of Total Volume of Total Volume of Total Volumethod of Furnital Analysis Time ph Conductive Temperature	Casing me (Vol Volumes me to b arging (ES	pump. Sta	A.S. + Evacuat uated bailer, rt h	ecc.): 10.5 5.65 2 gellone	Mid 11 5 2 6 4		1 3 3 19 19 19 19 19 19 19 19 19 19 19 19 19	End 15 . 6	30.
Column of Volume of Volume of Volume of Volume of Total Volumethod of Purish AMALTS Time pH Conductive Temperatur Total Volume	Casing Me (Volumes Me to b Arging (IXS ity re a Purge	sca Sca 10: 5.4 25:	A.S. + Evacuate uated bailer, rt H	ecc.): 10.5 5.65 2 gellone	Mid 411 5 2 64		1 3 3 19 19 19 19 19 19 19 19 19 19 19 19 19	End 15	30.
Column of Total Volume of Total Volume of Total Volume of Total Volumethod of Purity AMALTS Time pR Conductive Temperatur Total Volume Sample Time	Casing Me (Volumes Me to b Arging (IXS ity re a Purge	sca Sca 10: 5.4 25:	A.S. + Evacuate uated bailer, rt H	ecc.): 10.5 5.65 2 gellone	Mid 11 5 2 6 4		1 3 3 19 19 19 19 19 19 19 19 19 19 19 19 19	End 15	33.
Column of Total Volume of Total Volume of Total Volume of Total Volume pR Conductive Total Volume Sample Time	Casing me (Volumes me to b arging (ity re e Purge	sca Sca 10: 5.4 25:	A.S. + Evacuate uated bailer, rt H	ecc.): 10.5 5.65 2 gellone	Mid 11 5 2 6 4		1 3 3 19 19 19 19 19 19 19 19 19 19 19 19 19	End 15 . 6 . 5	30.
Column of the Volume of the Total Volume of the Total Volume of Total Volume of the To	ity re e Purge	star of to be Evacuated of the Evacuate of the	A.S. + Evacuate uated bailer, rt H	ecc.): 10.5 5.65 2 gellone	Mid 411 5 2 64 ble Number		1 3 3 19 19 19 19 19 19 19 19 19 19 19 19 19	End 15	33.
Column of the Volume of the Vo	Casing me (Volumes me to b arging (ity re e Purge	to be tvac. Sta 10- 5.6 Ly 25.6 1:2-5	A.S. + Evacuat uated bailer, rt ' '	etc.): yolo	Mid 411 52 64 ble Number		1 3 3 19 19 19 19 19 19 19 19 19 19 19 19 19	End 15 . 6 . 5	30.
Column of the Volume of the Vo	ity re e Purge	to be tvac. Sta 10- 5.6 Ly 25.6 1:2-5	A.S. + Evacuat uated bailer, rt ' '	etc.): yolo	Mid 411 52 64 ble Number		1 3 3 19 19 19 19 19 19 19 19 19 19 19 19 19	End 15 . 6 . 5	30.
Column of the Volume of the Vo	ity re e Purge	to be tvac. Sta 10- 5.6 Ly 25.6 1:2-5	A.S. + Evacuat uated bailer, rt ' '	etc.): yolo	Mid 411 52 64 ble Number		1 3 3 19 19 19 19 19 19 19 19 19 19 19 19 19	End 15 . 6 . 5	30.
Column of the Volume of the Vo	ity Purge :	to be tvac. Sta 10- 5.6 Ly 25.6 1:2-5	A.S. + Evacuat uated bailer, rt ' '	etc.): yolo	Mid 411 52 64 ble Number		1 3 3 19 19 19 19 19 19 19 19 19 19 19 19 19	End 15 6 8 4 5 17 17 17 17 17 17 17 17 17 17 17 17 17	30.

Well Number:	272-3	3 Date	· ' ' ' -	/-;	Time:	-11:5	<u> </u>
Boring Diamet				sing Diam	meter:	7."	
Annular Space		12.		Stickup		2.7	
MATER LEVEL	_						
	5.0						
Cut:	5.0						
DTW:	4.0		Top of	Casing			
COLUMN OF WAT	ER IN WILL						
d	asing Length	:	16.0		_		
DTW T	op of Casing	:	4.0	·	_		
Column of W	leter in Well	.:	12.	2	_		
VOLUME TO BE	EDIOARD					, 3 7	
Gallous per	foot of A.S	. (from	chart)				
Column of W	later or Leng	gth of A.	S. (which	ever is l	ess) I	12.0	
Volume of A	Annular Space	1			=	<u> </u>	
Gallous per	r foot of Car	sing			-	1133	
Column of V	Nater				I	12.0	
Volume of	Casing				•	2.0	
Total Volum	me (Volume o	f A.S. +	Volume of	Casing)	•	3.5	
Number of \	Volumes to be	e Evacuat	ed		x		
	ne to be Eve				-	19.9-	33.7
Mechod of Pu	rging (pum,	bailer,	etc.): _	(5.5.	<u> </u>		
FIELD AMALYS	St.	art		Mid		End	
Time	11:			55		4:15	
₽Ē	6-3			<u> </u>		7.0	
Conductivi			3 6			322	
Temperatur	2.8	1.7 ~	<u> </u>	9.5		9.6	
Total Volume	Purged:	20	gallons		- \	, , <u>, , , , , , , , , , , , , , , , , </u>	
Sample Time:	14.25	ئب ــــــــــــــــــــــــــــــــــــ	Sampi	e Number	:	- 543	
PRACTIONS	•						
8 C	CF CF	a	F	Ħ	Ħ	N	NF
0 P	2	82	RS	5	T	UP	Z
NOTES							
		1.7					_
Signed/Sampl	ler:	1/-11				ete:	,
Signed/Revie	wer: 1	Jak la			و	eta: <u>/0</u>	122/F
-							

Cx

	/	_ ` -	- 4/			3 :		ì
								'
_	iameter:			1	Casing Dia			
	Spece Let	ugen:	· طر '	<u> </u>	Stickup	: —	۲.٦	
MATER LE		_						
Held:		. <u>0</u>						
Cut:				•				
DIV:		.9		Top o	f Casing			
COLUMN 0	P WATER !							
	Casi	ng Leag	ch:	13,	, 	_		
	DTW Top	of Casi	ag:	3.9		_		
Column	of Water	r in We	11:	12.1		_		
volume 1	0 BE ROW	DARD					2	4
Gallon	s per fo	ot of A	.S. (from	chert)		•	3	7
Column	of Water	r or Les	ngth of A.	S. (whic	hever is l	ess) X	:2	·1
Volume	of Annu	lar Spe	ce			•	4.7	
Gallon	s per foo	ot of G	ssing			-		
Column	of Water	r				1		
Volume	of Casi	ng				•	,	·
Total	Volume (1	7olume	of A.S. +	Valume a	f Casing)	•	6.7	
Number	of Volum	nes to	be Evecuet	ed		x	3-	5
Total	Volume to	be Ev	acusted			•	20.1	-) 33.5
Method o	f Purgin	(pump)	beiler,	etc.):	CONT			
PIELD AN			tert		Mid		End	
Time		12	-: 04	12	:,48		1402	
Вq			6.3		.6		6.7	
Conduc	tivity		127		-76		251	
Temper	atura	2	6.8	2	8.0		27.	
Total Vo	lume Pur	red:	26	gallons	<u> </u>			
Sample T		14-1:			le Number:	TN	1000	2 t
PRACTION				•				
В	С	⇔ .	Œ.	7	1	м	N)	NF
0			RP	25	s	T	UP	z
HOTES								
								
Signed/S	ampler:	h	14/11			~		1475
_	eviewet:	- 15	710	2		_	te: /6	
a - Briad\ 4	AATAMEL:		<u> </u>	}		>	····· <u>//</u>	12 31 EC

Well Number: LH	2-7 Date	: 10-17-36 Tis	146C	
Boring Diameter:	6.	Well Casing Diameter	r: <u>2.</u>	•
Annular Space Len	sth: 11.2'	Stickup:	1.4'	
WATER LEVEL				
Held: 7.60	0		I mad sampled	ĺ
Cut: 1.6	4		1 10	[
DTV: 5-3	<u>i. </u>	Top of Casing	Not sampled	\ •
COLUMN OF WATER I	THE REAL PROPERTY.	•		
Casit	g Length:	13.40		
DTW Top o	f Casing:	5.36		
Column of Water	in Well:	7.04		
WOLUME TO BE REDIO	TED		. •:	
Gallons per foo	c of A.S. (from o	thert)	· <u>0.31</u>	
Column of Water	or Length of A.S	. (whichever is less)		
Volume of Annul	ar Space		- 3.16	
Gallons per foo	c of Casing		- 0.1632	
Column of Water	•		= 8 CA	
Volume of Casin	15		- 1.31	
Total Volume (V	folume of A.S. + 7	Folume of Casing)	• _4.47	
Number of Volum	es to be Evecuate	ad	1 3 - 5	
Total Volume to		30	- 134-553	
Marked of Bureins	(pump, bailer,	ecc.): Pump - Not	- CENTENUES 1	1/22
. usernom.or targens	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
FIELD AMALISES	Start	Mid	End S	 -
/	Start 1404 @ 5 gal	Mid	1424 @ 25 gar 54	A ENG
FIELD AMALISES	Start	1415 @ 109*1 5.6	1424 @ 25 92 50 517	# End
FIELD ANALTSES	Start 1404 @ 5 gal	1415 @ 109~1 5.6 238	1424 @ 25 92 Em	A ENG
Time pE	Start 1484 @ 5 gal 5.5	1415 @ 109*1 5.6	1424 @ 25 92 50 25 92 25 92 25 25 25 25 25 25 25 25 25 25 25 25 25	# End Mpi 1310 S. S.
Time pH Conductivity	Start 1404 @ 5 qxl 5.5 251 27.7 140: 25410	1415 @ 10 q x 5.6 23 < 27.9 gallons	1424 @ 25 92 25 92 25 25 25 25 25 25 25 25 25 25 25 25 25	# End Mpl 1310 S. S. 12 235 63 26 2
Time pH Conductivity Temperature	\$tart 1404 @ 5 qxl 5.5 251 27.7	1415 @ 109*1 5.6 238 27.9	1424 @ 25 92 50 25 92 25 92 25 25 25 25 25 25 25 25 25 25 25 25 25	# End PAPA 1310 S. S. S. 12 235 12 235 13 26 2 Total page
Time pH Conductivity Temperature Total Volume Purp	Start 1404 @ 5 qxl 5.5 251 27.7 140: 25410	1415 @ 10 q x 5.6 23 < 27.9 gallons	1424 @ 25 92 25 92 25 25 25 25 25 25 25 25 25 25 25 25 25	# End Mpl 1310 S. S. 12 235 63 26 2
Time pH Conductivity Temperature Total Volume Pury Sample Time:	Start 1404 @ 5 qxl 5.5 251 27.7 140: 25410	Mid 1415 © 10 q x 1 5.6 23 x 27.9 gallons Sample Number:	1424 @ 25 qir 25	at End Mari 1310 16 S.5 12 235 12 235 Total prop 10/22 = 4
Time pH Conductivity Temperature Total Volume Pury Sample Time: FRACTIONS B C	Start 1484 @ 5 qn 5.5 251 27.7 1315 (10/22)	Nid 1415	1424 @ 25 94 25 94 25 94 25 94 25 25 25 25 25 25 25 25 25 25 25 25 25	at End Mari 1310 16 S.5 12 235 12 235 Total prop 10/22 = 4
FIELD ANALYSES Time pH Conductivity Temperature Total Volume Pury Sample Time: FRACTIONS	Start 1484 @ 5 qn 5.5 251 27.7 1315 (10/22)	Mid	1424 @ 25 qir 25	at End Mari 1310 16 S.5 12 235 12 235 Total prop 10/22 = 4
Time pH Conductivity Temperature Total Volume Pury Sample Time: FRACTIONS B C	Start 1484 @ 5 qn 5.5 251 27.7 1315 (10/22)	Mid	1424 @ 25 qir 25	at End Mari 1310 16 S.5 12 235 12 235 Total prop 10/22 = 4
Time pH Conductivity Temperature Total Volume Pury Sample Time: FRACTIONS B C NOTE: VY3	Start 1484 @ 5 qn 5.5 251 27.7 1315 (10/22)	Mid 1415 @ 10 q x	1424 @ 25 qir 25	at End Signal 1310 16 S.55 12 2355 12 2355 Total prop 10/22 = 4
Time pH Conductivity Temperature Total Volume Pury Sample Time: FRACTIONS B C NOTE: VY3 Well parenal	Start 1484 @ 5 qn 5.5 251 27.7 1315 (10/22)	Mid 1415 @ 10 q x	1424 @ 25 qir 25	at End Mari 1310 16 S.5 12 235 12 235 Total prop 10/22 = 4
Time pH Conductivity Temperature Total Volume Pury Sample Time: FRACTIONS B C NOTE: VY3	Start 1484 @ 5 qn 5.5 251 27.7 1315 (10/22)	Mid 1415 @ 10 q x	1424 @ 25 qir 25	at End Mari 1310 16 S.5 12 235 12 235 Total prop 10/22 = 4

		f	
Well Number:	H2-8 Dec	e: 10/22/86	Time: 1115
Boring Diameter:		Well Casing Diame	ter: 4" J.D.
Ammular Space Le	lagth: 14.2	Stickupe	2.2'
HATER LEVEL			
Held:7.	<u>oo′</u>		
Cut: O.	75		
DTW: 6	. 15'	Top of Casing	
COLUMN OF WATER	IN WILL	,	
Casi	ng Length:	21.2	
UTW Top	of Casing:	- 6.15'	
Column of Wate	r in Well:	15.05	
VOLUME TO BE HER	OVED		
Gallous per fo	ot of A.S. (from	chart)	. 1.57
Column of Wate	er or Length of A.	S. (whichever is les	e) x 15.05
Volume of Annu	lar Space		23.6
Gallons per fo	ot of Casing		0.6528
Column of Wate	r ·		I 15.05
Volume of Casi	ag		9.9
Total Volume (Volume of A.S. +	Volume of Casing)	- 33,4
Number of Volu	mes to be Evecuet	€d	x 3-5
Total Volume t	o be Evecuated	- 1	- 1022 - 167
Method of Purgin	g (pump, bailer,	ecc.): Cations	ومدردسده
FIRLD ANALYSES	Start	Mid	End
Time	1130@5aA	1153 @ 75 gar	1212 @ 120 gml
5-8	6.2	60	6.0
Conductivity	281	3(0	330
Temperature	27.9	21.8	27.9
Total Volume Pur	zed: 50	gallons	
Sample Time:	1230	Sample Number:	2*7
PACTIONS	•	_	
B C	cer ce	7 8	H (A) VAE
(F) !	1 17	85 S	T UP Z
BOTES (1)	_) 1	0.
(773	ياملوار	n gulk clean	ath progra
		- C+C	کے نیم ا
Signed/Sampler:	Maria	X/D	- Date: 10/22/86
Signed/Reviewer:	18 John		Date: Tre/25/Gr
			

**

. 10 0	- 10/22/86 Time: 0815
Well Number: LH2-9	Date: 10/26/39
Boring Diameter: - 12"	West Ceasing organization and 3 1
Annular Space Length:	16.6' Stickup: 3.2
HATER LEVEL	
Held: 7.00	
Cut: 0. 70	
DIN: 6.20'	Top of Casing
COLUMN OF WATER IN WELL	
Casing Length:	22.2
DTW Top of Casing:	-6.20
Column of Water in Well:	
AOTING TO BE REMOARD	. 1.57
Gallous per foot of A.S.	(from chart)
Column of Water or Length	of A.S. (whichever is less) I 16.0
Volume of Assular Space	
Gallous per foot of Casi	- <u>0.6529</u>
Column of Water	x 16.0
Volume of Casing	25
Total Volume (Volume of	A.S. + Volume of Casing)
Number of Volumes to be	Evacuated . 106.5 - 177.5
Total Volume to be Evacu	aced 3
Method of Purging (pump, b	eiler, ecc.): Yungma (discontinuous)
FIRED AMALTMES Stat	t Nidgo
Time 8740@	
p# <u>5.7</u>	5.7
Conductivity 265	
Temperature 23-2	
Total Volume Purged:	IS gallons
Sample Time: 11:10	Sample Sumber: 248/276
FRACTIONS .	
<u> </u>	a I II W VX3
(a) • •	EP RS 5 T UP Z
HOTTES . (A) a reduc	O) furchers sampled have
OA (II)	
M	1 / 1 / 10/22/60
Signed/Sempler:	Mes: Total do
Signed/Reviewer:	Mary Date: 19290
1	•
eks	

Well Number:	1-3-1	Date:	11 (15)	Time:	297	
Boring Diamet	er: '5"	Well	Casing Diam	eter:	<u> </u>	
Annular Space		1.3	Stickup;		2.7	
HATER LEVEL			-			
Held:	8.0					
Cut:	. 6					
DEW:	7.4	Top	of Casing			
COLUMN OF WAT	ER IN WILL					
d	Lesing Length:	14.0		_		
DIW I	op of Casing:	7.4		_		
Column of W	Mater in Well:	6-6		_		
VOLUME TO BE	MENOVED					
Gallons per	foot of A.S.	(from chart)		•	. 39	
Column of W	lacer or Length	of A.S. (whi	ichever is l	ess) I		
Volume of A	innular Space			-	1.6	
Gallons per	foot of Casin	•		•	1632	
Column of W	ieter			x		
Volume of (Cesing			•	· <u>- 1.1</u>	
Total Volum	e (Volume of A	.s. + Volume	of Casing)	•	<u> </u>	
Number of V	Volumes to be E	vacuated		7	·	
	to be Evecus				11.0-	18.3
Method of Pul	rging (pump, be	iler, etc.):	CENT			
FIELD ANALYSI			Mid		End	
Time	0957	<u> </u>	10:06		0:17	
ÞÆ	6.3		6.0		6.0	
Conductivi			147		144	
Temperatur	24,8		-6,4		16.7	
Total Volume		gallo	ns .			ويؤ
Sample Time:	10:20	Sa	mple Number:		hron (
PRACTIONS						
B C	ar i	G. F	Ħ	M	M	NF
0 ?	•	EP 15	5	T	UP	Z
HOTES						
	n				,	1! -
Signed/Sampl	er: KM	<u>, , , , , , , , , , , , , , , , , , , </u>		0	ece: <u>/0/</u>	د <u>۲۱</u> ۲
Signed/Revie	ver: UB.	1 allerge		_ 0	ece: <u>/</u>	22/50
					•	,

Well Number:	\ \ \ - \ \ \ -	Date	: 1011	115,	Time:	093	٦
Boring Diameter:	6 "			esing Dies	meter:	上、	
Annular Space Le		7.3		Stickup		2.7	
WATER LEVEL							
Held:	7.0						
Cut:	. 9						
DTW:	6.1		Top of	Casing			
COLUMN OF WATER				_			
	ng Length		14.0		_		
	of Casing		6.1		_		
Column of Wate			7.9		-		
VOLUME TO BE BEN							
Gallons per fo		. (from c	chart)		•	.37	
Column of Wate				ever is l	ess) I	7.3	
Volume of Annu					-	3-1	
Gallons per fo	ot of Cas	ing			•	153	2
Column of Wate	r				I	7,9	
Volume of Casi	.a g				•	·	
Total Volume (Volume of	. A.S. + 1	Volume of	Casing)	•	4.4	
Number of Volu	mes to be	Evacuat	ed		x	<u>ز هـ د </u>	
Total Volume t	o be Eva	cuated		_	•	13. 1-	21.1
Mechod of Purgin	g (pump,	beiler,	etc.): _	CKM.			
FIELD AMALISES		ert		Mid		End	
Time	10:0	<u>S</u>):31		10:20	
pil	6.	<u>ა</u>		6.0		60	
Conductivity	1)	8	1	68		137	
Temperature	16	. 6	_2	<u>د . ک</u>		26.1	
Total Volume Pur		50	gallons				/45
Sample Time:	11:1	0	_ Şamp	ie Number	:	100	3 ~
PRACTIONS							
В С	CT	Œ	7	A	M	Ä	N.E.
0 P	1		黟	S	T	UP	Z
HOTES							
	A	1				,	1
Signed/Sampler:		14/				ece: 13/	15/53
Signed/ Reviewer	: <u>//</u> 1	A ALL	e		<u> </u>	ete: 19	2786

Well Number:	3-3 Data:	10/15/50 75	ma: 11:27
Boring Diameter:	6 "	Well Casing Diamete	
Annular Space Let		Stickup:	3.7
NATER LEVEL			
Held: S.	0		
Cut: 1.			
	9	Top of Casing	
COLUMN OF WATER I			
Casir	ng Length:	13.0	
DTW Top o	of Casing:	3. g	
Column of Water	r in Well:	9.1	
VOLUME TO BE ROSE	MED		
Gallons per foo	ot of A.S. (from ch	urt)	<u> 3 j</u>
Column of Water	or Length of A.S.	(whichever is less)	x 3·3
Volume of Annul	lar Space		3.2
Gallons per foo	ot of Casing		- 1632
Column of Water	·		x
Volume of Casis	ng .		- '.5
Total Volume (V	Folume of A.S. + Vo	luma of Casing)	- <u>4.7</u>
Number of Volum	ses to be Evecuated	l	x 3->2
Total Volume to	be Evecueted		14.2-> 23.0
Method of Purging	(pump, bailer, et	:c.):	
FIELD AMALTSES	Start	Mid	End
Time	11:39	11:41	11:44
pil	(.)	6.2	62
Conductivity	195	178	183
Temperature	15.0	15.2	25.2
Total Volume Pury	10d: 50+	silons	-
Sample Time:	11:55	Sample Number: 7	NO4 6 #3
PRACTIONS	•		S an Cake
B C	or ou	F E M	THE STE
(i) (i)	1 12	RS S T	UP Z
ROTES	1 1 1 1 56 TO	Bruse's	
VI3 TED	of roll one but	be falled caugh he	I rad color seliment
	in topy bottom of B	all simple will	rad color sediment center of somple was deer
Signed/Sampler:	Jen An	, 	Date: 13/13/
Signed/Reviewer:	5 LLL		Date: 10/23/86

Well Number:	13-4	Date: 19	16 Ti	me: 12:	33
Boring Diamer	er: "		sing Diamete		
Annular Space	Length: 8	.3	Stickup:	1.7	
MATER LEVEL					
Held:	6.0	<u> </u>			
Cue:	. 9				
DTV:	5.1	Top of	Casing		
COLUMN OF WAT	ER IN MELL				
C	asing Length:	13.0			
DIW T	op of Casing:	5.1			
Column of W	eter in Well:	7.9			
volume to be	BENOVED			3 9	
Gallons per	foot of A.S. (from chart)			
Column of W	eter or Length	of A.S. (which	ver is less)		
	amular Space	_		- 3.1	٠, ٩
Gallons per	foot of Casing			= <u>.15</u> 3	اسردا =
Column of W	ater			x -7.9	
Volume of C	_			<u> 1.3</u>	
	e (Volume of A.		Casing)	• <u>Y.Y</u>	
	olumes to be Ev			¥ -3	<u>د</u>
	e to be Evecuate				<u> + 1.9</u>
	ging (pump, bai	ler, ecc.): _			
FIELD AMALISE	ا Start 12 '45	ا م ا	Mid	End	**
Time		15.19		1623	
pil.	6.8	- 5 7			
Conductivit		1.5.		378	
Temperature	1011			93.8	
Total Volume	rurged:	•	. Marin branca	TUDYL6.	. /l
Sample Time:	1645	34mpt 4	Number:	I.b.Dyl. 6.	• 7 _
5 C	car c	. •	8 4		MP
	•		s 7	OP.	Z
10 to 12			•	ŲF	4
NOTES (VX3	7 60				
7.	- 10/10 /	1 1			
Signed/Sample	1/1	14/V		Date: /A	116/66
Stened/ seaten		00		Date: 4	(23/86
		7		-19	ages 6

		1.1		
Well Number:	3-5 Date	: 10/11/86 T	ime:	
Boring Dismeter:	12*	Well Casing Diamet		٠
Annular Space Len	igch: 14.51	Stickup;	2.1	
WATER LEVEL				
Held:7	.04			
Cut:	0.90			
DIN:	6.10	Top of Casing		
COLUMN OF WATER I				
Casin	g Length:	20.5		
DTW Top o	of Casing:	6.1		
Column of Water	in Well:	14.4		
VOLUME TO ME MEN	WED			
Gallous per foc	et of A.S. (from	chart)	• <u>1.57</u>	
Column of Water	r or Length of A.	S. (whichever is less		
Volume of Annul	lar Space		- 22.61	
Gallons per foo	of Casing		6328	
Column of Water	•		x <u>14.4</u>	
Volume of Casis	26		• <u>9.4</u>	
Total Volume (1	Tolumn of A.S. +	Volume of Casing)	• 32.0	
Number of Volum	ses to be Evecuet	ed	1 <u>3-5</u>	
Total Volume to	be Evecuated	0 1	· 96 - 160	
Method of Purging	g (pump, beiler,	ecc.): Continue	2 marine	
PIELD AMALESES	Start	Hid	End	
Time	1120@ 5 april.	132@ 80 gr	11446 160 24	
) pili	6.5	4.2		
Conductivity	334	309	309	
Temperature	26.0	26.5	26.6	
Total Volume Pur	•	gallous	C*8 -> QA	
Sample Time:	1142	_ Sample Number:	6 * 5	
PRACTIONS				
3 C	or o	7 11	4 (1) 17	
(3)	**************************************	15 5	r of z	
WIES V X 3	(+ EP)	GA THEEN	HERE - complete	set
		7		
	1 1/4		14/2/	
Signed/Sampler:			Date: 17/1/25	
Signed/Reviewer:	-7/A-1-7		Date: 10/33/80	
	10/200	7 4		
	1	(/		

Hydrahb #1

— ,	1-1-	
~ 	: 10/17/86 Time: 12/0	
Boring Diameter: 12"	Well Casing Diameter: 4' T.D.	
Annular Space Length: 16.5	Stickup: 2.0' 1.9'	
NATER LEVEL		
Held: 7.00		
Boring Diameter: 12" Well Casing Diameter: 4° T.D. Annular Space Length: 16.5' Stickup: 2.5' 1.9' WATER LEVEL		
DTW: 6.55	Top of Casing	
COLUMN OF WATER IN WELL		
Casing Length:		
DIW Top of Casing:	6.55	
Column of Water in Well:	14.35	
AOPTHR LO RE MENOARD		
Gallons per foot of A.S. (from c	hert) = <u>/.57</u>	_
Column of Water or Length of A.S	. (whichever is less) X	_
Volume of Amnular Space	= <u>22.53</u>	_
Gallons per foot of Casing	4528	_
Column of Water	x <u>14.35</u>	_
Volume of Casing	- <u>9.37</u>	_
Total Volume (Volume of A.S. + V	olume of Casing) = 31,9	_
Number of Volumes to be Evacuate		
Total Volume to be Evecuated	- 95.7 -15	9.5
, Method of Purging (pump, bailer, e	ec.): Continuous pumping	_
		a ay
) p8 <u>64</u>	بمريضة المطمونية المستوات والمستوات والمتراث المتراث المتراث المتراث المتراث المتراث المتراث المتراث المتراث ا	_
Conductivity 276	325 350	_
Temperature 27.2	27.1 27.0	
	gallons	
Sample Time: 1230	Sample Number: 6+6	_
FRACTIONS	_	
B C CF CL	F H M W M	F
	RS S T UP Z	
WOTES (V×3 + ED ')	,	
	Λ	
1,14,	4/1	/
Signed/Sampler:	11 Dete: 15/17/9	26
Signed/Reviewer:		
Standar . Contract.	Date: /0/22/	26
	Date: 1922	26

Well Number: T	3-7 Date	: 10/23/51	G Time:	1045
Boring Diameter:	12"			4" 7%
•		Well Casing		7 1.0,
Annular Space Leng	th: <u>[6.2</u>	SE1	ckup:	S. 6
MATER LEVEL	3 a f			
Held:	20			
Cut:	72			
יודע:	15'	Top of Casis	ng	
COLUMN OF WATER IN				
Casing	Length:	23.1		
DTW Top of	Casing:	1.75		
Column of Weter	in Well:/	5.35'		
VOLUME TO BE MEMOVE	ED .			
Gallons per foot	of A.S. (from ch	mart)	•]	1.57
Column of Water	or Length of A.S.	. (whichever	is less) I	15.35
Volume of Annula	r Space		•	24.1
Gallous per foot	of Casing		•	0.6528
Column of Water	•		1	15.35
Volume of Casing			•	10.0
Total Volume (Vo	lume of A.S. + V	olume of Casis	ng) =	34.1
Number of Volumes			r .	3 - 5
Total Volume to 1				1023 - 170.5
Method of Purging		(c.): Disc.	sounds.	1000 100.
FIELD ABALTERS	Start	Mid		Fod J
	055@5aH	1140 @	Say 121	5@100 and
<u>,</u>	5.4	<u> </u>	,	5.4
•	077	072		071
Conductivity _	24.9	26.5		
Temperature				26.4
Total Volume Purges		gallons	, ,	4-7
Sample Time:	220	Sample Numi	ber:	7
PRACTIONS	•			
	CT CL	7 8	Ħ	(N) AE
0	R	RS S	Ť	UP Z
NOTES (VOA ×3.	4 ED 3 +			
		70		1 1
Signed/Sampler: 0	Makak	Juxu.	Tate	10/23/8C
Signed/Reviewer:	# Sally		Date	10/20186
	7			7 7 8

Well Number: 19	Date	10 13 To	Time:	09:05	
Boring Diameter:	6.	Well Casing Dias	meter:	レ "	•
Annular Space Leng		Stickup			
HATER LEVEL					
Held: 10.0) ,				
Cut: 1. Z					
DTW: 8.8		Top of Casing			•
COLUMN OF WATER IN	WELL	~ 1			
	Length:	180	===		
DTW Top of	Casing:	8.8	-		
Column of Water	in Well:	9.2			
VOLUME TO BE REMOV	/ED			3.0	
Gallons per foot	of A.S. (from	chert)	• _	0.39	5-1
Column of Water	or Length of A.	S. (whichever is 1	.ess) X _	٩. ك	2
Volume of Annula	r Space		• -	3. 4	114
Callons per foot	of Casing			1632	١١٨ر
Column of Water			x -	<u> </u>	- >//
Volume of Casing	_		* _	5.1	507
Total Volume (Vo	olume of A.S. +	Volume of Casing)	• -	7.1	, ,
				• ~	
	es to be Evecuat			3->5	
Number of Volume	es to be Evacuat be Evacuated	ed		3 -> 5 15.3 = 25.4	
Number of Volume	es to be Evacuat be Evacuated			15.3 = 25.4	
Number of Volume	be Evacuated pump, beiler, Start	ecc.): CG.OTA Mid	ا پاربزر :	15.3 = 25.4 End	
Number of Volume Total Volume to Method of Purging	be Evacuated pum, beiler, Start 09.30	ecc.): <u>CG.G.C</u> Mid UG.S.Z	ا پاربزر :	15.3 = 25.4 End 7:5 \(\) 10:0 \(\)	
Number of Volume Total Volume to Method of Purging FIELD AMALTSES	be Evacuated pump, beiler, Start 09.30	ecc.): <u>CG.J. L</u> Mid UF, S. Z. G. Z.	_ = ريزر: 	End 7:53 10:05	
Number of Volume Total Volume to Method of Purging FIELD AMALTERS Time	be Evacuated pum, beiler, Start 09:30 6:6	ecc.): <u></u>	<u>-</u> عربزر: ع	End 7:53 10:05 63 6.2 15 93	
Number of Volume Total Volume to Method of Purging FIELD AMALISES Time	be Evacuated pum, beiler, Start 09.30 6.6 91	etc.): <u>CG.07.4</u> Mid UG.52 6.2 95 27.0	<u>-</u> عربزر: ع	End 7:53 10:05	-
Number of Volume Total Volume to Method of Purging FIELD AMALTSES Time pli Conductivity	be Evacuated pum, beiler, Start 09.30 6.6 91 26.7	ecc.): CG.O. A Mid UF, S. Z 6. Z 9 S 2 7 . O	<u>-</u> <u>-</u> - <u> </u>	End 7:53 10:05 63 6.2 15 93 6.7 26.2	-
Number of Volume Total Volume to Method of Purging FIELD AMALTSES Time pH Conductivity Temperature	be Evacuated (pum), beiler, Start 09:30 6:6 91 26:7	etc.): <u>CG.07.4</u> Mid UG.52 6.2 95 27.0	<u>-</u> <u>-</u> - <u> </u>	End 7:53 10:05 63 6.2 15 93 6.7 26.2	-
Number of Volume Total Volume to Method of Purging FIELD AMALTSES Time pH Conductivity Temperature Total Volume Purg	be Evacuated pum, beiler, Start 09.30 6.6 91 26.7	etc.): CG.O.A. Mid UF, 5.2 6.2 9.5 2.7.0 gallons Sample Number	3 - 2 - 2 - 2 - 2 - 2 - 2	End 7:58 10:05 63 6.2 15 93 6.7 26.2 .3*1	-
Number of Volume Total Volume to Method of Purging FIELD AMALISES Time pH Conductivity Temperature Total Volume Purg Sample Time:	be Evacuated pum, beiler, Start 09.30 6.6 91 26.7	etc.): CG.C.A Mid UF, 5 2 9 5 2 7 0 gallons Sample Number	3 - 2 - 2 - 2 - 2 - 2 - 2	End 7:58 10:05 63 6.2 15 93 6.7 26.2 .3*1	-
Total Volume to Method of Purging FIELD AMALTSES Time pi Conductivity Temperature Total Volume Purg Sample Time: FRACTIONS	be Evacuated pum, beiler, Start 09:30 6:6 91 26:7 ed: 50 11:10	etc.): CG.O.A. Mid UF, 5.2 6.2 9.5 2.7.0 gallons Sample Number	3 - 2 - 2 - 2 - 2 - 2 - 2	End 7:58 10:05 63 6.2 15 93 6.7 26.2 .3*1	·
Total Volume to Method of Purging FIELD AMALISES Time pH Conductivity Temperature Total Volume Purg Sample Time: FRACTIONS B C	be Evacuated (pum), beiler, Start 09.30 6.6 91 26.7 ed: 50 11:10	etc.): CG.C.A Mid UF, 5 2 9 5 2 7 0 gallons Sample Number	3 - 2 - 2 - 2 - 2 - 2 - 2	End 7:58 10:05 63 6.2 15 93 6.7 26.2 .3*1	, mi-5
Total Volume to Method of Purging FIELD AMALTSES Time pi Conductivity Temperature Total Volume Purg Sample Time: FRACTIONS B C	be Evacuated (pum), beiler, Start 09.30 6.6 91 26.7 ed: 50 11:10	etc.): CG.C.A Mid UF, 5 2 9 5 2 7 0 gallons Sample Number	3 2 2 : Thill	End 9:53 10:05 63 6.2 15 93 6.7 26.3 .3*1	
Total Volume to Method of Purging FIELD AMALTSES Time pH Conductivity Temperature Total Volume Purg Sample Time: FRACTIONS B C O P NOTES	be Evacuated (pum), beiler, Start 09.30 6.6 91 26.7 ed: 50 11:10	etc.): CG.C.A Mid UF, 5 2 9 5 2 7 0 gallons Sample Number	3 2 2 : Thill	End 9:53 10:05 63 6.2 15 93 6.7 26.3 .3*1	
Total Volume to Method of Purging FIELD AMALTSES Time pi Conductivity Temperature Total Volume Purg Sample Time: FRACTIONS B C	be Evacuated pumb, beiler, Start 09.30 6.6 91 26.7 ed: 50 11:10	etc.): CG.C.A Mid UF, 5 2 9 5 2 7 0 gallons Sample Number	3 2 2 : Thill	End 7:58 10:05 63 6.2 15 93 6.7 26.2 .3*1	

Boring Diameter: 6 Well Casing Diameter: 2 Annular Space Length: 10.8 Stickup: 2.7 WATER LEVEL Reld: 10.0 Cut: 1.06 DTW: 3.95 Top of Casing COLUMN OF WATER IN WELL Casing Length: 18.05 DTW Top of Casing: 5.95 Column of Water in Well: 9.05 WOLUMN TO BE ENSOYED Galions per foot of A.S. (from chart) 0.39 Column of Water or Length of A.S. (whichever is less) X 9.05 Volume of Annular Space Galions per foot of Casing Column of Water Volume of Casing Total Volume (Volume of A.S. + Volume of Casing) 5.0 Mumber of Volumes to be Evacuated Total Volume to be Ryacuated Method of Purging (pump) bailer, etc.): 5.7 Time 10.7 Time 10.7 Conductivity 107 105 105 Temperature 2.7.9 2.6.3 2.7.0
Annular Space Length: 10.8 Stickup: 2.7' WATER LEVEL Reld: 10.0 Cut: 1.06 DTW: 9.95 Top of Casing COLUMN OF WATER IN WELL Casing Length: 9.05 TOW Top of Casing: 9.95 Column of Water in Well: 9.05 VOLUMN TO BE BEHOVED Gellons per foot of A.S. (from chart) = 0.39 Column of Water or Length of A.S. (whichever is less) X 9.05 Volume of Annular Space = 1.5 Gallons per foot of Casing Column of Water Volume of Casing Total Volume (Volume of A.S. + Volume of Casing) = 5.0 Mumber of Volumes to be Evacuated Total Volume to be Evacuated Mathod of Purging (pump bailer, etc.):
Held: 10.0 Cut: 1.05 DTW: 9.95 Top of Casing COLUMN OF WATER IN WELL Casing Length: 9.05 VOLUMN Top of Casing: 9.95 Column of Water in Well: 9.05 VOLUMN TO BE EMMOVED Gallons per foot of A.S. (from chart) = 0.39 Column of Water or Length of A.S. (whichever is less) X 9.05 Volume of Annular Space = 3.5 Gallons per foot of Casing = 1632 Column of Water Volume of Casing = 1.5 Total Volume (Volume of A.S. + Volume of Casing) = 5.0 Number of Volumes to be Evacuated
Cut: 1.05 DTW: 8.95 Top of Casing COLIMN OF WATER IN WELL Casing Length: 9.05 DIW Top of Casing: 9.95 Column of Water in Well: 9.05 VOLUME TO BE EMBOVED Gallons per foot of A.S. (from chart) = 0.39 Column of Water or Length of A.S. (whichever is less) X 9.05 Volume of Annular Space = 3.5 Gallons per foot of Casing = 1/632 Column of Water X 9.05 Volume of Casing = 1/5 Total Volume (Volume of A.S. + Volume of Casing) = 5.0 Number of Volumes to be Evacuated X 3-9.5 Total Volume to be Evacuated = 15-25 Method of Purging (pump) bailer, etc.): 10:27 Time 10:27 Time 6.0 6.0 Conductivity 107 105 105 Temperature 2.7.9 2.6.3 27.0
COLUMN OF WATER IN WELL Casing Length: 8.0' DIW Top of Casing: 7.95 Column of Water in Well: 9.05 WOLUMN TO BE EMBOVED Gallons per foot of A.S. (from chart) 0.39 Column of Water or Length of A.S. (whichever is less) 2.705 Volume of Annular Space -3.5 Gallons per foot of Casing -1632 Column of Water 2.905 Volume of Casing -1.5 Total Volume (Volume of A.S. + Volume of Casing) 5.0 Number of Volumes to be Evacuated 3.75 Total Volume to be Evacuated 1525 Method of Purging (pump) bailer, etc.): -2.5 Method of Purging (pump) bailer, etc.): -3.7 Time 10:27 10:40 PH 6.2 6.0 6.0 Conductivity 107 105 105 Temperature 27.9 26.3 27.0
COLUMN OF WATER IN WELL Casing Length: 18.0 DTW Top of Casing: 5.95 Column of Water in Well: 9.05 VOLUME TO BE RESOVED Gallons per foot of A.S. (from chart)
Casing Length: 8.0 DIW Top of Casing: 8.95 Column of Water in Well: 9.05 WOLLES TO BE EMMOVED Gallons per foot of A.S. (from chart) = 0.39 Column of Water or Length of A.S. (whichever is less)
Column of Water in Well: VOLUME TO BE EMMOVED Gallons per foot of A.S. (from chart) Column of Water or Length of A.S. (whichever is less) X 9.05 Volume of Annular Space Gallons per foot of Casing Column of Water Yolume of Casing Column of Water Yolume of Casing Total Volume (Volume of A.S. + Volume of Casing) Number of Volumes to be Evacuated Total Volume to be Evacuated Total Volume to be Evacuated Mid End Time 10:27 10:40 Conductivity 107 105 Temperature 1
VOLUME TO BE BENOVED Gallons per foot of A.S. (from chart) Column of Water or Length of A.S. (whichever is less) X 9.05 Volume of Annular Space Gallons per foot of Casing Column of Water Volume of Casing Total Volume (Volume of A.S. + Volume of Casing) Number of Volumes to be Evacuated Total Volume to be Evacuated Total Volume to be Evacuated Time 10:22 PIELD ANALISES Start Mid End Time 10:22 Conductivity 107 105 Temperature 109 105 Temperature 109 100 100 100 100 100 100 10
Gallons per foot of A.S. (from chart) Column of Water or Length of A.S. (whichever is less) X 9.05 Volume of Annular Space Gallons per foot of Casing Column of Water Volume of Casing Total Volume (Volume of A.S. + Volume of Casing) Total Volume to be Evacuated Total Volume to be Evacuated Method of Furging (pump, bailer, etc.): Time 10:27 PIELD ANALISES Start Mid End 10:27 10:40 Conductivity 107 105 Temperature 10,9 26,3 27,0
Gallons per foot of A.S. (from chart) Column of Water or Length of A.S. (whichever is less) X 9.05 Volume of Annular Space Gallons per foot of Casing Column of Water Volume of Casing Total Volume (Volume of A.S. + Volume of Casing) Number of Volumes to be Evacuated Total Volume to be Evacuated Method of Purging (pump) beiler, etc.): FIELD AMALISES Start Mid End 10:27 10:40 Gonductivity 107 105 Temperature 1,9 26.3 27.0
Column of Water or Length of A.S. (whichever is less) X 9.05 Volume of Annular Space
Total Volume to be Evacuated Total Volume to be Evacuated Total Volume (pump, bailer, etc.): Time 10:27 105 Conductivity Temperature 13.5 1.5 1.632 1.7.5 1.632 1.7.5 1.7.
Gallons per foot of Casing Column of Water Volume of Casing Total Volume (Volume of A.S. + Volume of Casing) Number of Volumes to be Evacuated Total Volume to be Evacuated YIELD AVALISES Start Nid End 10:27 PE Conductivity 107 105 105 Temperature 1-1-9 2-6.3 2-1-6-32
Column of Water Volume of Casing Total Volume (Volume of A.S. + Volume of Casing) Number of Volumes to be Evacuated Total Volume to be Evacuated Method of Purging (pump, bailer, etc.): FIELD ANALYSES Start Mid End 10:27 10:40 PH Gonductivity 107 105 Temperature 1,9 26.3
Volume of Casing Total Volume (Volume of A.S. + Volume of Casing) Number of Volumes to be Evacuated Total Volume to be Evacuated Method of Purging (pump) beiler, etc.): YIELD ANALISES Start Nid End 10:27 10:40 PE Conductivity 107 105 105 Temperature 1-5-25 105 105 105
Total Volume (Volume of A.S. + Volume of Casing) = 5.0 Number of Volumes to be Evacuated
Mumber of Volumes to be Evacuated Total Volume to be Evacuated Hethod of Purging (pump, beiler, etc.): FIELD ANALYSES Start Mid End 10:27 10:40 PE 6.0 Conductivity 107 105 105 Temperature 17.9 26.3 27.0
Total Volume to be Evecuated = 15-25 Method of Purging (pump, bailer, etc.):
Method of Purging (pump, beiler, etc.):
Start Mid End 10:27 10:40
Time 10:22 10:27 10:40 pE 6.0 6.0 6.0 Conductivity 107 105 105 Temperature 17.9 26.3 27.0
pH 6.2 6.0 6.0 Conductivity 107 105 105 Temperature 17.9 26.3 27.0
Conductivity 107 105 105 Temperature 17.9 26.3 27.0
Temperature 17.9 26.3 27.0
Tetal Teluma Burned: (a) anti
Total Volume Purged: 60 gallons Sample Time: 11:35 Sample Yumber: TYNDL 3+2-
Sample Time: 11:35 Sample Number: 17006342-
FRACTIONS .
BCCFCLFEHN N
O P R RP RS S T UP 2
HOTES
17.
Signed/Sampler: JULL Date: 1-/13/5 Signed/Reviewer: Date: 16/22/66

Well Number:	T5-3;	Date	اد، :	13/50	Time	: 10:	3 -0	
Boring Diameter:	15	-	Well C	sing Di	ameter:	J		
Annular Space Len	igth: it	1.8		Sticku		2.71		
WATER LEVEL								
Held: 9.0	٥'							
Cut:	ວ ່			•				
DTW:	.0`		Top of	Casing				
COLUMN OF WATER I	TIME IN		•					
Casin	g Length:		18'					
DIW Top	of Casing:		8.0'					
Column of Water	in Well:		10.0					
VOLUME TO BE RELECT	MED						_	
Gallons per foo	of A.S.	(from c	chart)		1	0.3	3	
Column of Water	or Lengt	h of A.S	. (which	ever is	less)	K	o'	
Volume of Annul	Lar Space				!	- 3.9		
Gallons per foo	t of Casi	ug			!	. 163	<u>ك</u>	
Column of Water	•				:	10.0		
Volume of Casiz	28					1.6		
Total Volume (V	folume of	A.S. + 7	olume of	Casing)		5.5		
Number of Volum	es to be	Evacuate	ıd		:	3-25		
Total Volume to	be Evecu	ated			,	15.6-	٠,٢٦	
Method of Purging	(pump) b	ailer, e	tc.): <u> </u>	(5U)				
FIELD ANALYSES	Star	•		Mid		End		
Time	10:46		<u> 10:</u>			10:57		
βĘ	6.3		6,	1		6.4		
Conductivity	538		77	2-		581		
Temperature	26.	9	20	5.6		26.6		
Total Volume Pury	ed: 100)	gallous		THE	DL 3+4		
Sample Time:	2:00		Sampl	- Number	· TONST	3 * 3-	<u> ₹</u> ú	14
PRACTIONS	•							_
ВС	CT*	Œ	¥	Ħ	M	· N	NF	
0 P	1	HP .	RS	S	T	UP	Z	}
NOTES						W	LO BANO	ارو کرا
Signed/Sampler:	1,214				ħ	ate: 14/1	3./-;	
Signed/Reviewer:	11	100	/			ete: /a/	3./-; 122/80	_
A - Prizet LEAFERST!						· <i></i>		>

	r: T6-1	Date: 10-16-86 T	ime: 1315
Well Number	- 4	Well Casing Diamete	- 41
Boring Diam	ace Length: 16.		+ 2.7'
MATER LEVE			
Held:	9.00		
Cut:	1.02		
DTW:	7.98	Top of Casing	
-	MATER IN WELL		
•	Casing Length:	21.90'	
DT	W Top of Casing:	7.98	
Column o	f Water in Well:	13.82	
VOLUME TO	BE REMOVED		
	per foot of A.S. (fi		- 0.39
Column o	f Water or Length of	f A.S. (whichever is less) x <u>13.82</u>
Volume o	f Annular Space		- 5.39
Gallons	per foot of Casing		· <u>0.1632</u>
Column	of Water		I 13.82
	of Casing		<u>2.26</u> 1.65
		. + Volume of Casing)	
	of Volumes to be Eva		23.0 - 35.25
1	lume to be Evecuate		merentuce
	Purging (pump, bail	er, ecc.): Pumped of Mid	End
FIELD AMAI			
Time	6.0	1326@20gal	6.0
pil	416	94	92
Conduct	231	22 5	23.7
Tempera	ture 23.1	23.5	23.7
Temperal Total Vol	ture 23.1	ed. gallons .	23.7 4 * 1
Temperal Total Volu Sample Tim	ture 23.1		
Temperal Total Voluments Sample Timeracritics	ture 23.1 use Purged: 41 q	Sample Number:	
Temperal Total Vol: Sample Tim FRACTIONS B	ture 23.1	Sample Number:	4*1
Temperal Total Volt Sample Tim FRACTIONS B	23.1 use Purged: 41 q ne: 1400	Sample Number:	4 * 1 H (F) NF
Temperal Total Volt Sample Tim FRACTIONS B	c c c c c	Sample Number:	4 * 1 H (F) NF
Temperal Total Volu Sample Tim FRACTIONS B	23.1 use Purged: 41 q ne: 1400	Sample Number:	4 * 1 H (F) NF
Temperal Total Volu Sample Tim FRACTIONS B	23.1 une Purged: 41 q c c c c c c c c c c c c c c c c c c	Sample Number:	4 * 1 H (F) NF
Temperal Total Volt Sample Tir FRACTIONS B O NOTES V	23.1 use Purged: 41 q c c c c c c c c c c c c c c c c c c	Sample Number:	H NF T UP Z

Andrib

Well Number: T6-Z Date: 10/16/86	Time: 1570
Boring Diameter: Z Well Casing Diam	eter: 28' T.D.
Annular Space Length: 16.0' Stickup:	+2.5'
MATER LEVEL	
Held: 4.7	TG-3 massamuls
Cut: 0.1	exemently seconded
DTW: Top of Casing	1
COLUMN OF WATER IN WELL	The Control of the Co
Casing Length: 23	
DIW Top of Casing: 4.6	. 🖋
Column of Water in Well:	•
AOPTING 10 RE REHOAED	
Gallons per foot of A.S. (from chart)	- 0.39
Column of Water or Length of A.S. (whichever is le	ss) x <u>16.0</u>
Volume of Annular Space	- 624
Gallons per foot of Casing	- 0.1632
Column of Water	x 13.4
Wolume of Casing	<u> 30</u>
Total Volume (Volume of A.S. + Volume of Casing)	- 9.24
Number of Volumes to be Evacuated	x <u>3 - 5</u>
Total Volume to be Evacuated	· 27.7·46.2
Method of Purging (pump, bailer, etc.):	Darbind C
FIELD AMALTSES Oggistart Mid	End
Time 151301000 15216 4000	1230@ 300kl
pt <u>50</u> 48	4.8
Conductivity <u>67</u> 62	61
Temperature 274 23.7	23.8
Total Volume Purged: 80 qA, gallons	ıt s
Sample Time: 1540 Sample Number:	7 * 4
FRACTIONS	
B C CF CL F H	M NE
DITH: Top of Casing have (scantill set 22) Casing Length: DIW Top of Casing: Column of Water in Well: Column of Water or Length of A.S. (from chart) Column of Water or Length of A.S. (whichever is less) X (6.0) Volume of Annular Space Callons per foot of Casing Column of Water Volume of Casing Total Volume (Volume of A.S. + Volume of Casing) Total Volume (Volume to be Evacuated Total Volume to be Evacuated End Time Sample Number: Time 15126 (cod 48 Conductivity Conduc	
HOTES (V x 3) (W)	
brusks W/ / / 1	/ /
Signed/Sampler:	Date: 10/16/86
Signed/Reviewer:	Date: 10/2408

					<i>f</i> 1			_
	Well Number:	T6-3	Date	: 10	16/86	Time:	1415	5
	Boring Diamete	er: 62"	3	Well (Lesing Di	Ameter:	£ 2'	T.D
	Annular Space	Length:	15.8	<u> </u>	Sticku	p:	2.7	<i>i</i>
	MATER LEVEL							
	Held:	10.0						
	Cut:	1.9'						
	DIW:	8.1		Top of	Casing			
	COLUMN OF WATE	IN THE WILL						
	C	ssing Length	:	23'		_		
	DEW TO	op of Casing	:	8.1'		_		
	Column of Wa	ster in Well	:	14.91		_		
	VOLUME TO BE	REMOVED						
	Gallous per	foot of A.S	. (from c	hart)			0-3	9
	Column of We	ster or Leng	th of A.S	. (which	ever is	less) X	14.9	
	Volume of A	mular Space	ı			•	5.81	
	Gallons per	foot of Cas	ing			•	0.16	32.
\. '	Column of W	iter				x	14.9	·
	Volume of Co	ssia g				•	2.4	3
	Total Volume	s (Volume of	A.S. + 7	olume of	Casing)	•	7.2	4
	Number of Vo	olumes to be	Evacuate	d		1	3 - 5	<u> </u>
	Total Volume	to be Evec	neted			-	24.7-	41.2
1,	Method of Pur	ging (pump,	beiler, e	te.):	CONTIN	4 05 0	PMCMP	
'p /	FIELD ANALYSES	Sta	rt		Mid		End 1	
	Time	1435		144	1 @ 21 a	ط _L	445@7	592
,	pÆ	6.0)	5.	9		5.9	
	Conductivity	302		311			302	
	Temperature	26.2		23	·1		23.5	
	Total Volume 1	rurged: 75	ode	gallous			,	
	Sample Time:	150	2	Sampl	e Number	·. <u> </u>	* 3	
	PRACTIONS							
	ВС	GP .	a	•	Ħ	M	\odot	MF
	@~	2		25	5	T	UP	2
	EXV METOR	(W)						
			.1 /	1				
		1.	41 //	[
	Signed/Sample:	:: <u> </u>	Must	A		0e	te: <u>[a]</u>	INCH
	Signed/Review) :		71.0		 	10: 70/	22/86
		——————————————————————————————————————	Jane J	1000			7	,
		/		7	•			
			_					

	Well Number: T	6-4 Date:	10 21 86 Ti	me: 0810
	Boring Diameter:	4	Well Casing Diamete	F: 4" I.D.
	Annular Space Let	131	Stickup:	2.2′
	WATER LEVEL			
	Held:	7.00 '	1	
	Cut:	1.00.1		
	DTW:	6.00 '	Top of Casing	
	COLUMN OF WATER	IN WILL	•	
	Casi	ng Length:	21.2	
	DIW Top		-6.00'	
	Column of Wate	r in Well:	15,2'	
	VOLUME TO BE REM	OAED		
	Gallons per fo	ot of A.S. (from ch	urt)	· <u>1.57</u>
	Column of Wate	r or Length of A.S.	(whichever is less)	
	Volume of Annu	lar Space		- 23.9
	Gallons per fo	ot of Casing		6528 y 15.2
•	Column of Wate	er .		¥ 13.2 9.9
	Volume of Casi	-		
		Volume of A.S. + Vo		- 33.8
		mes to be Evacuate	d	x 3 - 5
		o be Evecuated	01	= 101.4 - 169
	ſ		ec.): Guturous	Dimbing
ملا	FIELD ANALISES	Start	Nid	0950 @ 150 gml
	Time	0838@10gal	0919 @ 856AL	
رايد) pil		5.9	<u> </u>
	Conductivity	-269	355	26.9
	Temperature	23-9	25.4	
	Total Volume Pur		gallons	444 446
	Sample Time:	1000	Sample Number:	1-1/1-2
	FEACT10MS	~	r e n	NE NE
		a a	ne	TIP Z
	~			when sub - No V(+3) on
	MOTES ON SAM	uples token h	we to and N ter	
عام	(V×3)		- A Linding	1
-	Signed/Sampler:	- UNL		Deta: 10/21/24
•	Signed/Reviewer	ALVA	Z	Date: 10/25/86
e.	Asenan wassaugs	1		

	Well Number:	-C-S	Date: 10 2	1/86 1	ime: 1020
	Boring Diameter:	12"	Well C	esing Diamet	er: 4 " T.D.
	Annular Space La	ngth: 16	.1'	Stickup:	+3.2'
	WATER LEVEL	•			
	Held: 10	<i>©0.</i>	ما اسرال المراراة		
	Cut:	30 '		•	
	DTW: 8	1.70 /	Top of	Casing	
	COLUMN OF WATER	IN WILL		•	
	Casi	ng Length: _	22.7		
	DTW Top	of Casing:	4.70		
	Column of Wate	r in Well: _	14.0,		
	VOLUME TO BE REM				
	Gallons per fo				• <u>(.51</u>
	Column of Water		A.S. (which	ever is less	
	Volume of Annu	<u>-</u>			- 27.0
	Gallous per fo	_			6528
	Column of Water				x 14.0
	Volume of Casi	•			- 9.1
	Total Volume (Casing)	- 31.1
	Number of Volu				737-150
	Total Volume t			~ 1	- 13.3 -155.5
$\overline{}$	Method of Purgin		er, etc.):	CONTINUES.	brubina
[طعامي	FIELD AMALISES	Start	.1 .070	Mid	1040 @ 169 0m/
ابان	Time	1029@5g	<u> </u>	<u> </u>	5.6
لرائلا	pE Conductivity	146			142
	Conductivity	23.6	23.		24.1
	Temperature Total Volume Pur		and gallons	×	
	Sample Time:	1045	, 	e Number:	4*5
	PRACTICUS	1913		# WORDER: _	
	3 C	ar a.		B M	N) NE
	(i) P	1 12	RS	s t	$\overline{}$
	HOTES (V×3)				••
	(v,3)				
		m/ 0			//
	Signed/Sampler:		Y. A	-	Date: 10/21/24
	Signed/Reviewer:	TRI	della.		Date: 16/25/86
	•		0		

نهد	7-1	Date:	: ।जात्र	56	Time:	0 50) 	
ell Number:				sing Diam		1 "		
oring Diameter:		10.5		Stickup	٦.	ד' '		
nnular Space Len	gen:	10.0			•			
ATER LEVEL	1							
4410.								
Cut:			Top of	Casing				
			TOP OF					
OLUMN OF NATER I	g Length:	. 1	\$.0'					
DIW Top o	~		4.50'					
Column of Water			13,5					
		·						
Gallons per foo		. (from s	hert)		•	0.3	9	
Column of Water	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	eh of A.S	. (which	ever is	less) X	10.5		
Volume of Annua					•	4.1		
Gallons per for					•	. 16.		
Column of Water					x	13.5		
Volume of Casis					•	2.2	_ 0	
Total Volume (A.S. + '	Volume of	Casing)	•	6.3	<u>၁</u>	
Number of Volume					x			
Total Volume t						3 /	50	
Method of Purgin			ecc.): _	7 3 7				
PIELD AMALTSES		irt	_	Mid		End		_
Tise	08.12		03.	ς .	ر	なてつ		2 '
pH	5.8		5,7			5.7		المرادا والمرادات
Conductivity	129		69			66		5
Temperature	25.5		2-5	3	<u> </u>	5.7-		َدِ
Total Volume Pur	ged:	50	gallons		_		5 ★ /	7.
Sample Time:	08.4	5	Samp	le Number	r: <u>14</u>	<u> </u>	77	-
PRACTICUS								
B C	CT	Œ.	F	Ħ	M	*	NE	
0 P	8	RP	RS	S	T	UP	2	
MOTES								
	•						, _	
Signed/Sampler:	de	214	a			ate: <u>/</u> /	11:	
Signed/Reviewer	1	010			מ	ete: _/	0/21/86	

Annular Space Le	ingen.	10.5		Stickup		2.7	
Held: 6.4) [']		_				
Cut:)		_				
orw: 5.2			Topa	f Casing			
COLUMN OF WATER	IN WILL						
Casi	ng Length	:	17.50		_		
DIW Top	of Casing	:	5.28		_		
Column of Wate	r in Well	:	12.2	سا	-		
VOLUME TO BE ME	OAED						
Gallons per fo	ot of A.S	. (from	chart)		•	0.3	<u> </u>
Column of Wate	r or Leng	th of A	.S. (whic	hever is le	1 55))	10.5	<u> </u>
Volume of Annu	lar Space	:				• <u>'1. /</u>	0
Gallons per fo	ot of Cas	ing			•	.16	32
Column of Wate	r				:	12.	<u> </u>
Volume of Casi	.ag				1	1. 9	
Total Volume (Volume of	A.S. +	Volume o	f Casing)	4	6.0	9
Number of Volu	mes to be	Evecuet	ed		2	<u>ر</u> ۲	
Total Volume t	o be Evec	usted				30.	47
Method of Purgin	g (pump,)	bailer,	etc.):	CENT >	رش ر:	سرمر	TCOLT
FIELD AFALTSES	Sta	rt		Mid		End	•
Time	<u> </u>			17		<u>ارتسا</u>	
pE	6.5		<u> </u>			5-5	
Conductivity	17:			5		<u> </u>	
Temperature	301			7./		17.7	
Total Volume Pur	_		gallons				- : -
Sample Time:	12:30	,	Samp	le Number:		<u> </u>	<u> </u>
FRACTIONS	•					-	
3 G	CT	Œ	F	Ħ	Ħ	W T	ИF
	R	RP	RS	S	T	UP	Z
0 P							
O P							

Well Number:	T7-3_ m	ca: 313/50	Time:	2 73 D	
Boring Diameter:	<u> </u>	Well Casing D	iameter:		
Annular Space Let	ngth: 7-5	Stick	2 1		
MATER LEVEL					
Held:5.0)	_			
Cue:	L-10	_			
DIW: 3.8	.0	Top of Casing	;		
COLUMN OF WATER		,			
Casi	ng Length:	18.0			
DTW Top	of Casing:	3.8			
Column of Water	r in Well:	14.2'	- Contrary		
VOLUME TO BE REPO	TVED				
Gallons per for	ot of A.S. (from	chert)	•_	0.31	
Column of Water	r or Length of A	.S. (whichever is	less) X _	7.5	
Volume of Annui	lar Space		• _	2.93	
Gallons per for	ot of Casing		• _	.1632	
Column of Water	•		1_	14.2	
Volume of Casis	ng		•	2.32	
Total Volume (1	Folume of A.S. +	Volume of Casing	;)	5.24	
Number of Volum	ses to be Evacua	ted	x _	5	
Total Volume to	be Execuated		•	26.2	
Method of Purging	g (pump,)bailer,	ecc.): CEP	ساهررداج الما		
FIRED ANALYSES	Start	opk Mid.		- End	
Time	<u>0550</u>	10:01	10:	1 4	-
pE	6.2	5.1	`	8	کِ
Conductivity	98	98		8	3555
Temperature	72.1	25.5		9	کے
Total Volume Purp	sed: 40 pl	_ gallons			Ś
Sample Time:				<u>ii. 5*3</u>	
	10:15	Sample Mumbe	r:		
PACTIONS		Sample Numbe	r:		
	10:15 ar a.	Sample Mumbe	n 1/90	h Nh	
PACTIONS	•	_			
FRACTIONS B C	ar a.	r a	N	M NA	
FRACTIONS B C O P	ar a.	r a	N	M NA	
FRACTIONS B C O P	ar a.	r a	N	M NA	
FRACTIONS B C O P	ar a.	r a	N	M NA	
PRACTICUS B C O P NOTES	ar a.	r a	N	N NE UP Z	

M-25

Boring Dismeter:		_ Well Casing D	ramecet:		
Annular Space La	ngth:	Stick	up:	·	
WATER LEVEL					
Held:		_			
Cut:		-			
OTW:		_ Top of Casing			
COLUMN OF WATER	IN MALT				
Casi	ng Length:				
-	of Casing:				
Column of Wate					
VOLUME TO BE HEN					
-	ot of A.S. (from			•	
	-	.S. (whichever is	Less)	× ——	
Volume of Annu	-			• —	
Gallons per fo				<u>-</u>	
Column of Wete				<u> </u>	
Volume of Casi	_	Wal		<u> </u>	
Total Volume (_		- •	
Number of Volu	mes to be Evecua	ted	12	<u> </u>	
Number of Volume t	mes to be Evacua o be Evacuated	- p/32 M 4 50 }	۾ پهر سام	5	
Number of Volume total Volume to Method of Purgin	mes to be Evecua o be Evecuated g (pump) baller,	PG: 1 3 6 3P	۾ پهر سام	5	2
Number of Volume t Total Volume t Method of Purgin FIELD ANALYSES	o be Evacuated g (pump) baller, Start	P(72 M - 4 6 7 P 4 Mid	م بدر است در امرسی ا	End	<u>-</u>
Number of Volume total Volume to Method of Purgin FIELD ANALYSES Time	mes to be Evecua o be Evecuated g (pump) baller,	PG: 1 3 6 3P	م بدر است در امرسی ا	End 14 17	
Number of Volume total Volume to Method of Purgin FIELD ANALTHES Time pff	o be Evacuated g (pump) belier, Start	ecc.): 1367p. Hid 14.32	م بدر است در امرسی ا	End 14 11 11 11 11 11 11 11 11 11 11 11 11	2 -
Number of Volume to Total Volume to Method of Purgin FIELD ANALTHES Time pfi Conductivity	stare	14.32	م بدر است در امرسی ا	End 14 11 4	
Number of Volume to Total Volume to Method of Furgin FIELD ANALTHES Time p8 Conductivity Temperature	stere / // / / / / / / / / / / / / / / / /	ecc.): 1367p	م بدر است در امرسی ا	End 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
Number of Volume to Total Volume to Method of Purgin FIELD ANALTHES Time pfi Conductivity	stere / // / / / / / / / / / / / / / / / /	14.32 1310 22.5		End 14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	>
Number of Volume to Total Volume to Method of Purgin PURLD ANALISES Time pfi Conductivity Temperature Total Volume Pur	stare 7.9 1331 23° ged: 517	ecc.): 1367pg Hid 14.32 235 gallons		14 9 7 7 5 1 3 2 7 2 3 7 7	>
Number of Volume to Total Volume to Method of Purgin FIELD ANALISES Time pli Conductivity Temperature Total Volume Pur Sample Time:	stare 7.9 1331 23° ged: 517	### 1972 ### 1979 #### 1979 ####################	STATE OF THE STATE	14 9 7 7 5 1 3 2 7 2 3 7 7	>
Number of Volume to Total Volume to Method of Purgin FIELD ANALISES Time pli Conductivity Temperature Total Volume Pur Sample Time:	stare 7.9 1331 23° ged: 517	### 1972 ### 1979 #### 1979 ####################	STATE OF TAXABLE STATE	14 14 17 13 17 23 17 23 17 23 17	, ,
Number of Volume to Total Volume to Method of Furgin FIELD ANALISES Time p8 Conductivity Temperature Total Volume Fur Sample Time: FRACTIONS B C	stare (L) 133/ 23° Ted: 517 14:50	### ##################################	STATE OF TAXABLE STATE	End 14 9 7 7 5 7 7 5 7 7 7 5 7 7 7 7 7 7 7 7 7	3
Number of Volume to Total Volume to Method of Purgin FIELD ANALISES Time pff Conductivity Temperature Total Volume Pur Sample Time: FRACTIONS B C 0 F	stare (L) 133/ 23° Ted: 517 14:50	### ##################################	STATE OF TAXABLE STATE	End 14 9 7 7 5 7 7 5 7 7 7 5 7 7 7 7 7 7 7 7 7	3
Number of Volume to Total Volume to Method of Purgin FIELD ANALISES Time pH Conductivity Temperature Total Volume Pur Sample Time: FRACTIONS B C O F	stare (L) 133/ 23° Ted: 517 14:50	### ##################################	STATE OF TAXABLE STATE	End 14 14 17 17 15 17 17 17 17 17 17 17 17 17 17 17 17 17	NT Z
Number of Volume to Total Volume to Method of Purgin FIELD ANALISES Time pff Conductivity Temperature Total Volume Pur Sample Time: FRACTIONS B C 0 F	stare /// Stare /// Stare /// Stare /// STARE	### ##################################	F: TVA	End 14 14 17 17 15 17 17 17 17 17 17 17 17 17 17 17 17 17	3

	Date: 111125	Time: Si-O	
Well Number: 7 8 1	Well Casing Diame	2 "	
Annular Space Length:	11.5 Stickup:	2.7	
MATER LEVEL			
Held: 7.0			
Cut: 25		•	
orw: 4.75	Top of Casing		
COLUMN OF WATER IN WELL			
Casing Length:			
DTW Top of Casing:	6.75		
Column of Water in Well:	11.25		
AOLTHE LO RE HENDAED			
Gallons per foot of A.S.	(from chart)	. 39	
Column of Water or Length	of A.S. (whichever is les	is) X	
Volume of Annular Space		- 4.4	
Gallons per foot of Casing	8	· 1532	
Column of Water		x 11.25	١
Volume of Casing		1.8	7
Total Volume (Volume of A	.S. + Volume of Casing)	• <u>6.22</u> + 1	
			- 1
Number of Volumes to be E	vacuated	x 3->5	1
Number of Volumes to be E Total Volume to be Evecue		* 3-5 - 18.7-3-1	1 3
	ted		193
Total Volume to be Evecus: Method of Purging pump, be FIELD AMALISES ,u/v Start	iler, ecc.): (=\u00bb		1937/2
Total Volume to be Evecue Method of Purging (pump), be	ted iler, etc.): (=\(\sigma^-\)- (a\(\sigma^-\) \(\sigma^+\)	- 18.7 - 301 i	193722
Total Volume to be Evecus: Method of Purging pump, be FIELD AMALISES ,u/v Start	ted iler, etc.): (=\(\infty\) - (a\(\cap\) Mid \(\infty\) \(\infty\)	10/s and 160% 63	19372
Total Volume to be Evecus: Hethod of Purging (pump), be: FIELD ARALISES 1/646	ted iler, etc.): (=\(\sigma^-\)- (a\(\sigma^-\) \(\sigma^+\)	10/s and 16.0% 6.3 726	19372
Total Volume to be Evacua: Method of Purging (pump), ba FIELD ANALTSES Time (C4C) pH 7.1 Conductivity 65C Temperature 29.9	ted iler, etc.): (=\(\sigma^-\) \(\sigma^3\) \ \ \(\sigma^1\) \(\sigma^2\) \(\sigma^3\)	10/s and 160% 63	193722
Total Volume to be Evecus: Method of Purging (pump), ba FIELD AMALISES Time /C//C pH 7.1 Conductivity 656	ted iler, etc.): (=\(\sigma^-\) \(\sigma^3\) \ \ \(\sigma^1\) \(\sigma^2\) \(\sigma^3\)	10/s ² nd 16/08 63 720 2573	19312
Total Volume to be Evacua: Method of Purging (pump), ba FIELD ANALTSES Time (C4C) pH 7.1 Conductivity 65C Temperature 29.9	ted iler, etc.): (=\(\sigma^-\)- (a\(\sigma^-\)) \(\sigma^-\) 10 653	10/s and 16.0% 6.3 726	13/3/22
Total Volume to be Evecus: Method of Purging (pump), ba: FIELD ANALTSES Time (C4C) pH 7.1 Conductivity 65C Temperature 29.9 Total Volume Purged: 19.0	ted iler, etc.): (=\(\infty\) - (a)3 Mid 1\(\infty\) 10 653 gallons	10/s ² nd 16/08 63 720 2573	17372
Total Volume to be Evacua: Method of Purging (pump), ba FIELD ANALTSES Time (C4C) pH 7.1 Conductivity 65C Temperature 29.9 Total Volume Purged: /9.0 John 65 Sample Time: //30	gallons Sample Number:	10/s and 160% 63 726 2575 TYNDL 5**5	19372
Total Volume to be Evacua: Method of Purging (pump), ba FIELD ANALTSES Time (C4C) pH 7.1 Conductivity 65C Temperature 29.9 Total Volume Purged: /9.0 John 65 Sample Time: //30	gallons Sample Number: CL F H RP RS S	18.7 -> 3 10/s and 16.08 6.3 72.5 25.75 TYWDL 5 #.5 M NF T UP Z	1937/2
Total Volume to be Evacua: Method of Purging (pump), ba FIELD ANALTSES Time (C4C) pH 7.1 Conductivity 65C Temperature 29.9 Total Volume Purged: /9.0 John 65 Sample Time: //30	gallons Sample Number: The Residence of the state of th	10/s and 1608 63 720 250 TYNDL 54.5 M NE T UP 2 FU, langth of bailou	1937 (2)
Total Volume to be Evacua: Method of Purging (pump), ba FIELD ANALTSES Time (C4C) pH 7.1 Conductivity 65C Temperature 29.9 Total Volume Purged: /9.0 John 65 Sample Time: //30	gallons Sample Number: The Residence of the state of th	10/s and 1608 63 720 250 TYNDL 54.5 M NE T UP 2 FU, langth of bailou	193722
Total Volume to be Evacua: Method of Purging (pump), ba: FIELD ANALTSES Time (C4C) pH 7.1 Conductivity 656 Temperature 29.9 Total Volume Purged: /9.0 Sample Time: //30 PRACTIONS B C CF ROTES VX 3 (A) Die focoad was well in caan fallen 109	gallons Sample Number: The Residence of the state of th	18.7 -> 3 10/s and 16.08 6.3 72.5 25.75 TYWDL 5 #.5 M NF T UP Z	13/3/22
Total Volume to be Evacua: Method of Purging (pump), ba FIELD ANALTSES Time (C4C) pH 7.1 Conductivity 65C Temperature 29.9 Total Volume Purged: /9.0 John 65 Sample Time: //30	gallons Sample Number: The Residence of the state of th	10/s and 1608 63 720 250 TYNDL 54.5 M NE T UP 2 FU, langth of bailou	19/3/22

	Well Number:	T8-3 Date:	10-11-86 Tim	e: <u>/250</u>
	Boring Diamete	r: <u>/2'</u>	Well Casing Diameter	: <u>4"I.D.</u>
	Annular Space		Stickup:	2.5
	MATER LEVEL			
	Held:	2.00		
	Cut:	2.00		•
	DIN:	4.0	Top of Casing	
	COLUMN OF WATE	E IN WILL		
•	Ca	sing Length:	20'	
	DIW To	p of Casing:	_4'	
	Column of Wa	ter in Well:	16'	
	VOLUME TO BE 1	SDIOVED		
	Gallons per	foot of A.S. (from c	hert)	· <u>1.57</u>
- :	Column of We	iter or Leagth of A.S	. (whichever is less)	
	Volume of Ar	mular Space		- 24.3
	Gallons per	foot of Casing	•	- 0.6528
*	Column of Wa	cer		x 16.0'
	Volume of C	sing		- 10.4
•	Total Volume	(Volume of A.S. + V	olume of Casing)	• _34.7
	Number of Vo	lumes to be Evacuate	d	x 3 - 5
		to be Evecuated	, G	- 104.2-173.5
	Hethod of Pur	ging (pump, bailer, e	•	itimous hy (slow ente)
Hariab	FIELD AMALTEE		1316 @ 60gal	End
I lader him	Time	1252		1343 @120 9~1.
	p≡	40	5.8	<u>5.9</u>
* >	Conductivity			<u>353</u> 250
	Temperature		25.2	
	Total Volume	Persod: 120	gallons	5#8 - Enhanga set 5#6
	Sample Times	1355	Sample Number:	346
	TRACTIONS	•••		G) -
) C	a c.	<i>y</i>	
	0		3 1	one z
	MOTES (W)	(VOA X3)	1 Harole	
			7.	,
		My White I	(/b	2001/1/20
•	Signed/Sample		7 /	Date: (1) 1/30
	Signed/Review	er: ///es/		recei Talanda
			-	

Well Number:	<u> 18-4</u>	Date: 10 23 86	Time: 0910
Boring Diameter:	12"	Well Casing Dia	
Annular Space Le	ngth:(6.5' Stickup	3.8'
WATER LEVEL			
Held:	r.00 '		
Cut:	1-14		
DTW:	6.861	Top of Casing	
COLUMN OF WATER	IN WELL		
Casi	ng Length:	22.8	
DIW Top	of Casing:	6.86	_
Column of Wate	r in Well: _	15,94	
VOLUME TO BE BEEN	OARD) e7
Gallous per fo			- 1.57
Column of Wate	r or Length o	f A.S. (whichever is	
Volume of Annu	lar Space		- 25.0
Gallons per fo	ot of Casing		- 0.6528
Column of Wate	r		x 15.94
Volume of Casi	-		- 10.4
Total Volume (Volume of A.S	. + Volume of Casing)	- 35.4
			- 7 .
Mumber or Aorn	mes to be Eva	Custed	x 3-5
Total Volume t	o be Evecuete	d _	106.2 - 177
	o be Evecuete	d _	- 106.2 - 177 continuously
Total Volume t	o be Evecuete	er, etc.): Pumped	continuoustu End
Total Volume t	o be Evacuate ig (pump, bail Start 0929@54	er, etc.): Pumped	- 106.2 - 177 contravorster End 1 1025 @ 120gal.
Total Volume to Method of Purgin	o be Evacuate ig (pump, bail Start 6.0	er, etc.): Pumped	- 106.2 - 177 continuorshi End 1 1025@ 120gnl. 5-8
Total Volume to Method of Purgin FIELD ANALISES Time	o be Evacuate ig (pump, bail Start 0127@50 6.0	er, etc.): Pumped	- 106.2 - 177 continuouslu End 1 1025 @ 120gnl. 5-8 185
Total Volume to Method of Purgin FIELD AMALISES Time pH	o be Evacuate ig (pump, bail Start 0127050 6.0 233	1d (er, etc.): Pumped Mid (sp.) 1000 @ 60 gs (sp.) 239 24.4	- 106.2 - 177 continuorshi End 1 1025@ 120gnl. 5-8
Total Volume to Method of Purgin FIELD ANALISES Time pH Conductivity	6 be Evacuate (pump, bail Start 6-0 233 22-5	d	- 106.2 - 177 continuouslu End 1 1025 @ 120gnl. 5-8 185 25.8
Total Volume to Method of Purgin FIELD AMALISES Time pH Conductivity Temperature	6 be Evacuate (pump, bail Start 6-0 233 22-5	1d (er, etc.): Pumped Mid (sp.) 1000 @ 60 gs (sp.) 239 24.4	- 106.2 - 177 continuouslu End 1 1025 @ 120gnl. 5-8 185 25.8
Total Volume to Method of Purgin FIELD ANALISES Time pH Conductivity Temperature Total Volume Pur	o be Evacuate ig (pump, bail Start 0129 @ 50 6.0 233 22.5	d	- 106.2 - 177 continuouslu End 1 1025 @ 120gml 5-8 185 25.8
Total Volume to Method of Purgin FIELD AMALISES Time pH Conductivity Temperature Total Volume Pur Sample Time:	o be Evacuate ig (pump, bail Start 0129 @ 50 6.0 233 22.5	ser, etc.): Pumped Mid Ser, etc.): Pumped Mid S. 9 239 24.4 gallons Sample Number	- 106.2 - 177 continuoush End 1 1025 @ 120gnl. 5-8 185 25.8 5 # 7
Total Volume to Method of Purgin FIELD AMALISES Time pH Conductivity Temperature Total Volume Pur Sample Time: FRACTIONS	to be Evacuate 18 (pump, bail Start 6.0 233 22.5 120 1030	der, etc.): Pumped Mid SAN 1000 @ 60 gs 5.8 239 21.4 gallons Sample Number	- 106.2 - 177 continuouslu End 1 1025 @ 120gml 5-8 185 25.8
Total Volume to Method of Purgin FIELD AMALISES Time pH Conductivity Temperature Total Volume Pur Sample Time: FRACTIONS B C	to be Evacuate 18 (pump, bail Start 6.0 233 22.5 120 1030	ser, etc.): Pumped Mid Ser, etc.): Pumped Mid S. 9 239 24.4 gallons Sample Number	- 106.2 - 177 CONTINUOUS End 1025 @ 120gml 5-8 185 25.8 5 # 7
Total Volume to Method of Purgin FIELD AMALISES Time pH Conductivity Temperature Total Volume Pur Sample Time: FRACTIONS B C O P	to be Evacuate 18 (pump, bail Start 6.0 233 22.5 120 1030	ser, etc.): Pumped Mid Ser, etc.): Pumped Mid S. 9 239 24.4 gallons Sample Number	- 106.2 - 177 continuoush End 1 1025 @ 120gnl. 5-8 185 25.8 5 # 7
Total Volume to Method of Purgin FIELD AMALISES Time pH Conductivity Temperature Total Volume Pur Sample Time: FRACTIONS B C O P HOTES (A)	to be Evacuate 18 (pump, bail Start 6.0 233 22.5 120 1030	ser, etc.): Pumped Mid Ser, etc.): Pumped Mid S. 9 239 24.4 gallons Sample Number	- 106.2 - 177 CONTINUOUS End 1025 @ 120gml 5-8 185 25.8 5 # 7
Total Volume to Method of Purgin FIELD AMALISES Time pH Conductivity Temperature Total Volume Pur Sample Time: FRACTIONS B C O P	to be Evacuate 18 (pump, bail Start 6.0 233 22.5 120 1030	ser, etc.): Pumped Mid Ser, etc.): Pumped Mid S. 9 239 24.4 gallons Sample Number	- 106.2 - 177 CONTINUOUS End 1025 @ 120gml 5-8 185 25.8 5 # 7
Total Volume to Method of Purgin FIELD AMALISES Time pH Conductivity Temperature Total Volume Pur Sample Time: FRACTIONS B C O P HOTES (A)	o be Evacuate Ig (pump, bail Start 0127 @ 5 c 6.0 233 22.5 rgad: 120 1030 Gr G	ser, etc.): Pumped Mid Ser, etc.): Pumped Mid S. 9 239 24.4 gallons Sample Number	- 106.2 - 177 CONTINUOUS End 1025 @ 120gml 5-8 185 25.8 5 # 7

Well Number:	T9-1	Date:	: 10	12/50	Time:	170	<u> </u>	
Boring Diamet	er: 6"		Well	Casing Diam	eter:	٦_"		
Annular Space	Length:	15.7		Stickup:		2.8		
WATER LEVEL								
Held:	8.0							
Cut:	1.0							
DTW:	7.0		Top o	f Casing				
COLUMN OF WAT	ER IN WELL	•	_ ,					
c	seing Length	:	23.5	•	,			
DTW T	op of Casing		7.0					
Column of W	ater in Well	:/	6'		ı			
VOLUME TO BE	EDSOVED							
Gallons per	foot of A.S	. (from ci	mert)		•	٥,3	<u> </u>	
Column of W	ater or Leng	th of A.S.	. (whic	hever is le	X (se	15.		
Volume of A	nnular Space				•	16.1		
Gallons per	foot of Cas	ing		•	•	.16.3	<u> </u>	
Column of W	eter				x .	<u> 15.</u>		
Volume of G	esing				= .	2.		
Total Volume	e (Volume of	A.S. + V	olume o	f Casing)	• .	₹.		15.7
Number of V	olumes to be	Evecuated	i		x.	3 -n s		
Total Volum	e to be Evac	usted			• .	20.2	 7 4 3.	ל
Method of Pur	ging (pump,	bailer, e	tc.):	CENT				
PIELD AMALTSE		rt	اه المو	3 Mid Hydla 2:48 1		End		
Time						-:57	13:09	
Вq	<u> </u>			r. <i>1</i>		1.7	4.6	
Conductivit				87	-	88	34	•
Temperature		-	<u></u>	5.8	2	6.7	2.5.9	
Total Volume			gallons		T	`		1 ED SX
Sample Time:	14.	10	Samp	le Number:	TYKI		× 9	
PRACTICUM	•							
B C	CF CF	Œ,	T	H	H	Ħ	MF	
0 P	R	RP.	RS	S	T	UP	Z	
MUTES								
	, ,						/	
Signed/Sample	r: 1/2	24	1 A		Dac	e: <u> </u>	13/	
Signed/ Peview	er:	Tend I	VV.		_ Dat	e: 10	1486	
	/		J					

1.2 1. Number: 1.2	Date: 11/2/50 1	
Well Number: Boring Diameter: 6"	Well Casing Diamet	er: 1
Annular Space Length: 16.	Stickup:	2.4
HATER LEVEL		
Held: 8.0		
Gut:		
DIV: 6.9	Top of Casing	
COLUMN OF WATER IN WELL	,	
Casing Length:	23.0	
DTW Top of Casing:	6.9	
Column of Water in Well:	16.1	
AOFTHE LO BE EDGOAED		0.39
A Gallons per foot of A.S. (from chart)	
Column of Water or Length	of A.S. (whichever is les	6.3
Volume of Annular Space		.1632_
Gallons per foot of Casing		x /5.1 ·
Column of Water		2.6
Volume of Casing	Coaine)	8.9
Total Volume (Volume of A.	.2. + Aoinme of Casina)	3-35
Number of Volumes to be E		- 26.7→ 44.5
Total Volume to be Evecua	ted	
Method of Purging (pump, be	iler, ecc., Mid	End
FIELD AMALISES Start	- (3,27)	13.34
T156	5.0	4,9
pfl 5.5	<u> </u>	4. 9 98
pfi S.S 107 107 2.C.S	99	
pf S.S Conductivity 107 Temperature 25.9	- 99 27.2	98
pfi S.5 Conductivity 107 Temperature 25.9 Total Volume Purged: 4	- 19 27:2-	198
Conductivity Temperature Total Volume Purged: Sample Time: 1445	99 27.2 6 gallons	10/1) - 3×
Total Volume Purged: 4 Sample Time: 1445 FRACTIONS	99 27.2 6 gallons	98 27.~ TVU) _ 5-24
Conductivity Conductivity Temperature Total Volume Purged: Sample Time: 1445 FRACTIONS B C CF	99 27.2 6 gallons Sample Number:	1vu)_ 3x
Conductivity Temperature Total Volume Purged: Sample Time: PRACTICES B C CP O P B	99 27.2 6 gallons Sample Number:	1/2) - 3-x 1 M N NE
Conductivity Conductivity Temperature Total Volume Purged: Sample Time: 1445 FRACTIONS B C CF	99 27.2 6 gallons Sample Number:	1/2) - 3-x 1 M N NE
Conductivity Temperature Total Volume Purged: Sample Time: PRACTICES B C CP O P B	99 27.2 6 gallons Sample Number:	1/2) - 3-x 1 M N NE

		iololer =	1250	
	9.3 Date			
Boring Diameter:	12" 17.5	Well Casing Diameter		-
Annular Space Len	igth: (1.3	Stickup:	7.33	
RATER LEVEL				
Held:	20			
Cut:	65			
DTW:	35	Top of Casing		
COLUMN OF WATER I				
Casin	ig Length:	2.3		
DIW Top o	of Casing:	4.3		
Column of Water	in Well:	4.0		
VOLUME TO BE MEDIC	AED		_	
Gallous per foo	c of A.S. (from c	hart)	- 1.57	
Column of Water	or Length of A.S	. (whichever is less)	x14.0	
Volume of Annul	ar Space		- 22.0	
Gallons per foo	t of Casing		- D.652-8	
Column of Water	•		x 140	
Volume of Casis	18		• <u>9.1</u>	
Total Volume (V	olume of A.S. + V	olume of Casing)	- 31.1	
Number of Volum	es to be Evecuate	d	x 3 - 5	
Total Volume to	be Evecuated		- 933-155.5	•
Method of Purging	(pump, bailer, e	ec.): ChiTHYOUS P	price	
FUELD AMALYSES	Start	Mid	End	an Mixin
Time	1254 @ Soul	1319@81	@ 155gm	THE TOPE
Вq	5.6	5.7	5.8	<u> </u>
Conductivity	98	102	107	100 ml.
				1 , 7
Temperature	284	29.6	25.4	@ 1325
Temperature Total Volume Purg				
•		29.6 gallons		@ 1325
Total Volume Purg	ed: 155	29.60 gallons	25.4	@ 1325
Total Volume Purg Sample Time:	ed: 155	29.60 gallons	25.4	@ 1325
Total Volume Purg Sample Time: PRACTIONS B C	1310	29.60 gallons	25.4	@ 1325
Total Volume Purg Sample Time:	a (CD) a.	29.6 gallons Sample Number: 6	25.4 #11/63:13(same) IF 2	(0/24 55 gai paged
Total Volume Purg Sample Time:	at (155) at (150) at	gallons Sample Number: G F H H RS S T Ample Holoman, House RM (schooled Zone)	25.4 17 17 2 100 10 ESE (10 000) 1 00 10 ESE (10 000)	1325 10/17 10/21 55 gai paged
Total Volume Pury Sample Time: FRACTIONS B C P NOTES Zone 9	at: 155 1310 at (2) at 1 (2) at QA (E) 50	29.6 gallons Sample Number: 6	25.4 17 17 2 100 10 ESE (10 000) 1 00 10 ESE (10 000)	1325 10/17 10/21 55 gai paged
Total Volume Pury Sample Time: PRACTIONS B C P NOTES ZOME 9 FACTOR CONTO	1310 CT (CD) CL E VXS) RP QA (ED) 5/	gallons Sample Number: G F H H RS S T Ample Holoman, House RM (schooled Zone)	25.4 17 17 2 100 10 ESE (10 000) 1 00 10 ESE (10 000)	1325 10/17 10/21 55 gai prograd
Total Volume Pury Sample Time: PRACTIONS B C O P NOTES ZONE 9 SAMPLE CONTENTS Aplant 10/12	1310 CT (CD) CL E VXS) RP QA (ED) 5/	gallons Sample Number: G F H H RS S T Ample Holoman, House RM (schooled Zone)	25.4 17 17 2 100 10 ESE (10 000) 1 00 10 ESE (10 000)	1325 10/17 10/21 55 gai prograd

	Well Number: T9-4 Date: 10/18/86 Time: 14/5	
	Well Casing Diameter: 4" T.D.	-
	Boring Diameter: 12" Well Casing Diameter: 4 2.05 Annular Space Length: 17' Stickup: 2,15'	
	Held:	
	· 	
	Cut: 1.35' DTW: 8.65' Top of Casing	
	V	
	COLUMN OF WATER IN WELL	
	Casing Length: 21 DTW Top of Casing: 8-65	
	W. C.	
	VOLUME TO BE RESOVED	
	Gallous per foot of A.S. (From Chart)	
	Column of Water or Length of A.S. (Williams)	
	Volume of Annular Space	
	Gallons per foot of Casing	
	Column of Water	
	Volume of Casing	
	Total Volume (Volume of R.S. + Volume of	
	Number of Volumes to be Evacuated = \$2.5-137.5	
	Total Volume to be Evecuated	
	Method of Purging (pump, bailer, etc.): Running (Not continuous) 95 g	1
أمار	FIELD ANALYSES Start Hid	700
اطعانه في أ	Time 1422 & Santi 1373 & Court	18
my !	pH 4.9 5.0	10/2
	Conductivity 92 98 93	70/2
	Temperature 28.6 35.3 28.2 5	
	Toral Volume Purred: 120 gallons	
	Sample Time: 1215 Sample Number: (*12 25	7*
	PRACTIONS	
	BCCFCLFEM® NF	
	O P R RP RS S T UP Z	
	MOTES water dumped into adjacent ofw separation during	4
	Durging due to Airite oil sheer on surface,)
_	X VX3+ED)	
	Signed/Sampler: Date: 10/21/86	
1	Signed/Reviewer: Randa Date: 10/23/66	
To Brown	des	
1- Die		

			1 1		
	Well Number:	10-1 Dete:	10 18 86 Ti	me: 1505	
	Boring Diameter:	12*	Well Casing Diamete	:: 4" I.D.	-
	Annular Space Len	/	Stickup: _	3.3'	
	MATER LEVEL				
	Held:	1-0			
*		0.8			
	DIV:	0.2'	Top of Casing		
	COLUMN OF WATER I		_ 1		
	Casin		23.2		
	DIW Top o	f Casing:	10.2'		
	Column of Water	in Well:	13'		
	AOPTIME TO BE REDUC			1 = 7	
	•	e of A.S. (from ci		- 1.57 13'	
•			(whichever is less)	20.4	
-	Volume of Annul			0.6528	
•	Gallons per foo			x 13'	
;	Column of Water			8.5	
	Volume of Casis	=	olumn of Coning)	28.9	Volume
		Talume of A.S. + V		1 3 - 5	100000
	Total Volume to		•	- 86.7-144.5	9 951.
		; (pump, beiler, e	eed: Pumping - n	of continues	7
	FIELD AMALTMES	Start	Mid	End	180/650
اطعامها ا	Time	1510@5 and	1456 @ 54 apt.	1002 @95cel	10/18
Hors /		6.4	6.3	6.4	7 1%
1	Conductivity	442	453	45-3	9 .
	Temperature	26.3	26.9	352	Š
	Cotal Volume Pur	sed: 95	gallons		ָה קר
	Semple Time:	1015	Sample Number:	4 * /	8
	PACTIONS	•			9
	B C	as ar	F E M	MF NF	50 M LL
	0	1 12	RS S T	UP Z	@ 1635 19/19
	MATER OF THE	J		•	7
		,	1	_	asad
		141/100		man 10/2 day	95 gd
	Signed/Sampler:	MI		Dete: 19/22/5	
	Signed/Reviewer:	- 11 ~	John		_
		1 7			
		• • • • • • • • • • • • • • • • • • • •			•

						1				
	Well Nur	mber: I	10-2	Date	: 10/1	8/86	Time:	1500	2	
	Boring	Diameter:	12"		Well Ca	sing Diam	eter:	4"I:	<u> </u>	•
	Annular	Space Len				Stickup		2.6'		
	WATER LI									
	Held:	12.0	<u> </u>							
	Cut:	1.0	6							
	DTW:	10.4	+ ′		Top of	Casing				
	COLUMN	OF WATER I	M WELL							
		Casin	g Length	:	20 2	2.5	_			
		DTW Top o	f Casing	:		10.4				
	Column	n of Water	in Well	:	1	21	-			
	VOLUME '	TO BE REMO	AED							
		as per foo					•	1.5		
	Colum	n of Water	or Leng	th of A.S	3. (which	ever is I	ess) X	12		
	Volum	e of Annul	er Space	:			•	19.0		
	Gallo	as per foo	t of Cas	ing			-	0.6		
	Colum	n of Water	•				I	12.		
	Volum	e of Casis	18				•		<u> </u>	Gallons
	Total	Volume (V	Talume of	A.S. + 1	Volume of	Casing)	•	26		Pingen
	Numbe	r of Volum	ses to be	Evecuati	ed		x	3 -		10 9
	Total	Volume to	be Evec	usted	•		. .	80.7	-134.5	19 6/645
	Method	of Purging	(pummp,	beiler,	etc.):	Propre	<u> </u>	Confiner	<u> </u>	(0/5
	PIELD A	HALISES	Sta			Mid	•	MAG End		//8
"	Time		1205	<u>@59~</u>		<u>@\$&</u>	عمر ح	137 @ 5	9 <u>5</u> 901	9 gal 19/19
}	Вq			<u> </u>	<u> </u>			5.4		9 361
	Condu	ctivity		84	13			152		& gal
	Tempe	rature		<u>د ۶</u>	21	<u> </u>		24.6		7 "
	Total V	Tolume Purp	ged:	95	gallons					7
	Sample	Time:	0940	<u> </u>	Sampl	e Number:	_9:	*8		ŕ
	PRACTIC		•							j
	3	C	CIF	a.	T _, s	E	M -		NF	<u> </u>
	Ø	P	3	RP	15	S	T	UP	Z	& gal total
	HOTES	<i>C</i> .	0	_		r			_	105 Mg
	Fam.	MEN ON	Surches	e of	ponered	WAYUL				9
	Ca	1 43		را/ // مر	1/1		-		Inde-	75 gel total
	_	Sampler .4.	-#					.ce: [[]	101/86	10/20
	Signed	Reviewer:			16	Ludan		ice: _/e	<u>8 32 5</u>	Ç
			"/		$P \nearrow$,				
	.		/							

				1	1		
พ	ell Number:	T10-3	Date:	10/18	86 I	ime: /335	
	oring Diamet		•	Well Cas	ing Diamet		<u> </u>
A	onular Space	Length:	15.5		Stickup:	2.15	
¥	ATER LEVEL						
	Held:	6.00					
	Cut:	1.15					••
	DTW:	4.85		Top of C	asing		
c	COLUMN OF WAT	LES IN MEIT		. /			
	(Casing Leng	th: ,	22.1			
	DIW 1	Cop of Casi	ag:	4.85	· '		
	Column of V	Water in We	11:	17.25			
V	COLUMN TO BE	REMOVED				_	
	-		.S. (from ci			- <u>1.57</u>	
	Column of	Water or Le	ngth of A.S.	. (whichev	ver is less		
	Volume of	Annular Spa	C.		•	- 24.34	
	Gallons per	r foot of C	Lasing			- 0.652	
	Column of	Water				x 17.25	
	Volume of	Casing	-			- 11.26	
	Total Volu	se (Volume	of A.S. + V	olume of (Casing)	- 35.6	
	Number of	Volumes to	be Evacuate	d		x <u>3 - 5</u>	
	Total Volum	me to be Ev	recueted	_		= 106.9 - 1	<u>79 </u>
1	lethod of Pu	rging (pump	, bailer, e	te.): <u>C</u>	- who	brubus	
11 /1	TIELD AMALES	ES 9	tert	,	lid	10/20 05	WI XUISIA
\ طعلم	Time	134	Obgel		330924	095301	Section of the sectio
2	рĦ		0	4.		5.4 PR	25-14/11
	Conductivi	cy	24	5		57	130 94/
	Temperatur	هـــه	6.9	27	9	249	@ 1454
1	Total Volume			gallons		41.4	10/18
:	Sample Time:	0910	Σ	Sample	Number:	4 * 10	+ 50gal 0
1	FRACTIONS	•		•	•	47	0850
	3 C	CT	Œ	F		н ()	NF 10/20
	(9) P	8	RP .	RS	S	TOP	Z
i	MOTES LALAN	سمواء مع	حدادل ا	·		ENTIRE GA	. /
	W +	3XV) + (AAI I	1 2	. 2	44	ノ .
		1				Date: Ida	and sec
	Signed/Sampl			7		Date: 10/	22/06
;	Signed/Revie	Met:	Hart.	the state	V	. Af	acts o
		,	1 7	7			
			l				

Well Number: 7	//- 1 Date	a: 10/18/8C T	ime: 1546	
Boring Diameter:	12"	Well Casing Diamet	110000	
Annular Space Lev		Stickup:	2 3 '	•
WATER LEVEL				•
	.0 '			
	.6'			
orw: - 4		Top of Casing		
COLUMN OF WATER	DI WELL			
Casi	ng Length:	27.0		
	of Casing:	4.4		
Column of Water	r in Well:	17.6		
VOLUME TO BE BEEN	OMED			
Gallons per for	ot of A.S. (from	chart)	<u> </u>	
Column of Water	or Length of A.	S. (whichever is less) x	
Volume of Annu	lar Space		- 26.7	
Gallons per for	ot of Casing		- 0.6528	
Column of Water	•		x 11.6	
Volume of Casis	ag.		- 11.5	
Total Volume (Tolume of A.S. + 1	Volume of Casing)	- 38.2	
Number of Volum	ses to be Evacuati	ed	x 3-5	
Total Volume to		a 1	<u> - 114.6 - 191</u>	
Method of Purging	(pump, beiler,	etc.): Continuous 7	سنوس	•
PIELD AMALISES	Start	Mid	हत्त्वे	,
Time	1220@204	16166 32 44	114201914	140 901
pR	35.2	5.1	419	@ 1630
Conductivity	201			10/18
Temperature	253	26.2	-34-A	+~, 1
Total Volume Pury		gallons	••	+51gd
	1200	_ Sample Number: _	4711	,
Sample Time:				
FRACTIONS				
FRACTIONS B C	ar ar	7 B M	(g) NE	
FRACTIONS		F B M		
FRACTIONS B C		7 B M	(g) NE	ر، ب
FRACTIONS B C		7 B M	(g) NE	
PRACTIONS B C D W/3XV		7 B M	(g) NE	
FRACTIONS B C D P MOTES W + 3XV Fractions Signed/Sampler:		7 B M	(g) NE	6
PRACTIONS B C D W/3XV		7 B M	(g) NE	6

	_			_ []				
	Well Number:	11-2	Date:	10/18/84	Time	152	<u> </u>	
	Boring Diameter:			Well Casing	Diameter:	4"1	:. D .	
	Annular Space Le	ngth: 1	1.0'	Stic	kup:	2.2'		
	WATER LEVEL	•						
	Held: 10.	.0 '						
		. 3 '						
	DIW: 8	<u>.7' </u>	7	op of Casin	8			
	COLUMN OF WATER	IN MAIT		,				
	Casi	ng Length:		2. 2.		•		
	DIW Top	of Casing:	3	·]				
	Column of Wate	r in Well:		<u>,5'</u>				
	VOLUME TO BE RELE	OAED						
	Gallons per fo	ot of A.S. (from char	t)	1	. <u>1.57</u>		
	Column of Water	r or Length	of A.S. (whichever i	s less) :	<u> 13.5</u>	-	
	Volume of Annu	lar Space			1	<u> 21.2</u>		
	Gallons per fo	ot of Casing	;		•	0.65		
	Column of Water	r			:	13.5	<u> </u>	
	Volume of Casi	ag			1	• <u> </u>		
	Total Volume (Volume of A.	S. + Volu	me of Casin	g)	30.	<u> </u>	,
	Number of Volu	mes to be Ev	ecusted			<u>3 </u>	<u> </u>	Volvm
	Total Volume t	o be Evecuat	ed	~		<u> 90 - 1</u>	120	Praged
_	Method of Purgin	g (pump, bai	ler, etc.			cantiano	لحد	13 9~1
طدا	FIELD AMALISES	Start		Mid	*	End		
Jeolas .	Time	12720	Sgel -	10230	2840 _	1040@ N	50	24@163
*2_) pe		<u> </u>	53		5.3		''''' ''''' '''''
	Conductivity	196_		225		836		HI WE WE
	Temperature	25.5	· 	328		a5.0	·	MIL
	Total Volume Pur	sed: <u>15</u>	gal	lons			-	1290 103
	Sample Time:	1045		Sample Numb	er:	4*12		T 2 10/04
	FRACTIONS							(4)
	B C	or o	L P	H	M	®	NF	
	(e) P	8 1	13	15 5	T	UP	2	
	HOTES	¢	r		. 1			
	Form (11)	in some	• • †	bradind ,	oveket			
	(W+ 3X	ツ		11				
	Signed/Sampler:		LIMM	<u> </u>	ɔ	ste: 10	30/86	
	Signed/Reviewer:			Q.(د	ste: 10/	286	
		11/0		June				
		1	,	,				

Well Number: TII-3 Det	a: 10/19/86 Ti	ime: 0915	
Boring Diameter: 12"	Well Casing Diamete	r: 4" ID	
Annular Space Length: 17	• ,	2.2'	
WATER LEVEL			
Held: - 7.00	-		
Cut: 1.15	-		
DTW: - 5.85'	Top of Casing		
COLUMN OF WATER IN WELL			
Casing Length:	20.90		
DTW Top of Casing:	<u>- 5.85'</u>		
Column of Water in Well:	15.05'		
ACTURE TO BE REMOARD		1 67	
Gallous per foot of A.S. (from		<u> 1.57</u>	
Column of Water or Length of A.	.S. (whichever is less) x <u>15-c5</u>	
Volume of Annular Space		- 23.6	
Gallons per foot of Casing		0 6528	
Column of Water		x /5.05	
Volume of Casing		= 9.8	
Total Volume (Volume of A.S. +	Volume of Casing)	- 33.4	744
Number of Volumes to be Evacus	ted	x 3 - 5	4/11
Number of Volumes to be Evacuated Total Volume to be Evacuated	2 (= 100.2 -1470	## !!! ## !!!
	ə (.	= 100.2 -1470 + continuous).	1406(2) HT 1H HT 111
Total Volume to be Evacuated Method of Purging (pump, bailer, FIELD AMALISES Start	etc.): Pumping (No	t contravous).	1406/20 1406/20 1406/20
Total Volume to be Evacuated Method of Purging (pump, bailer,	etc.): Pruping (No.	+ continuous).	+ 20
Total Volume to be Evacuated Method of Purging (pump, bailer, FIELD AMALISMS Start Time 9:45 C 59 6.4	etc.): Pruping (No.	End 11/5 @ 170get	## 111 ## 140 ## 140 ## 20
Total Volume to be Evacuated Method of Purging (pump, bailer, FIELD AMALISES Start 7:45 @ 59 6.4 Conductivity 994	etc.): Pruping (No. 11:40 885	t contravous).	1700 1700 1700 1700 10120
Total Volume to be Evacuated Method of Purging (pump, bailer, FIELD ANALYSES Start Time 9:45 @ 59 6.4	etc.): Pruping (No. 11:40 885	End 11/5 @ 170get	. —
Total Volume to be Evacuated Method of Purging (pump, bailer, FIELD ANALYSES Start Time 9:45 859 PH 6.4 Conductivity 994 Temperature 26.4 Total Volume Purged: 170	etc.): Prup.ne (No. Mid ok 11:40 085 6.3 795 27.9 gallons	End 11/5 @ 170gpt 65 906 251	. —
Total Volume to be Evacuated Method of Purging (pump, bailer, FIELD AMALISES Start Time 9:45 @ 59 6.4 Conductivity 994 Temperature 26.4	etc.): Prup.nq (No. Mid Mid 11:40 885 6.3 795 27.9	End 11/5 @ 170get	. —
Total Volume to be Evacuated Method of Purging (pump, bailer, FIELD ANALYSES Start Time 9:45 859 PH 6.4 Conductivity 994 Temperature 26.4 Total Volume Purged: 170	etc.): Prup.ne (No. Mid of 11:40 085 6.3 795 27.9 gallons Sample Number:	End 11/5 @ 170cd 65 906 25/	. —
Total Volume to be Evacuated Method of Purging (pump, bailer, FIELD AMALISES Start Time 9:45 @ 59 pH 6.4 Conductivity 994 Temperature 26.4 Total Volume Purged: 170 Sample Time: 1/20 FRACTIONS B C CF CL	etc.): Prup.nq (No. Mid of 11:40 885 6.3 795 27.9 gallons Sample Number:	End 11/5 @ 1700000000000000000000000000000000000	. —
Total Volume to be Evacuated Method of Purging (pump, bailer, FIELD AMALISMS Start Time 9:45 @ 59 6.4 Conductivity 794 Temperature 26.4 Total Volume Purged: 170 Sample Time: 1/20 FRACTIONS	etc.): Prup.nq (No. Mid of 11:40 885 6.3 795 27.9 gallons Sample Number:	End 11/5 @ 170cd 65 906 25/	. —
Total Volume to be Evacuated Method of Purging (pump, bailer, FIELD AMALISES Start Time 9:45 @ 59 pH 6.4 Conductivity 994 Temperature 26.4 Total Volume Purged: 170 Sample Time: 1/20 FRACTIONS B C CF CL	etc.): Prup.nq (No. Mid of 11:40 885 6.3 795 27.9 gallons Sample Number:	End 11/5 @ 1700000000000000000000000000000000000	. —
Total Volume to be Evacuated Method of Purging (pump, bailer, FIELD AMALISES Start Time 9:45 @ 59 pH 6.4 Conductivity 994 Temperature 26.4 Total Volume Purged: 170 Sample Time: 1/20 FRACTIONS B C CF CL	etc.): Prup.nq (No. Mid of 11:40 885 6.3 795 27.9 gallons Sample Number:	End 11/5 @ 1700000000000000000000000000000000000	. —
Total Volume to be Evacuated Method of Purging (pump, bailer, FIELD AMALISES Start Time 9:45 @ 59 PH 6.4 Conductivity 994 Temperature 26.4 Total Volume Purged: 170 Sample Time: 120 FRACTIONS B C CF CL WATER TOARY duning	etc.): Prup.nq (No. Mid of 11:40 885 6.3 795 27.9 gallons Sample Number:	End 11/5 @ 1700000000000000000000000000000000000	. —
Total Volume to be Evacuated Method of Purging (pump, bailer, FIELD ANALYSES Start Time 9:45 859 pH 6.4 Conductivity 994 Temperature 26.4 Total Volume Purged: 170 Sample Time: 1/20 FRACTIONS B C CF CL WATER DAMA COMMAN. Signed/Sampler:	etc.): Prup.nq (No. Mid of 11:40 885 6.3 795 27.9 gallons Sample Number:	End 11/5 @ 170cel 65 906 35/ 44/3 1 N NF TOP 2	. —
Total Volume to be Evacuated Method of Purging (pump, bailer, FIELD AMALISES Start Time 9:45 @ 59 PH 6.4 Conductivity 994 Temperature 26.4 Total Volume Purged: 170 Sample Time: 120 FRACTIONS B C CF CL WATER TOARY duning	etc.): Prup.nq (No. Mid of 11:40 885 6.3 795 27.9 gallons Sample Number:	End 11/5 @ 1700000000000000000000000000000000000	. —

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX N

SAMPLE COLLECTION DATA

- SURFACE WATER SAMPLING DATA LOGS
- SEDIMENT SAMPLING DATA LOGS
- SOIL SAMPLING DATA LOGS

SURFACE WATER SAMPLING DATA LOGS

THIS PAGE INTENTIONALLY LEFT BLANK

SURFACE WATER SAMPLING

SAMPLE LOCATION:
LYNN SITU PRIVITE SILVER
·
DATE 10/11/76 TIME 13:5
SAMPLE DEPTH SUPFICE WATER DEPTH
SAMPLE DEPTH SURFACE WATER DEPTH .5 SAMPLE NUMBER SWLAZ TNDY- 249
FIELD PARAMETERS:
pH 7.1 CONDUCTIVITY 1335
0.0. 3.4
TEMPERATURE: AIR 23.7 WATER 24.8
FRACTIONS COLLECTED
MITRIC (SEDANTS - SEE SON MONT LOLIS - 22)
OIL. GREASE XL
νολ ×3
WEATHER CONDITIONS (PRIOR 3 DAYS) ACTUY LIN (PATE 24
PILINIC LIBATIGE PICTOLISTY - DAIGEY
OVERCAST @ SIMPLIM
GENERAL OBSERVATIONS _ LLAT S.2 SUNFACE FAIR - WELL
PILITELTIO FROM LIND - LOW TO NO FLOW
JLOPL TO WATER WELL VE-ETATIFE
1300365 1 1405566 - 12-15
WOTER CLEUR TO BUTIA
SIGNED 12m REVIEWED R LLL
DATE 11/18

SURFACE WATER SAMPLING

SAMPLE L	OCATION:	
	<u>V[5]-</u> 2	- OUTTAIL
	DATE 10/14/85	TIME 15:20
•	SAMPLE DEPTH sunfact	WATER DEPTH 6"
	SAMPLE NUMBER SUV 11-]
FIELD PA	RAMETERS:	
	рн 70	CONDUCTIVITY 2700
	0.0. — 5.4	
		26.0 WATER 26.3
FRACTION	S COLLECTED	
	MITHIC W	
	011.+12616	
	UDA ×3	
		. .
WEATHER	CONDITIONS (PRIOR 3 DAY	5)

GENERAL	OBSERVATIONS	
~~~~~		
*****		
******	1 A	
SIGNED _	Mm REVI	EWED R Ille
DATE /	114/50 DATE	(9)-486-

## SURFACE WATER SAMPLING

SAMPLE LOCATION:	
SAMPLE DEPTH SUVERICE WATER DEPTH	
FIELD PARAMETERS:	
ph 6.8 CONDUCTIVITY	2640
0.0. 2.7	
TEMPERATURE: AIR WATER	27.1
FRACTIONS COLLECTED	
NITAL W	
UIL -MUSS	
UU1 x 3	~
WEATHER CONDITIONS (PRIOR 3 DAYS)	~====
GENERAL OBSERVATIONS	
***********	
	ה־זק־־
SIGNED MM REVIEWED ROLL	ll_
DATE 10/14/16 DATE 10/2026	

THIS PAGE INTENTIONALLY LEFT BLANK

SEDIMENT SAMPLING DATA LOGS

THIS PAGE INTENTIONALLY LEFT BLANK

1	
]	FIELD DATA FORM Sad imend Sampling
Particular de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Caraciana de Cara	Scacion = LH 2561)  Sample = SDT2  Frage: FINDL PYASET SOUTH  Field Personnel Jim MJ
	STATION DESCRIPTION:  Sample Methods: BUTTL FUBGESING TO WARD SIND ES" 3 X.  + PUSCIO SMALL BLOWN CLASS DAR FORM SED MOTHERS
	Water Quality Conditions: OIL SHEEN ON SURIFICE OTHER SAMPLE UND  Seed ment Type: DETRITUS
) variously (	Time of Sampling
1	SS NONE— OIL - CARCAS - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE CONSTRUCTION OIL - TIPE C
	PROBERS: SITE PHOTOS TAILGE
	Signature RM Date 10/14/73

# FIELD DATA FORM / Sed iment Sampling

Project Tyndic Pinis I stand 2 Field Personnel Jihm Maj
LEAR THIS MAY BE EXPECTED AT ANY POINT IN  SINCE SCUPE CRADIENT IS NECLICIBLE  TO \$5" DIPTH  AMBEL ALURE SURFICE OF SEDIMENT
·
CORCALDER TYDE  MISON WIDGMATH AMBOR
Dace 10/14/88

# FIELD DATA FORM * Sediment Sampling

Scacion * SDT11-2- Samole * TYMPL 11 x 2	Project TYMINU PHOSETT STALLS L Field Personnel 112m PAR
STATION DESCRIPTION: ALTO EACH TRAIN	IN OUT FALL
Sample Mechod:  SS = BUTYL TUBB  SU : PUSHED WING A  SURFACE	MOVE IMPORTED TARROLL SOUTH
Sediment Type: SAMD/SILT  Time of Sampling 15:30	
Fraction  SS  SU  NIME	CONCRINET TYPE  MASON SON  CUIDE MOUTH AMBER
PERSONS NO OBVIOUS SIGN + BLUE CROB SIREC APPROX S" WISE	OF CONTAMINATION - MINNOUS PRES: TLY UNDER OUTTILL - APPHINGD INGALT CARAPACE.
3 ignature Jun	Jace 10/14/52

THIS PAGE INTENTIONALLY LEFT BLANK

SOIL SAMPLING DATA LOGS

THIS PAGE INTENTIONALLY LEFT BLANK

1				
Boring No.	SO TI	1-1	Location Coordinates	N SEF
Hole Size	2" T.D.	Slot		E Sketch
Screen Len	igth	Mat'1	Filter Materials	
Diameter_	,		Grout Type	•
Casing Len	igth	Mat'1	Development -	
Diameter			Static Water Level_	
	10/15/86	Finish 10 15 86		
Contractor	ESE			
	<del>/</del>	<del></del>		
Depth			Sketch of	Standard Pene
(feet)	Sample	Lithology, Color	Location	Blow Cou
				<del> </del>
0.0-2.0	#1	SM, Sand, Fine-to-med gran, 5-10% silt, poorly graded,	Concerte pad	12-8-12-11
	@1202	dk. brown 104R3/2, 10038,	Amound tank	
		dry, mad-to-hearty oiled,	٠ لم ا	}
		Not plastic - shells (fill)	10'	
		top 3"	TANK	
202-		,		
20-35		SM, Sand, fim -to-coanse gr.		14-20-22
		~5% silt, mod. granded,		
		dk. boown 104R4/2, not		
1	•	plastic, loose, day- to-sl.		
		moist, mod to-hanily oiled	FIRE TRAINING	
3.5-5.5	# 2	SP Smed, fine - to-come gr	Pir	
	@1515	mod ganded top 6"; becomes		14 - 22 - 32 -
		fine to-med gr. lover 18",		
		poorly ganded, gary 10485/1		
		loose, not plastic, st. moist,	H	
-		lightly oiled	1	
1		<b>'</b>		
5.5-7.0	;	SP, Sand, fine to med. ga,	١.	18-21-18
		pooling granded, dk. brown 104R3/2, loose to mode stiff		
		(oiled mum), not plantic - to-		•
_ }		mod. plastic (o. lid amens),		
		moist to wet, It - to-banily		
•		o. Ld		
70-9.0		SP, Soud, fine-to-med. ge.		14-20-20-
	ļ	pocity granded, H. gom loye	1/2	17-20-20-
		becomes v. dk. brown 10422/2	'-'	
		lower 18" (namily or led), med,	}	•
- 00'		plastic saturated 1		
· 90'		END OF BORING	onmental Science and	Engineering, 1
		N-15		

Boring No. SO TII-I	SHEET OF
10/15/86	
1440 - Set up mig inside ring o	of fine training pit,
1445 - Begin split spoon bosing, Encountry of Pit  1450 - Abandon site, select NEW S	t, set up De-Con'statio
1450 - Aboutou Site Select NEW S	<del></del>
1455 - C-L 112	lact nice and
1455 - SET UP RIQ ON NEW SITE,	TENET FIG. SET UP
DE-CON Station 1500 - Begin split spoon boring, Ad 1505 - Sample # 1 takin; advance t	VANCE to 2.0 ft.
1505 - Sample # 1 taken; advance t	0 3.5 ft.
1510 - HOVANCE to 5.5 +4.	
1515 - SAMPLE # Z TAKEN; OCHANCE	to 7.0 +1.
1520 - Advance to 9.0 ft.; hammen termination of boring	ON RIG SheAMS;
termination of boring	
	<del></del>
	<del></del>
	<del></del>
	<del></del>
	<del></del>
·	
·	
	1,000
10/15/86	Mark Colon
DATE	SICHED
SOURCE: Environmental Scie	nce and Enginéering, Inc.,

N-16

Boring No.	50 T	11-7	Logarian Consideration	v 5
Hole Size_ Screen Len Diameter_	2" T.	D	Filter Materials  Grout Type  Development  Static Water Level	E SKETK
		Priller Paye Thom	Top of Well Elevation	n
Depth (feet)	Sample	Lithology, Color	Sketch of Generalisa Location	Standard Pene Blow Cou
2.0-3.5	© 840 #1	SP SAND, FINE-to-MED  gr., poorly graded, dk.  grayish brown 104K4/2,  not plastic, loose, moist,  mod. oiled  SP SAND, Fine-to-med  gr., poorly graded, dk.	FIRE TRAINING PIT	8-12-15
3.5-5.5	#2 @845	ganyish brown loveyz, not plastic, loose, moust to wet, mod. oiled SP, Sand, fine-to-ned ge., poorly graded, It. gray love7/1, sl. plastic, loose-to-med.	~N -	8-18-30 -
5.5-7.0		SP, Sand, continuation of above	Fence amound oil/water sepandon	12-18-37
70-9.0		SP, SAND, CONTINUATION	schurenoc	18-30-43
9.0-10.5		SP, SAND, continuation		32 - 36 - 35
10.5		END OF BORING		

SOURCE: Environmental Science and Engineering, In

N-17

Boring No. 50	T11-2		SHEET	OF
10/16/86				-
	<del></del>			<del></del>
0830	Set up r	rig on site,	LEVEL RIG	clem
	equipm	nt, SET up it spoon booing, talon, advance S.S. ft, sm Ft.	DE -CON	- Goitate
0835	Booin sol	it socon booing.	Advance to	# 2.0 Ft
0842	Smple # 1	tolon AdvANCE	4 3.5	
0845	Advance to	5.5' ft, sm	40/E # 2	token, adva
	to 7.0	<u>-Fl.</u>	<u> </u>	<u> </u>
0850	HOVANCE to	9.0 ft.	<del></del>	
0855	Advance to	9.0 ft. 10.5 ft.,	terminate	beaing
0900	Equipment	dismartled, dep	ant sih=	
		<del></del>	<del></del> _	
	<del></del>			
<del></del>				
			<del> </del>	
<del></del>				
····				
<del></del>				
<del></del>	<del></del>	<del></del>	<del></del>	<del></del>
	<del></del>			
<del></del>				
<del></del>		<del></del>	<del></del>	<del></del>
······································		<del> </del>	<del></del>	
		<del> </del>		
		•		
				<del></del>
		10/11/81	MI (	/(/.//
		DATE	-11/cm	ICHED
	SOU	RCE: Environmental Sc	lence and Engine	ering Inc.

198C

Boring No.	SO TI	1-3	Location Coordinates	N See E Sketch
Hole Size_	Z" I.I	)Slot		
		Mar'1		
Diameter_				
		Mat'l —	Development	
Diameter			Static Water Level	
		Finish 10 16 86		
	<u>ese</u>			
Depth (feet)	Sample	Lithology, Color	Sketch of Conservation Location	Standard Pene Blow Cour
0.0-2.0	# 1 ©0915	SP, Smd, fire-to-med. ge., poorly graded, gemy wheely not plastic, loose, day, sl to - mod. oiled		2-4-8-0
2.0 - 3.5	·	SP, Soud, fine-to-medige., poorly graded, It gray 104R7/1, not plastic, lose, day-to-moist, sl. oiled (odonous - no discoloration)	FIRE TRAINING PIT	10 -11 - 18
3.2-2.5	# 2 @ 0920	SM Smd, fine-to-med. gr., ~50/o silt, poorly gradd, med. plastic, buff 10486/3, med. dense, moist-to-met, sl. odor, no discoloration	~N>	12-20-26-
5.5.7.0		SM SAND, five to med ga,  5% with, poorly graded, white 104R8/1 from 5.5-6.2 ft.; become 11. brown 104R6/3 from 6.2-	5 12' 20'	22 - 36 - <del>4</del> 0
1.0 - 9.0		SM, continued from above	Fence pround oil/malen septembon	18-22-30
1.0-10.5	]	P, Sand, continuation of Above FNO CF BORING N-19		10-10,-13

Boring No. 50	T11-3	<del></del>	S	HEET OF
اما امر				
10/16/86				
0905	Set up	aig on site	e level Rio	clean
	equi	ment: set	DE-CON	Station
0110	Beam spli	F SPOCH PORING	advance +	o 2.0 fl.
0915	TAKE SAM	ple # 1; ad	MANCE to 3.5	5 ft.
0920	Advance +		SAMPLE #	Z taken
0925	Advance +	, 7.0 ft,		
0930	.A 1	6 9.0 ft.		
0935		6 10.5 ft.	Leamination	of poising
0940	CLEAN VD	and stow E		repare ria
	<u> </u>	for travel	, , ,	·
0945	Depart.	ibe		<del> </del>
	<u> </u>			<del> </del>
<del></del>				
······································	•			
<del></del>				
· · · · · · · · · · · · · · · · · · ·		<del> </del>	-	
	<del></del>		· · · · · · · · · · · · · · · · · · ·	
				1.2524
		<u> </u>		
· · · · · · · · · · · · · · · · · · ·	<del>-</del>			
	<del> </del>			
<del></del>				
			·	<del></del>
<del></del>	<del></del>	<u>,</u>		
<del></del>		<del></del>		
				1 MA
		10/16/86	11111	( / /w/-
		DATE	/	TIGNE
		SOURCE: Environment	al Science and En	igineering, Inc., 1

on

APPENDIX O

MONITOR WELL DEVELOPMENT LOGS

### DEVELOPMENT WELL SAMPLING DATA FORM

Well Number: L	HZ-8	Date	1017	86	Time:	084	10
Boring Diameter:	12	i <del>s</del>	Well Ca	sing Dies	neter:	Ч"	I.D.
Annular Space Le				Stickup	·	2.2'	
WATER LEVEL							
Held:	7.00						
Cut:	0.95						
DTW:	6.05'		Top of	Casing			
COLUMN OF WATER	IN WILL			•			
Casi	ng Length:		21.70		-		
DTW Top	of Casing:	-	6.05		-		
Column of Wate	r in Well:		15.65		_		
VOLUME TO BE BEN	OAED						
Gallons per fo	ot of A.S.	(from ch	mart)		=	1.5	1
Column of Wate	r or Lengt	h of A.S.	(whiche	ver is l	ess) X	15.0	<u>.</u>
Volume of Annu	lar Space				-	24.9	57_
Gallons per fo	ot of Casi	ng			•	0.65	28
Column of Wate	r				x	15.0	<u>.5</u>
Volume of Casi	ng				*	10.2	
Total Volume (	Volume of	A.S. + V	olume of	Casing)	-	34.	19
Number of Volu	mes to be	Evacuated	ŧ		x		
Total Volume t	o be Evacu	ated		,	. •	114	gal.
Method of Purgin	g (pump, b	siler, et	:د۰): <u>(</u>	nymaon.	ily 7	<u>sumped</u>	
FIELD ANALYSES	Star		•	lid -	. ' '	End	,
Time	<u> </u>	59.21	0943	<u> 682 1</u> ~	l. <u>10</u>	52 G	175 gal
рH	68	<del></del>		<u>.0</u>		5.1	
Conductivity	264		34	12.		341	
Temperature	26.2		27	<u>·                                    </u>		27.9	
Total Volume Pur	ged:	75 8	allons				
Scaple Time:			Semple-	-Number:		<del></del>	
PRACTIONS							
B C	CF			R	M	И	NF
O P NOTES Water S completion	Rediment	Free 1	est slig	s htty (	T discolo	UP ned up	Z Z
completion	n ot	dusto	pment.	, ,		•	
Deve lopen	- M	10	0	0		ı	/2/01
Signed/Gample:	<u>-11/m</u>	14	100	ana	Dat		11/80
Signed/Reviewer:					· Dat	:e:	-

#### DEVELOPMENT WELL SMIRESHIE DATA FORM

1400 1011
Well Number: <u>LH2-9</u> Dere: 10/17/86 Time: <u>0850</u>
Boring Diameter: 12" Well Casing Diameter: 4" T.D.
Annular Space Length: 16.6 Stickup: 3.1
WATER LEVEL
Held:7.00'
Cut: 1.05
DTW: S.95' Top of Casing
COLUMN OF WATER IN WELL
Casing Length: 22.10
DTW Top of Casing: 5.95
Column of Water in Well: 16.15
VOLUME TO BE REMOVED
Gallons per foot of A.S. (from chart) = 1.57
Column of Water or Length of A.S. (whichever is less) X 16.15
Volume of Annular Space - 25.36
Gallons per foot of Casing = 0.6528
Column of Water X 16.15
Volume of Casing = 10.54
Total Volume (Volume of A.S. + Volume of Casing) = 35.90
Number of Volumes to be Evecuated X
Total Volume to be Evacuated = 180 9A1
Method of Purging (pump, bailer, etc.): Discoutinous Dumping
FIELD ANALYSES Start Mid End
Time 1047 @ 5 gal 1153 @ 90 gal 1336 @ 200 gal
pH 5.7 5.3 5.3
Conductivity 236 225 258
Temperature 27.2 29.1 28.5
Total Volume Purged: 200 gallons
Semple Time: Semple Number:
FRACTIONS
BCCFCLFHMNNF
O P R RP RS S T UP Z
MOTES Water sediment free but discoloned upon completion
of developmenty.
Developer MI ( )
Signed/Samples: Mark fordara Dece: 10/17/86
Signed/Barrawar:

## DEVELOPMENT WELL SAMPLING DATA FORM

Well Number: T3-5 Date: 10/12/86 Tim	e: 0835
Boring Diameter: 12" Well Casing Diameter	
Annular Space Length: 16.5' Stickup:	2'
WATER LEVEL	
Held: - 6.0	
Cut: 0.9	
DTW: - 5.1' Top of Casing	
COLUMN OF WATER IN WELL	
Casing Length: 20.5	
DTW Top of Casing: S.	
Column of Water in Well: /5.4	
VOLUME TO BE REMOVED	
Gallons per foot of A.S. (from chart)	- 1.57
Column of Water or Length of A.S. (whichever is less)	x 15.4
Volume of Annular Space	- 24.2
Gallons per foot of Casing	· 0.6528
Column of Water	x <u>15.4</u>
Volume of Casing	- 10,1
Total Volume (Volume of A.S. + Volume of Casing)	- 34.2
Number of Volumes to be Evacuated	x <u> </u>
Total Volume to be Evacuated	- <u>171 gal</u>
Method of Purging (pump, bailer, etc.): CONTINUES	Dambind
FIELD ANALYSES Start Mid	End
Time <u>0901 @ 5941 0910 @ 90 gel</u>	0931@300741
pH <u>6.0</u>	6.2
Conductivity 393 318	304
Temperature 25.5 26.0	26.2
Total Volume Purged: 300 gallons	
Souple Time: Souple Hunter:	<del></del>
PRACTIONS	
B C CF CL F H. M	
O P R RP RS S T	UP Z
Removed during development. Water slightly relatively clean upon completion of Development.  Signed/Occupies:	odorous. Water was development
Signed/Reviewer:	Date:
	<del></del>

## DEVELOPMENT WELL SMANNERS DATA FORM

			1	· 1			
Annular Space Length: 16.5' Stickup: Z.O'  WATER LEVEL  Held: -7.0' Cut: 1.1  DTW: -5.9' Top of Casing  COLUMN OF WATER IN WELL  Casing Length: 20,9'  DTW Top of Casing: -5.9'  Column of Water in Well: (5.0'  WOLUMN TO BE MEMOVED  Gallons per foot of A.S. (from chart)  Column of Water or Length of A.S. (whichever is less) X 15.0  Volume of Annular Space - 23.4  Gallons per foot of Casing - 0,6528  Column of Water  Volume of Casing - 9.8  Total Volume (Volume of A.S. + Volume of Casing) - 33.4  Number of Volumes to be Evacuated X 5  Total Volume to be Evacuated  Method of Purging (pump, bailer, etc.): Continuously pumped  Method of Purging (pump, bailer, etc.): Continuously pumped  Method of Purging (pump, bailer, etc.): Continuously pumped  PIELD ANALYSES Start Nid End  Time 0920 6594 0929 0934 0937  Temperature 25.7 26.2 26.1 26.1  Total Volume Purged: Z40 gallons  Cample Start  Total Volume Purged: Z40 gallons  Cample Start  Developen.  Developen.  Developen.  Developen.  Signed/Samples: Date: 10/12/87	Well Number:		Date: 10	12/86	Time:	0840	
WATER LEVEL  Reld:	Boring Diameter:	12"	Well C	asing Dia		<u>4"</u>	•
Reld: -7.0'  Cut: [.1]  DTW: -S.9' Top of Casing  COLINES OF WATER IN WELL  Casing Length: 20.9'  DTW Top of Casing: -5.9'  Column of Water in Well: 15.0'  VOLINE TO BE MENOVED  Gallons per foot of A.S. (from chart)	Annular Space Le	ngth: 16.5	<u>s '</u>	Stickup	: Z.C	<u>)                                    </u>	-
Cut: 1.1  DTW: - 5.9' Top of Casing  COLIMN OF WATER IN WELL  Casing Length: 20.9'  Column of Water in Well: 15.0'  WOLIME TO BE EXPOYED  Gallons per foot of A.S. (from chart)  Column of Water or Length of A.S. (whichever is less) I 15.0  Volume of Annular Space 23.6  Gallons per foot of Casing -0.6528  Column of Water  Volume of Casing -9.8  Total Volume (Volume of A.S. + Volume of Casing) -33.4  Number of Volume (Volume of A.S. + Volume of Casing) -33.4  Number of Volume to be Evacuated I 5  Total Volume to be Evacuated I 5  Time 0.020 6 5.4  PH 6.3 75 61 6.2  Conductivity 294 352 362 374  Temperature 25.7 26.2  Conductivity 294 352 362 374  Temperature 25.7 26.2  Total Volume Purged: 240 gallons  FEACTIONS  B C CF C F F F M N NF  O F R RP RS S T UP 2  ROTES Water Vallahyely Clear upon completion of development.  Development.  Development.	MAIRS LEVEL	,					
COLIME OF WATER IN WELL  Casing Length: ZO, 9  DITY Top of Casing: — S, 9'  Column of Water in Well: 15.0'  WOLIME TO BE EXPOYED  Gallons per foot of A.S. (from chart)  Column of Water or Length of A.S. (whichever is less) I 15.0  Volume of Annular Space — 23.6  Gallons per foot of Casing — 0,6528  Column of Water  Volume of Casing — 9,8  Total Volume (Volume of A.S. + Volume of Casing) — 33.4  Number of Volume (Volume of A.S. + Volume of Casing) — 33.4  Number of Volume to be Evacuated I 5  Total Volume to be Evacuated I 5  Time 0,020 & S, Al 0,028 0,034 0,037  PH 6.3 75 61 6.2  Conductivity 2,04 352 362 374  Temperature 25.7 26.2  Total Volume Purged: Z40 gallons  PRACTIONS  B C CF C F F F M N NF  O F R RP RS S T UP 2  NOTES Water Vallahyely Clear upon completion of development.  Developera	Held:	.0'					
COLIME OF WATER IN WELL  Casing Length: 20,9  DTW Top of Casing: -5.9  Column of Water in Well: 15.0  WOLIME TO BE BESOVED  Gallons per foot of A.S. (from chart)  Column of Water or Length of A.S. (whichever is less) X 15.0  Volume of Annular Space -23.4  Gallons per foot of Casing -0.6528  Column of Water X 15.0  Volume of Casing -9.8  Column of Water X 15.0  Volume of Casing -9.8  Total Volume (Volume of A.S. + Volume of Casing) -33.4  Number of Volumes to be Evacuated X 5  Total Volume to be Evacuated X 5  Total Volume to be Evacuated X 5  Time 0920 6 5941 0928 0934 0937  PHELD ANALYSES Start Nid End  Time 0920 6 5941 0928 0934 0937  Conductivity 294 353 362 374  Temperature 25.7 262 261 26.1  Total Volume Purged: 240 gallons  Sample Market  FRACTIONS  B C CF CL F F M N NF  O F R RP RS S T UP 2  NOTES (Nater Virial work) Clear upon Completion of development.  Developera							
Casing Length: 20.9    DTW Top of Casing: - 5.9    Column of Water in Well:   15.0    WOLDRE TO BE RESOURD  Gallons per foot of A.S. (from chart) - 1.57    Column of Water or Langth of A.S. (whichever is less) X   15.0    Volume of Annular Space - 23.4    Gallons per foot of Casing - 0.6528    Column of Water   X   15.0    Volume of Casing - 9.8    Total Volume (Volume of A.S. + Volume of Casing) - 33.4    Number of Volumes to be Evacuated   X   5    Total Volume to be Evacuated   X   5    Method of Purging (pump, bailer, etc.):   Continuously pumped    PIELD ANALYSES   Start   Nid   End    Time   0.920   0.524   0.925   0.934   0.937    Conductivity   2.94   3.53   36.2   3.74    Temperature   25.7   26.2   26.1   6.2    Total Volume Purged:   240   gallons    Sample Start   Nid   End    Total Volume Purged:   240   gallons    Sample Start   Sample Start    O P R RP RS S T UP 2  NOTES (Matex viziativety class upon completion of development.  Developera   Sample Start   Date:   10/12/17	DTW: - S	<u>:9'</u>	Top of	Casing			
DIN Top of Casing:	COLUMN OF WATER	IN WELL					
Column of Water in Well: 15.0  WOLDER TO BE EXHOUSED  Gallous per foot of A.S. (from chart) = 1.57  Column of Water or Length of A.S. (whichever is less) I 15.0  Volume of Annular Space = 23.6  Gallous per foot of Casing = 0.6528  Column of Water I 15.0  Volume of Casing = 0.6528  Column of Water I 15.0  Volume of Casing = 9.8  Total Volume (Volume of A.S. + Volume of Casing) = 33.4  Number of Volumes to be Evacuated I 5  Total Volume to be Evacuated I 5  Time 0.920	Casi	ng Length:	20,9		_		
Gallons per foot of A.S. (from chart)  Column of Water or Length of A.S. (whichever is less) X 15.0  Volume of Annular Space  Gallons per foot of Casing  Column of Water  Volume of Casing  Total Volume (Volume of A.S. + Volume of Casing)  Mumber of Volumes to be Evacuated  Total Volume to be Evacuated  Method of Purging (pump, bailer, etc.): Continuously pumped  FIELD ANALYSES  Start  Mid  End  Time  CO2C & Sont  CO2S  Conductivity  294  353  362  374  Temperature  25.7  Z62  Z6.1  Total Volume Purged: Z90  gallons  September:  FFACTIONS  B C CF C F F F M N NF  O F R RP RS S T UP Z  NOTES Water valativety Class upon completion of development.  Developera	DTW Top	of Casing:	- 5.9'		_		
Gallons per foot of A.S. (from chart)  Column of Water or Length of A.S. (whichever is less) X 15.0  Volume of Annular Space  Gallons per foot of Casing  Column of Water  Volume of Casing  Total Volume (Volume of A.S. + Volume of Casing)  Mumber of Volumes to be Evacuated  Total Volume to be Evacuated  Method of Purging (pump, bailer, etc.): Continuously Dumped  FIELD ANALTSES  Start  Mid  End  Time  CO2C & Sont  Conductivity  294  353  362  374  Temperature  25.7  262  Z6.1  Total Volume Purged: 240  gallons  Sample Mumber:  FFACTIONS  B C CF C F F M N NF  O F R RP RS S T UP Z  MOTES Water valativety Cham upon completion of development.  Developera	Column of Water	r in Well:	15.0'				
Column of Water or Langth of A.S. (whichever is less) X 15.0  Volume of Annular Space = 23.6  Gallons per foot of Casing = 0,6528  Column of Water	VOLUME TO BE RECO	DAED					
Volume of Annular Space  Gallons per foot of Casing  Column of Water  Volume of Casing  Total Volume (Volume of A.S. + Volume of Casing)  Mumber of Volumes to be Evacuated  Total Volume to be Evacuated  Method of Purging (pump, bailer, etc.): Continuously pumped  FIELD ANALTSES  Start  Mid  End  Time  CORC G SON  Conductivity  294  353  362  374  Temperature  25.7  Conductivity  294  353  362  374  Temperature  25.7  Conductivity  294  Sample Simple Simple  FIECTIONS  B  C  C  C  C  F  F  M  N  NF  NF  R  R  R  R  R  R  R  R  R  R  R  R  R	Gallons per fo	ot of A.S. (fr	om chart)			.57	
Column of Water  Volume of Casing  Total Volume (Volume of A.S. + Volume of Casing)  Number of Volumes to be Evacuated  Total Volume to be Evacuated  Method of Purging (pump, bailer, etc.): Continuously pumped  FIELD ANALTSES  Start  Mid  End  Time  167 gA  Mid  End  Time  1920 6 5 gA  193 75 61 6.2  Conductivity  294 353 362 374  Temperature  25.7 262 261 26.1  Total Volume Purged: 240 gallons  Semple Fies:  FEACTIONS  B  C  C  C  C  C  C  C  F  F  M  N  NF  O  P  R  RP  RS  S  T  UP  Z  NOTES Water  Valativety clams upon completion of development.  Developera	Column of Water	r or Length of	A.S. (which	ever is 1	ess) X	15.0	
Column of Water  Volume of Casing  Total Volume (Volume of A.S. + Volume of Casing) = 33.4  Number of Volumes to be Evacuated  Total Volume to be Evacuated  Method of Purging (pump, bailer, etc.): Continuously pumped  FIELD ANALYSES  Start  Mid  End  Time  CO2C & SAH  CO32 CO34 CO37  Conductivity  294 353 362 374  Temperature  25.7 26.1 6.2  Total Volume Purged: 240 gallons  Sample Fies:  FEACTIONS  B C CF CL F F H N N NF  O P R RP RS S T UP 2  NOTES Water variatively class upon completion of development.  Developer  Signed/Samples:  Developer  Signed/Samples:	Volume of Annu	lar Space				23.6	
Volume of Casing  Total Volume (Volume of A.S. + Volume of Casing)  Number of Volumes to be Evacuated  Total Volume to be Evacuated  Method of Purging (pump, bailer, etc.): Continuously pumped  FIELD ANALTSES  Start  Mid  End  Time  0920 © 5941 0925 0934 0937  PH  6-3  7-5  6-1  6-2  Conductivity 294 353 362 374  Temperature 25.7  ZC-2  ZC-1  ZC-1  Total Volume Purged: Z40 gallons  Sample Number:  FRACTIONS  B  C  CF  CR  CF  CR  CR  CR  CR  CR  CR	Gallons per foo	ot of Casing			- <u>0</u> ,	,6528	
Total Volume (Volume of A.S. + Volume of Casing)  Number of Volumes to be Evacuated  Total Volume to be Evacuated  Method of Purging (pump, bailer, etc.): Continuously pumped  FIELD ANALTSES  Start  Mid  End  Time  0920 594 0937  PH  6-3  7-5  61  6.2  Conductivity  294  353  362  374  Temperature  25.7  262  Z61  Z61  Total Volume Purged: Z40  gallons  Sample Number:  FRACTIONS  B C CF CL F F H N NF  O F R RP RS S T UP 2  NOTES Water valativety clean upon completion of development.  Developera	Column of Water	r			x	15.0	
Number of Volumes to be Evacuated  Total Volume to be Evacuated  Method of Purging (pump, bailer, etc.): Continuously Dumped  FIELD ANALTSES  Start  Nid  End  Time  0920 & Sgod 0929  Conductivity  294  353  362  374  Temperature  25.7  Total Volume Purged: Z40  gallons  Semple Humber:  FRACTIONS  B C CF CL F F M N NF  O F R RP RS S T UP 2  NOTES Water vzelativety Clear upon completion of development.  Developer  Signed/Semples:  Developer  Developer  Signed/Semples:	Volume of Casis	ng				9.8	
Total Volume to be Evacuated  Method of Purging (pump, bailer, etc.): Continuously Dumped  FIELD ANALYSES  Start  Mid  End  Time  0920 © 5941  0929  0934  0937  PH  6-3  7-5  61  6.2  Conductivity 294  353  362  374  Temperature  25.7  26.2  Z6.1  Total Volume Purged: Z40  gallons  September:  FRACTIONS  B  C  C  C  C  F  F  M  N  NF  O  P  R  RP  RS  S  T  UP  Z  MOTES Water viriatively Clane upon completion of development.  Developera	Total Volume (	Volume of A.S.	+ Volume of	Casing)	•	33.4	
Method of Purging (pump, beiler, etc.): Continuously pumped  FIELD ANALTSES  Start  Mid  End  Time  0920 6 5941  0928  0934  0937  pH  6.3  7.5  6.1  6.2  Conductivity 294  353  362  374  Temperature  25.7  26.2  Z6.1  Z6.1  Total Volume Purged: Z40  gallons  Sample Manher:  FEACTIONS  B  C  R  R  R  R  R  R  R  R  R  R  R  R	Number of Volum	ses to be Evaci	uated		x	5	
Time 0920 6 59Al 0928 0934 0937  pH 6.3 7.5 6.1 6.2  Conductivity 294 353 362 374  Temperature 25.7 26.2 26.1 26.1  Total Volume Purged: 240 gallons  Semple First:  FRACTIONS  B C CF C F F M N NF  O P R RP RS S T UP 2  MOTES Water relatively clear upon completion of development.  Developera	Total Volume to	be Evacuated			•	167 ax	
FIELD ANALYSES Start Mid End  Time 0920 © 59Al 0928 0934 0937  pH 6.3 7.5 6.1 6.2  Conductivity 294 353 362 374  Temperature 25.7 26.2 26.1 26.1  Total Volume Purged: 240 gallons  Semple Fies: Semple Number:  FRACTIONS  B C CF C F F M N NF  O P R RP RS S T UP 2  NOTES Water valatively clear upon completion of development.  Developera	Method of Purging	g (pump, bailer	r, etc.): (	pornituo	shy Du	used	
Conductivity 294 353 362 374  Temperature 25.7 26.2 26.1 26.1  Total Volume Purged: 240 gallons  Sample Market:  FRACTIONS  B C CF CL F F M N NF  O P R RP RS S T UP 2  NOTES Water valatively clean upon completion of development.  Developera			_	Mid	7 '	End	
Conductivity 294 353 362 374  Temperature 25.7 26.2 26.1 26.1  Total Volume Purged: 240 gallons  Semple First  B C CF CL F F M N NF  O P R RP RS S T UP 2  NOTES Water valatively clear upon completion of development.  Developera	Time	0920 6 50	M 092	2	0934	09	137
Temperature 25.7 26.1 26.1  Total Volume Purged: 240 gallons  Suptribute: Suptribute:  FRACTIONS  B C CF CL F F M N NF  O P R RP RS S T UP 2  MOTES Water velatively clear upon completion of development.  Developer  Developer  Signed/Supplie: Date: 10/12/82	рН	3		5	6.1	6	٠٢_
Total Volume Purged: Z40 gallons  Sample First  FRACTIONS  B C CF CL F F M N NF  O P R RP RS S T UP Z  NOTES Water velatively clear upon completion of development.  Developera	Conductivity	294	3:	53	362	3	74
FEACTIONS  B C CF CL F F M N NF  O P R RP RS S T UP Z  NOTES Water valatively clear upon completion of development.  Developer Date: 10/12/18	Temperature	25.7	20	. 2	261	2	16.1
B C CF CL F F M N NF  O P R RP RS S T UP 2  NOTES Water relatively clear upon completion of development.  Developer Date: 10/12/82	Total Volume Purs	zed: <u>Z40</u>	gallons				
B C CF CL F F M N NF  O P R RP RS S T UP 2  NOTES Water valativety clean upon completion of  development.  Developera  Signed/Semples:  Date: 10/12/82	Stuple Time:		Sample	e Hysber:			
NOTES Water relatively clear upon completion of development.  Developer formal Date: 10/12/82	FRACTIONS						
MOTES Water relatively clean upon completion of development.  Developer formula Date: 10/12/82	в с	car ca.	F	E	M	n nf	
DEVELOPER DEVELOPER Date: 10/12/82	0 - P	R KDP	RS	S	T	UP Z	
Signed/Sergic:	NOTES WATER			10N CO	mpletion	• £	
Signed/Reviewer: Date:	Developer Signed/Samples:	for	my	/	Date:	10/12/	'n
	Signed/Reviewer:	<i>[</i>			· Date:		

### DEVELOPMENT WELL SAMPLEMS DATA FORM

Well Number: T3-7 Date: 10/18/86 Time: 1020	~
Boring Diameter: 12" Well Casing Diameter: 4" I.D.	-
Annular Space Length: 16.2' Stickup: 3.35'	
WATER LEVEL	
Held: - 9.00	
Cut: 1.62'	
DTW: Top of Casing	
COLUMN OF WATER IN WELL	
Casing Length: 22.85	
DTW Top of Casing:	
Column of Water in Well: 15.47'	
VOLUME TO BE REMOVED	
Gellons per foot of A.S. (from chart) = 1.57	-
Column of Water or Length of A.S. (whichever is less) X 15.47	-
Volume of Annular Space = 24.29	-
Gellons per foot of Casing = 0.6528	-
Column of Water X 1547	-
Volume of Casing = 10.1	-
Total Volume (Volume of A.S. + Volume of Casing) = 34.4	-
Number of Volumes to be Evacuated X	_
Total Volume to be Evacuated . = 172 gal	_
Method of Purging (pump, beiler, etc.): Discontinuous proping	-
FIELD ANALYSES Start Mid End	,
Time 1042 @ 59al 1235 @ 85gal 1401 @ 175	احر
pH 6.0 5.2 5.2	_
Conductivity 92 74 70	_
Temperature 24.5 28.1 28.6	<b>-</b>
Total Volume Purged: 175 gallons	
Sample Time: Sample Number:	-
PRACTIONS	
BCCFCLF HMNN	
O P R RP RS S T UP Z	
HOTES Water sediment - Free but slightly cloudy at end	
of development.	
Developer Date: 10/18/	8 C
51ghed/	
Signed/Reviewer: Date:	_

## DEVELOPMENT WELL SMARAGES DATA FORM

Well Number: T6-4 Date: 10/11/86 Time: 1626	
Boring Diameter: 12" Well Casing Diameter: 4" T.D.	
Annular Space Length: 17' Stickup: 1.6'	
WATER LEVEL	
Held:	
Cut: 0.6	
DTW: 5.4 Top of Casing	
COLUMN OF WATER IN WELL	
Casing Length: ZO.6	
DTW Top of Casing:	
Column of Water in Well: 15.2'	
VOLUME TO BE REMOVED	
Gallons per foot of A.S. (from chart) = 1.57	
Column of Water or Length of A.S. (whichever is less) X 15.2	
Volume of Annular Space = 23.9	
Gallons per foot of Casing = 0.6528	
Column of Water X 15.Z	
Volume of Casing = 9.9	
Total Volume (Volume of A.S. + Volume of Casing) = 33.8	
Number of Volumes to be Evacuated X 5	
Total Volume to be Evacuated = 169 and	
Method of Purging (pump, bailer, etc.): Continuous pumping	
FIELD ANALTSES Start Mid . End	
Time 1715@59A 1811 1828	
pH <u>5.3</u> <u>5.0</u> <u>6.0</u>	
Conductivity 140 133 226	
Temperature 27.0 27.3 26.8	
Total Volume Purged: 205 gallons	
Sample-Time: Sample-Humber:	
FRACTIONS	
B C CP CL F H M N NF	
O P R RP RS S T UP Z	
NOTES Water sediment - Free but, still very discoloned	
upon completion of development	
Developer	
Signed/Serie: Dete: 10/11/8	ζ
Signed/Reviewer: Dete:	

### DEVELOPMENT-WELL SAMPLING DATA FORM

·			ş		
Well Number: I		te: 10	16/86	Time: 12	.50
Boring Diameter:	12"	Well C	esing Diam	eter: 4"	I.D.
Annular Space Lea	ngth: 16.1	·	Stickup:	2.9	· · · · · · · · · · · · · · · · · · ·
MATER LEVEL					
Held:	).0'	<b>-</b> -			
Cut:3	3,2'	-			
DTW:	.8'	_ Top of	Casing		
COLUMN OF WATER I			ı		
Casin	ng Length:	22.4 - 6.8	<del>,</del>		
DIW Top o	of Casing:				
Column of Water	in Well:	15.6	<u>'</u>		
VOLUME TO BE MENO	NED				_
Gallous per foo	ot of A.S. (from	chart)		- 1.	57_
Column of Water	or Length of A	.S. (which	ever is le	49) X	5.6
Volume of Annul	ar Space			- 20	1.49
Gallons per foo	t of Casing			<u> 0.6</u>	52 <u>8</u>
Column of Water	•			x	5.6
Volume of Casin	18			- 10	.18
Total Volume (V	olume of A.S. +	Volume of	Casing)	- 34	6]
Number of Volum	ies to be Evacual	ted		x	>
Total Volume to	be Evacuated		a 1		<u>ael</u>
Method of Purging	(pump, bailer,	etc.): (	ONTHICK	ishy pum	<u>ped</u>
FIELD ANALYSES	Start		Mid .	7 , Euc	i
Time	1257@22 gA	1302	C 30 CA	1 1325	<u>@ 300</u> 721
рН	6.2		5.7	5.7	<del></del>
Conductivity	142		37	142	<del></del>
Temperature	24.1	2	4.2	24.	<u> </u>
Total Volume Purg	ed: <u>300</u>	gallons			
Sample Time:		Semple	<del>miluni</del> es :	·	
Practions .					
ВС	COF COL	F	H	M N	NF
O P	R RP	<b>8</b> \$	S	T UP	2
NOTES Water	sediment. free	1 but L	51.ghthy	دان سيام ،	12019
comple from	a of deve	Topment	, , ,		
Developen	M 1/	7/7	' /)		/ /
Signed/Samples:	Mul	1 10	daa	Date: 1	0/16/86
Bigned/Reviewer:			<del></del>	Date: _	

## DEVELOPMENT WELL SAMPLENC DATA FORM

Well Number: T8-3	Date: 10	111/86	Time:	1217	2_
11		Casing Diam		4" 7	
Boring Diameter: 12"	15.5	Stickup		2.4	
Annular Space Length:	13.3	_ 001020p		<u> </u>	
Held: - 5.0					
251					
1) =1		of Casing			
COLUMN OF WATER IN WELL		or crarks			
Casing Length:	20.0	) ¹			
DTW Top of Casing:	- 4.3	5 '	-		
Column of Water in Well:	15.	S '	_		
VOLUME TO BE REMOVED			_		
Gallons per foot of A.S.	(from chart)		-	1.5	1
Column of Water or Length	of A.S. (whi	chever is 1	ess) X	15.	<u> </u>
Volume of Annular Space			-	24.	3
Gallons per foot of Casir	ıg		-	0.652	8
Column of Water			x	15.	<u> </u>
Volume of Casing			-	10.	
Total Volume (Volume of A	+ Volume	of Casing)	•	34.	<u>S</u> _
Number of Volumes to be E	vacuated		X	<u> </u>	- 
Total Volume to be Evacua	ited		=	172	gol.
Method of Purging (pump, be	iler, etc.):	CONTINUO	20	NIGNEG	<del></del>
FIELD ANALYSES Start		Mid	•	End	7
Time 1220	125	516 357	<u>~</u> l	1340	
pH <u>5.9</u>		5.7		<u> 5. Ç</u>	
Conductivity 394		346		327	
Temperature 25.4		26.C		25.9	
Total Volume Purged: 1	13 gallor	ıs			
Seaple-Time:	900	<del>ple-limber</del> :			
FRACTIONS					
B C CF	CL F	н	M	И	NF
O P R	RP RS	S	T	UP.	Z
notes water relative	ly clean	aban	comb,	Letion	•+
Developer. Signed/Sampler:	Roman	M	0.	ste: <u>/</u>	1116
Signed/Reviewer:			D.	ete:	

### DEVELOPMENT WELL SAMPLING DATA FORM

Well Number:	4-8	Date:	10/1	8 86	Time:	094	0
Boring Diameter:	12"			sing Diam	'	4" I	. D.
Annular Space Le		17.0'		Stickup:		75'	
WATER LEVEL		<del></del>		•			
	8.00		•	•			
Cut:	1.35						
DIW:	6.65'		Top of	Casing			
COLUMN OF WATER	IN WELL			f			
Casi	ng Length:		3.0				
DIW Top	of Casing:		6.65	<del></del>	•		
Column of Wate	r in Well:		<u>6.35</u>	<u> </u>			
VOLUME TO BE RED	OARD						_
Gallous per fo	ot of A.S.	(from cha	rt)		=_	1.5	<del></del>
Column of Water	r or Length	of A.S.	(which	ver is le	ss) X _	16.3	
Volume of Annu	lar Space				• _	25.0	
Gallons per fo	ot of Casin	ıg			• -	0.65	
Column of Wate	r				x _	16.3	
Volume of Casi	αg					10.4	
Total Volume (	Volume of A	1.S. + Vol	ume of	Casing)		36	74
Number of Volu	mes to be E	vacuated			x _		<del></del>
Total Volume t			_	:	• -	182	341
Method of Purgin	g (pump, ba	iler, et	:.): <u>C</u>	NS COM TIM	4002 F	victories	49
FIELD AMALTSES	Start			Mid		End	9
Time	1010@ 5	<u>saul</u>		<u>s 40 Jul</u>			823"
рĦ	<u>6.0</u>					5.5	
Conductivity	151			16		185	
Temperature	22.8			6.3	. —	27.3	
Total Volume Pur	ged:	15 g	llons				
Semple-Time:			Semple				<del></del>
FRACTIONS	_	_	_				
8 C	CIF .	a.	F	Н	M T	N	NF
0 P	R	RP .	<b>85</b>	S	т . `	UP 1	z
	nelativeli	y clear	ر (ج۱،۵	hthy c1	ordy)	ar c	٥٠٠٩٥
	urtopa.	4		_			, ,
Developer. Signed/Sempler:	· <u>M.</u>	$\mathcal{L}\subseteq$		- Lower	Date	: 10/	N8/81
Signed/Reviewer:					· Det	•:	

# DEVELOPMENT WELL CAMBLESS DATA FORS

Well Number: T	9-3 pet	e: 10/12/8	SG Tim	e: 1043
Boring Diameter:	12"	Well Casin		
Annular Space Let				2.3'
WATER LEVEL				
Held: - 9	.0'			
Cut: 0		•		
	.3'	Top of Cas	ing	
COLUMN OF WATER I		,		
Casin	g Length:	22.3		
DTW Top o	of Casing:	- 8.3		
Column of Water	in Well:	14.01		
VOLUME TO BE MINO	WED			
Gallons per foo	t of A.S. (from	chart)		. 1.57
Column of Water	or Length of A.	S. (whichever	is less)	x 14.0
Volume of Annul	ar Space			- 22.0
Gallous per foo	t of Casing			- 0.6528
Column of Water				x 14.0
Volume of Casin	8			- 9.1
Total Volume (V	olume of A.S. +	Volume of Cas	ing)	- 31.1
Number of Volum	es to be Evacuat	ed		x
Total Volume to	be Evacuated	_	,	= 156 gal
Method of Purging	(pump, bailer,	etc.): CON	HAUGUS	DUMBING
FIELD ANALYSES	Start	Mid		End J
Time	1104	1122	·	1154
рĦ	5.]	5.1	-	5.6
Conductivity	100			116
Temperature	28.0	28.4		28.3
Total Volume Purg	ed: 200	gallons		
Sample-State		_ S <del>acyto M</del> _	wber:	
FRACTIONS				
в с	CF CL	F H	M	n nf
	R RP	RS S		UP Z
NOTES WATER	sediment - Free	by slig	with di	scolured At
completion	of develop	ment.	3	
Developer.	LNZ	Lul		Date: 10/14/8
Signed/Samples:	1	<del></del>	<del></del>	
Signed/Reviewer:	<del>//</del>		· · · · ·	Date:

### DEVELOPMENT WELL SAMPLESS DATA FORM

T9	-4 pate:	10/12/86	Time: 1335
Well Number: 19	12"	Well Casing Diam	eter: 4" I.D.
Boring Diameter:	1-4 D)	Stickup:	2.0'
Annular Space Lengt			
WATER LEVEL	15'		
^ <			
	11'	Top of Casing	
COLUMN OF WATER IN	WITT.		
	Length:	21.0	•
DIW Top of		3.11	•
Column of Water		12.89'	<del></del>
AOLTHE LO RE REMOA			7
AOCTOR 10 BE SUSO	of A.S. (from o	thert)	- 1.57
Gallons ber 1000	or Length of A.S	. (whichever is 1	ess) x 12.89
Volume of Annula			= <u>Z0.Z4</u>
Gallons per fool			- 0.6578
Column of Water			x _12.89
Volume of Casin			<u>8.41</u>
Total Volume (V	olume of A.S. +	Volume of Casing)	28.65
Number of Volum	es to be Evacuat	ed	x x
Total Volume to		_ 1	· 143 ga
Method of Purging	(pump, bailer,	ecc.): Discont	
FIELD ANALYSES	Start	Mid	End
Time	1901	1546	1823
pH	4.2	5.6	
onductivity	36	81	34
Temperature	26.6	27.4	26.8
Total Volume Pur		gallons	
rocal volume : or		Sample Strates	*
PRACTIONS			
B C	CF CL	F H	H H NE
<b>U</b>	R RP	res s	T UP Z
NOTES WATER	sediment. Free	but veny	discolored in Cl
the rough	int developm	unt, All water	discoloned and or discanded in of
Separan	M	00	n 11
Signed/Semples:	~ Illah	/ ford	Date: 10/12/
Signed/Reviewer	:	(	Date:
3 FBHAN MALLE			

## DEVELOPMENT"

Well Number: T	1-01	Date:	10/1	0/86	Time:	170	0
Boring Diameter:	12			viow Sing Diam	-	<del></del>	
Annular Space Let		17.0'	W611 (2)	Stickup:	_	0'	<u> </u>
WATER LEVEL	.8	11.0		oczenep.	·	<u> </u>	
Held: - (	.01						
	, 05 '						
	95'		Top of	Casing			
COLUMN OF WATER I	WILL						
Casit	g Length:	. 2	3.0		_		
DIW Top	f Casing	: <u>-</u>	9.95	·	<u>-</u>		
Column of Water	in Well:	:	3.05	,	_		
VOLUME TO BE REDIC	WED						
Gallons per foo	t of A.S.	(from ch	art)		•_	1.5	1
Column of Water	or Lengt	h of A.S.	(whicher	ver is le	es) X	13.0	5
Volume of Annul	ar Space				• _	20.	<u> </u>
Gallons per foo	t of Casi	ing			• _	0.65	28
Column of Water	•				x _	13.0	5
Volume of Casin	g					%.ડ	
Total Volume (V	olume of	A.S. + Vo	lume of (	Casing)		29.0	2
Number of Volum	es to be	Evacuated			X _		
Total Volume to	be Evacu	ated	`		• _	145	<u>gal</u>
Method of Purging	(թատաթ, հ	eiler, et	c.): <u>D</u>	sconti	24044	DUMP	Tuct
FIELD ANALYSES	Stat	:c	5	lid .		End	7
Time	1133		1352	(10/11)	كلــــــــــــــــــــــــــــــــــــ	00 (	10/12)
pН	6.9		د.٠	4		66	
Conductivity	<u> </u>	3	<u>5°</u>	1		492	
Temperature	26.2		<u> </u>	1		25.8	
Total Volume Purg	ed:	8 TT	alions				
Se <del>sple Time:</del>			Seaptu	Houber:			
FRACTIONS							
	CF	a.		Н	M	И	NF
O P	R		RS			UP C	Z
NOTES When developm	very	clean	apon	comp	bryon	ot	
Developer. Signed/Samples:		N M	-	1	Date	: <u>10</u>	1 2187
Signed/Reviewer			/		Date	:	

## DEVELOPMENT WELL SAMPLESS DATA FOR

Well Number: T	10-2	Date:	10/10/86	Time:	1405
Boring Diameter:	12"	- w	all Casing Dia	meter:	4" T.D.
Annular Space Le	ngth:	17.0'	Stickup		6'
MAIRS LEVEL					<del></del>
Held:	1.0				
Cut:	0.8 (				
	9.2'		op of Casing		
COLUMN OF WATER	IN WELL				
Casi	ng Length:	22.	<u>6</u>	_	
DTW Top	of Casing:	-10.	2'	_	
Column of Water	r in Well:	12.	4'	_	
VOLUME TO BE REPORT	DVED				
Gallons per for	ot of A.S.	(from chart	:)	•_	1.57
Column of Water	r or Lengt	h of A.S. (v	hichever is l	.ess) X _	12.4
Volume of Annul	lar Space			•	19.5
Gallons per foo	ot of Casi	ng		• _	0.6528
Column of Water	•			x _	12.4
Volume of Casis	r <b>g</b>			• _	8.1
Total Volume (V	folume of	A.S. + Volum	e of Casing)	• _	27.6
Number of Volum	es to be l	Evacuated		x _	
Total Volume to	be Evacua	eted	- 1	•	138 gal
Method of Purging	(pump, b	siler, etc.)	: Discent	SUDVAI	Drinding
FIELD ANALYSES	Star	:	Mid	•	End
Time	1430		1807	1123	<del></del>
рH	6.6		6.3	7	1.1
Conductivity	336		230		33
Temperature	28.6		26.0		2.4
Total Volume Purg	ed:	10 gall	ons		
Sample-Pine:		9	<del>caple ilunte</del> r:		
FRACTIONS					
ВС	CF	a, f	н	M	N NF
0 P	R	RP RS	=	T	UP Z
	ieny cle	FAME Upon	completo.	u cf c	developmen
slighthy	tomy				
Developera Signed/Sompton:	2	N Tu		Dete:	: 10/11/8
Signed/Reviewer:	1	7		Dete:	<del></del>
	<del></del>				

## DEVELOPMENT DATA FORM

	30 7	_	10	اماء		17.	
-	10-3		:e: 10	10 86	Tis		14
Boring Diameter:	_12		Well (	asing Di			<u>. O.</u>
Annular Space Les	ogth: _	15.5		Sticku	p: _	2.1'	
WATER LEVEL							
Held:S			-				
	1,4		-				
DIW:	1.6		Top of	Casing			
COLUMN OF WATER	DI ARIT		0.5 (	•			
	ng Length		22.1				
DTW Top	•		-4.6	<del></del>			
Column of Water	r in Well	.:	2.دا				
ACTING TO BE BEING							_
Gallons per for	ot of A.S	. (from	chart)			- 1.S	
Column of Water	r or Leng	th of A.	S. (which	ever is	less)		
Volume of Annul	lar Space	1				- 24.	3
Gallons per foo	c of Cas	ing				- 0.65	28
Column of Water	•					x 17.5	
Volume of Casin	ng .					- 11.	1
Total Volume (V	folume of	A.S. +	Volume of	Casing)		- 35	.8
Number of Volum	es to be	Evacuat	ed			xS	
Total Volume to	be Evac	usted	_			- 179	gal
Method of Purging	(pump,	bailer,	etc.):	)ISCONTIN	vers	pumpin	4
yteld analyses	Sta	TT		Mid		End	3
Time	1742	·	183	3630	cal_	1022 (	10/11/5C
pH	6.4			٠. لو	· -	4.7	
Conductivity	103			<u> </u>		51	
Temperatura	26.0			8		26.]	
Total Volume Purg	red: 1	80	gallons				
Sample-Ties.			Seepè	<del>o-Nusber</del>	:		
Fractions							
<b>B</b> C	CIF .	α.	F	ч	M	N	NF
O P	R	RP	RS	s .	Ţ	UP	Z
notes Water develo	pount	clam	прон	comple	ton	° t	
Develope Signed/Sampton:		~~~	mfu	1		Date: _/	0/11/8
Signed/Reviewer:	4		/		·	Date:	

### DEVELOPMENT WELL SAMPONED DATA FORM

<b>711 1</b>	e: 10 11 86 Time: 1120
Mell Rumber:	Well Casing Diameter: 4" T.D.
Boring Diameter: 12"	· · · · · · · · · · · · · · · · · · ·
Annular Space Length: 17.0'	
NATER LEVEL	
Reld:7.0	•
Que: 0.9	Top of Casing
DTW: G.1'	Top or Castus
COLUMN OF WATER IN WELL	22 5 1
Casing Length:	22.5
DIW Top of Casing:	<u>- 6.1</u>
Column of Water in Well:	16.9
AOLUME LO RE REMOARD	1.57
Gallons per foot of A.S. (from	e chart)
Column of Water or Length of	A.S. (whichever is term) = 25.]
Volume of Annular Space	- 0.6528
Gellons per foot of Casing	x 16.4_
Column of Water	- 10.7_
Volume of Casing	
Total Volume (Volume of A.S.	+ Volume of Castus,
Number of Volumes to be Evacu	182 gal
Total Volume to be Evacuated	
Method of Purging (pump, bailer	r, etc.): Continuous
FIELD ARALISES Start	710
Time 1422	
PR 4.6	$-\frac{5.3}{144} - \frac{5.6}{146}$
Conductivity 142	
Temperature 25.6	
Total Volume Purged: 183	gallons
Sanda Vine:	Supplied Market :
FRACTIONS	M N NF
n c of or	F H H
O P R RP	RS S T UP Z
mores what sediment -	Free but still discoloured upon
completion of de	velopment
	2 / /
Signed/Samples	2 minut Date: 10/11/8
Signed/Reviewer:	Dete:
STRUGGI MELCELLE	<del></del> -

## DEVELOPMENT WELL SAMPLING DATA FORM

_			1.	. 1			
Well Number:	711-2	Date:	1011	1 86	Time:	112	5
Boring Dismeter:	12"		Well Ca	sing Diam		4" I	D
Annular Space Le	ngth:	17.0'		Stickup:	2.5	<u> </u>	
HATER LEVEL							
Held:	9.0'						
Cut:	0.6'						
DTW:	8.4'		Top of	Casing			
COLUMN OF WATER I	DI WILL						
Casia	ng Length:		22.5	, 			
DIW Top	of Casing:		- 8.4				
Column of Water	in Well:		14.1				
VOLUME TO BE REPO	WED						
Gallons per foo	of A.S.	(from ch	art)		•	1.57	
Column of Water	or Length	of A.S.	(whicher	ver is les	ss) X _	14.1	
Volume of Annul	ar Space				• _	22.1	
Gallons per foo	t of Casis	g			= _(	0.652	8_
Column of Water	•				x	14.1	
Volume of Casin	ıg					9.2	
Total Volume (V	olume of A	.s. + Vo	Lume of (	Lasing)	•	31.3	3
Number of Volum	es to be E	vacuated			x	5	
Total Volume to	be Evecus	ted	_		• _	157	100
Method of Purging	(pump, be	iler, et	e.): <u>D</u>	iscontin	- - - - -	IGMUS	<u> </u>
FIELD ANALYSES	Start			lid	1	End	7
Time	1135		1216	309A	13	26	
рH	4.9		4.9		u	1.8	
Conductivity	198		179		1	30	
Temperature	26.0		27.	8	2	9.3	
Total Volume Purg			llons				
Sample Pint:			Semple	Number:			
FRACTIONS							
B C	CF.	a.	F	н	M	N	NF
O P	R	RP	RS	<b>,</b> S	T	UP	z
HOTES Water	slightly	cloudy	and	slight	m for	my	upen
completion		develop		•	3	1	•
Developen	,		01	7		1	. 1
Signed/Sempler:			Lord	a_	Date:	10 /	11/86
Signed/Reviewer:					Date:	7	<del>_</del> _
	,				<del>-</del>		
•. •.	, · ·	· .	4	محت	*** <b>)</b>	and the same	
		0-1	.0				

## DEVELOPMENT WELL SMIRESHET DATA FORM

	Han
Wall Manger: 1 11 2	ime: 1130
Boring Diameter: 12" Well Casing Diamet	
Annular Space Length: 17.0' Stickup:	<u> </u>
HATER LEVEL	
Held:	
Cut: 0.2	
DTW: -5.8' Top of Casing	
COLUMN OF WATER IN WILL	
Casing Length: 22.0	
DTW Top of Casing:	
Column of Water in Well: 16.2	
VOLUME TO BE MEMOVED	1.67
Gallons per foot of A.S. (from chart)	• <u>1.57</u>
Column of Water or Length of A.S. (whichever is less	
Volume of Annular Space	- 25.4
Gallons per foot of Cesing	- 0.6528
Column of Water	x
Volume of Casing	- 10.6
Total Volume (Volume of A.S. + Volume of Casing)	<b>-</b> 36.0
Number of Volumes to be Evacuated	x <u>5</u>
Total Volume to be Evacuated	= 180 gxl
Method of Purging (pump, bailer, etc.): Discontinu	ous pumping
FIELD ANALYSES Start Mid	End
Time 1337 1547@90ga)	1345@ 124 day
pH <u>59</u> 61	64
Conductivity 582 798	<u> </u>
Temperature 28.2 27.9	<u> 26, 5</u>
Total Volume Purged: 184 gallons	
Sample-Time: Sample-Humber:	
FRACTIONS	
BCCFCLFH	M N NF
	T UP Z
NOTES Water very formy, nelatively clear,	slightly coloner
upon completion of development	. ' '
Davidson MI I O O	/ /
Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Signed/Si	Date: (0/11/86
Signed/Reviewer:	Dete:

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX P

CHAIN-OF-CUSTODY

	VIRONMENTAL SCIENCE & ENGINEER JJECT NUMBER 86449 0000	SCIENCE & E 86449 0000	E 6	EN 00	GIN	IEER P		G 09-3	1NG 09-30-86 *** FIE ROJECT NAME: TYNDALL AFB	NDALI.	FIELD AFB	FIELD LOGSHEET AFB	*	)OO 81	FIELD	FIELD GROUP: '	FIELD GROUP: TYNDL4 D. DILNA HALE	
	STTF/STA	HA22	Ţ	₽.C.T.	F	TYNDE	- E	CLE)	ã	DATE	TIME		LIST					
	i Stěii		z	0	5	N O VP VP	>	VP W			- 1	2 6,10,11	-					{
	2 GT6-2		z	0	VP	VP	å ∧	3 0.			2	6,10,11	-				,	İ
	3 GT6-3		2	0	Λ	VP.	V VP	P W			2	6,10,11	11					İ
	4 GT6-4		2	0	V	VP.	d'V	3 d		ļ	2	6,10,11	1.1					
	5 GT6-5		2	0	Α̈́	A V	P VP	3 0			2	6,10,11	=					
	6 GT6QA		z	0	VP	d V d		VP W			2	6,10,11	11					
	7 GT10-1		z	0	V	dV q	1	VP W			2	6,10,11	1.1				Ţ	
	8 GT10-2		Z	0	VP	d A	1	W dv			Z	6,10,11						
	9 GT10-3		z	0	VP	P VP	•	VP W			2	6,10,11	1.1					
	0 GT10QA		z	0	VP	P VP		VP W			2	6,10,11						
	1 GT11-1		2	0	VP	d V d	ì	VP W				Z 6,10,11	=					
-	2 GT11-2		z	0	VP	P VP	ı	VP W			2	6,10,11	11					
_	13 GT11-3		z	0	VP	P VP	4	W av			14	Z 6,10,11	11					ļ
	14 SWT11-1		z	0	VP	P VP		VP W	1. July		1.76	11'01'9 Z C'11'	11					1
_	18 SWT11-2		z		Ϋ́	P VP	ا ح	VP W	12/11/11	1/ 12	2 Ch. 31	11'01'9 2	1.1					į
_	CE -CHANGE OR -CIRCLE FR -HAZARD COI -PLEASE RE	OR ENTER SITE ID AS N FRACTIONS COLLECTED. CODES: I-IGMIRALE C-COMOSIVE RETURN LOGSHEETS WITH	S ( S)	MAC SHEET	E STORE	AS OPROS WI	N N N N N N N N N N N N N N N N N N N	CESSAR INTER D R-MACTIVE SAMPLE	NECESSARY; UP TO 9 ALPHANUMERIC CHARACTERS MAY BE ENTER DATE, TIME, FIELD DATA (IF REQUIRED), HAZARD WE R-RECTIVE T-TOKIC MASH H-OTHER ACUIT MAZARD; IDENTIFY SPECIFICS IT KNOWN H SAMPLES TO ESE	SIC FIEL	LPHANUE LD DATI	TERIC C	HARACTI EQUIREI	SRS M.	NY BE NZARD OWN	USED AN	AND NOTES	
	ELI	ED BY:	5	Z	2/0	RGA	NIZ	ATION/	(NAME/ORGANIZATION/DATE/TIME)	ME)		RECEIV	>	(NA)	ME/ORG	ANIZATI	(NAME/ORGANIZATION/DATE/TIME)	E)
-	11-1	?	-		1		7.//	0				(10-1	(1) CV	11111	, j			
~,					j							D 1/2	D Hal 168	1/10-15	_ \ I	1830	[	-
<del></del> '	~	1				į	 	 	! ! !		1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	 	 		! ! ! ! ! !	1
_	IER FIELD NOTES	FO				GROUP	_	TYNDL4:										
									1									

LAB COORD. DILNA HALE										CTERS HAY US USED RED), HAZARD CODE AND NOTES CHICS IF HOMM	BY (NAME/ORGANIZATION/DATE/TIME)				
*** FIELD LOGSHEET *** NALL AFB	PARAM TER LIST ZONEZ		ZONE2	ZONE2	ZONE2	ZONE2	ZONE2	ZONE2	20NE2	9 ALPHANUMERIC CHARACTERS FIELD DATA (IF REQUIRED), H-07HR ACUIL HAZARD; IDENTIFY SPECIFICS II	RECEIVED	(1)			
FIELD AFB	TIME	11 17	7 1 1 1	. ( <u>.</u>	11453					LPHANU ILD DAT		1	1	1 [	
YND	DATE	-	1.1/01	1.1 (0.1	10101					TIME FIE	/TIME)	1 1 1	1 1 1	1	
RING 09-30-86 *** FIE! PROJECT NAME: TYNDALL AFB LL2	CIRCLE) P VP VP	VP VP VP	VP VP VP	VP VP VP	VP VP VP	VP VP VP	VP VP VP	VP VP VP	VP VP VP	S NECESSARY; UP TO D. ENTER DATE TIME, osiu R-maring T-tolic wash ITH SAMPLES TO ESE	ANIZATION/DATE/TIME	7/M/01			UP TYNDL2:
INEERI PR TYNDL2	)SNO	<b>&gt;</b>	0	0	0	0	0	0	0	SITE ID AS COLLECTED.	(NAME/ORGA		1		GRO
ENG 00	ACTI	0	0	0	0	0	0	0	0	R SITE ID NS COLLECT I-IGHIANT C-C	IAME,				ELD
3 00 e	Y.R.	2	Z	Z	Z	2	Z	Z	Z	NS CI IVS CI IV-16411	2	6		   	<b>F</b>
***  **VIRONMENTAL SCIENCE & ENGINEERING 09-30-86  PROJECT NUMBER 86449 0000  **TYNDL2**	SITE/STA HAZP FRACTIONS(CIRCLE)	GLH2-2	GLH2-3	GLH2-4	GLH2-7	GLH2QA	GLH2-8	GLH2-9	SWLH2	-CHANGE OR ENTER SI -CIRCLE FRACTIONS C -HAZARD CODES: I-I-BH -PLEASE RETURN LOGS	RELINQUISHED BY:	777 / 774		; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OTHER FIELD NOTES FOR FIELD GROUI
PROJ	ESE #	*2	•3	•	*5	9.	4.7	8	6.	NOTE			2		OTHE

meetn LOGSHELL . . na COOKU. . . .

ENVI	ENVIRONMENTAL SCIENCE & ENGINEERING 09-30-86 PROJECT NUMBER 96449 0000	3 2 2 3 4 5 6 7 7	3 C	NGI	NEE	*ING	60	-30-	86		FIELI	*** FIELD LOGSHEET ***	*** FIELD GROUP: TYNDL2
		`		H	TANDL	37.	<b>י</b>	NAME	FAUSECI NAME: IINDALL AFB	עשער	AFB		LAB COORD. DILNA HALE
ESE +	SITE/STA HAZ? FRACTIONS(CIRCLE)	~	RAC 1	710 0	NS((	TRC	LE.	<u>/</u>	Ya	DATE	TIME	PARAM IER LIST ZONEZ	-
?	GLH2-2	2	0	0	VP	[	VP VP				1	ZONEZ	
2	GLH2-3	Z	0	0	VP		VP VP	-			120	20NE2	
	GLH2-4	Z	0	0	Λ		VP VP				S	20NE2	
•	GLH2-7	Z	0	0	Λħ		VP VP		1			ZONE2	
9.	GLH2QA	Z	0	0	ΔΛ	ı	VP VP					ZONE2	
•1	GLH2-8	Z	0	0	ΛÞ		VP VP					ZONE2	
•	GLH2-9	7	0	0	Α	•	VP VP					ZONEZ	
6.	SWLH2	Z	0	0	P.	1	VP VP		3	2	12/1	ZONEZ	
NOTE	-CHANGE OR ENTE -CIRCLE FRACTIO -HAZARD CODES: -PLEASE RETURN	ER S ONS I-16	R SITE ID AS NS COLLECTED L-IGHTABLE C-CORNOS LOGSHEETS WI'	ETS.	CTED.		ESSA FER MIACTI	BAYE DATE ES T	NECESSARY; UP TO ENTER DATE TIME W R-MACHW T-10MIC MASH H SAMPLES TO ESE	FIE	LPHANI LD DAT	MERIC CHAR	PHANUMERIC CHARACTERS MAY BE USED DATA (IF REQUIRED), HAZARD CODE AND NOTES IN ACUIT HAZARD; IN HOUTES
1	RELINQUISHED BY:	· i	NAN	10/a	(NAME/ORGAN	IZY	TION	/DAT	IZATION/DATE/TIME	(3	1 1	RECEIVED BY	BY (NAME/ORGANICATION/DATE/TIME)
-	2	١,		,				\ 		[ ] [	1 1 1 1 1 1 1 1 1	1770	7 L Leve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1	ーケー・ー・ー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1	1	111	7114	1111	111	1-16		1			

OTHER FIELD NOTES FOR FIELD GROUP TYNDL2:

ESE # #2 #3 #4 #5 #5 #5 #5 #5 #5 #5 #5 #5 #5 #5 #5 #5	ENVIRONMENTAL SCIENCE & ENGINEER PROJECT NUMBER 86449 0000  E # SITE/STA HAZ? FRACTIONS(  *2 GT3-2 ED N O V V *3 GT3-4 ED N O V V *4 GT3-5 ED N O V V *6 GT3-6 ED N O V V *6 GT3-7 ED N O V V *7 GT3-7 ED N O V V *9 GT9-1 ED N O V V *13 GT9-2 ED N O V V *13 GT9-4 ED N O V V *13 GT9-4 ED N O V V V *13 GT9-4 ED N O V V V V V V V V V V V V V V V V V V	SER 86449 SER 86449 STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ? STA HAZ. STA HAZ. STA HAZ. STA HAZ. STA HAZ. STA HAZ. STA HAZ. STA HAZ. STA HAZ. STA HAZ. STA HAZ. STA HAZ. STA HAZ. STA HAZ. STA HAZ. STA HAZ. STA HAZ. STA HAZ. STA HAZ. STA HAZ. STA HAZ. STA HAZ. S	ENCE & ENGINEER  449 0000  TYND  27 FRACTIONS (C  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N O VI  ED N	FRACTIONS FRACTIONS ED N O V ED N O V	TYNDL6 OVP OVP OVP OVP OVP OVP OVP OVP OVP OVP	E ENGINEERING 09-0000  TYNDL6  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP VP  ED N O VP VP  ED N O VP VP  ED N O VP VP  ED N O VP VP  ED N O VP VP  ED N O VP VP  ED N O VP VP  ED N O VP VP  ED N O VP VP  ED N O VP VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N O VP  ED N	RING 09-30-86 PROJECT NAME: TYNI L6 CIRCLE) P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P V	RING 09-30-86 *** FIE PROJECT NAME: TYNDALL AFB LIP VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP P VP	TIME TIME  1/4/5  1/2 2/4  1/2 2/4  1/2 2/4  1/2 D DATA  MER ACUT HA	F TIME PARMITER LIST  E TIME PARMITER LIST  12 //2/5 Z 3 9  12 //2/5 Z 3 9  12 //2/5 Z 3 9  12 //2/5 Z 3 9  12 //2/5 Z 3 9  12 //2/5 Z 3 9  13 //2/5 Z 3 9  14 //2/5 Z 3 9  15 //2/5 Z 3 9  16 //2/5 Z 3 9  17 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18 //2/5 Z 3 9  18	LAB LAB J 1 ST TERENTER VUINED T STCUTOR	LAB COORD. DILMA HALE  1  1  1  1  1  1  1  1  1  1  1  1  1	DILNA DILNA DILNA E USED D CODE	RING 09-30-86 *** FIELD LOGSHEET *** FIELD GROUP: TYNDL6 LL6 LL6 LLC LLC LLC LLC LLC LLC LLC L	THE)
- 10	36			7.H 1.F	يرا	- 4									(6)
OTHER P	FIELD NOTES	FOR	FIELD GROU	D GR	OUP	P TYNDL6:	.6:								

D. DILNA HALE										HAZARD CODE AND NOTES	BY (NAME/ORGANIZATION/DATE/TIME	10/16/66 13.	
LAB COOR	PARAMETER LIST ZONE 7,8	ZONE 7,8	ZONE 7,8	ZONE 7,8	20NE 7,8	ZONE 7,8	ZONE 7,8	IE 7,8	ZONE 7,8	C CHARACTERS MAY BE US F REQUIRED), HAZARD CC	EIVED BY (NAME/ORGAN	If what ESE	
FROJECT NAME: TYNDALL AFB	DATE TIME 20N	102	102	(0Z	102	102 >58/ 2/10/	•	8'L 305 > 5 CYCA	102	FIEL H-OW		Laky 97 cm	
0000 PROJECT NAME: TYNDLS	FRACTIONS(CIRCLE) N VP VP VP W	N VP VP W	M VP VP W	N VP VP W	N VP VP W	M AV VP VP W	N VP VP W	M AV VP VP W	N VP VP VP W	OR ENTER SITE ID AS NECESSARY, UP TO FRACTIONS COLLECTED. ENTER DATE, TIME CODES: I-IGHTANK C-COMOSIVE R-MEACHIVE T-TOKKE WASH RETURN LOGSHEETS WITH SAMPLES TO ESE	(NAME/ORGANIZATION/DATE/TIME	14/17/86 / 16ad	
ENVIRONMENTAL SCIENCE & ENGINCERING PROJECT NUMBER 86449 0000 TYNDLS	SITE/STA HAZ?	GT7-2	GT7-3	GT7-QA	GT8-1	GT8-3	GT8-4	GT8QA (	BWT7-11	-CHANGE OR ENTE- CIRCLE FRACTIO- HAZARD CODES: -PLEASE RETURN	RELINQUISHED BY:	PAR / TO ESE	
PRO.	ESE #	• 2	.3	*	\$	9.	-7	80	6.	NOTE		-	m

PROJECT NUMBER 86449 0000 FROJECT NAME: TYNDALL AFB  TYNDLS  ESE # SITE/STA HAZ? FRACTIONS(CIRCLE)  DATE TIME ZONE 7,8	*2 GT7-2 N VP VP W ZONE 7,8 *3 GT7-3 N VP VP W ZONE 7,8	7.7. /// /// FOR
GT7-2 N VP VP W GT7-3 N VP VP W		GT8-4 N VP VP W  GT8-4 N VP VP W  GT8QA N VP VP W  -CHANGE OR ENTER SITE ID AS NECESSARY; UP TO 9 ALPHA -CIRCLE FRACTIONS COLLECTED. ENTER DATE TIME FIELD I -HAZARD CODES: I-IGHIAMI C-COMOSIN R-MICKIN T-TOKIC MAIN MIN SAMPLES TO ESE -PLEASE RETURN LOGSHEETS WITH SAMPLES TO ESE  PET TACHTED BY: (NAME/ORGANIZATION/DATE/TIME)
GT7-2 N VP VP W W  GT7-3 N VP VP W W  GT7-QA N VP VP W W  GT8-1 N VP VP VP W W	GT7-QA N VP VP W W W	-CHANGE OR ENTER SITE ID AS NECESSARY; UP TO 9 ALPHA- CIRCLE FRACTIONS COLLECTED. ENTER DATE, TIME, FIELD I -HAZARD CODES: I-IGHITARI C-COMOSIW R-RECTIVE T-TOTIC WASH B-OHM A -PLEASE RETURN LOGSHEETS WITH SAMPLES TO ESE PETINOLISHED BY: (NAME/ORGANIZATION/DATE/TIME)
GT7-2 N VP VP W  GT7-3 N VP VP W  GT7-QA N VP VP W  GT8-1 N VP VP W  GT8-3 N VP VP W  GT8-4 N VP VP W  GT8-4 N VP VP W  GT8-4 N VP VP W  GT8-1 N VP VP W	GT3-QA N VP VP W W CT8-1 C N VP VP W W CT8-1 N VP VP W W CT8-3 N VP VP W W GT8-4 N VP VP W W GT8-4 N VP VP VP W W CT8-11 N VP VP VP W	

RING 09-30-86 *** FIELD LOGSHEET *** FIELD GROUP: TYNDL4 FROJECT NAME: TYNDALL AFB LAB COORD. DILNA HALE	TIME PARAMETER UST	2 6, 10, 11	1505 2 6,10,11	2 6 10 11	2 6.10.11	7 6 10 11	1010 2		2 6,10,11	2 6,10,11	2 6,10,11	2 6,10,11	2 6,10,11	2 6,10,11	2 6,10,11	R SITE ID AS NECESSARY, UP TO 9 ALPHANUMENIC CHARACTERS HAY HE USED NOTES THE TO AS NECESSARY, UP TO 9 ALPHANUMENIC CHARACTERS HAY HE USED NOTES THE TO AS NECESSARY THE FIELD DATA (IF REQUIRED), HAZARD CODE AND NOTES THE TOTAL PRINTING THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PARTY SAMPLES TO ESE	/TIME	Lister of the contract of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
* FIELD	TIME 2	1546 2	2 5051	7 6				7 (:	1							ALPHANU TELD DAT	\ ! !	1 1
-86 ** E: TYNDAL	DATE		-													TO ESE	PETTINGETER BY: (NAME/ORGANIZATION/DATE/TIME)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
09-30- CT NAME	<b>€</b> 3	,	3	3	3	z :	2	3	3	3	3	3	3	3	3	ESSARY TER DAY ALACTIVE T	ATTON/D	1
ERING PROJE	FRACTIONS (CIRCLE) (INO 0 VP VP W	W VP VP W	W VP VP W	W W W W	W W W W	<b>&gt;</b>	-	3 do do	W VP W	VP VP	W VP W	VP VP	W VP W	- 1	M dA dA	AS NEC YED. EN	RGANIZA	\$6
SNGINE	TYNDLA PHONSTER S VP VP	O VP	O VP	o vP	ì	o V	O VP	O VP	O VP	O VF	O VP	OVP	O VP		and	LE ID	AME/OF	26-1-10/14/81
3000 ¢	S. C. C. C. C. C. C. C. C. C. C. C. C. C.	2	2	z	}	z	z	Z	Z	Z	2	2	2	: 2	:   2	SE SIT	X	710
SCIENC 86449	HAZ?											-				OR ENTER S FRACTIONS CANTS: 16	HFD R	35=
ENVIRONMENTAL SCIENCE & ENGINEERING 09-30-86 PROJECT NUMBER 86449 0000	SITE/STA HAZ?	GT6-2	GT6-3	GT6-4	GT6-5	GT6QA	GT10-1	C-0115	GT10-3	GTIOOA	1-11-0	(-1145)		C-1119	CHILL	CHANGE OR -CIRCLE FR -HAZARD CO	FILINDITS	thil h
ENVIRON	ESE # 8	•2	£.	**	\$.	9.	1.	E.	6.	010				-		NOTE		- 10

THINKS AROND ABBIA NOT BEAUTY OF THE

ENVI	ENVIRONMENTAL SCIENCE 6	SCIENCE	S & EN	GINE	ERIN	0 9 1ECT	9-30-E	ENGINEERING 09-30-86 *** FIEI	1 4 4 F	IELD	*** FIELD LOGSHEET ***	ET ***	COOR	* FIELD GROUP: TYNDL6	P: TYNDL6
LOX4	PRUJECT NUMBER 80449 0000	A # # 0 0		T	TYNDL6		1			1		i			
ESE #	SITE/STA GT3-1	HA2?	FRACTIONS (CIRCLE) ED N O VP VP VP	SNOI	CIR VP V	CLE)		DATE		TIME	PARAMETER LIST	1157			
*2	GT3-2		ED N	0	VP VP VP	P VP									
#3	GT3-3		ED N	0	W VP VP	3									
**	GT3-4		ED N	0	VP VP VP	P VP									
\$ 5	GT3-5		ED N	0	VP VP VP	P VP									
9#	GT3-6		ED N	0	VP VP VP	P VP									
4.7	GT3-7		ED N	0	VP VP VP	P VP									
8.	GT3QA		ED N	0	VP VP VP	P VP									
6.	GT9-1		EDY NV OV		VP/VP VP	P VP	_	CA	2	17:76	N	3.9	•		
*10	Gr962		ED/N/	0	VP/VP VP	P VF	-			5/3/5/		1 5/1.61			
-1	GT9-3		ED N	0	VP VP VP	7P VF		-							
•12	GT9-4		ED N	0	VP V	VP VP VP									
•13	GT90A		ED N	0	VP	VP VP VP									
NOTE	-CHANGE OR -CIRCLE FR -HAZARD COI -PLEASE RE	OR ENTER SITE ID FRACTIONS COLLECT CODES: I-IGHINGLE C-CO RETURN LOGSHEETS	SITE S COLI	LECT COST	AS NI ED. I	SCESS SNTER RACK SAME	ARY in DATE	UP TO TIME Sic usif	9 ALI FIELL H-OHE	PHANUL DATI	(ERIC ( ) (IF F NZARO; 1004	HARACTE EQUIREE	TRS MAY  HAZ  CS IF KNOW	R SITE ID AS NECESSARY; UP TO 9 ALPHANUMERIC CHARACTERS MAY BE USED NS COLLECTED. ENTER DATE TIME FIELD DATA (IF REQUIRED), HAZARD CODE AND NOTES I-IGHITALE C-COMPOSIVE R-PEACTIVE T-TOLIC MASTE H-OTHER MEDIE HAZARD; IDENTIFY SPECIFIES IF KNOWN LOGSHEETS WITH SAMPLES TO ESE	ND NOTES
1 1	RELINQUISHED	ED BY:	1	E/OR(	SANIZ	SATIC	N/DAT	(NAME/ORGANIZATION/DATE/TIME)			RECEIV	ED BY	(NAME	ORGANIZAT	RECEIVED BY (NAME/ORGANIZATION/DATE/TIM)
-	141	135	1/0/	N/	1	1544	8				0 P	4 E	11/35	D Pak (ESE /11/14/11/5	
2									ļ	 	1	! ! !		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$ \$ 1 6 1 2
3	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	 	l 	l } !						1	1	1 1	1	1	
OTHER	R FIELD NOTES FOR FIELD GROUP TYNDL6:	ES FOR	FIEL	ČŠ.	OUP	LXNDI									

uby under his 23,9

RECEIVED BY (NAME/ORGANIZATION/DATE/TIME) -CHANGE OR ENTER SITE 1D AS NECESSARY; UP TO 9 ALPHANUMERIC CHARACTERS MAY BE USED
-CIRCLE FRACTIONS COLLECTED. ENTER DATE TIME FIELD DATA (IF REQUIRED), HAZARD CODE AND NOTES
-HAZARD CODES: I centrakt C-comosyn R-mining T-totic unsit M-other munime; definities is shown
-PLEASE RETURN LOGSHEETS WITH SAMPLES TO ESE LAB COORD. DILNA HALE FASAM 11# 1 157 EPMP EPMP EPMP EPMP EPMP EPMP RELINQUISHED BY: (NAME/ORGANIZATION/DATE/TIME) DUT! TIME (375) PROJECT NAME: TYNDALL AFB 1.5/5/ DATE 36/21 ENVIRONMENTAL SCIENCE & ENGINEERING 10-02-86 FRACTIONS(CIRCLE) SS TYNDLS PROJECT NUMBER 86449 0000 SS ŝ SS 58 SITE STA HAS? SOTEP! SOTEP? SOTEP4 SOTEPS SOTEP3 OTE **ω**• • -**5**71 ÷ 2

FIELD GROUP: TYNDLS

*** FIELD LOGSHEET ***

THER FIELD NOTES FOR PIELD CRAIP TYNDLS:

ALROOM (COLINA)

24:11 SOTS-4 1965/86 17:45

HART SX SYCHAI AL

P-11

1 Joughout ESE 10/15 (D. 1800 to Ish Maxwell

LAUL FRANSPORK-M-151 LAB

HEET *** FIELD GROUP: TYNDLS LAB COORD, DILNA HALE		d 33d	O NO.	GRAG	THE	Ernr	S NECESSARY; UP TO 9 ALPHANUMERIC CHARACTERS MAY BE USED  D. ENTER DATE TIME FIELD DATA (IF REQUIRED), HAZARD CODE AND NOTES  ITH SAMPLES TO ESE		( The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the	W. Hak-/ESE/10-9/1315		
ERING 10-02-86 *** FIELD LOGSHEET *** PROJECT NAME: TYNDALL AFB DLS	DATE TIME FARANTH IST	(14)	13		19		EF ARY: UP TO 9 ALPHANUMERIC DATE TIME FIELD DATA (IF R 11VF T-10VIC MAST HOUR ACUTE HAZARD: 100W	NIZATION/DATE/TIME) RECETU				8:
NGI NE TYN	HAZZ FRACTIONS(CIRCLE)	(3)	88	SS	SS	SS	LECTE ANT C-CON	(NAME/ORG	1			OTHER FIELD NOTES FOR FIELD GROUP TYNDLS:
EHVÍROKHENTAL SCIENCE 6 E PROJECT NUMBER 86449 0000	SI	#2 SOTERY-3	13 SOTEP3	* SOTEP4	5 SOTEPS	•6 SOTEP6	-CHANGE -CIRCLE -HAZARD -PLEASE	RELINQUISHED BY:	RCF		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ER FIELD NOT
- 교교 -	383	-   	-			•	NOTE	<u> </u>	- -1	2	3	OTH

OTHER FIELD NOTES FOR FIELD GROUP TYNDLS:

[ Amusponted to ESE Lab by MJ.

		PROJECT NUMBER 86449 0000	0000		PRO.	PROJECT NUMBER 86449 0000 PROJECT NAME: TYNDALL AFB	ME: 1	YNDAL	L AFB	•	JALL AFB	TY	in cool	LAB COURD. DILNA HALE	NA HZ	ID. DILNA HALE	C.
•	GTT-1 HASS	RASS	reaction N VP VE	Trick No. 1 d	P VP W	(3.15)		PATE	TIME		CONE 7,8	5					
	CT1-3		z	dh dh	M dA d					ZON	20NE 7,8						
	GT7-3	:	, <b>&gt;</b> , <b>z</b>	do de	W VP VP W					NO:	CONE 7, 8	; !	; ;		1		
	GT7-CA		z	'r VF	VF VP W					20N	2.ONE 7,8					Î	
	CT8-1		> z	VP VP	V.P. W	•	! :		:	L NO.	CONE 7, 8				ŧ	1	:
	GT8-3		>	dA d	W dy					NOZ	ZONE 7,8						
	GT8-4	2	(Z)	图	CHANANA.	i:		3	1030 ZONE 7.8	20N	E 7,8			;	:	1	***
	GTROA		z	שיי שי	VP &					ZON	ZONE 7,8						
	11-71MB		2	47 47	K. Y. X	:	i .	•		NO.	SANE 1, S			•	1	i :	
NOTE	-CHANGE OR -HAZARD COU- PLEASE RET	ENTER L'11111	STTE I	10,00	AS NECESTAL ENTRY	AS NECESSARY; UP TO 9 ALPHANUMERIC CHARACTERS MAY BE USED LEST ENTER PARE TIME FIELD PARA (IF RECUIRED), HATARD COPE AND NOTES WITH SAMPLES TO ESE	TO E	25 35 35 S	ALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN MALPHAN	CHERI F.A. T	P. CHAI	RACTE VIREP SACIFIA	RS MAY HAY IS IN NAM	ARP CO	PPE AN	D NOT	S
	RFLTNOUTCHEN	٠١١ ١١٠	Z Z Z	NANT ON	CANS	SCAN TON TON TON THE ATTENT	ATE/1	THE)	1 1 1 1 1	RFC	FIVER	A.Y.	(NAMI)	RECEIVED BY (NAME ORGANIZATION ONTE /TIME	172.1T	NU/NO	11/11
	KARK JOS	Gadans		ESE		10/24/16 @ 1600 //werend / sonne 1850 1010 10	2	છ	3	1/2	2.4.4	1	form	S ¥ . / .	· w	\$ \$ 7°C	3

OTHER FIELD KAPES FOR FIELD GROUP TYNDLS: Temporated to FTE LAB by MIT

ENVIRONMENTAL SCIENCE & ENGINEERING 10-06-86 *** FIELD LOGSHEET *** FIELD GROUP: TYNDL7 PROJECT NUMBER 86449 0000 PROJECT NAME: TYNDALL AFB	SITE/STA HAZ? FRACTIONS(CIRCLE) DATE TIL	•2 (SDT11-2 SS SV) SZ 2,11	e3 SDT2-1 SS SV	NOTE -CHANGE OR ENTER SITE ID AS NECESSARY; UP TO 9 ALPHANUMENT CHANGLISHS FIRE SOURES - CIRCLE FRACTIONS COLLECTED. ENTER DATE TIME FIELD DATA (IF REQUIRED), HAZARD CODE AND NOTES - CIRCLE FRACTIONS COLLECTED. ENTER PRINCIPLA FIGURE ACTIONS CODES: I-IGHITAMIC C-CORNOSIVE R-FACACIVE T-TOKIC MASSIC B-OTHER ACTION LOGSHEETS WITH SAMPLES TO ESE	RELINQUISHED BY: (NAME/ORGANIZATION/DATE/TIME)	h	2 /1ab / Est /10-151/550	3 TOTHER FIELD NOTES FOR FIELD GROUP TYNDL7:
EN	ESE	•	•	NOT	1	1	7	P-15

4VI 303	RONMENTAL SCIEN	CE & ENGINEERI 9 0000 PR	AVIRONMENTAL SCIENCE & ENGINEERING ON 30-86 *** FIELD LOGSHERT ROJECT NUMBER 86449 0000 PROJECT NAME: TYNDALL AFB	PIELD LOGSHERT *** FIELD GROUP: TYNDLS AFB LAB COORD. DILNA HALE
		TYNDLS		
~;	SITE/STA HAZ?	FRACTION N VP VF		DATE TIME PARABILIST IN TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR
ŗ		M 1 (1) (1.1) (1)		LI LAST LEAST TOWNER, P. B.
	GT7-3	M dy dy N		ZONE 7,8
-	GT7-QA	M VP VP VP W	3	ZONE 7,8
*	GT8-1	M VP VP VP W	3	ZONE 7,8
9	GT8-3	M VP VP VP W	American de la companya de la companya de la companya de la companya de la companya de la companya de la compa	ZONE 7,8
1.	GT8-4	M dy dy N	3	ZONE 7,8
	GTBQA	N VP VP VP K	32	ZONE 7,8
6.	(BWT7-11)	M KU GV BUY W.	1,1 :8/1.101	1450 CONE (7,8
E A	-CHANGE OR ENTE- CIRCLE FRACTIC -HAZARD CODES: -PLEASE RETURN	ER SITE ID AS N JNS COLLECTED. I-teniant C-consiv LOGSHEETS WITH	ECESSARY: UP TO 9 ALI ENTER DATE TIME, FIELL RALACING T-TONIC MAST H-DIME SAMPLES TO ESE	OR ENTER SITE ID AS NECESSARY; UP TO 9 ALPHANUMERIC CHARACTERS MAY BE USED FRACTIONS COLLECTED. ENTER DATE, TIME, FIELD DATA (IF REQUIRED), HAZARD CODE AND NOTES CODES: I-IGHIANI C-COMPOSIVE M-ALACIVE TIVITE MAST H-OTHER ACUIE MAZARD; IDENIIT STECITICS IT NAWH.
1	RELINQUISHED BY:	1	(NAME/ORGANIZATION/DATE/TIME)	RECEIVED BY (NAME/ORGANIZATION/DATE/TIME)
i -	しょく ハイン		CCC 0 32:10	
7				(hhy / terrina 150 10/0/66 18 3
<u></u>				- 1
E E	HER FIELD NOTES FOR FIELD GROUP TYNDLS:	OR FIELD GROUP	TYNDLS:	

IONMENTAL SCIENCE A PECT NUMBER 86449 0000
- 11

		]	}	1	}	E)		1	
					NECESSARY; UP 10 9 ALPHANUMERIC CHARACTERS MAY BE USED ENTER DATE, TIME, FIELD DATA (IF REQUIRED), HAZARD CODE AND NOTES INT R-MEACTIVE T-TOKIC MAST H-OTHER ACUIT MAZARD; INTRIP SPECIFICS IF KNOWN TH SAMPLES TO ESE	RECEIVED BY (NAME/ORGANIZATION/DATE/TIME)			-
	_				ACTE TRED SPECIFIC	BY			
	PARAM UR 1151 20NE 5	11.15 ZONE 5	ZONE 5	SONE S	RIC CHAR (IF REOL Mo: INTIMITY	ECEIVED			
	DATE TIME	73:11	11:00 ZONE 5	1	LPHANUME LD DATA En acute maza	<b>X</b>			•
	TE				FIET FIET FIET FIET FIET FIET FIET FIET	(E)			
	6				UP TIME	E/TI	7		
					DATE W. T-10	/DAT	1347		
•	FEACTIONS (CIRCLE)	3	3	<b>1</b>	NECESSARY; UP TO ENTER DATE TIME NOT REACTIVE T-TO LASTE HE SAMPLES TO ESE	IZATIC		TYNDL3:	
TINDL.	STATE OF	VP VP VP	VP VP VP	an an an	SITE ID AS IS COLLECTEDIGHIABLE C-COMOSI OGSHEETS WIT	(NAME/ORGAN	14/2/8	GROUP	
F	A PLAN	VP	VP	a B	INTER SITE ID AS TIONS COLLECTED. S: I-ICHIANI C-COMOSIRN LOGSHEETS WIT	AME/	14	ELD	
	E P	Z	2	z	ER SI ONS C I-ICHI LOGS	i -		OR FI	
	IIAZ				OR ENTI FRACTIC CODES: RETURN	ED B	[55]	ES F	
	SITE/STA HAZ?	GT5-2	GT5-3	CTSQA	-CHANGE OR -CIRCLE FR -HAZARD CO -PLEASE RE	RELINQUISHED BY:	/#K/	THER FIELD NOTES FOR FIELD GROUE	
		. 7.	2	=	OTE -CH	REI	1 1 2	3 HER F	
			1	7	1=	•	, 1		? <b>-</b> 17

ET *** FIELD GROUP: TYNDL3 LAB COORD. DILNA HALE	ust S	5	5	5	VECESSARY; UP TO 9 ALPHANUMERIC CHARACTERS MAY BE USED ENTER DATE, TIME, FIELD DATA (IF REQUIRED), HAZARD CODE AND NOTES IN SAMPLES TO ESE	RECEIVED BY (NAME/ORGANIZATION/DATE/TIME)	9 Had 1555 110-14/1115
гансоот	PARAMETER LIST ZONE 5	CONE S	A. C ZONE 5	ZONE 5	ERIC CE (IF RE	RECEIVE	D. Hand
*** FIELD LOGSHEET *** YNDALL AFB	TIME	  - 	8.3	1	LPHANUM LD DATA KR ACUTE MA	1	
YNDALL	DATE	_			ME FIE AST R-OIL	IME)	
AING U9-30-86 *** FIEI PROJECT NAME: TYNDALL AFB L3	_ `				CESSARY; UP TO TO THE TIME TAKE TIME WASH SAMPLES TO ESE	ZATION/DATE/TIME)	
.NG UY-30-86 OJECT NAME: 1 B	FRCEE W	3	E	4	ESSAR)	TION/	155
INEEKING PROJ TYNDE3	WP W	VP W	VP W	χÌ	AS NECED. EN	GANIZA	
چ	VP/VPV	NV VP/VP VP	N VP/VP VP	VR, VP VP	E ID	ME/OR	15/5
000 6 4 3)		¥		Z	R SIT NS CO I-lenin LOGSH	(N)	101
ENVLKONMENTAL SCIENCE & ENGINEEKI PROJECT NUMBER 86449 0000 PR TYNDL3	SITE/STA HAZ? ERACTIONG(CI	GT5-2	GT5-3	GTSQA	OTE -CHANGE OR ENTER SITE ID AS NI-CIRCLE FRACTIONS COLLECTEDHAZARD CODES: I-IGHIMALE C-COMMOSINE -PLEASE RETURN LOGSHEETS WITH	RELINQUISHED BY: (NAME/ORGANI	141 /ESE / 10/15/56
FROJEC	ਲੱ *	*2	*3	٠.	arot Contra	REI	1.44

FALLIN GROWF: ASNULLS TAR COORD. DILNA HALE FALLER LUNSHEEL PROJECT NAME: TYNDALL AFB 44-36-60 NVIRONMEN. W. SCHLEN E. N. ERGENERANG ROJECT NUMBER 86449 0000

7.7

-CHANGE OR ENTER SITE ID AS NECESSARY; UP TO 9 ALPHANUMERIC CHARACTERS MAY BE USED
-CIRCLE FRACTIONS COLLECTED. ENTER DATE, TIME, FIELD DATA (IF REQUIRED), HAZARD CODES: I-tentrall C-composive R-deative T-tokic mast H-other acute marks; intering specifics if known
-PLEASE RETURN LOGSHEETS WITH SAMPLES TO ESE ZONE (7) 8 20NE 7,8 20NE 7,8 **ZONE 7,8 ZONE 7,8** ZONE 7,8 20NE/ 7/8 ZONE (1) 8 20NE 7,8 TIME 5/0/0x/0 51:01 88/ 01 (N)(V) (OP)(VP) W W (an' fin (an) W)(VP)(VP)(W VP VP VP W W dy dy dy W VP VP W W dy dy dy W VP VP W W VP VP W 3 * z z z z z SITE LETA HAZ? GT7-0A GT8-3 GT8QA GT7-2 GT7-3 GT8-4 BWT7-11 GT8-1 TE 9 : ? 7 7 . : .

147

RECEIVED BY (NAME/ORGANIZATION/DATE/TIME

THER FIELD NOTES FOR FIELD GROUP TYNDLS:

RELINGUISHED BY: (NAME/ORGANIZATION/DATE/TIME

THEFT CAMPUT TYNES TREATH OF SOME STANDARD TO SOME STANDARD TO SAME STANDARD AND STANDARD AND STANDARD AND STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOME STANDARD SOM COLEC MENSER SCHENG SCHOOL STORY IN THE FINAL COLEC

THER FIELD NOTES FOR FIELD GROUP TYNDIA:

RECEIVED BY (NAME/ORGANIZATION/DATE/TIME)

JOOC -

<b>1.10</b>	PROJECT NUMBER READS GOOD	<del></del>	1000		7.1 * IURA#		TANGET TO MARKET TO MINISTER AND AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PAR				:			•		
ă.	SITE, STA HAZ?	1727	FRAC	TIO	NS(	FRACTIONS(CIRCLE)	DATE	E E	TIME	PARAMETER LIST Z. G. 10, 11	1					
*5	GT6-2		Z	> 0	P V	W VP VP W				2 6,10,11		: !				
	6.76-3		z	ンつ	1	P VP VP W				2 6,10,11	_		i			
E	GT6-4		2	A) O	Ž,	HOPPORTH	^	3.1	BO	11,01,0 2 6,10,11	-		i i			
s.	GT6-5				?	N. VII. (VII.)		12/01	SHO	11.01.0 2 Sty						
9	GTOQA		2			ו גו גו א				: 6, TO, TY	2					
F	GT10-1		z	0	7 0	W W W W				2 6,10,11	-					
•	GT10-2		Z	7	2	W AV AV A				2 6, 10, 11	_					
6.	GT10-3		Z	2	2	W W W W				2 6,10,11	_					
01.	GT100A		Z	0	2	W do do d				2 6,10,11	_					
=	GT11-1		Z	>	7.	F VP VP W				: 6,10,11	-	<u>.</u>				
-12	GT11-2		z	>	٩	M dA dA d				2 6,10,11	-					
•13	GT11-3		Z	0	9	P VP VP W				2 6,10,11	-					
=	SWT11-1		z	0	9	P VP VP W				2 6, 10, 11	_					
13	SWT11-2		Z	0	70	VP VP VP W				2 6,10,11	-					
NOTE	-CHANGE OR E-CIRCLE FRAC-HAZARD CODE	ENTER CTION ES: I	SIT S CO S CO S CO	EFTS	TTED	NECESS. ENTER	OR ENTER SITE ID AS NECESSARY; UP TO 9 ALPHANUMERIC CHARACTERS MAY BE USED FRACTIONS COLLECTED. ENTER DATE, TIME, FIELD DATA (IF REQUIRED), HAZARD CODE AND NOTES CODES: I-IGHIAMIC C-COMMONIC R-GLACING T-10/10 MIST H-01/10 MIST H-01/10 MIST H-01/10 MIST SAMPLES TO ESE	FIE FIE	LPHANU CD DAT	HERIC CI	IARACTE SQUIRED SPECIFI	S IF MON	ARD CO	ED ANG	TON C	ES
1 1			1			1161111		1	111111		**************************************			1		1

P-21

OTHER FIELD NOTES FOR FIELD GROUP TYNDLA:

ENVI	ENVIRONMENTAL SCIENCE & ENGINEERING 09-30-86	SCIENCE R6449	S & EN	GIN	EERI	ING POTE	09-30	Z X	* * * * .	FIELD	*** FIELD LOGSHEET ***	**	FIE	* FIELD GROUP: TYNDL2	TYNDL2
				TX	TYNDL2	) } ~				) :		i			
SE	SITE/STA HAZ? GLH2-1	HA2?	FRACTIONS(	NO NO	S(C)	(CIRCLE) VP VP VP	E)	DATE		TIME	PARAMETER LIST ZONEZ	-			
.2	GLH2-2		0 Z	0	ΛP	AN AN A	VP				ZONEZ				
•3	GLH2-3		0	0	ΛÞ	Y VP VP	VP				ZONE2				
	GLH2-4		0 Z	0	A N	P VP VP	N.				ZONEZ				
S.	GLH2-7			X	(F)		(F)	(5)	22/01	1315	ZONE2				
9.	GLH2QA	<b>-</b>		X	X	X	×	(0)	22/0		ZONEZ				
4.1	GLH2-8			X				101	10/22	(230	SONE				
8/	GLH2-9		(A)	X	5	B		0)	22/0)	CIII	ZONE2	7			
6#	SWLHZ		0 2	0	A P	dh dh					ZONE2				
NOTE	-CHANGE OR -CIRCLE FR -HAZARD COI -PLEASE RE	OR ENTER FRACTIONS CODES: I-I	SITE IS COLL F-IGHTABLE	ដីក្តីភូស	CTED. EL	ENT	SSARY; ER DATI	UP TO E TIME, TOXIC WASTE	FIEL H-off	PHANUI DAT	MERIC CHAI A (IF REQUAYAND: IDENTIFY	NACTE	RS MAY BE	NECESSARY; UP TO 9 ALPHANUMERIC CHARACTERS MAY BE USED ENTER DATE, TIME, FIELD DATA (IF REQUIRED), HAZARD CODE AND NOTES IN B. REGING T. TONIC MASTER MOUTE MARKET TO ESE	NOTES

RELINQUISHED BY: (NAME/ORGANIZATION/DATE/TIME)

VIRONMENTAL SCIENCE & ENGINEERING 09-30-86 *** FIELD LOGSHEET *** FIELD GROUP: TYNDLE OJECT NUMBER 86449 0000 PROJECT NAME: TYNDALL AFB LAB COORD. DILNA HALE TYNDLE	FRACTI ED N	ED N O VP VP VP	ED N O VP VP VP	ED N O VP VP VP	ED N O VP VP VP	ED N O VP VP VP	ED N O VP VP VP	ED N O VP VP VP	ED N O VP VP VP	ED N O VP VP VP	(EDDINION WANTED 19/21 (310)	(ED) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	O VP VP VP	IN SITE ID AS NECESSARY; UP TO 9 ALPHANUMERIC CHARA SINS COLLECTED. ENTER DATE TIME FIELD DATA (IF REQUITIONING C-COMPOSIVE R-REACTIVE T-TOKIC MASTE H-OTHER ACUTE MAZARD; IDENTIFY ST LOGSHEETS WITH SAMPLES TO ESE	BY: (NAME/ORGANIZATION/DATE/TIME)	A ESE 10[21] 81, @ 1300 ( Defined Liver Fille) 10621, 1700			S FOR FIELD GROUP TYNDL6:
ICE & ENGIN		2	z	2	z	z	z	z	z	z		3			1	ESC		1 1 1 1 1 1	OR FIELD G
VIRONMENTAL SCIEN OJECT NUMBER 8644	SITE/STA HAZ? GT3-1	GT3-2	GT3-3	GT3-4	GT3-5	GT3-6	GT3-7	GT3QA	GT9-1	GT9-2	GT9-3	GT9-4	GT9QA	-CHANGE OR ENT -CIRCLE FRACTIC -HAZARD CODES: -PLEASE RETURN	RELINQUISHED BY	Honk Tordona			FIELD NOTES
VI Q	•-	7	m	-	<b>S</b>	9	1	ŵ	ق	ō	=	77	m.	2		_	7	_ا ۾	JER

THER FIELD NOTES FOR FIELD GROUP TYNDLS:

*** FIELD LOGSHEET *** FIELD GROUP: TYNDL6 DALL AFB LAB COORD. DILNA HALE	DATE TIME PARAMETER LIST	5.8.2 0111	5.7 11											Y; UP TO 9 ALPHANUMERIC CHARACTERS MAY BE USED ATE, TIME, FIELD DATA (IF REQUIRED), HAZARD CODE AND NOTES T-TOKIC MASTE H-OTHER ACUTE HAZARD; IDENTIFY SPECIFICS IF KNOWN S TO ESE	E) RECEIVED BY (NAME/ORGANIZATION/DATE/TIME)	
MERTAL SCIENCE & ENGINEEMING 09-30-86 *** FIEI NUMBER 86449 0000 PROJECT NAME: TYNDALL AFB	ED NO OF UP UP	ED NO O' VP VP VP	ED N. O VP VP VP	ED N O VP VP VP	ED N O VI VP VP	ED N O VI' VP VP	ED N O VP VP VP	ED N O VP VP	ED N O VP VP VP	ED N O VP VP VP	ED N O VP VP VP	ED N O VI VP VP	ED N O VI VP VP	TE ID AS NI ESSAR OLLECTED. ENTER D MALE C-CORRO NI R-REACTIVE HEETS WITH SAMPLE	(NAME/ORGANIZATION/DATE/TIME	
NESTAL SCIENCE & E NUMBER 86449 0000	TTP:/STA HAZ?	073-2	GT3-3	GF3-4	C'13-5	GT3-6	GT3-7	GragA	GT9-1	GT9-2	Cr9-3	C.F9-4	CDSQA	MUNICH	INCUISHED BY:	

ALL NOTES FOR FIELD GROUP TYNDLE:

DAMENTAL SCIENCE & ENGINEERING 09-30-86 *** FIELD LOGSHEET *** FIELD GROUP: TYNDL1 TYNDALL AFB LAB COORD. DILNA HALLA.  TYNDL1	DATE TIME PARAMETER LIST		52,2,1/	THANGE OR ENTER SITE ID A NECESSARY; UP TO 9 ALPHANUMERIC CHARACTERS MAY BE USED TECLE FRACTIONS COLLECTION. ENTER DATE, TIME, FIELD DATA (IP REQUIRED), HAZARD CODE HAZARD CODES: I-IGNITABLE C-COMPANIENT R-REACTIVE T-TOXIC MASHER ACUTE MASARO: DENTIFY SPECIFIES IF KNOWN PLEASE RETURN LOGSHEETS WITH SAMPLES TO ESE	/TIME) RECEIVED BY (NAME/ORGANIZATION/DATE/TIME)	5 @ 1800 to John Maxuell to famigion to ESE LAS	
NG 09-30-86	RCLE)			ENTER DATE URREACTIVE T-10K	ZATION/DATE	5 (2 180	2/8/
S & ENGINEERIN 0000 PRC TYNDE 1	FRACTIONS (CI	SS SS SV SV	SS SS SV SV	SITE ID A P. B. COLLECTION. GNITABLE C. COMPOSITE OGSHEETS WITH	(NAME/ORG -NI		
SHENTAL SCIENCE & EN	SUTE/STA HAZ? FRACTIONS (CIRCLE)	SOT11-2	S0T11-3	HANGE OR ENTER TECLE FRACTIONS HAZARD CODES: I	MINDUISHED BY: (NAME/ORGANIZATION/DATE/TIME)	L. C. A. C. A.	150 1 x 12

=- 1.7 m ==

HER FIELD NOTES FOR FIELD GROUP TYNDLI:

APPENDIX Q

LABORATORY QUALITY CONTROL DATA

FIELD GROUP TYNDALL - 1

NC.	
INEERING.	
AND ENGI	
SCIENCE	
I RONNENTAL	
₩ ¥	

GROUP TYNDL 1	4 10146	6 E) E	34 700	34900	34428
SAMPLE/BATCH REPORT FOR FIELD GROUP TYNDL 1	DATE: Ø1 MAR 1988	SAMPLE 10 PARAMETER NAME	TYNDL I * I HYDROCARBONS, PETROL	035 ° 07 ) 1	MOISTURE

SAMPLE 10	PARAMETER NAME	BATCH 8
TYBLIE	HYDROCARBONS PETROL	34 700
	LEAD SED	34900
	MOISTURE	34428
	VOLATILE ORGANICS(GCMS)	34449
TYMDL 142	HYDROCARBONS PETROL	34 700
	LEAD SED	34900
	BOISTON	34428
	VOLATILE ORGANICS(GCMS)	34449
TYMDA 14.3	HYDROCARBOMS PETROL	34 700
,	LEAD SED	35635
	Jan 1 Stow	34428
	VOLATILE ORGANICS(GCMS)	34449

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. QUALITY CONTROL SUMMARY FOR TYNDALL AFB - FIELD GROUP TYNDL1 DATE: Ø1 MAR 1988

				Repi	icate Analysis	Somple Summ	197 U	
MAME	UNITS	STORE 1 *METHOD	BATCH	SAMPLE	DATE	f OUND	R.P.D.	MAX & REPL DIFF
LE AD SED	UC/C-DRY	UG/G-DRY 1052*GFAA	35635	AP#COE 502#1	241 22 JAN 87 782.9731 0.0 20	782.9731	0.0	20
MOISTURE	TH T3MX	70320*1	35635	RP*MXML S* I	22 JAN 87	24.9	2.44	
			34428	RP+TYNDL I+3	21 OCT 86	6.2	6.67	

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. QUALITY CONTROL SUMMARY FOR TYNDALL AFB - FIELD GROUP TYNDL1 DATE: Ø1 MAR 1988

7

PAGE 2

DATE: 01 MAR 1988	1988											
•				Standerd Matr	IX Spike Recovi	ery and Repi	Licate Summ	Par u				
NAME	CNITS	STORET *METHOD	BATCH	SAMPLE	DATE	TARGET	LOUND	KREC	REC. CRIT.	ME T#BLA	R.P.D.	R.P.D. CRIT.
HYDROCARBONS PETROL	UC/C-DRY	UC/C-DRY 98233*1	34700	SP I *HOME * I	SPI=NOME=1 13 NOV 86 8200.0 16.1 92.70	6200.0	1.91	92.70	70.2 - 124.8	. 8639		20.00
HYDROCARBONS PETROL	UC/C-DRY	98233*1	34700	SP2*NONE * 1	13 NOV 86	8200.0	5.91	95.40	70.2 - 124.8	. 86 39		20.00
LEAD SED	UC/C-087	1052 #GF AA	34900	SPI * NOME * I	25 NOV 86	0.05	8.01	103.00	90 - 120	. 4583		20.00
•				SP2*NOME # 1		0.05	E	108.00	80 - 120	.4583	4.52	
			35635	SPI * NOME * I	22 JAN 87	0.05	9. 16	120.00	80 - 120	. 7519		
				SP2*NOME * I		0.05	6.63	130.00	80 - 120	. 7519	7.35	
				SP2=MOME =2		0.05	6.13	120.00	80 - 120	.7519	0.49	
				SP3=NOME=2		\$0.0	5.61	110.00	80 - 120	. 7519	9.35	

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. QUALITY CONTROL SUMMARY FOR TYNDALL AFB - FIELD GROUP TYNDL! DATE: Ø1 MAR 1988

DATE: DI MAR 1988	<b>Q</b>												
				Semple	Motrix Spike	Recovery Su	A Journ						
KANE	UNITS	STORE T#ME THOD	•	SAMPLE DATE	DATE	TARGE T	FOUND		REC. CRIT.	UNSPINED	R.P.D.	R.P.D. R.P.D. CRIT.	
HYDROCARBONS, PETROL	UG/C-DRY	UG/G-DRY 98233+1	34700	SPM=TYMDL 1=2	13 NOV 86	8225.0	692	3	119.32 70.2 - 124.8	8 258			l
LEAD, SED	UG/6-DRY	1052#GF AA	***	SPM#T TWDL 7#3	25 NOV 86	0+0	254	æ	80 - 120	97.8			
			35635	SPM*TYNDL I=3	22 JAN 87	0.05	6.77	117.61	80 - 120	0.52			
				SPH I #TYINDL I # 3	NOL 1*3 0.05 6.99 122.	0.05	6.99	122.45	80 - 120	0.52	3.20		

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. QUALITY CONTROL SUMMARY FOR TYNDALL AFB - FIELD GROUP TYNDL! DATE: Ø1 MAR 1988

Ī

					Method Blank	comple summary
MARK	STIME	STORET *NETHOD	BATCH	SAMPLE	DATE	FOUND
HYDROCABBONS, PETROL LEAD, SED	UG/G-DRY UG/G-DRY	98233#1 1052#GF AA	34700 34900 35635	MB-NONE #1 MB-NONE #1 MB-NONE #1 MB-NONE #1 MB2*NONE #1	13 NOV 86 25 NOV 86 22 JAN 87	13 MOV 86 . 86.39 25 MOV 86 . 4583 22 JAN 87 . 7519 .62.92

FIELD GROUP TYNDALL - 2

	<b>ENVIRONMENTAL</b>	ENTAL	SCI ENCE	3	ENGINE	ENGINEERING, INC.
	SAMPLE /	BATCH	( REPORT	FOR	FIELD	GROUP TYNDLE
	DATE: Ø1	TAR.	1988			
	SAMPLE 10	PARAMETER MANE	NAME.		}	BATCH #
	TYMDL 2" I	VOLATILE	WOLATILE HALOCARBONS(601)	(109		34825
		WOLATILE	WOLATILE AROMATICS (602)	<b>6</b>		34825
		HYDROCAL	HYDROCARBONS, PETRO			34552
		LEAD, TOTAL	¥			34894
	TYMDL 2+2	<b>VOLATILE</b>	WOLATILE HALOCARBONS(601)	(109		34825
		WOLATILE	WOLATILE AROMATICS (602)	€		34625
		HYDROCAS	HYDROCARBONS, PETRO			34552
		LE AD TOTAL	¥			34894
	TYMDL 2*3	WOLATHLE	WOLATILE HALOCARBONS(601)	(io9		34625
		VOLATILE	AROMATICS (602)	<b>2</b>		34625
		HYDROCAR	HYDROCARBONS, PETRO			34552
		LEAD, TOTAL	Z			34894
	TYMDL.2*4	WLATILE	WOLATILE HALOCARBOMS (601)	(109		34825
		WOLATILE	WOLATILE AROMATICS (602)	<u>چ</u>		34625
		HYDROCAS	HYDROCARBONS, PETRO			34552
		LEAD TOTAL	7			34553
	TYMDL2*5	WOLATILE	WOLATILE MALOCARBONS (60!)	(109		34825
		VOLATILE	MOLATILE ARONATICS (602)	(2		34825
		HYDROCAS	HYDROCARBONS, PETRO			34627
		LEAD, TOTAL	Z.			34894
	TYMDL 246	WOLATILE	WOLATILE HALOCARBONS(601)	(109		₹2
		WOLATILE	AROMATICS (602)	<b>?</b>		HA
		HYDROCAR	HYDROCARBONS, PETRO			34627
		LEAD, TOTAL	7			34894
	TYMDL2.7	VOLATILE	VOLATILE HALOCARBONS (601)	(109		34825
: .		VOLATILE	AROMATICS (602)	.′≃		34825
		HYDROCAR	HYDROCARBONS, PETRO			34627
,		LE AD , TOTAL	¥			34894
•	TYMDL2*8	WALATHLE	VOLATILE HALOCARBONS (601)	(109		34825
		VOLATILE	AROMATICS (602)	æ		34825
		HYDROCAR	HYDROCARBONS, PETRO			34627
		LE AD TOTA	*			34894
	1YMDL2*9	VOLATILE	WOLATILE HALOCARBONS (601)	(109		34625
		VOLATILE	ARONATICS (602)	2		34825
		HYDROCAR	HYDROCARBONS PETRO			34552
		LE AD TOTAL	<b>Z</b>			34894

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. QUALITY CONTROL SUMMARY FOR TYNDALL AIR FORCE BASE-FIELD GROUP TYNDLE

•	i			Repire	Replicate Analysis Sample Summary	Sompie Sun	7 .c.	
TATE OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERS	SLIS	STORE I "ME THOD	BATCH	SAMPLE	DATE	FOUND	Q. 9.	D. MAX & REPL DISE
HYDROCARBONS PETRO	MC/L	45501+1 34627	34627	RPI TYNDL 6 10 06 NOV 86	į	1642	90	20
HYDROCARBONS, PETPO	HC / L	45501*1	34627	RP2*TYNDL6*10 06 NOV 86		. 1642 0.0	0.0	2

	TYNDLE
	GROUP
	QUALITY CONTROL SUMMARY FOR TYNDALL AIR FORCE BASE-FIELD GROUP TYNDLE
ÿ	FORCE
۔ س	AIR
GINEERI	TWDALL
S S	E E
I ENCE A	SUMMARY
FINAL SC	CONTROL
ENT POS	QUALITY

QUALITY CONTROL	SUMMARY	SUMMARY FOR TYNDA	DALL	AIR FORCE	BASE-FIELD GROUP TYNDLE	26.0	Z.	S S				
KAR	STIMO	STORE T .ME THOD	BATCH	SAMPLE	Standard Marinx Spine Hecovery and Applicate Summery	TARGET	FOUND	2 EC	REC. CRIT.	#ET*BLK	9	R. P. D. CR11.
CARBON TETRACHLORIDE		32102*HA	34825	SP2*NONE *666	21 OCT 86	0.20	0.17	86.00	1	0		31.00
CARBON TETRACHLORIDE	1/90	32 102 HA	34825	SP 3*MONE *666	21 OCT 86	0.20	0.21	107.00	55 - 131	0		31.00
				SP4*NOME *666		0.20	0.21	104.00	,	0	0.0	
				SPS*NOME*666		0.20	0.17	85.00	,	0	21.05	
				SP6*MONE*666		0.20	91.0	91.00	,	9	15.38	
I I - DI CHLOROE THAME	1/30	34496*HA		SPI "MOME " 666		0.20	0.17	84.00	•	0		30.00
				SP2*HONE *666		0.20	0.17	67.00	121 - 65	9	0.0	
				SP 3*NOME *666		0.20	0.23	114.00	121 - 15	0	30.00	
				SP4*MOME = 666		0.20	0.21	107.00	•	0	21.05	
				SP5*MOME *666		0.20	0.19	92.50	121 - 15	o	= =	
				SP6*MOME *666		0.20	0.19	95.50	121 - 15	9	11.11	
1 2-DICHLOROETHAME	<b>1/3</b> 0	34531"HA		SP1*MOME = 666		0.20	6.13	82.50	1	9		27.00
				SP2*NOME *666		0.20	91.0	69.50	63 - 135	Þ	5.71	
				SP 3*NONE *666		0.20	0.23	116.00	63 - 135	0	30.1111	
				SP4*NONE *666		0.20	0.22	109.00	63 - 135	0	25.64	
				SP5*NON(*666		0.20	0.17	87.00	63 - 135	9	0.0	
				SP6*NOME*666		0.20	91.0	91.50	63 - 135	0	5.71	
I, I, I-TRICHL'ETHANE	1/30	34506*HA		3P I *NONE *666		0.20	91.0	68.50	53 - 125	٥		32.00
				SP2=WOME = 666		0.20	91.0	98.00	53 - 125	0	0.0	
				SP 3*NOM( *666		0.20	0.25	109.00	53 - 125	0	20.00	
				SP4=WOME = 666		0.20	0.23	115.00	53 - 125	٥	24.39	
				SP5*NOM! *666		0.20	81.0	90.06	53 - 125	0	0.0	
				SP6*MOM[ *666		0.20	0.20	101.00	53 - 125	0	10.53	
ETHYLBENZENE	<b>√</b> 9n	34371481		SP   **NOME   666		2.22	1.89	85.10	141 - 81	<b>a</b>		35.00
. (				SP2"NOME "666		2.22	1.89	95.10	48 - 144	0	0.0	
<b>)</b> –				SP 3*NOME *666		2.52	2.53	100.00	46 - 144	0		
				SP4*NONE *666		2.52	2.37	94.00	48 - 144	0	6.53	
3				SPS*NOME *666		2.22	1.87	84.20	18 - 144	0		
•				SP6 #NONE #666		2.22	1.60	81.10	48 - 144	0	3.81	
TOLUENE	1/3n	34010*PI		399 - 3NON- 1 dS		2.14	2.24	105.00	1	0		29.00
				SP2"NOME "666		2.14	2.24	105.00		0	ח'ת	
				SP3*NONE *666		2.44	2.49	102.00	59 - 135	0		
				SP4*MONE *666		2 44	2.25	92.20	59 - 135	0	10.13	
				SP5*NOME *666		2.5	~ . 	79.90	59 - 135	0 .	;	
	:			SP6*MOM! *666		71.7	<b>Z</b> ;	81.30 61.30	9	•	* .	9
HYDROCARBONS, PETRO	1/9E	1.0554	34225	SPIRONE S	30 OC 80	9,000.0	9 6	07.78	8.421 - 2.07	85/0	<b>y</b> c -	20.00
			244.33	I THOMAS AS	40 MOM 40	0.0020	3. 1	00.00			2	
			7065	SP20MOME 0		0.0028	1.5	00.701	70.2 - 124.8		1 17	
I CAD TOTAL	7/911	105 1 BCF AA	34553	SP 3+MOME + 1	50	20 00	5.6.3	108.00	120		•	20.00
	,		34894	SP - WOME # 2	25 NOV 86	50.00	57.1	103.00	•	3.3067		
				SP2*NONE * 1		20 00	59.3	108.00		3.3067	3.78	
				SP3*NOME * 1		20.00	58.2	105.00	021 - 08	3.3067	16.1	
				SP I # WONE # 2		20.00	4.19	112.00		3.3067	7.26	
				SP2*NONE*2		20.00	9.69	116.00		3.3067	10.77	
				SP I "NONE # 3		20.00	65.7	121.00	021 - 08	3.3067	14.01	
				SP 3*NONE * 3		20.00	59.3	00 80	80 - 120	3.3067	3.78	

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. QUALITY CONTROL SUMMARY FOR TYNDALL AIR FORCE BASE-FIELD GROUP TYNDLE

משרני במונים מתוששו נמו וואסירו		5		ביים ביים באמב ייזע הייל		֓֞֜֜֜֜֜֜֞֜֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	ביי ביי ביי ביי ביי ביי ביי ביי ביי ביי	ון נו				
•			,	a i dune s	Sample Matrix Spine Metovery Summary	Mecover # 3	F JOHET					
A A PA	SE-12	STORE 1 # HE 1 HOD	BATCH	SAMPLE	DATE	TARGE T	FOUND	KREC		CBIL	UNSPINED R.P.D.	R.P.D. CRIT.
CARBON TETRACHLORIDE	1/30	32102*HA 34825	34825	SPR2+TYNDL2+7	21 OCT 86	07.0	0.20	101	55	- - - - -		
CARBON TETRACHLORIDE	1/ <b>9</b> 0	32 102+HA	34825	SPM I . TYNDL 4	21 OCT 86	07.0	0.17	96.50	55	131	0.0	
				SPM 34 TYMDL 447		0.20	0 17	85.00	55	131	0.0	
1, 1-DICHLOROETHAME	1/3n	34496*HA		SPM2+TYMDL2+7		0.20	0.20	100.50	- 72	121	0.0	
				SPH I . TYMDL 4 . I		0.20	61.0	93.00	27	121	0.0	
				SPH3mTYMDL4m7		07.0	0.17	95.00	- 75	121	0.0	
1, 2-DICHLOROETHANE	7/ <b>3</b> 0	34531 * HA		SPM2+TYMDL2+7		0.20	0.23	115.50	63	135	0.0	
				SPRINTYMDL 4" I		07.0	0.20	102.00	- 69	135	0.0	
				SPR3+TYMDL4+7		0.20	61 0	94.50	. 63	135	0.0	
I, I, I-TRICHL'ETHANE	1/90	34506"HA		SPH2+TYMDL2+7		07.0	0 20	101.00	53	125	0.0	
				SPM I * TYNOL 4 * 1		07.0	0.20	99.00	53 -	125	0.0	
				SPR3+TYNDL4+7		07.0	0.47	83.00	53	125	0.0	
ETHYLBENZEME	1/3n	34.37 teP i		SPM2*TYMDL2*7		2.52	2.80	= '=	- 84	<del>=</del>	0.0	
				SPH 1 . TYMOL 4 . I		2.22	2.28	102.70	- 94	<del>=</del>	0.0	
				SPN 3aTYMDL 4a7		2.22	<b>5</b> 0 <b>2</b>	92.34	- 84	<del>-</del>	0.0	
TOLUEME	1/9n	34010*PI		SPM2=TYMDL2=7		2.44	2.45	100.41	- 65	135	U.Û	
				SPRINT TABLE		2 14	2.34	109.35	- 65		0.0	
				SPR3+TrMDL4+7		2.14	3 U6	96.26	- 65		0.0	
HYDROCARBONS, PETRO	1/ <b>3H</b>	45501*1	34552	SPM*TYNDL 2*9	30 OCT 86	8225.0	5.21	22.16	70.5	- 124.8	4.20	
LEAD, TOTAL	1/90	1051 #CF AA	34894	SPH*NYPSC 3* 3	25 NOV 86	20.00	0°95	114.07	- 08	_	0	
				SPM#PPPE - 3#3		100,00	126	114, 15	- 08	120	9.11	
				SPIN-SEMBI . 7		20.00	51.7	105.46	. 08	120	n	
				SPR«TYNDL 2*!		20.00	71.0	120.52	- 08		10.8	
				SPR-TYNDL 4-1		20.00	66.7	133,44	- 08	120	. 00002	
Q				SPMeTYMDL 4e 12		100.00	145	114.15	80		31.2	
<b>:-</b> ]				SPR-TYNDL4-4		20.00	12.1	131.28	90		6.46	
14		•		SPROTYNDL 6m 10		50.00	62.4	116.22	. 08	120	4.30	
1				SPR®TYNDL6®12		100.00	132	96.93	. 08	120	35.5	
				SPReTYNDL6#9		100.00	137	108.76	- 08	021	28.0	

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. QUALITY CONTROL SUMMARY FOR TYNDALL AIR FORCE BASE-FIELD GROUP TYNDLE Nethod Bight Sompte Summary

-

7

1

					Signature and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the	7
AME	SILE	STORE I .ME I HOD	٠!	SAMPLE	DATE	CONS
BROMODICHLOROMETHANE	799	32:01*HA	34825	MB . MONE . 666	21 OCT 86	0
BRUNOF ORM	1/90	32 104 mA	34825	RB-WOME -666	2) 001 86	0
BROMONE THANE	1/90	344 \ 3 P.HA		MB"NUME "666		0
CARBON TETRACHLORIDE	1/90	32 102"HA		MB - NOME - 666		0
CHLOROBE NZENE	7/9n	34 30 ! • HA		MB-WONE -666		Ð
CHLOROE THAME	1/90	34311"HA		HE-NOM -666		9
2-CHLOROETHYLVINYL ETHER	7.9n	34576*HA		MB*NCNE *666		D
CHLOROFORM	1/90	32106*HA		999" JNON-8H		0
CHLOROME THANE	7/9n	344 18 HA		HB.WOM 666		0
DI BROMOCHLOROME THANE	1/30	32 105 MA		48-NONE -666		9
DICHLOROBENZENE, TOT.	√3n	81524"HA		HB*NONE *666		5
DICHLORODIFLUORO METHANE	1/30	34668"HA		HB*NOME *666		o
1 - DICHLOROF THAME	UC/I	34496 * HA		MB*NONE *666		9
2-DICHLOROETHANE	1/30	34531"HA		999- 3NON-8H		3
1-DICHLOROE THYLEME	1/30	34501*HA		MB*NONE *666		0
TRANS-1 2-DICHLORO ETHENE	1/30	34546"HA		MB*NONE *666		0
2-DICHLOROPROPANE	1/9n	34.4 I*KA		MB*NONE *666		3
CIS-1, 3-DICHLORO PROPENE	1/90	34704*HA		HB*MOME *666		9
TRANS-1, 3-DICHLORO PROPENE	7/9n	34699*HA		999# JNON#8W		0
RETHYLENE CHLORIDE	1/90	34423"HA		<b>HB*NONE</b> *666		0
1, 2, 2-TETRACHLORO ETHANE	1/9n	34516*HA		MB*NONE *666		0
TE TRACHLOROE THEME	7/90	34475"HA		HB=WONE *666		n
1, 1-TRICHL'ETHANE	1/ <b>9</b> 0	34506*HA		999= JNON=84		Ð
1, 2-TRICH, 'ETHANE	1/90	34511*HA		MB=WOM[ =666		ກ
TRICHLOROETHENE	1/9n	39180*HA		MB=WOM[ =666		0
TRICHL'FLUOROMETHAME	1/90	34488"HA		999" 3NOM#8H		0
VINYL CHLORIDE	1/9n	39 I 75 MA		999. JNOM. 84		0
BENZENE	7/9n	34030*PI		999* JNON-8H		0
ETHYLBENZENE	1/90	34.37 InP !		MB*NONE *666		0
TOLUÉME	1/9n	34010*P1		MB*WONE *666		2
HYDROCARBONS, PETRO	N6/L	45501*1	34552	MB*WOME #1	30 OCT 86	0758
			34627	HB-NONE *!	98 AON 90	1055
LEAD, TOTAL	7/9n	1051*GFAA	34553	182 - NONE -	29 OCT 86	5.4589
			34894	HB I WOME " !	25 NOV 86	3.3067
				MB 1 mNOME "2		4 . 3828

5.4589

FIELD GROUP TYNDALL - 3

ENVI RON	ENVIRONMENTAL SCIENCE AND ENGINEERING, INC.	3	ENGINE	ERING.	Ž
SAMPLE /	SAMPLE / BATCH REPORT FOR	E E		GROUP	FIELD GROUP TYNDL3
DATE: Ø2	DATE: 02 MAR 1988				
SAMPLE ID	PARAMETER NAME			BATCH .	
TYND 34.1	VOLATILE HALOCARBONS	(109		34825	
	VOLATILE AROMATICS (602)	(2)		. 14825	
	PHENOLS (GC-604)			34367	
	ICAP METALS			35477	
	MERCURY			545 (1	
11 NOL 3+2	VOLATILE HALOCARBONS (601)	(109		146.5	
	VOLATILE AROMATICS(602)	5)		34625	
	PHENOES (GC-604)			14.367	
	ICAP METALS			35477	
	MERCURY			34563	
TIMOL 3" 3	VOLATILE HALOCARBUNS	(109		54825	
	VOLATILE ARGRATICS (602)	(2)		34825	
	PHENOLS (60-604)			14 36 7	
	ICAP METALS			15477	
	ME RC UR 1			34563	
TYNDE 344	VOLATILE HALOCARBONS(601)	(109		34625	
	VOLATILE AROMATICS(602)	( 2)		34825	
	PHENOLS (60-604)			34.56.7	
	LAP METALS			¥ Z	
	ME FC UF 1			Z Z	

	ELD FROUP TYNDL3
	FROUP
	QUALITY CONTROL SUMMARY FOR TYNDALL AIR FORCE BASE-FIELD
INC.	FORCE B
9	AIR
AGI NEERI	TYNDALL
ū	FOR
ENVIRONMENTAL SCIENCE AND ENGINEERING, INC.	SUMMARY
MENTAL SI	CONTROL
ENVI RON	QUALITY

				Standard Noti	Standard Nation Spike Recovery and Replicate Summary	ry and Repl	icate Summ	֓֞֞֞֜֞֜֞֜֞֜֞֜֞֜֞֜֞֜֜֜֞֜֜֞֜֜֞֜֜֜֜֜֞֜֜֜֜֜֜					
NAME	CRITS	STORE THRE THOD	D BATCH	SAMPLE	DATE	TARGET	LOUND	*REC	2	CR11	ME Tabla	R.P.D.	R.P.D. CRIT.
CARBON TETRACHLORIDE	۲ س	32 102*HA		SP2#NOME #666	21 OCT 86	0.20	0.17	96.00	٠	<u>=</u>	0	!	31.00
CARBON TETRACHLORIDE	790	32 102*HA	34825	SP3#MON# 666	21 OCT 86	0.20	0.23	107.00	. 55	<u>=</u>	5		31.00
				SP4#MOME#666		0.20	0.21	104.00	25	131	0	0.0	
				SPS#MONE*666		0.20	0 17	95.00	55	131	0	21.05	
				SP6 ************************************		0.20	91.0	91.00	SS	131	0	15.38	
1, 1-DICHLOROETHANE	1/3n	34496*HA		3P I #MOME + 666		0.20	0.17	84.00	23	121	ŋ		30.00
				SP2=WOME = 666		0.20	0.17	87.00	. 15	151	0	0.0	
				3P 3 ** 3MOM* & 666		0.20	0.23	114.00	. 15	121	ŋ	30.00	
				SP4=NONE =666		U.20	0.21	107.00	23	121	9	21.05	
				SPS NOME +666		0.20	61.0	92.50	23	121	0	=:-=	
				SP6 "MONE " 666		0 · 50	61.0	95.50	23	121	0	Ξ.Ξ	
1, 2-DICHLOROETHANE	79n	34531mHA		SP1#MONE#666		0.20	0.17	82.50	63	135	0		27.00
				SP2************************************		0.20	91.0	89.50	63	135	ŋ	5.71	
				SP 3************************************		0.20	u 23	116.00	. 63	135	0	30.00	
				SP4*MONE*666		0. 20 0	0.22	109.00	63	135	0	25.64	
				SPS-MOME -666		0∵50	0.17	87.00	63	135	0	0.0	
				SP6 *MONE *666		0.20	0.18	91.50	<b>63</b>	135	0	5.71	
F. J. I-TRICHL "ETHANE	۲ <b>)</b>	34506#HA		SPI "MONE" 666		0.20 5	9 9	88.50	S3	125	<b>.</b>		32.00
				SP2#MOME#666		0.20	8 .	88.00	S	125	0	0.0	
				SP 3 million ( * 666		0.20	0.22	00.601	S :	52	9	20.00	
				SP4 *MOME *666		02.0	0.23	20.5	S :	2	0	24.39	
				SPS=WOME =666		0.20 5	9 °	90.06	23	S :	0 0	0.0	
				SPORTED TO DE		0.70	0.70	00.10	?	<u>c</u> :	<b>&gt;</b> •	10.53	:
ETHYLBENZEME	V20	343/1eP1		SP I MONE +666		2 22	\$8°.	85.10	<b>2</b> 9	= :	o (	•	35.00
				SP2#MOME#666		2.22	68	95. 10	9 :	¥ :	0	0.0	
				SP 3*MOME *666		2.52	2.53	00.00	9	= :	<b>.</b>	,	
-20				SP4 ***OH* * 666		2 \$2	2.37	94.00	<b>9</b>	= ;	o (	6.53	
				SPS#WOME *666		27:7	<b>x</b> 0 :	07.48	<b>2</b> :	<u> </u>	<b>-</b> (		
	;			SPORTON - 666		2 22	080	01 18	<del>2</del> :	<b>:</b>	o (	3.81	3
TOU UP ME	770	34010*		SP I WOME - 666		<b>†</b> :	17.7	00.501	S	S :	0 (		29.00
				SP.Z*HUML *666		7	<b>5</b> 24	105.00	5	£ :	<b>o</b> .	0.0	
				SP Janone - 666		2.4	2.49	102.00	65 S	32	<b>o</b> :	3	
				CDS and Mark a 560		7	6.23	36.20		CF -	o e	5.0	
				SPS-MOME - 666			1	06.67	, ,	2 5	<b>.</b>	7.	
ON 3Hd . H1 3H - E - , 1H J - F	116.71	13065778	14167	SP J #MOME # 500	Au 1 100 115	* *	<b>₹</b> - 3	95 00	, ,	2 5	<b>.</b>	•	90
2-CHIOROPHENOI	7/20 7/20	34586#1		SP I * MONE * )		; =	3 %	00.5	•		<b>,</b> c		000
2 4-DICHLOROPHENOL	1/90	34601#11		SP F*MOME # 1		25.94	24	94.00		- 115.			0.0
2 4-DIMETHYLPHENOL	1/90	34606#f I		SP1*NON(*)		22.84	21	90.00		115	0		0.0
2,4-DINITROPHENOL	√90	34616# !		SP I *MOME * 1		7.33	5.1	69.00	- 82	128	ŋ		53.00
2-METHYL-4, 6-DINITROPHENOL	1/90	34657#f I		SPI*NOME * I		99.9	- · •	91.00	. 57	115	0		0.0
2-NITROPHENOL	√ 90	34591#F		SPINONE .		8.83	= 8	90.00	, S8	-15	0		0.0
4-NITROPHENOL	1/90	34646#F		SPI*NOM!		12 47	7.1	57.00	92	-12	0		0.0
PENIACHE OROPHENOL	۲ ، مور	3903246		SPISHONE #		61.77	<u>.</u>	9.00	ı	27.	0		34.00
THE NUCL	7/30	346346		Colemons .		25.01	6. C.	46.30			3.7203		7 · 00
ARSENIC TOTAL	7 × 95	1002#1CAP	15477	SPINONS A	CH NAI A	1000	36 10.26	10.00	0 0	200	• •		20.02
				SP2*NON[+1	•	0 0001	1040	104.00	. 08	150	o o	1.94	
				SP3*NONE *		0.0001	1030	103.00	- 18	120	0	0.98	
ANT I HONY, TOTAL	1/9n	1097#1CAP	36268	SPI ** NONE ** 1	24 NOV 86	500.00s	487	97.40	. 08	120	0		20.00
				SP2=NONE + I		500.00	504	101.00	- 08	120	0	3.43	
				SP3*NONE * ]		200.00	200	06 66	98	120	0	2.63	
	3			SP4*NOM! *!	:	500,00	50.1	100.00	08	921	0	2.83	3
BENTLIUM IOIAL	ر ا	1012*1CAP	35477	TA THOMAL AS	AN B	20 05	<del>ا</del> ا	72.20	6	<u>د</u> :	97	65.0	00.61
				SP2*NUNE * I		9 9	- c	00.001	6	<u> </u>	87.	20.0	
				3F 3-RUM("		20.00	. id	10.3.00	2	2	07.	20.	

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. QUALITY CONTROL SUMMARY FOR TYNDALL AIR FORCE BASE-FIELD FROUP TYNDL3

				Standard Matr	Standard Matrix Spike Recovery and Replicate Summary	ity and Rep!	icate Summ	7.6				
MAM	SILS	STORET *METHOD	BATCH	SAMPLE	DATE	TARGE T	FOUND	KREC	REC. CRIT.	Mf T+61 h	R.P.O.	R.P.D. CR17.
CADMIUM_TOTAL	۲ 33		36268	SPI+MONE	23 NOV 86	20.00	51.8	101.00	85 - 115	1.08		15.00
				SP2#NOME # (		50.00	52.4	103.00	85 - 115	80.1	51.	
				SP 3*NOME *!		20.00	52.5	103.00	85 - 115	1.08	1.34	
				SP4 *NOME * 1		50.00	53.5	105.00	85 - 115	80.1	3.23	
CHRONI UM, TOTAL	٦ ا	1034+1CAP		SP   *NOME *		200.00	198	99.20	80 - 120	5		20.00
				SP2*NOME = !		200,00	204	102.00	<b>8</b> 0 - 120	3	2.99	
				SP 3*MOM[ *!		200.00	201	100.00	90 - 150	0	1.50	
				SP4=NOME=1		200.00	206	103.00	80 - 120	9	3.96	
COPPER, TOTAL	7/9A	1042+1CAP		SP I * NOME * 1		250.00	247	98.60	95 - 115	ŋ		15.00
				SP2*NOME * I		250.00	249	99.50	85 - 115	3	1810	
				SP3+MOME+1		250.00	248	99.30	85 - 115	• •	0.40	
				SP4*MOME * 1		250.00	253	90.101	85 - 115	. 5	2.40	
LEAD, TOTAL	7/9n	1051 * ICAP		SP I *MOME * I		\$00.00	125	104.00	80 - 120	9		20.00
				SP2*#OME *!		500.00	531	106.00	60 - 120	9	1.90	
				SP3#MOME#!		500.00	24	109.00	но - 120	0	4.32	
				SP4*MOME*I		500.00	549	110.00	80 - 12n	9	5.23	
NICKEL, TOTAL	7/9n	1067#1CAP		SP1*MOME #1		200 00	524	103.00	80 - 120	9.73		20.00
				SP2*MOME*1		500.00	546	107.00	HQ - 150	9.73	1.1	
				SP3*NOME *1		500.00	526	103.00	021 - 0R	9.73	0.38	
				CP4*NOME # 1		500.00	542	107.00	80 - 120	9.73	3.38	
S 11 VER, TOTAL	1/9n	1077*1CAP		SP I * NOME * I		100.00	99.2	98.50		.67		20.00
				SP2*MOME * 1		100.00	101	100.00	011 - 02	.67	08.1	
				SP3*HOME # 1		00 001	101	101.00	,	.67	1.80	
				SP4*NOME		100.00	101	106.00	70 - 110	.67	7.57	
SELENIUM, TOTAL	1/9n	1147*ICAP		SPI*NOME * I		1000.0	1060	103.00		26.46		20.00
				SP2=NOME = 1		0.0001	1080	105.00		26.46	1.87	
				SP3*NOM( = )		0.0001	1060	103.00	,	26.46	0.0	
				SP4=NONE 4:		0 0001	1060	104.00		26.46	0.0	
THALL IUM, TOTAL	1/90	1059#1CAP		SP1*NOME * 1		10000	9790	97.90	80 - 120	o		20.00
				SP2#MOME#1		10000	0186	98.10	90 - 150	0	0.20	
				SP3*NOME # I		10000	9780	97.80	80 - 120	0	01.0	
				SP4*NOME # 1		10000	10200	102.00	90 - 120	<b>ɔ</b>	4.10	
ZINC, TOTAL	1/90	1092*1CAP		SP1*NOME * 1		90.005	519	102.00	85 - 115	6.67		15.00
				SP2*NONE # !		200 000	535	106.00	85 - 115	19.9	3.04	
				SP3#NOME#1		200 00	539	106.00	85 - 115	6.67	3.78	
				SP4*NOME*!		50u.00	548	108.00	85 - 115	19.9	5.44	
MERCURY, TOTAL	1/30	71900#CVAA	34583	SP2*HOME #2	30 OCT 86	5.00	4.86	97.20	80 - 120	. 3456		20.00
				SP3*NONE #2		9.00	4.79	95.90	80 - 120	.3456	1.45	
Q												

Q-21

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC.
QUALITY CONTROL SUMMARY FOR TYNDALL AIR FORCE BASE-FIELD FROUP TYNDLS
SAMBLE HALLY SOLIVE RECOVERY SUMMARY

1					Matrix Spik	Sample Matrix Spike Recovery Summary	Same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same o	9	Š		1	<i>a</i>	4
CADBOM TETBACH: OBIOC	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3210244A	14025	Compa in 247	21 OCT OK	2020	2000	101	1		1	1	H. T. D. CH.
TO THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF	3	W11 - 301 35	2000	1 7 701 1 711 15		2		2	; ;	5 :	: ;		
CARBON IL INACHICALDE	7/29	70175	2485	SPRINGLANDS	21 00 1 86	07.0	<u> </u>	96.50		13.	3 C		
				SFR 5=   TMOL 4= /		0.0	- ; - ;	93.00	C	6	0.0		
I I - DI CHLOROE THANE	730	VH-96++5		SPM2*IYMDL2*/		0.20	07.0	00 20	·	121	o. O		
				SPH I . TYMDL 4 . I		0.20	<u>د</u> .	93.00	21	121	0.0		
				SPM 3= TYMDL 4=7		0.20	<u> </u>	82.00	27	151	<b>0</b> .0		
1, 2-DICHLOROETHAME	7 <b>20</b>	34531#HA		SPM2"TYMDL2"7		0.20	0.23	115,50	63	135	0.0		
				SPM I # TYMDL 4 #		0.20	0.20	102.00	63	135	0.0		
				SPM3"TYMDL 4"7		0.20	0. <b>19</b>	94 . 50	63	135	<b>3</b> .0		
1, 1, 1-TRICHL'ETHANE	7/9n	34 506 "HA		SPR2+TYMDL2+7		07.0	0.20	101.00	2	125	0.0		
				SPM In TYMDL 4" I		07.0	0.20	99.00	53	125	0.0		
				SPR3-TYMDL4+7		0.20	0.17	83.00	53	125	0.0		
E THYLBENZEME	√9n	343714PI		SPR2+TYMDL2+7		2 52	2.80	= · · ·	48	<u>=</u>	0.0		
				SPRINTYMDL 4		27.7	2.28	102.70	48	<del>=</del>	0.0		
				SPM3"TYMDL4"?		2.22	2 05	92.34	48	<u> </u>	0.0		
TOLUENE	<b>1/9</b> 1	34010*P!		SPM2+fYMDL2#7		2.44	2.45	100.41	- 65	135	0.0		
				SPH I . TYMDL 4 . 1		2.14	2.34	109.35	- 65	135	0.0		
				SPM3+TYMDL4+7		2.14	5.06	96.26	- 65	135	0.0		
4-CHL"-3-NETH'PHENOL	<b>1/30</b>	34452*F1	34367	SPN«TYMDL 3« I	20 OCT 86	34.41	35	99.81	39	<u>-</u> 0	0.38		
2-CHLOROPHENOL	√2/n	13+0 H		SPReTYNDL 3*)		30, 17	52	83.97	74.9		90.0		
2 4-DICHLOROPHENOL	1/30	34601"F!		SPM+TYNOL 3+1		25.94	25	97.08	74.9		0.23		
2 4-DIRETHYLPHENOL	1/90	34606=F		SPH*TYNOL3*!		22.84	61	84.07	. 85		0.1		
2 4-DINITROPHENOL	1/90	34616-71		SPHOT YND. 34		7.33	9.7	125.00	<b>58</b>	128	0.55		
2-METHYL-4 6-DINITROPHENOL	1/90	34657*F		SPH*ITHDL 3*1		99.9	7.3	68.96	75	-115	0.84		
2-NITROPHEROL	1/90	34591861		SPM*TYMDL 3*!		8.83	\$	93.00	85	-15	0.32		
4-N1T80PM MO	1/9n	34646*F (		SPReT YNDL 34		12.47	7.5	51.59	98	115	; -		
PENTACH DROPHEMOI	1/90	14035		SPReTYMD: 3*1		22.19	73	98.92	84	122	0.55		
	1/90	34694F		SPN-TYNDL 34 J		65.84	-3110	52.36	33	16	. 0		
O A A. TOLOTH PHENO	1, 21	34621061		SPHIST YMDE 34 /		25.	7	63 86	÷	120	0.20		
ARSTMIC TOTAL	7 25	100241649	15477	SPIN-TYMDI 3* I	14 JAN 87	0 0001	: E	102 71	90	120	86.4		
	•	•		SPH"T TNOL 3" 3		963.36	1230	107.03	. 08	120	203		
				SPN+TYNDL S+ I		1000.0	1000	99.71	. 08	120	5.06		
				SPROTYMDL 5*4		963.36	1030	105.83	90	120	9.00		
ANTI HONY, TOTAL	1/9n	1097*1CAP	36268	SPM-TYNDL5#9		500.00	515	103.01	Ş	120	0.0		
BERYLL IUM, TOTAL	√9n	1012*1CAP	35477	SPM+TYNDL 3+1	14 JAN 87	20.00	44.3	61.42	- 88	<u>~</u>	13.6		
				SPM+TYNDL 3#3		823.68	956	111.96	95	511	0		
				SPM*TYNOLS*;		20.00	52.0	87.20	88	-12	8.37		
				SPH+TYNDL 5*4		853.68	935	109.52	- 88	-15	0		
CADMIUM, TOTAL	1/90	1027#ICAP	36268	SPH#1 YMDL 5#9	53 NOV 86	<b>20.00</b>	52.9	105.70	98		0.0		
CHROMIUM, TOTAL	1/30	1034*ICAP		SPM=TYNDL5#9		200.00	200	99.75	8	120	0.03		
COPPER, TOTAL	<b>1∕9</b> 0	1042#1CAP		SPM*TYMDL5*9		250.00	152	96.76	82	115	1.12		
LEAD, TOTAL	1/ <b>9</b> 0	1051#1CAP		SPM*? YNDL 5*9		500.00	535	107.06	09	120	0.0		
NICKEL, TOTAL	7/9n	1067*1CAP		SPM-TYNDL 5+9		200.00	544	106.80	. 08	120	10.3		
SILVER, TOTAL	7/9n	1077*ICAP		SPM*TYNDL5*9		100.00	105	102.86	. 02	91-	2.17		
SELENIUM, TOTAL	7'9n	1147*ICAP	,	SPM+TYNDL5+9		0.0001	92 = 2	106.20	80	120	43.3		
THALL I UM, TOTAL	7/9n	1059*1CAP		SPM*TYMDL5"9		10000	9860	97.98	08	120	9.19		
ZINC, TOTAL	1/3n	1092*1CAP		SPM+TYNDL549		90.005	541	106.13	- 98	115	1.01		
MERCURY, TOTAL	7/3n	71900"CVAA	34583	SPM*NYPSC4*1	30 001 86	5.00	4.52	95.78	9	02 :	0		
			•	SPH*PAN SN*)		9.00	5.27	109.47	8	120	0		

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. QUALITY CONTROL SUMMARY FOR TYNDALL AIR FORCE BASE-FIELD FROUP TYNDL3

I

-

ĭ	2	Cour mer Poors		d	Method Blank Sample Summary	Towns you	ole Summary	
BRONDO ICHE ORONE THANE	7/90	32 10 1*HA	34825	999* MON#BM	2) OCT 86		ON COL	
BROMOFORM	1/90	32 104 "HA	34825	999" MON" BN	21 OCT 8			
BRONOME THAME	1/9n	34413*HA		MB*NOM *666		5		
CARBON TETRACHLORIDE	7/9n	32 102"HA		MB*NOME *666		0		
CHLOROBE NZENE	7/9n	34 30 I * HA		NB=NOME *666		9		
	nc/1	34311"HA		NB*NOME =666		Э		
2-CHLOROETHYLVINYL ETHER	ار اور/	34576"HA		MB*MOME =666		0		
CHLOROPORM	ر ا	32 106 # HA		MB*MOME *666		9 9		
CALCACAE FRANK	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	37105*HA		MR*MOM *666		<b>&gt;</b> =		
DICHLOROBE MZEME TOT.	1/90	81524"HA		NB=NOME *666		9		
DICHLORODIFL UORO ME THANE	1/90	34668*HA		MB=NOME=666		)		
	√3n	34496"HA		MB*NOME #666		0		
1, 2-DICHLOROETHAME	N6/1	34531*HA		MB-NOME -666		0		
<b>¥</b>	۲) اور	34501*HA		MB*MOME #666		<b>ɔ</b> :		
TRANS-1, 2-DICHLORO ETHENE	7 5	34546ªHA		MB*MOME =666		<b>.</b>		
	- - -	3434 I BHA		HE WOME SORE		<b>-</b> :		
TRANC-1 3-DICHEOMO PROFESS	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	34 / U4*HA		MR WOM SAGE				
	1 × 95	34423#HA		999 MON-8H		) J		
1 1 2 2 IL TRACHEORO ETHANE	1/30	34516"HA		MB*NOME *666		) >		
TE TRACHL PROF THENE	1/ <b>9</b> n	34475"HA		399# 300M#8H		0		
I, I, I-TRICHL 'ETHAME	1/90	34 506 * HA		999 # JMONE #846		2		
1. 1. 2-TRICH, 'ETHANE	1/90	34511"HA		M8=MOME #666		Э,		
TRICHLOROETHENE	1/3n	39 IBO*HA		MB WOME + 666		<b>3</b> 3		
INTERFERENCE IN AND THE PROPERTY OF THE PARTY  \ 3 3	20175esa		MR WOM SAFA	•	<b>&gt;</b> =			
BE NZ C NE	7/36	34030*P1		MB*MOM *666		3		
ETHYLBENZENE	1/90	34.37 1*P.		MB=NOM =666		. 3		
TOLUENE	ソツ	34010*P1		MB=NOME =666		n		
-CHI 3-RETH PHENOL	1/3n	34452*F	14 36 7	MB = MOME = 1	ZO OC1 B	0 98		
2-CHLOROPHE NOL	730	34586*F)		TIES MON SELECTION		3 3		
A DICKLORUPHENOL	۲ × ۱	34001=1		MIR PACING B		5 5		
2 4-DINITROPHENOL	735	34616*F1		MB*NOWE * I		9 9		
2-NE THYL -4, 6-DINITROPHENOL	<b>1/30</b>	34657=f I		HB = HOHE = 1		3		
2-NITROPHENOL	1/30	34591•f1		MB=MOME = I		<b>¬</b>		
4-NITROPHENOL	۲ اور	34646=F		#BHOM#BH		<b>3</b> (		
PENTACHEOROPHENOL	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	39032*1				<b>-</b>	U 3 9265	
A 6-TRICH PHEMO	1 - S	34621061		HB MOME BY		• =	507/	
ARSENIC, TOTAL	1/30	1002#1CAP	35477	MB*NOME * I	14 JAN 87			
	:		•	MB*WOME #2			R/ 2	
ANT I MONY, TOTAL	ر 1	1097*1CAP	36268	MB MOM *	23 NOV B6	 -		
BERYLLIUM, TOTAL	1/90	1012*1CAP	35477	MB*NOME 4	14 JAN B	18	. 28	
				MB+NOME +2		_		
CADMIUM, TOTAL	1/9n	1027*1CAP	16268	MB*NOME = !	23 NOV 8	9,8	1.08 H6	
CHROMIUM_TOTAL	1/90	1034*1CAP		MB*NONE *!		=		
	ş	94.7140		MB*NOME *2		<b>3</b> 3		
COPPER, TOTAL	1/10	1047-1081		MB*NONE #2		<b>5</b>		
LEAD, TOTA:	1/90	1051+1CAP		HB*NON( * 1		0	:	
	3	047146301		N-N-SH		~ ∘	20.57	
MICKEL, TOTAL	1/30	106/*)CAP		IIQ. MONE. I		•	. / 3	
(								

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC.

QUALITY CONTROL SUMMARY FOR TYNDALL AIR FORCE BASE-FIELD FROUP TYNDLS

Rethod Blank Sample Summary

NAME SILVER, TOTAL SELENIUM, TOTAL		UNITS STORETHNETHOD BATCH UG/L 1077*1CAP UG/L 1147*1CAP	ватсн	SAMPLE 18-WOME = 2 NB-WOME = 1 NB-WOME = 1 MB-WOME = 1	67 67 67 67 67 67 67 67 67 67 67 67 67 6	FOUND 0 67 16 26.46 41.15
THALL IUM, TOTAL	1/9n	1059*1CAP		NB=NONE = 1 NB=NONE = 2 NB=NONE = 1		9.0
ZINC, TOTAL MERCURY, TOTAL	7/95 REV	71900°C.nA	34583	MB*NOME *2 MB I *NOME * 1 MB 2*MOME * 2	30 OCT 86	# # <del>*</del>

١

- -

FIELD GROUP TYNDALL - 4

<b>ENVIRONMENTAL</b>	ENTAL SCIENCE AND	ENGINEERING, INC.
SAMPLE /	BATCH REPORT FOR	FIELD GROUP TYNDL
DATE: Ø1	MAR 1988	
SAMPLE 10	PARAMETER MANE	BATCH 6
TYMOLAS	VOLATILE ARONATICS (602)	34.025
	VOLATILE HALOCARBONS(601)	34825
	PMEMOLS (CC-604)	3524
	LEAD TOTAL	34694
TYNDL4#2	VOLATILE AROMATICS(602)	34825
	VOLATILE HALOCARBONS(601)	34825
	PHEMOLS (6C-604)	35241
	HYDROCARBONS, PETRO	34552
	LEAD, TOTAL	160 TE
17MDL 4*3	VOLATILE ARONATICS(602)	34.825
	VOLATILE HALOCARBONS(601)	34825
	CALMULS (GC-004)	19765
	I SAD TOTAL	34 P. C.
1 Y MD ( 4 * 4	VOLATILE ARONATICS (602)	34.025
	VOLATILE HALOCARBONS(601)	34825
	PHENOLS (6C-604)	35897
	HYDROCARBONS PETRO	34627
	LE AD, TOTAL	34894
TYMDL4+5		34825
	VOLATILE HALOCARBONS (601)	34825
	PHE BOL S (CC - 604)	15066
	HTUKUL AKBOMS, PLINO	34627
Transfer 4 a.k.	VOLATILE ABOMATICE (ACC)	760 FG
O- LINE	NO. ATTAC MAN OCABBONS AND	
	PHÉMICS (CC-604)	
•	HYDROCARBOMS PETRO	34627
	LEAD TOTAL	34894
TYMDL4"7	VOLATILE ARONATICS(602)	34825
	VOLATILE "ALOCARRONS(601)	34825
	PHEMOLS (GC-604)	35897
	HYDROCARBONS PETRO	34627
	LEAD, TOTAL	34894
TrN0(4*8	VOLATILE ARONATICS(6U2)	34825
	VOLATILE HALCCARBONS(601)	34825
	PHI MOL S (GC-604)	3585/
	i f ab ToTal	34894
1 y ND1 4 * 9	VOLATILE ARCHATICS (6/12)	34825
	VOLATILE HALOCARBONS (601)	34825
		35897
	HYDROCARBONS, PETRO	34627
	LEAD, TOTAL	34894
17MDL4*10		34625
	VOLAFILE HALOCARBONS(601)	34825
	PHEMOLS (GC-604)	35897.
	HYDROCARBONS, PETRO	34627
		34894
1 AND THE	VOLATILE ARUMATICS(6UZ)	579.45

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. SAMPLE / BATCH REPORT FOR FIELD GROUP TYNDLADATE: 0) MAR 1988

47		
2 11 12	FARANCE NAME	BAICH
TYRE	VOLATILE HALOCARBONS (601)	34825
	PHENOLS (6C-604)	35897
	HYDROCARBONS, PETRO	34627
	LEAD, TOTAL	34894
TYNDL 4#12	VOLATILE AROMATICS(602)	34825
	VOLATILE HALOCARBONS (601)	34625
	PHENOLS (6C-604)	35897
	HYDROCARBONS PETRO	34627
	LEAD, TOTAL	34894
TYMDL 4.13	WOLATTLE ARONATICS(602)	34825
	VOLATILE HALOCARBONS(601)	34825
	PHENOLS (GC-604)	35897
	HYDROCARBONS, PETRO	34627
	LE AD TOTAL	34894
TYMDL 4 = 14	VOLATILE AROMATICS(602)	34825
	VOLATILE HALOCARBONS (601)	34825
	PHENOLS (6C-604)	35241
	HYDROCARBONS, PETRO	34552
	LE AD_TOTAL	34894
17MDL4=15	WOLATILE AROMATICS(602)	34825
	WOLATILE HALOCARBONS (601)	34825
	PHEMOL S (CC - 604)	35241
	HYDROCARBONS, PETRO	34552
	16 AD 101AL	34894

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. QUALITY CONTROL SUMMARY FOR TYNDALL AIR FORCE BASE-FIELD GROUP TYNDL4

į

-----

•				Repla	Replicate Analysis Sample Summary	Sample Sum	mar y	
NAME	CNITS	STORE TOME THOD	BATCH	SAMPLE	DATE	FOUND	FOUND R.P.D.	MAX & REPL DIFF
HYDROCARBONS, PETRO	MG /L	4550141 34627	34627	RPI-TYNDL6-10 06 NOV 86	06 NOV 86	. 1642	30 90	20
HYDROCARBONS, PETRO	1/9H	12201-1	34627	RP2*TYNDL6*10 06 NOV 86	06 NOV 86	. 1642	0.0	

į

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC.	3ASE-FIELD GROUP TYNDL4
INC.	FORCE
2	AIR
GINEERI	TANDAL
	×
I ENCE	SIMMARY
STAL SC	
HONE	יו דע כנ
ENT	<b>V</b>

		:		Standard Matrix Spike Recovery and Replicate Summary	x Spike Keck	over y and Rep	LICOTE SUMM	. ñ				
HAME	UNITS	STURE THRE THOD	D BATCH	SAMP! E	DATE	IARGET	CUMD	XREC	REC. CRIT.	METHBLA	R. P. D.	R.P.D. CRIT.
CARBON TETRACHLORIDE	1/:00	32102*HA		SP2*NOME *666	21 001 86	0.20	0.17	96.00	55 - 131	0		31.00
CARBON TETRACHLORIDE	1/90	32 102 "HA		SP 3*NONE *666	21 OCT 86	0.20	0.23	107.00	55 - 131	ŋ		31.00
				SP4*NONE *666		0.20	0.21	104 00	55 - 131	Ð	0.0	
				SP5************************************		0.20	21.0	00 58		. =	21.05	
				SP6=NOME = 666		0.20	81.0	91 00	-	=	15.38	
1 - DICHLOROETHANE	1/90	34496*HA		SP 1 *NOME : 666		0.20	0 17	84.00	٠	. ၁	•	30.00
				SP2*NOME *666		0.20	0.17	87.00	-	- 3	: :	
				399+ NON+E 4S		0.20	0.23	114 00	,	3	30,00	
				SP4=NONE = 666		0.20	0.21	107.00	57 - 121	٥	21.05	
				SPS-NONE -666		0.20	61.0	92.50	1	o	= =	
				SP6*NOME *666		07.0	61.0	95.50	1	ŋ	= - =	
1, 2-DICHLOROETHANE	1/9n	34531 ** HA		SP 1 ***********************************		0.20	0 17	82.50		n		27.00
				SP2*NOME*666		0.20	0° 18	89.50	ī	ŋ	5.71	
				SP 3*NOM! #666		0.20	0.23	116.00	,	o,	30.00	
				SP4*NOM: •666		0.20	0.22	109.00	_	0	25.64	
				SP5*NOME *666		0.20	0.17	87.00	ı	0	0.0	
				SP6*NOME *666		07.0		91.50	7	0	5.71	
I. I. I-TRICHL'ETHANE	1/90	34506*HA		SP   #MOME #666		0.20		88.50	7	0		32.00
				SP2*NOME = 666		07.0	0° +8	98.00	7	0	n. o	
				SP 3*NONE *666		0.20	0.22	00 601	7	<b>o</b>	20.00	
				SP4=NOME =666		0.20	0.23	115.00	-	<b>3</b>	24.39	
				SP5#NOM[ #666		0.20	9 : ၁	00.06	- '	9	ت ت ت	
	,			SP6*NOME*666		U.20	0.20	00 101		<b>.</b>	10.53	4
ETHYLBENZEME	1/90	34371*6		SP 1*NOME *666		2.22	68.	85.10		<b>ɔ</b> :	:	35.00
				SP.2*NUME *555		77.7	. 63	01.50		<b>-</b> :	=. =	
				SPANOME 4666		75.7	2.53	100.00		<b>)</b> (		
Q				SP4 HUME #666		۶۲۰۶ در د	1 97	94.00	1 2 4	<b>)</b>	6.33	
<b>!-</b> :				SPARMONE 4666		2 22	00	07:18	,	. =	- <del>-</del> <del>-</del> <del>-</del> <del>-</del>	
30	1/30	14010F		SP 1 * MONE * 666		27:7	2.24	105 00	,	) =		29.00
	ì			SP2*NOME *666		2.14	2.24	105.00	•	, ,	0.0	
				SP3*NOME *666		2.44	2 49	102.00	59 - 135	0		
				SP4*NONE *666		2.44	2.25	92.20		0	10, 13	
				SP5"NOME "666		2.14	1.7.1	79.90	•	0		
				SP6*NOWE *666		2.14	1.74	81.30	,	0	1.74	
4-CHL 1-3-METH PHENOL	U6/1	34452#f 1	15241	SPI-NOME * I	04 NOV 86	34.4	23	00.79	ı	0	•	41.00
				SP2*NOWS SP	1	<b>4</b> **	1.7	93.00	101 , 65	<b>.</b>	9.09	
			1263	CP 20M(ME a )	00 404 00	¥.¥	2 0	90. 45	101 - 65	<b>.</b>	37 50	•
2 - CHI OBOPHENO	116.71	14586+51	35243	SPI-MONE 4	04 NOV 86	30.17	. 9	53.00	0	0	) )	0.0
	• •			SP2*WOME # 1	:	30.17	5	54.00	ا ج	0	0.0	•
			15897	SPI-NONE + I	06 NOV BE	30, 17	Ξ	35.00	74.9 - 115.1	0		
				SP2«NOME» I		30, 17	-2	26.00	1	0	42.86	
2,4-DICHLOROPHENOL	1/90	34601#F1	35241	SP (*NOME * )	04 NOV 86	25.94	2 :	00.09	١	0	,	0.0
				SP2"NONE * 1		25.94	<u>s</u> :	26.00	t	<b>o</b> (	o. O	
			35897	SP I #NONE # I	06 NOV 86	25.94	oo .	34.00	74.9 - 115.1	0 0	7 37	
				SPCMS/S		23.94	- 0	00 00	1.611 - 7.47	<b>,</b>	0.0	0
Z, 4 - DINLIHYLPHENOL	٧٠/١	34000	19755	SP I WOME	OF MON BO	70 CC	) C	53 00		<b>&gt;</b> =	31 88	9.
			35.007	I BUON TAS	0.6 MOV 9.6	22 84	- - -	90 65		o c		
			) <b>6</b> 9 C F	CE SHOME OF	è	78 CC	3. ~	57.00		<b>,</b>	9E 9E	
2 4 - 0 1 M   TOO BUT   M   C	7 31	13641446	18241	I SMUNE OS	AH WOW AN	7 23		00:10	,	o	2	53.00
A. A. DINITIAN PROPERTY.	1/00		1 275	SP2*NONE * 1	2	7.33	5.6	39.00		0	18.75	
			35897	SP I * NOME * I	98 AON 90	7,33	5.7	77.00	ı	. 0		
			•	SP2*NONE * 1		7.33	3.9	53.00	28 - 128	0	37.50	
2-ME THYL -4, 6-DINITROPHENOL	1/90	34657*F1	35241	SPI*NONE * I	04 NOV 86	99.9	9.6	59.00	75 - 115	0		0.0

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. QUALITY CONTROL SUMMARY FOR TYNDALL AIR FORCE BASE-FIELD GROUP TYNDLA

1

	5		į	Standard Matr	Standard Matrix Solke Recovery and Replicate Summary	Line Replie						
MARE	STINO	STORE THE THOD	BATCH	SAMPLE	DATE	TARGET	FOUND	SREC SREC	REC. CRIT.	MET*BLN	R.P.D.	R.P.D. CRIT.
				SP2*NOME * 1		99.9	2.5	37.00	75 - 115	0	43.75	
			35897	SPINNONE + 1	06 NOV 86	99.9	4.2	62.00	75 - 115	0		
				SP2*NOME * 1		99.9	3.7	55.00	75 - 115	o	12.66	
2-NITROPHENOL	7/9n	34591°F?	35241	SPI#NONE#1	04 NOV 86	8.83	5.2	29.00	85 - 115	0		0.0
				SP2*NONE * 1		8.83	6.4	55.00	85 - 115	9	5 94	
			35897	SPI *NONE * 1	06 NOV 86	8.83	<b>₹</b> .5	51.00	85 - 115	0		
				SP2*NONE*1		8.83	4.7	53.00	85 - 115	o	5	
4-NITROPHENDL	7/9n	34646*f !	35241	SPI *NON* I dS	04 NOV 86	12.47	3.4	27.00	95 - 115	o		0.0
				SP2*NOME * )		12.47	J. I	24.00	85 - 115	n	9.23	
		*	35897	SP!*NONE*1	06 NOV 86	12.47	9.8	00.69	85 - 115	0		
				SP2*NONE * 1		12.47	3.3	26.00	85 - 115	9	89. uk	
PENTACHLOROPHENOL	1/9n	39032*f i	35241	SP := NONE = 1	04 NOV 86	22.19	1.1	35.00	48 - :22	0		34.00
				SP2*NOME # 1		22.19	9.5	41.00	48 - 122	0	17.75	
			35897	SPI *NONE *	98 AON 90	22.19	4.6	21.00	48 - 122	ŋ		
				SP2*NOME *!		22.19	13	00.19	48 - 122	9	95.45	
PHENOL	1/90	34694#F I	35241	SPI * NONE * 1	04 NOV 86	65.84	21.2	32.10	33 - 97	9		47.00
				SP2*NONE # 1		65.84	24.5	37.10	33 - 97	o	14.44	
			35897	SPI*NOME * :	98 AON 90	65.84	9.91	25.10	33 - 97	J		
				SP2*NOME *!		65.94	19.0	28.80		o	13.48	•
2, 4, 6-TRICHL 'PHENOL	7/9n	34621481	35241	SP I *NONE * I	04 NOV 86	35.91	53	63.00		J		20.00
				SP2=NONE + I		35.91	51	58.00		9	60.6	
			35897	SPI *NONE * I	OF NOV 86	35.91	13	35.00	071 - 08	9		
				SP2*NOME * I		35.91	۲2	<b>28</b> . 00		0	47.06	
HYDROCARBONS, PETRO	₩6.⁄L	45501*1	34552	SPI#NOME # I	30 OC1 86	8200.0	3.66	87.20				20.00
				SP2*NOME * I		8200.0	3.71	86.50	١		1.36	
			34627	SPI#NOME # !	06 NOV 86	8200.0	4.26	101.00	٠			
				SP2*NOME * 1		8200.0	4.31	102.00	70.2 - 124.8		1.17	
LEAD, TOTAL	\ 00	1051 #GF AA	34894	SPI *NOME * 1	25 NOV 86	50.00	57.1	103.00		3.3067		20.00
				SP2#NONE#1		50.00	59.3	108.00	,	3.3067	3.78	
				SP3*NONE #1		20.00	58.2	105.00	,	3.3067	16.1	
				SPI=NONE 45		50.00	4.19	112.00	-	3.3067	7.26	
Q.				SP2*NONE*2		50.00	9.89	116.00	80 - 120	3.3067	10.77	
-3				SPI+NONE+3		20.00	65.7	121.00	80 - 120	3.3067	14.61	
1				SP 3*NONE #3		20.00	59.3	108.00	80 - 120	3,3067	3.78	

	TYNDL 4
	GROUP
	ICE BASE-FIELD GROUP TYNDL
INC.	FORCE
GINEERING, I	QUALITY CONTROL SUMMARY FOR TYNDALL AIR FORCE E
INCE AND EN	MIMARY FOR
ENVIRONMENTAL SCIENCE AND ENGINEERING	CONTROL SL
ENVIRON	QUAL I TY

			1	5	J 🛎	Recovery	Summary	ļ				
NAME	ST1S	STORET *METHOD	-!	SAMPLE		TARGET	COUND	SEC.	REC. CRIT.	PINED	0.4.	R.P.D. CRIT.
CARBON TETRACHLORIDE	7 9	32 102*HA		SPR24TYNOL 24/	g :	0.20	0.20	00 101	-	0.0		
CARBON TETRACHLORIDE	1/3n	32 102#HA	34825	SPH I . TYROL 4	21 OCT 86	0.20	0. 17	86.50	55 - 131	0.0		
				SPM3+TYNDL4+7		0.20	0.17	85.00	-	0.0		
1, 1-DICHLOROETHANE	7/9n	34496#HA		SPM2*TYNDL2*7		0.20	0.20	100.50	121 - 75	0.0		
				SPRI-TYNDL4*!		0.20	61.0	93.00	121 - 15	0.0		
				SPM3*TYNDL4*7		0.20	0.17	85.00	121 - 15	0.0		
1, 2-DICHLOROETHANE	1/30	34531"HA		SPM2*TYMOL2*7		0.20	0.23	115.50	63 - 135	0.0		
				SPH I . TYNDL 4 . !		0.20	0.20	102.00	63 - 135	0.0		
				SPM3+TYNDL4+7		0.20	61.0	94.50	-	0.0		
1, 1, 1-TRICHL "ETHANE	1/9n	34506"HA		SPM2+TYNDL2+7		0.20	0.20	101.00	53 - 155	0.0		
				SPRINTYMOL 441		0.20	0.20	99.00	53 - 125	0.0		
				SPM3=TYMDL4#7		0.20	0.17	83.00	53 - 125	0.0		
ETHYL BENZEME	1/90	34.37 top !		SPR2*TYNDL 2*7		2.52	2.80		-	0.0		
				SPH I TYMDI 40		2.22	2.28	102 70	-	0.0		
				CPH 3 TAME A S		2 22	3	92 34	,	) c		
7.00 mg mg		10*010*6		C DMY T C DMY		17:7	34.6		-	9 6		
וטייטו	1/10	3401041		Can Law I Mal And			2.43	200	,	0.0		
				Construction of		7	F 7	103.33		o		
			1000	SPRISE LINGLAGE	70 000	Z. 14	90 . V	30.70	,	0.0		
4-CHL 3-RLIN' FRERUL	7,00	34437-11	14705	SPRING CHIS		1	£ ;	16.71	,	o .		
	,	•	35897	SPIN-TYMOL4"8		<del>-</del> ;	17	59.84	₽ ,	•		
2-CHLOROPHENOL	7°7	34586*f I	35241	SPH#T YNDL 4# 15	2	43.06	23	53.95	74.9 - 115.1	<u>-</u> .		
			35897	SPM-TYMDL 4.8		30, 17	<u>=</u>	46.88	74.9 - 115.1	0.0		
2,4-DICHLOROPHENOL	7/ <b>3</b> 0	34601ªF1	35241	SPM*TYMDL 4* 15	04 NOV 86	37.01	54	63.86	74.9 - 115.1	4.5		
			35897	SPN=1 YNDL 4*8	06 NOV 86	25.94	61	70.12	74.9 - 115.1	2.5		
2, 4-DIMETHYLPHENOL	\ 1√90	34606*f !	35241	SPM*TYNDL 4* 15		32.60	90	61.17	85 - 115	3.4		
			35897	SPM*TYNDL4*8	06 NOV 86	22.84	9.6	35.51	85 - 115	5.6		
2, 4-DINITROPHENOL	√9n	34616451	35241	SPH+TYNDL 4* 15		10.46	Ξ	95.90	28 - 128	8.2		
			35897	SPR-TYNOL4*8		7.33	<del>4</del> .5	27.56	28 - 128	13		
2-METHYL-4,6-DIMITROPHENOL	√30	34657#f !	35241	SPH#1 YNDL 4#15		9.50	8.7	83.39	75 - 115	7.1		
			35897	SPM=TYNDL 4*8	98 AON 90	99.9	9.9	88.74	75 - 115	3.3		
2-N! TROPHENOL	7/3n	34591461	35241	SPM#TYMDL 4" 15	04 NOV 86	12.60	9.0	67.57	85 - 115	<b>4</b> .3		
			35897	SPM"TYNDL 4"8		8.83	0.34	0.0	85 - 115	1.7		
4-NITROPHENOL	7/9n	34646#F I	35241	SPH#TYMDL 4#15	04 NOV 86	17.79	~	62.55	85 - 115	6.7		
			35897	SPN+TYNDL 4*8	98 NON 90	12.47	<del>-</del>	0.0	. 511 - 58	6.9		
PENTACHLOROPHENOL	7/9n	.9032#f 1	35241	SPHHTYMDL 4+15	04 NOV 86	31.67	-23	38.52	48 - 122	3.7		
			35897	SPM*TYNDL 4*8	98 AON 90	22.19	02	09.68	48 - 122	0.0		
PHE NOL	7/9n	34694#f !	35241	SPH#TYNDL 4# 15	04 NOV 86	93.95	9.04	42.92	33 - 97	1.78		
			35897	SPM=TYNOL4*8		65.84	22.4	33.72	33 - 97	96.0		
2, 4, 6-TRICHL 'PHENOL	1/9n	34621•f1	35241	SPH#TYNOL4#15	<b>2</b> 0€	51.25	33	64.29	1	3.1		
			35897	SPM#TYNDL 4"B	Š	35.91	33	90 . 30	07 - 150	0.47		
HYDROCARBONS, PETRO	MC/L	45501*1	34552	SPM#TYMDL 249	_	8225.0	5.21	22.16	ب	4.20		
LEAD, TOTAL	UC/L	1051#GFAA	34894	SPINERYPSC 3#3	25 NOV 86	20.00	0.95	114.07	7	0		
				SPH*PPPE-3*3		100.00	921	114, 15	~	8.1.		
				SPM#SERRF#7		20.00	51.7	105.46	-	0		
				SPM#TYNDL 2#1		20.00	0.17	120.52	_	8.01		
				SPH*TYNDL 4*!		20.00	66.7	133,44	-	. 00002		
Q•				SPM*TYNDL 4* 12		100.00	145	114, 15	7	31.2		
-3				SPM*TYNDL 4*4		20.00	72.1	131.28	021 - 08	94.9		
2				SPM*TYNDL 6*10		50.00	62.4	116.22	80 - 120	4.30		
				SPH*TYNDL 6" 12		100.00	132	96.93	021 - 08	35.5		
				SPM#TYNDL6#9		100.00	137	108.76	80 - 120	28.0		

4 ENVIRONMENTAL SCIENCE AND ENGINEERING, INC.

					A COCCE		THE PROPERTY AND A PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF	
NAME	UNITS	STORET *METHOD		SAMPLE	DATE		LOUND	
BRONOD I CHL ORONE THANE	1/90	32101*HA	34825	MB=NONE *666	21 OCT 86	_		
BRONOF ORM	1/9n	32 104*HA	34825	MB*NOME *666	2: OCT 8	9		
BROMONE THANE	1/90	34413*HA		MB*NONE *666		0		
CARBON TETRACHLORIDE	7/9n	32 102*HA		MB*NONE *666		0		
CHLOROBE NZENE	7/90	34 30 ) *HA		MB*NOME *666		9		
		34311*HA		MB*NOME *666		0		
HYLVINYL	ETHER UG/L	34576*HA		MB*NOWE *666		<b>3</b>		
CHLOROFORM	7 95 17 97	32 105 FRA 344 19 # HA		MR*MOME #666		<b>5</b> C		
D. BROHOCHI OROME THANK	7, SI	32 105*HA		MB*NOM *666				
DICHLOROBENZENE TOT.	1/90	81524*HA		MB-WOME -666		9		
_	METHANE UG/L	34668"HA		MB= WOME = 666		0		
		34496 ** NA		MB*MONE *666		0		
1, 2-DICHLOROETHAME	7/90	34531*HA		48*NONE *666		0		
1, 1-DICHLOROETHYLENE		3450 I*NA		MB*NOME =666		0		
	1/90 JK JK 10	34546*HA		M8*NONE *666		<b>o</b> :		
		3454-484		MB=MOME #666		o (		
CIS-1, 3-DICHLORG PR	PROPERE UG/L	34 704 # 14.4		MB WOME *666		96		
		34473444		MOST MONE OF SEC.		<b>&gt;</b>		
TELETICENE CHECONIDE	1/20 1/20 1/20 1/20	34516eHA		MR*MOME #666		•		
TETRACHLOROETHENE		34475"HA		MB=NOME =666		. 0		
1 1 1-TRICHL "ETHAME		34506"HA		MB*NONE *666		0		
I, I, 2-TRICHL 'ETHANE	1/90	34511#HA		MB*NONE *666		0		
TRICHLOROE THENE	√9n	39180*HA		MB=MONE =666		0		
TRICHL 'FLUOROMETHAME	1/9n	34468*HA		MB NONE #666		<b>a</b> (		
WINYL CHLORIDE	7/30	39175#HA		HB*NOME #666		96		
BLM.LLME	1 5	34030*6		MESTICAL FORCE		9 0		
TO LISME	7.95	34010*P1		MENNONE #666				
4-CKL'-3-METH'PHENOL	1/90	34452=1	35241	MB*NONE *1	Š	0 98		
			35897	MB=NONE # 1	Š.			
2-CHLOROPHENOL	1/9n	34586*F1	35241	MB*NONE *!	Š			
	:		35897	HB*MOME * I	Ž.	98		
2,4-DICHLOROPHENOL	7/90 00	34001-1	3564		2	98		
A-DIMCTHY! BUG MO	17 711	1 3840445	15241	MR*MONE * 1	ĝ			
	3		35897	MB*NONE *!	Š			
2,4-DINITROPHENOL	7/9n	34616#F!	35241	MB-NONE *	Ş			
			35897	MB*NONE # 1	Ş Q			
2- <i>m</i> e thyl -4 , 6 -d in i trophenol	ENOL UG/L	34657#f	35241	HB*NONE #	2			
- H TBOBUCAO	7 913	14501051	35241			98		
Z-WIINOT IK MOL	Š	11.6046	15897	MB*MOME # 1	ğ			
4-NITROPHENOL	1/90	34646#F I	35241	MB*NONE * I	Š			
			35897	MB*NONE * 1	Š	0 98		
PENTACHLOROPHENOL	1/90	39032*F!	35241	HB*NONE #1	¥0	_		
	÷	1 3 4 6 7 4 6	35897	THE SHOWE OF		98		
THE RICE	7/90	34034=1	35897	MB*NONE * 1				
2 4 6-TRICHL PHENOL	7/9n	34621*f1	35241	MB*NONE *1	Ş			
			35897	MB*NONE * 1	Ş			
HYDROCARBONS, PETRO	MG /L	45501*1	34552	HB*NONE * 1			0758	
			34627	MON-MONE + 1	2 3	989	. 1055	
10101								

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC.

QUALITY CONTROL SUMMARY FOR TYNDALL AIR FORCE BASE-FIELD GROUP TYNDL4

Rethod Blank Sample Summary

1 (0.000)

1 (0.000)

1 (0.000)

1 (0.000)

Q-34

FIELD GROUP TYNDALL -5

Z	TYNDLS
ENGINEERING.	GROUP
ENGIN	FIELD
Ş	FOR
SCI ENCE	REPORT
	/ BATCH
ENVI HONNENTAL	SAMPLE

VOLATILE ROUALICSTODS  VOLATILE HAI GARBONS (601)  BASE NEUTRE ACTO EXTRACTABLES (625)  I CAP HETALS  MERCURI  VOLATILE HAI CARBONS (601)  BASE NEUTRE ACTO EXTRACTABLES (625)  I CAP HETALS  MERCURI  VOLATILE HAI CARBONS (601)  BASE NEUTRE ACTO EXTRACTABLES (625)  I CAP HETALS  MERCURI  VOLATILE HAI CARBONS (601)  BASE NEUTRE ACTO EXTRACTABLES (625)  I CAP HETALS  MERCURI  VOLATILE HAI CARBONS (601)  BASE NEUTRE ACTO EXTRACTOR  VOLATILE HAI CARBONS (601)  BASE NEUTRE ACTO EXTRACTOR  VOLATILE HAI CARBONS (601)  BASE NEUTRE ACTO EXTRACTOR  VOLATILE HAI CARBONS (601)  BASE NEUTRE ACTO EXTRACTOR  VOLATILE HAI CARBONS (601)  BASE NEUTRE ACTO EXTRACTOR  VOLATILE HAI CARBONS (601)  BASE NEUTRE ACTO EXTRACTOR  VOLATILE HAI CARBONS (601)  MERCURI  VOLATILE HAI CARBONS (601)  MERCURI  VOLATILE HAI CARBONS (601)  MERCURI  VOLATILE HAI CARBONS (601)  VOLATILE HAI CARBONS (601)  MERCURI  VOLATILE HAI CARBONS (601)  VOLATILE HAI CARBONS (601)  MERCURI  MERCURI  VOLATILE HAI CARBONS (601)  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERCURI  MERC		CAMBIE	DACAMETER MANG	20,000
VOLATILE HAUGARBONSCOON BASE NEUTRAL ACTO EXTRACTABLESCOSSICAP METALS MECUNI VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD? VOLATILE AF WATTCSNEOD. VOLATILE AF WATTCSNEOD. VOLATILE AF WATTCSNEOD. VOLATILE AF WATTCSNEOD. VOLATILE AF WATTCSNEOD. VOLATILE AF WATTCSNEOD. VOLATILE AF WATTCSNEOD. VOLATILE AF WATTCSNEOD. VOLATILE AF WATTCSNEOD. VOLATILE AF WATTCSNEOD. VOLATILE AF WATTCSNEOD. VOLATILE AF WATTCSNEOD. VOLATILE AF WATTCSNEOD. VOLATILE AF WATTCSNEOD. VOLATILE AF WATTCSNEOD. VOLATILE AF WATTCSNEOD. VOLATILE AF WATTCSNEOD. VOLATILE AF WATTCSNEOD. VOLATILE AF WATTCSNEOD. VOLATILE AF WATTCSNEOD. VOLATILE AF WATTCSNEOD. VOLATILE AF WATTCSNEOD. VOLATILE AF WATTCSNEOD. VOLATILE AF WATTCSNEOD. VOLATILE AF WATTCSNEOD. V		TYNDI Se I	VALATITE ADORATIC STADE	34825
BASE NEUTRAL ACTO EXTRACTABLESCOSSICA PRETALS  NERGINA VICTATILE AF WATTCS.COG 1 VULATILE AF WATTCS.COG 2 VULATILE AF WATTCS.COG 2 VULATILE AF WATTCS.COG 2  NECKNY VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE AF WATTCS.COG 2  VULATILE A			COLDENS OF THE PROPERTY AND THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF TH	30.00
ICAP METALS  MERCUEL  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ2:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ3:  VOLATILE AF MATICS: EQ			PAGE OF STREET ACTOR CATEGORISTS	0.3940
HERGUE.  VILATULE AF HATICS GOZD  VILATULE AF HATICS GOZD  VILATULE HALVE AREANNY GODD  BASE MEUTEAL ACTO (77 FACTABLES GOZD)  VOLATULE HALVE AREANNY GODD  VOLATULE HALVE AREANNY GODD  VOLATULE HALVE AREANNY GODD  BASE MEUTEAL ACTO (77 FACTABLES GOZD)  VOLATULE HALVE AREANNY GODD  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  VOLATULE HALVE ACTO (77 FACTABLES GOZD)  V			BASE NEGINAL ACTO EXTRACTABLES (525)	24004
MERCURA VICLATILE AF MATICS (COT) VICLATILE AF MATICS (COT) BASE MEUTRAL ACTO ETTRACTABLES (COS) ICAP METALS MERCURA VICLATILE AROMATICS (COT) BASE MEUTRAL ACTO ETTRACTABLES (COS) ICAP METALS MERCURA VICLATILE AROMATICS (COT) BASE MEUTRAL ACTO ETTRACTABLES (COS) ICAP METALS MERCURA VICLATILE AROMATICS (COT) VICLATILE HELD ARE METALS (COT) VICLATILE HELD ARE METALS (COT) VICLATILE HELD ARE METALS (COT) VICLATILE HELD ARE METALS (COT) VICLATILE HELD ARE WETALS (COT) VICLATILE HELD ARE WETALS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATILE HELD AROMATICS (COT) VICLATICS (			ICAP METALS	35477
VOLATILE AF HATICSTEED?  VOLATILE HALVE AFBOND GEOTE  BASE NEUTRAL  ICAP NETALS  NECURI  VOLATILE ARONA REBONDS GEOTE  VOLATILE HALVE AFBONDS GEOTE  VOLATILE HALVE AFBONDS GEOTE  VOLATILE HALVE AFBONDS GEOTE  VOLATILE HALVE AFBONDS GEOTE  VOLATILE AFOND TO TO THACTABLES GEOSTI  VOLATILE AFOND TICSTEED  NETALS  NETALS  NETALS  NETALS  NETALS  NOTATILE AFOND TICSTEED  VOLATILE HELD AFED NOTED			ME RCUK 1	3464
WOLATHE HALV AREOND (601)  6ASE NEUTRAL ACTO ENTRATABLESCOSSITEM PROGRAM  FORMATION OF THATABLESCOSSITEM PROGRAM  WOLATHE HALV AREOND 10 TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FORMATION OF TRATABLESCOSSITEM PROGRAM  FO		TYNDL 5.2	VCLATILE AF MATICS: 6021	34825
BASÉ NÉUTEAL ACTÓ ENTRACTABLESCOSSON ICAP METALS  MECUNTA  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE BORD  VOLATILE ARCHARICSO BORD  VOLATILE ARCHARICSO BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE BORD  VOLATILE  VOLATILE BORD  VOLATILE  VOLATILE BORD  VOLATILE  VOLATILE BORD  VOLATILE  VOLATILE BORD  VOLATILE  VOLATILE BORD  VOLATILE  VOLATILE BORD  VOLATILE  VOLATILE  VOLATILE BORD  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE			VOLATILE HALOK ARBONS(601)	34825
ICAP METAS  MERCURI  VULATILE ARCMATICS 1002)  WCLATILE ARCMATICS 1002  METAS 1003  WCLATILE ARCMATICS 1002  WCLATILE ARCMATICS 1002  WCLATILE ARCMATICS 1002  WCLATILE ARCMATICS 1002  WCLATILE HARCMATICS 1003  WCLATILE HARCMATICS 1003  WCLATILE HARCMATICS 1003  WCLATILE HARCMATICS 1003  WCLATILE HARCMATICS 1003  WCLATILE HARCMATICS 1003  WCLATILE HARCMATICS 1003  WCLATILE HARCMATICS 1003  WCLATILE HARCMATICS 1003  WCLATILE HARCMATICS 1003  WCLATILE HARCMATICS 1003  WCLATILE HARCMATICS 1003  WCLATILE HARCMATICS 1003  WCLATILE HARCMATICS 1003  WCLATILE HARCMATICS 1003  WCLATILE HARCMAT			MANY MELLINES ACTOR ENTRACTABLE STEADS	24654
MERCURY  VOLATILE ARCHARICS: 602)  VOLATILE ARCHARINS: 601)  BASE MEURAL ACID : TRACTABLES: 625)  ICAP METALS  MERURA  VOLATILE ARCHARICS: 602)  VOLATILE ARCHARICS: 602)  VOLATILE ARCHARICS: 602)  VOLATILE ARCHARICS: 602)  VOLATILE ARCHARICS: 602)  VOLATILE ARCHARICS: 602)  VOLATILE ARCHARICS: 602)  VOLATILE ARCHARICS: 602)  VOLATILE ARCHARICS: 602)  VOLATILE ARCHARICS: 602)  VOLATILE ARCHARICS: 602)  VOLATILE ARCHARICS: 602)  VOLATILE ARCHARICS: 602)  VOLATILE ARCHARICS: 602)  VOLATILE ARCHARICS: 602)  VOLATILE ARCHARICS: 602)  VOLATILE ARCHARICS: 602)  VOLATILE ARCHARICS: 602)  VOLATILE ARCHARICS: 602)  VOLATILE ARCHARIS: 602)  VOLATILE ARCHARIS: 602)  VOLATILE ARCHARIS: 602)  VOLATILE ARCHARIS: 602)  VOLATILE ARCHARIS: 602)  VOLATILE ARCHARIS: 602)  VOLATILE ARCHARIS: 602)  VOLATILE ARCHARIS: 602)  VOLATILE ARCHARIS: 602)  VOLATILE ARCHARIS: 602)  VOLATILE ARCHARIS: 602)  VOLATILE ARCHARIS: 602)  VOLATILE ARCHARIS: 602)  VOLATILE ARCHARIS: 602)  VOLATILE ARCHARIS: 602)  VOLATILE ARCHARIS: 602)  VOLATILE ARCHARIS: 602)  VOLATILE ARCHARIS: 602)			)77[3E 6F]	((43)
VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE MALCHERICS 602) VOLATILE MALCHERIS 602) ICAP METALS MELUNI VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE ARCHARICS 602) VOLATILE HALCHARICS 603)			# C C	
VOLATILE APPRAISED BODY  VOLATILE APPRAISED BODY  BASE MEDINAL ACTO EVERATABLESCOSSI  RECURN  VOLATILE APPRAISES NACOUN  BASE, MEDINAL ACTO EVERATABLESCOSSI  RECURN  VOLATILE APPRAISES NACOUN  VOLATILE APPRAISES NACOUN  VOLATILE APPRAISES NACOUN  VOLATILE APPRAISES NACOUN  VOLATILE APPRAISES NACOUN  VOLATILE APPRAISES NACOUN  VOLATILE APPRAISES NACOUN  VOLATILE APPRAISES NACOUN  VOLATILE APPRAISES NACOUN  VOLATILE APPRAISES NACOUN  VOLATILE APPRAISES NACOUN  VOLATILE APPRAISES NACOUN  VOLATILE APPRAISES NACOUN  VOLATILE APPRAISES NACOUN  VOLATILE APPRAISES NACOUN  VOLATILE APPRAISES NACOUN  VOLATILE APPRAISES NACOUN  VOLATILE APPRAISES NACOUN  VOLATILE APPRAISES NACOUN  VOLATILE APPRAISES NACOUN  VOLATILE APPRAISES NACOUN  VOLATILE APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATILE HELD APPRAISES NACOUN  VOLATI			שנייניי	
VCCATILE MACK ARBOWNED DO  VCCATILE MACK ARBOWNED DO  LEAR METALS  ME RUND  VCCATILE AROMETICS (602)  VCCATILE MACK ARBOWNED DO  BASE METALS  ME RUND  VCCATILE AROMETICS (602)  VCCATILE AROMATICS (602		TYNDt 5	VOLATILE AFCMATICS:6020	34625
BASE MEUTHAL ACID FORACTABLESGESSICAP METALS  HEALINE VOLATILE ARGARILESGESSI  VOLATILE ARGARILESGESSI  HEALINE METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS  METALS			VCLATILE HALLE ARBUNSLEDID	34625
ICAP METALS  MERCHN  VOLATILE AROMATICS. (602)  VOLATILE AROMATICS. (602)  VOLATILE AROMATICS. (603)  MERCHN  VOLATILE AROMATICS. (603)  VOLATILE AROMATICS. (603)  VOLATILE AROMATICS. (603)  VOLATILE AROMATICS. (603)  VOLATILE AROMATICS. (603)  VOLATILE AROMATICS. (603)  VOLATILE AROMATICS. (603)  VOLATILE AROMATICS. (603)  VOLATILE AROMATICS. (603)  VOLATILE AROMATICS. (603)  VOLATILE AROMATICS. (603)  VOLATILE AROMATICS. (603)  VOLATILE AROMATICS. (603)  VOLATILE AROMATICS. (603)  VOLATILE AROMATICS. (603)  VOLATILE AROMATICS. (603)  VOLATILE AROMATICS. (603)  VOLATILE AROMATICS. (603)  VOLATILE AROMATICS. (603)  VOLATILE AROMATICS. (603)  VOLATILE AROMATICS. (603)  VOLATILE AROMATICS. (603)  VOLATILE HELD. (613)			BASE NEUTRAL ACTO ENTRACTABLEST6250	24659
MERCURIO VOLATILE AROMATICS: 602) VOLATILE AROMATICS: 602) ICAP METALS MECURIO VOLATILE AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLATILE HALD: AROMATICS: 602; VOLA			ICAP METALS	5547
VOLABILE ARCHAULICS 602) VOLABILE ARCHAULICS 602) VOLABILE HALVOCARE NOTAGIT  LOAD HEIALS  MECUPY VOLABILE ARCHAUGARES NOTAGIT  BASE MEUTAL ACTO ESTRACTABLES (625)  LOAD HEIALS  MECUPY VOLABILE ARCHAUGARES NOTAGIT  BASE MEUTAL ACTO ESTRACTABLES (625)  LOAD HEIALS  MECUPY VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE ARCHAUGARES NOTAGIT  MECUPY  VOLABILE ARCHAUGARES NOTAGIT  BASE MEUTALS  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)  VOLABILE HALVORARICS (602)				
VOLATILL ANOMETICS FOLST VOLATILL ANOMETICS FOLST LOAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS WINTHER ANOMETICS FOLST VOLATILE ANOMETICS FOLST ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILAP METALS ILA				e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l
BASE NEUTREL ACTO (**TRALTABLESCOSS) JEAN MUTREL MERCURY VOLATILE AFORATICESCOST JEAN METALS MERCURY VOLATILE AFORATICESCOST JEAN METALS MERCURY VOLATILE AFORATICESCOST JEAN METALS MERCURY VOLATILE AFORATICESCOST JEAN METALS MERCURY VOLATILE AFORATICESCOST VOLATILE AFORATICESCOST JEAN METALS MERCURY VOLATILE AFORATICESCOST JEAN METALS MERCURY VOLATILE AFORATICESCOST JEAN METALS MERCURY VOLATILE AFORATICESCOST JEAN METALS MERCURY VOLATILE AFORATICESCOST JEAN METALS MERCURY VOLATILE AFORATICESCOST JEAN METALS MERCURY VOLATILE AFORATICESCOST JEAN METALS MERCURY VOLATILE HELD AFORATICESCOST JEAN METALS MERCURY VOLATILE HELD AFORATICESCOST JEAN METALS MERCURY VOLATILE HELD AFORATICESCOST JEAN METALS MERCURY VOLATILE HELD AFORATICESCOST JEAN METALS MERCURY VOLATILE HELD AFORATICESCOST JEAN METALS MERCURY VOLATILE HELD AFORATICESCOST JEAN METALS MERCURY VOLATILE HELD AFORATICESCOST MERCURY VOLATILE HELD AFORATICESCOST MERCURY VOLATILE HELD AFORATICESCOST MERCURY VOLATILE HELD AFORATICESCOST MERCURY VOLATILE HELD AFORATICESCOST MERCURY VOLATILE HELD AFORATICESCOST MERCURY VOLATILE HELD AFORATICESCOST MERCURY VOLATILE HELD AFORATICESCOST MERCURY VOLATILE HELD AFORATICESCOST MERCURY VOLATILE HELD AFORATICESCOST MERCURY VOLATILE HELD AFORATICESCOST MERCURY VOLATILE HELD AFORATICESCOST MERCURY VOLATILE HELD AFORATICESCOST MERCURY VOLATILE HELD AFORATICESCOST MERCURY VOLATILE HELD AFORATICESCOST MERCURY VOLATILE HELD AFORATICESCOST MERCURY VOLATILE HELD AFORATICESCOST MERCURY VOLATILE HELD AFORATICESCOST MERCURY VOLATILE HELD AFORATICESCOST MERCURY VOLATILE HELD AFORATICESCOST MERCURY VOLATILE HELD AFORATICESCOST MERCURY VOLATILE HELD AFORATICESCOST MERCURY VOLATILE HELD AFORATICESCOST METALS MERCURY METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS METALS		TINDLS*4	V(4.4.1111 AFCM211(S1602)	34625
BASE MEDINER ACTO EVIRACIABLESCOSSICAR MERCANILLA APPRAINCE CONT.  VOLATILE APPRAINCE CONT.  VOLATILE HARVARDS MONORM  BASE MEDINAL ACTO EVIRACIABLESCOSSICAR MEDINAL  VOLATILE HARVARDE MONORM  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDICE CONT.  VOLATILE HARVARDI				, " R Tr
MERCURY  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  EASE MEUTEAL ACTO ETTER TABLES COLE  CAP METALS  MERCURY  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE COLE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE  VOLATILE AFFORATICE			BASE, MENTHAL ACTO E-TEACTABLESC625	.: Z
MERLINA VOLATILE AFORATICE/GOZ / VOLATILE HALOURANGE / BASE NEUTRAL ACID ETTRA TABLES/GZS / ICAP NETALS MERCURA VOLATILE AFORATICE/GOZ / VOLATILE AFORATICE/GOZ / VOLATILE AFORATICE/GOZ / ICAP NETALS MERCURA VOLATILE AFORATICE/GOZ / VOLATILE			1 40 M 141 C	7,,
VOLATILE ARCHARICO (GUZ)  VOLATILE MAIOCARDONO (GU)  BASE NEUPRA ACTO FOTHAL TABLES (GZS)  ICAP NETALS  MECURI  VOLATILE ARCHARICO (GUZ)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO (GU)  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDONO  VOLATILE HAIOCARDO				4.4
VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATILE APPRAISED TO A VOLATI		, - J		
DASE NEUTRE HALVERBENNISCHEL BASE NEUTRE STED FITHELTABLESGESSEICHER ICAN MERKE VOLATILE AFONATICSGESSE BASE NEUTRE ACUL FITALISGESSEICANTHER BASE NEUTRAL ACUL FITALISGESSEICANTHER ICANTILE AFONATICSGESSEICANTHER VOLATILE AFONATICSGESSEICANTHER BASE NEUTRAL ACUT FITHELTABLESGESSEICANTHER VOLATILE AFONATICSGESSEICANTHER VOLATILE HALVERD NOCH BASE NEUTRAL ACUT FITHELTABLESGESSEICANTHER VOLATILE HALVERD NOCH VOLATILE HALVE		11801515	CALALILL APORALICIONAL	, , , , , , , , , , , , , , , , , , ,
BASE MEDIPAL ACTO FATRA TABLESCOSSICAP METALS  MECURI VOLATILE ARCMATICS COUS VOLATILE HARWATICS COUS VOLATILE HARWATICS COUS  BASE MEDIPAL ACTO TEATABLESCOSSICAP VOLATILE HARWATICS COUS  CAP METALS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS  VOLATILE HARWATICS COUS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATICS  VOLATILE HARWATI			VOLATILE HALLIK ARBUNGLEUT	344.
ICAP METALS  MERCURI VOLATILE AFONATION CONTY VOLATILE AFONATION CONTY VOLATILE AFONATION CONTY  EAST MEUTER ACTULE TERMINATED  MERCURI MERCURI MERCURI VOLATILE AF MATHON CONTY  VOLATILE AFONATION CONTY  VOLATILE AFONATION CONTY  VOLATILE AFONATION CONTY  VOLATILE AFONATION CONTY  VOLATILE AFONATION CONTY  VOLATILE AFONATION CONTY  VOLATILE HELD AFONATION CONTY  VOLATILE HELD AFONATION CONTY  VOLATILE HELD AFONATION CONTY  VOLATILE HELD AFONATION CONTY  VOLATILE HELD AFONATION CONTY  VOLATILE HELD AFONATION CONTY  VOLATILE HELD AFONATION CONTY  VOLATILE HELD AFONATION CONTY  VOLATILE HELD AFONATION CONTY  VOLATILE HELD AFONATION CONTY  VOLATILE HELD AFONATION CONTY  VOLATILE HELD AFONATION CONTY  VOLATILE HELD AFONATION CONTY  VOLATILE HELD AFONATION CONTY  VOLATILE HELD AFONATION CONTY  VOLATILE HELD AFONATION CONTY  VOLATILE HELD AFONATION CONTY  VOLATILE HELD AFONATION CONTY  VOLATILE HELD AFONATION CONTY  VOLATILE HELD AFONATION CONTY  VOLATILE HELD AFONATION CONTY  VOLATILE HELD AFONATION CONTY  VOLATILE HELD AFONATION CONTY  VOLATILE HELD AFONATION CONTY  VOLATILE HELD AFONATION CONTY  VOLATILE HELD AFONATION CONTY  VOLATION C			BASE MEUTRAL ACTO EXTRALTABLES (625)	24659
MERCURA VOLATILE ARMATICS 6023 VOLATILE HELS REENTS 633 VOLATILE HELS REENTS 633 ICAP MENTAL MERCURA VOLATILE AR METICS 632 VOLATILE ARMEDIS 632 ICAP METAL VOLATILE ARMEDIS 633 VOLATILE ARMEDIS 633 MERCURA VOLATILE HELS ARMEDIS 633 MERCURA VOLATILE HELS ARMEDIS 633 VOLATILE HELS ARMEDIS 633 VOLATILE HELS METALS 633 VOLATILE HELS METALS 633 VOLATILE HELS METALS 633 VOLATILE HELS METALS 633 VOLATILE HELS WELLS 633 VOLATILE HELS WELLS 633 VOLATILE HELS WELLS 633 VOLATILE HELS WELLS 633 VOLATILE HELS WELLS 633			ICAP MITALS	31.13
VOLATILE AROMATICS: COZ) VOLATILE HALMS REDOMSTEED BASE NEUTRAL ACTUL (* 1561 TABLESSES) ICAN NETAL! NEUTRAL VOLATILE ACTUL (* 1561 TABLESSES) ICAN NETAL! BASE NEUTRAL ACTUL (* 1561 TABLESSES) ICAN NETALS ICAN NEUTRAL ACTUL (* 1561 TABLESSES) ICAN NETALS ICAN NEUTRAL VOLATILE HALM ACTUL (* 1561 TABLESSES) ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS ICAN NETALS			其 そこした 1	34 '06
VOLATILE HELNE ARENWITER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRESCHICT PRINTER TRELESCESSING PRINTERS WELTER TREATMENT TO THE TREATMENT OF THE TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSING PRINTER TRELESCESSION PRINTER TRELESCESSION PRINTER TRELESCESSION PRINTER TRELESCESSION PRINTER TRELESCESSION PRINTER TRELESCESSION PRINTER TRELESCESSION PRINTER TRELESCESSION PRINTER TRELESCESSION PRINTER TRELESCESSION PRINTER TRELESCESSION PRINTER TRELESCESSION PRINTER TRELESCESSION PRINTER TRELESCESSION PRINTER TRELESCESSION PRINTER TRELESCESSION PRINTER TRELESCESSION PRINTER TRELESCESSION PRINTER TRELESCESSION PRINTER TRELESCESSION PRINTER TRELESCESSION PRINTER TRELESCESSION PRINTER TRELESCESSION PRINTER TRELESCESSION PRINTER TRELESCESSION PRINTER TRELESCESSION PRINTER TRELESCESSION PRINTER TRE		1 T NOL 5 6		346.5
BASE NEUTRAL ACTUL FOR TABLESCOSS.  (CAP MENT)  MESCURIO  VOLATILE AR MATICOS COSO  CARTILE MESCURERO  CARTILE MESCURERO  CARTILE MESCURERO  CARTILE MESCURERO  CARTILE MESCURERO  MESCURERO  VOLATILE MESCURERO  VOLATILE MESCURERO  VOLATILE MESCURERO  MESCURI  MESCURI  MESCURI  VOLATILE MESCURI  MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE MESCURI  VOLATILE  VOLATILE MESCURI  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATILE  VOLATI			VOLATILE HARLIN ARBINDIERI	1. 1. F.
MERCHEN  VOLATILE AS METITOSCORO  VOLATILE AS METITOSCORO  VOLATILE HELM REBINGERO  MERCHEN EN MENTER  MERCHEN EN MENTER  VOLATILE AS METITOSCORO  VOLATILE HELM REBINGERO  VOLATILE HELM REBINGERO  VOLATILE HELM REBINGERO  VOLATILE HELM REBINGERO  VOLATILE HELM METITOSCORO  VOLATILE HELM MET			BASE NEUTRAL ACID EFFERTABLES (\$55)	65340
MERNING AR MATICOCCONO VOLATILE AR MATICOCCONO COLATILE MENONAFO NO ROCA GARAGE ICAP METRO MERNING AROMATOCOCCONO VOLATILE AROMATOCOCCONO BASE MENTRAL REPORT VOLATILE AROMATOCOCCONO VOLATILE AROMATOCOCCONO VOLATILE AROMATOCOCCONO VOLATILE AROMATOCOCCONO VOLATILE AROMATOCOCCONO VOLATILE PREVIOUS COCCONO VOLATILE PREVIOUS COCCONO			ICAP METAL:	36.115
VOLATILE AF METICSOCOSOS VOLATILE AF METICSOCOSOS DESCRIPTOR MEDITA (CONTROL METICSOCOSOS MEDITAS METICSOCOSOS METICSOCOSOS VOLATILE AFORDATICONDOS VOLATILE AFORDATICONDOS VOLATILE HALO AFOSOS METICSOCOSOS METICSOCOSOS VOLATILE HALO AFOSOS METICSOCOSOS VOLATILE HALO AFOSOS METICSOCOSOS VOLATILE HALO AFOSOS METICSOCOSOS VOLATILE HALO AFOSOS METICSOCOS VOLATILE HALO AFOSOS METICSOCOS VOLATILE HALO AFOSOS METICSOCOS VOLATILE HALO AFOSOS METICSOCOS VOLATILE HALO AFOSOS METICSOCOS VOLATILE HALO AFOSOS METICSOCOS VOLATILE HALO AFOSOS METICSOCOS VOLATILE HALO AFOSOS METICSOCOS VOLATILE HALO AFOSOS METICSOCOS VOLATILE HALO AFOSOS METICSOCOS VOLATILE HALO AFOSOS METICSOCOS VOLATILE HALO AFOSOS METICSOCOS VOLATILE HALO AFOSOS METICSOCOS VOLATILE HALO AFOSOS METICSOCOS VOLATILE HALO AFOSOS METICSOCOS VOLATILE HALO AFOSOS METICSOCOS VOLATILE HALO AFOSOS METICSOCOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLATILE HALO AFOSOS VOLAT				<b>3</b> 0. <b>\$</b> >
ACLATIC MELLE FER NOTE OF TABLES (1625) ACAP METALS ACAP METALS METALS METALS ACAPTICS OF ACAPTICS (1625) ACLATIC MELLE AND NOTE OF ACAPTICS (1627) ACLATIC METALS AND METALS ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS (1627) ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS OF ACAPTICS		TYNDI 5.		7.47
65C, NEUTRA ACTO E-TEACTABLES 625, 1CAP METRO. MEDITE ACTO E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CAP METAL. METAL ACTOR E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTALLE ACTOR E-TEACTABLES 625, 1CATALLE ACTALLE AC			COLATIF MELLIN AFER NICEOR	144.
MER METRES MER OFFI  VICATURE ARMADICATIONS VOLATURE HEALT ARE NO TOT  VOLATURE HEALT ARE NO TOT  VOLATURE HEALT ARE NO TOT  VOLATURE HEALT ARE NOTED TO THE TREETY OF TOT  VOLATURE HEALT ARE METROS TOTAL TOTAL  VOLATURE HEALT ARE NO TOT  VOLATURE HEALT ARE NO TOT  VOLATURE HEALT ARE NO TOT  VOLATURE HEALT ARE NO TOT  VOLATURE HEALT ARE NO TOT  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE NO TOTAL  VOLATURE HEALT ARE			6401 NEUTRAL ACID E-TRAITABLESIGNES	14659
MEPONER  VOLATILE APONETACIONICA  VOLATILE HALMADE NACOO  BASE NEUTRAL DOLD EVIDO TABLETONEZO  REPONE  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE HALMADA  VOLATILE	MEP. (161 V. (147) E. P. P. V. (147) E. P. P. V. (147) E. P. P. P. P. P. P. P. P. P. P. P. P. P.		ICAP METALS	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
vitabile Abomatationing) volabile Abomatationing) base National and Enter Tableoeth lead NETAL. REPORT volabile Abomatation tool volabile Abomatation tool volabile Abomatation tool volabile Abomatation tool volabile Abomatation tool volabile Abomatation tool volabile Abomatation tool volabile Abomatation tool volabile Abomatation tool volabile Abomatation tool volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation volabile Abomatation vol	COLATICE APON COLATICE HEL BASE MEUTER MERCIE COLATICE HE COLATICE HE BASE MEUTER (APONE)		## F: (1F:	7-44.
VOLATILE HALD AND MONERO BASE MENTRAL DESIDERTABLESCEZA ACAR METALS MERCON VOLATILE HAR DATE NOTE TO ACATALE HAR DATE NOTE TO ACATALE HAR DATE NOTE THE TABLE OF	VOLATILE HELL BASE NEUTERL VALET METRLU VALET THE HELV VALET THE HELV VALET THE HELV VALET THE HELV VALET THE HELV VALET THE HELV VALET THE HELV VALET THE HELV VALET THE HELV VALET THE HELV VALET THE HELV VALET THE HELV	TINGL SAB	COLATILE APPRATOCOLOGO	4 P 2 5
BASE NEWTRAL POID EVIRALIABLESCESS ACAP METALS NECONS VOLETTE APPRAISON CONS SOLETTE APPRAISON CONS PASE NEW SAFE NOTES	6.45g ME01FA1 (GP ME1AL) MEFLORY VOLATILE HEP VOLATILE HES BANG MESTAL (EP ME1AL)		VOLATILE HALL ASE Nov CO.	3.44
ACAP METALS MERGEN VOLETHE APPMETATION CO. I VALATILE HAS WARE NOTED BASE NEW PERCENT ENDING CO.	MEP METALL MEPLOP VOLATILE HAP NOLETICE HAP DOUGHESTOF LEWISTEL			5,37
MERGEN VOLETTE ARMEN (OLD) VOLETTE MEN MERGEN (OLD) ENGINE MEN MEN (OLD) ENGINE MEN MEN (OLD) MEN MEN MEN MEN MEN (C)	MER (N) VOLAT (E. AP) VOLAT (E. HR) BASS (NOTES) (FO METR)			¥
VALEDIE ARMEDICO (OLO ) VALEDIE MENORE NO COO DESENDO (CO ) DANS MENORE, AND EVER NAME (CO ) CONTRACTOR OF THE CONTRACTOR (CO )	200 a711 € 46. m 121,6711 € 46. 52. m €75. 169 m €75.			7
ALTERIATION OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Park Cas		• • • • • • • • • • • • • • • • • • • •
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		,		
				7 1 1 1
	14-15-14-1			7

· 7

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. QUALITY CONTROL SUMMARY FOR TYNDALL AIR FORCE BASE-FIELD GROUP TYNDLS

	5					) 		
				Rep	Replicate Analysis Sample Summary	Somple Sum	# Pace	
HAME	CHITS	STORET *METHOD	BATCH	SAMPLE	DATE	FOUND	R.P.D.	MAX & REPL DIFF
MERCURY TOTAL	りの	UG/L 71900#CVAA 34819	34819	SP# MOH	98 AON 61	. 497	16.27	6*6 19 NOV 86 . 497 16.27 20
MERCURY TOTAL	1/30	71900#CVAA	34819	RP*LINGU	98 AON 61	۶.	0.0	
				RP#TYNDL 5#7		<b>₹</b>	16.35	

QUALITY CONTROL SUMMARY FOR TYNDALL	L SUMMAF	5		Standard Batrix Solke Recovery and Replicate Suggery	TO THE METCO			2						
NAME	UNITS	STORE T * ME THO		SAMPLE	DATE	TARGET	FOUND	KREC	REC.	CR11.	MET#BLA	R.P.D.	R. P. D.	CR11.
CARBON TETRACHLORIDE	7/90	32102#HA	34825	SP2*NOME*666	21 OCT 86	0.20	0.17	96.00	١.	<u>=</u>	0	CANT CALC		31.00
CARBON TETRACHLORIDE	7∕ <b>9</b> 0	32 102*HA		SP 3*NONE *666	21 OCT 86	0.20	0.21	107.00	- 55	<u>.</u>	0		31.00	
				SP4*NOME *666		0.20	0.21	104.00	. 55	Ē	0	0.0		
				SP5 ** MONE * 666		0.20	0.17	82.00	52	≘	0	21.05		
				SP6#NOME #666		0.20	<b>9</b> :	91.00	55	≖ :	0 (	15.38	;	
I J-DICHLOROEIHAM	7.3n	34490 PHA		SP 1 * NOML * 666		0.20	2 5	00. \$4	, , ,	2 5	<b>.</b>		30.00	
				SPZ#WUML#666		0.0	<u>-</u> 6	00.78	کر د	5 5	<b>5</b> (	D. D.		
				SP 3*NOME * 666		0.50	6.23	8 6	, ,	5 5	<b>3</b> 0	30.15		
				OGG INOMEDIC		200	7.0	9.70	֝ ה	2 5	5 6	61.03		
				SPS#NONE *666		0.20	<b>2</b> 9	92.50	} [	2 5	<b>,</b>	= :		
				STOWNOME TODG		0.20	2.2	95.50	, }	7	<b>.</b>	=	6	
I Z-DICHLORUE I HAME	7/3n	34531#HA		SP I SHOME SEED		07.0	<u> </u>	95.50	2 3	2 5	<b>.</b>		7.00	
				SP2mMOML *666		07.0	9 C	89.50	2 (	€ :	<b>-</b> (	5.7		
				SP 3*MOME *666		0.20	0.23	116.00	2 (	<u>s</u> :	<b>.</b>	30.00		
				SP4*MOML*666		07.0	0.22	109.00	2	£ :	<b>5</b> (	25.64		
				SP5*NOME *666		0.20	0.17	87.00	G	<u> </u>	9	3 i		
				SP6 SWOWL #566		0.20	<b>8</b> 0	91.50	, 2	<u>e</u> :	<b>o</b> (	5.71		
I I I - TRICHL'E IMANE	7/9n	34 506 * HA		SPI*NOME*666		07.0	<b>3</b> 0	88 20	, 7 (	S 5	o (	3	35.00	
				SP2*MOML*666		07.0	9 .0	00.88	7 :	<u>c</u> :	<b>-</b> (	0.0		
				SP 3*NOME *666		0.70 0.70	0.22	00.601	2 2	2 5	<b>5</b> 0	20.00	-	
				SP4=MOMI = 666		97. n	0.23	00.211	, ,	2 :	<b>-</b>	24.39		
				SPS-MOMI - 566		0.20	<b>8</b> 6	90.00	20	2 5	<b>.</b>	0.0	-	
	3	747.6676		SPORMONE FOOD		0.20	0.7 -	20.10		9 :	<b>5</b> C	10.33	36	
t inildentint	1/90	24 37 int i		SPINNER BASK		2 22	N 07	85.10	0 4	: :	<b>.</b>	5	35.00	
Q <b>-</b>				3P 3**NOM* 5 42		25.5	2.53	100 00	9 4	<u> </u>	) c	2		
.39				SP4*NOME *666		2.52	2.37	94.00	9	=		6.53		
,		•		SP5*NOME*666		2.22	1.87	84.20	- 84	÷	0			
				SP6*NON* 866		2.22	08.	91.10	8	¥ :	<b>o</b>	3.81	;	
TOL UE NE	1/90	34010#b1		SP   *NONE = 666		5.14	2.24	105.00	. 65	135	0,	,	29.00	
				SP2"NOME *666		5. I	2.24	105.00	. 65	<u> </u>	0 (	ت ئ		
				SP 3*NOME *666		\$	2.49	102.00	65 (	£ ;	٥ (	9		
				SP4*NONE *666		2.44	2.25	92.20	, 65 S	<u> </u>	<b>o</b> (	10.13		
				999# 3WON#545		<b>5</b> .7	Z 7	96.60	 20	£ 5	<b>-</b> 0	72		
APSEMIC TOTAL	1/ 311	100201649	32036	SP 1 * NOWE * 1	98 230 10	1000 0	200	00 90	6	3 2	¥ 59		20 00	
			) 	SP2*NOME * 1		0.0001	150	108.00	. 08	20	65.34	2.64		
				SP3#NOME #1		1000.0	1160	110.00	- 08	120		3.51		
			35477	SP 1 *NOME * 1	14 JAN 87	1000.0	1020	105.00	- 08	071	0			
				SP2"NOME # I		0.0001	1040	104.00	08	2 5	0 (	- 94 - 94		
			34.75	I # 3MON#E dS	9	0.000.0	1030	103.00	2 6	2 5	<b>-</b>	9 5. 0		
			36 10	SPINOME 2	73 110 8/	0.000	928	92.70	9 6	2 5	<b>-</b> C	3 0.8		•
ANTIMONY TOTAL	1/90	1097#1CAP	35075	SPI*NOME*1	01 050 86	500.00	523	105.00	80	021	. 0	3	20.00	
		•		SP2#NONE#1		500.00	515	103.00	. 08	150	0	1.54		
				SP3*NOME * I		200 00	545	109.00	- 08	20	0	4.12		
			<b>36</b> 110	SPI+NOME #2	23 FEB 87	200.00	464	92.70	08	<u>ا</u>	0			
			0	SP3*NONE #2		500.00	44.	98.90	080	2 2	0 0	<del>-</del>		
			30/08	SP 1 WOME & S	43 NUV 86	200.00	195	04.76	9 0	2 2	<b>-</b>	,		
				SP2*NONE*		500.00	4 C	00.00	200	2 5	<b>-</b>	2.43		
				SP 3-NOME -		500.000	9 5	100 00	8 8	2 2	o c	2.63		
REBYLL HIM TOTAL	116.71	1012#1CAP	35075	SPON SPON	01 0fC 86	50.00	52.8	103.00	8 2	2 = 2	e. -	3	15.00	
	3	4		SP2*NONE*	;	50.00	49.7	96.80	82	115	 	6.05		
				SP3*NOME * 1		50.00	\$6.4	110.00	. 59	115	E	65.9		
			35477	SPI * NONE * I	14 JAN 87	50.00	46.4	92.20	. 58	115	. 28			

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC.

QUALITY CONTROL SUMMARY FOR TYNDALL AIR FORCE BASE-FIELD GROUP TYNDLS

Standard Natrix Spike Recovery and Replicate Summany

Standard Natrix Spike Recovery and Replicate Summany

Standard Natrix Spike Recovery and Replicate Summany

TOWARD STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

STANDARD

S

170	ST I MI	STORETONETHOD BATCH	BATCH	Standard Matr	Standard Matrix Spike Recovery and Replicate Summary Campif	ery and Repl	ICATE SUMMAI	'y <b>K</b> RF C	TIAN JA	MC T e.R. h	9	1190
				SP2*NOME * I		50.00	50.3	100.00	85 - 115	. 28	8.07	٠,
				SP3*NOME * !		20.00	81.18	103.00	85 - 115	. 28	11.00	
			36110	SP1*NOME*2	23 FEB 87	20.00	0.04	90.08	85 - 115	0		
				SP3#NONE#2		20.00	37.6	75.30	85 - 115	0	6.19	
CADMIUM TOTAL	1/90	1027#1CAP	35075	SP 1 * NONE a P	01 050 86	20.00	55.2	108.00	,	1.29		15.00
				SP2"NONE"		50.00	53.6	105.00	65 - 115	1.29	5.94	
				SP3*NOME * I		20.00	26.7	00.111	85 - 115	1.29	2.65	
			36110	SPI+MOME+2	23 FEB 87	20.00	51.0	105.00		9		
				SP3*NOME *2		\$0.00	52.8	106.00		2	3.47	•
			36268	SP1 "NONE"	23 NOV 86	20.00	81.8	101.00		80°I		
				SP2=NOME = 1		20.00	52.4	103.00		1.08		
				SP3*MOME * 1		20.00	52.5	103.00		1.08	1.34	
				SP4 *WOME * 1		20.00	53.5	105.00	85 - 115	80.1	3.23	
CHRON I UN, TOTAL	√9n	1034#ICAP	35075	SPI «NOME » I	01 DEC 86	200.00	509	104.00		94.		20.00
				SP2"NOME"		200.00	215	107.00	80 - 120	<del>9</del> :	2.8.	
				SP 3*NOME # 1	4	200.00	508	104.00		9	<b>3</b> .0	
			36110	SP1*MOME = 2	23 FEB 87	200.00	7	87.00		<b>.</b>	ì	
			97676	Ze TMOMer do	An wom ec	200.00	6/1	99.99	071 - 08	<b>)</b> (	BC . D	
			30700	SPIEMONE S	Ž	90.00	B 6	99.50		<b>5</b> 5	6	
				SP 3*NOME * !		200.002	207	00 00		<b>&gt;</b> =	1.50	
				SP4*NONE * 1		200.00	206	103.00	_		3.96	
COPPER, TOTAL	1/90	1042#1CAP	35075	SP I "MOME " I	98 330 10	250.00	248	99.30	,	90		15.00
				SP2*NOME * 1		250.00	247	98.60	85 - 115	90.	0.40	
Ó				SP3*NOME * 1		250.00	250	99.90	7	80	0.80	
-4			36110	SPI#NOME #2	23 FEB 87	250.00	224	89.70	-	0		
۰0				SP3#NOME#2		250.00	223	04 68	-	<b>၁</b>	0.45	
			36268	SPI *NOME * I	23 NOV 86	250.00	247	09.86		<b>.</b>		
				SP2#WOME #		250.00	249	99.50		<b>ɔ</b> :	8.0	
				SP 340MP # S		250.00	248	99.30	21 - 28 21 - 30	<b>5</b> 5	0 · • 0	
		640	31030	STATEMENT OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P		00.007	6 5	90.101		,	04.7	00
LEAD, TOTAL	1 20 0	1051*104	6,061	SPORT OF STREET	98 730 10	200.00	/56	00.101	021 - 08	49.30	91.0	00.07
				SP2#WOME # 2		200	545	00.66	021 - 08	49.30	B 2	
			36110	SP3*WOME * 2	22 FFB 82	200 005	463	06.00		÷	<u>.</u>	
			?	SP3*NONE *2		200.005	7	89.30	90 - 120		3.52	
			36268	I = 3MON# i dS	23 NOV 86	200 00	125	104.00	-	0		
				SP2*NOME # 1		200.00	531	106.00	80 - 150	0	1.90	
				SP3#NOME # 1		200.00	544	109.00		0	4.32	
	9	040141701	35.036	SP4*NOME # 1		500.00	549	0.00	` -	90	5.23	90
MICALL TOTAL	7/90	100/2100	330/3	C D Sand ONC a S	00 730 10	00.000		00.60	001 - 00	<b>5</b> C	5	90.07
				SP 3 w MOME at		200.000	2.45	00.00	80 - 120	o c	0.55	
			36110	SP I *NONE *2	23 FEB 87	200.00	488	97.70	80 - 120	0		
				SP3#MONE *2		200.00	470	94.00	-	0	3.76	
			36268	SPI*NONE*!	23 NOV 86	200 00	524	103.00	7	9.73		
				SP2*NONE*1		200.00	546	107.00	-	9.73	= :	
				SP3*NOME # I		200 00	526	103.00	80 - 120	9.73	0.38	
		;	;	SP4*NON.		200.00	542	107.00	-	9.73	3.38	4
SELENIUM, TOTAL	7/30 MC/1	1147#1CAP	35075	* NOX+ CdS	98 730 10	0.0001	0 S	102.00	<del>,</del> .	94.49	6	20.00
				SPZ#NONE		0.0001	0 :	102.00		6. 5	0.0	
			91.	T B BON T C C	6	0.0001	0110	102.00		94.49	0.0	
			36 10	Z # JMON # C d S	73 118 8/	0.0001	- 25	00	021 - 08	23.4	9	
			34349	ST STRUCTURE OF	22 M/W 96	0.0001	913	05.16	, ,	26.46	• 00	
			10700	SP - WOME * 1	23 MON 63	0.0001	0801	105.00	80 · 120	26.46	1.87	
						) ) )	<b>&gt;</b>	) )		)	•	

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. QUALITY CONTROL SUMMARY FOR TYNDALL AIR FORCE BASE-FIELD GROUP TYNDLS

1 - admin

Tanada ...

		2200									
10440 0014341		74.7	TABELY	Cate sum	5	į		1	6		
SIONE I THE INOU BALCH		UAIE	I AKUE	UNO I	XMEC	اد	ALC: CR	AL *81.N	2	X.T.D. CK.	1
	SP3*NONE *		1000.0	0901	103.00	8	021 -	26.46	0.0		
			0.0001	1060	104 .00	80	- 120	26.46	0.0		
1077*1CAP 35075		98 330 10	100.00	61.	106.00	2	- 110	12.64		20.00	
	SP2*NONE*		100.00	117	104.00	2	- 110	12.64	1.69		
	SP3*NOME *1		100.00	129	117.00	2	- 110	12.64	90.8		
36110	SPI+NONE+2	23 FEB 87	00.001	94.9	94.90	20	011 -	9			
			100.00	95.6	95.60	20	011	9	2.45		
36268		23 NOV 86	100.00	99.5	98.50	2	011,	19.			
	SP2*NONE*!		100.00	101	100.00	20	011,	.67	1.6.1		
	SP3*NONE * I		100.00	101	101.00	2	- 110	.67	-9°-		
	SP4*NOME * 1		100.00	107	106.00	20	011	.67	7.53		
1059*1CAP 35075		01 DEC 86	10000	10300	102.00	8	- 120	63.05		20.00	
	SP2*NONE * I		10000	10300	102.00	9	- 120	63.05	ŋ.ŋ		
			10000	10200	102.00	80	- 120	63.05	U.9x		
36110	SPI+NONE+2	23 FEB 87	10000	8460	84.60	80	- 120	3			
	SP3*NOME *2		10000	8450	84.50	08	- 120	0	0.12		
36268	I = 3MON = I dS	23 NOV 86	10000	9790	97.90	8	- 120	0			
	SP2*NONE * I		10000	0186	98.10	80	- 120	0	0.20		
	SP3*NON[#1		10000	9780	97.80	9	- 120	0	01.0		
			10000	10200	102.00	80	- 120	0	4, 10		
		01 DEC 80	200 00	563	113.00	82	- 115	0		15.00	
	SP2*NOME * I		200.00	553	111.00	82	- 115	ŋ	1, 79		
			200.00	185	116.00	92	- 115	0	3.15		
36:10	SPI #NONE #2	23 FEB 87	200,00	490	97.70	92	- 115	2.08			
			200.00	485	96.00	82	- 115	2.08	1.65		
36268	•	23 NOV 86	200.00	519	102.00	82	- 115	6.67			
	SP2*NONE*1		200.00	535	106.00	92	- 115	6.67	3.04		
	SP3+NOME # I		200.00	539	106.00	82	- 115	19.9	3.78		
	SP4*NONE * 1		200 00	548	108.00	85	- 115	19.9	5.44		
	•	05 NOV 86	5.00	4.95	95.10	9	- 120	. 1938		20.00	
			5.00	4.77	91.50	90	- 120	1938	3.70		
34 706		12 NOV 86	4.70	4.10	97.20	80	- 120	.8023			
	SP2*NONE *1		4 . 70	4.58	97.50	80	- 120	. 8023	90.11		
	SP3*NOME # 1		4.70	4.85	103.00	80	- 120	. 8023	16.76		
34819	SPI*NONE * I	19 NOV 86	5.00	4.90	98.00	80	- 150	7.			
	SP2*NONE * I		5.00	5. 16	103.00	90	- 120	7.	2.17		
1059=1CAP	36268 36110 36268 35075 34647 34706		SP3=NONE #2 SP3=NOME #1 SP2=NOME #1 SP3=NOME #1	SP3-NONE "2 23 NOV 86 SP2-NOME"   29 NOV 86 SP2-NOME"   29 NOV 86 SP2-NOME"   29 NOV 86 SP2-NOME"   29 NOV 86 SP2-NOME"   29 NOV 86 SP2-NOME"   29 NOV 86 SP2-NOME"   29 NOV 86 SP2-NOME"   29 NOV 86 SP2-NOME"   29 NOV 86 SP2-NOME"   29 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   29 NOV 86 SP2-NOME"   29 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86 SP2-NOME"   20 NOV 86	SP3=NONE # 2 SP1=NOME # 1 SP2=NOME # 1 SP3=NOME # 1 SP3=NOME # 1 SP3=NOME # 2 SP3=NOME # 2 SP1=NOME # 2 SP1=NOME # 2 SP3=NOME # 1 SP3=NOME # 1 SP	\$P3*NOME*2  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOME*3  \$P3*NOM*3   SP3-NOME*1         23 NOV 86         100.00         92.6         92.60           SP3-NOME*1         23 NOV 86         100.00         99.2         98.50           SP3-NOME*1         100.00         101         101.00           SP3-NOME*1         100.00         101         101.00           SP3-NOME*1         100.00         102.00         102.00           SP3-NOME*1         100.00         10300         102.00           SP3-NOME*1         23 NOV 86         10000         94.50         84.50           SP3-NOME*1         23 NOV 86         10000         97.90         97.90           SP3-NOME*1         23 NOV 86         500.00         56.3         111.00           SP3-NOME*1         23 NOV 86         500.00         56.3         111.00           SP3-NOME*1         23 NOV 86         5.00.00         49.9         97.10           SP3-NOME*1         12 NOV 86         5.00         4.70         4.85	SP3-NOME*1         23 NOV 86         100.00         92.6         92.60         70           SP3-NOME*1         23 NOV 86         100.00         99.2         98.50         70           SP2-NOME*1         100.00         101         101.00         70           SP3-NOME*1         100.00         107         106.00         70           SP3-NOME*1         100.00         10300         102.00         80           SP3-NOME*1         10000         10300         102.00         80           SP3-NOME*1         10000         9450         84.50         80           SP3-NOME*1         10000         9450         84.50         80           SP3-NOME*1         10000         9450         97.90         80           SP3-NOME*1         10000         9450         97.90         80           SP3-NOME*1         10000         9780         97.90         80           SP3-NOME*1         10000         9780         97.90         80           SP3-NOME*1         10000         9780         97.00         80           SP3-NOME*1         23 NOV 86         500.00         53         111.00         85           SP3-NOME*1         12 NOV 86	SP3-NOME*1         23 NOV 86         100.00         92.6         92.60         70 - 110           SP2*NOME*1         23 NOV 86         100.00         101         101.00         70 - 110           SP2*NOME*1         100.00         101         101.00         70 - 110           SP2*NOME*1         100.00         103 ID         106.00         70 - 110           SP3*NOME*1         100.00         103 ID         102.00         80 - 120           SP3*NOME*1         10000         103 ID         102.00         80 - 120           SP3*NOME*2         23 FEB 87         10000         84.50         80 - 120           SP1*NOME*2         23 FEB 87         10000         84.50         84.50         80 - 120           SP3*NOME*1         23 NOV 86         10000         97.90         97.90         80 - 120           SP3*NOME*1         23 NOV 86         10000         97.80         97.90         80 - 120           SP3*NOME*1         23 NOV 86         500.00         563         111.00         85 - 115           SP3*NOME*1         23 NOV 86         500.00         563         111.00         85 - 115           SP3*NOME*1         23 NOV 86         500.00         519         95.10	SP3*NOME**1         23 NOV 86         100.00         92.6         92.60         70 - 110         67           SP3*NOME**1         23 NOV 86         100.00         101         100.00         70 - 110         .67           SP3*NOME**1         100.00         101         101.00         70 - 110         .67           SP3*NOME**1         100.00         101         101.00         70 - 110         .67           SP3*NOME**1         100.00         1030         102.00         80 - 120         63.05           SP3*NOME**1         100.00         10300         102.00         80 - 120         63.05           SP3*NOME**1         23 NOV 86         100.00         84.60         80 - 120         63.05           SP3*NOME**1         23 NOV 86         100.00         94.50         80 - 120         63.05           SP3*NOME**1         23 NOV 86         100.00         97.80         80 - 120         63.05           SP3*NOME**1         23 NOV 86         500.00         97.80         80 - 120         63.05           SP3*NOME**1         23 NOV 86         500.00         97.80         80 - 120         63.05           SP3*NOME**1         23 NOV 86         500.00         53.00         85 - 115	SP3-NOME***         100.00         92.6         70.110         67         2.45           SP1-NOME***         23 NOV 86         100.00         91.2         98.50         70.110         67         1.61           SP2-NOME***         100.00         101         100.00         70.110         67         1.61           SP2-NOME***         100.00         101         100.00         70.110         .67         1.61           SP2-NOME***         0.0 DEC 86         100.00         10300         102.00         80.120         63.05         0.0           SP2-NOME***         0.1 DEC 86         10000         10300         102.00         80.120         63.05         0.0           SP2-NOME***         0.1 DEC 86         10000         10200         102.00         80.120         63.05         0.9           SP2-NOME***         10000         99.10         80.120         80.120         63.05         0.9           SP2-NOME***         10000         99.10         87.00         80.120         63.05         0.9           SP2-NOME***         10.000         97.00         98.10         80.10         97.00         97.00         97.00         97.00         97.10         97.10         97.10	

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. QUALITY CONTROL SUMMARY FOR TYNDALL AIR FORCE BASE-FIELD GROUP TYNDLS

	3			Semple	1 5	٤.,		)					
NAME	ST-S	STORE 1 *ME THOD	BATCH	SAMPLE	DATE		LOUND	KREC	9	UNSPINED	R. P. D.	R.P.D. CRIT.	ļ
CARBON TETRACHLORIDE	7/90	32 102*HA		SPM2"TYMDL2"7		0.20	0.20	101		0.0			
CARBON TETRACHLORIDE	7°90	32102*HA	34825	SPRINT THOUGH	21 001 86	0.20	0.17	96.50	ı	0.0			
Sweet 2000 in 210 in	3	************		SPR3=1180L4=/		0.70	 	00.00		D :			
L'I-DICHEOMOCIMANE	1	34430""		SPREATTEND AND		07.0	07.0	93 00	57 - 121				
				SPH 3m TYMD1 4m7		0.20	0.17	85.00		9 3			
1 2-DICHLOROFTHAME	1/9n	34531WHA		SPN2#178001 2#7		0.20	0.23	115.50	,	2 0			
	•			SPHIOTYMD( 4.)		0.20	0.20	102.00		0.0			
				SPH 3+ TYMDL 4+7		0.20	61.0	94.50	ì	0.0			
1 ) )-TRICHL'ETHANE	7/9n	34506"HA		SPH2+TYNDL2+7		0.20	07.0	101 00	-	0.0			
				SPH I TYMDI 4 I		0.20	0.20	00 66	-	0.0			
				SPH34TYMDL447		0.20	0.17	83.00	53 - 125	0.0			
E THYLBENZENE	7/3A	34371#91		SPM2+TYMDL2+7		2.52	2.80	= = =	-	0.0			
				SPHI-TYMDL4-1		2.22	2.28	102.70	48 - 144	0.0			
				SPM3*TYMDL4"7		2.22	2.05	92.34	141 - 81	0.0			
TOLUENE	1/9n	34010*P1		SPM2=TYMDL2=7		2.44	2.45	100.41	59 - 135	0.0			
				SPRINTYMD14*1		2.14	2 34	109.35	-	0.0			
				SPM3+TYNDL4+7		2.14	2.06	96.26	59 - 135	0.0			
ARSENIC, TOTAL	ህር/J	1002*1CAP	35075	SPM*P[PB*]	01 DEC 86	1000	1130	112.46	7	10,1			
				SPM=PEP8=10		1087.1	1340	119.58	7	39.2			
			35477	SPM-TYNDL 34!	14 JAN 87	0.0001	01:	102.71	-	<b>8</b> 6.4			
				SPM-TYNDL 3+3		963.36	1230	107.03	<del>-</del>	203			
Q				SPIN-TYNDL 5+1		0.0001	0001	17 66	-	2.06			
<b>)</b> —				SPN#T YNDL 5#4		963.36	0£04	105.83	-	9.00			
42			36110	SPM=TYNDL 5*5	23 FEB 87	0 0001	676	94.94	-	0.0			
				SPM-TYNOL5-8		0.000	- 5	94.06	-	0.0			
ANT I MONY, TOTAL	\ 00/1	1097-1CAP	35075	SPM*PEPB*1	01 DEC 86	500.00	532	104.64	_	9.15			
			,	OI #Bd Jd#HdS		20. 484	95 :	116.53		0.0			
			36110	SPREI YNDL SES	78 811 87	500.00	***	88.88		0.0			
			970,70	SPREITHDL SAN	3	0.000.0	67.7	19.69	021 - 09	n 0			
TO TOTAL STORY	7 011	042346101	30705	COMPRESSION STATE	98 AOM 67	200.00	513	103.01		<b>.</b>			
BENTLL IUN, IUIAL	7,90	101541581	33073			96, 36	0.11	40.07	,	<b>.</b>			
			15477	SPMeTVMD 201	14 IAN 07	5 00 05	27.7	, T	,	9 2			
				SPERSTYMEN 36.3		85.28	956	35.10	85 - 115				
				SPM#7 TMOL S# 1		50.00	52.0	87.20	85 - 115	8 37			
				SPM*TYNDL 5*4		853.68	935	109.52	-	0			
			36110	SPM*TYNDL 5*5	23 FEB 87	50.00	43.1	96.16	,	0.0			
				SPH*TYNOL5*8		1000.0	920	92.01	85 - 115	0.0			
CADMIUM, TOTAL	7/9n	1027-1CAP	35075	SPM-P[PB*]	98 230 10	50.00	£. 54.3	108.52	85 - 115	0.0			
			31.77	OL BRANKS LING		1006.7	2 :	61.611		o 6			
			30 10	SPERIT INDES	/8 914 67	00.00	5 . IC	102.50	CI - CO	9 6			
			36769	CPH47 YMD: 540	AQ VOM SC	2000	8 65	105, 70	,	o c			
CHROMIUM TOTAL	7/90	1034#1CAP	35075	SPM*PEP8#1		200.00	219	109.51	,				
				SPM*P[PB*10	:	966.77	1140	118.44	-	0			
			96110	SPH*TYNDL5*5	23 FEB 87	200.00	186	93.23	ī	0.0			
				SPH*TYNDL5*8		1000.0	935	93.53	,	0.0			
			36268	SPM*1 TNDL 5*9	23 NOV 86	200.00	500	99.75		0.03			
COPPER, TOTAL	1/30	1042*1CAP	35075	SPM*PEPB*1	01 DEC 86	250.00	152	99.04	7	3, 10			
				SPM*PEPB*10		929.21	1050	113.28	,	0.55			
			36110	SPH+TYNDL5+5	23 FEB 87	250.00	235	89.54		8.01			
				SPM*T YNDL 5*8		1000.0	906	90.64	-	0.0			
			36268	SPH*TYNOL 5#9		250.00	25.1	99.76		1.12			
LEAD_TOTAL	٦/ و 00 / ا	1051+1CAP	35075	SPR PP PP PP PP PP PP PP PP PP PP PP PP P	01 0[C 86	500.00	513	106.43	071 - 08	0.0			
				01 *84 1d*#dS		1020.9	35	8 91	071 - 08	<b>o</b> . 0			

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. QUALITY CONTROL SUMMARY FOR TYNDALL AIR FORCE BASE-FIELD GROUP TYNDLS

1

;

UDALI IY CUNINUL SUTTANY TON IYADALL	SUTTANT			AIR FUNCE BASE-FIELD GROUP LYNDLD	DA3E - 1 E	ברים ברים ברים	2 - -	L J			
1	211411	CTOBE 1 SMC TMOD	RATCH	ordinor sample	COMPTRACTOR SPING RECOVERY SUBMISSION COM	ACLOVET 9 30		2 3 9 5	1107 730	4 0 0 4 1 0 3 N 1 1	100
		36110	36110	SPH"TYNDL 5"S	23 FEB 87	500 00	482	16 26	80 - 120	17.0	
				SPM"TYNDL 5"8		1000.0	945	94.51		0.0	
			36268	SPM*TYNDL5*9	23 NOV 86	500.00	535	107.06	80 120	0.0	
NICKEL, TOTAL	1/9n	1067#1CAP	35075	SPN=PEP8=	98 730 10	500.00	542	108.37	80 - 120	0.0	
				SPH*PEP8*10		918.86	1130	115.88	,	0.0	
			36110	SPM+ TYNDL 5+5	23 FEB 87	S00.00	480	95.96	120	0.0	
				SPM"TYNDL 5*8		0.0001	<b>9</b> 04	90.35	7	0.0	
			36268	SPM*TYNOL5*9		200 00	544	106.80	7	10.3	
SELENIUM, TOTAL	1/90	1147#1CAP	35075	SPM-PEP8+1	98 330 (0	1000.0	1070	105.71	80 - 120	0.0	
				SPM*P[PB*10		1111.4	1380	121.87	•	0.0	
			36110	SPM«TYNDL 5*5	23 FEB 87	1000.0	196	99.05	•	n	
				SPM-TYNDL 5-8		1000.0	948	97,18	80 - 120	5	
			36268	SPM"TYNDL 5*9	23 NOV 86	1000.0	1110	106.20	,	43.3	
SIL VER, TOTAL	1/9n	1077*ICAP	35075	SPN*P[P8*	01 DEC 86	100.00	601	105.96	-	3.24	
				01 •84 34 • WdS		970.89	1130	115.09	,	91.8	
			36110	SPM*TYNDL 5*5	23 FEB 87	100.00	92.5	91.03		1.47	
				SPR-TYNDL 5-8		200.00	439	87.80		0.02	
			36768	SPM*TYNDL 5*9	23 NOV 86	100 00	105	102.86	4	2.17	
THALL IUM, TOTAL	1/90	1059*ICAP	35075	SPM*P[PB* I	) <b>(</b> (	10000	10400	103.65	80 - 120	0.0	
				SPM=PEP8=10		1025.5	1500	118.52	80 - 120	0.0	
			36110	SPM"TYNDL 5"5	23 FEB 87	10000	8530	65.35		0.0	
				SPM*TYNDL 5*8		1000.0	970	16.98	ı	0.0	
			36268	SPM"TYNDL 5*9	23 NOV 86	10000	0986	97.98	80 - 120	61.6	
Z INC, TOTAL	1/90	1092#1CAP	35075	SPM*PEP8*!	) <b>!</b> (	500 · 00	575	112.74	95 - 115	11.7	
				SPH-P[P8-10		1014,4	1210	116.62	85 - 115	27.3	
			36110	SPM#TYNDL 5#5	23 FEB 87	200.00	527	97.28	85 - 115	40.3	
				SPM*TYNDL 5*8		0.0001	956	92.09	t	16.4	
			36268	SPM-TYNDL5+9	23 NOV 86	200.00	541	106.13	ī	10.1	
MERCURY, TOTAL	1/90	71900*CVAA	34647	SPM* TYNDE 5* !	Š	9n S	4,45	91.48	80 - 120	0	
				SPH#TYNDL 5#2		90.5	4,45	91.48	7	9	
			34706	SPR-MXELE*!	12 NOV 86	4.70	4.16	81.59		0.32	
Q·			34819	S-8d 3d*NdS	NO N	5.00	<b>4</b> .83	100.60	80 - 120	0.0	
-4				SPR*MHCM: 42		5.00	4.54	94.80	80 - 120	0.0	
•3				SPR-MOM-642		5.00	5.36	97.74	80 - 120	0.47	

					Method blan	Method blank Sample Summary	
NAME	STIMO	STORET*NETHO		SAMPLE	DATE	FOUND	
BROMOD I CHLOROME THANE	1/90	32101*HA	•	MB*NONE *666	21 OCT 86		
BRONOF ORM	7'9n	32104"HA		HB-NOME *666	21 001 86	0	
BROROME THANK	√9n	34413*HA		HB-NONE *666		ے	
CARBON TETRACHLORIDE	1/3n	32102*HA		MB*NONE *666		n	
CHLOROBE NZE NE	√20 0€/1	34 30 I * HA		MB"NOME "666		2	
	1/90	34311"HA		MB*NONE *666		0	
2-CHLOROETHYLVINYL ETHER	1/9n	34576"HA		MB*NOW *666		э.	
CHLOROFORM	1/30 20	32 106•HA		HB-MOM-866		<b>o</b> :	
CHLURUM INAME	ار دور	344 18414		OOO BROWN DU		<b>5</b> 5	
DISEMBLE OR ONE I HAME DICHLORODIFLUORO METHANE	7 79	34668*HA		MB*NOWE*666			
¥	1/90	34496*HA		#8*NOME #666		0	
1 2-DICHLOROETHAME	7/30	34531"HA		MB*NOME *666		0	
1 1-DICHLOROETHYLEME	1/9n	34501 "HA		MB*NOME *666		a	
TRANS-1, 2-DICHLORO ETHEME	1/ <b>9</b> n	34546*HA		MB*NOME *666		a	
1,2-DICHLOROPROPANE	1/30	3454 I*HA		MB*NOME *666		O	
CIS-1, 3-DICHLORO PROPENE	7 <b>.</b> 70	34 704 * HA		HB*NOME *666		3	
TRANS-1, 3-DICHLORO PROPENE	1/30	34699*HA		MB*NOME *666		<b>a</b> :	
METHYLENE CHLORIDE	7 9	34423"HA		MB*NOM *666		э ;	
1 1 2 2-TETRACHLORO ETHANE	1/3n	34516#WA		HB*NOM *666		<b>3</b> 3	
TE TRACHLOROE THENE	7 5	344/54HA		THE WOME SOOD		<b>3</b> 3	
o o o to come of the Mile	7 5	34500°HA		MENTAL STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE		<b>o</b> a	
TO I C - INICAL ILIAME	3	AH = 1 1 5 # 5		MON-BOM		3 3	
TRICAL STATEMENT	1, 21	344898HA		MR*MOM *666		<b>.</b> .	
VINT CHORIDE	7.90	39175*HA		M8=NOME=666		: 23	
20 17 18 18 18 18 18 18 18 18 18 18 18 18 18	1/9n	34030*P1		MB*NOME *666			
ETHYLBENZENE	1/9n	34.37 1 P I		MB*NOME *666		a	
TOLUENE	1/90	34010*P1		MB*NOME *666		O	
ARSENIC, TOTAL	1/ <b>9</b> 0	1002 * ICAP	35075	HB*NOME *	250		
Ó			35477	HB * NOW *	14 JAN 87		
-4			2	FIB - NOME #2	9		
14			101	FEB FNORG # 2	73 110 87	<b>3</b> 2	
ANTIMONY TOTAL	1/90	1097#1CAP	35075	HB*NOME *!	) <del>1</del> 0	. 0	
•			36 - 13	FIB * NOME * !	£ 8	0	
				FIEFWOME #2			
			36268	FIGHTONE # 1	23 NOV 86	0 0	
14101 #66 169 30	17 30	1012-1740	15075	MONTH ST	A8 110 11	~ - c	
מרטור ברותו ברותו ברותו	à		35477	FIB * NOWE * 1	Z W		
				FIB * NONE *2	;		
			16110	TROWN SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF SELECTION OF	73 158 87	0 :	
A TOT AND LIVE TOTAL	116.71	1027*1080	15675	A SHOWN OF	AK DIG 10	66 1	
			36110	FIB * NOWE # 1	£ 83		
				MB*WOME #2		c	
			36268	MB*MOME # +	23 NOV 86	80°.	
CHROMIUM TOTAL	) () ()	1034*1CAP	35075	MB*NONE # 1	ur 010 86		
			36110	MB*NCNE * I	f { B		
			976.76	FIB * NONE # 2	3	0:	
			30705	THE WOME #2	00 404 67	2 3	
COPPER TOTAL	U6.∕L	1042*ICAP	35075	HB*NONE	01 063 86	Ati	
			3				

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC.	SI ENCE SUMMAR	AND ENGIN	EERIN	G, INC. AIR FORCE	BASE-FIFIO GROUP		
					Method Blank Sample Summary		)
MATH	SILIS	STORE 1 *NE THOO	BATCH	MANNONE #2	DATE	FOUND	
			36268	#B*NONE #1	23 NOV 86 0		
				MB*NONE "2		_	
LEAD, TOTAL	7∕ 90 ∩0′ 1	1051*1CAP	35075	HB*NONE	99	49.36	
			36110	HB*NONE *!		3	
				MB*NONE =2	0	_	
			36268	MB*NONE * I	23 NOV 86 0		
				MB*MONE *2		20.57	
NICHEL TOTAL	1/30	1067*1CAP	35075	MB*NONE * 1	0 010 86	5	
			36110	MB*NONE .		5	
				MB*NONE *2	3		
			36268	MB=NOME = 1	23 NOV 86 9	9.73	
				MB*NONE #2			
SELENIUM, TOTAL	1/90	1147*ICAP	35075	HB-NONE .	98	94.49	
			36110	MB * NONE * I	23 FEB 87 2	23.4	
				MB=NONE #2	<b>3</b>		
			36268	FIB - NONE - 1	23 NOV 86 2	26 46	
				HB*NONE *2	•	41,15	
SILVER, TOTAL	7/9n	1077=1CAP	35075	HB-NONE -1	98	15.64	
			36110	MB*NONE * 1	23 FEB 87 6	9	
				MB*NONE *2	3	0	
			36268	RB*NONE * I	23 NUV 86	19	
				MB*NONE *2		91.	
THALL IUM, TOTAL	1/ <b>3</b> 0	1059+1CAP	35075	HB-NONE - I	98	63.05	
			36110	MB MONE 4	23 FEB 87 0		
				MB*MONE #2	9		
			36268	MB * NONE * 1	23 NOV 86 0		
				MB*NONE #2	5		
ZIMC_TOTAL	1/90	1092*ICAP	35075	MB = NONE = 1	98		
			36110	MB*NONE * I	23 FEB 87 2	2.08	
				MB*NONE #2		.07	
			36268	HB*NOWE * I	23 NOV 86 6	29.9	
1				MB*NONE #2	_	14.75	
MERCURY, TOTAL	V90	71,500°CVAñ	34647	HB*WONE *1	9.6	1938	
			34706	MB I *NOME # 1	12 NOV 86	. 8023	
(				HB2*NONE # 1		. 1002	
) <b>~</b> -			34819	MB I *NONE * I	19 NOV 86	~	
45							

FIELD GROUP TYNDALL - 6

υ.	č
Z	2
_	ŕ
'n	n
Ž	3
H	Š
Ū	Č
Ž	٥
Ħ	
Ž	ř
Ш	u
AND ENGINEERING	9
₹	
	_
ŭ	ģ
ŭ	ă
Ħ	Focana
SCI ENCE	•
	7
₹	DATON /
5	ò
¥	,
ENVI RONNENTAL	
본	U ONYO
Ē	Q
ź	4
Ш	Û

SAMPLE	/ BATCH REPORT FOR FIELD	CO GROUP TYNOLG
9		,
SAMPLE 10		BATCH 8
TYMDL6"		34825
	쭗	34825
	1, 2-DIBRONOE THANE (EDB)	34522
	_	34552
	LEAD, TOTAL	3484
TYNDL6=2		34625
	簑	34825
	1, 2-D18ROMOETHANE (EDB)	34522
	HYDROCARBOMS, PCTRO	34552
	LEAD, TOTAL	34894
TYMDL6*3	WOLATILE ARONATICS(602)	34625
	VOLATILE HALOCARBONS(601)	34825
	1, 2-0 I BRONOE THANE (EDB)	34522
	HYDROCARBONS, PETRO	34552
	LE AD TOTAL	35121
TYMDL6*4	VOLATILE ARONATICS(602)	34825
	훒	34825
	1, 2-DIBRONOE THAME (EDB)	34522
	HYDROCARBONS, PCTRO	34552
	LEAD, TOTAL	34894
TYNDL6*5	VOLATILE ARONATICS(602)	34825
	AL OCARBONS	34825
	1, 2-DIBRONOE THAME (EDB)	34522
	HYDROCARBOMS, PETRO	34552
	LE AD_TOTAL	34894
17MDL6*6	VOLATILE AROMATICS (602)	34825
	¥	34825
	1, 2-DIBRONOE THANE (EDB)	34522
	HYDROCARBONS, PETRO	34552
	LEAD, TOTAL	46.84E
TYMDL6*7	VOLATILE ARONATICS (602)	34825
	HAL OCARBONS (60)	34825
	1,2-DIBROMOETSAME (EDB)	34522
	HYDROX ARBONS, PL 1RO	76696
	LEAD, TOTAL	12165
I MULO "B	MOLATILE ANDMAILES(OUZ)	34663
		34522
	_	25575
	LEAD TOTAL	76876
TYMDL6*9	VOLATILE ARONATICS (602)	34825
	VOLATILE HALOCARBONS (601)	34825
	1,2-DIBRONOETHANE (EDB)	34522
	HYDROCARBONS, PETRO	34470
	LEAD, TOTAL	34894
TYMDL6*10	VOLATILE AROMATICS(602)	34825
	SE SE	34825
	1, 2-DIBROMOE THANE (EDB)	34522
	HYDROCARBOMS, PETRO	34552
;		34894
TARDI As I	VOLATILE AROMATICS(602)	\$2 H 23

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. SAMPLE / BATCH REPORT FOR FIELD GROUP TYNDLG

<b>1</b>	
HTDROCLAKBOMS, PL 1 NO LE AB, TOTAL	
E SP	

ASE-FIELD GROUP TYNDL6	
ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. QUALITY CONTROL SUMMARY FOR TYNDALL AIR FORCE BASE-FIELD GROUP TYNDLG	

					COROLL STRICT			
NAM.	STIME	STORET * METHOD	BATCH	SAMPLE	- 1	FOUND	R.P.D.	MAX & REPL DIFF
HYDROCARBONS PETRO	1/9H	45501+1 34627	34627	RP I .T YNDL 6. 10	98 AON 90 01	1642	1642 30.90	
HYDROCARBONS, PETRO	MG/L	4550   # 1	34627	RP2=TYNDL6=10 06 NOV 8	•	. 1642	0.0	

INE		UNITS	STORE THRE THOD		SAMPLE		TARGET	FOUND	KREC	REC. CRIT.	MET #BLK	R.P.D.	R.P.D.
CARBON TETRACHLORIDE		7/9n	32 102*HA	34825	SP2*NONE *666	21 OCT 86	0.20	0.17	96.00	Ι'	0	i	31.00
RBON TETRACHLORIC		<b>U</b> C/L	32 102*HA		SP3*NONE = 666	21 OCT 86	0.20	0.21	107.60	SS - (3)	0		31.00
					SP4*NONE *666		0.20	0.21	104 00	•	0	D. D	
					SP5*NOME*666		0.20	) ·	85.00	55 - 131	<b>o</b> (	21.05	
MANT TOOL WOLLD IN THE	<b>)</b> 11	7 311	24404044		SPORTONE FOR		07.0	<b>8</b> -	00.16	55 - 151	<b>)</b>	15.35	. 00
- PICHEOROE INDIK	5		40.06.440		SP2*NOME*666		200	<u> </u>	00.78	57 - 121	• =	5	90.00
					SP3*NONE *666		0.20	0.23	114.00	-		30,00	
					SP4*NOME*666		0.20	0.21	107.00	-	0	21.05	
٠					SP5 ** NOME ** 666		0.20	61.0	92.50	121 - 121	9	= = = = = = = = = = = = = = = = = = = =	
					SP6*NOME *666		0.20	61.0	95.50	-	0	Ξ.Ξ	
1, 2-D LCHLOROE THANE	3	ソタ	34531+HA		SP I = NONE * 666		0.20	0.17	82.50	-	Ð		27.00
					SP2*NOME *666		0.20	97.0	89.50	,	0	5.7)	
					SP3*NONE *666		0.20	0.23	116.00	,	0	30.00	
					SP4 "NOME "666		0.20	0.22	109.00		0	25.64	
					SPS#NOME#666		0.20	0.17	87.00		0	o.0	
					SP6*NONE *666		0.20	90 t	91.50		5	5.7	
I I I - TRICHL'ETHANE		٦ او/د	34506*HA		3P   ** NON*   48		0.20	9 9	98.50	53 - 125	0 0	3	32.00
					SPZ=WUME *666		0.20	9	98.00	,		0.0	
					A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SECTION OF A SEC		0.20	0.22	90.50	23 - 55	<b>)</b>	20.00	•
					DOG THOM: 145		07.0	0.43	90.00		<b>5</b> C	66.39	
					OPE INON-CAS		0.20	9 0	9 6	,	<b>,</b>	5.0	
CTHY! RCM76 MG	777	77	34 37 1401		SPURMONE SASA		2,2	9	95.00	,	• =	5.00	35,00
	5	à			SP2*NOME *666		2.22	68	85.10	,	, ,	9.9	3
Q <b>-</b>					SP3*NONE *666		2.52	2.53	100.00		. 5	) •	
52					SP4*NOME *666		2.52	2.37	94.00	48 - 144	0	6.53	
2					SP5*NOME *666		2.22	1.87	84.20	-	a		
,					SP6*NOME *666		2.22	. <b>8</b> 0	01 .18	,	0	3.81	
TOLUEME	ร	1/90	34010#PI		SPINONE #666		2.14	2.24	105.00		<b>5</b>	3	29.00
					SPZ#MOML#666		7 · · · ·	7.7	103.00	59 - 63	<b>&gt;</b>	D. D	
					SPANNE - 666			2 25	92.00		• •	61 01	
					SP5*NOME *666		2.14	7.7	79.90	59 - 135	. 0	2	
					SP6*NONE *666		2.14	1.74	81.30	,	0	1.74	
X LENES, TOTAL	3	7/3n	815514Pi		SP   *NONE *666		6.02	5.22	86.70	-	0		30.00
					SP2*NOME *666		6.02	5.22	86.70	-	0	0.0	
					SP3*NONE *666		6.02	7.12	90.91	56 - 134	0 0	30.79	
					SPECIAL PROPERTY OF SECOND		70.9	6.6	97.1	56 - 134	<b>&gt;</b>	24.39	
					SP6*NOWF*666		20.9		84 40	•	o	2 22	
1 2-DIBROMOETHANE	on (803)	1/90	77651*EC	34522	SP1*NONE*1	27 OCT 86	0.29	0.31	107.00		0	! :	29.00
					SP2*NONE * 1		0.29	0.30	104.00	90 - 140	0	3.28	
HYDROCARBONS, PETRO	Ĭ	#6/L	45501*1	34470	SPI*NONE *!	22 OCT 86	8200.0	3.86	92.60	ı			20.00
					SP2*NOME # 1	•	6200.0	3.92	94.00	ı	oo, d	54	
				34552	SP I * OME * I	30 OC 80	0.0028	3.00	07.78	70.2 - 124	92/0. 8.1	76	
				246.27	SP 2 WOME & 1	AR VOM AG	8200.0	- ×	00.101			2	
				7010	SP2*NOME * 1		8200.0	3.4	102.00	،	1.8	1.17	
LEAD TOTAL	90	7/90	1051*6FAA	34894	SP   *NONE * 1	25 NOV 86	50.00	57.1	103.00	2			20.00
					SP2 * NOME * 1		20.00	59.3	108.00	80 - 120	3.3067	3.78	
					SP3*NOME * 1		50.00	58.2	105.00	-	3.3067	1.9.	
					SPI "NONE #2		20.00	<b>4</b> .19	112.00	90 - 150	3.3067	7.26	
					SP2*NONE*2		20.00	9.69	116.00	80 - 120	3.3067	10,77	
											1		

	פֿ
ENVIRONMENTAL SCIENCE AND ENGINEERING, INC.	SACE LETER D
IZC.	
EERING.	STA LIAC
D ENGINE	2 × 1
ENCE AN	
JTAL SCI	
VI HONNEY	C >++ 14
Z	ē

OUALITY CONTROL SUMMARY FOR TYNDALL	SUMMARY	FOR TYNDALL	AIR FORCE	BASE~FIE	CD 6370		<b>2L6</b>				
			Standard Matr	IX Spike Recovi	er y and Rep	icate Summ	er u				
HAME	ST CAS	STORET "METHOD BATCH	SAMPLE	DATE	I ARGE 1	FOUND	KREC	REC. CRIT.	MET#BLA	R.P.D.	R.P.D. CRIT.
		35121	SPI*MONE"	12 DEC 86	50.00	47.7	95.50	80 - 120	. 1434		
			SP2*NOME * !		20.00	47.7	95.50	90 - 120	. 1434	0.0	
			SPI*NONE*2		\$0.00	57.1	114.00	021 - 08	. 1434	17.94	
			SP2"NONE"2		20.00	52.4	105.00	80 - 120	. 1434	9.39	
			SPINONE *3		20.00	43.1	96.10	80 - 120	. 1434	10,13	
			SP2*NONE*3 50.00 47.3 94.60 80		20.00	47.3	94.60	80 - 120	. 1434	0.84	
			SP : "NONE #4		50.00	57.5	115.00	80 - 120	. 1434	18.63	
			SP2#MOME *		20.00	53.3	107.00	80 - 120	1434	611.11	

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. QUALITY CONTROL SUMMARY FOR TYNDALL AIR FORCE BASE-FIELD GROUP TYNDLG

CONT. I COVINGE		יייייייייייייייייייייייייייייייייייייי	ب	Sample Matrix		Sarke Recovery Sum		ני					
NAME	CNITS	STORE 1 * NE THOD	BATCH	SAMPLE	DATE	TARGE T	FOUND	SREC	REC. C	CR1T.	UNSPIRED	R.P.D.	R.P.D. CRIT.
CARBON TETRACHLORIDE	7/90	i	34825	SPM2+TYNDL2+7	21 OCT 86	0.20	0.20	101.00	55	131	0.0		
CARBON TETRACHLORIDE	√3n		34825	SPM INTYMOL 481	21 OCT 86	0.20	0.17	86.50	55	131	0.0		
				SPM 3mTYNDL 4m7		0.20	0.17	85.00	55 -	131	0.0		
1. 1-DICHLOROETHAME	1/ <b>9</b> 0	34496*HA		SPM2*TYNDL2*7		0.20	0.20	100.50	. 15	121	0.0		
				SPM I . TYNDL 4 . I		0.20	61.0	93.00	٠ 23	151	0.0		
				SPM 3" TYNDL 4"7		07.0	0 17	95.00	- 25	121	0.0		
1_2-DICHLOROETHANE	7/9n	34531*HA		SPN2"TYMOL2"7		0.20	0.23	115.50	- 69	135	0.0		
				SPM in TYMDL 4" !		0.20	0.20	102.00	· 63	135	0.0		
				SPH3#TYNDL4#7		0.20	61.0	94.50	· <b>63</b>	135	0.0		
1, 1, 1-TRICHE "ETHANE	7/ <b>9</b> 0	34506*HA		SPM2+TYMDL2+7		0.20	0.20	101.00	23	125	0.0		•
				SPM I . TYMDL 4 . I		0.20	0.20	99.00	53 .	125	0.0		
				SPM3#TYMDL4#7		0.20	0.17	83.00	23	125	0.0		
ETHYLBENZEME	1/9n	34371*P1		SPM2+TYMDL2+7		25.2	2.80	= .==	, 8 <del>†</del>	<b>*</b>	0.0		
				SPM 1 * TYMDL 4 * 1		2.22	2.28	102.70	, 84	<b>*</b>	0.0		
				SPM3#TYNDL4#7		2.22	2.05	92.34	- 84	<b>:</b>	0.0		
TOLUEME	7/90	34010*P1		SPM2#TYMDL2#7		2.44	2.45	100.41	- 65	135	0.0		
				SPHI-TYMDL4"		2.14	2.34	109.35	. 65	135	0.0		
				SPM3+TYMDL4+7		2.14	2.06	96.26	- 65	135	0.0		
XYLENES, TOTAL	1/90	81551#Pi		SPM2#TYNDL2#7		6.02	8.76	145.51	95	134	0.0		
				SPR:=TYMDL 4=)		6.02	8 48	140.86	95	134	0.0		
				SPH3#TYNDL4#7		6.02	6.67	110.80	99	134	0.0		
1, 2-DIBRONOE THANE (EDB)	1/9n	77651*EC	34522	SPM*T YNOL 6* I	2	0.29	0.29	100.34	9	140	0.0		
HYDROCARBONS PETRO	1/94	45501*1	34552	SPM*TYNDL 2*9	30 OCT 86	8225.0	5.21	22.16	70.2	- 124.8	4.20		
LEAD, TOTAL	1/90	1051#GF AA	34894	SPM#NYPSC3#3	<b>₹</b>	20.00	0.95	114.07	. 08	021	<b>5</b>		
				SPN=PPPE - 3+3		00 001	126	114.15	- 08	120	9. -		
Q-				SPR.SEMRF #7		20.00	51.7	105.46	- 08	120	ŋ		
-5				SPH#TYNOL 24 I		90.09	71.0	120.52	- 08	120	10.8		
4				SPM-TYNDL 4"!		50.00	1.99	133,44	08	130	.0000		
				SPH#TYNDL4#12		100.00	145	114.15	- 08	120	31.2		
•				SPM=TYNDL 4=4		20.00	12.1	131.28	- 08	120	91.9		
				SPH#TYNDL6#10		20.00	62.4	116.22	- 08	021	4.30		
				SPM*TYNDL6#12		100.00	132	96.93	- 08	120	35.5		
				SPM*TYNDL6*9		100.00	137	108 . 76	. 08	120	28.0		
			35121	SPM*PEP9*12	12 DEC 86	100 00	Ξ	111.62	- 08	20	ŋ		
				SPM-TYNDL6+7		00 001	<b>6</b>	104.25	- 08	120	6.4		

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. QUALITY CONTROL SUMMARY FOR TYNDALL AIR FORCE BASE-FIELD GROUP TYNDLG Hathor Blant Sample

•

DOICHLOROWETHANNE	MAKE   UG/L   32 104 **IA   348 25   MB NONE **666   21 0CT   32 104 **IA   348 25   MB NONE **666   21 0CT   32 104 **IA   348 25   MB NONE **666   21 0CT   32 104 **IA   348 25   MB NONE **666   21 0CT   32 104 **IA   MB NONE **666   21 0CT   34 31 1**IA   MB NONE **666   21 0CT   34 31 1**IA   MB NONE **666   21 0CT   34 31 1**IA   MB NONE **666   21 0CT   32 105 **IA   MB NONE **666   21 0CT   34 55 **IA   MB NONE **666   21 0CT   34 55 **IA   MB NONE **666   21 0CT   34 55 **IA   MB NONE **666   21 0CT   34 55 **IA   MB NONE **666   21 0CT   34 55 **IA   MB NONE **666   21 0CT   34 55 **IA   MB NONE **666   21 0CT   34 55 **IA   MB NONE **666   21 0CT   34 55 **IA   MB NONE **666   21 0CT   34 55 **IA   MB NONE **666   21 0CT   34 55 **IA   MB NONE **666   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21 0CT   21						Method Blank	Method Blank Sample Summary	
10   10   10   10   10   10   10   10	MAKE   UG/L   32101*HA   34825   MB=NOME=666   21 OCT	ZAZE	SILES	STORE 1 - ME 1 HOD	BATCH	SAMPLE	DATE	COUND	
UG/1   32 104 = 144   3482	10E	BROMOD I CHL ORONE THANE	7)n	32101 WA	34825	MB*NOME *666	21 OCT 86	0	
10 E	10   10   10   10   10   10   10   10	BRONOF ORM	1/90	32104*HA	34825	MB*NOME *666	21 OCT 86	9	
11   11   12   10   12   10   12   10   13   10   14   18   10   16   16   16   16   16   16   16	11   12   10   10   11   12   10   10	BROMOMETHAME	7/ <b>9</b> 0	344! 3"HA		MB-NOM: -666		n	
UC/L   34301=HA   NB=NONE=666	UC/1   34301*HA   NB=NONE*666	CARBON TETRACHLORIDE	1/90	32 102*HA		MB-WOME -666		0	
C   ETHER   UG/L   34311=HA   HB=NOME=666	Letter   UG/L   34311944   NB=NONE=666	CHLOROBENZENE	חכיר	34 30 1 * HA		MB=NOME *666		0	
C   FHE	C   FTHER   UG/L   34576#HA   RIB=NONE=666	CHLOROE THANE	7/9n	34311*HA		MB*NOME *666		0	
UC/L 32105=HA   NB=NONE=666	UC/L 32 105 % HA   NB WIONE % 666		7/9n	34576"HA		HB*NOME *666		0	
UC/L   34418*HA   NB*NONE*666	UG/L   3418*HA   NB*NONE*666	CHLOROFORM	7/90	32 106 MA		MB*MOME *666		0	
Main   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael   Michael	MB	CHLOROME THANE	7/9n	344 I 8 * HA		999" 3NON-8H		0	
THANK   UG/L   34589HA	THANK   UG/L   B1524*HA   NB**NONE*666	D I BRONOCHL ORONE THANE	1/9n	32 105"HA		NB*NOME *666		0	
NETHANE   UG/L   34668#HA   NB=NONE=666	NETHANE   UG/L   34668*HA   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*666   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*1   NB*NONE*	DICHLOROBENZENE, TOT.	7/9n	81524"HA		<b>NB*NOME *666</b>		Ð	
E	E.   UG/L   34496=HA   NB=NONE=666	_	U6/L	34668"HA		MB*NOM *666		0	
EME	EME	1 1-DICHLOROETHAME	1/90	34496"HA		MB=NOME =666		D	
Fig. 16   16   16   16   16   16   16   16	FME   UG/1   34501#HA   NB#NONE #666	1 2-DICHLOROETHAME	UC/L	34531*HA		MB=NOME =666		0	
DETHE NE   UG/L   34546#HA   NB=NONE =666	NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW OWN   NEW	1 1-DICHLOROETHYLENE	1/90	34501"HA		999- 3HON-8H		0	
PROPENE   UG/L   3454 =HA	PROPENE   UG/L   34541#HA   NB#NONE#666		1/9n	34546*HA		MB*WOME *666		0	
PROPENS   UC/L   34704*HA	PROPENE   UC/L   34704*HA   NB*NONE*666		1/3n	34541*HA		NB*NONE *666		0	
10 PROPENTE UG/L 34699#HA   NB=NONE=666	10   PROPENT   16   14699=HA     NB=NONE=666		1/9n	34704*HA		MB*NOM *666		0	
CHLORIDE UC/1 34423#HA MB=WONE=666 FTRACHLORO ETHANE UC/1 34516#HA MB=WONE=666 ROCTHEN UC/1 34516#HA MB=WONE=666 CHL'ETHANE UC/1 34510#HA MB=WONE=666 CHL'ETHANE UC/1 39180#HA MB=WONE=666 CHL'ETHANE UC/1 39180#HA MB=WONE=666 CHL'ETHANE UC/1 34310#H MB=WONE=666 CHL'ETHANE UC/1 34310#H MB=WONE=666 CHL'ETHANE UC/1 34310#H MB=WONE=666 CHL'ETHANE UC/1 34310#H MB=WONE=666 CHL'I 34310#H MB=WONE=666 CHL'I 34310#H MB=WONE=666 CHL'I 34310#H MB=WONE=1 22 OCT 86 CHL'I 34551#E 34522 MB=WONE=1 25 NOV 86 CHL'I 1051#E A3430 MB=WONE=1 25 NOV 86 CHL'I 1051#E A3430 MB=WONE=1 12 DEC 86 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLOROPETHANE UC/1 1051#E A3430 MB=WONE=3 CHLO	CHLORIDE UC/1 34423"HA RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=666   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1   RB=NONE=1	2	1/90	34699"HA		MB*NOME *666		0	
THE NOTE THANK   THE NOTE OF THANK   THE NOTE OF THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THANK   THA	THE NET	METHYLENE CHLORIDE	ソンの	34423#HA		999* 3NON: 8W		0	
POETHER         UG/L         34475*HA         NB*NONE*666           CHL (THANE         UG/L         3451*HA         NB*NONE*666           CHL (THANE         UG/L         3918*HA         NB*NONE*666           CHL (A)         3918*HA         NB*NONE*666           DOCADE         JUC/L         39175*HA         NB*NONE*666           CHL (A)         34030*FI         NB*NONE*1         27 0C1 86           CHC (A)         34620*FI         NB*NONE*I         26 NOV 86           CHC (A)         34627         NB*NONE*I         25 NOV 86           CHC (A)         106/L (A)         105 NOV 86         NB*NONE*I           CHC (A)         34627         NB*NONE*I         25 NOV 86           CHC (A)         34627         NB*NONE*I         36 NOV 86           CHC (A)	Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Section   Sect	1, 1, 2, 2-TETRACHLORO ETHANE	1/9n	34516"HA		MB************************************		0	
CHILLETHAME UG/1 34506*HA NB*NOME*666 CHILLETHAME UG/1 34519*HA NB*NOME*666 CHILLETHAME UG/1 3478*HA NB*NOME*666 CHILLETHAME UG/1 3478*HA NB*NOME*666 CHILLETHAME UG/1 34371*P1 NB*NOME*666 CHILLETHAME (EDB.) UG/1 34371*P1 NB*NOME*666 CHILLETHAME (EDB.) UG/1 77651*EC 34522 NB*NOME*1 22 OCT 86 CHILLETHAME (EDB.) UG/1 77651*EC 34522 NB*NOME*1 25 OCT 86 CHILLETHAME (EDB.) UG/1 77651*EC 34522 NB*NOME*1 25 OCT 86 CHILLETHAME (EDB.) UG/1 77651*EC 34522 NB*NOME*1 25 OCT 86 CHILLETHAME (EDB.) UG/1 77651*EC 34522 NB*NOME*1 25 OCT 86 CHILLETHAME (EDB.) UG/1 1051*EC A3521*NB*NOME*1 25 NOV 86 CHILLETHAME (EDB.) UG/1 1051*EC A3521*NB*NOME*1 25 NOV 86 CHILLETHAME (EDB.) UG/1 1051*EC A3521*NB*NOME*1 12 DEC 86 CHILLETHAME (EDB.) UG/1 1051*EC A3521*NB*NOME*1 12 DEC 86 CHILLETHAME (EDB.) UG/1 1051*EC A3521*NB*NOME*1 12 DEC 86 CHILLETHAME (EDB.) UG/1 1051*EC A3521*NB*NOME*1 12 DEC 86 CHILLETHAME (EDB.) UG/1 1051*EC A3521*NB*NOME*1 12 DEC 86 CHILLETHAME (EDB.) UG/1 1051*EC A3521*NB*NOME*1 12 DEC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHILLETHAME (EDB.) UG/1 1051*EC 86 CHIL	CHILETHANE UC/L 34506-HA NB-MONE-666 CHILETHANE UC/L 34519-HA NB-MONE-666 CHILETHANE UC/L 34488-HA NB-MONE-666 CHILETHANE UC/L 34030-P1 NB-MONE-666 CHILETHANE UC/L 34030-P1 NB-MONE-666 CHILETHANE UC/L 34030-P1 NB-MONE-666 CHILETHANE UC/L 34030-P1 NB-MONE-666 CHILETHANE UC/L 34030-P1 NB-MONE-666 CHILETHANE (EDB) UC/L 34010-P1 NB-MONE-1 22 OCT NB-MONE-1 20 OCT NB-MONE-1 20 OCT NB-MONE-1 25 MONE-1 NB-MONE-1 25 MONE-1 NB-MONE-1 25 MONE-1 NB-MONE-1 25 MONE-1 NB-MONE-1  TE TRACHLOROE THENE	1/90	34475*HA		MB*NOME *666		9		
CHILTHAME UG/L 34511PHA NB=NOME=666  FTHEME UG/L 3448BHA NB=NOME=666  OGNOMETHAME UG/L 34030PH NB=NOME=666  NB UG/L 34030PH NB=NOME=666  UG/L 34030PH NB=NOME=666  UG/L 34030PH NB=NOME=666  UG/L 34031PH NB=NOME=666  UG/L 34031PH NB=NOME=666  UG/L 34031PH NB=NOME=666  UG/L 34031PH NB=NOME=666  UG/L 34031PH NB=NOME=1 22 OCT 86  NG-THAME (EDB) UG/L 77651PEC 34522 NB=NOME=1 22 OCT 86  NG-THAME (EDB) UG/L 77651PEC 34522 NB=NOME=1 25 NOV 86  UG/L 1051=6FAA 34894 NB1=NOME=1 25 NOV 86  UG/L 1051=6FAA 34894 NB1=NOME=1 25 NOV 86  NB1=NOME=3  NB1=NOME=3  NB1=NOME=3  NB1=NOME=3  NB1=NOME=3  NB1=NOME=3  NB1=NOME=3  NB1=NOME=3	CHILLETHAME UG/L 34511+HA NB-WONE-666  FTHEME UG/L 39180+HA NB-WONE-666  UG/L 39175+HA NB-WONE-666  SRIDE UG/L 34030-P1 NB-WONE-666  UG/L 34030-P1 NB-WONE-666  UG/L 34010-P1 NB-WONE-666  UG/L 34010-P1 NB-WONE-666  UG/L 34010-P1 NB-WONE-666  UG/L 34522 NB-WONE-1 22 OCT  ONS.PETRO HG/L 45501+1 34470 NB-WONE-1 25 NOV  UG/L 1051+6FAA 34894 NB-WONE-1 25 NOV  HB/WONE-1 25 NOV	1, 1, 1-TRICHL'ETHANE	<b>1/9</b> 0	34506"HA		999" 3MON #8H		0	
THE NE	THENE	I, I, 2-TRICHL'ETHANE	1/3n	34511*HA		MB*NOME *666		0	
UGCNETHANE UG/L 34488+hA NB-NONE-666  38175=HA NB-NONE-666  UG/L 34030=P1 NB-NONE-666  UG/L 34010=P1 NB-NONE-1 22 OCT 86  34527 NB-NONE-1 22 OCT 86  34627 NB-NONE-1 25 NOV 86  UG/L 1051=6FAA 34894 NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE-1 25 NOV 86  NB-NONE	UGCNETHANE UG/L 34488+HA NB-NOME-666  DRIDE UG/L 39175+HA NB-NOME-666  UG/L 34309-11 NB-NOME-666  UG/L 34314-11 NB-NOME-666  DJAL UG/L 815518-11 NB-NOME-11 22 OCT 34521 NB-NOME-11 25 NOV NB-NOME-11 25 NOV NB-NOME-11 25 NOV NB-NOME-11 25 NOV NB-NOME-11 25 NOV NB-NOME-11 25 NOV NB-NOME-11 12 DEC NB-NOME-11 12 DEC NB-NOME-11 12 DEC NB-NOME-11 12 DEC NB-NOME-11 12 DEC NB-NOME-11 12 DEC NB-NOME-11 NB-NOME-11 12 DEC NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-NOME-11 NB-N	TRICHLOROF THEME	7/3n	39180*HA		MB*NONE =666		0	
UC/L 39175-HA	DR   DC / L   39175-HA   NB=NONE=666     UC/L   34030=P    NB=NONE=666     UC/L   34030=P    NB=NONE=666     UC/L   34010=P    NB=NONE=666     UC/L   8155 =P    NB=NONE=666     UC/L   R155 =P    NB=NONE=1   22 OCT     ONS. PETRO   NC/L   7755 =EC   34522   NB=NONE=1   22 OCT     ONS. PETRO   NC/L   105 =EFAA   NB=NONE=1   25 NOV     OCCUPATION   NB=NONE=2   NB=NONE=2     OCCUPATION   NB=NONE=2   NB=NONE=2     OCCUPATION   NB=NONE=2   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE=3     OCCUPATION   NB=NONE=3   NB=NONE	TRICHL'FLUORONETHANE	7/ <b>9</b> 0	34488"HA		MB*NOME *666		o o	
UG/L 34030*P  NB*NOWE*666   UG/L 34030*P  NB*NOWE*666   UG/L 34010*P  NB*NOWE*666   UG/L 34010*P  NB*NOWE*666   UG/L 81551*P  NB*NOWE*666   UG/L 81551*P  NB*NOWE*666   UG/L 77651*P  3422 NB*NOWE*1 22 OCT 86   34522 NB*NOWE*1 22 OCT 86   34522 NB*NOWE*1 22 OCT 86   34522 NB*NOWE*1 22 OCT 86   34627 NB*NOWE*1 25 NOV 86   UG/L 1051*CFAA 34894 NB*NOWE*1 25 NOV 86   NB*NOWE*2   NB*NOWE*2   NB*NOWE*2   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3   NB*NOWE*3	UC/L   34030P1   NB-WONK-666	VINYL CHLORIDE	7/9n	39175*HA		MB*NOME *666		Ð	
UG/L 3437!*P  NB*NONE*666   UG/L 34010*P  NB*NONE*666   UG/L 34010*P  NB*NONE*666   UG/L 34010*P  NB*NONE*666   UG/L 7765!*EC 34522 NB*NONE*  27 0C1 86   UG/L 7765!*EC 34470 NB*NONE*  20 0C1 86   34627 NB*NONE*  30 0C1 86   34627 NB*NONE*  25 NOV 86   UG/L 105!*GFAA 34894 NB!*NONE*  25 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*  15 NOV 86   NB*NONE*	EME UG/L 34371*P1 RB*NONK*e66  UG/L 34010*P1 RB*NONK*e66  UG/L 81551*P1 RB*NONK*e66  UG/L 17651*EC 34522 RB*NONK*e1 27 0CT  DNS.PETRO MG/L 45501*I 34470 RB*NONK*e1 20 0CT  34527 RB*NONK*e1 20 0CT  34627 RB*NONK*e1 25 NOV  UG/L 1051*6FAA 34894 RB1*NONK*e2  RB*NONK*e2  RB*NONK*e2  RB*NONK*e2  RB*NONK*e3  RB*NONK*e3  RB*NONK*e3  RB*NONK*e3	BENZENE	7/3n	34030*P1		999* 3MON *8H		o	
UG/L   34010*P    NB*NONE*666     UG/L   81551*P    NB*NONE*1   27 0CT 86     UG/L   45501*    34470   NB*NONE*1   22 0CT 86     UG/L   45501*    34470   NB*NONE*1   30 0CT 86     UG/L   1051*6FAA   34894   NB*NONE*1   25 NOV 86     UG/L   1051*6FAA   34894   NB*NONE*2   25 NOV 86     UG/L   1051*6FAA   34894   NB*NONE*2   12 DEC 86     UG/L   1051*6FAA   34894   NB*NONE*3   12 DEC 86     UG/L   1051*6FAA   34894   NB*NONE*3   13 DEC 86     UG/L   1051*6FAA   34894   NB*NONE*3   13 DEC 86     UG/L   1051*6FAA   34894   NB*NONE*3   13 DEC 86     UG/L   1051*6FAA   34894   NB*NONE*3   13 DEC 86     UG/L   1051*6FAA   34894   NB*NONE*3   13 DEC 86     UG/L   1051*6FAA   34894   NB*NONE*3   13 DEC 86     UG/L   1051*6FAA   34894   NB*NONE*3   13 DEC 86     UG/L   1051*6FAA   34894   NB*NONE*3   13 DEC 86     UG/L   1051*6FAA   34894   NB*NONE*3   13 DEC 86     UG/L   1051*6FAA   34894   NB*NONE*3   13 DEC 86     UG/L   1051*6FAA   13 UG/L   13 UG/L     UG/L   1051*6FAA   14 UG/L   15 UG/L     UG/L   1051*6FAA   14 UG/L   15 UG/L     UG/L   1051*6FAA   14 UG/L   15 UG/L     UG/L   1051*6FAA   14 UG/L   15 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   1051*6FAA   14 UG/L     UG/L   UG/L     UG/L   UG/L     UG/L   UG/L     U	UG/L   34010*P1   RENONE 666     UG/L   81551*P1   RENONE 666     UG/L   77651*EC   34522   RENONE 666     UG/L   77651*EC   34522   RENONE 1   27 0CT     UG/L   1051*6FAA   34634   RENONE 1   25 NOV     HB*NONE   27 0CT     HB*NONE   28 NOV     HB*NONE   28 NOV     HB*NONE   28 NOV     HB*NONE   28 NOV     HB*NONE   34634   RENONE   35 NOV     HB*NONE   35 NOV	ETHYLBENZENE	1/3n	3437 I*P.I		MB*NOME *666		o o	
DIAL   UG/1   81551P    NB-NONE-666	DIAL   UG/L   8155 =P    NB-NONE=666	TOLUEME	7/9n	34010*P1		999" JMON "814		o	
NS.PETRO HG/L 77651=EC 34522 NB=NONE=1 27 OCT 86  NS.PETRO HG/L 45501=1 34470 NB=NONE=1 22 OCT 86  34627 NB=NONE=1 30 OCT 86  34627 NB=NONE=1 30 OCT 86  NB-NONE=1 25 NOV 86  NB-NONE=1 25 NOV 86  NB-NONE=2 NB-NONE=2  NB-NONE=2 NB-NONE=2  NB-NONE=2 NB-NONE=2  NB-NONE=2 NB-NONE=2  NB-NONE=2 NB-NONE=2  NB-NONE=2 NB-NONE=2  NB-NONE=2 NB-NONE=2  NB-NONE=2 NB-NONE=2  NB-NONE=2 NB-NONE=2  NB-NONE=2 NB-NONE=2  NB-NONE=2 NB-NONE=2  NB-NONE=2 NB-NONE=2  NB-NONE=2 NB-NONE=2  NB-NONE=2 NB-NONE=2  NB-NONE=2 NB-NONE=2  NB-NONE=2 NB-NONE=2  NB-NONE=2 NB-NONE=2  NB-NONE=2 NB-NONE=2  NB-NONE=2 NB-NONE=2  NB-NONE=2 NB-NONE=2  NB-NONE=2 NB-NONE=2  NB-NONE=2 NB-NONE=2  NB-NONE=2 NB-NONE=2  NB-NONE=2 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3 NB-NONE=3  NB-NONE=3 NB-NONE=3 NB-NO	MCTHANE (EDB) UG/L 77651=EC 34522 NB=NONE=1 27 OCT NBS. PETRO NG/L 45501=1 34470 NB=NONE=1 22 OCT NBS. NONE=1 22 OCT NBS. NONE=1 34627 NBS. NONE=1 30 OCT NBS. NONE=1 34627 NBS. NONE=2 NONE=2 NONE=2 NBS. NONE=2 NBS. NONE=2 NBS. NONE=2 NBS. NONE=2 NBS. NONE=3 NBS. NONE=2 NBS. NONE=2 NBS. NONE=2 NBS. NONE=2 NBS. NONE=2 NBS. NONE=2 NBS. NONE=2 NBS. NONE=2 NBS. NONE=2 NBS. NONE=2 NBS. NONE=2 NBS. NONE=2 NBS. NONE=3 NBS. NONE=3 NBS. NONE=3 NBS. NONE=3 NBS. NONE=3 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4 NBS. NONE=4	XYLENES, TOTAL	٦ <b>/ ا</b> ر	81551eP1		999* MON*9H		0	
DNS.PETRO NG/L 45501*1 34470 NB*NONE*1 22 OCT 86 3452 NB*NONE*1 30 OCT 86 34627 NB*NONE*1 06 NOV 86 UG/L 1051*GFAA 34894 NB1*NONE*2 NOV 86 NB**NONE*2 NOV 86 NB**NONE*2 NOV 86 NB**NONE*2 NB**NONE*3 35121 NB1**NONE*3 NB**NONE*3	DMS.PETRO NG/L 4550:*:1 34470 NB*NONE*:1 22 0CT 34627 NB*NONE*:1 30 0CT 34627 NB*NONE*:1 30 0CT 34627 NB*NONE*:1 25 NOV NB*NONE*:1 25 NOV NB*NONE*:1 25 NOV NB*NONE*:1 25 NOV NB*NONE*:1 25 NOV NB*NONE*:1 25 NOV NB*NONE*:1 25 NOV NB*NONE*:1 25 NOV NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE*:1 NB*NONE**:1  NB*NONE***:1 NB*NONE***:1 NB*NONE***:1 NB*NONE***:1 NB*NONE****:1 NB*NONE*********************************		1/9n	77651*EC	34522	NB - NOME -	S	0	
34552 MB*NONE*1 30 0C1 86 34627 MB*NONE*1 36 NOV 86 UG/L 1051*GFAA 34894 NB1*NONE*1 25 NOV 86 NB1*NONE*2 NB2*NONE*3 35121 NB1*NONE*3 NB1*NONE*3	34552 PR#WONE*1 30 OCT 34627 PR#WONE*1 36 NOV U6/L 1051*6FAA 34894 PR#WONE*1 25 NOV RB2*NOME*2 RB2*NOME*3 35121 PR#RWONE*3 PR\$2*NOME*3 PR\$2*NOME*3	HYDROCARBONS, PETRO	M6/L	45501*1	34470	HB.NOME.	5	1650.	
34627 MB*NONE*1 06 NOV 86 UG/L 1051*GFAA 34894 MB1*NONE*1 25 NOV 86 MB2*NONE*2 MB2*NONE*3 135121 MB1*NONE*3 MB2*NONE*3 MB2*NONE*3 MB2*NONE*3 MB2*NONE*3 MB2*NONE*3 MB2*NONE*3	346.27 MB=NONE=1 06 NOV UG/L 1051=6FAA 34894 MB1=NONE=1 25 NOV MB1=NONE=2 MB2=NONE=3 MB2=NONE=3 MB1=NONE=3 MB1=NONE=3 MB1=NONE=3 MB1=NONE=3 MB1=NONE=3 MB1=NONE=3				34552	FB*NOME * I	00	0758	
UC/L iOS1*GFAA 34894 MB1*NOME*1 25 NOV 86 MB2*NOME*3 35121 MB1*NOME*2 MB**NOME*3 MB**NOME*3	UC/L				34627	MB*NOME *	<b>N</b> O№	. 1055	
MB1*NOME#2   MB2*NOME#3   3512    MB1*NOME#1   12 DEC 86   MB1*NOME#2   MB2*NOME#3	MB:*NOME *2   MB:*NOME *3   MB:*NOME *3   MB:*NOME *2   MB:*NOME *3   MB:*NOME *3   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4   MB:*NOME *4	LE AD , TOTAL	1/ <b>9</b> 0	1051 CF AA	34894	148 I *NOME * I	NO.	3.3067	
NB2*NOME * 3   3512  NB1*NOME * 1   12 DEC   86   181*NOME * 2   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3   182*NOME * 3	15.12 i 18.1 **NOME **3 **3 **1.2 i 18.1 **NOME **3 ***I 12.0 EC.  18.1 **NOME **2 **I 18.2 **NOME **3 **I 18.2 **NOME **3 **I 18.2 **NOME **4 **I 18.2 **NOME **4					MB I "NONE " 2		4.3628	
35.12.1 NB1=NOME=1 12 DEC 86 NB1=NOME=2 NB2=NOME=3	35.121 NB1*NOME*) 12 DEC NB1*NOME*2 NB2*NOME*3 NB1*NOME*4	(				MB2*NOME * 3		5.4589	
		<b>?−</b> :			35121	NB I *NOME * I	<b>DE</b> C	1434	
		55				MB   ***OME * 2		<b>.</b>	
	T= 340N=196	i				MB2*NOME * 3		<b>o</b> .	

FIELD GROUP TYNDALL - 7

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. SAMPLE / BATCH REPORT FOR FIELD GROUP TYNDL?	BATCH #	34700	34900	34427	34449	34700	34900	34427	34449	34 700	34900	34427	34449
A P					€.				(+2				(+2
ENTAL SCIENCE BATCH REPORT	DATE: Ø1 MAR 1988	HYDROCARBONS PETROL	LEAD, SED	MOISTURE	VOLATILE ORGANICS (624)	HYDROCARBONS PETROL	LE AD SED	MOISTURE	VOLATILE ORGANICS (624)	HYDROCARBONS PETROL	LEAD SED	MOISTURE	VOLATILE ORGANICS(624)
ENVIRONM SAMPLE /	CATE: Ø1	TYMOL 7";				1YMDL 7*2				1 Y MDL 7 = 3			

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC.

	MAX & REPL DIFF
	NAME 1.9 0.0 HAX 5. REPL DIFF NO 15TURE FOUND R. P. D. MAX 5. REPL DIFF NO 15TURE 5.1.9 0.0
	CH SAMPLE 00 RP*HAZ2*5
	STORE I #ME THOD BATC
1988	STIES NET NT
DATE: Ø1 MAR 1988	NAME MOISTURE

- TYNDL7
.D GROUP 1
ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. QUALITY CONTROL SUMMARY FOR TYNDALL AFB - FIELD GROUP DATE: 01 MAR 1988
ENGINEERIN R TYNDALL
ENCE AND I
FONTAL SCI CONTROL S
ENVIRON QUALITY DATE: 01

O

PAGE

	MI THEIR R. P. D. R. P. D. CRIT. B639 20.00 8639 20.00 4583 452
	R. P. D.
	ME 1-61A B639 B639 B639 A583
	#REC REC. CR.17. 92.70 70.2 - 124.8 95.40 70.2 - 124.8 103.00 80 - 120 108.00 80 - 120
	92.70 92.70 95.40 103.00
	FOUND FOUND 16.1 16.5 10.8
	1 ARGE 1 8200.0 8200.0 0.05
	Standard Matrix Spike Recovery and Replicate Summery MREC 1700 SPI=WOME** 13 NOV 86 8200.0 16.1 92.7700 SPI=WOME*** 13 NOV 86 8200.0 16.5 95.495.4950 SPI=WOME**** 13 NOV 86 0.05 10.8 10.3 10.3 10.8
	Standard Na SAMPLE SPI=NONE   SPI=NONE   SPI=NONE   SPI=NONE
	847CH 34700 34900
	UM I S STORET=NETHOD BATCH UC/C-DRY 96233#1 34700 UC/C-ORY 96223#1 34700 UC/C-DRY 1052*6FAA 34900
m	UNITS UG/G-DRY UG/G-DRY UG/G-DRY
DATE: 01 MAR 1988	MANE HYDROCARBONS, PETROL HYDROCARBONS, PETROL LEAD, SED

PAGE 3

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. QUALITY CONTROL SUMMARY FOR TYNDALL AFB - FIELD GROUP TYNDL? DATE: Ø1 MAR 1988

					Sample Matrix Spike Recover	Recovery Summar	7 JQ 18						
MARE	UNITS	STORET * METHOD	BATCH	PLE	DATE	TARGET	FOUND	KREC	REC. CRIT	¬	MSPINED R.P.D.	P.D.	R.P.D. CRIT.
HYDROCARBONS, PETROL	UC/C-DRY	ETROL UG/G-DRY 98233*1 34700 SPH	34700	#TYNDE 1#2	13 NOV 86	8225.0	769	119.32	119.32 70.2 - 124.8	124.8 258			
LE AD SED	UG/G-DRY	UG/G-DRY 1052*GFAA	34900	SPM+TYNDL7+3 25 NOV 86	25 NOV 86	0+0	554	109.84	109.84 80 - 120	97.8			

PAGE 4

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. QUALITY CONTROL SUMMARY FOR TYNDALL AFB - FIELD GROUP TYNDL? DATE: 01 MAR 1988

3877	STIMO	STORETHMETHOD BATCH	BATCH	SAMPLE	DATE	COUND
HYDBOCABBONS PETROL	UC/C-DRY 98233#1	98233*1	34700	MB*MOME #1	13 MON 86	8639
LE AD, SED	UG/G-DRY	UG/G-DRY 10524GFAA	34900	NB * NOWE * 1	25 NOV 86	4583

FIELD GROUP TYNDALL - S

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. SAMPLE / BATCH REPORT FOR FIELD GROUP TYNDLS

DATE: Ø1	MAR 1988	1
SAMPLE 10	PARANETER NAME	BATCH &
TYMOLS"	EP-TOX DATE OF EXTRACTION	34261
	ORGANOCHLORINE PEST. (608)	34688
		35444
	ICAP METALS	35015
	ABSENIC	34770
	SELE MILES	35183
	MF RCLEBY	34584
TYMDI SH2	FP-TOX DATE OF EXTRACTION	34261
	ORGANICHI ORINE PEST. (608)	34688
		35444
		35015
	APSEMIC	34770
		35183
	PRE DC LINE Y	34584
Tymul Se 3	FP-TOX DATE OF EXTRACTION	34403
	ORGANICHLORINE PEST (608)	34613
	_	35444
		35222
	APSÉMIC	34770
	En la grada	34756
	MERCURY	34 706
	•	

02:29/88
ENCINEERING
SCIENCE &
ENVIRONMENTAL

PAGE 8

				PROJECT NUMBER 66449 0000 FIELD GROUP TYNDLS EPNPI	86449 0000 TYNDLS EPNP 1	PROJECT NAME TYNDALL AFB PROJECT MANAGER D.M. HALE LAB COORDINATOR DILNA HALE
PARAMETERS UNITS	STORET #	S079-4 TYNDLS	S0T9-3 TYNDLS 2	SOTEP3 TYNDLS 3		SAMPLE 10/8
DATE		10/05/86	10/05/86	10/15/86		
EP-TOX DATE OF EXTRA CTION ENDRING	A 97078 MP 39390	10/14/86 34261 <0.133	10/14/86 3426) <0.064	10/21/86 34403 <0.083		
3	39340 39340	34688	34688	34813		
ME THOXYCHLOR	39480	34688	34688	34813 <0.217		
UG/L TOXAPHENE	39400	34688	34688	34813 <0.978		
UG/L 2,4-0, TOTAL	39730	34688	34688	34813		
UG/L 2, 4, 5- TP/S IL VEX	3 <b>3 76</b> 0	35444	15444 <0.056	35444 <0.056		
UG/L CADMIUM, DISS	EC 1025A	35444 <0.0047	35444 <0.0047	35444 <0.0036		
MG/L CHROMIUM, DISS	1030A	35015	35015 <0.0190	35222 <0.0054		
MG/L	1CAP	35015	35015	35222		
1/9H	ICAP	35015	35015	3522		
1/ 9H	ICAP	35015	35015	35222		
ARSENIC, DISS	1000A	0.0041	34770	0.0041 34770		
MERCURY DISS.	71890A	0.0003	<0.000 o>	(n. 0002		
SELENIUM, DISS	145A	34584 <0.0031	4584; <0.0031	34706 <0.0042		
1/9H	CF AA	35183	35183	34756		
BARIUM, DISS	1005A	191.0	350.15	0.213		

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. QUALITY CONTROL SUMMARY FOR TYNDALL AIR FORCE BASE-FIELD GROUP TYNDLS

İ

]

1

		4004		Standard Mati	Standard Matrix Spile Recovery and Replicate Summary	er y and Repi	icate Summa					6		
TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN TO THE TEAN THE TEAN TO THE	S   S   S   S   S   S   S   S   S   S	20 20 06 F	34400	CONTRACTOR	DAIL 19 OCT 96	AKUL 1	00000 V	NA CO	2 5	230	A100	- - - - -	K. T. O. CK.	
Z COZ	7 9	3939096		SPI-NONE *	2 2	\$ . \$ . \$ .	0 000	00.00	8 9	2 2	200		8 8	
BHC GC INDANE	1/9n	39340450	34688	SPI*NON*I		0.12	700.0	124.00	9 9	3 2	5900		30.00	
	ì		34813	SPI *NONE *I	Š	0.12	0.0	94.80	9	<u> </u>	0031			
ME THOXYCHLOR	7/ )n	39480*EC	34688	SP1*NOME *1	18 OCT 86	0.65	0.0	112.00	- 08	120	6600		20.00	
			34813	SPI*NOME * I	Š	0.65	0.0	85.80	- 08	120	1620			
2,4-0, TOTAL	1/9n	39730•[C	35444	SPI+NONE +1	02 NOV 86	7,31	4.21	57.20	S	<u>8</u>	Į.		33.00	
2, 4, 5- TP/SILVEX	7/9n	39760*EC		SPI-NONE .	3	 	0.59	51.40	ទ	윤 :	<b>15</b> 5		33.00	
CADMIUM, DISS	N6/1	1025*ICAP	clock	- SPCHWOME -	SA NON BD	00.00	75	20.50	£ 4	2 3	80.	-	13.00	
				SP3*NOME*!		00 00	52.5	20.00		2 2	80.			
			15222	CP I SHOW S	22 DEC 246	90.05		8 6	3 4	2 -	) - =			
			33766	SP2*NOME * 1	Š	20.00	0.00	97.80	. 5	2 2		2.22		
		١		SP3*NONE *1		20 00	7 95	113.00	85	= 2	· =	12.10		
CHROMIUM DISS	1/9n	1030*1CAP	35015	SP2*NONE * 1	24 NOV 86	200.00	204	102.00	85 -	115			15.00	
				SPI *NONE * I		200.00	861	99.20	- 59	115	o	5.99		
				SP3*NOME * 1		200.00	102	100.00	. 68	115	3	1.45		
			35228	SPI#NOME # 1	22 DEC 86	200.00	161	94.60	. 98	115	21.28			
				SP2*NONE*		200.00	193	85.90 33	20.0	<u>~</u>	21.28	5.		
4	9	940149401	350015	SP 3*RUML *	70 100 71.	00.007	907	76.30 104.00		<u>.</u>	87.17	96./	00 00	
LEAD DISS	رور ر م	104941041	5005	T THOMAS OF	98 AOM 47	200.00	131	00.00		071	<b>3</b> 3	à	00.03	
				SP   * MOME *		500.000	775	90.00		9 2	5 5	2.42		
			15,222	SPINONE	22 DEC 86	500 00	7.7	07.	8 8	2 2		!		
				SP2*NON[*]		500.00	465	93.10	8	2021	. ၁	1.92		
				SP3*NOM[ * 1		500.00	206	101.00	90	120	3	6.53		
SILVER, DISS	Ω <b>€</b> /Γ	1075+ JCAP	35015	SP2 *NON( * )	24 NOV 86	100.00	101	100.00	- 02	0 -	19.		20.00	
				SPI+NOME +1		100.00	2.66	98.50	20	9=	.67	1.80		
				SP3*NONE * [		100.00	707	101.00	70	0 -	.67	s .		
			35222	SPI*NONE . I	22 DEC 86	100.00	101	0 0 10	2	<u> </u>	0	;		
				SP2*NONE*		100.00	7	OF . T.	2 :	2 :	o (	9' '6		
	3	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	31.19	SP3*NON*E		100.00	112	112.00	2 8	0.5	0773	10.33	90	
ANSENIC, DISS	1/30 0	1000*01	0// <b>b</b> s	SPI*NONE*I	AUV BB	25.00	9.87	97.90	20 8	2.5	9190.1	30	60.00	
				I * INON * Z.AS		25.00		00.00	200	2 2	8195.1	20.70		
Ç				C D THE MORE A		25.00 25.00	7.77	104 00		2 2	1.3616	. S. S.		
) <b>-</b>				ST THOME AS		25.00	7 00	00.101	3 5	021	56.18	· *		
69				Ca SMOMPS Q2		25.00	9.06	106.00	0 6	2 2	81.95	, <b>4</b>		
)				SP1*NONE #3		25.50	2.5	90.71	8 8	2021	1.5618	1.84		
				SP2*NONE*3		25.00	28.6	97.90	90	22	1.5618	0.0		
				SP3«NONE»3		25.00	29.1	99.90	. 08	150	1.5618	1.73		
				SP2*NONE*4		25.00	29.1	99.90	- 08	120	1.5618	1.73		
				SP3*NONE *4		25.00	28.1	95.90	- 08	120	1.5618	1.76		
				SP4*NONE *4		25.00	28.1	95.90	. 08	120	1.5618	1.76		
MERCURY, DISS.	1/90	71890*CVAA	34584	SP2*NONE*2	30 OCT 86	\$.00	4.86	97.20	90	20	3456	:	20.00	
				SP3*NONE*S		2.00	4.79	95.90	08	25	3456	<del>\$</del>		
			34 706	SPI-ROME *	42 NOV 86	9.70	0. ;	87.20	, 20 (3	071	.8023			
				THE SMONE ZER		D	4. SB	97.50	200	2 2	.6023	97. 79		
	3		736.44	SP SWOME S	3	0/.40	60.4c	00.00	200	07.	6,604	2	00 00	
SELENIUM, DISS	1/30	1.45*UPAA	34 / 36	SPINONE I	4 NOV 45	00°53°	8: 97 20	20.701	000	200	699	2.26	00.03	
				C * JNON * C		25.00	27.4	00.00	8 8	071	1699	2.21		
				SPZ*NON*Z		25.00	27.4	00.601	90	021	1699	2.21		
				SP3#NONE#2		25.00	25.6	105.00	80	120	1699	4.58		
			35183	SPI*NONE*I	09 DEC 86	25.00	23.5	93.80	08	120	.0625			
				SP2*NONE * 1		25.00	23.1	92.20	- 08	120	.0625	1.72		
														ļ

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. QUALITY CONTROL SUMMARY FOR TYNDALL AIR FORCE BASE-FIELD GROUP TYNDLS

			714				Z - \	2				
				Standard Matr	IN Spike Recove	ery and Rept	Late Summe	10. u				
NAME	UNITS	STORE 1 - ME THOD	BATCH	SAMPLE	DATE	TARGE 1	FOUND	KREC	REC. CRIT.	MET#BLA	R.P.D.	R.P.D. CRIT.
				SP4*NONE - 1		25 00	24.7	98.50	80 - 120	. 0625	4.98	4 98
BARIUM, DISS	1/ <b>9</b> 0	1005*1CAP	35015	SP2*NONE * I	24 NOV 86	2000.0	2020	101.00	85 - 115	1.08		15.00
				SPI+NOME + 1		2000	2000	99.90	85 - 115	80.1		
				SP 3 NONE # 1		2000:0	2010	101.00	85 - 115	1.08	0.50	
			35222	SPI+NONE + I	22 DEC 86	2000.0	1970	98.70	85 - 115	5		
SP2*NOME*1 2000.0 1930 96.60				SP2*NOM[ * I		2000.0	1930	96.60	85 - 115	=	;n ,	
				SP3*NONE .		2000.0	2030	102,00	85 - 115	=	É	

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC. GUALITY CONTROL SUMMARY FOR TYNDALL AIR FORCE BASE-FIELD GROUP TYNDLS

:					Sample Matrix Spike Recovery Summary	Recovery Su	Bandi y				
KAR	SLIS	STORE THE THOD	BATCH	SAMPLE		TARGE T	FOUND	XRE C	REC. CRIT.	UNSPINED R.P.D.	R.P.D. CRIT.
ENDRIN	1/9n	39390*EC	34688	SPM#TYNDL S#1	18 OCT 86	0.53	598000	22.38	60 - 130	0.03	
ENDRIN	٦/ ور/	39390ªEC	34813	SPM*TYNOLS*3		0.33	0.0	95.58	061 - 09	0.003	
BHC G(LINDANE)	7/90	39340ªEC	34688	SPM+TYNUL S#1	18 OCT 86	0.26	0 0	114.87	90 - 130	0.01	
			34813	SPM*TYNDLS*3		0.17	n 0	110,78	60 - 130	400.0	
ME THOX YCHLOR	1/30	39480*EC	34688	SPM*T YNDL S* I	18 OCT 86	1, 39	0 0	95.22	80 - 120	0.02	
			34813	SPM*TYNDLS*3	21 NOV 86	0.87	0 n	116.47	80 - 120	40.0	
2.4-D, TOTAL	1/30	39730*EC	35444	SPR-TYNOL S-1	02 NOV 86	7.31	7 10	96.52	50 - 130	3.3	
2,4,5-TP/SILVEX	7/9n	39.760*[C		SPH#TYNDLS#1			1.02	89.93	50 - 130	0.02	
CADMIUM, DISS	7/9n	1025*1CAP	35015	SPH*TYNDLS*2	24 NOV 86	50.00	50.7	99.24	85 - 115	60.1	
			35225	SPH#TYNDLS#3	22 DEC 86	200.00	480	95.97	85 - 115	0.0	
CHROMIUM, DISS	7/9n	1030*1CAP	35015	SPM+TYMDL S#2	_	200.00	214	103.71	85 - 115	6.63	
			35222	SP##TYNDLS#3	22 DEC 86	500.00	478	99.30	85 - 115	٥	
LE AD DISS	1/90	1049*ICAP	35015	SPM*TYNDLS*2		200.00	587	112.54	-	24.5	
			35222	SPM+TYNDLS+3	_	500.00	451	90.17	80 - 120	0.0	
SILVER, DISS	7/30	1075*1CAP	35015	SPRATYNDL SA2		100.00	901	104.16	011 - 02	2.26	
			35222	SPH#TYNDLS#3	_	\$00.00	479	95.83	70 - 110	H.U	
ARSENIC DISS	7/9n	1000*CF AA	34770	SPM*ADCMQ2*1	17 NOV 86	25.00	24.0	83.62	80 - 120	0.0	
				SPN*HXMLM*I		25.00	78.1	79.54	80 - 120	0.0	
				SPM*MXMLH*8		100.00	128	107.61	80 - 120	0.0	
				SPR*SSRWH1*1		25.00	28.1	101.97	80 - 120	0.0	
				SPM-SSRNHI-14		100,00	611	116.79	80 - 120	0.0	
				SPM*SSRNH1*2		25.00	32.7	89.74	80 - 120	0.0	
				SPM*SSRMH1#4		100.00	100	97.42	021 - 08	0.0	
				SPRENHEN =4		100.00	<b>+</b>	111.69	80 - 120	0.0	
MERCURY DISS.	1/30 06/1	718904CVAA	34 706	SPREMXILLE	12 NOV 86	₽. 70	4. 16	81.59	071 - 08	0.0	
SELENIUM DISS	1/ <b>3</b> 0	1145-CFAA		SPM*PEP5#12	86318	100.00	95.6	92.03		0.0	
				SPH#TYNDL S#3		100.00	7.68	86.10	80 - 120	3.56	
				SPM: TYNDLS*2	86 54 3	100 00	93.9	95.68	80 - 120	1.17	
BARIUM DISS	1/9n	1005#1CAP	35015	SPM#TYNDL S#2	24 NOV 86	0.0005	2160	102.99	85 - 115	100	
			35222	SPM-TYNDL S+3	22 DEC 86	500.00	117	100.82	85 - 115	213	

CONTINUE CONTINUE TO A TRACKET ATA FORCE						DANE TIELD GROUP	
					Method Blank Sample Summary	ample Summary	
STINU STINU	SIT	STORE 1*METHOD	D BATCH	SAMPLE	DATE	FOUND	
P. TOX DATE OF EXTRACTION		97078*HP		ME-NONE	22 OCT 86		1
ENDKIN	1. <b>3</b> 0	39.39(14)	34688	HB*NONE * 1	18 OCT 86	0145	
			34813	THE SKIP WHEN	21 NOV 86	200	
BHC GALINDANE	1 20	33*01166	34688	HB*NONE *!	18 OCT 86	6900	
			34813	HB*NON*	38 VON 15	1600	
METHORYCHLOR	1 20	39480•£€	34688	HB*NONE #1	18 OCT 86	6600	
			34813	HB-NONE .	21 Nov 86	1620	
TOTAPHENE	JC 1	33*00166	34688	HE-NONE	18 OCT 86	0	
			34813	HB-NONE .:	31 NOV 86	9	
2 4 D TOTAL	1/ 90	39730*£(	35444	HB*NONE #1	02 NOV 86	0	
2 4 5 TP SILVEX	Ω€.1	39760*EC		MB*NONE * I		0154	
CADMILLM DISS	ショの	1025#1CAP	35015	HB=NONE =	24 NOV 86	80.1	
				MB*NONE #2		98	
			35222	HB*NON*	22 DEC 86	9	
CHRUMIUM DISS	\ 1√90	10 304 ICAP	35015	HB*NONE *!	24 NUV 86	0	
				Z* BRON#BH		n	
			35222	HB=NONE #1	22 DEC 86	21.28	
LEAD DISS	1/20	1049*1CAP	35015	HB*NONE *	24 NOV 86	3	
				H6*NONE #2		20.57	
			35228	HE-WOME #	98 330 77	0	
SILVER DISS	1: <b>)</b> 0	1075*1CAP	35015	MB*NONE * )	24 NOV 86	19:	
				HB*NONE *		97	
			35222	HB-NONE -	22 DEC 86	ח	
ARSENIC DISS	1 90	TODG • CF AA	54770	HB2*NONE * 1	17 NOV 86	1.5618	
				MB2*NONE *		5421	
				HBI "NONE " 3		1.5618	
				HBI-NONE #4		4.1112	
MERCURE DISS	\ <b>√</b> 00	71890*C+AA	34584	HEI-NONE	30 UC1 86	3456	
				MB2*NONE *2		1403	
			14 706	MBI*N:NE *!	12 NOV 86	8023	
				HB2-NONE - I		1002	
SELENIUM DISS	1/90	1145 "GF AA	14756	HB! "NON! " I	14 NOV 86	1699	
				HB2*NONE - I		1699	
				MBI "NOME " 2		2 4488	
				MB2*NONE *2		1.2623	
			35183	HB*NONE *1		6.75	
BARTUM DISS	1; )n	1005*1CAP	35015	HE-NONE	98 AON #2	1 08	
				Z= 3NON#9H		~	
				The second of	71. 170 . 1		

## APPENDIX R

ANALYTICAL RESULTS FOR GROUND WATERS, SURFACE WATERS, SEDIMENTS, AND SOILS

FIELD GROUP TYNDALL - 1

ENVIRONMENTAL SCIENCE & ENGINEERING 05/02/87 STATUS:FINAL

PAGE 8

1

PROJECT NUMBER 86449 UGUO PROJECT NAME TYNDALL AFB FIELD GROUP TYNDLI PROJECT MANAGER RANDY SCHUL ZE SZZ, TIR LAB COORDINATOR DAVE ANOTHE

20111-2 S 10/16/86 10 08:40 2.9 10.7 (0.22 (0.11 (0.22 (0.22 (0.22 (0.22 (0.22 (0.22 (0.22 (0.22 (0.22 (0.22 (0.22 (0.22 (0.24 (0.22 (0.22 (0.22 (0.22 (0.22				CAMPS F 1D/4	•
10,16,86   10,16,86   10, 16,86   10, 15,15   108:40   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   10.5   1	PARANETERS UNITS	STORET 6 METHOD	SOT 11-1 TYNDL 1	S0111-2 TYMOL 1	S
1052A	DATE TIME		10/15/86 15:15	04:80 08:40	98/91/01 98:10
1052A	HYDROCARBONS, PE TROL	98233A	1200	760	27000
10.320		1052A	<b>89</b> .	2.9	0.52
T 7,0320 B.3 10.77  1 34237A 4.9 (0.22  GRS CO.26  34290A (0.12 (0.11)  GRS CO.26  GRS CO.26  34416A (0.32 (0.29)  GRS CO.29  GRS CO.29  GRS CO.29  GRS CO.29  GRS CO.29  GRS CO.29  GRS CO.29  GRS CO.29  GRS CO.29  GRS CO.29  GRS CO.20  GRS CO.20  GRS CO.20  GRS CO.22  GRS CO.22  GRS CO.22  GRS CO.22  GRS CO.22  GRS CO.22  GRS CO.22  GRS CO.22  GRS CO.22  GRS CO.22  GRS CO.22  GRS CO.22  GRS CO.22  GRS CO.23  GRS CO.22  GRS CO.22  GRS CO.24  GRS CO.24  GRS CO.26  GRS CO.26  GRS CO.26  GRS CO.27  GRS CO.27  GRS CO.27  GRS CO.27  GRS CO.27  GRS CO.27  GRS CO.27  GRS CO.27  GRS CO.27  GRS CO.27  GRS CO.27  GRS CO.27  GRS CO.27  GRS CO.27  GRS CO.27  GRS CO.27  GRS CO.27  GRS CO.27  GRS CO.27  GRS CO.27  GRS CO.27  GRS CO.27  GRS CO.27		GF AA	ó	5	,
34237A 4.9 (0.22 GPS GPS GPS GPS GPS GPS GPS GPS GPS GPS		0.750/	7	2	7.0
GPS   GPS     34290A   C0.16   C0.11     GPS   GPS   C0.24     GPS   GPS   C0.24     GPS   GPS   C0.29     GPS   GPS   C0.29     GPS   GPS   C0.14     GPS   GPS   C0.16     GPS   GPS   C0.29     GPS   GPS   C0.20     GPS   GPS   C0.20     GPS   GPS   C0.22   C0.20     GPS   GPS   C0.25   C0.20     GPS   GPS   C0.25   C0.20     GPS   GPS   C0.25   C0.20     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.26   C0.24     GPS   GPS   C0.26   C0.24     GPS   GPS   C0.26   C0.24     GPS   GPS   C0.26   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.24     GPS   GPS   C0.25   C0.25     GPS   C0.25   C0.25   C0.25     GPS   C0.25   C0.25     GPS   C0.25   C0.25   C0.25     GPS   C		34237A	6.4	<0.22	<0.23
HANE 34330A (0.12 (0.11)  GPS 34290A (0.26 (0.24) GPS 34416A (0.32 (0.29) GPS GPS GPS 44304A (0.33 (0.14) GPS 34314A (0.45 (0.14) GPS 14304A (0.23 (0.10) GPS 44304A (0.23 (0.10) GPS 14304A (0.25 (0.20) GPS 144304A (0.22 (0.20) GPS 1014 96578A (0.22 (0.20) GPS GPS ME 34499A (0.26 (0.24) GPS ME 34594A (0.15 (0.14) GPS GPS GPS ME 34594A (0.15 (0.14) GPS GPS GPS GPS GPS GPS GPS GPS GPS GPS	MG/KG				
34290A	BRONODICHLOROME THAN	*	<0.12	(0.11	<0.12
34290A		CMS			
GMS  44164 (0.32 (0.29  GMS  GMS  44304A (0.15 (0.14  GMS  44314A (0.45 (0.30  GMS  GMS  6MS  44314A (0.45 (0.41  GMS  GMS  GMS  GMS  GMS  GMS  GMS  GM		34290A	40°56	₹0°54	<0.25
34416A (0.32 (0.29 CBS CBS CBS CBS CBS CBS CBS CBS CBS CBS	MG/KG	CMS			
CHS   34299A   CU   15   CU   14     CHS   CHS   CU   14     CHS   CHS   CU   31     CHS   CHS   CU   31     CHS   CHS   CU   31     CHS   CHS   CU   31     CHS   CHS   CU   32     CHS   CHS   CU   CU     CHS   CU   CU     CHS   CU   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS   CU   CU     CHS	BRONOME THANE	344 16A	<0.32	(0.29	(0.31
RIDE 34299A (0.15 (0.14 CMS CMS CMS CMS CMS CMS CMS CMS CMS CMS	MG/KG				
A 344	CARBON TETRACHLORIDI	345	<0.15	<b>\$</b> 1 0>	<0.15
14304A (0.33 (0.30 GPS GPS GPS GPS GPS GPS GPS GPS GPS GPS	9%/9W	CMS			
GMS GMS GMS GMS GMS GMS TL 345/94 GMS 343/84 GMS GMS GMS GMS GMS GMS GMS GMS GMS GMS	CHLOROBENZEME	34304A	<0.33	00.30	<0.32
11 34344 (0.45 (0.41	MG/KG	CMS			
TI 34579A (0.55 (0.50 CMS) CMS CMS CMS CMS CMS CMS CMS CMS CMS CMS	CHLOROE THANE	34314A	\$ <b>4</b> 0>	: <b>+</b> 0>	<0.44
TI 3459A (0.55 (0.50 C) C) C) C) C) C) C) C) C) C) C) C) C)	MG/KG	CMS			
GMS GMS GMS GMS GMS J4318A GMS GMS GMS GMS GMS GMS GMS GMS GMS GMS	2 - CML OROE THYL VENYL	34579A	<0.55	<b>60 50</b>	<0.53
34318A 0.088 <0.080 <0.085 5451A <0.23 <0.22 675 675 675 677 677 677 677 677 677 677	E THER MG/KG	SHS			
GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS   GPS	CHLOROFORM	34318A	880'0	<0.080	<0.085
3421A (0.23 (0.22 GPS GPS GPS GPS GPS GPS GPS GPS GPS GPS	MG/KG	CMS			
HAME 34309A (0.17 (0.16 CMS CMS CMS CMS CMS CMS CMS CMS CMS CMS	CHLOROME THANE	34421A	(0.23	<0.22	<0.23
HAME 34399A (0.17 (0.16 DRS DRS C0.22 (0.20 DRS DRS C0.22 (0.20 DRS DRS C0.24 DRS C0.24 DRS C0.15 (0.14 DRS DRS C0.17 (0.16 DRS DRS DRS C0.17 (0.16 DRS DRS DRS C0.17 (0.16 DRS DRS DRS C0.17 (0.16 DRS DRS DRS DRS DRS DRS DRS DRS DRS DRS	MG/KG				
CPS (0.22 < 0.20 CPS) CPS (0.20 CPS) CPS (0.20 CPS) CPS (0.24 CPS) CPS (0.24 CPS) CPS (0.14 CPS) CPS (0.14 CPS) CPS (0.17 < 0.16 CPS) CPS (0.17 < 0.16 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS) CPS (0.18 CPS)	DIBROMOCHLOROME THANK	<del>-</del>	<b>60.17</b>	<b>60.16</b>	(0.17
TOTA 98578A (0.22 (0.20 CMS CMS CMS CM.26 (0.24 CMS CM.26 CM.24 CMS CM.15 (0.14 CMS CMS CMS CMS CMS CMS CMS CMS CMS CMS	MG/KG	CMS			
GNS 34499A (0.26 (0.24 GNS 34534A (0.15 (0.14 GNS (0.17 (0.16 GNS	DICHLOROBENZENE, TOTA	985	<0.22	0 <b>2</b> 0>	(0.21
34499A < < 0.24	L MG/KG	CMS			
GPS 34534A < 0.15 < 0.14 GPS 34504A < 0.17 < 0.16 GPS	1 , 1 - D 1 CHL OROE THANE	34499A	<b>40.26</b>	<0.24	(0.25
34534A < 0.15 < 0.14 GNS 34504A < 0.17 < 0.16 GNS	MG/KG	SHS			
GMS 34504A <0.17 <0.16 GMS	1, 2-DICHLOROE THANE	34534A	<0.15	<b>†</b> 1 '0>	<0.15
34504A <0.17 <0.16 GMS	MG/KG				
GMS	1, 1-DICHLOROETHYLENE		<0.17	<0.16	(0.17
		SHS			

PROJECT NAME R 86449 DUDU PROJECT NAME TYNDALL AFB FIELD GROUP TYNDL! PROJECT NAMAGER RANDY SCHULZE SZZ, 11R LAB COORDINATOR DAVE NAOTHE

115 REI 1080 347 1080 343 1080 343 1080 343 1080 108 344 1080 108 344 1080 108 344 1080 108 344 1080 108 344 108 344 108 342 108			SAMPLE 10/8		
10/15/86 10/16/86 10/ 15:15 08:40  34402A		STORET &	SOTII-I TYNDL !	S0111-2 17NDL1	SOT 11-3 7YNDL 1 3
34697A			10/15/86 15:15	10/16/86 08:40	98/91/01 98:12
346974 (0.35 (0.32 GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS	CIS-1,3-DICHLORO	34702A GMS	(0.27	<0.25	<0.27
34374     22     <0.36	TRANS - 1, 3-DICHEORO	346974	<0.35	<0.32	(0.34
344.264 (0.15 (0.14 GRS 345.94 (0.22 (0.21 GRS 344.934 (0.22 (0.21 GRS 344.934 (0.22 (0.21 GRS 344.934 (0.27 (0.19 GRS 344.934 (0.17 (0.19 GRS 344.934 (0.27 (0.25 GRS 344.934 (0.27 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934 (0.25 GRS 342.934	ETHYLBENZENE	34374A	22	<0.36	<b>66.0</b>
34519A	METHYLENE CHLORIDE	34426A	(0.15	<0.14	(0.15
34478A	TE TRACHLORO	34519A	<0.22	(0.21	<0.22
N. C. C. C. C. C. C. C. C. C. C. C. C. C.	TETRACHLOROETHENE	344 78A	<0.22	(0.21	<0.22
KT	AC/AC	34483A	9	<0.30	<0.32
NE   NE   NE   NE   NE   NE   NE   NE	MG/KG	34509A	(0.21	(0.19	<0.20
NE	MG/KG	345 14A	<0.27	<0.25	(0.27
NG   CHS   NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG   CHS     NG     NG   CHS	76/AG TRICHLOROETHENE	54487A	<0.10	<0.05	01 0>
Na	MG/KG TRICHLOROFLUOROMETHA	34491A	(0.17	Q0.16	(0.17
No	VINYL CHLORIDE	34495A	<0.27	<0.25	40.26
NG	Hb/Kt	97016A	13	<0.30	<0.32
NG GMS 34213A <5.5 <5.0 NG GMS ,5ED 34218A <5.5 <5.0	MG/NG O.P.XYLENE	97017A	14	<0.30	<0.32
GMS 34218A <5.5 <5.0	MG/KG ACROLEIN, SED	6MS 34213A	(5.5	<5.0	<b>(5.3</b>
	MG/NG ACRILONITRILE, SED	542 18A	(5.5	<5.0	65.3

FIELD GROUP TYNDALL - 2

DATE   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHINGO   CHI					PROJECT NUMBER FIELD GROUP	838	86449 0000 TYNDL2 ZONE 2R	PROJECT NAME PROJECT NANA LAB COORDINA	PROJECT NAME TYNDALL AFB PROJECT MANAGER RANDY SCHUL LAB COORDINATOR DAVE KNOTHE	PROJECT NAME TYNDALL AFB PROJECT NAMAGER RANDY SCHULZE LAB COORDINATOR DAVE KNOTHE	<b>*</b> 2
	PARANETERS UNITS	STORET #	GLH2-1 TYNDL2	GL H2-2 TYNDL 2 2	GL H2-3 TYNDL 2 3	GL H2-4 TYNOL 2 4	61 H2 - 7 TYNOL 2 S	SAI GLHZQA#1 7 YMOL 2 6		GLH2-9 TYNDL2 8	SHLH2 TYNDL 2
	DATE TIME		10/14/86	10/14/86	10/14/86	10/14/86	10/22/86 13:15	10/22/86 13:15	10/22/86 12:30	10/22/86	16/14/86 13:15
Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Color   Colo	BROMOD I CHLOROME THANE		<0.050	<0.050	<0.050	(0.050	0\$0 0>	*	050.0>	050.0>	<0.050
		32104	¢6.050	(0.050	¢0.050	<0.050	<0.050	*	<0.050	<0.050	<0.050
March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   Marc	BRONONE THANE	34413	<0.050	<0.050	(0.050	<0.050	<0.050	WA	co.050	<0.050	<0.050
	CARBON TI TRACHLORIDE		<0.050	<0.050	<0.050	<0.050	<0.050	¥	<0.050	(0.050	<0.050
	CHI OROBEN ZENE	34 30 1	<0.050	<0.050	<0.050	<0.050	<0.050	ž	(0.050	<0.050	<0.050
	BG/L CHLORO€ T⊩ANE	34.31.1	<0.050	<0.050	<0.050	<0.050	40.050	*	<0.050	<0.050	<0.050
Columb	UG/L CHLOROLTHYLVINYL	HA 34576	050.03	<0.050	<0.050	<0.050	<0.050	ž	<0.050	<0.050	<0.050
HA 12.4% (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 HA 1.4% (0.050 HA 1.4% (0.050 HA 1.4% (0.050 HA 1.4% (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.	FTHER UG/L CHLOROFOLM	HA 32 106	<0.050	<0.050	050 0>	<0.050	<0.050	¥ X	<0.050	<0.050	<0.050
HA (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 NA (0.050 (0.050 (0.050 NA (0.050 (0.050 (0.050 NA (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.0	UC/L CHEOROME HANE	3441B	<0.050	<0.050	c0.050	<0.050	0\$0°0>	ž	<del>+</del>	<0.050	<0.050
H 4468 (0.050 (° 0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050	DIBROMOCHLOROMETHANE		<0.050	<0.050	<0.050	<0.050	<0.050	*	(0.050	(0.050	(0.050
HE 14496 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050	UG/L DICHLOROGENZEME, TOT.	HA B1524	<0.050	CC 050	050.05	<0.050	050.0>	ž	<0.050	<0.050	(0.050
HE 14454 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 NA (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.0	OHON IF LUORO LICE UORO	34668	40.050	(O.050	(0,050	<0.050	<0 050	ž	050 0>	<0.050	<0.050
HE 14511 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 NA (0.050 NA (0.050 (0.050 NA (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.05	PETHANE UG/L	34 49 E	050.05	<0.050	050.05	050 02	<0.050	M	050.05	<0.050	<0.050
HA (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050	UG/L 1,2 DICHIOROE THANE	45.54 145.54	<0.050	<0.050	40.050	<0.050	<0.050	# ¥	<0.05u	<0.050	<0.050
HA	UG/L 1_1 - D1CHLOPOETHYLENE		<0.050	050 02	<0.050	<0.050	050.05	×	(0.050	<0.050	<0.050
HA	TRANS-1,2-DICHIORU	34546	40.050	<0.050	050.05	<0.050	<0.050	¥	<0.050	<0.050	<0.050
HA  34704 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.050 < 0.	ETHERE UG/L	14541	<0.050	<0.050	(0.050	(0 050	(0.050	¥	<0.050	<0.050	<0.050
UG/L UG/L HA 1:-D1CHLORO 44699 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050	1671 C1S - 1 , 3 - 1·1CHL 0R0	44 34 704	050 0>	<0.050	<0.050	<0.050	<0.050	*	050 020	<0.050	<0.050
UG/L HA NI CHLORIDE 34423 <0.050 <0.050 <0.050 0.050 0.050 <0.050	PROPEME UG/L TRANS-1;:-DICHLORO	HA 34699	<0.050	<0.050	<0.050	<0.050	0\$0 D>	¥	<0.050	<0.050	<0.050
	=	HA 44423	<0.050	<0.050	050'0>	0.095+		X A	<0.050	<0.050	<0.050

UG/L HA Sing e column quantification unable to confirm by second column due to interference

PRUJECT MANE TYNDALL AFB
PHUJECT MANAGER RANDY SCHULZE
LAB COORDINATOR DAVE NNOTHE

PROJECT NUMBER 86449 0000 FIELD GROUP TYMDL2 ZOME 2R

								•			
PARAM	PARANETERS Units	STORET #	61H2-1 TYNDL2	GLH2-2 TYNDL2 2	GLH2-3 TYNDL2 3	GLH2-4 TYMDL2	GLH2:7 TYNDL2 5	SAR GLH2QA** TYNOL 2 6	SAMPLE 10/8 A** GLH2-8 2 TYNOL2 6	GLH2-9 TYNDL2 8	SHLH2 TYNDL2 9
DATE			98/11/01	10/14/86	10/14/86	10/14/86	10/22/86	10/22/86	10/22/86	10/25/86	10/14/86
Ĕ			2	6:1	C7: <b>*</b> 1	26:	51.51	2	06:31	2	2:51
1 1 2 F THAME	1, 1, 2, 2 - TETRACHLORO THANE UG/E	34516	<0.050	<0.050	<0.050	<0.25	0 <b>5</b> 0 0>	Ä	050 . 0>	<0.050	<0.050
TE TRA	를	34475	<0.050	<0.050	<0.050	<0.25	<0.050	×	050.05	<0.050	<0.050
-: -:	UNITED TRICKE 'ETHAME	*	<0.050	<0.050	co. 050	CD. 050	<0.050	ž	050.0>	<0.050	<0.050
1,1,2	UG/L	×	<0.050	<0.050	050.02	<0.050	cu. 050	¥	0\$0.0>	050.0>	<0.050
TRI CH	TRICHLORUETHENE	39160	<0.050	<0.050	<0.050	<0.050	<0.050	¥	(0.050	050.05	<0.050
TRICH	UG/L TRICHL'FLUOROMETHANE	Ť	<0.050	<0.050	<0.050	0.10	<0.050	ž	050 0>	<0.050	<0.050
VINTL	UG/L VINYL CH.ORIDE	HA 39175	<0.050	<0.050	<0.050	<0.050	<0.050	¥	050.0>	<0.050	<0.050
BENZENE		84030	(0.50	<0.50	(0.50	ve. 5u	د0.50	Z A	05.0>	<0.50	0.54
E THYL	UG/L ETHYLBENZENE	34371	<0.50	05 0>	05 O.>	<0.50	<0.50	Z	40.50	2 0*	<0.50
3 10 TO	1/9n	14010	05 05	05.05	95 9>	(0,50	05.0	Z	05.05	<0.50	*08°0
нтрко	UG/E HYDROCAFBURS, PETRO	45501	0 15	0.093		<0.091	0.11	0.16	160 0>	0.12	4.2
LEAD, TOTAL		1 41501	9800 0	<0.0031	(0.003)	(0.003)	0.0043	<0.0031	(0.0031	(0 0031	<0.0031
9H, F 1ELD	#6/L Eld	4 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b> 00 <b>4</b>	5.70	9.60	00 /	9.90	5. 70	Ä	9.00	5 70	7.10
SP. CO	STD UNITS SP.COND. FILLD@25C	o <b>7</b> 6	<b>~</b>	58.0	352	192	187	¥	330	293	1370
MATER	UM40S/CM MATER TEMP	9 9	28.1	26.5	29.6	28.8	28.8	ž	27.9	25.8	24.8
0.0	0.0. PRG <b>86</b>	0 299	¥	X.	¥	¥	M	¥	Z A	X A	39 39
•	MC /1	=									

unable to confirm by second column due to interference. second column confirmation was not conducted second column confirmation. single column quantification our Single column quantification sectoristication 

FIELD GROUP TYNDALL - 3

PROJECT NUMBER 86449 UUUU PROJECT NAME TYNDALL AFB FIELD GROUP TYNDL3 PROJECT MANAGER RANDY SCHULZE ZSKX LAB COORDINATOR DAVE ANOTHE

PARAMETERS	STORET #	CTS 1	SAMPLE GTS-2 TYNDL3	LE 10/8 CT5~3 TYMDL3	G15QA**
JNITS	ME THOD	-	2		*
DATE TIME		10/13/86 11:40	10/13/86 11:35	10/13/86 12:00	00:00 00:00
BRUNOD I CHLORONE THANE	10176	(0 020	<0.050	0.070	0.060+
BRUMOFORM	82 104	40.050	<0.050	(0.050	(0.050
1/90	Η¥				
BRONONE THANE	34413 H4	050 DS	c0:020	<0.050	(0.050
CARBON TETRACHLORIDE	32 102	050 02	<0.050	0\$0.0>	050.05
1/90	¥				
CHEOROBENZENE	14 30 1	(U, U5U	(0.050	050.0>	(0.050
1/90	¥ ;		3	3	:
CHLOROR THANK	- F + E	050 05	00.020	050.05	050.05
1 2 CEL 080 THY VINY	44576	050 0>	050 05	050 020	050
ETHER UG/L	Ŧ				
CHLOROFORM	901.7F	<0.050	<0.050	0.44	0.46•
1/90	Ŧ				
CHLORUME THANG	8144	050 05	050 02	050 02	050 0>
V90	¥ I				
D IBRUMOCHL OROME THANK	37.105	<0.050	050.00	050 05	40.050
	¥ ;	1	3	;	3
DICHLUMOBINZEME TOTAL	\$7519	050.05	050 05	040 02	050.05
3/00 01/04/ 08/00 1/1 1/08/0	34.6H	1140 030	050 050	050.05	11511
METHANE UG/L	Ŧ				
I DICHLOROETHANE	14496	050 05	<0.050	00.020	40.050
1/90	¥				
1, 2 - DICHLOROF THANE	14531	050 0>	050.05	co. u5n	<0.050
1/90	¥				
I. I. DICHLAROETHYLENE	34501	<0.050	<0.050	<0.050	(0.050
1/90	¥				
~	14546	e0 050	CO. <b>05</b> 0	, U, USU	<0.050
FTHENE UG/L	¥				
I 2-DICHLOROPROPANE	14,41	050 05	050 0>	050.0>	<0.050
1/90	¥				
9	¥0/ ¥5	050 05	050 0>	(0.020	co 050
PROPENE UG/L	¥				
. <del></del>	14699	050 05	vn.050	<0.050	cu. 050
PROPI ME UG/L	¥ ;	•		•	•
	144	=;=	250	0.50	= CO = 0

METHYLENE CHLORIDE 54423 to 050 to 050 to 050
UG/L HA
UG/L HA
* Singse column quantification _ unable to confirm by second column due to inferference

ENVIRONMENTAL SCIENCE & ENGINEERING 05/02/87 STATUS:FINAL

PRUJECT NAME TYNDALL AFB PRUJECT MANAGER RANDY SCHULZE LAB COCRDINATOR DAVE ANOTHE PROJECT NUMBER 86449 UNUU FIELD GROUP TYNDL3 ZSRX

		515	SARP 615:2	SAMPLE 10/8	C1 SUA
PARAMETERS	STORET .	TYNDE	TYNDL 3	TYNDE 3	TYMDLS
STINU	ME THOO	-	~	e .	-
DATE TIME		10/13/86	10/13/86 10/13/86 10/13/86 11:40 11:35 12:00	10/13/86 12:00	00:00 00:00
2 4 6 TRICHL PHENOL	34621	€.0.	<b>₹</b> 0 >	¥ :0>	• 0>
1/90 07/1	~ 00 <b>.</b>	6.20	00.4	6.40	<b>*</b>
STD UNITS SP.COND. FIELD@25C	0 <b>4</b> 6	93.0	105	581	4 2
UNHOS/CH WATER TEMP	ə <u>ə</u>	36.8	27.0	26.2	**
C Syngle column	U quantificat	un uoi	able to cor	of iima by se	U Single column quantification , unable to confirm by second column due to interference
# Single column quantification second column confirmation + First column quantification second column confirmation	quantificat	ton sector	and column ond column	confirmat	<ul> <li>Single column quantification second column continuation was not conducted</li> <li>First column quantification.</li> </ul> Second column quantification.
L ** Field Duplicate	o te				

PROJECT NAME TYNDALL AFB	LAB COORDINATOR DAVE ANOTHE
PROJECT NUMBER 86449 0000 FIELD GROUP TYMDL3	LAMICA

			SAMPLE 10/8	•	
		675-1	C15-2	615-3	CT 50A**
PARAMETERS	STORET #	TYMDL 3	TYNOL 3	TYNDL 3	TYNDL 3
UNITS	METHOD	-	7	•	•
DATE		10/13/86	10/13/86		10/13/86
TIME		11:40	11:35	12:00	00:00
ARSENIC, TOTAL	1002A	0.086	0.63	0.20	¥
NG/L	ICAP	3	30	0,0	;
ANTINOMY, TOTAL	109/A	00.00 00.00		090.00	K E
BERYLLIUM TOTAL	1012A	0.014	(0.0010	<0.0010	Z
HG/L	ICAP				
CADMIUM, TOTAL	1027A	(0.0080	(0.0080	(0.0080	¥
HG/L	ICAP			,	;
CHROMIUM, TOTAL	1034A	0.019	6.00	0.678	<b>4</b>
M6/L	10474	0.0067	0.019	\$10°0	*
NG/L	CAP				
LEAD, TOTAL	A1501	<0.050	0\$0.0>	<0.050	¥
1/9#	ICAP				
NICHEL, TOTAL	1067A	<0.015	0.015	<0.015	¥ N
1/9H	ICAP				
SILVER, TOTAL	A1101	0900 0>	<0.0060	900 0	¥
H6/L	ICAP				
SELEMIUM, TOTAL	1147A	co. 090	960'0>	060'0>	¥¥
1/9H	ICAP				
THALL IUM, TOTAL	1059A	(9.03)	0.056	<0.037	¥
1/9W	ICAP				
ZINC_TOTAL	1092A	0.009	0.019	0.011	¥
1/9H	ICAP				
MERCURY, TOTAL	71900A	7000.0>	0.0003	<0.0002	¥
1, 49	447				

** Field Duplicate

FIELD GROUP TYNDALL - 4

)

PROJECT NAME TYNDALL AFB
PROJECT NAMAGER RANDY SCHULZE
LAB COORDINATOR DAVE ANOTHE PROJECT NUMBER 86449 0000 FIELD GROUP TYMDL4 Z6.10,11R

								•								
ā	PARANETERS Units	STORET #	GT6-1 TYNDL 4	GT6-2 TYNDL 4	G16-3 TYNDL4 3	CT6-4 TYNDL4	GT6 - 5 TYNDL 4 S	SAM GT6QA** TYMDL 4	SAMPLE 10/8 A** G710-1 4 TYMDL4 6 1	6710-2 TYNDL4 8	6110-3 TYNDL4 9	GT100A** TYNDL 4 10	GT11-1 TYNDL4	6711-2 TYNDL4 12	GT11-3 TYNDL4 13	SWT11-1 TYNDL4 14
10	DATE		10/16/86	10/16/86 15:40	10/16/86 15:05	10/21/86 10:00	10/21/86 10:45	10/21/86 10:45	10/20/8 <b>6</b> 10:15	10/20/86 09:40	10/20/86 09:10	10/20/86 09:10	10/20/86 12:00	10/20/86	10/20/8 <b>6</b> 11:20	10/14/86
æ	BROMOD I CHLOROME THANE	32101	<0.050	<0.050	<0.050	<0.050	<0.050	¥	<0.050	<0.050	<0.050	<0.050	<0.050	40.050	<0.JS0	<0.050
<b>3</b>	SRONOFORM	35.04	<0.050	<0.050	<0.050	<0.050	(0.050	¥	<0.050	<0.050	<0.050	<0.050	(0.050	<0.050	<1.0	<0.050
8	BRONOME THANE	¥ ;	<0.050	<0.050	<0.050	<0.050	<0.050	¥	<0.050	<0.050	<0.050	<0.050	(0.050	<0.05u	<0.050	<0.050
5	CARBON TETRACHLORIDE	32 102	<0.050	<0.050	<0.050	<0.050	<0.050	*	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
3	CHLOROBENZENE	34301	(0.050	<0.050	0.24*	(0.050	<0.050	*	40.050	د0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
3	DG/L CHLOROE THAME	¥ 3 ± 3	<0.050	<0.050	(0.50	<0.050	<0.050	*	<0.050	0.54	<0.050	<0.050	(0.050	(0.050	<0.050	<0.050
	يو	34576	<0.050	<0.050	<0.050	(a, 050	(v. 050	*	(0.050	(0.050	<0.050	<0.050	<0.050	<0.050	0.15	<0.050
: 3 :-17	CHLOROFORM	32106	(0.050	0.15	(1.0	0,11	(0.050	ž	<0.050	0.15	<0.050	<0.050	<0.050	<0.050	<0.050	0.050*
	CHLOROMETHANE	34418	<0.050	<0.050	0.11*	<0.050	<0.050	*	<0.050	<0.050	<0.050	0.10+	(0.020	<0.050	0.49*	<0.050
ā	DIBROMOCHLOROME THANE	32 105	<0.050	<0.050	<0.050	<0.050	(0.050	ž	050.03	<0.050	<0.050	<0.050	(0.050	<0.050	(0.50	<0.050
ō	DICHLOROBENZENE, TOT.	81524	(0.050	<0.050	*14.0	<0.050	(U.050	¥	<0.050	<0.050	40.050	<0.050	<0.050	<0.050	<0.050	<0.050
ā ì		34668	<0.050	<0.050	40.050	<0.050	(0.050	<b>*</b>	<0.050	050 05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
≝ -'	TE HAME UGGE 1, 1-DICHLOROE THANE	34496	<0.050	<0.050	<0.050	<0.050	<0.050	8	c0.050	•	<0.050	<0.050	<0.050	<0.050	<0.25	<0.050
-	UG/L 1, 2-0 ICHLOROETHANE	34531	(0.050	0.32	• 11 0	0.070	<0.050	¥	<0.050	0.080+	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
<u>-</u> `	US/LENE	34501	<0.050	<0.050	<0.050	<0.050	<0.050	¥	<0.050	0.13+	<0.050	<0.050	<0.050	(0.050	<0.25	<0.050
<b>E</b> :	~.	34546	<0.050	0.04*(1)	1,00	-	U. 13•	¥	<0.050	0.17*(2)	050.050	<0.050	<0.050	(0.050	<0.25	0.22*
<u>.</u> –	LINENE UG/L	34542	(0.050	<0.050	<0.050	<0.050	<0.050	¥	<0.050	<0.050	<0.050	<0.050	(0.050	<0.050	<0.50	<0.050
5		34 704	<0.050	<0.050	<0.050	<0.050	<0.050	<b>*</b>	<0.050	(0.050	<0.050	<0.050	<0.050	<0.050	<0.50	<0.050
£ £ ;	~	34699	<0.050	<0.050	(0.050	<0.050	<0.650	ž	CO. 050	(0.050	050.05	<0.050	<0.050	<0.050	<0.50	40.050
₹ ₩	PROPERE UG/L RETHYLENE CHLORIDE HG/L	34423 34423 HA	<0.050	<0.050	(n.050	<0.050	cu. u50	Z	<0.050	<0.050	<0.050	<0.050	<0.050	40.050	<0.050	<0.050

Single column quantification _ unable to confirm by second column due to interference.
 Single column quantification _ second column confirmation was not conducted.
 First column quantification _ second column confirmation.
 See footnote #1 at end of analytical data ----(2)-See footnote #2 at end of analytical data

## 05/02/87 STATUS: FINAL ENVIRONMENTAL SCIENCE & ENGINEERING

PROJECT NAME TYNDALL AFB PROJECT MANAGER RANDY SCHULZE LAB COORDINATOR DAVE KNOTHE

PROJECT NUMBER 86449 0000 FIELD GROUP TYNDL4 Z6,10,11R

								7	CAMPIG 1978							
	PARAMETERS UNITS	STORET B	C16-1 TYNDL 4	G16-2 TYNDL4 2	616-3 TYNDL4 3	G16-4 TYNDL 4	G16-5 TYNDL4 5	GT6QA** TYNDL4 6	G110-1 TYNDL4	GT10-2 TYNDL4 8	GT10-3 TYNDL4 9	GT 100A** TYNDL 4 10	GT11-1 TYNOL4 11	6T11-2 TYNDL4 12	GT11-3 TYNDL4 13	SMT11-1 TYNDL4 14
	DATE TIME		10/16/86 14:00	10/16/86 15:40	10/16/86 15:05	10/21/ <b>86</b> 10:00	10/21/86 10:45	10/21/86	10/20/86 10 15	10/20/86 09:40	10/20/86 09:10	10/20/86 09:10	10/20/86 12:40	10/20/86	10/20/86	16/14/86 15:20
	1, 1, 2, 2-TETRACHLORO	34516	<0.050	<0.050	(0.050	(0.050	<0.050	¥	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<u. 050<="" th=""><th>&lt;0.050</th></u.>	<0.050
	TETRACHLOROETHEME	Ř	<0.050	<0.050	<0.050	<0.050	<0.050	¥	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
	I, I, I-TRICHL'ÉTHANE	34506	(0.050	(0.050	<0.050	<0.050	050 0>	ž	<0.050	<0.050	<0.050	<0.050	<0.050	(0.050	<0.050	<0.050
	UNAL 1, 1, 2-TRICHE "ETHANE HEZE	34511	<0.050	<0.050	0\$0°n>	<0.050	0\$0 0>	ž	(0.050	(0.050	(0.050	<0.050	(0.050	<0.050	(Ú.500	<0.050
	TRICHLOROF THE ME	39180	<0.050	0.060	<0.050	<0.050	050 02	¥	<0.050	<0.050	<0.050	<0.050	<0.05u	<0.050	0.45*	0.085+
	TRICHL'FLUOROMETHANE	Ä	<0.050	<0.050	0.060*	(0.050	050 02	4	<0.050	<0.050	<0.950	<0.050	<0.050	<0.050	<0.25	<0.050
	JOHN CHLORIDE	39175	<0.050	9.16	6, 14*(3)	) 0.24+	0.10	4	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
<b>R</b> -1	BENZEME	34030	<0.50	*	260+	•0.9	0.56	ž	05.0>	34+	<0.50	05.00	1.7	<0.50	35+	<0.50
8.	E THYL BE NZE	34371	<0.50	2.5*	1.7*	(0.50	(0.50	ž	<0.50	0.85	<0.50	<0.50	(0.50	<0.50	9.0*	<0.50
	TOLUENE TOLUENE	34010	(0.50	<0.50	\$	<b>5</b>	1.0	ž	<0.50	<0.50	<0.50	05.0>	<0.50	(0.50	15•	19.0
	UG/L 4-CHL*-3-METH*PHENOL	¥	Ξ	5	5	=	ŧ	ž	(5.3	<b>6</b> .4	÷.	4.1	=	(5.3	Ē	=
	UG/L 2-CHLOROPHENOL	34586	\$	\$	<b>6</b> >	\$	3	×	>	*	<b>4</b> 0.4	¢.0>	\$	≎	\$	\$
	UG/L 2,4-DICHLOROPHENOL	7 I 3460 I	5	Ē	<b>432</b>	\$	₹	¥ Z	\$	\$	<b>₹:0&gt;</b>	₹0.4	\$	\$	\$	=
	UG/L 2,4-DINETHYLPHENOL	F 1 34606	\$	2	3	\$		¥	\$	2	<b>♦</b> .0>	<b>♦</b> .0>	\$	\$	*	*
	UG/L 2,4-DINITROPHENOL	F 1 34616	(63	<b>(63</b> )	<130	0 <del>†</del> >	0 <del>\$</del> >	X X	¢20	432	3	\$	0+>	<20	<40	<b>69</b> 3
	Ŀ	1.1 0 34657	<20	<b>د20</b>	04>	01>	C10	¥	<b>\$</b> >	8>	\$	2	¢10	<b>&lt;</b> \$	<10	<20
	PHENOL UG/L 2-NITROPHENOL	F1 34591	(10	91>	ঽ	\$	3	×	<b>?</b>	\$	<b>4</b> 0. <b>4</b>	4.05	3	\$	2	¢10
	UG/L 4 - N I TROPHENOL	34646	<del>-</del>	÷	2B>	÷	*	*	(2)	33	\$	2	\$	421	<u>\$</u>	<del>\$</del>
	UG/L PENTACHLOROPHENOL	51 19032	0+>	9	08×	\$	\$	ď Z	$\sim$	\$	₹.0>	¢0.4	\$	\$	2	0+>
	PHE NO.	34694	\$	\$	*	01>	010	¥ Z	<b>\$</b> >	<b>8</b>	<b>÷</b>	<b>~</b>	01>	<b>\$</b>	<10	2
	1/9n	<u> </u>		•		1		, , , , , , , , ,								

Single column quantification _ unable to confirm by second column due to interference.
 Single column quantification _ second column confirmation was not conducted.
 First column quantification _ second column confirmation.
 See footnote #3 at end of analtical data.
 Field Duplicate.

ENVIRONMENTAL SCIENCE & ENGINEERING 05/02/87 STATUS: FINAL

PROJECT MAME TYMDALL AFB PROJECT MAMAGER RANDY SCHULZE LAB COORDINATOR DAVE ANOTHE PROJECT NUMBER 86449 0000 FIELD GROUP TYNDL4 Z6,10,11R

							447	SAMPI F ID.							
PARAMETERS Units	STORET #	G16-1 TYNDL4	G16-2 TYNDL4	616-3 TYNDL4 3	G16-4 IYMDL4	616 S 17NDL4 5	GT6QA** 17NDL4 6	CT 10-1 TYNDL 4	G110-2 TYNDL4 8	6710-3 TYNDL4 9	67100A** TYNDL4 10	CT11-1 TYNDL4	GT11-2 TYNDL4 12	GT11-3 TYNDL4 13	SHT11-1 TYNDL4 14
DATE TIME		10/16/86 14:00	10/16/86 10/16/86 14:00 15:40	10/16/86 15:05	10/21/86 10:00	10/21/86 10:45	10/21/86 10:45	10/20/86 10:15	10/20/86 09:40	10/20/86 09:10	10/20/86 09:40	10/20/86 12:00	10/20/86 10:45	10/20/86 11:20	10/14/86 15:20
2.4.6-TRICHL'PHENOL UG/L	34621 F1	*	<b>5</b>	•	\$	\$	<b>X</b>	<b>~</b>	\$	<b>4</b> .0>	₹.0>	\$	<b>?</b>	\$	3
HYDROCARBONS, PETRO	45501	0.13	<0.10	4.9	<0.093	0.80	0.12	<0.092	<0.092	<0.092	<0.092	<0.092	0.12	<0.092	0.26
LEAD, TOTAL MG/L	1051A	<0.0031	0.017	0.023	0.0043	0.0032	0.0043	0.022	(0.0031	<0.0031	<0.0031	0.056	6.029	<0.0031	<0.0031
PH FIELD		9.00	4.80	5.90	6.20	5.60	¥	0+19	5.40	5.20	¥	4.90	5.30	6.50	7.00
SP. COMD. FIELD025C	*	92.0	0.19	302	379	142	K	453	152	57.0	¥	159	236	906	2700
MATER TENP	9 9	23.7	23.8	23.5	56.9	24.1	¥	25.2	24.6	24.9	ž	25.4	25.0	25.1	26.3
L D.O. PROBE	662 0	¥	ž	\$	₹	¥	¥	¥	Z	¥	¥ Z	Z Z	Z A	A A	5.4
* Single column quantification unable to confirm by second column due to interference	ouant if ica	tion una	ble to con	fire bu se	cond column	due to	nterierence								

* Single column quantification , unable to confirm by second column due to interference. # Single column quantification , second column confirmation was not conducted. + First calumn quantification , second column confirmation.

PROJECT NAME TYMDALL AFB
PROJECT MANAGER RANDY SCHULZE
LAB COORDINATOR DAVE NNOTHE PROJECT NUMBER 86449 0000 FIELD GROUP TYNDL4 Z6.10.11R

SAMPLE 10/8 SMT11-2 TYMDL4 FS	10/14/86	<0.050	<0.050	(0.050	0.050	(0.050	(0.050	<0.050	0.05*	050 07		050.05	050.0>	(0.050		0\$0.0>	(0.050		(0.050		!	(0.050		(0.050	(0.050	70 07	0.0
STORET #		321	32 104	/L HA 34413	/L HA	343	343	LVINYL 34576	/L HA 32 106	_		OMETHAME 32105	.101. 815	/L HA UORO 34668		ETHAME 34496	345		35	34546 CM ORO 34546		345		<del></del>	LORO 346	/L ##	UG/L HA
PARANETERS Un	DATE TINE	BRONOD I CHLORONE THANE	UG/L BROMOFORM	UG/L BROMOME THANE	UG/L CARBON TETRACH	UG/1 CHLOROBENZENE	UG/L CHLOROE THANE	DG/L 20 2-CHLOROE THYLVINYL	2 ETHER US	UG/1	1/96	DIBROMOCALOROME THAME	DICHLOROBENZENE	DICHEORODIFLUORO	METHANE UG/L	1, 1-DICHLOROETHANE	1 2-DICHLOROE THANE	1/90	I_I - DICHLOROE THYLENE	080 M310-7 1-SMV81	ETHENE UG/L	3	1/90	3-01	ۻ.		של ושולנאל 190

single column quantification unable to confirm by second column due to interference.
 Single column quantification second column confirmation was not conducted.
 First column quantification second column confirmation.

-

A .....

.

! ذ

.

. . .

## ENVIRONMENTAL SCIENCE & ENGINEERING 05/02/87 STATUS:FINAL

PROJECT NAME TYNDALL AFB PROJECT NANAGER RANDY SCHULZE LAB COORDINATOR DAVE ANOTHE PHOJECT NUMBER 86449 0000 FIELD GROUP TYMD14

SAMPLE 10/8 SAT11-2 TYNDL4 TYNDL4	10/14/86 15:40	<0.050	050 0>		(0.050	050 050		0,080.0	050 05		(0.050		05.0>	. 40	1 P	(0.50		eş S	9>		91>	<b>\$</b> >		68)		67>	;	<15	34.	fc	(\$)		9>
SAI STORET # NETHOD	¥	34516	34475	H	34506	44.57.2	¥	39180	44 PB	99116	39175	¥	34030	P 1	 	34010	<u>.</u>	34452	34586	Ξ	34601	4666		34616	<u>-</u>	34657	Ξ	34591	1 4	34046	39032	-	34694
PARANETERS UNITS	DATE TIME	1, 1, 2, 2-TETRACHLORO	ETHANE UG/L TETRACHLOROETHEME	1/90	1 1 1 - 181CHL "E THAME	UG/L	1/30	TRICHLOROETHENE	UG/L	THE LEGISLAND TO THE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THREE THR	VINYL CHLORIDE	1/33 II	BENZENE	799 21	1/90 06/1	TOLUEME	n¢/r	4 - CHL * - 3 - RE TH * PHE MOL	2-CHLOROPHE WOL	1/90	2, 4-DICHLOROPHENOL	UG/L	1/90	2 4-DINITROPHENOL	1/90	¥-7	1/3n TON 3H d	2-NITROPHENOL	1/90	4 - N I TROPHE NO.	PENTACHLOROPHENOL	1/90	PHÉ MOL

UG/L
* Single column quantification _ unable to confirm by second column due to interference.
# Single column quantification _second column confirmation was not conducted
* First column quantification _second column confirmation.
** Field Duplicate

## ENVIRONMENTAL SCIENCE & ENGINEERING 05/02/87 STATUS: FINAL

PROJECT MAME TYNDALL AFB
PROJECT MANAGER RANDY SCHULZE
LAB COORDINATOR DAVE NNOTHE PROJECT MUMBER 86449 0000 FIELD GROUP TYNDL4 Z6, 10, 118

PARAMETERS Units	STORET #	SAMPLE 10/# SMT11-2 TYNDL4 15	
DATE		10/14/86	
2.4.6-TRICHL'PHENOL	34621	<b>9</b>	
HYDROCARBOMS, PETRO	45501	0.23	
LEAD, TOTAL #6/1	10514	(0.0031	
PH.FIELD	90	9.80	
SP. COND., FIELD@25C	7 5 6	2680	
UATER TEMP	9	27.1	

D.O. PROME

Model 299 2.2

Single column quantification unable to confirm by second column quantification second column confirmation was not conducted first column quantification second column confirmation. K-55

Ì

FIELD GROUP TYNDALL - 5

₩ ₩, 10/09/86 14:50 0.080 GTBQA** BMT7-11 TYNDLS TYNDLS <0.050 <0.050 <0.050 <0.050 c0.050 <0.050 c0.050 < 0.050 <0.050 050 05 40.050 PROJECT NAME TYNDALL AFB PROJECT MANAGER RANDY SCHULZE LAB COORDINATOR DAVE NNOTHE <0.050 <0.050 050.05 <0.050 <0.050 0.050 <0.050 10/11/86 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.650 <0.050 <0.050 40.050 cu.050 SAMPLE 10/#
-3 GT8-4
-5 TYNDL5 10/23/86 <0.050 0.090 150 (1) <0.050 <0.050 <0.050 <0.050 0.10 <0.050 <0.050 050 0> cu. 050 <0.050 40.050 CTB 3 TYNOL 5 10/17/86 050.0> 050.00 <0.050 <0.050 050.00 050.05 050 05 <0.050 <0.050 <0.050 <0.050 <0.050 050.05 <0.050 <0.050 <0.050 <0.050 050.05 050,050 <0.050 CT8-1 TrNDL5 0.065 0,17 050 05 98/91/01 <0.050 <0.050 050.05 <0.050 050.05 050.05 050.05 <0.050 050.05 <0.050 40.050 050.05 <0.050 050.05 00.050 0.050 0,0 0> PRC RECT NUMBER 86449 0000 TYMDL 5 GT7 QA** TYNDLS 10/10/86 10:15 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 080.00 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 FIELD GROUP 10/10/86 10:15 C17-3 TYNDLS 050.05 v0 050 <0.050 10.050 <0.050 <0.050 <0.050 <0.050 <0.050 CO. 050 <0.050 <0.050 <0.050 10/09/86 CT 7.2 TYNDL 5 70.050 <0.050 11.050 050.05 <0.050 050.05 c0.050 <0.050 <0.050 c 0 . 050 cu. 05u c0.050 <0.050 <0.050 <0.050 050 05 050.05 CT 7- 1 1 YNDL S <0.050 <0.050 <0.050 <0.050 <0.050 98/01/01 08:45 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 <0.050 CO 050 32101 HA 32104 HA 34413 STORET # HA 32 102 HA 34301 #A 34311 34496 HA 34 704 34576 32106 34418 32105 14668 14531 34546 34541 346.59 34423 34516 Ĭ Ĭ Ĭ ₹ Ĭ Ĭ Ĩ Ĭ 14501 Ĭ Ĭ ž Ĭ ¥ BRONOD I CHLORONE THANE LARBON TETRACHLORIDE CHLOROE THANE

UG/L

S - CHLOROE THANE

2 - CHLOROE THYLVINYL DIBROMOCHLOROME THANK I, I DICHLOROETHYLENE 1, 2-DICHLOROPROPANE I_I_2_2-TETRACHLORO TRANS - 1, 2 - DICHLORO TRANS I 3 DICHLORU
PROPENE UE/L 1 - DICHLOROE THANE 1, 2 DICHLOROETHANE METHYLEME CHLORIDE DICHLORODIFILUORO CIS-1, 3 DICHLORO 1/90 1/**9**n 7/30 1/9n 7. 1/30 730 7/3n CHLOROBENZEME CHLOROMETHAME **BROMONE THANE** CHLOROFORM PARAMETERS **BRONOFORM** PROPEME TE THAME E THE ME E THAME ETHER

^{*} Single column quantification , unable to confirm by second column due to interference

[#] Single column quantification | second column confirmation was not conducted. 
+ First column quantification | second column confirmation.

⁺ First column quantification

^{**} Freid Dupficate

<2.1 <u>دا</u> .0 0.5 0.15 0.15 0.15 0.1 0.10 <1.5 <1.5 <.I.5 <0.050 <0.050 <0.50 GT80A** BUT7-11 TYNDL 5 10/09/86 <0.050 <0.050 <0.050 PHOJECT MAME TYMDALL AFB
PROJECT MANAGER RANDY SCHULZE
LAB COORDINATOR DAVE NNOTHE 0.15 0.5 -0 10/11/86 13:55 <0.050 <0.050 <0.050 <0.50 <0.50 05.0> TYNDL 5 <0.050 <0.050 GT8-4 TYNDL 5 13:03 <0.050 <0.050 <0.050 <0.050 0.15 \$ T €..5 <1.5 <2.0 ±. 10/53/86 <0.050 05.00 <0.050 <0.50 05.05 SAMPLE 1D/8 C18-3 TYNDL 5 98//1/01 0.25 = 7 13:55 c0.050 <0.050 05.0> 05.0> 05.00 0.15 0.15 ے ت ~ ت ت . 5 5.5 <0.050 <0.050 <0.050 cu. 050 . 0 0.15 0.15 \$.15 0 75 0.15 TYNDL S 11:30 <0.050 (0.050 05 03 <0.50 0.15 **CI.5** 5.5 10/16/86 cu. 050 <0.050 0 12• 0.12* <0.50 PROJECT NUMBER 86449 0000 FIELD GROUP TYNDLS 278RX GT7-0A** 0.060 98/01/01 TYNDL S 10:15 cu. 050 05.00 <0.50 <0.50 ž ž <0.050 <0.050 <0.050 c0.050 ž ž ž ž 0.53 0 -4.5 ۵. د 5.15 \$ 10 5.15 TYNDL S 10:15 <0.050 (0.050 98/01/01 <0.050 <0.050 <0.050 c0.050 <0.50 05.00 <0.50 0.15 0.13 0.1. <2.0 **3**.1. TYMDLS 12.30 <0.050 <0.050 05.05 c0.50 05.00 **0**. 9.7 - ?> 2.5 5.0 61.5 10/09/86 <0.050 cu. 050 <0.050 <0.050 CT 7-1 TYNDL S 08:45 050.00 <0.050 <0.050 <0.50 <0.50 0.10 ÷. \$1.5 0.5 \$. : 0. • 0.0 <0.30 10/10/86 <0.050 c0.050 <0.050 STORET B 39120 GMS 39180 39175 34030 3437 P 34010 34205 34200 34526 Ĭ ž Ĭ ž Ĩ **CB** SHS CAIS CMS = CHS SES CHS 14521 SHS TRICHL'FLUOROMETHANE BENZO(B)FLUORANTHENE BENZO(K)FLUORANTHENE BUTYL BENZYL PHTHAL ATE I, I, I-TRICHL'ETHANE UG/L I, I, 2-TRICHL'ETHANE BIS(2-CHLOROETHYL) BENZO(A)ANTHRACENE BENZO(GHI)PERYLENE TE TRACHLOROE THE NE UNI TS TRICHLOROE THE ME ٦ او/ 7 7 **9**0 722 7 ۲ کام 799 3 UC/L UC/L 1/90 7/30 7)0 VINYL CHLORIDE BENZO(A)PYRENE ACE MAPHTHYLENE ACE NAPHTHE NE PARAMETERS ANTHRACENE BENZIDINE BENZEME TOLUE ME ETHER DATE <u>=</u>

+ First column quantification second culumn confirmation

** field Duplicate

^{*} Single column quantification _ unable to confirm by second column due to interference. # Single column quantification _second column confirmation was not conducted.

05/02/87 STATUS.F INAL ENVIRONMENTAL SCIENCE & ENGINEERING

PAGE #

GTBQA** BWT7-11 TYNDLS TYNDLS B 9 10/09/86 14:50 9.10 0.5 0.15 0.10 - E J. D. 0.15 PRUJECT MAME TYNDALL AFB
PROJECT MANAGER HANDY SCHULZE
LAB COORDINATOR DAVE NNOTHE 10/17/86 0.1. 0.15 0.10 0.10 0.I.s 0.15 65.0 0.15 .. .. SAMPLE 1078 1-3 GTB-4 N.S TYNDLS 6 7 0.15 0.15 0.55 0.0 0.5 9.10 10/17/86 10/23/86 13:55 13:03 ÷. 0.10 3.5 \$ GTB-3 TYNDLS 6 0.15 0.15 0.15 9.10 0 1 5 5 = -= = 8.75 5 17 0.10 = . 2.5 0.0 = 618-1 17801.5 5 0.15 . 0.1 0.15 0.15 ) 0 n 7 0 7 0.5 . . . <!-> <del>-</del> 10/16/86 9 0.10 ŝ PROJECT NUMBER 86449 0000 FIELD GROUP TYNDLS CT7-0A** TYNDLS 98/01/01 10:15 ž ž ž ž GT7-3 TYNDLS 0.15 0.15 0.10 0.0 0.10 98/01/01 25 ر ت 0.5 3 7 ے ت o .∵ <u>\$</u> 10/09/86 12:30 CT 7 - 2 TYNDL 5 0.15 0.15 0.15 0.15 0 0 0.15 ے ت 0 2 0.15 0.1 0.10 9.15 <1.5 0.0 0.15 **3** CT 7- 1 1 YNDL 5 0.1 0.15 0.15 0.0 0.15 o. ≎ 0.15 o. i > 0.0 Ç..5 98/01/01 **→**. \$ 5 STORET 8 GMS 34.28.3 685 34586 685 34452 GRS 34320 GNS 54556 GNS 39110 CMS CMS 345.36 CMS 345.71 CMS CHS GMS 34581 34641 CHS 34566 34631 SHS CHS 34336 GMS 34606 34341 CMS 34616 GMS 34601 Š 100/1 2 - CM OROPHEWL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 4 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM ORO-3-M THYL 1 - CM LINER UG/L 4-BRONOPHENYLPHENYL ETHER HEAT PHTHALATE UG/L BIS(2-CHL*1SOPROPYL) 3, 3' - DICHL' BENZIDINE DIBEN'(A, H)ANTH'CENE BIS(2-CHLOROETHOXY) ETHER UG/L 2-CHLORONAPHTHALENE UG/L DI-N-BUTYLPHTHALATE 4-DICHLOROBENZENE 1.3. DICHLOROBENZENE 1. 2-DICHLOROBENZEME NETHANE UG/L BIS(2-ETHYLHEXYL) UG/L 2,4-DICHLOROPHENOL 2 4 DIMETHYLPHENOL 2,4-DINITROPHENOL UG/L DIETHYLPHTHALATE DIMETHYLPTHALATE UNI TS PARAMETERS CHRYSENF

R-27

** Field Duplicate

					v un . 7		,		Cas constinuity prof. and in	
PARANETERS UNITS	STORET #	GT7-1 TYMDL 5	GT7-2 37NDLS 2	GT7-3 FYNDLS 3	GT7-QA** TYNDL5	678-1 TYNDLS 5	SA 618-3 TYNDL5	SAMPLE 10/8 3 GT8-4 5 TYNDLS 6	G18QA** TYNDL S	GTBQA** BM17-11 YNDLS TYNDLS B 9
DATE TIME		10/10/86 08:45	10/09/86 12:30	10/10/8 <b>6</b> 10:15	10/10/86 10:15	10/16/86 11:30	10/17/86 13:55	10/23/86	10/17/86 13:55	10/09/86 14:50
2,4-DINITROTOLUENE	34611	¢1.0	0.15	0.15	¥	0.15	0.0	0.15	0.15	0.15
UG/L 2,6-DINITROTOLUENE	34626 34626	¢1.0	61.0	61.0	¥ Z	0.15	<1.0	0.1>	<1.0	0.15
UG/L DI-N-OCTYLPHTHALATE	34596	41.1	2.1	7.7	*	2.	<u> </u>	2.2	1.0	<u>=</u>
FLUORANTHENE	34376	(1.0	0.15	(1.0	\$	0 10	0.15	0.15	0 1>	(1.0
FLUORENE	3438	0.15	¢1.0	0.15	4	41.0	(1.0	0.15	61.0	6.1.0
HE XACHLOROBENZEME	39 700	< 1.0	0°1>	6.1.0	¥	(1.0	0 · 1 · 0	(1.0	0.0	0.15
UG/L HE XACHE OROBUTAD 15 NE	<b>CHS</b> 34 39 1	6.1	(1.1)	<b>C1.1</b>	*	-	7	4.1	1.1	1.1
¥ 08	₹	(2.0	<2.0	<2.0	*	<2.0	<2.0	<2.0	<2.0	<2.0
DIENE UG/L HEXACHLOROETHANE	34 396 34 396	<1.5	<1.5	<1.5	*	61.5	<1.5	<1.5	<0.5	<1.5
=	34403 34403	<2.0	<2.0	<2.0	*	<2 U	0.55	<2.0	<2.0	<2.0
PYRENE UG/L I SOPHURONE	34408	÷	9.15	0 13	4	0.15	0.0	0 I D	9.15	0.15
UG/L 2-METHYL-4,6-DINITRO	GMS 34657	(5.0	(5.0	0 \$>	ž	(5.0	(\$.0	(5.0	9. <del>8</del> 5	(5.0
PHENOL UG/L	CHS	÷	7	0	*	0.15	5	0 10	5	0.15
1/90	\$5		•			;			•	,
NITROBENZENE UG/L	CHS CHS	0 ->	0	0.1	<u> </u>	= 	5	9	<b>3</b>	9.
2 - N I TROPHENOL	14591	▼	÷	<b>→</b> · · · · · · · · · · · · · · · · · · ·	*	<b>+</b>	<b>▼</b> . □	<b>†</b> .	<b>+</b> :>	4.12
4-NITROPHENOL	34646	(5.0	<5.0	<5.0	\$	65. U	(5.0	(5. U	(5.0	<5.0
UG/L N-NITROSODINET'ANINE	SH3 344.38	0 ->	0 0	(1.0	¥	0.15	5	0.15	0.15	0.15
1/90										
N-NITROSODI-N-PROPYL	34428	0.10	0 5	0.15	¥ 2	0.15	<b>0</b>	0.10	\$. \$.	0.1>
N-NITROSODIPHE'ANINE	=	(1.0	0.10	¢1.0	×	41.0	0.15	0 10	0.15	0.15
UG/L PENTACHI OROPHENOL	58032	¢10	010	010	ž	5	07	010	910	01>
THE WORLD COLOR OF THE WORLD	1000		,	•						

TERS STORE UNITS NET UD (C 34 UG/L 34 UG/L 34 UG/L 34 UG/L 39 UG/L 39 UG/L 39 UG/L 39 UG/L 39 UG/L 39 UG/L 39 UG/L 39 UG/L 39 UG/L 39 UG/L 39 UG/L 39 UG/L 39 UG/L 39	STORICE   CITY-1   CITY-2   CITY-2   CITY-2   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3   CITY-3					PROJECT NUM F1ELD GROUP	PROJECT NUMBER 86449 0000 FIELD GROUP TYNDLS 2788X	0000	PROJECT NAME PROJECT NANA LAB COORDINA	NAME I MANAGER R RD INATOR D	PROJECT NAME TYNDALL AFB PROJECT MANAGER RANDY SCHULZE LAB COORDINATOR DAVE KNOTHE	<b></b>
House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   House, board   Hous		PARAMETERS Units	STORET B	677-1 TYMDLS	GT7-2 TYNDLS	617-3 TYNOLS 3	GT7-QA		SAI GT8-3 TYNDL5	NPLE 10/8 C18-4 TYMBLS 7	CTBUA TYNDL S	* BMT7-11 TYNDE 5
Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   Marker   M	Mark   Mark   Mark   Gl.D   Gl.D   Gl.D   Mark   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D   Gl.D	JATE FINE		10/10/86 08:45	10/09/86 12:30	10/10/86 10:15	10/10/86 10:15	10/16/86 11.30	10/17/86 13:55	10/23/8 <b>6</b> 13:03	10/17/86	10/09/86
UG/L         A5591         CL.3         CL.3 <t< td=""><td>  UC/L   CHS   CL.0   CL.0   NA   CL.0   CL.0   NA   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0</td><td>HE MANTHREME</td><td>34461</td><td>61.0</td><td>¢1.0</td><td>&lt;1.0</td><td>¥</td><td>0 1&gt;</td><td>61.0</td><td>&lt;1.0</td><td>6.1.0</td><td>&lt;1.0</td></t<>	UC/L   CHS   CL.0   CL.0   NA   CL.0   CL.0   NA   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0	HE MANTHREME	34461	61.0	¢1.0	<1.0	¥	0 1>	61.0	<1.0	6.1.0	<1.0
March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   March   Marc	HICK-WENTER,   Harder   CL.0   CL.0   NA   CL.0   CL.0   CL.0   NA   CL.0   CL.0   CL.0   CL.0   NA   CL.0   CL.0   CL.0   CL.0   NA   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0   CL.0		\$69¢E	¢3	61.3	<1.3	1	6.3	£.	6.3	5	2.5
Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   Harmon   H	Harmon, 14551   Cl.0   Cl.0   Cl.0   NA   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0   Cl.0		34469	0. L>	6.1.0	0.15	1	6.15	9.15	0.0	<1.0	0.15
	NET   NEW   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET   NET	2.4-TRICH'BENZEN	*	0.15	0.15	0.10	\$	61.0	<1.0	÷1.0	0.15	0.15
STD UNIVIS   000   S.70   S.50   4.80   NA   720   S.51   S.50   NA   NA   STD UNIVIS   0   S.50   4.80   NA   720   S.51   S.58   NA   NA   STD UNIVIS   0   S.50   S.50   S.50   S.50   S.51   S.58   NA   S.50   S.51   S.58   NA   S.50   S.51   S.58   S.50   NA   S.50   S.51   S.58   NA   S.50   S.51   S.58   S.50   S.51   S.58   NA   S.50   S.51   S.51   S.50   S.51   S.50   S.51   S.50   S.51   S.50   S.51   S.50   S.51   S.50   S.51   S.50   S.51   S.50   S.51   S.50   S.51   S.50   S.51   S.50   S.51   S.50   S.51   S.50   S.51   S.50   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51   S.51	STD UNN 15	. 4.6-TRICHL "PHENC		ć1.8		<b>8</b> .1.5	*	<b>9</b>	<b>8</b> .1.5	8.1.5	<b>8</b>	€1.8
S.   S.   S.   S.   S.   S.   S.   S.	State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   State   Stat			5.70		1.80	<b>£</b>	6 . 30	5.80	5.80	¥	7.90
MANONIAN   10   26.2   27.7   25.9   NA   25.0   25.1   25.8   NA   25.0   25.1   25.8   NA   25.0   25.1   25.8   NA   25.0   25.1   25.8   NA   25.0   25.1   25.8   NA   25.0   25.1   25.8   NA   25.0   25.1   25.8   NA   25.0   25.1   25.8   NA   25.0   25.1   25.8   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24.7   24	10   26.2   27.7   25.9   MA   25.0   25.1	P. COMD. , F. 1EL D#25C	σ	0.99	0 69	98.0	1	120	15.1	185	¥	1310
1,00	C   By 300   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C4.7   C	UMMUS/CR ATER TENP		26.2	21.1	25.9	ž	25.0	25.1	25.8	*	23.7
UG/L         GRS         GLS         GLS <td>UG/L         GRS         GLS         GLS<td>_</td><td>00£ 6£ 0</td><td>(4.7</td><td>6.1</td><td>5.4</td><td>£.2</td><td>7.5</td><td>/ <b>+</b>&gt;</td><td>(4.7</td><td>(4.7</td><td><b>(4.7</b></td></td>	UG/L         GRS         GLS         GLS <td>_</td> <td>00£ 6£ 0</td> <td>(4.7</td> <td>6.1</td> <td>5.4</td> <td>£.2</td> <td>7.5</td> <td>/ <b>+</b>&gt;</td> <td>(4.7</td> <td>(4.7</td> <td><b>(4.7</b></td>	_	00£ 6£ 0	(4.7	6.1	5.4	£.2	7.5	/ <b>+</b> >	(4.7	(4.7	<b>(4.7</b>
UG/L         CMS           UG/L         CMS         GA1         GA2         GA2         GA2         GA2         GA2         GA2         GA2         GA2 <td>UG/L         GRS           UG/L         GRS         GA-1         GA-1</td> <td></td> <td>CMS 39337</td> <td>0.0</td> <td>5</td> <td>(3.1</td> <td>3.1</td> <td>3.1</td> <td>3.1</td> <td>9.1</td> <td>(3.1</td> <td>7</td>	UG/L         GRS           UG/L         GRS         GA-1		CMS 39337	0.0	5	(3.1	3.1	3.1	3.1	9.1	(3.1	7
1	1		CMS 19338	5	7	3	\$	7.5	5	63.4	0.0	5
1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,000   1,00	1,00ms		CMS	•			•	. ,	;			
1	1   1   1   1   1   1   1   1   1   1		34259 GRS	÷.	( <del>)</del> 1	- · · ·	<del>.</del> .	- 5	3.	7.5	- (3. h	- <del>.</del> 5
1   1930   CS   CS   CS   CS   CS   CS   CS   C	1   1950   CS   CS   CS   CS   CS   CS   CS   C	HC GCL INDANE)	39.340	6.0	6.1	9.1	3.1	3.1	3.1	3.1	(3.1	<u>G</u> .
1	1		9350 19350	\$	65.1	<b>45.1</b>	65.1	(5.1	65.1	(5.1	(\$.1	45.1
1	1		SES 67	(4)	7	7	7 43	/ <b>*</b> >	(4.7	(4.7	(4.7	(4.7
1	1		CMS	;		:	•		•			
1	1 3930		9356F	€.7	<b>4</b> .4	C#1	<b>(4.7</b>	(4.7	<b>(4.7</b>	C <del>.</del> 7	₹.4	€. <del>1</del>
1. GRS 39380 (4.7 (4.7 (4.7 (4.7 (4.7 (4.7 (4.7 (4.7	1.		39 300	4.1	7.45	<4.7	(4.7	(4.7	( <del>4</del> .)	¢4.1	(4.7	(4.7
1	1. 59.45 (-5) 6.55 6.55 6.55 6.55 6.55 6.55 6.55 6.		SMS		•		,		( 1)	~	7 77	7.43
14361 (5.6 (5.6 (5.6 (5.6 (5.6 (5.6 (5.6 (5.6	1		OBC AC	•	•	-	•	ż	-		5	•
34356 (5.6 (5.6 (5.6 (5.6 (5.6 (5.6 (5.6	34356 (5.6 (5.6 (5.6 (5.6 (5.6 (5.6 (5.6 (5	MDOSUL FAN, A	34 36 1	<b>45.6</b>	<b>9</b> '\$>	45.6	45.6	<b>\$</b> .6	45.6	<5.6	45.6	<b>45.6</b>
		NDOSULFAN B	34356	<b>65.6</b>	<b>6</b> .6	45.6	4.5.6	45.6	45.6	45.6	65.6	45.6

em field Duplicate

PROJECT NUMBER 86449 0000 FIELD GROUP TYNDLS 278RX

PROJECT NAME TYNDALE AFB PROJECT MANAGER RANDY SCHULZE LAB COORDINATOR DAVE KNOTHE

							SAI	SAMPLE 10/8		
		617-1	617-2	617-3	GT7-0A**		6.18-3	C18-4	GT8QA.	GT8QA** BMT7-11
PARAMETERS Units	STORET #	TYNDLS	TYNDL 5	TYMDL 5	TABLS	T TWDLS	1 1401.5	7	8	6
DATE TIME		10/10/86 08:45	10/09/86 12:30	10/10/ <b>86</b> 10:15	10/10/86 10:15	10/16/86	10/17/86	10/23/86	10/17/8 <b>6</b> 13:55	10/09/86 14:50
ENDOSULFAN SULFATE	3435	4.5.6	<b>6.6</b>	45.6	65.6	45.6	<b>65.6</b>	45.6	45.6	4.5.6
UG/L	39390	47.6	47.6	4.0	4.6	47.6	9.6	€.6	9.75	47.6
UG/L ENDRIN ALDÉHYDE	GMS 34 366	47.6	47.6	47.6	0.6	67.6	47.6	9.73	47.6	47.6
UG/L HEPTACHLOR	<b>68</b> 3	6.19	6.19	6.19	6.15	6.15	6.15	€.15	6.15	6.19
UG/L HEPTACHLOR EPOXIDE	6MS 39420	(2.2	(2.2	(2.2	(2.2	42.2	47.7	(2.2	<2.2	(2.2
NCB-1016	GMS 34671	<30	30	¢30	<30	¢30	<30	<30	<30	<30
UG/L PCB-1221	GMS 39488	<30	<30	€30	(30	< 30	06>	<30	¢30	0E>
UG/L PCB- 1232	GMS 39492	< 30	) (30	<30	<30	< 30	<30	\ \ \	\ \ \	(30
UG/L PCB-1242	CMS 39496	<30	0£>	96>	(30	30	30	630	4.30	(30
UG/L PCB 1248	6MS 39500	<30	30	OE>	(30	96. 30	(30	< 30	< 30	<30
UG/L PCB-1254	GMS 39504	<b>9</b> €	96	<b>436</b>	(36	(3¢	\$£	<b>436</b>	436	<b>436</b>
UG/L PCB-1260	58059E	n <del>t</del> >	040	04>	04>	940	n <b>†</b> >	0 <del>*</del> >	0 <del>7</del> >	0 <b>+</b> >
UG/L TOXAPHEME	6MS 39400	n <b>9</b> >	09>	09>	090	¢60	09>	09>	09>	η <b>9</b> >
1/20	SWS									
** Field Duplicate	i.									

STATUS
04/30/87
ENCINEFRING
•
SCIENCE
V I ROMME NTA
=

PAGE# 7

			PR0	PROJECT NUMBER FIELD GROUP	86449 0000 TYNDLS TYNICP		PROJECT MAME TYMDALL AFE PROJECT MAMAGEM D.M.KNOTHE LAB COORDINATOR DAVE KNOTHE	TYNDAL NGER D.H.NI NTOR DAVE	TYNDALL AFB D.H.KNOTHE DAVE NNOTHE	
PARANETERS Units	S TORE T & METHOD	617-1 17MDLS	GF7-2 TYNDLS 2	617-3 17MDL S 3	GT7 QA** TYNDL 5 4	SANPLE 10/0 GT8 1 G TYNDLS TY	10/0 10/01 17/01/5	678-4 17NDLS 7	GTBQA** TYNDL 5 8	BMT7-11 TYNDLS
DATE		10/10/86	10/09/86 12:30	51:01 10:15	10/10/86 10.15	10/16/86 11:30	10/17/86	10/23/86	10/17/86 13:55	10/09/86 14:50
ARSENIC, TOTAL	1002A	090 0>	0.065	0.069	090'0>	<0.060	090'0>	0.061	090.00	<0.00
ANT I MONY, TOTAL	A7601	090'0>	0 <b>9</b> 0 '0>	090'0>	<0.060	(0.060	090°0>	090'n>	<0.060	<0.06U
BERYLLIUM, TOTAL	1012A	0.4087	0.011	0.0054	0100 0)	<0.0010	<0.0010	<0.0010	0100'0>	cu.0010
CADMIUM, TOTAL	1027A	0800 0>	(0.0080	0800.0>	0800 00	<0.0080	<0.0630	<0.0080	0800.0>	0800.00
CHROMIUM, TOTAL	10348	<0.0 <b>06</b> 0	0.015	0.017	0900'0>	0900'0>	(0.0060	0.014	0900'0>	0900 0>
COPPER, TOTAL	10424	0900'0>	0900 0>	0901:0>	0900 0>	8010°n	0900"00	0900'0>	0900'0>	0900 0>
LEAD, TOTAL	1051A	<0.050	(0.050	(0.050	0\$0 0>	050 02	<0.050	<0.050	<0.050	<0.050
MICKEL, TOTAL	1067A	<0 015	910 0	<0.015	<0.015	\$10.03	<0.015	<0.015	<0.015	<0.015
SILVER, TOTAL	A//01	0900 0>	<0.000	0900'0>	0900 0>	0.0075	0.0059	6 000 0	0900 0	0900'0>
SELENIUM, TOTAL	11478	060 0>	060 0>	060'0>	(0.090	060 0>	060 '0>	060 0>	060-0>	060 0>
THALL TUP, TOTAL	10594	(C 03)	(0.037	<0.037	(0.037	יח מלו	<0.041	(0.02)	(0.04)	790'0
ZINC, TOTAL	1092A	00000	<0.00.0>	0.0051	<0.0030	0,040	0.011	0.038	0.0049	0.0034
MERCURY_TOTAL MERCURY_TOTAL MG/L	104F 71900A CVAA	<0 n003	2000 0>	<ul><li>40 0002</li></ul>	<u>0005</u>	<0.00	500.005	<0.002	6.000.0	<0.0002

** Field Duplicate

THIS PAGE INTENTIONALLY LEFT BLANK

FIELD GROUP TYNDALL - 6 THIS PAGE INTENTIONALLY LEFT BLANK

1

PROJECT NAME TYNDALL AFB PROJECT NAMAGER RANDY SCHULZE LAB COCRDINATOR DAVE KNOTHE PROJECT NUMBER 86449 0000 FIELD GROUP TYMDL6 23,9R

							<b>V</b> S	SAMPLE 10/8						
DADAMETED.	• 130013	6T3-1	613-2 1780-4	613-3 17404 6	613-4 17M04 6	613-5 TYM01-6	613-6 17M04 A	613 7	CT 3QA**	1-619-1	619-2	619 3	619-4	6190A**
UNITS	ME THOO	-	2		*	\$	9	7	8	<b>6</b>	0	-	27	13
DATE		10/15/86	10/15/86	10/15/86	10/16/86	10/11/86	10/17/86	10/23/86	10/17/86	10/13/86	10/13/86	10/21/86	10/21/86	10/21/86
BRONOD I CHLORONE THAME	32101	<0.050	<0.050	<0.050	<0.050	0.050	(O.050	(0.050	0.080	~	<0.050	(0.050	(0.050	Z
UG/L BRONOFORM	HA 32 104	<0.050	<0.050	<0.050	<0.050	050.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<b>.0.05</b> 0	¥ 2
UG/L BRONOME THANE	3413	<0.050	<0.050	<0.050	<0.050	0\$0 0)	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	¥
UG/L CARBOW TETRACHLORIDE	32.102	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	¥
UG/L CHLOROBENZENE	34 30 1	<0.050	<0.050	(U.050	<0.050	<0.050	د0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	¥
UG/L CHLOROE THANE	3431.1	<0.050	<0.050	<0.050	<0.050	(0.050	<0.050	c0.050	<0.050	<0.050	<0.050	<0.050	40.050	¥
<u>5</u>	34576	<0.050	<0.050	050 0)	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	40.050	¥
CHLOROFORM	32 106	<0.050	<0.050	<0.050	<0.050	0.43•	40.050	c0.050	0.48•	<0.050	0.050+	<0.050	c0.050	¥ ¥
CHLOROMETHANE	34418	<0.050	0.050•	(0.050	<0.050	<0.050	<0.050	050.05	<0.050	<0.050	<0.050	<0.050	<0.050	¥ Z
DIBROMOCHLOROME THANE	44 32 105	<0.050	<0.050	cu. 050	<0.050	40.050	<0.050	050.02	<0.050	<0.050	(0.050	<0.050	<0.050	¥
UG/L DICHLOROBENZENE, TOT.	81524	<0.050	<0.050	<0.050	<0.050	40.050	0\$0 0>	<0.050	<0.050	<0.050	<u.,050< th=""><th>&lt;0.050</th><th>&lt;0.050</th><th>*</th></u.,050<>	<0.050	<0.050	*
	34668	<0.050	<0.050	<0.050	<0.050	0\$0-0>	<0.050	<0.050	<0.050	(0.050	<0.050	<0.050	(0.050	Z Z
TE HAME UG/L	34496	<0.050	<0.050	o\$0"a>	<0.050	050 05	<0.050	<0.050	(0.050	<0.050	<0.050	<0.050	<0.050	X
UD/L 1_2 - D   CHL OROE THANE	34531	<0.050	<0.050	<0.050	<0.050	40.050	c0.050	<0.050	<0.050	0.60	<0.050	<u. 050<="" th=""><th>&lt;0.050</th><th>ď Z</th></u.>	<0.050	ď Z
US/L I, I - DICHLOROE THYLENE	34501	<0.050	<0.050	<0.050	<0.050	0\$0°0>	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<b>₹</b>
~.	34546	(0.050	(0.050	(0.050	<0.050	<0.050	<0.050	<0.050	(0.050	0.25*	<0.050	<0.050	0.37*	X X
LINTAL US/L 1,2-DICHLOROPROPANE	34541	<0.050	<0.050	<0.050	(U.050	<0.050	050.05	40.050	<0.050	0.050+	<0.050	<0.050	<0.050	X Y
CIS-1,3-DICHLORO	34 704	<0.050	050 0>	<0.050	<0.050	60.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	A A
TRANS-1, 3-DICHLORO	34699	<0.050	050.05	<0°0°0>	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	¥ Z
PROPLINE UCAL METHYLENE CHLORIDE LIGAL	34423 HA	<0.050	0.20•	<0.050	c0.050	<0.050	<0.050	<0.050	40.050	<0.050	<0.050	<0.050	(0.050	¥ Z
• • • • • • • • • • • • • • • • • • • •														

UG/I HA

* Single column quantification _ unable to confirm by second column due to interference.

# Single column quantification _ second column confirmation was not conducted.

* First column quantification _ second column confirmation.

** Field Duplicate

PRUJECT NAME TYNDALL AFB PROJECT MANAGER RANDY SCHULZE LAB COORDINATOR DAVE ANOTHE

PROJECT NUMBER 86449 0000 FIELD GROUP TYNDL6

6190A**
1 YNDL 6 10/21/186 <0.010 = ۷ Z ž ž ž ž ž ž ž ž 1500 28.2 619-4 1YNDL6 12:15 270. ÷ <0.050 <0.050 050.00 <0.050 050.00 010.03 6.0 0.033 5.10 111/21/86 <0.050 cu. 050 <5.U 619-3 TYNDL6 13.10 (0.050 <0.50 65.0 cu. 010 65.0 28.4 <0.050 co. 050 <0.050 <0.50 0.0086 5.80 <0.050 050.05 <0 050 107 10/21/86 0.86 GT9-2 1 YNDL 6 14:48 <0.050 <0.50 05.0> 0.17 4 90 10/13/86 <0.050 c0.050 <0.050 <0.050 <0.050 **cu.50** 9.3 <0.010 cu.0031 <0.050 128 3. / 3.2 0 050 \$ 6.92 CT9-1 TYNDL6 9 14:10 <0.050 <0.050 050.02 910 81 .US 0.026 4.60 84.0 10/13/86 c0.050 c0.050 **c0.05**0 5 CT 3QA## TYNDL 6 U. 050ª 0.56 10/17/86 050.00 ς Ω. 050 c0.050 050.00 (0.50 <0.50 05.00 60.05 050.00 40.050 CO. 010 <0.0031 ž ž SAMPLE 10/8 -6 GT3-7 16 TYNOL6 10/23/86 050.05 050.05 010.03 2.40 **56 4** va. 050 05.00 05.05 <0.50 60.50 60.05 0.015 <0.050 <0.050 <0.050 <0.050 12:30 CT3-6 TYNDL6 0.080 00.10 9 050.05 60.50 <0.50 05 05 05.00 <0.050 010.05 330 050.0> <0.050 <0.05g <0.050 0 027 . . 98/71/01 9 CT 3 5 TYNOL 6 95 50 co Su 5--9 1:45 <0.050 010 03 cu.0031 <0.050 <0.050 <0.050 40.050 <0.050 ž CO. 050 CT 3-4 TYNOL 6 **c0.05**0 05.00 <0.0× <0.50 (0.50 9 25.8 10:45 02.00 320 <0.050 <0.050 c0.050 <0.050 010.05 0.025 98/91/01 <0.050 <0.050 CT3-3 TYNOL6 11:55 <0.050 050.00 **60.50** 05.00 <0.50 05.0 01 0> 0.17 6.20 25.2 10/15/86 cu. u50 010.00 8 <0.050 <0.050 <0.050 CJ. 050 <0.50 CT 3-2 1YNDL 6 0::0 (0.050 050.02 <0.050 <0.050 00.00 <0.050 <0.0> <0.50 <0.50 0.0 9 00 - 9*7* 10/15/86 <0.050 010 03 0.024 9 10, 15/86 <0.50 <0.50 <0.50 <0.50 TYNDL 6 <0.050 c0.050 010.03 0.014 9.00 <0.050 (0.050 <0.050 <0.050 co. 050 <u>*</u> STORET # 34030 34010 P1 81551 10514 ¥ 34506 34511 ž ž 39175 Ĭ 34371 45501 400 ž <u>-</u> <u>-</u> 15977 UG/L 1, 1, 2, 2-TETRACHLORO ETHANE UG/L SID UNITS I, I, I-TRICHL'ETHAME I, I, 2-TRICHL'ETHAME HYDROCARBONS PETRO SP. COND., FIELD#25C UMMOS/CH ETHANE UG/L
TETAACHLOROETHENE 2-DIBROMOE THANK UNITS TRICHLORDETHEME 1/9H 1/94 **UG/L** 1/90 UC/L Z Z 7/3n 7/20 XYLENES, TOTAL E THYL BENZEME PARAMETERS WATER TEMP LEAD TOTAL PHFIELD TOLUÉ NE BENZENE (608) DATE

unable to confirm by second column due to interference * Single column quantification # Single column quantification • First column quantification ** Field Duplicate

second column confirmation was not conducted second column confirmation

FIELD GROUP TYNDALL - 7 THIS PAGE INTENTIONALLY LEFT BLANK

PROJECT MANE TYNDALL AFB
PROJECT MANAGER RANDY SCHULZE
LAB COORDINATOR DAVE KNOTHE PROJECT NUMBER 86449 0000 FIELD GROUP TYNDL7 SZ2,118

			SAMPLE 10/8		
		- I I I S	50111-2	SD12-1	
PARAMETERS Units	STORE - B	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 Y N OL 7	1 <b>TNDL</b> / 3	
DATE		98/11/01	10/14/86	10/14/86	
1 : ME		13:40	13:30	13:40	
HYDROCARBONS, PETROL	98233A	170	7.5	35/100	
LEAD, SED	1052A	5.1	3.2	86	
HG/KG	CFAA	7	;		
HOISTORE SUCT LIT	0.750/	<del>7</del> .6	7.17	8). *	
BENZEME	34237A	(0.30	<0.30	66.0>	
MG/NG	SHS Sec. 5:	31 31	,		
BROMODIUM ONOME INAME	34 3 5UA CMS	CO. 15	5	۱۵۰۵۰	
BROMOFORM	3429UA	<0.32	(0.33	c0.42	
DNC/NG	CMS				
BRUNOM THANK	14416A	€E :00	0+ 0>	<0.52	
PE/KG	SH3	91 117	91	36	
ME/NG	SH2			7:0	
CHI OROBERZENE	34 304A	(0.41	1 0 0	<0.53	
HC/AG	CMS				
CHLOROE THAME	34314A	<b>45</b> °0>	75.0>	(0.73	
JA/JH	SES	;	,		
200	345794	89.0>	69 0>	68.0>	
ETHER MG/KG	585	11 07	•		
CAL DRUE DAM	54.5 - 0.4 CMS		2	F	
CHI OROME THAME	34421A	(0.29	(0.30	<0°.38	
MC/KG	CMS				
D I BROMOCHL ORONE THANE	14 309A	<0.21	(0.21	<0.28	
MC/KG			:	:	
DICHEOROBENZEME, TOTA	¥8/596	(n·2/	97.0>	40.36	
PANAMA DOOR THANK	V 4 4 9 4 4	26 92	** 07	<b>4</b> 2	
MC/NG	245				
1,2 DICHLOROE THANE	34534A	(0.19	(0, 19	<0.25	
HG/KG	CMS				
I DICHLOROETHYLENE	34504A	c0.25	<0.22	<0.28	
MG/KG	SHS	;	•	:	
~	34549A	= • •	= =	<b>₹</b>	
ETHENE MG/AG	SE3	7 17	7 10	3	
י ל חובשר סעים אמו אשר	110	2			

GMS

MG/NG

## ENVIRONMENTAL SCIENCE & ENGINEERING 05/02/87 STATUS : FINAL

	PROJECT MANAGER RANDY SCHULZE	
PROJECT NAME	PROJEC	LAB CO
	TYMDL 7	S22, 11R
PROJECT NUMBER	FIELD GROUP	

CHLORO 347  CHLORO 347  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MG  MC/MC  MC/MC  MC/MC  MC/MC  MC/MC  MC/MC  MC/MC  MC/MC  MC/MC  MC/MC  MC/MC	1 1 70	2 TYNDL 7 2 1 TYNDL 7 2 1 10 / 14 / 86 13 30 (0.35 (0.35 (0.19 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.28 (0.	SDT2-1 TWOL7 3 3 10/14/86 13:40 (0.57 (0.57 (0.25 (0.36 (0.36
CHLORO 347 MG/NG 346 MG/NG 348 MG/NG 344 MG/NG 344 MG/NG 344 MG/NG 344 MG/NG 344 MG/NG 344 MG/NG 344 MG/NG 344 MG/NG 344 MG/NG 344 MG/NG 344 MG/NG 344 MG/NG 344 MG/NG 344 MG/NG 344 MG/NG 344 MG/NG 344 MG/NG 344 MG/NG 344	701	01	(0.35 (0.53 (0.35 (0.35 (0.35 (0.35 (0.35 (0.35
CHLORO  MG/NG  DICHLORO  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG  MG/NG			(0.44 (0.57 (0.64 (0.36 (0.36 (0.53
MC/MC MC/MC MC/MC MC/MC MC/MC MC/MC MC/MC MC/MC MC/MC MC/MC MC/MC MC/MC MC/MC MC/MC MC/MC MC/MC MC/MC MC/MC MC/MC MC/MC MC/MC MMC/MC			(0.57 (0.25 (0.36 (0.36 (0.53
MC/KG CM OR 1DE 344 MC/KG CM OR 1DE 344 MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC/KG MC			(0.64 (0.25 (0.36 (0.36
MG/KG CNLORIDE 344 MG/KG OETHENE 344 MG/KG HL'ETHANE 345 MG/KG HH'ETHANE 345 MG/KG HH'			<ul><li>(0.25</li><li>(0.36</li><li>(0.36</li></ul>
TRACHLORO 345 TRACHLORO 345 TRACHCORO 346 TRACKG 344 MC/KG 345 HL'ETHAME 345 HL'ETHAME 345 MC/KG 344 MC/KG 344 MC/KG 344 MC/KG 344 MC/KG 970		<pre>&lt;0.28 &lt;0.28 &lt;0.41</pre>	60.36 60.36 60.53
MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG MG		<0.28 <0.41	<0.36 <0.53
MG/NG MG/NG ML ETHAME MG/NG MG/NG MG/NG THE MG/NG MG/NG MG/NG MG/NG MG/NG MG/NG MG/NG MG/NG MG/NG MG/NG MG/NG MG/NG		(0.4)	<0.53
HE/KG HH/FTHAME HG/KG HL/FTHAME HG/KG LUGGOMETHA NG/KG R1DE R1DE R1DE R1DE			
HL'STAN HL'STHAME NG/NG THEME LUGGOMETHA NG/NG RIDE NG/NG	97.05 WAGE	(0.26	<0.34
THE WE THE WE MC/KG LUORONE THA MC/KG R1DE MC/KG	GRS 34514A <0.34	\$6.0>	<b>44</b> (0)
MG/KG LUORONETHA 344 MG/KG MG/KG 970 MG/KG 970	GMS 34487A <0.13	(0,13	(0.17
MC/KG 97K	GRS 34491A <0.22	(0.22	€0.28
MC/NG 970 MG/NG 970	14495A <0.33	<b>₹</b> (0)	<b>**</b> 0>
11.6	670 6MS <0 41	(0.41	<0.53
	GRS 41.07.9	<0.41	66.53
MG/KG G Acrole in, sed 3421	6MS 4213A 46.8	6.9>	6.8>
3	UMS CA B	9	# **
MG/NC G		•	}

## Footnotes to Analytical Results

Primary column indicates 3.8  $\mu g/L$  of total 1,2-Dichloroethene, however, the secondary column shows the peak to probably be Cis 1,2-Dichloroethene which is a non-target compound.

 2Primary  column indicates 12 µg/L of total 1,2-Dichloroethene, however, the secondary column shows the major portion of the peak to probably be Cis 1,2-Dichloroethene while confirming a level of 0.17 µg/L of Trans 1,2-Dichloroethene.

³Vinyl Chloride co-elutes with Dichlorodifluoromethene on the primary column. The second column indicates the major peak to be probably Dichlorodifluoromethene and a second peak to be either Vinyl Chloride or Chloromethane or both, making confirmation of either impossible. There is a response on the PID on the primary column indicating a probable presence of Vinyl Chloride, but as stated above, the hit cannot be confirmed.

THIS PAGE INTENTIONALLY LEFT BLANK

ANALYTICAL RESULTS OF FIELD DUPLICATES

COLLECTED AT TYNDALL AFB

THIS PAGE INTENTIONALLY LEFT BLANK

ENVIRONMENTAL SCIENCE & ENGINEERING 05/07/87 STATUS:

PROJECT NUMBER 86449 0000 FIELD GROUP TYNDL2 ZONE 2R

PROJECT MANE TYNDALL AFB PROJECT MANAGER RANDY SCHULZE LAB LGOHDINATOR DAVE NNOTHE

SAMPLE 10/8

GL H2 · 9 TYNDL 2 8 <0.050 <0.050 050.00 c0.020 <0.050 CO. 059 050.05 <0.05u <0.050 <0.050 050.00 <0.050 10/22/86 10/22/86 13:15 11:10 GLHZQA TYNDL2 ž ž ž ž ž ž ž ž ž ¥ ž * ž ¥ STORET B UG/L
22 2-CMLOROG THYLVINYL
1 FTHER UG/L
2 CMLOROFORM UG/L
TRANS-1, 2-DICHLORO
ETHENE UG/L
1, 2-DICHLOROPROPANE BRONOD I CHLORONE THANE UG/L CARBON TETRACHLORIDE UG/L DIBROMOCHLORONE THANE UG/L 1_1-DICHLOROETHYLENE CIS-1,3-DICHLORO
PROPENE
UG/L
TRANS-1,3-DICHLORO
PROPENE
METHYLENE
CALORIDE
UG/L UG/L DICHLOROBENZENE, TOT. UG/L
DICHLORODIFLUORO
METHANE UG/L
I, I-DICHLOROETHANE UG/L 1,2-DICHLOROETHANE UG/L CHLOROE THANE UG/L CHLOROMETHANE UNI TS 7) ۲ 20 CHLOROBENZENE BRONCHE THANE PARAMETERS **BRONOFORM** DATE R-45

PAGE #

*

. .

86449 0000	TYMDL 2	ZONE 2R
AUJECT NUMBER 86449 0000	HILD GROUP	

PROJECT NAME TYNDALL AFB PROJECT MANAGER KANDY SCHULZE LAB CUCRDINATOR DAVE KNOTHE

SAMPLE 10/8

GL H2 - 9 T YNDL 2 8	10/22/86 11:10	(0.050	050.05	050 0	(0.050	050 0	.0.050	050 0)	05 05	?	* 00 ?	<0.5u	¥66 U	27	<0.0031		R		793		25.8		ď Z	
GLH2OA TYNDL2 6	10/22/86 13:15	*	4	¥ Z	¥	¥	¥	¥	¥		ď	N	951		<0.0031		ď		¥		*		₹ Z	
STORE 1 .		4516 45	34475	34506	34511	39180	34488	HA 39175	## 140 30	ā.	3437.	34010	- Lay	-	1051A	Cf AA	900	0	\$	0	2	0	599	<b>&gt;</b>
PARAMETERS UNITS	DATE	1, 1, 2, 2-TETRACHLORO	TETRACHLOROETHENE	US/L 1, 1, 1-TRICHL'ETHANE	UG/L 1, 1, 2 - TRICHL'ETHANE	TRICHLOROETHEN	TRICHL'FLUORONETHANE	UG/L VINYL CHLORIDE		1/9n 46	ETHYLBENZENE UG/L	TOLUE NE	1/90 1/90 SWOWDAY JOHANN	MG/L	LEAD, TOTAL	1/9#	PH, F 16LD	STD UNITS	SP. COND. FIELD#25C	UMHOS/CM	WATER TEMP	U	D.O. PROBE	1/9H
									K-	46														

ENVIRONMENTAL SCIENCE & ENGINEERING 05/07/87 STATUS:

PROJECT NUMBER 86449 UUUU FIELD GROUP TYNDL3 25HX

PRUJECT NAME TYNDALL AFB PRUJECT MANAGER RANDY SCHULZE LAB CUCRDINATOR DAVE ANOTHE

PAGE #

SAMPLE 10/#

PADAMETERS	STORET A	6T5-3	CTSOA TYRDI 3
STIMO	METHOD	3	-
DATE		10/13/86	10/13/86
7:ME		12:00	00:00
BROMODICHLORONE THANE	32101	0.070	1 0.0601
1/90	Ĭ		
BRONOF ORM	32104	<0.050	<0.050
1/90	¥ Í		
BROHOME THANE	34413	<0.050	ćυ 050
1/90		•	;
CARBON TETRACHEORIDE	32	(0.050	(n. 05u
1/20	¥ .	90	0,000
CHE UNUSER NZE ME	105 \$5	00.00	050.05
1/90 3/44L 3/60/ H7	## T	050	050 07
LE CHECKER LINES	44	200	20.00
2-CHLOROF THYE VINYE	34576	<0.050	050.05
	¥		
3	32106	0.440	1 0.460 1
1/9n	¥		
CHLOROMETH	34418	<0.050	050.05
1/90	¥		
DIBROMOCHLOROME THANE	321	<0.050	<0.050
	¥ ;	,	;
DICHLOROBENZENE TOT	81524	<0.050	050.05
1/90	¥H .	;	•
8	34668	(0.050	<0.050 (0.050
TELEFAME UG/L	HA A A A A	930	0000
1. 1. DICHEGROE HAME	34450	000.00	00.03
SUPPLIES OF SHAME	14531	050 02	050.05
7/90	¥#		
1 1-DICHLOROETHYLENE	345	<0.050	<0.050
1/90			
TRANS-1, 2-DICHLORO	34546	(0.050	<0.050
ETHEME UG/L	¥		
1, 2-DICHLOROPROPANE	34541	050.0>	<0.050
1/90	¥		
ڄ	34 704	40.056	050 0>
PROPEME UG/L	H		
Ψ.	34699	<0.050	0 <b>2</b> 0 0>
PROPEME UG/L	¥		
METHYLENE CHLORIDE	34423	<0.050	<0.050
1/9/1	**		

PRUJECT NUMBER 86449 0000 PROJECT NAME TYNDALL AFB FIELD GROUP TYNDL3 PROJECT MANAGER RANDY SCHULZE ZSAX 1AB CRORDINATOR DAVE NNOTHE

SAMPLE 1078

ENVIRONMENTAL SCIENCE & ENGINEERING 05:07 87 STATUS;

PAGE # 3

PROJECT NUMBER 86449 GUGU PROJECT NAME - TYNDALL AFB FIELD GROUP TYNDL3 PROJECT MANAGER RANDY SCHULZE ZSRX LAB LOGRDINATOR DAVE ANOTHE

SAMPLE 10/8

PRUJECT NUMBER 86449 0000	86449 0000	PROJECT NAME	TYNDALL AFB
IETD CROUP	17MDL4 24 10 115	PROJECT MANAGER RANDY SCHOLZE	NANDY SCHULZE
	21.0		

				4 11 1 CKOUP	26, 10, 11R	PROJECT HANAGEN KA
PARANÉTERS UNITS	STORET #	G16-4 1 yndi 4	GT6UA TYNDL4 6	6110-3 14NDL4 9	61100A 17NDL4 10	SAMPLE ID/A
DATE		10/21/86 10:00	10/21/86	01:60 98/07:01	107.207.8 <b>6</b> 09.10	
BROMOD I CHLOROME THANE	32101	<0.050	¥	0 <b>5</b> 0 °0 ×	<0.050	
BRONGFORM	101 CF	<0.050	N A	<0.050	<0.050	
BRUNOME THANE	34413	<0.050	¥ Z	<0.050	050 0>	
CARBON TETRACHLORIDE	201.2F	<0.050	*	vu. 050	050'0>	
CHLOROBENZENE	34301	<0.050	ž	<0.050	050 0>	
CHLOROE THANE	34311	40.050	¥	c0.020	050 05	
- Jo	#A 34576	050.05	¥	050 05	050 D>	
FTHER UG/L CHLUROFORM	44 37.106	C. 11	# A K	050 03	050 05	
UG 'L CHLORUME THANE	4 H H	050 0>	Z	49.650	• 01 0	
UG/L DIBROMOCHLOROMETHANE	HA 32105	c0.058	A A	0\$i- 65	050 05	
UG/L DICHLOROBENZENE, TOT.	HA 81524	<0 050	Z Z	60, PS0	050.05	
1/96	HA BAAA	050 07	2	3	0,000	
METHANE UG/L	WH S			3		
I, I - DI CALOROE I HANE	9 4 4 6 4 4 4 6 4 4 4 6	060.03	đ Ž	0.0	nen ny	
1,2-DICHLOROETHANE	34537	0.070	AM -	<0.150	<0.050	
1, 1 - DICHLOROE THYLENE	34501	<0.050	¥	50.150	0\$0 0>	
UG/L TRANS-1, 2-DICHLORO	HA 34546	-	¥Z	00.150	0\$0 0>	
ETHENE UG/L	¥	3	•	9	9	
I_Z-DICHLOKOPROPANE UG/L	- 42 ¥	150.0>	ď E	000.00	ncn ny	
_	14 704	<0.050	¥	<0.050	<0.050	
σ.	4699	<0.050	A	<0.050	950.05	
PROPENE UG/L	HA 1442.1	050 02	¥	950 03	0.50	
1/90	HA					

1-5-10-1

į

.

1

				PROJECT NUMI FIELD GROUP	PROJECT NUMBER BE449 UNUG FILLD GROUP TYNDL4 26 IU FIR	PRUJECT NAME TYNDALL AFB PRUJECT MANAGER RANDY SCHULZE LAB COURDINATOR DAVE ANOTHE
PARANETERS UNITS	STORET B	676-4 TYNDL4	616UA 17NDL4 6	6710-3 TYNDL4 9	6110QA Trindl 4 to	SAMPLE ID/#
DATE TEME		10/21/86 10:00		10/21/86 10/20/86 10/20.86 10:45 09:10 09:10	98.02701	
1, 1, 2, 2-TETRACHLORO	34516	v0.050	¥ X	(0.050	40,050	
TETRACHLOROETHEME	34475	<0.050	¥	<0.050	050-05	
1, 1, 1-TRICHL'ETHANE	34506	050 0>	X X	<0.050	<0.050	
1, 1, 2-TRICHL'ETHANE	34511	<0.050	¥	050.05	(0.050	
TRICHLOROETHENE	9916F	<0.050	¥	<0.050	00.050	
TRICHL'FLUORONE THANE	Ä	40.0 <b>5</b> 0	¥ Z	050.05	v0:050	
VINTL CHLORIDE	\$2.16F	0.24 ‡	Z Z	40.050	20.050	
BENZENE 1/20	\$40.30	6.0.1	Ä	05 0>	05.05	
UC/L S ETHYLBENZENE	11842	05 0>	Ä	05.05	60.50	
TOLUENE NEW	34010	-	* *	05 O>	05.00	
4 - CHL 1 - 3 - ME TH 1 PHE NOL	<i>.</i> 3	<u>=</u>	¥	7.7	4.1	
2-CHLOROPHENOL	34586	₹	Z.	<b>₹</b> ' n :	<b>₽</b> ŋ>	
2,4-DICHLUROPHENOL	34601	\$	Z.	900	<b>♦</b> .0>	
2 4-DINETHTLPHENOL	34606	\$	¥	<b>†</b> 0 >	<b>+</b> 0>	
2,4-DINITPLAHENOL	34616	0 <b>4</b> 0	*	*	<b>*</b>	
2-METHYL-4_6-DINITRO	34657	Š	Z	-	Ţ	

î 3

2-CHLOROPHE MOLUGAL
2, 4-D ICHLUROPHE MOLUGAL
2, 4-D ICHLUROPHE MOLUGAL
2, 4-D INITE-PHE MOLUGAL
2, 4-D INITE-PHE MOLUGAL
2, 4-D INITROPHE MOLUGAL
2, NITROPHE MOLUGAL
4-NITROPHE MOLUGAL
4-NITROPHE MOLUGAL
6-D MOLUGAL
7-NITROPHE MOLUGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGAL
1-D MOLAGA

f 1 34591

Ţ

₹

F1 34646 F1 39032 F1 F1 F1 F1

PHE MOL

3

₹

ž ž ž ž ž ž ž ž ž Z Z. Z. ž PROJECT NUMBÉR 16449 ULUU PROJECT NAME TYNDALL AFB FILLD CKUUP TYNDL4 PROJECT MANAGER HANDT SCHULZE Z6 IL. 11K LAB CKÖKDINATÓR DAVE ANGTHE

SAMPLE 10/8

61109A 17NDL4 10, 20 '86 09: 10 9) 0 139 cu 0031 ž ₹ ¥ Z CT 10 - 3 TYNDL 4 9 10, 20, 86 39: 10 0 122 5.20 **€**.0. (0.0031 * CT6UA TYNDL 4 6 10:21:86 0.117 ž 0.0043 ¥ ž * * G16 4 1 YNDL 4 10/21/86 10:00 <0.093 6.20 3 0.0043 379 STORET # 34621 F1 45501 1051A 66 AA 400 94 94 10 10 10 299 8 STD UNITS
SP.COND. FIELDR25C
UNHOS/CM 2,4,6-TRICHL *PHENOL UG/L HYDROCARBONS, PETRO 1. 9H 1. 6161.D UNITS HC/L LEAD, TOTAL PARAMETERS D.O. PROBE

R-52

PROJECT NUMBÉR 86449 UUUG PROJECT NAME TINDALI AFB FIELD GROUP TINDLS PROJECT MANAGER KANDT SCHULZE ZZBAX LAB COMEDINATOR DAVE NNOTHE

SAMPLE 10.8

GTBQA 17NDLS 13:55 050 05 050 05 30.050 00.050 40.050 0.050 10.050 050.05 <0.050 050 O> <0.050 050.00 <0.050 98//1/01 050.05 050 05 <0.050 ca asa 0.050 050 05 <0.050 10:17:86 co 050 050 05 <0.050 νη 020 050 0> 050 05 40 050 0000 050 05 00 00 050 n> 050 03 <0.050 cu. 050 050 05 0.050 <0.050 <0.050 10, 10, 86 CT/ UA TYNDLS c0 050 <0.050 (U. 050 <0.050 050 02 050 05 <0.050 050 05 050 05 050 05 050 05 050 05 050 05 050.05 <0.050 ca u5a 0.00 co 050 050 02 <0.050 617 1 11NDLS 10/10/86 08:45 050 02 <0.050 <0.050 050.05 00 O <0.050 050 05 <0.050 co 050 40 050 00 n 40.050 050.05 <0.050 <0.050 **co 05**0 40.050 <0.050 <0.05u <0.050 STORET # 32104 HA 32104 HA 34413 HA 32102 34.501 HA 34.511 HA 54.576 HA 52.106 HA 54.18 37.105 3466B HA 34496 34531 HA 34 704 34423 HA 34516 HA Ĭ ¥ ¥ 14501 34546 34541 ¥ Ĭ ĭ Ĭ 34699 ¥ UG/L CARBON TETRACHLORIDE BRUNOD I CHLOROME THANK UG/L DIBROMOCHLOROME THANE I, I - DICHLOROE THYLENE 2 - CHLOROE THTE VINTE ETHER UG/L CHLOROF ORB UG/L Dichlorodiflugro METHANE UG/L I, I-DICHLOROE HANE UG/L 1, 1, 2, 2 - TETRACHLORU ETHANE UG/L THANS-1, 2-DICHLORO
ETHENE UG/L 1, 2 DICHLOPOPROPANE TRANS-1,3 DICHLORO PROPENE UG/L 1, 2 DICHLOROF THANE PROPENE UG/L METHYLENE CHLORIDE UG'L C15-1, 3-DICHLORO UNITS 1/**3**n 1/gn UG/L CHLUROMETHANE UG/L CHLOROE THANE 1/30 CHLURUBENZENE BRUMOME THANE PARAME TERS BRUMOF ORM PROPE NE

NOTES   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE   NOTE	PARAMETERS.	STORET #	GT 7- 1 TYNDI 5	CT 2 - CA	C18 3	CTBQA TYNDLS
10710786   10710786   10717786   1071   14475   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050	UNITS	ME 1HOD		*	9	30
4475         CO.050         CO.050 <th></th> <th></th> <th>107 10786 08:45</th> <th>10710786 10:15</th> <th>10717,86 13.55</th> <th>10, 17/86 13:55</th>			107 10786 08:45	10710786 10:15	10717,86 13.55	10, 17/86 13:55
### (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050 (0.05	OF THE NE	34475	<0.050	40.050	<0.050	050.05
44711     CO.056     CO.050     CO.056     US/L</th> <th>34506</th> <th>050.05</th> <th></th> <th></th> <th>050 0&gt;</th>	US/L	34506	050.05			050 0>
99 80	UG/L CHL'ETHANE	4511 54511	<0.050	-	10:050	050.05
34488	THENE	91.80 191.80	<0.050		10.050	050 02
9,175	UGAL UGRONE THANE	34486	<0.050	050 05	050 020	46.050
### (U.50	08 10E	39175	<0.050	050 0>	<0.050	050.05
Harry   Cut   So   Cut   So   Cut   So   Cut   So   Cut   So   Cut   So   Cut   So   Cut   So   Cut   So   Cut   So   Cut   So   Cut   So   Cut   So   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut   Cut	7/90	## 84030	<0.50	05 02	95 02	(0.50)
P1   P2   P3   P4   P4   P4   P4   P4   P4   P4	UG/L UE/L	34371	<0.50	05 05	95 05	10.50
## P I	<b>√9</b> 0	4 n 10	( <b>6</b> 50	05.0	05 01	06.50
4200   C  1, 0   NA   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C  1, 0   C	06/L	P.1 54.205	a. 60	ž	÷	0 1 2
44220	UG/L	CMS	-	ž	7	9.7
JA22U         C1.0         NA         C1.0           GRS         C2.1         RA         C2.1           GRS         C4.0         NA         C4.0           GRS         C4.0         NA         C4.0           GRS         C4.5         NA         C4.5           GRS         C4.5         NA         C4.5           GRS         C4.5         NA         C4.5           GRS         C4.5         NA         C4.5           GRS         C4.0         NA         C4.0           GRS         C5.0         NA         C4.0           GRS         C5.0         NA         C4.0           GRS         C5.0         NA         C4.0           GRS         C5.0         NA         C4.0	16/L	CHS				
39720		3422U GMS	0.10	¥ Z	n i	0.15
3426   C1.0   NA   C1.0   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1.5   C1		19120	42.1	T.	42.1	2
34220 (1.5 NA (1.5 GRS 3422) (1.5 GRS 34242 (1.5 NA (1.5 GRS 34242 (1.5 GRS 34242 (1.5 GRS 34242 (1.5 GRS 34292 (1.0 GRS 34292 (1.0 GRS 34292 (1.0 GRS 34292 (1.0 GRS 34292 (1.0 GRS 34292 (1.0 GRS 34292 (1.0 GRS 34292 (1.0 GRS 34292 (1.0 GRS 34292 (1.0 GRS 34292 (1.0 GRS 34292 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273 (1.0 GRS 34273	UG/L	CMS	5	3	-	=
34230 (1.5 NA (1.5 GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS	UG/L	CMS	2	<u> </u>	-	2
GRS (1.5 NA (1.5 GRS GRS GRS GRS GRS GRS GRS GRS GRS GRS	LUOFANTHENE	34230	<0.5	¥.	41.5	<0.5
34342 (1.5 NA (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR (1.5 GR	חפ/ר	CMS				,
34247 (1.5 NA (1.5 GRS 34247 (1.5 GRS 34292 ().0 NA (1.0 GRS 34292 ().0 NA (1.0 GRS 34292 ().0 NA (1.0 GRS 34273 ().0 NA (1.0	LUORANTHENE	34242	\$5	¥ Z	5.0	S.1.5
GMS 34521 <2.0 NA <2.0 GMS 34292 <1.0 NA <1.0 GMS 4473 <1.0 NA <1.0	YRENE	34247	<.1.5	Z	5.1.5	÷
34521 (2.0 NA (2.0 0 GMS 34292 (1.0 NA (1.0 0 GMS 34292 (1.0 NA (1.0 0 GMS 34273 (1.0 0 MA (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273 (1.0 0 GMS 34273	1/90	CMS				
6HS 34292 <1.0 NA <1.0 6HS 34273 <1.0 NA <1.0	PERVLENE	34521	62.0	¥	0.75	0.55
GMS (1.0 NA (1.0	UG/L	24.20.2	5	4		0
34273 C1.0 NA C1.0	1/5/L	CHS		<u> </u>		
	OROCTHYL)	34273	0.15	A.A.	9.10	0.10

ENVIRONMENTAL SCIENCE & ENGINEERING 05-07-87 STATUS:

PAGE #

				PRUJECT NUMI FIELD GROUP	PROJECT NUMBER 86449 UUUU FIELD GROUP TYNDLS 2788%	PRUJECT NAMÉ TINDALE AFB PROJECT MANAGER RANDY SCHULZE LAB CKKYEDINATOR DAVE NNOTHE
PARANETERS UNITS	STORET #	677-1 TYNOLS	GT7-QA TYMDL S	618-3 11NDLS	GTBQA Trndl5 B	SAMPLE 1D/#
DATE TIME		10/10/86 08:45	10/10/86 10:15	10/17/8 <b>6</b> 13:55	10/17/8 <b>6</b> 13:55	
BIS(2-CHLOROETHOXY)	14278	0.15	ž	0.15	0 1>	
	39100	<1.0	¥	Ξ	9.5	
BIS(2-CHL'ISOPROPYL)	*	<1.0	¥ Z	<1.0	0.15	
LINEM US/L	34636	<1.0	¥	<1.0	0.15	
10 M	34581	<1.0	¥ Z	¢1.0	61.0	
OUT.	34586	4.1	Z	(1.7	4.7	
- Q	34452	•	Z.	4.1	₹15	
PHEMOL UG/L 4-CHLOROPHENYLPHENYL	SMS 34641	0.15	Z	0.15	0.15	
FINER UG/L			2	5	0 12	
1/90		<b>,</b>	1	;	<b>s</b> :	
DIBEN'(A H)ANTH'CENE	34556	<2.0	¥ Z	0.25	(5.0	
DI-N-BUTTLPHTHALATE	32110	0.15	¥ Z	0.15	0.15	
1,3,01CHLOROBENZENE	34566	0.15	M	0.15	0.15	
UG/L 1 2-DICHLOROBENZENE	GMS 34536	61.0	*	0.65	0.15	
1/90	CHS	`	2	9		
1.4-DICHLORGBURZUNG	SMS	<u>.</u>	E E		<b>3</b>	
3,3'-DICHL'BENZIDINE	⋇	<.1.5	*	<1.5	<1.5	
2,4-DICHLOROPHENOL	34601	₹";	X	4.0	₩.15	
UG/L DIE THYLPHTHALATE	54336 34336	0.15	Z	0 1>	<1.0	
UG/L 2,4-DIMETHYLPHENOL	CMS 34606	4.15	Z	<b>4</b> .1>	4.1	
UG/L DIMETHYLPTHALATE	6MS 34341	0.15	¥ Z	0.45	0.15	
UG/L	34616	OF O	Z.	98.5	08 >	
1/90	SHO					-

PROJECT NUMBÉR 66449 UGUU PROJECT NAME TYNDALL AFB FIELD GROUP TYNDLS PROJECT NAMAGER RANDY SCHULZE Z78RX LAB COORDINATOR DAVE ANOTHE

SAMPLE 10/8 10/17/86 0.15 0.15 э Э 61.5 0.55 0 . C 65.0 0.15 0.15 0.15 CTBQA TYNDL S 0.15 0.15 €.0 0.15 CT8-3 17NDLS 6 o -> ر د و 0 ; 5 45.0 ¢1.0 0.15 **∌**∵≎ 10/11/86 10/10/86 GT7-0A TYNDL5 ¥ ž ž ž ž ž ž ž ž ž ž ž ž ž ž ž ž ž CT7 1 TYNDLS 10/10/86 08:45 <u>-</u>. 0.55 65.0 <u>-</u>. 2.5 **♦**... **>** ÷ STURET # 34626 GNS 34596 GNS 34376 GNS 34381 GNS 39700 GNS 34391 GNS 34391 34447 GNS 34591 GNS 34646 GNS 34438 CMS 34.396 CMS 34.03 54.03 54.08 54.08 54.08 54.08 54.08 54.08 54.08 GMS 34428 GMS 34433 GMS 19032 GMS SHS HE XACHLOROBUTAD IE WE UG/L HE XACHLOROCYCLOPENTA D IE WE UG/L HE XACHLOROFTHANE 2-HETHYL-4,6-DINITRO PHEMOL UG/L 2,6-DINITROTOLUENE
UG/L
DI-N-OCTYLPHTHALATE N-NITROSODI-N-PROPYL AMINE UG/L UG/L N-NITROSODINET'AMINE AMINE UG/L N-NITROSODIPHE'AMINE UG/L HEXACHLOROBENZENE UG/L 2,4-DINITROTOLUENE UG/L UG/L INDENO(1,2,3-CD) PTRENE UG/L ISOPHORONE UG/L PENTACHLOROPHENOL UG/L UNITS 7/20 2 NITROPHENOL UG/L 4-NITROPHENOL 1/30 NITROBENZENE UG/L F L UORANTHENE NAPHTHALE NE PARANETERS F L BORENE R-56

P AGE #	
STATUS	
05/07.87	
FNCINE FRING	
SC 1ENCE 1	
ENVIRONMENTAL	

				PROJECT NUMB FIELD GROUP	PROJECT NUMBER B6449 UUUU FIELD GROUP TYNDES 278RX	PROJECT MANAGER RANDY SCHULZE LAB COORDINATOR DAVE ANOTHE
PARAMETERS UNITS	STORET #	677-1 TYNDLS	617-QA Trndus	678-3 17NDL5 6	6780A 1 YMDL 5 8	SAMPLE ID/#
DATE		10/10/86 88 45	10/10/86 10:15	10/17/86	10/17/86 13:55	
PHE NANTHRENE	1946	0.15	¥	<1.0	<1.0	
PHENOL 30/1	346946	61.3	*	<1.3	<1.3	
PYREME DUVIL	34469	0.15	¥	0.15	0 1>	
UG/L 1,2,4-TRICH*BENZEME	*	0 1>	*	0.15	(1.0	
UG/L 2,4,6-TRICHL'PHENOL	*	8.	ž	8.15	8.0	
UC/L PH F1ELD	900 <del>1</del>	5.70	¥	5.80	<b>4</b> 2	
۳.		0 99	ž	353	<b>«</b>	
UMNOS/CM WATER TEMP	ວ ວັ	7.97	ž	25.1	4	
C C C C C C C C C C C C C C C C C C C	0 61	( <del>*</del> )	7	(4.7	(4.7	
1/90	6MS 19337	9	1.6	1.8	<del></del>	
1/90	SHO			Ş		
84C, 8 UG/1	SYSSE	7	7	- -	-	
BHC-D	34259	(3.1	5	1.85	43.1	
BHC G(LINDANE)	39340	(3.1	(3.1	0.1	(3.1	
CHL ORDANE	39350	(5.1	<5.1	(5.1	(5.1	
000 PP'	543 39310	(4.7	₹.₹	€.2	(4.7	
7/9n 00t bb.	6MS 39320	(4.7	(4)	(4.7	< <b>4</b> .7	
1/9n	CHS					
001, 99.	39300 CMS	<del>*</del>	· · ·		. <del></del>	
DIELORIN	39380	(4.7	(4.)	(4.7	(4.7	
UG/L ENDOSULFAN, A	34 36 1	65.6	45.6	4.6.6	(5.6	
UG/L ENDOSULFAN B	34 356 34 356	<b>65.6</b>	45.6	(5.6	(5.6	
1/90	CHS					

ာ
$\Rightarrow$
=
-
STATUS
_
~
1.87
7
20
~
_
J
٠,
05:07
0
모
z
_
x
_
ENCINEERING
=
_
_
_
z
-
-
_
•
Q
z
-
=
SCIENCE
~
•
•
-
z
=
=
=
-
ENVIRONMENTAL
_
>
2

PAGE# 6

						PROJECT NUM FIELD GROUP	PROJECT NUMBER 86449 UDUU FIELD GROUP TYNDLS 2788x	PROJECT NAME TYMBALL AFB PROJECT MANAGER RANDY SCHULZE LAB CGORDINATOR DAVE ANOTHE
عَـ	PARANETERS	S UNITS	STORET #	677-1 TYNDLS	617-QA TYNDLS 4	GT8-3 TYNDL 5 6	6780A 17NDL5 8	SAMPLE 1D/8
ā -	DATE TIME			10/10/96 08:45	10/10/8 <b>6</b> 10:15	10/17/86 10/17/86 13:55 13:55	10/17/86 13:55	
=	MDOSUL F AI	ENDOSULFAN SULFATE	34351	6.5	<b>65.6</b>	4.6	9.55	
<u></u>	ENDRIN		19390	9.10	9 (	9.6	9 ()	
-	ENDRIN ALDEHYDE	06 HY DE	34 366 34 366	47.6	9.13	9 6	67.6	
Ŧ	HEPTACHLOR		39410	6 13	6.19	6 10	6.15	
Ŧ	EP TACHLOS	UC/L HEPTACHLOR EPOXIDE	59420 59420	(2.2	(2.2	<2.2>	(2.2	
ā.	PCB-1016	4	34671	30	\ 30	<30	<30	
ă.	PCB- 1221	7/90	39488	430	<30	06>	00	
₹ R-5	PCB-1232	1 2	19492	30	(30	05.5	\ 50	
	PCB-1242	7.791	96468	30	05)	<30	< 30	
Ž.	PCB 1248		00565	30	065	0E >	(30	
ď	PCB-1254	, ;	\$9504 \$80	36	96	\$ \$	<3 <b>6</b>	
ĭ	PCB-1260		39508	<b>0♦</b> >	0+>	0 <b>†</b> >	<b></b>	
ĭ	TOXAPHE NE		39400	¢0	09>	09>	09>	
		N6∕1	S <b>E</b> S					

ENVIRONMENTAL SCIENCE & ENGINEERING US U7/87 STATUS:

PAGE #

Lander 1 . march

A Control of the Control

PROJECT NUMBER 86449 UNUU PROJECT NAME TYNDALL AFB FIELD GROUP TYNDL6 PROJECT MANAGER HANDT SCHULZE Z3_9R LAB COORDINATOR DAVE NNOTHE

SAMPLE 10/8

G19-3 G190A TYNDL6 TYNDL6 11 F3	10/21/86 10/21/86 13:10 12:15	<u.050 na<="" th=""><th>(0.050 NA</th><th></th><th>&lt;0.050 NA</th><th></th><th>&lt;0.050 NA</th><th></th><th>&lt;0.050 NA</th><th></th><th>&lt;0.050 NA</th><th></th><th>&lt;0.050 NA</th><th></th><th>&lt;0.050 NA</th><th></th><th>&lt;0.050 NA</th><th></th><th>&lt;0.05u NA</th><th></th><th>CO 050 NA</th><th></th><th>&lt;0.050 NA</th><th></th><th>&lt;0.056 NA</th><th></th><th>&lt;0.050 NA</th><th></th><th>&lt;0.050 NA</th><th></th><th>&lt;0.050 NA</th><th></th><th>&lt;0.050 NA</th><th></th><th>&lt;0.050 NA</th><th></th><th>MA 050 07</th><th></th></u.050>	(0.050 NA		<0.050 NA		<0.050 NA		<0.050 NA		<0.050 NA		<0.050 NA		<0.050 NA		<0.050 NA		<0.05u NA		CO 050 NA		<0.050 NA		<0.056 NA		<0.050 NA		<0.050 NA		<0.050 NA		<0.050 NA		<0.050 NA		MA 050 07	
CT 3QA TYNDL 6	10/17/86 10/	0.080 t	(0.050		<0.050		<0.050		<0.050		050.05		<0.050	4	. ¥8 ₹.0		(0.650		10.05e		050 05		050.05		050.0>		<0.050		<0.050		<0.050		<0.050		40.050		70.00	
CT3-5 TYNDL6 5	10/17/86	0.050	<0.050		<0.050		<0.050		(O.050		<0.050		<0.050	4	0.43 T		c0.050		<0.050		<0.050		<0.050		00.00		<0.050		<0.050		<0.050		<0.050		<0.050		030 07	00.00
STORET .		32 101	32 104	Ŧ	3413	Ŧ	32 102	¥	34301	¥ H	34311	¥	34576	¥	32106	¥	34418	¥	35 105	¥	81524	¥	34668	¥	34496	¥	34531	¥	34501	¥	34546	¥	34541	HA	34 704	¥		24077
PARAMETERS UNITS	DATE	BRONOD I CHLORONE THANE	UC/L BRONOFORM	1/9n	BRONOME THANE	1/90	CARBON TETRACHLORIDE	1/90	CHLOROBE NZE NE	V90	CHLOROE THANE	1/90	200	ETHER UG/L	CHLOROFORM	1/9n	CHLOROME THANE	7/9n	DIBROMOCHLOROME THANE	7/9n	DICHLOROBENZENE, TOT.	מפער		METHANE UG/L	1, 1-DICHLOROE THANE	1/90	1, 2-DICHLOROETHANE	1/9n	1, 1-DICHLOROE THYLENE	1/90	TRANS-1, 2-DICHLORO	ETHENE UG/L	1 2-DICHLOROPROPANE	1/90	C15-1, 3-D1CHL080	PROPEME UG/L	Ogo multo con careta	TRAMS-1 3-DICHEORO

PRUJECT NAME TYNDALL AFB FIELD GROUP TYNDE PROJECT MANAGER HANDY SCHULZE Z3.9R LAB COURDINATOR DAVE NNOTHE

SAMPLE 10/8

DATE  1 INE  1 I. 2. 2- TETRACHLORO 34516  ETANNE UG/L  HA  TETRACHLOROETH ME 34475  UG/L  HA  1, 1, 1-TRICHL'ETHANE 34506  UG/L  HA  HA  HA  HA  HA  HA  HA  HA  HA  H	94	10/17/86 11:45 (0.050 (0.050 (0.050 (0.050 (0.050 (0.050	13.19 (0.050 (0.050 (0.050 (0.050 (0.050	10/21/86 12:15 NA NA NA NA
		(0, 050 (0, 050 (0, 050 (0, 050 (0, 050 (0, 050	13 · 10  (0 · 050  (0 · 050  (0 · 050  (0 · 050  (0 · 050  (0 · 050  (0 · 050	2.15.
		(0.050 (0.050 (0.050 (0.050 (0.050	050.050 050.050 050.050 050.050	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		050,050 050,050 050,050	(0.050 (0.050 (0.050 (0.050	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		0,050 0,050 0,050 0,050 0,050	0\$0 0) 0\$0 0) 0\$0 0)	<
		050,050	050 05 050.05 00.05 00.05	4 4 4 4 2 2 2 2
		60,050 (0,050 (0,050	050.0> 050.0>	± ± ±
3		<0.050 <0.050 0.05	(0.050 (0.050	<u> </u>
		<0.050 0.05 •	050.0>	<b>\$</b> \$
		<0.050 0.05 •	(0.050	4 4 2 2
39		0.05	<0.050	¥
		0.05	<0.050	<b>4</b> <b>2</b>
TRICHL'FLUOROMETHANE 34488				
96	0.50	050 050	040	7
				<u>.</u>
**	05.02	05.05	50.50	₹ 2
3. UG/L P1				
ETHYLBENZENE 34371	9 1	0.56	0 5> 0	æ
1/90				
TOLUENE 34U10	3.7	<0.50	05.00	₹ Z
14 1/90				
XYLENES, TOTAL 81551	05.05	(A 50	0 S>	¥ ¥
1d 7/9n				
1,2-D1BRONOETHANE 77651	010.05	40.010	<0.010	010.03
73 1/9n ( <b>8</b> 03)				
HYDROCARBONS, PETRO 45501	187.0	<0.094	0.693	₹ Z
NG/L				
LEAD, TOTAL 1051A	1 <0.0031	co 0031	0.0086	¥
MG/L GFAA	_			
PH.FIELD 400	0.19 (	¥	5.80	¥ Z
STD UNITS 0	-			
5	308	ď Z	101	ď
UMHOS,'CM 0				
MATER TEMP 10	9 79 6	¥	28.4	W.

Code	<u>Technique</u>
I	miscellaneous inorganic techniques
GFAA	graphite furnace atomic absorption
GMS	gas chromatography/mass spectrometry
HA	gas chromatography with a halide-specific detector
PI	gas chromatography with a photoionization detector
Ø	miscellaneous field techniques
FI	gas chromatography with a flame ionization detector
ICAP	inductively coupled argon plasma atomic emission
	spectrometry
CVAA	cold vapor atomic absorption
EC	gas chromatography with an electron capture
	detector
MP	metals and pesticides extraction procedure for
	toxicity characterization

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX S

EP TOXICITY DATA FOR DRILL CUTTINGS

FROM ZONE 6 AND 9

# ENVIRONMENTAL SCIENCE & ENGINEERING 02 29/88

TYNDALL AFB O.M. HALE OILNA HALE	
PROJECT NAME TYNDALL AFB PROJECT MANAGER D.M. HALE LAB COORDINATOR DILNA HALE	
86449 0000 TYNDLS EPMP1	
PROJECT NUMBÉR B6449 0000 FIELD GROUP TYNDLS EPMPI	

SAMPLE 1078

		\$079-4	5019-3	SOTEP	
PARAMETERS	METHOD		1 MULS		
DATE TINE		10/05/86	10/05/86 15:45	10715/86	
r_DATE OF	EXTRA 97078	98/11/01	10/14/86, 10/21/86	10/21/86	
ENDRIN	39390	(0.133	<0.064	<0.093	
3	FC 39340	<0.0 <b>66</b>	<0.032	(0.04)	
UG/L	8C 39480	(0.347	<0.168	<0.217	
1/90	39400	(1.57	<0.758	816.0>	
UG/L UG/L	19730	<0.222	<0.222	(0.222	
06/L 06/L 2 4 5-TP/SILVEX	19760 19760	40·056	<0.056	950:0>	
CADMIUM DISS	FC 1025A	<0.0047	<0.0047	40°.0036	
1/94 Sid Williams S	ICAP 1030A	0610.03	¢0.0190	<b>46.0054</b>	
HG/L	1CAP	<0.0330	<0.0330	<0.0220	
MG/L	ICAP 1075A	(0.0059	(0.0059	<0.0048	
MG/L	1000 P	0.0041	0.3067	0.0041	
1/9K	CF AA	0.0003	<0.000	<0.0002	
1/94 1/94	CVAA	<0.0031	(0.003)	<0.0042	
MG/L BARIUM, DISS	GF AA 1005A	0.161	0.102	0.213	
1/9H	ICAP				

THIS PAGE INTENTIONALLY LEFT BLANK

## APPENDIX T

GLOSSARY OF TERMINOLOGY, ABBREVIATIONS, AND ACRONYMS

### GLOSSARY OF TERMINOLOGY, ABBREVIATIONS, AND ACRONYMS

AAFES Army and Air Force Exchange Service

AFB Air Force Base

ACMI Aircraft Control Maneuvering Instrumentation
AFESC Air Force Engineering and Service Center

AFFFS aqueous film-forming foams

aquifer A hydrologic unit that is permeable enough to conduct ground water and to yield economically significant

quantities of water.

aquitard A confining bed that retards but does not prevent the

flow of water to or from an adjacent aquifer.

artesian Ground water confined under hydrostatic pressure.

ASTM American Society for Testing and Materials

AVGAS aviation gasoline

BES Bioenvironmental Services
BOD biochemical oxygen demand

°C degrees Celsius

CA contamination assessment

calcareous containing calcium carbonate, often implying 50 percent

calcium carbonate as a constituent

CERCLA Comprehensive Environmental Response, Compensation,

and Liability Act

cm/sec centimeter(s) per second CME Central Mine Equipment

CO carbon monoxide CO₂ carbon dioxide

confined aquifer An aquifer bounded above and below by impermeable beds

or beds of distinctly lower permeability than that of

the aquifer.

confining bed

or unit A body of impermeable or distinctly less permeable

material stratigraphically adjacent to one or more

aquifers.

contaminate

plume Three dimensional space (areal and vertical) having

defined boundaries in which contamination is found.

contamination The addition of any substance or property to water,

soil, or air that does not occur naturally or exceeds the naturally occurring concentrations present in the

water, soil, or air.

DDT dichlorodiphenyl trichloroethane

DEQPPM Defense Environmental Quality Program Policy Memorandum

DFSP Defense Fuels Supply Point

discharge area An area in which subsurface water discharges to the land

surface, surface water, or to the atmosphere.

DOC dissolved organic carbon
DOD Department of Defense

### GLOSSARY OF TERMINOLOGY, ABBREVIATIONS, AND ACRONYMS (Continued, Page 2 of 5)

Occurring at a lower hydraulic gradient or topographic downgradient

gradient, especially in reference to ground water or

surface water.

**DPDO** Defense Property Disposal Office

ethylene dibromide EDB

electromagnetic (EM) conduc-

A method of electrical surveying in which the ground is tivity

energized with direct current through a pair of

electrode contacts, and the behavior of the current is surveyed by measuring the resulting magnetic field.

EM electromagnetic extraction procedure EΡ

U.S. Environmental Protection Agency EPA

Environmental Science and Engineering, Inc. (ESE) ESE

Drainage channels adjacent to the sea in which the tide estuary

ebbs and flows.

۰F degrees Fahrenheit Florida Administrative Code FAC

Florida Department of Environmental Regulation

Floridan Aquifer Primary aquifer in north and central Florida from which

large amounts of potable water are derived.

foot (feet) ft

gram gallon(s) gal

GC gas chromatography

gas chromatography/mass spectrophotometer GC/MS

The study of the classification, description, nature, geomorphology

origin, and development of present (and past) landforms.

gallon(s) per day gpd gallon(s) per minute g pm

ground water contamination indicators **GWCI** 

H₂O water

Hazard Assessment Rating Methodology HARM

hazardous

Contamination that contains hazardous constituents as contaminants

defined by the Environmental Protection Agency.

hydraulic

In an aquifer, the rate of change of total head per unit gradient

of distance of flow at a given point and in a given direction. In a stream, the slope of the free water

surface.

Science dealing with subsurface waters and with related hydrogeology

geologic aspects of surface waters.

# GLOSSARY OF TERMINOLOGY, ABBREVIATIONS, AND ACRONYMS (Continued, Page 3 of 5)

ICP Inductively Coupled Plasma

igneous rock rock that solidified from molten magma

IR infrared

IRP Installation Restoration Program

kg kilogram(s) kn knot(s)

L liter(s)
lb pound(s)

leachate Water that has percolated through soil containing

soluble substances and that contains certain amounts of

these substances in solution.

lithology The description of rocks on the basis of color,

mineralogic composition, grain size, and other

characteristics.

log A continuous record as a function of depth, usually

graphic and plotted to scale, from observations made of

the geologic section.

magnetometry A geophysical method that measures the Earth's magnetic

field and its changes.

MCL maximum contaminant level

metamorphic rock Rock derived from pre-existing rock by mineralogical,

chemical, or structural changes.

mg/day milligram(s) per day
mg/kg milligram(s) per kilogram
mg/L milligram(s) per liter
mmhos/m millimhos per meter
msl mean sea level

nitrogen

NPDES National Pollutant Discharge Elimination Systems
NPDWR National Primary Drinking Water Regulations
NSDWR National Secondary Drinking Water Regulations

O₂ oxygen

OEHL Occupational and Environmental Health Laboratory

PCB polychlorinated biphenyl

permeability The capacity of a porous rock, sediment, or soil to

transmit a fluid.

physiographic

province A region of which all parts are similar in geologic

structure and the region differs significantly in relief

and landforms from that of adjacent regions.

piezometric surface

An imaginary surface that everywhere coincides with the

static level of the water in an aquifer.

# GLOSSARY OF TERMINOLOGY, ABBREVIATIONS, AND ACRONYMS (Continued, Page 4 of 5)

POL Petroleum, oils, and lubricants

potable water Fresh water that is safe and palatable for human use.

potentiometric

surface Surface to which water in an aquifer would rise by

hydrostatic pressure.

ppm parts per million PVC polyvinyl chloride

QA Quality Assurance

QA/QC Quality Assurance/Quality Control

QC Quality Control

RCRA Resource Conservation and Recovery Act

recharge Process involving the absorption and addition of water

to the zone of saturation.

recharge area An area in which water is absorbed that eventually

reaches the zone of saturation in one or more aquifers.

RMCL Recommended Maximum Contaminant Level

runoff That part of precipitation appearing in surface streams.

saltwater

intrusion Displacement of fresh water (surface or ground water) by

the advance of salt water due to its greater density.

sedimentary rock A rock resulting from the consolidation of loose

sediment that has accumulated in layers.

sludge A semifluid, slushy mass of sediment resulting from

treatment of water, sewage, or industrial wastes; a soft, soupy, muddy bottom deposit found on tideland or

in a stream bed.

static water

level Water level of a well that is not being affected by

withdrawal of ground water.

stratigraphy Pertaining to rock strata, the science of their origin,

geologic history, age relations, composition, form, and

distribution.

surficial

aquifer Stratigraphically uppermost aquifer that is under water

table conditions.

TAC Tactical Air Command
TDS total dissolved solids

terrace A narrow, gently sloping constructional coastal strip

extending seaward or lakeward, and veneered by a

sedimentary deposit.

THM trihalomethane

topography The relief and contour of the land.

TOX total organic halogens

transmissivity The rate at which water is transmitted through a unit

width of the aquifer under a unit hydraulic gradient.

TRPH total recoverable petroleum hydrocarbons

# GLOSSARY OF TERMINOLOGY, ABBREVIATIONS, AND ACRONYMS (Continued, Page 5 of 5)

μg/L microgram(s) per liter
umhos/cm micromhos per centimeter

unconfined

aquifer An aquifer having a water table.

upgradient Occurring at a higher hydraulic gradient or topographic

gradient, especially in reference to ground water or

surface water.

USAF U.S. Air Force

USCS Unified Soil Classification System

USGS U.S. Geological Survey

USSCS U.S. Soil Conservation Service UTM Universal Transverse Mercator

UV ultraviolet

WAR Water and Air Research, Inc.

water table That surface of a body of unconfined ground water at

which the pressure is equal to that of the atmosphere.

watershed The area contained within a drainage divide above a

specified point on a stream.

well yield Volume of ground water that can be pumped from a well in

a unit time.

WWII World War II

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX U

REFERENCES

### REFERENCES

- Applegate, A.V., Pontigo, F.A., Jr., and Rooke, J.H. 1978. Jurassic Smackover Oil Prospects in the Apalachicola Embayment. The Oil and Gas Journal, Vol. 76, No. 4, pp. 80-84.
- Evans, R.B. 1982. Currently Available Geophysical Methods for Use in Hazardous Waste Site Investigations. In: Risk Assessment at Hazardous Waste Sites, pp. 93-115, F.A. Long and G.E. Schweitzer, Editors. American Chemical Society Symposium Series, No. 204.
- Florida Department of Environmental Regulation (FDER.) 1982. Chapter 22 of Florida Administrative Code.
- Florida Department of Environmental Regulations (FDER). 1983. Chapter 17-3 of Florida Administrative Code.
- Hatch, N.N., Haas, B.J., Hahn, S.J., and Knight, R.L. 1981.
  Installation Restoration Program Records Search for Tyndall Air
  Force Base, Florida. Prepared for Air Force Engineering and
  Services Center, Directorate of Environmental Planning, Tyndall AFB,
  Florida.
- Healy, H.G. 1975. Terraces and Shorelines of Florida. Florida Bureau of Geology Map Series No. 71, 1 sheet.
- Musgrove, R.H., Foster, J.B., and Toler, L.G. 1965. Water Resources of the Econtina Creek Basin Area in Northwestern Florida. Florida Geological Society Report of Investigations No. 41, 51 pp.
- Puri, H.S. and Vernon, R.O. 1964. Summary of the Geology of Florida and a Guidebook to the Classic Exposures. Florida Geological Survey Special Publication No. 5, 312 pp.
- Rosenau, J.C. and Meadows, P.E. 1986. Potentiometric Surface of the Floridan Aquifer System in the Northwest Florida Water Management District, May 1985. U.S. Geological Survey Water-Resources Investigations Report 86-4183, 1 sheet.
- Schmidt, W. and Clark, M.W. 1980. Geology of Bay County, Florida. Florida Bureau of Geology Bull. No. 57, 96 pp.
- Sax, N.I. 1975. Dangerous Properties of Industrial Materials. Van Nastrand Reinhold Co., New York.
- Sax, N.I. 1979. Dangerous Properties of Industrial Materials, Fifth Edition. Van Nastrand Reinhold Co., New York.

- Thiess, W.G., Sullivan, J.H., Adams, W.D., Steinberg, J.A., Baker, R.D., and Fellows, C.R. 1984. Installation Restoration Program Phase II—Confirmation/Quantification Stage 1 for Tyndall Air Force Base, Florida. Prepared for Air Force Occupational and Environmental Health Laboratory, Aerospace Medical Division, Brooks Air Force Base, Texas.
- U.S. Environmental Protection Agency (EPA) 1976. Quality Criteria for Water, EPA, Washington, D.C.
- U.S. Environmental Protection Agency (EPA) 1980. Water Quality Criteria Documents; Availability, Federal Register, Vol. 46, No. 156; p 40919.
- U.S. Environmental Protection Agency (EPA). 1981. Water Quality Criteria. Federal Register Vol. 46, No. 156, February 1984.
- U.S. Environmental Protection Agency (EPA). 1985a. National Primary Drinking Water Regulations; Synthetic Organic Chemicals, Inorganic Chemicals, and Microorganisms; Proposed Rule. 40 CFR Part 141 (Vol. 50, No. 219) 46936. Revised Regulations.
- U.S. Environmental Protection Agency (EPA). 1985b. Water Quality Criteria. Federal Register Vol. 50, No. 145, July 29, 1985.
- U.S. Environmental Protection Agency (EPA). 1986. Verified Reference Doses (Rfds) of the U.S. EPA. The ADI Workgroup of the Risk Assessment Forum. Office of Research and Development.
- U.S. Environmental Protection Agency (EPA). 1987. Health Advisory Documents for 54 Water Contaminants. EPA Office of Drinking Water, Washington, D.C.
- U.S. Soil Conservation Service (USSCS). 1984. Soil Survey of Bay County, Florida. U.S. Department of Agriculture, Soil Conservation Service, Washington, DC, 152 pp, 76 maps.