GAL Buckle 95

François Pelletier

8 mars 2014

Table des matières

	0.1	Chargement des paquets	
	0.2	Constantes et données	
	0.3	Test de normalité	
	0.4	Données mises à l'échelle	
	0.5	Première estimation par QEE	
	0.6	Résultats de la première estimation par QEE	
	0.7	Seconde estimation par QEE	
	0.8	Résultats de la seconde estimation par QEE	
	0.9	Estimation par GMM	
n	.1	Chargement des paquets	
U	• 1	Chargement des paquets	
>	setw	d("~/git/GAL-Buckle95/")	
	library(actuar)		
	> library(MASS)		
	> library(xtable)		
	library(multicore)		
	library(moments)		
>	library(TTR)		
>	> library(FourierStuff)		
>	libr	brary(GeneralizedAsymmetricLaplace)	
>	libr	ibrary(GMMStuff)	
>	libr	brary(OptionPricingStuff)	
>	libr	${ m ary}({ m QuadraticEstimatingEquations})$	
Λ	2	Constantes et données	
U	. 4	Constantes et données	
		bre de décimales affichées	
>	options(digits=6)		
>	#Marge pour intervalles de confiance		

> alpha.confint <- 0.05

> alpha.test <- 0.05

> #Marge pour test d'hypothèses

4

```
> #Chargement des données
> RETURNS <- head(read.csv("abbeyn.csv",sep="\t",header=TRUE)[,1],-1)
> #Taille de l'échantillon
> n <- length(RETURNS)</pre>
```

0.3 Test de normalité

```
> EppsPulley.test(RETURNS)

Epps-Pulley Normality test

T: 0.626033

T*: 0.635568
p-value: 0.007178

$Tstat
[1] 0.626033

$Tmod
[1] 0.635568

$Zscore
[1] 2.44824
```

\$Pvalue

[1] 0.00717788

\$Reject
[1] TRUE

0.4 Données mises à l'échelle

> scaledRETURNS <- as.vector(scale(RETURNS))

0.5 Première estimation par QEE

```
> ## Point de départ
> pt.depart <- startparamGAL(scaledRETURNS)
> ## Fonctions pour les moments
> meanQEE <- function(param) mGAL(param,1)
> varianceQEE <- function(param) cmGAL(param,2)
> sdQEE <- function(param) sqrt(cmGAL(param,2))
> skewnessQEE <- function(param) cmGAL(param,3)
> kurtosisQEE <- function(param) cmGAL(param,4)</pre>
```

```
> ## Fonctions pour les dérivées
> dmeanQEE <- function(param) dmGAL(param,1)</pre>
> dsdQEE <- function(param) dmGAL(param,2)</pre>
> ## Estimation gaussienne
> optim1 <- optim(pt.depart,obj.gauss,gr=NULL,scaledRETURNS,meanQEE,varianceQEE,dmeanQEE,dsc
> pt.optim1 <- optim1$par</pre>
> ## Estimation de crowder
> optim2 <- optim(pt.depart,obj.Crowder,gr=NULL,scaledRETURNS,meanQEE,varianceQEE,skewnessQl
> pt.optim2 <- optim2$par</pre>
> ## Estimation de crowder modifiée
> optim3 <- optim(pt.depart,obj.Crowder.Mod,gr=NULL,scaledRETURNS,meanQEE,varianceQEE,dmeanQ
> pt.optim3 <- optim3$par</pre>
       Résultats de la première estimation par QEE
```

0.6

```
cov.optim1 <- covariance.QEE(M.gauss(pt.optim1,scaledRETURNS,meanQEE,varianceQEE,cov.optim1)</pre>
                          V.gauss(pt.optim1,scaledRETURNS,meanQEE,varianceQEE,skewnessQEE,ku
          cov.optim2 <- covariance.QEE(M.Crowder(pt.optim2,scaledRETURNS,varianceQEE,skewnes
                          V. Crowder (pt. optim2, scaled RETURNS, variance QEE, skewness QEE, kurtosis
          cov.optim3 <- covariance.QEE(M.Crowder.Mod(pt.optim3,scaledRETURNS,varianceQEE,ske
                          V. Crowder. Mod(pt.optim3, scaledRETURNS, varianceQEE, dmeanQEE, dsdQEE)
          confidence.interval.QEE(pt.optim1,cov.optim1,n)
        LOWER ESTIMATE
[1,] -0.780018 -0.726048 -0.672077
[2,] 0.436002 0.596316 0.756630
[3,] 0.262650 0.359186 0.455722
[4,] 1.994757 2.021370 2.047982
          confidence.interval.QEE(pt.optim2,cov.optim2,n)
        LOWER ESTIMATE
                             UPPER
[1,] -0.694457 -0.627404 -0.560351
[2,] 0.413764 0.640292 0.866820
[3,] 0.232650 0.334028 0.435405
[4,] 1.839966 1.878296 1.916626
          confidence.interval.QEE(pt.optim3,cov.optim3,n)
        LOWER ESTIMATE
                             UPPER
[1,] -0.765288 -0.711439 -0.657589
[2,] 0.455485 0.606642 0.757798
```

[3,] 0.264669 0.362932 0.461195 [4,] 1.932691 1.960299 1.987906

0.7 Seconde estimation par QEE

```
> ## Estimation gaussienne
> optim4 <- optim(pt.optim1,obj.gauss,gr=NULL,scaledRETURNS,meanQEE,varianceQEE,dmeanQEE,dsc
                                                          ginv(V.gauss(pt.optim1,scaledRETURNS,meanQEE,varianceQEE,skewnessQEE,kurto
> pt.optim4 <- optim4$par</pre>
> ## Estimation de crowder
> optim5 <- optim(pt.optim2,obj.Crowder,gr=NULL,scaledRETURNS,meanQEE,varianceQEE,skewnessQl
                                                          ginv(V.Crowder(pt.optim2,scaledRETURNS,varianceQEE,skewnessQEE,kurtosisQEE,scaledReturns,varianceQEE,skewnessQEE,kurtosisQEE,scaledReturns,varianceQEE,skewnessQEE,kurtosisQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQEE,scaledReturns,varianceQ
> pt.optim5 <- optim5$par</pre>
> ## Estimation de crowder modifiée
> optim6 <- optim(pt.optim3,obj.Crowder.Mod,gr=NULL,scaledRETURNS,meanQEE,varianceQEE,dmeanQ
                                                          ginv(V.Crowder.Mod(pt.optim3,scaledRETURNS,varianceQEE,dmeanQEE,dsdQEE)))
> pt.optim6 <- optim6$par
0.8
                       Résultats de la seconde estimation par QEE
                                cov.optim4 <- covariance.QEE(M.gauss(pt.optim4,scaledRETURNS,meanQEE,varianceQEE,c</pre>
                                                                                      V.gauss(pt.optim4,scaledRETURNS,meanQEE,varianceQEE,skewnessQEE,ku
```

```
> cov.optim4 <- covariance.QEE(M.gauss(pt.optim4,scaledRETURNS,meanQEE,varianceQEE,covarianceQEE,covarianceQEE,covarianceQEE,covarianceQEE,covarianceQEE,covarianceQEE,covarianceQEE,covarianceQEE(M.Crowder(pt.optim5,scaledRETURNS,varianceQEE,skewnessQEE,kurtosiscovarianceQEE)

> cov.optim6 <- covariance.QEE(M.Crowder.Mod(pt.optim6,scaledRETURNS,varianceQEE,skewnessQEE,kurtosiscovarianceQEE)

> cov.optim6 <- covariance.QEE(M.Crowder.Mod(pt.optim6,scaledRETURNS,varianceQEE,dmeanQEE,dsdQEE)

> confidence.interval.QEE(pt.optim4,cov.optim4,n)

LOWER ESTIMATE UPPER
```

```
[1,] -0.779792 -0.725853 -0.671914

[2,] 0.436017 0.596319 0.756622

[3,] 0.262456 0.358969 0.455482

[4,] 1.995452 2.022048 2.048644

> confidence.interval.QEE(pt.optim5,cov.optim5,n)

LOWER ESTIMATE UPPER
```

```
[1,] -0.692712 -0.625874 -0.559036

[2,] 0.414139 0.640445 0.866750

[3,] 0.231568 0.332845 0.434122

[4,] 1.842116 1.880376 1.918636
```

confidence.interval.QEE(pt.optim6,cov.optim6,n)

```
LOWER ESTIMATE UPPER [1,] -0.766288 -0.712450 -0.658612 [2,] 0.455051 0.606193 0.757334 [3,] 0.264972 0.363196 0.461419 [4,] 1.934050 1.961614 1.989178
```

0.9 Estimation par GMM

```
## GMM régulier
optim7 <- optim.GMM(pt.depart,conditions.vector=meanvariance.gmm.vector,data=scale
meanf=meanQEE,variancef=varianceQEE)
## GMM itératif
optim8 <- iterative.GMM(pt.depart,conditions.vector=meanvariance.gmm.vector,data=s
meanf=meanQEE,variancef=varianceQEE)
```