2020-2021 BAHAR DÖNEMİ

YMH214
SAYISAL ANALIZ
LAB. DERSİ

3.DERS Arş. Gör. Alev KAYA

3.HAFTA Lineer Olmayan Denklem Sistemlerimin Çözümü

Kapalı Yöntemler

A- Grafik Yöntemi

B- Bisection Yöntemi

LAB: Grafik yöntemi ve Bisection yöntemi örnek Matlab programı

DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ

Kapalı Yöntemler

İki veya daha yüksek dereceli polinomlar veya trigonometrik, üstel ve logaritmik gibi lineer olmayan terimler içeren denklemler lineer olmayan denklemlerdir.

Örnek: $x \wedge 3 + 2x \wedge 2 - 5 \sin x = 0 \ veya \ x - \tan x = e \wedge -x$

denklemleri tek bilinmeyenli lineer olmayan denklemlerdir

- Genelde lineer olmayan denklemler f(x) = 0 kapalı formunda yazılırlar.
- Karşılaşılan denklemlerin çoğu tek değişkenli olmakla beraber çok değişkenli $f(x_1,x_2,x_3,...) = 0$ denklemlerin çözümü de söz konusu olabilir.
- Kök bulma işlemi, verilen f(x) denkleminde f(xk) = 0 değerini sağlayan xk değerlerinin bulunması işlemidir.
- Tek değişkenli bir fonksiyon için bu değerler aynı zamanda eğrinin x eksenini kestiği noktalardır.
- Kök bulma işlemlerinde öncelikle kökün hangi aralıkta olduğu belirlenir.
- a ve b gibi iki farklı sayı ile belirlenen aralıkta ($a \le xk \le b$) tanımlanmış f(x) fonksiyonu bu aralıkta sürekli ise $f(a) \times f(b) < 0$ ise, öyle bir xk değeri vardır ki, f(xk) = 0 eşitliğini sağlar.

DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ

A-Grafik Yöntemi

- Kök bulma işlemi denklemi sağlayan bağımsız değerlerin bulunması işlemidir denebilir.
- Sayısal çözümlemeler geliştirilmeden önce denklemlerin köklerinin bulunmasına yönelik çeşitli çözümler geliştirilmiştir.
- Mesela 2. Dereceden denklemlerin çözümü için çeşitli formüller kullanılırdı.
- Ancak birçok denklem bu şekilde basitçe çözülememekteydi.
- Bøzı denklemler için analitik çözümler geliştirilememekte ve yaklaşık çözümler üretilmekteydi.
- ► Yaklaşık çözüm elde etmenin en pratik ve en ilkel yolu grafik yöntemidir.
- → Grafik yönteminde fonksiyona ait bazı değerler elde edilerek grafiği çizilir.
- Çizilen grafik yardımı ile grafiğin x eksenini kestiği kök noktası tahmin edilir.

TEK DEĞİŞKENLİ DENKLEMLERİN ÇÖZÜMÜ

- Tek değişkenli f(x) = 0 denkleminin çözmek için değişik yöntemler kullanılmaktadır.
- Bunlar iteratif yöntemler olup kökler için tahmini değerlerin alınmasın gerektirir.
- Bu yöntemlerin bir kısmı, nonlineer denklemin yerine lineer bir denklem kabul edilip çözüme ulaşma esasına dayanır.
- Biz de yaygın olarak kullanılan;
- 1. Yarıya Bölme (Bisection)
- 2. Lineer Interpolasyon (Regula-Falsi)
- 3. Basit İterasyon
- 4. Newton-Raphson
- 5. Kiriş (Secant)

yöntemlerini inceleyeceğiz.

Örneğin: $f(x) = xe^x - 2$ ifadesini [0,1] aralığında 0.25 aralıklar ile inceleyelim:

X	F(x)
0,0	-2
0,25	1,6788993
0,5	-1,175639
0,75	-0,412250
1,0	0,718281

 $f(0.75) \times f(1.0) < 0$ olduğundan aranan kök *0.75,1.0+ aralığındadır.

f(0.85) = -0.011300 olduğundan aranan kök *0.85,1.0+ aralığındadır.

Örnek: $f x = 2x ^2 - 8$ denkleminin kökünü grafik yöntemi ile bulalım.

X	0	1	3	4
F(x)	-8	-6	10	24

İlk aşamada kökün [1,3] aralığında olduğu belirlenmiştir. Şimdi aralığı biraz daha daraltalım.

X-1.52	1.0	1.4	1.8	2.2	2.6	3.0
F(x)	-6	-4.08	-1.52	1.68	5.52	10

Buradan da aranan kökün x = 2 olduğu kolayca bulunabilmektedir. Yalnız her problemde kök bu kadar kolay bulunamayacağı açıktır.

DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ

■ B-.YARIYA BÖLME (BİSECTİON) YÖNTEMİ

- f x = 0 şeklinde bir denklem verilsin.
- f(x) fonksiyonu [a,b] aralığında sürekli ve $f(a) \times f(b) < 0$ ise f(x) fonksiyonunun (a,b) aralığında bir yada birden fazla kökü vardır.
- Bu yöntem birden fazla kök için geçerli olsa da biz f(x) 'in (a,b) aralığında sadece bir kökünün olduğunu varsayacağız.
- $f(a) \times f(b) < 0$ olduğundan (a,b) aralığında kök vardır.
- **1. iterasyon:** x1 = (a+b)/2;
- **2.** iterasyon:IF $f(a) \times f(x1) < 0$ ise

$$x2 = (a+x1)/2$$
;

ELSE

$$x2 = (b+x1)/2$$
;

3.iterasyon: IF $f(a) \times f(x2) < 0$ ise

$$x3 = (a+x2)/2$$
;

ELSE

$$x3 = (x1+x2)/2$$
;

İterasyonlar istenen hata aralığına ulaşıncaya kadar devam eder.

Örnek: $f(x) = x \wedge 4 - 9x \wedge 3 - 2x \wedge 2 + 120x - 130$ eşitliğinin (1,2) aralığında bir köke sahip olduğu bilinmektedir. Bu kökü $\varepsilon y \le 0,0132$ yaklaşım hatası ile bulunuz.

- **Cözüm:** a = 1.0 ve b = 2.0 a = 1.0 iken f(1.0) = -20 ve b = 2.0 ikenf(2.0) = 46
- 1.Adım: $f(a) \times f(b) = (-20) \times 46 < 0$ olduğundan bu aralıkta kök vardır. x1 = (a + b)/2 = (1 + 2)/2 = 1.5 ve f(1.5) = 20.2 b = x1 = 1.5 olur.
- **2.Adim**: $f(a) \times f(b) < 0$ olduğundan x2 = (a + b)/2 = (1 + 1.5)/2 = 1.25 ve f(1.25) = 1.8 olur.
 Bu durumda b = x2 = 1.25 olur.

- 3.Adım: $f(a) \times f(b) < 0$ olduğundan x3 = (a + b)/2 = (1 + 1.25)/2 = 1.125 ve f(1.125) = -8.7 a = x3 = 1.125 olur.
- **4.Adim**: $f(a) \times f(b) < 0$ olduğundan x4 = (a + b)/2 = (1.125 + 1.25)/2 = 1.1875 ve f(1.1875) = -3.4028 a = x4 = 1.1875 olur.

DEVAMI

5.Adım: $f(a) \times f(b) < 0$ olduğundan

$$x5 = (a + b)/2 = (1.1875 + 1.25)/2 = 1.21875 ve$$

$$f(1.21875) = -0.80688$$

$$a = x5 = 1.21875$$
 olur.

6.Adım: $f(a) \times f(b) < 0$ olduğundan

$$x6 = (a + b)/2 = (1.21875 + 1.25)/2 = 1.234375$$

ve

$$f(x/6) = 0.472092$$

$$h = x6 = 1.234375$$
 olur.

$$\varepsilon y \le (1.234375 - 1.21875) / 1.234375 = 0.01265$$

- ALGORİTMA
- 1. $IF f(a) \times f(b) < 0$
- **■** 3. *REPEAT*
- 4. xk = (a+b)/2;

- **►** 7. *ELSE*
- a = xk
- \blacksquare 9. Hatayı Hesapla (ε)
- \triangleright 9. *UNTIL* (ε ≤ *Hata Tolerans*ι)
- **■** 10. *ELSE*
- 11. " (a, b) aralığında kök yoktur."

Teorem: $f \in C[a, b] ve f(a) * f(b) < 0$ olsun.

- Bu duruma aralık yarılama yöntemi ile f'in kökü xr 'ye yaklaşan bir $\{xn\}n=1$ den ∞ dizisi oluşturur.
- Oluşabilecek maksimum hata;

$$\varepsilon \leq (b-a)/(2 \wedge n)$$

Oluşabilecek maksimum hata ise;

 $\varepsilon max = (b - a)/(2 \land n)$ şeklinde hesaplanır.

İKİYE BÖLME YÖNTEMİ (BISECTION METHOD)

Eğer f(x)=0 denkleminin (a,b) aralığında kökü olması için f(a).f(b)<0 koşulu sağlanması gerekmektedir.

Yöntem için adımlar aşağıdaki gibidir:

Algoritma

1.Adım: i=1 olarak belirle

2.Adim: m=(a+b)/2

3.Adım: Eğer f(m)<eps veya |b-a|/2<eps ise m çözümdür ve programdan çık

4.Adım: Eğer f(a)f(m)<0 ise b→m olarak belirle, Eğer f(m)f(b)<0 ise a→m olarak

belirle

5.Adım i→i+1 olarak belirle ve 2.Adıma dön

Örnek: f(x)=x^3-10x^2+5=0 fonksiyonunun (0.6,0.8) aralığındaki kökünü ikiye bölme yöntemi ile MATLAB programında yazınız.

