华东师范大学期中试卷

2024-2025 学年第 2 学期

课程名称: 高等数学(二)									
学生姓名:					学	<u>-</u>			_
专	¥k:				年级/班级:				_
课程性质:专业必修									
_		三	四四	五	六	七	八	总分	阅卷人签名
								• • • • • • • • • • • • • • • • • • • •	

一、选择题(每题4分,共20分)

- 1. 设直线 $L_1: \frac{x-1}{2} = \frac{y+1}{-3} = \frac{z-2}{1}$ 与直线 $L_2: \begin{cases} x+y-z=1 \\ 2x-y+3z=5 \end{cases}$ 的夹角为 θ ,则 $\cos \theta$ 的值为() A. $\frac{1}{\sqrt{14}}$ B. $\frac{2}{\sqrt{133}}$ C. $\frac{3}{\sqrt{14}}$ D. $\frac{8}{\sqrt{133}}$
- 2. 设 $f(x,y) = x^2 + 2xy$ 在点(1,1) 处沿方向 $\vec{l} = (1,-1)$ 的方向导数为()
 - A. 0 B. $\sqrt{2}$ C. 2 D. $-2\sqrt{2}$

A. $\frac{y}{x^2+y^2}$ B. $-\frac{y}{x^2+y^2}$ C. $\frac{x}{x^2+y^2}$ D. $-\frac{x}{x^2+y^2}$

4. 设积分区域D 由y = x, y = 0, x = 1 围成,则 $\iint_D xy \, dx dy = ()$

A. $\frac{1}{6}$ B. $\frac{1}{8}$ C. $\frac{1}{4}$ D. $\frac{1}{2}$

5. 在极坐标下,二重积分 $\iint_D f(x,y) dx dy$ 的面积微元为()

A. $drd\theta$ B. $rdrd\theta$ C. $r^2drd\theta$ D. $r\sin\theta drd\theta$

二、填空题(每题4分,共20分)

- 1. 点P(1,2,3) 到平面2x-y+2z-6=0 的距离为____。
- 2. 函数 $z = \ln(x + y)$ 在点(1,2) 处的全微分 $dz = ____$ 。
- 3. 设 $z = x^2 \sin y$,则 $\frac{\partial^2 z}{\partial x \partial y} =$ _____。
- 4. 设积分区域D 为: $1 \le x^2 + y^2 \le 4$ 且 $y \ge 0$, $\iint_D \frac{1}{\sqrt{x^2 + y^2}} dx dy = ____.$
- 5. 交换三重积分 $\int_0^1 dx \int_0^{1-x} dy \int_0^{x+y} f(x,y,z) dz$ 的积分次序,按x,z,y 的次序积分,则积分=____。

三、计算题(每题10分,共50分)

- 1. 设平面薄板D 由曲线 $y=x^2$ 与 $y=\sqrt{x}$ 围成,其面密度函数为 $\rho(x,y)=xy$ 。求该薄板的重心坐标 (\bar{x},\bar{y}) 。
- 2. 设 $z=f(x^2-y^2,\mathrm{e}^{xy})$, 其中f 具有连续偏导数,求 $\frac{\partial c}{\partial x}$ 和 $\frac{\partial c}{\partial y}$ 。
- 3. 利用拉格朗日乘数法, 求函数 $f(x,y,z) = x^2 + y^2 + z^2$ 在约束条件x + y + z = 1 和x y + 2z = 0 下的极值。
- 4. 设z = f(x, y) 由方程 $e^{xyz} + \sin(x^2 + y^2 + z^2) = 1$ 所确定, 其中f 可微。
 - (1) 求全微分dz;
 - (2) 在点(0,0,0)处计算 $\frac{\partial c}{\partial x}$ 和 $\frac{\partial c}{\partial y}$ 。
- 5. 计算 $\iint_{\Omega} z dx dy dz$, 其中 Ω 由 $z = \sqrt{x^2 + y^2}$ 和z = 1 所围成。

四、证明题(10分)

设f(x,y) 在闭区域 $D \subset \mathbb{R}^2$ 上连续,且满足

$$\iint_D [f(x, y)]^2 \, \mathrm{d}x \mathrm{d}y = 0.$$

证明: 在D上有 $f(x,y) \equiv 0$ 。

参考答案

一、选择题答案

- 1. D
 - (a) 求 L_1 的方向向量 $\vec{s_1}$: 由对称式直接得 $\vec{s_1}$ = (2, -3, 1)。
 - (b) $\bar{\mathbf{x}}L_2$ 的方向向量 $\vec{s_2}$: 由平面方程联立:

$$\vec{n_1} = (1, 1, -1), \quad \vec{n_2} = (2, -1, 3)$$

方向向量为两法向量的叉积:

$$\vec{s_2} = \vec{n_1} \times \vec{n_2} = \begin{vmatrix} i & j & k \\ 1 & 1 & -1 \\ 2 & -1 & 3 \end{vmatrix} = (2, -5, -3)$$

(c) 计算夹角余弦:

$$\cos\theta = \frac{|\vec{s_1} \cdot \vec{s_2}|}{\|\vec{s_1}\| \|\vec{s_2}\|} = \frac{|2 \times 2 + (-3) \times (-5) + 1 \times (-3)|}{\sqrt{14} \cdot \sqrt{38}} = \frac{16}{\sqrt{14} \cdot \sqrt{38}}$$

化简得:

$$\cos\theta = \frac{16}{\sqrt{532}} = \frac{16}{2\sqrt{133}} = \frac{8}{\sqrt{133}}$$

- 2. B 方向导数为 $\nabla f \cdot \vec{l} = \sqrt{2}$
- 3. B $\frac{\partial z}{\partial x} = -\frac{y}{x^2 + y^2}$
- 4. B $\iint_D xy \, dxdy = \frac{1}{8}$
- 5. B 极坐标面积微元为rdrdθ

二、填空题

- 1.0
- 2. $\frac{1}{3}$ dx + $\frac{1}{3}$ dy
- 3. $2x \cos y$
- 4. π $\int_0^{\pi} \int_1^2 \frac{1}{r} \cdot r \, dr d\theta = \int_0^{\pi} \int_1^2 1 \, dr d\theta = \pi$
- 5. $\int_0^1 dy \left[\int_0^y dz \int_0^{1-y} f(x, y, z) dx + \int_y^1 dz \int_{z-y}^{1-y} f(x, y, z) dx \right]$

三、计算题

1. (1) 计算质量M:

$$M = \iint_D xy \, dxdy = \int_0^1 \int_{x^2}^{\sqrt{x}} xy \, dydx = \frac{1}{12}$$

(2) 计算静矩:

$$M_y = \iint_D x^2 y \, dx dy = \frac{3}{56}, \quad M_x = \iint_D xy^2 \, dx dy = \frac{3}{56}$$

(3) 求重心坐标:

$$\bar{x} = \frac{M_y}{M} = \frac{9}{14}, \quad \bar{y} = \frac{M_x}{M} = \frac{9}{14}$$

2.
$$\frac{\partial z}{\partial x} = 2xf_1' + ye^{xy}f_2'$$
$$\frac{\partial z}{\partial y} = -2yf_1' + xe^{xy}f_2'$$

3. (a) 设拉格朗日函数:

$$\mathcal{L}(x, y, z, \lambda, \mu) = x^2 + y^2 + z^2 + \lambda(x + y + z - 1) + \mu(x - y + 2z)$$

(b) 求偏导并令其为零:

$$\begin{cases} 2x + \lambda + \mu = 0 \\ 2y + \lambda - \mu = 0 \end{cases}$$
$$\begin{cases} 2z + \lambda + 2\mu = 0 \\ x + y + z - 1 = 0 \\ x - y + 2z = 0 \end{cases}$$

(c) 解方程组:

由前两式相减得:
$$2(x-y)+2\mu=0 \Rightarrow x-y=-\mu$$
 结合约束 $x-y+2z=0 \Rightarrow -\mu+2z=0 \Rightarrow \mu=2z$ 将 $\mu=2z$ 代入第三式: $2z+\lambda+4z=0 \Rightarrow \lambda=-6z$ 代入第一式: $2x-6z+2z=0 \Rightarrow x=2z$ 同理,第二式得: $y=4z$ 代入 $x+y+z=1 \Rightarrow 2z+4z+z=1 \Rightarrow z=\frac{1}{7}$ 因此: $x=\frac{2}{7}, y=\frac{4}{7}, z=\frac{1}{7}$

(d) 极值点:

$$\left(\frac{2}{7}, \frac{4}{7}, \frac{1}{7}\right)$$

对应的函数值为:

$$f\left(\frac{2}{7}, \frac{4}{7}, \frac{1}{7}\right) = \frac{4}{49} + \frac{16}{49} + \frac{1}{49} = \frac{21}{49} = \frac{3}{7}$$

4. (1) **求全微分**dz: 对方程两边求全微分:

$$d(e^{xyz}) + d(\sin(x^2 + y^2 + z^2)) = 0$$

计算得:

$$e^{xyz}(yz\,dx + xz\,dy + xy\,dz) + \cos(x^2 + y^2 + z^2)(2x\,dx + 2y\,dy + 2z\,dz) = 0$$

整理出dz:

$$dz = -\frac{e^{xyz}yz + 2x\cos(x^2 + y^2 + z^2)}{e^{xyz}xy + 2z\cos(x^2 + y^2 + z^2)}dx - \frac{e^{xyz}xz + 2y\cos(x^2 + y^2 + z^2)}{e^{xyz}xy + 2z\cos(x^2 + y^2 + z^2)}dy$$

- (2) **在点**(0,0,0) **处计算偏导数:** 直接代入(x,y,z) = (0,0,0) 会导致分母和分子均为零,需用极限法分析:
 - **计算** $\frac{\partial}{\partial x}$: 固定y = 0, 方程退化为:

$$e^{0} + \sin(x^{2} + z^{2}) = 1 \implies \sin(x^{2} + z^{2}) = 0$$

其解为 $x^2 + z^2 = k\pi \ (k \in \mathbb{Z})$ 。在(0,0,0) 附近 $(x \to 0)$,唯一满足 $z \to 0$ 的解是k = 0,即z = 0。因此:

$$\left. \frac{\partial z}{\partial x} \right|_{(0,0,0)} = 0.$$

• 计算 $\frac{\partial z}{\partial y}$: 同理, 固定x=0, 方程退化为 $\sin(y^2+z^2)=0$, 唯一解为z=0, 故:

$$\frac{\partial z}{\partial y}\Big|_{(0,0,0)} = 0.$$

5. 使用柱坐标: $\int_0^{2\pi} d\theta \int_0^1 r dr \int_r^1 z dz = \frac{\pi}{4}$

四、证明题

证明: 假设存在点 $(x_0,y_0)\in D$ 使得 $f(x_0,y_0)\neq 0$ 。由于f 连续,存在邻域 $U\subset D$ 使得在U 上| $f(x,y)|\geq \frac{|f(x_0,y_0)|}{2}>0$ 。于是

$$\iint_D [f(x,y)]^2 \,\mathrm{d}x\mathrm{d}y \geq \iint_U [f(x,y)]^2 \,\mathrm{d}x\mathrm{d}y \geq \iint_U \left(\frac{|f(x_0,y_0)|}{2}\right)^2 \,\mathrm{d}x\mathrm{d}y > 0,$$

这与已知条件矛盾。故 $f(x,y) \equiv 0$ 。