System of Linear Equations

To Solve the system of Linear Equations of the form:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n &= b_n \end{cases}$$

This is a linear system of n equations in n unknowns x_1, x_2, \ldots, x_n .

The system may be rewritten in the form:

$$Ax = b$$
.

where

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

The system has a unique solution when the co-efficient matrix is non-singular

$$x = A^{-1}b$$

Method of Solution

- Direct Methods
 - > Gaussian Elimination Method
 - ✓ Thomas Method
 - ✓ Pivoting
 - > Factorization Methods
 - ✓ LU
 - ✓ Crouts
- Iterative methods
 - Gauss Jacobi Method
 - > Gauss Seidel Method
 - > SOR Method
 - > CGM
 - > Etc.

Direct Methods

Diagonal System

$$A = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}.$$

All the non-Zero entries of A are on the main diagonal

In this case, computing the solution x is trivial

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1/a_{11} \\ b_2/a_{22} \\ \vdots \\ b_n/a_{nn} \end{bmatrix},$$

provided that all $a_{ii} \neq 0$.

If $a_{ii} = 0$ and $b_i = 0$ for some index i, then x_i can be any real number. If $a_{ii} = 0$ but $b_i \neq 0$, no solution of the system exists.

Triangular Systems

When a linear system Lx = b is lower triangular of the form

$$\begin{bmatrix} \ell_{11} & 0 & \cdots & 0 \\ \ell_{21} & \ell_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \ell_{n1} & \ell_{n2} & \cdots & \ell_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix},$$

For solution, we will go for FORWARD SUBSTITUION METHOD

Forward Substitution

$$\begin{bmatrix} \ell_{11} & 0 & \cdots & 0 \\ \ell_{21} & \ell_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \ell_{n1} & \ell_{n2} & \cdots & \ell_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix},$$

where all diagonals $\ell_{ii} \neq 0$, x_i can be obtained by the following procedure

$$x_1 = b_1/\ell_{11}$$

$$x_2 = (b_2 - \ell_{21}x_1)/\ell_{22}$$

$$x_3 = (b_3 - \ell_{31}x_1 - \ell_{32}x_2)/\ell_{33}$$

:

$$x_n = (b_n - \ell_{n1}x_1 - \ell_{n2}x_2 - \dots - \ell_{n,n-1}x_{n-1})/\ell_{nn}$$

Forward Substitution

$$x_{1} = b_{1}/\ell_{11}$$

$$x_{2} = (b_{2} - \ell_{21}x_{1})/\ell_{22}$$

$$x_{3} = (b_{3} - \ell_{31}x_{1} - \ell_{32}x_{2})/\ell_{33}$$

$$\vdots$$

$$x_{n} = (b_{n} - \ell_{n1}x_{1} - \ell_{n2}x_{2} - \dots - \ell_{n,n-1}x_{n-1})/\ell_{nn}$$

The general formulation for computing x_i is

$$x_i = \left(b_i - \sum_{j=1}^{i-1} \ell_{ij} x_j\right) / \ell_{ii}, \quad i = 1, 2, \dots, n.$$

The general formulation for computing x_i is

$$x_i = \left(b_i - \sum_{j=1}^{i-1} \ell_{ij} x_j\right) / \ell_{ii}, \quad i = 1, 2, \dots, n.$$

Algorithm 3.1 (Forward Substitution: Row Version) Suppose that $L \in \mathbb{R}^{n \times n}$ is nonsingular lower triangular and $b \in \mathbb{R}^n$. This algorithm computes the solution of Lx = b using row-oriented procedure.

$$\begin{aligned} &\text{for } i=1,\ldots,n \text{ do} \\ &tmp=0.0\\ &\text{for } j=1,\ldots,i-1 \text{ do} \\ &tmp=tmp+L(i,j)*x(j)\\ &\text{end for} \\ &x(i)=(b(i)-tmp)/L(i,i)\\ &\text{end for} \end{aligned}$$

LOWER TRIANGULAR SYSTEM

$$\begin{bmatrix} \ell_{11} & 0 & \cdots & 0 \\ \ell_{21} & \ell_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \ell_{n1} & \ell_{n2} & \cdots & \ell_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Forward Substitution Method

$$\begin{array}{rcl} x_1 & = & b_1/\ell_{11} \\ x_2 & = & (b_2 - \ell_{21}x_1)/\ell_{22} \\ x_3 & = & (b_3 - \ell_{31}x_1 - \ell_{32}x_2)/\ell_{33} \\ & \vdots \\ x_n & = & (b_n - \ell_{n1}x_1 - \ell_{n2}x_2 - \dots - \ell_{n,n-1}x_{n-1})/\ell_{nn} \end{array}$$

Algorithm 3.1 (Forward Substitution: Row Version) Suppose that $L \in \mathbb{R}^{n \times n}$ is nonsingular lower triangular and $b \in \mathbb{R}^n$. This algorithm computes the solution of Lx = b using row-oriented procedure.

$$\begin{aligned} &\text{for } i=1,\ldots,n \text{ do} \\ &tmp=0.0 \\ &\text{for } j=1,\ldots,i-1 \text{ do} \\ &tmp=tmp+L(i,j)*x(j) \\ &\text{end for} \\ &x(i)=(b(i)-tmp)/L(i,i) \\ &\text{end for} \end{aligned}$$

Solve 1:
$$\begin{bmatrix} 1 & 0 & 0 \\ 6 & 4 & 0 \\ 2 & 2 & 3 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

Answer:
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0.3333 \end{pmatrix}$$

Solve 2:
$$\begin{bmatrix} 1 & 0 & 0 \\ 6 & 4 & 0 \\ 2 & 2 & 3 \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 5 \end{pmatrix}$$

Answer:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ -5.25 \\ 2.5 \end{pmatrix}$$

Forward Substitution

$$x_1 = b_1/\ell_{11}$$

$$x_2 = (b_2 - \ell_{21}x_1)/\ell_{22}$$

$$x_3 = (b_3 - \ell_{31}x_1 - \ell_{32}x_2)/\ell_{33}$$

$$\vdots$$

$$x_n = (b_n - \ell_{n1}x_1 - \ell_{n2}x_2 - \dots - \ell_{n,n-1}x_{n-1})/\ell_{nn}$$

The general formulation for computing x_i is

$$x_i = \left(b_i - \sum_{j=1}^{i-1} \ell_{ij} x_j\right) / \ell_{ii}, \quad i = 1, 2, \dots, n.$$

Complexity of Forward Substitution

$$\begin{bmatrix} \ell_{11} & 0 & \cdots & 0 \\ \ell_{21} & \ell_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \ell_{n1} & \ell_{n2} & \cdots & \ell_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix},$$

$$\begin{array}{rcl} x_1 & = & b_1/\ell_{11} \\ x_2 & = & (b_2 - \ell_{21}x_1)/\ell_{22} \\ x_3 & = & (b_3 - \ell_{31}x_1 - \ell_{32}x_2)/\ell_{33} \\ & \vdots \\ x_n & = & (b_n - \ell_{n1}x_1 - \ell_{n2}x_2 - \dots - \ell_{n,n-1}x_{n-1})/\ell_{nn} \end{array}$$

$$\begin{aligned} &\text{for } i=1,\ldots,n \text{ do} \\ &tmp=0.0 \\ &\text{for } j=1,\ldots,i-1 \text{ do} \\ &tmp=tmp+L(i,j)*x(j) \\ &\text{end for} \\ &x(i)=(b(i)-tmp)/L(i,i) \\ &\text{end for} \end{aligned}$$

Any idea on Algorithmic Complexity?

$$\sum_{i=1}^{n} [2(i-1) + 2] = n^2 + n.$$

Hence the forward substitution algorithm is an $O(n^2)$ algorithm.

Complexity of Forward Substitution

$$\begin{bmatrix} \ell_{11} & 0 & \cdots & 0 \\ \ell_{21} & \ell_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \ell_{n1} & \ell_{n2} & \cdots & \ell_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

$$\begin{array}{rcl} x_1 & = & b_1/\ell_{11} \\ x_2 & = & (b_2 - \ell_{21}x_1)/\ell_{22} \\ x_3 & = & (b_3 - \ell_{31}x_1 - \ell_{32}x_2)/\ell_{33} \\ & \vdots \\ x_n & = & (b_n - \ell_{n1}x_1 - \ell_{n2}x_2 - \dots - \ell_{n,n-1}x_{n-1})/\ell_{nn} \end{array}$$

Row Version

end for

$\begin{aligned} &\text{for } i=1,\ldots,n \text{ do} \\ &tmp=0.0 \\ &\text{for } j=1,\ldots,i-1 \text{ do} \\ &tmp=tmp+L(i,j)*x(j) \\ &\text{end for} \\ &x(i)=(b(i)-tmp)/L(i,i) \end{aligned}$

Column Version

$$\begin{aligned} &\text{for } i = 1, \dots, n \text{ do} \\ &x(i) = b(i) \\ &\text{end for} \\ &\text{for } j = 1, \dots, n \text{ do} \\ &x(j) = x(j)/L(j,j) \\ &\text{for } i = (j+1), \dots, n \text{ do} \\ &x(i) = x(i) - L(i,j) * x(j) \\ &\text{end for} \end{aligned}$$

```
x_1 = b_1/\ell_{11}
x_2 = (b_2 - \ell_{21}x_1)/\ell_{22}
x_3 = (b_3 - \ell_{31}x_1 - \ell_{32}x_2)/\ell_{33}
\vdots
x_n = (b_n - \ell_{n1}x_1 - \ell_{n2}x_2 - \dots - \ell_{n,n-1}x_{n-1})/\ell_{nn}
```

Algorithm (Forward Substitution: Column version) Suppose that $L \in \mathbb{R}^{n \times n}$ is nonsingular lower triangular and $b \in \mathbb{R}^n$. This algorithm computes the solution of Lx = b using column-oriented procedure.

```
\begin{aligned} &\text{for } i=1,\ldots,n \text{ do} \\ &x(i)=b(i) \\ &\text{end for} \\ &\text{for } j=1,\ldots,n \text{ do} \\ &x(j)=x(j)/L(j,j) \\ &\text{for } i=(j+1),\ldots,n \text{ do} \\ &x(i)=x(i)-L(i,j)*x(j) \\ &\text{end for} \end{aligned}
```

Back Substitution

The analogous algorithm for upper triangular system Ux = b of the form

$$\begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ 0 & u_{22} & \cdots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & u_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

is called back substitution.

The solution x_i are computed in a reversed order by

```
x_{n} = b_{n}/u_{nn}
x_{n-1} = (b_{n-1} - u_{n-1,n}x_{n})/u_{n-1,n-1}
x_{n-2} = (b_{n-2} - u_{n-2,n-1}x_{n-1} - u_{n-2,n}x_{n})/u_{n-2,n-2}
\vdots
x_{1} = (b_{1} - u_{12}x_{2} - u_{13}x_{3} - \dots - u_{1n}x_{n})/u_{11}
provided that all u_{ii} \neq 0.
```

The general formulation is

$$x_i = \left(b_i - \sum_{j=i+1}^n u_{ij} x_j\right) / u_{ii}, \quad i = n, n-1, \dots, 1.$$

```
x_{n} = b_{n}/u_{nn}
x_{n-1} = (b_{n-1} - u_{n-1,n}x_{n})/u_{n-1,n-1}
x_{n-2} = (b_{n-2} - u_{n-2,n-1}x_{n-1} - u_{n-2,n}x_{n})/u_{n-2,n-2}
\vdots
x_{1} = (b_{1} - u_{12}x_{2} - u_{13}x_{3} - \dots - u_{1n}x_{n})/u_{11}
```

Algorithm (Back Substitution: Row Version) Suppose that $U \in \mathbb{R}^{n \times n}$ is non-singular upper triangular and $b \in \mathbb{R}^n$. This algorithm computes the solution of Ux = b using row-oriented procedure.

```
\begin{split} x(n) &= b(n)/U(n,n) \\ \text{for } i &= (n-1), \dots, 1 \text{ do} \\ tmp &= 0.0 \\ \text{for } j &= i+1: n \text{ do} \\ tmp &= tmp + U(i,j) * x(j) \\ \text{end for} \\ x(i) &= (b(i) - tmp)/U(i,i) \\ \text{end for} \end{split}
```

Algorithm (Back Substitution: Column Version) Suppose that $U \in \mathbb{R}^{n \times n}$ is nonsingular upper triangular and $b \in \mathbb{R}^n$. This algorithm computes the solution of Ux = b using row-oriented procedure.

```
\begin{aligned} &\text{for } i=1,\ldots,n \text{ do} \\ &x(i)=b(i) \\ &\text{end for} \\ &\text{for } j=n,\ldots,1 \text{ do} \\ &x(j)=x(j)/U(j,j) \\ &\text{for } i=1:(j-1) \text{ do} \\ &x(i)=x(i)-U(i,j)*x(j) \\ &\text{end for} \end{aligned}
```

Once again the memory storage for b can be overwritten by x. Back substitution requires $n^2 + O(n)$ flops.

Solve 1:

$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & \frac{5}{2} & 2 \\ 0 & 0 & -\frac{11}{5} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ -\frac{11}{5} \end{pmatrix}$$

Answer:

by back substitution to obtain $x_1 = 1$, $x_2 = 0$, $x_3 = 1$.

Gaussian Elimination

Given a system of linear equations to be solved, it can be transformed into a simpler equivalent system by the following three types of elementary operations:

1. Interchange two equations in the system (or equivalently, interchange two rows in A):

$$\mathcal{E}_i \leftrightarrow \mathcal{E}_i$$
;

2. Multiply an equation by a non-zero constant (multiply one row of A by a non-zero constant):

$$\mathcal{E}_i \leftarrow \lambda \mathcal{E}_i$$
.

Add to an equation a multiple of some other equation (add to a row a multiple of some other row):

$$\mathcal{E}_i \leftarrow \mathcal{E}_i + \lambda \mathcal{E}_i$$
.

Here \mathcal{E}_i denotes the *i*-th equation in the system.

The first step in the Gaussian elimination process consists of performing, for each $i=2,3,\ldots,n$, the elementary operations

$$\mathcal{E}_i \leftarrow (\mathcal{E}_i - m_{i,1}\mathcal{E}_1), \quad \text{where} \quad m_{i,1} = \frac{a_{i1}}{a_{11}}.$$

These operations transform the system into one in which all the entries in the first column below the diagonal are zero. Then the process is repeated on the resulting equations $\mathcal{E}_2, \dots, \mathcal{E}_n$, and so on.

$$A = A^{(1)} \to A^{(2)} \to \cdots \to A^{(n)},$$

$$A = A^{(1)} \to A^{(2)} \to \cdots \to A^{(n)}$$

where $A^{(n)}$ is upper triangular. At the conclusion of step k-1, the matrix $A^{(k)}$ is constructed from $A^{(k-1)}$ by elementary operations similar to (3.10), and has the following form:

$$A^{(k)} = \begin{bmatrix} a_{11}^{(k)} & \cdots & a_{1,k-1}^{(k)} & a_{1k}^{(k)} & \cdots & a_{1j}^{(k)} & \cdots & a_{1n}^{(k)} \\ \vdots & \ddots & \vdots & \vdots & & \vdots & & \vdots \\ 0 & \cdots & a_{k-1,k-1}^{(k)} & a_{k-1,k}^{(k)} & \cdots & a_{k-1,j}^{(k)} & \cdots & a_{k-1,n}^{(k)} \\ \hline 0 & \cdots & 0 & a_{kk}^{(k)} & \cdots & a_{kj}^{(k)} & \cdots & a_{kn}^{(k)} \\ \vdots & & \vdots & & \vdots & & \vdots & & \vdots \\ 0 & \cdots & 0 & a_{ik}^{(k)} & \cdots & a_{ij}^{(k)} & \cdots & a_{in}^{(k)} \\ \vdots & & \vdots & & \vdots & & \vdots & & \vdots \\ 0 & \cdots & 0 & & a_{nk}^{(k)} & \cdots & a_{nj}^{(k)} & \cdots & a_{nn}^{(k)} \end{bmatrix}$$

$$A^{(k)} = \begin{bmatrix} a_{11}^{(k)} & \cdots & a_{1,k-1}^{(k)} & a_{1k}^{(k)} & \cdots & a_{1j}^{(k)} & \cdots & a_{1n}^{(k)} \\ \vdots & \ddots & \vdots & \vdots & & \vdots & & \vdots \\ 0 & \cdots & a_{k-1,k-1}^{(k)} & a_{k-1,k}^{(k)} & \cdots & a_{k-1,j}^{(k)} & \cdots & a_{k-1,n}^{(k)} \\ \hline 0 & \cdots & 0 & a_{kk}^{(k)} & \cdots & a_{kj}^{(k)} & \cdots & a_{kn}^{(k)} \\ \vdots & & \vdots & & \vdots & & \vdots & & \vdots \\ 0 & \cdots & 0 & a_{ik}^{(k)} & \cdots & a_{ij}^{(k)} & \cdots & a_{in}^{(k)} \\ \vdots & & \vdots & & \vdots & & \vdots & & \vdots \\ 0 & \cdots & 0 & & a_{nk}^{(k)} & \cdots & a_{nj}^{(k)} & \cdots & a_{nn}^{(k)} \end{bmatrix}$$

In the k-th step, $a_{kk}^{(k)}$ is used as a pivot element and the k-th row as pivot row, and elementary operations are applied to rows k+1 through n so that zeros are produced in column k below the diagonal. That is, $A^{(k+1)}$ is obtained from $A^{(k)}$ in which $a_{k+1,k}^{(k+1)}, \cdots, a_{nk}^{(k+1)}$ are zero, row k+1 through n are modified but row 1 through row k are unchanged when compared to $A^{(k)}$. More precisely, the entries of $A^{(k+1)}$ are produced by the formula

$$a_{ij}^{(k+1)} = \begin{cases} a_{ij}^{(k)}, & \text{for } i = 1, \dots, k, \text{ and } j = 1, \dots, n; \\ 0, & \text{for } i = k+1, \dots, n, \text{ and } j = 1, \dots, k; \\ a_{ij}^{(k)} - \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} * a_{kj}^{(k)}, & \text{for } i = k+1, \dots, n, \text{ and } j = k+1, \dots, n. \end{cases}$$

If we collect all the multipliers

$$\ell_{ik} = \begin{cases} 0, & \text{if } i < k; \\ 1, & \text{if } i = k; \\ \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}}, & \text{if } i > k, \end{cases}$$

and let $L = [\ell_{ik}]$ and $U = A^{(n)}$, then L is unit lower triangular, U is upper triangular, and later we shall show that matrix A has the factorization A = LU.

Algorithm (Gaussian elimination) Given $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$, this algorithm implements the Gaussian elimination procedure to reduce A to upper triangular and modify the entries of b accordingly.

for
$$k = 1, ..., n - 1$$
 do
for $i = k + 1, ..., n$ do
 $t = A(i, k)/A(k, k)$
 $A(i, k) = 0$
 $b(i) = b(i) - t * b(k)$
for $j = k + 1, ..., n$ do
 $A(i, j) = A(i, j) - t * A(k, j)$
end for
end for
end for

where
$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

$$A = A^{(1)} \rightarrow A^{(2)} \rightarrow \cdots \rightarrow A^{(n)},$$

$$A = A^{(1)} \rightarrow A^{(2)} \rightarrow \cdots \rightarrow A^{(n)},$$

$$A^{(k)} = \begin{bmatrix} a_{11}^{(k)} & \cdots & a_{1k-1}^{(k)} & a_{1k}^{(k)} & \cdots & a_{1j}^{(k)} & \cdots & a_{1n}^{(k)} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & a_{k-1,k-1}^{(k)} & a_{k-1,k}^{(k)} & \cdots & a_{k-1,j}^{(k)} & \cdots & a_{k-1,n}^{(k)} \\ \hline 0 & \cdots & 0 & a_{kk}^{(k)} & \cdots & a_{kj}^{(k)} & \cdots & a_{kn}^{(k)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & a_{nk}^{(k)} & \cdots & a_{nj}^{(k)} & \cdots & a_{nn}^{(k)} \end{bmatrix}$$

$$a_{ij}^{(k+1)} = \begin{cases} a_{ij}^{(k)}, & \text{for } i = 1, \dots, k, \text{ and } j = 1, \dots, n; \\ 0, & \text{for } i = k+1, \dots, n, \text{ and } j = 1, \dots, k; \\ a_{ij}^{(k)} - \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} * a_{kj}^{(k)}, & \text{for } i = k+1, \dots, n, \text{ and } j = k+1, \dots, n. \end{cases}$$

$$for \ k = 1, \dots, n-1 \ do$$

$$for \ i = k+1, \dots, n \ do$$

$$t = A(i,k)/A(k,k)$$

$$A(i,k) = 0$$

$$b(i) = b(i) - t * b(k)$$

$$for \ j = k+1, \dots, n \ do$$

$$A(i,j) = A(i,j) - t * A(k,j)$$
end for end for end for

A set of *n* equations and *n* unknowns

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

. .

$$a_{n1}x_1 + a_{n2}x_2 + a_{n3}x_3 + \dots + a_{nn}x_n = b_n$$

(n-1) steps of forward elimination

Forward Elimination

Step 1

For Equation 2, divide Equation 1 by a_{11} and multiply by a_{21} .

$$\left[\frac{a_{21}}{a_{11}}\right](a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1)$$

$$a_{21}x_1 + \frac{a_{21}}{a_{11}}a_{12}x_2 + \dots + \frac{a_{21}}{a_{11}}a_{1n}x_n = \frac{a_{21}}{a_{11}}b_1$$

Subtract the result from Equation 2.

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$$

$$- a_{21}x_1 + \frac{a_{21}}{a_{11}}a_{12}x_2 + \dots + \frac{a_{21}}{a_{11}}a_{1n}x_n = \frac{a_{21}}{a_{11}}b_1$$

$$\left(a_{22} - \frac{a_{21}}{a_{11}}a_{12}\right)x_2 + \dots + \left(a_{2n} - \frac{a_{21}}{a_{11}}a_{1n}\right)x_n = b_2 - \frac{a_{21}}{a_{11}}b_1$$

$$\mathcal{E}_i \leftarrow \mathcal{E}_i + \mathbf{e}_i$$

or $a_{22}x_2 + ... + a_{2n}x_n = b_2$

Forward Elimination

Repeat this procedure for the remaining equations to reduce the set of equations as

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a'_{22}x_2 + a'_{23}x_3 + \dots + a'_{2n}x_n = b'_2$$

$$a'_{32}x_2 + a'_{33}x_3 + \dots + a'_{3n}x_n = b'_3$$

$$\vdots \qquad \vdots \qquad \lambda = \lambda_i = -\frac{a_{i1}}{a_{11}}, i = 2, \dots, n$$

$$j=1$$

End of Step 1

Step 2

Repeat the same procedure for the 3rd term of Equation 3.

$$a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} + \dots + a_{1n}x_{n} = b_{1}$$

$$a'_{22}x_{2} + a'_{23}x_{3} + \dots + a'_{2n}x_{n} = b'_{2}$$

$$a''_{33}x_{3} + \dots + a''_{3n}x_{n} = b''_{3}$$

$$\lambda = \lambda_{i} = -\frac{a'_{2i}}{a'_{22}}, i = 3, \dots, n$$

$$a''_{n3}x_{3} + \dots + a''_{nn}x_{n} = b''_{n}$$

$$j=2$$

End of Step 2

Forward Elimination

At the end of (n-1) Forward Elimination steps, the system of equations will look like

$$a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} + \dots + a_{1n}x_{n} = b_{1}$$

$$a_{22}x_{2} + a_{23}x_{3} + \dots + a_{2n}x_{n} = b_{2}'$$

$$a_{33}^{"}x_{3} + \dots + a_{3n}^{"}x_{n} = b_{3}^{"}$$

$$\vdots$$

$$a_{nn}^{(n-1)}x_{n} = b_{n}^{(n-1)}$$

End of Step (n-1)

Matrix Form at End of Forward Elimination

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a'_{22} & a'_{23} & \cdots & a'_{2n} \\ 0 & 0 & a''_{33} & \cdots & a''_{3n} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & 0 & a_{nn}^{(n-1)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b'_2 \\ b''_3 \\ \vdots \\ b_n^{(n-1)} \end{bmatrix}$$

$$\begin{bmatrix} a_{1n} \\ a_{2n} \end{bmatrix} \qquad \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \qquad \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

where

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

$$A = A^{(1)} \to A^{(2)} \to \cdots \to A^{(n)},$$

$$a_{ij}^{(k+1)} = \begin{cases} a_{ij}^{(k)}, & \text{for } i = 1, \dots, k, \text{ and } j = 1, \dots, n; \\ 0, & \text{for } i = k+1, \dots, n, \text{ and } j = 1, \dots, k; \\ a_{ij}^{(k)} - \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} * a_{kj}^{(k)}, & \text{for } i = k+1, \dots, n, \text{ and } j = k+1, \dots, n. \end{cases}$$

$$A^{(k)} = \begin{bmatrix} a_{11}^{(k)} & \cdots & a_{1k-1}^{(k)} & a_{1k}^{(k)} & \cdots & a_{1k}^{(k)} & \cdots & a_{1n}^{(k)} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & a_{k-1,k-1}^{(k)} & a_{k-1,k}^{(k)} & \cdots & a_{k-1,n}^{(k)} & \cdots & a_{k-1,n}^{(k)} \\ \hline \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & a_{nk}^{(k)} & \cdots & a_{nj}^{(k)} & \cdots & a_{nn}^{(k)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & a_{nk}^{(k)} & \cdots & a_{nj}^{(k)} & \cdots & a_{nn}^{(k)} \\ \end{bmatrix} & \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22}^{\prime} & a_{23}^{\prime} & \cdots & a_{2n}^{\prime} \\ 0 & 0 & a_{33}^{\prime 3} & \cdots & a_{3n}^{\prime 3} \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & a_{nn}^{(n-1)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ b_n^{(n-1)} \end{bmatrix}$$

$$a_{ij}^{(k+1)} = \begin{cases} a_{ij}^{(k)}, & \text{for } i = 1, \dots, k, \text{ and } j = 1, \dots, n; \\ 0, & \text{for } i = k+1, \dots, n, \text{ and } j = 1, \dots, k; \\ a_{ij}^{(k)} - \frac{a_{ik}^{(k)}}{a_{kk}^{(k)}} * a_{kj}^{(k)}, & \text{for } i = k+1, \dots, n, \text{ and } j = k+1, \dots, n. \end{cases}$$

$$A = A^{(1)} \rightarrow A^{(2)} \rightarrow \cdots \rightarrow A^{(n)},$$

$$A = A^{(1)} \rightarrow A^{(2)} \rightarrow \cdots \rightarrow A^{(n)},$$

$$A = A^{(1)} \rightarrow A^{(2)} \rightarrow \cdots \rightarrow A^{(n)},$$

$$A = A^{(1)} \rightarrow A^{(2)} \rightarrow \cdots \rightarrow A^{(n)},$$

$$A = A^{(1)} \rightarrow A^{(2)} \rightarrow \cdots \rightarrow A^{(n)},$$

$$A^{(n)} = A^{(n)} \rightarrow A^{$$

Naïve Gaussian Elimination

A method to solve simultaneous linear equations of the form [A][X]=[C]

Two steps

- 1. Forward Elimination
- 2. Back Substitution

The goal of forward elimination is to transform the coefficient matrix into an upper triangular matrix

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix}$$

$$\downarrow$$

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ -96.21 \\ 0.735 \end{bmatrix}$$

Back Substitution

Solve each equation starting from the last equation

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ -96.21 \\ 0.735 \end{bmatrix}$$

Example of a system of 3 equations

Back Substitution Starting Eqns

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a'_{22}x_2 + a'_{23}x_3 + \dots + a'_{2n}x_n = b'_2$$

$$a''_{33}x_3 + \dots + a''_nx_n = b''_3$$

$$\vdots$$

$$a_{nn}^{(n-1)}x_n = b_n^{(n-1)}$$

Back Substitution

Start with the last equation because it has only one unknown

$$x_n = \frac{b_n^{(n-1)}}{a_{nn}^{(n-1)}}$$

Back Substitution

$$x_n = \frac{b_n^{(n-1)}}{a_{nn}^{(n-1)}}$$

$$x_{i} = \frac{b_{i}^{(i-1)} - a_{i,i+1}^{(i-1)} x_{i+1} - a_{i,i+2}^{(i-1)} x_{i+2} - \dots - a_{i,n}^{(i-1)} x_{n}}{a_{ii}^{(i-1)}}$$
 for $i = n-1,...,1$

$$x_{i} = \frac{b_{i}^{(i-1)} - \sum_{j=i+1}^{n} a_{ij}^{(i-1)} x_{j}}{a_{ii}^{(i-1)}}$$
 for $i = n - 1,...,1$

Algorithm 3.4 (Back Substitution: Column Version) Suppose that $U \in \mathbb{R}^{n \times n}$ is nonsingular upper triangular and $b \in \mathbb{R}^n$. This algorithm computes the solution of Ux = b using row-oriented procedure.

```
\begin{aligned} &\text{for } i=1,\ldots,n \text{ do} \\ &x(i)=b(i) \\ &\text{end for} \\ &\text{for } j=n,\ldots,1 \text{ do} \\ &x(j)=x(j)/U(j,j) \\ &\text{for } i=1:(j-1) \text{ do} \\ &x(i)=x(i)-U(i,j)*x(j) \\ &\text{end for} \end{aligned}
```

Example 1

The upward velocity of a rocket is given at three different times

Table 1 Velocity vs. time data.

Time, $t(s)$	Velocity, $v(m/s)$
5	106.8
8	177.2
12	279.2

The velocity data is approximated by a polynomial as:

$$v(t) = a_1 t^2 + a_2 t + a_3$$
, $5 \le t \le 12$.

Find the velocity at t=6 seconds.

Example 1 Cont.

Assume

$$v(t) = a_1 t^2 + a_2 t + a_3, \quad 5 \le t \le 12.$$

Results in a matrix template of the form:

$$\begin{bmatrix} t_1^2 & t_1 & 1 \\ t_2^2 & t_2 & 1 \\ t_3^2 & t_3 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

Using data from Table 1, the matrix becomes:

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix}$$

Example 1 Cont.

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix} \Rightarrow \begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 64 & 8 & 1 & \vdots & 177.2 \\ 144 & 12 & 1 & \vdots & 279.2 \end{bmatrix}$$

- 1. Forward Elimination
 - 2. Back Substitution

Forward Elimination

Number of Steps of Forward Elimination

Number of steps of forward elimination is (n-1)=(3-1)=2

Forward Elimination: Step 1

$$\begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 64 & 8 & 1 & \vdots & 177.2 \\ 144 & 12 & 1 & \vdots & 279.2 \end{bmatrix} \quad \text{Divide Equation 1 by 25 and}$$
 multiply it by 64, $\frac{64}{25} = 2.56$.

$$[25 \ 5 \ 1 \ \vdots \ 106.8] \times 2.56 = [64 \ 12.8 \ 2.56 \ \vdots \ 273.408]$$

Substitute new equation for Equation 2 $\begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 0 & -4.8 & -1.56 & \vdots & -96.208 \\ 144 & 12 & 1 & \vdots & 279.2 \end{bmatrix}$

Forward Elimination: Step 1 (cont.)

$$\begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 0 & -4.8 & -1.56 & \vdots & -96.208 \\ 144 & 12 & 1 & \vdots & 279.2 \end{bmatrix} \text{ Divide Equation 1 by 25 and multiply it by 144, } \frac{144}{25} = 5.76.$$

$$[25 \ 5 \ 1 \ \vdots \ 106.8] \times 5.76 = [144 \ 28.8 \ 5.76 \ \vdots \ 615.168]$$

Substitute new equation for $\begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 0 & -4.8 & -1.56 & \vdots & -96.208 \\ 0 & -16.8 & -4.76 & \vdots & -335.968 \end{bmatrix}$

Forward Elimination: Step 2

$$\begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 0 & -4.8 & -1.56 & \vdots & -96.208 \\ 0 & -16.8 & -4.76 & \vdots & -335.968 \end{bmatrix} \quad \begin{array}{l} \text{Divide Equation 2 by } -4.8 \\ \text{and multiply it by } -16.8, \\ \frac{-16.8}{-4.8} = 3.5 \, . \end{array}$$

$$\begin{bmatrix} 0 & -4.8 & -1.56 & \vdots & -96.208 \end{bmatrix} \times 3.5 = \begin{bmatrix} 0 & -16.8 & -5.46 & \vdots & -336.728 \end{bmatrix}$$

Substitute new equation for Equation 3

$$\begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 0 & -4.8 & -1.56 & \vdots & -96.208 \\ 0 & 0 & 0.7 & \vdots & 0.76 \end{bmatrix}$$

Back Substitution

Back Substitution

$$\begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 0 & -4.8 & -1.56 & \vdots & -96.2 \\ 0 & 0 & 0.7 & \vdots & 0.7 \end{bmatrix} \Rightarrow \begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ -96.208 \\ 0.76 \end{bmatrix}$$

Solving for a_3

$$0.7a_3 = 0.76$$

$$a_3 = \frac{0.76}{0.7}$$

$$a_3 = 1.08571$$

Back Substitution (cont.)

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ -96.208 \\ 0.76 \end{bmatrix}$$

Solving for a_2

$$-4.8a_2 - 1.56a_3 = -96.208$$

$$a_2 = \frac{-96.208 + 1.56a_3}{-4.8}$$

$$a_2 = \frac{-96.208 + 1.56 \times 1.08571}{-4.8}$$

$$a_2 = 19.6905$$

Back Substitution (cont.)

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ -96.2 \\ 0.76 \end{bmatrix}$$

Solving for a_1

$$25a_1 + 5a_2 + a_3 = 106.8$$

$$a_1 = \frac{106.8 - 5a_2 - a_3}{25}$$

$$= \frac{106.8 - 5 \times 19.6905 - 1.08571}{25}$$

$$= 0.290472$$

Naïve Gaussian Elimination Solution

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix}$$

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 0.290472 \\ 19.6905 \\ 1.08571 \end{bmatrix}$$

Example 1 Cont.

Solution

The solution vector is

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 0.290472 \\ 19.6905 \\ 1.08571 \end{bmatrix}$$

The polynomial that passes through the three data points is then:

$$v(t) = a_1 t^2 + a_2 t + a_3$$

= 0.290472 t^2 + 19.6905 t + 1.08571, $5 \le t \le 12$

$$v(6) = 0.290472(6)^2 + 19.6905(6) + 1.08571$$

= 129.686 m/s.

Example This example illustrates the application of Gaussian elimination in solving system of linear equations.

$$\begin{bmatrix} 6 & -2 & 2 & 4 \\ 12 & -8 & 6 & 10 \\ 3 & -13 & 9 & 3 \\ -6 & 4 & 1 & -18 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 12 \\ 34 \\ 27 \\ -38 \end{bmatrix}$$

Note that if we collect all the multipliers and let

Sol

 1^{st} step Use 6 as pivot element, the first row as pivot row, and multipliers $2,\frac12,-1$ are produced to reduce the system to

$$\begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & -12 & 8 & 1 \\ 0 & 2 & 3 & -14 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 12 \\ 10 \\ 21 \\ -26 \end{bmatrix}$$

$$L = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ \frac{1}{2} & 3 & 1 & 0 \\ -1 & -\frac{1}{2} & 2 & 1 \end{array} \right]$$

 2^{nd} step Use -4 as pivot element, the second row as pivot row, and multipliers $3,-\frac{1}{2}$ are computed to reduce the system to

$$\begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 4 & -13 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 12 \\ 10 \\ -9 \\ -21 \end{bmatrix}$$

$$U = \left[\begin{array}{cccc} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 0 & -3 \end{array} \right]$$

3rd step Use 2 as pivot element, the third row as pivot row, and multipliers 2 is found to reduce the system to

$$\begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ 12 \end{bmatrix}$$

then one can verify that LU = A.

Now the solution can be obtained by solving this triangular system with back substitution.

Naïve Gauss Elimination Pitfalls

Pitfall#1. Division by zero

$$10x_2 - 7x_3 = 3$$
$$6x_1 + 2x_2 + 3x_3 = 11$$
$$5x_1 - x_2 + 5x_3 = 9$$

$$\begin{bmatrix} 0 & 10 & -7 \\ 6 & 2 & 3 \\ 5 & -1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 11 \\ 9 \end{bmatrix}$$

Is division by zero an issue here?

$$12x_1 + 10x_2 - 7x_3 = 15$$

$$6x_1 + 5x_2 + 3x_3 = 14$$

$$5x_1 - x_2 + 5x_3 = 9$$

$$\begin{bmatrix} 12 & 10 & -7 \\ 6 & 5 & 3 \\ 5 & -1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 15 \\ 14 \\ 9 \end{bmatrix}$$

Is division by zero an issue here? YES

$$12x_1 + 10x_2 - 7x_3 = 15$$

$$6x_1 + 5x_2 + 3x_3 = 14$$

$$24x_1 - x_2 + 5x_3 = 28$$

$$\begin{bmatrix} 12 & 10 & -7 \\ 6 & 5 & 3 \\ 24 & -1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 15 \\ 14 \\ 28 \end{bmatrix} \longrightarrow \begin{bmatrix} 12 & 10 & -7 \\ 0 & 0 & 6.5 \\ 12 & -21 & 19 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 15 \\ 6.5 \\ -2 \end{bmatrix}$$

Division by zero is a possibility at any step of forward elimination

Pitfall#2. Large Round-off Errors

$$\begin{bmatrix} 20 & 15 & 10 \\ -3 & -2.249 & 7 \\ 5 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 45 \\ 1.751 \\ 9 \end{bmatrix}$$

Exact Solution

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Pitfall#2. Large Round-off Errors

$$\begin{bmatrix} 20 & 15 & 10 \\ -3 & -2.249 & 7 \\ 5 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 45 \\ 1.751 \\ 9 \end{bmatrix}$$

Solve it on a computer using 6 significant digits with chopping

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.9625 \\ 1.05 \\ 0.999995 \end{bmatrix}$$

Pitfall#2. Large Round-off Errors

$$\begin{bmatrix} 20 & 15 & 10 \\ -3 & -2.249 & 7 \\ 5 & 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 45 \\ 1.751 \\ 9 \end{bmatrix}$$

Solve it on a computer using $\bf 5$ significant digits with chopping

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.625 \\ 1.5 \\ 0.99995 \end{bmatrix}$$

Is there a way to reduce the round off error?

Another Case

Another difficulty will arise when a pivot element encountered is a small number ε different from zero. For example, the simple Gaussian elimination algorithm would produce relatively large error on the system

$$\left[\begin{array}{cc} \varepsilon & 1 \\ 1 & 1 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 1 \\ 2 \end{array}\right]$$

where
$$\varepsilon < \epsilon_M$$

$$\begin{bmatrix} \varepsilon & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ where } \varepsilon < \epsilon_M$$

By the Gaussian Elimination step we get

$$\begin{bmatrix} \varepsilon & 1 \\ 0 & 1 - \frac{1}{\varepsilon} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 - \frac{1}{\varepsilon} \end{bmatrix} \Longrightarrow \begin{bmatrix} \varepsilon & 1 \\ 0 & -\frac{1}{\varepsilon} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -\frac{1}{\varepsilon} \end{bmatrix}$$

since in the computer, if ε is small enough, $1 - \frac{1}{\varepsilon}$ will be computed to be the same as $-\frac{1}{\varepsilon}$ Likewise, $2 - \frac{1}{\varepsilon}$ will be computed to be the same as $-\frac{1}{\varepsilon}$.

Hence, under these circumstances, back substitution would produce

$$x_2 = \frac{-\frac{1}{\varepsilon}}{-\frac{1}{\varepsilon}} = 1$$
 and $x_1 = \frac{1-1}{\varepsilon} = 0$.

$$\begin{bmatrix} \varepsilon & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ where } \varepsilon < \epsilon_M$$

$$x_2 = \frac{-\frac{1}{\varepsilon}}{-\frac{1}{\varepsilon}} = 1$$
 and $x_1 = \frac{1-1}{\varepsilon} = 0$.

The computed solution is accurate for x_2 but is extremely inaccurate for x_1 since

$$\left[\begin{array}{cc} \varepsilon & 1 \\ 1 & 1 \end{array}\right] \left[\begin{array}{c} 0 \\ 1 \end{array}\right] = \left[\begin{array}{c} 1 \\ 1 \end{array}\right].$$

But actually $x_1 = x_2 = 1$ would be a much better solution since

$$\left[\begin{array}{cc} \varepsilon & 1 \\ 1 & 1 \end{array}\right] \left[\begin{array}{c} 1 \\ 1 \end{array}\right] = \left[\begin{array}{c} 1+\varepsilon \\ 2 \end{array}\right] \approx \left[\begin{array}{c} 1 \\ 2 \end{array}\right]$$

On the other hand, it would produce a much better result if we interchange the rows since Gaussian elimination would compute

$$\begin{bmatrix} 1 & 1 \\ \varepsilon & 1 \end{bmatrix} \begin{bmatrix} x_2 \\ x_1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \Longrightarrow \begin{bmatrix} 1 & 1 \\ 0 & 1 - \varepsilon \end{bmatrix} \begin{bmatrix} x_2 \\ x_1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 - 2\varepsilon \end{bmatrix},$$

and the back substitution will give

$$x_1 = \frac{1-2\epsilon}{1-\epsilon} \approx 1$$
 and $x_2 = 2-x_1 \approx 2-1 = 1$.

The strategy of interchange rows/columns as described above is called "pivoting".

And we have seen that pivoting is necessary for some systems.

Avoiding Pitfalls

Increase the number of significant digits

- Decreases round-off error
- Does not avoid division by zero

Avoiding Pitfalls

Gaussian Elimination with Partial Pivoting

- Avoids division by zero
- Reduces round off error

Gauss Elimination with Partial Pivoting

Pitfalls of Naïve Gauss Elimination

- Possible division by zero
- Large round-off errors

Avoiding Pitfalls

Increase the number of significant digits

- Decreases round-off error
- Does not avoid division by zero

Avoiding Pitfalls

Gaussian Elimination with Partial Pivoting

- Avoids division by zero
- Reduces round off error

What is Different About Partial Pivoting?

At the beginning of the k^{th} step of forward elimination, find the maximum of

$$|a_{kk}|, |a_{k+1,k}|, \dots, |a_{nk}|$$

If the maximum of the values is $\left|a_{pk}\right|$ in the p^{th} row, $k \leq p \leq n$, then switch rows p and k.

Matrix Form at Beginning of 2nd Step of Forward Elimination

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a'_{22} & a'_{23} & \cdots & a'_{2n} \\ 0 & a'_{32} & a'_{33} & \cdots & a'_{3n} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & a'_{n2} & a'_{n3} & a'_{n4} & a'_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b'_2 \\ b'_3 \\ \vdots \\ b'_n \end{bmatrix}$$

Example (2nd step of FE)

$$\begin{bmatrix} 6 & 14 & 5.1 & 3.7 & 6 \\ 0 & -7 & 6 & 1 & 2 \\ 0 & 4 & 12 & 1 & 11 \\ 0 & 9 & 23 & 6 & 8 \\ 0 & -17 & 12 & 11 & 43 \\ \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 5 \\ -6 \\ 8 \\ 9 \\ 3 \end{bmatrix}$$

Which two rows would you switch?

Example (2nd step of FE)

$$\begin{bmatrix} 6 & 14 & 5.1 & 3.7 & 6 \\ 0 & -17 & 12 & 11 & 43 \\ 0 & 4 & 12 & 1 & 11 \\ 0 & 9 & 23 & 6 & 8 \\ 0 & -7 & 6 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \\ 8 \\ 9 \\ -6 \end{bmatrix}$$

Switched Rows

Gaussian Elimination with Partial Pivoting

A method to solve simultaneous linear equations of the form [A][X]=[C]

Two steps

- 1. Forward Elimination
- 2. Back Substitution

Forward Elimination

Same as naïve Gauss elimination method except that we switch rows before **each** of the (n-1) steps of forward elimination.

Example: Matrix Form at Beginning of 2nd Step of Forward Elimination

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22}^{'} & a_{23}^{'} & \cdots & a_{2n}^{'} \\ 0 & a_{32}^{'} & a_{33}^{'} & \cdots & a_{3n}^{'} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & a_{n2}^{'} & a_{n3}^{'} & a_{n4}^{'} & a_{nn}^{'} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2^{'} \\ b_3^{'} \\ \vdots \\ b_n^{'} \end{bmatrix}$$

Matrix Form at End of Forward Elimination

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22}^{'} & a_{23}^{'} & \cdots & a_{2n}^{'} \\ 0 & 0 & a_{33}^{''} & \cdots & a_{3n}^{''} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & 0 & a_{nn}^{(n-1)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2^{'} \\ b_3^{''} \\ \vdots \\ b_n^{(n-1)} \end{bmatrix}$$

Back Substitution Starting Eqns

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a'_{22}x_2 + a'_{23}x_3 + \dots + a'_{2n}x_n = b'_2$$

$$a''_{33}x_3 + \dots + a''_nx_n = b''_3$$

$$\vdots$$

$$a_{nn}^{(n-1)}x_n = b_n^{(n-1)}$$

Back Substitution

$$x_n = \frac{b_n^{(n-1)}}{a_{nn}^{(n-1)}}$$

$$x_{i} = \frac{b_{i}^{(i-1)} - \sum_{j=i+1}^{n} a_{ij}^{(i-1)} x_{j}}{a_{ii}^{(i-1)}}$$
 for $i = n - 1,...,1$

Gauss Elimination with Partial Pivoting Example

Example 2

Solve the following set of equations by Gaussian elimination with partial pivoting

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix}$$

Example 2 Cont.

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix} \Rightarrow \begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 64 & 8 & 1 & \vdots & 177.2 \\ 144 & 12 & 1 & \vdots & 279.2 \end{bmatrix}$$

- 1. Forward Elimination
 - 2. Back Substitution

Forward Elimination

Number of Steps of Forward Elimination

Number of steps of forward elimination is (n-1)=(3-1)=2

Forward Elimination: Step 1

 Examine absolute values of first column, first row and below.

- Largest absolute value is 144 and exists in row 3.
- Switch row 1 and row 3.

$$\begin{bmatrix} 25 & 5 & 1 & \vdots & 106.8 \\ 64 & 8 & 1 & \vdots & 177.2 \\ 144 & 12 & 1 & \vdots & 279.2 \end{bmatrix} \Rightarrow \begin{bmatrix} 144 & 12 & 1 & \vdots & 279.2 \\ 64 & 8 & 1 & \vdots & 177.2 \\ 25 & 5 & 1 & \vdots & 106.8 \end{bmatrix}$$

Forward Elimination: Step 1 (cont.)

$$\begin{bmatrix} 144 & 12 & 1 & \vdots & 279.2 \\ 64 & 8 & 1 & \vdots & 177.2 \\ 25 & 5 & 1 & \vdots & 106.8 \end{bmatrix}$$
 Divide Equation 1 by 144 and multiply it by 64, $\frac{64}{144} = 0.4444$.

Substitute new equation for
$$\begin{bmatrix} 144 & 12 & 1 & \vdots & 279.2 \\ 0 & 2.667 & 0.5556 & \vdots & 53.10 \\ 25 & 5 & 1 & \vdots & 106.8 \end{bmatrix}$$

Forward Elimination: Step 1 (cont.)

$$\begin{bmatrix} 144 & 12 & 1 & \vdots & 279.2 \\ 0 & 2.667 & 0.5556 & \vdots & 53.10 \\ 25 & 5 & 1 & \vdots & 106.8 \end{bmatrix}$$
 Divide Equation 1 by 144 and multiply it by 25, $\frac{25}{144} = 0.1736$.

$$\begin{bmatrix} 144 & 12 & 1 & \vdots & 279.2 \end{bmatrix} \times 0.1736 = \begin{bmatrix} 25.00 & 2.083 & 0.1736 & \vdots & 48.47 \end{bmatrix}$$

Substitute new equation for Equation 3
$$\begin{bmatrix} 144 & 12 & 1 & \vdots & 279.2 \\ 0 & 2.667 & 0.5556 & \vdots & 53.10 \\ 0 & 2.917 & 0.8264 & \vdots & 58.33 \end{bmatrix}$$

Forward Elimination: Step 2

 Examine absolute values of second column, second row and below.

- Largest absolute value is 2.917 and exists in row 3.
- Switch row 2 and row 3.

```
\begin{bmatrix} 144 & 12 & 1 & \vdots & 279.2 \\ 0 & 2.667 & 0.5556 & \vdots & 53.10 \\ 0 & 2.917 & 0.8264 & \vdots & 58.33 \end{bmatrix} \Rightarrow \begin{bmatrix} 144 & 12 & 1 & \vdots & 279.2 \\ 0 & 2.917 & 0.8264 & \vdots & 58.33 \\ 0 & 2.667 & 0.5556 & \vdots & 53.10 \end{bmatrix}
```

Forward Elimination: Step 2 (cont.)

$$\begin{bmatrix} 144 & 12 & 1 & \vdots & 279.2 \\ 0 & 2.917 & 0.8264 & \vdots & 58.33 \\ 0 & 2.667 & 0.5556 & \vdots & 53.10 \end{bmatrix} \quad \begin{array}{l} \text{Divide Equation 2 by 2.917 and} \\ \text{multiply it by 2.667,} \\ \frac{2.667}{2.917} = 0.9143. \\ \end{array}$$

$$\begin{bmatrix} 0 & 2.917 & 0.8264 & \vdots & 58.33 \end{bmatrix} \times 0.9143 = \begin{bmatrix} 0 & 2.667 & 0.7556 & \vdots & 53.33 \end{bmatrix}$$

Substitute new equation for Equation 3 $\begin{bmatrix} 144 & 12 & 1 & \vdots & 279.2 \\ 0 & 2.917 & 0.8264 & \vdots & 58.33 \\ 0 & 0 & -0.2 & \vdots & -0.23 \end{bmatrix}$

Back Substitution

Back Substitution

$$\begin{bmatrix} 144 & 12 & 1 & \vdots & 279.2 \\ 0 & 2.917 & 0.8264 & \vdots & 58.33 \\ 0 & 0 & -0.2 & \vdots & -0.23 \end{bmatrix} \Rightarrow \begin{bmatrix} 144 & 12 & 1 \\ 0 & 2.917 & 0.8264 \\ 0 & 0 & -0.2 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 279.2 \\ 58.33 \\ -0.23 \end{bmatrix}$$

Solving for a_3

$$-0.2a_3 = -0.23$$
$$a_3 = \frac{-0.23}{-0.2}$$
$$= 1.15$$

Back Substitution (cont.)

$$\begin{bmatrix} 144 & 12 & 1 \\ 0 & 2.917 & 0.8264 \\ 0 & 0 & -0.2 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 279.2 \\ 58.33 \\ -0.23 \end{bmatrix}$$

Solving for a_2

$$2.917a_2 + 0.8264a_3 = 58.33$$

$$a_2 = \frac{58.33 - 0.8264a_3}{2.917}$$

$$= \frac{58.33 - 0.8264 \times 1.15}{2.917}$$

$$= 19.67$$

Back Substitution (cont.)

$$\begin{bmatrix} 144 & 12 & 1 \\ 0 & 2.917 & 0.8264 \\ 0 & 0 & -0.2 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 279.2 \\ 58.33 \\ -0.23 \end{bmatrix}$$

Solving for
$$a_1$$

$$144a_1 + 12a_2 + a_3 = 279.2$$

$$a_1 = \frac{279.2 - 12a_2 - a_3}{144}$$

$$= \frac{279.2 - 12 \times 19.67 - 1.15}{144}$$

$$= 0.2917$$

Gaussian Elimination with Partial Pivoting Solution

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 106.8 \\ 177.2 \\ 279.2 \end{bmatrix}$$

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 0.2917 \\ 19.67 \\ 1.15 \end{bmatrix}$$

Gauss Elimination with Partial Pivoting Another Example

Partial Pivoting: Example

Consider the system of equations

$$10x_1 - 7x_2 = 7$$

$$-3x_1 + 2.099x_2 + 6x_3 = 3.901$$

$$5x_1 - x_2 + 5x_3 = 6$$

In matrix form

$$\begin{bmatrix} 10 & -7 & 0 \\ -3 & 2.099 & 6 \\ 5 & -1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 3.901 \\ 6 \end{bmatrix}$$

Solve using Gaussian Elimination with Partial Pivoting using five significant digits with chopping

Partial Pivoting: Example

Forward Elimination: Step 1

Examining the values of the first column

The largest absolute value is 10, which means, to follow the rules of Partial Pivoting, we switch row1 with row1.

Performing Forward Elimination

$$\begin{bmatrix} 10 & -7 & 0 \\ -3 & 2.099 & 6 \\ 5 & -1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 3.901 \\ 6 \end{bmatrix} \longrightarrow \begin{bmatrix} 10 & -7 & 0 \\ 0 & -0.001 & 6 \\ 0 & 2.5 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 6.001 \\ 2.5 \end{bmatrix}$$

Partial Pivoting: Example

Forward Elimination: Step 2

Examining the values of the first column

|-0.001| and |2.5| or 0.0001 and 2.5

The largest absolute value is 2.5, so row 2 is switched with row 3

Performing the row swap

$$\begin{bmatrix} 10 & -7 & 0 \\ 0 & -0.001 & 6 \\ 0 & 2.5 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 6.001 \\ 2.5 \end{bmatrix} \implies \begin{bmatrix} 10 & -7 & 0 \\ 0 & 2.5 & 5 \\ 0 & -0.001 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 2.5 \\ 6.001 \end{bmatrix}$$

Partial Pivoting: Example

Forward Elimination: Step 2

Performing the Forward Elimination results in:

$$\begin{bmatrix} 10 & -7 & 0 \\ 0 & 2.5 & 5 \\ 0 & 0 & 6.002 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 2.5 \\ 6.002 \end{bmatrix}$$

Partial Pivoting: Example

Back Substitution

Solving the equations through back substitution

$$\begin{bmatrix} 10 & -7 & 0 \\ 0 & 2.5 & 5 \\ 0 & 0 & 6.002 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 2.5 \\ 6.002 \end{bmatrix}$$
$$x_2 = \frac{6.002}{6.002} = 1$$
$$x_2 = \frac{2.5 - 5x_3}{2.5} = -1$$

$$x_3 = \frac{6.002}{6.002} = 1$$

$$x_2 = \frac{2.5 - 5x_3}{2.5} = -1$$

$$x_1 = \frac{7 + 7x_2 - 0x_3}{10} = 0$$

Partial Pivoting: Example

Compare the calculated and exact solution

The fact that they are equal is coincidence, but it does illustrate the advantage of Partial Pivoting

Algorithm for Gaussian Elimination with Partial Pivoting for $i = 1, \ldots, n$ do % initialize the pivoting vector p(i) = iend for for k = 1, ..., n - 1 do m = kfor $i = k + 1, \ldots, n$ do if |A(p(m), k)| < |A(p(i), k)| then m = iend if end for $\ell = p(k)$ p(k) = p(m) $p(m) = \ell$ for i = k + 1, ..., n do A(p(i),k) = A(p(i),k)/A(p(k),k)for j = k + 1, ..., n do A(p(i), j) = A(p(i), j) - A(p(i), k) * A(p(k), j)end for

Algorithm for Forward substitute for partial pivoting case

end for end for

```
y(p(1)) = b(p(1))/A(p(1), 1)

for i = 1, ..., n do

t = 0

for j = 1, ..., i - 1 do

t = t + A(p(i), j) * y(p(j))

end for

y(p(i)) = b(p(i)) - t

end for
```

Determinant of a Square Matrix Using Naïve Gauss Elimination Example

Theorem of Determinants

If a multiple of one row of $[A]_{nxn}$ is added or subtracted to another row of $[A]_{nxn}$ to result in $[B]_{nxn}$ then det(A)=det(B)

Theorem of Determinants

The determinant of an upper triangular matrix $[A]_{nxn}$ is given by

$$\det (\mathbf{A}) = a_{11} \times a_{22} \times ... \times a_{ii} \times ... \times a_{nn}$$
$$= \prod_{i=1}^{n} a_{ii}$$

Forward Elimination of a Square Matrix

Using forward elimination to transform $[A]_{nxn}$ to an upper triangular matrix, $[U]_{nxn}$.

$$[A]_{n\times n}\to [U]_{n\times n}$$

$$\det(A) = \det(U)$$

Example

Using naïve Gaussian elimination find the determinant of the following square matrix.

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix}$$

Forward Elimination

Forward Elimination: Step 1

 $\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix}$ Divide Equation 1 by 25 and multiply it by 64, $\frac{64}{25} = 2.56$.

$$[25 5 1] \times 2.56 = [64 12.8 2.56]$$

Subtract the result from Equation 2

[64 8 1] $\frac{-[64 \ 12.8 \ 2.56]}{[0 \ -4.8 \ -1.56]}$

Substitute new equation for Equation 2

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 144 & 12 & 1 \end{bmatrix}$$

Forward Elimination: Step 1 (cont.)

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 144 & 12 & 1 \end{bmatrix}$$

 $\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 144 & 12 & 1 \end{bmatrix}$ Divide Equation 1 by 25 and multiply it by 144, $\frac{144}{25} = 5.76$.

$$\begin{bmatrix} 25 & 5 & 1 \end{bmatrix} \times 5.76 = \begin{bmatrix} 144 & 28.8 & 5.76 \end{bmatrix}$$

Subtract the result from Equation 3

$$\begin{array}{c|ccccc}
 & [144 & 12 & 1] \\
\hline
 & -[144 & 28.8 & 5.76] \\
\hline
 & [0 & -16.8 & -4.76]
\end{array}$$

Substitute new equation for Equation 3

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & -16.8 & -4.76 \end{bmatrix}$$

Forward Elimination: Step 2

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & -16.8 & -4.76 \end{bmatrix}$$

 $\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & -16.8 & -4.76 \end{bmatrix}$ Divide Equation 2 by -4.8 and multiply it by -16.8, $\frac{-16.8}{-4.8} = 3.5.$

$$([0 -4.8 -1.56]) \times 3.5 = [0 -16.8 -5.46]$$

Subtract the result from Equation 3

$$\begin{bmatrix}
 0 & -16.8 & -4.76 \\
 -[0 & -16.8 & -5.46] \\
 \hline
 [0 & 0 & 0.7]
 \end{bmatrix}$$

Substitute new equation for Equation 3

$$\begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix}$$

Finding the Determinant

After forward elimination

$$\begin{bmatrix} 25 & 5 & 1 \\ 64 & 8 & 1 \\ 144 & 12 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 25 & 5 & 1 \\ 0 & -4.8 & -1.56 \\ 0 & 0 & 0.7 \end{bmatrix}$$

$$\det (A) = u_{11} \times u_{22} \times u_{33}$$
$$= 25 \times (-4.8) \times 0.7$$
$$= -84.00$$

Summary

- -Forward Elimination
- -Back Substitution
- -Pitfalls
- -Improvements
- -Partial Pivoting
- -Determinant of a Matrix