Evaluating Your Machine Learning Models

Hisashi Kashima kashima@i.Kyoto-u.ac.jp

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

Topics:

Performance measures and evaluation frameworks

- You want to know the final performance of your model, or select the best one among possible models (or both)
- Performance measure: accuracy, precision/recall, DCG@k, AUC
- Evaluation framework: cross validation

Performance Measures

Various performance measures: Should be chosen according to your applications

- There are various evaluation measure to quantify the performance of a trained model especially in supervised learning
 - -Accuracy, precision/recall, DCG@k, AUC, ...
- They should be appropriately chosen depending on applications
 - -Classification with decision thresholds: accuracy, precision/recall, ...
 - -Classification without decision thresholds: AUC, ...
 - -Ranking: DCG@k, ...

Decision model and confusion matrix: Decisions on a dataset give a confusion matrix

- The trained model gives confidence P(x) on given instance x belonging to the positive class (+1)
 - -Multi-class case: 1-vs-rest
- Assign +1 to ${m x}$ whose $P({m x})$ is larger then decision threshold au
- Fixing a model, a dataset, and a decision threshold gives a confusion matrix

		predicted label	
		positive	negative
true label	positive	#true positives 😊	#false negatives
	negative	#false positives	#true negatives 😊

Accuracy and precision/recall: Basic predictive performance measures

- Accuracy: percentage of #true_positives + #true_negatives
- Precision/Recall
 - —Precision: #true_positives / (#true_positives+#false_positive)
 - -Recall: #true_positives / (#true_positives+#false_negatives)
 - —F-measure: Precision Recall /(precision+recall)
 - an integrated measure of precision and recall

		predicted label	
		positive	negative
true label	positive	#true positives 😊	#false negatives
	negative	#false positives	#true negatives 😊

DCG@k:

Performance measure for ranking

- In ranking (of web pages), accuracy of top-ranked items is more important
- Precision@k: precision calculated using the top-k scored items
- DCG(Discounted Cumulative Gain)@k is a weighted variant of Precision@k: $\sum_{i=1}^k \frac{rel(i)}{\log(i+1)}$
 - -rel(i) is the relevance score for the *i*-th ranked item

AUC:

Performance measure not depending on the threshold

- Evaluation needs fixing the decision threshold
- Imbalanced data generally results in a high accuracy
- AUC:
 - -Performance measure directly work with confidence score P(x)
 - -Probability of A being larger than B
 - A: confidence score of a randomly chosen positive instance
 - B: confidence score of a randomly chosen positive instance
 - -takes 1 for perfect predictions, 0.5 for random predictions

Evaluation Framework

Evaluation framework:

We want to predict model performance

- Performance for the training data and that for the test data are different
 - —What we are interested in is the latter
- Many models have hyper-parameters to be specified by users

First principle:

Evaluation must use a dataset not used in training

- You must not evaluate your classifier on the dataset you used for training
- Usually, first divide a given dataset into a training dataset and a test dataset
 - -Train a classifier using the training dataset
 - -Evaluate its performance on the test dataset
- Sometimes ordering of data instances (unintentionally) has some patterns in their labels
 - Partitioning should be done carefully

Cross validation (for performance testing): A statistical framework for performance evaluation

- You want to know the performance of the classifier (will be obtained using your algorithm) when it is deployed
- (K-fold) cross validation do this
- lacktriangle Divide a given dataset into K non-overlapping sets
 - —Use K-1 of them for training
 - -Use the remaining one for testing
- lacktriangle Changing the "test" dataset K gives K measurements
 - -Take their average to get a final performance measure

Cross validation for tuning hyper-parameters: A statistical framework for performance evaluation

- Most of machine learning algorithms have hyper-parameters
 - Hyper-parameters: Parameters not automatically tuned in the training phase; given by users
- (K-fold) cross validation can be used for this
 - —Use K-1 of K sets for training models for various hyperparameter settings
 - Use the remaining one for testing
 - Choose the hyper-parameter setting with the best averaged performance

Double loop of cross validation: Tuning hyper-parameters and performance evaluation

- Sometimes you want to do both hyper-parameter tuning and performance evaluation
- lacktriangle Doing both with one K-fold cross validation is guilty
 - You see the test for tuning hyper-parameters
- Double loop cross validation
 - Outer loop for performance evaluation
 - Inner loop for hyper-parameter tuning
 - –High computational costs...

A simple alternative of double-loop cross validation: "Development set" approach

- A simple alternative for the double-loop cross validation
- "Development set" approach
 - —Use K-2 of K sets for training
 - Use one for tuning hyper-parameters
 - Use one for testing