

AVL tree

서승현 교수 Prof. Anes Seung-Hyun Seo (seosh77@hanyang.ac.kr)

Division of Electrical Engineering Hanyang University, ERICA Campus

Balanced Search Tree

Motivation

- ► Complexity of BST
 - Average case: O(log n)
 - Inserting sorted data
 - Worst case: O(n)
 - If BST is unbalanced, the efficiency is bad.
- ▶ Binary search tree is efficient when it is balanced.
- ▶ But, inserting/removing destroys the balanced structure of BST!

■ Remedy: balanced tree

Binary Search Tree

The maximum number of comparisons needed to search for any

(c) Degenerate binary search tree

Balance Factor of Binary Tree

Balance

- ▶ Balance factor (B) = $H_L H_R$
- ▶ Balanced binary tree: |B| ≤ 1

Self-balancing BST

Automatically adjusts its structure to a balanced tree in inserting/removing

■ Performance

- ▶ Worst case = O(log n)
 - \rightarrow better than that of plain BST = O(n)
 - \rightarrow better than that of hashing = O(n)
- ► Average case = O(log n)
 - \rightarrow worse than that of hashing = O(1)

■ The first self-balancing BST

- ► Adelson-Velsky and Landis tree
- ▶ The structure is re-adjusted for each insert/remove
- ▶ Height differences of subtrees are less than one

■ Tree adjustment

- ▶ Based on tree rotations
- ► Tree rotations take O(log n) for each insert/remove

- AVL Tree: a binary search tree in which the heights of the subtrees differ by no more than 1
 - ► $|H_L-H_R| \le 1$ for all nodes Cf. H_L-H_R is called **balance factor**
 - An AVL is a balanced tree
 - ▶ Invented by G.M Adelson-Velskii and E.M. Landis, 1962.

(a) Tree 23 appears balanced: $H_L - H_R = 1$

(b) Subtree 18 appears balanced:

$$H_L - H_R = 1$$

■ Ex) Is it AVL tree?

■ Definition of height-balanced tree

- ▶ An empty tree is height-balanced.
- ▶ If T is a nonempty binary tree with T_L and T_R as its left and right subtrees respectively, then T is height-balanced iff
 - T_I and T_R are height-balanced.
 - $|h_L h_R| \le 1$ where h_L and h_R are the heights of T_L and T_R respectively
 - T_I: left subtree, T_R: right subtree

■ Balance factor, BF(T) of a node T in a binary tree

- ▶ Difference between the height of the left and right subtrees of T
- \blacktriangleright BF(T) = h_L h_R
- For any node T in an AVL tree, BF(T)= -1, 0, 1

Insertion/Deletion in AVL Tree

■ Insertion or deletion may break the balance of AVL tree.

Ex) Inserting 15
Deleting 52

■ Remedy: Rebalance the tree after insertion or deletion

Insertion into AVL Trees

Inserting a node into an AVL tree

- 1. Connect the new node to a leaf node with the same algorithm with BST insertion
- 2. Check the balance of each node
 - If the new node increased the balance
- 3. If an unbalanced node is found, rebalance it and then continue up the tree
 - Not all insertion breaks the balance

Rotation

- Rotation: switching children and parents among two or three adjacent nodes to restore balance of a tree.
 - ▶ A rotation may change the depth of some nodes, but do not change their relative ordering.

Rotation

- The rotations are characterized by the nearest ancestor, 'A' of the inserted node 'Y' whose balance factor becomes ±2.
 - ► LL(Left of Left, Left-Left): new node Y is inserted in the left subtree of the left subtree of A
 - ► LR(Right of Left, Left-Right): Y is inserted in the right subtree of the left subtree of A
 - ► RR(Right of Right, Right-Right): Y is inserted in the right subtree of the right subtree of A
 - ► RL(Left of Right, Right-Left): Y is inserted in the left subtree of the right subtree of A
- The rotations
 - ► Single rotation : the transformation done to remedy LL and RR imbalances
 - ▶ Double rotation: the transformation done to remedy LR and RL imbalances
- Note symmetric relationships among the four cases
 - ► LL RR
 - ► LR RL

subtree 3

subtree 1

b

HANYANG UNIVERSITY

Insertion into AVL Tree

HANYANG UNIVERSITY

Insertion into AVL Tree

Left Balancing

- To rebalance left high tree, it should be right rotated
- **■** Types of right rotations
 - ▶ LL (left of left, Left-Left) rotation: right rotation (r)
 - Simple right rotation
 - Left subtree has no right child
 - Complex right rotation
 - Left subtree has a right child
 - ► LR (right of left, Left-Right) rotation: left rotation (x) + right rotation (r)
 - Simple double rotation right
 - Complex double rotation right

Left Balancing: LL Rotation

(a) Simple right rotation

(b) Complex right rotation

Left Balancing: LL Rotation (Complex Right Rotation)

- x becomes new root
- r and r's right subtree become x's right subtree
- right subtree of x becomes r's left subtree

* r: nearest ancestor of the new node whose BF(r) is +2 or -2

Left Balancing: LR Rotation

- Rebalancing left: double rotation
 - ▶ Firstly rotate the left subtree (x) to the left
 - ▶ Then, rotate the root (r) to the right, making the left node the new root.

■ Simple double rotation right

(a) Simple double rotation right

Left Balancing: LR Rotation

Complex double rotation right

(b) Complex double rotation right

Left Balancing: LR Rotation (Complex double rotation right)

- w becomes new root
- r and r's right subtree become right subtree of w
- Left subtree of w becomes right subtree of x
- Right subtree of w becomes left subtree of r

AVL Insertion - Example

- Insertion: Mar, May, Nov, Aug, Apr, Jan, Dec, July, Feb, June, Oct, Sept
 - ► Insertion-> unbalancing -> rebalancing

AVL Insertion - Example

AVL Insertion - Example

Right Balancing

■ Basically, right balancing makes symmetric with left balancing

Right Balancing: RR Rotation

- x becomes new root
- r and r's left subtree become x's left subtree
- Left subtree of x becomes r's right subtree

Right Balancing: RL Rotation

- w becomes new root
- r and r's left subtree becomes w's left subtree
- Right subtree of w becomes left subtree of x
- Left subtree of w becomes right subtree of r

Deletion from AVL Tree

■ Deleting a node from AVL tree

- 1. Delete a node by deletion algorithm of binary search tree
 - Deletion take place at a leaf node.
- 2. If tree is unbalanced, rebalance it

Rebalancing After Deletion

- Left balancing and right balancing are symmetric
- If unbalancing was caused by deletion from left subtree rebalance should be take place at the right subtree, and vice versa

Insertion into an AVL tree- An LL Rotation

(a) Before insertion (b) After inserting into B_L (c) After LL rotation

Balance factors are inside nodes Subtree heights are below subtree name

Insertion into an AVL tree- An LR Rotation

(a) Before insertion (b) After inserting into B_R (c) After LR rotation

$$b = 0 \Rightarrow bf(B) = bf(A) = 0$$
 after rotation
 $b = 1 \Rightarrow bf(B) = 0$ and $bf(A) = -1$ after rotation
 $b = -1 \Rightarrow bf(B) = 1$ and $bf(A) = 0$ after rotation

Insertion into an AVL tree

```
typedef struct {
     int key;
    } element;

typedef struct treeNode *treePointer;
    struct treeNode {
     treePointer leftChild;
     element data;
     short int bf;
     treePointer rightChild;
   };
```

Insertion into an AVL tree

```
void avlInsert(treePointer *parent, element x, int *unbalanced)
       if(!*parent) { /*insert element into null tree */
             *unbalanced = TRUE;
             MALLOC(*parent, sizeof(treeNode));
             (*parent)->leftChild = (*parent)->rightChild = NULL;
             (*parent)->bf=0; (*parent)->data=x;
       else if(x.key < (*parent)->data.key) {
             avlInsert(&(*parent)->leftChild, x, unbalanced);
             if(*unbalanced)
             /* left branch has grown higher */
                     switch((*parent)->bf) {
                           case -1: (*parent)->bf = 0;
                                     *unbalanced = FALSE; break;
                           case 0: (*parent) - > bf = 1; break;
                           case 1: leftRotation(parent, unbalanced);
                                                                       HANYANG UNIVERSI
```

WANG UNIVERS

(c) Insert Nov

Insertion into an AVL tree

```
else if(x.key > (*parent)->data.key) {
       avlInsert(*(*parent)->rightChild, x, unbalanced);
       if(*unbalanced)
         /*right branch has grown higher */
               switch((*parent)->bf) {
                      case 1: (*parent) - > bf = 0;
                                  *unbalanced = FALSE; break;
                       case 0: (*parent) - > bf = -1; break;
                       case -1: rightRotation(parent, unbalanced);
else {
        *unbalanced = FALSE;
        printf("The key is already in the tree");
                                                     (a) Insert March
                                                                     RR rotation
```

AVL트리

```
void rightRotation(treePointer *parent, int *unbalanced) {
            treePointer grandChild, child;
            child = (*parent)->rightChild;
            if (child->bf == -1) {
                        /* RR Rotation */
                         (*parent)->rightChild = child->leftChild;
                        child->leftChild = *parent;
                         (*parent) -> bf = 0;
                         (*parent) = child;
            else {
                        /* RL Rotataion */
                        grandChild = child->leftChild;
                        child->leftChild = grandChild->rightChild;
                        grandChild->rightChild = child;
                         (*parent)->rightChild = grandChild->leftChild;
                        grandChild->leftChild = *parent;
```


AVL트리

```
switch (grandChild->bf) {
            case -1:
                         (*parent)->bf = 1;
                         child->bf = 0;
                         break:
            case 0:
                         (*parent) - bf = child - bf = 0;
                         break.
            case 1:
                         (*parent)->bf = 0;
                         child -> bf = -1;
                         break:
            *parent = grandChild;
(*parent)->bf = 0;
*unbalanced = FALSE;
```

Left Rotation Function

```
void leftRotation(treePointer *parent, int *unbalanced)
      treePointer grandChild, child;
      child = (*parent)->leftChild; X
      if(child->bf == 1) {
            /* LL rotation */
          (*parent)->leftChild = child->rightChild; h-1
  r의 왼쪽
  x의 오른쪽 child->rightChild = *parent; r
            (*parent)->bf=0;
            (*parent) = child; x가 루트가 됨
      else {
            /*LR rotation */
            grandChild = child->rightChild; W
  x의 오른쪽 child->rightChild = grandChild->leftChild;
    w의 왼쪽 grandChild->leftChild = child; x
    r의 왼쪽 (*parent)->leftChild = grandChild->rightChild; T3
```

grandChild->rightChild= *parent;

HANYANG UNIVERSITY

Left Rotation Function

```
switch(grandChild->bf) {
              case 1: (*parent) - > bf = -1;
                         child->bf = 0; break;
              case 0: (*parent)->bf = child->bf = 0;
                         break;
              case -1: (*parent)->bf = 0;
                         child->bf=1;
      *parent = grandChild;
(*parent)->bf=0;
*unbalanced = FALSE;
```

Comparison of various structures

Operation	Sequential list	Linked list	AVL tree
Search for element with key k	O(log n)	O(n)	O(log n)
Search for jth item	<i>O</i> (1)	O(j)	$O(\log n)$
Delete element with key k	O(n)	$O(1)^1$	O(log n)
Delete jth element	O(n - j)	O(j)	$O(\log n)$
Insert	O(n)	$O(1)^2$	O(log n)
Output in order	O(n)	O(n)	O(n)

- 1. Doubly linked list and position of K known
 - 2. Position for insertion known