МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Нижегородский государственный университет им. Н.И. Лобачевского

ОПРЕДЕЛЕНИЕ УДЕЛЬНОГО ЗАРЯДА ЭЛЕКТРОНА МЕТОДОМ МАГНИТНОГО ЗАПИРАНИЯ ДИОДА

Практикум

Рекомендовано методической комиссией радиофизического факультета для студентов ННГУ, обучающихся по направлению подготовки 011800 «Радиофизика»

Нижний Новгород 2013 УДК 531.7 ББК В338 О-62

О-62 ОПРЕДЕЛЕНИЕ УДЕЛЬНОГО ЗАРЯДА ЭЛЕКТРОНА МЕТОДОМ МАГНИТНОГО ЗАПИРАНИЯ ДИОДА: Составители: Бакунов М.И., Бирагов С.Б. Практикум. — Нижний Новгород: Нижегородский госуниверситет, 2013. — 9 с.

Рецензент: доктор физ.-мат. наук, профессор В.Н. Мануилов

В лабораторной работе измеряется удельный заряд электрона по отсечке анодного тока в цилиндрическом вакуумном диоде, помещенном в продольное магнитное поле.

Практикум предназначен для студентов 1-го курса радиофизического факультета, выполняющих работы в лабораториях общего практикума кафедры общей физики.

Ответственные за выпуск: председатель методической комиссии радиофизического факультета ННГУ, к.ф.-м.н., доцент **Н.Д. Миловский**, д.ф.-м.н., профессор **Е.З. Грибова**

Подписано в печать 20.12.2013. Формат 60×84 1/16. Бумага офсетная. Печать офсетная. Гарнитура Таймс. Усл. печ. л. 0,5. Заказ № 1125. Тираж 100 экз.

Отпечатано в типографии Нижегородского госуниверситета им. Н.И. Лобачевского 603000, г. Нижний Новгород, ул. Большая Покровская, 37

УДК 531.7 ББК В338

Введение

Электрон – первая из открытых элементарных частиц. В 1897 году английский физик Дж. Дж. Томсон / (J. J. Thomson) показал, что возникающие в разрядной трубке так называемые катодные лучи представляют собой поток отрицательно заряженных частиц, впоследствии названных электронами.

Электрон – самая легкая заряженная частица, его масса составляет примерно 0.91·10⁻³⁰ кг. Заряд электрона отрицателен и равен (с минусом) элементарному электрическому заряду. Элементарный электрический заряд, составляющий примерно 1.6·10-19 Кл, есть фундаментальная физическая константа и представляет собой минимальную порцию (квант) электрического заряда свободных частиц (обладающие дробным зарядом кварки существуют только в связанных состояниях). Известно, что движение любой заряженной частицы в электрическом и магнитном полях определяется не зарядом и массой частицы в отдельности, а отношением заряда к массе, называемом удельным зарядом. Удельный заряд электрона в тысячи раз больше (по модулю) удельного заряда любого иона, поэтому почти всегда именно электроны играют определяющую роль в явлениях, связанных с переносом электрического заряда. Упорядоченное движение электронов (электрический ток) в проводах позволяет легко переносить энергию и управлять ею. Использование электрического тока в металлах и полупроводниках является одной из основ современной цивилизации и широко используется в промышленности, электронике, передаче информации, вычислительной технике, в быту.

Целью работы является измерение удельного заряда электрона по отсечке анодного тока в цилиндрическом вакуумном диоде, помещенном в магнитное поле.

Метод измерения

Большинство методов измерения удельного заряда электрона основано на отклонении движущихся электронов магнитным полем. В настоящей работе используется поток электронов в двухэлектродной лампе (вакуумном диоде) с коаксиальными цилиндрическими катодом и анодом. Летящие от катода к аноду электроны отклоняются магнитным полем, направленным вдоль оси лампы. Это поле создается катушкой с током (соленоидом), внутри которой соосно с ней размещается лампа (см. рис. 1).

На электрон с зарядом -e, движущийся со скоростью \vec{V} в электрическом и магнитном полях,

W

действует сила Лоренца

$$\vec{F} = -e(\vec{E} + \lceil \vec{V}, \vec{B} \rceil), \tag{1}$$

где \overrightarrow{E} — напряженность электрического поля, а \overrightarrow{B} — индукция магнитного поля. В отсутствие магнитного поля вылетающие из катода (практически без начальных скоростей) электроны двигались бы по радиусу от катода к аноду, разгоняясь радиальным электрическим полем, величина которого определяется анодным напряжением $U_{\rm a}$. Направленное вдоль оси лампы магнитное поле приводит, в соответствии с формулой (1), к искривлению траекторий электронов. При некотором, критическом, значении индукции магнитного поля $B_{\rm kp}$ электроны перестают достигать анода, пролетая по касательной вблизи него (рис. 2). В этом случае анодный ток становится равным нулю. Измеряя $B_{\rm kp}$, можно определить, при известном $U_{\rm a}$, удельный заряд электрона.

Получим расчетную формулу для удельного заряда, используя теоремы об изменении кинетической энергии и момента импульса электрона, двигающегося по критической траектории. Считая начальную скорость электрона около катода равной нулю, запишем кинетическую энергию электрона вблизи анода в виде

$$\frac{mV_{\rm a}^2}{2} = eU_{\rm a}$$
 (2) Puc. 2

где m — масса электрона, а $V_{\rm a}$ — его скорость у анода. Правая часть соотношения (2) представляет собой работу электрического поля, совершенную над электроном при его движении от катода к аноду. В силу потенциальности электрического поля эта работа не зависит от формы траектории.

Запишем теперь теорему об изменении момента импульса электрона (уравнение моментов)

$$\frac{d\vec{N}}{dt} = \left[\vec{r}, \vec{F}\right],\tag{3}$$

где \vec{r} — радиус-вектор электрона (см. рис. 2), $\vec{N} = \left[\vec{r}, m \vec{V} \right]$ — момент импульса электрона, а $\left[\vec{r}, \vec{F} \right]$ — момент действующей на электрон силы Лоренца. Поскольку $\left[\vec{r}, \vec{E} \right] = 0$, то электрическая часть силы Лоренца не дает вклада в момент силы и, следовательно, уравнение моментов (3) приводится к виду

$$\frac{d\vec{N}}{dt} = -e\left[\vec{r}, \left[\vec{V}, \vec{B}\right]\right]. \tag{4}$$

Раскрывая двойное векторное произведение и учитывая, что

 $\left(\vec{r},\vec{B}\right)=0$ и вектор \vec{N} направлен вдоль индукции \vec{B} , получим уравнение для величины момента импульса

$$\frac{dN}{dt} = eB(\vec{r}, \vec{V}). \tag{5}$$

Заменив (\vec{r}, \vec{V}) на $rV_{\vec{r}}$, где V_r – радиальная проекция скорости, и домножив обе части соотношения (5) на dt, приводим его к виду

$$dN = eBrdr. (6)$$

Для критической траектории электрона $(B=B_{\rm kp})$ проинтегрируем уравнение (6) от начальной точки на катоде $(r=r_{\rm k})$ до конечной на аноде $(r=r_{\rm a})$. При этом учтем, что N=0 на катоде (скорость электрона равна нулю) и $N=mr_{\rm a}V_{\rm a}$ вблизи анода (скорость электрона перпендикулярна радиус-вектору). В итоге получаем

$$mV_{\rm a}r_{\rm a} = eB_{\rm kp} \left(\frac{r_{\rm a}^2}{2} - \frac{r_{\rm k}^2}{2}\right).$$
 (7)

Подставляя V_a из выражения (2), находим модуль удельного заряда электрона:

$$\frac{e}{m} = \frac{8U_{\rm a}r_{\rm a}^2}{B_{\rm kp}^2 \left(r_{\rm a}^2 - r_{\rm k}^2\right)^2} \,. \tag{8}$$

У лампы, которая используется в данной лабораторной работе, радиус катода мал по сравнению с радиусом анода ($r_{\rm k} << r_{\rm a}$), поэтому вместо (8) можно использовать приближенную формулу

$$\frac{e}{m} \approx \frac{8U_{\rm a}}{B_{\rm kp}^2 r_{\rm a}^2} \,. \tag{9}$$

Для определения e/m по формуле (9) в работе экспериментально находится величина критического поля $B_{\rm KP}$ при нескольких значениях $U_{\rm a}$. В рассмотренной модели, не учитывающей взаимное влияние электронов друг на друга и наличие у них начальной скорости, при достижении магнитным полем значения $B_{\rm KP}$ анодный ток $I_{\rm a}$ в лампе резко падает до нуля (рис. 3a). В реальной лампе спад тока до нуля размыт (рис. 3б) из-за взаимного влияния электронов (наличия в лампе пространственного заряда), ненулевой начальной скорости электронов и возможной некоаксиальности катода и анода. В качестве $B_{\rm KP}$ целесообразно взять значение индукции магнитного поля, соответствующее точке максимальной крутизны на графике $I_{\rm a}(B)$, см. рис. 3б.

Рис. 3

Индукция магнитного поля B, пронизывающего лампу, определяется величиной тока I_{κ} в катушке, внутрь которого помещена лампа. Считая, что лампа находится в центре катушки и размеры лампы малы по сравнению с размерами катушки, для расчета индукции B используем формулу

$$B = \frac{\mu_0 I_{\kappa} N}{\sqrt{D^2 + L^2}},$$
 (10)

где N — число витков катушки, D и L — ее диаметр и длина, а $\mu_0 = 4\pi \cdot 10^{-7}$ Гн/м — магнитная постоянная. В формуле (10) ток следует брать в амперах, размеры катушки — в метрах, при этом индукция B получится в теслах.

Экспериментальная установка

В качестве лампы в установке используется электровакуумный диод 1Ц7С с радиусом анода $r_{\rm a}=7$ мм. Кнопка «УСТАНОВКА $\rm U_a$ » на передней панели установки позволяет установить одно из трех рекомендуемых напряжений на аноде диода: 80, 100, 120 В. Переменный резистор «ТОК КАТУШКИ» дает возможность плавно регулировать ток в катушке $I_{\rm K}$ с шагом 0,06A от 0 до 2 А. На жидкокристаллическом индикаторе «ИЗМЕРИТЕЛЬНЫЙ ПРИБОР» высвечиваются значения анодного напряжения $U_{\rm a}$ (в вольтах), тока в катушке $I_{\rm K}$ (в амперах) и анодного тока лампы $I_{\rm a}$ (в миллиамперах). Точность измерения анодного тока составляет $\pm 0,02$ мА. Параметры катушки: L=0,16 м, D=0,05 м, N=1000.

Порядок выполнения работы

- 1. Включить установку в сеть напряжением ~ 220 В. Перевести переключатель «СЕТЬ» на панели установки в положение «ВКЛ». При этом должен загореться светодиод «СЕТЬ». Ручка «ТОК КАТУШКИ» должна быть повернута до упора против часовой стрелки. Дать установке прогреться в течение 3-х минут.
- 2. Нажатием кнопки «УСТАНОВКА U_a » установить U_a = 80 В (при этом держать кнопку нажатой не менее 2-х секунд).
- 3. Изменяя ток в катушке $I_{\rm K}$ с помощью ручки «ТОК КАТУШКИ», снять зависимость анодного тока лампы $I_{\rm a}$ от $I_{\rm K}$. Шаг изменения $I_{\rm K}$ следует выбрать таким, чтобы получить 10-15 экспериментальных точек. Особенно тщательно необходимо промерить область резкого изменения $I_{\rm a}$ в окрестности критического тока $I_{\rm K}=I_{\rm KP}$, соответствующего $B_{\rm KP}$ на рис. 36.
- 4. Кнопкой «УСТАНОВКА U_a » увеличить значение U_a до 100 В и повторить измерения.
- 5. Кнопкой «УСТАНОВКА U_a » установить $U_a = 120~\mathrm{B}$ и проделать измерения в третий раз.
- 6. Для каждого значения U_a построить график зависимости I_a от I_{κ} , определить значение критического тока $I_{\kappa p}$, при котором график имеет максимальную крутизну, по формуле (10) найти соответствующее критическое значение поля $B_{\kappa p}$, а затем по формуле (9) определить удельный заряд электрона e/m.
- 7. Вычислить среднее значение удельного заряда электрона и сравнить его с табличным значением $e/m = 1.76 \cdot 10^{11} \, \text{Kn/kr}$.

Контрольные вопросы

- 1. Как будет двигаться электрон в однородном электрическом поле, если вектор начальной скорости электрона \vec{V} и вектор напряженности поля \vec{E} : а) параллельны, б) перпендикулярны, в) ориентированы под углом $0 < \alpha < 90^{\circ}$?
- 2. Как будет двигаться электрон в однородном магнитном поле, если вектор начальной скорости электрона \vec{V} и вектор индукции \vec{B} : а) параллельны, б) перпендикулярны, в) ориентированы под углом $0 < \alpha < 90^\circ$? Сохраняется ли угол между векторами \vec{V} и \vec{B} с течением времени?
- 3. Определить радиус кривизны траектории, по которой будет двигаться электрон, влетевший в однородное магнитное поле со скоростью \vec{V} под углом α к вектору индукции \vec{B} .
- 4. Как будет двигаться электрон в однородных взаимно перпендикулярных электрическом (с напряженностью E) и магнитном (с индукцией B) полях, если начальная скорость электрона равна нулю и E/B << c, где c скорость света?
- 5. Найти критическое значение индукции магнитного поля, при котором происходит запирание вакуумного диода с плоскими электродами, расположенными параллельно друг другу на расстоянии *d*. Магнитное поле параллельно плоскости электродов.
- 6. Нарисовать траектории электрона, влетающего в заряженный конденсатор с наложенным магнитным полем (см. рис. 4), при различных значениях скорости влета.

