课程名称: 高等数学 作业: 习题 3-4

3.(1) 解. 显然函数 $y = 2x^3 - 6x^2 - 18x + 7$ 可导,且

$$y' = 6x^2 - 12x - 18 = 6(x - 3)(x + 1),$$

解 v' = 0 得 x = -1 或 x = 3, 从而

所以函数 y 在区间 $(-\infty, -1]$ 和 $[3, +\infty)$ 上单调递增,在区间 [-1, 3] 上单调递减。

- Ω 注意导数在区间端点的值,如不能说"当 $x \in [-1,3]$ 时 y' < 0"。
- 不能求出驻点后就直接写单调区间。
- \mathbb{Q} 不能说函数 y 在 $(-\infty, -1] \cup [3, +\infty)$ 上单递增。
- **3.(4) 解**. 显然 $y = \ln(x + \sqrt{1 + x^2})$ 在 R 上可导,且

$$y' = \frac{1}{x + \sqrt{1 + x^2}} \left(1 + \frac{2x}{2\sqrt{1 + x^2}} \right) = \frac{1}{\sqrt{1 + x^2}} > 0,$$

所以函数 y 在 ℝ 上单调递增。

 \bigcirc 必须要写出 y' > 0, 才能说明函数 y 在 \mathbb{R} 上单调。

4解. 由图 3-9 可以看出

- 当 x < 0 时,函数 f 单调递增,又函数 f 可导,所以 $f'(x) \ge 0$. 符合这一特征的有 (b) 和 (d).
- 当 x > 0 时,函数 f 先单调递增,再单调递减,最后单调递增,又函数 f 可导,所以先有 $f'(x) \ge 0$,再有 $f'(x) \le 0$,最后有 $f'(x) \ge 0$. 符合这一特征的有 (c) 和 (d).

综合可得,导函数 f'(x) 的图形为图 3-10 中所示的图 (d).

 Ω 图 3–9 所示的两条曲线共有一个拐点,是一个 x > 0 时对应的点。

5.(1) 解. 定义函数

$$f(x) = 1 + \frac{1}{2}x - \sqrt{1+x}, \quad x \geqslant 0$$

则 f 可导且

$$f'(x) = \frac{1}{2} - \frac{1}{2\sqrt{1+x}} = \frac{1 - \sqrt{1+x}}{2\sqrt{1+x}}$$

当 x>0 时 f'(x)>0, 所以函数 f 在 $[0,+\infty)$ 上单调递增,从而当 x>0 时

$$1 + \frac{1}{2}x - \sqrt{1+x} = f(x) > f(0) = 0,$$

即当 x > 0 时 $1 + \frac{1}{2}x > \sqrt{1 + x}$.

- Q 求得的单调性一定要包含 0, 否则不能直接得到 f(x) > f(0).
- Q 尽量用单调性的方法。