Introducción a Transformers

Aprendizaje automático

Docente: Juan David Martínez Vargas

jdmartinev@eafit.edu.co

2023

Redes recurrentes

Weights are shared over time steps

Introducción a transformers

Introducción a transformers

Introducción a transformers

Artículo original

Figure 1: The Transformer - model architecture.

Atención

Nosotros no traducimos documentos palabra por palabra

Atención

Idea: Crear vectores de contexto que contengan información acerca de la secuencia completa. Utilizar scores de atención para ponderar la importancia de cada palabra

Ejemplo: i = 2

T=5

Self-attention

$$z^{(i)} = \sum_{j=1}^{T} \alpha_{ij} \cdot x^{(j)}$$

So that attention value
$$\sum_{i=1}^{T} \alpha_{ij} = 1$$

- 1. Similarity between *i*-th element all inputs j = 1...T $\omega_{ii} = x^{(i)\top} \cdot x^{(j)}$
- 2. Normalize ω values to obtain attention scores α

So that attention value
$$\sum_{j=1}^{T} \alpha_{ij} = 1 \qquad \qquad \alpha_{ij} = \frac{\exp\left(\omega_{ij}\right)}{\sum_{j=1}^{T} \exp\left(\omega_{ij}\right)} = \operatorname{softmax}\left(\left[\omega_{ij}\right]_{j=1...T}\right)$$

$$x^{(5)}$$
sentence

Self-attention

Input sequence:

$$z^{(i)} = \sum_{j=1}^{T} \alpha_{ij} \cdot x^{(j)}$$

$$x^{(1)}$$
 \times α_{i1} \times α_{i2} \times α_{i2} \times α_{i3} \times α_{i3} \times α_{i4} \times α_{i4}

Context vector

Idea: El modelo aprende qué tan importante es cada palabra. Modelo de atención más utilizado y propuesto en el paper original

query sequence:
$$q^{(i)} = U_q x^{(i)}$$
 for $i \in [1,...,T]$

key sequence:
$$k^{(i)} = U_k x^{(i)}$$
 for $i \in [1,...,T]$

value sequence:
$$v^{(i)} = U_v x^{(i)}$$
 for $i \in [1,...,T]$

Query, key y value se inspiran en sistemas de recuperación de información.

query se compara con key para devolver un value.

Al igual al módulo básico de self-attention, debemos calcular un vector de contexto

Resumen

Para cada token, el mecanismo de self-attention:

- Compara el query de cada palabra con los keys de todas las palabras en la secuencia de entrada
- Calcula el score de atención a partir de los valores obtenidos en la comparación
- Calcula el promedio ponderado de todas las entradas
- Metodología sequence-to-sequence
 - Toma T entradas
 - Devuelve T salidas

Anteriormente se usaron tres matrices de parámetros. Agreguemos un índice adicional

$$U_{q_1}$$
 U_{k_1} U_{v_1}

En multi-head attention tenemos un conjunto de matrices

$$egin{array}{cccc} U_{q_2} & U_{k_2} & U_{v_2} \\ U_{q_3} & U_{k_3} & U_{v_3} \\ \end{array}$$

Similar a tener varios filtros convolucionales

Figure 1: The Transformer - model architecture.

English → German Translation

Input: Let's translate this sentence

Target: Lass uns diesen Satz uebersetzen

Masked attention enmascara los tokens que el modelo no ha visto. Acá visualizamos en las entradas en lugar de los tokens por facilidad

Positional encoding

Generative Pretrained Transformers - GPT

Figure 1: The Transformer - model architecture.

Generative Pretrained Transformers - GPT

GPT ingresa el texto de izquierda a derecha de forma que el modelo aprende a predecir la palabra siguiente

Self-supervised pre-training

- 1. Pre-entrenar: Predecir la palabra siguiente (self-atenttion unidireccional)
- 2. Fine-tune

Self-supervised pre-training

- 1. Pre-entrenar:
 - a. Predecir palabras aleatoriamente enmascaradas (bi-direccional/no direccional)
 - b. Predecir el orden de las oraciones
- 2. Fine-tune

Figure 1: The Transformer - model architecture.

- 1. Pre-entrenar en un conjunto de datos no etiquetado (aprender un modelo de lenguaje general)
 - a. Predecir palabras aleatoriamente enmascaradas (bi-direccional/no direccional)

Input sentence: The curious kitten deftly climbed the bookshelf

Pick 15% of the words randomly

The curious kitten deftly climbed the bookshelf

- 80% of the time, replace with [MASK] token
- 10% of the time, replace with random token (e.g. ate)
- 10% of the time, keep unchanged

- 1. Pre-entrenar en un conjunto de datos no etiquetado (aprender un modelo de lenguaje general)
 - b. Predecir el orden de las oraciones

[CLS] Toast is a simple yet delicious food [SEP] It's often served with butter, jam, or honey.

```
IsNext = True
```

[CLS] It's often served with butter, jam, or honey. [SEP] Toast is a simple yet delicious food.

```
IsNext = False
```


Utilización de Transformers pre-entrenados

1. Feature-based approach

2. Fine-tuning approach

