인공지능 기법을 적용한 배터리 노화상태 실시간 예측 시뮬레이션

2017010698 오서영 2017010701 이윤녕 2017010709 조지수 2017010706 정유은 수행 개요 수행 과정

결과 분석

문제 배경

Electric Vehicle, Energy Storage System 등 여러 분야에 리튬 이온 배터리 사용

-> 효과적인 SOH 예측 알고리즘 필수

SOH (State of Health): 배터리 열화 상태

- 전기를 담을 수 있는 용량
- 배터리 충/방전 횟수(Cycle)가 증가할수록 대략적으로 SOH 감소
- 대체로 SOH가 60% ~ 70%로 감소할 때까지 사용

 Q_{nom} : 초기 배터리 방전 전하량 (배터리 생산 시 제공) -> 2Ah $Q_m: m$ 번째 Cycle에서의 배터리 방전 전하량

SOH 계산 방법

$$SOH = \frac{Q_m}{Q_{nom}}$$

-> NASA PCoE Datasets을 활용하여 계산

데이터 실험 조건에 따른 3가지 분류

- 데이터 그룹 A: 상온 충/방전 데이터 (B05, B07, B18)
- 데이터 그룹 B: 상온 고출력 충/방전 데이터 (B33, B34)
- 데이터 그룹 C: 저온 충/방전 데이터 (B46, B47, B48)

목표

- 선형회귀와 LSTM을 이용한 SOH 예측 시뮬레이션 구현
- 1) 데이터의 50%를 이용한 학습
- 2) 데이터의 70%를 이용한 학습
- 예측 시각화
- RMSE, MAE를 이용한 결과분석

$$RMSE = \sum_{i=1}^{n} \frac{(\widehat{y_i} - y_i)^2}{n} \qquad MAE = \frac{1}{n} \sum_{i=1}^{n} |\widehat{y_i} - y_i|$$

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |\widehat{y}_i - y_i|$$

SOH 계산

✓ f _x	=G2/\$J\$2				
F	G	Н	1	J	K
time	capacity	cycle	SOH	Qnom	
0	1.856487	1	=G2/\$J\$2	2	
16.781	1.856487	1			
35.703	1.856487	1			
53.781	1.856487	1			
71.922	1.856487	1			
90.094	1.856487	1			
109 291	1 956/97	1			

	× <	f _x =	=G2/\$J\$2								
	G	Н		Ţ	J	K					
	capacity	cycle		SOH	Qnom						
0	1.856487		1	0.928244	2						
781	1.856487		1	0.928244							
703	1.856487		1	0.928244							
781	1.856487		1	0.928244							
922	1.856487		1	0.928244							
094	1.856487		1	0.928244							
281	1 856487		1	0.928244							

SOH 시각화

2. 수행과정

Q

사분위수를 이용한 이상치 제거

	1	J	K	L	M
	SOH	find outliers			
1	0.034213	outlier			
1	0.034213	outlier		Q1	0.682305
1	0.034213	outlier		Q3	0.796535
1	0.034213	outlier		IQR	0.114231
1	0.034213	outlier		L Bound	0.510959
1	0.034213	outlier		U Bound	0.967881
1	0.034213	outlier			

2. 수행과정

Q

선형회귀

$$\widehat{y}_i = a_1 x_i + a_0$$

m Linear Least Squares

$$E = E_2(a_0, a_1) = \sum_{i=1}^{\infty} [y_i - (a_1 x_i + a_0)]^2$$

$$a_{0} = \frac{\sum_{i=1}^{m} x_{i}^{2} \sum_{i=1}^{m} y_{i} - \sum_{i=1}^{m} x_{i} y_{i} \sum_{i=1}^{m} x_{i}}{m \sum_{i=1}^{m} x_{i}^{2} - \left(\sum_{i=1}^{m} x_{i}\right)^{2}}, \qquad a_{1} = \frac{m \sum_{i=1}^{m} x_{i} y_{i} - \sum_{i=1}^{m} x_{i} \sum_{i=1}^{m} y_{i}}{m \sum_{i=1}^{m} x_{i}^{2} - \left(\sum_{i=1}^{m} x_{i}\right)^{2}}.$$

데이터의 50%를 이용한 결과

데이터의 70%를 이용한 결과

RNN

$$h_t = f_w(h_{t-1}, x_t)$$

$$= \tanh(w_{hh}h_{t-1} + w_{xh}x_t)$$

$$y_t = w_{hy}h_t$$

 x_t : 현재 입력, h_{t-1} : 과거 기억, h_{t-1} : 현재기억

LSTM

$$\begin{split} f_t &= \sigma(W_{xh_f}x_t + W_{hh_f}h_{t-1} + b_{h_f}) \\ i_t &= \sigma(W_{xh_i}x_t + W_{hh_i}h_{t-1} + b_{h_i}) \\ o_t &= \sigma(W_{xh_o}x_t + W_{hh_o}h_{t-1} + b_{h_o}) \\ \widehat{c_t} &= tanh(W_{xh_\hat{c}}x_t + W_{hh_\hat{c}}h_{t-1} + b_{h_\hat{c}}) \\ c_t &= f_t \odot c_{t-1} + i_t \odot \widehat{c_t} \\ h_t &= o_t \odot \tanh(c_t) \end{split}$$

1. Forget Gate : 과거 정보를 잊기 위한 게이트

2. Input Gate : 현재 정보를 기억하기 위한 게이트

3. Output Gate

2. 수행과정

Q

데이터의 50%를 이용한 결과

데이터의 70%를 이용한 결과

3. 결과분석

Q

RMSE

	Α								3		C						
	В()5	B07 B18		B33 B34		B46		B47		B48						
	50%	70%	50%	70%	50%	70%	50%	70%	50%	70%	50%	70%	50%	70%	50%	70%	
긤	0.1599	0.1431	0.1190	0.1315	0.1389	0.1231	0.0303	0.0351	0.0255	0.0273	0.0654	0.0385	0.1129	0.0543	0.0973	0.0470	
	0.030	0.014	0.026	0.015	0.056	0.009	0.024	0.016	0.008	0.011	0.018	0.007	0.008	0.006	0.009	0.009	

선형회귀 LSTM

MAE

	A							E	3		C						
	B05 B07		B1	B18 B33		B34		B46		B47		B48					
	50%	70%	50%	70%	50%	70%	50%	70%	50%	70%	50%	70%	50%	70%	50%	70%	
귀	0.1595	0.0934	0.0777	0.1307	0.1380	0.0803	0.0258	0.0202	0.0196	0.0154	0.0524	0.0207	0.0979	0.0314	0.0839	0.0266	
ı	0.026	0.012	0.023	0.013	0.053	0.007	0.020	0.012	0.006	0.008	0.016	0.005	0.007	0.005	0.008	0.007	

선형회귀 LSTM 처

Q

Dataset

[1] NASA PCoE Datasets: Experiments on Li-ion Batteries, https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/

Reference

[1] 인공지능 기법을 적용한 배터리 노화 상태 (SOC, SOH) 실시간 예측 시뮬레이션, https://icim.nims.re.kr/platform/question/24.

[2] Pseudo code for LSTM computation https://gist.github.com/manurastogi/d7656b8ece172c9e614e06dbbdb9e10f

