

Learning outcomes:

Figure: The **CRISP-DM** process.

State the problem with multiple hypothesis tests;

Define family-wise error;

Implement multiple correction methods.

Motivation...

- ▶ In Lab 6, I asked you to do lots of hypothesis tests;
 - Collect data:
 - Compute test statistic and p-value;
 - ▶ Reject the null hypothesis if *p*-value $< 0.05 = \alpha$;
- ▶ What is α ? It is the probability of:

Motivation...

- ▶ In Lab 6, I asked you to do lots of hypothesis tests;
 - Collect data;
 - Compute test statistic and p-value;
 - Reject the null hypothesis if *p*-value $< 0.05 = \alpha$;
- \blacktriangleright What is α ? It is the probability of:
 - rejecting the null when it is true;
 - a type I error;
 - a false positive;

Motivation...

- In Lab 6, I asked you to do lots of hypothesis tests;
 - Collect data;
 - Compute test statistic and p-value;
 - Reject the null hypothesis if *p*-value $< 0.05 = \alpha$;
- What is α ? It is the probability of:
 - rejecting the null when it is true;
 - a type I error;
 - a false positive;
- ► So, if you do lots of hypothesis tests what is the probability of getting at least one false positive?

What is the probability of getting at least one false positive?

► If you do one test the probability of no false positive is:

$$1-\alpha$$
:

▶ If you do *k* tests the probability of no false positives is:

$$(1-\alpha)^k$$
;

And so if you do *k* tests the probability of at least one false positive is:

$$1-(1-\alpha)^k.$$

It's not just about hypothesis testing...

Figure: The authors of "Predicting seasonal movements and distribution of the sperm whale using machine learning algorithms" are doing 168 comparisons in this graphic alone.

Statistical Families

- So the question is:
 - ▶ When do we need to worry about this?
 - ▶ What groups of tests need to be considered "together"?
 - ▶ Which ones do we add up to get *k* on the previous slide?

Statistical Families

- So the question is:
 - ▶ When do we need to worry about this?
 - ▶ What groups of tests need to be considered "together"?
 - Which ones do we add up to get k on the previous slide?

- Proposed answer: count all the tests in the same statistical family together a family is:
 - ▶ Multiple variables are being tested with no predefined hypothesis (i.e. during EDA);
 - Multiple tests together help support the same research question;
 - Could be tests conducted simultaneously or sequentially over a long period of time;

▶ For a family of k tests $1 - (1 - \alpha)^k$ is called the **family-wise error rate!**

The Bonferroni Correction

Suppose you are doing k tests simultaneously – reject the null hypothesis if the p-value $\leq \frac{\alpha}{k}$;

▶ Why? Can show that this makes the family-wise error rate $\leq \alpha$;

$$\mathrm{FWER} = P\left\{ \bigcup_{i=1}^{m_0} \left(p_i \leq \frac{\alpha}{m} \right) \right\} \leq \sum_{i=1}^{m_0} \left\{ P\left(p_i \leq \frac{\alpha}{m} \right) \right\} = m_0 \frac{\alpha}{m} \leq \alpha.$$

▶ Guarantee: the probability of \geq one type I error with k tests is no more than 0.05.

```
X = ['state'
        .'longitude (deg)'
        'latitude (deg)'
        'noaa/temp'
        .'noaa/altitude'
        .'male'
        .'deaths/suicides'
        .'deaths/homicides'
        'bls/2020/unemployed'
        'avg income'
        'covid-deaths_total_per_capita'
                                             #constructed
        'covid-confirmed total per capita'
                                                #constructed
        'covid-vaccination/2021-12-01'
        'county modal ed'
                              #constructed
        , 'poverty-rate'
        .'cost-of-living/living wage'
        ,'cost-of-living/food_costs'
        .'cost-of-living/medical costs'
        'cost-of-living/housing costs'
        'cost-of-living/tax costs'
        , 'health/Average Number of Mentally Unhealthy Days'
        'health/% Smokers'
        .'health/% Adults with Obesity'
        . 'health/% Physically Inactive'
        . 'health/% Long Commute - Drives Alone'
        .'biggest industry'l
                                #constructed
```

Figure: Reject null in Lab 6 if?

The Bonferroni Correction

Suppose you are doing k tests simultaneously – reject the null hypothesis if the p-value $\leq \frac{\alpha}{k}$;

▶ Why? Can show that this makes the family-wise error rate $\leq \alpha$;

$$\mathrm{FWER} = P\left\{\bigcup_{i=1}^{m_0} \left(p_i \leq \frac{\alpha}{m}\right)\right\} \leq \sum_{i=1}^{m_0} \left\{P\left(p_i \leq \frac{\alpha}{m}\right)\right\} = m_0 \frac{\alpha}{m} \leq \alpha.$$

▶ Guarantee: the probability of \geq one type I error with k tests is no more than 0.05.

- What about when we do tests sequentially? Suppose:
 - At time 1 you do test 1 and get p-value = 0.04 < 0.05, rejecting the null;
 - At time 2 you do test 2 and get p-value = 0.03 < 0.05, rejecting the null;
 - ► Should FAIL to reject the null at both times w/ Bonferroni!

α -spending

- ▶ In α -spending:
 - \triangleright Set a wealth of W = 0.05;
 - ► Require that the sum of the α 's for all tests ≤ 0.05 ;
- For example for each test halve the remaining budget, $\frac{W}{2k}$.

```
p	ext{-val} Reject if \leq test 1 0.01 \frac{W}{2} = 0.025 test 2 0.06 \frac{W}{2^2} = 0.0125 test 3 0.01 \frac{W}{2^3} = 0.00625 test 4 0.003 \frac{W}{2^4} = 0.003125 \vdots \vdots test k \frac{W}{2^k}
```

α -investing

- ▶ In α -investing:
 - Set an initial wealth of W_0 (need not equal 0.05);
 - For test j set: $\alpha_j = \frac{W_{j-1}}{2}$;
 - Update wealth by setting:

$$W_j = \left\{ egin{array}{ll} W_{j-1} + 0.05 & ext{if test j's p-value} \leq lpha_j \ W_{j-1} - rac{W_{j-1}}{2 - W_{j-1}} & ext{if test j's p-value} > lpha_j \end{array}
ight.$$

So wealth for hypothesis testing grows when you get significant results and decreases when you don't.

<i>p</i> -val	Reject if \leq	W_j
		0.05
0.01	0.025	0.1
0.06	0.05	0.047
0.01	0.0237	0.097
0.003	0.0487	0.0987
	:	
	0.01 0.06 0.01	0.01 0.025 0.06 0.05 0.01 0.0237

α -debt

- In α -debt:
 - ightharpoonup Set an initial $\alpha_0 = 0.05$;
 - ▶ For test j set $\alpha_j = \frac{\alpha_0}{i}$;

➤ So for each new test we apply a Bonferroni correction that treats the family as all previous tests;

So how do you choose?

