Ejemplo comparación de resultados predictores in sillico

Cambio de estudio CHD4 c.3820-1G>T (chr12:6583379 G/T, NM_001273.5:c.3820-1G>T)

Exón 25 e intrones adyacentes:

El cambio se encuentra en anterior posición al exón 25 (la **g** en color granate).

Se va a obtener los resultados que produce analizar esta variable con los diferente predictores y ver cuál de ellos es más preciso.

NetGene2

						Donor splice sites, direct strand						
Donor splice	sites, direct pos 5'->3' 482			confidence 0.90	5' exon intron 3' GAGGACCGAG^GTGTGTGTGG H		pos 5'->3' 482 653	phase 1	strand + +	confidence 0.90 0.00	5' exon intron 3' GAGGACCGAG^GTGTGTGTGG H CGTTCAGAAG^GTGAGGGCTG	
	653	1	+	0.00	CGTTCAGAAG^GTGAGGGCTG		033	-		0.00	corresional distributers	
	033	-		0.00	correndant drandderd	Donor splice s	sites, comple	ement s	trand			
Donor splice	sites, comple	ement st	rand									
						pos 3'->5'	pos 5'->3'	phase	strand	confidence	5' exon intron 3'	
pos 3'->5'	pos 5'->3'	phase	strand	confidence	5' exon intron 3'	709	34	2	-	0.00	AGTGACACAG^GTAGGATATT	
709	34	2	-	0.00	AGTGACACAG^GTAGGATATT	57	686	0	-	0.00	ATTATCACAG^GTAAGGATGA	
57	686	0	-	0.00	ATTATCACAG^GTAAGGATGA							
						Acceptor splic	ce sites, dir	rect st	rand			
Acceptor spli	ce sites, air	rect str	ana 				pos 5'->3'	phase	strand	confidence	5' intron exon 3'	
	pos 5'->3'	phase	strand	confidence	5' intron exon 3'		166	1	+	0.33	AAGTTCTTAG^GTCCAAACAG	
	166	1	+	0.33	AAGTTCTTAG^GTCCAAACAG		303	0	+	0.20	GTCCCATGAG^GAAGAGGAGG	
	300	0	+	0.97	TCTGTCCCAG^GAGGAAGAGG		307	1	+	0.20	CATGAGGAAG^AGGAGGTAGA	
	303	0	+	0.25	GTCCCAGGAG^GAAGAGGAGG		309	0	+	0.20	TGAGGAAGAG^GAGGTAGAAC	
	307	1	+	0.31	CAGGAGGAAG^AGGAGGTAGA		312	0	+	0.20	GGAAGAGGAG^GTAGAACGGG	
	309	0	+	0.25	GGAGGAAGAG^GAGGTAGAAC		316	1	+	0.20	GAGGAGGTAG^AACGGGAAAT	
	316	1	+	0.20	GAGGAGGTAG^AACGGGAAAT		336	0	+	0.18	CATTAAACAG^GAAGAAAGTG	
	336	0	+	0.17	CATTAAACAG^GAAGAAAGTG		340	1	+	0.17	AAACAGGAAG^AAAGTGTGGA	
	340	1	+	0.07	AAACAGGAAG^AAAGTGTGGA		344	2	+	0.07	AGGAAGAAAG^TGTGGATCCT	
	344	2	+	0.07	AGGAAGAAAG^TGTGGATCCT		565	1	+	1.00	CTCCCTCCAG^ATTGGCAGGA H	
	565	1	+	1.00	CTCCCTCCAG^ATTGGCAGGA H		573	0	+	0.77	AGATTGGCAG^GACGACCAGT	
	573	0	+	0.77	AGATTGGCAG^GACGACCAGT		582	0	+	0.19	GGACGACCAG^TCCGACAACC	
	582	0	+	0.19	GGACGACCAG^TCCGACAACC		594	0	+	0.07	CGACAACCAG^TCCGATTACT	
	594	0	+	0.07	CGACAACCAG^TCCGATTACT							
Acceptor spli	ce sites, cor	nplement	strand	I		Acceptor splic	ce sites, com	nplemen	t strand	l		
						pos 3'->5'	pos 5'->3'	nhase	strand	confidence	5' intron exon 3'	
pos 3'->5'	pos 5'->3'	phase	strand	confidence	5' intron exon 3'	453	290	pilase 1	-	0.07	ATCATTGTAG^TTGACCTGTT	
453	290	1	-	0.07	ATCATTGTAG^TTGACCTGTT	418	325	9	_	0.85	CTTTGCCCAG^ATTTCGGGCT	
418	325	0	-	0.85	CTTTGCCCAG^ATTTCGGGCT	406	337	9	_	0.18	TTCGGGCTAG^ATCTTCTTGC	
406	337	0	-	0.18	TTCGGGCTAG^ATCTTCTTGC	700	55,			0.10	Treducting Arcticitud	

Hay tres resultados (en verde, azul y amarillo) que son la misma región pero cambiando el nucleótido de estudio (de G a T). El resultado en 300 (en rojo) se pierde en la secuencia mutante, mientras que el cambio en 312 (en granate) no se encuentra en la secuencia WT. La predicción con 0.97 de *confidence* (en rojo) es la que predice correctamente la separación entre el intrón 24 y el exón 2. Al desaparecer, parece que provoca que se active un sitio críptico en el interior del exón (en granate), lo que provocaría la pérdida de los primeros 12 nucleótidos del exón (GAGGAAGAGGAG), que van desde el final del *acceptor* que se pierde hasta el final del *acceptor* que se gana. Si, por el contrario, se usara el *acceptor* anterior (en 166), se produciría la inclusión de 134 nt en el exón.

Splice Site Prediction by Neural Network (NNSplice)

Donor site predictions for 89.130.114.18.17973.0:

Start End	Start	Score	Exon Intron
306 320	306	0.50	agaggag gt agaacg
475 489	475	0.95	gaccgag gt gtgtgt
646 660	646	0.99	tcagaag gt gagggc

Donor site predictions for 89.130.114.18.17995.0:

Exon Intron	Score	End	Start
agaggag gt agaacg	0.50	320	306
gaccgag gt gtgtgt	0.95	489	475
tcagaag gt gagggc	0.99	660	646

Acceptor site predictions for 89.130.114.18.17973.0:

Acceptor site predictions for 89.130.114.18.17995.0:

Start	End	Score	Intron	Exon					
146	186	0.98	aaatttcttctaagttct	t ag gtccaaacaggcacaccaag	Start	End	Score	Intron	Exon
280	320	0.93	ctggccctccctctgtcc	c ag gaggaagaggtagaacg	146	186	0.98	aaatttcttctaagttctt 2	g gtccaaacaggcacaccaag
545	585	1.00	atctgccctctctccctc	c ag attggcaggacgaccagtcc	545	585	1.00	atctgccctctctccctcc	ig attggcaggacgaccagtcc

Se pierde un sitio *acceptor* (en rojo) en la secuencia mutante, que coincide con el sitio *acceptor* del exón 25. Si en vez de este sitio se empleara el anterior (en 146), se produciría la inclusión de 134 pb o bien si se utilizara el siguiente (en 545) con el *donor* normal, se perderían los primeros 265 nt del exón.

MaxEntScan (solo realizamos el análisis del 3'SS porque está por delante del exón y, si afecta a un sitio de splicing, será de este tipo)

MAXENT: -47.41 MM: -38.85 WMM: -30.84

Spliceman

>sec

Point mutation	Wildtype (wt)	Mutation (mt)	L1 distance	Ranking (L1)	
tccca(g/t)gagga	cccagg	cccatg	31519	84%	

Human Splicing Finder

SVM-BPfinder

seq_id	agez	ss dist	bp_seq bp_scr	y cont ppt of	f ppt_len ppt_sc	r svm sci				seq_id	agez	ss dist	t bp_seq bp_scr	y cont ppt off	ppt len ppt scr	svm scr			
wt	54	451	tgctgactt		0.479820627803		21	36	0.98448057	mut	54	451	tgctgactt		0.482062780269		23	37	0.99452056
wt	54	446	acttcagca	-2.03765209265	0.47619047619	12	21	36	-0.66647307	mut	54	446	acttcagca	-2.03765209265	0.478458049887	12	23	37	-0.65642487
wt	54	436	tcctgagtc	1.03287939407	0.473317865429	2	21	36	1.1678405	mut	54	436	tcctgagtc	1.03287939407	0.475638051044	2	23	37	1.1779057
wt	54	384	aaatcatta	-2.95778833902	0.480211081794	168	17	23	-11.021095	mut	54	410	ccatgagga	-2.13041375446	0.459259259259	194	17	23	-12.349662
wt	54	381	tcattaaac	-2.65867129466	0.478723404255	165	17	23	-10.714563	mut	54	384	aaatcatta	-2.95778833902	0.480211081794	168	17	23	-11.021095
wt	54	380	cattaaaca	0.074864610367	0.48 164	17	23	-9.580	5434	mut	54	381	tcattaaac	-2.65867129466	0.478723404255	165	17	23	-10.714563
wt	54	356	tcctgacta	2.23204488833	0.492877492877	140	17	23	-7.2125866	mut	54	380	cattaaaca	0.074864610367	0.48 164	17	23	-9.580	15434
wt	54	326	ccattatga	-1.86610195703	0.495327102804	110	17	23	-6.917464	mut	54	356	tcctgacta	2.23204488833	0.492877492877	140	17	23	-7.2125866
wt	54	323	ttatgagca	-1.3793032155	0.496855345912	107	17	23	-6.5364708	mut	54	326	ccattatga	-1.86610195703	0.495327102804	110	17	23	-6.917464
wt	54	269	ccgtaaaca	0.322632548342	0.534090909091	53	17	23	-2.4399471	mut	54	323	ttatgagca	-1.3793032155	0.496855345912	107	17	23	-6.5364708
wt	54	261	aggtcaact	-1.75441694288	0.5390625	45	17	23	-2.7452179	mut	54	269	ccgtaaaca	0.322632548342	0.534090909091	53	17	23	-2.4399471
wt	54	251	caatgatgg	1.01000098867	0.544715447154	35	17	23	-1.0280087	mut	54	261	aggtcaact	-1.75441694288	0.5390625	45	17	23	-2.7452179
wt	54	167	cgctcatct	1.79711376744	0.549382716049	1	18	38	1.5735711	mut	54	251	caatgatgg	1.01000098867	0.544715447154	35	17	23	-1.0280087
wt	54	110	cgattactc	0.098391901023	7 0.52380952381	61	21	45	-2.8325065	mut	54	167	cgctcatct	1.79711376744	0.549382716049	1	18	38	1.5735711
wt	54	106	tactcagtg	0.595671380279	0.514851485149	57	21	45	-2.387498	mut	54	110	cgattactc	0.0983919010237	0.52380952381	61	21	45	-2.8325065
wt	54	97	gcttcagag		0.510869565217		21	45	-2.8303278	mut	54	106	tactcagtg		0.514851485149		21	45	-2.387498
wt	54	86	aggtgatga		0.567901234568		21	45	-1.385273	mut	54	97	gcttcagag	-1.98697642417	0.510869565217	48	21	45	-2.8303278
wt	54	83	tgatgaaga	-1.89740434115	0.576923076923		21	45	-1.8877463	mut	54	86	aggtgatga	-0.12167486303	0.567901234568	37	21	45	-1.385273
wt	54	74	ctttgatga	-0.06249526659		02898551	25	21	45 -0.59402688	mut	54	83	tgatgaaga		0.576923076923		21	45	-1.8877463
wt	54	71	tgatgaacg	-0.15695213482	0.606060606061	22	21	45	-0.43728654	mut	54	74	ctttgatga	-0.062495266595			25	21	45 -0.59402688
wt	54	64	cgttcagaa	-1.26063962107			21	45	-0.42501709	mut	54	71	tgatgaacg		0.606060606061		21	45	-0.43728654
wt	54	56	aggtgaggg	-1.84603057797			21	45	-0.12325904	mut	54	64	cgttcagaa	-1.26063962107	0.610169491525		21	45	-0.42501709
wt	54	27	ttctaaatg	1.09241064895	0.681818181818	4	11	22	1.0014709	mut	54	56	aggtgaggg	-1.84603057797	0.686274509804	7	21	45	-0.12325904
										mut	54	27	ttctaaatg	1.09241064895	0.681818181818	4	11	22	1.0014709

El único cambio es que aparece un nuevo BP en la secuencia mutante, aunque tiene una puntuación negativa muy baja, por lo que no lo tendremos en cuenta.

Variant Effect Predictor tool

Se trata de una variante que está afectando al sitio de *splicing*, concretamente al *acceptor* (21/39 resultados para CHD4).

			(21/33	resuitat	aos para erib	. /.					
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	splice_acceptor_variant	CHD4	ENSG00000111642	Transcript	ENST00000357008.7	protein_coding	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	non_coding_transcript_exon_variant	AC006064.2	ENSG00000247853	Transcript	ENST00000501075.2	IncRNA	2/2	836	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	upstream_gene_variant	SCARNA11	ENSG00000251898	Transcript	ENST00000516089.1	scaRNA	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379		splice_acceptor_variant, non_coding_transcript_variant	CHD4	ENSG00000111642	Transcript	ENST00000540960.2	retained_intron	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	splice_acceptor_variant	CHD4	ENSG00000111642	Transcript	ENST00000544040.7	protein_coding	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	A	splice_acceptor_variant	CHD4	ENSG00000111642	Transcript	ENST00000544484.6	protein_coding	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	splice_acceptor_variant	CHD4	ENSG00000111642	Transcript	ENST00000642594.1	protein_coding	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	A	splice_acceptor_variant, NMD_transcript_variant	CHD4	ENSG00000111642	Transcript	ENST00000642637.1	nonsense_mediated_decay	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	splice_acceptor_variant, NMD_transcript_variant	CHD4	ENSG00000111642	Transcript	ENST00000642810.1	nonsense_mediated_decay	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	upstream gene variant	CHD4	ENSG00000111642	Transcript	ENST00000642860.1	retained_intron	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	splice_acceptor_variant	CHD4	ENSG00000111642	Transcript	ENST00000642879.1	protein_coding	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	A	splice_region_variant, intron_variant	CHD4	ENSG00000111642	Transcript	ENST00000643335.1	protein_coding	-	-	-
ENST00000642879.1:c.3820- 1G>T	<u>12:6583379-</u> <u>6583379</u>	Α	upstream_gene_variant	CHD4	ENSG00000111642	Transcript	ENST00000643367.1	processed_transcript	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	splice_acceptor_variant, NMD_transcript_variant	CHD4	ENSG00000111642	Transcript	ENST00000643538.1	nonsense_mediated_decay	-	-	-
ENST00000642879.1:c.3820- 1G>T	<u>12:6583379-</u> <u>6583379</u>	Α	splice_region_variant, intron_variant	CHD4	ENSG00000111642	Transcript	ENST00000643815.1	protein_coding	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	upstream_gene_variant	CHD4	ENSG00000111642	Transcript	ENST00000644077.1	protein_coding	-	-	-
ENST00000642879.1:c.3820- 1G>T	<u>12:6583379-</u> <u>6583379</u>	Α	splice_acceptor_variant, NMD_transcript_variant	CHD4	ENSG00000111642	Transcript	ENST00000644137.1	nonsense_mediated_decay	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	splice_acceptor_variant	CHD4	ENSG00000111642	Transcript	ENST00000644289.1	protein_coding	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	splice_acceptor_variant	CHD4	ENSG00000111642	Transcript	ENST00000644352.1	protein_coding	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	splice acceptor variant, non coding transcript variant	CHD4	ENSG00000111642	Transcript	ENST00000644356.1	retained_intron	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	splice acceptor variant, NMD transcript variant	AC006064.6	ENSG00000285238	Transcript	ENST00000644480.2	nonsense_mediated_decay	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	upstream_gene_variant	CHD4	ENSG00000111642	Transcript	ENST00000644652.1	nonsense_mediated_decay	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	splice acceptor variant, NMD_transcript_variant	CHD4	ENSG00000111642	Transcript	ENST00000644801.1	nonsense_mediated_decay	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	splice_acceptor_variant	CHD4	ENSG00000111642	Transcript	ENST00000645005.1	protein_coding	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	splice_acceptor_variant	CHD4	ENSG00000111642	Transcript	ENST00000645022.1	protein_coding	-	-	-

ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	splice_acceptor_variant	CHD4	ENSG00000111642	Transcript	ENST00000645095.1	protein_coding	-	-	-
ENST00000642879.1:c.3820- 1G>T	<u>12:6583379-</u> <u>6583379</u>	Α	upstream_gene_variant	CHD4	ENSG00000111642	Transcript	ENST00000645199.1	processed_transcript	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	splice_acceptor_variant	CHD4	ENSG00000111642	Transcript	ENST00000645645.1	protein_coding	-	-	-
ENST00000642879.1:c.3820- 1G>T	<u>12:6583379-</u> <u>6583379</u>	Α	upstream_gene_variant	CHD4	ENSG00000111642	Transcript	ENST00000645991.1	nonsense_mediated_decay	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	downstream_gene_variant	CHD4	ENSG00000111642	Transcript	ENST00000646070.1	processed_transcript	-	-	-
ENST00000642879.1:c.3820- 1G>T	<u>12:6583379-</u> <u>6583379</u>	Α	upstream_gene_variant	CHD4	ENSG00000111642	Transcript	ENST00000646145.1	retained_intron	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	intron_variant, NMD_transcript_variant	CHD4	ENSG00000111642	Transcript	ENST00000646268.1	nonsense_mediated_decay	-	-	-
ENST00000642879.1:c.3820- 1G>T	<u>12:6583379-</u> <u>6583379</u>	Α	intron_variant, NMD_transcript_variant	AC006064.6	ENSG00000285238	Transcript	ENST00000646322.1	nonsense_mediated_decay	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	splice_acceptor_variant, non_coding_transcript_variant	CHD4	ENSG00000111642	Transcript	ENST00000646360.1	retained_intron	-	-	-
ENST00000642879.1:c.3820- 1G>T	<u>12:6583379-</u> <u>6583379</u>	Α	splice_acceptor_variant, non_coding_transcript_variant	CHD4	ENSG00000111642	Transcript	ENST00000646366.1	processed_transcript	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	upstream_gene_variant	CHD4	ENSG00000111642	Transcript	ENST00000646462.1	protein_coding	-	-	-
ENST00000642879.1:c.3820- 1G>T	<u>12:6583379-</u> <u>6583379</u>	Α	splice_acceptor_variant	CHD4	ENSG00000111642	Transcript	ENST00000646608.1	protein_coding	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	upstream_gene_variant	CHD4	ENSG00000111642	Transcript	ENST00000646609.1	processed_transcript	-	-	-
ENST00000642879.1:c.3820- 1G>T	<u>12:6583379-</u> <u>6583379</u>	Α	splice_acceptor_variant	CHD4	ENSG00000111642	Transcript	ENST00000646806.1	protein_coding	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	upstream_gene_variant	CHD4	ENSG00000111642	Transcript	ENST00000647112.1	processed_transcript	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	downstream_gene_variant	CHD4	ENSG00000111642	Transcript	ENST00000647333.1	retained_intron	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	upstream_gene_variant	CHD4	ENSG00000111642	Transcript	ENST00000647394.1	retained_intron	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	splice_region_variant, intron_variant	CHD4	ENSG00000111642	Transcript	ENST00000647483.1	protein_coding	-	-	-
ENST00000642879.1:c.3820- 1G>T	12:6583379- 6583379	Α	non_coding_transcript_exon_variant	CHD4	ENSG00000111642	Transcript	ENST00000647535.1	retained_intron	1/15	749	-

ESEfinder

Solo se obtiene un resultado positivo donde se encuentre la posición de estudio (g antes de las mayúsculas del exón) para las matrices 5'SS:

1 2081	11: 208:	i ili 208i	i ili 208i	
230	5 95330 250 coachgchhchachachachach	CARATC 12 40000	3CC3CCT3C33CCCC333TC	**************************************
CagGAGGAAGAGGAGGIAGAACGGGAAAIC	3.0333U[[::CagGAGGAAGAGGAGGTAGAACGG	GAAAIC:-12.4U9UU:[::CagGAGGAAG	AGGAGGIAGAACGGGAAAIC; J.JOUJUH	MAGAGGAGGIAGAACGGGAAAIC:-13.5///U:
[(-445)]	III (-445)I	ili (-445):	i ili (-445) i -	
1 7	1/			

Si buscamos el resultado equivalente para la secuencia mutante, se observa que las puntuaciones se mantienen prácticamente las mismas:

			·	·			p		
ii	111		: :1		i i	1			
298	111 2	98:	: :1	298	1		798		
+03003303000000330000033300	5 23340	~-+0300330300300300330000033370	10 242201		+ C1 CC1 1 C2 CC1 CCT1 C1 1 CCCC2 1 1 TC	4 04100			12 00000
, CALGAGGAAGGAGGIAGAACGGGAAAIC	3.23340	_ Catgaggaagaggaggiagaacgggaaai	.i-10./4/30il		:Catgaggaagaggaggiagaacgggaaaic:	4.94100		CATGAGGAAGAGGAGGIAGAACGGGAAAIC	-12.00900:
	11: (-44	5):	: :1	1 (-445)	I I	i	: (-445)	l .	
(115)	1111	- / ·	: :1	,	i i		1 -10,	1	

Por lo tanto, esta región no estará alterando al splicing.

Sin embargo, hay dos resultados positivos para las matrices 3'SS (286 y 289):

286 CtccctctgtcccagGAGGAAGAGGAGGTA -10.05210	286 (-457) ctccctctgtcccagGAGGAAGAGGGAGGTA 12.52000	286 (-457) ctccctctgtcccagGAGGAAGAGGAGGTA -6.79730	286 (-457) ctccctctgtcccagGAGGAAGAGGGGTA 12.37840
287	287	287	287
(-456) tccctctgtcccagGAGGAAGAGGAGGTAG -21.69230	(-456) tecetetgteceagGAGGAAGAGGAGGTAG -9.18820	(-456) tocototgtcccagGAGGAAGAGGAGGTAG -19.92170	(-456) tccctotgtcccagGAGGAAGAGGGAGGTAG -7.13990
288 CCCCCCAGGAGGAAGAGGAGGTAGA -10.34150	288 ccctctgtcccagGAGGAAGAGGGAGGTAGA -27.49110	288 (-455) ccctctgtcccagGAGGAAGAGGAGGTAGA -8.59920	288 (-455) ccctctgtcccagGAGGAAGAGGGAGGTAGA -29.05540
289	289	289	289
(-454) cctctgtcccagGAGGAAGAGGGAGGTAGAA -10.97690	(-454) cctctgtcccagGAGGAAGAGGGTAGAA 2.64250	(-454) cctctgtcccagGAGGAAGAGGGAGGTAGAA -7.77060	(-454) cctctgtcccagGAGGAAGAGGGAGGTAGAA 1.95420

Si buscamos el resultado equivalente para la secuencia mutante, se observa que las puntuaciones para el primer resultado se reducen drásticamente, mientras que para el segundo se mantienen similares:

286 (-457)	ctccctctgtcccatGAGGAAGAGGAGGTA -14.02190	286 (-457)	ctccctctgtcccatGAGGAAGAGGAGGTA		286 (-457)	ctccctctgtcccatGAGGAAGAGGAGGTA	-10.72050	286 (-457)	ctccctctgtcccatGAGGAAGAGGAGGTA	-0.57500
287 (-456)	tccctctgtcccatGAGGAAGAGGAGGTAG -21.76050	287 (-456)	tccctctgtcccatGAGGAAGAGGAGGTAG	-4.62030	287 (-456)	tccctctgtcccatGAGGAAGAGGAGGTAG	-19.92640	287 (-456)	tccctctgtcccatGAGGAAGAGGAGGTAG	-5.48140
288 (-455)	ccctctgtcccatGAGGAAGAGGGGTAGA:-11.43880:	288 (-455)	ccctctgtcccatGAGGAAGAGGAGGTAGA	-21.07160	288 (-455)	ccctctgtcccatGAGGAAGAGGAGGTAGA	-9.62610	288 (-455)	ccctctgtcccatGAGGAAGAGGAGGTAGA	-22.12040
289 (-454)	icctctgtcccatGAGGAAGAGGAGGTAGAA:-11.43610:	289 (-454)	cctctgtcccatGAGGAAGAGGAGGTAGAA	2.70890	289 (-454)	cctctgtcccatGAGGAAGAGGAGGTAGAA	-8.26440	289 (-454)	cctctgtcccatGAGGAAGAGGAGGTAGAA	1.95860

Por lo tanto, se está perdiendo un sitio 3'SS (acceptor) en la secuencia mutante, provocando una más que probable alteración del splicing.