MATH 461 HW7 SOLUTIONS Wednesday 11/20/14.

)

If P 4 & ove not antipodal then the vectors \overline{UP} 4 \overline{UQ} are linearly independent (not multiples of one another) so span a plane $\overline{TI} \subset \mathbb{R}^3$ through O. Then $L = \overline{TI} \cap S^2$ is the unique spherical line through P 4 G.

If PAG are antipodal then let I be the line through 0 containing PAG. The any plane TI through 0 containing I gives a splently line $L = TI \cap S^2$ through PAG.

7.

Let L be the spherical the through PAG.

The L is a circle of radius 1 contained in the place TI through the arigin such that $TI \wedge S^2 = L$.

so the leight of the sharter are of L connecting Pda

13 give by
$$271R \cdot 0 = R0 = 0$$
,

11 run feece

 $R=1$.

where O is the angle between Tr' 4 The?

In particular $d_{SZ}(P, k) = 0 \le T$, with equality if and any if \overline{CP} 4 \overline{Ck} are in apposite directions, i.e. PA k are antipodal. \square .

a)
$$d_{S^{Z}}(P_{1}G) = 0 = cos^{-1}(\overline{OP'} \cdot \overline{OG'}) = cos^{-1}(\frac{1}{3}(\frac{1}{2}) \cdot \frac{1}{3}(\frac{1}{2}))$$

$$= cos^{-1}(\frac{1}{3}(\frac{1}{2}) \cdot \frac{1}{3}(\frac{1}{2}))$$

$$= cos^{-1}(\frac{1}{9} \cdot (1 \cdot 2 + 2 \cdot 2 + 7 \cdot 1)) = cos^{-1}(\frac{8}{9}).$$

$$\overline{OP'} \cdot \overline{OG'} = 11\overline{OP'} \cdot 11 \cdot 11\overline{OG'} \cdot 11 \cdot cos \cdot 0$$

$$= 1.1. as0 = as0.$$

To has equation
$$\times \cdot \triangle = 0$$
, where $\times = \begin{pmatrix} \frac{9}{2} \end{pmatrix} A \triangle = \begin{pmatrix} \frac{9}{2} \end{pmatrix}$ is

a normal vertex to
$$\overline{1}$$
, i.e., $ax+by+cz=0$.

To find
$$\underline{N}$$
, we can take $\underline{\Lambda} = \overline{UP} \times \overline{UQ} = \frac{1}{3} \left(\frac{1}{2}\right) \times \frac{1}{3} \left(\frac{3}{2}\right)$

$$= \frac{1}{9} \left(\frac{7.1 - 7.2}{2.2 - 1.1} \right) = \frac{1}{9} \left(\frac{-2}{3} \right)$$

$$d L = \{(x_1y_1z) \in S^2 \mid -2x+3y-2z=0\}. \quad \square.$$

4 a. Solve
$$x+y+z=0$$

 $x+z+3z=0$. $-R1(12316)$ $-, -R2(11116)$ $-, (16-160)$

$$\binom{x}{2} \in S^2 = 1 = ||\binom{x}{2}|| = |z| \cdot ||-z|| = |z| \cdot \sqrt{6} = 1 = |z| \cdot \sqrt{6}$$

5. Angle betwee LIM = angle between normal vertex to corresponding planes $\frac{2n_{1}}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{$

a. Let T_{IM} be the plane through 0 containing the vertex \overline{UP} ΔD_L (a normal vertex to the plane T_L such that $L = T_L \cap S^2$).

The $M = \pi_M \cap S^2$ is a splenced live through P people obtained to L (note $\Omega_L \in \Pi_M = P$) $\Omega_L \cdot \Omega_M = 0 \Rightarrow L \wedge M$ are people of inequality.)

b. The is uniquely determined unless \overline{UP} & $\underline{\Gamma}_L$ are linearly dependent, equivalently, \overline{UP} is normal to $\overline{\Gamma}_L$. I that case there are infinitely many choices for M give by the planes through a containing \overline{UP} ?

(if L is the equator, the hories for M are the lines of largethode)

the P is the rath or rath pole of

 $C. \quad P = \frac{1}{\sqrt{3}} \left(\frac{|1|}{1} \right), \quad L : 7 \times 4 4 4 2 = 0. \quad \Rightarrow \quad \frac{1}{\sqrt{3}} \left(\frac{1}{1} \right) \times \left(\frac{2}{4} \right) = \frac{1}{\sqrt{3}} \left(\frac{1 \cdot 1 - 1 \cdot 4}{1 \cdot 2 - 1 \cdot 1} \right) = \frac{1}{\sqrt{3}} \left(\frac{73}{1} \right)$

So M has equation
$$\frac{1}{\sqrt{3}}(-3x+y+2z)=0$$

or $-3x+y+2z=0$. II

$$(P,r) = \{ G \in S^2 \mid d_{S^2}(P,G) = r' \}$$

$$= \{ G \in S^2 \mid \overline{OP}, \overline{OG} = \omega s r' \}$$

$$= S^2 \Lambda \overline{\Omega}$$

where TI = {x (IR3) x. UP = cosrs

this is a plane in IR3, with normal vector of and perfedular distance d= cost from 0.

$$\frac{2}{2} \times \frac{1}{10} = \frac{1}{2} \times \frac{1}{10} = \frac{1}{10} \frac{1}{10} =$$

h. Let A be the interestin point of the place TI d the line of.

The IUAI = d = cos r (see Ga = abare)

Now, for $\& \in \Pi$, UA = ACC, $|UA| = \omega_S C$ So $\& \in S^2 \iff |UCA| = |\iff |UA|^2 + |ACC|^2 = |\iff |ACC| = |ACC| = |\iff |ACC| =$

i.e. $C(P_{is}) = T \cap S^2 = \{G \in \overline{\Lambda} \mid |AG| = sin i \},$

Endeten (Note in TI, certe A, radius shr.

Thus C(Pis) has circumfrace ZTI. sinr.

Need to show sin r < r dar 0 < r < Ti

$$f(r) := r - shr$$

$$\frac{d'(r)}{dr} = 1 - \cos r > 0 \quad \text{for} \quad 0 < r < \pi$$

d.
$$\lim_{\Gamma \nearrow T} 2\pi \cdot \sin \Gamma = 2\pi \cdot 0 = 0$$
.

As r > 1 The spherical (vale (1P,1) with center P 4 radius r Christis to a point at the artificial point & of P.

7 4.

spherial polar coordinates

 $(here PES^{7}, i.e. | UPI = 1)$

hijatr

$$\underline{x} = (x, y, z) \qquad \longleftarrow \qquad (0, \psi)$$

(sin 4 coso, sin 4 sin 0, cos 4)

: Area
$$D(P,r) = \left(\int_{Q}^{r} \left(\frac{\partial z}{\partial Q} \times \frac{\partial z}{\partial Q}\right)\right) dQdQ$$

$$\frac{\partial x}{\partial \theta} = \begin{pmatrix} -\sin \phi & \sinh \theta \\ \sinh \phi & \cosh \theta \end{pmatrix} \qquad \frac{\partial x}{\partial \phi} = \begin{pmatrix} \cos \phi & \cosh \theta \\ \cos \phi & \sinh \theta \end{pmatrix}$$

$$\frac{\partial x}{\partial \theta} \times \frac{\partial x}{\partial \varphi} = \begin{cases} -(\sin \varphi)^2 \cos \theta \\ -(\sin \varphi)^2 \sin \theta \end{cases} = -\sin \varphi \cdot \begin{cases} \sin \varphi \cos \theta \\ \sin \varphi \sin \theta \end{cases}$$

$$= -\sin \varphi \cdot (\sin \varphi)^2 + (\cos \theta)^2 \end{cases}$$

$$\cos \varphi$$

$$\left| \frac{\partial x}{\partial \theta} \times \frac{\partial x}{\partial \psi} \right| = \left| \sinh \varphi \right| \cdot \left| \left| \left(\sinh \varphi \cos \theta \right) \right| \left(\cosh \varphi \right) \right|$$

$$= \left| \sinh \varphi \right| \cdot \left| \left(\sinh \varphi \right)^{2} \left((\cos \theta)^{2} + (\sin \theta)^{2} \right) + (\cos \varphi)^{2} \right|$$

$$= \left| \sinh \varphi \right| \cdot \left| \right| = \sin \varphi$$

$$\sinh^{2} \tau \cos^{2} = 1 \quad 0 \le \psi \le \pi$$

$$\times 2.$$

: Area
$$(D(P_{1}S)) = \int_{0}^{\infty} \int_{0}^{2\pi} \sinh \theta \ d\theta \ d\theta = 2\pi i \cdot \int_{0}^{\infty} \sinh \theta \ d\theta$$

$$= 2\pi i \cdot \left[-\cos \theta \right]_{0}^{S} = 2\pi i \cdot \left(1 - \cos s \right) \square.$$

b. Need to show 271.11-usr) < 71,2 for 0<1<71.

Equin., 2(1-usr) < r2 for 0<1<71.

 $g(s):= s^2-2\cdot(1-\cos s)$. g(0)=0.

9'(s) = 2r-2sinr = 2 (r-sinr) >0 for cerett by 60

=> g strictly invening for U=15TT => g(r)>U for U<r<TI 0.

C. lin $2\pi \cdot (1-us_1) = 2\pi \cdot (1-us_1) = 2\pi (1-(-1)) = 4\pi$. This is the area of 5^2 (Area of sphere of paths R = 1 is $4\pi \cdot R^2 = 4\pi$.)

$$f(r) = 2\pi s - 2\pi sinr$$

$$= 2\pi (r - sinr)$$

$$= 2\pi (r - (r - r^{3} + r^{5}/s! - .../))$$

$$\approx 2\pi (r - (r - r^{3}/6)) \quad \{\omega \quad r \quad snall\}$$

$$= 2\pi r^{2} - 2\pi (l - (r - r^{3}/6)) \cdot r^{3}$$

$$g(r) = \pi r^{2} - 2\pi (l - \omega r)$$

$$= \pi r^{2} - 2\pi (r - (r^{2}/2 - r^{4}/4) - ...))$$

$$\approx \pi r^{2} - 2\pi (r^{2}/2 - r^{4}/4) \quad \{\omega \quad r \quad snall\}$$

$$= \left(\frac{\pi}{12} \right) \cdot r^4$$

口