

Voyager IT

¡Visitanos en nuestra página web!

voyager-it.site

Índice

- 1. Introducción
- 2. Objetivos
- 3. Especificaciones
- 4. Teleinformática I
 - 4.1. Plano de distribución
 - 4.2. Cantidad y destino de los racks
 - 4.3. Sistemas de refrigeración
 - 4.4. Extinción de fuegos y seguridad
 - 4.5. UPS y grupo electrógeno
 - 4.6. Green Data Center
 - 4.7. Sugerencias adicionales

Índice

- 5. Arquitectura de Computadores II
 - 5.1. Definición de requisitos
 - 5.2. Selección de componentes
 - 5.3. Ejecución de programas en procesadores múltiples
 - 5.4. Coherencia de caché
 - 5.5. Taxonomía de Flynn
 - 5.6. Sugerencias adicionales

Introducción

- · Continuidad del negocio
- Seguridad de datos
- · Escalabilidad
- · Eficiencia energética

Objetivos

- Desarrollar un Data Center que cumpla con Tier 2
- Seguridad
- · Eficiencia energética
- Escalabilidad
- Ubicar NOC (Network Operation Center)
- Documentación

Plano de distribución de componentes

Cantidad y destino de los racks

Sistemas de refrigeración

Sistema de refrigeración implementado:

- Dos unidades de aire acondicionado con una capacidad de 12.000 frigorías cada una
- Configuración redundante
- Distribución uniforme del aire
- Facilidad de mantenimiento

Aire acondicionado York Inverter YFKN48BZMREUH1 (2 unidades)

Sistema de extinción de fuegos

Sistema de protección contra incendios:

- Agente limpio, no deja residuos
- Seguro para equipos electrónicos
- Extinción en menos de 10 segundos
- Cumplimiento de normas NFPA 2001 e IRAM 3546

Sistema FM-200

Sistemas de seguridad

Sistema de control de acceso

Sistema LenelS2 OnGuard

Sistema de videovigilancia

Cámara Axis P1367

Monitoreo ambiental

Xtralis VESDA-E VEP Aspirating
Smoke Detector

APC NetBotz Room Sensor Pod 155

UPS y grupo electrógeno

- Modelo
- Capacidad
- Autonomía
- Beneficios de la configuración

- Modelo
- Configuración
- Paralelo redundante
- Capacidad
- Eficiencia

Green Data Center

Normativas

Instituto Argentino de Normalización y Certificación

Definición de requisitos

Componente	Carga / Capacidad	Transacciones Mensuales	
Servidor de desarrollo/testing	100.000 accesos mensuales Base de datos: 50 GB	300.000	
Servidores de dominio	1.000.000 accesos mensuales	N/A	
Servidor de base de datos	 Base de datos principal: 70 GB Base de datos secundaria total: 105 GB Secundaria 1: 15 GB Secundaria 2: 30 GB Secundaria 3: 25 GB Secundaria 4: 35 GB Base de datos terciaria: 40 GB 	3.000.000 1.300.000 600.000 300.000 250.000 150.000 N/A (2,5% crecimiento anual)	
Servidor web	2.000.000 accesos mensuales Picos estacionales del 50%	N/A	
Unidad de almacenamiento	Almacenamiento total de todas las bases de datos y sistemas	N/A	

Selección de componentes

I	Servidor de desarrollo y testing	Servidores de dominio	Servidor de base de datos	Servidor web
СРИ	Intel Xeon E5-2620 v4	Intel Xeon E5-2630 v4	Intel Xeon E7-8890 v4	Intel Xeon E5-2640 v4
RAM	32 GB DDR4 ECC	64 GB DDR4 ECC	256 GB DDR4 ECC	64 GB DDR4 ECC
Storage	1 TB SSD	1 TB SSD	4 TB NVMe SSD	2 TB SSD
S. O.	Linux Ubuntu Server	Linux Ubuntu Server	Linux CentOS	Linux Ubuntu Server

Ejecución de programas en procesadores múltiples

- Programas analizados:
- * Programa 1: 50.000 instrucciones
- * Programa 2: 100.000 instrucciones
- * Programa 3: 500.000 instrucciones
- * Programa 4: 1.000.000 de instrucciones
- Supuestos del análisis:
- * Velocidad del procesador: 1 MIPS
- * Incremento del 10% por comunicación entre procesadores
- * 20% adicional por acceso a la unidad de almacenamiento

Resultados del análisis

I	Programa 1	Programa 2	Programa 3	Programa 4
Instrucciones	50.000	100.000	500.000	1.000.000
Resultados (1 procesador)	0,06 s	0,12 s	0,6 s	1,2 s
Resultados (múltiples procesadores)	-	0,132 s (2 procesadores)	0,66 s (4 procesadores)	1,32 s (8 procesadores)

Equilibrio entre paralelismo y sobrecarga de comunicación

Coherencia de caché

Protocolo MOESI: Modified, Owned, Exclusive, Shared, Invalid

- Ventajas sobre MESI: Adición del estado 'Owned'
- Relevancia para el sistema:
- * PRINCIPAL y SECUNDARIA comparten 85% de datos
- * PRINCIPAL y TERCIARIA comparten 70% de datos

Taxonomía de Flynn

- Definición de MIMD: Multiple Instruction, Multiple Data
- Características del sistema que justifican MIMD:
- * Múltiples unidades de procesamiento ejecutando diferentes instrucciones
- * Capacidad para manejar base datos distribuidas
- * Ejecución de programas en paralelo
- Ventajas para el Data Center:
- * Manejo eficiente de diversas cargas de trabajo
- * Procesamiento paralelo de transacciones y solicitudes web

Conclusiones

- Logros principales:
- * Alta disponibilidad: 99.741% de uptime
- * Seguridad robusta: control de acceso, videovigilancia, protección contra incendios
- * Eficiencia energética: implementación de estrategias Green Data Center
- Bases para futuras mejoras:
- * Arquitectura MIMD para adaptabilidad
- * Diseño modular para escalabilidad
- * Cumplimiento de normativas para facilitar actualizaciones

¡Gracias!

