Correction

Préliminaire

Pour tout $a \in]0,+\infty[$, la croissance de f assure l'existence de $\lim_{x \to a^+} f(x)$ et donne $\lim_{x \to a^+} f(x) \ge f(a)$. D'autre part la décroissance de $x \mapsto \frac{f(x)}{x}$ assure l'existence $\lim_{x \to a^+} \frac{f(x)}{x}$ et donne $\lim_{x \to a^+} \frac{f(x)}{x} \le \frac{f(a)}{a}$. De plus par opération sur les limites $\lim_{x \to a^+} \frac{f(x)}{x} = \frac{1}{a} \lim_{x \to a^+} f(x)$ et la comparaison précédente fournit $\lim_{x \to a^+} f(x) \le f(a)$ (car a > 0). Par double inégalité : $\lim_{x \to a^+} f(x) = f(a)$ et donc f est continue à droite en a. De même, on obtient la continuité à gauche de f en a.

Partie I

- 1.a Les suites sont constante égales à la valeur commune a = b. La limite de celles-ci est encore cette valeur.
- 1.b Par récurrence, on vérifie aisément que $u_n = 0$ et $v_n = \frac{b}{2^n}$ pour tout $n \in \mathbb{N}$. Ces deux suites convergent vers 0.
- 2.a Puisque $a,b \geq 0$ et que $\forall x,y \geq 0$, $\frac{x+y}{2}$ et \sqrt{xy} existent et sont positifs, on peut assurer l'existence des suites (u_n) et (v_n) et affirmer leur positivité. Il est connu que pour tout $a,b \in \mathbb{R}$: $2ab \leq a^2 + b^2$ et donc pour tout $x,y \in \mathbb{R}^+$: $\sqrt{xy} \leq \frac{x+y}{2}$. Par suite $\forall n \in \mathbb{N}^*$, $u_n = \sqrt{u_{n-1}v_{n-1}} \leq \frac{u_{n-1}+v_{n-1}}{2} = v_n$, puis $u_{n+1} = \sqrt{u_nv_n} \geq u_n$ et $v_{n+1} = \frac{u_n+v_n}{2} \leq v_n$.
- $\begin{aligned} \text{2.b} & & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$
- 2.c Par les résultats précédents, on peut affirmer $(u_n)_{n\geq 1}$ croissante, $(v_n)_{n\geq 1}$ décroissante et $\lim_{n\to +\infty}(v_n-u_n)=0 \text{ . Les suites } (u_n) \text{ et } (v_n) \text{ sont donc adjacentes à partir du rang } 1 \text{ et convergent donc vers une même limite.}$
- 2.d Par les résultats obtenus en 1.a et 1.b : $\mathcal{M}(a,a) = a$ et $\mathcal{M}(0,b) = 0$.
- 3.a On observe pour $n \ge 1$: $u_n(a,b) = u_n(b,a)$ et $v_n(a,b) = v_n(b,a)$ donc $\mathcal{M}(a,b) = \mathcal{M}(b,a)$.
- 3.b On observe pour $n \ge 0$: $u_n(\lambda a, \lambda b) = \lambda u_n(a, b)$ et $v_n(\lambda a, \lambda b) = \lambda v_n(a, b)$ donc $\mathcal{M}(\lambda a, \lambda b) = \lambda \mathcal{M}(a, b)$.
- 3.c On observe, pour $n \geq 0$: $u_{n+1}(a,b) = u_n(\sqrt{ab},\frac{a+b}{2})$ et $v_{n+1}(a,b) = v_n(\sqrt{ab},\frac{a+b}{2})$ donc $\mathcal{M}(a,b) = \mathcal{M}(\sqrt{ab},\frac{a+b}{2}) \ .$
- 3.d Par le théorème des suites adjacentes, on peut affirmer que deux suites adjacentes encadrent sa limite. Ainsi $u_1(a,b) \leq \mathcal{M}(a,b) \leq v_1(a,b)$ i.e. $\forall a,b \in \mathbb{R}^+, \sqrt{ab} \leq \mathcal{M}(a,b) \leq \frac{a+b}{2}$.

Partie II

- 1. f(0) = 0 et f(1) = 1.
- 2.a Par une récurrence facile.
- 2.b Par passage à la limite $f(x) \le f(y)$. Ainsi f est croissante.

3.a
$$f(x) = \mathcal{M}(1,x) = x\mathcal{M}(\frac{1}{x},1) = x\mathcal{M}(1,\frac{1}{x}) = xf(1/x)$$
 obtenue en exploitant I.3.a et I.3.b

3.b Par composition,
$$x\mapsto f(\frac{1}{x})$$
 est décroissante donc $x\mapsto \frac{f(x)}{x}$ est décroissante. Par le préliminaire, on peut affirmer que f est continue sur $]0,+\infty[$.

3.c
$$f(x) = \mathcal{M}(1,x) = \mathcal{M}\left(\frac{1+x}{2}, \sqrt{x}\right) = \frac{1+x}{2}\mathcal{M}\left(1, \frac{2\sqrt{x}}{1+x}\right) = \frac{1+x}{2}f\left(\frac{2\sqrt{x}}{1+x}\right).$$

3.d La fonction f est positive et croissante donc $\lim_{x\to 0^+} f(x)$ existe.

En passant la relation du II.3.c à la limite quand $x \to 0^+$, on obtient $\lim_{x \to 0^+} f(x) = \frac{1}{2} \lim_{x \to 0^+} f(x)$ et donc $\lim_{x \to 0^+} f(x) = 0 = f(0)$. Ainsi f est continue en 0.

4.a Par I.3.d:
$$\sqrt{x} \le \mathcal{M}(1,x) \le \frac{1+x}{2}$$
 et donc $\forall x \in \mathbb{R}^+, \sqrt{x} \le f(x) \le \frac{1+x}{2}$.

4.b Par comparaison
$$\lim_{x \to +\infty} f(x) = +\infty$$
.

$$\frac{f(x)}{x} = f(1/x) \xrightarrow[x \to +\infty]{} f(0) = 0$$
 donc f admet une branche parabolique horizontale.

5. Faire une figure..

6. Pour
$$h > 0$$
: $\frac{\sqrt{1+h}-1}{h} \le \frac{f(1+h)-f(1)}{h} \le \frac{1}{2}$ donc $\lim_{h \to 0^+} \frac{f(1+h)-f(1)}{h} = \frac{1}{2}$

Pour
$$h < 0$$
: $\frac{1}{2} \le \frac{f(1+h) - f(1)}{h} \le \frac{\sqrt{1+h} - 1}{h}$ donc $\lim_{h \to 0^-} \frac{f(1+h) - f(1)}{h} = \frac{1}{2}$.

$$f$$
 est dérivable en 1 et $f'(1) = \frac{1}{2}$.