1. (30) Regression through the origin: We will consider a special case of simple linear regression where the intercept is assumed to be zero from the outset. Let

$$Y_i = \beta x_i + \epsilon_i$$

where $E(\epsilon_i) = 0$ and $Var(\epsilon_i) = \sigma^2$

- (a) Define $Q(\beta) = \sum_{i=1}^{n} (Y_i \beta x_i)^2$. Show that the minimizer of $Q(\beta)$ is $\hat{\beta} = \frac{\sum x_i Y_i}{\sum x_i^2}$.
- (b) Show $E(\hat{\beta}) = \beta$.
- (c) Show $\operatorname{Var}(\hat{\beta}) = \frac{\sigma^2}{\sum x_i^2}$
- (d) Write the model as $Y = X\beta + \epsilon$, defining each matrix/vector.
- (e) Verify that $\hat{\beta} = (X'X)^{-1}X'Y$ is equivalent to the minimizer in part a.
- (f) Show that $\operatorname{Var}(\hat{\beta}) = \sigma^2(X'X)^{-1}$ is equivalent to the scalar form in part c.
- 2. (35) Burple, Stephens, and Gloopshire (2014) report on a study in the Journal of Questionable Research. Data were collected on the number of minutes Y_i it took n = 237 Glippers to learn how to drive a small, motorized car. Two predictors of interest are the estimated age of the glipper in months x_{i1} and the Glippers Maladaptive Score (GMS) x_{i2} , a number from 50 to 100 that summarizes how poor the glipper's vision is. Consider the following multiple regression output from R.

Coefficients

	Estimate	Std. Error
(Intercept)	-182.57923	7.41169
Age	8.56069	0.31150
GMS	0.28066	0.04621

Analysis of Variance Table

	Df	Sum Sq	Mean Sq
Regression			
Error		23565	
Total	236	104682	

- (a) Complete the ANOVA table.
- (b) Calculate the F-statistic from the ANOVA table and use it to test

$$H_0: \beta_1 = \beta_2 = 0.$$

What does this imply about β_1 and β_2 ?

- (c) Report each of $\hat{\beta}_1$ and $\hat{\beta}_2$. Construct t-tests $H_0: \beta_1 = 0$ and $H_0: \beta_2 = 0$ individually. Can either predictor be dropped in the presence of the other?
- (d) Interpret both estimated coefficients.
- (e) Report R^2 ; how is it interpreted here?
- 3. (35) Consider the "mtcars" data in R. You can load and view the dataset by typing "mtcars" in R console. Consider the response variable mileage per hour (Y=mpg), and two predictors, horsepower and weight $(X_1 = hp, X_2 = wt)$. Ignore other variables for now.
- (a) Obtain and report the scatterplot matrix; what does it tell you about the relationship between mpg and each of the predictors, horsepower and weight?
- (b) Fit the regression model $Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$. Report the ANOVA table and the table of regression coefficients.
- (c) Comment on the significance of the overall model.
- (d) Comment of the significance of each predictor. Can either predictor be dropped in the presence of the other?
- (e) Obtain the normal probability plot and a histogram of the residuals. What do these plots tell you?
- (f) Obtain $SSR(x_1)$, $SSR(x_2|x_1)$, and verify $SSR(x_1, x_2) = SSR(x_1) + SSR(x_2|x_1)$.
- (g) Obtain and interpret an 95% interval estimate of $E(Y_h)$ when $x_{h1} = 100$ and $x_{h2} = 4$.