EFC 2

Cláudio Ferreira Carneiro - RA 263796 October 17, 2019

1 Parte 1 – Classificação binária

O código referente às atividades se encontra no repositório: https://github.com/carneirofc/IA006.git

1.1 a) Características dos atributos de entrada

Os histogramas dos atributos em sua forma original são apresentados nas figuras [1], [2] e [3]. A correlação dos atributos é apresentada na forma de um *heatmap* [4] e por gráficos de dispersão [5] (na diagonal principal é exibido o histograma do atributo). Percebe-se que determinados atributos apresentam alto grau de correlação.

Figure 1: Classificação binária: Histograma dos atributos $\left(1\right)$

Figure 2: Classificação binária: Histograma dos atributos (2)

Figure 3: Classificação binária: Histograma dos atributos (3)

Figure 4: Classificação binária: Mapa de calor da correlação dos atributos

Figure 5: Classificação binária: Correlação dos atributos em gráfico de dispersão

1.2 b) Curva ROC e F_1 -medida

É utilizado o método Z-score para normalização dos dados. Tal método foi escolhido pois favorece o progresso de algoritmos baseados no gradiente descendente, uma vez que deixa as curvas de nível da superfície de erro mais circulares.

O processo de treinamento tem como critério de parada a variação da função de custo. Quando o decréscimo por década do custo for inferior a 10^{-8} é terminado o processo de treinamento.

Parâmetros de treinamento:

$$\eta = 10^{-2}$$
$$tol = 10^{-8}$$

sendo η a taxa de aprendizagem e tol o limiar para o término do treinamento.

Figure 6: Classificação binária: Curva ROC relativa aos dados de Teste

Figure 7: Classificação binária: F_1 -medida relativa aos dados de Teste

1.3 c) Melhor threshold, matriz de confusão e acurácia

Para a escolha do valor de threshold será utilizada a F_1 -medida, de forma que o recall e precisão do classificador tenham a mesma importância.

Conforme apresentado na figura [7], o ponto de máxima F_1 -medida é obtido com:

$$threshold = 0.663$$

$$F_1 - medida \approx 0.9757$$

Utilizando o limiar de máxima F_1 -medida, a classificação do dataset de testes é apresentada conforme a matriz de confusão:

Classe Estimada

			Masculino	Feminino	
			+	-	
Classe	Masculino	+	1227	40	
Verdadeira	Feminino	-	21	1246	

O classificador apresenta acurácia (acc), precisão (prec) e recall de:

 $acc \approx 0.9759$ $prec \approx 0.9832$ $recall \approx 0.9684$