Fahrzeugmechatronik I Sensoren

Prof. Dr.-Ing. Steffen Müller M. Sc. Osama Al-Saidi

Fachgebiet Kraftfahrzeuge • Technische Universität Berlin

Seite 2

Wirkprinzip Übersicht (Auswahl)

Wirkprinzipien	s, φ	ν, ω	a, ശ്	F, M, p
potentiometrisch	X			X
induktiv	X	X		X
kapazitiv	X		X	X
Ultraschall	X			
magnetisch	X	X		X
optisch	X	Χ		Χ
piezoelektrisch			X	X
piezoresistiv	X		X	X
kompensatorisch				X

Seite 3

Wirkprinzip Übersicht (Auswahl)

Wirkprinzipien	s , φ	ν, ω	a , ຜ່	F, M, p
potentiometrisch	X			X
induktiv	X	X		X
kapazitiv	X		Χ	X
Ultraschall	X			
magnetisch	X	X		X
optisch	X	X		X
piezoelektrisch			X	X
piezoresistiv	X			X
kompensatorisch				X

Weg- und Winkelmessung Potentiometrische Verfahren

Seite 5

Weg- und Winkelmessung Induktive Verfahren - Grundlagen

Weg- und Winkelmessung Induktive Verfahren - Grundlagen

Differenzial-Tauchanker-Geber

Weg- und Winkelmessung Weatstonesche Messbrücke

Weg- und Winkelmessung Differenzial-Tauchanker-Geber (Halbbrücke)

Weg- und Winkelmessung Kapazitive Verfahren

Der Messeffekt kapazitiver Wegsensoren ist die Änderung der Kapazität eines Plattenkondensators.

$$C = \frac{\mathcal{E}_0 \mathcal{E}_r A}{d}$$

Aufbau, Auswertung und Anwendungsbereich sind ähnlich wie bei induktiven Wegsensoren.

Weg- und Winkelmessung Kapazitive Verfahren - Konfigurationen

	Bewegung	Einzelpl	Mehrfachplatte	
	relativ	Einzelkapazität	Differenzialsystem	Einzelkapazität
Änderung der	LINEAR	<i></i> -	- []	
Fläche A	DREHEND			
Änderung des Abstandes s	LINEAR		==+	
	DREHEND			
Änderung der Permeabilität	LINEAR		-	

Weg- und Winkelmessung Verfahren auf Ultraschallbasis

Messung der Zeit zwischen Ultraschallimpuls und Echoeingang

Weg- und Winkelmessung Ultraschallsensor - Prinzipschaltbild

Weg- und Winkelmessung Wellenlänge und Schallkegel

Seite 14

Wirkprinzipien Übersicht (Auswahl)

Wirkprinzipien	s, φ	ν, ω	a, ຜ່	F, M, p
potentiometrisch	X			X
induktiv	X	X		X
kapazitiv	X		Χ	X
Ultraschall	X			
magnetisch	Χ	X		X
optisch	X	X		Χ
piezoelektrisch			X	X
piezoresistiv	X		X	X
kompensatorisch				X

Geschwindigkeitsmessung Induktionsgeber

Geschwindigkeitsmessung Tachogenerator

Seite 17

Wirkprinzipien Übersicht (Auswahl)

Wirkprinzipien	s, φ	ν, ω	a , ώ	F, M, p
potentiometrisch	X			X
induktiv	X	X		X
kapazitiv	X		X	X
Ultraschall	X			
magnetisch	X	X		X
optisch	X	Χ		Χ
piezoelektrisch			X	X
piezoresistiv	Χ		Χ	X
kompensatorisch				X

Beschleunigungsmessung Piezoelektrisches Verfahren

Seite 19

Wirkprinzipien Übersicht (Auswahl)

Wirkprinzipien	s, φ	ν, ω	a , છં	F, M, p
potentiometrisch	X			X
induktiv	X	X		X
kapazitiv	X		X	X
Ultraschall	X			
magnetisch	Χ	X		X
optisch	X	X		X
piezoelektrisch			X	X
piezoresistiv	X		X	X
kompensatorisch				X

Kraft- und Momentenmessung Piezoelektrisches Verfahren

Sonderfall 2: Pièro eingespannt, UEFO

Soudesfall 3: Danissuelastung, le=0

Typische Materialwerte und Abmessungen (PZT Keramik PXE 52)

$$\varepsilon_0 \varepsilon_r = 3 \cdot 10^{-8} \frac{As}{Vm}$$
 $l = 2 \cdot 10^{-2} m$ $A = 1 \cdot 10^{-4} m^2$ $I = 2 \cdot 10^{-2} m$ $I = 2 \cdot$

Sonderfall 1:

$$(50 \ \mu m) = 580 \cdot 10^{-12} \ \frac{As}{N} (86 \ kV)$$

Sonderfall 2:

$$(100 N \neq 0.145 \xrightarrow{48} 090 V)$$

Sonderfall 3 (Sensorfunktion):

$$(3.9 V) = 3.9 \frac{V}{N} 1 N$$

Kraft- und Momentenmessung Messverfahren mit Dehnungsmessstreifen

Kraft- und Momentenmessung Messverfahren mit Dehnungsmessstreifen

Seite 23

Vielen Dank für Ihre Aufmerksamkeit!