

Métodos Computacionales Taller 5 - Fourier e Integración Profesor: Sebastián Pérez Saaibi

(1) uniandes

Fecha de Publicación: Marzo 24 de 2015

Fecha de Entrega: Abril 7 de 2015 antes de las 21:59 COT

Instrucciones de Entrega

Todo el código fuente y los datos se debe encontrar en un repositorio público en github con un commit final hecho antes de la fecha de entrega. El nombre del repositorio debe ser CM20151_HW5_Apellido1Apellido2. El link al repositorio lo deben enviar a través de sicuaplus antes de la fecha/hora límite.

En cada parte del ejercicio se entrega 1/3 de los puntos si el código propuesto es razonable, 1/3 si se puede ejecutar y 1/3 si entrega resultados correctos.

1. 70 pt Solucion de la ecuación de Poisson en el espacio de Fourier

La ecuación de Poisson (Ec.1) es una de las más comunes en física, debido a que permite relacionar una densidad con un potencial:

$$\nabla^2 \phi = \rho \tag{1}$$

Dónde ϕ es el potencial y ρ la densidad. Haciendo la transformada rápida de Fourier de la Ec.1 el potencial gravitacional se puede expresar como:

$$\hat{\phi} = -\hat{\rho} \tag{2}$$

De esta manera, al hallar la densidad en el espacio de fourier, encontramos el potencial. Para encontrar la solución a la ecuación de Poisson, obtenemos la transformada inversa de este potencial $\hat{\phi}$.

(a) 25 pt En el archivo Serena-Venus.txt se encuentra información acerca de un sistema de partículas. Cada observación representa una particula de masa M = 1, donde las columnas 2, 3, 4 corresponden a la posición en X, Y, Z de dicha partícula respectivamente. De esta manera, es posible construir la densidad en el espacio de fourier ρ̂. Para esto, es posible construir una matriz de densidades de 1000×1000×1000 en la cual se encuentre la densidad en cada punto, y por lo tanto se pueda hallar el potencial gravitacional en cada punto del espacio. El método para encontrar esta densidad es el siguiente:

$$\rho_{i,j,k} = \frac{m}{\Delta x \Delta y \Delta z} \sum_{p=1}^{N_p} W(x_i - x_p) W(y_i - y_p) W(z_i - z_p)$$
(3)

Donde i, j, k = x, y, z, m es la masa de las partículas en la celda, N_p es el número total de partículas y W(x) está definido por:

$$W(x) = \begin{cases} 1 + x/\Delta x & -\Delta x < x \\ 1 - x/\Delta x & x < \Delta x \\ 0 & dlc \end{cases}$$

- (b) 15 pt Hacer la transformada inversa de Fourirer para el potencial gravitacional $\hat{\phi}$ para encontrar ϕ .
- (c) 15 pt Derivar el potencial gravitacional y encontrar la fuerza gravitacional en todos los puntos del espacio.
- (d) 10 pt Escribir un codigo en python que encuentre los mínimos y máximos de la fuerza gravitacional. El codigo debe realizar una gráfica en donde se representen los puntos donde están las partículas y en colores la fuerza gravitacional. Adicionalmente, en dicha gráfica debe haber contornos en donde se observe claramente las regiones donde la fuerza es máxima y mínima. A manera de guía, se presenta una ilustración de dicha figura sin contornos:

Figura 1: Campo de densidad de Serena-Venus

(e) 5 pt Haga un Makefile que genere todos los outputs descritos anteriormente en el órden adecuado.

2. 30 pt Integración con el Método del Rechazo

En un documento .Rmd,

- (a) 12 pt Implemente una función que calcule una integral utilizando el método del rechazo ¹. La función debe generar una representación visual del cálculo de la integral (ver Fig.2). Para qué tipo de integrales funciona su solución?
- (b) 8 pt Evalue la integral de la función $h(x) = [cos(50x) + sin(20x)]^2$ sobre [0, 1] utilizando el método creado anteriormente. Compare su desempeño con algún método de la función integrate.
- (c) 10 pt Evalue la integral de la función $p(y) = \int_2^\infty \frac{1}{\pi(1+y^2)}$ utilizando el método creado anteriormente. Compare su desempeño con algún método de la función integrate.

A manera de ayuda, la siguiente figura es una representación gráfica del método del rechazo:

Figura 2: Método de rechazo

¹ Descrito acá: http://en.wikipedia.org/wiki/Rejection_sampling