Homework 1 Solution

2019年10月13日 星期日 上午9:57

1.2

- a. Performance via Pipelining
- **b.** Dependability via Redundancy
- c. Performance via Prediction
- d. Make the Common Case Fast
- e. Hierarchy of Memories
- f. Performance via Parallelism
- g. Design for Moore's Law
- h. Use Abstraction to Simplify Design
- **1.3** The program is compiled into an assembly language program, which is then assembled into a machine language program.

1.5

a. performance of P1 (instructions/sec) = $3 \times 10^9/1.5 = 2 \times 10^9$ performance of P2 (instructions/sec) = $2.5 \times 10^9/1.0 = 2.5 \times 10^9$ performance of P3 (instructions/sec) = $4 \times 10^9/2.2 = 1.8 \times 10^9$

b. cycles(P1) = $10 \times 3 \times 10^9 = 30 \times 10^9$ s

S-4 Chapter 1 Solutions

cycles(P2) =
$$10 \times 2.5 \times 10^9 = 25 \times 10^9$$
 s
cycles(P3) = $10 \times 4 \times 10^9 = 40 \times 10^9$ s
c. No. instructions(P1) = $30 \times 10^9/1.5 = 20 \times 10^9$
No. instructions(P2) = $25 \times 10^9/1 = 25 \times 10^9$
No. instructions(P3) = $40 \times 10^9/2.2 = 18.18 \times 10^9$
 $CPI_{new} = CPI_{old} \times 1.2$, then $CPI(P1) = 1.8$, $CPI(P2) = 1.2$, $CPI(P3) = 2.6$

$$f = \text{No. instr.} \times \text{CPI/time, then}$$

$$f(P1) = 20 \times 10^9 \times 1.8/7 = 5.14 \text{ GHz}$$

 $f(P2) = 25 \times 10^9 \times 1.2/7 = 4.28 \text{ GHz}$
 $f(P1) = 18.18 \times 10^9 \times 2.6/7 = 6.75 \text{ GHz}$

1.6

a. Class A: 10^5 instr. Class B: 2×10^5 instr. Class C: 5×10^5 instr. Class D: 2×10^5 instr.

Time = No. instr. \times CPI/clock rate

Total time P1 =
$$(10^5 + 2 \times 10^5 \times 2 + 5 \times 10^5 \times 3 + 2 \times 10^5 \times 3)/(2.5 \times 10^9) = 10.4 \times 10^{-4}$$
 s

Total time P2 =
$$(10^5 \times 2 + 2 \times 10^5 \times 2 + 5 \times 10^5 \times 2 + 2 \times 10^5 \times 2)/(3 \times 10^9) = 6.66 \times 10^{-4} \text{ s}$$

$$CPI(P1) = 10.4 \times 10^{-4} \times 2.5 \times 10^9/10^6 = 2.6$$

$$CPI(P2) = 6.66 \times 10^{-4} \times 3 \times 10^9/10^6 = 2.0$$
b. clock cycles(P1) = $10^5 \times 1 + 2 \times 10^5 \times 2 + 5 \times 10^5 \times 3 + 2 \times 10^5 \times 3 = 26 \times 10^5$

$$clock cycles(P2) = 10^5 \times 2 + 2 \times 10^5 \times 2 + 5 \times 10^5 \times 2 + 2 \times 10^5 \times 2 = 20 \times 10^5$$

Exercise 1.9.1. (# Processors affects Execution Time)

Here's a table with all the calculations (you didn't have to go into all this detail, but it would have helped for partial credit). We had a clock rate of 2 GHz.

p	N _A	CPI _A	C_A	N_L	CPI _L	C_L	N_B	CPI _B	C_B	C	Exec	Speedup
1	2.56	1	2.56	1.28	12	15.36	0.256	5	1.28	19.20	9.6	1.00
2	1.83	1	1.83	0.91	12	10.97	0.256	5	1.28	14.08	7.04	1.36
4	0.91	1	0.91	0.46	12	5.49	0.256	5	1.28	7.68	3.84	2.50
8	0.46	1	0.46	0.23	12	2.74	0.256	5	1.28	4.48	2.24	4.29

Key: (The $N_{...}$ and $C_{...}$ columns are in units of 10^9)

- p = number of processors
- A, L, B are the instruction categories (Arith, Load/Store, and Branch)
- N_A , N_L , N_B are the number of instructions by category
 - We're given $N_A = 2.56/(0.7 p)$, $N_L = 1.28/(0.7 p)$, and $N_B = 0.256$.
- CPI_A, CPI_L, CPI_B are the CPI rates, by category (given as 1, 12, and 5)
- C_A , C_L , C_B are the number of clock cycles by category. ($C_A = N_A \times CPI_A$, etc.)
- $C = C_A + C_L$, + C_B is the total number of clock cycles.
- Exec is execution time in seconds = C/2 GHz clock rate
- Speedup is execution time relative to 1 processor

1.9.2

new C = old C + (new CA - old CA)

```
1 Processor (slowdown 1.13)

9.6 + (1 × 2.56 × 10^9) / 2GHz = 10.88 s

2 Processors (slowdown 1.13)

(7.04 + (1 × 2.56 × 10^9)) / (0.7 × 2 × 2GHz) = 7.95 s

4 Processors (slowdown 1.12)

(3.84 + (1 × 2.56 × 10^9)) / (0.7 × 4 × 2GHz) = 4.3 s

8 Processors (slowdown 1.1)
```

 $(7.04 + (1 \times 2.56 \times 10^{9})) / (0.7 \times 8 \times 2GHz) = 2.47 s$

Exercise 1.9.3. (Change CPI of Load/Store to reduce Execution Time)

To decrease the execution time for 1 processor (C = 19.20 G cycles) to match the execution time for 4 processors (C = 7.68), we need to lower C_L from 15.36 to (15.36 – (19.20 = 7.68)) = 15.36 – 11.52 = 3.84. So new $CPI_L = (\text{new } C_L) / N_L = 3.84 / 1.28 = 3.0$.

1.11

If CPI and clock rate do not change, the CPU time increase is equal to the increase in the of number of instructions, that is 10%.

1.11.4 CPU time(before) = No. instr. \times CPI/clock rate

CPU time(after) = $1.1 \times \text{No. instr.} \times 1.05 \times \text{CPI/clock}$ rate

CPU time(after)/CPU time(before) = $1.1 \times 1.05 = 1.155$. Thus, CPU time is increased by 15.5%.

1.11.5 SPECratio = reference time/CPU time

SPECratio(after)/SPECratio(before) = CPU time(before)/CPU time(after) = 1/1.1555 = 0.86. The SPECratio is decreased by 14%.

1.12

1.12.1
$$T(P1) = 5 \times 10^9 \times 0.9 / (4 \times 10^9) = 1.125 s$$

$$T(P2) = 10^9 \times 0.75 / (3 \times 10^9) = 0.25 s$$

clock rate (P1) > clock rate(P2), performance(P1) < performance(P2)

1.12.2 $T(P1) = No. instr. \times CPI/clock rate$

T(P1) = 2.25 3 1021 s

 $T(P2) 5 N \times 0.75/(3 \times 10^9)$, then $N = 9 \times 10^8$

1.12.3 MIPS = Clock rate \times 10⁻⁶/CPI

$$MIPS(P1) = 4 \times 10^9 \times 10^{-6} / 0.9 = 4.44 \times 10^3$$

S-8 Chapter 1 Solutions

$$MIPS(P2) = 3 \times 10^{9} \times 10^{-6} / 0.75 = 4.0 \times 10^{3}$$

MIPS(P1) > MIPS(P2), performance(P1) < performance(P2) (from 11a)

1.12.4 MFLOPS = No. FP operations
$$\times 10^{-6}$$
/T

$$MFLOPS(P1) = .4 \times 5E9 \times 1E-6/1.125 = 1.78E3$$

1.15

processors	exec. time/ processor	time w/overhead	speedup	actual speedup/ideal speedup
1	100			
2	50	54	100/54 = 1.85	1.85/2 = .93
4	25	29	100/29 = 3.44	3.44/4 = 0.86
8	12.5	16.5	100/16.5 = 6.06	6.06/8 = 0.75
16	6.25	10.25	100/10.25 = 9.76	9.76/16 = 0.61