Minimal Coverability Tree Construction Made Complete and Efficient

Alain Finkel^{1,3}, Serge Haddad^{1,2}, and **Igor Khmelnitsky**^{1,2}

June 17, 2021

 $^{^{1}}$ LMF, ENS Paris-Saclay, CNRS, Universite Paris-Saclay, Cachan, France

² Inria, France

³ IUF, France

Table of contents

- 1. Petri Nets
- 2. First Steps
- 3. Abstractions and Accelerations
- 4. Minimal Coverability Tree
- 5. MinCov

Petri Nets

	P _{land} ○	O Pbananas
P _{choices}	P _{bake}	
	O P _{money}	○ Pcake

$$\mathbf{m}_0 \longrightarrow \mathbf{m}_1 \longrightarrow \mathbf{m}_2$$

$$\mathbf{m}_0 = p_{choices}$$

$$\boldsymbol{m}_0 \xrightarrow{t_1}$$

 $\mathbf{m}_0 = p_{choices}$

$$\boldsymbol{m}_0 \xrightarrow{t_1}$$

$$\mathbf{m}_0 = p_{choices}$$

$$\boldsymbol{m}_0 \xrightarrow{t_1}$$

$$\mathbf{m}_0 = p_{choices}$$

$$\mathbf{m}_0 \xrightarrow{t_1} \mathbf{m}_1$$

$$\mathbf{m}_0 = p_{choices}$$
 $\mathbf{m}_1 = p_{land} + p_{bake}$

$$\mathbf{m}_0 \stackrel{t_1}{\longrightarrow} \mathbf{m}_1 \stackrel{t_{grow}}{\longrightarrow}$$

$$\mathbf{m}_0 = p_{choices}$$
 $\mathbf{m}_1 = p_{land} + p_{bake}$

$$\mathbf{m}_0 \stackrel{t_1}{\longrightarrow} \mathbf{m}_1 \stackrel{t_{grow}}{\longrightarrow}$$

$$\mathbf{m}_0 = p_{choices}$$
 $\mathbf{m}_1 = p_{land} + p_{bake}$

$$\mathbf{m}_0 \stackrel{t_1}{\longrightarrow} \mathbf{m}_1 \stackrel{t_{grow}}{\longrightarrow}$$

$$\mathbf{m}_0 = p_{choices}$$
 $\mathbf{m}_1 = p_{land} + p_{bake}$

$$\boldsymbol{m}_0 \xrightarrow{t_1} \boldsymbol{m}_1 \xrightarrow{t_{\textit{grow}}} \boldsymbol{m}_2$$

$$\mathbf{m}_0 = p_{choices}$$
 $\mathbf{m}_1 = p_{land} + p_{bake}$
 $\mathbf{m}_2 = p_{land} + p_{bake} + p_{banana}$

Reachability:

Input:
$$(\mathcal{N}, \mathbf{m}_0, \mathbf{m})$$
; Output: $\exists ? \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m}$

Reachability:

Input:
$$(\mathcal{N}, \mathbf{m}_0, \mathbf{m})$$
; Output: $\exists ? \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m}$

Decidable but hard (Not Primitive Recursive [Leroux-21]), but still widely used.

Reachability:

Input:
$$(\mathcal{N}, \mathbf{m}_0, \mathbf{m})$$
; Output: $\exists ? \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m}$

Decidable but hard (Not Primitive Recursive [Leroux-21]), but still widely used.

Coverability:

Input:
$$(\mathcal{N}, \mathbf{m}_0, \mathbf{m})$$
; Output: $\exists ? \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m}' \geq \mathbf{m}$

Reachability:

Input:
$$(\mathcal{N}, \mathbf{m}_0, \mathbf{m})$$
; Output: $\exists ? \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m}$

Decidable but hard (Not Primitive Recursive [Leroux-21]), but still widely used.

Coverability:

Input:
$$(\mathcal{N}, \mathbf{m}_0, \mathbf{m})$$
; Output: $\exists ? \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m}' \geq \mathbf{m}$

Easier then reachability (EXPSPACE [Rackoff-78]), and can still be useful:

Reachability:

Input:
$$(\mathcal{N}, \mathbf{m}_0, \mathbf{m})$$
; Output: $\exists ? \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m}$

Decidable but hard (Not Primitive Recursive [Leroux-21]), but still widely used.

Coverability:

Input:
$$(\mathcal{N}, \mathbf{m}_0, \mathbf{m})$$
; Output: $\exists ? \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m}' \geq \mathbf{m}$

Easier then reachability (EXPSPACE [Rackoff-78]), and can still be useful:

- Over-approximation

Reachability:

Input:
$$(\mathcal{N}, \mathbf{m}_0, \mathbf{m})$$
; Output: $\exists ? \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m}$

Decidable but hard (Not Primitive Recursive [Leroux-21]), but still widely used.

Coverability:

Input:
$$(\mathcal{N}, \mathbf{m}_0, \mathbf{m})$$
; Output: $\exists ? \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m}' \geq \mathbf{m}$

- Over-approximation
- Safety

Reachability:

Input:
$$(\mathcal{N}, \mathbf{m}_0, \mathbf{m})$$
; Output: $\exists ? \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m}$

Decidable but hard (Not Primitive Recursive [Leroux-21]), but still widely used.

Coverability:

Input:
$$(\mathcal{N}, \mathbf{m}_0, \mathbf{m})$$
; Output: $\exists ? \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m}' \geq \mathbf{m}$

- Over-approximation
- Safety \rightarrow Control state

Reachability:

Input:
$$(\mathcal{N}, \mathbf{m}_0, \mathbf{m})$$
; Output: $\exists ? \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m}$

Decidable but hard (Not Primitive Recursive [Leroux-21]), but still widely used.

Coverability:

Input:
$$(\mathcal{N}, \mathbf{m}_0, \mathbf{m})$$
; Output: $\exists ? \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m}' \geq \mathbf{m}$

- Over-approximation
- Safety→ Control state

Reachability:

Input:
$$(\mathcal{N}, \mathbf{m}_0, \mathbf{m})$$
; Output: $\exists ? \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m}$

Decidable but hard (Not Primitive Recursive [Leroux-21]), but still widely used.

Coverability:

Input:
$$(\mathcal{N}, \mathbf{m}_0, \mathbf{m})$$
; Output: $\exists ? \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m}' \geq \mathbf{m}$

- Over-approximation
- Safetyo Control state o Coverability.

Reachability:

Input:
$$(\mathcal{N}, \mathbf{m}_0, \mathbf{m})$$
; Output: $\exists ? \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m}$

Decidable but hard (Not Primitive Recursive [Leroux-21]), but still widely used.

Coverability:

Input:
$$(\mathcal{N}, \mathbf{m}_0, \mathbf{m})$$
; Output: $\exists ? \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m}' \geq \mathbf{m}$

Easier then reachability (EXPSPACE [Rackoff-78]), and can still be useful:

- Over-approximation
- Safetyo Control state o Coverability.

Coverability set: Downward closure of the reachability set

Reachability:

Input:
$$(\mathcal{N}, \mathbf{m}_0, \mathbf{m})$$
; Output: $\exists ? \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m}$

Decidable but hard (Not Primitive Recursive [Leroux-21]), but still widely used.

Coverability:

Input:
$$(\mathcal{N}, \mathbf{m}_0, \mathbf{m})$$
; Output: $\exists ? \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m}' \geq \mathbf{m}$

Easier then reachability (EXPSPACE [Rackoff-78]), and can still be useful:

- Over-approximation
- Safetyo Control state o Coverability.

Coverability set: Downward closure of the reachability set

- Parameterized coverability

Reachability:

Input:
$$(\mathcal{N}, \mathbf{m}_0, \mathbf{m})$$
; Output: $\exists ? \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m}$

Decidable but hard (Not Primitive Recursive [Leroux-21]), but still widely used.

Coverability:

Input:
$$(\mathcal{N}, \mathbf{m}_0, \mathbf{m})$$
; Output: $\exists ? \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m}' \geq \mathbf{m}$

Easier then reachability (EXPSPACE [Rackoff-78]), and can still be useful:

- Over-approximation
- Safetyo Control state o Coverability.

Coverability set: Downward closure of the reachability set

- Parameterized coverability
- Boundedness

$$\mathcal{N} = \langle \textcolor{red}{P}, \textit{T}, \textit{Pre}, \textit{C} \rangle$$

$$\mathcal{N} = \langle P, \textcolor{red}{T}, \textit{Pre}, \textit{C} \rangle$$

$$\mathcal{N} = \langle P, T, \textcolor{red}{\textit{Pre}}, \textcolor{red}{\textit{C}} \rangle$$

$$\mathcal{N} = \langle \textit{P}, \textit{T}, \textit{Pre}, \textit{C} \rangle$$

Petri Net:

$$\mathcal{N} = \langle P, T, Pre, C \rangle$$

Reachability set: $Reach(\mathcal{N}, \mathbf{m}_0) = \{ \mathbf{m} \in \mathbb{N}^P \mid \exists \sigma \in T^*, \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m} \}$

Petri Net:

$$\mathcal{N} = \langle P, T, Pre, C \rangle$$

Reachability set: $Reach(\mathcal{N}, \mathbf{m}_0) = \{ \mathbf{m} \in \mathbb{N}^P \mid \exists \sigma \in T^*, \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m} \}$ Order on markings: $\mathbf{m} \geq \mathbf{m}' \iff \forall p \in P \ \mathbf{m}(p) \geq \mathbf{m}'(p)$

Petri Net:

$$\mathcal{N} = \langle P, T, Pre, C \rangle$$

Reachability set: $Reach(\mathcal{N}, \mathbf{m}_0) = \{ \mathbf{m} \in \mathbb{N}^P \mid \exists \sigma \in T^*, \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m} \}$ Order on markings: $\mathbf{m} \geq \mathbf{m}' \iff \forall p \in P \ \mathbf{m}(p) \geq \mathbf{m}'(p)$ Coverability set:

$$\begin{aligned} \textit{Cover}(\mathcal{N}, \mathbf{m}_0) &\stackrel{\textit{def}}{=} \downarrow \textit{Reach}(\mathcal{N}, \mathbf{m}_0) \\ &= \{ \mathbf{m} \mid \exists \sigma \in \mathit{T}^*, \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m}' \geq \mathbf{m} \} \end{aligned}$$

Petri Net:

$$\mathcal{N} = \langle P, T, Pre, C \rangle$$

Reachability set: $Reach(\mathcal{N}, \mathbf{m}_0) = \{ \mathbf{m} \in \mathbb{N}^P \mid \exists \sigma \in T^*, \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m} \}$ Order on markings: $\mathbf{m} \geq \mathbf{m}' \iff \forall p \in P \ \mathbf{m}(p) \geq \mathbf{m}'(p)$ Coverability set:

$$Cover(\mathcal{N}, \mathbf{m}_0) \stackrel{\text{def}}{=} \downarrow Reach(\mathcal{N}, \mathbf{m}_0)$$
$$= \{ \mathbf{m} \mid \exists \sigma \in T^*, \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m}' \geq \mathbf{m} \}$$

Questions:

1. Does there exist a finite representation of $Cover(\mathcal{N}, \mathbf{m}_0)$?

4

Petri Net:

$$\mathcal{N} = \langle P, T, Pre, C \rangle$$

Reachability set: $Reach(\mathcal{N}, \mathbf{m}_0) = \{ \mathbf{m} \in \mathbb{N}^P \mid \exists \sigma \in T^*, \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m} \}$ Order on markings: $\mathbf{m} \geq \mathbf{m}' \iff \forall p \in P \ \mathbf{m}(p) \geq \mathbf{m}'(p)$ Coverability set:

$$Cover(\mathcal{N}, \mathbf{m}_0) \stackrel{\text{def}}{=} \downarrow Reach(\mathcal{N}, \mathbf{m}_0)$$
$$= \{ \mathbf{m} \mid \exists \sigma \in T^*, \mathbf{m}_0 \xrightarrow{\sigma} \mathbf{m}' \geq \mathbf{m} \}$$

Questions:

- 1. Does there exist a finite representation of $Cover(\mathcal{N}, \mathbf{m}_0)$?
- 2. How to compute it?

4

•
$$\mathbb{N}_{\omega} = \mathbb{N} \cup \{\omega\}$$
, $\mathbb{Z}_{\omega} = \mathbb{Z} \cup \{\omega\}$

- $\mathbb{N}_{\omega} = \mathbb{N} \cup \{\omega\}, \ \mathbb{Z}_{\omega} = \mathbb{Z} \cup \{\omega\}$
- Let $\mathbf{m} \in \mathbb{N}^P_{\omega}$ (an ω -marking):

$$[\![\mathbf{m}]\!] = \{\mathbf{m}' \in \mathbb{N}^p \mid \mathbf{m}' \le \mathbf{m}\}$$

- $\mathbb{N}_{\omega} = \mathbb{N} \cup \{\omega\}, \ \mathbb{Z}_{\omega} = \mathbb{Z} \cup \{\omega\}$
- Let $\mathbf{m} \in \mathbb{N}^P_\omega$ (an ω -marking):

$$[\![\mathbf{m}]\!] = \{\mathbf{m}' \in \mathbb{N}^p \mid \mathbf{m}' \leq \mathbf{m}\}$$

Theorem (Erdős)

There exists a finite (minimal) set of ω -markings Clover($\mathcal{N}, \mathbf{m}_0$) s.t.

$$Cover(\mathcal{N}, \mathbf{m}_0) = \bigcup_{\mathbf{m} \in Clover(\mathcal{N}, \mathbf{m}_0)} [\![\mathbf{m}]\!]$$

- $\mathbb{N}_{\omega} = \mathbb{N} \cup \{\omega\}, \ \mathbb{Z}_{\omega} = \mathbb{Z} \cup \{\omega\}$
- Let $\mathbf{m} \in \mathbb{N}^P_\omega$ (an ω -marking):

$$[\![\mathbf{m}]\!] = \{\mathbf{m}' \in \mathbb{N}^p \mid \mathbf{m}' \leq \mathbf{m}\}$$

Theorem (Erdős)

There exists a finite (minimal) set of ω -markings Clover($\mathcal{N}, \mathbf{m}_0$) s.t.

$$Cover(\mathcal{N}, \mathbf{m}_0) = \bigcup_{\mathbf{m} \in Clover(\mathcal{N}, \mathbf{m}_0)} [\![\mathbf{m}]\!]$$

Revisited question: Can one build $Clover(\mathcal{N}, \mathbf{m}_0)$?

First Steps

рc

Reachability enumeration algorithm:

Reachability enumeration algorithm:

Variables: (V, E, λ) - a labeled tree; $Front \subseteq V$;

Reachability enumeration algorithm:

```
Variables: (V, E, \lambda)- a labeled tree; Front \subseteq V; Main loop: While Front \neq \emptyset Fairly pop v from Front Explore(v)
```

Reachability enumeration algorithm:

```
Variables: (V, E, \lambda)- a labeled tree; Front \subseteq V;

Main loop:

While Front \neq \emptyset

Fairly pop v from Front

Explore(v)
```

Correctness proof sketch:

Reachability enumeration algorithm:

```
Variables: (V, E, \lambda)- a labeled tree; Front \subseteq V;

Main loop:

While Front \neq \emptyset

Fairly pop v from Front

Explore(v)
```

Correctness proof sketch:

• Consistency $\lambda(V) \subseteq Reach(\mathcal{N}, \mathbf{m}_0)$:

Reachability enumeration algorithm:

```
Variables: (V, E, \lambda)- a labeled tree; Front \subseteq V;

Main loop:

While Front \neq \emptyset

Fairly pop v from Front

Explore(v)
```

Correctness proof sketch:

• Consistency $\lambda(V) \subseteq Reach(\mathcal{N}, \mathbf{m}_0)$: $\lambda(r) = \mathbf{m}_0$ and for all edge $u \xrightarrow{t} v$, one has $\lambda(u) \xrightarrow{t} \lambda(v)$.

Reachability enumeration algorithm:

```
Variables: (V, E, \lambda)- a labeled tree; Front \subseteq V;

Main loop:

While Front \neq \emptyset

Fairly pop v from Front

Explore(v)
```

Correctness proof sketch:

- Consistency $\lambda(V) \subseteq Reach(\mathcal{N}, \mathbf{m}_0)$: $\lambda(r) = \mathbf{m}_0$ and for all edge $u \stackrel{t}{\rightarrow} v$, one has $\lambda(u) \stackrel{t}{\rightarrow} \lambda(v)$.
- Completeness $Reach(\mathcal{N}, \mathbf{m}_0) \subseteq \lambda(V)$: $\forall \mathbf{m} \in Reach(\mathcal{N}, \mathbf{m}_0), \exists u \in V \text{ s.t.:}$

Reachability enumeration algorithm:

```
Variables: (V, E, \lambda)- a labeled tree; Front \subseteq V;

Main loop:

While Front \neq \emptyset

Fairly pop v from Front

Explore(v)
```

Correctness proof sketch:

- Consistency $\lambda(V) \subseteq Reach(\mathcal{N}, \mathbf{m}_0)$: $\lambda(r) = \mathbf{m}_0$ and for all edge $u \stackrel{t}{\rightarrow} v$, one has $\lambda(u) \stackrel{t}{\rightarrow} \lambda(v)$.
- Completeness $Reach(\mathcal{N}, \mathbf{m}_0) \subseteq \lambda(V)$: $\forall \mathbf{m} \in Reach(\mathcal{N}, \mathbf{m}_0), \exists u \in V \text{ s.t.:}$ $\circ u \notin \text{Front and } \lambda(u) = \mathbf{m}$

Reachability enumeration algorithm:

```
Variables: (V, E, \lambda)- a labeled tree; Front \subseteq V;

Main loop:

While Front \neq \emptyset

Fairly pop v from Front

Explore(v)
```

Correctness proof sketch:

- Consistency $\lambda(V) \subseteq Reach(\mathcal{N}, \mathbf{m}_0)$: $\lambda(r) = \mathbf{m}_0$ and for all edge $u \stackrel{t}{\rightarrow} v$, one has $\lambda(u) \stackrel{t}{\rightarrow} \lambda(v)$.
- Completeness $Reach(\mathcal{N}, \mathbf{m}_0) \subseteq \lambda(V)$:

$$\forall \mathbf{m} \in \textit{Reach}(\mathcal{N}, \mathbf{m}_0), \ \exists u \in V \ \text{s.t.}$$
:

- \circ $u \notin \text{Front and } \lambda(u) = \mathbf{m}$
- $\circ \ u \in \mathsf{Front} \ , \ \exists \sigma \in \mathit{T}^* \ \mathsf{s.t.} \ \lambda(u) \xrightarrow{\sigma} \mathbf{m}$

and applying fairness.

рс

Reachability enumeration algorithm:	

Reachability enumeration algorithm:

```
Variables: (V, E, \lambda)- a labeled tree; Front \subseteq V;

Main loop:

While Front \neq \emptyset

Pop v \in Front

Explore(v)
```

K&M algorithm:Variables: (V, E, λ) - a labeled tree; $Front \subseteq V$; Main loop: While $Front \neq \emptyset$ Pop $v \in Front$ if $\lambda(v) \leq \lambda(u)$ for $u \in Anc(v)$, then Continue if $\lambda(v) > \lambda(u)$ for $u \in Anc(v)$, then Accelerate(u,v) Explore(v)

K&M algorithm:

```
Variables: (V, E, \lambda)- a labeled tree; Front \subseteq V;

Main loop:

While Front \neq \emptyset

Pop v \in Front

if \lambda(v) \leq \lambda(u) for u \in Anc(v), then Continue

if \lambda(v) > \lambda(u) for u \in Anc(v), then Accelerate(u,v)

Explore(v)
```

K&M algorithm:

```
Variables: (V, E, \lambda)- a labeled tree; Front \subseteq V;

Main loop:

While Front \neq \emptyset

Pop v \in Front

if \lambda(v) \leq \lambda(u) for u \in Anc(v), then Continue

if \lambda(v) > \lambda(u) for u \in Anc(v), then Accelerate(u,v)

Explore(v)
```

Correctness proof

- The original proof of K&M-algorithm is incomplete [Hack-74].
- Formal COQ proof of K&M-algorithm [Yamamoto-17].
- Hard to generalize the proof to variants.

How to adapt the reachability proof?

How to adapt the reachability proof?

```
Consistency \lambda(V) \subseteq Reach(\mathcal{N}, \mathbf{m}_0): \lambda(r) = \mathbf{m}_0 and for all edge u \stackrel{t}{\to} v, one has \lambda(u) \stackrel{t}{\to} \lambda(v).
```

How to adapt the reachability proof?

Consistency $\lambda(V) \subseteq Reach(\mathcal{N}, \mathbf{m}_0)$: $\lambda(r) = \mathbf{m}_0$ and for all edge $u \stackrel{t}{\rightarrow} v$, one has $\lambda(u) \stackrel{t}{\rightarrow} \lambda(v)$.

How to adapt the reachability proof?

Consistency $\lambda(V) \subseteq Reach(\mathcal{N}, \mathbf{m}_0)$: $\lambda(r) = \mathbf{m}_0$ and for all edge $u \xrightarrow{t} v$, one has $\lambda(u) \xrightarrow{t} \lambda(v)$.

For all edges $u \stackrel{?}{\to} v$, there does not exist $t \in T$ s.t. $\lambda(u) \stackrel{t}{\to} \lambda(v)$.

How to adapt the reachability proof?

Consistency $\lambda(V) \subseteq Reach(\mathcal{N}, \mathbf{m}_0)$: $\lambda(r) = \mathbf{m}_0$ and for all edge $u \xrightarrow{t} v$, one has $\lambda(u) \xrightarrow{t} \lambda(v)$.

For all edges $u \stackrel{?}{\to} v$, there does not exist $\sigma \in T^*$ s.t. $\lambda(u) \stackrel{\sigma}{\to} \lambda(v)$.

Abstractions and Accelerations

Syntax An ω -transition **a** is defined by $\mathbf{Pre}(\mathbf{a}) \in \mathbb{N}^P_\omega, \mathbf{C}(\mathbf{a}) \in \mathbb{Z}^P_\omega$ where:

$$\mathsf{Pre}(\mathbf{a}) + \mathbf{C}(\mathbf{a}) \geq 0$$
 and $\forall p$, s.t. $\mathsf{Pre}(p, \mathbf{a}) = \omega \Rightarrow \mathbf{C}(p, \mathbf{a}) = \omega$.

Syntax An ω -transition **a** is defined by $\mathbf{Pre}(\mathbf{a}) \in \mathbb{N}^P_\omega, \mathbf{C}(\mathbf{a}) \in \mathbb{Z}^P_\omega$ where:

$$\mathsf{Pre}(\mathbf{a}) + \mathbf{C}(\mathbf{a}) \geq 0$$
 and $\forall p$, s.t. $\mathsf{Pre}(p, \mathbf{a}) = \omega \Rightarrow \mathbf{C}(p, \mathbf{a}) = \omega$.

Semantic

$$m \xrightarrow{a} \text{ if } \mathsf{Pre}(a) \leq m, \text{ and } m \xrightarrow{a} m + \mathsf{C}(a).$$

Syntax An ω -transition **a** is defined by $\mathbf{Pre}(\mathbf{a}) \in \mathbb{N}^P_\omega, \mathbf{C}(\mathbf{a}) \in \mathbb{Z}^P_\omega$ where:

$$\operatorname{\mathsf{Pre}}(\mathbf{a}) + \mathbf{C}(\mathbf{a}) \geq 0$$
 and $\forall p$, s.t. $\operatorname{\mathsf{Pre}}(p, \mathbf{a}) = \omega \Rightarrow \mathbf{C}(p, \mathbf{a}) = \omega$.

Semantic

$$m \xrightarrow{a} \text{ if } \mathsf{Pre}(a) \leq m, \text{ and } m \xrightarrow{a} m + \mathsf{C}(a).$$

•
$$Pre(a) = p_{land}$$
, $C(a) = \omega p_{ban}$

Syntax An ω -transition **a** is defined by $\mathbf{Pre}(\mathbf{a}) \in \mathbb{N}^P_\omega, \mathbf{C}(\mathbf{a}) \in \mathbb{Z}^P_\omega$ where:

$$\mathsf{Pre}(\mathsf{a}) + \mathsf{C}(\mathsf{a}) \geq 0 \text{ and } \forall p, \text{ s.t. } \mathsf{Pre}(p,\mathsf{a}) = \omega \Rightarrow \mathsf{C}(p,\mathsf{a}) = \omega.$$

Semantic

$$m \xrightarrow{a} \text{ if } \text{Pre}(a) \leq m, \text{ and } m \xrightarrow{a} m + \text{C}(a).$$

•
$$Pre(a) = p_{land}$$
, $C(a) = \omega p_{ban}$

•
$$Pre(a') = \omega p_{ban} + p_{bake}$$
,
 $C(a') = \omega p_{ban} + \omega p_{cake}$

Syntax An ω -transition **a** is defined by $\mathbf{Pre}(\mathbf{a}) \in \mathbb{N}^P_\omega, \mathbf{C}(\mathbf{a}) \in \mathbb{Z}^P_\omega$ where:

$$\mathsf{Pre}(\mathsf{a}) + \mathsf{C}(\mathsf{a}) \geq 0$$
 and $\forall p$, s.t. $\mathsf{Pre}(p,\mathsf{a}) = \omega \Rightarrow \mathsf{C}(p,\mathsf{a}) = \omega$.

Semantic

$$m \xrightarrow{a} \text{ if } \mathsf{Pre}(a) \leq m, \text{ and } m \xrightarrow{a} m + \mathsf{C}(a).$$

- $Pre(a) = p_{land}$, $C(a) = \omega p_{ban}$
- $Pre(a') = \omega p_{ban} + p_{bake}$, $C(a') = \omega p_{ban} + \omega p_{cake}$
- $Pre(\mathbf{a} \cdot \mathbf{a}') = p_{land} + p_{bake}$, $C(\mathbf{a} \cdot \mathbf{a}') = \omega p_{ban} + \omega p_{cake}$

Syntax An ω -transition **a** is defined by $\mathbf{Pre}(\mathbf{a}) \in \mathbb{N}^P_\omega, \mathbf{C}(\mathbf{a}) \in \mathbb{Z}^P_\omega$ where:

$$\mathsf{Pre}(\mathsf{a}) + \mathsf{C}(\mathsf{a}) \geq 0$$
 and $\forall p$, s.t. $\mathsf{Pre}(p,\mathsf{a}) = \omega \Rightarrow \mathsf{C}(p,\mathsf{a}) = \omega$.

Semantic

$$\label{eq:mass} m \xrightarrow{a} \text{ if } \text{Pre}(a) \leq m, \text{ and } m \xrightarrow{a} m + \text{C}(a).$$

- $Pre(a) = p_{land}$, $C(a) = \omega p_{ban}$
- $Pre(a') = \omega p_{ban} + p_{bake}$, $C(a') = \omega p_{ban} + \omega p_{cake}$
- Pre(a · a') = $p_{land} + p_{bake}$, C(a · a') = $\omega p_{ban} + \omega p_{cake}$

$$\mathbf{m} \xrightarrow{\mathbf{a}\mathbf{a}'} \mathbf{m}'$$
 if and only if $\mathbf{m} \xrightarrow{\mathbf{a}\cdot\mathbf{a}'} \mathbf{m}'$.

An ω -transition **a** is an *abstraction* if for all n, there exists $\sigma_n \in T^*$ s.t. for all p where $\mathbf{Pre}(p, \mathbf{a}) \neq \omega$:

An ω -transition ${\bf a}$ is an abstraction if for all n, there exists $\sigma_n \in T^*$ s.t. for all p where ${\bf Pre}(p,{\bf a}) \neq \omega$:

 \circ Pre $(p, \sigma_n) \leq \text{Pre}(p, \mathbf{a});$

An ω -transition ${\bf a}$ is an abstraction if for all n, there exists $\sigma_n \in T^*$ s.t. for all p where ${\bf Pre}(p,{\bf a}) \neq \omega$:

- $\operatorname{Pre}(p, \sigma_n) \leq \operatorname{Pre}(p, \mathbf{a});$
- If $C(p, a) \neq \omega \Rightarrow C(p, \sigma_n) \geq C(p, a)$;

An ω -transition ${\bf a}$ is an abstraction if for all n, there exists $\sigma_n \in T^*$ s.t. for all p where ${\bf Pre}(p,{\bf a}) \neq \omega$:

- $\operatorname{Pre}(p, \sigma_n) \leq \operatorname{Pre}(p, \mathbf{a});$
- If $C(p, a) \neq \omega \Rightarrow C(p, \sigma_n) \geq C(p, a)$;
- If $C(p, a) = \omega \Rightarrow C(p, \sigma_n) \geq n$.

An ω -transition **a** is an abstraction if for all n, there exists $\sigma_n \in T^*$ s.t. for all p where $\mathbf{Pre}(p, \mathbf{a}) \neq \omega$:

- $\operatorname{Pre}(p, \sigma_n) \leq \operatorname{Pre}(p, \mathbf{a});$
- If $C(p, \mathbf{a}) \neq \omega \Rightarrow C(p, \sigma_n) \geq C(p, \mathbf{a})$;
- If $C(p, a) = \omega \Rightarrow C(p, \sigma_n) \geq n$.

•
$$Pre(a) = p_{land} + p_{bake}$$
,
 $C(a) = \omega p_{ban} + \omega p_{cake}$

An ω -transition **a** is an abstraction if for all n, there exists $\sigma_n \in T^*$ s.t. for all p where $\mathbf{Pre}(p, \mathbf{a}) \neq \omega$:

- $\operatorname{Pre}(p, \sigma_n) \leq \operatorname{Pre}(p, \mathbf{a});$
- If $C(p, \mathbf{a}) \neq \omega \Rightarrow C(p, \sigma_n) \geq C(p, \mathbf{a})$;
- If $C(p, a) = \omega \Rightarrow C(p, \sigma_n) \geq n$.

- $Pre(a) = p_{land} + p_{bake}$, $C(a) = \omega p_{ban} + \omega p_{cake}$
- $\circ \sigma_2 =$

An ω -transition **a** is an abstraction if for all n, there exists $\sigma_n \in T^*$ s.t. for all p where $\mathbf{Pre}(p, \mathbf{a}) \neq \omega$:

- \circ Pre $(p, \sigma_n) \leq$ Pre(p, a);
- If $C(p, \mathbf{a}) \neq \omega \Rightarrow C(p, \sigma_n) \geq C(p, \mathbf{a})$;
- If $C(p, a) = \omega \Rightarrow C(p, \sigma_n) \geq n$.

- $Pre(a) = p_{land} + p_{bake}$, $C(a) = \omega p_{ban} + \omega p_{cake}$
- $\sigma_2 = t_{make}^2$

An ω -transition **a** is an abstraction if for all n, there exists $\sigma_n \in T^*$ s.t. for all p where $\mathbf{Pre}(p,\mathbf{a}) \neq \omega$:

- \circ Pre $(p, \sigma_n) \leq$ Pre(p, a);
- If $C(p, \mathbf{a}) \neq \omega \Rightarrow C(p, \sigma_n) \geq C(p, \mathbf{a})$;
- If $C(p, a) = \omega \Rightarrow C(p, \sigma_n) \geq n$.

- $Pre(a) = p_{land} + p_{bake}$, $C(a) = \omega p_{ban} + \omega p_{cake}$
- $\sigma_2 = t_{grow}^4 t_{make}^2$

An ω -transition **a** is an abstraction if for all n, there exists $\sigma_n \in T^*$ s.t. for all p where $\text{Pre}(p, \mathbf{a}) \neq \omega$:

- $\operatorname{Pre}(p, \sigma_n) \leq \operatorname{Pre}(p, \mathbf{a});$
- If $C(p, a) \neq \omega \Rightarrow C(p, \sigma_n) \geq C(p, a)$;
- If $C(p, a) = \omega \Rightarrow C(p, \sigma_n) \ge n$.

- $Pre(a) = p_{land} + p_{bake}$, $C(a) = \omega p_{ban} + \omega p_{cake}$
- $\sigma_2 = t_{grow}^4 t_{make}^2$
- $\sigma_n = t_{grow}^{2n} t_{make}^n$ $Pre(\sigma_n) = p_{land} + p_{bake},$ $C(\sigma_n) = np_{ban} + np_{cake}$

The coverability set is closed by abstraction firing.

The coverability set is closed by abstraction firing.

Let \mathbf{a} be an abstraction and $\mathbf{m} \in \mathbb{N}^P_\omega$.

The coverability set is closed by abstraction firing.

Let ${\bf a}$ be an abstraction and ${\bf m}\in \mathbb{N}^P_\omega.$ If:

$$[\![\mathbf{m}]\!] \subseteq \mathit{Cover}(\mathcal{N}, \mathbf{m}_0)$$
 and $\mathbf{m} \stackrel{\mathsf{a}}{\to} \mathbf{m}'$

The coverability set is closed by abstraction firing.

Let \mathbf{a} be an abstraction and $\mathbf{m} \in \mathbb{N}^P_\omega.$

lf:

$$[\![\mathbf{m}]\!] \subseteq \mathit{Cover}(\mathcal{N}, \mathbf{m}_0)$$

and $\mathbf{m} \xrightarrow{\mathbf{a}} \mathbf{m}'$

Then:

$$[\![\mathbf{m}']\!] \subseteq \mathit{Cover}(\mathcal{N}, \mathbf{m}_0)$$

The coverability set is closed by abstraction firing.

Let \mathbf{a} be an abstraction and $\mathbf{m} \in \mathbb{N}^P_\omega.$

lf:

$$[\![\mathbf{m}]\!] \subseteq \mathit{Cover}(\mathcal{N}, \mathbf{m}_0)$$

and $\mathbf{m} \xrightarrow{\mathbf{a}} \mathbf{m}'$

Then:

$$[\![\boldsymbol{m}']\!]\subseteq \textit{Cover}(\mathcal{N},\boldsymbol{m}_0)$$

The set of abstractions is closed by concatenation.

Acceleration

Acceleration

An abstraction **a** with $\mathbf{C}(\mathbf{a}) \in \{0, \omega\}^P$ is an acceleration.

Acceleration

An abstraction **a** with $C(a) \in \{0, \omega\}^P$ is an acceleration.

How to get an acceleration $\widehat{\mathbf{a}}$ from an abstraction \mathbf{a} :

An abstraction **a** with $C(a) \in \{0, \omega\}^P$ is an acceleration.

How to get an acceleration \hat{a} from an abstraction a:

```
\begin{array}{lll} \text{If} & \mathbf{C}(p,\mathbf{a})<0 & \text{Then} & \mathbf{Pre}(p,\widehat{\mathbf{a}})=\mathbf{C}(p,\widehat{\mathbf{a}})=\omega \\ \\ \text{If} & \mathbf{C}(p,\mathbf{a})=0 & \text{Then} & \mathbf{Pre}(p,\widehat{\mathbf{a}})=\mathbf{Pre}(p,\mathbf{a}), \mathbf{C}(\widehat{\mathbf{a}})=0 \\ \\ \text{If} & \mathbf{C}(p,\mathbf{a})>0 & \text{Then} & \mathbf{Pre}(p,\widehat{\mathbf{a}})=\mathbf{Pre}(p,\mathbf{a}), \mathbf{C}(\widehat{\mathbf{a}})=\omega \end{array}
```

An abstraction **a** with $C(a) \in \{0, \omega\}^P$ is an acceleration.

How to get an acceleration \hat{a} from an abstraction a:

If
$$C(p, \mathbf{a}) < 0$$
 Then $Pre(p, \mathbf{\hat{a}}) = C(p, \mathbf{\hat{a}}) = \omega$

$$\mathbf{C}(p,\mathbf{a}) < 0$$
 Then

$$\text{If} \quad \mathbf{C}(p,\mathbf{a}) = 0 \quad \text{Then} \quad \mathbf{Pre}(p,\widehat{\mathbf{a}}) = \mathbf{Pre}(p,\mathbf{a}), \mathbf{C}(\widehat{\mathbf{a}}) = 0$$

If
$$\mathbf{C}(p, \mathbf{a}) > 0$$
 Then

If
$$C(p, \mathbf{a}) > 0$$
 Then $Pre(p, \widehat{\mathbf{a}}) = Pre(p, \mathbf{a}), C(\widehat{\mathbf{a}}) = \omega$

- $\mathbf{a} = t_{make}$
- $Pre(\widehat{\mathbf{a}}) = \omega p_{ban} + p_{bake}$

An abstraction **a** with $C(a) \in \{0, \omega\}^P$ is an acceleration.

How to get an acceleration $\widehat{\mathbf{a}}$ from an abstraction \mathbf{a} :

$$\begin{array}{lll} \textit{If} & \textbf{C}(p,\textbf{a}) < 0 & \textit{Then} & \textbf{Pre}(p,\widehat{\textbf{a}}) = \textbf{C}(p,\widehat{\textbf{a}}) = \omega \\ \\ \textit{If} & \textbf{C}(p,\textbf{a}) = 0 & \textbf{Then} & \textbf{Pre}(p,\widehat{\textbf{a}}) = \textbf{Pre}(p,\textbf{a}), \textbf{C}(\widehat{\textbf{a}}) = 0 \\ \\ \textit{If} & \textbf{C}(p,\textbf{a}) > 0 & \textbf{Then} & \textbf{Pre}(p,\widehat{\textbf{a}}) = \textbf{Pre}(p,\textbf{a}), \textbf{C}(\widehat{\textbf{a}}) = \omega \end{array}$$

- $\mathbf{a} = t_{make}$
- $Pre(\widehat{a}) = \omega p_{ban} + p_{bake}$ $C(\widehat{a}) = \omega p_{ban} + \omega p_{cake}$

An abstraction **a** with $C(a) \in \{0, \omega\}^P$ is an acceleration.

How to get an acceleration $\widehat{\mathbf{a}}$ from an abstraction \mathbf{a} :

$$\begin{array}{lll} \text{If} & \mathbf{C}(p,\mathbf{a}) < 0 & \text{Then} & \mathbf{Pre}(p,\widehat{\mathbf{a}}) = \mathbf{C}(p,\widehat{\mathbf{a}}) = \omega \\ \text{If} & \mathbf{C}(p,\mathbf{a}) = 0 & \text{Then} & \mathbf{Pre}(p,\widehat{\mathbf{a}}) = \mathbf{Pre}(p,\mathbf{a}), \mathbf{C}(\widehat{\mathbf{a}}) = 0 \\ \text{If} & \mathbf{C}(p,\mathbf{a}) > 0 & \text{Then} & \mathbf{Pre}(p,\widehat{\mathbf{a}}) = \mathbf{Pre}(p,\mathbf{a}), \mathbf{C}(\widehat{\mathbf{a}}) = \omega \end{array}$$

- $\mathbf{a} = t_{make}$
- $Pre(\widehat{\mathbf{a}}) = \omega p_{ban} + \mathbf{p}_{bake}$ $C(\widehat{\mathbf{a}}) = \omega p_{ban} + \omega p_{cake}$

An abstraction **a** with $C(a) \in \{0, \omega\}^P$ is an acceleration.

How to get an acceleration $\widehat{\mathbf{a}}$ from an abstraction \mathbf{a} :

$$\begin{array}{llll} \textbf{If} & \textbf{C}(p,\mathbf{a}) < 0 & \textbf{Then} & \textbf{Pre}(p,\widehat{\mathbf{a}}) = \textbf{C}(p,\widehat{\mathbf{a}}) = \omega \\ \textbf{If} & \textbf{C}(p,\mathbf{a}) = 0 & \textbf{Then} & \textbf{Pre}(p,\widehat{\mathbf{a}}) = \textbf{Pre}(p,\mathbf{a}), \textbf{C}(\widehat{\mathbf{a}}) = 0 \\ \textbf{If} & \textbf{C}(p,\mathbf{a}) > 0 & \textbf{Then} & \textbf{Pre}(p,\widehat{\mathbf{a}}) = \textbf{Pre}(p,\mathbf{a}), \textbf{C}(\widehat{\mathbf{a}}) = \omega \\ \end{array}$$

- $\mathbf{a} = t_{make}$
- $Pre(\widehat{\mathbf{a}}) = \omega p_{ban} + p_{bake}$ $C(\widehat{\mathbf{a}}) = \omega p_{ban} + \omega \mathbf{p}_{cake}$

An abstraction **a** with $C(a) \in \{0, \omega\}^P$ is an acceleration.

How to get an acceleration \hat{a} from an abstraction a:

If
$$C(p, \mathbf{a}) < 0$$
 Then $Pre(p, \mathbf{\hat{a}}) = C(p, \mathbf{\hat{a}}) = \omega$

$$\mathbf{C}(p,\mathbf{a}) < 0$$
 Then

$$\text{If} \quad \mathbf{C}(p,\mathbf{a}) = 0 \quad \text{Then} \quad \mathbf{Pre}(p,\widehat{\mathbf{a}}) = \mathbf{Pre}(p,\mathbf{a}), \mathbf{C}(\widehat{\mathbf{a}}) = 0$$

If
$$\mathbf{C}(p, \mathbf{a}) > 0$$
 Then

If
$$C(p, \mathbf{a}) > 0$$
 Then $Pre(p, \widehat{\mathbf{a}}) = Pre(p, \mathbf{a}), C(\widehat{\mathbf{a}}) = \omega$

- $\mathbf{a} = t_{make}$
- $Pre(\widehat{\mathbf{a}}) = \omega p_{ban} + p_{bake}$

$$p_L + p_B \xrightarrow{\sigma} p_L + p_B + p_{ban}$$

$$p_L + p_B \xrightarrow{\sigma} p_L + p_B + p_{ban}$$

$$\mathbf{a}_1 = \widehat{t_{grow}}, \; \mathsf{Pre}(\mathbf{a}_1) = p_L; \qquad \qquad \mathsf{C}(\mathbf{a}_1) = \omega p_{\mathit{Ban}}$$

$$p_L + p_B \xrightarrow{\sigma} p_L + p_B + p_{ban} \xrightarrow{a_1} p_L + p_B + \omega p_{ban}$$

$$\mathbf{a}_1 = \widehat{t_{ extit{grow}}}, \; \mathsf{Pre}(\mathbf{a}_1) = p_L; \qquad \qquad \mathbf{C}(\mathbf{a}_1) = \omega p_{ extit{Ban}}$$

$$p_L + p_B \xrightarrow{\sigma} p_L + p_B + p_{ban} \xrightarrow{a_1} p_L + p_B + \omega p_{ban}$$

$$\mathbf{a}_1 = \widehat{t_{grow}}, \; \mathsf{Pre}(\mathbf{a}_1) = p_L; \qquad \qquad \mathbf{C}(\mathbf{a}_1) = \omega p_{\mathit{Ban}}$$

$$\mathbf{a}_1 = \widehat{\mathbf{f}_{grow}}, \ \mathsf{Pre}(\mathbf{a}_1) = p_L; \ \mathbf{C}(\mathbf{a}_1) = \omega p_{Ban} \ \mathbf{a}_2 = \widehat{\mathbf{f}_{make}}, \ \mathsf{Pre}(\mathbf{a}_2) = p_B + \omega p_{Ban}; \mathbf{C}(\mathbf{a}_2) = \omega p_{Ca} + \omega p_{Ban}$$

$$\mathbf{a}_1 = \widehat{\mathbf{f}_{grow}}, \ \mathbf{Pre}(\mathbf{a}_1) = p_L; \ \mathbf{C}(\mathbf{a}_1) = \omega p_{Ban} \ \mathbf{a}_2 = \widehat{\mathbf{f}_{make}}, \ \mathbf{Pre}(\mathbf{a}_2) = p_B + \omega p_{Ban}; \mathbf{C}(\mathbf{a}_2) = \omega p_{Ca} + \omega p_{Ban}$$

$$\mathbf{a}_1 = \widehat{\mathbf{f}_{grow}}, \ \mathbf{Pre}(\mathbf{a}_1) = p_L; \ \mathbf{C}(\mathbf{a}_1) = \omega p_{Ban} \ \mathbf{a}_2 = \widehat{\mathbf{f}_{make}}, \ \mathbf{Pre}(\mathbf{a}_2) = p_B + \omega p_{Ban}; \mathbf{C}(\mathbf{a}_2) = \omega p_{Ca} + \omega p_{Ban}$$

Consistency $[\![\lambda(V)]\!] \subseteq Cover(\mathcal{N}, \mathbf{m}_0)$:

Consistency $[\![\lambda(V)]\!] \subseteq Cover(\mathcal{N}, \mathbf{m}_0)$:

• For every edges $u \xrightarrow{\sigma} v$, one has $\lambda(u) \xrightarrow{\sigma} \lambda(v)$.

Consistency $[\![\lambda(V)]\!] \subseteq Cover(\mathcal{N}, \mathbf{m}_0)$:

• For every edges $u \xrightarrow{\sigma} v$, one has $\lambda(u) \xrightarrow{\sigma} \lambda(v)$.

Completeness $Cover(\mathcal{N}, \mathbf{m}_0) \subseteq [\![\lambda(V)]\!]$:

- Consistency $[\![\lambda(V)]\!] \subseteq Cover(\mathcal{N}, \mathbf{m}_0)$:
 - For every edges $u \xrightarrow{\sigma} v$, one has $\lambda(u) \xrightarrow{\sigma} \lambda(v)$.

Completeness $Cover(\mathcal{N}, \mathbf{m}_0) \subseteq [\![\lambda(V)]\!]$:

Reachability tree:

 $\forall \mathbf{m} \in Reach(\mathcal{N}, \mathbf{m}_0), \exists u \in V \text{ s.t.}$:

- ∘ $u \notin Front and \lambda(u) = \mathbf{m}$
- ∘ $u \in \mathsf{Front}$, $\exists \sigma \in T^*$ s.t. $\lambda(u) \xrightarrow{\sigma} \mathbf{m}$

Consistency
$$[\![\lambda(V)]\!] \subseteq Cover(\mathcal{N}, \mathbf{m}_0)$$
:

o For every edges $u \xrightarrow{\sigma} v$, one has $\lambda(u) \xrightarrow{\sigma} \lambda(v)$.

Completeness $Cover(\mathcal{N}, \mathbf{m}_0) \subseteq [\![\lambda(V)]\!]$:

Reachability tree:

K&M:

 $\forall \mathbf{m} \in Reach(\mathcal{N}, \mathbf{m}_0), \ \exists u \in V \text{ s.t.}$:

- ∘ $u \notin Front and \lambda(u) = \mathbf{m}$
- ∘ $u \in \mathsf{Front}$, $\exists \sigma \in T^*$ s.t. $\lambda(u) \xrightarrow{\sigma} \mathbf{m}$

```
Consistency [\lambda(V)] \subseteq Cover(\mathcal{N}, \mathbf{m}_0):
```

• For every edges $u \xrightarrow{\sigma} v$, one has $\lambda(u) \xrightarrow{\sigma} \lambda(v)$.

Completeness $Cover(\mathcal{N}, \mathbf{m}_0) \subseteq [\lambda(V)]$:

Reachability tree:

K&M:

$$\forall \mathbf{m} \in Reach(\mathcal{N}, \mathbf{m}_0), \exists u \in V \text{ s.t.}$$
:

$$\forall \mathbf{m} \in Reach(\mathcal{N}, \mathbf{m}_0), \ \exists u \in V \text{ s.t.:} \qquad \forall \mathbf{m} \in Cover(\mathcal{N}, \mathbf{m}_0), \ \exists u \in V \text{ s.t.:}$$

- \circ $u \notin \text{Front and } \lambda(u) = \mathbf{m}$
- $\circ u \in \mathsf{Front} \ . \ \exists \sigma \in T^* \mathsf{s.t.}$ $\lambda(u) \xrightarrow{\sigma} \mathbf{m}$

Consistency
$$[\![\lambda(V)]\!] \subseteq Cover(\mathcal{N}, \mathbf{m}_0)$$
:

• For every edges $u \xrightarrow{\sigma} v$, one has $\lambda(u) \xrightarrow{\sigma} \lambda(v)$.

Completeness $Cover(\mathcal{N}, \mathbf{m}_0) \subseteq [\![\lambda(V)]\!]$:

Reachability tree:

 $\forall \mathbf{m} \in Reach(\mathcal{N}, \mathbf{m}_0), \exists u \in V \text{ s.t.:}$

∘
$$u \notin \text{Front and } \lambda(u) = \mathbf{m}$$

∘
$$u \in \mathsf{Front}$$
 , $\exists \sigma \in T^*$ s.t. $\lambda(u) \xrightarrow{\sigma} \mathbf{m}$

K&M:

 $\forall \mathbf{m} \in Cover(\mathcal{N}, \mathbf{m}_0), \exists u \in V \text{ s.t.}$:

∘
$$u \notin \text{Front and } \lambda(u) \ge \mathbf{m}$$

Consistency $[\![\lambda(V)]\!] \subseteq Cover(\mathcal{N}, \mathbf{m}_0)$:

• For every edges $u \xrightarrow{\sigma} v$, one has $\lambda(u) \xrightarrow{\sigma} \lambda(v)$.

Completeness $Cover(\mathcal{N}, \mathbf{m}_0) \subseteq [\![\lambda(V)]\!]$:

Reachability tree:

 $\forall \mathbf{m} \in Reach(\mathcal{N}, \mathbf{m}_0), \exists u \in V \text{ s.t.}$:

- ∘ $u \notin \text{Front and } \lambda(u) = \mathbf{m}$
- ∘ $u \in \text{Front}$, $\exists \sigma \in T^*$ s.t. $\lambda(u) \xrightarrow{\sigma} \mathbf{m}$

K&M:

 $\forall \mathbf{m} \in Cover(\mathcal{N}, \mathbf{m}_0), \exists u \in V \text{ s.t.}$:

- ∘ $u \notin \text{Front and } \lambda(u) \ge \mathbf{m}$
- ∘ $u \in \text{Front}$, $\exists \sigma \text{ and exploring}$ sequence s.t. $\lambda(u) \xrightarrow{\sigma} \mathbf{m}' \geq \mathbf{m}$

Exploring sequence(Illustration):

 p_C

K&M algorithm:

```
Variables: (V, E, \lambda)- a labeled tree; Front \subseteq V;

Main loop:

While Front \neq \emptyset

Pop v \in Front

if \lambda(v) \leq \lambda(u) for u \in Anc(v), then Continue

if \lambda(v) > \lambda(u) for u \in Anc(v), then Accelerate(u, v)

Explore(v)
```

```
K&M with accelerations algorithm:
    Variables: (V, E, \lambda)- a labeled tree; Front \subseteq V;
                   Acc- a set of \omega-transitions:
    Main loop:
          While Front \neq \emptyset
                Pop v \in Front
                Use Acc on \lambda(v)
                if \lambda(v) \leq \lambda(u) for u \in Anc(v), then Continue
                if \lambda(v) > \lambda(u) for u \in Anc(v), then
                      \mathbf{a} = \mathsf{Accelerate}(u \to v)
                      Acc = Acc \cup \{a\}
                Explore(v)
```

```
K&M with accelerations algorithm:
     Variables: (V, E, \lambda)- a labeled tree; Front \subseteq V;
                   Acc- a set of \omega-transitions:
     Main loop:
           While Front \neq \emptyset
                 Pop v \in Front
                 Use Acc on \lambda(v)
                 if \lambda(v) \leq \lambda(u) for u \in Anc(v), then Continue
                 if \lambda(v) > \lambda(u) for u \in Anc(v), then
                       \mathbf{a} = \mathsf{Accelerate}(u \rightarrow v)
                       Acc = Acc \cup \{a\}
                 Explore(v)
```

Correctness proof

Similar to our K&M proof!

Can we do better?

Can we do better?

Maximal number of nodes:

Can we do better?

Maximal number of nodes:

 \circ Reachability enumeration: ∞

Maximal number of nodes:

- \circ Reachability enumeration: ∞
- o *K&M* : 11

Maximal number of nodes:

- \circ Reachability enumeration: ∞
- o K&M: 11
- \circ *K&M* + *Accelerations* : 8 (+2 acc)

Maximal number of nodes:

- \circ Reachability enumeration: ∞
- o K&M: 11
- \circ *K&M* + *Accelerations* : 8 (+2 acc)

Size of Clover is 4

Maximal number of nodes:

- \circ Reachability enumeration: ∞
- o K&M: 11
- K&M + Accelerations : 8 (+2 acc)

Size of Clover is 4

Can we do better?

MCT[Finkel 93]:

MCT[Finkel 93]:

Improved on K&M algorithm, by keeping \ensuremath{V} an antichain at any step of the algorithm.

MCT[Finkel 93]:

Improved on K&M algorithm, by keeping \ensuremath{V} an antichain at any step of the algorithm.

...but incomplete [Finkel 05].

MCT[Finkel 93]:

Improved on K&M algorithm, by keeping \ensuremath{V} an antichain at any step of the algorithm.

... but incomplete [Finkel 05].

Bug very subtle.

MCT[Finkel 93]:

Improved on K&M algorithm, by keeping ${\it V}$ an antichain at any step of the algorithm.

...but incomplete [Finkel 05].

Bug very subtle.

Attempts to fix:

MP[Reynier 13/19]: Deactivates nodes.

MCT[Finkel 93]:

Improved on K&M algorithm, by keeping ${\it V}$ an antichain at any step of the algorithm.

... but incomplete [Finkel 05].

Bug very subtle.

Attempts to fix:

MP[Reynier 13/19]: Deactivates nodes.

VH[Valmari 14/16]: Deletes less nodes, and provides other heuristic optimization.

MCT[Finkel 93]:

Improved on K&M algorithm, by keeping V an antichain at any step of the algorithm.

... but incomplete [Finkel 05].

Bug very subtle.

Attempts to fix:

MP[Reynier 13/19]: Deactivates nodes.

VH[Valmari 14/16]: Deletes less nodes, and provides other heuristic optimization.

CovProc[Geeraerts 10] Alternative construction

 p_C

$$p_C$$
 $t_2 \downarrow$
 $p_B + p_M$

We have the Clover!

K&M with accelerations algorithm:

```
Variables: (V, E, \lambda)- a labeled tree; Front \subseteq V;
               Acc- a set of \omega-transitions:
Main loop:
      While Front \neq \emptyset
            Pop v \in Front
            Try use Acc on \lambda(v)
            if \lambda(v) \leq \lambda(u) for u \in Anc(v), then Continue
            if \lambda(v) > \lambda(u) for u \in Anc(v), then
                  \mathbf{a} = \mathsf{Accelerate}(u \to v)
                  Acc = Acc \cup \{a\}
            Explore(v)
```

```
MinCov
```

```
Variables: (V, E, \lambda)- a labeled tree; Front \subseteq V;
               Acc- a set of \omega-transitions:
Main loop:
      While Front \neq \emptyset
            Pop v \in Front
            Try use Acc on \lambda(v)
            if \lambda(v) \leq \lambda(u) for u \in V, then delete(v); Continue
            if \lambda(v) > \lambda(u) for u \in Anc(v), then
                  \mathbf{a} = \mathsf{Accelerate}(u \rightarrow v)
                  Acc = Acc \cup \{a\}
                  prune(u); Continue
            for any u \in V, if \lambda(v) \geq \lambda(u) then prune(u), delete(u);
            Explore(v)
```

```
MinCov
```

```
Variables: (V, E, \lambda)- a labeled tree; Front \subseteq V;
               Acc- a set of \omega-transitions:
Main loop:
      While Front \neq \emptyset
            Pop v \in Front
            Try use Acc on \lambda(v)
            if \lambda(v) \leq \lambda(u) for u \in V, then delete(v); Continue
            if \lambda(v) > \lambda(u) for u \in Anc(v), then
                  \mathbf{a} = \mathsf{Accelerate}(u \rightarrow v)
                  Acc = Acc \cup \{a\}
                  prune(u); Continue
            for any u \in V, if \lambda(v) \geq \lambda(u) then prune(u), delete(u);
            Explore(v)
```

Correctness proof

MinCov

```
Variables: (V, E, \lambda)- a labeled tree; Front \subseteq V;
               Acc- a set of \omega-transitions:
Main loop:
      While Front \neq \emptyset
            Pop v \in Front
            Try use Acc on \lambda(v)
            if \lambda(v) \leq \lambda(u) for u \in V, then delete(v); Continue
            if \lambda(v) > \lambda(u) for u \in Anc(v), then
                  \mathbf{a} = \mathsf{Accelerate}(u \rightarrow v)
                  Acc = Acc \cup \{a\}
                  prune(u); Continue
            for any u \in V, if \lambda(v) \geq \lambda(u) then prune(u), delete(u);
            Explore(v)
```

Correctness proof

Similar to our K&M proof! (with minor modifications)

MinCov

MinCov

Goals:

MinCov

Goals:

• Computing the coverability set

MinCov

Goals:

- Computing the coverability set
- Solving the coverability problem

MinCov

Goals:

- Computing the coverability set
- Solving the coverability problem

Implementation features

MinCov

Goals:

- Computing the coverability set
- Solving the coverability problem

Implementation features

- Written in Python3, using the Numpy and Z3-solver libraries.
- \approx 2000 lines.
- Imports Petri nets in ".spec" format from Mist.
- Can be found in https://github.com/lgorKhm/MinCov

123 benchmarks (literature)

123 benchmarks (literature)

123 benchmarks (literature)

	T/O	Time	#Nodes
MinCov	16	18127	48218
VH	15	14873	75225
MP	24	23904	478681
CovProc	49	47089	N/A
AF	19	19223	45660

123 benchmarks (literature)

	T/O	Time	#Nodes
MinCov	16	18127	48218
VH	15	14873	75225
MP	24	23904	478681
CovProc	49	47089	N/A
AF	19	19223	45660

	T/O	Time	#Nodes
MinCov	146	159940	1291066
VH	111	110431	2454490
MP	231	260608	31354531
CovProc	N/A	N/A	N/A
AF	163	178322	1267076

123 benchmarks (literature)

	T/O	Time	#Nodes
MinCov	16	18127	48218
VH	15	14873	75225
MP	24	23904	478681
CovProc	49	47089	N/A
AF	19	19223	45660

1078 benchmarks (random)

()							
	T/O	Time	#Nodes				
MinCov	146	159940	1291066				
VH	111	110431	2454490				
MP	231	260608	31354531				
CovProc	N/A	N/A	N/A				
AF	163	178322	1267076				

• MinCov is twice as economical space-wise compared to the other tools

123 benchmarks (literature)

	T/O	Time	#Nodes
MinCov	16	18127	48218
VH	15	14873	75225
MP	24	23904	478681
CovProc	49	47089	N/A
AF	19	19223	45660

oro benefinianto (random)							
	T/O	Time	#Nodes				
MinCov	146	159940	1291066				
VH	111	110431	2454490				
MP	231	260608	31354531				
CovProc	N/A	N/A	N/A				
AF	163	178322	1267076				

- MinCov is twice as economical space-wise compared to the other tools
- MinCov only 1.2 slower then the fastest tool.

Blondin et al. (qCover) (2016)

 $Combining\ backward\ exploration\ with\ forward\ over-approximation$

Blondin et al. (qCover) (2016)

Combining backward exploration with forward over-approximation

MinCov

Partial forward construction of the coverability set

Blondin et al. (qCover) (2016)

Combining backward exploration with forward over-approximation

MinCov

Partial forward construction of the coverability set

	Covered (60)		Not covered(115)		Total	
	Time	T/O	Time	T/O	T/O	Time
MinCov	1754	1	51323	53	54	53077
qCover	26467	26	11865	11	37	38332

Blondin et al. (qCover) (2016)

Combining backward exploration with forward over-approximation

MinCov

Partial forward construction of the coverability set

	Covered (60)		Not covered(115)		Total	
	Time	T/O	Time	T/O	T/O	Time
MinCov	1754	1	51323	53	54	53077
qCover	26467	26	11865	11	37	38332

Complementary tools!

Blondin et al. (qCover) (2016)

Combining backward exploration with forward over-approximation

MinCov

Partial forward construction of the coverability set

	Covered (60)		Not covered(115)		Total	
	Time	T/O	Time	T/O	T/O	Time
MinCov	1754	1	51323	53	54	53077
qCover	26467	26	11865	11	37	38332
$\underline{\hspace{1cm}}$ MinCov \parallel qCover 1	1841	2	13493	11	13	15334

1. $\mathsf{Time}(\mathtt{MinCov} \parallel \mathsf{qCover}) = 2 \, \mathsf{min} \, (\mathsf{Time}(\mathtt{MinCov}), \mathsf{Time}(\mathsf{qCover})) \, .$

Contributions

Contributions

Commodification of accelerations

Contributions

- Commodification of accelerations
- Fixing the minimal coverability tree algorithm

Contributions

- Commodification of accelerations
- Fixing the minimal coverability tree algorithm
- Implantation of MinCov, which out preforms all other tools space-wise.

Future Work

Contributions

- Commodification of accelerations
- Fixing the minimal coverability tree algorithm
- Implantation of MinCov, which out preforms all other tools space-wise.

Future Work

Combining the power of qCover and MinCov

Contributions

- Commodification of accelerations
- Fixing the minimal coverability tree algorithm
- Implantation of MinCov, which out preforms all other tools space-wise.

Future Work

- Combining the power of qCover and MinCov
- Further development of MinCov

Contributions

- Commodification of accelerations
- Fixing the minimal coverability tree algorithm
- Implantation of MinCov, which out preforms all other tools space-wise.

Future Work

- Combining the power of qCover and MinCov
- Further development of MinCov

Order: Given two abstractions a, a':

$$a \preceq a' \stackrel{\textit{def}}{\iff} \, \mathsf{Pre}(a) \leq \mathsf{Pre}(a') \land \mathsf{C}(a) \geq \mathsf{C}(a')$$

Order: Given two abstractions a, a':

$$a \preceq a' \stackrel{\textit{def}}{\iff} Pre(a) \leq Pre(a') \land C(a) \geq C(a')$$

Proposition

Given a Petri net ${\mathcal N}$ and Acc the set of all ${\mathcal N}$'s accelerations, then:

Order: Given two abstractions **a**, **a**':

$$a \preceq a' \stackrel{\textit{def}}{\iff} Pre(a) \leq Pre(a') \land C(a) \geq C(a')$$

Proposition

Given a Petri net ${\mathcal N}$ and Acc the set of all ${\mathcal N}$'s accelerations, then:

• (Acc, \preceq) is a well-ordered with

Order: Given two abstractions a, a':

$$\mathsf{a} \preceq \mathsf{a}' \stackrel{\textit{def}}{\iff} \mathsf{Pre}(\mathsf{a}) \leq \mathsf{Pre}(\mathsf{a}') \land \mathsf{C}(\mathsf{a}) \geq \mathsf{C}(\mathsf{a}')$$

Proposition

Given a Petri net $\mathcal N$ and Acc the set of all $\mathcal N$'s accelerations, then:

- (Acc, \preceq) is a well-ordered with
- Given a minimal acceleration ${\bf a}$, then ${\bf Pre}({\bf a}) < 2 {\it EXP}({\cal N})$ using [Leroux-19].

Order: Given two abstractions **a**, **a**':

$$\mathsf{a} \preceq \mathsf{a}' \stackrel{\textit{def}}{\iff} \mathsf{Pre}(\mathsf{a}) \leq \mathsf{Pre}(\mathsf{a}') \land \mathsf{C}(\mathsf{a}) \geq \mathsf{C}(\mathsf{a}')$$

Proposition

Given a Petri net $\mathcal N$ and Acc the set of all $\mathcal N$'s accelerations, then:

- (Acc, ≤) is a well-ordered with
- Given a minimal acceleration ${\bf a}$, then ${\bf Pre}({\bf a}) < 2 {\it EXP}({\cal N})$ using [Leroux-19].
- $\exists A \subset Acc$ such that $\uparrow A = Acc$ and $|A| \leq 3 EXP(\mathcal{N})$