Split Neural Network (SplitNN)

Authors:

Otkrist Gupta and Ramesh Raskar (first work, 2017)
Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar (follow-up works)
Massachusetts Institute of Technology

Slides prepared by: Chandra Thapa (July 2019)

- United States Patent Application Publication (Gupta et al., Dec 2017)
- Journal of Network and Computer Applications (Gupta el al., May 2018)
- Follow-up works (Vepakomma et al., Dec 2018 onward NIPS 2018, ICLR AI 2019)

• For resources: https://splitlearning.github.io/

Outline

- Motivations
- SplitNN Algorithms
- Split learning configurations
- Experiments and applications

'Invisible' Health Image Data

'Small Data'

'Small Data'

Distributed Data
Patient Privacy
Regulations
Cooperation

Resource Constraints

'Small Data'

Is it possible to train Neural Nets without exchange of raw patient data?

Federated Learning

McMahan et al. 2017

Server

How does it work?

SplitNN

SplitNN

With single Alice

Forward propagation

Backward propagation

- (a) Centralized distributed neural network training.
- (b) Peer-to-peer training for distributed learning.

Configurations of Split Learning

(a) Training with label propagation

(b) Training without label sharing

Gupta et al. 2018

Configurations of Split Learning

Vepakomma et al. 2018

Configurations of Split Learning

input

Vepakomma et al. 2018

Results and resource efficiency

(a) Validation accuracy with client side flops when (b) Validation accuracy with client side flops when training 100 clients (VGG and CIFAR 10). training 500 clients (Resnet-50 and CIFAR 100).

Dataset	Topology	Accuracy (Single Agent)	Accuracy using our method	Epochs
MNIST	LeNet (LeCun et al., 1989)	99.18%	99.20%	50
CIFAR 10	VGG (Simonyan and Zisserman)	92.45%	92.43%	200
CIFAR 100	VGG (Simonyan and Zisserman)	66.47%	66.59%	200
ILSVRC 12	AlexNet (Krizhevsky et al., 2012)	57.1%	57.1%	100

Computational resources consumed per client when training CIFAR 10 over VGG.

Method	100 Clients	500 Clients
Large Batch SGD	29.4 TFlops	5.89 TFlops
Federated Learning	29.4 TFlops	5.89 TFlops
SplitNN	0.1548 TFlops	0.03 TFlops

Communication bandwidth required per client when training CIFAR 100 over ResNet

Method	100 Clients	500 Clients
Large Batch SGD	13 GB	14 GB
Federated Learning	3 GB	2.4 GB
SplitNN	6 GB	1.2 GB

NoPeekNN (Vepakomma et al. 2019)

Improved SplitNN

- By minimizing reconstruction of raw data in distributed machine learning by minimizing distance correlation measure between raw data and any intermediary communication between entities while maintaining model accuracies.
- Reduced leakage during training over colorectal histology image data from 0.92 in traditional CNN and Vanilla SplitNN to 0.33 in NoPeekNN.