✓ Congratulations! You passed!

Next Item

/	points
1	
۱. What is	s the "cache" used for in our implementation of forward propagation and backward propagation?
	We use it to pass variables computed during backward propagation to the corresponding forward propagation step. It contains useful values for forward propagation to compute activations.
0	We use it to pass variables computed during forward propagation to the corresponding backward propagation step. It contains useful values for backward propagation to compute derivatives.
Corre	
Corr	rect, the "cache" records values from the forward propagation units and sends it to the kward propagation units because it is needed to compute the chain rule derivatives.
	It is used to cache the intermediate values of the cost function during training.
	It is used to keep track of the hyperparameters that we are searching over, to speed up computation.
2. Among	1 / 1 points g the following, which ones are "hyperparameters"? (Check all that apply.)
Un-s	weight matrices $W^{[l]}$
	bias vectors $b^{[l]}$
Un-s	elected is correct
	number of layers \boldsymbol{L} in the neural network
Corr	ect

	activation values $oldsymbol{a}^{[l]}$
Un-se	elected is correct
Corre	learning rate $lpha$
Corre	size of the hidden layers $oldsymbol{n}^{[l]}$
Corre	number of iterations
3. Which	1/1 points of the following statements is true?
Corre	The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers.
	The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers.
4. Vectori	1 / 1 $$ points $$ zation allows you to compute forward propagation in an $$ $\!$ $\!$ $\!$ $\!$ $\!$ L-layer neural network without an explicit
	p (or any other explicit iterative loop) over the layers l=1, 2,,L. True/False?
	True
0	False
may	vard propagation propagates the input through the layers, although for shallow networks we just write all the lines $(a^{[2]}=g^{[2]}(z^{[2]}),z^{[2]}=W^{[2]}a^{[1]}+b^{[2]},)$ in a deeper network, we not avoid a for loop iterating over the layers: $(a^{[l]}=g^{[l]}(z^{[l]}),z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]},)$.

1 / 1 points

5.

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x$, 4,3,2,1]. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

```
1 for(i in range(1, len(layer_dims)/2)):
2    parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
3    parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
1 for(i in range(1, len(layer_dims)/2)):
2  parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
3  parameter['b' + str(i)] = np.random.randn(layers[i-1], 1) * 0.01
```

```
1 for(i in range(1, len(layer_dims))):
2    parameter['W' + str(i)] = np.random.randn(layers[i-1], layers[i])) * 0.01
3    parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
for(i in range(1, len(layer_dims))):
    parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
    parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```


1/1 points

6.

 $Consider\ the\ following\ neural\ network.$

How many layers does this network have?

The number of layers ${\cal L}$ is 4. The number of hidden layers is 3.

Correc

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

\bigcirc	The number of layers L is 3. The number of hidden layers is 3.
	The number of layers $\it L$ is 4. The number of hidden layers is 4.
	The number of layers L is 5. The number of hidden layers is 4.
	1/1
V	points
functio	g forward propagation, in the forward function for a layer l you need to know what is the activation on in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward on also needs to know what is the activation function for layer l , since the gradient depends on it. False?
0	True
bacl	ect as you've seen in the week 3 each activation has a different derivative. Thus, during expropagation you need to know which activation was used in the forward propagation to be to compute the correct derivative.
	False
~	1/1 points
8. There	are certain functions with the following properties:
measu	ompute the function using a shallow network circuit, you will need a large network (where we ire size by the number of logic gates in the network), but (ii) To compute it using a deep network you need only an exponentially smaller network. True/False?
0	True
Corr	ect
	False
~	1/1 points

9.

Consider the following 2 hidden layer neural network:

Which of the following statements are True? (Check all that apply).

