Discrete Mathematics and Algorithms (CSE611) Lecture No: 2

Prepared by

Ramesh Katoori (201250898)

Rashmi Mishra (201250855)

Varunkumar Pandey (201250918)

Raj Mehta (201305504)

on

Topic: Relations

August 16, 2013

1 Relation

A relation between two sets A and B is a subset of the cartesian product $A \times B$ and is defined by R (or ρ or r).

 $R \subseteq A \times B$.

We write ${}_xR_y$ or ${}_x\rho_y$ if and only if (iff) $(x,y)\in R$ (or ρ).

We also write $x(\sim R)y$ when x is NOT related to y in R.

2 Inverse Relation

If R be a relation from A to B, then the inverse relation of R is the relation from B to A and is denoted and defined by

$$R^{-1} = \{(y,x) : y \in B, x \in A, (x,y) \in R\}.$$
$$\Longrightarrow (x,y) \in R \leftrightarrow (y,x) \in R^{-1}$$

Theorem 1. If R be a relation from A to B, then $(R^{-1})^{-1} = R$

Proof. We need to prove

(i)
$$(R^{-1})^{-1} \subseteq R$$

(ii)
$$R \subseteq (R^{-1})^{-1}$$

(i) Let
$$(x, y) \in (R^{-1})^{-1}$$

Required to prove (RTP) that $(x,y) \in R$

Let,
$$(x,y) \in (R^{-1})^{-1}$$

$$\Rightarrow (y, x) \in R^{-1}$$
 (By the definition of R^{-1})

$$\Rightarrow (x,y) \in R$$
 (By the definition of R^{-1})

$$Thus, (\mathbf{R}^{-1})^{-1} \subseteq R$$

(ii) Let
$$(x, y) \in R$$

Required to prove (RTP) that $(x, y) \in (R^{-1})^{-1}$

Let,
$$(x, y) \in R$$

$$\Rightarrow (y,x) \in (R^{-1}) \qquad \quad (\text{By the definition of } R^{-1})$$

$$\Rightarrow (x,y) \in (R^{-1})^{-1}$$
 (By the definition of R^{-1})

$$Thus, \mathbf{R} \subseteq (R^{-1})^{-1}$$

3 Reflexive Relation

Let A be a set and R the relation defined in it (i.e., $R \subseteq A \times A$).

R is said to be reflexive, if $(a, a) \in R, \forall a \in A$

 $\Rightarrow_a R_a$ holds for every $a \in A$.

Example. Consider the relation $R = \{(a, a), (a, c), (b, b), (c, c), (d, d)\}$ in the set A = (a, b, c, d).

Then R is reflexive, since $(x, x) \in R, \forall x \in A$, that is, ${}_xR_x$ holds for every $x \in A$.

4 Symmetric Relation

Let A be a set and R the relation defined in it (i.e., $R \subseteq A \times A$).

R is said to be symmetric, if $(a, b) \in R \Rightarrow (b, a) \in R, \forall a, b \in A$

In other words, ${}_aR_b \Rightarrow_b R_a$ for every $a,b \in A$.

Example. Let N be the set of natural numbers and R the relation defined in it such that ${}_xR_y$ if x is a divisor of y (that is, x|y), $x,y \in N$.

Then R is NOT symmetric, since ${}_xR_y \not\Rightarrow_y R_x, \forall x,y \in N.$

For example, $_3R_9 \not\Rightarrow_9 R_3$.

Theorem 2. For a symmetric relation R, $R^{-1} = R$

Proof. We need to prove

- (i) $R^{-1} \subseteq R$
- (ii) $R \subseteq R^{-1}$
- (i) Let $(x,y) \in R^{-1}$

Required to prove (RTP) that $(x, y) \in R$

Let,
$$(x, y) \in R^{-1}$$

$$\Rightarrow (y, x) \in (R^{-1})^{-1} = R$$
 (By the definition of R^{-1})

$$\Rightarrow (x, y) \in R$$
 (Since R is symmetric)

 $\mathsf{Thus}{,}R^{-1}\subseteq R$

(ii) Let $(x, y) \in R$

Required to prove (RTP) that $(x,y) \in R^{-1}$

Let,
$$(x, y) \in R$$

$$\Rightarrow (y,x) \in R \qquad \qquad \text{(Since R is symmetric)}$$

$$\Rightarrow (x,y) \in R^{-1}$$
 (By the definition of R^{-1})

 $Thus, \mathbf{R} \subseteq R^{-1}$

4

5 Anti-Symmetric Relation

Let A be a set and R the relation defined in it (i.e., $R \subseteq A \times A$).

R is said to be anti-symmetric, if ${}_aR_b$ and ${}_bR_a\Rightarrow a=b$, for every $a,b\in A$.

Example. Let A be the set of real numbers and R the relation defined in it such that $_xR_y$ if $x \leq y$, that is,

$$R = \{(x, y) \in A \times A \colon x \le y\}.$$

Then R is anti-symmetric, since

 $_xR_y$ and $_yR_x$

 $\Rightarrow x \leq y \text{ and } y \leq x$

 $\Rightarrow x = y$.

6 Transitive Relation

Let A be a set and R the relation defined in it (i.e., $R \subseteq A \times A$).

R is said to be transitive, if ${}_aR_b$ and ${}_bR_c \Rightarrow_a R_c, \forall a, b, c \in A$.

Example. Let N be the set of natural numbers and R the relation defined in it such that ${}_xR_y$ if x < y, that is,

$$R = \{(x, y) \in N \times N \colon x < y\}.$$

Then R is transitive, since

 $_xR_y$ and $_yR_z$

 $\Rightarrow x < y \text{ and } y < z$

 $\Rightarrow x < z$

 $\Rightarrow_x R_z$.

7 Equivalence Relation

Let A be a set and R the relation defined in it (i.e., $R \subseteq A \times A$).

R is said to be an equivalence relation, if and only if

- (1) R is reflexive, that is, ${}_{a}R_{a}$ holds, for every $a \in A$.
- (2) R is symmetric, that is, ${}_aR_b \Rightarrow_b R_a, \forall a,b \in A$.
- (3) R is transitive, that is, ${}_aR_b$ and ${}_bR_c \Rightarrow_a R_c, \forall a,b,c \in A$.

Q1. A relation ρ is defined on the set Z (set of all integers) by $_a\rho_b$ if and only if (2a+3b) is divisible by 5.

Prove or disprove: ρ is an equivalence relation.

Sol:

Claim 1:

Let $a \in Z$.

Then, 2a + 3a = 5a is divisible by 5.

Hence, $_a\rho_a$ holds, $\forall a\in Z$

 $\Rightarrow \rho$ is reflexive.

Claim 2: If $a \neq 0$ divides b (i.e., $a \mid b$), $a, b \in Z$ being integers, then $\exists x \in Z$ such that b = ax.

Lemma 4. If ρ be prime and a, b are integers such that $\rho|ab$, then either $\rho|a$ or $\rho|b$.

Let $a, b \in Z$. Assume that ${}_a\rho_b$ holds.

Then, (2a + 3b) is divisible by 5.

By the Euclids division algorithm, we have,

 $2a + 3b = 5k_1$, for some integer $k_1 \in Z$. $\Rightarrow 2(2a + 3b) = 10k_1$

$$\Rightarrow 4a + 6b = 10k_1$$

$$\Rightarrow 3(2b+3a)-5a=10k_1$$

$$\Rightarrow 3(2b+3a)=5(a+2k_1)=5k_2$$
, say, where $k_2=(a+2k_1)$ is an Integer

If ρ is prime and $\rho|ab$, then either $\rho|a$ or $\rho|b$.

Thus,
$$5|(2b + 3a)$$

$$\Rightarrow_b \rho_a$$
 holds.

Hence, ρ is symmetric.

Claim 3:

Let ${}_a\rho_b$ and ${}_b\rho_c$ hold, for every $a,b,c\in Z$. Then

$$\Rightarrow (2a + 3b)$$
 is divisible by 5

$$\Rightarrow 2a+3b=5l_1,$$
 for some $l_1\in Z,$ and $(2b+3c)$ is divisible by 5

$$\Rightarrow 2b + 3c = 5l_2$$
, for some $l_2 \in Z$.

Now
$$2(2a+3b) - 3(2b+3c) = 10l_1 - 15l_2$$

$$\Rightarrow 4a - 9c = 10l_1 - 15l_2$$

$$\Rightarrow 2(2a+3c) = 10l_1 - 15l_2 + 15c = 5(2l_1 - 3l_2 + 3c) = 5l_3, \text{ say,Where } l_3 = 2l_1 - 3l_2 + 3c \in Z$$

$$\Rightarrow 5|(2a+3c)$$

 $\Rightarrow_a \rho_c$ holds and ρ is also transitive.

Since ρ is reflexive, symmetric and transitive, so ρ is an equivalence relation.

8 Partial-order Relation

Let S be a non-empty set and R the relation defined in it (i.e., $R \subseteq S \times S$). R is said to be an partial-order relation, if and only if it satisfies the following three conditions:

- (1) R is reflexive, that is, ${}_aR_a$ holds, for every $a \in S$.
- (2) R is anti-symmetric, that is, ${}_aR_b$ and ${}_bR_a \Rightarrow a = b, \forall a, b \in S$.
- (3) R is transitive, that is, ${}_aR_b$ and ${}_bR_c \Rightarrow_a R_c, \forall a, b, c \in S$.

9 Equivalence Classes

Let A be a non-empty set and R be an equivalence relation defined in A. Let $a \in A$ be an arbitrary element. Then the elements $x \in A$ which satisfy ${}_xR_a$ form a subset of A which is called the equivalence class of $a \in A$ with respect to (w.r.to) R.

Thus, Aa or [a] or cl(a) or $a = \{x|_x R_a, x \in A\}$ is called the equivalence class of a in A w.r.to R.Let R be an equivalence relation on set A with a and b any 2 elements in A. Then prove:

(i)
$$a \in [a]$$

(ii)
$$[a] = [b]$$
 iff ${}_aR_b$ i.e $(a,b) \in R$

(iii) If
$$[a] \neq [b]$$
, then $[a] \cap [b] = \emptyset$

Proof.
$$[a] = \{x|_x R_a \ i.e.(x,a) \in R, x \in A\}$$

 $[b] = \{x|_x R_b \ i.e.(x,b) \in R, x \in A\}$

(i)

Since R is reflexive

 ${}_aR_a$ holds for every $a \in A$

so,
$$a \in A$$

(ii)

if part

Let
$$[a] = [b]$$

Since $a \in [a]$ (by part i)

$$\therefore a \in [b]$$

i.e.
$$(a, b) \in R$$
 (by definition of equivalence classes)

$$\Rightarrow_a R_b$$
 holds

only if part

 $_aR_b$ hold

RTP:
$$[a] = [b]$$
 i.e. $[a] \subseteq [b]$ and $[b] \subseteq [a]$

Let $x \in [a]$ Then, ${}_xR_a$ holds

$$\therefore_x R_a \text{ and } {}_aR_b \Rightarrow_x R_b \text{ holds}$$
 (since R is transitive)

$$\Rightarrow x \in [b]$$
 (by definition of equivalence classes)

$$\therefore [a] \subseteq [b]$$

Let
$$x \in [b]$$
 Then, $_xR_b$ holds

$$\therefore_x R_b$$
 and ${}_aR_b$ holds

$$\Rightarrow_x R_b$$
 and ${}_bR_a$ holds (since R is symmetric)

$$\Rightarrow_x R_a$$
 holds (since R is transitive)

$$\Rightarrow x \in [a]$$
 (by definition of equivalence classes)

$$\therefore [b] \subseteq [a]$$

Thus
$$[a] = [b]$$

$$[a] \neq [b] \Rightarrow [a] \cap [b] = \emptyset$$

contrapositive statement

RTP : [a]
$$\bigcap$$
 [b] \neq $\emptyset \Rightarrow$ [a] = [b]

Let
$$[a] \cap [b] \neq \emptyset$$

Then,
$$x \in [a] \cap [b]$$

$$\Rightarrow x \in [a] \text{ and } x \in [b]$$

$$\Rightarrow_x R_a$$
 and $_xR_b$ holds

 $\Rightarrow_a R_x$ and ${}_xR_a$ holds (since R is symmetric) $\Rightarrow_a R_b$ holds (since R is transitive) $\Rightarrow [a] = [b]$ (by part ii)

10 Partition

Let S be a non-empty set. Then a partition of S is a collection of non-empty disjoint sub-sets of S whose union is S.

In other words, if $A_1, A_2, ..., A_n$ be the non-empty sub-sets of S, then the set $P = \{A_1, A_2, ..., A_n\}$ is said to be a partition of S, if

(1)
$$A_1 \cup A_2 \cup ... \cup A_n = S$$
,

(2) either
$$A_i = A_j$$
 or $A_i \cap A_j = \emptyset, \forall i, j = 1, 2, ..., n$.

Example Consider a set $S = \{1, 2, 3, ..., 22\}$. Now consider three subsets A, B and C of S as follows:

$$A = \{1, 4, 7, ..., 22\},\$$

$$B = \{2, 5, 8, ..., 20\},\$$

$$C = \{3, 6, 9, ..., 21\}.$$

See that

(1)
$$A \cup B \cup C = S$$
, and

(2)
$$A \cap B = B \cap C = C \cap A = \emptyset$$
.

Hence, the set $(P) = \{A, B, C\}$ forms a partition of S.