

33ª JORNADA ACADÊMICA INTEGRADA

DESENVOLVIMENTO DE UM SOFTWARE PARA CONTROLE DE ESTABILIDADE DE VÔO

Silva, Társis B. 1(IC); Barriquello, Carlos H. 1(O)

¹Centro de Tecnologia, Universidade Federal de Santa Maria; ²Centro de Tecnologia, Universidade Federal de Santa Maria

Área de conhecimento: Engenharias

Objetivos:

Desenvolver uma plataforma (conjunto de softwares) para estudo de monitoramento e controle de vôo de aeronaves não tripuladas.

Obter um Software aberto de caráter didático.

Fundamentação Teórica:

Primeiramente foi necessário estudar a aeronave utilizada para os testes, no caso um quadrotor com as dimensões de: 55,88x55,88x15,24cmx e 1094g.

[Figura 1: Material adquirido sob empréstimo]

Modelou-se o sistema físico de um dos eixos do quadrotor a partir da seguinte resposta:

[Figura 2: resposta em malha aberta - MATLAB]

Grande parte de trabalho, concentrou-se em realizar o tratamento dos dados dos sensores (Acelerômetro, Magnetôemetro e Giroscópio) para se obter a orientação do quadrotor no espaço. Para unir os dados dos sensores, foram projetados filtros complementares, de forma a tornar a medida menos ruidosa, pois os sensores são de baixo custo.

[Figura 3: diagrama da leitura dos sensores]

O projeto foi inicialmente pensado para demandar *hardware* barato e relativamente robusto.

Custo estimado (Aliexpress)		
R\$13,50		
R\$80,00		
R\$3,50		
R\$5,00		

[Tabela1: utilizado]

Aplicações desenvolvidas

A plataforma conta com três softwares desenvolvidos para módulos específicos conforme o diagrama da "Figura 4".

[Figura 4: Plataforma em módulos]

O software principal do projeto, responsável pela estabilização e aquisição de dados, embarcado no módulo "drone", foi escrito em C. Assim como o software implementado no módulo "Modem", responsável por realizar a comunicação entre o rádio e a GUI (graphical user interface). O terceiro software (Figura 5), responsável pela interface com o usuário, foi escrito em Java, está contido no módulo "GUI", que é capaz de monitorar a orientação da aeronave, bem como permitir ajustes finos nos principais parâmetros de projeto.

[Figura 5: GUI da estação de solo

:							
Procedimento desenvolvidas	experimental	e aplicações	S				
Conclusão							
Referências							
Códigos e Referências: https://github.com/TarsisNatan/software_avant							