(19)日本国特許庁(JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-321135

(43)公開日 平成10年(1998)12月4日

(51) Int.Cl. ⁶	識別	記号 FI			
H01J	9/32	H01	J	9/32	D
	61/36			61/36	В

審査請求 未請求 請求項の数16 OL (全 12 頁)

		T	
(21)出願番号	特願平10-65283	(71)出顧人	000005821
			松下電器産業株式会社
(22)出願日	平成10年(1998) 3月16日		大阪府門真市大字門真1006番地
		(72)発明者	堀内 誠
(31)優先権主張番号	特願平9-62661		大阪府門真市大字門真1006番地 松下電器
(32)優先日	平 9 (1997) 3 月17日		産業株式会社内
(33)優先権主張国	日本 (JP)	(72)発明者	金子 由利子
	į.		大阪府門真市大字門真1006番地 松下電器
			産業株式会社内
		(72)発明者	竹田 守
			大阪府門真市大字門真1006番地 松下電器
			産業株式会社内
		(74)代理人	弁理士 青山 葆 (外1名)
		•	·

(54) 【発明の名称】 高圧放電ランプおよびその製造方法

(57)【要約】

【課題】 発光部内に突出する側の電極の最大径に制限 されことなく、発光部と側管部の隣接する部分の内径を 小さくでき、優れた耐高圧力を有するダブルエンドの高 圧放電ランプを製造するための方法を提供する。

【解決手段】 電極102のコイル102bが巻かれた 端部が、発光部3内に位置するように、電極組立体10 5を、排気されたガラスバルブ2内に配置する。この状 態でバーナー300で、発光部3と側管部4a(4b) が隣接する部分を加熱する。これによりコイル102b の部位の径に制限されることなく、側管部4a (4b) の内径を、電極棒102aの径まで小さくした縮径部7 を成形できる。

【特許請求の範囲】

【請求項1】 発光部とその両側に延在する側管部とから構成されたガラスバルブ内に、一端に金属箔が接続された電極で構成された電極組立体を一対封止した、ダブルエンドの高圧放電ランプを製造する方法において、前記金属箔に接続されていない側の電極の一端を前記発光部内に位置するように、前記電極組立体を挿入し、前記電極を取り囲む前記側管部の内径を縮径することを特徴とするダブルエンドの高圧放電ランプの製造方法。

1

【請求項2】 電極を取り囲む側管部の内径を縮径する 段階が、前記電極を取り囲む前記側管部分を実質的に均 一に加熱し、前記電極を取り囲む前記側管部を、外部か ら圧縮するような態様で行なわれることを特徴とする請 求項1記載の方法。

【請求項3】 ガラスバルブ内を大気圧以下の状態に保ち、電極を取り囲む前記側管部を実質的に均一に加熱することで、前記電極を取り囲む前記側管部の内径を縮径することを特徴とする請求項2記載の方法。

【請求項4】 電極を取り囲む側管部の内径を縮径する 段階が、前記電極を取り囲む前記側管部を実質的に均一 20 に加熱し、前記側管部と発光部とを互いに接近離反移動 させて、前記電極を取り囲む前記側管部にガラス肉溜を 形成するような態様で行なわれることを特徴とする請求 項1記載の方法。

【請求項5】 電極を取り囲む側管部の内径を縮径する 段階が、前記電極が一部を構成する電極組立体の酸化防 止のために、前記側管部の内部に不活性ガスを挿入した 様態で行なわれることを特徴とする請求項2から4記載 の方法。

【請求項6】 不活性ガスがアルゴンガスであることを 30 特徴とする請求項5記載の方法。

【請求項7】 電極を取り囲む側管部を実質的に均一に 加熱するために、前記側管部を周方向に回転させながら 加熱することを特徴とする請求項2から請求項6記載の 方法。

【請求項8】 電極を取り囲む側管部を実質的に均一に 加熱するために、前記側管部を加熱する加熱体が、前記 側管部の周方向に回転することを特徴とする請求項2か ら請求項7記載の方法。

【請求項9】 電極を取り囲む側管部を加熱する加熱体が、バーナーであることを特徴とする請求項2から請求項8記載の方法。

【請求項10】 電極を取り囲む側管部を加熱する加熱体が、高周波誘電加熱体であることを特徴とする請求項2から請求項8記載の方法。

【請求項11】 電極を取り囲む側管部を加熱する加熱 体が、レーザーであることを特徴とする請求項2から請 求項8記載の方法。

【請求項12】 電極組立体を構成する電極は、発光部内に突出する側の径が、金属箔に接続された側の径より

大きいことを特徴とする高圧放電ランプについて行なわれる請求項1から請求項11記載の方法。

2

【請求項13】 (1) ガラスからなる発光部と、(2) 前記 発光部の両端から延在し、ガラスからなる側管部と、

(3)一端が前記発光部内に配置され、他端が金属箔に接続され、かつ前記側管部に気密封止された一対の電極とを有し、

前記電極と前記金属箔との接続部から、前記発光部と前記側管部との境界部にいたる間の、前記電極と前記電極10 の周囲に存在するガラスとの間隙の最大幅をWmax、前記電極の最大径をL、最小径をdとしたとき、d<Wmax<Lであることを特徴とするダブルエンドの高圧放電ランプ。

【請求項14】 (1)ガラスからなる発光部と、(2)前記 発光部の両端から延在し、ガラスからなる側管部と、 (3)一端が前記発光部内に配置され、他端が金属箔に接 続され、かつ前記側管部に気密封止された一対の電極と

前記電極は直径がdの棒状体で構成され、と前記金属箔との接続部から、前記発光部と前記側管部との境界部にいたる間の、前記電極と前記電極の周囲に存在するガラスとの間隙の最大幅をWmaxとしたとき、d<Wmax<d+ Δ dであることを特徴とするダブルエンドの高圧放電ランプ。

【請求項15】 前記 Δ d は、0.1mm ≦ Δ d ≦ 0.4mm であることを特徴とする請求項14記載の高圧放電ランプ。

【請求項16】 前記 Δd は、0.4mmであることを特徴とする請求項14記載の高圧放電ランプ。

ク 【発明の詳細な説明】

[0001]

を有し、

【発明の属する技術分野】本発明はダブルエンドの高圧 放電ランプ、およびその製造方法に関するものである。 【0002】

【従来の技術】文字、図形などの画像を拡大投影し表示 する手段として、最近、液晶プロジェクタ装置などが知 られている。このような画像投影装置は所定の光出力が 必要であるため、光源としては輝度の高い高圧放電ラン プが一般に、広く使用されている。この種のランプは、 反射鏡と組み合わされるのが一般的である。最近は、反 射鏡の集光率の向上のために、高圧放電ランプの短アー ク長化が要望されている。ところが、こうしたアーク長 の短縮は、ランプ電圧の低下に結びつき、したがって同 じランプ電力で動作しようとした場合、ランプ電流の増 加を結果として生じる。ランプ電流の増加は、電極損失 の増大につながり、電極材料の蒸発を活発にし、電極の 早期劣化、すなわちランプの短寿命化をまねく。このよ うな理由からアーク長を短縮する場合は、ランプ動作時 の水銀蒸気圧などを増加させて、ランプ電圧の低下(ラ 50 ンプ電流の増加)を防ごうとするのが一般的である。

【0003】ランプ動作時の水銀蒸気圧などを増加させ る場合は、ランプが、その高い動作圧力で割れることの ないような構成をもたせる必要がある。このランプの破 裂に対する有力な手段は、The 7th International Symp osium on the Science & Technology of Light Sources (1995年)のSymposium Proceedingsの111項に詳しく 記載されている。この記載されている内容の概要を図1 6、図17を用いて説明する。

【0004】図16は従来の高圧放電ランプ130の構 の発光部、101は発光部100から延在する、同じく 石英ガラスからなる、側管部である。また102はタン グステン製の電極、103はモリブデン箔、104はモ リブデン製の外部導入リード線であって、これらはモリ ブデン箔103の一端に、一端が発光部100内に突出 する電極102、他端には外部導入リード線104が接 続されてなる電極組立体105を構成し、モリブデン箔 103のところで側管部101に気密に封着されてい る。電極102は、直径0.9mmを有するタングステン製 の電極棒102aと、発光部100内に突出する端部付 20 近に、電極棒102aに巻かれたタングステン製のコイ ル1026から構成されている。 コイル1026がまれ た電極102の外径Lは約1.4mmである。

【0005】発光部100内には水銀や金属ハロゲン化 物からなる封入物120と、図には示さないがアルゴン ガスが封入されている。

【0006】図17は、図16のXVII-XVIIに 沿った断面図で、A-A'の範囲、すなわち発光部10 0と側管部101のちょうど境界のところから、モリブ デン箔103の端部(電極102が接続されている側) までの間の任意の断面を矢印の方向から見た図を示す。 タングステン製の電極102と石英ガラスは本質的に完 全に密着することがないので、電極102の周りには、 図17の斜線で示すように、斜線で示す未密着部107 が生じている。この未密着部107の幅をWで表わす。

【0007】図16においてランプ130が点灯してい るときの、発光部1内部の圧力をP(この時、発光部1 00には矢印160で略示する圧力Pが働く)とする と、この未密着部107には、図17の矢印170で示 すように、矢印160で略示する圧力Pよりおおきな圧 カPmax (>P) が働く(応力集中現象)。故にたと えランプ130が点灯しているときの、発光部1内部の 圧力Pが、発光部を形成するガラスの破壊強度Plimit

(実質的には約400気圧から600気圧と言われてい る。この破壊強度は圧力が長時間、加えられるような状 態が続くと、低下する。) より小さくても、場合によっ ては、未密着部107には、ガラスの破壊強度を越える 圧力が働く場合がある (Pmax>Plimit>P)。その 場合は、未密着部107のガラスが割れ、ランプ130 は破裂してしまう。

【0008】記載されている内容によると、応力集中に よる矢印170で略示する未密着部107に働く圧力P maxの大きさは、未密着部107の幅Wの平方根に比 例して大きくなる (Pmax∝P×√W)。 したがって 例えば、同じ大きさの発光部1内部の圧力Pを考えたと き、未密着部107の幅Wが小さければちいさいほど、 未密着部107に働く圧力Pmaxは小さくなるので、 ガラスの破壊強度Plimitにたいするマージン(Plimit -Pmax)は、大きくなり、破裂しにくいランプとな 成を示す図である。100は石英ガラスからなる略球状 10 る(上述したように破壊強度 Plimitは、ガラスに圧力 が長時間、加えられるような状態が続くと低下するの で、点灯中に高い圧力で動作するランプでは、長時間、 ランプが破裂しないために、ある程度、このマージンが 必要である)。 逆に未密着部107の幅Wを変えない で、発光部1内部の圧力Pを高めてランプ130を点灯 すると、未密着部107に働く圧力Pmaxは大きくな るので、ガラスの破壊強度Plimitにたいするマージン (Plimit-Pmax) は、小さくなり、ランプは破裂 しやすくなる。

> 【0009】別の見方をすれば、同じ大きさのガラスの 破壊強度Plimitにたいするマージン (Plimit-Pma x)を考えれば、未密着部107の幅Wが小さければち いさいほど、発光部1内部の圧力Pは、より大きな値が 許される。つまりランプ130はより高い圧力での動作 (点灯) が可能になる。

【0010】このことから、この未密着部107の幅W を如何に小さし、応力集中を低減するかが、ランプの動 作圧力を高くしたときの破裂防止には重要なポイントと なる。

【0011】そこで従来は、アーク長を短縮するために 動作圧力を高めようとする際には、ランプの破裂防止の ために、例えば特開平7-262967に開示している ような方法によって未密着部107の幅Wを小さくし、 ランプを製造していた。 以下に従来の製造方法を説明す る。

【0012】図18から図20は従来の高圧放電ランプ 130の製造方法の概略を説明する図である。

【0013】図18において110は、別の工程で作成 したガラスバルブで、石英ガラス管を加熱し膨張させ て、所定の形状の発光部100を形成してある。発光部 100の両端につながる変形させない石英ガラス管が側 管部101となる。このガラスバルブ110を、図には 示していないが、側管部101の両端を保持する回転可 能なチャックで矢印115に示すように回転させなが ら、発光部100と側管部101の境界部を矢印111 で略示するバーナで加熱する。そして自由に回転するカ ーボンヘッド112で、側管部101の軟化部位を圧迫 し、その部位の内径を小さくした斜線領域で表わす縮径 部113を形成する。

【0014】上記のように発光部100の両端付近に縮

径部113を形成した後、次に図19に示すように、電 極組立体105の一部を構成する電極102の一端が発 光部100内に配置されるように電極組立体105を側 管部101内に挿入する。そしてモリブデン箔103の ところをガラスを十分に軟化させるために、縮径部11 3付近(モリブデン箔103より)から外部導入リード 線104にいたる適当な長さにわたり、矢印121で略 示するバーナで加熱し、図には示さないが、一対の挟み 片で挟み、または圧迫して偏平に締め付け、電極組立体 度のモリブデン箔103が伸びてガラスとの隙間を埋 め、気密がモリブデン箔103のところ保たれる。

【0015】続いて図20に示すように、今度は、まだ 封止がなされていない側管部101から発光部100内 に、封入物120を挿入し、そして側管部101に電極 組立体105を挿入する。この状態で図19と同様に、 縮径部113から外部導入リード線104にいたる側管 部を、矢印121で略示するバーナで加熱軟化し、図に は示さないが、一対の挟み片で挟み、または圧迫して偏 すと、図21に示すような、図16と同様の従来の高圧 放電ランプ130が完成する。

[0016]

【発明が解決しようとする課題】図22は、従来のラン プ130の発光部100と側管部101のちょうど境界 (図16、あるいは図21のA部) 付近を拡大した図で ある。 先にも説明したように、 タングステン製の電極1 02と石英ガラスは本質的に完全に密着することがない ので、電極102の周りには、ガラスとの間に隙間(図 17の未密着部107)が生じる。図22に示すように その隙間の幅は幅は一様ではないが、上記、従来の製造 方法によって作られるランプの場合、発光部100と側 管部101のちょうど境界あたりがもっとも大きいく、 モリブデン箔103にむかって小さくなる。このもっと も大きい幅をWmaxとする。この幅がもっとも大きい ところに、もっとも大きな圧力(集中応力) Pmax (∝√Wmax)が働く。

【0017】上記説明した特開平7-262967に開 示された従来の製造方法では、発光部100と側管部1 01の境界部を縮径し、縮径部113を形成した後に、 電極組立体105を側管部101から挿入し、電極10 2の一端を発光部100内部に配置する必要がある。そ のため、発光部100と側管部101のちょうど境界あ たりの隙間(未密着部107)の幅Wmaxは、電極1 02の発光部100内に突出する側の最も太い径、つま り直径 d=0.9mmの電極棒102aにコイル102bが巻 かれた部位の径L=1.4mm (>d) より常に大きい(W) max>L) ランプしか製造できない。このため従来の 高圧放電ランプ130は、Wmax>Lなる構造を有す るために、未密着部107に働く圧力Pmaxを十分に 50

6 小さくすることができず、ランプが破裂し易いと言う課 題があった。

【0018】具体的な数値例を挙げると、直径 d = 0.9m mの電極棒102aとコイル102bが巻かれた部分の 外径L=1.4mmに対して、従来の製造方法で作られた従 来のランプ130では、電極102と側管部101を構 成するガラスとの隙間の最大幅Wmaxは、おおよそ1. 5mmである。この場合、発光部100に小さな穴をあ け、その穴より高圧ガスを送り込んで発光部3内の圧力 105を側管部101に封止する。厚さ20ミクロン程 10 を増加させていくと、発光部100内に送り込んだ高圧 ガスがの圧力が約120気圧に達した付近で、ランプ1 30が破裂した。

【0019】また、コイル102bが無く、実質的に、 電極102が電極棒102aのみで構成されるようなラ ンプにおいては、図18において形成される縮径部11 3の内径rwは、電極棒102aの直径をdとすると き、d+Δdまでしか縮径できないという課題がある。 現在の位置決め挿入技術においては、Δdは、0.4mm 程度であるが、技術が改善されれば、Δdは、0.1mm 平に締め付け、電極組立体105を側管部101に封止 20 程度まで小さくすることができる。すなわち、理論的に は、内径rwをd+0.4mmよりも小さく、たとえばd +0.1mm程度までにすることができるが、現在の技術 においては、以下に説明するように、内径 r wはd+0. 4mm程度が好ましい。

> 【0020】内径 r wをd +0.4mmより小さく縮径す ると、ガラスと電極102(電極棒102a)を発光部1 00内に挿入するのが極めて困難で、作業性が悪くな る。加えて縮径部113の内径rwを小さくしすぎる と、電極102(電極棒102a)だけでなく、封入物1 30 20も発光部100に挿入しにくくなる。しかしなが ら、電極102(電極棒102a)や封入物を挿入する技 術が改善されれば、内径 rwは、d+0.1mm程度まで 小さくすることが可能となる。

【0021】本発明は上記の課題を解決し、破裂しにく い構成を有するダブルエンドの高圧放電ランプ、および その製造方法を提供することを目的としている。

[0022]

【課題を解決するための手段】本発明は上記の目的を達 成するために少なくとも電極と、一端に前記電極が接続 40 された金属箔とで構成された一対の電極組立体が封止さ れた、ダブルエンドの高圧放電ランプを製造するための 方法において、少なくとも発光部とその両側に延在する 側管部とから構成されたガラスバルブ内に、電極の金属 箔に接続されていない一端が発光部内に位置するよう に、電極組立体を挿入した状態で、電極を取り囲む側管 部の内径を縮径する段階を含んで、ダブルエンドの高圧 放電ランプを製造するものである。

【0023】また電極を取り囲む側管部の内径を縮径す る段階は、その側管部を実質的に均一に加熱し、外部か ら圧縮するような態様で行うものである。

7

【0024】あるいは電極組立体が挿入されたガラスバルブ内を大気圧以下の状態に保ち、電極を取り囲む側管部を実質的に均一に加熱するすることで、その側管部の内径を縮径することものである。

【0025】また電極を取り囲む側管部の内径を縮径する段階は、その側管部を実質的に均一に加熱し、側管部と発光部とを互いに接近離反移動させて、ガラス肉溜を形成するような態様で行うものである。

【0026】そして本発明にかかる高圧放電ランプにおいては、電極と金属箔との接続部から、発光部と側管部との境界部にいたる間の、電極と電極の周囲に存在するガラスとの間隙の最大幅をWmax、電極の最大径をし、最小径をdとしたとき、d<Wmax<Lとなるようにするものである。

【0027】電極が、コイルを有せず、直径dの棒状態で構成されている場合は、最大幅Wmaxは、d<Vmax $ax \le d + \Delta d$ (0.1mm $\le \Delta d$ $\le 0.4mm$) にすることができる。

[0028]

【発明の実施の形態】以下、本発明の実施の形態を添付 図面に基づいて詳細に説明する。

(実施の形態1)以下、本発明の高圧放電ランプの実施の形態1を図を用いて説明する。図1、図2は実施の形態1の高圧放電ランプ500を示す図である。

【0029】図1、図2において、3はガラスからなる発光部、4a,4bはそれぞれ発光部3から延在するガラスからなる側管部であり、そこには従来の高圧放電ランプと同様の構成、形状を有する一対の電極組立体105が封止されている。そして発光部3内には、従来の高圧放電ランプと同様に、水銀や金属ハロゲン化物からなる封入物120が封入されている。

【0030】図2は、図1において、発光部3と側管部 4b(あるいは4a)のちょうど境界付近を拡大した図 である。

【0031】本実施の形態1のランプ500の構造は、発光部3と側管部4b(あるいは4a)のちょうど境界あたりにおいて、電極102と側管部4b(あるいは4a)を構成するガラスとの隙間の最大幅Wmaxが、電極102の発光部3内に突出する側の最も太い径、つまり直径d=0.9mmの電極棒102aにコイル102bが巻かれた部位の径L=1.4mm(>d)より小さい(L>Wmax>d)ことを特徴とする。

【0032】具体的な数値例を挙げると、直径 d = 0.9mmの電極棒102aとコイル102bが巻かれた部分の外径 L=1.4mmに対して、電極102と側管部4b(あるいは4a)を構成するガラスとの隙間の最大幅Wmaxは、おおよそ0.95mmである。本実施の形態1のランプ500の割れに強いことを確認するために、発光部3に小さな穴をあけ、その穴より高圧ガスを送り込んで発光部3内の圧力を増加させ、ランプが破裂する圧力を測定

した。その結果は、発光部3内に送り込んだ高圧ガスがの圧力が約160気圧に達した付近で、ランプ500が破裂した。

8

【0033】この結果と、おなじ直径 d = 0.9mmの電極棒102aとコイル102bが巻かれた部分の外径L=1.4mmを有する従来のランプ130が、発光部内に送り込んだ高圧ガスがの圧力が約120気圧に達した付近で破裂した結果とを比較すれば、電極102と側管部を構成するガラスとの隙間の最大幅Wmaxがより小さい点を除いて、その他の構成が実質的に従来ランプ130と同じである本実施の形態1のランプ(したがって動作や発光特性などの点は、本実施の形態1のランプ500と従来ランプ130は全く同一)が、より破裂しにくいランプであることは明らかである。

【0034】以上のように本実施の形態1のランプは、電極102の発光部3内に突出する側の最も太い径、つまり直径dの電極棒102aにコイル102bが巻かれた部位の径L(>d)より、電極102と側管部を構成するガラスとの隙間の最大幅Wmaxの方が小さい(L20 > Wmax > d)構造を有するので、同じ構成の電極102を有する従来ランプ(Wmax > L)より、電極102の周囲にできる未密着部に働く応力集中が小さく、したがって割れにくいという特徴を有する。

【0035】以下の実施の形態は、実施の形態1に示した本発明の高圧放電ランプを製造するものである。

(実施の形態2)図3から図7は本発明の高圧放電ランプの製造方法の実施の形態2を説明する図である。

【0036】図3において2は、別の工程で作成したガラスバルブで、石英ガラス管を加熱し膨張させて、所定30 の形状に形成された発光部3と、発光部3の両端から延在する石英ガラス管の側管部4a、4bとから構成されている。この一方の側管部4aの端部は封止されている。このガラスバルブ2を、側管部4a、4bの両端を回転および接近離反移動可能なチャック1で保持する。

【0037】次に、図4に示すように、図1で示したも

のと同様の電極組立対105を、その一部を構成する電極102のコイル102bが巻かれた端部が、発光部3内に配置されるように、側管部4b内に挿入する。この状態でまず、矢印6に示すように、チャック1でガラスバルブ2を回転させる。そして矢印5aで示すように、ガラスバルブ2内部を真空排気し、矢印5bで略示するようにアルゴンガスを200mbar封入する。そして端部がまだ封止されていない側管部4bの端付近を、矢印200で略示するバーナー200で加熱し、封止する。

【0038】続いて図5に示すように、今度は、加熱体である矢印300で略示するバーナで、発光部3と側管部4bの境界部から電極102とモリブデン箔103の接続部分の間を適当な長さにわたり加熱、軟化する。

小さな穴をあけ、その穴より高圧ガスを送り込んで発光 【0039】このときガラスバルブ2内部の圧力は大気部3内の圧力を増加させ、ランプが破裂する圧力を測定 50 圧以下であるから、加熱部分が軟化するにつれ、加熱さ

れた部位の側管部4bの内径は縮径する。側管部4bの 内径がrw、少なくとも電極102のコイル102bが 巻かれた部位の径Lより小さくなるまで、好ましくは、 おおよそ電極102を構成する電極棒102aの直径 d 近傍まで縮んだところで、バーナー300の加熱を停止 する。こうして縮径部7の成形が完了する(拡大図参 照)。

【0040】続いて今度は、図6に示すように、そして モリブデン箔103のところをガラスを十分に軟化させ ら外部導入リード線104にいたる適当な長さにわた り、矢印300で略示するバーナで加熱する。ガラスバ ルブ2内部の圧力は大気圧以下であるから、加熱部分が 軟化するにつれ、加熱された部位の側管部4 b の内径は 縮み縮径する。気密がモリブデン箔103のところ保た れぐらいに、十分に縮んだところで、加熱を停止すれ ば、側管部4aでの電極組立体105の気密封止が完了 する。

【0041】次に図7に示すように、封止されている側 に水銀や金属ハロゲン化物等の封入物120を挿入し、 同時に側管部4a内に、残りの電極組立体105を、図 6と同様に配置する。この状態で、矢印6に示すよう に、チャック1でガラスバルブ2を回転させる。そして 矢印5 a で示すように、ガラスバルブ2内部を真空排気 し、矢印5bで略示するようにアルゴンガスを200mb ar封入する。そして端部が開放している側管部4 a の端 付近を、矢印200で略示するバーナー200で加熱 し、封止する。

【0042】その後、図5および図6と同様に、今度 は、加熱体である矢印300で略示するバーナーで、発 光部3と側管部4aの境界部から電極102とモリブデ ン箔103の接続部分の間を適当な長さにわたり加熱、 軟化し、側管部4aの内径を、おおよそ電極102を構 成する電極棒102aの径まで縮ませて縮径部7を形成 し、続いて縮径部7付近(モリブデン箔103より)か ら外部導入リード線104にいたる適当な長さにわたっ てガラスを加熱・軟化させ、側管部4 a での電極組立体 105の気密封止を行う。

【0043】以上のように発光部3と側管部4aの境界 部を縮径し、側管部4a, 4bに一対の電極組立体10 5を封止したのち、外部導入リード線104が外に出る ように、側管部4a, 4bの端部を切断除去すれば、最 終的に図1に示した本実施の形態1の高圧放電ランプ5 00を得ることができる。

【0044】なお、本実施の形態2において、側管部4 a, 4 bに一対の電極組立体105を気密封着する場合 に、モリブデン箔103のところで気密封止をより確実 にするために、ガラス(側管部4a, 4b)が軟化した

圧迫して偏平に締め付け、電極組立体105を側管部4 a, 4 bに封止する様にしてもかまわない。

【0045】さらに電極組立体105を気密封止するに おいて、本実施の形態2では、縮径部7を形成した後 に、モリブデン箔103部を充分に加熱・軟化したが、 電極組立体105を側管部4a、4b内に挿入してか ら、縮径部7を形成するのであれば、例えば、モリブデ ン箔103部を充分に加熱・軟化し、気密封止を完了し てから、発光部3と側管部4a(あるいは4b)との境 るために、縮径部7付近(モリブデン箔103より)か 10 界部付近を加熱し、側管部4a(あるいは4b)を縮径 して、縮径部7を形成するようにしてもかまわない。

> 【0046】また封入物120を発光部3に挿入した状 態で、発光部3と側管部4aの境界付近に縮径部を形成 したり、あるいは電極組立体105を側管部4aに封止 する場合、バーナの熱によって封入物120が蒸発する ことを防止するために、発光部3の一部を、例えば液体 窒素などを吹き付けて冷却することを付加しても何ら問 題はない。

【0047】また図5において、縮径部7を形成する加 管部4aの端部を切断して開放し、そこから発光部3内 20 熱体は、バーナー300でなくても、バーナー200を 移動したものであっても何等問題はない。

> 【0048】そして図5において、縮径部7を形成する 段階で、側管部4bの内径が縮径することを補助するた めに、例えば図9に示すように、自由に回転する耐熱性 のカーボンローラ77で加熱部分を圧迫し、縮径部7を 形成してもかまわない。この場合、縮径部7を形成する ためのカーボンヘッド77は複数個であって、縮径部7 を形成する部位の周囲の複数箇所を圧迫するような態様 で、縮径部7を形成してもかまわない。

【0049】あるいは図10に示すように、ガラスが軟 化してきたとことで、矢印30に示すようにチャック1 を互いに横移動させて、発光部3と側管部4 b を接近離 反移動させながら、徐々に接近させ、軟化部位にガラス 肉溜を形成するようにしてもよい。このガラス肉溜は、 内部に向かって成長するので、側管部4 b の縮径を補助 する。

【0050】以上、実施の形態2においては、側管部4 a、4bが均一に加熱されるために、ガラスバルブ2が 回転する例を説明したが、ガラスバルブ2は回転せず、 バーナー300が側管部を中心に周方向に回転する構成 であってもかまわないし、複数個のバーナーで周囲を加 熱する構成であってもかまわない。

【0051】なお、実施の形態2においては、電極組立 体105が側管部4a、4b内に固定、配置されない場 合を説明した。側管部4a, 4b内での電極組立体10 5の保持の有無は、本発明の効果には何ら影響を与えな いが、例えば図11に示すように、外部導入リード線1 04の一端に、全体の高さhが、わずかに側管部4b

(あるいは4a) の内径Dより大きくなるように折り曲 時に、図には示さないが、一対の挟み片で挟み、または 50 げられたモリブデンなどの薄い金属箔78を接続して側 管部4b(あるいは4a)に挿入し、金属箔78の折れ 曲がった部分と側管部4b(あるいは4a)内壁との摩 擦結合で、電極組立体105の位置合わせを行ってもか まわない。この場合、電極間距離や発光部3内での配置 精度を高めることができるという、別の効果が得られ る

(実施の形態3) 次に、図12から図15に基づき、本発明の高圧放電ランプの製造方法の実施の形態3を説明する。

【0052】図12において50は、実施の形態2で説 10 る。 明したガラスバルブ2の発光部3に、その内部を排気す るための比較的細い石英のガラス管40を接合したもの である。この排気用ガラス管40をチャック60で保持 し、側管部4a、4bが垂直方向に延在するようにバル ブ50を配置する。 1、

【0053】次に図13に示すように、電極組立体10 5を、その一部を構成する電極102のコイル102b が巻かれた端部が、発光部3内に配置されるように、下 側に位置する側管部4 bに挿入する。そして外部導入リ ード線104をチャック61で保持することで、電極組 *20* 立体105と側管部4bとの位置関係を固定する。ま た、矢印43に示すように、排気用ガラス管43から不 活性ガスであるアルゴンガスを導入する。この状態で一 対のバーナ44a、44bを点火し、側管部44bを中・ 心に、その周囲で回転させながら側管部4bを加熱す る。この時、一対にバーナ44a、44bの少なくとも 一方(図13ではバーナ44b)は、側管部4bと発光 部3との境界部が加熱されるように、配置されている。 【0054】まず発光部3と側管部4bの境界部が軟化 してきたところで、カーボンヘッド62をその部位に押 し当て圧迫し、その部分の側管部4a (あるいは4b) の内径を縮径する。このカーボンヘッド62は、バーナ 44a、44bと同様に、側管部4bを中心に回転す

【0055】図5と同様に、側管部4bの内径rwが、少なくとも電極102のコイル102bが巻かれた部位の径Lより小さくなるまで、好ましくは、おおよそ電極102を構成する電極棒102aの直径d近傍まで縮んだところで、側管部4b、カーボンヘッド62の圧迫を停止する。以上で縮径部7の成形が完了する。

【0056】そして図14に示すように、モリブデン箔103のところが十分に加熱され軟化した状態に達した後に、今度は、バーナ44a,44bの加熱、およびバーナー44a、44bとカーボンヘッド62の回転を停止し、直ちに一対の耐熱製のブロック45にて、矢印63に示すように、電極組立体105の一部を構成するモリブデン箔103の厚み方向に、側管部4bを夾み、圧迫して電極組立体105を側管部4a(あるいは4b)に気密封着する。

【0057】続いてチャック61の保持を開放し、ガラ *50* を乾燥した不活性ガス雰囲気内で行なうことができるの

スバルブ50を上下入れ換えて、残りの側管部4aについて、同様に縮径部7の形成、および電極組立体105の気密封着を行えば、図15に示すように、図1、図2に示した本発明の高圧放電ランプ500と同様の、電極102の発光部3内に突出する側の最も太い径、つまり直径dの電極棒102aにコイル102bが巻かれた部位の径L(>d)より、電極102と側管部を構成するガラスとの隙間の最大幅Wmaxの方が小さい(L>Wmax>d)構造を有する、ガラスバルブ70ができあがる。

【0058】この後、図には示さないが、排気用ガラス管40から発光部3内部に封入物120を挿入し、そして発光部3内を真空排気して、封入ガスを発光部3内部に所定量挿入し、排気用ガラス管40を封じ切れば、図1、図2に示した高圧放電ランプ500と同様に、同じ構成の電極102を有する従来ランプ(Wmax>L)より、電極102の周囲にできる未密着部に働く応力集中が小さく、したがって割れにくいという特徴を有するダブルエンドの高圧放電ランプを得ることができる。

7 【0059】なお本実施の形態では、回転する一対のバーナーを例に説明したが、バーナーの数はこれに限定されるものではない。また上側に位置する側管部4a(あるいは4b)に電極組立体105を挿入し、縮径部7の形成、および電極組立体105の気密封着を行なう方法であってもかまわない。

【0060】また縮径部7を形成するためのカーボンヘッド62は複数個であって、縮径部7を形成する部位の周囲の複数箇所を圧迫するような態様で、縮径部7を形成してもかまわない。

【0061】なお実施の形態2から実施の形態3においては、縮径される以前の段階で作成されたガラスバルブ2の側管部4a、4bの形状は、直管状である場合を例に説明したが、電極102のコイル102bが巻かれた側の一端が、発光部3内部に配置できれば、他の形状、たとえば発光部と側管部が隣接する部分が、はじめから縮径されているような形状であってもかまわない。この場合、発光部3内での電極102の先端部の位置合わせが容易となる別の効果が得られる。

【0062】また電極102を構成する電極棒102a 40 やコイル102bの形状には制限もなく、また電極10 2は電極棒102aとコイル102bが一体に成形され た構成であってもかまわない。さらに外部導入リード線 104は縮径部7を形成する段階で、モリブデン箔10 3の一端に接続されていなくても何等問題はない。

【0063】また実施の形態2から実施の形態3においては、ガラスを加熱する加熱体としてバーナーを例に説明したが、他の加熱体、例えば高周波誘導加熱体やレーザーであってもかまわない。高周波誘導加熱体やレーザーは、酸素を必要としないので、加熱を有する製造段階を乾燥した不活性ガス雰囲気内で行なることができるの

で、ランプ内部への不純ガス(水分)の混入を防止で き、ランプの寿命が伸びるという別の効果が得られる。 【0064】以上、実施の形態2と3では、電極102が 電極棒102aとコイル102bから構成されているラ ンプを例に説明したが、本発明のランプの製造方法は、 コイル102bが無く、実質的に電極102が電極棒1 02aのみで構成されるようなランプの構造にも非常に 適している。電極102(電極棒102a)や、あるいは 封入物120を発光部3内部に配置した後に、縮径部7 を形成する本発明の製造方法では、従来の製造方法で困 10 製造方法を示す図 難であった、 $d+\Delta d$ (d:電極棒102aの直径、0. 1mm≤Δd≤0.4mm) に容易に縮径することができ る。故に、従来の製造方法で製造困難であった、d<W max≦d+∆d (Wmax;電極102と周囲のガラ スとの間隙の最大幅) なる構造を有するランプを簡単に 実現できる。

13

【0065】以上、本発明は好ましい実施例について説 明してきたが、こうした記述は限定事項ではなく、種々 の変形が可能であることは勿論である。本実施の形態で 示した本発明の高圧放電ランプの製造点灯方法は例示で 20 あって、本発明の範囲は特許請求の範囲によって決定さ れるものである。

[0066]

【発明の効果】以上、実施例に基づいて説明したよう に、本発明によれば、側管部に電極組立体を挿入した状 態で、電極を取り囲む側管部の内径を縮径するので、縮 径部に位置する電極の径まで側管部の内径を小さくで き、したっがて割れにくい優れたダブルエンドの高圧放 電ランプを提供することができる。

【図面の簡単な説明】

- 【図1】 本発明の実施の形態1の高圧放電ランプの構 成を示す図
- 【図2】 図1の部分拡大図
- 【図3】 本発明の実施の形態2の高圧放電ランプの製 造方法を示す図
- 【図4】 本発明の実施の形態2の高圧放電ランプの製 造方法を示す図
- 【図5】 本発明の実施の形態2の高圧放電ランプの製 造方法を示す図
- 【図6】 本発明の実施の形態2の高圧放電ランプの製 40 造方法を示す図
- 【図7】 本発明の実施の形態2の高圧放電ランプの製

造方法を示す図

- 【図8】 本発明の実施の形態2の高圧放電ランプの製 造方法を示す図
- 【図9】 本発明の発光部と側管部の境界部を縮径する 工程を示す図
- 【図10】 本発明の発光部と側管部の境界部を縮径す る工程を示す図
- 【図11】 電極組立体を固定する方法を示す図
- 【図12】 本発明の実施の形態3の高圧放電ランプの
- 【図13】 本発明の実施の形態3の高圧放電ランプの 製造方法を示す図
- 【図14】 本発明の実施の形態3の高圧放電ランプの 製造方法を示す図
- 【図15】 本発明の実施の形態3の高圧放電ランプの 製造方法を示す図
- 【図16】 従来の高圧放電ランプの構成を示す図
- 【図17】 図16の線XVII-XVIIに沿った断 面図、
- 【図18】 従来の高圧放電ランプの製造方法を示す図
 - 【図19】 従来の高圧放電ランプの製造方法を示す図
 - 【図20】 従来の高圧放電ランプの製造方法を示す図
 - 【図21】 従来の高圧放電ランプの製造方法を示す図
 - 【図22】 従来の高圧放電ランプの発光部と側管部の 境界部の拡大図

【符号の説明】

- 3 発光部
- 側管部 4 a
- 4 b 側管部
- 7 縮径部 30
 - 102 電極
 - 102a 電極棒
 - 102b コイル
 - カーボンヘッド 112
 - 113 縮径部
 - 300 バーナー

Wmax 電極102と側管部を構成するガラスとの隙 間の最大幅

- 電極棒102aの直径
- L 電極棒102aにコイル102bが巻かれた 部位の径し

14

101 105 101 102b 102b 102 103 104

【図10】

【図11】

【図17】

【図16】

4b(4a)

【図18】

[図22]

