

Integrative Genomic and Transcriptomic Analysis Associated with Neoadjuvant Therapy Response in HER2-Positive Breast Cancer

Team member:

r12631055 生機所 林東甫 r12455006 基蛋所 黃以慧 r12424035 醫技所 王瀅茜 r12451010 臨藥所 黃宣瑜

Date: 2024-5-14

01

Introduction

Breast Cancer Histological Subtypes

Adapted from NCI Dictionaries

Molecular subtypes

The subtypes of breast cancers recognized by their gene signature

Molecular subtypes

The subtypes of breast cancers recognized by their gene signature

Neoadjuvant chemotherapy

- 1. Before surgery
- 2. Reducing tumor size
- 3. Improving overall survival by treating undetected micrometastasis
- 4. Accelerating the development and application of new combination therapy drugs for breast cancer.
- 5. Chemotherapy Resistance occurring

Carboplatin

- 1. Chemotherapy
- 2. Mechanism of action :Inhibits DNA synthesis
- 3. FDA approval :
 Breast, ovarian, lung, brain
 cancer, neuroblastoma ...
- 4. Resistance :
 Efflux, Detoxification system,
 DNA repair, Apoptosis

Zhou J, Kang Y, Chen L, Wang H, Liu J, Zeng S, Yu L. The Drug-Resistance Mechanisms of Five Platinum-Based Antitumor Agents. Front Pharmacol. 2020 Mar 20;11:343.

Trastuzumab

- 1. Monoclonal antibody
- 2. Mechanism of action : Block HER2
- 3. FDA approval :
 Breast, gastric cancer
- 4. Resistance : SRC

Muthuswamy SK. Trastuzumab resistance: all roads lead to SRC. Nat Med. 2011 Apr;17(4):416-8.

Pathologic complete response (pCR): absence of invasive/ in situ cancer in the breast and/or axillary lymph node.

Von Minckwitz, et. al., J Clin oncol, 2012.

Specific aims

To analyze differential gene expression between the two patient groups using RNA-seq data, and validate the findings with an independent dataset.

To identify **drug resistance-associated gene variants** from two RNA-seq datasets, and integrate with DNA-level mutation data for comparative analysis.

O3 To compare and discuss the results with previous studies.

Method

Overview RNA-seq (GEO) Gene Expression Omnibus **Sensitive** Resistant **cBioPortal Variants DEGs** Genomic

Integration

& Filtering

sequence

(cBioPortal)

Functional analysis

MAPK on resistance to anti-HER2 therapy for breast cancer (MSK, Nat Commun. 2022)

Transcriptomic analysis of breast cancer patients sensitive and resistant to chemotherapy: Looking for overall survival and drug resistance biomarkers (GSE162187)

	Treatment	Response	Age	molecular subtype	histological type	histological grade
Breast_cancer_44R	Carboplatin-Docetaxel-Trastuzumab6 cycles	R	58	HER 2	Invasive ductal carcinoma	SBRII
Breast_cancer_30S	Carboplatin-Paclitaxel weekly 4 cycles + Epirubicin-Cyclophosphamide 3 cycles	S	NA	NA	Invasive ductal carcinoma	NA
Breast_cancer_9S	Carboplatin-Paclitaxel weekly 4 cycles + Epirubicin-Cyclophosphamide 4 cycles	S	31	Luminal B	Invasive ductal carcinoma	SBRII
Breast_cancer_41S	Carboplatin-Paclitaxel weekly 4 cycles + Epirubicin-Cyclophosphamide 4 cycles + Trastuzumab6 concomitant cycles	S	52	Luminal B	Invasive ductal carcinoma	SBRII
Breast_cancer_24S	Carboplatin-Paclitaxel weekly 4 cycles + Epirubicin-Cyclophosphamide 4 cycles + Trastuzumab6 concomitant cycles	S	67	HER 2	Invasive ductal carcinoma	SBRIII
Breast_cancer_28R	Carboplatin-Paclitaxel weekly 4 cycles + Epirubicin-Cyclophosphamide 4 cycles + Trastuzumab8 concomitant cycles	R	33	HER 2	Invasive ductal carcinoma	SBRIII
Breast_cancer_21S	Carboplatin-Paclitaxel weekly 4 cycles + Epirubicin-Cyclophosphamide 4 cycles + Trastuzumab8 concomitant cycles	S	48	Luminal B	Invasive ductal carcinoma	SBRIII
Breast_cancer_5R	Carboplatin-Paclitaxel weekly 4 cycles + Epirubicin-Cyclophosphamide 4 cycles	R	44	Triple Negative	Invasive ductal carcinoma	SBRIII
Breast_cancer_8R	Doxorubicin-Cyclophosphamide 2 cycles	R	53	Luminal B	Invasive ductal carcinoma	SBRII
Breast_cancer_32S	Doxorubicin-Cyclophosphamide 4 cycles + Docetaxel 4 cycles	S	55	HER 2	Invasive ductal carcinoma	SBRIII
Breast_cancer_7S	Doxorubicin-Cyclophosphamide 4 cycles + Docetaxel 4 cycles + trastuzumab 3 concomitant cycles	S	64	HER 2	Invasive ductal carcinoma	SBRII
Breast_cancer_25R	Doxorubicin-Cyclophosphamide 4 cycles + Docetaxel 4 cycles	R	54	Luminal B	Invasive ductal carcinoma	SBRII
Breast_cancer_20S	Doxorubicin-Cyclophosphamide 4 cycles + Docetaxel 4 cycles	S	45	Luminal B	Invasive ductal carcinoma	SBRIII
Breast_cancer_22R	Epirubicina-Cyclophosphamide 4 cycles + Docetaxel 4 cycles	R	62	LUMINAL A	Invasive ductal carcinoma	SBRII
Breast_cancer_40R	Epirubicin-Cyclophosphamide + Paclitaxel weekly 4 cycles	R	54	Triple Negative	Invasive ductal carcinoma	SBRIII
Breast_cancer_2R	Epirubicin-Cyclophosphamide 4 cycles + Docetaxel 1 cycle	R	29	LUMINAL A	Invasive ductal carcinoma	SBRII
Breast_cancer_3R	Epirubicin-Cyclophosphamide 4 cycles + Docetaxel 4 ciclo + Trastuzumab3 concomitant cycles	R	49	HER 2	Invasive ductal carcinoma	SBRII
Breast_cancer_6R	Epirubicin-Cyclophosphamide 4 cycles + Docetaxel 4 cycles	R	55	LUMINAL A	Invasive ductal carcinoma	SBRI
Breast_cancer_39S	Epirubicin-Cyclophosphamide 4 cycles + Docetaxel 4 cycles	S	50	Triple Negative	Invasive ductal carcinoma	SBRIII
Breast_cancer_27R	Epirubicin-cyclophosphamide 4 cycles, docetaxel 4 ciclo and trastuzumab 3 cycles	R	56	HER 2	Invasive ductal carcinoma	NA
Breast_cancer_11R	Epirubicin-Cyclophosphamide 6 cycles	R	51	Triple Negative	Invasive ductal carcinoma	SBRIII
Breast_cancer_12R	Fluorouracil-Epirubicin-Cyclophosphamide 6 cycles	R	65	HER 2	Invasive ductal carcinoma	SBRII

Multi-center retrospective evaluation of a RNA expression classifier to predict pathological complete response to neoadjuvant chemotherapy in breast cancer biopsies (GSE163882)

Pipeline

03

Expected outcomes

- Identify DEGs that are associated with neoadjuvant treatment resistance in HER2+ breast cancer patients.
- 2. Explore potential drug resistance-associated genetic variants.
- 3. Combine the identified drug resistance-associated variants and the underlying pathways to gain a comprehensive understanding of treatment resistance mechanisms in HER2+ patients.

Activation, Dimerization and Cell Signalling

Hart V., et. al., Oncotarget, 2020

Work distribution

構思問題	黃以慧、黃宣瑜、王瀅茜			
搜集資料	黃以慧、黃宣瑜、王瀅茜			
設計方法	黄以慧			
撰寫程式	林東甫			
詮釋結果	黃以慧、黃宣瑜、王瀅茜			
進行報告	黃以慧、黃宣瑜、王瀅茜、林東甫			

Thank you for your listening!

Hormone Receptor Status After breast cancer diagnosed...

Status	Treatment	Frequency		
ER and PR	Adjuvant endocrine therapy	80%		
HER2	HER2-directed therapy	23% (32% HR-; 67% HR+)		
Triple Negative (ER, PR, HER2-)	Chemotherapy, Immunotherapy, Target therapy	13%		

ER: estrogen receptor

PR: progesterone receptor

HR: hormone receptor

Paclitaxel & Docetaxel

- 1. Chemotherapy
- 2. Mechanism of action : targets microtubules, cell cycle arrest
- 3. FDA approval :
 Breast, ovarian, lung, pancreatic,
 cervical cancer...
- 4. Resistance :
 Efflux, Detoxification system,
 tubulin isotype

Ortiz M, Wabel E, Mitchell K, Horibata S. Mechanisms of chemotherapy resistance in ovarian cancer. Cancer Drug Resist. 2022 Apr 3;5(2):304-31

Epirubicin & Doxorubicin

- 1. Chemotherapy
- 2. Mechanism of action : DNA topoisomerase inhibitor
- 3. FDA approval :
 Breast, ovarian, lung, brain cancer, neuroblastoma ...
- 4. Resistance : FABP5/PPARγ and CaMKII

Chen NN, Ma XD, Miao Z, Zhang XM, Han BY, Almaamari AA, Huang JM, Chen XY, Liu YJ, Su SW. Doxorubicin resistance in breast cancer is mediated via the activation of FABP5/PPARγ and CaMKII signaling pathway. Front Pharmacol. 2023 Jul 19;14:11508613

Epirubicin & Doxorubicin

- 1. Chemotherapy
- 2. Mechanism of action :

 DNA topoisomerase inhibitor
- 3. FDA approval :
 Breast, ovarian, lung, brain cancer, neuroblastoma ...
- 4. Resistance :
 Efflux, Detoxification system,
 DNA repair, Apoptosis

A. M. Tőkés et al. Tumor Glucose and Fatty Acid Metabolism in the Context of Anthracycline and Taxane-Based (Neo) Adjuvant Chemotherapy in Breast Carcinomas, Frontiers in Oncology, 12, 2022.

Cyclophosphamide

- 1. Chemotherapy
- 2. Mechanism of action:
- 3. FDA approval :

Breast cancer, multiple myeloma, sarcoma

4. Resistance :

Detoxification, DNA repair

-cyclophosphamide Trastuzumab

MAPK on resistance to anti-HER2 therapy for breast cancer (MSK, Nat Commun. 2022)

MAPK on resistance to anti-HER2 therapy for breast cancer (MSK, Nat Commun. 2022)

From the plot, we can observe the following:

- The Resistant (R) and Sensitive (S) groups are clearly separated along the first principal component (Dim1, accounting for 19.3% of the variance), indicating that there are gene expression differences between the two groups.
- The Resistant group shows more variation or spread along both principal components compared to the Sensitive group, suggesting higher heterogeneity within the Resistant samples.
- Some overlap exists between the two groups, indicating that while there are overall differences in gene expression, some individual samples may exhibit similarities across groups.