In the Claims:

1

2

3

4

5

Listing of all claims:

1-24. (Cancelled.)

1 25. (Previously Added) A welding, cutting or 2 heating system capable of receiving a range of input 3 voltages spanning at least two input utility voltages, comprising: 4 5 an input circuit configured to receive any input voltage within the range of input voltages, and configured 6 7 to provide a first dc signal; 8 a converter configured to receive the first do 9 signal and to provide a converter output, and configured to receive at least one control input; 10 11 an output circuit configured to receive the 12 converter output and to provide a welding, heating or 13 cutting signal; and 14 a controller, including a power factor correction 15 circuit, configured to provide at least one control signal to the converter. 16

- 26. (Currently Amended) The system of claim 25, further comprising an auxiliary power source configured to receive the any input voltage within the range of input voltages and configured to provide a control power signal to the controller.
- 27. (Currently Amended) The system of claim 26, wherein the auxiliary power controller source is capable of providing the control power signal at a preselected control signal voltage, regardless of the magnitude of the any input voltage.

- 28. (Previously Added) The system of claim 27, wherein the output circuit further comprises a pulsed transformer.
- 29. (Previously Added) The system of claim 28, wherein the convertor includes a boost circuit.
- 30. (Previously Added) The system of claim 29, wherein the output circuit includes a pulse width modulator connected to the transformer.

31. (Cancelled)

7

- 32. (Currently Amended) A method of providing welding, cutting or heating current from a range of input voltages spanning at least two input utility voltages, comprising:

 5 receiving the an input voltage from within the range and converting it to a first dc bus having a voltage
 - range and converting it to a first dc bus having a voltage magnitude higher than the input voltage;
- controlling the converting, including power factor correcting by controlling a switch; and
- receiving the dc bus and providing in response
 thereto an output current having an output magnitude
 suitable for a welding, heating or cutting.
- 33. (Previously Added) The method of claim 32,
 wherein converting includes rectifying.
- 34. (Currently Amended) The method of claim 32, further comprising deriving auxiliary power from any the input voltage within the range of input voltages and providing the derived auxiliary power as a power signal to a controller.

1	 Currently Amended) The method of claim 34,
2	wherein providing the derived auxiliary power includes providing
3	the derived auxiliary power at a preselected control signal
4	voltage, regardless of the magnitude of the input voltage.
1	36. (Previously Added) The method system of claim 34,
2	wherein providing in response thereto includes pulsing a
3	transformer.
1	37. (Previously Added) The method of claim 36,
2	wherein converting includes boost converting.
1	38. (Previously Added) The method of claim 37,
2	wherein providing in response thereto further comprises pulse
3	width modulating the transformer.
	39. (Cancelled)
1	40. (Previously Added) The method of claim 38 wherein
2	providing in response thereto further comprises rectifying the
3	output of the transformer.
1	41. (Previously Added) A welding, cutting or
2	heating system capable of receiving a range of input
3	voltages spanning at least two input utility voltages,
4	comprising:
5	input means for receiving any input voltage within
6	the range of input voltages, and for providing a first do
7	signal;
8	converter means for receiving the first dc signal
9	and providing a converter output in response to at least one
10	control input;
11	output means for receiving the converter output

and providing a welding, heating or cutting signal; and

13	control means for controlling, including power
14	factor correcting, the converter means, connected to the
15	converter means.
1	42. (Currently Amended) The system of claim 41,
2	further comprising auxiliary power means for providing a control
3	power signal to the controller <u>control means</u> in response to
4	receiving the any input voltage within the range of input
5	voltages.
1	43. (Currently Amended) The system of claim 42
2	wherein the auxiliary power means is further for providing the
3	control power signal at a preselected control signal voltage
4	regardless of the magnitude of the any input voltage.
1	44. (Previously Added) The system of claim 41,
2	wherein the output means further comprises means for pulsing a
3	transformer.
1	45. (Previously Added) The system of claim 44,
2	wherein the convertor means includes means for boosting a
3	voltage.
-	AC (Discontinually Related) The system of while AA
1	46. (Previously Added) The system of claim 44,
2 3	wherein the output means further includes means for pulse width
3	modulating the transformer.
	47. (Cancelled)
	1
1	48. (Previously Added) A power source for
2	welding, cutting or heating current, comprising:
3	means for receiving and converting an input

voltage from a range of input voltages spanning at least two

6

7

8

9 10

11

12

13

CORRIGAN LAW OFFICE

means for controlling the means for receiving and converting, including means for power factor correcting by controlling a switch, connected to the means for receiving and converting; and

means for receiving the dc bus and providing in response thereto an output current having an output magnitude suitable for a welding, heating or cutting.

- 1 49. (Previously Added) The power source of claim 48, 2 wherein the means for receiving and converting includes means for 3 rectifying.
- 1 50. (Currently Amended) The power source of claim 48, 2 further comprising means for deriving auxiliary power from the 3 input voltage any voltage within the range of input voltages and 4 providing the derived power as a power signal to the means for controlling. 5
- (Currently Amended) The power source of claim 1 2 34 50, wherein the means for deriving auxiliary power includes 3 means for providing the derived auxiliary power at a preselected 4 control signal voltage, regardless of the magnitude of the input 5 voltage.
- 1 52. (Currently Amended) The power source of claim 2 36 51, wherein the means for receiving and converting includes 3 means for boost converting to provide the first dc bus.

53. (Cancelled)

(Currently Amended) A welding, cutting or 1 2 heating system capable of receiving a range of input

CORRIGAN LAW OFFICE

3 voltages spanning at least two input utility voltages, comprising: 4 5 a power circuit comprising an input circuit, a 6 converter and an output circuit, wherein the power circuit 7 is capable of providing a welding cutting or heating output 8 without reconfiguring a the power circuit; 9 wherein the input circuit is configured to receive 10 any input voltage within the range of input voltages, and configured to provide a first dc signal; 11 wherein the converter includes a boost circuit and 12 13 is configured to receive and boost the first dc signal and 14 to provide a converter output, and configured to receive at 15 least one control input; 16 wherein the output circuit is configured to 17 receive the converter output and to provide the welding, 18 heating or cutting signal; and 19 a controller, including a power factor correction 20 circuit, configured to provide at least one control signal to the converter. 21 1

55. (Currently Amended) The system of claim 54, further comprising an auxiliary power circuit configured to receive the any voltage within the range of input voltages and configured to provide a control power signal to the controller.

56. (Previously Added) The system of claim 54, wherein the output circuit further comprises a pulsed transformer.

57. (Previously Added) The system of claim 56, wherein the output circuit includes a pulse width modulator connected to the transformer.

1	58. (Currently Amended) A method of providing
2	welding, cutting or heating current from a range of input
3	voltages spanning at least two input utility voltages,
4	comprising:
5	receiving the an input voltage and converting it
6	to a first dc bus having a voltage magnitude higher than the
7	input voltage, without reconfiguring a power circuit;
8	controlling the converting, including power factor
9	correcting by controlling a switch; and
10	receiving the first dc bus and providing in
11	response thereto an output current having an output
12	magnitude suitable for a welding, heating or cutting.
1	59. (Previously Added) The method of claim 58,
2	wherein converting includes rectifying.
	wherein convercing includes receifying.
1	60. (Currently Amended) The method of claim 59,
2	further comprising deriving auxiliary power from the input
3	voltage any voltage within the range of input voltages and
4	providing the derived power as a power signal to a controller.
1	61. (Previously Added) The method system of claim 60,
2	wherein providing in response thereto includes pulsing a
3	transformer.
)	60 (513-2)
	62. (Cancelled.)
1	63. (Previously Added) A welding, cutting or
2	heating system capable of receiving a range of input
3	voltages spanning at least two input utility voltages,
4	comprising;
5	input means for receiving any input voltage within
6	the range of input voltages, and for providing a first do
7	signal;

2

3

8	converter means for receiving and boosting the
9	first dc signal and providing a converter output in response
10	to at least one control input without reconfiguring a power
11	circuit;
12	output means for receiving the converter output
13	and providing a welding, heating or cutting signal; and
14	control means for controlling, including power
15	factor correcting, the converter means, connected to the
16	converter means.
1	64. (Currently Amended) The system of claim 63,
2	further comprising, auxiliary power means for providing a control
3	power signal to the control means controller in response to
4	receiving the any voltage within the range of input voltages.

CORRIGAN LAW OFFICE

65. (Currently Amended) The system of claim 63, wherein the output means further comprises means for pulsing a transformer that receives the converter output.

66. (Cancelled.)

1 67. (Previously Added) A welding, cutting or 2 heating system capable, comprising: 3 a power circuit comprising an input circuit, a converter and an output circuit, wherein the power circuit 4 is capable of providing a welding cutting or heating output; 5 6 wherein the input circuit is configured to receive 7 at least one input voltage, and provide a converter input 8 signal to the converter; 9 wherein the converter includes a boost circuit and 10 is configured to receive and boost the converter input 11 signal and to provide a dc bus output, and configured to 12 receive at least one control input;

1.3	wherein the output circuit is configured to
14	receive the dc bus, and to provide the welding, heating or
1.5	cutting signal;
16	a controller, including a power factor correction
L 7	circuit, configured to provide at least one control signal
18	to the converter; and
L9	an auxiliary power circuit configured to receive
30	any voltage within a range of input voltages spanning at
21	least two utility voltages, and configured to provide a
22	control power signal to the controller.
1	68. (Previously Added) The system of claim 54,
2	wherein the output circuit further comprises a pulsed
3	transformer.
1	69. (Currently Amended) A method of providing
2	welding, cutting or heating current comprising:
3	receiving an the input voltage and converting it
4	to a first dc bus having a voltage magnitude higher than the
5	input voltage;
6	controlling the converting, including power factor
7	correcting by controlling a switch;
8	receiving the first dc bus and providing in
9	response thereto an output current having an output
LO	magnitude suitable for a welding, heating or cutting; and
L1	deriving auxiliary power from any voltage within a
12	range of input voltages spanning at least two utility
13	voltages, and providing the derived power as a power signal
14	to a controller.
1	70. (Previously Added) The method of claim 69,
2	wherein converting includes rectifying.

71. (Cancelled.)

1	72. (Currently Amended) A welding, cutting or
2	heating system, comprising:
3	input means for receiving any input voltage within
4	a the range of input voltages spanning at least two utility
5	voltages, and for providing a first dc signal;
6	converter means for receiving and boosting the
7	first dc signal and providing a converter output in response
8	to at least one control input;
9	output means for receiving the converter output
10	and providing a welding, heating or cutting signal;
11	control means for controlling, including power
12	factor correcting, the converter means, connected to the
13	converter means; and
14	auxiliary power means for providing a control
15	power signal to the controller in response to receiving the
16	any voltage within a range of input voltages spanning at
17	least two utility voltages .
	\cdot

73. (Cancelled.)

1

2

3

4

5

6 7

8

9 10

11

12

13

74. (Currently Amended) A welding, cutting or heating power source capable of receiving a range of input voltages, comprising:

an input rectifier configured to receive an ac input, wherein the range includes a highest magnitude and a lowest magnitude, and wherein the highest magnitude is at least twice the lowest magnitude, and wherein the rectifier is configured to provide a first dc signal;

a boost converter connected to receive the first dc signal and provide a second dc output across a dc bus comprising a positive bus and a negative bus, wherein the boost converter is configured to receive at least one control input, and wherein the boost converter includes a

25

26

27

28 29

30

31

32 33

34

1

2

3 4

5

7

8

9

10

11

12

boost inductor having a first end in electrical
communication with the rectifier, and the boost inductor has
a second end in electrical communication with a switch,
wherein when the switch is closed the second end is in
electrical communication with negative bus, and wherein the
second end is in electrical communication with a diode, and
the diode is further in electrical communication with the
positive bus, such that current can flow from the second end
through the diode to the positive bus;
a pulse width modulator connected to receive the
dc bus and provide a pulsed signal;

CORRIGAN LAW OFFICE

an output transformer, having a primary connected to receive the pulsed signal and to provide an output signal having a current suitable for welding or cutting on a secondary;

a controller, including a power factor correction circuit, configured to provide at least one control signal to the converter; and

an auxiliary power source capable of providing a control power signal at a preselected control signal voltage, for a plurality of input voltages.

(Currently Amended) A method of providing 75. welding, cutting or heating power from a range of input voltages, comprising:

rectifying an ac input, wherein the range includes a highest magnitude and a lowest magnitude, and wherein the highest magnitude is at least twice the lowest magnitude, and wherein the rectifier is configured to provide a first dc signal;

boost converting the first dc signal to a second dc output across a dc bus comprising a negative and positive bus, including receiving at least one control input, and boosting through a boost inductor having a first end in

8

9

10

11

12

13

and

13 electrical communication with a rectifier, and a second end in electrical communication with a switch, wherein when the 14 switch is closed the second end is in electrical 15 16 communication with negative bus, and wherein the second end 17 is in electrical communication with a diode, and the diode is further in electrical communication with the positive 18 19 bus, such that current can flow from the second end through the diode to the positive bus; 20 21 pulse width modulating the dc bus to provide a 22 pulsed signal; transforming the pulsed signal to provide an 23 24 output signal having a current suitable for welding or 25 cutting; 26 controlling the boost converting to power factor 27 correct; and 28 providing auxiliary power at a control power 29 signal at a preselected control signal voltage, for a plurality of input voltages. 1 76. A welding, cutting or heating power (New) 2 source, comprising: 3 an input circuit configured to receive an ac input and 4 to provide a first dc signal; 5 a converter configured to receive the first dc signal

- 13 -

and to provide a converter output, and configured to receive

output and to provide a welding, heating or cutting signal;

a controller, including a power factor correction

circuit, configured to provide at least one control signal

an output circuit configured to receive the converter

at least one control input;

to the converter.

1	77. (New) The apparatus of claim 76, further
2	including an auxiliary power source capable of providing a
3	control power signal to the controller at a preselected control
4	signal voltage, regardless of the magnitude of the ac input
5	signal.
1	78. (New) The apparatus of claim 77, wherein the
2	auxiliary power source includes an auxiliary transformer with a
3	plurality of primary taps.
3	pidraticy of primary caps.
7	79. (New) The apparatus of claim 76. wherein the
1	
2	converter includes a boost circuit.
1	80. (New) The apparatus of claim 76, wherein the
2	output circuit includes a pulse width modulator.
1	81. (New) The apparatus of claim 80, wherein the
2	converter includes a boost circuit.
1	82. (New) The apparatus of claim 76 wherein the
2	output circuit includes an inverter.
1	83. (New) The apparatus of claim 76 wherein the
2	output circuit includes a rectifier.
ı	84. (New) The apparatus of claim 76 wherein the
2	output circuit includes a cycloconverter.
_	saspas direction and discontinuous
1	85. (New) A method of providing a welding,
2	cutting or heating current, comprising:
	- · · · · · · · · · · · · · · · · · · ·
3	boost converting and power factor correcting an ac

changing the second signal into a third signal having a

current suitable for welding, cutting or heating.

input signal to a second signal; and

5

l

2	including providing control signals to a converter that cause the
3	converter to power factor correct.
1	87. (New) The method of claim 85, further
2	including providing auxiliary power signal by transforming the ac
3	input signal.
1	88. (New) The method of claim 85, wherein
2	changing includes pulse width modulating.
1	89. (New) The method of claim 85, wherein
2	changing includes inverting.
1	90. (New) A welding, cutting or heating power
2	source, comprising:
3	rectifier means for receiving an input signal and
4	providing a first dc signal;
5	converter means for receiving the first dc signal and
6	providing a converter output;
7	control means for controlling the converter means,
8	wherein the control means includes a power factor correction
9	means for power factor correction, connected to the
10	converter means;
11	output means for receiving the converter output and
12	providing a welding, heating or cutting signal.
1	91. (New) The apparatus of claim 90. wherein the
2	91. (New) The apparatus of claim 90, wherein the converter means includes a boost circuit.
-	CONVELCE MEANS INCLUDED A DOODE CLICULE.

86. (New) The method of claim 85 further

converter means includes a boost circuit.

92.

plurality of primary taps.

(New)

1

2

3

The apparatus of claim 91, wherein the

2	output means includes a pulse width modulator.
1	93. (New) The apparatus of claim 90, wherein the
2	output circuit includes an inverter.
1	94. (New) The apparatus of claim 90 wherein the
2	output circuit includes a rectifier.
1	95. (New) A welding or cutting power source,
2	comprising:
3	an input circuit configured to receive an input having
4	a magnitude over a range of inputs, wherein the range
5	includes a highest magnitude at least twice a lowest
6	magnitude, and to provide a first dc signal;
7	a boost converter, including a boost inductor connected
8	to receive the first dc signal, wherein the boost converter
9	has a dc bus output;
LO	an output circuit configured to receive the dc bus
L 1	output and to provide a welding or cutting signal; and
L 2	a controller, including a power factor correction
L3	circuit, configured to provide at least one control signal
.4	to the boost converter.
1	96. (New) The apparatus of claim 95, further
2	including an auxiliary power source capable of providing a
3	control power signal at a preselected control signal voltage for
4	a plurality of magnitudes of the input signal.
1	97 (New) The apparatus of claim 96 wherein the

auxiliary power source includes an auxiliary transformer with a

ı 98. (New) The apparatus of claim 95, wherein the 2 output circuit includes a switched circuit connected across the 3 dc bus, and a transformer having a primary connected in the switched circuit. 4

CORRIGAN LAW OFFICE

- 1 99. (New) The apparatus of claim 98, wherein the 2 switched circuit is a pulse width modulator.
- 1 100. (New) The apparatus of claim 98, wherein the 2 output circuit includes an output rectifier connected to a 3 secondary of the transformer.
- 1 101. (New) The apparatus of claim 100, wherein the 2 switched circuit includes an inverter.
- 1 102. (New) The apparatus of claim 100 wherein the 2 output circuit includes an inductor connected to the output rectifier. 3
- 1 103. (New) The apparatus of claim 95 wherein the 2 output circuit includes a cycloconverter.
- 104. (New) The apparatus of claim 103, further 1 2 comprising a first output stud connected to the inductor, and 3 disposed to be connected to one of a torch and a ground clamp, 4 and a second output stud, disposed to be connected to the other 5 of the torch and a ground clamp.