3.1

- 4. The following relations are defined on N.
 - (a) Write the relation R_1 defined by $(m, n) \in R_1$ if m + n = 5 as a set of ordered pairs.

$$R_1 = \{(0,5), (1,4), (2,3), (3,2), (4,1), (5,0)\}$$

- (b) Do the same for R_2 defined by $\max\{m, n\} = 2$. $R_2 = \{(0, 2), (1, 2), (2, 2), (2, 1), (2, 0)\}$
- (c) The relations R_3 defined by min $\{m, n\} = 2$ consists of infinitely many ordered pairs. List five of them. $\{(2,3),(2,4),(2,5),(2,6),(2,7)\}$
- 6. Consider the relation R on \mathbb{Z} defined by $(m,n) \in R$ if and only if $m^3 n^2 \equiv 0 \mod(5)$. Which of the properties (R), (AR), (S), (AS), and (T) are satisfied by R?
 - R does not satisfy (R) because if (m,n)=(3,3) then $3^3-3^2=27-9=18$ and $5 \nmid 18$, so 3 is not related to itself. Thus it's not reflexive.
 - R does not satisfy (AR) because if m, n = 5 then $5^3 5^2 = 125 25 = 100$ and $5 \mid 100$, so 5 is related to itself. Thus it's not antireflexive.
 - R does not satisfy (S) because if m=1, n=4 then $1^3-4^2=1-16=-15$ and $5\mid -15$, so 1 is related to 4. if m=4, n=1 then $4^3-1^2=64-1=63$ and $5\nmid 63$, so 4 is not related to 1. Since 1 is related to 4 and 4 is not related to 1, it's not symmetric.
 - R does not satisfy (AS) because if m = 5, n = 0 then $5^3 0^2 = 125$ and $5 \mid 125$, so 5 is related to 0. if m = 0, n = 5 then $0^3 5^2 = -25$ and $5 \mid -25$, so 0 is related to 5. Since 0 is related to 5 and 5 is related to 0, but $5 \neq 0$ it's not antisymmetric.
 - R satisfies (T).
- 7. Define the "divides" relation R on N by $(m, n) \in R$ if $m \mid n$.

- (a) Which of the properties (R), (AR), (S), (AS), (T) does R satisfy?
 - R satisfies (R).
 - R does not satisfy (AR) because if m, n = 5 then $5 \mid 5$ thus $(5,5) \in R$.
 - R does not satisfy (S) because if m = 5, n = 10 then $5 \mid 10$, but if m = 10, n = 5 then $10 \nmid 5$ thus $(5, 10) \in R$, but $(10, 5) \notin R$.
 - R satisfies (AS).
 - R satisfies (T).
- (b) Describe the converse relation R^{\leftarrow} . R^{\leftarrow} is the relation on \mathbb{N} by $(n,m) \in R^{\leftarrow}$ if $n \mid m$.
- (c) Which of the properties (R), (AR), (S), (AS), (T) does the converse satisfy?
 - R^{\leftarrow} satisfies (R).
 - R^{\leftarrow} does not satisfy (AR) because if n, m = 5 then $5 \mid 5$ thus $(5,5) \in R^{\leftarrow}$.
 - R^{\leftarrow} does not satisfy (S) because if n = 5, m = 10 then $5 \mid 10$, but if n = 10, m = 5 then $10 \nmid 5$ thus $(5, 10) \in R^{\leftarrow}$, but $(10, 5) \notin R^{\leftarrow}$.
 - R^{\leftarrow} satisfies (AS).
 - R^{\leftarrow} satisfies (T).
- 10. Give an example of the relation that is:
 - (a) antisymmetric and transitive but not reflexive. The relation R on \mathbb{Z} by $(m,n) \in R$ if and only if m < n.
 - (b) symmetric but not reflexive or transitive. The relation R on the set $\{0,1,2,3\}$ by $(m,n) \in R$ if and only if max(m,n)=3.