

RAJESH SHARMA SOFTWARE ENGINEER Walt Disney Animation Studios

Machine Learning

Rajesh Sharma ————

Today

- Quick Recap & Questions
- Classification
- Maximum Likelihood Estimation
- Autoencoder

Recap

Neural Network for regression

Recap - Questions

Why those specific numbers of layers and nodes?

Why that specific batch size? What's an epoch?

Strings and Categorical values

Normalization vs Standardization

If this is a Linear Regression why are we using a Neural Net?

When we are classifying images, will we only have one input/feature?

Is there anything extra happening at the end of each epoch?

How much data is needed?

Classification

Given some pre-classified data:

Q: How do we find which class the new data belongs to?

A: By finding the maximum likelihood

Probability & Statistics: Normal Distribution

$$N(\mu, \sigma^2)$$
 ; μ - mean , σ^2 - variance

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Probability & Statistics: Normal

Regression -- Maximum Likelihood Estimation

Prediction: $\hat{y} = ax + b$

Actual: \mathbf{y}_{i}

Error: $|y_i - \hat{y}_i|$

Total Squared Error:

$$\sum (y_i - \hat{y}_i)^2$$
, for i=(1, n)

Minimize Total Squared Error:

$$E(a,b) = \sum (y_i - ax_i - b)^2$$

(a,b) are the parameters (weights)

Regression -- Maximum Likelihood Estimation

Maximum Likelihood Estimation vs MSE

$$f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$f(x_1,\ldots,x_n\mid \mu,\sigma^2) = \prod_{i=1}^n f(x_i\mid \mu,\sigma^2) = \left(rac{1}{2\pi\sigma^2}
ight)^{n/2} \exp\Biggl(-rac{\sum_{i=1}^n (x_i-\mu)^2}{2\sigma^2}\Biggr).$$

$$\log \left(\mathcal{L}(\mu,\sigma)
ight) = -rac{n}{2}\log(2\pi\sigma^2) - rac{1}{2\sigma^2}\sum_{i=1}^n(\left.x_i-\mu
ight.)^2$$

Autoencoder

For regression, we had a fully-connected network, output layer size=1

Autoencoder

Autoencoder

Hands-on

- ★ Log in to your google drive
- ★ Find the shared folder 'Disney Machine Learning Webinar'
- ★ Make a copy of:
 - AutoEncoder.ipynb,

Autoencoder - Model

```
# build an autoencoder
model = tf.keras.models.Sequential([
    tf.keras.layers.InputLayer(IMG_SHAPE),
    tf.keras.layers.Flatten(),
    # encoder
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(64, activation='relu'),
    tf.keras.lavers.Dense(32. activation='relu').
    # decoder
    tf.keras.layers.Dense(64, activation='relu'),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(784, activation='sigmoid'),
    tf.keras.layers.Reshape(IMG_SHAPE)
# compile
model.compile(optimizer='adamax', loss='mse')
# fit
model.fit(x_train, x_train, epochs=17,batch_size=256, shuffle=True, validation_data=(x_test, x_test))
# predict
decoded_imgs = model.predict(x_test)
```

Autoencoder - results

Compression Factor: 28x28/32 ~ 25X

Homework - Classify mnist data

Next Class

- Efficient Data Pipeline
- Convolutional Neural Network
- Homework:
 - Use the mnist dataset for classification
 - Extra credit: also show "next likely"
- @xarmalarma, #siggraphNOW

WANT TO HEAR MORE FROM SIGGRAPH AND DISNEY?

Check out SIGGRAPH Now on YouTube

YouTube.com/user/ACMSIGGRAPH

Subscribe to the SIGGRAPH Spotlight podcast

