

Objective

- Define hierarchical data and related terms
- List example tasks for hierarchical and network data
- Understand approaches to draw 2D trees
- Describe treemap, SunBurst, and other techniques

Connected World

Social Networks

Social Networks

Properties of networks

Properties

Undirected edges

Directed edges

Bi-directional, symmetrical edges

Bi-directional, asymmetrical edges

Graph terminology I

- A graph is a collection of nodes (or vertices, singular is vertex) and edges (or arcs)
 - Each node contains an element
 - Each edge connects two nodes together (or possibly the same node to itself) and may contain an edge attribute

Graph terminology I

- A directed graph is one in which the edges have a direction
- An undirected graph is one in which the edges do not have a direction

Graph terminology II

- The size of a graph is the number of *nodes* in it
- If two nodes are connected by an edge, they are neighbors (and the nodes are adjacent to each other)
- The degree of a node is the number of edges it has
- For directed graphs,
 - The in-degree of a node is the number of in-edges it has
 - The out-degree of a node is the number of out-edges it has

	Indegree	Outdegree
1	3	0
2	2	2
2	1	2
4	1	3
5	2	1
6	2	3

Graph terminology III

- A path is a list of edges such that each node (but the last) is the predecessor of the next node in the list
- A cycle is a path whose first and last nodes are the same

- Example: (London, Bristol, Birmingham, London, Dover) is a path
- Example: (London, Bristol, Birmingham, London) is a cycle
- A cyclic graph contains at least one cycle
- An acyclic graph does not contain any cycles

Graph terminology IV

- An undirected graph is connected if there is a path from every node to every other node
- A directed graph is strongly connected if there is a path from every node to every other node
- Node X is reachable from node Y if there is a path from Y to X
- A subset of the nodes of the graph is a connected component (or just a component) if there is a path from every node in the subset to every other node in the subset

Adjacency-matrix representation I

- One simple way of representing a graph is the adjacency matrix
- A 2-D array has a mark at [i][j] if there is an edge from node i to node j
- The adjacency matrix is symmetric about the main diagonal

Adjacency-matrix representation II

- An adjacency matrix can equally well be used for digraphs (directed graphs)
- A 2-D array has a mark at [i][j] if there is an edge from node i to node j
- Only suitable for small graphs!

Pros and Cons of Adjacency Matrices

Pros:

- Simple to implement
- Easy and fast to tell if a pair (i,j) is an edge: simply check if A[i][j] is 1 or 0

Cons:

 No matter how few edges the graph has, the matrix takes O(n²) in memory

Edge-set representation I

- An edge-set representation uses a set of nodes and a set of edges
 - The sets might be represented by, say, linked lists
 - The set links are stored in the nodes and edges themselves

Edge-set representation II

 Here we have a set of nodes, and each node contains only its element (not shown)

 Each edge contains references to its source and its destination (and its attribute, if any)

Adjacency-set representation II

- Here we have a set of nodes, and each node refers to a set of edges
- Each edge contains references to its source and its destination (and its attribute, if any)

Adjacency-set representation II

- Here we have a set of nodes, and each node refers to a set of other (pointed to) nodes
- The edges are *implicit*

Graph representations: Adjacency List

Undirected weighted graph

Graph representations: Adjacency List

Directed weighted graph

Topology: Planar graphs

Graphs that can be laid out without edge crossing

Which on is planar?

Topology: Planar graphs

Graphs that can be laid out without edge crossing

Topology: Planar graphs

Non-planar

© The Johns Hopkins University 2016, All Rights Reserved.