Tema 3.- Subgrupos. Generadores. Retículos

Definición

Dados los grupos G y H, se dice que H es un subgrupo de G, H < G, si H es un subconjunto de G y la aplicación de inclusión $H \to G$ es un homomorfismos de grupos.

Proposición

Sea G un grupo y $\emptyset \neq H \subset G$. Entonces:

- 1.- Son equivalentes:
- i) H < G
- ii) Se verifican las condiciones:

a)
$$\forall x, y \in H \implies xy \in H$$
 b) $1 \in H$ c) $\forall x \in H \implies x^{-1} \in H$

$$iii) \forall x, y \in H \Longrightarrow xy^{-1} \in H$$

- 2.- En el caso de que G sea finito entonces son equivalentes:
- i) H < G
- $ii) \ \forall x,y \in H \Longrightarrow xy \in H$

Proposición

Sea $f: G \to G'$ un homomorfismo de grupos. Entonces:

i) Si
$$H < G \Longrightarrow f_*(H) = \{f(x) \setminus x \in H\} < G'$$
.

$$ii)$$
 Si $H < G \Longrightarrow f^*(H') = \{x \in G \setminus f(x) \in H'\} < G$.

En particular se tiene que $Im(f) = f_*(G) < G'$ y $Kerf = f^*(1) < G$

Proposición

Sea $\{H_i\}_{i\in I}$ una familia de subgrupos de un grupo G. Entonces

$$\bigcap_{i \in I} H_i < G$$

Definición

Sea G un grupo y $S \subset G$. El subgrupo de G generado por S, denotado por $G = \langle S \rangle$, es la intersección de todos los subgrupos de G que contiene a S.

Proposición

Sea G un grupo, $S \subset G$ y $\langle S \rangle$ el subgrupo generado por S. Entonces:

- i) Si $S = \emptyset \Longrightarrow \langle S \rangle = 1$ el grupo trivial.
- ii) Si $S \neq \emptyset$, $\langle S \rangle$ es el conjunto de todos los elementos de G que se expresan como producto finito de elementos de S y de sus inversos, esto es,

$$\langle S \rangle = \left\{ x_1^{\gamma_1} x_2^{\gamma_2} \dots x_n^{\gamma_n} \setminus n \ge 1 \ x_i \in S, \gamma_i = \pm 1 \ \forall i = 1, \dots, n \right\}$$

iii) Si G es finito y $\emptyset \neq S \subset G$ entonces $\langle S \rangle$ es el conjunto de los elementos de G que se expresan como producto finito de elementos de S.

En el caso particular de que, siendo $S \subset G$, se tenga que $G = \langle S \rangle$ se dice que S es un sistema de generadores de G. Y si S es finito, se dice que G es un grupo finitamente generado, y si S es unitario, se dice que G es cíclico.

Definición

Sea $\{H_i\}_{i\in I}$ una familia de subgrupos de un grupo G, se llama compuesto de los subgrupos H_i al subgrupo de G generado por el subconjunto $S=\bigcup_{i\in I}H_i$ y lo denotamos $\bigcup_{i\in I}H_i$. Por lo tanto, el compuesto es menor subgrupo de G que contiene a la unión de los H_i .

Un retículo de subgrupos es un grafo dirigido de subgrupos.

Definición

Sea G un grupo y H, K < G. Entonces se define

$$HK = \{hk \setminus h \in H, k \in K\} \subset G$$

Proposición

Sea G un grupo y H, K < G. Entonces

$$HK = H \vee K$$
 (y por tanto, HK es un subgrupo) $\Leftrightarrow HK = KH$

Definición (Clases laterales de un subgrupo en un grupo)

Sea G un grupo, Si H < G se definen en G dos relaciones:

La relación $_{\mathsf{H}}\sim \mathsf{por}\ y\ _{\mathsf{H}}\sim x \Longleftrightarrow x^{-1}y \in H$ y la relación $\sim_{\mathsf{H}} \mathsf{por}\ y \sim_{\mathsf{H}} x \Longleftrightarrow yx^{-1} \in H$

Ambas son de equivalencia:

La clase de equivalencia respecto de la primera es $xH = \{xh \setminus h \in H\}$ y se llama *clase lateral* por la izquierda de H en G definida por x. El correspondiente conjunto cociente

$$G/_{H} \sim = \{xH \setminus x \in G\}$$

La clase de equivalencia respecto de la segunda es $Hx = \{hx \setminus h \in H\}$ y se llama *clase lateral* por la derecha de H en G definida por x. El correspondiente conjunto cociente

$$G/\sim_H = \{Hx \setminus x \in G\}$$

Proposición

Sea G un grupo y H < G. Entonces:

- i) $\forall x \in G, x \in xH \ y \ x \in Hx$.
- ii) $\forall x \in G$, los conjuntos H, xH, Hx son biyectivos.
- iii) Los conjuntos cociente $G/_{H^{\sim}}$ y $G/_{\sim_{H}}$ de clases laterales son biyectivos.

Definición

El cardinal del conjunto $G/_{H}\sim$ (o del conjunto $G/_{H}\sim$ que es el mismo) se llama *índice* de H en G, y se denota por [G:H].

Teorema de Lagrange

Sea G un grupo finito y H < G. Entonces |H| divide a |G| y se tiene que:

$$|G| = [G:H]|H|$$

Corolario

El orden de cualquier elemento de un grupo finito divide al orden del grupo.

Corolario

Si G un grupo finito y H, K < G son subgrupos de G tales que K < H < G entonces

$$[G:K] = [G:H][H:K]$$

Lema

Si G es un grupo finito de orden primo entonces G es cíclico.

Lema

Sea G es un grupo y $x \in G$ con o(x) = n. Entonces $x^k = 1 \Leftrightarrow \frac{n}{k}$.

Lema

Sea G es un grupo y $x \in G$. Entonces:

i) Si $o(x) = \infty$ todas las potencias de x son elementos distintos de G.

ii) Si
$$o(x) = n$$
 entonces $\langle x \rangle = \{1, x, ..., x^{n-1}\}$ y tiene que $x^i = x^j \Leftrightarrow n/i - j$.

Proposición

Sea G un grupo y $a \in G$. Existe entonces un único homomorfismo de grupos $\varphi_a \colon Z \to G \setminus \varphi_a(1) = a$ y $Im \varphi_a = \{a^n \setminus n \in Z\} = \langle a \rangle$.

Teorema

Si G un grupo cíclico entonces $G\cong Z$ o bien $G\cong Z_n$ para algún n.

Proposición

Si G un grupo cíclico, $G=\langle a\rangle$ y o(a)=n entonces para cada $^m/_n$ existe un único subgrupo cíclico $\langle a^{n/_m}\rangle$.

Proposición

Sea G un grupo y $a \in G$ con o(a) = n. Entonces, si k > 0 se tiene que $\langle a^k \rangle = \langle a^d \rangle$ con d = mcd(n,k) y $o(a^k) = n/d$.

Corolario

Si G un grupo y $a \in G$ con o(a) = n se tiene que $\langle a^i \rangle = \langle a^j \rangle \iff mcd(n, i) = mcd(n, j)$.

Corolario

Sea $G=\langle a \rangle$ con o(a)=n. Entonces se tiene que $G=\langle a^k \rangle \Longleftrightarrow mcd(n,k)=1$. Y en consecuencia, el número de generadores de G es $\varphi(n)$, con φ la función de Euler.

Orden	Nº de grupos	abelianos	No abelianos
1	1	{1}	ninguno
2	1	C_2	ninguno
3	1	\mathcal{C}_3	ninguno
4	2	C_4 ; $C_2 \oplus C_2$	ninguno
5	1	C_5	ninguno
6	2	C_6	D_3
7	1	C_7	ninguno
8	5	C_8 ; $C_4 \oplus C_2$; $C_2 \oplus C_2 \oplus C_2$	D_4 , Q_2
9	2	C_9 ; $C_3 \oplus C_3$	ninguno
10	2	\mathcal{C}_{10}	D_5
11	1	C_{11}	ninguno
12	5	C_{12} ; $C_6 \oplus C_2$	D_6, Q_3, A_4
13	1	\mathcal{C}_{13}	ninguno
14	2	\mathcal{C}_{14}	D_7
15	3	\mathcal{C}_{15}	ninguno

Describir todos los elementos de los grupos alternados A_n , consistentes en las permutaciones pares de S_n correspondiente, para n=2,3 y 4.

Sea $D_n=\langle r,s/s^2=1 \mid r^n=1 \mid sr=r^{n-1}s \rangle$. Demostrar que el subgrupo de D_n generado por los elementos $\{r^js,r^ks\}$ es todo el grupo D_n siempre que

$$0 \leq j < k < n \text{ y } mcd(k-j,n) = 1$$

1.- Demostrar que el subgrupo de $\mathit{SL}_2(Z_3)$ generado por los elementos

$$i=\begin{pmatrix}0&-1\\1&0\end{pmatrix}\ j=\begin{pmatrix}1&1\\1&-1\end{pmatrix}$$

es isomorfo al grupo cuaternio $oldsymbol{Q}_2$.

2.- Demostrar que $\mathit{SL}_2(Z_3)$ y S_4 son dos grupos de orden 24 que no son isomorfos.

Pista: Demostrar que S_4 no puede contener a ningún subgrupo isomorfo a \mathcal{Q}_2 .

Razonar que un subconjunto no vacío $X\subseteq G$ de un grupo G es un subgrupo de G si y solo si, $X=\langle X\rangle.$

Sean $a,b\in G$ dos elementos de un grupo que conmutan entre sí, esto es, para los que ab=ba, y de manera que sus órdenes son primos relativos, esto es, $mcd\big(o(a),o(b)\big)=1$.

- 1.- Razonar que $\langle a \rangle \cap \langle b \rangle = 1$.
- 2.- Demostrar que o(ab) = o(a)o(b).

Encontrar un grupo G y elementos $a,b\in G$ tales que sus órdenes sean primos relativos, pero para los que no se verifique la igualdad o(ab)=o(a)o(b) del ejercicio anterior.

Sea G un grupo y $a,b\in G$ dos elementos de orden finito. ¿Es ab necesariamente de orden finito?

En el grupo \mathcal{S}_3 se considera el conjunto

$$H = \{Id, (1 \ 2 \ 3), (1 \ 3 \ 2)\}$$

- 1.- Demostrar que ${\it H}$ es un subgrupo de ${\it S}_3$.
- 2.- Describir las diferentes clases de ${\cal S}_3$ módulo ${\cal H}.$

1.- Demostrar que si $H \le G$ es un subgrupo, entonces [G:H] = |G| si y solo sí, $H = \{1\}$, mientras que [G:H] = 1 si y solo sí, H = G.

2.- Demostrar que si se tienen subgrupos $G_2 \leq G_1 \leq G$ entonces

$$[G:G_2] = [G:G_1][G_1:G_2]$$

3.- Demostrar que si se tiene una cadena descendiente de subgrupos de la forma

$$G=G_0\geq G_1\geq \cdots \geq G_r=1$$

Entonces

$$|G| = \prod_{i=0}^{r-1} [G_i : G_{i+1}]$$

1.- Demostrar que si G es un grupo de orden 4, entonces se tiene que o bien G es cíclico, o bien es isomorfo al grupo de Klein.

2.- Demostrar que si G es un grupo de orden 6, entonces se tiene que o bien G es cíclico, o bien es isomorfo al grupo D_3 .

Describir los retículos de subgrupos de los siguientes grupos:

- i) el grupo V de Klein ii) el grupo simétrico S_3 iii) el grupo diédrico D_4
- $m{i}m{v})$ el grupo cuaternio $m{Q}_2 \ \ m{v})$ el grupo alternado A_4

Solución

i) el grupo V de Klein

ii) el grupo simétrico S_3

iii) el grupo diédrico D_4

$\it iv$) el grupo cuaternio $\it Q_{\it 2}$

v) el grupo alternado A_4

Describe el retículo de subgrupos del grupo cíclico

$$C_{p^n} = \langle x \setminus x^{p^n} = 1 \rangle$$

Siendo p un número primo. En particular, describe el retículo de subgrupos del grupo cíclico

$$C_8 = \langle x \setminus x^8 = 1 \rangle$$

Solución

Ejercicio 13

Demostrar que un grupo finito $G \neq \{1\}$ carece de subgrupos propios, esto es, que su retículo de subgrupos es

si y solo sí, $\emph{G} = \emph{G}_p$ es un grupo cíclico de orden primo.

Describir los retículos de subgrupos de los grupos cíclicos

$$C_6 = \langle x \setminus x^6 = 1 \rangle$$
 y $C_{12} = \langle x \setminus x^{12} = 1 \rangle$

Solución

Para $C_6 = \langle x \setminus x^6 = 1 \rangle$ es de orden 6, entonces $H \leq C_6 \Longrightarrow \frac{|H|}{|C_6|} \Longrightarrow |H| = 1,2,3,6$

Todo subgrupo de un grupo cíclico es cíclico. Sea $\mathcal{C}_6=\{1,x,x^2,x^3,x^4,x^5\}$

$$\operatorname{Para}|H|=1\Longrightarrow H_1=\{1\} \,.\, \operatorname{Para}|H|=2\Longrightarrow H_2=\langle x^3\rangle.\, \operatorname{Para}|H|=3\Longrightarrow H_3=\langle x^2\rangle.$$

Para $|H| = 6 \Rightarrow H = C_6$.

Para $C_{12} = \langle x \setminus x^{12} = 1 \rangle$ es de orden 12, entonces $H \leq C_{12} \Longrightarrow |H| / |C_{12}| \Longrightarrow |H| = 1,2,3,6,12$

$$\operatorname{Para}|H|=1\Longrightarrow H_1=\{1\} \,.\, \operatorname{Para}|H|=2\Longrightarrow H_2=\langle x^6\rangle.\, \operatorname{Para}|H|=3\Longrightarrow H_3=\langle x^4\rangle.$$

Para
$$|H| = 6 \Longrightarrow H = \langle x^2 \rangle$$
. Para $|H| = 12 \Longrightarrow H = C_{12}$.

Se considera el grupo cíclico C_{136} de orden 136, con generador t, ¿Qué relación hay entre los subgrupos $H_1=\langle t^{48},t^{72}\rangle$ y $H_2=\langle t^{46}\rangle$?

Demostrar que el grupo de unidades \mathbb{Z}_7^x es un grupo cíclico.

Sea G un grupo y sea $C_n = \langle x \setminus x^n = 1 \rangle$ el grupo cíclico de orden n. Demostrar que:

1.- Si $\theta\colon \mathcal{C}_n \to G$ es un homomorfismo de grupos, con $\theta(x)=g$, entonces o(g)/n y $\theta(x^k)=g^k \ \forall k\in\{0,1,...,n-1\}.$

Solución

2.- Para cada $g\in G$ tal que ${o(g)}/{n}$, existe un único homomorfismo de grupos $\theta_g\colon \mathcal{C}_n o G$ tal que $\theta_g(x)=g$.

Solución

3.- Si $g\in G$ es tal que ${}^{o(g)}/{n}$, entonces el homomorfismo $heta_g$ es monomorfismo si y solo sí o(g)=n.

Solución

4.- Existe un isomorfismo de grupos

$$U(Z_n) \cong Aut(C_n)$$

dado por $r \to f_r$ para cada $r=1,\ldots,n$ con mcd(r,n)=1, donde el automorfismo f_r se define mediante $f_r(x)=x^r$. En particular, $Aut(\mathcal{C}_n)$ es un grupo abeliano de orden $\varphi(n)$.

- 1.- Describir explícitamente el grupo de automorfismos $Aut(\mathcal{C}_8)$.
- 2.- Demostrar que $Aut(\mathcal{C}_8)$ es isomorfo al grupo de Klein.