$11a_{124} (K11a_{124})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^{17} - 2u^{16} + \dots + 2b - 1, \ 8u^{18} - u^{17} + \dots + 8a + 1, \ u^{19} - u^{18} + \dots + 2u + 1 \rangle \\ I_2^u &= \langle -3.29428 \times 10^{43}u^{59} - 7.32537 \times 10^{43}u^{58} + \dots + 3.61424 \times 10^{43}b - 3.73726 \times 10^{43}, \\ &- 1.15786 \times 10^{44}u^{59} - 2.56717 \times 10^{44}u^{58} + \dots + 3.61424 \times 10^{43}a - 1.16229 \times 10^{44}, \ u^{60} + 3u^{59} + \dots + 2u - 1^{43}u^{59} + \dots + 2u - 1^{43}u^{59}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 81 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle u^{17} - 2u^{16} + \dots + 2b - 1, \ 8u^{18} - u^{17} + \dots + 8a + 1, \ u^{19} - u^{18} + \dots + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{18} + \frac{1}{8}u^{17} + \dots + \frac{29}{8}u - \frac{1}{8} \\ -\frac{1}{2}u^{17} + u^{16} + \dots + \frac{5}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.812500u^{18} - 0.312500u^{17} + \dots - 2.75000u + 0.687500 \\ u^{3} - u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{18} + \frac{5}{8}u^{17} + \dots + \frac{9}{8}u - \frac{5}{8} \\ -\frac{1}{2}u^{17} + u^{16} + \dots + \frac{5}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{13}{16}u^{18} - \frac{5}{16}u^{17} + \dots - \frac{11}{4}u - \frac{5}{16} \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{5}{16}u^{18} - \frac{1}{8}u^{17} + \dots - \frac{29}{16}u + \frac{1}{2} \\ -u^{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{18} + \frac{3}{8}u^{17} + \dots + \frac{23}{8}u - \frac{3}{8} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{18} + \frac{3}{8}u^{17} + \dots + \frac{23}{8}u - \frac{3}{8} \\ u^{5} - u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{5}{8}u^{18} + \frac{15}{16}u^{17} + \dots - \frac{147}{16}u - \frac{275}{16}u^{18} + \dots + \frac{147}{16}u - \frac{1$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5 c_{10}	$u^{19} - u^{18} + \dots + 2u + 1$
c_2, c_9	$u^{19} + 11u^{18} + \dots + 10u + 1$
c_4, c_{11}	$4(4u^{19} - 6u^{18} + \dots + u + 1)$
c_6, c_8	$u^{19} + u^{18} + \dots + 72u + 16$
c ₇	$u^{19} + 5u^{18} + \dots + 576u + 64$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_3, c_5 \ c_{10}$	$y^{19} - 11y^{18} + \dots + 10y - 1$
c_2, c_9	$y^{19} - 3y^{18} + \dots + 6y - 1$
c_4, c_{11}	$16(16y^{19} - 44y^{18} + \dots + 27y - 1)$
c_{6}, c_{8}	$y^{19} - 11y^{18} + \dots + 5152y - 256$
C ₇	$y^{19} + 3y^{18} + \dots + 84480y - 4096$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.419051 + 0.893130I		
a = -0.135730 - 0.103762I	2.04820 + 6.16450I	-8.26103 - 3.38099I
b = -0.724967 + 1.151790I		
u = 0.419051 - 0.893130I		
a = -0.135730 + 0.103762I	2.04820 - 6.16450I	-8.26103 + 3.38099I
b = -0.724967 - 1.151790I		
u = 0.899345 + 0.246437I		
a = 2.14777 - 1.01558I	-3.77143 - 0.86442I	-19.7475 + 1.3057I
b = 1.204930 + 0.354128I		
u = 0.899345 - 0.246437I		
a = 2.14777 + 1.01558I	-3.77143 + 0.86442I	-19.7475 - 1.3057I
b = 1.204930 - 0.354128I		
u = -1.003450 + 0.392686I		
a = -1.58170 + 0.42470I	-5.55704 + 4.23947I	-20.3915 - 6.1738I
b = -0.13937 + 1.76374I		
u = -1.003450 - 0.392686I		
a = -1.58170 - 0.42470I	-5.55704 - 4.23947I	-20.3915 + 6.1738I
b = -0.13937 - 1.76374I		
u = 0.552607 + 0.734353I		
a = -0.356653 + 0.052498I	4.59036 + 0.49883I	-5.13235 + 1.11737I
b = 0.56635 - 1.31894I		
u = 0.552607 - 0.734353I		
a = -0.356653 - 0.052498I	4.59036 - 0.49883I	-5.13235 - 1.11737I
b = 0.56635 + 1.31894I		
u = 1.034010 + 0.500803I		
a = -0.92474 + 1.69869I	-3.99870 - 8.26948I	-17.0118 + 10.4497I
b = -1.81071 + 0.75880I		
u = 1.034010 - 0.500803I		
a = -0.92474 - 1.69869I	-3.99870 + 8.26948I	-17.0118 - 10.4497I
b = -1.81071 - 0.75880I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.047050 + 0.609446I		
a = 2.13795 + 0.40305I	1.58848 + 10.77560I	-11.1069 - 9.6699I
b = 1.14750 - 1.52008I		
u = -1.047050 - 0.609446I		
a = 2.13795 - 0.40305I	1.58848 - 10.77560I	-11.1069 + 9.6699I
b = 1.14750 + 1.52008I		
u = -1.136920 + 0.651601I		
a = -1.99873 - 0.44428I	-2.2580 + 17.5240I	-13.4299 - 10.5127I
b = -1.05260 + 1.28107I		
u = -1.136920 - 0.651601I		
a = -1.99873 + 0.44428I	-2.2580 - 17.5240I	-13.4299 + 10.5127I
b = -1.05260 - 1.28107I		
u = 1.36120		
a = -0.900530	-10.4347	-25.7620
b = -0.770557		
u = -0.459746 + 0.391888I		
a = -0.822946 - 0.928476I	-0.672184 - 0.228526I	-10.04556 + 0.04203I
b = -0.928594 + 0.046627I		
u = -0.459746 - 0.391888I		
a = -0.822946 + 0.928476I	-0.672184 + 0.228526I	-10.04556 - 0.04203I
b = -0.928594 - 0.046627I		
u = -0.460389		
a = -0.746543	-0.745623	-13.0540
b = -0.475486		
u = 1.58350		
a = -0.283362	-10.5925	-69.4310
b = -0.279027		

 $II. \\ I_2^u = \langle -3.29 \times 10^{43} u^{59} - 7.33 \times 10^{43} u^{58} + \dots + 3.61 \times 10^{43} b - 3.74 \times 10^{43}, \ -1.16 \times 10^{44} u^{59} - 2.57 \times 10^{44} u^{58} + \dots + 3.61 \times 10^{43} a - 1.16 \times 10^{44}, \ u^{60} + 3u^{59} + \dots + 2u + 1 \rangle$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 3.20362u^{59} + 7.10293u^{58} + \dots + 1.55388u + 3.21587 \\ 0.911474u^{59} + 2.02681u^{58} + \dots + 3.08549u + 1.03404 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -2.28143u^{59} - 5.75495u^{58} + \dots - 5.19179u - 0.442802 \\ -0.263750u^{59} - 0.472714u^{58} + \dots - 0.742543u + 0.322096 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 2.29215u^{59} + 5.07612u^{58} + \dots - 1.53161u + 2.18183 \\ 0.911474u^{59} + 2.02681u^{58} + \dots + 3.08549u + 1.03404 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.925654u^{59} + 2.23848u^{58} + \dots + 3.65944u - 1.78646 \\ -1.35234u^{59} - 3.28016u^{58} + \dots - 2.39453u - 2.24660 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1.46589u^{59} + 5.35398u^{58} + \dots + 3.78505u + 2.43307 \\ -0.363163u^{59} - 0.635073u^{58} + \dots - 1.17134u + 0.200966 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 2.89417u^{59} + 6.43628u^{58} + \dots + 1.32225u + 2.63687 \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 2.89417u^{59} + 6.43628u^{58} + \dots + 1.32225u + 2.63687 \\ u^{5} - u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-2.48951u^{59} 4.72262u^{58} + \cdots 4.88635u 16.4633$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5 c_{10}	$u^{60} + 3u^{59} + \dots + 2u + 1$
c_2, c_9	$u^{60} + 25u^{59} + \dots - 8u^2 + 1$
c_4, c_{11}	$u^{60} - 9u^{59} + \dots + 2u + 49$
c_{6}, c_{8}	$(u^{30} - 2u^{29} + \dots - 4u^2 + 1)^2$
c ₇	$(u^{30} - 2u^{29} + \dots + 2u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_5 c_{10}	$y^{60} - 25y^{59} + \dots - 8y^2 + 1$
c_{2}, c_{9}	$y^{60} + 19y^{59} + \dots - 16y + 1$
c_4,c_{11}	$y^{60} + 15y^{59} + \dots + 225396y + 2401$
c_{6}, c_{8}	$(y^{30} - 18y^{29} + \dots - 8y + 1)^2$
C ₇	$(y^{30} + 6y^{29} + \dots - 20y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.436655 + 0.898161I		
a = 0.099230 - 0.147670I	-0.13306 - 11.82350I	-11.00000 + 6.87881I
b = 0.90502 + 1.20796I		
u = -0.436655 - 0.898161I		
a = 0.099230 + 0.147670I	-0.13306 + 11.82350I	-11.00000 - 6.87881I
b = 0.90502 - 1.20796I		
u = 0.938385 + 0.379407I		
a = 1.68614 - 0.74769I	-3.09259 - 1.44484I	-13.23226 + 3.70712I
b = 0.441181 + 0.955338I		
u = 0.938385 - 0.379407I		
a = 1.68614 + 0.74769I	-3.09259 + 1.44484I	-13.23226 - 3.70712I
b = 0.441181 - 0.955338I		
u = -0.398222 + 0.946146I		
a = 0.0703469 - 0.0182926I	-3.92001 - 3.29506I	-14.4988 + 4.3495I
b = 0.704169 + 0.741434I		
u = -0.398222 - 0.946146I		
a = 0.0703469 + 0.0182926I	-3.92001 + 3.29506I	-14.4988 - 4.3495I
b = 0.704169 - 0.741434I		
u = 0.892854 + 0.516085I		
a = -8.30139 + 2.16305I	-1.58362	-80.9296 + 0.I
b = -0.231045		
u = 0.892854 - 0.516085I		
a = -8.30139 - 2.16305I	-1.58362	-80.9296 + 0.I
b = -0.231045		
u = -0.984616 + 0.331650I		
a = -2.35527 - 0.33318I	-5.12713 - 2.00252I	-19.8433 + 2.5113I
b = -1.04495 + 1.40324I		
u = -0.984616 - 0.331650I		
a = -2.35527 + 0.33318I	-5.12713 + 2.00252I	-19.8433 - 2.5113I
b = -1.04495 - 1.40324I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.650550 + 0.812563I		
a = -0.222812 + 0.168392I	3.50080 - 2.14029I	-5.17623 + 3.82275I
b = -0.070411 - 0.978282I		
u = 0.650550 - 0.812563I		
a = -0.222812 - 0.168392I	3.50080 + 2.14029I	-5.17623 - 3.82275I
b = -0.070411 + 0.978282I		
u = -0.936320 + 0.528594I		
a = 2.49741 + 1.41081I	-1.14510 + 4.17705I	-16.5884 - 2.8209I
b = 0.562357 + 0.083868I		
u = -0.936320 - 0.528594I		
a = 2.49741 - 1.41081I	-1.14510 - 4.17705I	-16.5884 + 2.8209I
b = 0.562357 - 0.083868I		
u = 0.919545 + 0.051720I		
a = 1.39527 - 1.59972I	-1.66693 + 4.72265I	-14.9294 - 5.7699I
b = 1.129730 - 0.530819I		
u = 0.919545 - 0.051720I		
a = 1.39527 + 1.59972I	-1.66693 - 4.72265I	-14.9294 + 5.7699I
b = 1.129730 + 0.530819I		
u = -0.636488 + 0.889069I		
a = 0.162077 + 0.177638I	1.01444 + 7.41192I	-11.0000 - 9.0404I
b = 0.405721 - 0.886114I		
u = -0.636488 - 0.889069I		
a = 0.162077 - 0.177638I	1.01444 - 7.41192I	-11.0000 + 9.0404I
b = 0.405721 + 0.886114I		
u = 0.750944 + 0.483602I		
a = 2.17802 + 2.09569I	-1.14510 - 4.17705I	-16.5884 + 2.8209I
b = 0.562357 - 0.083868I		
u = 0.750944 - 0.483602I		
a = 2.17802 - 2.09569I	-1.14510 + 4.17705I	-16.5884 - 2.8209I
b = 0.562357 + 0.083868I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.519876 + 0.720950I		
a = 0.440387 - 0.033998I	3.14940 - 5.67522I	-7.89041 + 4.45785I
b = -0.84652 - 1.38646I		
u = -0.519876 - 0.720950I		
a = 0.440387 + 0.033998I	3.14940 + 5.67522I	-7.89041 - 4.45785I
b = -0.84652 + 1.38646I		
u = 1.017570 + 0.457794I		
a = 0.084372 + 1.203970I	-5.12713 - 2.00252I	-19.8433 + 0.I
b = -1.04495 + 1.40324I		
u = 1.017570 - 0.457794I		
a = 0.084372 - 1.203970I	-5.12713 + 2.00252I	-19.8433 + 0.I
b = -1.04495 - 1.40324I		
u = -1.002750 + 0.506811I		
a = 1.06264 + 1.11423I	-2.12597 + 4.23565I	-11.00000 + 0.I
b = 1.239150 + 0.487592I		
u = -1.002750 - 0.506811I		
a = 1.06264 - 1.11423I	-2.12597 - 4.23565I	-11.00000 + 0.I
b = 1.239150 - 0.487592I		
u = 0.329797 + 0.800824I		
a = -0.234010 + 0.120107I	3.50080 + 2.14029I	-5.17623 - 3.82275I
b = -0.070411 + 0.978282I		
u = 0.329797 - 0.800824I		
a = -0.234010 - 0.120107I	3.50080 - 2.14029I	-5.17623 + 3.82275I
b = -0.070411 - 0.978282I		
u = -1.004570 + 0.573546I		
a = 1.55156 + 0.95069I	-1.66693 + 4.72265I	0
b = 1.129730 - 0.530819I		
u = -1.004570 - 0.573546I		
a = 1.55156 - 0.95069I	-1.66693 - 4.72265I	0
b = 1.129730 + 0.530819I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.690400 + 0.444793I		
a = -1.012660 + 0.803393I	-0.361516	-10.81395 + 0.I
b = -0.603977		
u = -0.690400 - 0.444793I		
a = -1.012660 - 0.803393I	-0.361516	-10.81395 + 0.I
b = -0.603977		
u = -0.618191 + 0.540303I		
a = -0.281188 - 0.010801I	-0.462439 - 0.119450I	-11.28349 + 0.62863I
b = -0.667178 - 0.364020I		
u = -0.618191 - 0.540303I		
a = -0.281188 + 0.010801I	-0.462439 + 0.119450I	-11.28349 - 0.62863I
b = -0.667178 + 0.364020I		
u = 0.985228 + 0.669318I		
a = -1.058260 + 0.114866I	2.48757 - 3.39736I	0
b = -0.228079 - 0.908946I		
u = 0.985228 - 0.669318I		
a = -1.058260 - 0.114866I	2.48757 + 3.39736I	0
b = -0.228079 + 0.908946I		
u = -0.789155 + 0.080621I		
a = -0.94378 + 1.09560I	-0.462439 + 0.119450I	-11.28349 - 0.62863I
b = -0.667178 + 0.364020I		
u = -0.789155 - 0.080621I		
a = -0.94378 - 1.09560I	-0.462439 - 0.119450I	-11.28349 + 0.62863I
b = -0.667178 - 0.364020I		
u = 1.035610 + 0.621202I		
a = -1.87368 + 0.26667I	3.14940 - 5.67522I	0
b = -0.84652 - 1.38646I		
u = 1.035610 - 0.621202I		
a = -1.87368 - 0.26667I	3.14940 + 5.67522I	0
b = -0.84652 + 1.38646I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.343048 + 0.696449I		
a = 0.281786 + 0.291123I	2.48757 + 3.39736I	-6.14839 - 2.65836I
b = -0.228079 + 0.908946I		
u = -0.343048 - 0.696449I		
a = 0.281786 - 0.291123I	2.48757 - 3.39736I	-6.14839 + 2.65836I
b = -0.228079 - 0.908946I		
u = 1.265290 + 0.064635I		
a = -1.17958 + 1.04775I	-6.23866 + 9.10516I	0
b = -0.944732 + 0.854118I		
u = 1.265290 - 0.064635I		
a = -1.17958 - 1.04775I	-6.23866 - 9.10516I	0
b = -0.944732 - 0.854118I		
u = -0.998856 + 0.783376I		
a = 0.501826 - 0.219673I	-0.072177 - 1.332500I	0
b = -0.167947 - 0.687514I		
u = -0.998856 - 0.783376I		
a = 0.501826 + 0.219673I	-0.072177 + 1.332500I	0
b = -0.167947 + 0.687514I		
u = -1.277600 + 0.094427I		
a = 0.865094 + 0.946801I	-3.92001 - 3.29506I	0
b = 0.704169 + 0.741434I		
u = -1.277600 - 0.094427I		
a = 0.865094 - 0.946801I	-3.92001 + 3.29506I	0
b = 0.704169 - 0.741434I		
u = -1.191580 + 0.532179I		
a = -0.825176 + 0.590327I	-0.072177 + 1.332500I	0
b = -0.167947 + 0.687514I		
u = -1.191580 - 0.532179I		
a = -0.825176 - 0.590327I	-0.072177 - 1.332500I	0
b = -0.167947 - 0.687514I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.165050 + 0.599287I		
a = 1.281030 + 0.306017I	1.01444 - 7.41192I	0
b = 0.405721 + 0.886114I		
u = 1.165050 - 0.599287I		
a = 1.281030 - 0.306017I	1.01444 + 7.41192I	0
b = 0.405721 - 0.886114I		
u = 1.140590 + 0.644966I		
a = 1.87323 - 0.27645I	-0.13306 - 11.82350I	0
b = 0.90502 + 1.20796I		
u = 1.140590 - 0.644966I		
a = 1.87323 + 0.27645I	-0.13306 + 11.82350I	0
b = 0.90502 - 1.20796I		
u = -1.159760 + 0.652820I		
a = -1.44051 - 0.42878I	-6.23866 + 9.10516I	0
b = -0.944732 + 0.854118I		
u = -1.159760 - 0.652820I		
a = -1.44051 + 0.42878I	-6.23866 - 9.10516I	0
b = -0.944732 - 0.854118I		
u = 0.296291 + 0.465226I		
a = 0.28682 - 1.74341I	-2.12597 + 4.23565I	-12.76145 - 5.43945I
b = 1.239150 + 0.487592I		
u = 0.296291 - 0.465226I		
a = 0.28682 + 1.74341I	-2.12597 - 4.23565I	-12.76145 + 5.43945I
b = 1.239150 - 0.487592I		
u = 0.100373 + 0.382494I		
a = 0.41107 - 2.93021I	-3.09259 - 1.44484I	-13.23226 + 3.70712I
b = 0.441181 + 0.955338I		
u = 0.100373 - 0.382494I		
a = 0.41107 + 2.93021I	-3.09259 + 1.44484I	-13.23226 - 3.70712I
b = 0.441181 - 0.955338I		

III.
$$I_3^u = \langle b, \ 2a - 2u + 3, \ u^2 - u - 1 \rangle$$

(i) Arc colorings

a₃ =
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$
 $a_{4} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$
 $a_{7} = \begin{pmatrix} u-\frac{3}{2} \\ 0 \end{pmatrix}$
 $a_{5} = \begin{pmatrix} \frac{3}{4}u - \frac{1}{4} \\ u+1 \end{pmatrix}$
 $a_{8} = \begin{pmatrix} u-\frac{3}{2} \\ 0 \end{pmatrix}$
 $a_{11} = \begin{pmatrix} -u \\ -u-1 \end{pmatrix}$
 $a_{1} = \begin{pmatrix} -\frac{7}{4}u + \frac{5}{4} \\ -u-1 \end{pmatrix}$
 $a_{2} = \begin{pmatrix} -\frac{9}{4}u + \frac{1}{2} \\ -3u-2 \end{pmatrix}$
 $a_{9} = \begin{pmatrix} 2u+1 \\ 4u+2 \end{pmatrix}$
 $a_{6} = \begin{pmatrix} -u-\frac{5}{2} \\ -4u-2 \end{pmatrix}$
 $a_{6} = \begin{pmatrix} -u-\frac{5}{2} \\ -4u-2 \end{pmatrix}$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $30u + \frac{21}{4}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_{10}	$u^2 + u - 1$
c_2	$u^2 + 3u + 1$
c_3, c_5	u^2-u-1
c_4	$4(4u^2 - 2u - 1)$
c_6	$(u-1)^2$
C ₇	u^2
	$(u+1)^2$
<i>c</i> ₉	$u^2 - 3u + 1$
c_{11}	$4(4u^2 + 2u - 1)$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_5 c_{10}	$y^2 - 3y + 1$
c_2, c_9	$y^2 - 7y + 1$
c_4, c_{11}	$16(16y^2 - 12y + 1)$
c_{6}, c_{8}	$(y-1)^2$
<i>C</i> ₇	y^2

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.618034		
a = -2.11803	-2.63189	-13.2910
b = 0		
u = 1.61803		
a = 0.118034	-10.5276	53.7910
b = 0		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_{10}	$(u^{2} + u - 1)(u^{19} - u^{18} + \dots + 2u + 1)(u^{60} + 3u^{59} + \dots + 2u + 1)$
c_2	$(u^{2} + 3u + 1)(u^{19} + 11u^{18} + \dots + 10u + 1)(u^{60} + 25u^{59} + \dots - 8u^{2} + 1)$
c_3,c_5	$(u^{2} - u - 1)(u^{19} - u^{18} + \dots + 2u + 1)(u^{60} + 3u^{59} + \dots + 2u + 1)$
C4	$16(4u^{2} - 2u - 1)(4u^{19} - 6u^{18} + \dots + u + 1)(u^{60} - 9u^{59} + \dots + 2u + 49)$
c_6	$((u-1)^2)(u^{19} + u^{18} + \dots + 72u + 16)(u^{30} - 2u^{29} + \dots - 4u^2 + 1)^2$
	$u^{2}(u^{19} + 5u^{18} + \dots + 576u + 64)(u^{30} - 2u^{29} + \dots + 2u + 1)^{2}$
<i>C</i> ₈	$((u+1)^2)(u^{19}+u^{18}+\cdots+72u+16)(u^{30}-2u^{29}+\cdots-4u^2+1)^2$
<i>C</i> 9	$(u^2 - 3u + 1)(u^{19} + 11u^{18} + \dots + 10u + 1)(u^{60} + 25u^{59} + \dots - 8u^2 + 1)$
c_{11}	$16(4u^{2} + 2u - 1)(4u^{19} - 6u^{18} + \dots + u + 1)(u^{60} - 9u^{59} + \dots + 2u + 49)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_5 c_{10}	$(y^2 - 3y + 1)(y^{19} - 11y^{18} + \dots + 10y - 1)(y^{60} - 25y^{59} + \dots - 8y^2 + 1)$
c_2, c_9	$(y^2 - 7y + 1)(y^{19} - 3y^{18} + \dots + 6y - 1)(y^{60} + 19y^{59} + \dots - 16y + 1)$
c_4, c_{11}	$256(16y^{2} - 12y + 1)(16y^{19} - 44y^{18} + \dots + 27y - 1)$ $\cdot (y^{60} + 15y^{59} + \dots + 225396y + 2401)$
c_{6}, c_{8}	$((y-1)^2)(y^{19} - 11y^{18} + \dots + 5152y - 256)$ $\cdot (y^{30} - 18y^{29} + \dots - 8y + 1)^2$
c_7	$y^{2}(y^{19} + 3y^{18} + \dots + 84480y - 4096)(y^{30} + 6y^{29} + \dots - 20y + 1)^{2}$