Propositionnel - Exercices

Exercice 1 : soit la table de vérité suivante :

р	q	p→q	¬p→¬q	¬p [∨] q	¬(p^¬ q)	$(p\rightarrow q) \leftrightarrow (\neg p\rightarrow \neg q)$	$(p\rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$
0	0						
0	1						
1	0						
1	1						

- 1- Compléter la table
- 2- Quelles sont les formules valides, inconsistantes et consistantes ?
- 3- Donner les formules équivalentes

Exercice 2

- (1) Personne n'a ri, ou même souri.
 - poser p : « quelqu'un a ri » ; q : « quelqu'un a souri »
- (2) Georges ne viendra que si Albert et Lucienne ne viennent pas. poser p : « Georges vient » ; q : « Albert vient » ; r : « Lucienne vient »
- (3) Continue comme ça, et tu vas t'en prendre une. poser p : « tu continues comme ça » ; q : « tu t'en prends une »

Exercice 3 : Exemple de système formel

```
Soit le système « peu » alphabet = l'ensemble des trois symboles "p" , "e" , et "u" p.f.e (procédure de formation d'expression). = concaténation axiome = upueuu
```

règles :

R1 : si une expression de la forme AeB est un théorème (où "A" désigne n'importe quelle suite de "u", de "p", et de "e", et B de même), alors l'expression uAeBu est aussi un théorème

R2 : si une expression de la forme AeB est un théorème, alors l'expression AueuB est aussi un théorème

Ouestions

Q1 = uupuueuuuu est-il un théorème?

Q2 = upuueuuuu ?

Q3 = upupueuuu ?

Exercice 4

On suppose que l'on a les règles et faits suivants:

- Si Anass rate son tournoi alors Anass sera déprimé.
- S'il fait beau alors Anass ira à la piscine.
- Si Anass ne va pas à la piscine il sera déprimé.
- A la piscine, Anass ne s'entraîne pas.
- Anass ratera son tournoi s'il ne s'entraîne pas.
 - Modéliser l'énoncé à l'aide de formules de la logique propositionnelle.
 - Prouver que Anass sera déprimé à l'aide de la résolution.

SOLUTIONS

Exercice 1 : soit la table de vérité suivante :

р	q	p→q	¬p→¬q	¬p⁴q	¬(p^¬ q)	$(p\rightarrow q) \leftrightarrow (\neg p\rightarrow \neg q)$	$(p\rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$
0	0						
0	1						
1	0						
1	1						

- 4- Compléter la table
- 5- Quelles sont les formules valides, inconsistantes et consistantes ?
- 6- Donner les formules équivalentes

p	q	p→q	¬p→¬q	¬p ^v q	¬(p^¬ q)	$(p\rightarrow q) \leftrightarrow (\neg p\rightarrow \neg q)$	$(p\rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$
0	0	1	1	1	1	1	1
0	1	1	0	1	1	0	1
1	0	0	1	0	0	0	1
1	1	1	1	1	1	1	1

2- Dernière valide, pas d'inconsistante, toutes consistante

```
3-p \rightarrow q, \neg p \lor q, \neg (p \lor \neg q)
```

Exercice 2

- (4) Personne n'a ri, ou même souri. poser p : « quelqu'un a ri » ; q : « quelqu'un a souri » $\neg (p \lor q) ou (\neg p \land \neg q)$
- (5) Georges ne viendra que si Albert et Lucienne ne viennent pas. poser p : « Georges vient » ; q : « Albert vient » ; r : « Lucienne vient »
- (p \rightarrow ($\neg q \land \neg r$))
 (6) Continue comme ça, et tu vas t'en prendre une.
 poser p : « tu continues comme ça » ; q : « tu t'en prends une »
 (p \rightarrow q)

Exercice 3 : Exemple de système formel

```
Système « peu »
alphabet = l'ensemble des trois symboles "p", "e", et "u"

p.f.e (procédure de formation d'expression). = concaténation axiome = upueuu
```

règles :

R1 : si une expression de la forme AeB est un théorème (où "A" désigne n'importe quelle suite de "u", de "p", et de "e", et B de même), alors l'expression uAeBu est aussi un théorème

R2 : si une expression de la forme AeB est un théorème, alors l'expression AueuB est aussi un théorème

Questions

```
Q1 = uupuueuuuu est-il un théorème?
Q2 = upuueuuuu ?
```

Q3 = upupueuuu ?

```
Q1, Oui Preuve : l'arbre
Q2, non : il y a un nombre impair de "u", ce qui n'est pas possible
Q3, non : il y a deux "p"
Ce système est semi-décidable car on possède une procédure
infaillible pour décider Théorème mais pas non-Théorème.
```

Exercice 4

On suppose que l'on a les règles et faits suivants:

- Si Anass rate son tournoi alors Anass sera déprimé.
- S'il fait beau alors Anass ira à la piscine.
- Si Anass ne va pas à la piscine il sera déprimé.
- A la piscine, Anass ne s'entraîne pas.
- Pierre ratera son tournoi s'il ne s'entraîne pas.
 - Modéliser l'énoncé à l'aide de formules de la logique propositionnelle.
 - Prouver que Anass sera déprimé à l'aide de la résolution.

```
1. (a) R \Rightarrow D

(b) B \Rightarrow P

(c) \negP \Rightarrow D

(d) P \Rightarrow \negE

(e) \negE \Rightarrow R

2. (a) Montrons que R \Rightarrow D, B \Rightarrow P, \negP \Rightarrow D, P \Rightarrow \negE, \negE \Rightarrow R |= D. Soit I une interprétation qui satisfait les hypothèeses, montrons que I satisfait D. Si I(P) = 1 alors I(\negE) = 1 donc I(R)=1 dont I(D) = 1. Sinon I(P) = 0 donc I(\negP) = 1 donc I(D) = 1. (b) Posons \Gamma = R \Rightarrow D, B \Rightarrow P, \negP \Rightarrow D, P \Rightarrow \negE, \negE \Rightarrow R.
```