## MT Summer Term 2021 Ex9: A Bluffer's Guide to NNs/Intro to NNs Ryan Harris

1. The sigmoid ( $\sigma$ , also called "the logistic") is a non-linear activation function:



Please give the mathematical definition of  $\sigma(x)$  (using Euler's number e).

2. Given the definition requested in (1), what is the value of  $\sigma(x)$  if:

- $1. \qquad x \to \infty$
- II.  $x \to -\infty$
- III. x = 0

Why is the sigmoid called a "squishification" function?

3. Please use

$$c'=0$$
 where  $c$  a constant  $(c \ x^n)'=c \ n \ x^{n-1}$  where  $c$  a constant  $(f \pm g)'=f' \pm g'$  sum rule  $(f \times g)'=f' \times g+f \times g'$  product rule  $\left(\frac{f}{g}\right)'=\frac{f' \times g-f \times g'}{g^2}$  quotient rule  $\left(f(g(x))\right)'=\left(f(z)\right)' \times z'$  chain rule, where  $z=g(x)$   $(e^x)'=e^x$  exponential function

to show that  $\sigma'(x) = (\sigma(x)(1 - \sigma(x)))$ 

- 4. For what input x is the gradient  $\sigma'(x)$  the steepest? Given that  $\sigma'(x) = (\sigma(x)(1 \sigma(x)))$ , what is the value of  $\sigma'(x)$  at that point x?
- 5. Please show how you can absorb a bias term b of an AN into an input and a corresponding weight? Draw the corresponding picture and provide the corresponding equations.



## 6. Given the following example of a simple feed forward neural network



and assuming that  $x, a^{(2)}, a^{(3)}, a^{(4)}, a^{(5)}, y$  are all **row vectors** of dimensionality  $x \in \mathbb{R}^{(1,p)}, a^{(2)} \in \mathbb{R}^{(1,6)}, a^{(3)} \in \mathbb{R}^{(1,6)}, a^{(4)} \in \mathbb{R}^{(1,8)}, a^{(5)} \in \mathbb{R}^{(1,9)}, y \in \mathbb{R}^{(1,9)}$  (where dimensionality is indicated  $\mathbb{R}^{(rows,columns)}$ ).

Please provide the dimensionalities  $\mathbf{W}^{(i)} \in \mathbb{R}^{(rows,columns)}$  for the weight matrices  $\mathbf{W}^{(1)}, \mathbf{W}^{(2)}, \mathbf{W}^{(3)}, \mathbf{W}^{(4)}$  such that the following hold:

$$x \mathbf{W}^{(1)} = a^{(2)}$$
 $a^{(2)}\mathbf{W}^{(2)} = a^{(3)}$ 
 $a^{(3)}\mathbf{W}^{(3)} = a^{(4)}$ 
 $a^{(4)}\mathbf{W}^{(4)} = a^{(5)}$ 

Please provide the dimensionalities  $\mathbf{W}^{(i)} \in \mathbb{R}^{(rows,columns)}$  for the weight matrices  $\mathbf{W}^{(1)}, \mathbf{W}^{(2)}, \mathbf{W}^{(3)}, \mathbf{W}^{(4)}$ , such that the following hold:

$$\mathbf{W}^{(1)}x^{\mathrm{T}} = (a^{(2)})^{\mathrm{T}}$$

$$\mathbf{W}^{(2)}(a^{(2)})^{\mathrm{T}} = (a^{(3)})^{\mathrm{T}}$$

$$\mathbf{W}^{(3)}(a^{(3)})^{\mathrm{T}} = (a^{(4)})^{\mathrm{T}}$$

$$\mathbf{W}^{(4)}(a^{(4)})^{\mathrm{T}} = (a^{(5)})^{\mathrm{T}}$$

where  $\Theta^T$  is the transpose of vector (or matrix)  $\Theta$ .

- 7. Please use the notational conventions from the Richard Harris slides
  - $z_i^{\ell}$  input to node j of layer  $\ell$
  - $w_{i \leftarrow i}^{\ell}$  weight from layer  $\ell 1$  node i to layer  $\ell$  node j
  - $\sigma(z)$  sigmoid transfer function
  - $b_i^{\ell}$  bias of node j in layer  $\ell$
  - $\mathcal{O}_i^{\ell}$  output node j in layer  $\ell$
  - $t_i$  target value (ground truth) for node j in output layer

## to vectorise:



that is, assume that  $x^I$  is a column vector representing the input,  $W^H$  and  $W^0$  weight matrices,  $a^H$  and  $a^0$  are column vectors representing the activations at the hidden and the output level of the FFNN such that  $\sigma(W^Hx^I)=a^H$  and  $\sigma(W^0a^H)=a^0$ . (Note that  $a^0$  is a "vector" with only one row and one column ...). Please draw the vectors and matrices.

- 8. Please do the same as in (7), but where that  $x^I$  is a **row** vector representing the input,  $W^H$  and  $W^0$  weight matrices,  $a^H$  and  $a^0$  are **row** vectors representing the activations at the hidden and the output level of the FFNN such that  $\sigma(x^IW^H) = a^H$  and  $\sigma(a^HW^0) = a^0$ . Please draw the vectors and matrices.
- 9. Please do the same as in (8), but use transposes of the **column** vectors  $\mathbf{x}^{\mathbf{I}}$  in (7) to express the equations in (8). No need to draw the vectors and matrices.



- 10. What is the difference between a loss- vs. a cost-function in machine learning?
- 11. Please show that the partial derivative of the loss E with respect to a weight  $w_{k\leftarrow j}^{O}$  connecting to the output layer of the neural network



- is:  $\frac{\partial E}{\partial w_{k\leftarrow j}^{\rm O}} = \left(\mathcal{O}_k^{\rm O} t_k\right)\mathcal{O}_k^{\rm O}\left(1-\mathcal{O}_k^{\rm O}\right)\mathcal{O}_j^{\rm H}$  Please label all the steps of the derivation with the partial differentiation rules used.
- 12. In your own words, please describe the Back-Propagation with stochastic Gradient Descent algorithm given below:

For each training instance:

- 1. Forward pass: compute prediction from input (also called inference, when model is fully trained)
- 2. For each output node compute:  $\delta_k^0 = \mathcal{O}_k^0 (1 \mathcal{O}_k^0) (\mathcal{O}_k^0 t_k)$
- 3. For each hidden node compute:  $\delta_j^{\ell-1} = \mathcal{O}_j^{\ell-1} \left(1 \mathcal{O}_j^{\ell-1}\right) \sum_{k \in \mathcal{O}} \delta_k^{\ell} w_{k \leftarrow j}^{\ell}$
- 4. For each weight:

  - Update weight:  $w_{k \leftarrow j}^{\ell} \coloneqq w_{k \leftarrow j}^{\ell} + \triangle w_{k \leftarrow j}^{\ell}$

End

End

13. In your own words, what is the difference between



- Back-propagation with stochastic Gradient Descent
- Back-propagation with mini-batch Gradient Descent
- Back-propagation with batch Gradient Descent