

智能无人集群系统开发与实践基于RflySim平台的全栈开发案例

第3讲 三维场景建模与仿真

大纲

- 1. 实验平台配置
- 2. 关键接口介绍
- 3. 基础实验案例(免费版)
- 4. 进阶接口实验(个人版)
- 5. 进阶案例实验(集合版)
- 6. 扩展案例(完整版)
- 7. 小结

1.1 需要安装的组件

- 3Ds Max 2020 (或其他版本,请自行安装)
- Unreal Engine 4.27 (体验版和完整版都需要安装)
- Unreal Engine 5.1.* (高级完整版安装)

注:对于完整版而言,如果需要使用 RflySimUE5进行场景开发,需要安装 最新UE5引擎,使用与导入方法与本 节介绍的4.27的方法完全相同。

下面介绍UE4.27引擎的安装方法(需要联网): 打开EPIC UE引擎官方网站:

https://www.unrealengine.com/zh-CN/?lang=zh-CN

如果遇到网络问题,无法在线下载安装包,也可使用我们提供的离线安装包: http://rflysim.com/res/EpicInstaller.msi

先注册一个EPIC的账户并登陆 然后,点击右上侧的"下载"按钮

1.2 Epic Games的安装方法

• 在点击"下载"按钮后, 网页会跳转到下载指南。

- 在下载指南的第一步点击下载启动程序,即可下载最新安装包。
- · 点击安装包进行安装,可以得到"Epic Games Launcher"快捷方式。
- · 点击该快捷方式,并登陆Epic账号后,就可以进入Epic Games管理页面。

1.2 UE4.27的安装方法

- 在Epic Games程序中,点击左侧栏的"虚幻引擎",再点击右图"库"页面,"引擎版本"后的"+"加号图标。
- 在下拉框中选择要安装的UE4 版本(注意:请安装4.27.*版本 引擎)
- 耐心等待安装结束(注意:这 里需要下载10+G的资源,整个 安装过程需要一个小时左右)

1.3 UE5的安装方法

- 在Epic Games程序中,点击 左侧栏的"虚幻引擎",再 点击右图"库"页面,"引 擎版本"后的"+"加号图标
- 在下拉框中选择要安装的UE5 版本(注意:请安装5.1.*版本引擎,选择最新版即可)

大纲

- 1. 实验平台配置
- 2. 关键接口介绍
- 3. 基础实验案例(免费版)
- 4. 进阶接口实验(个人版)
- 5. 进阶案例实验(集合版)
- 6. 扩展案例(完整版)
- 7. 小结

2.0 接口实验总览

包括基础功能接口"RflySimAPIs\3.RflySim3DUE\0.ApiExps"以及高级功能接口"RflySimAPIs\3.RflySim3DUE\2.AdvExps\e0_AdvApiExps"

详细参见<u>API.pdf</u>以及<u>Read</u> me.pdf

	IS NOTICE.	
== e0_DevToolsUsage	10/31/2023 3:21 PM	文件夹
== e1_KeyboardAPI	11/1/2023 4:08 PM	文件夹
== e2_CommandAPI	11/1/2023 4:30 PM	文件夹
== e3_TXTAllCrtlScript	11/1/2023 4:42 PM	文件夹
== e4_UAVCrtlPy	10/30/2023 2:54 PM	文件夹
== e5_GetTerrainMAT	11/1/2023 5:32 PM	文件夹
e6_RflySim3DCtrlAPI	11/1/2023 11:22 AM	文件夹
名称	修改日期	类型
e0_DevToolsUsage	10/27/2023 1:57	PM 文件夹
== e1_UEMapCtrl	10/31/2023 4:59	PM 文件夹
e2_UAVCtrl	10/27/2023 1:57	PM 文件夹

使用命令 "RflySetActuatorPWMs 1000 10 10 10 10 0 0 0 0"

2.1 RflySim3D 控制台命令接口总览

本实验提供了一套 RflySim3D内置的一些全局命令 (包括RflvSim3D平台内置命令 以及UE自带的内置命令),可 以完成RflySim3D相关的大部分 功能, 主要包括操作仿真场景 对象以及优化场景渲染性能。 详细操作及实验效果见 0.ApiExps\e2_CommandAPI\Re adme.pdf - •

输入命令: RflyDelVehicles "1000,1001"

在环仿真时,RflySim3D中部分模型无法清除,是因为不断收到UDP消息而刷新

2.2 RflySim3D 快捷键接口总览

本实验在RflySim3D内置的全局命 令基础上还提供了一套通过快捷键与 RflySim3D场景中的不同对象进行简 单交互的方法。包括弹出帮助菜单、 清除场景内物体、显示或隐藏信息、 切换地图和飞机、激活碰撞引擎、显 隐小地图等。在环仿真时(开启 CopterSim), 还可以通过快捷键切 换视角控制、飞机轨迹记录以及碰撞 通信模式等。详细操作及实验效果见 0.ApiExps\e1_KeyboardAPI\Readme. pdf - •

0号上帝视角与1号上帝视角比较特殊,0号视角会随着飞机移动,不会随着飞机旋转。1号视角固定地面视角且始终看向当前飞机

2.3 RflySim3D启动 txt 控制脚本实验

本实验提供了在txt文件中预 先编写控制台命令以使 RflySim3D启动时自动执行某些 操作的方法,包括切换地图、 限制帧率等操作。部分运行效 果如右图所示,具体实验操作 及效果见

<u>0.ApiExps\e3_TXTAllCrtlScript</u> \<u>Readme.pdf - •</u>

2.4 MATLAB获取地形高度矩阵 接口实验

本实验提供了进行仿真时. 利用MATLAB函数调用RflySim 3D的命令接口以及获取场景地 形数据并分析的流程。地形数 据主要通过解析场景地形配置 文件(txt校准数据和png高度图 矩阵) 获取。部分实验效果如 右图,详细操作及实验效果见0。 ApiExps\e5_GetTerrainMAT\Re adme.pdf -

```
命令行窗口

>> LoadPngData 3DDisplay
>> getTerrainAltData(0,0)

ans =

-8.0400

fx >>
```


2.5可视化label标签显示接口调用(该功能仅个人版以上支持)

本实验提供了通过调用python n接口,创建目标以及设置目标的标签属性的方法。具体实验操作见2.AdvExps\e0 AdvApi Exps\e1 UEMapCtrl\8.TXTMa pCrtlScript\Readme.pdf - 。

2.6基于Cesium的全球大场景使用(该功能仅个人版以上支持)

本实验提供了导入高精度大场景和任意指定飞机GPS起点场景和任意指定飞机GPS起点坐标三维仿真的方法。具体实验操作见2.AdvExps\e0 AdvApi Exps\e1 UEMapCtrl\10.Cesium Plugin\Readme.pdf - 。

大纲

- 1. 实验平台配置
- 2. 关键接口介绍
- 3. 基础实验案例(免费版)
- 4. 进阶接口实验(个人版)
- 5. 进阶案例实验(集合版)
- 6. 扩展案例(完整版)
- 7. 小结

3.1三维场景制作并导入实验

本实验提供了将UE4自带场景 导入RflvSim平台,熟悉从UE4中 烘焙场景并导入RflySim3D和Copt erSim的流程。除了烘焙好的三维 场景文件(.umap),还需地形配 置文件(.txt校准数据和.png高度 图矩阵) 来帮助CopterSim识别该 地图,后续的场景地形服务均要 依赖这两个配置文件, 具体实验 操作见文件1.BasicExps\e0_Starter Content\Readme.pdf - 。 导入效果 如图:

3.2三维模型制作与导入实验

本实验将自定义的四旋翼模 型在3ds Max中调整, 把机翼和 机身分别以静态网格体导入UE 中添加材质并烘焙, 最后与配 套模型配置文件XML一并导入 RflySim3D并展示效果。该实验 以DroneyeeX680飞机为例。具 体实验操作见文件1.BasicExps\e _CusLoadDroneyeeX680\Read me.pdf - •

3.3简单场景控制接口总览

本系列实验提供了一套通过 调用python接口对仿真场景和 模型进行常规调整的方法,包 括模型场景的加载,通信端口 的验证等。

加载模型	<pre>0. ApiExps\e6 RflySim3DCt r1API\2. LoadModelsOnBat\Re adme. pdf</pre>
加载txt文件初	0.ApiExps\e6 Rf1ySim3DCt
始化RFlySim3D	rlAPI\3.LoadModelsByTxt\Re
场景	adme.pdf
UDP通信验证	<pre>0. ApiExps\e6 RflySim3DCt rlAPI\4. PX4RecUE4APITest\R eadme. pdf</pre>
移动物体创建	<pre>0. ApiExps\e6 Rf1ySim3DCt r1API\5. Rf1ySim3DMapTerrai nDemo\Readme. pdf</pre>
视角调整	O. ApiExps\e6 Rf1ySim3DCt r1API\6. Rf1ySim3DViewPortD emo\Readme. pdf

3.3简单场景控制接口实验(Bat 脚本加载模型)

本实验提供了利用bat脚本和 Python脚本快速布置RflySim3D 场景的方法。该实验文件夹"*/ PX4PSP\RflySimAPIs\3.RflySi m3DUE\0.ApiExps\e6_RflySim3 DCtrlAPI\2.LoadModelsOnBa t"。具体实验操作见文件0.ApiE xps\e6_RflySim3DCtrlAPI\2.Lo adModelsOnBat\Readme.pdf - •

3.3简单场景控制接口实验 (RflySim3D加载txt文件)

本实验提供了通过读取txt配置文件的形式操作RflySim3D场景的方法。该实验文件夹"*\PX4PSP\RflySimAPIs\3.RflySim3DUE\0.ApiExps\e6_RflySim3DCtrlAPI\3.LoadModelsByTxt"。具体实验操作见文件0.ApiExps\e6_RflySim3DCtrlAPI\3.LoadModelsByTxt\Readme.pdf。

3.3简单场景控制接口实验(外部UDP通信验证)

本实验利用Simulink发送数 据到python, 验证外部程序控 制RflySim3D的UDP通信接口。 该实验文件夹"*\PX4PSP\RflySi mAPIs\3.RflySim3DUE\0.ApiEx ps\e6_RflySim3DCtrlAPI\4.PX4 RecUE4APITest"。具体实验操 作见文件0.ApiExps\e6_RflySim 3DCtrlAPI\4.PX4RecUE4APITe st\Readme.pdf - •

3.3简单场景控制接口实验(场景内移动物体创建)

本实验提供了一个通过python 接口创建了初始位置贴合地面的 一个人和一架四旋翼, 并通过循 环发送UDP不断调整四旋翼位置 的示例。该实验文件夹"*\PX4PSP \RflySimAPIs\3.RflySim3DUE\0.A piExps\e6_RflySim3DCtrlAPI\5.Rf lySim3DMapTerrainDemo"。具体 实验操作见文件O.ApiExps/e6 Rfl ySim3DCtrlAPI\5.RflySim3DMap TerrainDemo\Readme.pdf - •

3.3简单场景控制接口实验(场景内视角调整)

本实验提供了一个通过python 接口创建了初始位置贴合地面的 一个人和一架四旋翼, 并通过改 变发送的UDP命令不断调整场景 内视角的示例。该实验文件夹"*\P X4PSP\RflySimAPIs\3.RflySim3D UE\0.ApiExps\e6_RflySim3DCtrl API\6.RflySim3DViewPortDemo". 具体实验操作见文件_{0.ApiExps}\e6 RflySim3DCtrlAPI\6.RflySim3D ViewPortDemo\Readme.pdf - •

大纲

- 1. 实验平台配置
- 2. 关键接口介绍
- 3. 基础实验案例(免费版)
- 4. 进阶接口实验(个人版)
- 5. 进阶案例实验(集合版)
- 6. 扩展案例(完整版)
- 7. 小结

4.1进阶场景控制接口总览(快速场景布置)

本系列实验提供了一套快速布置和调整RflySim3D内场景的方法(即不用打开UE引擎),可以直接使用快捷键或调用pyt hon接口,这主要用于创建一些障碍物和标靶。

	通过快捷键布置标	2. AdvExps\e0 AdvApiExps\e1 UEMapCtrl\1. TargetCreateKe y\Readme. pdf
	靶场景	y (Reaulie, pur
	通过pytho	2.AdvExps\e0_AdvApiExps\e1_
	加脚本布置	<u>UEMapCtrl\2.TargetCreatePy\Rea</u>
	标靶场景	dme.pdf
	布置与地	2.AdvExps\e0_AdvApiExps\e1_
	形匹配目	UEMapCtrl\3.TargetPlace\Readm
	标	<u>e.pdf</u>

4.1进阶场景控制接口实验(快捷键布置标靶)

本实验提供了通过快捷键创建标靶,并通过修改xml文件使之与地形匹配的流程。具体实验操作见2.AdvExps\e0 AdvApi Exps\e1 UEMapCtrl\1.TargetCreateKey\Readme.pdf - 。

4.1进阶场景控制接口实验 (python脚本布置标靶)

本实验提供了通过python脚本批量创建标靶,并使之与地形匹配的流程(无需修改xml文件,能够快速适配不同的场景)。具体实验操作见2.AdvExps\e0 AdvApiExps\e1 UEMap Ctrl\2.TargetCreatePy\Readme. pdf - 。

4.1进阶场景控制接口实验 (python脚本布置行人)

本实验提供了通过python脚本创建人物,并使之与地形匹配的流程(根据调用接口不同,可以手动修改模型初始位置高度,也可以自动地形匹配)。 具体实验操作见2.AdvExps\e0 AdvApiExps\e1 UEMapCtrl\3. TargetPlace\Readme.pdf - 。

4.1进阶场景控制接口总览(快速轨迹生成)

本系列实验提供了一套通过s imulink模块发送UDP消息来创 建物体并生成运动轨迹,这主 要用于批量创建移动障碍物。

Simulink获取 地形并生成贴 地运动轨迹	2.AdvExps\e0_AdvApiExps\e1_UEMa pCtrl\4.TrajGen\Readme.pdf
Simulink生成 同构多物体运 动轨迹实验	2.AdvExps\e0 AdvApiExps\e1 UEMa pCtrl\5.TrajGenMulti\Readme.pdf
Simulink生成 异构多物体运 动轨迹实验	2.AdvExps\e0 AdvApiExps\e1 UEMa pCtrl\6.HeterTrajGenMulti\Readme.pdf
Simulink生成 车队圆环轨迹	2.AdvExps\e0 AdvApiExps\e1 UEMa pCtrl\7.TenCarCircleCtrl\Readme.pdf

4.1进阶场景控制接口实验 (Simulink模块生成行人轨迹)

本实验提供了通过MATLAB 获取地形高度图矩阵,并通过 运行Simulink模块生成贴合地 面运动的行人轨迹。具体实验 操作见2.AdvExps\e0 AdvApiEx ps\e1 UEMapCtrl\4.TrajGen\R eadme.pdf -。

4.1进阶场景控制接口实验 (Simulink模块生成同构多模型轨迹)

本实验提供了通过MATLAB 获取地形高度图矩阵,并通过 运行Simulink模块生成离地面 一定高度运动的多架相同样式 四旋翼的轨迹。具体实验操作 见2.AdvExps\e0 AdvApiExps\e 1 UEMapCtrl\4.TrajGen\Read me.pdf - 。

4.1进阶场景控制接口实验 (Simulink模块生成异构多模型轨迹)

本实验提供了通过MATLAB 获取地形高度图矩阵,并通过 运行Simulink模块生成贴合地 面运动的多个不同样式模型的 各自轨迹。具体实验操作见2.A dvExps\e0 AdvApiExps\e1 UE MapCtrl\6.HeterTrajGenMulti\ Readme.pdf - 。

4.1进阶场景控制接口实验 (Simulink生成车队圆环轨迹)

本实验提供了通过MATLAB 获取地形高度图矩阵,并通过 运行Simulink模块生成在冰面 上方运动的车辆圆环编队。具 体实验操作见2.AdvExps\e0 Ad vApiExps\e1 UEMapCtrl\7.Ten CarCircleCtrl\Readme.pdf - 。

4.1进阶场景控制接口总览(其它场景特效调用)

本系列实验提供了一些获取 RflySim3D场景内数据的方法, 以及一些常用场景特效的触发 方法。

Txt日志恢复R flySim3D场景 实验	2.AdvExps\e0 AdvApiExps\e1 UEMap Ctrl\8.TXTMapCrtlScript\Readme.pdf
获取RflySim3	
D内所有动态	2.AdvExps\e0 AdvApiExps\e1 UEMap
创建物体位置、	Ctrl\9.RflySim3DPosGet\Readme.pdf
碰撞数据	
平台自带特效	2.AdvExps\e0 AdvApiExps\e1 UEMap
使用方法	Ctrl\11.EffectPlugins\Readme.pdf
爆炸特效触发	2.AdvExps\e0 AdvApiExps\e1 UEMapC
实验	trl\12. DamageModel\Readme. pdf

4.1进阶场景控制接口实验 (RflySim3D切换地图控制脚本 实验)

本实验提供了通过RflySim3D点击和创建物体日志,保留在特定地图场景中所作的部分布置。例如在RflySim3D进入3Ddisplay地图时自动加载上次布置的场景。具体实验操作见2.AdvExps\e0 AdvApiExps\e1 UEMapCtrl\8.TXTMapCrtlScript\Readme.pdf - 。

4.1进阶场景控制接口实验(获取RflySim3D内所有动态创建物体位置、碰撞数据实验)

本实验提供了通过通过平台提供的python接口获取RflySim3D内所有动态创建物体位置、碰撞数据的方法。具体实验操作见2.AdvExps\e0 AdvApiExps\e1 UEMapCtrl\9.RflySim3DPosGet\Readme.pdf-。

```
88279533, 0.014640222303569317, -18.16
7969761, 0.01514009665697813, -18.1676
212965, 0.015618368051946163, -18.1670
36884308, 0.01622229814529419, -18.166
95037117, 0.01664811000227928, -18.165
7849617, 0.017049528658390045, -18.164
4386425, 0.01754816435277462, -18.1640
00107765, 0.01800825446844101, -18.163
8637333, 0.018327251076698303, -18.162
98768616, 0.01862180419266224, -18.162
4561863, 0.018890563398599625, -18.161
58787537, 0.01913336291909218, -18.161
16134644, 0.019350789487361908, -18.16
15652847, 0.019543945789337158, -18.16
```


4.进阶接口实验

4.2载具模型调整接口总览

本系列实验提供了一套通过 修改XML文件调整三维模型的 方法,主要包括执行器之间的 相对关系。以及通过simulink模 块或者python脚本调整模型之 间的相对关系的方法。

执行器绑定	2.AdvExps\e0 AdvApiExps\e2 UA
实验	VCtrl\1.ActuatorBinding\Readme.pdf
执行器控制	2.AdvExps\e0 AdvApiExps\e2 UA
实验	VCtrl\2.ActuatorCtrl\Readme.pdf
Simulink载	2.AdvExps\e0_AdvApiExps\e2_UA
Simulink载 具模型绑定	2.AdvExps\e0 AdvApiExps\e2 UA VCtrl\3.ModelBindSim\Readme.pdf
, ,	

4.进阶接口实验

4.2载具模型调整接口实验(执行器绑定和控制接口)

这两个实验分别提供了通过 修改xml脚本绑定相互关联的执 行器组件(详见2.AdvExps\e0 AdvApiExps\e2 UAVCtrl\1.Act uatorBinding\Readme.pdf -) 以及修改xml文件验证超8维执 行器控制(详见2.AdvExps\e0 AdvApiExps\e2_UAVCtrl\2.Act uatorCtrl\Readme.pdf -) 的方 法。

4.进阶接口实验

4.2载具模型调整接口实验(模型绑定接口)

_)向RflySim3D发送定义了载 具间依附关系结构体的方法。

大纲

- 1. 实验平台配置
- 2. 关键接口介绍
- 3. 基础实验案例(免费版)
- 4. 进阶接口实验(个人版)
- 5. 进阶案例实验(集合版)
- 6. 扩展案例(完整版)
- 7. 小结

5.1进阶场景开发工具入门

本系列实验提供了一套基于 UE引擎进行三维仿真场景开发 的依赖软件,包括常用的三维 处理软件(对模型进行处理)3 dsMax和SketchUp, 基于UE的 场景实时可视化预览软件Twin motion. 以及支持UE引擎的全 球大场景插件Cesium for Unrea l。这些实验只是简单介绍以上 工具的基本功能,具体使用方 法可以参考例程中的学习途径。

UE蓝图简单	O. ApiExps\eO DevToolsUsage\1.U
使用入门	EBlueprintUsage\Readme.pdf
3dsMax简单操	O. ApiExps\eO DevToolsUsage\2.3
作入门	dsMaxUsage\Readme.pdf
SketchUp安装 与简单使用	2. AdvExps\e0 AdvApiExps\e0 Dev ToolsUsage\1. SketchUpUsage\Readm e. pdf
Twinmotion安 装与使用	2. AdvExps\e0 AdvApiExps\e0 Dev ToolsUsage\2. TwinmotionUsage\Rea dme. pdf
Cesium for U	2. AdvExps\e0 AdvApiExps\e0 Dev
nreal安装与使	ToolsUsage\3. CesiumForUnrealUsag
用	e\Readme.pdf

5.2 UE5场景导入(自带场景)

本实验提供了一套从UE5中 烘焙场景并导入RflySimUE5\Rf lySim3D和CopterSim的流程。 这里地形配置文件的获取与UE 4场景相同,而场景烘焙的步骤 区别于UE4, 具体实验操作见 文件2.AdvExps\e0_AdvApiExps \e0 DevToolsUsage\4.UE5Starte rContent\Readme.pdf - 。导入 效果如图:

5.3 基于Twinmotion近地面场景构建(演示场景)

本实验提供了一套将场景通过 Datasmith插件从Twinmotion导入 UE4/UE5,在UE4/UE5中处理并烘 焙场景导入RflySim3D和CopterSi m的流程。这里使用Datasmith插 件是为了使导入效果更精确, 具 体版本配置参考API.pdf, 本实验 具体操作见文件2.AdvExps\e0 Ad vApiExps\e0_DevToolsUsage\4.UE 5StarterContent\Readme.pdf - • 导入效果如图:

注意:两种导入方式的材质计算方法有区别,烘焙后的场景导入RflySim3D的方式也有不同,推荐导入UE5进行烘焙

5.3 基于Twinmotion近地面场景构建(演示场景)

若Twinmotion场景以.tm文件 导入UE4,在UE4中需启用如右 上图所示的Twinmotion导入器 和Twinmotion内容插件。

若Twinmotion场景以.udatas mith文件导入UE5, 在UE5中需启用如右下图所示的Datasmith 导入器和Twinmotion内容插件。

5.4 基于Cesium的全球大场景构建(倾斜摄影转换)

本实验提供了一套将香港部分地区航拍摄影数据转化得到的OSGB模型在CesiumLab中转换为RflySim3D能识别的3D Tiles格式并导入RflySim3D的流程,具体实验操作见文件2.AdvExps e2 CesiumScene 1.ObliModel Map\Readme.pdf-。导入效果如图:

5.4 基于Cesium的全球大场景构建 (倾斜摄影转换)

在城市规划地图网站可以直接下载倾斜摄影转化的OSGB瓦片

这里使用CesiumLab的转换工 具可以自动识别出OSGB倾斜模型 的零点坐标和瓦片数量。

RflySim3D之所以能识别3D Til es格式的瓦片,是因为其中已经内置了CesiumforUnreal插件。

5.5蓝图模型导入流程总览

本系列实验提供了一套将模 型的网格体和动画序列导入UE、 在UE中添加蓝图逻辑, 烘焙并 导入RflySim3D, 最后通过pyth on接口触发蓝图, 验证其动画 控制效果的流程。这里分别以 一个用静态网格体拼接的四旋 翼模型和一个骨骼网格体自带 动画序列和蓝图动画的固定翼 模型为例。

Rf1ySim3D 蓝图接口实 验	2. AdvExps\e1 BlueprintMo de1\1. BlueprintBuild\Read me. pdf
虚幻商城固 定翼蓝图模 型导入	2. AdvExps\e1 BlueprintMo de1\2. BPMode1Load\Readme. pdf
Python场景 控制高级接 口验证实验	2. AdvExps\e1 BlueprintMo de1\3. BPMode1Crt1Py\Readm e. pdf

5.5蓝图模型导入流程实验(四 旋翼模型)

本实验将DroneyeeX680四旋 翼的机身和螺旋桨分别导入UE 中,用一个蓝图actor将其拼接 为一个完整的四旋翼, 然后为 这个Actor添加蓝图事件。最后 将烘焙好的模型和配套的XML 配置文件一同导入RflySim3D。 详细实验操作见2.AdvExps\e1 BlueprintModel\1.BlueprintBuil d\Readme.pdf -

5.5蓝图模型导入流程实验(四旋翼模型)

这里蓝图Actor的蓝图事件包括RflySim3D提供的蓝图接口: ActuatorInputsExt、ActuatorInputs以及控制螺旋桨旋转动画序列的EventTick。

配套的XML文件中需要将m eshpath标签指向这个蓝图Actor, 且更改对应的modeltype为蓝图。

5.5蓝图模型导入流程实验(固定翼模型)

本实验将虚幻商城中已有的 West Transport C130J固定翼 模型导入一个UE项目、在已有 的蓝图actor的事件中加入RflvS im3D平台的蓝图接口,最后烘 焙并与配套的XML配置文件一 同导入RflySim3D。详细实验操 作见2.AdvExps\e1_BlueprintM odel\1.BlueprintBuild\Readme.p df -

5.5蓝图模型导入流程实验(固定翼模型)

这里蓝图actor的事件中添加的RflySim3D提供的蓝图接口: ActuatorInputs用于传入固定翼的8个舵面,ActuatorInputsExt用于触发毁伤效果等特效。本实验中各模型组件的动画效果使通过单独的动画蓝图控制的。

5.5蓝图模型导入流程实验(蓝图接口调用方法)

本实验提供了一套python接口以验证蓝图模型的导入效果。包括通过python脚本发送RflySim3D的控制台命令触发蓝图接口以及直接通过python命令触发蓝图接口。具体实验操作见2. AdvExps\e1 BlueprintModel\3. BPModelCrtlPy\Readme.pdf - 。

大纲

- 1. 实验平台配置
- 2. 关键接口介绍
- 3. 基础实验案例(免费版)
- 4. 进阶接口实验(个人版)
- 5. 进阶案例实验(集合版)
- 6. 扩展案例(完整版)
- 7. 小结

6.1 SketchUp+Twinmotion自定 义场景创建流程

本实验利用Sketchup绘制别 墅场景模型,通过Datasmith插 件导入Twinmotion替换更精细 的材质,渲染成更逼真的场景, 在UE中添加动态效果和光照, 烘焙好后导入RflySim3D。详细 实验流程参见3.CustExps\e1 Cu sContentSU\Readme.pdf-

6.1 SketchUp+Twinmotion自定 义场景创建流程

Sketchup绘制别墅场景模型如右上图

Twinmotion替换更精细的材质,渲染成更逼真的场景,如 右下图。该场景导入UE后需要 重新添加材质和光照效果,这 是因为材质映射关系的改变。

6.2 RflySim3D自定义固定翼模型加载流程

本实验将自定义的固定翼模 型在3ds Max中调整,把8个舵 面和机身分别以静态网格体导 入UE中添加材质并烘焙、最后 与配套模型配置文件XML一并 导入RflySim3D并展示效果。该 实验以MQ-9Reaper飞机为例。 具体实验操作见文件3.CustExps \e2_CusLoadFixWing\Readme.p df - •

6.3 GIS服务(CityEngine操作入门实验)

本实验利用CityEngine使用cga规则在指定区块构建3D建筑模型。具体实验操作见文件3.CustExps\e3 CityEngineExp\1.CityEngineUsage\Readme.pdf - 。

6.3 GIS服务(基于CityEngine 城市场景创建实验)

本实验提供了一套根据地理信息(影像和高程数据)和道路建筑信息(矢量数据)分别使用cga规则构建对应的3D模型的方法。具体实验操作见文件3.

CustExps\e3 CityEngineExp\2. CitySceneBuild\Readme.pdf - •

6.3 GIS服务(多级影像重叠白边处理流程)

本实验提供了一套分别使用这两种常用的地理信息系统(GIS)软件Global Mapper和ArcGIS处理多级影像白边的流程。 具体实验操作见文件3.CustExps e4 MultOverlapareasProcess\Readme.pdf - 。

大纲

- 1. 实验平台配置
- 2. 关键接口介绍
- 3. 基础实验案例(免费版)
- 4. 进阶接口实验(个人版)
- 5. 进阶案例实验(集合版)
- 6. 扩展案例(完整版)
- 7. 小结

7. 小结

- 本讲主要对无人系统三维仿真场景的开发课程进行讲解,分为基础实验、进阶实验和扩展案例三部分,使各位学员能够尽快熟悉各类场景模型的制作和导入流程以及RflySim3D提供的场景控制接口。
- 基础实验是简单场景和模型导入流程和基本场景控制接口学习为主,进阶实验是从近地面场景和全球大场景构建→蓝图模型→完整场景控制接口的学习路线进行教学。

如有疑问。请到https://doc.rflysim.com/查询更多信息。

RflySim更多教程

扫码咨询与交流

飞思RflySim技术交流群

谢谢!