[Total No. of Questions - 9] [Total No. of Printed Pages - 3] (2125)

15088

B. Tech 4th Semester Examination

Numerical Methods & Computer Programming (OS) AS(ID)-4001

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt five questions in all. Select one question from each section A, B, C and D. Section E is compulsory.

SECTION - A

1. (a) Use Newton's Forward Interpolation Formula to evaluate sin 52°, given that

 θ : 45° 50° 55° 60° $\sin \theta$: 0.7071 0.7660 0.8192 0.8660 (10)

(b) Using Gauss's Forward Interpolation Formula, find a polynomial of degree 4 which takes the following function f(x):

x: 1 2 3 4 5 f(x): 1 -1 1 -1 1 (10)

2. (a) Use Newton's divided difference interpolating polynomial and hence find f(15):

x: 4 5 7 10 11 13 f(x): 48 100 294 900 1210 2028 (10)

[P.T.O.]

2 15088

(b) Find the missing term in the following table using interpolation:

SECTION - B

(a) Find the root of equation cos x - xe^x = 0 using Bisection method correct to four decimal places up to eight iterations.

(b) Using Newton Raphson method to find the smallest root of the equation.

$$f(x) = x^3 - 5x + 1 (10)$$

4. (a) Using Jacobi's method, solve the equations: 15x + y - z = 14, x + 20y + z = 23, 2x - 3y + 18z = 37.

(b) Solve the equations by Relaxation method: $10x-2y-3z=205, \quad -2x+10y-2z=154, \quad -2x-y+10z=120 \tag{10}$

SECTION - C

5. (a) Find y' and y" at x = 1.1, 1.5, 1.9 from the following data:

x: 1.0 1.2 1.4 1.6 1.8 2.0

y: 0 0.128 0.544 1.2696 2.432 4.000 (10)

(b) Evaluate the integral $\int_{0}^{1} \frac{x}{1+x^2} dx$, using Boole's rule. Compare the error with exact value. (10)

6. Apply Romberg's method to evaluate $\int_{4}^{5.2} \log x \, dx$ given that: x: 4.0 4.2 4.4 4.6 4.8 5.0 5.2 logx: 1.3863 1.4351 1.4816 1.526 1.5686 1.6094 1.6486 (20) 3 15088

SECTION - D

- 7. Solve the Poisson's equation $u_{xx}+u_{yy}=-81xy$; 0< x<1, 0< y<1; given that u(0, y)=0, u(x,0)=0; u(1, y)=100, u(x,1)=100 and u(x,1)=100 and u(x,1)=100
- 8. Solve the boundary value problem $u_t = u_{xx}$, under the conditions u(0, t) = u(1, t) = 0 and $u(x, 0) = \sin \pi x$; $0 \le x \le 1$; using Schmidt method (take h = 0.2 and $\alpha = 0.5$). (20)

SECTION - E

- 9. (a) What is the difference between Transcendental equation and polynomial equation?
 - (b) The interval in which the real root of the equation $x^3 2x 5 = 0$ lies is.....
 - (c) When a linear system is said to be ill conditioned and well conditioned?
 - (d) By Gauss-Elimination method solve the equations x+y=2 and 2x+3y=5.
 - (e) Prove that $E = \Delta + 1$ and $E = e^{hD}$.
 - (f) Evaluate $\Delta^2 \cos 3x$.
 - (g) Write down Newton's Backward interpolation formula and Lagrange's interpolation formula.
 - (h) Define the terms: Interpolation and Extrapolation with examples.
 - (i) The number of sub intervals required for Boole's rule is