Spatio-temporal objects to proxy a PostgreSQL table

Edzer Pebesma

February 17, 2013

Abstract

This vignette describes and implements a class that proxies data sets in a PostgreSQL database with classes in the spacetime package. This might allow access to data sets too large to fit into R memory.

Contents

1	Introduction	1
2	Setting up a database	2
3	A proxy class	3
4	Selection based on time period and/or region	3
5	Closing the database connection	4
6	Limitations and alternatives	4

1 Introduction

Massive data are difficult to analyze with R, because R objects reside in memory. Spatio-temporal data easily become massive, either because the spatial domain contains a lot of information (satellite imagery), or many time steps are available (high resolution sensor data), or both. This vignette shows how data residing in a data base can be read into R using spatial or temporal selection.

In case the commands are not evaluated because CRAN packages cannot access an external data base, a document with evaluated commands is found here.

This vignette was run using the following libraries:

- > library(RPostgreSQL)
- > library(spacetime)

2 Setting up a database

We will first set the characteristics of the database¹

```
> dbname = "postgis"
> user = "edzer"
> password = ""
```

Next, we will create a driver and connect to the database:

```
> drv <- dbDriver("PostgreSQL")
> con <- dbConnect(drv, dbname=dbname, user=user, password=password)</pre>
```

It should be noted that these first two commands are specific to PostgreSQL; from here on, commands are generic and should work for any database connector that uses the interface of package DBI.

We now remove a set of tables (if present) so they can be created later on:

```
> dbRemoveTable(con, "rural_attr")
> dbRemoveTable(con, "rural_space")
> dbRemoveTable(con, "rural_time")
> dbRemoveTable(con, "space_select")
```

Now we will create the table with spatial features (observation locations). For this, we need the rgdal function writeOGR, which by default creates an index on the geometry:

Second, we will write the table with times to the database, and create an index to time:

```
> df = data.frame(time = index(rural@time), time_id = 1:nrow(rural@time))
> dbWriteTable(con, "rural_time", df)
> idx = "create index time_idx on rural_time (time);"
> dbSendQuery(con, idx)
```

Finally, we will write the full attribute data table to PosgreSQL, along with its indexes to the spatial and temporal tables:

```
> idx = rural@index
> names(rural@data) = "pm10" # lower case
> df = cbind(data.frame(geom_id = idx[,1], time_id = idx[,2]), rural@data)
> dbWriteTable(con, "rural_attr", df)
```

¹It is assumed that the database is *spatially enabled*, i.e. it understands how simple features are stored. The standard for this from the open geospatial consortium is described here.

3 A proxy class

The following class has as components a spatial and temporal data structure, but no spatio-temporal attributes (they are assumed to be the most memory-hungry). The other slots refer to the according tables in the PostGIS database, the name(s) of the attributes in the attribute table, and the database connection.

4 Selection based on time period and/or region

The following two helper functions create a character string with an SQL command that for a temporal or spatial selection:

```
.SqlTime = function(x, j)  {
          stopifnot(is.character(j))
+
          t = .parseIS08601(j)
          t1 = paste("'", t$first.time, "'", sep = "")
          t2 = paste("'", t$last.time, "'", sep = "")
          what = paste("geom_id, time_id", paste(x@attr, collapse = ","), sep = ", ")
          paste("SELECT", what, "FROM", x@attr_table, "AS a JOIN", x@time_table,
                  "AS b USING (time_id) WHERE b.time \geq= ", t1, "AND b.time \leq=", t2,";")
+ }
 .SqlSpace = function(x, i) {
          stopifnot(is(i, "Spatial"))
+
          writeOGR(i, OGRstring, "space_select", driver = "PostgreSQL")
          what = paste("geom_id, time_id", paste(x@attr, collapse = ","), sep = ", ")
+
          paste("SELECT", what, "FROM", x@attr_table,
                  "AS a JOIN (SELECT p.wkb_geometry, p.geom_id FROM",
                  x@space_table, " AS p, space_select AS q",
                  "WHERE ST_Intersects(p.wkb_geometry, q.wkb_geometry))",
                  "AS b USING (geom_id);")
+ }
```

The following selection method selects a time period only, as defined by the methods in package xts. A time period is defined as a valid ISO8601 string, e.g. 2005-05 is the full month of May for 2005.

```
> setMethod("[", "ST_PG", function(x, i, j, ..., drop = TRUE) {
          stopifnot(missing(i) != missing(j)) # either of them present
          if (missing(j))
                  sql = .SqlSpace(x,i)
          else
                  sql = .SqlTime(x,j)
          print(sql)
          df = dbGetQuery(x@con, sql)
          STSDF(x@sp, x@time, df[x@attr], as.matrix(df[c("geom_id", "time_id")]))
+ })
[1] "["
> pm10_20050101 = rural_proxy[, "2005-01-01"]
> summary(pm10_20050101)
> summary(rural[,"2005-01-01"])
> pm10_NRW = rural_proxy[DE_NUTS1[10,],]
> summary(pm10_NRW)
> summary(rural[DE_NUTS1[10,],])
```

Clearly, the temporal and spatial components are not subsetted, so do not reflect the actual selection made; the attribute data however do; the following selection step "cleans" the unused features/times:

```
> dim(pm10_NRW)
> pm10_NRW = pm10_NRW[T,]
> dim(pm10_NRW)
```

Comparing sizes, we see that the selected object is smaller:

```
> object.size(rural)
> object.size(pm10_20050101)
> object.size(pm10_NRW)
```

5 Closing the database connection

The following commands close the database connection and release the driver resources:

```
> dbDisconnect(con)
> dbUnloadDriver(drv)
```

6 Limitations and alternatives

The example code in this vignette is meant as an example and is not meant as a full-fledged database access mechanism for spatio-temporal data bases. In particular, the selection here can do only *one* of spatial locations (entered as features) or time periods. If database access is only based on time, a spatially enabled database (such as PostGIS) would not be needed.

For massive databases, data would typically not be loaded into the database from R first, but from somewhere else.

An alternative to access from R large, possibly massive spatio-temporal data bases for the case where the data base is accessible through a sensor observation service (SOS) is provided by the R package ${
m sos}4{
m R}$, which is also on CRAN.