

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1 (Currently Amended): A compound of the formulae:

wherein:

R₁ and R_{1'} are independently selected from H, halogen, -CF₃, -OH, -C₁-C₁₀ alkyl, -S-C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, -CN, -NO₂, -NH₂, -HN(C₁-C₆), -N(C₁-C₆)₂, phenyl, -O-phenyl, -S-phenyl, benzyl, -O-benzyl, -S-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -NH₂, -CN, -CF₃, or -OH;

or a moiety of the formulae:

R₆ is selected from H, C₁-C₆ alkyl, C₁-C₆ alkoxy, -C(O)CH₃, phenyl, -O-phenyl, benzyl, -O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -NH₂, -CN, -CF₃, or -OH;

R_7 is selected from $-(CH_2)_n-COOH$, $-(CH_2)_n-N-(C_1-C_6\text{ alkyl})_2$, $-(CH_2)_n-NH-(C_1-C_6\text{ alkyl})$, $-CF_3$, C_1-C_6 alkyl, C_3-C_5 cycloalkyl, C_1-C_6 alkoxy, $-NH-(C_1-C_6\text{ alkyl})$, $-N-(C_1-C_6\text{ alkyl})_2$, pyridinyl, thienyl, furyl, pyrrolyl, quinolyl, $(CH_2)_n$ phenyl, phenyl, $-O$ -phenyl, benzyl, $-O$ -benzyl, adamantyl, or morpholinyl, $-(CH_2)_n$ -phenyl- O -phenyl, $-(CH_2)_n$ -phenyl- CH_2 -phenyl, $-(CH_2)_n$ - O -phenyl- CH_2 -phenyl, $-(CH_2)_n$ -phenyl-(O - CH_2 -phenyl) $_2$, the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_6 alkyl, C_1-C_6 alkoxy, $-NH_2$, $-NO_2$, $-CF_3$, CO_2H , or $-OH$;

R_2 is selected from H, halogen, $-CF_3$, $-OH$, $-C_1-C_{10}$ alkyl, C_1-C_{10} alkoxy, $-CHO$, $-CN$, $-NO_2$, $-NH_2$, $-NH-C_1-C_6$ alkyl, $-N(C_1-C_6\text{ alkyl})_2$, $-N-SO_2-C_1-C_6$ alkyl, or $-SO_2-C_1-C_6$ alkyl;

R_3 is selected from H, $-CF_3$, C_1-C_6 lower alkyl, C_1-C_6 lower alkoxy, C_3-C_{10} cycloalkyl, $-C_1-C_6$ alkyl, $-C_3-C_{10}$ cycloalkyl, $-CHO$, halogen, $(CH_2)_nC(O)NH_2$ or a moiety of the formula $-L^1-M^1$:

L^1 indicates a linking or bridging group of the formulae $-(CH_2)_n-$, $-S-$, $-O-$, $-C(O)-$, $-(CH_2)_n-C(O)-$, $-(CH_2)_n-C(O)-(CH_2)_n-$, $-(CH_2)_n-O-(CH_2)_n-$, or $-(CH_2)_n-S-(CH_2)_n-$, $C(O)C(O)X$, $-(CH_2)_n-N-(CH_2)_n-$;

M^1 is selected from the group consisting of:

a) H, C_1-C_6 lower alkyl, C_1-C_6 lower alkoxy, C_3-C_{10} cycloalkyl, phenyl, and benzyl, the cycloalkyl, phenyl and benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_{10} alkyl, C_1-C_{10} alkoxy, $-NO_2$, $-NH_2$, $-CN$, and $-CF_3$, with the proviso that M^1 cannot be H when L^1 is $-O-$;

b) a six membered heterocyclic ring containing one, two or three ring heteroatoms selected from N, S or O, the six membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_{10} alkyl, C_1-C_{10} alkoxy, CHO , NO_2 , NH_2 , CN , CF_3 or OH ; and

—e) a bicyclic ring moiety containing from 8 to 10 ring atoms and optionally containing from 1 to 3 ring heteroatoms selected from N, S or O, the bicyclic ring moiety being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, -CHO, -NO₂, -NH₂, -CN, -CF₃ or -OH;

R_4 is selected from the group of C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, $-(CH_2)_n-C_3-C_6$ cycloalkyl, $-(CH_2)_n-S-(CH_2)_n-C_3-C_5$ cycloalkyl, $-(CH_2)_n-O-(CH_2)_n-C_3-C_5$ cycloalkyl, or the groups of:

a) $-(CH_2)_n$ -phenyl-O-phenyl, $-(CH_2)_n$ -phenyl-CH₂-phenyl, $-(CH_2)_n$ -O-phenyl-CH₂-phenyl, $-(CH_2)_n$ -phenyl-(O-CH₂-phenyl)₂, or a moiety of the formulae:

wherein n is independently selected in each appearance as an integer from 0 to 3, Y is C₃-C₅ cycloalkyl, phenyl, benzyl, naphthyl, pyridinyl, quinolyl, furyl, thienyl or pyrrolyl; rings of these

groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O; or

b) a moiety of the formulae $-(\text{CH}_2)_n\text{-A}$, $-(\text{CH}_2)_n\text{-S-A}$, or $-(\text{CH}_2)_n\text{-O-A}$, wherein A is the moiety:

wherein

D is H, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, or -CF₃;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, substituents selected from H, halogen, $-\text{CF}_3$, $-\text{OH}$, $-\text{C}_1\text{-C}_6$ alkyl, $\text{C}_1\text{-C}_6$ alkoxy, or $-\text{NO}_2$; or

c) a moiety of the formulae:

wherein Z is O or S and the phenyl and pyrimidinyl rings of each moiety are optionally and independently substituted by from 1 to 3 substituents selected from halogen, $-\text{CF}_3$, $-\text{OH}$, $-\text{C}_1\text{-C}_6$ alkyl, $\text{C}_1\text{-C}_6$ alkoxy, $-\text{NH}_2$, or $-\text{NO}_2$; or

d) a moiety of the formula $-\text{L}^2\text{-M}^2$, wherein:

L^2 indicates a linking or bridging group of the formulae $-(CH_2)_n-$, $-S-$, $-O-$, $-SO_2-$, $-C(O)-$, $-(CH_2)_n-C(O)-$, $-(CH_2)_n-C(O)-(CH_2)_n-$, $-(CH_2)_n-O-(CH_2)_n-$, or $-(CH_2)_n-S-(CH_2)_n-$, $-C(O)C(O)X$;
where $X = O, N$

M^2 is selected from the group of C_1-C_6 lower alkyl, C_1-C_6 lower alkoxy, C_3-C_{10} cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_{10} alkyl, C_1-C_{10} alkoxy, $-NO_2$, $-NH_2$, $-CN$, or $-CF_3$; or

i) a five-membered heterocyclic ring containing one or two ring heteroatoms selected from N, S or O, the five-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_{10} alkyl, C_1-C_{10} alkoxy, $-NO_2$, $-NH_2$, $-CN$, or $-CF_3$; or

ii) a six-membered heterocyclic ring containing one, two or three ring heteroatoms selected from N, S or O, the six-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_{10} alkyl, C_1-C_{10} alkoxy, $-CHO$, $-NO_2$, $-NH_2$, $-CN$, $-CF_3$ or $-OH$; or

iii) a bicyclic ring moiety containing from 8 to 10 ring atoms and optionally containing from 1 to 3 ring heteroatoms selected from N, S or O, the bicyclic ring moiety being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_{10} alkyl, C_1-C_{10} alkoxy, $-CHO$, $-NO_2$, $-NH_2$, $-CN$, $-CF_3$ or $-OH$;

n is an integer from 0 to 3;

R_5 is a moiety selected from the formulae $-L^3-M^3$

wherein L^3 is a bridging or linking moiety selected from a chemical bond, $-(CH_2)_n-$, $-S-$, $-O-$, $-SO_2-$, $-C(O)-$, $-(CH_2)_n-C(O)-$, $-(CH_2)_n-C(O)-(CH_2)_n-$, $-(CH_2)_n-O-(CH_2)_n-$, $-(CH_2)_n-S-(CH_2)_n-$, $-C(Z)-N(R_6)-$, $-C(Z)-N(R_6)-(CH_2)_n-$, $-C(O)-C(Z)-N(R_6)-$, $-C(O)-C(Z)-N(R_6)-(CH_2)_n-$, $-C(Z)-NH-SO_2-$, $-C(Z)-NH-SO_2-(CH_2)_n-$, $-(CH_2)_n-S-(CH_2)_n-$, $-(CH_2)_n-SO-(CH_2)_n-$, $-(CH_2)_n-SO_2-(CH_2)_n-$, or $-(CH_2)_n-CH=CH-(CH_2)_n-O-$;

M^3 is

and n is an integer from 0 to 3;

R9 is selected from H, halogen, -CF3, -OH, -COOH, -(CH2)n-COOH, -(CH2)n-C(O)-COOH, -C1-C6 alkyl, -O-C1-C6 alkyl, -NH(C1-C6 alkyl), or -N(C1-C6 alkyl)2;
n is an integer from 0 to 3;

or a pharmaceutically acceptable salt thereof.

2 (Previously Amended): A compound of Claim 1 wherein:

R1 and R1' are independently selected from H, halogen, -CF3, -OH, -C1-C10 alkyl, -S-C1-C10 alkyl, C1-C10 alkoxy, -CN, -NO2, -NH2, -HN(C1-C6), -N(C1-C6)2, phenyl, -O-phenyl, -S-phenyl, benzyl, -O-benzyl, or -S-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C1-C6 alkyl, C1-C6 alkoxy, -NO2, -NH2, -CN, -CF3, or -OH;

M¹ is selected from: H, C1-C6 lower alkyl, C1-C6 lower alkoxy, C3-C10 cycloalkyl, phenyl and benzyl, the cycloalkyl, phenyl and benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen, C1-C10 alkyl, C1-C10 alkoxy, -NO2, -NH2, -CN, and -CF3, with the proviso that M¹ cannot be H when L¹ is -O-;

R4 is a moiety of the formulae -(CH2)n-A, -(CH2)n-S-A, or -(CH2)n-O-A, wherein A is the moiety:

wherein

D is H, C1-C6 lower alkyl, C1-C6 lower alkoxy, or -CF3;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, or -NO₂; or a pharmaceutically acceptable salt thereof.

3 (Previously Amended): A compound of claim 2 wherein R₄ is the moiety:

B and C are phenyl optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, or -NO₂; and R₁, R_{1'}, R₂, R₃, R₅, L¹, M¹ and D are as defined in claim 2; or a pharmaceutically acceptable salt thereof.

4 (Previously Amended): A compound of Claim 1 wherein:

R₄ is selected from the group of C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, -(CH₂)_n-C₃-C₆ cycloalkyl, -(CH₂)_n-S-(CH₂)_n-C₃-C₆ cycloalkyl, -(CH₂)_n-O-(CH₂)_n-C₃-C₆ cycloalkyl, or the groups of:

a) a moiety of the formulae -(CH₂)_n-A, -(CH₂)_n-S-A, or -(CH₂)_n-O-A, wherein A is the moiety:

wherein

D is H, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, or -CF₃;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, or -NO₂; or

b) a moiety of the formula -L²-M², wherein L² and M² are as defined in claim 1;

or a pharmaceutically acceptable salt thereof.

5 (Previously Amended): A compound of Claim 1 wherein:

R_1 is H;

R_4 is selected from the group of C_1-C_6 lower alkyl, C_1-C_6 lower alkoxy, $-(CH_2)_n-C_3-C_6$ cycloalkyl, $-(CH_2)_n-S-(CH_2)_n-C_3-C_5$ cycloalkyl, $-(CH_2)_n-O-(CH_2)_n-C_3-C_5$ cycloalkyl, or a moiety of the formulae $-(CH_2)_n-A$, $-(CH_2)_n-S-A$, or $-(CH_2)_n-O-A$, wherein A is the moiety:

wherein

D is H, C_1-C_6 lower alkyl, C_1-C_6 lower alkoxy, or $-CF_3$;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, substituents selected from H, halogen, $-CF_3$, $-OH$, $-C_1-C_6$ alkyl, C_1-C_6 alkoxy, or $-NO_2$;

or a pharmaceutically acceptable salt thereof.

6 (Previously Amended): A compound of Claim 1 wherein:

R_1 is selected from H, halogen, $-CF_3$, $-OH$, $-C_1-C_{10}$ alkyl, $-S-C_1-C_{10}$ alkyl, C_1-C_{10} alkoxy, $-CN$, $-NO_2$, $-NH_2$, $-HN(C_1-C_6)$, $-N(C_1-C_6)_2$, phenyl, $-O-phenyl$, $-S-phenyl$, benzyl, $-O-benzyl$, $-S-benzyl$, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_6 alkyl, C_1-C_6 alkoxy, $-NO_2$, $-NH_2$, $-CN$, $-CF_3$, or $-OH$;

or R_1 and R_1' are independently a moiety of the formulae:

or a moiety of the formulae:

R_6 and R_7 are as defined in claim 1;

R_3 is selected from H, $-CF_3$, C_1-C_6 lower alkyl, C_1-C_6 lower alkoxy, C_3-C_{10} cycloalkyl, $-C_1-C_6$ alkyl, $-C_3-C_{10}$ cycloalkyl, $-CHO$, halogen, $(CH_2)_nC(O)NH_2$ or a moiety of the formula $-L^1-M^1$:

L^1 indicates a linking or bridging group of the formulae $-(CH_2)_n-$, $-C(O)-$, $-(CH_2)_n-C(O)-$, $-(CH_2)_n-C(O)-(CH_2)_n-$, $-(CH_2)_n-O-(CH_2)_n-$, or $-(CH_2)_n-S-(CH_2)_n-$, $C(O)C(O)X$, $-(CH_2)_n-N-(CH_2)_n$;

M^1 is selected from H, the group of C_1-C_6 lower alkyl, C_1-C_6 lower alkoxy, C_3-C_{10} cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_{10} alkyl, C_1-C_{10} alkoxy, $-NO_2$, $-NH_2$, $-CN$, or $-CF_3$;

R_4 is selected from the group of C_1-C_6 lower alkyl, C_1-C_6 lower alkoxy, $-(CH_2)_n-C_3-C_6$ cycloalkyl, $-(CH_2)_n-S-(CH_2)_n-C_3-C_5$ cycloalkyl, $-(CH_2)_n-O-(CH_2)_n-C_3-C_5$ cycloalkyl, or a moiety of the formulae $-(CH_2)_n-A$, $-(CH_2)_n-S-A$, or $-(CH_2)_n-O-A$, wherein A is the moiety:

wherein

D is H, C_1-C_6 lower alkyl, C_1-C_6 lower alkoxy, or $-CF_3$;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, substituents selected from H, halogen, $-CF_3$, $-OH$, $-C_1-C_6$ alkyl, C_1-C_6 alkoxy, or $-NO_2$;

or a pharmaceutically acceptable salt thereof.

7 (Previously Amended): A compound of Claim 1 wherein:

R_7 is selected from $-OH$, $-CF_3$, C_1-C_6 alkyl, C_1-C_6 alkoxy, $-NH-(C_1-C_6$ alkyl), $-N-(C_1-C_6$ alkyl) $_2$, pyridinyl, thienyl, furyl, pyrrolyl, phenyl, $-O-phenyl$, benzyl, $-O-benzyl$, the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, $-CN$, C_1-C_6 alkyl, C_1-C_6 alkoxy, $-NO_2$, $-NH_2$, $-CF_3$, or $-OH$;

R_3 is selected from H, $-C_1-C_{10}$ alkyl, $-(CH_2)-OH$, $(CH_2)_nC(O)NH_2$, $-CH_2-O-(C_1-C_6$ alkyl, $-CH_2-O-CH_2$ -phenyl, $-CH_2-N-(C_1-C_6$ alkyl), $-CH_2-N-CH_2$ -phenyl, the phenyl rings of which are optionally substituted by 1 or 2 groups selected from H, halogen, $-CF_3$ or $-C_1-C_6$ alkyl;

X is O or N

$n = 0$ or 1 ;

R_4 is a moiety of the formulae $-(CH_2)_n-A$, $-(CH_2)_n-S-A$, or $-(CH_2)_n-O-A$, wherein A is the moiety:

wherein

D is H, C_1-C_6 lower alkyl, C_1-C_6 lower alkoxy, or $-CF_3$;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl or pyrrolyl groups, each optionally substituted by from 1 to 3, substituents selected from H, halogen, $-CF_3$, $-OH$, $-C_1-C_6$ alkyl, C_1-C_6 alkoxy, or $-NO_2$;

R_5 is a moiety selected from the groups of:

wherein L^1 is a bridging or linking moiety selected from a chemical bond, $-(CH_2)_n-$, $-(CH_2)_n-$ $C(O)-(CH_2)_n-$, $-(CH_2)_n-O-(CH_2)_n-$, $-(CH_2)_n-S-(CH_2)_n-$, $-(CH_2)_n-SO-(CH_2)_n-$, $-(CH_2)_n-SO_2-(CH_2)_n-$, or $-(CH_2)_n-CH=CH-(CH_2)_n-O-$;

where n' is an integer from 0 to 5;

R_9 is selected from $-CF_3$, $-C_1-C_6$ alkyl, C_1-C_6 alkoxy, $-NH(C_1-C_6$ alkyl), or $-N(C_1-C_6$ alkyl) $_2$,

n in each instance is independently selected as an integer from 0 to 3;
or a pharmaceutically acceptable salt thereof.

8 (Previously Amended): A compound of Claim 1 having the formulae:

wherein:

R_1 is selected from H, halogen, $-CF_3$, $-OH$, $-C_1-C_{10}$ alkyl, $-S-C_1-C_{10}$ alkyl, C_1-C_{10} alkoxy, $-CN$, $-NO_2$, $-NH_2$, $-HN(C_1-C_6)$, $-N(C_1-C_6)_2$, phenyl, $-O$ -phenyl, $-S$ -phenyl, benzyl, $-O$ -benzyl, $-S$ -benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_6 alkyl, C_1-C_6 alkoxy, $-NO_2$, $-NH_2$, $-CN$, $-CF_3$, or $-OH$;

R_2 is selected from H, halogen, $-CF_3$, $-OH$, $-C_1-C_{10}$ alkyl, C_1-C_{10} alkoxy, $-CHO$, $-CN$, $-NO_2$, $-NH_2$, $-NH-C_1-C_6$ alkyl, $-N(C_1-C_6$ alkyl) $_2$, $-N-SO_2-C_1-C_6$ alkyl, or $-SO_2-C_1-C_6$ alkyl;

R_3 is selected from H, $-C_1-C_{10}$ alkyl, $-(CH_2)-OH$, $(CH_2)_nC(O)NH_2$, $-CH_2-O-(C_1-C_6$ alkyl), $-CH_2-O-CH_2$ -phenyl, $-CH_2-N-(C_1-C_6$ alkyl), $-CH_2-N-CH_2$ -phenyl, the phenyl rings of which are optionally substituted by 1 or 2 groups selected from H, halogen, $-CF_3$ or $-C_1-C_6$ alkyl;

$n = 0$ or 1.

R_4 is a moiety of the formulae $-(CH_2)_n-A$, $-(CH_2)_n-S-A$, or $-(CH_2)_n-O-A$, wherein A is the moiety:

wherein

D is H, C_1-C_6 lower alkyl, C_1-C_6 lower alkoxy, or $-CF_3$;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl or pyrrolyl groups, each optionally substituted by from 1 to 3, substituents selected from H, halogen, $-CF_3$, $-OH$, $-C_1-C_6$ alkyl, C_1-C_6 alkoxy, or $-NO_2$;

R_5 is a moiety selected from the groups of:

wherein L^1 is a bridging or linking moiety selected from a chemical bond, $-(CH_2)_n-$, $-(CH_2)_n-C(O)-(CH_2)_n-$, $-(CH_2)_n-O-(CH_2)_n-$, $-(CH_2)_n-S-(CH_2)_n-$, $-(CH_2)_n-SO-(CH_2)_n-$, $-(CH_2)_n-SO_2-(CH_2)_n-$, or $-(CH_2)_n-CH=CH-(CH_2)_n-O-$;

where $n = 0-5$

R_9 is selected from $-CF_3$, $-C_1-C_6$ alkyl, C_1-C_6 alkoxy, $-NH(C_1-C_6$ alkyl), or $-N(C_1-C_6$ alkyl) $_2$,

n in each instance is independently selected as an integer from 0 to 3, or a pharmaceutically acceptable salt thereof.

9 (Previously Amended): A compound of Claim 1 having the formulae:

wherein:

R_1 is selected from H, halogen, $-CF_3$, $-OH$, $-CN$, $-NO_2$, $-NH_2$, $-HN(C_1-C_6)$, $-N(C_1-C_6)_2$, phenyl, $-N-SO_2-C_1-C_6$ alkyl, or $-SO_2-C_1-C_6$ alkyl;

R_2 is selected from H, halogen, $-CF_3$, $-OH$, $-CN$, $-NO_2$, $-NH_2$, $-NH-C_1-C_6$ alkyl, $-N(C_1-C_6)_2$ alkyl, $-N-SO_2-C_1-C_6$ alkyl, or $-SO_2-C_1-C_6$ alkyl;

R_3 is selected from H, $-C_1-C_{10}$ alkyl, $-(CH_2)_nOH$, $(CH_2)_nC(O)NH_2$, $-CH_2-O-(C_1-C_6)$ alkyl, $-CH_2-O-CH_2$ -phenyl, $-CH_2-N-(C_1-C_6)$ alkyl, $-CH_2-N-CH_2$ -phenyl, the phenyl rings of which are optionally substituted by 1 or 2 groups selected from H, halogen, $-CF_3$ or $-C_1-C_6$ alkyl;

$n = 0$ or 1 .

R_5 is a moiety selected from the groups of:

wherein L¹ is a bridging or linking moiety selected from a chemical bond, -(CH₂)_n-, -(CH₂)_n-C(O)-(CH₂)_n-, -(CH₂)_n-O-(CH₂)_n-, -(CH₂)_n-S-(CH₂)_n-, -(CH₂)_n-SO-(CH₂)_n-, -(CH₂)_n-SO₂-(CH₂)_n-, or -(CH₂)_n-CH=CH-(CH₂)_n-O-;

n' in each instance is independently selected as an integer from 0 to 5; or a pharmaceutically acceptable salt thereof.

10 (Original): A compound of Claim 1 which is 4-{{(E)-4-(3-benzhydryl-5-chloro-2-methyl-1H-indol-1-yl)-2-butene}oxy}benzoic acid or a pharmaceutically acceptable salt thereof.

11 (Original): A compound of Claim 1 which is 4-[2-(3-benzhydryl-5-chloro-2-methyl-1H-indol-1-yl)ethoxy]benzoic acid or a pharmaceutically acceptable salt thereof.

12 (Original): A compound of Claim 1 which is 3-{4-[2-(3-benzhydryl-5-chloro-2-methyl-1H-indol-1-yl)ethoxy]phenyl}propanoic acid or a pharmaceutically acceptable salt thereof.

13 (Original): A compound of Claim 1 which is 3-(4-{{2-(3-benzhydryl-6-chloro-1H-indol-1-yl)ethyl}sulfonyl}phenyl)propanoic acid or a pharmaceutically acceptable salt thereof.

14 (Original): A compound of Claim 1 which is 4-{{2-(3-benzhydryl-6-chloro-1H-indol-1-yl)ethyl}sulfonyl}benzoic acid or a pharmaceutically acceptable salt thereof.

15 (Original): A compound of Claim 1 which is 4-[2-(3-benzhydryl-2-methyl-1H-indol-1-yl)ethoxy]benzoic acid or a pharmaceutically acceptable salt thereof.

16 (Original): A method of inhibiting the phospholipase activity of an enzyme in a mammal in need thereof comprising administering to said mammal a therapeutically effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt thereof.

17 (Original): A method of treating or preventing an inflammatory response in a mammal in need thereof, the method comprising administering to said mammal a therapeutically effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt thereof.

18 (Original): The method of Claim 17 wherein the inflammatory response is associated with inflammatory bowel disease.

19 (Original): The method of Claim 17 wherein the inflammatory response is associated with osteoarthritis, psoriatic arthritis or rheumatoid arthritis.

20 (Original): A pharmaceutical composition comprising a therapeutically effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.