單元 4: 指數與對數

4.1 指數函數

$$f(x) = a^x, \quad a > 0, \quad a \neq 1$$

必定通過點 (0,1)

a > 1

$$\lim_{x \to \infty} a^x = \infty$$

$$\lim_{x \to -\infty} a^x = 0$$

單調遞增函數

x 越右邊, y 數值越大

$$(-\infty,\infty)$$

值域

 $(-1,\frac{1}{2})$

0 < a < 1

$$\lim_{x \to \infty} a^x = 0$$

y=0 為漸近線

 $\lim_{x \to -\infty} a^x = \infty$

單調遞減函數

x 越右邊, y 數值越小

定義域

4.2 指數繪圖

上下位移

左右位移

2^{x+3} 往 左移 3 格 2^{x-3} 往 右移

垂直拉伸

底變倒數 ⇒ 指數變號

$y = 2^{x+1} - 3$ 的函數圖形 例 1: 畫出

例 2: 畫出
$$y = 2^{-|x|}$$
 的函數圖形 \times

4.3 自然指數

尤拉數 e 為工程中常用無理數≈ 2.718281828

$$e = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x$$

$$e = \sum_{k=0}^{\infty} \frac{1}{k!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \cdots$$

重要的應用

機率上的常態分佈

$$f_x(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\text{In Ith 12}$$

$$\text{Ith 2}$$

$$\text{Ith 2}$$

微積分

$$\frac{d}{dx}e^x = e^x$$

以e為底的指數其微分為自己

4.4 對數函數

對數與與指數互為反函數

$$f(x) = \log_a x, \quad a > 0, \quad a \neq 1$$

必定通過點 (1,0)

定義域

(0,8) ~ ~ ~ 0

值域

(- ~ , ~)

a > 1

 $\lim_{x \to \infty} \log_a x = \infty$

 $\lim_{x \to 0^+} \log_a x = -\infty$

單調遞增函數

$$\lim_{x \to \infty} \log_a x = -\infty$$

$$\lim_{x \to 0^+} \log_a x = \infty$$

對數與與指數互為反函數

指數與對數函數對稱於直線 y=x

4.5 對數函數繪圖

$$\ln(x) = \log_e x$$

$$\log_e (x) = \log_e (x)$$

$$g(x) = -\log_{b}(x)$$

$$= \log_{b} x^{\prime}$$

$$= \log_{b} x$$

例 1: 畫出 $y = \log_2(2x)$ 的函數圖形

$$log_{2}(2X) = log_{2}(2) + log_{2}(X)$$

= | + |og_{2}(X)

$y = \log_2 |x|$ 的函數圖形 例 2: 畫出

4.6 指數與對數的換底公式

指數換底

$$a^x = b^{x \log_b a}$$

底為a 變成底為 b

a^x 經過底數b的對數再經過指數b的對數

$$a^x = b^{\log_b a^x}$$

$$2^{x} = e^{2}$$

$$\frac{d}{dx} \begin{bmatrix} 2^{x} \end{bmatrix} = e^{2n^{2} \cdot x} \cdot \frac{d}{dx} [(2n^{2})^{x}]$$

$$= (e^{2n^{2}})^{x} \cdot 2n^{2}$$

$$= 2^{x} \cdot 2n^{2}$$

對數換底

$$\log_a M = \frac{\log_b M}{\log_b a}$$

$$x = \log_a M \quad \Rightarrow \quad a^x = M$$

兩邊取對數b
$$\log_b a^x = \log_b M$$

$$x \log_b a = \log_b M \quad \Rightarrow \quad x = \frac{\log_b M}{\log_a M}$$

4.7 指數與對數的微積分

指數微分

$$\frac{d}{dx}e^{x} = e^{x}$$

$$\lim_{\Delta x \to 0} \frac{\partial^{Lx} - e^{x}}{\Delta x}$$

$$\frac{d}{dx}a^{x} = (\ln a)a^{x}$$

$$\lim_{\Delta x \to 0} \frac{(\ln a) \cdot x}{\Delta x}$$

$$\lim_{\Delta x \to 0} \frac{d}{dx} = e^{x}$$

對數微分

$$\frac{d}{dx} \ln x = \frac{1}{x}$$

$$\frac{d}{dx} \log_a x = \frac{1}{\ln a} \cdot \frac{1}{x}$$

$$\int_{0}^{\infty} g_{\alpha} x = \frac{g_{\alpha} x}{g_{\alpha} x}$$

$$\frac{dy}{dx} = e^{-\delta} = \frac{1}{e^{\gamma}} = \frac{1}{x}$$

指數積分

$$\int e^x dx = e^x + C$$

$$\int a^x dx = \frac{1}{\ln a} a^x + C$$

積分結果為對數

$$\int \frac{1}{x} \stackrel{\times}{=} \ln |x| + C$$
y=1/x 的積分為對數

對數積分