Gliederung

- 1. Einführung
- 2. Berechenbarkeitsbegriff
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkeit
- 4. Primitive und partielle Rekursior
- 5. Grenzen der LOOP-Berechenbarkeit
- 6. (Un-)Entscheidbarkeit, Halteproblem
- 7. Aufzählbarkeit & (Semi-)Entscheidbarkeit
- 8. Reduzierbarkeit
- 9. Satz von Rice
- 10. Das Postsche Korrespondenzproblem
- 11. Komplexität Einführung
- 12. NP-Vollständigkei
- 13 PSPACE

Erinnerung: spezielles Halteproblem $K:=\{\underline{w}\in\{0,1\}^*\mid \underline{M_w} \text{ hält auf } \underline{w}\}$ unentscheidbar Informell: keine TM kann feststellen, ob die eingegebene TM auf ihrem Codewort hält oder nicht

Definition

Das **allgemeine Halteproblem** ist die Menge $\underline{H} \coloneqq \{\underline{w\#x} \mid \underline{M_w} \text{ hält auf } \underline{\text{Eingabe } x}\}$

Erinnerung: spezielles Halteproblem $K := \{w \in \{0,1\}^* \mid M_w \text{ hält auf } w\}$ unentscheidbar Informell: keine TM kann feststellen, ob die eingegebene TM auf ihrem Codewort hält oder nicht

Definition

Das **allgemeine Halteproblem** ist die Menge $H := \{w \# x \mid \underline{M_w} \text{ hält auf Eingabe } x\}$

Erinnerung: spezielles Halteproblem $K := \{w \in \{0,1\}^* \mid \underline{M_w \text{ hält auf } w}\}$ unentscheidbar Informell: keine TM kann feststellen, ob die eingegebene TM auf ihrem Codewort hält oder nicht Klar: H ist Generalisierung von K

Informell: H ist sicher nicht leichter zu entscheiden als $K \rightsquigarrow H$ ist unentscheidbar! Formell:

zentrales Konzept der Reduktion!

Definition

Das **allgemeine Halteproblem** ist die Menge $H := \{w \# x \mid M_w \text{ hält auf Eingabe } x\}$.

Definition

Eine Sprache $\underline{A \subseteq \Sigma^*}$ heißt <u>reduzierbar auf</u> eine Sprache $\underline{B \subseteq \Pi^*}$ (in Zeichen $(\underline{A \le B})$, wenn es eine totale, berechenbare Funktion $f: \Sigma^* \to \Pi^*$ gibt, sodass für alle $x \in \Sigma^*$ gilt

Wir nennen f eine Reduktion von A auf B (Beachte: f muss weder surjektiv noch injektiv sein).

Definition

Das **allgemeine Halteproblem** ist die Menge $H := \{w \# x \mid M_w \text{ hält auf Eingabe } x\}$.

Definition

Eine Sprache $A \subseteq \Sigma^*$ heißt **reduzierbar auf** eine Sprache $B \subseteq \Pi^*$ (**in Zeichen** $A \leq B$), wenn es eine totale, berechenbare Funktion $f \colon \Sigma^* \to \Pi^*$ gibt, sodass für alle $x \in \Sigma^*$ gilt

$$x \in A \Leftrightarrow f(x) \in B$$

Wir nennen f eine Reduktion von A auf B (Beachte: f muss weder surjektiv noch injektiv sein).

 $A \leq B$ formalisiert die Intuition "A ist leichter als B" d.h. "wenn wir B entscheiden könnten, dann könnten wir auch A entscheiden"

Definition

Das **allgemeine Halteproblem** ist die Menge $H := \{ w \# x \mid M_w \text{ hält auf Eingabe } x \}.$

Definition

Eine Sprache $A \subseteq \Sigma^*$ heißt reduzierbar auf eine Sprache $B \subseteq \Pi^*$ (in Zeichen $A \leq B$), wenn es eine totale, berechenbare Funktion $f: \Sigma^* \to \Pi^*$ gibt, sodass für alle $x \in \Sigma^*$ gilt $x \in A \Leftrightarrow f(x) \in B$

Wir nennen f eine Reduktion von A auf B (Beachte: f muss weder surjektiv noch injektiv sein).

A < B formalisiert die Intuition "A ist leichter als B" d.h.

"wenn wir B entscheiden könnten, dann könnten wir auch A entscheiden"

$$K \leq H$$
 wird vermittelt durch die Reduktion $f: \{0,1\}^* \to \{0,1,\#\}^* \text{ mit} (f(w) = w\#w.)$

Definition

Das **allgemeine Halteproblem** ist die Menge $H := \{w \# x \mid M_w \text{ hält auf Eingabe } x\}$.

Definition

Eine Sprache $A\subseteq \Sigma^*$ heißt **reduzierbar auf** eine Sprache $B\subseteq \Pi^*$ (in **Zeichen** $A\le B$), wenn es eine totale, berechenbare Funktion $f:\Sigma^*\to \Pi^*$ gibt, sodass für alle $x\in \Sigma^*$ gilt

$$x \in A \Leftrightarrow f(x) \in B$$

Wir nennen f eine **Reduktion** von A auf B (**Beachte**: f muss weder surjektiv noch injektiv sein).

 $A \leq B$ formalisiert die Intuition "A ist leichter als B" d.h.

"wenn wir B entscheiden könnten, dann könnten wir auch A entscheiden"

Beispiel

$$K \leq H$$
 wird vermittelt durch die Reduktion $f: \{0,1\}^* \to \{0,1,\#\}^*$ mit $f(w) = w \# w$.

Frage: Ist eine Sprache L entscheidbar, so ist χ_L eine Reduktion von L auf welche Sprache?

Lemma

 $\overline{A \leq B}$ genau dann, wenn $\overline{A} \leq \overline{B}$ (wobei $\overline{A} = \text{Co-}A$)= $\Sigma^{*}A$

7 p = 79

Lemma

 $A \leq B$ genau dann, wenn $\overline{A} \leq \overline{B}$ (wobei $\overline{A} = \text{Co-}A$).

$$A \leq B \Leftrightarrow \exists$$
 Reduktion $f : \forall x \in \Sigma^* : x \in A \Leftrightarrow f(x) \in B$

$$\Leftrightarrow \exists \mathsf{Reduktion} \ f : \forall x \in \Sigma^* : x \not\in A \Leftrightarrow \underline{f(x)} \not\in \underline{B}$$

$$\Leftrightarrow \exists \ \mathsf{Reduktion} \ f \colon \forall x \in \Sigma^* \colon \underline{x \in \overline{A}} \Leftrightarrow \underline{f(x)} \in \overline{B} \Leftrightarrow \underline{\overline{A} \leq \overline{B}}$$

Lemma

 $A \leq B$ genau dann, wenn $\overline{A} \leq \overline{B}$ (wobei $\overline{A} = \text{Co-}A$).

Lemma

"A leichter als B"

Gilt $A \leq B$ und ist B (semi-)entscheidbar, so ist auch A (semi-)entscheidbar.

Lemma

 $A \leq B$ genau dann, wenn $\overline{A} \leq \overline{B}$ (wobei $\overline{A} = \text{Co-}A$).

Lemma

Gilt $A \leq B$ und ist B (semi-)entscheidbar, so ist auch A (semi-)entscheidbar.

Beweis

Sei \underline{f} eine Reduktion von A auf B (d.h. f total, berechenbar mit $\underline{x} \in A \Leftrightarrow f(x) \in B$).

Dann gilt $\chi_A = \chi_B \circ \underline{f}$, denn

$$\underbrace{x \in A} \Rightarrow \underbrace{(\chi_B \circ f)(x)} = \underbrace{\chi_B(f(x))} = 1$$
$$x \notin A \Rightarrow \underbrace{(\chi_B \circ f)(x)} = \underbrace{\chi_B(f(x))} = 0$$

Lemma

 $A \leq B$ genau dann, wenn $\overline{A} \leq \overline{B}$ (wobei $\overline{A} = \text{Co-}A$).

Lemma

Gilt $A \leq B$ und ist B (semi-)entscheidbar, so ist auch A (semi-)entscheidbar.

Beweis

Sei f eine Reduktion von A auf B (d.h. f total, berechenbar mit $x \in A \Leftrightarrow f(x) \in B$).

Dann gilt $\chi'_A = \chi'_B \circ f$, denn

$$x \in A \Rightarrow (\chi_B' \circ f)(x) = \chi_B'(f(x)) = 1$$

$$x \notin A \Rightarrow (\chi_B' \circ f)(x) = \chi_B'(f(x)) = \bot$$

Lemma

 $A \leq B$ genau dann, wenn $\overline{A} \leq \overline{B}$ (wobei $\overline{A} = \text{Co-}A$).

Lemma

Gilt $A \leq B$ und ist B (semi-)entscheidbar, so ist auch A (semi-)entscheidbar.

Beweis

Sei f eine Reduktion von A auf B (d.h. f total, berechenbar mit $x \in A \Leftrightarrow f(x) \in B$). Dann gilt $\chi'_A = \chi'_B \circ f$, denn

$$x \in A \Rightarrow (\chi'_B \circ f)(x) = \chi'_B(f(x)) = 1$$
$$x \notin A \Rightarrow (\chi'_B \circ f)(x) = \chi'_B(f(x)) = \bot$$

Ist also χ_B (bzw. χ_B') berechenbar, so auch χ_A (bzw. χ_A').

$$U = H$$

Für die Sprache $U := \{ \underline{w \# x} \mid x \in T(M_w) \}$ gilt: $U \leq H$ und $H \leq U$.

Lemma

Für die Sprache $U := \{ w \# x \mid x \in T(M_w) \}$ gilt: $U \le H$ und $H \le U$.

Beweis

Konstruktion einer Reduktion f

w#x € H ⇔ Mu half out x ⇒ M' ahzeptiert× ⇔ <M2+x ∈ U

Lemma

Für die Sprache $U := \{ \underline{w} \# x \mid x \in T(M_w) \}$ gilt: $U \leq H$ und $H \leq M$ Beweis

Konstruktion einer Reduktion f

H < U: bei Eingabe w berechnet f das Codewort einer Maschine M', die wie M_W arbeitet, aber in einen Endzustand übergeht, sobald M_w hält (egal ob akzeptierend oder ablehnend).

Lemma

Für die Sprache $U := \{ w \# x \mid x \in T(M_w) \}$ gilt: $U \le H$ und $H \le U$.

Beweis

Konstruktion einer Reduktion f

H < U: bei Eingabe w berechnet f das Codewort einer Maschine M', die wie M_W arbeitet,

aber in einen Endzustand übergeht, sobald M_w hält (egal ob akzeptierend oder ablehnend).

U < H: bei Eingabe w berechnet f das Codewort einer Maschine M', die wie M_W arbeitet, aber in eine Endlosschleife geht, wenn $M_{\rm w}$ in einem Nicht-Endzustand hält.

W#X€U⇔ X€T(My)

⇔My half an fx

⇔ W'#X € H

Redultionseignense

Mathias Weller (TU Berlin)

Berechenbarkeit und Komplexität

Lemma

Für die Sprache $U := \{ w \# x \mid x \in T(M_w) \}$ gilt: $U \le H$ und $H \le U$.

Beweis

Konstruktion einer Reduktion f

 $H \leq U$: bei Eingabe w berechnet f das Codewort einer Maschine M', die wie M_w arbeitet, aber in einen Endzustand übergeht, sobald M_w hält (egal ob akzeptierend oder ablehnend). U < H: bei Eingabe w berechnet f das Codewort einer Maschine M', die wie M_w arbeitet,

aber in eine Endlosschleife geht, wenn M_{W} in einem Nicht-Endzustand hält.

Fazit: H und U im Berechenbarkeitssinne "äquivalent" (U unentscheidbar da $K \leq H \leq U$)

Definition

Das Halteproblem auf leerem Band ist $H_0 := \{ \underline{w} \mid \underline{w\# \in H} \}.$

Definition

Das Halteproblem auf leerem Band ist $H_0 := \{w \mid w\# \in H\}.$

Theorem

 H_0 ist unentscheidbar.

Definition

Das Halteproblem auf leerem Band ist $H_0 := \{w \mid w\# \in H\}.$

Theorem

 H_0 ist unentscheidbar.

Beweis

Wir zeigen $\underline{H \leq H_0}$ ("H leichter als H_0 ") durch Konstruktion einer Reduktion f von H auf H_0 .

Definition

Das Halteproblem auf leerem Band ist $H_0 := \{w \mid w\# \in H\}.$

Theorem

 $\overline{H_0}$ ist unentscheidbar.

Beweis

Wir zeigen $H \le H_0$ ("H leichter als H_0 ") durch Konstruktion einer Reduktion f von H auf H_0 . Erinnerung: $H = \{w \# x \mid M_w \text{ hält auf Eingabe } x\}$.

C⇒ Tω half on f E ⇔ ω'# ∈ Ho

Definition

Das Halteproblem auf leerem Band ist $H_0 \coloneqq \{w \mid w\# \in H\}.$

Theorem

 $\frac{}{H_0}$ ist unentscheidbar.

Beweis

Wir zeigen $H \le H_0$ ("H leichter als H_0 ") durch Konstruktion einer Reduktion f von H auf H_0 . Erinnerung: $H = \{w \# x \mid M_w \text{ hält auf Eingabe } x\}$.

Bei Eingabe $\underline{w\#x}$ berechnet \underline{f} das Codewort einer Maschine $\underline{M'}$, die zunächst das Wort x auf dem Band erzeugt und dann wie M_w arbeitet ($\rightsquigarrow M_w$ hält auf $x \Leftrightarrow M'$ hält auf ϵ).

Ho Ho Half auf leeren Band

Ho Ho Half nicht euf leeren Band

Ho Ho Half nicht auf x

Definition

Das Halteproblem auf leerem Band ist $H_0 := \{w \mid w \# \in H\}.$

Theorem

 H_0 ist unentscheidbar.

Beweis

Wir zeigen $H \le H_0$ ("H leichter als H_0 ") durch Konstruktion einer Reduktion f von H auf H_0 . Erinnerung: $H = \{w \# x \mid M_w \text{ hält auf Eingabe } x\}$.

Bei Eingabe w#x berechnet f das Codewort einer Maschine M', die zunächst das Wort x auf dem Band erzeugt und dann wie M_w arbeitet ($\rightsquigarrow M_w$ hält auf $x \Leftrightarrow M'$ hält auf ϵ).

(bei allen anderen Eingaben über $\{0, 1, \#\}$ gibt f eine ungültige Kodierung aus, z.B. $\underline{0}$)

Definition

Das Halteproblem auf leerem Band ist $H_0 := \{w \mid w \# \in H\}.$

Theorem

 H_0 ist unentscheidbar.

Beweis

Wir zeigen $H \le H_0$ ("H leichter als H_0 ") durch Konstruktion einer Reduktion f von H auf H_0 . Erinnerung: $H = \{w \# x \mid M_w \text{ hält auf Eingabe } x\}$.

Bei Eingabe w # x berechnet f das Codewort einer Maschine M', die zunächst das Wort x auf dem Band erzeugt und dann wie M_w arbeitet $(\rightsquigarrow M_w$ hält auf $x \Leftrightarrow M'$ hält auf ϵ).

(bei allen anderen Eingaben über $\{0,1,\#\}$ gibt f eine ungültige Kodierung aus, z.B. 0)

Es gilt für alle Wörter $q \in \{0, 1, \#\}^*$:

Falls
$$q = \underline{w\#x}$$
 für $w, x \in \{0,1\}^*$, dann

$$\underline{w} \# x \in H \Leftrightarrow M_w$$
 hält auf x

$$\Leftrightarrow M'$$
 hält auf $\epsilon \Leftrightarrow \underline{f}(w\#x) \in H_0$

Definition

Das Halteproblem auf leerem Band ist $H_0 := \{w \mid w\# \in H\}.$

Theorem

 $\overline{H_0}$ ist unentscheidbar.

Beweis

Wir zeigen $H \le H_0$ ("H leichter als H_0 ") durch Konstruktion einer Reduktion f von H auf H_0 . Erinnerung: $H = \{w \# x \mid M_w \text{ hält auf Eingabe } x\}$.

Bei Eingabe w # x berechnet f das Codewort einer Maschine M', die zunächst das Wort x auf dem Band erzeugt und dann wie M_w arbeitet ($\sim M_w$ hält auf $x \Leftrightarrow M'$ hält auf ϵ).

(bei allen anderen Eingaben über $\{0,1,\#\}$ gibt f eine ungültige Kodierung aus, z.B. 0)

Es gilt für alle Wörter $q \in \{0, 1, \#\}^*$:

Falls q = w # x für $w, x \in \{0, 1\}^*$, dann

$$w\#x \in H \Leftrightarrow M_w$$
 hält auf x

$$\Leftrightarrow M'$$
 hält auf $\epsilon \Leftrightarrow f(w\#x) \in H_0$

Sonst: $q \notin H$ und $f(q) \notin H_0$.

Definition

Das Halteproblem auf leerem Band ist $H_0 := \{w \mid w \# \in H\}.$

Theorem

 $\frac{}{H_0}$ ist unentscheidbar.

Beweis

Wir zeigen $H \le H_0$ ("H leichter als H_0 ") durch Konstruktion einer Reduktion f von H auf H_0 . Erinnerung: $H = \{w \# x \mid M_w \text{ hält auf Eingabe } x\}$.

Bei Eingabe w # x berechnet f das Codewort einer Maschine M', die zunächst das Wort x auf dem Band erzeugt und dann wie M_w arbeitet ($\sim M_w$ hält auf $x \Leftrightarrow M'$ hält auf ϵ).

(bei allen anderen Eingaben über $\{0,1,\#\}$ gibt f eine ungültige Kodierung aus, z.B. 0)

Es gilt für alle Wörter $q \in \{0, 1, \#\}^*$:

Falls q = w # x für $w, x \in \{0, 1\}^*$, dann

$$w\#x \in H \Leftrightarrow M_w$$
 hält auf x

$$\Leftrightarrow M'$$
 hält auf $\epsilon \Leftrightarrow f(w\#x) \in H_0$

Sonst: $q \notin H$ und $f(q) \notin H_0$. Fazit: $H \leq H_0$.