D207 - Exploratory Data Analysis

By Krista Moik

```
In [1]: #import packages
   import pandas as pd
   import numpy as np
   from scipy.stats import chi2_contingency
   import matplotlib.pyplot as plt
   import seaborn as sns

// wmatplotlib inline

In [2]: #Load medical_clean CSV
   df = pd.read_csv('C:/Users/Kmoik WGU/Desktop/D207/medical_clean.csv')

In [3]: #View data set
   df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10000 entries, 0 to 9999 Data columns (total 50 columns):

Data	columns (total 50 co		
#	Column	Non-Null Cou	nt Dtype
0	CaseOrder	10000 non-nu	
1	Customer_id	10000 non-nu	-
2	Interaction	10000 non-nu	-
3	UID	10000 non-nu	•
4	City	10000 non-nu	ll object
5	State	10000 non-nu	ll object
6	County	10000 non-nu	ll object
7	Zip	10000 non-nu	ll int64
8	Lat	10000 non-nu	ll float64
9	Lng	10000 non-nu	ll float64
10	Population	10000 non-nu	ll int64
11	Area	10000 non-nu	ll object
12	TimeZone	10000 non-nu	ll object
13	Job	10000 non-nu	ll object
14	Children	10000 non-nu	ll int64
15	Age	10000 non-nu	ll int64
16	Income	10000 non-nu	ll float64
17	Marital	10000 non-nu	ll object
18	Gender	10000 non-nu	-
19	ReAdmis	10000 non-nu	-
20	VitD_levels	10000 non-nu	-
21	_ Doc_visits	10000 non-nu	
22	Full_meals_eaten	10000 non-nu	
23	vitD_supp	10000 non-nu	
24	Soft_drink	10000 non-nu	
25	_ Initial admin	10000 non-nu	_
26	HighBlood	10000 non-nu	-
27	Stroke	10000 non-nu	-
28	Complication_risk	10000 non-nu	_
29	Overweight	10000 non-nu	-
30	Arthritis	10000 non-nu	-
31	Diabetes	10000 non-nu	-
32	Hyperlipidemia	10000 non-nu	9
33	BackPain	10000 non-nu	
34	Anxiety	10000 non-nu	•
35	Allergic_rhinitis	10000 non-nu	_
36	Reflux_esophagitis	10000 non-nu	_
37	Asthma	10000 non-nu	-
38	Services	10000 non-nu	-
39	Initial_days	10000 non-nu	-
40	TotalCharge	10000 non-nu	
41	Additional_charges	10000 non-nu	
42	Item1	10000 non-nu	
43	Item2	10000 non-nu	
44	Item3	10000 non-nu	
45	Item4	10000 non-nu	
46 47	Item5	10000 non-nu	
47 40	Item6	10000 non-nu	
48	Item7	10000 non-nu	
49	Item8	10000 non-nu	
	es: float64(7), int64	(16), object	(2/)

memory usage: 3.8+ MB

In [4]: #View variable ReAdmis

```
df.ReAdmis.describe()
        count
                  10000
Out[4]:
        unique
                      2
        top
                     No
                   6331
        freq
        Name: ReAdmis, dtype: object
        #Count responses in ReAdmis
In [5]:
        df['ReAdmis'].value counts(normalize=True, sort=True, dropna=True)
        ReAdmis
Out[5]:
               0.6331
        No
               0.3669
        Yes
        Name: proportion, dtype: float64
In [6]: #View variable Complication risk
        df.Complication risk.describe()
                   10000
        count
Out[6]:
        unique
                       3
        top
                  Medium
        freq
                    4517
        Name: Complication_risk, dtype: object
In [7]: #Count responses in Complication risk
        df['Complication risk'].value counts(normalize=True, sort=True, dropna=True)
        Complication risk
Out[7]:
        Medium
                  0.4517
        High
                  0.3358
                  0.2125
        Low
        Name: proportion, dtype: float64
In [8]: #Create Contingency Table for Chi-Square using code from WGU course materials
        table=pd.crosstab(df.ReAdmis, df.Complication_risk, margins=True)
        print(table)
        Complication_risk High
                                   Low Medium
                                                  All
        ReAdmis
        No
                            2135 1343
                                          2853
                                                 6331
        Yes
                            1223
                                   782
                                          1664
                                                 3669
        All
                            3358
                                 2125
                                          4517
                                                10000
In [9]: #Obtain P-Value using code from WGU course materials
        df.head()
        contingency=pd.crosstab(df['ReAdmis'], df['Complication_risk'])
        contingency
        contingency_pct=pd.crosstab(df['ReAdmis'], df['Complication_risk'], normalize='index')
        contingency pct
        plt.figure(figsize=(12,8))
        sns.heatmap(contingency, annot=True, cmap="PuBuGn")
        <Axes: xlabel='Complication_risk', ylabel='ReAdmis'>
```

Out[9]:


```
In [10]: #Chi-Square test of independence using code from WGU course materials
     c, p, dof, expected=chi2_contingency(contingency)
```

In [11]: #Print P-value
print(p)

0.923567890607327

Univariate Statistics

```
In [12]: #Histogram of Age column - continuous
   plt.hist(df['Age'])
   plt.title("Age of Patient")
   plt.xlabel("Age")
   plt.ylabel("Number of Patients")
   plt.show()
```



```
df.Age.describe()
In [13]:
          count
                   10000.000000
Out[13]:
         mean
                      53.511700
          std
                      20.638538
         min
                      18.000000
          25%
                      36.000000
          50%
                      53.000000
         75%
                      71.000000
                      89.000000
         max
         Name: Age, dtype: float64
In [14]:
         #Histogram of Initial_days column - continuous
          plt.hist(df['Initial_days'])
          plt.title("Initial Days of Admission")
          plt.xlabel("Number of Initial Days")
          plt.ylabel("Number of Patients")
          plt.show()
```

Initial Days of Admission


```
df.Initial_days.describe()
In [15]:
          count
                   10000.000000
Out[15]:
         mean
                      34.455299
                      26.309341
          std
         min
                       1.001981
          25%
                       7.896215
          50%
                      35.836244
         75%
                      61.161020
                      71.981490
         max
         Name: Initial_days, dtype: float64
In [16]: #Histogram of Marital - categorical
          plt.hist(df['Marital'])
          plt.title("Marital Status of Patients")
          plt.xlabel("Marital Status")
          plt.ylabel("Number of Patients")
          plt.show()
```

Marital Status of Patients


```
df.Marital.describe()
In [17]:
                      10000
          count
Out[17]:
          unique
         top
                    Widowed
          freq
                       2045
         Name: Marital, dtype: object
          #Histogram of Initial_admin - categorical
In [18]:
          plt.hist(df['Initial_admin'])
         plt.title("Initial Admission Type")
          plt.xlabel("Type of Initial Admission")
          plt.ylabel("Number of Patients")
          plt.show()
```

df.Initial_admin.describe()

10000

In [19]:

Out[19]:

count

unique

Relationship between Age and Initial Days

In [21]: #Scatter plot of Initial_admin and Marital - categorical
sns.scatterplot(x='Initial_admin', y='Marital', data=df).set(title='Relationship between

Out[21]: [Text(0.5, 1.0, 'Relationship between Initial admin and Marital Status')]

In [22]: #Scatterplot of Initial_admin and Initial_days - categorical and continuous
sns.scatterplot(x='Initial_admin', y='Initial_days', hue='Initial_days', data=df).set(
plt.show()


```
In [23]: #Scatter plot of Initial_admin and Marital - categorical
sns.scatterplot(x='Initial_days', y='Marital', data=df).set(title='Relationship betwee
Out[23]: [Text(0.5, 1.0, 'Relationship between Initial Days and Marital Status')]
```


In []: