EVALUACIÓN 4

Manuel Vicente Bolaños Quesada

Problema 1

i) Como A es finito, podemos asegurar que existe un natural n_0 tal que $n_0 > n$ para todo $n \in A$. Como $n_0 \notin A$, sabemos que A_{n_0} no tiene máximo, y que $x_n < \beta_{n_0}$, para cada $n \ge n_0$.

Entonces, $\forall n \in \mathbb{N}$, tal que $n \geq n_0$, existe un natural k tal que k > n y $x_n < x_k < \beta_{n_0}$. Consideremos entonces la función $\varphi : \mathbb{N} \to \mathbb{N}$ definida por

$$\varphi(1) = n_0$$

$$\varphi(n+1) = \min\{p \in \mathbb{N} : \varphi(n) < p, x_{\varphi(n)} < x_p\}$$

Así pues, la sucesión parcial $x_{\varphi(n)}$ es estrictamente creciente.

ii) Sea $B = \{p \in \mathbb{N} : x_p \ge x_n$, para cada $n \ge p\}$. Veamos que este conjunto es infinito. Supongamos, en busca de una contradicción, que B es finito. Entonces, existe un m_0 tal que para todo $n \ge m_0$, $n \notin B$. Entonces, existe otro natural k tal que $x_{m_0} < x_k$. Entonces, definimos una función similar a la del apartado anterior, y concluimos que existe una sucesión parcial estrictamente creciente. Como la sucesión original está acotada, deducimos que esta sucesión parcial es convergente. Sea x su valor de adherencia. Entonces, para cada natural $n \ge m_0$, existe un natural k tal que $x > x_k > x_n$, de donde $n \notin A$, lo que implicaría que A está mayorado, pero eso es una contradicción.

Como B es infinito, sabemos que existe una biyección, $\sigma: \mathbb{N} \to B$ estrictamente creciente. Entonces, la sucesión parcial $\{x_{\sigma(n)}\}$ es decreciente, ya que si tomamos $p, q \in B$, tales que p > q, tenemos que $x_q \ge x_p$.

Problema 2

i) \Rightarrow) Sean $A_n = \{a_p : p \ge n\}$, $\alpha_n = \inf(A_n)$. Entonces, $\alpha = \lim\{\alpha_n\}$. Aplicando la definición de límite, para todo $\varepsilon > 0$ sabemos que existe un natural n_0 tal que para cada $n \ge n_0$ se cumple que $\alpha - \varepsilon < \alpha_n < \alpha + \varepsilon$.

Entonces, si $n \ge n_0$, tenemos que $x_n \in A_n$, y como α_n es el ínfimo de ese conjunto, $\alpha - \varepsilon < \alpha_n \le x_n$. Por lo tanto, el conjunto $\{n \in \mathbb{N} : x_n < \alpha - \varepsilon\} \subseteq \{1, 2, \dots, n_0 - 1\}$, y por lo tanto es finito.

Supongamos ahora que el conjunto $B = \{n \in \mathbb{N} : x_n < \alpha + \varepsilon\}$ es finito. Sea entonces c = max(B). Luego $n > c \implies n \notin B \implies x_n \ge \alpha + \varepsilon$, lo que quiere decir que $\alpha + \varepsilon$ es un minorante de A_n , lo que implica que $\alpha + \varepsilon \le \alpha_n$. Sea ahora $m_0 = max\{n_0, c+1\}$. Entonces, $\alpha + \varepsilon > \alpha_{m_0} \ge \alpha + \varepsilon$, lo que es una contradicción y por lo tanto, B es infinito.

 \Leftarrow) Tenemos que $A_n \cap \{x_n : x_n < \alpha + \varepsilon\} \neq \emptyset$, ya que el conjunto $\{n \in \mathbb{N} : x_n < \alpha + \varepsilon\}$ es infinito, por hipótesis. Esto implica que $\alpha + \varepsilon$ no es un minorante de A_n , y por lo tanto, $\alpha_n < \alpha + \varepsilon$, para todo natural n. Luego $\lim \{\alpha_n\} \leq \alpha + \varepsilon$.

Por otra parte, como el conjunto $\{n \in \mathbb{N} : x_n < \alpha - \varepsilon\}$ es finito, existe un n_0 tal que para cada natural $n \geq n_0$, se tiene que $x_n \geq \alpha - \varepsilon$. Así pues, para todo $n \geq n_0$, $\alpha - \varepsilon$ es un minorante de A_n . Es decir, $\alpha_n \geq \alpha - \varepsilon$. Luego $\lim \{\alpha_n\} \geq \alpha - \varepsilon$.

Juntando las dos desigualdades obtenidas, tenemos que $\alpha - \varepsilon \leq \lim \{\alpha_n\} \leq \alpha + \varepsilon$, y por lo tanto, $\lim \{\alpha_n\} = \alpha$, como se pedía demostrar.

- ii) La demostración es análoga a la anterior:
- \Rightarrow) Sean $A_n = \{a_p : p \ge n\}$, $\beta_n = \sup(A_n)$. Entonces, $\beta = \lim\{\beta_n\}$. Aplicando la definición de límite, para todo $\varepsilon > 0$ sabemos que existe un natural n_0 tal que para cada $n \ge n_0$ se cumple que, $\beta \varepsilon < \beta_n < \beta + \varepsilon$.

Entonces, si $n \ge n_0$, tenemos que $x_n \in A_n$, y como β_n es el supremo de ese conjunto, $x_n \le \beta_n < \beta + \varepsilon$. Por lo tanto, el conjunto $\{n \in \mathbb{N} : x_n > \beta + \varepsilon\} \subseteq \{1, 2, \dots, n_0 - 1\}$, y por lo tanto es finito. Manuel Vicente Bolaños Quesada

Supongamos ahora que el conjunto $B = \{n \in \mathbb{N} : x_n > \beta - \varepsilon\}$ es finito. Sea entonces c = max(B). Luego $n > c \implies n \notin B \implies x_n \le \beta - \varepsilon$, lo que quiere decir que $\beta - \varepsilon$ es un mayorante de A_n , lo que implica que $\beta - \varepsilon \ge \beta_n$. Sea ahora $m_0 = \max\{n_0, c+1\}$. Entonces, $\beta - \varepsilon \ge \beta_{m_0} > \beta - \varepsilon$, lo que es una contradicción y por lo tanto, B es infinito.

 \Leftarrow) Tenemos que $A_n \cap \{x_n : x_n > \beta - \varepsilon\} \neq \emptyset$, ya que el conjunto $\{n \in \mathbb{N} : x_n > \beta - \varepsilon\}$ es infinito, por hipótesis. Esto implica que $\beta - \varepsilon$ no es un mayorante de A_n , y por lo tanto, $\beta_n > \beta - \varepsilon$, para todo natural n. Luego $\lim \{\beta_n\} \geq \beta - \varepsilon$.

Por otra parte, como el conjunto $\{n \in \mathbb{N} : x_n > \beta + \varepsilon\}$ es finito, existe un n_0 tal que para cada natural $n \geq n_0$, se tiene que $x_n \leq \beta + \varepsilon$. Así pues, para todo $n \geq n_0$, $\beta + \varepsilon$ es un mayorante de A_n . Es decir, $\beta_n \leq \beta + \varepsilon$. Luego $\lim \{\beta_n\} \leq \beta + \varepsilon$.

Juntando las dos desigualdades obtenidas, tenemos que $\beta - \varepsilon \leq \lim{\{\beta_n\}} \leq \beta + \varepsilon$, y por lo tanto, $\lim\{\beta_n\} = \beta$, como queríamos demostrar.

Problema 3

i) Utilizando el criterio de equivalencia logarítmica, $\{x_n\} \to e^L \Leftrightarrow \{n \log \frac{n^2 + 1}{n^2 + n + 1}\} \to L$.

$$n\log\frac{n^2+1}{n^2+n+1} = n\log\left(1 + \frac{-n}{n^2+n+1}\right) \sim n\frac{-n}{n^2+n+1} \to -1.$$

Por lo tanto, $\{x_n\} \to e^{-1} = \frac{1}{e}$ ii) Sean $a_n = \frac{1}{2\log 2} + \frac{1}{3\log 3} + \dots + \frac{1}{n\log n}$ y $b_n = \log(\log(n))$. Está claro que b_n es una sucesión positivamente divergente. Por lo tanto, podemos aplicar el criterio de Stolz: estrictamente creciente y positivamente divergente. Por lo tanto, podemos aplicar el criterio de Stolz:

$$\lim_{n \to \infty} y_n = \lim_{n \to \infty} \frac{\frac{1}{2 \log 2} + \frac{1}{3 \log 3} + \dots + \frac{1}{n \log n}}{\log(\log(n+1))} = \lim_{n \to \infty} \frac{a_n - a_{n-1}}{b_n - b_{n-1}} = \lim_{n \to \infty} \frac{\frac{1}{n \log n}}{\log(\log(n+1)) - \log(\log(n))}$$

Por otro lado, tenemos que $\log(\log(n+1)) - \log(\log(n)) = \log\left(\frac{\log(n+1)}{\log n}\right) = \log\left(1 + \frac{\log(n+1)}{\log n} - 1\right) = \log\left(\frac{\log(n+1)}{\log n}\right) = \log\left(\frac{\log(n+1)}{\log n}\right)$

$$\log\left(1 + \frac{\log(n+1) - \log n}{\log n}\right) = \log\left(1 + \frac{\log\left(1 + \frac{1}{n}\right)}{\log n}\right) \sim \frac{\log\left(1 + \frac{1}{n}\right)}{\log n} \sim \frac{1}{n\log n}.$$

Por lo tanto,

$$\lim_{n \to \infty} \frac{\frac{1}{n \log n}}{\log(\log(n+1)) - \log(\log(n))} = \lim_{n \to \infty} \frac{\frac{1}{n \log n}}{\frac{1}{n \log n}} = 1.$$

Así pues, $\{y_n\} \to 1$.