COMP 598

Talise Wang 260829722

May 19, 2020

Question 1

First, prove F is not regular:

First, define $F' = \overline{F} \cap ab^*c^* = \{ab^jc^k \mid j, k \ge 0 \land j \ne k\}$

 $F'' = \overline{F'} \cap ab^*c^* = \{ab^ic^i \mid i \geq 0\}$ since a is regular but $\{a^nb^n \mid n \geq 0\}$ is not regular by pumping lemma (proved in previous assignment & lecture notes). Then combine together, By clousre properties of regular languages, F'' is not regular. Similarly, F is not regular.

Secondly, to show that F satisfies the pumping lemma:

Pick p = 1. So $p \ge 0$ holds.

We choose p=2. So $\forall w \in L$ such that $|w| \geq p$, w=xyz where $|y| \geq 1$ and $|xy| \leq p$, four cases:

i=0, so $w=b^jc^k$. Then y=b or c is the first letter of the word, and $xy^nz=b^nb^{j-1}c^k\in L$ or $xy^nz=c^nc^{k-1}\in L$.

i=1, so j=k, $w=ab^{j}c^{j}$. Pick $y=a\ \&\ x=\epsilon$. $w=a^{n}b^{j}c^{j}\in L$.

i=2, so $w=a^2b^jc^k$. Let $y=aa \& x=\epsilon$. $w=(aa)^nb^jc^k\in L$.

i > 2, so $w = a^i b^j c^k$. Pick $y = a \& x = \epsilon$. $w = a^n a^{i-1} b^j c^k \in L$.

And pumping lemma just says that all regular language can be pumped, not all languages that satisfy the pumping lemma are regular. So it's not a contradiction.

Question 2

2.1

False.

Suppose $A = \{\epsilon\}$. Clearly, $A \subseteq B$ but B is not necessarily regular which means it can be any non-regular language.

2.2

False.

let $A = \{a^*\} \subseteq \Sigma^*$ be a regular language. Clearly, $B = \{a^{2^n} \mid n \geq 0\} \subseteq \Sigma^*$ is a non-regular language. But AB and A are regular. So counterexample!

2.3

False.

Let $\Sigma = \{0,1\}$. Define $A_1 = \{01\}$, $A_2 = \{0011\}$... So we can conclude $A_i = \{0^i 1^i | i \ge 0\}$. Clearly, for $\forall i \ge 0, A_i$ is regular.

But, $\bigcup_{i=1}^{\infty} A_i = \{0^i 1^i | i \geq 0\}$ is clearly not regular (proved in previous assignment & lecture notes).

2.4

False.

 $A = \{0^i 1^i | i \geq 0\}$ is not regular, but $\{ab\} \subseteq A$ is regular.

Question 3

Define (S, s_0, F, δ) as a DFA which recognizes L. In order to construct a NFA (Q, Q_0, F', Δ) that recognizes CYC(L).

$$(Q, Q_0, F', \Delta)$$
 that recognizes $CYC(L)$.

tracks start and end of u

Let's define $Q = \underbrace{S}_{\text{tracks } v} \times \underbrace{S \times S}_{\text{if we are reading } u \text{ or } v}$

Define $Q = \underbrace{S}_{\text{tracks } v} \times \underbrace{\{0, 1\}}_{\text{if we are reading } u \text{ or } v}$

Define $Q_0 = \{(s_0, s, s, 0)\}$ and $F' = \{(s, t, s, 1) \mid t \in F\}$

If b=0 which means we are reading $u \& \delta(t,a) \notin F$ then $\Delta((s,t,t_c,b),a)=$ $\{(s, t', t_c, b) \mid t' = \delta(t, a)\}.$

If $b = 0 \& \delta(t, a) \in F$ then

$$\Delta((s, t, t_c, b), a) = \{(s, t', t_c, b) \mid t' = \delta(t, a)\} \cup \{(s', t', t_c, b') \mid b' = 1, t' = \delta(t, a)\}$$

And if b = 1 which means we are reading v then $\Delta((s, t, t_c, b), a) = \{(s', t, t_c, b) \mid$ $s' = \delta(s, a)$.

This will always works since the end state of v will be the start state of u. And u will end in an accepting state. So $vu \in L$ holds.

Example: Let $\Sigma = \{a, b\}$, $L = \{a^nba^n \mid n \geq 0\}$. This is clearly non-regular. Since we can never cut b. CYC(L) can just move a from the front to the back or vice vesa.

So $CYC(L) = \{a^nba^m \mid n+m \text{ is divisible by 2 since } n+n=2n\}$. It is regular since it can be recognized by a NFA:

Question 4

To show \equiv_L is not a congruence relation. Here comes a counterexample: Consider the finite language $L = \{aa, ac, ba, bc, cb, db\}$. Clearly, $a \sim b, c \sim d$. But $ac \not\sim bd$ because $bd \notin L$ but $ab \in L$

To show \approx_L is a congruence relation:

Assume $m \approx_L n$ and $x \approx_L y$.

Since $\forall u, v \in \Sigma^*, umv \in L \iff unv \in L$. Pick v = xw, then we will have

 $\forall u, w \in \Sigma^*, umxw \in L \iff unxw \in L.$ Similarly for $x \approx_L y : \forall u, w \in \Sigma^*, unxw \in L \iff unyw \in L.$ Finally, combine above together, we will get $\forall u, w \in \Sigma^*, umxw \in L \iff unyw \in L$ and this means $mx \approx_L ny$.

Question 5

5.1

Not equivalent

Define $TS = (\phi, \neg \psi) \rightarrow (\neg \phi, \neg \psi) \rightarrow (\neg \phi, \neg \psi) \rightarrow (\neg \phi, \neg \psi) \rightarrow \cdots$ Then $TS \models (\Box \Diamond \phi \implies \Box \Diamond \psi)$ holds since the left side of the arrow is false. But, $TS \not\models \Box (\phi \implies \Diamond \psi)$. So not equivalent.

5.2

Not equivalent

Define TS as a transition system where $\phi \wedge \neg \psi$ for all odd steps and $\neg \phi \wedge \psi$ for all even steps.

$$TS = (\phi \land \neg \psi) \to (\neg \phi \land \psi) \to (\phi \land \neg \psi) \to (\neg \phi \land \psi) \to \cdots$$

Then $TS \models \Diamond \phi \wedge \Diamond \psi$ holds. But, $TS \not\models \Diamond (\phi \wedge \psi)$ since in no steps ϕ and ψ both true holds.

5.3

Equivalent

 $\bigcirc \Diamond \phi \equiv \bigcirc (\text{ true } U\phi)$ $\equiv (\bigcirc \text{ true })U(\bigcirc \phi)$ $\equiv \text{ true } U(\bigcirc \phi)$ $\equiv \Diamond \bigcirc \phi$ Proved!

Question 6

6.1

Define a formula ϕ as the description of odd(p).

Then we will get $(\phi)_n = p \wedge \bigcirc \bigcirc p \wedge \bigcirc \bigcirc \bigcirc p \wedge ... \wedge \bigcirc^{2n-2}p$ since it satisfies the following: $(\phi)_0 = \text{true}$

$$(\phi)_1 = p$$

$$(\phi)_2 = p \land \bigcirc \bigcirc p$$

$$(\phi)_3 = p \land \bigcirc \bigcirc p \land \bigcirc \bigcirc \bigcirc p$$

So we can conclude it as: $(\phi)_n = p \wedge \bigcirc \bigcirc p \wedge \bigcirc \bigcirc \bigcirc p \wedge \cdots \wedge \bigcirc^{2n-2}p$

Rewritten it by using the fixed point operator, Then it will be: $vX.p \land \bigcirc \bigcirc X$

6.2

Rewritten it as $\mu X.p \wedge \bigcirc \bigcirc X$ Define a formula $(\heartsuit p)$ to describe it: $(\heartsuit p)_0 = \text{false}$ $(\heartsuit p)_1 = p \wedge \bigcirc \bigcirc \text{false} = \text{false}$ So this formula is just false. So it's false.

6.3

Since after a p, there immediately comes a $\neg p$. And immediately after a $\neg p$, there comes a p.

So clearly, this formula **is** saying that p does **not** hold in any of the even steps.

Question 7

Let ψ_1, ψ_2 be any LTL formula that does not contain any next operators. First, Define $\phi = \psi_1 U \psi_2$. Since ψ_1, ψ_2 are both LTL formula. So ϕ is also a LTL formula. ϕ holds true on σ if and only if there exists $j \geq 0$ such that $\sigma[j..] \models \psi_2$ and $\forall i < j \ \sigma[i..] \models \psi_1$ holds.

Since the truth value of ϕ depends on the existence of a state that satisfy ψ_2 after step $j \geq 0$ where all state before that satisfy ψ_1 . So no matter how many U operators we add to ϕ , the requirement for the "true of false" value of ϕ stays the same result. It always holds for some fixed $j \geq 0$.

Here comes an example, let a and b be some states, all these following three cases are the same(the difference is how many a states before the b state):

$$(((a) \to (b) \to (a) \to (a) \to \cdots) \models \phi) \equiv (((a) \to (a) \to (a) \to (b) \to (a) \to (a) \to \cdots) \models \phi)$$

$$\equiv (((a) \to \cdots \to (a) \to (b) \to (a) \to (a) \to \cdots) \models \phi)$$

Since other LTL operators such as \diamond and \square they can be written as U and U satisfies above cases, \diamond and \square also satisfy these cases. So,in a LTL formula ϕ with U, \diamond and \square these operations only, ϕ has the same truth value on every σ_i for i > 0.

Secondly, define $\phi = \bigcirc^i \psi$. ϕ is true on σ if and only if $\sigma[i..] \models \psi$ So we can see the truth value of ϕ only depends on $\sigma[i]$.

So in a LTL formula, if ϕ is with only \bigcirc operators, clearly ϕ has the same result on every σ_j for j > i since ϕ only depends on $\sigma[i]$ and $\sigma[i]$ remains unchanged with variation of j.

Combine above together, a proposition p and any LTL formula ϕ containing n next operators, the fomula ϕ has the same truth value on every σ_i with i > n.

Clearly, odd(p) cannot be expressed in LTL. We will prove it by contradiction. Assume it can be expressed in LTL ϕ . Then ϕ must have a finite number of next operators. Assume ϕ has n next operators. Then, by the statement we proved earlier, σ_i is true for all i > n which is a contradiction since one of σ_{n+1} and σ_{n+2} must be true, and the other one must be false. So proved!

Question 8

8.1

```
True
L_{\omega}((E_1 + E_2) \cdot F^{\omega}) \equiv L_{\omega}(E_1 + E_2) \cdot L_{\omega}(F^{\omega})
\equiv (L_{\omega}(E_1) \cup L_{\omega}(E_2)) \cdot L_{\omega}(F^{\omega})
\equiv \{ab \mid a \in (L_{\omega}(E_1) \cup L_{\omega}(E_2)) \wedge b \in L_{\omega}(F^{\omega})\}
\equiv \{ab \mid a \in L_{\omega}(E_1) \wedge b \in L_{\omega}(F^{\omega})\} \cup \{ab \mid a \in L_{\omega}(E_2) \wedge b \in L_{\omega}(F^{\omega})\}
\equiv L_{\omega}(E_1 \cdot F^{\omega}) \cup L_{\omega}(E_2 \cdot F^{\omega})
\equiv L_{\omega}(E_1 \cdot F^{\omega} + E_2 \cdot F^{\omega})
```

8.2

False

Let $E = \epsilon$, $F_1 = 0$ and $F_2 = 1$.

Then 01010101010101... is recognized by $E \cdot (F_1 + F_2)^{\omega}$ but is not recognized by $\notin E \cdot F_1^{\omega} + E \cdot F_2^{\omega}$.

8.3

False

Let E = 0 and F = 1.

Then 0101010101010101... is recognized by $(E^* \cdot F)^{\omega}$ but is not recognized by $E^* \cdot F^{\omega}$.

Question 9

9.1

 $t_0 \models [a]\langle b \rangle$ true, $s_0 \not\models [a]\langle b \rangle$ true

Which is Similar as:

 $t_0 \not\models \langle a \rangle \neg (\langle b \rangle \text{ true }), s_0 \models \langle a \rangle \neg (\langle b \rangle \text{ true })$

The formula says that if we take an action a at t_0 , we can always take an action b after. But that doesn't hold for state s_0 since we can do nothing at the state s_3 .

9.2

To prove that both t_0 & s_0 agree on all the formulas of the negation-free fragment. we will do this by induction.

Base case: not take any action yet, then $t_0 \models \text{true}$, $s_0 \models \text{true}$

Then, take an action $a:t_0 \models \langle a \rangle$ true, $s_0 \models \langle a \rangle$ true

Then, one more action b: $t_0 \models \langle a \rangle \langle b \rangle$ true, $s_0 \models \langle a \rangle \langle b \rangle$ true

Similarly, $t_0 \not\models \langle b \rangle \langle a \rangle$ true, $s_0 \not\models \langle b \rangle \langle a \rangle$ true holds

Then by induction, they all should agree on any boolean combination of these formulas, for example, $t_0 \models (\langle a \rangle \text{true}) \land (\langle a \rangle \langle b \rangle \text{true})$, $s_0 \models (\langle a \rangle \text{true}) \land (\langle a \rangle \langle b \rangle \text{true})$

And $t_0 \models (\langle a \rangle \text{true}) \lor (\langle a \rangle \langle b \rangle \text{true})$, $s_0 \models (\langle a \rangle \text{true}) \lor (\langle a \rangle \langle b \rangle \text{true})$ also holds.

Then both $t_0 \& s_0$ agree on all the formulas of the negation-free fragment. So we proved!

Question 10

