Bandwidth and the Multipath Channel

S.N. Merchant
Gaurav S. Kasbekar
Dept. of Electrical Engineering
IIT Bombay

Bandwidth

- Recall: we discussed three definitions of bandwidth:
 - bandwidth for the case where signal is strictly band-limited
 - 2) null-to-null bandwidth
 - 3-dB bandwidth
- The definition 1) above is referred to as "absolute bandwidth": \Box $f_2 - f_1$, where the spectrum is zero outside the interval $f_1 < f < f_2$ along the positive f —axis

- Absolute bandwidth of g(t):
 - - Recall: 3-dB bandwidth of a signal g(t) is defined to
 - be $f_2 f_1$ if: $\Box f_2 > f_1 \ge 0$, for frequencies inside the band $f_1 < f < f_2$, the amplitude spectrum |G(f)| falls no lower than $\frac{1}{\sqrt{2}}$ of the maximum value of |G(f)|, and the maximum value occurs at
- a frequency inside the band $[f_1, f_2]$ Note:
- \Box The term "3-dB" used because $|G(f_a)| =$ $\frac{1}{\sqrt{2}}|G(f_b)| \text{ iff } |G(f_a)|^2 = \frac{1}{2}|G(f_b)|^2, \text{ i.e.,}$
 - $|G(f_a)|^2$ is lower than $|G(f_b)|^2$ by 3-dB
 - ☐ 3-dB bandwidth also referred to as "half-power bandwidth"
- Next, we discuss some more definitions of bandwidth

-W/2

G(f)

W/2

Ref: "Communication Systems" by S. Haykin and M. Moher, 5th ed

Equivalent Noise Bandwidth

- Consider a power signal, h(t), whose power spectral density (PSD) is $S_h(f)$
- Equivalent noise bandwidth, B_{eq} , is the width of a fictitious rectangular spectrum such that the power in that rectangular band is equal to the power associated with the actual spectrum over positive frequencies
- Let $f_0 > 0$ be a frequency at which $S_h(f)$ attains its maximum value
- Then B_{eq} can be found using:

1)
$$B_{eq}S_h(f_0) = \int_0^\infty S_h(f)df$$

- RHS of 1) is actual power of signal h(t) for positive frequencies
- LHS of 1) is power of a rectangular spectrum with height $S_h(f_0)$ and bandwidth B_{eq}
- Hence,

$$\square B_{eq} = \frac{1}{S_h(f_0)} \int_0^\infty S_h(f) df$$

Root Mean Square (RMS) Bandwidth

- RMS bandwidth is the square root of the second moment of a properly normalized form of the squared amplitude spectrum of the signal about a suitably chosen point
- Consider a low-pass signal, g(t), whose Fourier transform is G(f)
- RMS bandwidth of g(t):

$$\square W_{rms} = \left(\frac{\int_{-\infty}^{\infty} f^2 |G(f)|^2 df}{\int_{-\infty}^{\infty} |G(f)|^2 df}\right)^{1/2}$$

Mathematical evaluation easier than measurement in the lab

Bounded Spectrum Bandwidth and Power Bandwidth

- Bounded spectrum bandwidth is $f_2 f_1$ such that outside the band $f_1 < f < f_2$, the PSD, $S_h(f)$, must be down by at least a certain amount, say 50 dB, below the maximum value of the PSD
- Power bandwidth is $f_2 f_1$, where $f_1 < f < f_2$ defines the frequency band in which 99 % of the total power resides
 - Similar to the Federal Communications Commission (FCC) definition of *occupied bandwidth*, which states that the power above the upper band edge f_2 is $\frac{1}{2}$ % and the power below the lower band edge f_1 is $\frac{1}{2}$ %, leaving 99% of the total power within the occupied band

Multipath Channel

- Recall: in wireless communication, receiver often receives:
 - ☐ transmitted signal directly from transmitter
 - and also several delayed versions of it reflected from objects in environment
 - □ such a channel called "multipath channel" (see figure)
- Impulse response of a multipath channel:

Frequency response:

$$\square H(f) = \alpha_1 e^{-j2\pi f \tau_1} + \dots + \alpha_m e^{-j2\pi f \tau_m}$$

- The different complex exponentials (in the frequency domain) can interference with each other constructively or destructively
 - \square leads to significant fluctuation in H(f) as f varies
 - □ called "frequency-selective fading"
- WLOG, assume that $\tau_1 < \tau_2 < \dots < \tau_m$
- Then frequency response can be written as:

$$\Box H(f) = e^{-j2\pi f \tau_1} \sum_{k=1}^{m} \alpha_k e^{-j2\pi f (\tau_k - \tau_1)}$$

- The term $e^{-j2\pi f \tau_1}$ corresponds to a delay τ_1 seen by all frequencies and can be dropped by taking τ_1 as the time origin
- So:

$$\square H(f) = \alpha_1 + \sum_{k=2}^m \alpha_k e^{-j2\pi f(\tau_k - \tau_1)}$$

Ref: U. Madhow, "Introduction to Communication Systems"

Multipath Channel (contd.)

Recall:

$$\Box \tau_1 < \tau_2 < \dots < \tau_m$$

$$\Box H(f) = \alpha_1 + \sum_{k=2}^m \alpha_k e^{-j2\pi f(\tau_k - \tau_1)}$$

• For $k \ge 2$, period of k'th sinusoid above (in frequency domain) is:

$$\Box \frac{1}{(\tau_k - \tau_1)}$$
 • Hence, fastest fluctuations as a function of f occur due to the

- sinusoid with period $\frac{1}{(\tau_m \tau_1)}$
- Define the "delay spread" of the channel as:

$$\Box \tau_d = \tau_m - \tau_1$$

• Then for a frequency interval that is significantly smaller than $\frac{1}{\tau_d} = \frac{1}{(\tau_m - \tau_1)}$:

$$\square$$
 variation of $H(f)$ over the interval is small

• Hence, we define the "coherence bandwidth" of the channel as:

$$\Box B_c = \frac{1}{\tau_d} = \frac{1}{(\tau_m - \tau_1)}$$

 $\square H(f)$ can be modeled as approximately constant over intervals significantly smaller than coherence bandwidth

E	EXa	am	p	le

- \Box $h(t) = \delta(t-1) 0.5\delta(t-1.5) + 0.5\delta(t-3.5)$
- Dropping the first delay, as above, frequency response is:

 - $\Box H(f) = 1 0.5e^{-j\pi f} + 0.5e^{-j5\pi f}$
- Suppose time is measured in μ s and frequency in MHz

Consider a multipath channel with impulse response:

- Delay spread:
 - \square 2.5 μ s
 - Coherence bandwidth:
 - □ 400 kHz So we can assume that H(f) is approximately constant over a frequency interval of 40 kHz (10%)
 - of coherence bandwidth)
 - ☐ Note: the above choice is somewhat arbitrary
 - Fig. shows plot of |H(f)| vs f on a linear scale
 - \square significant variations in |H(f)| with f
 - \Box however, if we zoom in to a window of width 40 kHz, then
- there are fewer fluctual.

 Jappose we send a "narrowband" signal on a whose bandwidth is of order of 40 kHz

 magnitudes at all frequencies get scaled by roughly same amount

 If it is affected by a "severe fade" (e.g., if its center frequency of the partial of t
- - use "diversity", e.g., send multiple narrowband signals with different center frequencies
 - likely that for some of them, received signal will be of good quality

Ref: U. Madhow, "Introduction to Communication Systems"

Time-Domain Interpretation of Delay Spread and Coherence Bandwidth

- Recall:
 - \Box delay spread: $\tau_d = \tau_m \tau_1$
 - \Box coherence bandwidth: $B_c = \frac{1}{\tau_d} = \frac{1}{(\tau_m \tau_1)}$
- Suppose we send a pulse g(t) of duration T_{w} over a multipath channel as shown in figure
- Note that $\tau_d = 2T$
- If $T_w \gg au_d$, then intuitively, amount of distortion suffered by g(t) will be low (see figure)
- This is consistent with fact that if $T_w \gg \tau_d$, then bandwidth of pulse will be $\ll B_c$ and hence |H(f)| will be approximately constant over the frequency band on which g(t) has non-zero spectral content

Ref: Lathi, Ding, "Modern Digital and Analog Communication Systems", 4th ed.