Определение 1. Пусть $\varepsilon > 0, \ a \in \mathbb{R}$. Множество $\dot{U}_{\varepsilon}(a) = U_{\varepsilon}(a) \setminus \{a\} = \{x \in \mathbb{R} \mid 0 < |x - a| < \varepsilon\}$ называется проколотой ε -окрестностью точки a. Множества $U_{\varepsilon}^+(a) = \{x \in \mathbb{R} \mid a < x < a + \varepsilon\}$ и $U_{\varepsilon}^{-}(a) = \{x \in \mathbb{R} \mid a - \varepsilon < x < a\}$ называются правой и левой проколотыми полуокрестностями точки а соответственно.

Определение 2. (Предел функции в смысле Гейне) Пусть функция f определена на множестве M и некоторая проколотая окрестность точки a вложена в M. Число b называется npeделом функции f в точке a, если для любой последовательности (x_n) элементов множества $M \setminus \{a\}$, сходящейся к a, последовательность $(f(x_n))$ сходится к b.

Обозначение: $\lim f(x) = b$ или $f(x) \to b$ при $x \to a$.

Определение 3. (Предел функции в смысле Коши) Пусть функция f определена на множестве M и некоторая проколотая окрестность точки a вложена в M. Число b называется npeделом функции f в точке a, если для каждого $\varepsilon > 0$ существует такое число $\delta > 0$, что для всех x из множества $U_{\delta}(a) \cap M$ выполняется условие $f(x) \in U_{\varepsilon}(b)$.

Формально: $\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \in U_{\delta}(a) \cap M : f(x) \in U_{\varepsilon}(b)$.

Задача 1°. Докажите эквивалентность определений 2 и 3.

Задача 2. Может ли функция иметь более одного предела в данной точке?

Задача 3. Пусть $a, b \in \mathbb{R}, k \in \mathbb{N}$. Найдите следующие пределы (если они существуют):

a) $\lim_{x \to a} b$; б) $\lim_{x \to a} x$; в) $\lim_{x \to a} \{x\}$; г) $\lim_{x \to a} [x]$; д) $\lim_{x \to a} x^k$; е) $\lim_{x \to a} \sqrt[k]{x}$; ж) $\lim_{x \to 0} x \sin \frac{1}{x}$.

Задача 4° . (Арифметика пределов) Пусть области определения функций f и g совпадают, $\lim_{x \to x_0} f(x) = a$, $\lim_{x \to x_0} g(x) = b$. Докажите, что в этом случае выполняются следующие равенства:

a) $\forall c \in \mathbb{R} : \lim_{x \to x_0} cf(x) = ca;$

6) $\lim_{x \to x_0} (f(x) \pm g(x)) = a \pm b;$

B) $\lim_{x \to x_0} (f(x)g(x)) = ab;$

г) если $b \neq 0$, то $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{a}{b}$.

Задача 5. Найдите следующие пределы: a)
$$\lim_{x\to 1} \frac{x^2-5x+2}{4x+5}$$
; б) $\lim_{x\to 2} \frac{x^2-6x+8}{x^2-4}$; в) $\lim_{x\to 0} \frac{x^2+3x^4}{3x^2+x^4}$; г) $\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x}$.

Задача 6°. (Принцип двух милиционеров для функций) Пусть функции f, g и h определены на множестве M и для любого $x \in M$ имеют место неравенства $f(x) \leqslant g(x) \leqslant h(x)$. Тогда если $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = b$, то существует предел функции g в точке a, причём $\lim_{x \to a} g(x) = b$.

Задача 7. Докажите, что: а) Если $0 < x < \frac{\pi}{2}$, то $\sin(x) < x < \operatorname{tg}(x)$; б) $\lim_{n \to \infty} n(e^{\frac{1}{n}} - 1) = 1$.

Задача 8°. («Замечательные» пределы) Докажите следующие равенства:

a)
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
; 6) $\lim_{x\to 0} \frac{e^x - 1}{x} = 1$.

1	2	3 a	3 6	3 B	3 Г	3 д	3 e	3 ж	4 a	4 6	4 B	4 Г	5 a	5 6	5 в	5 г	6	7 a	7 б	8 a	8 6

Листок №19 Страница 2

Определение 4. Пусть функция f определена на множестве M и некоторая левая проколотая полуокрестность окрестность точки a вложена в M. Число b называется npedenom слева функции f e точке a, если для каждого числа $\varepsilon > 0$ существует такое число $\delta > 0$, что для всех x из множества $\dot{U}^-_\delta(a) \cap M$ выполняется условие $f(x) \in U_\varepsilon(b)$. Обозначение: $\lim_{x \to a-0} f(x) = b$.

- Задача 9. а) Запишите определение 4 формально (при помощи кванторов).
- б) Сформулируйте (в т.ч. на языке кванторов) определение предела справа.

Задача 10°. Пусть функция f имеет пределы справа и слева в точке a. Докажите, что предел $\lim_{x\to a} f(x)$ существует тогда и только тогда, когда $\lim_{x\to a-0} f(x) = \lim_{x\to a+0} f(x)$.

Задача 11. Приведите пример функции на \mathbb{R} , которая в точке a:

- а) не имеет предела ни слева, ни справа;
- б) имеет предел слева, но не имеет предела справа;
- в) имеет разные пределы слева и справа.

Задача 12°. Докажите, что функция, монотонная на интервале (a,b), имеет предел как слева, так и справа в каждой точке этого интервала.

Определение 5. Пусть функция f определена на множестве M и найдётся число $S \in \mathbb{R}$, такое что множество $\{x \in \mathbb{R} : |x| > S\}$ вложено в M. Число b называется npedenom функции f npu x, cmpemsupemacs $\kappa \infty$, если для каждого числа $\varepsilon > 0$ существует такое число C > 0, что для всех $x \in M$ из неравенства |x| > C следует $f(x) \in U_{\varepsilon}(b)$.

Обозначение: $\lim_{x \to \infty} f(x) = b$ или $f(x) \to b$ при $x \to \infty$.

Задача 13. а) Запишите определение 5 формально (при помощи кванторов).

- **б)** Сформулируйте определение предела функции f при $x \to +\infty$ и при $x \to -\infty$.
- в) Сформулируйте следующее определение: предел функции f при x, стремящемся к a, равен ∞ (соответственно $+\infty$, $-\infty$). Обозначение: $\lim_{x\to a} f(x) = \infty$.

Задача 14. Пусть функция f не обращается в ноль в некоторой окрестности точки a. Докажите, что $\lim_{x\to a} f(x) = \infty$ тогда и только тогда, когда $\lim_{x\to a} \frac{1}{f(x)} = 0$.

Задача 15*. Верно ли, что если $\lim_{x \to a} f(x) = b$ и $\lim_{x \to b} g(x) = c$, то $\lim_{x \to a} g(f(x)) = c$?

Задача 16*. Приведите пример функции, определённой на \mathbb{R} , не равной тождественно нулю ни на каком интервале, но имеющей в каждой точке нулевой предел.

Задача 17*. Приведите пример функции, определённой на $\mathbb Q$ и имеющей в каждой точке бесконечный предел.

9 a	9 6	10	11 a	11 б	11 B	12	13 a	13 б	13 B	14	15	16	17