Session-based Recommendation with Graph Neural Networks

Алина Плешкова Лиза Вирко Глеб Енгалыч

Постановка задачи

- Классические рекомендации:
 - (user_id, item_id, feedback)
- Session-based рекомендации:
 - (item_id, item_id, item_id, ..., ???)
- Могут быть разные действия. Упростим задачу -- все действия

Previously visited items

Item to be recommended

Почему не классические алгоритмы?

- Сессии часто анонимные.
- Один и тот же юзер в разные сессии ищет разное.
- Классические алгоритмы требуют знаний о юзере.

 Нужны алгоритмы, не опирающиеся на информацию о пользователе.

Baselines

- РОР предлагает top-k самых популярных итемов из трейна.
- Item-KNN ищет ближайший по косиносному расстоянию итем к предыдущим.
- BPR-MF матричное разложение.
- FPMC последовательное предсказание через марковские цепи.
- GRU4REC rnn.
- NARM rnn with attention.

Session-based Recommendation with Graph Neural Networks

Cross-entropy loss

Как построить граф одной сессии?

- Можно нормировать по графу из одной текущий сессии.
- Нормировать по графу из всех сессий.

GNN

Идея: Для создания эмбеддинга вершины нужно агрегировать информацию с нее и ее соседей.

GNN: пересчет эмбеддингов

Эмбеддинги item-ов в нашем случае

$$\mathbf{a}_{s,i}^{t} = \mathbf{A}_{s,i:} \begin{bmatrix} \mathbf{v}_{1}^{t-1}, \dots, \mathbf{v}_{n}^{t-1} \end{bmatrix}^{\top} \mathbf{H} + \mathbf{b},$$

$$\mathbf{z}_{s,i}^{t} = \sigma \left(\mathbf{W}_{z} \mathbf{a}_{s,i}^{t} + \mathbf{U}_{z} \mathbf{v}_{i}^{t-1} \right),$$

$$\mathbf{r}_{s,i}^{t} = \sigma \left(\mathbf{W}_{r} \mathbf{a}_{s,i}^{t} + \mathbf{U}_{r} \mathbf{v}_{i}^{t-1} \right),$$

$$\widetilde{\mathbf{v}}_{i}^{t} = \tanh \left(\mathbf{W}_{o} \mathbf{a}_{s,i}^{t} + \mathbf{U}_{o} \left(\mathbf{r}_{s,i}^{t} \odot \mathbf{v}_{i}^{t-1} \right) \right)$$

$$\mathbf{v}_{i}^{t} = \left(1 - \mathbf{z}_{s,i}^{t} \right) \odot \mathbf{v}_{i}^{t-1} + \mathbf{z}_{s,i}^{t} \odot \widetilde{\mathbf{v}}_{i}^{t},$$

Как получить эмбеддинг сессии?

$$s = [v_{s,1}, v_{s,2}, \dots, v_{s,n}].$$

ullet Берём эмбеддинг последнего итема в сессии $|\mathbf{S}_{
m l} = \mathbf{V}_n$

$$\alpha_i = \mathbf{q}^{\top} \sigma(\mathbf{W}_1 \mathbf{v}_n + \mathbf{W}_2 \mathbf{v}_i + \mathbf{c}),$$

• Делаем soft-attention слой:

$$\mathbf{s}_{\mathsf{g}} = \sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i},$$

ullet Ещё один линейный слой: $\mathbf{s_h} = \mathbf{W}_3\left[\mathbf{s_l}; \mathbf{s_g}
ight]$

Как сделать предсказание?

- Вычислили эмбеддинг сессии.
- Скалярно умножили на эмбеддинги каждого итема: $\hat{\mathbf{z}}_i = \mathbf{s}_h^\mathsf{T} \mathbf{v}_i$.
- Взяли софтмакс:

$$\hat{\mathbf{y}} = \operatorname{softmax}(\hat{\mathbf{z}})$$

• Обучаем с помощью кросс-энтропии.

Baseline: Neural Attentive Session-based Recommendation (NARM)

$$q(\boldsymbol{h}_t, \boldsymbol{h}_j) = \boldsymbol{v}^{\mathrm{T}} \sigma(\boldsymbol{A}_1 \boldsymbol{h}_t + \boldsymbol{A}_2 \boldsymbol{h}_j)$$

Датасеты

- yoochoose RecSys Challenge 2015
 - о убрали все сессии длины 1
 - убрали все итемы, которые встречаются реже 5 раз
 - о дропнули "плохие" сессии
- Осталось 7,981,580 сессий и 37,483 итема.
- Датасет всё ещё слишком большой, академики делают 1/64 и 1/4 (то есть, берут долю сессии с конца).

Statistics	Yoochoose 1/64	Yoochoose 1/4
# of training sessions	369,859	5,917,745
# of test sessions	55,898	55,898
# of items	16,766	29,618
Average length	6.16	5.71

Diginetica - пропал из открытого доступа :(

Метрики

- Precision@20 (recall@20)
- MRR@20

$$P@k = \frac{\#(relevant\ items\ at\ k)}{k}$$

$$R@k = \frac{\#(relevant\ items\ at\ k)}{\#(relevant\ items)}$$

$$RR = \frac{1}{rank \ of \ the \ first \ relevant \ item}$$

Результаты экспериментов

Результаты статьи

Method	Yooch	Yoochoose 1/64		Yoochoose 1/4		Diginetica	
Method	P@20	MRR@20	P@20	MRR@20	P@20	MRR@20	
POP	6.71	1.65	1.33	0.30	0.89	0.20	
S-POP	30.44	18.35	27.08	17.75	21.06	13.68	
Item-KNN	51.60	21.81	52.31	21.70	35.75	11.57	
BPR-MF	31.31	12.08	3.40	1.57	5.24	1.98	
FPMC	45.62	15.01	_	_	26.53	6.95	
GRU4REC	60.64	22.89	59.53	22.60	29.45	8.33	
NARM	68.32	28.63	69.73	29.23	49.70	16.17	
STAMP	68.74	29.67	70.44	30.00	45.64	14.32	
SR-GNN	70.57	30.94	71.36	31.89	50.73	17.59	

Наши результаты

	Recall@20	MRR@20
NARM	69.11	29.72
SR-GNN	69.79	31.70

А что с другими датасетами?

- Retailrocket recommender dataset
 - о не session-based, но user-based
 - о транзакции в интернет-магазине
- Для SR-GNN на коллабе не влез в оперативку (влезла лишь 1/32)
 - о результаты:

	Recall@20	MRR@20
NARM	14.73	5.15
SR-GNN	2.09	0.61

- SR-GNN успел за 8 часов пройти 4 эпохи (в статье обучается 30)
- NARM за 20 минут обучается на 500 эпох, но плохо, так попадает всегда в локальный минимум :(

Академики набирают на ПОЛНОМ датасете:

Metrics	MRR@20	HR@20
S-SKNN	*0.345	*0.591
V-SKNN	0.338	0.573
S-KNN	0.337	0.583
BPR-MF	0.303	0.357
FPMC	0.273	0.320
SF-SKNN	0.260	0.358
SR	0.245	0.419
GRU4REC	0.243	0.480
AR	0.241	0.439
MC	0.230	0.359
SMF	0.225	0.459
IKNN	0.107	0.240
FISM	0.075	0.132
FOSSIL	0.022	0.058

Попробуем Yoochoose 1/32

SRGNN

1/64: эпоха ~ 7 минут

1/32: эпоха ~ 2 часа

Результаты статьи

Method	Yoochoose 1/64		Yoochoose 1/4		Diginetica	
Method	P@20	MRR@20	P@20	MRR@20	P@20	MRR@20
POP	6.71	1.65	1.33	0.30	0.89	0.20
S-POP	30.44	18.35	27.08	17.75	21.06	13.68
Item-KNN	51.60	21.81	52.31	21.70	35.75	11.57
BPR-MF	31.31	12.08	3.40	1.57	5.24	1.98
FPMC	45.62	15.01	_	-	26.53	6.95
GRU4REC	60.64	22.89	59.53	22.60	29.45	8.33
NARM	68.32	28.63	69.73	29.23	49.70	16.17
STAMP	68.74	29.67	70.44	30.00	45.64	14.32
SR-GNN	70.57	30.94	71.36	31.89	50.73	17.59

Наши результаты 1/64

Наши результаты 1/32

	Recall@20	MRR@20
NARM	69.11	29.72
SR-GNN	69.79	31.70

	Recall@20	MRR@20
NARM	69.32	29.91
SR-GNN	70.3	31.98

Результаты

- Результаты бейзлайна воспроизводимы!
- Результаты статьи воспроизводимы!
- На синтетически полученном датасете мы не смогли обучиться (нехватка ресурсов, долгое обучение)
- https://github.com/herrbilbo/hse-recsys-project