SABANCI UNIVERSITY

Faculty of Engineering and Natural Sciences CS 302 Automata Theory Fall 2017

Midterm

Closed book and notes (of paper and electronic kind)

Calculators are <u>not</u> allowed and all phones must be switched off

Duration: 60 minutes

Name :

ID :

	GRADE
QUESTION 1	
QUESTION 2	
QUESTION 3	
TOTAL	

Question 1 (35 points)

(a) (10 pts) For the regular expression E = (1.(0+1)*.0)* sketch an ε -NFA with 3 states that accepts E interpreted as a language; and convert this to an equivalent NFA again with 3 states but without ε -transitions.

(b) (25 pts) Consider the NFA A below where the input alphabet is $\Sigma = (a,b)$.

Compute first an equivalent DFA B to A above and then an equivalent minimal state DFA C to B.

Question 2 (30 points)

(a) (15 pts) Consider the language $L = \{w \in (0+1)^* \mid \#0s \text{ in } w > \#1s \text{ in } w\}$

State whether L is a regular language: if so compute an NFA that accepts it; if not, prove that it is not regular using the pumping lemma.

(b) (15 pts) Repeat part (a) for $L = \{w \in (0+1)^* \mid \#0s \text{ in } w + \#1s \text{ in } w = an \text{ even number}\}$

Question 3 (35 pts)

For the finite state machine below compute the *regular expression* corresponding to the language accepted by it using the state elimination technique.

