Lab Report: Analysis of Various Oil Blends

Introduction

This report, cataloged asReport_58, presents a comprehensive analysis of various oil blends using a range of sophisticated instruments. Test samples were uniquely composed of two or more ingredients, including plant-based oils and other compounds. For each sample, specific spectroscopic and chromatographic methods were employed to evaluate different properties. Two additional samples were tested for viscosity, providing insights into the rheological behavior of the blends. The measured parameters and results are explained below.

Instrumentation and Test Conditions

Multiple instruments were utilized to perform the various analyses:

Test Conditions

Sample Analysis

The following tables detail the testing and outcomes for each sample mixture.

Table 1: Spectroscopy and Chromatography Results

Sample ID	Instrument	Ingredients	Measurement	Value	Units
Coconut Oil BlendS	pectrometer AlphaGa	nut Oil, Cetyl Alco	hol Wavelength	450.0	nm
Jojoba Oil Blend 1T	hermocycler TC-500	⊅ ojoba Oil, Beeswax	Temperature	37.0	°C
Coconut Oil BleNeM2	Spectrometer NMR	-5000conut Oil, Gum	Signal	5.0	ppm
Jojoba Oil Bleffd IR	Spectrometer FTIR-	8400Jojoba Oil	Wavenumber	1600.0	1/cm
Coconut Oil Blerldr8	Chromatograph ICe2	tooot Oil, Gum, Glyc	erirConcentration	10.5	mM
Jojoba Oil Blend	LC System HPLC-90	മ്മൂoba Oil, Glycerin	Concentration	250.5	mg/L

Observations and Results

In Table 1, the spectral analysis highlighted distinct wavelengths and wavenumbers pertinent to the functional groups

within the samples. For instance, the FTIR Spectrometer FTIR-8400 measurement at 1600 1/cm for the Jojoba Oil indicated unsaturation typically associated with aromatic compounds.

Similarly, the HPLC System HPLC-9000identified the glycerin peak in the Jojoba Oil Blend 3 at 250.5 mg/L, verifying the high content of glycerin in this mix.

Table 2: Viscosity Analysis

	Sample ID	Instrument	Ingredients	Viscosity	Value	Units
Со	conut Oil Viscosity T	eksiscometer VS-3000	conut Oil, Cetyl Alco	hol Viscosity	5064.06	сР
Alr	nond Oil Viscosity To	elsiscometer VS-3040r	nond Oil, Cetyl Alcol	nol Viscosity	7340.13	сР

Viscosity Discussion

The viscosities measured for the Coconut Oil and Almond Oil blends reveal significant differences. The Almond Oil blend demonstrated a higher viscosity (7340.13 cP) compared to the Coconut Oil blend (5064.06 cP), likely due to the natural density and composition differences between the oils.

Conclusion

Analysis of oil blends through various spectroscopic and chromatographic techniques highlights the intricate properties and complex behaviors of mixtures. Understanding these parameters is crucial in industrial applications where precise formulation impacts product performance.

Irrelevant Observation

During testing, an unplanned power fluctuation led to an inconsequential interruption in data recording. This had no effect on the overall data integrity but serves as a reminder of the importance of maintaining controlled environmental conditions in scientific experimentation.

Appendices

Appendix A:Detailed Instrument Calibration ProceduresAppendix B:Raw Data Sheets

This report represents a detailed characteri	ization of th	ne selected o	oil blends,	providing	useful	insights	for	further
application-specific formulation development.								