

Lead Scoring Case Study

Rahul Vashisth

Business Problem Statement

Business Problem Statement:

An education company named X Education sells online courses to industry professionals. On any given day, many professionals who are interested in the courses land on their website and browse for courses.

The company markets its courses on several websites and search engines like Google. Once these people land on the website, they might browse the courses or fill up a form for the course or watch some videos. When these people fill up a form providing their email address or phone number, they are classified to be a lead. Moreover, the company also gets leads through past referrals. Once these leads are acquired, employees from the sales team start making calls, writing emails, etc. Through this process, some of the leads get converted while most do not. The typical lead conversion rate at X education is around 30%.

Goal:

- 1. To identify the features that contributes to predict Lead Conversion.
- 2. Identifying Hot Leads by generating Lead Score for all leads, so that leads having higher Lead Scores can be contacted with priority for achieving Higher Lead Conversion Rate.

Overall Approach

Understanding the Data & Basic Data Cleanup

- There are 37 columns (30 categorical and 7 Numeric) and 9240 observations in the dataset.
- Select is present as a class in different columns like:
 - Specialization
 - ➤ How did you hear about X Education
 - Lead Profile
 - City
- As Select is not a valid class, we can conclude that the Select might be the default value set in the form dropdown and if the user has not selected any option from the dropdown, then the value remained as Select. We replaced Select with NaN.
- Magazine, Receive More Updates About Our Courses, Update me on Supply Chain Content, Get updates on DM Content, I agree
 to pay the amount through cheque These columns have no missing data and have only one unique value. So, these columns have
 no variance and not helpful for our EDA or model building, hence we dropped these columns.
- How did you hear about X Education, Lead Profile, Lead Quality, Asymmetrique Activity Index, Asymmetrique Profile Index, Asymmetrique Activity Score, Asymmetrique Profile Score These columns have more than 40% missing value. So, we have dropped these columns from our EDA and model building.
- There is no datapoint/ observation (rows) in our dataset having more than 70% missing values.
- We have created new buckets/bins for the categorical variables having very high numbers of classes with few datapoints: **Lead Origin, Lead Source, Last Activity, Last Notable Activity, Country, Specialization, What is your current occupation.**
- Performed missing value treatment using **Business Understanding.** For **Specialization** and **Occupation** NaN values are replaced with a new category **Not Disclosed.**
- We renamed What is your current occupation column to Occupation and What matters most to you in choosing a course to Reason_choosing for our convenience during EDA and Model building.

Visualizing Data and EDA: Numerical variables

Inferences:

- 1. Median value of **Total Time Spent on Website** for converted Leads are considerably higher than the other group. Team should target those customers who are spending higher time on website. Those leads have higher odds of getting converted.
- 2. We can see high number of outliers in **Total Visit** for Converted = 0. A good number of customers visiting the website higher number of times, but they are not opting for the course. Team should investigate the reason behind this. It could be because of financial problems, they are searching for other courses that is currently not offered by X Education, Getting other good options by competitors etc.

3. There are many outliers in **Total Time Spent on Website** column for Converted= 0.

Visualizing Data and EDA: Categorical Variables I

Inferences:

- 4. For **Other type Lead Origin** there is a very high chance that the lead will be converted successfully.
- 5. **Reference type of Lead Source** has very high success rate. Team should consider referenced customers on priority. **Other Sources** contributes very a smaller number of customers but has very good conversion rate. Customers coming through **Organic Search** have also considerably higher chance of getting successfully converted.
- 6. Customers who have shown **Positive Behaviour in Last Activity** have considerably higher chance of getting converted successfully.

Visualizing Data and EDA: Categorical Variables II

Inferences:

- 7. Most of the customers are from India and having **Management Specializations**.
- 8. **People who have mentioned their specializations** in the form have higher chance of opting for the course.
- 9. Most of the customers who have shown interest in the campaigns are Unemployed. Working Professional very high odds of successful conversion. Sales team should launch a campaign to reach more Working professionals.
- 10. **People mentioned employment status** during filling up the forms have higher chance of successful conversion.

Data Preparation

Outlier Treatment

Train-Test Split

Missing Value Imputation (Statistical Imputation)

Categorical Variables Encoding

Variance Thresholding

Dataset has been splitted into Train and Test in 70:30 ratio. Train dataset is used to train the model and Test dataset to evaluate the model.

- 1. Calculated median, mode on Train dataset.
- 2. Used that value to impute missing values in Train and Test Dataset.
- 3. Statistical Imputation is done as below:
 - A. Nominal Categorical Columns: Mode Imputation
 - B. Numeric Columns: Median Imputation

Identified 2.8% of total data (< 5%) as outliers and removed those rows

Checking percentile values for 'Page Views Per Visit'

leads_df0['Page Views Per Visit'].quantile([.01,.05,.5,.75,.9,.95,.99,1]).values

array([0., 0., 2., 3., 5., 6., 9., 55.])

Removing observations having Page Views Per Visit > 9

leads_df0= leads_df0[-(leads_df0['Page Views Per Visit'] > 9)]

leads_df0['TotalVisits'].quantile([.01,.05,.5,.75,.9,.95,.99,1]).values array([0. , 0. , 3. , 5. , 7. , 9. , 16.73, 251.])

Removing bservations having TotalVisits > 16.93

Checking percentile values for 'Total Time Spent on Website

Removing observations having 'Total Time Spent on Website' > 1840.

leads df0= leads df0[~(leads df0['Total Time Spent on Website'] > 1840.27)

- 1. Below Columns having Yes and No values. Yes have been replaced by 1 and No with 0. Do Not Email, Do Not Call, Search, Newspaper Article, X Education Forums, Newspaper, Digital Advertisement, Through Recommendations, A free copy of Mastering The Interview
- 2. Dummy variables have been created for below columns and dropped original variable and First Dummy Variable for each column from the data frame:

Lead Origin, Lead Source, Country, Specialization, Reason_choosing, Occupation, City

Performed MinMax Scaling (fit and transform) on Train data on all numeric predictors: TotalVisits, Total Time Spent on Website, Page Views Per Visit

Performed Variance Thresholding and removing columns having lower variance than threshold= .001

Removed Columns: Do Not Call, Newspaper Article, X Education Forums, Newspaper, Digital Advertisement, Through Recommendations, Reason_choosing_Flexibility & Convenience

Data Preparation: Pairwise Correlation

Lead Origin_Other has very high correlation (.82) with Lead Source_Reference. Column Lead Source_Reference has been dropped.

Lead_Origin_Landing Page
Submission has very high
correlation (.75) with
Specialization_Not Disclosed.
Specialization_Not
Disclosed column has been
dropped.

Model Building: Approach

- 1. Recursive Feature Elimination (RFE) has been used to get top 16 features.
 - > **Do Not Email:** An indicator variable selected by the customer wherein they select whether of not they want to be emailed about the course or not.
 - > TotalVisits: The total number of visits made by the customer on the website.
 - > Total Time Spent on Website: The total time spent by the customer on the website.
 - Page Views Per Visit: Average number of pages on the website viewed during the visits.
 - **Lead Origin Landing Page Submission:** Dummy variable for Landing Page category of the origin identifier with which the customer was identified to be a lead.
 - **Lead Origin_Other:** Dummy variable for the Other category of the origin identifier with which the customer was identified to be a lead.
 - **Lead Source Olark Chat:** Dummy variable for the Olark Chat category of the source of the lead.
 - **Lead Source_Other Sources:** Dummy variable for the Other category (other than Google, Direct Traffic, Olark Chat, Organic Search, Reference) of the source of the lead.
 - **Country_Other Countries:** Dummy variable for the Other category (other than India and United States) of the country of the customer.
 - > Specialization Domain Specialization: Dummy variable for Domain Specialization bin of Specialization variable.
 - > Specialization_Management Specialization: Dummy variable for Management Specialization bin of Specialization variable.
 - **Occupation_Other:** Dummy variable for 'Other' category of customer's occupation.
 - > Occupation_Student: Dummy variable for 'Student' category of customer's occupation.
 - **Occupation_Unemployed:** Dummy variable for 'Unemployed' category of customer's occupation.
 - > Occupation_Working Professional: Dummy variable for 'Working Professional' category of customer's occupation.
 - > City Tier II Cities: Dummy variable for 'Tier II Cities' category of customer's city.
- 2. We built first Logistic Regression model using GLM (Generalized Linear Model) in statsmodels with these 16 features.
- 3. Then manually fine tuned the model to get statistically significant features (by checking the p-values) and removed multicollinearity (By checking Variance Inflation Factors) simultaneously. Accepted p-value is lower than .05 and accepted VIF is lower than 5.
- 4. Total 7 models were built and after each model building p-values of all beta coefficients and VIFs have been checked and identified feature has been removed in next model building. We have also checked Overall model accuracy and Confusion Matrix after each new model, to understand how the new model is performing in compared to the previous one.

Features for Logistic Regression Model 1 (16 Features):

Do Not Email, TotalVisits, Total Time Spent on Website, Page Views Per Visit, Lead Origin_Landing Page Submission, Lead Origin Other, Lead Source_Olark Chat, Lead Source Other Sources, Country Other Countries, Specialization Domain Specialization, Specialization Management Specialization, Occupation Other, Occupation Student, Occupation Unemployed, Occupation Working Professional, City Tier II Cities

							Features	VIF
Model Summary (Coe	efficients	with p	/alue)				Page Views Per Visit	6.06
	coef	std err	Z	P> z	[0.025	0.975]	Lead Origin_Landing Page Submission	5.04
							TotalVisits	4.78
const	-3.2281	0.134	-24.165	0.000	-3.490	-2.966	Specialization_Management Specialization	3.68
Do Not Email	-1.1754	0.159	-7.380	0.000	-1.488	-0.863		
TotalVisits	1.2198	0.274	4.448	0.000	0.682	1.757	Occupation_Unemployed	2.82
Total Time Spent on Website	3.9556	0.139	28.536	0.000	3.684	4.227	Total Time Spent on Website	2.20
Page Views Per Visit	-0.5423	0.265	-2.043	0.041	-1.063	-0.022	Charialization Domain Charialization	1.00
Lead Origin_Landing Page Submission	-0.4422	0.108	-4.088	0.000	-0.654	-0.230	Specialization_Domain Specialization	1.52
Lead Origin_Other	3.4569	0.198	17.489	0.000	3.070	3.844	Lead Origin_Other	1.66
Lead Source_Olark Chat	1.1691	0.131	8.911	0.000	0.912	1.426	Occupation_Working Professional	1.43
Lead Source_Other Sources	-0.5101	0.218	-2.343	0.019	-0.937	-0.083	. – .	
Country_Other Countries	-0.4444	0.235	-1.891	0.059	-0.905	0.016	Lead Source_Other Sources	1.20
Specialization_Domain Specialization	0.4011	0.123	3.261	0.001	0.160	0.642	Lead Source_Olark Chat	1.21
Specialization_Management Specialization	0.4068	0.099	4.118	0.000	0.213	0.600	Do Not Email	1.09
Occupation_Other	1.4708	0.521	2.825	0.005	0.450	2.491	Occupation Student	1.07
Occupation_Student	1.1282	0.213	5.289	0.000	0.710	1.546		
Occupation_Unemployed	1.3191	0.086	15.383	0.000	1.151	1.487	Country_Other Countries	1.04
Occupation_Working Professional	3.7367	0.194	19.244	0.000	3.356	4.117	City_Tier II Cities	1.02
City_Tier II Cities	0.4399	0.375	1.174	0.240	-0.294	1.174	Occupation Other	1.01

Observations:

'City Tier II Cities' and 'Country Other Countries' have p value higher than .05. So, their coefficient value is not statistically significant.

'Page Views Per Visit' and 'Lead Origin_Landing Page Submission' have bit higher VIF value but it's not too high. So, in next model 'City Tier II Cities' feature has been excluded from the predictors.

Confusion Matrix:

True Negative: 3458 False Positive: 433 True Positive: 1569

False Negative: 828

Features for Logistic Regression Model 2 (15 Features):

Do Not Email,
TotalVisits,
Total Time Spent on Website,
Page Views Per Visit,
Lead Origin_Landing Page Submission,
Lead Origin_Other,
Lead Source_Olark Chat,
Lead Source_Other Sources,
Country_Other Countries,
Specialization_Domain Specialization,
Specialization_Management Specialization,
Occupation_Other,
Occupation_Student,
Occupation_Unemployed,
Occupation Working Professional,

Model Summary (Co	efficient	s with p	value)			
	coef	std err	z	P> z	[0.025	0.975]
const	-3.2248	0.133	-24.157	0.000	-3.486	-2.963
Do Not Email	-1.1715	0.159	-7.353	0.000	-1.484	-0.859
TotalVisits	1.2183	0.274	4.443	0.000	0.681	1.756
Total Time Spent on Website	3.9544	0.139	28.534	0.000	3.683	4.226
Page Views Per Visit	-0.5462	0.265	-2.058	0.040	-1.066	-0.026
Lead Origin_Landing Page Submission	-0.4344	0.108	-4.025	0.000	-0.646	-0.223
Lead Origin_Other	3.4556	0.198	17.486	0.000	3.068	3.843
Lead Source_Olark Chat	1.1671	0.131	8.900	0.000	0.910	1.424
Lead Source_Other Sources	-0.5107	0.218	-2.346	0.019	-0.937	-0.084
Country_Other Countries	-0.4466	0.235	-1.899	0.058	-0.907	0.014
Specialization_Domain Specialization	0.4017	0.123	3.267	0.001	0.161	0.643
Specialization_Management Specialization	0.4046	0.099	4.099	0.000	0.211	0.598
Occupation_Other	1.4784	0.518	2.852	0.004	0.462	2.495
Occupation_Student	1.1233	0.213	5.268	0.000	0.705	1.541
Occupation_Unemployed	1.3176	0.086	15.370	0.000	1.150	1.486
Occupation_Working Professional	3.7371	0.194 	19.252 	0.000 	3.357	4.118

VIF	
Features	VIF
Page Views Per Visit	6.06
Lead Origin_Landing Page Submission	5.01
TotalVisits	4.78
Specialization_Management Specialization	3.68
Occupation_Unemployed	2.82
Total Time Spent on Website	2.20
Specialization_Domain Specialization	1.92
Lead Origin_Other	1.66
Occupation_Working Professional	1.43
Lead Source_Other Sources	1.25
Lead Source_Olark Chat	1.21
Do Not Email	1.09
Occupation_Student	1.07
Country_Other Countries	1.04
Occupation_Other	1.01

Observations:

There is no change in Confusion matrix and as well as in overall model accuracy even after removing 'City_Tier II Cities.

Still 'Page Views Per Visit' and 'Lead Origin_Landing Page Submission' have bit higher VIF value but it's not too high. So, in next model 'Country_Other Countries' feature has been excluded from the predictors (as it has higher p value).

Confusion Matrix: True Negative: 3458 False Positive: 433 False Negative: 828 True Positive: 1569

Features for Logistic Regression Model 3 (14 Features):

Do Not Email,
TotalVisits,
Total Time Spent on Website,
Page Views Per Visit,
Lead Origin_Landing Page Submission,
Lead Origin_Other,
Lead Source_Olark Chat,
Lead Source_Other Sources,
Specialization_Domain Specialization,
Specialization_Management Specialization,
Occupation_Other,
Occupation_Student,
Occupation_Unemployed,
Occupation Working Professional,

Model Summary (Coefficients with p value)							
	coef	std err	z	P> z	[0.025	0.975]	
const	-3.2340	0.133	-24.235	0.000	-3.496	-2.972	
Do Not Email	-1.1759	0.159	-7.378	0.000	-1.488	-0.864	
TotalVisits	1.2173	0.274	4.443	0.000	0.680	1.754	
Total Time Spent on Website	3.9536	0.138	28.554	0.000	3.682	4.225	
Page Views Per Visit	-0.5397	0.265	-2.034	0.042	-1.060	-0.020	
Lead Origin_Landing Page Submission	-0.4413	0.108	-4.093	0.000	-0.653	-0.230	
Lead Origin_Other	3.4676	0.198	17.548	0.000	3.080	3.855	
Lead Source_Olark Chat	1.1738	0.131	8.955	0.000	0.917	1.431	
Lead Source_Other Sources	-0.5186	0.218	-2.384	0.017	-0.945	-0.092	
Specialization_Domain Specialization	0.4031	0.123	3.279	0.001	0.162	0.644	
Specialization_Management Specialization	0.4018	0.099	4.073	0.000	0.208	0.595	
Occupation_Other	1.4896	0.518	2.873	0.004	0.473	2.506	
Occupation_Student	1.1340	0.213	5.319	0.000	0.716	1.552	
Occupation_Unemployed	1.3190	0.086	15.387	0.000	1.151	1.487	
Occupation_Working Professional	3.7332	0.194	19.238 ======	0.000	3.353	4.114	

VIF	
Features	VIF
Page Views Per Visit	6.06
Lead Origin_Landing Page Submission	5.00
TotalVisits	4.78
Specialization_Management Specialization	3.68
Occupation_Unemployed	2.82
Total Time Spent on Website	2.20
Specialization_Domain Specialization	1.92
Lead Origin_Other	1.66
Occupation_Working Professional	1.43
Lead Source_Other Sources	1.25
Lead Source_Olark Chat	1.21
Do Not Email	1.09
Occupation_Student	1.07
Occupation Other	1.01

Observations:

If we compare this model with our model 2 then we can see there is very small change in confusion matrix, TP increased a bit and TN reduced by same amount. There is no significant reduction in overall model accuracy. 'Page Views Per Visit' still has bit higher VIF value, so it has been excluded I our next model.

Confusion Matrix:

True Negative: 3454 False Positive: 437 False Negative: 824 True Positive: 1573

Features for Logistic Regression Model 4 (13 Features):

Do Not Email,
TotalVisits,
Total Time Spent on Website,
Lead Origin_Landing Page Submission,
Lead Origin_Other,
Lead Source_Olark Chat,
Lead Source_Other Sources,
Specialization_Domain Specialization,
Specialization_Management Specialization,
Occupation_Other,
Occupation_Student,
Occupation_Unemployed,
Occupation Working Professional,

Model Summary (Co	oefficiei	nts with	p value)			
	coef	std err	z	P> z	[0.025	0.975]
const	-3.3113	0.128	-25.805	0.000	-3.563	-3.060
Do Not Email	-1.1706	0.159	-7.344	0.000	-1.483	-0.858
TotalVisits	0.9315	0.236	3.953	0.000	0.470	1.393
Total Time Spent on Website	3.9502	0.138	28.543	0.000	3.679	4.221
Lead Origin_Landing Page Submission	-0.4672	0.107	-4.364	0.000	-0.677	-0.257
Lead Origin_Other	3.5518	0.194	18.345	0.000	3.172	3.931
Lead Source_Olark Chat	1.2526	0.126	9.975	0.000	1.006	1.499
Lead Source_Other Sources	-0.5321	0.218	-2.443	0.015	-0.959	-0.105
Specialization_Domain Specialization	0.3897	0.123	3.176	0.001	0.149	0.630
Specialization_Management Specialization	0.3960	0.099	4.017	0.000	0.203	0.589
Occupation_Other	1.4862	0.518	2.871	0.004	0.472	2.501
Occupation_Student	1.1348	0.213	5.316	0.000	0.716	1.553
Occupation_Unemployed	1.3129	0.086	15.337	0.000	1.145	1.481
Occupation_Working Professional	3.7285	0.194	19.218	0.000	3.348	4.109
			========			

	VIF	
	Features	VIF
3	Lead Origin_Landing Page Submission	4.69
8	${\bf Specialization_Management\ Specialization}$	3.67
1	TotalVisits	2.87
11	Occupation_Unemployed	2.74
2	Total Time Spent on Website	2.18
7	Specialization_Domain Specialization	1.92
4	Lead Origin_Other	1.64
12	Occupation_Working Professional	1.43
6	Lead Source_Other Sources	1.24
5	Lead Source_Olark Chat	1.20
0	Do Not Email	1.09
10	Occupation_Student	1.07
9	Occupation_Other	1.01

Observations:

Model accuracy is still almost same as in Model 3. In Model 4, p values of all beta coefficients looks good. We can say that all predictor coefficients are statistically significant. 'Lead Origin_Landing Page Submission' has bit higher VIF value (though it's lesser than 5).

If after dropping 'Lead Origin_Landing Page Submission' there is no significant reduction in overall model accuracy, then we can exclude this feature. In next model 'Lead Origin_Landing Page Submission' has been dropped to test that.

Confusion Matrix:

True Negative: 3455 False Positive: 436 False Negative: 826 True Positive: 1571

Features for Logistic Regression Model 5 (12 Features):

Do Not Email,
TotalVisits,
Total Time Spent on Website,
Lead Origin_Other,
Lead Source_Olark Chat,
Lead Source_Other Sources,
Specialization_Domain Specialization,
Specialization_Management Specialization,
Occupation_Other,
Occupation_Student,
Occupation_Unemployed,
Occupation Working Professional,

	coef	std err	Z	P> z	[0.025	0.975
const	-3.4895	0.123	-28.302	0.000	-3.731	-3.248
Do Not Email	-1.2071	0.159	-7.590	0.000	-1.519	-0.895
TotalVisits	0.8951	0.235	3.807	0.000	0.434	1.356
Total Time Spent on Website	3.9656	0.138	28.680	0.000	3.695	4.237
Lead Origin_Other	3.7946	0.185	20.498	0.000	3.432	4.157
Lead Source_Olark Chat	1.4571	0.118	12.395	0.000	1.227	1.687
Lead Source_Other Sources	-0.5210	0.220	-2.364	0.018	-0.953	-0.089
Specialization_Domain Specialization	0.1536	0.109	1.405	0.160	-0.061	0.368
Specialization_Management Specialization	0.1615	0.082	1.967	0.049	0.001	0.322
Occupation_Other	1.5617	0.512	3.048	0.002	0.558	2.566
Occupation_Student	1.1274	0.213	5.305	0.000	0.711	1.544
Occupation_Unemployed	1.3233	0.085	15.482	0.000	1.156	1.491
Occupation_Working Professional	3.7670	0.193	19.497	0.000	3.388	4.146

VIF	
Features	VIF
TotalVisits	2.70
Occupation_Unemployed	2.68
Specialization_Management Specialization	2.27
Total Time Spent on Website	2.16
Lead Origin_Other	1.50
Specialization_Domain Specialization	1.46
Occupation_Working Professional	1.42
Lead Source_Other Sources	1.24
Lead Source_Olark Chat	1.17
Do Not Email	1.06
Occupation_Student	1.06
Occupation_Other	1.01

Observations:

Model 5 has almost same overall accuracy as our previous model. After removing Lead 'Origin_Landing Page Submission', VIF value of 'Specialization_Management Specialization' has also significantly decreased. So, there is no significant multicollinearity anymore in our model. But p value of 'Specialization_Domain Specialization' beta coefficient is now higher than .05. 'Specialization Domain Specialization' has been excluded in our next model.

Confusion Matrix:

True Negative: 3445 False Positive: 446 False Negative: 825 True Positive: 1572

Features for Logistic Regression Model 6 (11 Features):

Do Not Email,
TotalVisits,
Total Time Spent on Website,
Lead Origin_Other,
Lead Source_Olark Chat,
Lead Source_Other Sources,
Specialization_Management Specialization,
Occupation_Other,
Occupation_Student,
Occupation_Unemployed,
Occupation Working Professional,

NA	[[]			,		
Model Summary (C	oerricie	nts witr	ı p value	·)		
	=======					
	coef	std err	Z	P> z	[0.025	0.975]
const	-3.4541	0.120	-28.687	0.000	-3.690	-3.218
Do Not Email	-1.2053	0.159	-7.569	0.000	-1.517	-0.893
TotalVisits	0.9402	0.233	4.038	0.000	0.484	1.397
Total Time Spent on Website	3.9709	0.138	28.724	0.000	3.700	4.242
Lead Origin_Other	3.7902	0.185	20.481	0.000	3.427	4.153
Lead Source_Olark Chat	1.4257	0.115	12.379	0.000	1.200	1.651
Lead Source_Other Sources	-0.5546	0.219	-2.531	0.011	-0.984	-0.125
Specialization_Management Specialization	0.1079	0.073	1.488	0.137	-0.034	0.250
Occupation_Other	1.5788	0.510	3.093	0.002	0.578	2.579
Occupation_Student	1.1398	0.212	5.379	0.000	0.724	1.555
Occupation_Unemployed	1.3308	0.085	15.604	0.000	1.164	1.498
Occupation_Working Professional	3.7871	0.193	19.663	0.000	3.410	4.165

VIF	
Features	VIF
Occupation_Unemployed	2.55
TotalVisits	2.48
Total Time Spent on Website	2.15
Specialization_Management Specialization	1.88
Lead Origin_Other	1.49
Occupation_Working Professional	1.39
Lead Source_Other Sources	1.23
Lead Source_Olark Chat	1.16
Do Not Email	1.06
Occupation_Student	1.06
Occupation_Other	1.01

Observations:

Even after droping 'Specialization_Management Specialization' there is no significance change in our overall model accuracy.

Now, we can see that beta coefficient of 'Specialization_Management Specialization' has higher p value. Multicollinearity is not present in Model 6. 'Specialization_Management Specialization' has been dropped in our next model as its beta coefficient not statistically significant.

Confusion Matrix:

True Negative: 3445 False Positive: 446 False Negative: 828 True Positive: 1569

Features for Logistic Regression Model 7 (10 Features):

Do Not Email,
TotalVisits,
Total Time Spent on Website,
Lead Origin_Other,
Lead Source_Olark Chat,
Lead Source_Other Sources,
Occupation_Other,
Occupation_Student,
Occupation_Unemployed,
Occupation Working Professional,

Model Summary (Coefficients with p value)									
	coef	std err	Z	P> z	[0.025	0.975]			
const	-3.4116	0.117	-29.245	0.000	-3.640	-3.183			
Do Not Email	-1.2128	0.159	-7.608	0.000	-1.525	-0.900			
TotalVisits	0.9544	0.233	4.102	0.000	0.498	1.410			
Total Time Spent on Website	3.9791	0.138	28.804	0.000	3.708	4.250			
Lead Origin_Other	3.7822	0.185	20.457	0.000	3.420	4.145			
Lead Source_Olark Chat	1.3881	0.112	12.385	0.000	1.168	1.608			
Lead Source_Other Sources	-0.5853	0.218	-2.683	0.007	-1.013	-0.158			
Occupation_Other	1.5865	0.511	3.107	0.002	0.586	2.587			
Occupation_Student	1.1444	0.212	5.406	0.000	0.730	1.559			
Occupation_Unemployed	1.3392	0.085	15.739	0.000	1.172	1.506			
Occupation_Working Professional	3.8140	0.192	19.913	0.000	3.439	4.189			

VIF					
Features	VIF				
Occupation_Unemployed	2.39				
TotalVisits	2.34				
Total Time Spent on Website	2.11				
Lead Origin_Other	1.49				
Occupation_Working Professional	1.32				
Lead Source_Other Sources	1.22				
Lead Source_Olark Chat	1.16				
Do Not Email	1.05				
Occupation_Student	1.05				
Occupation Other	1.01				

Observations:

After droping 'Specialization_Management Specialization' our model accuracy has been improved a bit. After droping 'Specialization_Management Specialization', we can see that all the beta coefficients are now statistically significant also there is no multicolinearity present in Model 7.

Confusion Matrix:

True Negative: 3453 False Positive: 438 False Negative: 826 True Positive: 1571

Prediction & Model Evaluation: (on Training data - cutoff.5)

- 1. We have used Model 7 to predict the probability for all the observations in out training dataset and then used .5 as probability cut off to calculate our target variable 'Converted'. So, if probability is > .5 then 'Converted' = 1 (Yes) otherwise 0 (No).
- 2. After predicting the target on our training data set, we calculated different evaluation metrics as below:

Overall model accuracy: 0.7989821882951654 Sensitivity / Recall: 0.6554025865665415

Specificity: 0.887432536622976

False Positive Rate: 0.1125674633770239

Positive Predictive Value: 0.7819810851169736 Positive Predictive Value: 0.8069642439822389

Confusion Matrix:

True Negative: 3453 False Positive: 438 False Negative: 826 True Positive: 1571

Overall model accuracy: 0.7989821882951654

3. Our model has bad Sensitivity (with probability cut-off .5). By doing trade-off between Sensitivity-Specificity optimal probability cut-off value has been calculated.

Finding Optimal Probability cutoff & Evaluating on Train Data

In above plot, it's visible that 0.32 is the optimal point to set as cutoff probability for our model.

Observations:

Sensitivity of our model has been increased without any significant reduction in overall accuracy. New Specificity is also in well accepted range.

Prediction & Generating Lead Score (Business Requirement)

Using Model 7 we calculated the probability on Test dataset and used cutoff =.32 to predict the pred_Converted (0,1). As per business requirement we have created a column Lead Score (between 0 to 100) of the leads. A higher score means hot lead (most likely to convert), lower score implies cold lead (mostly not get converted). We have multiplied the probability (pred_Converted) with 100 to generate the Lead Score.

Model Evaluation: (on Test data) & Interpretation

Model Evaluation Metrics on Test dataset with probability cutoff .32

Confusion Matrix:

True Negative: 1258 False Positive: 402 False Negative: 203 True Positive: 832

Overall model accuracy: 0.7755102040816326 Sensitivity / Recall: 0.8038647342995169

Specificity: 0.7578313253012048

False Positive Rate: 0.2421686746987952

Positive Predictive Value: 0.6742301458670988 Positive Predictive Value: 0.8610540725530459 Model is performing well on test data with Sensitivity= 80%, Specificity= 76% and overall accuracy: 78%,

	coef	std err	Z	P> z	[0.025	0.975]		
const	-3.4116	0.117	-29.245	0.000	-3.640	-3.183		
Do Not Email	-1.2128	0.159	-7.608	0.000	-1.525	-0.900		
TotalVisits	0.9544	0.233	4.102	0.000	0.498	1.410		
Total Time Spent on Website	3.9791	0.138	28.804	0.000	3.708	4.250		
Lead Origin_Other	3.7822	0.185	20.457	0.000	3.420	4.145		
Lead Source_Olark Chat	1.3881	0.112	12.385	0.000	1.168	1.608		
Lead Source_Other Sources	-0.5853	0.218	-2.683	0.007	-1.013	-0.158		
Occupation_Other	1.5865	0.511	3.107	0.002	0.586	2.587		
Occupation_Student	1.1444	0.212	5.406	0.000	0.730	1.559		
Occupation_Unemployed	1.3392	0.085	15.739	0.000	1.172	1.506		
Occupation_Working Professional	3.8140	0.192	19.913	0.000	3.439	4.189		

Top 3 variables which contribute most towards the probability of a lead getting converted:

- Total Time Spent on Website
- What is your current occupation (Working Professional)
- Lead origin (Other)

Conclusion and Recommendations

- 1. As per business requirement Lead Score (between 0 to 100) of the leads have been calculated by using this Logistic Regression model. A higher score means hot lead (most likely to convert), lower score implies cold lead (mostly not get converted).
- This Lead Score would help to identify the hot leads faster and efficiently, that would result in decrease in lead
 conversion time and increase in lead conversion rate. Leads should be sorted in descending order according to their
 Lead Scores.
- 3. Phone calls or contact should be made to the leads having higher Lead Score first. Some special attentions should be provided to these hot leads (may be assigning a dedicated support SPOC for a small batch of hot leads that have higher Lead Scores), as there is a very high chance of Lead conversion.
- 4. Leads having medium Lead Score are also potentially good candidates for Lead conversion. They also should be contacted, and right questions should be asked, so that business can understand their requirements and problem areas and can take necessary actions. Few to mention: some changes in existing courses, introducing new courses, some change in class schedules, introducing easy financial options for fees etc. may help to successfully convert these leads.
- 5. Cold Leads should be contacted after business gets very good Conversion rate with the leads having High and Medium Lead scores. As chance of conversion is very less here, they could be part of company's aggressive marketing policy.