P8131 Biostatistical Methods II Spring 2019

Instructor: Gen Li

Department of Biostatistics, Columbia

Today's Outline

- ► Go over the syllabus
- ► Course overview
- ► Review linear models

Something about the Course

- Required textbooks:
 - Dobson and Barnett (2008) An Introduction to Generalized Linear Model. 3rd Ed. Chapman & Hall.
 - ► Fitzmaurice, Laird and Ware (2011) *Applied Longitudinal Analysis*. 2nd Ed. Wiley.
 - Hosmer, Lemeshow and May (2008) Applied Survival Analysis. 2nd Ed. Wiley.
- Recommended textbooks:
 - McCullagh and Nelder (1989) Generalized Linear Models. 2nd Ed.
 Chapman & Hall.
 - ► Faraway (2016) Extending the Linear Model with R. 2nd Ed. Chapman & Hall.
 - Diggle, Heagerty, Liang and Zeger (2013) Analysis of Longitudinal Data. 2nd Ed. Oxford.
 - Klein and Moeschberger (2003) Survival Analysis: Techniques for Censored and Truncated Data. 2nd Ed. Springer.

- Grading policy:
 - Homework (40%)
 - ▶ 10 times, equal weights.
 - NO late homework.
 - Do not copy/paste R outputs; instead, interpret them!
 - Submit electronically on Canvas.
 - Midterm exam (30%)
 - ► Final exam (30%)
- Check Canvas frequently for new HW, materials, and grades.
- ▶ My office hours: after class on Tuesdays and Thursdays
- ► TA office hours: 10am-11am M.W.F., R627

- Grading policy:
 - ► Homework (40%)
 - Midterm exam (30%)
 - March 14, in class, one cheat sheet
 - ► Final exam (30%)
- ▶ Check Canvas frequently for new HW, materials, and grades.
- ▶ My office hours: after class on Tuesdays and Thursdays
- ► TA office hours: 10am-11am M.W.F., R627

- Grading policy:
 - Homework (40%)
 - ► Midterm exam (30%)
 - ► Final exam (30%)
 - ▶ May 14, 9am-11:50am, two cheat sheet
 - Notify me of any conflict by Jan 31
- ▶ Check Canvas frequently for new HW, materials, and grades.
- ▶ My office hours: after class on Tuesdays and Thursdays
- ► TA office hours: 10am-11am M.W.F., R627

- Classroom policy:
 - Classroom participation needed.
 - ▶ When something is unclear, just ASK.
 - Frequent quizzes, peer review.
 - Comments and suggestions are always welcome.
 - Do NOT share any course material online without permission.
 - Administrative questions should be directed to Justine Herrera (UNI: jh2477)

- Classroom policy:
 - Classroom participation needed.
 - ▶ When something is unclear, just ASK.
 - Frequent quizzes, peer review.
 - Comments and suggestions are always welcome.
 - Do NOT share any course material online without permission.
 - Administrative questions should be directed to Justine Herrera (UNI: jh2477)

Something about Me

- ▶ Tenure-track assistant professor in the Department of Biostatistics
- ▶ Got my PhD from UNC-Chapel Hill in 2015
- Interested in statistical learning (data integration, tensor, high dimension) and cool applications (multi-omics, microbiome, networks, etc)
- ▶ Looking forward to working with talented, self-motivated students

Something about You

- ▶ Your name
- ▶ What is your goal in this course?
- ► Anything else you want me to know?

Course Overview

- ► This course continues P8130 (Biostatistical Methods I) and generalizes it in several directions.
- ▶ We will cover
 - Generalized Linear Models
 - Longitudinal Data Analysis
 - Survival Analysis
- ► The goal is to introduce basic concepts of each topic, and demonstrate how to use them to solve real problems
- ► Each topic is a stand-alone course
- ▶ You need to take additional courses to master those subjects
- R is used in the course. You may use other software (e.g., SAS, Matlab, SPSS, Excel) for data analysis in your HW.

Review of Linear Models

Suppose there are n subjects. For subject i, i = 1, ..., n, we observe response Y_i and covariates $X_{i1}, ..., X_{ip}$. Assume p < n.

Let
$$\mathbf{Y} = (Y_1, \dots, Y_n)'$$
 and $\mathbf{X}_j = (X_{1j}, \dots, X_{nj})'$ for $j = 1, \dots, p$.

Then, the design (or model) matrix is

$$\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_p).$$

Note that the intercept can be included by setting $old X_1 = old 1$.

A linear regression model assumes that

$$\mathbf{Y} = \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\epsilon}$$

$$\mathbf{Y} = \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\epsilon}$$

or equivalently

$$\mathbf{Y} \sim \text{Normal}, \ \mathbb{E}(\mathbf{Y}|\mathbf{x} = \mathbf{X}) = \mathbf{X}\boldsymbol{\beta}, \ \text{var}(\mathbf{Y}) = \underline{\sigma^2 \mathbf{I}}$$

where $\beta = (\beta_1, \dots, \beta_p)'$ is the regression coefficient vector and $\epsilon = (\epsilon_1, \dots, \epsilon_n)$ are the regression errors, with $\mathbb{E}(\epsilon_i) = 0$ and $\text{var}(\epsilon_i) = \sigma^2$.

Ordinary Least Squares

The OLS estimate of β is defined as

$$\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\boldsymbol{\beta}} \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2$$

 $\hat{oldsymbol{eta}}$ satisfies the normal equation

$$X'Y = X'X\hat{\beta}.$$

If $rank(\mathbf{X}'\mathbf{X}) = p$, $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$. $\hat{\boldsymbol{\beta}}$ has the following properties:

- $\blacktriangleright \mathbb{E}(\hat{\boldsymbol{\beta}}) = \underline{\boldsymbol{\beta}};$
- $\mathbf{var}(\hat{\boldsymbol{\beta}}) = \sigma^2(\mathbf{X}'\mathbf{X})^{-1};$
- $\triangleright \hat{\beta}$ is BLUE.

Furthermore, let $\overline{RSS} = \|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|^2$, then $\hat{\sigma}^2 = \overline{RSS}/(\underline{n-p})$ is unbiased for σ^2 .

Geometric representation of OLS:

Maximum Likelihood Estimation

Estimate β and σ by maximizing the likelihood function

$$I(\boldsymbol{\beta}, \sigma) = (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2}{2\sigma^2}\right\}.$$

- $\hat{\beta}_{ML} = \hat{\beta}_{OLS} \text{ with normal indep. errors;}$ $\hat{\sigma}_{ML}^2 = \frac{RSS}{n} \neq \frac{RSS}{n-p} = \hat{\sigma}_{OLS}^2; \text{ biased, yet asymptotically unbiased and}$

Residuals and Model Diagnostics

e
$$\sigma^2(I-H)$$
, where $H=X(X'X)^{-1}X$

Residual $\hat{\epsilon} = Y - X\hat{\beta}$ has variance $\sigma^2(I - H)$, where $H = X(X'X)^{-1}X'$ is the hat (projection) matrix.

Define the standardized residual as

$$r_i = \frac{\hat{\epsilon_i}}{\hat{\sigma}(1-h_{ii})^{1/2}},$$

where $\hat{\sigma}$ is the OLS estimate of σ , and h_{ii} (i.e., leverage of the *i*th observation) is the *i*th diagonal value of H. The standardized residuals can be used to check the normality assumption, goodness-of-fit, and homoscedasticity.

Hypothesis Testing

which can be obtained from the Lagrange method.

F-test:

Under H_0 , $\underline{RSS_0} = \|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}_0\|^2$; Under the full model, $\underline{RSS} = \|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|^2$.

Theorem

Suppose $\epsilon \sim N(0, \sigma^2 I_n)$, then $\mathrm{RSS}/\sigma^2 \sim \chi^2_{n-p}$. Under H_0 , $(\mathrm{RSS}_0 - \mathrm{RSS})/\sigma^2 \sim \chi^2_q$ and is independent of RSS; Furthermore,

$$F = \frac{(RSS_0 - RSS)/q}{RSS/(n-p)} \sim F_{q,n-p}.$$

The *F*-test covers a general class of linear hypothesis testing problems in the form of $\mathbf{C}\beta = \mathbf{h}$.

Likelihood ratio test:

$$\lambda = 2\{\log I(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\sigma}}) - \log I(\hat{\boldsymbol{\beta}}_0, \hat{\boldsymbol{\sigma}}_0)\} = n \log(\mathrm{RSS}_0/\mathrm{RSS}).$$

It can be shown that under H_0 : $\mathbf{C}\beta = \mathbf{h}$, λ tends to a χ_q^2 distribution as $n \to \infty$, which can be used to define the cutoff value for large samples. In fact,

$$F = \frac{n-p}{q}(e^{\lambda/n} - 1).$$