

Pontifícia Universidade Católica de Minas Gerais Bacharelado em Ciência da Computação Redes de Computadores I

Redes de Computadores I

Prof^a: Raquel Mini

raquelmini@pucminas.br

2º semestre de 2019

1

CAMADA FÍSICA

Camada Física

Camada de Aplicação

Camada de Transporte

Camada de Rede

Camada de Enlace

Camada Física

Camada Física

- Meios de transmissão
- Largura de banda e taxa de dados
- Unidades métricas
- Atrasos em redes de comutação de pacotes

Meios de Transmissão

- Objetivo da camada física:
 - Transportar uma sequência de bits de uma máquina para outra
- Problema a ser resolvido:
 - Codificação de bits

Meios de Transmissão

- O tipo de meio físico a ser usado depende, dentre outros fatores de:
 - Largura de banda (bandwidth)
 - Atraso (*delay*) ou latência (*latency*) ou retardo
 - Custo
 - Facilidade de instalação e manutenção

Meios de Transmissão

- Os meios podem ser agrupados em:
 - Guiados: as ondas são guiadas através de um caminho físico (par trançado, cabo coaxial ou fibra óptica)
 - Não-guiados: as ondas se propagam sem haver um caminho físico (ondas de rádio, microondas ou infravermelho)

Largura de Banda

- A faixa de frequências transmitidas sem serem fortemente atenuadas denomina-se largura de banda
- A largura de banda é uma propriedade física do meio de transmissão e, em geral, depende da construção, da espessura e do comprimento do meio
- Limitando-se a largura de banda, limita-se a taxa de dados

Taxa de Dados

 Número de bits que podem ser transmitidos por uma rede em um período de tempo

1 Mbps: 1 milhão de bits por segundo (1μs para transmitir cada bit)

2 Mbps: 2 milhões de bits por segundo (0.5μs para transmitir cada bit)

Exercícios

- 1. Queremos enviar uma sequência de imagens de tela de computador por fibra óptica. A tela tem 480x640 pixels e cada pixel tem 24 bits. Há 60 imagens de tela por segundo. Qual é a taxa de dados necessária?
- Quanto tempo leva para transmitir uma mensagem de 32 KB por um canal de 10 Mbps?

MB, Mbps, KB, Kbps

- b significa bits e B bytes
- Mega significa 2²⁰ ou 10⁶ ?
- Kilo significa 2¹⁰ ou 10³ ?
- Largura de banda
 - Está relacionada com velocidade de clock (Hz)
 - Mbps significa 10⁶ bits por segundo
- Mensagem a ser transmitida
 - Mensagens são armazenadas na memória e estas são medidas em potências de 2
 - ◆ MB significa 2²⁰ bytes

Unidades Métricas

Ехр.	Explicit	Prefix	Ехр.	Explicit	Prefix
10 ⁻³	0.001	milli	10 ³	1,000	Kilo
10 ⁻⁶	0.000001	micro	10 ⁶	1,000,000	Mega
10 ⁻⁹	0.00000001	nano	10 ⁹	1,000,000,000	Giga
10 -12	0.00000000001	pico	10 ¹²	1,000,000,000,000	Tera
10 ⁻¹⁵	0.0000000000001	femto	10 ¹⁵	1,000,000,000,000,000	Peta
10 ⁻¹⁸	0.000000000000000001	atto	10 ¹⁸	1,000,000,000,000,000	Exa
10 -21	0.0000000000000000000000001	zepto	10 ²¹	1,000,000,000,000,000,000	Zetta
10 -24	0.00000000000000000000000000001	yocto	10 ²⁴	1,000,000,000,000,000,000,000	Yotta

Exercício

3. Imagine que você tenha treinado Bernie, seu cachorro São Bernardo, para carregar uma caixa de três fitas de 8 mm, em vez de um cantil de conhaque. Cada uma dessas fitas contém 7 GB. O cachorro pode viajar a seu lado, onde quer que você esteja, a 18 km/h. Para que intervalo de distância Barnie terá uma taxa de dados mais alta que uma linha de transmissão cuja taxa de dados é de 150 Mbps?

- Um pacote começa no sistema final (origem), passa por uma série de roteadores e termina sua jornada em outro sistema final (destino)
- Quando o pacote chega a um roteador, vindo do nó anterior, o roteador examina o cabeçalho do pacote para determinar o enlace de saída apropriado e, em seguida, o direciona ao enlace

- Quando um pacote viaja de um nó ao nó subsequente (sistema final ou roteador), ele sofre ao longo do caminho diferentes tipos de atrasos:
 - Atraso de processamento
 - Atraso de fila
 - Atraso de transmissão
 - Atraso de propagação

- Atraso de processamento: tempo requerido para examinar o cabeçalho do pacote e determinar para qual fila direcioná-lo
- Atraso de fila: o pacote sofre um atraso de fila enquanto espera para ser transferido no enlace

- Atraso de transmissão: um pacote é transmitido assim que todos os pacotes que chegaram antes tenham sido transmitidos (depende da velocidade de transmissão do enlace e do tamanho do pacote)
- Atraso de propagação: assim que um bit é lançado no enlace, ele precisa se propagar até o próximo roteador, o bit se propaga à velocidade de propagação do enlace (depende da velocidade de propagação e do tamanho do enlace)

Exercício

- 4. Considere dois computadores, A e B, conectados por um único enlace de taxa R bps. Suponha que esses computadores estejam separados por m metros e que a velocidade de propagação ao longo do enlace seja de s metros/segundo. O Computador A tem de enviar um pacote de L bits ao computador B.
 - a) Expresse o atraso de propagação, d_{prop} .
 - b) Determine o tempo de transmissão do pacote, d_{trans} .
 - c) Ignorando os atrasos de processamento e de fila, obtenha uma expressão para o atraso fim-a-fim.

Exercício (cont.)

- d) Suponha que o computador A comece a transmitir o pacote no instante t=0. No instante $t=d_{trans}$, onde estará o último bit do pacote?
- e) Suponha que d_{prop} seja maior do que d_{trans} . Onde estará o primeiro bit do pacote no instante $t = d_{trans}$?
- f) Suponha que d_{prop} seja menor do que d_{trans} . Onde estará o primeiro bit do pacote no instante $t = d_{trans}$?
- g) Suponha que s=2,5 x 10^8 m/s, L = 100 bits e R = 28 Kbps. Para qual distância d_{prop} é igual a d_{trans} ?

CAMADA DE ENLACE

Camada de Enlace

Camada de Aplicação

Camada de Transporte

Camada de Rede

Camada de Enlace

Camada Física

Camada de Enlace

Camada de Enlace

- Funções da camada de enlace:
 - Enquadramento: agrupar sequência de bits em quadros
 - Detecção e correção de erros
- Subcamada de controle de acesso ao meio (MAC)
 - Protocolos da camada de enlace de redes difusão:
 - Aloha
 - **▶** CSMA
 - **▶** Ethernet

- Responsável pela comunicação entre dois computadores adjacentes
 - Adjacente significa que dois computadores estão fisicamente ligados por um canal de comunicação FIFO (*first-in-first-out*), ou seja, que preserva a ordem que os bits foram enviados

- A camada física aceita um fluxo de bits brutos e tenta entregá-los ao destino:
 - Não há garantia de que esse fluxo de bits seja livre de erros
 - O número de bits recebidos pode ser menor, igual ou maior que o número de bits transmitidos
 - Os bits podem ter valores diferentes dos bits originalmente transmitidos
 - Permitem uma taxa máxima de transferência
 - Possuem um tempo de propagação diferente de zero

- A camada de enlace de dados é responsável por transformar um canal de transmissão bruto em uma linha que pareça livre de erros para a camada de rede (detectar e, se necessário, corrigir erros)
- O transmissor divide os dados de entrada em quadros com algumas centenas ou alguns milhares de bytes
- Redes tipo difusão devem implementar um mecanismo de controle de acesso ao meio (subcamada de controle de acesso ao meio – MAC)

- A camada de enlace recebe os pacotes da camada de rede e os encapsula em quadros para transmissão
 - Quadro = cabeçalho (header) + carga útil (pacote recebido da camada de rede) + final de quadro (trailer)

Protocolo da Camada de Enlace

 O protocolo da camada de enlace define o formato dos quadros trocados entre os nós nas extremidades do enlace, bem como as ações realizadas por esses nós ao enviar e receber os quadros

Enquadramento

- Problema a ser resolvido:
 - Como agrupar sequências de bits em quadros para que possam ser processados como unidades de informação?

ou, de outra forma,

Como fazer delimitação de quadros?

Enquadramento

Soluções:

- 1. Intervalos de tempo
- 2. Contagem de caracteres
- Bytes de *flags*, com inserção de bytes
- 4. Flags iniciais e finais, com inserção de bits
- 5. Violação de codificação da camada física

1. Intervalos de tempo

- Inserir intervalos de tempo entre transmissões de quadro
- As redes raramente oferecem qualquer garantia em relação à temporização
- É possível que esses intervalos sejam condensados ou que outros intervalos sejam inseridos durante a transmissão

2. Contagem de caracteres

 Usa um campo no cabeçalho para especificar o número de caracteres no quadro

2. Contagem de caracteres

 Problema: erro nesse campo faz com que o receptor perca a sincronização

- Não é usado na prática para protocolos da camada de enlace
- Pode ser utilizado pelos protocolos acima da camada de enlace?

- 3. Bytes de *flags*, com inserção de bytes
 - Cada quadro começa e termina com bytes especiais
 - Se o receptor perder a sincronização, ele poderá simplesmente procurar pelo byte de *flag* para descobrir o fim do quadro atual
 - Dois bytes de *flag* consecutivos indicam o fim de um quadro e o início do próximo

FLAG	Header	Payload field	Trailer	FLAG	
------	--------	---------------	---------	------	--

- 3. Bytes de *flags*, com inserção de bytes
 - E se o padrão de bits do byte do flag ocorrer nos dados?
 - A camada de enlace do transmissor deve incluir um caractere de escape especial (ESC) imediatamente antes de cada byte de *flag* "acidental" nos dados
 - A camada de enlace da extremidade receptora remove o byte de escape antes de entregar os dados à camada de rede

3. Bytes de *flags*, com inserção de bytes

- 4. Flags iniciais e finais, com inserção de bits
 - Permite enviar um número arbitrário de bits
 - Quadros são delimitados por uma sequência especial de bits (flag) que possui o seguinte padrão: 01111110
 - Bits são transmitidos de forma transparente:
 - Transmissor: ao encontrar cinco bits 1 consecutivos insere um bit 0
 - Receptor: ao receber cinco bits 1 seguido de um bit 0 remove o bit 0 (bit stuffing)

4. Flags iniciais e finais, com inserção de bits

Dados originais

01101111111111111111110010

Dados transmitidos

0110111111111111111111010010

Bits inseridos

Dados armazenados na memória do receptor

0110111111111111111110010

- 4. Flags iniciais e finais, com inserção de bits
 - O limite entre dois quadros pode ser reconhecido sem qualquer tipo de ambiguidade pelo padrão de *flags*
 - Se o receptor perder o controle de onde estão os dados, bastará varrer a entrada em busca de sequências de *flags*, pois elas nunca ocorrem dentro dos dados, apenas nos limites dos quadros

- 5. Violação de codificação da camada física
 - Método é baseado numa característica da camada física
 - O início e fim de quadro são determinados por um código de transmissão inválido
 - Usado no padrão IEEE 802

- 5. Violação de codificação da camada física
 - LANs codificam bit 1 por um par alto-baixo e o bit 0 pelo par baixo-alto
 - Todo bit de dados tem uma transição intermediária
 - A combinação alto-alto e baixo-baixo não são usadas para dados e, por isso, podem ser empregadas na delimitação de quadros

Exercícios

- 5. A codificação de caracteres a seguir é usada em um protocolo de enlace de dados: A: 01000111, B: 11100011, FLAG: 01111110, ESC: 11100000. Mostre a sequência de bits transmitida (em binário) para o quadro de quatro caracteres: A B ESC FLAG quando é utilizado cada um dos métodos de enquadramento a seguir:
 - a) Contagem de caracteres:
 - b) Bytes de *flag* com inserção de bytes:
 - c) Bytes de *flag* no início e no fim, com inserção de bits:

Exercícios

6. Um string de bits 011110111111011111110 precisa ser transmitido na camada de enlace de dados. Qual é o string realmente transmitido após a inserção de bits?

Detecção e Correção de Erros

- Duas abordagens principais:
 - Incluir informações redundantes suficientes para que o receptor seja capaz de deduzir quais devem ter sido os dados transmitidos (Códigos de Correção de Erros)
 - ◆ Incluir informações redundantes suficientes apenas para permitir que o receptor deduza que houve um erro, mas sem identificar qual, para que o pacote seja descartado (Códigos de Detecção de Erros)

Detecção e Correção de Erros

- Códigos de detecção de erros:
 - Usados em canais altamente confiáveis, como as fibras
 - O bloco defeituoso é retransmitido
- Códigos de correção de erros:
 - Usados em canais como enlaces sem fio que geram muitos erros

Detecção de Erros

São acrescentados na parte final do quadro

- Código de verificação de redundância cíclica (cyclic redundancy check – CRC) ou código polinomial
 - As strings de bits são representações de polinômios com coeficientes 0 e 1 apenas
 - ◆ Um quadro de m bits é considerado um polinômio com m termos, variando desde x^{m-1} até x⁰ (grau m-1)
 - **Exemplo:** 110001 representa o polinômio $x^5+x^4+x^0$

CRC

- O transmissor e o receptor devem concordar em relação ao polinômio gerador, G(x), antecipadamente
- Para calcular o total de verificação de um quadro com m bits, que corresponde ao polinômio M (x), o quadro deve ter mais bits do que o polinômio gerador

CRC

- Quadro verificado = quadro + total de verificação
- Acrescentar um total de verificação no final do quadro, de forma que o polinômio representado pelo quadro verificado seja divisível por G (x)
- Quando obtiver o quadro verificado, o receptor tentará dividi-lo por G(x), a existência de um resto indica que houve um erro de transmissão

- Algoritmo para calcular o total de verificação
 - ◆ Seja r o grau de G(x). Acrescente r bits zero à extremidade de baixa ordem do quadro, de modo que ele passe a conter m+r bits e corresponda ao polinômio x^r M(x)

Quadro: 1101011011

▶ **Gerador:** 10011

Mensagem após o acréscimo de 4 bits zero:

11010110110000

- Algoritmo para calcular o total de verificação
 - ◆ Divida a string de bits x^r M (x) por G (x)
 - **Quadro:** 1101011011
 - **Gerador:** 10011
 - Mensagem após o acréscimo de 4 bits zero:

11010110110000

- Algoritmo para calcular o total de verificação
 - Some o resto (que tem sempre r ou menos bits) ao string de bits correspondente a xr M (x)
 - O resultado é o quadro verificado que deverá ser transmitido

Quadro: 1101011011

▶ **Gerador:** 10011

Mensagem após o acréscimo de 4 bits zero:

11010110110000

Quadro verificado: 110101101111110

- Algoritmo para calcular o total de verificação:
 - Quando obtiver o quadro verificado, o receptor tentará dividi-lo pelo polinômio gerador
 - A existência de um resto indica que houve um erro de transmissão
 - Se houve erro de transmissão, o pacote é descartado

Exercícios

- 7. Qual é o resto obtido pela divisão módulo 2 de x⁷+x⁵+1 pelo polinômio gerador x³+1?
- 8. Um fluxo de bits 10011101 é transmitido com a utilização do método de CRC padrão descrito no texto. O polinômio gerador é x³+1. Mostre o string de bit real transmitido. Suponha que o terceiro bit a partir da esquerda seja invertido durante a transmissão. Mostre que esse erro é detectado na extremidade receptora.

Exercícios

9. Os protocolos de enlace de dados quase sempre colocam o CRC em um final, em vez de inseri-lo no cabeçalho. Por quê?

Subcamada de Controle de Acesso ao Meio (MAC)

Problema de Alocação de Canais

- Protocolos para
 - Canais difusão, ou
 - Canais de acesso múltiplo (multiacesso), ou
 - Canais de acesso aleatório
- Problema básico a ser resolvido:
 - Como "gerenciar" o acesso a canais difusão
- Protocolos responsáveis por fazer esse gerenciamento:
 - Protocolos de acesso ao meio, ou Medium Access Control (MAC)
- Sub-camada MAC está presente em quase todas as LANs

Problema de Alocação de Canais

- Problema:
 - Como alocar um único canal difusão entre vários usuários?
- Duas classes de algoritmos:
 - Alocação estática
 - Alocação dinâmica

Alocação Estática de Canais

- FDM (Frequency Division Multiplexing)
 - Se existem N usuários, a largura de banda é dividida em N partes do mesmo tamanho e a cada usuário será atribuída uma parte
- FDM é a forma tradicional quando:
 - Existe um número pequeno e fixo de usuários
 - Cada um possui um tráfego pesado

Alocação Estática de Canais

- Outro cenário:
 - Grande número de estações
 - Esse número varia ao longo do tempo
 - Tráfego é em rajadas
- Normalmente, FDM não é a solução:
 - Sub-canais ficam ociosos quando não há nada a transmitir
 - Em sistemas de computação, o tráfego é tipicamente em rajadas

Estações:

- Existem N estações independentes que geram quadros a serem transmitidos
- A estação fica bloqueada até o quadro ser totalmente transmitido

- Único canal de comunicação:
 - Todas estações compartilham um único canal de comunicação para transmissão e recepção
 - Do ponto de vista de hardware, as estações são equivalentes
 - Do ponto de vista de software, as estações podem ter prioridades

Colisões:

- A transmissão "simultânea" de dois ou mais quadros por estações diferentes causa uma colisão
- Estações são capazes de detectar colisões
- Quadros envolvidos em colisões devem ser transmitidos mais tarde

- Política de transmissão de quadros ao longo do tempo:
 - Tempo contínuo (continuous time): qualquer instante
 - Tempo segmentado (slotted time): o tempo é dividido em intervalos discretos (slots), as transmissões de quadros sempre começam no início de um slot

- Detecção de portadora para transmissão de quadro:
 - Com detecção (carrier sense): as estações conseguem detectar se o canal está sendo usado antes de tentarem utilizá-lo
 - Sem detecção (no carrier sense): as estações não conseguem detectar se o canal está sendo usado antes de tentarem utilizá-lo

Protocolos da Camada de Enlace de Redes Difusão

Protocolos de Acesso Múltiplo

- Aloha:
 - Puro, Slotted
- CSMA:
 - Persistente, n\u00e3o-persistente
 - Com detecção de colisões

- Princípio:
 - Usuários transmitem quando têm dados a serem enviados
- Haverá colisões:
 - Serão detectadas
 - Deve-se esperar um tempo aleatório antes de tentar transmitir novamente

Jsei	r				
Α					
В					
С			p		
D					
Ε					
	<u> </u>	Tim	e —		

- Se o primeiro bit de um quadro se sobrepuser apenas ao último bit de um quadro quase terminando, os dois quadros serão totalmente destruídos e terão de ser retransmitidos posteriormente
 - O total de verificação não consegue fazer distinção entre uma perda total e uma perda parcial

- Final dos quadros gerados entre t₀ e t₀+t irá colidir com o início do quadro sombreado
- Início dos quadros gerados entre t₀+t e t₀+2t irá colidir com o final do quadro sombreado

Colisões no Aloha

- Tempo de quadro representa o período de tempo necessário para transmitir o quadro padrão de comprimento fixo
- Um quadro irá colidir com quadros gerados em um intervalo de tempo de 2 tempos de quadro
- Intervalo de vulnerabilidade = 2 tempos de quadro

Slotted Aloha

Princípio:

- Dividir o tempo em intervalos discretos, onde cada intervalo corresponde a um quadro
- Usuários devem ser capazes de identificar os limites desses intervalos:
 - Uma estação especial poderia emitir um sinal no início de cada intervalo

Colisões no Slotted Aloha

- Um quadro irá colidir com quadros gerados em um intervalo de tempo de 1 tempo de quadro
- Intervalo de vulnerabilidade = 1 tempo de quadro

Slotted Aloha

Exercício

10. Compare o retardo do ALOHA puro com o do *slotted* ALOHA com uma carga mínima (por exemplo, apenas uma estação usando o canal). Qual deles é menor? Explique sua resposta.

Exercício

11. Suponha um enlace de comunicação que utiliza CRC com o polinômio gerador x⁸+x⁵+x⁴+x²+1 que recebe duas mensagens:

100110011110101011111000

100110011110101011110000

- Qual é o tamanho do total de verificação deste enlace?
 Justifique.
- 2. Estas mensagens contêm erros? Justifique.
- 3. Encontre a mensagem original (sem o total de verificação) das mensagens sem erro.
- 4. Para as mensagens que não contêm erros, apresente um erro que não seria detectado pelo CRC.

- Protocolos CSMA (*Carrier Sense Multiple Access*): protocolos de acesso múltiplo com detecção de portadora
- Três tipos básicos:
 - 1-persistente
 - não-persistente
 - p-persistente

Protocolos CSMA 1-persistente

- Princípio do 1-persistente:
 - Uma estação ao desejar transmitir escuta o canal
 - Se estiver ocupado espera até ficar livre
 - Transmite o quadro quando o canal fica livre
 - Se ocorre uma colisão, a estação espera um tempo aleatório e começa o processo todo novamente

Protocolos CSMA 1-persistente

- É chamado 1-persistente porque sempre transmite ao verificar que o canal está desocupado, ou seja,
 - A probabilidade de transmitir ao encontrar o canal livre é 1
- Quando as colisões irão ocorrer?

Colisões no CSMA

 Quanto mais longo for o atraso de propagação, maior será a chance de um nó que detecta portadora ainda não perceber uma transmissão que já começou em outro nó da rede

Protocolos CSMA Não-persistentes

- Similar ao 1-persistente
- Diferença:
 - Ao verificar que o canal está ocupado espera um período de tempo aleatório e começa o processo novamente
 - Método menos guloso que tem um desempenho melhor que o 1-persistente

Protocolos CSMA p-persistente

- É usado em canais com slots
- Princípio do p-persistent:
 - Estação escuta o canal
 - Se livre, transmite com probabilidade p
 - ◆ Senão, espera até o próximo slot (P=1-p)
 - Repete o processo novamente
 - Se ocorre colisão, a estação espera um tempo aleatório e repete o processo

Comparação entre os CSMA

	1-persistente	não-persistente	p-persistente	
Canal ocupado	Espera até que ele fique desocupado	Espera um tempo aleatório e começa o processo novamente	Espera até o próximo <i>slot</i>	
Canal desocupado	Transmite um quadro	Transmite um quadro	Transmite com probabilidade p; com (1-p) espera até o próximo <i>slot</i>	
Colisão	Espera tempo aleatório e começa o processo novamente	Espera tempo aleatório e começa o processo novamente	Espera tempo aleatório e começa o processo novamente	

CSMA: sempre escuta o canal antes de transmitir

- CD: Collision Detection
- Melhoria introduzida:
 - Uma estação ao detectar colisão para de transmitir imediatamente o quadro
 - Economiza tempo e BW
- CSMA/CD consiste em alternar períodos de contenção e transmissão

- Questão importante:
 - Quanto tempo uma estação deve esperar para saber se houve uma colisão ou não?
 - Duas vezes o tempo de propagação no cabo de ponta-aponta
- Conclusão importante:
 - Uma colisão não ocorre após esse período de tempo

- Colisões afetam o desempenho do sistema principalmente em cabos longos e quadros curtos
- Foi padronizado como IEEE 802.3 (Ethernet)

Exercício

12. Uma LAN CSMA/CD de 10 Mbps (não 802.3) com a extensão de 1 km tem uma velocidade de propagação de 200m/µs. Não são permitidos repetidores nesse sistema. Os quadros de dados têm 256 bits, incluindo 32 bits de cabeçalho, totais de verificação e outras formas de overhead. O primeiro slot de bits depois de uma transmissão bem-sucedida é reservado para o receptor capturar o canal com o objetivo de enviar um quadro de confirmação de 32 bits. Qual será a taxa de dados efetiva, excluindo o overhead, se partirmos do princípio de que não há colisões?

 A Ethernet foi implementada em 1976 por Metcalfe e Boggs no PARC (Palo Alto Research Center) da Xerox

Esboço da Ethernet por Bob Metcalfe

Topologia de barramento da Ethernet

Topologia em estrela da Ethernet

- Em 1978, a DEC, a Intel e a Xerox criaram um padrão para uma Ethernet de 10Mbps, chamado de padrão DIX
- Com pequenas alterações, o padrão DIX se tornou o padrão IEEE 802.3 em 1983
 - Padrão define uma família de redes CSMA/CD com velocidades de 1, 10, 100, 1000, 1000 Mbps em diferentes meios

Funcionamento:

- Estação escuta o canal antes de transmitir
- Se estiver ocupado espera até ficar livre
- Transmite o quadro se o canal estiver livre
- Se ocorre uma colisão, a estação espera um tempo aleatório e começa o processo todo novamente

Ethernet: Quadro

Bytes	8	6	6	2	0-1500	0-46	4
DIX Ethernet	Preamble	Destination address	Source address	Туре	Data	Pad	Check- sum
)) ((
IEEE 802.3	Preamble S o F	Destination address	Source address	Length	Data	Pad	Check- sum

Preâmbulo:

- usado para sincronização entre transmissor e receptor
- → 7 bytes 10101010 e 1 byte 10101011

Endereço:

 Endereço LAN do adaptador da origem e do destino

Tipo:

- Identifica o protocolo da camada de rede que deve receber o pacote
- Permite que a Ethernet "multiplexe" os protocolos da camada de rede

Comprimento:

Número de bytes do campo de dados

- Dados:
 - Carrega o datagrama IP
 - ◆ 46 bytes ≤ Dados ≤ 1500 bytes

64 bytes ≤ tamanho total quadro ≤ 1518 bytes

- Preenchimento (Pad):
 - ◆ Campo de dados deve ser ≥ 46
 - ◆ Caso contrário, pad = 46 esse valor
 - Prevenir que uma estação termine de transmitir um quadro antes do primeiro bit chegar no extremo do cabo e ocorra uma colisão

- Por que 64 bytes?
- Para uma rede a
 - ◆ 10 Mbps,
 - comprimento máximo de 2500 metros, e
 - quatro repetidores
 - Tempo mínimo de transmissão = 50 μs
 - ◆ Tamanho mínimo do quadro = 64 bytes

- Total de verificação (checksum)
 - Utiliza o código CRC (cyclic redundancy check)
 para detecção de erros

Ethernet: Algoritmo de Espera

- CSMA/CD com recuo binário exponencial
 - Ao ocorrer uma colisão, as estações devem esperar (sortear) um intervalo de tempo de espera
 - Tempo é dividido em intervalos (slots) = 51,2 μs

Ethernet: Algoritmo de Espera

- Slots de espera:
 - Número inteiro no intervalo [0 .. 2^c− 1], onde c é o número de colisões consecutivas
 - ◆ Para c de 10 a 16 o nº max de slots é 1023
 - ◆ Valor max de c é 16, quando a tentativa de transmitir é encerrada

Ethernet: Algoritmo de Espera

- Ausência de colisão não garante recepção correta
 - Pode ocorrer erro de checksum
- CSMA/CD não provê confirmação
- Forma simples e rápida de permitir confirmação:
 - Reservar o primeiro slot, após uma transmissão com sucesso, para o destinatário

Exercício

13. Considere a construção de uma rede CSMA/CD que funciona a 1 Gbps sobre um cabo de 1 km, sem repetidores. A velocidade do sinal no cabo é 200.000 km/s. Qual é o tamanho mínimo do quadro?