Deep Learning

Exercise 11: Adversarial Training

Room: **BIN-1-B.01**

Instructor: Manuel Günther

Email: guenther@ifi.uzh.ch

Office: AND 2.54

Friday, May 20, 2022

Outline

- Adversarial Examples via FGS
- Adversarial Training

Outline

- Adversarial Examples via FGS
 - Adversarial Training in PyTorch
 - Evaluating Adversarial Stability

Adversarial Examples via FGS

Gradient Calculation

- ullet Loss function categorical $\mathcal{J}^{\mathrm{CCE}}$
- Gradient w.r.t. \mathcal{X} : $\nabla_{\mathcal{X}} = \frac{\partial \mathcal{J}^{\text{CCE}}}{\partial \mathcal{X}}$
 - → Enable gradient for input: X.requires_grad_(True)
 - \rightarrow Compute loss: J = loss(X,t)
 - → Compute gradient: J.backward()
 - → Access gradient: X.grad

Fast Gradient Sign

• Adversarial input:

$$\check{\mathcal{X}}_{FGS} = \mathcal{X} + \alpha \operatorname{sign}(\nabla_{\mathcal{X}})$$

• Clip to pixel range [0,1]

Noisy Image

Noisy input:

$$\check{\mathcal{X}}_{\text{noise}} = \mathcal{X} + \alpha \{-1, 1\}^{D \times E}$$

- \rightarrow Select -1 or 1 for each pixel
- Clip to pixel range [0,1]

Adversarial Training in PyTorch

Training Steps

- Train on original (clean) samples: one batch
 - ightarrow Use $\mathcal{J}^{\mathrm{CCE}}$ to compare logits with original targets
- Oreate adversarial samples (or noisy images) for this batch
- Train on batch of adversarial samples
 - \rightarrow Use \mathcal{J}^{CCE} to compare logits with original targets

Things to Consider

- When and how often do I need to update weights?
- How often do I need to zero out the gradients?
- Note: there are faster versions of adversarial training

Evaluating Adversarial Stability

Validation/Test Set Accuracies

- Accuracy on clean samples
 - ightarrow On all validation/test samples
- Accuracy on adversarial samples
 - ightarrow Only for correctly classified samples

Adversarial Accuracy

- Generate adversarial samples (FGS) with $\alpha=0.3$ on network
- Check if network output has been altered by FGS
- Success case (in network defense perspective):
 - \rightarrow Output is still the original class

Outline

- Adversarial Training
 - Dataset and Model
 - Image Manipulations
 - Training and Evaluation

Dataset and Model

Task 1: Dataset

- We use the default MNIST training and validation sets
 - → Select appropriate batch sizes

Task 2: Classification Network

We use the same network topology as in Assignment 8

Image Manipulations

Task 3: Fast Gradient Sign

- Implement the fast gradient sign method
- Compute gradient of loss w.r.t. the input
- ullet Apply FGS gradient ascent with lpha=0.3 to create FGS samples

Task 4: Noise

• Apply noise with the same $\alpha = 0.3$

Training and Evaluation

Task 5: Training Loop

- Implement training loop for one epoch
- Three variants:
 - → No additional training samples
 - → Additional training with FGS samples
 - → Additional training with noise samples

Task 6: Validation Loop

- Compute classification accuracy on validation set
- Compute adversarial stability on validation set
 - → Generate FGS adversarial samples for current network
 - → Remember that FGS needs to compute gradients

Training and Evaluation

Task 7: Training of Three Networks

- Instantiate three identical networks
- Use SGD optimizer with appropriate learning rate
- Train the three networks for 10 epochs:
 - → Train one network using only clean samples
 - → Train another network using clean and adversarial samples
 - → Train the third network using clean and noisy samples
- Evaluate and store accuracies after each epoch

Task 8: Plotting of Accuracies

- Plot accuracies of three networks on clean data
- Plot accuracies of three networks on adversarial samples

Training and Evaluation

