Ανάλυση Κοινωνικών Δικτύων (Social Network Analysis)

Τοπολογίες Σύνθετων Δικτύων και Εφαρμογές

Συμεών Παπαβασιλείου (papavass@mail.ntua.gr) **Βασίλειος Καρυώτης (vassilis@netmode.ntua.gr)**

08 Νοεμβρίου, 2019

Today's Menu

- Network manifest
 - Network formation
- Network classification
- Overview of emerging complex network topologies and their applications
 - Regular
 - Random (Gilbert, Erdos-Renyi models)
 - Random Regular
 - Generalized Random
 - Random Geometric
 - Scale-free (Barabasi-Albert model)
 - Small-world (Watts-Strogatz model)

Network Fundamentals

- Set of interacting entities
 - Collaborating actors → coalitions
 - Competing actors
- Emerging tradeoff:

gain vs. cost of collaboration

- Regards:
 - Gain obtained by collaboration/selfish behavior
 - Cost incurred by collaboration/selfishness
 - synchronization issues
 - message complexity

Complex Network Taxonomy

Communication, infrastructure, technological networks

Social and economical networks

Biological networks

Designed and/or engineered

Human initiated,
Spontaneous
growth

Spontaneous evolution

Static – Evolving Networks

Static: Topology does not change with time (closed)

- mesh
- sensor (rule of thumb)

- nodes remain fixed
- connections can vary
- growth maybe observed
- focus is on network optimization

Evolving: Topology is timedependent (open)

- scale-free (Internet)
- small-world
- random geometric (ad hoc)
- indexing of nodes is important
- closer to reality
- more challenging open
- focus on network modification

Regular (Lattice) Networks

- Finite infinite (reference network models)
- Regularity → all vertices the same node degree
- K-regular graph \rightarrow node degree is k
- Terminology: Regular (theory) Lattice (applications)
- Emerging in:
 - Crystals (physics and chemistry)
 - Electrical power systems
 - Sensor networks (monitoring, computation)
 - Image processing
 - Optical networks
 - Material science (natural and composite materials)
 - Mobile cellular networks

Examples of Lattice Networks

(a) chain (line) network

(b) ring network

(c) 2D lattice network

Primitive © 2007 Thomson Higher Education

Body-centered

Face-centered

Side-centered

(a) cellular network

(b) triangle-free cellular network

Properties of Lattice Networks

- Deterministic degree distribution
 - Finite set of values
- All-units vector j is an eigenvector
- Other eigenvectors orthogonal to j
- CC can vary from 0 to 1 depending on degree & size
- Flat centrality
- Lattices are locally coupled
 - Locality of events controlled propagation
- Distributed networks with low CC
- Difficult to implement dynamic processes that require global coordination (synchronization)

Applications of Lattices

Cellular coverage schemes – mobile communications

- Sensor networks

 Smart grids
- Power grids

smart energy communications & management

- Flexibility & strength material science
 - Carbon fiber
 - Graphene
- Surveillance security and cyber-security

Random Graphs

- Random Graph (RG): nodes connected uniformly at random
- Probability distributions over graphs
 - Graph space becomes a probability space
- Two popular models:
 - Gilbert G(n,p)
 - Erdos-Renyi *G(N,M)*
- Relational types of graphs
 - All nodes can be potentially connected with each other
 - Idealized model, but good reference basis
 - Compare with spatial (RGG-multihop) graphs

Find the Random Graphs

Gilbert Model G(n,p)

- Starting with a set of n isolated vertices, add successive edges between them at random
- Every possible edge occurs independently with probability 0
- Probability of any particular RG with m edges:

$$p^m(1-p)^{N-m}$$
, where $N=\binom{n}{2}$

The degree distribution is binomial

$$P(\deg(v) = k) = \binom{n-1}{k} p^k (1-p)^{n-1-k},$$

Becomes Poisson for large n and np = constant

$$P(\deg(v) = k) \to \frac{(np)^k e^{-np}}{k!}$$
 as $n \to \infty$ and $np = \text{const}$,

Erdos-Renyi Model G(n,M)

- A graph is chosen uniformly at random from the collection of all graphs which have n nodes and M edges
 - The expected number of edges in G(n, p) is $\binom{n}{2}p$
- **Heuristic**: if $pn^2 \to \infty$ as n increases, G(n,p) behaves roughly as G(N,M), N=n with $M=\binom{n}{2}p$
- Probability that G(N,M) is precisely a fixed graph H on [N] with M edges:

$$\mathbb{P}_M(G_M = H) = \binom{N}{M}^{-1}$$

Random Graph Properties

- Theory of RG: studies typical properties that hold with high probability for graphs drawn from a particular distribution → asymptotic behavior
- Given a property Q, it is denoted that almost every (a.e.) graph in the probability space Ω_n consisting of graphs of order n has property Q if

$$\mathbb{P}(G \in \Omega_n : G \text{ has } Q) \to 1 \text{ as } n \to \infty$$

- A property Q of graphs is **monotone increasing** if Q is invariant under the addition of edges
- It is monotone decreasing if it is invariant under the deletion of edges

Threshold Behavior of Random Graphs

- Many RG properties exhibit phase transition → sharp change of behavior for increasing n
- Connectivity is the most characteristic
- For the G(n,p) model p≥(logn+ω)/n
 graph is asymptotically a.s connected
- Every non-trivial monotone property A has a threshold
- Sharp thresholds

 $p_0 = p_0(n)$ is a *threshold* for a monotone property \mathcal{A} if $\forall p(n)$

$$\Pr\left[\mathcal{G}_{n,p} \in \mathcal{A}\right] \to \begin{cases} 0, & \text{if } p/p_0 \to 0, \\ 1, & \text{if } p/p_0 \to \infty. \end{cases}$$

More Properties of Random Graphs

- Mean degree is z=p(n-1)
- Prob. vertex having degree k (Poisson distrib.)
- Mean size of the giant component $\langle s \rangle = \frac{1}{1 z + zS}$
 - Giant component: largest connected component of graph
- Connectivity phase transition
 - Threshold phenomena
- Changing the scale does not affect results

(N=10000, p=0.0015)

More Examples of Random Networks

Applications of Random Graphs

- Model for social relations of people (social networks)
 - All actors potentially related irrespective of distance
 - If random mixing → relations are random
- Random connections of users in peer-to-peer networks
 - Users are physically distant from each other
 - Directly connected at application layer when connection
 - Examples: emule, skype, viber, email network
- Neural networks
 - Connections of neurons (brain, cortex, etc.)
 - Artificial neural networks

Random Regular Graphs – RRGs

- Regular networks and Random Networks are two extremes
- Uniform model → tough to analyze
- Algorithmic models
 - Degree-restricted process
 - Superposition models
- Random graphs demonstrating regularity in node distributions
- Probability space over all regular graphs

Properties of Random Regular Graphs

- Random Regular Graph (RRG) $G_{n,r}$ prob. space over r-regular graphs
- Essentially RRGs are RGs
 - Most of the properties hold almost surely (a.s.), in the limit as n grows to infinity
- a.s. a $G_{n,r}$ RRG is r-connected
- For d satisfying

$$(r-1)^{d-1} \ge (2+\epsilon)rn \ln n$$

the diameter is a.s. at most d

The distribution of short cycles in RRGs is a.s. Poisson distributed with mean

$$\lambda_i = \frac{(r-1)^i}{2i}$$

Generalized Random Networks

- Generalized Random Graphs (GRGs) are essentially RGs
- Properties hold almost surely (a.s.) in the limit for growing network populations
- In addition: degree distribution is not Poisson (as in RGs)
- Exhibits correlations → closer to observed realistic network distributions
 - Empirical distributions fitted into probabilistic ones
- Connections remain random
- More effective for affiliation and citation networks
 - capture correlation due to relations, but retain fundamental random character

Random Geometric Graphs (RGGs)

- Probabilistic spatial models
- Nodes randomly dispersed over network region
- Connections → dictated by distances
- Distances potentially defined in multiple ways:
 - Coordinates
 - Similarities
 - Context
 - Any valid measure metric
- Distance $\operatorname{dist}(X, Y) = \min \left\{ \|X + z Y\| : z \in \mathbb{Z}^d \right\}$
- Diameter $diam(A) := \sup \{ ||x y|| : x \in A, y \in A \}$

RGG – RG Comparison

RGG $G(n,r,\ell)$ with n nodes, radius r, and label ℓ for each node; square deployment region $L \times L$

Connectivity Properties of RGGs

- Typically long average path lengths → distributed network
 - significant delay e2e packet delivery (NET layer)
- Expected # of neighbors for each node: $\frac{\pi r^2}{I^2}n$
- Threshold behavior:
 - coverage

Theorem 3.2. Consider the $G(n, r, \ell)$ model and let $r = r(\ell) = \ell^{\epsilon} f(\ell)$, for some $0 \le \epsilon < 1$, and $f(\ell)$ is a function which grows strictly slower than any function of type ℓ^{γ} where $\gamma > 0$. Let $n = n(\ell) = \omega(1)$.

- $\bullet \ \ G(n,r,\ell) \ has full \ area \ coverage \ a.a.s. \ if \ r^2n \geqslant \ell^2((\tfrac{1}{2}-\tfrac{1}{2}\epsilon)\ln\ell+\tfrac{1}{2}\ln\ln\ell+h(\ell)), for \ any \ h(\ell) \to \infty.$
- $G(n,r,\ell)$ does not have full area coverage a.a.s. if $\tilde{r^2}n \leqslant \ell^2((\frac{1}{2} \frac{1}{2}\epsilon) \ln \ell + \frac{1}{2} \ln \ln \ell + g(\ell))$, for any $g(\ell) \to -\infty$.
 - connectivity

Theorem 3.4. Consider the $G(n,r,\ell)$ model and let $r=r(\ell)=\Theta(\ell^\epsilon f(\ell))$, for some $0\leqslant \epsilon<1$, and $f(\ell)$ is a function which grows strictly slower than any function of type ℓ^γ where $\gamma>0$. Let $n=n(\ell)=\omega(1)$. Given any two constants $c_1>2-2\epsilon$ and $c_0<\frac12-\frac12\epsilon$,

- $G(n, r, \ell)$ is connected a.a.s. if $r^2 n \ge c_1 \ell^2 \ln \ell$, and
- $G(n, r, \ell)$ is disconnected a.a.s. if $r^2n \le c_0\ell^2 \ln \ell$.
 - stretch

Theorem 3.5. In $G(n,r,\ell)$ let $r^2n = k\ell^2 \ln \ell$, and $r = r(\ell) = \Theta(\ell^\epsilon f(\ell))$, for some $0 \le \epsilon < 1$, as before. Let $0 < \alpha \le 1$ be a fixed constant. Then for any constant $k > \frac{22(1-\epsilon)}{\alpha}$, the stretch is $1 + \alpha/2$ a.a.s. Further, if we consider only the subset F of nodes such that $D(u,v) = \omega(r)$ (i.e., strictly larger than r) for all $u,v \in F$ then the stretch restricted to this subset is 1 a.a.s.

Generalizations of RGGs

- Nodes → general point processes (PP)
 - Poisson (intensity λ) $\mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$
 - Binomial, etc.
- Percolation problems

- Voronoi tesselations (Delauney triangulations)
 - Given random point sets, find equidistant clusters with these points at their centers
 - DT for a set P of points in a plane is a triangulation DT(P) s.t. no point in P is inside the circumcircle of any triangle in DT(P)
 - Max. min. angle of all the angles of triangles in DT; avoid skinny triangles

Applications of Random Geometric Graphs

- Wireless mobile (multi-hop) networks
 - Ad hoc, Sensor, Mesh, Vehicular
- Statistical data processing
- Vehicular traffic engineering
- Geographic Information Systems (GIS)

Wireless Mobile Multihop Networks

Characteristics

- Decentralized and dynamically organized structures
- Nodes communicate either directly or through intermediate relay-nodes

Examples

- Ad hoc and mobile ad hoc networks (MANETs)
- Wireless sensor networks (WSNs)
- Wireless mesh networks (WMNs)

Results

- Capacity: logarithmic scaling
- Mobility aids capacity (capacity-delay tradeoff)
- Not very robust

The nodes in multi-hop networks are inter-dependent, rather than independent

"How close are you to Trump?"

 Social networks tend to have very short paths between arbitrary pais of people...

Really!!!!

- First experiment done by Stanley Milgram in 1960s (research budget \$680)
 - 296 randomly chosen starters. Asked to send a letter to a target (in Boston), by forwarding to someone they know personally and so on. Number of steps counted.
- median hop number of 6 for successful chains six degrees of separation
 - This study has since been largely discredited

Six Degrees of Separation

- Modern experiment by Leskovec and Horvitz in 2008
- Look at the 240 million user accounts of Microsoft Instant Messenger
- Complete snapshop no missing data
- Found a giant component with very small distances
- A random sample of 1000 users were tested and performed Breadth-first search
 - Why do they look only at a sample?
 Due to time and computational constraints and feasibility
- Estimated average distance of 6.6, median of 7
- Need for another network model → SW

Small-world Networks

- Empirical definition
 - most nodes not neighbors of one another, but most nodes can be reached from every other by a small number of hops
- Obtained evolutionary from ordered lattices
- Watts-Strogatz model
 - Start from an ordered lattice
 - Randomly rewire each edge with prob. p excluding self-connections and duplicate edges
 - Arbitrary long-range edges maybe added

Find the Small-world Graphs

Applications of Small-world Networks

Socio-economic system development

Opinion formation Leadership

Epidemiology

Virus alcohol

- Peer-to-peer networks
- Affiliation networks

Affiliation spreading

Properties of Small-world Networks

- Small average path length
- Relative high clustering coefficient
- Relative homogeneous topology
 - Most nodes having approximately the same number of edges
- Spectrum depends on p
- High number of triangles in the network

"Who's the most popular?"

- Perhaps the most popular question in social circles is "who's the most popular?"
- Which airport is the busiest? The most well-connected?
 Depends on country/airliner?
- Why epidemics break abruptly? What are the speed of epidemics? And why pandemia can be reality?
 - Black plague: ~ 75 to 200 mil. people dead in Europe (1346–53)
 - "I am Legend" and "World War Z" can be reality....really!
- And many more questions related to popularity & robustness of networks....one answer:

Scale-free Networks

Scale-free (Exponential) Networks

- Power-law distributed small-world network $P(k) \sim k^{-\gamma}$
 - Small percentage of nodes with large degree values
 - Majority of nodes with small degree values

Obtained by growth + preferential attachment

$$\Pi(k_i) = \frac{k_i}{\sum_{j} k_j}$$

 Many empirically observed networks appear to be scalefree → seems the most natural emerging network structure

Find the Scale-free Graphs

Examples of Scale-free Networks

(b) Scale-free network

Scale-Free Network

Applications of Scale-free Networks

- Internet/WWW
- Science collaboration graphs
- Hollywood co-starring graphs
- Cellular networks
- Citation networks
- transcriptional networks in which genes correspond to nodes
- road maps
- food chains
- electric power grids
- metabolite processing networks
- neural networks
- voter networks
- telephone call graphs
- social influence networks
- Human sexual contacts

Properties of Scale-free Networks

- Power law degree distribution $P(k) \sim k^{-\gamma}$
- Exponent y is empirically computed
- Clustering coefficient ~x5 than in RGs
- Smaller average path length than a RG
 - 'six degrees of separation'
- Correlations occur spontaneously between connected nodes
- Percolation and phase transitions
- Robustness under random attacks
- Vulnerable to targeted attacks

Network Feature Comparison

Network type	Degree distrib.	Av. Path Len.	Centrality
Regular	dirac function	constant	constant
S-W	heavy-tailed	small	varying
S-F	power-law	small	varying
RG	Poisson	average	uniform
RGG	uniform	long	uniform

Next in SNA

- Complex network analysis metrics
- Community detection
- Evolutionary computing
- Epidemics
 - Infection models
 - Epidemic thresholds