Übungen zu "Rechnerkommunikation"

Wintersemester 2010/2011 Übung 1

Mykola Protsenko, Jürgen Eckert
PD. Dr.-Ing. Falko Dressler
Friedrich-Alexander Universität Erlangen-Nürnberg
Informatik 7 (Rechnernetze und Kommunikationssysteme)

Netzwerk-Taxonomie

- Datagramm-Netz kann sowohl verbindungsorientiert als auch verbindungslos sein.
- Das Internet z.B. bietet den Applikationen sowohl verbindungsorientierte (TCP) als auch verbindungslose Dienste (UDP).

Leitungsvermittlung: FDMA und TDMA

TDM (Time Division Multiplex) bzw. TDMA (Time Division Multiple Access) Rechnerkommunikation, Übung 1

<u>Übung 1.1</u>

- Wie lange dauert es, eine Datei der Größe 640.000 Bits von Rechner A an Rechner B über ein leitungsvermitteltes Netz zu übertragen?
 - Alle Links haben eine Bitrate R von 1,536 Mbps
 - Jeder Link nutzt das TDMA-Verfahren mit 24 Slots pro Sekunde
 - Der Verbindungsaufbau von einem Ende zum anderen d_{con} dauert 500 ms

<u>Übung 1.2</u>

- Wie lange dauert es, eine Datei der Größe 640.000 Bits von Rechner A an Rechner B über ein leitungsvermitteltes Netz zu übertragen?
 - Alle Links haben eine Bitrate R von 1,536 Mbps
 - Jeder Link nutzt das FDMA-Verfahren mit 24 Kanälen bzw. Frequenzen
 - Der Verbindungsaufbau von einem Ende zum anderen d_{con} dauert 500 ms

Paketvermittlung: Statistisches Multiplexen

- Reihenfolge der Pakete von A und B folgt keinem regelmäßigen Muster, Aufteilung der Leitung je nach Bedarf, daher spricht man von statistischem Multiplexen.
- Beim TDM-Verfahren würde jedem Sender in einem zyklisch wiederholten TDM-Rahmen (Frame) immer der gleiche Platz (Slot) zugeordnet.

Paketvermittelte Netze: Paketweiterleitung

- Ziel: Pakete von Quelle über die Router ans Ziel bringen
 - In späteren Kapiteln Wegewahl-Algorithmen (Routing)

Datagramm-Netzwerk:

- Zieladresse im Paket bestimmt nächsten Knoten.
- Die Routen können sich während der Sitzung ändern.
- Analogon: Fahren und nach dem Weg zum Ziel fragen

Netzwerk mit virtuellen Verbindungen:

- Jedes Paket trägt ein Kennzeichen (virtual circuit ID), dieses Kennzeichen bestimmt den nächsten Knoten
- Fester Pfad, der beim Verbindungsaufbau festgelegt wird und während der Sitzung unverändert bleibt
- Die Router müssen für jede Sitzung (virtuelle Verbindung)
 Zustandsinformationen speichern

Paketvermittlung vs. Leitungsvermittlung

Mit Paketvermittlung können mehr Benutzern, das Netz verwenden als mit Leitungsvermittlung!

- 1 Mbps Link
- Jeder Benutzer
 - sendet 100 kbps, wenn er aktiv ist
 - ist 10% der Zeit aktiv

- 10 Benutzer gleichzeitig
- Paketvermittlung:
 - Mit 35 Benutzern beträgt die Wahrscheinlichkeit, dass mehr als 10 Benutzer gleichzeitig aktiv sind, weniger als 0,0004.

Frage: Wie kommt man auf einen Wert von 0.0004?

<u>Übung 1.3</u>

Wie auf der Folie "Paketvermittlung vs. Leitungsvermittlung" nehmen Sie an,

- dass mehrere Benutzer sich eine Verbindung mit 1 Mbps und
- dass ein Benutzer 100kbps benötigt, wenn er sendet und
- dass jeder Nutzer jedoch nur während 10% der Zeit sendet.
- Wie viele Nutzer sind bei Leitungsvermittlung möglich? Für den Rest der Aufgabe wird nun Paketvermittlung für 35

Nutzer verwendet.

- Mit welcher Wahrscheinlichkeit sendet ein gegebener Nutzer?
- Bestimmen Sie die Wahrscheinlichkeit, dass zu einem Zeitpunkt genau n Nutzer gleichzeitig senden.
- Bestimmen Sie die Wahrscheinlichkeit, dass mehr als 10 Nutzer gleichzeitig senden.

Paketvermittlung: Store-and-Forward

- Es dauert *L/R* Sekunden, ein Paket der Länge *L* Bits auf eine Leitung mit Bitrate *R* Bits/Sekunde (bps) zu senden.
- Das ganze Paket muss beim Router angekommen sein, bevor es auf die nächste Leitung geschickt werden : Store and Forward (Speichervermittlung)
- im Bild: Delay = 3L/R (Annahme: keine weiteren Verzögerungen)

Beispiel:

- L = 7.5 Mbits
- \blacksquare R = 1.5 Mbps
- \blacksquare Delay = L/R = 5 sec

mehr zu diesen Verzögerungen folgt in Kürze...

Wodurch treten Verzögerungen und Verlust auf?

Pakete reihen sich in Puffer-Warteschlangen der Router ein (Queuing).

Wenn die Paketankunftsrate an einem Link die Kapazität des ausgehenden Links übersteigt, müssen die Pakete in den Warteschlangen warten, bis sie an der Reihe sind.

Vier Quellen für Paketverzögerungen

- 1. Verarbeitungsverzögerung:
 - Prüfung auf Bitfehler
 - Bestimmung des ausgehenden Links

- 2. Warteschlangenverzögerung
 - Wartezeit auf den ausgehenden Link zur Übertragung
 - hängt vom Grad der Belastung des Routers ab

Vier Quellen für Paketverzögerungen

3. Übertragungsverzögerung:

- \blacksquare R = Bitrate des Links (bps)
- L = Paketlänge (bits)
- Zeit, um Bits auf den Link zu senden = L/R

4. Ausbreitungsverzögerung:

- /= Länge der physikalischen Verbindung
- c =Ausbreitungsgeschwindigkeit im
 Medium (~2x10⁸ m/sec)
- Ausbreitungsverzögerung = 1/c

- Autos bewegen sich mit 100 km/h (Ausbreitungsgeschwindigkeit)
- Mautstation benötigt 12 s für Abfertigung eines Autos (Übertragungsverzögerung)
- Auto ~ Bit; Kolonne ~ Paket
- Frage: Wie lange dauert es, bis die Kolonne vor der zweiten Mautstation aufgereiht ist?

zehn Autos

- Autos bewegen sich mit 100 km/h (Ausbreitungsgeschwindigkeit)
- Mautstation benötigt 12 s für Abfertigung eines Autos (Übertragungsverzögerung)
- Auto ~ Bit; Kolonne ~ Paket
- Frage: Wie lange dauert es, bis die Kolonne vor der zweiten Mautstation aufgereiht ist?

- Zeit, um die gesamte Kolonne durch die Mautstation auf die Straße zu schieben, d.h. abzufertigen: 12 s ⋅ 10 = 120 s
- Zeit, die das letzte (!) Auto benötigt, um von der ersten zur zweiten Mautstation zu fahren:
 1 h
- Antwort: 62 Minuten

- Autos bewegen sich nun mit 1000 km/h
- Mautstation benötigt nun 1 Minute für Abfertigung eines Autos
- Frage: Kommen Autos an der zweiten Mautstation an, bevor alle Autos an der ersten abgefertigt sind?

zehn Autos

- Autos bewegen sich nun mit 1000 km/h
- Mautstation benötigt nun 1
 Minute für Abfertigung eines
 Autos
- Frage: Kommen Autos an der zweiten Mautstation an, bevor alle Autos an der ersten abgefertigt sind?

Ja!

- Nach 7 Minuten ist das erste Auto an der zweiten Station, während an der ersten noch drei Fahrzeuge warten.
- Das erste Bit eines Pakets kann bereits beim zweiten Router angekommen sein, bevor das Paket am ersten Router vollständig übertragen wurde.

Verzögerungszeiten an einem Knoten

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

- d_{proc} = Verarbeitungsverzögerung (processing delay)
 - typischerweise wenige Mikrosekunden oder noch weniger
- $d_{queue} = Warteschlangenverzögerung (queuing delay)$
 - lastabhängig
- d_{trans} = Übertragungsverzögerung (transmission delay)
 - = L/R, bei langsamen Verbindungen ein signifikanter Anteil
- d_{prop} = Ausbreitungsverzögerung (propagation delay)
 - Wenige Mikrosekungen bis hunderte Millisekunden

Übung 1.4 (Schiff vs Seekabel)

- Moderne Containerschiffe können im Mittel 14.000 TEU bei einer Maximalgeschwindigkeit von 60 km/h transportieren. Ein TEU hat die Größe von 2,5m x 2,5m x 6m.
- Die Hochseeleitung Apollo verläuft zwischen USA und Großbritannien. Sie erstreckt sich über eine Länge von 12315km und besitzt eine Bandbreite von 3,2 Tb/s.
- Nehmen sie an, dass das Schiff mit 2TB Festplatten der Größe 0,1m x 0,2m x 0,05m voll beladen wird.
- Welches Medium besitzt die h\u00f6here Bitrate, wenn das Schiff genau die gleiche Strecke wie das Seekabel zur\u00fcck legt?

<u>Übung 1.5</u>

- Nehmen sie an: Sie Wohnen in Rosenbach und besitzen eine 1Mbit/s DSL Internetverbindung. Sie benötigen für die Wegstrecke Universität-Rosenbach 20 Minuten. In der Universität steht Ihnen eine 100Mbit/s Internetverbindung zur Verfügung.
- Frage: Ab welcher Dateigröße lohnt sich die Fahrt in die Universität für den Download?