In Exercises 1-6, match the equation with its graph. [The graphs are labeled (a) through (f).]

(a)

(b)

(c)

(d)

(e)

(f)

1.
$$y^2 = -4x$$

2.
$$x^2 = 2y$$

3.
$$x^2 = -8y$$

4.
$$y^2 = -12x$$

5.
$$(y-1)^2 = 4(x-3)^2$$

3.
$$x^2 = -8y$$
 4. $y^2 = -12x$ **5.** $(y-1)^2 = 4(x-3)$ **6.** $(x+3)^2 = -2(y-1)$

In Exercises 7-20, find the vertex, focus, and directrix of the parabola and sketch its graph.

7.
$$y = \frac{1}{2}x^2$$

8.
$$y = -2x^2$$

9.
$$y^2 = -6x$$

10.
$$y^2 = 3x$$

11.
$$x^2 + 6y = 0$$

12.
$$x + y^2 = 0$$

13.
$$(x-1)^2 + 8(y+2) = 0$$

14.
$$(x + 5) + (y - 1)^2 = 0$$

15.
$$(x + \frac{3}{2})^2 = 4(y - 2)$$

15.
$$(x + \frac{3}{2})^2 = 4(y - 2)$$
 16. $(x + \frac{1}{2})^2 = 4(y - 1)$

17.
$$y = \frac{1}{4}(x^2 - 2x + 5)$$

17.
$$y = \frac{1}{4}(x^2 - 2x + 5)$$
 18. $x = \frac{1}{4}(y^2 + 2y + 33)$

19.
$$y^2 + 6y + 8x + 25 = 0$$

20.
$$y^2 - 4y - 4x = 0$$

In Exercises 21–24, find the vertex, focus, and directrix of the parabola. Use a graphing utility to graph the parabola.

21.
$$x^2 + 4x + 6y - 2 = 0$$

22.
$$x^2 - 2x + 8y + 9 = 0$$

23.
$$y^2 + x + y = 0$$

24.
$$y^2 - 4x - 4 = 0$$

In Exercises 25 and 26, the equations of a parabola and a tangent line to the parabola are given. Use a graphing utility to graph both equations in the same viewing window. Determine the coordinates of the point of tangency.

25.
$$\frac{Parabola}{v^2 - 8x = 0}$$

$$\frac{Tangent \ Line}{x - y + 2 = 0}$$

26.
$$x^2 + 12y = 0$$

$$x + y - 3 = 0$$

In Exercises 27-38, find the standard form of the equation of the parabola with its vertex at the origin.

27.

28.

29. Focus:
$$(0, -\frac{3}{2})$$

31. Focus:
$$(-2, 0)$$

32. Focus:
$$(0, -2)$$

33. Directrix:
$$y = -1$$

34. Directrix:
$$y = 3$$

35. Directrix:
$$x = 2$$

36. Directrix:
$$x = -3$$

38. Vertical axis and passes through the point
$$(-3, -3)$$

In Exercises 39-48, find the standard form of the equation of the parabola.

39.

40.

41.

42.

