Tópicos especiales - calibración

Muestreo II

Licenciatura en Estadística

2023

agenda

- calibración cuando la UUM es un cluster
- prevención de ponderadores extremos o influyentes

calibración cuando la UUM es un cluster

- en algunos casos los ponderadores finales w_i deben ser iguales para todas las unidades del conglomerado/cluster cuando la misma es la UUM
- ejemplo: UUM = vivienda y la unidad de análisis son los hogares y todos sus integrantes (e.g. ECH)
- tener ponderadores iguales produce consistencia en las estimaciones entre los microdatos de personas y hogares

calibración cuando la UUM es un cluster

- ightharpoonup exigir ponderadores calibrados w_i^* para todas las unidades dentro del conglomerado implica una perdida de "eficiencia".
- esto se debe (como veremos más adelante) a que el aumento en la variabilidad o spread de los w_i* suele implicar un aumento en los SE de los estimadores

método de integración: el set/vector de variables auxiliares x_i pueden promediarse para cada UUM previo a la realización de la calibración

▶ forma iterativa:

- ① se realiza la calibración de los ponderadores utilizando información a nivel del elemento i (i.e \mathbf{x}_i)
- ② los ponderadoes calibrados w_i^* son promediados posteriormente a nivel de cada cluster
- se repite la calibración utilizando como "ponderadores originales" los ponderadores promediados en el punto 2.
- se repiten los puntos anteriores hasta lograr la convergencia, i.e. se cumplan las ecuaciones de calibración y los ponderadores calibrados sean iguales para cada elemento del cluster

prevención de ponderadores extremos

cuando se calibran los ponderadores puede ocurrir:

- bullet obtained by obtained b
 - es poco probable que pase si las probabilidades de inclusión son pequeñas (π_i) y la cantidad de variables de control no son excesivas para lo que la muestra puede soportar.

prevención de ponderadores extremos

cuando se calibran los ponderadores puede ocurrir:

- ► Obtener ponderadores muy grandes
 - esto puede ocurrir si las tasas de repuesta o elegibilidad obtenidas en algunos dominios son pequeñas y si la cantidad de variables de control son excesivas para lo que la muestra puede soportar.

prevención de ponderadores extremos

Podemos agregar una restricción en el cálculo para evitar ponderadores negativos (o pequeños) y muy grandes

$$L \leq \frac{w_i^*}{w_i} \leq U$$

tengamos en cuenta que estamos fijando los cambios relativos, es decir, los factores de ajustes g_i

ejemplo calibración truncada

utilizamos el script llamado calibración truncada.r

- ► trabajamos con U =ocupados
- \triangleright seleccionamos una muestra bajo un SI de tamaño n=500
- Calibramos utilizando las funciones:
 - Iineal
 - raking
 - logit

ejemplo calibración truncada

elegimos una cantidad excesiva de variables de control:

- educación (6 categorías)
- sexo (2 categorías)
- edad (7 categorías)
- estrato socioeconómico (5 categorías)
- salud (2 categorías)
- pobreza (2 categorías)

ponderadores extremos en R

existen tres argumentos útiles:

- maxit= numero de iteraciones permitidas. Por defecto 50
- **epsilon**= tolerancia entre las estimaciones y los totales poblacionales. Por defecto 10^{-7}
- force Devuelve una respuesta si los niveles requeridos no son alcanzados. Por defecto es FALSE

pasos a seguir (jerárquicos o no):

- si la convergencia no es alcanzada con los valores por defecto, aumentar el maxit.
- aumentar el nivel de tolerancia (epsilon)
- forzar el cálculo de los ponderadores. force=TRUE
- si force=TRUE chequear que tan lejos están de cumplirse las ecuaciones de calibración.

recorte (trimming) de los ponderadores

- generalmente procedimientos ad-hoc.
- ▶ los limites inferior y superior (L, U) son arbitrarios y dependen de la persona
- básicamente tienen en cuenta la distribución de los ponderadores en encuestas anteriores.

trimming

- indicar L y U de forma arbitraria.
- 2 cualquier ponderador fuera de los limites es recortado, es decir,

$$w_{i,\text{trim}}^* = \begin{cases} U & \text{si } w_i^* \ge U \\ w_i^* & \text{si } L \le w_i^< U \\ L & \text{si } L \le w_i^\le L \end{cases}$$
 (1)

- ① Determinar la suma $K = \sum_{i \in s} |w_i^* w_i^{*trim}|$, es decir, la cantidad de ponderadores perdida por el recorte
- distribuir K entre los ponderadores no recortados.
- repetir los pasos del 2 al 4 hasta que no haya más ponderadores por fuera de los limites.

trimWeights(cal,upper=U,lower=L, strict=TRUE) si strict=TRUE la función se llama así misma de forma recursiva hasta que los limites son satisfechos

- cuando aplicamos trimWeights los ponderadores dejan de estar calibrados a los conteos poblacionales.
- debemos chequear que "tan lejos" están de cumplir las ecuaciones de calibración