	Breadth first search	Breadth first tree search	Depth first graph search	Depth limited search	Uniform cost search	Recursive best first search	Greedy best first graph search	Astar, h1	Astar, h_ignore preconditions	Astar, h_pg_levelsum
Air cargo 1	Expansions: 43 Goal Tests: 56 New Nodes: 180 Plan length: 6 Time (s): 0.13	Expansions: 1458 Goal Tests: 1459 New Nodes: 5960 Plan length: 6 Time (s): 4.588	Expansions: 21 Goal Tests: 22 New Nodes: 84 Plan length: 20 Time (s): 0.066	Expansions: 101 Goal Tests: 271 New Nodes: 414 Plan length: 50 Time (s): 0.337	Expansions: 55 Goal Tests: 57 New Nodes: 224 Plan length: 6 Time (s): 0.171	Expansions: 4229 Goal Tests: 4230 New Nodes: 17023 Plan length: 6 Time (s): 13.467	Expansions: 7 Goal Tests: 9 New Nodes: 28 Plan length: 6 Time (s): 0.022	Expansions: 55 Goal Tests: 57 New Nodes: 224 Plan length: 6 Time (s): 0.167	Expansions: 41 Goal Tests: 43 New Nodes: 170 Plan length: 6 Time (s): 0.205	Expansions: 11 Goal Tests: 13 New Nodes: 50 Plan length: 6 Time (s): 1.71
Air cargo 2	Expansions: 3343 Goal Tests: 4609 New Nodes: 30509 Plan length: 9 Time (s): 58.540	TOO LONG	Expansions: 624 Goal Tests: 625 New Nodes: 5602 Plan length: 619 Time (s): 10.911	TOO LONG	Expansions: 4853 Goal Tests: 4855 New Nodes: 44041 Plan length: 9 Time (s): 99.958	TOO LONG	Expansions: 970 Goal Tests: 972 New Nodes: 8726 Plan length: 17 Time (s): 20.185	Expansions: 4853 Goal Tests: 4855 New Nodes: 44041 Plan length: 9 Time (s): 100.323	Expansions: 1506 Goal Tests: 1508 New Nodes: 13820 Plan length: 9 Time (s): 42.329	Expansions: 86 Goal Tests: 88 New Nodes: 841 Plan length: 9 Time (s): 171.22
Air cargo 3	Expansions: 14663 Goal Tests: 18098 NNodes: 129631 Plan length: 12 Time (s): 334.22	TOO LONG	Expansions: 408 Goal Tests: 409 New Nodes: 3364 Plan length: 392 Time (s): 7.733	TOO LONG	TOO LONG	TOO LONG	Expansions: 5578 Goal Tests: 5580 New Nodes: 49150 Plan length: 22 Time (s): 189.65	Expansions: 18223 Goal Tests: 18225 NNodes: 159618 Plan length: 12 Time (s): 670.712	Expansions: 5118 Goal Tests: 5120 NNodes: 45650 Plan length: 12 Time (s): 227.437	Expansions: 403 Goal Tests: 405 NNodes: 3708 Plan length: 12 Time (s): 1204.23

Table 1: Result of running each algorithm on each 3 problems

Optimal Plan

	Problem 1	Problem 2	Problem 3
Initial State	At(C1, SFO) At(C2, JFK) At(P1, SFO) At(P2, JFK)	At(C1, SFO) At(C2, JFK) At(C3, ATL) At(P1, SFO) At(P2, JFK) At(P3, ATL)	At(C1, SFO) At(C2, JFK) At(C3, ATL) At(C4, ORD) At(P1, SFO) At(P2, JFK)
List of actions	Load(C1, P1, SFO) Load(C2, P2, JFK) Fly(P1, SFO, JFK) Fly(P2, JFK, SFO) Unload(C1, P1, JFK) Unload(C2, P2, SFO)	Load(C1, P1, SFO) Fly(P1, SFO, JFK) Unload(C1, P1, JFK) Load(C2, P2, JFK) Fly(P2, JFK, SFO) Unload(C2, P2, SFO) Load(C3, P3, ATL) Fly(P3, ATL, SFO) Unload(C3, P3, SFO)	Load(C2, P2, JFK) Fly(P2, JFK, ORD) Load(C4, P2, ORD) Fly(P2, ORD, SFO) Unload(C4, P2, SFO) Load(C1, P1, SFO) Fly(P1, SFO, ATL) Load(C3, P1, ATL) Fly(P1, ATL, JFK) Unload(C2, P2, SFO) Unload(C1, P1, JFK)
Final State	At(C1, JFK) At(C2, SFO)	At(C1, JFK) At(C2, SFO) At(C3, SFO)	At(C1, JFK) At(C3, JFK) At(C2, SFO) At(C4, SFO)

Table 2: Optimal Plan for each problem

Comparison

	Problem 1	Problem 2	Problem 3		
	Expansions: 43 Goal Tests: 56 New Nodes: 180 Plan length: 6 Time (s): 0.13	Expansions: 3343 Goal Tests: 4609 New Nodes: 30509 Plan length: 9 Time (s): 58.540	Expansions: 14663 Goal Tests: 18098 New Nodes: 129631 Plan length: 12 Time (s): 334.22		
Breadth first search	Breadth first search finds the optimal path to the goal (minimum number of actions) but that has a cost. Actually it had to expanded more and more node as the problem need to achieve more and more goals, hence the time needed to find the optimal solution is linear in term of number of Goal Test and the number of goal to test is exponential in term of number of depth of the search. Hence even though the breadth first search algorithm finds the best solution it cannot be used when the problem becomes to complex (because it takes to long to way the way to the goal)				
	Expansions: 21 Goal Tests: 22 New Nodes: 84 Plan length: 20 Time (s): 0.066	Expansions: 624 Goal Tests: 625 New Nodes: 5602 Plan length: 619 Time (s): 10.911	Expansions: 408 Goal Tests: 409 New Nodes: 3364 Plan length: 392 Time (s): 7.733		
Depth first graph search	As seen in lectures, Depth first search is not guarantee to find the best solution to the problem (we see that for problem 1, 2, 3 here the path is respectively 20, 619, 392 while the best path are 6, 9, 12), but it can resolve the problem faster than using Breadth first search. The thing is: Do we really want to use 619 actions to transport 2 cargo from to places to 2 others places. Well absolutely not! So, even though Depth first graph search seems promising because it solves the problem quite quickly, the solution we got at the end is not optimal at all and hence we should avoid using such solutions.				
Consolir hoot first seemb	Expansions: 7 Goal Tests: 9 New Nodes: 28 Plan length: 6 Time (s): 0.022	Expansions: 970 Goal Tests: 972 New Nodes: 8726 Plan length: 17 Time (s): 20.185	Expansions: 5578 Goal Tests: 5580 New Nodes: 49150 Plan length: 22 Time (s): 189.65		
Greedy best first graph search	Greedy best first graph search is kind of a "good not optimal" solution. Actually it allows to find a relatively good solution in term of length of the plan while it takes less time then Breadth First search. Hence if we want to have a relatively good trade-off between having a reasonably good solution and don't spend too much computational time greedy best first graph search could be a good compromise.				

Table 3: Comparison and Analysis of non heuristic algorithms

Comparison for A* heuristic

	Problem 1	Problem 2	Problem 3			
	Expansions: 41 Goal Tests: 43 New Nodes: 170 Plan length: 6 Time (s): 0.205	Expansions: 1506 Goal Tests: 1508 New Nodes: 13820 Plan length: 9 Time (s): 42.329	Expansions: 5118 Goal Tests: 5120 New Nodes: 45650 Plan length: 12 Time (s): 227.437			
Astar, h_ignore preconditions	As we can see A* with the h_ignore preconditions give us optimal solutions (we use A* with admissible heuristic so it's normal). As explained we could have thought, this heuristic is good but need to explore lots of node in comparison to the levelsum heuristic. Why's that ? Because we used a relaxed conditions (we erased the preconditions) and thus in this newly graph the solution is always easier to find than in the real graph as we can execute more action for the same state. Hence this heuristic is admissible and seems to be good. Yet the A* algorithm needs to visit lots of nodes to find the optimal solution as we can see with the figures above.					
	Expansions: 11 Goal Tests: 13 New Nodes: 50 Plan length: 6 Time (s): 1.71	Expansions: 86 Goal Tests: 88 New Nodes: 841 Plan length: 9 Time (s): 171.22	Expansions: 403 Goal Tests: 405 New Nodes: 3708 Plan length: 12 Time (s): 1204.23			
Astar, h_pg_levelsum	The A* algorithm with the levelsum give us also the optimal solutions. In this case we are using a planning graph and we are computing the sum of the level where each goal is reach. Once again this heuristic is admissible in the sense that we need to attain all goals in the goal state for the same level. This heuristic seems a lot better in a sense that we don't need to expand lots of nodes in comparison the h_ignore_preconditions heuristic. Yet I takes longer to compute because at each frontier expansion we need to compute the levelsum heuristic which needs to create a new planning graph. Hence, this heuristic is good in a sense that it doesn't visit too many nodes (use less memory) but is bad in term of time.					

Table 4: Comparison and Analysis of heuristic search

Best heuristic and best non heuristic

I consider to compare the heuristic and non heuristic algorithms with respect to 2 factors:

- Find a optimal solution
- Less time to find the best solution

This is purely arbitrary. We might a choose other factors such as the number of nodes expanded (memory used), or is the solution a good approximate solution (doesn't expand much more nodes than the optimal one). Here I choose The two factors above for two reasons:

- We can find the optimal solution to the problem without fear of using to much memory
- We won't use non optimal solution as it cost a lot here (gasoline, time of travel, human resource and so on...)

	Problem 1	Problem 2	Problem 3			
	Astar, h_ignore preconditions	Astar, h_ignore preconditions	Astar, h_ignore preconditions			
Best Heuristic (in term of time spend)	Expansions: 41 Goal Tests: 43 New Nodes: 170 Plan length: 6 Time (s): 0.205	Expansions: 1506 Goal Tests: 1508 New Nodes: 13820 Plan length: 9 Time (s): 42.329	Expansions: 5118 Goal Tests: 5120 New Nodes: 45650 Plan length: 12 Time (s): 227.437			
	So here the A* with the h_ignore preconditions algorithm gives use the optimal solution in the least amount of time. In this sens I consider it to be the best heuristic to use for those problems.					
	Greedy best first graph search	Breadth first search	Breadth first search			
Best Non heuristic (in	Expansions: 7 Goal Tests: 9 New Nodes: 28 Plan length: 6 Time (s): 0.022	Expansions: 3343 Goal Tests: 4609 New Nodes: 30509 Plan length: 9 Time (s): 58.540	Expansions: 14663 Goal Tests: 18098 New Nodes: 129631 Plan length: 12 Time (s): 334.22			
term of time spend)	Here Breadth first search gives use the best solution in the least amount of time. There is one exception. Greedy best first graph search is faster for the problem 1? Why's that? Because the problem 1 is really really easy and so Greedy best first search choose the best solution very quickly. We can note that Breadth first search finds the best solutions in 0.13s for the first problem so we can consider that at the end of the day the best non heuristic algorithm with respect to the factors I choose to focus on is Breadth first search					

Table 5: Comparison between best heuristic and non heuristic search algorithms

Note: We can see that greedy best first graph search give us "relatively" good solution quite quickly. I didn't choose this heuristic because between 22 actions and 12 actions there is still a real gap of money to invest (assume we do the 22 actions greedy best first graph search gives us in real world)

At the end of the day using **A* with heuristic** is better than using non heuristic algorithm. It can be easily understand as heuristics can be seen as educated guesses. The thing is then to come up with good heuristics.