Corso di Laurea in Informatica Algebra. a.a. 2023-24. Canale 1.

Compito in classe del 6/12/2023

Esercizio 1. Si consideri il sistema omogeneo di 4 equazioni in 5 incognite

$$\begin{cases} x_1 + x_2 + 2x_3 + x_5 = 0 \\ x_1 - x_2 + x_4 + x_5 = 0 \\ x_1 - x_3 - x_5 = 0 \\ x_1 + 2x_2 + 5x_3 + 3x_5 = 0 \end{cases}$$

Sia Σ_0 l'insieme delle soluzioni.

Determinare una matrice A tale che $\Sigma_0 = \text{Ker} L_A$ (molto facile).

Applicare il metodo di Gauss e determinare un sistema omogeneo a scala, $S\underline{x} = \underline{0}$, equivalente al sistema dato.

Determinare una base per $\text{Im}L_S \equiv \text{Im}S$.

Determinare una base di Σ_0 : più precisamente determinare $\ell \in \mathbb{N}$ e vettori $\{\underline{w}_1, \dots, \underline{w}_\ell\}$ in \mathbb{R}^5 linearmente indipendenti tali che $\Sigma_0 = \operatorname{Span}(\underline{w}_1, \dots, \underline{w}_\ell)$.

Determinare una base per il $Im L_A \equiv Im A$.

Esercizio 2. Si consideri il sistema non-omogeneo di 4 equazioni in 5 incognite (ottenuto dal sistema omogeneo dell'esercizio precedente)

$$\begin{cases} x_1 + x_2 + 2x_3 + x_5 = 1 \\ x_1 - x_2 + x_4 + x_5 = 2 \\ x_1 - x_3 - x_5 = 1 \\ x_1 + 2x_2 + 5x_3 + 3x_5 = 1 \end{cases}$$

- **2.0** Applicare il metodo di Gauss e determinare un sistema a scala, $S\underline{x} = \underline{c}$, equivalente al sistema dato.
- **2.1** Verificare che il sistema a scala $S\underline{x} = \underline{c}$ è compatibile. (Otteniamo quindi la compatibiltà del sistema iniziale.)
- ${\bf 2.2}$ Sia Σ l'insieme delle soluzioni del sistema iniziale. Scrivere Σ nella forma

$$\Sigma = \operatorname{Span}(\underline{w}_1, \dots, \underline{w}_\ell) + \underline{v}_0$$

per un opportuno $\ell \in \mathbb{N}$ e per opportuni vettori $\underline{w}_1, \dots, \underline{w}_\ell, \underline{v}_0$ in \mathbb{R}^5 , con $\{\underline{w}_1, \dots, \underline{w}_\ell\}$ linearmente indipendenti ¹; verificate in questo modo che vale il teorema di struttura.

Esercizio 3. Sia $A \in M_{34}(\mathbb{R})$ la matrice data da

$$A = \left| \begin{array}{rrrr} 2 & 1 & 3 & -1 \\ 1 & 1 & 1 & -2 \\ -1 & 1 & -3 & -4 \end{array} \right|$$

e sia $L_A : \mathbb{R}^4 \to \mathbb{R}^3$ l'applicazione lineare ad essa associata. Scrivere l'espressione di L_A :

$$L_A \begin{vmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{vmatrix} = \begin{vmatrix} \dots \\ \dots \\ \dots \end{vmatrix}$$

 $^{^1}Suggerimento:$ utilizzare l'esercizio precedente

Determinare una base per $Ker(L_A)$.

Determinare la dimensione di $\text{Im}(L_A)$.

Determinare una base per $Im(L_A)$.

Studiare iniettività e suriettività di L_A .

Esercizio 4. Stabilire se i seguenti sottoinsiemi $W \subset V$ sono sottospazi. Giustificare le risposte.

- enclose. $V = \mathbb{R}^3, \ W := \{\underline{x} \in \mathbb{R}^3 \, | \, x_1 x_2 x_3 = 0 \}$ $\bullet \ V = \mathbb{R}[t], \ W := \{p \in \mathbb{R}[t] \, | \ \text{grado di } p = n \}$ $\bullet \ V = \mathbb{R}^4, \ W = \{\underline{x} \in \mathbb{R}^4 \, | \, x_1 + x_2 x_3 + x_4 = 0 \}$ $\bullet \ V = \mathbb{R}^4, \ W = \{\underline{x} \in \mathbb{R}^4 \, | \, x_1 + x_2 x_3 + x_4 = 1 \}$ $\bullet \ V = \mathbb{R}^4, \ W = \{\underline{x} \in \mathbb{R}^4 \, | \, x_1^2 + x_2 x_3 + x_4^2 = 0 \}$ $\bullet \ V = \mathbb{R}^4, \ W = \{\underline{x} \in \mathbb{R}^4 \, | \, x_1^2 + x_2 x_3 + x_4^2 = 1 \}$ $\bullet \ V = \mathbb{R}^4, \ W = \{(x_1, 0, x_2, x_3), x_1, x_2, x_3 \in \mathbb{R} \}$ $\bullet \ V = \mathbb{R}^4, \ W = \{(x_1, 7, x_2, x_3), x_1, x_2, x_3 \in \mathbb{R} \}$