Support Vector Machines

David Rosenberg

New York University

November 1, 2015

Support Vector Machine

- Hypothesis space $\mathcal{F} = \{ f(x) = w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \}.$
- ℓ_2 regularization (Tikhonov style)
- Loss $\ell(m) = (1-m)_+$
 - Margin m = yf(x); "Positive part" $(x)_+ = x1(x \ge 0)$.

SVM Optimization Problem

The SVM prediction function is the solution to

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n (1 - y_i [w^T x_i + b])_+.$$

- unconstrained optimization
- not differentiable
- Can we reformulate into a differentiable problem?

SVM Optimization Problem

The SVM optimization problem is equivalent to

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to
$$\xi_i \geqslant \left(1 - y_i \left[w^T x_i + b\right]\right)_+,$$

Which is equivalent to

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to
$$\xi_i \geqslant 0 \text{ for } i = 1, \dots, n$$
$$\xi_i \geqslant \left(1 - y_i \left[w^T x_i + b\right]\right) \text{ for } i = 1, \dots, n$$

SVM as a Quadratic Program

The SVM optimization problem is equivalent to

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to
$$\xi_i \geqslant 0 \text{ for } i = 1, \dots, n$$
$$\xi_i \geqslant \left(1 - y_i \left[w^T x_i + b\right]\right) \text{ for } i = 1, \dots, n$$

- Differentiable objective function
- n+d+1 unknowns and 2n affine constraints.
- A quadratic program that can be solved by any off-the-shelf QP solver.
- Let's learn more by examining the dual!

SVM Lagrangian

• The Lagrangian for this formulation is

$$L(w, b, \xi, \alpha, \lambda) = \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^{n} \xi_i + \sum_{i=1}^{n} \alpha_i \left(1 - y_i \left[w^T x_i + b \right] - \xi_i \right) - \sum_i \lambda_i \xi_i$$

$$= \frac{1}{2} w^T w + \sum_{i=1}^{n} \xi_i \left(\frac{c}{n} - \alpha_i - \lambda_i \right) + \sum_{i=1}^{n} \alpha_i \left(1 - y_i \left[w^T x_i + b \right] \right).$$

Primal and dual:

$$p^* = \inf_{w,\xi,b} \sup_{\alpha,\lambda \succeq 0} L(w,b,\xi,\alpha,\lambda)$$

$$\geqslant \sup_{\alpha,\lambda \succeq 0} \inf_{w,b,\xi} L(w,b,\xi,\alpha,\lambda) = d^*$$

• Do we have $p^* = d^*$?

Strong Duality by Slater's constraint qualification

The SVM optimization problem is equivalent to

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to
$$\xi_i \geqslant 0 \text{ for } i = 1, \dots, n$$
$$\xi_i \geqslant \left(1 - y_i \left[w^T x_i + b\right]\right) \text{ for } i = 1, \dots, n$$

- Affine constraints ⇒ strong duality iff problem is feasible
- Constraints are satisfied by w = b = 0 and $\xi_i = 1$ for i = 1, ..., n,
 - so we have strong duality

$$p^* = \inf_{w, \xi, b} \sup_{\alpha, \lambda \succeq 0} L(w, b, \xi, \alpha, \lambda)$$
$$= \sup_{\alpha, \lambda \succeq 0} \inf_{w, b, \xi} L(w, b, \xi, \alpha, \lambda) = d^*$$

SVM Dual Function

Lagrange dual is the inf over primal variables of the Lagrangian:

$$g(\alpha, \lambda) = \inf_{w, b, \xi} L(w, b, \xi, \alpha, \lambda)$$

$$= \inf_{w, b, \xi} \left[\frac{1}{2} w^{T} w + \sum_{i=1}^{n} \xi_{i} \left(\frac{c}{n} - \alpha_{i} - \lambda_{i} \right) + \sum_{i=1}^{n} \alpha_{i} \left(1 - y_{i} \left[w^{T} x_{i} + b \right] \right) \right]$$

- Note: $g(\alpha, \lambda) = -\infty$ when $\frac{c}{n} \alpha_i \lambda_i \neq 0$. (send $\xi_i \to \pm \infty$)
- Function $(w, \xi) \mapsto L(w, b, \xi, \alpha, \lambda)$ is convex and differentiable.
- Thus optimal point iff $\partial_w L = 0$ $\partial_b L = 0$ $\partial_{\varepsilon} L = 0$

SVM Dual Function: First Order Conditions

• Lagrange dual function is the inf over primal variables of L:

$$g(\alpha, \lambda) = \inf_{w,b,\xi} L(w, b, \xi, \alpha, \lambda)$$

$$= \inf_{w,b,\xi} \left[\frac{1}{2} w^T w + \sum_{i=1}^n \xi_i \left(\frac{c}{n} - \alpha_i - \lambda_i \right) + \sum_{i=1}^n \alpha_i \left(1 - y_i \left[w^T x_i + b \right] \right) \right]$$

$$\partial_w L = 0 \iff w - \sum_{i=1}^n \alpha_i y_i x_i = 0 \iff w = \sum_{i=1}^n \alpha_i y_i x_i$$

$$\partial_b L = 0 \iff -\sum_{i=1}^n \alpha_i y_i = 0 \iff \sum_{i=1}^n \alpha_i y_i = 0$$

$$\partial_{\xi_i} L = 0 \iff \frac{c}{n} - \alpha_i - \lambda_i = 0 \iff \alpha_i + \lambda_i = \frac{c}{n}$$

SVM Dual Function

- Substituting these conditions back into *L*, the second term disappears.
- First and third terms become

$$\frac{1}{2}w^Tw = \frac{1}{2}\sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_i^T x_j$$

$$\sum_{i=1}^n \alpha_i (1 - y_i \left[w^T x_i + b \right]) = \sum_{i=1}^n \alpha_i - \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_j^T x_i - b \underbrace{\sum_{i=1}^n \alpha_i y_i}_{=0}.$$

Putting it together, the dual function is

$$g(\alpha, \lambda) = \begin{cases} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_j^T x_i & \sum_{i=1}^{n} \alpha_i y_i = 0 \\ -\infty & \text{otherwise.} \end{cases}$$

SVM Dual Problem

The dual function is

$$g(\alpha, \lambda) = \begin{cases} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_j^T x_i & \sum_{i=1}^{n} \alpha_i y_i = 0 \\ -\infty & \text{otherwise.} \end{cases}$$

• The dual problem is $\sup_{\alpha,\lambda \succeq 0} g(\alpha,\lambda)$:

$$\sup_{\alpha,\lambda} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$
s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} + \lambda_{i} = \frac{c}{n} \quad \alpha_{i}, \lambda_{i} \geqslant 0, i = 1, \dots, n$$

SVM Dual Problem: Eliminating a Variable

Can eliminate the λ variables:

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$
s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} \in \left[0, \frac{c}{n}\right] \ i = 1, \dots, n.$$

- Quadratic objective in n unknowns and 2n constraints
- Constraints are box constraints. (Simpler than primal constraints.)

SVM Dual Problem: Connect to Primal

Recall

$$\partial_w L = 0 \iff w = \sum_{i=1}^n \alpha_i y_i x_i$$

• If α^* is a solution to the dual problem, then

$$w^* = \sum_{i=1}^n \alpha_i^* y_i x_i.$$

- Since $\alpha_i \in [0, \frac{c}{n}]$, we see that c controls the amount of weight we can put on any single example
- What's b?

Complementary Slackness

- By strong duality, we have the following complementary slackness conditions
 - Lagrange multiplier is zero unless the [primal] constraint is active at the optimum: " $\lambda_i^* f_i(x^*) = 0$ "
- Our primal constraints:

$$(\alpha_i) \qquad (1 - y_i [x_i^T w + b]) - \xi_i \leq 0 \text{ for } i = 1, ..., n$$

$$(\lambda_i) \qquad -\xi_i \leq 0 \text{ for } i = 1, ..., n$$

- Complementary slackness is about optimal primal and dual variables
 - Let (w^*, b^*, ξ_i^*) be primal optimal
 - Let(α^*, λ^*) be dual optimal

The Bias Term: b

For our SVM primal, the complementary slackness conditions are:

$$\alpha_i^* \left(1 - y_i \left[x_i^T w^* + b \right] - \xi_i^* \right) = 0$$
 (1)

$$\lambda_i^* \xi_i^* = \left(\frac{c}{n} - \alpha_i^*\right) \xi_i^* = 0 \tag{2}$$

- Suppose there's an i such that $\alpha_i^* \in (0, \frac{c}{n})$.
- (2) implies $\xi_i^* = 0$.
- (1) implies

$$1 - y_i \left[x_i^T w^* + b^* \right] = 0$$

$$\iff x_i^T w^* + b^* = y_i \text{ (use } y_i \in \{-1, 1\})$$

$$\iff b^* = y_i - x_i^T w^*$$

The Bias Term: b

The optimal b is

$$b^* = y_i - x_i^T w^*$$

- We get the same b^* for any choice of i with $\alpha_i^* \in (0, \frac{c}{n})$
 - With exact calculations!
- With numerical error, more robust to average over all eligible i's:

$$b^* = \operatorname{mean}\left\{y_i - x_i^T w^* \mid \alpha_i^* \in \left(0, \frac{c}{n}\right)\right\}.$$

- If there are no $\alpha_i^* \in (0, \frac{c}{n})$?
 - Then we have a **degenerate SVM training problem** $(w^* = 0)$.

The Margin

- For notational convenience, define $f^*(x) = x_i^T w^* + b^*$.
- Margin $yf^*(x)$

- Incorrect classification: $yf^*(x) \leq 0$.
- Margin error: $yf^*(x) < 1$.
- "On the margin": $yf^*(x) = 1$.
- "Good side of the margin": $yf^*(x) > 1$.

Support Vectors and The Margin

- Recall $\xi_i^* = (1 y_i f^*(x_i))_+$ the hinge loss on (x_i, y_i) .
- Suppose $\xi_i^* = 0$.
- Then $y_i f^*(x_i) \geqslant 1$
 - "on the margin" (=1), or
 - "on the good side" (>1)

Complementary Slackness Consequences

• For our SVM primal, the complementary slackness conditions are:

$$\alpha_i^* \left(1 - y_i f^*(x_i) - \xi_i^* \right) = 0$$
$$\lambda_i^* \xi_i^* = \left(\frac{c}{n} - \alpha_i^* \right) \xi_i^* = 0$$

- If $y_i f^*(x) > 1$ then the margin loss is $\xi_i^* = 0$, and we get $\alpha_i^* = 0$.
- If $y_i f^*(x_i) < 1$ then the margin loss is $\xi_i^* > 0$, so $\alpha_i^* = \frac{c}{n}$.
- If $\alpha_i^* = 0$, then $\xi_i^* = 0$, which implies no loss, so $y_i f^*(x) \geqslant 1$.

Complementary Slackness Results: Summary

$$\alpha_{i}^{*} = 0 \implies y_{i}f^{*}(x_{i}) \geq 1$$

$$\alpha_{i}^{*} \in \left(0, \frac{c}{n}\right) \implies y_{i}f^{*}(x_{i}) = 1$$

$$\alpha_{i}^{*} = \frac{c}{n} \implies y_{i}f^{*}(x_{i}) \leq 1$$

$$y_{i}f^{*}(x_{i}) < 1 \implies \alpha_{i}^{*} = \frac{c}{n}$$

$$y_{i}f^{*}(x_{i}) = 1 \implies \alpha_{i}^{*} \in \left[0, \frac{c}{n}\right]$$

$$y_{i}f^{*}(x_{i}) > 1 \implies \alpha_{i}^{*} = 0$$

Dual Problem: Dependence on x through inner products

SVM Dual Problem:

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$
s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} \in \left[0, \frac{c}{n}\right] \ i = 1, \dots, n.$$