Лабораторная работа 4.3.1 Изучение дифракции света

Сафиуллин Роберт 5 апреля 2019 г.

1 Цель работы:

исследовать явления дифракции Френеля и Фраунгофера на щели

2 В работе используются:

оптическая скамья, ртутная лампа, монохроматор, щели с регулироемой шириной, рамка, двойная щель, микроскоп, зрительная труба

3 Ход работы

А: Дифракция Френеля

Рис. 1. Схема установки для наблюдения дифракции Френеля

1) Уменьшая расстояние от щели до микроскопа, фиксируем значения расстояний при появлении новых п темных полос. По формуле $z_m = \sqrt{am\lambda}$, определим ширину m-ой зоны Френеля, где m – равно числу темных полос плюс 1 (учитывая, что нуль микроскопа - 44.5 см) :

n	1	2	3	4	5	
m	2	3	4	5	6	
a, cm	40.5	41.7	42.3	42.9	43.1	
$2^*z_m = b', cm$	418	428.4	438.4	418	428.3	

Ширина щели b=370 mkm, что отличается от значения b', полученного по формуле выше.

2) Заменим щель препятствием с вертикально расположенной нитью. Наблюдаем светлое пятно Пуассона, находящееся в центре изображения нити.

Б: Дифракция Фраунгофера на щели

Рис. 3. Схема установки для наблюдения дифракции Фраунгофера на щели

 $f_1 = 12.5cm, f_2 = 9cm$

3) Измерим с помощью винта поперечного перемещения микроскопа координаты х нескольких дифракционных минимумов:

m	-3	-2	-1	0	1	2	3
$x_m m$, del	0.7	0.79	0.91	1.05	1.19	1.28	1.4

4) Построим график зависимости X(m):

Получили, что среднее расстояние между максимумами $\triangle X=0.12mm$. Используя формулу $x_m=\frac{m\lambda f_2}{b}$ вычислим ширину щели: $b=409.5mkm, b_{\text{изм}}=440mkm$

В: Дифракция Фраунгофера на двух щелях

Рис. 4. Схема установки для наблюдения дифракции Фраунгофера на двух щелях

5) Определим координаты самых удаленных друг от друга темных полос внутри первого максимума, а также координату центра максимума: $x_1 = 2.8mm$

 $x_2 = 3.24mm$

Между ними находится n = 7 светлых промежутков.

$$\delta x_{max} = \frac{x_2 - x_1}{n} = 62.9 mkm, d = \frac{f_2 \lambda}{\delta x_{max}} = 0.78 mm$$

 $\delta x_{max}=rac{x_2-x_1}{n}=62.9mkm, d=rac{f_2\lambda}{\delta x_{max}}=0.78mm$ Зная ширину щели b_1 из следующего пункта, найдем число полос в центральном максимуме: $n'=\frac{2d}{b_1}=8$ 6) Теперь найдем экспериментально такую ширину щели , при которой

- исчезают интерференционные полосы:₀ = 191 mkm
- 7) Исследуем влияние просранственной когерентности на видность интерференционной картины. Для этого, расширяя входную щель, подберем значение $b_0 = 191 mkm$, при котором наступает первое исчезновение интерференционных полос.

Г: Влияние дифракции на разрешающую способность оптического инструмента

Рис. 5. Схема установки для исследования разрешающей способности оптического инструмента

При помощи микроскопа измерим расстояние между щелями:

d = 2.45 mm

Также получим ширину щелей:

 $b_1 = 0.6mm$

 $b_2 = 0.32mm$

Найдем ширину щели при котором пропадают различия между изображениями двух щелей:

$$D = \frac{f_1 \lambda}{d} = 27.3 \text{ mkm}$$

Теперь экспериментально подберем ширину щели такой, чтобы два изображения видимые в микроскоп были максимально размыты, но при этом еще видимы: $b_0=243mkm$