In [23]: import pandas as pd
import numpy as np
import seaborn as sns
import missingno as msno

In [24]: df=pd.read_csv("UpdatedStudentsPerformance.csv")

In [25]: df

Out[25]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72.0	72.0	74.0
1	female	group C	some college	standard	completed	69.0	90.0	88.0
2	female	group B	master's degree	standard	none	90.0	95.0	93.0
3	male	group A	associate's degree	free/reduced	none	47.0	57.0	44.0
4	male	group C	some college	standard	none	76.0	78.0	75.0
995	female	group E	master's degree	standard	completed	88.0	99.0	95.0
996	male	group C	high school	free/reduced	none	62.0	55.0	55.0
997	female	group C	high school	free/reduced	completed	59.0	71.0	65.0
998	female	group D	some college	standard	completed	68.0	78.0	77.0
999	female	group D	some college	free/reduced	none	77.0	86.0	86.0

1000 rows × 8 columns

In [26]: #performing all basic operations

#shape, size, min , max, describe, std, quantile, dtypes etc

df.shape

Out[26]: (1000, 8)

In [27]: df.size #rows*col=size

Out[27]: 8000

In [28]: df.describe()

Out[28]:

	math score	reading score	writing score
count	990.000000	985.000000	989.000000
mean	66.208081	69.261929	68.142568
std	15.103724	14.634171	15.199780
min	0.000000	17.000000	10.000000
25%	57.000000	59.000000	58.000000
50%	66.000000	70.000000	69.000000
75%	77.000000	80.000000	79.000000
max	100.000000	100.000000	100.000000

In [29]: df.min()

Out[29]: gender

race/ethnicity group A associate's degree parental level of education free/reduced test preparation course completed math score 0.0 reading score 17.0 writing score 10.0 dtype: object

In [30]: | df.max()

Out[30]: gender

male race/ethnicity group E parental level of education some high school lunch standard test preparation course none math score 100.0 reading score 100.0 writing score 100.0 dtype: object

In [31]: df.std()

/tmp/ipykernel_12977/3390915376.py:1: FutureWarning: The default value of numeric_only in DataFrame.std is deprecated. In a future version, i t will default to False. In addition, specifying 'numeric_only=None' i s deprecated. Select only valid columns or specify the value of numeri c_only to silence this warning. df.std()

Out[31]: math score 15.103724 reading score 14.634171 writing score 15.199780 dtype: float64

0

In [32]: df.dtypes

Out[32]: gender object race/ethnicity object parental level of education object lunch object test preparation course object math score float64 float64 reading score writing score float64

dtype: object

In [33]: #checking for missing data df.isna().sum()

Out[33]: gender

race/ethnicity 0
parental level of education 0
lunch 0
test preparation course 0
math score 10
reading score 15
writing score 11
dtype: int64

In [34]: msno.matrix(df)

Out[34]: <AxesSubplot: >


```
In [13]: #filling the missing data
df=df.fillna(df.mean())
```

/tmp/ipykernel_12977/959476727.py:2: FutureWarning: The default value of numeric_only in DataFrame.mean is deprecated. In a future version, it will default to False. In addition, specifying 'numeric_only=None' is deprecated. Select only valid columns or specify the value of numeric_only to silence this warning.

df=df.fillna(df.mean())

In [16]: sns.boxplot(df)

Out[16]: <AxesSubplot: >

In [35]: dfnew=pd.concat([df['math score'],df['reading score'],df['writing score

In [36]: dfnew

Out[36]:

	math score	reading score	writing score
0	72.0	72.0	74.0
1	69.0	90.0	88.0
2	90.0	95.0	93.0
3	47.0	57.0	44.0
4	76.0	78.0	75.0
995	88.0	99.0	95.0
996	62.0	55.0	55.0
997	59.0	71.0	65.0
998	68.0	78.0	77.0
999	77.0	86.0	86.0

1000 rows × 3 columns

In [37]:

```
#method used to remove outliers
#IQR , Zscore etc
#We are using IQR Inter Quantile Range
Q1=dfnew.quantile(0.25) #25 percent of value
Q3=dfnew.quantile(0.75) #75 percent of value
IQR=Q3-Q1
print(IQR)
```

math score 20.0 reading score 21.0 writing score 21.0 dtype: float64

In [38]:

```
low=Q1-1.5*IQR
high=Q3+1.5*IQR
print(low,high)
```

math score 27.0 reading score 27.5 writing score 26.5

dtype: float64 math score 107.0

reading score 111.5 writing score 110.5

dtype: float64

In [39]: newdf=dfnew[~((dfnew<low)|(dfnew>high)).any(axis=1)]
newdf

Out[39]:

	math score	reading score	writing score
0	72.0	72.0	74.0
1	69.0	90.0	88.0
2	90.0	95.0	93.0
3	47.0	57.0	44.0
4	76.0	78.0	75.0
995	88.0	99.0	95.0
996	62.0	55.0	55.0
997	59.0	71.0	65.0
998	68.0	78.0	77.0
999	77.0	86.0	86.0

990 rows × 3 columns

```
In [40]: print(dfnew.shape)
    print(newdf.shape)
```

(1000, 3) (990, 3)

```
In [41]: #again checking for outiers
sns.boxplot(newdf)
```

Out[41]: <AxesSubplot: >

In [46]: newdf

Out[46]:

	math	reading	writing
0	0.616438	0.611111	0.643836
1	0.575342	0.861111	0.835616
2	0.863014	0.930556	0.904110
3	0.273973	0.402778	0.232877
4	0.671233	0.694444	0.657534
985	0.835616	0.986111	0.931507
986	0.479452	0.375000	0.383562
987	0.438356	0.597222	0.520548
988	0.561644	0.694444	0.684932
989	0.684932	0.805556	0.808219

990 rows × 3 columns

In [47]: sns.histplot(newdf)

Out[47]: <AxesSubplot: ylabel='Count'>

In [49]: sns.boxplot(newdf)

Out[49]: <AxesSubplot: >

In [50]: sns.scatterplot(newdf)

Out[50]: <AxesSubplot: >

In [51]: sns.countplot(newdf)

Out[51]: <AxesSubplot: ylabel='count'>

In []:
In []: