

Learning

Incomplete Data

Overview

Incomplete Data

- Multiple settings:
 - Hidden variables
 - Missing values
- Challenges
 - Foundational is the learning task well defined?
 - Computational how can we learn with incomplete data?

Why latent variables?

Model sparsity

Why latent variables?

• Discovering clusters in data

Treating Missing Data

Sample sequence: H,T,?,?,H,?,H

 Case I: A coin is tossed on a table, occasionally it drops and measurements are not taken

 Case II: A coin is tossed, but sometimes tails are not reported

We need to consider the missing data mechanism

Modeling Missing Data Mechanism

- $X = \{X_1,...,X_n\}$ are random variables
- \bigcirc O = {O₁,...,O_n} are observability variables
 - Always observed 0: = 12 xi observed
- \rightarrow Y = {Y₁,...,Y_n} new random variables
 - $-\operatorname{Val}(Y_i) = \operatorname{Val}(X_i) \cup \{?\}$
 - Always observed
 - Y_i is a deterministic function of X_i and O_i :

$$Y_i = \begin{cases} X_i & O_i = o^1 \\ ? & O_i = o^0 \end{cases}$$

Modeling Missing Data Mechanism Case II

(random missing values)

(deliberate missing values)

- When can we ignore the missing data mechanism and focus only on the likelihood?
- · Missing at Random (MAR) unobrand x's

$$P_{missing} \models (oldsymbol{Q} \perp oldsymbol{H} \mid oldsymbol{d})$$
 becomes value of

Identifiability

Likelihood can have multiple global maxima

- Example:
 - We can rename the values of the hidden variable H
 - If H has two values, likelihood has two global maxima
- With many hidden variables, there can be an exponential number of global maxima
- Multiple local and global maxima can also occur with missing data (not only hidden variables)

Likelihood for Complete Data

Input Data:

Х	Υ
\mathbf{x}^0	y ⁰
\mathbf{x}^0	y ¹
x ¹	y 0

- $\begin{array}{ccc} x^0 & x^1 \\ \hline \theta_{x^0} & \theta_{x^1} \end{array}$
- Likelihood decomposes by variables
- Likelihood decomposes within CPDs

Likelihood:

$$\begin{split} L(D:\theta) &= P(x[1], y[1]) \cdot P(x[2], y[2]) \cdot P(x[3], y[3]) \\ &= \underbrace{P(x^{0}, y^{0}) \cdot P(x^{0}, y^{1}) \cdot P(x^{1}, y^{0})}_{= \theta_{x^{0}} \cdot \theta_{y^{0}|x^{0}} \cdot \theta_{x^{0}} \cdot \theta_{y^{1}|x^{0}} \cdot \theta_{x^{1}} \cdot \theta_{y^{0}|x^{1}} \\ &= \left(\theta_{x^{0}} \cdot \theta_{x^{0}} \cdot \theta_{x^{1}}\right) \cdot \left(\theta_{y^{0}|x^{0}} \cdot \theta_{y^{1}|x^{0}}\right) \cdot \left(\theta_{y^{0}|x^{1}}\right) \end{split}$$

X	
V	
→	
	_

	P(Y X)	
X	y 0	y ¹
x ⁰	$\theta_{y^0 x^0}$	$\theta_{y^1 x^0}$
x ¹	$\theta_{y^0 x^1}$	$\theta_{y^1 x^1}$

Likelihood for Incomplete Data

Input Data:

Х	Υ
(y ⁰
X ⁰	y ¹
()	y 0

x ⁰	X ¹
θ_{x^0}	θ_{x1}

- Likelihood does not decompose by variables
- Likelihood does not decompose within CPDs

Likelihood: Computing likelihood requires inference!

$$L(D:\theta) = P(y^{0}) \cdot P(x^{0}, y^{1}) \cdot P(y^{0})$$

$$= \left(\sum_{x \in Val(X)} P(x, y^{0})\right)^{2} \cdot P(x^{0}, y^{1}) \cdot P(x^{0}, y^{$$

	P(Y X)	
X	y^0	y ¹
x ⁰	$\theta_{y^0 x^0}$	$\theta_{y^1 x^0}$
x ¹	$\theta_{y^0 x^1}$	$\theta_{y^1 x^1}$

Multimodal Likelihood

Parameter Correlations

Total of 8 data points

• Some X's unobserved

Summary

- Incomplete data arises often in practice
- Raises multiple challenges & issues:
 - The mechanism for missingness
 - Identifiability
 - Complexity of likelihood function