Проекторы Задача дихотомии

Бибердорф Э.А.

Определение. Матрица P называется проектором, если $P^2 = P$. Любой вектор $x \in \mathbb{R}^n$ проектор P переводит в некоторый вектор y, который, в свою очередь, переводит в себя:

$$Px = y, \qquad Py = y.$$

Упражнение. Показать, что I - P тоже проектор.

Lemma

Если

$$\begin{split} \operatorname{Image}(P) &= \mathcal{L} \subset \mathbb{R}^n, \\ \operatorname{Image}(I-P) &= \mathcal{M} \subset \mathbb{R}^n, \end{split}$$

то
$$\mathbb{R}^n = \mathcal{L} \bigoplus \mathcal{M}$$

Lemma

Если

$$Image(P) = \mathcal{L} \subset \mathbb{R}^n,$$

$$Image(I - P) = \mathcal{M} \subset \mathbb{R}^n,$$

To
$$\mathbb{R}^n = \mathcal{L} \bigoplus \mathcal{M}$$

Доказательство. 1) $\mathbf{u} = \mathbf{I}\mathbf{u} = (\mathbf{I} - \mathbf{P})\mathbf{u} + \mathbf{P}\mathbf{u} = \mathbf{w} + \mathbf{v}, \ \mathbf{v} \in \mathcal{L}, \ \mathbf{w} \in \mathcal{M}.$

2) Пусть $\mathbf{v} \in \mathcal{L} \bigcap \mathcal{M}$, тогда $\mathbf{v} = (\mathbf{I} - \mathbf{P})\mathbf{v} = (\mathbf{I} - \mathbf{P})\mathbf{P}\mathbf{v} = (\mathbf{P} - \mathbf{P}^2)\mathbf{v} = 0$. Значит $\mathcal{L} \bigcap \mathcal{M} = 0$. \diamond

Lemma

Если

$$Image(P) = \mathcal{L} \subset \mathbb{R}^{n},$$
$$Image(I - P) = \mathcal{M} \subset \mathbb{R}^{n},$$

to
$$\mathbb{R}^n = \mathcal{L} \bigoplus \mathcal{M}$$

Пусть столбцы матрицы T_1 образуют базис в \mathcal{L} , столбцы матрицы T_2 образуют базис в \mathcal{M}

Упражнение. Имеет место представление

$$P = [T_1|T_2] \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} [T_1|T_2]^{-1}, \qquad I - P = [T_1|T_2] \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix} [T_1|T_2]^{-1}$$

Упражнение. Размерность $\mathcal L$ равна $\mathrm{tr} P$, размерность $\mathcal M$ равна $\mathrm{tr} (I-P)$

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺 めのの

4 / 23

Рассмотрим сингулярное разложение проекторов P и I-P:

$$P = \begin{bmatrix} U_1 | W_1 \end{bmatrix} \begin{pmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{pmatrix} V_1^*, \qquad I - P = \begin{bmatrix} U_2 | W_2 \end{bmatrix} \begin{pmatrix} \Sigma_2 & 0 \\ 0 & 0 \end{pmatrix} V_2^*$$

Упражнение. Столбцы матрицы U_1 составляют базис \mathcal{L} , столбцы матрицы U_2 составляют базис \mathcal{M} .

Инвариантные подпространства

Определение. Подпространство $\mathcal{L} \subset \mathbb{R}^n$ называется инвариантным подпространством линейного оператора \mathcal{A} , если $\mathcal{A}: \mathcal{L} \to \mathcal{L}$. Так как в \mathbb{R}^n линейный оператор в фиксированном базисе представляется матрицей, то мы будем говорить об инвариантных подпространствах матриц. Если подпространтсво \mathcal{L} является инвариантным подпространством матрицы A, то

$$u \in \mathcal{L}, \quad Au = v \in \mathcal{L}.$$

Представление матрицы

Lemma

Если среди собственных значений квадратной матрицы А есть различные, то она представима в виде

$$A = T \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix} T^{-1},$$

причем спектры матриц A_{11} и A_{22} не пересекаются.

Доказательство. 1) По теореме Шура $\exists U, UU^* = I$ такая, что

$$\mathbf{A} = \mathbf{U} \left(\begin{array}{cc} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{0} & \mathbf{A}_{22} \end{array} \right) \mathbf{U}^*,$$

причем спектры матриц A_{11} и A_{22} не пересекаются.

7 / 23

Представление матрицы

Рассмотрим матрицу

$$\left(\begin{array}{cc}
I & X \\
0 & I
\end{array}\right)$$

Упражнение. Проверить, что

$$\left(\begin{array}{cc} I & X \\ 0 & I \end{array}\right)^{-1} = \left(\begin{array}{cc} I & -X \\ 0 & I \end{array}\right).$$

Так как

$$\left(\begin{array}{cc} I & X \\ 0 & I \end{array}\right)\left(\begin{array}{cc} A_{11} & A_{12} \\ 0 & A_{22} \end{array}\right)\left(\begin{array}{cc} I & -X \\ 0 & I \end{array}\right)=\left(\begin{array}{cc} A_{11} & A_{12}+XA_{22}-A_{11}X \\ 0 & A_{22} \end{array}\right)$$

потребуем

$$A_{12} + XA_{22} - A_{11}X = 0$$

По критерию Сильвестра такой X всегда существует. Значит

$$A = T \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix} T^{-1}, \qquad T = U \begin{pmatrix} I & -X \\ 0 & I \end{pmatrix}$$

8 / 23

Инвариантные подпространства

Пусть матрица А представима в виде

$$A = [T_1 | T_2] \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix} [T_1 | T_2]^{-1},$$

причем спектры подматриц A_1 и A_2 - не пересекаются.

Утверждение. Столбцы матриц T_1 и T_2 образуют базисы инвариантных подпространств матрицы A.

Доказательство. Пусть $v = T_1 c$. Тода

$$Av = [T_1|T_2] \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix} [T_1|T_2]^{-1}T_1c =$$

$$= [T_1|T_2] \left(\begin{array}{cc} A_1 & 0 \\ 0 & A_2 \end{array} \right) [T_1|T_2]^{-1} [T_1|T_2] \left[\begin{array}{c} c \\ 0 \end{array} \right] = [T_1|T_2] \left[\begin{array}{c} A_1c \\ 0 \end{array} \right] = T_1b,$$

где $b = A_1 c. \diamond$

9 / 23

Проекторы на инвариантные подпространства

Матрица P является проектором на инвариантное подпространство \mathcal{L} матрицы A, если для любого вектора $u \in \mathbb{R}^n$ верны следующие соотношения:

$$Pu \in \mathcal{L}, \quad v = APu \in \mathcal{L}, \quad Pv = PAPu = v.$$

Значит, AP = PAP $A(I - P) = (I - P)A(I - P) \Leftrightarrow PA = PAP$

Lemma

P и I-P – проекторы на инв. подпр-ва $A \Leftrightarrow$

$$P^2 = P$$
, и $PA = AP$

Проекторы на инвариантные подпространства

Lemma

Если матрица P является проектором на инвариантное подпространство \mathcal{L} матрицы A, то имеют место представление

$$A = [T_1|T_2] \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix} [T_1|T_2]^{-1}, \qquad P = [T_1|T_2] \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} [T_1|T_2]^{-1},$$

где столбцы матриц T_1 и T_2 образуют базисы инвариантных подпространств матрицы A

Интегральное представление.

Theorem

Пусть γ – замкнутая кривая, охватывающая часть спектра матрицы A, P – проектор на соответствующее инвариантное подпространство матрицы A, тогда

$$P = \frac{1}{2\pi i} \oint_{\gamma} (\lambda I - A)^{-1} d\lambda$$

Доказательство.

$$A = T \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix} T^{-1},$$

$$T^{-1} \frac{1}{2\pi i} \oint_{\gamma} (\lambda I - A)^{-1} d\lambda T = \frac{1}{2\pi i} \begin{pmatrix} \oint_{\gamma} (\lambda I - A_1)^{-1} d\lambda & 0 \\ 0 & \oint_{\gamma} (\lambda I - A_2)^{-1} d\lambda \end{pmatrix}.$$

Интегральное представление.

Так как весть спектр матрицы A_1 полностью лежит внутри γ , то контур можно произвольно растягивать, не изменяя интеграла.

Пусть $|\lambda| = \alpha > \|A_1\|$, тогда

$$\begin{split} (\lambda I - A_1)^{-1} &= \frac{1}{\lambda} (I - \frac{1}{\lambda} A_1)^{-1} = \frac{1}{\lambda} I + \frac{1}{\lambda^2} A_1 \sum_{m=0}^{\infty} \frac{1}{\lambda^m} A_1^m = \frac{1}{\lambda} I + \Delta(\lambda). \\ \|\Delta(\lambda)\| &\leq \frac{\|A_1\|}{\alpha^2} \frac{1}{1 - \|A_1\|/\alpha}, \\ \left\|\frac{1}{2\pi i} \int_0^{2\pi} \Delta(\alpha e^{i\varphi}) d(\alpha e^{i\varphi}) \right\| &\leq \frac{1}{2\pi} \frac{\|A_1\|}{\alpha^2} \frac{1}{1 - \|A_1\|/\alpha} \to 0 \text{ при } \alpha \to \infty. \end{split}$$

Интегральное представление.

$$\begin{split} (\lambda I - A_1)^{-1} &= \frac{1}{\lambda} I + \Delta(\lambda) \\ &\frac{1}{2\pi i} \oint_{\gamma} (\lambda I - A_1)^{-1} d\lambda = \frac{1}{2\pi i} \int_{|\lambda| = \alpha} (\lambda I - A_1)^{-1} d\lambda = \\ &= \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{i\alpha e^{i\varphi} d\varphi}{\alpha e^{i\varphi}} + \frac{1}{2\pi i} \int_{|\lambda| = \alpha} \Delta(\lambda) d\lambda = I \end{split}$$

 \Diamond

Lemma

Предположим, что для определенной кривой γ значение параметра $m_{\gamma}(A)$ конечно, а матрицы A и B – близки:

$$\|A-B\| \leq \varepsilon \|A\|, \qquad \varepsilon m_\gamma(A) < 1, \text{ где } m_\gamma(A) = \|A\| \max_{\lambda \in \gamma} \|(\lambda I - A)^{-1}\|.$$

Тогда

$$\|(\lambda I - A)^{-1} - (\lambda I - B)^{-1}\| \le \frac{m_{\gamma}^2 \varepsilon}{\|A\|(1 - \varepsilon m_{\gamma}(A))}.$$

Доказательство. Рассмотрим резольвенту

$$(\lambda I - B)^{-1} = (\lambda I - B \pm A)^{-1} = (\lambda I - A + (A - B))^{-1} =$$

= $(I + (\lambda I - A)^{-1}(A - B))^{-1}(\lambda I - A)^{-1}$.

Т.к. по условию $\|\mathbf{A} - \mathbf{B}\| \le \varepsilon \|\mathbf{A}\|, \qquad \varepsilon \mathbf{m}_{\gamma}(\mathbf{A}) < 1,$ то

$$\|(\lambda I-A)^{-1}(A-B)\| \leq \|(\lambda I-A)^{-1}\|\|(A-B)\| \leq \frac{m_{\gamma}(A)}{\|A\|} \cdot \varepsilon \|A\| \leq \varepsilon m_{\gamma}(A) < 1.$$

Можно применить разложение в ряд Неймана

$$\left(I+(\lambda I-A)^{-1}(A-B)\right)^{-1}=\sum_{k=0}^{\infty}(-1)^k\left[(\lambda I-A)^{-1}(A-B)\right]^k=I+\Delta(\lambda).$$

При этом очевидна оценка

$$\begin{split} \|\Delta(\lambda)\| &\leq \|(\lambda I - A)^{-1}(A - B) \sum_{k=0}^{\infty} (-1)^k \left[(\lambda I - A)^{-1}(A - B) \right]^k \| \leq \\ &\leq \frac{\varepsilon m_{\gamma}(A)}{1 - \varepsilon m_{\gamma}(A)} \end{split}$$

Получили
$$\left(I + (\lambda I - A)^{-1}(A - B)\right)^{-1} = I + \Delta(\lambda).$$

$$\|\Delta(\lambda)\| \le \frac{\varepsilon m_{\gamma}(A)}{1 - \varepsilon m_{\gamma}(A)}$$

$$(\lambda I - B)^{-1} = \left(I + (\lambda I - A)^{-1}(A - B)\right)^{-1}(\lambda I - A)^{-1} = (I + \Delta)(\lambda I - A)^{-1}$$

$$(\lambda I - B)^{-1} - (\lambda I - A)^{-1} = (I + \Delta)(\lambda I - A)^{-1} - (\lambda I - A)^{-1} = \Delta(\lambda)(\lambda I - A)^{-1}$$

$$\|(\lambda I - A)^{-1} - (\lambda I - B)^{-1}\| \le \frac{m_{\gamma}^2 \varepsilon}{\|A\|(1 - \varepsilon m_{\gamma}(A))}.$$

 \Diamond

Следовательно,

Следствие. Если

$$\|\mathbf{A} - \mathbf{B}\| \le \varepsilon \|\mathbf{A}\|, \qquad \varepsilon \mathbf{m}_{\gamma}(\mathbf{A}) < \frac{1}{2},$$

(усиление условия) то разница резольвент оценивается следующим образом

$$\|(\lambda I - A)^{-1} - (\lambda I - B)^{-1}\| \le \frac{2m_{\gamma}^2 \varepsilon}{\|A\|}.$$

Следствие. Пусть для матриц A и B выполнено условие леммы, тогда их резольвенты близки также в смысле следующего неравенства

$$\|\mathbf{I} - (\lambda \mathbf{I} - \mathbf{B})^{-1}(\lambda \mathbf{I} - \mathbf{A})\| \le \frac{\varepsilon m_{\gamma}(\mathbf{A})}{1 - \varepsilon m_{\gamma}(\mathbf{A})}$$

Доказательство

$$(\lambda I - B)^{-1}(\lambda I - A) - I = \Delta(\lambda)$$

Непрерывность проекторов

$$\|(\lambda I - A)^{-1} - (\lambda I - B)^{-1}\| \le \frac{m_{\gamma}^2 \varepsilon}{\|A\|(1 - \varepsilon m_{\gamma}(A))}.$$

Следствие (непрерывность проекторов) Пусть $\|\mathbf{B} - \mathbf{A}\| \le \varepsilon \|\mathbf{A}\|$.

$$P_{\gamma}(A) = \frac{1}{2\pi i} \oint_{\gamma} (\lambda I - A)^{-1} d\lambda, \qquad P_{\gamma}(B) = \frac{1}{2\pi i} \oint_{\gamma} (\lambda I - B)^{-1} d\lambda$$

тогда

$$\begin{split} \|P_{\gamma}(A) - P_{\gamma}(B)\| &= \left\| \frac{1}{2\pi i} \oint_{\gamma} [(\lambda I - A)^{-1} - (\lambda I - B)^{-1}] d\lambda \right\| \leq \\ &\leq \frac{l_{\gamma}}{2\pi \|A\|} \frac{m_{\gamma}^{2}(A)\varepsilon}{1 - \varepsilon m_{\gamma}(A)}, \end{split}$$

Постановка задачи дихотомии матричного спектра

- * Определить, есть ли на заданной кривой собственные значения матрицы
- * Если на кривой с.зн нет, то вычислить базисы инвариантных подпространств.
- * Оценить расстояние от спектра до кривой
- * Привести матрицу к клеточно-диагональной форме

Постановка задачи дихотомии матричного спектра

- * Определить, есть ли на заданной кривой собственные значения матрицы A
- * Если на кривой с.зн нет, то вычислить базисы инвариантных подпространств.
- * Оценить расстояние от спектра до кривой
- * Привести матрицу к клеточно-диагональной форме

$$\begin{split} H_{\gamma}(A) &= \frac{\|A\|^2}{l_{\gamma}} \oint_{\gamma} (\lambda I - A)^{-*} (\lambda I - A)^{-1} |d\lambda| \\ P_{\gamma}(A) &= \frac{1}{2\pi i} \oint_{\gamma} (\lambda I - A)^{-1} d\lambda \end{split}$$

Обобщение уравнения Ляпунова на случай дихотомии матричного спектра единичной окружностью

Theorem

Если у матрицы A отсутствуют собственные значение на единичной окружности, то система матричных уравнений

$$\left\{ \begin{array}{l} X - A^*XA = P^*CP - (I-P)^*C(I-P) \\ \\ X = X^* > 0, \ P^2 = P, \ PA = AP, \ P^*X = XP \end{array} \right.$$

однозначно разрешима относительно X и P при любой $C=C^*>0,$ причем решение $X=X^*>0$ имеет интегральное представление

$$H(A) = \frac{1}{2\pi} \int_0^{2\pi} (A - e^{i\varphi}I)^{-*} C(A - e^{i\varphi}I)^{-1} d\varphi$$

22 / 23

Обобщение уравнения Ляпунова на случай дихотомии матричного спектра единичной окружностью

Theorem (обратная)

Если при любой $C=C^*>0$ система

$$\left\{ \begin{array}{l} X - A^*XA = P^*CP - (I-P)^*C(I-P) \\ \\ X = X^* > 0, \ P^2 = P, \ PA = AP, \ P^*X = XP \end{array} \right.$$

однозначно разрешима относительно X и P, то у матрицы A отсутствуют собственные значение на единичной окружности.