Unsupervised machine learning algorithms can detect dynamical heterogeneities in 2D glass former liquids from the structural heterogeneities

Unsupervised Machine Learning in 2D Glasses

Utku Gürel¹, Giuseppe Foffi², Laura Filion³, Frank Smallenburg²

¹Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, Netherlands ²Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France ³Soft Condensed Matter, Debye Institute of Nanomaterials Science, Utrecht University, Utrecht, Netherlands

INTRODUCTION

- We use an unsupervised machine learning (UML) technique to autonomously find structural variations in a 2D glassy system [1].
- We then show that these structural variations strongly correlate with the future dynamics of the particles. This demonstrates the strong link between structure and glassy dynamics [2].

Fig.1 Snapshots of a 2D glass former. Particles are coloured by their machinelearned membership probability P_{red} (left) and by the dynamic propensity D_i (right).

METHODS

- Event driven molecular dynamics generates 2D binary hard disk liquids.
- Bond-orientational order parameters describe the local structure.
- Neural network based autoencoder implemented with PyTorch [3].
- Gaussian mixture model clustering algorithm

RESULTS

The UML approach separates the particles into two clusters according to their local structure.

Fig. 2 Large particles are clustered on the reduced dimensional space. Red points correspond to faster particles a posteriori.

Average membership probability correlates with dynamic propensity.

Fig. 3 Spearman's rank correlation between the particles' membership probability and their dynamic propensity. The probability values are predicted by UML.

DISCUSSION

- 2D correlations are comparable to their 3D equivalents [1].
- We can improve the correlation between the machine-learned order parameter and dynamics by also considering structural descriptors that only consider particles of the same species.

Scan to see this poster and related animations

Supplementary Information

Bond orientational order parameters

$$\phi_k(i) = \frac{1}{n} \sum_{i}^{n} e^{ik\theta_i}$$

Locally averaged bond order parameters

$$\bar{\phi}_k(i) = \frac{1}{n} \sum_{j}^n \phi_k(j)$$
 Input to the autoencoder

$$\bar{\Phi}(i) = \left(\left\{\bar{\phi}_k(i)\right\}, \left\{\bar{\phi}_k^{ss}(i)\right\}\right)$$
 Dynamic propensity

 $D_i(\delta t) = \langle |\mathbf{r}_i(\delta t) - \mathbf{r}_i(0)| \rangle_c$ Autoencoder architecture Linear input layer dimension: d=16Nonlinear encoder layer dimension: 10d Bottleneck dimension: c=2 tanh activation function is used in both nonlinear layers

Correlations and clustering of small particles

Correlations in 3D taken from [1]

REFERENCES

[1] E. Boattini et al. Nat. Commun. 11,

[2] C.P. Royall et al. Phys. Rep. 560, (2015):1-75

[3] A. Paszke et al. Adv. Neural Inf. Process. Syst. 32, (2019)

