The group G is isomorphic to the group labelled by [16, 13] in the Small Groups library. Ordinary character table of $G \cong (C4 \times C2) : C2$:

	1 <i>a</i>	4a	2a	4b	2b	4c	2c	4d	2d	4e
χ_1	1	1	1	1	1	1	1	1	1	1
χ_2	1	1	1	1	1	1	-1	-1	-1	-1
χ_3	1	1	1	1	-1	-1	1	1	-1	-1
χ_4	1	1	1	1	-1	-1	-1	-1	1	1
χ_5	1	-1	1	-1	-1	1	-1	1	-1	1
χ_6	1	-1	1	-1	-1	1	1	-1	1	-1
χ_7	1	-1	1	-1	1	-1	-1	1	1	-1
χ_8	1	-1	1	-1	1	-1	1	-1	-1	1
χ_9	2	2 * E(4)	-2	-2 * E(4)	0	0	0	0	0	0
χ_{10}	2	-2*E(4)	-2	2 * E(4)	0	0	0	0	0	0

Trivial source character table of $G \cong (C4 \times C2)$: C2 at p = 2:

 $P_2 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)]) \cong C2$

 $P_1 = Group([()]) \cong 1$

This is source character table of $G = (G + X + G Z)$. $G = (G + X + G Z)$.																				
Normalisers N_i	N_1	N_2	N_3	N_4	N_5	N_6	N_7	N_8	N_9	N_{10}	N_{11}	N_{12}	N_{13}	N_{14}	N_{15}	N_{16}	N_{17}	N_{18}	N_{19}	N_{20}
p-subgroups of G up to conjugacy in G		P_2	P_3	P_4	P_5	P_6	P_7	P_8	P_9	P_{10}	P_{11}	P_{12}	P_{13}	P_{14}	P_{15}	P_{16}	P_{17}	P_{18}	P_{19}	P_{20}
Representatives $n_j \in N_i$		1a	1a	1 <i>a</i>	1a	1a	1a	1a	1a	1 <i>a</i>	1a									
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 2 \cdot \chi_9 + 2 \cdot \chi_{10}$	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	8	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10}$	8	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10}$	8	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10}$	8	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	4	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	4	4	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	4	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	4	0	4	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	4	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	4	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	4	0	0	4	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	2	2	2	0	0	2	0	2	0	2	0	2	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	2	0	2	0	2	0	0	2	2	0	0	0	2	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	2	0	2	2	0	0	2	2	0	0	2	0	0	2	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	2	2	0	0	2	2	2	0	0	0	0	0	0	0	2	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	2	2	0	2	0	2	0	0	2	0	2	0	0	0	0	2	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	2	0	0	2	2	0	0	0	0	2	2	0	0	0	0	0	2	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	2	0	0	0	0	0	2	0	2	2	0	0	0	0	0	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

```
P_3 = Group([(1,3)(2,6)(4,9)(5,10)(7,12)(8,13)(11,15)(14,16)]) \cong C2
P_4 = Group([(1,2)(3,13)(4,7)(5,8)(6,10)(9,16)(11,14)(12,15)]) \cong C2
P_5 = Group([(1,16)(2,15)(3,7)(4,6)(5,12)(8,9)(10,14)(11,13)]) \cong C2
P_6 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16)]) \cong C4
P_8 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,9,5,15)(2,12,8,16)(3,4,10,11)(6,7,13,14)]) \cong C4
P_9 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,2)(3,13)(4,7)(5,8)(6,10)(9,16)(11,14)(12,15)]) \cong \mathbf{C2} \times \mathbf{C2}
P_{10} = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,7,5,14)(2,4,8,11)(3,16,10,12)(6,15,13,9)]) \cong C4
P_{11} = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,13,5,6)(2,10,8,3)(4,16,11,12)(7,15,14,9)]) \cong C4
P_{12} = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,16)(2,15)(3,7)(4,6)(5,12)(8,9)(10,14)(11,13)]) \cong C2 \times C2
P_{13} = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,3)(2,6)(4,9)(5,10)(7,12)(8,13)(11,15)(14,16),(1,2)(3,13)(4,7)(5,8)(6,10)(9,16)(11,14)(12,15)]) \cong D8
P_{14} = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,2)(3,13)(4,7)(5,8)(6,10)(9,16)(11,14)(12,15)]) \cong C4 \times C2
P_{15} = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,9,5,15)(2,12,8,16)(3,4,10,11)(6,7,13,14),(1,2)(3,13)(4,7)(5,8)(6,10)(9,16)(11,14)(12,15)]) \cong D8
P_{16} = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,3)(2,6)(4,9)(5,10)(7,12)(8,13)(11,15)(14,16)]) \cong C4 \times C2
P_{17} = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,3)(2,6)(4,9)(5,10)(7,12)(8,13)(11,15)(14,16),(1,7,5,14)(2,4,8,11)(3,16,10,12)(6,15,13,9)]) \cong D8
P_{18} = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,13,5,6)(2,10,8,3)(4,16,11,12)(7,15,14,9)]) \cong C4 \times C2
P_{19} = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,9,5,15)(2,12,8,16)(3,4,10,11)(6,7,13,14),(1,7,5,14)(2,4,8,11)(3,16,10,12)(6,15,13,9)]) \cong \mathbb{Q}8
N_3 = Group([(1,3)(2,6)(4,9)(5,10)(7,12)(8,13)(11,15)(14,16), (1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16)]) \cong \mathrm{C4} \times \mathrm{C2}
N_4 = Group([(1,2)(3,13)(4,7)(5,8)(6,10)(9,16)(11,14)(12,15),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,8)(2,5)(3,6)(4,14)(7,11)(9,12)(10,13)(15,16)]) \cong C4 \times C2
N_5 = Group([(1,16)(2,15)(3,7)(4,6)(5,12)(8,9)(10,14)(11,13),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16)]) \cong C4 \times C2
N_6 = Group([(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,2)(3,13)(4,7)(5,8)(6,10)(9,16)(11,14)(12,15),(1,3)(2,6)(4,9)(5,10)(7,12)(8,13)(11,15)(14,16)]) \cong (C4 \times C2) : C2
N_{11} = Group([(1,13,5,6)(2,10,8,3)(4,16,11,12)(7,15,14,9),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,2)(3,13)(4,7)(5,8)(6,10)(9,16)(11,14)(12,15),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16)]) \cong (C4 \times C2) : C2
N_{12} = Group([(1,16)(2,15)(3,7)(4,6)(5,12)(8,9)(10,14)(11,13),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,2)(3,13)(4,7)(5,8)(6,10)(9,16)(11,14)(12,15),(1,3)(2,6)(4,9)(5,10)(7,12)(8,13)(11,15)(14,16)]) \cong (C4 \times C2) : C2
N_{13} = Group([(1,2)(3,13)(4,7)(5,8)(6,10)(9,16)(11,14)(12,15),(1,3)(2,6)(4,9)(5,10)(7,12)(8,13)(11,15)(14,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16)]) \cong (C4 \times C2) : C2 \\ N_{14} = Group([(1,2)(3,13)(4,7)(5,8)(6,10)(9,16)(11,14)(12,15),(1,4,5,11)(2,7,8,14)(3,9,10,15)(6,12,13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,3)(2,6)(4,9)(5,10)(7,12)(8,13)(11,15)(14,16)]) \cong (C4 \times C2) : C2
```