PROBLEM STATEMENT:- To predict the rainfall based

on various feat of the dataset

In [1]:

```
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

df=pd.read_csv(r"C:\Users\jyothi reddy\Downloads\rainfall.csv")
df

Out[2]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	A
0	ANDAMAN And NICOBAR ISLANDS	NICOBAR	107.3	57.9	65.2	117.0	358.5	295.5	285.0	2
1	ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMAN	43.7	26.0	18.6	90.5	374.4	457.2	421.3	4:
2	ANDAMAN And NICOBAR ISLANDS	N & M ANDAMAN	32.7	15.9	8.6	53.4	343.6	503.3	465.4	41
3	ARUNACHAL PRADESH	LOHIT	42.2	80.8	176.4	358.5	306.4	447.0	660.1	4:
4	ARUNACHAL PRADESH	EAST SIANG	33.3	79.5	105.9	216.5	323.0	738.3	990.9	7
636	KERALA	IDUKKI	13.4	22.1	43.6	150.4	232.6	651.6	788.9	5;
637	KERALA	KASARGOD	2.3	1.0	8.4	46.9	217.6	999.6	1108.5	6;
638	KERALA	PATHANAMTHITTA	19.8	45.2	73.9	184.9	294.7	556.9	539.9	3!
639	KERALA	WAYANAD	4.8	8.3	17.5	83.3	174.6	698.1	1110.4	5!
640	LAKSHADWEEP	LAKSHADWEEP	20.8	14.7	11.8	48.9	171.7	330.2	287.7	2 [.]

641 rows × 19 columns

localhost:8888/notebooks/Mini project 3.ipynb#

In [3]:

df.head()

Out[3]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
0	ANDAMAN And NICOBAR ISLANDS	NICOBAR	107.3	57.9	65.2	117.0	358.5	295.5	285.0	271.9	354.8
1	ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMAN	43.7	26.0	18.6	90.5	374.4	457.2	421.3	423.1	455.6
2	ANDAMAN And NICOBAR ISLANDS	N & M ANDAMAN	32.7	15.9	8.6	53.4	343.6	503.3	465.4	460.9	454.8
3	ARUNACHAL PRADESH	LOHIT	42.2	80.8	176.4	358.5	306.4	447.0	660.1	427.8	313.6
4	ARUNACHAL PRADESH	EAST SIANG	33.3	79.5	105.9	216.5	323.0	738.3	990.9	711.2	568.0
4											•

In [4]:

df.tail()

Out[4]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	Αl
636	KERALA	IDUKKI	13.4	22.1	43.6	150.4	232.6	651.6	788.9	527
637	KERALA	KASARGOD	2.3	1.0	8.4	46.9	217.6	999.6	1108.5	63€
638	KERALA	PATHANAMTHITTA	19.8	45.2	73.9	184.9	294.7	556.9	539.9	352
639	KERALA	WAYANAD	4.8	8.3	17.5	83.3	174.6	698.1	1110.4	592
640	LAKSHADWEEP	LAKSHADWEEP	20.8	14.7	11.8	48.9	171.7	330.2	287.7	217
4										•

In [5]:

```
df.isnull().any()
```

Out[5]:

STATE_UT_NAME False DISTRICT False JAN False False FEB MAR False APR False False MAY JUN False JUL False False AUG SEP False False OCT NOV False False DEC False ANNUAL False Jan-Feb Mar-May False Jun-Sep False Oct-Dec False dtype: bool

In [6]:

```
df.isnull().sum()
```

Out[6]:

STATE_UT_NAME 0 **DISTRICT** 0 JAN 0 **FEB** 0 0 MAR **APR** 0 MAY 0 JUN 0 JUL 0 AUG 0 0 SEP OCT 0 NOV 0 0 DEC **ANNUAL** 0 Jan-Feb 0 Mar-May 0 Jun-Sep 0 Oct-Dec dtype: int64

In [7]:

df.describe()

Out[7]:

	JAN	FEB	MAR	APR	MAY	JUN	JU
count	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	641.00000
mean	18.355070	20.984399	30.034789	45.543214	81.535101	196.007332	326.03369
std	21.082806	27.729596	45.451082	71.556279	111.960390	196.556284	221.36464
min	0.000000	0.000000	0.000000	0.000000	0.900000	3.800000	11.60000
25%	6.900000	7.000000	7.000000	5.000000	12.100000	68.800000	206.40000
50%	13.300000	12.300000	12.700000	15.100000	33.900000	131.900000	293.70000
75%	19.200000	24.100000	33.200000	48.300000	91.900000	226.600000	374.80000
max	144.500000	229.600000	367.900000	554.400000	733.700000	1476.200000	1820.90000
4							>

In [8]:

df.shape

Out[8]:

(641, 19)

```
In [9]:
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 641 entries, 0 to 640
Data columns (total 19 columns):
 #
     Column
                     Non-Null Count
                                     Dtype
---
 0
     STATE_UT_NAME 641 non-null
                                      object
 1
     DISTRICT
                                      object
                     641 non-null
 2
                     641 non-null
                                      float64
     JAN
 3
     FEB
                     641 non-null
                                      float64
 4
                     641 non-null
                                      float64
     MAR
 5
                     641 non-null
                                      float64
     APR
 6
     MAY
                     641 non-null
                                      float64
 7
                                      float64
     JUN
                     641 non-null
 8
     JUL
                     641 non-null
                                      float64
 9
     AUG
                     641 non-null
                                      float64
 10
                     641 non-null
                                      float64
     SEP
 11
     OCT
                     641 non-null
                                      float64
                     641 non-null
                                      float64
 12
     NOV
 13
     DEC
                     641 non-null
                                      float64
                                      float64
                     641 non-null
 14
     ANNUAL
                     641 non-null
                                      float64
 15
     Jan-Feb
     Mar-May
                                      float64
                     641 non-null
 16
                                      float64
 17
     Jun-Sep
                     641 non-null
 18 Oct-Dec
                     641 non-null
                                      float64
dtypes: float64(17), object(2)
memory usage: 95.3+ KB
In [10]:
features=df[2:13]
target=df.columns[14]
In [11]:
df.fillna(method='ffill',inplace=True)
In [12]:
X = np.array(df['JAN']).reshape(-1,1)
y = np.array(df['ANNUAL']).reshape(-1,1)
In [13]:
X_train,x_test,y_train,y_test = train_test_split(X,y,train_size=0.65)
regr = LinearRegression()
regr.fit(X_train,y_train)
print(regr.score(x_test, y_test))
```

-0.0027577582609019657

In [14]:

```
y_pred = regr.predict(x_test)
plt.scatter(x_test, y_test, color ='b')
plt.plot(x_test, y_pred, color ='k')
plt.show()
```


In [15]:

```
coeff_df=pd.DataFrame(regr.coef_)
coeff_df
```

Out[15]:

0 0 5.609597

In [16]:

sns.pairplot(df)

Out[16]:

<seaborn.axisgrid.PairGrid at 0x1bfa6de93d0>

In [17]:

```
sns.displot(df['ANNUAL'])
```

Out[17]:

<seaborn.axisgrid.FacetGrid at 0x1bfc404bbd0>

In [18]:

from sklearn.linear_model import Ridge,RidgeCV,Lasso

In [19]:

```
ridgeReg = Ridge(alpha=10)
ridgeReg.fit(X_train,y_train)
train_score_ridge = ridgeReg.score(X_train,y_train)
test_score_ridge = ridgeReg.score(x_test,y_test)
print('\nRidge model\n')
print('Train score for ridge model is {}'.format(train_score_ridge))
print('Test score for ridge model is {}'.format(test_score_ridge))
```

Ridge model

Train score for ridge model is 0.016181753163002965 Test score for ridge model is -0.0027589902271514255

```
In [20]:
```

```
lassoReg=Lasso(alpha=10)
lassoReg.fit(X_train,y_train)
train_score_lasso=lassoReg.score(X_train,y_train)
test_score_lasso=lassoReg.score(x_test,y_test)
print('\nLasso Model\n')
print('Train score for lasso model is {}'.format(train_score_lasso))
print('Test score for lasso model is {}'.format(test_score_lasso))
```

Lasso Model

Train score for lasso model is 0.01618140429093895 Test score for lasso model is -0.0028497425020088674

In [21]:

```
from sklearn.linear_model import ElasticNet
regr = ElasticNet()
regr.fit(X,y)
```

Out[21]:

```
▼ ElasticNet
ElasticNet()
```

In [22]:

```
print(regr.coef_)
```

[6.48002837]

In [23]:

```
print(regr.intercept_)
```

[1228.02820315]

In [24]:

```
y_pred_elastic = regr.predict(X_train)
mean_squared_error = np.mean((y_pred_elastic-y_train)**2)
print('Mean squared error on test set', mean_squared_error)
```

Mean squared error on test set 766716.0129355736

In [25]:

```
regr.score(X_train,y_train)
```

Out[25]:

0.010343259473565514

CONCLUSION: ¶

Based on accuracy of all models we can conclude that Linear Regression is the best model for given dataset

In []:			