Количественный анализ SERS спектров смесей гликированного и негликированного альбумина

<u>Сафиуллин Р.Р.</u>, Афанасьев К.Н., Богинская И.А., Рыжиков И.А., Седова М.В., Слипченко Е.А.

ИТПЭ РАН Москва 2021

Мотивация

Создание автоматизированной системы контроля содержания гликированного альбумина в плазме крови с использованием эффекта ГКР и численных методов

Lucica® Glycated Albumin-L (Asahi-Kasei Pharma Corporation, Япония), Glycated Serum Protein LiquiColor® Assay (EKF Diagnostics Inc., США) современные тесты требуют высокой квалификации персонала и большого количества реактивов

Постановка задачи

Схема измерений

Конфокальный микроскоп

E3 E2 U10 U9 U6 U6 W10 W10 W10 W14 U14 U2 U1

Оптическая схема измерений

WITec

Оптическое изображение высушенной капли

Параметры измерений:

- мощность лазера 56 *мВт*,
- длина волны возбуждения 785 нм
- время интегрирования спектра 15 сек

Используемые методы для обработки:

- Удаление выбросов
- Вычитание базовой линии
- Нормировка и сглаживание

Удаление выбросов

SERS spectra for mixtures of HSA and GHSA

https://doi.org/10.1364/AO.57.005794

Вычитание базовой линии

Нормировка и сглаживание

$$Z = \frac{x - \mu_{\rm s}}{\sigma_{\rm s}}$$

- Корректное учитывание признаков
- Уменьшение шумового фона
- Повышение обобщающей способности модели

Модель линейного дискриминантного анализа

$$X$$
 — исходная матрица c — концентрация GHSA

$$N = \sum_{i=0}^{c} N_i$$
 — количество объектов

Разброс внутри класса:

$$S_w = \sum_{i=0}^c S_i, (n \times n)$$

где
$$S_i = \sum_{x \in D_i}^n (x - m_i)(x - m_i)^T, (n \times n)$$

$$m_i = \frac{1}{N_i} \sum_{x \in D}^n x_k$$

Разброс между классами:

$$S_B = \sum_{i=0}^{c} (m_i - m)(m_i - m)^T, (n \times n)$$

$$A = S_W^{-1} S_B$$

$$A\vec{v} = \lambda \vec{v}$$

$$W = [v_{\max \lambda_1}^{\rightarrow}, v_{\max \lambda_2}^{\rightarrow} ... v_{\max \lambda_k}^{\rightarrow}], (n \times k)$$

$$Y = X \times W, (N \times k)$$

Модель линейной регрессии + L1, L2 регуляризация

$$L_1 = (y - Xw)^2 + \alpha_1 |w|$$

$$L_2 = (y - Xw)^2 + \alpha_2 |w|^2$$

Результаты

Линейный дискриминантный анализ

	precision	recall	f1-score	support
0%GHSA	1.00	1.00	1.00	5
3%GHSA	0.86	1.00	0.92	6
5%GHSA	1.00	0.50	0.67	6
7%GHSA	0.75	1.00	0.86	6
10%GHSA	0.86	1.00	0.92	6
13%GHSA	1.00	0.83	0.91	6
15%GHSA	1.00	1.00	1.00	6
18%GHSA	1.00	1.00	1.00	6
20%GHSA	1.00	1.00	1.00	6
23%GHSA	1.00	1.00	1.00	6
25%GHSA	1.00	1.00	1.00	6
accuracy			0.94	65
macro avg	0.95	0.94	0.93	65
weighted avg	0.95	0.94	0.93	65

https://doi.org/10.1109/ICUFN.2017.7993951

Результаты

Calibration curve

Выводы

- Показана возможность разделения спектров различных белков
- Разработана математическая модель для быстрого определения уровня гликированного альбумина в растворе на основе спектра ГКР

Спасибо за внимание

