Министерство образования Российской Федерации Центральный оргкомитет Всероссийских олимпиад

XXXVIII Всероссийская олимпиада школьников по физике

Окружной этап

Экспериментальный тур

Методическое пособие

МФТИ, 2003/2004 уч.г.

Комплект задач подготовлен методической комиссией по физике Центрального оргкомитета Всероссийских олимпиад школьников Министерства образования Российской Федерации

Тел.: (095) 408-80-77, 408-86-95.

E-mail: vip@pop3.mipt.ru

Авторы задач

9 класс

10 класс 1. Швелов О. 11 класс

Кузьмичев С.
Дунин С.

2. Дунин С.

1. Шведов О. 2. Варламов С.

Общая редакция — Слободянин В., Дунин С.

Оформление и верстка — Чудновский А., Самокотин А.

При подготовке оригинал-макета использовалась издательская система IATEX $2_{\mathcal{E}}$. © Авторский коллектив Подписано в печать 16 марта 2004 г. в 22:18.

141700, Московская область, г.Долгопрудный Московский физико-технический институт

бумага.

9 класс

Задача 1. Закрепленная резинка

Определите коэффициент жесткости резинки, закрепленной на планке. Отсоединять концы резинки от креплений запрещается.

Оборудование. Штатив с лапкой, деревянная планка длиной 50 см с закрепленной на ней резинкой, грузы массой $m_1=150$ г и $m_2=300$ г с проволочной петлей для их крепления к резинке, линейка, миллиметровая

Задача 2. Коэффициент отражения стекла

Определите коэффициент отражения стекла при падении на него света под углом 60° .

Оборудование. Стеклянная пластинка, источник тока, реостат, два ключа, соединительные провода, две лампочки на подставках, две одинаковые длиннофокусные собирающие линзы, экран, черная бумага, ножницы, рулетка.

Задача 1. Черный ящик (1)

В «черном ящике» с тремя выводами находится электрическая цепь (рис. 1). Сопротивление R_1 задано (2 кОм). Найдите ЭДС батареек \mathcal{E}_2 и \mathcal{E}_3 и сопротивления резисторов R_2 и R_3 .

Батарейки и вольтметр считайте идеальными. Оборудование. «Черный ящик», вольтметр, проода.

Задача 2. Поверхностное натяжение

Найдите отношение коэффициентов поверхностного натяжения воды и мыльного раствора.

Оборудование. Стеклянная трубка, имеющая сужение на одном конце, сосуд с водой, мыльный раствор, скотч, миллиметровая бумага.

11 класс Задача 1. Черный ящик (2)

В «черном ящике» с тремя выводами находится электрическая цепь (рис. 2). Расшифруйте эту схему и перерисуйте ее, заменив вопросительные знаки на величины сопротивлений резисторов, ЭДС батарейки, номера выводов. Величина наименьшего из трех сопротивлений задана (1,5 кОм). Батарейку и вольтметр считайте идеальными.

Оборудование. «Черный ящик», вольтметр, провода.

Задача 2. Плотность сока

- 1. Определите отношение α масс двух кусков моровки.
- 2. Определите отношение γ плотности сока к плотности воды.

Оборудование. Два куска морковки со «шляпками», стакан сока, стакан воды, штатив с планкой, нитки, канцелярские кнопки, миллиметровая бумага.

Примечание. По окончании эксперимента сок можно выпить. Морковку не есть — она для жюри, «шляпку» из морковки не вынимать.

Рис. 2

Возможные решения 9 класс

Задача 1. Закрепленная резинка

Пусть k — коэффициент жесткости резинки, $2L_0$ — ее длина в ненапряженном состоянии, $2L_1$ — расстояние между креплениями резинки, 2L — длина нагруженной резинки, h — вертикальное смещение середины нагруженной резинки, α — угол между вертикалью и наклонным участком резинки (рис. 3). Запишем условие равновесия груза на резинке:

$$mg = k(L-L_0)\cos\alpha = k(L-L_0)\frac{h}{L} = kh\left(1 - \frac{L_0}{L}\right).$$

Отсюда

$$\frac{mg}{h} = k \left(1 - \frac{L_0}{L} \right).$$

Введем обозначения:

$$y=rac{mg}{h}, \qquad x=rac{1}{L}, \qquad$$
 тогда $\qquad y=k(1-L_0x).$

Проведем серию измерений для имеющихся грузов. Построим график зависимости y(x) (рис. 4). Он представляет собой прямую, пересекающую ось Ox в точке x_0 . Из графика находим угловой коэффициент b и L_0 как величину, обратную x_0 . С учетом последнего уравнения, $k=b/L_0$. Оценим погрешность измерений. Для этого построим на графике кресты ошибок экспериментальных точек:

$$\frac{\Delta y}{y} = \frac{\Delta h}{h}, \quad \frac{\Delta x}{x} = \frac{\Delta L}{L}.$$

Проведем через кресты ошибок граничные прямые, которые определят Δx_0 и Δb . Тогда

$$\frac{\Delta L_0}{L_0} = \frac{\Delta x_0}{x_0}, \qquad \frac{\Delta k}{k} = \frac{\Delta L_0}{L_0} + \frac{\Delta x_0}{x_0}.$$

Рекомендации для организаторов. Планку с резинкой можно крепить не в штативе, а каким-либо образом к столу или спинке стула. Миллиметровая бумага формата A4. Массы грузов могут быть и другие, но желательно, чтобы они отличались в два раза. Длина резинки порядка 40 см. На планку она крепится в растянутом состоянии и так, чтобы участники не могли ее снять.

Задача 2. Коэффициент отражения стекла

Расположим лампочки и линзы так, чтобы получить на экране изображения спиралей лампочек приблизительно одинакового размера. Черную бумагу можно использовать для предотвращения засветки. С помощью реостата выравняем яркости изображений. Теперь переместим одну из лампочек так, чтобы расстояние от нее до ее изображения осталось прежним, но пучок света претерпевал отражение от стекла под углом 60°. Изображение станет менее ярким. Закроем часть второй линзы черной бумагой так, чтобы яркости изображений снова стали равны. Отношение площади, не перекрытой части линзы, к полной площади линзы равно коэффициенту отражения стекла.

Рекомендации для организаторов. Лампочки от карманного фонаря могут быть закреплены на стойках. Источник тока должен быть согласован с лампочками, а реостат — позволять выровнять их яркости (возможно также использование двух регулируемых источников тока). Стекло размером не менее 5×4 см нужно установить вертикально на подставке. Фокусное расстояние линз порядка 30 см (подойдут линзы для очков). Бумаги должно быть достаточно для экранирования световых пучков лампочек друг от друга.

10 класс Задача 1. Черный ящик (1)

1. ЭДС батареек найдем из прямых измерений:

$$\mathcal{E}_2 = U_{12}, \qquad \mathcal{E}_3 = U_{13}.$$

2. Замкнем проводом пару выводов и измерим напряжение между этой парой и оставшимся выводом. При замыкании выводов 1 и 2 напряжение между этой парой выводов и выводом 3

$$U_{(12)-3} = \mathcal{E}_3 - \frac{\mathcal{E}_2 R_1}{R_1 + R_2}.$$

Аналогично, при замыкании выводов 1 и 3 получим

$$U_{(13)-2} = \mathcal{E}_2 - \frac{\mathcal{E}_3 R_1}{R_1 + R_3}.$$

Зная R_1 , из проведенных измерений можно найти R_2 и R_3 .

Рекомендации для организаторов. Величины сопротивлений резисторов в «черном ящике» должны быть много больше внутренних сопротивлений батареек и много меньше сопротивления вольтметра, например, $R_1=1,5$ кОм, $R_2=2$ кОм и $R_3=3$ кОм. ЭДС батареек также должны отличаться не более чем в 2 раза. Можно использовать «пальчиковые» батарейки ($\mathcal{E}_2=1,5$ В, $\mathcal{E}_3=3,0$ В). Вольтметр (например, цифровой мультиметр) должен измерять напряжения в диапазоне от нуля до суммы ЭДС батареек.

Задача 2. Поверхностное натяжение

Обмакнем узкий конец трубки в воду так, чтобы на отверстии возникла водяная пленка. Если теперь погружать трубку в сосуд с водой противоположным торцом, то пока пленка цела, в трубке, ниже уровня воды в сосуде, будет существовать столб воздуха. Для измерения высоты этого столба к трубке прикрепим скотчем полоску миллиметровой бумаги. Высота столба h связана с дополнительным давлением воздуха под пленкой p уравнением $\rho gh = p$, где ρ — плотность воды, q — ускорение свободного падения. Давление под пленкой максимально в тот момент, когда минимален радиус кривизны пленки, то есть она имеет форму полусферы. Радиус кривизны пленки в этот момент равен радиусу отверстия, затянутого ею. При дальнейшем погружении пленка теряет устойчивость, разрывается, и уровень воды в трубке скачком возрастает до уровня воды в сосуде. Измерив максимальную высоту столба воздуха под водяной пленкой, проделаем то же измерение для мыльной пленки. Поскольку радиус отверстия, затянутого пленкой, одинаков в обоих опытах, из определения σ следует, что отношение максимальных высот воздушных столбов для воляной и мыльной пленок равно искомому отношению коэффициентов поверхностных натяжений.

Pекомендации для организаторов. Внутренний диаметр стеклянной трубки $5 \div 10$ мм, длина $15 \div 20$ см. Оттянутый конец трубки должен иметь внутренний диаметр $0.3 \div 1$ мм. Сосуд с водой должен иметь прозрачные стенки и глубину, достаточную для погружения трубки в воду вертикально. В качестве стеклянной трубки можно попробовать использовать трубку от пипетки.

11 класс Задача 1. Черный ящик (2)

При замкнутом ключе измерим напряжения U_{12} , U_{23} и U_{13} между выводами. Оказывается $U_{12}=U_{23}+U_{13}$, следовательно, батарейка подсоединена к выводам 1 и 2. Пусть R_1 , R_2 , R_3 — неизвестные сопротивления, а \mathcal{E} — ЭДС батарейки, тогда напряжение между выводами:

$$U_{13} = \frac{\mathcal{E}R_2}{R_1 + R_2 + R_3}; \qquad U_{23} = \frac{\mathcal{E}R_1}{R_1 + R_2 + R_3};$$

Поочередно замкнем проводом пары выводов 1-3 и 2-3 и измерим напряжение между этими парами и оставшимся выводом:

$$U_{(13)-2} = \frac{\mathcal{E}R_1}{R_1 + R_3}, \qquad U_{(23)-1} = \frac{\mathcal{E}R_2}{R_2 + R_3}.$$

Из полученных формул можно найти отношения

$$\frac{R_1}{R_2} = \frac{U_{23}}{U_{13}}, \qquad \frac{R_1 + R_3}{R_2 + R_3} = \frac{U_{23}}{U_{13}} \cdot \frac{U_{(23)-1}}{U_{(13)-2}},$$

откуда находим отношение $R_1: R_2: R_3$. Поскольку сопротивление наименьшего резистора задано, получаем численные значения R_1, R_2, R_3 . Отметим, что выводы 1 и 2 можно менять местами, поэтому задача имеет два решения (рис. 5 и 6).

Рекомендации для организаторов. Цепь (рис. 6) помещается в «черный ящик», а ключ — снаружи. Рекомендуется выбрать величины сопротивлений R_1 и R_2 отличающиемися примерно в 2 раза, а величину сопротивления R_3 — лежащей в интервале между их значениями, например, R_1 = 1,5 кОм, R_2 = 3,0 кОм и R_3 = 2,0 кОм. Сопротивления резисторов должны быть много больше внутреннего сопротивления батарейки и много меньше сопротивления вольтметра. Вольтметр (например, цифровой мультиметр) должен измерять напряжения в диапазоне от нуля до ЭДС батарейки. Батарейку можно взять «пальчиковую» с ЭДС 1.5 В.

Рис. 5

Рис. 6

Задача 2. Плотность сока

1. С помощью кнопок прикрепим к планке миллиметровую бумагу и концы нити (точки A и D) (рис. 7). На нее подвесим грузы. Перемещая вдоль нити места крепления грузов (точки B и C), добьемся горизонтальности участка BC нити. В этом случае условия равновесия грузов имеют вид:

$$T_1 \sin \varphi_1 = T_2 \sin \varphi_2$$
, $m_1 g = T_1 \cos \varphi_1$, $m_2 g = T_2 \cos \varphi_2$,

где m_1 и m_2 — массы кусков моркови, T_1 и T_2 — силы натяжения участков AB и CD нити, φ_1 и φ_2 — углы между этими участками и вертикалью. Отсюда

$$\alpha = \frac{m_1}{m_2} = \frac{\operatorname{tg} \varphi_2}{\operatorname{tg} \varphi_1} = \frac{d_2}{d_1}.$$

Величины d_1 и d_2 измеряются по миллиметровой бумаге.

2. Погрузим груз m_1 в воду и снова добьемся горизонтальности участка BC нити (рис. 8). Уравнения равновесия системы примут вид:

$$T_1' \sin \varphi_1' = T_2' \sin \varphi_2', \qquad m_1 g - F_A = T_1' \cos \varphi_1', \qquad m_2 g = T_2' \cos \varphi_2',$$

где F_A — сила Архимеда, действующая на груз m_1 . Отсюда

$$\frac{m_1 - \rho_0 V_1}{m_2} = \frac{d_2'}{d_1'} = \alpha_1,$$

где ρ_0 — плотность воды, V_1 — объем погруженного в воду куска моркови. Аналогично, заменив воду на сок, найдем:

$$\frac{m_1 - \rho V_1}{m_2} = \frac{d_2''}{d_1''} = \alpha_2,$$

где ho — плотность сока. Из записанных уравнений находим искомое отношение плотностей:

$$\gamma = \frac{\rho}{\rho_0} = \frac{\alpha - \alpha_2}{\alpha - \alpha_1}.$$

Проведем повторные измерения, использовав другой кусок моркови.

Рекомендации для организаторов. В куски морковки следует воткнуть гвозди так, чтобы их средняя плотность была примерно $1,5\,\,\mathrm{r/cm^3}$.