Name	
(Optional	١

ID No.

Invigilator's Signature with date

Course Code

Trimester / Semester : Spring / Summer / Fall, 20......

Name of Exam : Class Test / Mid-term 1 / Mid-term 2 / Final

$$\alpha = 4$$

$$P(x=\alpha) = 3/9$$

$$f(x) = \frac{x-1}{9}$$
; $x = 2,3,4$
 $f(x) = \frac{7-1}{9}$; $x = 5,6$

NOT PDF

Pdf f(x) >0

Hue, -1(2) <0

$$\int_0^4 \kappa(4-\alpha) d\alpha = 1$$

$$=> [4x]_0^4 - [\frac{9^2}{2}]_0^4 = \frac{1}{k}$$

$$=7$$
 $(4x4) - (\frac{1}{2}x16) = \frac{1}{k}$

$$=\int_{-\infty}^{\infty} f(x) dx + \int_{0}^{x} f(x) dx$$

$$= \frac{1}{42} \int_0^4 (4-x) dx$$

$$=\frac{1}{8}\left[4x-\frac{x^2}{2}\right]_0^x$$

$$=\frac{1}{\sqrt{2}}\left[4\gamma-\frac{\chi^{\perp}}{2}\right]$$

$$=\frac{\alpha}{2}-\frac{\alpha^2}{2016}$$

$$=\frac{\alpha}{2}-\frac{\alpha^{2}}{2016}$$

$$=\frac{\alpha}{2}-\frac{\alpha^{2}}{2016}$$

$$=\frac{\alpha}{3}-\frac{\alpha^{2}}{20}$$

$$=\frac{\alpha^{2}}{2016}$$

$$=\frac{\alpha}{3}-\frac{\alpha^{2}}{20}$$

$$=\frac{\alpha^{2}}{3}-\frac{\alpha^{2}}{20}$$

$$=\frac{\alpha^{2}}{3}-\frac{\alpha^{2}}{20}$$

$$f(x) = \int_{\infty}^{\infty} f(x) dx$$

$$+ \int_{0}^{4} f(x) dx$$

$$+ \int_{0}^{x} f(x) dx$$

$$= \frac{4}{2} - \frac{16}{16}$$

$$= 2 - 1 = 1$$

$$F(x) = \frac{1}{8} \left[4x - \frac{4^2}{2} \right] = 0.5$$

$$a = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(1)(8)}}{2(1)}$$

$$4-2\sqrt{2} = 1.17$$

Name (Optional)		
ID No.	Section	Invigilator's Signature with date
Course Code	Trimester / Semester : Spring / Summer / Fall, 20	
Name of Exam	: Class Test / Mid-term 1 / Mid-term 2 / Final	Date:
* DDiscret	e Uniform distribution:	
	Every possible outcome has	the name
	probo.	· bart in
рm	a ply-al- 11 for lac	hx
,		Rolling a six-side
	C > 0 - 3	
	212 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	109
2) Cont	s Uniform distri:	
	=> Probd is spread evenly	over an infor.
val	[a,b](212 82 8))	orite t (ii
Defined P	$[a,b]$ $f(x) \stackrel{!}{=} \frac{1}{b-a}$	$a \neq x \neq b$
	0;	else

Preoblem: A cont 5 p.v.
$$x$$
 has colf as finally $f(x) = \begin{cases} 0 & x < 5 \end{cases}$

$$\frac{\alpha - 5}{5}, \quad 5 \leq \alpha < 10$$

$$1 & x > 10$$

i) grantify the distribution and write the

ii) Estimate
$$P(3/2/12)$$

Solon: i) Uniforch distribution
$$\alpha < 5$$

PDF = $\begin{cases} 1 & 0 \\ 5 & 5 \\ 0 & 7 \end{cases}$
 $\begin{cases} 2 & 0 \\ 5 & 5 \end{cases}$
 $\begin{cases} 3 & 0 \\ 6 & 7 \end{cases}$
 $\begin{cases} 3 & 0 \\ 6 & 7 \end{cases}$
 $\begin{cases} 3 & 0 \\ 6 & 7 \end{cases}$
 $\begin{cases} 3 & 0 \\ 6 & 7 \end{cases}$
 $\begin{cases} 3 & 0 \\ 6 & 7 \end{cases}$
 $\begin{cases} 3 & 0 \\ 6 & 7 \end{cases}$
 $\begin{cases} 3 & 0 \\ 6 & 7 \end{cases}$
 $\begin{cases} 3 & 0 \\ 6 & 7 \end{cases}$
 $\begin{cases} 3 & 0 \\ 6 & 7 \end{cases}$
 $\begin{cases} 3 & 0 \\ 6 & 7 \end{cases}$
 $\begin{cases} 3 & 0 \\ 6 & 7 \end{cases}$
 $\begin{cases} 3 & 0 \\ 6 & 7 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0 \end{cases}$
 $\begin{cases} 3 & 0 \\ 7 & 0$

ii) Estimate:
$$P(3 \le n \le 12)$$

$$= P(n = 12) - P(n = 12)$$

$$= 0 = 1 - 0$$

(ii) Mean,
$$E(\alpha) = \int_{-\alpha}^{\alpha} x f(\alpha)$$

$$\int_{5}^{10} \alpha f(\alpha) d\alpha$$
=\frac{1}{5}\int_{5}^{10} \quad \da{}
\frac{1}{5}\int_{5}^{10} \quad \da{}
\frac{1}{5}\int_{5}^{10} \quad \da{}
\frac{1}{5}\int_{5}^{10} \quad \da{}
\frac{1}{5}\int_{5}^{10} \quad \frac{2}{2}\int
\frac{1}{5}\int_{5}^{10} \quad \frac{2}{2}\int
\frac{1}{5}\int_{5}^{10} \quad \da{}
\

Problem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFroblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFind and

Froblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFind and

Froblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFind and

Froblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFind and

Froblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFind and

Froblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFind and

Froblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFind and

Froblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFind and

Froblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFind and

Froblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFind and

Froblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFind and

Froblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFind and

Froblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFind and

Froblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFind and

Froblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFind and

Froblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFind and

Froblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFind and

Froblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFind and

Froblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFind and

Froblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFind and

Froblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFroblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFroblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFroblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFroblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFroblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFroblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFroblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFroblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFroblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFroblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFroblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFroblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFroblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFroblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFroblem: Let, $f(y) = \frac{B}{2}y^2$; -1 < y < sFroblem: Let, $f(y) = \frac{B}{2}y^2$

$$30^{m}$$

$$-3 -1 1$$

$$3(y) dy = 0$$

$$-(x \cdot y \cdot z) ; \int_{a}^{0} f(y) dy + \int_{-1}^{y} f(y) dy$$

$$= \int_{-1}^{2} \left[\frac{y^{3}}{2} \right]_{-1}^{y}$$

$$= \frac{1}{2} \left[y^{3} + 1 \right]$$

$$y \cdot y : \int_{-a}^{0} f(y) dy + \int_{-1}^{1} -f(y) dy + \int_{-1}^{y} f(y) dy$$

$$= \frac{1}{2} \left[y^{3} + 1 \right]$$

Name (Optional)	
ID No.	Section Invigilator's Signature with date
Course Code Trimester / Sem	nester : Spring / Summer / Fall, 20
Name of Exam : Class Test / Mid-term 1 / Mid-term 2 /	Final Date:
(0	; y Z - 1
$cDF = \frac{3}{2} \frac{1}{2} \left(\frac{y^2}{2} \right)$	(h+1); -1 < y < 1
1	971
	254
PDF 0/4 5.0.5) =	f(A) qA
P(Y >, 0.5) =	remoneral cond Poisson ?
1 100 box 2000 1 0 30 July 00 1	$\frac{3}{2}$ y ² dy
	[43] 0.5
_ 49	立[1-6.5)3]
= 0	.4375

To find
$$f_{65}$$
 of Y ,

We set $f(y) = 0.65$

that,
 $e \cdot D \cdot F = \int \frac{1}{2} (y^3 + 1) \cdot \phi_1 = 0.65$
 $= \int \frac{1}{2} y^3 = 0.65 - \frac{1}{2}$
 $= \int \frac{1}{2} y^3 = 0.30$
 $= \int \frac{1}{2} y^3 = 0.30$
 $= \int \frac{1}{2} y^3 = 0.669$

$$P_{65} \approx 0.669$$
[Ans.]

Binomial and Poisson Distribution:

Binomial
Deals with a a fixed number of independent
trials, where each trial has two possible
outcomes
Success
Failure

3 Hab . O. ...

Foisson
Number of events can occur within a fixed
interval of time, space on others of a average
rate.

Foremula
$$P(X=X) = {n \choose x} P^{x} q^{(n-x)}$$

Binomial)

 $P + 9 = 1$

[Poisson]
$$P(X=\pi) = \frac{1}{X!}$$

*Moment generating function (Mgt) of Bienomial:

(pit + q) π

Let, x have a poisson distribution na Problem.

P(x=1) = 1/2 P(x=1/2). Find

Q2(c) B(x >=1).

So In: We know,
$$P(\alpha = k) = \frac{\lambda^{\alpha} e^{\lambda}}{k!}$$

Now,
$$P(x=1) = \frac{1}{2}P(x=2)$$

$$\Rightarrow \frac{\lambda \vec{e}^{\lambda}}{11} = \frac{1}{2} \frac{\lambda^2 \vec{e}^{-\lambda}}{2!}$$

$$= 7 \qquad \lambda = \frac{12}{4}$$

$$=$$
 $1 = \frac{3}{4}$

A Lawrence

: K = 0,1,2, -- 0

FOR	1 + + (1)*	(a)
Name (Optional)		E(1) - 1 34
ID No.	Section	Invigilator's Signature with trafe
Course Code Trimester / Se	emester : Spring / Summer / Fall, 20	
Name of Exam : Class Test / Mid-term 1 / Mid-term 2		Date:
Problem; Let the R	e.v. X have the	proby mass
	; X = 1,2,31	
P(x<3); E(x2 +5)	and v (1-3	
sketch the line graph	of x.	
in the second of		
Soln: $\chi = 1$;	f(x=1) = 1/0	Walder of
x = 2;	$f(x=2) = \frac{2}{10}$	Die Vousses
without a little and a little a	f(x=7)= 3	10 =
a = 4	$\int (x=4) = $	96
p(2<3) = p(x	$= 1) + P(\alpha = 2)$	0 P / (x >多)
= 1/10		$=1-\frac{4}{10}+\frac{3}{10}$
2	3	10-07
\$ (%) = -	10	= 3

$$E(\alpha^2 + 5)$$

$$= (\alpha^2 + 5)$$

$$E(\chi^{2}) = \frac{2}{5} \chi^{2} P(\chi)$$

$$= \frac{1}{10} + \frac{4}{10} + \frac{27}{10} + \frac{64}{10} = \frac{100}{10}$$

$$= \frac{1}{10} + \frac{8}{10} + \frac{27}{10} + \frac{64}{10} = \frac{100}{10}$$

$$= \frac{1}{10} + \frac{8}{10} + \frac{10}{10} + \frac{100}{10} = \frac{100}{10}$$

$$F(\alpha^{2}+5) = 10+5 = 15$$
(Ans.)

Problem: Suppose that 80% employees in a certain company are proficient in using a particular software tool on a nandom sample of 15 employees, Let X be the no of Proficient employees. Assuming independent how is X distributed? Find the mg-f of X.

Also, compute P(XZB) and P(2>,4).

solli Binomial distribution.

$$\eta = 15$$

Now,
$$m \cdot g \cdot f = (p_2 t + q_1)^n$$

= $(0.802t + 0.20)^{15}$

$$= P(\alpha = 0) + P(\alpha = 1) + P(\alpha = 2)$$

$$= P(\alpha = 0) + P(\alpha = 1) + P(\alpha = 2)$$

$$= {}^{15}C_{0.80}^{0} (0.20)^{15-0} + {}^{15}C_{1}^{0.80}^{0} (0.20)^{15-1}$$

$$= {}^{15}C_{2}^{0.80}^{0} (0.20)^{15-2}$$

$$+ {}^{15}C_{2}^{0.80}^{0} (0.20)^{15-2}$$

$$= 1 - \varphi(\alpha 4)$$

$$= 1 - \frac{9(x \le 4)}{1 - \frac{9(x \le 4)}{1 - \frac{9(x \le 6)}{1 - \frac{9(x$$

(Ansi)

To find
$$V(1-3\pi)$$
 $V(\pi) = E(\pi^2) - \frac{1}{5}E(\pi)^{\frac{3}{2}}^2$
 $V(1-3\pi) = E\left((1-3\pi)\right)^2 - \frac{1}{5}E(1-3\pi)^2$
 $= E\left((1-6\pi+9\pi^2)-\frac{1}{5}E(1-3\pi)\right)^2$
 $E\left((1-6\pi+9\pi^2)-\frac{1}{5}E(1-3\pi)\right)^2$
 $E\left((1-6\pi+9\pi^2)-\frac{1}{5}E(1-3\pi)\right)^2$
 $= (1-6\pi+9\pi^2) = (1-6\pi) + (6\pi)$
 $= (1-3\pi) = (1-6\pi) + (9\pi)$
 $= (1-3\pi) = (1-6\pi) = (1-9\pi)$
 $= (1-3\pi) = (1-6\pi)^2$
 $= 75 - (-8)^2$
 $= 75 - 64$
 $= 9$

(Ans.)

Name (Optional)	Section	Invigilator's Signature with date
Course Code	Trimester / Semester : Spring / Summer / F	Fall, 20
Name of Exam : Class Test / Mid-term	1 / Mid-term 2 / Final	Date:
		, 1/5
Že_	A = 1	$3 = \frac{2}{5}$
	α	=5 = 3/5
=1 7(x) = 1=		n = 7 = 2/5
18		21-01-110

$$(ay + y^{2}) dx + x^{2}dy = 0$$

$$y = ux$$

$$dy = udx + xdu$$

$$(x.ux + u^{2}x^{2}) dx + (x^{2}(udx + xdu) = 0)$$

$$= (ux^{2} + u^{2}x^{2}) dx + x^{2}u dx + x^{3}du = 0$$

$$= (ux^{2} + u^{2}x^{2}) dx + x^{2}u dx + x^{3}du = 0$$

$$= (ux^{2}dx + u^{2}x^{2}) dx + x^{2}u dx + x^{3}du = 0$$

$$= (ux^{2}dx + u^{2}x^{2}) dx + x^{2}u dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$= (2udx + u^{2}dx) dx + x^{3}du = 0$$

$$=$$

Fundamental

=> Probability

For 23 Laveshon

Spring 24 Sive

Summer 2024 (Question)

Linear => (Spring 24)

Fall 23

Question Solve

$$\frac{1 - f(x \le 1.5)}{f(x \le 1.5)} = \int_{-\infty}^{\infty} \frac{1}{f(x) dx} + \int_{0}^{1} \frac{1}{f(x) dx} + \int_{0}^{\infty} \frac{1}{f(x) dx} + \int_{0}^{\infty$$

$$P(\chi \leq 1.5) = 1 - 0.875$$
= 0.125

四(ツーラリー) 1- 210 ミー・・・