

Data statistics, mining and application

Python数据统计挖掘与应用

Dazhuang@NJU

Department of Computer Science and Technology
Department of University Basic Computer Teaching

用Dython玩转数据

数据探索之 基本数据特征分析

数据探索

检查数据错误

数据探索

了解数据分布特征和内在规律

检查数据错误

- ・缺失値
- ・ 异常値
- 不一致的数据
 - 149 2 -> 149 2.0
 - 1569936600 -> 2019-10-01

基本数据特征分析方法

分布分析

统计量分析

iris_df.iloc[:,0].describe()

count	150.000000
mean	5.843333
std	0.828066
min	4.300000
25%	5.100000
50%	5.800000
75%	6.400000
max	7.900000

Name: sepal length (cm), dtype: float64

相关分析

分布分析

- 分布分析
 - 定量数据分布分析
 - 定性数据分布分析

定量数据分布分析

直方图

>>> plt.hist(iris_df.iloc[:,0], 5, color = 'c')

正态分布检验

>>> scipy.stats.normaltest(iris_df.iloc[:,0])

定性数据分布分析

>>> iris_df.target.value_counts()

2 50

1 50

0 50

Name: target, dtype: int64

>>> iris_df.target.value_counts().plot(kind = 'pie')

统计量分析

- 统计量分析
 - 集中趋势分析Central tendency analysis均值,中位数
 - 离中趋势分析Dispersion tendency analysis 标准差,四分位距

统计量分析

- 统计量分析
 - 集中趋势分析:

均值mean(), 中位数median()

- 离中趋势分析

标准差std(), 四分位距quantile()

```
iris_df.iloc[:,0].describe()
```

```
count
         150.000000
           5.843333
mean
std
           0.828066
min
           4.300000
25%
           5.100000
50%
            5.800000
75%
           6.400000
           7.900000
max
```

Name: sepal length (cm), dtype: float64

相关分析

- 常见方式
 - 单个图
 - 图矩阵
 - 相关系数

相关系数—Pearson相关系数

$$r_{XY} = \frac{\sum (X - \bar{X})(Y - \bar{Y})}{(\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2})(\sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2})}$$

约束条件:

- 1. 两个变量间有线性关系
- 2. 均是连续变量
- 3. 变量均符合正态分布,且二元分布也符合正态分布
- 4. 两个变量独立

相关系数—Pearson线性相关系数

r的结果:

正相关: r > 0 负相关: r < 0

不相关: |r| = 0

完全线性相关: |r| = 1

```
      sepal length (cm)
      sepal width (cm)
      target

      sepal length (cm)
      1.000000
      -0.117570
      0.782561

      sepal width (cm)
      -0.117570
      1.000000
      -0.426658

      target
      0.782561
      -0.426658
      1.000000
```

基于DANDAS的 数据统计与分析

数据形式

_	code	name	price
0	MMM	3M	155.82
1	AXP	American Express	114.41
2	AAPL	Apple	227.01
3	BA	Boeing	375.70
4	CAT	Caterpillar	121.04
5	CVX	Chevron	113.85
6	CSC0	Cisco	47.52
7	КО	Coca-Cola	54.54
8	DIS	Disney	130.27
9	DOW	Dow Chemical	45.34
1	MOX 0	Exxon Mobil	68.97
1	1 GS	Goldman Sachs	200.80
1	2 HD	Home Depot	227.93
1	3 IBM	IBM	142.99
1	4 INTC	Intel	50.92
1	5 JNJ	Johnson & Johnson	133.66
1	6 JPM	JPMorgan Chase	114.62
1	7 MCD	McDonald's	211.69
1	8 MRK	Merck	85.00
1	9 MSFT	Microsoft	138.12
2	0 NKE	Nike	93.07
2	1 PFE	Pfizer	35.93
2	2 PG	Procter & Gamble	124.00
2	3 TRV	Travelers Companies Inc	144.96
2	4 UTX	United Technologies	133.21
2	5 UNH	UnitedHealth	219.80
2	6 VZ	Verizon	59.90
2	7 V	Visa	175.98
2	8 WMT	Wal-Mart	118.16
2	9 WBA	Walgreen	52.97

djidf

	close	high	low	open	volume
2018-10-19	106.730003	107.550003	104.059998	104.059998	5726300
2018-10-22	104.510002	106.959999	104.449997	106.610001	5003100
2018-10-23	104.379997	104.519997	101.839996	102.410004	4223800
2018-10-24	101.839996	104.949997	101.510002	104.430000	4056700
2018-10-25	103.599998	104.169998	101.800003	102.480003	3378900
2018-10-26	101.250000	102.660004	100.139999	102.540001	5395700
2018-10-29	101.190002	103.250000	100.040001	102.470001	4238700
2018-10-30	102.080002	102.389999	100.410004	101.599998	3778200
2018-10-31	102.730003	103.709999	102.550003	103.059998	4511300
2018-11-01	104.040001	104.269997	103.019997	103.260002	2786800
2018-11-02	103.709999	105.050003	102.889999	104.930000	4322200
2018-11-05	105.209999	105.400002	103.800003	104.040001	2697700
2018-11-06	104.980003	105.660004	104.370003	104.980003	2856000
2018-11-07	107.309998	107.480003	104.900002	105.730003	3606900
2018-11-08	108.500000	108.629997	107.029999	107.029999	2896700
2018-11-09	108.279999	109.330002	107.349998	108.379997	4444000
2018-11-12	106.489998	108.440002	106.300003	108.160004	3154600
2018-11-13	107.860001	108.199997	106.470001	106.650002	3021800
2018-11-14	107.769997	109.330002	106.889999	108.610001	4978100
2018-11-15	109.599998	109.699997	106.339996	106.680000	3742600

quotesdf

- 求道指成分股中所有 股票最近一次成交价 的均值。
- 求道指成分股中所有 股票最近一次成交价 大于等于300的公司名。

>>> djidf.price.mean()

133.148

>>> djidf[djidf.price >= 300].name

3 Boeing

Name: name, dtype: object

- 求道指成分股中股票最近一次成交价大于等于300或小于等于50的公司信息。
- 统计美国运通公司2019年度9月份的股票开盘天数。

```
Source
```

```
>>> djidf[(djidf.price >= 300) | (djidf.price <= 50)]
   code
                           price
                 name
     BA
                 Boeing 372.31
  CSCO
                   Cisco
                          47.01
         Dow Chemical 48.13
   DOW
21 PFE
                   Pfizer
                          36.65
>> t = quotesdf[(quotesdf.index >= '2019-09-01') & (quotesdf.index <= '2019-09-30')]
>>> len(t)
20
```

统计美国运通公司 近一年股票涨和跌 分别的天数。

统计美国运通公司近 一年相邻两天收盘价 的涨跌情况。

```
Source
```

```
>>> len(quotesdf[quotesdf.close > quotesdf.open])
130
>>> len(quotesdf)-130
122
```

```
>>> status = np.sign(np.diff(quotesdf.close))
>>> status
```

```
array([-1., 1., -1., ..., 1., -1., 1.])
>>> len(status[status==1])
131
>>> len(status[status==-1])
118
```

按最近一次成交价 对道指成分股股票 进行排序。根据排 序结果列出前三甲 公司名。

```
>>> tempdf = djidf.sort values(by = 'price', ascending = False)
>>> tempdf
   code
                             price
                  name
                           372.31
     BA
                  Boeing
   UNH
           UnitedHealth
                            238.50
   CSCO
                   Cisco
                             47.01
21
     PFE
                   Pfizer
                             36.65
>>> tempdf[:3].name
3
          Boeing
25
    UnitedHealth
12
     Home Depot
Name: name, dtype: object
```

分组groupby()

• 统计近一年美国运通公司每个月的股票开盘天数。

>>> month = [item[5:7] for item in quotesdf.index]
>>> x = quotesdf.groupby(month).open.count()

```
Output:
       21
19
21
03
04
05
06
       20
22
22
20
23
07
08
09
10
Name: close, dtype: int64
```

分组

Grouping的顺序

- Splitting
- 2 Applying
- 3 Combining

groupby()与apply()

• 统计近一年美国运通公司每个月的股票开盘天数。

>>> month = [item[5:7] for item in quotesdf.index]

>>> quotesdf.groupby(month).apply(len)

```
Output:
    19
02
03
    21
06
    20
09
Name: close, dtype: int64
```

apply()


```
>>> quotesdf.max()
>>> quotesdf.max(axis = 1)
>>> quotesdf.loc[:, ['close', 'open']].astype(int)
>>> quotesdf.apply(max)
>>> quotesdf.apply(max, axis = 1)
>>> quotesdf.loc[:, ['close', 'open']].apply(np.int32)
>>> quotesdf.loc[:, ['close', 'open']].apply(int)
>>> quotesdf.loc[:, ['close', 'open']].applymap(int)
>>> quotesdf.volume.apply(float) # apply()也可作用在一个Series的每一个元素上
>>> quotesdf.loc[:, ['close', 'open']]= quotesdf.loc[:, ['close', 'open']].apply(np.int32)
```

合并

Merge的形式

- Append
 - 加行到DataFrame
- Concat
 - 连接pandas对象
- Join
 - SQL类型的连接

Append

把美国运通公司
2019年9月1日至9
月5日间的股票交易信息追加到2019年
6月最后2天的股票交易信息中。

```
S_{\text{ource}}
>>> p = quotesdf['2019-06-01':'2019-06-30'][-2:]
>>> p
                close
                             high
                                         low
                                                         volume
                                                   open
2019-06-27 123.940002 124.410004 123.559998 123.690002 1504300
2019-06-28 123.440002 124.550003 123.199997 124.290001 4338900
>>> q = quotesdf['2019-09-01':'2019-09-05']
>>> q
                                                         volume
                close
                             high
                                         low
                                                   open
2019-09-03 117.599998 120.279999 117.519997 119.860001
2019-09-04 118.400002 118.730003 117.800003 118.419998 3746900
2019-09-05 120.669998 121.629997 119.500000 119.500000 5261100
>>> p.append(q)
                close
                             high
                                         low
2019-06-27 123.940002 124.410004 123.559998 123.690002 1504300
2019-06-28 123.440002
                      124.550003 123.199997 124.290001 4338900
2019-09-03 117.599998 120.279999 117.519997 119.860001 3198700
2019-09-04 118.400002 118.730003 117.800003 118.419998 3746900
2019-09-05 120.669998 121.629997 119.500000 119.500000 5261100
```

Concat

• 将美国运通公司2019年9月股票数据中的前3个和后3个合并。

Join

code	name
AXP	
КО	

volume	code	month
	AXP	
	AXP	
	КО	
	КО	

code	name	volume	month
AXP			
AXP			
КО			
КО			

Join

将美国运通公司和可口可乐公司近一年中每个月的成交量均值(包含公司代码)与道琼斯成分股股票信息合并。

code | name | volume | month

	code	name	price
0	MMM	3M	155.82
1	AXP	American Express	114.41
2	AAPL	Apple	227.01
3	BA	Boeing	375.70
4	CAT	Caterpillar	121.04
2 3 4 5 6 7	CVX	Chevron	113.85
6	CSC0	Cisco	47.52
	KO	Coca-Cola	54.54
8 9	DIS	Disney	130.27
9	DOW	Dow Chemical	45.34
10	MOX	Exxon Mobil	68.97
11	GS	Goldman Sachs	200.80
12	HD	Home Depot	227.93
13	IBM	IBM	142.99
14	INTC	Intel	50.92
15	JNJ	Johnson & Johnson	133.66
16	JPM	JPMorgan Chase	114.62
17	MCD	McDonald's	211.69
18	MRK	Merck	85.00
19	MSFT	Microsoft	138.12
20	NKE	Nike	93.07
21	PFE	Pfizer	35.93
22	PG	Procter & Gamble	124.00
23	TRV	Travelers Companies Inc	144.96
24	UTX	United Technologies	133.21
25	UNH	UnitedHealth	219.80
26	VZ	Verizon	59.90
27	V	Visa	175.98
28	WMT	Wal-Mart	118.16
29	WBA	Walgreen	52.97

volume code month 4.216338e+06 **AXP** 01 02 3.096963e+06 03 3.366676e+06 AXP 04 3.439100e+06 05 3.163909e+06 2.856915e+06 06 07 3.324177e+06 3.291932e+06 08 3.936210e+06 09 3.572539e+06 10 3.437376e+06 AXP 11 5.076395e+06 12 1.384537e+07 01 KO 2.045106e+07 02 KO 1.733149e+07 03 1.133406e+07 04 1.173954e+07 05 06 1,242934e+07 07 1.171300e+07 08 1.235928e+07 09 1.082578e+07 1.389021e+07 10 1.333130e+07 11 12 1.621624e+07

djidf

AKdf

Join


```
>>> pd.merge(djidf.drop(['price'], axis = 1), AKdf, on = 'code')
                                volume month
  code
                  name
   AXP American Express
                         4.216338e+06
                                           01
   AXP American Express 3.096963e+06
                                           02
   AXP American Express
                         3.366676e+06
                                           03
   AXP American Express
                         5.076395e+06
                                            12
11
12
    KO
               Coca-Cola
                         1.384537e+07
                                            01
                         2.045106e+07
                                            02
13
    KO
               Coca-Cola
21
    KO
               Coca-Cola
                         1.389021e+07
                                            10
22
    KO
               Coca-Cola
                         1.333130e+07
                                            11
23
    KO
               Coca-Cola
                         1.621624e+07
                                            12
```

	code	name	volume	month
0	AXP	American Express	4.216338e+06	01
1	AXP	American Express	3.096963e+06	02
2	AXP	American Express	3.366676e+06	03
3	AXP	American Express	3.439100e+06	04
4	AXP	American Express	3.163909e+06	05
5	AXP	American Express	2.856915e+06	06
6	AXP	American Express	3.324177e+06	07
7	AXP	American Express	3.291932e+06	08
8	AXP	American Express	3.936210e+06	09
9	AXP	American Express	3.572539e+06	10
10	AXP	American Express	3.437376e+06	11
11	AXP	American Express	5.076395e+06	12
12	KO	Coca-Cola	1.384537e+07	01
13	KO	Coca-Cola	2.045106e+07	02
14	KO	Coca-Cola	1.733149e+07	03
15	KO	Coca-Cola	1.133406e+07	04
16	KO	Coca-Cola	1.173954e+07	05
17	KO	Coca-Cola	1.242934e+07	06
18	KO	Coca-Cola	1.171300e+07	07
19	KO	Coca-Cola	1.235928e+07	08
20	KO	Coca-Cola	1.082578e+07	09
21	KO	Coca-Cola	1.389021e+07	10
22	KO	Coca-Cola	1.333130e+07	11
23	KO	Coca-Cola	1.621624e+07	12

3

用Dython玩转数据

聚类分析

聚类

聚类分析(cluster analysis)

以相似性为基础把相似的对象通过静态分类的方 法分成不同的组别或者更多的子集

- 特性
 - 基于相似性
 - 有多个聚类中心

K-MEANS

K-均值算法表示以空间中k个点为中心进行聚类,对最靠近他们的对象归类。

一个日常小例子

,00	高数	英语	Python	音乐	
小明	88	64	96	85	
大明	92	99	95	94	
小朋	91	87	99	95	
大朋	78	99	97	81	
小萌	88	78	98	84	
大萌	100	95	100	92	

Output:

[1 0 0 1 1 0]


```
# Filename: kmeansStu1.py
import numpy as np
from scipy.cluster.vq import vq, kmeans, whiten
list1 = [88.0, 74.0, 96.0, 85.0]
list2 = [92.0, 99.0, 95.0, 94.0]
list3 = [91.0, 87.0, 99.0, 95.0]
list4 = [78.0, 99.0, 97.0, 81.0]
list5 = [88.0, 78.0, 98.0, 84.0]
list6 = [100.0, 95.0, 100.0, 92.0]
data = np.vstack([list1,list2,list3,list4,list5,list6])
wh = whiten(data)
centroids, = kmeans(wh, 2)
result, = vq(wh, centroids)
print(result)
```

用专业工具解决

```
learn
# Filename: kmeansStu2.py
import numpy as np
from sklearn.cluster import KMeans
list1 = [88.0,74.0,96.0,85.0]
list2 = [92.0,99.0,95.0,94.0]
list3 = [91.0,87.0,99.0,95.0]
list4 = [78.0,99.0,97.0,81.0]
list5 = [88.0,78.0,98.0,84.0]
list6 = [100.0,95.0,100.0,92.0]
X = np.array([list1,list2,list3,list4,list5,list6])
kmeans = KMeans(n clusters = 2).fit(X)
pred = kmeans.predict(X)
print(pred)
```

```
from sklearn import datasets
from sklearn import svm
clf = svm.SVC(gamma=0.001, C=100.)
digits = datasets.load_digits()
clf.fit(digits.data[:-1], digits.target[:-1])
clf.predict(digits.data[-1].reshape(1,-1))
```

Output:

[0 1 1 1 0 1]

另一个例子

基于10只道指成分股股票近一年来相邻两天的收盘价涨跌数据规律对它们进行聚类

```
['MMM','AXP','AAPL','BA','CAT','CVX','CSCO','KO','DIS','DD']
# Filename: kmeansDJI.py
listDji = ['MMM','AXP','AAPL','BA','CAT','CVX','CSCO','KO','DIS','DD']
listTemp = [0] * len(listDji)
for i in range(len(listTemp)):
  listTemp[i] = create df(listDji[i]).close
                                           # a function for creating a DataFrame
status = [0] * len(listDji)
for i in range(len(status)):
  status[i] = np.sign(np.diff(listTemp[i]))
kmeans = KMeans(n clusters = 3).fit(status)
                                                 Output:
pred = kmeans.predict(status)
                                                  [2022002211]
print(pred)
```

Nanjing University

模型选择与评估

4

用Dython玩转数据

DYTHON的 理工类应用

简单的三角函数计算

```
# Filename: mathA.py
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-np.pi, np.pi, 256)
s = np.sin(x)
c = np.cos(x)
plt.title('Trigonometric Function')
plt.xlabel('X')
plt.ylabel('Y')
plt.plot(x, s)
plt.plot(x, c)
```


一组数据的快速傅里叶变换

数组: [1,1,...,1,-1,-1,...,1,1,1...,1]

Filename: mathB.py
import scipy as sp
import matplotlib.pyplot as plt
listA = sp.ones(500)
listA[100:300] = -1
f = sp.fft(listA)
plt.plot(f)

图像处理库

• 常用Python图像处理库

- Pillow(PIL)
- OpenCV

- Skimage


```
File
```

```
# Filename: pasteimg.py
from PIL import Image
im1 = Image.open('1.jpg')
print(im1.size, im1.format, im1.mode)
Image.open('1.jpg').save('2.png')
im2 = Image.open('2.png')
size = (288, 180)
im2.thumbnail(size)
out = im2.rotate(45)
im1.paste(out, (50,50))
```

Biopython 30000

- 来源于一个使用Python开发计算分子 生物学工具的国际社团Biopython
- 序列、字母表和染色体图

AGTACACTGGT

>>> from Bio.Seq import Seq
>>> my_seq = Seq("AGTACACTGGT")
>>> my_seq.alphabet
Alphabet()
>>> print(my_seq)

5

用Dython玩转数据

DYTHON的 人文社科类应用

NLTK语料库

古滕堡项目

• 计算NLTK中目前收录的古滕堡项目的书

>>> from nltk.corpus import gutenberg

>>> gutenberg.fileids()

['austen-emma.txt', 'austen-persuasion.txt', 'austen-sense.txt', 'bible-kjv.txt', 'blake-poems.txt', 'bryant-stories.txt', 'burgess-busterbrown.txt', 'carroll-alice.txt', 'chesterton-ball.txt', 'chesterton-thursday.txt', 'edgeworth-parents.txt', 'melville-moby_dick.txt', 'milton-paradise.txt', 'shakespeare-caesar.txt', 'shakespeare-hamlet.txt', 'shakespeare-macbeth.txt', 'whitman-leaves.txt']

古滕堡项目

• 一些简单的计算

```
>>> from nltk.corpus import gutenberg
>>> allwords = gutenberg.words('shakespeare-hamlet.txt')
>>> len(allwords)
37360
>>> len(set(allwords))
5447
>>> allwords.count('Hamlet')
99
>>> A = set(allwords)
>>> longwords = [w for w in A if len(w) > 12]
>>> print(sorted(longwords))
```

Output:

```
['Circumstances',
'Guildensterne',
'Incontinencie',
'Recognizances',
'Vnderstanding',
'determination',
'encompassement',
'entertainment',
'imperfections',
'indifferently',
'instrumentall',
'reconcilement',
'stubbornnesse',
'transformation',
'vnderstanding']
```

古滕堡项目

Filename: freqG20.py

from nltk.corpus import gutenberg

from nltk.probability import *

fd2 = FreqDist([sx.lower() for sx in allwords if sx.isalpha()]

print(fd2.B())

print(fd2.N())

fd2.tabulate(20)

fd2.plot(20)

fd2.plot(20, cumulative = True)

Output:

4699

30266

the and to of i you a my it in that ham is not his this with your but for

993 863 685 610 574 527 511 502 419 400 377 337 328 300 285 276 254 253 249 245

就职演说语料库

```
>>> from nltk.corpus import inaugural
>>> from nltk.probability import *
>>> fd3 = FreqDist([s for s in inaugural.words()])
>>> print(fd3.freq('freedom'))
0.00119394791917
```

```
# Filename: inaugural.py
from nltk.corpus import inaugural
from nltk.probability import *
cfd = ConditionalFreqDist(
            (fileid, len(w))
            for fileid in inaugural.fileids()
            for w in inaugural.words(fileid)
           if fileid > '1980' and fileid < '2010')
print(cfd.items())
cfd.plot()
```

就职演说语料库

Output:

dict_items([('1981-Reagan.txt',

FreqDist({2: 538, 3: 525, 1: 420, 4:

390, 5: 235, 7: 192, 6: 176, 8: 109, 9:

93, 10: 66, ...})), ..., ('2005-Bush.txt',

FreqDist({3: 469, 2: 395, 4: 332, 1:

320, 7: 234, 5: 203, 6: 162, 9: 90, 8:

79, 10: 49, ...})), ('2009-Obama.txt',

FreqDist({3: 599, 2: 441, 4: 422, 1:

350, 5: 236, 6: 225, 7: 198, 8: 96, 9:

63, 10: 59, ...}))])

小结

