

Métodos Numéricos

Trabajo práctico 2

Tu cara me suena

Resumen

El presente trabajo documenta un algoritmo de reconocimiento de rostros para sujetos pertenecientes a una base de datos. Hace uso de un Análisis de Componentes Principales (PCA según sus siglas en inglés) sobre un conjunto de imágenes digitales de rostros de sujetos. Se alega poder identificar con una tasa de error mínima una nueva imagen de un rostro de una persona perteneciente a la base de datos. Se explican los supuestos matemáticos asumidos en el algoritmo, se muestran resultados de diferentes pruebas de su efectividad y se llega a conclusiones sobre todo el proceso.

Integrante	LU	Correo electrónico
Gandini, Luciano	207/10	gl.gandini@gmail.com
Russo, Christian Sebastián	679/10	christian.russo@gmail.com
Danós, Alejandro	381/10	adp007@gmail.com

Palabras claves:

Reconocimiento caras. PCA. Power Method. Deflation. Autovalores. Autovectores. Matriz semi definida positiva.

Índice

1.	Intr	oducción Teórica	3
	1.1.	Metodo de la Potencia	. 3
	1.2.	Deflación	. 3
2.	\mathbf{Des}	arrollo	4
	2.1.	Lectura de la Entrada	. 4
		2.1.1. Explicacion	. 4
		2.1.2. Pseudocodigo	. 4
	2.2.	Armado de Matriz	. 4
		2.2.1. Explicacion	. 4
		2.2.2. Pseudocodigo	. 4
	2.3.	Metodo de la Potencia	. 4
		2.3.1. Explicacion	. 4
		2.3.2. Pseudocodigo	. 4
		2.3.3. Ejemplo	. 4
	2.4.	Deflacion	. 8
		2.4.1. Explicacion	. 8
		2.4.2. Pseudocodigo	. 8
		2.4.3. Ejemplo	. 8
	2.5.	Demostraciones	. 9
3.	Test	${f s}$	11
4.	Apé	ndice	12
	4.1.	Enunciado	. 12
	4.2.	Generador de Tests	. 13
	4.3.	Método de compilación	. 13
		4.3.1. Método 1	. 13
		4.3.2. Método 2	. 13
	4.4	Referencias hibliográficas	1.3

1. Introducción Teórica

1.1. Metodo de la Potencia

El **método de la potencia** es una técnica iterativa que permite determinar el autovalor dominante de una matriz, es decir, el autovalor con mayor magnitud. Una ligera modificación en el método permite usarlo para determinar otros autovalores. Una propiedad útil del método de la potencia es que no solo produce un autovalor, sino también un autovector asociado.

De hecho, es frecuente que el método se aplique para calcular un autovalor para un autovector determinado por otros medios.

Para aplicar el método de la potencia supondremos que la matriz $A \in \mathbb{R}^{n \times n}$ tiene n autovalores $\lambda_1, \lambda_2, \ldots, \lambda_n$ con un conjunto asociado de autovectores linealmente independientes $\{v_1, v_2, \ldots, v_n\}$. Más aún, supondremos que A tiene exactamente un autovalor con módulo máximo, λ_1 , cuya magnitud es la mayor, por lo que

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \dots \ge |\lambda_n| \ge 0$$

El procedimiento consiste en elegir un vector inicial $x \in \mathbb{R}^n$ y multiplicarlo por izquierda por la matriz A^k con $k \in \mathbb{N}$, y normalizar el vector resultante. Se puede demostrar que cuando $k \to \infty$, $\frac{A^k}{\|A^k\|}$ tiende al autovector asociado al autovalor dominante λ_1 . Para más información, referirse a [1]

1.2. Deflación

"Deflation techniques involve forming a new matrix B whose eigenvalues are the same as those of A, except that the dominant eigenvalue of A is replaced by the eigenvalue 0 in B." - [1, p. 604]

En nuestro caso, para obtener la matriz B, le restaremos a la matriz A otra matriz formada por su autovalor dominante y el autovector asociado a éste, de la siguiente manera: $B = A^t A - \lambda_1 v v^t$, siendo v el autovector y λ el autovalor asociado. Más adelante veremos este proceso en detalle.

2. Desarrollo

2.1. Lectura de la Entrada

- 2.1.1. Explicacion
- 2.1.2. Pseudocodigo
- 2.2. Armado de Matriz
- 2.2.1. Explicacion
- 2.2.2. Pseudocodigo
- 2.3. Metodo de la Potencia
- 2.3.1. Explicacion
- 2.3.2. Pseudocodigo

Algorithm 1 Método de la Potencia (Matrix B, Matrix x0, int niters, Matrix autovector)

```
v = x0
for i=0 hasta niters do
  w = B*v
  autovector = w/(w.normVector())
  if (converge) then
    Continue
  else
    Break
  end if
end for
vt = transponer v
Bv = B*v
vtbv = vt * bv
lambda = vtbv.mat[0][0]/vtv.mat[0][0]
vtv = vt*v
return lambda
```

2.3.3. Ejemplo

$$A = \left[\begin{array}{rrr} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{array} \right]$$

Inicializando con el vector

$$x = \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right]$$

Fase 1:

$$y^{(1)} = Ax^{(0)} =$$

$$\begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix}$$

 $c_1 = 2$ (componente dominante de $y^{(0)}$)

$$x^{(1)} = \frac{1}{2}y^{(1)} = \frac{1}{2} \begin{bmatrix} 2\\0\\2 \end{bmatrix} = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$$

Fase 2:

$$y^{(2)} = Ax^{(1)} =$$

$$\begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ 3 \end{bmatrix}$$

$$c_2 = 3$$

$$x^{(2)} = \frac{1}{3} \begin{bmatrix} 3 \\ -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ \frac{-2}{3} \\ 1 \end{bmatrix} = \begin{bmatrix} 1,0 \\ -0,6667 \\ 1,0 \end{bmatrix}$$

Fase 3:

$$y^{(3)} = Ax^{(2)} =$$

$$\begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1,0 \\ -0,6667 \\ 1,0 \end{bmatrix} = \begin{bmatrix} 3,6667 \\ -3,3333 \\ 3,6667 \end{bmatrix}$$

$$c_3 = 3,6667$$

$$x^{(3)} = \left[\begin{array}{c} 1 \\ -0,9091 \\ 1 \end{array} \right]$$

Fase 4:

$$y^{(4)} = Ax^{(3)} =$$

$$\begin{bmatrix} 3,9091 \\ -3,8181 \\ 3,9091 \end{bmatrix}$$

$$c_4 = 3,9091$$

$$x^{(4)} = \left[\begin{array}{c} 1 \\ -0.9767 \\ 1 \end{array} \right]$$

Fase 5:

$$y^{(5)} = Ax^{(4)} =$$

$$\begin{bmatrix} 3,9767 \\ -3,9534 \\ 3,9767 \end{bmatrix}$$

$$c_5 = 3,9767$$

$$x^{(5)} = \begin{bmatrix} 1 \\ -0.9942 \\ 1 \end{bmatrix}$$

Fase 6:

$$y^{(5)} = Ax^{(4)} =$$

$$\left[\begin{array}{c} 3,9942 \\ -3,9883 \\ 3,9942 \end{array}\right]$$

$$c_6 = 3,9942$$

$$x^{(6)} = \left[\begin{array}{c} 1\\ -0,9985\\ 1 \end{array} \right]$$

Fase 7:

$$y^{(7)} = Ax^{(6)} =$$

$$\left[\begin{array}{c} 3,9985 \\ -3,9970 \\ 3,9985 \end{array}\right]$$

$$c_7 = 3,9985$$

$$x^{(7)} = \left[\begin{array}{c} 1 \\ -0.9996 \\ 1 \end{array} \right]$$

Fase 8:

$$y^{(8)} = Ax^{(7)} =$$

$$\begin{bmatrix} 3,9996 \\ -3,9993 \\ 3,9996 \end{bmatrix}$$

$$c_8 = 3,9996$$

$$x^{(8)} = \begin{bmatrix} 1 \\ -0.9999 \\ 1 \end{bmatrix}$$

Fase 9:

$$y^{(9)} = Ax^{(8)} =$$

$$\begin{bmatrix} 3,9999 \\ -3,9998 \\ 3,9999 \end{bmatrix}$$

$$c_9 = 3,9999$$

$$x^{(9)} = \left[\begin{array}{c} 1 \\ -1 \\ 1 \end{array} \right]$$

Fase 10:

$$y^{(10)} = Ax^{(9)} =$$

$$\begin{bmatrix} 4 \\ -4 \\ 4 \end{bmatrix}$$

$$c_1 0 = 4$$

$$x^{(10)} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = x^{(9)}$$

Entonces

$$\lambda_1 = \lim_j c_j = 4$$

Y su autovector asociado:

$$v = \lim_{j} x^{(j)} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

Confirmamos usando usando el software MatLab que los autovectores de la matriz son $\lambda_1=4, \lambda_2=3, \lambda_3=1$ que es compatible con el λ_1 encontrado por el método de la potencia.

2.4. Deflacion

2.4.1. Explicacion

Después de aplicar el Método de la Potencia obtenemos un autovector y su autovalor asociado con módulo máximo, pero para obtener los siguientes debemos recurrir a algún tipo de deflación. Este proceso consiste en anular el autovalor del autovector dominante para luego de que se corra el Método de la Potencia una segunda vez, se obtenga el segundo autovalor dominante.

Hay muchas técnicas de deflación, algunas de las más usadas se pueden encontrar en [1], pero la que aplicaremos en este trabajo consiste en restarle a una matriz A original una combinación entre el autovector dominante encontrado por el Método de la Potencia y su autovalor asociado.

Sea A la matriz original con por lo menos dos autovalores dominantes distintos, entonces la matriz $B = A^t A - \lambda_1 v v^t$ tiene a los mismos autovectores que A y los mismos autovectores asociados para todo λ_i con $i \neq 1$. En el caso de λ_1 , ahora vale 0. ¹.

El único problema de esto es que si aplicamos Método de la Potencia + Deflación k veces, entonces estaríamos asumiendo que hay por lo menos k autovalores dominantes distintos, que no siempre es el caso. Es una buena propuesta para un trabajo a futuro investigar más en detalle en qué situaciones no sería correcto asumir esto.

2.4.2. Pseudocodigo

```
Algorithm 2 Deflación(Matriz A, vector v, valor \lambda)
```

```
Require: \lambda autovalor de módulo máximo y v su autovector asociado

Require: \|v\|=1 y ortogonal al resto de los autovectores

Require: A \in \mathbb{R}^{nxn}

Sea B \in \mathbb{R}^{nxn}

for i=1 hasta n do

for j=1 hasta n do

B_{ij} \leftarrow A_{ij} - \lambda v_i v_j
end for
end for
return B

Ensure: v autovector de B con autovalor asociado 0
```

2.4.3. Ejemplo

Volviendo al mismo ejemplo que en el Método de la Potencia, teníamos a

$$A = \left[\begin{array}{rrr} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{array} \right]$$

Ensure: Si v' autovector de A con autovalor asociado λ' , $v' \neq v$ y $\lambda' \neq \lambda$, también lo es para B

Y habíamos calculado su autovector $\lambda_1=4$ dominante y al autovector $v=\begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}$ asociado. Para deflación requerimos de un autovector con norma igual a 1, entonces lo dividimos por su norma:

$$v_1 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{3}\\ -1/\sqrt{3}\\ 1/\sqrt{3} \end{bmatrix}$$

¹demostrado en la sección Demostraciones

$$B = A - \lambda_1 v_1 v_1^t = \begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} - 4/(\sqrt{3})^2 \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 5/3 & 1/3 & -4/3 \\ 1/3 & 2/3 & 1/3 \\ -4/3 & 1/3 & 5/3 \end{bmatrix}$$

Si calculamos los autovectores y autovalores de esta matriz, usando software específico a elección o usando lápiz y papel, obtendremos los siguientes:

Los autovalores quedarían: [0, 1, 3] y sus respectivos autovectores por columna

$$\left[\begin{array}{c}1\\-1\\1\end{array}\right], \left[\begin{array}{c}-1\\0\\1\end{array}\right], \left[\begin{array}{c}1\\2\\1\end{array}\right]$$

como esperábamos.

2.5. Demostraciones

El método de la potencia asume que tenemos un autovalor dominante y que todos los autovalores son mayores o iguales a 0. A^tA es simétrica por lo que tenemos una base ortonormal de autovectores y además es semi-defininda positiva, por lo que sus autovalores son positivos o 0. El problema es que no podemos asegurar que después de aplicar deflación la matriz seguirá siendo semi-definida positiva, aunque sí simétrica. Sin embargo, asumiremos estos supuestos de todas formas en este trabajo. Demostraremos algunas consecuencias de asumir esto.

Sean $A \in \mathbb{R}^{n \times m}$, $A^t A \in \mathbb{R}^{m \times m}$, $AA^t \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{R}$, $v \in \mathbb{R}^m$, $u \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$, $B = A^t A - \lambda v v^t$, $\Sigma \in \mathbb{R}^{m \times n}$, $U \in \mathbb{C}^{m \times m}$, $V \in \mathbb{C}^{n \times n}$ y $A = U \Sigma V^t$, demostraremos algunas hipótesis que habíamos asumido para este trabajo.

Lema: Si v y v' son vectores de una base ortonormal de autovectores de A^tA con autovalores asociados λ y λ' , entonces v es autovector de B con autovalor 0 y v' es autovector de B con autovalor λ'

- Bv = 0v = 0
- $Bv' = \lambda'v$

Prueba:

$$Bv = (A^t A)v - (\lambda vv^t)v = \lambda v - \lambda v(v^t v) = \lambda v - \lambda v = 0v = 0$$

$$Bv' = (A^t A)v' - (\lambda vv^t)v' = \lambda'v' - \lambda v(v^t v') = \lambda'v - \lambda v(0) = \lambda'v'$$

Lema: las matrices $A^t A$ y AA^t son simétricas.

Prueba:

$$(A^t A)^t = (A)^t (A^t)^t = A^t A (AA^t)^t = (A^t)^t (A)^t = AA^t$$

Lema: la matriz B es simétrica

Prueba:

$$B_{ij} = (A^t A)_{ij} - \lambda v_i(v^t)_j = (A^t A)_{ij} - \lambda v_i v_j = {}^{(1)} (A^t A)_{ji} - \lambda v_j(v^t)_i = B_{ji}$$

(1) $A^t A$ simétrica y v vector.

Lema: Los valores singulares de A son los mismos que los valores singulares de A^t .

Prueba: Los valores singulares de la matriz Σ son las raices de los autovalores en orden decreciente por la diagonal. Los autovalores están definidos como los valores que anulan a la función $\psi(\lambda) = \det(\lambda I - A)$. En el caso de la traspuesta, sus autovalores son los que anulan a la función $\psi(\lambda) = \det(\lambda I - A^t)$, pero $(\lambda I - A)^t = (\lambda I - A^t)$ y el determinante es invariante al trasponer una matriz. Entonces los autovalores son los mismos y, por ende, los valores singulares también.

Lema:

- $A^t = V \Sigma U^t \text{ con } A^t \in \mathbb{R}^{m \times n}$
- $AA^t = U\Lambda U^t$ con Λ la matriz con los autovalores de A y A^t en la diagonal y $AA^t \in \mathbb{R}^{n \times n}$.
- $A^t A = V \Lambda V^t$ con Λ la matriz con los autovalores de A y A^t en la diagonal $A^t A \in \mathbb{R}^{m \times m}$.

Prueba: El primero es inmediato de trasponer A y del hecho de que Σ es diagonal. Para el segundo y el tercero:

$$AA^t = U\Sigma V^t V\Sigma U^t = ^{(1)}U\Sigma\Sigma U^t = ^{(2)}U\Lambda U^t$$

$$A^t A = V \Sigma U^t U \Sigma V^t = {}^{(1)} V \Sigma \Sigma V^t = {}^{(2)} V \Lambda V^t$$

- (1) U y V matrices ortogonales
- (2) λ diagonal con valores singulares en la diagonal.

Lema: Si u es autovector de AA^t con λ autovalor asociado, entonces $A^tu \in \mathbb{R}^m$ es autovector de A^tA también con λ autovalor asociado. Prueba:

$$AA^{t}u = \lambda u \iff {}^{(1)}A^{t}AA^{t}u = \lambda A^{t}u \iff A^{t}A(A^{t}u) = \lambda (A^{t}u)$$

Por ende, $A^t u$ es autovector de $A^t A$.

3. Tests

4. Apéndice

4.1. Enunciado

Se pide implementar un programa en C o C++ que lea desde archivos las imágenes de entrenamiento correspondientes a distintas personas y que, utilizando la descomposición en valores singulares y el número de componentes principales k mencionado anteriormente, calcule la transformación característica de acuerdo con la descripción anterior. Se debe proponer e implementar al menos un método que, dada una nueva imagen de una cara, determine a que persona de la base de datos corresponde utilizando la transformación característica.

Con el objetivo de obtener la descomposición en valores singulares, se deberá implementar el método de la potencia con deflación para la estimación de autovalores/autovectores. En este contexto, la factibilidad de aplicar este método es particularmente sensible al tamaño de las imágenes de la base de datos. Por ejemplo, considerar imágenes en escala de grises de 100×100 píxeles implicaría trabajar con matrices de tamaño 10000×10000 . Una alternativa es reducir el tamaño de las imágenes, por ejemplo, mediante un submuestreo. Sin embargo, es posible superar esta dificultad en los casos donde el número de muestras es menor que el número de variables. Se pide desarrollar las siguientes sugerencias y fundamentar como utilizarlas en el contexto del trabajo.

- Dada una matriz y su descomposición en valores singulares $A = U\Sigma V^t$, encontrar la descomposición en valores singulares de A^t . Cómo se relacionan los valores singulares de A y A^t ?
- Dada la descomposición en valores singulares de A, expresar en función de U, Σ y V las matrices A^t, A^tA y AA^t. Analizar el tamaño de cada una de ellas y deducir como relacionar las respectivas componentes principales. Combinar con el item anterior para el cómputo de los componentes principales.

En base a este análisis, se pide desarrollar una herramienta alternativa que permita trabajar bajo ciertas condiciones con imágenes de tamaño mediano/grande.

Junto con este enunciado se provee una base de datos de imágenes correspondiente a 41 personas, con 10 imágenes por cada una de ellas. Esta base de datos se encuentra disponible en dos resoluciones distintas: 92×112 y 23×28 píxeles por cada imagen. La segunda corresponde a un submuestreo de la base original. En relación a la experimentación, se pide como mínimo realizar los siguientes experimentos:

- Analizar para cada una de las variantes qué versión de la base de datos es posible utilizar, en base a requerimientos de memoria y tiempo de cómputo.
- Para cada una de las variantes propuestas, analizar el impacto en la tasa de efectividad del algoritmo de reconocimiento al variar la cantidad de componentes principales considerados.
 Estudiar también como impacta la cantidad de imágenes consideradas para cada persona en la etapa de entrenamiento.
- En caso de considerar más de una posibilidad para determinar a que persona corresponde una nueva cara, considerar para cada una la mejor configuración de parámetros y compararlas entre ellas.

El objetivo final de la experimentación es proponer una configuración de parármetros/métodos que obtenga resultados un buen balance entre la tasa de efectividad de reconocimiento de caras, la factibilidad de la propuesta y el tiempo de cómputo requerido.

4.2. Generador de Tests

Para generar Tests realizamos un algoritmo en Python en el cual recibimos por parametros el k, la cantidad de personas y el metodo a aplicar. Luego variamos la cantidad de personas en un rango de $\{1,11,21,31,41\}$. Para cada una de estas variamos la cantidad de imagenes por persona de en el intervalo de 1 a 10 de manera random y comparamos contra una imagen que no sea una muestra (exceptuando el caso en el que cada persona tiene 10 muestras). El valor de k lo variamos desde adentro del codigo C++ con el fin de ahorrar calculos ya calculados anteriormente.

4.3. Método de compilación

4.3.1. Método 1

Parados en la carpeta /src del proyecto ejecutar

\$ make

De esta forma se limpia, compila y ejecutan los test provistos por la cátedra. Para compilar por separado se puede hacer: make data.o, make functions.o, make Matrix.o, make main.o. O tambien se puede borrar haciendo make clean. Por defecto al ejecutar make el nombre del ejecutable es caritas

4.3.2. Método 2

Parados en la carpeta donde se encuentra el ejecutable (por ejemplo /src/)

\$./ejecutable < PATH TEST IN > <PATH SALIDA> <METODO>

Donde METODO puede ser

- 0: Utiliza para los calculos A^tA
- 1: Utiliza para los calculos AA^t

Donde en PATH SALIDA se escriben los autovalores correspondientes.

4.4. Referencias bibliográficas

Referencias

[1] Richard L. Burden and J. Douglas Faires Numerical Analysis. 2005.