Sample Midterm

Operations Research I: Deterministic Models

Haixiang Zhu

June 7, 2021

- 1. (a) Denote by x_1 and x_2 the number of push type and self-propelled lawn mowers respectively.
 - (b) The objective function is

$$\max 45x_1 + 70x_2$$

(c) The constraints are

$$9x_1 + 12x_2 \le 720$$
$$2x_1 + 6x_2 \le 300$$
$$x_1 + x_2 \le 75$$
$$x_1, x_2 \ge 0$$

2. (a) BV = $\{s_1, e_2, s_3\}$

$$\begin{cases} s_1 &= 8\\ e_2 &= 2\\ s_3 &= 6 \end{cases}$$

(b) NBV = $\{x_1, x_2, x_3\}$

$$\begin{cases} x_1 &= 0 \\ x_2 &= 0 \\ x_3 &= 0 \end{cases}$$

(c) x_2 is the entering variable because it has the most positive coefficient in row 0.

(d) The initial tableau is

Z	$\mathbf{x_1}$	$\mathbf{x_2}$	$\mathbf{x_3}$	$\mathbf{s_1}$	$\mathbf{e_2}$	$\mathbf{s_3}$	RHS	ratio
1	-1	1	4	0	0	0	0	
0	1	1	2	1	0	0	0	8
0	1	1	-1	0	1	0	2	2*
0	-1	1	1	0	0	1	6	-

The next tableau is

\mathbf{z}	$\mathbf{x_1}$	$\mathbf{x_2}$	$\mathbf{x_3}$	$\mathbf{s_1}$	$\mathbf{e_2}$	$\mathbf{s_3}$	RHS	ratio
1	-2	0	-3	0	-1	0	-2	
0	0	0	3	1	-1	0	6	
0	1	1	-1	0	1	0	2	
0	-2	0	2	0	-1	1	4	

3. (a) The feasible region is

(b)
$$x_1 = x_2 = 0$$

It is not a feasible solution but a basic solution.

- (c) $x_1 = 2, x_2 = 0$ It is a feasible solution as well as a basic solution.
- (d) $x_1 = 1, x_2 = 1$ It is a feasible solution but not a basic solution.
- (e) Infinite feasible solutions.
- (f) Five bfs

$$\begin{cases} (0,1,0,3,3) \\ (1,0,0,1,4) \\ (2,0,1,0,2) \\ (0,2,1,4,0) \\ (2.4,0.4,1.8,0,0) \end{cases}$$

(g) The optimal solution is

$$\begin{cases} x_1 = 2.4 \\ x_2 = 0.4 \\ z = 2.8 \end{cases}$$

4. The standard form is

min
$$z = 2x_1 - x_2 + x_3$$

 $s.t$ $x_1 + 2x_2' - 2x_2'' + x_3 - e_1 = 8$
 $x_1 - x_3 - e_2 = -2$
 $x_1, x_2', x_2'', x_3, e_1, e_2 \ge 0$

5. The dual is

$$\begin{aligned} & \min \quad w = 2y_1 + 30y_2 + 20y_3 \\ & s.t & y_1 + y_3 \ge 1 \\ & y_1 + 2y_2 + y_3 \le -2 \\ & -y_1 - y_2 - y_3 = -1 \\ & 3y_1 + 2y_2 = 3 \\ & y_1 \le 0 \\ & y_2 \ge 0 \\ & y_3 \ urs \end{aligned}$$

6. This is an optimal tableau, but the LP has multiple optimal solutions. Another optimal tableau is

Z	$\mathbf{x_1}$	$\mathbf{x_2}$	$\mathbf{x_3}$	$\mathbf{x_4}$	$\mathbf{x_5}$	$\mathbf{x_6}$	RHS
1	0	0	0	0	2	3	8
0	1	0	0	1	0	1	6
0	0	0	1	-2	-1	-1	-1
0	0	1	0	1	0	1	2

The general form of all optimal solutions is

$$x = cb_1 + (1 - c)b_2$$

where $c \in [0, 1], b_1 = (4, 0, 3, 2, 0, 0)^T, b_2 = (6, 2, -1, 0, 0, 0)$

7. The initial tableau is

Z	$\mathbf{x_1}$	$\mathbf{x_2}$	$\mathbf{x_3}$	$\mathbf{s_1}$	$\mathbf{s_2}$	e_3	$\mathbf{a_3}$	RHS	ratio
1	-4	-4	-1	0	0	0	Μ	0	
1	-4-2M	-4-M	-1-3M	0	0	Μ	0	-3M	
0	1	1	1	1	0	0	0	2	2
0	2	1	0	0	1	0	0	3	-
0	2	1	3	0	0	-1	1	3	1*

The first tableau is

\mathbf{Z}	$\mathbf{x_1}$	$\mathbf{x_2}$	$\mathbf{x_3}$	$\mathbf{s_1}$	$\mathbf{s_2}$	e_3	a_3	RHS	ratio
1	$-\frac{10}{3}$	$-\frac{11}{3}$	0	0	0	$-\frac{1}{3}$	$M + \frac{1}{3}$	1	
							$-\frac{1}{3}$	1	$\frac{2}{3}^*$
0	2	1	0	0	1	0	0	3	3
0	$\frac{2}{3}$	$\frac{1}{3}$	1	0	0	$-\frac{1}{3}$	$\frac{1}{3}$	1	3

The second tableau is

\mathbf{z}	$\mathbf{x_1}$	$\mathbf{x_2}$	$\mathbf{x_3}$	$\mathbf{s_1}$	$\mathbf{s_2}$	e_3	a_3	RHS	ratio
1	$-\frac{3}{2}$	0	0	$\frac{11}{2}$	0	$\frac{11}{6}$	$M-\frac{3}{2}$	$\frac{11}{2}$	
0	$\frac{1}{2}$	1	0	$\frac{3}{2}$	0	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{3}{2}$	3
0	$\left(\frac{3}{2}\right)$	0	0	$-\frac{3}{2}$	1	$-\frac{1}{2}$	$\frac{1}{2}$	$\frac{3}{2}$	1*
0	$\frac{1}{2}$	0	1	$-\frac{1}{2}$	0	$-\frac{1}{6}$	$\frac{1}{2}$	$\frac{1}{2}$	1

The optimal tableau is

\mathbf{z}	$\mathbf{x_1}$	$\mathbf{x_2}$	$\mathbf{x_3}$	$\mathbf{s_1}$	$\mathbf{s_2}$	e_3	a_3	RHS
1	0	0	0	4	1	$\frac{7}{3}$	M-1	7
						-	$-\frac{2}{3}$	1
0	1	0	0	-1	$\frac{2}{3}$		$\frac{1}{3}$	1
0	0	0	1	0	$-\frac{1}{3}$	0	$\frac{1}{3}$	0

The optimal solution is (1, 1, 0, 0, 0, 0, 0), z = 8.

- 8. (a) Denote by x_{ijk} the quantities of product j produced by machine k at month i for i, j, k = 1, 2.
 - (b) The objective function is

$$\max 55 \sum_{k} x_{11k} + 12 \sum_{k} x_{21k} + 65 \sum_{k} x_{12k} + 12 \sum_{k} x_{22k}$$

(c) The constraints are

$$4x_{i11} + 7x_{i21} \le 500, \quad \forall i$$

$$3x_{i12} + 4x_{i22} \le 500, \quad \forall i$$

$$\sum_{k} x_{11k} \le 100$$

$$\sum_{k} x_{12k} \le 140$$

$$\sum_{k} x_{21k} \le 190$$

$$\sum_{k} x_{22k} \le 130$$

$$x_{ijk} \ge 0, \quad \forall i, j, k$$