

Textural Contributions to Strengthening in a Mg-RE Alloy with Nanospaced Stacking Faults

Heather Salvador¹, Vishnu Bhattacharyya², Yuntian Zhu³; Sean Agnew², Suveen Mathaudhu¹ ¹UC Riverside, ²University of Virginia, ³North Carolina State University

THE SETUP

A study by Jian et al. found high strength of a Mg-alloy with nanospaced stacking faults

THE QUESTION

- Can form nano-spaced stacking faults using severe plastic deformation (SPD)
- SPD by hot rolling tends to form textural components that can strongly influence strengthening

Was the work by Jian et al. affected by texture?

THE NUTSHELL

- We report on textural evolution of a Mg-Gd-Y-Ag-Zr alloy hot rolled up to 80% reduction
- Nano-spaced stacking faults and associated high strength observed only at high rolling reductions
- Textural changes were minimal with increased rolling

THE TAKEAWAY

Texture plays a minimal role in strengthening of hcp systems with nanoscale faults.

Nano-spaced stacking faults led to significant strengthening of a Mgalloy

CONTACT

Heather Salvador University of California, Riverside Email: hsalv001@ucr.edu Website: http://smathaudhu.com Twitter: @mathaudhulab

This work was supported by the US National Science Foundation under Award #1554632 and the US Army Research Office under Grant #W911NF-12-1-0009

BACKGROUND & MOTIVATION

BACKGROUND

Magnesium is a candidate for use in industry as a structural material

PROS	CONS
light-weight	low strength
high specific strength	poor formability

Figure 1. Examples of applications magnesium alloys in motor vehicles [1]

ULTRASTRONG MAGNESIUM

Jian et al. achieved unprecedented strengthening of a magnesium alloy via nano-spaced stacking faults [2]

THIS EXPERIMENT

Aims to understand if texture played a role in the strengthening found by Jian et al.

METHODS AND MATERIALS

MATERIAL: Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr (wt%) **HOT ROLLING**

- ❖ Heated in furnace to 450°C for 15 minutes
- ♦ Hot rolled <5% reduction per pass</p>
- Hot rolled up to 88% reduction

CHARACTERIZATION

- Hardness testing
- X-ray Diffraction (texture)
- Light microscopy (grain size)

Typical rolling texture for these orientations reach a texture intensity of 11 (indicating 11 times the random orientation present in the system) [3,4]

Figure 3. Hot rolled sheet surface pole figures for (a) 10% (b) 15% (c) 78% (d) 80% reduction

Most intense texture - plate surface basal orientation 5.6 intensity found at 78% reduction (about half as intense as previous rolling studies)

Basal textures are more intense than pyramidal or prismatic orientations

Basal texture also showed greatest evolution with rolling passes

Sheet surface: basal texture intensity increases and peak broadening decreases with rolling passes Sheet mid-plane: a double peak forms at 78% rolling reduction, then returns to single peak

The evolution in all orientations is minimal

DISCUSSION

POSSIBLE CONTRIBUTIONS TO STRENGTHENING

- ❖ Solid Solution Strengthening
 - ➤ Strength of the initial material matched typical values for magnesium
- ❖ Precipitates X
 - > Level of precipitates found not at level to promote significant strengthening
- ❖ Grain Size Reduction
 - ➤ Grain size reduced from ~80µm to ~8µm
 - ➤ Grain size does not start to significantly increase strength until submicron stage [5,6]
- **❖ Texture** X
 - ➤ Developed texture is weak
 - > Texture does not evolve significantly with rolling reductions
- ❖ Stacking Faults
 - > Hardness trend follows what was found in the study by Jian et al. \rightarrow stacking faults have formed

CONCLUSIONS

Determined unprecedented strengthening found by Jian et al. was due to nano-spaced stacking faults as texture did not play a significant role

Figure 6. TEM image of 88% reduction via hot rolling with a stacking fault spacing, d = 16nm [2]

REFERENCES

- [1] www.totalmateria.com/page.aspx?ID=CheckArticle&site=ktn&NM=246
- [2] W.W. Jian et al., Materials Research Letters (2013)
- [3] G. Rao & Y. Prasad, Metallurgical Transactions A (1982)
- [4] H. Jeong & T. Ha, Journal of Materials Processing Technology (2007)
- [5] B. Chen et al., Journal of Alloys and Compounds (2006)
- [6] Q. Chen et al., Materials Science and Engineering A (2012)