Copyright (C) 2018, 2012, 2016 by Pearson Education Inc. All Rights Reserved, please visit www.pearsoned.com/permissions/.

EX.1.1.3, Sauer3

Consider the equations (a) $x^3 = 9$, (b) $3x^3 + x^2 = x + 5$, (c) $\cos^2(x) + 6 = x$.

Starting from an interval of length one that contains a root of the equation, apply two steps of the Bisection Method to find an approximate root within 1/8 of the true root.

Copyright (c) 2021, Julien Langou. All rights reserved, please visit https://creativecommons.org/licenses/by/4.0/

EX.1.1.3, Sauer3, solution, Langou

https://colab.research.google.com/drive/19pmIPmjKy23ryyoVU5c0K3zeZdgm96pI

(a)
$$x^3 = 9$$

We work with $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^3 - 9$ and start with a = 2 and b = 3. (See EX.1.1.1.)

Step 0
$$a_0 = 2.000$$
 $b_0 = 3.000$ (two function evaluations) $f(a_0) = -1.000$ $x_0 = 2.500$ $f(b_0) = 18.000$ (two function evaluations) $x_0 = 2.500$ $x_0 = 2.500$ (one function evaluation) $x_0 = 2.000$ $x_0 = 6.625$ $x_1 = 1.000$ $x_0 = 6.625$ $x_1 = 2.250$ $x_2 = 2.000$ $x_2 = 2.000$ $x_3 = 2.250$ $x_4 = 2.250$ $x_5 = 2.250$

The approximate solution $x_2 = 2.125$ is within 1/8 of the true root.

<u>Comment:</u> Starting with an interval of length one, we needed two steps of the bisection method and four function evaluations to guarantee a forward error of less then 1/8. This makes sense.

(b)
$$3x^3 + x^2 = x + 5$$

We work with $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto 3x^3 + x^2 - x - 5$ and start with a = 1 and b = 2. (See EX.1.1.1.)

Step 0
$$a_0 = 1.000$$
 $b_0 = 2.000$ (two function evaluations) $x_0 = 1.500$ $x_0 = 1.500$ $x_0 = 1.500$ (one function evaluation) $x_0 = 1.500$ $x_0 = 1.250$ $x_0 = 1.250$

The approximate solution $x_2 = 2.125$ is within 1/8 of the true root.

(c)
$$3x^3 + x^2 = x + 5$$

We work with $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto \cos^2(x) + 6 - x$ and start with a = 6 and b = 7. (See EX.1.1.1.)

Step 0
$$a_0 = 6.000$$
 $b_0 = 7.000$ $f(b_0) = -0.432$ (two function evaluations) $x_0 = 6.500$ $x_0 = 6.750$ x_0

The approximate solution $x_2 = 6.875$ is within 1/8 of the true root.