COMP2611 Spring 2016 Homework #1 Answer Sheet

(Due Monday Mar 7 5PM)

Name:		Stu ID:			
Note:					
•	business pur me the state of the many pay (whitest the state of				
Questi	on 1: Data re	presentation, conversion between bases			
a)	` '	$0000\ 0000\ 1001\ 0010_{(2)} = 0092_{(16)}$ $1111\ 0000\ 1101\ 0001_{(2)} = -3887_{(10)}$			
b)					
	146 (10) =	0000 0000 0000 0000 0000 0000 1001 0010 $_{(2)}$ =	$0000\ 0092_{(16)}$		
	F0D1 (16) =	1111 1111 1111 1111 1111 0000 1101 0001 ₍₂₎ =	-3887 ₍₁₀₎		
	Or =	0000 0000 0000 0000 1111 0000 1101 0001 ₍₂₎ =	61649 ₍₁₀₎		
c)	146 ₍₁₀₎ = F0D1 ₍₁₆₎ =	0000 0000 0000 0000 0000 1001 0010 ₍₂₎ = 0000 0000 0000 0000 1111 0000 1101 0001 ₍₂₎ =	0000 0092 ₍₁₆₎ 61649 ₍₁₀₎		
d) i	S = 0, E = 1+	$a_{2} = 1.111_{(2)} * 2^{1},$ $a_{2} = 1000 \ 0000_{(2)},$ $a_{2} = 111 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000$			
ii	S = 1, E = 8+	$100111001.0101_{(2)} = -1.001110010101_{(2)} *2^8,$ $127 = 1000\ 0111_{(2)},$ $001\ 1100\ 1010\ 1000\ 0000\ 0000$			

e)

$$= 0.111_{(2)} * 2^{-126} = 1.0285 * 10^{-38}$$
 (Note that exponent = 0)

$$=-1.00011_{(2)}*2^2=-1.09375*2^2=-4.375$$

Question 2: Boolean algebra and Combinational logic

a)
$$\overline{ABC} + \overline{AB} = \overline{ABC} * \overline{\overline{AB}} = (\overline{A} + \overline{B} + \overline{C}) * (A + \overline{B}) = \overline{B} + A\overline{C}$$

b)
$$\bar{A}BC + A\bar{B}\bar{C} + \bar{A}\bar{B}\bar{C} + A\bar{B}C + ABC = BC + \bar{B}\bar{C} + A\bar{B}$$

or $BC + \bar{B}\bar{C} + AC$

A BC	00	01	11	10
0	1	0	1	0
1	1	1	1	0

c)
$$(\overline{A} + \overline{B})(\overline{C} + \overline{D})(\overline{B} + D) = \overline{ABC} + \overline{ABD} + \overline{ACD} + \overline{BC} + \overline{BD} + \overline{BCD} = \overline{BC} + \overline{BD} + \overline{ACD}$$

AB CD	00	01	11	10
00	1	1	0	1
01	0	1	0	0
11	0	0	0	0
10	1	1	0	1

Question 3: Sequential logic

a)

R	S	Q	Q'
0	0	Invalid Input	
0	1	0	1
1	0	1	0
1	1	Latch	

b)

R	S	ď	ď
0	0	Latch	
0	1	0	1
1	0	1	0
1	1	Invalid Input	

c)

