MATH 2220 SECTION 203 HW #9

KIRILL CHERNYSHOV

Problem 1

(a) We can calculate this integral by applying the domain boundaries for D: $1 \le x \le 2$ and $0 \le y \le \log x$:

$$\int_D dA = \int_0^1 \int_0^{\log x} dy \, dx$$

$$= \int_0^1 \log x \, dx$$

$$= (x \log x - x) \Big|_0^1$$

$$= (\log 1 - 1) - (0 - 0)$$

$$= -1$$

This represents the volume of the region of points (x,y) where $1 \le x \le 2$ and $0 \le y \le \log x$.

(b) Similarly:

$$\int_D x \, dA = \int_0^3 \int_{-1}^1 x \, dy \, dx$$
$$= \int_0^3 2x \, dx$$
$$= x^2 \Big|_0^3$$
$$= 9$$

This represents the volume of a triangular prism, with length 2, and with its cross-section being the isosceles right-angled triangle with catheti of length 3, i.e. half of the cuboid with sides 2, 3 and 3.

(c) Here, D is the unit disk in \mathbb{R}^2 , that is, $D = \{(x,y)|x^2+y^2 \le 1\}$. We can express the domain boundaries as $0 \le y^2 \le 1 - x^2 \implies -\sqrt{1-x^2} \le y \le \sqrt{1-x^2}$, and $0 \le x^2 \le 1 \implies -1 \le x \le 1$; this is because the square of a number can never be less than 0. Therefore:

$$\int_{D} \sqrt{1 - x^2 - y^2} \, dA = \int_{-1}^{1} \int_{-\sqrt{1 - x^2}}^{\sqrt{1 - x^2}} \sqrt{1 - x^2 - y^2} \, dy \, dx$$

To compute the first integral we can apply the substitution $y = \sqrt{1-x^2}\sin\theta$. Then $dy = \sqrt{1-x^2}\cos\theta d\theta$, and $\sqrt{1-x^2-y^2} = \sqrt{1-x^2-(1-x^2)\sin^2\theta} = \sqrt{(1-x^2)(1-\sin^2\theta)} = \sqrt{(1-x^2)(\cos^2\theta)} = \sqrt{(1-x^2)(1-\sin^2\theta)} = \sqrt{(1-x^2)(1-\cos^2\theta)} = \sqrt{(1-x^2)$

 $\cos\theta\sqrt{(1-x^2)}$. Adjusting the bounds, we have $y=\sqrt{1-x^2}=\sqrt{1-x^2}\sin\theta \implies \sin\theta=1 \implies \theta=\frac{\pi}{2}$; similarly, $y=-\sqrt{1-x^2}\implies \theta=-\frac{\pi}{2}$. So:

$$\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \sqrt{1-x^2-y^2} \, dy = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 \theta \sqrt{(1-x^2)} \sqrt{1-x^2} \, d\theta$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 \theta (1-x^2) \, d\theta$$

$$= (1-x^2) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos(2\theta) + 1}{2} \, d\theta$$

$$= (1-x^2) \left(\frac{\sin(2\theta)}{4} + \frac{\theta}{2} \right) \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$$

$$= \frac{\pi}{2} (1-x^2)$$

Substituting that back in, we get

$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \sqrt{1-x^2-y^2} \, dy \, dx = \frac{\pi}{2} \int_{-1}^{1} (1-x^2) \, dx$$
$$= \frac{\pi}{2} \left(x - \frac{x^3}{3} \right) \Big|_{-1}^{1}$$
$$= \frac{\pi}{2} \frac{4}{3}$$
$$= \frac{2\pi}{3}$$

This represents the volume of one unit hemisphere.

(d) Once again we need to express our constraints. We are given that $z \ge 0 \implies z^2 \ge 0$, and $x^2 + y^2 + z^2 \le 1$. We have $0 \le z \le 1$. Then, fixing z, we get $y^2 \le 1 - z^2$ and fixing y, $x^2 \le 1 - y^2 - z^2$. Then, using the result from (c):

$$\int_{H} 2 \, dV = \int_{0}^{1} \int_{-\sqrt{1-z^{2}}}^{\sqrt{1-z^{2}}} \int_{-\sqrt{1-y^{2}-z^{2}}}^{\sqrt{1-y^{2}-z^{2}}} 2 \, dx \, dy \, dz$$

$$= \int_{0}^{1} \int_{-\sqrt{1-z^{2}}}^{\sqrt{1-z^{2}}} 4\sqrt{1-y^{2}-z^{2}} \, dy \, dz$$

$$= 4\frac{2\pi}{3} \frac{1}{2} = \frac{4\pi}{3}$$

The last step comes from the fact that $\int_0^1 \int_{-\sqrt{1-z^2}}^{\sqrt{1-z^2}} \sqrt{1-y^2-z^2} \, dy \, dz = \frac{1}{2} \int_{-1}^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \sqrt{1-x^2-y^2} \, dy \, dx$. This is equal to twice the volume of the unit sphere.

Problem 2 Using the linearity of the integral, we know this is equal to $\int_D y^5 dA - \int_D xy dA + \int_D 3 dA$. Since $f(y) = y^5$ is an odd function, we know that $\int_{-a}^a y^5 dy = 0$. Therefore

$$\int_{D} y^{5} dA = \int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} y^{5} dy dx$$
$$= \int_{-1}^{1} 0 dx$$
$$= 0$$

The same argument can be made for $\int_D -xy \, dA$. this is because, once again, f(x) = x is an odd function, and therefore $-\int_{-1}^{1} y \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} x \, dx \, dy = -\int_{-1}^{1} 0y \, dy = 0$. Finally, since D is the unit disk, $\int_{D} dA$ is the volume of the unit cylinder (h = r = 1), π , and

 $\int_{D} 3 \, dA = 3 \int_{D} dA = 3\pi$. Therefore, $\int_{D} (y^{5} - xy + 3) \, dA = 3\pi$.

Problem 3 By definition, we can calculate the integrals as follows:

$$\int_{a}^{b} f(x) dx = \lim_{\Delta x \to 0} \sum_{\Delta x} f(x_i) \Delta x$$
$$\int_{a}^{b} g(y) dy = \lim_{\Delta y \to 0} \sum_{\Delta y} g(y_j) \Delta y$$

Therefore, multiplying the integrals, we get, using the properties of limits and linear sums:

$$\int_{a}^{b} f(x) dx \cdot \int_{a}^{b} g(y) dy = \left(\lim_{\Delta x \to 0} \sum_{\Delta x} f(x_{i}) \Delta x\right) \left(\lim_{\Delta y \to 0} \sum_{\Delta y} g(y_{j}) \Delta y\right)$$

$$= \lim_{(\Delta x, \Delta y) \to (0, 0)} \left(\sum_{\Delta x} f(x_{i}) \Delta x\right) \left(\sum_{\Delta y} g(y_{j}) \Delta y\right)$$

$$= \lim_{(\Delta x, \Delta y) \to (0, 0)} \sum_{\Delta x} \sum_{\Delta y} f(x_{i}) g(y_{j}) \Delta x \Delta y$$

$$= \int_{a}^{b} \int_{c}^{d} f(x) g(y) dA$$

This is because, by definition, dA is the infinitesimal change in the area of the "square", that is, $\lim_{(\Delta x, \Delta y) \to (0,0)} \Delta x \Delta y$.

Problem 4

(a) The constraint for x is given as $0 \le x \le 1$. Since $y \in D \iff x^2 \le y \le x^4$, this gives the constraint for y. This means that

$$\int_{D} f(x, y) \, dA = \int_{0}^{1} \int_{x^{2}}^{x^{4}} f(x, y) \, dy \, dx$$

To write this integral in another way, we need to make it so that the constraint for y is absolute, and not relative to x:

$$\int_{D} f(x, y) dA = \int_{0}^{1} \int_{sqrty}^{\sqrt[4]{y}} f(x, y) dx dy$$

(b) An example is any the region between the graphs $y=x^2$ and $y=x^4$, but for all x. In this case, the integral would have to be split into several regions, if integrating first with respect to x and then with respect to y. This is because in the region $0 \le x \le 1$, we are guaranteed that $x^2 \ge x^4$, so that can be expressed as a single condition. However, if we look at the entire range of the two functions, then in areas where |x| > 1 we have $x^4 > x^2$. Therefore, the integral would have to be done separately over several areas to accommodate this.

Problem 5 Since the bounding functions are lines, the bounded region is a triangle, with vertices (1,1), (2,2) and (3,1). We can split this into two disjoint regions: the set $A \subseteq D: 1 \le x \le 2$ and the set $B \subseteq D: 2 < x \le 3$. A is the space between y = 1 and x = y, while B is the space between x = 4 - y. This is because in $A, x \ge 4 - x$, and in B, x < 4 - x, and the upper bound is the smaller of the two functions. So:

$$\int_{D} e^{x+y} \, dx \, dy = \int_{A} e^{x+y} \, dx \, dy + \int_{B} e^{x+y} \, dx \, dy$$

$$= \int_{1}^{2} \int_{1}^{x} e^{x+y} \, dy \, dx + \int_{2}^{3} \int_{4-x}^{1} e^{x+y} \, dy \, dx$$

$$= \int_{1}^{2} e^{x+y} \Big|_{y=1}^{y=x} dx + \int_{2}^{3} e^{x+y} \Big|_{y=4-x}^{y=1} dx$$

$$= \int_{1}^{2} (e^{2x} - e^{x+1}) \, dx + \int_{2}^{3} (e^{x+1} - e^{4}) \, dx$$

$$= (2e^{2x} - e^{x+1}) \Big|_{1}^{2} + (e^{x+1} - xe^{4}) \Big|_{2}^{3}$$

$$= (2e^{4} - e^{3}) - (2e^{2} - e^{2}) + (e^{4} - 3e^{4}) - (e^{3} - 2e^{4})$$

$$= -e^{2} - 2e^{3} + 2e^{4}$$

Problem 6

(a) Since $f(x,y) = e^{-xy}$, we have

$$\frac{\partial}{\partial y} f(x, y) = -xe^{-xy}$$

$$\frac{\partial^2}{\partial y^2} f(x, y) = x^2 e^{-xy}$$

$$\frac{\partial^3}{\partial y^3} f(x, y) = -x^3 e^{-xy}$$

$$\cdots$$

$$\frac{\partial^{n-1}}{\partial y^{n-1}} f(x, y) = (-1)^{n-1} x^{n-1} e^{-xy}$$

(b) This is a simple single-variable integral:

$$\int_0^\infty f(x,y) \, \mathrm{d}x = \int_0^\infty e^{-xy} \, \mathrm{d}x$$
$$= -\frac{e^{-xy}}{y} \Big|_0^\infty$$
$$= 0 - (-\frac{1}{y})$$
$$= \frac{1}{y}$$

(c) Taking the result from part (a) and integrating, we get:

$$(-1)^{n-1} \int_0^\infty x^{n-1} e^{-xy} \, \mathrm{d}x = \int_0^\infty \frac{\partial^{n-1}}{\partial y^{n-1}} e^{-xy} \, \mathrm{d}x \qquad \qquad = \frac{\mathrm{d}^{n-1}}{\mathrm{d}y^{n-1}} \int_0^\infty e^{-xy} \, \mathrm{d}x$$

$$= \frac{\mathrm{d}^{n-1}}{\mathrm{d}y^{n-1}} \frac{1}{y}$$

$$= (-1)^{n-1} \frac{(n-1)!}{y^n}$$

Therefore, $(-1)^{n-1} \int_0^\infty x^{n-1} e^{-xy} dx = (-1)^{n-1} \frac{(n-1)!}{y^n} \implies \int_0^\infty x^{n-1} e^{-xy} dx = \frac{(n-1)!}{y^n}$. Setting y = 1 we get

$$\int_0^\infty x^{n-1} e^{-x} \, \mathrm{d}x = (n-1)!$$

Problem 7

- (a) As in (1c), we can use $f(x,y) = \sqrt{1-x^2-y^2}$, and the integral will be equal to the volume of one hemisphere. Since the volume of a sphere is twice that of a hemisphere with the same radius, if $f(x,y) = 2\sqrt{1-x^2-y^2}$ then $\int_D f(x,y) \, \mathrm{d}A$ will be the volume of the unit sphere.
 - (b) Transforming to polar co-ordinates, $g(x,y) = 2x\sqrt{1-x^2}$. Then, $\int_0^1 \int_0^{2\pi} g(x,y) \, dy \, dx = \frac{4\pi}{3}$.
 - (c) If $u(r,\theta) = (r\cos\theta, r\sin\theta)$ then

$$\vec{D}u = \begin{bmatrix} \cos\theta & -r\sin\theta\\ \sin\theta & r\cos\theta \end{bmatrix}$$

Therefore, $\det \overrightarrow{D}u = r\cos^2\theta + r\sin^2\theta = r(\cos^2\theta + \sin^2\theta) = r$.

(d) Using our previous definitions for f and g, we have

$$f(r\cos\theta, r\sin\theta) = 2\sqrt{1 - r^2\cos^2\theta - r^2\sin^2\theta}$$

$$= 2\sqrt{1 - (r^2\cos^2\theta + r^2\sin^2\theta)}$$

$$= 2\sqrt{1 - (r^2[\cos^2\theta + \sin^2\theta])} = 2\sqrt{1 - r^2}$$

$$g(r, \theta) = 2r\sqrt{1 - r^2}$$

The ratio between them is r, which is also the determinant of the derivative matrix of the transformation to polar co-ordinates.

Problem 8 There are two possible ways to decompose this function into partial fractions:

$$\frac{x-y}{(x+y)^3} = \frac{2x}{(x+y)^3} - \frac{1}{(x+y)^2}$$
$$= \frac{1}{(x+y)^2} - \frac{2y}{(x+y)^3}$$

To calculate $\int_0^1 \frac{x-y}{(x+y)^3} dy$ I will use the first one, and to calculate $\int_0^1 \frac{x-y}{(x+y)^3} dx$ I will use the second one, for reasons that will become obvious. We have:

$$\int_{0}^{1} \frac{x-y}{(x+y)^{3}} dy = \int_{0}^{1} \left(\frac{2x}{(x+y)^{3}} - \frac{1}{(x+y)^{2}} \right) dy$$

$$= \left(-\frac{2x}{2(x+y)^{2}} + \frac{1}{x+y} \right) \Big|_{y=0}^{y=1} = \left(\frac{1}{x+y} - \frac{x}{(x+y)^{2}} \right) \Big|_{y=0}^{y=1}$$

$$= \left(\frac{1}{x+1} - \frac{x}{(x+1)^{2}} \right) - \left(\frac{1}{x} - \frac{x}{(x)^{2}} \right)$$

$$= \frac{1}{x+1} - \frac{x}{(x+1)^{2}} - \frac{1}{x} + \frac{1}{x}$$

$$= \frac{1}{x+1} - \frac{x}{(x+1)^{2}}$$

$$= \frac{1}{(x+1)^{2}}$$

Similarly:

$$\int_{0}^{1} \frac{x-y}{(x+y)^{3}} dx = \int_{0}^{1} \left(\frac{1}{(x+y)^{2}} - \frac{2y}{(x+y)^{3}} \right) dx$$

$$= \left(\frac{y}{(x+y)^{2}} - \frac{1}{x+y} \right) \Big|_{x=0}^{x=1}$$

$$= \left(\frac{y}{(y+1)^{2}} - \frac{1}{y+1} \right) - \left(\frac{y}{y^{2}} - \frac{1}{y} \right)$$

$$= \frac{y}{(y+1)^{2}} - \frac{1}{y+1}$$

$$= -\frac{1}{(y+1)^{2}}$$

Therefore, we have $\int_0^1 \int_0^1 \frac{x-y}{(x+y)^3} \, \mathrm{d}y \, \mathrm{d}x = \int_0^1 \frac{1}{(x+1)^2} \, \mathrm{d}x = -\frac{1}{x+1} \Big|_0^1 = \frac{1}{1} - \frac{1}{2} = \frac{1}{2}$. Similarly, $\int_0^1 \int_0^1 \frac{x-y}{(x+y)^3} \, \mathrm{d}x \, \mathrm{d}y = -\int_0^1 \frac{1}{(y+1)^2} \, \mathrm{d}y = \frac{1}{y+1} \Big|_0^1 = -\frac{1}{2}$. This is interesting, since the two are not equal, but are negatives of each other.