Question Bank for First internal

Part1

1. Prove that
$$\tan \phi = r \frac{d\theta}{dr}$$
 . 2. Prove that $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$.

Find the angle between the following two curves.

3.
$$r = a(1 - \sin \theta)$$
 , $r = b(1 + \sin \theta)$

4.
$$r^n = a^n \cos n\theta$$
 , $r^n = b^n \sin n\theta$.

5.
$$r = \frac{2a}{(1-\cos\theta)}$$
 , $r = \frac{2b}{(1+\cos\theta)}$

6.
$$r = \frac{a\theta}{1+\theta}$$
 and $r = \frac{a}{1+\theta^2}$.

7.
$$r = \sin \theta + \cos \theta$$
 , $r = 2 \sin \theta$.

Find the pedal equation of the following curves.

8.
$$r = a(1 - \sin \theta)$$

9.
$$r^n = a^n \cos n\theta$$

$$10. \ r(1-\cos\theta)=2a$$

11.
$$r^2 = a^2 \sec 2\theta$$

12.
$$r^m = a^m(\cos m\theta + \sin m\theta)$$

13.
$$r^n = a^n \sin n\theta + b^n \cos n\theta$$

- 14. Derive the radius of curvature in Cartesian form.
- 15. Derive the radius of curvature in polar form.

Find the radius of curvature for the following curves.

16.
$$x^3 + y^3 = 3axy$$
 at $(\frac{3a}{2}, \frac{3a}{2})$ 17. $xy^3 = a^4$ at the point (a, a)

17.
$$xy^3 = a^4$$
 at the point (a, a)

18.
$$r^n = a^n \sin n\theta$$
 at any point (x, y)

18.
$$r^n = a^n \sin n\theta$$
 at any point (x, y) 19. For the cardioid $r = a(1 + \cos \theta)$,

20. Find the radius of curvature of the curve $\sqrt{x} + \sqrt{y} = 4$ at the point where it cuts the line y = x.

Part2

Using Maclaurin's series expand the following functions

1.
$$y = \log \sec x$$

$$y = \log \sec x \qquad 2. \ \log(1 + \sin x)$$

3.
$$\log(1 + e^x)$$

4.
$$tan^{-1} x$$

$$5.\sqrt{(1+\sin 2x)}$$

Evaluate the following limits.

6.
$$Lt _{x \to a} \left(2 - \frac{x}{a}\right)^{\tan\left(\frac{\pi x}{2a}\right)} 7. \frac{Lt}{x \to 0} \left(\frac{a^x + b^x + c^x}{3}\right)^{\frac{1}{x}}$$

7.
$$Lt \atop x \to 0 \left(\frac{a^x + b^x + c^x}{3} \right)^{\frac{1}{x}}$$

8.
$$\lim_{x \to \frac{\pi}{2}} (\sec x)^{\cot x}$$

8.
$$\underset{x \to \frac{\pi}{2}}{lt} (\sec x)^{\cot x}$$
 9. $\underset{x \to 0}{lt} (\cot x)^{\frac{1}{\log x}}$ 10. $\underset{x \to \frac{\pi}{2}}{lt} (\tan x)^{\tan 2x}$

10.
$$Lt \\ x \to \frac{\pi}{2} (\tan x)^{\tan 2x}$$

- 11. If x increases at the rate of 2 cm/sec at the instant when x = 3 cm. and y = 1 cm., at what rate must y changing in order that the function $2xy - 3x^2y$ shell be neither increasing nor decreasing?
- 12. At a given instant the sides of a rectangle are 4ft and 3 ft, and they are increasing at the rate of 1.5ft/sec and 0.5ft/sec respectively. Find the rate at which the area is increasing at that instant.

13. If
$$u = x \log xy$$
 where $x^3 + y^3 + 3xy = 1$ find $\frac{du}{dx}$.

14. If
$$u = f(y - z, z - x, x - y)$$
, then prove that $u_x + u_y + u_z = 0$.

15. If
$$x = u(1 + v)$$
, $y = v(1 + u)$, show that $\frac{\partial(x, y)}{\partial(u, v)} = 1 + u + v$.

16. If
$$u = x + y + z$$
, $v = x^2 + y^2 + z^2$ and $w = xy + yz + zx$, then find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.

17. If
$$ux = yz$$
, $vy = zx$, $wz = xy$, then show that $\frac{\partial (u, v, w)}{\partial (x, y, z)} = 4$.

18. If
$$u = x + y + z$$
, $uv = y + z$ and $uvw = z$, then find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.

Question paper pattern

Part1:		
1. a) b)	Or	2. a) b)
c)		c)
Part2:		
3.	Or	4.
a)		a)
b)		b)