Urodynamics Without Borders Guide

..

October 10, 2023

Contents

1	Intr	roducti	on 4					
	1.1	Aims						
2	The	eory	5					
	2.1	-	n Control					
	2.2	Pressu	re Measurement					
	2.3		Infusion					
	2.4		wmetry					
3	Sup	portin	g Information and Files 6					
	3.1	PCB I	$ \frac{1}{2} \operatorname{Design} \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	3.2	Suport	ting Structure Design					
	3.3	Hardw	vare Control Software					
	3.4	User I	nterface Software					
4	Ma	nufactı	ring Guide 8					
	4.1	Comp	onents List					
		4.1.1	Control System					
		4.1.2	Uroflowmetry					
		4.1.3	Pressure Configuration					
		4.1.4	Fluid Infusion					
	4.2	Orderi	ing PCBs					
	4.3	Fabricating Supporting Structures						
		4.3.1	3D Printing					
		4.3.2	Workshop Manufacturing					
		4.3.3	Uroflowmetry Base Plates					
		4.3.4	Pressure Configuration Clamp Design					
		4.3.5	Infusion Pump Clamp Design					
		4.3.6	Volume Infused Loadcell Clamp Design					
		4.3.7	Volume Infused Fluid Mount Clamp Design 16					
	4.4	Subsyt	tem Assembly					
		4.4.1	Control Subsystem					
		4.4.2	Uroflowmetry					
		4.4.3	Pressure Sensor Configuration					
		4.4.4	Fluid Infusion					
		4.4.5	Infusion Pump					

5	Sof	tware	24				
	5.1	Control Software	24				
		5.1.1 Control programs available	24				
		5.1.2 Requirements	24				
		5.1.3 Loading scripts onto the hardware	25				
	5.2 User Interface Software						
		5.2.1 Requirements	26				
		5.2.2 Installation	26				
		5.2.3 Usage	26				
6	\mathbf{Sys}	tem Testing	27				
7	Clinicial Use 2						
8	Project Change Log						
	8.1	System Design	29				
	8.2	Support Structure CAD Files	29				
	8.3	User Interface Software	29				
	8.4	Hardware Control Software	29				
	8.5	PCB Files	29				
9	Apı	pendices	30				

1 Introduction

A urodynamic (UDS) test evaluates the bladder function by assessing the pressure-volume relationship during the storage phase, and the pressure-flow relationship during the voiding phase. Bladder dysfunction can result in lower urinary tract symptoms such as frequent urination, incontinence and difficulty emptying the bladder. In severe cases, bladder dysfunction results in kidney damage and may be fatal. Determining the root cause of the bladder dysfunction allows clinicians to most effectively treatment and preserve kidney function.

During a UDS test, fluid is infused to the bladder at a set flowrate. The detrusor pressure (bladder pressure - abdominal pressure) change with infused volume is recorded. Once the patient reaches the functional bladder capacity or incontinence is elicited, permission to void is given and the pressure-flow relationship recorded. The standard urodynamic system costs approximately (US) \$30,000. The acquisition and running cost of urodynamics systems are often considered prohibitive for most hospitals in the developing world.

1.1 Aims

The aim of this project was to develop and validate a urodynamic system for a total cost of \$100 (excluding a computer), meeting the performance standards set out in the international continence society urodynamic equipment guidelines (click ICS Equipment Guidelines to download the ICS guidelines file).

2 Theory

The urodynamics system can be broken down into several sub-systems with one main board that will control the acquisition of sensor measurements and communication of those measurements to the user interface.

2.1 System Control

The mainboard is comprised of a waterproof enclosure that houses a PCB, this PCB has all required components soldered to it.

2.2 Pressure Measurement

There are two pressure syringes to allow measurement of the bladder and abdominal pressures. The pressure sensors used (MS5840) are factory calibrated, so calibration is not required. The measured values are sent via the mainboard to the UI Software, a zeroing value is applied to the absolute values. The detrusor pressure is calculated from the subtraction of abdominal pressure from bladder pressure.

2.3 Fluid Infusion

The fluid infusion sub-system uses a cantilever loadcell to measure the volume of fluid infused and to calculate the infusion rate. A DC peristaltic pump is used to infuse the fluid, a pulse wave modulation circuit is used to vary pump speed.

2.4 Uroflowmetry

The uroflowmetry sub-system uses a cantilever loadcell to measure the force applied by the container and the fluid voided. The loadcells raw digital value will be sent via the main board to the UI software. The UI software then applies the loadcell specific constants to obtain the applied force. The applied force is then converted into volume using the specific gravity of infusion fluid that has been used. The UI software has a calibration protocol to obtain the required constants. Using the change in time and volume the UI software calculates the flowrate of fluid voided.

3 Supporting Information and Files

3.1 PCB Design

The JS_UDS_PCB repository stores all files required for PCB manufacture. Navigate to the Latest directory.

3.2 Suporting Structure Design

The JS_UDS_CAD repository stores the Autocad files used to design the supporting structures as well as the STL files generated from the designs. Navigate to the Latest directory.

3.3 Hardware Control Software

The JS_UDS_Hardware repository stores the control software for the UDS equipment. There are simulation, test, and clinical investigation scripts.

Simulation scripts:

- Pressure Simulation
- Pump Flowrate Simulation
- Volume Infused Simulation
- Volume Void Simulation
- Clinical Investigation Simulation

Test scripts:

- Pressure Testing
- Pump Flowrate Testing
- Volume Infused Testing
- Volume Void Testing

Click Full Clinical Investigation for the clinical investigation script.

3.4 User Interface Software

Click User Interface Software for the user interface software.

4 Manufacturing Guide

This section will provide the required equipment lists, ordering requirements, fabrication, and soldering information to manufacture the full Urodynamics system.

4.1 Components List

4.1.1 Control System

Component	Quantity	Per Unit Cost(USD)	Total Cost (USD)
Main board PCB	1	0	0
Mains AC to DC Plug	1	0	0
DC connector mount	1	0	0
DC barrel jack mount	1	0	0
Buck Converter	2	0	0
Micro-USB mount	1	0	0
Arduino Nano	1	0	0
TCA9548A Multiplexer	1	0	0
1k Ohm Resistor	6	0	0
PWM Circuit	1	0	0
HX711 amplifier	2	0	0
Male 4 pin DIN connector	5	0	0
Female 4 pin DIN connector	5	0	0
Wire 4-core	1 meter	0	0

Table 1: Control Components List

4.1.2 Uroflowmetry

Component	Quantity	Per Unit Cost(USD)	Total Cost (USD)
0-5kg cantilever loadcell	1	0	0
Male 4 pin DIN connector	1	0	0
Wire (4-core)	2 meters	0	0

Table 2: Uroflowmetry Components List

4.1.3 Pressure Configuration

Component	Quantity	Per Unit Cost(USD)	Total Cost (USD)
MS5840-02BA TE Pressure Sensor	2	0	0
Pressure sensor PCB	2	0	0
Male 4 pin DIN connector	2	0	0
Wire (4-core)	3 meters	0	0
Epoxy resin solution	15 ml	0	0

Table 3: Pressure Configuration Components List

4.1.4 Fluid Infusion

Component	Quantity	Per Unit Cost(USD)	Total Cost (USD)
0-5kg cantilever loadcell	1	0	0
0-5kg cantilever loadcell	1	0	0
12v Peristaltic Pump	1	0	0
Mounted toggle switch	1	0	0
Male 4 pin DIN connector	2	0	0
Wire (4-core)	4 meters	0	0

Table 4: Pressure Configuration Components List

4.2 Ordering PCBs

Figure 1: PCB Manufacturer

- 1. 3D Visit the PCBs page on the UDSWB website and download the zip files $\,$
- 2. Find a low-cost PCB manufacturer online and upload the zip files

4.3 Fabricating Supporting Structures

The sections below provide drawings with labelled dimensions and tables with the corresponding measurements. Measure the procured components and apply the dimensions to the drawings to identify suitable supporting structures for your components.

4.3.1 3D Printing

If you have access to a 3D printer, then check (XX APENDIX x) to see the measurements used to create the STL files for the components. If your component parts have the same measurements, then use the supplied files. If component measurements vary then use the drawings to design your own, at the time of writing Autodesk provide a free version of Autodesk that can be used to design the parts and export to STL files for printing. Aim to use a stiff setting filament to optimise the transmission of load for loadcell measurement.

4.3.2 Workshop Manufacturing

Use the drawings and relative measurements in each section to form the design for each part. Aim to use lightweight and stiff materials, this will ensure that the load transmission for measurement via loadcells is optimised.

4.3.3 Uroflowmetry Base Plates

The drawings below outline base plates fit for purpose, two are required. The large flat bottom provides a large stable base in contact with the floor as well as a large pad to place the fluid container on. The design centres the loadcell in the middle of the plate so that the weight of the container and fluid are over the centre of the plate. This reduces the likelihood of the container falling over if knocked.

Figure 2: Uroflowmetry Base Plate Drawings

- a) The distance between the centre points of the two tapped holes at each end of the loadcell
- b) The width of the loadcell + > 2mm
- c) Length of the loadcell
- d) The bolt diameter used by the loadcell + > 1mm
- e) The diameter of the head of the bolt + > 2mm
- f) The height of the loadcell
- g) Distance between the centre of the loadcell and the centre point of the loadcell hole nearer to the loadcell mid-point

4.3.4 Pressure Configuration Clamp Design

The drawings below outline the pressure configuration clamp, two are required. Two of these can be fixed together on a stand to provide a clamp for the pressure sensor syringes. The four bolt and nut holes allow the two parts to be clamped together around the upright support. The internal nut holes and through bolt holes allow a single bolt ant nut to act as grub screws to fix the two syringes in place and fix the clamp to the upright support. The single nut and bolt hole at the end of the part clamps the two parts together so that the syringe grub screws do not splay the parts.

Figure 3: Pressure Syringe Clamp Drawings

- a) The diameter of the pressure syringe + > 4mm
- b) The diameter of the upright stand/trolley + > 4mm
- Nb) Select bolts that are greater than the larger of 3a and 3b
- Nb) Create holes to accommodate the chosen bolts
- Nb) Create hexagonal holes to accommodate the corresponding nuts, a tight fit makes it easier to move the bolts without the nuts dropping out

4.3.5 Infusion Pump Clamp Design

The drawings below outline the infusion pump clamp, two are required. Two of these can be fixed together on a stand to provide a clamp for the infusion pump to be fixed to. The four bolt and nut holes allow the two parts to be clamped together around the upright support. The internal nut hole and through bolt hole allow a single bolt ant nut to act as grub screw to fix the clamp to the upright support. The two through holes allow bolts to pass through the part to fix the pump to the clamp.

Figure 4: Infusion Pump Clamp Drawings

- a) The diameter of the upright stand/trolley + > 4mm
- b) The distance between the pump fixation screw holes 5mm
- c) The length of the pump + > 10mm

4.3.6 Volume Infused Loadcell Clamp Design

The drawings below outline the fluid infusion loadcell clamp, two are required. Two of these can be fixed together on a stand to provide a clamp for the fluid infusion loadcell. The four bolt and nut holes allow the two parts to be clamped together around the upright support. The internal nut hole and through bolt hole allow a single bolt ant nut to act as grub screw to fix the clamp to the upright support. The two through holes allow bolts to pass through the part to fix the loadcell to the clamp.

Figure 5: Volume Infused Loadcell Clamp Drawings

- a) The diameter of the upright stand/trolley + > 4mm
- b) Twice the width of the loadcell + 4mm
- c) The distance between the centre points of the two tapped holes at each end of the loadcell
- d) Height of the loadcell
- Nb. Create holes to accommodate the chosen bolts
- Nb. Create hexagonal holes to accommodate the corresponding nuts, a tight fit makes it easier to move the bolts without the nuts dropping out

4.3.7 Volume Infused Fluid Mount Clamp Design

The drawings below outline the fluid infusion mount, one part is required. The part is fixed to the end of the fluid infusion load cell and allows the infusion bag to be supported and weighed. The two through holes allow bolts to pass through the part to fix the loadcell to the clamp. The upright cylinder/hook acts as the point to fix the infusion fluid bag, it should be made sufficiently strong to hold a minimum of 1.25 kg.

Figure 6: Volume Infused Fluid Mount Clamp Drawings

- a) The diameter of the upright stand/trolley + > 4mm
- a) The bolt diameter used by the loadcell + > 1mm
- b) The distance between the centre points of the two tapped holes at each end of the loadcell
- c) The distance between the centre points loadcells outermost hole and the end of the loadcell + 1mm
- d) Distance from the end of the load cell to the innermost holes edge + > 5mm
- e) The width of the loadcell +4mm
- f) Height of the loadcell

4.4 Subsytem Assembly

4.4.1 Control Subsystem

- 1. Solder the resistors in place. (Tight to the board and not intruding other components)
- 2. Solder the PWM circuit components. (The transistor pins can be bent to 90 degrees to avoid it sticking up)
- 3. Solder the support pins to the 2 buck converters
- 4. Solder the 3.3v connection on one buck converter and the 5v on the other
- 5. Solder the buck converters to the designated spot (3.3v to the 3.3v spot...)
- 6. Solder the DC barrel jack mount to the PCB
- 7. Solder the support pins to the TCA9548A Multiplexer, the Arduino Nano and the 2 HX711 amplifiers
- 8. Solder the TCA9548A Multiplexer, the Arduino Nano and the 2 HX711 amplifiers to the PCB
- 9. Cut 6x10cm and 5x5cm lengths of 4 core wire
- 10. Fix female 4 pin DIN connectors to the ends of 5cm lengths of wire
- 11. Fix male pin connectors to the other ends of the 5cm lengths
- 12. Solder the 10cm lengths of wire to the PCB (2 of the wires will only require 2 cores to be soldered)
- 13. Fix female pin connectors to the other ends of the 10 cm lengths
- 14. Cut holes in the waterproof casing just large enough to fit the female DIN connectors, the micro-USB connector, the DC plug and the switch
- 15. Fix the female DIN connectors, the micro-USB connector, the DC plug and the switch in place

- 16. Place the PCB inside and connect each of the male and female pin connectors
- 17. Test the continuity of each female 4 pin DIN connector to the PCB to ensure that the pins are connected in the correct order
- 18. Screw the waterproof casing lid on to finish

4.4.2 Uroflowmetry

1. 3D print or manufacture the supporting parts using the STL files

- 2. Connect the 2m 4 core wire to the 4 wires attached to the loadcell (Note the order of the wires attached)
- 3. Solder the male 4 pin DIN connector to the other end of the

Pin	Wire
1	E+
2	E-
3	A-
4	A+

Table 5: Uroflowmetry Loadcell Pin Out

- 4. Screw the loadcell into the first baseplate
- 5. Screw the second base plate onto the loadcell

4.4.3 Pressure Sensor Configuration

- 1. Solder the pressure sensors to the PCBs
- 2. Fix the male 4 pin DIN connector to the 4-core wire
- 3. Cut a hole axially through the syringe plunger to allow the 4-core wire to pass through
- 4. Solder the 4-core wire to the PCB (pressure sensor facing up)

Pin	Wire
1	GND
2	VCC
3	SCK
4	SDA

Table 6: MS5840-02BA Pressure Sensor Pin Out

5. Mix the epoxy resin and use it to cover the PCB ensuring not to go over the aperture of the pressure sensor. The resin should form a seal at the top of the plunger to stop fluid passing through the hole cut to allow the wires to pass through.

4.4.4 Fluid Infusion

- 1. 3D print or manufacture the supporting parts using the STL files
- 2. Connect the 4-core wire to the load cell
- 3. Connect the 4-core wire to the peristaltic pump
- 4. Fix the male 4 pin DIN connector to the other end of the 4-core wire (x2)

4.4.5 Infusion Pump

1. get pump

5 Software

5.1 Control Software

The Control Software repository stores all scripts required to simulate signals, test sub-systems and perform clinical urodynamics.

5.1.1 Control programs available

- Simulation
 - Pressure Simulation Simulates pressure sensor input
 - Pump Flowrate Simulation Simulates infusion pump
 - Volume Infused Simulation Simulates volume infused
 - Volume Void Simulation Simulates volume void
 - Clinical Investigation Simulation Simulates clinical investigation
- Testing
 - Pressure Testing Pressure configuration testing
 - Pump Flowrate Testing Pump testing
 - Volume Infused Testing Volume infused testing
 - Volume Void Testing Volume void testing

_

• Full Clinical Investigation - Performing clincial investigations

5.1.2 Requirements

- 1. Install VS Code
- 2. Install the PlatformIO extension for VS Code
- 3. Download the code repository from Control Software
- 4. Manufacture the urodynamics system

5.1.3 Loading scripts onto the hardware

- 1. Connect the hardware to via USB
- 2. Open the subdirectory of the control program you would like to upload
- 3. Using the PlatformIO extension
 - (a) Build the script
 - (b) Upload the script

5.2 User Interface Software

The User Interface Software repository stores user interface software for system testing and performing clinical urodynamics.

5.2.1 Requirements

1. Download the latest Windows installer file (User Interface Software).

5.2.2 Installation

1. Use the installer file to install the user interface software

5.2.3 Usage

- 1. Open the user interface software
- 2. Follow in app instructions

6 System Testing

7 Clinicial Use

- 8 Project Change Log
- 8.1 System Design
- 8.2 Support Structure CAD Files
- 8.3 User Interface Software
- 8.4 Hardware Control Software
- 8.5 PCB Files

9 Appendices