IOD Mini Project 2

Regina Soh

Content

- Housing price prediction
 - Linear Regression
 - Lasso and Ridge Regression

- Stroke prediction
 - Logistic Regression
 - Support Vector Machine
 - K-nearest Neighbors

Housing Price Prediction

California Housing Prices Dataset

- Information on houses found in California based on the 1990 census data
 - Location: longitude, latitude, ocean_proximity
 - Property information: total_rooms, total_bedrooms, housing_median_age, median_house_value
 - Demographics: population, households

Data source

https://www.kaggle.com/datasets/camnugent/california-housing-prices

Data Cleaning

1) Remove data with house price at 500,001

965 houses with the same house value of 500,001 Very unlikely for so many houses to have the same median price, especially when it is a high price.

2) Estimate missing total_bedrooms data using linear regression with households

Household has a very strong linear relationship with total bedrooms

Training result accuracy at 0.96

A large proportion of houses have median house value between 100k - 200k

Houses on the island are more expensive while those in the inland are cheaper

Housing price has some linear relationship with median_income

Price Prediction

Linear Regression model could not predict higher value houses well

Training accuracy score: 0.641
Test accuracy score: 0.653

Comparing different models

TRAI	INING SCORES		r2	mse
	lr	0.64	1114	0.101443
	lasso	0.64	1114	0.101443
	ridge	0.64	1114	0.101443

TEST SCO	RES	r2	mse
lr	0.65	2886	0.101138
lasso	0.65	2887	0.101138
ridge	0.65	2886	0.101138

All three models have the same predictive power

Possible Improvements: Get data on housing amenities (pool, fitness corner etc)

Stroke Prediction

Stroke Prediction Dataset

- Patients information
 - o Basic information: id, gender, age
 - Health-related: stroke, hypertension, heart_disease, avg_glucose_level, bmi
 - Lifestyle: smoking_status, ever_married, work_type, Residence_type

Data source

• https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset

Data Cleaning

1) Remove patients without BMI data

4% of total patients

#	Column	Non-Null Count	Dtype
0	id	5110 non-null	int64
1	gender	5110 non-null	object
2	age	5110 non-null	float64
3	hypertension	5110 non-null	int64
4	heart_disease	5110 non-null	int64
5	ever_married	5110 non-null	object
6	work_type	5110 non-null	object
7	Residence_type	5110 non-null	object
8	<pre>avg_glucose_level</pre>	5110 non-null	float64
9	bmi	4909 non-null	float64
10	smoking_status	5110 non-null	object
11	stroke	5110 non-null	int64

2) Remove patient with gender 'Other'

Only one patient with 'Other' gender

gender
Female 2897
Male 2011
Other 1
Name: count, dtype: int64

Distribution of patients across age group look similar for both genders

Number of stroke patients

Very small number of stroke patients in dataset (4%)

A large percentage of stroke patients are between the age 76-80 for both genders

Male

Majority of stroke patients do not have hypertension or heart disease

Higher avg glucose levels are more common in stroke patients

Lower BMIs are more common in non-stroke patients

Stroke prediction

Logistic Regression model could not predict stroke patients well

Training F1 score: 0.843
Test F1 score: 0.162

Comparing different models

Training F1 score: 0.861 Test F1 score: 0.181

Training F1 score: 1.000 Test F1 score: 0.127

All three models are poor at predicting stroke patients

How to improve models

Try different methods of handling imbalanced data

Models are likely overfitting training data

- Training score high but low test score
- Current model uses oversampling method to tackle imbalanced data

Get more stroke patients data

Real data is better than using algorithms to fix class imbalanced

Model will be more trustworthy

End