panelcn.MOPS and SavvyCNV together detect the most exon-level copy number variants from targeted-capture

Sharing software instead of data is useful for clinical collaboration

A Multi-Site Comparison of Copy Number Variant Callers for Targeted-Capture Sequencing

- S. Piatek¹, E. Sollars², P. Lombard¹, A. C. Davies³, H. Ahlfors¹ and L. Jenkins¹
- @stefanpiatek
- stefan.piatek@nhs.net

- ¹ London North Genomic Laboratory Hub, Great Ormond Street Hospital, United Kingdom ² Sheffield Diagnostic Genetics Service, Sheffield Children's Hospital, United Kingdom
- ³ The University of Manchester, United Kingdom

Introduction

- Exon-level Copy Number Variants (CNVs) are clinically important but gold standard methods of detection (MLPA and ddPCR) are not scalable
- Clinical laboratories routinely use targeted-capture Next Generation Sequencing (NGS) for single nucleotide variant detection
- CNVs can be detected from NGS data, it is unknown which CNV caller is best at the exon-level
- Using NGS data for CNV calling would:
 - Decrease costs and increase capacity for genes that are routinely tested for CNVs
 - Improve diagnostic yield in gene panels that are not routinely tested for CNVs
- Each laboratory has few positive CNVs
- We created CNV-patissier to automate the CNV caller bake off across multiple NHS sites

Methods

Only data with confirmed CNV-status used (by MLPA)

146 positive CNVs, 191 negative samples

- The Institute of Cancer Research (ICR)
 96-Exon Validation series:
 Enzymatic shearing & TruSight Cancer Panel
- Great Ormond Street Hospital (GOSH):
 Physical shearing & Agilent SureSelect capture
- Sheffield Children's Hospital (SCH):
 Physical shearing & Agilent SureSelect capture
- Three other NHS sites awaiting local approval

Automation of analysis, using CNV-patissier

- Reproducible: Docker images for the same configuration, versions and dependencies
- Default parameters for each CNV caller as suggested by documentation for targeted-capture
- Only relevant data saved to SQLite database for simple pooling at lead site

Results

- High sensitivity callers:
 DECoN, ExomeDepth, GATK, panelcn.MOPS and SavvyCNV (Figure 1)
- DECoN detected 2 true positive CNVs that ExomeDepth was not able to
- All true positive calls were in the intersection of SavvyCNV and panelcn.MOPS (Figure 2)
 - Sensitivity: 0.97 (95% CI: 0.93 0.99)
 - Specificity: 0.91 (95% CI: 0.85 0.94)

Figure 1: CNV caller sensitivity and specificity (with 95% confidence intervals)

Figure 2: Venn Diagram of true positive calls from top 4 most-sensitive CNV callers. Four positive CNVs of the 146 were not detected

Conclusions

- Final analysis with all NHS sites should reach 300 positive CNVs for a higher certainty comparison
- An intersection of CNV callers should be used for exon-level detection using targeted capture NGS
- As patient sequencing data was never shared, each NHS site could easily agree to collaborate

Extra information:

Targeted-capture callers considered:
All freely available, released 2012 - 2018

Samples with confirmed CNV-status used:

Docker Hub images and tool versions:

CNV Caller	Base docker image and tag	Tool version	Supporting tools (version)	Docker image used and tag
Canvas	mono:5.14	1.11.0	Python (3.7.2)	stefpiatek/canvas: 1.11.0
CNV kit	ubuntu:18.04	0.9.6	Python (2.7.15rc) R (3.4.4)	etal/cnvkit:0.9.6
CODEX2	r-base:3.5.1	26e796c	R (3.5.1) CODEX (bioconductor 3.8) BSgenome (bioconductor 3.8)	stefpiatek/codex2: 26e796c
CopywriteR	r-base:3.5.1	2.14.1		stefpiatek/copywriter: 2.14.1
DECoN	r-base:3.1.2	1.0.2	R (3.1.2)	stefpiatek/decon:1.0.2
EXCAVATOR2	r-base:3.5.1	1.1.2	Bedtools (2.26.0) Samtools (1.9)	stefpiatek/excavator2: 1.1.2
ExomeDepth	r-base:3.5.1	1.1.10	R (3.5.1)	stefpiatek/ exomedepth:1.1.10
GATK gCNV	broadinstitute/gatk: gatkbase-2.0.3	4.1.0.0	openJDK (1.8.0_191) Python (3.6.2)	broadinstitute/gatk: 4.1.0.0
panelcn.MOPS	r-base:3.5.1	1.4.0	R (3.5.1)	stefpiatek/ panelcn_mops:1.4.0
SavvyCNV	java:8-jdk	f996a83	openJDK (1.8.0_111) GATK 3.8.1.0	stefpiatek/savvycnv: f996a83
WISExome	continuumio/ miniconda:4.5.4	-	Python (2.7.15 Anaconda)	stefpiatek/wiseexome:latest
XHMM	broadinstitute/	1.0	GATK 3.8.1.0	stefpiatek/xhmm:1.0

Callers removed from comparison:

- Canvas: no CNVs from targeted-capture
- WISExome: not functional

