PH2303P - Optique ondulatoire Programme de colles - semaine 4

Chapitre 1 – Propriétés ondulatoires de la lumière

1. Modèle scalaire de la lumière

Signal lumineux : fonction scalaire s(M,t) (représentant une composante de champ électrique)

Superposition: si deux ondes lumineuses arrivent au même point, $s(M,t) = s_1(M,t) + s_2(M,t)$

Onde monochromatique (OM): $s(M,t) = a(M)\cos(\omega t - \varphi(M))$ avec a(M) l'amplitude (réelle), $\varphi(M)$ le retard de phase représentation complexe $\underline{\underline{s}(M,t)} = \underline{\underline{A}(M)}e^{j\omega t}$ avec l'amplitude complexe $\underline{\underline{\underline{A}(M)}} = \underline{\underline{A}(M)}e^{-j\varphi(M)}$

si deux ondes lumineuses arrivent au même point, $\underline{A}(M) = \underline{A}_1(M) + \underline{A}_2(M)$

Paramètres : fréquence $f = \frac{\omega}{2\pi}$, longueur d'onde dans le vide $\lambda_0 = \frac{c}{f} = \frac{2\pi c}{\omega}$, pulsation spatiale dans le vide $k_0 = \frac{\omega}{c} = \frac{2\pi}{\lambda_0}$ Lumière visible : $400 \text{ nm} < \lambda_0 < 800 \text{ nm}$ (du violet au rouge) ; $8 \cdot 10^{14} \text{ Hz} > f > 4 \cdot 10^{14} \text{ Hz}$

puissance surfacique moyenne sur le temps de réponse τ du détecteur Éclairement (ou intensité) :

 $I(M) = \left\langle \frac{\mathrm{d} P(M,t)}{\mathrm{d} \sigma} \right\rangle = K \left\langle s(M,t)^2 \right\rangle, \text{ on choisit } K = 2 \text{ unit\'es SI pour simplifier}$ $\left| I(M) = a(M)^2 = \left| \underline{A}(M) \right|^2 = \underline{A}(M) \underline{A}(M)^* \right|$

2. Propagation et déphasage

Trajet de la lumière entre un point source S et un point quelconque M: rayon lumineux défini par l'optique géométrique Chemin optique entre S et M: $(SM) = c \tau_{SM}$ où τ_{SM} est le temps de propagation de S à M et c la célérité dans le vide

Vitesse de propagation (célérité) dans un milieu quelconque : $v = \frac{c}{n}$ avec n > 1 l'indice (de réfraction)

Chemin optique dans un milieu homogène (rayon rectiligne) : (SM) = n SM (valable aussi pour deux points quelconques)

Chemin optique lors d'un changement de milieu homogène (réfraction en A) : $(SM) = (SA) + (AM) = n_1 SA + n_2 AM$

Chemin optique dans le cas général : $(SM) = \int_{S \to M} n(P) d\ell$

Pour trois points A, B, C sur un même rayon, dans cet ordre : (ABC) = (AB) + (BC)

Retard de phase en M: $\varphi(M) = \varphi(S) + k_0(SM) = \varphi(S) + \frac{2\pi}{\lambda_0}(SM)$ donc entre deux points M et N sur un même rayon, dans cet ordre : $\varphi(M) = \varphi(N) + k_0(NM)$

Dans un milieu homogène : $\lambda = \frac{\lambda_0}{n}$, $k = nk_0$, $\varphi(M) = \varphi(N) + kNM$

Cas particuliers : M et N en phase, $\varphi(M) = \varphi(N) + 2m\pi$ (m entier), $(NM) = m\lambda_0$, $NM = m\lambda$ en milieu homogène

M et N en opposition de phase, $\varphi(M) = \varphi(N) + (2m+1)\pi$, $(NM) = (m+\frac{1}{2})\lambda_0$

Surface d'onde : $\varphi(M)$ = constante , donc pour une source S ponctuelle S (SM) = constante

Après un nombre quelconque de réflexions et de réfractions, les ravons lumineux issus d'une Théorème de Malus source ponctuelle sont orthogonaux aux surfaces d'onde.

Entre deux points conjugués A et A', le chemin optique (AA') est le même Stigmatisme et chemin optique sur tous les rayons.

surfaces d'onde planes et parallèles entre elles, rayons rectilignes de direction \vec{u} (vecteur unitaire) Onde plane (OP):

 $s(M,t) = a\cos(\omega t - \vec{k} \cdot \overrightarrow{OM})$ avec $\vec{k} = k\vec{u}$ (vecteur d'onde) si origine des phases en O

Onde sphérique (OS): les surfaces d'onde sont des sphères ou portions de sphères (de centre O)

 $s(M,t) = \frac{C}{r}\cos(\omega t - \vec{k} \cdot \overrightarrow{OM})$ avec $\vec{k} = +k\overrightarrow{e_r}$ (divergente) ou $\vec{k} = -k\overrightarrow{e_r}$ (convergente)

3. Autres phénomènes affectant le signal lumineux

Déphasages particuliers (discontinuités de π):

réflexion sur un dioptre avec $n_1 < n_2$; réflexion sur un miroir métallique; passage par un point de convergence

pour une onde plane, $s(N,t) = \gamma_{MN} a(M) \cos(\omega t - \vec{k} \cdot \overrightarrow{ON})$ Absorption :

pour une onde sphérique, $s(N,t) = \gamma_{MN} \frac{C(M)}{\sigma} \cos(\omega t - \vec{k} \cdot \overrightarrow{ON})$

avec γ_{MN} le facteur d'absorption, $\gamma_{MN} = \exp(-\alpha NM)$ dans un milieu homogène

Chapitre 2 – Interférences lumineuses

1. Superposition de deux ondes cohérentes

Éclairement résultant de deux ondes : $I(M) = I_1(M) + I_2(M) + \underbrace{4\langle s_1(M,t)s_2(M,t)\rangle}_{T(M)}$, T(M) terme d'interférences

Ondes lumineuses (mutuellement) cohérentes : $T(M) \neq 0$, $I(M) \neq I_1(M) + I_2(M)$, interférences (les ondes interfèrent)

Ondes lumineuses (mutuellement) incohérentes : $T(M) = 0, \forall M$, $I(M) = I_1(M) + I_2(M)$, pas d'interférences

(cas de deux ondes de fréquences différentes)

Formule de Fresnel pour les interférences entre deux OM cohérentes : $I(M) = I_1 + I_2 + 2\sqrt{I_1I_2} \cos\left(\delta\varphi_{2/1}(M)\right)$

(démonstration à partir des valeurs moyennes ou avec la notation complexe

soit pour deux ondes de même intensité $I(M) = 2I_1 \left[1 + \cos \left(\delta \varphi_{2/1}(M) \right) \right]$

États d'interférences remarquables :

pour
$$\delta \varphi_{2/1}(M) = 2m\pi$$
, $I(M) = I_{\text{max}} = I_1 + I_2 + 2\sqrt{I_1I_2} = (\sqrt{I_1} + \sqrt{I_2})^2 [= 4I_1 \text{ si } I_1 = I_2]$, interférences constructives

$$\text{pour } \delta \varphi_{2/1}(M) = (2m+1)\pi \text{ , } I(M) = I_{\min} = I_1 + I_2 - 2\sqrt{I_1I_2} = \left(\sqrt{I_1} - \sqrt{I_2}\right)^2 \left[= 0 \text{ si } I_1 = I_2 \right], \text{ interférences } destructives$$

Ordre d'interférences : $p(M) = \frac{\delta \varphi_{2/1}(M)}{2\pi}$

Frange d'interférences : ensemble de points M tels que p(M) = constante (courbe sur un écran)

franges brillantes pour I_{max} , ordre p(M) = m entier

franges sombres pour I_{\min} , ordre $p(M) = m + \frac{1}{2}$ demi-entier

Contraste:

$$\frac{\gamma = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}}{I_{\text{max}} + I_{\text{min}}}, \text{ nombre compris entre 0 et 1 (ou entre 0 % et 100 %)}$$

$$\gamma = \frac{2\sqrt{I_1 I_2}}{I_1 + I_2} \text{ pour deux OM, } \gamma = 1 \text{ pour } I_1 = I_2, \ \gamma = 0 \text{ pour } I_1 = 0 \text{ ou } I_2 = 0$$

$$\gamma = \frac{2\sqrt{I_1I_2}}{I_1 + I_2}$$
 pour deux OM, $\gamma = 1$ pour $I_1 = I_2$, $\gamma = 0$ pour $I_1 = 0$ ou $I_2 = 0$

Cas de deux sources ponctuelles cohérentes dans un milieu uniforme : franges d'équation $S_2M - S_1M = \text{cte}$

dans l'espace, ce sont des hyperboloïdes de révolution, de foyers S_1 et S_2

sur un écran plan orthogonal à $[S_1S_2]$, on observe des franges circulaires concentriques

sur un écran plan parallèle à $[S_1S_2]$, franges hyperboliques, pratiquement rectilignes au voisinage du centre

Déphasage identique en deux points conjugués M et M': $\varphi_{2/1}(M) = \varphi_{2/1}(M')$

2. Cohérence temporelle des sources réelles

Modèle des trains d'ondes : variation aléatoire de la phase entre un train d'ondes et le suivant

Temps de cohérence τ_c : durée moyenne d'un train d'ondes

Longueur de cohérence $\ell_c = c\tau_c$: ordre de grandeur de la longueur d'un train d'onde dans l'espace, le long d'un rayon

Deux sources distinctes sont incohérentes : pas d'interférences. Pour qu'on puisse voir des interférences, les rayons arrivant en un point M doivent provenir d'une même source par des chemins différents.

Division de front d'onde : deux rayons différents issus de S interfèrent en M. Division d'amplitude : un même rayon issu de S se sépare en deux rayons par réflexion/réfraction sur un dioptre, puis ceux-ci interfèrent en M.

Différence de marche en
$$M$$
: $\delta_{2/1}(M) = (SM)_2 - (SM)_1$

$$\Phi_{2/1}(M) = \frac{2\pi}{\lambda_0} \delta_{2/1}(M) + \varphi_{\text{autre}} \quad \text{(pour } \varphi_{\text{autre}} \text{, ajouter ou enlever } \pi \text{ pour chaque phénomène particulier)}$$

Il faut que $\delta_{2/1}(M) < \ell_c$ pour que des interférences soient visibles.