Alexandria University Faculty of Engineering Electrical Engineering Department

Electronics II: Project Op-Amp Design

By: Mostafa Mahmoud Khalil Hassan

Submitted to: Eng. Nour

Circuit Schematic

The unknowns are:

$$R1 = R2, R3 = R4, R5, R6$$

All DC Voltage sources are 3.3 V.

All transistors are NPN BJT transistors.

Hand Analysis

$$\beta = 120, C_{jc} = 1pF, C_{je} = 10pF$$

$$I_{EE1} = \frac{3.3 - 0.7}{R_6} = \frac{2.6}{R_6}$$

$$I_{c1} = I_{c2} \cong I_{E1} = I_{E1} = \frac{I_{EE1}}{2} = \frac{1.3}{R_6}$$

$$r_{\pi 1} = \beta \frac{25mV}{I_{E1}} = 2.308R_6$$

$$V_{c1} = V_{cc} - I_{c1}R_1$$

$$I_{EE2} = \frac{V_{c1} - 0.7}{R_5}$$

$$I_{c3} = I_{c4} \cong I_{E3} = I_{E4} = \frac{I_{EE2}}{2}$$

$$r_{\pi 2} = \beta \frac{25mV}{I_{E3}} = \cdots$$

Solving half circuit:

$$A_{2} = -\frac{\beta i b_{3} R_{3}}{r_{\pi 2} i b_{3}} = -\frac{\beta R_{3}}{r_{\pi 2}}$$

$$A_{1} = -\frac{\beta i b_{1} (R_{1} / / r_{\pi 2})}{i b_{1} r_{\pi 1}} = -\frac{\beta (R_{1} / / r_{\pi 2})}{r_{\pi 1}}$$

$$A_{d} = A_{1} A_{2} = \frac{\beta^{2} R_{3} (R_{1} / / r_{\pi 2})}{r_{1} r_{2} r_{3}}$$

$$C_{out} = 1 + \frac{1}{A_1} = 1.0625pF$$

$$f_{c2} = \frac{1}{2\pi C_{out}(R_1//r_{\pi 2})} = \frac{1}{2\pi * 1.0625 * 99} = 1513.059$$

$$f_{c3} = \frac{1}{2\pi C_{in2}(R_1//r_{\pi 2})} = 80MHz$$

$$C_{in2} = c_{je} + c_{jc}(1 + |A_2|) = 20pF$$

$$c_{je} = 10 \ pF \quad , c_{jc} = 1 \ pF$$

Using the values:

$$R_1 = R_2 = 102\Omega$$
 , $R_3 = R_4 = 250\Omega$, $R_5 = 1200\Omega$, $R_6 = 307\Omega$
 \therefore $r_{\pi 1} = 708.556~\Omega$, $r_{\pi 2} = 3320.91~\Omega$

Voltage Gain:

$$A_v = \frac{\beta^2 R_3 (R_1 / / r_{\pi 2})}{r_{\pi 1} r_{\pi 2}} = 151.402$$

Bandwidth:

$$BW = \frac{1}{2\pi * 2 * 10^{-11} * 98.96} = 802786310.82 \ Hz \cong 80MHz$$

Dissipated Power:

$$P_{diss} = 2(V_{cc}I_{c1} + V_{cc}I_{c3}) = 2 * 3.3 * (4.23456 + 0.90335)$$

= 33.91mW

Input resistance:

$$R_{in} = 2 * r_{\pi 1} = 1416.9\Omega$$

Output resistance:

$$R_{out} = R_3 = 250\Omega$$

Linearity range of the amplifier:

When $V_{ce2} > 0.2 \text{ v}$

So it is from $V_{ce} = 0.2V$ to $V_{cc} = 3.3V$

 $V_{ce2} = V_{cc} - I_c(R_3 + 2R_5) = 3.1 \text{ v}$

Input swing: 3 mv peak to peak

Output swing: $0.2 \ mv$ peak to peak

Simulation Results

...

Fe ba2y el rsomat hena el mafrod b3d el sin de ...

DC Sweep

Fe bardu ba2y rsomat hena .. el simulation el gamel msh 3arf azabato :D