

Anthony Perez
 Estructura de Datos

Actividad 2. Gestión de la práctica y experimentación

Recursividad y problema de las torres de Hanoi

Revisión Rápida de Conceptos Básicos:

🏯 🏯 Informe: Torres de Hanoi - Solución Recursiva 🏯 🏯

1. Descripción del problema

Las Torres de Hanoi es un clásico problema matemático y juego de puzle inventado por el matemático francés Édouard Lucas en 1883. El juego consiste en tres varillas y un número de discos de diferentes tamaños que pueden deslizarse en cualquier varilla.

Reglas:

- 1. Solo se puede mover un disco a la vez.
- 2. Cada movimiento consiste en tomar el disco superior de una de las varillas y deslizarlo en otra varilla, sobre los otros discos que puedan estar ya presentes en esa varilla.
- 3. Ningún disco puede ser colocado encima de un disco más pequeño.

₫ Objetivo ₫ ₫

Mover toda la pila de discos de la varilla de origen a la varilla de destino, utilizando la varilla auxiliar como ayuda, respetando todas las reglas mencionadas.

2. Implementación recursiva (matemática)

La solución recursiva para las Torres de Hanoi se basa en la observación de que para mover n discos de una varilla a otra, podemos:

- 1. Mover n-1 discos de la varilla de origen a la varilla auxiliar.
- 2. Mover el disco más grande de la varilla de origen a la varilla de destino.
- 3. Mover los n-1 discos de la varilla auxiliar a la varilla de destino.

Matemáticamente, podemos expresar esto como una función recursiva:

Donde n es el número de discos, y origen, destino y auxiliar son las tres varillas.

3. Implementación recursiva (Python)

Estructura del algoritmo:

El algoritmo sigue la estructura recursiva descrita en la implementación matemática. Se divide el problema en subproblemas más pequeños, resolviendo el caso base (n=1) directamente y llamando recursivamente a la función para los casos más complejos.

Condición base y llamada recursiva:

Condición base: Cuando n = 1, simplemente se mueve el disco de la varilla de origen a la de destino.

Llamada recursiva: Para n > 1, se realizan dos llamadas recursivas:

- 1. Mover n-1 discos de origen a auxiliar.
- 2. Mover n-1 discos de auxiliar a destino.

Complejidad temporal:

La complejidad temporal del algoritmo es O(2^n), donde n es el número de discos. Esto se debe a que para cada n, se realizan 2 llamadas recursivas con n-1 discos, más una operación constante (mover el disco n).

La relación de recurrencia es:

$$T(n) = 2T(n-1) + 1$$
, con $T(1) = 1$

Resolviendo esta relación, obtenemos:

$$T(n) = 2^n - 1$$

Por lo tanto, el número de movimientos necesarios para resolver el problema con n discos es 2ⁿ - 1.


```
main.py U × ③ README.md M
main.py > ...
  1
       # Problema De Las torres de Hannoi
  2
       tabnine: test | explain | document | ask | Codiumate: Options | Test this function
  3
       def TowerOfHanoi(n , source, destination, auxiliary):
  4
           if n==1:
               print ("Mover el disco 1 desde la fuente", source, "A destino", destination)
  5
  6
               return
  7
           TowerOfHanoi(n-1, source, auxiliary, destination)
           print ("Mover Disco",n,"de la fuente",source,"A destino",destination)
  8
           TowerOfHanoi(n-1, auxiliary, destination, source)
  9
 10
 11
 12
       n = 4
       TowerOfHanoi(n,'A','B','C')
 13
       # A, C, B are the name of rods
 14
 10
```


Conclusiones y reflexiones sobre el uso de la recursividad:

- **1.Elegancia y simplicidad:** La solución recursiva para las Torres de Hanoi demuestra cómo problemas aparentemente complejos pueden resolverse con algoritmos sorprendentemente simples y elegantes.
- **2. Poder de la recursividad:** Este problema ilustra perfectamente cómo la recursividad puede descomponer un problema grande en subproblemas más manejables.
- **3.** Complejidad vs. Legibilidad: Aunque la implementación recursiva es concisa y fácil de entender, su complejidad exponencial la hace ineficiente para un gran número de discos. Esto destaca la importancia de considerar tanto la elegancia del código como su eficiencia.
- **4. Pensamiento recursivo:** Resolver este problema ayuda a desarrollar el "pensamiento recursivo", una habilidad valiosa en programación y resolución de problemas en general.
- **5. Aplicaciones prácticas**: Aunque las Torres de Hanoi es un problema teórico, las técnicas utilizadas para resolverlo (dividir problemas en subproblemas, recursividad) tienen aplicaciones prácticas en muchos campos de la informática y las matemáticas.

Para comprender mejor el código puedes revisar aquí

https://github.com/TONY24/Hanooi.git

