

Published in Image Processing On Line on YYYY–MM–DD. ISSN 2105–1232 © YYYY IPOL & the authors CC–BY–NC–SA This article is available online with supplementary materials, software, datasets and online demo at http://dx.doi.org/10.5201/ipol.YYYY.XXXXXXXX

PREPRINT September 6, 2013

LSSC

Yohann Salaun¹ & Marc Lebrun²

 1 Polytechnique, France (yohann.salaun@polytechnique.org) 2 CMLA, ENS Cachan, France (marc.lebrun@cmla.ens-cachan.fr)

Abstract

1 Overview

2 Theoretical Description

2.1 Non Local Means

Self similarities inside pictures have been studied for a long time. Efros and Leung used it for texture synthesis [1] and were followed by Buades, Coll and Morel for denoising purpose [2].

Considering a noisy picture \mathbf{y} of n pixels seen as a column vector in \mathbb{R}^n , \mathbf{y} is divided into n overlapping patches of equal size m. The i-th pixel of \mathbf{y} is noted $\mathbf{y}[i]$ and the patch centered in $\mathbf{y}[i]$ and of size m is noted \mathbf{y}_i . Then, when two different patches \mathbf{y}_i and \mathbf{y}_j have similar values, their denoised version should also be similar. Moreover, assuming that the noise follows a Gaussian distribution, averaging similar patches should destroy the noise information and thus denoise the patch. Thus the denoised pixel $\mathbf{x}[i]$ is obtained with a linear combination of the others pixel in the noisy picture \mathbf{y} weighted by the similarity of their corresponding patches:

$$\mathbf{x}[i] = \frac{1}{N} \sum_{j=1}^{n} G(\mathbf{y}_i - \mathbf{y}_j) \mathbf{y}[j]$$
 (1)

where N is the normalization factor and G a Gaussian that weights the patch similarities. Following this idea, Mairal et al. [5] divided the pictures into n overlapping patches in order to denoise through self-similarity methods.

2.2 Learned Sparse Coding

The second idea is to assume that the denoised patches can be approximated by a sparse linear combinations of elements from a basis set.

This basis set, that contains the denoised picture information, is called a dictionary $\mathbf{D} \in \mathbb{R}^{m \times k}$. The linear combination is represented by a vector $\boldsymbol{\alpha} \in \mathbb{R}^k$ called a code. The aim is to have a dictionary that is not redundant (independant columns), not too large $(k \ll n)$ but that contains the whole picture information.

The denoising problem consists then of finding one dictionary for the picture and one sparse code for each patch. Thus it can be reformulated into a minimization problem where we look for the optimal dictionary and codes that are the most similar to each noisy patches:

$$\forall i \in [1; n], \quad \min_{\boldsymbol{\alpha} \in \mathbb{R}^k, \mathbf{D} \in \mathbb{R}^{m \times k}} \sum_{i=1}^n ||\boldsymbol{\alpha}_i||_p \text{ s.t. } ||\mathbf{y}_i - \mathbf{D}\boldsymbol{\alpha}_i||_2^2 \leqslant \epsilon$$
 (2)

 $\mathbf{D}\alpha_i$ is the estimate of the i^{th} denoised patch which should be similar to the noisy patch and ϵ can be chosen according to the value of the estimated standard deviation of the noise.

Once the dictionary and the codes are learned, for each pixel, we have m estimations (from the m overlapping patches that contain it) and their averaging give us the denoised information of this pixel:

$$\forall i \in [1, n], \quad \mathbf{x}[i] = \frac{1}{m} \sum_{j=1}^{m} \mathbf{D} \boldsymbol{\alpha}_{\sigma(i,j)}$$
(3)

Where $\sigma(i,j)$ is the number of the patch that put pixel $\mathbf{x}[i]$ in j^{th} position.

Equation (2) is usualy minimized with p=0 or 1. It becomes NP-hard to solve when p=0 but a greedy algorithm such as Orthogonal Matching Pursuit [7] can quickly give a good approximation. The problem is convex with p=1 and is efficiently solved with the Least Angle Regression algorithm [3]. Experimental observations [8] have shown that the learning part is better with p=1 and the recomposition part with p=0.

2.2.1 Learning Dictionary

In this part, we consider that p = 1 in equation (2). The problems becomes convex and the equation is only solved in order to find the optimal dictionary **D** that could represent the denoised information of picture **y**.

The method consists in updating the dictionary iteratively with only a small distribution of T patches. However they are chosen so that they are independently and identically distributed in the picture. First, the initial dictionnary is learned offline on the 10 000 images of the PASCAL VOC'07 database using the online dictionary learning procedure of [4]. This procedure is then used on the noisy picture \mathbf{y} in order to improve the dictionary efficiency.

For each patch \mathbf{y}_i , the corresponding code is computed with the current dictionary kept constant and then the dictionary is updated with all the previous codes.

Thus, we minimize iteratively the two equations below:

- For $\mathbf{D} \in \mathbb{R}^{m \times k}$ and patch t, $\boldsymbol{\alpha}^t = \operatorname{argmin}_{\boldsymbol{\alpha} \in \mathbb{R}^k} ||\boldsymbol{\alpha}||_1 \text{ s.t. } ||\mathbf{y}_t \mathbf{D}^{t-1} \boldsymbol{\alpha}||_2^2 \le \lambda$
- For patches 1 to t and their codes $\alpha \in \mathbb{R}^k$, $\mathbf{D}^t = \operatorname{argmin}_{\mathbf{D} \in \mathbb{R}^{m \times k}} \frac{1}{t} \sum_{i=1}^t (\frac{1}{2} |\mathbf{y}_t^i \mathbf{D} \boldsymbol{\alpha}^i||_2^2 + \lambda ||\boldsymbol{\alpha}^i||_1)$

The second equation can be re-written:

$$\mathbf{D}^{t} = \operatorname{argmin}_{\mathbf{D} \in \mathbb{R}^{m \times k}} \frac{1}{t} (\frac{1}{2} \operatorname{Tr}(\mathbf{D}^{T} \mathbf{D} B^{t}) - \operatorname{Tr}(D^{T} C^{t})$$
(4)

where B and C are incrementaly updated with:

- $B^t \leftarrow B^{t-1} + \boldsymbol{\alpha}^t \boldsymbol{\alpha}^{tT}$
- $C^t \leftarrow C^{t-1} + \mathbf{y}^t \boldsymbol{\alpha}^{tT}$

The dictionary update is thus computed through a block-coordinate descent with warmrestarts [9]. This is an iterative method that updates the columns of the dictionary needing only matrices B and C and no matrix inversion in opposite to other approaches as Newton method. Moreover, since the convex optimization problem (Equation (4)) admits separable constraints in the updated blocks (columns), convergence to a global optimum is guaranteed. However Mairal et al empirically found that a single iteration of the dictionary update was sufficient to achieve convergence.

2.2.2 Denoising

TODO: MARC:)

2.3 Simultaneous Sparse Coding

- 2.3.1 Clustering
- 2.3.2 Simultanous Least Angle Regression
- 2.3.3 Simultanous Orthogonal Matching Pursuit

3 Notations

4 Algorithm Description

4.1 Algorithm Overview

The first part consists in initializing a dictionary that will denoise roughly the picture.

Once the picture is denoised a first time, a clustering is made in order to regroup similar patches for further treatment.

Then, iteratively for each clusters, the dictionary is updated using simultaneous sparse coding and the cluster is denoised.

4.2 **Dictionnary Initialization**

Input: number of iterations T, i.i.d. sampling of T patches of the noisy picture Y_T , initial dictionary $\mathbf{D}^0 \in \mathbb{R}^{m \times k}$, regularization parameter λ

Output: learned dictionary D

Initialization: $\mathbf{A}^0 \in \mathbb{R}^{k \times k} \leftarrow 0, \, \mathbf{B}^0 \in \mathbb{R}^{m \times k} \leftarrow 0$

for t = 1... T do

$$\mathbf{y}_t = \mathbf{Y}_T[\mathbf{t}]$$

Sparse coding: compute with LARS algorithm:

$$\alpha^t = \operatorname{argmin}_{\alpha \in \mathbb{R}^k} ||\alpha||_1 \text{ s.t. } ||\mathbf{y}_t - \mathbf{D}^{t-1}\alpha||_2^2 \le \lambda$$

$$\mathbf{A}^t \leftarrow \mathbf{A}^{t-1} + \boldsymbol{\alpha}^t \boldsymbol{\alpha}^{tT} \\ \mathbf{B}^t \leftarrow \mathbf{B}^{t-1} + \mathbf{y}_t^t \boldsymbol{\alpha}^{tT}$$

$$\mathbf{B}^t \leftarrow \mathbf{B}^{t-1} + \mathbf{y}_t^t \boldsymbol{\alpha}^{tT}$$

Update dictionary from \mathbf{D}^{t-1} to \mathbf{D}^t so that:

$$\mathbf{D}^t = \operatorname{argmin}_{\mathbf{D} \in \mathbb{R}^{m \times k}} \frac{1}{t} \sum_{i=1}^t (\frac{1}{2} |\mathbf{y}_t^i - \mathbf{D} \boldsymbol{\alpha}^i||_2^2 + \lambda ||\boldsymbol{\alpha}^i||_1)$$

end return \mathbf{D}^T

Algorithm 1: Online Dictionary Learning

Input :input dictionary $\mathbf{D} = [\mathbf{d}^1, ..., \mathbf{d}^k] \in \mathbb{R}^{m \times k}$ $\mathbf{A} = [\mathbf{a}^1, \dots, \mathbf{a}^k] \in \mathbb{R}^{k \times k}, \, \mathbf{B} = [\mathbf{b}^1, \dots, \mathbf{b}^k] \in \mathbb{R}^{m \times k}$

Output: updated dictionary D

repeat

until convergence Marc: apparemment, dans le code on a une boucle sur params.updateIteration = 1. Est-ce qu'il ne vaudrait mieux pas calculer l'argmin à chaque boucle et s'arrêter lorsque c'est plus petit qu'une certaine valeur ?Yohann: je n'ai pas trop compris ce que tu voulais faire. Ca c'est le pseudo code prsent par Mairal, qui est donc une sorte de descente de gradient. Ce genre d'algo converge en thorie l'infini, en pratique on prend un grand nombre d'itration. Cependant, dans ce cas on fait une minimisation alterne d'un problem plus global (selon D puis selon alpha et on itre). Du coup, et surement cause de contraintes de temps, Mairal a fix le nombre d'itration 1 mais permet de le changer en paramtre dans son algo. Du coup j'ai voulu faire pareil que Mairal. ;

return D

Algorithm 2: Dictionary Update updateDictionary Marc: Algo validé

```
Marc: TODO: choisir entre les indices ou les crochets pour les indices
Input: Input dictionary \mathbf{D} \in \mathbb{R}^{m \times k}, noisy patch \mathbf{y} \in \mathbb{R}^m, constraint \lambda \in \mathbb{R}
Output : code \alpha \in \mathbb{R}^k
—INITIALIZATION—
\mathbf{G} \in \mathbb{R}^{k \times k} \leftarrow \mathbf{D}^T \mathbf{D}
normPatch \in \mathbb{R}^+ \leftarrow ||\mathbf{y}||_2^2
oldsymbol{lpha} \in \mathbb{R}^k \leftarrow oldsymbol{0}
\mathcal{A} \in [0; k]^k \leftarrow \mathbf{0}
Most correlated element
\hat{\mathbf{c}} \in \mathbb{R}^k \leftarrow \mathbf{D}^T \mathbf{y}
C \in \mathbb{R}^+ \leftarrow \max_{j=1..k}(|\hat{\mathbf{c}}_j|)
currentInd \leftarrow j s.t. \hat{\mathbf{c}}_j = C
newAtom \leftarrow \mathbf{True}
if normPatch < \lambda then
return 0
end
for i = 1..k do
 LOOP, see below
end
return \alpha
                       Algorithm 3: LARS algorithm - Mairal Version computeLars
```

```
—NEW ATOM—
  if newAtom then
         \mathcal{A}[i] \leftarrow \text{currentInd}
         G_A \in \mathbb{R}^{k \times i}, G_S \in \mathbb{R}^{i \times i}
         G_A[i^{th} \text{ column}] \leftarrow G[\text{currentInd}^{th} \text{ column}]
         G_S[i^{th} \text{ line}] \leftarrow G_A[\text{currentInd}^{th} \text{ line}]
         symmetrize G_S
         UPDATE G_S^{-1}
  end
  —VARIABLES UPDATES—
  \mathbf{u} \in \mathbb{R}^i \leftarrow G_S^{-1}(\mathrm{sgn}(\hat{\mathbf{c}}_{\mathcal{A}[j]}))_{j \in [1;i]}
  C \leftarrow |\hat{\mathbf{c}}[\mathcal{A}[1]]| = \max_{j=1..k} (|\hat{\mathbf{c}}_{j}|)
\gamma \in \mathbb{R}_{*}^{+} \leftarrow \min^{+} \left( \frac{C + \hat{\mathbf{c}}_{j}}{1 + (G_{A}u)[j]}, \frac{C - \hat{\mathbf{c}}_{j}}{1 - (G_{A}u)[j]} \right)_{j \text{ s.t. } \mathcal{A}[j] = 0}
  currentInd = j s.t. \gamma = \frac{C \pm \hat{\mathbf{c}}_j}{1 \pm (G_A u)[j]}
  ratio \in \mathbb{R}^i \leftarrow \left(-\frac{\alpha[\mathcal{A}[j]]}{u_j}\right)_{j \in [1;i]}
  stepDownDate \in \mathbb{R}^+_* \leftarrow min^+(ratio) (min<sup>+</sup> is the minimum between strictly positive values
  only)
  downDateInd \in [1; k] \leftarrow \mathcal{A}[j] s.t. ratio[j] = \text{stepDownDate}
  —POLYNOMIAL RESOLUTION—
  a \in \mathbb{R} \leftarrow \sum_{j \in [1,i]} \operatorname{sgn}(\hat{\mathbf{c}}[\mathcal{A}[j]]) u[j]
b \in \mathbb{R} \leftarrow \sum_{j \in [1,i]} \hat{\mathbf{c}}[\mathcal{A}[j]] u[j]
c \in \mathbb{R} \leftarrow \operatorname{normPatch} - \lambda
  \Delta \in \mathbb{R} \leftarrow b^2 - ac
  stepMAX \in \mathbb{R}^+ \leftarrow min(\frac{b-\sqrt{\Delta}}{c}, C)
  —FINAL STEP & BREAK—
  \gamma \leftarrow \min(\gamma, \text{stepDownDate}, \text{stepMAX})
  for j = 1..i do
   | \alpha[\mathcal{A}[j]] \leftarrow \alpha[\mathcal{A}[j]] + \gamma \mathbf{u}[j]
  end
  \hat{\mathbf{c}} \leftarrow \hat{\mathbf{c}} - \gamma G_A u
  \text{normPatch} \leftarrow \text{normPatch} + a\gamma^2 - 2b\gamma
  if |\gamma| < 10^{-6} or \gamma = stepMAX or normPatch < 10^{-6} or normPatch - \lambda < 10^{-6} then
         break
  end
  if \gamma = stepDownDate then
         DOWNDATE G_S^{-1} w.r.t downDateInd
         \mathcal{A}[\text{downDateInd}] \leftarrow 0
         \alpha[\text{downDateInd}] \leftarrow 0
         newAtom \leftarrow False
        i \leftarrow i - 1
  end
  else
         newAtom \leftarrow True
        i \leftarrow i + 1
Algorithm 4: LARS algorithm - Mairal Version computeLars Marc: Algo correspondent, mais à
```

Marc: TODO: choisir entre les indices ou les crochets pour les indices

Algorithm 4: LARS algorithm - Mairal Version computeLars Marc: Algo correspondant, mais valider. - LOOP

```
Input: Gram matrix G_S \in \mathbb{R}^{i \times i}, and its former inverse to update G_S^{-1} \in \mathbb{R}^{i-1 \times i-1}
   Output: updated G_S^{-1} \in \mathbb{R}^{i \times i}
   if i = 1 then
    return \frac{1}{G_S}
   end
   u \leftarrow G_S^{-1}G_S[i^{th} \text{ line}]

\sigma \leftarrow \frac{1}{G_s(i,i) - u.G_S[i^{th} \text{ line}]} 

G_s^{-1}(i,i) \leftarrow \sigma 

G_s^{-1}[i^{th} \text{ line}] \leftarrow -\sigma u

   \mathbf{return} \ G_s^{-1} \ \leftarrow \ G_s^{-1} + \sigma u u^T
Algorithm 5: Update invert algorithm updateGram Marc: Algo correspondant, mais à valider.
   Input: pseudo-Gram matrix G_A \in \mathbb{R}^{k \times i} Gram matrix G_S \in \mathbb{R}^{i \times i}, and its inverse G_S^{-1} \in \mathbb{R}^{i \times i},
   criticalInd \in [1; k], current iteration i
   Output : downdated matrices G_A \in \mathbb{R}^{k \times i-1}, G_S, G_S^{-1} \in \mathbb{R}^{i-1 \times i-1}
   \sigma \leftarrow \frac{1}{G_S^{-1}(\text{criticalInd},\text{criticalInd})}
   u \leftarrow G_S^{-1}[\text{criticalInd}^{th} \text{ line}] \text{ without its criticalInd}^{th} \text{ coefficient}
   for j = criticalInd:i-1 do
         G_A[j^{th} \text{ column}] \leftarrow G_A[(j+1)^{th} \text{ column}]
         for k=1:criticalInd-1 do
              G_S(j,k) \leftarrow G_S(j+1,k)
              G_S^{-1}(j,k) \leftarrow G_S^{-1}(j+1,k)
         for k = criticalInd:i do
              G_S(j,k) \leftarrow G_S(j+1,k+1)

G_S^{-1}(j,k) \leftarrow G_S^{-1}(j+1,k+1)
   end
   G_s^{-1} \leftarrow G_s^{-1} - \sigma u u^T
 Algorithm 6: Downdate invert algorithm downdateGram Marc: Algo correspondant, mais à
```

Algorithm 6: Downdate invert algorithm downdateGram Marc: Algo correspondent, mais à valider.

Glossary

Image Credits

POL © IPOL (there's no need to credit this image, here is used as an example.)

5 References

References

- [1] A. Efros, and T. Leung Texture synthesis by non-parametric sampling. ICCV, 1999.
- [2] A. Buades, B. Coll, and J. Morel A non-local algorithm for image denoising. CVPR, 2005.
- [3] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani Least angle regression. Ann. Statist., 32(2):407499, 2004.

- [4] J.Mairal, F. Bach, J. Ponce, and G. Sapiro Online dictionary learning for sparse coding. ICML, 2009.
- [5] J. Mairal, F. Bach, J. Ponce, G. Sapiro and A. Zisserman *Non-local Sparse Models for Image Restoration*. International Conference on Computer Vision, 2009.
- [6] J. Mairal Representations parcimonieuses en apprentissage statistique, traitement dimage et vision par ordinateur. PhD thesis, 2010.
- [7] S. Mallat and Z. Zhang Matching pursuit in a timefrequency dictionary. IEEE T. SP, 41(12):33973415, 1993.
- [8] M. Elad and M. Aharon Image denoising via sparse and redundant representations over learned dictionaries. IEEE T. IP, 54(12):37363745, 2006.
- [9] D. P. Bertsekas Nonlinear programming. Athena Scientific Belmont, 1999.