

Introduction to Drone Technology (IDT)

Module 09 - Build a Drone

SDU &

Welcome to the SDU **UAS Test Center**

Center Objective

"We focus on research, education, innovation, and collaboration in the UAS domain for the benefit of society."

Facilities

- Indoor Optitrack System
- Dedicated Drone Airspace for **BVLOS**
 - 1900 km2 airspace
- System Integration lab
- Infrastructure Inspection Setup
- Composite lab
- Start-up hub

Aerial Systems Laboratory

- · Located at Hans Christian Andersen Airport, 15km from SDU

Software

· Access to designated airspace

Schedule

0845 - 0900	Introduction, Drone Components Overview
0900 - 0930	Safety Briefing, Facility Tour
0930 - 1545	Drone Building
1545 - 1615	Transport Back to SDU

- Reminder: Fill out the Guest Access Form
 - Available on itsLearning
- Course notes and guide on Confluence:
 - https://sdu-dronecenter.atlassian.net/wiki/spaces/IDT/pages/

Task overview

- Step #1: Build a frame
 - Design considerations
- Step #2: Mount and connect hardware
 - Pixhawk 4 Mini Wiring Quick Start
- **Step #3:** System Configuration and Calibration
 - Continues work from Module 06
- **Step #4:** First flight and tuning (inside the drone cage)
 - Multicopter PID Tuning Guide
- **Step #5:** Outdoor flights (both manual and mission)
- Step #6: Autonomous Outdoor Flights (using recorded flight plans)

Recap - Recommended Configurations

Recap - Design Considerations

- Weight vs Time tradeoffs
- Repairability in mind Keep it simple, easy to fix in event of crash
- Mounting battery to frame
 - Must be removable
 - Easy to access connector (in Case-of-Emergency)

Positioning of components

- Flight Controller placed near centre of mass
- Propulsion electronics and control hardware

Landing legs

- Ability to withstand heavy landings
- Provide clearance from grass

Materials and Resources

Materials

- Wood Spars (assorted thicknesses)
- Plywood Plates
- Wood screws
- Assorted Nuts/Bolts
- Zip ties
- Tape
 - Double sided
 - Electrical

Resources

- Workbenches
 - 2 teams per workbench
 - Toolboxes and workbench are colour-coded
- Tool Boxes
 - Drilling
 - Filing
 - Sawing/cutting

Design inspiration

Drone Components

Drone Overview

- Airframe
 - Materials
- Flight Hardware
 - Flight Controller (FC)
 - Global Navigation Satellite Systems (GNSS)
- Powertrain
 - Motors and Propellers
 - Electronic Speed Controllers (ESCs)
- Communication and Control
 - Telemetry
 - User Control
- Input Power
 - Batteries and Chargers
 - Power Distribution
 - Battery Elimination Circuit (BEC)
- (Payload)

Flight controller

Hardware

- Pixhawk 4 Mini
- Pixhawk 6C Mini

- Pixhawk 4 Mini Wiring Quick Start
 - https://docs.px4.io/master/en/assembly/quick_start_pixhawk4_mini.html
 - https://docs.px4.io/master/en/flight_controller/pixhawk4_mini.html

Motors, ESCs and Propellers

Hardware

- AIR2216 880kv/920kv
- T1045 self-locking propellers (CW/CCW)
- AIR20A V2 compact ESC

AIR 2216x4

AIR 20Ax4

T1045(CW&CCW)x2

- ESCs & Motors
 - https://docs.px4.io/master/en/peripherals/esc_motors.html
- PWM Servos and ESCs (Motor Controllers)
 - https://docs.px4.io/master/en/peripherals/pwm_escs_and_servo.html

Global Navigation Satellite System (GNSS)

Hardware

Pixhawk 4/6C GPS

- GPS & Compass
 - https://docs.px4.io/master/en/gps_compass/

Hardware

- Taranis Q X7 transmitter
- R-XSR receiver
- 2x Li-ION Batteries
- Li-ION charger

Taranis I Fallsafe Ballsafe Barry Fallsafe Barry Fallsafe

- Radio (Remote Control) Setup
 - https://docs.px4.io/master/en/getting started/rc transmitter receiver.html
- Radio (Remote Control) Setup
 - https://docs.px4.io/master/en/config/radio.html
- Flight Mode Configuration
 - https://docs.px4.io/master/en/config/flight_mode.html

Telemetry

Hardware

2x SiK Radios

- Telemetry Radios/Modems
 - https://docs.px4.io/master/en/telemetry/
- SiK Radio
 - https://docs.px4.io/master/en/telemetry/sik_radio.html

Power Distribution Board (PDB) and Universal Battery Elimination Circuit (UBEC) / Power module

Hardware

Pixhawk4 Mini Power Management Board (PMB)

Both a Power Module as well as a Power Distribution Board (PDB)

Batteries and charger

Hardware

2x Lipo batteries
 (swapping batteries, remember to include this in your design)

Don't plug in any batteries before one of your instructors has verified the connections!

Fens QCC

Charging

Charging of batteries must always be done in the battery room

- Battery and Power Module Setup
 - https://docs.px4.io/main/en/config/battery.html

