$ au_1^{\#2}$	0	0	0	$-\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$	$\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	$\frac{2k^2 (6k^2r_5+t_1+4t_3)}{(1+2k^2)^2 (3t_1t_3+2k^2r_5(t_1+t_3))}$
$\tau_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2 k^2) (3t_1 t_3+2 k^2 r_5 (t_1+t_3))}$	$\frac{6 k^2 r_5 + t_1 + 4 t_3}{(1 + 2 k^2)^2 (3 t_1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$	0	$-\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\sigma_{1^-\alpha}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3+2\lambda^2r_5(t_1+t_3)}$	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2 k^2) (3t_1t_3+2 k^2 r_5 (t_1+t_3))}$	0	$\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\tau_1^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1^{\text{-}}}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{lpha}$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_1^{\sharp 1}{}_{lpha}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1}^{#2}\alpha$
$\omega_{1}^{\#1}\dagger^{lphaeta}$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{lphaeta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\sharp 1} \dagger^{lpha}$	0	0	0	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_3 \right)$	<u>t₁-2<i>t</i>3</u> 3 √2	0	$\frac{1}{3} i k (t_1 - 2 t_3)$
$\omega_1^{\#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	<u>t₁+t₃</u> 3	0	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3}\bar{l}k(t_1-2t_3)$	$-\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3}k^2(t_1+t_3)$

 $\omega_{2}^{\#1}_{\alpha\beta} f_{2}^{\#1}_{\alpha\beta} \omega_{2}^{\#1}_{\alpha\beta\chi}$

0

 $-\frac{ikt_1}{\sqrt{2}}$

<u>t1</u> 2

 $\omega_2^{\#1} + \alpha^{eta}$

0

0

 $2\,k^2\,t_3$

 $i\sqrt{2}kt_3$

0

 $\frac{i\,kt_1}{\sqrt{2}}$

 $f_2^{\#1} + ^{\alpha\beta}$

0

0

0

0

 $\frac{t_1}{2}$

0

0

 $\omega_{2}^{\#1} +^{\alpha \beta \chi}$

0

0

0

	$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2^{+}}^{\sharp 1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_{2}^{\#1} \dagger^{lphaeta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{lphaeta\chi}$	0	0	$\frac{2}{t_1}$

 \sim

 $\tau_{1}^{\#1}{}^{\alpha} == 0$

 $I_2^{\#1}\alpha\beta - 2ik \ O_2^{\#1}\alpha\beta == 0$

Total #:

 $\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$

 \sim

 $t_1^{\#2}\alpha + 2ik \sigma_1^{\#2}\alpha == 0$

 $\tau_{0^+}^{\#1} - 2\, \bar{i}\, k\, \sigma_{0^+}^{\#1} == 0$

Source constraints

SO(3) irreps

 $\tau_{0}^{\#2} == 0$

$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 - t_1}$
$\tau_{0}^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_0^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_{0}^{#2}$ †	$\sigma_{0}^{\#1} \dagger$

	Massive particle			
?	Pole residue:	$\frac{6t_1t_3(t_1+t_3)-3r_5(t_1^2+2t_3^2)}{2r_5(t_1+t_3)(-3t_1t_3+r_5(t_1+t_3))} > 0$		
$J^P = 1$	Polarisations:	3		
$\frac{1}{k^{\mu}}$?	Square mass:	$-\frac{3t_1t_3}{2r_5t_1+2r_5t_3} > 0$		
?	Spin:	1		
	Parity:	Odd		

(No massless particles)