© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°02

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

1 Tout d'abord, $t \mapsto \ln(\sin t)$ est continue sur]0,1]. De plus, pour tout $t \in]0,\pi/2]$,

$$\ln(\sin t) = \ln t + \ln\left(\frac{\sin t}{t}\right)$$

Puisque $\sin t \sim t$, $\lim_{t \to 0^+} \ln \left(\frac{\sin t}{t} \right) = 0$. De plus, $\lim_{t \to 0^+} \ln t = -\infty$ donc $\ln(\sin t) \sim \ln t$. Par croissances comparées, $\ln(t) = o\left(\frac{1}{t^{1/2}}\right)$ donc $\ln(\sin t) = o\left(\frac{1}{t^{1/2}}\right)$. Comme 1/2 < 1, $t \mapsto \ln(\sin t)$ est intégrable sur]0,1]. En particulier, l'intégrale L converge.

2 Par le changement de variable $u = \pi - t$,

$$L = -\int_0^{\frac{\pi}{2}} \ln(\sin t) dt = \int_{\pi}^{\frac{\pi}{2}} \ln(\sin(\pi - u)) du = -\int_{\frac{\pi}{2}}^{\pi} \ln(\sin u) du = J$$

Par le changement de variable, $u = \pi/2 - t$,

$$L = -\int_0^{\frac{\pi}{2}} \ln(\sin t) dt = \int_{\frac{\pi}{2}}^0 \ln(\sin(\pi/2 - u)) du = -\int_0^{\frac{\pi}{2}} \ln(\cos u) du = K$$

3

$$K+L = -\int_0^{\frac{\pi}{2}} \ln(\sin t \cos t) dt = -\int_0^{\frac{\pi}{2}} \ln\left(\frac{1}{2}\sin(2t)\right) dt = -\int_0^{\frac{\pi}{2}} \ln(1/2) - \int_0^{\frac{\pi}{2}} \ln(\sin 2t) dt = \frac{\pi \ln 2}{2} - \int_0^{\frac{\pi}{2}} \ln(\sin 2t) dt$$

Par le changement de variable u = 2t,

$$\int_0^{\frac{\pi}{2}} \ln(\sin 2t) dt = \frac{1}{2} \int_0^{\pi} \ln(\sin u) du$$

Via la relation de Chasles, on obtient finalement

$$K + L = \frac{\pi \ln 2}{2} + \frac{1}{2}(L + J)$$

4 Puisque J = K = L, on obtient J = K = L = $\frac{\pi \ln 2}{2}$.

Soit $(x,y) \in (\mathbb{R}_+)^2$. Pour tout $t \in [0,\pi/2]$, $\sin t \in [0,1]$ donc $\sin^y(t) \le \sin^x(t)$ puis, par croissance de l'intégrale, $W(y) \le W(x)$. La fonction W est donc décroissante sur \mathbb{R}_+ .

6.a La fonction φ : $t \mapsto e^{-at}$ est de classe \mathcal{C}^1 sur \mathbb{R}_+ . De plus, pour tout $t \in \mathbb{R}_+$, $|\varphi'(t)| = ae^{-at} \le a$. La fonction φ est donc a-lipschitzienne sur \mathbb{R}_+ . Ainsi

$$\forall (x, y) \in \mathbb{R}^2, \ |\varphi(x) - \varphi(y)| \le a|x - y|$$

ou encore

$$\forall (x, y) \in \mathbb{R}^2, |e^{-ax} - e^{-ay}| \le a|x - y|$$

© Laurent Garcin MP Dumont d'Urville

6.b Soit $(x, y) \in (\mathbb{R}_+)^2$. Par inégalité triangulaire,

$$|W(x) - W(y)| \le \int_0^{\frac{\pi}{2}} |\sin^x(t) - \sin^y(t)| dt$$

Or pour $t \in]0, \pi/2]$,

$$|\sin^{x}(t) - \sin^{y}(t)| = \left| e^{x \ln(\sin t)} - e^{y \ln(\sin t)} \right|$$

donc en posant $a = -\ln(\sin t) \in \mathbb{R}_+$ dans la question précédente, on obtient

$$|\sin^{x}(t) - \sin^{y}(t)| \le -\ln(\sin t)|x - y|$$

Par croissance de l'intégrale, on a donc

$$|W(x) - W(y)| \le -\int_0^{\frac{\pi}{2}} \ln(\sin t)|x - y| dt = L|x - y| = \frac{\pi \ln 2}{2}|x - y|$$

6.c La question précédente montre que W est lipschitzienne sur \mathbb{R}_+ . Elle est notamment continue sur \mathbb{R}_+ .

7 Les applications \sin^{x+1} et – cos sont de classe \mathcal{C}^1 sur $[0, \pi/2]$ de dérivées respectives $(x+1)\cos\sin^x$ et sin donc, par intégration par parties

$$W(x+2) = \int_0^{\frac{\pi}{2}} \sin^{x+1}(t) \sin(t) dt$$

$$= -\left[\sin^{x+1}(t)\cos(t)\right]_0^{\frac{\pi}{2}} + (x+1) \int_0^{\frac{\pi}{2}} \sin^x(t)\cos^2(t) dt$$

$$= (x+1) \int_0^{\frac{\pi}{2}} \sin^x(t)(1-\sin^2 t) dt$$

$$= (x+1)(W(x) - W(x+2))$$

On en déduit que $W(x + 2) = \frac{x+1}{x+2}W(x)$.

8 8.a Soit $x \in \mathbb{R}_+$. D'après la question précédente,

$$g(x + 1) = (x + 2)W(x + 2)W(x + 1) = (x + 1)W(x)W(x + 1) = g(x)$$

Notamment, pour tout $n \in \mathbb{N}$, g(n+1) = g(n) donc $g(n) = g(0) = \frac{\pi}{2}$

8.b Soit $(n, x) \in \mathbb{N} \times [0, 1]$. Puisque $n \le n + x \le n + 1$, on obtient par décroissance de W: W $(n + 1) \le W(n + x) \le W(n)$. Pour les mêmes raisons, $W(n+2) \le W(n+1+x) \le W(n+1)$. On peut multiplier membre à membre ces deux suites d'inégalités car tous leurs membres sont positifs. On obtient alors

$$W(n+1)W(n+2) \le W(n+x)W(n+1+x) \le W(n)W(n+1)$$

c'est-à-dire

$$\frac{g(n+1)}{n+2} \le \frac{g(x+n)}{x+n+1} \le \frac{g(n)}{n+1}$$

Or on a vu dans les questions précédentes que $g(n) = g(n+1) = \frac{\pi}{2}$ et que g était 1-périodique de sorte que g(x+n) = g(x). Ainsi

$$\frac{\pi}{2(n+2)} \le \frac{g(x)}{x+n+1} \le \frac{\pi}{2}(n+1)$$

puis

$$\frac{\pi}{2} \cdot \frac{x+n+1}{n+2} \le g(x) \le \frac{\pi}{2} \cdot \frac{x+n+1}{n+1}$$

Puisque $\lim_{n \to +\infty} \frac{x+n+1}{n+2} = \lim_{n \to +\infty} \frac{x+n+1}{n+1} = 1$, on obtient $g(x) = \frac{\pi}{2}$. g est donc constante égale à $\frac{\pi}{2}$ sur [0,1]. Comme g est 1-périodique, g est constante égale à $\frac{\pi}{2}$ sur \mathbb{R}_+ .

© Laurent Garcin MP Dumont d'Urville

8.c Soit $x \in \mathbb{R}_+$. Par décroissance de W, on a donc bien $W(x+2) \le W(x+1) \le W(x)$. Ceci également que $\frac{x+1}{x+2}W(x) \le W(x+1) \le W(x)$. Or W(x) > 0 comme intégrale d'une fonction continue, positive et non constamment nulle sur $[0, \pi/2]$. Il s'ensuit que

$$\frac{x+1}{x+2} \le \frac{W(x+1)}{W(x)} \le 1$$

Par encadrement, on obtient donc $\lim_{x \to +\infty} \frac{\mathrm{W}(x+1)}{\mathrm{W}(x)} = 1$, c'est-à-dire $\mathrm{W}(x+1) \underset{x \to +\infty}{\sim} \mathrm{W}(x)$.

8.d On sait que pour tout $x \in \mathbb{R}_+$, $(x+1)W(x+1)W(x) = g(x) = \frac{\pi}{2}$. D'après la question précédente, $(x+1)W(x+1)W(x) = g(x) = \frac{\pi}{2}$. D'après la question précédente, $(x+1)W(x+1)W(x) = g(x) = \frac{\pi}{2}$. Or $W(x) = \frac{\pi}{2}$ or $W(x) = \frac{\pi}{2}$. Or $W(x) = \frac{\pi}{2}$.

9 9.a Soient $x \in \mathbb{R}_+^*$ et u > -x. Par concavité de ln, $\ln\left(1 + \frac{u}{x}\right) \le \frac{u}{x}$ puis $x \ln\left(1 + \frac{u}{x}\right) \le u$. Par croissance de l'exponentielle, on obtient alors $\left(1 + \frac{u}{x}\right)^x \le e^u$.

9.b Soit $x \ge 1$. On remarque que pour $t \in [0, \sqrt{x}[, -t^2 > -x]$. D'après la question précédente,

$$\forall t \in [0, \sqrt{x}], \left(1 - \frac{t^2}{x}\right)^x \le e^{-t^2}$$

Par croissance de l'intégrale, on obtient

$$\int_0^{\sqrt{x}} \left(1 - \frac{t^2}{x}\right)^x dt \le \int_0^{\sqrt{x}} e^{-t^2} dt$$

De la même manière,

$$\forall t \in [0, \sqrt{x}], \left(1 + \frac{t^2}{x}\right)^x \le e^{t^2}$$

donc, par décroissance de la fonction inverse,

$$\forall t \in [0, \sqrt{x}], \ e^{-t^2} \le \left(1 + \frac{t^2}{x}\right)^{-x}$$

puis, par croissance de l'intégrale,

$$\int_0^{\sqrt{x}} e^{-t^2} dt \le \int_0^{\sqrt{x}} \left(1 + \frac{t^2}{x} \right)^{-x} dt \le \int_0^{+\infty} \left(1 + \frac{t^2}{x} \right)^{-x} dt$$

Cette denière intégrale converge car $\left(1+\frac{t^2}{x}\right)^{-x}=\limits_{t\to +\infty}\mathcal{O}\left(\frac{1}{t^{2x}}\right)$ et $2x\geq 2>1$.

9.c On effectue le changement de variable $t = \sqrt{x} \cos u$ dans la première intégrale :

$$\int_0^{\sqrt{x}} \left(1 - \frac{t^2}{x} \right)^x dt = -\int_{\frac{\pi}{2}}^0 (1 - \cos^2 u)^x \sqrt{x} \sin u \, du = \sqrt{x} \int_0^{\frac{\pi}{2}} \sin^{2x+1}(u) \, du = \sqrt{x} W(2x+1)$$

La deuxième intégrale étant généralisée, on vérifie que $u\mapsto \sqrt{x}\frac{\cos u}{\sin u}$ est une bijection de classe \mathcal{C}^1 strictement décroissante de $]0,\pi/2]$ sur $[0,+\infty[$ et sa dérivée est $u\mapsto -\frac{\sqrt{x}}{\sin^2 u}$. Ainsi

$$\int_0^{+\infty} \left(1 + \frac{t^2}{x}\right)^{-x} dt = -\sqrt{x} \int_{\frac{\pi}{2}}^0 \left(1 + \frac{\cos^2 u}{\sin^2 u}\right)^{-x} \frac{du}{\sin^2 u} = \sqrt{x} \int_0^{\frac{\pi}{2}} \sin^{2x-2}(u) dy = \sqrt{x} W(2x - 2)$$

Ainsi

$$\sqrt{x}W(2x+1) \le \int_0^{\sqrt{x}} e^{-t^2} dt \le \sqrt{x}W(2x-2)$$

© Laurent Garcin MP Dumont d'Urville

9.d On a vu précédement que W(x) $\underset{x\to+\infty}{\sim} \sqrt{\frac{\pi}{2x}}$. Ainsi

$$W(2x+1) \underset{x \to +\infty}{\sim} W(2x-2) \underset{x \to +\infty}{\sim} \frac{1}{2} \sqrt{\frac{\pi}{x}}$$

puis

$$\lim_{x \to +\infty} \sqrt{x} W(2x+1) = \lim_{x \to +\infty} \sqrt{x} W(2x-2) = \frac{\sqrt{\pi}}{2}$$

D'après le théorème des gendarmes, $\lim_{x\to +\infty} \int_0^{\sqrt{x}} e^{-t^2} \, \mathrm{d}t = \frac{\sqrt{\pi}}{2}$. Ceci signifie que l'intégrale G converge et que $\mathrm{G} = \frac{\sqrt{\pi}}{2}$.