E.M.B

Chapter 2: THE INTEGERS

Mphako-Banda

SCHOOL OF MATHEMATICS

LEARNING OUTCOMES FOR THE LECTURE

By the end of this lecture, students will be able to:

- give proof to divisibility theorems/properties
- apply divisibility properties to given examples
- *
- *
- d

Theorem (2.2.3 -(1))

Let $m, n, d \in \mathbb{Z}$. Then $n \mid n \quad \forall n$.

Proof: n = 1.n so by defin $n \mid n$.

Theorem (2.2.3 -(2))

Let $m, n, d \in \mathbb{Z}$. If $d \mid m$ and $m \mid n$ then $d \mid n$.

Proof: $d \mid m \Rightarrow m = k_1 d$ and $m \mid n \Rightarrow n = k_2 m$ $\Rightarrow n = k_2 k_1 d \Rightarrow d \mid n$ since $k_2 k_1 \in \mathbb{Z}$.

Theorem (2.2.3 -(3))

Let $m, n, d \in \mathbb{Z}$. If $d \mid n$ and $n \mid d$ then $d = \pm n$.

Proof:

Thus if $d \mid n$ and $n \mid d \Rightarrow n = k_1 d$ and $d = k_2 n$ where $k_1, k_2 \in \mathbb{Z}$. $\Rightarrow n = \underline{k_1 k_2 n} \Rightarrow k_1 k_2 = 1 \Rightarrow k_1 = k_2 = 1, -1$ since $k_1, k_2 \in \mathbb{Z} \Rightarrow n = d$ or n = -d.

Part 2 E.M.B

Theorem (2.2.3 -(4))

Let $m, n, d \in \mathbb{Z}$. If $d \mid n$ and $d \mid m$ then $d \mid (xn + ym)$.

Proof

Thus if $d \mid n$ and

$$\begin{array}{lll} d\mid m & \Rightarrow & m=k_1d, & n=k_2d, & k_1,k_2\in\mathbb{Z}\\ \Rightarrow xn+ym & = & xk_2d+yk_1d & = & (xk_2+yk_1)d\\ \Rightarrow d\mid (xn+ym) \text{ if } x,y\in\mathbb{Z} & \text{as then } xk_2+yk_1\in\mathbb{Z}. \end{array}$$

NOTE: xn + ym is called a linear combination of n and m.

if d divides integers n and m then d divides the sum of the integers and also d divides the sum of the multiples of the integers

E.M.B

EXAMPLE:

If $d \ge 1$ and $d \mid (3k + 5)$ and $d \mid (7k + 2)$. Show that d = 1 or d = 29.

(i)
$$3k + 5 = k_1 d$$
 ; (ii) $7k + 2 = k_2 d$. $7(3k + 5) = 7(k_1 d)$; $3(7k + 2) = 3(k_2 d)$ (to eliminate k)

$$\therefore 21k = -35 + 7k_1d$$
 and $21k = -6 + 3k_2d$

$$\therefore -35 + 7k_1d = -6 + 3k_2d$$

$$\therefore d(7k_1 - 3k_2) = 35 - 6 = 29$$

But 29 is prime so d = 29 or d = 1.

E.M.B

Definition (2.2.4 GREATEST COMMON DIVISOR)

 $m, n \in \mathbb{Z}$, not both zero, d is gcd(m, n) if

(i) d > 1

(ii) d | m and d | n

iii if $k \mid m$ and $k \mid n$, then $k \mid d$.

d is the greatest common divisor, any other common divisor of m and n must divide d

Note:

gcd(0,0) is undefined.

EXAMPLE:

$$gcd(18,30) = 6$$
 $gcd(6,7) = 1$ $gcd(-9,15) = 3$.
 $gcd(78,30) = ?$ $78 = 2.3.13$ and $30 = 2.3.5$
 $\therefore gcd(78,30) = 2.3 = 6$

Is there an easier way to find gcd?