

MRLBase: Multi-Relational Learning with Multi-Relational Databases

CP table

Zhensong Qian, Oliver Schulte, Simon Fraser University, Canada

Introduction

- Statistical-Relational Learning: Learn a joint statistical model for all tables in the input database.
- New approach to SRL system building:
- The RDBMS stores structured objects for statistical analysis as firstclass citizens in the database.
- SQL is used to build and transform statistical objects:
 - Structured Model (Bayesian network, Markov Logic Network).
 - Parameter Estimates.
 - Sufficient Statistics.
- Empirical evaluation: leveraging the RDBMS capabilities achieves scalable learning and fast model testing.
- All code and datasets are available online [1].

Contributions

- Identifying new system requirements for multi-relational machine learning that go beyond single table machine learning.
- An integrated set of SQL-based solutions for providing these system capabilities.

Related Works

- BayesStore [3]: all statistical objects are first-class citizens in a relational database. Inference, no learning.
- MadLib [5]: leverages SQL for single-relational data table analysis.
- Tuffy [7]: reliable and scalable inference and parameter learning for Markov Logic Networks with an RDBMS. No structure learning.

References

- 1. Qian, Z.; Schulte, O. & et al. MRLBase Code. http://www.cs.sfu.ca/~oschulte/BayesBase
- 2. Russell, S. & Norvig, P. Artificial Intelligence: A Modern Approach Prentice Hall, 2010.
- 3. Wang, D. Z.; Michelakis, E.; & et al. BayesStore: managing large, uncertain data repositories with probabilistic graphical models, PVLDB, 2008, 1, 340-351.
- 4. Qian, Z.; Schulte, O. & Sun, Y. Computing Multi-Relational Sufficient Statistics for Large Databases, CIKM 2014, 1249-1258.
- 5. Hellerstein, J. M.; Ré, C.; Schoppmann, F.; & et al, The MADlib Analytics Library: Or MAD Skills, the SQL, PVLDB, 2012, 5, 1700-1711
- 6. Schulte, O. & Khosravi, H. Learning graphical models for relational data via lattice search Machine Learning, 2012, 88, 331-368
- 7. Niu, F.; Ré, C.; Doan, A. & Shavlik, J. W. Tuffy: Scaling up Statistical Inference in Markov Logic Networks using an RDBMS PVLDB, 2011, 4, 373-384

System Overview

- Schema Analyzer: examines the information in the DB system catalog to define a default set of random variables.
- Count Manager: uses the meta data in the VDB database to compute multi-relational sufficient statistics for a set of random variables [4].
- Model Manager: supports the construction and querying of large structured statistical models.

ER-Design for University Domain

The Model Manager

Goal: Learn First-Order Bayesian Network [2].

- Bayesian Network Structure Learning [6].
- Nodes = Random Variables
- Edges are stored in Database tables
- Model selection scores are also stored, not shown (BIC, AIC, BDeu)

Parent
RA(P,S)
Salary(P,S)
Popularity(P)
RA(P,S)

The Parameter Manager

Goal: Learn Bayesian Network Parameters

- Stored in Conditional Probability (CP) table.
- Maximum Likelihood Estimate are easy to compute from database counts.

Capa(P,	S) RA(P,S)	Salary(P,S)	CP		Count	Capa(P,S)	RA(P,S)	Salary(P,S)	
4	T	high	0.45	1	5	4	Т	high	SELECT COUNT(*) AS Count
5	T	high	0.36	1	4	5	Т	high	Capability as `Capa(P,S)`, 'T'
3	T	high	0.18		2	3	Т	high	
3	T	low	0.20		1	3	Т	low	as `RA(P,S)`, Salary as
2	T	low	0.40		2	2	Т	low	`Salary(P,S)`
1	T	low	0.40		2	1	Т	low	
2	T	med	0.22		2	2	Т	med	FROM `RA`;
3	T	med	0.44		4	3	Т	med	
1	T	med	0.33		3	1	T	med	

The Count Manager

Contingency Table

Goal: for a conjunctive query, compute the instantiation count = result set size.

- Stored in Contingency (CT) Table [4].
- Main computational cost in learning.

Problem: need to generate SQL queries for arbitrary variable lists.

Solution: use Meta Data + Meta Queries

General Form of SQL Count Query:

SELECT COUNT(*) AS Count, <VARIABLE-LIST>
FROM TABLE-LIST
GROUP BY <VARIABLE-LIST>
WHERE <Join-Conditions>

Metaqueries	Entries
CREATE TABLE Select_List AS	COUNT(*) as "count"
SELECT RVarID, CONCAT('COUNT(*)',' as "count"') AS Entries	`popularity(P)`
FROM Relationship UNION DISTINCT	`teachingability(P)`
SELECT RVarID, 1VarID AS Entries	`intelligence(S)`
FROM Relationship_1Variables;	`ranking(S)`
CREATE TABLE From_List AS SELECT RVarID, CONCAT('@database@.',TABLE_NAME) AS Entries	@database@.prof AS P
FROM Relationship_Pvariables UNION DISTINCT	@database@.student AS S
SELECT RVarID, CONCAT('@database@.',TABLE_NAME) AS Entries FROM Relationship;	@database@.RA AS `RA`
CREATE TABLE Where List AS SELECT	`RA`.p_id = P.p_id
RVarID, CONCAT(RVarID,'.',COLUMN_NAME,' = ', Pvid,'.', REFERENCED_COLUMN_NAME) AS Entries FROM Relationship_Pvariables;	`RA`.s_id =S.s_id

Variable List

Specific SQL Query

The Random Variable Database

Table Name	Column Headers in Random Variable Database										
	Pvid	TABLE_NAME									
Pvariables	С	course	ourse								
	P	prof									
	S	student									
	1VarID	COLUMN_NAME			Pvid						
	diff(C)	diff	diff								
	intelligence(S)	intelligence			S						
1Variables	popularity(P)	popularity			P						
	ranking(S)	ranking	S								
	rating(C)	rating	С								
	teachingability(P)	teachingability	P								
	2VarID	COLUMN_NAME1	COLUMN_NAME2		Pvid1	Pvid2					
	capability(P,S)	p_id	s_id			S					
2Variables	grade(C,S)	c_id	s_id			S					
	salary(P,S)	p_id	s_id			S					
	sat(C,S)	c_id	s_id		C	S					
	RVarID	TABLE_NAME	COLUMN_NAME1	COLUMN_NAME2	Pvid1	Pvid2					
Relationship	RA(P,S)	RA	p_id	s_id	P	S					
	Registered(C,S)	Registered	c_id	s_id	С	S					

Meta data about random variables stored in database tables.

- Domain of possible values.
- Pointer to corresponding data table/column.

Results

Task: learning a multi-relational Bayesian network

Dataset	# Database Tuples	# Sufficient Statistics (SS)	SS Computing Time (s)	#BN Paramete
Movielens	1,010,051	252	2.7	
Mutagenesis	14,540	1,631	1.67	
UW-CSE	712	2,828	3.84	
Mondial	870	1,746,870	1,112.84	
Hepatitis	12,927	12,374,892	3,536.76	
IMDB	1,354,134	15,538,430	7,467.85	60,

Database and performance statistics for MRLBase

Comparison with other statistical-relational learning (Markov Logic Networks)

Dataset	RDN_Boost	MLN_Boost	MRLBase	MRLBase-0
MovieLens	92.7min	N/T	1.12	0
Mutagenesis	118	49	1	0
UW-CSE	15	19	1	0
Mondial	27	42	102	61
Hepatitis	251	230	286	186
IMDB	N/T	N/T	524.25	439

The RDBMS support for multirelational learning translates into orders of magnitude improvements in speed and scalability.

Speedup on other tasks: compute model selection score, test models, cross-validation. Not shown.

Conclusions

- Multi-relational learning requires new system capabilities.
 > leverage SQL, RDBMS.
- Fast system development through high-level SQL constructs.
- Manage large statistical objects: parameters, sufficient statistics.
- Fast native support for counting (count(*)).
- Future Directions:
 - distributed processing, in-memory computing (SparkSQL)
- Integrate with inference systems (BayesStore, Tuffy)