UNIVERZITA PALACKÉHO V OLOMOUCI KATEDRA INFORMATIKY

Radek Janoštík (radek.janostik
01@upol.cz) $\,$

KMI/NLO – Neklasické logiky

	Abstrakt	
Tento dokument je pouze přepisem zá nášel doc. Vilém Vychodil PhD.	Abstrakt ápisků a poznámek z přednášek předmětu KMI/NLO. Př	éed-
Tento dokument je pouze přepisem zá nášel doc. Vilém Vychodil PhD.		éed-
Tento dokument je pouze přepisem zá nášel doc. Vilém Vychodil PhD.		éed-
Tento dokument je pouze přepisem zá nášel doc. Vilém Vychodil PhD.		éed-
Tento dokument je pouze přepisem zá nášel doc. Vilém Vychodil PhD.		éed-
Tento dokument je pouze přepisem zá nášel doc. Vilém Vychodil PhD.		éed-
Tento dokument je pouze přepisem zá nášel doc. Vilém Vychodil PhD.		éed-
Tento dokument je pouze přepisem zá nášel doc. Vilém Vychodil PhD.		éed-

Obsah

1.	Pře	dnáška 1 - jemný úvod	1
	1.1.	Formální logika	1
	1.2.	Odlišnosti logik	1
	1.3.	Co budeme zkoumat tento semestr	2
2.	Pře	dnáška 2 - reziduované svazy	3
	2.1.	Proč nejde svaz N_3 reziduovat?	6
	2.2.	Příklady struktur reziduovaných svazů	7
			_
		2.2.1. Protipříklady	7

Seznam obrázků

Seznam tabulek

1. Přednáška 1 - jemný úvod

1.1. Formální logika

- studium vyplývání \to formalizuje výroky, výrazy přirozeného jazyka \to formule. Definuje se, že formule je/není důsledkem jiných formulí.

1.2. Odlišnosti logik

1. Co vše popisuje jazyk - tj. co jsme schopni vyjádřit pomocí formulí.

Př.:

(a) Výroková logika - zabývá se výroky - neformálně výraz, o kterém se uvažuje, že je pravdivý či ne.

Atomická formule - nemůže se dělit na podvýrazy pomocí spojek. Nahrazují je výrokové symboly

Složitější formule - 1)Výrokový symbol je formule.

- 2) Je-li φ formule, pak i $\neg \varphi$ je formule.
- 3) Jsou-li φ, ψ formule, pak i $\varphi \Rightarrow \psi$ je formule.
- (b) Predikátová logika zabývá se (mj.) strukturou výroků $(\forall x)(\forall y)(x\leq y\Rightarrow f(x)\leq f(y)) \text{ formule jazyka, kde } R=\{\leq\},\ F=\{f\}$
- (c) Modální logiky formalizují modality "muset", "moci" ...

Modální výroková - $\square \dots \text{musi}, \diamond \dots \text{může}$.

Formule: Je-li φ formule, pak i $\Box \varphi$ a $\diamond \varphi$ jsou formule.

Paradox Arnošta Večerky: "Když mám 10 korun, koupím si čokoládu.": $\varphi \Rightarrow \psi$

"Když mám 10 korun, koupím si bonbon.": $\varphi \Rightarrow \chi$

$$T = \{ \varphi \Rightarrow \psi, \varphi \Rightarrow \chi \} \ T \vdash \varphi \Rightarrow (\psi \land \chi)$$

Modální logika dodá "může". $T = \{\varphi \Rightarrow \diamond \psi, \varphi \Rightarrow \diamond \chi\} \ T \vdash \varphi \Rightarrow (\diamond \psi \land \diamond \chi)$. Pozor: $T \not\vdash \varphi \Rightarrow \diamond (\psi \land \chi)$

- 2. Tím, jak zavádí vyplývání
 - (a) Sémantické navrhneme interpretaci formulí.

VL: zavedeme ohodnocení:
$$e: V \to \{0,1\} \ ||\varphi||_e \dots$$

PL: $\langle R, F, \sigma \rangle \to \mathbb{M} = \langle M, R^M, F^M \rangle \ ||\varphi||_{M,v} \dots T \models \varphi$
mod. VL: $\Box \varphi, \diamond \varphi$ - Kripkeho struktura - $\mathbb{K} = \langle W, r, e \rangle$
 $r \subseteq W \times W \ \langle w_1, w_2 \rangle \in r \dots w_2$ je dosažitelný z w_1
 $e: W \times V \to \{0,1\}$
 $||\Box \varphi||_{\mathbb{K},w} = 1$ pokud pro každý $w' \in W$ platí: pokud $\langle w, w' \rangle \in r$ pak $||\varphi||_{\mathbb{K},w'} = 1$
 $|| \diamond \varphi||_{\mathbb{K},w} = 1 \dots$ existuje . . .

(b) Syntaktické ...důkaz

kl. VL: Pravidlo: z $\varphi,\varphi\Rightarrow\psi$ odvoď ψ

$$(Ax): \varphi \Rightarrow (\psi \Rightarrow \varphi)$$

$$(\varphi \Rightarrow (\varphi \Rightarrow \chi)) \Rightarrow ((\varphi \Rightarrow \psi) \Rightarrow (\varphi \Rightarrow \chi))$$

$$(\neg \psi \Rightarrow \neg \varphi) \Rightarrow (\varphi \Rightarrow \psi)$$

PL: Pravidlo: $z \varphi$ odvoď $(\forall x)\varphi$

Distrib: $(\forall x)\varphi \Rightarrow \varphi(x/t)$

Spec: $(\forall x)(\varphi \Rightarrow \psi) \Rightarrow (\varphi \Rightarrow (\forall x)\psi)$

Lze zavést vyplývání jinak? - Alternativní syntaktické vyplývání - Gentzenovské dokazovací systémy - "natural deduction"

Např.: V.Vychodil - prahová booleovská logika.

1.3. Co budeme zkoumat tento semestr

Neklasické logiky, ve kterých se uvažuje, že atomické formule mohou nabývat stupňů pravdivosti - 0...1 - mezní dva stupně.

0...(plně) nepravdivý

1...(plně) pravdivý

 $0 < a < 1 \dots$ stupeň pravdivosti

 \rightarrow Základní interpretace \rightarrow komparativní

 $||\varphi||_a = a, ||\psi||_b = b \ a \le n \dots \varphi$ je méně pravdivá než ψ .

 $e:V\to L$ $\mathbb{L}=\langle L,\leq,0,1\rangle$...ohraničená uspořádaná množina.

 $||\varphi||_e \in L$

 $\mathbb{L} = \langle L, \wedge, \vee, 0, 1 \rangle \dots \text{úplný svaz (zbytečně silné)}$

 $\mathbb{L} = \langle L, \wedge, \vee, 0, 1 \rangle \dots \text{svaz (ohraničený)}$

Zbývá vyřešit, jak interpretovat logické spojky a které spojky vzít jako základní.

Princip kompozicionality: $||\varphi \Rightarrow \psi||_e = ||\varphi||_e \rightarrow ||\psi||_e$

 \rightarrow - logická operace, která interpretuje \Rightarrow :

$$\rightarrow: L \times L \rightarrow L : \begin{array}{c|ccc} \rightarrow & 0 & 1 \\ \hline 0 & 1 & 1 \\ 1 & 0 & 1 \\ \end{array}$$

60. léta Lotfi Askerzadeh - koncept fuzzy množiny - $\wedge \dots$ min, $\vee \dots$ max, $\neg \dots 1 - a$

J.A.Goguen - $\mathbb{L} = \langle L, \wedge, \vee, 0, 1 \rangle$

 $\underline{\text{Modus ponens}}_{} - \tfrac{\varphi \Rightarrow \psi, \varphi}{\psi} \text{ - 1. pohled } \tfrac{||\varphi \Rightarrow \psi||_e = 1, ||\varphi||_e = 1}{||\psi||_e = 1}$

2. pohled - min. dolní mez pravdivosti ψ odvozujeme z min. dolních mezí předchozích dvou. $\frac{a \leq ||\varphi \Rightarrow \psi||, b \leq ||\varphi||}{a \otimes b \leq ||\psi||} \ldots \otimes \to \{0,1\} \ldots$ pravdivostní funkce konjunkce.

Pozorování: $\Rightarrow \dots ||\varphi \Rightarrow \psi|| = ||\varphi|| \rightarrow ||\psi||$

⊗... pravdivostní funkce konjunkce

Jaký by měly mít vztah (\otimes, \to) ? Chceme, aby zobecněné MP bylo korektní:

Pokud $a \leq ||\varphi \Rightarrow \psi||$ a $b \leq ||\varphi||$ pak $a \otimes b \leq ||\psi||$ pro $b = ||\varphi||$ a $c = ||\psi||$ použitím $||\varphi \Rightarrow \psi|| = ||\varphi|| \rightarrow ||\psi|| = b \rightarrow c$

Pokud $a \leq ||\varphi \Rightarrow \psi|| = b \rightarrow c$, pak $a \otimes b \leq c$

 $a \leq b \rightarrow c$ pak $a \otimes b \leq c$

Zobecněné MP mělo maximální možnou sílu - $b = ||\varphi||, c = ||\psi||$:

Pokud $a \otimes b \leq ||\psi|| = c$, pak $a \leq ||\varphi|| \rightarrow ||\psi|| = b \rightarrow c$

Dohromady:

$$a \otimes b \leq c$$
 p.k. $a \leq b \rightarrow c \dots$ adjunkce

(Úplný) reziduovaný svaz $\mathbb{L} = \langle L, \wedge, \vee, \otimes, \rightarrow, 0, 1 \rangle$

 $\langle L, \wedge, \vee, 0, 1 \rangle \dots (\text{úpln} \hat{y}) \text{ svaz}$

 $\langle L, \otimes, 1 \rangle \cdots \otimes \ldots$ binární operace, komutativní, asociativní, $a \otimes 1 = a$

 $\rightarrow \dots$ binární operace, která splňuje adjunkci.

MP:
$$\frac{\varphi, \neg \varphi \lor \psi}{\psi} \to \frac{\varphi \lor \psi, \neg \varphi}{\psi}$$
skrytý sém. význam: $\frac{1 \le ||\varphi \lor \psi||, ||\varphi|| \le 0}{1 \le ||\psi||}$

$$\frac{a \leq ||\varphi \vee \psi||, ||\varphi|| \leq b}{c \leq ||\psi||}, \qquad \qquad c = a \ominus b \qquad \qquad \frac{\ominus \quad \mid 0 \quad 1}{0 \quad 0 \quad 0} \quad a \ominus b = \neg (a \to b)$$

 $\vee \cdots \oplus$ $\qquad \qquad \ominus \ldots$ pravdivostní funkce abjunkce - "neimplikace"

Pro $b = ||\varphi||, c = ||\psi||$ korektnost: $a \le ||\varphi \lor \psi|| = b \oplus c$ pak $a \ominus b \le c$

síla: $a \ominus b \le ||\psi|| = c$ pak $a \le b \oplus c$

 $\oplus \dots$ komutativní, asociativní, neutrální vůči0

 $\ominus \dots$ adjungovaná k \oplus

$$a \ominus b \le c$$
 p. k. $a \le b \oplus c$

2. Přednáška 2 - reziduované svazy

 $\mathbb{L} = \langle L, \wedge, \vee, \otimes, \rightarrow, 0, 1 \rangle$

 $\langle L, \wedge, \vee, 0, 1 \rangle \dots$ – ohraničený nebo úplný svaz

 $\leq \ldots a \leq b$ p.k. $a \wedge b = a$ p.k. $a \vee b = b$

 $\langle L, \otimes, 1 \rangle \dots$ komutativní monoid (= asociativní, neutrální prvek – 1)

 $\rightarrow \dots$ binární operace:

$$a \otimes b \leq c$$
p.k. $a \leq b \rightarrow c$ pro $\forall a,b,c$

Věta 1: $a \otimes 0 = 0 \otimes a$ tj. \otimes se na hodnotách z $\{0,1\}$ chová stejně jako pravdivostní funkce klasické konjunkce.

 $D\mathring{u}kaz$. $0 \le a \to 0$, protože 0 je nejmenší z L.

Z adjunkce: $0 \otimes a \leq 0$ tj. $0 \otimes a = 0$. Opačná nerovnost plyne z komutativity \otimes

Věta 2: $a \rightarrow b = 1$ p.k. $a \le b$

 $1 \rightarrow 0 = 0$ tj. \rightarrow se na hodnotách $\{0,1\}$ chová jako klasická implikace.

 $D\mathring{u}kaz$. $a \le b$ p.k. $a \otimes 1 \le b$ p.k. $1 \le a \to b$ (> platí vždy - 1 je největší prvek)

 $1 \to 0 \le 1 \to 0$

 $1\otimes (1\to 0) \leq 0$ z neutrality $1\to 0 \leq 0~(\geq$ platí vždy - 0 je nejmenší prvek.)

Věta 3: Reziduum \rightarrow je jednoznačně dané součinem \otimes a obráceně. (Ale nemusí vůbec existovat)

 $D\mathring{u}kaz$. Nechť $\langle \otimes, \rightarrow_1 \rangle$ a $\langle \otimes, \rightarrow_2 \rangle$ jsou odjungované páry.

 $a \le b \to_1 c$ p.k. $a \otimes b \le c$ p.k. $a \le b \to_2 c$

Dále jasné: pro $a=b \rightarrow_1 c$ vyplývá $b \rightarrow_1 c \leq b \rightarrow_2 c$

pro
$$a=b\rightarrow_2 c$$
 vyplývá $b\rightarrow_2 c\leq b\rightarrow_1 c$

Příklad 1: Todo: Obrázek diamantu. Diamant \mathbb{N}_3 – neexistuje žádný adjungovaný pár.

Příklad 2: Todo: Obrázek 4hodnotové boolovy algebry. $x \otimes y = x \wedge y$ $x \to y = x \vee y \dots$ 4hodnotová booleva algebra.

Věta 4: (a) $a \le b \to (a \otimes b) \dots a \otimes b \le a \otimes b$

- (b) $b \le a \to (a \otimes b \dots z \text{ komutativity } \otimes$
- (c) $a \otimes (a \rightarrow b) \leq b \dots a \rightarrow b \leq a \rightarrow b$
- (d) $a \leq (a \rightarrow b) \rightarrow b$

Důsledek 1: Tato věta + Věta 2: $a \rightarrow (b \rightarrow (a \otimes b)) = 1$ $(a \otimes (a \rightarrow b)) \rightarrow b = 1$

Věta 5: $a \rightarrow (b \rightarrow c) = (a \otimes b) \rightarrow c = b \rightarrow (a \rightarrow c)$

 $D\mathring{u}kaz.$ 1.

$$\begin{array}{rcl} a \rightarrow (b \rightarrow c) & \leq & a \rightarrow (b \rightarrow c) \\ a \otimes (a \rightarrow (b \rightarrow c)) & \leq & b \rightarrow c \\ b \otimes a \otimes (a \rightarrow (b \rightarrow c)) & \leq & c \\ (a \otimes b) \otimes (a \rightarrow (b \rightarrow c)) & \leq & c \\ a \rightarrow (b \rightarrow c) & \leq & (a \otimes b) \rightarrow c \end{array}$$

2.

$$(a \otimes b) \to c \leq (a \otimes b) \to c$$
$$(a \otimes b) \otimes ((a \otimes b) \to c) \leq c$$
$$a \otimes ((a \otimes b) \to c) \leq b \to c$$
$$(a \otimes b) \to c \leq a \to (b \to c)$$

Dokázána první rovnost, druhá plyne z komutativity \otimes .

Věta 6: \otimes je izotonní v obou argumentech. Pokud $a \leq b$ pak $a \otimes c \leq b \otimes c$. Tedy pokud $a_1 \leq b_1$ a $a_2 \leq b_2$ pak $a_1 \otimes a_2 \leq b_1 \otimes b_2$

Důkaz.

$$\begin{array}{rcl} b\otimes c & \leq & b\otimes c \\ & b & \leq & c\to (b\otimes c) \\ \text{tj.:} a & \leq & c\to (b\otimes c) \;// \; \text{z transitivity} \leq \\ a\otimes c & \leq & b\otimes c \end{array}$$

Druhý bod plyne dvojnásobným použitím předchozího: $a_1 \otimes a_2 \leq b_1 \otimes a_2 \leq b_1 \otimes b_2$

Věta 7: $(a \rightarrow b) \otimes (b \rightarrow c) \leq a \rightarrow c$

Důkaz. Stačí ukázat, že platí:

$$a \otimes (a \to b) \otimes (b \to c) \leq c$$

$$a \otimes (a \to b) \leq b$$

$$a \otimes (a \to b) \otimes (b \to c) \leq b \otimes (b \to c) \leq c$$

Věta 8: \rightarrow je antitonní v prvním argumentu a izotonní v druhém argumentu. Tj. pokud $a \leq b$ pak $b \rightarrow c \leq a \rightarrow c$, pokud $b \leq c$ pak $a \rightarrow b \leq a \rightarrow c$

 $D\mathring{u}kaz$. Pokud $a \leq b$ z

$$\begin{array}{rcl} b \rightarrow c & \leq & b \rightarrow c \\ b \otimes (b \rightarrow c) & \leq & c \\ & b & \leq & (b \rightarrow c) \rightarrow c \\ & a & \leq & (b \rightarrow c) \rightarrow c \\ (b \rightarrow c) \otimes a & \leq & c \\ & b \rightarrow c & < & a \rightarrow c \end{array}$$

Pokud $b \le c$ z:

$$\begin{array}{rccc} a \rightarrow b & \leq & a \rightarrow b \\ a \otimes (a \rightarrow b) & \leq & b \\ a \otimes (a \rightarrow b) & \leq & c \\ (a \rightarrow b) & \leq & a \rightarrow c \end{array}$$

Věta 9: $a \to b$ je největší prvek množiny $\{c \in L | a \otimes c \leq b\}$ $a \otimes b$ je nejmenší prvek množiny $\{c \in L | a \leq b \to c\}$

 $D\mathring{u}kaz.$ 1. $a\to b$ patří do $\{a\otimes c\le b\}$ protože $a\otimes (a\to b)\le b.$ Nechť $a\otimes c\le b\dots$ z adjunkce $\dots c\le a\to b$

2. Analogicky: $a\otimes b\in\{c|a\leq b\to c\}$ protože $a\leq b\to (a\otimes b)$ Pokud $a\leq b\to c$ pak $a\otimes b\leq c$

Věta 10:

$$a \otimes \bigvee b_i = \bigvee (a \otimes b_i)$$

 $a \to \bigwedge b_i = \bigwedge (a \to b_i)$
 $\bigvee a_i \to b = \bigwedge (a_i \to b)$

- 1. řádek: součin je distributivní přes ∨

Důkaz. 1. Z monotonie \otimes : $a \otimes \bigvee_i b_i \geq a \otimes b_i$ (druhé i je zvolené) platí pro $\forall i$ tj. $a \otimes \bigvee b_i \geq \bigvee (a \otimes b_i)$

Pravá strana:

$$a\otimes b_i \leq \bigvee(a\otimes b_i)$$

$$b_i \leq a \rightarrow \bigvee(a\otimes b_i) \text{ pro každ\'e } i$$

$$\bigvee b_i \leq a \rightarrow \bigvee(a\otimes b_i)$$

$$a\otimes\bigvee b_i \leq \bigvee(a\otimes b_i)$$

2.
$$a \to \bigwedge i \leq a \to b_i$$
 plat pro $\forall i$, tedy $a \to \bigwedge b_i \leq \bigwedge (a \to b_i)$

$$\bigwedge(a \to b_i) \leq a \to b_i \text{ pro } \forall i$$

$$a \otimes \bigwedge(a \to b_i) \leq b_i \text{ pro } \forall i$$

$$a \otimes \bigwedge(a \to b_i) \leq \bigwedge b_i$$

$$\bigwedge(a \to b_i) \leq a \to \bigwedge b_i$$

3.

$$\bigvee a_i \to b \leq a_i \to b \text{ pro } \forall i$$

$$\bigvee a_i \to b \leq \bigwedge (a_i \to b)$$

$$\bigwedge (a_i \to b) \leq a_i \to b$$

$$a_i \otimes \bigwedge (a_i \to b) \leq b$$

$$a_i \leq (\bigwedge (a_i \to b)) \to b \text{ pro každé } i$$

$$\bigvee a_i \leq (\bigwedge (a_i \to b)) \to b$$

$$\bigwedge (a_i \to b) \leq \bigvee a_i \to b \text{ (dvojí adjunkce)}$$

Poznámka 1: $\vdash (\forall x)(\varphi \Rightarrow \psi) \Leftrightarrow (\varphi \Rightarrow (\forall x)\psi) - \text{protějšek } 2.^1$

Věta 11:

$$a \otimes \bigwedge b_i \leq \bigwedge (a \otimes b_i)$$

$$\bigvee (a \to b_i) \leq a \to \bigvee b_i$$

$$\bigvee (a_i \to b) \leq \bigwedge a_i \to b$$

$$\bigwedge (a_i \to b_i) \leq \bigwedge a_i \to \bigwedge b_i$$

$$\bigwedge (a_i \to b_i) \leq \bigvee a_i \to \bigvee b_i$$

Důkaz. 1-3 "jednoduché", 4: $\bigvee a_i \otimes \bigwedge (a_i \to b_i) \leq a_i \otimes (a_i \to b_i) \leq \bigwedge b_i$ 5: $\bigvee a_i \leq (a_i \to b_i) \to b_i \leq \bigwedge (a_i \to b_i) \to \bigvee b_i$

2.1. Proč nejde svaz N_3 reziduovat?

todo: obrázek diamantu N3

 $D\mathring{u}kaz$. Sporem: Nechť existují \otimes, \to . Dle věty 10:

$$a \otimes (b \vee c) = (a \otimes b) \vee (a \otimes c)$$

 $a\otimes 1=a$... musí nastat alespoň jeden z případů:

$$a\otimes b=a$$
nebo $a\otimes c=a$

¹Vůbec netuším, jak je to myšleno!

Spor s monotonií $\otimes b$

$$a \le 1$$
 $a \otimes b \le 1 \otimes b$

$$a \otimes b \leq b$$
 což je nesrovnatelné.

2.2. Příklady struktur reziduovaných svazů

$$\mathbb{L} = \langle L, \wedge, \vee, \otimes, \rightarrow, 0, 1 \rangle$$
, kde $L = [0, 1], \wedge \dots min, \vee \dots max$

1. Łukasiewicz:
$$a \otimes b = max(0, a+b-1)$$

$$a \rightarrow b = min(1, 1 - a + b)$$

2. Gödel: $a \otimes b = min(a, b)$

$$a \to b = \begin{cases} 1 & a \le b \\ b & \text{jinak} \end{cases}$$

3. Goguenova (produktová): $a \otimes b = a \cdot b$

$$a \to b \begin{cases} 1 & a \le b \\ b/a & \text{jinak} \end{cases}$$

2.2.1. Protipříklady

 $\mathbb{L}\dots$ Gödelova struktura na [0,1]

1.
$$\{a_i\}_{i=0}^{\infty} \dots a_i \in L$$

$$\lim_{i\to\infty}=0$$
a $a_i>0$ pro každé i

$$\bigwedge a_i = 0$$
 pro $b = 0$ platí:

$$\bigwedge a_i \to b = 0 \to 0 = 1$$

$$\bigvee (a_i \to b) = \bigvee b = b = 0$$

$$\bigvee (a_i \to b) \le \bigwedge a_i \to b$$

2.
$$\{b\}_{i=0}^{\infty} \dots b_i \in L$$

$$\lim_{i\to\infty}b_i=a=0.5$$

$$b_i \leq a$$

$$\bigvee (a \to b_i) = \bigvee b_i = 0.5$$

$$a \rightarrow \bigvee b_i = 0.5 \rightarrow 0.5 !!!$$

$$\bigvee (a \to b_i < a \to \bigvee b_i !!!$$

Věta 12: Nechť $\mathbb{L} = \langle L, \wedge, \vee, \otimes, \rightarrow, 0, 1 \rangle$ je úplný svaz svaz a $\langle L, \otimes, 1 \rangle$ je komutativní monoid. Pak jsou následující tvrzení ekvivalentní:

$$k \otimes \exists \rightarrow \text{ splňující adjunkci}$$
 (1)

$$\otimes$$
 je monotonní a $\{c \in L | a \otimes c \leq b\}$ má největší prvek (2)

$$a \otimes \bigvee b_i = \bigvee (a \otimes b_i) \tag{3}$$

$$\otimes$$
 je adjungovaná k \rightarrow definovaná: $a \rightarrow b = \bigvee \{c \in L | a \otimes c \leq b\}$ (4)

```
\begin{array}{l} \text{$D\mathring{u}$kaz. Vime: (1) \Rightarrow (2) // V \&ta 6, V \&ta 9} \\ (1) \Rightarrow (3) // V \&ta 10 \\ (4) \Rightarrow (1) // \text{triviálně} \\ (2) \Rightarrow (4): \text{Položime } a \rightarrow b = \bigvee \{c \in L | a \otimes c \leq b\} \text{ tj. } a \rightarrow b \in \{c \in L | a \otimes c \leq b\} \\ a \otimes (a \rightarrow b \leq b) \\ \text{Když } a \otimes c \leq b \text{ pak } c \leq a \rightarrow b \text{ (z definice } \rightarrow) \\ \text{Opačně: Nechť } c \leq a \rightarrow b \text{ z monotonie součinu (předpoklad): } a \otimes c \leq a \otimes (a \rightarrow b) \leq b \\ (3) \Rightarrow (4): \text{Monotonie } \otimes \text{ je důsledkem distributivity } \otimes \text{ k} \bigvee \\ a \leq b \dots a \vee b = b \\ c \otimes (a \vee b) = (c \otimes a) \vee (c \otimes b) \\ c \otimes b \leq c \otimes a \\ a \otimes c \leq b \text{ implikuje } c \leq a \rightarrow b \text{ z definice } \rightarrow \\ \text{Pokud } c \leq a \rightarrow b, \text{ pak } c \leq \bigvee \{d | a \otimes d \leq b\} \\ a \otimes c \leq a \otimes \bigvee \{d | a \otimes d \leq b\} = \bigvee \{a \otimes d | a \otimes d \leq b\} \end{array}
```