

Down The Dependency Rabbit Hole Machine Learning as a first line of defense in Intel's Dependency Review Process

\$ env

NAME=John Andersen

HOME=Portland OR

USER=pdxjohnny

WORK=Intel

ROLE=Open Source Security Software Engineer

EMAIL=john.s.andersen@intel.com

INTERESTS=Embedded, Linux, Containers, Concurrency, Web Apps, Python

THESIS=Machine Learning

Dependency Evaluation Review Form

SECTION	GRADE	GRADING GUIDELINES
First look		A - Mentions security audit or other proactive security activity.
		B - No major warning signs, and code is used professionally.
		C - No major warning signs, but not widely used or not well-supported.
		D - Code has minor warning signs that need to be investigated in more detail.
		F - Code has known issues, major warning signs, or is abandoned
Contributors		A - At least five significant, active contributors.
and activity		B - More than two significant, active contributors.
		C - Only one major contributor who is active.
		D - Project has been inactive for nine months or less.
		F - Project has been inactive for more than one year.
Security issues		A - Project has had previous security issues and handled them quickly and well. Bonus if they also mention doing proactive
		security such as fuzz testing, static analysis, or security audits.
		B - Project has a plan for handling security issues but hasn't had to use it much yet.
		C - Project does not have a plan for security issues but at least has an active bug tracker and issues get resolved.
		D - Project does not seem to resolve many open bugs.
		F - Project has open security issues that are not in the process of being resolved.
Test suite		A - Project has test suite with good coverage of positive and negative test cases set up as part of continuous integration, an
		test results are published for each build.
		B - Project has test suite with good coverage but no continuous integration.
		C - Test suite mostly covers positive test cases; very few or no error cases.
		D - Test suite has very low coverage or is only a few examples.
		F - No test suite.

Automation Attempt One

- Initial dataset is made up of
 - URL of source repo
 - Security team's classification (Good / Bad)
 - Review form data
- Plan
 - Train model on dataset
 - Assess accuracy
 - Given URL, collect data to answer form questions
 - Predict classification by feeding collected data to model

Reviewers Rarely Fill Out Evaluation Form

SECTION	GRADE	GRADING GUIDE
First look		A - Mentions and addition other proactive security activity.
		B - No proving signs, and code is used professionally.
		C - Major warning signs, but not widely used or not well-supported.
		ode has minor warning signs that need to be investigated in more detail.
		Code has known issues, major warning signs, or is abandoned
Contributors		A - At least five significant, active contribut
and activity		B - More than two significant, active contri ¹ to.
		C - Only one major contributor who is acti
		D - Project has been inactive for nice not has or less.
		F - Project has been inactive immore by one year.
Security issues		A - Project has had preserved by issues and handled expected and well. Bonus if they also hention doing proactive
		security such as fuzz testin, to canalysis, or security dits
		B - Project has a plan for handling security in ups but as a lad to use it much yet.
		C - Project does not have a plan for security is but at least has an active bug tracker and is a set resolved.
		D - Project does not seem to resolve may an bugs.
		F - Project has open security to that a kip. In the process of being resolved.
Test suite		1 - Project has test suite in a good cool rage of positive and negative test cases set up a continuous integration, and
		results are published for each bod.
		B ect has test suite with good coverage but no continuous integration.
		C - Tele mostly covers positive test cases; very few or no error cases.
		D - Test suite very low coverage or is only a few examples.
		F - No test suite.

Automation Attempt One

- Initial dataset is made up of
 - URL of source repo
 - Security team's classification (Good / Bad)
 - Forms mostly not filled out \(
 ^\circ
- Plan
 - Train model on dataset
 - Assess accuracy
 - Given URL, collect data to answer form questions
 - Predict classification by feeding collected data to model
- ~60% Accuracy

Automation Attempt Two

- Initial dataset is made up of
 - URL of source repo
 - Security team's classification (Good / Bad)
- Plan
 - Given URL, collect data
 - Train model on dataset
 - Assess accuracy
 - Predict classification by feeding collected data to model

Brainstorming

Quarterly Ratio of Lines of Comments to Code

Prediction Data Flow

Request Classification Estimation

Project main page URL (Please provide a Public URL) *
http://www.openssl.org/
URL to the upstream source code development repository * Please use a valid upstream VCS repository, no "tarball", "rpm", "jar", etc files
http://github.com/openssl/openssl
Machine Learning prediction presented for estimation purposes only.
Machine Learning prediction: Error requesting evaluation
If you are sure this source URL is valid click here.
Submit

Data Flow Facilitator for Machine Learning

Machine Learning made easy

Abstractions DFFML Provides

- Data Flow
 - Dataset generation
 - Concurrency without dealing with locking
- Sources
 - CSV
 - JSON
 - MySQL
- Models
 - Tensorflow
 - SciKit

Consistent API

- Python Library
- Command Line Interface
- HTTP API

Should I Be Installing This?

What is a Data Flow?

Deploy Anywhere - Command Line

Deploy Anywhere - HTTP

```
deploy $ tree
       shouldi.yaml
    MC.
        http
         └─ shouldi.yaml
3 directories, 2 files
```

Deploy Anywhere - HTTP

```
deploy $ cat mc/http/shouldi.yaml
                                        flow:
path: /shouldi
                                           bandit:
presentation: json
                                             pkg:
asynchronous: false
                                             - pkg.contents.directory
deploy $
                                          pkg.cleanup:
                                             directory:
                                             - pkg.contents.directory
                                           pkg.contents:
                                             - pkg.url.url
                                           pkg.json:
                                             package:
                                             - seed
                                          pkg.url:
                                             response_json:
                                             pkg.json.response_json
                                           pkg.version:
```

Deploy Anywhere - HTTP

Extend Without Writing Code - Modify DataFlow

Where To Go From Here

- How to Integrate Machine Learning Tutorial
 - https://intel.github.io/dffml/usage/integration.html
- shouldi
 - pip install shouldi && shouldi install some-package-name
 - https://intel.github.io/dffml/tutorials/operations.html
- Use and Contribute!
 - Weekly Meetings: Tuesdays at 9 AM
 - Gitter, Mailing List, and Meeting Links: https://intel.github.io/dffml/community.html
 - Documentation: https://intel.github.io/dffml
- Q&A