LC19: Application du premier principe de la thermodynamique à la réaction chimique

Etat standard

Etat physique	Etat standard	Exemple : état standard de l'eau à
Solide	Solide pur à $P^0 = 1 bar$	Glace pure à $P^0 = 1 bar$ Etat hypothétique
Liquide	Liquide pur à $P^0 = 1 \ bar$	Liquide pur à $P^0 = 1 \ bar$ Etat réel
Solvant	Liquide pur à $P^0 = 1 bar$	
Gaz	Gaz parfait pur à $P^0 = 1 \ bar$	Gaz parfait pur à $P^0 = 1 bar$ Etat hypothétique
Soluté	Soluté à la concentration $C^0 = 1 \mod L^{-1}$ à $P^0 = 1 \mod$	

Mesure de l'enthalpie standard de réaction d'une réaction d'oxydo-réduction

 $V_0 = 100 \ mL$ de solution de sulfate de cuivre à $C_0 = 1,00. \ 10^{-1} \ mol. \ L^{-1}$

		excès		
Etat initial	C_0V_0	$n_{Zn,i}$	0	0
Etat final	0	$n_{Zn,i}-C_0V_0$	C_0V_0	C_0V_0

C1 - Internal use

Calcul d'une température de flamme grâce à la loi de Hess (1)

Réactifs à $T_i = 298 K$

ΔH_{1} $2C_{(gr)} + H_{2(g)} + \frac{5}{2}O_{2(g)}$

Corps simple dans leur état standard de référence à $T_i = 298 \, K$

Adiabatique:

$$C_2 H_{2(g)} + \frac{5}{2} O_{2(g)} \stackrel{\Delta H}{\to} 2CO_{2(g)} + H_2 O_{(g)}$$

Produits à $T_f = ?$

Produits à $T_i = 298 K$

Calcul d'une température de flamme grâce à la loi de Hess (2)

• On introduit l'enthalpie standard de la réaction de combustion à $T_i = 298 \, K$:

$$n \times \Delta_r H_{comb}^0(T_i) = \Delta H_1 + \Delta H_2$$

$$\Delta_r H^0_{comb}(T_i) = -\Delta_f H^0_{C_2 H_{2(g)}}(T_i) + 2\Delta_f H^0_{CO_{2(g)}}(T_i) + \Delta_f H^0_{H_2O_{(g)}}(T_i)$$

AN:
$$\Delta_r H_{comb}^0(T_i = 298 \text{ K}) = -1250 \text{ kJ. } mol^{-1}$$

• Ceci est la **loi de Hess** reliant l'enthalpie standard de réaction à une température *T* aux enthalpies standards de formation des réactifs et produits :

$$\Delta_r H^0(T) = \sum_i \nu_i \Delta_f H_i^0(T)$$