Package 'Momocs'

March 18, 2016

Title Morphometrics using R

```
Version 1.0.0
Date 2016-03-18
Description A complete toolkit for morphometrics, from data extraction to multivariate analyses.
     Most common 2D morphometrics approaches are included:
     outlines, open outlines, configurations of landmarks, traditional morphometrics,
     and facilities for data preparation, manipulation and visualization
     with a consistent grammar throughout.
     Momocs allows reproducible, complex morphometric analyses,
     paves the way for a pure open-source workflow in R,
     and other morphometrics approaches should be easy to plug in,
     or develop from, on top of this canvas.
License GPL-2 | GPL-3
URL https://github.com/vbonhomme/Momocs/
BugReports https://github.com/vbonhomme/Momocs/issues
Depends R(>=3.2)
LazyData true
Imports ape, dplyr, magrittr, graphics, geometry, geomorph, ggplot2,
     jpeg, MASS, plyr, reshape2, sp, utils
Suggests devtools, knitr, rmarkdown, testthat, covr
VignetteBuilder knitr
RoxygenNote 5.0.1
NeedsCompilation no
Author Vincent Bonhomme [aut, cre],
     Julien Claude [aut]
Repository CRAN
Date/Publication 2016-03-18 18:34:06
```

R topics documented:

coo_chull	50
coo_circularity	51
coo_circularityharalick	52
coo_circularitynorm	53
coo_close	53
coo_convexity	55
coo_down	56
coo_draw	57
coo_dxy	57
coo_eccentricityboundingbox	58
coo_eccentricityeigen	59
coo_elongation	50
coo_extract	50
coo_flipx	51
coo_force2close	52
coo_interpolate	53
coo_jitter	54
coo_ldk	55
coo_left	55
coo_length	66
coo_listpanel	57
coo_lolli	58
coo_lw	59
coo_nb	59
coo_oscillo	70
coo_perim	71
coo_perimcum	72
coo_perimpts	72
coo_plot	73
coo_rectangularity	75
coo_rectilinearity	75
coo_rev	76
coo_right	77
coo_rotate	78
	79
coo_ruban	30
coo_sample	31
coo_samplerr	32
coo_scale	33
coo_scalex	34
coo_shearx	35
coo_slice	36
coo_slide	37
coo_slidedirection	38
	39
_ 01	90
coo_smoothcurve	91
coo_solidity	92

coo_tangle		
coo_template	 	 93
coo_theta3	 	 94
coo_thetapts	 	 95
coo_trans	 	 96
 coo_trim	 	 97
 coo_up	 	 97
coo_width		
i		
def ldk	 	 100
def_links	 	 101
def_slidings		
Ifourier		
lfourier_i		
dfourier_shape		
dissolve		
ed		
edi		
edm		
edm_nearest		
efourier		
efourier_i		
efourier_norm		
efourier_shape		
export		
fgProcrustes		
fgsProcrustes		
filter		
flower		
Procrustes		
get_chull_area		
get ldk		
get_pairs		
get_slidings		
narm_pow		
ncontrib		
nearts	 	 126
nist.OutCoe	 	 127
mg_plot	 	 128
mport_Conte		
mport_jpg		
mport_jpg1		
mport_StereoMorph_curve1		
mport_tps		
mport_txt		
S		
s_closed		
KMEANS		

12a	137
12m	138
LDA	138
Ldk	140
ldk_check	141
	142
	142
ldk_contour	143
ldk_labels	144
ldk_links	145
lf_structure	145
	146
-	147
	147
m2d	149
	149
m2ll	
MANOVA	
MANOVA_PW	
measure	
molars	
Momocs	
Momocs_help	156
Momocs_lastversion	156
Momocs_version	156
mosquito	157
mshapes	157
	159
	160
npoly	160
Ntable	162
ntsrow2Coo	163
oak	163
olea	164
Opn	164
OpnCoe	165
	166
1 2	
opoly_i	
Out	
OutCoe	
panel	
panel2	
PCA	
PCcontrib	
perm	
pix2chc	
plot.Coo	176
plot LDA	177

plot.PCA	. 180
plot2	. 185
plot3	. 187
plot_CV	
plot_CV2	. 188
plot_devsegments	. 190
pos.shapes	. 191
pProcrustes	. 192
Ptolemy	. 193
reLDA	. 194
rename	. 195
rePCA	. 196
rescale	. 197
rfourier	. 198
rfourier_i	. 199
rfourier_shape	. 200
rm_asym	. 202
rm_harm	. 203
rm_uncomplete	. 204
rw_rule	. 205
sample_frac	. 206
sample_n	. 207
scree	. 208
select	. 209
shapes	. 210
slice	. 210
slidings_scheme	. 211
stack.Coo	. 212
stack2	. 213
subset.Coo	. 214
symmetry	. 215
table	. 216
tfourier	. 216
tfourier_i	. 218
tfourier_shape	. 219
tie_jpg_txt	. 220
tps2coo	. 221
tps2d	. 222
tps_arr	. 223
tps_grid	. 224
tps_iso	. 225
tps_raw	. 226
TraCoe	. 227
transmute	. 228
trilo	. 229
truss	. 229
validate	. 230
vecs_param	. 231

a2l 7

which_out	2
wings	2

Index 234

a21

Converts an array of coordinates to a list of matrices

Description

Converts a m x n x k array of coordinates to a list of k matrices with m rows and n columns matrices.

Usage

a21(a)

Arguments

а

array of coordinates.

Details

May be useful to communicate with other morphometrics packages that use array of coordinates when handling configurations of landmarks.

Value

list with 2-cols matrices of (x; y) coordinates.

See Also

Other bridges functions: a2m, as_df, 12a, 12m, m2a, m2d, m2ll, m2l

```
data(wings)
1 <- wings$coo
1
a <- 12a(1)
a</pre>
```

8 arrange

a2m

Converts an array of coordinates to a matrix

Description

All the individuals (the 3rd dimension of the array) becomes rows, and columns are (all the) x coordinates and (all the) y coordinates, so that we have x1, x2, ..., xn, y1, y2, ..., yn columns. Rows and columns are named anyway.

Usage

```
a2m(a)
```

Arguments

а

array of (x; y) coordinates.

Details

Used in landmarks methods, e.g. for multivariate analysis after a Procrustes alignment.

Value

```
matrix (see above).
```

See Also

```
m2a the reverse function.

Other bridges functions: a21, as_df, 12a, 12m, m2a, m2d, m211, m21
```

Examples

```
data(wings)
a <- l2a(wings$coo)
a</pre>
```

arrange

Arranges (ala dplyr) on Momocs objects

Description

Arange shapes by variables, from the \$fac. See examples and ?dplyr::arrange.

Usage

```
arrange(.data, ...)
```

as.Out

Arguments

```
.data a Coo, Coe, PCA object... logical conditions
```

Details

dplyr verbs are maintained.

Value

a Momocs object of the same class.

See Also

```
Other handling functions: at_least, chop, combine, dissolve, filter, mutate, rename, rm_uncomplete, rw_rule, sample_frac, sample_n, select, slice, subset.Coo, transmute
```

Examples

```
olea
# we create a new column
olea %>% mutate(id=1:length(.)) %$% fac$id
# same but now, shapes are arranged in a desc order, based on id
olea %>% mutate(id=1:length(.)) %>% arrange(desc(id)) %$% fac$id
```

as.Out

Convert an OutCoe object into an Out object

Description

Uses the \$method to do the inverse corresponding function. For instance, an OutCoe object obtained with efourier, will be converted to an Out object (outlines from harmonic coefficients), using efourier_i.

Usage

```
as.Out(object, OutCoe, nb.pts = 120)
```

Arguments

object an OutCoe object

OutCoe used by as, useless for the front user

nb.pts number of point for the reconstructed outlines

10 as_df

Details

Note that the 'positionnal' coefficients (ao and co if any) are lost, so for a proper comparison between a raw Out and a Out from Out -> OutCoe -> Out, the raw Out should be centered.

This method is useful since it allows a direct inspection at how Fourier-based methods handle outlines, and in particular how they normalize it (when they do). If you have bad "reconstruction" using as.Out, this probably means that you have to think about alternative alignements on the raw outlines. For instance, it is obvious that normalization does a good job on the bottle example, yet it -pi/2 turns the "outlines" yet neutral for further analysis (and that can be manage with the argument rotate.shp in functions/methods that use reconstructed outlines, e.g. plot.PCA).

Value

an Out object.

Examples

```
data(bot)
bot <- coo_center(bot)
bot.f <- rfourier(bot, 120)
bot.fi <- as.Out(bot.f)
op <- par(mfrow=c(1, 2))
stack(bot, title="raw bot")
stack(bot.fi, title="outlines from bot.f")
par(op)</pre>
```

as_df

Converts Momocs objects to data.frames

Description

Used in particular for ggplot2 compatibility.

Usage

```
as_df(x)
```

Arguments

х

an object, typically a Momocs class

Value

a data.frame

See Also

```
Other bridges functions: a21, a2m, 12a, 12m, m2a, m2d, m211, m21
```

at_least 11

Examples

```
data(bot)
head(as_df(bot))
bot.f <- efourier(bot, 10)
head(as_df(bot.f))
bot.p <- PCA(bot.f)
head(as_df(bot.p))
bot.l <- LDA(bot.p, "type")
head(as_df(bot.l))</pre>
```

at_least

Retains group with at least a certain number of individuals

Description

Examples are self-speaking.

Usage

```
at_least(x, fac, N)
```

Arguments

x any Momocs object fac the id of name of the \$fac column

N minimal number of individuals to retain the group

Note

if N is too ambitious the original object is returned with a message

See Also

Other handling functions: arrange, chop, combine, dissolve, filter, mutate, rename, rm_uncomplete, rw_rule, sample_frac, sample_n, select, slice, subset.Coo, transmute

```
data(trilo)
table(trilo, "onto")
at_least(trilo, "onto", 9)
at_least(trilo, "onto", 16)
at_least(trilo, "onto", 2000) # too ambitious !
```

12 bezier

bezier

Calculates Bezier coefficients from a shape

Description

Calculates Bezier coefficients from a shape

Usage

```
bezier(coo, n)
```

Arguments

```
coo a matrix or a list of (x; y) coordinates

n the degree, by default the number of coordinates.
```

Value

a list with components:

- \$J matrix of Bezier coefficients
- \$B matrix of Bezier vertices.

Note

Directly borrowed for Claude (2008), and also called bezier there. Not implemented for open outlines but may be useful for other purposes.

References

```
Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.
```

See Also

Other bezier functions: bezier_i

```
set.seed(34)
x <- coo_sample(efourier_shape(), 5)
plot(x, ylim=c(-3, 3), asp=1, type='b', pch=20)
b <- bezier(x)
bi <- bezier_i(b$B)
lines(bi, col='red')</pre>
```

bezier_i

bezier_i

Calculates a shape from Bezier coefficients

Description

Calculates a shape from Bezier coefficients

Usage

```
bezier_i(B, nb.pts = 120)
```

Arguments

B a matrix of Bezier vertices, such as those produced by bezier nb.pts the number of points to sample along the curve.

Value

```
a matrix of (x; y) coordinates
```

Note

Directly borrowed for Claude (2008), and called beziercurve there. Not implemented for open outlines but may be useful for other purposes.

References

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

See Also

Other bezier functions: bezier

```
set.seed(34)
x <- coo_sample(efourier_shape(), 5)
plot(x, ylim=c(-3, 3), asp=1, type='b', pch=20)
b <- bezier(x)
bi <- bezier_i(b$B)
lines(bi, col='red')</pre>
```

14 bind_db

bind_db	Binds with a database	

Description

Adds columns to a Coo or Coe object from a data base. Data base must be provided as a data.frame or as a path which will be read.tabled with . . . arguments.

Usage

```
bind_db(x, fac_col = "id", db, db_col = "id", ...)
```

Arguments

X	Coo or Coe object
fac_col	character (no numeric here) where to find ids in the fac
db	data.frame with the right number of rows, or a path as character. Then use \dots to pass arguments to read.table
db_col	character where to fin ids in db
	more parameters passed to read.table

Details

Many checks are done on the binding and this is the main advantage of using this method. It requires an "id" on both the Coo/Coe and the database. There is no assumption that shapes/coefficients are in the right order in the Coo/Coe (but a mutate(your_object, id=1:length(your_object)) would do the trick, see examples).

See Also

```
Other babel functions: chc2Out, chc2pix, import_StereoMorph_curve1, import_jpg, import_tps, nef2Coe, ntsrow2Coo, pix2chc, tie_jpg_txt, tps2coo
```

```
# Coo example
df <- data.frame(foo_id=40:1, fake1=rnorm(40), fake2=factor(rep(letters[1:4], 10)))
bot <- mutate(bot, hello=1:length(bot))
bind_db(bot, "hello", df, "foo_id")

# example on a Coe
bf <- efourier(bot, 12)
bind_db(bf, "hello", df, "foo_id")</pre>
```

bot 15

bot

Data: Outline coordinates of beer and whisky bottles.

Description

Data: Outline coordinates of beer and whisky bottles.

Format

A Out object containing the outlines coordinates and a grouping factor for 20 beer and 20 whisky bottles

Source

Images have been grabbed on the internet and prepared by the package's authors. No particular choice has been made on the dimension of the original images or the brands cited here.

See Also

Other datasets: chaff, charring, flower, hearts, molars, mosquito, oak, olea, shapes, trilo, wings

boxplot.OutCoe

Boxplot of morphometric coefficients

Description

Explores the distribution of coefficient values.

Usage

```
## S3 method for class 'OutCoe'
boxplot(x, retain = 6, drop = 0, center.y = TRUE, ...)
```

Arguments

```
x the Coe object
retain numeric the number of harmonics to retain
drop numeric the number of harmonics to drop
center.y logical whether to center the y-axis
... useless here but maintain the consistency with generic boxplot
```

Value

```
a ggplot2 object
```

16 boxplot.PCA

See Also

```
Other Coe_graphics: hcontrib, hist.OutCoe
```

Examples

```
data(bot)
bot.f <- efourier(bot, 24)
boxplot(bot.f)

data(olea)
op <- opoly(olea)
boxplot(op)</pre>
```

boxplot.PCA

Boxplot on PCA objects

Description

Boxplot on PCA objects

Usage

```
## S3 method for class 'PCA'
boxplot(x, fac = NULL, nax = 1:5, ...)
```

Arguments

```
x an object of class "PCA", typically obtained with PCA fac factor, or a name or the column id from the $fac slot nax the range of PC to plot useless here
```

Value

```
a ggplot object
```

```
data(bot)
bot.f <- efourier(bot, 12)
bot.p <- PCA(bot.f)
boxplot(bot.p)
p <- boxplot(bot.p, 1)
#p + theme_minimal() + scale_fill_grey()
#p + facet_wrap(~PC, scales = "free")</pre>
```

breed 17

breed

Jitters Coe (and others) objects

Description

This methods applies column-wise on the coe of any Coe object but relies on a function that can be used on any matrix. It simply uses rnorm with the mean and sd calculated for every column (or row). For a Coe object, on every colum, randomly generates coefficients values centered on the mean of the column, and with a sd equals to it standard deviates multiplied by rate.

Usage

```
breed(x, ...)
## Default S3 method:
breed(x, margin = 2, size, rate = 1, ...)
## S3 method for class 'Coe'
breed(x, size, rate = 1, ...)
```

Arguments

```
    the object to permute
    useless here
    numeric whether 1 or 2 (rows or columns)
    numeric the required size for the final object, same size by default
    numeric the number of sd for rnorm, 1 by default.
```

See Also

Other farming: perm

```
m <- matrix(1:12, nrow=3)
breed(m, margin=2, size=4)
breed(m, margin=1, size=10)

data(bot)
bot.f <- efourier(bot, 12)
bot.m <- breed(bot.f, 80)
bot.m
panel(bot.m)</pre>
```

18 calibrate_deviations

Description

Calculate deviations from original and reconstructed shapes using a range of harmonic number.

Usage

```
calibrate_deviations(x, method, id, range, norm.centsize, dist.method,
  dist.nbpts)
```

Arguments

Χ	and Out or Opn o	object on which to	calibrate_deviations

method any method from c('efourier', 'rfourier', 'tfourier') and 'dfourier'.

id the shape on which to perform calibrate_deviations

range vector of harmonics (or degree for opoly and npoly on Opn) on which to perform

calibrate_deviations. If not provided, the harmonics corresponding to 0.9, 0.95

and 0.99 are used.

norm.centsize logical whether to normalize deviation by the centroid size dist.method a method such as edm_nearest to calculate deviations

dist.nbpts numeric the number of points to use for deviations calculations

Details

For *poly methods on Opn objects, the deviations are calculated from a degree 12 polynom.

Value

```
a ggplot object
```

See Also

Other calibration: calibrate_harmonicpower, calibrate_r2, calibrate_reconstructions

```
data(bot)
calibrate_deviations(bot)
## Not run:

# on Opn
data(olea)
camibrate_deviations(olea)

# lets customize the ggplot
```

calibrate_harmonicpower

Quantitative calibration, through harmonic power, for Out and Opn objects

Description

Estimates the number of harmonics required for the four Fourier methods implemented in Momocs: elliptical Fourier analysis (see efourier), radii variation analysis (see rfourier) and tangent angle analysis (see tfourier) and discrete Fourier transform (see dfourier). It returns and can plot cumulated harmonic power whether dropping the first harmonic or not, and based and the maximum possible number of harmonics on the Coo object.

Usage

```
calibrate_harmonicpower(x, method, id, nb.h, drop, thresh, plot, verbose)
```

Arguments

X	a Coo of Opn object
method	any method from c('efourier', 'rfourier', 'tfourier') for Outs and dfourier for Outs.
id	the shapes on which to perform calibrate_harmonicpower. All of them by default
nb.h	numeric the maximum number of harmonic, on which to base the cumsum
drop	numeric the number of harmonics to drop for the cumulative sum
thresh	vector of numeric for drawing horizontal lines, and also used for minh below
plot	logical whether to plot the result or simply return the matrix
verbose	whether to print results

Details

The power of a given harmonic n is calculated as follows for elliptical Fourier analysis and the n-th harmonic: $HarmonicPower_n \frac{A_n^2 + B_n^2 + C_n^2 + D_n^2}{2}$ and as follows for radii variation and tangent angle: $HarmonicPower_n = \frac{A_n^2 + B_n^2 + C_n^2 + D_n^2}{2}$

20 calibrate_r2

Value

returns a list with component:

- gg a ggplot object, q the quantile matrix
- minh a quick summary that returns the number of harmonics required to achieve a certain proportion of the total harmonic power.

See Also

Other calibration: calibrate_deviations, calibrate_r2, calibrate_reconstructions

Examples

```
data(bot)
cal <- calibrate_harmonicpower(bot)
## Not run:
# for Opn objects
data(olea)
calibrate_harmonicpower(olea, "dfourier")

# let customize the ggplot
library(ggplot2)
cal$gg + theme_minimal() +
coord_cartesian(xlim=c(3.5, 12.5), ylim=c(90, 100)) +
ggtitle("Harmonic power calibration")

## End(Not run)
# if you want to do efourier with 99% calibrate_harmonicpower in one step
# efourier(bot, nb.h=calibrate_harmonicpower(bot, "efourier", plot=FALSE)$minh["99%"])</pre>
```

calibrate_r2

Quantitative r2 calibration for Opn objects

Description

Estimates the r2 to calibrate the degree for npoly and opoly methods. Also returns a plot

Usage

```
calibrate_r2(Opn, method = "opoly", id = 1:length(Opn),
  degree.range = 1:8, thresh = c(0.9, 0.95, 0.99, 0.999), plot = TRUE,
  verbose = TRUE, ...)
```

calibrate_reconstructions

21

Arguments

Opn an Opn object

method one of 'npoly' or 'opoly'

id the ids of shapes on which to calculate r2 (all by default)

degree.range on which to calculate r2

thresh the threshold to return diagnostic
plot logical whether to print the plot
verbose logical whether to print messages

... useless here

Details

May be long, so you can estimate it on a sample either with id here, or one of sample_n or sample_frac

See Also

 $Other\ calibration:\ calibrate_deviations,\ calibrate_harmonic power,\ calibrate_reconstructions$

Examples

```
## Not run:
calibrate_r2(olea, "opoly", degree.range=1:5, thresh=c(0.9, 0.99))
## End(Not run)
```

calibrate_reconstructions

Calibrate using reconstructed shapes

Description

Calculate and displays reconstructed shapes using a range of harmonic number. Compare them visually with the maximal fit.

Usage

```
calibrate_reconstructions(x, method, id, range, baseline1, baseline2)
```

22 chaff

Arguments

X	the Coo object on which to calibrate_reconstructions
method	any method from c('efourier', 'rfourier', 'tfourier') for Out, or from c('opoly', 'npoly', 'dfourier') for Opn
id	the shape on which to perform calibrate_reconstructions
range	vector of harmonics on which to perform calibrate_reconstructions
baseline1	(x;y) coordinates for the first point of the baseline
baseline2	(x;y) coordinates for the second point of the baseline
	only used for the generic

Value

a ggplot object

See Also

Other calibration: calibrate_deviations, calibrate_harmonicpower, calibrate_r2

Examples

```
data(bot)
calibrate_reconstructions(bot, "efourier")
data(olea)
calibrate_reconstructions(olea, "dfourier")
```

chaff

Data: Landmark and semilandmark coordinates on cereal glumes

Description

Data: Landmark and semilandmark coordinates on cereal glumes

Format

An Ldk object with 21 configurations of landmarks and semi-landmarks (4 partitions) sampled on cereal glumes

Source

Research support was provided by the European Research Council (Evolutionary Origins of Agriculture (grant no. 269830-EOA) PI: Glynis Jones, Dept of Archaeology, Sheffield, UK. Data collected by Emily Forster.

See Also

```
Other datasets: bot, charring, flower, hearts, molars, mosquito, oak, olea, shapes, trilo, wings
```

charring 23

charring	Data: Outline coordinates from an experimental charring on cereal grains

Description

Data: Outline coordinates from an experimental charring on cereal grains

Format

An Out object with 18 grains, 3 views on each, for 2 cereal species, charred at different temperatures for 6 hours (0C (no charring), 230C and 260C).

Source

Research support was provided by the European Research Council (Evolutionary Origins of Agriculture (grant no. 269830-EOA) PI: Glynis Jones, Dept of Archaeology, Sheffield, UK. Data collected by Emily Forster.

See Also

Other datasets: bot, chaff, flower, hearts, molars, mosquito, oak, olea, shapes, trilo, wings

chc20ut

Converts chain-coded coordinates to Out object

Description

For Shape/ChainCoder files, a wrapper to convert chain-coded coordinates to Out objects.

Usage

```
chc2Out(chc, skip, names)
```

Arguments

chc	a path to the chc file
cnc	a bath to the chc ille

skip numeric how many informations before the first chain-coded information

names an (optional) vector of (skip) names for the fac created. Somehow similar to

names in lf_structure

24 chc2Out

Details

Files from Shape/ChainCoder comes this way:

```
Name_1 fac1 fac2 fac3 [...] 6 6 6 6 6 6 6 6 7 6 [...] -1
Name_2 fac1 fac2 fac3 [...] 6 6 6 6 5 5 7 6 7 6 [...] -1
```

This function does the following:

- 1. take everything before the first chain-coded coordinate (here a "6") and transform it into a data.frame, later used as a fac
- 2. convert all the chain-coded coordinates into (x; y) coordinates using chc2pix (and removes) the "-1" that mark the end of coordinates
- 3. returns an Out object with the corresponding fac and with outlines named after the first fac column (here with Name_1, Name_2, etc.)

This function needs to know how many information (space-separated there is before) the first coordinate. On the example above, would be 4 id [...] was empty.

Note

I'm not very familiar to other morphometric formats. So if you have troubles importing your datasets, contact me, I can help. Or if you fix something, please let met know!

References

Kuhl, F. P., & Giardina, C. R. (1982). Elliptic Fourier features of a closed contour. *Computer Graphics and Image Processing*, 18(3), 236-258.

See Also

```
pix2chc
```

```
Other babel functions: bind_db, chc2pix, import_StereoMorph_curve1, import_jpg, import_tps, nef2Coe, ntsrow2Coo, pix2chc, tie_jpg_txt, tps2coo
```

```
## Not run:
# if the file above was called 'coded.chc' in the 'data' folder:
chc2Out("data/coded.chc", skip=4)
## End(Not run)
```

chc2pix 25

chc2pix

Converts chain-coded coordinates to (x; y) coordinates

Description

May be useful to convert chain-coded coordinates to (x; y) coordinates. The first point is set at the origin. chc2Out does the job for an entire dataset produced by Shape/ChainCoder, etc.

Usage

```
chc2pix(chc)
```

Arguments

chc

a vector of chain-coded coordinates

References

Kuhl, F. P., & Giardina, C. R. (1982). Elliptic Fourier features of a closed contour. *Computer Graphics and Image Processing*, 18(3), 236-258.

See Also

```
pix2chc, chc2Out
```

Other babel functions: bind_db, chc2Out, import_StereoMorph_curve1, import_jpg, import_tps, nef2Coe, ntsrow2Coo, pix2chc, tie_jpg_txt, tps2coo

Examples

```
data(shapes)
x <- pix2chc(shapes[1])
coo_plot(chc2pix(x))</pre>
```

chop

Chops (rough slicing) Momocs objects

Description

Rougher slicing that accepts a classifier ie a column name from the \$fac on Momocs classes. Returns a named (after every level) list that can be lapply-ed and combined. See examples.

Usage

```
chop(.data, fac)
```

26 classify

Arguments

. data a Coo or Coe object

fac a column name from the \$fac

Value

a named list of Coo or Coe objects

See Also

Other handling functions: arrange, at_least, combine, dissolve, filter, mutate, rename, rm_uncomplete, rw_rule, sample_frac, sample_n, select, slice, subset.Coo, transmute

Examples

data(bot)

classify

Classify using LDA

Description

Classify using LDA

Usage

```
classify(x, fac, ref, unk)
```

Arguments

x a Coe

fac a standalone factor, or the name or id of the \$fac column to use. If it contains

NAs, they will also be removed first from the x object

ref at least two level names from \$fac[, "fac"] to use as a training subset of x

unk same as above for one level name to classify

Value

a list with components:

- \$N_ref the number of elements in the training set
- \$N_unk the number of elements in the unknown set
- \$counts of classification of 'unk' in each class of 'ref'
- \$pc same thing as percentages
- \$probs same thing as posterior probabilities
- \$probs same thing as posterior but as a data.frame

CLUST 27

Examples

```
data(olea)
table(olea, "var")
x <- opoly(olea, 5, verbose=FALSE)
classify(x, fac="var", ref=c("Aglan", "Cypre"), unk="PicMa")</pre>
```

CLUST

Hierarchical clustering

Description

Performs hierarchical clustering through dist and hclust. So far it is mainly a wrapper around these two functions, plus plotting using plot.phylo from the package ape.

Usage

```
CLUST(x, fac, type = "fan", dist_method = "euclidean",
  hclust_method = "complete", retain = 0.99, tip_labels,
  palette = col_qual, ...)
## Default S3 method:
CLUST(x, ...)
```

Arguments

x	a PCA object (Coe method deprecated so far)
fac	the id or column name or formula for columns to use from \$fac.
type	to pass to ape::plot.phylo's type argument, one of "cladogram", "phylogram", "radial", "unrooted" or "fan" (by default)
dist_method	to feed dist's method argument, one of "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski".
hclust_method	to feed hclust's method argument, one of "ward.D", "ward.D2", "single", "complete" (default), "average", "mcquitty", "median" or "centroid".
retain	number of axis to retain from the PCA as a range of number eg 1:5 to retain the first 5 PCs. If a number <= 1 is passed, then the number of PCs retained will be enough to capture this proportion of variance.
tip_labels	the id or column name in $factor use as tip_labels rather than rownames. Note that you can also pass a character (or a factor) with the same number of rows of x$
palette	a color palette to use (col_qual by default). If NULL, par("fg") is used
• • •	additional parameters to feed plot.phylo

Value

the phylo object, invisibly

28 Coe

See Also

Other multivariate: KMEANS, LDA, MANOVA_PW, MANOVA, PCA

Examples

```
## Not run:
# we prepare a PCA with shorter names
olea_lite <- olea
names(olea_lite) <- as.character(olea$fac$var)</pre>
x <- olea_lite %>% opoly(5) %>% PCA()
# By default
CLUST(x)
# With a fac
CLUST(x, 1)
# plot.phylo types
CLUST(x, "var", type="cladogram")
CLUST(x, "var", type="phylogram")
CLUST(x, "var", type="radial")
CLUST(x, "var", type="unrooted")
# other dist/hclust methods
CLUST(x, "var", layout="cladogram", dist_method="minkowski", hclust_method="average")
# With another
CLUST(x, "domes", tip_labels="var", palette=col_india)
# Alternative ways to pass a factor
CLUST(x, 1)
CLUST(x, "var")
CLUST(x, ~var)
# Strict equivalent before but formula allows this:
CLUST(x, ~ domes + var, tip_labels = ~ domes + var)
# More arguments to plot.phylo
CLUST(x, cex=0.5)
## End(Not run)
```

Coe

Coe "super" class

Description

Coe class is the 'parent' or 'super' class of OutCoe, OpnCoe and LdkCoe classes.

Coe 29

Usage

```
Coe(...)
```

Arguments

... anything and, anyway, this function will simply returns a message.

Details

Useful shortcuts are described below. See browseVignettes("Momocs") for a detail of the design behind Momocs' classes.

Coe class is the 'parent' class of the following 'child' classes

- OutCoe for coefficients from closed **out**lines morphometrics
- OpnCoe for coefficients from **open** outlines morphometrics
- LdkCoe for coefficients from configuration of landmarks morphometrics.

In other words, OutCoe, OpnCoe and LdkCoe classes are all, primarily, Coe objects on which we define generic *and* specific methods. See their respective help pages for more help.

You can access all the methods available for Coe objects with methods(class=Coe).

See Also

Other Coe objects: OpnCoe, OutCoe

```
# to see all methods for Coo objects.
methods(class='Coe')
data(bot)
bot.f<- efourier(bot, 12)</pre>
bot.f
class(bot.f)
inherits(bot.f, "Coe")
# if you want to work directly on the matrix of coefficients
bot.f$coe
#getters
bot.f[1]
bot.f[1:5]
#setters
bot.f[1] <- 1:48
bot.f[1]
bot.f[1:5] <- matrix(1:48, nrow=5, ncol=48, byrow=TRUE)</pre>
bot.f[1:5]
```

30 coeff_sel

```
# An illustration of Momocs desing. See also browseVignettes("Momocs")
data(olea)
op <- opoly(olea, 5)
op
class(op)
op$coe # same thing

data(wings)
wp <- fgProcrustes(wings, tol=1e-4)
wp
class(wp) # for Ldk methods, LdkCoe objects can also be considered as Coo objects
# so you can apply all Ldk methods available.
wp$coe # Procrustes aligned coordinates</pre>
```

coeff_sel

Helps to select a given number of harmonics from a numerical vector.

Description

coeff_sel helps to select a given number of harmonics by returning their indices when arranged as a numeric vector. For instance, harmonic coefficients are arranged in the \$coe slot of Coe-objects in that way: $A_1, \ldots, A_n, B_1, \ldots, B_n, C_1, \ldots, C_n, D_1, \ldots, D-n$ after an elliptical Fourier analysis (see efourier and efourier) while C_n and D_n harmonic are absent for radii variation and tangent angle approaches (see rfourier and tfourier respectively). This function is used internally but might be of interest elwewhere.

Usage

```
coeff_sel(retain = 8, drop = 0, nb.h = 32, cph = 4)
```

Arguments

retain	numeric. The number of harmonics to retain.
drop	numeric. The number of harmonics to drop
nb.h	numeric. The maximum harmonic rank.
cph	numeric. Must be set to 2 for rfourier and tfourier were used.

Value

coeff_sel returns indices that can be used to select columns from an harmonic coefficient matrix. coeff_split returns a named list of coordinates.

coeff_split 31

Examples

```
data(bot)
bot.f <- efourier(bot, 32)
coe <- bot.f$coe # the raw matrix
coe
# if you want, say the first 8 harmonics but not the first one
retain <- coeff_sel(retain=8, drop=1, nb.h=32, cph=4)
head(coe[, retain])</pre>
```

coeff_split

Converts a numerical description of harmonic coefficients to a named list.

Description

coeff_split returns a named list of coordinates from a vector of harmonic coefficients. For instance, harmonic coefficients are arranged in the \$coe slot of Coe-objects in that way: $A_1, \ldots, A_n, B_1, \ldots, B_n, C_1, \ldots, C_n, B_n$ after an elliptical Fourier analysis (see efourier and efourier) while C_n and D_n harmonic are absent for radii variation and tangent angle approaches (see rfourier and tfourier respectively). This function is used internally but might be of interest elwewhere.

Usage

```
coeff_split(cs, nb.h = 8, cph = 4)
```

Arguments

cs A vector of harmonic coefficients.

nb.h numeric. The maximum harmonic rank.

cph numeric. Must be set to 2 for rfourier and tfourier were used.

Value

Returns a named list of coordinates.

```
coeff_split(1:128, nb.h=32, cph=4) # efourier
coeff_split(1:64, nb.h=32, cph=2) # t/r fourier
```

32 col_summer

col_summer

Some color palettes

Description

Colors, colors, colors.

Usage

```
col_summer(n)
col_summer2(n)
col_spring(n)
col_autumn(n)
col_black(n)
col_solarized(n)
col_gallus(n)
col_qual(n)
col_heat(n)
col_hot(n)
col_cold(n)
col_sari(n)
col_india(n)
col_bw(n)
col_grey(n)
```

Arguments

n the number of colors to generate from the color palette

Value

colors (hexadecimal format)

col_transp 33

Note

Among available color palettes, col_solarized is based on Solarized: http://ethanschoonover.com/solarized; col_div, col_qual, col_heat, col_cold and col_gallus are based on on ColorBrewer2: http://colorbrewer2.org/.

Examples

```
wheel <- function(palette, n=10){
op <- par(mar=rep(0, 4)) ; on.exit(par(op))</pre>
pie(rep(1, n), col=palette(n), labels=NA, clockwise=TRUE)}
# Qualitative
wheel(col_qual)
wheel(col_solarized)
wheel(col_summer)
wheel(col_summer2)
wheel(col_spring)
 wheel(col_autumn)
 # Divergent
wheel(col_gallus)
 wheel(col_india)
# Sequential
wheel(col_heat)
wheel(col_hot)
wheel(col_cold)
wheel(col_sari)
wheel(col_bw)
wheel(col_grey)
# Black only for pubs
wheel(col_black)
```

col_transp

Transparency helpers and palettes

Description

To ease transparency handling.

Usage

```
col_transp(n, col = "#000000", ceiling = 1)
col_alpha(cols, transp = 0)
```

34 combine

Arguments

n	the number of colors to generate
col	a color in hexadecimal format on which to generate levels of transparency
ceiling	the maximal opacity (from 0 to 1)
cols	on or more colors, provided as hexadecimal values
transp	numeric between 0 and 1, the value of the transparency to obtain

Examples

```
x <- col_transp(10, col='#000000')
x
barplot(1:10, col=x, main='a transparent black is grey')
summer10 <- col_summer(10)
summer10.transp8 <- col_alpha(summer10, 0.8)
summer10.transp8
summer10.transp2 <- col_alpha(summer10, 0.8)
summer10.transp2
x <- 1:10
barplot(x, col=summer10.transp8)
barplot(x/2, col=summer10.transp2, add=TRUE)</pre>
```

combine

Combines Momocs objects

Description

Combine Coo objects after a slicing, either manual or using slice or chop. Note that on Coo object, it combines row-wise (ie, merges shapes as a c would do); but on Coe it combines column-wise (merges coefficients). In the latter case, Coe must have the same number of shapes (not necessarily the same number of coefficients). Also the \$fac of the first Coe is retrieved. A separate version may come at some point.

Usage

```
combine(...)
```

Arguments

```
a list of Out(Coe), Opn(Coe), Ldk objects (but of the same class)
```

Note

Note that the order of shapes or their coefficients is not checked, so anything with the same number of rows will be merged.

conf_ell 35

See Also

Other handling functions: arrange, at_least, chop, dissolve, filter, mutate, rename, rm_uncomplete, rw_rule, sample_frac, sample_n, select, slice, subset.Coo, transmute

Examples

```
data(bot)
w <- filter(bot, type=="whisky")
b <- filter(bot, type=="beer")
combine(w, b)
# or, if you have many levels
bot_s <- chop(bot, type)
bot_s$whisky
# note that you can apply something (single function or a more
# complex pipe) then combine everyone, since combine also works on lists
# eg:
# bot_s2 <- lapply(bot_s, efourier, 10)
# bot_sf <- combine(bot_s2)

# pipe style
lapply(bot_s, efourier, 10) %>% combine()
```

conf_ell

Confidence ellipses

Description

Draw (gaussian) confidence ellipses

Usage

```
conf_ell(x, y, conf = 0.95, nb.pts = 60)
```

Arguments

x numeric values on the x axis
 y numeric values on the y axis
 conf the level of confidence
 nb.pts the number of points to return, to draw the ellipsis

Value

```
a list with ell coordinates of the ellipse and <math>ellipse coordinates of its vertices a matrix of (x; y) coordinates to draw the ellipsis
```

36 Coo

See Also

Other plotting functions: Ntable, coo_arrows, coo_draw, coo_listpanel, coo_lolli, coo_plot, coo_ruban, ldk_chull, ldk_confell, ldk_contour, ldk_labels, ldk_links, plot_devsegments

Examples

```
x <- rnorm(100, sd=3)
y <- rnorm(100)
plot(x, y, asp=1)
ce095 <- conf_ell(x, y, conf=0.95) # no need for conf arg since it's .95 by default
ce090 <- conf_ell(x, y, conf=0.90)
ce050 <- conf_ell(x, y, conf=0.50)
cols <- col_hot(10)
lines(ce050$ell, col=cols[5]) # you can also coo_close(ce050$ell)
lines(ce090$ell, col=cols[8])
lines(ce090$ell, col=cols[9])
segments(ce095$seg[1, 1], ce095$seg[1, 2], ce095$seg[2, 1], ce095$seg[2, 2])
segments(ce095$seg[3, 1], ce095$seg[3, 2], ce095$seg[4, 1], ce095$seg[4, 2])</pre>
```

Coo

Coo "super" class

Description

Coo class is the 'parent' or 'super' class of Out, Opn and Ldk classes.

Usage

```
Coo(...)
```

Arguments

... anything and, anyway, this function will simply returns a message.

Details

Useful shortcuts are described below. See browseVignettes("Momocs") for a detail of the design behind Momocs' classes.

Coo class is the 'parent' class of the following 'child' classes

- Out for closed outlines
- Opn for **open** outlines
- Ldk for configuration of landmarks

Since all 'child classes' of them handle (x;y) coordinates among other generic methods, but also all have their specificity, this architecture allow to recycle generic methods and to use specific methods.

In other words, Out, Opn and Ldk classes are all, primarily, Coo objects on which we define generic *and* specific methods. See their respective help pages for more help.

You can access all the methods available for Coo objects with methods(class=Coo).

Coo 37

See Also

Other Coo objects: Opn, Out

```
## Not run:
# to see all methods for Coo objects.
methods(class='Coo')
# Let's take an Out example. But all methods shown here
# work on Ldk (try data(wings) ) and on Opn (try data(olea))
data(bot)
# Primarily a 'Coo' object, but also an 'Out'
class(bot)
inherits(bot, "Coo")
panel(bot)
stack(bot)
plot(bot)
# Getters (you can also use it to set data)
bot[1] %>% coo_plot()
bot[1:5] %>% str()
# Setters
bot[1] <- shapes[4]</pre>
panel(bot)
bot[1:5] <- shapes[4:8]
panel(bot)
# access the different components
# $coo coordinates
head(bot$coo)
# $fac grouping factors
head(bot$fac)
# or if you know the name of the column of interest
bot$type
# table
table(bot$fac)
# an internal view of an Out object
str(bot)
# subsetting
# see ?filter, ?select, and their 'see also' section for the
# complete list of dplyr-like verbs implemented in Momocs
length(bot) # the number of shapes
names(bot) # access all individual names
bot2 <- bot
names(bot2) <- paste0('newnames', 1:length(bot2)) # define new names</pre>
## End(Not run)
```

38 coo_align

coo_align

Aligns coordinates

Description

Aligns the coordinates along their longer axis using var-cov matrix and eigen values.

Usage

```
coo_align(coo)
```

Arguments

coo

a matrix of (x; y) coordinates or a list, or any Coo object.

Value

```
a matrix of (x; y) coordinates, or a Coo object.
```

See Also

Other aligning functions: coo_aligncalliper, coo_alignminradius, coo_alignxax

Other coo_utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed

```
coo_plot(bot[1])
coo_plot(coo_align(bot[1]))
# on a Coo
stack(bot)
stack(coo_align(bot))
```

coo_aligncalliper 39

coo_aligncalliper

Aligns shapes along their 'calliper length'

Description

And returns them registered on bookstein coordinates. See coo_bookstein.

Usage

```
coo_aligncalliper(coo)
```

Arguments

COO

a matrix of (x; y) coordinates or a list, or any Coo object.

Value

a matrix of (x; y) coordinates, or any Coo object.

See Also

Other aligning functions: coo_alignminradius, coo_alignxax, coo_align

Other coo_utilities: coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed

```
## Not run:
b <- bot[1]
coo_plot(b)
coo_plot(coo_aligncalliper(b))
bot.al <- coo_aligncalliper(bot)
stack(bot.al)
## End(Not run)</pre>
```

40 coo_alignminradius

coo_alignminradius

Aligns shapes using their shortest radius

Description

And returns them slided with the first coordinate on the east. May be used as an aligning strategy on shapes with a clear 'invaginate' part.

Usage

```
coo_alignminradius(coo)
```

Arguments

coo

a matrix of (x; y) coordinates or a list, or any Coo object.

Value

```
a matrix of (x; y) coordinates, or a Coo object.
```

See Also

Other aligning functions: coo_aligncalliper, coo_alignxax, coo_align

Other coo_utilities: coo_aligncalliper, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed

```
## Not run:
stack(coo_alignminradius(hearts))
## End(Not run)
```

coo_alignxax 41

coo_alignxax

Aligns shapes along the x-axis

Description

Align the longest axis of a shape along the x-axis.

Usage

```
coo_alignxax(coo)
```

Arguments

COO

a matrix of (x; y) coordinates or a list, or any Coo object.

Details

If some shapes are upside-down (or mirror of each others), try redefining a new starting point (eg with coo_slidedirection) before the alignment step. This may solve your problem because coo_calliper orders the \$arr.ind used by coo_aligncalliper.

Value

```
a matrix of (x; y) coordinates, or any Coo object.
```

See Also

```
Other aligning functions: coo_aligncalliper, coo_alignminradius, coo_align
```

Other coo_ utilities: coo_aligncalliper, coo_alignminradius, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed

```
## Not run:
b <- bot[1]
coo_plot(b)
coo_plot(coo_alignxax(b))
## End(Not run)</pre>
```

42 coo_area

coo_area

Calculates the area of a shape

Description

Calculates the area for a (non-crossing) shape.

Usage

```
coo_area(coo)
```

Arguments

coo

a matrix of (x; y) coordinates.

Value

numeric, the area.

Note

Using area.poly in gpc package is a good idea, but their licence impedes Momocs to rely on it. but here is the function to do it, once gpc is loaded: area.poly(as(coo, 'gpc.poly'))

See Also

```
Other coo_descriptors: coo_chull, coo_circularityharalick, coo_circularitynorm, coo_circularity, coo_convexity, coo_eccentricityboundingbox, coo_eccentricityeigen, coo_elongation, coo_length, coo_lw, coo_rectangularity, coo_rectilinearity, coo_solidity, coo_tangle, coo_theta3, coo_thetapts, coo_width
```

```
data(bot)
coo_area(bot[1])
# for the distribution of the area of the bottles dataset
hist(sapply(bot$coo, coo_area), breaks=10)
```

coo_arrows 43

C00	_arı	^ows

Plots (lollipop) differences between two configurations

Description

Draws 'arrows' between two configurations.

Usage

```
coo_arrows(coo1, coo2, length = coo_centsize(coo1)/15, angle = 20, ...)
```

Arguments

```
coo1 A list or a matrix of coordinates.

coo2 A list or a matrix of coordinates.

length a length for the arrows.

angle an angle for the arrows

optional parameters to fed arrows.
```

See Also

Other plotting functions: Ntable, conf_ell, coo_draw, coo_listpanel, coo_lolli, coo_plot, coo_ruban, ldk_chull, ldk_confell, ldk_contour, ldk_labels, ldk_links, plot_devsegments

Examples

```
data(olea)
coo_arrows(coo_sample(olea[3], 50), coo_sample(olea[6], 50))
title("Hi there!")
```

coo_baseline

Register new baselines

Description

A non-exact baseline registration on t1 and t2 coordinates, for the 1dk1-th and 1dk2-th points. By default it returns Bookstein's coordinates.

Usage

```
coo_baseline(coo, ldk1, ldk2, t1, t2)
```

44 coo_bookstein

Arguments

C00	a matrix of (x; y) coordinates or a list, or any Coo object.
ldk1	numeric the id of the first point of the new baseline
ldk2	numeric the id of the second point of the new baseline
t1	numeric the $(x;y)$ coordinates of the 1st point of the new baseline
t2	numeric the (x; y) coordinates of the 2nd point of the new baseline

Value

a matrix of (x; y) coordinates or a Coo object.

See Also

Other baselining functions: coo_bookstein

```
Other coo_utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed
```

Examples

```
stack(hearts)
stack(coo_baseline(hearts, 2, 4, c(-1, 0), c(1, 1)))
```

coo_bookstein	Register Bookstein's coordinates
---------------	----------------------------------

Description

Registers a new baseline for the shape, with the 1dk1-th and 1dk2-th points being set on (x = -0.5; y = 0) and (x = 0.5; y = 0), respectively.

Usage

```
coo_bookstein(coo, ldk1, ldk2)
```

Arguments

C00	a matrix of $(x; y)$ coordinates or a list, or any Coo object.
ldk1	numeric the id of the first point of the new baseline (the first, by default)
ldk2	numeric the id of the second point of the new baseline (the last, by default)

coo_calliper 45

Details

For Out, it tries to do it using \$1dk slot. Also the case for Opn, but if no landmark is defined, it will do it on the first and the last point of the shape.

For Out and Opn defines the first landmark as the first point of the new shapes with coo_slide.

Value

```
a matrix of (x; y) coordinates, or a Coo object.
```

See Also

```
Other baselining functions: coo_baseline
```

```
Other coo_utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed
```

Examples

```
stack(hearts)
stack(coo_bookstein(hearts, 2, 4))
h <- hearts[1]
coo_plot(h)
coo_plot(coo_bookstein(h, 20, 57), border='red')</pre>
```

coo_calliper

Calculates the calliper length

Description

Also called the Feret's diameter, the longest distance between two points of the shape provided.

Usage

```
coo_calliper(coo, arr.ind = FALSE)
```

Arguments

```
coo a matrix of (x; y) coordinates. arr.ind logical, see below.
```

Value

numeric, the centroid size. If arr.ind=TRUE, a list with the calliper length \$length and the two points \$arr.ind=TRUE, only the calliper length as a numeric.

46 coo_centdist

See Also

Other coo_ utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed

Examples

```
b <- bot[1]
coo_calliper(b)
p <- coo_calliper(b, arr.ind=TRUE)
p$length
ids <- p$arr.ind
coo_plot(b)
segments(b[ids[1], 1], b[ids[1], 2], b[ids[2], 1], b[ids[2], 2], lty=2)</pre>
```

coo_centdist

Returns the distance between everypoints and the centroid

Description

For every point of the shape, returns the (centroid-points) distance.

Usage

```
coo_centdist(coo)
```

Arguments

COO

a matrix of (x; y) coordinates.

Value

```
a matrix of (x; y) coordinates.
```

See Also

Other centroid functions: coo_centpos, coo_centsize

Other coo_ utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed

coo_center 47

Examples

```
b <- coo_sample(bot[1], 64)
d <- coo_centdist(b)
barplot(d, xlab="Points along the outline", ylab="Distance to the centroid (pixels)")</pre>
```

coo_center

Centers coordinates

Description

Returns a shape centered on the origin. The two functions are strictly equivalent.

Usage

```
coo_center(coo)
coo_centre(coo)
```

Arguments

coo

a matrix of (x; y) coordinates or a list, or any Coo object.

Value

```
a matrix of (x; y) coordinates, or a Coo object.
```

See Also

```
Other coo_utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed
```

```
coo_plot(bot[1])
# same as
coo_plot(coo_centre(bot[1]))
# this
coo_plot(coo_center(bot[1]))
# on Coo objects
stack(bot)
stack(coo_center(bot))
```

48 coo_centpos

coo_centpos

Calculate centroid coordinates

Description

Returns the (x; y) centroid coordinates of a shape.

Usage

```
coo_centpos(coo)
```

Arguments

coo

a matrix of (x; y) coordinates or a list, or any Coo object.

Value

(x; y) coordinates of the centroid as a vector or a matrix.

See Also

Other centroid functions: coo_centdist, coo_centsize

Other coo_ utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed

```
b <- bot[1]
coo_plot(b)
xy <- coo_centpos(b)
points(xy[1], xy[2], cex=2, col='blue')
# on a Coo
coo_centpos(bot)</pre>
```

coo_centsize 49

coo_centsize

Calculates centroid size

Description

Calculates centroid size

Usage

```
coo_centsize(coo)
```

Arguments

COO

a matrix of (x; y) coordinates or a list, or any Coo object.

Details

This function can be used to integrate size - if meaningful - to Coo objects. See also coo_length and rescale.

Value

numeric, the centroid size.

See Also

Other centroid functions: coo_centdist, coo_centpos

Other coo_ utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed

```
coo_centsize(bot[1])
# on a Coo
coo_centsize(bot)
# add it to $fac
mutate(bot, size=coo_centsize(bot))
```

coo_chull

coo_check

Checks shapes

Description

A simple utility, used internally, mostly in the coo functions and methods. Returns a matrix of coordinates, when passed with either a list or a matrix of coordinates.

Usage

```
coo_check(coo)
```

Arguments

coo

a matrix of (x; y) coordinates or a list, or any Coo object.

Value

```
a matrix of (x; y) coordinates or a Coo object.
```

Examples

```
#coo_check('Not a shape')
#coo_check(matrix(1:10, ncol=2))
#coo_check(list(x=1:5, y=6:10))
```

coo_chull

Calculates the convex hull of a shape

Description

Returns the ids of points that define the convex hull of a shape. A simple wrapper around chull, mainly used in graphical functions.

Usage

```
coo_chull(coo)
```

Arguments

coo

a matrix of (x; y) coordinates.

Value

a matrix of ids defining the convex hull of the shape.

coo_circularity 51

See Also

Other coo_descriptors: coo_area, coo_circularityharalick, coo_circularitynorm, coo_circularity, coo_convexity, coo_eccentricityboundingbox, coo_eccentricityeigen, coo_elongation, coo_length, coo_lw, coo_rectangularity, coo_rectilinearity, coo_solidity, coo_tangle, coo_theta3, coo_thetapts, coo_width

Examples

```
data(hearts)
h <- coo_sample(hearts[4], 32)
coo_plot(h)
ch <- coo_chull(h)
lines(ch, col='red', lty=2)</pre>
```

coo_circularity

Calculates the circularity of a shape

Description

Returns the 'circularity measure'. Also called 'compactness' and 'shape factor' sometimes.

Usage

```
coo_circularity(coo)
```

Arguments

coo

a matrix of (x; y) coordinates.

Value

numeric, the circularity.

See Also

Other coo_descriptors: coo_area, coo_chull, coo_circularityharalick, coo_circularitynorm, coo_convexity, coo_eccentricityboundingbox, coo_eccentricityeigen, coo_elongation, coo_length, coo_lw, coo_rectangularity, coo_rectilinearity, coo_solidity, coo_tangle, coo_theta3, coo_thetapts, coo_width

```
data(bot)
coo_circularity(bot[1])
```

coo_circularityharalick

Calculates the Haralick's circularity of a shape

Description

Returns Haralick's circularity which is less sensible to digitalization noise than coo_circularity

Usage

```
coo_circularityharalick(coo)
```

Arguments

coo

a matrix of (x; y) coordinates.

Value

numeric, the Haralick's circularity.

Source

Rosin PL. 2005. Computing global shape measures. Handbook of Pattern Recognition and Computer Vision. 177-196.

See Also

 $Other coo_descriptors: coo_area, coo_chull, coo_circularitynorm, coo_circularity, coo_convexity, coo_eccentricityboundingbox, coo_eccentricityeigen, coo_elongation, coo_length, coo_lw, coo_rectangularity, coo_rectilinearity, coo_solidity, coo_tangle, coo_theta3, coo_thetapts, coo_width$

```
data(bot)
coo_circularityharalick(bot[1])
```

coo_circularitynorm 53

coo_circularitynorm

Calculates the 'normalized' circularity of a shape

Description

Returns the 'circularity', also called compactness and shape factor, but normalized to the unit circle.

Usage

```
coo_circularitynorm(coo)
```

Arguments

coo

a matrix of (x; y) coordinates.

Value

numeric, the circularity normalized to the unit circle.

Source

Rosin PL. 2005. Computing global shape measures. Handbook of Pattern Recognition and Computer Vision. 177-196.

See Also

Other coo_descriptors: coo_area, coo_chull, coo_circularityharalick, coo_circularity, coo_convexity, coo_eccentricityboundingbox, coo_eccentricityeigen, coo_elongation, coo_length, coo_lw, coo_rectangularity, coo_rectilinearity, coo_solidity, coo_tangle, coo_theta3, coo_thetapts, coo_width

Examples

```
data(bot)
coo_circularitynorm(bot[1])
```

coo_close

Closes/uncloses shapes

Description

Returns a closed shape from (un)closed shapes. See also coo_unclose.

Returns a unclosed shape from (un)closed shapes. See also coo_close.

54 coo_close

Usage

```
coo_close(coo)
coo_unclose(coo)
```

Arguments

coo

a matrix of (x; y) coordinates or a list, or any Coo object.

Value

```
a matrix of (x; y) coordinates, or a Coo object.
a matrix of (x; y) coordinates, or a Coo object.
```

See Also

```
Other coo_ utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed
```

Other coo_utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed

```
x <- (matrix(1:10, ncol=2))
x2 <- coo_close(x)
x3 <- coo_unclose(x2)
x
is_closed(x)
x2
is_closed(x2)
x3
is_closed(x3)
x <- (matrix(1:10, ncol=2))
x2 <- coo_close(x)
x3 <- coo_unclose(x2)
x
is_closed(x)
x2
is_closed(x)
x2
is_closed(x2)
x3</pre>
```

coo_convexity 55

```
is_closed(x3)
```

coo_convexity

Calculates the convexity of a shape

Description

Calculated using a ratio of the eigen values (inertia axis)

Usage

```
coo_convexity(coo)
```

Arguments

coo

a matrix of (x; y) coordinates.

Value

numeric, the convexity.

Source

Rosin PL. 2005. Computing global shape measures. Handbook of Pattern Recognition and Computer Vision. 177-196.

See Also

Other coo_descriptors: coo_area, coo_chull, coo_circularityharalick, coo_circularitynorm, coo_circularity, coo_eccentricityboundingbox, coo_eccentricityeigen, coo_elongation, coo_length, coo_lw, coo_rectangularity, coo_rectilinearity, coo_solidity, coo_tangle, coo_theta3, coo_thetapts, coo_width

```
data(bot)
coo_convexity(bot[1])
```

56 coo_down

coo_down	coo_down ————— coordinates	Retains	coordinates	with	negative	у-
----------	-------------------------------	---------	-------------	------	----------	----

Description

Useful when shapes are aligned along the x-axis (e.g. because of a bilateral symmetry) and when one wants to retain just the lower side.

Usage

```
coo_down(coo, slidegap = FALSE)
```

Arguments

coo a matrix of (x; y) coordinates or a list, or any Coo object. slidegap logical whether to apply coo_slidegap after coo_down

Value

a matrix of (x; y) coordinates or a Coo object (Out are returned as Opn)

Note

When shapes are "sliced" along the x-axis, it usually results on open curves and thus to huge/artefactual gaps between points neighboring this axis. This is usually solved with coo_slidegap. See examples there.

Also, when apply a coo_left/right/up/down on an Out object, you then obtain an Opn object, which is done automatically.

See Also

Other coo_utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed

Other opening functions: coo_left, coo_right, coo_up

```
b <- coo_alignxax(bot[1])
coo_plot(b)
coo_draw(coo_down(b), border='red')</pre>
```

coo_draw 57

coo_draw

Adds a shape to the current plot

Description

coo_draw is simply a coo_plot with plot.new=FALSE, ie that adds a shape on the active plot.

Usage

```
coo_draw(coo, ...)
```

Arguments

```
coo a list or a matrix of coordinates.
... optional parameters for coo_plot
```

See Also

Other plotting functions: Ntable, conf_ell, coo_arrows, coo_listpanel, coo_lolli, coo_plot, coo_ruban, ldk_chull, ldk_confell, ldk_contour, ldk_labels, ldk_links, plot_devsegments

Examples

```
data(bot)
b1 <- bot[4]
b2 <- bot[5]
coo_plot(b1)
coo_draw(b2, border='red') # all coo_plot arguments will work for coo_draw</pre>
```

coo_dxy

Calculate abscissa and ordinate on a shape

Description

A simple wrapper to calculate dxi - dx1 and dyi - dx1.

Usage

```
coo_dxy(coo)
```

Arguments

COO

a matrix (or a list) of (x; y) coordinates

Value

a list with two components dx and dy

See Also

Other coo_ utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed

Examples

```
coo_dxy(bot[1])
```

coo_eccentricityboundingbox

Calculates the eccentricity (bounding box) of a shape

Description

Calculated using the width / length ratio. See coo_lw

Usage

```
coo_eccentricityboundingbox(coo)
```

Arguments

coo

a matrix of (x; y) coordinates.

Value

numeric, the eccentricity (boundingbox)

Source

Rosin PL. 2005. Computing global shape measures. Handbook of Pattern Recognition and Computer Vision. 177-196.

See Also

coo_eccentricityeigen

Other coo_descriptors: coo_area, coo_chull, coo_circularityharalick, coo_circularitynorm, coo_circularity, coo_convexity, coo_eccentricityeigen, coo_elongation, coo_length, coo_lw, coo_rectangularity, coo_rectilinearity, coo_solidity, coo_tangle, coo_theta3, coo_thetapts, coo_width

coo_eccentricityeigen 59

Examples

```
data(bot)
coo_eccentricityboundingbox(bot[1])
```

coo_eccentricityeigen Calculates the eccentricity (using eigenvalues) of a shape

Description

Calculated using a ratio of the eigen values (inertia axes oof coordinates.)

Usage

```
coo_eccentricityeigen(coo)
```

Arguments

coo

a matrix of (x; y) coordinates.

Value

numeric, the eccentricity (eigenvalues)

Source

Rosin PL. 2005. Computing global shape measures. Handbook of Pattern Recognition and Computer Vision. 177-196.

See Also

```
coo_eccentricityboundingbox
```

 $Other coo_descriptors: coo_area, coo_chull, coo_circularityharalick, coo_circularitynorm, coo_circularity, coo_convexity, coo_eccentricityboundingbox, coo_elongation, coo_length, coo_lw, coo_rectangularity, coo_rectilinearity, coo_solidity, coo_tangle, coo_theta3, coo_thetapts, coo_width$

```
data(bot)
coo_eccentricityeigen(bot[1])
```

60 coo_extract

coo_elongation

Calculates the elongation of a shape

Description

Calculates the elongation of a shape

Usage

```
coo_elongation(coo)
```

Arguments

coo

a matrix of (x; y) coordinates.

Value

numeric, the circularity normalized to the unit circle.

Source

Rosin PL. 2005. Computing global shape measures. Handbook of Pattern Recognition and Computer Vision. 177-196.

See Also

Other coo_descriptors: coo_area, coo_chull, coo_circularityharalick, coo_circularitynorm, coo_circularity, coo_convexity, coo_eccentricityboundingbox, coo_eccentricityeigen, coo_length, coo_lw, coo_rectangularity, coo_rectilinearity, coo_solidity, coo_tangle, coo_theta3, coo_thetapts, coo_width

Examples

```
data(bot)
coo_elongation(bot[1])
```

coo_extract

Extract coordinates from a shape

Description

Extract ids coordinates from a single shape or a Coo object.

Usage

```
coo_extract(coo, ids)
```

coo_flipx 61

Arguments

C00	either a matrix of $(x; y)$ coordinates or a Coo object.
ids	integer, the ids of points to sample.

Details

It probably only make sense for Coo objects with the same number of coordinates and them being homologous, typically on Ldk.

Value

```
a matrix of (x; y) coordinates, or a Coo object.
```

See Also

```
Other coo_ utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed
```

Other sampling functions: coo_interpolate, coo_samplerr, coo_sample

Examples

```
b <- bot[1]
stack(bot)
stack(coo_sample(bot, 24))
coo_plot(b)
coo_plot(coo_sample(b, 24))</pre>
```

coo_flipx

Flips shapes

Description

```
coo_flipx flips shapes about the x-axis; coo_flipy about the y-axis.
```

Usage

```
coo_flipx(coo)
coo_flipy(coo)
```

Arguments

COO

a matrix of (x; y) coordinates or a list, or any Coo object.

62 coo_force2close

Value

```
a matrix of (x; y) coordinates
```

See Also

Other coo_utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed

Other transforming functions: coo_shearx

Examples

```
cat <- shapes[4]
cat <- coo_center(cat)
coo_plot(cat)
coo_draw(coo_flipx(cat), border="red")
coo_draw(coo_flipy(cat), border="blue")

#' # to flip an entire Coo:
shapes2 <- shapes
shapes$coo <- lapply(shapes2$coo, coo_flipx)</pre>
```

coo_force2close

Forces shapes to close

Description

An exotic function that distribute the distance between the first and the last points of unclosed shapes, so that they become closed. May be useful (?) e.g. for t/rfourier methods where reconstructed shapes may not be closed.

Usage

```
coo_force2close(coo)
```

Arguments

COO

a matrix of (x; y) coordinates or a list, or any Coo object.

Value

```
a matrix of (x; y) coordinates, or a Coo object.
```

coo_interpolate 63

See Also

Other coo_utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed

Examples

```
b <- coo_sample(bot[1], 64)
b <- b[1:40,]
coo_plot(b)
coo_draw(coo_force2close(b), border='red')</pre>
```

coo_interpolate

Interpolates coordinates

Description

Interpolates n coordinates 'among existing points' between' existing points, along the perimeter of the coordinates provided and keeping the first point

Usage

```
coo_interpolate(coo, n)
```

Arguments

```
coo a matrix of (x; y) coordinates or a list, or any Coo object.

n codeinteger, the number fo points to interpolate.
```

Value

```
a matrix of (x; y) coordinates, or a Coo object.
```

See Also

```
Other coo_ utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed
```

Other sampling functions: coo_extract, coo_samplerr, coo_sample

coo_jitter

Examples

```
b <- bot[1]
stack(bot)
stack(coo_scale(bot))
coo_plot(b)
coo_plot(coo_scale(b))
stack(bot)
stack(coo_interpolate(coo_sample(bot, 12), 120))
coo_plot(bot[1])
coo_plot(coo_interpolate(coo_sample(bot[1], 12), 120))</pre>
```

coo_jitter

Jitters shapes

Description

A simple wrapper around jitter.

Usage

```
coo_jitter(coo, ...)
```

Arguments

```
coo a matrix of (x; y) coordinates or a list, or any Coo object.
... additional parameter for jitter
```

Value

```
a matrix of (x; y) coordinates or a Coo object
```

See Also

```
get_pairs
```

```
Other coo_ utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed
```

```
b <-bot[1]
coo_plot(b, zoom=0.2)
coo_draw(coo_jitter(b, amount=3), border="red")
# for a Coo example, see \link{get_pairs}</pre>
```

coo_ldk 65

coo_ldk

Defines landmarks interactively

Description

Allows to interactively define a nb.1dk number of landarks on a shape. Used in other facilities to acquire/manipulate data.

Usage

```
coo_ldk(coo, nb.ldk)
```

Arguments

coo a matrix or a list of (x; y) coordinates. nb.ldk integer, the number of landmarks to define

Value

numeric that corresponds to the closest ids, on the shape, from cliked points.

Examples

```
## Not run:
b <- bot[1]
coo_ldk(b, 3) # run this, and click 3 times
coo_ldk(bot, 2) # this also works on Out
## End(Not run)</pre>
```

coo_left

Retains coordinates with negative x-coordinates

Description

Useful when shapes are aligned along the y-axis (e.g. because of a bilateral symmetry) and when one wants to retain just the lower side.

Usage

```
coo_left(coo, slidegap = FALSE)
```

Arguments

```
coo a matrix of (x; y) coordinates or a list, or any Coo object. slidegap logical whether to apply coo_slidegap after coo_left
```

66 coo_length

Value

```
a matrix of (x; y) coordinates or a Coo object (Out are returned as Opn)
```

Note

When shapes are "sliced" along the y-axis, it usually results on open curves and thus to huge/artefactual gaps between points neighboring this axis. This is usually solved with coo_slidegap. See examples there.

Also, when apply a coo_left/right/up/down on an Out object, you then obtain an Opn object, which is done automatically.

See Also

```
Other coo_ utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed
```

Other opening functions: coo_down, coo_right, coo_up

Examples

```
b <- coo_center(bot[1])
coo_plot(b)
coo_draw(coo_left(b), border='red')</pre>
```

coo_length

Calculates the length of a shape

Description

Nothing more than coo_lw(coo)[1].

Usage

```
coo_length(coo)
```

Arguments

coo

a matrix of (x; y) coordinates or a Coo object

Details

This function can be used to integrate size - if meaningful - to Coo objects. See also coo_centsize and rescale.

coo_listpanel 67

Value

the length (in pixels) of the shape

See Also

```
coo_lw, coo_width
```

Other coo_descriptors: coo_area, coo_chull, coo_circularityharalick, coo_circularitynorm, coo_circularity, coo_convexity, coo_eccentricityboundingbox, coo_eccentricityeigen, coo_elongation, coo_lw, coo_rectangularity, coo_rectilinearity, coo_solidity, coo_tangle, coo_theta3, coo_thetapts, coo_width

Examples

```
data(bot)
coo_length(bot[1])
coo_length(bot)
mutate(bot, size=coo_length(bot))
```

coo_listpanel

Plots sets of shapes.

Description

coo_listpanel plots a list of shapes if passed with a list of coordinates. Mainly used by panel.Coo functions. If used outside the latter, shapes must be "templated", see coo_template. If you want to reorder shapes according to a factor, use arrange.

Usage

```
coo_listpanel(coo.list, dim, byrow = TRUE, fromtop = TRUE, cols, borders,
poly = TRUE, points = FALSE, points.pch = 3, points.cex = 0.2,
points.col = "#333333")
```

Arguments

coo.list	A list of coordinates
dim	A vector of the form (nb.row, nb.cols) to specify the panel display. If missing, shapes are arranged in a square.
byrow	logical. Whether to succesive shape by row or by col.
fromtop	logical. Whether to display shapes from the top of the plotting region.
cols	A vector of colors to fill shapes.
borders	A vector of colors to draw shape borders.
poly	logical whether to use polygon or lines to draw shapes. mainly for use for outlines and open outlines.
points	logical if poly is set to FALSE whether to add points

68 coo_lolli

```
points.pch if points is TRUE, a pch for these points points.cex if points is TRUE, a cex for these points points.col if points is TRUE, a col for these points
```

Value

Returns (invisibly) a data. frame with position of shapes that can be used for other sophisticated plotting design.

See Also

Other plotting functions: Ntable, conf_ell, coo_arrows, coo_draw, coo_lolli, coo_plot, coo_ruban, ldk_chull, ldk_confell, ldk_contour, ldk_labels, ldk_links, plot_devsegments

Examples

```
coo_listpanel(bot$coo) # equivalent to panel(bot)
```

coo_lolli

Plots (lollipop) differences between two configurations

Description

Draws 'lollipops' between two configurations.

Usage

```
coo_lolli(coo1, coo2, pch = NA, cex = 0.5, ...)
```

Arguments

coo1	A list or a matrix of coordinates.
coo2	A list or a matrix of coordinates.
pch	a pch for the points (default to NA)
cex	a cex for the points

... optional parameters to fed points and segments.

See Also

Other plotting functions: Ntable, conf_ell, coo_arrows, coo_draw, coo_listpanel, coo_plot, coo_ruban, ldk_chull, ldk_confell, ldk_contour, ldk_labels, ldk_links, plot_devsegments

```
data(olea)
coo_lolli(coo_sample(olea[3], 50), coo_sample(olea[6], 50))
title("A nice title !")
```

coo_lw

coo_lw

Calculates length and width of a shape

Description

Returns the length and width of a shape based on their iniertia axis i.e. alignment to the x-axis. The length is defined as the range along the x-axis; the width as the range on the y-axis.

Usage

```
coo_lw(coo)
```

Arguments

COO

a matrix of (x; y) coordinates.

Value

a vector of two numeric: the length and the width.

See Also

```
coo_length, coo_width.
```

Other coo_descriptors: coo_area, coo_chull, coo_circularityharalick, coo_circularitynorm, coo_circularity, coo_convexity, coo_eccentricityboundingbox, coo_eccentricityeigen, coo_elongation, coo_length, coo_rectangularity, coo_rectilinearity, coo_solidity, coo_tangle, coo_theta3, coo_thetapts, coo_width

Examples

```
data(bot)
coo_lw(bot[1])
```

coo_nb

Counts coordinates

Description

Returns the number of coordinates, for a single shape or a Coo object

Usage

```
coo_nb(coo)
```

Arguments

coo

a matrix of (x; y) coordinates or a list, or any Coo object.

70 coo_oscillo

Value

either a single numeric or a vector of numeric

See Also

```
Other coo_ utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed
```

Examples

```
# single shape
coo_nb(bot[1])
# Coo object
coo_nb(bot)
```

coo_oscillo

Momocs' 'oscilloscope' for Fourier-based approaches

Description

Shape analysis deals with curve fitting, whether x(t) and y(t) positions along the curvilinear abscissa and/or radius/tangent angle variation. These functions are mainly intended for (self-)teaching of Fourier-based methods.

Usage

```
coo_oscillo(coo, method = c("efourier", "rfourier", "tfourier", "all")[4],
nb.pts = 24)
```

Arguments

coo A list or a matrix of coordinates.

method character among c('efourier', 'rfourier', 'tfourier', 'all'). 'all'

by default

nb.pts integer. The number or reference points, sampled equidistantly along the

curvilinear abscissa and added on the oscillo curves.

See Also

exemplifying functions

coo_perim 71

Examples

```
data(shapes)
coo_oscillo(shapes[4])
coo_oscillo(shapes[4], 'efourier')
coo_oscillo(shapes[4], 'rfourier')
coo_oscillo(shapes[4], 'tfourier')
#tfourier is prone to high-frequency noise but smoothing can help
coo_oscillo(coo_smooth(shapes[4], 10), 'tfourier')
```

coo_perim

Calculates the perimeter

Description

Calculates the perimeter

Usage

```
coo_perim(coo)
```

Arguments

coo

a matrix of (x; y) coordinates.

Value

numeric, the perimeter.

See Also

```
Other coo_ utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed
```

Other perimeter functions: coo_perimcum, coo_perimpts

```
coo_perim(bot[1])
hist(sapply(bot$coo, coo_perim), breaks=10)
```

72 coo_perimpts

coo_perimcum

Calculates the cumulative chordal distance along a shape.

Description

Just a wrapper for cumsum(coo_perimpts). See coo_perimpts.

Usage

```
coo_perimcum(coo)
```

Arguments

coo

a matrix of (x; y) coordinates.

Value

numeric the cumulate sum of chrodal distances

See Also

Other coo_ utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed

Other perimeter functions: coo_perimpts, coo_perim

Examples

```
b <- coo_sample(bot[1], 24)
coo_perimcum(b)</pre>
```

coo_perimpts

Calculates the chordal distance along a shape.

Description

Calculates the euclidean distance between every points of a shape for coo_perimpts. The cumulative sum for coo_perimcum

Usage

```
coo_perimpts(coo)
```

coo_plot

Arguments

coo

matrix of (x; y) coordinates.

Value

numeric the distance between every point.

See Also

```
Other coo_ utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed
```

Other perimeter functions: coo_perimcum, coo_perim

Examples

```
b <- coo_sample(bot[1], 24)
coo_perimpts(b)</pre>
```

coo_plot

Plots a single shape

Description

A simple wrapper around plot for plotting shapes. Widely used in Momocs in other graphical functions, in methods, etc.

Usage

```
coo_plot(coo, ...)
## Default S3 method:
coo_plot(coo, xlim, ylim, border = "#333333", col = NA,
  lwd = 1, lty = 1, points = FALSE, first.point = TRUE,
  centroid = TRUE, xy.axis = TRUE, pch = 1, cex = 0.5, main = NA,
  poly = TRUE, plot.new = TRUE, plot = TRUE, zoom = 1, ...)

ldk_plot(coo, ...)
```

74 coo_plot

Arguments

C00	A list or a matrix of coordinates.
	further arguments for use in coo_plot methods. See examples.
xlim	If coo_plot is called and coo is missing, then a vector of length 2 specifying the ylim of the ploting area.
ylim	If coo_plot is called and coo is missing, then a vector of length 2 specifying the ylim of the ploting area.
border	A color for the shape border.
col	A color to fill the shape polygon.
lwd	The lwd for drawing shapes.
lty	The 1ty for drawing shapes.
points	logical. Whether to display points. If missing and number of points is < 100, then points are plotted.
first.point	logical whether to plot or not the first point.
centroid	logical. Whether to display centroid.
xy.axis	logical. Whether to draw the xy axis.
pch	The pch for points.
cex	The cex for points.
main	character. A title for the plot.
poly	logical whether to use polygon and lines to draw the shape, or just points. In
	other words, whether the shape should be considered as a configuration of land-marks or not (eg a closed outline).
plot.new	
plot.new plot	marks or not (eg a closed outline).
·	marks or not (eg a closed outline). logical whether to plot or not a new frame.

Value

No returned value.

See Also

Other plotting functions: Ntable, conf_ell, coo_arrows, coo_draw, coo_listpanel, coo_lolli, coo_ruban, ldk_chull, ldk_confell, ldk_contour, ldk_labels, ldk_links, plot_devsegments

```
data(bot)
b <- bot[1]
coo_plot(b)
coo_plot(bot[2], plot.new=FALSE) # equivalent to coo_draw(bot[2])
coo_plot(b, zoom=2)
coo_plot(b, border='blue')
coo_plot(b, first.point=FALSE, centroid=FALSE)
coo_plot(b, points=TRUE, pch=20)
coo_plot(b, xy.axis=FALSE, lwd=2, col='#F2F2F2')</pre>
```

coo_rectangularity 75

coo_rectangularity

Calculates the rectangularity of a shape

Description

Calculates the rectangularity of a shape

Usage

```
coo_rectangularity(coo)
```

Arguments

coo

a matrix of (x; y) coordinates.

Value

numeric, the rectangularity.

Source

Rosin PL. 2005. Computing global shape measures. Handbook of Pattern Recognition and Computer Vision. 177-196.

See Also

Other coo_descriptors: coo_area, coo_chull, coo_circularityharalick, coo_circularitynorm, coo_circularity, coo_convexity, coo_eccentricityboundingbox, coo_eccentricityeigen, coo_elongation, coo_length, coo_lw, coo_rectilinearity, coo_solidity, coo_tangle, coo_theta3, coo_thetapts, coo_width

Examples

```
data(bot)
coo_rectangularity(bot[1])
```

coo_rectilinearity

Calculates the rectilinearity of a shape

Description

As proposed by Zunic and Rosin (see below). May need some testing/review.

Usage

```
coo_rectilinearity(coo)
```

76 coo_rev

Arguments

coo

a matrix of (x; y) coordinates.

Value

numeric, the rectilinearity

Note

due to the laborious nature of the algorithm (in nb.pts^2), and of its implementation, it may be very long to compute.

Source

Zunic J, Rosin PL. 2003. Rectilinearity measurements for polygons. IEEE Transactions on Pattern Analysis and Machine Intelligence 25: 1193-1200.

See Also

Other coo_descriptors: coo_area, coo_chull, coo_circularityharalick, coo_circularitynorm, coo_circularity, coo_convexity, coo_eccentricityboundingbox, coo_eccentricityeigen, coo_elongation, coo_length, coo_lw, coo_rectangularity, coo_solidity, coo_tangle, coo_theta3, coo_thetapts, coo_width

Examples

```
data(bot)
b <- coo_sample(bot[1], 32)
coo_rectilinearity(b)</pre>
```

coo_rev

Reverses coordinates

Description

Returns the reverse suite of coordinates, i.e. change shape's orientation

Usage

```
coo_rev(coo)
```

Arguments

coo

a matrix of (x; y) coordinates or a list, or any Coo object.

Value

```
a matrix of (x; y) coordinates or a Coo object
```

coo_right 77

See Also

Other coo_utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed

Examples

```
b <- coo_sample(bot[1], 4)
b
coo_rev(b)</pre>
```

coo_right

Retains coordinates with positive x-coordinates

Description

Useful when shapes are aligned along the y-axis (e.g. because of a bilateral symmetry) and when one wants to retain just the upper side.

Usage

```
coo_right(coo, slidegap = FALSE)
```

Arguments

```
coo a matrix of (x; y) coordinates or a list, or any Coo object.
slidegap logical whether to apply coo_slidegap after coo_right
```

Value

```
a matrix of (x; y) coordinates or a Coo object (Out are returned as Opn)
```

Note

When shapes are "sliced" along the y-axis, it usually results on open curves and thus to huge/artefactual gaps between points neighboring this axis. This is usually solved with coo_slidegap. See examples there.

Also, when apply a coo_left/right/up/down on an Out object, you then obtain an Opn object, which is done automatically.

78 coo_rotate

See Also

Other coo_ utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed

Other opening functions: coo_down, coo_left, coo_up

Examples

```
b <- coo_center(bot[1])
coo_plot(b)
coo_draw(coo_right(b), border='red')</pre>
```

coo_rotate

Rotates coordinates

Description

Rotates the coordinates by a 'theta' angle (in radians) in the trigonometric direction (anti-clockwise). If not provided, assumed to be the centroid size. It involves three steps: centering from current position, dividing coordinates by 'scale', translating to the original position.

Usage

```
coo_rotate(coo, theta = 0)
```

Arguments

coo either a matrix of (x; y) coordinates, or any Coo object.
theta numericthe angle (in radians) to rotate shapes.

Value

```
a matrix of (x; y) coordinates, or a Coo object.
```

See Also

```
Other coo_ utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed
```

Other rotation functions: coo_rotatecenter

coo_rotatecenter 79

Examples

```
coo_plot(bot[1])
coo_plot(coo_rotate(bot[1], pi/2))
# on Coo
stack(bot)
stack(coo_rotate(bot, pi/2))
```

coo_rotatecenter

Rotates shapes with a custom center

Description

rotates a shape of 'theta' angles (in radians) and with a (x; y) 'center'.

Usage

```
coo_rotatecenter(coo, theta, center = c(0, 0))
```

Arguments

coo a matrix of (x; y) coordinates or a list, or any Coo object.

theta numeric the angle (in radians) to rotate shapes.

center numeric the (x; y) position of the center

Value

a matrix of (x; y) coordinates, or a Coo object.

See Also

```
Other coo_ utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed

Other rotation functions: coo_rotate
```

Other rotation functions: coo_rotate

Other rotation functions: coo_rotate

```
b <- bot[1]
coo_plot(b)
coo_draw(coo_rotatecenter(b, -pi/2, c(200, 200)), border='red')</pre>
```

80 coo_ruban

coo_ruban

Plots differences as (colored) segments aka a ruban

Description

Useful to display differences between shapes

Usage

```
coo_ruban(coo, dev, palette = col_heat, normalize = TRUE, ...)
```

Arguments

coo a shape, typically a mean shape

dev numeric a vector of distances or anythinh relevant

palette the color palette to use or any palette

normalize logical whether to normalize (TRUE by default) distances
... other paremeters to fed segments, eg lwd (see examples)

Value

nothing

See Also

```
Other plotting functions: Ntable, conf_ell, coo_arrows, coo_draw, coo_listpanel, coo_lolli, coo_plot, ldk_chull, ldk_confell, ldk_contour, ldk_labels, ldk_links, plot_devsegments
Other plotting functions: Ntable, conf_ell, coo_arrows, coo_draw, coo_listpanel, coo_lolli, coo_plot, ldk_chull, ldk_confell, ldk_contour, ldk_labels, ldk_links, plot_devsegments
```

```
data(bot)
ms <- mshapes(efourier(bot , 10), "type")
b <- ms$shp$beer
w <- ms$shp$whisky
# we obtain the mean shape, then euclidean distances between points
m <- mshapes(list(b, w))
d <- edm(b, w)
# First plot
coo_plot(m, plot=FALSE)
coo_draw(b)
coo_draw(w)
coo_ruban(m, d, lwd=5)

#Another example
coo_plot(m, plot=FALSE)</pre>
```

coo_sample 81

```
coo_ruban(m, d, palette=col_summer2, lwd=5)

#If you want linewidth rather than color
coo_plot(m, plot=FALSE)
coo_ruban(m, d, palette=col_black, lwd=.normalize(d)*10)
```

coo_sample

Sample coordinates (among points)

Description

Sample n coordinates among existing points.

Usage

```
coo_sample(coo, n)
```

Arguments

```
coo either a matrix of (x; y) coordinates or an Out or an Opn object.

n integer, the number fo points to sample.
```

Details

For the Out an Opn methods (pointless for Ldk), in an \$1dk component is defined, it is changed accordingly by multiplying the ids by n over the number of coordinates.

Value

```
a matrix of (x; y) coordinates, or an Out or an Opn object.
```

See Also

```
Other coo_utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed
```

Other sampling functions: coo_extract, coo_interpolate, coo_samplerr

```
b <- bot[1]
stack(bot)
stack(coo_sample(bot, 24))
coo_plot(b)
coo_plot(coo_sample(b, 24))</pre>
```

82 coo_samplerr

coo_samplerr

Samples coordinates (regular radius)

Description

Samples n coordinates with a regular angle.

Usage

```
coo_samplerr(coo, n)
```

Arguments

```
coo a matrix of (x; y) coordinates or a list, or any Coo object.

n integer, the number of points to sample.
```

Value

```
a matrix of (x; y) coordinates or a Coo object.
```

See Also

```
Other coo_ utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed
```

Other sampling functions: coo_extract, coo_interpolate, coo_sample

```
stack(bot)
bot <- coo_center(bot)
stack(coo_samplerr(bot, 12))
coo_plot(bot[1])
coo_plot(rr <- coo_samplerr(bot[1], 12))
cpos <- coo_centpos(bot[1])
segments(cpos[1], cpos[2], rr[, 1], rr[, 2])</pre>
```

coo_scale 83

	00010	
COO_	_scale	

Scales coordinates

Description

Scales the coordinates by a 'scale' factor. If not provided, assumed to be the centroid size. It involves three steps: centering from current position, dividing coordinates by 'scale', pusing back to the original position.

Usage

```
coo_scale(coo, scale)
```

Arguments

```
coo a matrix of (x; y) coordinates or a list, or any Coo object.
```

scale the scaling factor, by default, the centroid size.

Value

```
a matrix of (x; y) coordinates, or a Coo object.
```

See Also

```
Other coo_ utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed
```

Other scaling functions: coo_scalex, coo_template

```
coo_plot(bot[1])
coo_plot(coo_scale(bot[1]))
# on Coo objects
stack(coo_center(bot))
stack(coo_scale(coo_center(bot)))
```

84 coo_scalex

coo_scalex

Shrinks coordinates in one direction

Description

 coo_scalex applies a scaling parallel to the x-axis to a matrix of (x; y) or a list of coordinates or any Coo object, coo_scaley does it parallel to the y-axis.

Usage

```
coo_scalex(coo, k = 1)
coo_scaley(coo, k = 1)
```

Arguments

```
coo a matrix of (x; y) coordinates or a list, or any Coo object.
k numeric scaling factor
```

Value

```
a matrix of (x; y) coordinates, or a Coo object.
```

See Also

```
Other coo_utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed
```

Other scaling functions: coo_scale, coo_template

```
coo <- shapes[11] %>% coo_template()
coo_plot(coo, xlim=c(-1, 1))
coo %>% coo_scalex(1.5) %>% coo_draw(border="blue")
coo %>% coo_scaley(1.5) %>% coo_draw(border="red")
coo %>% coo_scalex(0.5) %>% coo_draw(border="blue", lty=2)
coo %>% coo_scaley(0.5) %>% coo_draw(border="red", lty=2)
```

coo_shearx 85

coo_shearx

Shears shapes

Description

coo_shearx applies a shear mapping on a matrix of (x; y) coordinates (or a list), parallel to the x-axis (i.e. x' = x + ky; y' = y + kx). coo_sheary does it parallel to the y-axis.

Usage

```
coo_shearx(coo, k)
coo_sheary(coo, k)
```

Arguments

```
coo a matrix of (x; y) coordinates or a list, or any Coo object. k numeric shear factor
```

Value

```
a matrix of (x; y) coordinates.
```

See Also

```
Other coo_utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed
```

Other transforming functions: coo_flipx

```
coo <- coo_template(shapes[11])
coo_plot(coo)
coo_draw(coo_shearx(coo, 0.5), border="blue")
coo_draw(coo_sheary(coo, 0.5), border="red")</pre>
```

86 coo_slice

coo_slice

Slices shapes between successive coordinates

Description

Takes a shape with n coordinates. When you pass this function with at least two ids (<= n), the shape will be open on the corresponding coordinates and slices returned as a list

Usage

```
coo_slice(coo, ids)
```

Arguments

coo a matrix of (x; y) coordinates or a list, or any Coo object.

ids numeric of length >= 2, where to slice the shape(s)

Value

a list of shapes or a list of Opn

See Also

```
Other coo_ utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed
```

```
# single shape, a list of matrices is returned
sh <- coo_slice(hearts[1], c(12, 24, 36, 48))
coo_plot(sh[[1]])
panel(Opn(sh))
# on a Coo, a list of Opn is returned
# makes no sense if shapes are not normalized first
sh2 <- coo_slice(hearts, c(12, 24, 36, 48))
panel(sh2[[1]])</pre>
```

coo_slide 87

coo_slide Slides coordinates

Description

Slides the coordinates so that the id1-th point become the first one.

Usage

```
coo_slide(coo, id1, ldk)
```

Arguments

C00	a matrix of (x; y) coordinates or a list, or any Coo object.
id1	numeric the $id(s)$ of the point that will become the new first point. See details below for the method on Coo objects.
ldk	numeric the id of the ldk to use as id1, only on Out

Details

For Coo objects, and in particular for Out and Opn three different ways of coo_sliding are available:

- no ldk passed and a single id1 is passed: all id1-th points within the shapes will become the first points. \$ldk will be slided accordingly.
- no ldk passed and a vector of ids matching the length of the Coo: for every shape, the id1-th point will be used as the id1-th point. \$ldk will be slided accordingly.
- a single ldk is passed: the ldk-th ldk will be used to slide every shape. If an ldk is passed, id1 is ignored with a message.

See examples.

Value

```
a matrix of (x; y) coordinates, or a Coo object.
```

See Also

```
Other coo_utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed
```

Other sliding functions: coo_slidedirection, coo_slidegap

88 coo_slidedirection

Examples

```
stack(hearts)
# set the first landmark as the starting point
stack(coo_slide(hearts, ldk=1))
# set the 50th point as the starting point (everywhere)
stack(coo_slide(hearts, id1=50))
# set the id1-random-th point as the starting point (everywhere)
set.seed(123) # just for the reproducibility
id1_random <- sample(x=min(sapply(hearts$coo, nrow)), size=length(hearts),
replace=TRUE)
stack(coo_slide(hearts, id1=id1_random))</pre>
```

coo_slidedirection

Slides coordinates in a particular direction

Description

Shapes are centered and then, according to direction, the point northwards, southwards, eastwards or westwards the centroid, becomes the first point with coo_slide.

Usage

```
coo_slidedirection(coo, direction, center, id)
```

Arguments

coo a matrix of (x; y) coordinates or a list, or any Coo object. direction character among 'N' (by default), 'S', 'E', or 'W'. center logical whether to center or not before sliding

id numeric whether to return the id of the point or the slided shapes

Value

```
a matrix of (x; y) coordinates, or a Coo object.
```

See Also

```
Other coo_utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed
```

Other sliding functions: coo_slidegap, coo_slide

coo_slidegap 89

Examples

```
b <- coo_rotate(bot[1], pi/6) # dummy example just to make it obvious
coo_plot(b) # not the first point
coo_plot(coo_slidedirection(b, 'N'))
coo_plot(coo_slidedirection(b, 'E'))
coo_plot(coo_slidedirection(b, 'W'))
coo_plot(coo_slidedirection(b, 'S'))

# on Coo objects
stack(bot)
stack(coo_slidedirection(bot, 'E'))</pre>
```

coo_slidegap

Slides coordinates using the widest gap

Description

When slicing a shape using two landmarks, or functions such as coo_up, an open curve is obtained and the rank of points make wrong/artefactual results. If the widest gap is > 5 * median of other gaps, then the couple of coordinates forming this widest gap is used as starting and ending points. This switch helps to deal with open curves. Examples are self-speaking. Use force=TRUE to bypass this check

Usage

```
coo_slidegap(coo, force)
```

Arguments

coo a matrix of (x; y) coordinates or a list, or any Coo object.

force logical whether to use the widest gap, with no check, as the real gap

Value

```
a matrix of (x; y) coordinates or a Coo object.
```

See Also

```
Other coo_utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed
```

Other sliding functions: coo_slidedirection, coo_slide

90 coo_smooth

Examples

```
cat <- coo_center(shapes[4])
coo_plot(cat)

# we only retain the bottom of the cat
cat_down <- coo_down(cat, slidegap=FALSE)

# see? the segment on the x-axis coorespond to the widest gap.
coo_plot(cat_down)

# that's what we meant
coo_plot(coo_slidegap(cat_down))</pre>
```

coo_smooth

Smoothes coordinates

Description

Smoothes coordinates using a simple moving average. May be useful to remove digitization noise, mainly on outlines and open outlines.

Usage

```
coo_smooth(coo, n)
```

Arguments

```
coo a matrix of (x; y) coordinates or a list, or any Coo object.

n integer the number of smoothing iterations
```

Value

```
a matrix of (x; y) coordinates, or a Coo object.
```

See Also

```
Other coo_utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_template, coo_trans, coo_trim, coo_up, is_closed
```

Other smoothing functions: coo_smoothcurve

coo_smoothcurve 91

Examples

```
b <- bot[1]
stack(bot)
stack(coo_smooth(bot, 10))
coo_plot(bot[1])
coo_plot(coo_smooth(bot[1], 30))</pre>
```

coo_smoothcurve

Smoothes coordinates on curves

Description

Smoothes coordinates using a simple moving average but let the first and last points unchanged. May be useful to remove digitization noise on curves.

Usage

```
coo_smoothcurve(coo, n)
```

Arguments

```
coo a matrix of (x; y) coordinates or a list, or any Coo object.

n integer to specify the number of smoothing iterations
```

Value

```
a matrix of (x; y) coordinates, or a Coo object.
```

See Also

```
Other coo_ utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smooth, coo_template, coo_trans, coo_trim, coo_up, is_closed
```

Other smoothing functions: coo_smooth

```
o <- olea[1]
coo_plot(o, border='grey50', points=FALSE)
coo_draw(coo_smooth(o, 24), border='blue', points=FALSE)
coo_draw(coo_smoothcurve(o, 24), border='red', points=FALSE)</pre>
```

92 coo_tangle

coo_solidity

Calculates the solidity of a shape

Description

Returns the ids of points that define the convex hull of a shape.

Usage

```
coo_solidity(coo)
```

Arguments

coo

a matrix of (x; y) coordinates.

Value

numeric, the solidity of a shape.

Source

Rosin PL. 2005. Computing global shape measures. Handbook of Pattern Recognition and Computer Vision. 177-196.

See Also

Other coo_descriptors: coo_area, coo_chull, coo_circularityharalick, coo_circularitynorm, coo_circularity, coo_convexity, coo_eccentricityboundingbox, coo_eccentricityeigen, coo_elongation, coo_length, coo_lw, coo_rectangularity, coo_rectilinearity, coo_tangle, coo_theta3, coo_thetapts, coo_width

Examples

```
data(bot)
coo_solidity(bot[1])
```

coo_tangle

Calculates the tangent angle along the perimeter of a shape

Description

Calculated using complex numbers and returned in radians minus the first one (modulo 2*pi).

Usage

```
coo_tangle(coo)
```

coo_template 93

Arguments

coo a matrix of coordinates

Value

a numeric, the tangent angle along the perimeter

See Also

tfourier

Other coo_descriptors: coo_area, coo_chull, coo_circularityharalick, coo_circularitynorm, coo_circularity, coo_convexity, coo_eccentricityboundingbox, coo_eccentricityeigen, coo_elongation, coo_length, coo_lw, coo_rectangularity, coo_rectilinearity, coo_solidity, coo_theta3, coo_thetapts, coo_width

Examples

```
data(bot)
b <- bot[1]
phi <- coo_tangle(b)
phi2 <- coo_tangle(coo_smooth(b, 2))
plot(phi, type='l')
plot(phi2, type='l', col='red') # ta is very sensible to noise</pre>
```

coo_template

'Templates' shapes

Description

coo_template returns shape centered on the origin and inscribed in a size-side square

Usage

```
coo_template(coo, size)
```

Arguments

coo A list or a matrix of coordinates.

size numeric. Indicates the length of the side 'inscribing' the shape.

Details

See coo_listpanel for an illustration of this function. The morphospaces functions also take profit of this function. May be useful to develop other graphical functions.

Value

Returns a matrix of (x; y)coordinates.

94 coo_theta3

See Also

Other coo_utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_trans, coo_trim, coo_up, is_closed

Other scaling functions: coo_scalex, coo_scale

Examples

```
data(bot)
coo <- bot[1]
coo_plot(coo_template(coo), xlim=c(-1, 1), ylim=c(-1, 1))
rect(-0.5, -0.5, 0.5, 0.5)

s <- 0.01
coo_plot(coo_template(coo, s))
rect(-s/2, -s/2, s/2, s/2)</pre>
```

coo_theta3

Calculate the angle formed by three (x; y) coordinates

Description

Returns the angle (in radians) defined by a triplet of points either signed ('atan2') or not ('acos').

Usage

```
coo_theta3(m, method = c("atan2", "acos")[1])
```

Arguments

```
m a 3x2 matrix of 3 points (rows) and (x; y) coordinates
method one of 'atan2' or 'acos' for a signed or not angle.
```

Value

numeric the angle in radians.

See Also

Other coo_descriptors: coo_area, coo_chull, coo_circularityharalick, coo_circularitynorm, coo_circularity, coo_convexity, coo_eccentricityboundingbox, coo_eccentricityeigen, coo_elongation, coo_length, coo_lw, coo_rectangularity, coo_rectilinearity, coo_solidity, coo_tangle, coo_thetapts, coo_width

coo_thetapts 95

Examples

```
data(bot)
b <- coo_sample(bot[1], 64)
b <- b[c(1, 14, 24), ]
coo_plot(b)
coo_theta3(b)
coo_theta3(b, method='acos')</pre>
```

coo_thetapts

Calculates the angle of every edge of a shape

Description

Returns the angle (in radians) of every edge of a shape,

Usage

```
coo_thetapts(coo, method = c("atan2", "acos")[1])
```

Arguments

coo a matrix or a list of (x; y) coordinates.

method one of 'atan2' or 'acos' for a signed or not angle.

Value

numeric the angles in radians for every edge.

See Also

Other coo_descriptors: coo_area, coo_chull, coo_circularityharalick, coo_circularitynorm, coo_circularity, coo_convexity, coo_eccentricityboundingbox, coo_eccentricityeigen, coo_elongation, coo_length, coo_lw, coo_rectangularity, coo_rectilinearity, coo_solidity, coo_tangle, coo_theta3, coo_width

```
data(bot)
b <- coo_sample(bot[1], 64)
coo_thetapts(b)</pre>
```

96 coo_trans

coo_trans

Translates coordinates

Description

Translates the coordinates by a 'x' and 'y' value

Usage

```
coo_trans(coo, x = 0, y = 0)
```

Arguments

```
coo a matrix of (x; y) coordinates or a list, or any Coo object.

x numeric translation along the x-axis.

y numeric translation along the y-axis.
```

Value

```
a matrix of (x; y) coordinates, or a Coo object.
```

See Also

```
Other coo_utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trim, coo_up, is_closed
```

```
coo_plot(bot[1])
coo_plot(coo_trans(bot[1], 50, 100))
# on Coo
stack(bot)
stack(coo_trans(bot, 50, 100))
```

coo_trim 97

coo_trim

Trims coordinates from shape

Description

Removes trim coordinates at both ends of a shape, ie from top and bottom of the shape matrix.

Usage

```
coo_trim(coo, trim = 1)
```

Arguments

coo a matrix of (x; y) coordinates or a list, or any Coo object.

trim numeric, the number of coordinates to trim

See Also

Other coo_utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_up, is_closed

Examples

```
olea[1] %>% coo_sample(12) %T>%
    print() %T>% ldk_plot() %>%
    coo_trim(1) %T>% print() %>% points(col="red")
```

coo_up

Retains coordinates with positive y-coordinates

Description

Useful when shapes are aligned along the x-axis (e.g. because of a bilateral symmetry) and when one wants to retain just the upper side.

Usage

```
coo_up(coo, slidegap = FALSE)
```

98 coo_width

Arguments

coo a matrix of (x; y) coordinates or a list, or any Coo object. slidegap logical whether to apply coo_slidegap after coo_down

Value

a matrix of (x; y) coordinates or a Coo object (Out are returned as Opn)

Note

When shapes are "sliced" along the x-axis, it usually results on open curves and thus to huge/artefactual gaps between points neighboring this axis. This is usually solved with coo_slidegap. See examples there.

Also, when apply a coo_left/right/up/down on an Out object, you then obtain an Opn object, which is done automatically.

See Also

Other coo_ utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, is_closed

Other opening functions: coo_down, coo_left, coo_right

Examples

```
b <- coo_alignxax(bot[1])
coo_plot(b)
coo_draw(coo_up(b), border='red')</pre>
```

coo_width

Calculates the width of a shape

Description

Nothing more than coo_lw(coo)[2].

Usage

```
coo_width(coo)
```

Arguments

COO

a matrix of (x; y) coordinates.

d 99

Value

the width (in pixels) of the shape

See Also

```
coo_lw, coo_length.
```

Other coo_descriptors: coo_area, coo_chull, coo_circularityharalick, coo_circularitynorm, coo_circularity, coo_convexity, coo_eccentricityboundingbox, coo_eccentricityeigen, coo_elongation, coo_length, coo_lw, coo_rectangularity, coo_rectilinearity, coo_solidity, coo_tangle, coo_theta3, coo_thetapts

Examples

```
data(bot)
coo_width(bot[1])
```

d

A wrapper to calculates euclidean distances between two points

Description

The main advantage over ed is that it is a method that can be passed to different objects and used in combination with measure. See examples.

Usage

```
d(x, id1, id2)
```

Arguments

x a Ldk (typically), an Out or a matrixid1 id of the 1st row

id2 id of the 2nd row

Note

On Out objects, we first get_ldk.

See Also

if you want all pairwise combinations, see truss

100 def_ldk

Examples

```
# single shape
d(wings[1], 1, 4)
# Ldk object
d(wings, 1, 4)
# Out object
d(hearts, 2, 4)
```

 def_1dk

Defines landmarks on Out and Opn objects

Description

Helps to define landmarks on a Coo object. The number of landmarks must be specified and rows indices that correspond to the nearest points clicked on every outlines are stored in the \$1dk slot of the Coo object.

Usage

```
def_ldk(Coo, nb.ldk)
```

Arguments

Coo an Out or Opn object

nb.ldk the number of landmarks to define on every shape

Value

an Out or an Opn object with some landmarks defined

See Also

Other ldk/slidings methods: def_slidings, get_ldk, get_slidings, slidings_scheme

```
## Not run:
data(bot)
bot <- bot[1:5] # to make it shorter to try
# click on 3 points, 5 times.
# Don't forget to save the object returned by def_ldk...
bot2 <- def_ldk(bot, 3)
stack(bot2)
bot2$ldk
## End(Not run)</pre>
```

def_links 101

def_links

Defines links between landmarks

Description

Works on Ldk objects, on 2cols matrices, 3dim arrays (msshapes turns it into a matrix).

Usage

```
def_links(x, nb.ldk)
```

Arguments

x Ldk, matric or array

nb.ldk numeric the iterative procedure is stopped when the user click on the top of the

graphical window.

See Also

Other ldk helpers: ldk_check, links_all, links_delaunay

Examples

```
## Not run:
data(wings)
wm <- mshapes(wings)
links <- def_links(wm, 3) # click to define pairs of landmarks
ldk_links(wm, links)
## End(Not run)</pre>
```

def_slidings

Defines sliding landmarks matrix

Description

Defines sliding landmarks matrix

Usage

```
def_slidings(Coo, slidings)
```

Arguments

Coo an Ldk object

slidings a matrix, a numeric or a list of numeric. See Details

102 dfourier

Details

\$slidings in Ldk must be a 'valid' matrix: containing ids of coordinates, none of them being lower than 1 and higher the number of coordinates in \$coo.

slidings matrix contains 3 columns (before, slide, after). It is inspired by geomorph and should be compatible with it.

This matrix can be passed directly if the slidings argument is a matrix. Of course, it is strictly equivalent to Ldk\$slidings <- slidings.

slidings can also be passed as "partition(s)", when sliding landmarks identified by their ids (which are a row number) are consecutive in the \$coo.

A single partition can be passed either as a numeric (eg 4:12), if points 5 to 11 must be considered as sliding landmarks (4 and 12 being fixed); or as a list of numeric.

See examples below.

See Also

Other ldk/slidings methods: def_ldk, get_ldk, get_slidings, slidings_scheme

Examples

```
#waiting for a sliding dataset...
```

dfourier

Discrete cosinus transform

Description

Calculates discrete cosine transforms, as introduced by Dommergues and colleagues, on a shape (mainly open outlines).

Usage

```
dfourier(coo, nb.h, verbose = TRUE)
## Default S3 method:
dfourier(coo, nb.h, verbose = TRUE)
## S3 method for class 'Opn'
dfourier(coo, nb.h, verbose = TRUE)
## S3 method for class 'Coo'
dfourier(coo, nb.h, verbose = TRUE)
```

dfourier 103

Arguments

C00	a matrix (or a list) of (x; y) coordinates
nb.h	numeric the number of harmonics to calculate
verbose	whether to print messages and progress bar.

Value

a list with the following components:

- an the A harmonic coefficients
- bn the B harmonic coefficients
- mod the modules of the points
- arg the arguments of the points

Note

This method has been only poorly tested in Momocs and should be considered as experimental. Yet improved by a factor 10, this method is still long to execute. It will be improved in further releases but it should not be so painful right now. It also explains that a progress bar is printed when 'verbose' is TRUE. Shapes should be aligned before performing the dct transform.

References

- Dommergues, C. H., Dommergues, J.-L., & Verrecchia, E. P. (2007). The Discrete Cosine Transform, a Fourier-related Method for Morphometric Analysis of Open Contours. *Mathematical Geology*, 39(8), 749-763. doi:10.1007/s11004-007-9124-6
- Many thanks to Remi Laffont for the translation in R).

See Also

Other dfourier: dfourier_i, dfourier_shape

```
data(olea)
## Not run: # because it's long
od <- dfourier(olea)
od
op <- PCA(od)
plot(op, 1)
## End(Not run)
# dfourier and inverse dfourier
o <- olea[1]
o <- coo_bookstein(o)
coo_plot(o)
o.dfourier <- dfourier(o, nb.h=12)
o.dfourier
o.i <- dfourier_i(o.dfourier)</pre>
```

104 dfourier_i

```
o.i <- coo_bookstein(o.i)
coo_draw(o.i, border='red')

#future calibrate_reconstructions
o <- olea[1]
h.range <- 2:13
coo <- list()
for (i in seq(along=h.range)){
coo[[i]] <- dfourier_i(dfourier(o, nb.h=h.range[i]))}
names(coo) <- paste0('h', h.range)
panel(Opn(coo), borders=col_india(12), names=TRUE)
title('Discrete Cosine Transforms')</pre>
```

dfourier i

Investe discrete cosinus transform

Description

Calculates inverse discrete cosine transforms (see dfourier), given a list of A and B harmonic coefficients, typically such as those produced by dfourier.

Usage

```
dfourier_i(df, nb.h, nb.pts = 60)
```

Arguments

df a list with \$A and \$B components, containing harmonic coefficients.

nb.h a custom number of harmonics to use

nb.pts numeric the number of pts for the shape reconstruction

Value

```
a matrix of (x; y) coordinates
```

Note

Only the core functions so far. Will be implemented as an Opn method soon.

References

- Dommergues, C. H., Dommergues, J.-L., & Verrecchia, E. P. (2007). The Discrete Cosine Transform, a Fourier-related Method for Morphometric Analysis of Open Contours. *Mathematical Geology*, 39(8), 749-763. doi:10.1007/s11004-007-9124-6
- Many thanks to Remi Laffont for the translation in R).

See Also

Other dfourier: dfourier_shape, dfourier

dfourier_shape 105

Examples

```
# dfourier and inverse dfourier
data(olea)
o <- olea[1]
o <- coo_bookstein(o)</pre>
coo_plot(o)
o.dfourier <- dfourier(o, nb.h=12)</pre>
o.dfourier
o.i <- dfourier_i(o.dfourier)</pre>
o.i <- coo_bookstein(o.i)</pre>
coo_draw(o.i, border='red')
o <- olea[1]
h.range <- 2:13
coo <- list()</pre>
for (i in seq(along=h.range)){
coo[[i]] <- dfourier_i(dfourier(o, nb.h=h.range[i]))}</pre>
names(coo) <- paste0('h', h.range)</pre>
panel(Opn(coo), borders=col_india(12), names=TRUE)
title('Discrete Cosine Transforms')
```

dfourier_shape

Calculates and draws 'dfourier' shapes

Description

Calculates shapes based on 'Discrete cosine transforms' given harmonic coefficients (see dfourier) or can generate some random 'dfourier' shapes. Mainly intended to generate shapes and/or to understand how dfourier works.

Usage

```
dfourier_shape(A, B, nb.h, nb.pts = 60, alpha = 2, plot = TRUE)
```

Arguments

A	vector of harmonic coefficients
В	vector of harmonic coefficients
nb.h	if A and/or B are not provided, the number of harmonics to generate
nb.pts	if A and/or B are not provided, the number of points to use to reconstruct the shapes
alpha	tThe power coefficient associated with the (usually decreasing) amplitude of the harmonic coefficients (see efourier_shape)
plot	logical whether to plot the shape

See Also

Other dfourier: dfourier_i, dfourier

106 dissolve

Examples

```
# some signatures
panel(coo_align(Opn(replicate(48, dfourier_shape(alpha=0.5, nb.h=6)))))
# some worms
panel(coo_align(Opn(replicate(48, dfourier_shape(alpha=2, nb.h=6)))))
```

dissolve

Dissolves Coe objects

Description

the opposite of combine, typically used after it. Note that the \$fac slot may be wrong since combine...well combines... this \$fac. See examples.

Usage

```
dissolve(x, retain)
```

Arguments

```
x a Coe object
retain the partition id to retain. Or their name if the partitions are named (see x$method)
eg after a chop
```

See Also

```
Other handling functions: arrange, at_least, chop, combine, filter, mutate, rename, rm_uncomplete, rw_rule, sample_frac, sample_n, select, slice, subset.Coo, transmute
```

```
data(bot)
w <- filter(bot, type=="whisky")
b <- filter(bot, type=="beer")
wf <- efourier(w, 10)
bf <- efourier(b, 10)
wbf <- combine(wf, bf)
dissolve(wbf, 1)
dissolve(wbf, 2)</pre>
```

ed 107

ed

Calculates euclidean distance between two points.

Description

ed simply calculates euclidean distance between two points defined by their (x; y) coordinates.

Usage

```
ed(pt1, pt2)
```

Arguments

```
pt1 (x; y) coordinates of the first point.
pt2 (x; y) coordinates of the second point.
```

Value

Returns the euclidean distance between the two points.

See Also

```
edm, edm_nearest, dist.
```

Examples

```
ed(c(0,1), c(1,0))
```

edi

Calculates euclidean intermediate between two points.

Description

edi simply calculates coordinates of a points at the relative distance r on the pt1-pt2 defined by their (x; y) coordinates. This function is used internally but may be of interest for other analyses.

Usage

```
edi(pt1, pt2, r = 0.5)
```

Arguments

```
pt1 (x;y) coordinates of the first point.
pt2 (x;y) coordinates of the second point.
r the relative distance from pt1 to pt2.
```

108 edm

Value

returns the (x; y) interpolated coordinates.

See Also

```
ed, edm.
```

Examples

```
edi(c(0,1), c(1,0), r = 0.5)
```

edm

Calculates euclidean distance every pairs of points in two matrices.

Description

edm returns the euclidean distances between points 1->n of two 2-col matrices of the same dimension. This function is used internally but may be of interest for other analyses.

Usage

```
edm(m1, m2)
```

Arguments

m1 The first matrix of coordinates.

m2 The second matrix of coordinates.

Details

If one wishes to align two (or more shapes) Procrustes surimposition may provide a better solution.

Value

Returns a vector of euclidean distances between pairwise coordinates in the two matrices.

See Also

```
ed, edm_nearest, dist.
```

```
x <- matrix(1:10, nc=2)
edm(x, x)
edm(x, x+1)</pre>
```

edm_nearest 109

edm_nearest	Calculates the shortest euclidean distance found for every point of one matrix among those of a second.
	o v

Description

edm_nearest calculates the shortest euclidean distance found for every point of one matrix among those of a second. In other words, if m1, m2 have n rows, the result will be the shortest distance for the first point of m1 to any point of m2 and so on, n times. This function is used internally but may be of interest for other analyses.

Usage

```
edm_nearest(m1, m2, full = FALSE)
```

Arguments

m1	The first list or matrix of coordinates.
m2	The second list or matrix of coordinates.
full	logical. Whether to returns a condensed version of the results.

Details

So far this function is quite time consumming since it performs $n \times n$ euclidean distance computation. If one wishes to align two (or more shapes) Procrustes surimposition may provide a better solution.

Value

If full is TRUE, returns a list with two components: d which is for every point of m1 the shortest distance found between it and any point in m2, and pos the (m2) row indices of these points. Otherwise returns d as a numeric vector of the shortest distances.

See Also

```
ed, edm, dist.
```

```
x <- matrix(1:10, nc=2)
edm_nearest(x, x+rnorm(10))
edm_nearest(x, x+rnorm(10), full=TRUE)</pre>
```

110 efourier

efourier

Elliptical Fourier transform

Description

efourier computes Elliptical Fourier Analysis (or Transforms or EFT) from a matrix (or a list) of (x; y) coordinates.

Usage

```
efourier(x, ...)
## Default S3 method:
efourier(x, nb.h, smooth.it = 0, verbose = TRUE, ...)
## S3 method for class 'Out'
efourier(x, nb.h, smooth.it = 0, norm = TRUE, start = FALSE,
    verbose = TRUE, ...)
```

Arguments

Х	A list or a matrix of coordinates or a Out object
	useless here
nb.h	integer. The number of harmonics to use. If missing 99pc harmonic power is used.
smooth.it	integer. The number of smoothing iterations to perform.
verbose	logical. Whether to print or not diagnosis messages.
norm	whether to normalize the coefficients using efourier_norm
start	logical whether to consider the first point as homologous

Details

For the maths behind see the paper in JSS.

Normalization of coefficients has long been a matter of trouble, and not only for newcomers. There are two ways of normalizing outlines: the first, and by far the msot used, is to use a "numerical" alignment, directly on the matrix of coefficients. The coefficients of the first harmonic are consumed by this process but harmonics of higher rank are normalized in terms of size and rotation. This is sometimes referred as using the "first ellipse", as the harmonics define an ellipse in the plane, and the first one is the mother of all ellipses, on which all others "roll" along. This approach is really convenient as it is done easily by most software (if not the only option) and by Momocs too. It is the default option of efourier.

But here is the pitfall: if your shapes are prone to bad alignments among all the first ellipses, this will result in poorly (or even not at all) "homologous" coefficients. The shapes prone to this are either (at least roughly) circular and/or with a strong bilateral symmetry. You can try to use stack on the Coe object returned by efourier. Also, when plotting PCA using Momocs, this will be strikingly

efourier 111

clear though. This phenomenon will result in two clusters, and more strikingly into upside-down (or 180 degrees rotated) shapes on the morphospace. If this happen, you should seriously consider aligning your shapes *before* the efourier step, and performing the latter with no normalization (norm = FALSE), since it has been done before.

You have several options to align your shapes, using control points (or landmarks), of Procrustes alignment (see fgProcrustes) through their calliper length (see coo_aligncalliper), etc. You should also make the first point homologous either with coo_slide or coo_slidedirection to minimize any subsequent problems.

I will dedicate (some day) a vignette or a paper to this problem.

Value

A list with these components:

```
an vector of a_{1->n} harmonic coefficients. bn vector of b_{1->n} harmonic coefficients. cn vector of c_{1->n} harmonic coefficients. dn vector of d_{1->n} harmonic coefficients. ao Harmonic coefficient. co Harmonic coefficient.
```

Note

Directly borrowed for Claude (2008), and also called efourier there.

References

Claude, J. (2008) *Morphometrics with R*, Use R! series, Springer 316 pp. Ferson S, Rohlf FJ, Koehn RK. 1985. Measuring shape variation of two-dimensional outlines. *Systematic Biology* **34**: 59-68.

See Also

```
Other efourier: efourier_i, efourier_norm, efourier_shape
```

```
data(bot)
coo <- bot[1]
coo_plot(coo)
ef <- efourier(coo, 12)
ef
efi <- efourier_i(ef)
coo_draw(efi, border='red', col=NA)</pre>
```

112 efourier_i

_		
etou	ırier	1

Inverse elliptical Fourier transform

Description

efourier_i uses the inverse elliptical Fourier transformation to calculate a shape, when given a list with Fourier coefficients, typically obtained computed with efourier.

Usage

```
efourier_i(ef, nb.h, nb.pts = 120)
```

Arguments

ef	list. A list containing a_n , b_n , c_n and d_n Fourier coefficients, such as returned by efourier.
nb.h	integer. The number of harmonics to use. If not specified, length(ef\$an) is used.

nb.pts integer. The number of points to calculate.

Details

See efourier for the mathematical background.

Value

A matrix of (x; y) coordinates.

Note

Directly borrowed for Claude (2008), and also called iefourier there.

References

Claude, J. (2008) *Morphometrics with R*, Use R! series, Springer 316 pp. Ferson S, Rohlf FJ, Koehn RK. 1985. Measuring shape variation of two-dimensional outlines. *Systematic Biology* **34**: 59-68.

See Also

Other efourier: efourier_norm, efourier_shape, efourier

efourier_norm 113

Examples

```
data(bot)
coo <- bot[1]
coo_plot(coo)
ef <- efourier(coo, 12)
ef
efi <- efourier_i(ef)
coo_draw(efi, border='red', col=NA)</pre>
```

efourier_norm

Normalizes harmonic coefficients.

Description

efourier_norm normalizes Fourier coefficients for rotation, tranlation, size and orientation of the first ellipse.

Usage

```
efourier_norm(ef, start = FALSE)
```

Arguments

ef list. A list containing a_n , b_n , c_n and d_n Fourier coefficients, such as returned

by efourier.

start logical. Whether to conserve the position of the first point of the outline.

Details

See efourier for the mathematical background of the normalization.

Sometimes shapes do not 'align' well each others, and this is usually detectable on a morphospace on a regular PCA. You mat find 180 degrees rotated shapes or bizarre clustering. Most of the time this is due to a poor normalization on the matrix of coefficients, and the variability you observe may mostly be due to the variability in the alignment of the 'first' ellipsis which is defined by the first harmonic, used for the normalization. In that case, you should align shapes *before* efourier and with norm = FALSE. You have several options: coo_align, coo_aligncalliper, fgProcrustes either directly on the coordinates or on some landmarks along the outline or elsewhere on your original shape, depending of what shall provide a good alignment. Have a look to Momocs' vignette for some illustration of these pitfalls and how to manage them.

Value

A list with the following components:

- A vector of $A_{1->n}$ normalized harmonic coefficients
- B vector of $B_{1->n}$ normalized harmonic coefficients
- C vector of $C_{1->n}$ normalized harmonic coefficients

114 efourier_shape

- D vector of $D_{1->n}$ normalized harmonic coefficients
- size Magnitude of the semi-major axis of the first fitting ellipse
- theta angle, in radians, between the starting point and the semi-major axis of the first fitting ellipse
- psi orientation of the first fitting ellipse
- · ao ao harmonic coefficient
- · co co Harmonic coefficient
- 1nef a list with A, B, C and D concatenated in a vector.

References

Claude, J. (2008) *Morphometrics with R*, Use R! series, Springer 316 pp.

Ferson S, Rohlf FJ, Koehn RK. 1985. Measuring shape variation of two-dimensional outlines. *Systematic Biology* **34**: 59-68.

See Also

```
Other efourier: efourier_i, efourier_shape, efourier
```

Examples

```
data(bot)
q <- efourier(bot[1], 24)
efourier_i(q) # equivalent to efourier_shape(q$an, q$bn, q$cn, q$dn)
efourier_norm(q)
efourier_shape(nb.h=5, alpha=1.2)
efourier_shape(nb.h=12, alpha=0.9)</pre>
```

efourier_shape

Calculates and draw 'efourier' shapes.

Description

efourier_shape calculates a 'Fourier elliptical shape' given Fourier coefficients (see Details) or can generate some 'efourier' shapes. Mainly intended to generate shapes and/or to understand how efourier works.

Usage

```
efourier_shape(an, bn, cn, dn, nb.h, nb.pts = 60, alpha = 2, plot = TRUE)
```

efourier_shape 115

Arguments

an	numeric. The a_n Fourier coefficients on which to calculate a shape.
bn	numeric. The b_n Fourier coefficients on which to calculate a shape.
cn	numeric. The c_n Fourier coefficients on which to calculate a shape.
dn	numeric. The d_n Fourier coefficients on which to calculate a shape.
nb.h	integer. The number of harmonics to use.
nb.pts	integer. The number of points to calculate.
alpha	numeric. The power coefficient associated with the (usually decreasing) amplitude of the Fourier coefficients (see Details).
plot	logical. Whether to plot or not the shape.

Details

efourier_shape can be used by specifying nb.h and alpha. The coefficients are then sampled in an uniform distribution $(-\pi;\pi)$ and this amplitude is then divided by $harmonicrank^alpha$. If alpha is lower than 1, consecutive coefficients will thus increase. See efourier for the mathematical background.

Value

A list with components:

- x vector of x-coordinates
- y vector of y-coordinates.

References

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

Ferson S, Rohlf FJ, Koehn RK. 1985. Measuring shape variation of two-dimensional outlines. *Systematic Biology* **34**: 59-68.

See Also

```
Other efourier: efourier_i, efourier_norm, efourier
```

```
data(bot)
ef <- efourier(bot[1], 24)
efourier_shape(ef$an, ef$bn, ef$cn, ef$dn) # equivalent to efourier_i(ef)
efourier_shape() # is autonomous

panel(Out(a2l(replicate(100,
efourier_shape(nb.h=6, alpha=2.5, plot=FALSE))))) # Bubble family</pre>
```

116 export

export	Exports Coe objects and shapes	

Description

Writes a .txt or .xls or whatever readable from a Coe, or PCA object, along with individual names and grouping factors. A simple wrapper around write.table.

Usage

```
export(x, file, sep, dec)
```

Arguments

X	a Coe object
file	the filenames data.txt by default
sep	the field separator string (see sep in write.table). A tab by default
dec	the string to use for decimal points (see dec in write.table). A dot by default.

Note

Default parameters will write a .txt file, directly readable by MS Excel and other programs. With default parameters, numbers will dots as decimal points, which is considered as a character chain in Excel in many countries (locale versions.) this can be solved using dec=',' as in the examples below.

If you are new to R, you may be looking for where this damn file has been saved. With the defaults settings, getwd() will provide the answer.

I have to mention that everytime you use this function, escape from R to use Excel and do 'statistics' there, an adorable kitten is probably murdered somewhere. Use R, not Excel!

See Also

babel functions

```
## Not run:
# Will write files on your machine!
data(bot)
bot.f <- efourier(bot, 6)
export(bot.f) # data.txt which can be opened by every software including MS Excel
# If you are French, or another country that has not been invaded by anglo-american rules.
# and for use in Excel.
export(bot.f, dec=',')
export(bot.f, file='data.xls', dec=',')
# for shapes (matrices)</pre>
```

fgProcrustes 117

```
export(bot[1], file='bot1.txt')
## End(Not run)
```

fgProcrustes

Full Generalized Procrustes alignment between shapes

Description

Directly borrowed from Claude (2008), called there the fgpa2 function.

Usage

```
fgProcrustes(x, tol, verbose, coo)
```

Arguments

x an array, a list of configurations, or an Out, Opn or Ldk object

tol numeric when to stop iterations

verbose logical whether to print outputs (iteration number, and gain)

coo logical, when working on Out or Opn, whether to use \$coo rather than \$1dk

Details

If performed on an Out or an Opn object, will try to use the \$1dk slot, if landmarks have been previousy defined, then (with a message) on the \$coo slot, but in that case, all shapes must have the same number of coordinates (coo_sample may help).

Value

a list with components:

- rotated array of superimposed configurations
- iterationnumber number of iterations
- Q convergence criterion
- Qi full list of Q
- Qd difference between succesive Q
- interproc.dist minimal sum of squared norms of pairwise differences between all shapes in the superimposed sample
- mshape mean shape configuration
- cent.size vector of centroid sizes.

or an Out, Opn or an Ldk object.

118 fgsProcrustes

Note

Slightly less optimized than procGPA in the shapes package (~20

References

Claude, J. (2008). Morphometrics with R. Analysis (p. 316). Springer.

See Also

Other procrustes functions: fProcrustes, fgsProcrustes, pProcrustes

Examples

```
## Not run:
# on Ldk
stack(wings)
fgProcrustes(wings, tol=0.1) %>% stack()
# on Out
stack(hearts)
fgProcrustes(hearts) %>% stack()
## End(Not run)
```

fgsProcrustes

Full Generalized Procrustes alignment between shapes with sliding landmarks

Description

Directly wrapped around geomorph::gpagen.

Usage

```
fgsProcrustes(x)
```

Arguments

Х

Ldk object with some \$slidings

Note

Landmarks methods are the less tested in Momocs. Keep in mind that some features are still experimental and that your help is welcome.

Source

See ?gpagen in geomorph package

filter 119

See Also

Other procrustes functions: fProcrustes, fgProcrustes, pProcrustes

Examples

```
chaffp <- fgsProcrustes(chaff)
chaffp
chaffp %>% PCA() %>% plot("taxa")
```

filter

Filters (ala dplyr) on Momocs objects

Description

Return shapes with matching conditions, from the \$fac. See examples and ?dplyr::filter.

Usage

```
filter(.data, ...)
```

Arguments

Details

dplyr verbs are maintained.

Value

a Momocs object of the same class.

See Also

Other handling functions: arrange, at_least, chop, combine, dissolve, mutate, rename, rm_uncomplete, rw_rule, sample_frac, sample_n, select, slice, subset.Coo, transmute

```
olea
# we retain on dorsal views
filter(olea, view=="VD")
# only dorsal views and Aglan+PicMa varieties
filter(olea, view=="VD", var %in% c("Aglan", "PicMa"))
# we create an id column and retain the 120 first shapes
olea %>% mutate(id=1:length(olea)) %>% filter(id > 120)
```

120 fProcrustes

flower

Data: Measurement of iris flowers

Description

Data: Measurement of iris flowers

Format

A TraCoe object with 150 measurements of 4 variables (petal + sepal) x (length x width) on 3 species of iris. This dataset is the classical iris formatted for Momocs.

Source

see linkiris

See Also

Other datasets: bot, chaff, charring, hearts, molars, mosquito, oak, olea, shapes, trilo, wings

fProcrustes

Full Procrustes alignment between two shapes

Description

Directly borrowed from Claude (2008), called there the fPsup function.

Usage

fProcrustes(coo1, coo2)

Arguments

coo1 configuration matrix to be superimposed onto the centered preshape of coo2.
coo2 reference configuration matrix.

Value

a list with components:

- coo1 superimposed centered preshape of coo1 onto the centered preshape of coo2
- coo2 centered preshape of coo2
- rotation rotation matrix
- scale scale parameter
- DF full Procrustes distance between coo1 and coo2.

get_chull_area 121

References

```
Claude, J. (2008). Morphometrics with R. Analysis (p. 316). Springer.
```

See Also

Other procrustes functions: fgProcrustes, fgsProcrustes, pProcrustes

get_chull_area

Calculates convex hull area/volume of PCA scores

Description

May be useful to compare shape diversity. Expressed in PCA units that should only be compared within the same PCA.

Usage

```
get_chull_area(x, fac, xax = 1, yax = 2)
get_chull_volume(x, fac, xax = 1, yax = 2, zax = 3)
```

Arguments

```
x a PCA object

fac (optionnal) column name or ID from the $fac slot.

xax the first PC axis to use (1 by default)

yax the second PC axis (2 by default)

zax the third PC axis (3 by default only for volume)
```

Details

get_chull_area is calculated using coo_chull followed by coo_area; get_chull_volume is calculated using geometry::convexhulln

Value

If fac is not provided global area/volume is returned; otherwise a named list for every level of fac

```
data(bot)
bp <- PCA(efourier(bot, 12))
get_chull_area(bp)
get_chull_area(bp, 1)

get_chull_volume(bp)
get_chull_volume(bp, 1)</pre>
```

122 get_ldk

get_ldk

Retrieves landmarks coordinates

Description

See Details for the different behaviors implemented.

Usage

```
get_ldk(Coo)
```

Arguments

Coo

an Out, Opn or Ldk object

Details

Different behaviors depending on the class of the object:

- Ldk: retrieves landmarks.
- Ldk with slidings defined: retrieves only the fixed landmarks, not the sliding ones. See also get_slidings.
- Out landmarks from \$1dk and \$coo, if any.
- Opn: same as above.

Value

a list of shapes

See Also

Other ldk/slidings methods: def_ldk, def_slidings, get_slidings, slidings_scheme

```
# Out example
ldk.h <- get_ldk(hearts)
stack(Ldk(ldk.h))

# on Ldk (no slidings)
get_ldk(wings) # equivalent to wings$coo

# on Ldk (slidings)
get_ldk(chaff)
get_ldk(chaff) %>% Ldk %>% fgProcrustes(tol=0.1) %>% stack
```

get_pairs 123

get_pairs

Get paired individual on a Coe, PCA or LDA objects

Description

If you have paired individuals, i.e. before and after a treatment or for repeated measures, and if you have coded coded it into \$fac, this methods allows you to retrieve the cooresponding PC/LD scores, or coefficients for Coe objects.

Usage

```
get_pairs(x, fac, range)
```

Arguments

x any Coe, PCA of LDA object.

fac factor or column name or id corresponding to the pairing factor.

range numeric the range of coefficients for Coe, or PC (LD) axes on which to return

scores.

Value

a list with components x1 all coefficients/scores corresponding to the first level of the fac provided; x2 same thing for the second level; fac the corresponding fac.

124 harm_pow

 ${\tt get_slidings}$

Extracts sliding landmarks coordinates

Description

From an Ldk object.

Usage

```
get_slidings(Coo, partition)
```

Arguments

Coo an Ldk object

partition numeric which one(s) to get.

Value

a list of list(s) of coordinates.

See Also

Other ldk/slidings methods: def_ldk, def_slidings, get_ldk, slidings_scheme

Examples

```
# for each example below a list with partition containing shapes is returned
# extracts the first partition
get_slidings(chaff, 1) %>% names()
# the first and the fourth
get_slidings(chaff, c(1, 4)) %>% names()
# all of them
get_slidings(chaff) %>% names
# here we want to see it
get_slidings(chaff, 1)[[1]] %>% Ldk %>% stack
```

harm_pow

Calculates harmonic power given a list from e/t/rfourier

Description

Given a list with an, bn (and eventually cn and dn), returns the harmonic power.

Usage

```
harm_pow(xf)
```

hcontrib 125

Arguments

xf

A list with an, bn (and cn, dn) components, typically from a e/r/tfourier passed on coo_

Value

Returns a vector of harmonic power

Examples

```
data(bot)
ef <- efourier(bot[1], 24)
rf <- efourier(bot[1], 24)
harm_pow(ef)
harm_pow(rf)

plot(cumsum(harm_pow(ef)[-1]), type='o',
    main='Cumulated harmonic power without the first harmonic',
    ylab='Cumulated harmonic power', xlab='Harmonic rank')</pre>
```

hcontrib

Harmonic contribution to shape

Description

Calculates contribution of harmonics to shape. The amplitude of every coefficients of a given harmonic is multiplied by the coefficients provided and the resulting shapes are reconstructed and plotted. Naturally, only works on Fourier-based methods.

Usage

```
hcontrib(Coe, ...)
## S3 method for class 'OutCoe'
hcontrib(Coe, id, harm.r, amp.r = c(0, 0.5, 1, 2, 5, 10),
    main = "Harmonic contribution to shape", xlab = "Harmonic rank",
    ylab = "Amplification factor", ...)
```

Arguments

```
Coe a Coe object (either OutCoe or (soon) OpnCoe)

... additional parameter to pass to coo_draw

id the id of a particular shape, otherwise working on the meanshape
harm.r range of harmonics on which to explore contributions
amp.r a vector of numeric for multiplying coefficients
```

126 hearts

```
main a title for the plot
xlab a title for the x-axis
ylab a title for the y-axis
```

See Also

Other Coe_graphics: boxplot.OutCoe, hist.OutCoe

Examples

```
data(bot)
bot.f <- efourier(bot, 12)
hcontrib(bot.f)
hcontrib(bot.f, harm.r=3:10, amp.r=1:8, col="grey20",
    main="A huge panel")</pre>
```

hearts

Data: Outline coordinates of hand-drawn hearts

Description

Data: Outline coordinates of hand-drawn hearts

Format

A Out object with the outline coordinates of 240 hand-drawn hearts by 8 different persons, with 4 landmarks.

Source

We thank the fellows of the Ecology Department of the French Institute of Pondicherry that drawn the hearts, that then have been smoothed, scaled, centered, and downsampled to 80 coordinates per outline.

See Also

```
Other datasets: bot, chaff, charring, flower, molars, mosquito, oak, olea, shapes, trilo, wings
```

hist.OutCoe 127

1	- 4	^		o
nп	ST		IT (Coe

Histogram of morphometric coefficients

Description

Explores the distribution of coefficient values.

Usage

```
## S3 method for class 'OutCoe'
hist(x, retain = 4, drop = 0, bw = 20, ...)
```

Arguments

X	the Coe object
retain	numeric the number of harmonics to retain
drop	numeric the number of harmonics to drop
bw	the number of bins (range/bw) to display
	useless here but maintain the consistency with generic hist

Value

```
a ggplot2 object
```

See Also

```
Other Coe_graphics: boxplot.OutCoe, hcontrib
```

```
data(bot)
bot.f <- efourier(bot, 24)
hist(bot.f)

data(olea)
op <- opoly(olea)
hist(op)</pre>
```

import_Conte

 img_plot

Plots a .jpg image

Description

A very simple image plotter. If provided with a path, reads the .jpg and plots it. If not provided with an imagematrix, will ask you to choose interactively a .jpeg image.

Usage

```
img_plot(img)
img_plot0(img)
```

Arguments

img

a matrix of an image, such as those obtained with readJPEG.

Details

img_plot is used in import functions such as import_jpg1; img_plot0 does the same job but preserves the par and plots axes.

import_Conte

Extracts outlines coordinates from an image silhouette

Description

Provided with an image 'mask' (i.e. black pixels on a white background), and a point form where to start the algorithm, returns the (x; y) coordinates of its outline.

Usage

```
import_Conte(img, x)
```

Arguments

img a matrix of a binary image mask.

x numeric the (x; y) coordinates of a starting point within the shape.

Details

Used internally by import_jpg1 but may be useful for other purposes.

import_jpg 129

Value

a matrix the (x; y) coordinates of the outline points.

References

- The original algorithm is due to: Pavlidis, T. (1982). *Algorithms for graphics and image processing*. Computer science press.
- is detailed in: Rohlf, F. J. (1990). An overview of image processing and analysis techniques for morphometrics. In *Proceedings of the Michigan Morphometrics Workshop*. Special Publication No. 2 (pp. 47-60). University of Michigan Museum of Zoology: Ann Arbor.
- and translated in R by: Claude, J. (2008). Morphometrics with R. (p. 316). Springer.

See Also

babel functions.

import_jpg

Extracts outline coordinates from multiple .jpg files

Description

This function is used to import outline coordinates and is built around import_ipg1.

Usage

```
import_jpg(jpg.paths = NULL, auto.notcentered = TRUE,
fun.notcentered = NULL, threshold = 0.5, verbose = TRUE)
```

Arguments

jpg.paths

a vector of paths corresponding to the .jpg files to import. If not provided (or NULL), switches to the automatic version. See Details below.

auto.notcentered

logical if TRUE random locations will be used until. one of them is (assumed) to be within the shape (because of a black pixel); if FALSE a locator will be called, and you will have to click on a point within the shape.

fun.notcentered

NULL by default. Is your shapes are not centered and if a random pick of a black pixel is not satisfactory. See import_ipg1 help and examples.

threshold the threshold value use to binarize the images. Above, pixels are turned to 1,

below to 0.

verbose whether to print which file is being treated. Useful to detect problems.

import_jpg1

Details

see import_jpg1 for important informations about how the outlines are extracted, and import_Conte for the algorithm itself.

If jpg.paths is not provided (or NULL), you will have to select any .jpg file in the folder taht contains all your files. All the outlines should be imported then.

Value

a list of matrices of (x; y) coordinates that can be passed to Out

See Also

Other babel functions: bind_db, chc2Out, chc2pix, import_StereoMorph_curve1, import_tps, nef2Coe, ntsrow2Coo, pix2chc, tie_jpg_txt, tps2coo

Examples

```
## Not run:

# if your images are in the folder '/foo/jpgs/'
lf <- list.files('/foo/jpegs', full.names=TRUE)
coo <- import_jpg(lf)
Out(coo)

# 'automatic' version
coo <- import_jpg()
## End(Not run)</pre>
```

import_jpg1

Extracts outline coordinates from a single .jpg file

Description

Used to import outline coordinates from .jpg files. This function is used for single images and is wrapped by import_jpg. It relies itself on import_Conte

Usage

```
import_jpg1(jpg.path, auto.notcentered = TRUE, fun.notcentered = NULL,
    threshold = 0.5)
```

import_jpg1 131

Arguments

jpg.path vector of paths corresponding to the .jpg files to import, such as those obtained

with list.files.

auto.notcentered

logical if TRUE random locations will be used until one of them is (assumed) to be within the shape (because it corresponds to a black pixel) and only if the middle point is not black; if FALSE a locator will be called, and you will have to click on a point within the shape.

fun.notcentered

NULL by default but can accept a function that, when passed with an imagematrix and returns a numeric of length two that corresponds to a starting point on the imagematrix for the Conte algorithm. A while instruction wraps it, so the function may be wrong in proposing this starting position. See the examples below for a quick example.

threshold the threshold value use to binarize the images. Above, pixels are turned to 1,

below to 0.

... arguments to be passed to read.table, eg. 'skip', 'dec', etc.

Details

jpegs can be provided either as RVB or as 8-bit greylevels or monochrome. The function binarizes pixels values using the 'threshold' argument. It will try to start to apply the import_Conte algorithm from the center of the image and 'looking' downwards for the first black/white 'frontier' in the pixels. This point will be the first of the outlines. The latter may be useful if you align manually the images and if you want to retain this information in the consequent morphometric analyses.

If the point at the center of the image is not within the shape, i.e. is 'white' you have two choices defined by the 'auto.notcentered' argument. If it's TRUE, some random starting points will be tried until on of them is 'black' and within the shape; if FALSE you will be asked to click on a point within the shape.

If some pixels on the borders are not white, this functions adds a 2-pixel border of white pixels; otherwise import_Conte would fail and return an error.

Finally, remember that if the images are not in your working directory, list.files must be called with the argument full.names=TRUE!

Note that the use of the fun.notcentered argument will probably leads to serious headaches and will probably imply the dissection of these functions: import_Conte, img_plot and import_jpg itself

Value

a matrix of (x; y) coordinates that can be passed to Out

See Also

import_jpg, import_Conte, import_txt, lf_structure. See also Momocs' vignettes for data import. babel functions.

```
import_StereoMorph_curve1
```

Imports files creates by StereoMorph into Momocs

Description

Helps to read . txt files created by StereoMorph into (x; y) coordinates or Momocs objects. Can be applied to 'curves' or 'ldk' text files.

Usage

```
import_StereoMorph_curve1(path)
import_StereoMorph_curve(path, names)
import_StereoMorph_ldk1(path)
import_StereoMorph_ldk(path, names)
```

Arguments

path toward a single file or a folder containing . txt files produced by StereoMorph

names to feed lf_structure

Details

*1 functions import a single .txt file. Their counterpart (no '1') work when path indicates the folder, i.e. 'curves' or 'ldk'. They then return a list of Opn or Ldk objects, respectively. Please do not hesitate to contact me should you have a particular case or need something.

See Also

```
Other babel functions: bind_db, chc2Out, chc2pix, import_jpg, import_tps, nef2Coe, ntsrow2Coo, pix2chc, tie_jpg_txt, tps2coo
```

Other babel functions: bind_db, chc2Out, chc2pix, import_jpg, import_tps, nef2Coe, ntsrow2Coo, pix2chc, tie_jpg_txt, tps2coo

import_tps 133

import_tps

Imports a tps file

Description

And returns a list of coordinates, curves, scale

Usage

```
import_tps(tps.path, curves = TRUE)
```

Arguments

tps.path lines, typically from readLines, describing a single shape in tps-like format

curves logical whether to read curves, if any

Value

a list with components: coo a matrix of coordinates; cur a list of matrices; scale the scale as a numeric.

See Also

Other babel functions: bind_db, chc2Out, chc2pix, import_StereoMorph_curve1, import_jpg, nef2Coe, ntsrow2Coo, pix2chc, tie_jpg_txt, tps2coo

import_txt

Imports coordinates from a .txt file

Description

A wrapper around read.table that can be used to import outline/landmark coordinates.

Usage

```
import_txt(txt.paths = NULL, ...)
```

Arguments

txt.paths a vector of paths corresponding to the .txt files to import. If not provided (or

NULL), switches to the automatic version, just as inimport_jpg. See Details there.

... arguments to be passed to read.table, eg. 'skip', 'dec', etc.

134 is

Details

By default, it works with the default arguments of read.table, e.g. assumes that the columns are not named in the .txt files. You can tune this using the . . . argument. Define the read.table arguments that allow to import a single file, and then pass them to this function.

Value

a list of matrix(ces) of (x; y) coordinates that can be passed to Out, Opn and Ldk.

See Also

babel functions.

is

Various class/component testers

Description

Class testers test if any of the classes of an object is of a given class. For instance is.PCA on a PCA object (both 'PCA' and 'prcomp') will return TRUE. Component testers check if a particular component (eg \$fac, etc.) is present.

Usage

is.Coo(x)

is.PCA(x)

is.LDA(x)

is.Out(x)

is.Opn(x)

is.Ldk(x)

is.Coe(x)

is.OutCoe(x)

is.OpnCoe(x)

is.LdkCoe(x)

is.shp(x)

is.fac(x)

is_closed 135

```
is.ldk(x)
is.slidings(x)
is.links(x)
```

Arguments

Х

the object to test

Value

TRUE/FALSE

Examples

```
data(bot)
is.Coo(bot)
is.Out(bot)
is.Ldk(bot)
```

is_closed

Tests if shapes are closed

Description

Returns TRUE/FALSE whether the last coordinate of the shapes is the same as the first one.

Usage

```
is_closed(coo)
```

Arguments

COO

a matrix of (x; y) coordinates or a list, or any Coo object.

Value

a single or a vector of logical.

See Also

```
Other coo_ utilities: coo_aligncalliper, coo_alignminradius, coo_alignxax, coo_align, coo_baseline, coo_bookstein, coo_calliper, coo_centdist, coo_center, coo_centpos, coo_centsize, coo_close, coo_down, coo_dxy, coo_extract, coo_flipx, coo_force2close, coo_interpolate, coo_jitter, coo_left, coo_nb, coo_perimcum, coo_perimpts, coo_perim, coo_rev, coo_right, coo_rotatecenter, coo_rotate, coo_samplerr, coo_sample, coo_scalex, coo_scale, coo_shearx, coo_slice, coo_slidedirection, coo_slidegap, coo_slide, coo_smoothcurve, coo_smooth, coo_template, coo_trans, coo_trim, coo_up
```

136 KMEANS

Examples

```
is_closed(matrix(1:10, ncol=2))
is_closed(coo_close(matrix(1:10, ncol=2)))
is_closed(bot)
is_closed(coo_close(bot))
```

KMEANS

KMEANS on PCA objects

Description

A very basic implementation of k-means. Beware that morphospaces are calculated so far for the 1st and 2nd component.

Usage

```
KMEANS(x, ...)
## S3 method for class 'PCA'
KMEANS(x, centers, nax = 1:2, pch = 20, cex = 0.5, ...)
```

Arguments

X	PCA object	
	additional arguments to be passed to kmeans	
centers	numeric number of centers	
nax	numeric the range of PC components to use (1:2 by default)	
pch	to draw the points	
cex	to draw the points	

Value

the same thing as kmeans

See Also

```
Other multivariate: CLUST, LDA, MANOVA_PW, MANOVA, PCA
```

```
data(bot)
bp <- PCA(efourier(bot, 10))
KMEANS(bp, 2)</pre>
```

12a

12a

Converts a list of coordinates to an array of coordinates

Description

12a converts a list of k matrices with m rows and n columns matrices to a m x n x k array.

Usage

12a(1)

Arguments

list of matrices of the same dimension.

Details

May be useful to communicate with other morphometrics packages that use array of coordinates when handling configurations of landmarks.

Value

an array of coordinates.

See Also

```
Other bridges functions: a21, a2m, as_df, 12m, m2a, m2d, m211, m21
Other bridges functions: a21, a2m, as_df, 12m, m2a, m2d, m211, m21
```

```
data(wings)
l <- wings$coo
l
a <- l2a(l)
a</pre>
```

LDA

12m

Converts a list of coordinates to a matrix of coordinates.

Description

Converts a list with x and y components to a two-columns (colnamed) matrix of coordinates. Also, if l is a list with a single matrix, then l[[1]] is returned.

Usage

```
12m(1)
```

Arguments

list with x and y coordinates as components.

Value

```
matrix of (x; y) coordinates.
```

See Also

```
m21.
```

Other bridges functions: a21, a2m, as_df, 12a, m2a, m2d, m211, m21

Examples

```
data(wings)
1 <- m21(wings[1])
1
m <- 12m(1)
m</pre>
```

LDA

Linear Discriminant Analysis on Coe objects

Description

Performs a LDA on Coe objects. Relies on Ida in MASS.

LDA 139

Usage

```
LDA(x, fac, retain, ...)
## Default S3 method:
LDA(x, fac, retain, ...)
## S3 method for class 'PCA'
LDA(x, fac, retain = 0.99, verbose = TRUE, ...)
```

Arguments

x a PCA object

fac the grouping factor (names of one of the \$fac column or column id)

retain the proportion of the total variance to retain (if retain<1) using scree, or the number of PC axis (if retain>1).

... additional arguments to feed lda

verbose logical whether to print messages

Value

a 'LDA' object on which to apply plot.LDA, which is a list with components:

- x any Coe object (or a matrix)
- · fac grouping factor used
- removed ids of columns in the original matrix that have been removed since constant (if any)
- mod the raw lda mod from lda
- mod. pred the predicted model using x and mod
- CV. fac cross-validated classification
- CV. tab cross-validation tabke
- CV. correct proportion of correctly classified individuals
- CV. ce class error
- LDs unstandardized LD scores see Claude (2008)
- mshape mean values of coefficients in the original matrix
- method inherited from the Coe object (if any)

Note

For LDA.PCA, retain can be passed as a vector (eg: 1:5, and retain=1, retain=2, ..., retain=5) will be tried, or as "best" (same as before but retain=1:number_of_pc_axes is used).

See Also

Other multivariate: CLUST, KMEANS, MANOVA_PW, MANOVA, PCA

140 Ldk

Examples

```
data(bot)
bot.f <- efourier(bot, 24)
bot.p <- PCA(bot.f)
LDA(bot.p, 'type', retain=0.99) # retains 0.99 of the total variance
LDA(bot.p, 'type', retain=5) # retain 5 axis
bot.l <- LDA(bot.p, 'type', retain=0.99)
bot.l
plot(bot.l)
bot.f$fac$plop <- factor(rep(letters[1:4], each=10))
bot.l <- LDA(PCA(bot.f), 'plop')
bot.l
plot(bot.l)</pre>
```

Ldk

Builds an Ldk object

Description

In Momocs, Ldk classes objects are lists of configurations of landmarks, with optionnal components, on which generic methods such as plotting methods (e.g. stack) and specific methods (e.g. todo-Procrustes can be applied. Ldk objects are primarily Coo objects.

Usage

```
Ldk(coo, links = NULL, slidings = NULL, fac = data.frame())
```

Arguments

C00	a list of matrices of (x; y) coordinates, or an array, an Ldk object.
links	(optionnal) a 2-columns ${\tt matrix}$ of 'links' between landmarks, mainly for plotting
slidings	(optionnal) a 3-columns matrix defining (if any) sliding landmarks
fac	(optionnal) a data.frame of factors and/or numerics specifying the grouping structure

Details

All the shapes in x must have the same number of landmarks. If you are trying to make an Ldk object from an Out or an Opn object, try coo_sample beforehand to homogeneize the number of coordinates among shapes.

implementation of \$slidings is inspired by geomorph

Value

```
an Ldk object
```

ldk_check 141

Examples

```
#Methods on Ldk
methods(class=Ldk)
```

ldk_check

Checks 'ldk' shapes

Description

A simple utility, used internally, mostly by Ldk methods, in some graphical functions, and notably in 12a. Returns an array of landmarks arranged as (nb.1dk) x (x; y) x (nb.shapes), when passed with either a list, a matrix or an array of coordinates. If a list is provided, checks that the number of landmarks is consistent.

Usage

```
ldk_check(ldk)
```

Arguments

1dk

a matrix of (x; y) coordinates, a list, or an array.

Value

```
an array of (x; y) coordinates.
```

See Also

```
Other ldk helpers: def_links, links_all, links_delaunay
```

```
#coo_check('Not a shape')
#coo_check(matrix(1:10, ncol=2))
#coo_check(list(x=1:5, y=6:10))
```

ldk_confell

7 11			
ldk	chi	11	ı
Tur	CIII	uт.	L

Draws convex hulls around landmark positions

Description

A wrapper that uses coo_chull

Usage

```
ldk_chull(ldk, col = "grey40", lty = 1)
```

Arguments

ldk an array (or a list) of landmarks

col a color for drawing the convex hull

lty an lty for drawing the convex hulls

See Also

```
coo_chull, chull, ldk_confell, ldk_contour

Other ldk plotters: ldk_confell, ldk_contour, ldk_labels, ldk_links

Other plotting functions: Ntable, conf_ell, coo_arrows, coo_draw, coo_listpanel, coo_lolli, coo_plot, coo_ruban, ldk_confell, ldk_contour, ldk_labels, ldk_links, plot_devsegments
```

Examples

```
data(wings)
coo_plot(mshapes(wings))
ldk_chull(wings$coo)
```

ldk_confell

Draws confidence ellipses for landmark positions

Description

Draws confidence ellipses for landmark positions

Usage

```
ldk_confell(ldk, conf = 0.5, col = "grey40", ell.lty = 1, ax = TRUE,
  ax.lty = 2)
```

ldk_contour 143

Arguments

ldk	an array (or a list) of landmarks
conf	the confidence level (normal quantile, 0.5 by default)
col	the color for the ellipse
ell.lty	an lty for the ellipse
ax	logical whether to draw ellipses axes

ax.lty an lty for ellipses axes

See Also

```
Other ldk plotters: ldk_chull, ldk_contour, ldk_labels, ldk_links

Other plotting functions: Ntable, conf_ell, coo_arrows, coo_draw, coo_listpanel, coo_lolli, coo_plot, coo_ruban, ldk_chull, ldk_contour, ldk_labels, ldk_links, plot_devsegments
```

Examples

```
data(wings)
coo_plot(mshapes(wings))
ldk_confell(wings$coo)
```

1dk_contour

Draws kernel density contours around landmark

Description

Using kde2d in the MASS package.

Usage

```
ldk_contour(ldk, nlevels = 5, grid.nb = 50, col = "grey60")
```

Arguments

ldk an array (or a list) of landmarks nlevels the number of contour lines

grid.nb the grid.nb

col a color for drawing the contour lines

See Also

```
kde2d, ldk_confell, ldk_chull
```

```
Other ldk plotters: ldk_chull, ldk_confell, ldk_labels, ldk_links
```

Other plotting functions: Ntable, conf_ell, coo_arrows, coo_draw, coo_listpanel, coo_lolli, coo_plot, coo_ruban, ldk_chull, ldk_confell, ldk_labels, ldk_links, plot_devsegments

144 ldk_labels

Examples

```
data(wings)
coo_plot(mshapes(wings))
ldk_contour(wings$coo)
```

ldk_labels

Add landmarks labels

Description

Add landmarks labels

Usage

```
1dk_1abels(1dk, d = 0.05, cex = 2/3, ...)
```

Arguments

```
    a matrix of (x; y) coordinates: where to plot the labels
    how far from the coordinates, on a (centroid-landmark) segment
    the cex for the label
    additional parameters to fed text
```

See Also

```
Other ldk plotters: ldk_chull, ldk_confell, ldk_contour, ldk_links

Other plotting functions: Ntable, conf_ell, coo_arrows, coo_draw, coo_listpanel, coo_lolli, coo_plot, coo_ruban, ldk_chull, ldk_confell, ldk_contour, ldk_links, plot_devsegments
```

```
data(wings)
coo_plot(wings[1])
ldk_labels(wings[1])
# closer and smaller
coo_plot(wings[1])
ldk_labels(wings[1], d=0.05, cex=0.5)
```

ldk_links 145

1dk	1 :	i n	ks
TUN		LII	NЭ

Draws links between landmarks

Description

Cosmetics only but useful to visualize shape variation.

Usage

```
ldk_links(ldk, links, ...)
```

Arguments

1dk a matrix of (x; y) coordinates

links a matrix of links. On the first column the starting-id, on the second column the

ending-id (id= the number of the coordinate)

... additional parameters to fed segments

See Also

```
Other ldk plotters: ldk_chull, ldk_confell, ldk_contour, ldk_labels
```

Other plotting functions: Ntable, conf_ell, coo_arrows, coo_draw, coo_listpanel, coo_lolli, coo_plot, coo_ruban, ldk_chull, ldk_confell, ldk_contour, ldk_labels, plot_devsegments

lf_structure

Extracts structure from filenames

Description

If filenames are consistently named with the same character serating factors, and with every individual including its belonging levels, e.g.:

```
• 001_speciesI_siteA_ind1_dorsalview
```

• 002_speciesI_siteA_ind2_lateralview

etc., this function returns a data.frame from it that can be passed to Out, Opn, Ldk objects.

```
lf_structure(lf, names = character(), split = "_", trim.extension = FALSE)
```

links_all

Arguments

If a list (its names are used, except if it is a list from import_tps in this case

names(lf\$coo) is used) of a list of filenames, as characters, typically such as those obtained with list.files. Alternatively, a path to a folder containing the files. Actually, if If is of length 1 (a single character), the function assumes it is

a path and do a list.files on it.

names the names of the groups, as a vector of characters which length corresponds to

the number of groups.

split character, the spliting factor used for the file names.

trim. extension logical. Whether to remove the last for characters in filenames, typically their

extension, e.g. '.jpg'.

Details

The number of groups must be consistent across filenames.

Value

data.frame with, for every individual, the corresponding level for every group.

Note

This is, to my view, a good practice to 'store' the grouoing structure in filenames, but it is of course not mandatory.

Note also that you can: i) do a import_jpg and save is a list, say 'foo'; then ii) pass 'names(foo)' to lf_structure. See Momocs' vignette for an illustration.

See Also

import_jpg1, import_Conte, import_txt, lf_structure. See also Momocs' vignettes for data import.

links_all

Creates links (all pariwise combinations) between landmarks

Description

Creates links (all pariwise combinations) between landmarks

Usage

```
links_all(coo)
```

Arguments

coo a matrix (or a list) of (x; y) coordinates

links_delaunay 147

Value

a matrix that can be passed to ldk_links, etc. The columns are the row ids of the original shape.

See Also

```
Other ldk helpers: def_links, ldk_check, links_delaunay
```

Examples

```
data(wings)
w <- wings[1]
coo_plot(w)
links <- links_all(w)
ldk_links(w, links)</pre>
```

links_delaunay

Creates links (Delaunay triangulation) between landmarks

Description

Creates links (Delaunay triangulation) between landmarks

Usage

```
links_delaunay(coo)
```

Arguments

coo

a matrix (or a list) of (x; y) coordinates

Details

uses delaunayn in the geometry package.

Value

a matrix that can be passed to ldk_links, etc. The columns are the row ids of the original shape.

See Also

```
Other ldk helpers: def_links, ldk_check, links_all
```

```
data(wings)
w <- wings[1]
coo_plot(w, poly=FALSE)
links <- links_delaunay(w)
ldk_links(w, links)</pre>
```

148 m2a

m2a

Converts a matrix of coordinates to an array of coordinates

Description

Converts a matrix arranged with the individuals (the 3rd dimension of the array) as rows, and (all) x coordinates and (all) y coordinates as columns, into an array built as follows: nb.of.landmarks x 2 (x; y) x nb.of.individuals.

Usage

```
m2a(m)
```

Arguments

```
m a matrix (see above).
```

Details

Used in landmarks methods.

Value

```
an array (see above).
```

See Also

```
a2m the reverse function.
```

```
Other bridges functions: a21, a2m, as_df, 12a, 12m, m2d, m211, m21
```

```
data(wings)
m <- a2m(l2a(wings$coo))
m2a(m)</pre>
```

m2d 149

m2d

Converts a matrix of coordinates to a data.frame

Description

Converts a m x 2 matrix of coordinates named data.frame.

Usage

m2d(m)

Arguments

m

a matrix (see above).

Value

```
a data.frame (see above).
```

See Also

```
m2d the reverse function.
```

Other bridges functions: a21, a2m, as_df, 12a, 12m, m2a, m211, m21 $\,$

Examples

```
data(wings)
m2d(wings[3])
```

m21

Converts a matrix of coordinates to a list of coordinates.

Description

Converts a matrix of (x; y) coordinates to a list with x and y components.

Usage

m21(m)

Arguments

m

a two-columns matrix of x and y coordinates.

Value

a list with x and y components.

m2ll

See Also

```
12m.
```

Other bridges functions: a21, a2m, as_df, 12a, 12m, m2a, m2d, m211

Examples

```
data(wings)
1 <- m21(wings[1])
1
m <- 12m(1)
m</pre>
```

m211

Converts a matrix of coordinates into a list of matrices

Description

Used internally to hanle coo and cur in Ldk objects but may be useful elsewhere

Usage

```
m211(m, index = NULL)
```

Arguments

```
m matrix, typically of (x; y) coordinates index numeric, the number of coordinates for every slice.
```

See Also

```
Other bridges functions: a21, a2m, as_df, 12a, 12m, m2a, m2d, m21
```

```
m2ll(wings[1], c(6, 4, 3, 5))
```

MANOVA 151

М	٨	NI	1	1/	٨

Multivariate analysis of variance on Coe objects

Description

Performs multivariate analysis of variance on PCA objects.

Usage

```
MANOVA(x, fac, test = "Hotelling", retain, drop, verbose)
## S3 method for class 'OpnCoe'
MANOVA(x, fac, test = "Hotelling", retain, drop,
    verbose = TRUE)
## S3 method for class 'OutCoe'
MANOVA(x, fac, test = "Hotelling", retain, drop,
    verbose = TRUE)
## S3 method for class 'PCA'
MANOVA(x, fac, test = "Hotelling", retain = 0.99, drop,
    verbose = TRUE)
```

Arguments

X	a Coe object
fac	a name of a colum in the \$fac slot, or its id, or a formula
test	a test for manova ('Hotelling' by default)
retain	how many harmonics (or polynomials) to retain, for PCA the highest number of PC axis to retain, or the proportion of the variance to capture.
drop	how many harmonics (or polynomials) to drop
verbose	logical whether to print messages

Details

Performs a MANOVA on PC scores. Just a wrapper around manova. See examples for multifactorial manova and summary.manova for more details and examples.

Value

a list of matrices of (x,y) coordinates.

Note

Needs a review and should be considered as experimental.

152 MANOVA_PW

See Also

Other multivariate: CLUST, KMEANS, LDA, MANOVA_PW, PCA

Examples

```
data(bot)
bot.p <- PCA(efourier(bot, 12))
MANOVA(bot.p, 'type')

data(olea)
op <- PCA(npoly(olea, 5))
MANOVA(op, 'domes')

m <- manova(op$x[, 1:5] ~ op$fac$domes * op$fac$var)
summary(m)
summary.aov(m)</pre>
```

MANOVA_PW

Pairwise Multivariate analyses of variance

Description

A wrapper for pairwise MANOVAs on Coe objects. Calculates a MANOVA for every pairwise combination of the factor provided.

Usage

```
MANOVA_PW(x, ...)
## S3 method for class 'PCA'
MANOVA_PW(x, fac, verbose = FALSE, retain = 0.99, ...)
```

Arguments

x a PCA object

... more arguments to feed MANOVA

fac a name (or its id) of a grouping factor in \$fac or a factor or a formula.

verbose to feed MANOVA

retain the number of PC axis to retain (1:retain) or the proportion of variance to capture

(0.99 par default).

measure 153

Value

a list with the following components is returned (invisibly because \$manovas may be very long, see examples):

- manovas a list containing all the raw manovas
- · summary a matrix with all important statists
- stars.tab a table with 'significance star', discutable but useful: '***' if Pr(>F) < 0.001; '**' of < 0.01; '*' if < 0.05; '.' if < 0.10 and '-' if above.

Note

Needs a review and should be considered as experimental. If the fac passed has only two levels, there is only pair and it is equivalent to MANOVA. MANOVA_PW. PCA works with the regular manova.

See Also

```
MANOVA, manova.
```

Other multivariate: CLUST, KMEANS, LDA, MANOVA, PCA

Examples

```
data(bot)
# we create a fake factor with 4 levels
bot$fac$fake <- factor(rep(letters[1:4], each=10))
bot.p <- PCA(efourier(bot, 8))
MANOVA_PW(bot.p, 'fake') # or MANOVA_PW(bot.p, 2)

# an example on open outlines
data(olea)
op <- PCA(npoly(olea))
MANOVA_PW(op, 'domes')
# to get the results
res <- MANOVA_PW(op, 'domes')
res$manovas
res$stars.tab
res$summary</pre>
```

measure

Measures shape descriptors

Description

Calculates shape descriptors on Coo and other objects. Any function that returns a scalar when fed coordinates can be passed and naturally those of Momocs (pick some there apropos("coo_")). Functions without arguments (eg coo_area) have to be passed without brackets but functions with arguments (eg d) have to be passed "entirely". See examples.

154 molars

Usage

```
measure(x, ...)
```

Arguments

x any Coo object, or a list of shapes, or a shape as a matrix.

... a list of functions. See examples.

Value

a TraCoe object, or a raw data.frame

See Also

Other premodern: truss

Examples

```
# lets write a custom function
coo_ellipse_area <- function(x){
   prod(coo_lw(x))*pi
}
bm <- measure(bot, coo_area, coo_perim, coo_ellipse_area)
bm
bm$coe

# how to use arguments, eg with the d() function
measure(wings, coo_area, d(1, 3), d(4, 5))

# alternatively
measure(bot$coo, coo_area, coo_perim, coo_ellipse_area)
# and also
measure(bot[1], coo_area, coo_perim, coo_ellipse_area)</pre>
```

molars

Data: Outline coordinates of 360 molars

Description

Courtesy of Julien Corny and Florent Detroit.

Format

A Out object containing 79 equilinearly spaced (x; y) coordinates for 360 crown outlines, of modern human molars, along with their type (\$type) - 90 first upper molars (UM1), 90 second upper molars (UM2), 90 first lower molars (LM1), 90 second lower molars (LM2) - and the individual (ind) they come from (the data of the 360 molars are taken from 180 individuals).

Momocs 155

Source

Corny, J., & Detroit, F. (2014). Technical Note: Anatomic identification of isolated modern human molars: testing Procrustes aligned outlines as a standardization procedure for elliptic fourier analysis. *American Journal of Physical Anthropology*, 153(2), 314-22. doi:10.1002/ajpa.22428 http://onlinelibrary.wiley.com/doi/10.1002/ajpa.22428/abstract

See Also

Other datasets: bot, chaff, charring, flower, hearts, mosquito, oak, olea, shapes, trilo, wings

Momocs

Momocs

Description

A complete toolkit for morphometrics, from data extraction to multivariate analyses. Most common 2D morphometrics approaches are included: outlines, open outlines, configurations of landmarks, traditional morphometrics, and facilities for data preparation, manipulation and visualization with a consistent grammar throughout. Momocs allows reproducible, complex morphometric analyses, paves the way for a pure open-source workflow in R, and other morphometrics approaches should be easy to plug in, or develop from, on top of this canvas.

Details

To cite Momocs in publications: citation("Momocs").

Cheers

We are very grateful to (in alphabetical order): Laurent Bouby, Simon Crameri, April Dinwiddie, Carl Lipo, Cedric Gaucherel, Sarah Ivorra, Glynis Jones, Ricardo Kriebel, Remi Laffont, Fabien Lafuma, Neus Martinez, Marcelo Reginato, Evan Saitta, David Siddons, Eleanor Stillman, Theodore Stammer, Norbert Telmon, Jean-Frederic Terral, Bill Venables, Daniele Ventura, Michael Wallace, Asher Wishkerman, John Wood for their helpful ideas and bug reports.

References

- Bonhomme V, Picq S, Gaucherel C, Claude J. 2014. Momocs: Outline Analysis Using R. *Journal of Statistical Software* **56**. http://www.jstatsoft.org/v56/i13.
- Claude J. 2008. Morphometrics with R. Springer-Verlag, New-York.

See Also

- Homepage: https://github.com/vbonhomme/Momocs
- Issues: https://github.com/vbonhomme/Momocs/issues
- Tutorial: browseVignettes("Momocs")
- **Email**: bonhomme.vincent@gmail.com to contribute to dev, ask for something, share your data, etc.

Momocs_version

Momocs_help

Browse Momocs online doc

Description

Launch a browser to an online version of the manual

Usage

```
Momocs_help(topic = NULL)
```

Arguments

topic

the function name to access. If not specified the homepage of the online manual is accessed.

 ${\tt Momocs_lastversion}$

Install and load the last version of Momocs

Description

Download the last version of Momocs from its GitHub account from http://www.github.com/vbonhomme/Momocs), install it and load it (library(Momocs)). You need devtools, but it is checked anyway.

Usage

Momocs_lastversion()

Momocs_version

Get Momocs version

Description

A simple wrapper around packageVersion("Momocs").

Usage

Momocs_version()

mosquito 157

mosquito

Data: Outline coordinates of mosquito wings.

Description

Data: Outline coordinates of mosquito wings.

Format

A Out object with the 126 mosquito wing outlines outlines used Rohlf and Archie (1984). Note that the links defined here are quite approximate.

Source

Rohlf F, Archie J. 1984. A comparison of Fourier methods for the description of wing shape in mosquitoes (Diptera: Culicidae). *Systematic Biology*: 302-317. Arranged from: http://life.bio.sunysb.edu/morph/data/RohlfArchieWingOutlines.nts.

See Also

Other datasets: bot, chaff, charring, flower, hearts, molars, oak, olea, shapes, trilo, wings

mshapes

Mean shape calculation for Coo, Coe, etc.

Description

Quite a versatile function that calculates mean (or median, or whatever function) on list or an array of shapes, an Ldk object. It can also be used on OutCoe and OpnCoe objects. In that case, the reverse transformation (from coefficients to shapes) is calculated, (within groups defined with the fac argument if provided) and the Coe object is returned.

```
mshapes(x, ...)
## S3 method for class 'list'
mshapes(x, FUN = mean, ...)
## S3 method for class 'array'
mshapes(x, FUN = mean, ...)
## S3 method for class 'Ldk'
mshapes(x, FUN = mean, ...)
## S3 method for class 'OutCoe'
```

158 mshapes

```
mshapes(x, fac, FUN = mean, nb.pts = 120, ...)
## S3 method for class 'OpnCoe'
mshapes(x, fac, FUN = mean, nb.pts = 120, ...)
## S3 method for class 'LdkCoe'
mshapes(x, fac, FUN = mean, ...)
## S3 method for class 'PCA'
mshapes(x, fac, ...)
MSHAPES(x, ...)
```

Arguments

a list, array, Ldk, LdkCoe, OutCoe or OpnCoe or PCA object
 useless here.
 a function to compute the mean shape (mean by default, by median can be considered)
 fac factor from the \$fac slot (only for Coe objects). See examples below.
 nb.pts numeric the number of points for calculated shapes (only Coe objects)

Details

Note that on Coe objects, the average can be made within levels of the passed \$fac (if any); in that case, the other columns of the fac are also returned, using the first row within every level, but they may not be representive of the group. Also notice that for PCA objects, mean scores are returned within a PCA object (accesible with PCA\$x) that can be plotted directly but other slots are left unchanged.

Value

the averaged shape; on Coe objects, a list with two components: Coe object of the same class, and sh a list of matrices of (x, y) coordinates.

```
#### on shapes
data(wings)
mshapes(wings)
mshapes(wings$coo)
data(bot)
mshapes(coo_sample(bot, 24)$coo)
stack(wings)
coo_draw(mshapes(wings))

data(bot)
bot.f <- efourier(bot, 12)
mshapes(bot.f) # the mean (global) shape</pre>
```

mutate 159

```
ms <- mshapes(bot.f, 'type')</pre>
ms$Coe
class(ms$Coe)
ms <- ms$shp
coo_plot(ms$beer)
coo_draw(ms$whisky, border='forestgreen')
tps_arr(ms$whisky, ms$beer) #etc.
data(olea)
op <- npoly(filter(olea, view=='VL'), 5)</pre>
ms <- mshapes(op, 'var') #etc</pre>
panel(Opn(ms$shp), names=TRUE)
data(wings)
wp <- fgProcrustes(wings, tol=1e-4)</pre>
ms <- mshapes(wp, 1)</pre>
ms$Coe
panel(Ldk(ms$shp), names=TRUE) #etc.
panel(ms$Coe) # equivalent (except the $fac slot)
```

mutate

Mutates (ala dplyr) on Momocs objects

Description

Add new variables to the \$fac. See examples and ?dplyr::mutate.

Usage

```
mutate(.data, ...)
```

Arguments

```
.data a Coo, Coe, PCA object... comma separated list of unquoted expressions
```

Details

dplyr verbs are maintained.

Value

a Momocs object of the same class.

See Also

```
Other handling functions: arrange, at_least, chop, combine, dissolve, filter, rename, rm_uncomplete, rw_rule, sample_frac, sample_n, select, slice, subset.Coo, transmute
```

npoly

Examples

```
olea
mutate(olea, id=factor(1:length(olea)))
```

nef2Coe

Imports .nef to Coe objects

Description

Useful to convert .nef files into Coe objects. It returns a matrix of coefficients that can be passed to Coe.

Usage

```
nef2Coe(nef.path)
```

Arguments

nef.path

the path to the .nef file

Note

I'm not very familiar to other morphometric formats. So if you have troubles importing your datasets, contact me, I can help. Or if you fix something, please let met know!

See Also

Other babel functions: bind_db, chc2Out, chc2pix, import_StereoMorph_curve1, import_jpg, import_tps, ntsrow2Coo, pix2chc, tie_jpg_txt, tps2coo

npoly

Calculate natural polynomial fits on open outlines

Description

Calculates natural polynomial coefficients, through a linear model fit (see lm), from a matrix of (x; y) coordinates or an Opn object

```
npoly(x, ...)
## Default S3 method:
npoly(x, degree, ...)
## S3 method for class 'Opn'
npoly(x, degree, baseline1 = c(-0.5, 0), baseline2 = c(0.5, 0), nb.pts = 120, ...)
```

npoly 161

Arguments

```
a matrix (or a list) of (x;y) coordinates or an Opn object useless here degree polynomial degree for the fit (the Intercept is also returned) numeric the (x;y) coordinates of the first baseline by default (x=-0.5;y=0) numeric the (x;y) coordinates of the second baseline by default (x=0.5;y=0) nb.pts number of points to sample and on which to calculate polynomials
```

Value

when applied on a single shape, a list with components:

- coeff the coefficients (includint the intercept)
- ortho whether orthogonal or natural polynomials were fitted
- degree degree of the fit (could be retrieved through coeff though)
- baseline1 the first baseline point (so far the first point)
- baseline2 the second baseline point (so far the last point)
- r2 the r2 from the fit
- mod the raw lm model

otherwise, an OpnCoe object.

See Also

Other polynomials: opoly_i, opoly

```
data(olea)
o <- olea[1]
op <- opoly(o, degree=4)
op
# shape reconstruction
opi <- opoly_i(op)
lines(opi, col='red')
# R2 for degree 1 to 10
r <- numeric()
for (i in 1:10) { r[i] <- npoly(o, degree=i)$r2 }
plot(2:10, r[2:10], type='b', pch=20, col='red', main='R2 / degree')</pre>
```

Ntable Ntable

Ntable

Plots confusion matrix of sample sizes within \$fac

Description

An utility that plots a confusion matrix of sample size (or a barplot) for every object with a \$fac. Useful to visually how large are sample sizes, how (un)balanced are designs, etc.

Usage

```
Ntable(x, fac1, fac2 = fac1, rm0 = FALSE)
```

Arguments

```
x any object with a $fac slot (Coo, Coe, PCA, etc.)

fac1 the name or id of the first factor

fac2 the name of id of the second factor

rm0 logical whether to print zeros
```

Value

```
a ggplot2 object
```

See Also

Other plotting functions: conf_ell, coo_arrows, coo_draw, coo_listpanel, coo_lolli, coo_plot, coo_ruban, ldk_chull, ldk_confell, ldk_contour, ldk_labels, ldk_links, plot_devsegments

```
data(olea)
Ntable(olea, "var")
Ntable(olea, "domes", "var")
gg <- Ntable(olea, "domes", "var", rm0 = TRUE)
gg
library(ggplot2)
gg + coord_equal()
gg + scale_fill_gradient(low="green", high = "red")
gg + coord_flip()</pre>
```

ntsrow2Coo

ntsrow2Coo

Imports .nts to Coo objects

Description

Useful to convert .nts files into Coo objects. For .nts provided as rows, use ntsrow2Coo; for .nts provided as columns of coordinates, try ntscol2Coo. It returns a list of matrices of coordinates that can be passed to Coo (Out, Opn or Ldk).

Usage

```
ntsrow2Coo(nts.path, sep = "\t")
```

Arguments

```
nts.path the path to the .nts file sep the separator between data
```

Note

I'm not very familiar to other morphometric formats. So if you have troubles importing your datasets, contact me, I can help. Or if you fix something, please let met know!

See Also

```
Other babel functions: bind_db, chc2Out, chc2pix, import_StereoMorph_curve1, import_jpg, import_tps, nef2Coe, pix2chc, tie_jpg_txt, tps2coo
```

Examples

```
# That's how wings dataset was created
# made a local copy from http://life.bio.sunysb.edu/morph/data/RohlfSlice1990Mosq.nts
# then :
# coo_list <- ntscol2Coo('~/Desktop/mosquitowings.nts)
# fac <- data.frame(fac=factor(substr(names(coo_list), 1, 2)))
# wings <- Ldk(coo_list, fac=fac)</pre>
```

oak

Data: Configuration of landmarks of oak leaves

Description

From Viscosi and Cardini (2001).

Format

A Ldk object containing 11 (x; y) landmarks from 176 oak leaves wings, from

164 Opn

Source

Viscosi, V., & Cardini, A. (2011). Leaf morphology, taxonomy and geometric morphometrics: a simplified protocol for beginners. PloS One, 6(10), e25630. doi:10.1371/journal.pone.0025630

See Also

Other datasets: bot, chaff, charring, flower, hearts, molars, mosquito, olea, shapes, trilo, wings

olea

Data: Outline coordinates of olive seeds open outlines.

Description

Data: Outline coordinates of olive seeds open outlines.

Format

An Opn object with the outline coordinates of olive seeds.

Source

We thank Jean-Frederic Terral and Sarah Ivorra (UMR CBAE, Montpellier, France) from allowing us to share the data.

You can have a look to the original paper: Terral J-F, Alonso N, Capdevila RB i, Chatti N, Fabre L, Fiorentino G, Marinval P, Jorda GP, Pradat B, Rovira N, et al. 2004. Historical biogeography of olive domestication (*Olea europaea* L.) as revealed by geometrical morphometry applied to biological and archaeological material. *Journal of Biogeography* 31: 63-77.

See Also

Other datasets: bot, chaff, charring, flower, hearts, molars, mosquito, oak, shapes, trilo, wings

0pn

Builds an Opn object

Description

In Momocs, Opn classes objects are lists of **open** outlines, with optionnal components, on which generic methods such as plotting methods (e.g. stack) and specific methods (e.g. npoly can be applied. Opn objects are primarily Coo objects.

```
Opn(x, fac = data.frame(), ldk = list())
```

OpnCoe 165

Arguments

x list of matrices of (x; y) coordinates
fac (optionnal) a data.frame of factors and/or numerics specifying the grouping structure

ldk (optionnal) list of landmarks as row number indices

Value

an Opn object

See Also

Other Coo objects: Coo, Out

Examples

```
#Methods on Opn
methods(class=Opn)
# we load some open outlines. See ?olea for credits
data(olea)
olea
panel(olea)
# orthogonal polynomials
op <- opoly(olea, degree=5)</pre>
# we print the Coe
op
# Let's do a PCA on it
op.p <- PCA(op)
plot(op.p, 'domes')
plot(op.p, 'var')
# and now an LDA after a PCA
olda <- LDA(PCA(op), 'var')
# for CV table
olda
plot(olda)
```

0pnCoe

Builds an OpnCoe object

Description

In Momocs, OpnCoe classes objects are wrapping around lists of morphometric coefficients, along with other informations, on which generic methods such as plotting methods (e.g. boxplot) and specific methods can be applied. OpnCoe objects are primarily Coe objects.

166 opoly

Usage

```
OpnCoe(coe = matrix(), fac = data.frame(), method = character(),
  baseline1 = numeric(), baseline2 = numeric(), mod = list(),
  r2 = numeric())
```

Arguments

numeric, the r-squared from every model

Value

r2

an OpnCoe object

See Also

Other Coe objects: Coe, OutCoe

Examples

```
# all OpnCoe classes
methods(class='OpnCoe')
```

opoly

Calculate orthogonal polynomial fits on open outlines

Description

Calculates orthogonal polynomial coefficients, through a linear model fit (see lm), from a matrix of (x; y) coordinates or a Opn object

```
opoly(x, ...)
## Default S3 method:
opoly(x, degree, ...)
## S3 method for class 'Opn'
opoly(x, degree, baseline1 = c(-0.5, 0), baseline2 = c(0.5, 0), nb.pts = 120, ...)
```

opoly 167

Arguments

```
x a matrix (or a list) of (x; y) coordinates ... useless here degree polynomial degree for the fit (the Intercept is also returned) numeric the (x; y) coordinates of the first baseline by default (x = -0.5; y = 0) baseline2 numeric the (x; y) coordinates of the second baseline by default (x = 0.5; y = 0) number of points to sample and on which to calculate polynomials
```

Value

a list with components when applied on a single shape:

- coeff the coefficients (including the intercept)
- or tho whether orthogonal or natural polynomials were fitted
- degree degree of the fit (could be retrieved through coeff though)
- baseline1 the first baseline point (so far the first point)
- baseline2 the second baseline point (so far the last point)
- r2 the r2 from the fit
- mod the raw lm model

otherwise an OpnCoe object.

Note

Orthogonal polynomials are sometimes called Legendre's polynomials. They are preferred over natural polynomials since adding a degree do not change lower orders coefficients.

See Also

```
Other polynomials: npoly, opoly_i
```

```
data(olea)
o <- olea[1]
op <- opoly(o, degree=4)
op
# shape reconstruction
opi <- opoly_i(op)
lines(opi, col='red')
# R2 for degree 1 to 10
r <- numeric()
for (i in 1:10) { r[i] <- opoly(o, degree=i)$r2 }
plot(2:10, r[2:10], type='b', pch=20, col='red', main='R2 / degree')</pre>
```

opoly_i

opoly_i

Calculates shape from a polynomial model

Description

Returns a matrix of (x; y) coordinates when passed with a list obtained with opoly or npoly.

Usage

```
opoly_i(pol, nb.pts = 120, reregister = TRUE)
npoly_i(pol, nb.pts = 120, reregister = TRUE)
```

Arguments

pol a pol list such as created by npoly or opoly

nb.pts the number of points to predict. By default (and cannot be higher) the number

of points in the original shape.

reregister logical whether to reregister the shape with the original baseline.

Value

```
a matrix of (x; y) coordinates.
```

See Also

```
Other polynomials: npoly, opoly
```

```
data(olea)
o <- olea[5]
coo_plot(o)
for (i in 2:7){
x <- opoly_i(opoly(o, i))
coo_draw(x, border=col_summer(7)[i], points=FALSE) }</pre>
```

Out 169

Out

Builds an Out object

Description

In Momocs, Out-classes objects are lists of closed **out**lines, with optionnal components, and on which generic methods such as plotting methods (e.g. stack) and specific methods (e.g. efourier can be applied. Out objects are primarily Coo objects.

Usage

```
Out(x, fac = data.frame, ldk = list())
```

Arguments

x a list of matrices of (x; y) coordinates, or an array or an Out object or an Ldk

object

fac (optionnal) a data. frame of factors and/or numerics specifying the grouping

structure

ldk (optionnal) list of landmarks as row number indices

Value

an Out object

See Also

Other Coo objects: Coo, Opn

Examples

methods(class=Out)

OutCoe

Builds an OutCoe object

Description

In Momocs, OutCoe classes objects are wrapping around lists of morphometric coefficients, along with other informations, on which generic methods such as plotting methods (e.g. boxplot) and specific methods can be applied. OutCoe objects are primarily Coe objects.

```
OutCoe(coe = matrix(), fac = data.frame(), method, norm)
```

170 panel

Arguments

coe matrix of harmonic coefficients

fac (optionnal) a data. frame of factors, specifying the grouping structure

method used to obtain these coefficients

norm the normalisation used to obtain these coefficients

Details

These methods can be applied on Out objects:

Value

```
an OutCoe object
```

See Also

```
Other Coe objects: Coe, OpnCoe
```

Examples

```
# all OutCoe methods
methods(class='OutCoe')
```

panel

Family picture of shapes

Description

Plots all the outlines, side by side, from a Coo (Out, Opn or Ldk) objects.

```
panel(x, ...)
## S3 method for class 'Out'
panel(x, dim, cols, borders, fac, palette = col_summer,
    coo_sample = 120, names = NULL, cex.names = 0.6, points = TRUE,
    points.pch = 3, points.cex = 0.2, points.col, ...)
## S3 method for class 'OutCoe'
panel(x, nb.pts = 120, ...)
## S3 method for class 'Opn'
panel(x, cols, borders, fac, palette = col_summer,
    coo_sample = 120, names = NULL, cex.names = 0.6, points = TRUE,
    points.pch = 3, points.cex = 0.2, points.col, ...)
```

panel 171

```
## S3 method for class 'Ldk'
panel(x, cols, borders, fac, palette = col_summer,
 names = NULL, cex.names = 0.6, points = TRUE, points.pch = 3,
 points.cex = 0.2, points.col = "#333333", ...)
```

Arguments

x	The Coo object to plot.
	further arguments to maintain consistency with the generic plot.
dim	for coo_listpanel: a numeric of length 2 specifying the dimensions of the panel
cols	A vector of colors for drawing the outlines. Either a single value or of length exactly equal to the number of coordinates.
borders	A vector of colors for drawing the borders. Either a single value or of length exactly equals to the number of coordinates.
fac	a factor within the \$fac slot for colors
palette	a color palette
coo_sample	if not NULL the number of point per shape to display (to plot quickly)
names	whether to plot names or not. If TRUE uses shape names, a column name or number from \$fac can be supllied, or even a character of the same length of the Coo
cex.names	a cex for the names
points	logical (for Ldk) whether to draw points
points.pch	(for Ldk) and a pch for these points
points.cex	(for Ldk) and a cex for these points
points.col	(for Ldk) and a col for these points
nb.pts	the number of points to use for the shape reconstruction

Note

If you want to reorder shapes according to a factor, use arrange.

See Also

```
Other Coo_graphics: panel2, plot.Coo, stack.Coo
```

```
data(mosquito)
panel(mosquito, names=TRUE, cex.names=0.5)
data(olea)
panel(olea)
data(bot)
panel(bot, c(4, 10))
bot.f <- efourier(bot, 12)</pre>
panel(bot.f)
# an illustration of the use of fac
panel(bot, fac='type', palette=col_spring, names=TRUE)
```

172 PCA

panel2

Family picture of shapes (ggplot2)

Description

May replace panel one day.

Usage

```
panel2(Coo)
```

Arguments

Coo

a Coo object

Value

```
a ggplot2 object
```

See Also

```
Other Coo_graphics: panel, plot.Coo, stack.Coo
```

Examples

```
data(shapes)
panel2(shapes)
```

PCA

Principal component analysis on Coe objects

Description

Performs a PCA on Coe objects, using prcomp.

```
PCA(x, scale., center, fac)
## S3 method for class 'OutCoe'
PCA(x, scale. = FALSE, center = TRUE, fac)
## S3 method for class 'OpnCoe'
PCA(x, scale. = FALSE, center = TRUE, fac)
## S3 method for class 'LdkCoe'
```

PCA 173

```
PCA(x, scale. = FALSE, center = TRUE, fac)
## S3 method for class 'TraCoe'
PCA(x, scale. = TRUE, center = TRUE, fac)
## Default S3 method:
PCA(x, scale. = TRUE, center = TRUE, fac = data.frame())
as.PCA(x, fac)
```

Arguments

x a Coe object or an appropriate object (eg prcomp) for as .PCA scale. logical whether to scale the input data center logical whether to center the input data fac any factor or data.frame to be passed to as .PCA and for use with plot.PCA

Details

By default, methods on Coe object do not scale the input data but center them. There is also a generic method (eg for traditional morphometrics) that centers and scales data.

Value

a 'PCA' object on which to apply plot.PCA

See Also

Other multivariate: CLUST, KMEANS, LDA, MANOVA_PW, MANOVA

```
data(bot)
bot.f <- efourier(bot, 12)
bot.p <- PCA(bot.f)
bot.p
plot(bot.p, morpho=FALSE)
plot(bot.p, 'type')

data(olea)
op <- npoly(olea, 5)
op.p <- PCA(op)
op.p
plot(op.p, 1, morpho=TRUE)

data(wings)
wp <- fgProcrustes(wings, tol=1e-4)
wpp <- PCA(wp)
wpp
plot(wpp, 1)</pre>
```

174 PCcontrib

```
# "foreign prcomp"
head(iris)
iris.p <- prcomp(iris[, 1:4])
iris.p <- as.PCA(iris.p, iris[, 5])
class(iris.p)
plot(iris.p, 1)</pre>
```

PCcontrib

Shape variation along PC axes

Description

Calculates and plots shape variation along Principal Component axes.

Usage

Arguments

```
PCA a PCA object
... additional parameter to pass to coo_draw

nax a single or a range of PC axes

sd.r a single or a range of mean +/- sd values (eg: c(-1, 0, 1))

gap for combined-Coe, an adjustment variable for gap between shapes. (bug)Default to 1 (whish should never superimpose shapes), reduce it to get a more compact plot.
```

Value

a ggplot object

```
data(bot)
bot.p <- PCA(efourier(bot, 12))
PCcontrib(bot.p)
## Not run:
library(ggplot2)
gg <- PCcontrib(bot.p, nax=1:8, sd.r=c(-5, -3, -2, -1, -0.5, 0, 0.5, 1, 2, 3, 5))
gg + geom_polygon(fill="slategrey", col="black") + ggtitle("A nice title")
## End(Not run)</pre>
```

perm 175

perm

Permutes and breed Coe (and others) objects

Description

This methods applies permutations column-wise on the coe of any Coe object but relies on a function that can be used on any matrix. For a Coe object, it uses sample on every column (or row) with (or without) replacement.

Usage

```
perm(x, ...)
## Default S3 method:
perm(x, margin = 2, size, replace = TRUE, ...)
## S3 method for class 'Coe'
perm(x, size, replace = TRUE, ...)
```

Arguments

```
    the object to permute
    useless here
    numeric whether 1 or 2 (rows or columns)
    numeric the required size for the final object, same size by default.
    logical, whether to use sample with replacement
```

See Also

Other farming: breed

```
m <- matrix(1:12, nrow=3)
m
perm(m, margin=2, size=5)
perm(m, margin=1, size=10)

data(bot)
bot.f <- efourier(bot, 12)
bot.m <- perm(bot.f, 80)
bot.m
panel(bot.m)</pre>
```

176 plot.Coo

pix2chc

Converts (x; y) coordinates to chaincoded coordinates

Description

Useful to convert (x; y) coordinates to chain-coded coordinates.

Usage

```
pix2chc(coo)
```

Arguments

coo

(x; y) coordinates passed as a matrix

References

Kuhl, F. P., & Giardina, C. R. (1982). Elliptic Fourier features of a closed contour. *Computer Graphics and Image Processing*, 18(3), 236-258.

See Also

```
chc2pix
```

Other babel functions: bind_db, chc2Out, chc2pix, import_StereoMorph_curve1, import_jpg, import_tps, nef2Coe, ntsrow2Coo, tie_jpg_txt, tps2coo

Examples

```
data(shapes)
pix2chc(shapes[1])
```

plot.Coo

Graphical inspection of shapes

Description

Allows to plot shapes, individually, for Coo (Out, Opn or Ldk) objects.

```
## S3 method for class 'Coo'
plot(x, id, ...)
```

plot.LDA 177

Arguments

```
    the Coo object
    the id of the shape to plot, if not provided a random shape is plotted. If passed with 'all' all shapes are plotted, one by one.
    further arguments to be passed to coo_plot
```

See Also

```
Other Coo_graphics: panel2, panel, stack.Coo
```

Examples

```
## Not run:
data(bot)
plot(bot, 5)
plot(bot)
plot(bot, 5, pch=3, points=TRUE) # an example of '...' use
## End(Not run)
```

plot.LDA

Plots Linear Discriminant Analysis

Description

The Momocs' LDA plotter with many graphical options.

```
## S3 method for class 'LDA'
plot(x, fac = x fac, xax = 1, yax = 2, points = TRUE,
  col = "#000000", pch = 20, cex = 0.5, palette = col_solarized,
  center.origin = FALSE, zoom = 1, bg = par("bg"), grid = TRUE,
  nb.grids = 3, morphospace = FALSE, pos.shp = c("range", "full",
  "circle", "xy", "range_axes", "full_axes")[1], amp.shp = 1, size.shp = 1,
  nb.shp = 12, nr.shp = 6, nc.shp = 5, rotate.shp = 0,
  flipx.shp = FALSE, flipy.shp = FALSE, pts.shp = 60,
  border.shp = col_alpha("#000000", 0.5), lwd.shp = 1,
  col.shp = col_alpha("#000000", 0.95), stars = FALSE, ellipses = FALSE,
  conf.ellipses = 0.5, ellipsesax = TRUE, conf.ellipsesax = c(0.5, 0.9),
  lty.ellipsesax = 1, lwd.ellipsesax = sqrt(2), chull = FALSE,
  chull.lty = 1, chull.filled = FALSE, chull.filled.alpha = 0.92,
  density = FALSE, lev.density = 20, contour = FALSE, lev.contour = 3,
  n.kde2d = 100, delaunay = FALSE, loadings = FALSE,
  labelspoints = FALSE, col.labelspoints = par("fg"),
  cex.labelspoints = 0.6, abbreviate.labelspoints = TRUE,
  labelsgroups = TRUE, cex.labelsgroups = 0.8, rect.labelsgroups = FALSE,
```

178 plot.LDA

```
abbreviate.labelsgroups = FALSE, color.legend = FALSE, axisnames = TRUE, axisvar = TRUE, eigen = TRUE, rug = TRUE, title = substitute(x), box = TRUE, old.par = TRUE, ...)
```

Arguments

col.shp

stars

the color of the shapes

logical whether to draw "stars"

Х an object of class "LDA", typically obtained with LDA fac name or the column id from the \$fac slot, or a formula combining colum names from the \$fac slot (cf. examples). A factor or a numeric of the same length can also be passed on the fly. the first PC axis хах yax the second PC axis points logical whether to plot points col a color for the points (either global, for every level of the fac or for every individual, see examples) a pch for the points (either global, for every level of the fac or for every individpch ual, see examples) cex the size of the points a palette palette center.origin logical whether to center the plot onto the origin to keep your distances zoom color for the background bg grid logical whether to draw a grid nb.grids and how many of them morphospace logical whether to add the morphological space passed to pos.shapes, one of "range", "full", "circle", "xy", "range_axes", "full_axes". pos.shp Or directly a matrix of positions. See pos.shapes amp.shp amplification factor for shape deformation size.shp the size of the shapes (pos.shp="circle") the number of shapes on the compass nb.shp (pos.shp="full" or "range) the number of shapes per row nr.shp (pos.shp="full" or "range) the number of shapes per column nc.shp angle in radians to rotate shapes (if several methods, a vector of angles) rotate.shp same as above, whether to apply coo_flipx flipx.shp flipy.shp same as above, whether to apply coo_flipy pts.shp the number of points fro drawing shapes border.shp the border color of the shapes the line width for these shapes lwd.shp

plot.LDA 179

ellipses logical whether to draw confidence ellipses

conf.ellipses numeric the quantile for the (bivariate gaussian) confidence ellipses

ellipsesax logical whether to draw ellipse axes

conf.ellipsesax

one or more numeric, the quantiles for the (bivariate gaussian) ellipses axes

lty.ellipsesax if yes, the lty with which to draw these axes lwd.ellipsesax if yes, one or more numeric for the line widths

chull logical whether to draw a convex hull

chull.lty if yes, its linetype

chull.filled logical whether to add filled convex hulls

chull.filled.alpha

numeric alpha transparency

density whether to add a 2d density kernel estimation (based on kde2d)

lev.density if yes, the number of levels to plot (through image) contour whether to add contour lines based on 2d density kernel lev.contour if yes, the (approximate) number of lines to draw

n.kde2d the number of bins for kde2d, ie the 'smoothness' of density kernel

delaunay logical whether to add a delaunay 'mesh' between points loadings logical whether to add loadings for every variables

labelspoints if TRUE rownames are used as labels, a colname from \$fac can also be passed

col.labelspoints

a color for these labels, otherwise inherited from fac

cex.labelspoints

a cex for these labels

abbreviate.labelspoints

logical whether to abbreviate

labelsgroups logical whether to add labels for groups

cex.labelsgroups

ifyes, a numeric for the size of the labels

rect.labelsgroups

logical whether to add a rectangle behind groups names

abbreviate.labelsgroups

logical, whether to abbreviate group names

color.legend logical whether to add a (cheap) color legend for numeric fac

axisnames logical whether to add PC names

axisvar logical whether to draw the variance they explain eigen logical whether to draw a plot of the eigen values

rug logical whether to add rug to margins

title character a name for the plot

box whether to draw a box around the plotting region

old.par whether to restore the old par. Set it to FALSE if you want to reuse the graphical

window.

... useless here, just to fit the generic plot

plot.PCA

Details

Widely inspired by the "layers" philosophy behind graphical functions of the ade4 R package.

Note

Morphospaces are deprecated so far. 99 is shared with plot.PCA waiting for a general rewriting of a multivariate plotter. See https://github.com/vbonhomme/Momocs/issues/121

See Also

```
LDA, plot_CV, plot_CV2, plot.PCA.
```

Examples

```
data(bot)
bot.f <- efourier(bot, 24)
bot.l <- LDA(PCA(bot.f), "type")
plot(bot.l)

bot.f$fac$fake <- factor(rep(letters[1:4], each=10))
bot.l <- LDA(PCA(bot.f), "fake")
plot(bot.l)</pre>
```

plot.PCA

Plots Principal Component Analysis

Description

The Momocs' PCA plotter with morphospaces and many graphical options.

```
## S3 method for class 'PCA'
plot(x, fac, xax = 1, yax = 2, points = TRUE,
  col = "#000000", pch = 20, cex = 0.5, palette = col_solarized,
  center.origin = FALSE, zoom = 1, bg = par("bg"), grid = TRUE,
 nb.grids = 3, morphospace = TRUE, pos.shp = c("range", "full", "circle",
  "xy", "range_axes", "full_axes")[1], amp.shp = 1, size.shp = 1,
  nb.shp = 12, nr.shp = 6, nc.shp = 5, rotate.shp = 0,
  flipx.shp = FALSE, flipy.shp = FALSE, pts.shp = 60,
 border.shp = col_alpha("#000000", 0.5), lwd.shp = 1,
  col.shp = col_alpha("#000000", 0.95), stars = FALSE, ellipses = FALSE,
  conf.ellipses = 0.5, ellipsesax = TRUE, conf.ellipsesax = c(0.5, 0.9),
  lty.ellipsesax = 1, lwd.ellipsesax = sqrt(2), chull = FALSE,
  chull.lty = 1, chull.filled = FALSE, chull.filled.alpha = 0.92,
  density = FALSE, lev.density = 20, contour = FALSE, lev.contour = 3,
  n.kde2d = 100, delaunay = FALSE, loadings = FALSE,
  labelspoints = FALSE, col.labelspoints = par("fg"),
```

```
cex.labelspoints = 0.6, abbreviate.labelspoints = TRUE,
labelsgroups = TRUE, cex.labelsgroups = 0.8, rect.labelsgroups = FALSE,
abbreviate.labelsgroups = FALSE, color.legend = FALSE, axisnames = TRUE,
axisvar = TRUE, eigen = TRUE, rug = TRUE, title = substitute(x),
box = TRUE, old.par = TRUE, ...)
```

Arguments

border.shp

lwd.shp

the border color of the shapes

the line width for these shapes

an object of class "PCA", typically obtained with PCA Х fac name or the column id from the \$fac slot, or a formula combining colum names from the \$fac slot (cf. examples). A factor or a numeric of the same length can also be passed on the fly. the first PC axis xax the second PC axis yax logical whether to plot points points col a color for the points (either global, for every level of the fac or for every individual, see examples) a pch for the points (either global, for every level of the fac or for every individpch ual, see examples) the size of the points cex a palette palette center.origin logical whether to center the plot onto the origin to keep your distances zoom color for the background bg logical whether to draw a grid grid nb.grids and how many of them morphospace logical whether to add the morphological space pos.shp passed to pos.shapes, one of "range", "full", "circle", "xy", "range_axes", "full_axes". Or directly a matrix of positions. See pos.shapes amplification factor for shape deformation amp.shp size.shp the size of the shapes nb.shp (pos.shp="circle") the number of shapes on the compass (pos.shp="full" or "range) the number of shapes per row nr.shp (pos.shp="full" or "range) the number of shapes per column nc.shp rotate.shp angle in radians to rotate shapes (if several methods, a vector of angles) flipx.shp same as above, whether to apply coo_flipx same as above, whether to apply coo_flipy flipy.shp pts.shp the number of points fro drawing shapes

col. shp the color of the shapes

stars logical whether to draw "stars"

ellipses logical whether to draw confidence ellipses

conf.ellipses numeric the quantile for the (bivariate gaussian) confidence ellipses

ellipsesax logical whether to draw ellipse axes

conf.ellipsesax

one or more numeric, the quantiles for the (bivariate gaussian) ellipses axes

lty.ellipsesax if yes, the lty with which to draw these axes lwd.ellipsesax if yes, one or more numeric for the line widths

chull logical whether to draw a convex hull

chull.lty if yes, its linetype

chull.filled logical whether to add filled convex hulls

chull.filled.alpha

numeric alpha transparency

density whether to add a 2d density kernel estimation (based on kde2d)

lev.density if yes, the number of levels to plot (through image) contour whether to add contour lines based on 2d density kernel

lev.contour if yes, the (approximate) number of lines to draw

n.kde2d the number of bins for kde2d, ie the 'smoothness' of density kernel

delaunay logical whether to add a delaunay 'mesh' between points

loadings logical whether to add loadings for every variables

labelspoints if TRUE rownames are used as labels, a colname from \$fac can also be passed

col.labelspoints

a color for these labels, otherwise inherited from fac

cex.labelspoints

a cex for these labels

abbreviate.labelspoints

logical whether to abbreviate

labelsgroups logical whether to add labels for groups

cex.labelsgroups

ifyes, a numeric for the size of the labels

rect.labelsgroups

logical whether to add a rectangle behind groups names

abbreviate.labelsgroups

logical, whether to abbreviate group names

color.legend logical whether to add a (cheap) color legend for numeric fac

axisnames logical whether to add PC names

axisvar logical whether to draw the variance they explain eigen logical whether to draw a plot of the eigen values

rug logical whether to add rug to margins

title	character a name for the plot
box	whether to draw a box around the plotting region
old.par	whether to restore the old par. Set it to FALSE if you want to reuse the graphical window.
	useless here, just to fit the generic plot

Details

Widely inspired by the "layers" philosophy behind graphical functions of the ade4 R package.

See Also

```
plot.LDA
```

```
## Not run:
data(bot)
bot.f <- efourier(bot, 12)</pre>
bot.p <- PCA(bot.f)
### Morphospace options
plot(bot.p, pos.shp="full")
plot(bot.p, pos.shp="range")
plot(bot.p, pos.shp="xy")
plot(bot.p, pos.shp="circle")
plot(bot.p, pos.shp="range_axes")
plot(bot.p, pos.shp="full_axes")
plot(bot.p, morpho=FALSE)
### Passing factors to plot.PCA
# 3 equivalent methods
plot(bot.p, "type")
plot(bot.p, 1)
plot(bot.p, ~type)
# let's create a dummy factor of the correct length
# and another added to the $fac with mutate
# and a numeric of the correct length
data(bot)
f <- factor(rep(letters[1:2], 20))</pre>
z <- factor(rep(LETTERS[1:2], 20))</pre>
bot %<>% mutate(cs=coo_centsize(.), z=z)
bp <- bot %>% efourier %>% PCA
# so bp contains type, cs (numeric) and z; not f
# yet f can be passed on the fly
plot(bp, f)
# numeric fac are allowed
plot(bp, "cs", cex=3, color.legend=TRUE)
# numeric can also be passed on the fly
```

```
plot(bp, 1:40, cex=2)
# formula allows combinations of factors
plot(bp, ~type+z)
### other morphometric approaches works the same
# open curves
data(olea)
op <- npoly(olea, 5)</pre>
op.p <- PCA(op)
op.p
plot(op.p, ~ domes + var, morpho=TRUE) # use of formula
# landmarks
data(wings)
wp <- fgProcrustes(wings, tol=1e-4)</pre>
wpp <- PCA(wp)</pre>
wpp
plot(wpp, 1)
# traditionnal measurements
data(flower)
flower %>% PCA %>% plot(1)
# plot.PCA can be used after a PCA
data(iris)
PCA(iris[, 1:4], fac=iris$Species) %>% plot(1)
### Cosmetic options
# window
plot(bp, 1, zoom=2)
plot(bp, zoom=0.5)
plot(bp, center.origin=FALSE, grid=FALSE)
# ellipses
plot(bp, 1, conf.ellipsesax=2/3)
plot(bp, 1, ellipsesax=FALSE)
plot(bp, 1, ellipsesax=TRUE, ellipses=TRUE)
# stars
plot(bp, 1, stars=TRUE, ellipsesax=FALSE)
# convex hulls
plot(bp, 1, chull=TRUE)
plot(bp, 1, chull.lty=3)
# filled convex hulls
plot(bp, 1, chull.filled=TRUE)
plot(bp, 1, chull.filled.alpha = 0.8, chull.lty =1) # you can omit chull.filled=TRUE
# density kernel
plot(bp, 1, density=TRUE, contour=TRUE, lev.contour=10)
# delaunay
```

plot2

```
plot(bp, 1, delaunay=TRUE)

# loadings
flower %>% PCA %>% plot(1, loadings=TRUE)

# point/group labelling
plot(bp, 1, labelspoint=TRUE) # see options for abbreviations
plot(bp, 1, labelsgroup=TRUE) # see options for abbreviations

# clean axes, no rug, no border, random title
plot(bp, axisvar=FALSE, axisnames=FALSE, rug=FALSE, box=FALSE, title="random")

# no eigen
plot(bp, eigen=FALSE) # eigen cause troubles to graphical window
# eigen may causes troubles to the graphical window. you can try old.par = TRUE

## End(Not run)
```

plot2

Plots Principal Component Analysis ala ggplot2

Description

Displays a PCA object with many useful layers in morphometrics, notably morphological space.

Usage

```
plot2(x, ...)
## S3 method for class 'PCA'
plot2(x, fac = NULL, xax = "PC1", yax = "PC2",
    points = TRUE, shapes = TRUE, shapes_pos = "full", ellipse = FALSE,
    ellipseax = FALSE, ellipse_type = "t", ellipse_level = 0.5,
    stars = FALSE, chull = FALSE, text, text_abbreviatemin = 1,
    text_size = 5, center = TRUE, legend_position = "bottom",
    title = substitute(x), return_df = FALSE, ...)
```

Arguments

X	a PCA object
	more arguments to be passed to xxx.
fac	(optionnal)
xax	the name of the component to plot on the x-axis, eg "PC1"
yax	the name of the component to plot on the y-axis, eg "PC2"
points	logical whether to draw points
shapes	logical whether to draw shapes

186 plot2

a position parameter xxx either "axes", "full", "range", "circle", "xy" or a custom shapes_pos data.frame of positions logical whether to draw confidence ellipses ellipse ellipseax logical whether to draw confidence ellipses axes ellipse_type character one of the available type in ggplot2::stat_ellipse ellipse_level numeric the confidence level for ellipses logical whether to draw segments between every point and their group centroid stars logical whether to draw convex hull chull numeric: 1 is for labelling every shape, 2 for group centroids, 3 is for evry shape text using group names text_abbreviatemin numeric if not missing, the min.length sensu abbreviate numeric to adjust the size of labels text_size center logical whether to center the plot legend_position character for theme(legend.position), either "none", "top", "bottom", "left", "right"

logical whether to return ggplot or the data_frames behind

Details

title

return_df

Detail the df s. Detail the calculations.

character a title for the plot

Value

a ggplot object or a list of data.frames:

- df0
- df_shp
- df_ellipseax
- df_stars
- df chull

```
data(bot)
bp <- PCA(efourier(bot, 8))
plot2(bp)
plot2(bp, "type")
plot2(bp, "type", ellipse=TRUE)
# data(bot)

# bot$fac$fake <- factor(rep(letters[1:4], 10))
# bot$fac$fake2 <- c(runif(20), runif(20, 5, 10))
# xx + stat_density2d(aes(fill = ..level..), geom="polygon", alpha=0.1)</pre>
```

plot3 187

plot3

#' @describeIn plot.PCA #' @export mplot <- plot.PCA Plots a combination of the three first PCs

Description

Creates a 2 x 3 layout with, from top to bottom and form left to right: PC1-PC2, PC1-PC3, PC2-3, and the barplot of eigenvalues percentages.

Usage

```
plot3(PCA, ...)
## S3 method for class 'PCA'
plot3(PCA, ...)
```

Arguments

```
PCA a PCA object
... additional arguments to fed plot.PCA
```

Examples

```
data(bot)
bot.f <- efourier(bot, 12)
bot.p <- PCA(bot.f)
plot3(bot.p) # no groups
plot3(bot.p, 1) # groups
plot3(bot.p, "type", pos.shp="circle") # all plot.PCA args should work</pre>
```

plot_CV

Plots a cross-validation table as an heatmap

Description

Either with frequencies (or percentages) plus marginal sums, and values as heatmaps. Used in Momocs for plotting cross-validation tables but may be used for any table (likely with freq=FALSE).

Usage

```
plot_CV(x, ...)
## Default S3 method:
plot_CV(x, freq = TRUE, rm0 = TRUE, cex = 5,
  round = 2, labels = TRUE, ...)
```

188 plot_CV2

```
## S3 method for class 'LDA'
plot_CV(x, freq = TRUE, rm0 = TRUE, cex = 5, round = 2,
  labels = TRUE, ...)
```

Arguments

```
x a (cross-validation table) or an LDA object
... only used for the generic
freq logical whether to display frequencies or counts
rm0 logical whether to remove zeros
cex numeric to adjust labels in every cell. NA to remove them
round numeric, when freq=TRUE how many decimals should we display
labels logical whether to display freq or counts as text labels
```

Value

a ggplot object

See Also

LDA, plot.LDA, and (pretty much the same) Ntable.

Examples

```
data(olea)
ol <- LDA(PCA(opoly(olea, 5)), "domes")
gg <- plot_CV(ol) # just a wrapper for plot_CV(ol$CV.tab) though
gg</pre>
```

plot_CV2

Plots a cross-correlation table

Description

Or any contingency/confusion table. A simple graphic representation based on variable width and/or color for arrows or segments, based on the relative frequencies.

Usage

```
plot_CV2(x, ...)
## S3 method for class 'LDA'
plot_CV2(x, ...)
## S3 method for class 'table'
plot_CV2(x, links.FUN = arrows, col = TRUE,
    col0 = "black", col.breaks = 5, palette = col_heat, lwd = TRUE,
    lwd0 = 5, gap.dots = 0.2, pch.dots = 20, gap.names = 0.25,
    cex.names = 1, legend = TRUE, ...)
```

plot_CV2 189

Arguments

```
an LDA object, a table or a squared matrix
Х
                  useless here.
. . .
links.FUN
                  a function to draw the links: eg segments (by default), arrows, etc.
col
                  logical whether to vary the color of the links
col0
                  a color for the default link (when col = FALSE)
                  the number of different colors
col.breaks
palette
                  a color palette, eg col summer, col hot, etc.
lwd
                  logical whether to vary the width of the links
                   a width for the default link (when lwd = FALSE)
lwd0
gap.dots
                  numeric to set space between the dots and the links
pch.dots
                  a pch for the dots
                  numeric to set the space between the dots and the group names
gap.names
cex.names
                  a cex for the names
legend
                  logical whether to add a legend
```

See Also

LDA, plot.LDA, plot_CV.

```
# Below various table that you can try. We will use the last one for the examples.
## Not run:
#pure random
a <- sample(rep(letters[1:4], each=10))</pre>
b <- sample(rep(letters[1:4], each=10))</pre>
tab <- table(a, b)
# veryhuge + some structure
a <- sample(rep(letters[1:10], each=10))</pre>
b <- sample(rep(letters[1:10], each=10))</pre>
tab <- table(a, b)
diag(tab) <- round(runif(10, 10, 20))</pre>
tab <- matrix(c(8, 3, 1, 0, 0,
                 2, 7, 1, 2, 3,
                 3, 5, 9, 1, 1,
                 1, 1, 2, 7, 1,
                 0, 9, 1, 4, 5), 5, 5, byrow=TRUE)
tab <- as.table(tab)</pre>
## End(Not run)
# good prediction
tab <- matrix(c(8, 1, 1, 0, 0,
               1, 7, 1, 0, 0,
```

190 plot_devsegments

```
1, 2, 9, 1, 0,
                 1, 1, 1, 7, 1,
                 0, 0, 0, 1, 8), 5, 5, byrow=TRUE)
tab <- as.table(tab)</pre>
plot_CV2(tab)
plot_CV2(tab, arrows) # if you prefer arrows
plot_CV2(tab, lwd=FALSE, lwd0=1, palette=col_india) # if you like india but not lwds
plot_CV2(tab, col=FALSE, col0='pink') # only lwd
plot\_CV2(tab,\ col=FALSE,\ lwd0=10,\ cex.names=2)\ \#\ if\ you're\ getting\ old
plot_CV2(tab, col=FALSE, lwd=FALSE) # pretty but useless
plot_CV2(tab, col.breaks=2) # if you think it's either good or bad
plot_CV2(tab, pch=NA) # if you do not like dots
plot_CV2(tab, gap.dots=0) # if you want to 'fill the gap'
plot_CV2(tab, gap.dots=1) # or not
#trilo examples
data(trilo)
trilo.f <- efourier(trilo, 8)</pre>
trilo.1 <- LDA(PCA(trilo.f), 'onto')</pre>
trilo.l
plot_CV2(trilo.1)
# olea example
data(olea)
op <- opoly(olea, 5)</pre>
opl <- LDA(PCA(op), 'var')</pre>
plot_CV2(opl)
```

plot_devsegments

Draws colored segments from a matrix of coordinates.

Description

Given a matrix of (x; y) coordinates, draws segments between every points defined by the row of the matrix and uses a color to display an information.

Usage

```
plot_devsegments(coo, cols, lwd = 1)
```

Arguments

C00	A matrix of coordinates.
cols	A vector of color of length = nrow(coo).
lwd	The 1wd to use for drawing segments.

pos.shapes 191

See Also

Other plotting functions: Ntable, conf_ell, coo_arrows, coo_draw, coo_listpanel, coo_lolli, coo_plot, coo_ruban, ldk_chull, ldk_confell, ldk_contour, ldk_labels, ldk_links

Examples

```
# we load some data
data(bot)
guinness <- coo_sample(bot[9], 100)</pre>
# we calculate the diff between 48 harm and one with 6 harm.
out.6
         <- efourier_i(efourier(guinness, nb.h=6), nb.pts=120)
# we calculate deviations, you can also try 'edm'
dev <- edm_nearest(out.6, guinness) / coo_centsize(out.6)</pre>
# we prepare the color scale
d.cut <- cut(dev, breaks=20, labels=FALSE, include.lowest=TRUE)</pre>
cols <- paste0(col_summer(20)[d.cut], 'CC')</pre>
# we draw the results
coo_plot(guinness, main='Guiness fitted with 6 harm.', points=FALSE)
par(xpd=NA)
plot_devsegments(out.6, cols=cols, lwd=4)
coo_draw(out.6, lty=2, points=FALSE, col=NA)
par(xpd=FALSE)
```

pos.shapes

Calculates nice positions on a plane for drawing shapes

Description

Calculates nice positions on a plane for drawing shapes

Usage

```
pos.shapes(xy, pos.shp = c("range", "full", "circle", "xy", "range_axes",
    "full_axes")[1], nb.shp = 12, nr.shp = 6, nc.shp = 5, circle.r.shp)
```

Arguments

xy	todo
pos.shp	how shapes should be positionned: range of xy, full extent of the plane, circle as a rosewind, on xy values provided, range_axes on the range of xy but on the axes, full_axes same thing but on (0.85) range of the axes. You can also directly pass a matrix (or a data.frame) with columns named ("x", "y").
nb.shp	the total number of shapes

192 pProcrustes

```
nr.shp the number of rows to position shapes
nc.shp the number of cols to position shapes
circle.r.shp if circle, its radius
```

Details

See plot.PCA for self-speaking examples

рPr	rocrustes	
DL I	ociustes	

Partial Procrustes alignment between two shapes

Description

Directly borrowed from Claude (2008), and called pPsup there.

Usage

```
pProcrustes(coo1, coo2)
```

Arguments

coo1	Configuration matrix to be superimposed onto the centered preshape of coo2.
coo2	Reference configuration matrix.

Value

a list with components

- coo1 superimposed centered preshape of coo1 onto the centered preshape of coo2
- coo2 centered preshape of coo2
- rotation rotation matrix
- DP partial Procrustes distance between coo1 and coo2
- rho trigonometric Procrustes distance.

References

```
Claude, J. (2008). Morphometrics with R. Analysis (p. 316). Springer.
```

See Also

Other procrustes functions: fProcrustes, fgProcrustes, fgsProcrustes

Ptolemy 193

Ptolemy	Ptolemaic ellipses and illustration of efourier

Description

Calculate and display Ptolemaic ellipses which illustrates intuitively the principle behing elliptical Fourier analysis.

Usage

```
Ptolemy(coo, t = seq(0, 2 * pi, length = 7)[-1], nb.h = 3, nb.pts = 360, palette = col_heat, zoom = 5/4, legend = TRUE, ...)
```

Arguments

C00	a matrix of (x; y) coordinates
t	A vector af angles (in radians) on which to display ellipses
nb.h	integer. The number of harmonics to display
nb.pts	integer. The number of points to use to display shapes
palette	a color palette
zoom	numeric a zoom factor for coo_plot
legend	logical. Whether to plot the legend box
	additional parameters to feed coo_plot

References

This method has been inspired by the figures found in the followings papers. Kuhl FP, Giardina CR. 1982. Elliptic Fourier features of a closed contour. *Computer Graphics and Image Processing* **18**: 236-258. Crampton JS. 1995. Elliptical Fourier shape analysis of fossil bivalves: some practical considerations. *Lethaia* **28**: 179-186.

See Also

An intuitive explanation of elliptic Fourier analysis can be found in the **Details** section of the efourier function.

exemplifying functions

```
data(shapes)
cat <- shapes[4]
Ptolemy(cat, main="An EFT cat")</pre>
```

194 reLDA

reLDA

"Redo" a LDA on new data

Description

Basically a wrapper around predict.lda from the package MASS. Uses a LDA model to classify new data.

Usage

```
reLDA(newdata, LDA)
## Default S3 method:
reLDA(newdata, LDA)
## S3 method for class 'PCA'
reLDA(newdata, LDA)
## S3 method for class 'Coe'
reLDA(newdata, LDA)
```

Arguments

newdata to use, a PCA or any Coe object LDA a LDA object

Value

a list with components (from ?predict.lda).

- · class factor of classification
- posterior probabilities for the classes
- x the scores of test cases
- res data.frame of the results
- CV.tab a confusion matrix of the results
- CV.correct proportion of the diagonal of CV.tab
- newdata the data used to calculate passed to predict.lda

Note

Uses the same number of PC axis as the LDA object provided. You should probably use rePCA in conjonction with reLDA to get 'homologous' scores.

rename 195

Examples

```
data(bot)
# We select the first 10 individuals in bot,
# for whisky and beer bottles. It will be our referential.
bot1 <- slice(bot, c(1:10, 21:30))
# Same thing for the other 10 individuals.
# It will be our unknown dataset on which we want
# to calculate classes.
bot2 <- slice(bot, c(11:20, 31:40))
# We calculate efourier on these two datasets
bot1.f <- efourier(bot1, 8)</pre>
bot2.f <- efourier(bot2, 8)</pre>
# Here we obtain our LDA model: first, a PCA, then a LDA
bot1.p <- PCA(bot1.f)
bot1.1 <- LDA(bot1.p, "type")</pre>
# we redo the same PCA since we worked with scores
bot2.p <- rePCA(bot1.p, bot2.f)</pre>
# we finally "predict" with the model obtained before
bot2.1 <- reLDA(bot2.p, bot1.1)</pre>
bot2.1
```

rename

Renames (ala dplyr) on Momocs objects

Description

Rename variables by name, from the \$fac. See examples and ?dplyr::rename.

Usage

```
rename(.data, ...)
```

Arguments

```
.data a Coo, Coe, PCA object... comma separated list of unquoted expressions
```

Details

dplyr verbs are maintained.

Value

a Momocs object of the same class.

196 rePCA

See Also

Other handling functions: arrange, at_least, chop, combine, dissolve, filter, mutate, rm_uncomplete, rw_rule, sample_frac, sample_n, select, slice, subset.Coo, transmute

Examples

```
olea
rename(olea, Ind=ind, View=view)
```

rePCA

"Redo" a PCA on a new Coe

Description

Basically reapply rotation to a new Coe object.

Usage

```
rePCA(PCA, Coe)
```

Arguments

```
PCA a PCA object
Coe a Coe object
```

Note

Quite experimental. Dimensions of the matrices and methods must match.

```
data(bot)
b <- filter(bot, type=="beer")
w <- filter(bot, type=="whisky")

bf <- efourier(b, 8)
bp <- PCA(bf)

wf <- efourier(w, 8)

# and we use the "beer" PCA on the whisky coefficients
wp <- rePCA(bp, wf)

plot(wp)

plot(bp, eig=FALSE)
points(wp$x[, 1:2], col="red", pch=4)</pre>
```

rescale 197

rescale	Rescale coordinates from pixels to real length units	

Description

Most of the time, (x, y) coordinates are recorded in pixels. If we want to have them in mm, cm, etc. we need to convert them and to rescale them. This functions does the job for the two cases: i) either an homogeneous rescaling factor, e.g. if all pictures were taken using the very same magnification or ii) with various magnifications. More in the Details section

Usage

```
rescale(x, scaling_factor, scale_mapping, magnification_col, ...)
```

Arguments

X	any Coo object
scaling_factor	numeric an homogeneous scaling factor. If all you (x,y) coordinates have the same scale
scale_mapping	either a data.frame or a path to read such a data.frame. It MUST contain three columns in that order: magnification found in \$fac[, "magnification_col"], pixels, real length unit. Column names do not matter but must be specified, as read.table reads with header=TRUE Every different magnification level found in \$fac[, "magnification_col"] must have its row.
magnification_c	ol
	the name or id of the \$fac column to look for magnification levels for every image
•••	additional arguments (besides header=TRUE) to pass to read.table if 'scale_mapping' is a path

Details

The i) case above is straightforward, if 1cm is 500pix long on all your pictures, just call rescale(your_Coo, scaling_factor and all coordinates will be in cm.

The ii) second case is more subtle. First you need to code in your /linkCoo object, in the fac slot, a column named, say "mag", for magnification. Imagine you have 4 magnifications: 0.5, 1, 2 and 5, we have to indicate for each magnification, how many pixels stands for how many units in the real world.

This information is passed as a data.frame, built externally or in R, that must look like this:

mag	pix	CII
0.5	1304	16
1	921	16
2	816	5
5	1020	5

198 rfourier

.

We have to do that because, for optical reasons, the ratio pix/real_unit, is not a linear function of the magnification.

All shapes will be centered to apply (the single or the different) scaling_factor.

Note

This function is simple but quite complex to detail. Feel free to contact me should you have any problem with it. You can just access its code (type rescale) and reply it yourself.

rfourier

Radii variation Fourier transform

Description

rfourier computes radii variation Fourier analysis from a matrix or a list of coordinates.

Usage

```
rfourier(x, ...)
## Default S3 method:
rfourier(x, nb.h, smooth.it = 0, norm = FALSE,
   verbose = TRUE, ...)
## S3 method for class 'Out'
rfourier(x, nb.h = 40, smooth.it = 0, norm = TRUE,
   verbose = TRUE, ...)
```

Arguments

useless here	
nb.h integer. The number of harmonics to use. If missing 99pc harmonic power used.	er is
smooth.it integer. The number of smoothing iterations to perform.	
norm logical. Whether to scale the outlines so that the mean length of the radii u equals 1.	sed
verbose logical. Whether to display diagnosis messages.	

Details

see the JSS paper for the maths behind.

rfourier_i 199

Value

A list with following components:

- an vector of $a_{1->n}$ harmonic coefficients
- bn vector of $b_{1->n}$ harmonic coefficients
- ao ao harmonic coefficient.
- r vector of radii lengths.

Note

Directly borrowed for Claude (2008), and called fourier1 there.

References

```
Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.
```

See Also

```
Other rfourier: rfourier_i, rfourier_shape
```

Examples

```
data(bot)
coo <- coo_center(bot[1]) # centering is almost mandatory for rfourier family
coo_plot(coo)
rf <- rfourier(coo, 12)
rf
rfi <- rfourier_i(rf)
coo_draw(rfi, border='red', col=NA)</pre>
```

rfourier_i

Inverse radii variation Fourier transform

Description

rfourier_i uses the inverse radii variation transformation to calculate a shape, when given a list with Fourier coefficients, typically obtained computed with rfourier.

Usage

```
rfourier_i(rf, nb.h, nb.pts = 120)
```

Arguments

```
rf A list with ao, an and bn components, typically as returned by rfourier.

nb.h integer. The number of harmonics to calculate/use.

nb.pts integer. The number of points to calculate.
```

200 rfourier_shape

Details

See the JSS paper for the maths behind.

Value

A list with components:

```
    x vector of x-coordinates.
    y vector of y-coordinates.
    angle vector of angles used.
    r vector of radii calculated.
```

Note

Directly borrowed for Claude (2008), and called ifourier1 there.

References

```
Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.
```

See Also

```
Other rfourier: rfourier_shape, rfourier
```

Examples

```
data(bot)
coo <- coo_center(bot[1]) # centering is almost mandatory for rfourier family
coo_plot(coo)
rf <- rfourier(coo, 12)
rf
rfi <- rfourier_i(rf)
coo_draw(rfi, border='red', col=NA)</pre>
```

rfourier_shape

Calculates and draw 'rfourier' shapes.

Description

rfourier_shape calculates a 'Fourier radii variation shape' given Fourier coefficients (see Details) or can generate some 'rfourier' shapes.

Usage

```
rfourier_shape(an, bn, nb.h, nb.pts = 80, alpha = 2, plot = TRUE)
```

rfourier_shape 201

Arguments

an	numeric. The a_n Fourier coefficients on which to calculate a shape.
bn	numeric. The b_n Fourier coefficients on which to calculate a shape.
nb.h	integer. The number of harmonics to use.
nb.pts	integer. The number of points to calculate.
alpha	numeric. The power coefficient associated with the (usually decreasing) amplitude of the Fourier coefficients (see Details).
plot	logical. Whether to plot or not the shape.

Details

rfourier_shape can be used by specifying nb.h and alpha. The coefficients are then sampled in an uniform distribution $(-\pi;\pi)$ and this amplitude is then divided by $harmonicrank^alpha$. If alpha is lower than 1, consecutive coefficients will thus increase. See rfourier for the mathematical background.

Value

A matrix of (x; y) coordinates.

References

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

See Also

```
Other rfourier: rfourier_i, rfourier
```

```
data(bot)
rf <- rfourier(bot[1], 24)
rfourier_shape(rf$an, rf$bn) # equivalent to rfourier_i(rf)
rfourier_shape() # not very interesting

rfourier_shape(nb.h=12) # better
rfourier_shape(nb.h=6, alpha=0.4, nb.pts=500)

# Butterflies of the vignette' cover
panel(Out(a2l(replicate(100,
rfourier_shape(nb.h=6, alpha=0.4, nb.pts=200, plot=FALSE)))))</pre>
```

202 rm_asym

rm_asym

Removes asymmetric and symmetric variation on OutCoe objects

Description

Only for those obtained with efourier, otherwise a message is returned. rm_asym sets all B and C coefficients to 0; rm_sym sets all A and D coefficients to 0.

Usage

```
rm_asym(OutCoe)
## Default S3 method:
rm_asym(OutCoe)
## S3 method for class 'OutCoe'
rm_asym(OutCoe)

rm_sym(OutCoe)
## Default S3 method:
rm_sym(OutCoe)
## S3 method for class 'OutCoe'
rm_sym(OutCoe)
```

Arguments

OutCoe

an OutCoe object

Value

an OutCoe object

References

Below: the first mention, and two applications.

#'

- Iwata, H., Niikura, S., Matsuura, S., Takano, Y., & Ukai, Y. (1998). Evaluation of variation of root shape of Japanese radish (Raphanus sativus L.) based on image analysis using elliptic Fourier descriptors. Euphytica, 102, 143-149.
- Iwata, H., Nesumi, H., Ninomiya, S., Takano, Y., & Ukai, Y. (2002). The Evaluation of Genotype x Environment Interactions of Citrus Leaf Morphology Using Image Analysis and Elliptic Fourier Descriptors. Breeding Science, 52(2), 89-94. doi:10.1270/jsbbs.52.89
- Yoshioka, Y., Iwata, H., Ohsawa, R., & Ninomiya, S. (2004). Analysis of petal shape variation of Primula sieboldii by elliptic fourier descriptors and principal component analysis. Annals of Botany, 94(5), 657-64. doi:10.1093/aob/mch190

rm_harm 203

See Also

```
symmetry.
```

Examples

```
data(bot)
botf <- efourier(bot, 12)
botSym <- rm_asym(botf)
boxplot(botSym)
botSymp <- PCA(botSym)
plot(botSymp)
plot(botSymp, amp.shp=5)

# Asymmetric only
botAsym <- rm_sym(botf)
boxplot(botAsym)
botAsymp <- PCA(botAsym)
plot(botAsymp)
# strange shapes because the original shape was mainly symmetric and would need its
# symmetric (eg its average) for a proper reconstruction. Should only be used like that:
plot(botAsymp, morpho=FALSE)</pre>
```

rm_harm

Removes harmonics from Coe objects

Description

Useful to drop harmonics on Coe objects. Should only work for Fourier-based approached since it looks for [A-D][1-drop] pattern.

Usage

```
rm_harm(x, drop = 1)
```

Arguments

x Coe object

drop numeric number of harmonics to drop

```
data(bot)
bf <- efourier(bot)
colnames(rm_harm(bf, 1)$coe)</pre>
```

204 rm_uncomplete

rm_uncomplete

Removes shapes with incomplete slices

Description

Imagine you take three views of every object you study. Then, you can slice, filter or chop your entire dataset, do morphometrics on it, then want to combine it. But if you have forgotten one view, or if it was impossible to obtain, for one or more objects, combine will not work. This function helps you to remove those ugly ducklings. See examples

Usage

```
rm_uncomplete(x, id, by)
```

Arguments

the object on which to remove uncomplete "by"
 of the objects, within the \$fac slot
 which column of the \$fac should objects have complete views

See Also

Other handling functions: arrange, at_least, chop, combine, dissolve, filter, mutate, rename, rw_rule, sample_frac, sample_n, select, slice, subset.Coo, transmute

```
# we load olea
data(olea)
# we select the var Aglan since it is the only one complete
ol <- filter(olea, var == "Aglan")
# everything seems fine
table(ol, "view", "ind")
# indeed
rm_uncomplete(ol, id="ind", by="view")

# we mess the ol object by removing a single shape
ol.pb <- slice(ol, -1)
table(ol.pb, "view", "ind")
# the counterpart has been removed with a notice
ol.ok <- rm_uncomplete(ol.pb, "ind", "view")
# now you can combine them
table(ol.ok, "view", "ind")</pre>
```

rw_rule 205

rw_rule

Renames levels on Momocs objects

Description

rw_rule stands for 'rewriting rule'. Typically useful to correct typos at the import, or merge some levels within covariates. Drops levels silently.

Usage

```
rw_rule(x, fac, from, to)
```

Arguments

X	any Momocs object
fac	the id of the name of the \$fac column to look for
from	which level(s) should be renamed; passed as a single or several characters
to	which name?

Value

a Momocs object of the same type

See Also

Other handling functions: arrange, at_least, chop, combine, dissolve, filter, mutate, rename, rm_uncomplete, sample_frac, sample_n, select, slice, subset.Coo, transmute

```
data(bot)
# single renaming
rw_rule(bot, "type", "whisky", "agua_de_fuego") # 1 instead of "type" is fine too
# several renaming
bot2 <- mutate(bot, fake=factor(rep(letters[1:4], 10)))
rw_rule(bot2, "fake", c("a", "e"), "ae")$fake</pre>
```

206 sample_frac

sample_frac	Samples a fraction of shapes in Momocs objects
-------------	--

Description

Sample a fraction of shapes from a Momocs object. See examples and ?dplyr::sample_n.

Usage

```
sample_frac(tbl, size, replace, fac, ...)
```

Arguments

tbl	a Momocs object (Coo, Coe)
size	numeric ($0 < \text{numeric} \le 1$) the fraction of shapes to select
replace	logical whether sample should be done with ot without replacement
fac	a column name if a \$fac is defined; size is then applied within levels of this factor
	additional arguments to dplyr::sample_frac and to maintain generic compatibility

Note

the resulting fraction is rounded with ceiling.

See Also

```
Other handling functions: arrange, at_least, chop, combine, dissolve, filter, mutate, rename, rm_uncomplete, rw_rule, sample_n, select, slice, subset.Coo, transmute
```

```
data(bot)
bot

# samples 50% of the bottles no matter their type
sample_frac(bot, 0.5)
# 80% bottles of beer and of whisky
table(sample_frac(bot, 0.8, fac="type"))
# bootstrap the same number of bootles of each type but with replacement
table(names(sample_frac(bot, 1, replace=TRUE)))
```

sample_n 207

sam	n1	e	n

Samples n shapes on Momocs objects

Description

Sample n shapes from a Momocs object. See examples and ?dplyr::sample_n.

Usage

```
sample_n(tbl, size, replace, fac, ...)
```

Arguments

tbl	a Momocs object (Coo, Coe)
size	numeric how many shapes should we sample
replace	logical whether sample should be done with ot without replacement
fac	a column name if a \$fac is defined; size is then applied within levels of this factor
	additional arguments to dplyr::sample_n and to maintain generic compatibility

See Also

```
Other handling functions: arrange, at_least, chop, combine, dissolve, filter, mutate, rename, rm_uncomplete, rw_rule, sample_frac, select, slice, subset.Coo, transmute
```

```
data(bot)
bot
# samples 5 bottles no matter their type
sample_n(bot, 5)
# 5 bottles of beer and of whisky
table(sample_n(bot, 5, fac="type"))
# many repetitions
table(names(sample_n(bot, 400, replace=TRUE)))
```

208 scree

scree

Methods for PCA eigen values

Description

A set of functions around PCA/LDA eigen/trace. scree calculates their proportion and cumulated proportion; scree_min returns the minimal number of axis to use to retain a given proportion; scree_plot displays a screeplot.

Usage

```
scree(x, nax)
## S3 method for class 'PCA'
scree(x, nax = 1:10)
## S3 method for class 'LDA'
scree(x, nax = 1:10)
scree_min(x, prop = 0.99)
scree_plot(x, nax = 1:10)
```

Arguments

x a PCA object

nax numeric range of axis to consider

prop numeric how many axis are enough this proportion of variance, if too high then

number of axis is returned.

Value

scree returns a data.frame, scree_min a numeric, scree_plot a ggplot.

```
data(bot)
# On PCA
bp <- PCA(efourier(bot))
scree(bp)
scree_min(bp, 0.99)
scree_min(bp, 1)

scree_plot(bp)
scree_plot(bp, 1:5)
# on LDA, it uses svd
data(olea)</pre>
```

select 209

```
bl <- LDA(PCA(opoly(olea)), "var")
scree(bl)</pre>
```

select

Selects (ala dplyr) on Momocs objects

Description

Select variables by name, from the \$fac. See examples and ?dplyr::select.

Usage

```
select(.data, ...)
```

Arguments

```
.data a Coo, Coe, PCA object... comma separated list of unquoted expressions
```

Details

dplyr verbs are maintained.

Value

a Momocs object of the same class.

See Also

```
Other handling functions: arrange, at_least, chop, combine, dissolve, filter, mutate, rename, rm_uncomplete, rw_rule, sample_frac, sample_n, slice, subset.Coo, transmute
```

```
data(olea)
olea
select(olea, var, view) # drops domes and ind
select(olea, variety=var, domesticated_status=domes, view)
# combine with filter with magrittr pipes
# only dorsal views, and 'var' and 'domes' columns
filter(olea, view=="VD") %>% select(var, domes)
```

210 slice

shapes

Data: Outline coordinates of various shapes

Description

Data: Outline coordinates of various shapes

Format

An Out object with the outline coordinates of some various shapes.

Source

Borrowed default shapes from (c) Adobe Photoshop. Do not send me to jail.

See Also

```
Other datasets: bot, chaff, charring, flower, hearts, molars, mosquito, oak, olea, trilo, wings
```

slice

Slices (ala dplyr) on Momocs objects

Description

Select rows by position, based on \$fac. See examples and ?dplyr::slice.

Usage

```
slice(.data, ...)
```

Arguments

Details

dplyr verbs are maintained.

Value

a Momocs object of the same class.

slidings_scheme 211

See Also

Other handling functions: arrange, at_least, chop, combine, dissolve, filter, mutate, rename, rm_uncomplete, rw_rule, sample_frac, sample_n, select, subset.Coo, transmute

Examples

```
olea
slice(olea, 1) # if you only want the coordinates, try bot[1]
slice(olea, 1:20)
slice(olea, 21:30)
```

slidings_scheme

Extracts partitions of sliding coordinates

Description

Helper function that deduces (likely to be a reminder) partition scheme from \$slidings of Ldk objects.

Usage

```
slidings_scheme(Coo)
```

Arguments

Coo

an Ldk object

Value

a list with two components: n the number of partition; id their position. Or a NULL if no slidings are defined

See Also

```
Other ldk/slidings methods: def_ldk, def_slidings, get_ldk, get_slidings
```

```
# no slidings defined a NULL is returned with a message
slidings_scheme(wings)
# slidings defined
slidings_scheme(chaff)
```

212 stack.Coo

stack.Coo

Family picture of shapes

Description

Plots all the outlines, on the same graph, from a Coo (Out, Opn or Ldk) object.

Usage

```
## S3 method for class 'Coo'
stack(x, cols, borders, fac, palette = col_summer,
   coo_sample = 120, points = FALSE, first.point = TRUE, centroid = TRUE,
   ldk = TRUE, ldk_pch = 3, ldk_col = "#FF000055", ldk_cex = 0.5,
   ldk_links = FALSE, ldk_confell = FALSE, ldk_contour = FALSE,
   ldk_chull = FALSE, ldk_labels = FALSE, xy.axis = TRUE,
   title = substitute(x), ...)

## S3 method for class 'Ldk'
stack(x, cols, borders, first.point = TRUE, centroid = TRUE,
   ldk = TRUE, ldk_pch = 20, ldk_col = col_alpha("#000000", 0.5),
   ldk_cex = 0.3, meanshape = FALSE, meanshape_col = "#FF0000",
   ldk_links = FALSE, ldk_confell = FALSE, ldk_contour = FALSE,
   ldk_chull = FALSE, ldk_labels = FALSE, slidings = TRUE,
   slidings_pch = "", xy.axis = TRUE, title = substitute(x), ...)
```

Arguments

X	The Coo object to plot.
cols	A vector of colors for drawing the outlines. Either a single value or of length exactly equals to the number of coordinates.
borders	A vector of colors for drawing the borders. Either a single value or of length exactly equals to the number of coordinates.
fac	a factor within the \$fac slot for colors
palette	a color palette to use when fac is provided
coo_sample	if not NULL the number of point per shape to display (to plot quickly)
points	logical whether to draw or not points
first.point	logical whether to draw or not the first point
centroid	logical whether to draw or not the centroid
ldk	logical. Whether to display landmarks (if any).
ldk_pch	pch for these landmarks
ldk_col	color for these landmarks
ldk_cex	cex for these landmarks
ldk_links	logical whether to draw links (of the mean shape)

stack2 213

ldk_confelllogical whether to draw conf ellipsesldk_contourlogical whether to draw contour linesldk_chulllogical whether to draw convex hullldk_labelslogical whether to draw landmark labelsxy.axiswhether to draw or not the x and y axes

title a title for the plot. The name of the Coo by default

... further arguments to be passed to coo_plot

meanshape logical whether to add meanshape related stuff (below)

meanshape_col a color for everything meanshape

slidings logical whether to draw slidings semi landmarks

slidings_pch pch for semi landmarks

See Also

Other Coo_graphics: panel2, panel, plot.Coo

Examples

```
## Not run:
data(bot)
stack(bot)
bot.f <- efourier(bot, 12)</pre>
stack(bot.f)
data(mosquito)
stack(mosquito, borders='#1A1A1A22', first.point=FALSE)
data(hearts)
stack(hearts)
stack(hearts, ldk=FALSE)
stack(hearts, borders='#1A1A1A22', ldk=TRUE, ldk_col=col_summer(4), ldk_pch=20)
stack(hearts, fac="aut", palette=col_sari)
chaffal <- fgProcrustes(chaff)</pre>
stack(chaffal, slidings=FALSE)
stack(chaffal, meanshape=TRUE, meanshape_col="blue")
## End(Not run)
```

stack2

Family picture of shapes (ggplot2)

Description

Will replace stack soon.

Usage

```
stack2(Coo)
```

214 subset.Coo

Arguments

Coo

a Coo object Family picture of shapes

Value

```
a ggplot2 object
```

Examples

```
data(bot)
stack2(bot)
```

subset.Coo

Subsets on Momocs objects

Description

Subset is a wrapper around dplyr's verbs and should NOT be used directly.

Usage

```
## S3 method for class 'Coo'
subset(x, subset, ...)
## S3 method for class 'Coe'
subset(x, subset, ...)
## S3 method for class 'PCA'
subset(x, subset, ...)
```

Arguments

```
    x a Coo or a Coe object.
    subset logical taken from the $fac slot, or indices. See examples.
    useless here but maintains consistence with the generic subset.
```

See Also

```
Other handling functions: arrange, at_least, chop, combine, dissolve, filter, mutate, rename, rm_uncomplete, rw_rule, sample_frac, sample_n, select, slice, transmute
```

```
# Do not use subset directly
```

symmetry 215

symmetry

Calcuates symmetry indices on OutCoe objects

Description

For OutCoe objects obtained with efourier, calculates several indices on the matrix of coefficients: AD, the sum of absolute values of harmonic coefficients A and D; BC same thing for B and C; amp the sum of the absolute value of all harmonic coefficients and sym which is the ratio of AD over amp. See references below for more details.

Usage

```
symmetry(OutCoe)
```

Arguments

OutCoe

[efourier] objects

Value

a matrix with 4 colums described above.

References

Below: the first mention, and two applications.

#

- Iwata, H., Niikura, S., Matsuura, S., Takano, Y., & Ukai, Y. (1998). Evaluation of variation of root shape of Japanese radish (Raphanus sativus L.) based on image analysis using elliptic Fourier descriptors. Euphytica, 102, 143-149.
- Iwata, H., Nesumi, H., Ninomiya, S., Takano, Y., & Ukai, Y. (2002). The Evaluation of Genotype x Environment Interactions of Citrus Leaf Morphology Using Image Analysis and Elliptic Fourier Descriptors. Breeding Science, 52(2), 89-94. doi:10.1270/jsbbs.52.89
- Yoshioka, Y., Iwata, H., Ohsawa, R., & Ninomiya, S. (2004). Analysis of petal shape variation of Primula sieboldii by elliptic fourier descriptors and principal component analysis. Annals of Botany, 94(5), 657-64. doi:10.1093/aob/mch190

See Also

```
rm_asym and rm_sym.
```

```
data(bot)
bot.f <- efourier(bot, 12)
res <- symmetry(bot.f)
hist(res[, 'sym'])</pre>
```

216 tfourier

table

Cross-tabulates objects

Description

Simply extends base table for a more convenient use on \$fac slot.

Usage

```
table(...)
## Default S3 method:
table(...)
## S3 method for class 'Coo'
table(...)
## S3 method for class 'Coe'
table(...)
## S3 method for class 'PCA'
table(...)
## S3 method for class 'LDA'
table(...)
```

Arguments

a list of, first, a Momocs object (Coo, Coe, PCA, etc.), then, column names in the \$fac slot. If not specified, returns a table on the entire \$fac data.frame

Examples

```
data(bot)
table(bot)
data(olea)
table(olea, "var", "domes")
table(olea)
```

tfourier

Tangent angle Fourier transform

Description

tfourier computes tangent angle Fourier analysis from a matrix or a list of coordinates.

tfourier 217

Usage

```
tfourier(x, ...)
## Default S3 method:
tfourier(x, nb.h, smooth.it = 0, norm = FALSE,
    verbose = TRUE, ...)
## S3 method for class 'Out'
tfourier(x, nb.h = 40, smooth.it = 0, norm = TRUE,
    verbose = TRUE, ...)
```

Arguments

X	A list or matrix of coordinates or an Out
	useless here
nb.h	integer. The number of harmonics to use. If missing 99pc harmonic power is used.
smooth.it	integer. The number of smoothing iterations to perform
norm	logical. Whether to scale and register new coordinates so that the first point used is sent on the origin.
verbose	logical. Whether to display diagnosis messages.

Value

A list with the following components:

- ao ao harmonic coefficient
- an vector of $a_{1->n}$ harmonic coefficients
- bn vector of $b_{1->n}$ harmonic coefficients
- phi vector of variation of the tangent angle
- t vector of distance along the perimeter expressed in radians
- perimeter numeric. The perimeter of the outline
- thetao numeric. The first tangent angle
- x1 The x-coordinate of the first point
- y1 The y-coordinate of the first point.

Note

Directly borrowed for Claude (2008), and called fourier2 there.

References

Zahn CT, Roskies RZ. 1972. Fourier Descriptors for Plane Closed Curves. *IEEE Transactions on Computers* **C-21**: 269-281.

Claude, J. (2008) *Morphometrics with R*, Use R! series, Springer 316 pp.

218 tfourier_i

See Also

```
Other tfourier: tfourier_i, tfourier_shape
```

Examples

```
data(bot)
coo <- bot[1]
coo_plot(coo)
tf <- tfourier(coo, 12)
tf
tfi <- tfourier_i(tf)
coo_draw(tfi, border='red', col=NA) # the outline is not closed...
coo_draw(tfourier_i(tf, force2close=TRUE), border='blue', col=NA) # we force it to close.</pre>
```

tfourier_i

Inverse tangent angle Fourier transform

Description

tfourier_i uses the inverse tangent angle Fourier transformation to calculate a shape, when given a list with Fourier coefficients, typically obtained computed with tfourier.

Usage

```
tfourier_i(tf, nb.h, nb.pts = 120, force2close = FALSE, rescale = TRUE,
    perim = 2 * pi, thetao = 0)
```

Arguments

tf	a list with ao, an and bn components, typically as returned by thourier
nb.h	integer. The number of harmonics to calculate/use
nb.pts	integer. The number of points to calculate
force2close	logical. Whether to force the outlines calculated to close (see coo_force2close).
rescale	logical. Whether to rescale the points calculated so that their perimeter equals perim.
perim	The perimeter length to rescale shapes.
thetao	numeric. Radius angle to the reference (in radians)

Details

See tfourier for the mathematical background.

tfourier_shape 219

Value

A list with components:

x vector of x-coordinates.
 y vector of y-coordinates.
 phi vector of interpolated changes on the tangent angle.
 angle vector of position on the perimeter (in radians).

Note

Directly borrowed for Claude (2008), and called ifourier2 there.

References

Zahn CT, Roskies RZ. 1972. Fourier Descriptors for Plane Closed Curves. *IEEE Transactions on Computers* **C-21**: 269-281.

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

See Also

```
Other tfourier: tfourier_shape, tfourier
```

Examples

```
data(bot)
tfourier(bot[1], 24)
tfourier_shape()
```

tfourier_shape

Calculates and draws 'tfourier' shapes.

Description

tfourier_shape calculates a 'Fourier tangent angle shape' given Fourier coefficients (see Details) or can generate some 'tfourier' shapes.

Usage

```
tfourier_shape(an, bn, ao = 0, nb.h, nb.pts = 80, alpha = 2,
    plot = TRUE)
```

220 tie_jpg_txt

Arguments

an	numeric. The a_n Fourier coefficients on which to calculate a shape.
bn	numeric. The b_n Fourier coefficients on which to calculate a shape.
ao	ao Harmonic coefficient.
nb.h	integer. The number of harmonics to use.
nb.pts	integer. The number of points to calculate.
alpha	numeric. The power coefficient associated with the (usually decreasing) amplitude of the Fourier coefficients (see Details).
plot	logical. Whether to plot or not the shape.

Value

A matrix of (x; y) coordinates.

References

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

See Also

```
Other tfourier: tfourier_i, tfourier
```

Examples

```
data(bot)
tf <- tfourier(bot[1], 24)
tfourier_shape(tf$an, tf$bn) # equivalent to rfourier_i(rf)
tfourier_shape()
tfourier_shape(nb.h=6, alpha=0.4, nb.pts=500)
panel(Out(a2l(replicate(100,
coo_force2close(tfourier_shape(nb.h=6, alpha=2, nb.pts=200, plot=FALSE)))))) # biological shapes</pre>
```

tie_jpg_txt

Binds .jpg outlines from .txt landmarks taken on them

Description

Given a list of files (lf) that includes matching filenames with .jpg (black masks) and .txt (landmark positions on them as .txt), returns an Out with \$ldk defined. Typically be useful if you use ImageJ to define landmarks on your outlines.

Usage

```
tie_jpg_txt(lf)
```

tps2coo 221

Arguments

1f a list of filenames

Note

Not optimized (images are read twice). Please do not hesitate to contact me should you have a particular case or need something.

See Also

Other babel functions: bind_db, chc2Out, chc2pix, import_StereoMorph_curve1, import_jpg, import_tps, nef2Coe, ntsrow2Coo, pix2chc, tps2coo

tps2coo

Reads a single tps-like shape as lines

Description

Internal function used in import_tps that may be useful for data import. When provided with lines (eg after readLines) from a tps-like description (with "LM", "CURVES", etc.) returns a list of coordinates, curves, etc.

Usage

```
tps2coo(tps, curves = TRUE)
```

Arguments

tps lines, typically from readLines, describing a single shape in tps-like format

curves logical whether to read curves, if any

Details

if curves are present add them to \$coo (with the proper combination of do.call, rbind, then use def_slidings or define a slidings matrix (see Ldk).

Value

a list with components: coo a matrix of coordinates; cur a list of matrices; scale the scale as a numeric.

See Also

Other babel functions: bind_db, chc2Out, chc2pix, import_StereoMorph_curve1, import_jpg, import_tps, nef2Coe, ntsrow2Coo, pix2chc, tie_jpg_txt

222 tps2d

Examples

```
## Not run:
# let's imagine this command works fine
coo <- import_tps(...)
# then you can
Ldk(coo)
## End(Not run)</pre>
```

tps2d

Thin Plate Splines for 2D data

Description

tps2d is the core function for Thin Plate Splines. It is used internally for all TPS graphical functions.tps_apply is the very same function but with arguments properly named (I maintain tps2d as it is for historical reasons) when we want a apply a transformation grid.

Usage

```
tps2d(grid0, fr, to)
tps_apply(fr, to, new)
```

Arguments

grid0	a matrix of coordinates on which to calculate deformations
fr	the reference $(x; y)$ coordinates
to	the target $(x; y)$ coordinates
new	the target coordinates (again)

Value

```
a matrix of (x; y) coordinates with TPS-interpolated deformations
```

See Also

```
Other thin plate splines: tps_arr, tps_grid, tps_iso, tps_raw
```

tps_arr 223

tps_arr

Deformation 'vector field' using Thin Plate Splines

Description

tps_arr(ows) calculates deformations between two configurations and illustrate them using arrows.

Usage

```
tps_arr(fr, to, amp = 1, grid = TRUE, over = 1.2, palette = col_summer,
  arr.nb = 200, arr.levels = 100, arr.len = 0.1, arr.ang = 20,
  arr.lwd = 0.75, arr.col = "grey50", poly = TRUE, shp = TRUE,
  shp.col = rep(NA, 2), shp.border = col_qual(2), shp.lwd = c(2, 2),
  shp.lty = c(1, 1), legend = TRUE, legend.text, ...)
```

Arguments

fr	the reference $(x; y)$ coordinates
to	the target $(x; y)$ coordinates
amp	an amplification factor of differences between fr and to
grid	whether to calculate and plot changes across the graphical window TRUE or just within the starting shape (FALSE)
over	numeric that indicates how much the thin plate splines extends over the shapes
palette	a color palette such those included in Momocs or produced with colorRamp-Palette
arr.nb	numeric The number of arrows to calculate
arr.levels	numeric. The number of levels for the color of arrows
arr.len	numeric for the length of arrows
arr.ang	numeric for the angle for arrows' heads
arr.lwd	numeric for the 1wd for drawing arrows
arr.col	if palette is not used the color for arrows
poly	whether to draw polygons (for outlines) or points (for landmarks)
shp	logical. whether to draw shapes
shp.col	two colors for filling the shapes
shp.border	two colors for drawing the borders
shp.lwd	two lwd for drawing shapes
shp.lty	two lty fro drawing the shapes
legend	logical whether to plot a legend
legend.text	some text for the legend
	additional arguments to feed coo_draw

tps_grid

Value

Nothing.

See Also

Other thin plate splines: tps2d, tps_grid, tps_iso, tps_raw

Examples

```
data(bot)
botF <- efourier(bot)
x <- mshapes(botF, 'type', nb.pts=80)$shp
fr <- x$beer
to <- x$whisky
tps_arr(fr, to, arr.nb=200, palette=col_sari, amp=3)
tps_arr(fr, to, arr.nb=200, palette=col_sari, amp=3, grid=FALSE)</pre>
```

tps_grid

Deformation grids using Thin Plate Splines

Description

tps_grid calculates and plots deformation grids between two configurations.

Usage

```
tps_grid(fr, to, amp = 1, over = 1.2, grid.size = 15,
  grid.col = "grey80", poly = TRUE, shp = TRUE, shp.col = rep(NA, 2),
  shp.border = col_qual(2), shp.lwd = c(1, 1), shp.lty = c(1, 1),
  legend = TRUE, legend.text, ...)
```

Arguments

fr	the reference $(x; y)$ coordinates
to	the target $(x; y)$ coordinates
amp	an amplification factor of differences between fr and to
over	numeric that indicates how much the thin plate splines extends over the shapes
grid.size	numeric to specify the number of grid cells on the longer axis on the outlines
grid.col	color for drawing the grid
poly	whether to draw polygons (for outlines) or points (for landmarks)
shp	logical. Whether to draw shapes
shp.col	Two colors for filling the shapes
shp.border	Two colors for drawing the borders
shp.lwd	Two lwd for drawing shapes

tps_iso 225

shp.lty Two lty fro drawing the shapes legend logical whether to plot a legend

legend.text some text for the legend

... additional arguments to feed coo_draw

Value

Nothing

See Also

Other thin plate splines: tps2d, tps_arr, tps_iso, tps_raw

Examples

```
data(bot)
botF <- efourier(bot)
x <- mshapes(botF, 'type', nb.pts=80)$shp
fr <- x$beer
to <- x$whisky
tps_grid(fr, to, amp=3, grid.size=10)</pre>
```

tps_iso

Deformation isolines using Thin Plate Splines.

Description

tps_iso calculates deformations between two configurations and map them with or without isolines.

Usage

```
tps_iso(fr, to, amp = 1, grid = FALSE, over = 1.2, palette = col_spring,
iso.nb = 1000, iso.levels = 12, cont = TRUE, cont.col = "black",
poly = TRUE, shp = TRUE, shp.border = col_qual(2), shp.lwd = c(2, 2),
shp.lty = c(1, 1), legend = TRUE, legend.text, ...)
```

Arguments

fr	The reference $(x; y)$ coordinates
to	The target $(x; y)$ coordinates
amp	An amplification factor of differences between fr and to
grid	whether to calculate and plot changes across the graphical window TRUE or just within the starting shape (FALSE)
over	A numeric that indicates how much the thin plate splines extends over the shapes

226 tps_raw

palette	A color palette such those included in Momocs or produced with colorRamp-Palette
iso.nb	A numeric. The number of points to use for the calculation of deformation
iso.levels	numeric. The number of levels for mapping the deformations
cont	logical. Whether to draw contour lines
cont.col	A color for drawing the contour lines
poly	whether to draw polygons (for outlines) or points (for landmarks)
shp	logical. Whether to draw shapes
shp.border	Two colors for drawing the borders
shp.lwd	Two lwd for drawing shapes
shp.lty	Two 1ty fro drawing the shapes
legend	logical whether to plot a legend
legend.text	some text for the legend
	additional arguments to feed coo_draw

Value

No returned value

See Also

```
Other thin plate splines: tps2d, tps_arr, tps_grid, tps_raw
```

Examples

```
data(bot)
botF <- efourier(bot)
x <- mshapes(botF, 'type', nb.pts=80)$shp
fr <- x$beer
to <- x$whisky
tps_iso(fr, to, iso.nb=200, amp=3)
tps_iso(fr, to, iso.nb=200, amp=3, grid=TRUE)</pre>
```

tps_raw

Vanilla Thin Plate Splines

Description

tps_raw calculates deformation grids and returns position of sampled points on it.

Usage

```
tps_raw(fr, to, amp = 1, over = 1.2, grid.size = 15)
```

TraCoe 227

Arguments

fr	the reference $(x; y)$ coordinates
to	the target $(x; y)$ coordinates
amp	an amplification factor of differences between fr and to
over	numeric that indicates how much the thin plate splines extends over the shapes
grid.size	numeric to specify the number of grid cells on the longer axis on the outlines

Value

a list with two components: grid the xy coordinates of sampled points along the grid; dim the dimension of the grid.

See Also

```
Other thin plate splines: tps2d, tps_arr, tps_grid, tps_iso
```

Examples

```
## Not run:
data(bot)
ms <- mshapes(efourier(bot, 10), "type")
b <- ms$shp$beer
w <- ms$shp$whisky
g <- tps_raw(b, w)
ldk_plot(g$grid)

# a wavy plot
ldk_plot(g$grid, pch=NA)
cols_ids <- 1:g$dim[1]
for (i in 1:g$dim[2]) lines(g$grid[cols_ids + (i-1)*g$dim[1], ])
## End(Not run)</pre>
```

TraCoe

Traditional morphometrics class

Description

Defines the builder for traditional measurement class in Momocs. Is is intended to ease calculations, data handling and multivariate statistics just ad the other Momocs' classes

Usage

```
TraCoe(coe = matrix(), fac = data.frame())
```

228 transmute

Arguments

coe a matrix of measurements fac a data.frame for covariates

Examples

```
data(iris)
# let's (more or less) rebuild the flower dataset
fl <- TraCoe(iris[, 1:4], data.frame(sp=iris$Species))
fl %>% PCA() %>% plot("sp")
```

transmute

Transmutes (ala dplyr) on Momocs objects

Description

Add new variables to the \$fac and drop existing ones. See examples and ?dplyr::transmute.

Usage

```
transmute(.data, ...)
```

Arguments

```
.data a Coo, Coe, PCA object... comma separated list of unquoted expressions
```

Details

dplyr verbs are maintained.

Value

a Momocs object of the same class.

See Also

```
Other handling functions: arrange, at_least, chop, combine, dissolve, filter, mutate, rename, rm_uncomplete, rw_rule, sample_frac, sample_n, select, slice, subset.Coo
```

Examples

```
olea
transmute(olea, id=factor(1:length(olea)))
```

trilo 229

trilo

Data: Outline coordinates of cephalic outlines of trilobite

Description

Data: Outline coordinates of cephalic outlines of trilobite

Format

A Out object 64 coordinates of 50 cephalic outlines from different ontogenetic stages of trilobite.

Source

Arranged from: http://folk.uio.no/ohammer/past/outlines.dat. The original data included 51 outlines and 5 ontogenetic stages, but one of them has just a single outline thas has been removed.

See Also

Other datasets: bot, chaff, charring, flower, hearts, molars, mosquito, oak, olea, shapes, wings

truss

Truss measurement

Description

A method to calculate on shapes or on Coo truss measurements, which is all pairwise combinations of euclidean distances

Usage

```
truss(x)
```

Arguments

x

a shape or an Ldk object

Value

a named numeric or matrix

Note

Mainly implemented for historical/didactical reasons.

230 validate

See Also

Other premodern: measure

Examples

```
# example on a single shape
data(shapes)
cat <- coo_sample(shapes[4], 6)
truss(cat)

# example on wings dataset
data(wings)
tx <- truss(wings)
dim(tx)
# we normalize and plot an heatmap
txn <- apply(tx$coe, 2, .normalize)
# heatmap(txn)

txp <- PCA(tx, scale. = TRUE, center=TRUE, fac=wings$fac)
plot(txp, 1)</pre>
```

validate

Validates Coo objects

Description

No validation for S3 objects, so this method is a (cheap) attempt at checking Coo objects, Out, Opn and Ldk objects.

Usage

```
validate(Coo)
```

Arguments

Coo

any Coo object

Details

Implemented before all morphometric methods and handling verbs. To see what is checked, try eg Momocs:::validate.Coo

Value

a Coo object.

vecs_param 231

Examples

```
## Not run:
validate(bot)
bot[12] <- NA
validate(bot)

validate(hearts)
hearts$ldk[[4]] <- c(1, 2)
validate(hearts)

## End(Not run)</pre>
```

vecs_param

Some vector utilities.

Description

Returns ratio of norms and signed angle between two vectors provided as four numeric.

Usage

```
vecs_param(r1, i1, r2, i2)
```

Arguments

r1	the 'real' part of the first vector, i.e. difference in x-coordinates.
i1	the 'imaginary' part of the first vector, i.e. difference in y-coordinates.
r2	the 'real' part of the second vector, i.e. difference in x-coordinates.
i2	the 'imaginary' part of the second vector, i.e. difference in y-coordinates.

Value

A list with two components: r.norms the ratio of (norm of vector 1)/(norm of vector 2) and d.angle the signed angle 'from' the first 'to' the second vector.

Examples

```
vecs_param(1, 0, 0, 2)
```

232 wings

which_out

Remove outliers on Coe

Description

First performs a PCA, then searches for outliers using dnorm

Usage

```
which_out(x, conf, nax, ...)
```

Arguments

x object, either Coe or a numeric on which to search for outliers

conf confidence for dnorm

nax number of axes to retain (only for Coe), if <1 retain enough axes to retain this

proportion of the variance

... additional parameters to be passed to PCA (only for Coe)

Note

experimental. dnorm parameters used are median(x), sd(x)

Examples

```
x <- rnorm(10)
x[4] <- 99
which_out(x)</pre>
```

wings

Data: Landmarks coordinates of mosquito wings

Description

Data: Landmarks coordinates of mosquito wings

Format

A Ldk object containing 18 (x; y) landmarks from 127 mosquito wings, from

Source

```
Rohlf and Slice 1990 and http://life.bio.sunysb.edu/morph/data/RohlfSlice1990Mosq.nts
```

wings 233

See Also

Other datasets: bot, chaff, charring, flower, hearts, molars, mosquito, oak, olea, shapes, trilo

Index

a21, 7, 8, 10, 137, 138, 148-150 a2m, 7, 8, 10, 137, 138, 148-150 abbreviate, 186 arrange, 8, 11, 26, 35, 67, 106, 119, 159, 171, 196, 204-207, 209, 211, 214, 228	classify, 26 CLUST, 27, 136, 139, 152, 153, 173 Coe, 14, 15, 17, 28, 30, 110, 116, 123, 125, 127, 139, 151, 152, 160, 165, 166, 169, 170, 172, 173, 175, 194, 196,
arrows, 43, 189	214
as.Out, 9	coeff_sel, 30
as.PCA (PCA), 172	<pre>coeff_split, 31</pre>
as_df, 7, 8, 10, 137, 138, 148–150	<pre>col_alpha(col_transp), 33</pre>
at_least, 9, 11, 26, 35, 106, 119, 159, 196,	<pre>col_autumn (col_summer), 32</pre>
204–207, 209, 211, 214, 228	<pre>col_black(col_summer), 32</pre>
h 12 12	<pre>col_bw (col_summer), 32</pre>
bezier, 12, 13	<pre>col_cold(col_summer), 32</pre>
bezier_i, 12, 13	<pre>col_gallus(col_summer), 32</pre>
bind_db, 14, 24, 25, 130, 132, 133, 160, 163, 176, 221	<pre>col_grey(col_summer), 32</pre>
bot, 15, 22, 23, 120, 126, 155, 157, 164, 210,	<pre>col_heat (col_summer), 32</pre>
229, 233	col_hot, <i>189</i>
boxplot, 165, 169	<pre>col_hot (col_summer), 32</pre>
boxplot.Coe (boxplot.OutCoe), 15	<pre>col_india(col_summer), 32</pre>
boxplot.OutCoe, 15, 126, 127	<pre>col_qual (col_summer), 32</pre>
boxplot.PCA, 16	<pre>col_sari (col_summer), 32</pre>
breed, 17, 175	<pre>col_solarized(col_summer), 32</pre>
	<pre>col_spring (col_summer), 32</pre>
calibrate_deviations, 18, 20-22	col_summer, 32, 189
calibrate_harmonicpower, 18, 19, 21, 22	<pre>col_summer2 (col_summer), 32</pre>
calibrate_r2, <i>18</i> , <i>20</i> , <i>20</i> , <i>22</i>	col_transp, 33
calibrate_reconstructions, 18, 20, 21, 21	colorRampPalette, 223, 226
ceiling, 206	combine, 9, 11, 26, 34, 106, 119, 159, 196,
chaff, 15, 22, 23, 120, 126, 155, 157, 164,	204–207, 209, 211, 214, 228
210, 229, 233	conf_ell, 35, 43, 57, 68, 74, 80, 142–145,
charring, 15, 22, 23, 120, 126, 155, 157, 164,	162, 191
210, 229, 233	Coo, 14, 36, 38–41, 44, 45, 47–50, 54, 56,
chc20ut, 14, 23, 25, 130, 132, 133, 160, 163,	61–66, 69, 76–79, 82–91, 96–98,
176, 221	135, 140, 163–165, 169, 170, 176,
chc2pix, 14, 24, 25, 130, 132, 133, 160, 163,	177, 212, 230
176, 221	coo_align, 38, 39–41, 44–49, 54, 56, 58, 61–64, 66, 70–73, 77–79, 81–91, 94,
chop, 9, 11, 25, 34, 35, 106, 119, 159, 196, 204–207, 209, 211, 214, 228	96–98, 113, 135
204–207, 209, 211, 214, 228 chull, 50, 142	coo_aligncalliper, 38, 39, 40, 41, 44–49,
	555_31163111poi, 50, 57, 10, 11, 14 47,

```
54, 56, 58, 61–64, 66, 70–73, 77–79,
         81-91, 94, 96-98, 111, 113, 135
coo_alignminradius, 38, 39, 40, 41, 44-49,
         54, 56, 58, 61–64, 66, 70–73, 77–79,
         81-91, 94, 96-98, 135
coo_alignxax, 38-40, 41, 44-49, 54, 56, 58,
         61-64, 66, 70-73, 77-79, 81-91, 94,
         96–98, 135
coo_area, 42, 51-53, 55, 58-60, 67, 69, 75,
         76, 92–95, 99, 121, 153
coo_arrows, 36, 43, 57, 68, 74, 80, 142–145,
         162, 191
coo_baseline, 38-41, 43, 45-49, 54, 56, 58,
         61-64, 66, 70-73, 77-79, 81-91, 94,
         96–98, 135
coo_bookstein, 38-41, 44, 44, 46-49, 54, 56,
         58, 61–64, 66, 70–73, 77–79, 81–91,
         94, 96–98, 135
coo_calliper, 38-41, 44, 45, 45, 46-49, 54,
         56, 58, 61–64, 66, 70–73, 77–79,
         81-91, 94, 96-98, 135
coo_centdist, 38-41, 44-46, 46, 47-49, 54,
         56, 58, 61–64, 66, 70–73, 77–79,
         81-91, 94, 96-98, 135
coo_center, 38-41, 44-46, 47, 48, 49, 54, 56,
         58, 61–64, 66, 70–73, 77–79, 81–91,
         94, 96–98, 135
coo_centpos, 38-41, 44-47, 48, 49, 54, 56,
         58, 61–64, 66, 70–73, 77–79, 81–91,
         94, 96-98, 135
coo_centre (coo_center), 47
coo_centsize, 38-41, 44-48, 49, 54, 56, 58,
         61-64, 66, 70-73, 77-79, 81-91, 94,
         96–98, 135
coo_check, 50
coo_chull, 42, 50, 51-53, 55, 58-60, 67, 69,
         75, 76, 92–95, 99, 121, 142
coo_circularity, 42, 51, 51, 52, 53, 55,
         58–60, 67, 69, 75, 76, 92–95, 99
coo_circularityharalick, 42, 51, 52, 53,
         55, 58–60, 67, 69, 75, 76, 92–95, 99
coo_circularitynorm, 42, 51, 52, 53, 55,
         58–60, 67, 69, 75, 76, 92–95, 99
coo_close, 38-41, 44-49, 53, 53, 56, 58,
         61-64, 66, 70-73, 77-79, 81-91, 94,
         96–98, 135
coo_compactness (coo_circularity), 51
coo_convexity, 42, 51-53, 55, 58-60, 67, 69,
```

```
75, 76, 92–95, 99
coo_down, 38-41, 44-49, 54, 56, 58, 61-64,
         66, 70–73, 77–79, 81–91, 94, 96–98,
         135
coo_draw, 36, 43, 57, 68, 74, 80, 125,
         142–145, 162, 174, 191, 223, 225,
coo_dxy, 38-41, 44-49, 54, 56, 57, 61-64, 66,
         70–73, 77–79, 81–91, 94, 96–98,
         135
coo_eccentricityboundingbox, 42, 51-53,
         55, 58, 59, 60, 67, 69, 75, 76, 92–95,
coo_eccentricityeigen, 42, 51-53, 55, 58,
         59, 60, 67, 69, 75, 76, 92–95, 99
coo elongation, 42, 51-53, 55, 58, 59, 60,
         67, 69, 75, 76, 92–95, 99
coo_extract, 38-41, 44-49, 54, 56, 58, 60,
         62-64, 66, 70-73, 77-79, 81-91, 94,
         96–98, 135
coo_flipx, 38-41, 44-49, 54, 56, 58, 61, 61,
         63, 64, 66, 70–73, 77–79, 81–91, 94,
         96-98. 135
coo_flipy(coo_flipx), 61
coo_force2close, 38-41, 44-49, 54, 56, 58,
         61, 62, 62, 63, 64, 66, 70–73, 77–79.
         81-91, 94, 96-98, 135, 218
coo_interpolate, 38-41, 44-49, 54, 56, 58,
         61–63, 63, 64, 66, 70–73, 77–79,
         81-91, 94, 96-98, 135
coo_jitter, 38-41, 44-49, 54, 56, 58, 61-63,
         64, 66, 70–73, 77–79, 81–91, 94,
         96-98, 135
coo_1dk, 65
coo_left, 38-41, 44-49, 54, 56, 58, 61-64,
         65, 70–73, 77–79, 81–91, 94, 96–98,
coo_length, 42, 49, 51-53, 55, 58-60, 66, 69,
         75, 76, 92–95, 99
coo_listpanel, 36, 43, 57, 67, 68, 74, 80, 93,
         142–145, 162, 171, 191
coo_lolli, 36, 43, 57, 68, 68, 74, 80,
         142-145, 162, 191
coo_lw, 42, 51-53, 55, 58-60, 67, 69, 75, 76,
         92–95, 99
coo_nb, 38-41, 44-49, 54, 56, 58, 61-64, 66,
         69, 71–73, 77–79, 81–91, 94, 96–98,
```

135

```
coo_oscillo, 70
                                                     coo_slice, 38-41, 44-49, 54, 56, 58, 61-64,
                                                               66, 70–73, 77–79, 81–85, 86, 87–91,
coo_perim, 38-41, 44-49, 54, 56, 58, 61-64,
         66, 70, 71, 72, 73, 77–79, 81–91, 94,
                                                               94, 96–98, 135
                                                     coo_slide, 38-41, 44-49, 54, 56, 58, 61-64,
         96–98, 135
coo_perimcum, 38-41, 44-49, 54, 56, 58,
                                                               66, 70–73, 77–79, 81–86, 87, 88–91,
                                                               94, 96–98, 111, 135
         61–64, 66, 70, 71, 72, 73, 77–79,
                                                     coo_slidedirection, 38-41, 44-49, 54, 56,
         81-91, 94, 96-98, 135
                                                               58, 61–64, 66, 70–73, 77–79, 81–87,
coo_perimpts, 38-41, 44-49, 54, 56, 58,
                                                               88, 89–91, 94, 96–98, 111, 135
         61–64, 66, 70–72, 72, 77–79, 81–91,
                                                     coo_slidegap, 38-41, 44-49, 54, 56, 58,
         94, 96–98, 135
                                                               61-66, 70-73, 77-79, 81-88, 89, 90,
coo_plot, 36, 43, 57, 68, 73, 80, 142–145,
                                                               91, 94, 96–98, 135
         162, 177, 191, 193, 213
                                                     coo_smooth, 38-41, 44-49, 54, 56, 58, 61-64,
coo_rectangularity, 42, 51-53, 55, 58-60,
                                                               66, 70–73, 77–79, 81–89, 90, 91, 94,
         67, 69, 75, 76, 92–95, 99
                                                               96–98, 135
coo_rectilinearity, 42, 51-53, 55, 58-60,
                                                     coo_smoothcurve, 38-41, 44-49, 54, 56, 58,
         67, 69, 75, 75, 92–95, 99
                                                               61-64, 66, 70-73, 77-79, 81-90, 91,
coo_rev, 38-41, 44-49, 54, 56, 58, 61-64, 66,
                                                               94, 96–98, 135
         70-73, 76, 78, 79, 81-91, 94, 96-98,
                                                     coo_solidity, 42, 51-53, 55, 58-60, 67, 69,
         135
                                                               75, 76, 92, 93–95, 99
coo_right, 38-41, 44-49, 54, 56, 58, 61-64,
                                                     coo_tangle, 42, 51–53, 55, 58–60, 67, 69, 75,
         66, 70–73, 77, 77, 78, 79, 81–91, 94,
                                                               76, 92, 92, 94, 95, 99
         96–98, 135
                                                     coo_template, 38-41, 44-49, 54, 56, 58,
coo_rotate, 38-41, 44-49, 54, 56, 58, 61-64,
                                                               61-64, 66, 67, 70-73, 77-79, 81-91,
         66, 70–73, 77, 78, 78, 79, 81–91, 94,
                                                               93, 96–98, 135
         96-98, 135
                                                     coo_theta3, 42, 51-53, 55, 58-60, 67, 69, 75,
coo_rotatecenter, 38-41, 44-49, 54, 56, 58,
                                                               76, 92, 93, 94, 95, 99
         61–64, 66, 70–73, 77, 78, 79, 81–91,
                                                     coo_thetapts, 42, 51-53, 55, 58-60, 67, 69,
         94, 96–98, 135
                                                               75, 76, 92–94, 95, 99
coo_ruban, 36, 43, 57, 68, 74, 80, 142–145,
                                                     coo_trans, 38-41, 44-49, 54, 56, 58, 61-64,
         162, 191
                                                               66, 70–73, 77–79, 81–91, 94, 96, 97,
coo_sample, 38-41, 44-49, 54, 56, 58, 61-64,
                                                               98, 135
         66, 70–73, 77–79, 81, 82–91, 94,
                                                     coo_trim, 38-41, 44-49, 54, 56, 58, 61-64,
         96–98, 117, 135, 140
                                                               66, 70–73, 77–79, 81–91, 94, 96, 97,
coo_samplerr, 38-41, 44-49, 54, 56, 58,
                                                               98, 135
         61-64, 66, 70-73, 77-79, 81, 82,
                                                     coo_unclose, 53
         83-91, 94, 96-98, 135
                                                     coo_unclose (coo_close), 53
coo_scale, 38-41, 44-49, 54, 56, 58, 61-64,
                                                     coo_up, 38-41, 44-49, 54, 56, 58, 61-64, 66,
         66, 70–73, 77–79, 81, 82, 83, 84–91,
                                                               70–73, 77–79, 81–91, 94, 96, 97, 97,
         94, 96–98, 135
                                                               135
coo_scalex, 38-41, 44-49, 54, 56, 58, 61-64,
                                                     coo_width, 42, 51-53, 55, 58-60, 67, 69, 75,
         66, 70–73, 77–79, 81–83, 84, 85–91,
                                                               76, 92–95, 98
         94, 96–98, 135
coo_scaley (coo_scalex), 84
                                                     d, 99, 153
coo_shapefactor(coo_circularity), 51
                                                     data.frame, 145
coo_shearx, 38-41, 44-49, 54, 56, 58, 61-64,
                                                     def_ldk, 100, 102, 122, 124, 211
         66, 70–73, 77–79, 81–84, 85, 86–91,
                                                     def_links, 101, 141, 147
         94, 96–98, 135
                                                     def_slidings, 100, 101, 122, 124, 211, 221
coo_sheary (coo_shearx), 85
                                                     delaunayn, 147
```

dfourier, 19, 102, 104, 105	<pre>import_StereoMorph_curve</pre>
dfourier_i, 103, 104, 105	<pre>(import_StereoMorph_curve1),</pre>
dfourier_shape, 103, 104, 105	132
dissolve, 9, 11, 26, 35, 106, 119, 159, 196,	<pre>import_StereoMorph_curve1, 14, 24, 25,</pre>
204–207, 209, 211, 214, 228	130, 132, 133, 160, 163, 176, 221
dist, 27, 107–109	<pre>import_StereoMorph_ldk</pre>
dnorm, 232	<pre>(import_StereoMorph_curve1),</pre>
do.call, 221	132
	<pre>import_StereoMorph_ldk1</pre>
ed, 99, 107, 108, 109	<pre>(import_StereoMorph_curve1),</pre>
edi, 107	132
edm, 107, 108, 108, 109	import_tps, 14, 24, 25, 130, 132, 133, 146,
edm_nearest, 18, 107, 108, 109	160, 163, 176, 221
efourier, 9, 19, 30, 31, 110, 112-115, 169,	<pre>import_txt, 131, 133, 146</pre>
193, 202, 215	iris, <i>120</i>
efourier_i, 9, 111, 112, 114, 115	is, 134
efourier_norm, 110-112, 113, 115	is_closed, 38–41, 44–49, 54, 56, 58, 61–64,
efourier_shape, 105, 111, 112, 114, 114	66, 70–73, 77–79, 81–91, 94, 96–98
export, 116	135
The state of the s	
fgProcrustes, 111, 113, 117, 119, 121, 192	jitter, <i>64</i>
fgsProcrustes, 118, 118, 121, 192	•
filter, 9, 11, 26, 35, 106, 119, 159, 196,	kde2d, <i>143</i> , <i>179</i> , <i>182</i>
204–207, 209, 211, 214, 228	KMEANS, 28, 136, 139, 152, 153, 173
flower, 15, 22, 23, 120, 126, 155, 157, 164,	kmeans, <i>136</i>
210, 229, 233	
fProcrustes, 118, 119, 120, 192	12a, 7, 8, 10, 137, 138, 141, 148–150
	12m, 7, 8, 10, 137, 138, 148–150
get_chull_area, 121	LDA, 28, 123, 136, 138, 152, 153, 173, 177,
<pre>get_chull_volume(get_chull_area), 121</pre>	178, 180, 188, 189, 194
get_ldk, 99, 100, 102, 122, 124, 211	lda, <i>138</i> , <i>139</i>
get_pairs, <i>64</i> , 123	Ldk, 22, 36, 81, 101, 102, 117, 122, 124, 132,
get_slidings, 100, 102, 122, 124, 211	<i>134</i> , 140, <i>141</i> , <i>163</i> , <i>170</i> , <i>176</i> , <i>212</i> ,
	221, 230, 232
harm_pow, 124	1dk_check, 101, 141, 147
hclust, 27	ldk_chull, 36, 43, 57, 68, 74, 80, 142,
hcontrib, 16, 125, 127	143–145, 162, 191
hearts, 15, 22, 23, 120, 126, 155, 157, 164,	ldk_confell, 36, 43, 57, 68, 74, 80, 142, 142
210, 229, 233	143–145, 162, 191
hist.Coe(hist.OutCoe), 127	ldk_contour, 36, 43, 57, 68, 74, 80, 142, 143
hist.OutCoe, 16, 126, 127	143, <i>144</i> , <i>145</i> , <i>162</i> , <i>191</i>
	ldk_labels, 36, 43, 57, 68, 74, 80, 142, 143,
image, 179, 182	144, <i>145</i> , <i>162</i> , <i>191</i>
img_plot, 128, <i>131</i>	ldk_links, 36, 43, 57, 68, 74, 80, 142-144,
<pre>img_plot0 (img_plot), 128</pre>	145, <i>147</i> , <i>162</i> , <i>191</i>
import_Conte, 128, <i>130</i> , <i>131</i> , <i>146</i>	<pre>ldk_plot (coo_plot), 73</pre>
import_jpg, 14, 24, 25, 129, 130–133, 146,	lf_structure, 23, 131, 132, 145, 146
160, 163, 176, 221	lines, <i>74</i>
import_jpg1, <i>128–130</i> , 130, <i>146</i>	links_all, 101, 141, 146, 147

1: 1 101 141 147 147	1 101 107 100
links_delaunay, 101, 141, 147, 147	opoly_i, 161, 167, 168
list.files, <i>131</i> , <i>146</i>	Out, 9, 10, 15, 23, 24, 36, 37, 45, 56, 66, 77,
lm, 160, 166	81, 98, 117, 122, 126, 130, 134, 145,
locator, <i>129</i> , <i>131</i>	154, 157, 163, 165, 169, 170, 176,
	210, 212, 229, 230
m2a, 7, 8, 10, 137, 138, 148, 149, 150	OutCoe, 9, 28, 29, 166, 169, 215
m2d, 7, 8, 10, 137, 138, 148, 149, 149, 150	
m21, 7, 8, 10, 137, 138, 148, 149, 149, 150	palette, <i>171</i> , <i>178</i> , <i>181</i>
m211, 7, 8, 10, 137, 138, 148–150, 150	Palettes (col_summer), 32
MANOVA, 28, 136, 139, 151, 152, 153, 173	panel, 170, <i>172</i> , <i>177</i> , <i>213</i>
manova, <i>151</i> , <i>153</i>	panel.Coo, 67
MANOVA_PW, 28, 136, 139, 152, 152, 173	panel2, 171, 172, 177, 213
mean, <i>158</i>	par, <i>179</i> , <i>183</i>
measure, 99, 153, 230	PCA, 16, 28, 123, 136, 139, 151–153, 172, 174,
median, <i>158</i>	180, 181, 185, 187, 194, 196, 208
molars, 15, 22, 23, 120, 126, 154, 157, 164,	PCcontrib, 174
210, 229, 233	perm, 17, 175
	pix2chc, 14, 24, 25, 130, 132, 133, 160, 163,
Momocs, 155	176, 221
Momocs-package (Momocs), 155	
Momocs_help, 156	plot, 73, 171
Momocs_lastversion, 156	plot. Coo, 171, 172, 176, 213
Momocs_version, 156	plot.LDA, 139, 177, 183, 188, 189
mosquito, 15, 22, 23, 120, 126, 155, 157, 164,	plot. PCA, 10, 173, 180, 180, 187, 192
210, 229, 233	plot.phylo, 27
MSHAPES (mshapes), 157	plot2, 185
mshapes, 157	plot3, 187
mutate, 9, 11, 26, 35, 106, 119, 159, 196,	plot_CV, <i>180</i> , 187, <i>189</i>
204–207, 209, 211, 214, 228	plot_CV2, <i>180</i> , 188
	plot_devsegments, 36, 43, 57, 68, 74, 80,
nef2Coe, 14, 24, 25, 130, 132, 133, 160, 163,	<i>142–145</i> , <i>162</i> , 190
176, 221	points, 68, 74
npoly, 20, 160, 164, 167, 168	polygon, 74
npoly_i (opoly_i), 168	pos.shapes, 178, 181, 191
Ntable, 36, 43, 57, 68, 74, 80, 142–145, 162,	pProcrustes, <i>118</i> , <i>119</i> , <i>121</i> , 192
188, 191	prcomp, <i>172</i> , <i>173</i>
ntscol2Coo (ntsrow2Coo), 163	predict.lda, <i>194</i>
ntsrow2Coo, 14, 24, 25, 130, 132, 133, 160,	Ptolemy, 193
163, 176, 221	1 corolly, 190
103, 170, 221	rbind, <i>221</i>
oak, 15, 22, 23, 120, 126, 155, 157, 163, 164,	read.table, 14, 131, 133, 134
210, 229, 233	readJPEG, <i>128</i>
olea, 15, 22, 23, 120, 126, 155, 157, 164, 164,	readLines, 133, 221
210, 229, 233	reLDA, 194
Opn, 36, 37, 45, 56, 66, 77, 81, 86, 98, 104,	rename, 9, 11, 26, 35, 106, 119, 159, 195,
117, 122, 132, 134, 160, 161, 163,	204–207, 209, 211, 214, 228
<i>164</i> , 164, <i>166</i> , <i>169</i> , <i>170</i> , <i>176</i> , <i>212</i> ,	rePCA, 194, 196
230	rescale, 49, 66, 197
OpnCoe, 28, 29, 161, 165, 167, 170	rfourier, 19, 30, 31, 198, 199–201
opoly, 20, 161, 166, 168	rfourier_i, <i>199</i> , 199, <i>201</i>

rfourier_shape, 199, 200, 200 rm_asym, 202, 215 rm_harm, 203 rm_sym, 215 rm_sym (rm_asym), 202 rm_uncomplete, 9, 11, 26, 35, 106, 119, 159, 196, 204, 205–207, 209, 211, 214, 228 rnorm, 17 rw_rule, 9, 11, 26, 35, 106, 119, 159, 196,	tps2coo, 14, 24, 25, 130, 132, 133, 160, 163, 176, 221, 221 tps2d, 222, 224–227 tps_apply (tps2d), 222 tps_arr, 222, 223, 225–227 tps_grid, 222, 224, 224, 226, 227 tps_iso, 222, 224, 225, 225, 227 tps_raw, 222, 224–226, 226 TraCoe, 154, 227 transmute, 9, 11, 26, 35, 106, 119, 159, 196,
204, 205, 206, 207, 209, 211, 214, 228 sample, 175 sample_frac, 9, 11, 21, 26, 35, 106, 119, 159,	204–207, 209, 211, 214, 228 trilo, 15, 22, 23, 120, 126, 155, 157, 164, 210, 229, 233 truss, 99, 154, 229
196, 204, 205, 206, 207, 209, 211, 214, 228 sample_n, 9, 11, 21, 26, 35, 106, 119, 159,	validate, 230 vecs_param, 231
196, 204–206, 207, 209, 211, 214, 228	which_out, 232 wings, 15, 22, 23, 120, 126, 155, 157, 164, 210, 229, 232
scree, 139 , 208 scree_min (scree), 208 scree_plot (scree), 208 segments, 68 , 145 , 189 select, 9 , 11 , 26 , 35 , 106 , 119 , 159 , 196 , 204– 207 , 209 , 211 , 214 , $228shapes, 15, 22, 23, 120, 126, 155, 157, 164,210$, 229 , $233slice, 9, 11, 26, 34, 35, 106, 119, 159, 196,204$ – 207 , 209 , 210 , 214 , $228slidings_scheme, 100, 102, 122, 124, 211stack, 110, 140, 164, 169stack.Coo, 171, 172, 177, 212stack.Ldk (stack.Coo), 212stack2, 213subset.Coe (subset.Coo), 214subset.Coo, 9, 11, 26, 35, 106, 119, 159, 196,204$ – 207 , 209 , 211 , 214 , $228subset.PCA (subset.Coo), 214summary.manova, 151$	210, 229, 232 write.table, 116
symmetry, 203, 215 table, 216, 216 text, 144 tfourier, 19, 30, 31, 93, 216, 218–220 tfourier_i, 218, 218, 220 tfourier_shape, 218, 219, 219 tie_jpg_txt, 14, 24, 25, 130, 132, 133, 160, 163, 176, 220, 221	