APPENDIX TO : INTEGER SUPERHARMONIC MATRICES ON THE F-LATTICE

AHMED BOU-RABEE

The table below displays a Farey quadruple $(p_0, q_0, p_1, q_1) = (\mathcal{C}(p_1, q_1), p_1, q_1)$ and the Laplacian of the odd child's standard and alternate tile odometers. We only draw the Laplacian of p_0 since the Laplacian of any odd $(\frac{n}{d})$ is the rotated Laplacian of even $(\frac{d-n}{d+n})$. All quadruples with $14 \leq \det(L'(p_0)) \leq 994$ are displayed.

(p_0, q_0, p_1, q_1)	standard tile odometer	alternate tile odometer
(1/2, 1/3, 0/1, 1/1)	14	Fig.
(2/3, 3/5, 1/2, 1/1)	**************************************	15.3L
(1/4, 1/5, 0/1, 1/3)	\$	r ig a
(3/4, 5/7, 2/3, 1/1)	18	A. 18.
(2/5, 3/7, 1/2, 1/3)		
(1/6, 1/7, 0/1, 1/5)	\$	4
(4/5, 7/9, 3/4, 1/1)		THE REAL PROPERTY.
(5/6, 9/11, 4/5, 1/1)		

