Recent developments in nonlinear Perron-Frobenius theory

Brian Lins

Hampden-Sydney College

September 24, 2024

The classic Perron-Frobenius theorem

Theorem (Perron-Frobenius)

If a nonnegative matrix $A \in \mathbb{R}^{n \times n}$ is irreducible, then A has a unique (up to scaling) eigenvector with all positive entries. The corresponding eigenvalue has the maximum absolute value of all eigenvalues of A.

Irreducible means that the **adjacency graph** of the matrix is **strongly connected**. The adjacency graph G(A) of a nonnegative matrix $A \in \mathbb{R}^{n \times n}$ has an edge from j to i when the (i,j)-entry of A is positive.

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \qquad G(A)$$

Notation

- $[n] = \{1, \ldots, n\}.$
- $x \ge y$ in \mathbb{R}^n when $x_i \ge y_i$ for all $i \in [n]$.
- The standard cone in Rⁿ is the set of vectors with nonnegative entries:

$$\mathbb{R}^n_{\geq 0} = \{x \in \mathbb{R}^n : x \geq 0\}.$$

• The interior of $\mathbb{R}^n_{\geq 0}$ is the set of vectors with positive entries:

$$\mathbb{R}^n_{>0} = \{x \in \mathbb{R}^n : x_i > 0 \text{ for all } i \in [n]\}.$$

Proving Perron-Frobenius

I want to outline a proof of the Perron-Frobenius theorem. But I only want to use some of the properties of the map $x \mapsto Ax$.

A function f defined on a subset of \mathbb{R}^n is

- 1. Order-preserving when $x \ge y$ implies that $f(x) \ge f(y)$ for all x, y in the domain.
- 2. Homogeneous if f(tx) = tf(x) for all t > 0.

Parts of a cone

For vectors $x \in \mathbb{R}^n_{\geq 0}$, the support of x is

$$supp(x) = \{i \in [n] : x_i > 0\}.$$

Two vectors $x, y \in \mathbb{R}^n_{\geq 0}$ are comparable, denoted $x \sim y$, if there are constants $\alpha, \beta > 0$ such that

$$\alpha x \le y \le \beta x$$

Comparability is an equivalence relation, and $x \sim y$ if and only if supp(x) = supp(y). The equivalence classes are the parts of the standard cone.

Parts of a cone

If $f: \mathbb{R}^n_{\geq 0} \to \mathbb{R}^n_{\geq 0}$ is order-preserving and homogeneous, then f preserves comparability, i.e.,

$$x \sim y$$
 implies $f(x) \sim f(y)$.

After all, if

$$\alpha x \le y \le \beta x$$
,

then

$$\alpha f(x) \le f(y) \le \beta f(x)$$
.

Invariant parts

Lemma

If $A \in \mathbb{R}^{n \times n}$ is a nonnegative irreducible matrix, then the only parts of $\mathbb{R}^n_{\geq 0}$ that are invariant under multiplication by A are $\{0\}$ and $\mathbb{R}^n_{>0}$.

Proof.

A non-trivial part has the form

$$K_I = \{x \in \mathbb{R}^n_{\geq 0} : \operatorname{supp}(x) = I\}$$

where $I \subsetneq [n]$ is not empty. Since G(A) is strongly connected, there is an edge from some $i \in I$ to $j \notin I$. Then $(Ax)_j > 0$ for every $x \in K_I$, so K_I is not invariant under A.

Every column of A has a positive entry so $Ax \neq 0$ for every nonzero $x \in \mathbb{R}^n_{\geq 0}$.

Every column of A has a positive entry so $Ax \neq 0$ for every nonzero $x \in \mathbb{R}^n_{\geq 0}$.

Let
$$\Sigma=\{x\in\mathbb{R}^n_{\geq 0}:\sum_i x_i=1\}$$
 and define the normalized map $f:\Sigma o\Sigma, \quad f(x)=Ax/(\sum_i (Ax)_i).$

Every column of A has a positive entry so $Ax \neq 0$ for every nonzero $x \in \mathbb{R}^n_{\geq 0}$.

Let $\Sigma = \{x \in \mathbb{R}^n_{\geq 0} : \sum_i x_i = 1\}$ and define the normalized map

$$f: \Sigma \to \Sigma, \quad f(x) = Ax/(\sum_i (Ax)_i).$$

Since f is continuous and Σ is compact and convex, f has a fixed point $x \in \Sigma$ by the Brouwer fixed point theorem.

Every column of A has a positive entry so $Ax \neq 0$ for every nonzero $x \in \mathbb{R}^n_{\geq 0}$.

Let $\Sigma = \{x \in \mathbb{R}^n_{>0} : \sum_i x_i = 1\}$ and define the normalized map

$$f: \Sigma \to \Sigma, \quad f(x) = Ax/(\sum_i (Ax)_i).$$

Since f is continuous and Σ is compact and convex, f has a fixed point $x \in \Sigma$ by the Brouwer fixed point theorem.

The fixed point x is an eigenvector of A and it must be in $\mathbb{R}^n_{>0}$ because no other non-trivial part is invariant.

Let λ be the eigenvalue corresponding to x. We can assume that $\lambda = 1$ by replacing A with $\lambda^{-1}A$. Consider any other $y \in \mathbb{R}^n_{>0}$.

Let λ be the eigenvalue corresponding to x. We can assume that $\lambda=1$ by replacing A with $\lambda^{-1}A$. Consider any other $y\in\mathbb{R}^n_{>0}$.

There exist $\alpha, \beta > 0$ such that

$$\alpha x \leq y \leq \beta x$$
.

Let λ be the eigenvalue corresponding to x. We can assume that $\lambda = 1$ by replacing A with $\lambda^{-1}A$. Consider any other $y \in \mathbb{R}^n_{>0}$.

There exist $\alpha, \beta > 0$ such that

$$\alpha x \leq y \leq \beta x$$
.

Then for any k > 0,

$$A^k(\alpha x) \le A^k y \le A^k(\beta x)$$

which simplifies to

$$\alpha x \leq A^k y \leq \beta x$$
.

Let λ be the eigenvalue corresponding to x. We can assume that $\lambda = 1$ by replacing A with $\lambda^{-1}A$. Consider any other $y \in \mathbb{R}^n_{>0}$.

There exist $\alpha, \beta > 0$ such that

$$\alpha x \leq y \leq \beta x$$
.

Then for any k > 0,

$$A^k(\alpha x) \le A^k y \le A^k(\beta x)$$

which simplifies to

$$\alpha x \leq A^k y \leq \beta x$$
.

So $A^k y$ is bounded, which implies that 1 is the maximum eigenvalue (in absolute value).

Nonexpansiveness

The idea in the last proof is important. If $f: \mathbb{R}^n_{>0} \to \mathbb{R}^n_{>0}$ is order-preserving & homogeneous, and

$$\alpha x \leq y \leq \beta x$$
,

then

$$\alpha f(x) \le f(y) \le \beta f(x),$$

In a sense, f(x) and f(y) are no farther apart than x and y.

Hilbert's projective metric

For $x, y \in \mathbb{R}^n_{>0}$, Hilbert's projective metric is

$$d_H(x,y) = \min \left\{ \log \left(\frac{\beta}{\alpha} \right) : 0 \le \alpha x \le y \le \beta x \right\}.$$

It is a metric on the rays from the origin in $\mathbb{R}^n_{>0}$. Points in the boundary of $\mathbb{R}^n_{>0}$ are infinitely far away.

Hilbert's projective metric

For $x, y \in \mathbb{R}^n_{>0}$, Hilbert's projective metric is

$$d_H(x,y) = \min \left\{ \log \left(\frac{\beta}{\alpha} \right) : 0 \le \alpha x \le y \le \beta x \right\}.$$

It is a metric on the rays from the origin in $\mathbb{R}^n_{>0}$. Points in the boundary of $\mathbb{R}^n_{>0}$ are infinitely far away.

Any order-preserving, homogeneous map $f: \mathbb{R}^n_{>0} \to \mathbb{R}^n_{>0}$ is nonexpansive with respect to d_H :

$$d_H(f(x), f(y)) \leq d_H(x, y)$$

for all $x, y \in \mathbb{R}^n_{>0}$.

Perron-Frobenius (uniqueness)

All eigenvectors of A in $\mathbb{R}^n_{>0}$ must have the same eigenvalue.

If x and y are linearly independent eigenvectors in $\mathbb{R}^n_{>0}$, then every vector in their span is an eigenvector, which is impossible if A is irreducible.

Applications of the Perron-Frobenius Theorem

- Markov chains
- Google PageRank Algorithm
- Monotone dynamical systems in physics and biology

Topical functions

We can extend the proof of the Perron-Frobenius theorem to nonlinear maps with almost no changes.

A function $f: \mathbb{R}^n_{>0} \to \mathbb{R}^n_{>0}$ that is order-preserving and homogeneous is multiplicatively topical.

A function $T: \mathbb{R}^n \to \mathbb{R}^n$ is additively topical if

$$T = \log \circ f \circ \exp$$

where $f: \mathbb{R}^n_{>0} \to \mathbb{R}^n_{>0}$ is multiplicatively topical and exp and log denote the entrywise natural exponential and logarithms functions.

Examples of topical functions

Additively topical examples

- Max-plus linear maps
- Min-max-plus operators (e.g., Shapley operators from stochastic game theory)

Multiplicatively topical examples

- The homogeneous eigenvalue problem for nonnegative tensors
- Examples from economics and population biology
- The arithmetic-geometric mean function

$$f\left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\right) = \begin{pmatrix} \frac{1}{2}(x_1 + x_2) \\ \sqrt{x_1 x_2} \end{pmatrix}.$$

XKCD #2435 by Randall Munroe

$$F(x_{1},x_{2},...x_{n}) = \left(\frac{x_{1}+x_{2}+...+x_{n}}{n}, \frac{\sqrt{x_{1}x_{2}...x_{n}}}{\sqrt{x_{1}x_{2}...x_{n}}}, \frac{x_{\frac{n+1}{2}}}{\sqrt{\frac{2}{2}}}\right)$$

$$ARITHMETIC MEDIAN MEAN MEAN MEAN

$$GMDN(x_{1},x_{2},...x_{n}) = F(F(F(...F(x_{1},x_{2},...x_{n})...)))$$

$$GEOTHMETIC MEANDIAN$$

$$GMDN(1,1,2,3,5) \approx 2.089$$$$

STATS TIP: IF YOU AREN'T SURE WHETHER TO USE THE MEAN, MEDIAN, OR GEOMETRIC MEAN, JUST CALCULATE ALL THREE, THEN REPEAT UNTIL IT CONVERGES

The geothmetic meandian

When n = 3, the geothmetic meandian is a multiplicatively topical map

$$F(x_1, x_2, x_3) = \begin{pmatrix} \frac{1}{3}(x_1 + x_2 + x_3) \\ \sqrt[3]{x_1 x_2 x_3} \\ \text{median}(x_1, x_2, x_3) \end{pmatrix}$$

Another nonlinear example

Two cities are connected by rail. The cities also have local trains to serve their suburbs.

The edges are tracks (labeled with the transit time). A train can only depart a station after both the local and inter-city trains have arrived, so that passengers can switch trains.

Another nonlinear example

Two cities are connected by rail. The cities also have local trains to serve their suburbs.

The edges are tracks (labeled with the transit time). A train can only depart a station after both the local and inter-city trains have arrived, so that passengers can switch trains.

If the first departure time from city 1 is $x_1(0)$ and the first departure time from city 2 is $x_2(0)$, then we get the following model for subsequent departures:

$$x_1(k+1) = \max(x_1(k) + 2, x_2(k) + 3)$$

 $x_2(k+1) = \max(x_1(k) + 5, x_2(k) + 3).$

Model trains

Same model in vector notation:

$$x(k+1) = \begin{pmatrix} \max(x_1(k)+2, x_2(k)+3) \\ \max(x_1(k)+5, x_2(k)+3) \end{pmatrix}.$$

Model trains

Same model in vector notation:

$$x(k+1) = {\max(x_1(k) + 2, x_2(k) + 3) \choose \max(x_1(k) + 5, x_2(k) + 3)}.$$

We can simplify this formula using max-plus algebra as

$$x(k+1) = \begin{pmatrix} 2 & 3 \\ 5 & 3 \end{pmatrix} \otimes \begin{pmatrix} x_1(k) \\ x_2(k) \end{pmatrix}.$$

Max-plus algebra

The **max-plus algebra** consists of $\mathbb{R} \cup \{-\infty\}$ with two operations

max-plus addition

$$a \oplus b = \max(a, b)$$

max-plus multiplication

$$a \otimes b = a + b$$
.

Max-plus algebra

The **max-plus algebra** consists of $\mathbb{R} \cup \{-\infty\}$ with two operations

max-plus addition

$$a \oplus b = \max(a, b)$$

max-plus multiplication

$$a \otimes b = a + b$$
.

Max-plus algebra is associative and matrix multiplication works, so:

$$x(k) = \begin{pmatrix} 2 & 3 \\ 5 & 3 \end{pmatrix}^{\otimes k} \otimes x(0).$$

Max-plus eigenvectors

$$A=egin{pmatrix} 2&3\\5&3 \end{pmatrix}$$
 has max-plus eigenvector $x=egin{pmatrix} 0\\1 \end{pmatrix}$ because
$$egin{pmatrix} 2&3\\5&3 \end{pmatrix}\otimes egin{pmatrix} 0\\1 \end{pmatrix}=4\otimes egin{pmatrix} 0\\1 \end{pmatrix}=egin{pmatrix} 4\\5 \end{pmatrix}.$$

In our train model, this means if the first departure in city 1 is noon and in city 2 is $1:00\,\mathrm{pm}$, then we can have departures every 4 hours from that point on.

Max-plus algebra in Julia

```
• • •
                                m brian - iulia - 83×30
julia> using MaxPlus
[julia>A=MP([2\ 3;\ 5\ 3])
2×2 (max,+) dense matrix:
[julia> x = MP([0,0])
2-element (max,+) vector:
 0
julia> A*x
2-element (max,+) vector:
julia> A^2*x
2-element (max,+) vector:
julia> A^3*x
2-element (max,+) vector:
  11
```

Eigenvectors of topical functions

For
$$f: \mathbb{R}^n_{>0} \to \mathbb{R}^n_{>0}$$
, the eigenspace of f is
$$E(f) := \{x \in \mathbb{R}^n_{>0} : x \text{ is an eigenvector of } f\}.$$

Note that E(f) only includes eigenvectors with all positive entries.

There might also be eigenvectors on the boundary of the cone $\mathbb{R}^n_{\geq 0}$, but that is not our focus.

The hypergraphs $\mathcal{H}_0^-(f)$ and $\mathcal{H}_\infty^+(f)$

For a multiplicatively topical function f, $\mathcal{H}_0^-(f)$ and $\mathcal{H}_\infty^+(f)$ are directed hypergraphs with nodes [n] that were introduced by Akian, Gaubert, and Hochart.

The hyperarcs of $\mathcal{H}_0^-(f)$ are the pairs $(I, \{j\})$ such that $I \subset [n]$, $j \in [n] \setminus I$, and

$$\lim_{t\to\infty} f(\exp(-tx_I))_j = 0$$

where exp is the entrywise natural exponential function and $x_I \in \mathbb{R}^n_{>0}$ is any vector with supp $(x_I) = I$.

The hyperarcs of $\mathcal{H}^+_{\infty}(f)$ are $(I, \{j\})$ such that $I \subset [n], j \in [n] \setminus I$ and

$$\lim_{t\to\infty} f(\exp(tx_I))_j = \infty.$$

Example

The geothmetic meandian function $F(x) = \begin{pmatrix} \frac{1}{3}(x_1 + x_2 + x_3) \\ \sqrt[3]{x_1 x_2 x_3} \\ \text{median}(x_1, x_2, x_3) \end{pmatrix}$ has

These show the minimal hyperarcs of $\mathcal{H}_0^-(F)$ and $\mathcal{H}_\infty^+(F)$.

Invariant nodes and reach

A subset $I \subseteq [n]$ is invariant in $\mathcal{H}_0^-(f)$ or $\mathcal{H}_\infty^+(f)$ if there are no hyperarcs $(I, \{j\})$ that originate from I in the hypergraph.

The reach of $J \subset [n]$ in a hypergraph \mathcal{H} , denoted reach (J, \mathcal{H}) , is the smallest invariant subset of the nodes of \mathcal{H} containing J.

Example

The geothmetic meandian function
$$F(x) = \begin{pmatrix} \frac{1}{3}(x_1 + x_2 + x_3) \\ \sqrt[3]{x_1 x_2 x_3} \\ \text{median}(x_1, x_2, x_3) \end{pmatrix}$$

has

 $\mathcal{H}_0^-(F)$ $\mathcal{H}_\infty^+(F)$

 $I=\{2,3\}$ is invariant in $\mathcal{H}_0^-(F)$, but $\mathcal{H}_\infty^+(F)$ has no invariant subsets.

Super & sub-eigenspaces

For any $\alpha, \beta > 0$, the sub-eigenspace corresponding to α is the set

$$S_{\alpha}(f) := \{ x \in \mathbb{R}^n_{>0} : \alpha x \le f(x) \}$$

and the super-eigenspace corresponding to β is

$$S^{\beta}(f) := \{x \in \mathbb{R}^n_{>0} : f(x) \le \beta x\}.$$

The intersection $S_{\alpha}^{\beta}(f) := S_{\alpha}(f) \cap S^{\beta}(f)$ is called a slice space.

Super & sub-eigenspaces

For any $\alpha, \beta > 0$, the sub-eigenspace corresponding to α is the set

$$S_{\alpha}(f) := \{ x \in \mathbb{R}^n_{>0} : \alpha x \le f(x) \}$$

and the super-eigenspace corresponding to β is

$$S^{\beta}(f) := \{x \in \mathbb{R}^n_{>0} : f(x) \le \beta x\}.$$

The intersection $S_{\alpha}^{\beta}(f) := S_{\alpha}(f) \cap S^{\beta}(f)$ is called a slice space.

Idea: These sets are all invariant under f. If any of these sets is nonempty and bounded in Hilbert's projective metric, then f has a positive eigenvector.

An irreducibility condition

Theorem (Gaubert-Gunawardena, 2004)

Let $f: \mathbb{R}^n_{>0} \to \mathbb{R}^n_{>0}$ be order-preserving and homogeneous. Then all super-eigenspaces $S^{\beta}(f)$ are bounded in $(\mathbb{R}^n_{>0}, d_H)$ if and only if reach $(J, \mathcal{H}^+_{\infty}(f)) = [n]$ for every nonempty $J \subsetneq [n]$.

A corresponding condition involving the hypergraph $\mathcal{H}_0^-(f)$ is equivalent to all sub-eigenspaces of f being d_H -bounded.

Bounded slice spaces

Theorem (Akian-Gaubert-Hochart, 2020)

Let $f: \mathbb{R}^n_{>0} \to \mathbb{R}^n_{>0}$ be order-preserving and homogeneous. All slice spaces $S^{\beta}_{\alpha}(f)$ are bounded in $(\mathbb{R}^n_{>0}, d_H)$ if and only if

$$\operatorname{reach}(J,\mathcal{H}_{\infty}^{+}(f))=[n] \ \text{or} \ \operatorname{reach}(J^{c},\mathcal{H}_{0}^{-}(f))=[n]$$

for every nonempty $J \subsetneq [n]$.

A graph condition

For any multiplicatively topical map f, define a digraph G(f) with an edge from j to i if

$$\lim_{t \to \infty} f(x + te_j)_i = \infty$$
 for any $x \in \mathbb{R}^n_{>0}$.

This is just the adjacency graph when f is a nonnegative matrix.

Theorem (Gaubert-Gunawardena, 2004)

Let $f: \mathbb{R}^n_{>0} \to \mathbb{R}^n_{>0}$ be order-preserving and homogeneous. If the graph G(f) is strongly connected, then all super-eigenspaces $S^{\beta}(f)$ are bounded in $(\mathbb{R}^n_{>0}, d_H)$.

Example

The geothmetic meandian function $F(x) = \begin{pmatrix} \frac{1}{3}(x_1 + x_2 + x_3) \\ \sqrt[3]{x_1 x_2 x_3} \\ \text{median}(x_1, x_2, x_3) \end{pmatrix}$

G(f) is not strongly connected, but the super-eigenspaces are all d_H -bounded anyway since reach $\mathcal{H}^+_\infty(F) = [n]$.

Types of irreducibility for topical maps

There are several generalizations of irreducibility for topical maps. Here are four:

- 1. f has no non-trivial invariant parts.
- 2. The graph G(f) is strongly connected.
- 3. $\operatorname{reach}(J, \mathcal{H}^+_{\infty}(f)) = [n]$ (super-eigenspaces are d_H -bounded)
- 4. All slice spaces are d_H -bounded

These are all equivalent for nonnegative matrices, but not for topical maps. In general $(2) \Rightarrow (3) \Rightarrow (4)$ and $(1) \Rightarrow (4)$.

All four guarantee that E(f) is d_H -bounded and nonempty.

Positive eigenvectors for non-irreducible matrices

A nonnegative matrix can have a unique positive eigenvector even if it is not irreducible.

Example

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$$
 has unique positive eigenvector $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

A corresponding notion for topical maps is when E(f) is nonempty and d_H -bounded even though none of the irreducibility conditions hold.

Nonempty & bounded eigenspace

Theorem (Lemmens-L-Nussbaum, 2018)

Let $f: \mathbb{R}^n_{>0} \to \mathbb{R}^n_{>0}$ be order-preserving and homogeneous. The eigenspace E(f) is nonempty and bounded in $(\mathbb{R}^n_{>0}, d_H)$ if and only if for every nonempty $J \subsetneq [n]$, there exists $x \in \mathbb{R}^n$ such that

$$\max_{j \in J} \frac{f(x)_j}{x_j} < \min_{i \in J^c} \frac{f(x)_i}{x_i}.$$

You can check this condition by testing random points in $\mathbb{R}^n_{>0}$, but that is a very slow algorithm.

Upper & lower Collatz-Wielandt numbers

The upper Collatz-Wielandt number for f is

$$r(f) := \inf\{\beta > 0 : S^{\beta}(f) \text{ is nonempty}\},$$

and the lower Collatz-Wielandt number for f is

$$\lambda(f) := \sup\{\alpha > 0 : S_{\alpha}(f) \text{ is nonempty}\}.$$

Alternatively, r(f) is the infimum of the super-eigenvalues and $\lambda(f)$ is the supremum of the sub-eigenvalues.

If E(f) is nonempty, then $\lambda(f) = r(f)$, but the converse is not always true.

The upper Collatz-Wielandt number r(f) is equal to the *cone* spectral radius, i.e., the largest eigenvalue of f as a map on $\mathbb{R}^n_{>0}$.

Boundary projections

For $\alpha \in [0, \infty]$ and $J \subseteq [n]$, let P_{α}^{J} be the projection

$$P^{J}_{\alpha}(x)_{j} := \begin{cases} x_{j} & \text{if } j \in J \\ \alpha & \text{otherwise.} \end{cases}$$

For any order-preserving homogeneous function $f: \mathbb{R}^n_{>0} \to \mathbb{R}^n_{>0}$, we define

$$f_0^J := P_0^J f P_0^J \quad \text{ and } \quad f_\infty^J := P_\infty^J f P_\infty^J.$$

Both $f_0^J: \mathbb{R}^n_{\geq 0} \to \mathbb{R}^n_{\geq 0}$ and $f_\infty^J: (0,\infty]^n \to (0,\infty]^n$ are order-preserving and homogeneous functions.

Bounded nonempty eigenspaces - revisited

Theorem (L, 2023)

Let $f: \mathbb{R}^n_{>0} \to \mathbb{R}^n_{>0}$ be order-preserving and homogeneous. The eigenspace E(f) is nonempty and bounded in $(\mathbb{R}^n_{>0}, d_H)$ if and only if

$$r(f_0^J) < \lambda(f_\infty^{[n]\setminus J})$$

for every nonempty $J \subsetneq [n]$.

Bounded nonempty eigenspaces - revisited

Theorem (L, 2023)

Let $f: \mathbb{R}^n_{>0} \to \mathbb{R}^n_{>0}$ be order-preserving and homogeneous. The eigenspace E(f) is nonempty and bounded in $(\mathbb{R}^n_{>0}, d_H)$ if and only if

$$r(f_0^J) < \lambda(f_\infty^{[n]\setminus J})$$

for every nonempty $J \subsetneq [n]$.

Lemma

For $f: \mathbb{R}^n_{>0} \to \mathbb{R}^n_{>0}$ be order-preserving and homogeneous,

- reach $(J^c, \mathcal{H}_0^-(f)) = [n] \iff r(f_0^J) = 0.$
- reach $(J, \mathcal{H}^+_{\infty}(f)) = [n] \iff \lambda(f^{[n]\setminus J}_{\infty}) = \infty.$

So you can check the hypergraphs first, and only check the Collatz-Wielandt numbers for J where the reach condition fails.

Example

For geothmetic meandian function $F(x) = \begin{pmatrix} \frac{1}{3}(x_1 + x_2 + x_3) \\ \sqrt[3]{x_1 x_2 x_3} \\ \text{median}(x_1, x_2, x_3) \end{pmatrix}$:

•
$$F_{\infty}^{\{2,3\}}(x) = P_{\infty}^{\{2,3\}} F P_{\infty}^{\{2,3\}}(x) = \begin{pmatrix} \infty \\ \infty \\ \max(x_2, x_3) \end{pmatrix}$$

$$\lambda(F_{\infty}^{\{2,3\}})=\infty.$$

•
$$F_0^{\{1,3\}}(x) = P_0^{\{1,3\}} F P_0^{\{1,3\}}(x) = \begin{pmatrix} \frac{1}{3}(x_1 + x_3) \\ 0 \\ \min(x_1, x_3) \end{pmatrix}$$
,

$$r(F_0^{\{1,3\}}) = \frac{1}{6}(1+\sqrt{13})$$

Convex maps

1. Checking that E(f) is nonempty and bounded requires checking an exponential number of subsets $J \subsetneq [n]$. This can be reduced dramatically if the additively topical map $\log \circ f \circ \exp$ is convex.

 In addition, if log of o exp is convex and real analytic, or convex and piecewise affine, then we can give complete necessary and sufficient conditions for E(f) to be nonempty.

Unique fixed points of real analytic nonexpansive maps

Theorem (L, 2023)

Let X be a real Banach space with the fixed point property. Let $f: X \to X$ be nonexpansive and real analytic. If f has more than one fixed point, then the set of fixed points of f is unbounded.

Corollary

If $f: \mathbb{R}^n_{>0} \to \mathbb{R}^n_{>0}$ is order-preserving, homogeneous, and real analytic, then f has a unique eigenvector (up to scaling) if and only if

$$r(f_0^J) < \lambda(f_\infty^{[n]\setminus J})$$

for every nonempty $J \subsetneq [n]$.

Intuition for uniqueness

Intuition for uniqueness

Intuition for uniqueness

Thanks & references

Thanks for your attention!

Thanks & references

Thanks for your attention!

M. Akian, S. Gaubert, and A. Hochart.

A game theory approach to the existence and uniqueness of nonlinear Perron-Frobenius eigenvectors.

Discrete Contin. Dyn. Syst., 40(1):207-231, 2020.

S. Gaubert and J. Gunawardena.

The Perron-Frobenius theorem for homogeneous, monotone functions. *Trans. Amer. Math. Soc.*, 356(12):4931–4950, 2004.

B. Lemmens, B. Lins, and R. D. Nussbaum.

Detecting fixed points of nonexpansive maps by illuminating the unit ball. *Israel J. Math.*, 224(1):231–262, 2018.

B. Lins.

A unified approach to nonlinear Perron-Frobenius theory. *Linear Algebra Appl.*, 675:48–89, 2023.