Question	NAnswer		Mark
Number			
18(a)(i)	Use of $\rho = m / V$	(1)	
	Identifies upthrust is equal to weight of fluid displaced	(1)	
	Use of $W = m g$	(1)	
	Use of $D = W - U$	(1)	
	$1.8 \times 10^2 \text{ (N)}$	(1)	5
		(-)	
	Example of calculation		
	$m = 1030 \text{ kg m}^{-3} \times 1.60 \times 10^{-2} \text{ m}^3 = 16.5 \text{ kg}$		
	$U = 16.5 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 162 \text{ N}$		
	$W = 35 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 343 \text{ N}$		
	D = W - U = 343 N - 162 N = 181 N		
	D - W - U - 343 N - 102 N - 181 N		
19(a)(ii)	Use of $D = k v^2$	(1)	
18(a)(ii)		(1)	2
	$v = 9.1 \text{ m s}^{-1} \text{ (allow ecf from (a)(i))}$	(1)	
	Example of calculation		
	$D = 181 \text{ N} = 2.2 \text{ N s}^2 \text{ m}^{-2} \times v^2$		
	$v = \sqrt{(181 \text{ N} \div 2.2 \text{ N s}^2 \text{ m}^{-2})} = 9.1 \text{ m s}^{-1}$		
18(a)(iii)	Object might not be spherical	(1)	
	Flow might not be laminar	(1)	2
18(b)	Drag force increases as velocity increases	(1)	
	Until drag force plus weight equals upthrust	(1)	
	(Resultant force is then zero) so the object stops accelerating	(1)	3
	, , , , , , , , , , , , , , , , , , ,		

Total for question 18

12