

Tema 6. Redes de Almacenamiento (SAN)

- Juan Carlos Pichel
- Enxeñería de Computadores
- Grao en Enxeñería Informática

Redes de almacenamiento - SAN

- SAN Storage Area Network
 - Red dedicada que interconecta servidores y dispositivos de almacenamiento
 - Tecnología Fibre Channel (FC): switches y fibra óptica (también cobre)
 - También existen SAN basadas en IP
- Los dispositivos de almacenamiento pueden ser:
 - Subsistemas de disco
 - Arrays de discos
- Los servidores conectados a la SAN acceden a los dispositivos:
 - A nivel de bloque/cluster
 - NO a nivel de fichero
- Una SAN:
 - No es un servidor de ficheros.
 - No es un servidor de discos

Características de las SAN FC

- Fibre Channel permite que la SAN tenga una gran extensión
 - Facilita implementar backup remoto
- Es posible dividirla a nivel lógico para:
 - Facilitar la gestión
 - Aumentar la seguridad
 - Separar partes de la red de distintos:
 - Clientes
 - Características
- Tecnologías posibles para dividir la red
 - Zoning: restricción sobre con qué puertos se puede conectar uno dado
 - Soft zoning: seguridad mediante oscuridad
 - Hard zoning: seguridad activa
 - SAN virtuales
 - Más sofisticado y flexible

Características de las SAN Fibre Channel

Aliasing:

- Introducir un alias para un grupo de puertos permite:
 - Utilizar el alias para acceder al primer servidor libre del grupo
 - Realizar multicast

Servidor de nombres:

 Todos los dispositivos conectados a un switch deben registrarse en el servidor de nombres y es posible consultarlo

• LUN masking:

• El switch puede *bucear* en los paquetes con un pequeño aumento en la latencia

Topologías en una SAN Fibre Channel

En estrella

No hay comunicación entre switches

• En cascada

Hay comunicación entre switches

• En anillo

- Los switches están conectados en anillo
- Anillo+estrella reduce el número de saltos en el anillo

Mallas

Como en cascada pero con al menos 2 conexiones inter-switch

• En árbol

- Hay 3 capas de switches
- Fat Tree
- Skinny Tree

Estrella

Cascada

Cascada y Arbitrated Loop

Servidor de Ficheros con SAN en cascada

Anillo

Anillo y estrella

Malla

Árbol

Fat tree

Skinny tree

Componentes hardware de una SAN

- Un HBA por servidor
 - También se deben instalar los drivers del HBA en el sistema operativo
- Un HBA por dispositivo
 - Posibles problemas de incompatibilidad
- Cables y conectores
 - Distintos modelos: vigilar la compatibilidad
- Bridges
 - Ejemplo: Convertidor SCSI a FC

Componentes hardware de una SAN Switches:

- El número de puertos varia entre 8 y 250
- Directors: switches de alta fiabilidad con gran número de puertos

- Hubs para FC-AL:
 - Sin gestión: Totalmente pasivos
 - Gestionados: Funciones de administración y diagnosis de dispositivos
 - Switched hubs: versión barata de un switch:
 - Implementan menos puertos
 - No implementan servicios como aliasing o zoning

Componentes hardware de una SAN

• Extensores de link

Conexiones remotas en SAN

Componentes SAN para blades

- Un HBA en cada blade
- Uno o más switches FC en el chasis
 - Switches reales
 - Pass-through (si no todos los blades se conectan a FC)

Fases de diseño de una SAN

- Analizar requerimientos:
 - Distintos tipos de plataformas,
 - Tamaño total,
 - Estrategia de backup,
 - Alta disponibilidad,
 - Necesidad de disaster recovery, ...
- Analizar la información del entorno:
 - Número de servidores,
 - Ancho de banda disponible,
 - Número y tamaño de los LUNs de cada servidor,
 - Disponibilidad de discos FC, ...
- Seleccionar una solución de almacenamiento masivo
- Conectar almacenamiento y servidores

Fases de implementación graduales

Crear SAN locales:

- Comenzar por un switch o un hub y conectar sistemas de almacenamiento y servidores
- Utilizar un convertidor SCSI-FC para aprovechar equipos SCSI

Fases de implementación graduales

- Construir una SAN para toda la empresa:
 - Unir las SAN locales con un switch
 - Los equipos (incluidos los de backup) se pueden compartir de esta manera

SAN del Site B

Fases de implementación graduales

- Proteger los datos en la SAN:
 - Ante fallos de los componentes:
 - Cables y componentes redundantes
 - Ante desastres locales:
 - Replicar datos en un lugar remoto

Buenas prácticas

- Comenzar la SAN con un switch o 2
 - Aunque son más caros, nos permiten escalar e integrar mejor la SAN
- Utilizar:
 - Hubs para migrar conexiones SCSI a la SAN;
 - Switches pequeños para construir la infraestructura de almacenamiento;
 - y Switches grandes para el centro de datos completo
- Implementar redundancia donde sea necesario

Usando SAN para alta disponibilidad

- Hay 3 niveles de redundancia para conseguir alta disponibilidad:
 - A nivel de conexiones.
 - Duplicar las conexiones. Además, puede servir para distribuir el tráfico entre ambas
 - A nivel de switches.
 - Con un único switch, existe el riesgo de que este falle
 - Con redundancia en los switches (conectados entre si) y en las conexiones se consigue mayor fiabilidad
 - A nivel del tejido de la red
 - Incrementa la fiabilidad al disponer de conexiones y switches redundantes,
 - Pero estos últimos son doblemente redundantes al disponerse en redes diferentes

Conexiones duplicadas

Switches duplicados

Redes duplicadas

Switches: rendimiento y disponibilidad

Como los switches pueden mejorar el rendimiento y facilitar la alta disponibilidad:

- Encontrando una ruta alternativa ante el fallo de una conexión
- Repartiendo la carga utilizando ISLs (links entre switches)
- Selección automática de la ruta más eficiente
- Dando prioridad a los datos que lo requieren
- Reemplazo en caliente de componentes (ventiladores, fuente de alimentación)