Министерство образования и науки РФ Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра системотехники

Программируемые логические интегральные схемы

Пояснительная записка (СТ.000000.108 ПЗ)

Руководитель:	Коляда А.В.
(подпись)	11001117700 11.12.
(оценка, дата)	
Разработал: Студент группы 26-6 (подпись)	Гордеев А.Е.
(дата сдачи)	

СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

ЗАДАНИЕ НА РАСЧЕТНО-ГРАФИЧЕСКУЮ РАБОТУ ПО АРХИТЕКТУРЕ ВЫЧИСЛИТЕЛЬНЫХ СИСТЕМ

Студент Гордеев Алексей Евгеньевич Факультет Автоматизации и информационных технологий, гр. 26-6 Тема курсовой работы: Программируемые логические интегральные схемы

Задания

- 1. Представить информацию по архитектуре ПЛИС
- 2. Представить информацию по истории ПЛИС
- 3. Представить информацию по языкам описания аппаратного обеспечения (HDL)
- 4. Подвести итоги выполненной работы

Задание выдано	
Руководитель Коляда А.В.	

РЕФЕРАТ

Пояснительная записка включает в себя 8 страницы текста, 6 использованных литературных источников, 0 рисунков.

Цель работы – to be filled.

Ключевые слова: to be filled.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	5
1 РАЗДЕЛ 1	
1.1 СЕКЦИЯ 1	
1.2 СЕКЦИЯ 2	6
1.3 СЕКЦИЯ 3	6
ЗАКЛЮЧЕНИЕ	7
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	8

					СТ.000000.108 ПЗ				
Изм.	Лист	№ докум.	Подп.	Дата					
Pas	зраб.	Гордеев А.Е.			-	Лит.	Лист	Листов	
П	ров.	Коляда А.В.			Программируемые	Kp	4	8	
					логические интегральные				
Н.к	онтр.				СХЕМЫ	Сиб	ГТУ, гј	p. 26-6	
V	mp				ONOMBI				

ВВЕДЕНИЕ

С появлением в начале 1970-х годов первых программируемых постоянных запоминающих устройств (англ. *PROM*, *programmable read only memory*), в истории микроэлектроники имеется тенденция к развитию устройств с программируемой логикой как вычислительных устройств, используемых для решения широкого круга задач цифровой обработки информации.

В то же время в составе элементной базы цифровой схемотехники отмечается переход от интегральных микросхем (ИМС) малой и средней степени интеграции к большим (БИС, LSI) и сверхбольшим (СБИС, VLSI) интегральным микросхемам.

Особенно сильное влияние на развитие цифровых вычислительных устройств оказало создание первых микропроцессоров, что привело к широкому внедрению цифровых технологий обработки информации. Однако микропроцессоры не всегда приемлимы при решении задач в цифровой схемотехники: работа микропроцессора основана на микропрограмме и состоит из последовательности шагов конечной длительности, в то время как для многих задач (в том числе, связанных и с обеспечением работы самих МП) требуются устройства с минимальной задержкой выполнения логических функций, что может быть обеспечено одним из трёх способов:

- Использованием наборов стандартной дискретной цифровой логи- ки общего применения, например, наборов логических микросхем 74-й или 4000-й серии (TTL, CMOS) и типовых периферийных БИС из микропроцессорного комплекта;
- Использованием заказных ИС (так называемых ASIC, англ. appication-specific integrated circuit);
- Использованием программируемых логических интегральных схем (PLD Programmable Logic Devices).

						Лист
					СТ.000000.108 ПЗ	۲
Изм.	Лит.	№ докум.	Подп.	Дата		Э

1 РАЗДЕЛ 1

Смотрите в файлик 20_main_part_1.tex для примеров добавления картинок, списков, и всего подобного.

1.1 СЕКЦИЯ 1

lorem ipsum

1.2 СЕКЦИЯ 2

ipsum lorem

1.3 СЕКЦИЯ 3

to be or not to be, that is the question

						Лист
					СТ.000000.108 ПЗ	6
Изм.	Лит.	№ докум.	Подп.	Дата		U

ЗАКЛЮЧЕНИЕ

		To be	filled			
					СТ.000000.108 ПЗ	Лист
Изм.	Лит.	№ докум.	Подп.	Дата		7

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Антонов А.П. Язык описания цифровых устройств. ALTERA HDL. Практический курс. М.: ИП Радио Софт, 2002. 224 с.
- 2. Грушвицкий Р.И., Мурсаев А.Х., Угрюмов Е.П. Проектирование систем на микросхемах программируемой логики. СПб.: БХВ-Петербург, 2002.-608 с.
- 3. Зобенко А. А., Филиппов А. С., Комолов Д. А., Мяльк Р. А. Системы автоматизированного проектирования фирмы Altera MAX+plus II и Quartus II. Краткое описание и самоучитель. М.: ИП Радио Софт, 2002. 360 с.
- 4. Стешенко В.Б. ПЛИС фирмы "ALTERA": элементая база, система проектирования и языки описания аппаратуры. М.: Издательский дом, ДОДЕКА XXI, $2002.-567~\mathrm{c}.$
- 5. Электронный ресурс http://ru.wikipedia.org/wiki/ПЛИС
- 6. Электронный ресурс http://www.eecg.toronto.edu/~vaughn/challenge/fpga arch.html

						Лист
					СТ.000000.108 ПЗ	0
Изм.	Лит.	№ докум.	Подп.	Дата		8