

XXIX. Nemzetközi Magyar Matematikaverseny Földes Ferenc Gimnázium, Miskolc

2023. április 21.

12. évfolyam

1. Dani és Ede az összes olyan négyjegyű pozitív egész számokat leírta a füzetébe, amelyekben nem szerepel nulla számjegy, és bármely két számjegye különböző. Dani ezek közül azokat írta fel növekvő sorrendben, amelyeknek a második számjegytől kezdve mindegyik számjegye nagyobb volt az előzőnél. Ede pedig azokat írta fel növekvő sorrendben, amelyeket Dani nem írt fel. Melyik volt a 60. felírt szám Dani, illetve Ede listáján?

(Erdős Gábor, Nagykanizsa és Fedorszki Ádám, Beregszász)

2. Egy téglatest élei hosszának mérőszámai pozitív egész számok, térfogata 2023 egység. Ha valaki elárulná a téglatest felszínének mérőszámában az első számjegyet vagy a számjegyek összegét, önmagában egyik információ sem lenne elegendő az élek meghatározásához. Mekkorák a téglatest élei? (Kárász Péter, Budapest)

3. Mennyi az $A = (8 - 3 \operatorname{tg}^2 x)^2 + (8 + 3 \operatorname{ctg}^2 x)^2$ kifejezés legkisebb értéke? Hol veszi fel ezt

(Kovács Béla, Szatmárnémeti)

4. Az ABC háromszögben az AB oldal mértéke a másik két oldal mértékének négyzetes közepe: $AB = \sqrt{\frac{AC^2 + BC^2}{2}}$. Az ABC háromszög S súlypontjából a CA, AB és BC oldalegyenesekre állított merőlegesek talppontja legyen N, P és Q. Bizonyítsa be, hogy az NPQ háromszög egyenlő szárú. (Molnár István, Gyula)

5. Oldja meg a következő egyenletet a valós számok halmazán:

$$\frac{x}{4} = \left(\sqrt{1+x} - 1\right)\left(\sqrt{1-x} + 1\right).$$

(Katz Sándor, Bonyhád)

- 6. Legyen az ABC derékszögű háromszög beírt és körülírt körének sugara rendre r és R, az AB átfogóhoz tartozó magasság CD. Rajzoljuk meg azt a CD oldalhosszúságú CEFG négyzetet, amelynek E és G csúcsa rendre az AC és BC szakaszokon van. Legyen az ABC háromszög és a CEFG négyzet közös részének területe T, a CEFG négyzetnek az ABC háromszöggel nem fedett részének területe t.
 - (a) Bizonyítsa be, hogy $\frac{t}{T} = \frac{r}{2R}$.

a legkisebb értéket a kifejezés?

(b) Milyen határok között változhat $\frac{t}{T}$ értéke?

(Bíró Bálint, Eger)

Megoldások

1. Kezdjük a Dani által leírt számokkal. Ha az első számjegy 1-es, akkor a további számjegyeket (⁸₃) = 56-féleképpen lehet kiválasztani. Ezek sorrendje egyértelmű, hiszen növekvő sorrendben kell írni őket, vagyis Dani 56 darab 1-gyel kezdődő számot írt le. Ezt követően jöttek a 2-vel kezdődők: 57. lett a 2345, 58. lett a 2346, 59. lett a 2347, így 60. lett a 2348.

Nézzük most az Ede által leírt számokat. A listája elején az $\overline{12ab}$ alakú számok állnak. A feladatban leírt típusú számok között $7\cdot 6=42$ ilyen van, de ezek közül $\binom{7}{2}=21$ -et Dani is leírt, ezért Ede listájára 21 darab került. Hasonlóan számolva, az $\overline{13ab}$ alakú számok közül $7\cdot 6-\binom{6}{2}=42-15=27$ darabot írt le Ede, így eddig már 48 számot leírt. Az már látszik, hogy a 60. leírt szám $\overline{14ab}$ alakú, hiszen ezekből összesen $7\cdot 6-\binom{5}{2}=42-10=32$ darab van. Ha a=2 akkor ezt a számot Dani nem írta le, így ezeket a számokat mind Ede írta le. Mivel b értéke 6-féle lehet, 6 ilyen szám van. Ugyanezt elmondhatjuk akkor is, ha a=3, tehát ezekből is 6 darabot írt fel Ede. De ezzel Ede összesen már pontosan 48+12=60 darab számot írt le, ezért a 60. általa leírt szám az 1439.

2. Jelölje a téglatest három élét a, b és c, ekkor V = abc = 2023. Mivel $2023 = 7 \cdot 17^2$, ezért a 2023 prímtényezős felbontásában szereplő tényezőkből illetve az 1-ből kell háromtényezős szorzatokat előállítanunk. Az alábbi táblázat tartalmazza az összes lehetséges élhosszúságot (természetesen a permutációktól eltekintve). A negyedik oszlopban kiszámítottuk a téglatestek felszínét (A) is, valamint egy újabb oszlopban a számjegyek összegét (S).

a	b	c	A	S
1	1	2023	8094	21
1	7	289	4638	21
1	17	119	4318	16
7	17	17	1054	10

Mivel az első számjegy ismeretének birtokában nem tudnánk kitalálni az élek hosszát, ezért a felszín mérőszámában az első számjegy csak 4 lehet, vagyis csak a második vagy a harmadik eset állhat fenn. Önmagában a felszín mérőszámában lévő számjegyek összege sem lenne elegendő információ, így az előbb említetthez hasonlóan ez csak 21 lehet, vagyis az első vagy a második eset áll fenn. A kettőt összevetve megállapíthatjuk, hogy a második esettel van dolgunk, azaz a téglatest élei 1, 7 és $17^2 = 289$ egység hosszúságúak.

3. 1. megoldás: A kifejezés értelmezési tartománya $\mathbb{R} \setminus \{k \cdot \frac{\pi}{2} \mid k \in \mathbb{Z}\}.$

Ezen a halmazon

$$A = (8 - 3 \operatorname{tg}^{2} x)^{2} + (8 + 3 \operatorname{ctg}^{2} x)^{2} = 128 - 48 (\operatorname{tg}^{2} x - \operatorname{ctg}^{2} x) + 9 (\operatorname{tg}^{4} x + \operatorname{ctg}^{4} x).$$

Legyen $y = \operatorname{tg}^2 x - \operatorname{ctg}^2 x$, ekkor $y^2 = \operatorname{tg}^4 x + \operatorname{ctg}^4 x - 2$, ezért

$$A = 128 - 48y + 9y^{2} + 18 = (3y - 8)^{2} + 82.$$

Ennek minimuma 82, amelyet $y=\frac{8}{3}$ esetén vesz fel. Visszahelyettesítve:

$$tg^{2} x - ctg^{2} x = \frac{8}{3}$$
$$tg^{2} x - \frac{1}{tg^{2} x} = \frac{8}{3}$$
$$3 tg^{4} x - 8 tg^{2} x - 3 = 0$$

Ennek megoldásai tg $^2x=3$ és tg $^2x=-\frac{1}{3}$. Csak az első lehetséges, ekkor tg $x=\pm\sqrt{3}$. Ezeket az értékeket az

$$x = -\frac{\pi}{3} + k\pi$$
, illetve $x = \frac{\pi}{3} + k\pi$, $k \in \mathbb{Z}$

helyeken veszi fel a tg függvény.

Tehát a kifejezés minimuma 82, ezt az értéket $x=-\frac{\pi}{3}+k\pi$, illetve $x=\frac{\pi}{3}+k\pi$ $(k\in\mathbb{Z})$ helyeken veszi fel.

2. megoldás: A kifejezés értelmezési tartománya $\mathbb{R} \setminus \{k \cdot \frac{\pi}{2} \mid k \in \mathbb{Z}\}.$

Legyen $t = tg^2 x$, ahol t > 0. Ekkor $A(t) = (8 - 3t)^2 + (8 + \frac{3}{t})^2$.

$$A'(t) = -6(8 - 3t) - 6\left(8 + \frac{3}{t}\right) \cdot \frac{1}{t^2} = -\frac{6}{t^3}\left(-3t^4 + 8t^3 + 8t + 3\right) =$$
$$= \frac{6}{t^3}(t - 3)\left(3t^3 + t^2 + 3t + 1\right).$$

Ennek pozitív zérushelye csak t=3, mert a második tényező pozitív t-re pozitív.

A t=3 helyen A' előjelet vált, negatívból pozitívba megy át, tehát itt A-nak minimuma van $A_{\min}=A(3)=82$ értékkel. A $t=\operatorname{tg}^2 x=3$, ha $\operatorname{tg} x=\pm\sqrt{3}$. Ezeket az értékeket az

$$x = -\frac{\pi}{3} + k\pi$$
, illetve $x = \frac{\pi}{3} + k\pi$, $k \in \mathbb{Z}$

helyeken veszi fel a tg függvény.

Tehát a kifejezés minimuma 82, ezt az értéket $x = -\frac{\pi}{3} + k\pi$, illetve $x = \frac{\pi}{3} + k\pi$ $(k \in \mathbb{Z})$ helyeken veszi fel.

- 4. 1. megoldás: Az ABC háromszögben a szokásos jelölésekkel: BC = a, CA = b, AB = c, $BAC <= \alpha$, $ABC <= \beta$, $ACB <= \gamma$. Jelölje s_a , s_b , s_c a megfelelő oldalakhoz tartozó súlyvonalakat. Jelöljük S merőleges vetületét a CA, AB és BC oldalegyeneseken rendre N, P, Q-val.
 - I. Ha N, P, Q a megfelelő oldalak belső pontjai.

A feladat feltételei alapján $c=\sqrt{\frac{a^2+b^2}{2}},$ ahonnan

$$a^2 + b^2 = 2c^2 (1)$$

Az ANSP négyszög húrnégyszög, mert $ANS \triangleleft + APS \triangleleft = 180^\circ$. Felhasználva, hogy AS az ANSP négyszög köré írható kör átmérője, következik, hogy $NP = AS \sin \alpha$. Hasonló gondolatmenettel a CNSQ és BPSQ húrnégyszögekből felírható, hogy $QN = CS \sin \gamma$ és $QP = BS \sin \beta$.

Tudjuk, hogy $AS = \frac{2}{3}s_a$ és $BS = \frac{2}{3}s_b$. Az (1) összefüggés alapján

$$s_a^2 = \frac{2(b^2 + c^2) - a^2}{4} = \frac{2b^2 + 2c^2 - 2c^2 + b^2}{4} = \frac{3}{4}b^2,$$

$$s_b^2 = \frac{2(a^2 + c^2) - b^2}{4} = \frac{2a^2 + 2c^2 - 2c^2 + a^2}{4} = \frac{3}{4}a^2.$$

1. ábra.

Mindezeket figyelembe véve

$$NP^{2} = AS^{2} \sin^{2} \alpha = \frac{4}{9} s_{a}^{2} \sin^{2} \alpha = \frac{4}{9} \cdot \frac{3}{4} b^{2} \sin^{2} \alpha = \frac{1}{3} b^{2} \sin^{2} \alpha,$$

$$QP^{2} = BS^{2} \sin^{2} \beta = \frac{4}{9} s_{b}^{2} \sin^{2} \beta = \frac{4}{9} \cdot \frac{3}{4} a^{2} \sin^{2} \beta = \frac{1}{3} a^{2} \sin^{2} \beta.$$

Felírva a szinusz-tételt az ABC háromszögben: $\frac{a}{b}=\frac{\sin\alpha}{\sin\beta}$, azaz $b\sin\alpha=a\sin\beta$. Ebből látható, hogy $NP^2=QP^2$, azaz NP=QP, tehát az NPQ háromszög egyenlő szárú.

- II. Feltehetjük, hogy a > b, ekkor az A csúcsnál tompaszög is lehet. Tekintsük azokat az eseteket, amikor a súlypont valamelyik vetülete nem a megfelelő oldal belső pontja.
 - (i) Először vizsgáljuk meg, hogy a P pont egybeeshet-e az A ponttal a 2. ábra szerint.

2. ábra.

Ekkor

$$SF^2 = \left(\frac{1}{3}s_c\right)^2 = \frac{1}{9} \cdot \frac{2a^2 + 2b^2 - c^2}{4}.$$

Az $a^2 + b^2 = 2c^2$ feltételt figyelembe véve

$$SF^2 = \frac{1}{9} \cdot \frac{4c^2 - c^2}{4} = \frac{c^2}{12} \quad \Rightarrow \quad SF = \frac{c}{2\sqrt{3}} < \frac{c}{2},$$

ami azt jelenti, hogy az $a^2+b^2=2c^2$ feltétel fennállása esetén P mindig az AB oldal belső pontja.

(ii) S-nek az AC oldalra eső vetülete, N viszont lehet az oldal végpontjában (3. ábra). (Ellenőrizhető, hogy pl. $a=\sqrt{7},\ b=1,\ c=2$ esetén $s_a\perp AC$.) Most $NSP \lhd$ és α merőleges szárú szögek, így $NSP \lhd 180^\circ - \alpha$, ezért $NP=AS\sin(180^\circ - \alpha)=AS\sin\alpha$.

3. ábra.

(iii) Végül, ha N az AC oldalon kívül van (4. ábra), akkor N és P illeszkedik AS Thalész-körére. Mivel itt is $NSP < 180^{\circ} - \alpha$, ezért $NP = AS \sin(180^{\circ} - \alpha) = AS \sin \alpha$.

4. ábra.

Mindkét esetben alkalmazható az I. rész további gondolatmenete.

2. megoldás: Helyezzük a háromszöget koordinátarendszerbe az 5. ábra szerint. A feltétel szerint $2AB^2 = AC^2 + BC^2$:

$$2(2w)^{2} = (3u + w)^{2} + (3v)^{2} + (3u - w)^{2} + (3v)^{2} \quad \Rightarrow \quad u^{2} + v^{2} = \frac{w^{2}}{3}.$$
 (2)

Először R koordinátáit határozzuk meg.

FR:
$$(3u - w) x + 3vy = 0$$
,
BC: $3vx - (3u - w) y = 3wv$

Ezek metszéspontja: $R\left(\frac{9v^2}{4w-6u};\frac{3v(w-3u)}{4w-6u}\right)$. Q az RC szakasz harmadolópontja:

$$q_1 = \frac{2r_1 + 3u}{3} = \frac{3v^2}{2w - 3u} + u, \qquad q_2 = \frac{2r_2 + 3v}{3} = \frac{3v(w - 2u)}{2w - 3u}.$$

5

5. ábra.

Használjuk fel, hogy (2) szerint $v^2 = \frac{w^2}{3} - u^2$:

$$PQ^{2} = \frac{9v^{2} \left(\frac{1}{3}w^{2} - u^{2} + w^{2} - 4wu + 4u^{2}\right)}{\left(2w - 3u\right)^{2}} = \frac{3v^{2} \left(4w^{2} - 12wu + 9u^{2}\right)}{\left(2w - 3u\right)^{2}} = 3v^{2}.$$

Ha a fenti levezetésbe w helyett -w-t írunk, akkor az AC szakaszon lévő N pont koordinátáit, illetve $NQ^2 = 3v^2$ -et kapunk, azaz PQ = PN.

Megjegyzés:

Az $u^2+v^2=\frac{w^2}{3}$ feltételből itt is következik, hogy $|u|<\frac{w}{\sqrt{3}}$, tehát P az AB oldal belső pontja, de itt nem használtuk fel ezt a feltételezést, ezért ennek igazolására itt nincs szükség.

3. megoldás: A feltétel szerint $2c^2=a^2+b^2$. Az FPS háromszöget F-ből 3-szorosára nagyítva az FDC háromszögbe megy át, ezért $SP=\frac{m_c}{3}$. Ugyanígy $SQ=\frac{m_a}{3}$ és $SN=\frac{m_b}{3}$ (6. ábra). A PBQS négyszögnek két derékszöge van, ezért $PSQ <=180^\circ-\beta$, ugyanígy $PSN <=180^\circ-\alpha$.

A koszinusz-tételt alkalmazva (a $PSQ\triangle,$ majd az $ABC\triangle\text{-ben}),$ kifejezzük $PQ^2\text{-t}$

$$PQ^{2} = \left(\frac{m_{c}}{3}\right)^{2} + \left(\frac{m_{a}}{3}\right)^{2} - 2 \cdot \frac{m_{c}}{3} \cdot \frac{m_{a}}{3} \cos(180^{\circ} - \beta) =$$

$$= \frac{m_{c}^{2}}{9} \left(1 + \frac{m_{a}^{2}}{m_{c}^{2}} + 2 \cdot \frac{m_{a}}{m_{c}} \cos \beta\right) = \frac{m_{c}^{2}}{9} \left(1 + \frac{c^{2}}{a^{2}} + 2 \cdot \frac{c}{a} \cdot \frac{a^{2} + c^{2} - b^{2}}{2ac}\right) =$$

$$= \frac{m_{c}^{2}}{9} \left(1 + \frac{a^{2} + 2c^{2} - b^{2}}{a^{2}}\right) = \frac{m_{c}^{2}}{9} \left(1 + \frac{a^{2} + a^{2}}{a^{2}}\right) = \frac{m_{c}^{2}}{3},$$

ahol felhasználtuk, hogy $2T=a\cdot m_a=b\cdot m_b$ alapján $\frac{m_a}{m_c}=\frac{c}{a}.$

6. ábra.

Azonos gondolatmenettel fejezhetjük ki PN^2 -t is:

$$PN^{2} = \left(\frac{m_{c}}{3}\right)^{2} + \left(\frac{m_{b}}{3}\right)^{2} - 2 \cdot \frac{m_{c}}{3} \cdot \frac{m_{b}}{3} \cos(180^{\circ} - \alpha) =$$

$$= \frac{m_{c}^{2}}{9} \left(1 + \frac{m_{b}^{2}}{m_{c}^{2}} + 2 \cdot \frac{m_{b}}{m_{c}} \cos \alpha\right) = \frac{m_{c}^{2}}{9} \left(1 + \frac{c^{2}}{b^{2}} + 2 \cdot \frac{c}{b} \cdot \frac{b^{2} + c^{2} - a^{2}}{2bc}\right) =$$

$$= \frac{m_{c}^{2}}{9} \left(1 + \frac{b^{2} + 2c^{2} - a^{2}}{b^{2}}\right) = \frac{m_{c}^{2}}{9} \left(1 + \frac{b^{2} + b^{2}}{b^{2}}\right) = \frac{m_{c}^{2}}{3}.$$

Mivel $PQ = PN = \frac{m_c}{\sqrt{3}}$, ezért az $NPQ\triangle$ egyenlőszárú.

Itt is szükséges annak igazolása, hogy az $a^2+b^2=2c^2$ feltétel teljesülése esetén P az AB oldal belső pontja. (Vagy annak megmutatása, hogy ha P nem belső pont, akkor is $PSQ < 180^{\circ} - \beta$ és $PSN < 180^{\circ} - \alpha$.)

5. 1. megoldás: Az

$$\frac{x}{4} = \left(\sqrt{1+x} - 1\right)\left(\sqrt{1-x} + 1\right) \tag{3}$$

egyenlet értelmezési tartománya: $-1 \leqslant x \leqslant 1$. Végezzük el a beszorzást:

$$\frac{x}{4} = \sqrt{1 - x^2} - \sqrt{1 - x} + \sqrt{1 + x} - 1,\tag{4}$$

majd rendezzük:

$$\sqrt{1-x} - \sqrt{1+x} + 1 = \sqrt{1-x^2} - \frac{x}{4}$$

Mindkét oldalt négyzetre emelve:

$$3 + 2\left(\sqrt{1-x} - \sqrt{1+x} - \sqrt{1-x^2}\right) = 1 - x^2 + \frac{x^2}{16} - \frac{x}{2}\sqrt{1-x^2},$$
$$2\left(\sqrt{1-x} - \sqrt{1+x} - \sqrt{1-x^2} + 1\right) = -\frac{15x^2}{16} - \frac{x}{2}\sqrt{1-x^2}.$$

Ha valamely valós x megoldása a (3) illetve a (4) egyenletnek, akkor erre a bal oldal $-\frac{x}{2}$ -vel egyenlő (4) szerint:

$$-\frac{x}{2} = -\frac{15x^2}{16} - \frac{x}{2}\sqrt{1 - x^2},$$
$$\frac{x}{2}\left(\sqrt{1 - x^2} + \frac{15x}{8} - 1\right) = 0.$$

Ha az első tényező nulla, akkor $x_1=0$. Ez megoldása a (3) egyenletnek.

Ha a második tényező nulla, akkor $\sqrt{1-x^2}=1-\frac{15x}{8}$. A megoldhatóság feltétele, hogy $1-\frac{15x}{8}\geqslant 0$, azaz $x\leqslant \frac{8}{15}$. Újra négyzetre emelve:

$$1 - x^{2} = 1 - \frac{15x}{4} + \frac{225x^{2}}{64},$$
$$0 = \frac{x}{4} \left(-15 + \frac{289x}{16} \right).$$

A második tényezőből kapunk új gyököt $x_2 = \frac{240}{289}$. Látható, hogy x_2 nem felel meg az $x \leqslant \frac{8}{15}$ feltételnek, tehát csak egy gyök van: x = 0.

(A két négyzetre emelés és egy korábbi egyenlet egyik oldal helyett a másik visszahelyettesítése sem ekvivalens átalakítás, ezért a kapott gyököt ellenőrizni kell.)

2. megoldás: Legyen $\sqrt{1+x}=u,\,\sqrt{1-x}=v,\,$ ahol $u\geqslant 0,\,v\geqslant 0.$ Ekkor (3) a következő egyenletrendszerrel ekvivalens:

$$\frac{u^2 - 1}{4} = (u - 1)(v + 1)$$

$$u^2 + v^2 = 2$$

$$(u - 1)\left(v + 1 - \frac{u + 1}{4}\right) = 0$$

$$u^2 + v^2 = 2$$

Az első tényezőből u=1, ebben az esetben x=0, ez megoldása a (3) egyenletnek.

A második tényezőből u=4v+3. A $(4v+3)^2+v^2=2$, vagyis a $17v^2+24v+7=0$ egyenletnek csak negatív megoldásai vannak, ezért ezek nem szolgáltatnak megoldást (3)-nak. Tehát x=0 az egyetlen gyök.

3. megoldás: Az egyenlet értelmezési tartománya $-1 \le x \le 1$. Szorozzuk (3) mindkét oldalát $\sqrt{1+x}+1$ -gyel. Mivel ez minden értelezett x-re pozitív, ezért a szorzás nem hoz be új megoldást.

$$\frac{x}{4}\left(\sqrt{1+x}+1\right) = x\left(\sqrt{1-x}+1\right)$$
$$x\left(4\sqrt{1-x}+3-\sqrt{1+x}\right) = 0$$

Ebből x=0, és a $4\sqrt{1-x}+3=\sqrt{1+x}$ egyenletnek nincs megoldása, mert a bal oldal minimuma 3, míg a jobb oldal maximuma $\sqrt{2}$. Így x=0 a (3) egyenlet egyetlen megoldása.

4. megoldás: Mivel a (3) értelmezési tartománya $|x| \leqslant 1$, ezért létezik olyan $0 \leqslant \alpha \leqslant \frac{\pi}{2}$, hogy $x = \cos 2\alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$. Innen $1 + x = 2\cos^2 \alpha$ és $1 - x = 2\sin^2 \alpha$. A

fenti intervallumban $\sin \alpha \ge 0$, $\cos \alpha \ge 0$, ezért $\sqrt{1+x} = \sqrt{2}\cos \alpha$ és $\sqrt{1-x} = \sqrt{2}\sin \alpha$. Egyenletünk új alakja:

$$\frac{2\cos^2\alpha - 1}{4} = \left(\sqrt{2}\cos\alpha - 1\right)\left(\sqrt{2}\sin\alpha + 1\right)$$
$$0 = 4\left(\sqrt{2}\cos\alpha - 1\right)\left(\sqrt{2}\sin\alpha + 1\right) - \left(\sqrt{2}\cos\alpha - 1\right)\left(\sqrt{2}\cos\alpha + 1\right)$$
$$0 = \left(\sqrt{2}\cos\alpha - 1\right)\left(4\sqrt{2}\sin\alpha + 4 - \sqrt{2}\cos\alpha - 1\right)$$

Ha az első tényező 0, akkor az adott intervallumban $\alpha = \frac{\pi}{4}$, ebből $x = \cos 2\alpha = \cos \frac{\pi}{2} = 0$. Ez megoldása a (3) egyenletnek.

Ha a második tényező 0, akkor $4\sqrt{2}\sin\alpha + 3 = \sqrt{2}\cos\alpha$. Az adott intervallumban $\sin\alpha \geqslant 0$, ezért a bal oldal biztosan nagyobb, mint a jobb oldal. Tehát több megoldás nincs.

6. 1. megoldás:

(a) Készítsünk a feltételeknek megfelelő vázlatos ábrát.

7. ábra.

A 7. ábrán a szokásos jelöléseknek megfelelően $BC=a,\ CA=b$ és AB=c, a háromszög derékszögű, tehát körülírt körének átmérője az átfogó hosszával egyenlő, azaz 2R=c, így elegendő bizonyítani, hogy $\frac{t}{T}=\frac{r}{c}.$

Az AB átfogónak és a CEFG négyzet EF illetve FG oldalának metszéspontjait rendre H illetve K betűvel jelöltük, az átfogóhoz tartozó magasságra a CD=m, a KGC háromszög területére a T_1 , a HCE háromszög területére a T_2 , végül a feladatnak megfelelően a HKF háromszög területére a t jelölést alkalmaztuk.

Az ABC háromszög területére teljesül, hogy $\frac{ab}{2} = \frac{cm}{2}$, innen

$$m = \frac{ab}{c}. (5)$$

Nyilvánvaló, hogy $T_1 = \frac{1}{2}KG \cdot CG$ és $T_2 = \frac{1}{2}HE \cdot CE$. Mivel azonban a feltételek miatt CD = CG = CE = m, ezért egyrészt $T_1 = \frac{1}{2}KG \cdot m$ és $T_2 = \frac{1}{2}HE \cdot m$, másrészt (5) szerint

$$2T_1 = \frac{KG \cdot ab}{c}, \qquad 2T_2 = \frac{HE \cdot ab}{c}. \tag{6}$$

A KGC és a KDC háromszögekben CD=CG=m, a CK közös szakasz, és a nagyobb oldalakkal, vagyis a CK szakasszal szemben lévő szögek mindkét háromszögben derékszögek, ezért a KGC és a KDC egybevágó háromszögek, tehát területük egyenlő. Hasonlóképpen láthatjuk be, hogy a HEC és a HDC háromszögek is egybevágók, ezért területük egyenlő.

Ez azt is jelenti, hogy az ABC háromszög és a CEFG négyzet közös részének T területére teljesül, hogy $T = 2T_1 + 2T_2$, vagyis (6) szerint

$$T = \frac{ab}{c} \left(KG + HE \right). \tag{7}$$

A megfelelő szögek egyenlősége miatt a KBG és az ABC háromszögek hasonlók, megfelelő oldalaik aránya egyenlő, így $\frac{KG}{b} = \frac{BG}{a}$, mivel azonban BG = a - m, ezért $KG = \frac{b(a-m)}{a}$.

A megfelelő szögek egyenlősége miatt az AHE és az ABC háromszögek hasonlók, így $\frac{HE}{a}=\frac{AE}{b}$, és mivel AE=b-m, így $HE=\frac{a(b-m)}{b}$.

A kapott két összefüggésből (5) miatt adódik, hogy

$$KG = \frac{b\left(a - \frac{ab}{c}\right)}{a} = \frac{b\left(c - b\right)}{c}, \qquad HE = \frac{a\left(b - \frac{ab}{c}\right)}{b} = \frac{a\left(c - a\right)}{c}.$$
 (8)

A műveletek elvégzése után $KG + HE = \frac{1}{c}(bc - b^2 + ac - a^2)$, majd az $a^2 + b^2 = c^2$ püthagoraszi összefüggés beírása, kiemelés és egyszerűsítés után azt kapjuk, hogy KG + HE = a + b - c, vagyis (7) miatt

$$T = \frac{ab}{c} \left(a + b - c \right). \tag{9}$$

A CEFG négyzetnek az ABC háromszöggel nem fedett része éppen a HKF háromszög, ezért $T_{HKF} = t$, így $t = \frac{1}{2}FK \cdot FH$.

Az FG = FE = m összefüggésből következik, hogy FK = m - KG és FH = m - HE, ahonnan (5) és (8) miatt kapjuk, hogy

$$FK = \frac{ab}{c} - \frac{b(c-b)}{c} = \frac{b(a+b-c)}{c}, \qquad HE = \frac{ab}{c} - \frac{a(c-a)}{c} = \frac{a(a+b-c)}{c}.$$
(10)

Eszerint $t = \frac{ab(a+b-c)^2}{2c^2}$, ebből pedig (9) miatt adódik, hogy

$$\frac{t}{T} = \frac{a+b-c}{2c}. (11)$$

Felhasználhatjuk, hogy a+b-c=2r, ebből (11) eredményünk alapján

$$\frac{t}{T} = \frac{2r}{2c} = \frac{r}{c}$$

következik, és éppen ezt akartuk bizonyítani.

(b) Átalakítjuk:

$$\frac{t}{T} = \frac{a+b-c}{2c} = \frac{1}{2} \left(\frac{a}{c} + \frac{b}{c} - 1 \right) = \frac{1}{2} \left(\sin \alpha + \cos \alpha - 1 \right) = \frac{1}{2} \left(\sqrt{2} \cdot \sin(\alpha + 45^{\circ}) - 1 \right).$$

Ennek értékkészlete a 0° < α < 90° intervallumban 0 < $\frac{t}{T} \leqslant \frac{\sqrt{2}-1}{2}$, a maximumát $\alpha = 45^{\circ}$, azaz egyenlő szárú, derékszögű háromszög estén veszi fel.

2. megoldás:

(a) $KGC\Delta \cong KDC\Delta$, mert megegyeznek két oldalban, (CD = CG = m, és CK közös), valamint a nagyobbikkal szemközti szögben: $CGK \triangleleft = CDK \triangleleft = 90^{\circ}$. Ugyanígy $CDH\Delta \cong CHE\Delta$. $DCA \triangleleft = 90^{\circ} - \alpha = \beta \Rightarrow DCH \triangleleft = \beta/2$, ugyanis $DCK \triangleleft = \alpha/2$.

8. ábra.

Legyen KD = u, DH = v. Ekkor $T = 2T_{CHK\triangle} = (u + v) m$. A CEFG négyzet területe m^2 , ezért

$$\frac{t}{T} = \frac{m^2 - T}{T} = \frac{m^2 - m\left(u + v\right)}{m\left(u + v\right)} = \frac{1 - \left(\frac{u}{m} + \frac{v}{m}\right)}{\frac{u}{m} + \frac{v}{m}}.$$

A 8. és a 9. ábrán az $\alpha/2$ illetve $\beta/2$ szöggel rendelkező derékszögű háromszögek hasonlók: $DKC\triangle \sim POA\triangle$, $DHC\triangle \sim BPO\triangle$.

9. ábra.

Ezért $\frac{u}{m}=\frac{r}{x}$, illetve $\frac{v}{m}=\frac{r}{y}$. Továbbá $2T_{ABC\triangle}=(r+x)\,(r+y)=r\,(2x+2y+2r)$, ebből $xy=rx+ry+r^2$. Tehát

$$\frac{t}{T} = \frac{1 - \left(\frac{u}{m} + \frac{v}{m}\right)}{\frac{u}{m} + \frac{v}{m}} = \frac{1 - \left(\frac{r}{x} + \frac{r}{y}\right)}{\frac{r}{x} + \frac{r}{y}} = \frac{xy - rx - ry}{rx + ry} = \frac{r^2}{2rR} = \frac{r}{2R}.$$

(b) Tekintsük az adott AB átfogójú derékszögű háromszögeket (9. ábra). $AOB \triangleleft = 180^{\circ} - \alpha/2 - \beta/2 = 135^{\circ}$, ezért a beírt kör O középpontja az AB szakasz 135° os látókörének pontja. Az r = OP szakasz az ív felezőpontjában a legnagyobb: $r_{\max} = R \cdot \operatorname{tg} 22,5^{\circ} = R\left(\sqrt{2}-1\right)$. Ezért $\frac{t}{T} = \frac{r}{2R}$ értékkészlete:

$$\left]0; \frac{1}{2} \operatorname{tg} 22,5^{\circ}\right] \quad \operatorname{vagy} \quad \left]0; \frac{\sqrt{2}-1}{2}\right].$$

3. megoldás:

(a) Az előző ábrák jelöléseit használva:

$$\frac{t}{T} = \frac{m^2 - T}{T} = \frac{m^2 - m\left(u + v\right)}{m\left(u + v\right)} = \frac{1 - \left(\frac{u}{m} + \frac{v}{m}\right)}{\frac{u}{m} + \frac{v}{m}} = \frac{1 - \left(\operatorname{tg}\frac{\alpha}{2} + \operatorname{tg}\frac{\beta}{2}\right)}{\operatorname{tg}\frac{\alpha}{2} + \operatorname{tg}\frac{\beta}{2}}.$$

Továbbá

$$\frac{x}{r} = \frac{1}{\lg \frac{\alpha}{2}}$$
 és $\frac{y}{r} = \frac{1}{\lg \frac{\beta}{2}}$,

ezeket összeadva

$$\frac{2R}{r} = \frac{1}{\lg \frac{\alpha}{2}} + \frac{1}{\lg \frac{\beta}{2}} = \frac{\lg \frac{\alpha}{2} + \lg \frac{\beta}{2}}{\lg \frac{\alpha}{2} \cdot \lg \frac{\beta}{2}}.$$

Tehát

$$\frac{t}{T} = \frac{r}{2R} \iff \frac{1 - \left(\operatorname{tg}\frac{\alpha}{2} + \operatorname{tg}\frac{\beta}{2}\right)}{\operatorname{tg}\frac{\alpha}{2} + \operatorname{tg}\frac{\beta}{2}} = \frac{\operatorname{tg}\frac{\alpha}{2} \cdot \operatorname{tg}\frac{\beta}{2}}{\operatorname{tg}\frac{\alpha}{2} + \operatorname{tg}\frac{\beta}{2}}$$

$$1 - \left(\operatorname{tg}\frac{\alpha}{2} + \operatorname{tg}\frac{\beta}{2}\right) = \operatorname{tg}\frac{\alpha}{2} \cdot \operatorname{tg}\frac{\beta}{2}$$

$$1 - \operatorname{tg}\frac{\alpha}{2} \cdot \operatorname{tg}\frac{\beta}{2} = \operatorname{tg}\frac{\alpha}{2} + \operatorname{tg}\frac{\beta}{2}$$

$$\frac{\operatorname{tg}\frac{\alpha}{2} + \operatorname{tg}\frac{\beta}{2}}{1 - \operatorname{tg}\frac{\alpha}{2} \cdot \operatorname{tg}\frac{\beta}{2}} = 1$$

$$\operatorname{tg}\left(\frac{\alpha}{2} + \frac{\beta}{2}\right) = 1.$$

Ez pedig igaz, mert $\frac{\alpha}{2} + \frac{\beta}{2} = 45^{\circ}$. Minden lépés megfordítható, így valóban $\frac{t}{T} = \frac{r}{2R}$.

(b)
$$\frac{t}{T} = \frac{1 - \left(\operatorname{tg}\frac{\alpha}{2} + \operatorname{tg}\frac{\beta}{2}\right)}{\operatorname{tg}\frac{\alpha}{2} + \operatorname{tg}\frac{\beta}{2}} = \frac{1}{\operatorname{tg}\frac{\alpha}{2} + \operatorname{tg}\frac{\beta}{2}} - 1 = \frac{\cos\frac{\alpha}{2} \cdot \cos\frac{\beta}{2}}{\sin\left(\frac{\alpha}{2} + \frac{\beta}{2}\right)} - 1 =$$

$$= \frac{2\cos\frac{\alpha}{2} \cdot \cos\left(45^{\circ} - \frac{\alpha}{2}\right)}{\sqrt{2}} - 1 = \frac{\cos 45^{\circ} + \cos(45^{\circ} - \alpha)}{\sqrt{2}} - 1 =$$

$$= \frac{\sqrt{2}}{2}\cos(45^{\circ} - \alpha) - \frac{1}{2}.$$

Ennek a $0<\alpha<90^\circ$ intervallumban az értékkészlete $0<\frac{t}{T}\leqslant\frac{\sqrt{2}}{2}-\frac{1}{2}$, a maximumát $\alpha=45^\circ$, azaz egyenlő szárú, derékszögű háromszög estén veszi fel.