В F1031 Pages: 2

Reg No.:	Name:
Neg No	Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), MAY 2019

Course Code: CS304 Course Name: COMPILER DESIGN					
Max. Marks: 100 PART A Duration: 3 Hour			Hours		
		Answer all questions, each carries3 marks.	Marks		
1		Describe input buffering scheme in lexical analyzer.	(3)		
2		Construct a regular expression to denote a language L over $\Sigma = \{0,1\}$ accepting	(3)		
		all strings of 0's and 1's that do not contain substring 011			
3		Consider the context free grammar S->aSbS bSaS €	(3)		
		Check whether the grammar is ambiguous or not			
4		What is Recursive Descent parsing? List the problems faced in designing such a	(3)		
		parser.			
PART B Answer any two full questions, each carries9 marks.					
5	a)	Explain the different phases in the design of a compiler.	(5)		
3	b)	Find the FIRST and FOLLOW of the non-terminals in the grammar	(4)		
	0)	S->aABe	(1)		
		A->Abc b			
		B->d			
6	a)	Design a recursive descent parser for the grammar	(5)		
	,	E->E + T T	(-)		
		T->T*F F			
		F->(E) id			
	b)	Develop a lexical analyzer for the token identifier.	(4)		
	,		` /		
7	a)	What is left recursive grammar? Give an example. What are the steps in	(5)		
		removing left recursion?			
	b)	Explain any four compiler writing tools	(4)		

В		F1031 Pages	Pages: 2	
		PART C Answer all questions, each carries3 marks.		
8		Explain the main actions in a shift reduce parser	(3)	
9		What are different parsing conflicts in SLR parsing table?	(3)	
10		What are annotated parse trees? Give examples.	(3)	
11		What are L-attributed definitions and S-attributed definitions in a syntax directed	` ′	
		translation scheme?	. ,	
12	a)	PART D Answer any two full questions, each carries9 marks. Find the LP(0) items for the grammer.	(4)	
12	a)	Find the LR(0) items for the grammar $S->SS \mid a \mid \in$.	(4)	
		a = a = a		
	b)	Explain bottom- up evaluation of s-attributed definitions.	(5)	
13	a)	Derive LALR (1) parsing algorithm for following grammar	(6)	
		S→AS/b A→SA/a		
	b)	Design a type checker for simple arithmetic operations.	(3)	
14	a)	Explain the syntax directed definition of a simple desk calculator.	(5)	
		Explain operator grammar and operator precedence parsing	(4)	
		PART E		
Answer any four full questions, each carries 10 marks.				
15	a)		(10)	
16	a)	Explain intermediate code generation of an assignment statement	(10)	
17	a)	Explain quadruples, triples and dags with an example each.	(10)	

b) Explain simple code generation algorithm *******

Explain the principal sources of optimization

b) With suitable examples explain loop optimization.

Explain issues in design of a code generator

Explain optimization of basic blocks

18 a)

19 a)

20 a)

(10)

(5)

(5)

(5)

(5)