Your student id #

Quiz

Suppose a climate scientist explores three different strategies (A, B, and C) for communicating climate change impacts to three different communities. Each community is exposed to one of the strategies, and at the end of the intervention period, the scientist measures the level of climate change awareness and engagement in each community. The engagement scores for each community (group) are:

- **Method A**: Scores = [82, 76, 88, 95, 85]
- **Method B**: Scores = [78, 74, 72, 77, 76]
- **Method C**: Scores = [88, 84, 90, 85, 90]

Step 1: Calculate Overall Mean (µ)

$$\mu = \frac{(}{}$$
 = 15

Step 2: Calculate Group Means

Calculate the mean for each method.

- Method A: $\bar{y}_A = \frac{()}{5} = \frac{()}{$

Step 3: Compute Sum of Squares

Total Sum of Squares (SST):

$$\sum_{j=1}^{k} \sum_{i=1}^{n_i} (y_{ij} - \bar{y})^2$$

$$SST = (82 - \mu)^2 + \dots + (90 + \mu)^2 = \frac{1}{2} \sum_{j=1}^{k} (y_{ij} - \bar{y})^2$$

Sum of Squares Between Groups (SSF or SSB):

$$SSF = \sum_{j=1}^{k} n_j (\bar{y}_j - \bar{y})$$

$$SSF = 5(2.4)^2 + 5(-7.4)^2 + 5(4.6)^2 =$$

Sum of Squares Within Groups (SSE or SSB):

$$SSE = \sum_{j=1}^{k} \sum_{i=1}^{n_i} (y_{ij} - \bar{y}_j)^2 = SST - SSF = 470.8 - 259.4 =$$

Step 4: Calculate F-Statistic

Comparing Centers of Several Independent Groups (2024 Spring EN5423 – week13)

• Mean Squares:

$$MSF = \frac{SSF}{DF} =$$
 $MSE = \frac{SSE}{DFE} =$

• F-Statistic:

$$F = \frac{MSF}{MSE} =$$

Step 5: Conduct F-test

Compare the calculated F-statistic to a critical value from the F-distribution with $df_1 = DF$ and $df_2 = DFE$. If the F-statistic is greater than the critical value at 0.01 significance level, we reject the null hypothesis.

F - Distribution (α = 0.01 in the Right Tail)

		Numerator Degrees of Freedom								
	df_2	df _{1 1}	2	3	4	5	6	7	8	9
	1	4052.2	4999.5	5403.4	5624.6	5763.6	5859.0	5928.4	5981.1	6022.5
	2	98.503	99.000	99.166	99.249	99.299	99.333	99.356	99.374	99.388
	3	34.116	30.817	29.457	28.710	28.237	27.911	27.672	27.489	27.345
	4	21.198	18.000	16.694	15.977	15.522	15.207	14.976	14.799	14.659
	5	16.258	13.274	12.060	11.392	10.967	10.672	10.456	10.289	10.158
	6	13.745	10.925	9.7795	9.1483	8.7459	8.4661	8.2600	8.1017	7.976
	7	12.246	9.5466	8.4513	7.8466	7.4604	7.1914	6.9928	6.8400	6.718
	8	11.259	8.6491	7.5910	7.0061	6.6318	6.3707	6.1776	6.0289	5.910
=	9	10.561	8.0215	6.9919	6.4221	6.0569	5.8018	5.6129	5.4671	5.351
of Freedom	10	10.044	7.5594	6.5523	5.9943	5.6363	5.3858	5.2001	5.0567	4.942
e	11	9.6460	7.2057	6.2167	5.6683	5.3160	5.0692	4.8861	4.7445	4.631
9	12	9.3302	6.9266	5.9525	5.4120	5.0643	4.8206	4.6395	4.4994	4.387
-	13	9.0738	6.7010	5.7394	5.2053	4.8616	4.6204	4.4410	4.3021	4.191
0	14	8.8616	6.5149	5.5639	5.0354	4.6950	4.4558	4.2779	4.1399	4.029
es	15	8.6831	6.3589	5.4170	4.8932	4.5556	4.3183	4.1415	4.0045	3.894
5	16	8.5310	6.2262	5.2922	4.7726	4.4374	4.2016	4.0259	3.8896	3.780
eg	17	8.3997	6.1121	5.1850	4.6690	4.3359	4.1015	3.9267	3.7910	3.682
Degrees	18	8.2854	6.0129	5.0919	4.5790	4.2479	4.0146	3.8406	3.7054	3.597
ö	19	8.1849	5.9259	5.0103	4.5003	4.1708	3.9386	3.7653	3.6305	3.522
Denominator	20	8.0960	5.8489	4.9382	4.4307	4.1027	3.8714	3.6987	3.5644	3.456
Ē	21	8.0166	5.7804	4.8740	4.3688	4.0421	3.8117	3.6396	3.5056	3.398
5	22	7.9454	5.7190	4.8166	4.3134	3.9880	3.7583	3.5867	3.4530	3.345
Ĕ	23	7.8811	5.6637	4.7649	4.2636	3.9392	3.7102	3.5390	3.4057	3.29
ă	24	7.8229	5.6136	4.7181	4.2184	3.8951	3.6667	3.4959	3.3629	3.256

Step 6: Discuss the results

>> Question: Does all strategies have the same effect? If yes, why?