

SRM Institute of Science and Technology College of Engineering and Technology

OFFLINE SET-A

DEPARTMENT OF ECE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022-2023 (ODD)

Test: CLAT-2 Date: 17/10/22

Course Code & Title: 18ECC204J-Digital Signal Processing Duration: 1 Hr 45 minutes

Year & Sem: III /V Max. Marks: 50

Course Articulation Matrix: (to be placed)

	18ECC204J – Digital Program Outcomes (POs)															
	Signal Processing	Gr	Graduate Attributes							PSO						
S. No.	Course Outcomes (COs)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Summarize the concepts of A//D and D/A converters.	3	-	-	1	-	-	-	-	-	-	-	-	-	-	2
2	Explain the concepts of DFT with its efficient computation by using FFT algorithm.	-	2	-	-	-	-	-	-	-	-	-	-	-	1	
3	Develop FIR filters using several methods	-	2	3	-	-	-	-	-	-	-	-	-	-	-	3
4	Construct IIR filters using several methods	-		3	-	-	-	-	-	-	-	-	-	-	-	3
5	Discuss the basics of multirate DSP and its applications.	-	2	-	-	-	-	-	-	-	-	-	-	-	1	-
6	Design digital filter and multi rate signal processing for real time signals	-	2	-	-	-	-	-	-	-	-	-	-	2	-	-

	Part-B (5 x 10 marks= 50 Marks) Answer any 5								
Q. No	Question	Marks	BL	CO	PO				
1	i) Consider two 4-point sequences $x(n) = \{1, 1, 2, 2\}$ and $h(n) = \{1, 2, 3, 4\}$. Let the linear convolution of $x[n]$ and $h[n]$ be denoted by $y[n]$, while $z[n]$ denotes the circular convolution of $x[n]$ and $h[n]$. Find the value(s) of k for which $z[k] = y[k]$.	5	L4	2	2				
	ii) The DFT input sequence is $X(k)=\{0,2,0,2\}$ and the DFT of the impulse response is	4	L4	2	2				

	H(k)={15,-3+6j,-5,-3-6j}. Find the output sequence Y(K) and use IDFT to obtain y(n) iii) $X(k) = \{ 9, 1+j, 2+j2, 3, 2-j2, 1-j \}$ is the DFT of a 6-point sequence $x(n)$, then $x(0)$ is a) 1 b) 2 c) 3 d) 4	1	L2	2	1
2	i) x(n)= 2 ⁿ where n=0,1,2,3,4,5,6,7. Compute DFT by DIT-FFT algorithm	9	L4	2	2
	ii) $W_N^{k+\frac{N}{2}} =$ a) W_N^k b) $-W_N^k$ c) W_N^{-k} d) W_N^{k+N}	1	L1	2	1
3	i) First five points of the 8 point DFT is given by $X(k)=[0,2+j2,-j4,2-j2,0]$. Determine the remaining points. Hence find the original sequence $x(n)$ using Decimation in frequency FFT algorithm	9	L4	2	2
	ii) In radix-2 FFT, if the number of points N = 16 then the number of complex additions and number of complex multiplications are a) 8 and 4 b) 24 and 12 c) 64 and 32 d) 160 and 80	1	L2	2	1
4	i) Design FIR filter by truncating the given desired frequency response to 11 samples $H_d(e^{jw}) = \begin{cases} 1 & \omega \le \frac{\pi}{3} \text{ and } \omega \ge \frac{2\pi}{3} \\ 0 & \text{otherwise} \end{cases}$ Find the realizable transfer function.	9	L3	3	3
	ii) The anti-symmetric condition with M even is not used in the design of which of the following linear-phase FIR filter? a) Low pass b) High pass c) Band pass d) Band stop	1	L1	3	1

5	i) Design FIR filter with a frequency response $H_d(e^{jw}) = \begin{cases} 1 & for \frac{\pi}{4} \le \omega \le \pi \\ 0 & for \omega \le \frac{\pi}{4} \end{cases}$ using Raised cosine window with $\alpha = 0.54$ and number of samples = 11. Find realizable transfer function.	9	L3	3	3
	ii) In Gibb's phenomenon, the ringing effect is predominantly present near the a) bandgap b) bandedge c) bandwidth d) bandshell	1	L1	3	1
6	i) Design FIR filter using rectangular window for N=11 having frequency response. $H_d(e^{jw}) = \left\{ \begin{array}{cc} j & for -\pi \leq \omega \leq 0 \\ -j & for \ 0 \leq \omega \leq \pi \end{array} \right.$ Find realizable transfer function.	9	L3	3	3
	ii) A filter is said to be linear phase filter if the phase delay and group delay are a) High b) Moderate c) Low d) Constant	1	L1	3	1
7	i) Determine the FIR filter coefficients using Fourier series method having N=11 for the given frequency response $H_d(e^{jw}) = \begin{cases} 1 & for \frac{\pi}{4} \le \omega \le \pi \\ 0 & for \omega \le \frac{\pi}{4} \end{cases}$	4	L4	3	2
	ii) A system has an impulse response h(n)= (0.5) ⁿ u(n)+ n (0.2) ⁿ u(n). Realize the system using parallel form	5	L3	2	3
	iii) Phase of linear phase FIR filter for N=13 is a) 6 ω b) 13 ω c) -6 ω d) -13 ω	1	L2	3	1

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Evaluation Sheet

Name of the Student: Register No.:

	Part- A (5 x 10 mark = 50 Marks)							
Q. No	CO	PO	Maximum mark	Marks obtained	Total			
1 i)	2	2	5					
1 ii)	2	2	4					
1 iii)	2	1	1					
2 i)	2	2	9					
2 ii)	2	1	1					
3 i)	2	2	9					
3 ii)	2	1	1					
4 i)	3	3	9					
4 ii)	3	1	1					
5 i)	3	3	9					
5 ii)	3	1	1					
6 i)	3	3	9					
6 ii)	3	1	1					
7 i)	3	2	4					
7 ii)	2	3	5					
7 iii)	3	1	1					

Consolidated Marks:

СО	Max.Marks	Marks Scored	PO	Max.Marks	Marks Scored
CO2	25		PO1	7	
CO3	25		PO2	31	
Total	50		PO3	32	
			Total	70	

Signature of the Course Teacher