AMENDMENTS TO THE CLAIMS

This Listing of Claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

Claims 1-11 (canceled)

Claim 12 (currently amended): <u>A The</u>-compound as recited in Claim 9 having the Formula:

or a pharmaceutically acceptable salt thereof, wherein;

B is the Formula:

R³², R³³, R³⁴, R³⁵, and R³⁶ are independently selected from the group consisting of hydrogen, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino, alkoxyamino, lower alkylamino, alkylthio, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboalkoxy, carboxy, carboxamido, cyano, and Q^b;

A is selected from the group consisting of single covalent bond and $(CH(R^{15}))_{pa}^{-1}$ $(W^7)_{rr}$ wherein rr is an integer selected from 0 through 1, pa is an integer selected from 0 through 3, and W^7 is $N(R^7)$;

R⁷ is selected from the group consisting of hydrido hydrogen and alkyl;

R¹⁵ is selected from the group consisting of hydrido hydrogen, halo, alkyl, and haloalkyl;

M is selected from the group consisting of N and R¹-C;

R[†]-is selected from the group consisting of hydrido, hydroxy, hydroxyamino, amidino, amino, cyano, hydroxyalkyl, alkoxy, alkyl, alkylamino, aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;

 R^2 is Z^0 -Q;

Z⁰ is a covalent single bond;

Q is selected from the group consisting of aryl and <u>5- or 6-membered</u> heteroaryl wherein (a) a ring carbon in a first alpha position relative to the ring carbon at the

Ö e

point of attachment is optionally substituted by R9, (b) a ring carbon in a second alpha position relative to the ring carbon at the point of attachment is optionally substituted by R¹³, (c) a ring carbon, in a first beta position relative to the ring carbon at the point of attachment and in an alpha position relative to the ring atom optionally substituted by R9, is optionally substituted by R10, (d) a ring carbon, in a second beta position relative to the ring carbon at the point of attachment and in an alpha position relative to the ring atom optionally substituted by R¹³, is optionally substituted by R¹², and (e) a ring carbon, if present, in the gamma position relative to the ring carbon at the point of attachment and in an alpha position relative to each of the ring atoms optionally substituted by R¹⁰ and R¹², respectively, is optionally substituted by R¹¹; a carbon adjacent to the carbon at the point of attachment is optionally substituted by R9, the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R¹³, a carbon adjacent to R⁹ and two atoms from the carbon at the point of attachment is optionally substituted by R¹⁰, a carbon adjacent to R¹³ and two atoms from the carbon at the point of attachment is optionally substituted by R12, and any carbon adjacent to both R¹⁰ and R¹² is optionally substituted by R¹¹;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido hydrogen, hydroxy, amino, amidino, guanidino, lower alkylamino, alkylthio, alkoxy, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, monoalkylamidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboxy, carboxamido, and cyano;

R¹⁰ and R¹² are independently selected from the group consisting of hydrido hydrogen, acetamido, haloacetamido, amidino, guanidino, alkyl, alkoxy, alkoxyamino, aminoalkyl, hydroxy, amino, lower alkylamino, alkylsulfonamido, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, hydroxyalkyl, aminoalkyl, halo, haloalkyl, carboalkoxy, carboxy, carboxyamido, carboxyalkyl, and cyano;

Y⁰ is formula (IV):

$$\begin{array}{c|c}
 & Q^{S} \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$

$$R^{17}$$
 $C_{Q^{s}}$
 $C_{Q^{s}}$

wherein D^5 , D^6 , J^5 , and J^6 are independently selected from the group consisting of C, N, O, S and a covalent bond with the provisos that no more than one is a covalent bond, \mathbb{K}^2 is C, no more than one of D^5 , D^6 , J^5 , and J^6 is O, no more than one of D^5 , D^6 , J^5 , and J^6 is S, one of D^5 , D^6 , J^5 , and J^6 must be a covalent bond when two of D^5 , D^6 , J^5 , and J^6 are O and S, and no more than four of D^5 , D^6 , J^5 , and J^6 are N;

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido hydrogen, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, lower alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

R¹⁶-and R¹⁹-are optionally Q^b-with the proviso that no more than one of R¹⁶-and R¹⁹-is Q^b at the same time and that Q^b is Q^{be};

Q^b is selected from the group consisting of NR²⁰R²¹, Q^{be}—wherein Q^{be}—is hydrido hydrogen, and C(NR²⁵)NR²³R²⁴;

R²⁰, R²¹, R²³, R²⁴, and R²⁵ are independently selected from the group consisting of hydrido hydrogen and alkyl; and

Q^s is CH₂.

Claim 13 (currently amended): The compound as recited in Claim 12 or a pharmaceutically acceptable salt thereof, wherein;

B is the Formula:

$$R^{34}$$
 R^{35}
 R^{36}
 R^{36}

R³², R³³, R³⁴, R³⁵, and R³⁶ are independently selected from the group consisting of hydrido hydrogen, amidino, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino, dimethylamino, methylthio, ethylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, hydroxymethyl, amidocarbonyl, carboxy, cyano, and Q^b;

A is selected from the group consisting of single covalent bond, NH, N(CH $_3$), CH $_2$, CH $_3$ CH, and CH $_2$ CH $_2$;

M is selected from the group consisting of N and R[†]-G;

R¹-is selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, methylamino, cyano, methyl, trifluoromethyl, methoxy, hydroxymethyl, methoxyamino, methylthio, trifluoromethoxy, fluoro, and chloro;

R² is selected from the group consisting of phenyl [[,]] and 2-thienyl, 2-furyl, 2-pyrrolyl, 2-imidazolyl, 2-thiazolyl, 3-isoxazolyl, 2-pyridyl, and 3-pyridyl heteroaryl rings, wherein a carbon adjacent to the carbon at the point of attachment is optionally substituted by R9, the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R¹³, a carbon adjacent to R⁹ and two atoms from the carbon at the point of attachment is optionally substituted by R¹⁰, a carbon adjacent to R13 and two atoms from the carbon at the point of attachment is optionally substituted by R¹², and any carbon adjacent to both R¹⁰ and R¹² is optionally substituted by R¹¹; (a) a ring carbon in a first alpha position relative to the ring carbon at the point of attachment is optionally substituted by R9, (b) a ring carbon in a second alpha position relative to the ring carbon at the point of attachment is optionally substituted by R¹³, (c) a ring carbon, in a first beta position relative to the ring carbon at the point of attachment and in an alpha position relative to the ring atom optionally substituted by R9, is optionally substituted by R¹⁰, (d) a ring carbon, in a second beta position relative to the ring carbon at the point of attachment and in an alpha position relative to the ring atom optionally substituted by R13, is optionally substituted by R12, and (e) a ring carbon, if present, in the gamma position relative to the ring carbon at the point of attachment and in an alpha position relative to each of the ring atoms optionally substituted by R¹⁰ and R¹², respectively, is optionally substituted by R¹¹:

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido hydrogen, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, methylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, carboxy, and cyano;

R¹⁰ and R¹² are independently selected from the group consisting of hydrido hydrogen, amidino, amidocarbonyl, N-methylamidocarbonyl, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl,

carboxy, carboxymethyl, amino, acetamido, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, trifluoroacetamido, aminomethyl, N-methylamino, dimethylamino, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, methoxycarbonyl, fluoro, chloro, bromo, and cyano;

Y⁰ is selected from the group consisting of:

$$R^{17}$$
 R^{18}
 R^{19}
 R^{19}

1-Q^b-4-Q^s-2-R^{te}-3-R^{te}-6-R^{te}benzene, 2-Q^b-5-Q^s-6-R^{te}-4-R^{te}-2-R^{te}pyridine, 2-Q^b-5-Q^s-3-R^{te}-4-R

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido hydrogen, methyl, ethyl, amidino, guanidino, methoxy, hydroxy, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, methylthio, ethylthio, trifluoromethylthio, methylsulfinyl, methylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, trifluoromethoxy, fluoro, chloro, amidosulfonyl, N-methylamidosulfonyl, hydroxymethyl, carboxy, and cyano.

 Q^b is selected from the group consisting of $NR^{20}R^{21}$ and $C(NR^{25})NR^{23}R^{24}$, with the proviso that said Q^b group is bonded directly to a carbon atom;

 R^{20} , R^{21} , R^{23} , R^{24} , and R^{25} are independently selected from the group consisting of hydrido hydrogen, methyl, and ethyl; and

Q^s is CH₂.

Claim 14 (currently amended): The compound as recited in Claim 13 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of 2-aminophenyl, 3-aminophenyl, 3-amidinophenyl, 4-amidinophenyl, 3-carboxyphenyl, 3-carboxy-5-hydroxyphenyl, 3-chlorophenyl, 4-chlorophenyl, 3,4-dichlorophenyl, 2-fluorophenyl, 3-fluorophenyl,

3,4-difluorophenyl, 3-hydroxyphenyl, 4-hydroxyphenyl, 3-methoxyaminophenyl, 3-methoxyphenyl, 4-methoxyphenyl, 3-methylphenyl, 4-methylphenyl, and phenyl;

A is selected from the group consisting of CH₂, CH₃CH, CF₃CH, NHC(O), CH₂CH₂, and CH₂CH₂CH₂;

M is selected from the group consisting of N and R¹-G;

R¹-is selected from the group consisting of hydrido, hydroxy, amino, methyl, trifluoromethyl, fluoro, and chloro;

R² is selected from the group consisting of 5-amino-3-amidocarbonylphenyl, 5-amino-2-fluorophenyl, 3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl, 3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl, 3-aminophenyl, benzyl, 3-carboxyphenyl, 3-carboxy-5-aminophenyl, 3-carboxy-5-hydroxyphenyl, 3-carboxymethyl-5-aminophenyl, 3-carboxymethyl-5-hydroxyphenyl, 3-carboxymethylphenyl, 3-chlorophenyl, 2-chlorophenyl, 3-cyanophenyl, 3-dimethylaminophenyl, 2-fluorophenyl, 3-fluorophenyl, 2-fuorophenyl, 3-methanesulfonylaminophenyl, 2-methoxyphenyl, 3-methoxyphenyl, 3-methoxyaminophenyl, 3-methoxycarbonylphenyl, 2-methylaminophenyl, 3-methylaminophenyl, 3-methylphenyl, 4-methylphenyl, phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl, 2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl, 3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl;

Y⁰ is selected from the group consisting of:

$$R^{17}$$
 R^{18}
 R^{19}
 R^{19}

1-Q^b-4-Q^s-2-R^{tt}-3-R^{tt}-5-R^{tt}-6-R^{tt}benzene, 2-Q^b-5-Q^s-6-R^{tt}-4-R^{tt}-2-R^{tt}pyridine,
3-Q^b-6-Q^s-2-R^{tt}-5-R^{tt}-4-R^{tt}pyridine,3-Q^b-5-Q^s-4-R^{tt}-2-R^{tt}thiophene, and 2-Q^b-5-Q^s-3-R^{tt}-4-R^{tt}thiophene;

R¹⁶ and R¹⁹ are independently selected from the group consisting of hydrido hydrogen, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy, hydroxymethyl, fluoro, chloro, and cyano;

R¹⁶ and R¹⁹ are optionally Q^b with the provise that no more than one of R¹⁶ and R¹⁹ is Q^b at the same time and that Q^b is Q^{be};

R¹⁷ and R¹⁸ are independently selected from the group consisting of hydrido hydrogen, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;

Q^b is selected from the group consisting of Q^{be} wherein Q^{be} is hydrido hydrogen and C(NR²⁵)NR²³R²⁴;

 R^{23} , R^{24} , and R^{25} are independently selected from the group consisting of hydrido hydrogen and methyl; and

Q^s is CH₂.

Claim 15 (currently amended). The compound as recited in Claim 14 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of 3-aminophenyl, 3-amidinophenyl, 4-amidinophenyl, 3-chlorophenyl, 4-chlorophenyl, 3,4-dichlorophenyl, 2-fluorophenyl, 4-methylphenyl, and phenyl;

A is selected from the group consisting of CH₂, NHC(O), CH₂CH₂, and CH₂CH₂CH₂;

M is selected from the group consisting of N and R¹-C;

R⁺ is selected from the group consisting of hydrido, fluoro, and chloro;

R² is selected from the group consisting of 3-aminophenyl, benzyl, 3-chlorophenyl, 3-dimethylaminophenyl, 3-hydroxyphenyl, 3-methanesulfonylaminophenyl, 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, phenyl, 3-trifluoroacetamidophenyl, 3-bromo-2-thienyl, 2-thienyl, and 3-thienyl; and

Y^o is selected from the group consisting of 5-amidino-2-thienylmethyl, 4-amidinobenzyl, 2-fluoro-4-amidinobenzyl, and 3-fluoro-4-amidinobenzyl.

Claim 16 (currently amended): A compound as recited in Claim 9 where said compound is selected from the group having the Formula of claim 12, or a pharmaceutically acceptable salt thereof, wherein:

or a pharmaceutically acceptable salt thereof, wherein:

4)

 R^2 is 3-aminophenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is phenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is N; R^2 is phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-dimethylaminophenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 2-methylphenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is phenyl, B is 3-aminophenyl, A is C(O)NH, Y 0 is 4-amidinobenzyl, and M is N;

 R^2 is phenyl, B is 3-amidinophenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is N; R^2 is 3-(N-methylamino)phenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

R² is 3-methylsulfonamidophenyl, B is phenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is phenyl, B is 4-amidinophenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is N; R^2 is 3-methylaminophenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is phenyl, B is phenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is N; <u>or</u> R^2 is 3-methylphenyl, B is 4-phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N.

Claims 17-19 (canceled)

Claim 20 (currently amended): <u>A The</u> compound as recited in Claim 17 having the Formula:

or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of hydrido hydrogen, C2-C8 alkyl, C3-C8 alkenyl, C3-C8 alkynyl, and C2-C8 haloalkyl, wherein each member of group B is optionally substituted at any carbon up to and including 6 atoms from the point of attachment of B to A with one or more of the group consisting of R³², R³³, R³⁴, R³⁵, and R³⁶;

R³², R³³, R³⁴, R³⁵, and R³⁶ are independently selected from the group consisting of hydrido hydrogen, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino, alkoxyamino, lower alkylamino, alkylthio, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboalkoxy, carboxy, carboxamido, cyano, and Q^b;

A is selected from the group consisting of single covalent bond and $(CH(R^{15}))_{pa}$ - $(W^7)_{rr}$ wherein rr is an integer selected from 0 through 1, pa is an integer selected from 0 through 3, and W^7 is $N(R^7)$;

R⁷ is selected from the group consisting of hydrido hydrogen and alkyl;

R¹⁵ is selected from the group consisting of hydrido hydrogen, halo, alkyl, and haloalkyl;

M is selected from the group consisting of N and R¹-C;

R[†]-is selected from the group consisting of hydrido, hydroxy, hydroxyamino, amidino, amino, cyano, hydroxyalkyl, alkoxy, alkyl, alkylamino, aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;

 R^2 is Z^0 -Q;

Z⁰ is a covalent single bond;

Q is selected from the group consisting of aryl and heteroaryl wherein (a) a ring carbon in a first alpha position relative to the ring carbon at the point of attachment is optionally substituted by R9, (b) a ring carbon in a second alpha position relative to the ring carbon at the point of attachment is optionally substituted by R¹³, (c) a ring carbon, in a first beta position relative to the ring carbon at the point of attachment and in an alpha position relative to the ring atom optionally substituted by R9, is optionally substituted by R10, (d) a ring carbon, in a second beta position relative to the ring carbon at the point of attachment and in an alpha position relative to the ring atom optionally substituted by R¹³, is optionally substituted by R¹², and (e) a ring carbon, if present, in the gamma position relative to the ring carbon at the point of attachment and in an alpha position relative to each of the ring atoms optionally substituted by R¹⁰ and R¹², respectively, is optionally substituted by R11; a carbon adjacent to the carbon at the point of attachment is optionally substituted by R9, the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R13, a carbon adjacent to R9 and two atoms from the carbon at the point of attachment is optionally substituted by R¹⁰, a carbon adjacent to R15 and two atoms from the carbon at the point of attachment is optionally substituted by R¹², and any carbon adjacent to both R¹⁰ and R¹² is optionally substituted by R¹¹:

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido hydrogen, hydroxy, amino, amidino, guanidino, lower alkylamino, alkylthio, alkoxy, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, monoalkylamidosulfonyl, alkyl, haloalkyl, haloalkoxy, hydroxyalkyl, carboxy, carboxamido, and cyano;

R¹⁰ and R¹² are independently selected from the group consisting of hydrido hydrogen, acetamido, haloacetamido, amidino, guanidino, alkyl, alkoxy, alkoxyamino, aminoalkyl, hydroxy, amino, lower alkylamino, alkylsulfonamido, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, hydroxyalkyl, aminoalkyl, halo, haloalkyl, carboalkoxy, carboxy, carboxyamido, carboxyalkyl, and cyano;

Y⁰ is formula (IV):

wherein D⁵, D⁶, J⁵, and J⁶ are independently selected from the group consisting of C, N, O, S and a covalent bond with the provisos that no more than one is a covalent bond, K² is C, no more than one of D⁵, D⁶, J⁵, and J⁶ is O, no more than one of D⁵, D⁶, J⁵, and J⁶ is S, one of D⁵, D⁶, J⁵, and J⁶ must be a covalent bond when two of D⁵, D⁶, J⁵, and J⁶ are O and S, and no more than four of D⁵, D⁶, J⁵, and J⁶ are N:

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido hydrogen, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, lower alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

 R^{16} -and R^{19} -are optionally Q^b -with the proviso that no more than one of R^{16} -and R^{19} -is Q^b at the same time and that Q^b is Q^{be} ;

 Q^b is selected from the group consisting of $NR^{20}R^{21}$, Q^{be} wherein Q^{be} is hydrido hydrogen, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, and $C(NR^{25})NR^{23}R^{24}$;

 R^{20} , R^{21} , R^{23} , R^{24} , R^{25} , and R^{26} are independently selected from the group consisting of hydrido hydrogen and alkyl; and Q^s is CH_2 .

Claim 21 (currently amended): The compound as recited in Claim 20 [[17]] or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of hydrido hydrogen, ethyl, 2propenyl, 2-propynyl, propyl, isopropyl, butyl, 2-butenyl, 2-butynyl, sec-butyl, tertbutyl, isobutyl, 2-methylpropenyl, 1-pentyl, 2-pentenyl, 3-pentenyl, 2-pentynyl, 3pentynyl, 2-pentyl, 3-pentyl, 2-methylbutyl, 2-methyl-2-butenyl, 3-methylbutyl, 3methyl-2-butenyl, 1-hexyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 2-hexynyl, 3-hexynyl, 4hexynyl, 2-hexyl, 1-methyl-2-pentenyl, 1-methyl-3-pentenyl, 1-methyl-2-pentynyl, 1methyl-3-pentynyl, 3-hexyl, 1-ethyl-2-butenyl, 1-heptyl, 2-heptenyl, 3-heptenyl, 4heptenyl, 5-heptenyl, 2-heptynyl, 3-heptynyl, 4-heptynyl, 5-heptynyl, 2-heptyl, 1methyl-2-hexenyl, 1-methyl-3-hexenyl, 1-methyl-4-hexenyl, 1-methyl-2-hexynyl, 1methyl-3-hexynyl, 1-methyl-4-hexynyl, 3-heptyl, 1-ethyl-2-pentenyl, 1-ethyl-3pentenyl, 1-ethyl-2-pentynyl, 1-ethyl-3-pentynyl, 2,2,2-trifluoroethyl, 2,2difluoropropyl, 4-trifluoromethyl-5,5,5-trifluoropentyl, 4-trifluoromethylpentyl, 5,5,6,6,6-pentafluorohexyl, and 3,3,3-trifluoropropyl, wherein each member of group B is optionally substituted at any carbon up to and including 5 atoms from the point of attachment of B to A with one or more of the group consisting of R³², R³³, R³⁴, R³⁵, and R³⁶:

R³², R³³, R³⁴, R³⁵, and R³⁶ are independently selected from the group consisting of hydrido hydrogen, amidino, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino, dimethylamino, methylthio, ethylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, hydroxymethyl, amidocarbonyl, carboxy, cyano, and Q^b;

A is selected from the group consisting of:

- (i) single covalent bond, NH, N(CH₃), CH₂, CH₃CH, and CH₂CH₂; and
- (ii) A is optionally selected from the group consisting of $CH_2N(CH_3)$, $CH_2N(CH_2CH_3)$, $CH_2CH_2N(CH_3)$, and $CH_2CH_2N(CH_2CH_3)$ with the proviso that B is hydrido hydrogen;

M is selected from the group consisting of N and R[†]-C;

R[†] is selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, methylamino, cyano, methyl, trifluoromethyl, methoxy, hydroxymethyl, methoxyamino, methylthio, trifluoromethoxy, fluoro, and chloro;

R² is selected from the group consisting of phenyl [[,]] and 2-thienyl, 2-furyl, 2-pyrrolyl, 2-imidazolyl, 2-thiazolyl, 3-isoxazolyl, 2-pyridyl, and 3-pyridyl heteroaryl rings, wherein (a) a ring carbon in a first alpha position relative to the ring carbon at the point of attachment is optionally substituted by R9, (b) a ring carbon in a second alpha position relative to the ring carbon at the point of attachment is optionally substituted by R¹³, (c) a ring carbon, in a first beta position relative to the ring carbon at the point of attachment and in an alpha position relative to the ring atom optionally substituted by R9, is optionally substituted by R¹⁰, (d) a ring carbon, in a second beta position relative to the ring carbon at the point of attachment and in an alpha position relative to the ring atom optionally substituted by R13, is optionally substituted by R12, and (e) a ring carbon, if present, in the gamma position relative to the ring carbon at the point of attachment and in an alpha position relative to each of the ring atoms optionally substituted by R¹⁰ and R¹², respectively, is optionally substituted by R11; a carbon adjacent to the carbon at the point of attachment is optionally substituted by R9, the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R¹³, a carbon adjacent to R⁹ and two atoms from the carbon at the point of attachment is optionally substituted by R¹⁰, a carbon adjacent to R13 and two atoms from the carbon at the point of attachment is

optionally substituted by R¹², and any carbon adjacent to both R¹⁰ and R¹² is optionally substituted by R¹¹;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido hydrogen, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, methylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, carboxy, and cyano;

R¹⁰ and R¹² are independently selected from the group consisting of hydrido hydrogen, amidino, amidocarbonyl, N-methylamidocarbonyl, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, carboxy, carboxymethyl, amino, acetamido, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, trifluoroacetamido, aminomethyl, N-methylamino, dimethylamino, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, methoxycarbonyl, fluoro, chloro, bromo, and cyano;

Y⁰ is selected from the group consisting of:

$$R^{17}$$
 R^{18}
 R^{19}
 R^{19}

$$-\frac{2}{2} - \frac{Q^{s}}{N} = \frac{2}{N} - \frac{Q^{b}}{N} = \frac{2$$

1-Q^b-4-Q^s-2-R¹⁶-3-R¹⁷-5-R¹⁸-6-R¹⁹benzene,
2-Q^b-5-Q^s-6-R¹⁷-4-R¹⁸-2-R¹⁹pyridine, 2-Q^b-5-Q^s-3-R¹⁶-4-R¹⁷thiophene,
3-Q^b-6-Q^s-2-R¹⁶-5-R¹⁸-4-R¹⁹pyridine, 3-Q^b-5-Q^s-4-R¹⁶-2-R¹⁹thiophene,
3-Q^b-5-Q^s-4-R¹⁶-2-R¹⁹furan, 2-Q^b-5-Q^s-3-R¹⁶-4-R¹⁷furan,
3-Q^b-5-Q^s-4-R¹⁶-2-R¹⁹pyrrole, 2-Q^b-5-Q^s-3-R¹⁶-4-R¹⁷pyrrole,
4-Q^b-2-Q^s-5-R¹⁹thiazole, and 2-Q^b-5-Q^s-4-R¹⁷thiazole;

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido hydrogen, methyl, ethyl, amidino, guanidino, methoxy, hydroxy, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, methylthio, ethylthio, trifluoromethylthio, methylsulfinyl, methylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, trifluoromethoxy, fluoro, chloro, amidosulfonyl, N-methylamidosulfonyl, hydroxymethyl, carboxy, and cyano.

 Q^b is selected from the group consisting of $NR^{20}R^{21}$, $C(NR^{25})NR^{23}R^{24}$, and $N(R^{26})C(NR^{25})N(R^{23})$, with the proviso that said Q^b group is bonded directly to a carbon atom;

 R^{20} , R^{21} , R^{23} , R^{24} , R^{25} , and R^{26} are independently selected from the group consisting of <u>hydrido</u> <u>hydrogen</u>, methyl, and ethyl; <u>and</u> Q^s is CH_2 .

Claim 22 (currently amended): The compound as recited in Claim 21 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of hydrido hydrogen, ethyl, 2-propenyl, 2-propynyl, propyl, isopropyl, butyl, 2-butyl, (R)-2-butyl,(S)-2-butyl, tert-butyl, isobutyl, 1-pentyl, 3-pentyl, 2-methylbutyl, 2,2,2-trifluoroethyl, 6-amidocarbonylhexyl, 4-methyl-2-pentyl, 3-hydroxypropyl, 3-methoxy-2-propyl, 2-methoxyethyl, 2-methyl-2-butyl, 3-methyl-2-butyl, 2-dimethylaminopropyl, 2-cyanoethyl, 6-hydroxyhexyl, 2-hydroxyethyl, 2-amidinoethyl, 2-guanidinoethyl, 3-guanidinopropyl, 4-guanidinobutyl, 3-hydroxypropyl, 4-hydroxybutyl, 6-cyanohexyl, 2-dimethylaminoethyl, 3-methylbutyl, 2-methylbutyl, (S)-2-methylbutyl, 3-aminopropyl, 2-hexyl, and 4-aminobutyl;

A is selected from the group consisting of single covalent bond, CH₂, CH₃CH, and CH₂CH₂;

M is selected from the group consisting of N and R¹-C;

R¹ is selected from the group consisting of hydrido, hydroxy, amino, methyl, trifluoromethyl, fluoro, and chloro;

R² is selected from the group consisting of 5-amino-3-amidocarbonylphenyl, 5-amino-2-fluorophenyl, 3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl, 3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl, 3-aminophenyl, 3-carboxyphenyl, 3-carboxy-5-aminophenyl, 3-carboxy-5-hydroxyphenyl, 3-carboxymethyl-5-aminophenyl, 3-carboxymethyl-5-hydroxyphenyl, 3-carboxymethylphenyl, 3-chlorophenyl, 2-chlorophenyl, 2,6-dichlorophenyl, 3-cyanophenyl, 3-dimethylaminophenyl, 2-fluorophenyl, 3-fluorophenyl, 2,5-difluorophenyl, 2-hydroxyphenyl, 3-hydroxyphenyl, 3-methanesulfonylaminophenyl, 2-methoxyphenyl, 3-methoxyaminophenyl, 3-methoxycarbonylphenyl, 2-methylaminophenyl, 3-methylaminophenyl, 3-methylphenyl, 4-methylphenyl, phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl, 2-trifluoromethylphenyl, 5-amino-

2-thienyl, 5-amino-3-thienyl, 3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl; Y^0 is selected from the group consisting of :

$$R^{17}$$
 R^{18}
 R^{19}
 R^{19}
 R^{19}
 R^{19}

1-Q^t-4-Q^s-2-R^{tf}-3-R^{tf}-5-R^{tf}-6-R^{tf}-benzene, 2-Q^t-5-Q^s-6-R^{tf}-4-R^{tf}-2-R^{tf}-9yridine, 3-Q^t-5-Q^s-4-R^{tf}-2-R^{tf}-thiophene, and 2-Q^t-5-Q^s-3-R^{tf}-4-R^{tf}thiophene;

R¹⁶ and R¹⁹ are independently selected from the group consisting of hydrido hydrogen, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy, hydroxymethyl, fluoro, chloro, and cyano;

R¹⁶-and R¹⁹ are optionally Q^b with the proviso that no more than one of R¹⁶ and R¹⁹ is Q^b at the same time and that Q^b is Q^{be};

R¹⁷ and R¹⁸ are independently selected from the group consisting of hydrido hydrogen, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;

Q^b is selected from the group consisting of Q^{be}-wherein Q^{be}-is hydrido hydrogen and C(NR²⁵)NR²³R²⁴;

 R^{23} , R^{24} , and R^{25} are independently selected from the group consisting of <u>hydrido</u> <u>hydrogen</u> and methyl; <u>and</u>

Q^s is CH₂.

Claim 23 (currently amended): The compound as recited in Claim 22 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of hydrido hydrogen, ethyl, 2-propenyl, 2-propynyl, propyl, isopropyl, butyl, 2-butyl, (R)-2-butyl,(S)-2-butyl, tert-butyl, isobutyl, 1-pentyl, 3-pentyl, 2-methylbutyl, 2,2,2-trifluoroethyl, 6-amidocarbonylhexyl, 4-methyl-2-pentyl, 3-hydroxypropyl, 3-methoxy-2-propyl, 2-methoxyethyl, 2-methyl-2-butyl, 3-methyl-2-butyl, 2-dimethylaminopropyl, 2-cyanoethyl, 6-hydroxyhexyl, 2-hydroxyethyl, 2-amidinoethyl, 2-guanidinoethyl, 3-guanidinopropyl, 4-guanidinobutyl, 3-hydroxypropyl, 4-hydroxybutyl, 6-cyanohexyl, 2-dimethylaminoethyl, 3-methylbutyl, 2-methylbutyl, (S)-2-methylbutyl, 3-aminopropyl, 2-hexyl, and 4-aminobutyl;

A is selected from the group consisting of single covalent bond, CH₂, CH₃CH, and CH₂CH₂;

M is selected from the group consisting of N and R¹-C;

R⁺ is selected from the group consisting of hydrido, fluoro, and chloro;

R² is selected from the group consisting of 5-amino-2-fluorophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl, 3-aminophenyl, 3-carboxyphenyl, 3-cyanophenyl, 3-methoxycarbonylphenyl, phenyl, and 3-pyridyl; and

Y⁰ is selected from the group consisting of 5-amidino-2-thienylmethyl, 4-amidinobenzyl, 2-fluoro-4-amidinobenzyl, and 3-fluoro-4-amidinobenzyl.

Claim 24 (currently amended): A compound as recited in of Claimclaim
[[17]] 20, or a pharmaceutically acceptable salt thereof, wherein: where said compound is selected from the group having the Formula:

or a pharmaceutically acceptable salt thereof, wherein:

Thienylmethyl, and M is CH;

R² is 3-aminophenyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidino-3
fluorobenzyl, and M is CH;

R² is 3-carboxyphenyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidino-3
fluorobenzyl, and M is CH;

 ${\sf R}^2$ is 3-aminophenyl, B is 2,2,2-trifluoroethyl, A is single bond, ${\sf Y}^0$ is 4-amidinobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is (S)-2-butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 ${\sf R}^2$ is 5-amino-2-fluorophenyl, B is isopropyl, A is single bond, ${\sf Y}^0$ is 4-amidinobenzyl, and M is N;

 ${\sf R}^2$ is 2-methyl-3-aminophenyl, B is isopropyl, A is single bond, ${\sf Y}^0$ is 4-amidinobenzyl, and M is N;

 ${\sf R}^2$ is 3-aminophenyl, B is ethyl, A is single bond, ${\sf Y}^0$ is 4-amidinobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is ethyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is 2-propenyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is isopropyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is isopropyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is 2-butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is (R)-2-butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is 2-propynyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 ${\sf R}^2$ is 3-aminophenyl, B is 3-pentyl, A is single bond, ${\sf Y}^0$ is 4-amidinobenzyl, and M is N:

R² is 3-aminophenyl, B is hydrido, A is CH₂, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3-aminophenyl, B is ethyl, A is CH₂, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is 2-methypropyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 $\rm R^2$ is 3-aminophenyl, B is 2-propyl, A is $\rm CH_3CH$, $\rm Y^0$ is 4-amidinobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is propyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is 6-amidocarbonylhexyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is tert-butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is tert-butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is 3-hydroxypropyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is 2-methylpropyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 ${\sf R}^2$ is 3-aminophenyl, B is 3-methoxy-2-propyl, A is single bond, ${\sf Y}^0$ is 4-amidinobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is 3-methoxy-2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 ${\sf R}^2$ is 3-aminophenyl, B is 2-methoxy-2-ethyl, A is single bond, ${\sf Y}^0$ is 4-amidinobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is 2-propyl, A is single bond, Y^0 is 5-amidino-2-thienylmethyl, and M is N;

 R^2 is 3-aminophenyl, B is 2-propyl, A is single bond, Y^0 is 4-amidino-3-fluorobenzyl, and M is N; $\underline{\textbf{or}}$

 R^2 is 3-carboxyphenyl, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N[[;]].

R² is 3-aminophenyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidino-3-fluorobenzyl, and M is CH;

Claims 25-27 (canceled)

Claim 28 (currently amended): <u>A The</u> compound as recited in Claim 25 having the Formula:

B is selected from the group consisting of C3-C7 cycloalkyl and C4 saturated heterocyclyl, wherein (a) each ring carbon is optionally substituted with R³³, (b) a ring carbon, other than the ring carbon at the point of attachment, is optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, (c) a ring carbon or nitrogen in a first alpha position relative to the ring carbon at the point of attachment is optionally substituted by R⁹, (d) a ring carbon or nitrogen in a second alpha position relative to the ring carbon at the point of attachment is optionally substituted by R¹³, (e) a ring carbon or nitrogen, if present, in a first beta position relative to the ring carbon at the point of attachment and in an alpha position relative to the ring atom

optionally substituted by R9, is optionally substituted by R10, (f) a ring carbon or nitrogen, if present, in a second beta position relative to the ring carbon at the point of attachment and in an alpha position relative to the ring atom optionally substituted by R¹³, is optionally substituted by R¹², (g) a ring carbon or nitrogen, if present, in a first gamma position relative to the ring carbon at the point of attachment and in an alpha position relative to the ring atom optionally substituted by R¹⁰, is optionally substituted by R¹¹, and (h) a ring carbon or nitrogen, if present, in a second gamma position relative to the carbon at the point of attachment and in an alpha position relative to the ring atom optionally substituted by R¹², is optionally substituted by R³³; each ring carbon is optionally substituted with R⁵³, a ring carbon other than the ring carbon at the point of attachment of B to A is optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbons and a nitrogen adjacent to the carbon atom at the point of attachment is optionally substituted with R9 or R13, a ring carbon or nitrogen adjacent to the R9-position and two atoms from the point of attachment is optionally substituted with R¹⁰, a ring carbon or nitrogen adjacent to the R¹³ position and two atoms from the point of attachment is optionally substituted with R12, a ring carbon three atoms from the point of attachment and adjacent to the R¹⁰ position is optionally substituted with R11, a ring carbon three atoms from the point of attachment and adjacent to the R12 position is optionally substituted with R33, and a ring carbon four atoms from the point of attachment and adjacent to the R11 and R33 positions is optionally substituted with R³⁴;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrogenhydroxy, amino, amidino, guanidino, lower alkylamino, alkylthio, alkoxy, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, monoalkyl amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboxy, carboxamido, and cyano;

R¹⁰ and R¹² are independently selected from the group consisting of hydrogenhydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, alkoxy, alkoxyamino, aminoalkyl, hydroxy, amino, lower alkylamino, alkylsulfonamido,

amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, hydroxyalkyl, aminoalkyl, halo, haloalkyl, carboalkoxy, carboxy, carboxyalkyl, carboxyamido, and cyano;

R³³ and R³⁴ are independently selected from the group consisting of hydrogen hydrogen hydroden, amidino, guanidino, alkoxy, hydroxy, amino, alkoxyamino, lower alkylamino, alkylthio, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboalkoxy, carboxy, carboxamido, and cyano;

R³³ is optionally Q^b;

A is selected from the group consisting of single covalent bond and $(CH(R^{15}))_{pa}$ - $(W^7)_{rr}$ wherein rr is an integer selected from 0 through 1, pa is an integer selected from 0 through 3, and W^7 is $N(R^7)$;

R⁷ is selected from the group consisting of hydrido and alkyl;

R¹⁵ is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

M is selected from the group consisting of N and R¹-C;

R¹ is selected from the group consisting of hydrido, hydroxy, hydroxyamino, amidino, amino, cyano, hydroxyalkyl, alkoxy, alkyl, alkylamino, aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;

 R^2 is Z^0 -Q;

Z⁰ is a covalent single bond;

Q is selected from the group consisting of aryl and heteroaryl wherein (a) a ring carbon in a first alpha position relative to the ring carbon at the point of attachment is optionally substituted by R⁹, (b) a ring carbon in a second alpha position relative to the ring carbon at the point of attachment is optionally substituted by R¹³, (c) a ring carbon, in a first beta position relative to the ring carbon at the point of attachment and in an alpha position relative to the ring atom optionally substituted by R⁹, is optionally substituted by R¹⁰, (d) a ring carbon, in a second beta position relative to the ring carbon at the point of attachment and in an alpha position relative to the ring atom optionally substituted by R¹³, is optionally substituted by R¹², and (e) a ring carbon, if present, in the gamma position relative to the ring carbon at the point of

attachment and in an alpha position relative to each of the ring atoms optionally substituted by R¹⁰ and R¹², respectively, is optionally substituted by R¹¹ a carbon adjacent to the carbon at the point of attachment is optionally substituted by R⁹, the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R¹³, a carbon adjacent to R⁹ and two atoms from the carbon at the point of attachment is optionally substituted by R¹⁰, a carbon adjacent to R¹³ and two atoms from the carbon at the point of attachment is optionally substituted by R¹², and any carbon adjacent to both R¹⁰ and R¹² is optionally substituted by R¹¹;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrogen hydroxy, amino, amidino, guanidino, lower alkylamino, alkylthio, alkoxy, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, monoalkylamidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboxy, carboxamido, and cyano;

R¹⁰ and R¹² are independently selected from the group consisting of hydrogenhydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, alkoxy, alkoxyamino, aminoalkyl, hydroxy, amino, lower alkylamino, alkylsulfonamido, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, hydroxyalkyl, aminoalkyl, halo, haloalkyl, carboalkoxy, carboxy, carboxyamido, carboxyalkyl, and cyano;

Y⁰ is formula (IV):

(IV)

wherein D^5 , D^6 , J^5 , and J^6 are independently selected from the group consisting of C, N, O, S and a covalent bond with the provisos that no more than one is a covalent bond, K^2 is C, no more than one of D^5 , D^6 , J^5 , and J^6 is O, no more than one of D^5 , D^6 , J^5 , and J^6 is S, one of D^5 , D^6 , J^5 , and J^6 must be a covalent bond when two of D^5 , D^6 , J^5 , and J^6 are O and S, and no more than four of D^5 , D^6 , J^5 , and J^6 are N;

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrogenhydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, lower alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

R¹⁶-and R¹⁹-are optionally Q^b-with the proviso that no more than one of R¹⁶-and R¹⁹-is Q^b at the same time and that Q^b is Q^{be};

Q^b is selected from the group consisting of NR²⁰R²¹, Q^{be} wherein Q^{be} is hydrido, and C(NR²⁵)NR²³R²⁴;

 R^{20} , R^{21} , R^{23} , R^{24} , and R^{25} are independently selected from the group consisting of hydrido and alkyl; <u>and</u>

Q^s is CH₂.

Claim 29 (currently amended): The compound as recited in Claim 28 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, 2-(2R)-bicyclo[2.2.1]-heptyl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, and bicyclo[3.1.0]hexan-6-yl, wherein (a) each ring carbon is optionally substituted with R33, (b) a ring carbon or nitrogen in a first alpha position relative to the ring carbon at the point of attachment is optionally substituted by R9, (c) a ring carbon or nitrogen in a second alpha position relative to the ring carbon at the point of attachment is optionally substituted by R¹³, (d) a ring carbon or nitrogen, if present, in a first beta position relative to the ring carbon at the point of attachment and in an alpha position relative to the ring atom optionally substituted by R9, is optionally substituted by R¹⁰, and (e) a ring carbon or nitrogen, if present, in a second beta position relative to the ring carbon at the point of attachment and in an alpha position relative to the ring atom optionally substituted by R¹³, is optionally substituted by R12; each ring carbon is optionally substituted with R33, ring carbons and a nitrogen atoadjacent to the carbon atom at the point of attachment is optionally substituted with R⁹ or R¹³, a ring carbon or nitrogen adjacent to the R9 position and two atoms from the point of attachment is optionally substituted with R¹⁰, and a ring carbon or nitrogen adjacent to the R¹³ position and two atoms from the point of attachment is optionally substituted with R12;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrogenhydrido, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, methylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, carboxy, and cyano;

R¹⁰ and R¹² are independently selected from the group consisting of hydrogen hydroden, amidino, amidocarbonyl, N-methylamidocarbonyl, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, carboxy, carboxymethyl, amino, acetamido, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, trifluoroacetamido, aminomethyl, N-

methylamino, dimethylamino, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, methoxycarbonyl, fluoro, chloro, bromo, and cyano;

R³³ are independently selected from the group consisting of hydrogen hydrido, amidino, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, carboxy, amino, N-methylamino, dimethylamino, methylthio, ethylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, hydroxymethyl, amidocarbonyl, cyano, and Q^b;

A is selected from the group consisting of single covalent bond, NH, N(CH₃), CH₂, CH₃CH, CH₂CH₂, and CH₂CH₂CH₂;

M is selected from the group consisting of N and R¹-C;

R[†] is selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, methylamino, cyano, methyl, trifluoromethyl, methoxy, hydroxymethyl, methoxyamino, methylthio, trifluoromethoxy, fluoro, and chloro;

R² is selected from the group consisting of phenyl [[,]] and 2-thienyl, 2-furyl, 2-pyrrolyl, 2-imidazolyl, 2-thiazolyl, 3-isoxazolyl, 2-pyridyl, and 3-pyridyl heteroaryl rings, wherein (a) a ring carbon in a first alpha position relative to the ring carbon at the point of attachment is optionally substituted by R9, (b) a ring carbon in a second alpha position relative to the ring carbon at the point of attachment is optionally substituted by R¹³, (c) a ring carbon, in a first beta position relative to the ring carbon at the point of attachment and in an alpha position relative to the ring atom optionally substituted by R9, is optionally substituted by R¹⁰, (d) a ring carbon, in a second beta position relative to the ring carbon at the point of attachment and in an alpha position relative to the ring atom optionally substituted by R13, is optionally substituted by R12, and (e) a ring carbon, if present, in the gamma position relative to the ring carbon at the point of attachment and in an alpha position relative to each of the ring atoms optionally substituted by R¹⁰ and R¹², respectively, is optionally substituted by R¹¹ a carbon adjacent to the carbon at the point of attachment is optionally substituted by R9, the other carbon adjacent to the carbon at the point of

attachment is optionally substituted by R¹³, a carbon adjacent to R⁹ and two atoms from the carbon at the point of attachment is optionally substituted by R¹⁰, a carbon adjacent to R¹³ and two atoms from the carbon at the point of attachment is optionally substituted by R¹², and any carbon adjacent to both R¹⁰ and R¹² is optionally substituted by R¹¹;

Y⁰ is selected from the group consisting of:

$$R^{17}$$
 R^{18}
 R^{19}
 R^{19}

$$-\frac{1}{2} - \frac{1}{2} - \frac{1$$

1-Q^b-4-Q^s-2-R^{te}-3-R^{te}-5-R^{te}-6-R^{te}benzene, 2-Q^b-5-Q^s-6-R^{te}-4-R^{te}-2-R^{te}pyridine, 2-Q^b-5-Q^s-3-R^{te}-4-R^{te}thiophene, 3-Q^b-6-Q^s-2-R^{te}-5-R^{te}-4-R^{te}pyridine, 3-Q^b-5-Q^s-4-R^{te}-2-R^{te}thiophene, 3-Q^b-5-Q^s-4-R^{te}-2-R^{te}furan, 2-Q^b-5-Q^s-3-R^{te}-4-R^{te}furan, 3-Q^b-5-Q^s-4-R^{te}-2-R^{te}pyrrole, 2-Q^b-5-Q^s-3-R^{te}-4-R^{te}pyrrole, 4-Q^b-2-Q^s-5-R^{te}thiazole, and 2-Q^b-5-Q^s-4-R^{te}thiazole;

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrogen hydrogen hydrodo, methyl, ethyl, amidino, guanidino, methoxy, hydroxy, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, methylthio, ethylthio, trifluoromethylthio, methylsulfinyl, methylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, trifluoromethoxy, fluoro, chloro, amidosulfonyl, N-methylamidosulfonyl, hydroxymethyl, carboxy, and cyano.

Q^b is selected from the group consisting of NR²⁰R²¹ and C(NR²⁵)NR²³R²⁴, with the proviso that said Q^b group is bonded directly to a carbon atom;

 R^{20} , R^{21} , R^{23} , R^{24} , and R^{25} are independently selected from the group consisting of hydrido, methyl, and ethyl; <u>and</u>

Qs is CH₂.

Claim 30 (currently amended): The compound as recited in Claim 29 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 2-(2R)-bicyclo[2.2.1]-heptyl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl,and azetidin-3-yl;

A is selected from the group consisting of a single covalent bond, CH_2 , NHC(O), CH_2CH_2 and $CH_2CH_2CH_2$;

M is selected from the group consisting of N and R¹-C;

R¹ is selected from the group consisting of hydrido, hydroxy, amino, methyl, trifluoromethyl, fluoro, and chloro;

R² is selected from the group consisting of 3-aminophenyl, 2,6-dichlorophenyl, 2-hydroxyphenyl, 5-amino-2-thienyl, and 3-thienyl;

Y⁰ is selected from the group consisting of:

$$R^{17}$$
 R^{18}
 R^{18}
 R^{19}
 R^{16}
 R^{19}
 R^{16}
 R^{19}
 R^{16}
 R^{16}
 R^{16}
 R^{16}
 R^{16}
 R^{16}
 R^{16}
 R^{16}
 R^{16}
 R^{16}

1-Q^t-4-Q^s-2-R^{1t}-3-R¹⁷-5-R¹⁸-6-R¹⁹benzene,

 $3-Q^{t}-5-Q^{s}-4-R^{t\theta}-2-R^{t\theta}$ thiophene, and $2-Q^{t}-5-Q^{s}-3-R^{t\theta}-4-R^{t7}$ thiophene;

R¹⁶ and R¹⁹ are independently selected from the group consisting of hydrogenhydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy, hydroxymethyl, fluoro, chloro, and cyano;

R¹⁶ and R¹⁹ are optionally Q^b with the proviso that no more than one of R¹⁶ and R¹⁹ is Q^b at the same time and that Q^b is Q^{be};

R¹⁷ and R¹⁸ are independently selected from the group consisting of hydrogenhydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;

Q^b is selected from the group consisting of Q^{be} wherein Q^{be} is <u>hydrogen</u>hydrido and C(NR²⁵)NR²³R²⁴;

R²³, R²⁴, and R²⁵ are independently selected from the group consisting of hydrogen.hydrido and methyl; and

Q^s is CH₂.

Claim 31 (currently amended): The compound as recited in Claim 30 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 2-(2R)-bicyclo[2.2.1]-heptyl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl,and azetidin-3-yl;

A is selected from the group consisting of a single covalent bond, CH₂, CH₂CH₂ and CH₂CH₂CH₂;

M is selected from the group consisting of N and R¹-C;

R[†] is selected from the group consisting of hydrido, fluoro, and chloro;

R² is selected from the group consisting of 3-aminophenyl, 2,6-dichlorophenyl, 2-hydroxyhenyl, phenyl, 5-amino-2-thienyl, and 3-thienyl; <u>and</u>

Y⁰ is selected from the group consisting of 5-amidino-2-thienylmethyl, 4-amidinobenzyl, 2-fluoro-4-amidinobenzyl, and 3-fluoro-4-amdinobenzyl.

Claim 32 (currently amended): A compound as recited in of Claimclaim
[[25]] 28, or a pharmaceutically acceptable salt thereof, wherein where said compound is selected from the group having the Formula:

or a pharmaceutically acceptable salt thereof, wherein:

R² is 3-aminophenyl, B is cycylopropyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-aminophenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;

R² is 3-aminophenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH:

 R^2 is 3-aminophenyl, B is cyclopropyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;

R² is 3-aminophenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidino-3-fluorobenzyl, and M is CH;

R² is 3-aminophenyl, B is cyclopentyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 5-amino-2-thienyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenyl, B is cyclopropyl, A is CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-aminophenyl, B is 2-(2R)-bicyclo[2.2.1]-heptyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

 \mathbb{R}^2 is 3-aminophenyl, B is cyclopentyl, A is single bond, \mathbb{Y}^0 is 4-amidino-2-fluorobenzyl, and M is CH;

R² is 3-aminophenyl, B is cyclohexyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 2-hydroxyphenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is phenyl, B is cyclobutyl, A is single bond, Y⁶ is 4-amidinobenzyl, and M is M is CH;

R² is 3-thienyl, B is cyclobutyl, A is single bond, Y⁶ is 4-amidinobenzyl, and M is CH;

R² is 2,6-dichlorophenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-aminophenyl, B is cycylopropyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 ${\sf R}^2$ is 3-aminophenyl, B is cyclobutyl, A is single bond, ${\sf Y}^0$ is 4-amidino-2-fluorobenzyl, and M is N;

 ${\sf R}^2$ is 3-aminophenyl, B is cyclobutyl, A is single bond, ${\sf Y}^0$ is 4-amidinobenzyl, and M is N;

 $\mbox{\sc R}^2$ is 3-aminophenyl, B is cyclopropyl, A is single bond, $\mbox{\sc Y}^0$ is 4-amidino-2-fluorobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidino-3-fluorobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is cyclopentyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 5-amino-2-thienyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 ${\sf R}^2$ is 3-aminophenyl, B is cyclopropyl, A is ${\sf CH}_2,\,{\sf Y}^0$ is 4-amidinobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is 2-(2R)-bicyclo[2.2.1]-heptyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 $\mbox{\sc R}^2$ is 3-aminophenyl, B is cyclopentyl, A is single bond, $\mbox{\sc Y}^0$ is 4-amidino-2-fluorobenzyl, and M is N;

 $\rm R^2$ is 3-aminophenyl, B is cyclohexyl, A is $\rm CH_2CH_2$, $\rm Y^0$ is 4-amidinobenzyl, and M is N;

 R^2 is 2-hydroxyphenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R² is phenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is 3-thienyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N; \underline{or}

 R^2 is 2,6-dichlorophenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N[[:]].

R² is 3-aminophenyl, B is cycylopropyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CF:

R² is 3-aminophenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidino-2-fluorobenzyl, and M is CF;

R² is 3-aminophenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CF;

 $R^{\frac{1}{2}}$ is 3-aminophenyl, B is cyclopropyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CF;

R² is 3-aminophenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CF:

R²-is 3-aminophenyl, B is cyclobutyl, A is single bond, Y⁶ is 4-amidino-3-fluorobenzyl, and M is CF;

R² is 3-aminophenyl, B is cyclopentyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CF;

R² is 5-amino-2-thienyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CF:

R² is 3-aminophenyl, B is cyclopropyl, A is CH₂, Y⁶ is 4-amidinobenzyl, and M is CF;

R² is 3-aminophenyl, B is 2-(2R)-bicyclo[2.2.1]-heptyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CF;

 R^2 is 3-aminophenyl, B is cyclopentyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is $C\Gamma$;

 R^2 is 3-aminophenyl, B is cyclohexyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CF;

R² is 2-hydroxyphenyl, B is cyclobutyl, A is single bond, Y⁶ is 4-amidinobenzyl, and M is CF;

 \mathbb{R}^2 -is phenyl, B is cyclobutyl, A is single bond, \mathbb{Y}^0 is 4-amidinobenzyl, and M is \mathbb{CF} ;

 \mathbb{R}^2 is 3-thienyl, B is cyclobutyl, A is single bond, \mathbb{Y}^0 is 4-amidinobenzyl, and M is CF;

R² is 2,6 dichlorophenyl, B is cyclobutyl, A is single bond, Y⁶ is 4-amidinobenzyl, and M is CF.

Claims 33-50 (canceled).