An Automated Inventory Management System via a Machine Learning Approach

Ray Gunawidjaja May 5th, 2018

Presentation Outline

- 1. Problem Statement
- 2. Overview of Approach
- 3. Data Preparation
- 4. Machine Learning and Deep Learning Models
- 5. Object Detection and Object Recognition
- 6. Summary and Future Works

1. Problem Statement

Problem

Poor inventory management system results in financial losses due to items being misplaced, mislabeled, or even stolen.

Proposed solution

I propose a computer program that can identify objects from an image and subsequently generate a list of the identified objects to a simple csv file.

2. Overview of Approach

- Process labeled images
 - Develop a model
- Feed processed images into various models
 - Select the best model
- Combine the selected model with object detection
- Detect and label objects, enter information into pandas
 DataFrame and save as csv.

3 Data Preparation

3.1. The Dataset

- The dataset is pictures of common household objects: (a) spoon, (b) fork, and (c) floss.

- All objects have a high aspect ratio.
- To asses the robustness of deep learning and machine learning models in distingushing similar objects.

3 Data Preparation

3.2. Data Processing

- Make sure that every image is horizontally oriented
- Augment images using the built-in ImageDataGenerator class in keras. Increased number of images from 14 to 112.
- Resize images to 58x103 for VGG16 model
- Transform images to gray and resize to 46x83 for HOG/SVM, NN, and CNN models.
- Images are saved as pandas DataFrame into a csv file, rather than as images.

4. Machine Learning and Deep Learning Models

The following models are considered:

- A combination of histogram oriented gradient (HOG) and support vector machine (SVM)
- Neural Network
- Convolutional Neural Network
- Pre-trained visual geometry group-16 (VGG-16)

4.1. Machine learning [2]

- Use a combination of histogram oriented gradient (HOG) and support vector machine (SVM).
- HOG extracts features from an image.
- SVM correlated image labels with image features.
- Other common alternatives to HOG are scale invariant feature transform (SIFT) and speeded up robust features (SURF).
- SIFT and SURF, however, cannot be used for commercial solutions because they are patented [1].

4.2. Deep Learning [3]

- For the deep learning model, a baseline neural network (NN) model and a convolutional neural network (CNN) model are assessed.
- The baseline NN model consists of just an input and an output layer.
- The CNN model consists of the following: a convolutional layer, a pooling layer, a hidden layer, and an output layer.
- For the CNN model, the convolutional layer is a feature extractor. The NN model uses every data point as input parameters.

4.3. Transfer Learning [4]

- As an alternative, I assess a pre-trained VGG-16 model, which is a sophisticated CNN model.
- Initial assessment of the pretrained VGG-16 model shows that it is unable to recognize any of the three objects (i.e., spoon, fork, and floss). The initial results are as follows:

Predicted label (prob.)	Actual label
envelope (14.83%)	floss
spatula (59.51%)	fork
hook (23.42%)	spoon

• This justifies the need to custom-train the model.

4.4. Accuracy of the different models

• The accuracy of the different models after training are as follows:

Models	Accuracy (%)
HOG/SVM	96
NN	90
CNN	96
VGG-16	100

• VGG-16 model is 100% accurate. Hence, it is selected.

5. Object Detection and Object Recognition

- Contour detection algorithm is used for object detection.
- The trained VGG-16 model is used for onject recognition.
- The three images below are used for proof-of-concept of this automated inventory management system.

 Note that in figure (c), the contour detection algorithm does not fully detect the spoon.

5. Object Detection and Object Recognition Cont...

 Having detected and recognized objects in a series of images, the program enters the information into a pandas
 DataFrame, as follows:

- The DataFrame consists of three columns: predicted object name, probability, and image array.
- Using data in the 3rd column, each image can be reconstructed and verified with the predicted label.

5. Object Detection and Object Recognition Cont...

• Finally, the DataFrame can be analyzed to yield the number of objects per category, as follows:

```
spoon 5
floss 5
fork 2
Name: Name, dtype: int64
```

6. Summary and Future Works

- A combination of object detection and object recognition algorithms can be used to detect and label objects in a series of images.
- The training images include 14 images from each of the three categories, spoon, fork, and floss.
- To increase the number of dataset from 14 to 112, I use image augmentation.
- VGG-16 model is used for object recognition. An accuracy of 100% is achieved using the trained VGG16 model.
- Contour detection algorithm is used for object detection.
 Contour detection algorithm does not work well for an image that contain objects that have different aspect ratios or have undefined edge-contrast.
- Future work may include object detection/object recognition from a real-time video using a more sophisticated object detection algorithms, such as you only look once (YOLO) and single shot detection (SSD).

7. References

- 1. https://docs.opencv.org/2.4/modules/nonfree/doc/nonfree.html
- 2. Gabriel Garrido and Prateek Joshi, "OpenCV 3.x with Python By Example", Packt, 2018, Chpt. 9.
- 3. Jason Brownlee, "Deep Learning with Python", Machine Learning Mastery, 2018.
- 4. https://machinelearningmastery.com/use-pre-trained-vgg-model-classify-objects-photographs/