

**EUROFINS PRODUCT SERVICE GMBH** 



# **TEST-REPORT**

FCC 47 CFR PART 15 SUBPART C IC RSS 210 ISSUE 8

Handheld RFID Tag Read/Writer

**LOC100** 

FCC ID: YCB-LOC100 IC: 5879A-LOC100

**TEST REPORT NUMBER: G0M-1106-1188-C-1** 



# **TABLE OF CONTENTS**

| 1                                             | General Information                                                                                                                                | 3                                    |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 1.1<br>1.2<br>1.3<br>1.4<br>1.5<br>1.6<br>1.7 | Notes Testing laboratory Details of approval holder Application details Acronyms and abbreviations Test standards Test item Additional information | 3<br>4<br>5<br>5<br>5<br>6<br>6<br>6 |
| 2                                             | Technical test                                                                                                                                     | 7                                    |
| 2.1<br>2.2<br>2.3<br>2.4<br>2.5               | Summary of test results Test environment Test equipment utilized Sample emission level calculation Test results                                    | 7<br>7<br>8<br>9<br>10               |
| 3                                             | Informational Transmitter parameters                                                                                                               | 11                                   |
| 3.1                                           | Occupied Bandwidth                                                                                                                                 | 11                                   |
| 4                                             | Transmitter parameters                                                                                                                             | 12                                   |
| 4.1<br>4.2<br>4.3                             | In-band field strength emissions Emission radiated outside the specified frequency band Frequency stability                                        | 12<br>14<br>16                       |
| 5                                             | Receiver parameters                                                                                                                                | 18                                   |
| 5.1                                           | Receiver spurious emissions                                                                                                                        | 18                                   |
| 6                                             | Power Line parameters                                                                                                                              | 20                                   |
| 6.1                                           | AC power line conducted emissions                                                                                                                  | 20                                   |
| Annex A<br>Annex B<br>Annex C<br>Annex D      | Photos AC Power line Conducted Emissions In-band field strength emissions Out-of-band radiated spurious emissions                                  | 21<br>26<br>28<br>30                 |



# 1 General Information

### 1.1 Notes

Date

Eurofins

The results of this test report relate exclusively to the item tested as specified in chapter "Description of test item" and are not transferable to any other test items.

Eurofins Product Service GmbH is not responsible for any generalizations and conclusions drawn from this report. Any modification of the test item can lead to invalidity of test results and this test report may therefore be not applicable to the modified test item.

The test report may only be reproduced or published in full. Reproducing or publishing extracts of the report requires the prior written approval of the Eurofins Product Service GmbH.

This document is subject to the General Terms and Conditions and the Testing and Certification System of Eurofins Product Service GmbH, available on request or accessible at <a href="https://www.pt.eurofins.com">www.pt.eurofins.com</a>

| Operator:      |                        |               | ./        |
|----------------|------------------------|---------------|-----------|
| 24.08.2011     |                        | M. Handrik    | fanch     |
| Date           | Eurofins-Lab.          | Name          | Signature |
| Technical resp | onsibility for area of | testing:      |           |
| 24.08.2011     |                        | J. Zimmermann | 1         |

Name

Signature



# 1.2 Testing laboratory

EUROFINS PRODUCT SERVICE GMBH Storkower Strasse 38c D-15526 Reichenwalde b. Berlin Germany

Telephone :+49 33631 888 00 Telefax :+49 33631 888 660

# **DAKKS ACCREDITED TESTING LABORATORY**

DAKKS-REGISTRATION NUMBER: D-PL-12092-01-01

### RECOGNIZED NOTIFIED BODY EMC

REGISTRATION NUMBER: BNetzA-bS EMV-07/61

#### RECOGNIZED NOTIFIED BODY R&TTE

REGISTRATION NUMBER: BNetzA-bS-02/51-53

#### **FCC FILED TEST LABORATORY**

REG.-No. 96970

#### **A2LA ACCREDITED TESTING LABORATORY**

CERTIFICATE No. 1983.01

#### **BLUETOOTH QUALIFICATION TEST FACILITY (BQTF)**

ACCREDITED BY BLUETOOTH QUALIFICATION REVIEW BOARD

#### **INDUSTRY CANADA FILED TEST LABORATORY**

Reg. No. IC 3470

# Test location, where different:

 Name
 : ./.

 Street
 : ./.

 Town
 : ./.

 Country
 : ./.

 Telephone
 : ./.

 Fax
 : ./.



# 1.3 Details of approval holder

Name : HACH LANGE GmbH Street : Willstaetterstr. 11 Town : 40549 Duesseldorf

Country : Germany

Telephone : +49 211 5288 140 Fax : +49 211 5288 234

Contact : Herr Michael Schuster Telephone : +49 211 5288 140

Manufacturer: (if applicable)

Name : HACH LANGE GmbH Street : Willstaetterstr. 11 Town : 40549 Duesseldorf

Country : Germany

# 1.4 Application details

Date of receipt of application : 17.06.2011
Date of receipt of test item : 17.06.2011
Date of test : 09. – 10.05.2011

# 1.5 Acronyms and abbreviations

EUT : Equipment under Test

TX : Transmission RX : Reception

RBW : Measurement Resolution Bandwidth

Pol : Measurement Polarization

e.i.r.p. : Equivalent isotropic radiated power

 $\begin{array}{llll} T_{nom} & : & Nominal Temperature \\ T_{min} & : & Minimum Temperature \\ T_{max} & : & Maximum Temperature \\ V_{nom} & : & Nominal Supply Voltage \\ V_{min} & : & Minimum Supply Voltage \\ V_{max} & : & Maximum Supply Voltage \\ \end{array}$ 

VDC : DC voltage N/A : Not applicable IC : Industry Canada



#### 1.6 Test standards

: ☑ FCC 47 CFR PART 15 SUBPART C ☑ IC RSS 210 ISSUE 8 Technical standard

#### 1.7 **Test item**

Description of test item : Handheld RFID Tag Read/Writer

Type identification : LOC100 **Brand Name** : Hach Lange Serial number : Unspecified

Hardware version : Cont Brd-XMF810-G, RF Brd-XMF812-E

: 2.85 Software version

Equipment type : End product

#### **Technical data**

: Transceiver Radio type

: RFID Radio technology

Frequency range : 13.56MHz

Assigned frequency band : 13.410-13.553MHz Tested frequencies : F₁ 13.56MHz

Antenna type(s) : integral

Antenna model(s) : PCB loop antenna

Number of antennas : 1

: -29.7381dB Antenna gain(s)

Power supply : 2.4VDC (Battery)

Modulation(s) : Amplitude

Device classification : Portable Device (Human Body distance < 20 cm)

#### 1.8 **Additional information**

Radio part is switched off in charging mode. Frequency stability testing with voltage variation has been omitted.



# 2 Technical test

# 2.1 Summary of test results

| No deviations from the technical specification(s) were ascertained in the course of the tests performed. | × |
|----------------------------------------------------------------------------------------------------------|---|
| or                                                                                                       |   |
| The deviations as specified in 2.5 were ascertained in the course of the tests performed.                |   |

# 2.2 Test environment

Temperature : 22 ... 26°C

Relative humidity content : 20 ... 75%

Air pressure : 86 ... 103kPa

Extreme conditions parameters:

 $\begin{array}{cccc} V_{nom} & \vdots & 2.4 VDC \\ V_{min} & \vdots & N/A \\ V_{max} & \vdots & N/A \end{array}$ 

 $\begin{array}{cccc} T_{nom} & : & 20^{\circ}C \\ T_{min} & : & -20^{\circ}C \\ T_{max} & : & 50^{\circ}C \end{array}$ 

Other parameter: None



# 2.3 Test equipment utilized

| Measurement Equipment List |                       |            |                 |            |            |  |
|----------------------------|-----------------------|------------|-----------------|------------|------------|--|
| No.:                       | Measurement device:   | Type:      | Manufacturer:   | Last Cal.  | Next Cal.  |  |
| ETS 0086                   | Semi-anechoic chamber | AC1        | Frankonia       | 09.12.2010 | 09.12.2012 |  |
| ETS 0253                   | Spectrum Analyzer     | FSIQ26     | Rohde & Schwarz | 04.11.2010 | 04.11.2012 |  |
| ETS 0265                   | Loop Antenna          | HFRA 9150  | Schwarzbeck     |            |            |  |
| ETS 0030                   | Biconical Antenna     | HK 116     | Rohde & Schwarz | 10.02.2011 | 20.02.2012 |  |
| ETS 0295                   | LPD Antenna           | HL 223     | Rohde & Schwarz | 09.02.2011 | 09.02.2012 |  |
| ETS 0018                   | Horn Antenna          | BBHA 9120D | Schwarzbeck     | 26.08.2010 | 26.08.2011 |  |
| ETS 0432                   | Amplifier-Matrix      |            |                 | 02.06.2010 | 02.06.2012 |  |
| ETS 0496                   | Spectrum Analyzer     | FSP30      | Rohde & Schwarz | 26.08.2010 | 26.08.2011 |  |
| ETS 0288                   | LISN                  | ESH2-Z5    | Rohde & Schwarz | 07.09.2010 | 07.09.2012 |  |



# 2.4 Sample emission level calculation

The following is a description of terms and a sample calculation, as appears in the radiated emissions data table. The numbers used in the calculation are for example only. There is no direct correlation to the specific data taken for the product described in this document:

#### Reading:

This is the reading obtained on the spectrum analyzer in dBµV. Any external preamplifiers used are taken into account through internal analyzer settings.

A.F.:

This is the antenna factor for the receiving antenna. It is a conversion factor, which converts electric fields strengths to voltages, which can be measured directly on the spectrum analyzer. It is treated as a loss in dB. Cable losses have been included with the A.F. to simplify the calculations. The antenna factor is used in calculations as follows:

Reading on Analyzer ( $dB\mu V$ ) + A.F. (dB) = Net field strength ( $dB\mu V/m$ )

Net:

This is the net field strength measurement (as shown above).

Limit:

This is the FCC Class B radiated emission limit (in units of  $dB\mu V/m$ ). The FCC limits are given in units of  $\mu V/m$ . The following formula is used to convert the units of  $\mu V/m$  to  $dB\mu V/m$ :

Limit (dB $\mu$ V/m) = 20\*log ( $\mu$ V/m)

Margin:

This is the margin of compliance below the FCC limit. The units are given in dB. A negative margin indicates the emission was below the limit. A positive margin indicates that the emission exceeds the limit.

Example only:

Reading + AF = Net Reading : Net reading - FCC limit = Margin 21.5 dB $\mu$ V + 26 dB = 47.5 dB $\mu$ V/m : 47.5 dB $\mu$ V/m - 57.0 dB $\mu$ V/m = -9.5 dB



# 2.5 Test results

| Test case                                              | Clause                                                                                           | Required    | Result | Remarks |  |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------|--------|---------|--|
| INFORMATIONAL TRANSMITT                                | ER PARAMETERS                                                                                    |             |        |         |  |
| Occupied Bandwidth                                     | IC RSS-Gen. 4.6.1                                                                                |             | N/A    |         |  |
| TRANSMITTER PARAMETERS                                 |                                                                                                  |             |        |         |  |
| In-band field strength emissions                       | FCC § 15.225(a-c)<br>IC RSS-210 A2.6 (a-c)                                                       | ⊠           | PASS   |         |  |
| Emission radiated outside the specified frequency band | FCC § 15.225(d)<br>FCC § 15.209<br>IC RSS-210 A2.9(d)<br>IC RSS-gen 4.97.2.5<br>IC RSS-gen 7.2.5 | $\boxtimes$ | PASS   |         |  |
| Frequency stability                                    | FCC § 15.225(e)<br>FCC § 15.209<br>IC RSS-210 A2.6                                               | ×           | PASS   |         |  |
| RECEIVER PARAMETERS                                    |                                                                                                  |             |        |         |  |
| Radiated spurious emissions                            | IC RSS-Gen 4.10<br>IC RSS-Gen 6.1                                                                | ×           | PASS   |         |  |
| POWER LINE PARAMETERS                                  |                                                                                                  |             |        |         |  |
| AC power line conducted emissions                      | FCC § 15.207<br>IC RSS-Gen. 7.2.4                                                                |             | PASS   |         |  |



# 3 Informational Transmitter parameters

# 3.1 Occupied Bandwidth

According RSS-Gen Section 4.6.1 the 99% emission bandwidth occupied by the modulated transmitted signal has to be reported as calculated or measured.

# 3.1.1 Measurement procedure



The EUT is connected to a spectrum analyzer and set to transmission mode (using a communication tester if needed) with maximum power under normal test conditions. The span of the analyzer is set wide enough to capture all significant emissions of the modulation spectrum. The resolutions bandwidth is set as close as possible to 1% of the selected span without being below 1%. The occupied bandwidth is than measured evaluated by an internal measurement procedure of the analyzer.

# 3.1.2 Results

| Transmitter occupied bandwidth |                        |  |                             |  |  |  |
|--------------------------------|------------------------|--|-----------------------------|--|--|--|
| Measurement Co                 | Measurement Conditions |  |                             |  |  |  |
| Power occupation               | Power occupation 99%   |  |                             |  |  |  |
| Channel<br>[MHz]               |                        |  | Occupied<br>Bandwidth [kHz] |  |  |  |
| 13.56 13.55938 13.560412 1.032 |                        |  |                             |  |  |  |
| See attached diagram in Annex  |                        |  |                             |  |  |  |



# 4 Transmitter parameters

# 4.1 In-band field strength emissions

According FCC rules 47 CFR 15.225(a-c) and RSS-210 Section A2.6(a-c) the maximum emitted field strength has to comply with the following limits.

#### **4.1.1** Limits

The field strength measured at 30 metres shall not exceed the limits in the following table:

| Maximum emitted field strength       |                         |  |  |  |  |
|--------------------------------------|-------------------------|--|--|--|--|
| Frequency range field strength @ 30m |                         |  |  |  |  |
| 13.553 – 13.567                      | 15848μV/m<br>(84dBμV/m) |  |  |  |  |
| 13.410 – 13.553                      | 334μV/m                 |  |  |  |  |
| 13.567 – 13.710                      | (50.5dBμV/m)            |  |  |  |  |
| 13.110 – 13.410                      | 106μV/m                 |  |  |  |  |
| 13.710 – 14.010                      | (40.5dBμV/m)            |  |  |  |  |
| < 13.110                             | 30μV/m                  |  |  |  |  |
| > 14.010                             | (29.5dBμV/m)            |  |  |  |  |

#### 4.1.2 Measurement procedure



The EUT is placed on a table in a semi-anechoic chamber. The EUT is activated with the transmission modes stated in the test report. The emission level of is scanned. To obtain the peak emission level the EUT is rotated through 360° and the height of the measurement antenna is changed.

Test Report No.: G0M-1106-1188-C-1



Emission measurement is performed at a distance of 3m and the measurement results are corrected using an extrapolation of 40dB/decade at frequencies below 30MHz or 20dB/decade at frequencies above 30MHz according to 15.31 (f)(1) & 15.31 (f)(2)

#### 4.1.3 Results

| Fundamental maximum field strength emissions @ 30m                        |                                |      |    |        |  |  |
|---------------------------------------------------------------------------|--------------------------------|------|----|--------|--|--|
| Emission Max. field strength Detector Limit Margin [dBμV/m] [dBμV/m] [dB] |                                |      |    |        |  |  |
| 13.56                                                                     | 13.84                          | peak | 84 | -70.16 |  |  |
|                                                                           | See attached diagrams in Annex |      |    |        |  |  |
|                                                                           | PASS                           |      |    |        |  |  |

**Comment:** Due to the fact that the peak emission field-strength is below the quasi-peak emission limit, the corresponding quasi-peak measurement has been omitted and compliance with the limits is shown for the peak emissions.



# 4.2 Emission radiated outside the specified frequency band

According FCC rules 47 CFR 15.209, 15.225(d) and RSS-210 Section A2.6(d) unwanted emissions in the spurious domain are power limited as given below.

#### **4.2.1** Limits

| General spurious emission limits |            |                 |                                    |                             |  |  |
|----------------------------------|------------|-----------------|------------------------------------|-----------------------------|--|--|
| Frequency<br>range<br>[MHz]      | Detector   | Limit<br>[µV/m] | Calculated<br>Limit 3m<br>[dBµV/m] | Measurement<br>Distance [m] |  |  |
| 0.009 - 0.490                    | Quasi-Peak | 2400/F[kHz]     | 48.5 – 13.8                        | 300                         |  |  |
| 0.490 – 1.705                    | Quasi-Peak | 2400/F[kHz]     | 13.8 – 1.4                         | 30                          |  |  |
| 1.705 – 13.110                   | Quasi-Peak | 30              | 29.5                               | 30                          |  |  |
| 14.010 – 13.110                  | Quasi-Peak | 30              | 29.5                               | 30                          |  |  |
| 30 – 88                          | Quasi-Peak | 100             | 40                                 | 3                           |  |  |
| 88 – 216                         | Quasi-Peak | 150             | 43.5                               | 3                           |  |  |
| 216 – 960                        | Quasi-Peak | 200             | 46                                 | 3                           |  |  |
| 960 – 1000                       | Quasi-Peak | 500             | 54                                 | 3                           |  |  |
| > 1000                           | Average    | 500             | 54                                 | 3                           |  |  |

# Measurement procedure

The spurious emission measurement is performed on 3m a semi-anechoic test site.



The EUT is placed on a non-metallic table. Any emission is received by the measurement antenna and measured via a measurement receiver connected to the antenna.



To obtain the maximum emission the EUT is rotated through 360°.

Due to practical reasons the spurious emission level check is first performed with a peak detector and the quasi-peak and average limits.

If any emission is detected that gets close to the emission limit the detector is changed and the quasi-peak or average detector is used. Which detector is used is determined by the emission frequency. If pulsed transmission is used, averaging over the pulse train is used.

The measurement values are also corrected to obtain the field strength values at the defined measurement distances of the emission limits. Below 30MHz and extrapolation factor of 40dB/decade is used and at 30MHz and above an extrapolation factor of 20dB/decade is used (47 CRF 15.31(f)).

The measurement is performed over the frequency range of 9kHz up to 1GHz.

#### 4.2.2 Results

| Transmitter radiated spurious emissions |                                |              |                                           |                   |          |                |
|-----------------------------------------|--------------------------------|--------------|-------------------------------------------|-------------------|----------|----------------|
| Measuremen                              | t Conditions                   |              |                                           |                   |          |                |
| Measuremen                              | nt distance                    |              |                                           | 3m                |          |                |
| Modulated                               |                                |              | ⊠ Ye                                      | es 🗆 No           |          |                |
| Channel<br>Frequency<br>[MHz]           | Emission<br>Frequency<br>[MHz] | Polarization | Measured<br>Field<br>Strength<br>[dBµV/m] | Limit<br>[dBµV/m] | Detector | Margin<br>[dB] |
|                                         | 0.019                          | N/A          | -35.02                                    | 41.92             | peak     | -76.94         |
|                                         | 0.100                          | N/A          | -45.99                                    | 27.60             | peak     | -73.59         |
| 13.56                                   | 0.163                          | N/A          | -52.34                                    | 23.36             | peak     | -75.70         |
|                                         | 352                            | h            | 30.08                                     | 46                | peak     | -15.92         |
|                                         | 352                            | V            | 35.25                                     | 46                | peak     | -10.75         |
| See attached diagrams in Annex          |                                |              |                                           |                   |          |                |
|                                         | Verdict PASS                   |              |                                           |                   |          |                |

**Comment:** Due to the fact that the peak emission field-strength is below the average/quasi-peak emission limit, the corresponding average/quasi-peak measurement has been omitted and compliance with the limits is shown for the peak emissions.



# 4.3 Frequency stability

According FCC rules 47 CFR 15.225(e) and RSS-210 Section A2.6 the frequency stability has to comply with the requirements given below.

#### 4.3.1 **Limits**

| Frequency error limits |                         |                       |  |  |  |  |
|------------------------|-------------------------|-----------------------|--|--|--|--|
| Temperature            | Voltage                 | Frequency error limit |  |  |  |  |
| -20                    | V <sub>nom</sub>        | ±0.01% (±100ppm)      |  |  |  |  |
| -10                    | V <sub>nom</sub>        | ±0.01% (±100ppm)      |  |  |  |  |
| 0                      | V <sub>nom</sub>        | ±0.01% (±100ppm)      |  |  |  |  |
| 10                     | V <sub>nom</sub>        | ±0.01% (±100ppm)      |  |  |  |  |
| 20                     | V <sub>nom</sub>        | ±0.01% (±100ppm)      |  |  |  |  |
| 30                     | $V_{nom}$               | ±0.01% (±100ppm)      |  |  |  |  |
| 40                     | V <sub>nom</sub>        | ±0.01% (±100ppm)      |  |  |  |  |
| 50                     | V <sub>nom</sub>        | ±0.01% (±100ppm)      |  |  |  |  |
| 20                     | 0.85 · V <sub>nom</sub> | ±0.01% (±100ppm)      |  |  |  |  |
| 20                     | 1.15 · V <sub>nom</sub> | ±0.01% (±100ppm)      |  |  |  |  |

#### 4.3.2 Measurement procedure



#### Measurement:

The EUT is connected to the spectrum analyzer. The supply voltage and ambient temperature of the EUT is set to nominal. The transmitter of the EUT is activated without modulation and the peak carrier frequency is measured. The frequency error is calculated as the deviation from the nominal carrier frequency stated by the provider. The measurement is performed under normal and extreme conditions.



# 4.3.3 Results

| Frequency error         |                               |                 |        |                  |  |
|-------------------------|-------------------------------|-----------------|--------|------------------|--|
| Measurement             | Conditions                    |                 |        |                  |  |
| Nominal frequ           | Nominal frequency 13.56MHz    |                 |        |                  |  |
| Nominal Volta           | ige                           | 2.              | 4VDC   |                  |  |
| Con                     | ditions                       | Frequency [MHz] | Freque | ency error [ppm] |  |
| T = -20°C               | V <sub>nom</sub> = 2.4VDC     | 13.5599266      |        | -5.41            |  |
| T = -10°C               | V <sub>nom</sub> = 2.4VDC     | 13.5599505      |        | -3.65            |  |
| T = 0°C                 | V <sub>nom</sub> = 2.4VDC     | 13.5599401      |        | -4.42            |  |
| T = 10°C                | V <sub>nom</sub> = 2.4VDC     | 13.5599151      |        | -6.26            |  |
| T = 20°C                | V <sub>nom</sub> = 2.4VDC     | 13.5598433      |        | -11.56           |  |
| T = 30°C                | V <sub>nom</sub> = 2.4VDC     | 13.5598385      |        | -11.91           |  |
| T = 40°C                | V <sub>nom</sub> = 2.4VDC     | 13.5597975      |        | -14.93           |  |
| T = 50°C                | V <sub>nom</sub> = 2.4VDC     | 13.5597715      |        | -16.85           |  |
| T - 20°C                | V <sub>min</sub> = N/A N/A    | N/A             |        | N/A              |  |
| T <sub>nom</sub> = 20°C | V <sub>max</sub> = N/A        | N/A             |        | N/A              |  |
|                         | Measurement uncertainty 148Hz |                 |        |                  |  |
|                         | Verdict PASS                  |                 |        |                  |  |

**Comment:** Voltage variation has been omitted because the radio is switched off when battery charging mode is active. Therefore the EUT is exclusively battery operated when the radio is operating.



# 5 Receiver parameters

# 5.1 Receiver spurious emissions

According RSS-Gen Section 4.9 the emissions of unintentional radiators have to comply with limits stated in the rules.

### **5.1.1** Limits

| Receiver spurious emission limits @ 3m |            |                    |                                      |                             |  |  |  |
|----------------------------------------|------------|--------------------|--------------------------------------|-----------------------------|--|--|--|
| Frequency<br>range<br>[MHz]            | Detector   | Limit@3m<br>[µV/m] | Calculated<br>Limit @ 3m<br>[dBµV/m] | Measurement<br>Distance [m] |  |  |  |
| 30 – 88                                | Quasi-Peak | 100                | 40                                   | 3                           |  |  |  |
| 88 – 216                               | Quasi-Peak | 150                | 43.5                                 | 3                           |  |  |  |
| 216 – 960                              | Quasi-Peak | 200                | 46                                   | 3                           |  |  |  |
| 960 – 1000                             | Quasi-Peak | 500                | 54                                   | 3                           |  |  |  |
| > 1000                                 | Average    | 500                | 54                                   | 3                           |  |  |  |

# 5.1.2 Measurement procedure

The spurious emission measurement is performed on a 3m open area test site.



The EUT is placed on a non-metallic table. Any emission is received by a loop antenna and measured via a measurement receiver connected to the loop antenna. To obtain the maximum emission the EUT is rotated through 360°.



Due to practical reasons the spurious emission level check is first performed with a peak detector and the quasi-peak and average limits.

If any emission is detected that gets close to the emission limit the detector is changed and the quasi-peak or average detector is used. Which detector is used is determined by the emission frequency. If pulsed transmission is used, averaging over the pulse train is used.

The measurement values are also corrected to obtain the field strength values at the defined measurement distances of the emission limits.

The measurement is performed over the frequency range of 30MHz up to 1GHz harmonic.

# 5.1.3 Results

| Receiver spurious Emissions    |                                |              |                                         |                    |          |                  |  |
|--------------------------------|--------------------------------|--------------|-----------------------------------------|--------------------|----------|------------------|--|
| Measurement Conditions         |                                |              |                                         |                    |          |                  |  |
| Measurement distance           |                                | 3m           |                                         |                    |          |                  |  |
| Channel<br>Frequency<br>[MHz]  | Emission<br>Frequency<br>[MHz] | Polarization | Measured<br>Field<br>Strength<br>[µV/m] | Limit@3m<br>[μV/m] | Detector | Margin<br>[μV/m] |  |
| Standby                        | 195.43                         | ver          | 44.72                                   | 150                | peak     | -105.28          |  |
| Standby                        | 182.85                         | hor          | 45.81                                   | 150                | peak     | -104.19          |  |
| See attached diagrams in Annex |                                |              |                                         |                    |          |                  |  |
| Verdict                        |                                |              |                                         |                    | PASS     |                  |  |

<sup>\*</sup> **Note**: If needed the measured field strength values are corrected to reflect the field strength values at the measurement distance stated in the table. Correction acc. 20·log<sub>10</sub>(measurement distance/limit distance).



# 6 Power Line parameters

# 6.1 AC power line conducted emissions

According FCC rules 47 CFR 15.207 and RSS-Gen Section 7.2.2 for any intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits given below.

# **6.1.1** Limits

| AC power line emission limits |                        |          |  |  |  |  |
|-------------------------------|------------------------|----------|--|--|--|--|
| Eraguanay [MU=1               | Conducted Limit [dBµV] |          |  |  |  |  |
| Frequency [MHz]               | Quasi-Peak             | Average  |  |  |  |  |
| 0.15 – 0.5                    | 66 to 56               | 56 to 46 |  |  |  |  |
| 0.5 - 5                       | 56                     | 46       |  |  |  |  |
| 5 - 30                        | 60                     | 50       |  |  |  |  |

# 6.1.2 Measurement procedure

The ac power line emissions are measured using a  $50\mu H$  /  $50\Omega$  line impedance stabilization network (LINS). The radio frequency voltage between each power line and ground at the power terminal is measured.

### 6.1.3 Results

| AC power line emissions  |      |  |  |
|--------------------------|------|--|--|
| Conducted emission level |      |  |  |
| See attached Diagram     |      |  |  |
| Verdict                  | PASS |  |  |



# Annex B AC Power line Conducted Emissions

# EMI voltage test in the ac-mains according to FCC part 15B

Order number: G0M-1106-1188

Manufacturer: Hach Lange GmbH

EUT Name: Handheld RFID Tag Read/Writer

Model: LOC100

Test Site: Eurofins Product Service GmbH

Operator: Mr. Marguardt

Test Conditions: Tnom: 23°C, Unom: 2.4 V DC

LISN: ESH2-Z5 N Mode: charging Test Date: 20.07.2011

Note:





# EMI voltage test in the ac-mains according to FCC part 15B

Order number: G0M-1106-1188

Manufacturer: Hach Lange GmbH

EUT Name: Handheld RFID Tag Read/Writer

Model: LOC100

Test Site: Eurofins Product Service GmbH

Operator: Mr. Marquardt

Test Conditions: Tnom: 23°C, Unom: 2.4 V DC

LISN: ESH2-Z5 L Mode: charging Test Date: 20.07.2011

Note:

Index 16





# Annex C In-band field strength emissions

Test Report No.: G0M-1106-1188-C-1

#### Spectrum mask

# FCC rules part 15.225

Approval Holder: HACH LANGE GmbH / G0M-1106-1188 Handheld RFID Tag Read/Writer EUT:

Model: LOC100

Eurofins Product Service GmbH / Mr. Handrik Operator:

Operator: Eurofins Product Service GmbH / M Test Conditions: Tnom: 22°C / Vnom: 2.4 V DC (battery) Test Specification: according to §15.209, peak detector

Comment 1:

Dist.: 30m, Ant.: HFH2-Z2 Freq: 13.560MHz, Emax: 13.84dBµV/m, RBW: 0.2-10kHz Comment 2:





# Annex D Out-of-band radiated spurious emissions

Test Report No.: G0M-1106-1188-C-1

# FCC RULES PART 15, SUBPART C

Approval Holder: HACH LANGE GmbH / G0M-1106-1188 Handheld RFID Tag Read/Writer EUT:

Model: LOC100

Operator: Eurofins Product Service GmbH / Mr. Handrik

Test Conditions: Tnom: 22°C / Vnom: 2.4 V DC (battery) Test Specification: according to \$15.209, average detector

Comment 1:

Dist.: 300m, Ant.: HFH2-Z2 Freq: 19.226kHz, Emax: -35.02dB\u03c4V/m, RBW: 200Hz Comment 2:



# FCC RULES PART 15, SUBPART C

Approval Holder: HACH LANGE GmbH / G0M-1106-1188 Handheld RFID Tag Read/Writer EUT:

Model: LOC100

Operator: Eurofins Product Service GmbH / Mr. Handrik

Test Conditions: Tnom: 22°C / Vnom: 2.4 V DC (battery) Test Specification: according to \$15.209, peak detector

Comment 1:

Dist.: 300m, Ant.: HFH2-Z2 Freq: 100.421kHz, Emax: -45.99dBµV/m, RBW: 200Hz Comment 2:



# FCC RULES PART 15, SUBPART C

Approval Holder: HACH LANGE GmbH / G0M-1106-1188 Handheld RFID Tag Read/Writer EUT:

Model: LOC100

Operator: Eurofins Product Service GmbH / Mr. Handrik

Tnom: 22°C / Vnom: 2.4 V DC (battery) Test Conditions: Test Specification: according to \$15.209, average detector

Comment 1:

Dist.: 300m, Ant.: HFH2-Z2 Freq: 162.545kHz, Emax: -52.34dBµV/m, RBW: 200Hz Comment 2:



# FCC RULES PART 15, SUBPART C

Approval Holder: HACH LANGE GmbH / G0M-1106-1188 Handheld RFID Tag Read/Writer EUT:

Model: LOC100

Operator: Eurofins Product Service GmbH / Mr. Handrik

Test Conditions: Tnom: 22°C / Vnom: 2.4 V DC (battery) Test Specification: according to \$15.209, peak detector

Comment 1:

Dist.: 30m, Ant.: HFH2-Z2 Freq: 13.553MHz, Emax: 13.91dBµV/m, RBW: 10kHz Comment 2:



#### FCC RULES PART 15, SUBPART C

Approval Holder: HACH LANGE GmbH / G0M-1106-1188 Handheld RFID Tag Read/Writer EUT:

Model: LOC100

Operator: Eurofins Product Service GmbH / Mr. Handrik

Test Conditions: Tnom: 22°C / Vnom: 2.4 V DC (battery) Test Specification: according to \$15.209, peak detector

Comment 1:

Dist.: 3m, Ant.: HK 116 Freq: 190.120MHz, Emax: 33.30dBµV/m, RBW: 100kHz Comment 2:



# FCC RULES PART 15, SUBPART C

Approval Holder: HACH LANGE GmbH / G0M-1106-1188 Handheld RFID Tag Read/Writer EUT:

Model: LOC100

Operator: Eurofins Product Service GmbH / Mr. Handrik

Test Conditions: Tnom: 22°C / Vnom: 2.4 V DC (battery) Test Specification: according to \$15.209, peak detector

Comment 1:

Dist.: 3m, Ant.: HK 116 Freq: 178.537MHz, Emax: 33.14dBµV/m, RBW: 100kHz Comment 2:



# FCC RULES PART 15, SUBPART C

Approval Holder: HACH LANGE GmbH / G0M-1106-1188 EUT: Handheld RFID Tag Read/Writer

Model: LOC100

Operator: Eurofins Product Service GmbH / Mr. Handrik

Test Conditions: Tnom: 22°C / Vnom: 2.4 V DC (battery)
Test Specification: according to \$15.209, peak detector
Comment 1: Dist.: 3m, Ant.: HL 223, amplif.

Comment 1: Dist.: 3m, Ant.: HL 223, amplif.
Comment 2: Freq: 352.305MHz, Emax: 35.25dBµV/m, RBW: 100kHz



# FCC RULES PART 15, SUBPART C

Approval Holder: HACH LANGE GmbH / G0M-1106-1188 EUT: Handheld RFID Tag Read/Writer

Model: LOC100

Operator: Eurofins Product Service GmbH / Mr. Handrik

Test Conditions: Tnom: 22°C / Vnom: 2.4 V DC (battery)
Test Specification: according to \$15.209, peak detector
Comment 1: Dist.: 3m, Ant.: HL 223, amplif.

Comment 1: Dist.: 3m, Ant.: HL 223, amplif.
Comment 2: Freq: 352.305MHz, Emax: 30.08dBµV/m, RBW: 100kHz

