Foundations of Software Fall 2023

Week 9 based on slides by Martin Odersky

Type Checking and Type Reconstruction

We now come to the question of type checking and type reconstruction.

- Type checking: Given Γ, t and T, check whether Γ ⊢ t : T
- Type reconstruction:
 Given Γ and t, find a type T such that Γ ⊢ t : T

Type checking and reconstruction seem difficult since parameters in lambda calculus do not carry their types with them.

Type reconstruction also suffers from the problem that a term can have many types.

Idea: We construct all type derivations in parallel, reducing type reconstruction to a unification problem.

From Judgements to Equations

```
\mathsf{TP}: Judgement \longrightarrow Equations
TP(\Gamma \vdash t : T) =
        case t of
             x : \{\Gamma(x) = T\}
              \lambda x.t_1: let a, b fresh in
                                \{(a \rightarrow b) = T\} \cup
                               \mathsf{TP}(\Gamma, \mathbf{x} : a \vdash \mathbf{t}_1 : b)
             t_1 t_2: let a fresh in
                               \mathsf{TP}(\Gamma \vdash \mathsf{t}_1 : a \to \mathsf{T}) \quad \mathsf{U}
                                TP(\Gamma \vdash t_2 : a)
```

Example

```
Let twice = \lambda f \cdot \lambda x \cdot f (f x).
```

Then twice gives rise to the following equations (see blackboard).

Soundness and Completeness I

0.1 Definition: In general, a type reconstruction algorithm \mathcal{A} assigns to an environment Γ and a term \mathbf{t} a set of types $\mathcal{A}(\Gamma,\mathbf{t})$. The algorithm is sound if for every type $T \in \mathcal{A}(\Gamma,\mathbf{t})$ we can prove the judgement $\Gamma \vdash \mathbf{t} : T$. The algorithm is complete if for every provable judgement $\Gamma \vdash \mathbf{t} : T$ we have that $T \in \mathcal{A}(\Gamma,\mathbf{t})$.

0.2 Theorem: TP is sound and complete. Specifically:

```
\Gamma \vdash \mathbf{t} : \mathbf{T} \quad \text{iff} \quad \exists \overline{b}. [a \mapsto \mathbf{T}] EQNS where a \text{ is a new type variable} EQNS = \mathbf{TP}(\Gamma \vdash \mathbf{t} : a) \overline{b} = FV(EQNS) \setminus FV(\Gamma)
```

Here, *FV* denotes the set of free type variables (of a term, and environment, an equation set).

Type Reconstruction and Unification

Problem: Transform set of equations

$$\{T_i = U_i\}_{i=1,\ldots,m}$$

into an equivalent substitution

$$\{a_j \mapsto \mathtt{T}_j'\}_{j=1,\,\ldots,\,n}$$

where type variables do not appear recursively on their right hand sides (directly or indirectly). That is:

$$a_i \notin FV(\mathbf{T}'_k)$$
 for $j = 1, \ldots, n, k = j, \ldots, n$

Substitutions

A *substitution s* is an idempotent mapping from type variables to types which maps all but a finite number of type variables to themselves.

We often represent a substitution s as a set of equations a = T with a not in FV(T).

Substitutions can be generalized to mappings from types to types by definining

$$s(T \rightarrow U) = sT \rightarrow sU$$

Substitutions are idempotent mappings from types to types, i.e. s(s(T)) = s(T). (why?)

The \circ operator denotes composition of substitutions (or other functions): $(f \circ g)(x) = f(g(x))$.

A Unification Algorithm

We present an incremental version of Robinson's algorithm (1965).

```
\begin{array}{lll} \operatorname{mgu} & : & (\mathit{Type} \triangleq \mathit{Type}) \to \mathit{Subst} \to \mathit{Subst} \\ \operatorname{mgu}(\mathtt{T} \triangleq \mathtt{U}) s & = & \operatorname{mgu}'(s\mathtt{T} \triangleq s\mathtt{U}) s \\ \operatorname{mgu}'(a \triangleq a) s & = & s \\ \operatorname{mgu}'(a \triangleq \mathtt{T}) s & = & s \cup \{a \mapsto \mathtt{T}\} & \text{if } a \notin \mathit{FV}(\mathtt{T}) \\ \operatorname{mgu}'(\mathtt{T} \triangleq a) s & = & s \cup \{a \mapsto \mathtt{T}\} & \text{if } a \notin \mathit{FV}(\mathtt{T}) \\ \operatorname{mgu}'(\mathtt{T}_1 \to \mathtt{T}_2 \triangleq \mathtt{U}_1 \to \mathtt{U}_2) s & = & (\operatorname{mgu}(\mathtt{T}_2 \triangleq \mathtt{U}_2) \circ \operatorname{mgu}(\mathtt{T}_1 \triangleq \mathtt{U}_1)) s \\ \operatorname{mgu}'(\mathtt{T} \triangleq \mathtt{U}) s & = & \mathit{error} & \mathsf{in all other cases} \\ \end{array}
```

Soundness and Completeness of Unification

0.3 Definition: A substitution u is a unifier of a set of equations $\{T_i = U_i\}_{i=1,...,m}$ if $uT_i = uU_i$, for all i. It is a most general unifier if for every other unifier u' of the same equations there exists a substitution s such that $u' = s \circ u$.

0.4 Theorem: Given a set of equations EQNS. If EQNS has a unifier then $mgu(EQNS)(\emptyset)$ computes the most general unifier of EQNS. If EQNS has no unifier then $mgu(EQNS)(\emptyset)$ fails.

From Judgements to Substitutions

```
\mathsf{TP}: \mathsf{Judgement} \to \mathsf{Subst} \to \mathsf{Subst}
\mathsf{TP}(\Gamma \vdash \mathsf{t} : \mathsf{T}) =
        case t of
              x : mgu(\Gamma(x) = T)
               \lambda x.t_1: let a, b fresh in
                                   mgu((a \rightarrow b) \hat{=} T) \circ
                                  \mathsf{TP}(\Gamma, \mathtt{x} : a \vdash \mathtt{t}_1 : b)
              t_1 t_2: let a fresh in
                                  \mathsf{TP}(\mathsf{\Gamma} \vdash \mathsf{t}_1 : a \to \mathsf{T}) o
                                   TP(\Gamma \vdash t_2 : a)
```

Soundness and Completeness II

One can show by comparison with the previous algorithm:

0.5 Theorem: TP is sound and complete. Specifically:

```
\Gamma \vdash \mathsf{t} : \mathsf{T} iff \mathsf{T} = r(s(a)) where a is a new type variable s = \mathsf{TP}(\Gamma \vdash \mathsf{t} : a)(\emptyset) r is a substitution on FV(s(a)) \setminus FV(s(\Gamma))
```

Polymorphism

In the simply typed lambda calculus, a term can have many types. But a variable or parameter has only one type. Example:

$$(\lambda x.x x)(\lambda y.y)$$

is untypable. But if we substitute actual parameter for formal, we obtain

$$(\lambda y.y)(\lambda y.y): a \rightarrow a$$

Functions which can be applied to arguments of many types are called *polymorphic*.

Polymorphism in Programming

Polymorphism is essential for many program patterns. Example: map def map f xs = if (isEmpty xs) then nil else cons (f (head xs)) (map (f (tail xs))) . . . names: List[String] nums : List[Int] . . . map toUpperCase names map increment nums

Without a polymorphic type for map one of the last two lines is always illegal!

Forms of Polymorphism

Polymorphism means "having many forms".

Polymorphism also comes in several forms.

- Universal polymorphism, sometimes also called generic types: The ability to instantiate type variables.
- Inclusion polymorphism, sometimes also called subtyping: The ability to treat a value of a subtype as a value of one of its supertypes.
- Ad-hoc polymorphism, sometimes also called overloading: The ability to define several versions of the same function name, with different types.

We first concentrate on universal polymorphism.

Two basic approaches: explicit or implicit.

Explicit Polymorphism

We introduce a polymorphic type $\forall a.T$, which can be used just as any other type.

We then need to make introduction and elimination of \forall 's explicit. Typing rules:

$$\frac{\Gamma, X \vdash t_2 : T_2}{\Gamma \vdash \lambda X. t_2 : \forall X. T_2}$$
 (T-TABS)

$$\frac{\Gamma \vdash \mathsf{t}_1 : \forall \mathsf{X}.\mathsf{T}_{12}}{\Gamma \vdash \mathsf{t}_1 \ [\mathsf{T}_2] : [\mathsf{X} \mapsto \mathsf{T}_2]\mathsf{T}_{12}} \tag{T-TAPP}$$

We also need to give all parameter types, so programs become verbose.

Example:

```
def map [a][b] (f: a => b) (xs: List[a]) =
  if (isEmpty [a] (xs)) then nil [b]
  else
    cons [b]
      (f (head [a] xs))
      (map [a][b] (f) (tail [a] xs))
names: List[String]
nums : List[Int]
. . .
map [String] [String] toUpperCase names
map [Int] [Int] increment nums
```

Translating to System F

The translation of map into a System-F term is as follows: (See blackboard)

Implicit Polymorphism

Implicit polymorphism does not require annotations for parameter types or type instantations.

Idea: In addition to types (as in simply typed lambda calculus), we have a new syntactic category of *type schemes*. Syntax:

```
Type Scheme S ::= T | \forall X.S
```

Type schemes are not fully general types; they are used only to type named values, introduced by a val construct.

The resulting type system is called the *Hindley/Milner system*, after its inventors. (The original treatment uses let ... in ... rather than val ...; ...).

Hindley/Milner Typing rules

$$\frac{x \not\in dom(\Gamma')}{\Gamma, x : S, \Gamma' \vdash x : S} \qquad (T-VAR)$$

$$\frac{\Gamma, X \vdash t : T_1 \qquad X \not\in FV(\Gamma)}{\Gamma \vdash t : \forall X. T_1} \qquad \frac{\Gamma \vdash t : \forall X. T_1}{\Gamma \vdash t : [X \mapsto T_2]T_1} (T-TAPP)$$

$$(T-TABS)$$

$$\frac{\Gamma \vdash t_1 : S \qquad \Gamma, x : S \vdash t_2 : T}{\Gamma \vdash let \ x = t_1 \ in \ t_2 : T} \qquad (T-LET)$$

The other two rules are as in simply typed lambda calculus:

$$\frac{\Gamma, \mathbf{x} : T_1 \vdash \mathbf{t}_2 : T_2}{\Gamma \vdash \lambda \mathbf{x} . \mathbf{t}_2 : T_1 \to T_2} \tag{T-Abs}$$

$$\frac{\Gamma \vdash \mathbf{t}_1 : T_2 \to T \qquad \Gamma \vdash \mathbf{t}_2 : T_2}{\Gamma \vdash \mathbf{t}_1 \ \mathbf{t}_2 : T} \tag{T-App}$$

Type Reconstruction for Hindley/Milner

Type reconstruction for the Hindley/Milner system works as for simply typed lambda calculus. We only have to add a clause for let expressions and refine the rules for variables.

```
\begin{split} \mathsf{TP} : \textit{Judgement} &\to \textit{Subst} \to \textit{Subst} \\ \mathsf{TP}(\Gamma \vdash \mathtt{t} : \mathtt{T})(s) &= \\ &\quad \mathsf{case} \ \mathtt{t} \ \mathsf{of} \\ &\quad \dots \\ &\quad \mathsf{let} \ \mathsf{x} = \mathtt{t}_1 \ \mathsf{in} \ \mathtt{t}_2 \ : \ \mathsf{let} \ \textit{a}, \textit{b} \ \mathsf{fresh} \ \mathsf{in} \\ &\quad \mathsf{let} \ \textit{s}_1 = \mathsf{TP}(\Gamma \vdash \mathtt{t}_1 : \textit{a}) \ \mathsf{in} \\ &\quad \mathsf{TP}(\Gamma, \mathtt{x} : \mathsf{gen}(s_1(\Gamma), s_1(a)) \vdash \mathtt{t}_2 : \textit{b})(s_1) \end{split} where \mathsf{gen}(\Gamma, \mathtt{T}) = \forall \mathtt{X}_1 \ldots \forall \mathtt{X}_n . \mathtt{T} \ \mathsf{with} \ \mathtt{X}_i \in \mathit{FV}(\mathtt{T}) \setminus \mathit{FV}(\Gamma). \end{split}
```

Variables in Environments

When comparing with the type of a variable in an environment, we have to make sure we create a new instance of their type as follows:

```
newInstance(\forall X_1 \dots X_n . S) =
let b_1, \dots, b_n fresh in
[X_1 \mapsto b_1, \dots, X_n \mapsto b_n]S
TP(\Gamma \vdash t : T) =
case t of
x : \{ \text{newInstance}(\Gamma(x)) \triangleq T \}
...
```

Hindley/Milner in Programming Languages

Here is a formulation of the map example in the Hindley/Milner system.

```
let map = \lambda f \cdot \lambda xs in
  if (isEmpty xs) then nil
  else cons (f (head xs)) (map f (tail xs))
// names: List[String]
// nums : List[Int]
// map : \forall X. \forall Y. (X \rightarrow Y) \rightarrow List[X] \rightarrow List[Y]
map toUpperCase names
map increment nums
```

Limitations of Hindley/Milner

Hindley/Milner still does not allow parameter types to be polymorphic. For example,

$$(\lambda x.x x)(\lambda y.y)$$

is still ill-typed, even though the following is well-typed:

let
$$id = \lambda y.y$$
 in (id id)

With explicit polymorphism the expression could be completed to a well-typed term:

$$(\mathsf{\Lambda A}\,.\,\lambda\mathtt{x}\,:(\forall \mathtt{B}\colon\,\mathtt{B}\to\mathtt{B})\,.\ \mathtt{x}\ [\mathtt{A}\to\mathtt{A}]\ (\mathtt{x}\ [\mathtt{A}]))(\mathsf{\Lambda C}\,.\,\lambda\mathtt{y}\,:\mathtt{C}\,.\,\mathtt{y})$$

The Essence of **let**

We regard

let
$$x = t_1$$
 in t_2

as a shorthand for

$$[x \mapsto t_1]t_2$$

We use this equivalence to get a revised Hindley/Milner system.

0.6 Definition: Let HM' be the type system that results if we replace rule $\rm LET$ from the Hindley/Milner system HM by:

$$\frac{\Gamma \vdash \mathsf{t}_1 : \mathsf{T}_1 \qquad \Gamma \vdash [\mathsf{x} \mapsto \mathsf{t}_1] \mathsf{t}_2 : \mathsf{T}}{\Gamma \vdash \mathsf{let} \ \mathsf{x} = \mathsf{t}_1 \ \mathsf{in} \ \mathsf{t}_2 : \mathsf{T}} \qquad (\mathsf{T}\text{-}\mathsf{Let}')$$

Equivalence of the two systems

0.7 Theorem: $\Gamma \vdash_{HM} t : S \text{ iff } \Gamma \vdash_{HM'} t : S$

The theorem establishes the following connection between the Hindley/Milner system and the simply typed lambda calculus F_1 :

0.8 Corollary: Let t^* be the result of expanding all let's in t according to the rule

let
$$x = t_1$$
 in $t_2 \rightarrow [x \mapsto t_1]t_2$

Then

$$\Gamma \vdash_{\mathsf{HM}} \mathsf{t} : \mathsf{T} \implies \Gamma \vdash_{F_1} \mathsf{t}^* : \mathsf{T}$$

Furthermore, if every let-bound name is used at least once, we also have the reverse:

$$\Gamma \vdash_{F_1} t^* : T \implies \Gamma \vdash_{\mathsf{HM}} t : T$$

Principal Types

- 0.9 Definition: A type T is a generic instance of a type scheme $S = \forall \alpha_1 \dots \forall \alpha_n.T'$ if there is a substitution s on $\alpha_1, \dots, \alpha_n$ such that T = sT'. We write in this case $S \leq T$.
- 0.10 Definition: A type scheme S^\prime is a generic instance of a type scheme S iff for all types T

$$S' \leq T \Longrightarrow S \leq T$$

We write in this case $S \leq S'$.

- 0.11 Definition: A type scheme S is principal (or: most general) for Γ and t iff
 - ▶ Γ ⊢ t : S
 - $ightharpoonup \Gamma \vdash t : S' \text{ implies } S \leq S'$

- 0.12 Definition: A type system TS has the principal typing property iff, whenever $\Gamma \vdash_{\mathsf{TS}} \mathsf{t} : \mathsf{S}$ then there exists a principal type scheme for Γ and t .
- 0.13 Theorem: 1. HM' without let has the p.t.p.
 - 2. HM' with let has the p.t.p.
 - 3. HM has the p.t.p.

Proof sketch:

- Use type reconstruction result for the simply typed lambda calculus.
- 2. Expand all let's and apply (1.).
- 3. Use equivalence between HM and HM'.

These observations could be used to come up with a type reconstruction algorithm for HM. But in practice one takes a more direct approach.