Consider the following circuit:

NOTE: On the 2-stage schematic, VCC=25V. There is a jumper on JP1 and JP2. No Jumper on JP3 and JP4.

DC Redraw for Stage 1:

Page **1** of **24**

DC Calculations for Stage 1:

Kirchhoff Loop Equation 1:

•
$$VCC - VR5 - VR1 - VBE - VRE = 0$$

•
$$IR5(1K) + IR1(27K) + IE(82) = 24.3V$$

Kirchhoff Loop Equation 2:

•
$$VCC - VR5 - VR1 - VR2 = 0$$

•
$$IR5(1K) + IR1(27K) + IR2(1.5K) = 25V$$

Kirchhoff's Current Law:

•
$$IR5 = IR1 + ICQ1$$

•
$$IR2 = IR1 - IBQ1$$

Substitute Currents:

•
$$(IR1 + ICQ1)(1K) + IR1(27K) + IE(100) = 24.3V$$

•
$$(IR1 + ICQ1)(1K) + IR1(27K) + (IR1 - IBQ1)(1.5K) = 25V$$

Manipulate into terms of IR1 and IB:

•
$$(IR1 + (IBxB))(1K) + IR1(27K) + (IBx(B+1))(100) = 24.3V$$

•
$$(IR1 + (IBxB))(1K) + IR1(27K) + (IR1 - IB)(1.5K) = 25V$$

Beta = 100:

•
$$(IR1 + (IBx100))(1K) + IR1(27K) + (IBx(100 + 1))(100) = 24.3V$$

•
$$(IR1 + (IBx100))(1K) + IR1(27K) + (IR1 - IB)(1.5K) = 25V$$

Simplify:

•
$$(1KIR1 + (100KIB) + IR1(27K) + (10.1KKIB) = 24.3V$$

•
$$(1KIR1 + (100KIB) + IR1(27K) + (1.5KIR1 - 1.5KIB) = 25V$$

Simplify:

•
$$28KIR1 + 110.1KIB = 24.3V$$

•
$$29.5KIR1 + 98.5KIB = 25V$$

Simultaneous Equation Solution:

•
$$IR1 = 732.626uA$$

•
$$IB = 34.391uA$$

DC/Bias Voltages:

•
$$VR1 = IR1 \times R1$$

•
$$VR1 = 732.626uA \times 27K$$

•
$$VR1 = 19.78V$$

•
$$VR2 = IR2 \times R2$$

•
$$VR2 = (IR1 - IB) \times R2$$

•
$$VR2 = (732.626uA - 34.391uA) \times 1.5K$$

•
$$VR2 = 1.047V$$

•
$$VR4 = (IBX(B+1)) \times R4$$

•
$$VR4 = (34.391uAX(101)) \times 100$$

•
$$VR4 = 347.349mV$$

•
$$VR3 = (IBX(B)) \times R3$$

•
$$VR3 = (34.391uAX(100)) \times 2.2K$$

•
$$VR3 = 7.566V$$

•
$$VR5 = (IBX(B) + IR1) \times R5$$

•
$$VR5 = (34.391uAX(100) + 732.626uA) \times 1K$$

•
$$VR5 = 4.172V$$

Kirchhoff, check math:

•
$$+25V - 4.172V - 19.78V - 1.047V = 0$$

•
$$\mathbf{\nabla} 0 = 0$$

Find VCE:

•
$$+VCC - VR5 - VR3 - VCE - VR4 = 0$$

•
$$+25V - 4.172V - 7.566 - VCE - 347.347mV = 0$$

•
$$+13.142V - VCE = 0$$

•
$$VCE = 13.142V$$

Test Point Voltages:

•
$$TP1 = VR2$$

■
$$TP1 = -1.047V$$

•
$$TP2 = VCE + VR4$$

$$TP2 = -13.142V - 347.347mV$$

■
$$TP2 = -13.489V$$

•
$$TP3 = VR4$$

■
$$TP3 = -347.347mV$$

DC Load Line for Q1:

•
$$VCE_{Cutoff} = \frac{VCC}{R5 + R1 + R2}(R2 + R3)$$

•
$$VCE_{cutoff} = \frac{25}{29.5K}(28.5K)$$

•
$$VCE_{Cutoff} = 24.153V$$

•
$$IC_{Saturation} = \frac{VCC - \left[\frac{VCC}{R5 + (RC + RE)//(R1 + R2)}\right](R5)}{RC + RE}$$

$$IC_{Saturation} = \frac{25 - \left[\frac{25}{1K + (2.2K + 100)/(28.5K)}\right](1K)}{2.2K + 100}$$

$$\blacksquare IC_{Saturation} = \frac{25 - \left[\frac{25}{1K + (2.128K)}\right](1K)}{2.3K}$$

$$IC_{Saturation} = \frac{25 - \left[\frac{25}{(3.128K)}\right](1K)}{2.3K}$$

•
$$IC_{Saturation} = \frac{25 - 7.99233}{2.3K}$$

•
$$IC_{Saturation} = 7.395mA$$

DC Redraw for Stage 2:

DC Calculations for Stage 2:

Kirchhoff Loop Equation 1:

•
$$VCC - VR6 - VR7 = 0$$

Kirchhoff Loop Equation 2:

•
$$VCC - VR6 - VBE - VR9 = 0$$

Substitute Currents & known values:

•
$$25V - 33K(IR6) - 2.2K(IR7) = 0$$

•
$$25V - 33K(IR6) - 0.7V - 82(IR9) = 0$$

Substitute Currents in terms of IR6 & IB:

•
$$25V - 33K(IR6) - 2.2K(IR6 - IB) = 0$$

•
$$25V - 33K(IR6) - 0.7V - 82(IB(B+1)) = 0$$

Simplify:

•
$$25V - 33K(IR6) - 2.2KIR6 + 2.2K(IB) = 0$$

•
$$25V - 33K(IR6) - 0.7V - 82(IB(101)) = 0$$

Simplify:

•
$$35.2K(IR6) - 2.2K(IB) = 25V$$

•
$$33K(IR6) + 8.282K(IB) = 24.3$$

Simultaneous Equation Solution:

•
$$IR6 = 715.438uA$$

•
$$IB = 83.378uA$$

DC/Bias Voltages:

- $VR6 = IR6 \times R6$
 - $VR6 = 715.438 \times 33K$
 - VR6 = 23.61V
- $VR7 = IR7 \times R7$
 - $VR7 = (715.438 83.378uA) \times 2.2K$
 - VR7 = 1.391V
- $VR8 = IR8 \times R8$
 - $VR8 = IB(beta) \times 1.5K$
 - $VR8 = 83.378uA(100) \times 1.5K$
 - VR8 = 12.51V
- $VR9 = IR9 \times R9$
 - $VR9 = IB(beta + 1) \times 82$
 - $VR9 = 83.378uA(101) \times 82$
 - VR9 = 690.537mV
- VCE = VCC VR8 VR9
 - VCE = 25 12.51 690.537mV
 - VCE = 11.8V
- TP4 = 1.391V
- TP5 = 690.537mV
- TP6 = 12.5V

DC Load Line for Q2:

- $VCE_{Cutoff} = VCC$
 - $VCE_{Cutoff} = 25V$
- $IC_{Saturation} = \frac{VCC}{R8+R9}$
 - $IC_{Saturation} = \frac{25}{1.5K + 82}$
 - $IC_{Saturation} = 15.803mA$

DC Calculations Tabulated:

1	Α	В	С	
1	DC Values	Calculated	Measured	
2	VR1	19.78V		
3	VR2	1.047V		
4	VR3	7.566V		
5	VR4	347.347mV		
6	VR5	4.172V		
7	VR6	23.61V		
8	VR7	1.391V		
9	VR8	12.5V		
10	VR9	690.537mV		
11	VCEQ1	13.142V		
12	VCEQ2	11.8V		
13	TP1	-1.047V		
14	TP2	-13.489V		
15	TP3	-347.347mV		
16	TP4	-1.391V		
17	TP5	-690.537mV		
18	TP6	-12.5V		
19				

•
$$\Delta VQ2 = \frac{Vout}{Vin}$$

•
$$\Delta VQ2 = \frac{IC(R8//R10)}{IB(R9+r'e)(B+1)}$$

•
$$\Delta VQ2 = Beta \frac{(1.5K//3.3K)}{(82+3.087)(101)}$$

$$\Delta VQ2 = -12$$

•
$$\Delta VQ1 = \frac{Vout}{Vin}$$

•
$$\Delta VQ1 = \frac{IC((R3//R6//R7//(R9+r'e)(B+1)))}{IB(R4+r'e)(B+1)}$$

■
$$\Delta VQ1 = -8.725$$

AC Calculations Continued:

- $\Delta V total = \Delta V Q 1 \times \Delta V Q 2$
 - $\Delta VTotal = -8.725 \times -12$
 - $\Delta VTotal = 104.7$
- Zout = R8
 - $Zout = 1.5K\Omega$
- Zin = (R4 + r'e)(B + 1)/(R1/(R2))
 - Zin = (100 + 7.485)(101) / (27K / / 1.5K)
 - Zin = (755.985)//27K//1.5K
 - $Zin = 493.466\Omega$

•
$$\Delta Itotal = \frac{Iout}{Iin} = \frac{\frac{Vout}{RL}}{\frac{Vin}{Zin}} = \frac{Vout}{RL} \times \frac{Zin}{Vin} = \frac{Vout}{Vin} \times \frac{Zin}{RL}$$

•
$$\Delta Itotal = \Delta Vtotal \times \frac{Zin}{RL}$$

•
$$\Delta Itotal = 104.7 \times \frac{493.466}{3.3K}$$

- $\Delta Itotal = 15.656$
- $\Delta Ptotal = \Delta Vtotal \times \Delta Itotal = 104.7 \times 15.656$
 - $\Delta Ptotal = 1.639K$

- VCEacCut = VCE + IC(R8//R10)
 - VCEacCut = 11.8 + 8.333mA(1.031K)
 - VCEacCut = 11.8 + 8.333mA(1.031K)
 - VCEacCut = 20.394V
- $ICacSat = IC + \frac{VCE}{R8//R10}$
 - $ICacSat = 8.333mA + \frac{11.8}{1.031K}$
 - ICacSat = 19.776mA

- VoutMaxP = VCEacCut VCE
 - VoutMaxP = 20.394 11.8
 - VoutMaxP = 8.594vP
- $VinMaxP = \frac{VoutMaxP}{AVT} = \frac{8.594}{104.7}$
 - VinMaxP = 82.082mVp

Frequency Response Low:

- Rules:
 - Treat all caps like opens.
 - Thevenize each and find Fc for each cap

•
$$FCL = \sqrt{FC1^2 + FC2^2 + FC3^2}$$
 ...

•
$$RthC1 = R2//((R4 + r'e1)(B + 1))//(R1 + R5)$$

•
$$RthC1 = 1.5K//((100 + 7.485)(101))//(27K + 1K)$$

•
$$RthC1 = 1.258K$$

•
$$FcC1 = \frac{1}{2\pi Rth_{C1}C1} = \frac{1}{2\pi \times 1.258K \times 8.2uF}$$

•
$$FcC1 = 15.429hz$$

•
$$RthC2 = R5//[(R1 + (R2//((r'e1 + R4)(B + 1)))]$$

•
$$RthC2 = 1K//[(27K + (1.5K//((7.485 + 100)(101)))]$$

•
$$RthC2 = 1K//[(27K + (1.5K//(10.856K))]$$

•
$$RthC2 = 1K//[(27K + 1.318K])$$

•
$$RthC2 = 1K//28.318K$$

•
$$RthC2 = 965.891\Omega$$

•
$$FcC2 = \frac{1}{2\pi Rth_{C2}C2} = \frac{1}{2\pi \times 965.892 \times 50uF}$$

•
$$FcC1 = 3.327hz$$

•
$$RthC3 = R3 + [R5//(R1 + R2//(R4 + r'e1)(B + 1))] + [R6//R7//(R9 + r'e2)(B + 1)]$$

•
$$RthC3 = 2.2K + [1K//(27K + 1.5K//(100 + 7.485)(101))] + [33K//2.2K//(82 + 3.087)(101)]$$

•
$$RthC3 = 2.2K + [1K//(27K + 1.5K//10.856K] + [33K//2.2K//8.594K]$$

•
$$RthC3 = 2.2K + [1K//28.318K] + [33K//2.2K//8.594K]$$

•
$$RthC3 = 2.2K + [965.891] + [1.663K]$$

•
$$RthC3 = 4.829K\Omega$$

•
$$FcC3 = \frac{1}{2\pi Rth_{C3}C3} = \frac{1}{2\pi 4.829K \times 0.22uF}$$

•
$$FcC3 = 149.81hz$$

•
$$FcC3w/C4 = \frac{1}{2\pi Rth_{C3}C3 + C4} = \frac{1}{2\pi 4.829K \times 1.22uF}$$

•
$$FcC3w/C4 = 27.015hz$$

•
$$RthC5 = R8 + R10 = 1.5K + 3.3K$$

•
$$RthC5 = 4.8K\Omega$$

•
$$FcC5 = \frac{1}{2\pi Rth_{C5}C5} = \frac{1}{2\pi 4.8K8.2uF}$$

• FcC5 = 4.044hz

$$FCL = \sqrt{FC1^2 + FC2^2 + FC3^2} \dots$$

•
$$FCL = \sqrt{15.429^2 + 3.327^2 + FC(3/4)^2 + 4.044^2}$$

•
$$FCL = 150hz * w/C3 (open JP3)$$

•
$$FCL = 31.548hz * w/(Closed\ JP3, C3 + C4)$$

Frequency Response High:

Page **17** of **24**

Frequency Response High (Front End):

- CtotalIN = Cgen + Cstray + Cprobe + CmillerIN + CBG
 - $Cgen \approx 40pF$ (User Manual)
 - $Cstray \approx 10pF$
 - $Cprobe \approx 16pF$
 - $CmillerIN = CBC(1 + \Delta V_{CE})$
 - $CBC \approx 4pF \approx Cibo (from the data sheet)$
 - CmillerIN = 4.5pF(1 + 8.725)
 - CmillerIN = 43.763pF

($I_C = 10 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ MHz}$)	fT	250	1	MHz
$(V_{CB} = 5.0 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	Cobo	-	4.5	pF
$(V_{EB} = 0.5 \text{ Vdc}, I_C = 0, f = 1.0 \text{ MHz})$	C _{ibo}	-	10	pF
	(V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)	(V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz) C _{obo}	(V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz) C _{obo} -	(V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz) C _{obo} - 4.5

c = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	f _T	250	1	MHz
$(V_{CB} = 5.0 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	C _{obo}	-	4.5	pF
(V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)	C _{ibo}	-	10	pF
	, ,	, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,	, , ,

•
$$CBG = CBE(1 - \Delta V_{CC})$$

•
$$\Delta V_{CC} = \frac{IE(RE)}{IE(RE+r'e)}$$
 or $\frac{(RE)}{(RE+r'e)}$

•
$$CBE = \frac{1}{(2\pi)(r'e)(f_T)} = \frac{1}{(2\pi)(7.485)(250M)} = 85.053pF$$

•
$$CBG = 85.053pF(1 - 0.93)$$

•
$$CBG = 5.954pF$$

• CtotalIN = Cgen + Cstray + Cprobe + CmillerIN + CBG

•
$$CtotalIN = 40pF + 10pF + 16pF + 43.763pF + 5.954pF$$

•
$$CtotalIN = 115.717pF$$

Frequency Response High (Middle):

- CtotalMid = CMillerOut1 + Cstray + Cstray + CmillerIN2 + CBG2
 - $CMillerOUT = CBC(\frac{1 + \Delta V_{CE}}{\Delta V_{CE}})$
 - $CBC \approx 4pF \approx Cibo (from the data sheet)$
 - $CMillerOUT1 = 4.5pF(\frac{1+8.725}{8.725}) = 5.016pF$
 - $CMillerIN = CBC(1 + \Delta V_{CE})$
 - CMillerIN2 = 4.5pF(1+12) = 58pF
 - $CBG = CBE(1 \Delta V_{CC})$

•
$$\Delta V_{CC} = \frac{IE(RE)}{IE(RE+r'e)}$$
 or $\frac{(RE)}{(RE+r'e)}$

•
$$CBE2 = \frac{1}{(2\pi)(r'e)(f_T)} = \frac{1}{(2\pi)(3.087)(250M)} = 206.226pF$$

•
$$CBG2 = 206.226pF(1 - 0.964)$$

•
$$CBG2 = 7.424pF$$

•
$$CtotalMid = 5.016pF + 10pF + 10pF + 58pF + 7.424pF$$

•
$$CtotalMid = 90.44pF$$

Frequency Response High (Back End):

- CtotalOut = CMillerOut2 + Cstray + CProbe
 - $CMillerOUT = CBC(\frac{1 + \Delta V_{CE}}{\Delta V_{CE}})$
 - $CBC \approx 4pF \approx Cobo (from the data sheet)$
 - $CMillerOut2 = 4.5pF(\frac{1+12}{12})$
 - CMillerOut2 = 4.767pF
 - CtotalOut = 4.767pF + 10pF + 16pF
 - CtotalOut = 30.767pf

Simplify parallel resistances:

- Rin = R1//R2 = 27K//1.5K
 - $Rin == 1.421K\Omega$
- Rmid = R3//R6//R7 = 2.2K//33K//2.2K
 - $Rmid = 1.065K\Omega$
- Rout = R8//R10 = 1.5K//3.3K
 - $Rout = 1.031K\Omega$

Thevenize for CTin, CTmid, & CTout:

- RthCtin = Rgen//Rin//[(r'e1 + R4)(B + 1)]
 - $RthCtin = 50//1.421K//[(7.485 + 100)(101)] = 48.0865\Omega$
- RthCtmid = Rmid//[(r'e2 + R9)(B + 1)]
 - $RthCtmid = 1.065K//[(3.087 + 82)(101)] = 947.571\Omega$
- $RthCtout = Rout = 1.031K\Omega$

Find FCH for each stage:

•
$$FCH = \frac{1}{2\pi R_{Thev} CT}$$

•
$$FCH_{CTin} = \frac{1}{2\pi \times 48.0865 \times 115.717pF} = 28.6022Mhz$$

•
$$FCH_{CTmid} = \frac{1}{2\pi \times 947.571 \times 90.44pF} = 1.857Mhz$$

•
$$FCH_{CTout} = \frac{1}{2\pi \times 1.031K \times 30.767pf} = 5.0174Mhz$$

Find FCHtotal:

•
$$FCH_{Total} = \frac{.35}{\sqrt{(\frac{.35}{FCH_{IN}})^2 + (\frac{.35}{FCH_{OUT}})^2}}$$

•
$$FCH_{Total} = \frac{.35}{\sqrt{(\frac{.35}{28.602Mhz})^2 + (\frac{.35}{1.857Mhz})^2 + (\frac{.35}{5.0174Mhz})^2}}$$

• $FCH_{Total} = 1.738Mhz$

- 24	A	В	С	D	E	F
1	DC Values	Calculated	Measured	AC Values	Calculated	Measured
2	VR1	19.78V		r'e1	7.485Ω	
3	VR2	1.047V		r'e2	3.087Ω	
4	VR3	7.566V		Zin	493.466Ω	
5	VR4	347.347mV		Zout	1.5ΚΩ	
6	VR5	4.172V		AVQ1	-8.725	
7	VR6	23.61V		AVQ2	-12	
8	VR7	1.391V		AVT	104.7	
9	VR8	12.5V		AIT	15.656	
10	VR9	690.537mV		APT	1.639K	
11	VCEQ1	13.142V		VCEacCut	20.394V	
12	VCEQ2	11.8V		ICacSat	19.776mA	
13	TP1	-1.047V		VoutMaxP	8.594vp	
14	TP2	-13.489V		VinMaxP	82.082mVp	
15	TP3	-347.347mV		RthC1	1.258ΚΩ	
16	TP4	-1.391V		RthC2	965.891Ω	
17	TP5	-690.537mV		RthC3&C4	4.829ΚΩ	
18	TP6	-12.5V		RthC5	4.8ΚΩ	
19	ICSatQ1	7.395mA		FcC1	15.429hz	
20	VCECutQ1	-24.153V		FcC2	3.327hz	
21	Q1	13.142V, 3.49mA		FcC3	149.81hz	
22	ICSatQ2	15.803mA		FcC3&C4	27.015hz	
23	VCECutQ2	-25V		FcC5	4.044hz	
24	Q2	11.8V, 8.333mA		FCL	150hz (JP3 Open)	
25				FCL	31.548hz (JP3 jumped)	
26				FCH	1.738Mhz	