BI

$$\frac{(x+4)(x-2)+(x-8)-2(x-2)}{(x+4)(x-2)}$$

$$\frac{x^2+x-12}{(x+4)(x-2)}$$

MI

M

$$\frac{(2+4)(x-3)}{(x+4)(x-2)}$$

MI

$$\frac{x-3}{x-2}$$
 $\frac{02}{x-2}$

41

2. a)
$$\ln(2x-1) = 4-9$$

MI

$$2x-1=e^{4-y}$$

MI

$$f(x) = \frac{1}{2} (e^{4-x} + 1) = 0.8$$

Al

M

c)
$$4 - \ln(2x-1) = "f(f(y))"$$
 Mu At

Al

6

(6/2-)

9 (01-12)

- © CORRECT SHAPE BI
- · CORRECT SHAPE \$1 mdp
- · All THREF CO. ODDINING COPPECI
- · ALL FIVE CO OPDINATES

(3,-7)

CORPECT SHAPE (01-12/) (11-21) (310)

4. a)
$$\sqrt{5}$$
 SEEN OR $\sqrt{5}$ MI $\sqrt{5}$ SEEN OR $\sqrt{5}$ MI $\sqrt{5}$ SEEN OR $\sqrt{5}$ MI

b)
$$\frac{\tan x + \tan y}{1 - \tan x + \tan y} = 2$$
 or $\frac{1}{1 - \frac{1}{2} \tan y} = 2$ MI
 $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 2$ (1-\frac{1}{2} \tany) MI
 $\frac{1}{2} + \frac{3}{4} = \frac{3}{4}$

b)
$$14 = 10 + 8e^{\frac{1}{12}t}$$
 M1
 $\frac{1}{2} = e^{\frac{1}{12}t}$ or $2 = e^{\frac{1}{12}t}$ M1
 $-\frac{1}{12}t = \ln \frac{1}{2}$ or $\frac{1}{12}t = \ln 2$ M1
 $t = 12\ln 2$ or $t = 8.317...$ A1
 $08:19$

c)
$$\left(\frac{dV}{dt}\right) = \frac{R}{12}e^{-\frac{1}{12}t}$$
 o. ϵ MI $\left(\frac{dV}{dt}\right)_{t=12} = \frac{2}{3}e^{-\frac{1}{12}x_{1}}$ MY $-0.245...$ AI MINUX = DECRIMAT

6. d)
$$2e^{2x}(x^2-4x-2) + (e^{2x}(2x-4))$$
 M1 (PRODUCT STRUCTURE)
EXPANDS WRITETILY OR PACTORNEY e^{2x}
6. d) $2e^{2x}(x^2-4x-2) + (e^{2x}(2x-4))$ M1
OR $e^{2x}(x^2-4x-2) + (e^{2x}(2x-4))$ M1

SIMPLIFIS CORRECTLY to ANSWER Ze2 (22-32-4) A

b)
$$x^2 - 3x - 4 = 0$$
 or $2e^{2x}(x^2 - 3x - 4) = 0$ MI $(x+1)(x-4)$ Or $(x+1)(x-4)$ Or $(x+1)(x-4)$ A2

7. a)
$$\left(\frac{dy}{dx}\right) \left(\frac{1}{z} \left(\frac{2x}{e^{-2x}}\right)^{\frac{1}{2}} \left(\frac{2e^{2x}}{z^{2}}\right)^{\frac{1}{2}}\right)$$

Al LAST MARK IS

ALL CORRECT
WITH CORRECT
BRACKETING

MA

$$P(p_1(e^2-2p)^{\frac{1}{2}})$$
 or $(x_1(e^{2x}-2x)^{\frac{1}{2}})$

BI MUST BY IN CO-ORDS

OR $y = (e^{2p} - 2p)^{\frac{1}{2}}$

El

$$y - (e^{2p} - 2p)^{\frac{1}{2}} = \frac{e^{2p} - 1}{(e^{2p} - 2p)^{\frac{1}{2}}} (2 - p)$$

MI) H

ABOUT QUATION WRITTH WITH 2=4=0 MI

SIMPLIFIED CONDICINORY TO THE PUBLIC (1-2) 2x AI (MAY BEIN 7)

b)
$$(1-x)e^{2x} - x = 0$$
 or $x - (1-x)e^{2x} = 0$ or $f(x) = \pm [(1-x)e^{-x}]$ B1
 $f(0.8) = 0.1906...$ or $f(i) = -1$ M1

CONOMICS CORRECTED WITH PERPORTE TO HAVE OF SIGN

c)
$$\alpha_1 = 0.838$$
 A1 $\alpha_2 = 0.844$ A1

CONCUDE CORPLETLY WITH A

C)
$$D_{MAX} U$$
) 15 (MOT BE GLARE) B1

 $Tt = LTT$
 $t=11$ or $t=23$ or 11:00 or 23:00 A1

a)
$$12 = 13 + 2 \cos(\frac{\pi}{6} + \frac{\pi}{6})$$
 M1
 $\cos(\frac{\pi}{6} + \frac{\pi}{6}) = -\frac{1}{2}$ A1
 $\frac{\pi}{6} + \frac{\pi}{6} = \frac{2\pi}{3}$ M1
 $\frac{\pi}{6} + \frac{\pi}{6} = \frac{3\pi}{3}$ M1

ANY 2 COLLECT AWARD MI