Université de Bejaia

Département d'Informatique 1ère année LMD Module: Outils de programmation pour les mathématiques

TP N°03

Rappel sur quelques fonctions utiles

Voici quelques fonctions prédéfinies sur les matrices et les vecteurs :

length(v{Mat})	v:renvoie la taille du tableau
	Mat:Calculer le nombre de lignes et le nombre de colonnes de Mat puis renvoie le plus grand de ces deux valeurs.
max(v)	renvoie la valeur maximale du tableau.
min(v)	renvoie la valeur minimale du tableau.
mean(v)	renvoie la valeur moyenne des éléments du tableau.
sum(v)	calcul la somme des éléments du tableau.
prod(v)	calcul le produit des éléments du tableau.
sort(v)	range les éléments du tableau dans l'ordre croissant
ones(1, n)	vecteur ligne de longueur n dont tous les éléments valent 1
ones(m, 1)	vecteur colonne de longueur m dont tous les éléments valent 1
zeros(1,n)	vecteur ligne de longueur n dont tous les éléments valent 0
zeros(m,1)	vecteur colonne de longueur m dont tous les éléments valent 0
rand(1,n)	vecteur ligne de longueur n dont les éléments sont générés de manière aléatoire entre 0 et 1
rand(m,1)	vecteur colonne de longueur m dont les éléments sont générés de manière aléatoire entre 0 et 1
V = [val var expr]	Créer un vecteur ligne V contenant des valeurs (val), des variables (var), ou expressions (expr) spécifiées.
V(indices)=[]	Suppression des éléments indicés du vecteur V.
V= linspace(V _i ,V _f ,n)	Créer un vecteur de suite arithmétique en précisant : le premier terme $V_{\rm i}$, le dernier terme $V_{\rm f}$ et le nombre de termes n.

2022/2023 Mme L.OUALI

diag(Vecteur)	A partir d'un Vecteur ligne ou colonne, la fonction retourne une matrice carrée dont la diagonale principale porte les éléments du vecteur et les autres éléments sont égaux à "0"
horzcat(mat1, mat2,etc.)	Il s'agit d'une concaténation de matrices pour la création d'une matrice finale Mat. on concatène côte à côte (horizontalement) les matrices mat1, mat2, qui doivent avoir le même nombre de lignes.
vertcat(mat1, mat2,etc.)	Même chose, à partir d'une concaténation verticale des matrices mat4, mat5, pour créer Mat. Les matrices doivent avoir le même nombre de colonnes
diag(Matrice)	Appliquée à une Matrice (carré ou pas), elle retourne un vecteur-colonne formé à partir des éléments de la diagonale de cette matrice.
[n m]=size(Var)	Renvoie, sur un vecteur ligne, la taille (nombre n de lignes et nombre m de colonnes) de la matrice ou du vecteur Var.
numel(Mat)	Retourne le nombre d'éléments de la matrice Mat
Mat(ind1,ind2)	Accéder aux éléments d'une matrice de dimension (n x m), où ind1 et ind2 désignant les indices des éléments de ligne et de colonne de la matrice mat
Mat(ind1,ind2)=[]	Suppression d'éléments de lignes ou de colonnes d'une matrice avec un redimensionnement automatique par Matlab
ones(n{,m})	Créer une matrice numérique de n lignes et m colonnes dont tous les ones(n{,m}) éléments sont mis à la valeur 1
zeros(n{,m})	Créer une matrice numérique de n lignes et m colonnes dont tous les ones(n{,m}) éléments sont mis à la valeur 0
eye(n{,m})	Créer une matrice identité de dimension (n x m) avec la diagonale=1, et les autres éléments à 0
isequal	teste si deux (ou plusieurs) matrices sont égales (ayant les mêmes éléments partout). Elle renvoie 1 si c'est le cas, et 0 sinon.
isempty	Teste si une matrice est vide (ne contient aucun élément). Elle renvoie 1 si c'est le cas, et 0 sinon.
tril(M)	Extrait la partie inferieur a la diagonale de la matrice M
triu(M)	Extrait la partie supérieure a la diagonale de la matrice M

2022/2023 Mme L.OUALI

Exercice 01:

- Créer un vecteur linge de coordonner contenant les nombres 0,
 1.5, ..., 7.5, 9 et déterminer sa taille (avec deux manière différentes)
- Créer un vecteur linge de coordonner contenant les nombres -6,
 -4, ..., 4, 6 et déterminer sa taille(avec deux manière différentes)
- Créer un vecteur colonne de coordonnés contenant les nombres -500, -499,-498 ..., 499,500 et déterminer sa taille(avec deux manière différentes)
- Que fait l'instruction suivante : X=[-1.4, sqrt(3), (1+2+3)*4/5] et quelle est la valeur de X(2) ?
- Créer le vecteur suivant en précisant l'incrément

10.0000

9.5000

9.0000

8.5000

8.0000

Exercice 02:

Complétez les instructions suivantes:

>>V=[3,-1,0,6,9,-3,0] %
>>V(2) %
>> %Afficher les valeurs de V entre la 2 ^{éme} et 4 ^{éme} position
>>
>>V(1)= -1 %
>>V(7)=-3 %

2022/2023 Mme L.OUALI

Exercice 03:

Complétez les opérations suivantes en indiquant ce qu'elles réalisent:

>>x=[1;2;3]%	>>z1=x.*y %
	>>z2=x.\y %
>>y=[4; 5; 6]%	
	>>z3=x./y %
>> x+3%	
	>>z4=x.^y %
>>x-5 %	
	>>length(z1)%
	>>U=linspace(1,30,6)%
>> x+y%	

Exercice 04:

>>Z=[1 2 3 ; 4 5 6]%	>>Z(3,1)=7%
>>Z(2,3) %	>>Z(1,:)%
>>Z(2,3)=4%	>>Z(:,2)%

Exercice 05:

1.	Créer	la	matrice	suivante
	C. CC.	·u	macrice	Sarvarice

$$A = 1 2 3 4 \\ 5 6 7 8 \\ 9 0 6 0$$

2. Créer la matrice B avec la ligne de commande la plus courte possible

3. Donner la ligne de commande pour créer la matrice suivante en utilisant les opérations usuelles sur les matrices

Exercice 06:

Opération sur les matrices:

- I. Soit la matrice $A=[1\ 2\ 3\ ;\ 4\ 5\ 6;\ 7\ 8\ 9]$
 - 1. Définir la matrice B qui est la transposée de A
 - 2. Définir la matrice C comme produit de A et B
 - 3. Définir la matrice D par : D=A.*B, puis comparer entre les deux matrices C et D.
- II. Soit le vecteur v=[-1 -3 -5 -7], générer la matrice x=[v;2*v;3*v;4*v]
 - 1. Afficher la diagonale de la matrice \mathbf{x}
 - 2. Afficher le 3^{éme} et le 4^{éme} élément de la deuxième et la troisième ligne de la matrice x
 - 3. Afficher la partie inférieure et la partie Supérieur de la matrice x
- III. Ecrire la commande qui affiche la Matrice suivante

1. Complétez et commentez

>>v=diag(A)%	>>A(1:2,:)%
	>>A(:,2:3)%

2022/2023

>>C=diag(diag(A))%	>>A(1:2,2:3)%

3. Donner la commande qui extrait les sous matrices suivantes de la matrice ${m A}$

5 4 1 3 1 3 0 9 0 4 7 9

Exercice 07:

Soit la matrice M définie comme suit:

- 1) Créer la matrice M de deux façons différentes
- 2) Extraire la sous matrice 2*2 centrale de M ensuite inversé le résultat et le mettre dans M1
- 3) Définir les matrices M2 et M3 à partir de M

- 4) Modifier la valeur 16 de la matrice M par la valeur 18
- 5) Mettre à 0 tous les éléments impaire de la matrice M
- 6) Supprimer tous les éléments de la ligne 3 de la matrice M

2022/2023