Machine Learning

By Ghazal Lalooha

Unsupervised Learning

Table of Contents

- Unsupervised learning
- applications
- Clustering
- K-means algorithm
- Improved clustering
- Two-part generator algorithm
- Hierarchical clustering

Supervised Learning

• Supervised Learning: For each example, the correct answer is given.

Unsupervised Learning

Unsupervised learning: Not knowing the correct answers.

Goal: recognizing the structure in the input data (grouping similar data)

Clustering

Application of clustering: grouping related news

Application of clustering: grouping related news

Some other applications of unsupervised learning

Organization of computing clusters (data center)

Market segmentation

Social networks analysis

Analysis of astronomical data (how galaxies form)

- An iterative clustering algorithm:
 - Choose K points randomly as centers of clusters.
 - Repeat the following steps:
 - Assign each data to a cluster with the closest center.
 - Update the center of each cluster by averaging the data assigned to that cluster.
 - Stop: when no data changes its cluster in an iteration.

- An iterative clustering algorithm:
 - Choose K points randomly as centers of clusters.
 - Repeat the following steps:
 - Assign each data to a cluster with the closest center.
 - Update the center of each cluster by averaging the data assigned to that cluster.
 - Stop: when no data changes its cluster in an iteration.

- An iterative clustering algorithm:
 - Choose K points randomly as centers of clusters.
 - Repeat the following steps:
 - Assign each data to a cluster with the closest center.
 - Update the center of each cluster by averaging the data assigned to that cluster.
 - Stop: when no data changes its cluster in an iteration.

K-means algorithm

- Entrance:
 - Number of clusters: k
 - Training set: $\{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$
- Note: In the training set, no label is assigned to the data.
- Note: There is no need to add the attribute $x_0 = 1$ in clustering.

K-means algorithm

```
randomly initialize K cluster centroids \mu_1, \mu_2, ..., \mu_k \in \mathbb{R}^n
repeat
     for i = 1 to m
                                                                     Assigning data to clusters
         c^{(i)} = \arg\min_{k} \left\| x^{(i)} - \mu_k \right\|
                                                             Cluster center update
     for k = 1 to K
         \mu_k= average of points assigned to cluster k
```

Clustering: objective function

objective function

- symbols:
 - M_k: cluster center k
 - c (i): the number of the cluster assigned to the data x (i)
 - M_c (i): the center of the cluster assigned to the data x (i)
- The objective function

$$J(c^{(1)},c^{(2)},\ldots,c^{(m)},\mu_1,\mu_2,\ldots,\mu_k) = \frac{1}{m} \sum_{i=1}^m \left\| x^{(i)} - \mu_{c^{(i)}} \right\|^2$$

K-means algorithm

```
randomly initialize K cluster centroids \mu_1, \mu_2, ..., \mu_k \in \mathbb{R}^n
repeat
     for i = 1 to m
                                                                         Minimization of the
                                                                        objective function with
         c^{(i)} = \arg\min_{k} ||x^{(i)} - \mu_{k}||
                                                                       respect to parameters c (i)
     for k = 1 to K
                                                                           Minimization of the
                                                                         objective function with
         \mu_k= average of points assigned to cluster k
                                                                         respect to parameters M
```

Clusters' centers initializing

K-means algorithm

```
randomly initialize K cluster centroids \mu_1, \mu_2, ..., \mu_k \in \mathbb{R}^n
repeat
    for i = 1 to m
        c^{(i)} = \arg\min_{k} ||x^{(i)} - \mu_{k}||
    for k = 1 to K
        \mu_k= average of points assigned to cluster k
```

Clusters' centers initializing

Initial initialization ($K \le m$): Selection of K training sample randomly Assigning cluster centers to K selected samples

Local Optimum

Global Optimum

Local Optimum

Local Optimum Avoidance

```
for t = 1 to MAX
   randomly initialize cluster centroids \mu_1, \mu_2, \dots, \mu_k
   run K-means to get c^{(1)}, c^{(2)}, ..., c^{(m)}, \mu_1, \mu_2, ..., \mu_k
   compute cost function J(c^{(1)}, c^{(2)}, ..., c^{(m)}, \mu_1, \mu_2, ..., \mu_k)
pick clustering with minimum cost
```

Determine the number of clusters

What is the right value for K?

What is the right value for K?

What is the right value for K?

Determine the number of clusters

• "elbow" method:

Clustering improvement

Clustering improvement by clusters postprocessing

• Division:

By running K-means on the data of this cluster with a value of K = 2

 Splitting a cluster with the highest error into two clusters

• merge:

- Merge the two closest clusters
- Merging two clusters with minimal increase in total error

Two-part K-means algorithm

- Algorithm of two parts:
 - Start with a cluster containing all the data
 - Choose one cluster at a time:
 - Divide the selected cluster into two clusters using the K-means algorithm.
 - Calculate the total clustering error.
 - Choose the clustering with the least error.
 - Repeat the above process until you reach the desired number of clusters.

Two-part K-means algorithm

```
Start with all the points in one cluster
while the number of clusters is less than K
   measure the total error
   for every cluster
      perform K-means clustering with k = 2 on the given cluster
      measure the total error after splitting
   choose the cluster split that gives the lowest error
```

Hierarchical clustering

Hierarchical clustering

- Hierarchical clustering:
 - First, merge very similar data.
 - Gradually create larger clusters by merging smaller clusters.
- Algorithm:
 - At first, each data represents a cluster.
 - Repeat the following steps:
 - Choose the two closest clusters each time.
 - Merge those two clusters into a new cluster.
 - Stop: when there is only one cluster left.
- Create a tree diagram containing a wide range of clusters.

Hierarchical clustering

- Question: How to define the closest two clusters?
- Criteria for determining the similarity of clusters:
 - Nearest pair (one-link clustering)
 - Farthest pair (all-link clustering)
 - Average distance of all pairs
 - "WARD" method (least dispersion like K-means)
- Different criteria create different clusters.

Summary

- Unsupervised learning: finding structure in data
- Clustering: grouping similar data
 - K-means clustering algorithm
 - Easy implementation
 - Slow for very large data sets
 - Possibility of getting stuck in the local optimum
 - Post-processing of clusters: splitting and merging of clusters
 - Two-part K-means algorithm
 - Better clustering than K-means algorithm
 - Hierarchical clustering algorithms

Practices

Practice1: K-means algorithm implementation

Exercise 2: Image compression using K-means

Main image

compressed image (16 colors)

