

LECTURE 10 of 42

Introduction to Knowledge Representation and Logic

William H. Hsu Department of Computing and Information Sciences, KSU

KSOL course page: http://snipurl.com/v9v3
Course web site: http://www.kddresearch.org/Courses/CIS730
Instructor home page: http://www.cis.ksu.edu/~bhsu

Reading for Next Class:

Section 7.5 - 7.7, p. 211 - 232, Russell & Norvig 2nd edition

CIS 530 / 730 Artificial Intelligence LECTURE 10 OF 42

LECTURE OUTLINE

- Reading for Next Class: Sections 7.5 7.7 (p. 211 232), R&N 2^e
 - * Propositional calculus (aka propositional logic)
 - ⇒ Syntax and semantics
 - **⇒ Proof rules**
 - Properties of sentences: entailment and provability
 - ⇒ Properties of proof rules: soundness and completeness
 - * Elements of logic: ontology and epistemology
- Last Class: Game Trees, Search Concluded
 - * Minimax with alpha-beta (α β) pruning
 - * Expectiminimax: dealing with nondeterminism and imperfect information
 - * "Averaging over clairvoyance" and when/why it fails
 - * Quiescence and the horizon effect
- Today: Intro to KR and Logic, Sections 7.1 7.4 (p. 194 210), R&N 2^e
 - * Wumpus world and need for knowledge representation
 - * Syntax and (possible worlds) semantics of logic
- Coming Week: Propositional and First-Order Logic (7.5 9.1)

GAMES: REVIEW

- ♦ Games
- ♦ Perfect play
 - minimax decisions
 - α – β pruning
- ♦ Resource limits and approximate evaluation
- ♦ Games of chance
- \diamondsuit Games of imperfect information

© 2004 S. Russell & P. Norvig. Reused with permission.

ARTIFICIAL INTELLIGENCE

ECTURE 10 OF 42

8 &

Nondeterministic Games: Review

In nondeterministic games, chance introduced by dice, card-shuffling Simplified example with coin-flipping:

© 2004 S. Russell & P. Norvig. Reused with permission.

6

CIS 530 / 730 ARTIFICIAL INTELLIGENCE LECTURE 10 OF 42

COMPUTING & INFORMATION SCIENCES KANSAS STATE UNIVERSITY

COMMONSENSE EXAMPLE — STATEMENT: REVIEW

Day 1

Road A leads to a small heap of gold pieces Road B leads to a fork:

take the left fork and you'll find a mound of jewels; take the right fork and you'll be run over by a bus.

<u>Day 2</u> Road A leads to a small heap of gold pieces

Road B leads to a fork:

take the left fork and you'll be run over by a bus; take the right fork and you'll find a mound of jewels.

Day 3 Road A leads to a small heap of gold pieces

Road B leads to a fork:

guess correctly and you'll find a mound of jewels; guess incorrectly and you'll be run over by a bus.

Adapted from slides © 2004 S. Russell & P. Norvig. Reused with permission.

CIS 330 / 730 Artificial Intelligence LECTURE 10 of 42

COMPUTING & INFORMATION SCIEN KANSAS STATE UNIVER

COMMONSENSE EXAMPLE — ANALYSIS: REVIEW

 * Intuition that the value of an action is the average of its values in all actual states is \overline{WRONG}

With partial observability, value of an action depends on the information state or belief state the agent is in

Can generate and search a tree of information states

Leads to rational behaviors such as

- ♦ Acting to obtain information
- ♦ Signalling to one's partner
- ♦ Acting randomly to minimize information disclosure

© 2004 S. Russell & P. Norvig. Reused with permission.

SEGUE: FROM GAMES TO **KNOWLEDGE REPRESENTATION & LEARNING**

- Learning = Improving with Experience at Some Task
 - * Improve over task T,
 - * with respect to performance measure P,
 - * based on experience E.
- **Example: Learning to Play Checkers**
 - * T: play games of checkers
 - * P: percent of games won in tournament
 - * E: opportunity to play against self
- Refining the Problem Specification: Issues
 - * What experience?
 - * What exactly should be learned?
 - * How shall it be represented?
 - * What specific algorithm to learn it?
- **Defining the Problem Milieu**
 - * Performance element: How shall the results of learning be applied?
 - * How shall performance element be evaluated? Learning system?

Adapted from materials © 1997 T. M. Mitchell. Reused with permission.

LEARNING TO PLAY CHECKERS: **EXPERIENCE AND TARGET FUNCTION**

- Type of Training Experience
 - * Direct or indirect?
 - * Teacher or not?
 - * Knowledge about the game (e.g., openings/endgames)?
- Problem: Is Training Experience Representative (of Performance Goal)?
- Software Design
 - * Assumptions of the learning system: legal move generator exists
 - * Software requirements: generator, evaluator(s), parametric target function
- Choosing a Target Function
 - ***** ChooseMove: Board → Move (action selection function, or policy)
 - * $V: Board \rightarrow R$ (board evaluation function)
 - * Ideal target V; approximated target V
 - * Goal of learning process: operational description (approximation) of V

Adapted from materials © 1997 T. M. Mitchell. Reused with permission.

LEARNING TO PLAY CHECKERS: REPRESENTATION OF EVALUATION FUNCTION

- Possible Definition
 - * If b is a final board state that is won, then V(b) = 100
 - * If b is a final board state that is lost, then V(b) = -100
 - * If b is a final board state that is drawn, then V(b) = 0
 - * If b is not a final board state in the game, then V(b) = V(b') where b' is best final board state according to Minimax (optimal play to end of game)
 - * Correct values, but not operational
- Choosing Representation for Target Function
 - * Collection of rules?
 - * Neural network?
 - * Polynomial function (e.g., linear, quadratic combination) of board features?
 - * Other?
- Representation for Learned Function
 - * $\hat{V}(b) = w_0 + w_1 bp(b) + w_2 rp(b) + w_3 bk(b) + w_4 rk(b) + w_5 bt(b) + w_6 rt(b)$
 - * bp/rp = number of black/red pieces; bk/rk = number of black/red kings; bt/rt = number of black/red pieces threatened (can be taken next turn)

Adapted from materials © 1997 T. M. Mitchell. Reused with permission.

CIS 530 / 730 Artificial Intelligence LECTURE 10 of 42

- Obtaining Training Examples
 - **★** V(b) the target function
 - * $\hat{V}(b)$ the learned function
 - * $V_{train}(b)$ the training value
- One Rule For Estimating Training Values:
 - * $V_{train}(\mathbf{b}) \leftarrow \hat{V}(Successor(\mathbf{b}))$
- Choose Weight Tuning Rule
 - * Least Mean Square (LMS) weight update rule: REPEAT
 - ⇒ Select a training example *b* at random
 - ⇒ Compute the *error(b)* for this training example
 - \Rightarrow For each board feature f_p update weight w_i as follows:

$$error(b) = V_{train}(b) - \hat{V}(b)$$

where c is small, constant factor to adjust learning rate $w_i \leftarrow w_i + c \cdot f_i \cdot error(b)$

Adapted from materials © 1997 T. M. Mitchell. Reused with permission.

CHAPTER 7: OVERVIEW

- ♦ Knowledge-based agents
- ♦ Wumpus world
- Logic in general—models and entailment
- ♦ Propositional (Boolean) logic
- ♦ Equivalence, validity, satisfiability
- ♦ Inference rules and theorem proving
 - forward chaining
 - backward chaining
 - resolution

© 2004 S. Russell & P. Norvig. Reused with permission.

JIS 530 / 730 Artificiai Intelligence ECTURE 10 OF 42

KNOWLEDGE BASES

- Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent (or other system):
 Tell it what it needs to know
- Then it can Ask itself what to do answers should follow from KB
- Agents can be viewed at the knowledge level
 i.e., what they know, regardless of how implemented
- Or at the implementation level i.e., data structures in KB and algorithms that manipulate them

Adapted from slide © 2004 S. Russell & P. Norvig. Reused with permission.

SIMPLE KNOWLEDGE-BASED AGENT

function KB-AGENT(percept) returns an action static: KB, a knowledge base t, a counter, initially 0, indicating time Tell(KB, Make-Percept-Sentence(percept, t)) $action \leftarrow Ask(KB$, Make-Action-Query(t)) Tell(KB, Make-Action-Sentence(action, t)) $t \leftarrow t+1$ return action

The agent must be able to:

Represent states, actions, etc.

Incorporate new percepts

Update internal representations of the world

Deduce hidden properties of the world

Deduce appropriate actions

© 2004 S. Russell & P. Norvig. Reused with permission.

CIS 530 / 730

ECTURE 10 OF 42

L INTELLIGENCE

WUMPUS WORLD [1]: PEAS DESCRIPTION

- Performance measure
 - * gold +1000, death -1000
 - * -1 per step, -10 for using the arrow
- Environment
 - * Squares adjacent to wumpus are smelly
 - * Squares adjacent to pit are breezy
 - * Glitter iff gold is in the same square
 - * Shooting kills wumpus if you are facing it
 - * Shooting uses up the only arrow
 - * Grabbing picks up gold if in same square
 - * Releasing drops the gold in same square
- SS SECT S START START

1 2 3 4

- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot
- Sensors: Stench, Breeze, Glitter, Bump, Scream

Adapted from slides © 2004 S. Russell & P. Norvig. Reused with permission.

WUMPUS WORLD XTREME!

Adapted from slides © 2004 S. Russell & P. Norvig. Reused with permission.

ARTIFICIAL INTELLIGENCE

LECTURE 10 of 42

LECTORE TO OF 42

WUMPUS WORLD [2]: CHARACTERIZATION

Fully Observable?

No - only local perception

• Deterministic?

Yes - outcomes exactly specified

• Episodic?

No - sequential at the level of actions

• Static?

Yes – Wumpus and Pits do not move

Discrete?

Yes

• Single-agent?

Yes - Wumpus is essentially a natural feature

Based on slide © 2004 S. Russell & P. Norvig. Reused with permission.

CIS 530 / 730 Artificial Intelligence LECTURE 10 of 42

COMPUTING & INFORMATION SCIENCES

KANSAS STATE LINIVERSITY

LOGIC IN GENERAL

Logics are formal languages for representing information such that conclusions can be drawn

Syntax defines the sentences in the language

Semantics define the "meaning" of sentences; i.e., define truth of a sentence in a world

E.g., the language of arithmetic

 $x+2 \ge y$ is a sentence; x2+y > is not a sentence

 $x+2 \geq y$ is true iff the number x+2 is no less than the number y

 $x+2 \ge y$ is true in a world where x=7, y=1

 $x+2 \ge y$ is false in a world where x=0, y=6

© 2004 S. Russell & P. Norvig. Reused with permission.

ENTAILMENT

Entailment means that one thing follows from another:

$$KB \models \alpha$$

Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true

E.g., the KB containing "the Giants won" and "the Reds won" entails "Either the Giants won or the Reds won"

E.g., x + y = 4 entails 4 = x + y

Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

Note: brains process syntax (of some sort)

© 2004 S. Russell & P. Norvig. Reused with permission.

LECTURE 10 OF 42

MODELS (POSSIBLE WORLDS SEMANTICS)

Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated

We say m is a model of a sentence α if α is true in m

 $M(\alpha)$ is the set of all models of α

Then $KB \models \alpha$ if and only if $M(KB) \subseteq M(\alpha)$

E.g. KB = Giants won and Reds won

 $\alpha = \mathsf{Giants} \; \mathsf{won}$

Based on slide © 2004 S. Russell & P. Norvig. Reused with permission.

CIS 530 / 730 ARTIFICIAL INTELLIGENCE LECTURE 10 OF 42

COMPUTING & INFORMATION SCIENCES

ENTAILMENT IN WUMPUS WORLD

Situation after detecting nothing in [1,1], moving right, breeze in [2,1]

Consider possible models for ?s assuming only pits

3 Boolean choices \Rightarrow 8 possible models

Based on slide © 2004 S. Russell & P. Norvig. Reused with permission.

TERMINOLOGY

- Game Trees
 - * Expectiminimax: Minimax with alpha-beta (α-β) pruning and chance nodes
 - * "Averaging over clairvoyance": expectation applied to hidden info
 - * Quiescence: state of "calmness" in play
- <u>PEAS</u> (<u>Performance</u>, <u>Environment</u>, <u>Actuators</u>, <u>Sensors</u>) Specifications
- Wumpus World: Toy Domain
- Intro to Knowledge Representation (KR) and Logic
 - * Logic
 - ⇒ Formal language for representing information
 - ⇒ Supports <u>reasoning</u> and <u>learning</u>
 - * Sentences: units of logic
- Models: Interpretation (Denotation, Meaning) of Sentences
 - * Possible worlds semantics: assigns sets of models to all sentences
 - * Entailment: all models of left-hand side (LHS) are models of right (RHS)
- Next: Propositional Logic

CIS 530 / 730 ARTIFICIAL INTELLIGENCE ECTURE 10 of 42

SUMMARY POINTS

- Last Class: Game Trees, Search Concluded
 - * Minimax with alpha-beta (α β) pruning
 - * Expectiminimax: dealing with nondeterminism and imperfect information
 - * "Averaging over clairvoyance" and when/why it fails
 - * Quiescence and the horizon effect
- Today: Intro to Knowledge Representation (KR) and Logic
 - * Logic as formal language
 - * Representation: foundation of reasoning and learning
 - * Logical entailment
- Wumpus World: PEAS Specification and Logical Description
- Reasoning Examples
- Possible Worlds Semantics: Models and Meaning
- Next Week: Propositional and First-Order Logic
 - * Propositional logic
 - * Resolution theorem proving in propositional logic
 - * First-order predicate calculus (FOPC) aka first order logic (FOL)

