```
In [1]:
# import lib
import pandas as pd
import numpy as np
In [ ]:
# Concat Function
# TO combine series or Data Frame and panel object we use Concat function
# Syntax pandas.concat()
In [ ]:
In [2]:
# create series
data1 = pd.Series([10,20,30])
data1
Out[2]:
0
     10
1
     20
     30
dtype: int64
In [3]:
data2 = pd.Series([50,60,70])
data2
Out[3]:
     50
1
     60
     70
dtype: int64
```

```
In [ ]:
```

```
pd.concat()
Signature:
pd.concat(
    objs,
     axis=0,
     join='outer',
     join_axes=None,
     ignore_index=False,
     keys=None,
     levels=None,
     names=None,
    verify_integrity=False,
     sort=None,
    copy=True,
)
\mathbf{r}_{-1}, \mathbf{r}_{-1}
```

In [5]:

```
pd.concat([data1,data2])
```

```
Out[5]:
     10
0
1
     20
2
     30
0
     50
     60
1
2
     70
dtype: int64
```

```
In [ ]:
```

```
In [ ]:
```

```
In [8]:
# IF series data values are diff
data3 = pd.Series([10,20,30,40,50])
data3
Out[8]:
     10
0
     20
1
2
     30
3
     40
4
     50
dtype: int64
In [9]:
data4 = pd.Series([100,200,300,400,500,600,700,800])
data4
Out[9]:
0
     100
     200
1
2
     300
3
     400
4
     500
5
     600
6
     700
     800
7
dtype: int64
In [10]:
pd.concat([data3,data4])
Out[10]:
      10
0
      20
1
2
      30
3
      40
4
      50
0
     100
1
     200
2
     300
3
     400
4
     500
5
     600
6
     700
     800
dtype: int64
In [ ]:
```

```
In [ ]:
```

In [11]:

Out[11]:

	Sno	City	Salary
0	101	Hyd	8000
1	102	Bang	12000
2	103	Mumbai	15000
3	104	Ambala	18000
4	105	Delhi	22000

In [12]:

Out[12]:

	Sno	City	Salary
0	201	Up	38000
1	202	Мр	32000
2	203	Puna	45000
3	204	Sec	48000
4	205	Gujrat	52000

In [13]:

pd.concat([data5,data6])

Out[13]:

	Sno	City	Salary
0	101	Hyd	8000
1	102	Bang	12000
2	103	Mumbai	15000
3	104	Ambala	18000
4	105	Delhi	22000
0	201	Up	38000
1	202	Мр	32000
2	203	Puna	45000
3	204	Sec	48000
4	205	Gujrat	52000

In [14]:

pd.concat([data6,data5])

Out[14]:

	Sno	City	Salary
0	201	Up	38000
1	202	Мр	32000
2	203	Puna	45000
3	204	Sec	48000
4	205	Gujrat	52000
0	101	Hyd	8000
1	102	Bang	12000
2	103	Mumbai	15000
3	104	Ambala	18000
4	105	Delhi	22000

In [15]:

```
# Default axis=0
pd.concat([data6,data5],axis=0)
```

Out[15]:

	Sno	City	Salary
0	201	Up	38000
1	202	Мр	32000
2	203	Puna	45000
3	204	Sec	48000
4	205	Gujrat	52000
0	101	Hyd	8000
1	102	Bang	12000
2	103	Mumbai	15000
3	104	Ambala	18000
4	105	Delhi	22000

In [16]:

```
# axis = 0 => index or rows
# axis = 1 => Columns
pd.concat([data6,data5],axis=1)
```

Out[16]:

	Sno	City	Salary	Sno	City	Salary
0	201	Up	38000	101	Hyd	8000
1	202	Мр	32000	102	Bang	12000
2	203	Puna	45000	103	Mumbai	15000
3	204	Sec	48000	104	Ambala	18000
4	205	Gujrat	52000	105	Delhi	22000

In []:

In [17]:

Out[17]:

	Sno	City	Salary
0	101	Hyd	8000
1	102	Bang	12000
2	103	Mumbai	15000
3	104	Ambala	18000
4	105	Delhi	22000

In [18]:

Out[18]:

	Eno	ECity	ESalary
0	201	Up	38000
1	202	Мр	32000
2	203	Puna	45000
3	204	Sec	48000
4	205	Guirat	52000

In [19]:

pd.concat([data7,data8],axis=1)

Out[19]:

	Sno	City	Salary	Eno	ECity	ESalary
0	101	Hyd	8000	201	Up	38000
1	102	Bang	12000	202	Мр	32000
2	103	Mumbai	15000	203	Puna	45000
3	104	Ambala	18000	204	Sec	48000
4	105	Delhi	22000	205	Gujrat	52000

In [20]:

pd.concat([data7,data8],axis=0)

C:\Users\Mithun\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: FutureW
arning: Sorting because non-concatenation axis is not aligned. A future vers
ion

of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False'.

To retain the current behavior and silence the warning, pass 'sort=True'.

"""Entry point for launching an IPython kernel.

Out[20]:

	City	ECity	ESalary	Eno	Salary	Sno
0	Hyd	NaN	NaN	NaN	8000.0	101.0
1	Bang	NaN	NaN	NaN	12000.0	102.0
2	Mumbai	NaN	NaN	NaN	15000.0	103.0
3	Ambala	NaN	NaN	NaN	18000.0	104.0
4	Delhi	NaN	NaN	NaN	22000.0	105.0
0	NaN	Up	38000.0	201.0	NaN	NaN
1	NaN	Мр	32000.0	202.0	NaN	NaN
2	NaN	Puna	45000.0	203.0	NaN	NaN
3	NaN	Sec	48000.0	204.0	NaN	NaN
4	NaN	Gujrat	52000.0	205.0	NaN	NaN

In []:

```
In [ ]:
```

In [22]:

Out[22]:

	Sno	City	Salary
0	101	Hyd	8000
1	102	Bang	12000
2	103	Mumbai	15000
3	104	Ambala	18000
4	105	Delhi	22000

In [23]:

Out[23]:

	Sno	City	Salary
0	201	Up	38000
1	202	Мр	32000
2	203	Puna	45000
3	204	Sec	48000
4	205	Guirat	52000

In [24]:

```
# Deafult ignore_index=False,
pd.concat([data10,data11],axis=0,ignore_index=False)
```

Out[24]:

	Sno	City	Salary
0	101	Hyd	8000
1	102	Bang	12000
2	103	Mumbai	15000
3	104	Ambala	18000
4	105	Delhi	22000
0	201	Up	38000
1	202	Мр	32000
2	203	Puna	45000
3	204	Sec	48000
4	205	Gujrat	52000

In [25]:

```
pd.concat([data10,data11],axis=0,ignore_index=True)
```

Out[25]:

	Sno	City	Salary
0	101	Hyd	8000
1	102	Bang	12000
2	103	Mumbai	15000
3	104	Ambala	18000
4	105	Delhi	22000
5	201	Up	38000
6	202	Мр	32000
7	203	Puna	45000
8	204	Sec	48000
9	205	Gujrat	52000

```
In [ ]:
```

In []:

Data Frame if we have data set of diff size of rows ? solution

In [26]:

Out[26]:

	Sno	City	Salary
0	101	Hyd	8000
1	102	Bang	12000
2	103	Mumbai	15000
3	104	Ambala	18000
4	105	Delhi	22000

In [27]:

Out[27]:

	Sno	City	Salary
0	201	Up	38000
1	202	Мр	32000
2	203	Puna	45000

In [28]:

pd.concat([data12,data13],axis=0)

Out[28]:

	Sno	City	Salary
0	101	Hyd	8000
1	102	Bang	12000
2	103	Mumbai	15000
3	104	Ambala	18000
4	105	Delhi	22000
0	201	Up	38000
1	202	Мр	32000
2	203	Puna	45000

In [29]:

pd.concat([data12,data13],axis=1)

Out[29]:

	Sno	City	Salary	Sno	City	Salary
0	101	Hyd	8000	201.0	Up	38000.0
1	102	Bang	12000	202.0	Мр	32000.0
2	103	Mumbai	15000	203.0	Puna	45000.0
3	104	Ambala	18000	NaN	NaN	NaN
4	105	Delhi	22000	NaN	NaN	NaN

In []:

```
In [30]:
```

```
#join : {'inner', 'outer'}, default 'outer'
# How to handle indexes on other axis(es)

pd.concat([data12,data13],axis=1,join='outer')
```

Out[30]:

	Sno	City	Salary	Sno	City	Salary
0	101	Hyd	8000	201.0	Up	38000.0
1	102	Bang	12000	202.0	Мр	32000.0
2	103	Mumbai	15000	203.0	Puna	45000.0
3	104	Ambala	18000	NaN	NaN	NaN
4	105	Delhi	22000	NaN	NaN	NaN

In [31]:

```
pd.concat([data12,data13],axis=1,join='inner')
```

Out[31]:

	Sno	City	Salary	Sno	City	Salary
0	101	Hyd	8000	201	Up	38000
1	102	Bang	12000	202	Мр	32000
2	103	Mumbai	15000	203	Puna	45000

In [32]:

```
pd.concat([data13,data12],axis=1,join='inner')
```

Out[32]:

	Sno	City	Salary	Sno	City	Salary
0	201	Up	38000	101	Hyd	8000
1	202	Мр	32000	102	Bang	12000
2	203	Puna	45000	103	Mumbai	15000

In []:

In [34]:

Out[34]:

	Sno	City	Salary
0	101	Hyd	8000
1	102	Bang	12000
2	103	Mumbai	15000
3	104	Ambala	18000
4	105	Delhi	22000

In [35]:

Out[35]:

	Sno	City	Salary
0	201	Up	38000
1	202	Мр	32000
2	203	Puna	45000

In [36]:

```
pd.concat([data14,data15],axis=1,join_axes=None)
```

Out[36]:

	Sno	City	Salary	Sno	City	Salary
0	101	Hyd	8000	201.0	Up	38000.0
1	102	Bang	12000	202.0	Мр	32000.0
2	103	Mumbai	15000	203.0	Puna	45000.0
3	104	Ambala	18000	NaN	NaN	NaN
4	105	Delhi	22000	NaN	NaN	NaN

In [37]:

```
pd.concat([data14,data15],axis=1,join_axes=[data14.index])
```

Out[37]:

	Sno	City	Salary	Sno	City	Salary
0	101	Hyd	8000	201.0	Up	38000.0
1	102	Bang	12000	202.0	Мр	32000.0
2	103	Mumbai	15000	203.0	Puna	45000.0
3	104	Ambala	18000	NaN	NaN	NaN
4	105	Delhi	22000	NaN	NaN	NaN

In [38]:

```
pd.concat([data14,data15],axis=1,join_axes=[data15.index])
```

Out[38]:

	Sno	City	Salary	Sno	City	Salary
0	101	Hyd	8000	201	Up	38000
1	102	Bang	12000	202	Мр	32000
2	103	Mumbai	15000	203	Puna	45000

In []:

```
# keys=None
# keys : sequence, default None
# If multiple levels passed, should contain tuples. Construct
# hierarchical index using the passed keys as the outermost level
```

```
In [ ]:
```

```
In [39]:
```

Out[39]:

	Sno	City	Salary
0	101	Hyd	8000
1	102	Bang	12000
2	103	Mumbai	15000
3	104	Ambala	18000
4	105	Delhi	22000

In [42]:

Out[42]:

	Sno	City	Salary
0	201	Up	38000
1	202	Мр	32000
2	203	Puna	45000
3	204	Sec	48000
4	205	Gujrat	52000

In [43]:

pd.concat([data16,data17],keys=None)

Out[43]:

	Sno	City	Salary
0	101	Hyd	8000
1	102	Bang	12000
2	103	Mumbai	15000
3	104	Ambala	18000
4	105	Delhi	22000
0	201	Up	38000
1	202	Мр	32000
2	203	Puna	45000
3	204	Sec	48000
4	205	Gujrat	52000

In [44]:

pd.concat([data16,data17],keys=['First Data Set','Sec Data Set'])

Out[44]:

		Sno	City	Salary
First Data Set	0	101	Hyd	8000
	1	102	Bang	12000
	2	103	Mumbai	15000
	3	104	Ambala	18000
	4	105	Delhi	22000
Sec Data Set	0	201	Up	38000
	1	202	Мр	32000
	2	203	Puna	45000
	3	204	Sec	48000
	4	205	Gujrat	52000

```
In [45]:
```

```
pd.concat([data16,data17],axis=1,keys=['First Data Set','Sec Data Set'])
```

Out[45]:

	First	Data Set	Sec Data Set				
	Sno	City	Salary	Sno	City	Salary	
0	101	Hyd	8000	201	Up	38000	
1	102	Bang	12000	202	Мр	32000	
2	103	Mumbai	15000	203	Puna	45000	
3	104	Ambala	18000	204	Sec	48000	
4	105	Delhi	22000	205	Gujrat	52000	

```
In [ ]:
```

```
In [ ]:
```

```
In [ ]:
```

In [46]:

Out[46]:

	Sno	City	Salary
0	101	Hyd	8000
1	102	Bang	12000
2	103	Mumbai	15000
3	104	Ambala	18000
4	105	Delhi	22000

In [47]:

Out[47]:

	Eno	ECity	ESalary
0	201	Up	38000
1	202	Мр	32000
2	203	Puna	45000
3	204	Sec	48000
4	205	Gujrat	52000

In [48]:

```
pd.concat([data7,data8],axis=1)
```

Out[48]:

	Sno	City	Salary	Eno	ECity	ESalary
0	101	Hyd	8000	201	Up	38000
1	102	Bang	12000	202	Мр	32000
2	103	Mumbai	15000	203	Puna	45000
3	104	Ambala	18000	204	Sec	48000
4	105	Delhi	22000	205	Gujrat	52000

In [49]:

```
pd.concat([data7,data8],axis=0)
```

C:\Users\Mithun\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: FutureW
arning: Sorting because non-concatenation axis is not aligned. A future vers
ion

of pandas will change to not sort by default.

To accept the future behavior, pass 'sort=False'.

To retain the current behavior and silence the warning, pass 'sort=True'.

"""Entry point for launching an IPython kernel.

Out[49]:

	City	ECity	ESalary	Eno	Salary	Sno
0	Hyd	NaN	NaN	NaN	8000.0	101.0
1	Bang	NaN	NaN	NaN	12000.0	102.0
2	Mumbai	NaN	NaN	NaN	15000.0	103.0
3	Ambala	NaN	NaN	NaN	18000.0	104.0
4	Delhi	NaN	NaN	NaN	22000.0	105.0
0	NaN	Up	38000.0	201.0	NaN	NaN
1	NaN	Мр	32000.0	202.0	NaN	NaN
2	NaN	Puna	45000.0	203.0	NaN	NaN
3	NaN	Sec	48000.0	204.0	NaN	NaN
4	NaN	Gujrat	52000.0	205.0	NaN	NaN

In [50]:

pd.concat([data7,data8],axis=0,sort=False)

Out[50]:

	Sno	City	Salary	Eno	ECity	ESalary
0	101.0	Hyd	8000.0	NaN	NaN	NaN
1	102.0	Bang	12000.0	NaN	NaN	NaN
2	103.0	Mumbai	15000.0	NaN	NaN	NaN
3	104.0	Ambala	18000.0	NaN	NaN	NaN
4	105.0	Delhi	22000.0	NaN	NaN	NaN
0	NaN	NaN	NaN	201.0	Up	38000.0
1	NaN	NaN	NaN	202.0	Мр	32000.0
2	NaN	NaN	NaN	203.0	Puna	45000.0
3	NaN	NaN	NaN	204.0	Sec	48000.0
4	NaN	NaN	NaN	205.0	Gujrat	52000.0

In []:		
In []:		