Strategies for the quick calibration of sensor-driven systems with low computational overhead

Keywords: BCI, Mobile, Ubiquitous Computing

Abstract: Physiological computing applications rely on time series data from sensors, which vary widely between users

and over time. Application designers face a tradeoff between computational complexity, calibration time, and classification accuracy. We describe a novel quantization technique for EEG signals, which we find increases the computational speed associated with training a machine-learning based classifier without a significant detriment to system accuracy. We test this technique on a brain-computer interface (BCI), and find that an opportunistic calibration strategy can achieve acceptable accuracy in 86.6% of subjects with under five minutes of training. We discuss implications for the design of consumer-ready BCI and other physiological computing

applications.

1 INTRODUCTION

The sensor data on which physiological systems generally rely do not cary universal meanings. While the movement of a mouse can be unambiguously mapped to the position of a cursor, the expression of biosignals varies widely between people, and within individual users over time.

Brain-computer interface (BCI) serves as a dramatic example of this phenomenon. Neural signals are highly variable between persons, and the nonstationary nature these signals necessitate regular calibration and re-calibration. (Dornhege, 2007; Mc-Farland and Wolpaw, 2011). Recently, the combination of machine learning algorithms and non-invasive electroencephelographs (EEG) has yielded proof-ofconcept systems ranging from brain-controlled keyboards and wheelchairs to prosthetic arms and hands (Blankertz et al., 2007b; Milln et al., 2010; D. Mattia, 2011; Hill et al., 2014; Campbell et al., 2010). However, these systems have not found wide adoption outside the lab: BCIs often require upward of an hour to calibrate to their users, with close supervision by researchers, and may require regular recalibration due to the nonstationary nature of EEG signals. (Vidaurre et al., 2006; Vidaurre et al., 2011a; Blankertz et al., 2007a) Recent work has come close to eliminating traditional calibration, though these techniques have not yet been applied to consumer headsets. (Kindermans et al., 2014)

For a physiological computing application to enjoy wider adoption "in the wild," it must calibrate to individual users quickly and achieve decent information transfer rates (ITR). However, it must do so with

ergonomic sensors and noisy signals, as data acquisition will occur while people are moving, walking, talking, and so on. As an added challenge, computational complexity may be limited by the mobile & wearable computing architectures on which these systems will most likely be deployed.

In this study, we use recordings from a single, dry electroencephalographic (EEG) sensor to simulate the calibration of a binary BCI, and investigate the effect of a novel signal extraction technique on the system's computational performance and accuracy. We find that our signal extraction technique increases the computational speed of a classification-based BCI 450% without a significant detriment to accuracy. We find that this technique can be used to calibrate 86.6% of users to BCI literacy in under five minutes of training data, and 100% of users in under 15 minutes.

2 RELATED WORK

2.1 Brain-computer interface "in the wild"

[after introduction]

Many inexpensive, comfortable EEG devices have come to market, most of which use "dry" electrodes that do not require special gels. Compared to their lab-based counterparts, these devices have many fewer electrodes, thus limited spatial resolution, and produce significantly noisier signals (is there a benchmark available in the literature?). Re-

gardless, past work has demonstrated several mobileready BCI systems that use these scanning devices, and the Neurosky MindSet in particular (the headset used in this study - a single, dry EEG electrode placed roughly at FP2, which connects wirelessly to phones and computers, and sells for roughly 100USD) has been used to successfully detect emotional states, event-related potentials (ERP), and to employ brain-based biometric authentication (Crowley et al., 2010; Grierson and Kiefer, 2011; Chuang et al., 2013). However, the use of consumer EEGs for the direct, real-time control of software interfaces has proven more difficult (Carrino et al., 2012; Larsen and Hokl, 2011). We expect significant improvements from consumer-grade EEG devices in the near future, with more sensors and better signal quality (e.g. Interaxon Muse, Melon headband, Emotiv Insight); however, we expect the signal from these devices will remain noisier than lab-based counterparts, as people will be wearing and using them while moving, and in uncontrolled environments with ambient electromagnetic signals interfering with endogenous biosignals. Mobile systems require reducing the bandwidth (currently 1 megaoctet per dry EEG sensor sampling at 512 Hz) ;- why/what does this mean?

To transition BCI from the lab into naturalistic environments, we must squeeze more signal out of fewer, and less reliable, sensors. Furthermore, since BCIs are envisioned largely as always-available input devices, they will likely be deployed on mobile processors and perhaps even embedded processing systems; our computational resources may be more similar to that of a smartphone than of a desktop workstation, and it is feasible that we may need to do some processing "in the cloud" (i.e., on a more powerful server to which the client sends data over the network, similar to the way Apple's Siri processes voice data). For effective BCI to occur in these environments, we must extract signal in a maximally efficient way so as to limit our computational footprint, and perhaps even to minimize the size of data if we wish to ship it to an external server.

2.2 Statistical signal processing in EEG-based BCI

BCI systems generally aim to recognize a user's mental gestures as one of a finite set of discrete symbols, a problem that can be thought of as a pattern recognition task (Lotte et al., 2007). The difficulty of this task stems primarily from the variable and non-stationary nature of neural signals: the "symbols" we wish to identify are expressed differently between individu-

als, and even vary within individuals from trial to trial (Vidaurre et al., 2006; Vidaurre et al., 2011b).

In order to compensate for variability in BCI signals, recent work has leveraged adaptive classification algorithms to distinguish between mental gestures (Lotte et al., 2007; Vidaurre et al., 2011b) steal some lines introing classificatino algos.....maybe steal a line explaining what a classifier is in the context of a BCI system, and how we train one...... In classification algorithms generally, larger feature vectors require that an exponential increase in the amount of data needed to describe classes, a property known as "the curse of dimensionality" (Jain et al., 2000; Raudys and Jain, 1991). Traditionally, BCI applications rely on dense, high-dimensional feature vectors produced by multi-electrode scanning caps with high temporal resolution, so dimensionality represents a major bottleneck in training classification algorithms. This bottleneck threatens the responsiveness of BCI from a user experience standpoint and places high requirements on end users' hardware.

2.3 Online, co-adaptive calibration

Learning to control a BCI system involves more than an adaptive software algorithm. Shenoy et al (2006) frame BCI learning as a cooperation between two adaptive systems: the BCI's algorithms and the human user (Shenoy et al., 2006). By building interfaces in which the user and the BCI "co-adapt" during an interactive calibration step, past work has turned BCI novices into competent users over the course of hours instead of days or weeks, and without manual calibration by a researcher (Vidaurre et al., 2006; Vidaurre et al., 2011a; Vidaurre et al., 2011b). Past work on co-adaptive BCI has used a several-step approach in which the system feeds preprocessed data to an adaptive classifier, which uses new and past data to optimize and recalculate itself, either during intermittent, offline steps or continuously online (Vidaurre et al., 2006; Lu et al., 2009; Das et al., 2013). During calibration, users perform "labeled" (that is, known) mental gestures in order to produce samples for the classifier. Meanwhile, the classifier performs various experiments in which it attempts to establish which features of the data are most informative. Systems may generate multiple models in parallel and combine their decisions democratically (an "ensemble approach"). After several calibration steps, the system is able to estimate the user's control by assessing its model's accuracy on samples it has already recorded.

2.4 Co-adaptive BCI in naturalistic settings

For the control of interface systems, it is crucial that mental gestures be actuated intentionally, and that the system's interpretation be immediately verifiable by the user. (McFarland and Wolpaw, 2011) Maybe a line here about how the system needs to be fast for responsiveness Efficient calibration is particularly crucial for real-world use, as EEG signals vary between subjects, and could even change within the same subject over time. From a technical standpoint, calibration amounts to the training and re-training of one or several adaptive algorithms. Calibration can be processing-intensive on a mobile device, especially if the system is computing multiple candidate models. This requires a great deal of online signal processing, which entails not only the computational time required to train the classifier but also the space required to handle the data and the time required to read and write the data from memory or from disk.

3 METHOD

3.1 Signal extraction

Our method for extracting signal from EEG data consists of two main steps: (i) building a statistical significance out of the power spectra produced in each sample, and (ii) to "compress" the information into a smaller vector size using a median filter. For each bin of 1/4 Hz, we can compute a median value out of the n power spectra generated for one sample. We obtain a discrete probability density function (PDF) with each bin being the median of the corresponding bins in the n power spectra. At this stage, we have a discrete PDF of 1024 bins for the whole sample. This method represents a "stacking" of several probability density functions into one representing the statistical average of all the others.

Binning the PDF is a simple way to "compress" the information contained in the original power spectrum. The basic idea is to take the median of several bins. For instance, four contiguous bins (1-1.25,1.25-1.5,1.5-1.75,1.75-2) have the values (4,4,5,5) the value resulting from combining these values into one bin would be 4.5. The PDF is heavy-tailed and it is desirable to arrange the bins such that they provide relevant information on the whole distribution. One way to do this efficiently is to arrange the compression bins in a logarithmic fashion, such that a greater proportion of bins are tied to endogenous neural signals than to other sources of magnetic energy.

Figure 1: Binned power spectrum

Figure 1 shows, in double logarithmic scale, the original 1024 bins (blue dots) of the PDF obtained from averaging the n power spectra of one sample, and the resulting "compressed" PDF with 100 logbins. As we can see, the log-binning preserves the structure of the PDF.

In summary, we build a probability density function of brain frequencies as captured by the Neurosky hardware, from the n power spectra of each sample. We then used a log-binning method to reduce the 1024 bins from the original power spectrum to an arbitrary smaller number of log-bins (e.g., 100 log-bins on the Figure). This method makes a sort of statistical averaging by stacking, and then "compresses" the result in way that it is easy to use in a classifier.

At this point, we have a one-dimensional signal flattened in the time dimension, computing the mean magnitude of each bin over all readings in the recording - a row vector with one entry for each each measured frequincy bin.

3.2 Strategies for BCI with minimal training time and low computational requirements

How can we minimize the time the user spends training while maximizing the accuracy of the resulting system? For ergonomic reasons, it is desireable that the user not spend too much time calibrating the system (recording example data, testing BCI accuracy).

We explore these questions using a binary BCI built around a support vector machine (SVM), which we train per-subject. (For more on the use of SVMs in BCI: (Garrett et al., 2003; Grierson and Kiefer, 2011)). In this study, we use LinearSVC, (Fan et al., 2008) a wrapper for LibLinear exposed in Python through the ScikitLearn library. (Pedregosa et al., 2011) We chose LinearSVC because BCI classification problems are generally presumed to be linear (Garrett et al., 2003; Lotte et al., 2007), and because LibLinear's underlying C implementation

boasts among the fastest train- and test-time performance among state-of-the-art solutions. (Fan et al., 2008) For the SVM's paramaters, we use a squared hinge loss function, which maximizes the margin for greater generalizability, and a hyperparameter of 100, found through a "grid search", or an exhaustive search through a randomly selected sample of our dataset.

4 DATASET

The data used in this experiment were taken from a previous study. (Chuang et al., 2013) The anonymized dataset consists of power spectrum time series data recorded by the software from the Neurosky MindSet headset from 15 subjects, students at UC Berkeley, performing mental tasks.

The seven mental tasks were: focusing on breathing; imagining moving one's right index finger; imagining moving one's body to repeatedly perform a sports-related movement of the subject's choice; imagining singing a song or reciting a passage; listening to a tone with eyes closed; choosing a color (red; green; yellow or blue) and counting how many times one's chosen color appears on a screen; choosing any thought to use as a "password".

Participants performed each of the seven mental tasks, enumerated below, ten times. Each of the ten trials lasted ten seconds.

The Neurosky MindSet SDK delivered a power spectrum of its data every half second. The power spectra that the SDK delivers are computed with discrete bins of 1/4 Hz. Each bin represents the intensity of activation of a frequency range (e.g., between 1 and 1.25 Hz) in a half-second time window. There are therefore 1024 values reported for one power spectrum. Since our mental task recordings are 10 seconds long, each recording is represented by twenty power spectra on average.

The dataset was further cleaned by removing all readings marked as suboptimal signal quality by the Neurosky SDK. The SDK delivers a signal quality value that is greater than zero when signal quality is suboptimal. Factors causing this value to be greater than zero include lack of contact between electrode and skin, excessive non-EEG noise (EKG, EMG, EOG, electrostatic) and excessive motion.

5 EXPERIMENTS

5.1 Finding a compromise between computational speed and classifier accuracy

Generally, we seek to maxmize our system's classification accuracy while minimizing its computational expense. One way to reduce the computational requirements of a SVM classifier is to reduce the size of the feature vectors on which it is trained and tested. Our signal quantization method allows us to directly adjust the size of feature vectors by changing the signal's resolution (see 3.1), though lowering the resolution of feature vectors could negatively effect the classifier's performance.

In this experiment, we examine the effect of resolution, operationalized by the number of bins used in the quantization step, on our BCI's performance, operationalized by the SVM's training time and by the SVM's estimated accuracy. We hypothesize that SVM accuracy will decrease with resolution, as will SVM training time.

5.1.1 Protocol

For each subject, we generate every pair of two tasks and cross-validate our SVM seven times on recordings for those two tasks. We vary the resolution of the samples we feed to the SVM. For every task pair processed, we record mean classification accuracy across all rounds of cross-validation.

As an additional performance audit, we measure the time needed to fit an SVM to the data for two randomly selected taskpairs across all subjects. We repeat this process ten thousand times at different resolutions, collecting the minimum time observed in each series of attempts.

5.1.2 Results

Resolution was positively correlated with classifier accuracy (slope = .0013 R-squared = .773, p < .001). Resolution was also positively correlated with time to train classifier (slope = 0.5 R-squared = .947, p < .001). We compare accuracy and SVM training time directly in Figure 3.

We find support for our hypothesis that computational requirements (SVM training time) decreases along with resolution of the signal. We find partial support for the hypothesis that SVM accuracy decreases along with signal: this effect appears at resolutions lower than 100 points, but we find no significant increase in SVM accuracy at higher resolutions.

Figure 2: Mean best-case accuracy among all subjects compared to time needed to train the classifier. At reoslutions of 100 points and greater, we find no evidence of an increase in classification accuracy.

Figure 3: Log of mean classifier training time compared to log of data resolution. The time needed to train the classifier increases logarithmically with resolution.

Figure 4: Best-case accuracy compared to the time needed to train the classifier. By decreasing the number of bins in the EEG data, we can decrease the time needed to train the support vector machine up to nine times without without significant detriment to classifier accuracy.

Overall, we find that relatively small feature vectors (75-100 bins) produced with our method yield classifiers as accurate as those that use much higher resolution samples, and that reducing vector size in this way can dramatically increase the computational speed of training an SVM.

5.2 Opportunistic strategy for calibrating a binary BCI

In the previous experiment, we found that our compression technique can speed up an SVM classifier without significant detriment to BCI accuracy. However, for the technique to be useful in real-world applications, it must also allow users to quickly calibrate the system to their personal physiological signals.

In this experiment, we evaluate an opportunistic strategy for user calibration. Using a resolution of 100 points identified as optimal in the previous experiment, we measure user calibration time (the time it takes a user to achieve a threshold accuracy with the BCI) and the classification accuracy each user achieves after calibration. We hypothesize that this technique will allow for faster calibration than an exhaustive search (720 seconds) while maintaining sufficient system accuracy across users.

5.2.1 Protocol

For each subject, we spliced all mental task recordings into 1/2-second chunks, each one representing a single power spectrum reading from our headset. By sampling from our dataset, we simulate recording a sixty second example of mental tasks from each user. We begin with examples of the three tasks most commonly associated with best-case performance (base, pass, color) for an initial user calibration time of 120 seconds. We then perform a seven-fold cross-validation on every permutation of two of these tasks (base versus task, pass versus color, etc).

Task	Freq Bestcase
Color	10
Base	5
Pass	4
Sport	3
Finger	2
Song	2
Eye	2

Table 1: An exhaustive search of SVM accuracy on taskpairs identified each subject's best-performing taskpair. We recorded the frequency of each task's occurrence in a best-case taskpair, shown here. We used these datato inform the order in which our opportunistic calibration strategy would prompt the user to record tasks.

The taskpair with the highest mean score across cross-validation rounds is selected for an additional testing session, in which the reamining 80 seconds of recordings for both tasks are used to generate an estimate of the classifier's accuracy on new EEG signals.

If the score on this additional testing round is below 75% (a threshold for BCI literacy) (Vidaurre and Blankertz, 2010), the user records sixty seconds of the taskpair next most correlated with bestcase accuracy across users. We repeat the above process on unexplored taskpairs repeated until a taskpair acheives over 75% accuracy on post-calibration data, or until all taskpairs have been evaluated.

5.2.2 Results

Figure 5: Calibration time across subjects (top) and classifier accuracy (bottom). The vast majority of subjects acheive acceptable accuracy in under five minutes of training, and all subjects acheive BCI literacy in under 15 minutes.

We find that our strategy calibrates users to BCI control more quickly than an exhaustive search.

6 DISCUSSION

In this study, we investigated the effect of a signal quantization technique on the performance of a binary BCI that used a low-cost, single-channel EEG headset as input. We found that our technique allowed for a computationally efficient BCI that acheives decent simulated accuracy for all users in our dataset and boasts quick user calibration times overall.

Specifically, we find that our quantization method decreased the computational expense of EEG-based calibration (18 ms to 2ms for SVM traintime) without a significant detriment to accuracy and, using quantized data, our opportunistic user calibration strategy acheived an average of 88.3% accuracy across all subjects. All subjects required under fifteen minutes of calibration time, and 86.6% of these subjects required five minutes or fewer.

7 CONCLUSIONS & FUTURE WORK

The conclusions to be drawn from this study are limited in a few regards. First, calibration and classification were performed offline, so factors involving the user interface (such as feedback) are not taken into account. We cannot be sure, for instance, that our findings with short splices of ten-recordings data will persist when a system solicits recordings of only a second or under. Furthermore, a few of our tasks (e.g. the color task) relied on exogenous stimuli, which may be impractical in naturalistic settings for ergonomic reasons.

Our study implies that practical BCI can be achieved with as few as one, inexpensive EEG sensor, minimal processing power and a only a few minutes of user calibration. Future work could build usable, online BCI systems to test this claim more rigorously, especially in mobile and out-of-lab environments.

Since many types of physiological data can be represented as power spectra (electrocardiography, electromyography), future work could test our quantization technique in other classification-based physiological applications (heart sensing, gesture recognition, or systems with heterogeneous sensors).

Since logarithmic binning dramatically decreases the size of physiological data in memory, this technique could allow developers to more easily ship biosignals to remote servers. Future work could explore the design space associated with the storage and transmission of physiological signals. BCI calibration, for example, could occur in the cloud - the client would quantize power spectra data and quantize them using our method, then ship these compressed data to a more powerful server.

Alternatively, the small size of quantized featuare vectors could enable long-term, pervasive recording of mental states. The data would be small enough to ship and store on a centralized server, or to store locally in a decentralized fashion. Monitoring mental (or other biophysical) activity continuously in everyday settings could yield observations about human activity & physiology that would be difficult to observe in controlled, laboratory environments.

REFERENCES

- Blankertz, B., Dornhege, G., Krauledat, M., Mller, K.-R., and Curio, G. (2007a). The non-invasive berlin braincomputer interface: fast acquisition of effective performance in untrained subjects. *NeuroImage*, 37(2):539550.
- Blankertz, B., Krauledat, M., Dornhege, G., Williamson, J., Murray-Smith, R., and Mller, K.-R. (2007b). A note on brain actuated spelling with the berlin brain-computer interface. In Stephanidis, C., editor, *Universal Access in Human-Computer Interaction. Ambient Interaction*, number 4555 in Lecture Notes in Computer Science, pages 759–768. Springer Berlin Heidelberg.
- Campbell, A., Choudhury, T., Hu, S., Lu, H., Mukerjee, M. K., Rabbi, M., and Raizada, R. D. (2010). Neuro-Phone: brain-mobile phone interface using a wireless EEG headset. In *Proceedings of the second ACM SIG-COMM workshop on Networking, systems, and applications on mobile handhelds*, page 38. ACM.
- Carrino, F., Dumoulin, J., Mugellini, E., Khaled, O., and Ingold, R. (2012). A self-paced BCI system to control an electric wheelchair: Evaluation of a commercial, low-cost EEG device. In *Biosignals and Biorobotics Conference (BRC)*, 2012 ISSNIP, pages 1–6.
- Chuang, J., Nguyen, H., Wang, C., and Johnson, B. (2013).
 I think, therefore i am: Usability and security of authentication using brainwaves. In Adams, A., Brenner, M., and Smith, M., editors, Financial Cryptography and Data Security, volume 7862 of Lecture Notes in Computer Science, pages 1–16. Springer Berlin Heidelberg.
- Crowley, K., Sliney, A., Pitt, I., and Murphy, D. (2010). Evaluating a brain-computer interface to categorise human emotional response. In *ICALT*, page 276278.
- D. Mattia, F. Pichiorri, M. M. R. R. (2011). Brain computer interface for hand motor function restoration and rehabilitation. In *Towards Practical Brain Computer Interfaces*. Springer, Biological and Medical Physics, Biomedical Engineering.
- Das, D., Chatterjee, D., and Sinha, A. (2013). Unsupervised approach for measurement of cognitive load using EEG signals. pages 1–6. IEEE.
- Dornhege, G. (2007). *Toward Brain-computer Interfacing*. MIT Press.
- Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008). LIBLINEAR: a library for large linear classification. *J. Mach. Learn. Res.*, 9:18711874.
- Garrett, D., Peterson, D., Anderson, C., and Thaut, M. (2003). Comparison of linear, nonlinear, and feature selection methods for eeg signal classification. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 11(2):141–144.
- Grierson, M. and Kiefer, C. (2011). Better brain interfacing for the masses: progress in event-related potential detection using commercial brain computer interfaces. page 1681. ACM Press.
- Hill, N. J., Ricci, E., Haider, S., McCane, L. M., Heckman, S., Wolpaw, J. R., and Vaughan, T. M. (2014). A

- practical, intuitive braincomputer interface for communicating yes or no by listening. *Journal of Neural Engineering*, 11(3):035003.
- Jain, A. K., Duin, R. P. W., and Mao, J. (2000). Statistical pattern recognition: A review. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 22(1):437.
- Kindermans, P.-J., Schreuder, M., Schrauwen, B., Mller, K.-R., and Tangermann, M. (2014). True zero-training brain-computer interfacing an online study. *PLoS ONE*, 9(7):e102504.
- Larsen, E. A. and Hokl, C.-s. J. (2011). Classification of EEG Signals in a Brain-Computer Interface System.
- Lotte, F., Congedo, M., Lcuyer, A., Lamarche, F., Arnaldi, B., et al. (2007). A review of classification algorithms for EEG-based braincomputer interfaces. *Journal of neural engineering*, 4.
- Lu, S., Guan, C., and Zhang, H. (2009). Unsupervised brain computer interface based on intersubject information and online adaptation. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 17(2):135– 145.
- McFarland, D. J. and Wolpaw, J. R. (2011). Brain-computer interfaces for communication and control. *Commun ACM*, 54(5):60–66.
- Milln, J. D. R., Rupp, R., Mller-Putz, G. R., Murray-Smith, R., Giugliemma, C., Tangermann, M., Vidaurre, C., Cincotti, F., Kbler, A., Leeb, R., Neuper, C., Mller, K.-R., and Mattia, D. (2010). Combining brain-computer interfaces and assistive technologies: State-of-the-art and challenges. Front Neurosci, 4.
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, (2011). Scikit-learn: Machine learning in python. J. Mach. Learn. Res., 12:28252830.
- Raudys, S. J. and Jain, A. K. (1991). Small sample size effects in statistical pattern recognition: Recommendations for practitioners. *IEEE Transactions on pattern analysis and machine intelligence*, 13(3):252264.
- Shenoy, P., Krauledat, M., Blankertz, B., Rao, R. P. N., and Mller, K.-R. (2006). Towards adaptive classification for BCI. *Journal of Neural Engineering*, 3(1):R13–R23.
- Vidaurre, C. and Blankertz, B. (2010). Towards a cure for BCI illiteracy. *Brain topography*, 23(2):194198.
- Vidaurre, C., Sannelli, C., Mller, K.-R., and Blankertz, B. (2011a). Co-adaptive calibration to improve BCI efficiency. *Journal of Neural Engineering*, 8(2):025009.
- Vidaurre, C., Sannelli, C., Mller, K.-R., and Blankertz, B. (2011b). Machine-learning-based coadaptive calibration for brain-computer interfaces. *Neural Computation*, 23(3):791–816.
- Vidaurre, C., Schloogl, A., Cabeza, R., Scherer, R., and Pfurtscheller, G. (2006). A fully on-line adaptive BCI. *IEEE Transactions on Biomedical Engineering*, 53(6):1214–1219.