

谢秉磊

第四节 线性规划问题的灵敏度分析

灵敏度分析解决以下两个问题:

- 1) c_j, a_{ij}, b_i 在什么范围内变化时, X^* 不变。
- 2) 如果 X^* 发生变化,如何用最简便的方法求出新的最优解。

第四节 线性规划问题的灵敏度分析

- 目标函数成本系数C的灵敏度分析
- 约束右端项b的灵敏度分析
- 约束矩阵4的灵敏度分析

例2-5:

某工厂计划生产三种产品 A_1, A_2, A_3 ,三种产品每件的收益分别是2,3,1,资源总数为:人工为1,材料为3。

每件产品所需人工和材料 数如右表,试决定最优的 生产方案使该厂收益最大。

解: 设 A_1, A_2, A_3 的产量分别为 x_1, x_2, x_3

$\max S = 2x_1 + 3x_2 + x_3$	
$\begin{cases} \frac{1}{3}x_1 + \frac{1}{3}x_2 + \frac{1}{3}x_3 \le 1 \\ \frac{1}{3}x_1 + \frac{4}{3}x_2 + \frac{7}{3}x_3 \le 3 \end{cases}$	标准形
$\begin{pmatrix} x_1, x_2, x_3 \geq 0 \end{pmatrix}$	

	A_{1}	A_{2}	A_3	资源
人工	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	1
材料	1/3	4/3	7/3	3
收益	2	3	1	

$$\max S = 2x_1 + 3x_2 + x_3$$

$$\begin{cases} \frac{1}{3}x_1 + \frac{1}{3}x_2 + \frac{1}{3}x_3 + x_4 = 1\\ \frac{1}{3}x_1 + \frac{4}{3}x_2 + \frac{7}{3}x_3 + x_5 = 3\\ x_1, x_2, x_3 \ge 0 \end{cases}$$

$$(P_1) \min S = CX$$

$$AX = b$$

$$X \ge 0$$

$$(P_2) \max S = CX$$

$$AX = b$$

$$X \ge 0$$

(P_1) 的最优性判别定理:

对于基
$$B$$
, 若 $B^{-1}b \ge 0$, $C - C_B B^{-1}A \ge 0$ 则 $X = \begin{pmatrix} B^1b \\ 0 \end{pmatrix}$ 是 (P_1) 的最优解。若有某个 $y_{0j} = c_j - c_B B^{-1}p_j < 0$,

 x_i 进基做基变量可使目标值 ↓(非退化)

(P_2) 的最优性判别定理:

对于基
$$B$$
,若 $B^{-1}b \ge 0$, $C - C_B B^{-1}A \le 0$ 则 $X' = \begin{pmatrix} B^{1}b \\ 0 \end{pmatrix}$ 是 (P_2) 的最优解。若有某个 $y_{0j} = c_j - c_B B^{-1}p_j > 0$,

 x_i 进基做基变量可使目标值 \uparrow (非退化)

$$\max S = 2x_{1} + 3x_{2} + x_{3} \qquad y_{0j} = c_{j} - C_{B}B^{-1}p_{j} = c_{j}$$

$$\begin{cases} \frac{1}{3}x_{1} + \frac{1}{3}x_{2} + \frac{1}{3}x_{3} + x_{4} = 1 & C_{B} = (0, 0) \\ \frac{1}{3}x_{1} + \frac{4}{3}x_{2} + \frac{7}{3}x_{3} + x_{5} = 3 & y_{00} = C_{B}B^{-1}b \\ x_{1}, x_{2}, x_{3} \ge 0 \end{cases}$$

初始表

		\mathcal{X}_{l}	\mathcal{X}_2	x_3	\mathcal{X}_4	X_5
	0	2	3	1	0	0
\mathcal{X}_4	1	$\frac{1}{3}$	1/3	1/3	1	0
x_5	3	$\frac{1}{3}$	$\frac{4}{3}$	$\frac{7}{3}$	0	1
	b	p_1	p_2	p_3	$p_{_4}$	p_{5}

A

I								_
			$\dot{x}_{\rm l}$	\dot{x}_2	X_3	\mathcal{X}_4	x_5	
		0	2	3	1	0	0	$v_{0j} = c_j - C_B B^{-1} p_j \le 0$
初一	$-x_4$	1	$\frac{1}{3}$	1/3	$\frac{1}{3}$	1	0	? ×
始表	x_5	3	$\frac{1}{3}$	$\frac{4}{3}$	$\frac{7}{3}$	0	1	
		-6	0	1	-1	-6	0	$V_{0j} = C_j - C_B B^{-1} p_j \le 0$
	x_1	3	1	1	1	3	0	? ×
←	$-x_{5}$	2	0	1	2	-1	1	
		-8	0	0	-3	-5	-1	$v_{0j} = c_j - C_B B^{-1} p_j \le 0$
最 优	x_1	1	1	0	-1	4	-1	? ✓
表	\mathcal{X}_2	2	0	1	2	-1	1	

Ι								_
			\mathcal{X}_{l}	x_2	x_3	\mathcal{X}_4	x_5	
		0	2	3	1	0	0]
初	\mathcal{X}_4	1	1/3	$\frac{1}{3}$	1/3	1	0]
始表	$B_{\chi_5}^{-1}$	b 3	$\frac{1}{3}$	3/3	p_3	0	<i>E</i> 1	
-0	${}_{B}B^{-1}b$	-8	0	0	-3	-5	-1 c _j -	$C_B B^{-1} p_j$
最份	x_1	1	1	0	-1	4	-1	
最优表	x_2	2	0	1	2	- 1	1	
•		$B^{-1}b$	F	<u> </u>	B^{-1} p_{s}		B^{-1}	•

最优解:
$$X^* = (1, 2, 0, \frac{0, 0}{0, 0})^T, S^* = 8$$

最优解:
$$X^* = (1, 2, 0, 0, 0)^T, S^* = 8$$
 最优基: $B = (p_1, p_2) = \begin{pmatrix} 1/3 & 1/3 \\ 1/3 & 4/3 \end{pmatrix}$

$$B^{-1} = \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix}$$

第四节 线性规划问题的灵敏度分析

- ■目标函数成本系数℃的灵敏度分析
 - 约束右端项b的灵敏度分析
 - 约束矩阵4的灵敏度分析

- c_i 是非基变量 x_i 的系数;
 - (2) c_{J_r} 是第r个方程的基变量 x_{J_r} 的系数;

(1) c_j 是非基变量 x_j 的系数;

设 $c_j \rightarrow c_j + \Delta c_j$,其他参数(C中其他分量,A,b)都不变。

改变量 Δc_i 只影响 x_i 的检验数 y_{0i} :

(1) c_j 是非基变量 x_j 的系数;

设 $c_j \rightarrow c_j + \Delta c_j$,其他参数都不变。

改变量 Δc_i 只影响 x_i 的检验数 y_{0i} :

设最优表中 x_j 的原检验数 $y_{0j} = c_j - c_B B^{-1} p_j \le 0$ 新检验数 $y'_{0j} = (c_j + \Delta c_j) - c_B B^{-1} p_j$ $= y_{0j} + \Delta c_j \mathcal{O} \le 0$

则最优解不变。

续 例			x_{l}	x_2	x_3	x_4 x_5
נילו		0	2	3	1	0 0
初始	\mathcal{X}_4	1	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	1 0
始表	x_5	3	$\frac{1}{3}$	4/3	$\frac{7}{3}$	0 1
		-8	0	0	-3	-5 -1
最份	\mathcal{X}_1	1	1	0	-1	4 -1
表	\mathcal{X}_2	2	0	1	2	-1 1

 x_3 的系数 $c_3 = 1$ 有改变量 Δc_3

$$\left[y_{0j}' = y_{0j} + \Delta c_j\right]$$

1) 当
$$y'_{03} = y_{03} + \Delta c_{3} = -3 + \Delta c_{3} \le 0$$
时,即 $\Delta c_{3} \le 3$,

即 A_3 的单位收益 $\overline{c}_3 = c_3 + \Delta c_3 \le 1 + 3 = 4$ 时,原最优方案不变。 $X^* = (1,2,0,0,0,0)^T$,生产 A_3 是不经济的。

			x_{l}	x_2	X_3	\mathcal{X}_4	X_5
		0	2	3	1→6	0	0
初始	\mathcal{X}_4	1	$\frac{1}{3}$	$\frac{1}{3}$	1/3	1	0
表	x_5	3	$\frac{1}{3}$	4/3	$\frac{7}{3}$	0	1
		-8	0	0	-3 →2	-5	-1
最份	x_1	1	1	0	-1	4	-1
表	x_2	2	0	1	2	-1	1

 x_3 的系数 $c_3 = 1$ 有改变量 Δc_3 1)当 $\Delta c_3 \leq 3$ 时, X^* 不变2)当 $\Delta c_3 > 3$,即 A_3 的单位收益 $\overline{c}_3 = c_3 + \Delta c_3 > 4$,如增加到 $6 = c_3 + \Delta c_3 \longrightarrow \Delta c_3 = 5$ 时, $y_{03}' = y_{03} + \Delta c_3 = -3 + 5 = 2 > 0$, X^* 不再最优。 x_3 进基,即生产 A_3 可以提高收益。

初始表	

			x_1	x_2	x_3	χ	. ′4	x_5
		0	2	3	1→6	C)	0
]	\mathcal{X}_4	1	$\frac{1}{3}$	$\frac{1}{3}$	1/3	1		0
	x_5	3	$\frac{1}{3}$	4/3	$\frac{7}{3}$	C)	1
		-8	0	0	2	-5	5	-1
	x_1	1	1	0	-1	۷	1	-1
	$\leftarrow x_2$	2	0	1	2	-1	1	1
		-10	0	-1	0	T 7*		•
	x_1	2	1	1/2	0	X* =	=(2,0,
	X 3	1	0	1/2	1	·C* -	-1	0

$$X^* = (2,0,1)^T$$

$$S^* = 10$$

- (1) c_i 是非基变量 x_i 的系数;
- **2**) c_{J_r} 是第r 个方程的基变量 x_{J_r} 的系数;

(2) c_{J_r} 是第r个方程的基变量 x_{J_r} 的系数

当 c_{J_r} 有改变量 Δc_{J_r} 时,则 C_B 发生变化: $C_B \rightarrow C_B + \Delta C_B$

$$C_{B} = (c_{J_{1}}^{J_{1}}, \cdots, c_{J_{r}}^{J_{r}}, \cdots, c_{J_{m}}^{J_{m}})$$

$$C_{B} + \Delta C_{B} = (c_{J_{1}}, \cdots, c_{J_{r}}^{J_{r}}, + \Delta c_{J_{r}}^{J_{r}}, \cdots, c_{J_{m}}^{J_{m}})$$

所有非基变量检验数 $y_{0j} = c_j - C_B B^{-1} p_j$ 都随之变化,为使原最优解不变,所有非基变量的新检验数

$$y'_{0j} = c_j - (C_B + \Delta C_B)B^{-1}p_j \leq 0$$

			x_1	x_2	X_3		\mathcal{X}_4	x_5		
		0	2	3	1		0	0		
初始	X_4	1	$\frac{1}{3}$	$\frac{1}{3}$	1/3		1	0		
装	$B_{\chi_5}^{-1}$	b	, 6	4/3	$\frac{\rho_3}{3}$		•		$C_B + \Delta C_B)B^{-1}p_j$	
<u>-</u> 0	${}^{\prime}_B B^{-1} b$	-8	0	0	-3		-5	$-1 c_j$	$C_B B^{-1} p_j$	
最份	\mathcal{X}_1	1	1	0	-1		4	-1		
表	\mathcal{X}_2	2	0	1	2		-1	1		
		$B^{-1}b$	<u></u>	E	$B^{-1}p_3$			B^{-1}		
$y'_{03} = 1 - (2 + \Delta c_1, 3) {\binom{-1}{2}} = \Delta c_1 - 3 \le 0 \longrightarrow \Delta c_1 \le 3$										
$y'_{04} = 0 - (2 + \Delta c_1, 3) \begin{pmatrix} 4 \\ -1 \end{pmatrix} = -4\Delta c_1 - 5 \le 0 \longrightarrow \Delta c_1 \ge -5/4 $ $-5/4 \le \Delta c_1 \le 1$ $y'_{05} = 0 - (2 + \Delta c_1, 3) \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \Delta c_1 - 1 \le 0 \longrightarrow \Delta c_1 \le 1$ $7 = 4 \oplus 1 \oplus 3 \triangle 2 = 4$										
$-y_0'$	₅ = 0 -	$(2+\Delta c_1)$	(3) $\begin{pmatrix} -1\\1 \end{pmatrix}$	$=\Delta c_1$	1≤0→	$\Delta c_1 \leq 1$	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	 偶理论2	-4	
						_		, ,, ,, ,, ,,		

			\mathcal{X}_{1}	χ_{2}	X_3	X_{4}	χ_{5}	
		0	2	3	1	0	0	
初	X_4	1	1/2	1/2	1/2	1	0	
始表	x_5	3	$\frac{1}{3}$	4/3	$\frac{7}{3}$	0	1	$y'_{0j} = c_j - (C_B + \Delta C_B)B^{-1}p_j$
		-8	0	0	-3	-5	-1	$y_{0j} = c_j - C_B B^{-1} p_j \le 0$
最供	\mathcal{X}_{1}	1	1	0	-1	4	-1	
表	x_2	2	0	1	2	-1	1	

$$X^* = (1, 2, 0, 0, 0)^T$$

$$-5/4 \le \Delta c_1 \le 1$$

$$\bar{c}_1 = c_1 + \Delta c_1$$
 在[2-5/4, 2+1]=[3/4, 3]内变化时,原 X^* 不变,

对偶理论2-4

目标函数多个成本系数同时发生变化

用100%规则检查两个以上变量系数变化情况

□ 已知每个系数的变化范围为:

$$L_j \leq c_j \leq U_j$$

□ 定义比率系数 r_i:

$$r_{j} = \begin{cases} \Delta c_{j} / (U_{j} - c_{j}) & \Delta c_{j} \geq 0 \\ \Delta c_{j} / (L_{j} - c_{j}) & \Delta c_{j} \leq 0 \end{cases}$$

□ 如果满足 \sum j rj \leq 1, 变化率之和不超过100%, 则最优解保持不变;如果上式不满足,最优解可能会发生变化。

第四节 线性规划问题的灵敏度分析

- ✓ 目标函数成本系数C的灵敏度分析
- 一约束右端项b的灵敏度分析
 - 约束矩阵4的灵敏度分析

、b的灵敏度分析

二、
$$b$$
的灵敏度分析
当第 r 个方程右端项 $b_r \to \overline{b}_r$,即 $b = \begin{pmatrix} b_1 \\ \vdots \\ b_r \\ \vdots \\ b_m \end{pmatrix} \to \overline{b} = \begin{pmatrix} b_1 \\ \vdots \\ \overline{b}_r \\ \vdots \\ b_m \end{pmatrix}$

而其他参数不变时,问 b_i 在什么范围内变化时,最 优基B不变?

分析:因为b的变化不影响检验数 $y_{0j} = c_j - C_B B^{-1} p_j$ 所以当 $b \to \overline{b}$ 时,在最优表中 $B^{-1}b \to B^{-1}\overline{b}$, ≥0 若仍≥0 则最优基B不变。

但最优解和最优值都发生变化:

$$X^* = \begin{pmatrix} B^{-1}\overline{b} \\ 0 \end{pmatrix} \quad S^* = C_B B^{-1}\overline{b}$$

١.								
			x_{l}	x_2	x_3	\mathcal{X}_4	x_5	
		0	2	3	1	0	0	
初	\mathcal{X}_4	1	1/3	1/3	1/3	1	0	
始表	$B_{\chi_5}^{-1}$	b 3	$\frac{1}{3}$	3/4/3	$\frac{p_3}{3}$	0	E 1	
-0	${}_{B}^{-1}b$	-8	0	0	-3	-5	-1 c_{j} -	$C_B B^{-1} p_j$
最优表	\mathcal{X}_1	1	1	0	-1	4	-1	
表	x_2	2	0	1	2	-1	1	
		$B^{-1}b$	I	3	$B^{-1}p_3$	ŀ	3^{-1}	•

$$B^{-1}\overline{b} = \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} \overline{b}_1 \\ 3 \end{pmatrix} = \begin{pmatrix} 4\overline{b}_1 - 3 \\ -\overline{b}_1 + 3 \end{pmatrix} \ge 0 \longrightarrow \frac{3}{4} \le \overline{b}_1 \le 3$$

			x_{1}	x_2	x_3	\mathcal{X}_4	x_5	
		0	2	3	1	0	0	
初	\mathcal{X}_4	1	1/3	1/3	1/3	1	0]
始表	$B_{\chi_5}^{-1}$	b 3	$\frac{1}{3}$	$\frac{3}{4/3}$	$\frac{p_3}{3}$	0	<i>E</i> 1	
-0	${}^{\scriptscriptstyle \!$	-8	0	0	-3	-5	-1 c _j -	$C_B B^{-1} p_j$
最优表	X_1	1	1	0	-1	4	-1	
表	x_2	2	0	1	2	-1	1	
		$B^{-1}b$	1	Ξ	$B^{-1}p_3$		B^{-1}	•

当
$$b = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \rightarrow \bar{b} = \begin{pmatrix} \bar{b}_1 \\ 3 \end{pmatrix}$$
 时,为使最优基 B 不变, $\frac{3}{4} \leq \bar{b}_1 \leq 3$

但
$$X^*$$
, S^* 变化为: $X^* = \begin{pmatrix} B^{-1}\overline{b} \\ 0 \end{pmatrix}$ $S^* = C_B B^{-1}\overline{b}$

			\mathcal{X}_{l}	x_2	X_3	\mathcal{X}_4	X_5
		0	2	3	1	0	0
初始	\mathcal{X}_4	4	$\frac{1}{3}$	$\frac{1}{3}$	1/3	1	0
表	x_5	3	$\frac{1}{3}$	4/3	$\frac{7}{3}$	0	1
		-23	0	0	-3	-5	-1
	x_1 x_2	13 -1	1 0	0 1	-1 2	4 -1 B	-1 1

$$\frac{3}{4} \le \overline{b}_1 \le 3$$

$$B = (p_1, p_2)$$

不是可行基
 $B^{-1} = \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix}$

$$B^{-1} = \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix}$$

$$\stackrel{\text{\tiny index}}{=} b = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \rightarrow \overline{b} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
 时, $B^{-1}\overline{b} = \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 13 \\ -1 \end{pmatrix}$

$$S = C_B B^{-1} \overline{b} = (2,3) \begin{pmatrix} 13 \\ -1 \end{pmatrix} = 23$$

初	
#2	3
쟟	
衣	Ś

		\mathcal{X}_{l}	x_2	X_3	\mathcal{X}_4	X_5
	0	2	3	1	0	0
\mathcal{X}_4	4	$\frac{1}{3}$	$\frac{1}{3}$	1/3	1	0
x_5	3	$\frac{1}{3}$	4/3	$\frac{7}{3}$	0	1
	-23	0	0	-3	-5	-1
$x_1 \\ x_2$	13 -1	1 0	0	-1 2	4 -1	-1 1

$$B=(p_1,p_2)$$

不是可行基

$$B^{-1} = \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix}$$

$$\stackrel{\text{\tiny "}}{\Rightarrow} b = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \rightarrow \overline{b} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
 时, $B^{-1}\overline{b} = \begin{pmatrix} 13 \\ -1 \end{pmatrix}$ $S = C_B B^{-1}\overline{b} = 23$

但此时所有检验数仍 ≤ 0 ,所以B是正则基。

可用对偶单纯形法求新的最优解。

			34	34	34	34	34
			x_{l}	\mathcal{X}_2	λ_3	X_4	λ_5
		0	2	3	1	0	0
初始表	\mathcal{X}_4	4	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	1	0
	x_5	3	$\frac{1}{3}$	4/3	$\frac{7}{3}$	0	1
		-23	0	0	-3	-5	-1
	$\overline{x_1}$	13	1	0	-1	4	-1
•	$-x_2$	-1	0	1	2	-1	1

$$\max S = CX$$

$$AX = b$$

$$X \ge 0$$

$$\varepsilon = \min\{\frac{y_{0j}}{y_{rj}} | y_{rj} < 0\} = \frac{y_{0k}}{y_{rk}} \longrightarrow x_{k}$$
为进基变量

$$\varepsilon = \min\{\frac{y_{0j}}{-y_{rj}} \middle| y_{rj} < 0\} = \frac{y_{0k}}{y_{rk}} \longrightarrow x_k$$
 为进基变量

			\mathcal{X}_{l}	x_2	\mathcal{X}_3	x_4	X_5
		0	2	3	1	0	0
初始表	\mathcal{X}_4	4	$\frac{1}{3}$	1/3	1/3	1	0
装	x_5	3	$\frac{1}{3}$	$\frac{4}{3}$	$\frac{7}{3}$	0	1
		-23	0	0	-3	-5	-1
	x_1	13	1	0	-1	4	-1
•	$-x_2$	-1	0	1	2	-1	1
	\mathcal{X}_{1}						
	X_4						

			\mathcal{X}_{l}	\mathcal{X}_2	\mathcal{X}_3	x_4	x_5
		0	2	3	1	0	0
初始	\mathcal{X}_4	4	$\frac{1}{3}$	1/3	1/3	1	0
始表	x_5	3	$\frac{1}{3}$	$\frac{4}{3}$	$\frac{7}{3}$	0	1
		-23	0	0	-3	-5	-1
	X_1	13	1	0	-1	4	-1
4	$-x_2$	-1	0	1	2	-1	1
	X_1						
	\mathcal{X}_4	1	0	-1	-2	1	-1

			\mathcal{X}_{l}	x_2	x_3	x_4	x_5
		0	2	3	1	0	0
初始	\mathcal{X}_4	4	$\frac{1}{3}$	1/3	$\frac{1}{3}$	1	0
初始 表	x_5	3	$\frac{1}{3}$	4/3	$\frac{7}{3}$	0	1
		-23	0	0	-3	-5	-1
	x_1	13	1	0	-1	4	-1
•	$-x_2$	-1	0	1	2	-1	1
	x_1	9	1	4	7	0	3
	\mathcal{X}_4	1	0	-1	-2	1	-1

1							
			\mathcal{X}_{1}	x_2	x_3	\mathcal{X}_{4}	\mathcal{X}_{5}
		0	2	3	1	0	0
初始	\mathcal{X}_4	4	$\frac{1}{3}$	1/3	$\frac{1}{3}$	1	0
始表	x_5	3	$\frac{1}{3}$	$\frac{4}{3}$	$\frac{7}{3}$	0	1
		-23	0	0	-3	-5	-1
	\mathcal{X}_{1}	13	1	0	-1	4	-1
•	$-x_2$	-1	0	1	2	-1	1
		-18	0	-5	-13	0	-6
最	\mathcal{X}_1	9	1	4	7	0	3
忧表	\mathcal{X}_4	1	0	-1	-2	1	-1

$$X^* = (9,0,0)^T$$
$$S^* = 18$$

此题未设置答案,请点击右侧设置按钮

关于原问题与对偶问题的解之间的关系,说法正确的是()

- 描述 若原问题有可行解,则其对偶问题也一定 有可行解。
- 五 若原问题有最优解 ,其对偶问题也一定有 最优解。
- 若原问题和对偶问题均存在可行解,则两者均存在最优解。
- 了 若线性规划的原问题有无穷多最优解,则 其对偶问题也一定具有无穷多最优解。

第四节 线性规划问题的灵敏度分析

- ✓ 目标函数成本系数C的灵敏度分析
- ✓ 约束右端项b的灵敏度分析
- → 约束矩阵A的灵敏度分析

约束矩阵A的灵敏度分析

- 某个元素 a_{ij} 有改变量 Δa_{ij}
 - 增加新的一列(即增加一个新的变量)
 - 增加新的一行(即增加一个新的约束)

三、4的灵敏度分析

(1) 某个元素 a_{ij} 有改变量 Δa_{ij} ,且它是非基列 P_{ij} 的分量:

$$\boldsymbol{p}_{j} = \begin{pmatrix} \boldsymbol{a}_{1j} \\ \vdots \\ \boldsymbol{a}_{ij} \\ \vdots \\ \boldsymbol{a}_{mj} \end{pmatrix} \rightarrow \overline{\boldsymbol{p}}_{j} = \begin{pmatrix} \boldsymbol{a}_{1j} \\ \vdots \\ \boldsymbol{a}_{ij} + \Delta \boldsymbol{a}_{ij} \\ \vdots \\ \boldsymbol{a}_{mj} \end{pmatrix}$$

三、4的灵敏度分析

(1) 某个元素 a_{ii} 有改变量 Δa_{ii} ,且它是非基列 P_{ii} 的分量:

$$p_{j} = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{ij} \\ \vdots \\ a_{mj} \end{pmatrix} \rightarrow \overline{p}_{j} = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{ij} + \Delta a_{ij} \\ \vdots \\ a_{mj} \end{pmatrix}$$

非基变量 x_j 的原检验数 $y_{0j} = c_j - C_B B^{-1} p_j \le 0$ 非基变量 x_j 的新检验数 $y'_{0j} = c_j - C_B B^{-1} \bar{p}_j \le 0$ 则原最优解不变。

若 $y_{0j} = c_j - C_B B^{-1} \bar{p}_j > 0$,则原最优解不再是最优解。 让 x_j 进基进行换基运算求出新的最优解。

 $a_{13} = 1/3$ 有改变量 Δa_{13} ,求 Δa_{13} 的范围使原 X^* 不变。

$$p_{3} = \begin{pmatrix} 1/3 \\ 7/3 \end{pmatrix} \rightarrow \overline{p}_{3} = \begin{pmatrix} 1/3 + \Delta a_{13} \\ 7/3 \end{pmatrix} \qquad \lambda = C_{B}B^{-1} = (2,3) \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix} = (5 \ 1)$$

$$y'_{03} = c_{3} - C_{B}B^{-1}\overline{p}_{3} = 1 - (5,1) \begin{pmatrix} 1/3 + \Delta a_{13} \\ 7/3 \end{pmatrix} = -3 - 5\Delta a_{13} \le 0 \rightarrow \Delta a_{13} \ge -3/5$$

 $a_{13} = 1/3$ 有改变量 Δa_{13} ,求 Δa_{13} 的范围使原X*不变。

$$p_{3} = \begin{pmatrix} 1/3 \\ 7/3 \end{pmatrix} \rightarrow \overline{p}_{3} = \begin{pmatrix} 1/3 + \Delta a_{13} \\ 7/3 \end{pmatrix} \quad y'_{03} = c_{3} - C_{B}B^{-1}\overline{p}_{3} = -3 - 5\Delta a_{13} \le 0 \quad \Delta a_{13} \ge -3/5$$
即 $\overline{a}_{13} = a_{13} + \Delta a_{13} \ge \frac{1}{3} - \frac{3}{5} = -\frac{4}{15}$,原最优解不变。

			x_{l}	x_2	\mathcal{X}_3	\mathcal{X}_4	x_5
		0	2	3	1	0	0
初始	\mathcal{X}_4	1	1/3	$\frac{1}{3}$	$\frac{1}{3}$	1	0
始表	x_5	3	$\frac{1}{3}$	4/3	$\frac{7}{3}$	0	1
		-8	0	0	-3	-5	-1
最优表	$\begin{array}{c} x_1 \\ x_2 \end{array}$	1 2	1 0	0 1	-1 2	4 -1 B	-1 1

$$X^* = (1,2,0)^T$$

 $S^* = 8$

最优基

$$B = (p_1, p_2)$$

$$B^{-1} = \begin{pmatrix} 4 & -1 \\ -1 & 1 \end{pmatrix}$$

注意: 不去讨论基变量 x_{J_j} 的系数列 p_{J_j} 的某个元素 a_{iJ_j} 的改变对 X^* 的影响。比如: p_1 中的1/3改变,

$$p_1 \mathfrak{G} \to B \mathfrak{G} \to B^{-1} \mathfrak{G} \to \begin{cases} y_{0j} = c_j - C_B B^{-1} p_j \mathfrak{G} \\ B^{-1} b \mathfrak{G}, C_B B^{-1} b \mathfrak{G} \end{cases}$$

对偶理论2-4

约束矩阵的A灵敏度分析

- \checkmark 某个元素 a_{ij} 有改变量 Δa_{ij}
- 增加新的一列(即增加一个新的变量)
 - 增加新的一行(即增加一个新的约束)

三、A的灵敏度分析

(2) 增加新的一列(即增加一个新的变量)

设增加变量 x_{n+1} ,对应的成本系数为 c_{n+1} ,系数列 p_{n+1}

即在单纯形表中新增加一列: c_{n+1}

 x_{n+1}

 p_{n+1}

则在最优表中 x_{n+1} 的检验数为: $y_{0n+1} = c_{n+1} - C_B B^{-1} p_{n+1}$

若 $y_{0n+1} \leq 0$,则原最优解不变;

若 $y_{0n+1} > 0$,则原最优解不再最优。 x_{n+1} 进基,求新的最优解。

例2-2:

	A_{1}	A_{2}	A_3	资源	A_4
人工	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	1	1/3
材料	1/3	4/3	7/3	3	1/3
收益	2	3	1		c_6

$$\max S = 2x_{1} + 3x_{2} + x_{3}$$

$$\frac{x_{6}}{A_{4}} = \begin{cases} \frac{1}{3}x_{1} + \frac{1}{3}x_{2} + \frac{1}{3}x_{3} + x_{4} = 1 \\ \frac{1}{3}x_{1} + \frac{4}{3}x_{2} + \frac{7}{3}x_{3} + x_{5} = 3 \\ x_{1}, x_{2}, x_{3} \ge 0 \end{cases}$$

问单位收益 c_6 为多少时,才有利于 A_4 的投产? 即 c_6 为何值时, $y_{06} > 0$?

分析:

$$y_{06} > 0 \rightarrow x_6$$
 进基 $\rightarrow x_6 > 0 \rightarrow A_4$ 投产

			x_1	x_2	x_3	\mathcal{X}_4	x_5	X_6	
		0	2	3	1	0	0	c_6	$S^* = 8$
初始	\mathcal{X}_4	1	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	1	0	1/3	
装	x_5	3	$\frac{1}{3}$	4/3	$\frac{7}{3}$	0	1	1/3	
		-8	0	0	-3	-5	-1	$c_6 - C_B$	$B^{-1}p_6$
最份	\mathcal{X}_1	1	1	0	-1	4	-1	1	
表	\mathcal{X}_2	2	0	1	2	-1 B	1	$B^{-1}p_6$	

$$y_{06} = c_6 - \underline{C_B B^{-1}} p_6 = c_6 - (5,1) \begin{pmatrix} 1/3 \\ 1/3 \end{pmatrix} X^* = (1,2,0,0)^T$$

$$= c_6 - 2 \begin{cases} \le 0 \implies \exists c_6 \le 2 \text{ pt}, x_6 = 0, \text{即生产} A_4 \text{不利} \\ > 0 \implies \exists c_6 > 2 \text{ pt}, x_6 > 0, \text{ 即生产} A_4 \text{有利} \end{cases}$$
(进基) 对偶理论2-4

约束矩阵的A灵敏度分析

- \checkmark 某个元素 a_{ij} 有改变量 Δa_{ij}
- ✓ 增加新的一列(即增加一个新的变量)
- 增加新的一行(即增加一个新的约束)

三、A的灵敏度分析

(3) 增加新的一行(即增加一个新的约束)

- 设增加新的约束为: $a_{m+1,1}x_1 + a_{m+1,2}x_2 + \cdots + a_{m+1,n}x_n \leq b_{m+1}$
- a) 如果原最优解满足新约束,则原最优解仍是最优的。
- b) 如果原最优解不满足新约束,则原最优解不再最优。 为了寻求新的最优解,在新约束中加松弛变量 x_{n+1} ,

$$a_{m+1,1}x_1 + a_{m+1,2}x_2 + \dots + a_{m+1,n}x_n + x_{n+1} = b_{m+1}$$

在原最优表中增加新的一行(对应新约束),然后用对 偶单纯形法求新的最优解。

例2-2:

增加一个新约束:

工时	1	2	1	b_3
	$A_{\mathbf{l}}$	A_2	A_3	资源
人工	$\frac{1}{3}$	/3	/3	1
材料	1/3	4/3	7/3	3
收益	2	3	1	

生产三种产品每件所需检验工时分别为1,2,1,且可供检验的时间为 b_3 $x_1 + 2x_2 + x_3 \le b_3$ 求 b_3 的范围使原最优解不变。

分析:

a) 将原最优解 $X^* = (1,2,0)^T$ 代入新约束:

$$5 = 1 + 2 \times 2 + 0 \le b_3$$

即当 $b_3 \ge 5$ 时,原最优解不变。

例2-2:

增加一个新约束:

工时	1	2	1	b_3
	$A_{\mathbf{l}}$	A_2	A_3	资源
人工	/3	/3	/3	1
材料	1/3	4/3	7/3	3
收益	2	3	1	

生产三种产品每件所需检验工时分别为1,2,1,且可供检验的时间为 b_3 $x_1 + 2x_2 + x_3 \le b_3$ 求 b_3 的范围使原最优解不变。

b) 当检验工时 $b_3 < 5$ 时,如 $b_3 = 4$,此时新约束为 $x_1 + 2x_2 + x_3 \le 4$.加入该约束后,原最优解已不可行。为了寻求新的最优解,在新约束中引入松弛变量 x_6 ,即 $x_1 + 2x_2 + x_3 + x_6 = 4$ 加到原最优表中的第三行进行迭代。

原最优表

H								
			x_{l}	\mathcal{X}_2	x_3	\mathcal{X}_4	x_5	\mathcal{X}_{6}
		-8	0	0	-3	-5	-1	0
Γ	\mathcal{X}_{l}	1	1	0	-1	4	-1	0
l	x_1 x_2 x_6	2	0	1	2	-1	1	0
	\mathcal{X}_{6}	4	1	2	1	0	0	1
								x_1
L								
L								
l								
L								

$$r_3 - r_1$$

 $r_3 - 2r_2$
 $+ 2x_2 + x_3 + x_6 = 4$

			x_1	x_2	x_3	\mathcal{X}_4	x_5	x_6
		-8	0	0	-3	-5	−1 [▼]	0
原	\mathcal{X}_{1}	1	1	0	-1	4	-1	0
最	\mathcal{X}_2	2	0	1	2	-1	1	0
原最优表	\mathcal{X}_{6}	4	1	2	1	0	0	1
1		-8	0	0	-3	-5	-1	0
	x_1	1	1	0	-1	4	-1	0
	x_2	2	0	1	2	-1	1	0
•	$-x_{6}^{2}$	-1	0	0	-2	-2	-1	1

$$r_3 - r_1$$

 $r_3 - 2r_2$
 $\varepsilon = \min$
 $\{\frac{-3}{-2}, \frac{-5}{-2}, \frac{-1}{-1}\} = 1$
 x_5 为进基变量

			x_1	x_2	x_3	\mathcal{X}_4	x_5	\mathcal{X}_{6}	
		-8	0	0	-3	-5	−1*	0	
原	x_1	1	1	0	-1	4	-1	0	
原最优表	x_2	2	0	1	2	-1	1	0	
表	\mathcal{X}_{6}	4	1	2	1	0	0	1	
		-8	0	0	-3	-5	-1	0	{
	x_1	1	1	0	-1	4	-1	0	
	x_2	2	0	1	2	-1	1	0	
4	$-x_6$	-1	0	0	-2	-2	-1	1	
		-7	0	0	-1	-3	0	-1	
最	x_1	2	1	0	1	6	0	-1	1
最优表	x_2	1	0	1	0	-3	0	1	
表	X_5	1	0	0	2	2	1	-1	

$$\varepsilon = \min$$

$$\{\frac{-3}{-2}, \frac{-5}{-2}, \frac{-1}{-1}\} = 1$$

$$\downarrow$$

$$x_5$$
为进基变量

$$X^* = (2,1,0)^T$$

 $S^* = 7$
 $x_1 + 2x_2 + x_3 \le 4$

第二章 对偶理论

第四节 线性规划问题的灵敏度分析

- ✓ 目标函数成本系数C的灵敏度分析
- ✓ 约束右端项b的灵敏度分析
- ✓ 约束矩阵4的灵敏度分析

作业:第二章课后习题 3

选作题

 \bigcirc

三、某厂生产 I、II、III 三种产品,分别经过 A、B、C 三种设备加工。已知生产单位产品所需的设备台时、设备的现有加工能力及每件产品的预期利润见下表。

	I	II	III	设备能力/台时
A	1	1	1	100
В	10	4	5	600
C	2	2	6	300
单位产品利润/元	10	6	4	

- (1) 求获利最大的产品生产计划:
- (2)设备 A 的生产能力如为 100+ Φ,确定保持最优解不变的 Φ 的变化范围;
- (3) 如产品 III 每件利润增加到 50, 求最优计划的变化;
- (4) 如有一种新产品,加工一件需要设备 A、B、C 的台时分别为 1、4、3,预期每件利润为 8元,是否值得安排生产?(25分)