PELP1 - wykład 4

Elementy nieliniowe. Wzmacniacz operacyjny. Moc.

dr inż. Łukasz Maślikowski

Instytut Systemów Elektronicznych Politechnika Warszawska

17 marca 2021

Spis treści

- 1 Wzmacniacz operacyjny
- 2 Nieliniowe dwójniki rezystancyjne
- 3 Nieliniowe układy rezystancyjne
- 4 Moc
- 5 Dopasowanie energetyczne

Wzmacniacz operacyjny (WO) - otwarta pętla

- lacktriangle idealny WO jest granicznym przypadkiem źródła sterowanego (dowolnego) dla współczynnika sterowania $o \infty$
- najbardziej intuicyjny opis dla źródła napięciowego sterowanego napięciem $u_1=u^+-u^-$
- jeśli $k \to \infty$ to charakterystyka $u_2(u_1)$ dąży do pionowej prostej w zerze, a na wyjściu są możliwe dwie wartości $u_2 \to \pm \infty$

WO - zamknięta pętla sprzężenia zwrotnego

- po zamknięciu pętli ujemnego sprzężenia zwrotnego (zapewniającej wpływ wyjścia u_2 na wejście u_1), wzmacniacz wypracowuje zerową wartość u_1 i daje ograniczone napięcie wyjściowe u_2
- równania idealnego WO z zamknięta pętlą ujemnego sprzężenia zwrotnego to
 - $i^+ = i^- = 0$
 - $u_1 = 0$
 - u_2 oraz i_2 dostosowują się do reszty obwodu
- prąd i2 powraca do wzmacniacza końcówką masy

Opór nieliniowy

- Opór nieliniowy nie spełnia prawa Ohma
 - charakterystyka $u = f_R(i)$ lub $i = f_G(u)$ jest nieliniowa

W punkcie pracy (U_0,I_0) leżącym na charakterystyce $f_R(i)$ bądź $f_G(u)$ możemy określić:

- lacksquare opór statyczny $R_s|_{(U_0,I_0)}=U_0/I_0$
- lacksquare przewodność statyczną $G_s|_{(U_0,I_0)}=I_0/U_0$
- lacksquare opór dynamiczny $R_d|_{(U_0,I_0)}=rac{\mathrm{d} u(i)}{\mathrm{d} i}|_{(U_0,I_0)}$
- lacksquare przewodność dynamiczną $G_d|_{(U_0,I_0)}=rac{\mathrm{d} i(u)}{\mathrm{d} u}|_{(U_0,I_0)}$

Dla oporu liniowego $R_s = R_d = R$

Dioda idealna (zwarciowo - rozwarciowa)

przy strzałkowaniu prądu w kierunku przewodzenia diody element określony równaniami:

$$i = 0$$
 dla $u < 0$
 $u = 0$ dla $i > 0$

- dla ujemnego napięcia można zastąpić rozwarciem
- dla dodatniego prądu można zastąpić zwarciem

Składanie charakterystyk - połączenie równoległe

- można graficznie wyznaczać charakterystykę elementu zastępczego, złożonego z równoległych elementów składowych
- lacktriangle dla każdego u należy zsumować prądy płynące przez poszczególne elementy składowe

Ł. Maślikowski (ISE) PELP1 - wykład 4 7 / 17

Składanie charakterystyk - połączenie szeregowe

- można graficznie wyznaczać charakterystykę elementu zastępczego, złożonego z szeregowych elementów składowych
- dla każdego i należy zsumować napięcia na poszczególnych elementach składowych

Układ z jednym elementem nieliniowym

Jeśli w układzie występuje tylko jeden element nieliniowy to wygodnie jest wykorzystać twierdzenie o źródłach zastępczych.

- \blacksquare dzielimy układ na część liniową (źródło) i nieliniową (obciążenie) połączoną zaciskami $A{-}B$
- część liniową zamieniamy na źródło Thévenina lub Nortona
- do źródła zastępczego dołączamy element nieliniowy i wyznaczamy jego punkt pracy
- $lue{}$ wracamy do oryginalnego układu i korzystając z zasady kompensacji wyznaczamy szukane wartości u i i w jego wnętrzu

Metoda prostej oporu

- po zamianie części liniowej układu na źródło zastępcze Thévenina (analogicznie Nortona) wyznaczamy punkt pracy obciążenia nielinowego poprzez przecięcie:
 - charakterystyki zastępczego źródła rzeczywistego $i=\frac{E_T}{R_W}-\frac{1}{R_W}u$
 - z charakterystyką obciążenia
- dla źródła zmiennego $e_T(t)$ można powtórzyć tę operację dla różnych chwil czasu i otrzymać przebieg i(t)

Metoda rzutowania przebiegu

- pokrewna metoda polega na przecięciu:
 - ullet charakterystyki źródła idealnego E_T (analogicznie dla J_N)
 - z charakterystyką obciążenia połączonego z oporem wewnętrznym źródła
- lacktriangle dla źródła zmiennego $e_T(t)$ można otrzymać przebieg i(t) przez rzutowanie przebiegu $e_T(t)$ przez charakterystykę łączną

Moc chwilowa

Gdy napięcie zastrzałkowane jest przeciwnie do prądu

- $lue{}$ moc pobierana przez element w danej chwili wyraża się wzorem p=ui
 - ullet jeżeli p>0, element rzeczywiście pobiera moc
 - jeżeli p < 0, element oddaje moc
- moc oddawana przez element w danej chwili wyraża się wzorem

$$p_o = -ui$$

$$p = ui$$

$$i \leftarrow u$$

$$p = -ui$$

$$i \longrightarrow u$$

Moc w oporze i źródłach

- moc pobierana przez opór jest zawsze dodatnia
 - opór nigdy nie oddaje mocy
 - jest elementem stratnym
- opór liniowy pobiera moc $p=ui=Ri^2=Gu^2=\frac{u^2}{R}$
- źródło idealne napięciowe e oddaje do układu moc $p_o = ei$
- lacksquare źródło idealne prądowe j oddaje do układu moc $p_o=ju$
- lacktriangle moc p_o oddawana przez źródło może być ujemna, co odpowiada dodatniej mocy pobieranej

Zasada Tellegena

Suma mocy chwilowych pobieranych przez wszystkie elementy układu jest w każdej chwili równa 0.

Dopasowanie energetyczne

Klasyczny problem dopasowania energetycznego

jak dobrać taki opór obciążenia R_0 , żeby dla rzeczywistego źródła o ustalonych parametrach E_T,R_W (bądź J_N,G_W) w obciążeniu wydzielała się maksymalna moc P

 jeżeli układ źródła ma bardziej skomplikowaną strukturę, należy przekształcić go do postaci źródła zastępczego Thévenina bądź Nortona

$$P = UI =$$

$$= \frac{E_T R_0}{R_W + R_0} \frac{E_T}{R_W + R_0} =$$

$$= \frac{E_T^2 R_0}{(R_W + R_0)^2}$$

Ł. Maślikowski (ISE) PELP1 - wykład 4 15 / 17

Dopasowanie energetyczne

- lacksquare szukamy maksimum funkcji jednej zmiennej $P(R_0)$
- dziedziną jest półoś rzeczywista $R_0>0$ (klasyczny problem dopasowania)

Dopasowanie zachodzi gdy:

- $\blacksquare R_0 = R_W$
- $G_0 = G_W$

Moc dysponowana

- dane źródło rzeczywiste o ustalonych parametrach E_T, R_W (bądź J_N, G_W) może oddać do obciążenia ograniczoną moc
- lacksquare moc ta nazywana jest mocą dysponowaną źródła $P_{
 m dysp}$
- jest oddawana jeśli spełniony jest warunek dopasowania

$$P_{\text{dysp}} = P(R_W) = E_T^2 \frac{R_W}{(R_W + R_W)^2} = \frac{E_T^2}{4R_W} = \frac{J_N^2}{4G_W}$$