Unit 12 Assignment

Sunna Quazi

April 18, 2017

Question 1

```
In [77]: my_list = [45.4, 44.2, 36.8, 35.1, 39.0, 60.0, 47.4, 41.1, 45.8, 35.6]
my_list
Out[77]: [45.4, 44.2, 36.8, 35.1, 39.0, 60.0, 47.4, 41.1, 45.8, 35.6]
```

Question 1)a

```
In [78]: print my_list[5]

60.0
```

Question 1)b

```
In [79]: my_list.append( 55.2 );
my_list
Out[79]: [45.4, 44.2, 36.8, 35.1, 39.0, 60.0, 47.4, 41.1, 45.8, 35.6, 55.2]
```

Question 1)c

```
In [80]: del my_list[-6]
    my_list
Out[80]: [45.4, 44.2, 36.8, 35.1, 39.0, 47.4, 41.1, 45.8, 35.6, 55.2]
```

Question 1)d

55.2

```
In [81]: for value in my_list:
    if value > 45:
        print(value)
45.4
47.4
45.8
```

Question 2

Question 2)a

```
In [82]: import numpy as np
```

Question 2)b

```
In [83]: my_array = np.array(my_list)
    my_array

Out[83]: array([ 45.4, 44.2, 36.8, 35.1, 39. , 47.4, 41.1, 45.8, 35.6, 55.2
    ])
```

Question 2)c

```
In [84]: np.mean(my_array)
Out[84]: 42.56000000000002
In [85]: np.std(my_array)
Out[85]: 5.9709630713981143
```

Question 2)d

```
In [86]: threshold = 45
    np.array(filter(lambda x: x <= threshold, my_array))
Out[86]: array([ 44.2, 36.8, 35.1, 39. , 41.1, 35.6])</pre>
```

Question 2)e

Question 3

Question 3)a

```
In [115]: import matplotlib.pyplot as plt import pandas
```

Question 3)b

Question 3)c

```
In [110]: iris.head()
```

Out[110]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

Question 3)d

```
In [111]: iris.drop('Id', axis=1, inplace=True)
  iris.head()
```

Out[111]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

Question 3)e

```
In [113]: len(iris)
Out[113]: 150
```

Question 3)f

```
In [102]: iris.describe()
```

Out[102]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Question 3)g

```
In [121]: iris.groupby(iris['Species']).boxplot(vert=False)
    plt.subplots_adjust(left=0.25, hspace = 0.5)
    plt.show()
```


Question 3)h

```
In [125]: import seaborn
    g=seaborn.pairplot(iris,hue='Species')
    handles = g._legend_data.values()
    labels = g._legend_data.keys()
    g.fig.legend(handles=handles, labels=labels, loc='upper center', ncol=1)
    g.fig.legend(handles=handles, labels=labels, loc='lower center', ncol=3)
    g.fig.legend(handles=handles, labels=labels, loc='upper left', ncol=3)
    g.fig.subplots_adjust(top=0.92, bottom=0.08)
```


In []: