Honors Data Structures

Lecture 21: Shortest Paths.

4/11 & 4/13 2022

Daniel Bauer

Print ⊠ Send Send Link to this page

<u>Web Images Maps News Shopping Gmail more</u> ▼

Search the map Find businesses

Get directions

Search Results My Maps	
3. Merge onto I-5 N via the ramp on the left to Vancouver BC	1.0 mi
4. Take exit 167 on the left toward Seattle Center	0.7 mi
5. Turn right at Fairview Ave N	400 ft
6. Turn left at Valley St	0.2 mi
7. Turn right at Westlake Ave N	1.6 mi
8. Turn right at 4th Ave N	0.3 mi
9. Turn right at N 34th St	0.3 mi
10. Turn right at Stone Way N	115 ft
11. Turn left at N Northlake Way	0.3 mi
12. Kayak across the Pacific Ocean Entering Australia (New South Wales)	7,906 mi
13. Sharp right at Macquarie St	0.4 mi
14. Turn right at Albert St	292 ft
15. Turn left at Phillip St	0.1 mi
16. Turn right at Bridge St	0.3 mi
17. Turn left at George St	0.2 mi
P To: Sydney NSW Australia	Edit
Add destination	km miles

These directions are for planning purposes only. You may find that

Street View Traffic Map Satellite Terrain More.. $\leftarrow \Leftrightarrow \rightarrow$ X Jump to: Prev Step - Next Step Kayak across the Pacific Ocean Entering Australia (New South Wales) No street view available. anada United States 中国 North Pacific At O Ocean Japan China México ะเทศ 🚬 illand Venezuela Colombia Papua New Guinea Indonesia Brasil Perú Bolivia Australia South Chile Pacific Ocean Argentina New Zealand 2000 mi ©2008 Google - Map data ©2008 Europa Technologies - Terms of Use 🤘 2000 km

Graph Traversals

- Different ways of exploring graphs:
 - Topological sort for Directed Acyclic Graphs.
 - Depth First Search (a generalization of pre-order traversal on trees to graphs, uses a Stack)
 - Breadth First Search (uses a Queue)
 - Dijkstra's algorithm to find weighted shortest paths (uses a Priority Queue)

Goal: Find the shortest path between two vertices s and t.

Goal: Find the shortest path between two vertices s and t.

- Goal: Find the shortest path between two vertices s and t.
- It turns out that finding the shortest path between s and ALL other vertices is just as easy. This problem is called single-source shortest paths.

- Goal: Find the shortest path between two vertices s and t.
- It turns out that finding the shortest path between s and ALL other vertices is just as easy. This problem is called single-source shortest paths.

- Goal: Find the shortest path between two vertices s and t.
- It turns out that finding the shortest path between s and ALL other vertices is just as easy. This problem is called single-source shortest paths.

- Goal: Find the shortest path between two vertices s and t.
- It turns out that finding the shortest path between s and ALL other vertices is just as easy. This problem is called single-source shortest paths.


```
Queue q
q.enqueue(start)

while (q is not empty):
u = q.dequeue()

for each v adjacent to u:
q.enqueue(v)
```

Queue: $\{V_1\}$


```
Queue q
q.enqueue(start)

Set discovered

while (q is not empty):
    u = q.dequeue()

for each v adjacent to u:
    if (v is not in discovered):
        q.enqueue(v)
        discovered.add(v)
```

Queue: $\{V_1\}$


```
Queue q
q.enqueue(start)

Set visited

while (q is not empty):
    u = q.dequeue()

for each v adjacent to u:
    if (v is not in visited):
        q.enqueue(v)
        visited.add(v)
```

Queue: {}


```
Queue q
q.enqueue(start)

Set visited

while (q is not empty):
    u = q.dequeue()

for each v adjacent to u:
    if (v is not in visited):
        q.enqueue(v)
        visited.add(v)
```

Queue: $\{V_2, V_4\}$


```
Queue q
q.enqueue(start)

Set visited

while (q is not empty):
    u = q.dequeue()

for each v adjacent to u:
    if (v is not in visited):
        q.enqueue(v)
        visited.add(v)
```

Queue: $\{V_4, V_5\}$


```
Queue q
q.enqueue(start)

Set visited

while (q is not empty):
    u = q.dequeue()

for each v adjacent to u:
    if (v is not in visited):
        q.enqueue(v)
        visited.add(v)
```

Queue: $\{V_{5}, V_{3}, V_{6}, V_{7}\}$


```
Queue q
q.enqueue(start)

Set visited

while (q is not empty):
    u = q.dequeue()

for each v adjacent to u:
    if (v is not in visited):
        q.enqueue(v)
        visited.add(v)
```

Queue: $\{V_{3}, V_{6}, V_{7}\}$


```
Queue q
q.enqueue(start)

Set visited

while (q is not empty):
    u = q.dequeue()

for each v adjacent to u:
    if (v is not in visited):
        q.enqueue(v)
        visited.add(v)
```

Queue: $\{V_6, V_7\}$


```
Queue q
q.enqueue(start)

Set visited

while (q is not empty):
    u = q.dequeue()

for each v adjacent to u:
    if (v is not in visited):
        q.enqueue(v)
        visited.add(v)
```

Queue: $\{V_7\}$


```
Queue q
q.enqueue(start)

Set visited

while (q is not empty):
    u = q.dequeue()

for each v adjacent to u:
    if (v is not in visited):
        q.enqueue(v)
        visited.add(v)
```

Queue: {}


```
Queue q
q.enqueue(start)

Set visited

while (q is not empty):
    u = q.dequeue()

for each v adjacent to u:
    if (v is not in visited):
        q.enqueue(v)
        visited.add(v)
```

Running time: O(|V|+|E|)

Running time: O(|V|+|E|)

Queue **q q**.enqueue(**start**)

Set visited

while (q is not empty):

BFS will traverse the entire graph even without a visited set.

What happens if we use a stack (DFS)?

Queue: $\{V_1\}$

for all v: v.cost = ∞ v.prev = null start.cost = 0

Queue: $\{V_1\}$

```
for all v:
v.cost = ∞
v.prev = null
start.cost = 0
```

Queue **q q**.enqueue(**start**)

Queue: {}

```
for all v:
 v.cost = ∞
 v.prev = null
start.cost = 0
Queue q
q.enqueue(start)
while (q is not empty):
 |\mathbf{u} = \mathbf{q}.dequeue()
 for each \mathbf{v} adjacent to \mathbf{u}:
   lif v.cost == ∞:
     |\mathbf{v}.\mathbf{cost} = \mathbf{u}.\mathbf{cost} + \mathbf{1}|
     |\mathbf{v}.prev| = u
     q.enqueue(v)
```


Queue: $\{V_2, V_4\}$

```
for all v:
 v.cost = ∞
 v.prev = null
start.cost = 0
Queue q
q.enqueue(start)
while (q is not empty):
 |\mathbf{u} = \mathbf{q}.dequeue()
 for each \mathbf{v} adjacent to \mathbf{u}:
   lif v.cost == ∞:
     |\mathbf{v}.\mathbf{cost} = \mathbf{u}.\mathbf{cost} + \mathbf{1}|
     |\mathbf{v}.prev| = u
     q.enqueue(v)
```


Queue: $\{V_{4}, V_{5}\}$

```
for all v:
 \mathbf{v}.cost = \infty
 v.prev = null
start.cost = 0
Queue q
q.enqueue(start)
while (q is not empty):
 |\mathbf{u} = \mathbf{q}.dequeue()
 for each \mathbf{v} adjacent to \mathbf{u}:
   lif v.cost == ∞:
     |\mathbf{v}.\mathbf{cost} = \mathbf{u}.\mathbf{cost} + \mathbf{1}|
     |\mathbf{v}.prev| = u
     q.enqueue(v)
```


Queue: $\{V_{5}, V_{3}, V_{6}, V_{7}\}$

```
for all v:
 \mathbf{v}.cost = \infty
 v.prev = null
start.cost = 0
Queue q
q.enqueue(start)
while (q is not empty):
 |\mathbf{u} = \mathbf{q}.dequeue()
 for each \mathbf{v} adjacent to \mathbf{u}:
   lif v.cost == ∞:
     |\mathbf{v}.\mathbf{cost} = \mathbf{u}.\mathbf{cost} + \mathbf{1}|
     |\mathbf{v}.prev| = u
     q.enqueue(v)
```

Goal: Find the shortest path between two vertices s and t.

- Goal: Find the shortest path between two vertices s and t.
- Normal BFS will find this path.

- Goal: Find the shortest path between two vertices s and t.
- This path has a lower cost.

Negative Weights

- We normally expect the shortest path to be simple.
- Edges with Negative Weights can lead to negative cycles.
- The concept of "shortest path" is then not clearly defined.

 Cost annotations for each vertex reflect the lowest cost using only vertices visited so far.

- Cost annotations for each vertex reflect the lowest cost using only vertices visited so far.
 - There might be a lower-cost path through other vertices that have not been seen yet.

- Cost annotations for each vertex reflect the lowest cost using only vertices visited so far.
 - There might be a lower-cost path through other vertices that have not been seen yet.
- Keep nodes on a **priority queue** and always expand the vertex with the lowest cost annotation first! ← This is a **greedy** algorithm

- Cost annotations for each vertex reflect the lowest cost using only vertices visited so far.
 - There might be a lower-cost path through other vertices that have not been seen yet.
- Keep nodes on a **priority queue** and always expand the vertex with the lowest cost annotation first! ← This is a **greedy** algorithm
 - Intuitively, this means we will never overestimate the cost and miss lower-cost path.


```
for all v:
v.cost = ∞
v.visited = false
v.prev = null
start.cost = 0
```

PriorityQueue q q.insert(start)


```
for all v:
```

 $\mathbf{v}.\mathsf{cost} = \infty$

v.visited = false

v.prev = null

start.cost = 0

PriorityQueue q

q.insert(start)

while (q is not empty):

u = q.pollMin()

u.visited = true

visit vertex u

for each **v** adjacent to **u**:

if not v.visited:

c = u.cost + cost(u,v)

if (**c** < **v**.cost):

 $\mathbf{v}.\mathbf{cost} = \mathbf{c}$

discover and

relax vertex v

 \mathbf{v} .prev = \mathbf{u}


```
for all v:
```

v.cost = ∞

v.visited = false

 \mathbf{v} .prev = \mathbf{null}

start.cost = 0

PriorityQueue q

q.insert(start)

while (q is not empty):

 $\mathbf{u} = \mathbf{q}.\mathsf{pollMin}()$

u.visited = true

for each **v** adjacent to **u**:

if not **v**.visited:

c = u.cost + cost(u,v)

if (**c** < **v**.cost):

 $\mathbf{v}.\mathbf{cost} = \mathbf{c}$

discover and

relax vertex v

 \mathbf{v} .prev = \mathbf{u}

q.insert(v)

visit vertex u


```
for all v:
```

v.cost = ∞

v.visited = **false**

v.prev = **null**

start.cost = 0

PriorityQueue q q.insert(start)

while (q is not empty):

u = q.pollMin()

u.visited = true

visit vertex u

for each **v** adjacent to **u**:

if not **v**.visited:

discover and

relax vertex v

 $\mathbf{c} = \mathbf{u}.\mathbf{cost} + \mathbf{cost}(\mathbf{u},\mathbf{v})$

if (**c** < **v**.cost):

 $\mathbf{v}.\mathbf{cost} = \mathbf{c}$

 \mathbf{v} .prev = \mathbf{u}


```
for all v:
v.cost = ∞
```

v.visited = false

 \mathbf{v} .prev = \mathbf{null}

start.cost = 0

PriorityQueue q q.insert(start)

while (q is not empty):

u = q.pollMin()

u.visited = true

visit vertex u

for each **v** adjacent to **u**:

if not **v**.visited:

 $\mathbf{c} = \mathbf{u}.\mathbf{cost} + \mathbf{cost}(\mathbf{u},\mathbf{v})$

if (**c** < **v**.cost):

 $\mathbf{v}.\mathbf{cost} = \mathbf{c}$

discover and

relax vertex v

 \mathbf{v} .prev = \mathbf{u}


```
for all v:
v.cost = ∞
v.visited = false
v.prev = null
```

PriorityQueue q q.insert(start)

start.cost = 0

while (q is not empty): u = q.pollMin() u.visited = true

visit vertex u

for each **v** adjacent to **u**: if not **v**.visited:

c = u.cost + cost(u,v)discover and if (c < v.cost): relax vertex v v.cost = c

v.prev = u
q.insert(v)


```
for all v:
v.cost = ∞
v.visited = false
v.prev = null
start.cost = 0
```

PriorityQueue q q.insert(start)

while (q is not empty): u = q.pollMin() u.visited = true

visit vertex u

for each **v** adjacent to **u**: if not **v**.visited:

c = u.cost + cost(u,v)
if (c < v.cost):
v.cost = c
v.prev = u


```
for all \mathbf{v}:
```

 $\mathbf{v}.\mathsf{cost} = \infty$

v.visited = false

v.prev = null

start.cost = 0

PriorityQueue q

q.insert(start)

while (q is not empty):

u = q.pollMin()

u.visited = true

visit vertex u

for each **v** adjacent to **u**:

if not **v**.visited:

c = u.cost + cost(u,v)

if (**c** < **v**.cost):

 $\mathbf{v}.\mathbf{cost} = \mathbf{c}$

discover and

relax vertex v

 \mathbf{v} .prev = \mathbf{u}


```
for all v:
v.cost = ∞
v.visited = false
v.prev = null
start.cost = 0
```

PriorityQueue q q.insert(start)

while (q is not empty): u = q.pollMin() u.visited = true

visit vertex u

for each **v** adjacent to **u**: if not **v**.visited:

discover and of the content of the

 \mathbf{v} .prev = \mathbf{u}

Dijkstra's Algorithm "Life Cycle" of a Vertex

Dijkstra's Running Time

- There are |E| insert and deleteMin operations.
- The maximum size of the priority queue is O(|E|). Each insert takes O(log |E|)

 $O(|E| \log |E|)$ = $O(|E| \log |V|)$

$$|E| \le |V|^2$$
, so $|E| \le 2 \log |V| = O(\log |V|)$

Goals:

- Explore the graph systematically starting at s to
 - Find a vertex t / Find a path from s to t.
 - Find the shortest path from s to all vertices.
 - •

In every step of the search we maintain

- The part of the graph already explored.
- The part of the graph not yet explored.
- A data structure (an agenda) of next edges (adjacent to the explored graph).

Agenda: (v2,v5), (v4,v5), (v4,v7)

The graph search algorithms discussed so far differ almost only in the type of agenda they use:

The graph search algorithms discussed so far differ almost only in the type of agenda they use:

unweighted shortest paths: breadth first, uses a queue.

The graph search algorithms discussed so far differ almost only in the type of agenda they use:

- unweighted shortest paths: breadth first, uses a queue.
- Dijkstra's: best first, uses a priority queue.

Agenda: (v2,v5), (v4,v5), (v4,v7)

The graph search algorithms discussed so far differ almost only in the type of agenda they use:

- unweighted shortest paths: breadth first, uses a queue.
- Dijkstra's: best first, uses a priority queue.

Topological Sort: breadth first with constraint on items in the

queue.

Agenda: (v2,v5), (v4,v5), (v4,v7)

Correctness of Dijkstra's Algorithm

- We want to show that Dijkstra's algorithm really finds the minimum path costs (we don't miss any shorter solutions by choosing the shortest edge greedily).
- Proof by induction on the set S of visited nodes.
- Base case:
 |S|=1. Trivial. Length shortest path is 0.

S

Correctness of Dijkstra's Inductive Step

- Assume the algorithm produces the minimal path cost from s
 for the subset S, |S| = k.
- Dijkstra's algorithm selects the next edge (u,v) leaving S.
- Assume there was a shorter path from s to v that does not contain (u,v).
 - Then that path must contain another edge (x,y) leaving S.
 - The cost of (x,y) is already higher than (u,v) because we didn't choose it before (u,v)
- Therefore (u,v) must be on the shortest path.

