Санкт-Петербургский Национальный Исследовательский Университет Информационных Технологий, Механики и Оптики

Мегафакультет трансляционных и информационных технологий

Лабораторная работа №3 Вариант №5

Выполнил(и:)

Жаров Александр Павлович

Проверил

Мусаев А.А.

Санкт-Петербург,

Задание 1

Текст задания

Анатолий, Борис и Евгений зимой 2016 изучали российские акции, выявляли наиболее и наименее зависящие друг от друга компании. В начале 2017 на основе полученных данных они решают вложить в эти компании 10.000.000 следующим образом: Анатолий — поровну в 3 пары компании с наименьшими (близкими к 0) коэффициентами парной корреляции и растущим трендом (стоимость в конце периода больше, чем стоимость в начале периода).

Борис – поровну в 3 пары компаний с наибольшими положительными (близкими к 1) коэффициентами парной корреляции и растущим трендом (стоимость в конце периода больше, чем стоимость в начале периода).

Евгений — во все компании пропорционально их капитализации. Каждые [чет. вариант — 6 месяцев, нечет. вариант — 3 месяца] они продают все акции и на полученную сумму закупают их заново по изначальным условиям, но на основе информации о котировках акций за прошедший период.

Требуется изучить, как менялись коэффициенты парных корреляций среди рассматриваемых компаний с начала инвестирования и до конца 2019 с шагом [чет. вариант – 6 месяцев, нечет. вариант – 3 месяца].

Сделайте выводы по всем трем типам вложения (оцените методы, насколько было важно производить разбалансировку, как менялись пары наиболее/наименее зависящих друг от друга компаний, какой метод оказался лучше и почему).

Перечень исследуемых компаний: Газпром, Татнефть, Сбербанк, ВТБ, Алроса, Аэрофлот, РусГидро, Московская Биржа, НЛМК, Северсталь, Детский Мир, Полиметалл, Яндекс, АФК Система, Группа ЛСР, Ленэнерго, Лукойл, МТС, Новатэк и ПИК. Котировки акций студент получает/вводит любым удобным способом. Комиссия не учитывается, разбалансировка происходит моментально. При невыполнении условия для Анатолия и Бориса, сокращается количество пар. Обратите внимание, что акции должны быть целыми числами (т.е. остаток просто «лежит»).

Решение

Для получения котировок по данным акциям мы будем использовать API для moex(Московской биржи). Сперва создаем папку с основными функциями (Рисунок 1), которые будут получать необходимые данные для работы. Первая функция возвращает словарь с количеством акций для каждой компании. Вторая получает на вход промежуток времени и список компаний и возвращает два словаря — первый со всеми котировками акций за данный период, второй — с ценой акции вначале периода и в конце.

Во втором файле находится основной код. Основная функция – Count(), в ней мы создаем словари содержащие информацию о 3 людях из условия – Анатолий, Борис и Евгений. Так же тут присутствуют еще 3 массива, которые понадобится при для построения диаграммы. Сперва мы получаем стартовую информацию – получаем ответы от функций с запросами для первого отрезка времени и записываем в переменные. Тут мы обращаемся к функции CorCoef(), где мы считаем все коэффициенты корреляции для каждой ценной бумаги со всеми другими, а так же сортируем их внутри словаря. Следующая функция – Виу(). При ее вызове мы передаем пользователя, информацию о котировках и начальную/конечную цену бумаги. Далее мы определяем пользователя, если это Анатолий или Борис, то мы ищем 3 самые большие/маленькие коэффициенты у компаний и записываем соответствующие компании в отдельный список. Затем, если это не Евгений, то проходимся по списку полученых компаний, вычитаем из общей суммы цену акции в

начале периода и добавляем цену акции в конце периода. Возвращаем прибыль и список купленных акций. В случае Евгения, нам понадобится еще одна функция CopCount(), которая считает долю капитализации компании среди других, суммируя произведение количества бумаг на их стоимость и деля стоимость одной компании на общую. Получая результат выполнения данной функции мы умножаем всю сумму Евгения на долю компании и закупаем все компании по такому произведению — доле капитализации компании. Сумму возвращаем пользователю.

Вернемся к основной функции Count(). Мы получили и записали стартовую информацию, а так же прошли первый цикл покупки/продажи акций, теперь нужно выполнить схожие действия для каждого промежутка времени. Для этого создаем цикл, который выполняется 8 раз (с 2017 по 2019). В ней выполняем те же действия, что описаны выше, и записываем результат.

Строим график с помощью matplotlib и оцениваем результат(Рисунок 7).

Рисунок 1 – Задание 1

```
import numpy as np
import matplotlib.pyplot as plt
comp = ["GAZP", "TATN", "SBER", "VTBR", "ALRS", "AFLT", "HYDR", "MOEX",
    "CHMF", "DSKY", "POLY", "YNDX", "AFKS", "LSRG", "LSNG", "LKON", "MTSS", "NVTK", "PIKK"]
def CopCount(date, prise):
    k = date[i][0][0] * prise[i][0][0]
    cop.update({i: k})
  prop = {}
    prop.update({i: (cop[i]/sum)})
  return prop
def CorCoef(date):
  prise = {}
    comp_prise = []
      comp_prise.append(date[i][j][0])
    prise.update({i: comp_prise})
    comp_1 = np.array(prise[i])
         comp_2 = np.array(prise[j])
         k = np.corrcoef(comp_1, comp_2)
         cor.update({j: abs(k[0][1])})
```

Рисунок 2 – Задание 1.

```
cor_sorted = sorted(cor.items(), key=lambda x: x[1])
      cor = dict(cor_sorted)
      coef.update({i: cor})
def Buy(user, data, prise):
    money = user["cash"]
    person = user["name"]
    company = []
    profit = 0
    purch = {}
   if person == 'anatoly':
         count_2 = 0
           for j in data[i]:
             if count_2 != 1:
                company.append(i)
                if prise[j][0][0] - prise[j][1][0] > 0:
                   #print(data[i][j], i, j, prise[j][0][0] - prise[j][1][0])
                   company.append(j)
                count_2 += 1
                #print(count_2)
if person == 'boris':
       for i in data:
```

Рисунок 3 – Задание 1

```
for i in data:
     count_2 = 0
     if count != 3:
       for j in data[i]:
          if count_2 != 1:
             company.append(i)
            if prise[j][0][0] - prise[j][1][0] > 0:
               company.append(j)
             count_2 += 1
       count += 1
if person == 'evgeny':
  n = CopCount(m.Kapit(comp), prise)
  for i in data:
     spend = money*n[i]
     while spend >= prise[i][0][0]:
       count += 1
       profit += prise[i][1][0]
       spend -= prise[i][0][0]
     purch.update({i: count})
  print(profit, purch)
  return profit, purch
if person != "evgeny":
  for i in company:
     spend = money / len(company)
     count = 0
     #print(i, prise[i][1][0], prise[i][0][0])
     while spend >= prise[i][0][0]:
       profit += prise[i][1][0]
       spend -= prise[i][0][0]
```

Рисунок 4 – Задание 1

```
spend -= prise[i][0][0]
        purch.update({i: count})
     print(profit, purch)
     return profit, purch
def Count():
   anatoly = {'name': 'anatoly', 'cash': 10000000, 'info': {}}
   boris = {'name': 'boris', 'cash': 10000000, 'info': {}}
   anatoly_profit = []
   boris_profit = []
   evgeny_profit = []
   #Получение стартовой информации
   test_2 = m.newDate(comp, m.Data(2017, 2), m.Data(2017, 3))
   start = CorCoef(test_2[0])
   prise = test_2[1]
   answ1 = Buy(anatoly, start, prise)
   answ2 = Buy(boris, start, prise)
   answ3 = Buy(evgeny, start, prise)
   anatoly["cash"] = answ1[0]
   anatoly_profit.append(answ1[0])
   anatoly["info"].update(answ1[1])
   boris["cash"] = answ2[0]
   boris_profit.append(answ2[0])
   boris.update(answ2[1])
   evgeny["cash"] = answ3[0]
   evgeny_profit.append(answ3[0])
   evgeny.update(answ3[1])
   print(anatoly_profit)
```

Рисунок 5 – Задание 1

```
info = m.newDate(comp, m.Data(2017 + date[0], date[1]), m.Data(2017 + date[0], date[1] + 3))
       date[0] += 1
    info_coef = CorCoef(info[0])
    answ_1 = Buy(anatoly, info_coef, prise)
    answ_2 = Buy(boris, info_coef, prise)
    answ_3 = Buy(evgeny, info_coef, prise)
    anatoly["cash"] = answ_1[0]
    anatoly_profit.append(answ_1[0])
    anatoly["info"].update(answ_1[1])
    boris["cash"] = answ_2[0]
    boris_profit.append(answ_2[0])
    boris.update(answ_2[1])
    evgeny["cash"] = answ_3[0]
    evgeny_profit.append(answ_3[0])
    evgeny.update(answ_3[1])
  return anatoly_profit, boris_profit, evgeny_profit
graph1 = plt.plot(stat[0])
graph2 = plt.plot(stat[1])
graph3 = plt.plot(stat[2])
```

Рисунок 6 – Задание 1

Рисунок 7 - Результат

Вывод

Мы видим, что каждый из инвесторов остался в плюсе, но их успех объясним (Рисунок 7). Анатолий – синий график – покупал акции, которые в наименьшей степени зависели друг от друга, т.е их коэффициенты корреляции стремились к 0. Таким образом он уменьшил свой риск на потерю денег, ведь когда одна ценная бумага падала в цене, другая поднималась. Борис – оранжевый график – рисковал намного больше Анатолия, ведь он выбирал акции наиболее зависящие друг от друга, т.е если бы одна акция упала в цене, то наиболее вероятно, что и остальные последовали бы за ней. Однако Борису повезло и он не потерял свои деньги. Евгений же – зеленый график – распределил свои инвестиции наиболее равномерно, купив при этом все акции, которые были предоставлены. Таким образом он распределил риски и так же как и остальные не потерял свои деньги.

Ссылка на гит

1. https://github.com/SashaZharov/programming-lab3