ARock: an asynchronous parallel coordinate update framework

Zhimin Peng † , Yangyang Xu ‡ , Ming Yan † , Wotao Yin † († UCLA Math, ‡ U.Waterloo DCO)

UCLA CAM Report 15-37

Int'l Symposium on Mathematical Programming — July 16, 2015

The fixed-point problem

• Operator $T:\mathcal{H}\to\mathcal{H}$, find $x\in\mathcal{H}$ such that

$$x = Tx$$

- it abstracts many problems:
 - convex optimization
 - statistical regression
 - optimal control
 - linear and nonlinear systems of equations
 - certain ordinary and partial differential equations

Krasnosel'skii-Mann (KM) iteration

- require:
 - 1. T has a fixed point;
 - 2. nonexpansive operator T, that is

$$||Tx - Ty|| \le ||x - y||, \quad \forall x, y \in \mathcal{H}.$$

iteration:

$$x^{k+1} = (1 - \eta_k)x^k + \eta_k Tx^k$$

$$\iff x^{k+1} = x^k - \eta_k \underbrace{(I - T)}_{S} x^k$$

 special cases: gradient descent, proximal-point algorithm, prox-gradient, operator-splitting algorithms such as Douglas-Rachford and ADMM, . . .

Sync-parallel coordinate update

- suppose $\mathcal{H} = \mathcal{H}_1 \times \cdots \times \mathcal{H}_m$
- agents i update $x_i \in \mathcal{H}_i$ in parallel, $i = 1, \ldots, m$:

$$\begin{array}{ll} \text{agent 1:} & \begin{bmatrix} x_1^{k+1} \\ x_2^{k+1} \\ \vdots \\ \vdots \\ x_m^{k+1} \end{bmatrix} = \begin{bmatrix} x_1^k \\ x_2^k \\ \vdots \\ x_m^k \end{bmatrix} - \eta_k \begin{bmatrix} (Sx^k)_1 \\ (Sx^k)_2 \\ \vdots \\ (Sx^k)_m \end{bmatrix}$$

require:

- 1. x is a shared global variable
- 2. each $(Sx)_i$ is much easier to compute than Sx
- 3. synchronization after each iteration

Synchronous

(new iteration starts after the last agent finishes)

ARock: Async-parallel coordinate update

- suppose $\mathcal{H} = \mathcal{H}_1 \times \cdots \times \mathcal{H}_m$
- p agents, possibly $p \neq m$
- each agent randomly picks $i \in \{1, ..., m\}$ and updates x_i :

$$\begin{bmatrix} x_1^{k+1} \\ \vdots \\ x_i^{k+1} \\ \vdots \\ x_m^{k+1} \end{bmatrix} = \begin{bmatrix} x_1^k \\ \vdots \\ x_i^k \\ \vdots \\ x_m^k \end{bmatrix} - \begin{bmatrix} 0 \\ \vdots \\ \eta_k (S_{\boldsymbol{x}^{k-d_k}})_i \\ \vdots \\ 0 \end{bmatrix}$$

- $0 \le d_k \le \tau$
- require: $(Sx)_i$ is much easier to compute than Sx; also, proper η_k

Comparison: iteration is redefined

Asynchronous

new iteration = any agent finishes

Brief history of async-parallel algorithms

- 1969 a linear equation solver by Chazan and Miranker;
- 1978 extended to the fixed-point problem by Baudet under the absolute-contraction¹ type of assumption.
- For 20–30 years, mainly solve linear, nonlinear and differential equations.
- 1989 Parallel and Distributed Computation: Numerical Methods by Bertsekas and Tsitsiklis.

 $^{^1 \}text{An operator } T: \mathbb{R}^n \to \mathbb{R}^n \text{ is absolute-contractive if } |T(x) - T(y)| \leq A|x-y|, \text{ component-wise, where } |x| \text{ denotes the vector with components } |x_i|, \ i=1,\dots,n, \text{ and } A \in \mathbb{R}^{n \times n} \text{ is a matrix with a spectral radius strictly less than } 1.$

Recent work

- 2013 AsySCD for minimizing convex smooth functions by Liu et al.
- 2014 AsySPCD for minimizing convex composite objective functions by Liu and Wright.
- 2015 async-parallel randomized dual coordinate update for ridge regression problems by Hsieh et al.
- Other async-parallel / async-ADMM methods: Wei-Ozdaglar'13, lutzeler et al'13, Zhang-Kwok'14, Hong'14.

ARock contributions

- An async-parallel framework for nonexpansive $T \Rightarrow$ applications:
 - (smooth and nonsmooth) function minimization, recovers AsySPCD
 - async-Jacobi for linear equations
 - distributed and decentralized optimization
 - operator splitting algorithms ...
- Convergence:
 - almost sure convergence of x^k to $x^* \in \operatorname{Fix} T$
 - linear convergence (when S is strongly monotone)

Convergence results

Recall: $p_{\min} = \min_i p_i > 0$, m is # coordinates, au is the maximum delay.

Theorem (Weak convergence)

Assume that T is nonexpansive and has a fixed point. Let $(x^k)_{k\geq 0}$ be the sequence generated by ARock with the step sizes $\eta_k \in [\eta_{\min}, \frac{mp_{\min}}{2\tau\sqrt{p_{\min}+1}}), \, \forall k$. Then, with probability one, $(x^k)_{k\geq 0}$ weakly converges to a fixed point of T.

Theorem (Linear convergence rate)

If S is quasi- μ -strongly monotone if $\langle x-y, Sx-Sy \rangle \geq \mu \|x-y\|^2$ for any $x \in \mathcal{H}$ and $y \in \operatorname{zer} S := \{y \in \mathcal{H} : Sy = 0\}$, then with certain fixed step size

$$\mathbb{E}||x^k - x^*||^2 \le c^k \cdot ||x^0 - x^*||^2$$
, with $c < 1$.

Sketch of proof

• The key inequality:

$$\mathbb{E}\left(\left\|\mathbf{x}^{k+1} - \mathbf{x}^*\right\|_{M}^{2} \middle| \mathcal{X}^{k}\right) \leq \left\|\mathbf{x}^{k} - \mathbf{x}^*\right\|_{M}^{2} - c \left\|\bar{x}^{k+1} - x^{k}\right\|^{2}$$

where

- $c = c(\eta_k, m, \tau)$
- $\mathbf{x}^k = (x^k, x^{k-1}, \dots, x^{k-\tau}) \in \mathcal{H}^{\tau+1}, \ k \ge 0$
- $\mathbf{x}^* = (x^*, x^*, \dots, x^*) \in \mathbf{X}^* \subseteq \mathcal{H}^{\tau+1}$
- ullet M is a positive definite matrix.

Sketch of proof

- apply the Robbins-Siegmund theorem;
- prove weakly convergence clustering points are fixed-points;
- apply a Theorem from [Combettes, Pesquet 2014].

Applications and numerical results

Minimizing composite functions

- require: convex smooth function g and convex (possibly nonsmooth)
 function f
- proximal map: $\mathbf{prox}_{\gamma f}(y) = \arg\min f(x) + \frac{1}{2\gamma} \|x y\|^2$.

$$\underset{x}{\text{minimize }} f(x) + g(x) \iff x = \underbrace{\mathbf{prox}_{\gamma f} \circ (I - \gamma \nabla g)}_{T} x.$$

- ARock will be very fast given
 - easy-to-compute $\nabla_{x_i} g(x)$
 - either separable or easy-to-compute f (e.g., ℓ_1 and $\ell_{1,2}$)

Example: sparse logistic regression

- lacksquare n features, N labeled samples
- each sample $a_i \in \mathbb{R}^n$ has its label $b_i \in \{1, -1\}$
- ℓ_1 regularized logistic regression:

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \ \lambda \|x\|_1 + \frac{1}{N} \sum_{i=1}^N \log \left(1 + \exp(-b_i \cdot a_i^T x)\right), \tag{1}$$

compare sync-parallel and ARock (async-parallel) on two datasets:

Name	N ($#$ samples)	n ($#$ features)	$\#$ nonzeros in $\{a_1,\ldots,a_N\}$			
rcv1	20,242	47,236	1,498,952			
news20	19,996	1,355,191	9,097,916			

Speedup tests

- implemented in C++ and OpenMP.
- 32 cores shared memory machine.

	rcv1			news20				
#cores	Time (s)		Speedup		Time (s)		Speedup	
	async	sync	async	sync	async	sync	async	sync
1	122.0	122.0	1.0	1.0	591.1	591.3	1.0	1.0
2	63.4	104.1	1.9	1.2	304.2	590.1	1.9	1.0
4	32.7	83.7	3.7	1.5	150.4	557.0	3.9	1.1
8	16.8	63.4	7.3	1.9	78.3	525.1	7.5	1.1
16	9.1	45.4	13.5	2.7	41.6	493.2	14.2	1.2
32	4.9	30.3	24.6	4.0	22.6	455.2	26.1	1.3

Sparsity pattern and load imbalance

- each dot gives the # nonzeros in each coordinate (about 50 features)
- left: range of # nonzero: $10^2 10^4$
- right: range of # nonzero: $10^{1.8} 10^5$
- larger ratio ⇒ worse load balance

More applications

- Peaceman-Rachford splitting operator
- Douglas-Rachford splitting operator
- Davis-Yin's three operator splitting
- Parallel/distributed ADMM
- Decentralized ADMM

Async-parallel decentralized ADMM

- a graph of connected agents: G = (V, E).
- decentralized consensus optimization problem:

minimize
$$f(\mathbf{x}) := \sum_{i \in V} f_i(x_i)$$

subject to $x_i = x_j, \ \forall (i, j) \in E$

- **ADMM reformulation**: constraints $x_i = y_{ij}, x_j = y_{ij}, \forall (i,j) \in E$
- apply ARock
 - version 1: nodes asynchronously activate
 - version 2: edges (and nodes of each edge) asynchronously activate
 - ullet both versions: each agent keeps f_i private and talks to its neighbors

notation:

- N(i) all edges of agent i, $N(i) = L(i) \cup R(i)$
- L(i) neighbors j of agent i, j < i
- R(i) neighbors j of agent i, j > i

Algorithm 1: ARock for the decentralized consensus problem

Input : each agent i sets $x_i^0 \in \mathbb{R}^d$, dual variables $z_{e,i}^0$ for $e \in E(i)$, K>0. while k < K, any activated agent i do

 $\begin{array}{l} \textbf{receive} \ \hat{z}^k_{li,l} \ \text{from neighbors} \ l \in L(i) \ \text{and} \ \hat{z}^k_{ir,r} \ \text{from neighbors} \ r \in R(i); \\ \textbf{update} \ \text{local} \ \hat{x}^k_i, \ z^{k+1}_{li,i} \ \text{and} \ z^{k+1}_{ir,i} \ \text{according to (??)-(??)}, \ \text{respectively}; \\ \textbf{send} \ z^{k+1}_{li,i} \ \text{to neighbors} \ l \in L(i) \ \text{and} \ z^{k+1}_{ir,i} \ \text{to neighbors} \ r \in R(i). \\ \end{array}$

$$\hat{x}_{i}^{k} \in \arg\min_{x_{i}} f_{i}(x_{i}) + \left(\sum_{l \in L(i)} \hat{z}_{li, l}^{k} + \sum_{r \in R(i)} \hat{z}_{ir, r}^{k}\right) x_{i} + \frac{\gamma}{2} |E(i)| \|x_{i}\|^{2}, \quad \text{(2a)}$$

$$z_{ir,i}^{k+1} = z_{ir,i}^k - \eta_k((\hat{z}_{ir,i}^k + \hat{z}_{ir,r})/2 + \gamma \hat{x}_i^k), \quad \forall r \in R(i),$$
(2b)

$$z_{li,i}^{k+1} = z_{li,i}^k - \eta_k((\hat{z}_{li,i}^k + \hat{z}_{li,l})/2 + \gamma \hat{x}_i^k), \quad \forall l \in L(i).$$
 (2c)

Two ways to model \hat{x}^k

definitions: let $x^0, ..., x^k, ...$ be the states of x in the memory

- 1. \hat{x}^k is called **consistent** if $\hat{x}^k = x^{k-d_k}$ for some $0 \le d_k \le \tau$.
- 2. \hat{x}^k is called **inconsistent** if $\hat{x}^k \neq x^j$ for every $j \leq k$.

ARock allows both consistent and inconsistent read.

Thank you!

Acknowledgements: NSF DMS

 $\textbf{Reference} : \ \mathsf{Zhimin} \ \mathsf{Peng}, \ \mathsf{Yangyang} \ \mathsf{Xu}, \ \mathsf{Ming} \ \mathsf{Yan}, \ \mathsf{Wotao} \ \mathsf{Yin}. \ \mathsf{UCLA} \ \mathsf{CAM}$

15-37.

Website: http://www.math.ucla.edu/~wotaoyin/arock