인공지능 (Artificial Intelligence)

시계열 딥러닝

순차 데이터

- 순차 데이터(sequential data)
 - 텍스트나 시계열(time series data)와 같이 순서에 의미가 있는 데이터
 - e.g.)
 - 텍스트: "I am a boy" → boy a am I는 의미 없음
 - 시계열: 1일 15도, 2일 17도, 3일 16도, 4일 20도......
 - 순차 데이터는 순서가 중요한 데이터
 - 순차 데이터를 다룰 때는 이전에 입력한 데이터를 기억하는 기 능이 필요
 - E.g.) "별로지만 추천해요"
 - "추천해요"를 인식할 때, "별로지만"을 기억하고 있어야 긍정적이라 고 판단하지 않음
 - _ 응용:
 - 언어 변환, 자연어 처리, 음성 인식, 이미지 캡션과 같은 순서 문제 나 시간 문제에 흔히 사용

- 앞서 살펴본 <u>완전 연결 신경망이나 합성곱 신경망</u>은 기 억을 하는 유닛이 없다.
- 입력 데이터의 흐름이 앞으로만 전달되는 신경망을 피드 포워드 신경망 (feedforward neural network, FFNN)이 라 함

이전에 처리했던 샘플을 다음 샘플을 처리하는데 사용하기 위해서는 순환되는 층이 필요함 → 순환 신경망

- 기존의 신경망에 순환하는 고리를 추가 한 것
 - 즉, 샘플을 사용할 때 이전에 사용했던 데이터를 재사용하는 것

[순환 신경망]

• 예제:

- 입력을 A,B,C순으로, 출력은 O라 하자
 - 입력 A로부터 O_A가 계산되고, O_A는 다시 입력 뉴런으로 들어감

타임스텝 (timestep)

• O_B 가 계산될 때, 이전 O_A 와 함께 O_B 가 계산됨

- O_C가 계산될 때, O_R도 함께 포함됨
 - 이때 O_B 는 O_A 를 포함하고 있음

타임스텝 (timestep)

- 순환 신경망에서는 층을 셀(cell)이라고 부름
 - 한 셀에는 여러 개의 뉴런이 있지만, 모두 표시하지 않고 하나의 셀로 표현함
 - 셀의 출력 상태를 은닉 상태라 부름

- 그림이 설명하는 바:
 - 입력에 어떤 가중치를 곱하고, 활성화 함수를 통과시켜 다음 층으로 보냄
 - 기존과 다른 점은 층의 출력 (은닉 상태)를 다음 타임 스텝에 재사 용하는 것

• 은닉층의 활성화 함수로는 하이퍼볼릭 탄젠트 (hyperbolic tangent, tanh) 함수가 주로 사용됨

- Tanh는 -1 ~ 1의 범위를 가짐 (시그모이드는 0~1)

- 완전 연결 신경망과 합성곱에서는
 - 입력과 가중치를 곱했음

- 순환 신경망도 비슷
 - 대신 은닉 상태에 곱해지는 가중치 (ω_h)가 하나 더 있음

- 입력층 4개 뉴런과 순환층 3개일 경우
 - 가중치 w_x의 크기는 3 x 4 = 12개 임
 - 즉, 완전 연결 층만 본다면... (순환은 제외하고)

입력 x 가중치

- 순환층에서의 은닉 상태 w_h = 3 x3 = 9
 - R1에 3개, R2에 3개, R3에 3개의 재사용 은닉 상태가 있음
 - 즉 순환 은닉 상태가 입력층에 모두 연결됨
 - 즉, 이웃한 뉴런에서 <u>재사용 은닉 상태(w_h)</u>가 입력 됨

층의 뉴런이 3개일 경우 재사용되는 W_h가 3개 더 곱해짐

가중치 w_x 12 개 + 재사용 은닉상태 w_h 9개 + 절편 3개
 → 24

• 신경망이 복잡할 수록 표현이 어려워 진다

• 간략화된 표현 방법 → 은닉층을 '셀 ' 로 표현

요약

• 순차 데이터

- 텍스트나 시계열 데이터와 같이 순서에 의미가 있는 데이터

• 순환 신경망

- 순차 데이터에 잘 맞는 인공 신경망
- 순환 신경망에서는 순환층을 '셀'이라 부름
 - 하나의 셀은 여러 개의 뉴런으로 구성이 됨
- 순환 신경망에서는 셀의 출력을 은닉 상태라고 부름

LSTM을 활용한 일기예보

• LSTM은 시계열 데이터의 학습에 뛰어난 딥러닝 모델

1. 데이터셋 확인하기

- 2009년 1월 1일 ~ 2016년 12월 31일까지 데이터가 포함 (420,523개)
 - 14개의 특징 (features)
 - 기압, 온도, 등.

		Α	В	C	D	E	F	G	H		J	K	L	M	N	0
	Date T				Tpot (K)			VPmax (mbar)			sh (g/kg)	H2OC (mmol/mi		wv (m/s)	max. wv (m/s)	
		.2009 00: [996.52		265.4	-8.9										
		.2009 00:2	996.57	-8.41	265.01	-9.28										
		.2009 00:3	996.53		264.91	-9.31	93.9		3.0							
		.2009 00:4	996.51	-8.31	265.12	-9.07										
		.2009 00:5		-8.27	265.15			3.27								
		.2009 01:0	996.5		265.38	-8.78		3.33								
		.2009 01:1	996.5		265.81	-8.3										
		.2009 01:2	996.5		265.81	-8.36		3.44								
		.2009 01:3	996.5		265.52	-8.73										
		.2009 01:4	996.53		264.99	-9.34		3.23								
		.2009 01:5			264.66	-9.66		3.14								
		.2009 02:0	996.62		264.54	-9.77						2.91				
		.2009 02:1	996.63		264.57	-9.7										
		.2009 02:2	996.74		264.58	-9.68										
		.2009 02:3		-8.66	264.74	-9.46										
		.2009 02:4		-8.66	264.74											
		.2009 02:5			264.7	-9.55										
		.2009 03:0	996.84		264.59	-9.66										
		.2009 03:1	996.87	-8.84	264.56	-9.69										
		.2009 03:2			264.45	-9.82			2.89			2.9				
		.2009 03:3	997.08		264.44							2.9				
		.2009 03:4	997.1	-8.86	264.52			3.12				2.91				
		.2009 03:5			264.39	-9.99										
		.2009 04:0	996.99		264.34	-10.02										
		.2009 04:1	997.05		264.15											
		.2009 04:2		-9.49 -9.5	263.89	-10.54 -10.51										
		.2009 04:3			263.87		92.3									
		.2009 04:4		-9.35 -9.47	264.02	-10.29										
		.2009 04:5			263.89	-10.46										
		.2009 05:0	997.46		263.72	-10.65										
		.2009 05:1	997.43		263.68	-10.63										
		.2009 05:2			263.67	-10.73										
		.2009 05:3	997.53		263.45	-10.98		2.87								72.5
		.2009 05:4	997.6		263.43	-10.9										60.72
		.2009 05:5			263.83	-10.37	93.4									
		.2009 06:0	997.71	-9.67	263.66	-10.62		2.93								
		.2009 06:1	997.81	-9.59	263.74											
		.2009 06:2	997.86		264.17	-10.02										
4U	<u> U1.01.</u>	.2009 06:3	998	-8.91	264.4	-9.89	92.5	3.11	2.8	0.23	1.79	2.88	1314.23	0.45	0.88	67.11

2. 데이터 전처리

- 가. 모든 데이터가 0~1사이의 값을 가지도록 정규화 (normalization)
 - A. 온도의 경우 음수를 포함 →
 - 최소값을 뺀 후, 최대값으로 나누어 전처리 함
- 나. 데이터 윈도잉 (windowing)
 - 미래를 예측하기 위해 사용되는 기법
 - 윈도윙 이란?

2. 데이터 전처리

- 미래예측에 활용
 - 과거 데이터 vs. 미래 데이터

3. 인공지능 모델

* 본 예는 간략화하기 위해 별도의 활성화 함수를 사용하지 않음

데이터 준비하기

- Jena_climate_2009_2019.csv 파일 업로드
 - 마우스로 드래그


```
+ 코드 + 텍스트
            plt.title("Regression Result")
く [43]
            plt.xlabel("Ground Truth")
            plt.ylabel("Al Predict")
            plt.scatter(X, Y)
            plt.plot([minyal, maxval], [minyal, maxval], "
            fig.savefig("result.png")
            train_history = history.history["loss"]
            validation history = history.history["val loss
            fig = plt.figure(figsize=(8, 8))
            plt.title("Loss History")
            plt.xlabel("EPOCH")
            plt.ylabel("LOSS Function")
            plt.plot(train_history, "red")
            plt.plot(validation_history, 'blue')
```

프로그램 코드

Author : Byunghyun Ban Date : 2020.07.17.

111111

```
#import data_reader
from tensorflow import keras
# 몇 에포크 만큼 학습을 시킬 것인지 결정합니다.
EPOCHS = 50 # 예제 기본값은 50입니다
                                 DataReader class은 첨부파일 참고
# 데이터를 읽어옵니다.
dr = DataReader(12)
                                 Param "12"는 사용할 과거 데이터 갯수
# 인공신경망을 제작합니다.
model = keras.Sequential([
   keras.layers.Bidirectional(keras.layers.LSTM(64, return_sequences=True)),
   keras.lavers.Dense(32).
   keras.layers.Dense(14),
                                                                 딥러닝 모델
1)
# 인공신경망을 컴파일합니다.
model.compile(optimizer="adam", metrics=["mae"], loss="mse")
                                                               컴파일 옵션
# 인공신경망을 학습시킵니다.
print("\n\n********* TRAINING START ******** ")
early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=10)
history = model.fit(dr.train_X, dr.train_Y, epochs=EPOCHS,
                                                                  train
                 validation_data=(dr.test_X, dr.test_Y),
                 callbacks=[early_stop])
# 학습 결과를 그래프로 출력합니다.
draw_graph(model(dr.test_X[:200]), dr.test_Y[:200], history)
                                           21
```

결과

- Loss 가 어떻게 나오는지 확인
 - 30 에포크에서 학습이 중단됨을 알 수 있음
 - 원하는 성능을 조기 이름

LSTM이 97%의 정확도로 날씨를 예측 직선을 따라 점들이 고르게 분포

실습해보기

인공지능 (Artificial Intelligence)

시계열 딥러닝

LSTM을 활용한 주가 예측

• <u>애플</u>의 주가 예측해보기

1. 데이터셋 확인하기

- 2010년 1월 4일 ~ 2020년 8월 10일까지 나스닥 거래 주가
 - 6개의 특징 (features)

	Α		В	C	L)		E	F	[G [Н
Date		Open		High	Low		Close		Adj Close	Volume	
	2010-01-04		30.49	30.642857		30.34		30.572857	26.419203	123432400	
	2010-01-05	3	0.657143	30.798571	3	0.464285		30.625713	26.464878	150476200	
	2010-01-06	3	0.625713	30.747143	3	0.107143		30.138571	26.04392	138040000	
	2010-01-07		30.25	30.285715	2	9.864286		30.082857	25.99577	119282800	
	2010-01-08	3	30.042856	30.285715	2	9.865715		30.282858	26.16860	111902700	
	2010-01-11		30.4	30.428572	2	9.778572		30.015715	25.937763	115557400	
	2010-01-12	2	9.884285	29.967142	2	9.488571		29.674286	25.64271	1 148614900	
	2010-01-13	2	9.695715	30.132856	2	9.157143		30.092857	26.004419	151473000	
	2010-01-14	3	30.015715	30.065714	2	9.860001		29.918571	25.85382	108223500	
	2010-01-15	3	30.132856	30.228571		29.41		29.418571	25.42174	148516900	
	2010-01-19	2	9.761429	30.741428	2	9.605715		30.719999	26.546362	182501900	
	2010-01-20	3	30.701429	30.792856	2	9.928572		30.247143	26.13774	153038200	
	2010-01-21	3	30.297142	30.472857	2	9.601429		29.724285	25.685919	152038600	
	2010-01-22	2	9.540001	29.642857	2	8.165714		28.25	24.41193	220441900	
	2010-01-25		28.93	29.242857	2	8.598572		29.01	25.068684	1 266424900	
	2010-01-26	2	9.421429	30.530001	2	8.940001		29.42	25.422976	466777500	
	2010-01-27	2	9.549999	30.082857	2	8.504286		29.697144	25.66246	430642100	
	2010-01-28	2	9.275715	29.357143	2	8.385714		28.469999	24.60204	293375600	
	2010-01-29	2	28.725714	28.885714	2	7.178572		27.437143	23.70952	311488100	
	2010-02-01	2	27.481428	28	2	7.328571		27.818571	24.03912	187469100	
	2010-02-02	2	27.987143	28.045713	2	7.625713		27.98	24.178619	174585600	
	2010-02-03	2	7.881428	28.6	2	7.774286		28.461428	24.594633	153832000	
	2010-02-04	2	28.104286	28.338572	2	7.367144		27.435715	23.708282	189413000	
	2010-02-05	2	27.518572	28	2	7.264286		27.922857	24.129242	212576700	
	2010-02-08	2	27.955715	28.268572	2	7.714285		27.731428	23.96382		
	2010-02-09	2	28.059999	28.214285	2	7.821428		28.027143	24.21935	158221700	
	2010-02-10	2	27.984285	28.085714	2	7.751429		27.874287	24.08726	92590400	
	2010-02-11		27.84	28.535715	2	7.722857		28.381428	24.525509	137586400	
	2010-02-12	2	28.301428	28.805714	2	7.928572		28.625713	24.73660	163867200	
	2010-02-16	2	28.848572	29.098572	2	8.788572		29.057142	25.10941	135934400	
	2010-02-17		29.17	29.187143		8.694286		28.935715	25.004488		
	2010-02-18	2	28.804285	29.127142	2	8.702858		28.99	25.051394	1 105706300	
	2010-02-19	2	28.837143	29.028572		28.73		28.809999	24.89585	103867400	

2. 데이터셋 전처리

- 0~1로 정규화 (normalization)
- 훈련데이터 95%, 테스트 데이터 5%
- 윈도우크기 14
 - (14일간 학습, 14일 예측)

- 6개의 특징을 입력 받아 5개의 특징을 출력 (예측)하고 자 함
 - 미래의 거래량은 의미 없으므로 제외

3. 인공지능 모델

• 전과 동일

* 본 예는 간략화하기 위해 별도의 활성화 함수를 사용하지 않음

프로그램 코드

```
from tensorflow import keras
# 몇 에포크 만큼 학습을 시킬 것인지 결정합니다.
EPOCHS = 100 # 예제 기본값은 100입니다.
# 데이터를 읽어옵니다.
dr = DataReader(14)
# 인공신경망을 제작합니다.
model = keras.Sequential([
   keras.layers.Bidirectional(keras.layers.LSTM(128, return_sequences=True)),
   keras.layers.Dense(64, activation="relu"),
   keras.layers.Dense(5)
1)
# 인공신경망을 컴파일합니다.
model.compile(optimizer="adam", loss="mae", metrics=["mse"])
# 인공신경망을 학습시킵니다.
print("\n\n********** TRAINING START ******** ")
early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=20)
history = model.fit(dr.train_X, dr.train_Y, epochs=EPOCHS,
                  validation_data=(dr.test_X, dr.test_Y),
                  callbacks=[earlv_stop])
# 학습 결과를 그래프로 출력합니다.
draw_graph(model(dr.test_X), dr.test_Y, history)
```


결과

89 에포크에서 중단

요약

- 인공지능의 최정 성능은 MAE 0.31%,
- 99.7% 수준의 정확도로 주가를 예측할 수 있음을 의미

실습해보기

Q&A

