Cognome	Nome	Matricola
Informatica Teorica I - Esame del 5 luglio 2005		a primo modulo
Tempo a disposizione:	100 minuti	
Regole del gioco: Li indicare su tutti i fogli, con domande (questi).	ibri e quaderni chiusi, vi n chiarezza, nome e num	ietato scambiare informazioni con altri; ero di matricola; <u>consegnare solo i fogli con le</u>
Esercizio 1 (20%) Der linguaggi su $\Sigma = \{a,b\}$:	termina le espression	i regolari che descrivono i seguenti
1.1 Stringhe di caratteri alternati (una "a" non è mai seguita da un'altra "a" e una "b" non è mai seguita da un'altra "b") che cominciano e finiscono per "a". Esempi: "a", "aba", "ababa",		
1.2 Stringhe di caratteri	alternati. Esempi: "a"	, "aba", "ababa", "bab", "baba",
1.3 Stringhe che cominciano e finiscono per "a" e che hanno una sola coppia "aa" e nessuna coppia "bb" (nessuna tripletta, quartina, ecc. è ammessa). Esempi: "aa", "abaa", "ababaababa",		
1.4 Stringhe che cominciano e finiscono per "a" e che hanno una sola coppia "bb" e nessuna coppia "aa" (nessuna tripletta, quartina, ecc. è ammessa). Esempi: "abba", "ababba", "ababbababa",		

a	N.T.	3.6
Cognome	Nome	Matrıcola

1.5 Stringhe in cui le "a" sono separate tra loro (cioè sono precedute e seguite da almeno una "b"), mentre le "b" sono separate tra loro oppure in terzine "bbb" (nessuna quartina, cinquina ecc. è ammessa). Esempi: "b", "bbb", "ab", "ababbbb", "babbbabab",...

Esercizio 2 (20%) A La figura seguente mostra una porzione di un flipper. La pallina cade dall'alto dall'entrata **a** o **b**. Ogni volta che la pallina passa per un incrocio segue la direzione della freccia, che però compie una rotazione ad ogni passaggio. Per esempio: se la pallina cade da **a** (figura a sinistra) esce dall'uscita 3 e lascia il flipper come nella figura a destra.

2.1 Completa la seguente tabella di transizione, che codifica gli stati possibili del flipper e i passaggi di stato dovuti al transito della pallina.

Stato iniziale	Interruttori codificati	Nuovo stato	
		pallina in " a "	pallina in " b "
A	DX, DX		
В	SX, SX		
С	DX, SX		
D	SX, DX		

Cognome	Nome	Matricola	
2.2 Completa il seguente diagramma di transizione, in cui si suppone che lo stato iniziale del flipper sia A (cioè DX, DX). Etichetta gli archi con a o b , a seconda dell'entrata da cui deve cadere la pallina per causare il passaggio di stato.			
	DX DX A	SX SX B	
	DX SX C	SX DX D	
2.3 Determina una grammatica regolare che descrive tutte le stringhe su $\Sigma = \{a,b\}$ corrispondenti a passaggi delle palline che, a partire dallo stato A (cioè DX, DX), portano nello stato B (cioè SX, SX).			
2.4 Imposta un sistema di variabili risolvendo il quale si possa ottenere l'espressione regolare corrispondente alla grammatica del punto 2.3 .			

2.5 Scrivi qui sotto la soluzione del sistema del punto 2.4 , ovvero l'espressione regolare che rappresenta tutte le stringhe corrispondenti a passaggi delle palline che, a partire dallo stato A, portano nello stato B.
Esercizio 3 (20%) Mostra una grammatica (qualsiasi) che generi il linguaggio su $\Sigma = \{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ tale che il numero delle "a" sia strettamente maggiore del numero delle "b", che a sua volta è strettamente maggiore del numero delle "c", cioè che $\#\mathbf{a} > \#\mathbf{b} > \#\mathbf{c} > 0$.

Cognome	Nome	Matricola
Esercizio 4 (20%) Il Pi	dgeonhole Principle și o	dimostra per induzione sulla cardinalità
dell'insieme più piccol	o Ricordi come?	simostra per maazione sana caramanta
den misieme più piecon	o. Ideoral come.	

Cognome	Nome	Matricola
_		
Esercizio 5 (20%) Mostra	, utilizzando il teorema di M	Iyhill-Nerode, che il linguaggio
$I = a^n b^m a^{n-m} con n > m > 0$ n	on è un linguaggio regolare	, , , , , ,
	ion e un imguaggio regolare	•