Типовик по линейной алгебре «Дополнительное ДЗ №2»

Латыпов Владимир Витальевич, ИТМО КТ М3138, **Вариант 10**

4 марта 2022 г.

1. Формулировка условия

Утверждение 1. Условие таково: Линейные подпространства L_1, L_2 заданы системами линейных уравнений.

- 1. Найти матрицы операторов (в каноническом базисе) проектирования P_1 , P_2 , на линейные подпространства L_1 , L_2 соответственно.
- 2. Проверить, что $P_1^2=P_1, P_2^2=P_2, P_1P_2=0, P_1+P_2=E$
- 3. Найти Кег P_i , Im $P_i \forall i \in \{1,2\}$. Проверить, что Кег $P_1=L_2$, Кег $P_2=L_1$, Im $P_1=L_1$, Im $P_2=L_2$
- 4. Найти проекции x_1,x_2 , вектора $x=\begin{pmatrix}2&4&-2&5&-3\end{pmatrix}^T$ на подпространство L_1 параллельно L_2 и на подпространство L_2 параллельно L_1 соответственно с помощью операторов проектирования P_1 и P_2 . Сравнить с результатами, полученными в доп.д.з.No1

Data section:

$$\left\{\begin{array}{l} 2x_1-x_2+x_3+2x_4+3x_5=0\\ 6x_1-3x_2+2x_3+4x_4+5x_5=0\\ 6x_1-3x_2+4x_3+8x_4+13x_5=0\\ 4x_1-2x_2+x_3+x_4+2x_5=0 \end{array}\right.$$
 и $2x_1=x_2=4x_3+2x_4,$ соответственно

(1)

2. Нахождение матриц операторов

Во-первых заметим, что обе матрицы — из канонического в канонический базис.

Вспомним, что у нас были матрицы перехода между канонческим базисом и базисом из объединения $L_1\cap L_2$. (сами базисы мы тоже нашли).

$$L_{1} = x_{2} \begin{pmatrix} \frac{1}{2} \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + x_{5} \begin{pmatrix} \frac{1}{2} \\ 0 \\ -4 \\ 0 \\ 1 \end{pmatrix}$$
 (2)

$$L_{2} = x_{3} \begin{pmatrix} 2\\4\\1\\0\\0 \end{pmatrix} + x_{4} \begin{pmatrix} 1\\2\\0\\1\\0 \end{pmatrix} + x_{5} \begin{pmatrix} 0\\0\\0\\0\\1 \end{pmatrix}$$
 (3)

$$T_{E \to L} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 2 & 1 & 0\\ 1 & 0 & 4 & 2 & 0\\ 0 & -4 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0\\ 0 & 1 & 0 & 0 & 1 \end{pmatrix} \tag{4}$$

$$T_{L\to E} = \begin{pmatrix} -32 & 17 & -4 & -2 & 0 \\ 2 & -1 & 0 & 0 & 0 \\ 8 & -4 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ -2 & 1 & 0 & 0 & 1 \end{pmatrix}$$
 (5)

Заметим, что в базисе L матрица проектора на $L_{\rm 1}$, например, — это всего лишь

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$
(6)

А матрица проектора в каноническом базисе — это

$$T_{E \to L} \cdot P_{1L} \cdot T_{L \to E} \tag{7}$$

Так найдём же их!

3. Проверка

$$P_{1}^{2} = \begin{pmatrix} -15 & 8 & -2 & -1 & 0 \\ -32 & 17 & -4 & -2 & 0 \\ -8 & 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} -15 & 8 & -2 & -1 & 0 \\ -32 & 17 & -4 & -2 & 0 \\ -8 & 4 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} -15 & 8 & -2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 & 0 \end{pmatrix}$$
(10)

$$P_{2}^{2} = \begin{pmatrix} 16 & -8 & 0 & 1 & 0 \\ 32 & -16 & 0 & 2 & 0 \\ 8 & -4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ -2 & 1 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 16 & -8 & 0 & 1 & 0 \\ 32 & -16 & 0 & 2 & 0 \\ 8 & -4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ -2 & 1 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 16 & -8 & 0 & 1 & 0 \\ 32 & -16 & 0 & 2 & 0 \\ 8 & -4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ -2 & 1 & 0 & 0 & 1 \end{pmatrix}$$
(11)

4. Разложение вектора

Теперь спроектируем вектор x на эти пространства.

$$P_{1}x = \begin{pmatrix} -15 & 8 & -2 & -1 & 0 \\ -32 & 17 & -4 & -2 & 0 \\ -8 & 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 4 \\ -2 \\ 5 \\ -3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 (14)

Сходится с первым ДЗ.

$$P_{2}x = \begin{pmatrix} 5\\10\\0\\5\\-3 \end{pmatrix}$$
 (15)

Не совсем сходится с первым ДЗ...