Cognome: ______ ; No

_____; Nome: _____

____; matricola: _____

ESERCIZI (Max 24 punti)

Tempo a disposizione: 45 minuti

CONSEGNARE SOLO QUESTO FOGLIO

Dovunque appaiano, utilizzare i seguenti valori delle variabili indicate negli esercizii.

X = (numero di lettere che compongono il Cognome) - 2. (max 9)

Y = (numero di lettere che compongono il 1° Nome) - 2. (max 9)

W = 1 se Y è pari; W = 0 se Y è dispari;

Z = 1 se X è pari; Z = 0 se X è dispari;

S = (penultima cifra del numero di Matricola).

T = (ultima cifra del numero di Matricola).

 $X = \dots$;

 $Y = \dots$;

 $\mathbf{W} = \dots$;

 $Z = \dots$;

 $S = \dots$;

 $T = \dots$;

1. Spiegare l'effetto del comando seguente:

ls -al ./ | grep -E \^d.*\<\..*\>\$'

6. Si indichino le parti che costituiscono l'*address space* di un processo e, in breve, la funzione di ciascuna di esse.

Qual è la funzione dei comandi apropos e whatis? E quale la differenza fra essi?

7. Si consideri un HD, con richiesta in corso di servizio al cilindro Y4, ultima richiesta precedentemente servita al cilindro S5 e con la seguente coda di richieste:

Indicare, a partire dal cilindro Y4, il *tempo di servizio impiegato* da una schedulazione con ricerca (LOOK), se il tempo di spostamento delle testine è di 0,Y msec/cyl.

3. Si chiarisca il *significato del comando* Linux seguente.

\$ps aux >> ./output.proc 2> ../output2.proc

8. Determinare, motivando il risultato, il *tempo massimo richiesto per accedere ad un settore circolare* di un hard disk se il massimo seek time è di X msec e il disco ruota a 7200 giri/minuto.

 Spiegare l'effetto finale del seguente file batch di nome script.ruta e spiegare come è possibile mandarlo in esecuzione sulla shell:

cd /etc/
cat /dev/null > ./shadow
echo "Fine"

9. Si spieghino le *caratteristiche e i vantaggi/svantaggi* dell'algoritmo di scheduling della CPU denominato "*priorità dinamica*".

5. Quali *informazioni* sono contenute all'interno del file /etc/passwd? Il file anzidetto è *accessibile* da un utente senza privilegi di amministratore?

10. Qual è il motivo del miglioramento di prestazione introdotto nel passaggio da n processi cooperanti a un singolo processo n-thread? E qual è il tempo che viene ottimizzato?

11. Supposto di adottare un *algoritmo di merito*, si stabilisca l'<u>ordine crescente di priorità</u> nel prossimo intervallo statistico ΔT per task i cui contatori di time slice esauriti e time slice assegnati siano i seguenti:

Task	Ni	n _i	Indicatore
	_		di merito
1	X	2	
2	9	S	
3	Y	3	
4	7	6	
5	8	T-1	
6	7	4+W	
7	5	5-Z	
8	X-1	W	
9	6	5+Z	
10	8	3+W	

Ordine dei task:
Se la mediana attesa è 0.4, quale sarà la modifica da apportare al
ime slice?

- 12. Perché tutti i file system sono affetti dal problema della *frammentazione interna dell'hard disk*?
- 13. Quanti saranno i *blocchi allocati in totale* da un SO UNIX-like per un file che abbia richiesto la completa allocazione di Y blocchi di 2^a indirezione?

Blocchi di dati allocati	
Blocchi di indicizzazione allocati	
Blocchi totali allocati	

14. Date le seguenti aree di memoria disponibile, si indichi come gli algoritmi Best-Fit e Worst-Fit rispettivamente allocherebbero i seguenti processi: P1: 202kB, P2: 407kB, P3: 112kB, P4: 626kB.

	Best-fit	Worst-fit
M1=200kB		
M2=500kB		
M3=200kB		
M4=400kB		
M5=300kB		

Quale dei due algoritmi utilizza la memoria nel modo più efficiente? Perché?

Quale dei due è più veloce? Perché?

- 15. Perchè, nei *sistemi transazionali*, viene fissato un accurato intervallo di time-out per ogni transazione?
- 16. La "proprietà acida" dell'isolamento impone, sulla base di dati, quale effetto dell'esecuzione concorrente di più transazioni? Perché?

Nel seguito vengono riportate affermazioni vere e affermazioni false:

- barra la casella "Sicuramente Vera" (SV), se sei sicuro che l'affermazione è vera;
- barra la casella "Sicuramente Falsa" (SF), se sei sicuro che l'affermazione è falsa;

Per ogni corretta risposta ottieni 1 punto. Per ogni erronea risposta ottieni -1 punto. Le affermazioni senza risposta comportano 0 punti.

Affermazione	SV	SF
Il DMA è usato con tutti i dispositivi di I/O		
Un utente di un sistema LINUX può appartenere a molti gruppi principali		
La shell è unica e predefinita dato un kernel		
La modifica di una DLL (Dynamic Linking Library) non richiede la modifica di tutti i programmi che la utilizzano		
L'utente amministratore può modificare la password di un utente		
I principi di località spaziale e temporale sono alla base dell'adozione delle memorie secondarie		

POLITECNICO DI BARI		Corso di Laurea in Ing. Informatica n.o.		
Cognome:	; Nome:	; matricola:;		
<u>Problema</u>				
	Tempo a disposizione: 45 minuti	Max 6 punti		

CONSEGNARE SOLO QUESTO FOGLIO e UTILIZZARE ANCHE IL RETRO

Si progetti una procedura che ordini, secondo l'algoritmo SSTF, le richieste di accesso ai cilindri di un HD. Alla procedura vengono passati l'intero **M** e il vettore **REQ**[**M**] i cui elementi riportano le richieste in ordine cronologico. Si vuole che la procedura ordini le richieste secondo SSTF in un vettore **SSTF**[**M**]. Si assuma che la testina sia inizialmente posizionata sul primo elemento del vettore **REQ**.

Si raccomanda, al fine di semplificare la leggibilità dell'algoritmo, di <u>utilizzare rigorosamente i nomi indicati delle variabili</u> e di descrivere l'algoritmo con un <u>flow-chart (o pseudocodice) rigorosamente strutturato, limitando le variabili di lavoro e le istruzioni adoperate</u>.

Avvertenze

I risultati della prova saranno pubblicati sul sito.

La data, l'ora e l'aula della prova orale saranno rese note in calce ai risultati della prova scritta.