Дилемма заключенного

Платежная матрица

	Сотрудничать	Предать
Сотрудничать	2 - 2	0 - 3
Предать	3 - 0	1 - 1

Парадокс Бернулли

Д. Бернулли (1695 - 1726).

X	1	2	4	•••
p	1/2	1/4	1/8	•••

$$MO = \sum_{i=1}^{\infty} p_i x_i = 1/2 + 1/2 + 1/2 + ... = \infty$$

Один игрок. Игры с природой.

Rev. T Bayes (1702-1761)

Критерий Байеса

Критерий Байеса

Показывает, сколько будем выигрывать в среднем, если играть будем много раз

Лучше нажать на синюю кнопку.

Критерий Лапласа

Пьер-Симон де Лаплас (1749-1827)

Лучше нажать на синюю кнопку.

Критерий Вальда

А. Вальд (1902-1950)

Оптимизация по критерию Вальда

Повезло	Не повезло	Минимум
5 миллионов	5 миллионов	5 миллионов
50 миллионов	0	0

Критерий крайнего оптимизма

Оптимизация по максимаксу

Повезло	Не повезло	Максимум
5 миллионов	5 миллионов	5 миллионов
50 миллионов	0	50 миллионов

Лучше нажать на синюю кнопку.

Критерий Гурвица

Критерий Гурвица (Гурвича)

- $y \cdot max + (1 y) \cdot min$
- Учитываем лучший и худший из исходов
- Более взвешенны критерий, с учето субъективного фа

Оптимизация по критерию Гурвица

	Повезло	Не повезпо	Коэффициент Гурвица
$Z = \max_{j} \left(\max_{i} a_{ji} \gamma + (1 - \gamma) \min_{i} a_{ji} \right)$	5 миллионов	5 миллионов	0.2 * 5 + 0.8 * 5
Лучше нажать на синюю кнопку.	50 миллионов	0	0.2 * 50 + 0.8 * 0

Лучше нажать на синюю кнопку

Схема выбора критериев

Закон распределения дискретной случайной величины.

X	x_1	x_2	 x_n
p	p_1	p_2	 p_n

$$p_1 + p_2 + \dots + p_n = 1$$

Формула **Бернулли**: $P_n(k) = C_n^k p^k q^{n-k}$.

Биномиальным называют распределение, определяемое формулой Бернулли.

Распределение Пуассона

$$P_n(k) = \frac{\lambda^k e^{-\lambda}}{k!}, \lambda = np.$$

Математическим ожиданием дискретной случайной величины называют сумму произведений всех её возможных значений на их вероятности.

Дисперсией (отклонением) случайной величины называют разность между математическим ожиданием квадрата случайной величины X и квадратом её математического ожидания.

$$D(x) = M(X^2) - [M(X)]^2$$

Средним квадратическим отклонением называется квадратный корень из дисперсии. $\sigma(X) = \sqrt{D(X)}^{10}$

События называют **несовместными**, если появление одного из них исключает появление других в одном и том же испытании.

Формула полной вероятности

Вероятность события A, которое может наступить лишь при условии появления одного из несовместных событий $B_1, B_2, ..., B_n$ равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность события A.

$$P(A) = P(B_1)P_{B1}(A) + P(B_2)P_{B2}(A) + \dots + P(B_n)P_{Bn}(A)$$

Формула Байеса

$$P_A(B_i) = \frac{P(B_i)P_{Bi}(A)}{P(A)}$$

Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях

$$P(|\frac{m}{n} - p| \le \varepsilon) \cong 2\Phi(\varepsilon \sqrt{\frac{n}{pq}})$$