CLAIMS

What is claimed is:

1	1. A method of coating a substrate, comprising:	
2	providing a substrate having a surface;	
3	forming a polymeric layer on the surface of the substrate by applying	
4	a layer of a polymeric precursor to at least a portion of the surface;	
5	polymerizing the polymeric precursor to form a polymerized layer; and	
6	applying a metal coating to at least a portion of the polymerized layer;	
7	wherein the metal coating is applied under sub-atmospheric conditions.	
1	2. The method of claim 1, wherein the step of applying the layer of the	
2	polymeric precursor is performed using an electrophoresis process.	
1	3. The method of claim 2, wherein the step of forming the polymerized	
2	layer includes elevating the temperature of the polymeric precursor to a temperature	
3	of at least about 320°F.	
I	4. The method of claim 2, wherein the polymeric precursor is selected	
2	from the group consisting of acrylics, epoxies, urethanes, and combinations thereof.	
l	5. The method of claim 1, wherein the substrate is porous, and further	
2	comprising leveling the surface of the substrate before the step of applying the metal	
3	coating.	
l	6. The method of claim 5, wherein the metal coating is applied using a	
2	physical vapor deposition method.	

1	7. The method of claim 6, further comprising the step of removing a	
2	portion of the polymerized layer before applying the metallic coating.	
1	8. The method of claim 7, further comprising cleaning at least the	
2	polymerized layer before the step of removing a portion of the polymerized layer.	
1	9. The method of claim 6, wherein the metal coating is applied in a	
2	pressure range of about 5x10 ⁻⁴ millitorr to about 2x10 ⁻⁵ millitorr.	
1	10. The method of claim 6, wherein the metal coating is applied by	
2	evaporation.	
1	11. The method of claim 3, further comprising maintaining the polymeric	
2	precursor at the temperature for at least about 12 minutes.	
1	12. A method of coating a surface, comprising:	
2	providing a substrate;	
3	coating at least a portion of the substrate with a layer of an	
4	electrophoretically applied polymeric precursor;	
5	polymerizing the polymeric precursor to form a first polymeric coating;	
6	and	
7	elevating the temperature of the polymeric coating to at least about	
8	400°F for at least about 6 minutes.	
1	13. The method of claim 12, further comprising applying a layer of metal	
2	over at least a portion of the polymeric coating.	
1	14. The method of claim 13, further comprising applying a second	
2	nolymeric coating over the layer of motol	

1	15.	A method comprising:			
2		forming a polymeric coating from an electrophoretically applied			
3	polymeric pro	polymeric precursor and applying a layer of metal over the polymeric coating using			
4		por deposition process.			
1	16.	An article having a porous surface, comprising:			
2		an electrophoretically applied first polymeric layer overlaying and in			
3	direct contact	direct contact with the porous surface; and			
4		a metallic layer overlaying the first polymeric layer.			
1.	17.	The article of claim 16, further comprising:			
2		a second electrophoretically applied polymeric layer overlaying and in			
3	direct contact	t with the metallic layer.			
1	18.	The article of claim 16, wherein the article is selected from the group			
2	consisting of	plumbing fixtures, jewelry, and utensils.			
1	19.	The article of claim 17, wherein the article is selected from the group			
2	consisting of	plumbing fixtures, jewelry, and utensils.			
1	20.	The article of claim 16, wherein the polymeric layer is a dielectric			
2	layer.				
1	21.	The article of claim 16, wherein the metallic layer is chrome.			
1	22.	The article of claim 16, wherein the first polymeric layer has a			
2	thickness rang	ging from about 1 millimeter to about 40 millimeters.			

1	23. The article of claim 16, wherein the metal layer has a thickness ranging
2	from about 0.1 millimeter to about 3 millimeters.
1	24. The article of claim 23, wherein the second polymeric layer has a
2	thickness ranging from about 1 millimeter to about 40 millimeters.