Introduction to Data Science

Dr. Irfan Yousuf
Department of Computer Science (New Campus)
UET, Lahore

(Lecture # 20; October 21, 2022)

Outline

- Train-Test Split
- Confusion Matrix

Machine Learning Algorithms

Machine Learning

Supervised learning: Train a model with known input and output data to predict future outputs to new data.

Unsupervised Learning: Segment a collection of elements with the same attributes (clustering).

Classification

Regression

Support vector machine (SVM)

Linear Regression

K-nearest-neighbors

Assembly Methods

Discriminant analysis

Decision trees

Neural Networks

Neural Networks

Clustering

K-means, k-medoids fuzzy C-means

Hidden Markov models

Neural Networks

Gaussian mixture

Naive Bayes

Supervised Machine Learning

Supervised Learning

Target

Un-Supervised Learning

Х1	X ₂	Х3	Χp	

No Target

Supervised Machine Learning

Train-Test-Split

Train-Test-Split

TRAIN_TEST_SPLIT SPLITS DATA INTO TRAINING DATA AND TEST DATA

Original Data

train_test_split()

X_train

X ₁	X ₂	Хp

y_train

X_test

X ₁	X ₂	Xp

y_test

Classification Model

- Classification is a technique where we categorize data into a given number of classes.
- The main goal of a classification problem is to identify the category/class to which a new data will fall under.

Classification Model

- Classifier: An algorithm that maps the input data to a specific category.
- <u>Classification model</u>: A classification model tries to draw some conclusion from the input values given for training. It will predict the class labels/categories for the new data.
- Feature: A feature is an individual measurable property of a phenomenon being observed.
- <u>Binary Classification</u>: Classification task with two possible outcomes. Eg: Gender classification (Male / Female)
- Multi-class classification: Classification with more than two classes. In multi class
 classification each sample is assigned to one and only one target label. Eg: An animal
 can be cat or dog but not both at the same time
- Multi-label classification: Classification task where each sample is mapped to a set of target labels (more than one class). Eg: A news article can be about sports, a person, and location at the same time.

Classification Model

The following are the steps involved in building a classification model:

- Initialize the classifier to be used.
- Train the classifier: All classifiers in <u>scikit-learn</u> uses a fit(X, y) method to fit the model(training) for the given train data X and train label y.
- Predict the target: Given an unlabeled observation X, the predict(X) returns the
 predicted label y.
- Evaluate the classifier model

Evaluating a Classification Model

```
> source('E:/Spring2021/RProgs/SpamFilter.R')
Loading required package: RColorBrewer
Loading required package: NLP
ham --> ham
 spam --> spam
 ham --> ham
 ham --> spam
 ham --> ham
 ham --> ham
 ham --> ham
 ham --> spam
 nam --> ham∫
 ham --> ham
```

Predicted

Confusion Matrix

• A confusion matrix is a table that is often used to describe the **performance of a classification model** (or "classifier") on a set of test data for which the true values are known.

Confusion Matrix

Predicted Values

Positive

Negative

Actual Values

True

False

True Negative (TN): You predicted negative and it's true.

False Positive (FP): You predicted positive and it's false.

False Negative (FN): You predicted negative and it's false.

Actual Labels

Person has Coronavirus

Yes No

True Positive (TP):

Person with coronavirus tested positive False Positive (FP):

Person without coronavirus tested positive

Test Results

Negative

Positive

False Negative (FN):

Person with coronavirus tested negative

True Negative (TN):

Person without coronavirus tested negative

Number of **Positive (P)**predictions that are wrong
or **False (F)**

Number of Negative (N)
predictions that are correct
or True (T)

Confusion Matrix

Confusion Matrix Terminology

• Classification **Accuracy** is the ratio of correct predictions to total predictions made.

$$Accuracy = \frac{Correct\ Predictions}{Total\ Predictions}$$

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Confusion Matrix Terminology

• **Precision** is calculated as the number of correct positive predictions divided by the total number of positive predictions.

$$\mathbf{Precision} = \frac{TP}{TP + FP}$$

• **Recall** is calculated as the number of correct positive predictions divided by the total number of positives.

$$\mathbf{Recall} = \frac{TP}{TP + FN}$$

Confusion Matrix Terminology

• **F1-score** is the harmonic mean of precision and recall and is a better measure than accuracy.

$$F1-score = \frac{2 * Recall * Precision}{Recall + Precision}$$

Confusion Matrix Example

a) The output of a machine learning classifier is given below in the form of actual and predicted data. Draw the Confusion Matrix of this classifier and calculate its <u>accuracy</u>.

Actual	Dog	Dog	Cat	Dog	Cat	Cat	Cat	Dog	Dog	Cat
Predicted	Cat	Dog	Cat	Dog	Dog	Cat	Cat	Dog	Cat	Cat

Confusion Matrix Implementation

• Implementation of Confusion Matrix

Summary

- Train Test Split
- Confusion Matrix