Knowledge Graph And Fusion Based Transformer Approach for Multi-Hop Question Answering

Group 39

Akash Gujju, Arun Baalaaji, Balaji Chidambaram, Mukkesh Ganesh and Trisha Mandal Email: gujju@usc.edu, arunbaal@usc.edu, bchidamb@usc.edu, mganesh@usc.edu, trishama@usc.edu University of Southern California, Los Angeles, CA, United States of America

MOTIVATION

- Question Answering(QA) is an important downstream task in NLP
- Most real-world questions require multihop reasoning to arrive at an answer
- A machine must understand the question, identify supporting facts from multiple knowledge sources and use reasoning to generate an answer
- · The goals of the project
 - · Explore various fusion techniques
 - Experiment with knowledge-based information retrieval

EXAMPLE

Input Paragraphs:

The Sum of All Fears is a best-selling thriller novel by Tom Clancy... It was the fourth of Clancy's Jack Ryan books to be turned into a film ...

Dr. John Patrick Jack Byan Sr., KCVO (Hon.), Ph.D. is a fictional character created by Tom Clancy who appears in many of his novels and their respective film adaptations ...

Net Force Explorers is a series of young adult novels created by Tom Clancy and Steve Pieczenik as a spin-off of the military fiction series

Question: What fiction character created by Tom Clancy was turned into a film in 2002?

Answer: Jack Ryan

DATASET

- HotPotQA is a challenging dataset with Wikipedia Q&A pairs aimed at Multi-Hop Reasoning task
- · HotPotQA has two evaluation modes:
 - Distractor setting
 - · Full-Wiki setting
- Training set has 90K and Dev/Test set has 22K datapoints
- A single datapoint contains answer, question, supporting facts, contexts, level, and type

Name	Desc.	Usage	# Examples	
train-easy	single-hop	training	18,089	
train-medium	multi-hop	training	56,814	
train-hard	hard multi-hop	training	15,661	
dev	hard multi-hop	dev	7,405	
test-distractor	hard multi-hop	test	7,405	
test-fullwiki	hard multi-hop	test	7,405	
Total			112,779	

The table contains the different categories of train and test data

The figure consists of the categories of questions

EXPERIMENTS

- 1. Fusion experiments
- In our model we need to fuse Question Attention and Context Attention embeddings.
- Complex fusion techniques has been shown to improve the convergence rate of the model and slightly increase the performance.
- We studied two fusion techniques: A. Multi Modal Tucker Fusion

$$y = ((\mathcal{T}_c \times_1 (\mathbf{q}^\top \mathbf{W}_q)) \times_2 (\mathbf{v}^\top \mathbf{W}_v)) \times_3 \mathbf{W}_o$$
$$\mathbf{z} = (\mathcal{T}_c \times_1 \tilde{\mathbf{q}}) \times_2 \tilde{\mathbf{v}} \in \mathbb{R}^{t_o}$$

B. Multi Modal Factorized Bi-Linear pooling

$$\begin{array}{lll} z_i & = & x^T U_i V_i^T y = \sum\limits_{d=1}^k x^T u_d v_d^T y \\ & = & \mathbb{1}^T (U_i^T x \circ V_i^T y) \end{array}$$

- 2. Fine-tuning Casual Language Model (CLM) with WikiText-2 corpus using hugging face trainers
- 3. Knowledge based information retrieval
- Entity graph creation
- Attention based context retrieval from the entity graph

ARCHITECTURE

- A paragraph selector is used to filter the relevant context information from the multiple input paragraphs
- The filtered context is used in creating an entity graph which is dynamically generated for every question
- The BERT encoder produces a representation from the input query and context paragraphs using a Bi-Attention layer
- The fusion block takes the output from the entity graph and the encoder input and fuses them together
- The LSTM prediction head produces supporting facts and the answer

DFGN Fusion Block

Model	F1 Score	EM	Precisio n	Recall
Fusion Baseline	0.5104	0.3762	0.5300	0.5297
MFB	0.5186	0.3831	0.5393	0.5362
MFB + Tucker Fusion	0.5246	0.3941	0.5480	0.5442
Tucker Fusion	0.5155	0.3808	0.5363	0.5335
DFGN	0.6500	0.5088	0.6737	0.6672

- Fine-tuning the BERT model on the WIkiText-2 corpus improves the model F1 to 0.65
- Dynamically creating the entity graph for each input query helps the model in generating better contexts
- To achieve an F1 Score of 0.50, the baseline model takes 18 epochs while the MFB and Tucker Fusion models took only 12 and 14 epochs respectively

FUTURE WORK

- 1. Incorporate fusion techniques on dynamic graph fused network
- 2. Fine tune the BERT model on DBPedia and ConceptNet
- 3. Experiment with BeerQA dataset