

Protokoll

3. Laborübung

Aufgabenstellungen und Ziele

Ziele

Praktisches lernen von Potentialen und das theoretische in Das Wirkliche umsetzen

Aufgabenstellungen

Das messen von Potentialen an unterschiedlichen Lastwiederständen.

Stückliste

Lfd.Nr.:	Bezeichnung	Anmerkung	Menge
1	Atlas-Board	Atlas-Mico-System	1*
2	Messleiter (paar)	tastspitzen	1*
3	Messleiter (paar)	0.4mm breite 1m lang	1*
4	Netzgerät	Stratron	1*
5	Digital-Multimeter	Fluke	1*
6	Widerstände (in verschiedenen Größen)	1kΩ; 470Ω; 330Ω; 100Ω	4*

Schalskittze

Legende oben nächste Seite Legende der Skizze

Rot: Messung 1 (bei dunklerer stelle kreuzten sich nur in Skizze die

Leiter am Ende sind es getrennte.)

Gelb: Messung 2

Blau/Grün(punktiert): Teilmessung

Vorgehensweise

- 1. Aufgaben 1 und 2 im Hefter Bearbeiten damit man es immer hat.
- 2. Widerstände überprüfen und für gruppe Sortieren
- 3. Aufgabe 3 bearbeiten, also die Schaltskizze in Wirklichkeit umsetzen.
- 4. Messungen durchführen.
- 5. Aufgabe 7 bearbeiten, also rechnerisch überprüfen ob richtig.
- 6. Protokoll anfertigen.

Ergebnisse

Zu Aufgabe 1

Potential ist elektrisches Energieniveau an einen bestimmten Punkt des Stromkreises, bezogen auf einen bestimmten Bezugspunkt auf dem Stromkreis.

Die elektrische Spannung U ist die Potentialdifferenz zwischen zwei Punkten im elektrischen Feld. Sie ist die treibende Kraft für die Ladungsbewegung.

Zu Aufgabe 2

Man legt die Messspitzen an zwei unterschiedlichen punkten an. Aber vorher steckt man die Messleiter in die dafür vorher gesehenen Ports, das heißt bei unserem Digital-Multimeter, das man die rote Messleitung in den Roten Port und die schwarze Messleitung in darunterliegenden Port einsteckt und dann kann man den Drehregler auf Spannung stellen.

Zu Aufgabe 4-7

Potentiale zum Bezugspunkt P1

P2-R1	P3-R2	P4-R3	P5-R4
5,339V	7,8V	9,54V	10,06V-

Potentiale zum Bezugspunkt P3

P1-R ₁	P2-R ₂	P4-R ₃	P5-R ₄
-9,54V	-4,198V	-1,732	0,528

<u>Teilpotential</u>

U	U ₁	U ₂	U ₃	U ₄
V	5,339	2,465	1,732	0,528
V (berechnet)	5,339	2,461	1,74	0,52

Rechnungen sind auf der nächsten Seite

 $U_2 = \phi_1 - \phi_0$

 $U_2 = 2,461$

 $U_2 = 7.8 - 5.339$

 $U_3 = \phi_1 - \phi_0$

 $U_3 = \underline{1,74}$

 $U_3 = 9,54 - 7,8$

$$U_1 \ = \ \varphi_1 \ - \ \varphi_0$$

$$U_1 = 5,339 - 0$$

$$U_1 = 5,339$$

$$U_1 = \varphi_1 - \varphi_0$$

$$U_1 = 10,06 - 9,54$$

$$U_1 = \underline{0,52}$$

Erkenntnisse

Da es eine nicht veränderbare Formel ist.

Ja eine Formel konnte nachgewiesen werden.

Quellen

Hefter