

самолет

Сквозь турникеты в ML

Задача 16

Алгоритм для поиска предложенных скидок в телефонных разговорах с клиентами

Задача и цель

Задача: разработка автоматизированного решения для определения скидок в транскрибированных записях телефонных разговоров

Целевой результат: повышение качества анализа влияния скидок на принятие решений клиентами

Решение: классическая задача распознавания сущностей, для которой используются предобученные модели для решения NER-задач

Пример записи:

... где он находится о там есть да уже готовы какая площадь вас интересует секунду так ну вот готовая двухкомнатная пятьдесят квадратных метров с отделкой десять миллионов триста да минимум пятнадцать процентов миллион шестьсот продаж дополнительно могу вам отправить скидку два процента она действует в течение двух дней сегодня и завтра удобно сегодня к нам подъехать ...

"{'I-value': [40], 'B-value': [39], 'B-discount': [38]}"

План работы

Построение гипотез

• Использование различных NER-моделей трансформеров повысит точность определения необходимых сущностей

503

не пустых значения в target из 3399

344 I-value 377 B-value

493 B-discount Разведочный анализ данных выявил наличие нескольких записей с большим количеством тегов «I-value» - на этих записях была поправлена разметка

В режиме кросс-валидации на 5-ти фолдах были обучены 3 модели. Оценка производилась по метрикам fl_score и classification_report из sklearn.metrics

0.5637 F-weight bert-base-cased

0.6650 F-weight sberbank-ai/ruBert-base

0.7461 F-weight
Babelscape/wikineural-multilingual-ner

Анализ найденных моделью сущностей показал, что модель находит сущностей в тексте, больше, чем есть в разметке тренировочной выборки

Нужно дополнить разметку

503

не пустых значений в target из 3399 4 итерации по дополнению разметки

886 не пустых значений в target из 3399

Тексты в обучающей выборке разбиты на части с перекрытием 25%, чтобы каждая часть не превышала 512 токенов

На обновленном датасете были обучены 3 модели:

модель	Взвешенная F-мера
Babelscape/wikineural-multilingual-ner	0,78136
DeepPavlov/rubert-base-cased-conversational	0,83367
microsoft/mdeberta-v3-base2	0,83379

Сгенерированы синтетические данные:

токенизатор + head GPT2

pretrained sberbank-ai/rugpt3medium_based_on_gpt2

модуль Faker

*max_length случайное количество слов в тексте от 100 до 500 + Faker для добавления случайного количества случайных слов

5500

синтетических записей с разметкой

случайное числительное от 1 до 30 / числительное с фразами от «сто тысяч» до «миллиона»

Случайное написание слов «процент», «рубль» и «скидка»

Исходный датасет

3399

Обучающая выборка

400 тестовых значений

Синтетические данные

5000

Обучающая выборка

500

тестовых значений

После генерации набора данных выяснилось, что отсутствуют сущности вида «**скидка примерно два три процента**». Создан второй набор синтетических данных.

Каждый набор по 5000 строк был добавлен к исходному датасету из 3000 строк, обучены 2 модели:

модель	набор данных	F-weight
DeepPavlov/rubert-base-cased-conversational3	первый	0,86485
DeepPavlov/rubert-base-cased-conversational3	второй	0,85205

На втором наборе скор упал.

Идея: смешать оба набора данных, но в какой пропорции?

модель	набор 1	набор 2	F-weight
DeepPavlov/rubert-base-cased-conversational3	3500	1500	0,85453
DeepPavlov/rubert-base-cased-conversational3	2000	1000	0,86684
DeepPavlov/rubert-base-cased-conversational3	4000	2000	0,88433
DeepPavlov/rubert-base-cased-conversational3	5000	2000	0,86573

Лучшее решение

9000

Обучающий датасет

3000

исходный датасет

4000

первый набор синтетики

2000

второй набор синтетики

1200

Валидация

400

исходный датасет

400

первый набор синтетики

400

второй набор синтетики

Устройство	Данные	Количество записей	Время	Текст/сек
Kaggle GPU P100	valid	1200	0:45	25-30
Kaggle CPU	valid	1200	8:52	2-3
RTX 3060	valid	1200	0:23	50-55
i5-13500	valid	1200	1:49	10-12
Kaggle GPU P100	gt_test.csv	482	0:30	15.99
Kaggle CPU	gt_test.csv	482	3:25	2.35
RTX 3060	gt_test.csv	482	0:28	16.67
i5-13500	gt_test.csv	482	2:03	3.89

Тексты размечены на 6 классов: наличие меток 'B-value', 'I-value', 'B-discount' + синтетика это или нет В этих моделях использовалась кросс-валидация на 7 фолдах

модель	набор данных	F-weight
DeepPavlov/rubert-base-cased-conversational3	3000+4000+2000	0,93324
microsoft/mdeberta-v3-base2	3000+4000+2000	0,94434

Используемые технологии и ресурсы

Python:

PyTorch, Pandas, Numpy, Scikit-learn

FAST API, Docker

- Сборка докер-контейнера (15 минут): docker build -t aeroplane_app
- запуск контейнера: docker run -d -p 8000:8000 --name aeroplane aeroplane_app
- Размер:4.88GB в оперативной памяти

Обучение модели:

kaggle

- Обучение моделей семейства BERT на данных vl и v2 - 4.5 часа на GPU Pl00 (обучение на одном фолде - 50-55 минут). Модель семейства DeBERTa обучается примерно 8 часов (по 1.5 часа на фолд).
- Обучение моделей семейства BERT на данных v3 6.5 часов на GPU P100 (обучение на одном фолде 75-80 минут). Модели семейства DeBERTa не хватило выделенного лимита на сессию.
- в более 80% случаев наибольший скор получался у моделей, обученных на первом фолде.
- Для дальнейшего обучения использовался первый фолд, время обучения составило чуть более 4-х часов.

Получение синтетических данных:

kaggle

Генерация 5500 текстов (> 11 часов)

Развертывание сервиса

Отправка запроса к API на Python

```
import requests
import json
url = "http://127.0.0.1:8000/ner"
text = (
    "двухкомнатная квартира пятьдесят квадратных метров с отделкой десять миллионов триста "
    "минимум пятнадцать процентов миллион шестьсот продаж дополнительно могу вам отправить "
    "скидку два процента она действует в течение двух дней сегодня и завтра")
payload = {"text": text}
headers = {"Content-Type": "application/json"}
response = requests.post(url, headers=headers, data=json.dumps(payload))
if response.status_code = 200:
    result = response.json()
    print("Text:", result['text'])
   print("Labels:", result['labels'])
    print(f"Error: {response.status_code}")
    print(response.text)
```

Отправка запроса к АРІ из браузера

Text: двухкомнатная квартира пятьдесят квадратных метров с отделкой десять миллионов триста минимум пятнадцать процентов миллион шестьсот продаж дополнительно могу вам отправить скидку два процента она действует в течение двух дней сегодня и завтра

Предложения и развитие проекта

Использование более точной модели транскрибации и диаризации, что позволит обрабатывать более структурированный текст.

Расширение датасета и повторная проверка разметки.

Использование более сложной модели.

Использование более сложной схемы разметок. Вместо использования простых меток сущностей, таких как B-value, I-value и О, возможно использование вложенной схемы разметок, которая различает перекрывающиеся сущности и другие более сложные отношения.

Использование предварительно обученных вложений. Вместо обучения вложений слов с нуля, использовать предварительно обученные вложения, такие как GloVe или ELMo, которые уже содержат семантическую информацию о словах.

Применение ансамблевого обучения. Обучение нескольких моделей NER с разными архитектурами и гиперпараметрами с объединением их прогнозов для повышения качества.

Сквозь турникеты в ML