Algorithms

Dana Shapira

Lesson #5:

DFS,

Topological Sort

Strongly Connected Components

Graph

- A graph is a pair (V, E), where
 - Vis a set of nodes, called vertices
 - E is a collection of pairs of vertices, called edges \subseteq ($V \times V$)
- If edge pairs are ordered, the graph is directed, otherwise undirected.

Paths

- Path
 - sequence of vertices $\{v_0, v_1, ..., v_p\}$ where $(v_i, v_{i+1}) \in E$
- Simple path
 - If no vertex in the path appears more than once

Cycles

- Circuit
 - A path $\left\{v_0, v_1, ..., v_p\right\}$ where $v_0 = v_p$.
- Simple circuit
 - If no vertex, other than the start-end vertex, appears more than once, and the start-end vertex does not appear elsewhere

Graph Representations

• Adjacency Lists.

• Adjacency Matrix.

	1	2	3	4
1	0	1	1	1
2	1	0	1	0
3	1	1	0	1
4	1 0 1 1 1	0	1	0

Breadth-first Search

- Input: Graph G = (V, E), directed or undirected, and source vertex S ∈ V.
- Output:

for all $v \in V$

- d[v] = distance from s to v.
- $\pi[v] = u$ such that (u, v) is the last edge on shortest path from s to v.
- Builds breadth-first tree with root s that contains all reachable vertices.
- Colors the vertices to keep track of progress.
 - White Undiscovered.
 - Gray Discovered but not finished.
 - Black Finished.

6

Depth-first Search

- Input: G = (V, E), directed or undirected.
- Output:
 - for all $v \in V$.
 - d[v] = discovery time (v turns from white to gray)
 - f[v] = finishing time (v turns from gray to black)
 - $\pi[\nu]$: predecessor of $\nu = u$, such that ν was discovered during the scan of u's adjacency list.
- Forest of depth-first trees: $G_{\pi} = (V, E_{\pi})$ $E_{\pi} = \{(\pi[v], v), v \in V \text{ and } \pi[v] \neq \text{null}\}$

DFS(G)

- 1. **for** each vertex $u \in V[G]$
- 2. **do** $color[u] \leftarrow$ white
- 3. $\pi[u] \leftarrow \text{NULL}$
- 4. $time \leftarrow 0$
- 5. **for** each vertex $u \in V[G]$
- 6. **do if** color[u] = white
- 7. **then DFS-Visit**(u)

Running time is $\theta(V+E)$

$\overline{\text{DFS-Visit}(u)}$

6.

- 1. $color[u] \leftarrow GRAY$
- 2. $time \leftarrow time + 1$
- 3. $d[u] \leftarrow time$
- 4. **for** each $v \in Adj[u]$
- **do if** color[v] = WHITE
 - then $\pi[v] \leftarrow u$
- DFS-Visit(*v*)
- 8. $color[u] \leftarrow BLACK$
- 9. $f[u] \leftarrow time \leftarrow time + 1$

Example (DFS)

Parenthesis Theorem

Theorem

For all u, v, exactly one of the following holds:

- 1. a[u] < f[u] < a[v] < f[v] or a[v] < f[v] < a[u] < f[u] and neither u nor v is a descendant of the other.
- 2. a[u] < a[v] < f[v] < f[u] and v is a descendant of u.
- 3. d[v] < d[u] < f[u] < f[v] and u is a descendant of v.
- So d[u] < d[v] < f[u] < f[v] cannot happen.
- Corollary
 v is a proper descendant of u if and only if
 a[v] < a[v] < f[v]

10

Example (Parenthesis Theorem)

11

(s(z(y(xx)y)(ww)z)s)(t(vv)(uu)t)

White-path Theorem

Theorem

v is a descendant of u if and only if at time d[u], there is a path $u \sim v$ consisting of only white vertices.

DFS: classification of edges

Theorem 3: In a depth-first search of an undirected graph G=(V,E), every edge in E is either a tree edge or a back edge.

<u>Proof</u>: Let (u,v) be an an edge in E, and suppose that a[u] < a[v]. Then v must be discovered and finished before u is finished (current) since v is on us adjacency list. If the edge (u,v) is explored in the direction $u \rightarrow v$, then u is not_visited until that time. If the edge is explored in the other direction, $u \leftarrow v$, then it is a back edge since u is still current at the time the edge is first explored.

Classification of Edges

- Tree edge: Edges in G_{π} . ν was found by exploring (u, ν) .
- Back edge: (u, v), where u is a descendant of v in G_{π} .
- Forward edge: (u, v), where v is a descendant of u, but not a tree edge.
- Cross edge: any other edge. Can go between vertices in same depth-first tree or in different depth-first trees.

13

14

Identification of Edges

- Edge type for edge (u, v) can be identified when it is first explored by DFS.
- Identification is based on the color of v.
 - White tree edge.
 - Gray back edge.
 - Black forward or cross edge.

Identification of Edges

Theorem:

In DFS of an undirected graph, we get only tree and back edges. No forward or cross edges.

Proof:

- Let $(u,v) \in E$. w.l.o.g let a[u] < a[v]. Then v must be discovered and finished before u is finished.
- If the edge (u,v) is explored first in the direction $u \rightarrow v$, then v is white until that time then it is a tree edge.
- If the edge is explored in the direction, $\nu \rightarrow u$, u is still gray at the time the edge is first explored, then it is a back edge.

Directed Acyclic Graph - DAG

17

- partial order:
 - a > b and $b > c \Rightarrow a > c$.
 - But may have a and b such that neither a > b nor b > a.
- Can always make a total order
 (either a > b or b > a for all a ≠ b) from a partial order.

Characterizing a DAG

Lemma

A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof:

- ⇒:
 - Suppose there is a back edge (u, v). Then v is an ancestor of u in depth-first forest.
 - Therefore, there is a path $v \sim u$, so $v \sim u \sim v$ is a cycle.

18

Characterizing a DAG

Lemma

A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof (Cont.):

- **⇐**:
 - c: cycle in G, v: first vertex discovered in c, (u, v): preceding edge in c.
 - At time a[v], vertices of c form a white path $v \sim u$. Why?
 - By white-path theorem, u is a descendent of v in depth-first forest.
 - Therefore, (u, v) is a back edge.

Topological Sort

Want to "sort" a directed acyclic graph (DAG).

Topological Sort

- Performed on a DAG.
- Linear ordering of the vertices of G such that if $(u, v) \in E$, then u appears somewhere before v.

Topological-Sort (6)

- 1. call DFS(G) to compute finishing times f[v] for all $v \in V$
- 2. as each vertex is finished, insert it onto the front of a linked list
- 3. return the linked list of vertices

Running time is $\theta(V+E)$

21

Example

Linked List:

22

Correctness Proof

- Just need to show if $(u, v) \in E$, then f[v] < f[u].
- When we explore (u, v), what are the colors of u and v?
 - *u* is gray.
 - Is vgray, too?
 - No, because then v would be an ancestor of u.
 - \Rightarrow (*u*, *v*) is a back edge.
 - \Rightarrow contradiction of Lemma (DAG has no back edges).
 - Is vwhite?
 - v is a descendant of u.
 - By parenthesis theorem, d[u] < d[v] < f[v] < f[u].
 - Is vblack?
 - Then vis already finished.
 - Since we're exploring (u, v), we have not yet finished u.
 - \Rightarrow f[v] < f[u].

Strongly Connected Components

- G is strongly connected if every pair (u, v) of vertices in G is reachable from each other.
- A strongly connected component (SCC) of G is a maximal set of vertices $C \subseteq V$ such that for all u, $v \in C$, both $u \curvearrowright v$ and $v \curvearrowright u$ exist.

Component Graph

- $G^{SCC} = (V^{SCC}, E^{SCC}).$
- VSCC has one vertex for each SCC in G.
- E^{SCC} has an edge if there is an edge between the corresponding SCC's in G.

 G^{SCC} for the example considered:

25

GSCC is a DAG

Lemma

Let C and C' be distinct SCC's in G, let $u, v \in C, u', v' \in C'$, and suppose there is a path $u \curvearrowright u'$ in G. Then there cannot also be a path $v \curvearrowright v$ in G.

Proof:

- Suppose there is a path $v^{\sim}v$ in G.
- Then there are paths $u \sim u' \sim v'$ and $v' \sim v \sim u$ in G.
- Therefore, u and v' are reachable from each other, so they are not in separate SCC's.

26

Transpose of a Directed Graph

- G^{T} = transpose of directed G.
 - $G^T = (V, E^T), E^T = \{(u, v) : (v, u) \in E\}.$
 - G^T is G with all edges reversed.
- Can create G^T in $\Theta(V + E)$ time if using adjacency lists.
- G and G^T have the same SCC's. (u and v are reachable from each other in G if and only if reachable from each other in G^T .)

Algorithm to determine SCCs

SCC(G)

- 1. call DFS(G) to compute finishing times f[u] for all u
- 2. compute G^{T}
- 3. call DFS(G^T), but in the main loop, consider vertices in order of decreasing f[u] (as computed in first DFS)
- 4. output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

Running time is $\theta(V+E)$

Example

Example

29

30

Example

How does it work?

• Idea:

- By considering vertices in second DFS in decreasing order of finishing times from first DFS, we are visiting vertices of the component graph in topologically sorted order.
- Because we are running DFS on G^T , we will not be visiting any ν from a u, where ν and u are in different components.

• Notation:

- a[u] and f[u] always refer to first DFS.
- Extend notation for d and f to sets of vertices $U \subseteq V$:
 - $d(U) = \min_{u \in U} \{d[u]\}$ (earliest discovery time)
 - $f(U) = \max_{u \in U} \{ f[u] \}$ (latest finishing time)

32

SCCs and DFS finishing times

Lemma

Let *C* and *C'* be distinct SCC's in G = (V, E). Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then f(C) > f(C').__

Proof:

- Case 1: d(C) < d(C')
 - Let x be the first vertex discovered in C.
 - At time d[x], all vertices in C and C' are white. Thus, there exist paths of white vertices from x to all vertices in C and C'.
 - By the white-path theorem, all vertices in *C* and *C'* are descendants of *x* in depth-first tree.
 - By the parenthesis theorem, f[x] = f(C) > f(C').

33

- Case 2: d(C) > d(C')
 - Let y be the first vertex discovered in C'.
 - At time d[y], all vertices in C' are white and there is a white path from y to each vertex in $C' \Rightarrow$ all vertices in C' become descendants of y. Again, f[y] = f(C').
 - At time d[y], all vertices in C are also white.
 - By earlier lemma, since there is an edge (u, v), we cannot have a path from C to C'.
 - So no vertex in *C* is reachable from *y*.
 - Therefore, at time f[y], all vertices in C are still white.
 - Therefore, for all $w \in C$, f[w] > f[y], which implies that f(C) > f(C').

SCCs and DFS finishing times

Corollary

Let C and C be distinct SCC's in G = (V, E). Suppose there is an edge

 $(u, v) \in E^{T}$, where $u \in C$ and $v \in C$. Then f(C) < f(C).

Proof:

- $(u, v) \in E^T \Rightarrow (v, u) \in E$.
- Since SCC's of G and G^{T} are the same, f(C') > f(C), by previous Lemma.

Correctness of SCC

- When we do the second DFS, on G^T , start with SCC C such that f(C) is maximum.
 - The second DFS starts from some $x \in C$, and it visits all vertices in C.
 - The Corollary says that since f(C) > f(C) for all $C \neq C$, there are no edges from C to C in G^T .
 - Therefore, DFS will visit only vertices in C.
 - Which means that the depth-first tree rooted at x contains exactly the vertices of C.

Correctness of SCC

- The next root chosen in the second DFS is in SCC C such that f(C) is maximum over all SCC's other than C.
 - DFS visits all vertices in C, but the only edges out of C go to C, which we've already visited.
 - Therefore, the only tree edges will be to vertices in \mathcal{C} .
- We can continue the process.
- Each time we choose a root for the second DFS, it can reach only
 - vertices in its SCC—get tree edges to these,
 - vertices in SCC's already visited in second DFS— $_{37}$ get no tree edges to these.