L3 ESPM - Métrologie FPS620BM

Cours I – 2 heures

frank.buloup@univ-amu.fr
julien.serres@univ-amu.fr

Présentation du module de 20h

Divisé en dix séances de deux heures chacune :

Cf. fiche de cours su AMETICE

Une séance de contrôle final d'une heure

CC1 (25% -)CC APP (50%) et CF écrit une heure (50%)

Présentation du module de 20h

À l'issue de de cette formation vous serez capable de :

- Identifier et décrire les différents éléments qui composent une chaine d'acquisition de données
 - 1. Énumérer les concepts relatifs à la métrologie, aux capteurs
 - 2. Décrire l'opération de conversion analogique vers numériques
- Utiliser les traitements de base en calcul numérique
 - Mettre en œuvre les calculs de moyenne et d'écart type
 - 2. Utiliser une filtre numérique
- Appliquer les grands principes de la compatibilité électromagnétique
 - 1. Décrire les différentes perturbations des électroniques
 - 2. Connaître les techniques à mettre en œuvre pour diminuer ces perturbations

Présentation, objectifs

Plan

Première partie – Signal, notions de métrologie, acquisition

- a) Présentation du concept de Signal
- b) Notions de métrologie Capteur
- c) Du monde analogique au monde numérique : le composant
- d) Les différentes étapes de cette conversion et le théorème de Shannon-Nyquist
- e) Les caractéristiques essentielles de la Conversion Analogique/Numérique

Un signal?

Domaine

Ingénierie électrique

Définition

Manifestation d'un phénomène physique observable électriquement

Un signal?

Quelle est la grandeur électrique associée ?

Le signal délivré par un capteur est généralement une tension analogique

Signal continu à temps continu = signal analogique

Un signal?

Qu'est-ce qu'un signal analogique ?

Le support d'une information qui peut, à tout instant d'un intervalle de temps donné, prendre toute valeur dans un intervalle d'amplitude donné

Plan

Première partie - Signal, notions de métrologie, acquisition

- a) Présentation du concept de Signal
- b) Notions de métrologie Capteur
- c) Du monde analogique au monde numérique : le composant
- d) Les différentes étapes de cette conversion et le théorème de Shannon-Nyquist
- e) Les caractéristiques essentielles de la Conversion Analogique/Numérique

Mesurande

Grandeur physique que l'on veut mesurer

Mesurande

Grandeur physique que l'on veut mesurer

Capteur

Dispositif de mesure permettant de transformer un mesurande en une grandeur utilisable expérimentalement

Connaissez-vous d'autres mesurandes et leurs capteurs associés ?

Mesurande	Capteur

Connaissez-vous d'autres mesurandes et leurs capteurs associés ?

Mesurande	Capteur		
Position (m, rad)			
Vitesse (m.s ⁻¹ , rad.s ⁻¹)			
Accélération (m.s ⁻² , rad.s ⁻²)			
Force (N)			
Flux lumineux (Lux)			
Déformation (m)			

Connaissez-vous d'autres mesurandes et leurs capteurs associés ?

Mesurande	Capteur		
Position (m, rad)	Potentiomètre - Inclinomètre		
Vitesse (m.s ⁻¹ , rad.s ⁻¹)	Tachymètre		
Accélération (m.s ⁻² , rad.s ⁻²)	Accéléromètre		
Force (N)	Dynamomètre		
Flux lumineux (Lux)	Luxmètre		
Déformation (m)	Jauge de contrainte		

Mesurage – Effectuer des mesures

Processus consistant à obtenir expérimentalement une ou plusieurs valeurs que l'on peut raisonnablement attribuer à un mesurande

Mesurage – Effectuer des mesures

Processus consistant à obtenir expérimentalement une ou plusieurs valeurs que l'on peut <u>raisonnablement</u> attribuer à un mesurande

Pourquoi « raisonnablement »?

Mesurage – Effectuer des mesures

Processus consistant à obtenir expérimentalement une ou plusieurs valeurs que l'on peut raisonnablement attribuer à un mesurande

Parce qu'il peut exister des grandeurs d'influences & des erreurs de mesures

Mesurage – Effectuer des mesures

Processus consistant à obtenir expérimentalement une ou plusieurs valeurs que l'on peut raisonnablement attribuer à un mesurande

Grandeur d'influence

Le capteur, sensible au mesurande, peut également l'être, dans une moindre mesure, à d'autres grandeurs physiques

Influence de la Température sur un capteur de force par exemple

Mesurage – Effectuer des mesures

Processus consistant à obtenir expérimentalement une ou plusieurs valeurs que l'on peut raisonnablement attribuer à un mesurande

Grandeur d'influence

Le capteur, sensible au mesurande, peut également l'être, dans une moindre mesure, à d'autres grandeurs physiques

Erreurs de mesure

- Erreurs systématiques
 décalage constant entre valeur vraie et mesurée
- Erreurs accidentelles décalage aléatoire entre valeur vraie et mesurée

Erreurs de mesure

- Erreurs systématiques
- Erreurs accidentelles

Erreurs de mesure

- Erreurs systématiques
- Erreurs accidentelles

Capteur fidèle mais non juste

- Valeur mesurée
- Valeur vraie

Erreurs de mesure

- Erreurs systématiques
- Erreurs accidentelles

Capteur juste mais non fidèle

- Valeur mesurée
- Valeur vraie

Erreurs de mesure

- Erreurs systématiques
- Erreurs accidentelles

Capteur ni juste ni fidèle

- Valeur mesurée
- Valeur vraie

Erreurs de mesure

- Erreurs systématiques
- Erreurs accidentelles

Capteur juste & fidèle : précis

- Valeur mesurée
- Valeur vraie

On se propose d'étudier la température d'une pièce régulée à 24°C. Voici des valeurs obtenues lors de ce mesurage :

24,6°C	23,2°C	24,7°C	23,4°C	24,1°C
--------	--------	--------	--------	--------

Calculer la valeur moyenne et l'écart type de ces mesures Peut-on dire si le capteur utilisé est juste et fidèle ?

Calculer la valeur moyenne et l'écart type de ces mesures

$$\mu = \frac{24.6 + 23.2 + 24.7 + 23.4 + 24.1}{5} = 24$$

$$\sigma^2 = \frac{0.6^2 + 0.8^2 + 0.7^2 + 0.6^2 + 0.1^2}{5} = \frac{1.86}{5}$$

$$\sigma \cong 0.61$$

Peut-on dire si le capteur utilisé est juste et fidèle ?

Capteur juste

Fidèle?

Peut-on dire si le capteur utilisé est juste et fidèle ?

Capteur juste

On ne peut rien dire sur la fidélité car il manque une donnée sur le capteur : sa résolution Sa plus petite valeur mesurable

Résolution

La plus petite variation du mesurande observable par le capteur

Capteur juste

Fidèle?

Capteur juste

Capteur non fidèle

Très souvent, ce que délivre le capteur est une tension analogique Il faut passer de la grandeur du mesurande à des volts

Très souvent, ce que délivre le capteur est une tension analogique Il faut passer de la grandeur du mesurande à des volts

Résolution

La plus petite variation du mesurande observable par le capteur

Sensibilité

Réponse du capteur en fonction du mesurande

- Sensibilité statique
- Sensibilité dynamique

On sait maintenant que pour 24°C, le capteur délivre 0Volt. On obtient le tableau suivant lors des mesures statiques

°C	24,6°C	23,2°C	24,7°C	23,4°C	24,1°C
Volt	0,06	-0,08	0,07	-0,06	0,01

Donner l'équation qui lie la tension V de sortie du capteur au mesurande T (température) Quelle est la sensibilité du capteur?

On sait maintenant que pour 24°C, le capteur délivre 0Volt. On obtient le tableau suivant lors des mesures statiques

°C	24,6°C	23,2°C	24,7°C	23,4°C	24,1°C
Volt	0,06	-0,08	0,07	-0,06	0,01

$$V = 0.1(T - 24)$$

$$S = 0.1V / {}^{\circ}C$$

Présentation, objectifs

Plan

Première partie - Signal, notions de métrologie, acquisition

- a) Présentation du concept de Signal
- b) Notions de métrologie Capteur
- c) Du monde analogique au monde numérique : le composant
- d) Les différentes étapes de cette conversion et le théorème de Shannon-Nyquist
- e) Les caractéristiques essentielles de la Conversion Analogique/Numérique

Définition

Composant électronique destiné à fournir une représentation numérique d'un signal analogique

Nombreuses technologies

Simple rampe, Double rampe, Flash, Delta Sigma, etc.
Toutes passent d'une représentation analogique
à une représentation numérique

Nombreuses technologies

Simple rampe, Double rampe, Flash, Delta Sigma, etc.
Toutes passent d'une représentation analogique
à une représentation numérique

Premier état de fait

Ce composant prend un certain temps pour effectuer les conversions

Premier état de fait

Ce composant prend un certain temps pour effectuer les conversions

Deuxième état de fait

Ce composant ne peut pas rendre compte de l'infinité de valeurs que peut prendre le signal analogique (Cf précédemment)

Plan

Première partie – Signal, notions de métrologie, acquisition

- a) Présentation du concept de Signal
- b) Notions de métrologie Capteur
- c) Du monde analogique au monde numérique : le composant
- d) Les différentes étapes de cette conversion et le théorème de Shannon-Nyquist
- e) Les caractéristiques essentielles de la Conversion Analogique/Numérique

Conséquence premier état de fait

ECHANTILLONNAGE

Conséquence premier état de fait

ECHANTILLONNAGE

Conséquence deuxième état de fait

QUANTIFICATION

L'étape d'échantillonnage

Capturer des valeurs du signal à intervalle de temps régulier

L'étape d'échantillonnage

Capturer des valeurs du signal à intervalle de temps régulier

L'étape d'échantillonnage

Capturer des valeurs du signal à intervalle de temps régulier

L'étape d'échantillonnage

Ce pas de temps Δt est appelé période d'échantillonnage Souvent noté T_e – Son inverse est la fréquence d'échantillonnage F_e

Peut-on choisir n'importe quelle valeur pour F_e?

Soit le signal suivant :

$$s(t) = \cos(2\pi t)$$

Quelle est la période T de ce signal ?

Quelle devra être la fréquence d'échantillonnage si on souhaite avoir 4 échantillons par période ?

Au minimum, combien d'échantillon doit-on avoir pour reconstituer correctement ce signal ?

Que vaut alors la fréquence d'échantillonnage ?

$$Fe = 4Hz$$

$$Fe = 2Hz$$

Le théorème de Shannon-Nyquist

Théorème de Shannon Nyquist

Pour acquérir correctement un signal, la fréquence d'échantillonnage doit être égale ou supérieure au double de la fréquence maximale contenue dans ce signal

L'étape de Quantification

Associer à chaque échantillon la valeur discrète la plus proche prise dans un ensemble fini de valeurs discrètes

- **▶** On découpe cette gamme en 4 « tranches »
 - \triangleright Pas de quantification q = 10/4 = 2.5v

- **▶** On découpe cette gamme en 4 « tranches »
 - \triangleright Pas de quantification q = 10/4 = 2.5v

- **▶** On découpe cette gamme en 4 « tranches »
 - \triangleright Pas de quantification q = 10/4 = 2.5v

- **▶** On découpe cette gamme en 4 « tranches »
 - \triangleright Pas de quantification q = 10/4 = 2.5v

- **▶** On découpe cette gamme en 4 « tranches »
 - \triangleright Pas de quantification q = 10/4 = 2.5v

- **▶** On découpe cette gamme en 4 « tranches »
 - \triangleright Pas de quantification q = 10/4 = 2.5v

- **▶** On découpe cette gamme en 4 « tranches »
 - \triangleright Pas de quantification q = 10/4 = 2.5v

Comment choisit-on ces valeurs discrètes?

Un CAN accepte une tension d'entrée variant entre +10 et -10 Volts. Après échantillonnage, la quantification est faite sur un ensemble de valeurs discrètes comportant 8 éléments. Sachant que la valeur discrète 0 fait parti de cet ensemble, quelles sont les autres valeurs ?

Si la série des valeurs échantillonnée est la suivante :

3.2456; 4.2249; -8.4923; 0.0802

Quelle est la série des valeurs discrètes ?

2.5;5;-7.5;0

L'étape de Codage

Dans la réalité le nombre d'éléments est très grand (plusieurs milliers) et chaque élément est directement codé en binaire. C'est ce que l'on appelle le CODAGE

Codage

On associe un code binaire à chaque valeur discrète issue de la quantification

En partant de l'exemple précédent, Combien de bits sont nécessaires au minimum?

Existe-t-il plusieurs codage possibles?

Quel code proposeriez-vous?

Quel est le lien entre le nombre de valeurs discrètes et le nombre de bits de ces codes ?

Quelle est la plus petite variation décelable ? Quel est son lien avec le nombre de bits de ces codes ?

3 bits

Oui

7.5v ⇔ 011

5v ⇔ 010

2.5v ⇔ 001

0v ⇔ 000

-2.5v ⇔ 111

-5v ⇔ 110

-7.5v ⇔ 101

-10v ⇔ 100

$$8 = 2^3$$

2.5_v

$$2.5v = (10 - (-10))/2^3$$

Acquisition ⇔ numérisation Signal **ECHANTILLONNAGE** analogique **QUANTIFICATION** Signal **CODAGE**

numérique

La conversion analogique numérique

Synthèse

La CAN permet de passer d'une représentation analogique à une représentation numérique manipulable sur ordinateur

Plan

Première partie - Signal, notions de métrologie, acquisition

- a) Présentation du concept de Signal
- b) Notions de métrologie Capteur
- c) Du monde analogique au monde numérique : le composant
- d) Les différentes étapes de cette conversion et le théorème de Shannon-Nyquist
- e) Les caractéristiques essentielles de la Conversion Analogique/Numérique

Temps de conversion

C'est le temps mis par le CAN pour échantillonner le signal et délivrer son code associé (lien avec Fe_{max})

Temps de conversion

C'est le temps mis par le CAN pour échantillonner le signal et délivrer son code associé (lien avec Fe_{max})

Résolution

C'est le nombre « n » de bits du CAN

Temps de conversion

C'est le temps mis par le CAN pour échantillonner le signal et délivrer son code associé (lien avec Fe_{max})

Résolution

C'est le nombre « n » de bits du CAN

Le nombre de valeurs discrètes possibles

2ⁿ

Gamme de la tension d'entrée

C'est l'intervalle de tension dans laquelle le signal d'entrée peut évoluer

 $[V_{min}, V_{max}]$

Gamme de la tension d'entrée

C'est l'intervalle de tension dans laquelle le signal d'entrée peut évoluer $[V_{min}, V_{max}]$

Tension pleine échelle

C'est la longueur de la gamme de la tension d'entrée :

 $|V_{max} - V_{min}|$

Pas de quantification q (Précision)

C'est le rapport de la tension pleine échelle au nombre de valeurs discrètes possibles :

$$q = |V_{max} - V_{min}|/2^n$$

Pas de quantification q (Précision)

C'est le rapport de la tension pleine échelle au nombre de valeurs discrètes possibles :

$$q = |V_{max} - V_{min}|/2^n$$

Codage

C'est le code délivrée par le CAN