```
In [1]: N import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    import statsmodels.api as sm
    import statsmodels.stats.api as sms
    from statsmodels.stats.outliers_influence import variance_inflation_factor
    import scipy.stats as sp
    from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
    from sklearn.linear_model import Lasso, Ridge
    from sklearn.model_selection import train_test_split
```

1. Basic Analysis and understanding the data

Observation of the data

In [3]: ► df.head()

Out[3]:

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	1	337	118	4	4.5	4.5	9.65	1	0.92
1	2	324	107	4	4.0	4.5	8.87	1	0.76
2	3	316	104	3	3.0	3.5	8.00	1	0.72
3	4	322	110	3	3.5	2.5	8.67	1	0.80
4	5	314	103	2	2.0	3.0	8.21	0	0.65

In [4]: ► df.shape

Out[4]: (500, 9)

```
In [5]:
            #Geting the overview of the dataset structure
            df.info()
            <class 'pandas.core.frame.DataFrame'>
            RangeIndex: 500 entries, 0 to 499
            Data columns (total 9 columns):
                 Column
                                     Non-Null Count Dtype
             0
                 Serial No.
                                     500 non-null
                                                     int64
             1
                 GRE Score
                                     500 non-null
                                                     int64
             2
                 TOEFL Score
                                     500 non-null
                                                     int64
             3
                 University Rating 500 non-null
                                                     int64
             4
                 SOP
                                     500 non-null
                                                     float64
                                     500 non-null
             5
                                                     float64
                 LOR
             6
                 CGPA
                                     500 non-null
                                                     float64
             7
                 Research
                                     500 non-null
                                                     int64
                 Chance of Admit
                                                     float64
                                     500 non-null
            dtypes: float64(4), int64(5)
            memory usage: 35.3 KB
         ▶ #Uninique values and it's count unique for all columns
In [6]:
            df.nunique()
   Out[6]: Serial No.
                                  500
            GRE Score
                                   49
                                   29
            TOEFL Score
            University Rating
                                   5
            SOP
                                   9
            LOR
                                   9
            CGPA
                                  184
            Research
                                   2
            Chance of Admit
                                   61
            dtype: int64
        Data Processing
```

```
In [8]:  ▶ #Check missing values
            print('Missing Values:')
            df.isnull().sum()
            Missing Values:
   Out[8]: Serial No.
                                  0
            GRE Score
                                  0
            TOEFL Score
                                  0
            University Rating
                                  0
            SOP
                                  0
            LOR
                                  0
            CGPA
                                  0
            Research
                                  0
            Chance of Admit
                                  0
            dtype: int64
In [ ]: ▶
```

Droping the row identifier

```
In [9]: 

# Sl.No. is the row identifier and it's being dropped as it will interfere in th
df.drop('Serial No.', axis=1, inplace=True)
```

Non graphical and graphical analysis of the variable

Nongraphical Analysis

```
In [10]: 

#summary of statistics of numerical columns
df.describe()
```

Out[10]:

	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chan of Adı
count	500.000000	500.000000	500.000000	500.000000	500.00000	500.000000	500.000000	500.000
mean	316.472000	107.192000	3.114000	3.374000	3.48400	8.576440	0.560000	0.721
std	11.295148	6.081868	1.143512	0.991004	0.92545	0.604813	0.496884	0.141
min	290.000000	92.000000	1.000000	1.000000	1.00000	6.800000	0.000000	0.340
25%	308.000000	103.000000	2.000000	2.500000	3.00000	8.127500	0.000000	0.630
50%	317.000000	107.000000	3.000000	3.500000	3.50000	8.560000	1.000000	0.720
75%	325.000000	112.000000	4.000000	4.000000	4.00000	9.040000	1.000000	0.820
max	340.000000	120.000000	5.000000	5.000000	5.00000	9.920000	1.000000	0.970
4								

In [11]: | #Plotting the distribution chart for the numercal varaibles plt.figure(figsize=(15,10)) plt.subplots_adjust(hspace=0.5) plt.subplot(3,2,1) sns.histplot(df['GRE Score'], kde=True) plt.subplot(3,2,2) sns.histplot(df['TOEFL Score'], kde=True) plt.subplot(3,2,3) sns.histplot(df['University Rating'], kde=True) plt.subplot(3,2,4) sns.histplot(df['SOP'], kde=True) plt.subplot(3,2,5) sns.histplot(df['CGPA'], kde=True) plt.subplot(3,2,6) sns.histplot(data=df, x='Research', kde=True) plt.show() 60 80 60 Count 40 20 GRE Score 150 80 Count 100 60 Count 40 50 20 250 60 200 40 150 150 100 20 50 8.0 10.0 0.0 0.2 0.8

To understand the relationship between different variables responsbile for student admission we perform corelation analysis

Research

Checking the correlation between the independent variables

Linear Regression using Statsmodel Library

	0	LS Regress	ion Results		
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Chance of Admit R-squared: OLS Adj. R-squared: Least Squares F-statistic: Mon, 19 Feb 2024 Prob (F-statistic): 21:31:18 Log-Likelihood: 500 AIC: 492 BIC: 7 nonrobust			0.822 0.819 324.4 8.21e-180 701.38 -1387. -1353.	
0.975]	coef	std err	t	P> t	[0.025
 const -1.071	-1.2757	0.104	-12.232	0.000	-1.481
GRE Score 0.003	0.0019	0.001		0.000	0.001
TOEFL Score 0.004 University Rating	0.0028 0.0059	0.001 0.004		0.002 0.119	0.001 -0.002
0.013 SOP 0.011	0.0016	0.005		0.728	-0.002
LOR 0.025	0.0169	0.004		0.000	0.009
CGPA 0.137	0.1184	0.010		0.000	0.099
Research 0.037	0.0243	0.007	3.680	0.000	0.011
Omnibus: Prob(Omnibus): Skew:		112.770 0.000 -1.160	Durbin-Watso Jarque-Bera Prob(JB):		0.796 262.104 1.22e-57

Notes:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correct ly specified.

5.684 Cond. No.

1.30e+04

[2] The condition number is large, 1.3e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Insights

1. R² and Adjusted R²:

• R^2: R-squared is 0.822 indicating 82.2% of the variability of dependent variable, Chance of Admit is explained by the independednt variable in the model.

• Adjusted R^2: Adjusted R-squared is 0.819 which is slightly lesser than the R-squared, indicating that the additional predictors do not significantly contribute to the explanatory poer of the model.

2. Coeffcients:

- Constant(Intercept): It's -1.2757 which represents the value of the dependent variable when all the independent variables are zero.
- GRE, TOEFL, LOR, CGPA and Research coefficients are all positive and the pValue is greater than 0.05 which shows that these variables are statistically sigificant and are associated with the increase in probablity of admission.
- University rating and SOP coefficients are positive but are not statistically significant as pValue is higher than 0.05 which shows that these variables do not have significant impact on the probability

Assumptions of Linear Regression

Multicolinearity check by VIF score

Out[21]:

	Features	VIF
0	const	1511.495830
1	GRE Score	4.464249
2	TOEFL Score	3.904213
3	University Rating	2.621036
4	SOP	2.835210
5	LOR	2.033555
6	CGPA	4.777992
7	Research	1.494008

Out[22]:

	Features	VIF
1	GRE Score	4.464249
2	TOEFL Score	3.904213
3	University Rating	2.621036
4	SOP	2.835210
5	LOR	2.033555
6	CGPA	4.777992
7	Research	1.494008

Insights

• Based on the VIF values which are below 5 is generally acceptable which indicates minimal multicolinearity issues.

Mean of residuals

Mean of Residuals: 4.0534242629064463e-16

Insights

• The mean of residual is 4.0534242629064463e-16 which means that the residuals is centered around zero which means that the residual errors are evenly distributed above and below the regression line.

Linearity of variables

```
In [24]: In sns.residplot(x=model.fittedvalues, y=residuals, lowess=True, line_kws={'color':
    plt.xlabel("Fitted values")
    plt.ylabel("Residuals")
    plt.title("Residual Plot")
    plt.show()
```

Residual Plot 0.1 -0.2 -0.5 0.6 0.7 0.8 0.9

Fitted values

Test for Homoscedasticity

F ststistic: 0.4494044330462436 p-value: 0.999999995739839

Insights

• The p-value is 1 and hence we fail to reject the null hypothesis of Homoscedasticity test which is the varicance of the residuals is constant across oservations.

Normality of Residuals (Q-Q Plot)

```
In [26]: # plotting the histogram of residuals
plt.figure(figsize=(10,5))
sns.histplot(x=residuals, kde=True)
plt.title('Histplot for residuals')
plt.show()
```



```
In [27]: # plotting the QQ plot fot the residuals
fig, ax = plt.subplots(figsize=(6,4))
__, (__, ___, r) = sp.probplot(residuals, plot=ax, fit=True)
r**2
```

Out[27]: 0.9240807700700094

Insights

- The high R2 score of approximately 0.92 which is close to 1 suggests that the residuals exhibit a high degree of normality supporting the normality assumption of the linear regression model.
- The histplot of the residuals also supports the normality of the linear regression model.

Model Evaluation

```
In [28]:  # Predicting the target variable
y_pred = model.predict(X)

# Model evaluation metrics
mae = mean_absolute_error(y, y_pred)
rmse = mean_squared_error(y, y_pred, squared=False)
r2 = r2_score(y, y_pred)

n = len(y)
d = X.shape[1]

adjusted_r2 = 1 - (1-r2)*(n-1)/(n-d-1)

print("Mean Absolute Error (MAE):", mae)
print("Root Mean Squared Error (RMSE):", rmse)
print("R-squared Score:", r2)
print("Adjusted R-squared Score:", adjusted_r2)
```

Mean Absolute Error (MAE): 0.042572390149733436 Root Mean Squared Error (RMSE): 0.05950420877764953 R-squared Score: 0.8219007395178417 Adjusted R-squared Score: 0.8189989185731222

Insights

Mean Absolute error:

• The mean absolute error is 0.0426 which shows that the model's predictions are off by approximately 0.0426 units from the actaul values

Root mean squared error:

• RMSE is the measure of the spred of the residuals around the resgression line and the average magnitude of the residuals is approximately 0.0595 units.

R-squared score:

• The R2 score is approximately 0.8219 which indicates that approximately 82.19% of the variability in the dependent variable is explained by the independent variable in the model.

Adjusted R-squared score:

 The adjusted R-squared score, which accounts for the number of predictors in the model, is approximately 0.8190. It is slightly lower than the R-squared score but still indicates a good fit of the model.

Lasso and Ridge regression using sklearn

```
In [29]: # Split the data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_
```

Lasso Regression

Ridge regression

```
In [32]: # Model evaluation
def evaluate_model(yactual, ypred):
    mae = mean_absolute_error(y, y_pred)
    rmse = mean_squared_error(y, y_pred, squared=False)
    r2 = r2_score(y, y_pred)
    return mae, rmse, r2
```

```
In [34]: N lasso_metrics = evaluate_model(y_test, lasso_y_pred)
    ridge_metrics = evaluate_model(y_test, ridge_y_pred)

print("Lasso Regression Metrics:")
    print("Mean Absolute Error (MAE):", lasso_metrics[0])
    print("Root Mean Squared Error (RMSE):", lasso_metrics[1])
    print("R-squared Score:", lasso_metrics[2])

print("NRidge Regression Metrics:")
    print("Mean Absolute Error (MAE):", ridge_metrics[0])
    print("Root Mean Squared Error (RMSE):", ridge_metrics[1])
    print("R-squared Score:", ridge_metrics[2])
```

```
Lasso Regression Metrics:
Mean Absolute Error (MAE): 0.042572390149733436
Root Mean Squared Error (RMSE): 0.05950420877764953
R-squared Score: 0.8219007395178417

Ridge Regression Metrics:
Mean Absolute Error (MAE): 0.042572390149733436
Root Mean Squared Error (RMSE): 0.05950420877764953
R-squared Score: 0.8219007395178417
```

Insights

 Lasso and Ridge regression models has produced identical results and the metrics suggest thatboth Lasso and Ridge regression models perform similarly with no noticeable improvement over the standard linear regression model.

Actionable insights and recommendations

Based on the analysis conducted on the dataset and the performance of various regression models, here are some actionable insights and recommendations:

- The features such as GRE Score, TOEFL Score, CGPA, LOR, and Research experience showed significant impact on the chance of admission.
- Prioritize and focus on improving features that have a significant positive impact on the chance of admission.
- Students aiming for top colleges abroad should aim to improve their performance in these areas.
- While the Statement of Purpose (SOP) and Letter of Recommendation (LOR) were included in the
 model, they did not show significant impact on the chance of admission in the analysis. However,
 it's important to note that these components are still crucial in the application process and can
 provide valuable insights into a candidate's character and potential.
- Candidates with research experience tend to have a slightly higher chance of admission
 according to the model. Encouraging students to participate in research opportunities during their
 undergraduate studies could enhance their profiles.
- Providing students with resources and support to improve their profiles for admissions to top
 colleges abroad. This could include test preparation assistance for exams like GRE and TOEFL,
 guidance on crafting strong personal statements and recommendation letters, and opportunities
 for research experience.

By implementing these insights and recommendations, Jamboree can further enhance its support for students aiming to secure admission to Ivy League colleges and other top universities abroad.

In []: 🕨	
-----------	--