pare intramodel o ntramodel	Intermodal
sed in singlemode	→ Used in multimode fiber
rka material	aka modal dispersion
less pulse broadening	→ morce pulse broadening
The main cause is difference in wavelength of light	→ The main cause is difference in Propogation modes of light

1 Explain about dispersion in optical fiber.

Dispersion: Splitting of white light into 7 constituent colors.

William HUNG

phones start

(made

Intermodal dispersion , ocave only in multimode fibers Has different group velocity. Intra modal dispersion main wavelength that cause intra model is material dispersion of wavelength dispersion polaris ation dispersion: Both in Single/multimode there occurs polarisation of light of this causes polarisation dispersion

decomatic:

combination of interfintramodal dispersion

4) Différence botun turninescence Lincardescence

	huninescence	Incandescence
7	Emissión of light without heating to high temp	with
→	Eg: Fluorescence, Phosphorescence:	Eg: Fire, Candles, light bulks
>	doesnot ûwolne high temp.	→ Involves high temp
4	High energy efficience	y > Low
>	UV to excite the e-	Heat is used.

5) comment on Quantum efficiency Measure of the effectiveness of an Imaging device to convert incident Photons into e.

We Advantages of photodode

Important parameter for evaluating the performance of photosensitive devices, provides measure of devices ability to convert light energy into electrical energy. electrical energy

> Amount of light $\eta = IP/q$ energy absorbed Po/hD according to e-hole recombination.

6) List out the types and advantages of Photodiode.

Photodiode converts light energy into electrical energy.

PN - photoduode: consisting of a PN junction that absorbs light & generates photo awarent.

PIN :-> wider depletion region -> Detect light with longer warrelength waterche photodiode: "higher voltage than bn' bin schottey photodode: uses metal - Semiconductor junction Advantages: -> high sensitivity -> fast response time + Low noise -> wide Dynamic range -> small size -> Low power consumption +) Give the principle of photo detection in semiconductor. + converts an optical signal into a signal of another form most convert optical signals into electrical Signal > All photodetectors are 39-law detectors that respond to the power or intensity, rather than the field amplitude of. an optical signal I when a photon with sufficient energy is absorbed by semiconductor, it generates an e-hole pair by exciting an e

from the valence band to conduction band

- 18 Factors that cause Rayleigh scattering
- > Scattering of light by particles much Smaller than the wavelength of light.
- → light scattered by a small spherical vol of variount R.I as bubble, dropled.
- > It results from non-ideal physical properties
 of the manufactured fiber
- → It results from inhomogeneities in the core & cladding
- → Because of these in homogeneities prob wher Ly fluction fluctuation in R.I S Donsity & composition Variation

onpare fluorecence and phosphorescence Phoephoroscura Fluorescence Immediate light emission → Delayed light emission -> hong lightim -> short life time radiative > non-radiative Less sensitive > sensitive

und Biological imaging,

chemistry

secusity inks, OLED technology