

7 – ÉTUDE DES SYSTÈMES MÉCANIQUES : ANALYSER, CONCEVOIR, RÉALISER

Étude de la pompe du pilote automatique de voilier

1

CONTEXTE

Modéliser:

 Mod-C10-S2: Réaliser la maquette numérique d'un solide à l'aide d'un modeleur volumique 3D.

Communiquer:

• Com-C1-S3 : Élaborer et utiliser des outils de représentation (dessin et schéma 2D et 3D).

Préambule

- Quel est le but d'une pompe hydraulique ?
 - Quelle est la fonction de la pompe dans la chaîne fonctionnelle ?
- Comment calculer la puissance en entrée de pompe ?
- Comment calculer la puissance en sortie de pompe ?

Copier le dossier TP_02_SW_Meca3D_Assemblage_Pompe dans vos documents personnels

OBJECTIFS

- Découvrir les fonctions d'assemblage
- O Découvrir les fonctions élémentaires de Méca 3D
- Exploiter les résultats d'une simulation en utilisant Excel.
- Valider le cahier des charge suivant :
 - Le débit de la pompe doit être compris entre 0,2 et 2 L/min.

ASSEMBLAGE DE LA POMPE

ASSEMBLAGE DE LA POMPE

- Objectif assembler la pompe
- Pour assembler la pompe on dispose de 3 ensembles

ASSEMBLAGE DE LA POMPE DÉBUTER

- Ouvrir SolidWorks
- Créer un nouvel Assemblage
- Importer le bâti (ensemble qui est fixe dans le mouvement du mécanisme)

Sélectionner Ensemble fixe.SLDASM

ASSEMBLAGE DE LA POMPE **DÉBUTER**

- Importer successivement :
 - Barillet+Entraineur.SLDASM
 - Piston.SLDPRT

- Le but est d'ajouter des contraintes pour mettre en position les pièces les unes par rapport aux autres
- Le seul mouvement possible entre le barillet et le bâti est une rotation. Ce type de liaison est appelé une liaison **pivot**. Géométriquement, il va donc falloir assurer :
- o une coaxialité entre l'axe du bâti et l'axe du barillet;

 Un contact entre une partie plane du barillet et une parie plane du roulement

Sélectionner le bouton Contrainte

Sélectionner les deux faces cylindriques à mettre en

contact

- La partie du barillet ayant le diamètre le plus faible doit être vers la droite.
- Si ce n'est pas le cas, inverser les pièces à l'aide de l'icône ci contre.
- Valider la contrainte

• Faire de même pour assurer le contact entre les plans

Ajouter le piston et ajouter :

- Une contrainte de coaxialité entre les cylindres
- Une contrainte de contact entre l'extrémité du piston et la bague tournante du roulement

ASSEMBLAGE DE LA POMPE DÉPLACEMENT DES COMPOSANTS

 Il est possible de déplacer les composants manuellement pour observer si les contraintes sont compatibles avec les mouvements voulus.

ETUDE CINÉMATIQUE DE LA POMPE

ETUDE CINÉMATIQUE

- Une étude cinématique permet d'étudier
 - L'évolution de la position des pièces
 - L'évolution de la vitesse des pièces
 - L'évolution de l'accélération des pièces
- Pour cela on utilise un module de SolidWorks : Meca 3D.

Pour l'activer :

- Outils
- Compléments
- Cliquer sur les deux coté de Meca3D
- Sauvegarder votre assemblage
- Fermer puis rouvrir l'assemblage

(G)

Déplacer

MÉCA 3D

- o Un nouvel icône apparaît. Cliquer dessus.
- o Il va être nécessaire de :
 - « réimporter » les assemblages
 - Définir les liaisons
 - Réaliser un calcul cinématique

MÉCA 3D AJOUT DES ASSEMBLAGES

- Clic droit sur Pièces
 - Ajouter successivement :
 - o le bâti
 - Le barillet
 - Le piston
 - Cliquer sur Annuler pour terminer

MÉCA 3D AJOUT DES LIAISONS

- Clic droit sur liaisons
 - Ajouter
 - Liaison pivot
 - Sélectionner le barillet et l'ensemble fixe
 - Sélectionner la contrainte de coaxialité
 - Terminer

MÉCA 3D AJOUT DES LIAISONS

- En suivant la même méthode, réaliser
 - la liaison pivot glissant entre le piston et le barillet
 - La liaison ponctuelle (sphère plan) entre le piston et l'ensemble fixe
 - Dans le menu des liaisons, cliquer sur terminer une fois que vous avez fini.

MÉCA 3D CALCUL MÉCANIQUE

- Réaliser un calcul mécanique
- Cliquer sur suivant (la fenêtre sera étudiée ultérieurement (l'année)

- Saisir une vitesse de 1500 tr/min dans la pivot 1. Cette vitesse correspond à la fréquence de rotation du barillet par rapport à l'ensemble fixe.
- o Choisir une étude cinématique.

Justifier le choix de faire une étude sur 0,04 secondes avec 100

positions.

MÉCA 3D LANCEMENT DE LA SIMULATION

Visualiser le mouvement du piston

 Quel est, d'après vous, la courbe de la vitesse en fonction du temps ?

MÉCA 3D TRACÉ DE COURBES

- On va tracer la courbe de vitesse du piston.
- Pour cela:
 - Clic droit sur Courbes
 - Ajouter
 - Simple
 - Remplir la fenêtre qui s'ouvre
 - Cliquer sur Ajouter

MÉCA 3D TRACÉ DES COURBES

- Clic droit sur Courbe1
 - Afficher

EXPLOITATION DE LA COURBE

TRACER DE LA COURBE

 Retracer la courbes pour qu'elle s'affiche sur 0,4 secondes avec 1200 points

AssemblagePompe [Etude 11/09/2014 09:51:34]

Vitesse du centre d'inertie de Piston<1> par rapport à Ensemble fixe<1>

* GraphManager (c) Atemi, 2000-2010 * Document créé le 11/09/2014 à 10:33:41 *

EXPLOITATION DE LA COURBE

- Lors de l'étude d'une pompe, le piston permet d'admettre du fluide et d'en refouler.
- On fait l'approximation que chacune des phases se fait sur une demi période :
 - Lorsque la vitesse de translation du piston est positive, on est en phase de refoulement.
 - Lorsque la vitesse de translation du piston est négative, on est en phase d'admission.
- L'objectif est de calculer le débit théorique de la pompe pour valider le cahier des charges.

EXPLOITATION DE LA COURBE SUP EVERT

- Enregistrement des données
 - Clic droit sur le tableau de points
 - Enregistrer les données
 - Enregistrer le fichier .txt dans vos documents
- Ouvrir Excel
 - « Fichier »
 - Ouvrir
 - Sélectionner Tous les fichiers (*.*)
 - Sélectionner votre fichier texte

EXPLOITATION DE LA COURBE SUR EXCEL

Import du fichier texte

- Choisir un fichier ANSI Suivant
- Choisir un séparateur Espace suivant
- Cliquer sur Avancé Séparateur de décimale : .
- Valider et terminer

EXPLOITATION DE LA COURBE SUR EXCEL

- En utilisant la fonction « Nuage de point », retracer la vitesse du piston en fonction du temps
- O Montrer que le débit instantané de la pompe noté q(t) peut se calculer par : q(t) = S.V(t)
 - S étant la section du piston (l'aire de la base du piston) que l'on mesurera avec solidworks
 - V(t) est la vitesse instantanée d'un point du piston par rapport à l'ensemble fixe.

EXPLOITATION DE LA COURBE SUR EXCEL

- Tracer la courbe de débit instantané.
 - Calculer le débit instantané maximum
- Retracer la courbe en prenant en compte la phase d'admission uniquement.
 - Vous utiliserez la fonction =SI(Condition;si vrai;si faux)
- Sachant que la pompe comprend 6 pistons (et qu'ils sont donc décalés de 60°), tracer sur le même graphe les courbes correspondant au refoulement des 6 pistons.
- Réaliser la courbe correspondant au débit total de la pompe (correspondant donc à la contribution des 6 pistons)
- Calculer le débit moyen de la pompe dans les conditions de la modélisation.
- Conclure vis-à-vis du critère (page 4).

