Неперервна випадкова величина

Основні поняття, означення та відношення

- **1**. Випадкову величину називають **неперервною**, якщо вона може набувати будь-якого числового значення і скінченного або нескінченного інтервалу (a, b). Множина можливих значень такої величини ϵ нескінченною.
 - **2**. Випадкова величина ξ ϵ неперервна тоді і тільки тоді, коли її інтегральна функція

розподілу
$$F(x) = P(\xi \le x)$$
 і $F(x) = \int_{-\infty}^{x} f(t)dt$ неперервна.

Графіком функції розподілу неперервної випадкової величини ξ є неперервна лінія. Зокрема, якщо значення неперервної випадкової величини ξ заповнюють інтервал (a, b), то її функція розподілу

$$F(x) = \begin{cases} 0, & x < a; \\ g(x), & a \le x < b; \\ 1, & x \ge b. \end{cases}$$
 (2.17)

Графік такої функції розподілу зображено на рис. 2.3.

Рис 2.3. Графік функції розподілу неперервної випадкової величини ξ , якщо $\xi \in [a,b]$.

Якщо значення неперервної випадкової величини ξ розсіяні по всій числовій осі, тобто її аналітичний вираз описують функцією F(x) = g(x) для $x \in (-\infty, +\infty)$, то її графік є суцільною лінією, яка "надвисає" над всією віссю Ox, і її графік схематично зображений на рис. 2.4.

Рис.2.4. Графік функції розподілу неперервної випадкової величини ξ , якщо $\xi \in (-\infty, +\infty)$

За допомогою функції розподілу неперервної випадкової величини ξ легко обчислюють імовірності попадання її значень у будь-який проміжок (замкнений або відкритий), а саме: ймовірність того, що випадкова величина ξ набуде значення з проміжку [a,b], дорівнює приросту функції розподілу на цьому проміжку:

$$P(a \le \xi \le b) = F(b) - F(a). \tag{2.18}$$

Наголосимо, що імовірність того, що неперервна величина ξ набуде певного числового значення $\xi = x_0$, дорівнює нулю, тобто $P(\xi = x_0) = 0$. Це випливає з неперервності функції розподілу F(x).

3. Диференціальною функцією розподілу або щільністю (густиною) розподілу f(x) **ймовірностей** неперервної випадкової величини ξ називають похідну від її функції розподілу, тобто

$$f(x) = F'(x)$$
. (2.19)

Поняття щільності (густини) розподілу ймовірностей вводять для неперервної випадкової величини з кусково-диференційовною функцією розподілу.

Якщо всі значення випадкової величини ξ зосереджені в інтервалі (a,b), то щільність розподілу її імовірностей має такий аналітичний вигляд:

$$f(x) = \begin{cases} 0, & x < a; \\ g'(x), & a \le x < b; \\ 0, & x \ge b. \end{cases}$$

(2.20)

Її графік може мати один із виглядів, які зображено на рис. 2.5.

4. Якщо відома диференціальна функція розподілу f(x) неперервної випадкової величини ξ , то її інтегральну функцію розподілу можна знайти за формулою:

$$F(x) = \int_{-\infty}^{x} f(t)dt.$$
 (2.21)

Рис. 2.5. Графік щільності розподілу неперервної випадкової величини

$$F(x) = \begin{cases} \int_{a}^{x} f(t)dt, & a \le x < b; \\ a & 1, & x \ge b. \end{cases}$$
 (2.21')

5. Імовірність того, що неперервна випадкова величина ξ зі щільністю розподілу f(x) набуде значень з проміжку [a, b], обчислюють за формулою:

$$P(a \le \xi \le b) = \int_{a}^{b} f(x)dx. \tag{2.22}$$

Ця ж імовірність може бути обчислена також за допомогою функції розподілу за формулами (2.18).

6. Якщо неперервна випадкова величина ξ характеризується щільністю розподілу f(x), то

$$\int_{a}^{b} f(x)dx = 1,$$
(2.23)

коли ξ набуває значень з проміжку [a, b], і

$$\int_{-\infty}^{+\infty} f(x)dx = 1,$$
(2.23')

коли ξ набуває значень зі всієї числової осі (умова нормування).

7. Аналогічно, як і дискретна випадкова величина, неперервна випадкова величина може характеризуватись інтегральними (числовими) характеристиками.

Математичне сподівання $E(\xi)$ неперервної випадкової величини ξ , яка набуває значень з проміжку [a,b], обчислюють за формулою:

$$E(\xi) = \int_{a}^{b} x \cdot f(x) dx.$$
 (2.24)

Якщо неперервна випадкова величина ξ набуває значень зі всієї числової осі Ox, то її математичне сподівання $E(\xi)$ обчислюють за формулою:

$$E(\xi) = \int_{-\infty}^{+\infty} x \cdot f(x) dx. \tag{2.24'}$$

При цьому припускають, що невласний інтеграл ϵ збіжний.

Дисперсію $D(\xi)$ неперервної випадкової величини ξ , яка набуває значень з проміжку [a,b], обчислюють за формулою:

$$D(\xi) = E(\xi - E(\xi))^2 = \int_a^b (x - E(\xi))^2 \cdot f(x) dx = \int_a^b x^2 \cdot f(x) dx - E^2(\xi).$$
 (2.25)

Якщо неперервна випадкова величина ξ набуває значень зі всієї числової осі Ox, то:

$$D(\xi) = \int_{-\infty}^{+\infty} (x - E(\xi))^2 \cdot f(x) dx = \int_{-\infty}^{+\infty} x^2 \cdot f(x) dx - E^2(\xi).$$
 (2.25')

 $\it Cepedh\epsilon$ квадратичне відхилення $\sigma(\xi)$ неперервної випадкової величини ξ обчислюють за формулою:

$$\sigma(\xi) = \sqrt{D(\xi)} \ . \tag{2.26}$$

8. Законом розподілу ймовірностей неперервної випадкової величини ξ називають щільність її розподілу.

Приклад 1. Функція розподілу ймовірностей F(x) неперервної випадкової величини ξ має вигляд:

$$F(x) = \begin{cases} 0, & x < 3; \\ m(x-3)^2, & 3 \le x < 5; \\ 1, & x \ge 5. \end{cases}$$

Виконати такі дії:

- а) визначити коефіцієнт m;
- б) знайти щільність розподілу f(x) та накреслити графіки F(x) і f(x);

в) обчислити ймовірності потрапляння значень випадкової величини ξ у проміжки [4,6] і (2, 4).

Приклад 2. Щільність розподілу f(x) неперервної випадкової величини ξ задана формулою

$$f(x) = \begin{cases} 0, & x < 0; \\ m \cdot \cos x, & 0 \le x < \frac{\pi}{2}; \\ 0, & x \ge \frac{\pi}{2}. \end{cases}$$

Виконати такі дії:

- а) визначити коефіцієнт m;
- б) знайти функцію розподілу F(x) випадкової величини ξ ;
- в) побудувати графіки густини і функції розподілу;
- г) знайти ймовірності потрапляння значень випадкової величини ξ у проміжки $(\frac{\pi}{4}, \frac{\pi}{2})$

$$i\left(\frac{\pi}{6},\pi\right);$$

д) обчислити числові характеристики випадкової величини ξ : математичне сподівання, дисперсію і середнє квадратичне відхилення.

Завдання для самостійної роботи

1. Щільність розподілу ймовірностей f(x) випадкової величини задано формулами:

$$f(x) = \begin{cases} a(x-3)^2, & 3 \le x \le 5; \\ 0, & x < 3 \text{ a foo } x > 5. \end{cases}$$

Виконати такі дії:

- 1) знайти коефіцієнт a;
- 2) знайти функцію розподілу випадкової величини ξ ;
- 3) побудувати графіки щільності розподілу ймовірностей та функції розподілу;
- 4) знайти ймовірність потрапляння випадкової величини ξ в інтервал:

a)
$$I = [0; 0, 5]; 6)$$
 $I = (3; 4); B)$ $I = [0; 5]; \Gamma)$ $I = [\pi/4; \pi/3];$

- 5) знайти математичне сподівання, дисперсію та середн ϵ квадратичне відхилення випадкової величини ξ .
- 2. Функцію розподілу ймовірностей F(x) неперервної випадкової величини ξ задано формулою:

$$F(x) = \begin{cases} 0, & x < -2\pi; \\ a + a\cos\frac{x}{2}, & -2\pi \le x < 0; \\ 1, & x \ge 0. \end{cases}$$

Виконати такі дії:

- 1) знайти коефіцієнт a;
- 2) знайти щільність розподілу f(x);
- 3) побудувати графіки функції розподілу та щільності розподілу;
- 4) знайти математичне сподівання, дисперсію та середнє квадратичне відхилення;
- 5) знайти ймовірність потрапляння випадкової величини ξ в інтервал $I = (-\pi/2; 0)$.
- 3. Закон розподілу неперервної випадкової величини ξ такий:

$$F(x) = \begin{cases} 0, & x < -1; \\ \frac{(x+1)^2}{64}, & -1 \le x < 3; \\ 1, & x \ge 3. \end{cases}$$

Знайти f(x) і побудувати графіки функцій f(x), F(x). Обчислити $P(0 < \xi < 2)$.

4. Задано щільність розподілу ймовірностей неперервної випадкової змінної

$$f(x) = \begin{cases} 0, & x < -2; \\ a\sqrt{x+2}, & -2 \le x < 7; \\ 0, & x \ge 7. \end{cases}$$

Знайти значення сталої a та функцію F(x). Побудувати графіки функцій f(x), F(x).

5. Задано функцію розподілу ймовірностей

$$F(x) = \begin{cases} 0, & x < 0; \\ \sin x, & 0 \le x < \frac{\pi}{2}; \\ 1, & x \ge \frac{\pi}{2}. \end{cases}$$

Знайти f(x) . Побудувати графіки F(x), f(x) і обчислити $P(\frac{\pi}{6} < \xi < \frac{\pi}{3})$.

6. Густину розподілу неперервної випадкової величини ξ задано у вигляді:

$$f(x) = \begin{cases} 0, & x < 0; \\ \frac{1}{2}\sin x, & 0 \le x < \pi; \\ 0, & x \ge \pi. \end{cases}$$

Знайти F(x) і побудувати графіки функцій f(x) , F(x). Обчислити $P(\frac{\pi}{6} < \xi < \frac{\pi}{2})$.

7. Випадкова величина ξ має закон розподілу ймовірностей Коші:

$$f(x) = \frac{a}{1+x^2}, \quad -\infty < x < +\infty$$

Знайти a і F(x).

8. За заданими функціями

$$f(x) = \begin{cases} 0, & x < 0; \\ 5\sqrt{x}, & 0 \le x < 1; \\ 0, & x \ge 1. \end{cases} \qquad f(x) = \begin{cases} 0, & x < 0; \\ \frac{3}{5}\sqrt[5]{x}, & 0 \le x < 1; \\ 0, & x \ge 1. \end{cases} \qquad f(x) = \begin{cases} 0, & x < 0; \\ \frac{8}{5}\sqrt[5]{x^3}, & 0 \le x < 1; \\ 0, & x \ge 1. \end{cases}$$

визначити, яка з них ϵ щільністю випадкової величини ξ , визначеної на проміжку [0;1].