Differential Pulse Code Modulation DPCM

- Introduction
- General block diagram
- Bi-dimensional prediction
- DPCM distortions

Thanks for material provided

Examples

Inald Lagendijk, Delft University of Technology Thomas Wiegand, Heinrich-Hertz-Institut

- Lossless coding scheme
- Application to motion estimation (introduction)

Introduction DPCM (2)

The pixel's value can be predicted from its neighbors's value.

Sequences of pixels with similar value, will be found along a row of the image

Introduction DPCM (3)

To predict the value of a pixel from the previous values of the same row

- We predict that (for example)
- We make an error doing the prediction!
- If the actual value is (for example)
 error is

Information transmitted

Mathematical formulation

$$\hat{x} = f(A, B, C,)$$

$$e = x - \hat{x}$$

Ideal prediction
$$\rightarrow$$
 $\hat{x}(n) = E[x(n)|x(n-1), x(n-2), ..., x(n-N)]$

Linear prediction
$$\longrightarrow$$
 $\hat{x}(n) = \sum_{j=1}^{N} h_j x(n-j)$

Prediction error must depend on the quantized signal!

MSE optimal solution

$$\begin{bmatrix} R_{\chi}(1) \\ R_{\chi}(2) \\ \vdots \\ R_{\chi}(N) \end{bmatrix} = \begin{bmatrix} R_{\chi}(0) & R_{\chi}(1) & \cdots & R_{\chi}(N-1) \\ R_{\chi}(1) & R_{\chi}(0) & & R_{\chi}(N-2) \\ \vdots & & \ddots & \vdots \\ R_{\chi}(N-1) & R_{\chi}(N-2) & \cdots & R_{\chi}(0) \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \\ \vdots \\ h_N \end{bmatrix}$$

- From this set of equations the N linear prediction coefficients can be computed (Yule – Walker equations)
- Need to know $R_x(k)$: Autocorrelation function of x(n)

DPCM on images

- Same principle as 1-D
- Definition of "Past" and "Future" in images:
- · Predictions:
 - horizontal (scan line)
 - vertical (column)
 - 2-dimensional

Bi-dimensional prediction

Bi-dimensional DPCM system

$X = \rho_h A - \rho_h \rho_v B + \rho_v C$	ρ: Correlation
X = 0.97A	1st-order, predictor 1-D
X = 0.50A + 0.50C	2n-order, predictor 2-D
X = 0.90A - 0.81B + 0.90C	3th-order, predictor 2-D
X = 0.75A - 0.50B + 0.75C	3th-order, predictor 2-D
X = A - B + C	3th-order, predictor 2-D

Yule walker equations need to be extended to 2D

DPCM - overload noise

Original image

Reconstructed image Prediction error

DPCM - examples (1)

Original image

Coded image 2 bits/pixel

DPCM - examples (2)

Prediction error 1 bits/pixel

Prediction error 2 bit/pixel

DPCM - examples (3) Entropy-Constrained Scalar Quantization

Example: Lena - 8 bits/pixel

K=511 - H=4.79 b/p

K=15 - H=1.98 b/p

K=3 - H=0.88 b/p

K: number of reconstruction levels

H: entropy

Predictive systems applications

- Lossless JPEG Standard
- Video coding with motion estimation

