MATEMATYKA DYSKRETNA Wykład 1. Indukcja matematyczna i rekurencja

Czesław Bagiński c.baginski@pb.edu.pl

Wydział Informatyki Politechnika Białostocka

Literatura podstawowa:

- Victor Bryant, Aspekty kombinatoryki, Wydawnictwo Naukowo-Techniczne, Warszawa 1997.
- Ronald L. Graham, Donald E. Knuth, Oren Patashnik, Matematyka konkretna, Wydawnictwo Naukowe PWN, Warszawa 1998.
- Onald E. Knuth, Sztuka programowania, t. 1-3, Wydawnictwo Naukowo-Techniczne, Warszawa 2003.
- Witold Lipski, Kombinatoryka dla programistów, Wydawnictwo Naukowo-Techniczne, Warszawa 1982.
- Harry Lewis, Rachel Zax, Matematyka Dyskretna. Niezbędnik dla informatyków, Wydawnictwo Naukowe PWN, Warszawa 2021.
- Kenneth A. Ross, Charles R.B. Wright, Matematyka dyskretna, Wydawnictwo Naukowe PWN, Warszawa 2001.
- Robin J. Wilson, Wstęp do teorii grafów, Wydawnictwo Naukowe PWN, Warszawa 1998.

¹Przyjmujemy, że 0 nie jest liczbą naturalną

 $\mathbb{N} = \{1, 2, 3, \ldots\}$ – zbiór liczb naturalnych¹,

¹Przyjmujemy, że 0 nie jest liczbą naturalną

$$\label{eq:N} \begin{split} \mathbb{N} &= \{1,\,2,\,3,\,\ldots\} - \text{zbi\'or liczb naturalnych}^1\text{,} \\ \mathbb{N}_0 &= \mathbb{N} \cup \{0\} = \{0,\,1,\,2,\,3,\,\ldots\}\text{,} \end{split}$$

¹Przyjmujemy, że 0 nie jest liczbą naturalną

$$\begin{split} \mathbb{N} &= \{1,\,2,\,3,\,\ldots\} - \mathsf{zbi\acute{o}r\ liczb\ naturalnych^1},\\ \mathbb{N}_0 &= \mathbb{N} \cup \{0\} = \{0,\,1,\,2,\,3,\,\ldots\},\\ \mathbb{Z} &= \{\ldots,\,-3,\,-2,\,-1,\,0,\,1,\,2,\,3,\,\ldots\} - \mathsf{zbi\acute{o}r\ liczb\ całkowitych}, \end{split}$$

¹Przyjmujemy, że 0 nie jest liczbą naturalną

$$\begin{split} \mathbb{N} &= \{1,\,2,\,3,\,\ldots\} - \mathsf{zbi\acute{o}r} \; \mathsf{liczb} \; \mathsf{naturalnych^1}, \\ \mathbb{N}_0 &= \mathbb{N} \cup \{0\} = \{0,\,1,\,2,\,3,\,\ldots\}, \\ \mathbb{Z} &= \{\ldots,\,-3,\,-2,\,-1,\,0,\,1,\,2,\,3,\,\ldots\} - \mathsf{zbi\acute{o}r} \; \mathsf{liczb} \; \mathsf{całkowitych}, \\ \mathbb{Q} &= \{\frac{k}{m}:\, k \in \mathbb{Z},\, m \in \mathbb{N}\} - \mathsf{zbi\acute{o}r} \; \mathsf{liczb} \; \mathsf{wymiernych}, \end{split}$$

¹Przyjmujemy, że 0 nie jest liczbą naturalną

$$\mathbb{N} = \{1, 2, 3, \ldots\} - \mathsf{zbi\acute{o}r} \ \mathsf{liczb} \ \mathsf{naturalnych^1},$$

$$\mathbb{N}_0 = \mathbb{N} \cup \{0\} = \{0, 1, 2, 3, \ldots\},$$

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\} - \mathsf{zbi\acute{o}r} \ \mathsf{liczb} \ \mathsf{całkowitych},$$

$$\mathbb{Q} = \left\{\frac{k}{m} : \ k \in \mathbb{Z}, \ m \in \mathbb{N}\right\} - \mathsf{zbi\acute{o}r} \ \mathsf{liczb} \ \mathsf{wymiernych},$$

$$\mathbb{R} - \mathsf{zbi\acute{o}r} \ \mathsf{liczb} \ \mathsf{rzeczywistych}$$

 $[\]mathbb{R}$ – zbiór liczb rzeczywistych,

¹Przyjmujemy, że 0 nie jest liczbą naturalną

 $\mathbb{N} = \{1, 2, 3, \ldots\}$ – zbiór liczb naturalnych¹,

$$\mathbb{N}_0 = \mathbb{N} \cup \{0\} = \{0,\,1,\,2,\,3,\,\ldots\}\text{,}$$

 $\mathbb{Z} = \{\ldots,\,-3,\,-2,\,-1,\,0,\,1,\,2,\,3,\,\ldots\}$ – zbiór liczb całkowitych,

 $\mathbb{Q}=\left\{rac{k}{m}:\ k\in\mathbb{Z},\ m\in\mathbb{N}
ight\}$ – zbiór liczb wymiernych,

 \mathbb{R} – zbiór liczb rzeczywistych,

 \mathbb{C} – zbiór liczb zespolonych,

¹Przyjmujemy, że 0 nie jest liczbą naturalną

Twierdzenie (Zasada Indukcji Matematycznej)

Niech A będzie podzbiorem zbioru liczb naturalnych, takim że

- (1) pewna liczba naturalna $k \in A$,
- (2) dla każdej liczby naturalnej m, jeśli $m \in A$, to $m+1 \in A$,

Wówczas
$$A = \{k, k+1, k+2, \ldots\}.$$

W szczególności, jeśli k = 1, to $A = \{1, 2, 3, 4, \ldots\} = \mathbb{N}$.

Podpunkt (1) założenia twierdzenia nazywamy *bazą* indukcji. Podpunkt (2) jest implikacją; jej poprzednik nazywamy *założeniem indukcyjnym*, a następnik *tezą indukcyjną*.

Funkcja zdaniowa (forma zdaniowa, predykat) to wyrażenie mające postać zdania, w którym występuje zmienna zdaniowa (lub zmienne zdaniowe) z określonym zakresem zmienności (będącym zbiorem). Staje się ona zdaniem, gdy w miejsce zmiennej zdaniowej wstawimy konkretny obiekt z tego zakresu. Otrzymane zdanie może być prawdziwe lub fałszywe.

- $(1+\frac{1}{n})^n \in [2;3) \ n \in \mathbb{N},$

- $(1+\frac{1}{n})^n \in [2;3) \ n \in \mathbb{N},$

Jeśli W(n) oznacza predykat $n! > 2^n$, to

- $(1+\frac{1}{n})^n \in [2;3) \ n \in \mathbb{N},$

Jeśli W(n) oznacza predykat $n! > 2^n$, to

W(1) oznacza nierówność $1!>2^1$ (nierówność fałszywa);

- **1** $n! > 2^n, n \in \mathbb{N},$
- $(1+\frac{1}{n})^n \in [2;3) \ n \in \mathbb{N},$

Jeśli W(n) oznacza predykat $n! > 2^n$, to

W(1) oznacza nierówność 1! > 2^1 (nierówność fałszywa);

W(2) oznacza nierówność $2! > 2^2$ (nierówność fałszywa);

- **1** $n! > 2^n, n \in \mathbb{N},$
- $(1+\frac{1}{n})^n \in [2;3) \ n \in \mathbb{N},$

Jeśli W(n) oznacza predykat $n! > 2^n$, to

- W(1) oznacza nierówność 1! > 2^1 (nierówność fałszywa);
- W(2) oznacza nierówność 2! $> 2^2$ (nierówność fałszywa);
- W(3) oznacza nierówność 3! $> 2^3$ (nierówność fałszywa);

- **1** $n! > 2^n, n \in \mathbb{N},$
- $(1+\frac{1}{n})^n \in [2;3) \ n \in \mathbb{N},$

Jeśli W(n) oznacza predykat $n! > 2^n$, to

- W(1) oznacza nierówność 1! > 2^1 (nierówność fałszywa);
- W(2) oznacza nierówność 2! $> 2^2$ (nierówność fałszywa);
- W(3) oznacza nierówność $3! > 2^3$ (nierówność fałszywa);
- W(4) oznacza nierówność 4! $> 2^4$ (nierówność prawdziwa).

- **1** $n! > 2^n, n \in \mathbb{N},$
- $(1+\frac{1}{n})^n \in [2;3) \ n \in \mathbb{N},$

Jeśli W(n) oznacza predykat $n! > 2^n$, to

- W(1) oznacza nierówność 1! > 2^1 (nierówność fałszywa);
- W(2) oznacza nierówność $2! > 2^2$ (nierówność fałszywa);
- W(3) oznacza nierówność $3! > 2^3$ (nierówność fałszywa);
- W(4) oznacza nierówność $4! > 2^4$ (nierówność prawdziwa).

Funkcja zdaniowa (predykat) definiuje zatem pewną własność obiektów z zakresu zmienności zmiennej (zmiennych); tę własność mają obiekty, które wstawione w miejsce niewiadomej zamieniają funkcję zdaniową w zdanie prawdziwe.

Twierdzenie (Zasada Indukcji Matematycznej)

Niech W(n) oznacza własność liczby naturalnej, czyli W(n) jest funkcją zdaniową zmiennej n z zakresem zmienności \mathbb{N} , taką że

- dla pewnej liczby naturalnej k, W(k) jest zdaniem prawdziwym;
- (2) dla każdej liczby naturalnej m ≥ k, jeśli W(m), jest zdaniem prawdziwym, to W(m+1) jest zdaniem prawdziwym.

Wówczas dla dowolnej liczby naturalnej $n \geqslant k$, W(n) jest zdaniem prawdziwym

W szczególności, jeśli k = 1, to dla każdej liczby naturalnej n, W(n) jest zdaniem prawdziwym.

Przykład 1.

Udowodnić, że dla dowolnej liczby naturalnej *n* zachodzi nierówność

$$\sum_{i=1}^{n} \frac{1}{\sqrt{i}} \geqslant \sqrt{n}.$$

tzn.

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n}} \geqslant \sqrt{n}.$$

Przykład 1.

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n}} \geqslant \sqrt{n}.$$

Sprawdzamy prawdziwość wzoru dla n=1,2,3 n=1

$$L = \frac{1}{\sqrt{1}} = 1 = \sqrt{1} = P.$$

n = 2.

$$L = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} = \frac{\sqrt{2}+1}{\sqrt{2}} \geqslant \frac{\sqrt{1}+1}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2} = P.$$

n = 3.

$$L = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} \geqslant \sqrt{2} + \frac{1}{\sqrt{3}} \geqslant \frac{\sqrt{6}+1}{\sqrt{3}} \geqslant \frac{\sqrt{4}+1}{\sqrt{3}} = \frac{3}{\sqrt{3}} = \sqrt{3} = P.$$

Przykład 1.

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n}} \geqslant \sqrt{n}.$$

Założenie indukcyjne: dla pewnego $m \in \mathbb{N}$,

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{m}} \geqslant \sqrt{m}.\tag{1}$$

Teza indukcyjna:

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{m}} + \frac{1}{\sqrt{m+1}} \geqslant \sqrt{m+1}.$$
 (2)

Mamy wykazać prawdziwość implikacji

$$(1) \Rightarrow (2)$$

Dowód implikacji

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{m}} + \frac{1}{\sqrt{m+1}} = \frac{1}{\sqrt{m}} + \frac{1}{\sqrt{m}} + \frac{1}{\sqrt{m+1}} \ge \frac{1}{\sqrt{m}} + \frac{1}{\sqrt{m+1}} = \frac{\sqrt{m} \cdot \sqrt{m+1}}{\sqrt{m+1}} + \frac{1}{\sqrt{m+1}} = \frac{\sqrt{m(m+1)} + 1}{\sqrt{m+1}} \ge \frac{\sqrt{m} \cdot \sqrt{m+1}}{\sqrt{m+1}} = \frac{m+1}{\sqrt{m+1}} = \sqrt{m+1}.$$

Wykazaliśmy zatem, że z nierówności (1) wynika nierówność (2), a ponieważ nierówność jest prawdziwa także dla małych wartości n, więc na mocy Zasady Indukcji Matematycznej jest ona prawdziwa dla wszystkich liczb naturalnych n.

Przykład 2.

Udowodnić, że dla dowolnej liczby naturalnej *n*

$$8 \mid 5^{n+1} + 2 \cdot 3^n + 1.$$

tzn. dla dowolnej liczby naturalnej n istnieje liczba całkowita t, taka że

$$5^{n+1} + 2 \cdot 3^n + 1 = 8t \tag{3}$$

Przykład 2.

Udowodnić, że dla dowolnej liczby naturalnej *n*

$$8 \mid 5^{n+1} + 2 \cdot 3^n + 1.$$

tzn. dla dowolnej liczby naturalnej n istnieje liczba całkowita t, taka że

$$5^{n+1} + 2 \cdot 3^n + 1 = 8t \tag{3}$$

n = 1

$$5^{1+1} + 2 \cdot 3^1 + 1 = 25 + 6 + 1 = 32 = 8 \cdot 4$$

n = 2

$$5^{2+1} + 2 \cdot 3^2 + 1 = 125 + 18 + 1 = 144 = 8 \cdot 18$$

Założenie indukcyjne:

dla pewnego $k \in \mathbb{N}$, $k \geqslant 1$, istnieje $t \in \mathbb{Z}$, takie że

$$5^{k+1} + 2 \cdot 3^k + 1 = 8 \cdot t \tag{4}$$

Teza indukcyjna:

istnieje $u \in \mathbb{Z}$, takie że

$$5^{k+2} + 2 \cdot 3^{k+1} + 1 = 8 \cdot u. \tag{5}$$

Mamy wykazać prawdziwość implikacji

$$(4) \Rightarrow (5)$$

Dowód tezy indukcyjnej:

$$L = 5^{k+2} + 2 \cdot 3^{k+1} + 1 = 5 \cdot 5^{k+1} + 6 \cdot 3^k + 1 \tag{6}$$

Z (4), czyli z równości $5^{k+1} + 2 \cdot 3^k + 1 = 8 \cdot t$ otrzymujemy

$$5^{k+1} = 8t - 2 \cdot 3^k - 1.$$

W (6), w miejsce 5^{k+1} podstawiamy $8t - 2 \cdot 3^k - 1$.

$$L = 5 \cdot (8t - 2 \cdot 3^{k} - 1) + 6 \cdot 3^{k} + 1 =$$

$$= 8 \cdot 5t - 10 \cdot 3^{k} - 5 + 6 \cdot 3^{k} + 1 =$$

$$= 8 \cdot 5t - 4 \cdot 3^{k} - 4 = 8 \cdot 5t - 4 \cdot (3^{k} + 1).$$

Liczba $3^k + 1$ jest parzysta: $3^k + 1 = 2 \cdot z$ dla pewnej liczby całkowitej z. Zatem

$$L = 8 \cdot 5t - 4 \cdot 2 \cdot z = 8 \cdot 5t - 8 \cdot z = 8 \cdot (5t - z),$$

i oczywiście $u = 5t - z \in \mathbb{Z}$.

Tym samym otrzymaliśmy prawdziwość wzoru (5), tzn. wykazaliśmy, że z prawdziwości wzoru (3) dla n=k, wynika jego prawdziwość dla n=k+1.

Na mocy Zasady Indukcji Matematycznej, wzór jest prawdziwy dla dowolnej liczby naturalnej n.

Równoważne sformułowania Zasady Indukcji Matematycznej

- Zasada Minimum,
- Zasada Indukcji Zupełnej.

Twierdzenie (Zasada Minimum)

Jeżeli $X \subseteq \mathbb{N}$, $X \neq \emptyset$, to istnieje w nim liczba najmniejsza tzn., liczba $m \in X$, która jest mniejsza od wszystkich liczb różnych od niej i należących do X:

$$\forall_{x \in X} \ m \leqslant x.$$

Ilustracja zastosowania Zasady Minimum

Udowodnić, że nie istnieją liczby naturalne x, y, z takie, że

$$x^3 + 2y^3 = 4z^3. (7)$$

Rozwiązanie. Przypuśćmy, że twierdzenie nie jest prawdziwe. Niech trójka liczb naturalnych (a, b, c) spełnia to równanie, czyli $a^3 + 2b^3 = 4c^3$.

Dla każdej takiej trójki niech $m(a,b,c)=\min\{a,b,c\}$. Niech (a,b,c) będzie jakąkolwiek taką trójką, dla której m(a,b,c)=m jest najmniejsze.

$$a^{3} + 2b^{3} = 4c^{3}.$$

$$a^{3} = 4c^{3} - 2b^{3} \longrightarrow a = 2d$$

$$8d^{3} + 2b^{3} = 4c^{3}$$

$$4d^{3} + b^{3} = 2c^{3} \longrightarrow b = 2e$$

$$4d^{3} + 8e^{3} = 2c^{3}$$

$$2d^{3} + 4e^{3} = c^{3} \longrightarrow c = 2f$$

$$2d^{3} + 4e^{3} = 8f^{3}$$

$$d^{3} + 2e^{3} = 4f^{3}$$

Trójka (d, e, f) spełnia równanie (7) i

$$\min\{d, e, f\} = \min\{a/2, b/2, c/2\} = \min\{a, b, c\}/2 = m/2 < m.$$

Sprzeczność z wyborem trójki (a, b, c).

Twierdzenie (Zasada Indukcji Zupełnej)

Niech A będzie podzbiorem zbioru liczb naturalnych, takim że

- (1) pewna liczba naturalna $k \in A$,
- (2) dla każdej liczby naturalnej $m \geqslant k$, jeśli $\{k, k+1, k+2, \ldots, m\} \subset A$, to $m+1 \in A$.

Wówczas
$$A = \{k, k+1, k+2, \ldots\}$$

W szczególności, jeśli k = 1, to $A = \{1, 2, 3, 4, \ldots\} = \mathbb{N}$.

Twierdzenie (Zasada Indukcji Zupełnej)

Niech A będzie podzbiorem zbioru liczb naturalnych, takim że

- (1) pewna liczba naturalna $k \in A$,
- (2) dla każdej liczby naturalnej $m \geqslant k$, *jeśli* $\{k, k+1, k+2, \ldots, m\} \subset A$, to $m+1 \in A$.

Wówczas
$$A = \{k, k+1, k+2, \ldots\}$$

W szczególności, jeśli k = 1, to $A = \{1, 2, 3, 4, \ldots\} = \mathbb{N}$.

Twierdzenie (Zasada Indukcji Matematycznej)

Niech A będzie podzbiorem zbioru liczb naturalnych, takim że

- (1) pewna liczba naturalna $k \in A$,
- (2) dla każdej liczby naturalnej m, jeśli $m \in A$, to $m + 1 \in A$,

Wówczas A =
$$\{k, k + 1, k + 2, ...\}$$
.

W szczególności, jeśli k = 1, to $A = \{1, 2, 3, 4, \ldots\} = \mathbb{N}$.

Rekurencyjna definicja ciągu

Ciąg a_n jest zdefiniowany rekurencyjnie, jeżeli podane zostały konkretne wartości pewnej skończonej liczby wyrazów tego ciągu, a pozostałe zostały wyrażone wzorem (równaniem) lub wzorami (równaniami) uzależniającymi go od wyrazów o innych numerach.

Liniowe równanie rekurencyjne, wersja standardowa

Niech $a_0,\ a_1,\ \ldots,a_{k-1}$ będą konkretnymi liczbami (zespolonymi) – początkowymi wyrazami ciągu $\{a_n\}_{n\in\mathbb{N}_0}$. Niech ponadto A_1,A_2,\ldots,A_k będą stałymi (zespolonymi). Dla $n\geqslant k$ przyjmujemy

$$a_n = A_1 a_{n-1} + A_2 a_{n-2} + \cdots + A_k a_{n-k}.$$

Ciąg arytmetyczny

Niech a i r będą stałymi. Przyjmujemy

$$a_0 = a, \ a_n = a_{n-1} + r \ \text{dla } n \geqslant 1$$

Jawny wzór na n-ty wyraz ciągu:

$$a_n = a + n \cdot r$$
.

Ciąg arytmetyczny zadany liniowym równaniem rekurencyjnym rzędu 2

$$a_0 = a,$$
 $a_1 = a + r,$

$$a_n = a_{n-1} + r$$
 $a_{n-1} = a_{n-2} + r$
 $a_n - a_{n-1} = a_{n-1} - a_{n-2}$

$$a_n = 2a_{n-1} - a_{n-2}$$
, dla $n \ge 2$

Ciąg geometryczny

Niech a i q będą stałymi. Przyjmujemy

$$a_0 = a$$
, $a_n = a_{n-1} \cdot q$ dla $n \geqslant 1$

Jawna wzór na *n*-ty wyraz ciągu:

$$a_n = a \cdot q^n$$

Ciąg geometryczny zadany równaniem rekurencyjnym rzędu $1\,$

$$a_0 = a$$

$$a_1 = a \cdot q$$
,

$$a_1 = a_0 \cdot q$$

$$a_n = qa_{n-1}, \quad \mathsf{dla} \ n\geqslant 1$$

Uogólnienie ciągów arytmetycznego i geometrycznego

Niech a, q i r będą ustalonymi liczbami rzeczywistymi. Definiujemy ciąg $\{c_n\}_{n\in\mathbb{N}_0}$ przyjmując

$$\begin{array}{lcl} c_0 & = & a \\ c_1 & = & q \cdot a + r \\ c_n & = & q \cdot c_{n-1} + r & \mathsf{dla} \ n \geq 1. \end{array}$$

Jeśli q=1, to otrzymamy ciąg arytmetyczny o różnicy r. Jeśli r=0, to otrzymamy ciąg geometryczny o ilorazie q.

Uogólnienie ciągów arytmetycznego i geometrycznego

Przedstawimy ten ciąg za pomocą liniowego równania rekurencyjnego rzędu 2. Niech $c_0=a,\ c_1=aq+r$ i dla n>2 mamy

$$c_{n} = qc_{n-1} + r,$$

$$c_{n-1} = qc_{n-2} + r,$$

$$c_{n} - c_{n-1} = qc_{n-1} - qc_{n-2}$$

$$c_{n} = c_{n-1} + qc_{n-1} - qc_{n-2}$$

$$c_{n} = (q+1)c_{n-1} - qc_{n-2}.$$

Równanie charakterystyczne rekurencji liniowej rzędu k

Niech $a_0,\ a_1,\ \ldots,a_{k-1}$ będą będą początkowymi wyrazami ciągu $\{a_n\}_{n\in\mathbb{N}_0}$ i niech A_1,A_2,\ldots,A_k będą stałymi. Jeśli dla $n\geqslant k$ ten ciąg jest określony wzorem

$$a_n = A_1 a_{n-1} + A_2 a_{n-2} + \cdots + A_k a_{n-k},$$

to równanie

$$x^{k} = A_{1}x^{k-1} + A_{2}x^{k-2} + \dots + A_{k-1}x + A_{k}$$

nazywamy równaniem charakterystycznym tej rekurencji.

Równanie charakterystyczne rekurencji liniowej rzędu 2

Niech A, a, B i b będą ustalonymi liczbami rzeczywistymi.

Definiujemy ciąg $\{a_n\}$ przyjmując $a_0=a,\ a_1=b$ oraz

$$a_n = Aa_{n-1} + Ba_{n-2}, \text{ dla } n \geqslant 2.$$
 (8)

Równanie kwadratowe

$$x^2 = Ax + B \tag{9}$$

nazywamy równaniem charakterystycznym tej rekurencji.

Twierdzenie (Rozwiązanie kongruencji liniowej rzędu drugiego)

Niech x_1, x_2 będą pierwiastkami równania charakterystycznego (9) rekurencji liniowej rzędu 2 zadanej wzorem (8).

(1) Jeżeli
$$x_1 \neq x_2$$
, to

$$a_n=cx_1^n+dx_2^n$$
 dla każdego $n\geqslant 0,$

gdzie
$$c = \frac{b - ax_2}{x_1 - x_2}$$
, $d = \frac{ax_1 - b}{x_1 - x_2}$.

(2) Jeżeli
$$x_1 = x_2$$
, to

$$a_n = (c + dn)x_1^n$$
 dla każdego $n \geqslant 0$,

gdzie
$$c = a$$
, $d = \frac{b - ax_1}{x_1}$.

Dowód

1. Równanie charakterystyczne: $x^2 = Ax + B$, $x^2 - Ax - B = 0$ $x_1 \neq x_2$

$$a_{0} = cx_{1}^{0} + dx_{2}^{0}$$

$$a_{1} = cx_{1}^{1} + dx_{2}^{1}$$

$$\begin{cases}
c + d = a & \begin{cases}
cx_{2} + dx_{2} = ax_{2} \\
cx_{1} + dx_{2} = b
\end{cases} & \begin{cases}
c + d = a \\
c(x_{1} - x_{2}) = b - ax_{2}
\end{cases}$$

$$\frac{b - ax_{2}}{cx_{1} + dx_{2}}$$

$$\begin{cases} c = \frac{b - ax_2}{x_1 - x_2} \\ d = a - c = a - \frac{b - ax_2}{x_1 - x_2} = \frac{ax_1 - ax_2 - b + ax_2}{x_1 - x_2} = \frac{ax_1 - b}{x_1 - x_2} \end{cases}$$

Załóżmy, że wzór jest prawdziwy dla wszystkich k, k < n. W szczególności

$$a_{n-1} = cx_1^{n-1} + dx_2^{n-1}, \quad a_{n-2} = cx_1^{n-2} + dx_2^{n-2}$$

mamy dowieść, że

$$a_n = cx_1^n + dx_2^n.$$

Ze wzoru na \emph{n} -ty wyraz ciągu oraz faktu, że dla $\emph{i}=1,2$

$$x_i^2 = Ax_i + B$$

$$a_{n} = Aa_{n-1} + Ba_{n-2} =$$

$$= A\left(cx_{1}^{n-1} + dx_{2}^{n-1}\right) + B\left(cx_{1}^{n-2} + dx_{2}^{n-2}\right) =$$

$$= \left(Acx_{1}^{n-1} + Bcx_{1}^{n-2}\right) + \left(Adx_{2}^{n-1} + Bdx_{2}^{n-2}\right) =$$

$$= \left(Ax_{1} + B\right)cx_{1}^{n-2} + \left(Ax_{2} + B\right)dx_{2}^{n-2} =$$

$$= x_{1}^{2} \cdot cx_{1}^{n-2} + x_{2}^{2} \cdot dx_{2}^{n-2} =$$

$$= cx_{1}^{n} + dx_{2}^{n}$$

(2) Jeżeli
$$x_1=x_2$$
, to
$$a_n=(c+dn)x_1^n \ dla \ każdego \ n\geqslant 0,$$
 $gdzie \ c=a, \ d=\frac{b-ax_1}{x_1}.$

$$a_{0} = (c + d \cdot 0)x_{1}^{0}$$

$$a_{1} = (c + d \cdot 1)x_{1}^{1}$$

$$\begin{cases} c = a \\ (c + d)x_{1} = b \end{cases} \begin{cases} c = a \\ ax_{1} + dx_{1} = b \end{cases}$$

$$\begin{cases} c = a \\ dx_{1} = b - ax_{1} \end{cases} \begin{cases} c = a \\ d = \frac{b - ax_{1}}{x_{1}} \end{cases}$$

Załóżmy, że wzór jest prawdziwy dla wszystkich k, k < n. W szczególności

$$a_{n-1} = (c + d(n-1))x_1^{n-1}$$
 $a_{n-2} = (c + d(n-2))x_1^{n-2}$

mamy dowieść, że

$$a_n = (c + dn)x_1^n.$$

Ze wzoru na n-ty wyraz ciągu oraz faktu, że dla i = 1, 2

$$x_i^2 = Ax_i + B$$

a z tego, że $x_1 = x_2$

$$x^{2} - Ax - B \equiv (x - x_{1})^{2} \equiv x^{2} - 2x_{1}x + x_{1}^{2}$$

dostajemy

$$A = 2x_1, B = -x_1^2$$

Zatem

$$a_{n} = Aa_{n-1} + Ba_{n-2} =$$

$$= A(c + d(n-1))x_{1}^{n-1} + B(c + d(n-2))x_{1}^{n-2} =$$

$$= (Ax_{1} + B)cx_{1}^{n-2} + (A(n-1)x_{1} + B(n-2))dx_{1}^{n-2} =$$

$$= x_{1}^{2} \cdot cx_{1}^{n-2} + ((Anx_{1} + Bn) - ((Ax_{1} + 2B))dx_{1}^{n-2} =$$

$$= x_{1}^{2} \cdot cx_{1}^{n-2} + ((Ax_{1} + B)dnx_{1}^{n-2} = cx_{1}^{n} + dnx_{1}^{n} = (c + dn)x_{1}^{n}$$

Przykład (uogólnienie ciągu arytmetycznego)

Niech $c_0 = a$, $c_1 = aq + r = b$ i dla $n \geqslant 2$ niech

$$c_n = (q+1)c_{n-1} - qc_{n-2}.$$

Równanie charakterystyczne:

$$x^2=(q+1)x-q.$$

$$x^{2} - (q+1)x + q = 0$$
, $x^{2} - (q+1)x + q = (x-1)(x-q)$

Jeżeli
$$x_1 \neq x_2$$
, to

$$a_n = cx_1^n + dx_2^n$$
 dla każdego $n \geqslant 0$,

gdzie
$$c = \frac{b - ax_2}{x_1 - x_2}, d = \frac{ax_1 - b}{x_1 - x_2}.$$

$$x_1 = 1, \quad x_2 = q.$$

Zatem, jeśli $q \neq 1$, to

$$x_1 - x_2 = 1 - q,$$

 $c = \frac{b - ax_2}{x_1 - x_2} = \frac{aq + r - aq}{1 - q} = \frac{r}{1 - q},$
 $d = \frac{ax_1 - b}{x_1 - x_2} = \frac{a - aq - r}{1 - q} = a - \frac{r}{1 - q}$

$$c_n = \frac{r}{1-q}1^n + (a - \frac{r}{1-q})q^n = aq^n + r\frac{1-q^n}{1-q}$$

Jeżeli
$$x_1 = x_2$$
, to

$$a_n = (c + dn)x_1^n$$
 dla każdego $n \geqslant 0$,

gdzie
$$c = a$$
, $d = \frac{b - ax_1}{x_1}$.

Jeśli
$$q \neq 1$$
, to

$$c = a$$

$$d = \frac{a+r-a}{1} = r$$

$$c_n = (a + rn) \cdot 1^n = a + rn$$

Przykład (ciąg Fibonacciego)

Niech $F_0 = 0$, $F_1 = 1$ i dla $n \ge 2$ niech $F_n = F_{n-1} + F_{n-2}$. Równanie charakterystycze:

$$x^2 = x + 1.$$

Stąd
$$x^2-x-1$$
, $\Delta=1^2+4=5$, $\sqrt{\Delta}=\sqrt{5}$

$$x_1 = \frac{1+\sqrt{5}}{2}, \quad x_2 = \frac{1-\sqrt{5}}{2}.$$

Zatem $x_1 - x_2 = \sqrt{5}$, $c = \frac{1}{\sqrt{5}}$, $d = \frac{-1}{\sqrt{5}}$ i wobec tego na mocy powyższego twierdzenia

$$F_n = \frac{1}{\sqrt{5}} (x_1^n - x_2^n) = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

Przykład (zagadnienia prowadzące do rekurencji)

Prostokąt o rozmiarach $2 \times n$, $n \ge 1$, rozcinamy na n prostokątów o rozmiarach 1×2 . Na ile różnych sposobów można tego dokonać?

Niech P_n oznacza liczbę tych sposobów. Jest jasne, że $P_1=1$. Dla n=2 linie cięć można wybrać na dwa sposoby, tzn. $P_2=2$.

Dla n = 3 – na trzy, $P_3 = 3$.

Jaki jest jawny wzór na P_n ?

$$P_1 = 1$$
, $P_2 = 2$, $P_3 = 3$, $P_4 = 5$, $P_5 = 8$
 $P_n = P_{n-1} + P_{n-2}$.

Przykład

W grze losowej uczestniczy dwóch graczy A i B dysponujących odpowiednio kwotami k i m złotych. Gra polega na rzucie monetą. Jeśli w rzucie wypadnie orzeł, to gracz B oddaje złotówkę graczowi A; gdy wypadnie reszka, gracz A oddaje złotówką graczowi B. Gra kończy się, gdy któryś z graczy straci wszystkie pieniądze. Niech p – prawdopodobieństwo wyrzucenia orła, q=1-p – prawdopodobieństwem wyrzucenia reszki.

Niech n=m+k i niech p_k będzie prawdopodobieństwem wygranej gracza A. Wówczas, na podstawie wspomnianego wzoru otrzymujemy:

$$p_k = q \cdot p_{k+1} + p \cdot p_{k-1}.$$

Jest przy tym naturalne przyjęcie wartości początkowych $p_n=p_{k+m}=1$ oraz $p_0=0$. Zauważmy tylko, że ogólny wzór po elementarnych przekształceniach przyjmuje postać

$$p_{k+1} = \frac{1}{q}p_k - \frac{p}{q}p_{k-1}.$$

Jeżeli $p=q=\frac{1}{2}$, to

$$p_{k+1} = 2p_k - p_{k-1}$$

a zatem ciąg p_m jest ciągiem arytmetycznym. Różnica r tego ciągu jest równa $\frac{1}{k+m}$

Przykład

Niech $a_0 = \alpha$, $a_1 = \beta$ oraz

$$a_n = \frac{1 + a_{n-1}}{a_{n-2}}$$

dla $n \ge 2$. Podać jawny wzór na a_n . Jakie warunki muszą spełniać α i β , jeżeli ten ciąg jest nieskończony?

Rozwiązanie.

$$\begin{array}{rcl} a_{0} & = & \alpha, \\ a_{1} & = & \beta, \\ a_{2} & = & \frac{1+a_{1}}{a_{0}} = \frac{1+\beta}{\alpha} \\ a_{3} & = & \frac{1+a_{2}}{a_{1}} = \frac{1+\frac{1+\beta}{\alpha}}{\beta} = \frac{1+\alpha+\beta}{\alpha\beta} \\ a_{4} & = & \frac{1+a_{3}}{a_{2}} = \frac{1+\frac{1+\alpha+\beta}{\alpha\beta}}{\frac{1+\beta}{\alpha\beta}} = \frac{1+\alpha+\beta+\alpha\beta}{\beta(1+\beta)} = \frac{(1+\alpha)(1+\beta)}{\beta(1+\beta)} = \frac{1+\alpha}{\beta} \\ a_{5} & = & \frac{1+a_{4}}{a_{3}} = \frac{1+\frac{1+\alpha}{\beta}}{\frac{1+\alpha+\beta}{\beta}} = \frac{1+\alpha+\beta}{\beta} = \frac{1+\alpha+\beta}{\beta} \cdot \frac{\alpha\beta}{1+\alpha+\beta} = \alpha = a_{0} \\ a_{6} & = & \frac{1+a_{5}}{a_{4}} = \frac{1+\alpha}{\beta} = \beta = a_{1} \\ a_{7} & = & \frac{1+\beta}{\alpha} = a_{2} \end{array}$$

Podsumowując

$$a_n = \begin{cases} \alpha, & \text{jeśli } n = 5k \\ \beta, & \text{jeśli } n = 5k + 1 \\ \frac{1+\beta}{\alpha} & \text{jeśli } n = 5k + 2 \\ \frac{1+\alpha+\beta}{\alpha\beta} & \text{jeśli } n = 5k + 3 \\ \frac{1+\alpha}{\beta} & \text{jeśli } n = 5k + 4 \end{cases}$$

Przykład rekurencji nieliniowej – Problem Flawiusza

Na okręgu zapisujemy liczby naturalne od 1 do n zgodnie z ruchem wskazówek zegara (jak liczby na zegarze od 1 do 12). Następnie licząc od liczby 1 skreślamy co drugą, tak długo, aż zostanie jedna – po kolejnych obiegnięciach okręgu nie rozważamy już liczb skreślonych. Niech J(n) będzie liczbą, która została.

Ciąg J(n) spełnia następujące warunki rekurencyjne:

$$J(1) = 1 J(2m) = 2J(m) - 1 J(2m+1) = 2J(m) + 1$$

$$J(2) = J(2 \cdot 1) = 2 \cdot J(1) - 1 = 1,$$

$$J(3) = J(2 \cdot 1 + 1) = 2 \cdot J(1) + 1 = 3,$$

$$J(4) = J(2 \cdot 2) = 2 \cdot J(2) - 1 = 1,$$

$$J(5) = J(2 \cdot 2 + 1) = 2 \cdot J(2) + 1 = 3,$$

$$J(7) = J(2 \cdot 3 + 1) = 2 \cdot J(3) + 1 = 7.$$

$$J(100) = J(2 \cdot 50) = 2J(50) - 1$$

$$J(50) = J(2 \cdot 25) = 2J(25) - 1$$

$$J(25) = J(2 \cdot 12 + 1) = 2J(12) + 1$$

$$J(12) = J(2 \cdot 6) = 2J(6) - 1$$

$$J(6) = J(2 \cdot 3) = 2J(3) - 1$$

$$J(3) = J(2 \cdot 1 + 1) = 2J(1) + 1 = 3$$

Twierdzenie.

Niech
$$n = 2^k + l$$
, gdzie $0 \le l < 2^k$. Wówczas $J(n) = 2l + 1$.

Dowód.

Indukcją względem k.

Przypadek k = 0 jest oczywisty.

Założenie indukcyjne: twierdzenie jest prawdziwe dla wartości mniejszych od k.

Teza indukcyjna: twierdzenie jest prawdziwe dla k. Dowód: Niech $n=2^k+I$, gdzie $0 \le I < 2^k$. Rozważymy dwa przypadki:

- (I) / jest liczbą parzystą,
- (II) / jest liczbą nieparzystą

Ad (I). Niech I = 2m. Wtedy

$$J(n) = J(2^{k} + 2m) = J(2 \cdot (2^{k-1} + m)) = 2 \cdot J(2^{k-1} + m) - 1$$

i na mocy założenia indukcyjnego

$$J(2^{k-1}+m)-1=2m+1.$$

Ostatecznie więc,

$$J(n) = 2 \cdot (2m+1) - 1 = 4m + 1 = 2l + 1.$$

Ad (II). Niech l = 2m + 1. Wtedy

$$J(n) = J(2^{k} + 2m + 1) = J(2 \cdot (2^{k-1} + m) + 1) = 2 \cdot J(2^{k-1} + m) + 1$$

i znowu na mocy założenia indukcyjnego

$$J(2^{k-1} + m) = 2m + 1$$

Zatem

$$J(n) = 2 \cdot (2m+1) + 1 = 2I + 1.$$

Wniosek

Dla dowolnej liczby całkowitej $n \geqslant 0$

$$J(2^n) = 1, \quad J(2^n - 1) = 2^n - 1.$$

Wniosek

Jeżeli n zapiszemy w postaci binarnej, to binarny zapis liczby J(n) otrzymujemy przestawiając pierwszą jedynkę binarnego zapisu liczby n na koniec.

Rzeczywiście, jeśli

$$n=2^k+I,$$

gdzie $0 \leqslant I < 2^k$, to zabranie pierwszej jedynki z zapisu binarnego tej liczby daje binarny zapis liczby I (być może z pewną liczbą zer poprzedzających pierwszą znaczącą jedynkę). Dostawienie jedynki na końcu tego binarnego zapisu oznacza pomnożenie I przez 2 i dodanie 1.