# Intro to Classification Networks

Kathy Breen April 26, 2019

# Difference between classification and regression tasks

- Regression: approximate the output of a function (y) for each input (x) in the domain.
  - $y = x^2$
  - $\cdot C_{max} = \frac{C_0 A}{4t\pi (D_x D_y)^{1/2}}$
- Classification: approximate labels to inputs which sort data into different classes (i.e. categories/types).
  - Land-use type
  - Is this a picture of a cat?

## Supervised vs. unsupervised classification

- Unsupervised: Statistically based methods that require only inputs to create classes within data. Often exploratory.
  - Principle Components Analysis
  - K-means clustering
- Supervised: Weighted linear combination of inputs are iteratively trained to predict desired (known) target data.
  - Neural networks
  - Boosted regression trees
  - Random forests

#### Common classification tasks

- Image Classification: determine whether an image contains a particular object
  - EX: Is this a cat or not a cat? (Thank you Andrew Ng)

- Image segmentation: partition image pixels into multiple classes
  - EX: Land-use classification

- Semantic (pixel-based) segmentation: Determine if a group of pixels represent a target class
  - EX: medical diagnostic imagery







## Classification in the Geosciences

 Facies Classification: Given subsurface data (well logs, seismic), predict geologic facies

• Time to failure: Given acoustic signals, predict the time to failure for a fault

• Extreme event prediction: Given environmental conditions, predict if an extreme event will occur







## Code changes: regression vs. classification

|                           | Regression                                            | Classification                                                |
|---------------------------|-------------------------------------------------------|---------------------------------------------------------------|
| Preprocessing             | Not necessary for outputs                             | Outputs must be transformed as binary features                |
| Final activation function | Any, ReLU is common                                   | Softmax                                                       |
| Loss function             | Difference between true values and predictions (RMSF) | Probability that true label will be predicted (Cross entropy) |

### **Categorical Targets**

Class Label

1

2

3



| 1 | 2 | 3 |
|---|---|---|
| 1 | 0 | 0 |
| 0 | 1 | 0 |
| 0 | 0 | 1 |

#### Softmax activation function

The softmax activation function outputs a vector that represents the probability distributions of a list of potential outcomes (i.e. probability that a class was predicted accurately).

### Cross Entropy

- Targets have been transformed as binary features (0 or 1)
- Softmax outputs probabilities for each target ranging from 0 to 1

- Cross entropy loss functions measure how close the predicted probability is to the true class label
  - Increases as predicted probability (softmax) diverges from the true label (loss function penalized)

### Demo: Binary classification



# 

### Demo: Results





precip\_DLM.py: Test Accuracy 93%

# Demo: How can results be improved?

- More data
- Changes in preprocessing (i.e. type of norm, feature engineering) Are we asking a question that is answerable with the data at hand?
- How can we improve the way we formulate the question of interest?
- Architecture appropriate for conceptual problem



Recurrent Neural Network (RNN)

Long Short-Term Memory (LSTM) cell

#### LSTM Cell

