单元8.1 树

第二编图论 第九章树

9.1 无向树的定义及性质、9.2 生成树

内容提要

第九章 树

- 9.1 无向树的定义与性质
- 9.2 生成树

无向树

• 树:连通无回图

无向树

- 树(tree): 连通无回图, 常用T表示树
- · 树叶(leaf): 树中1度顶点
- 分支点: 树中2度以上顶点
- 平凡树: 平凡图(无树叶,无分支点)
- · 森林(forest): 无回图
- 森林的每个连通分支都是树

树的等价定义

- 定理9.1: 设G=<V,E>是n阶m边无向图,则(1) G是树(连通无回)
- ⇔(2) G中任何2顶点之间有唯一路径
- ⇔ (3) G无圈 ∧ m=n-1
- ⇔ (4) G连通 ∧ m=n-1
- ⇔(5) G极小连通:连通 ∧ 所有边是桥
- ⇔(6) G极大无回: 无圈 ∧增加任何新边产生唯

一圈

定理9.1证明(1)⇒(2)

- 证明: (1)⇒(2)⇒(3)⇒(4)⇒(5)⇒(6)⇒(1)
- (1) G是树(连通无回)
- (2) G中任何2顶点之间有唯一路径
- (1)⇒(2): ∀u,v∈V, G连通, u,v之间的短程线是路径. 如果u,v之间的路径不唯一,则G中有回路,矛盾!

定理9.1证明(2)⇒(3)

- (2) G中任何2顶点之间有唯一路径
- (3) G无圈 ∧ m=n-1
- ・ 证明(续): (2)⇒(3): 任2点之间有唯一路径⇒无圈 (反证: 有圈⇒存在2点,它们之间有2条路径.) m=n-1(归纳法): n=1时,m=0. 设 $n\le k$ 时成立, n=k+1时,任选1边e, n=10. 设n=10. 设n=10. n=10. n=10.

$$(m_1=n_1-1)$$
 e $(m_2=n_2-1)$

定理9.1证明(3)⇒(4)

- (3) G无圈 ^ m=n-1
- (4) G连通 ∧ m=n-1
- · 证明(续): (3)⇒(4): G连通: 假设G有s个连通分支,则每个连通分支都是树,所以

$$m=m_1+m_2+...+m_s=(n_1-1)+(n_2-1)+...+(n_s-1)$$
 $=n_1+n_2+...+n_s-s=n-s=n-1$, 所以s=1.

$$(m_1=n_1-1)$$

$$(m_2=n_2-1)$$

$$(m_s=n_s-1)$$

定理9.1证明(4)⇒(5)

- (4) G连通 ^ m=n-1
- (5) G极小连通:连通 ^ 所有边是桥
- 证明(续): (4)⇒(5): 所有边是桥: ∀e∈E, G-e是n阶(n-2)边图, 一定不连通(连通⇒m≥n-1), 所以e是割边.

定理9.1证明(5)⇒(6)

- (5) G极小连通:连通 ^ 所有边是桥
- (6) G极大无回: 无圈 ∧ 增加任何新边得唯一 圈
- 证明(续): (5)⇒(6): 所有边是桥⇒无圈. $\forall u,v \in V$, G连通, $u,v \geq 0$ 间有唯一路径 Γ , 则 $\Gamma \cup (u,v)$ 是唯一的圈.

定理9.1证明(6)⇒(1)

- (6) G极大无回: 无圈 ∧ 增加任何新边得唯一 圈
- (1) G是树(连通无回)
- 证明(续): (6)⇒(1): G连通: ∀u,v∈V, G∪(u,v)
 有唯一的圈C, C-(u,v)是u,v之间的路径. #

定理9.2

- 非平凡树至少有2个树叶
- · 证明:设T有x个树叶,由定理1和握手定理,

$$2m = 2(n-1) = 2n-2 = \sum d(v)$$

$$= \Sigma_{v \neq M} d(v) + \Sigma_{v \neq D} \pm d(v)$$

无向树的计数:tn

- t_n: n(≥1)阶非同构无向树的个数
- t_n的生成函数(generating function):

$$t(x) = t_1x + t_2x^2 + t_3x^3 + ... + t_nx^n + ...$$

• Otter公式:

$$t(x) = r(x) - (r(x)^2 - r(x^2)) / 2$$

• r(x)的递推公式:

$$r(x) = x\Pi_{i=1}^{\infty} (1-x^{i})^{-r_{i}}$$

$$r(x) = r_{1}x + r_{2}x^{2} + r_{3}x^{3} + ... + r_{n}x^{n} + ...$$

n	t _n	n	t _n	n	t _n	n	t _n
1	1	9	47	17	48,629	25	104,636,890
2	1	10	106	18	123,867	26	279,793,450
3	1	11	235	19	317,955	27	751,065,460
4	2	12	551	20	823,065	28	2,023,443,032
5	3	13	1,301	21	2,144,505	29	5,469,566,585
6	6	14	3,159	22	5,623,756	30	14,830,871,802
7	11	15	7,741	23	14,828,074	31	40,330,829,030
8	23	16	19,320	24	39,299,897	32	109,972,410,221
d	9	1	1		14		然是北东大学

无向树的枚举

· 画出所有非同构的n阶无向树

• n=1:

• n=2:

• n=3:

• n=4:

• n=5:

6阶非同构无向树

• $n=6: t_6=6$

7阶非同构无向树

• n=7: t₇=11

8阶非同构无向树

8阶非同构无向树(续)

• n=8: t₈=23

8阶非同构无向树(解法2)

• n=8: 度数列有11种: $(1)^1$ 1 1 1 1 1 1 7 $(7)^{1}$ 1 1 1 1 1 3 3 3 $(2)^{1}$ 1 1 1 1 1 1 2 6 $(8)^5$ 1 1 1 1 2 2 3 3 $(3)^1$ 1 1 1 1 1 1 3 5 $(9)^3 1 1 1 1 1 2 2 2 4$ $(4)^1$ 1 1 1 1 1 1 4 4 $(10)^4$ 1 1 1 2 2 2 2 3 $(5)^2$ 1 1 1 1 1 2 2 5 $(11)^1$ 1 1 2 2 2 2 2 2 2 $(6)^3$ 1 1 1 1 1 2 3 4

8阶非同构无向树(解法2)

• n=8: 度数列有11种:

 $(8)^{5}$ 1 1 1 2 2 2 3 3 $(10)^{4}$ 1 1 1 2 2 2 2 3

星: S_n=K_{1,n-1}

生成树

- 生成树: T⊆G ∧ V(T)=V(G) ∧ T是树
- 树枝(tree edge): e∈E(T), n-1条
- 弦(chord): e∈E(G)-E(T), m-n+1条
- 余树(): G[E(G)-E(T)] = T

定理9.3

- · 无向图G连通⇔G有生成树
- 证明: (⇐) 显然. (⇒) 破圈法. #

三个推论和一个定理

- · 推论1: G是n阶m边无向连通图⇒m≥n-1.#
- 推论2: T是n阶m边无向连通图G的生成树⇒
 |E(T)|=m-n+1.
- 推论3: T是无向连通图G的生成树, C是G中的 $\mathbb{B} \Rightarrow |E(T)|_{\cap}|E(C)|\neq\emptyset$.
- ・ 定理9.13: 设T是连通图G的生成树,S是G中的割集,则E(T) \cap S≠Ø.

推论3

- ・ 设T是连通图G的生成树, C是G中的圈,则 $E(T) \cap E(C) \neq \emptyset$.
- 证明: (反证) 若E(T)∩E(C)=Ø,则 E(C)⊆E(T), T中有回路C, T是树,矛盾!#

定理9.13

- ・设T是连通图G的生成树,S是G中的割集,则 E(T)∩S≠Ø.
- 证明: (反证) 若E(T) ∩S=Ø,则
 T⊆G-S,则G-S连通, S是割集,矛盾!#

定理9.4

• 设G是连通图,T是G的生成树,e是T的弦,则 T∪e中存在由弦e和其他树枝组成的圈,并且 不同的弦对应不同的圈.

定理9.4证明

• 证明: 设e=(u,v), 设P(u,v)是u与v之间在T中的唯一路径,则P(u,v)∪e是由弦e和其他树枝组成的圈.

设 e_1,e_2 是不同的弦,对应的圈是 C_{e1},C_{e2} ,则 $e_1 \in E(C_{e1})-E(C_{e2})$, $e_2 \in E(C_{e2})-E(C_{e1})$,所以 $C_{e1} \ne C_{e2}$. #

例9.1(破圈法)

- ・ 设G是无向连通图, $G'\subseteq G$, G'无圈, 则G中存在 生成树T, $G'\subseteq T\subseteq G$.
- 证明: 不妨设G有圈 C_1 (否则G是树, T=G). 则 $\exists e_1 \in E(C_1)-E(G')$, $\diamondsuit G_1=G-\{e_1\}$. 若 G_1 还有圈 C_2 , 则 $\exists e_2 \in E(C_2)-E(G')$, $\diamondsuit G_2=G_1-\{e_2\}=G-\{e_1,e_2\}$. 重复进行, 直到 $G_k=G-\{e_1,e_2,...,e_k\}$ 无圈为止, $T=G_k$. #

基本回路

- 设G是n阶m边无向连通图,T是G的生成树, T={e'₁,e'₂,...,e'_{m-n+1}}
- · 基本回路: T∪e′,中的唯一回路C,
- 基本回路系统: {C₁,C₂,...,C_{m-n+1}}
- 圈秩ξ(G): ξ(G)=m-n+1 (ξ: xi)

定理9.5

· 设G是连通图,T是G的生成树,e是T的树枝,则 G中存在由树枝e和其他弦组成的割集,并且 不同的树枝对应不同的割集.

定理9.5证明

• 证明: e是T的桥, 设T-e的两个连通分支是 T_1 与 T_2 , 则 $E(G) \cap (V(T_1) \& V(T_2))$ 是由树枝e和其他弦组成的割集.

设 e_1,e_2 是不同的树枝,对应的割集是 S_{e1},S_{e2} ,则 $e_1 \in S_{e1}-S_{e2}$, $e_2 \in S_{e2}-S_{e1}$,所以 $S_{e1} \neq S_{e2}$. #

基本割集

- 设G是n阶m边无向连通图,T是G的生成树, T={e₁,e₂,...,e_{n-1}}
- · 基本割集: e_r对应的唯一割集S_r
- 基本割集系统: {S₁,S₂,...,S_{n-1}}
- 割集秩η(G):η(G)=n-1 (η: eta)

例9.2

· G如图,T={a,b,c,e,i}是G的生成树,求对应T的基本回路系统和基本割集系统.

例9.2解

解: T={d,f,g,h}, 基本回路: C_d=dcb, C_f=fcai, C_g=gebai, C_h=heba, 基本回路系统: {C_d,C_f,C_g,C_h}. 基本割集: S_a={a,h,g,f}, S_b={b,d,g,h}, S_c={c,d,f}, S_e={e,g,h}, S_i={i,g,f}, 基本割集系统: {S_a,S_b,S_c,S_e,S_i}. #

生成树的计数:τ(G)

- τ(G): 标定图G的生成树的个数
- $T_1 \neq T_2$: $E(T_1) \neq E(T_2)$
- G-e: 删除(deletion)
- G\e: 收缩(contraction)

· ∀e非环,

$$\tau(G) = \tau(G-e) + \tau(G\backslash e)$$

定理6证明

- 证明:∀e非环,
- (1) 不含e的G的生成树个数:τ(G-e),
- (2) 含e的G的生成树个数:τ(G\e). #

例9.3

$$\tau \left[\begin{array}{c} = \tau \left[\begin{array}{c} + \tau \left[\begin{array}{c} \\ \end{array} \right] \\ = 0 + \tau \left[\begin{array}{c} \\ \end{array} \right] \\ = 1 + \tau \left[\begin{array}{c} \\ \end{array} \right] \\ = 1 + 1 + \tau \left[\begin{array}{c} \\ \end{array} \right] \\ = 1 + 1 + 1 + 1 = 4. \end{array} \right]$$

定理9.7

- Cayley公式: $n \ge 2 \Rightarrow \tau(K_n) = n^{n-2}$.
- 证明: 令 $V(K_n)=\{1,2,...,n\}$, 用V中元素构造长度为(n-2)的序列,有 n^{n-2} 个不同序列,这些序列与 K_n 的生成树是一一对应的.

定理9.7证明

• 证明(续):(1)由树构造序列: 设T是任意生成树. 令 $k_1 = \min\{ r \mid d_T(r) = 1 \}, N_T(k_1) = \{ \ell_1 \},$ $k_2=min\{ r \mid d_{T-\{k1\}}(r)=1 \}, N_{T-\{k1\}}(k_2)=\{l_2\},$

 $k_{n-2}=min\{r\mid d_{T-\{k_1,k_2,...k_{n-3}\}}(r)=1\},$ $N_{T-\{k_1,k_2,...k_{n-3}\}}(k_{n-2})=\{l_{n-2}\},$ 得到序列(4,6,...,6,...).

定理9.7证明举例

定理9.7证明

• 证明(续):(2)由序列构造树: 设(4,6,...,6,2)是任意序列. 令 $k_1=\min\{ r \mid r \in V - \{ \ell_1, \ell_2, ..., \ell_{n-2} \} \},$ $k_2 = \min\{ r \mid r \in V - \{k_1, l_2, ..., l_{n-2}\} \},$ $k_{n-2}=\min\{r \mid r \in V-\{k_1,k_2,...,k_{n-3}, l_{n-2}\}\},\$ $k_{n-1}=\min\{r \mid r \in V-\{k_1,k_2,...,k_{n-3},k_{n-2}\}\},\$ $I_{n-1}=\min\{r \mid r \in V-\{k_1,k_2,...,k_{n-2},k_{n-2},k_{n-1}\}\}.$ $E(T)=\{(k_i, l_i) \mid i=1,2,...,n-1\}.$ 北京大学

定理9.7证明举例

- (3,2,7,8,2,5)
- $k_1=\min(V-\{3,2,7,8,2,5\})=\min\{1,4,6\}=1,$ $k_2=\min(V-\{1,2,7,8,2,5\})=\min\{3,4,6\}=3,$ $k_3=\min(V-\{1,3,7,8,2,5\})=\min\{4,6\}=4,$ $k_{4}=\min(V-\{1,3,4,8,2,5\})=\min\{6,7\}=6,$ $k_5 = \min(V - \{1, 3, 4, 6, 2, 5\}) = \min\{7, 8\} = 7,$ $k_6 = \min(V - \{1, 3, 4, 6, 7, 5\}) = \min\{2, 8\} = 2,$ $k_7 = min(V - \{1,3,4,6,7,2\}) = min\{5,8\} = 5,$ $l_7 = \min(V - \{1, 3, 4, 6, 7, 2, 5\}) = \min\{8\} = 8$

定理9.7证明举例

- (3,2,7,8,2,5)
- (1,3,4,6,7,2,5)(3,2,7,8,2,5,8)

定理9.7证明

• 可以证明上述(1)和(2)建立的对应关系是双射:每个树都得出序列,每个序列都得出树;由不同的树得出不同的序列,由不同的序列 得出不同的树. #

小结

- 无向树
 - 等价定义与性质
 - 非同构无向树的枚举(利用度数列)
- 生成树
 - -基本割集系统,基本回路系统
 - 无向标定图中生成树的个数

