Convolutional Generative Adversarial Networks with Binary Neurons for Polyphonic Music Generation

Hao-Wen Dong and Yi-Hsuan Yang Research Center of IT Innovation, Academia Sinica

Target outputs - Multi-track piano-rolls

Piano Guitar Bass Ensemble Reed Synth Lead Synth Pad

Convolutional Generative Adversarial Networks

drum patterns

	Generator's outputs	Real data				
MuseGAN	real-valued	binary-valued				
BinaryMuseGAN	binary-valued	binary-valued				

Convolutional Generative Adversarial Networks with Binary Neurons

stand B-7

for Polyphonic Music Generation Hao-Wen Dong and Yi-Hsuan Yang

Convolutional Generative Adversarial Networks with Binary Neurons for Polyphonic Music Generation

Hao-Wen Dong and Yi-Hsuan Yang

MuseGAN **BinaryMuseGAN** (different training strategies)

	training	pretra	ained	prop	osed	jo	int	end-to-end			
	data	BS	HT	SBNs DBNs		SBNs	DBNs	SBNs	DBNs		
QN	0.88	0.67	0.72	0.42	<u>0.78</u>	0.18	0.55	0.67	0.28		
PP	0.48	0.20	0.22	0.26	<u>0.45</u>	0.19	0.19	0.16	0.29		
TD	0.96	0.98	1.00	0.99	0.87	<u>0.95</u>	1.00	1.40	1.10		

Come to learn more and listen to the demos!

Convolutional Generative Adversarial Networks with Binary Neurons for Polyphonic Music Generation

Hao-Wen Dong and Yi-Hsuan Yang

Research Center for IT Innovation, Academia Sinica, Taipei, Taiwan [Demo Website] https://salu133445.github.io/bmusegan/

>> Introduction

- # MuseGAN [1] shows the promise of using GANs [2] # Lakh Pianoroll Dataset (LPD) LPD-cleansed subset requires further postprocessing at test time to binarize the generator's (G) output.
- # BinaryMuseGAN (proposed) adopts binary G's output during training

- with CNNs to generate multitrack pianorolls. But it # Consider only songs with an alternative tag to make the training data cleaner
 - # 13,746 4-bar phrases from 2,291 songs
 - # 96 time steps in a bar, 84 possible pitches (C1 to B7) # 8 tracks - Drums, Piano, Guitar, Bass, Ensemble, Reed, Synth Lead and Synth Pad
 - # Target output tensor shape (4, 96, 84, 8)

// ICC	Jul										_11	tonai	distance	[4] Detw	reen the	piano a	and gui	tar
pretrained (raw output) (MuseGAN [1])					Evaluation Results (value closer to the training data to belie training pretrained proposed joint end-to-end ablated-I ablated-II												,	
pretrained						training data	BS	HT	SBNs	DBNs	SBNs	DBNs	SBNs	DBNs	BS	HT	BS	HT
(+BS) (MuseGAN [1])					QN PP	0.88	0.67	0.72	0.42	0.78	0.18	0.55	0.67	0.28	0.61	0.64	0.35	0.37
pretrained (+HT) (MuseGAN [1])	<u></u>				TD	0.96 iderlined and	0.98	1.00	0.99	0.87	0.95	1.00	1.40	1.10	1.00	1.00	1.30	1.40
proposed (+SBNs) (BinaryMuseGAN)	2) E, S. (1.0 g a g a g a g a g a g a g a g a g a g													
proposed (+DBNs) (BinaryMuseGAN)				7 <u>7</u>	0.4 0.2 0.0	pretrate proposed (+985%) proposed (+985%) pint (+985%) 200(0) 400	A4	PATTY	100000 gas	1.4 1.2 1.0 200	00 40000	- CO 00 00	000 1000	B 0.4	proposed abland I put	mate et man	design) de S. malik-ske	nam designal
(HT-	hard threshold	ing; B\$—Be	moull samp	ilng)			step					tep				step		

>> Conclusions

- # While the generated results appear preliminary and lack musicality, we showed the potential of adopting binary neurons in a music generation system
- # Using DBNs leads to better objective scores than hard thresholding, Bernoulli sampling and SBNs
- # It might also be interesting to use binary neurons in music transcription (binary-valued outputs as well)

>> References

[1] Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and Yi-Hsuan Yang MuseGAN: Symbolic-domain music generation and accompaniment with multi-track sequential generative adversarial networks. In *Proc. AAAI*, 2018. [2] Ian J. Goodfellow et al. Generative adversarial nets. In Proc. NIPS, 2014. [3] Yoshua Bengio, Nicholas Leonard, and Aaron C. Courville, Estimating of propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[4] Christopher Harte, Mark Sandler, and Martin Gasser. Detecting harmonic change in musical audio. In Proc. ACM Workshop on Audio and Music Computing Multimedia, 2006