Convolutional Networks

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY **DELHI**

MLP: Problems

- The amount of weights rapidly becomes unmanageable for large input images
 - E.g. 224 x 224 x 3 image: >150,000 weights!
- Not translation invariant
 - Reacts differently to an input's shifted version

What do you see? Variance in Input Image

CNN: Architecture

Convolution Operation

Convolution Operation

- $s(t) = (x * w)(t) = \sum_{a = -\infty, +\infty} x(a)w(t a)$
 - o x: Input, w: Kernel, s: Feature map
- Two-dimensional

$$\circ S(i,j) = (I*K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$

- Convolution is commutative
 - $\circ S(i,j) = (K^*I)(i,j) = \sum_{m} \sum_{n} I(i-m,j-n)K(m,n)$

Visual example: Convolution Operation

Kernel

w_7	w_8	w_9
w_4	w_5	w_6
w_1	w_2	w_3

Visual example example: Convolution Operation

An example: Convolution Operation

Convolution: Vertical

-1	0	1
-1	0	1
-1	0	1

Convolution: Horizontal

-1	-1	-1
0	0	0
1	1	1

Convolution Operation: Output Size

- For convolutional layer:
 - \circ Suppose input is of size $W_1 \times H_1 \times D_1$
 - Filter size is K and stride S
 - \circ We obtain another volume of dimensions $W_2 \times H_2 \times D_2$
- As before:
 - \circ W₂ = (W₁ K)/S + 1 and H₂ = (H₁ K)/S + 1
- Depths will be equal

Convolution Operation: Output Size

- Output size: (N K)/S + 1
 - N: input dimension
 - o K: Kernel size
 - S: Stride
- In previous example:
 - \circ N = 6, K = 3, S = 1,
 - Output size =
 - **4**

Convolution: Motivation

- Convolution leverages four ideas that can help ML systems:
 - Sparse interactions
 - Parameter sharing
 - Equivariant representations
 - Ability to work with inputs of variable size

Convolution Operation: Sparse Interactions

- Sparse interactions
 - Convolutional networks typically have sparse interactions (also referred to as sparse connectivity or sparse weights)
- This is accomplished by making the kernel smaller than the input.
 - need to store fewer parameters, computing output needs fewer operations (O(m \times n) versus O(k \times n))

Convolution Operation: Sparse Interactions

Convolution Operation: Parameter Sharing

- Parameter sharing refers to using the same parameter for more than one function in a model
 - Each member of the kernel is used at every position of the input
- Rather than learning a separate set of parameters for every location, we learn only one set.
 - \circ This does not affect the runtime of forward propagation; it is still $O(k \times n)$, but it does further reduce the storage requirements of the model to k parameters.
 - Storage improves dramatically as k << m, n

Convolution Operation: Parameter Sharing

Convolution Operation: Equivariant representations

- To say a function is equivariant means that if the input changes, the output changes in the same way.
 - Function f (x) is equivariant to a function g if
 - f(g(x)) = g(f(x))
- The form of parameter sharing used by CNNs causes each layer to be equivariant to translation
 - That is, if g is any function that translates the input, the convolution function is equivariant to g

Convolution Operation: Equivariant representations

- Implication: While processing time series data, convolution produces a timeline that shows when different features appeared (if an event is shifted in time in the input, the same representation will appear in the output)
- Images: If we move an object in the image, its representation will move the same amount in the output
- This property is useful when we know some local function is useful everywhere (e.g. edge detectors)
- Convolution is not equivariant to other operations such as change in scale or rotation

Pooling

Linear Activations [Convolution] -> Non-linear Activations
[Detector] -> Pooling

Pooling

- A pooling function replaces the output of the net at a certain location with a summary statistic of the nearby outputs.
 - Max pooling operation reports the maximum output within a rectangular neighborhood.
- Other popular pooling functions include
 - o the average of a rectangular neighborhood,
 - o the L2 norm of a rectangular neighborhood, or
 - a weighted average based on the distance from the central pixel
- In all cases, pooling helps to make the representation become approximately invariant to small translations of the input.

Pooling

Pooling

- Invariance to local translation can be a very useful property if we care more about *whether some feature is present* than *exactly where it is*
 - For example, when determining whether an image contains a face, we need not know the location of the eyes with pixel-perfect accuracy.
- In other contexts, it is more important to preserve the location of a feature.
 - For example, if we want to find a corner defined by two edges meeting at a specific orientation
- Since pooling is used for downsampling, it can be used to handle *inputs of varying sizes*

Pooling: Downsampling

ReLu: Rectified Linear Unit

Dropout

Walk Through: AlexNet

AlexNet

- The input to AlexNet is an RGB image of size 256×256
- Random crops of size 227×227 were generated from inside the 256×256 images to feed the first layer of AlexNet.
- Input: 227×227 x 3

AlexNet

- 5 Convolutional Layers and 3 Fully Connected Layers
- It has 60 million parameters and 650,000 neurons and took five to six days to train on two GTX 580 3GB GPUs!
- Input: 227×227 x 3
- The first Conv Layer of AlexNet contains 96 kernels of size 11x11x3.
 - Width and height of output: (227-11)/4 + 1 = 55
- Number of parameters in first layer? \circ (11x11x3 + 1)*96 = 34,9444
- Number of Computations: 34,9444 x 55 x 55 = 10,57,05,600
- https://airtable.com/shrArXKRCau4KhAwZ/tbloN5WYjFYpKGUEt ?blocks=hide

References

- 1. Chapter 9, Deep Learning: Ian Goodfellow, Yoshua Bengio, Aaron Courville (http://www.deeplearningbook.org/)
- 2. https://neurdiness.wordpress.com/2018/05/17/deep-convolutional-ne-ural-networks-as-models-of-the-visual-system-ga/
- 3. https://www.rctn.org/bruno/public/papers/Fukushima1980.pdf
- 4. https://www.youtube.com/watch?v=2-Ol7ZBoMmU
- 5. https://www.youtube.com/watch?v=ZOXOwYUVCqw

