

第九周 图像识别

庞彦

yanpang@gzhu.edu.cn

Object Recognition

目标识别: 分类问题

Class 1: 笔记本电脑;

Class 2: 台式机电脑;

Class 3: 平板电脑。

Object Recognition

目标识别: 分类问题

对于人类:

共同点:

都是电脑…

不同点:

大小? 形状? 材质? 便携性…

计算机通过学习并挖掘目标属性的相关特征(Features)来对目标进行识别与探究。

颜色特征

颜色特征 形状特征

颜色特征 形状特征 纹理特征

Why CNN for Image

• The same patterns appear in different regions.

Why CNN for Image

✓ Subsampling the pixels will not change the object;

✓ It just make the image smaller.

parrot

parrot

Less parameters for the network to process the image

Color Image: 3 channels

Pixel of an RGB image are formed from the corresponding pixel of the three component images

Convolutional Neural Networks (CNNs)

Left: A regular 3-layer Neural Network. Right: A ConvNet arranges its neurons in three dimensions (width, height, depth), as visualized in one of the layers. Every layer of a ConvNet transforms the 3D input volume to a 3D output volume of neuron activations. In this example, the red input layer holds the image, so its width and height would be the dimensions of the image, and the depth would be 3 (Red, Green, Blue channels).

Convolutional Neural Networks (CNNs)

卷积层 Convolutional Layer

池化层 Pooling Layer

全连接层 Fully-Connected Layer

We will stack these layers to form a full ConvNet architecture.

[INPUT - CONV - POOL - FC - OUTPUT]

Convolutional Neural Networks (CNNs)

Convolution Layer: The Kernel

Convolution Layer: The Kernel

 $N = \frac{(W - F + 2P)}{S} + 1$

Convolution Layer: Padding and Stride

Pooling Layer

Pooling Layer

Flatten

Review: Convolutional Neural Networks (CNNs)

What does the machine learn?

Typical-looking filters on the trained first layer

11 x 11 (AlexNet)

Maximally activating images for some POOL5 (5th pool layer) neurons of an AlexNet.

More Applications: Deep Dream

Given a photo, make its style like famous paintings

Deep Convolutional Neural Netwo 22 layers 19 layers image conv-64 conv-64 maxpool conv-128 conv-128 maxpool 8 layers conv-256 conv-256 maxpool 7.3% Conv., MXP, LRN conv-512 Conv., MXP, LRN conv-512 maxpool Inaccuracy: 16.4% Conv. & ReLU conv-512 Conv. & ReLU conv-512 Conv. & ReLU maxpool FC-4096 FC-4096 FC-1000 softmax Soft-max AlexNet (2012) GoogleNet (2014) VGG (2014)

Deep Convolutional Neural Network

The difference between a regular block (left) and a residual block (right).

Left: regular ResNet block; Right: ResNet block with 1x1 convolution

(c) ResNet-D

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

DenseNet

Channel-wise Concatenation

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 4700–4708, 2017

DenseNet: Dense Block

Figure 1: A 5-layer dense block with a growth rate of k=4. Each layer takes all preceding feature-maps as input.

Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201	DenseNet-264	
Convolution	112 × 112	7×7 conv, stride 2				
Pooling	56 × 56	3×3 max pool, stride 2				
Dense Block	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 6 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 6 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 6 \end{bmatrix} \times 6$	
(1)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$	$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 $		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	
Transition Layer	56×56	$1 \times 1 \text{ conv}$				
(1)	28×28	2×2 average pool, stride 2				
Dense Block	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 12 \end{bmatrix}$	
(2)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	
Transition Layer	28×28	$1 \times 1 \text{ conv}$				
(2)	14 × 14	2 × 2 average pool, stride 2				
Dense Block	14 > 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 \times 24 \end{bmatrix}$	$\times 1 \text{ conv}$ $\times 24$ $\left[\begin{array}{c c} 1 \times 1 \text{ conv} \\ 2 \times 32 \end{array}\right] \times 32$ $\left[\begin{array}{c c} 1 \times 1 \text{ conv} \\ 2 \times 32 \end{array}\right] \times 48$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 48$	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix}$	
(3)	14 × 14	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 24}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 46$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 64$	
Transition Layer	14×14	$1 \times 1 \text{ conv}$				
(3)	7 × 7	2 × 2 average pool, stride 2				
Dense Block	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix}$	
(4)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 16$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 48$	
Classification	1×1	7 × 7 global average pool				
Layer		1000D fully-connected, softmax				

Figure 2: Illustrations of (a) DenseNet and (b) our proposed Cross Stage Partial DenseNet (CSPDenseNet). CSPNet separates feature map of the base layer into two part, one part will go through a dense block and a transition layer; the other one part is then combined with transmitted feature map to the next stage.

Wang, Chien-Yao, et al. "CSPNet: A New Backbone that can Enhance Learning Capability of CNN." arXiv preprint arXiv:1911.11929 (2019).

Figure 5: Applying CSPNet to ResNe(X)t.

Table 3: Compare with state-of-the-art methods on ImageNet.

Model	#Parameter	BFLOPs	Top-1	Top-5
ResNet-10 [7]	5.24M	2.273		85.0%
CSPResNet-10	2.73M	1.905 (-16%)		86.5 %
ResNeXt-50 [39] CSPResNeXt-50 HarDNet-138s [1] DenseNet-264-32 [11] ResNet-152 [7]	22.19M 20.50M 35.5M 27.21M 60.2M	10.11 7.93 (-22%) 13.4 11.03 22.6	77.9% 77.8%	93.9%
DenseNet-201-Elastic [36]	19.48M	8.77	77.9%	
CSPDenseNet-201-Elastic	20.17M	7.13 (-19%)	77.9%	

Q&A

