

[22.10.14] 다운로드서비스

TSCHRELMH1

김 태 현

문 제

• 3가지 요소를 가지는 트리 존재

1) 서버: 트리의 root, 전송 속도 capa로 데이터 제공

2) PC: 트리의 leaf, 원하는 크기만큼 데이터를 다운로드 하고 연결 해제

3) 허브: 서버 또는 부모 허브에서 받은 데이터를 자식 허브 또는 PC에 전달

• 서버 또는 허브는 자신과 연결된 자식 허브 또는 PC 중, 다운로드 필요한 자식 허브 또는 PC에 균등하게 전송 속도 분배 소수점 이하는 버림

• PC가 추가되거나 다운로드 완료하여 자동으로 접속 해제될 때, 즉시 다운로드 서비스 전송 속도 변경

※ 제약사항

- Time은 호출시마다 1 이상 증가 (1 <= Time <= 50,000)
- 서버 또는 허브가 가질 수 있는 자식 허브(pc포함)의 개수는 5개 이하
- addHub() <= 10,000 , removeHub() <= 100 requestDL() <= 1,000, checkPC() <= 1,000

void init(int capa)

시각 0에 ID가 0인 서버가 capa의 전송 속도로 존재

void addHub(int Time, int parID, int chID)

Time 시각에 parID인 서버 또는 허브에 chID 자식 허브를 추가 Time 시각까지 다운로드 실행 후. 추가

int removeHub(int Time, int chID)

Time 시각에 chID 허브 삭제 chID 허브 또는 허브의 자손이 PC와 연결되어 있을 경우 삭제 실패, 0 반환 그 외의 경우 chID 허브 및 자손 허브 모두 삭제 후 1 반환

void requestDL(int Time, int parID, int pcID, int Size)

Time 시각에 parID인 서버 또는 허브에 pcID인 PC 추가 후 전송 속도 변경 Size 크기만큼 데이터 다운 시작 다운로드 완료된 PC는 자동 접속 해제되며, 즉시 접속 해제, 전송 속도 변경

Result checkPC(int Time, int pcID)

pcID가 다운로드 중이면 finish = 0, param = 남아 있는 다운로드 크기 반환 완료된 경우 finish = 1, param = 완료된 시각 반환

문제 분석

함수별 수행

- hub 추가
 Time까지 다운로드
 트리에 노드 추가
- **hub 삭제** Time까지 다운로드 트리에서 노드 삭제
- 삭제 가능 여부 판별 : 하위 노드에 pc가 있는가 - pc 추가

Time까지 다운로드 트리에 노드 추가, 다운로드 시작(전송속도 업데이트)

- pc 상태확인 다운로드 끝났는지 판별 끝난 경우, 끝난 시각 반환 진행중인 경우, 남은 크기 반환

주요 포인트

- **트리 구성** 어떤 정보를 기록할 것인지, 어떤 자료구조를 쓸 것인지
- timeflow 함수 호출 사이에도 다운로드 진행, 함수 처리 전에 Time까지 다운로드
- 전송 속도 업데이트

트리 구성

당장 필요해 보이는 정보

- parent
- child list 자식노드 5개 뿐이므로 array, vector, .. 아무거나 사용
- 남은 데이터양
- 전송 속도
- 전송 종료 시각
- 하위 노드의 총 pc 개수? 전송중인 자식노드 개수?
- 상태 정보(hub/다운로드중인 pc/완료된 pc)?

Time까지 다운로드 진행

다운로드 진행 시, {전송 속도, 다운로드 완료 시각}이 변경되는 경우

1) pc 추가, 2) pc 전송 완료

방법

time <= 50,000 , pc개수 <= 1,000

1) current time을 1씩 증가하면서 진행

O(50,000 * 1,000)

2) 가장 먼저 전송이 종료되는 pc 종료시점을 찾으면서 진행

- linear search

- pq / set : {endTime, id}

O(1,000 * 1,000) O(1,000 log 1,000)

전송 속도 업데이트 방법

업데이트 되는 경우 : 최대 2,000회

1) pc 추가 2) pc 삭제 - 다운로드 완료

업데이트 방법

- 1) root에서부터 새롭게 설정
- 2) 변경되는 부분만 새롭게 설정
 - subRoot의 하위노드들만 전송 속도 변경 subRoot: 데이터를 전송하는 자식노드의 개수가 바뀌는 최상위 노드 => 노드별로 데이터 전송하는 자식노드 개수(dlCnt) 기록
 - 이전 다운받고 있던 전송 속도로 다운받은 크기만큼 남은 크기 감소 새로운 속도로 다운로드 시작
 * 새로운 속도로 다운로드 시작하는 시각 기록
 - 새로운 속도로 다운로드 했을 때, 완료 예정시작도 변경 => set/pg 업데이트
 - 즉, subRoot 이하의 모든 노드는 전송 속도와 dlCnt 변경 pc는 추가로 새로운 시작 시각, 완료 예정 시각, 남은 크기 변경

전송 속도 업데이트 방법

1) pc 추가

pc의 조상노드 중 이미 전송중인던 가장 가까운 노드 이하로만 변경된다.

pc에서 dlCnt 개수를 증가시키며 부모노드를 타고 올라간다.

그 과정에서 dlCnt가 2 이상인 노드가 나오면 이미 전송중이었던 노드이므로 그 위부터는 변화 없으며,

해당 노드부터 모든 자손 노드의 전송속도를 및 정보를 변경해나간다.

전송 속도 업데이트 방법

2) pc 삭제

pc의 조상노드 중 pc삭제 이후에도 데이터를 전송하는 가장 가까운 노드 이하로만 변경된다. pc에서 부모노드를 타고 올라가면서 dlCnt 를 감소시킨다.

그 과정에서 감소 후에도 dlCnt가 1이상이면 그 위부터는 변화 없으며,

해당 노드부터 모든 자손 노드의 전송속도 및 정보를 변경해나간다.

최종 형태

노드별 필요 정보

- parent
- child list (array or vector)
- 전송속도, 남은크기
- 시작시각, 종료(예정)시각
- 전송중인 자식노드 개수

먼저 끝나는 순으로 PC 관리 : {endTime, id}

- 1) set
- 2) pq

间别

Order 15. requestDL(30, 4, 54, 2572) 수행 후 상태

Order	Function	Note	Figure
16	removeHub(50, 9)	return 0	
17	removeHub(60, 9)	return 1	
18	checkPC(61, 50)	finish = 0, param = 500	
19	checkPC(63, 51)	finish = 1, param = 56	
20	checkPC(65, 52)	finish = 0, param = 67	
21	addHub(69, 0, 100)		
22	addHub(70, 0, 110)		
23	addHub(71, 0, 120)		·
24	requestDL(75, 5, 55, 5432)		[Fig. 3]

ID	speed	dlCnt
0	100	3
1	0	0
2	0	0
3	33	2
4	16	1
5	0	0
6	0	0
7	16	2
8	33	1
9	33	1

ID	speed	start	end	size
50	33	30	79	1608
51	33	30	56	858
52	8	30	78	383
53	8	30	103	580
54	16	30	191	2572

※ 의미 있는 수치만 표현 왼쪽 그림 상태에서 시작

감사합니다