2019年10月2日 電気通信大学 情報理工学部 コンピュータサイエンスコース 卒研中間発表会資料

動画像圧縮ベース時系列分類手法のカラー情報を用いた改良

発表者: 1610333 下岡 藍人指導教員: 古賀 久志

1 はじめに

近年、IoTなどの分野において時系列データを扱う事業 が増加している。大量の時系列データを手動で分類する ことは多くのコストがかかるため、その自動化は重要な テーマである。圧縮ベースの分類手法の1つに、動画像 圧縮技術を用いた、Recurrence Plots Compression Distance(RPCD) という手法がある。[1] この手法は、一般 的な動画像圧縮ソフトを用いるため、だれでも手軽に利 用できるという利点がある。RPCD では時系列データの 自己相関を表す、Recurrence Plot(RP) と呼ばれる画像を 用いる。従来の RPCD ではグレースケール画像を用いて おり、1つの画像につき1種類の情報しか画素値として格 納できない。これは、グレースケールは輝度の情報しか保 持していないためである。しかし、輝度のほかに色差信号 の情報を持つカラー画像は3つのチャンネルを持つため、 グレースケール画像よりも多くの情報を格納することが できる。本研究の趣旨は、RPにより多くの情報を持たせ ることで、分類精度の向上を目指すというものである。

2 RPCD

本章では Recurrence Plots Compression Distance(RPCD) について述べる。RPCD 手法による 2 データ間の類似度計算の流れを図 1 に示す。RPCD ではまず 2 つの時系列データからそれぞれ RP と呼ばれる 画像を生成し、それらを組み合わせた 2 つのフレームからなる動画像を MPEG-1 で圧縮する。そこから得られるファイルサイズでデータの類似度を求め、データの分類を行う。

図 1: RPCD 手法の流れ

2.1 Recurrence Plot

RP は以下の式1で表される。

$$RP(i,j) = ||\vec{x}(i) - \vec{x}(j)||, \vec{x}(\cdot) \in \mathbb{R}$$
 (1)

ここで, $\vec{x}(i)$ は時系列データ x の i 番目のサブシーケンスを表す.得られた RP を正規化し,RP(i,j) の値を画素位置 (i,j) の画素値とみなすことでグレースケール画像として表現できる.

2.2 MPEG-1

MPEG-1 とは動画像圧縮規格の1つである。MPEG-1では圧縮対象のフレームの画素情報を直前のフレームから予測する、動き補償フレーム間予測を採用しており、これにより2つのフレームが似ているほど圧縮動画像のファイルサイズは小さくなる。

2.3 CK-1 距離

CK-1 距離とは Campana らによって定義された、2 画像間の類似度を動画像圧縮技術を用いて測る方法である。 [2] 2 つの画像 x,y が与えられたとき、その距離 D(x,y) は以下の式 2 で定義される。

$$D(x,y) = \frac{C(x|y) + C(y|x)}{C(x|x) + C(y|y)} - 1$$
 (2)

らなる動画像を MPEG-1 で圧縮する。そこから得られる ここで、C(x|y) は、1 フレーム目が y、2 フレーム目が x ファイルサイズでデータの類似度を求め、データの分類 の動画像を圧縮した時のファイルサイズを表している。2 を行う。 画像が全く同じであるとき、D(x,y)=0 となる。

研究の目標と課題 3

RPCD 手法では動画像の圧縮に MPEG-1 という規格 を用いているが、この MPEG-1 は元々カラーの動画像の 圧縮を目的としている。つまり、RPとしてカラー画像を 用いることも可能である。グレースケール画像では各ピ クセルは輝度の情報しか持たないが、カラー画像では輝 度の他に色差信号の情報を2つ持っている。この余った2 チャンネルに何らかの情報を持たせることで、従来の RP よりも多くの情報を持った RP を生成することが出来る。 そこで、カラー情報を持つ RP を生成し、情報量を増やす ことで分類精度を向上させられるのではないかと考えた。 しかしながら、RP にカラー画像を採用するにあたり以下 の2点の問題がある。

- 1. 色空間の特性の問題
- 2. 新たに持たせる情報の種類を何にするか

色空間の特件 3.1

新たな RP の生成方法では RGB ではなく YCbCr 色空 間を用いる。これは、動画像圧縮の際、圧縮ソフトの内 部で RGB から YCbCr に変換されるためである。RGB は赤、緑、青の3色の組み合わせで色を表現しているの に対し、YCbCr は輝度信号 Y と、色の青さ、赤さを表す 色差信号 Cb,Cr の組み合わせで表現している。RGB で は R,G,B それぞれの画素値の範囲は $0 \sim 255$ であり、ど のような画素値の組み合わせでも色を表現できる。つま り色空間が立方体となっている。YCbCrではYの値域が $16 \sim 235$ 、Cb.Cr の値域が $16 \sim 240$ となっている。これ は YCbCr から RGB に変換する際、RGB の色空間から はみ出てしまうことがあり、それを避けるためである。さ らにこの値域の内部であっても、画素値の組み合わせ次第 ではRGBの色空間をはみ出てしまう。このことから、そ れぞれの値域を定める必要があるが、YCbCr それぞれの 値域は独立ではなく、一つの値域を広くすると他の値域が 狭まってしまうという特性があり、慎重に調整する必要が ある。

追加する情報の種類 3.2

差 Cb,Cr に新たに何らかの情報を格納することになるが、 具体的にどのような情報を持たせるかが重要となる。

表 1: 分類精度

dataset	絶対値情報あり	なし
Beef	56.67	63.33
Coffee	100	100
ECG200	91.00	89.00
FISH	92.00	95.43
FaceFour	96.59	95.45
Gun Point	100	100
ItalyPoserDemand	95.14	94.85
Lighting2	73.77	75.41
Lighting7	$\boldsymbol{65.75}$	58.90
OliveOil	83.33	90.00
SonyAIBORobot	84.69	85.69
Symbols	95.23	97.49
Best	6/12	8/12
Average	86.18	87.13

実験および結果

実験内容と方法 4.1

新たに持たせる有用な情報を探すため、Cr の値を固定 し、Cb に様々な情報を持たせ分類精度を測定している。 一例として、Cb に時系列データの絶対値を持たせた際の 分類結果を紹介する。従来の RP では時系列データの各時 間同士の差分を取っているため、絶対値の情報が失われて いる。そこで、Cb に絶対値の情報を持たせることは有用 ではないかと考えた。実験には UCR Time Series archive から12個のデータセットを使用した。動画像圧縮ソフト には FFmpeg を使用し、絶対値情報を持たせない場合と 比較を行った。

4.2結果

Cb に絶対値を入れた RP の分類精度を絶対値情報を持 たせない場合と比較した。実験結果を表1に示す。表1よ り、12個のデータセットのうち精度が向上したものは4 つのみであり、平均はおよそ1%低下した。全体としては 下がっているものの、もし訓練データからテストデータの 結果を予測できれば、データセットによって持たせる情報 を切り替えることで精度を向上させられる可能性もある と考えている。

まとめ 5

本研究では従来の動画像圧縮ベースの時系列分類手法 新 RP では、輝度 Y には従来と同じ情報を格納し、色 をベースに、カラー画像を採用することで精度の向上を 目指すことを目標としている。今後は新たに格納する情 報を模索していく予定である。

参考文献

- [1] G. D. B. Silva and V. de Souza, "Time Series Classification using compression distance of recurrence plots," in Proc. IEEE 13th Int. Conf. Data mining, pp. 687-696, 2013.
- [2] B. J. L. Campana and E. J. Keogh, "A Compression Baseed Distance Measure for Texture," in Proc. the 10th SIAM International Conference on Data Mining, pp. 850-861, 2010.