Lecture 13: 20 May, 2021

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning April–July 2021

Limitations of classification models

Recall

- Bias : Expressiveness of model limits classification
- Variance: Variation in model based on sample of training data

Overcoming limitations

- Bagging is an effective way to overcome high variance
 - Ensemble models
 - Sequence of models based on independent bootstrap samples
 - Use voting to get an overall classifier
- How can we cope with high bias?

The boosting algorithm — Adaboost

- Initially, all data items have equal weight
- Build a new model and compute its weighted error
- Discard if error rate is above 50%
- Damping factor reduce weight of correct inputs
- Reweight data items and normalize
- Final classifier

$$f_{\text{final}}(x) = \underset{y \in Y}{\arg \max} \sum_{t: f_t(x) = y} \log \frac{1}{\beta_t}$$

AdaBoost(D, Y, BaseLeaner, k)

- Initialize $D_1(w_i) \leftarrow 1/n$ for all i;
- for t = 1 to k do
- $f_t \leftarrow \text{BaseLearner}(D_t)$;

4.
$$e_t \leftarrow \sum_{i:f_t(D_t(\mathbf{x}_i))\neq y_i} D_t(w_i);$$

- 5. if $e_t > \frac{1}{2}$ then
 - $k \leftarrow k-1$:
- exit-loop
- 8. else

9.
$$\beta_t \leftarrow e_t / (1 - e_t);$$

9.
$$\beta_{t} \leftarrow e_{t} / (1 - e_{t});$$
10
$$D_{t+1}(w_{i}) \leftarrow D_{t}(w_{i}) \times \begin{cases} \beta_{t} & \text{if } f_{t}(D_{t}(\mathbf{x}_{i})) = y_{i} \\ 1 & \text{otherwise} \end{cases};$$

11.
$$D_{t+1}(w_i) \leftarrow \frac{D_{t+1}(w_i)}{\sum_{i=1}^n D_{t+1}(w_i)}$$

Boosting: An example

■ Final classifier is weighted sum of three weak classifiers

Madhavan Mukund Lecture 13: 20 May, 2021 DMML Apr-Jul 2021

Gradient Boosting

- AdaBoost uses weights to build new weak learners that compensate for earlier errors
- Gradient boosting follows a different approach
 - Shortcomings of the current model are defined in terms of gradients
 - Gradient boosting = Gradient descent + boosting

Gradient Boosting for Regression

- Training data $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$
- Fit a model F(x) to minimize square loss
- The model F we build is good, but not perfect
 - $y_1 = 0.9, F(x_1) = 0.8$
 - $v_2 = 1.3, F(x_2) = 1.4$
 -
- Add an additional model h, so that new prediction is F(x) + h(x)

- What should *h* look like?
- For each x_i , want $F(x_i) + h(x_i) = y_i$
- $h(x_i) = y_i F(x_i)$
- Fit a new model h (typically a regression tree) to the residuals $y_i F(x_i)$
- If F + h is not satisfactory, build another model h' to fit residuals $y_i - [F(x_i) + h(x_i)]$
- Why should this work?

Residuals and gradients

Gradient descent

 Move parameters against the gradient with respect to loss function

$$\theta_i \leftarrow \theta_i - \frac{\partial J}{\partial \theta_i}$$

Individual loss:

$$L(y, F(x) = (y - F(x))^2/2$$

Minimize overall loss:

$$J = \sum_{i} L(y_i, F(x_i))$$

- Residual $y_i F(x_i)$ is negative gradient
- Fitting h to residual is same as fitting h to negative gradient
- Updating F using residual is same as updating F based on negative gradient

Residuals and gradients

- Residuals are a special case gradients for square loss
- Can use other loss functions, and fit h to corresponding gradient
- Square loss gets skewed by outliers
- More robust loss functions with outliers
 - Absolute loss |y f(x)|
 - Huber loss

$$L(y,F) = \begin{cases} \frac{1}{2}(y-F)^2, & |y-F| \le \delta \\ \delta(|y-F|-\delta/2), & |y-F| > \delta \end{cases}$$

- More generally, boosting with respect to gradient rather than just residuals
- Given any differentiable loss function *L*,
 - Start with an initial model F
 - Calculate negative gradients

$$-g(x_i) = \frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}$$

- Fit a regression tree h to negative gradients $-g(x_i)$
- Update F to $F + \rho h$
- ightharpoonup
 ho is the learning rate

Regression Trees

- Predict age based on given attributes
- Build a regression tree using CART algorithm

Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats	
1	13	FALSE	TRUE	TRUE	
2	14	FALSE	TRUE	FALSE	
3	15	FALSE	TRUE	FALSE	
4	25	TRUE	TRUE	TRUE	
5	35	FALSE	TRUE	TRUE	
6	49	TRUE	FALSE	FALSE	
7	68	TRUE	TRUE	TRUE	
8	71	TRUE	FALSE	FALSE	
9	73	TRUE	FALSE	TRUE	

Regression Trees

- LikesHats seems irrelevant, yet pops up
- Can we do better?

Person ID	Age	Likes Garden ing	Plays Video Games	Likes Hats		
1	13	FALSE	TRUE	TRUE		
2	14	FALSE	TRUE	FALSE		
3	15	FALSE	TRUE	FALSE		
4	25	TRUE	TRUE	TRUE		
5	35	FALSE	TRUE	TRUE		
6	49	TRUE	FALSE	FALSE		
7	68	TRUE	TRUE	TRUE		
8	71	TRUE	FALSE	FALSE		
9	73	TRUE	FALSE	TRUE		

Residuals

{13,14,15,25,35,49,68,71,73}		PersonID	Age	Tree1 Prediction	Tree1 Residual
Gardening=F	Gardening=T	1	13	19.25	-6.25
{13,14,15,35}	{25,49,68,71,73}	2	14	19.25	-5.25
		3	15	19.25	-4.25
	Tree 1		25	57.2	-32.2
{-6.25,-5.25,-4.25,-3	2.2,15.75,-8.2,10.8,13.8,15.8}	5	35	19.25	15.75
VideoGames=F	VideoGames=T	6	49	57.2	-8.2
videoGames_F	videoGdines=1	7	68	57.2	10.8
{-8.2,13.8,15.8}	{-6.25,-5.25,-4.25,-32.2,15.75,10.8}	8	71	57.2	13.8
	Tree 2	9	73	57.2	15.8

Residuals

{13,14,15,25,35,49,68,71,73}		Per son ID	A g e	Tree1 Predi ction	Tree1 Resi dual	Tree2 Predi ction	Co mbi ned	Final Resi dual
Gardening=F	Gardening=T	1	13	19.25	-6.25	-3.567	15.68	- 2.683
{13,14,15,35}	{25,49,68,71,73}	2	14	19.25	-5.25	-3.567	15.68	- 1.683
		3	15	19.25	-4.25	-3.567	15.68	0.6833
Tree 1		4	25	57.2	-32.2	-3.567	53.63	- 28.63
		5	35	19.25	15.75	-3.567	15.68	+ 19.32
{-6.25,-5.25,-4.25,-32	.2,15.75,-8.2,10.8,13.8,15.8}	6	49	57.2	-8.2	7.133	64.33	- 15.33
VideoGames=F	VideoGames=T	7	68	57.2	10.8	-3.567	53.63	+ 14.37
{-8.2,13.8,15.8}	{-6.25,-5.25,-4.25,-32.2,15.75,10.8}	8	71	57.2	13.8	7.133	64.33	+ 6.667
		9	73	57.2	15.8	7.133	64.33	1 8.667

Tree 2

Gradient Boosting

General Strategy

- Build tree 1, F₁
- Fit a model to residuals, $h_1(x) = y F_1(x)$
- Create a new model $F_2(x) = F_1(x) + h_1(x)$
- Fit a model to residuals, $h_2(x) = y F_2(x)$
- Create a new model $F_3(x) = F_2(x) + h_2(x)$
-

Tree 1

Tree 2

Hyper Parameters

Learning Rate

- \blacksquare h_j fits residuals of F_j
- $F_{i+1}(x) = F_J(x) + LR \cdot h_i(x)$
 - *LR* controls contribution of residual
 - \blacksquare LR = 1 in our previous example
- Ideally, choose LR separately for each residual to minimize loss function
 - Can apply different *LR* to different leaves

Tree 1

Tree 2

Gradient Boosting for Classification

- Assume binary classification
- Original training outputs are $y \in \{0, 1\}$
- For each x, classifier produces scores $\langle s_0, s_1 \rangle$
- Use softmax to convert to probabilities:

For
$$j \in \{0,1\}$$
, $p_j = \frac{e^{s_j}}{e^{s_0} + e^{s_1}}$

Use cross entropy as the loss function

$$L(y, F) = y \log(p_1) + (1 - y) \log(p_0)$$

- Compute negative gradients
- Fit regression trees to negative gradients to minimize cross entropy