MATH454 - Analysis 3

Based on lectures from Fall 2024 by Prof. Linan Chen. Notes by Louis Meunier

Contents

1 Sigma Algebras and Measures	2
1.1 A Review of Riemann Integration	2
1.2 Sigma Algebras	2
1.3 Measures	4
1.4 Constructing the Lebesgue Measure on $\mathbb R$	6
1.5 Lebesgue-Measurable Sets	9
1.6 Properties of the Lebesgue Measure	12
1.7 Relationship between $\mathfrak{B}_{\mathbb{R}}$ and ${\mathcal{M}}$	14
1.8 Some Special Sets	15
1.8.1 Uncountable Null Set?	
1.8.2 Non-Measurable Sets?	17
1.8.3 Non-Borel Measurable Set?	20
2 Integration Theory	20
2.1 Measurable Functions	20
2.2 Approximation by Simple Functions	26

§1 SIGMA ALGEBRAS AND MEASURES

1.1 A Review of Riemann Integration

Let $f: \mathbb{R} \to \mathbb{R}$ and $[a, b] \subset \mathbb{R}$. Define a **partition** of [a, b] as the set

$$part([a, b]) := \{a =: x_0 < x_1 < \dots < x_N := b\}.$$

We can then define the upper and lower Riemann integrals of f over the region [a, b] as

$$\text{upper:} \qquad \overline{\int_a^b} \, f(x) \, \mathrm{d}x \coloneqq \inf_{\mathrm{part}([a,b])} \left\{ \sum_{\{i=1\}}^N \sup_{x \in [x_{i-1},x_i]} f(x) \cdot (x_i - x_{i-1}) \right\}$$

$$\text{lower:} \qquad \underline{\int_a^b f(x)\,\mathrm{d}x} \coloneqq \sup_{\mathrm{part}([a,b])} \Biggl\{ \sum_{\{i=1\}}^N \inf_{x \in [x_{i-1},x_i]} f(x) \cdot (x_i - x_{i-1}) \Biggr\}.$$

We then say f **Riemann integrable** if these two quantities are equal, and denote this value by $\int_a^b f(x) dx$.

Many "nice-enough" (continuous, monotonic, etc.) functions are Riemann integrable, but many that we would like to be able to "integrate" are simply not, for instance Dirichlet's function $x \mapsto \begin{cases} 1x \in \mathbb{Q} \setminus [a,b] \\ 0x \in \mathbb{Q}^c \setminus [a,b] \end{cases}$. Hence, we need a more general notion of integration.

1.2 Sigma Algebras

 \hookrightarrow **Definition 1.1** (Sigma algebra): Let X be a *space* (a nonempty set) and \mathcal{F} a collection of subsets of X. \mathcal{F} a *sigma algebra* or simply σ -algebra of X if the following hold:

- 1. $X \in \mathcal{F}$
- 2. $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$ (closed under complement)
- 3. $\left\{A_n\right\}_{n\in\mathbb{N}}\subseteq\mathcal{F}\Rightarrow\bigcup_{n=1}^\infty A_n\in\mathcal{F}$ (closed under countable unions)

\hookrightarrow Proposition 1.1:

- 4. $\emptyset \in \mathcal{F}$
- 5. $\{A_n\}_{n\in\mathbb{N}}\subseteq\mathcal{F}\Rightarrow\bigcap_{n=1}^\infty A_n\in\mathcal{F}$
- 6. $A_1,...,A_n\in\mathcal{F}\Rightarrow\bigcup_{n=1}^\infty A_n,\bigcap_{n=1}^\infty A_n\in\mathcal{F}$
- 7. $A, B \in \mathcal{F} \Rightarrow A \setminus B, B \setminus A \in \mathcal{F}$

Example 1.1: The "largest" sigma algebra of a set X is the power set 2^X , the smallest the trivial $\{\emptyset, X\}$.

Given a set $A\subset X$, the set $\mathcal{F}_A:=\{\emptyset,X,A,A^c\}$ is a sigma algebra; given two disjoint sets $A,B\subset X$, then $\mathcal{F}_{A,B}:=\{\emptyset,X,A,A^c,B,B^c,A\cup B,A^c\cap B^c\}$ a sigma algebra.

1.2 Sigma Algebras

 \hookrightarrow **Definition 1.2** (Generating a sigma algebra): Let X be a nonempty set, and \mathcal{C} a collection of subsets of X. Then, the σ -algebra *generated* by \mathcal{C} , denoted $\sigma(\mathcal{C})$, is such that

- 1. $\sigma(\mathcal{C})$ a sigma algebra with $\mathcal{C} \subseteq \sigma(\mathcal{C})$
- 2. if \mathcal{F}' a sigma algebra with $\mathcal{C} \subseteq \mathcal{F}'$, then $\mathcal{F}' \supseteq \sigma(\mathcal{C})$

Namely, $\sigma(\mathcal{C})$ is the smallest sigma algebra "containing" (as a subset) \mathcal{C} .

\hookrightarrow Proposition 1.2:

- 1. $\sigma(\mathcal{C}) = \bigcap \{ \mathcal{F} : \mathcal{F} \text{ a sigma algebra containing } \mathcal{C} \}$
- 2. if \mathcal{C} itself a sigma algebra, then $\sigma(\mathcal{C}) = \mathcal{C}$
- 3. if $\mathcal{C}_1, \mathcal{C}_2$ are two collections of subsets of X such that $\mathcal{C}_1 \subseteq \mathcal{C}_2$, then $\sigma(\mathcal{C}_1) \subseteq \sigma(\mathcal{C}_2)$

 \hookrightarrow **Definition 1.3** (The Borel sigma-algebra): The *Borel* σ -algebra, denoted $\mathfrak{B}_{\mathbb{R}}$, on the real line is given by

$$\mathfrak{B}_{\mathbb{R}} := \sigma(\{\text{open subsets of } \mathbb{R}\}).$$

We call sets in $\mathfrak{B}_{\mathbb{R}}$ *Borel sets*.

 \hookrightarrow Proposition 1.3: $\mathfrak{B}_{\mathbb{R}}$ is also generated by the sets

- $\{(a,b): a < b \in \mathbb{R}\}$
- $\{(a, b] : a < b \in \mathbb{R}\}$
- $\{[a, b] : a < b \in \mathbb{R}\}$
- $\{[a,b) : a < b \in \mathbb{R}\} \circledast$
- $\{(-\infty,c):c\in\mathbb{R}\}$
- $\{(-\infty, c] : c \in \mathbb{R}\}$
- · etc.

PROOF. We prove just \circledast . It suffices to show that the generating sets of each σ -algebra is contained in the other σ -algebra. Let $a < b \in \mathbb{R}$. Then,

$$(a,b) = \bigcup_{n=1}^{\infty} \underbrace{\left[a + \frac{1}{n}, b\right)}_{\in \Re} \in \sigma(\{[a,b)\}) \Rightarrow \mathfrak{B}_{\mathbb{R}} \subseteq \sigma(\{[a,b)\}).$$

Conversely,

$$[a,b) = \bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, b\right) \in \mathfrak{B}_{\mathbb{R}}.$$

1.2 Sigma Algebras

→ Proposition 1.4: All intervals (open, closed, half open, half closed, finite, etc) are Borel sets; any set obtained from countable set operations of intervals are Borel; all singletons are Borel; any finite and countable sets are Borel.

1.3 Measures

 \hookrightarrow **Definition 1.4** (Measurable Space): Let X be a space and $\mathcal F$ a σ -algebra. We call the tuple $(X,\mathcal F)$ a *measurable space*.

 \hookrightarrow **Definition 1.5** (Measure): Let (X, \mathcal{F}) be a measurable space. A *measure* is a function $\mu : \mathcal{F} \to [0, \infty]$ satisfying

- (i) $\mu(\emptyset) = 0$;
- (ii) if $\{A_n\}\subseteq \mathcal{F}$ a sequence of (pairwise) disjoint sets, then

$$\mu\bigg(\bigcup_{n=1}^{\infty}A_n\bigg)=\sum_{n=1}^{\infty}\mu(A_n),$$

i.e. μ is *countably additive*. We further call μ

- finite if $\mu(X) < \infty$,
- a probability measure if $\mu(X) = 1$,
- σ -finite if $\exists \, \{A_n\} \subseteq \mathcal{F}$ such that $X = \bigcup_{n=1}^\infty A_n$ with $\mu(A_n) < \infty \, \forall \, n \geq 1$,

and call the triple (X, \mathcal{F}, μ) a measure space.

 \circledast **Example 1.2**: The measure on $\mathfrak{B}_{\mathbb{R}}$ given by

$$A \mapsto \begin{cases} |A| \text{ if } A \text{ finite} \\ \infty \text{ else} \end{cases}$$

is called the *counting measure*.

Fix $x_0 \in \mathbb{R}$, then the measure on $\mathfrak{B}_{\mathbb{R}}$ given by

$$A \mapsto \begin{cases} 1 \text{ if } x_0 \in A \\ 0 \text{ else} \end{cases}$$

is called the *point mass at* x_0 .

Theorem 1.1 (Properties of Measures): Fix a measure space (X, \mathcal{F}, μ) . The following properties hold:

1. (finite additivity) For any sequence $\left\{A_n\right\}_{n=1}^N\subseteq\mathcal{F}$ of disjoint sets,

$$\mu\bigg(\bigcup_{n=1}^N A_n\bigg) = \sum_{n=1}^N \mu(A_n).$$

- 2. (monotonicity) For any $A \subseteq B \in \mathcal{F}$, then $\mu(A) \leq \mu(B)$.
- $^{3\cdot}$ (countable/finite subadditivity) For any sequence $\{A_n\}\subseteq\mathcal{F}$ (not necessarily disjoint),

$$\mu\!\left(\bigcup_{n=1}^{\infty}A_n\right)\leq\sum_{n=1}^{\infty}\mu(A_n),$$

an analogous statement holding for a finite collection of sets $A_1, ..., A_N$.

4. (continuity from below) For $\{A_n\}\subseteq \mathcal{F}$ such that $A_n\subseteq A_{n+1}\ \forall\ n\geq 1$ (in which case we say $\{A_n\}$ "increasing" and write $A_n\uparrow$) we have

$$\mu\bigg(\bigcup_{n=1}^{\infty}A_n\bigg)=\lim_{n\to\infty}\mu(A_n).$$

^{5.} (continuity from above) For $\{A_n\}\subseteq\mathcal{F}, A_n\supseteq A_{n+1}\ \forall\ n\geq 1$ (we write $A_n\downarrow$) we have that **if** $\mu(A_1)<\infty$,

$$\mu\bigg(\bigcap_{n=1}^{\infty}A_n\bigg)=\lim_{n\to\infty}\mu(A_n).$$

Remark 1.1: In 4., note that since A_n increasing, that the union $\bigcup_{n=1}^{\infty} A_n \supseteq A_m$ for any arbitrarily large m; indeed, one could logically right $\lim_{n\to\infty} A_n = \bigcup_{n=1}^{\infty} A_n$. This this notation, then, 4. simply states that we may interchange limit and measure. A similar argument can be viewed for 5. (how?).

Remark 1.2: The finiteness condition in 5. may be slightly modified such as to state that $\mu(A_n) < \infty$ for some n; remark why this would suffice to ensure the entire rest of the sequence has finite measure.

Proof.

- 1. Extend $A_1,...,A_N$ to an infinite sequence by $A_n:=\emptyset$ for n>N. Then this simply follows from countable additivity and $\mu(\emptyset)=0$.
- 2. We may write $B = A \cup (B \setminus A)$; this is a disjoint union of sets. By finite additivity, then,

$$\mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A),$$

since the measure is positive.

3. We prove only for a countable union; use the technique from 1. to extend to finite. We first "disjointify" the sequence such that we can use the countable additivity axiom. Let $B_1 =$

 $A_1,B_n=A_n\setminus\left(\bigcup_{i=1}^{n-1}A_i
ight)$ for $n\geq 2$. Remark then that $\{B_n\}\subseteq\mathcal{F}$ is a disjoint sequence of sets, and that $\bigcup_{n=1}^{\infty}B_n=\bigcup_{n=1}^{\infty}A_n$. By countable additivity and subadditivity,

$$\mu\!\left(\bigcup_{n=1}^\infty A_n\right) = \mu\!\left(\bigcup_{n=1}^\infty B_n\right) = \sum_{n=1}^\infty \mu(B_n) \le \sum_{n=1}^\infty \mu(A_n).$$

4. We again "disjointify" the sequence $\{A_n\}$. Put $B_1=A_1$, $B_n=A_n\setminus A_{n-1}$ for all $n\geq 2$ (remark that this is equivalent to the construction from the previous proof because the sets are increasing). Then, again, $\bigcup_{n=1}^\infty B_n=\bigcup_{n=1}^\infty A_n$, and in particular, for all $N\geq 1$, $\bigcup_{n=1}^N B_n=A_N$. Then

$$\begin{split} \mu\bigg(\bigcup_{n=1}^{\infty}A_n\bigg) &= \mu\bigg(\bigcup_{n=1}^{\infty}A_n\bigg) = \sum_{n=1}^{\infty}\mu(B_n) \\ &= \lim_{N \to \infty}\sum_{n=1}^{N}\mu(B_n) \\ &= \lim_{N \to \infty}\mu\bigg(\bigcup_{n=1}^{N}B_n\bigg) = \lim_{N \to \infty}\mu(A_N). \end{split}$$

5. We yet again disjointify, backwards (in a way) from the previous case. Put $B_n = A_1 \setminus A_n$ for all $n \geq 1$. Then, $\{B_n\} \subseteq \mathcal{F}$, B_n increasing, and $\bigcup_{n=1}^{\infty} B_n = A_1 \setminus \bigcap_{n=1}^{\infty} A_n$. Then, by continuity from below,

$$\mu\Bigg(A_1 \setminus \bigcap_{n=1}^\infty A_n\Bigg) = \mu\Bigg(\bigcup_{n=1}^\infty B_n\Bigg) = \lim_{n \to \infty} \mu(B_n) = \lim_{n \to \infty} \mu(A_1 \setminus A_n)$$

and also

$$\begin{split} \mu(A_1) &= \mu\bigg(A_1 \setminus \bigcap_{n=1}^\infty A_n\bigg) + \mu\bigg(\bigcap_{n=1}^\infty A_n\bigg) \\ &= \mu(A_1 \setminus A_n) + \mu(A_n), \end{split}$$

and combining these two equalities yields the desired result.

1.4 Constructing the Lebesgue Measure on \mathbb{R}

 \hookrightarrow **Definition 1.6** (Lebesgue outer measure): For all $A \subseteq \mathbb{R}$, define

$$m^*(A) \coloneqq \inf \biggl\{ \sum_{n=1}^\infty \ell(I_n) : A \subseteq \bigcup_{n=1}^\infty I_n, I_n \text{ open intervals} \biggr\},$$

called the *Lebesgue outer measure* of A (where $\ell(I)$ is the length of interval I, i.e. the absolute value of the difference of its endpoints, if finite, or ∞ if not).

\hookrightarrow **Proposition 1.5**: The following properties of m^* hold:

- 1. $m^*(A) \geq 0$ for all $A \subseteq \mathbb{R}$, and $m^*(\emptyset) = 0$.
- 2. (monotonicity) For $A \subseteq B$, $m^*(A) \le m^*(B)$.
- 3. (countable subadditivity) For $\{A_n\}$, $A_n \subseteq \mathbb{R}$, $m^*\left(\bigcup_{n=1}^{\infty} A_n\right) \leq \sum_{n=1}^{\infty} m^*(A_n)$.
- 4. If $I \subseteq \mathbb{R}$ an interval, then $m^*(I) = \ell(I)$.
- 5. m^* is translation invariant; for any $A \subseteq R, x \in \mathbb{R}, m^*(A) = m^*(A+x)$ where $A+x := \{a+x : a \in A\}$.
- 6. For all $A \subseteq \mathbb{R}$, $m^*(A) = \inf\{m^*(B) : A \subseteq B \subseteq R, B \text{open}\}$.
- 7. If $A = A_1 \cup A_2 \subseteq \mathbb{R}$ with $d(A_1, A_2) > 0$, then $m^*(A_1) + m^*(A_2) = m^*(A)$.
- 8. If $A = \bigcup_{k=1}^{\infty} J_k$ where J_k 's are "almost disjoint intervals" (i.e. share at most endpoints), then $m^*(A) = \sum_{k=1}^{\infty} m^*(J_k) = \sum_{k=1}^{\infty} \ell(J_k)$.

Proof.

3. If $m^*(A_n)=\infty$, for any n, we are done, so assume wlog $m^*(A_n)<\infty$ for all n. Then, for each n and $\varepsilon>0$, one can choose open intervals $\left\{I_{n,i}\right\}_{i\geq 1}$ such that $A_n\subseteq\bigcup_{i=1}^\infty I_{n,i}$ and $\sum_{i=1}^\infty \ell(I_{n,i})\leq m^*(A_n)+\frac{\varepsilon}{2^n}$. Hence

$$\bigcup_{n=1}^{\infty} A_n \subseteq \bigcup_{n=1,i=1}^{\infty} I_{n,i}$$

$$\sum_{n=1}^{\infty} \sum_{n=1,i=1}^{\infty} I_{n,i}$$

$$\Rightarrow m^* \left(\bigcup_{n=1}^\infty A_n \right) \leq \sum_{n,i=1}^\infty \ell \left(I_{n,i} \right) = \sum_{n=1}^\infty \sum_{i=1}^\infty \ell \left(I_{n,i} \right) \leq \sum_{n=1}^\infty \left(m^* (A_n) + \frac{\varepsilon}{2^n} \right) = \sum_{n=1}^\infty m^* (A_n) + \varepsilon,$$

and as ε arbitrary, the statement follows.

4. We prove first for I=[a,b]. For any $\varepsilon>0$, set $I_1=(a-\varepsilon,b+\varepsilon)$; then $I\subseteq I_1$ so $m^*(I)\leq \ell(I_1)=(b-1)+2\varepsilon$ hence $m^*(I)\leq b-a=\ell(I)$. Conversely, let $\{I_n\}$ be any open-interval convering of I (wlog, each of finite length; else the statement holds trivially). Since I compact, it can be covered by finitely many of the I_n 's, say $\{I_n\}_{n=1}^N$, denoting $I_n=(a_n,b_n)$ (with relabelling, etc). Moreover, we can pick the a_n,b_n 's such that $a_1< a,b_N>b$, and generally $a_n< b_{n-1}$ \forall $2\leq n\leq N$. Then,

$$\begin{split} \sum_{n=1}^{\infty} \ell(I_n) &\geq \sum_{n=1}^{N} \ell(I_n) = b_1 - a_1 + \sum_{n=2}^{N} (b_n - a_n) \\ &\geq b_1 - a_1 + \sum_{n=2}^{N} (b_n - b_{n-1}) \\ &= b_N - a_1 \geq b - 1 = \ell(I), \end{split}$$

hence since the cover was arbitrary, $m^*(A) \ge \ell(I)$, and equality holds.

Now, suppose I finite, with endpoints a < b. Then for any $\frac{b-a}{2} > \varepsilon > 0$, then

$$[a+\varepsilon,b-\varepsilon]\subseteq I\subseteq [a-\varepsilon,b+\varepsilon],$$

¹More generally, any set function on $2^{\mathbb{R}}$ that satisfies 1., 2., and 3. is called an *outer measure*.

²Remark: this is a stronger requirement than disjointness!

hence by monotonicity and the previous part of this proof

$$m^*([a+\varepsilon,b-\varepsilon]) = b-a-2\varepsilon \leq m^*(I) \leq b-a+2\varepsilon = m^*([a-\varepsilon,b+\varepsilon]),$$

from which it follows that $m^*(I) = b - a = \ell(I)$.

Finally, suppose I infinite. Then, $\forall \, M \geq 0, \exists \,$ closed, finite interval I_M with $I_M \subseteq I$ and $\ell(I_M) \geq M$. Hence, $m^*(I) \geq m^*(I_M) \geq M$ and thus as M arbitrary it must be that $m^*(I) = \infty = \ell(I)$.

- 6. Denote $\tilde{m}(A) \coloneqq \inf\{m^*(B) : A \subseteq B \subseteq R, B \text{open}\}$. For any $A \subseteq B \subseteq \mathbb{R}$ with B open, monotonicity gives that $m^*(A) \le m^*(B)$, hence $m^*(A) \le \tilde{m}(A)$. Conversely, assuming wlog $m^*(A) < \infty$ (else holds trivially), then for all $\varepsilon > 0$, there exists $\{I_n\}$ such that $A \subseteq \bigcup_{n=1}^{\infty} I_n$ with $\sum_{n=1}^{\infty} \ell(I_n) \le m^*(A) + \varepsilon$. Setting $B \coloneqq \bigcup_{n=1}^{\infty} I_n$, we have that $A \subseteq B$ and $m^*(B) = m^*(\bigcup I_n) \le$ (by finite subadditivity) $\sum_{n=1}^{\infty} m^*(I_n) = \sum_{n=1}^{\infty} \ell(I_n) \le m^*(A) + \varepsilon$ hence $m^*(B) \le m^*(A)$ for all B. Thus $m^*(A) \ge \tilde{m}(A)$ and equality holds.
- 7. Put $\delta \coloneqq d(A_1,A_2) > 0$. Clearly $m^*(A) \le m^*(A_1) + m^*(A_2)$ by finite subadditivity. wlog, $m^*(A) < \infty$ (and hence $m^*(A_i) < \infty, i = 1, 2$) (else holds trivially). Then $\forall \, \varepsilon > 0, \exists \, \{I_n\} : A \subseteq \bigcup I_n \text{ and } \sum \ell(I_n) \le m^*(A) + \varepsilon$. Then, for all n, we consider a "refinement" of I_n ; namely, let $\left\{I_{n,i}\right\}_{i \ge 1}$ such that $I_n \subseteq \bigcup_i I_{n,i}$ and $\ell(I_{n,i}) < \delta$ and $\sum_i \ell(I_{n,i}) \le \ell(I_n) + \frac{\varepsilon}{2^n}$. Relabel $\left\{I_{n,i} : n, i \ge 1\right\} \rightsquigarrow \{J_m : m \ge 1\}$ (both are countable). Then, $\{J_m\}$ defines an open-interval cover of A, and since $\ell(J_m) < \delta$ for each M, M intersects at most one M. For each M and M and M put M intersects at most one M intersects at M and M intersects at M and M intersects at M intersects

$$M_p := \big\{ m : J_m \cap A_p \neq \emptyset \big\},\,$$

noting that $M_1\cap M_2=\emptyset$. Then $\left\{J_m: m\in M_p\right\}$ is an open covereing of A_p , and so

$$\begin{split} m^*(A_1) + m^*(A_2) & \leq \sum_{m \in M_1} \ell(J_m) + \sum_{m \in M_2} \ell(J_m) \\ & \leq \sum_{m = 1}^{\infty} \ell(J_m) = \sum_{n, i = 1}^{\infty} \ell(I_n, i) \\ & \leq \sum_{n} \left(\ell(I_n) + \frac{\varepsilon}{2^n} \right) \\ & = \sum_{n} \ell(I_n) + \varepsilon \\ & \leq m^*(A) + 2\varepsilon, \end{split}$$

and hence equality follows.

8. If $\ell(J_k)=\infty$ for some k, then since $J_k\subseteq A$, subadditivity gives us that $m^*(J_k)\leq m^*(A)$ and so $m^*(A)=\infty=\sum_{k=1}^\infty\ell(J_k)$ (since if any J_k infinite, the sum of the lengths of all of them will also be infinite).

Suppose then $\ell(J_k)<\infty$ for all k. Fix $\varepsilon>0$. Then for all $k\geq 1$, choose $I_k\subseteq J_k$ such that $\ell(J_k)\leq \ell(I_k)+\frac{\varepsilon}{2^k}$. For any $N\geq 1$, we can choose a subset $\{I_1,...,I_N\}$ of intervals such that all are disjoint, with strictly positive distance between them, and so

$$\begin{split} & \bigcup_{k=1}^{N} I_k \subseteq \bigcup_{k=1}^{N} I_k \subseteq A \\ \Rightarrow m^*(A) \geq m^* \left(\bigcup_{k=1}^{N} I_k \right) \geq \sum_{k=1}^{N} \ell(I_k) \\ & \geq \sum_{k=1}^{N} \left(\ell(J_k) - \frac{\varepsilon}{2^k} \right) \\ & \geq \sum_{k=1}^{N} \ell(J_k) - \varepsilon \\ \Rightarrow m^*(A) \geq \sum_{k=1}^{\infty} \ell(J_k), \end{split}$$

the second inequality following from finite subadditivity. The converse of the final inequality holds trivially.

1.5 Lebesgue-Measurable Sets

 \hookrightarrow **Definition 1.7**: $A \subseteq \mathbb{R}$ is m^* -measurable if $\forall B \subseteq \mathbb{R}$,

$$m^*(B) = m^*(B \cap A) + m^*(B \cap A^c).$$

Remark 1.3: By subadditivity, \leq always holds in the definition above.

→ Theorem 1.2 (Carathéodary's Theorem): Let

$$\mathcal{M} := \{ A \subseteq \mathbb{R} : A \ m^* - \text{measurable} \}.$$

Then, \mathcal{M} is a σ -algebra of subsets of \mathbb{R} .

Define $m: \mathcal{M} \to [0, \infty]$, $m(A) = m^*(A)$. Then, m is a measure on \mathcal{M} , called the *Lebesgue measure* on \mathbb{R} . We call sets in \mathcal{M} *Lebesgue-measurable* or simply *measurable* (if clear from context) accordingly. We call $(\mathbb{R}, \mathcal{M}, m)$ the *Lebesgue measure space*.

PROOF. The first two σ -algebra axioms are easy. We have for any $B \subseteq \mathbb{R}$ that

$$m^*(B\cap\mathbb{R})+m^*(B\cap\mathbb{R}^c)=m^*(B)+m^*(B\cap\emptyset)=m^*(B)$$

so $\mathbb{R} \in \mathcal{M}$. Further, $A \in \mathcal{M} \Rightarrow A^c \in \mathcal{M}$ by the symmetry of the requirement for sets to be in \mathcal{M} .

The final axiom takes more work. We show first \mathcal{M} closed under finite unions; by induction it suffices to show for 2 sets. Let $A_1, A_2 \in \mathcal{M}$. Then, for all $B \subseteq \mathbb{R}$,

1.5 Lebesgue-Measurable Sets

$$\begin{split} m^*(B) &= m^*(B \cap A_1) + m^*(B \cap A_1^c) \\ &= m^*(B \cap A_1) + m^*(B \cap A_1^c \cap A_2) + m^*(B \cap A_1^c \cap A_2^c) \\ &= m^*(B \cap A_1) + m^*(B \cap A_1^c \cap A_2) + m^*(B \cap (A_1 \cup A_2)^c) \end{split}$$

Note that $(B\cap A_1)\cup (B\cap A_1^c\cap A_2^c)=B\cap (A_1\cup A_2),$ hence by subadditivity,

$$m^*(B) \geq m^*(B \cap (A_1 \cup A_2)) + m^*\big(B \cap (A_1 \cup A_2)^c\big),$$

and since the other direction of the inequality comes for free, we conclude $A_1 \cup A_2 \in \mathcal{M}$.

Let now $\{A_n\}\subseteq\mathcal{M}.$ We "disjointify" $\{A_n\};$ put $B_1\coloneqq A_1,$ $B_n\coloneqq\frac{A_n}{i=1}$ $\bigcup_{i=1}^{n-1}A_i,$ $n\geq 2,$ noting $\bigcup_n A_n=\bigcup_n B_n,$ and each $B_n\in\mathcal{M},$ as each is but a finite number of set operations applied to the A_n 's, and thus in \mathcal{M} as demonstrated above. Put $E_n\coloneqq\bigcup_{i=1}^n B_i,$ noting again $E_n\in\mathcal{M}.$ Then, for all $B\subseteq\mathbb{R},$

$$\begin{split} m^*(B) &= m^* \left(\underbrace{B \cap E_n}_{\operatorname{chop up} B_n}\right) + m^* \left(\underbrace{B \cap E_n^c}_{E_n \subseteq \cup B_n \Rightarrow E_n^c \supseteq (\cup B_n)^c}\right) \\ &\geq m^* \left(B \cap \underbrace{E_n \cap B_n}_{=B_n}\right) + m^* \left(B \cap \underbrace{E_n \cap B_n^c}_{=E_{n-1}}\right) + m^* \left(B \cap \left(\bigcup_{n=1}^\infty B_n\right)^c\right) \\ &\geq m^* (B \cap B_n) + m^* \left(\underbrace{B \cap E_{n-1}}_{\operatorname{chop up} B_{n-1}}\right) + m^* \left(B \cap \left(\bigcup_{n=1}^\infty B_n\right)^c\right) \\ &\geq m^* (B \cap B_n) + m^* (B \cap E_{n-1} \cap B_{n-1}) \\ &+ m^* (B \cap E_{n-1} \cap B_{n-1}^c) + m^* \left(B \cap \left(\bigcup_{n=1}^\infty B_n\right)^c\right). \end{split}$$

Notice that the last line is essentially the second applied to B_{n-1} ; hence, we have a repeating (essentially, "descending") pattern in this manner, which we repeat until $n \to 1$. We have, thus, that

$$m^*(B) \geq \sum_{i=1}^n [m^*(B \cap B_i)] + m^* \Biggl(B \cap \left(\bigcup_{n=1}^\infty B_n\right)^c \Biggr),$$

so taking $n \to \infty$,

$$\begin{split} m^*(B) & \geq \sum_{i=1}^{\infty} [m^*(B \cap B_i)] + m^* \left(B \cap \left(\bigcup_{n=1}^{\infty} B_n \right)^c \right) \\ & \geq m^* \left(B \cap \left(\bigcup_{n=1}^{\infty} B_n \right) \right) + m^* \left(B \cap \left(\bigcup_{n=1}^{\infty} B_n \right)^c \right). \end{split}$$

As usual, the inverse inequality comes for free, and thus we can conclude $\bigcup_{n=1}^{\infty} B_n$ also m^* -measurable, and thus so is $\bigcup_{n=1}^{\infty} A_n$. This proves \mathcal{M} a σ -algebra.

1.5 Lebesgue-Measurable Sets 10

We show now m a measure. By previous propositions, we have that $m \geq 0$ and $m(\emptyset) = 0$ (since $m = m^* \mid_{\mathcal{M}}$), so it remains to prove countable subadditivity.

Let $\{A_n\}\subseteq \mathcal{M}$ -disjoint. Following precisely the same argument as above, used to prove that \mathcal{M} closed under countable unions, shows that for any $n\geq 1$

$$m\!\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n m(A_i),$$

that is, finite additivity holds, and thus by subadditivity

$$m\!\left(\bigcup_{i=1}^{\infty}A_i\right)\geq m\!\left(\bigcup_{i=1}^{n}A_i\right)=\sum_{i=1}^{n}m(A_i),$$

and so taking the limit of $n \to \infty$, we have

$$m\!\left(\bigcup_{i=1}^{\infty}A_i\right)\geq\sum_{i=1}^{\infty}m(A_i),$$

with the converse inequality coming for free. Thus, m indeed a measure on \mathcal{M} .

 \hookrightarrow Proposition 1.6: \mathcal{M}, m translation invariant; for all $A \in \mathcal{M}, x \in \mathbb{R}, x + A = \{x + a : a \in A\} \in \mathcal{M}$ and m(A) = m(A + x).

Remark 1.4: We would like this to hold, heuristically, since if we shift sets on the real line, we should expect their length to remain constant.

PROOF. For all $B \subseteq \mathbb{R}$, we have (since m^* translation invariant)

$$\begin{split} m^*(B) &= m^*(B-x) = m^* \left(\underbrace{(B-x)\cap A}_{=B\cap(A+x)}\right) + m^* \left(\underbrace{(B-x)\cap A^c}_{=B\cap(A^c+x)=B\cap(A+x)^c}\right) \\ &= m^*(B\cap(A+x)) + m^*(B\cap(A+x)^c), \end{split}$$

thus $A + x \in \mathcal{M}$, and since m^* translation invariant, it follows that m is.

Theorem 1.3: $\forall a, b \in \mathbb{R}$ with $a < b, (a, b) \in \mathcal{M}$, and m((a, b)) = b - a.

Remark 1.5: Again, we'd like this to hold, heuristically, since we would like the measure of an interval to simply be its length; we'd moreover like to be able to measure intervals, i.e. have intervals be contained in \mathcal{M} .

 \hookrightarrow Corollary 1.1: $\mathfrak{B}_{\mathbb{R}} \subseteq \mathcal{M}$

PROOF. $\mathfrak{B}_{\mathbb{R}}$ is generated by open intervals of the form (a,b). All such intervals are in \mathcal{M} by the previous theorem, and hence the proof.

1.6 Properties of the Lebesgue Measure

 \hookrightarrow **Proposition 1.7** (Regularity Assumptions on m): For all $A \in \mathcal{M}$, the following hold.

- For all $\varepsilon > 0, \exists G$ open such that $A \subseteq G$ and $m(G \setminus A) < \varepsilon$.
- For all $\varepsilon > 0$, $\exists F$ -closed such that $F \subseteq A$ and $m(A \setminus F) \le \varepsilon$.
- $m(A) = \inf\{m(G) : G \text{ open}, G \supseteq A\}.$
- $m(A) = \sup\{m(K) : K \text{ compact}, K \subseteq A\}.$
- If $m(A) < \infty$, then for all $\varepsilon > 0$, $\exists K \subseteq A$ compact, such that $m(A \setminus K) < \varepsilon$.
- If $m(A) < \infty$, then for all $\varepsilon \ge 0$, \exists finite collection of open intervals $I_1, ..., I_N$ such that $m(A \triangle \left(\bigcup_{n=1}^N I_n\right)) \le \varepsilon$.

→Proposition 1.8 (Completeness of m): $(\mathbb{R}, \mathcal{M}, m)$ is *complete*, in the sense that for all $A \subseteq \mathbb{R}$, if $\exists B \in \mathcal{M}$ such that $A \subseteq B$ and m(B) = 0, then $A \in \mathcal{M}$ and m(A) = 0.

Equivalently, any subset of a null set is again a null set.

Remark 1.6: In general, $A \in \mathcal{F}$, $B \subseteq A \not\Rightarrow B \in \mathcal{F}$.

 \hookrightarrow Proposition 1.9: Up to rescaling, m is the unique, nontrivial measure on $(\mathbb{R}, \mathfrak{B}_{\mathbb{R}})$ that is finite on compact sets and is translation invariant, i.e. if μ another such measure on $(\mathbb{R}, \mathfrak{B}_{\mathbb{R}})$ with $\mu = c \cdot m$ for c > 0, then $\mu = m$.

Remark 1.7: Such a c is simply $c = \mu((0, 1))$.

To prove this proposition, we first introduce some helpful tooling:

→ Theorem 1.4 (Dynkin's π -d): Given a space X, let \mathcal{C} be a collection of subsets of X. \mathcal{C} is called a π -system if $A, B \in \mathcal{C} \Rightarrow A \cap B \in \mathcal{C}$ (that is, it is closed under finite intersections).

Let $\mathcal{F}=\sigma(\mathcal{C})$, and suppose μ_1,μ_2 are two finite measures on (X,\mathcal{F}) such that $\mu_1(X)=\mu_2(X)$ and $\mu_1=\mu_2$ when restricted to \mathcal{C} . Then, $\mu_1=\mu_2$ on all of \mathcal{F} .

 \hookrightarrow **Proposition 1.10**: $\{\emptyset\} \cup \{(a,b) : a < b \in \mathbb{R}\}$ a π -system.

 \hookrightarrow **Proposition 1.11**: If μ a measure on $(\mathbb{R}, \mathfrak{B}_{\mathbb{R}})$ such that for all intervals $I, \mu(I) = \ell(I)$, then $\mu = m$.

PROOF. Consider for all $n \geq 1$ $\mu|_{\mathfrak{B}_{[-n,n]}}$. Clearly, $\mu([-n,n]) = m([-n,n]) = 2n$, and for all $a,b \in \mathbb{R}$, $\mu((a,b) \cap [-n,n]) = \ell((a,b) \cap [-n,n]) = m((a,b) \cap [-n,n])$. Thus, by the previous theorem, μ must match m on all of $\mathfrak{B}_{[-n,n]}$.

Let now $A\in\mathfrak{B}_{\mathbb{R}}.$ Let $A_n:=A\cap[-n,n]\in\mathfrak{B}_{[-n,n]}.$ By continuity of m from below,

$$\begin{split} \mu(A) &= \lim_{n \to \infty} \mu(A_n) \\ &= \lim_{n \to \infty} m(A_n) \\ &= m(A), \end{split}$$

hence $\mu = m$.

 \hookrightarrow Proposition 1.12: If μ a measure on $(\mathbb{R}, \mathfrak{B}_{\mathbb{R}})$ assigning finite values to compact sets and is translation invariant, then $\mu = cm$ for some c > 0.

Remark 1.8: This proposition is also tacitly stating that $\mathfrak{B}_{\mathbb{R}}$ translation invariant; this needs to be shown.

 \hookrightarrow **Lemma 1.1**: $\mathfrak{B}_{\mathbb{R}}$ translation invariant; for any $A \in \mathfrak{B}_{\mathbb{R}}$, $x \in \mathbb{R}$, $A + x \in \mathfrak{B}_{\mathbb{R}}$.

Proof. We employ the "good set strategy"; fix some $x \in \mathbb{R}$ and let

$$\Sigma\coloneqq\{B\in\mathfrak{B}_{\mathbb{R}}:B+x\in\mathfrak{B}_{\mathbb{R}}\}.$$

One can check that Σ a σ -algebra, and so $\Sigma \subseteq \mathfrak{B}_{\mathbb{R}}$. But in addition, its easy to see that $\{(a,b): a < b \in \mathbb{R}\} \subseteq \Sigma$, since a translated interval is just another interval, and since these sets generate $\mathfrak{B}_{\mathbb{R}}$, it must be further that $\mathfrak{B}_{\mathbb{R}} \subseteq \Sigma$, completing the proof.

PROOF. (of the proposition) Let $c = \mu((0, 1])$, noting that c > 0 (why? Consider what would happen if c = 0).

This implies that $\forall n \geq 1$, $\mu(\left(0, \frac{1}{n}\right]) = \frac{c}{n}$ (obtained by "chopping up" (0, 1] into n disjoint intervals); from here we can draw many further conclusions:

$$\forall m = 1, ..., n - 1, \mu\left(\left(0, \frac{m}{n}\right]\right) = \frac{m}{n}c$$

$$\Rightarrow \forall q \in \mathbb{Q} \cap (0,1], \mu((0,q]) = qc$$

$$\Rightarrow \forall q \in \mathbb{Q}^+, \mu((0,q]) = q \cdot c \text{ (translate)}$$

$$\Rightarrow \forall \ a \in \mathbb{R}, \mu((a, a + q]) = q \cdot c$$

$$\Rightarrow \forall \text{ intervals } I, \mu(I) = c \cdot \ell(I) \text{ (continuity)}$$

$$\Rightarrow \forall \ n \geq 1, a,b \in \mathbb{R}, \mu((a,b) \cap [-n,n]) = c \cdot \ell((a,b) \cap [-n,n]) = c \cdot m((a,b) \cap [-n,n]),$$

but then, $\mu=c\cdot m$ on $\mathfrak{B}_{\mathbb{R}[-n,n]}$, and by appealing again the Dynkin's, $\mu=c\cdot m$ on all of $\mathfrak{B}_{\mathbb{R}}$.

Proposition 1.13 (Scaling): m has the scaling property that $\forall A \in \mathcal{M}, c \in \mathbb{R}, c \cdot A = \{cx : x \in A\}$ ∈ \mathcal{M} , and $m(c \cdot A) = |c| \ m(A)$.

PROOF. Assume $c \neq 0$. Given $A \subseteq \mathbb{R}$, remark that $\{I_n\}$ an open interval cover of A iff $\{cI_n\}$ and open interval cover of cA, and $\ell(cI_n) = |c| \ \ell(I_n)$, and thus $m^*(cA) = |c| \ m^*(A)$.

Now, suppose $A \in \mathcal{M}$. Then, we have for any $B \subseteq \mathbb{R}$,

$$m^{*}(B) = |c| \ m^{*}\left(\frac{1}{c}B\right) = |c| \ m^{*}\left(\frac{1}{c}B \cap A\right) + |c| \ m^{*}\left(\frac{1}{c}B \cap A^{c}\right)$$
$$= m^{*}(B \cap cA) + m^{*}(B \cap (cA)^{c}),$$

so $cA \in \mathcal{M}$.

1.7 Relationship between $\mathfrak{B}_{\mathbb{R}}$ and \mathcal{M}

 \hookrightarrow **Definition 1.8**: Given (X, \mathcal{F}, μ) , consider the following collection of subsets of X,

$$\mathcal{N} := \{ B \subseteq X : \exists A \in \mathcal{F} \text{ s.t. } \mu(A) = 0, B \subseteq A \}.$$

Put $\overline{\mathcal{F}} := \sigma(\mathcal{F} \cup \mathcal{N})$; this is called the *completion* of \mathcal{F} with respect to μ .

$$\hookrightarrow \textbf{Proposition 1.14} \colon \overline{\mathcal{F}} = \{ F \subseteq X : \exists \, E, G \in \mathcal{F} \, \text{ s.t. } \exists \, E \subseteq F \subseteq G \, \, \text{and} \, \, m(G \setminus E) = 0 \}.$$

PROOF. Put \mathcal{G} the set on the right; one can check \mathcal{G} a σ -algebra. Since $\mathcal{F} \subseteq \mathcal{G}$ and $\mathcal{N} \subseteq \mathcal{G}$, we have $\overline{\mathcal{F}} \subseteq \mathcal{G}$.

Conversely, for any $F \in \mathcal{G}$, we have $E, G \in \mathcal{F}$ such that $E \subseteq F \subseteq G$ with $m(G \setminus E) = 0$. We can rewrite

$$F = \underbrace{E}_{\in \mathcal{F}} \cup \underbrace{\left(F \setminus E\right)}_{\subseteq G \setminus E},$$

$$\Rightarrow \mu(F \setminus E) = 0$$

$$\Rightarrow G \setminus E \in \mathcal{N}$$

hence $F \in \mathcal{F} \cup \mathcal{N}$ and thus in \mathcal{F} , and equality holds.

Definition 1.9: Given (X, \mathcal{F}, μ) , μ can be *extended* to $\overline{\mathcal{F}}$ by, for each $F \in \overline{\mathcal{F}}$ with $E \subseteq F \subseteq G$ s.t. $\mu(G \setminus E) = 0$, put

$$\mu(F) = \mu(E) = \mu(G).$$

We call then (X, \mathcal{F}, μ) a complete measure space.

Remark 1.9: It isn't obvious that this is well defined a priori; in particular, the E, G sets are certainly not guaranteed to be unique in general, so one must check that this definition is valid regardless of choice of "sandwich sets".

 \hookrightarrow **Theorem 1.5**: $(\mathbb{R}, \mathcal{M}, m)$ is the completion of $(\mathbb{R}, \mathfrak{B}_{\mathbb{R}}, m)$.

PROOF. Given $A \in \mathcal{M}$, then $\forall n \geq 1, \exists G_n$ -open with $A \subseteq G_n$ s.t. $m^*(G_n \setminus A) \leq \frac{1}{n}$ and $\exists F_n$ -closed with $F_n \subseteq A$ s.t. $m^*(A \setminus F_n) \leq \frac{1}{n}$.

Put $C := \bigcap_{n=1}^{\infty} G_n$, $B := \bigcap_{n=1}^{\infty} F_n$, remarking that $C, B \in \mathfrak{B}_{\mathbb{R}}$, $B \subseteq A \subseteq C$, and moreover

$$m(C \setminus A) \le \frac{1}{n}, m(A \setminus B) \le \frac{1}{n}$$

$$\Rightarrow m(C \setminus B) = m(C \setminus A) + m(A \setminus B) \le \frac{2}{n},$$

but n can be arbitrarily large, hence $m(C\setminus B)=0$; in short, given a measurable set, we can "sandwich it" arbitrarily closely with Borel sets. Thus, $A\in\overline{\mathfrak{B}_{\mathbb{R}}}\Rightarrow\mathcal{M}\subseteq\overline{\mathfrak{B}_{\mathbb{R}}}$. But recall that \mathcal{M} complete, so $\mathfrak{B}_{\mathbb{R}}\subseteq\mathcal{M}\Rightarrow\overline{\mathfrak{B}_{\mathbb{R}}}\subseteq\overline{\mathcal{M}}=\mathcal{M}$, and thus $\overline{\mathfrak{B}_{\mathbb{R}}}=\mathcal{M}$ indeed.

Heuristically, this means that any measurable set is "different" from a Borel set by at most a null set.

1.8 Some Special Sets

1.8.1 Uncountable Null Set?

Remark that for any countable set $A \in \mathcal{M}$, m(A) = 0. One naturally asks the opposite question, does there exist a measurable, uncountable set with measure 0? We construct a particular one here, the Cantor set, C.

This requires an "inductive" construction. Define $C_0=[0,1]$, and define C_k to be C_{k-1} after removing the middle third from each of its disjoint components. For instance $C_1=\left[0,\frac{1}{3}\right]\cup\left[\frac{2}{3},1\right]$, then $C_2=\left[0,\frac{1}{9}\right]\cup\left[\frac{2}{9},\frac{1}{3}\right]\cup\left[\frac{2}{3},\frac{7}{9}\right]\cup\left[\frac{8}{9},1\right]$, and so on. This may be clearest graphically:

15

Remark that the $C_n \downarrow$. Put finally

$$C \coloneqq \bigcap_{n=1}^{\infty} C_n.$$

 \hookrightarrow **Proposition 1.15**: The following hold for the Cantor set C:

1. C is closed (and thus $C \in \mathfrak{B}_{\mathbb{R}}$);

2. m(C) = 0;

3. *C* is uncountable.

Proof.

1. For each n, C_n is the countable (indeed, finite) union of 2^n -many disjoint, closed intervals, hence each C_n closed. C is thus a countable intersection of closed sets, and is thus itself closed.

2. For each n, each of the 2^n disjoint closed intervals in C_n has length $\frac{1}{3^n}$, hence

$$m(C_n) = \frac{2^n}{3^n} = \left(\frac{2}{3}\right)^n.$$

Since $\{C_n\} \downarrow$, by continuity of m we have

$$m(C) = \lim_{n \to \infty} m(C_n) = \lim_{n \to \infty} \left(\frac{2}{3}\right)^n = 0.$$

3. This part is a little trickier. Notice that for any $x \in [0,1]$, we can define a sequence (a_n) where each $a_n \in \{0,1,2\}$, and such that

$$x = \sum_{n=1}^{\infty} \frac{a_n}{3^n};$$

in particular, this is just the base-3 representation of x, which we denote $(x)_3=(a_1a_2\cdots)$. I claim now that

$$C = \{x \in [0,1] : (x)_3 \text{ has no 1's} \}.$$

Indeed, at each stage n of the construction of the Cantor set, we get rid of the segment of the real line that would correspond to the $a_n=1$. One should note that $(x)_3$ not necessarily unique; for instance $\left(\frac{1}{3}\right)_3=(1,0,0,\ldots)=(0,2,2,\ldots)$, but if we specifically consider all x such that there *exists* a base three representation with no 1's, i.e. like $\frac{1}{3}$, then C indeed captures all the desired numbers.

Thus, we have that

$${\rm card}\ (C) = {\rm card}\ (\{\{a_n\}: a_n = 0, 2\}).$$

Define now the function

$$f: C \to [0,1], \quad x \mapsto \sum_{n=1}^{\infty} \frac{a_n}{2} \frac{1}{2^n}, \text{where } (x)_3 = (a_n)$$

1.8.1 Uncountable Null Set?

i.e., we "squish" the base-3 representation into a base-2 representation of a number. This is surjective; for any $y \in [0,1]$, $(b_n) \coloneqq (y)_2$ contains only 0's and 1's, hence $(2b_n)$ contains only 0's and 1's, so let x be the number such that $(x)_3 = (2b_n)$. This necessarily exists, indeed, we simply take our definitions backwards:

$$x := \sum_{n=1}^{\infty} \frac{2b_n}{3^n},$$

which maps to y under f and is contained in C. Hence, $\operatorname{card}(C) \geq \operatorname{card}([0,1])$; but [0,1] uncountable, and thus so must C.

We can naturally extend the function f to map the entire interval $[0,1] \rightarrow [0,1]$ as follows

$$f(x) \coloneqq \begin{cases} \sum_{n=1}^{\infty} \frac{a_n}{2} \cdot \frac{1}{2^n} \text{ if } x \in C, (x)_3 = (a_n) \\ f(a) \text{ if } x \notin C \text{ then } x \in (a,b) \text{ s.t. } (a,b) \text{ removed from } [0,1] \end{cases}.$$

This function is often called the *Devil's Staircase* or *Cantor-Lebesgue function*.

\hookrightarrow Proposition 1.16:

- 1. $f(0)=0, f(1)=1, f\equiv \frac{1}{2}$ on $\left(\frac{1}{3},\frac{2}{3}\right), f\equiv \frac{1}{4}$ on $\left(\frac{1}{9},\frac{2}{9}\right)$
- 2. $f:[0,1] \rightarrow [0,1]$ a surjection
- 3. f is nondecreasing
- 4. f is continuous

PROOF. 1., 2., clear from construction.

For 3., let $x_1 < x_2 \in C$, and suppose $(x_1)_3 = (a_n), (x_2)_3 = (b_n)$. Then, since $x_1 < x_2$, it must be that a_n, b_n can only be equal up to some finite N; then the next $0 = a_{N+1} < b_{N+1} = 2$. Hence, it follows that the "modified binary expansion" that arises from f gives directly that $f(x_1) \le f(x_2)$.

For 4., f is clearly continuous on [0,1]-C, since it is piecewise-constant here. Also, f is "one-sided continuous" at each of the "boundary points" $\frac{1}{3},\frac{2}{3},\frac{1}{9},\frac{2}{9},\ldots$ If $x\in C$, for any $n\geq 1$, there must be x_n,x_n' such that $x_n< x< x_n'$ (if x=0, only need x_n' , if x=1, only need x_n) and $f(x_n')-f(x_n)\leq \frac{1}{2^n}$. Then, f is continuous at x by monotonicity of f.

1.8.2 Non-Measurable Sets?

We've shown then that there is indeed an uncountable set of measure 0. Another question we may ask ourselves is, is there a $A \subseteq \mathbb{R}$ that is non-measurable? The answer to this turns out to be yes, but the construction requires invoking the axiom of choice:

1.8.2 Non-Measurable Sets?

Axiom 1 (Of Choice): If Σ a collection of nonempty sets, then \exists a function

$$S: \Sigma \to \bigcup_{A \in \sigma} A,$$

such that $A \in \sigma$, $S(A) \in A$. Such a function is called a *selection function*, and S(A) a *representative* of A.

We construct now a non-measurable set, assuming the above. Consider [0, 1], and define an equivalence relation \sim on [0, 1] by

$$a \sim b \Leftrightarrow a - b \in \mathbb{Q}.$$

Its easy to check that this is indeed an equivalence relation. Denote by E_a the equivalence class containing a, and set $\Sigma = \{E_a : a \in [0,1]\}$. Note that for any $E_a \in \Sigma$, $E_a \neq \emptyset$.

Invoking the axiom of choice, we can select exactly one element S_a from E_a for each $E_a \in \Sigma$. Set

$$N\coloneqq\{S_a:S_a\text{ is a representative of }E_a,E_a\in\Sigma\}.$$

 \hookrightarrow **Proposition 1.17**: *N*, called a *Vitali set*, is non-measurable.

PROOF. Assume towards a contradiction that N indeed measurable, $N \in \mathcal{M}$. Consider $[-1,1] \cap \mathbb{Q}$; this is countable, so we can enumerate it $\{q_k\}$, $k \geq 1$. For each k, put

$$N_k := N + q_k$$
.

By the assumption of measurability and translation invariance of m, it must be that each N_k measurable and has the same measure as N.

We claim each N_k disjoint. Assume not, then $\exists \, k \neq \ell$ (i.e. $q_k \neq q_\ell$) and $S_a, S_b \in N$ such that $S_a + q_k = S_b + q_\ell$. But then $S_a - S_b = q_\ell - q_k \in \mathbb{Q}$, hence $S_a \sim S_b$. But we constructed N to have only one representative from each equivalence class, hence it must be that $S_a = S_b$, and so $S_a + q_k = S_a + q_\ell \Rightarrow q_k = q_\ell$, contradicting the assumed distinctness of the q's; hence, the N_k 's indeed disjoint.

We claim next that $[0,1]\subseteq\bigcup_{n=1}^\infty N_k$. Let $x\in[0,1]$. Then, $x\sim S_a$ for some unique $S_a\in N$ and so $x-S_a\in\mathbb{Q}$. But also, $x,S_a\in[0,1]$, hence $x-S_a\in[-1,1]$ (moreover, $x-S_a\in[-1,1]\cap\mathbb{Q}$) and there must exist a k such that $x-S_a=q_k$, since the q_k 's enumerate the entire $[-1,1]\cap\mathbb{Q}$. Thus, $x\in N_k$ by the construction of the N_k 's. Thus, $[0,1]\subseteq\bigcup_{n=1}^\infty N_k$ indeed.

On the other hand, $\bigcup_{k=1}^{\infty} N_k \subseteq [-1,2]$ and so we have the "bound"

$$[0,1]\subseteq\bigcup_{n=1}^\infty N_k\subseteq [-1,2].$$

Taking the measure of all sides then, we have the bound

1.8.2 Non-Measurable Sets?

$$1 \le \mu \Biggl(\bigcup_{n=1}^\infty N_k\Biggr) \le 3.$$

Invoking the disjointness of the N_k 's, we can also use countable additivity to write

$$\mu\!\left(\bigcup_{n=1}^{\infty}N_k\right) = \sum_{k=1}^{\infty}m(N_k) = \sum_{k=1}^{\infty}m(N),$$

but this final line is a sequence of positive, constant real numbers; hence, it is impossible for it to be within 1 and 3, and we have a contradiction. Hence, N indeed not measurable.

Remark that this proof also shows that $m^*(N_k) > 0$ so $m^*(N) > 0$ (given the interval bound on N we've found).

 \hookrightarrow Proposition 1.18: For every $A \in \mathcal{M}$ such that m(A) > 0, there exists $B \subseteq A$ such that B is non-measurable.

PROOF. Assume otherwise, that there is a $A \in \mathcal{M}$ with m(A) > 0 such that any subset B of A is also measurable.

Remark that $A\subseteq \bigcup_{n\in\mathbb{Z}}A\cap [n,n+1]$. Then, there exists an n such that $m(A\cap [n,n+1])>0$ and thus, translating $A':=A\cap [n,n+1]-n)$, m(A')>0, noting that $A'\subseteq [0,1]$. Now, for any $B'\subseteq A'$, $B'+n\subseteq A$. By assumption, then B'+n must be measurable so B' measurable.

In summary, then, we have $A' \subseteq [0,1]$ with m(A') > 0 such that (by assumption) B' measurable for all $B' \subseteq A'$.

Let N, $\{q_k\}$, N_k be as in the previous proof. Set

$$A_k' := A' \cap N_k, k \ge 1.$$

Then, A_k disjoint, and

$$A' = [0,1] \cap A' \subseteq \bigcup_{k=1}^{\infty} (N_k \cap A') = \bigcup_{k=1}^{\infty} A_{k'}.$$

Since m(A') > 0, there exists a k such that $m(A_k') > 0$. Set, for this k,

$$L := \{\ell \ge 1 : q_{\ell} + q_k \in [-1, 1]\}.$$

This set is again countably infinite. We translate, obtaining a disjoint sequence of sets $\{q_\ell + A_{k'} : \ell \in L\}$; since $q_\ell + q_k \in [-1,1] \cap \mathbb{Q}$, then $q_\ell + q_k = q_m$ for some unique m, and so $q_\ell + A_{k'} = q_\ell + A' \cap (N+q_k) \subseteq N_m$. Hence, we have on the one hand that by countable additivity

$$\bigcup_{\ell \in L} (q_\ell + A_k{'}) \subseteq [-1,2] \Rightarrow \sum_{\ell \in L} m(q_\ell + A_k{'}) \leq 3,$$

and so it must be that $m(q_{\ell}+A_k{'})=m(A_k{'})=0$ (else the series couldn't be finite), contradicting the finiteness assumption on $m(A_k{'})$.

1.8.2 Non-Measurable Sets?

1.8.3 Non-Borel Measurable Set?

We may ask, is there $A \in \mathcal{M}$ such that $A \notin \mathfrak{B}_{\mathbb{R}}$?

Let $f:[0,1] \to [0,1]$ be the Cantor-Lebesgue function, and put g(x)=f(x)+x; note that g is continuous and strictly increasing, and is defined $g:[0,1] \to [0,2]$. Remark that g bijective; the strictly increasing gives injective, and moreover g(0)=0, g(1)=2 hence by intermediate value theorem it is surjective. Hence, $g^{-1}:[0,2] \to [0,1]$ exists, and is also continuous, so in short g is a homeomorphism; it maps open to open, closed to closed. In particular, if $A \in \mathfrak{B}_{\mathbb{R}}$, then $g(A) \in \mathfrak{B}_{\mathbb{R}}$.

Recall that if (a, b) an open interval that gets removed from the construction of C, then f is constant and so g will map (a, b) to another open interval of the same length b - a. Thus,

$$m(g([0,1] \setminus C)) = m([0,1] \setminus C) = 1.$$

Hence, m(g(C)) = 2 - 1 = 1 > 0, since $g(C \cup [0, 1] \setminus C) = [0, 2]$. Hence, there exists a $B \subseteq G(C)$ such that $B \notin \mathcal{M}$, as per the previous proposition.

Let $A := g^{-1}(B)$; then $A \subseteq g^{-1}(g(C)) = C$. Since m(C) = 0, $A \in \mathcal{M}$ and m(A) = 0. But, $A \notin \mathfrak{B}_{\mathbb{R}}$; if it were, then $g(A) = B \in \mathfrak{B}_{\mathbb{R}}$, since g "maintains" Borel sets, but B is not even Lebesgue measurable and so this is a contradiction).

§2 Integration Theory

2.1 Measurable Functions

We will be considering functions f defined on \mathbb{R} or some subset of \mathbb{R} that could take positive or negative infinity as its value i.e.

$$f:\mathbb{R}\to\overline{\mathbb{R}}\coloneqq\mathbb{R}\cup\{-\infty,\infty\},$$

where $\overline{\mathbb{R}}$ the *extended real line*; we say f is $\overline{\mathbb{R}}$ -valued. If f never takes $\infty, -\infty$ for any $x \in \mathbb{R}$, we say f finite-valued, or just \mathbb{R} -valued.

For all $a \in \mathbb{R}$, we consider inverse images

$$f^{-1}([-\infty,a)) \coloneqq \{x \in \mathbb{R} : f(x) \in [-\infty,a)\} = \{f < a\},$$

remarking the inclusion of $-\infty$; similarly

$$f^{-1}((a,\infty]) \coloneqq \{x \in \mathbb{R} : f(x) \in (a,\infty]\} = \{f > a\},$$

and so on, for any $B \subseteq \mathbb{R}$,

$$f^{-1}(B) \coloneqq \{x \in \mathbb{R} : f(x) \in B\} = \{f \in B\}.$$

Remark that

$$f^{-1}(B^c) = (f^{-1}(B))^c$$

$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B),$$

which extend naturally for countable unions/intersections.

 \hookrightarrow **Definition 2.1** (Measurable Function): $f: \mathbb{R} \to \overline{\mathbb{R}}$ is measurable if $\forall a \in \mathbb{R}$, $f^{-1}([-\infty, a)) \in \mathcal{M}$.

→ **Proposition 2.1** (Equivalent Definitions of Measurability):

$$\begin{split} f \text{ is measurable} &\Leftrightarrow \forall \, a \in \mathbb{R}, f^{-1}([a,\infty]) \in \mathcal{M} \\ &\Leftrightarrow \forall \, a \in \mathbb{R}, f^{-1}((a,\infty]) \in \mathcal{M} \\ &\Leftrightarrow \forall \, a \in \mathbb{R}, f^{-1}([-\infty,a]) \in \mathcal{M} \end{split}$$

PROOF. We prove just the last equivalence. Notice that $\forall a \in \mathbb{R}$, we can use the commuting of inverse images with countable unions, intersections, complement to write

$$f^{-1}([-\infty,a))=\bigcup_{n=1}^\infty f^{-1}\biggl(\biggl[-\infty,a-\frac{1}{n}\biggr)\biggr)$$

and

$$f^{-1}([-\infty,a]) = \bigcap_{n=1}^\infty f^{-1}\bigg(\bigg[-\infty a + \frac{1}{n}\bigg)\bigg).$$

 \hookrightarrow **Proposition 2.2**: If f finite-valued, Then

$$\begin{split} f \text{ is measurable} &\Leftrightarrow \forall \, a < b \in \mathbb{R}, f^{-1}((a,b)) \in \mathcal{M} \\ &\Leftrightarrow & \cdots & f^{-1}((a,b]) \in \mathcal{M} \\ &\Leftrightarrow & \cdots & f^{-1}([a,b)) \in \mathcal{M} \\ &\Leftrightarrow & \cdots & f^{-1}([a,b]) \in \mathcal{M}. \end{split}$$

 \hookrightarrow **Definition 2.2** (Extended Borel Sigma Algebra): Define the Borel "extended" algebra $\mathfrak{B}_{\overline{\mathbb{R}}}$ of subsets of $\overline{\mathbb{R}}$, defined by

$$\mathfrak{B}_{\overline{\mathbb{R}}}\coloneqq \sigma(\mathfrak{B}_{\mathbb{R}}\cup\{\{-\infty\},\{\infty\}\}).$$

PROOF. For every $a \in \mathbb{R}$, we may write

$$[-\infty,a)=\underbrace{(-\infty,a)}_{\in\mathfrak{B}_{\mathbb{R}}}\cup\{-\infty\}\in\mathfrak{B}_{\overline{\mathbb{R}}},$$

so $\sigma(\{[-\infty, a) : a \in \mathbb{R}\}) \subseteq \mathfrak{B}_{\overline{\mathbb{R}}}$.

Conversely, notice that

$$\{-\infty\} = \bigcap_{n=1}^{\infty} [-\infty, -n),$$

and

$$\{\infty\} = \overline{\mathbb{R}} - \left(\bigcup_{n=1}^{\infty} [-\infty, n)\right),$$

so $\{-\infty\}, \{\infty\} \in \sigma(\{[-\infty,a): a \in \mathbb{R}\})$. Hence, for any $a \in \mathbb{R}$,

$$(-\infty,a)=[-\infty,a)-\{-\infty\}\in\sigma(\{[-\infty,a):a\in\mathbb{R}\}),$$

and so $\mathfrak{B}_{\mathbb{R}}\subseteq\sigma(\{[-\infty,a):a\in\mathbb{R}\})$. $\{-\infty\},\{\infty\}\in\sigma(\{[-\infty,a):a\in\mathbb{R}\})$ already, and thus $\mathfrak{B}_{\overline{\mathbb{R}}}\subseteq\sigma(\{[-\infty,a):a\in\mathbb{R}\})$.

 \hookrightarrow Proposition 2.4: $f: \mathbb{R} \to \overline{\mathbb{R}}$ measurable \Leftrightarrow for all $B \in \mathfrak{B}_{\overline{\mathbb{R}}}, f^{-1}(B) \in \mathcal{M}$.

PROOF. \Leftarrow is immediate. For \Rightarrow , let \mathcal{C} be a collection of subsets of $\overline{\mathbb{R}}$, then put

$$f^{-1}(\mathcal{C})\coloneqq \big\{f^{-1}(B):B\in\mathcal{C}\big\}.$$

By an assignment question (2.6),

$$f^{-1}(\sigma(\mathcal{C})) = \sigma\big(f^{-1}(\mathcal{C})\big).$$

Take $\mathcal{C} = \{[-\infty, a) : a \in \mathbb{R}\}$. Then,

$$f^{-1}(\sigma(\mathcal{C})) = f^{-1}(\mathfrak{B}_{\overline{\mathbb{R}}}) = \sigma\big(f^{-1}(\{[-\infty,a):a\in\mathbb{R}\})\big).$$

But f measurable, so $f^{-1}([-\infty,a)) \in \mathcal{M}$ for each $a \in \mathbb{R}$, hence sigma $(f^{-1}(\{[-\infty,a):a \in \mathbb{R}\})) \subseteq \mathcal{M}$ and so $f^{-1}(\sigma(\mathcal{C})) \subseteq \mathcal{M}$ completing the proof.

 \hookrightarrow Corollary 2.1: If f finite-valued, then f is measurable \Leftrightarrow for every $B \in \mathfrak{B}_{\mathbb{R}}$, $f^{-1}(B) \in \mathcal{M}$.

 \hookrightarrow Proposition 2.5: Given $f: \mathbb{R} \to \overline{\mathbb{R}}$, define the *finite valued component* of f given by

$$f_{\mathbb{R}}(x) := \begin{cases} f(x) : -\infty < f(x) < \infty \\ 0 \text{ otherwise} \end{cases}.$$

Then, f measurable $\Leftrightarrow \forall B \in \mathfrak{B}_{\mathbb{R}}, f_{\mathbb{R}}^{-1}(B) \in \mathcal{M} \text{ AND } \{f = \infty\}, \{f = -\infty\} \text{ both in } \mathcal{M}.$

PROOF. (\Leftarrow) For any $a \in \mathbb{R}$,

$$f^{-1}([-\infty, a)) = \{ f = -\infty \} \cup f^{-1}((-\infty, a)) = \{ f = -\infty \} \cup f_{\mathbb{R}}^{-1}((-\infty, a)),$$

a union of measurable sets and hence is itself measurable.

 (\Rightarrow) Remark that $\{f=\infty\}, \{f=-\infty\} \in \mathcal{M}$ automatically. For any $B \in \mathfrak{B}_{\mathbb{R}}$, we have

 $f_{\mathbb{R}}^{-1}(B) = \{x \in \mathbb{R}: f_{\mathbb{R}}(x) \in B\} = \{x \in \mathbb{R}: f(x) \in B, -\infty < f < \infty\} \cup \{x \in \mathbb{R}: 0 \in B, f(x) = \pm \infty\} \in \mathcal{M}.$

 \hookrightarrow **Definition 2.3**: If a statement is true for every $x \in A$ where $A \in \mathcal{M}$ s.t. $m(A^c) = 0$, then we say the statement is true a.e. (almost everywhere).

 \hookrightarrow **Proposition 2.6**: If $f: \mathbb{R} \to \overline{\mathbb{R}}$ is measurable and f = g a.e. then g is measurable.

 \hookrightarrow Corollary 2.2: If f is finite-valued a.e., then f is measurable $\Leftrightarrow f_{\mathbb{R}}$ is measurable $\Leftrightarrow \forall a < b \in \mathbb{R}$, $f^{-1}((a,b)) \in \mathcal{M}$.

 \hookrightarrow **Proposition 2.7**: If $f \equiv c$ then f measurable.

If $f = \mathbb{1}_A$ for some $A \subseteq \mathbb{R}$, then f is measurable $\Leftrightarrow A \in \mathcal{M}$.

PROOF. Assume $f \equiv c$. Then

$$f^{-1}([-\infty,a)) = \begin{cases} \mathbb{R} \text{ if } c < a \\ \emptyset \text{ if } c \geq a \end{cases} \in \mathcal{M}.$$

Assume now $f = \mathbb{1}_A$. For all $a \in \mathbb{R}$,

$$f^{-1}([-\infty,a)) = \begin{cases} \mathbb{R} \text{ if } a > 1 \\ A^c \text{ if } 0 < a \leq 1 \in \mathcal{M} \Leftrightarrow A \in \mathcal{M}. \\ \emptyset \text{ if } a \leq 0 \end{cases}$$

 \hookrightarrow **Proposition 2.8**: If f is (finite-valued) continuous, then f is measurable.

PROOF. $f: \mathbb{R} \to \mathbb{R}$ continuous \Leftrightarrow for all $G \subseteq \mathbb{R}$ open, $f^{-1}(G)$ open. For all $a < b \in \mathbb{R}$, then $f^{-1}((a,b))$ open so $f^{-1}((a,b)) \in \mathcal{M}$ so f measurable.

In fact, if $f: \mathbb{R} \to \mathbb{R}$ continuous, then for all $B \in \mathfrak{B}_{\mathbb{R}}$, $f^{-1}(B) \in \mathfrak{B}_{\mathbb{R}}$;

$$f^{-1}(\mathfrak{B}_{\mathbb{R}}) = f^{-1}(\sigma(\{\text{open sets}\})) = \sigma\left(\underbrace{f^{-1}(\{\text{open sets}\})}_{\text{all open}}\right) \subseteq \sigma(\{\text{open sets}\}) = \mathfrak{B}_{\mathbb{R}}.$$

Moreover, if f^{-1} (inverse) exists and is continuous, then for any $B \in \mathfrak{B}_{\mathbb{R}}$, $f(B) \in \mathfrak{B}_{\mathbb{R}}$.

 \hookrightarrow Proposition 2.9: If $f : \mathbb{R} \to \mathbb{R}$ is measurable and $g : \mathbb{R} \to \mathbb{R}$ is continuous, then $g \circ f$ is measurable.

Remark 2.1: The order matters! The converse doesn't hold in general.

PROOF. For all $a \in \mathbb{R}$,

$$\begin{split} (g \circ f)^{-1}((-\infty, a)) &= \{x \in \mathbb{R} : g(f(x)) < a\} \\ &= \{x \in \mathbb{R} : f(x) \in g^{-1}([-\infty, a))\} \\ &= f^{-1}(g^{-1}([-\infty, a))) \in \mathcal{M}. \end{split}$$

\hookrightarrow **Proposition 2.10**: If $f: \mathbb{R} \to \overline{\mathbb{R}}$ is measurable, then:

- 1. for every $c \in \mathbb{R}$, cf is measurable (in particular -f measurable);
- 2. |f| is measurable;
- 3. for every $k \in \mathbb{N}$, f^k is a measurable.

PROOF. We prove just 3. If k=0 this is trivial. For any $a \in \mathbb{R}$,

$$\left(f^k\right)^{-1}([-\infty,a)) = \begin{cases} f^{-1}\left([-\infty,a^{\frac{1}{k}})\right) \text{ if } k \text{ is odd} \\ \emptyset & \text{if } k \text{ is even and } a \leq 0 \in \mathcal{M}. \\ f^{-1}\left([-a^{\frac{1}{k}},a^{\frac{1}{k}})\right) \text{ if } k \text{ is even and } a > 0 \end{cases}$$

 \hookrightarrow Proposition 2.11: If f, g are two finite-valued measurable functions, then $f + g, f \cdot g, f \vee g := \max\{f, g\}, f \wedge g := \min\{f, g\}$ are measurable functions, where

$$(f\vee g)(x)=\max\{f(x),g(x)\}.$$

PROOF. For all $a \in \mathbb{R}$,

$$\begin{split} (f+g)^{-1}([-\infty,a) &= \{x \in \mathbb{R}: f(x) + g(x) < a\} \\ &= \{x \in \mathbb{R}: f(x) < a - g(x)\} \\ &= \bigcup_{q \in \mathbb{Q}} \{x \in \mathbb{R}: f(x) < q < a - g(x)\} \\ &= \bigcup_{q \in \mathbb{Q}} \underbrace{\{x \in \mathbb{R}: f(x) < q\}}_{\in \mathcal{M}} \cap \underbrace{\{x \in \mathbb{R}: g(x) < a - q\}}_{\in \mathcal{M}} \in \mathcal{M}. \end{split}$$

This implies, then, that f-g measurable, as are $\left(f+g\right)^2$ and $\left(f-g\right)^2$, and thus

$$fg = \frac{1}{4} [(f+g)^2 - (f-g)^2]$$

is measurable.

We have too that

$$f\vee g=\frac{1}{2}(|f-g|+(f+g))$$

and so is measurable, and so

$$f \wedge g = -\max\{-f, -g\} = -(-f \vee -g)$$

is measurable.

 \hookrightarrow Corollary 2.3: If f is measurable, then $f^+ := f \lor 0 = \max\{f, 0\}$ and $f^- := -(f \land 0) = \max\{-f, 0\}$ are measurable, as is $f \land k$ for any $k \in \mathbb{R}$.

Remark 2.2: Notice that $f = f^+ - f^-$, even with "infinities", and $|f| = f^+ + f^-$.

 \hookrightarrow Proposition 2.12: Let $\{f_n\}$ be a sequence of measurable functions. Then, $\sup_n f_n$, $\inf_n f_n$, $\lim\sup_{n\to\infty} f_n$, and $\lim\inf_{n\to\infty} f_n$ are all measurable (where $(\limsup_{n\to\infty} f_n)(x) := \lim\sup_{n\to\infty} f_n(x) = \inf_{m\geq 1} \sup_{n\geq m} f_n(x) = \lim_{m\to\infty} \sup_{n\geq m} f_n(x)$).

PROOF. To show $\sup_n f_n$ measurable, we will show for all $a \in \mathbb{R} \{ \sup_n f_n \leq a \} \in \mathcal{M}$.

$$x \in \left\{\sup_n f_n \leq a\right\} \Leftrightarrow \sup_n f_n(x) \leq a \Leftrightarrow f_n(x) \leq a \ \forall \ n \geq 1 \Leftrightarrow x \in \bigcap_{n=1}^\infty \{f_n \leq a\},$$

hence $\{\sup_n f_n \leq a\} = \bigcap_{n=1}^\infty \underbrace{\{f_n \leq a\}}_{\in \mathcal{M}} \in \mathcal{M}$ and hence $\sup_n f_n$ is measurable. Note that using \leq was important; $\{\sup_n f_n < a\} \subsetneq \bigcap_{n=1}^\infty \{f_n < a\}$, since the $\sup_n f_n$ could equal a. We could say the following, however:

$$\left\{\sup_n f_n < a\right\} = \bigcup_{k=1}^\infty \left\{\sup_n f_n \leq a - \frac{1}{k}\right\} = \bigcup_{k=1}^\infty \bigcap_{n=1}^\infty \left\{f_n \leq a - \frac{1}{k}\right\} \in \mathcal{M}.$$

Next, we have $\inf_n f_n = -\sup_n (-f_n)$ so we are done.

For lim sup, lim inf, we have

$$\limsup_n f_n = \inf_{m \ge 1} \sup_{n \ge m} f_n.$$

 g_m is measurable for each $m \ge 1$, hence $\inf_m g_m$ is measurable, hence $\limsup_n f_n$ is measurable. Similar logic follows for \lim inf.

We could have show, more directly, that

$$\begin{split} \left\{ \limsup_n f_n < a \right\} &= \left\{ \inf_{m \geq 1} \sup(n \geq m) f_n < a \right\} \\ &= \bigcup_{m = 1}^{\infty} \left\{ \sup_{n \geq m} f_n < a \right\} \\ &= \bigcup_{m = 1}^{\infty} \bigcup_{k = 1}^{\infty} \left\{ \sup_{n \geq m} f_n \leq a - \frac{1}{k} \right\} \\ &= \bigcup_{m = 1}^{\infty} \bigcup_{k = 1}^{\infty} \bigcap_{n = m}^{\infty} \left\{ f_n \leq a - \frac{1}{k} \right\}. \end{split}$$

 \hookrightarrow Proposition 2.13: Let $\{f_n\}$ be a sequence of measurable functions. Then, all of the following sets are also measurable:

$$\begin{split} \Big\{x \in \mathbb{R} : \lim_{n \to \infty} f_n(x) \text{ exists in } \mathbb{R} \Big\} &=: \Big\{\lim_{n \to \infty} f_n \text{ exists in } \mathbb{R} \Big\}, \\ \{\lim f_n = \infty\}, \{\lim f_n = -\infty\}, \{\lim f_n = c \in \mathbb{R}\}. \end{split}$$

Moreover, if $\lim_{n\to\infty}f_n$ exists (in $\mathbb R$ or as $\pm\infty$) a.e. with $f=\lim_{n\to\infty}f_n$ a.e. then f is measurable.

PROOF. We have

$$\begin{split} \{\lim f_n \text{ exists in } \mathbb{R}\} &= \{\lim \sup f_n = \lim \inf f_n \text{ and } -\infty < \lim \sup f_n < \infty \} \\ &= \{-\infty < \lim \inf f_n < \infty \} \cap \{-\infty < \lim \sup f_n < \infty \} \cap \{\lim \sup f_n - \lim \inf f_n = 0 \} \in \mathcal{M}. \end{split}$$

Similarly,

$$\begin{split} \{\lim f_n = c\} &= \left\{ x \in \mathbb{R} : \forall \: k \geq 1, \exists \: n \geq 1 \quad \text{s.t.} \forall \: m \geq n, |f_n(x) - c| \leq \frac{1}{k} \right\} \\ &= \bigcap_{k=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} \left\{ |f_n(x) - c| \leq \frac{1}{k} \right\}. \end{split}$$

2.2 Approximation by Simple Functions

Given a function $f: \mathbb{R} \to \overline{\mathbb{R}}$, measurable, we may write

$$f = f^+ - f^-,$$

where f^+, f^- are non-negative measurable functions; so, it suffices to study non-negative measurable functions. For any $n \ge 1$, we have

$$f_n^+ := (f^+ \wedge n) \cdot \mathbb{1}_{[-n,n]},$$

i.e., we cap f^+ at n, and disregard values of f^+ outside of [-n,n]; hence we limit our view to a $2n \times n$ "box". Then, f_n^+ is non-negative, measurable, bounded (by n), compactly supported (zero outside a bounded set), and in particular $f_n^+ \uparrow$, with limit

$$\lim_{n \to \infty} f_n^+ = f^+.$$

2.2 Approximation by Simple Functions

An identical construction follows for f^- with

$$f_n^- \coloneqq (f^- \wedge n) \mathbb{1}_{[-n,n]},$$

with $f_n^- \uparrow$ and

$$\lim_{n\to\infty} f_n^- = f^-.$$

Fix some n and consider f_n^+ . For $k = 0, 1, 2, ..., 2^n n$, define

$$A_{n,k} \coloneqq \left\{x \in [-n,n]: \frac{k}{2^n} \leq f_n^+(x) < \frac{k+1}{2^n}\right\} \in \mathcal{M},$$

noting that $A_{n,k}\cap A_{n,\ell}=\emptyset$ if $k\neq \ell.$ Set now

$$\varphi_n \coloneqq \sum_{k=0}^{n \cdot 2^n} \mathbb{1}_{A_{n,k}} \frac{k}{2^n} = \sum_{k=0}^{n \cdot 2^n} \begin{cases} \frac{k}{2^n} \text{ if in } A_{n,k} \\ 0 \text{ else} \end{cases}.$$

We call φ_n a "simple function"; more generally:

 \hookrightarrow **Definition 2.4**: φ is a *simple function* if $\varphi = \sum_{k=1}^L \mathbb{1}_{E_k} \cdot a_k$ where L a positive integer, a_k 's are constant, E_k 's are measurable sets of finite measure.

Moreover, note that $\varphi_n \uparrow$; at each new stage $n \to n+1$, the regions are cut in two, $A_{n,k} = A_{n+1,2k} \cup A_{n+1,2k+1}$. Moreover,

$$\lim_{n\to\infty}\varphi_n=f^+.$$

 \hookrightarrow Theorem 2.1: If g is measurable and non-negative, then \exists a sequence of simply functions $\{\varphi_n\}$ such that $\varphi_n \uparrow$ and $\lim_{n \to \infty} \varphi_n(x) = g(x)$ for every $x \in \mathbb{R}$.