1 Orthogonality

Definition 1.1. Two vectors $u, v \in V$ are called **orthogonal** if $\langle u, v \rangle = 0$.

Definition 1.2. A subset $S \subset V$ is called **orthogonal** if $\langle x, y \rangle = 0$ for all $x + y \in S$.

Definition 1.3. A vector $x \in V$ is called a **unit vector** if ||x|| = 1.

Definition 1.4. A subset $S \subset V$ is **orthonormal** if it is an orthogonal subset consisting of unit vectors. Thus, for all $x, y \in S$, $\langle x, y \rangle = \delta_{xy}$.

Remark 1.5. If $x \neq 0$, then $\frac{x}{\|x\|}$ is a unit vector.

Example 1.6

In \mathbb{F}^n with the standard inner product the standard basis is orthonormal.

Example 1.7

See p. 335 in Friedberg et al.

In $\mathbb{H} = \mathfrak{C}[0,2\pi]$ with $\langle f,q\rangle = \frac{1}{2\pi} \int_0^{2\pi} f(t) \overline{g(t)} \, dt$, we have an orthonormal subset $\{f_n(t) = e^{\text{int}}\}$

Example 1.8

a)

If $A \in M_{n \times n}(\mathbb{F})$, define $A^* = \overline{A^t} = \overline{A^t}$, i.e. $(A^*)_{ij} = \overline{A}_{ji}$. Therefore,

$$(AB)^* = B^*A^* \tag{1}$$

$$(A^*)^* = A \tag{2}$$

Define the $\langle \cdot, \cdot \rangle$: $\langle A, B \rangle = \operatorname{tr}(AB^*) = \operatorname{tr}(B^*A)$.

Check that it is a valid inner product (the last two properties are left as an exercise):

$$\operatorname{tr}(cA_1 + A_2)B^* = \operatorname{tr}A_1B^* + A_2B^*$$

$$= c\langle A, B \rangle + \langle A_2, B \rangle \tag{4}$$

$$= c\langle A, B \rangle + \langle A_2, B \rangle \tag{4}$$

(3)

Note that we can see that this is a valid way to define an inner product on $M_{n\times n}(\mathbb{F})$ as follows:

$$\langle A, B \rangle = \operatorname{tr} A B^* \tag{5}$$

$$= \sum_{i=1}^{n} (AB^*)_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}(B^*)_{ji}$$
 (6)

$$=\sum_{i,j=1}^{n} A_{ij}\overline{B}_{ij} \tag{7}$$

2 Gram-Schmidt and Orthogonal Complements

Let V be a vector space.

Definition 2.1. An **orthogonal basis** is a basis that is also orthogonal.

Theorem 2.2

If $S = \{v_1, \dots, v_n\}$ is an orthogonal subset of non-zero vectors, then for any x in span S:

$$x = \sum_{i=1}^{n} \frac{\langle x, v_i \rangle}{\|v_i\|^2} v_i$$

In particular, if S is orthonormal, then $x = \sum_{i=1}^{n} \langle x, v_i \rangle v_i$.

Proof. If $x \in \text{span } S$, then $x = \sum_{i=1}^{n} \lambda_i v_i$.

Take now $\langle \cdot, y \rangle$.

Then

$$\langle x, v_j \rangle = \langle \sum_{i=1}^n \lambda_i v_i, v_j \rangle$$
 (8)

$$= \sum_{i=1}^{n} \langle v_i, v_j \rangle = \lambda_j \langle v_j, v_j \rangle = 0, \tag{9}$$

Note that $\sum_{i=1}^{n} \langle v_i, v_j \rangle = 0$ for $i \neq j$.

Therefore,
$$\lambda_j = \frac{\langle x, v_j \rangle}{\|v_j\|}$$

Corollary 2.3

If S is orthogonal and $0 \notin S$, then S is linearly independent.

Proof. If $\sum_{i=1}^{n} \lambda_i v_i = 0$ ($\lambda_i \in \mathbb{F}, v_i \in S$], then $\langle \sum_{i=1}^{n} \lambda_i v_i, v_j \rangle = 0$ for all j. Since $v_j \neq 0$, then $\langle v_j, v_j \rangle \neq 0$, and hence $\lambda_j = 0$.

Question. Why do orthogonal bases exist? How do we find them?

Answer. An idea is to start with any basis w_1, \ldots, w_n of V.

Take $v_1 = w_1$.

Try to find $c \in \mathbb{F}$ such that $v_2 = w_2 + cv_1$ is orthogonal to v_1 :

$$0 = \langle v_2, v_1 \rangle = \langle w_2 + cv_1, v_1 \rangle = \langle w_2, v_1 \rangle + c \langle v_1, v_1 \rangle = \|v_1\|^2 > 0$$
 (10)

Then $c = -\frac{\langle w_2, v_1 \rangle}{\|v_1\|^2}$.

Next try $v_3 = w_3 + dv_1 + ev_2$, with $d, e \in F$. Solve for d, e by using $\langle v_3, v_1 \rangle + \langle v_3, v_2 \rangle = 0$.

Theorem 2.4 (Gram-Schmidt)

Suppose w_1, \ldots, w_k are linearly independent in V.

Define $v_i = w_i - \sum_{j=1}^{i-1} \frac{\langle w_i, v_j \rangle}{\|v_j\|^2} v_j$ for all i inductively, with $v_1 = w_1$.

Then $\{v_1, \ldots, v_k\}$ is an orthogonal subset and $0 \notin S$, with the same span as $\{w_1, \ldots, w_k\}$.

Remark 2.5. Hence if w_1, \ldots, w_k is a basis of V, then v_1, \ldots, v_k is an orthogonal basis of V.

We can make it into an orthonormal basis by normalisation:

$$\frac{v_1}{\|v_1\|}, \dots, \frac{v_k}{\|v_k\|}$$

Corollary 2.6

Any finite-dimensional inner product space has an orthonormal basis.

Proof. We use induction on k.

Let k = 1. Then $v_1 = w_1$ is non-zero, and the rest follows.

If the claim is true for k-1, then we know that

- $\{v_1, \ldots, v_{k-1}\}$ is orthogonal, $v_i \neq 0$ for all i < k.
- $\operatorname{span} v_1, \dots, v_{k-1} = \operatorname{span} w_1, \dots, w_{k-1}.$

We need to check that

- 1. $\langle v_k, v_i \rangle = 0$ for all i < k, which means that $\{v_1, \dots, v_k\}$ is orthogonal.
- 2. $v_k \neq 0$
- 3. $\operatorname{span} v_1, \ldots, v_k = \operatorname{span} w_1, \ldots, w_k$

For (1),

$$\langle v_k, v_i \rangle = \langle w_k - \sum_{j=1}^{k-1} \frac{\langle w_k, v_j \rangle}{\|v_j\|^2} v_j, v_i \rangle$$
(11)

$$= \langle w_k, v_i \rangle - \sum_{j=1}^{k-1} \frac{\langle w_k, v_j \rangle}{\|v_j\|^2} \langle v_j, v_i \rangle = 0 \text{ by (a), if } i \neq j$$
 (12)

$$= \langle w_k, v_i \rangle - \frac{\langle w_k, v_i \rangle}{\|v_i\|^2} \|v_i\|^2 \tag{13}$$

For (2), if $v_k = 0$, then

$$w_k = \sum_{i=1}^{k-1} (\dots) v_i \in \text{span}\{v_1, \dots, v_{k-1}\} = \text{span}\,w_1, \dots, w_{k-1},$$

which contradicts the assumption that $(w_i)_1^k$ are linearly independent. Therefore, $v_k \neq 0$.

For (3), note that

$$\operatorname{span} \{v_1, \dots, v_k\} = \operatorname{span} \operatorname{span} v_1, \dots, v_{k-1}, w_k = \operatorname{span} \{w_1, \dots, w_{k-1}, w_k\}.$$

Example 2.7

In \mathbb{R}^3 , if the basis is $w_1 = (1, 1, 1)$, $w_2 = (1, 1, 0)$, $w_3 = (1, 0, 0)$, then $v_1 = w_1 = (1, 1, 1)$,

$$v_2 = w_2 - \frac{\langle w_2, v_1 \rangle}{\|v_1\|^2} v_1 = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}),$$

while

$$v_3 = w_3 - \frac{\langle w_3, v_1 \rangle}{\|v_1\|^2} v_1 - \frac{\langle w_3, v_2 \rangle}{\|v_2\|^2} v_2 = (\frac{1}{2}, \frac{1}{2}, 0)$$

Example 2.8

See p. 345 in Friedberg et al.

Let $V = \mathfrak{P}(\mathbb{R})$ and $\langle f, g \rangle = \int_{-1}^{1} f(t)g(t) dt$.

If $w_1 = 1$, $w_2 = x$, $w_3 = x^3$, then we obtain the orthogonal subset $v_1 = 1$, $v_2 = x$, $v_3 = x^2 - \frac{1}{3}$, and $v_4 = x^3 - \frac{3}{5}x$,..., which are called *Legendre polynomials*.

Remark 2.9.

From Theorem 2.2, if $\beta = \{v_1, \dots, v_n\}$ is an orthonormal basis, then $x = \sum_{i=1}^n \langle x, v_i \rangle v_i$. Moreover, $T \in \text{Hom}(V, V)$ and β is an orthonormal basis, then $A = [T]_{\beta}$ has entries $A_{ij} = \langle T(v_i), v_i \rangle$.

Definition 2.10. If $S \subseteq V$, then let an **orthogonal complement of S** be $S^{\perp} = \{x \in V \mid \langle x, y \rangle = 0. \forall y \in S\}.$

Remark 2.11. If S^{\perp} is a subspace of V, then $0 \in S^{\perp}$. If $x_1, x_2 \in S^{\perp}$, then for $y \in S^{\perp}$

$$\langle cx_1 + x_2, y \rangle = c\langle x_1, y \rangle + \langle x_2, y \rangle = 0$$

Thus, $cx_1 + x_2 \in S^{\perp}$.

Example 2.12

If $V = \{0\}^{\perp}$, then $V^{\perp} = \{0\}$, since $\langle x, x \rangle > 0$ for $x \neq 0$.

Remark 2.13. $S^{\perp} = \operatorname{span} S^{\perp}$, because if x is orthonormal to vectors in S, then x is orthonormal to any linear combination of vectors in S.

Theorem 2.14

If $W \subseteq V$, then $V = W \oplus W^{\perp}$. Moreover, if $\{v_1, \ldots, v_k\}$ is an orthonormal basis of W and x = w + z for $w \in W, z \in W^{\perp}$, then $w = \sum_{i=1}^k \langle x, v_i \rangle v_i$.

Proof. Pick an orthonormal basis v_1, \ldots, v_k of W.

Suppose x = w + z with $w \in W$ and $z \in W^{\perp}$. Therefore, $w = \sum_{i=1}^{k} \langle w, v_i \rangle v_i = \sum_{i=1}^{k} \langle x, v_i \rangle v_i$ since $z \in W^{\perp}$.

To check that $V = W \oplus W^{\perp}$, first we prove that $V = W + W^{\perp}$.

Take $x \in V$. Define $w = \sum_{i=1}^k v_i \in W$. Then $z_i = x - w$.

Note that

$$\langle z, v_i \rangle = \langle x - w, v_j \rangle = \langle x, v_j \rangle = \sum_{i=1}^k \langle x, v_i \rangle \langle v_i, v_j \rangle = \delta_{ij}$$
 (14)

$$= \langle x, v_j \rangle - \langle x, v_j \rangle = 0 \tag{15}$$

Therefore, $z \in W^{\perp}$, since $\{v_1, \ldots, v_k\}$ is a basis.

To check that $W \cap W^{\perp} = \{0\}$, suppose that $x \in W \cap W^{\perp}$. Then $\langle x, x \rangle = 0$, and hence x = 0.