# Benford's Law Analysis on COVID-19 Data

A data-driven approach to detect patterns in reported total COVID-19 cases.

Team Name: The Data Detectives

Team Members:

Mahi Sawner | Divyanjali Gopisetty | Sai Sri Spruha Perumalla | Gopi Raman Thakur

## What is Benford's Law?

 Benford's Law is a mathematical rule that predicts how often each digit (1 through 9) appears as the first digit in many naturally occurring datasets.

## **Key Idea:**

- The number 1 appears as the leading digit about 30.1% of the time.
- The number 2 appears about 17.6%, and the probability keeps decreasing up to 9.

### Formula:

- $P(d) = \log 10(1+1/d)$
- Where d is the first digit (1 to 9)



## Dataset Overview

#### **Dataset Source:**

 Global COVID-19 statistics containing "Total Cases" for different regions or countries.

## Step 1: Uploading the Data

 Used files.upload() in Google Colab to upload the dataset.

## **Step 2: Loading the Data**

 Loaded dataset using Pandas to enable further processing.

## Purpose:

 Focused on analyzing the "Total Cases" column for conformity to Benford's Law.



## Data Cleaning and Preprocessing

## **Objective:**

• Ensure "Total Cases" column is in the correct numeric format.

## **Steps Taken:**

- Removed commas from the "Total Cases" column.
- Filtered out non-numeric values.
- Converted values to integer type for analysis.

## **Code Snippet:**

df['Total Cases'] = df['Total Cases'].str.replace(',', ").astype(str)
df = df[df['Total Cases'].str.isnumeric()]
df['Total Cases'] = df['Total Cases'].astype(int)



## Extracting Leading Digit & Calculating Frequencies

## **Step 4: Extract First Digit**

- Extracted the first digit of each "Total Cases" entry using:
- df['First Digit'] = df['Total Cases'].astype(str).str[0].astype(int)

## **Step 5: Calculate Frequencies**

- Counted and normalized how often each digit appears:
- observed\_count = df['FirstDigit'].value\_counts(normalize=True).sort\_index()

## Comparison:

Computed using logarithmic formula from Benford's Law.

## Visualization of Results

#### **Tool Used:**

Matplotlib

### **Chart:**

 Bar chart for observed vs. expected frequency

## **Insights:**

• Visual comparison makes it easier to spot any deviation from Benford's Law.



## Conclusion & Insights

## **Key Findings:**

- COVID-19 "Total Cases" data showed [insert pattern: e.g., good, moderate, or poor] alignment with Benford's Law.
- Deviations might indicate reporting inconsistencies or regional anomalies.

### **Limitations:**

- Dataset source and completeness can affect accuracy.
- Benford's Law applies best to large, non-truncated datasets.

## **Next Steps:**

- Apply the same method to other COVID metrics (deaths, recoveries).
- Analyze by country or time-series trends.

## Individual Contributions



### Sai Sri Spruha Perumalla

Uploaded and cleaned dataset, removed commas, converted to numeric



### Gopi Raman Thakur

Extracted leading digit, added column for first digit, gave final insights



## **Mahi Sawner**

Computed observed and expected frequencies using Benford's formula



## Divyanjali Gopisetty

Visualized results using Matplotlib, styled and designed the plot



## Thank You