#### Bioinformatics II Winter Term 2016/17



# Chapter 3: Multidimensional Data Visualization

Jun.-Prof. Dr.-Ing. Thomas Schultz

URL: http://cg.cs.uni-bonn.de

E-Mail: <a href="mailto:schultz@cs.uni-bonn.de">schultz@cs.uni-bonn.de</a>

Office: Friedrich-Ebert-Allee 144, 53113 Bonn

November 15, 2016

#### **Motivation: Multidimensional Data Vis**

- In science, we frequently deal with data items that have multiple attributes
  - e.g., expression levels of a large number of genes
- 2-3 attributes can be mapped to space
- ~3-10 attributes can be visualized using multidimensional visualization techniques
- Some techniques support even more (~100) attributes
- Topic of today's lecture, but first some basics...

#### **Heat Maps**

- Heat maps are a direct visual representation of matrices
  - Colors encode numbers in each cell
  - Example [Eisen et al. 1998]:
    - Rows = Different genes
    - Columns = Different times after treatment
    - Values = log of relative expression level
- Refer to Chapter 2 when picking colors!
  - Example: Diverging color scheme greenblack-red



# **Histograms and Kernel Density Estimation**

- **Histogram:** Bar chart of number (or fraction) of values  $\mathbf{x}_i$  in predefined ranges ("bins")
  - Result can depend strongly on bin width
  - If  $\mathbf{x}_i$  are samples from a probability density function (PDF), histogram is a piecewise constant estimate of the PDF
- Kernel Density Estimation (KDE):
  - Informally,"smooth version of a histogram"



Sketch: Wikipedia

#### **KDE: Formal Definition**

• Given values  $\mathbf{x}_i$ , KDE is defined by

$$f(\mathbf{x}) = \frac{1}{n} \sum_{i} K(\mathbf{x} - \mathbf{x}_{i})$$

- Kernel K is normalized to integrate to unity, e.g., standard normal  $K(x) = \frac{1}{h\sqrt{2\pi}}e^{-\frac{x^2}{2h^2}}$
- **Bandwidth** *h* controls smoothness of *f*:
  - Analogous to number of bins in histogram
  - h too small: estimate "rough" and noisy
  - -h too large: oversmoothing
  - h should decrease with larger number n of samples
  - Silverman's rule of thumb:  $h = \left(\frac{4\widehat{\sigma}^5}{3n}\right)^{\frac{1}{5}}$



Section 3.1: Scatterplots

#### **Scatterplots**

 Scatter plots are useful for visually recognizing trends and correlations between pairs of variables



# **Scatterplot Matrices (SPLOM)**

Produce scatterplots for all pairs of variables and place them into a matrix

Total of  $(k^2-k)/2$  scatterplots



#### **Order in SPLOMs**

- Re-ordering the dimensions does not change the projections shown in a SPLOM, it only permutes individual plots
- [Peng et al. 2004] find layout so that similar scatterplots are located close to each other
  - Distinguish between high-cardinality dimensions (number of possible values > number of points) and low-cardinality dimensions
  - Sort low-cardinality by number of values
  - Rate ordering of high-cardinality dimensions based on their correlation

# **SPLOMs: Rating High-Cardinality Order**

 Pearson Correlation Coefficient measures degree of *linear* dependence between x and y

$$\rho_{xy} = \frac{\sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i} (x_{i} - \bar{x})^{2}} \sqrt{\sum_{i} (y_{i} - \bar{y})^{2}}}$$

- Clutter measure of a SPLOM:
  - For each pair (x,y) of high-cardinality dimensions, find all other pairs (x',y') with  $|\rho_{xy} \rho_{x'y'}| < \epsilon$
  - Add the Euclidean distances of all those plots in the SPLOM (the smaller, the better)



#### SPLOMs with "Clutter Reduction"

- Exhaustive optimization requires  $O(n^2 \cdot n!)$  computation
- Alternative heuristic: Random swapping





#### Ranking by Features

- To look for scatterplots that exhibit specific patterns, we can rank them by features such as
  - Fraction of outliers
  - Sparsity
  - Convexity
  - Monotonicity
  - etc.



 See [Wilkinson et al. 2006] for a more complete overview and how to compute them

#### **Sorting by Features**

 Computing many features and sorting **SPLOMs** according to the principal **PCA mode** is an alternative way to group similar plots together



#### **Scagnostics**

- Scagnostics creates a second-level "feature" SPLOM to visualize scatterplots from the original "data" SPLOM
- Links back to data SPLOM



#### **Selecting Good Views**

- Select scatterplots in which classes are wellseparated
  - Labels can be part of the data or obtained by clustering (Chapter 3.4)



#### **Distance and Distribution Consistency**

#### Distance consistency (DSC)

- Measures how many percent of all points are in the given projection – closer to their own cluster center than to all others
- Fast and simple to compute
- Assumes spherical clusters

#### Distribution consistency (DC)

- Based on penalizing local entropy (amount of uncertainty / constraint violation) in high-density regions
- Does not assume particular cluster shapes

#### **Distribution Consistency**

Definition of distribution consistency

- Local entropy: 
$$H(x,y) = -\sum_{c \in C(X)} \frac{p_c}{\sum p_c} \log_2(\frac{p_c}{\sum p_c})$$
 • Reminder:  $H \in [0, \log_2 |C|]$ 

- Distribution consistency:  $\mathbf{DC} = 100 \frac{1}{Z} \sum_{x,y} p(x,y) H(x,y)$ 
  - $Z = \sum_{x,y} p(x,y) \log_2 |C| / 100$
- p estimated using Kernel Density Estimation









4 (0)

17

# DC: WHO Example

#### WHO data

- 194 countries, 159 attributes, 6 HIV risk groups
   (>12,000 unique scatter plots)
- Focusing on DC > 80 eliminates 97% of the plots
- Highlighted rows: Single discriminative attributes
  - Example: Total health expenses



#### **SPLOM Navigation**

 Animated 3D transitions between neighboring views [Elmqvist et al. 2008]

Analogy: "Rolling the dice"



# mages from drleft / Wikimedia

#### **Scatterplots with Many Points**

- Too many data points lead to overdraw
  - Color code 2Dhistogram ("heat map")
  - Kernel DensityEstimation
  - Disadvantage:Cannot seeindividualpoints





# **Splatterplots**

- Splatterplots [Mayorga / Gleicher 2013]
  - Visual abstraction in image space, detail added when zooming in





#### **Splatterplots: Dense Regions**

- Based on Kernel Density Estimation
  - Kernel width defined in screen space
  - High-density regions shown as smooth, filled, and bounded shapes
  - Drawback: Shape can depend on density threshold



# **Splatterplots: Color Blending**

- Where dense regions overlap:
  - Use hue to encode classes
  - Perform blending in LAB color space
  - Reduce luminance and saturation to indicate overlap



# **Splatterplots: Subsampling**

- Outside of dense regions, points are
  - subsampled to ensure a minimum distance between them
  - More points added when zooming in



Fatal car crashes in 2005 vs. 2010

#### **Summary: Scatterplots**

- Scatterplots are one of the most common techniques to visualize trends and correlations between pairs of variables
  - Main limitation: Overdraw
  - Partial solution: Splatterplots
- Scatterplot matrices (SPLOM) generalize this technique to multi-dimensional data
  - Special techniques for sorting, navigation, and view selection

# Section 3.2: Parallel Coordinates

#### **Parallel Coordinates**

Parallel Coordinates can be used to visualize multi-dimensional data

- N equidistant axes which are parallel to one of the screen axes and correspond to the attributes
- The axes are scaled to the [min,max] range of the corresponding attribute
- Every data item corresponds to a polygonal line which intersects each of the axes at the point which corresponds to the value for the attribute



#### **Point-line Duality for Parallel Coordinates**



The point  $\mathbf{x}$  in a) represented by the line  $\mathbf{s}_{\mathbf{x}}$  in parallel coordinates in b).

# **Point-line Duality for Parallel Coordinates**

- A straight line in the Cartesian coordinate system (a) amounts to a single intersection point of the lines in Parallel Coordinates (b).
  - The intersection is not necessarily between X<sub>1</sub> and X<sub>2</sub>
  - Parallel lines for a perfect positive correlation
  - Large number of intersection points indicates uncorrelated axes





#### **Example: Parallel Coordinates**

Visualization of a microbiological dataset:



#### **Axis Order Matters**



#### **Proposing Suitable Axis Orders**

- [Ankerst et al. 1998]: Place similar dimensions next to each other
- Write dimension k as a vector  $\mathbf{a}^k$  (length: number n of data points)
- Euclidean distance:

$$D_e(\mathbf{a}^k, \mathbf{a}^l) = \sqrt{\sum_{i=1}^n (a_i^k - a_i^l)^2}$$

• Translation-invariant distance ( $\bar{a}^k$  = mean of  $\mathbf{a}^k$ ):

$$D_t(\mathbf{a}^k, \mathbf{a}^l) = \sqrt{\sum_{i=1}^n \left( (a_i^k - \overline{a}^k) - (a_i^l - \overline{a}^l) \right)^2}$$

• Scale-invariant distance  $D_s(\mathbf{a}^k, \mathbf{a}^l) = D_e(\mathbf{t}(\mathbf{a}^k), \mathbf{t}(\mathbf{a}^l))$   $[\mathbf{t}(\mathbf{a})]_i = \frac{a_i - \min(\mathbf{a})}{\max(\mathbf{a}) - \min(\mathbf{a})}$ 

# **Measuring Partial Similarity**

- When data is from different points in time,
  - find the longest time during which two attributes are more similar than  $\epsilon$ :

$$S(\mathbf{a}^k, \mathbf{a}^l) = \max_{i,j} \{ (j-i) | (1 \le i < j \le n) \land D_s(\mathbf{a}^k_{[i,j]}, \mathbf{a}^l_{[i,j]}) < \epsilon \}$$

 $-\mathbf{a}_{[i,j]}$  = vector  $\mathbf{a}$ , restricted to coefficients [i,j]

• If we would like to permit temporal shift:

$$S_{\operatorname{async}}(\mathbf{a}^k, \mathbf{a}^l) = \max_{i, x, y} \{i | D_S(\mathbf{a}^k_{[x, x+i]}, \mathbf{a}^l_{[y, y+i]}) < \epsilon\}$$

# **Computational Effort of Similarity Sorting**

- Computing partial similarities can be expensive
  - Synchronized:  $O(n^2)$  distances
  - Asynchronous:  $O(n^3)$  distances
- Even given the distance matrix, finding the order which minimizes the sum of dissimilarities between neighbors is still equivalent to the traveling salesman problem
  - NP-complete, requires heuristic solution

#### **Ant Colony Optimization**

- Inspiration: Natural behavior of ants
  - Communication via pheromone trails



- Algorithm in [Ankerst et al. 1998]:
  - Seed m ants randomly, have each of them visit each dimension exactly once
  - Next dimension selected probabilistically, depending on distance and markers (initially zero)
  - At the end of each round, ant with shortest path leaves markers along its path
    - Magnitude inversely related to length of path

# **Similarity Sorting: Result**

Parallel Coordinates using order given by the data



Parallel Coordinates using similarity sorting



# **Brushing and Linking**

#### Interaction technique:

- "Brushing" = highlighting part of the data by selecting it with the mouse
- "Linking" = also highlighting the same data in another view



# **Subsampling the Data**

Including all data can cause visual clutter:



15.000 data items with noise



5% of the data (750 data items)

# **Star Glyphs**

#### Proposed by [Fienberg 1979]

- Equally spaced radii with a common origin
- The length of each spike is proportional to the

value of the respective attribute

 The ends are connected by a line



## **Sun Ray Plots**

- Similar to star glyphs/plots
- Draw full axis, line indicates the value along each axis





## **Summary: Parallel Coordinates**

- Parallel coordinates are a standard method for multi-dimensional data visualization
  - Provide overview over all dimensions
  - Correlation seen as parallel lines or single intersection
  - Easy mechanism for brushing / selection
  - Interaction and axis order are crucial!
    - Methods for judging similarity between dimensions
- Variants: Star glyph / sun ray plot

# Section 3.3: Other Techniques

#### **Star Coordinates**

- Idea in [Kandogan 2001]: Arrange coordinate axes as a star in 2D
  - Unlike in star glyphs,
     represent each data point
     as a point on the plane
  - Point given by vector sum of the scaled coordinate axes
  - Reveals cluster structure and allows for interactive exploration



#### **Star Coordinates: Interaction**

- Projection to 2D results in ambiguities that are resolved by interaction
  - Axis scaling, rotation
  - Brush points or axis ranges





#### **Grand Tours**

- Idea in [Asimov 1985]: Once we have seen all possible 2D projections of a multi-dimensional space, we have seen the full space
- Create a sequence of projections (i.e., planes through the origin) that is...
  - continuous to allow for visual tracking
  - dense in the space of all projections
  - becoming dense rapidly
  - uniform (i.e., free from bias)
- Possible implementation: Interpolate between random projections

## **Grand Tour: Example Video**

- From tutorial of open source software GGobi (ggobi.org)
- Dataset shows measurements of Australian crab, two species and two sexes each







## **Dimensional Stacking**

- Idea in [LeBlanc et al. 1990]: Recursively embed 2D histograms within each other
  - Bins of outer 2D histogram contain another 2D histo-



gram, whose bins might contain yet another one...



# **Pixel-Oriented Techniques**

- Idea in [Keim et al. 1995]: Map each data value to the color of a single pixel
  - Shows as much detail as possible
  - Lay out pixels in a recursive fashion to highlight patterns





Level 1: (3x3)

Level 2: (1x24)

Level 3: (80x1)

# **Glyphs and Icons**

- Primitives that can be positioned exactly and represent variables by
  - geometric characteristics like length, angle or shape
  - other attributes like color and transparency
- Design rules
  - Features should be easy to distinguish and combine
  - Icons with different values should be distinguishable













Arrows and Weathervanes



#### **Chernoff Faces**

#### Proposed by [Chernoff 1973]

 Relies on human ability to distinguish small features in faces

• Similar to smileys: <sup>©</sup> happy, <sup>⊗</sup> sad, <sup>©</sup> neutral,

;) wink, :] grin,

:D laugh, etc.

 Each facial feature represents one variable



# **Face Morphing**

Variant proposed by [Alexa 98]



#### Summary

- Other alternatives for encoding multidimensional data are
  - Star coordinates (with interaction!)
  - Grand Tours
  - Dimensional Stacking
  - Glyphs

# Section 3.4: Clustering

## **Clustering: Introduction**

- Goal of clustering: Find meaningful groups in the data
  - Essentially without knowing anything about it ("unsupervised")
  - Based on similarity alone:
     Group similar data together,
     keep dissimilar data apart
  - Used, e.g., in view selection
- You should already know about two widely used methods:
  - 1. Hierarchical Agglomerative Clustering
  - *2. K*-means









setosa

versicolor

virginica

# **Spectral Clustering: Motivation**

- k-means assumes spherical clusters
- Agglomerative clustering assumes well-separated clusters



55

# **Similarity Graphs**

Undirected weighted **similarity graph** (V,E): Each data point is a vertex V, edge weights measure the similarity between points.

- ε-graph: Connect to all data points within distance ε
- kNN: Connect each data point to its k nearest neighbors
- Mutual kNN: Connect pairs of points for which both are among each other's k nearest neighbors



## **Graph Cuts**

When partitioning a graph (V,E) into two vertex classes  $V_1$  and  $V_2$ , the corresponding "cut" consists of the edges between  $V_1$  and  $V_2$ 

cut(V<sub>1</sub>,V<sub>2</sub>) denotes the corresponding sum of edge weights



 Simply trying to minimize the cut usually splits off individual vertices, or very small groups

#### RatioCut and NCut

 Ratio cut avoids splitting off small clusters by normalizing by the number of nodes:

RatioCut = 
$$\frac{\text{cut}(V_1, V_2)}{|V_1|} + \frac{\text{cut}(V_1, V_2)}{|V_2|}$$

- Normalized cut looks for partition such that
  - Similarities between classes are minimized
  - Similarities within classes are maximized

$$NCut = \frac{cut(V_1, V_2)}{vol(V_1)} + \frac{cut(V_1, V_2)}{vol(V_2)}$$

Uses vol(V<sub>i</sub>) (sum of edge weights adjacent to V<sub>i</sub>)
 rather than number of nodes

Finding exact optima of both criteria is NP-hard.

# **Graph Laplacian**

#### **Define:**

- n=|V| (number of data points)
- Affinity matrix W (symmetric, nxn)
  - $-w_{ij}$  contains weight of edge between i and j
- Degree matrix **D** (diagonal, nxn)
  - sum of adjacent edge weights:  $d_i = \sum_j w_{ij}$
- Graph Laplacian:

$$\mathbf{L} = \mathbf{D} - \mathbf{W}$$
 and  $\tilde{\mathbf{L}} = \mathbf{I} - \mathbf{D}^{-1}\mathbf{W}$  (unnormalized) (normalized)

#### **Indicator Vector**

- Define **indicator vector**  $f \in R^n$  of set  $A \subset V$  such that  $f_i = \sqrt{|\bar{A}|/|A|}$  if  $v_i \in A$  and  $f_i = -\sqrt{|A|/|\bar{A}|}$  if  $v_i \in \bar{A}$
- f is orthogonal to the constant one vector 1

$$\sum_{i=1}^{n} f_i = \sum_{i \in A} \sqrt{\frac{|\bar{A}|}{|A|}} - \sum_{i \in \bar{A}} \sqrt{\frac{|A|}{|\bar{A}|}}$$

$$= |A| \sqrt{\frac{|\bar{A}|}{|A|}} - |\bar{A}| \sqrt{\frac{|A|}{|\bar{A}|}} = 0$$

• The Euclidean norm of f is  $||f|| = \sqrt{n}$ 

$$\sum_{i=1}^{n} f_i^2 = |A| \frac{|\bar{A}|}{|A|} + |\bar{A}| \frac{|A|}{|\bar{A}|} = n$$

# **Quadratic Form of Graph Laplacian**

**Lemma:** The quadratic form associated with the graph Laplacian is

$$f^{T}Lf = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2$$

**Proof:**  $f^T L f = f^T D f - f^T W f = \sum_{i=1}^n d_i f_i^2 - \sum_{i,j=1}^n f_i f_j w_{ij}$ 

$$= \frac{1}{2} \left( \sum_{i=1}^{n} d_i f_i^2 - 2 \sum_{i,j=1}^{n} f_i f_j w_{ij} + \sum_{j=1}^{n} d_j f_j^2 \right)$$

$$= \frac{1}{2} \sum_{i=1}^{n} w_{ij} (f_i - f_j)^2$$

# RatioCut in Terms of Graph Laplacian

• Given indicator vector f,

$$f^{T}Lf = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_{i} - f_{j})^{2}$$

$$= \frac{1}{2} \sum_{i \in A, j \in \bar{A}} w_{ij} (\sqrt{|\bar{A}|/|A|} + \sqrt{|A|/|\bar{A}|})^{2}$$

$$+ \frac{1}{2} \sum_{i \in \bar{A}, j \in A} w_{ij} (-\sqrt{|\bar{A}|/|A|} - \sqrt{|A|/|\bar{A}|})^{2}$$

$$= \text{cut}(A, \bar{A}) \left(\frac{|\bar{A}|}{|A|} + \frac{|A|}{|\bar{A}|} + 2\right)$$

$$= \text{cut}(A, \bar{A}) \left(\frac{|A| + |\bar{A}|}{|A|} + \frac{|A| + |\bar{A}|}{|\bar{A}|}\right)$$

$$= |V| \cdot \text{RatioCut}(A, \bar{A})$$

#### RatioCut Re-Written

- Our results allow us to **re-write RatioCut** as a minimization of  $f^{\rm T} L f$ 
  - minimization over  $A \subset V$  with f defined as above
- This equivalent reformulation with discrete f is still NP-hard, but it suggests a relaxation
  - permit continuous f
    - maintain constraints  $f \perp \mathbf{1}$ ,  $||f|| = \sqrt{n}$
  - We can use the Rayleigh-Ritz theorem: Since L is symmetric, its eigenvectors are the critical points of the Rayleigh quotient:

$$R(x) = \frac{x^{\mathrm{T}} L x}{x^{\mathrm{T}} x}$$

# **Properties of the Graph Laplacian**

- L is symmetric and positive semi-definite
  - Symmetry: Direct consequence of definition
  - Semi-definiteness: Consequence of  $f^T L f = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i f_j)^2$  and non-negativity of  $w_{ij}$
- The constant one vector 1 is an eigenvector of L with corresponding eigenvalue 0
  - Direct consequence of definition L=D-W

## **Approximate RatioCut**

- As a consequence of the observations above, the desired minimum of  $f^T L f$  is attained when f is the eigenvector of L corresponding to its **second** smallest eigenvalue
  - "Fiedler vector", fuzzy cluster indicator
- A hard clustering is achieved by discretizing the coefficients of f, e.g., by
  - Thresholding at zero or at (max+min)/2
  - Applying a clustering method such as K means
  - Sorting the coefficients, computing RatioCut for each possible threshold, taking the optimum
- Note: No approximation guarantees, but works well in many real-world cases

# **Example: Approximate RatioCut**

• Example: ε-graph over points sampled on fissure between lung lobes, edges weighted by similarity in surface normal



Fiedler vector (sorted)



Color coded on 3D data

## **Approximate Normalized Cut**

- The Normalized Cut can be approximated in a very similar way, with the normalized Laplacian  $\tilde{\mathbf{L}} = \mathbf{I} \mathbf{D}^{-1}\mathbf{W}$  replacing its unnormalized counterpart  $\mathbf{L} = \mathbf{D} \mathbf{W}$ 
  - Can be re-written as generalized eigenproblem  $\mathbf{L}f = \lambda \mathbf{D}f$
  - See [von Luxburg 2007] for details
- Implementation (for both RatioCut and NCut):
  - In practice, construct sparse graph and exploit sparsity in (generalized) eigenvector computation!
     Methods for this are outside of our scope.

## **Spectral Clustering: Multi-Cluster Case**

#### Strategies for *K*>2 clusters:

- 1. Recursively bisect (sub-)clusters [Shi/Malik]
- Compute K smallest eigenvectors and use them to define K-dimensional coordinates for each point; use a traditional clustering method such as K means on that representation [Ng, Meila/Shi]
  - Justification: Approximation of multi-cluster
     RatioCut, see [von Luxburg 2007]

## Visualizing the Spectral Embedding

The plot on the right shows a "grand tour" of the K-dimensional (here, K=5) feature space spanned by five eigenvectors





# **Spectral Clustering: Number of Clusters**

#### Spectral Gap:

- In case of K connected components, null space of Laplacian is K-dimensional
- A stable clustering requires that K near-zero eigenvalues should be followed by a "spectral gap" towards a markedly larger K+1<sup>st</sup> eigenvalue





3<sup>rd</sup> Eigenvector

## **Summary: Clustering**

- Clustering attempts to find intrinsic groups in the data
- Hierarchical agglomerative clustering and kmeans are widely used standard methods
- Spectral clustering can overcome their limitations by adapting to complex cluster shapes and being more robust
  - Linear algebra to solve relaxations of powerful,
     but NP hard clustering criteria
  - Spectral gap as an indicator of cluster number

# **References: Clustering**

- Christopher M. Bishop: *Pattern Recognition and Machine Learning*. Springer, 2006
- Ulrike von Luxburg: *A Tutorial on Spectral Clustering*. Stat Comput 17:395-416, 2007
- Rui Xu: Clustering. Wiley, 2009