Architektura počítačů

03

Sběrnice (Bus)

- Skupina signálových vodičů
 - zajistit přenos dat a řídících povelů mezi dvěma a více zařízeními.
 - Přenos dat na sběrnici se řídí stanoveným protokolem.
 - V případě modulární architektury zařízení
 - sběrnice je po mechanické stránce vybavena konektory uzpůsobených pro připojení modulů.
- Paralelní sběrnice
 - Řídící, adresové, datové vodiče
- Sériová sběrnice
 - sdílení dat a řízení na společném vodiči (nebo vodičích)

Parallel x Serial

- Paralelní sběrnice
 - Paralelní přenos po více drátech
- Sériová sběrnice
 - Přenos po bitech
- problémy paralelní sběrnici
 - Časování
 - Elektromagnetická interference
 - přeslechy
 - Energetická náročnost

Sběrnice (Bus)

- Přenos datové informace po fyzikální stránce
 - pomocí změny el. napětí
 - napětí vůči společnému bodu (signálová zem)
 - diferenciální (rozdíl napětí na dvou vodičích)
 - Pomocí změny el. proudu.
 - směr toku proudu (dva stavy)
 - · Větší odolnost proti elektromagnetickému rušení.

Diferenciální přenos

rozdíl napětí na dvou vodičích

Sběrnice (Bus)

- ISA (Industry Standart Architecture)
- MCA (Micro Channel Architecture)
- EISA (Extended Industry Standart Architecture)
- VESA (VL-Bus)
- PCI (Peripheral Component Interconnect)
- PCI X
- PCI Express
- AGP (Accelerated Graphics Port)
- ...

PC BUS (8bit ISA)

- Navržena firmou IBM pro první PC/XT
- Celkem 62 vodičů
 - 8bit přenos dat po 8 linkách
 - 20 vodičů pro přenos adresy
 - Přerušení (6), DMA (3)
 - Napájení (+5V,-5V,+12V + zem)
 - Řídící signály
- Sloty zapojeny paralelně
- Frekvence 8 MHz

ISA (Industry Standard Architecture)

- IBM v roce 1981, dřive označována jako AT bus
- 16bit datová sběrnice a 24bit adresová
- Zpětná kompatibilita
- Rozšíření o 36 vodičů
- 4 DMA kanály a 5 IRQ linek
- Základní frekvence 4,77 , 8 , 10 , 12 a 16 MHz.
- Blokový přenos dat byl na počátku řešen tak, že řízení sběrnice převzalo externí zařízení.
 - Později se využilo DMA kanálů.
- Přenos dat probíhal přes synchronní protokol

	Přerušení 10 Přerušení 11 Přerušení 12 Přerušení 14 Přerušení 14 -DACK 0 -DACK 5 -DACK 5 -DACK 6 -DACK 7 -DACK	-MEM CS16	Země RESET DRV +5 V Přerušení 9 -5 V DRQ 2 -12 V -0 WAIT +12 V Země -SMEMW -SMEMW -JOR -JOR JORQ 3 -DACK 3 DRQ 3 -DACK 1 DRQ 1 - Obnovení Hodiny (8,33 MHz) IRQ 4 IRQ 6 IRQ 6 IRQ 6 IRQ 6 IRQ 3 -DACK 2 T/C BALE +5 V Oscilátor (14,3 MHz) Země
;	D12 D13 D14 D15 D16	D2	B10 B10 B10 B10 B11 B11 B11 B11 B11 B11
	222222222222222222222222222222222222222	220	A 22 A 22 A 22 A 23 A 23 A 23 A 23 A 23
	Latch adresa 22 Latch adresa 21 Latch adresa 20 Latch adresa 19 Latch adresa 18 Latch adresa 17 -MEMR -MEMW Datový bit 8 Datový bit 10 Datový bit 11 Datový bit 12 Datový bit 12 Datový bit 13 Datový bit 13 Datový bit 14 Datový bit 14	-SBHE Latch adresa 23	VO CH CHK Datový bit 7 Datový bit 6 Datový bit 4 Datový bit 2 Datový bit 2 Datový bit 0 I/O CH RDY AEN Adresa 19 Adresa 16 Adresa 11 Adresa 11 Adresa 12 Adresa 6 Adresa 3 Adresa 3 Adresa 3 Adresa 3 Adresa 1 Adresa 3 Adresa 3 Adresa 1 Adresa 3 Adresa 3 Adresa 3 Adresa 3 Adresa 3 Adresa 1 Adresa 3 Adresa 3 Adresa 3 Adresa 1
_	D18	<u> </u>	B31
	C18	G	A31

Obr. 3.40 Rozmístění vývodů na konektoru 16bitové sběrnice ISA. Původní 8bitová část je v horní části obrázku

MCA

- Vyvinuta pro IBM PS/2
- Nekompatibilní s ISA
- Data může přenášet po 16 i 32 bitech
- Proudový režim současný přenos 64bitů
- Frekvence 10 MHz
- Adresová část 24bitů pro 286 a 32bitů pro 386
- V 16b verzi má 2x58 kontaktů
 - video rozšíření o dalších 2x10 kontakty
- 32b verzi je dále rozšířena o 2x31 kontaktů

EISA

- Šířka toku dat 32b
- Šířka adresy 32b
- Frekvence 8,33 MHz
- Busmastering sdílené řízení sběrnice
- Slot vychází z ISA (62+36) + dalších 59

Rozmístění vývodů ISA a EISA sběrnice

VESA Local Bus

- Vesa Video Electronic Standatds Assoc.
- Šířka přenosu dat i adresy je 32 bitů
- Teoretická mez je 50MHz
 - Prakticky pouze 33 MHz při 3 slotech
 - Silná procesorová závislost
- Burst (souvislý) režim redukce adres při přenosu
- Konektor má 2x58 vývodů, nachází se za 16 bitovým slotem
- Návrh VL-Bus je velice jednoduchý.
 - Hlavní konstrukční vlastnost je, že přebírá vývody z procesoru 486 a přenáší je na konektory karty.
 - Závislost na CPU 486.

VESA Local Bus

- Sloty VL-Bus nabízí přímý přístup do systémové paměti rychlostí odpovídající rychlosti procesoru.
- Omezení rychlosti.
 - Teoretická rychlost je až 66 MHz
 - Vlastnosti konektorů omezují na rychlost 40 až 50 MHz.
 - Praktický provoz při vice než 33 MHz přináší řadu problémů
- Standardně navržena pro připojení tří karet.
 - na 50 MHz je možné připojit jen jednu kartu

Peripheral Component Interconnect

- PCI 1.0 Původní specifikace, 1992
- PCI 2.0 Definice konektorů a rozměrů, 1993
- PCI 2.1 Provoz na 66 MHz, 1995
- PCI 2.2 Správa napájení, vyžaduje 3,3 V signalizaci
- PCI 2.3 Dovoluje použít 3,3 V a univerzální klíčování, ale nedovoluje klíčování pro 5 V.
- PCI 3.0 Konečný oficiální standard pro PCI sběrnici
 - byla úplně odstraněna možnost 5 V.

Peripheral Component Interconnect

PCI-X
 Provoz na 133 MHz,

Mini-PCI Definice velmi malých karet, d. v 2.2

PCI Express Sériový přenos dat, 2002

ExpressCard Standart nahrazující PC Cards

- Klíčování běžné PCI karty mají buď jeden nebo dva klíčovací zářezy podle napěťové signalizace.
 - Karty vyžadující 3,3 V mají zářez vedle přední strany karty
 - Karty vyžadující 5 voltů mají zářez na druhé straně.
 - Univerzální karty mají oba zářezy
 - mohou přijímat oba typy signálů.

Peripheral Component Interconnect

- K systémové sběrnici připojena přes mezisběrnicový můstek
 - možnost použití sběrnice PCI i v jiných počítačích než jsou PC
 - můstek dovoluje provádět přizpůsobování napěťových úrovní
- První sběrnice s šířkou přenosu 64 bitů
 - využívá tak plně 64bitové datové sběrnice Pentia
- Dovoluje však také přenos o šířce 32 bitů (od v. 2.0)
- Maximální frekvence sběrnice je 33 MHz (66 MHz)
- propustnost: 133 MB/s (pro 32 bitů) a 266 MB/s (pro 64 bitů)

- Napájení 3,3 V nebo 5 V
- Podporuje PCI Busmastering
- Podpora Plug and Play (PnP)
- Zařízení dvou typů
 - Bus master (řídící zařízení sběrnice)
 - Target (cílové zařízení sběrnice)

br. 3.45 věrnici PCI, určenou pro rychlost 33 Porovnání slotů 32bitové sběrnice PCI, a 66 MHz pracující na rychlosti 33 MHz, s konektory pro 64bitc

ğ 3.46 Konektor 64bitové univerzální PCI karty (nahoře) a příslušný slot základní desky (dole)

PCI-X

- PCI-X System
 - 32- nebo 64-bit
 - 3.3 Volt I/O
- PCI-X je vystavěna na stejné architektuře, protokolech, signálech a konektorech jako tradiční PCI.
- Využitelné sloty pro dané rychlosti
 - 1 slot @ 133 MHz
 - 2 slots @ 100 MHz
 - 4 slots @ 66 MHz
 - (shodné s 33/66 MHz módem v PCI 2.2
 - Sběrnice typu PCI-X řídí pracovní frekvenci hodin podle počtu slotů nebo připojených zařízení.

PCI-X 2.0

- PCI-X 266 a PCI-X 533
 - Propustnost až 4.3 GB/s
- Zvýšena spolehlivost
 - Přidána podpora ECC
 - automatic single-bit error recovery and double-bit error detection
- Napětí 3,3/1,5 V
- PCI-X 3.0
 - Frekvence 1066 MHz
 - Propustnost 7.95 GB/s

 PCI-X slots will accept both PCI & PCI-X adapters

- Cost sensitive 32-bit Cards
- PCI-X cards will work in current PCI systems just like 66MHz conventional cards
- Conventional Speeds & Bandwidth

33MHz 133MB/sec

66MHz 256MB/sec (optional)

PCI-X Speeds & Bandwidth

66MHz 256MB/sec

133Mhz 533MB/sec (optional)

3.3v or Universal

- High performance 64-bit cards
- PCI-X cards will work in current PCI systems just like 66MHz conventional cards
- Conventional Speeds & Bandwidth

33MHz 256MB/sec

66MHz 533MB/sec (optional)

PCI-X Speeds & Bandwidth

66MHz 500MB/sec

133Mhz 1066MB/sec (optional)

3.3v or Universal

PCI-X

Přehled konfigurace jednotlivých typů PCI sběrnic

	Typ sběrnice	PCI - 33		PCI - 66		PCI-X 66		PCI-X 133		PCI-X 266		PCI-X 533			
1	Počet datových bitů	32	64	32	64	32	64	32	64	16	32	64	16	32	64
	Počet pinů 1	49	81	49	81	50	82	50	82	36	50	82	36	50	82
33	Přenosová rychlost MB/s ²	133	266	266	533	266	533	533	1066	533	1066	2133	1066	2133	4266
	Napájecí napětí	5/3	,3V	3,3V		3,3V		3,3V		1,5V a 3,3V		1,5	1,5V a 3,3V		

PCI Express

- Sériové připojení typu point-to-point s použitím přepínačů
- Přenáší data po paketech.
 - Příkazy, data transakcí, zprávy a řídicí přenosy
 - Hodinový signál je kódovaný do datového toku
 - Samostatně vedené hodiny a data na vysokých frekvencích jsou náchylné k fázovému posunu.
- Diferenciální přenos
- Nízká režie, malé zpoždění
- Zachováno mnoho SW funkcí PCI sběrnice
 - Nové možnosti, např. QoS (Quality of Service)

PCI Express

- data jsou enkodovaná 8b/10b (od verze 3 kódování 128/130b)
- •základní přenosová rychlost každé lane (linie) je 2.5GT/s (verze 1)
 - Diferenciální přenos (2 vodiče)
 - dva páry, pro každý směr jeden
 - Sestavení linku
 - •zařízení PCle x1 bude moci spotřebovat 10W energie,
 - •PCI x2 až x8 25W
 - slot pro grafické karty PCle x16 maximálně 75W

PCI Express link

- link je point-to-point komunikační kanál mezi dvěma porty PCIe,
 - Umožňuje odesílat a přijímat zároveň (Full duplex).
- Na fyzické úrovni se link skládá z jedné nebo více linií (lanes).
- Linie se skládá ze dvou dvojic diferenčních signálů
 - jeden pár pro příjem dat a druhý pro vysílání
 - nízkonapěťová signalizace (± 250 mV)
 - V jednom linku 1 32 linií
 - Škálování 1, 2, 4, 8, 12, 16 nebo 32
 - Počty linií značeny předponou ×
 - Během HW inicializace *Linku* se vyjedná pracovní frekvence a počet *Lanes* sestavujících *Link*.

PCI Express

PCI Express

Fyzická vrstva – dělení a kódování

PCIe topologie

- Kořenový komplex (root complex) je centrální řídicí bod ve stromové topologii.
 - Spravuje konektivitu pro porty PCIe, CPU, přidruženou paměť a další přemosťovací funkce.
 - Přepínač (Switch) spojuje více koncových bodů s kořenovým komplexem.
 - Koncovými body jsou periferní I/O zařízení, která komunikují s CPU přes switch a/nebo root complex.

Verze PCle

Srovnání verzí PCI Express	3
----------------------------	---

Rozhraní	Propustnost	Kódování	Rychlost PCIe ×1	Rychlost PCIe ×16	Uvedení
PCIe 1.0	2,5 GT/s	8b/10b	250 MB/s	4 GB/s	2003
PCIe 2.0	5 GT/s	8b/10b	500 MB/s	8 GB/s	2007
PCIe 3.0	8 GT/s	128b/130b	985 MB/s	15,75 GB/s	2010
PCIe 4.0	16 GT/s	128b/130b	1,97 GB/s	31,5 GB/s	2017
PCIe 5.0	32 GT/s	128b/130b	3,94 GB/s	63 GB/s	2019
PCIe 6.o	64 GT/s	PAM ₄	7,88 GB/s	126 GB/s	2021

Modern Schema

PCI Express

<u>25W-75W graphics cards</u> are powered through the desktop board's PCI Express x16 connector:

Relative Performance

TECHP WERUP

3840x2160

00 10X2 100

RTX 3070 8 GB: 42 %

RTX 3070 Ti 8 GB: 44 %

RX 6800 16 GB: 47 %

RTX 3080 10 GB: 53 %

RX 6800 XT 16 GB: 54 %

RX 6900 XT 16 GB: 57 %

RTX 3080 Ti 12 GB: 61 %

RTX 3090 24 GB: 61 %

RX 6950 XT 16 GB: 61 %

RTX 3090 Ti 24 GB: 69 %

RTX 4090 / PCIe x16 1.1: 81 %

RTX 4090 / PCIe x16 2.0: 92 %

RTX 4090 / PCIe x16 3.0 / x8 4.0: 98 %

RTX 4090 / PCIe x16 4.0: 100 %

Relative Performance

1920x1080

RTX 3070 8 GB: 65 %

RTX 3070 Ti 8 GB: 68 %

RX 6800 16 GB: 73 %

RTX 3080 10 GB: 77 %

RX 6800 XT 16 GB: 81 %

RTX 3080 Ti 12 GB: 82 %

RTX 4090 / PCIe x16 1.1: 82 %

RTX 3090 24 GB: 83 %

RX 6900 XT 16 GB: 84 %

RTX 3090 Ti 24 GB: 87 %

RX 6950 XT 16 GB: 88 %

RTX 4090 / PCIe x16 2.0: 94 %

RTX 4090 / PCIe x16 3.0 / x8 4.0: 97 %

RTX 4090 / PCIe x16 4.0: 100 %

AGP

Accelerated Graphics Port

- 1996 Intel zveřejnil specifikaci AGP 1.0
- Určen pro CPU Pentium a vyšší
- Důraz na zvýšení výkonu v oblasti grafiky
- Umožnění přímého přístupu grafické karty do systémové paměti
- Uvolnění šířky přenosového pásma PCI
- Pracuje na 66,66 Mhz
- Šířka sběrnice je 32 bitů

Režim sběrnice AGP	Přenosová rychlost
1x	266 MB/s
2x	533 MB/s
4x	1066 MB/s
8x	2132 MB/s

Režimy sběrnice AGP a jejich přenosové rychlosti.

	AGP1.0	AGP2.0	AGP3.0
Signaling	3.3V signaling	1.5V Signaling	New 0.8V Signaling
Protocol	Pipelined transactions + Source synchronous clocking	AGP1.0 + Fast Writes	AGP2.0 + Some enhancements – some deletions (See Sec 1.5.1)
Speeds	2X, 1X	4X, 2X, 1X	8X, 4X
Connector	3.3V keyed	1.5V keyed, Universal	1.5V keyed

Plug and Play (PnP) - automatická konfigurace zařízení

- BIOS při zapnutí vyzve všechna zařízení připojená ke sběrnici k identifikaci.
- zařízení odešlou své identifikátory a požadavky.
- Přidělí se systémové prostředky tak, aby nedošlo ke konfliktům:
 - přerušení
 - I/O porty
 - adresový prostor v paměti RAM (pro paměť na kartě)
- údaje o konfiguraci jsou uložena do paměti.
- Zařízení je inicializováno.
- Po spuštění vyhledá OS podle identifikátoru ovladače.
- ovladače použijí uloženou konfiguraci.

Přerušení

IRQ - Interrupt Request Channel

- Jsou využívány zařízeními, aby oznámily, že má být vyplněn určitý požadavek.
- Fyzicky jsou reprezentovány vodiči sběrnice
- Pokud je rozpoznáno přerušení, speciální proces převezme řízení systému, uloží obsah všech registrů a přesměruje systém do tabulky vektorů přerušení.
- V tabulce je obsažen seznam ukazatelů na adresy paměti, které odpovídají jednotlivým přerušením (obsluha přerušení).
 - Maskovatelné přerušení (jdou zakázat)

Přerušení na ISA

- Každému přerušení odpovídá jeden vodič
- Nelze rozpoznat ve kterém konektoru je karta, která vyvolala přerušení
- Pro jedno přerušení jen jedno HW zařízení
- Není možné sdílení přerušení

Přerušení na sběrnici PCI

- PCI podporuje 4 přerušení
 - INTA#, INTB#, INTC#, INTD#
- Sběrnice PCI je založena na sdílení přerušení
 - Level-sensitive
 - Citlivé na úroveň signálu => sdílení
- Přerušení sběrnice PCI je mapováno na IRQ sběrnice ISA (dříve) nebo jsou v PCI mostu asociovány s vnějšími přerušeními procesoru (jejich konkrétní přiřazení není obvykle uživatelsky nastavitelné)

Přerušení na sběrnici PCI

- Pozdější revize PCI specifikací přidávají podporu pro přerušení signalizované zprávou.
 - zařízení oznamuje svůj požadavek na obsloužení zápisem do paměti, nedává tedy o sobě vědět prostřednictvím vyhrazené linky.
 - řešení problému s nedostatkem přerušovacích linek.
 - nedochází zde k problému se sdílením úrovňově spouštěných přerušení.
 - řeší to některé synchronizační problémy
- PCI Express již fyzické linky pro přerušení nemá, používá výhradně posílání zpráv. Message Signalled Interrupts (MSI)

APIC

- Advanced Programmable Interrupt Controller
- volně přeloženo pokročilý programovatelný řadič přerušení.
- Povolení této funkce v BIOSu znamená možnost expandovat s přerušovacími linkami (IRQ – Ineterrupt Request) na vyšší počet obsluhovaných funkcí než bylo dříve možné
- Obsaženo v CPU od Pentia (rok 1994)

Adresy vstupu a výstupu (I/O porty)

- Vzájemná komunikace mezi HW a SW
- U PC celkem 65535 adres
 - ooooh FFFFh
- Dvě zařízení nesmí mít stejnou adresu
 - POZOR!!! Neplést s adresy v paměti, zde se jedná o **port**

DMA na sběrnici ISA

- Využívané rychlými zařízeními k přenosu dat do a z paměti bez procesoru
- Mohou být sdíleny za podmínky, že se je zařízení nebudou snažit využít současně
- Dva kaskádovitě zapojené řadiče po 4 kanálech

