<실험08. 등가회로 해석방법 실험 결과보고서>

5조 201910906 이학민 / 201910892 박명세 / 202211021 이명희

A. 노튼 등가회로

|표 8-1| 사용 저항기

	R_1	R_2	R_L	
정격값, [kΩ]	2.000	2.000	1.000	
측정값, [kΩ]	1.945	1.979	0.990	
오차율, [%]	2.750	1.050	1.000	

|표 8-2| 원회로와 노튼 등가회로의 비교

R_{th} [k Ω]		I_S [mA]		I_L [mA]			V_L [V]		
계산값	측정값	계산값	원회로 측정값	계산값	원회로 측정값	등가회로 측정값	계산값	원회로 측정값	등가회로 측정값
0.981	0.984	12.765	12.690	6.353	6.342	6.345	6.290	6.301	6.291

|그림 8-10| 노튼 등가회로의 구성

B. 테브닌 등가회로

|표 8-3| 사용 저항기

	R_1	R_2	R_3	R_4	R_5	R_L
정격값, [kΩ]	2.000	0.330	0.510	0.100	2.200	1.000
측정값, [kΩ]	1.976	0.324	0.501	0.099	2.162	0.976
오차율, [%]	1.200	1.818	1.765	1.000	1.727	2.400

|표 8-4| 원회로와 테브닌 등가회로의 비교

R_{th} [k Ω]		V_O		I_L [mA]			V_L [V]		
계산값	측정값	계산값	원회로 측정값	계산값	원회로 측정값	등가회로 측정값	계산값	원회로 측정값	등가회로 측정값
2.890	2.997	3.889	3.851	1.006	0.993	0.950	0.982	0.982	0.942

|그림 8-11| 테브닌 등가회로의 구성

<실험결과 검토>

이명희 :

230504 결석으로 인한 미참여

박명세 :

실험 A에서 정전류원으로 사용 가능한 최소 전류가 작아서 정전류원 대신 정전압원을 사용하였고 저항 R_{th} 와 I_{S} 의 병렬 합성 저항과 원래의 정전류원 값을 곱한 값을 정전압원으로 대체하였다. V_{L} 값 측정에서 A3과 D3노드 사이의 전압을 측정하면서 값이 나오지 않았는데 이는 단락을 시켰기 때문에 제대로 나오지 않았던 것임을 알았다. V_{L} 값과 같은 A2노드와 D2노드 사이의 전압을 측정함으로써 원회로 측정값과 등가회로 측정값이 동일함을 확인할 수 있었다. 노튼 등가회로에서 단락 전류 측정법을 이해하였고, 이를 바탕으로 테브닌 등가회로에서 전압원을 단락시켜 원회로와 등가회로의 측정값을 성공적으로 구할 수 있었다.

이학민:

등가회로 해석 실험에서 회로의 전압, 전류를 계산하기 위해 안드로이드 기반 태블릿의 도움을 받았다. "PROTO - circuit simulator"라는 애플리케이션을 사용하였는데, 다소 부정확하였다. 예를 들어 저항의 값에 $1.979k\Omega$ 을 입력하면 $2k\Omega$ 으로 반올림되는 문제가 있어 Pspice로 회로 해석을 다시 하였다. 실험A에서 노튼 등가회로를 구하였는데, 정전류원의 사용법이까다로워 전원변환이론을 기반으로 테브닌 등가회로로 바꾸어 실험을 진행하였다.

PSpice 프로그램을 활용한 회로분석

실험A 기본회로

실험B 기본회로

 $R_{th} = R_1 // R_2 = 0.981 [\Omega]$

 $R_{th} = ((R_1 + R_4)//R_3) + R_2 + R_5 = 2.890 [\Omega]$

 $I_S = 7.712 + 5.053 = 12.765 \text{ [mA]}$

 $V_Q = 4.658 - 0.769 = 3.889 [V]$