

## Phylogenetic Pipeline

Comparative Genomics

Younginn Park



# Introduction Streptococcus genus

### Genus Streptococcus

- Gram-positive spherical bacteria
- Clinical significance
  - pathogenic species causing various kinds of infections (S. pyogenes, S. pneumoniae)
  - significant in diagnostics, microbial marker for other diseases (J. Yang et al. 2023)
- Dairy industry
  - starter culture to produce fermented milk, yoghurt and cheese (*S. thermophilus*)

- *Lactococcus* once grouped together with *Streptococcus*, separated in 1984, important e.g. in dairy industries (*Lactococcus lactis*)
  - 2 representatives will be used in this project as outgroup



Gram staining on Streptococcus bacteria, http://www.usda.gov/oc/photo/99c0649.jpg

### Reference article





# Molecular phylogeny and a taxonomic proposal for the genus *Streptococcus*

F. Póntigo<sup>1</sup>, M. Moraga<sup>1,2</sup> and S.V. Flores<sup>1</sup>

<sup>1</sup>Laboratorio de Antropología, Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, Santiago, Chile <sup>2</sup>Programa de Genética Humana, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile

### Species tree

- Selected representative genes functionally significant, having a balance between conservation and variation across species (*sodA*, *tuf*, *rpoB*, *recN*, *dnaJ*, *gyrB*, *rnpB*)
- Constructed using majority consensus (dendropy) based on Maximum Likelihood trees (PhyML)
- Amino acid evolution models selected according to AIC (Akaike Information Criterion) using ProtTest3 (WAG, RtREV)

F. Póntigo, M. Moraga, S.V. Flores, 2015

| <b>Table 1.</b> List of species, accession numbers and size (bp) of each gene fragment. |      |               |      |               |      |               |      |              |  |  |
|-----------------------------------------------------------------------------------------|------|---------------|------|---------------|------|---------------|------|--------------|--|--|
| Species                                                                                 | sodA |               | tuf  |               | rpoB |               | recN |              |  |  |
|                                                                                         | bp   | Accession No. | bp   | Accession No. | bp   | Accession No. | bp   | Accession No |  |  |
| S. mutans                                                                               | 612  | AE014133.2    | 1197 | AE014133.2    | 3105 | AP010655.1    | 1249 | EU917289.1   |  |  |
| S. agalactiae                                                                           | 609  | AE009948.1    | 1197 | AL766847.1    | 3105 | AE009948.1    | 1249 | EU917242.1   |  |  |
| S. acidominimus                                                                         | 435  | Z95892.1      | 761  | AY266992.1    | 691  | AF535181.1    | 1249 | EU917241.1   |  |  |
| S. anginosus                                                                            | 453  | FJ712177.1    | 826  | AF276257.1    | 3105 | AF535183.1    | 1249 | EU917248.1   |  |  |
| S. alactolyticus                                                                        | 435  | AJ297185.1    | -    | -             | 680  | DQ232445.1    | 1249 | EU917226.1   |  |  |





Majority consensus tree obtained by a Bayesian analysis containing all species (left) and containing two members of each group (above), plus the outgroup.

## Selected species

### 3 representatives from each group:

| Table 2. Species of Streptocoo | ceus and outeroun  | species anal  | vzed in this study  |
|--------------------------------|--------------------|---------------|---------------------|
| Table 2. Species of Streptocot | icus, and odigroup | species, anai | yzed in this study. |

| Mutans group     | S. ratti, S. ursoris, S. devriesei, S. mutans, S. macacae, S. ferus, S. dentapri, S. downei, S. dentirousetti, S. sobrinus, |
|------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                  | S. dentirousetti, S. sobrinus, S. criceti, S. orisuis, S. merionis, S. caballi, S. henryi, S. orisratti, S. pluranimalium,  |
|                  | S. thoraltensis, S. hyovaginalis                                                                                            |
| Pyogenic group   | S. dysgalactiae, S. pyogenes, S. canis, S. castoreus, S. equi subsp equi, S. halichoeri, S. phocae, S. porcinus,            |
|                  | S. pseudoporcinus, S. didelphis, S. uberis, S. seminale, S. iniae, S. ictaluri, S. urinalis, S. parauberis,                 |
|                  | S. marimammalium, S. agalactiae                                                                                             |
| Bovis group      | S. equinus, S. lutetiensis, S. luteciae, S. infantarius, S. gallolyticus, S. pasteurianus, S. macedonicus, S. alactolyticus |
| Suis group       | S. entericus, S. plurextorum, S. suis, S. acidominimus, S. minor, S. ovis, S. gallinaceus                                   |
| Mitis group A    | S. constellatus, S. intermedius, S. anginosus, S. massiliensis, S. cristatus, S. sinensis, S. gordonii, S. sanguinis        |
| Mitis group B    | S. pneumoniae, S. pseudopneumoniae, S. mitis, S. oligofermentans, S. infantis, S. peroris, S. oralis,                       |
|                  | S. australis, S. parasanguinis                                                                                              |
| Salivarius group | S. vestibularis, S. salivarius, S. thermophilus                                                                             |
| Outgroup         | Lactococcus lactis, L. cremoris                                                                                             |

F. Póntigo et al. 2015

### List of species selected for this project (right)

### Mutans group

- SRAT: Streptococcus ratti
- SDOW: Streptococcus downei
- SDEV: Streptococcus devriesei

### Pyogenic group

- SDYS: Streptococcus dysgalactiae
- SPYO: Streptococcus pyogenes
- SCAN: Streptococcus canis

### Bovis group

- SEQU: Streptococcus equinus
- SLUT: Streptococcus lutetiensis
- SINF: Streptococcus infantarius

#### Suis group

- SENT: Streptococcus entericus
- SPLU: Streptococcus plurextorum
- SSUI: Streptococcus suis

### Mitis group A

- SCON: Streptococcus constellatus
- SINT: Streptococcus intermedius
- SANG: Streptococcus anginosus

### Mitis group B

- SPNE: Streptococcus pneumoniae
- SPSE: Streptococcus pseudopneumoniae
- SMIT: Streptococcus mitis

#### Salivarious group

- SVES: Streptococcus vestibularis
- SSAL: Streptococcus salivarius
- STHE: Streptococcus thermophilus

### Outgroup

- LLAC: Lactococcus lactis
- LCRE: Lactococcus cremoris

### Species tree reconstruction





Majority consensus tree obtained by a Bayesian analysis containing two members of each group from the reference study (left) and the reconstructed tree used in this project (right) plus the outgroup.

### NCBI Datasets

Proteomes obtained from NCBI Datasets Command Line Tool



# Methods Clustering and Gene Families

### MMseqs

- Mmseqs clustering based on similarities of k-mers between sequences
- Rule of thumb "two sequences can be considered homologous if they are more than 30% identical over their entire lengths" (*Pearson 2013, An introduction to sequence similarity* "homology" searching)
- Minimum sequence identity (--min\_seq\_id 0.3)



Histograms of cluster sizes

### Non-orthologous clusters





Percentage of Clusters with Unique Genomes by Cluster Size with Min size=3, Mean percentage=69.28%



Histograms of cluster sizes after removing small clusters (singletons and duplets), clusters bigger than the number of species (>23) and clusters with duplicate genome identifiers (left). Percentage of clusters with desireable size (3-23) that had unique genome identifiers, 1-1 gene sets (right).

### Gene trees

- Mafft for Multiple Sequence Alignment
- Neighbor-Joining Method (biopython, BLOSUM62)
  - Joining most closely related taxa based on pairwise distances



A schematic of the NJ algorithm https://www.tenderisthebyte.com/blog/2022/08/31/neighbor-joining-trees/

## Methods Genome Trees

## Majority Consensus Tree

- Only trees with the full set of taxa could be used (461 gene trees)
- Implementation from DendroPy python library with 0.5 cutoff (inclusive frequency threshold) for unrooted trees (splits)
- Root the resulting tree with the outgroup



### Supertree

- fasturec
- Heuristic tree search (-Z) initial quasi-consensus tree and hill-climbing steps under the duplication-loss cost (mixture of NNI, SPR and TSW)
- With and without paralogs
- Root the resulting tree with the outgroup

## Bootstrapping

- Bootstrap replicate trees constructed with Biopython (NJ/100 replicates)
- SumTrees (bundled with DendroPy) for split support analysis of the gene trees
- Trees with high support get to stay for consensus tree and supertree construction
- Generally, splits with at least 0.7 support are considered "well-supported"

## Defining a "good tree"

- Here, the criterion for trees with 'good' support average support for splits in a tree has to be greater or equal 0.9 (gives room for a tree to be chosen even if some of the branches have lower support)
- 368 of 2161 trees in total were removed due to low branch support
- 206 of 461 trees with full set of taxa remained for majority consensus

## Results and Analysis

Visualizations done using packages ape and TreeDist in R

### Consensus tree

LCRE Outgroup -LLAC -SDOW Mutans group -SDEV -SRAT -SPLU Suis group SENT -SSUI -SPNE Mitis group B -SPSE -SMIT -SANG Mitis group A -SCON -SINT -SCAN -SPYO Pyogenic group -SDYS -SINF -SLUT Bovis group -SEQU -SSAL Salivarius group -SVES -STHE

Unresolved major clades between groups within *Streptococcus* genus (except for 2 Mitis groups)



Species tree (left) and majority consensus tree (right) both rooted on the outgroup



Species tree (left) and majority consensus tree (right) both rooted on the outgroup, with marked shared splits

### Resolved multifurcation in Mitis group B compared to consensus tree without bootstrap

### Consensus from bootstrap





Species tree (left) and majority consensus tree made with bootstrap verified trees (right) both rooted on the otugroup



Species tree (left) and majority consensus tree made with bootstrap verified trees (right) both rooted on the outgroup, with marked **shared** splits

### Supertree



Species tree (left) and supertree made with gene trees without paralogs (right), rooted on outgroup



Species tree (left) and majority consensus tree made with bootstrap verified trees, DL=33899 (right) both rooted on the outgroup, with marked **unique** splits for both trees

### Supertree from bootstrap



Species tree (left) and supertree made with gene trees without paralogs verified with bootstrap (right)



Species tree (left) and supertree made with bootstrap verified trees, DL=22114 (right) both rooted on the outgroup, with marked **unique** splits for both trees

## Supertree with paralogs



Species tree (left) and supertree made with gene trees with paralogs (right)



Species tree (left) and supertree made with paralogs, DL=53205 (right) both rooted on the outgroup, with marked **unique** splits for both trees

## Bibliography

- F. Póntigo, M. Moraga, S. V. Flores, Molecular phylogeny and a taxonomic proposal for the genus *Streptococcus*, Genetics and Molecular Research 14 (3): 10905-10918 (2015)
- Facklam R. What happened to the streptococci: overview of taxonomic and nomenclature changes. *Clin Microbiol Rev.* 2002;15(4):613-630. doi:10.1128/CMR.15.4.613-630.2002