Unit 8: Limit theorems and classical

Lec. 20: An introduction to classical

<u>课程</u> > <u>statistics</u>

> statistics

> 7. Exercise: Bias and MSE

7. Exercise: Bias and MSE

Exercise: Bias and MSE

2/2 points (graded)

We estimate the unknown mean heta of a random variable X with unit variance by forming the sample mean $M_n=(X_1+\cdots+X_n)/n$ of n i.i.d. samples X_i and then forming the estimator

$$\widehat{\Theta}_n = rac{1}{3} \cdot M_n.$$

Your answers below can be functions of θ and n. Follow <u>standard notation</u> and use 'theta' to indicate θ .

The bias $\mathbf{E}[\widehat{\Theta}_n] - heta$ of this estimator is:

-2/3*theta

✓ Answer: -2*(theta)/3

The mean squared error of this estimator is:

✓ Answer: 1/(9*n)+4*(theta)^2/9

$$Var(\hat{\Theta}_n) = Var(\frac{1}{3} \cdot M_n)$$

$$= Var(\frac{1}{3} \cdot \frac{S_n}{n})$$

$$= \frac{1}{q_{n^2}} Var(X_i + X_2 \cdot \cdot + X_n)$$

$$= \frac{1}{q_{n^2}} \frac{1}{q_{n^2}}$$

STANDARD NOTATION

Solution:

Since $\mathbf{E}[M_n] = heta$, we have $\mathbf{E}[\widehat{\Theta}_n] = heta/3$, and the bias is -2 heta/3.

The variance of $\widehat{\Theta}_n$ is 1/9 times the variance of M_n , which is 1/n. The mean squared error is the sum of the variance and the square of the bias: $1/(9n) + (4\theta^2/9)$.

提交

You have used 2 of 3 attempts

• Answers are displayed within the problem

讨论

Topic: Unit 8 / Lec. 20 / 7. Exercise: Bias and MSE

显示讨论