Problem otwartości na usługi telekomunikacyjne - usługi IN sieci inteligentnej

Przypomnijmy, że do podstawowych zadań sieci telekomunikacyjnej należy:

- ✓ udostępnianie usług abonentom,
- ✓ przynoszenie dochodu operatorowi sieci (właścicielowi).

Wymaga to realizacji następujących funkcji:

- > transmisji i łączenia (komutacji),
- > użytkowania,
- > utrzymania,
- > zarządzania.

Funkcje te mogą być realizowane na różnych poziomach zarówno sieci czyli:

- węzła komutacyjnego,
- strefy (sieć miejscowa),
- kraju,
- międzynarodowym,

jak i różnych operatorów tych sieci.

Zakres i możliwości realizacji każdej z nich zależy od rozwiązania szeroko pojmowanego sprzętu (hardware i software) i zorganizowania operatora.

Z dotychczasowego przebiegu rozwoju sieci telekomunikacyjnej wynika ciąg rozwoju tej sieci i usług począwszy od sieci PSTN (Public Switched Telephone Network) z usługą POTS (Plain Old Telephone Network) i jej dwoma podstawowymi fazami, analogową i cyfrową, poprzez sieci ISDN z szerokim i otwartym zbiorem usług wąskopasmowych do sieci szerokopasmowych B-ISDN ATM oraz IP QoS, które są platformą dla dowolnych usług. Dokładniej ten historyczny rozwój przedstawimy w dalszej części materiału.

Wymieniony rozwój sieci <u>jest rozwojem technologicznym</u> pociągającym za sobą <u>rozwój usług</u>. Jednakże w procesie instalacji sprzętu do sieci sprzęt ten udostępnia konkretne usługi, które są oprogramowane w węzłach komutacyjnych.

Wprowadzenie nowo opracowanej <u>usługi</u> do <u>nowego sprzętu</u> jest w miarę proste bo wykonuje to producent tego sprzętu.

Dużo trudniejsza sytuacja ma miejsce jeżeli chodzi o już zainstalowany sprzet - węzły komutacyjne. Wymaga to opracowania i wymiany oprogramowania co jest i kosztowne i uciążliwe.

Powstaje zatem zagadnienie rozwiązania problemu szybkiego i w miarę taniego wprowadzania nowych usług do sieci telekomunikacyjnej.

Spróbujmy zatem przeanalizować cechy i możliwości dotychczas rozważanych sieci telekomunikacyjnych i wskazać <u>co należaloby zrobić</u> aby uzyskać wyżej oczekiwane rozwiązanie.

Ograniczenia i możliwości dotychczasowej sieci telekomunikacyjnej:

ograniczenia:

- o rodzaju usługi i jej wprowadzeniu decyduje producent,
- operator sieci TKM jest monopolista w udostępnianiu usług,
- długi cykl opracowania i udostępnienia usługi,

możliwości:

- strukturalna budowa elementów sieci TKM,
- sprzęt sterowany programowo,
- oprogramowanie użytkowe jest modułowe i niezależne od sprzętu,
- realizacja funkcji w bardzo dużym stopniu niezależna od sprzętu.

Wymienione ograniczenia wynikają z dotychczasowej koncepcji realizacji obsługi usługi. Otóż sieć telekomunikacyjna umożliwia realizację usług przenoszenia lub prościej mówiąc realizację kanałów o określonych właściwościach przez wykorzystanie fizycznych zasobów sieci telekomunikacyjnej oraz oprogramowania zainstalowanego w węźle komutacyjnym. Na bazie tych usług przenoszenia tworzone są teleusługi, których cechy są określone zarówno przez usługi przenoszenia jak i możliwości terminali oraz oprogramowanie, które realizuje algorytm obsługi w fazie precyzowania usługi, połączenia czyli trwania usługi oraz rozłączenia połączenia czyli zakończenia usługi.

W <u>dotychczasowym podejściu</u> realizacja <u>algorytmów obsługi</u> była wykonywana w <u>węźle komutacyjnym</u> i tak długo jak istniała dana wersja oprogramowania to nie można było zmienić zarówno sam algorytm jak i ewentualnie jego parametry. Było to ustalane przez producenta i instalowane wraz ze sprzętem. Jakakolwiek próba zmiany wymagała zgłoszenia się do producenta, który musiał modyfikować lub tworzyć, jeżeli nie miał, nową wersję oprogramowania a następnie instalował tą nową wersję. Wymagało to określonego nakładu pracy i czasu, którego producent na ogół nie miał bo

realizował aktualne swoje zadania. A te zadania niekoniecznie pokrywały się ze zgłaszanymi potrzebami.

Zauważmy, że <u>algorytm obsługi</u> usług zawarty jest <u>w oprogramowaniu CC</u> (Call Control) każdego węzła komutacyjnego. Zatem <u>możliwa jest do pomyślenia taka modyfikacja</u> podejścia do tego oprogramowania aby obsługę dotychczasowych usług (nazywanych też <u>usługami podstawowymi</u>) pozostawić w tym oprogramowaniu a <u>program obsługi nowych usług umieścić poza</u> tymi węzłami komutacyjnymi i to w taki sposób aby można było to oprogramowanie tworzyć i instalować na bieżąco bez ingerowania w pracę węzłów komutacyjnych, oraz wyłączania elementów w których będzie umieszczone to oprogramowanie. Oczywiście to nowe oprogramowanie wykorzystywałoby funkcje realizowane przez oprogramowanie w dotychczasowych węzłach komutacyjnych. Można to ogólnie zobrazować przy pomocy rysunku.

Wcześniej wymienione ograniczenia i możliwości dotychczasowej sieci telekomunikacyjnej, ciągły nacisk na szybkie wprowadzanie nowych usług oraz możliwość zastosowania podejścia przedstawionego na powyższym rysunku, zmusiły i umożliwiły producentom zaproponowanie produktów w oparciu o które można zrealizować

Sieci Inteligentne – IN (Intelligent Network).

Nazwa ta jest konsekwencją możliwości tej sieci telekomunikacyjnej oraz ogólnej definicji inteligencji.

Otóż <u>o inteligencji mówimy</u> wówczas, gdy <u>potrafimy się w miarę szybko dostosować</u> do zmieniających się warunków otoczenia <u>optymalizując swoje</u> <u>działanie</u> ze względu na ustalony cel.

Z tą właśnie sytuacją mamy do czynienia w przypadku tej sieci telekomunikacyjnej. Otóż <u>otoczeniem są zgłaszane przez abonentów potrzeby</u> co do usług a <u>sieć telekomunikacyjna jest w stanie</u> szybko i niskim kosztem dostarczyć te usługi abonentom. Stąd w sposób naturalny pojawiła się nazwa takiej sieci jako sieci inteligentnej. Oczywiście dostarczenie tych usług wymaga działania człowieka w procesie szybkiego ich oprogramowania i zainstalowania.

Ogólna koncepcja sieci inteligentnej

Na podstawie tego co dotychczas zostało powiedziane można wymienić co powinna umożliwiać sieć inteligentna:

- natychmiastowe, tzn. szybkie wprowadzanie usług,
- programowalność usług,
- sterowanie usługami,
- łatwe i elastyczne konfigurowanie sieci,
- ekonomicznie uzasadnione udostępnianie usług,
- otwartość rozwiązań nastawioną na wielu dostawców sprzetu,
- pełne zarządzanie usługami (powoływanie, administrowanie, rozwijanie i nadzór).

Aby można było to zrealizować w sieci inteligentnej muszą wystąpić następujące elementy funkcjonalne odpowiedzialne za:

kreację usługi,

- zarządzanie usługą,
- zarządzanie siecią,
- sterowanie usługą,
- · komutacją usługi,
- komutację podstawową.

Funkcje te zostały umieszczone są w następujących <u>podstawowych elementach sieci inteligentnej:</u>

- > SMP (SMS) Service Management Point (System), punkt zarządzania usługami,
- > SCP Service Control Point, punkt sterowania usługami,
- > SSP Service Switching Point, punkt przełączania usług (między podstawowymi i inteligentnymi).

Nie sa to jedyne nowe elementy sieci IN.

Zatem aby dotychczasową sieć telekomunikacyjną przekształcić w sieć inteligentną należy przede wszystkim:

- 1. <u>wezły komutacyjne</u> (niekoniecznie wszystkie) dotychczasowej sieci telekomunikacyjnej <u>przekształcić w SSP</u> przez uzupełnienie oprogramowania,
- 2. <u>uzupełnić</u> sieć telekomunikacyjną <u>węzłami SCP</u>, ich liczba zależy od wielkości sieci i intensywności zapotrzebowania na usługi IN,
- 3. <u>uzupełnić</u> sieć telekomunikacyjną w <u>wezeł SMP</u>.

Pokazano to na kolejnym rysunku uwzględniając jednocześnie powiązania komunikacyjne tych dodatkowych elementów między sobą oraz z dotychczasową siecią telekomunikacyjną.

Uwaga: X.25 stosowano w pierwszych wersjach sieci IN ubiegłego wieku.

W związku z powyższym można wymienić ogólne wymagania na poszczególne dodatkowe elementy sieci inteligentnej.

Wymagania na węzeł komutacyjny niezbędne dla zrealizowania SSP:

- modułowa i otwarta struktura,
- strukturalizowane i otwarte oprogramowanie,
- styki komunikacyjne niezależne od rozwiązania sprzętu i oprogramowania.

Wymagania na węzeł SCP:

- system czasu rzeczywistego,
- baza danych czasu rzeczywistego,
- szybkie oprogramowanie komunikacyjne do SSP,
- zabezpieczenie transmisji danych do SMP,
- oprogramowanie aplikacyjne, które można łatwo zmieniać i wymieniać bez wpływu na działający system,
- · duża niezawodność,
- duża dostępność.

Wymagania na wezeł SMP:

- system wielodostępny,
- system otwarty,
- niezależność i przenośność oprogramowania użytkowego,
- odpowiednie oprogramowanie komunikacyjne,
- duża niezawodność,

W związku z nową koncepcją realizacji usług w sieci inteligentnej, pojawiają się nowi organizatorzy i użytkownicy tej sieci (podmioty). Są to:

- operator sieci w dotychczasowym rozumieniu właściciel sieci telekomunikacyjnej łącznie z wymienionymi punktami SSP, SCP i SMP,
- dostawca usługi inteligentnej to ten podmiot, który zaprojektował, oprogramował, zainstalował i udostępnił usługę,
- abonent uslugi inteligentnej to ten podmiot, który abonuje usługę,
- użytkownik usługi inteligentnej ten kto korzysta z tej usługi, jest to w dotychczasowym rozumieniu abonent sieci telekomunikacyjnej.

Przebieg realizacji usługi

Dla uzmysłowienia sobie zasady realizacji obsługi usługi sieci inteligentnej na kolejnym rysunku pokazano ogólny przebieg zainstalowanej w sieci inteligentnej prostej usługi, przy prezentacji której wymieniono równocześnie kolejne fazy tej obsługi.

Struktura oprogramowania IN

Na kolejnym rysunku wymieniono podstawowe składniki oprogramowania dla SMP, SCP i SSP.

W dalszej części zostaną wymienione podstawowe funkcje realizowane przez poszczególne elementy (punkty) sieci inteligentnej.

Funkcje przetwarzania w SMP

- administrowanie i testowanie kierowania ruchem
- określanie i przygotowywanie informacji statystycznych
- generowanie informacji o opłatach za usługi IN
- przetwarzanie wiadomości o błędach i alarmach
- administrowanie dużymi bazami danych

Funkcje współdziałania z operatorem sieci/dostawcą usług/abonentem usług:

- generowanie grafu kierowania ruchem
- sterowanie stanowiskiem operatorskim (styk stanowiska operatorskiego, dostęp PIN, zwykły dostęp)
- formatowanie rekordów danych komunikacyjnych (CDR) i ich transmisja do centrów komputerowych operatora sieci
- · sterowanie usługami użytkownika

Funkcje współpracy z SCP:

- transmisja grafów kierowania ruchem
- formulowanie i transmitowanie poleceń dla sterowania usługami i cechami usług
- przyjmowanie i gromadzenie informacji o połączeniu i danych statystycznych
- przyjmowanie i gromadzenie natychmiastowych informacji statystycznych
- przyjmowanie i przetwarzanie potwierdzeń i wiadomości statusów

Funkcje przetwarzania w SCP

- przetwarzanie grafów kierowania ruchem i określanie numerów docelowych
- zbieranie i generowanie informacji o połączeniu i informacji statystycznych
- detekcja sytuacji przeciążenia i określanie wystarczających pomiarów dla zabezpieczenia się przed ponownym przeciążeniem

Funkcje współpracy z SMP:

- przyjmowanie i przetwarzanie poleceń dla sterowania usługami i cechami usług
- transmisja informacji o połączeniu i statystykach
- transmisja potwierdzeń, statusów, błędów i alarmów
- przyjmowanie grafów kierowania ruchem

Funkcje współpracy z SSP:

- przyjmowanie zapytań
- formulowanie i transmitowanie odpowiedzi
- przyjmowanie i przetwarzanie wiadomości o zdarzeniach
- administrowanie opcji zliczania w SSP
- inicjowanie pomiarów aby zabezpieczyć się przed ponownym przeciążeniem

Funkcje przetwarzania w SSP

- przetwarzanie specyficznych danych komutacyjnych dla usługi IN
- nadzorowanie wszystkich transakcji

Funkcje współpracy z SCP:

- transmisja wiadomości o zdarzeniach (np. zajęty, nie odpowiada, koniec połączenia)
- formułowanie i transmisja żądań
- przetwarzanie żądań i odpowiedzi od SCP

Funkcje współpracy z siecią podstawową:

- przełączanie, które pozwala wykryć usługę dla IN (przez administrację określany jest profil przełączania dla każdej usługi, który jest dostarczany w postaci rekordu)
- zintegrowanie funkcji dla IN w sieci podstawowej (dotychczasowej sieci telekomunikacyjnej), włączając w to nadzorowanie wszystkich połączeń
- rejestrowanie danych statystycznych

Proces wprowadzania usługi

Bezpośredni dostęp do elementów sieci IN mają pierwsze trzy z wcześniej wymienionych podmiotów organizujących sieć i usługi IN. Są to:

- operator sieci,
- · dostawca usługi,
- abonent usługi.

Każdy z tych podmiotów postępuje według ściśle określonego algorytmu wynikającego z funkcji jakie mu zostały przydzielone w procesie wprowadzania usługi. Na rysunku pokazano te wzajemne zależności.

Oprogramowanie usług w SCP

Oprogramowanie usługi znajdujące się w SCP jest przygotowywane na zewnątrz tego punktu i dostarczane poprzez punkt SMP. Architektura tego oprogramowania jest taka, że określony jest zbiór funkcji elementarnych z których składa się program realizacji usługi. Struktura powiązań tych funkcji i ich parametrów dla określonej usługi jest zapisana w SLP. Jeżeli ma być wykonana jakaś usługa to ma ona swój SLP i on jest interpretowany przez SLI. Ogólnie tą zasadę konstrukcji i działania pokazano na rysunku.

SLI - Service Logic Interpreter

SLP - Service Logic Program

Funkcje elementarne = $\{A,B,C,D,I,K,L,V,Z\}$

usługa U1 = A+B+V+K

usługa U2 = B+L+A+C+I

Tworzenie oprogramowania usługi

Oprogramowanie tworzone i instalowane jest według ogólnego algorytmu, którego poszczególne kroki sa następujące:

- specyfikacja usługi (np. na PC) w języku SDL,
- translacja (np. na PC) z SDL na SLL,
- translacja z SLL na SLP,
- załadowanie SLP do SMP,
- rozesłanie SLP do SCP.

Pierwsze trzy kroki są realizowane w środowisku programistycznym poza elementami sieci inteligentnej. Jest to na ogół sieć LAN, MAN lub WAN z

odpowiednią platformą i narzędziami umożliwiającymi specyfikowanie, tłumaczenie i testowanie oprogramowania. Aktualnie każdy dostawca sprzętu do sieci inteligentnej ma własną platformę dla realizacji tych czynności.

SDL System Description Language (SDL PR wersja programowa, SDL GR wersja graficzna), jest to język opisu i specyfikacji.

SLL Service Logic Language, jest to język logiki usługi.

Procedura uaktualnia oprogramowania w SCP

Ponieważ gotowe oprogramowanie musi być ładowane do sieci inteligentnej, tzn. do punktu SCP, w czasie jego pracy, bez jakiegokolwiek przerywania dostarczania zainstalowanych już usług, konieczny jest specjalny i bezpieczny sposób zrealizowana czynność uaktualnia oprogramowania. Schematycznie jej przebieg przedstawiono na rysunku.

Przykładowe usługi sieci inteligentnej

Dla prostego i szybkiego rozróżnienia w punkcie SSP usług podstawowych od usług inteligentnych przyjęto określone zasady numeracji. Otóż w Polsce punkty SSP są powiązane z węzłami komutacyjnymi na poziomie międzymiastowym. Zatem wybór numeru usługi inteligentnej poprzedzony jest zerem a następnie jest prefix, który mówi że mamy usługę inteligentną. Zaczyna się on na 7 lub 8 i ogólnie mówi się o usługach na 700 lub 800. Mogą być odstępstwa od tej zasady z uwagi na zasady numeracji wymuszone przez wprowadzenie sieci abonentów mobilnych – brak prefiksów międzymiastowych i stąd wynikające konsekwencje ujednolicenia numeracji dla abonentów stacjonarnych i mobilnych.

Lista usług może się zmieniać, jednakże niektóre z nich są na stałe zainstalowane. Zgodnie z podaną wcześniej zasadą każdy może wprowadzić usługę do sieci inteligentnej pod jednym warunkiem, że zachowany będzie odpowiedni algorytm postępowania wszystkich podmiotów biorących w tworzeniu tej usługi. W tym procesie obok aspektów technicznych istnieją także aspekty prawne regulowane oddzielnymi normami czy aktami.

Przykładowe nazwy usług sieci inteligentnej:

- ✓ Automatyczny Alternatywny Biling Automatic Alternative Billing,
- ✓ Bezwarunkowe Przekierowywanie Zgłoszeń wraz z Zapowiedzią Call Forwarding Unconditional with Announcement,
- ✓ Uniwersalna Telekomunikacja Personalna Universal Personal Telecommunication,
- ✓ Prywatna Sieć Wydzielona Virtual Private Network,
- ✓ Dzwonienie na Konto Karty Kredytowej Virtual Card Calling,
- ✓ Identyfikacja Wywołań Złośliwych Malicious Call Identification,
- ✓ Teleglosowanie Televoting,
- ✓ Uniwersalny Numer Dostępu Universal Access Number,
- ✓ itd.

Oczywiście wszystkie różnego rodzaju numery na 800 oraz różnego rodzaju gry na 700 są także obsługiwane poprzez sieć inteligentną.

Ważne!!!

Jak na późniejszych wykładach się dowiemy idea wprowadzona w IN zostanie zastosowana do wprowadzenia klasycznych usług telekomunikacyjnych w sieci z protokołem IP!!!