

SEQUENCE LISTING

```

<110> Kinney, Anthony
<120> Hypoallergenic Transgenic Soybeans
<130> BB1432 US NA
<140>
<141>

<150> 60/189,823
<151> 16 MARCH 2000

<160> 16

<170> Microsoft Office 97

<210> 1
<211> 1156
<212> DNA
<213> chimeric construct

<400> 1
ggccgcgcatt gggtttccctt gtgttgcttc ttttccctt cttaggcttc ttttctatgtt 60
ccacgatatac aactcatcgat tcacatattgg accttgcacctt accaaagtttt accacacaga 120
aacagggtgtc ttcaactgttcc caactatggaa agagtgagca ttggacgtgtc taccataacc 180
acgaaggaaaga ggcaaaagaga cttagatgtt ccataaataat cttcgaaactt atccaggggaca 240
ttgtatgttccaa caaaaatca cccatcttc atccatgtttagg atttgcacaaatg ttttgtgtaca 300
tcatacttcata agatgttccggc aaaaatgttact ttcaagatgtcc caaggatgtg ttggcagaaaa 360
tccaaatggc caacaagaaa aacaaaggaaagg aacaatatttc ttgtgtaccat ccacatgtcat 420
catggggatgtt gggggaaaaaa ggtgttccatca cccaaatgttacc ttaccaagggg ggctgtggaa 480
gggggttggcc gtttttccgtcc acggggggccca tagaaaggccgc acatgcacataa ggaaacaggag 540
acatgtttagt ctttttccgttca caaaaatgttccgc tagatgttgcgtt qggaaaggaaatc 600
acaatggatgtt gcatgttccatca tcgtgttccgtt ggggttttgc acatgggttgc attggcaactt 660
atgtatgttccatca tcgttccatca gcttaaaggagg gttatgttccatca acatgttccatca 720
aggttccatcaat tcgttccatca gaaatcttca taatgttccatca tgagatgttccatca 780
cagagcaacgc gtttttccatca gcccatttccgtt acatgttccatca atgttccatca 840
agatgttccatca ttatcatacc cggggatgttacc atgttccatca gaaatgttccatca 900
ggatgttccatca ctttttccatca ttgtgtgggtt atgttccatca ggttgcggc ggttgcgttgc 960
tagggaaaaaa ttcatggggaa gaagatgggg gagaagatgg ttacatgttccatca 1020
acacggggtaa ttatcatggggaa gaagatgggg gagaagatgg ttacatgttccatca 1080
agaatgttccatca aacactgttccatca ttttttccatca ttgtgtgggtt atgttccatca 1140
ctttttccatca gggccgc 1156

<210> 2
<211> 2970
<212> DNA
<213> chimeric construct

<400> 2
aaggatgttccatca catggcccttc atttgcgcgtt attaattaaat ttggtaacac tagtgcgtac 60
taatcatgttccatca ttatcatgttccatca attaattatgttccatca ttggtaacac tagtgcgtac 120
actgttccatca ttatcatgttccatca attaattatgttccatca ttggtaacac tagtgcgtac 180
ggagatgttccatca ttatcatgttccatca ttggtaacac tagtgcgtac 240
acacgtgttccatca ttatcatgttccatca ttggtaacac tagtgcgtac 300
ctggccatccatca aacactgttccatca ttggtaacac tagtgcgtac 360
aaacatgttccatca ttatcatgttccatca ttggtaacac tagtgcgtac 420
caaactgttccatca ttatcatgttccatca ttggtaacac tagtgcgtac 480
ttccatcatgttccatca ttggtaacac tagtgcgtac 540

```

aatctcgccc	cagggtttca	tcatcaaga	ccaggttcaat	atcttagtac	accgttataa	600
agaattttaa	ataataaca	aggccgcoa	tggttttcct	tttgtgtct	ttttttcccc	660
tcttagtgtc	ctcttcgtat	tccggatata	caatcatcg	ttccattatc	gacccgttgc	720
taaccaaagt	taccacacag	aaacagggt	cttcaactgt	ccaatcatgg	aaggagtggc	780
atggacgtgt	ctaccataaa	cacggaaag	aggcaaaagag	acttgaggat	tttcaagaata	840
actcgacta	tatccggac	ataatggca	acaaaaataa	acccatctat	catcggttag	900
gattgaacaa	gttggctgac	atcatacccte	aagggttca	aaaaaaagtac	ttgcaagctc	960
ccaaaggatgt	gtgcgcgcaa	atccaaaatttg	ccaaacaaaga	atgtaaagaag	gaaacaataa	1020
cttggacca	tccaccatgc	atctggat	ggggaaaaaa	agggttgcata	acccaaatgtt	1080
agtaccaaagg	gggtctgtga	agggggttgg	cttttttcgc	cacggggaccc	atagaagcag	1140
cacatgcata	agcaacaggd	gacggcttta	gcctttctga	acaagaacta	gtatgactgt	1200
ttgaaagaaag	cgaaaggttct	tacaatggat	ggcagatctta	atcggttcaa	tgggttttag	1260
aacatgggg	cattggccat	gtatgtatgg	atcccttacag	agcttadaagag	ggtagatgtca	1320
aggccaaataa	gatacacaac	aaaggtttcaa	tggatggatca	tgaactactt	atataatgtca	1380
atgagatgtac	agaatccag	acagagcaag	cggttcttaa	cgccatctt	gaccaaccaa	1440
ttatgttctc	aatttgtatca	aaaggatttt	attttatcac	ccccggggat	ttatgtggat	1500
aaaatctgtac	aagtccgtat	gggatataatc	atctttttt	acttggggtt	ttatgtttgc	1560
cggatgttgt	agatattactg	atagccaaaa	atcatgggg	agaagatgg	ggagaatgg	1620
gttacatttgc	gttaccaaa	aaacagggtt	atttattttg	agttgttgg	atgttttttt	1680
tcgtccatca	cccaaaaaaa	ggagaatcag	aaacactgtt	gtctgttcgc	ttttaaaaggtc	1740
atcgaagatgt	tgatcaactt	ctttttttgg	cgccggccgt	atggccacgt	gtatgtttca	1800
ttgaactaaa	tgcattgttag	ttgtatggct	catggagac	atggatattt	gtatccgaco	1860
atgttaacagt	ataataactg	agctccatct	cactttttct	atgaaataac	aaaggatgtt	1920
atgtatattat	aacacttcat	ctatgcacct	tatgttttct	ttgatataat	cttcttttta	1980
tttataataca	tgcattgtat	ggggctttat	ggaaatgttc	aaatagatca	aaaacaaatca	2040
tgtactataa	gacttttatt	aaactttctaa	ctttagattt	gtgaacgaga	cataatgtt	2100
aagaagacat	aaacatttata	atggaaagag	tttttttttt	tttatattat	atataattttc	2160
cactttatgt	tttatttttt	atgtttaagg	gacataacaa	tttataaaag	agaatgtttt	2220
atccattttat	atattatata	ctaccctttt	atttattttt	ttatcttact	ttatataatgt	2280
ctttataaagg	ttttatgtccat	gatattttta	atattttttt	ttatgtatgt	atgttttttt	2340
actattttga	cttttttttt	ctgtatataaag	tttggatcat	cttttttttt	gttttttttt	2400
attttttttt	tttttttttt	tttttttttttt	tttttttttt	tttttttttt	tttttttttt	2460
gattttttttt	tttttttttt	tttttttttttt	tttttttttt	tttttttttt	tttttttttt	2520
gattttttttt	tttttttttt	tttttttttttt	tttttttttt	tttttttttt	tttttttttt	2580
tataacattt	atcttataaa	aaatgtttat	tttttttttt	tttttttttt	tttttttttt	2640
gctggacgac	tctcaattat	ttttaacacg	tttttttttt	tttttttttt	tttttttttt	2700
caattatttt	ttttaacacta	ttgtatggat	tttttttttt	tttttttttt	tttttttttt	2760
attaatggaa	gacaaatgtgt	tgcccaatct	ttatataac	caactttttcc	aaaggaaatgt	2820
atgtcagatgt	aaaaaaaat	tttttttttt	tttttttttt	tttttttttt	tttttttttt	2880
tgccatataat	atgcgtttaa	acactacaca	tttttttttt	tttttttttt	tttttttttt	2940
ccgttgttctt	agcttttttt	tttttttttt	tttttttttt	tttttttttt	tttttttttt	2970
gaaatcaatc	aggatgtttt	tttacacca	tttttttttt	tttttttttt	tttttttttt	

<210> 3
<211> 1600

<212> DNA
<213> Glycine max

aggatgagga ggagaagcaa acaagttagt catggaggaa gctcttgaa accgtattt 780
 ggaaggtgaa tgagaagata gagaacaaag acactgtgg ttccctgc tttacaacc 840
 tctacgatg caaaaaaagcc gatccaaaaa acgccttatgg ttggagcaag gcactgcatt 900
 gaggcgatg tccctcactc aegcaaccgg atattggat ttactgttc aaactctcag 960
 cgggatccat gttggcacct catgtaaatc caatatcaga tgagatacc atatgtctga 1020
 gtggttatgg tgaactgtat atagggtatc caaaacggaa caaagcaatg aaaactaaaa 1080
 tcaaaacaagg ggacgtgtt gtgtgtccaa gatactccc ctctgtcaa gtagcatcaa 1140
 gggatggacc ctttagagttc tttggctct ccactctgc aaggaagaac aagccacagt 1200
 ttctggctgg tgcgtgcgtcc ctcttaagga ccttggatggg gccggagctt tcggccggct 1260
 tcggcatgtgg cgaggacacg ttgcggcgcc ctgtgtatgc tcagcatgat gctgtatgac 1320
 tgccatcagc atgggctgc cccacccggaa atgcaggaa gctgaagatg gaagaagacg 1380
 caaatgtcat tagaaatgtt gccaatgtatg tggttatggg tggtttttaa ttgttgact 1440
 tgatgttggaa taggggttat ttgtgtatgc tagtgcttag tggaattctg tggtagtt 1500
 ttgttgttctt atatttagt gatgtgtt ttgtgttctt gagttgtgaa taaaaatcta 1560
 ttgttgttctt gcarraaaaaaaa aaaaaaaaaaaa 1600

<210> 4
 <211> 454
 <212> PRT
 <213> Glycine max

<400> 4
 Met ala Phe Arg Asp Asp Glu Gly Gly Asp Lys Lys Ser Pro Lys Ser
 1 5 10 15
 Leu Phe Leu Met Ser Asn Ser Thr Arg Val Phe Lys Thr Asp Ala Gly
 20 25 30
 Glu Met Arg Val Leu Lys Ser His Gly Gly Arg Ile Phe Tyr Arg His
 35 40 45
 Met His Ile Gly Phe Ile Ser Met Glu Pro Lys Ser Leu Phe Val Pro
 50 55 60
 Gln Tyr Leu Asp Ser Asn Leu Ile Ile Phe Ile Arg Arg Gly Glu Ala
 65 70 75 80
 Lys Leu Gly Phe Ile Tyr Asp Asp Glu Leu Ala Glu Arg Arg Leu Lys
 85 90 95
 Thr Gly Asp Leu Tyr Met Ile Pro Ser Gly Ser Ala Phe Tyr Leu Val
 100 105 110
 Asn Ile Gly Glu Gly Gln Arg Leu His Val Ile Cys Ser Ile Asp Pro
 115 120 125
 Ser Thr Ser Leu Gly Leu Glu Thr Phe Gln Ser Phe Tyr Ile Gly Gly
 130 135 140
 Gly Ala Asn Ser His Ser Val Leu Ser Gly Phe Glu Pro Ala Ile Leu
 145 150 155 160
 Glu Thr Ala Phe Asn Glu Ser Arg Thr Val Val Glu Glu Ile Phe Ser
 165 170 175
 Lys Glu Leu Asp Gly Pro Ile Met Phe Val Asp Asp Ser His Ala Pro
 180 185 190
 Ser Leu Trp Thr Lys Phe Leu Gln Leu Lys Lys Asp Asp Lys Glu Gln
 195 200 205

Gln Leu Lys Lys Met Met Gln Asp Gln Glu Glu Asp Glu Glu Glu Lys
 210 215 220
 Gln Thr Ser Arg Ser Trp Arg Lys Leu Leu Glu Thr Val Phe Gly Lys
 225 230 235 240
 Val Asn Glu Lys Ile Glu Asn Lys Asp Thr Ala Gly Ser Pro Ala Ser
 245 250 255
 Tyr Asn Leu Tyr Asp Asp Lys Lys Ala Asp Phe Lys Asn Ala Tyr Gly
 260 265 270
 Trp Ser Lys Ala Leu His Gly Gly Glu Tyr Pro Pro Leu Ser Glu Pro
 275 280 285
 Asp Ile Gly Val Leu Leu Val Lys Leu Ser Ala Gly Ser Met Leu Ala
 290 295 300
 Pro His Val Asn Pro Ile Ser Asp Glu Tyr Thr Ile Val Leu Ser Gly
 305 310 315 320
 Tyr Gly Glu Leu His Ile Gly Tyr Pro Asn Gly Ser Lys Ala Met Lys
 325 330 335
 Thr Lys Ile Lys Gln Gly Asp Val Phe Val Val Pro Arg Tyr Phe Pro
 340 345 350
 Phe Cys Gln Val Ala Ser Arg Asp Gly Pro Leu Glu Phe Phe Gly Phe
 355 360 365
 Ser Thr Ser Ala Arg Lys Asn Lys Pro Gln Phe Leu Ala Gly Ala Ala
 370 375 380
 Ser Leu Leu Arg Thr Leu Met Gly Pro Glu Leu Ser Ala Ala Phe Gly
 385 390 395 400
 Val Ser Glu Asp Thr Leu Arg Arg Ala Val Asp Ala Gln His Glu Ala
 405 410 415
 Val Ile Leu Pro Ser Ala Trp Ala Ala Pro Pro Glu Asn Ala Gly Lys
 420 425 430
 Leu Lys Met Glu Glu Pro Asn Ala Ile Arg Ser Phe Ala Asn Asp
 435 440 445
 Val Val Met Asp Val Phe
 450
 <210> 5
 <211> 494
 <212> DNA
 <213> Glycine max
 <400> 5
 acacagctng cacatattac atacacgtga atcactaatt aagccatgga gaagaaatca 60
 atatgcgttg tttgttgcct cttcccttgtt ctcttttgtt ctcagaatgt ttgttgtgcaa 120
 actggggcaa agacttgcgaa gaaacctggct gatacataca ggggtccatg cttcaccaact 180
 ggcagctgcg atgatcactg caagaacaaa gagcaacttgc tcagaggcag atgcaggagc 240
 gattttcgtt gtgttgtgcac caaaaactgt taaatggatc cattcactcc aacgtgaaga 300

agaatgcattgc agcgttattataaaaaat acaactacta tatactatata ataataagac 360
tggcgctgc atcaatgacc ctatgtanta tnnttatata tattaccat gtcaagaact 420
atagatgcat gtactgtgca taacggctga gttatgtccn tangttanga ataaaaataa 480
agtgcgttgc ttgc 494

<210> 6
<211> 75
<212> PRT
<213> Glycine max

<400> 6
Met Glu Lys Lys Ser Ile Ala Gly Leu Cys Phe Leu Phe Leu Val Leu
1 5 10 15

Phe Val Ala Gln Glu Val Val Val Gln Thr Glu Ala Lys Thr Cys Glu
20 25 30

Asn Leu Ala Asp Thr Tyr Arg Gly Pro Cys Phe Thr Thr Gly Ser Cys
35 40 45

Asp Asp His Cys Lys Asn Lys Glu His Leu Leu Arg Gly Arg Cys Arg
50 55 60

Asp Asp Phe Arg Cys Trp Cys Thr Lys Asn Cys
65 70 75

<210> 7
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: P34 gene primer

<400> 7
gaatttcgcgg cccgcattgggt ttccttgtgt 30

<210> 8
<211> 30
<212> DNA
<213> Glycine max

<220>
<223> Description of Artificial Sequence: P34 gene primer

<400> 8
gaatttcgcgg cccgcattaaag aggagagtga 30

<210> 9
<211> 701
<212> DNA
<213> Glycine max

<400> 9
ttaaatgtttc aaagagacaaa ctgttttggaa aatgggatc caagggttgtt gcattccgtt 60
ccctttcttctt ccacatcaac atttttttca tttccatgtt tagtccacgc agccactacg 120
atccacagcc ccaaccccttcc acgtcaactg ctcttattac acgacctatgt tgccggatc 180
ttagtatttg ctccatattt tttaggcgggtt ctcttagaaac cgtggatgtat tggtgtgcc 240
tcatcggtgg ttcttgggttac attgaacca ttgtgtgcct ttgcattcaa ctcaggcccc 300
tcggaatattt aaacccatcaac cgtatatttgc agttaatattt aaactccctgt ggacgaagct 360

accctgtcaaa cgccacttgc cccccgaaacct aagaacagaaa tatgttatggc actaattacc 420
atatacttc gtatcatgtt gtttttttgt ttgtctgtt ttaaagttaa ggatgttata 480
cccttcgtgc ctgtcacata tatatagtgg gcactataat attacaata aattaacgtc 540
catatataaa aataaataaa aataaataaa tattttctata caaataaagg ttacgttaatg 600
ttgtttttctt cgtggatgg gatcttatct tcctccgtc tatctttgtt tatctgtt 660
cagtgaaagt tgttcaataa aagtcccttg ttcaacaagt g 701

<210> 10
<211> 119
<212> PRT
<213> Glycine max

<400> 10
Met Gly Ser Lys Val Val Ala Ser Val Ala Leu Leu Leu Ser Ile Asn
1 5 10 15

Ile Leu Phe Ile Ser Met Val Ser Ser Ser His Tyr Asp Pro Gln
20 25 30

Pro Gln Pro Ser His Val Thr Ala Leu Ile Thr Arg Pro Ser Cys Pro
35 40 45

Asp Leu Ser Ile Cys Leu Asn Ile Leu Gly Gly Ser Leu Gly Thr Val
50 55 60

Asp Asp Cys Cys Ala Leu Ile Gly Gly Leu Gly Asp Ile Glu Ala Ile
65 70 75 80

Val Cys Leu Cys Ile Gln Leu Arg Ala Leu Gly Ile Leu Asn Leu Asn
85 90 95

Arg Asn Leu Gln Leu Ile Leu Asn Ser Cys Gly Arg Ser Tyr Pro Ser
100 105 110

Asn Ala Thr Cys Pro Arg Thr
115

<210> 11
<211> 396
<212> DNA
<213> Glycine max

<400> 11
atgtcggtggc aagtttatgt cgacgatcac cttctgtgtg gcatcgaaagg taaccacctc 60
actcacgtcg ctatcatcggtt ccaagacggc agcggttggc ttccagatgtc cgactccct 120
cagttcaaac ctggaggagat aactggccatc ataatgtactt ttaatgagcc ttggatcaactt 180
gctccaactg gattgtatctt cgggtggcacc aaatatatgg ttcattccaggg tgaacccgg 240
gctgtcattt cggggaaaaa ggggtctgtt ggtgttactg tgaagaaagac cgggtggccc 300
ttgatcatggt qcattttatgtt tgaaccaatgg actccaggtc aatgcaacat ggttagttgaa 360
aggcttgggtt attacccatc agatcaaggc tactgtt 396

<210> 12
<211> 131
<212> PRT
<213> Glycine max

<400> 12
Met Ser Trp Gln Ala Tyr Val Asp Asp His Leu Leu Cys Gly Ile Glu
1 5 10 15

Gly Asn His Leu Thr His Ala Ala Ile Ile Gly Gln Asp Gly Ser Val
20 25 30

Trp Leu Gln Ser Thr Asp Phe Pro Gln Phe Lys Pro Glu Glu Ile Thr
35 40 45

Ala Ile Met Asn Asp Phe Asn Glu Pro Gly Ser Leu Ala Pro Thr Gly
50 55 60

Leu Tyr Leu Gly Gly Thr Lys Tyr Met Val Ile Gln Gly Glu Pro Gly
65 70 75 80

Ala Val Ile Arg Gly Lys Lys Gly Pro Gly Gly Val Thr Val Lys Lys
85 90 95

Thr Gly Ala Ala Leu Ile Ile Gly Ile Tyr Asp Glu Pro Met Thr Pro
100 105 110

Gly Gln Cys Asn Met Val Val Glu Arg Leu Gly Asp Tyr Leu Ile Asp
115 120 125

Gln Gly Tyr
130

<210> 13

<211> 396

<212> DNA

<213> Glycine max

<400> 13

atgttcctggc aggccgtatgt cgacgatcac cttctgtgtg acatcgaaagg taaccaccc 60
actcacgtcg ctatcatcg ccaagacggc agcgtttggg ctcagagttc cgactccct 120
cagtccaaac ctgaggagat aactgcattt ataatgact ttatgagcc tggatcaactt 180
gctccaaactt gattgtatctt cggtgccacc aataatatgg tcatccaggg tgaacccgg 240
gctgtcattt gaggaaagaa gggctctggt ggtgttactg tgaagaagac cggtgccggcc 300
ttgtatcatggt gcatttatgtt tgaaccaatg actccaggatc aatgcaacat ggttagttgaa 360
aggccctggtg attacctcat cgaccaggcc tactga 396

<210> 14

<211> 131

<212> PRT

<213> Glycine max

<400> 14

Met Ser Trp Gln Ala Tyr Val Asp Asp His Leu Leu Cys Asp Ile Glu
1 5 10 15

Gly Asn His Leu Thr His Ala Ala Ile Ile Gly Gln Asp Gly Ser Val
20 25 30

Trp Ala Gln Ser Thr Asp Phe Pro Gln Phe Lys Pro Glu Glu Ile Thr
35 40 45

Ala Ile Met Asn Asp Phe Asn Glu Pro Gly Ser Leu Ala Pro Thr Gly
50 55 60

Leu Tyr Leu Gly Gly Thr Lys Tyr Met Val Ile Gln Gly Glu Pro Gly
65 70 75 80

Ile Gln Lys Leu Asn Ala Leu Lys Pro Gly Asn Arg Ile Glu Ser Glu
 35 40 45
 Gly Gly Leu Ile Glu Thr Trp Asn Pro Asn Asn Lys Pro Phe Gln Cys
 50 55 60
 Ala Gly Val Ala Leu Ser Arg Cys Thr Leu Asn Arg Asn Ala Leu Arg
 65 70 75 80
 Arg Pro Ser Tyr Thr Asn Gly Pro Gln Glu Ile Tyr Ile Gln Gln Gly
 85 90 95
 Lys Gly Ile Phe Gly Met Ile Tyr Pro Gly Cys Ser Ser Thr Phe Glu
 100 105 110
 Glu Pro Gln Gln Pro Gln Gln Arg Gly Gln Ser Ser Arg Pro Gln Asp
 115 120 125
 Arg His Gln Lys Ile Tyr Asn Ser Arg Glu Gly Asp Leu Ile Ala Val
 130 135 140
 Pro Thr Gly Val Ala Trp Trp Met Tyr Asn Asn Glu Asp Thr Pro Val
 145 150 155 160
 Val Ala Val Ser Ile Ile Asp Thr Asn Ser Leu Glu Asn Gln Leu Asp
 165 170 175
 Gln Met Pro Arg Arg Phe Tyr Leu Ala Gly Asn Gln Glu Gln Phe
 180 185 190
 Leu Lys Tyr Gln Gln Glu Gln Gly His Gln Ser Gln Lys Gly Lys
 195 200 205
 His Gln Gln Glu Glu Asn Glu Gly Ser Ile Leu Ser Gly Phe
 210 215 220
 Thr Leu Glu Phe Leu Glu His Ala Phe Ser Val Asp Lys Gln Ile Ala
 225 230 235 240
 Lys Asn Leu Gln Gly Glu Asn Glu Gly Glu Asp Lys Gly Ala Ile Val
 245 250 255
 Thr Val Lys Gly Leu Ser Val Ile Lys Pro Pro Thr Asp Glu Gln
 260 265 270
 Gln Gln Arg Pro Gln Glu Glu Glu Glu Glu Asp Glu Lys Pro
 275 280 285
 Gln Cys Lys Gly Lys Asp Lys His Cys Gln Arg Pro Arg Gly Ser Gln
 290 295 300
 Ser Lys Ser Arg Arg Asn Gly Ile Asp Glu Thr Ile Cys Thr Met Arg
 305 310 315 320
 Leu Arg His Asn Ile Gly Gin Thr Ser Ser Pro Asp Ile Tyr Asn Pro
 325 330 335
 Gln Ala Gly Ser Val Thr Thr Ala Thr Ser Leu Asp Phe Pro Ala Leu
 340 345 350

Ser Trp Leu Arg Leu Ser Ala Gly Phe Gly Ser Leu Arg Lys Asn Ala
355 360 365

Met Phe Val Pro His Tyr Asn Leu Asn Ala Asn Ser Ile Ile Tyr Ala
370 375 380

Leu Asn Gly Arg Ala Leu Ile Gln Val Val Asn Cys Asn Gly Glu Arg
385 390 395 400

Val Phe Asp Gly Glu Leu Gln Glu Gly Arg Val Leu Ile Val Pro Gln
405 410 415

Asn Phe Val Val Ala Ala Arg Ser Gln Ser Asp Asn Phe Glu Tyr Val
420 425 430

Ser Phe Lys Thr Asn Asp Thr Pro Met Ile Gly Thr Leu Ala Gly Ala
435 440 445

Asn Ser Leu Leu Asn Ala Leu Pro Glu Glu Val Ile Gln His Thr Phe
450 455 460

Asn Leu Lys Ser Gln Gln Ala Arg Gln Ile Lys Asn Asn Asn Pro Phe
465 470 475 480

Lys Phe Leu Val Pro Pro Gln Glu Ser Gln Lys Arg Ala Val Ala
485 490 495