

Fall 2016 BSM 203 Logic Circuits Final Exam Solutions

- 1. For the circuit given in the work sheet, answer the following questions.
 - a. Derive the FF input equations (D, T), FF next state equations (A⁺ and B⁺), and output equation (Z).

$$D = X'F_1 + XF_2 = X'(X + B) + X(X'A) = X'B T = D' = X + B'$$

$$A^{+} = D = X'B B^{+} = T'B + TB' = (X'B)B + (X + B')B' = X'B + XB' + B' = X'B + B' = X' + B'$$

$$Z = m_1 = AB'(X'B' + XB) = X'AB'$$

- b. Is this a Mealy Machine or Moore Machine? Explain your answerin one sentence below. This is a Mealy machine, because output depends on both the input and FF outputs.
- c. Construct the state transition table, next state table, and state graph below.

Next-State Table				
AB	A ⁺ B ⁺		2	7_
	X = 0 X = 1		X =0	X= 1
00	01	01	0	0
01	11	00	0	0
11	11	00	0	0
10	01	01	1	0

State-Transition Table					
		put			
X = 0	X = 0	X = 1			
S ₁	S ₁	0	0		
S_2	S_0	0	0		
S ₂	S_0	0	0		
S_1	S_1	1	0		
	$X = 0$ S_1 S_2 S_2	Next $X = 0$ $X = 1$ S_1 S_1 S_2 S_0 S_2 S_0			

As you may notice, S_1 and S_2 are equivalent states. Thus we can remove S_2 , then the state graph is below:

d. Complete the timing chart shown below for the circuit for an input sequence X as shown in the chart below and the clock period 12ns. Assume that T-FF is rising-edge and D-flip flop is falling-edge triggered, that initially A = B= 0, and that X changes midway between the rising and falling clock edges. The delays in ROM, decoder, and MUXare 1 ns for each and delay in each FF is 2 ns. The delay in XOR gate is negligible.

2. Please indicate which question you solved (2.1 or 2.2):2.1(This is basically a sequence detector for either 011 or 110.

For Mealy Machine

Step 1: Derive the state graph

Step 2: Construct state-transition table

State-Transition Table				
Present	Next State			Z
	X = 0	X = 1	X = 0	X =1
S ₀	S ₁	S ₃	0	0
S_1	S_1	S ₂	0	0
S ₂	S ₁	S ₄	0	1
S ₃	S ₁	S ₄	0	0
S ₄	S_1	S_4	1	0

Step 3: Decide how many FFs required and construct next-state table

Next-State Table				
ABC	$A^{\dagger}B^{\dagger}C^{\dagger}$		2	7
	X = 0	X = 1	X = 0	X =1
000	001	011	0	0
001	001	010	0	0
010	001	100	0	1
011	001	100	0	0
100	001	100	1	0

Step 4: Decide the type of FF you use and derive the FF input equations and output equation.

Z = X'A + XBC'

For D Flip-Flop:
$$D_A = X(A + B)$$
; $D_B = XA'B'$; $D_C = X' + A'B'C'$

For T Flip-Flop: $T_A = X'A + XB$; $T_B = A+(X+B)$;

For J-K FF:
$$J_A = XB$$
 $K_A = X'$ (or B) $J_B = XA'$ $K_B = 1$ $J_C = X' + B'$ $K_C = 1$

 $T_C = (X \oplus C)' + A'B'C'$

Surely in answers, just equations are not sufficient, Karnaugh maps should be here as well.

For Moore Machine

Step 1: Derive the state graph

Step 2: Construct state-transition table

State-Transition Table				
Present	Next	State	Z	
	X = 0	X = 1		
S_0	S ₁	S_4	0	
	S ₁	S_2	0	
S ₁ S ₂	S ₁	S_3	0	
S ₃	S_6	S ₅	1	
	S ₁	S ₅	0	
S ₄ S ₅ S ₆	S ₆	S ₅	0	
S ₆	S ₁	S_2	1	

Step 3: Decide how many FFs required and construct next-state table

Next-State Table				
ABC	$A^{\dagger}B^{\dagger}C^{\dagger}$		Z	
	X = 0 X = 1			
000	001	100	0	
001	001	010	0	
010	001	011	0	
011	110	101	1	
100	001	101	0	
101	110	101	0	
110	001	010	1	

Step 4: Decide the type of FF you use and derive the FF input equations and output equation.

 $Z = A'BC + ABC' = B(A \oplus C)$

For D Flip-Flop:
$$D_A = C(A + B) + XB'C'$$
; $D_B = X(BC' + A'B'C) + X'C(A + B)$; $D_C = X'(C' + A'B') + A(X \oplus B)$

For T Flip-Flop:
$$T_A = B(A + C) + C'(XA'B' + X'A)$$
; $T_B = C(X \oplus A) + X'BC$; $T_C = X'(A + C) + C'(A \oplus B) + XA'B'C$

For J-K FF:
$$J_A = BC + XB'C'$$
 $K_A = B + X'C'$ $J_B = C(X \oplus A)$ $K_B = (X \oplus C)'$ $J_C = X' + (A \oplus B)$ $K_C = X \oplus (A + B)$

Surely in answers, just equations are not sufficient, Karnaugh maps should be here as well.

2. Please indicate which question you solved (2.1 or 2.2): 2.2 sequence detector for 0010.

For Mealy Machine

Step 1: Derive the state graph

Step 2: Construct state-transition table

State-Transition Table					
Present	Next	State	7	Z	
	X = 0	X = 1	X = 0	X =1	
S ₀	S ₁	S_0	0	0	
S ₁	S ₂	S_0	0	0	
S ₂	S ₂	S ₃	0	0	
S ₃	S ₁	S ₀	1	0	

Step 3: Decide how many FFs required and construct next-state table

Next-State Table				
AB	A [†]	B ⁺	7	Z
	X = 0	X = 1	X = 0	X =1
00	01	00	0	0
01	11	00	0	0
11	11	10	0	0
10	10	00	1	0

Step 4: Decide the type of FF you use and derive the FF input equations and output equation.

Z = X'AB'

For D Flip-Flop: $D_A = B(X' + A)$; $D_B = X'$;

For T Flip-Flop: $T_A = AB' + X'A'B$; $T_B = (X \oplus B)'$;

For J-K FF: $J_A = X'B$ $K_A = B'$ $J_B = X'$ $K_B = X$

Surely in answers, just equations are not sufficient, Karnaugh maps should be here as well.

For Moore Machine

Step 1: Derive the state graph

Step 2: Construct state-transition table

State-Transition Table				
Present	Next State		Z	
	X = 0	X = 1		
S_0	S_1	S_0	0	
S ₁	S_2	S_0	0	
S ₂	S_2	S_3	0	
S ₃	S_4	S_0	0	
S_4	S_2	S_0	1	

Step 3: Decide how many FFs required and construct next-state table

Next-State Table				
ABC	$A^{\dagger}B^{\dagger}C^{\dagger}$		Z	
	X = 0	X = 1		
000	001	000	0	
001	010	000	0	
010	010	011	0	
011	100	000	0	
100	010	000	1	

Step 4: Decide the type of FF you use and derive the FF input equations and output equation.

Z = AB'C'

For D Flip-Flop: $D_A = X'BC$; $D_B = BC' + X'(A + B'C)$; $D_C = C'(X'A'B' + XB)$

For T Flip-Flop: $T_A = A + X'BC$ $T_B = BC + X'(A + B)$ $T_C = C + XB + X'A'B'$

For J-K FF: $J_A = X'BC$ $K_A = 1$ $J_B = X'(A + C)$ $K_B = C$ $J_C = X'A'B' + XB$ $K_C = 1$

Surely in answers, just equations are not sufficient, Karnaugh maps should be here as well.