CHECK CHECK

수준별 자료집 (하) 기초편 | 계산력 문제가 더 필요한 학생들! 하위반 학생들의 숙제 또는 테스트용으로!

계산력 추가 문제

1. 유리수와 순환소수	2
2. 식의 계산	4
3. 일차부등식	8
4. 연립일차방정식	10
5. 일차함수와 그래프 (1)	12
6. 일차함수와 그래프 (2)	15
7. 일차함수와 일차방정식의 관계	17

이 아래 〈보기〉의 수에 대하여 다음을 모두 구하시오.

-2.3, $\frac{10}{2}$, -4, 0, 4.8, $-\frac{1}{3}$, $\frac{12}{5}$, 1

- (1) 자연수
- (2) 정수
- (3) 음의 유리수
- (4) 유리수
- **02** 다음 분수를 소수로 나타내고, 유한소수와 무한소수로 구분하시오.
 - $(1)\frac{2}{15}$
- $(2)\frac{9}{12}$
- $(3)\frac{11}{20}$
- $(4)\frac{7}{18}$
- **03** 다음 순환소수의 순환마디를 말하고, 점을 찍어 간단히 나타내시오.
 - $(1) 0.272727 \cdots$
 - (2) 3.162162162...
 - (3) 4.014014014...

04 다음은 분수의 분모를 10의 거듭제곱으로 고쳐서 유한 소수로 나타내는 과정이다. ☐ 안에 알맞은 수를 써넣 으시오

$$(1)\frac{4}{5} = \frac{4 \times \square}{5 \times \square} = \frac{\square}{10} = \square$$

$$(2)\frac{7}{20} = \frac{7}{2^2 \times 5} = \frac{7 \times \square}{2^2 \times 5 \times \square} = \frac{\square}{100} = \square$$

$$(3)\frac{3}{8} = \frac{3}{2^{3}} = \frac{3 \times \square}{2^{3} \times \square} = \frac{\square}{1000} = \square$$

05 다음 분수를 소수로 나타낼 때, 유한소수로 나타낼 수 있는 것에는 '유', 순환소수로만 나타낼 수 있는 것에는 '순'을 써넣으시오.

$$(1)\frac{3}{2\times 5^2} \tag{}$$

$$(2)\frac{7}{2\times3} \tag{}$$

$$(3)\frac{13}{2\times3\times5^2} \tag{}$$

$$(4)\frac{27}{2\times3^2\times5} \tag{}$$

$$(5)\frac{6}{2^3 \times 3^2 \times 5} \tag{}$$

$$(6)\frac{21}{3\times 5^2\times 7}\tag{}$$

계산력 추가 **문제**

03 순환소수의 분수 표현

○ 1 다음은 순환소수를 분수로 나타내는 과정이다. □ 안에 알맞은 수를 써넣으시오.

(1) $x = 0.4$
$x=4.444\cdots$
-) $x=0.444$
∴ r=

(2) $x = 0.32$
$-)$ _ $x=0.3232\cdots$
$\square x = \square$
$\therefore x = $

3) $x = 0.23$
$x=23.333\cdots$
-) $10x = 2.333$
x =
$\therefore x = \frac{\Box}{90} = $

02 다음 순환소수를 분수로 나타내기 위해 필요한 가장 편리한 식을 〈보기〉에서 고르시오.

\bigcirc 100 $x-x$
$ \equiv 1000x - x $
$\oplus 1000x - 100x$

- (1) $x = 0.2\dot{3}\dot{6}$
- (2) x = 3.64
- (3) x = 1.001

- 03 다음 순환소수를 분수로 나타내시오.
 - $(1) \ 0.\dot{2}$
 - (2) 0.6
 - (3) 0.29
 - $(4) \ 0.\dot{1}\dot{8}$
 - (5) 0,230
 - (6) 0.321
- 04 다음 순환소수를 분수로 나타내시오.
 - $(1)\,0.7\dot{3}$
 - (2) $0.4\dot{5}$
 - (3) 0.704
 - $(4) \ 0.24\dot{5}$
 - (5) 2.07
 - (6) 2.735

- 다음 식을 간단히 하시오.
 - $(1) a^2 \times a^3$
 - (2) $x \times x^2$
 - $(3) b^3 \times b^5 \times b^7$
 - $(4) a^2 \times a^3 \times a^4$
 - $(5) x^5 \times y^3 \times x^2 \times y^4$
 - (6) $x^2 \times y \times x^3 \times y^2 \times x^4$
- **2** 다음 식을 간단히 하시오.
 - $(1)(x^3)^2$
 - $(2) (x^2)^3 \times (x^2)^2$
 - $(3) (5^2)^3 \times (5^4)^3$
 - $(4) (a^3)^2 \times (b^5)^2 \times (a^4)^2$
- 03 다음 식을 간단히 하시오.
 - $(1) a^7 \div a^3$
 - $(2) x^3 \div x^3$
 - $(3) x^3 \div x^4$
 - $(4) (a^4)^3 \div (a^2)^3$
 - $(5) a^6 \div a^4 \div a^3$
 - $(6) (x^2)^4 \div x^6 \div x^2$

- **14** 다음 식을 간단히 하시오.
 - $(1)(5x)^2$
 - (2) $(a^4b^3)^2$
 - $(3)\left(\frac{2}{a}\right)^3$
 - $(4)\left(\frac{a}{2b^3}\right)^3$
 - $(5) (x^2yz^4)^3$
 - $(6) (-3a^3b)^4$
 - $(7)\left(-\frac{3a^3b}{c^2}\right)^3$
- ○5 다음 □ 안에 알맞은 수를 써넣으시오.
 - (1) $a^4 \times a^{\square} = a^8$
 - (2) $x^3 \times x^{\square} \times x^5 = x^{11}$
 - $(3) a^5 \times b^{\square} \times a^8 \times b^3 = a^{\square} b^9$
 - $(4) (a^3)^{\square} = a^9$
 - $(5) a^5 \div a^{\square} = a$
 - $(6) x^{\square} \div x^2 \div x^5 = x^2$
 - $(7) (ab^2)^{\square} = a^{\square}b^8$
 - $(8) (2ab^{\Box})^3 = 8a^{\Box}b^{12}$

- 다음 식을 간단히 하시오.
 - $(1) 2x^3 \times (-4y)$
 - (2) $(-3x^2) \times (-2y)$
 - $(3) 6a^2 \times \left(-\frac{1}{2}a^3 \right)$
 - $(4) (-a^2b)^4 \times 2ab^2$
 - $(5) 3a \times (-2a^2) \times (2a)^3$
 - (6) $(-x^2y) \times 3xy^3 \times (-2x^2y)^3$
- 02 다음 식을 간단히 하시오.
 - (1) $16a^2 \div 4a$
 - (2) $10x^5 \div (-2x^2)$
 - (3) $6a^8b \div 2a^6$
 - $(4)\left(-\frac{1}{2}xy^2\right)^2\div(-2x^3y^2)$
 - $(5) 24y^6 \div 3y^2 \div (-4y)$
 - $(6)\ 15x^3y \div (-4xy^3)^2 \div 3x$

- 03 다음 식을 간단히 하시오.
 - (1) $3ab^2 \div 5ab \times 2a^2$
 - $(2) 3xy \times (2xy)^2 \div 4x^2y$
 - $(3) 16a^4b \div (-ab)^2 \times (-a)^3$
 - $(4) 12a^2b^2 \times \left(-\frac{5}{4b}\right)^2 \div \frac{3}{4}a$
- **14** 다음 □ 안에 알맞은 식을 써넣으시오.
 - $(1) 7x^2 \times \boxed{} = -28x^5$
 - $(2) 12y^2 \div \boxed{} = 3y$
 - (3) $5x^3y^2 \times \boxed{} = -10x^4y^4$
 - $(4) 6a^4b^6 \div \boxed{} = -2ab^3$
 - $(5) (-12a^2b^3) \div 3ab \times \boxed{= 4a^2b^3}$
 - (6) $\times (-5xy^2)^2 \div 10x^4y^4 = 5y$

○ 다음 식을 간단히 하시오.

$$(1) \left(2 x - 5 y\right) + \left(-3 x + 7 y\right)$$

$$(2)\left(\frac{3}{4}x+4\right)+\left(\frac{1}{4}x-1\right)$$

$$(3)(8x-3y)-(2x-y)$$

$$(4)(3x-2y)-(-2x+y)$$

$$(5)(3x-7y+8)-(2x-5y+7)$$

$$(6)2(4x-2y+3)-(x-5y+4)$$

02 다음 식을 간단히 하시오.

 $(1) 5a - \{3a - (a - 3b)\}$

$$(2)a-2b-\{3a-(2a-3b)\}$$

$$(3) 5x+y-\{3x+(2x-y)\}$$

$$(4) 3a - [2b + \{-b - (2a + 5b)\}]$$

3 다음 식을 간단히 하시오.

$${\rm (1)}\,\frac{2a\!+\!b}{2}\!+\!\frac{a\!-\!b}{3}$$

(2)
$$\frac{x+y}{3} + \frac{2x-y}{4}$$

(3)
$$\frac{x-3y}{2} - \frac{2x+y}{3}$$

(4)
$$\frac{4a-b}{3} - \frac{3a-2b}{2}$$

04 다음 식을 간단히 하시오.

$$(1)(x^2+x+2)+(x^2-2x-3)$$

$$(2) \left(-2 x^2 - x + 2\right) - \left(3 x^2 - 4 x + 5\right)$$

$$(3) (5x^2 - 4x + 3) - (-2x^2 + 4x - 1)$$

$$(4)\left(\frac{3}{4}x^2+3x+2\right)+\left(\frac{1}{2}x^2-x-1\right)$$

05 다음 □ 안에 알맞은 식을 써넣으시오.

$$(1) 3x - y + \boxed{} = 5x + 4y$$

$$(2)$$
 $+x^2-2x=-3x^2-5x$

$$(3) 5x^2 - 4x + 9 - () = 7x^2 - 9x + 12$$

- 다음 식을 전개하시오.
 - (1) 2a(3a-5b)
 - (2) -3x(x-2y+5)
 - $(3)(x^2-5xy+4y^2)\times(-4x)$
- 02 다음 식을 간단히 하시오. $(1) 2x(x-3) 3(x^2 2x + 5)$
 - (2) 5x(x-3y+4)-y(x+2y-6)
- ①3 다음 식을 간단히 하시오. (1) $(4x^2y - 8xy^2) \div 2xy$
 - $(2)(20a^3-5ab^3)\div(-5a)$
 - (3) $(15a^2b^3+6ab^2) \div \frac{3}{2}a$
 - $(4) \left(2 a^2 b + 3 a b^2\right) \div \left(-\frac{1}{2} a b\right)$
 - (5) $(2x^2y + 2xy^2 6xy) \div (-2xy)$

4 다음 식을 간단히 하시오.

(1)
$$(x^2-2x) \div x - (6x^2-2x) \div (-2x)$$

$$(2) \left(4ab^2 - 2ab + 8b\right) \div (-2b) + (a^2b - ab) \div \frac{1}{3}a$$

$$(3) x(6x-3) - (2x^3y-4x^2y) \div 2xy$$

$$(4) (x^3y - 2x^2y) \times \frac{1}{xy} - (3x^3 - 15x^2) \div (-3x)$$

$$(5) 2x(x-5) + (12x^3 - 8x^2) \div (-4x)$$

- 05 y=-2x+1일 때, 다음 식을 x의 식으로 나타내시오. (1) x+3y+6
 - (2) 2x 4y + 1
- x=2y-1일 때, 다음 식을 y의 식으로 나타내시오. (1) x+2y-7
 - (2) -5x + 2y + 2

01 부등식의 뜻과 성질

- 다음 문장을 부등식으로 나타내시오.
 - (1) *x*는 7 이상이다.
 - (2) *x*에서 1을 뺀 수는 7보다 크다.
 - (3) 한 개에 300원인 사탕 *x*개의 가격은 8000원 이하 이다.
 - (4) 가로의 길이가 5, 세로의 길이가 x인 직사각형의 넓 이는 40 초과이다.

- **12** 다음 중 [] 안의 수가 주어진 부등식의 해이면 표, 해가 아니면 ×표를 하시오.
 - (1) 3 + x > 4 [-1]

()

(2) 2x - 1 < 3 [2]

(3) 1 - 2x > 7 [-4]

)

 $(4) 4x - 2 \le 6 [1]$

)

- $\bigcap \mathbf{4} \ a > b$ 일 때, 다음 \bigcap 안에 알맞은 부등호를 써넣으시오.
 - $(1) 8 + a \boxed{8 + b}$
- $(2) 7a \boxed{7b}$

- $(5)\frac{a}{5} \boxed{\frac{b}{5}} \qquad (6) -\frac{a}{6} \boxed{-\frac{b}{6}}$

- **□5** 다음 중 옳은 것에는 ○표, 옳지 않은 것에는 ×표를 하 시오.
 - (1) a+3>b+3이면 a>b
- ()
- (2) 2*a* < 2*b*이면 *a* < *b*

-)
- (3) 1-a>1-b이면 a>b
-)
- (4) 5a-1<5b-1이면 a>b
-)

- **3** x의 값이 0, 1, 2, 3일 때, 다음 부등식의 해를 구하시오.
 - (1)4-x>1
 - $(2) 3x + 2 \le 5$
 - $(3) 4x 10 \ge 2$
 - (4)7-x < 5x-5

- 다음을 구하시오.
 - (1) 1<x<3일 때, 2x+5의 값의 범위
 - $(2) -2 \le x < 1$ 일 때, 2-x의 값의 범위
 - (3) $-1 \le x \le 2$ 일 때, 5 2x의 값의 범위
 - $(4) -6 < x \le 4$ 일 때, $-\frac{1}{2}x + 3$ 의 값의 범위

- 다음 일차부등식을 푸시오.
 - (1) 3x 3 > 3
 - (2) $6x \ge 2x + 8$
 - (3) x > 3x + 2
 - (4) 12x + 6 < 2x 4
 - $(5) 3x + 4 \ge -x + 8$
 - $(6) 5x 3 \le 8x + 9$
 - $(7)7x-2(x-3) \le 16$
 - $(8) 2(1-x) \ge 12-x$
 - (9) -5 > 1 2(2 x)
 - (10) 3(x+2) < 2(x+3) + 5x

- 02 다음 일차부등식을 푸시오.
 - $(1) 0.3x 0.5 \ge 0.8x 2$
 - (2) $2 0.6x \le 2.4x$
 - (3) 0.01x + 0.2 < 0.04x 0.3
 - $(4) 0.3(2x-1) \ge 0.2(5-4x)$
 - $(5)\frac{1}{3}x \ge \frac{1}{4}x + 1$
 - $(6)\frac{3}{2}x-1 \ge \frac{5}{3}x-2$
 - $(7)\frac{1}{2}x + \frac{5-x}{3} < 2$
 - $(8)\frac{3x+4}{2}+2<\frac{1}{3}(5x-3)$
 - $(9)\frac{3}{5}x+1.2 \ge 0.7x-\frac{1}{2}$
 - (10) $0.2x+1 \ge \frac{1}{5}(2x-1)$

(x, y)가 자연수일 때, 다음 일차방정식의 해를 순서쌍 (x, y)로 나타내시오.

$$(1) x + y = 3$$

(2)
$$2x+y=5$$

$$(3) 3x + 2y = 13$$

$$(4)\frac{1}{2}x+y=3$$

02 다음을 구하시오.

(1) 연립방정식
$$\begin{cases} -x+ay=-7 \\ bx-2y=1 \end{cases}$$
 의 해가 $x=1, y=2$ 일 때, 상수 a, b 의 값

- (2) 연립방정식 $\begin{cases} ax+3y=5 \\ bx+3y=8 \end{cases}$ 의 해가 x=-2,y=3일 때, 상수 a,b의 값
- (3) 연립방정식 $\begin{cases} ax-3y=-12 \\ 2x-y=b \end{cases}$ 의 해가 x=3, y=6 일 때, 상수 a,b의 값
- (4) 연립방정식 $\begin{cases} x+ay=10 \\ bx-2y=4 \end{cases}$ 의 해가 x=3,y=1일 때, 상수 a,b의 값

3 다음 연립방정식을 대입법을 이용하여 푸시오.

$${}_{(1)} \begin{cases} y = 3x - 2 \\ -2x + 3y = 8 \end{cases}$$

(2)
$$\begin{cases} x + 2y = 17 \\ y = 6 - x \end{cases}$$

(3)
$$\begin{cases} 2x + y = 5 \\ 5x - 3y = 7 \end{cases}$$

$$(4) \begin{cases} 2x + y = 11 \\ -x + 4y = 8 \end{cases}$$

$$(5) \begin{cases} 3x + 5y = -7 \\ 7x - y = 9 \end{cases}$$

14 다음 연립방정식을 가감법을 이용하여 푸시오.

$${\scriptstyle (1)} \begin{cases} x-y=2 \\ x+y=4 \end{cases}$$

(2)
$$\begin{cases} x-y=1 \\ 2x+y=5 \end{cases}$$

$$(3) \begin{cases} 3x + 2y = 6 \\ 2x + 3y = 4 \end{cases}$$

$${}^{(4)} \begin{cases} 7x + 3y = 5 \\ 3x - 2y = 12 \end{cases}$$

$${}_{(5)} \left\{ \begin{array}{l} 4x + 7y = -13 \\ 5x + 2y = 4 \end{array} \right.$$

계산력 추가 문제

계산력 추가 **문제**

03 여러 가지 연립일차방정식

○ 다음 연립방정식을 푸시오.

$${}_{(1)} \begin{cases} 2(x+y) = 16 \\ 3x - (5y-2) = 2 \end{cases}$$

$${}^{(2)} \begin{cases} 2x - (3x+y) = 6 \\ 5(x-y) - 4x = 10 \end{cases}$$

$${}_{(3)} \begin{cases} 6x + 5(y+1) = 2 \\ 2(x-2y) + y = 13 \end{cases}$$

$${}^{(4)} \left\{ \begin{matrix} 3x\!-\!2(2x\!-\!y)\!=\!x\!-\!10 \\ 2(y\!-\!2x)\!+\!y\!=\!-7\!-\!3x \end{matrix} \right.$$

02 다음 연립방정식을 푸시오.

$${}^{(1)} \begin{cases} 0.5x - y = 2 \\ 0.3x - 1.2y = 0.6 \end{cases}$$

$${}^{(2)} \left\{ \begin{matrix} 0.3x + 0.2y = 0.7 \\ 0.09x - 0.1y = -0.11 \end{matrix} \right.$$

$$(3) \begin{cases} \frac{1}{2}x - \frac{1}{3}y = \frac{2}{3} \\ \frac{1}{3}x + \frac{1}{6}y = \frac{5}{6} \end{cases}$$

$${}^{(4)} \left\{ \begin{array}{l} \frac{3}{2}x + \frac{1}{8}y = -5\\ \frac{1}{4}x + \frac{1}{6}y = \frac{1}{3} \end{array} \right.$$

(5)
$$\begin{cases} \frac{1}{2}x + y = \frac{3}{2} \\ 0.5x - 0.2y = 0.3 \end{cases}$$

$${}_{(6)} \begin{cases} \frac{x}{4} + \frac{2}{3}y = 6 \\ 0.6x - 0.5y = 1.8 \end{cases}$$

13 다음 방정식을 푸시오.

$$(1) 2x + y = 3x - y = 5$$

(2)
$$2x-y=4x+6=x+y-5$$

$$(3) x+4y=2(3x-y)-3=4x-1$$

 \bigcirc 4 다음 연립방정식의 해가 무수히 많을 때, 상수 a의 값을 구하시오.

$${}_{(1)} \begin{cases} x + ay = 5 \\ 2x + 4y = 10 \end{cases}$$

(2)
$$\begin{cases} x - y = 3 \\ 4x + ay = 12 \end{cases}$$

(3)
$$\begin{cases} 3x - 4y = 1 \\ -9x + 12y = a \end{cases}$$

 \bigcirc 5 다음 연립방정식의 해가 없을 때, 상수 a의 값을 구하 시오

(1)
$$\begin{cases} ax + y = 2 \\ 6x + 3y = 7 \end{cases}$$

(2)
$$\begin{cases} 2x - y = 5 \\ 4x + ay = 6 \end{cases}$$

(3)
$$\begin{cases} 4x - 3y = 1 \\ ax + 12y = -6 \end{cases}$$

다음 중 y가 x의 함수인 것에는 \bigcirc 표, 함수가 아닌 것에는 \times 표를 하시오.

- (1) 한 개에 1200원 하는 사과 x개의 값 y원 ()
- (2) 나이가 x살인 언니보다 3살 어린 동생의 나이 y살 (

- (5) 넓이가 48 cm^2 인 직사각형의 가로의 길이 x cm, 세로의 길이 y cm
- (7) x보다 5만큼 큰 수 y ()
- (8) *x*보다 작은 소수 *y* ()
- (9) 자연수 x의 약수 y ()
- (10) 자연수 x의 약수의 개수 y ()

12 다음을 구하시오.

- (1) 함수 f(x) = -3x에서 f(2)의 값
- (2) 함수 $f(x) = \frac{16}{x}$ 에서f(-8)의 값
- (3) 함수 f(x) = 2x + 5에서 f(-3)의 값
- (4) 함수 f(x) = -5x에서 f(2) + f(-3)의 값
- (5) 함수 $f(x) = \frac{4}{x}$ 에서f(2) f(1)의 값

03 다음을 구하시오.

- (1) 함수 f(x) = ax에 대하여 $f\left(\frac{1}{2}\right) = -1$ 일 때, 상수 a의 값
- (2) 함수 f(x)=2x에 대하여 f(a)=8일 때, a의 값
- (3) 함수 $f(x) = -\frac{12}{x}$ 에 대하여f(a) = 4일 때, a의 값
- (4) 함수 $f(x) = \frac{a}{x}$ 에 대하여 f(-3) = 4일 때, f(-2)의 값 (단, a는 상수)
- (5) 함수 f(x) = ax 4에 대하여 f(2) = 6일 때, f(3)의 값 (단, a는 상수)

다음 중y가 x에 대한 일차함수인 것에는 \bigcirc 표, 일차함 수가 아닌 것에는 ×표를 하시오.

> (1) y = 6 - x)

> (2) $y = \frac{1}{x} + 3$)

> (3) y = x + (1 - x))

> (4)x+1=2(y+1))

 $(5) y = -(x-7)x + x^2$

일차함수 f(x)=2x-1에 대하여 다음을 구하시오. (1) f(0)

(2) f(-1)

(3) f(2)

(4) $y = -\frac{2}{3}x + 1$ (3) y = x + 2

3 두 점을 이용하여 다음 일차함수의 그래프를 좌표평면 위에 그리시오.

(1) y = -x + 1

(2) y = 3x - 2

 \bigcap 4 다음 일차함수의 그래프를 y축의 방향으로 [] 안 의 값만큼 평행이동한 그래프를 나타내는 일차함수의 식을 구하시오.

(1) $y = -\frac{3}{4}x$ [-5]

(2) y = 2x [4]

(3) y = -x + 5 [-2]

(4) y = -3(x+2) [3]

○ 일차함수의 그래프 (1), (2)
 가 오른쪽 그림과 같을 때,
 각 그래프의 *x*절편, *y*절편,
 기울기를 각각 구하시오.

03 다음 두 점을 지나는 일차함수의 그래프의 기울기를 구하시오.

$$(2)(5,-4),(1,-5)$$

$$(3)(-1,5),(-4,-1)$$

$$(4)(0,1),(2,-1)$$

02 다음 일차함수의 그래프의 x절편, y절편, 기울기를 각각 구하시오.

$$(1) y = -2x + 4$$

$$(2) y = \frac{1}{3}x - 1$$

$$(3) y = x - 3$$

$$(4) y = 5x - 10$$

$$(5) y = -\frac{1}{3}x + 2$$

(6)
$$y = -\frac{3}{4}x - \frac{1}{2}$$

다음 일차함수의 그래프의
 x절편과 y절편을 각각 구하고, 이를 이용하여 오른쪽 좌표평면 위에 그래프를 그리시오.

05 다음 일차함수의 그래프의 기울기와 y절편을 각각 구 하고, 이를 이용하여 오른 쪽 좌표평면 위에 그래프 를 그리시오.

이 다음 일차함수의 그래프 중 x의 값이 증가할 때 y의 값도 증가하는 것에는 '증', x의 값이 증가할 때 y의 값은 감소하는 것에는 '감'을 써넣으시오.

 $(1) y = x + 1 \tag{}$

(2) y = -3x + 1 ()

 $(3) y = \frac{3}{2}x - 1$ ()

 $(4) y = -\frac{2}{3}x + 5 \tag{}$

02 다음 중 일차함수 y=3x-1의 그래프에 대한 설명으로 옳은 것에는 \bigcirc 표, 옳지 않은 것에는 \times 표를 하시오.

(1) x절편은 -1이다. ()

(2) 오른쪽 위로 향하는 직선이다.

(3) x의 값이 증가하면 y의 값은 감소한다. ()

- (4) y=3x의 그래프를 y축의 방향으로 -1만큼 평행이동한 그래프이다.
- **Q3** 다음 중 일차함수 $y = -\frac{1}{2}x 2$ 의 그래프에 대한 설명으로 옳은 것에는 \bigcirc 표, 옳지 않은 것에는 \times 표를 하시오.

(1) 기울기는 $\frac{1}{2}$ 이다. ()

(2) 일차함수 $y = -\frac{1}{2}x + 2$ 의 그래프와 평행하다.

(

(3) 점 (2, -2)를 지난다. ()

(4) x의 값이 2만큼 증가할 때, y의 값은 1만큼 감소한 다.

04 일차함수 y=ax+b의 그래프가 다음과 같을 때, \square 안에 알맞은 부등호를 써넣으시오. (단, a, b는 상수)

1) $a \cap 0, b \cap 0$

○5 다음 두 일차함수의 그래프가 평행할 때, 상수 *a*의 값을 구하시오.

(1) y = ax + 3, y = 2x + 2

(2) y = 4x + 7, y = ax - 1

16 다음 두 일차함수의 그래프가 일치할 때, 상수 *a*, *b*의 값을 각각 구하시오.

(1) y = ax + 4, y = -6x + b

(2) y = 5x - b, $y = ax + \frac{2}{3}$

- The 직선을 그래프로 하는 일차함수의 식을 구하시오.
 - (1) 기울기가 2이고 y절편이 -4인 직선
 - (2) 기울기가 -5이고 y절편이 2인 직선
 - (3) 기울기가 $\frac{3}{2}$ 이고 y절편이 -4인 직선
 - (4) 일차함수 y=7x-3의 그래프와 평행하고 y절편이 -2인 직선

- ○2 다음 직선을 그래프로 하는 일차함수의 식을 구하시오.(1) 기울기가 −1이고 점 (3,0)을 지나는 직선
 - (2) 기울기가 -2이고 점 (-4,5)를 지나는 직선
 - (3) 기울기가 $\frac{2}{3}$ 이고 점 (-3, -4)를 지나는 직선
 - (4) x의 값이 2만큼 증가할 때 y의 값은 1만큼 감소하고 점 (4,3)을 지나는 직선

- **3** 다음 두 점을 지나는 직선을 그래프로 하는 일차함수 의 식을 구하시오.
 - (1)(1,1),(5,9)
 - (2)(-8,5),(4,2)
 - (3)(1,4),(-2,-2)
 - (4)(-3,-2),(1,-4)

- □4 다음 직선을 그래프로 하는 일차함수의 식을 구하시오.(1) *x*절편이 −4, *y*절편이 5인 직선
 - (2) x절편이 2, y절편이 -3인 직선
 - (3) *x*절편이 3, *y*절편이 6인 직선
 - (4) 두 점 (-2,0), (0,1)을 지나는 직선

05 다음 그림과 같은 직선을 그래프로 하는 일차함수의 식을 구하시오.

01 일차함수와 일차방정식

- 다음 일차방정식의 그래프의 기울기, x절편, y절편을 각각 구하시오.
 - (1) x + y 3 = 0
 - (2) x-2y+1=0
 - (3) -2x + 5y + 4 = 0
 - (4) x + 3y 9 = 0

- 02 다음 일차방정식을 y=ax+b의 꼴로 나타내고 그래 프를 좌표평면 위에 그리시오.
 - (1)2x+y+3=0

(2) -3x + 4y - 8 = 0

(3) x+4y-4=0

- **3** 다음 일차방정식의 그래프를 좌표평면 위에 그리시오.
 - (1)2x-6=0

(2)3y+6=0

- ① $\mathbf{4}$ 다음 조건을 만족하는 직선의 방정식을 구하시오. (1) 점 (1,3)을 지나고 x축에 평행한 직선
 - (2) 점 (1, -3)을 지나고 x축에 수직인 직선
 - (3) 점 (-1,3)을 지나고 y축에 평행한 직선
 - (4) 점 (-1, -3)을 지나고 y축에 수직인 직선

계산력 추가 **문제**

구하시오.

02 일차함수의 그래프와 연립일차방정식의 해

7. 일차함수와 일차방정식의 관계

이 오른쪽 그림은 연립방정식 $\begin{cases} x-y=1 \\ 2x+y=8 \end{cases} 을 풀기 위하여 두 일차방정식의 그래프를 그린 것이다. 이 연립방정식의 해를$

 $(3) \begin{cases} ax - y = 2 \\ \frac{1}{2}x + y = b \end{cases}$

02 다음 두 일차방정식의 그래프의 교점의 좌표를 구하 시오.

(1)
$$x-y=-2$$
, $x+3y=10$

$$(2)2x+5y=3, 3x-4y=-7$$

$$(3)2x-3y+8=0, 3x+y+1=0$$

$$(4) 6x - 5y - 10 = 0, 3x + 5y - 35 = 0$$

03 다음 연립방정식의 두 일차방정식의 그래프가 오른쪽 그림과 같을 때, 상수 a, b의 값을 각각 구하시오.

$$(1) \begin{cases} x + ay = 6 \\ bx - 3y = 2 \end{cases}$$

$$(2) \begin{cases} x - 2y = a \\ bx + y = -4 \end{cases}$$

○4 아래〈보기〉의 연립방정식의 해가 다음과 같은 것을 모두 고르시오.

- (1) 해가 한 쌍인 것
- (2) 해가 없는 것
- (3) 해가 무수히 많은 것

- 05 연립방정식 $\begin{cases} ax+3y=5 \\ 4x+6y=b \end{cases}$ 의 해가 다음과 같을 때, 상수 a,b의 조건을 구하시오.
 - (1) 해가 한 쌍이다.
 - (2) 해가 없다.
 - (3) 해가 무수히 많다.

CHECK CHECK

수준별 자료집 (중)

기본편 | 중간 난이도로 학교 시험 형태의 문제가 더 필요한 학생들! 중하위반 학생들의 숙제 또는 테스트용으로!

소단원별 기출 문제

1. 유리수와 순환소수	01 순환소수 (3 순환소수의 분수 표현	20 22	02 유리수의 소수 표현	21
 2. 식의 계산	○1 지수법칙 ○3 다항식의 덧셈과 뺄셈	23 25	2 단항식의 계산 4 단항식과 다항식의 계산	24 26
3. 일차부등식	01 부등식의 뜻과 성질 (3 일차부등식의 활용	27 29	2 일차부등식의 풀이	28
4. 연립일차방정식	01 연립일차방정식과 그 해 03 여러 가지 연립일차방정식	30 32	② 연립일차방정식의 풀이 ③ 4 연립일차방정식의 활용	31 33
5. 일차함수와 그래프 (1)	01 함수의 뜻 $03x$ 절편, y 절편	34 36	02 일차함수의 뜻과 그래프 04 기울기	35 37
6. 일차함수와 그래프 (2)	01 일차함수의 그래프의 성질 (3 일차함수의 활용	38 40	2 일차함수의 식 구하기	39
7. 일차함수와 일차방정식의 관계	01 일차함수와 일차방정식	41	2 일차함수의 그래프와 연립일차방정식의	해 42

[○] 다음〈보기〉중에서 음의 유리수의 개수는?

- ① 1개
- ② 2개
- ③ 3개

- ④ 4개
- ⑤ 5개

12 아래는 유리수를 분류한 것이다. 다음 중 ☐ 안에 알맞 은 수는?

- ①3
- (2) 4

- $4\frac{3}{5}$ $5\frac{15}{5}$

- **①3** 순환소수 1.032103210321…의 순환마디는?
 - $\bigcirc 1032$
- $\bigcirc 0321$
- ③ 03210

- 4 032
- ⑤ 3210
- $\bigcirc 4$ 분수 $\frac{8}{11}$ 을 소수로 나타낼 때, 순환마디는?
 - (1)972
- ② 727
- ③ 172

- (4)97
- (5)72

- 05 다음 중 순환소수를 순환마디 위에 점을 찍어 간단히 나타낸 것으로 옳지 않은 것은?
 - ① $0.232323\dots = 0.\dot{2}\dot{3}$
 - ② $0.2585858\cdots = 0.258$
 - $34.040404\cdots = \dot{4}.\dot{0}$
 - $\textcircled{4} 7.6001001001 \cdots = 7.6001$
 - $\bigcirc 0.234444\cdots = 0.234$

- **6** 순환소수 0.076923에서 소수점 아래 100번째 자리의 숫자는?
 - \bigcirc 7
- 26
- (3) 9

- **4** 2
- (5) 3

07 분수 $\frac{2}{7}$ 를 소수로 나타낼 때, 소수점 아래 27번째 자 리의 숫자를 구하시오.

 \bigcap 다음은 분수 $\frac{3}{20}$ 의 분모를 10의 거듭제곱으로 고쳐서 유한소수로 나타내는 과정이다. A+B의 값은?

$$\frac{3}{20} = \frac{3}{2^2 \times 5} = \frac{3 \times A}{2^2 \times 5 \times A} = \frac{15}{B} = 0.15$$

- $\bigcirc 102$
- (2) 105

- (4) 110
- (5) 120
- **02** 다음 분수 중 유한소수로 나타낼 수 있는 것을 모두 고 르면? (정답 2개)

- $4\frac{7}{12}$ $5\frac{45}{2^2 \times 3 \times 5^2}$
- **3** 다음 〈보기〉의 분수 중 순환소수로만 나타낼 수 있는 것의 개수는?

- $\bigcirc \frac{21}{2^2 \times 7} \qquad \bigcirc \frac{6}{2 \times 3^2 \times 5} \quad \bigcirc \frac{11}{56}$

- ① 1개
- ② 2개
- ③ 3개

- (4) 47H
- ⑤ 5개
- 04 분수 $\frac{3}{2^2 \times 5 \times a}$ 을 소수로 나타내면 유한소수가 될 때, 다음 중 a의 값이 될 수 없는 것은?
 - \bigcirc 3
- (2) 4
- **3** 5

- (4)6
- **(5)** 7

- 05 분수 $\frac{6}{2 \times 5^3 \times a}$ 을 소수로 나타내었을 때, 순환소수가 되도록 하는 모든 한 자리 자연수 a의 값의 합은?
 - $\bigcirc 1$ 6
- $\bigcirc 9$
- (3) 16

 $\bigcirc 3$ 7

- (4) 18
- **(5)** 30

- \bigcirc 6 분수 $\frac{33}{210}$ 에 어떤 자연수 A를 곱하여 유한소수가 되 도록 할 때, A의 값이 될 수 있는 가장 작은 자연수는?
 - \bigcirc 3 **4** 9
- \bigcirc 4
- (5) 11

07 두 분수 $\frac{1}{350}$, $\frac{7}{220}$ 에 어떤 자연수 a를 각각 곱하면 두 분수 모두 유한소수로 나타낼 수 있다고 한다. 이때 a의 값이 될 수 있는 가장 작은 자연수를 구하시오.

다음은 순환소수 0.73을 기약분수로 나타내는 과정이 다. ①~⑤에 알맞은 수로 옳지 않은 것은?

0.73을 x라 하면 $x = 0.7333 \cdots$

- $\boxed{1}$ $x=73.333\cdots$ \cdots \bigcirc
- $\boxed{2}$ $x=7.333\cdots$... $\boxed{}$

이때 ①에서 ①을 변끼리 빼면

- $3x=\boxed{4}$ $\therefore x=\boxed{5}$
- $\bigcirc 100$
- 2 10
- (3)90

- **4** 76
- $\Im \frac{11}{15}$
- **2** 순환소수 2.435를 분수로 나타내려고 한다. 2.435를 x라 할 때, 다음 중 가장 편리한 식은?
 - $\bigcirc{1} 100x 10x$
- ② 1000x x
- 31000x-10x
- \bigcirc 1000x 100x
- \bigcirc 10000x 100x
- **13** 다음 중 순환소수를 분수로 나타내는 과정으로 옳은 것은?

 - $30.4\dot{3} = \frac{43}{90}$ $41.2\dot{3} = \frac{123-1}{90}$
 - $\bigcirc 1.47 = \frac{147-1}{90}$
- □4 다음 중 순환소수를 분수로 나타낸 것으로 옳지 않은 것은?

 - $31.\dot{2} = \frac{11}{9}$
- $(4) 0.03 = \frac{1}{33}$
- $\bigcirc 2.35 = \frac{233}{99}$

- 05 다음중가장큰수는?
 - $\widehat{1}$ 0.1234
- $\bigcirc 0.123\dot{4}$
- 30.1234
- 4 0.1234
- (5) 0.1234

- $\frac{17}{30} = x + 0.0$ i일 때, x를 순환소수로 나타내면?
 - $\bigcirc 0.1$
- $(2) 0.\dot{2}$
- 30.3
- $\bigcirc 4 0.4$
- $\bigcirc 0.5$

- \bigcap **7** 순환소수 0.5 $\dot{3}$ 에 a를 곱한 결과가 자연수일 때. 곱할 수 있는 가장 작은 자연수 a의 값은?
 - \bigcirc 3
- $\bigcirc 6$
- (3) 9

- (4) 12
- (5) **15**

- **18** 다음 중 옳지 않은 것은?
 - ① 0은 유리수이다.
 - ② 모든 순환소수는 유리수이다.
 - ③ 모든 유한소수는 유리수이다.
 - ④ 모든 소수는 유한소수 또는 순환소수이다.
 - ⑤ 무한소수 중에는 유리수가 아닌 것도 있다.

- □ □ 다음 중 옳은 것을 모두 고르면? (정답 2개)
 - $(1) a^4 \times a^2 = a^8$
- $(a^4)^5 = a^9$
- $(3) a^{10} \div a^2 = a^5$ $(4) \left(\frac{x^3}{y}\right)^2 = \frac{x^6}{y^2}$
- $\Im a^2 \div a^6 = \frac{1}{a^4}$

 $\left(\frac{2x^a}{y}\right)^b = \frac{8x^6}{y^c}$ 일 때, a-b+c의 값을 구하시오. (단, a, b, c는 자연수)

- 1 다음 중 □ 안에 들어갈 수가 나머지 넷과 다른 하나
 - $(1) a^{\square} \times a^4 = a^7$ $(2) a^5 \div a^{\square} = a^2$

 - $(3)(xy^2)^3 = x^{\square}y^6$ $(4)(\frac{a^2}{b})^{\square} = \frac{a^6}{b^3}$
 - $(5) (x^2y^{\square})^3 = x^6y^{18}$

지 다음 식을 만족하는 자연수 a, b에 대하여 a+b의 값을 구하시오.

$$x \times (x^2)^4 = x^a, (x^2y^3)^2 \div x^3y^2 = xy^b$$

- $(x^5)^2 \times x^4 \div (x^2)^3 = x^{\Box}$ 에서 \Box 안에 알맞은 수는?
 - $\bigcirc 6$
- (2)8
- ③9

- (4) 10
- (5)12

- **16** 2⁵+2⁵+2⁵+2⁵을 2의 거듭제곱으로 나타내면?
 - ① 2^{5}
- $(2) 2^7$
- (3) 2^{12}

- (4) 2^{15}
- $(5) 2^{20}$

- $07 A = 2^x$ 일 때, 8^{x+2} 을 A를 사용하여 나타내면?
 - ① $8A^{3}$
- ② $16A^{3}$
- (3) 32 A^3
- $\textcircled{4} 64A^3$ $\textcircled{5} 128A^3$

 $\bigcirc 8$ $2^7 \times 5^{10}$ 이 n자리의 자연수일 때, n의 값을 구하시오.

- $(-3x^2y)^3 \times (2xy^3)^2$ 을 간단히 하면?
 - $(1) 108x^8y^9$ $(2) 36x^5y^5$ $(3) 27x^6y^9$
 - $\bigcirc 4 54x^6y^6$
 - $\bigcirc 108x^8y^9$

 $(-3x^3y^2)^A \times 4x^By = Cx^{11}y^7$ 일 때, A+B-C의 값 을 구하시오. (단. A. B. C는 상수)

- $02 \frac{2}{3}x^2y \div \frac{1}{6}xy^2$ 을 간단히 하면?

- $\textcircled{4} \frac{1}{9}x^3y^3 \qquad \qquad \textcircled{5} 4xy$

- $-2xy^2 \times \square = 6x^2y^4$ 일 때, \square 안에 알맞은 식은?
 - ① $8x^3y^6$
- ② $3xy^2$ ③ $-3xy^2$
- $(4) 12x^3y^6$ $(5) 12x^3y^8$

- $\left(\frac{2}{3}a^2b\right)^3 \div \left(\frac{4}{3}a^3b^2\right)^2$ 을 간단히 하면?
- ① 6b ② $2ab^2$ ③ $\frac{2}{3}ab$
- $4\frac{a}{4}$ $5\frac{1}{6b}$

- $(-12xy^2) \div 24xy \times \square = -3x^2y$ 일 때, \square 안에 알맞은 식은?

 - ① $6x^2$ ② $2x^2y$ ③ 7y

- $\mathbf{14} 8a^3b^3 \div (-2a^2b)^2 \times a^2b$ 를 간단히 하면?
 - (1) $4a^2b$
- ② $4ab^{2}$
- (3) $2ab^{2}$

- $(4) 2b^2$
- (5) $2a^2$

\bigcirc8 밑면의 가로의 길이가 4a, 세로의 길이가 3b인 직육면 체의 부피가 $60a^2b$ 일 때, 이 직육면체의 높이를 구하 시오.

- \bigcap 3(5x+3y)-3(2x-y)를 간단히 하면?
 - $\bigcirc 10 16x 6y$
- $\bigcirc 2 10x + 3y$

03 다항식의 덧셈과 뺄셈

- 3) 8x + 3y
- $\bigcirc 9x + 12y$
- \bigcirc 16x+3y

- [] $2x-[7y-2x-\{2x-(x-3y)\}]=ax+by$ 일 때, a+b의 값은? (단. a. b는 상수)
 - (1) 3
- (2) 1
- ③1

- (4) 5
- (5)9

- **03** $\frac{a-2b}{3} \frac{2a-3b}{2}$ 를 간단히 하면?

 - ① $-\frac{2}{3}a + \frac{5}{6}b$ ② $-\frac{2}{3}a + \frac{11}{6}b$
 - $3 \frac{1}{3}a \frac{5}{6}b$ $4 \frac{1}{3}a + \frac{5}{6}b$

- □4 다음 중 이차식인 것은?
 - $\bigcirc 1 2x^2$
- $2x^2-(2x^2-x)$
- 32x-3y+1
- 403-7x
- $\Im 2(x-y)$

- $(2x^2-6x+7)-(-5x^2+4x-3)$ 을 간단히 하였을 때. x^2 의 계수와 상수항의 합은?
 - \bigcirc 3
- \bigcirc 5
- \mathfrak{G} 7

- (4) 9
- (5)17

- (5x-2y+8)+ =7x-6y+3에서 \bigcirc 안에 알 맞은 식은?
 - $\bigcirc 1 -2x 4y + 5$
- ② 2x-4y-5
- 3 -2x + 4y + 5
- 4)2x+4y-5
- $\bigcirc 5 -2x-4y-5$

- **\bigcap7** 어떤 식의 2배에 -a+2b의 5배를 더하면 -3a+12b가 된다고 한다. 이때 어떤 식은?

 - (1) 8a + 22b (2) 4a + 11b (3) a + b

 - $\textcircled{4} 2a + 2b \qquad \textcircled{5} 7a + 2b$

- **8** 어떤 식에 $3a^2 a + 1$ 을 더해야 할 것을 잘못하여 빼었 더니 답이 $2a^2 + 3a - 3$ 이 되었다. 이때 바르게 계산한 답은?
 - $\bigcirc 5a^2 + 2a 2$
- ② $5a^2 + 2a + 2$
- $3) 5a^2 2a + 2$
- $(4) 8a^2 a + 1$
- \bigcirc 8 $a^2 + a 1$

04 단항식과 다항식의 계산

 $3x(2x-3)-(-7x^2+x-1)$ 을 간단히 하였을 때, x^2 의 계수와 x의 계수의 합은?

- $\widehat{(1)} 9$
- (2) 3
- (3)3

- (4)9
- (5)10

16 다음 식을 간단히 한 결과가 나머지 넷과 다른 하나는?

1 $-2x(4x-8y)+(8x^2y^2-4x^3y)\div 4xy$ 를 간단히 하

- ① $2(x^3y^5)^2 \div (xy^2)^5$
- $2x^2y \div xy^2 \times y$
- $3x-[y+\{2x-(x+y)\}]$
- 4x(x+y+1)-x(x+y-1)
- $(5)(6xy^2-9y^2)\div 3y^2$

3a(a-2b-1)-a(2a-3b+5)를 간단히 하면?

- ① $a^2 3ab 8a$
- $(2) a^2 3ab + 8a$
- $3a^2+3ab+8a$
- $\bigcirc (4) a^2 + 3ab 8a$
- $\bigcirc a^2 8a$

- $(\frac{2}{3}x^2y \frac{7}{12}xy^2 + \frac{1}{6}xy) \div \frac{1}{12}xy$ 를 간단히 하면 ax+by+c일 때, a+b+c의 값을 구하시오. (단. a. b. c는 상수)
- 로 나타내면?
 - ① x+y
- ② 2x + 2y
- 3x + 3y
- 4x + 4y
- (5) 5x+5y

- 1 $(12x^2y 9xy^2) \div 3xy + (16x^2 8x) \div (-4x) =$ 간단히 하면?

 - (1) 2x+3y (2) 2x-3y
- 3x-2
- (4) -3y + 2 (5) -3y 2

- **이용** A = 2x y, B = x + 3y일 때, $B - \{2A - (3B - A)\}$ 를 x, y의 식으로 나타내면?
 - $\bigcirc 1 -2x + 15y$
- ② x + 5y
- 32x-15y
- 4) 3x 8y
- \bigcirc 4x + 12y

01 부등식의 뜻과 성질

3. 일차부등식

- ↑ 다음 중 문장을 부등식으로 나타낸 것으로 옳은 것을 모두 고르면? (정답 2개)
 - ① 어떤 + x의 3배에서 2를 뺀 값은 7보다 크거나 같 다 \Rightarrow $3x-2 \le 7$
 - ② 전체 학생 200명 중에서 남학생이 x명일 때. 여학 생 수는 100명보다 많다. ⇒ 200-x>100
 - ③ x km의 거리를 시속 60 km로 달리면 1시간보다 적게 걸린다. ⇒ 60*x*<1
 - ④ 한 개의 무게가 100 g인 물건 x개를 600 g인 바구 니에 담으면 전체 무게는 7 kg 미만이다. \Rightarrow 0.1+0.6x<7
 - (5) 형의 나이 x세에 동생의 나이 15세를 더하면 30세 보다 많다. ⇒ x+15>30

- a < b일 때, 다음 중 옳은 것을 모두 고르면? (정답 2개)

 - ① a-10 > b-10 ② 10-a < 10-b

 - 3a-4<3b-4 $4\frac{a}{3}-5<\frac{b}{3}-5$
 - $\bigcirc -\frac{a}{2} + 3 < -\frac{b}{2} + 3$

- \bigcirc 다음 부등식 중 x=2가 해인 것은?
 - $\widehat{1}$ 1-2x<0
- ② x-5 > 0
- 3x-2>0
- $4)7-5x \le -4$
- (5) $4x+3 \ge 14$

- 05 -3a 4 < -3b 4일 때, 다음 중 옳은 것은?
 - $\bigcirc a < b$
- (2) -3a > -3b
- 35a-3>5b-3 $4\frac{a}{4}<\frac{b}{4}$
- $(5) 3 \frac{a}{3} > 3 \frac{b}{3}$

- \bigcap X의 값이 -1, 0, 1, 2일 때, 다음 부등식 중 해가 없는 것은?
 - $\widehat{1}$ 2- $x \le 0$
- (2) x+1<0
- 3x < 2x + 1
- $4)2x-2 \le 3x-1$
- $\bigcirc 4x \ge 2(x-2)$

- $-2 < x \le 1$ 이고 A = 3 2x일 때, A의 값의 범위는?
 - ① $1 \le A < 7$
- ② $1 < A \le 7$
- $\bigcirc 3 8 \le A < -2$
- $(4) 8 < A \le -2$
- ⑤ $2 \le A < 8$

- □ 다음 중 일차부등식이 아닌 것은?
 - $\bigcirc x + 2 > 3x$
- ② $6x 1 \ge 6x$
- 3x+x<1
- $\bigcirc 3 > 1 x$
- (5) -2x < 2x 1

- **1** 일차부등식 2x-3>3x-8을 만족하는 자연수 x의 개수는?
 - ① 1개
- ② 2개
- ③ 3개

- ④ 4개
- ⑤ 5개

- 03 일차부등식 $\frac{x-5}{2} \frac{2x+1}{3} \le \frac{3}{4}x + 1$ 을 만족하는 x의 값 중 가장 작은 정수는?

 - $\bigcirc 1 5$ $\bigcirc -4$
- (3) 3
- (4) 2
- $\bigcirc 0$

- **①4** 일차부등식 $0.5(2x-5) \ge \frac{1}{4}(x+5)$ 를 풀면?
 - $\bigcirc x \ge 5$
- $\bigcirc x \leq 4$
- $\Im x \geq 3$
- (4) $x \le 2$ (5) $x \ge 2$

- **15** 다음 일차부등식 중 해가 나머지 넷과 다른 하나는?
 - $\bigcirc 17 2x < 11$
 - ② x < 8 + 5x
 - 34(x-8) < 10(x-2)
 - $42x \frac{5x+2}{4} > 1$
 - $\Im \frac{1}{2}(x-4) \frac{1}{3}(x+2) < 0.5x 2$

- x에 대한 일차부등식 $5x-a \le 2x$ 의 해가 $x \le 5$ 일 때, 상수 *a*의 값은?
 - $\bigcirc 1 15$ $\bigcirc -5$
- (3)5

- **49 515**

- **17** a < 1일 때, x에 대한 일차부등식 ax + 2 < 2a + x를 풀면?
- ① x > 2 ② x < 2 ③ $x > \frac{1}{2}$
- (4) x > -2 (5) x < -2

 \bigcirc 다음 두 일차부등식의 해가 서로 같을 때, 상수 a의 값 을 구하시오.

$$\frac{2}{5}x-4 \ge -2, 3(1-x) \le a$$

-] 어떤 정수의 6배에서 12를 뺀 수는 그 정수의 5배보다 작다고 할 때, 어떤 정수 중 가장 큰 수는?
 - ① 11
- **②** 12
- ③ 13

- 4 14
- ⑤ 15

05 어느 공원의 입장료는 한 사람당 600원이고 40명 이상의 단체인 경우에는 입장료의 20 %를 할인해 준다고한다. 40명 미만의 단체는 몇명 이상이면 40명의 단체입장료를 지불하는 것이 유리한지 구하시오.

- 02 한 개에 500원인 사과와 한 개에 700원인 배를 합하여 15개를 사고 전체 가격이 9000원 이하가 되게 하려고 한다. 이때 배는 최대 몇 개까지 살 수 있는가?
 - ① 6개
- ② 7개
- ③ 8개

- ④ 9개
- ⑤ 10개

06 등산을 하는데 올라갈 때는 시속 2 km로 걷고, 내려올 때는 같은 길을 시속 4 km로 걸어서 3시간 이내에 등 산을 마치려고 한다. 이때 최대 몇 km까지 올라갔다 내려올 수 있는지 구하시오.

- ①3 현재 누나의 통장에는 16000원, 동생의 통장에는 8000원이 들어 있다. 다음 달부터 매달 누나는 1000원 씩, 동생은 2000원씩 예금한다면 동생의 예금액이 누나의 예금액보다 많아지는 것은 몇 개월 후부터인지 구하시오.
- 07 5 %의 소금물 200 g에서 물을 증발시켜 농도가 8 % 이상인 소금물을 만들려고 한다. 이때 물을 몇 g 이상 증발시켜야 하는지 구하시오.

- ①4 집 근처 가게에서 한 개에 2000원 하는 과자를 할인점에서는 1500원에 판매하고 있다. 할인점에 갔다 오는데 왕복 1800원의 교통비가 든다고 할 때, 과자를 몇개 이상 사는 경우 할인점에서 사는 것이 유리한지 구하시오.
- ○8 원가가 1200원인 물건을 정가의 10 %를 할인하여 팔아서 원가의 20 % 이상의 이익을 얻으려고 할 때, 정가는 얼마 이상으로 정해야 하는지 구하시오.

- 다음 중 미지수가 2개인 일차방정식이 아닌 것을 모두 고르면? (정답 2개)

 - ① x-3y-5=0 ② $-2x+\frac{y}{2}=7$
 - $3y^2-3x+5=0$ 4-2x=y
 - (5) 3(x-4)-1=3x-y

- \mathbf{Q} x, y가 자연수일 때, 일차방정식 2x+3y=18의 해의 개수는?
 - ① 1개
- ② 2개
- ③ 3개

- ④ 4개
- ⑤ 무수히 많다.

- **13** 일차방정식 ax+y=7의 한 해가 (3,1)일 때, 상수 a의 값은?
 - $\bigcirc 1 3$ $\bigcirc -2$ $\bigcirc 3 1$

- **4** 1
- (5)2

14 일차방정식 -2x+3y=6의 한 해가 (3a, -a)일 때, a의 값을 구하시오.

- 05 다음 연립방정식 중 해가 x=1, y=2인 것은?

 $igcup_{oldsymbol{6}}$ 연립방정식 $\left\{ egin{array}{l} ax+6y=14 \\ -x+y=4 \end{array}
ight.$ 의 해가 (2,b)일 때, a+b의 값을 구하시오. (단, a는 상수)

07 연립방정식 $\begin{cases} x+my=5 \\ mx+y=n \end{cases}$ 의 해가 (1, 2)일 때, 상수 m, n의 값을 각각 구하시오.

소단원별 기출 문제

02 연립일차방정식의 풀이

- 이 연립방정식 $\begin{cases} x=-y-3 & \cdots$ \bigcirc 을 풀기 위해 \bigcirc 에 이 연립방정식 $\begin{cases} 2x-y=2 \\ 3x+2y=10 \end{cases}$ 의 해가 (a,b)일 때, a+b \bigcirc 을 대입하여 x를 없앴더니 ay=22가 되었다. 이때 상수 a의 값을 구하시오.
 - 의 값을 구하시오.

- 02 연립방정식 $\begin{cases} 3x-2y=11 \\ y=-2x+5 \end{cases}$ 의 해가 x=a,y=b일 때, 3a-b의 값을 구하시오.
- **05** 연립방정식 $\begin{cases} ax+by=3\\ bx+ay=6 \end{cases}$ 의 해가 (2,-1)일 때, ab의 값을 구하시오. (단, a, b는 상수)

- \bigcirc 3 다음 중 연립방정식 $\begin{cases} 2x+3y=4 & \cdots \bigcirc \\ 5x+2y=3 & \cdots \bigcirc \end{cases}$ 을 가감법으 로 풀 때, y를 소거하기 위해 필요한 식은?
 - 1 7+0
- \bigcirc \bigcirc \times 2+ \bigcirc \times 3
- $\bigcirc \bigcirc \times 2 \bigcirc \times 3$
- ⓐ ⊙×3+©×2
- \bigcirc \bigcirc \times 3- \bigcirc \times 2

 $\int x-2y=3$ $\int ax+7y=2$ $\{x+by=8, \{x-y=4\}$

다음 두 연립방정식의 해가 같을 때, a+b의 값은?

- \bigcirc 1
- \bigcirc 2
- (3)3
- **4** 4 (5)5

(단. a. b는 상수)

03 여러 가지 연립일차방정식

4. 연립일차방정식

- **이** 연립방정식 $\begin{cases} 2x (x 2y) = 9 \\ 2(x + y) 5y = -10 \end{cases}$ 을 풀면?
 - ① x=4, y=1 ② x=1, y=4
 - 3x = -1, y = 4
- 4 x = -1, y = -4
- (5) x = -4, y = 1

 $oxed{02}$ 연립방정식 $\left\{egin{array}{l} 0.3x-0.5y=1.9 \\ \dfrac{x}{2}+\dfrac{y}{3}=\dfrac{5}{6} \end{array}
ight.$ 의 해가 x=a,y=b일 때, a+b의 값을 구하시오.

 $oxed{0.3}$ 연립방정식 $egin{dcases} 0.3(x+y)-0.2y=0.8 \\ rac{1}{2}x-rac{1}{3}(x-y)=1 \end{cases}$ 의 해가 (a,b)

일 때, a-2b의 값은?

- $\bigcirc -4$ $\bigcirc -2$
- (3) 0

05 연립방정식 $\begin{cases} 3x - (x - y) = 9 \\ -2x + 3y = 3 \end{cases}$ 의 해가 일차방정식 5x-3y=m을 만족할 때, 상수 m의 값을 구하시오.

06 연립방정식 $\begin{cases} x-y=2a \\ 3x+2y=9 \end{cases}$ 를 만족하는 y의 값이 x의 값의 3배라 할 때. 상수 a의 값을 구하시오.

- **4 2 (5) 4**

- ① $\begin{cases} 2x+y=-2 \\ x+y=0 \end{cases}$ ② $\begin{cases} x+y=0 \\ 3x-y=0 \end{cases}$ ③ $\begin{cases} 3x+y=5 \\ x-y=10 \end{cases}$ ④ $\begin{cases} 2x-3y=5 \\ 4x-6y=10 \end{cases}$ ⑤ $\begin{cases} x-2y=-1 \\ 2x-4y=1 \end{cases}$

- **4** 방정식 2x-y=x+2y=5를 풀면?
 - ① x=-1, y=4 ② x=1, y=3 ③ x=2, y=2 ④ x=3, y=1
- (5) x = 4, y = -1

- $igcup_{hx-12y=36}^{x-ay=9}$ 의 해가 무수히 많을 때, a+b의 값은? (단, a, b는 상수)
 - $\bigcirc 0$
- (2) 3
- (3) 4
- **4** 6 **5** 7

은 10이고, 십의 자리와 일의 자리의 숫자를 바꾼 수는 처음 수보다 18이 작다고 한다. 이때 처음 수는?

기소 사과 3개와 귤 5개의 가격은 3950원이고, 사과 6개와

귤 2개의 가격은 5900원이다. 이때 사과 한 개의 가격

 $\widehat{1}$ 28

(2)37

③ 46

04 연립일차방정식의 활용

(4)64

을 구하시오.

(5)73

13 현재 아버지와 아들의 나이의 차는 28세이고, 10년 후 에는 아버지의 나이가 아들의 나이의 3배보다 4세가 적다고 한다. 현재 아버지의 나이와 아들의 나이를 각 각 구하시오.

☐ 1 기로의 길이가 세로의 길이보다 4 cm 긴 직사각형이 있다. 이 직사각형의 둘레의 길이가 20 cm일 때, 직사 각형의 넓이를 구하시오.

15 어느 농장에서 닭과 염소를 모두 합하여 22마리 기르 고 있다. 닭과 염소의 다리의 수의 합이 62개일 때, 닭 의 수와 역소의 수의 차를 구하시오.

↑ 정민이네 집에서 학교까지의 거리는 3 km이다. 정민 이가 집에서 출발하여 학교까지 가는데 처음에는 시속 3 km로 걷다가 도중에 시속 6 km로 뛰어서 40분 만 에 도착했다. 이때 걸어간 거리를 구하시오.

7 12 %의 소금물과 7 %의 소금물을 섞어서 10 %의 소 금물 300 g을 만들려고 한다. 7 %의 소금물은 몇 g 섞 어야 하는지 구하시오.

○ A, B 두 사람이 같이 하면 6일 만에 끝낼 수 있는 일을 A가 먼저 3일 하고 남은 일은 B가 8일 걸려서 끝냈다. 이때 이 일을 A가 혼자 하면 며칠 만에 끝낼 수 있는지 구하시오

(3) -1

- \bigcirc 다음 중 y가 x의 함수가 <u>아닌</u> 것은?
 - ① 자연수 x를 5배 한 값 y
 - ② 자연수 x와 서로소인 수 y
 - ③ 한 개에 12 g인 물건 x개의 무게 y g
 - ④ 시속 x km로 3시간 동안 간 거리 y km
 - ⑤ 시속 x km의 속력으로 y시간 동안 간 거리 10 km

 \bigcirc 5 함수 $f(x)=\frac{a}{x}$ 에 대하여 f(-3)=4일 때, f(2)의 값을 구하시오. (단, a는 상수)

1 함수 f(x) = -2x에 대하여 f(1) + f(2)의 값은?

(2) - 3

(5) 3

 $\widehat{1}$ -6

 \bigcirc 1

- 02 한 변의 길이가 x cm인 정삼각형의 둘레의 길이를 y cm라 할 때, 다음 물음에 답하시오.
 - (1) y=f(x)일 때, f(x)를 구하시오.
 - (2) f(10)의 값을 구하시오.

- ①**6** 함수 f(x)=3x+2에 대하여 f(a)=a일 때, a의 값은?
 - $\widehat{(1)} 2$
- (2) 1
- 30

- **4** 1
- **(5)** 2

- \bigcirc 100 L들이 빈 물통에 매분 x L씩 물을 넣을 때, 물통을 가득 채우는 데 걸리는 시간을 y분이라 하자. 다음 물음에 답하시오.
 - (1) y=f(x)일 때, f(x)를 구하시오.
 - (2) f(20)의 값을 구하시오.

07 함수 f(x) = ax에 대하여 f(1) = -3일 때, f(-4) + f(0)의 값을 구하시오. (단, a는 상수)

- 다음 중 일차함수인 것을 모두 고르면? (정답 2개)
 - $\widehat{1}$ y = 1 5x
- ② $y = 1 + x + x^2$
- 3y=3(x+1)
- (4) y = (x+1)x
- $\bigcirc y = \frac{3}{r}$

 \bigcap 다음 \langle 보기 \rangle 중에서 y가 x에 대한 일차함수인 것을 모 두 고른 것은?

- \bigcirc 시속 x km로 y시간 동안 걸은 거리는 5 km이다.
- \bigcirc 올해 15살인 학생의 x년 후의 나이는 y살이다.
- \Box 가로의 길이가 x cm. 세로의 길이가 y cm인 직 사각형의 둘레의 길이는 10 cm이다.
- 형의 넓이가 $y \text{ cm}^2$ 이다.
- \bigcirc , \bigcirc
- ② ⑦, ₴
- (3) (1), (2)

- 4 L, 2
- (5) E, (2)

3 일차함수 $f(x) = \frac{3}{4}x - 2$ 에 대하여 2f(-2) - 3f(4)의 값을 구하시오.

①**4** 일차함수 $f(x) = -\frac{1}{3}x + 4$ 에 대하여 f(a) = 6일 때, *a*의 값을 구하시오

5 일차함수 f(x) = ax + 3에 대하여 f(-2) = 0일 때, f(2)의 값을 구하시오. (단. a는 상수)

- \bigcirc 6 다음 중 일차함수 y=-4x+1의 그래프 위의 점인 것은?

 - ① (-2,7) ② $\left(-\frac{1}{2},-3\right)$ ③ $\left(\frac{1}{2},1\right)$

 - (4)(1,1) $(5)(\frac{5}{2},-9)$

 \bigcap 일차함수 y = -2x의 그래프를 y축의 방향으로 4만큼 평행이동하면 점 (1, m)을 지난다. 이때 m의 값을 구 하시오.

 \bigcirc 일차함수 y = -3x + 4의 그래프를 y축의 방향으로 b만큼 평행이동하였더니 일차함수 y = ax - 2의 그래 프가 되었다. 이때 b-a의 값을 구하시오.

(단. a는 상수)

- 입차함수 $y=\frac{1}{2}x-3$ 의 그래프에서 x절편을 a,y절편을 b라 할 때, a+b의 값은?
 - (1) 3
- ② 0
- ③3

- **4** 6
- **(5)** 9

02 일차함수 $y = -\frac{2}{5}x$ 의 그래프를 y축의 방향으로 2만 큼 평행이동한 그래프의 x절편과 y절편을 각각 구하시오.

- 03 다음 일차함수의 그래프 중 x절편이 나머지 넷과 다른 하나는?
 - ① y = 2x 4
- ② y = -x + 2
- 3y=3x-6
- 4y = 5x 10
- $\bigcirc y = 2x 2$

- 04 일차함수 $y = \frac{3}{2}x + b$ 의 그래프의 x절편이 4일 때, y절편은? (단, b는 상수)
 - (1) 6
- (2) -3
- (3) 2

- **4** 3
- ⑤6

05 다음 중 일차함수 $y = \frac{1}{2}x + 3$ 의 그래프는?

 $\begin{array}{c|c}
\hline
3 & y \\
\hline
0 & 6 & x
\end{array}$

06 일차함수 y=2x+4의 그래프와 x축, y축으로 둘러싸인 삼각형의 넓이를 구하시오.

- 0] 일차함수 $y=\frac{2}{3}x+1$ 의 그래프에서 x의 값이 0에서 3까지 증가할 때, y의 값의 증가량은?
 - $\widehat{(1)}$ 0
- 2 1
- 3 2

- **4** 3
- **(5)** 4

□4 오른쪽 그림과 같은 일차함수의 그래프의 기울기를 구하시오.

- \bigcirc 다음 일차함수의 그래프 중에서 x의 값이 4만큼 증가 할 때, y의 값이 3만큼 감소하는 것은?
 - $\bigcirc y = 4x + 3$
- ② y = 4x 3
- $3y = \frac{3}{4}x + 5$ $4y = -\frac{3}{4}x 1$
- $\bigcirc y = -3x + 4$

 $\bigcirc 5$ 두 점 (-2, k), (4, 5)를 지나는 일차함수의 그래프의 기울기가 1일 때, k의 값을 구하시오.

- \bigcirc 일차함수y=2x-3의 그래프의 기울기를 a, x절편을 b, y절편을 c라 할 때, abc의 값은?
 - (1) 9
- $2 \frac{9}{2}$ $3 \frac{3}{2}$
- $4\frac{9}{2}$
- ⑤9

- (1, -1), (3, 2), (k, -2)가 한 직선 위에 있을 때, *k*의 값은?

 - $\bigcirc \frac{1}{4}$ $\bigcirc \frac{1}{3}$ $\bigcirc \frac{1}{2}$

○1 일차함수의 그래프의 성질

6. 일차함수와 그래프 (2)

①] 일차함수 $y = -\frac{1}{2}x + 3$ 의 그래프에 대한 다음 설명 중 옳은 것을 모두 고르면? (정답 2개)

- ① 점 (2,3)을 지난다.
- ② 원점을 지나는 직선이다.
- ③ 일차함수 $y = -\frac{1}{2}x$ 의 그래프와 평행하다.
- ④ x절편은 -2, y절편은 3이다.
- ⑤ x의 값이 증가할 때, y의 값은 감소한다.

①**4** 일차함수 y=ax-5의 그래프는 y=2x-1의 그래프와 평행하고, 점 (1,b)를 지난다. 이때 a+b의 값을 구하시오. (단,a는 상수)

○2 일차함수 y=-ax+b의 그래 프가 오른쪽 그림과 같을 때, 다음 중 상수 a, b의 부호로 옳 은 것은?

- ① a > 0, b > 0
- ② a > 0, b = 0
- 3a>0, b<0
- 4a < 0, b < 0
- $\bigcirc a < 0, b > 0$

05 다음 $\langle 보기 \rangle$ 의 일차함수 중에서 그 그래프가 y=5x+1의 그래프와 평행한 것은 모두 몇 개인가?

- ① 1개
- ② 2개
- ③ 3개

- ④ 4개
- ⑤ 5개

03 a < 0, b > 0일 때, 일차함수 y = ax - b의 그래프가 지나지 <u>않는</u> 사분면은?

- ① 제1사분면
- ② 제2사분면
- ③ 제3사분면
- ④ 제4사분면
- ⑤ 제1,3사분면

- **()6** 두 일차함수 y=ax+2와 $y=-3x+\frac{b}{2}$ 의 그래프가 일치할 때, ab의 값은? (단, a, b는 상수)
 - $\bigcirc 12$
- (2) 6
- (3) 3

- (4)6
- (5)12

 \bigcap 기울기가 5이고, y절편이 -1인 직선이 점 (1, a)를 지날 때. a의 값을 구하시오.

 $\bigcirc 5$ 다음 중 두 점 (2, -5), (-1, 4)를 지나는 직선 위의

(1,2) (2,-5) (3,8)

(0,-1) $(5)(\frac{1}{3},0)$

○ 오른쪽 그림의 직선과 평행하고, y절편이 -1인 직선을 그래프로 하는 일차함수의 식은?

① y = 2x - 1

②
$$y = -\frac{1}{2}x + 2$$

$$3y = -\frac{1}{2}x - 1$$

$$4y = -2x + 2$$

$$5y = -2x - 1$$

 $\bigcirc 6$ 두 점 (2,2),(5,-1)을 지나는 직선을 y축의 방향으 로 2만큼 평행이동하면 점 (3, a)를 지날 때, a의 값을 구하시오.

03 일차함수 $y=\frac{3}{2}x-4$ 의 그래프와 평행하고, 점 (2,-2)를 지나는 일차함수의 그래프의 y절편을 구하 시오.

\bigcap x절편이 3이고, y절편이 -5인 직선을 그래프로 하는 일차함수의 식은?

①
$$y = -3x - 5$$
 ② $y = 3x + 5$

②
$$y = 3x + 5$$

$$3y = -\frac{5}{3}x - 5$$
 $4y = \frac{5}{3}x - 5$

$$4y = \frac{5}{3}x - 5$$

$$\Im y = \frac{5}{3}x + 5$$

04 기울기가 $-\frac{1}{3}$ 이고, 점(3,2)를 지나는 직선을 그래프 로 하는 일차함수의 식을 y=ax+b라 할 때, b-3a의 값은? (단, a, b는 상수)

- (1) 4
- (2) 3
- \mathfrak{G} 0

- (4) 3
- (5)4

 $\sqrt{8}$ x절편이 -2이고, 일차함수 $y = -\frac{2}{5}x - 4$ 의 그래프 와 y축 위에서 만나는 직선을 그래프로 하는 일차함수 의 식은?

- $\bigcirc 1 y = -2x 4$
- ② y = -2x + 4
- 3y = -2x + 6
- 4y=2x-4
- $\bigcirc y = 2x + 4$

지면으로부터 100 m 높아질 때마다 기온은 0.6 ℃씩 내려간다고 한다. 지면의 기온이 24 ℃일 때, 기온이 0 ℃인 곳의 지면으로부터의 높이는?

① 2000 m

② 2500 m

③ 3000 m

- 4000 m
- ⑤ 4500 m

02 길이가 30 mm인 용수철 저울이 있다. 다음 표와 같이 무게가 10 g인 추를 하나씩 매달 때마다 용수철의 길 이를 재었더니 일정한 비율로 늘어났다. 추의 무게가 x g일 때의 용수철의 길이를 y mm라 할 때, 길이가 66 mm인 용수철에 매달린 추의 무게를 구하시오.

추의 무게 (g)	0	10	20	30	40	50	•••
길이 (mm)	30	33	36	39	42	45	

①**3** 1 L의 휘발유로 12 km를 달릴 수 있는 자동차에 30 L의 휘발유가 들어 있다. 240 km를 달렸을 때, 자동차에 남아 있는 휘발유의 양을 구하시오.

①4 민지네 가족은 자동차를 타고 집에서 150 km 떨어진 캠핑장에 시속 60 km의 일정한 속력으로 가고 있다. 출발한 지 x시간 후에 캠핑장까지 남은 거리를 y km 라 할 때, 집에서 출발하여 캠핑장에 도착하는 데 몇 시간이 걸리는지 구하시오.

○5 오른쪽 그림은 길이가 30 cm인 양초에 붙을 붙인 지 *x*시간 후에 남은 양초의 길이를 *y* cm라 할때의 *x*와 *y* 사이의 관계를 그래프로 나타낸 것이다. 불을 붙인지 40분 후에 남은 양초의 길이를 구하시오.

06 오른쪽 그림과 같은 직사각

 형 ABCD에서 점 P가 점

 D에서 \overline{DC} 를 따라 점 C까지 매초 2 cm씩 움직이고

 있다. 삼각형 APD의 넓이

가 16 cm²가 되는 것은 점 P가 점 D를 출발한 지 몇 초 후인지 구하시오.

01 일차함수와 일차방정식

- 일차방정식 2x-5y+10=0의 그래프가 일차함수 y=ax+b의 그래프와 같을 때, ab의 값을 구하시오. (단. a. b는 상수)
- \bigcirc 다음 \langle 보기 \rangle 중에서 일차방정식 -3x+y-2=0의 그 래프에 대한 설명으로 옳은 것을 모두 고르시오.

- \bigcirc x의 값이 증가하면 y의 값도 증가한다.
- 제2, 3, 4사분면을 지난다.
- ② 일차함수 y=3x의 그래프를 y축의 방향으로 -2만큼 평행이동한 것이다.
- **12** 일차방정식 3x+2y-4=0의 그래프의 기울기를 a. y절편을 b라 할 때, a+b의 값은?

 - ① $-\frac{3}{2}$ ② $-\frac{1}{2}$
- 30
- $4\frac{1}{2}$ $5\frac{3}{2}$

- **16** 다음 중 점 (-3, 0)을 지나고, y축에 평행한 직선의 방정식은?
 - ① x = -3 ② x = 3
- 3y = -3
- (4) y = 0
- (5) y = 3

- $\bigcap_{x \in \mathbb{Z}}$ 일차방정식 x + ay 3 = 0의 그래프의 기울기가 1일 때, *y*절편은? (단, *a*는 상수)
 - (1) -3
- (2) 1
- ③1

- **(4)** 3
- **(5) 5**

- 수직일 때, a의 값은?
 - $\bigcirc 2$
- ②3
- 3)4

- **4** 5
- **(5)** 6

- **1** 일차방정식 2x-3y=1의 그래프가 점 (a,3)을 지날 때, a의 값을 구하시오.
- **18** 다음 네 직선으로 둘러싸인 부분의 넓이를 구하시오.

x=3, y=-5, x=0, y=1

소단원별 기출 문제

02 일차함수의 그래프와 연립일차방정식의 해

7. 일차함수와 일차방정식의 관계

○ 오른쪽 그림은 연립방정식 $\left\{ egin{aligned} & ax+y=4 \ & x+by=-2 \end{aligned}
ight.$ 플풀기 위해 두 일차방정식의 그래프를 그린 것이다. 이때 a+b의 값을 구 하시오. (단, a, b는 상수)

04 두 직선 2x-y=5, $ax+\frac{1}{2}y=5$ 의 교점이 존재하지 않을 때, 상수 a의 값을 구하시오.

1 두 일차방정식 3x + ay = b, x + by = -5의 그래프의 교점의 좌표가 (2, -1)일 때, a-b의 값은? (단, a, b는 상수)

- $\widehat{(1)} 8$
- (2) 7
- (3) 6

- $\bigcirc 4$ 7
- (5)8

- 05 연립방정식 $\begin{cases} ax-y=3 \\ 4x-2y=b \end{cases}$ 의 해가 무수히 많을 때, a+b의 값은? (단, a, b는 상수)

 - 1 8 2 6
- ③5

- $\bigcirc 4$ 7
- (5)8

3 두 직선 2x-y=-2, 4x+y=8의 교점을 지나고 x축에 평행한 직선의 방정식을 구하시오.

○6 오른쪽 그림과 같이 두 직선 x+y=5, 2x-y=1과 y축 으로 둘러싸인 부분의 넓이 를 구하시오.

CHECK CHECK

수준별 자료집(중)

기본편 | 중간 난이도로 학교 시험 형태의 문제가 더 필요한 학생들! 중하위반 학생들의 숙제 또는 테스트용으로!

중단원 테스트

1. 유리수와 순환소수	44
2. 식의 계산	48
3. 일차부등식	52
4. 연립일차방정식	56
5. 일차함수와 그래프 (1)	60
6. 일차함수와 그래프 (2)	64
7. 일차함수와 일차방정식의 관계	68

1. 유리수와 순환소수

05 다음 분수 중 유한소수로 나타낼 수 $\frac{1}{1}$ 것은?

 $49 \frac{49}{2 \times 5^2 \times 7} \quad \boxed{5} \frac{13}{48}$

- ☐ 다음 중 유리수가 <u>아닌</u> 것은?
 - \bigcirc π
- (2) 3

호

 \mathfrak{G} 0

- (4) 3.14
- (5) 2.135

- **12** 다음 중 순환소수 4.646464…를 순환마디에 점을 찍 어 간단히 나타낸 것으로 옳은 것은?
 - (1) 4.646
- (2) 4.6
- (3) 4.64
- **4.646 5.4.646**

- 03 분수 $\frac{4}{7}$ 를 소수로 나타낼 때, 소수점 아래 101번째 자 리의 숫자는?
 - \bigcirc 1
- \bigcirc 2
- (3)4

- $\bigcirc 4$ 5
- **(5)** 8

 $07 \frac{5}{42} \times a$ 를 소수로 나타내면 유한소수가 될 때, a의 값 이 될 수 있는 가장 작은 자연수는?

06 두분수 $\frac{1}{4}$ 과 $\frac{5}{6}$ 사이의 분수 중에서 분모가 24이고 유

한소수로 나타낼 수 있는 분수의 개수는?

② 4개

(5) 7개

- \bigcirc 3
- \bigcirc 7
- ③ 14

① 3개 ④ 6개

4 21 **5** 42

 $\bigcirc 4$ 다음은 분수 $\frac{7}{40}$ 을 유한소수로 나타내는 과정이다. 이때 bc-a의 값을 구하시오.

$$\frac{7}{40} = \frac{7}{2^3 \times 5} = \frac{7 \times a}{2^3 \times 5 \times a} = \frac{175}{b} = c$$

- \bigcirc 8 두 분수 $\frac{27}{220}$ 과 $\frac{9}{175}$ 에 각각 어떤 자연수 x를 곱하여 유한소수가 되게 하려고 한다. 다음 중 x의 값이 될 수 있는 것은?
 - ① 23
- 2 55
- 3 67

- **(4)** 77
- ⑤ 100

09 분수 $\frac{a}{90}$ 를 소수로 나타내면 유한소수이고, 이 분수를 기약분수로 나타내면 $\frac{7}{h}$ 일 때, a+b의 값은?

(단, a는 $60 \le a \le 70$ 인 자연수)

- $\bigcirc 163$
- (2)65
- (3) 68

- (4)73
- (5)78
- $\frac{10}{2^2 \times 5 \times a}$ 를 소수로 나타내면 순환소수가 될 때, 다음 중a의 값이 될 수 있는 것은?
 - \bigcirc 3
- (2) 5
- 3 7

- **4** 12
- (5)15
- **]** 다음은 순환소수 0.234를 기약분수로 나타내는 과정 이다. □ 안에 알맞은 수로 옳은 것은?

x=0.234=0.2343434···라 하면

- ① $x = 234.343434\cdots$... ①
- $2 x = 2.343434 \cdots \cdots 0$
- →에서 ⇒을 변끼리 빼면
- $3 x = 4 \therefore x = 5$
- ① 100
- $2\frac{1}{10}$
- 3 900

- (4) 232
- 12 순환소수 x=1.234를 분수로 나타내려고 할 때, 다음 중 가장 편리한 식은?
 - ① 10x x
- ② 100x x
- ③ 1000x x
- $\bigcirc 100x 10x$
- \bigcirc 1000x-10x

- 13 다음 중 순환소수를 분수로 나타내는 과정으로 옳지 않은 것은?

 - ① $0.\dot{7} = \frac{7}{9}$ ② $2.3\dot{4} = \frac{234 23}{90}$
 - $3 \ 2.\dot{1}\dot{3} = \frac{213 2}{99} \qquad 4 \ 0.3\dot{5} = \frac{35 3}{90}$
 - \bigcirc 2.15= $\frac{215-2}{900}$

- 14 다음 두 수의 대소 관계가 옳은 것은?
 - (1) 1>1.01
- $(2) 0.\dot{3} < 0.\dot{3}\dot{1}$
- 30.15 < 0.15
- (4) 0.6 > 0.6
- (5) 1.7 $\dot{2}$ > 1. $\dot{7}$

- 15 0. $\dot{2}$ 0 $\dot{3}$ =203×a일 때, a의 값을 순환소수로 나타내면?
 - $\bigcirc 0.001$
- ② 0.100
- (3) 0.001

- 40.00i
- $\bigcirc 0.01$

- **16** 다음 중 옳지 않은 것은?
 - ① 모든 순환소수는 유리수이다.
 - ② 모든 유한소수는 유리수이다.
 - ③ 순환소수는 기약분수로 나타낼 수 있다.
 - ④ 모든 유리수는 유한소수로 나타낼 수 있다.
 - ⑤ 기약분수에서 분모의 소인수가 2 또는 5뿐이면 유 한소수로 나타낼 수 있다.

1, 유리수와 순환소수

- 다음 분수를 소수로 나타낼 때, 무한소수인 것은?
- $0\frac{1}{4}$ $0\frac{5}{6}$ $0\frac{5}{8}$
- $4\frac{7}{20}$ $5\frac{12}{30}$
- **12** 다음 중 순환소수의 표현이 옳은 것은?
 - (1) 4.0666···=4.06
 - ② $2.032032032 \dots = \dot{2.03}$
 - $30.6595959\dots = 0.6595$
 - $41.158158158 \dots = 1.\dot{1}\dot{5}\dot{8}$
 - \bigcirc 6.314314314...=6.314

- 03 분수 $\frac{2}{13}$ 를 소수로 나타낼 때, 소수점 아래 100번째 자리의 숫자는?
 - \bigcirc 3
- (2)4
- (3)5

- (4)6
- (5)8

이때 a+b의 값을 구하시오.

$$\frac{113}{250} = \frac{113}{2 \times 5^3} = \frac{113 \times a}{2 \times 5^3 \times a} = \frac{b}{1000} = 0.452$$

- 05 분수 $\frac{1}{28}$, $\frac{2}{28}$, $\frac{3}{28}$, ..., $\frac{27}{28}$ 중 유한소수로 나타낼 수 있는 분수의 개수는?
 - ① 3개
- ② 4개
- ③ 5개

- ④ 6개
- ⑤ 7개

- $\bigcirc 6$ 분수 $\frac{5}{x}$ 가 유한소수로 나타내어질 때, 다음 중 x의 값 이 될 수 있는 것은?
 - \bigcirc 3
- (2) **4**
- 3 6

- $\stackrel{\textstyle \bigcirc}{4}$ 7
- **(5)** 9

- 07 두 분수 $\frac{A}{2 \times 3 \times 5}$, $\frac{A}{2^2 \times 3 \times 11}$ 가 모두 유한소수로 나 타내어질 때. A의 값이 될 수 있는 가장 작은 자연수 는?
 - \bigcirc 3

(4) **15**

- 26 (5)33

③11

- $\bigcirc 4$ 다음은 분수 $\frac{113}{250}$ 을 유한소수로 나타내는 과정이다.
- $\frac{x}{180}$ 를 소수로 나타내면 유한소수이고, 이 분수 를 기약분수로 나타내면 $\frac{1}{y}$ 일 때, x+y의 값은? (단, *x*는 10보다 작은 자연수)
 - ① 29
- ② 32
- (3)36

- **4** 44
- **(5)** 45

- \bigcirc 다음 중 순환소수 x=0.2636363···에 대한 설명으로 옳지 않은 것은?
 - ① 순환마디를 이루는 숫자의 개수는 2개이다.
 - ② 0.263으로 나타낸다.
 - ③ 유리수이다.
 - ④ 분수로 나타낼 때, 가장 편리한 식은 1000x-10x이다.
 - ⑤ 기약분수로 나타내면 $\frac{27}{110}$ 이다.

- **10** 다음 중 순환소수를 분수로 나타낸 것으로 옳지 <u>않은</u> 것은?
 - ① $0.\dot{4} = \frac{4}{9}$
- $2.\dot{1}\dot{9} = \frac{73}{33}$
- $31.17 = \frac{53}{45}$
- $40.\dot{0}3\dot{7} = \frac{1}{27}$
- $\textcircled{5} \ 1.0 \\ \dot{5} \\ \dot{3} \\ = \\ \frac{1043}{990}$

1 0.5 $\dot{6} = \frac{a}{30}$, 1.2 $\dot{3} = \frac{37}{b}$ 일 때, a+b의 값을 구하시오.

- 12 $2.27 \times x$ 가 자연수가 되도록 하는 가장 작은 자연수 x 의 값은?
 - ① 12
- 2 18
- ③ 24

- **4** 30
- **(5)** 33

- 13 어떤 기약분수를 소수로 나타내는데 민주는 분모를 잘 못 보아서 0.37로 나타내고, 현중이는 분자를 잘못 보아서 0.87로 나타내었다. 처음 기약분수를 $\frac{b}{a}$ 라 할 때, a+b의 값은?
 - ① 23
- ② 37
- 3 44

- **4** 53
- ⑤ 70

- **] 4** $1.3\dot{4}+0.5\dot{6}$ 을 계산한 값을 기약분수로 나타내면 $\frac{b}{a}$ 일 때, b-a의 값은?
 - ① 11
- 2 13
- ③ 27

- **4** 41
- $\bigcirc 82$

15 다음 등식을 만족하는 x의 값을 순환소수로 나타내면?

$$x+0.\dot{1}\dot{8}=\frac{10}{11}$$

- $\bigcirc 0.7\dot{2}$
- 30.72

- 4 0.109
- $\bigcirc 0.190$

- 16 다음 설명 중 옳은 것을 모두 고르면? (정답 2개)
 - ① 순환소수는 무한소수이다.
 - ② 순환소수 중에는 유리수가 아닌 것도 있다.
 - ③ 모든 유리수는 분수로 나타낼 수 없다.
 - ④ 무한소수는 모두 유리수인 것은 아니다.
 - ⑤ 모든 무한소수는 분수로 나타낼 수 있다.

다음 중 계산 결과가 나머지 넷과 다른 하나는?

호

- \bigcirc $x^2 \times x^6$
- $(x^4)^2$
- $3x^2 \div x^{10}$
- $(4) x^2 \times (x^2)^3$
- \bigcirc $x^{10} \times x^5 \div x^7$

- \mathbf{Q} $a^{12} \times (a^2)^3 \div a^{\square} = a^6$ 일 때, \square 안에 알맞은 수는?
 - ①3
- 28
- ③ 12

- **4** 15
- ⑤ 16

 $\left(-\frac{y^2}{3x}\right)^a = -\frac{y^b}{cx^3}$ 일 때, a+b+c의 값을 구하시오. (단. a. b. c는 자연수)

- $4^x \times 32 \div 16 = 2^7$ 일 때, 자연수 x의 값은?
 - \bigcirc 2
- (2)3
- (3) 4

- $\bigcirc 4$ 5
- **(5)** 6

- 15 $2^7 + 2^7 + 2^7 + 2^7 = 2$ 의 거듭제곱으로 나타내면?
 - $(1) 2^{8}$
- ② 2^9
- $(3) 2^{16}$

- (4) 2^{20}
- $(5) 2^{28}$

- 06 $a=3^x$ 일 때, $\left(\frac{1}{81}\right)^x$ 을 a를 사용하여 나타내면?
 - ① 81a ② a^4
- $\Im a^{81}$

- $4\frac{1}{a^4}$ $5\frac{4}{a^4}$

- \bigcap $2^7 \times 5^{10}$ 이 n자리의 자연수일 때, n의 값은?
 - 1)7
- 28
- 39

- **4** 10
- **(5)** 11

8 다음 〈보기〉 중 옳은 것을 모두 고르시오.

- $\bigcirc (2ab^2)^2 \times 2ab = 8a^3b^5$
- $\bigcirc (-2x^3y)^2 \times \left(\frac{1}{2}xy^2\right)^2 = x^8y^5$
- $(-x^2y) \div (-xy)^3 \div x^3y^2 = \frac{1}{x^4y^4}$

19 다음 □ 안에 알맞은 식은?

$$6a^3b^2 \times \boxed{ = \frac{1}{3}a^3b}$$

- ① $\frac{a^4b}{2}$ ② $-\frac{a^4b}{2}$ ③ $\frac{a^4b}{3}$
- $4 \frac{a^4b}{3}$ $5 \frac{a^4b^2}{2}$

- **1** 가로의 길이, 세로의 길이가 각각 3a, 7b인 직사각형을 밑면으로 하는 사각뿔의 부피가 $35ab^2$ 일 때, 이 사각뿔 의 높이는?
 - \bigcirc 3a
- ② $\frac{5}{3}b$
- $(3) \, 5b$
- $4\frac{5}{3}ab$
- ⑤ 5*ab*

] 다음 중 옳지 않은 것은?

①
$$(4a+3b)-(2a+5b)=2a-2b$$

②
$$(2x^3y+6xy^2)\div\frac{1}{2}xy=x^2+3y$$

$$36x(5x-3)=30x^2-18x$$

$$\bigcirc (4) -2a^2 -3a(a-7) = -5a^2 +21a$$

$$\bigcirc$$
 2(3 x^2 -2 x +1)-3 x (-2 x +5)=12 x^2 -19 x +2

- $12 2x^2 + x 1$ 에서 어떤 식을 빼어야 할 것을 잘못하여 더했더니 $x^2 - 3x + 9$ 가 되었다. 이때 바르게 계산한 식은?
 - $(1) x^2 4x + 10$
- $2x^2+4x-10$
- $(3) x^2 3x + 9$
- $(4)3x^2-3x+9$
- (5) 3 $x^2 + 5x 11$

3 $2a-[7b+2a-{3a-(\underline{})}]=5a-3b$ 일 때, □ 안에 알맞은 식을 구하시오.

- $\textbf{14} \ \left(2y-\frac{3}{4}x\right) \times \frac{2}{3}x \left(\frac{2}{3}x^2y x^3\right) \div 2x \\ \frac{2}{3}x + 2x = \frac{1}{3}x + \frac{$

- $(4) x^2y$
- \bigcirc xy^2

15 다음 식을 간단히 하시오.

$$\frac{6a^2 - 3ab}{3a} - \frac{5ab + 10b^2}{5b}$$

16 가로의 길이가 5a이고, 넓이가 $45a^2 - 15ab$ 인 직사각 형의 세로의 길이를 구하시오.

- **17** A=4x-y, B=x+2y일 때, 2A-3B+7을 x, y의 식으로 나타내면?

 - ① 5x-7 ② -5x-7
- 35x-4y+7
- 4)5x-8y+7 5)11x-8y+7

□ 다음 중 옳은 것은?

- $\bigcirc 3^2 \times 3^5 = 3^{10}$
- $(2)(x^2)^4 \times x = x^7$
- $(3)(x^3)^2 \div x^3 \div x^5 = \frac{1}{x^2}$
- $(4)(-3xy^3)^3 = -9x^3y^9$
- (5) $2^5 \times 2^2 \div (2^3)^2 = 2^2$

 $\bigcirc 2$ 다음 중 \bigcirc 안에 들어갈 수가 나머지 넷과 다른 하나

- ① $a^{\square} \times a^2 = a^6$ ② $\frac{x^{\square}}{x^7} = \frac{1}{x^3}$
- $(3) \left(-\frac{y^5}{r^{\square}} \right)^2 = \frac{y^{10}}{r^8} (a^2b^{\square})^3 = a^6b^{12}$

 $9^{x+3}=3^{16}$ 일 때, 자연수 x의 값은?

- ①3
- 2 4
- (3) 5

- (4)6
- (5)7

 \square 4 다음을 만족하는 자연수 a, b, c에 대하여 a+b+c의 값을 구하시오.

$$\{(2^3)^3\}^3 = 2^a$$

$$2^3 \times 2^3 \times 2^3 \times 2^3 = 2^b$$

$$2^3 + 2^3 + 2^3 + 2^3 = 2^c$$

 $05 A = 5^3$ 이라 할 때, $\frac{1}{25^3}$ 을 A를 사용하여 나타내면?

- $4\frac{1}{A^2}$ $3\frac{1}{A^3}$

16 2¹⁵ × 3 × 5¹²은 몇 자리의 자연수인가?

- ① 11자리 ② 12자리
- ③ 13자리

- ④ 14자리
- ⑤ 15자리

17 다음 중 옳은 것을 모두 고르면? (정답 2개)

- ① $(2x^2y)^2 \times (-xy)^3 = -4x^7y^5$
- $32xy \times (5x^2y)^2 \div 10xy^3 = \frac{5}{2}x^4$
- $(4)(-2xy^2)^2 \div (2x^2y)^3 = \frac{2y}{r^4}$
- § $9xy \times 4x^5 \div 3x^3y = 12x^3$

(8 $(x^2y^a)^2 \times \frac{x^by^2}{8} \div \left(-\frac{1}{2}xy\right) = -\frac{x^4y^9}{4}$ 일 때, a-b의 값은? (단. a. b는 자연수)

- $\bigcirc 1 3$ $\bigcirc -2$
- $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$

- **(4)** 1
- (5) **3**

- $(-3a^2b)^3$ ÷ $\longrightarrow \times (2ab^2)^4 = 16a^{10}$ 일 때, \bigcirc 안에 알맞은 식은?
 - $(1) 27b^{11}$ $(2) 9b^{11}$
- $3 \frac{1}{9b^3}$
- $4 \frac{1}{27b^{11}}$ $9a^{11}$

- $\frac{4x-y}{3} \frac{3x-y}{2} = Ax + By$ 일 때, A B의 값은? (단. A. B는 상수)

 - ① -1 ② $-\frac{1}{3}$ ③ 0
 - $4\frac{1}{3}$
- **(5)** 1

 $3(x^2-2x+3)-2(-2x^2+x+4)$ 를 간단히 하였을 때. x^2 의 계수와 상수항의 합을 구하시오.

12 $4x - [3x - \{6x - (2y - 5x)\}]$ 를 간단히 하시오.

- 13 다음 조건을 모두 만족하는 다항식 B를 구하시오.
 - (가) 다항식 A에서 $-x^2+3$ 을 빼었더니 $2x^2-1$ 이 되 었다.
 - (나) 다항식 A에 $2x^2-x-5$ 를 더하였더니 다항식 B와 같았다.

- **14** $2x(3x-5y)-(x^3y-3x^2y^2)\div xy$ 를 간단히 하면?
- ① $5x^2 13xy$ ② $5x^2 7xy$ ③ $5x^2 + 13xy$
- $(4) 7x^2 7xy$ $(5) 7x^2 13xy$

15 오른쪽 그림과 같이 높이가 $9a^2$ 인 원뿔의 부피가 $3a^3b^2+9a^3-15a^2b$ 일 때, 밑넓이는?

- $3ab^2-3a+5b$
- $(4) ab^2 + 3a + 5b$
- $\bigcirc ab^2 + 3a 5b$

16 A=3x-2y, B=2x+3y일 때, 2(2A+B)-3(2A-B)를 x, y의 식으로 나타내면 ax+by이다. 이때 b-a의 값을 구하시오.

(단, a, b는 상수)

○ 다음 중 부등식인 것을 모두 고르면? (정답 2개)

호

- $\widehat{1}$ $3x 7 \le 0$
- ② 3-5x
- 32x=0
- (4) -2 > 3
- (5) x + 4 = 9

- \bigcirc 다음 부등식 중 x=2가 해가 되는 것은?
 - $1 \frac{x}{2} 1 < 0$
- 2x+3<7
- 30.1x-0.5>0
- $\bigcirc 4 2 3x > -3$
- \bigcirc 5*x*+1≥11

- \bigcirc 3 a>b일 때, 다음 중 옳은 것은?
 - ① a+3 < b+3
- ② a-3 < b-3
- (3) -3a > -3b
- 4 4 2a < 4 2b
- $(5) \frac{a}{3} > \frac{b}{3}$

- **15** 다음 일차부등식 중 해가 나머지 넷과 다른 하나는?
 - ① x-3 > 2x-7
- 2(2x-1) < 6x-10
- 3 -2x > -8
- $(4)\frac{x}{2} > x-2$
- \bigcirc 1<-2x+9

- **1** 일차부등식 $5-(3-x) \ge 2x$ 를 만족하는 자연수 x의 개수는?
 - ① 1개
- ② 2개
- ③ 3개

- ④ 4개
- ⑤ 5개

07 일차부등식 $\frac{x-5}{4} - \frac{7x-1}{8} \le 0.25(3-x)$ 를 푸시오.

- 1 $-1 \le a < 2$ 이고 A = 2a 1일 때, A의 값의 범위는?
 - $\widehat{1}$ $-4 \le A < 2$
- ② $0 \le A < 2$
- $3 3 < A \le 1$
- $\bigcirc 4 2 < A \le 4$
- \bigcirc -3 \le A<3

- **8** a < 0일 때, x에 대한 일차부등식 $1 + ax \le 0$ 의 해는?
 - ① $x \ge -\frac{1}{a}$ ② $x \le -\frac{1}{a}$ ③ $x = -\frac{1}{a}$

- $(4) x \ge \frac{1}{a}$ $(5) x \le \frac{1}{a}$

- **9** x에 대한 일차부등식 ax+12>0의 해가 x<3일 때, 상수 *a*의 값은?
 - $\widehat{(1)} 4$
- (2) -3
- (3) -1

- (4) 1
- (5)4

] 일차부등식 0.5x+0.2<0.1x-1의 해가 일차부등식 $\frac{x}{2}$ -3 < a의 해와 같을 때, 상수 a의 값을 구하시오.

- $\mathbf{1}$ 부등식 $a-3x \ge -x$ 를 만족하는 자연수 x의 개수가 2개일 때, 상수 a의 값의 범위는?
 - ① $4 \le a < 6$
- ② $4 < a \le 6$
- ③ $4 \le a \le 6$
- $\bigcirc 4 6 \le a \le -4$
- (5) $-6 < a \le -4$

- **12** 한 개에 600원 하는 옥수수와 한 개에 200원 하는 감자 를 합하여 12개를 사는데 전체 가격이 5000원 미만이 되게 하려고 한다. 옥수수는 최대 몇 개까지 살 수 있는 가?
 - ① 2개
- ② 3개
- ③ 4개

- ④ 5개
- ⑤ 6개

- 13 현재 형은 30000원, 동생은 25000원이 예금되어 있 다. 다음 달부터 매월 형은 4000원씩, 동생은 1500원 씩 예금한다면 형의 예금액이 동생의 예금액의 2배 이 상이 되는 것은 몇 개월 후부터인가?

 - ① 19개월 후 ② 20개월 후
- ③ 21개월 후
- ④ 22개월 후 ⑤ 23개월 후

- 이상의 단체는 입장료의 10 %를 할인해 준다고 한다. 30명 미만의 단체가 입장하려고 할 때, 몇 명 이상이면 30명의 단체 입장권을 사는 것이 유리한가?
 - ① 24명
- ② 25명
- ③ 26명

- ④ 27명
- ⑤ 28명

- 15 기차가 출발하기 전까지 2시간의 여유가 있어서 이 시 간 동안 상점까지 걸어가서 물건을 사 오려고 한다. 시 속 4 km로 걷고, 상점에서 물건을 사는 데 30분이 걸 릴 때, 역에서 몇 km 이내에 있는 상점을 이용할 수 있 는가?
 - ① 1 km
- ② 2 km
- 33 km

- (4) 4 km
- (5) 5 km

16 10 %의 소금물 400 g에 물을 넣어서 8 % 이하의 소 금물을 만들려고 한다. 물을 몇 g 이상 넣어야 하는지 구하시오

중단원 테스트

3. 일차부등식

- □ The 문장을 부등식으로 나타낸 것으로 옳지 않은 것 을 모두 고르면? (정답 2개)
 - ① *x*에 5를 더한 값은 3보다 크지 않다. ⇒ *x*+5<3
 - ② x에서 1을 뺀 값은 4 이하이다. $\Rightarrow x-1 \le 4$
 - ③ 25에서 어떤 수 *x*의 3배를 빼면 6보다 작지 않다. $\Rightarrow 25 - 3x \ge 6$
 - ④ x km의 거리를 시속 20 km로 달리면 40분보다 적게 걸린다. ⇒ $\frac{x}{20}$ < 40
 - (5) 밑변의 길이가 x, 높이가 8인 삼각형의 넓이는 10미만이다. ⇒ 4x<10
- 다음 중 [] 안의 수가 부등식의 해가 되는 것은?
 - ① x+3<5 [2] ② $3x-1\geq 5$ [2]
 - 3-x+2 < x [-1] $42-x \le \frac{1}{2} [0]$
- - $(5) -3x \ge -12 [5]$
- \bigcirc a < b일 때, 다음 중 \bigcirc 안에 들어갈 부등호의 방향이 나머지 넷과 다른 하나는?
 - ① $2a+1 \square 2b+1$
 - ② $a-1 \square b-1$
 - $3-2+\frac{a}{3}$ $-2+\frac{b}{3}$
 - $42 \frac{2}{5}a \square 2 \frac{2}{5}b$
 - $\bigcirc \frac{3}{4}a 5 \square \frac{3}{4}b 5$
- $-1 \le 2x + 5 < 7$ 일 때, x의 값의 범위는?
 - $\widehat{(1)} 3 < x \le 1$
- (2) $-3 \le x < 1$
- $3 1 < x \le 3$
- (4) $-1 \le x < 3$
- $\bigcirc 1 < x \le 3$

- **15** 다음 중 일차부등식인 것을 모두 고르면? (정답 2개)
 - ① 3x+5 < 4+3x
- $(2) x^2 + 3 \ge x^2 + 5$
- $32(4x-2) \le -2x+2$ $4\frac{3}{r}+1 < 0$
- $(5)(x+4)x \ge x^2+1$

- \bigcirc 다음 중 일차부등식 4x-6 < 10x-12와 해가 같은 것은?
 - (1) 3x + 9 > 0
- $\bigcirc 5x < 4x + 2$
- 32x+3>5
- 4x-1 < 2x+5
- (5) 3x+1>2x

7 일차부등식 $7(x-3) \ge 2x + 19$ 의 해를 수직선 위에 바르게 나타낸 것은?

- **08** 일차부등식 $\frac{x-2}{4} \frac{2x-1}{5} < 0$ 을 만족하는 가장 작 은 정수 *x*의 값은?

 - $\bigcirc -3$ $\bigcirc -2$
- (3) -1

- (4) 1
- (5)2

 $\bigcirc 9$ a<1일 때, x에 대한 일차부등식 ax-1>x-a의 해 는?

① x > -1

② x < -1

③ x > 1

4x < 1

⑤ x > 2

10 다음 두 일차부등식의 해가 서로 같을 때, 상수 a의 값은?

2x-3<1, ax-4<2x-2

① -1

② 1

3 2

4 3

(5) 4

1 x에 대한 일차부등식 x-a<7을 만족하는 자연수 x의 개수가 3개일 때, 상수 a의 값의 범위를 구하시오.

12 어떤 수의 3배에서 5를 뺀 수는 10보다 크지 않을 때, 어떤 수 중 가장 큰 수는?

①3

2 4

3 5

(4)6

(5) 7

13 어느 박물관의 입장료는 6명까지는 1인당 2000원이고 6명을 초과하면 추가되는 사람에 대하여 1인당 입장료는 1500원이다. 30000원 이하로 이 박물관을 관람하려고 할 때, 최대 몇 명까지 입장할 수 있는지 구하시오.

] 4 윗변의 길이가 x cm, 아랫변의 길이가 10 cm, 높이가 12 cm인 사다리꼴의 넓이를 72 cm 2 이상으로 하려고 할 때, x의 값의 범위는?

① $x \ge 1$

 $\bigcirc x \ge 2$

 $\Im x \ge 3$

4 $x \ge 4$

 \bigcirc *x*≥5

15 동네 시장에서 1000원 하는 물건을 도매 시장에서는 850원에 살 수 있다. 도매 시장에 다녀오려면 왕복 교통비가 1800원이 든다고 할 때, 이 물건을 몇 개 이상 사는 경우에 도매 시장에서 사는 것이 유리한지 구하시오.

16 등산을 하는데 올라갈 때는 시속 3 km로 걷고 내려올때는 같은 길을 시속 4 km로 걸어서 2시간 20분 이내에 등산을 마치려고 할 때, 최대 몇 km까지 올라갈 수 있는지 구하시오.

다음 중 미지수가 2개인 일차방정식을 모두 고르면?

호

- ① 2x-3=5x+2
- ② $\frac{x}{2}$ -3y=5
- 32xy-x+y=5
- (4) 2x 3y = 2(x+1)
- $\bigcirc y = 2x + 45$

- **1** 일차방정식 2x+y=5의 한 해가 (k,1)일 때, k의 값 <u>e?</u>
 - $\bigcirc 0$
- \bigcirc 1
- (3)2

- **(4)** 4
- **(5)** 6

- 03 연립방정식 $\begin{cases} y=-2x+17 & \cdots & \bigcirc \\ 5x-3y=15 & \cdots & \bigcirc \end{cases}$ 을 풀기 위해 \bigcirc 에
 - \bigcirc 을 대입하여 y를 없앴더니 ax=66이 되었다. 이때 상수 *a*의 값은?
 - $\bigcirc 1 11$ $\bigcirc -6$
- (3)6

- 4 11
- (5)22

- **04** 연립방정식 $\begin{cases} x+y=5 \\ x+3y=11 \end{cases}$ 의 해는?
 - ① x = -1, y = -2 ② x = 1, y = -3
 - 3x=3, y=-2 4x=1, y=4
 - ⑤ x=2, y=3

- **05** 연립방정식 $\begin{cases} ax by = -1 \\ bx ay = -8 \end{cases}$ 의 해가 (2,5)일 때, 상수 a, b의 값은?

 - ① a=2, b=1 ② a=-4, b=3
 - ③ a=1, b=-8
- (4) a = 5, b = 2
- (5) a = -3, b = -1

- **106** 연립방정식 $\left\{ \frac{x}{3} + \frac{y}{4} = \frac{1}{12} \right\}$ 의 해를 (a, b)라 할 때, 0.2x 0.1y = 0.3*ab*의 값은?
- (3) 0

- **7** 다음 방정식의 해는?

$$x - \frac{y}{2} = \frac{2x+3}{5} = \frac{x+y}{3}$$

- ① $x=3, y=\frac{12}{5}$ ② $x=\frac{12}{5}, y=3$
- 3x=2, y=3 4x=2, y=5
- $5x=3, y=\frac{5}{3}$

- **8** 세 일차방정식 x+ay=8, 2x+3y=-5, 3x-7y=27의 공통인 해가 있을 때, 상수 a의 값은?
- ① 2 ② $\frac{1}{3}$ ③ $-\frac{1}{3}$
- $\bigcirc 4 2$ $\bigcirc 5 5$

- $\mathbf{09}$ 연립방정식 $\begin{cases} x-y=a \\ 3x+2y=14 \end{cases}$ 를 만족하는 y의 값이 x의 값의 2배일 때, 상수 a의 값을 구하시오.
- 13 강은이와 서희가 계단에서 가위바위보를 하여 이기면 2계단씩 올라가고, 지면 1계단씩 내려가기로 하였다. 얼마 후 강은이는 처음 위치보다 12계단을, 서희는 6 계단을 올라가 있었을 때, 강은이가 이긴 횟수를 구하 시오. (단, 비기는 경우는 없다.)
- 10 연립방정식 $\begin{cases} ax+by=10 \\ bx+ay=-14 \end{cases}$ 를 푸는데 잘못하여 a,b를 서로 바꾸어 놓고 풀었더니 x=-3, y=1이었다. 이때 처음 연립방정식의 해는? (단, a, b는 상수)
 - (1) x = -3, y = -1
- ② x = -3, y = 3
- 3x = -1, y = 3
- 4 x = 1, y = -3
- ⑤ x=1, y=3

이 같은 지점에서 동시에 출발하여 같은 방향으로 걸 으면 1시간 후에 처음으로 만나고. 반대 방향으로 걸으 면 10분 후에 처음으로 만난다고 한다. A, B 두 사람 의 속력은 각각 분속 몇 m인지 구하시오.

1 둘레의 길이가 1.2 km인 호수가 있다. A, B 두 사람

(단. A가 B보다 빠르다.)

- $\left. egin{aligned} 1 \end{array} \right]$ 연립방정식 $\left\{ egin{aligned} 3x-6y=a \\ x-2y=1 \end{aligned}
 ight.$ 의 해가 없을 때, 다음 중 상수 *a*의 값이 될 수 없는 것은?
 - \bigcirc 1
- (2) 2
- (3) 3

- **(4)** 4
- (5)5

- **15** 6 %의 소금물과 15 %의 소금물을 섞어 12 %의 소금 물 1500 g을 만들려고 한다. 섞어야 하는 15 %의 소 금물의 양은?
 - ① 300 g
- 2500 g
- 3750 g
- ④ 1000 g
- ⑤ 1200 g

- **12** 두 자리의 자연수가 있다. 각 자리의 숫자의 합은 5이 고, 이 수의 십의 자리의 숫자와 일의 자리의 숫자를 바 꾼 수는 처음 수보다 9만큼 작다고 한다. 처음 수를 구 하시오
- 16 어느 학교의 작년의 학생 수는 800명이었는데 올해의 학생 수는 작년보다 남학생은 10 % 증가하고. 여학생 은 10 % 감소하여 전체적으로 5 % 감소하였다. 올해 의 남학생 수와 여학생 수를 각각 구하면?

① 남학생: 210명, 여학생: 530명

② 남학생: 210명, 여학생: 534명

③ 남학생: 220명, 여학생: 530명

④ 남학생: 220명, 여학생: 540명

⑤ 남학생 : 230명, 여학생 : 530명

- x, y가 자연수일 때, 일차방정식 3x+2y=15를 만족 하는 순서쌍 (x, y)는 모두 몇 개인가?

 - ① 1개 ② 2개
- ③ 3개
- ④ 4개 ⑤ 5개

- $egin{aligned} egin{aligned} \mathbf{02} \end{aligned}$ 연립방정식 $\left\{ egin{aligned} & 3x+y=5 & \cdots & \bigcirc \\ & x-2y=1 & \cdots & \bigcirc \end{aligned} \right\}$ 가감법을 이용하여 풀려고 한다. 다음 중 x 또는 y를 소거하기 위하여 필 요한 식을 모두 고르면? (정답 2개)
 - \bigcirc \bigcirc \sim \times 3
- \bigcirc \bigcirc \times 3+ \bigcirc
- $\bigcirc \bigcirc \times 2 \bigcirc \times 3$
- \bigcirc \bigcirc \times 2+ \bigcirc
- \bigcirc \bigcirc \times 5- \bigcirc

03 연립방정식 $\begin{cases} 2x+5y=12 \\ 3x-ay=4 \end{cases}$ 의 해가 (1,b)일 때, ab의 값을 구하시오. (단, a는 상수)

04 연립방정식 $\begin{cases} 5x-3y=10 \\ 3x+2y=6 \end{cases}$ 의 해가 x=a, y=b일 때, a+b의 값을 구하시오.

 $\bigcirc 5$ 다음 두 연립방정식의 해가 서로 같을 때, a-b의 값 은? (단, a, b는 상수)

$$\begin{cases} ax - 2y = 5 \\ 3x + 5y = 4, \end{cases} \begin{cases} 2x - y = 7 \\ x + by = 1 \end{cases}$$

- $\bigcirc 1 2$ $\bigcirc -1$
- (3) 0
- (4) 1
- (5)2

- **06** 연립방정식 $\begin{cases} 3x 4(x + 2y 3) = -2 \\ (x y) : (2 5y) = 1 : 2 \end{cases}$ 를 풀면?
 - ① x = -2, y = 1 ② x = -2, y = 2
- - 3x=-1, y=3 4x=2, y=-1
- - (5) x = 3, y = 1

07 연립방정식 $\begin{cases} \frac{x}{2} + \frac{y}{4} = \frac{1}{4} \\ 0.1x - 0.3y = -1 \end{cases}$ 의 해가 x = a, y = b일

때, a-b의 값은?

- $\bigcirc 1 4$ $\bigcirc 2 3$ $\bigcirc 3 2$
- (4) 1
- (5) **0**

- \bigcirc 방정식 2x+y=3x+2y-6=2의 해가 일차방정식 ax-y=2를 만족할 때, 상수 a의 값은?
 - $\bigcirc 1 5$
- (2) -3
- (3) -1
- (4) -1 (5) (3)

- $\bigcirc 9$ 연립방정식 $\begin{cases} 2x + 3y = 4 \\ 4x + 3y = a \end{cases}$ 의 해가 일차방정식 x + y = 1을 만족할 때. 상수 a의 값을 구하시오.
- 13 현재 엄마와 딸의 나이의 차는 25세이고, 5년 후에는 엄마의 나이가 딸의 나이의 2배보다 5세가 많다고 한 다. 현재 엄마의 나이를 구하시오.

1 4 성일이는 거리가 7 km인 단축 마라톤 대회에 출전하

이 걸렸다. 성일이가 뛰어간 거리를 구하시오.

여 처음에는 시속 10 km로 뛰다가 도중에 숨이 차서

남은 거리를 시속 6 km로 걸어서 완주하였더니 54분

- 10 연립방정식 $\left\{ egin{array}{ll} x+y=4 & \cdots & \bigcirc \\ 2x-y=2 & \cdots & \bigcirc \end{array}
 ight.$ 에서 \bigcirc 의 상수항 4를 잘못 보고 풀어 y=0을 얻었다. 이때 4를 어떤 수로 잘 못 보고 풀었는가?
 - (1) -3 (2) -2
- (3) -1

- (4) 0
- (5)1

▋】 다음 연립방정식 중 해가 무수히 많은 것은?

$$\bigcirc \begin{cases} x+y=2 \\ 2x+y=1 \end{cases}$$

$$\Im \begin{cases} x+y=3 \\ x-y=3 \end{cases}$$

$$4$$
 $\begin{cases} x-y=1 \\ 2x-2y-1 \end{cases}$

$$\mathfrak{S} \begin{cases} x - y = 5 \\ 2x + 2y = 3 \end{cases}$$

15 A, B 두 사람이 같이 하면 15일 만에 끝낼 수 있는 일 을 A가 혼자 10일 동안 하고, 남은 일은 B가 혼자 18 일 동안 하여 끝냈다. 이 일을 A가 혼자 하면 며칠 만 에 끝낼 수 있는지 구하시오.

- 12 소미네 농장은 오리와 양을 모두 합하여 60마리를 기 르고 있다. 오리와 양의 다리의 수의 합이 174개일 때, 오리와 양의 수의 차는?
 - ① 3마리
- ② 4마리
- ③ 5마리

- ④ 6마리
- ⑤ 7마리

16 어느 상점에 원가가 200원인 상품 A와 원가가 300원 인 상품 B가 있는데 상품 A는 20%, 상품 B는 10%의 이익을 붙여서 팔았다. A, B 두 상품을 합하여 1000개를 팔고 35000원의 이익이 생겼을 때, 두 상품 A. B는 각각 몇 개씩 팔았는가?

① 상품 A: 200개, 상품 B: 800개

② 상품 A: 300개, 상품 B: 700개

③ 상품 A: 400개, 상품 B: 600개

④ 상품 A:500개, 상품 B:500개

⑤ 상품 A: 600개, 상품 B: 400개

중단원 테스트

5. 일차함수와 그래프(1)

| 점수

다음 중 y가 x의 함수인 것을 모두 고르면? (정답 2개)

호

- ① 자연수 x보다 작은 짝수 y
- ② 자연수 x의 약수 y
- ③ 시속 x km로 4시간 동안 달린 거리 y km
- ④ 어떤 수x에 가장 가까운 정수y
- (5) 자연수 *x*의 역수 *y*

- $\bigcirc 2$ 함수 $f(x) = -\frac{9}{x}$ 에 대하여 2f(-3) f(1)의 값은?
 - $\bigcirc 6$
- 29
- ③ 11

- (4) 14
- (5)15

 \mathbf{Q} 함수 f(x) = (자연수 x의 약수의 개수)에 대하여 f(10) + f(16)의 값을 구하시오.

- $\mathbf{\Lambda}$ 다음 중 y가 x에 대한 일차함수인 것을 모두 고르면? (정답 2개)
 - ① y = 4
- ② y = -x
- $3y = x^2 + 3x 2$ $4y = \frac{6}{x}$
- $\Im y = \frac{x}{2} + \frac{1}{3}$

- $\bigcirc 5$ 일차함수 f(x)=ax-5에 대하여 f(2)=-3일 때, f(-3)의 값은? (단, a는 상수)
 - $\widehat{1}$ -8
- (2) 4
- \mathfrak{G} 0

- **4** 4
- **(5)** 8

- 06 일차함수 y=2x+b의 그래프를 y축의 방향으로 5만 큼 평행이동하였더니 일차함수 y=ax-1의 그래프 가 되었다. a+b의 값은? (단, a, b는 상수)
 - $\widehat{(1)} 4$
- (2) -2
- (3) 4

- (4)6
- (5)7

- \bigcap 일차함수 y=3x-2의 그래프를 y축의 방향으로 k만 큼 평행이동한 그래프가 점 (2,5)를 지날 때, k의 값 <u>0</u>?
 - $\widehat{(1)} 2$
- (2) 1

(3) 1

- $\stackrel{\textstyle \bigcirc}{}$
- (5)4

- \bigcirc 8 일차함수 $y=\frac{3}{2}x+3$ 의 그래프의 x절편을 a,y절편을 *b*라 할 때, *ab*의 값은?
 - (1) 6
- (2) 5
- 3 5

- (4) 6
- \bigcirc 7

 \bigcirc 일차함수y=-2x+k의 그래프가 오른쪽 그림과 같을 때, 이 일차함 수의 그래프의 *x*절편을 구하시오. (단, *k*는 상수)

 $\mathbf{1}$ 일차함수 y=4x-2에서 x의 값이 -1에서 1까지 증 가할 때, *y*의 값의 증가량을 구하시오.

- 1 두 점 (3, 2), (-1, m)을 지나는 일차함수의 그래프 의 기울기가 $\frac{5}{2}$ 일 때, m의 값은?
- (2) 8

- **4** 14
- **(5)** 18
- ③ 10

12 오른쪽 그림과 같은 일차함수의 그 래프의 기울기를 구하시오.

- 13 세 점 (-1, -5), (1, a), (2, a+5)가 한 직선 위에 있을 때, *a*의 값은?
 - (1) 5
- (2) 1
- \mathfrak{G} 0

- **4** 1
- **⑤** 5

4 다음 중 일차함수 y=2x-1의 그래프는?

15 일차함수 $y = -\frac{5}{2}x + 5$ 의 그래프와 x축, y축으로 둘 러싸인 삼각형의 넓이를 구하시오.

5. 일차함수와 그래프(1)

| 점수

- \bigcap 다음 중 y가 x의 함수가 <u>아닌</u> 것은?
 - ① 자연수 x를 8로 나눈 나머지 y
 - ② 전체 쪽수가 500쪽인 책을 읽을 때. x쪽 읽고 남은 쪽수 y쪽
 - ③ 반지름의 길이가 x cm인 원의 둘레의 길이 y cm
 - ④ 자연수 *x*의 배수 *y*
 - ⑤ 10%의 소금물 x g에 들어 있는 소금의 양 y g

- **1** 함수 f(x) = -2x에 대하여 f(4) = a, f(b) = 2일 때, a+b의 값은?
 - (1) 13
- (2)-11
- (3) 9

- (4) 7
- (5) 5

- \bigcap 다음 중 y가 x에 대한 일차함수인 것을 모두 고르면? (정답 2개)
 - ① 하루 중 낮의 길이가 x시간일 때, 밤의 길이는 y시 간이다
 - 2 시속 x km로 달리는 자동차가 y시간 동안 달린 거 리 240 km이다.
 - ③ 가로의 길이와 세로의 길이가 각각 x cm, y cm인 직사각형의 넓이는 120 cm²이다.
 - ④ 한 변의 길이가 x cm인 정사각형의 넓이는 $y \text{ cm}^2$ 이다
 - ⑤ 500원짜리 사과 x개와 800원짜리 배 y개를 사고 8000원을 지불했다.

- **4** 일차함수 f(x) = ax + 1에 대하여 f(-1) = 3일 때, 상수 *a*의 값은?

 - (1) 2 (2) 1
- (3) 0

- (4) 1
- (5)2

- **5** 일차함수 y=4x+k의 그래프가 점 (-1,2)를 지날 때, 상수 *k*의 값은?
 - $\widehat{1}$ -2
- (2) 0
- (3)2

- **4** 4
- **(5)** 6

- 다음 중 일차함수 y=-2x+1의 그래프를 y축의 방 향으로 3만큼 평행이동한 그래프 위의 점이 아닌 것
- (1)(-2,8) $(2)(-\frac{1}{2},5)$ $(3)(-\frac{1}{4},\frac{7}{2})$
- $4\left(\frac{5}{2},-1\right)$ $3\left(3,-2\right)$

- \bigcap 일차함수 y=ax의 그래프를 y축의 방향으로 -4만큼 평행이동한 그래프가 두 점 (2, -2), (1, b)를 지날 때, *ab*의 값은? (단, *a*는 상수)
 - $\bigcirc -5$
- (2) 4
- (3) 3

- (4) 2
- (5) -1

08 일차함수 y=ax-1의 그래프가 점 (1,4)를 지날 때, 이 일차함수의 그래프의 x절편을 구하시오

(단, a는 상수)

- **12** 일차함수 $y = -\frac{1}{3}x 6$ 의 그래프는 두 점 A(a, b), B(c,d)를 지난다. 이때 $\frac{b-d}{a-c}$ 의 값은?
- ① 3 ② $\frac{1}{3}$ ③ $-\frac{1}{3}$ ④ -1 ⑤ -3

09 일차함수 $y = -\frac{1}{2}x + b$ 의 그래프의 x절편이 $\frac{1}{2}$ 일 때, 이 일차함수의 그래프의 y절편을 구하시오.

(단. *b*는 상수)

13 세 점 (-1, -2), (2, 5), (p, 12)가 한 직선 위에 있 을 때. *p*의 값을 구하시오.

- $\int \int \int dx \, dx \, dx$ 일차함수 $y = \frac{5}{6}x$ 의 그래프를 y축의 방향으로 -5만 큼 평행이동한 그래프의 x절편을 a, y절편을 b라 할 때, a+b의 값을 구하시오.
- ┃ 4 다음 일차함수 중 그 그래프가 제2사분면을 지나지 않 는 것은?

①
$$y = -x - 1$$

①
$$y = -x - 1$$
 ② $y = \frac{2}{3}x - 4$

$$3y=2x+4$$

$$4y = -4x + 3$$

$$\bigcirc y = -\frac{3}{2}x - 3$$

y의 값이 4만큼 감소하는 것은?

①
$$y = -2x - 4$$

①
$$y = -2x - 4$$
 ② $y = -\frac{1}{2}x - 4$

$$3y = \frac{1}{4}x - 2$$
 $4y = \frac{1}{2}x + 4$

$$(4) y = \frac{1}{2}x + 4$$

$$5y = 2x - 4$$

15 일차함수y = ax - 5의 그래프와 x축, y축으로 둘러싸 인 삼각형의 넓이가 10일 때, 상수 a의 값을 구하시오. (단, a > 0)

 \bigcap 다음 중 일차함수 y=2x-4의 그래프에 대한 설명으 로 옳은 것을 모두 고르면? (정답 2개)

호

- ① 기울기는 4이다.
- ② *x*절편은 2이다.
- ③ 제2사분면을 지난다.
- ④ 일차함수 y=2x의 그래프와 평행하다.
- ⑤ 점 (0,1)을 지난다.

- $\bigcirc 2$ a > 0, b < 0일 때, 일차함수 y = -ax + b의 그래프가 지나지 않는 사분면은?
 - ① 제1사분면
- ② 제2사분면
- ③ 제3사분면
- ④ 제4사분면
- ⑤ 제1. 3사분면

 $\mathbf{Q4}$ 다음 일차함수 중 그 그래프가 일차함수 y = -2x + 1의 그래프와 만나지 않는 것은?

①
$$y = -2(x+3)$$

①
$$y = -2(x+3)$$
 ② $y = -\frac{1}{2}(x-2)$

$$3y = \frac{1}{2}x + 3$$

$$(4)y = x - 1$$

 $\bigcirc y = 2x - 1$

 \bigcirc 5 일차함수 y=-2x+3의 그래프를 y축의 방향으로 k만큼 평행이동한 그래프가 일차함수y=-2(x-1)의 그래프와 일치하였다. 이때 상수 k의 값을 구하시오.

 \bigcirc 6 일차함수 $y=\frac{1}{2}x+1$ 의 그래프와 평행하고, 점 (0, -4)를 지나는 직선을 그래프로 하는 일차함수 의 식을 구하시오.

 \bigcirc 3 일차함수y=ax-b의 그래프가 오른쪽 그림과 같을 때, 상수 a, b의 부호로 옳은 것은?

- ① a < 0, b < 0
- ② a < 0, b > 0
- ③ a > 0, b < 0
- (4) a > 0, b > 0
- ⑤ a > 0, b = 0

7 오른쪽 그림의 직선과 평행하고, 점 (4, 5)를 지나는 일차함수의 그래프의 *y*절편을 구하시오.

- 점 (3, -2)를 지나는 직선을 그래프로 하는 일차함수 의 식은?
 - ① $y = -\frac{4}{3}x \frac{3}{4}$ ② $y = -\frac{4}{3}x + 2$
- - $3y = -\frac{3}{4}x 2$ $4y = -\frac{3}{4}x + 2$
 - § $y = x + \frac{3}{4}$
- \bigcirc 두 점 (-1,3), (2,-3)을 지나는 직선을 그래프로 하는 일차함수의 식은?
 - ① y = 2x + 2
- ② y = 2x + 1
- ③ y = 2x 1
- 4y = -2x + 1
- $\bigcirc y = -2x 2$

- $\mathbf{1}$ 일차함수 y=2x-8의 그래프와 y축 위에서 만나고, x절편이 -4인 직선을 그래프로 하는 일차함수의 식 은?
 - ① y = 4x + 8
- ② y = 2x + 8
- 3y = -2x + 8
- 4y = -2x 8
- $\bigcirc y = -4x 8$

- -2만큼 평행이동한 일차함수의 그래프가 점 (1, a)를 지날 때, a의 값은?
 - $\bigcirc -\frac{23}{4}$ $\bigcirc -5$ $\bigcirc -\frac{17}{4}$

- $(4)\frac{3}{4}$
- ⑤ 1

12 기온이 0 ℃일 때, 공기 중에서 소리의 속력은 초속 331 m이고. 기온이 1 °C 오를 때마다 초속 0.6 m씩 증 가한다고 한다. 소리의 속력이 초속 349 m일 때의 기 온을 구하시오.

- **13** 높이가 50 cm인 원기둥 모양의 물통에 10 cm 높이만 큼 물이 담겨져 있다. 물의 높이가 2초마다 3 cm씩 높 아지도록 일정한 비율로 물을 넣고 있다. x초 후의 물 의 높이를 y cm라 할 때, y를 x의 식으로 나타내면?
 - ① y = 0.5x + 10
- ② y = 0.5x + 50
- ③ y = x + 10
- $\bigcirc y = x + 50$
- $\bigcirc y = 1.5x + 10$

- **1** 회발유 1 L로 15 km를 주행할 수 있는 자동차에 60 L 의 휘발유가 들어 있다. 이 자동차로 x km를 주행한 후에 남아 있는 휘발유의 양을 y L라 할 때, 165 km를 주행한 자동차에 남아 있는 휘발유의 양은?
 - ① 46 L
- ② 47 L
- ③ 48 L

- (4) 49 L
- (5) 50 L

중단원 테스트

6. 일차함수와 그래프(2)

| 점수

0 다음 중 일차함수 $y = -\frac{2}{3}x + \frac{7}{3}$ 의 그래프를 y축의 방향으로 $\frac{2}{3}$ 만큼 평행이동한 그래프에 대한 설명으로 옳은 것을 모두 고르면? (정답 2개)

- ① 점 (-3,5)를 지난다.
- ② x축과 만나는 점의 좌표는 $\left(\frac{7}{2},0\right)$ 이다.
- ③ 제1, 2, 3사분면을 지난다.
- ④ y절편은 3이다.
- ⑤ x의 값이 9만큼 증가할 때, y의 값은 6만큼 증가한 다.

 \bigcirc 다음 일차함수 중 그 그래프가 y축에 가장 가까운 것 <u>0</u>?

①
$$y = 2x + 2$$

①
$$y = 2x + 2$$
 ② $y = \frac{1}{2}x + 2$

$$3y = -x + 2$$

$$3y = -x + 2$$
 $4y = -\frac{8}{5}x + 2$

미국 일차함수 y=ax+b의 그래프 가 오른쪽 그림과 같을 때, 일차 함수 y=(a-b)x+ab의 그래 프가 지나지 않는 사분면은?

- (단, a, b는 상수)
- ① 제1사분면 ② 제2사분면
- ③ 제3사분면
- ④ 제4사분면
- ⑤ 제2, 4사분면

□4 다음 중 〈보기〉의 일차함수의 그래프에 대한 설명으로 옳지 않은 것은?

─ 보기 ⊩

$$\bigcirc y = 3x + 1$$

$$\bigcirc y = 3x - 6$$

$$\exists y = -3x - 9$$

- ① ③과 ②의 그래프는 서로 평행하다.
- ② ¬과 □의 그래프는 y절편이 같다.
- (3) (1)의 그래프는 (1)의 그래프를 y축의 방향으로 7만 큼 평행이동한 것이다.
- ④ ①과 ②의 그래프는 *x*절편이 다르다.
- ⑤ ②과 ②의 그래프는 *x*의 값이 증가하면 *y*의 값은 감 소하다

05 두 일차함수 y = ax + 2와 $y = -3x + \frac{b}{2}$ 의 그래프가 일치할 때, ab의 값은? (단, a, b는 상수)

$$\bigcirc$$
 -12

$$^{\circ}$$
 $^{\circ}$ $^{\circ}$

$$3 - 3$$

\bigcap6 x의 값이 1에서 3까지 증가할 때 y의 값은 -3에서 0까지 증가하고, y절편이 -4인 직선을 그래프로 하는 일차함수의 식은?

①
$$y = -4x + \frac{3}{2}$$
 ② $y = -\frac{3}{2}x - 4$

$$2y = -\frac{3}{2}x - 4$$

$$3y = -\frac{3}{4}x - 4$$
 $4y = \frac{3}{2}x - 4$

$$(4)y = \frac{3}{2}x - 4$$

$$(5) y = \frac{3}{2}x + 6$$

- **7** 기울기가 2이고 점 (3,4)를 지나는 직선의 y절편은?
 - (1) 3
- (2) 2
- (3) -1

- (4) **1**
- **(5)** 2

○8 두 점 (−1,2), (3,4)를 지나는 일차함수의 그래프와 평행하고, 점 (2, −3)을 지나는 직선을 그래프로 하는 일차함수의 식을 구하시오.

- $\mathbf{09}$ x절편이 -3, y절편이 2인 직선이 점 (6, k)를 지날 때, k의 값은?
 - 1)2
- ②3
- ③4

- **4** 5
- **(5)** 6

- **10** 길이가 25 cm인 양초에 불을 붙였더니 4분마다 1 cm 씩 줄어들었다. 양초의 길이가 18 cm가 되는 것은 불 을 붙인 지 몇 분 후인가?
 - ① 7분후
- ② 18분후
- ③ 24분 후
- ④ 26분 후
- ⑤ 28분 후

- 민희네 가족은 자동차를 타고 집에서 150 km 떨어진 캠핑장에 시속 45 km로 가고 있다. 출발한 지 x시간 후에 캠핑장까지 남은 거리를 y km라 할 때, 출발한 지 2시간 후에 캠핑장까지 남은 거리는?
 - ① 40 km
- ② 45 km
- ③ 50 km

- ④ 55 km
- ⑤ 60 km

12 오른쪽 그림은 섭씨 온도를 *x* °C, 화씨 온도를 *y* °F라 할 때, *x*와 *y* 사이의 관계를 그래프로 나타낸 것이다. 섭씨 온도 20 °C는 화씨 온도로 몇 °F인지 구하시오.

13 오른쪽 그림과 같은 직사 각형 ABCD에서 점 P가 점 B를 출발하여 BC를 따 라 점 C까지 매초 2 cm씩 움직인다. 점 P가 점 B를

출발한 지 x초 후의 사다리꼴 APCD의 넓이를 $y \text{ cm}^2$ 라 할 때, 점 P가 점 B를 출발한 지 3초 후의 사다리꼴 APCD의 넓이를 구하시오.

중단원 테스트

호

7. 일차함수와 일차방정식의 관계

| 점수

 \bigcap 다음 중 일차방정식 2x-y+1=0의 그래프 위의 점 을 모두 고르면? (정답 2개)

- (1)(-1,-1) (2)(0,0)
- (3)(1,-3)

- (4)(2,5) (5)(3,-7)

2 일차방정식 2x+ay-4=0의 그래프의 기울기가 1일 때, *y*절편은? (단, *a*는 상수)

- (1) 2
- (2) 1
- \mathfrak{G} 0

- **4** 1
- (5)2

3 일차방정식 ax+by+15=0의 그래프가 오른쪽 그림과 같을 때. a-b의 값은?

- $\widehat{(1)} 5$
- (2) 3
- (3) 2
- $\bigcirc 2$

(단, a, b는 상수)

(5) 5

 \square 4 다음 중점 (-2.5)를 지나고 x축에 평행한 직선의 방

 $\widehat{1}$ x = -2

정식은?

- ② x = 5
- 3y = -2
- 4y = 5
- $\bigcirc y = -2x + 5$

05 다음 중 방정식 x+3=0의 그래프에 대한 설명으로 옳은 것을 모두 고르면? (정답 2개)

- ① *x*축에 평행한 직선이다.
- ② 제1. 4사분면을 지난다.
- ③ 직선 y=2와 한 점에서 만난다.
- ④ 직선 x=3과 평행하다.
- ⑤ 점 (0, -3)을 지난다.

16 다음 네 직선으로 둘러싸인 도형의 넓이는?

$$x=2, x=-2, y=3, y=-2$$

- $\widehat{1}$ 10
- **2**) 15
- (3)20

- (4)25
- (5)30

7 직선 y=mx-3이 두 점 A(2,3), B(4,-1)을 이은 선분 AB와 만날 때, 상수 m의 값의 범위는?

- ① $-3 \le m \le -\frac{1}{2}$ ② $-2 \le m \le -\frac{1}{3}$
- $3\frac{1}{3} \le m \le 2$ $4\frac{1}{2} \le m \le 3$
- (5) 2 < m < 3

- **8** a>0, b<0, c<0일 때, 일차방정식 ax+by+c=0의 그래프가 지나지 않는 사분면은?
 - ① 제1사분면
- ② 제2사분면
- ③ 제3사분면
- ④ 제4사분면
- ⑤ 제1, 3사분면

- \bigcirc 일차함수 y=5x-3의 그래프와 평행하고, 두 일차방 정식 x+y=5, x+3y=11의 그래프의 교점을 지나 는 일차함수의 그래프의 식은?
 - ① y = 5x + 10
- ② y = 5x + 3
- 3y = 5x + 2
- 4y = 5x 5
- $\bigcirc y = 5x 7$
- 1 오른쪽 그림은 연립방정식 $\left\{ egin{array}{ll} x-y=a \ \exists zx+y=b \end{array}
 ight.$ 를 풀기 위해 두

일차방정식의 그래프를 그린 것이다. 이때 a+b의 값은?

- (4) 3
- (5)5

 $2 - \frac{1}{2}$ $3 \frac{4}{3}$

- **1** 세 직선 x+y=2, 2x+3y=1, ax+2ay=3이 한 점 에서 만날 때, 상수 a의 값은?
 - $\bigcirc 1 1$
- (2) 2
- (3) 3

- (4) 4
- (5) 5

 $oxed{12}$ 연립방정식 $igg\{ egin{matrix} x+2y=1 \ ax+by=3 \end{matrix}$ 의 해가 무수히 많을 때, a+b

의 값은? (단, a, b는 상수)

- $\bigcirc 6$
- **②** 7
- 3)8

- $\bigcirc 9$
- **(5)** 10

- 13 연립방정식 $\begin{cases} 2x + ay = 7 \\ 3x (x + 2y) = 2 \end{cases}$ 의 해가 존재하지 않을 때, 상수 *a*의 값은?
 - $\bigcirc -2$
- (2) 1
- ③1

- **4** 2
- **(5)** 3

- 1₫ 오른쪽 그림과 같이 두 직선 x+y=5, y=2x+2와 x축으로 둘러싸인 도형의 넓이 는?
 - $\bigcirc 6$
- **2** 9
- ③ 12
- **4** 15
- **(5)** 18

7. 일차함수와 일차방정식의 관계

| 점수

(3)3

다음 중 일차방정식 3x-2y+4=0의 그래프와 같은 그래프를 갖는 일차함수의 식은?

①
$$y = -\frac{3}{2}x - 2$$

①
$$y = -\frac{3}{2}x - 2$$
 ② $y = -\frac{3}{2}x + 2$

$$3y = \frac{3}{2}x - 2$$
 $y = \frac{3}{2}x + 2$

$$4y = \frac{3}{2}x + 2$$

$$5y = \frac{3}{2}x + 4$$

5 두점(-2, -a+2), (1, -2a+6)을 지나는 직선이 y축에 수직일 때, a의 값을 구하시오.

4 일차방정식 x-4y+3=0의 그래프가 점 (5,k)를 지

(2)2

(5)5

날 때, k의 값은?

 \bigcirc 1

4 4

 \bigcirc 일차방정식 x-y=-3의 그래프의 y절편이 a, 일차 방정식 2x+3y=19의 그래프의 기울기가 b일 때, ab의 값을 구하시오.

 \bigcap 다음 〈보기〉 중에서 일차방정식 -3x+y-2=0의

그래프에 대한 설명으로 옳은 것을 모두 고르시오.

- \bigcirc x의 값이 증가하면 y의 값도 증가한다.
- ⓒ 제2, 3, 4사분면을 지난다.
- ② 일차함수y=3x의 그래프를y축의 방향으로 -2만큼 평행이동한 것이다.
- ① 오른쪽 아래로 향하는 직선이다.
- (b) 점 (1,5)를 지난다.

○6 오른쪽 그림과 같이 일차방정식 ax+by+12=0의 그래프가 y축에 평행할 때, a+b의 값을 구 하시오. (단, a, b는 상수)

7 네 직선 y+3=0, y=2, x=k, x=-k로 둘러싸인 도형의 넓이가 40일 때, 양수 k의 값을 구하시오.

○8 일차방정식 *x*+*ay*+*b*=0의 그 래프가 오른쪽 그림과 같을 때, 상수 *a*, *b*의 부호로 옳은 것은?

- ① a > 0, b > 0
- ② a > 0, b < 0
- ③ a < 0, b < 0
- 4a < 0, b > 0

만날 때, 상수 a의 값을 구하시오.

]] 두 직선 ax-y+3=0, x-y-3=0이 x축 위에서

- **12** 두 일차방정식 3x-2y=7, ax+8y=14의 그래프의 교점이 없을 때, 상수 a의 값은?
 - \bigcirc -12
- 2 8
- 3 4

- **4** 8
- ⑤ 12

- **9** 두 직선 2x+y=2, 3x+2y=2의 교점을 지나고 y축에 평행한 직선의 방정식은?
 - ① x = -1
- ② x = 2
- ③ x = 3

- (4) y = -2
- (5) y = 2

13 오른쪽 그림과 같이 두 직선 x-y=-4, 2x+y=3의 교점을 A, 두 직선이 x축과 만나는 점을 각각 B, C라할 때, \triangle ABC의 넓이를 구하시오.

10 오른쪽 그림은 연립방정식 $\begin{cases} ax-4y=2 \\ bx+y=7 \end{cases}$ 의 해를 구하기 위

bx+y=7 하여 두 일차방정식의 그래프를 그린 것이다. 이때 ab의 값을 구하시오. (단, a, b는 상수)

- **] 4** 직선 y = -3x + 15와 x축, y축으로 둘러싸인 도형의 넓이를 직선 y = mx가 이등분할 때, 상수 m의 값은?
 - ① 1
- 2 2
- ③3

- **4** 4
- **(5)** 5

CHECK CHECK

수학 2-1

시험에 꼭 나오는

개념 + 문제 유형

수업을 다하고 시험 직전 등 내용을 정리할 때 사용할 수 있습니다.

1. 유리수와 순환소수	74
	77
- 3. 일차부등식	81
4. 연립일차방정식	86
5. 일차함수와 그래프 (1)	91
6. 일차함수와 그래프 (2)	93
	96

시험에 꼭 나오는 **개념** + 문제 **유**형

1. 유리수와 순환소수

1 유리수와 소수

- (1) 유리수 분수 $\frac{a}{b}(a,b$ 는 정수, $b \neq 0$)로 나타낼 수 있는 수
- (2) 유한소수와 무한소수
 - ① 유한소수: 소수점 아래의 0이 아닌 숫자가 유한개인 소수
 - ② 무한소수: 소수점 아래의 0이 아닌 숫자가 무한히 계속되는

예제 01 다음 중 분수를 소수로 나타내었을 때. 무한소수가 아닌 것은?

- ① $\frac{1}{3}$
- $2\frac{2}{11}$ $3\frac{6}{7}$
- $4\frac{9}{24}$
 - $\bigcirc \frac{4}{13}$

2 순환소수

- (1) 순환소수 무한소수 중에서 소수점 아래의 어떤 자리에서부터 일 정한 숫자의 배열이 한없이 되풀이되는 무한소수
- (2) 순환마디 순환소수에서 소수점 아래의 숫자의 배열이 되풀이되 는 한 부분
- (3) 순환소수의 표현 순환마디의 양 끝의 숫자 위에 점을 찍어 나타 낸다.

 $0.222 \dots = 0.2$

 $1.5030303\cdots = 1.503$

 $1.501501501\cdots = 1.501$

예제 02 다음 중 순화소수를 순화마디 위에 점을 찍어 간단 히 나타낸 것으로 옳지 않은 것은?

- $(1) 0.333 \dots = 0.3$
- $(2) 0.5424242 \cdots = 0.542$
- $\bigcirc 0.284284284\cdots = 0.284$
- $\textcircled{4} 1.262626 \cdots = 1.26$
- (5) 3.1020202···=3.102

3 소수점 아래 n번째 자리의 숫자 구하기

순환마디의 숫자의 개수를 구하여 규칙을 파악한다.

- @ 0.846153의 소수점 이래 50번째 자리의 숫자 구하기
 - ① 순환마디의 숫자의 개수: 6개
 - $250=6\times8+2$
 - ③ 50번째 자리의 숫자는 순환마디의 2번째 숫자인 4이다.

예제 03 분수 $\frac{4}{7}$ 를 소수로 나타낼 때, 소수점 아래 100번 째 자리의 숫자는?

- \bigcirc 1
- \bigcirc 2
- (3) 4

- (4)5
- (5)7

4 분수를 유한소수로 나타내기

기약분수의 분모의 소인수가 2 또는 5뿐이면 분모를 10의 거듭제곱 꼴로 고쳐서 유한소수로 나타낼 수 있다.

➡ 분모의 소인수 2와 5의 지수가 같아지도록 분모, 분자에 2 또는 5 의 거듭제곱을 곱한다.

예제 04 다음은 분수 $\frac{13}{250}$ 을 유한소수로 나타내는 과정이 다. 🗌 안에 알맞은 수를 써넣으시오.

$$\frac{13}{250} = \frac{13}{2 \times 5^3} = \frac{13 \times \square}{2 \times 5^3 \times \square} = \frac{\square}{1000} = \square$$

5 유한소수로 나타낼 수 있는 분수

- ① 주어진 분수를 기약분수로 나타낸다.
- ② 분모를 소인수분해한다.
- ③ 분모의 소인수가 2 또는 5뿐이면 유한소수이고, 분모의 소인수에 2 또는 5 이외의 소인수가 있으면 순환소수이다.

예제 05 다음 〈보기〉의 분수 중 유한소수로 나타낼 수 있는 것은 모두 몇 개인가?

-∥ 보기 ⊪--

- $\boxdot \frac{6}{2^2 \times 5 \times 7}$
- $\bigcirc \frac{9}{50} \qquad \bigcirc \frac{21}{120}$ $\bigcirc \frac{30}{2 \times 3 \times 5^2} \qquad \bigcirc \frac{20}{175}$

- ① 1개
- ② 2개
- ③ 3개

- (4) 47H
- ⑤ 5개

6 유한소수가 되도록 하는 미지수 구하기

유한소수가 되려면 주어진 분수를 기약분수로 나타내었을 때, 분모 의 소인수가 2 또는 5뿐이어야 하므로 2 또는 5 이외의 소인수를 모 두 없앤다.

예제 06 $\frac{21}{36} \times a$ 를 소수로 나타내면 유한소수가 될 때, a의 값이 될 수 있는 가장 작은 자연수는?

- $\widehat{(1)}$ 2
- (2) 3
- (3)5

- **4** 6
- **(5)** 7

예제 07 분수 $\frac{6}{5 \times a}$ 을 소수로 나타내면 유한소수가 될 때, 다음 중 a의 값이 될 수 없는 것은?

- $\widehat{1}$ 2
- (2) 3
- **3** 5

- (4) 6
- (5)7

7 순환소수를 분수로 나타내기

- ① 순환소수를 x로 놓는다.
- ② 양변에 10의 거듭제곱을 곱하여 소수점 아래의 부분이 같은 두 식 을 만든다.
- ③ 두 식을 변끼리 빼서 x의 값을 구한다. 이때 x는 기약분수로 나타 낸다

예제 08 다음은 순화소수 0.432를 기약부수로 나타내는 과 정이다. □ 안에 알맞은 수로 옳지 않은 것은?

0.432를 x라 하면 x=0.4323232····

- $\boxed{ }$ $x=432.323232\cdots \qquad \cdots \bigcirc$
- $2 x = 4.323232 \cdots \cdots$

이때 🗇에서 🔾을 변끼리 빼면

- 3 x = 4 $\therefore x = 5$
- $\widehat{1}$ 1000
- ② 10
- ③900

- (4) 428
- $\bigcirc \frac{214}{495}$

예제 09 순화소수 3,206을 분수로 나타내려고 한다. x=3.206이라 할 때. 다음 중 가장 편리한 식은?

- (1) 100x-x (2) 100x-10x (3) 1000x-x
- $\textcircled{4} 1000x 10x \qquad \textcircled{5} 10000x x$

8 공식을 이용하여 순환소수를 분수로 나타내기

(1)
$$0.\dot{a} = \frac{a}{9}$$

(2)
$$0.\dot{a}\dot{b} = \frac{ab}{99}$$

(3)
$$0.a\dot{b} = \frac{ab - a}{90}$$

(1)
$$0.\dot{a} = \frac{a}{9}$$
 (2) $0.\dot{a}\dot{b} = \frac{ab}{99}$ (3) $0.a\dot{b} = \frac{ab-a}{90}$ (4) $0.ab\dot{c} = \frac{abc-ab}{900}$

예제 10 다음 중 순환소수를 분수로 나타내는 과정으로 옳 은 것은?

- $2.\dot{0}\dot{4} = \frac{204-2}{990}$
- $3.\dot{2}\dot{1} = \frac{321}{99}$ $41.\dot{5}\dot{3} = \frac{153-1}{99}$
- $\bigcirc 1.83 = \frac{83-1}{90}$

9 순환소수의 대소 관계

- 〈방법 ①〉 순환소수의 순환마디를 풀어 쓴 후 앞자리부터 각 자리의 숫자를 비교한다.
- 〈방법 ②〉 순환소수를 분수로 나타낸 후 통분하여 두 분수의 크기를 비교한다.

예제 11 다음 중 대소 관계가 옳은 것은?

- $\bigcirc 0.\dot{1}\dot{2} < 0.12$ $\bigcirc 0.3\dot{4} < 0.\dot{3}$
- 30.70 > 0.7
- $(4) 0.\dot{3} > \frac{3}{10}$
- $(5) 0.3\dot{2} > 0.\dot{3}\dot{2}$

10 순환소수를 포함한 식의 계산

순환소수를 분수로 나타낸 후 계산한다.

예제 12 4.7+2.5를 계산한 값을 기약분수로 나타내면 $\frac{b}{a}$ 일 때, 자연수 a, b에 대하여 a+b의 값은?

- $\bigcirc{1}20$
- **2** 25
- ③ 30

- **4** 35
- (5)40

11 소수의 이해

- (1) 유한소수, 순환소수
 - → (정수) (00) 아닌 정수) 로 나타낼 수 있다.
 - ➡ 유리수이다.
- (2) 순환소수가 아닌 무한소수
 - ➡ <u>(성구)</u> (0이 아닌 정수) 로 나타낼 수 없다.
 - ⇒ 유리수가 아니다.

예제 14 다음 〈보기〉 중 유리수는 모두 몇 개인가?

─ 보기 ⊩──		
\bigcirc 0	$\bigcirc -\frac{1}{2}$	© 0.34512⋯
	© 3.27	H 7
① 1개	② 2개	③ 37}
④ 4개	⑤ 5개	

예제 13 $1.\dot{6} \times x = 0.5$ 일 때, x의 값은?

- **4** 4

예제 15 다음 중 옳지 않은 것은?

- ① 모든 순환소수는 무한소수이다.
- ② 모든 유한소수는 유리수이다.
- ③ 순환소수 중에는 유리수가 아닌 것도 있다.
- ④ 정수가 아닌 유리수는 유한소수 또는 순환소수로 나타낼 수 있다.
- ⑤ 모든 유리수는 분수로 나타낼 수 있다.

지수법칙

m. n이 자연수일 때

$$(1) a^m \times a^n = a^{m+n}$$

(2)
$$(a^m)^n = a^{mn}$$

(3)
$$a^{m} \div a^{n} = \begin{cases} a^{m-n} & (m > n) \\ 1 & (m=n) \text{ (단, } a \neq 0) \\ \frac{1}{a^{n-m}} & (m < n) \end{cases}$$

(4)
$$(ab)^m = a^m b^m, \left(\frac{a}{b}\right)^m = \frac{a^m}{b^m} (\Xi, b \neq 0)$$

예제 01 다음 중 옳은 것은?

①
$$x^3 \times x^4 = x^{12}$$
 ② $x^5 \div x^2 = x^3$

②
$$x^5 \div x^2 = x^3$$

$$(3)(x^2)^4 = x^6$$

$$(4)(x^2y^3)^2=x^4y^5$$

예제 02 다음 중 ○ 안에 들어갈 수가 가장 작은 것은?

①
$$(x^{\square})^4 \div x^6 = x^2$$

②
$$x^{\square} \times x^4 = x^{10}$$

$$(3)(xy^{\square})^3 = x^3y^1$$

$$(3)(xy^{\Box})^3 = x^3y^{12}$$
 $(4)x^2 \div x^5 = \frac{1}{x^{\Box}}$

$$\bigcirc x^2 \times x^6 \div x^{\square} = x^3$$

예제 03
$$\left(\frac{Ax^3}{y^2z^5}\right)^B=\frac{-27x^9}{y^6z^c}$$
일 때, $A+B+C$ 의 값은?

(단. A. B. C는 상수)

2 지수법칙의 확대 - 밑이 다른 경우

밑이 다를 때에는 소인수분해를 이용하여 밑을 모두 같게 만든 후 지 수법칙을 이용한다.

예 $3^x \times 27 = 81^3$ 을 만족하는 자연수 x의 값을 구하면

$$3^x \times 3^3 = (3^4)^3$$
 OHA $3^{x+3} = 3^{12}$

$$x+3=12$$
 $\therefore x=9$

예제 04 $4^{x+1} \times 8^{x-3} = 64^{x-2}$ 일 때, 자연수 x의 값은?

$$\bigcirc$$
 2

3 지수법칙의 응용 — 같은 수의 덧셈식

같은 수의 덧셈식을 곱셈식으로 나타낸 후 지수법칙을 이용한다.

$$\underbrace{ \text{ M} \underbrace{ 3^2 + 3^2 + 3^2 = 3^2 \times 3 = 3^3 } }_{ 37 \text{ H} }$$

예제 **05** 5³+5³+5³+5³+5³을 간단히 하면?

$$\bigcirc 1)5^{3}$$

$$(2)$$
 5⁴

$$35^{5}$$

$$(4)$$
 5¹⁵

$$(5)$$
 5^{125}

4 지수법칙의 응용 - 문자를 사용하여 나타내기

 $a^n = A$ 일 때, a^{mn} 을 A를 사용하여 나타내면 $a^{mn}=(a^n)^m=A^m$

- 예제 06 $2^x = A$ 일 때, 8^x 을 A를 사용하여 나타내면?
- $\widehat{1}$ A^4
- ② A^{3}
- $(3) A^2$
- $4\frac{1}{A^3}$ $5\frac{1}{A^4}$

- 예제 07 $2^4 = A$, $3^2 = B$ 라 할 때, $48^2 = A$, B = A + B하여 나타내면?
- \bigcirc AB
- $\bigcirc AB^2$
- $3\frac{A}{B}$

- $\bigcirc A^2B$
- (5) A^2B^2

5 지수법칙의 응용 - 자릿수 구하기

주어진 수를 $a \times 10^n (a, n)$ 은 자연수)의 꼴로 나타낸다.

- $@ 2^3 \times 5^4$ 이 몇 자리의 자연수인지 구하면 $2^3 \times 5^4 = 2^3 \times 5^3 \times 5 = (2 \times 5)^3 \times 5 = 5 \times 10^3$ 따라서 $2^3 \times 5^4$ 은 4자리의 자연수이다.
- 예제 08 $2^5 \times 5^8$ 이 n자리의 자연수일 때, n의 값은?
- \bigcirc 5
- $\bigcirc 6$
- \mathfrak{I}

- (4)8
- (5)13

- 6 단항식의 곱셈과 나눗셈
- (1) (단항식)×(단항식) 계수는 계수끼리, 문자는 문자끼리 곱한다. (2) (단항식) : (단항식) 나눗셈을 곱셈으로 바꾸거나 분수로 바꾸 어 계산한다.
- 예제 09 $(-3a)^2 \times (-4a)$ 를 간단히 하면?
- $\bigcirc -36a^5$
- $(2) 36a^3$
- $(3) 36a^3$

- $\textcircled{4} 12a^5$
- $(5) 24a^5$

- 예제 10 $(-2x^2y)^3 \div \left(-\frac{2}{3}xy\right)^2$ 을 간단히 하면?
- ① $-18x^8y^5$ ② $-18x^4y$ ③ $-18x^3y^2$

- $\textcircled{4} 18x^4y$ $\textcircled{5} 18x^8y^5$

단항식의 곱셈과 나눗셈의 혼합 계산

- ① 지수법칙을 이용하여 괄호를 푼다.
- ② 나눗셈은 역수의 곱셈으로 바꾼다.
- ③ 계수는 계수끼리, 문자는 문자끼리 계산한다.
- 예제 11 $\frac{1}{4}xy^2 \times \left(-\frac{2}{3}xy^2\right)^3 \div \left(-\frac{1}{3}xy\right)^2$ 을 간단히 하면?

- $\textcircled{3} x^3 y^2$ $\textcircled{5} 3 x^2 y^6$

8 □ 안에 알맞은 식 구하기

$$(1) A \times \square \div B = C \Rightarrow \square = C \times \frac{1}{A} \times B$$

(2)
$$A \div \square \times B = C \Rightarrow \square = A \times B \times \frac{1}{C}$$

예제 12 $x^3y^2 imes$ $\div (-2x^4y^3) = x^3y$ 일 때, \square 안에 알 맞은 식은?

- $(1) 2x^4y^2$
- $(2) 2x^4y$
- $(3) -2x^3y^2$
- $\bigcirc (4) -2x^2y^3$ $\bigcirc (5) -2xy^2$

9 다항식의 덧셈과 뺄셈

- (1) 다항식의 덧셈 괄호를 풀고 동류항끼리 모아서 간단히 한다.
- (2) 다항식의 뺄셈 빼는 식의 각 항의 부호를 바꾸어 더한다.
- (3) 여러 가지 괄호가 있는 식의 계산

(소괄호) → {중괄호} → [대괄호]의 순서로 괄호를 풀어 계산한다.

예제 13 $5x-2[x-3\{x+(x+y)\}+y]$ 를 간단히 하면?

- $\bigcirc 10x 9y$
- ② 15x + 4y
- 318x 7y
- $\bigcirc 4 20x + 8y$
- \bigcirc 15x+11y

예제 14) $\frac{2x-5y}{3} - \frac{x-3y}{2} = ax + by$ 일 때, a+b의 값을 구하시오. (단. a. b는 상수)

10 이차식의 덧셈과 뺄셈

(1) 이차식 다항식의 각 항의 차수 중 가장 큰 차수가 2인 다항식 (2) 이차식의 덧셈과 뺄셈 괄호를 풀고 동류항끼리 모아서 간단히 한다.

예제 15 $3(2x^2-5x+1)-2(x^2-4x-7)$ 을 간단히 하였 을 때, x^2 의 계수와 상수항의 합을 구하시오.

예제 16 $4x^2-5x-3-($ $=7x^2-3x+4$ 일 때, 안에 알맞은 식은?

- $\bigcirc -3x^2 + 2x + 7$
- $(2) -3x^2 -2x -1$
- $3 3x^2 2x 7$
- (4) 3 $x^2 2x 1$
- (5) $3x^2 2x 7$

111 바르게 계산한 식 구하기

어떤 식에 X를 더해야 할 것을 잘못하여 빼었더니 Y가 되었다.

① 어떤 식을 A라 하면

A - X = Y $\therefore A = Y + X$

② (바르게 계산한 식)=A+X

예제 17 어떤 식에 $2x^2 + 3x - 1$ 을 더해야 할 것을 잘못하 여 빼었더니 $-3x^2 + 5x - 6$ 이 되었다. 바르게 계산한 식은?

- $3x^2-11x-8$
- $\textcircled{4} x^2 + 11x 7$
- $(5) x^2 + 11x 8$

12 단항식과 다항식의 곱셈과 나눗셈

- (1) (단항식)×(다항식) 분배법칙을 이용하여 단항식을 다항식의 각 항에 곱한다.
- (2) (다항식) : (단항식) 나눗셈을 곱셈으로 바꾸거나 분수로 바꾸 어 계산한다.

예제 18 $-5x^2(2x^2-x+4)$ 를 전개하면?

- $\bigcirc 1 10x^4 + 5x^3 20x^2$ $\bigcirc 2 10x^4 5x^3 20x^2$
- $\bigcirc 3 10x^4 x + 4$
- $\textcircled{4} 10x^4 + 5x^3 20x^2$
- $\bigcirc 10x^4 5x^3 + 20x^2$

에제 19 $(6x^2y - 4xy^2) \div \left(-\frac{2}{3}xy\right)$ 를 간단히 하면?

- ① 9x + 6y
- $29x+6y^2$
- $\bigcirc 3 9x + 6y$
- $(4) -9x^3y^2 + 6x^2y^3$
- $(5) 9x^3y^2 6x^2y^3$

13 다항식과 단항식의 혼합 계산

- ① 지수법칙을 이용하여 거듭제곱을 먼저 계산한다.
- ② 괄호는 (소괄호), {중괄호}, [대괄호]의 순으로 푼다.
- ③ 곱셈과 나눗셈을 계산한다.
- ④ 동류항끼리 더하거나 뺀다.

예제 20 $(6x^2y - 9xy^2) \div 3xy - (3xy - 5y^2) \div \frac{1}{2}y$ 를 간단

히 하면?

- ① -4x ② 7y
- (3) -7y
- (4) 4x + 7y (5) 4x 7y

14 단항식과 다항식의 곱셈과 나눗셈의 활용

(1) (직사각형의 넓이)=(가로의 길이)×(세로의 길이) (2) (기둥의 부피)=(밑넓이)×(높이)

예제 21 가로의 길이가 $6a^2$ 인 직사각형의 넓이가 $12a^3b^2$ 일 때. 이 직사각형의 세로의 길이는?

- \bigcirc ab
- (2) ab^{2}
- (3) $2a^2b$

- $(4) 2ab^2$
- \bigcirc 4ab

예제 22 및 민면의 반지름의 길이가 3a이고 높이가 a+2b인 원기둥의 부피는?

- (1) $3\pi a^2 + 9\pi b$
- ② $3\pi a^3 + 9\pi ab$
- $(3) 9\pi a + 9\pi b^2$
- $(4) 9\pi a + 18\pi ab$
- (5) $9\pi a^3 + 18\pi a^2 b$

15 식의 대입

주어진 식의 문자에 그 문자를 나타내는 다른 식을 대입하는 것

예제 23 y = -2x + 3일 때, x - 4y + 5를 x의 식으로 나타 내시오

예제 24 A = 2x - y, B = -x - 2y일 때. A-(B-A)-2B를 x, y의 식으로 나타내시오.

- (1) **부등식** 부등호 > . < . ≥ . ≤를 사용하여 수 또는 식의 대소 관 계를 나타낸 식
- (2) 부등식의 표현

a > b	a < b
a는 b 보다 크다.	a는 b 보다 작다.
a는 b 초과이다.	a는 b 미만이다.
$a \ge b$	$a \le b$
a는 b 보다 크거나 같다.	a는 b 보다 작거나 같다.
a는 b 보다 작지 않다.	a는 b 보다 크지 않다.
a는 b 이상이다.	a는 b 이하이다.

- (3) 부등식의 해 부등식을 참이 되게 하는 미지수의 값
- 예제 01 다음 중 문장을 부등식으로 나타낸 것으로 옳지 않은 것은?
- ① a에 10을 더한 것은 a의 5배에서 18을 뺀 것보다 크다. $\Rightarrow a+10>5a-18$
- (2) 1개에 x원인 배 3개와 1개에 500원인 사과 4개의 값은 5000원 초과이다. → 3x+2000>5000
- ③ x명이 1인당 500원씩 돈을 내었더니 총 금액이 20000원 이상이었다. ⇒ 500x≥20000
- ④ 어떤 + x에 3을 더하여 2배한 것은 x의 5배보다 크다. $\Rightarrow x+3>5x$
- ⑤ x km의 거리를 시속 60 km로 달리면 1시간보다 많이 걸 린다. $\Rightarrow \frac{x}{60} > 1$

- 예제 02 x의 값이 1, 2, 3, 4, 5일 때, 다음 부등식 중 해가 없는 것은?
- $\widehat{1}$ x+2>0
- ② $x-5 \ge 0$
- (3) x > 1

- $4\frac{x}{3} \le 1$
- $\Im 2 x < 0$

2 부등식의 성질

(1) a < b이면 a + c < b + c, a - c < b - c

(2) a < b, c > 0이면 ac < bc, $\frac{a}{c} < \frac{b}{c}$

(3) a < b, c < 0이면 $ac > bc, \frac{a}{c} > \frac{b}{c}$

- 예제 03 a < b일 때, 다음 중 옳은 것은?
- ① a-3>b-3
- 2a+3<2b+3
- 3 3a < -3b
- $\bigcirc 45-a < 5-b$
- $\bigcirc -\frac{a}{6} < -\frac{b}{6}$

- 예제 04 -2a-4 < -2b-4일 때, 다음 중 옳지 않은 것 <u>0</u>?
- $\bigcirc a > b$
- (2) -2a < -2b
- 35a+1>5b+1 $4\frac{a}{6}<\frac{b}{6}$
- $\bigcirc 1 \frac{a}{2} < 1 \frac{b}{2}$

- 3 식의 값의 범위 구하기
- $a < x \le b$ 일 때, cx + d의 값의 범위를 구하면 (단, c > 0)
- ① 각 변에 c를 곱한다. $\Rightarrow ac < cx \le bc$
- ② 각 변에 d를 더한다. $\Rightarrow ac+d < cx+d \le bc+d$
- 예제 05 $-2 < x \le 2$ 일 때, A = 5 2x의 값의 범위는?
- (i) $-1 \le A < 7$
- (2) $-1 < A \le 9$
- ③ $1 < A \le 9$
- $\bigcirc 1 \le A < 9$
- (5) $-8 < A \le 16$

4 일차부등식

부등식의 모든 항을 좌변으로 이항하여 정리한 식이 (일차식) > 0, (일차식) < 0, $(일차식) \ge 0$, $(일차식) \le 0$ 중의 어느 한 가지 꼴로 나타낼 수 있는 부등식

예제 06 다음 중 일차부등식인 것을 모두 고르면?

(정답 2개)

- $\bigcirc 2x + 5 > 2x 1$
- ② $x-4 \le x-2$
- $32x(x+3) \ge 2x^2+1$ 3x-4 < 3(1+x)
- (5) 3x+1>7

5 일차부등식의 풀이

(1) 일차부등식의 풀이

- ① 미지수 x를 포함한 항은 좌변으로, 상수항은 우변으로 이항한다.
- ② 각 변을 동류항끼리 정리하여 ax > b, ax < b, $ax \le b$, $ax \le b$ $(a \neq 0)$ 중 어느 하나의 꼴로 나타낸다.
- ③ 양변을 x의 계수 a로 나눈다. 이때 a가 음수이면 부등호의 방 향이 바뀐다.

(2) 부등식의 해를 수직선 위에 나타내기

예제 07 일차부등식 -4x+2>-x-4를 풀면?

- $\widehat{1}$ x < 2
- $\widehat{(2)} x > 2$
- 3x < -3
- (4) x > -2
- (5) x < 3

예제 08 다음 중 일차부등식 $5x-1 \le 2x+8$ 의 해를 수직 선 위에 바르게 나타낸 것은?

6 복잡한 일차부등식의 풀이

- (1) 괄호가 있는 경우 분배법칙을 이용하여 괄호를 푼다.
- (2) 계수가 소수인 경우 양변에 10의 거듭제곱을 곱한다.
- (3) 계수가 분수인 경우 양변에 분모의 최소공배수를 곱한다.

예제 09 일차부등식 $2-(5+3x) \le -3(2x-3)$ 을 풀면?

- ① $x \le 2$ ② $x \le -\frac{2}{3}$ ③ $x \ge \frac{2}{3}$

- $4 x \le 4$ $5 x \ge -4$

예제 10 일차부등식 $\frac{x-3}{4} - \frac{2x+1}{3} > 2$ 를 만족하는 x의 값 중 가장 큰 정수는?

- $\widehat{1}$ -8
- ② -7
- (3) 5

- (4) 6
- (5)7

7 x의 계수가 미지수인 일차부등식의 풀이

x에 대한 일차부등식 ax > b에서

- (1) a > 0이면 $x > \frac{b}{a}$
- (2) a < 0이면 $x < \frac{b}{a}$

예제 11 a < 0일 때, x에 대한 일차부등식 ax + 3 > -2를 풀면?

- ① $x > -\frac{5}{a}$ ② $x > -\frac{1}{a}$ ③ $x < -\frac{5}{a}$

- (4) x > -a $(5) x < \frac{1}{a}$

8 해의 조건이 주어진 일차부등식

- ① 주어진 부등식을 풀어 $x>k, x< k, x\ge k, x\le k$ 중 어느 하나의 꼴로 나타낸다.
- ② 조건을 만족하는 k의 값 또는 k의 값의 범위를 찾는다.

예제 12 x에 대한 일차부등식 ax+5>x-3의 해가 x<4일 때, 상수 a의 값은?

- ① -1
- ② **0**
- ③1

- (4) 2
- (5)3

예제 13 x에 대한 일차부등식 4x-14 < a를 만족하는 자연수 x의 개수가 3개일 때, 상수 a의 값의 범위는?

- ① $-2 < a \le 0$
- ② $0 \le a \le 2$
- $3 2 < a \le 2$
- $\bigcirc 4 2 \le a < 2$
- ⑤ $2 \le a < 4$

9 일차부등식의 활용

- ① 문제의 뜻을 파악하고, 구하려고 하는 것을 미지수 x로 놓는다.
- ② 문제의 뜻에 맞게 일차부등식을 세운다.
- ③ 일차부등식을 푼다.
- ④ 구한 해가 문제의 뜻에 맞는지 확인한다.

에제 14 어떤 자연수의 4배에서 5를 뺀 값은 그 수에서 1을 뺀 값의 3배보다 크지 않다고 한다. 이와 같은 자연수 중 가장 큰 수는?

- $\widehat{1}$ 1
- \bigcirc 2
- ③3

- **(4)** 4
- **(5)** 5

10 가격, 개수에 대한 문제

- (1) 한 개에 a원 하는 물건 x개를 사고 포장비가 b원일 때, 필요한 금 액 \Rightarrow (ax+b)원
- (2) 물건 A와 물건 B를 합하여 n개를 살 때, 물건 A의 개수를 x개라 하면 물건 B의 개수는 (n-x)개

에제 15 지훈이는 한 송이에 1000원 하는 꽃을 바구니에 포장하여 가격이 12000원을 넘지 않게 사려고 한다. 포장 가격이 3000원일 때, 꽃은 최대 몇 송이까지 살 수 있는가?

- ① 6송이
- ② 7송이
- ③ 8송이

- ④ 9송이
- ⑤ 10송이

에제 16 한 자루에 600원 하는 연필과 한 자루에 800원 하는 볼펜을 합하여 20자루를 사는데 전체 가격이 14000원 이하가 되게 하려고 한다. 이때 볼펜은 최대 몇 자루까지 살 수있는가?

- ① 8자루
- ② 9자루
- ③ 10자루

- ④ 11자루
- ⑤ 12자루

11 예금에 대한 문제

현재 예금액이 a원이고 매달 b원씩 예금할 때, x개월 후의 예금액 (a+bx)원

에제 17 현재 형의 통장에는 50000원, 동생의 통장에는 35000원이 들어 있다. 다음 달부터 매월 형은 1000원씩, 동생은 3000원씩 예금한다면 동생의 예금액이 형의 예금액보다 많아지는 것은 몇 개월 후부터인지 구하시오.

12 추가 요금에 대한 문제

k개의 가격이 a원이고 k개를 초과하면 1개당 가격이 b원일 때, x개의 가격 (단, x>k)

 $\Rightarrow \{a+b(x-k)\}$ 원

에제 18 어느 주차장의 주차 요금은 주차 시간이 30분 이하이면 1500원이고, 30분이 지나면 1분에 40원씩 추가 요금이부가된다고 한다. 주차 요금이 3500원 이하가 되도록 할 때, 최대 몇 분 동안 주차할 수 있는지 구하시오.

13 도형에 대한 문제

삼각형의 세 변의 길이가 주어질 때

⇒ (가장 긴 변의 길이)<(나머지 두 변의 길이의 합)

예제 19 삼각형의 세 변의 길이가 x, x-3, x+4일 때, x의 값의 범위는?

- ① x > 0
- ② x > 1
- 3x > 3

- $\bigcirc (4) x > 4$
- ⑤x > 7

14 유리한 방법을 선택하는 문제

- ① 두 가지 방법에 대하여 각각의 가격 또는 비용을 계산한다.
- ② 가격 또는 비용이 적은 쪽이 유리한 방법임을 이용하여 일차부등 식을 세운다.

에제 21 집 근처 문구점에서 한 개에 300원 하는 샤프심을 대형 할인점에서는 200원에 살 수 있다고 한다. 대형 할인점에 갔다오는 데 드는 왕복 교통비가 1600원이라면 샤프심을 몇 개 이상 사는 경우 대형 할인점에 가서 사는 것이 유리한지 구하시오

에제 22 체육 대회에서 입을 티셔츠를 학교 근처의 옷 가게에서는 5000원에 판매하고 할인 매장에서는 4800원에 판매한다. 할인 매장에 다녀오려면 왕복 교통비가 1200원이 든다고 할 때, 티셔츠를 몇 벌 이상 사는 경우 할인 매장에서 사는 것이 유리한지 구하시오.

15 단체 입장 시 할인에 대한 문제

x명이 입장한다고 할 때, a명의 단체 입장료를 지불하는 것이 유리한 경우 (단, x<a)

⇒ (x명의 입장료)>(a명의 단체 입장료)

예제 23 어느 공원의 입장료는 한 사람당 2000원이고 40 명 이상의 단체인 경우에는 입장료의 20 %를 할인해 준다고 한다. 40명 미만의 단체가 입장하려고 할 때, 몇 명 이상이면 40명의 단체 입장료를 지불하는 것이 유리한가?

- ① 31명
- ② 33명
- ③ 35명

- ④ 37명
- ⑤ 39명

16 거리, 속력, 시간에 대한 문제

 $(거리)=(속력)\times(시간),\;\;(시간)=\dfrac{(거리)}{(속력)},\;\;(속력)=\dfrac{(거리)}{(시간)}$

에제 24 등산을 하는데 올라갈 때는 시속 2 km로 걷고, 내려올 때는 같은 길을 시속 3 km로 걸어서 전체 걸리는 시간을 2시간 30분 이내로 하려고 한다. 이때 최대 몇 km까지 올라갔다 내려올 수 있는가?

- $\bigcirc \frac{1}{3}$ km
- $2\frac{1}{2}$ km
- ③ 1 km

- 4 2 km
- ⑤ 3 km

예제 25 A지점에서 11 km 떨어진 B지점까지 가는데 처음에는 시속 5 km로 뛰다가 도중에 시속 3 km로 걸어서 3시간 이내에 도착하였다. 이때 뛰어간 거리는 몇 km 이상 인가?

- ① 4 km
- ② 5 km
- ③ 6 km

- ④ 7 km
- (5) 8 km

예제 28 8%의 소금물 300 g이 있다. 이 소금물에 물을 더 넣어 6% 이하인 소금물을 만들려고 할 때, 더 넣어야 하는 물의 양은 최소 몇 g인가?

 $\frac{\text{(소금의 양)}}{\text{(소금물의 양)}} \times 100\,(\%)$

예제 27 10 %의 소금물 200 g과 6 %의 소금물을 섞어서

7 % 이상인 소금물을 만들려고 할 때, 6 %의 소금물은 최대

(2) (소금의 양)= $\frac{(소금물의 농도)}{(소금물의 양)}$ × (소금물의 양)

몇 g까지 섞을 수 있는지 구하시오.

 $\bigcirc 50 g$

17 농도에 대한 문제

(1) (소금물의 농도)=

- ② 75 g
- 3100 g

- ④ 125 g
- ⑤ 150 g

에제 26 집에서 TV를 시청하다가 월드컵 축구 경기가 시작하기 전까지 30분의 여유가 있어서 간식을 사오려고 한다. 간식을 사는 데 10분이 걸리고 시속 3 km로 걸을 때, 집에서 몇 m 이내에 있는 상점을 이용할 수 있는가?

- ① 350 m
- ② 400 m
- ③ 450 m

- (4) 500 m
- ⑤ 550 m

예제 29 5%의 설탕물 400 g이 있다. 이 설탕물에서 물을 증발시켜 10% 이상인 설탕물을 만들려고 할 때, 증발시켜 야 하는 물의 양은 최소 몇 g인지 구하시오.

시험에 꼭 나오는 개념 + 문제 유형

4. 연립일차방정식

1 미지수가 2개인 일차방정식

(1) 미지수가 2개인 일차방정식

미지수가 2개이고, 그 차수가 모두 1인 방정식

 $\Rightarrow ax+by+c=0$ (단, a, b, c는 상수, $a\neq 0$, $b\neq 0$)

(2) 미지수가 2개인 일치방정식의 해

미지수가 x,y로 2개인 일차방정식을 참이 되게 하는 x,y의 값 또는 순서쌍 (x,y)

예제 01 다음 중 미지수가 2개인 일차방정식을 모두 고르면? (정답 2개)

- ① 2x+y=x+1
- $(2) 2x^2 + y + 3 = 0$
- 3x-2y=1-2y
- 4y-2=4y+3
- § $x = \frac{1}{3}y 2$

예제 02 x, y가 자연수일 때, 일차방정식 2x+y=8의 해의 개수는?

- ① 3개
- ② 4개
- ③ 5개

- ④ 6개
- (5) 77}

2 일차방정식의 해 또는 계수가 문자로 주어질 때

일차방정식의 한 해가 (a,b)일 때, 방정식에 x=a,y=b를 대입하면 등식이 성립한다.

예제 03 일차방정식 x+2y=12가 순서쌍 (4,a),(b,3)을 해로 가질 때,a-b의 값은?

- (1) 2
- (2) 1
- ③1

- 4 2
- **(5)** 3

3 미지수가 2개인 연립일차방정식의 해

(1) 미지수가 2개인 연립일차방정식

미지수가 2개인 두 일치방정식을 한 쌍으로 묶어 놓은 것

(2) 연립방정식의 해

두 방정식을 동시에 만족하는 x,y의 값 또는 순서쌍 (x,y)

예제 04) 연립방정식 $egin{cases} -x+2y=a \ bx-3y=2 \end{cases}$ 의 해가 $x\!=\!-1,y\!=\!2$

일 때, a+b의 값은? (단, a, b는 상수)

- ① -3
- (2) 2
- (3) -1

- **4** 4
- **⑤** 5

4 연립방정식의 풀이

- (1) **대입법** 연립방정식의 두 일치방정식 중 한 방정식을 한 미지수 의 식으로 나타낸 후 이를 다른 방정식에 대입하여 연립방정식의 해를 구하는 방법
- (2) 가감법 연립방정식에서 두 일차방정식을 변끼리 더하거나 빼어서 한 미지수를 없앤 후 연립방정식의 해를 구하는 방법

예제 05 연립방정식 $\begin{cases} 2x+y=4 \\ y=3-x \end{cases}$ 를 풀면?

- ① x = -1, y = 4
- ② x = -1, y = 2
- ③ x=1, y=2
- 4x=2, y=1

예제 06 연립방정식 $\begin{cases} x-y=5 \\ 3x+2y=20 \end{cases}$ 을 풀면?

- (1) x=4, y=-1
- ② x=5, y=0
- ③ x = 6, y = 1
- 4x=7, y=2
- ⑤ x=8, y=3

5 복잡한 연립방정식의 풀이

- (1) 괄호가 있는 경우 분배법칙을 이용하여 괄호를 푼다.
- (2) 계수가 소수인 경우 양변에 10의 거듭제곱을 곱한다.
- (3) 계수가 분수인 경우 양변에 분모의 최소공배수를 곱한다.

예제 07 연립방정식
$$\begin{cases} 2(x-3y)-y=5 \\ 3x-(x+5y)=7 \end{cases}$$
을 풀면?

- (1) x=3, y=-10
- ② x=2, y=-1
- ③ x=3, y=7
- 4 x=4, y=11
- (5) x = 6, y = 1

예제 08 연립방정식
$$\left\{ \frac{0.2x - 0.1y = 1}{\frac{x}{3} + \frac{2}{5}y = -\frac{3}{5}} \stackrel{9}{=}$$
 푸시오.

$oldsymbol{6}$ $A\!=\!B\!=\!C$ 꼴의 방정식의 풀이

$${A=B \brace A=C}$$
 또는 ${A=B \brack B=C}$ 또는 ${A=C \brack B=C}$ 중 간단한 것을 선택하여 푼다.

예제 09 방정식 2x+3y=x+3=y-2를 풀면?

- ① x=2, y=3
- ② x = -2, y = 3
- 3x = -3, y = -2
- (4) x = 3, y = 2
- (5) x = -3, y = 2

7 연립방정식의 해의 활용

- ① 3개 이상의 일치방정식 중 미지수가 없는 두 일치방정식으로 세 운 연립방정식의 해를 구한다.
- ② 구한 해를 나머지 일차방정식에 대입하여 미지수의 값을 구한다.

예제 10 연립방정식 $\begin{cases} 2x-y=5 \\ x-ay=2 \end{cases}$ 의 해가 일차방정식 2x+y=7을 만족할 때, 상수 a의 값을 구하시오.

예제 11 두 연립방정식 $\begin{cases} 2x+y=5 \\ ax-y=3 \end{cases}$ $\begin{cases} -x+y=-1 \\ x+by=7 \end{cases}$ 의 해

가 서로 같을 때, 상수 a, b의 값은

- ① a=2, b=1
- ② a = -1, b = 5
- 3a=2, b=-3 4a=-1, b=4
- ⑤ a=2, b=5

8 연립방정식의 해의 조건이 주어질 때

- (1) y의 값이 x의 값의 k배이다. $\Rightarrow y = kx$
- (2) x의 값과 y의 값의 비가 m:n이다. $\Rightarrow x:y=m:n$
- (3) x의 값이 y의 값보다 k만큼 크다. $\Rightarrow x = y + k$

예제 12) 연립방정식 $\begin{cases} x-2y=6 \\ ar+3y=-4 \end{cases}$ 를 만족하는 y의 값이

x의 값의 2배일 때, 상수 a의 값은?

- $\bigcirc -5$
- (2) 4
- (3) 3

- (4) 2
- (5) -1

예제 13 연립방정식 $\begin{cases} 3x + ay = 11 \\ 2x - 5y = 1 \end{cases}$ 을 만족하는 x의 값과 *y*의 값의 비가 3:1일 때, 상수 *a*의 값을 구하시오.

9 잘못 보고 구한 해

계수 a, b를 바꾸어 놓고 풀었다.

- \Rightarrow a는 b로, b는 a로 바꾼 연립방정식에 잘못 구한 해를 대입한다.
- 예제 14 연립방정식 $\begin{cases} ax+by=10 \\ bx+ay=-14 \end{cases}$ 를 푸는데 잘못하여

a, b를 바꾸어 놓고 풀었더니 해가 x=-3, y=1이 되었다. 이때 처음 연립방정식의 해는? (단, a, b는 상수)

- $\widehat{1} x = -3, y = -1$
- ② x = -3, y = 3
- 3x = -1, y = 3
- (4) x = 1, y = -3

10 해가 특수한 연립방정식

연립방정식의 두 일차방정식을 변형하였을 때,

- (1) x, y의 계수와 상수항이 각각 같으면 해가 무수히 많다.
- (2) x. y의 계수는 각각 같고 상수항은 다르면 해가 없다.
- 예제 15 연립방정식 $\begin{cases} 2x+y=3 \\ ax+y=-b \end{cases}$ 의 해가 무수히 많을 때,

a-b의 값을 구하시오. (단, a, b는 상수)

예제 16 연립방정식 $\begin{cases} ax+y=3 \\ 3x-2y=4 \end{cases}$ 의 해가 없을 때, 상수 a

의 값은?

- $4\frac{3}{2}$
- \bigcirc 2

11 수에 대한 문제

- (1) 두 자연수 x, y에 대하여 x를 y로 나누면 몫이 q이고 나머지가 r이다. $\Rightarrow x = yq + r$ (단, $0 \le r < y$)
- (2) 십의 자리의 숫자가 x, 일의 자리의 숫자가 y인 두 자리의 자연수 에서
 - ① 처음 수 **⇒** 10x+y
 - ② 십의 자리의 숫자와 일의 자리의 숫자를 바꾼 수 \Rightarrow 10y+x

예제 17 합이 36인 두 자연수가 있다. 큰 수를 작은 수로 나 누면 몫이 4이고 나머지가 1일 때, 두 수의 차는?

- (1)20
- $\bigcirc{2}21$
- (3) 22

- (4)23
- (5)24

예제 18 두 자리의 자연수가 있다. 각 자리의 숫자의 합은 13이고, 이 수의 십의 자리의 숫자와 일의 자리의 숫자를 바 꾼 수는 처음 수보다 9만큼 크다고 한다. 이때 처음 수는?

- 1 49
- 2 67
- (3)76

- (4)85
- (5)94

12 여러 가지 개수에 대한 문제

- (1) A. B의 구입 개수와 전체 가격이 주어지면 A. B의 1개의 가격을 각각 x원, y원으로 놓고 연립방정식을 세운다.
- (2) 다리가 a개인 동물이 x마리, b개인 동물이 y마리 있으면

[x+y=(전체 동물의 수)]

ax+by=(전체 동물의 다리의 수)

예제 19 사과 4개와 배 2개를 구입하고 8000원을 지불하 였다. 배 한 개의 가격은 사과 한 개의 가격의 2배일 때. 사과 한 개의 가격과 배 한 개의 가격을 각각 구하면?

① 사과: 800원, 배: 1600원

② 사과: 1000원, 배: 2000원

③ 사과: 1200원, 배: 2400원

④ 사과: 1600원, 배: 800원

⑤ 사과: 2000원, 배: 1000원

에제 20 어떤 농장에서 토끼와 오리를 합하여 150마리를 기르고 있다. 토끼와 오리의 다리의 수의 합이 400개일 때, 토끼는 몇 마리인가?

- ① 30마리
- ② 50마리
- ③ 70마리

- ④ 80마리
- ⑤ 100마리

13 나이에 대한 문제

- (1) 현재 x세인 사람의 a년 전의 나이 \Rightarrow (x-a)세
- (2) 현재 x세인 사람의 b년 후의 나이 \Rightarrow (x+b)세

에제 21 현재 현선이의 나이와 아버지의 나이의 합은 55세이고, 13년 후에는 아버지의 나이가 현선이의 나이의 2배보다 3세가 적다고 한다. 현재 현선이의 나이는?

- ① 13세
- ② 14세
- ③ 15세

- ④ 16세
- ⑤ 17세

14 가점, 감점에 대한 문제

- ① 계단을 올라가는 것은 +, 내려가는 것은 -로 생각한다.
- ② A, B = A 자람이 가위바위보를 할 때, A가 이긴 횟수를 x회, 진 횟수를 y회라 하면 B가 이긴 횟수는 y회, 진 횟수는 x회이다.

에제 22 혜인이와 성철이가 가위바위보를 하여 이긴 사람은 2계단씩 올라가고, 진 사람은 1계단씩 내려가기로 하였다. 그 결과 처음 위치보다 혜인이는 30계단을, 성철이는 15계단을 올라가 있었다. 혜인이가 이긴 횟수를 구하시오.

(단, 비기는 경우는 없다.)

15 일에 대한 문제

- ① 전체 일의 양을 1로 놓는다.
- ② 한 사람이 단위 시간에 할 수 있는 일의 양을 각각 x, y로 놓고 연립방정식을 세운다.

예제 23 A와 B가 같이 하면 15일 만에 끝낼 수 있는 일을 A가 혼자 18일 동안 일하고, 남은 일은 B가 14일 동안 하여 끝냈다. 이 일을 A가 혼자 하면 며칠 만에 끝낼 수 있는가?

- ① 20일
- ② 30일
- ③ 40일

- ④ 50일
- ⑤ 60일

16 거리, 속력, 시간에 대한 문제

 $(거리)=(속력)\times(시간), (시간)=\frac{(거리)}{(속력)}, (속력)=\frac{(거리)}{(시간)}$

에제 24 동훈이는 거리가 18 km인 길을 자전거를 타고 시속 12 km로 가다가 도중에 자전거가 고장이 나서 시속 4 km로 걸어갔더니 2시간이 걸렸다. 이때 동훈이가 걸어간 거리는?

- ① 2 km
- ② 3 km
- ③ 6 km

- ④ 12 km
- (5) 15 km

예제 25 시우가 학교를 향하여 분속 250 m로 달려간 지 16 분 후에 경준이가 같은 길을 분속 450 m로 달려서 뒤따라갔 다. 두 사람이 만나는 것은 경준이가 출발한 지 몇 분 후인가?

- ① 16분후
- ② 17분후
- ③ 18분후

- ④ 19분 후
- ⑤ 20분후

예제 26 둘레의 길이가 1200 m인 호수의 둘레를 민호와 정아가 일정한 속력으로 걷고 있다. 두 사람이 같은 지점에서 동시에 출발하여 같은 방향으로 걸으면 10분 후에 처음으로 만나고, 반대 방향으로 걸으면 3분 후에 처음으로 만난다. 이 때 민호의 속력은 분속 몇 m인지 구하시오.

(단, 민호의 속력이 정아의 속력보다 빠르다.)

예제 29 농도가 다른 두 종류의 설탕물 A, B가 있다. 설탕물 A 100 g과 설탕물 B 200 g을 섞으면 A %의 설탕물이 되고, 설탕물 A 200 g과 설탕물 B 100 g을 섞으면 A %의 설탕물이 된다고 한다. 이때 설탕물 A의 농도를 구하시오.

예제 27 보트를 타고 길이가 60 km인 강을 강물이 흐르는 방향으로 내려가는 데는 2시간, 거슬러 올라가는 데는 3시간 이 걸렸다. 강물의 속력은 시속 몇 km인지 구하시오.

(단, 보트와 강물의 속력은 일정하다.)

18 증가와 감소에 대한 문제

(1) x에서 a % 증가 \Rightarrow 증가량 : $\frac{a}{100}x$

증가한 후의 양 : $x + \frac{a}{100}x$

(2) x에서 b % 감소 \Rightarrow 감소량 : $\frac{b}{100}x$

감소한 후의 양 : $x - \frac{b}{100}x$

에제 30 어느 학교의 작년 전체 학생 수는 1000명이었다. 올해는 작년에 비하여 남학생은 6% 증가하고, 여학생은 4% 감소하여 전체 학생 수가 1005명이 되었다. 이 학교의 올해 남학생 수와 여학생 수를 각각 구하시오.

17 농도에 대한 문제

① $(소금물의 농도) = \frac{(소금의 양)}{(소금물의 양)} \times 100 (%)$

② (소금의 양)= $\frac{(소금물의 농도)}{100} \times (소금물의 양)$

예제 28 6%의 소금물과 2%의 소금물을 섞어서 5%의 소금물 300 g을 만들려고 한다. 이때 6%의 소금물을 몇 g 섞어야 하는지 구하시오.

에제 31 어느 과수원에서 작년에 사과와 배를 합하여 1200 상자를 수확하였다. 올해 수확한 양은 작년에 비하여 사과는 10% 증가하고, 배는 5% 감소하여 전체 수확량은 작년과 같았다. 올해 사과와 배의 수확량은 각각 몇 상자인지 구하 시오. **함수** 두 변수 x, y에 대하여 x의 값이 변함에 따라 y의 값이 하나씩 정해지는 대응 관계가 있을 때, y를 x의 함수라 한다.

- (1) 함수인 경우 $\Rightarrow x$ 의 값이 변함에 따라 y의 값이 하나씩 정해질 때
- (2) 함수가 아닌 경우 \Rightarrow 어떤 x의 값에 대하여 y의 값이 정해지지 않 거나 두 개 이상의 값이 정해질 때

예제 01 다음 중 *y*가 *x*의 함수가 아닌 것은?

- ① 한 개에 500원인 아이스크림 x개의 가격 y원
- ② 한 변의 길이가 x cm인 정사각형의 둘레의 길이 y cm
- ③ 정수 x의 절댓값 y
- ④ 키가 x cm인 사람의 몸무게 y kg
- (5) 자연수 x의 약수의 개수 y개

2 함숫값

함수 y=f(x)에서 f(a)의 값

- $\Rightarrow x = a$ 일 때, y의 값
- $\Rightarrow x = a$ 일 때의 함숫값
- $\Rightarrow f(x)$ 에 x 대신 a를 대입하여 얻은 값

예제 02 함수 $f(x) = \frac{6}{r}$ 에 대하여 f(-2)의 값을 구하시 오.

예제 03 함수 f(x) = ax + 2에 대하여 f(4) = 10일 때, f(3)의 값은? (단, a는 상수)

- $\bigcirc 1$
- \bigcirc 7
- (3) 8

- (4) 11
- (5)12

일차함수

- (1) y가 x에 대한 일차함수
 - \Rightarrow y=(x에 대한 일차식)
 - $\Rightarrow y = ax + b($ 단, a, b는 상수, $a \neq 0)$
- (2) 점 (p, q)가 일차함수 y = ax + b의 그래프 위의 점이다.
 - \Rightarrow y=ax+b에 x=p, y=q를 대입하면 등식이 성립한다.

예제 04 다음 중 y가 x에 대한 일차함수인 것을 모두 고르 면? (정답 2개)

- (1) 3x+4y=0 (2) $y+x^2=x$
- ③ x = 2y + 4
- $(4) y = \frac{2}{r}$ (5) y = 7

예제 05 일차함수 $y = \frac{1}{2}x + 5$ 의 그래프가 두 점 (m, 3), (-4, n)을 지날 때, m+n의 값을 구하시오.

4 일차함수의 그래프의 평행이동

- (1) 평행이동 한 도형을 일정한 방향 으로 일정한 거리만큼 옮기는 것
- (2) 일차함수 y=ax+b의 그래프 일차함수 y=ax의 그래프를 y축의 방향으로 b만큼 평행이동한 직선

예제 06 일차함수 y=2ax+5의 그래프를 y축의 방향으로 -7만큼 평행이동하였더니 일차함수y=4x+b의 그래프가 되었다. 이때 a-b의 값은? (단, a, b는 상수)

- $\widehat{(1)} 4$
- (2) 2
- (3) 0

- $\bigcirc 2$
- (5)4

예제 07 일차함수 y = -2x + 8의 그래프를 y축의 방향으 로 k만큼 평행이동한 그래프가 점 (1,5)를 지날 때. k의 값 을 구하시오.

$oldsymbol{5}$ 일차함수의 그래프의 x절편, y절편

일차함수y=ax+b의 그래프에서

(1) x**절편** y=0일 때의 x의 값

$$\Rightarrow -\frac{b}{a}$$

(2) y 절편 x=0일 때의 y의 값

 $\Rightarrow b$

예제 08 일차함수 $y = -\frac{3}{2}x + 3$ 의 그래프에서 x절편이 a, y절편이 b일 때, a + b의 값을 구하시오.

예제 09 일차함수 y=ax+6의 그래프에서 x절편이 -2 일 때, 상수 a의 값을 구하시오.

6 일차함수의 그래프의 기울기

- (1) 일차함수 y=ax+b의 그래프에서 $(7|37)=\frac{(y)}{(x)}$ 값의 증가량) =a
- (2) 서로 다른 두 점 (x_1, y_1) , (x_2, y_2) 를 지나는 일차함수의 그래프에서

(기울기)=
$$\frac{y_2-y_1}{x_2-x_1}$$
= $\frac{y_1-y_2}{x_1-x_2}$

예제 10 일차함수 y = -3x + 4의 그래프에서 x의 값이 -1에서 3까지 증가할 때, y의 값의 증가량은?

- $\widehat{(1)} 12$
- 2 6
- (3) 3

- $\bigcirc 4$ 6
- **⑤** 12

예제 11 두 점 (1, 2), (-1, m)을 지나는 일차함수의 그 래프의 기울기가 3일 때, m의 값을 구하시오.

예제 12 오른쪽 그림과 같은 일차함수의 그래프의 기울기는?

- ① -2
- ③1
- **4** 2
- **(5)** 3

7 세 점이 한 직선 위에 있을 조건

서로 다른 세 점 A, B, C가 한 직선 위에 있다.

- ⇒ (직선 AB의 기울기)=(직선 BC의 기울기)
 - =(직선 AC의 기울기)

예제 13 세 점 (-4, -5), (-1, 1), (a, 5)가 한 직선 위에 있을 때, a의 값은?

- 1 0
- 21
- (3) 2

- **4** 3
- **(5)** 4

8 일차함수 y=ax+b의 그래프 그리기

- (1) 두 점을 이용하여 그리기
 - ➡ 일차함수를 만족하는 두 점을 찾아 직선으로 연결한다.
- (2) x절편과 y절편을 이용하여 그리기
 - \Rightarrow x절편이 $-\frac{b}{a}$, y절편이 b이므로 두 점 $\left(-\frac{b}{a},0\right)$, (0,b)를 직선으로 연결한다.
- (3) 기울기와 y절편을 이용하여 그리기
 - → 기울기가 a, y절편이 b이므로 점 (0, b)와 이 점에서 x의 값이 1 만큼 증가할 때 y의 값이 a만큼 증가한 점을 직선으로 연결한다.

예제 14 다음 일차함수의 그래프 중 제3사분면을 지나지 않는 것은?

- $\bigcirc y = 2x + 3$
- ② y = -2x 5
- $3y = \frac{2}{3}x + 1$
- $4y = x \frac{1}{4}$
- $\bigcirc y = -x + 2$

예제 15 일차함수 y = -4x + 20의 그래프와 x축, y축으로 둘러싸인 도형의 넓이를 구하시오.

$oldsymbol{1}$ 일차함수 $y{=}ax{+}b$ 의 그래프의 성질

- (1) **a의 부호** 그래프의 모양 결정
 - ① a > 0일 때, x의 값이 증가하면 y의 값도 증가한다.
 - ⇒ 오른쪽 위로 향하는 직선이다.
 - ② a < 0일 때, x의 값이 증가하면 y의 값은 감소한다.
 - ➡ 오른쪽 아래로 향하는 직선이다.

- (2) b의 부호 그래프가 y축과 만나는 부분 결정
 - ① b > 0이면 x축보다 위에서 y축과 만난다.
 - ② b < 0이면 x축보다 아래에서 y축과 만난다.

예제 01 다음 중 일차함수 $y = \frac{1}{2}x - 3$ 의 그래프에 대한 설명으로 옳지 않은 것은?

- ① x의 값이 2만큼 증가할 때, y의 값은 1만큼 증가한다.
- ② x축보다 아래에서 y축과 만난다.
- ③ 오른쪽 위로 향하는 직선이다.
- ④ 제3사분면은 지나지 않는다.
- ⑤ 일차함수 $y=\frac{1}{2}(6+x)$ 의 그래프와 평행하다.

- 예제 02 다음 중 일차함수 y=ax+b의 그래프에 대한 설명으로 옳지 않은 것은? (단, a, b는 상수)
- ① b = 0이면 원점을 지난다.
- ② x축과 점 $\left(-\frac{b}{a},0\right)$ 에서 만난다.
- ③ a > 0. b < 0이면 제2사분면을 지나지 않는다.
- ④ x의 값이 2만큼 증가할 때, y의 값은 2a만큼 증가한다.
- ⑤ a < 0이면 그래프는 오른쪽 아래로 향하는 직선이고, x의 값이 감소할 때 y의 값도 감소한다.

$oldsymbol{2}$ 일차함수 $y{=}ax{+}b$ 의 그래프의 모양

일차함수 y=ax+b의 그래프의 모양과 지나는 사분면은 a,b의 부호에 따라 다음과 같다.

- 예제 03 ab>0, a+b<0일 때, 일차함수 y=ax+b의 그 래프가 지나지 않는 사분면은?
- ① 제1사분면
- ② 제2사분면
- ③ 제3사분면
- ④ 제4사분면
- ⑤ 제1, 3사분면

예제 04 일차함수 y=ax-b의 그래프 가 오른쪽 그림과 같을 때, 상수 a, b의 부호로 옳은 것은?

- ① a > 0, b > 0
- ② a < 0, b > 0
- ③ a < 0, b < 0
- (4) a = 0, b > 0
- ⑤ a > 0, b = 0

3 일차함수의 그래프의 평행과 일치

- 두 일차함수 y=ax+b, y=cx+d에서
- (1) a=c. $b\neq d$ 이면 기울기는 같고 y절편이 다르므로 두 그래프는 평행하다.
- (2) a=c, b=d이면 기울기가 같고 y절편이 같으므로 두 그래프는 일치한다

예제 05 다음 일차함수의 그래프 중 일차함수 y=-2x+1의 그래프와 평행한 것을 모두 고르면?

(정답 2개)

①
$$y = -2x - 1$$

②
$$y = -2x + 2$$

③
$$y = \frac{1}{2}x$$

$$4y = 2x - \frac{3}{2}$$

$$\Im y = 2x - 1$$

예제 06 일차함수 y=ax-4의 그래프는 일차함수 y=3x+2의 그래프와 평행하고, 점 (1, b)를 지난다. 이때 a-b의 값은? (단, a는 상수)

- $\widehat{(1)}$ 3
- (2)4
- (3)5

- (4) 6
- **(5)** 7

예제 07 두 일차함수 y=(3a-1)x-4. y=(2a+5)x+b의 그래프가 일치할 때. a+b의 값은? (단. a. b는 상수)

- $\widehat{(1)} 2$
- (2) 1
- \mathfrak{G} 0

- \bigcirc 1
- (5)2

4 기울기와 y절편을 알 때 일차함수의 식 구하기

기울기가 a이고 y절편이 b일 때

 $\Rightarrow y = ax + b$

예제 08 x의 값이 4만큼 증가할 때. y의 값은 5만큼 감소하 고, y절편이 4인 직선을 그래프로 하는 일차함수의 식은?

①
$$y = -\frac{5}{4}x + 4$$
 ② $y = -5x + 4$

②
$$y = -5x + 4$$

$$3y = \frac{5}{4}x - 4$$
 $4y = \frac{5}{4}x + 4$

$$y = \frac{5}{4}x + 4$$

$$5y = -\frac{5}{4}x - 4$$

예제 09 기울기가 $-\frac{3}{2}$ 이고, 일차함수 y=2x-1의 그래 프와 y축 위에서 만나는 직선을 그래프로 하는 일차함수의 식을 구하시오.

5 기울기와 한 점의 좌표를 알 때 일차함수의 식 구하기

기울기가 a이고 점 (x_1, y_1) 을 지날 때

- ① 일차함수의 식을 y=ax+b로 놓는다.
- ② y = ax + b에 $x = x_1, y = y_1$ 을 대입하여 b의 값을 구한다.

예제 10 일차함수 y = -3x + 5의 그래프와 평행하고 점 (1, 3)을 지나는 직선을 그래프로 하는 일차함수의 식은?

- $\bigcirc y = -3x + 5$
- ② y = -3x 5
- 3y = -3x + 2
- (4) y = -3x 2
- $\bigcirc y = -3x + 6$

6 두 점의 좌표를 알 때 일차함수의 식 구하기

두 점 (x_1, y_1) , (x_2, y_2) 를 지날 때 (단, $x_1 \neq x_2$)

- ① 기울기를 구한다. $\Rightarrow a = \frac{y_2 y_1}{x_2 x_1} = \frac{y_1 y_2}{x_1 x_2}$
- ② 일차함수의 식을 y=ax+b로 놓는다.
- ③ y=ax+b에 한 점의 좌표를 대입하여 b의 값을 구한다.

예제 11 두 점 (2, -2), (5, 4)를 지나는 직선을 그래프로 하는 일차함수의 식은?

- ① y = -2x 6
- ② y = -2x 4
- 3y = 2x 4
- 4y=2x-6
- 5y = 2x 8

$m{7}$ x절편과 $m{y}$ 절편을 알 때 일차함수의 식 구하기

x절편이 m이고 y절편이 n일 때 (단, $m \neq 0$)

① 두 점 (m, 0), (0, n)을 지나는 직선의 기울기를 구한다.

$$\Rightarrow$$
 (기울기)= $\frac{n-0}{0-m}$ = $-\frac{n}{m}$

2 기울기가 $-\frac{n}{m}$ 이고 y절편이 n이므로 구하는 일차함수의 식은

$$y = -\frac{n}{m}x + n$$

예제 12 x절편이 -3, y절편이 4인 직선을 그래프로 하는 일차함수의 식은?

- ① $y = \frac{4}{3}x$
- ② $y = -\frac{4}{3}x 4$
- $3y = -\frac{4}{3}x + 4$ $4y = \frac{4}{3}x + 4$

$$5y = \frac{4}{3}x - 4$$

8 일차함수의 활용

- ① 변하는 두 양을 x, y로 놓는다.
- ② x, y 사이의 관계를 일차함수 y = ax + b로 나타낸다.
- ③ 함수의 식이나 그래프를 이용하여 x의 값 또는 함숫값을 구한다.
- ④ 구한 답이 문제의 뜻에 맞는지 확인한다.

예제 13 지면으로부터 1 km 높아질 때마다 기온이 6 ℃씩 내려간다고 한다. 지면의 기온이 20 ℃이고. 지면으로부터 높이가 x km인 지점의 기온을 $y ^{\circ}$ C라 할 때, x와 y 사이의 관계를 식으로 나타내면?

- $\widehat{1}$ y = -6x 20
- (2) y = -6x + 20
- 3y = 6x 20
- 4y=4x+20
- $\bigcirc y = 6x + 20$

예제 14 길이가 20 cm인 양초가 있다. 이 양초에 불을 붙 이면 3분마다 2 cm씩 줄어든다고 한다. 양초에 불을 붙인 지 18분 후의 양초의 길이는?

- ① 2 cm
- ② 4 cm
- ③ 6 cm

- (4) 8 cm
- ⑤ 10 cm

예제 15 300 L의 물이 들어 있는 물통에서 4분마다 6 L의 물이 흘러나가고 있다. 물통에 물이 120 L 남아 있는 것은 물 이 흘러나가기 시작한 지 몇 분 후인가?

- ① 60분 후
- ② 90분 후
- ③ 120분 후
- ④ 150분후 ⑤ 180분후

시험에 꼭 나오는 **개념** + 문제 유형

7. 일차함수와 일차방정식의 관계

일차함수와 일차방정식

(1) 미지수가 2개인 일차방정식 ax+by+c=0 (a, b, c는 상수, $a \neq 0$, $b \neq 0$)의 그래프는 일차함수 $y = -\frac{a}{b}x - \frac{c}{b}$ 의 그래프와 같다.

(2) 일치방정식 ax+by+c=0의 그래프가 점 (p,q)를 지난다. $\Rightarrow ax+by+c=0$ 에 x=p,y=q를 대입하면 등식이 성립한다.

예제 01 다음 중 일차방정식 2x+y-4=0의 그래프에 대 한 설명으로 옳은 것을 모두 고르면? (정답 2개)

- ① *x*절편은 2, *y*절편은 1이다.
- ② 점 (-1,4)를 지난다.
- ③ 일차함수 y=2x+1의 그래프와 평행하다.
- ④ 제1, 2, 4사분면을 지난다.
- ⑤ x의 값이 1만큼 증가할 때, y의 값은 2만큼 감소한다.

예제 02 일차방정식 x-2y+5=0의 그래프의 기울기를 a, x절편을 b, y절편을 c라 할 때, a+b+c의 값을 구하시오.

예제 03 일차방정식 x-y+4=0의 그래프가 점 (a, 2a)를 지날 때. a의 값은?

- $\widehat{1}$
- (2)2
- (3)3

- $\stackrel{\textstyle \bigcirc}{}$ 4
- (5)5

일차방정식 x=p, y=q의 그래프

(1) x=p의 그래프

점 (p,0)을 지나고 y축에 평행한 직선

(2) y=q의 그래프

점 (0,q)를 지나고 x축에 평행한 직선

예제 04 다음 중 점 (-3.5)를 지나고 x축에 평행한 직선 의 방정식은?

- ① x = 5
- ② x = -3
- ③ y = 5

- (4) y = -3
- $\bigcirc y = -3x$

예제 05 다음 중 점 (3,5)를 지나고 x축에 수직인 직선의 방정식은?

- ① x = 5
- ② x = 3
- (3) x = 0

- (4) y = 3
- (5) y = 5

3 선분과 만나는 직선의 기울기

직선 y=ax+b가 선분 AB와 만날 때. 상수 *a*의 값의 범위는

 $(직선 m의 기울기) \le a \le (직선 l의 기울기)$

예제 06 직선 y=ax+1이 두 점 A(1, 4), B(3, 2)를 이 은 선분 AB와 만날 때, 상수 a의 값의 범위는?

- ① $\frac{1}{7} \le a \le 4$ ② $\frac{1}{4} \le a \le 3$ ③ $\frac{1}{4} \le a \le 4$
- $4 \frac{1}{3} \le a \le 3$ $5 \le a \le 3$

4 연립방정식의 해와 그래프

연립방정식 $\left\{ egin{aligned} ax+by+c=0 \ a'x+b'y+c'=0 \end{aligned}
ight.$ 의 해는 두 일차방정식의 그래프, 즉

두 일차함수의 그래프의 교점의 좌표와 같다.

두 일차함수의 그래프의 교점의 좌표 (m, n)

예제 07 두 일차방정식 2x-y=3, ax-y=-3의 그래프 의 교점의 좌표가 (2,b)일 때, a-b의 값은? (단, a는 상수)

- $\widehat{(1)} 2$
- (2) -1
- 30

- **4** 1
- ⑤2

5 연립방정식의 해의 개수와 그래프의 위치 관계

연립방정식 $\left\{ egin{aligned} &ax\!+\!by\!+\!c\!=\!0\ &a'x\!+\!b'y\!+\!c'\!=\!0 \end{aligned}
ight.$ 에서

- (1) 두 일차방정식의 그래프가 한 점에서 만난다.
 - ➡ 해가 한 쌍이다.

$$\Rightarrow \frac{a}{a'} \neq \frac{b}{b'}$$

- (2) 두 일차방정식의 그래프가 평행하다.
 - ⇒ 해가 없다.

$$\Rightarrow \frac{a}{a'} = \frac{b}{b'} \neq \frac{c}{c'}$$

- (3) 두 일차방정식의 그래프가 일치한다.
 - ➡ 해가 무수히 많다.

$$\Rightarrow \frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}$$

예제 08 연립방정식 $\begin{cases} 2x+y=2 \\ ax-3y=b \end{cases}$ 의 해가 무수히 많을 때,

상수 a, b에 대하여 a-b의 값은?

- ① -4
- (2) 2
- ③0

- **4** 2
- (5) 4

예제 09 연립방정식 $\begin{cases} ax-y=5 \\ 4x-2y=b \end{cases}$ 의 해가 없도록 하는 상수 a,b의 조건을 구하시오.

6 직선으로 둘러싸인 도형의 넓이

- ① 연립방정식을 이용하여 두 직선의 교점의 좌표를 구한다.
- ② *x*절편 또는 *y*절편을 구한다.
- ③ 직선으로 둘러싸인 도형의 넓이를 구한다.

에제 10 두 직선 x-y-3=0, x+4y-8=0과 y축으로 둘러싸인 도형의 넓이를 구하시오.

7 도형의 넓이를 이동분하는 직선의 방정식

 \triangle AOB의 넓이를 이등분하는 직선 y=mx에서 상수 m의 값 구하기

① $\triangle COB = \frac{1}{2} \triangle AOB임을 이용하$ 여 점 C의 좌표를 구한다.

② y=mx에 점 C의 좌표를 대입하여 상수 m의 값을 구한다.

예제 11 오른쪽 그림과 같이 일차 방정식 2x+y-6=0의 그래프가 x축, y축과 만나는 점을 각각 A, B라 하자. 직선 y=mx가 삼각형 OAB의 넓이를 이등분할 때, 상수 m의 값 을 구하시오.

교사 부록 🖫-BOOK

정답과 해설

계산력 추가 문제

1. 유리수와 순환소수

01 순환소수 ~ **02** 유리수의 소수 표현

p.2

$$\begin{array}{c} \textbf{01} \text{ (1)} \frac{10}{2}, 1 \text{ (2)} \frac{10}{2}, -4, 0, 1 \text{ (3)} -2.3, -4, -\frac{1}{3} \\ \text{ (4)} -2.3, \frac{10}{2}, -4, 0, 4.8, -\frac{1}{3}, \frac{12}{5}, 1 \end{array}$$

02 (1) 0,1333…, 무한소수 (2) 0,75, 유한소수 (3) 0,55, 유한소수 (4) 0,3888…, 무한소수

03 (1) 순환마디 : 27, 0.27 (2) 순환마디 : 162, 3.162 (3) 순환마디 : 014, 4.014

04 (1) 2, 2, 8, 0.8 (2) 5, 5, 35, 0.35 (3) 5³, 5³, 375, 0.375

05(1)유(2)순(3)순(4)유(5)순(6)유

03 순환소수의 분수 표현

p.3

01 (1) 10, 9, 4, $\frac{4}{9}$ (2) 100, 99, 32, $\frac{32}{99}$ (3) 100, 90, 21, 21, $\frac{7}{30}$

02 (1) (a) (2) (b) (3) (a)

03 (1) $\frac{2}{9}$ (2) $\frac{2}{3}$ (3) $\frac{29}{99}$ (4) $\frac{2}{11}$ (5) $\frac{230}{999}$ (6) $\frac{107}{333}$

 $0\mathbf{4} \text{ (1)} \frac{11}{15} \text{ (2)} \frac{41}{90} \text{ (3)} \frac{697}{990} \text{ (4)} \frac{221}{900} \text{ (5)} \frac{187}{90} \text{ (6)} \frac{1354}{495}$

계산력 추가 문제98소단원별 기출 문제101중단원 테스트110개념 + 문제 유형 정리120

2. 식의 계산

01 지수법칙

p.4

 $\mathbf{01} \text{ (1) } a^5 \text{ (2) } x^3 \text{ (3) } b^{15} \text{ (4) } a^9 \text{ (5) } x^7 y^7 \text{ (6) } x^9 y^3$

02 (1) x^6 (2) x^{10} (3) 5^{18} (4) $a^{14}b^{10}$

03 (1) a^4 (2) 1 (3) $\frac{1}{x}$ (4) a^6 (5) $\frac{1}{a}$ (6) 1

Q4 (1) $25x^2$ (2) a^8b^6 (3) $\frac{8}{a^3}$ (4) $\frac{a^3}{8b^9}$ (5) $x^6y^3z^{12}$ (6) $81a^{12}b^4$

 $(7) - \frac{27a^9b^3}{c^6}$

05 (1) 4 (2) 3 (3) 6, 13 (4) 3 (5) 4 (6) 9 (7) 4, 4 (8) 4, 3

정답괴 하실

02 단항식의 계산

p.5

 $\textbf{01} \text{ (1)} - 8x^3y \text{ (2)} \\ 6x^2y \text{ (3)} \\ -3a^5 \text{ (4)} \\ 2a^9b^6 \text{ (5)} \\ -48a^6 \text{ (6)} \\ 24x^9y^7 \text{ (2)} \\ 24x^9y^7 \text{ (3)} \\ -24x^9y^7 \text{ (4)} \\ -24x^9y^7 \text{ (5)} \\ -24x^9y^7 \text{ (6)} \\ -24x^9$

02 (1)
$$4a$$
 (2) $-5x^3$ (3) $3a^2b$ (4) $-\frac{y^2}{8x}$ (5) $-2y^3$ (6) $\frac{5}{16y^5}$

$$\mathbf{03} \text{ (1)} \frac{6}{5} a^2 b \text{ (2) } 3xy^2 \text{ (3)} - \frac{16a^5}{b} \text{ (4) } 25a$$

$$\mathbf{04} \text{ (1)} - 4x^3 \text{ (2)} \ 4y \text{ (3)} - 2xy^2 \text{ (4)} \\ - 3a^3b^3 \text{ (5)} - ab \text{ (6)} \ 2x^2y$$

3. 일차부등식

01 부등식의 뜻과 성질

8,q

01 (1) $x \ge 7$ (2) x - 1 > 7 (3) $300x \le 8000$ (4) 5x > 40

02 (1) × (2) × (3) (4) (

03 (1) 0, 1, 2 (2) 0, 1 (3) 3 (4) 3

04 (1) > (2) > (3) < (4) > (5) > (6) <

05 (1) (2) (3) × (4) ×

06 (1) 7 < 2x + 5 < 11 (2) $1 < 2 - x \le 4$ (3) $1 \le 5 - 2x \le 7$

(4)
$$1 \le -\frac{1}{2}x + 3 < 6$$

03 다항식의 덧셈과 뺄셈

p.6

01 (1) -x+2y (2) x+3 (3) 6x-2y (4) 5x-3y (5) x-2y+1 (6) 7x+y+2

 $\mathbf{02} \text{ (1) } 3a - 3b \text{ (2) } -5b \text{ (3) } 2y \text{ (4) } 5a + 4b$

$$\textbf{03} \text{ (1)} \ \frac{4}{3} a + \frac{1}{6} b \ \text{ (2)} \ \frac{5}{6} x + \frac{1}{12} y \ \text{ (3)} \ -\frac{1}{6} x - \frac{11}{6} y \ \text{ (4)} \ -\frac{1}{6} a + \frac{2}{3} b$$

04 (1)
$$2x^2 - x - 1$$
 (2) $-5x^2 + 3x - 3$ (3) $7x^2 - 8x + 4$ (4) $\frac{5}{4}x^2 + 2x + 1$

05 (1) 2x + 5y (2) $-4x^2 - 3x$ (3) $-2x^2 + 5x - 3$

02 일차부등식의 풀이

p.9

02 (1) $x \le 3$ (2) $x \ge \frac{2}{3}$ (3) x > 10 (4) $x \ge \frac{7}{2}$ (5) $x \ge 12$

(6) $x \le 6$ (7) x < 2 (8) x > 30 (9) $x \le 17$ (10) $x \le 6$

04 단항식과 다항식의 계산

p.7

01 (1)
$$6a^2 - 10ab$$
 (2) $-3x^2 + 6xy - 15x$ (3) $-4x^3 + 20x^2y - 16xy^2$

02 (1)
$$-x^2 - 15$$
 (2) $5x^2 - 16xy + 20x - 2y^2 + 6y$

03 (1)
$$2x-4y$$
 (2) $-4a^2+b^3$ (3) $10ab^3+4b^2$ (4) $-4a-6b$ (5) $-x-y+3$

Q4 (1)
$$4x-3$$
 (2) $ab+a-3b-4$ (3) $5x^2-x$ (4) $2x^2-7x$ (5) $-x^2-8x$

05 (1)
$$-5x+9$$
 (2) $10x-3$

06 (1)
$$4y-8$$
 (2) $-8y+7$

4. 연립일차방정식

○1 연립일차방정식과 그 해 ~ ○2 연립일차방정식의 풀이 p.10

02 (1)
$$a=-3$$
, $b=5$ (2) $a=2$, $b=\frac{1}{2}$ (3) $a=2$, $b=0$ (4) $a=7$, $b=2$

03 (1)
$$x=2, y=4$$
 (2) $x=-5, y=11$ (3) $x=2, y=1$ (4) $x=4, y=3$ (5) $x=1, y=-2$

Q4 (1)
$$x=3, y=1$$
 (2) $x=2, y=1$ (3) $x=2, y=0$ (4) $x=2, y=-3$ (5) $x=2, y=-3$

03 여러 가지 연립일치방정식

p.11

01 (1) x=5, y=3 (2) $x=-\frac{10}{3}, y=-\frac{8}{3}$ (3) x=2, y=-3 (4) x=4, y=-1

Q2 (1) x=6, y=1 (2) x=1, y=2 (3) x=2, y=1 (4) x=-4, y=8 (5) x=1, y=1 (6) x=8, y=6

03 (1) x=2, y=1 (2) $x=-\frac{17}{5}, y=\frac{4}{5}$ (3) x=3, y=2

04 (1) 2 (2) -4 (3) -3

05 (1) 2 (2) −2 (3) −16

5. 일차함수와 그래프(1)

01 함수의 뜻

p.12

01 (1) (2) (3) × (4) (5) (6) × (7) (8) × (9) × (10) (

 $\mathbf{02} \text{ (1)} - 6 \text{ (2)} - 2 \text{ (3)} - 1 \text{ (4)} 5 \text{ (5)} - 2$

 $\mathbf{03} \text{ (1)} - 2 \text{ (2) 4 (3)} - 3 \text{ (4) 6 (5) } 11$

02 일차함수의 뜻과 그래프

p.13

01 (1) \(\tag{2}\) \times (3) \(\times (4) \(\tag{5}\) \(\tag{5}\)

02(1) - 1(2) - 3(3)3

04 (1) $y = -\frac{3}{4}x - 5$ (2) y = 2x + 4 (3) y = -x + 3 (4) y = -3x - 3

03 *x*절편, *y*절편 ~ **04** 기울기

p.14

01 (1) x절편 : 2, y절편 : $-1, 기울기 : \frac{1}{2}$

(2) x절편 : 3, y절편 : 4, 기울기 : $-\frac{4}{3}$

 ${f 02}$ (1) x절편 : 2, y절편 : 4, 기울기 : -2

 $(2) \, x$ 절편 : 3, y절편 : -1, 기울기 : $\frac{1}{3}$

(3) x절편 : 3, y절편 : -3, 기울기 : 1 (4) x절편 : 2, y절편 : -10, 기울기 : 5

(5) x절편 : 6, y절편 : 2, 기울기 : $-\frac{1}{2}$

(6) x절편 : $-\frac{2}{3}$, y절편 : $-\frac{1}{2}$, 기울기 : $-\frac{3}{4}$

03 (1) $\frac{1}{3}$ (2) $\frac{1}{4}$ (3) 2 (4) -1

04 (1) x절편 : 2, y절편 : -4

(2) *x*절편 : 3, *y*절편 : 2

05 (1) 기울기 : 4, y절편 : -2

(2) 기울기 : $-\frac{1}{2}$, y절편 : 2

6. 일차함수와 그래프 (2)

○1 일차함수의 그래프의 성질

01 (1) 증 (2) 감 (3) 증 (4) 감

02 (1) × (2) \bigcirc (3) × (4) \bigcirc

03 (1) × (2) \bigcirc (3) × (4) \bigcirc

05 (1) 2 (2) 4

06 (1) a = -6, b = 4 (2) a = 5, $b = -\frac{2}{3}$

02 일차함수의 식 구하기

p.16

p.15

 $\textbf{01} \text{ (1) } y = 2x - 4 \text{ (2) } y = -5x + 2 \text{ (3) } y = \frac{3}{2}x - 4 \text{ (4) } y = 7x - 2$

 $\textbf{02} \text{ (1) } y \! = \! -x \! + \! 3 \text{ (2) } y \! = \! -2x \! - \! 3 \text{ (3) } y \! = \! \frac{2}{3}x \! - \! 2 \text{ (4) } y \! = \! -\frac{1}{2}x \! + \! 5$

 $\textbf{03} \text{ (1) } y \! = \! 2x - 1 \text{ (2) } y \! = \! -\frac{1}{4}x + 3 \text{ (3) } y \! = \! 2x + 2 \text{ (4) } y \! = \! -\frac{1}{2}x - \frac{7}{2}$

 $\mathbf{04} \text{ (1) } y = \frac{5}{4} x + 5 \text{ (2) } y = \frac{3}{2} x - 3 \text{ (3) } y = -2 x + 6 \text{ (4) } y = \frac{1}{2} x + 1$

 $\textbf{05} \text{ (1) } y = -\frac{3}{2} x + 2 \text{ (2) } y = x + 4 \text{ (3) } y = \frac{1}{2} x + 2 \text{ (4) } y = -\frac{3}{5} x + 3$

정답과 해설

7. 일차함수와 일차방정식의 관계

01 일차함수와 일차방정식

p.17

01 (1) 기울기 : -1, x절편 : 3, y절편 : 3

(2) 기울기 : $\frac{1}{2}$, x절편 : -1, y절편 : $\frac{1}{2}$

(3) 기울기 : $\frac{2}{5}$, x절편 : 2, y절편 : $-\frac{4}{5}$

(4) 기울기 : $-\frac{1}{3}$, x절편 : 9, y절편 : 3

(3)
$$y = -\frac{1}{4}x + \frac{1}{4}$$

04 (1) y=3 (2) x=1 (3) x=-1 (4) y=-3

02 일차함수의 그래프와 연립일차방정식의 해

p.18

- **01** x=3, y=2
- **02** (1) (1,3) (2) (-1,1) (3) (-1,2) (4) (5,4)
- **03** (1) a=1, b=7 (2) a=-1, b=-2 (3) a=1, b=1
- **04** (1) (2) (7), (C) (3) (2)
- **05** (1) $a \neq 2$ (2) $a = 2, b \neq 10$ (3) a = 2, b = 10

소단원별 기출 문제

1. 유리수와 순환소수

01 순환소수

p.20

01 ②	02 ④	03 ②	04 (5)	05 ③	
06 ③	07 5				

- **01** 음의 유리수는 $-\frac{2}{7}$, -7의 2개이다.
- 02 □ 안에 알맞은 수는 정수가 아닌 유리수이므로 ④이다.
- **04** $\frac{8}{11}$ =0.727272 \cdots 이므로 순환마디는 72이다.
- **05** $34.040404\dots = 4.04$
- 0.076923에서 순환마디의 숫자의 개수는 6개이다.
 이때 100=6×16+4이므로 소수점 아래 100번째 자리의 숫자는 순환마디의 4번째 숫자인 9이다.
- 2 = 0.285714이므로 순환마디의 숫자의 개수는 6개이다.
 이때 27=6×4+3이므로 소수점 아래 27번째 자리의 숫자는 순환마디의 3번째 숫자인 5이다.

02 유리수의 소수 표현

- 01 ② 02 ①, ⑤ 03 ③ 04 ⑤ 05 ③ 06 ③ 07 77
- **01** $\frac{3}{20} = \frac{3}{2^2 \times 5} = \frac{3 \times 5}{2^2 \times 5 \times 5} = \frac{15}{100} = 0.15$ 따라서 A = 5, B = 100이므로 A + B = 5 + 100 = 105
- **02** ① $\frac{12}{25} = \frac{12}{5^2}$ ② $\frac{3}{85} = \frac{3}{5 \times 17}$ ③ $\frac{16}{28} = \frac{4}{7}$ ④ $\frac{7}{12} = \frac{7}{2^2 \times 3}$ ⑤ $\frac{45}{2^2 \times 3 \times 5^2} = \frac{3}{2^2 \times 5}$ 따라서 유한소수로 나타낼 수 있는 것은 ①, ⑤이다.

- **04** $\frac{3}{2^2 \times 5 \times a}$ 이 유한소수가 되려면 기약분수로 나타내었을 때, 분모의 소인수가 2 또는 5뿐이어야 한다. 따라서 a의 값이 될 수 없는 것은 ⑤이다.
- **05** $\frac{6}{2 \times 5^3 \times a} = \frac{3}{5^3 \times a}$ 이 순환소수가 되려면 기약분수로 나타 내었을 때, 분모의 소인수에 2와 5 이외의 소인수가 있어야 하다

따라서 구하는 자연수 a의 값은 7,9이므로 그 합은 7 + 9 = 16

06 $\frac{33}{210} \times A = \frac{11}{70} \times A = \frac{11}{2 \times 5 \times 7} \times A$ 이므로 A = 7의 배수 따라서 A의 값이 될 수 있는 가장 작은 자연수는 7이다.

07 $\frac{1}{350} \times a = \frac{1}{2 \times 5^2 \times 7} \times a$ 에서 a는 7의 배수이고, $\frac{7}{220} \times a = \frac{7}{2^2 \times 5 \times 11} \times a$ 에서 a는 11의 배수이다. 따라서 a는 7과 11의 최소공배수인 77의 배수이어야 하므로 a의 값이 될 수 있는 가장 작은 자연수는 77이다.

03 순환소수의 분수 표현

01 4	02 ②	03 ④	04 ④	05 ②	
06 ⑤	07 ⑤	08 4			

- **01** (4) 66
- **03** ① $0.\dot{2}\dot{9} = \frac{29}{99}$ ② $0.5\dot{4}\dot{6} = \frac{546 5}{990}$

p.22

- $30.4\dot{3} = \frac{43-4}{90}$ $51.4\dot{7} = \frac{147-14}{90}$
- **04** $\textcircled{4} 0.0\dot{3} = \frac{3}{90} = \frac{1}{30}$
- **05** $0.1234 < 0.\dot{1}23\dot{4} < 0.\dot{1}\dot{2}3\dot{4} < 0.\dot{1}\dot{2}\dot{3}\dot{4} < 0.$ 따라서 가장 큰 수는 ②이다
- **06** $0.0\dot{1} = \frac{1}{90}$ 이므로 $\frac{17}{30} = x + \frac{1}{90}$ $\therefore x = \frac{17}{30} - \frac{1}{90} = \frac{50}{90} = \frac{5}{9} = 0.5$
- **07** $0.5\dot{3} = \frac{53-5}{90} = \frac{48}{90} = \frac{8}{15}$

이때 $\frac{8}{15} \times a$ 가 자연수가 되려면 a는 15의 배수이어야 하므 로 곱할 수 있는 가장 작은 자연수 a의 값은 15이다.

08 ④ 소수 중에는 순화하지 않는 무한소수도 있다.

2. 식의 계산

01 지수법칙

01 (4), (5) **05** 2 **02** (5) **03** 13 04 (2) **06** ② **07** (4) **08** 10

- **01** ① $a^4 \times a^2 = a^{4+2} = a^6$ $(2) (a^4)^5 = a^{4 \times 5} = a^{20}$ (3) $a^{10} \div a^2 = a^{10-2} = a^8$
- **02** ①, ②, ③, ④ 3 ⑤ 6
- **03** $x \times (x^2)^4 = x \times x^8 = x^9$ 이므로 a = 9 $(x^2y^3)^2 \div x^3y^2 = x^4y^6 \div x^3y^2 = xy^4$ 이므로 b=4a+b=9+4=13
- **04** $(x^5)^2 \times x^4 \div (x^2)^3 = x^{10} \times x^4 \div x^6 = x^{14} \div x^6 = x^8$ 따라서 □ 안에 알맞은 자연수는 8이다.
- **05** $\left(\frac{2x^a}{y}\right)^b = \frac{8x^6}{y^c}$ 에서 $\frac{2^b x^{ab}}{y^b} = \frac{8x^6}{y^c}$ 이때 2^b =8, ab=6, b=c에서 a=2, b=3, c=3 a-b+c=2-3+3=2
- **06** $2^5+2^5+2^5+2^5=2^5\times 4=2^5\times 2^2=2^7$
- **107** $8^{x+2} = 8^x \times 8^2 = (2^3)^x \times 64 = (2^x)^3 \times 64 = 64A^3$
- **08** $2^7 \times 5^{10} = 2^7 \times 5^7 \times 5^3$ $=5^3\times(2\times5)^7$ $=125 \times 10^{7}$

따라서 $2^7 \times 5^{10}$ 은 10자리의 자연수이므로 구하는 n의 값은 10이다

02 단항식의 계산

p.24

01 ①	02 ②	03 ⑤	043	05 113
06 ③	07 ①	08 5 <i>a</i>		

- $(-3x^2y)^3 \times (2xy^3)^2 = -27x^6y^3 \times 4x^2y^6$
- **02** $\frac{2}{3}x^2y \div \frac{1}{6}xy^2 = \frac{2}{3}x^2y \times \frac{6}{xy^2} = \frac{4x}{y}$
- **03** $\left(\frac{2}{3}a^2b\right)^3 \div \left(\frac{4}{3}a^3b^2\right)^2 = \frac{8}{27}a^6b^3 \div \frac{16}{9}a^6b^4$ $=\frac{8}{27}a^6b^3\times\frac{9}{16a^6h^4}=\frac{1}{6h}$

- **04** $8a^3b^3 \div (-2a^2b)^2 \times a^2b = 8a^3b^3 \div 4a^4b^2 \times a^2b$ = $8a^3b^3 \times \frac{1}{4a^4b^2} \times a^2b = 2ab^2$
- **05** $(-3x^3y^2)^A \times 4x^By = (-3)^Ax^{3A}y^{2A} \times 4x^By$ $= (-3)^A \times 4 \times x^{3A+B}y^{2A+1} = Cx^{11}y^7$ 2A + 1 = 7 에서 2A = 6 $\therefore A = 3$ $(-3)^A \times 4 = C$ 에서 $C = (-3)^3 \times 4 = -108$ 3A + B = 11 에서 9 + B = 11 $\therefore B = 2$ $\therefore A + B - C = 3 + 2 - (-108) = 113$
- **06** $-2xy^2 \times \boxed{=} 6x^2y^4$ $\Rightarrow \frac{6x^2y^4}{-2xy^2} = -3xy^2$
- $\begin{array}{ll} \textbf{07} & (-12xy^2) \div 24xy \times \boxed{} = -3x^2y & \text{on } \\ & -\frac{1}{2}y \times \boxed{} = -3x^2y & \\ & \therefore \boxed{} = -3x^2y \times \left(-\frac{2}{y}\right) = 6x^2 & \end{array}$
- **08** $4a \times 3b \times (\stackrel{\leftarrow}{\cancel{2}}) = 60a^2b$ $\therefore (\stackrel{\leftarrow}{\cancel{2}}) = \frac{60a^2b}{12ab} = 5a$

03 다항식의 덧셈과 뺄셈

$$\begin{array}{ll}
\mathbf{02} & 2x - [7y - 2x - \{2x - (x - 3y)\}] \\
& = 2x - \{7y - 2x - (2x - x + 3y)\} \\
& = 2x - \{7y - 2x - (x + 3y)\} \\
& = 2x - (7y - 2x - x - 3y) \\
& = 2x - (-3x + 4y) \\
& = 2x + 3x - 4y \\
& = 5x - 4y
\end{array}$$

따라서
$$a=5$$
, $b=-4$ 이므로 $a+b=5+(-4)=1$

03
$$\frac{a-2b}{3} - \frac{2a-3b}{2} = \frac{2(a-2b)-3(2a-3b)}{6}$$
$$= \frac{2a-4b-6a+9b}{6}$$
$$= \frac{-4a+5b}{6}$$
$$= -\frac{2}{3}a + \frac{5}{6}b$$

- 05 $(2x^2-6x+7)-(-5x^2+4x-3)$ = $2x^2-6x+7+5x^2-4x+3$ = $7x^2-10x+10$ 이때 x^2 의 계수는 7, 상수항은 10이므로 그 합은 7+10=17
- **07** 어떤 식을 A라 하면 2A+5(-a+2b)=-3a+12b에서 2A=-3a+12b-5(-a+2b)=2a+2b ∴ A=a+b
- **08** 어떤 식을 A라 하면 A $-(3a^2 a + 1) = 2a^2 + 3a 3$ $\therefore A = 2a^2 + 3a - 3 + (3a^2 - a + 1)$ $= 5a^2 + 2a - 2$ 따라서 바르게 계산한 답은 $5a^2 + 2a - 2 + (3a^2 - a + 1) = 8a^2 + a - 1$

04 단항식과 다항식의 계산

p.25

- 01 $3x(2x-3)-(-7x^2+x-1)=6x^2-9x+7x^2-x+1$ $=13x^2-10x+1$ 이때 x^2 의 계수는 13,x의 계수는 -10이므로 그 합은 13+(-10)=3
- 03 $\left(\frac{2}{3}x^2y \frac{7}{12}xy^2 + \frac{1}{6}xy\right) \div \frac{1}{12}xy$ = $\left(\frac{2}{3}x^2y - \frac{7}{12}xy^2 + \frac{1}{6}xy\right) \times \frac{12}{xy}$ = 8x - 7y + 2따라서 a = 8, b = -7, c = 2이므로 a + b + c = 8 + (-7) + 2 = 3
- **06** (1), (2), (3), (4) 2x (5) 2x-3

07
$$3A-B=3(2x+y)-(x-2y)$$

= $6x+3y-x+2y$
= $5x+5y$

08
$$B - \{2A - (3B - A)\} = B - (3A - 3B)$$

= $-3A + 4B$
= $-3(2x - y) + 4(x + 3y)$
= $-6x + 3y + 4x + 12y$
= $-2x + 15y$

3. 일차부등식

01 부등식의 뜻과 성질

p.27

05 ③

01 ②, ⑤ 02 ① 06 ①

- **01** ① $3x-2 \ge 7$

 - 40.1x+0.6<7
- **05** -3a-4<-3b-4 -3a<-3b ∴ a>b ① a>b ② -3a<-3b ④ $\frac{a}{4}>\frac{b}{4}$ ⑤ $3-\frac{a}{3}<3-\frac{b}{3}$

03 ②

04 (3), (4)

06 $-2 < x \le 1$ 에서 $-2 \le -2x < 4$ $1 \le 3 - 2x < 7$ $\therefore 1 \le A < 7$

02 일차부등식의 풀이

p.28

01 2	02 ④	03 ②	04 ①	05 ④
06 ⑤	07 ①	08 -12		

- 0.5 $(2x-5) \ge \frac{1}{4}(x+5)$ 에서 $\frac{1}{2}(2x-5) \ge \frac{1}{4}(x+5), 2(2x-5) \ge x+5$ $4x-10 \ge x+5, 3x \ge 15 \qquad \therefore x \ge 5$
- **05** ①, ②, ③, ⑤ x > -2 ④ x > 2
- 06 $5x-a \le 2x$ 에서 $3x \le a$ $\therefore x \le \frac{a}{3}$ 이때 일차부등식의 해가 $x \le 5$ 이므로 $\frac{a}{3} = 5$ $\therefore a = 15$
- **07** ax+2 < 2a+x에서 (a-1)x < 2(a-1)이때 a-1 < 0이므로 x > 2

08 $\frac{2}{5}x-4\ge -2$ 에서 $2x-20\ge -10$ $2x\ge 10$ $\therefore x\ge 5$ $3(1-x)\le a$ 에서 $3-3x\le a$ $-3x\le a-3$ $\therefore x\ge \frac{3-a}{3}$ 따라서 $\frac{3-a}{3}=5$ 이므로 a=-12

03 일차부등식의 활용

p.29

 01 ①
 02 ②
 03 9개월후
 04 4개
 05 33명

 06 4 km
 07 75 g
 08 1600원

- 이1 어떤 정수를 x라 하면
 6x-12<5x ∴ x<12
 따라서 어떤 정수 중 가장 큰 수는 11이다.
- 02 배를 x개 산다고 하면 사과는 (15-x)개 살 수 있으므로 $500(15-x)+700x \le 9000$ $\therefore x \le \frac{15}{2}$ 따라서 배는 최대 7개까지 살 수 있다.
- x개월 후부터 동생의 예금액이 누나의 예금액보다 많아진다고 하면
 16000+1000x<8000+2000x ∴ x>8
 따라서 9개월 후부터이다.
- 04 과자를 x개 산다고 하면 $2000x > 1500x + 1800 \qquad \therefore x > \frac{18}{5}$ 따라서 과자를 4개 이상 사는 경우 할인점에서 사는 것이 유리 하다.
- x명이 입장한다고 하면
 600x>600×80/100 × 40 ∴ x>32
 따라서 33명 이상이면 40명의 단체 입장료를 지불하는 것이 유리하다.
- **06** 올라갈 때의 거리를 x km라 하면 $\frac{x}{2} + \frac{x}{4} \le 3 \qquad \therefore x \le 4$ 따라서 최대 4 km까지 올라갔다 내려올 수 있다.
- **07** 물을 x g 증발시킨다고 하면 $\frac{5}{100} \times 200 \ge \frac{8}{100} \times (200 x) \qquad \therefore x \ge 75$ 따라서 물을 75 g 이상 증발시켜야 한다.
- 08 정가를 x원이라 하면 $0.9x-1200 \ge 1200 \times 0.2$ $\therefore x \ge 1600$ 따라서 정가는 1600원 이상으로 정해야 한다.

4. 연립일차방정식

01 연립일차방정식과 그 해

p.30

01 3, 5

- **02** (2)
- 03 (5)
- **04** $-\frac{2}{3}$
- **05** ②

06 −5

- **07** m=2, n=4
- **02** x, y가 자연수일 때, 2x+3y=18의 해는 (3,4), (6,2)의 2개
- **03** ax+y=7에 x=3, y=1을 대입하면 3a+1=7.3a=6 : a=2
- **04** -2x+3y=6에 x=3a, y=-a를 대입하면 -6a-3a=6, -9a=6 $\therefore a=-\frac{2}{2}$
- **06** -x+y=4에 x=2, y=b를 대입하면 -2+b=4 : b=6ax+6y=14에 x=2, y=6을 대입하면 2a+36=14, 2a=-22 : a=-11a+b=-11+6=-5
- **07** x+my=5에 x=1, y=2를 대입하면 1+2m=5, 2m=4 : m=22x+y=n에 x=1, y=2를 대입하면 2+2=n $\therefore n=4$

02 연립일차방정식의 풀이

p.31

01 - 11

03 ③

04 4

05 20

- **06** ②
- **01** 2(-y-3)-9y=16, -11y=22 $\therefore a=-11$
- **02** 연립방정식 $\begin{cases} 3x-2y=11 \\ y=-2x+5 \end{cases}$ 를 풀면 x=3, y=-1따라서 a=3, b=-1이므로 $3a-b=3\times3-(-1)=10$
- **04** 연립방정식 $\begin{cases} 2x-y=2\\ 3x+2y=10 \end{cases}$ 을 풀면 x=2, y=2따라서 a=2, b=2이므로 a+b=2+2=4
- $\begin{cases} ax+by=3 \\ bx+ay=6 \end{cases}$ 에 x=2,y=-1을 대입하면 $(2a-b=3 \quad \cdots \bigcirc$ b-a=6 ... $\bigcirc + \bigcirc \times 2$ 를 하여 풀면 a=4, b=5 $\therefore ab=4\times 5=20$

06 두 연립방정식의 해는 $\begin{cases} x-2y=3 & \cdots \\ x-y=4 & \cdots \end{cases}$ 의 해와 같다. \bigcirc — \bigcirc 을 하여 풀면 x=5,y=1ax+7y=2에 x=5, y=1을 대입하면 a=-1x+by=8에 x=5, y=1을 대입하면 b=3a+b=-1+3=2

03 여러 가지 연립일차방정식

p.32

05 6

01 ② **06** −1

02 1 **07** ⑤ 03 (2)

08 ⑤

04 (4)

- $\begin{cases} 2x (x 2y) = 9 \\ 2(x + y) 5y = -10 \end{cases} \Rightarrow \begin{cases} x + 2y = 9 \\ 2x 3y = -10 \end{cases}$ $\therefore x=1, y=4$
- $\begin{cases} \frac{0.3x 0.5y = 1.9}{\frac{x}{2} + \frac{y}{3} = \frac{5}{6}} \Rightarrow \begin{cases} 3x 5y = 19\\ 3x + 2y = 5 \end{cases}$ $\therefore x=3, y=-2$ 따라서 a=3, b=-2이므로 a+b=3+(-2)=1
- **03** $\left\{ \frac{0.3(x+y)-0.2y=0.8}{\frac{1}{2}x-\frac{1}{3}(x-y)=1} \right\} = \left\{ \frac{3x+y=8}{x+2y=6} \right\}$ $\therefore x=2, y=2$ 따라서 a=2, b=2이므로 $a-2b=2-2\times 2=-2$
- **04** $2x-y=x+2y=5 \Rightarrow \begin{cases} 2x-y=5 \\ x+2y=5 \end{cases}$ $\therefore x=3, y=1$
- $\begin{cases} 3x (x y) = 9 \\ -2x + 3y = 3 \end{cases} \Rightarrow \begin{cases} 2x + y = 9 \\ -2x + 3y = 3 \end{cases}$ $\therefore x=3, y=3$ 5x-3y=m에 x=3, y=3을 대입하면 $5 \times 3 - 3 \times 3 = m$ $\therefore m = 6$
- **06** 주어진 연립방정식의 해는 $\begin{cases} 3x+2y=9 & \cdots \\ y=3x & \cdots \end{cases}$ 의 해와 같다. \bigcirc 에 \bigcirc 을 대입하여 풀면 x=1, y=3x-y=2a에 x=1, y=3을 대입하면 1-3=2a, -2a=2 : a=-1
- **07** ⑤ $\begin{cases} 2x-4y=-2 \\ 2x-4y=1 \end{cases}$ 이므로 해가 없다.
- $\begin{cases} x ay = 9 \\ bx 12y = 36 \end{cases} \Rightarrow \begin{cases} 4x 4ay = 36 \\ bx 12y = 36 \end{cases}$ 이때 해가 무수히 많으려면 4=b, -4a=-12이어야 하므로 a=3, b=4a+b=3+4=7

04 연립일차방정식의 활용

p.33

01 ④ **02** 900원 **03** 아버지: 34세, 아들: 6세 **04** 21 cm² **05** 4마리 **06** 1 km **07** 120 g **08** 15일

- 01 십의 자리의 숫자를 x, 일의 자리의 숫자를 y라 하면 $\begin{cases} x+y=10 \\ 10x+x=10x + x=10 \end{cases}$
 - $\therefore x = 6, y = 4$ 따라서 처음 수는 64이다.
- ○2 사과 한 개의 가격을 x원, 귤 한 개의 가격을 y원이라 하면 {3x+5y=3950 6x+2y=5900 → {3x+5y=3950 3x+y=2950 ∴ x=900, y=250 따라서 사과 한 개의 가격은 900원이다.
- 03 현재 아버지의 나이를 x세, 아들의 나이를 y세라 하면 $\begin{cases} x-y=28 \\ x+10=3(y+10)-4 \end{cases} \Rightarrow \begin{cases} x-y=28 \\ x-3y=16 \end{cases}$ $\therefore x=34, y=6$ 따라서 아버지의 나이는 34세, 아들의 나이는 6세이다.
- 04 가로의 길이를 x cm, 세로의 길이를 y cm라 하면 $\begin{cases} x = y + 4 \\ 2(x + y) = 20 \end{cases} \Rightarrow \begin{cases} x y = 4 \\ x + y = 10 \end{cases}$ $\therefore x = 7, y = 3$ 따라서 가로의 길이는 7 cm, 세로의 길이는 3 cm이므로 직사각형의 넓이는 $7 \times 3 = 21$ (cm²)
- 당의 수를 x마리, 염소의 수를 y마리라 하면
 \$\begin{align*} x+y=22 \ 2x+4y=62 \\ \times \begin{align*} x+2y=31 \\ \times x=13, y=9 \\ \text{마라서 닭의 수와 염소의 수의 차는 13−9=4(마리)이다.} \end{align*}
- $oldsymbol{06}$ 걸어간 거리를 x km, 뛰어간 거리를 y km라 하면
 - $\begin{cases} x+y=3\\ \frac{x}{3} + \frac{y}{6} = \frac{40}{60} \end{cases} \Rightarrow \begin{cases} x+y=3\\ 2x+y=4 \end{cases}$ $\therefore x=1, y=2$ 따라서 걸어간 거리는 1 km이다.
- **07** 12 %의 소금물의 양을 x g, 7 %의 소금물의 양을 y g이라

$$\begin{cases} x+y=300 \\ \frac{12}{100}x+\frac{7}{100}y=\frac{10}{100}\times 300 \end{cases} \Rightarrow \begin{cases} x+y=300 \\ 12x+7y=3000 \end{cases}$$
$$\therefore x=180, y=120$$

따라서 7 %의 소금물은 120 g 섞어야 한다.

- **08** 전체 일의 양을 1이라 하고 A와 B가 하루 동안 할 수 있는 일 의 양을 각각 *x*, *y*라 하면
 - $\begin{cases} 6x + 6y = 1 \\ 3x + 8y = 1 \end{cases} \quad \therefore x = \frac{1}{15}, y = \frac{1}{10}$

따라서 A가 혼자 하면 15일 만에 끝낼 수 있다.

5. 일차함수와 그래프(1)

01 함수의 뜻

p.3

- **02** (2) $f(10) = 3 \times 10 = 30$
- **03** (2) $f(20) = \frac{100}{20} = 5$
- **04** $f(1) = -2 \times 1 = -2$, $f(2) = -2 \times 2 = -4$ $\therefore f(1) + f(2) = -2 + (-4) = -6$
- **05** f(-3) = 4에서 $\frac{a}{-3} = 4$ $\therefore a = -12$ $= f(x) = -\frac{12}{x}$ 이므로 $f(2) = -\frac{12}{2} = -6$
- **06** f(a) = a에서 3a + 2 = a $\therefore a = -1$
- 07 f(1) = -3에서 a = -3, 즉 f(x) = -3x이므로 $f(-4) = -5 \times (-4) = 20$, $f(0) = -3 \times 0 = 0$ $\therefore f(-4) + f(0) = 12 + 0 = 12$

02 일차함수의 뜻과 그래프

01 ①, ③	02 ③	03 -10	04 -6	05 6	
06 ⑤	07 2	08 - 3			

- **03** $f(-2) = \frac{3}{4} \times (-2) 2 = -\frac{7}{2}, f(4) = \frac{3}{4} \times 4 2 = 1$ $\therefore 2f(-2) - 3f(4) = 2 \times \left(-\frac{7}{2}\right) - 3 \times 1 = -10$
- **04** f(a) = 6 **○** A = -6 **○** A = -6

정답과 해설

- **05** f(-2) = 0에서 -2a + 3 = 0 $\therefore a = \frac{3}{2}$ 즉 $f(x) = \frac{3}{2}x + 3$ 이므로 $f(2) = \frac{3}{2} \times 2 + 3 = 6$
- **07** y = -2x + 4에 x = 1, y = m을 대입하면 $m = -2 \times 1 + 4 = 2$
- **08** y = -3x + 4의 그래프를 y축의 방향으로 b만큼 평행이동한 그래프를 나타내는 일차함수의 식은 y = -3x + 4 + by = -3x + 4 + b의 그래프가 y = ax - 2의 그래프와 같으므 로a = -3. b = -6b-a=-6-(-3)=-3

03 *x*절편. *y*절편

- 01 (3) **02** *x*절편 : 5. *y*절편 : 2
- 04 1)

- **05** ①
- **01** $y = \frac{1}{2}x 3$ 에 y = 0을 대입하면 $0 = \frac{1}{2}x - 3$ $\therefore x = 6, \stackrel{>}{=} a = 6$ $y = \frac{1}{2}x - 3$ 에 x = 0을 대입하면 y = -3, 즉 b = -3 $\therefore a+b=6+(-3)=3$
- **02** $y = -\frac{2}{5}x$ 의 그래프를 y축의 방향으로 2만큼 평행이동한 그 래프를 나타내는 일차함수의 식은 $y=-\frac{2}{5}x+2$ $y = -\frac{2}{5}x + 2$ 에 y = 0을 대입하면 $0 = -\frac{2}{5}x + 2$ $\therefore x = 5$, 즉 x절편은 5 $y = -\frac{2}{5}x + 2$ 에 x = 0을 대입하면 y = 2, 즉 y절편은 2
- **03** 각 그래프의 *x*절편을 구하면 다음과 같다. 1, 2, 3, 42 51
- **04** $y = \frac{3}{2}x + b$ 에 x = 4, y = 0을 대입하면 $0 = \frac{3}{2} \times 4 + b$ $\therefore b = -6$ 따라서 y절편은 -6이다.
- **05** $y = \frac{1}{2}x + 3$ 의 그래프의 x절편은 -6, y절편은 3이므로 알맞 은 그래프는 ①이다.
- **06** y=2x+4의 그래프의 x절편이 -2, y절편이 4이므로 구하 는 삼각형의 넓이는 $\frac{1}{2} \times 2 \times 4 = 4$

04 기울기

p.37

- **01** ③
- **02** ④ **03** ①
- **04** $\frac{5}{4}$
- 05 1

- 062
- **01** (기울기)= $\frac{(y)$ 값의 증가량)}{3-0}=\frac{2}{3} ∴ (y의 값의 증가량)=2
- **02** (기울기)= $\frac{(y \circ 1)}{(x \circ 1)}$ 값의 증가량) = $\frac{-3}{4}$ 따라서 기울기가 $-\frac{3}{4}$ 인 것을 찾으면 ④이다.
- **03** $a=2, b=\frac{3}{2}, c=-3$ $\therefore abc = 2 \times \frac{3}{2} \times (-3) = -9$
- **05** (기울기)= $\frac{5-k}{4-(-2)}$ =1에서 5-k=6 $\therefore k=-1$
- **06** 두 점 (1, -1), (3, 2)를 지나는 직선의 기울기는 $\frac{2-(-1)}{3-1} = \frac{3}{2}$ 두 점 (3, 2), (k, -2)를 지나는 직선의 기울기는 $\frac{-2-2}{k-3} = -\frac{4}{k-3}$ 이때 $\frac{3}{2} = -\frac{4}{b-3}$ 이므로 3(k-3) = -8 : $k = \frac{1}{2}$

6. 일차함수와 그래프(2)

○ 1 일차함수의 그래프의 성질

p.38

- 01 3.5 **02** (4)
- **03** ①
- 04 1
 - **05** ②

01 ① $3 \neq -\frac{1}{2} \times 2 + 3$

06 ①

- ② 원점을 지나지 않는다.
- ④ x절편은 6, y절편은 3이다.
- **02** 오른쪽 위로 향하는 직선이므로 -a>0 $\therefore a < 0$ x축보다 아래에서 y축과 만나므로 b < 0
- **03** a < 0, b > 0에서 -b < 0이므로 일차함수 y = ax b의 그래 프는 오른쪽 아래로 향하고 x축보다 아래에서 y축과 만난다. 따라서 제1사분면을 지나지 않는다.

04
$$y=ax-5$$
의 그래프가 $y=2x-1$ 의 그래프와 평행하므로 $a=2$ $y=2x-5$ 의 그래프가 점 $(1,b)$ 를 지나므로 $b=2\times1-5=-3$ $\therefore a+b=2+(-3)=-1$

05 일, 글의 2개

06
$$a=-3, 2=\frac{b}{2}$$
 $b=4$

$$\therefore ab = -3 \times 4 = -12$$

02 일차함수의 식 구하기

01 4	02 ③	03 −5	04 ⑤	05 ⑤
06 3	07 (4)	08 ①		

- **01** y=5x-1에 x=1, y=a를 대입하면 $a=5\times 1-1=4$
- **02** 기울기가 $-\frac{1}{2}$ 이고, y절편이 -1이므로 $y = -\frac{1}{2}x 1$
- **03** $y = \frac{3}{2}x + b$ 로 놓고 x = 2, y = -2를 대입하면 $-2 = \frac{3}{2} \times 2 + b \qquad \therefore b = -5$ 따라서 y절편은 -5이다
- 04 기울기가 $-\frac{1}{3}$ 이므로 $a = -\frac{1}{3}$ $y = -\frac{1}{3}x + b$ 에 x = 3, y = 2를 대입하면 $2 = -\frac{1}{3} \times 3 + b \qquad \therefore b = 3$ $\therefore b 3a = 3 3 \times \left(-\frac{1}{3}\right) = 4$

06
$$(7)$$
울기)= $\frac{-1-2}{5-2}=\frac{-3}{3}=-1$ 이므로 $y=-x+b$ 로 놓고 $x=2$, $y=2$ 를 대입하면 $2=-2+b$ $\therefore b=4$ $y=-x+4$ 의 그래프를 y 축의 방향으로 2만큼 평행이동한 그래프를 나타내는 일차함수의 식은 $y=-x+6$

$$y=-x+6$$
에 $x=3, y=a$ 를 대입하면 $a=-3+6=3$

- 07 두 점 (3,0), (0,-5)를 지나므로 $(기울기) = \frac{-5-0}{0-3} = \frac{5}{3}$ 따라서 구하는 일차함수의 식은 $y = \frac{5}{3}x 5$ 이다.
- **08** $y=-\frac{2}{5}x-4$ 의 그래프와 y축 위에서 만나므로 구하는 일차 함수의 그래프의 y절편은 -4이다. 두 점 (-2,0),(0,-4)를 지나므로 $(기울기)=\frac{-4-0}{0-(-2)}=\frac{-4}{2}=-2$ 따라서 구하는 일차함수의 식은 y=-2x-4이다.

03 일차함수의 활용

이다.

p.40

01 ④ **02** 120 g **03** 10 L **04**
$$\frac{5}{2}$$
시간 **05** 25 cm **06** 2초 후

○1 지면으로부터 100 m 높아질 때마다 기온이 0.6 ℃씩 내려가

- 므로 지면으로부터 1 m 높아질 때마다 기온은 $0.006 \, ^{\circ}\text{C}$ 씩 내려간다.
 지면으로부터의 높이를 x m, 기온을 $y \, ^{\circ}\text{C라고}$ 하면 y = 24 0.006x y = 24 0.006x에 y = 0을 대입하면 0 = 24 0.006x $\therefore x = 4000$ 따라서 기온이 $0 \, ^{\circ}\text{C}$ 인 곳의 지면으로부터의 높이는 4000 m
- 10 g의 추를 매달 때마다 용수철의 길이가 3 mm씩 늘어나 므로 1 g의 추를 매달 때마다 용수철의 길이가 0.3 mm씩 늘어난다. ∴ y=30+0.3x
 y=30+0.3x에 y=66을 대입하면
 66=30+0.3x ∴ x=120
 따라서 길이가 66 mm인 용수철에 매달린 추의 무게는
 120 g이다.
- 03 1 L의 휘발유로 12 km를 달릴 수 있으므로 1 km를 달리는 데 $\frac{1}{12}$ L의 휘발유가 필요하다. x km를 달렸을 때 남아 있는 휘발유의 양을 y L라 하면 $y=30-\frac{1}{12}x$ $y=30-\frac{1}{12}x$ 에 x=240을 대입하면 $y=30-\frac{1}{12}\times 240=10$

따라서 240 km를 달렸을 때, 자동차에 남아 있는 휘발유의 양은 10 L이다.

- 04 x시간 동안 달린 거리는 60x km이므로 y=150-60x y=150-60x에 y=0을 대입하면 0=150-60x $\therefore x=\frac{5}{2}$ 따라서 캠핑장에 도착하는 데 $\frac{5}{2}$ 시간이 걸린다.
- **05** 그래프가 두 점 (4,0), (0,30)을 지나므로 $y=-\frac{15}{2}x+30$ 이때 $40분은 \frac{2}{3}$ 시간이므로 $y=-\frac{15}{2}x+30$ 에 $x=\frac{2}{3}$ 를 대입하면 $y=-\frac{15}{2}\times\frac{2}{3}+30=25$ 따라서 불을 붙인 지 40분 후에 남은 양초의 길이는 25 cm이다.
- 06 점 P가 점 D를 출발한 지 x초 후의 삼각형 APD의 넓이를 $y \, \mathrm{cm}^2$ 라 하면 $y = \frac{1}{2} \times 2x \times 8 = 8x$ y = 8x에 y = 16을 대입하면 16 = 8x $\therefore x = 2$ 따라서 삼각형 APD의 넓이가 $16 \, \mathrm{cm}^2$ 가 되는 것은 점 P가 점 D를 출발한 지 2초 후이다.

7. 일차함수와 일차방정식의 관계

01 일차함수와 일차방정식

p.41

01 $\frac{4}{5}$	02 ④	03 ①	04 5	05 ⑦, ©
06 ①	07 ①	08 18		

- **01** 2x-5y+10=0에서 $y=\frac{2}{5}x+2$ 이므로 $a=\frac{2}{5},b=2$ $\therefore ab=\frac{2}{5}\times 2=\frac{4}{5}$
- 02 3x+2y-4=0에서 $y=-\frac{3}{2}x+2$ 이므로 $a=-\frac{3}{2},b=2$ $\therefore a+b=-\frac{3}{2}+2=\frac{1}{2}$
- 03 x+ay-3=0에서 $y=-\frac{1}{a}x+\frac{3}{a}$ 이때 기울기가 1이므로 $-\frac{1}{a}=1$ $\therefore a=-1$ 따라서 y절편은 $\frac{3}{a}$, 즉 $\frac{3}{-1}=-3$ 이다.
- **04** 2x-3y=1의 그래프가 점 (a,3)을 지나므로 $2a-3\times 3=1$ $\therefore a=5$

- **05** © 제1, 2, 3사분면을 지난다.
 - ② 일차함수 y=3x의 그래프를 y축의 방향으로 2만큼 평행이동한 것이다.
- **07** y축에 수직, 즉 x축에 평행한 직선 위의 점은 y좌표가 모두 같으므로 a=-2a+6 $\therefore a=2$
- x=0은 y축이므로 네 직선으로 둘러싸인 부분은 오른쪽 그림의 어두운 부분과 같다. 따라서 구하는 넓이는
 3×6=18

02 일차함수의 그래프와 연립일차방정식의 해

p.42

01 0 **02** ① **03** y = 4 **04** -1 **05** ⑤

- 01 ax+y=4에 x=1, y=1을 대입하면 a+1=4 $\therefore a=3$ x+by=-2에 x=1, y=1을 대입하면 1+b=-2 $\therefore b=-3$ $\therefore a+b=3+(-3)=0$
- 02 x+by=-5에 x=2, y=-1을 대입하면 2-b=-5 $\therefore b=7$ 3x+ay=7에 x=2, y=-1을 대입하면 $3\times 2-a=7$ $\therefore a=-1$ $\therefore a-b=-1-7=-8$
- 03 2x-y=-2, 4x+y=8을 연립하여 풀면 x=1, y=4이므로 두 직선의 교점의 좌표는 (1,4)이다. 따라서 점 (1,4)를 지나고 x축에 평행한 직선의 방정식은 y=4
- 04 2x-y=5에서 y=2x-5 $ax+\frac{1}{2}y=5$ 에서 y=-2ax+10 교점이 존재하지 않으려면 2=-2a $\therefore a=-1$
- **05** $\begin{cases} ax y = 3 \\ 4x 2y = b \end{cases} \Rightarrow \begin{cases} y = ax 3 \\ y = 2x \frac{b}{2} \end{cases}$ 해가 무수히 많으려면 $a = 2, -3 = -\frac{b}{2}$ 에서 b = 6 $\therefore a + b = 2 + 6 = 8$
- 06 x+y=5, 2x-y=1을 연립하여 풀면 x=2, y=3이므로 두 직선의 교점의 좌표는 (2, 3)이다. 이때 두 직선의 y절편은 각각 5, -1이므로
 구하는 넓이는 ¹/₂×6×2=6

중단원 테스트

회 1. 유리수와 순환소수

p.44~p.45

01 ①	02 ③	03 ②	04 150	05 ⑤	
06 ②	07 ④	08 ④	09 ④	10③	
11 ④	12 ⑤	13 ⑤	14 ④	15 ①	
16 ④					

- 03 $\frac{4}{7}$ =0. $\dot{5}$ 7142 $\dot{8}$ 이고 101=6 \times 16+5이므로 소수점 아래 101 번째 자리의 숫자는 순환마디의 5번째 숫자인 2와 같다.
- **04** a=25, b=1000, c=0.175 $\therefore bc-a=1000 \times 0.175-25=150$
- **05** $\odot \frac{13}{48} = \frac{13}{2^4 \times 3}$
- **06** 구하는 분수를 $\frac{a}{24}$ 라 하면 $\frac{a}{24} = \frac{a}{2^3 \times 3}$ 이므로 a는 3의 배수이어야 한다. 이때 $\frac{1}{4} = \frac{6}{24}$, $\frac{5}{6} = \frac{20}{24}$ 이므로 구하는 분수는 $\frac{9}{24}$, $\frac{12}{24}$, $\frac{15}{24}$, $\frac{18}{24}$ 의 4개이다.
- **07** $\frac{5}{42} = \frac{5}{2 \times 3 \times 7}$ 이므로 a는 21의 배수이어야 한다.
- **08** $\frac{27}{220} = \frac{27}{2^2 \times 5 \times 11}$, $\frac{9}{175} = \frac{9}{5^2 \times 7}$ 이므로 x는 11과 7의 공 배수, 즉 77의 배수이어야 한다.
- **09** $\frac{a}{90} = \frac{a}{2 \times 3^2 \times 5}$ 이므로 a는 9의 배수이어야 한다. 또한 $\frac{a}{90}$ 를 기약분수로 나타내면 $\frac{7}{b}$ 이므로 a는 7의 배수이어

따라서 $60 \le a \le 70$ 을 만족하는 a의 값은 63이다.

이때
$$\frac{63}{90} = \frac{7}{10}$$
이므로 $b = 10$

a+b=63+10=73

- **11** ① 1000 ② 10 ③ 990 ⑤ $\frac{116}{495}$
- **13** § $2.1\dot{5} = \frac{215 21}{90}$
- 15 0. $\dot{2}$ 0 $\dot{3}$ =203×a에서 $\frac{203}{999}$ =203×a ∴ $a=\frac{1}{999}$ =0. $\dot{0}$ 0 $\dot{1}$
- 16 ④ 모든 유리수는 유한소수나 순환소수로 나타낼 수 있다.

🕽 🗓 1. 유리수와 순환소수

n 46~n 47

					_
01 ②	02 ⑤	03 ⑤	04 456	05 ①	
06 ②	07 ⑤	08 ①	09 (5)	10②	
11 47	12②	13 ⑤	14 ④	15 ③	
16 ①, ④					

- **02** ① $4.0666 \cdots = 4.0\dot{6}$
 - $22.032032032\dots = 2.032$
 - $30.6595959\cdots = 0.659$
 - $\textcircled{4} 1.158158158 \dots = 1.\dot{1}5\dot{8}$
- ○3 2/13 = 0.153846이므로 순환마디의 숫자의 개수는 6개이다.
 이때 100=6×16+4이므로 소수점 아래 100번째 자리의 숫자는 순환마디의 4번째 숫자인 8이다.
- **04** a=4, b=452 $\therefore a+b=4+452=456$
- **05** $28=2^2 \times 7$ 이므로 유한소수로 나타낼 수 있는 것은 분자가 7 의 배수인 $\frac{7}{28}$, $\frac{14}{28}$, $\frac{21}{28}$ 의 3개이다.
- **07** A는 3과 11의 공배수, 즉 33의 배수이어야 한다.
- **08** $\frac{x}{180} = \frac{x}{2^2 \times 3^2 \times 5}$ 이므로 x는 9의 배수이어야 한다. 또한 x는 10보다 작은 자연수이므로 x=9 이때 $\frac{9}{180} = \frac{1}{20}$ 이므로 y=20 ∴ x+y=9+20=29
- **09** § $x=0.2\dot{63}=\frac{263-2}{990}=\frac{261}{990}=\frac{29}{110}$
- **10** ② $2.\dot{19} = \frac{219-2}{99} = \frac{217}{99}$
- 11 a=17, b=30 $\therefore a+b=17+30=47$
- 12 $2.2\dot{7} = \frac{227 22}{90} = \frac{205}{90} = \frac{41}{18}$ 이므로 $2.2\dot{7} \times x$ 가 자연수가 되려면 x는 18의 배수이어야 한다.
- 13 $0.\dot{3}\dot{7} = \frac{37}{99}$ 이고 민주는 분자를 바르게 보았으므로 b=37 $0.\dot{8}\dot{7} = \frac{87}{99} = \frac{29}{33}$ 이고 현중이는 분모를 바르게 보았으므로 a=33 $\therefore a+b=33+37=70$

- 1.3 $\dot{4} = \frac{134 13}{90} = \frac{121}{90}$, $0.5\dot{6} = \frac{56 5}{90} = \frac{51}{90}$ 이므로

 1.3 $\dot{4} + 0.5\dot{6} = \frac{121}{90} + \frac{51}{90} = \frac{172}{90} = \frac{86}{45}$ 따라서 a = 45, b = 86이므로 b a = 86 45 = 41
- 15 $0.\dot{1}\dot{8} = \frac{18}{99} = \frac{2}{11}$ 이므로 $x + 0.\dot{1}\dot{8} = \frac{10}{11}$ 에서 $x + \frac{2}{11} = \frac{10}{11}$ $\therefore x = \frac{10}{11} \frac{2}{11} = \frac{8}{11} = 0.\dot{7}\dot{2}$
- 2 모든 순환소수는 유리수이다.3 모든 유리수는 분수로 나타낼 수 있다.
 - ⑤ 순환하지 않는 무한소수는 분수로 나타낼 수 없다.
- 1 회 2. 식의 계산 p.48~p.49 01 ③ **02** ③ **03** 36 04 (2) 05 (2) **06** (4) **07** (4) 08 🗇 😑 **09** (1) 103 11 ② **12** ⑤ **13** -2a-4b **14** ① 15 a - 3b**16** 9*a*−3*b* **17 ④**
- **01** ①, ②, ④, ⑤ x^8 ③ $\frac{1}{x^8}$
- **02** $a^{12} \times (a^2)^3 \div a^{\square} = a^6$ 에서 $a^{12+6-\square} = a^6$ 12+6- $\square = 6$ $\therefore \square = 12$
- **03** $\left(-\frac{y^2}{3x}\right)^a = (-1)^a \times \frac{y^{2a}}{3^a x^a} = -\frac{y^b}{cx^3}$ a = 3, 2a = b $\Rightarrow b = 6, 3^a = c$ $\Rightarrow c = 27$ $\therefore a + b + c = 3 + 6 + 27 = 36$
- **04** $4^{x} \times 32 \div 16 = (2^{2})^{x} \times 2^{5} \div 2^{4} = 2^{2x+5-4} = 2^{2x+1}$ of $2^{2x+1} = 2^{7}$ 2x+1=7 $\therefore x=3$
- **05** $2^7 + 2^7 + 2^7 + 2^7 = 4 \times 2^7 = 2^2 \times 2^7 = 2^9$
- **06** $\left(\frac{1}{81}\right)^x = \frac{1}{3^{4x}} = \frac{1}{(3^x)^4} = \frac{1}{a^4}$
- **07** $2^7 \times 5^{10} = 2^7 \times 5^7 \times 5^3 = 5^3 \times (2 \times 5)^7 = 125 \times 10^7$ 따라서 10자리의 자연수이므로 n=10
- **08** © $(-2x^3y)^2 \times \left(\frac{1}{2}xy^2\right)^2 = x^8y^6$ © $6xy^2 \div 3xy \times (-2)^3 = -16y$
- **09** $6a^3b^2 \times$ $\div (-3a^2b)^2 = \frac{1}{3}a^3b$

- **10** $\frac{1}{3} \times 3a \times 7b \times (\stackrel{\leftarrow}{\leftrightarrows}\circ) = 35ab^2$ 에서 $7ab \times (\stackrel{\leftarrow}{\leftrightarrows}\circ) = 35ab^2$ $\therefore (\stackrel{\leftarrow}{\leftrightarrows}\circ) = \frac{35ab^2}{7ab} = 5b$
- **11** ② $(2x^3y+6xy^2)\div\frac{1}{2}xy=4x^2+12y$
- **12** 어떤 식을 A라 하면 $2x^2 + x 1 + A = x^2 3x + 9 \qquad \therefore A = -x^2 4x + 10$ 따라서 바르게 계산한 식은 $2x^2 + x 1 (-x^2 4x + 10) = 3x^2 + 5x 11$
- 13 $2a [7b + 2a {3a (_____)}]$ = $2a - (7b + 2a - 3a + _____)$ = $3a - 7b - (______)$ = $3a - 7b - (______) = 5a - 3b$ 이므로 = 3a - 7b - (5a - 3b) = -2a - 4b
- **14** $\left(2y \frac{3}{4}x\right) \times \frac{2}{3}x \left(\frac{2}{3}x^2y x^3\right) \div 2x$ = $\frac{4}{3}xy - \frac{1}{2}x^2 - \frac{1}{3}xy + \frac{1}{2}x^2 = xy$
- **15** $\frac{6a^2 3ab}{3a} \frac{5ab + 10b^2}{5b} = 2a b (a + 2b)$ = a 3b
- **16** $5a \times ($ 세로의 길이 $)=45a^2-15ab$ 이므로 (세로의 길이 $)=\frac{45a^2-15ab}{5a}=9a-3b$
- 17 2A-3B+7=2(4x-y)-3(x+2y)+7=8x-2y-3x-6y+7=5x-8y+7

Dā 2. 4	식의 계산			p.50~p.51
013	02 ⑤	033	04 44	05 ④
06 ④	07 ①, ⑤	08 ⑤	09 ①	10②
11 8	12 $12x - 2y$	13 $3x^2 - 3$	x-3	142
15 ⑤	16 15			

- **01** ① $3^2 \times 3^5 = 3^7$ ② $(x^2)^4 \times x = x^9$ ④ $(-3xy^3)^3 = -27x^3y^9$ ⑤ $2^5 \times 2^2 \div (2^3)^2 = 2$
- **02** ①, ②, ③, ④ 4 ⑤ 3
- **03** $9^{x+3} = (3^2)^{x+3} = 3^{2x+6} = 3^{16}$ $2x+6=16 \quad \therefore x=5$
- **04** $\{(2^3)^3\}^3 = 2^{3 \times 3 \times 3} = 2^{27}$ $\therefore a = 27$ $2^3 \times 2^3 \times 2^3 \times 2^3 = 2^{3+3+3+3} = 2^{12}$ $\therefore b = 12$ $2^3 + 2^3 + 2^3 + 2^3 = 2^3 \times 4 = 2^3 \times 2^2 = 2^5$ $\therefore c = 5$ $\therefore a + b + c = 27 + 12 + 5 = 44$

05
$$\frac{1}{25^3} = \frac{1}{(5^2)^3} = \frac{1}{(5^3)^2} = \frac{1}{A^2}$$

06
$$2^{15} \times 3 \times 5^{12} = 2^{3} \times 2^{12} \times 3 \times 5^{12}$$

= $2^{3} \times 3 \times (2 \times 5)^{12}$
= 24×10^{12}

따라서 14자리의 자연수이다.

07 ②
$$\left(-\frac{1}{2}xy^2\right)^2 \div (-2x^3y^2) = -\frac{y^2}{8x}$$

③ $2xy \times (5x^2y)^2 \div 10xy^3 = 5x^4$
④ $(-2xy^2)^2 \div (2x^2y)^3 = \frac{y}{2x^4}$

08
$$(x^2y^a)^2 \times \frac{x^by^2}{8} \div \left(-\frac{1}{2}xy\right)$$

 $= x^4y^{2a} \times \frac{x^by^2}{8} \times \left(-\frac{2}{xy}\right)$
 $= -\frac{x^{3+b}y^{2a+1}}{4} = -\frac{x^4y^9}{4}$
 $3+b=4$ $\Rightarrow b=1, 2a+1=9$ $\Rightarrow a=4$
 $\therefore a-b=4-1=3$

09
$$(-3a^2b)^3$$
÷ $\times (2ab^2)^4 = 16a^{10}$ $\wedge (-3a^2b)^3$ $\times (2ab^2)^4 = 16a^{10}$ $\wedge (-27a^6b^3 \times \frac{1}{2} \times 16a^4b^8 = 16a^{10}$ $\wedge (-27a^6b^3 \times 16a^4b^8 = -27b^{11})$ $\wedge (-27a^6b^3 \times 16a^4b^8 = -27b^{11})$

10
$$\frac{4x-y}{3} - \frac{3x-y}{2} = \frac{2(4x-y)-3(3x-y)}{6}$$
 $= \frac{-x+y}{6} = -\frac{1}{6}x + \frac{1}{6}y$ 따라서 $A = -\frac{1}{6}$, $B = \frac{1}{6}$ 이므로 $A - B = -\frac{1}{6} - \frac{1}{6} = -\frac{1}{3}$

11 $3(x^2-2x+3)-2(-2x^2+x+4)=7x^2-8x+1$ 따라서 x^2 의 계수는 7, 상수항은 1이므로 구하는 합은 7+1=8

12
$$4x - [3x - \{6x - (2y - 5x)\}]$$

= $4x - \{3x - (6x - 2y + 5x)\}$
= $4x - (3x - 11x + 2y)$
= $4x + 8x - 2y = 12x - 2y$

13
$$A-(-x^2+3)=2x^2-1$$
 $\therefore A=x^2+2$ $A+(2x^2-x-5)=B$ $\therefore B=(x^2+2)+(2x^2-x-5)=3x^2-x-3$

14
$$2x(3x-5y)-(x^3y-3x^2y^2) \div xy$$

= $6x^2-10xy-x^2+3xy$
= $5x^2-7xy$

15
$$\frac{1}{3}$$
 × (밑넓이) × $9a^2 = 3a^3b^2 + 9a^3 - 15a^2b$
 \therefore (밑넓이) = $(3a^3b^2 + 9a^3 - 15a^2b) \times 3 \times \frac{1}{9a^2}$
 $= ab^2 + 3a - 5b$

16
$$2(2A+B)-3(2A-B)=4A+2B-6A+3B$$

= $-2A+5B$
= $-2(3x-2y)+5(2x+3y)$
= $4x+19y$

따라서
$$a=4$$
, $b=19$ 이므로 $b-a=19-4=15$

03 ①
$$a+3>b+3$$
 ② $a-3>b-3$ ③ $-3a<-3b$ ⑤ $-\frac{a}{3}<-\frac{b}{3}$

04
$$-1 \le a < 2$$
 에서 $-2 \le 2a < 4$ $-3 \le 2a - 1 < 3$ ∴ $-3 \le A < 3$

05 ①, ③, ④, ⑤
$$x < 4$$
 ② $x > 4$

07
$$\frac{x-5}{4} - \frac{7x-1}{8} \le 0.25(3-x)$$
 에서 $2(x-5) - (7x-1) \le 2(3-x)$ $-3x \le 15$ ∴ $x \ge -5$

$$08$$
 $1+ax\leq 0$ 에서 $ax\leq -1$ 이때 $a<0$ 이므로 $x\geq -\frac{1}{a}$

09
$$ax+12>0$$
에서 $ax>-12$
이때 해가 $x<3$ 이므로 $a<0$
따라서 $x<-\frac{12}{a}$ 이므로 $-\frac{12}{a}=3$ $\therefore a=-4$

10
$$0.5x+0.2 < 0.1x-1$$
에서 $x < -3$
$$\frac{x}{2} - 3 < a$$
에서 $x < 2a+6$ 따라서 $2a+6=-3$ 이므로 $a=-\frac{9}{2}$

11
$$a-3x\ge -x$$
에서 $x\le \frac{a}{2}$ 이때 부등식을 만족하는 자연수 x 의 개수가 2개이려면 $2\le \frac{a}{2}<3$ $\therefore 4\le a<6$

- **12** 옥수수를 x개 산다고 하면 감자는 (12-x)개 살수 있으므로 600x+200(12-x)<5000 $\therefore x<\frac{13}{2}$ 따라서 옥수수는 최대 6개까지 살 수 있다.
- x개월 후부터 형의 예금액이 동생의 예금액의 2배 이상이 된다고 하면
 30000+4000x≥2(25000+1500x) ∴ x≥20
 따라서 20개월 후부터이다.
- 14 x명이 입장한다고 하면
 5000x>5000× 90/100 × 30 ∴ x>27
 따라서 28명 이상이면 30명의 단체 입장권을 사는 것이 유리하다.
- **15** 역에서 상점까지의 거리를 x km라 하면 $\frac{x}{4} + \frac{30}{60} + \frac{x}{4} \le 2 \qquad \therefore x \le 3$ 따라서 3 km 이내에 있는 상점을 이용할 수 있다.
- **16** 물을 x g 넣는다고 하면 $\frac{10}{100} \times 400 \leq \frac{8}{100} \times (400 + x) \qquad \therefore x \geq 100$ 따라서 물을 100 g 이상 넣어야 한다.

2<u>/</u>회 **3. 일차부등식** p.54~p.55 01 ①, ④ **03** ④ **02** ② **04**② **05** ③, ⑤ **06** ③ **07** ③ **08** ③ **09** ② 10 4 11 $-4 < a \le -3$ **12** ③ 13 18명 14② **15** 13개 **16** 4 km

- **01** ① $x+5 \le 3$ ④ $\frac{x}{20} < \frac{40}{60}$
- **03** ①, ②, ③, ⑤ < ④ >
- **04** $-1 \le 2x + 5 < 7$ 에서 $-6 \le 2x < 2$ $\therefore -3 \le x < 1$
- 06 4x-6<10x-12에서 x>1 ① x>-3 ② x<2 ③ x>1 ④ x<3 ⑤ x>-1
- 07 $7(x-3) \ge 2x + 19$ 에서 $5x \ge 40$ $\therefore x \ge 8$
- **08** $\frac{x-2}{4} \frac{2x-1}{5} < 0$ 에서 5(x-2) 4(2x-1) < 0 -3x < 6 $\therefore x > -2$ 따라서 부등식을 만족하는 가장 작은 정수 x는 -1이다.
- **09** ax-1>x-a에서 (a-1)x>-(a-1)이때 a-1<0이므로 x<-1

- 10 2x-3<1에서 2x<4 $\therefore x<2$ ax-4<2x-2에서 (a-2)x<2 이때 해가 x<2이므로 a-2>0 따라서 $x<\frac{2}{a-2}$ 이므로 $\frac{2}{a-2}=2$ $\therefore a=3$
- 11 x-a < 7에서 x < a + 7이때 부등식을 만족하는 자연수 x의 개수가 3개이려면 $3 < a + 7 \le 4$ $\therefore -4 < a \le -3$
- 12 어떤 수를 x라 하면
 3x-5≤10 ∴ x≤5
 따라서 구하는 수 중 가장 큰 수는 5이다.
- 박물관에 x명이 입장한다고 하면
 2000×6+1500(x-6)≤30000 ∴ x≤18
 따라서 최대 18명까지 입장할 수 있다.
- **14** $\frac{1}{2} \times (x+10) \times 12 \ge 72$ $\therefore x \ge 2$
- 15 물건을 x개 산다고 하면
 1000x>850x+1800 ∴ x>12
 따라서 물건을 13개 이상 사면 도매 시장에서 사는 것이 유리하다
- **16** 올라갈 때의 거리를 x km라 하면 $\frac{x}{3} + \frac{x}{4} \le \frac{7}{3} \qquad \therefore x \le 4$ 따라서 최대 4 km까지 올라갈 수 있다.

1 회 4. 연립일차방정식 p.56~p.57 01 2.5 **03** ④ **02** ③ **04** ⑤ **05** ① 06 ② 07 ① 11 ③ 12 32 09 - 2**08** ④ 10 4 **12** 32 13 10회 **14** A: 분속 70 m, B: 분속 50 m 15 ④ 16 4

- **02** 2x+y=5에 x=k, y=1을 대입하면 2k+1=5 ∴ k=2
- **03** ⓒ에 ⊙을 대입하면 5x-3(-2x+17)=15 $11x=66 \quad \therefore a=11$
- **05** $\begin{cases} ax by = -1 \\ bx ay = -8 \end{cases}$ 에 x = 2, y = 5를 대입하면 $\begin{cases} 2a 5b = -1 \\ 2b 5a = -8 \end{cases} \therefore a = 2, b = 1$
- **06** $\begin{cases} \frac{x}{3} + \frac{y}{4} = \frac{1}{12} \\ 0.2x 0.1y = 0.3 \end{cases} \Rightarrow \begin{cases} 4x + 3y = 1 \\ 2x y = 3 \end{cases}$ $\therefore x = 1, y = -1, \stackrel{\triangle}{=} a = 1, b = -1$ $\therefore ab = 1 \times (-1) = -1$

07
$$\begin{cases} x - \frac{y}{2} = \frac{2x+3}{5} \\ \frac{2x+3}{5} = \frac{x+y}{3} \end{cases} \Rightarrow \begin{cases} 6x - 5y = 6 \\ x - 5y = -9 \end{cases} \quad \therefore x = 3, y = \frac{12}{5}$$

- **08** 세 일차방정식의 해는 $\begin{cases} 2x+3y=-5 & \cdots & \bigcirc \\ 3x-7y=27 & \cdots & \bigcirc \end{cases}$ 의 해와 같다. $\bigcirc \times 3-\bigcirc \times 2$ 를 하여 풀면 x=2, y=-3 x+ay=8에 x=2, y=-3을 대입하면 2-3a=8 $\therefore a=-2$
- **09** 주어진 연립방정식의 해는 $\begin{cases} 3x+2y=14 & \cdots & \bigcirc \\ y=2x & \cdots & \bigcirc \end{cases}$ 의 해와 같다. \bigcirc 에 \bigcirc 을 대입하여 풀면 x=2,y=4 x-y=a에 x=2,y=4를 대입하면 a=-2
- 10 $\begin{cases} bx + ay = 10 \\ ax + by = -14 \end{cases}$ 의 해가 x = -3, y = 1이므로 $\begin{cases} -3b + a = 10 \\ -3a + b = -14 \end{cases} \therefore a = 4, b = -2$ 따라서 처음 연립방정식 $\begin{cases} 4x 2y = 10 \\ -2x + 4y = -14 \end{cases} \stackrel{\text{를}}{=} \text{ 풀면}$ x = 1, y = -3
- 11 $\begin{cases} 3x 6y = a \\ x 2y = 1 \end{cases} = \begin{cases} 3x 6y = a \\ 3x 6y = 3 \end{cases}$ 이때 해가 없으려면 $a \neq 3$
- 12 처음 수의 십의 자리의 숫자를 x, 일의 자리의 숫자를 y라 하면 $\begin{cases} x+y=5\\ 10y+x=10x+y-9 \end{cases}$ $\therefore x=3, y=2$ 따라서 처음 수는 32이다.
- **13** 강은이가 이긴 횟수를 x회, 진 횟수를 y회라 하면 서희가 이 긴 횟수는 y회, 진 횟수는 x회이므로 $\begin{cases} 2x-y=12\\ 2y-x=6 \end{cases} \therefore x=10, y=8$ 따라서 강은이가 이긴 횟수는 10회이다.

15 6 %의 소금물의 양을 x g, 15 %의 소금물의 양을 y g이라

하면 $\begin{cases} x+y=1500 \\ \frac{6}{100}x+\frac{15}{100}y=\frac{12}{100}\times 1500 \end{cases}$ ∴ x=500, y=1000따라서 섞어야 하는 15 %의 소금물의 양은 1000 g이다. **16** 작년의 남학생 수를 x명, 여학생 수를 y명이라 하면 $\begin{cases} x+y=800\\ \frac{10}{100}x-\frac{10}{100}y=-\frac{5}{100}\times800 \end{cases}$ $\therefore x=200, y=600$ 따라서 올해의 남학생 수는 $200\times\left(1+\frac{10}{100}\right)=220(9)$, 여학생 수는 $600\times\left(1-\frac{10}{100}\right)=540(9)$ 이다.

<u> </u>	p.58~p.59			
01 ②	02 ①, ④	03 -1	04 2	05 ②
06 ②	07 ①	08 2	09 2	10 ⑤
11 ②	12 ④	13 40세	14 4 km	15 40일
16 ④				

- **01** (1, 6), (3, 3)의 2개
- 03 2x+5y=12에 x=1, y=b를 대입하면 $2\times 1+5b=12$ $\therefore b=2$ 3x-ay=4에 x=1, y=2를 대입하면 $3\times 1-2a=4$ $\therefore a=-\frac{1}{2}$ $\therefore ab=-\frac{1}{2}\times 2=-1$
- **04** 연립방정식 $\begin{cases} 5x-3y=10 \\ 3x+2y=6 \end{cases}$ 을 풀면 x=2, y=0 따라서 a=2, b=0이므로 a+b=2+0=2
- **05** 두 연립방정식의 해는 $\begin{cases} 3x+5y=4 & \cdots & \bigcirc \\ 2x-y=7 & \cdots & \bigcirc \end{cases}$ 의 해와 같다. $\bigcirc \times 2-\bigcirc \times 3$ 을 하여 풀면 x=3,y=-1 ax-2y=5에 x=3,y=-1을 대입하면 a=1 x+by=1에 x=3,y=-1을 대입하면 b=2 $\therefore a-b=1-2=-1$
- 06 $\begin{cases} 3x 4(x + 2y 3) = -2 \\ (x y) : (2 5y) = 1 : 2 \end{cases} \Rightarrow \begin{cases} x + 8y = 14 \\ 2x + 3y = 2 \end{cases}$ $\therefore x = -2, y = 2$
- **07** $\begin{cases} \frac{x}{2} + \frac{y}{4} = \frac{1}{4} \\ 0.1x 0.3y = -1 \end{cases} \Rightarrow \begin{cases} 2x + y = 1 \\ x 3y = -10 \end{cases}$ $\therefore x = -1, y = 3, \stackrel{\geq}{=} a = -1, b = 3$ $\therefore a b = -1 3 = -4$

- 08 $\begin{cases} 2x+y=2 \\ 3x+2y-6=2 \end{cases}$ \Rightarrow $\begin{cases} 2x+y=2 \\ 3x+2y=8 \end{cases}$ $\therefore x=-4, y=10$ ax-y=2에 x=-4, y=10을 대입하면 -4a-10=2 $\therefore a=-3$
- **10** ①에서 4를 a로 잘못 보았다고 하면 x+y=a … ⓒ ⓒ에 y=0을 대입하면 x=1 따라서 ⓒ에 x=1, y=0을 대입하면 a=1
- **11** ② $\begin{cases} 2x 2y = 8 \\ 2x 2y = 8 \end{cases}$ 이므로 해가 무수히 많다.
- **12** 오리의 수를 x마리, 양의 수를 y마리라 하면 $\begin{cases} x+y=60 \\ 2x+4y=174 \end{cases} \therefore x=33, y=27$ 따라서 오리와 양의 수의 차는 33-27=6(마리)이다.
- **13** 현재 엄마의 나이를 x세, 딸의 나이를 y세라 하면 $\begin{cases} x-y=25\\ x+5=2(y+5)+5 \end{cases}$ 따라서 현재 엄마의 나이는 40세이다.
- **14** 뛰어간 거리를 x km, 걸어간 거리를 y km라 하면 $\begin{cases} x+y=7\\ \frac{x}{10}+\frac{y}{6}=\frac{54}{60} \end{cases}$ $\therefore x=4, y=3$ 따라서 뛰어간 거리는 4 km이다
- 15 전체 일의 양을 1이라 하고 A와 B가 하루 동안 할 수 있는 일의 양을 각각 x,y라 하면 $\begin{cases} 15x+15y=1\\ 10x+18y=1 \end{cases} \therefore x=\frac{1}{40},y=\frac{1}{24}$ 따라서 A가 혼자 하면 40일 만에 끝낼 수 있다.
- 16 판매한 상품 A의 개수를 x개, 상품 B의 개수를 y개라 하면 $\begin{cases} x+y=1000 \\ 200 \times \frac{20}{100} \times x+300 \times \frac{10}{100} \times y=35000 \end{cases}$ ∴ x=500, y=500 따라서 상품 A는 500개, 상품 B는 500개를 팔았다.

회 5. 일	p.60~p.61			
01 ③, ⑤	02 ⑤	03 9	04 ②, ⑤	05 ①
06 ①	07 ③	08 ①	09 3	108
11 ②	12 3	13 ⑤	142	15 5

- ①1 ① x=5일 때, y=2, 4이므로 함수가 아니다. ② x=4일 때, y=1, 2, 4이므로 함수가 아니다. ④ x=0.5일 때, y=0, 1이므로 함수가 아니다.
- **02** $f(-3) = -\frac{9}{-3} = 3, f(1) = -\frac{9}{1} = -9$ $\therefore 2f(-3) - f(1) = 2 \times 3 - (-9) = 15$
- **03** f(10)=4, f(16)=5 $\therefore f(10)+f(16)=4+5=9$
- **05** f(2) = -3에서 2a 5 = -3 $\therefore a = 1$ 따라서 f(x) = x - 5이므로 f(-3) = -3 - 5 = -8
- **06** y=2x+b의 그래프를 y축의 방향으로 5만큼 평행이동한 그 래프를 나타내는 일차함수의 식은 y=2x+b+5 y=2x+b+5의 그래프가 y=ax-1의 그래프와 같으므로 a=2,b+5=-1에서 b=-6 $\therefore a+b=2+(-6)=-4$
- 07 y=3x-2의 그래프를 y축의 방향으로 k만큼 평행이동한 그 래프를 나타내는 일차함수의 식은 y=3x-2+k y=3x-2+k의 그래프가 점 (2,5)를 지나므로 $5=3\times 2-2+k$ $\therefore k=1$
- **08** $y = \frac{3}{2}x + 3$ 의 그래프의 x절편은 -2, y절편은 3이므로 a = -2, b = 3 $\therefore ab = -2 \times 3 = -6$
- y절편이 6이므로 k=6y=-2x+6에 y=0을 대입하면 0=-2x+6 $\therefore x=3$, 즉 x절편은 3
- 11 (7)울기 $)=\frac{m-2}{-1-3}=\frac{5}{2}$ 이므로 2(m-2)=-20 $\therefore m=-8$
- **12** (기술기)= $\frac{2-(-1)}{1-0}$ =3

- 13 두 점 (-1, -5), (1, a)를 지나는 직선의 기울기는 $\frac{a-(-5)}{1-(-1)} = \frac{a+5}{2}$ 두 점 (1, a), (2, a+5)를 지나는 직선의 기울기는 $\frac{(a+5)-a}{2-1} = 5$ 이때 $\frac{a+5}{2} = 5$ 이므로 a=5
- **15** $y = -\frac{5}{2}x + 5$ 의 그래프의 x절편은 2, y절편은 5이므로 구하는 삼각형의 넓이는 $\frac{1}{2} \times 2 \times 5 = 5$

2 5. €	p.62~p.63			
01 ④	02 ③	03 ①, ⑤	04 ①	05 ⑤
06 ③	07 ③	08 $\frac{1}{5}$	09 $\frac{1}{4}$	10 1
11 ①	123	13 5	142	15 $\frac{5}{4}$

- **01** ④ x=2일 때, $y=2, 4, 6, \cdots$ 이므로 함수가 아니다.
- **03** ① y = 24 x ② $y = \frac{240}{x}$ ③ $y = \frac{120}{x}$ ④ $y = x^2$ ⑤ $y = -\frac{5}{9}x + 10$
- **04** f(-1)=3에서 -a+1=3 $\therefore a=-2$
- **05** y=4x+k에 x=-1, y=2를 대입하면 $2=4\times (-1)+k$ $\therefore k=6$
- **06** y=-2x+1의 그래프를 y축의 방향으로 3만큼 평행이동한 그래프를 나타내는 일차함수의 식은 y=-2x+4 ③ $\frac{7}{2} \! \neq \! -2 \! \times \! \left(-\frac{1}{4} \right) \! + \! 4$
- 07 y=ax의 그래프를 y축의 방향으로 -4만큼 평행이동한 그 래프를 나타내는 일차함수의 식은 y=ax-4 y=ax-4에 x=2, y=-2를 대입하면 -2=2a-4 $\therefore a=1$ y=x-4에 x=1, y=b를 대입하면 b=-3 $\therefore ab=1 \times (-3)=-3$

- **08** y=ax-1에 x=1, y=4를 대입하면 4=a-1 $\therefore a=5$ 따라서 y=5x-1의 그래프의 x절편은 $\frac{1}{5}$ 이다.
- $09 \quad y = -\frac{1}{2}x + b \text{에 } x = \frac{1}{2}, y = 0 \text{을 대입하면}$ $0 = -\frac{1}{2} \times \frac{1}{2} + b \qquad \therefore b = \frac{1}{4}, \text{즉 } y \text{절편은 } \frac{1}{4}$
- **10** $y = \frac{5}{6}x$ 의 그래프를 y축의 방향으로 -5만큼 평행이동한 그래프를 나타내는 일차함수의 식은 $y = \frac{5}{6}x 5$ 이 그래프의 x절편은 6, y절편은 -5이므로 a = 6, b = -5 $\therefore a + b = 6 + (-5) = 1$
- **11** (기울기)= $\frac{(y \cap x) \cap (y \cap x)}{(x \cap x) \cap (y \cap x)} = \frac{-4}{2} = -2$
- **12** $\frac{b-d}{a-c}$ =(기울기)= $-\frac{1}{3}$
- **13** 두 점 (-1,-2), (2,5)를 지나는 직선의 기울기는 $\frac{5-(-2)}{2-(-1)} = \frac{7}{3}$ 두 점 (2,5), (p,12)를 지나는 직선의 기울기는 $\frac{12-5}{p-2} = \frac{7}{p-2}$ 이때 $\frac{7}{3} = \frac{7}{p-2}$ 이므로 p=5
- 15 y=ax-5의 그래프는 오른쪽 그림과 같다. 이때 삼각형의 넓이가 10이므로 $\frac{1}{2} \times \frac{5}{a} \times 5 = 10$ $\therefore a = \frac{5}{4}$

	¹				p.64~p.65	
	01 ②, ④	02 ①	03 ④	04 ①	05 −1	
	06 $y = \frac{1}{2}x$	-4	07 10	08 ②	09 4	
10 4 11 3		12 30 ℃	13 ⑤	14 ④		

- **01** ① 기울기는 2이다.
 - ③ 제2사분면을 지나지 않는다.
 - ⑤ 점 (0, -4)를 지난다.
- **02** -a < 0, b < 0이므로 일차함수 y = -ax + b의 그래프는 제1사분면을 지나지 않는다.

- **03** a>0, -b<0에서 b>0
- **05** y=-2x+3의 그래프를 y축의 방향으로 k만큼 평행이동한 그래프를 나타내는 일차함수의 식은 y=-2x+3+k y=-2x+3+k의 그래프와 y=-2(x-1), 즉 y=-2x+2의 그래프가 일치하므로 3+k=2 $\therefore k=-1$
- **06** 기울기가 $\frac{1}{2}$, y절편이 -4이므로 $y = \frac{1}{2}x 4$
- **08** 기울기가 $-\frac{4}{3}$ 이므로 $y = -\frac{4}{3}x + b$ 로 놓고 x = 3, y = -2를 대입하면 $-2 = -\frac{4}{3} \times 3 + b \qquad \therefore b = 2$ 따라서 구하는 일차함수의 식은 $y = -\frac{4}{3}x + 2$
- **09** (기울기)= $\frac{-3-3}{2-(-1)}$ =-2이므로 y=-2x+b로 놓고 x=-1, y=3을 대입하면 $3=-2\times(-1)+b \qquad \therefore b=1$ 따라서 구하는 일차함수의 식은 y=-2x+1
- x절편이 -4, y절편이 -8이므로 $(기울기) = \frac{-8-0}{0-(-4)} = -2$ 따라서 구하는 일차함수의 식은 y = -2x-8
- 11 $(7)울7) = \frac{0-(-3)}{4-0} = \frac{3}{4}$ 이므로 $y = \frac{3}{4}x-3$ 의 그래프를 y축의 방향으로 -2만큼 평행이동한 그래프를 나타내는 일 차함수의 식은 $y = \frac{3}{4}x-5$ $y = \frac{3}{4}x-5$ 에 x=1, y=a를 대입하면 $a = \frac{3}{4} \times 1-5 = -\frac{17}{4}$
- 12 기온이 x °C일 때 소리의 속력을 초속 y m라 하면 y=331+0.6x y=331+0.6x에 y=349를 대입하면 349=331+0.6x ∴ x=30 따라서 소리의 속력이 초속 349 m일 때의 기온은 30 °C이다.

- **13** 물의 높이가 2초마다 3 cm씩 높아지므로 1초마다 1.5 cm씩 높아진다. 따라서 구하는 식은 y=1.5x+10
- 14 1 km를 주행하는 데 $\frac{1}{15}$ L의 휘발유가 소비되므로 $y=60-\frac{1}{15}x$ $y=60-\frac{1}{15}x$ 에 x=165를 대입하면 $y=60-\frac{1}{15}\times 165=49$ 따라서 남아 있는 휘발유의 양은 49 L이다.

- **01** $y=-\frac{2}{3}x+\frac{7}{3}$ 의 그래프를 y축의 방향으로 $\frac{2}{3}$ 만큼 평행이 동한 그래프를 나타내는 일차함수의 식은 $y=-\frac{2}{3}x+3$ ② x축과 만나는 점의 좌표는 $\left(\frac{9}{2},0\right)$ 이다. ③ 제1, 2, 4사분면을 지난다. ⑤ x의 값이 9만큼 증가할 때, y의 값은 6만큼 감소한다.
- 03 a<0,b>0이므로 a-b<0,ab<0 따라서 y=(a-b)x+ab의 그래프가 지나지 않는 사분면은 제1사분면이다.
- **04** ③ \square 의 그래프는 \square 의 그래프를 y축의 방향으로 -7만큼 평행이동한 것이다.
- **05** $a=-3, 2=\frac{b}{2}$ ⋈ b=4∴ $ab=-3\times 4=-12$
- **06** (기울기)= $\frac{0-(-3)}{3-1}=\frac{3}{2}$ 따라서 구하는 일차함수의 식은 $y=\frac{3}{2}x-4$

- **07** y=2x+b로 놓고 x=3, y=4를 대입하면 $4=2\times 3+b$ ∴ b=-2 따라서 y=2x-2의 그래프의 y절편은 -2이다.
- **08** (기울기 $)=\frac{4-2}{3-(-1)}=\frac{1}{2}$ 이므로 $y=\frac{1}{2}x+b$ 로 놓고 x=2, y=-3을 대입하면 $-3=\frac{1}{2}\times 2+b \qquad \therefore b=-4$ 따라서 구하는 일차함수의 식은 $y=\frac{1}{2}x-4$
- **09** (기울기)= $\frac{0-2}{-3-0}$ = $\frac{2}{3}$ 이므로 $y=\frac{2}{3}x+2$ $y=\frac{2}{3}x+2$ 에 x=6, y=k를 대입하면 $k=\frac{2}{3}\times 6+2=6$
- 10 양초의 길이가 4분마다 1 cm씩 줄어들므로 1분마다 1/4 cm 씩 줄어든다. 불을 붙인 지 x분 후 양초의 길이를 y cm라 하면 y=25-1/4 x y=25-1/4 x에 y=18을 대입하면 18=25-1/4 x ∴ x=28 따라서 양초의 길이가 18 cm가 되는 것은 불을 붙인 지 28분
- **11** y=150-45x이므로 x=2를 대입하면 $y=150-45\times2=60$ 따라서 출발한 지 2시간 후에 캠핑장까지 남은 거리는 $60~\mathrm{km}$ 이다.
- **12** 두 점 (0, 32), (10, 50)을 지나므로 $y = \frac{9}{5}x + 32$ $y = \frac{9}{5}x + 32$ 에 x = 20을 대입하면 $y = \frac{9}{5} \times 20 + 32 = 68$ 따라서 섭씨 온도 20 °C는 화씨 온도로 68 °F이다.
- 13x초 후의 BP의 길이는 2x cm이므로 PC의 길이는
(16-2x) cm이다.∴ y=1/2 × {16+(16-2x)} × 10=160-10x
y=160-10x에 x=3을 대입하면
y=160-30=130따라서 3초 후의 사다리꼴 APCD의 넓이는 130 cm²이다.

회 7. 일차함수와 일차방정식의 관계 p.68∼p.6						
	01 ①, ④	02 ①	03 ③	04 ④	05 ③, ④	
	06 ③	07 ④	08 ②	09 ⑤	10 ④	
	11 ③	12 🕢	13 ①	14 (3)		

- **02** 2x+ay-4=0에서 $y=-\frac{2}{a}x+\frac{4}{a}$ 이때 $-\frac{2}{a}=1$ 이므로 a=-2 따라서 y절편은 $\frac{4}{a}$, 즉 $\frac{4}{-2}=-2$ 이다.
- 03 ax+by+15=0에 x=-5, y=0을 대입하면 -5a+15=0 $\therefore a=3$ ax+by+15=0에 x=0, y=-3을 대입하면 -3b+15=0 $\therefore b=5$ $\therefore a-b=3-5=-2$
- ① 1 y축에 평행한 직선이다.
 ② 제2, 3사분면을 지난다.
 ⑤ 점 (0, -3)을 지나지 않는다.
- **06** (넓이)=4×5=20
- **07** 직선 y=mx-3이 (i) 점 A(2, 3)을 지날 때, 3=2m-3 ∴ m=3(ii) 점 B(4, -1)을 지날 때, -1=4m-3 ∴ $m=\frac{1}{2}$ (i), (ii)에서 $\frac{1}{2} \le m \le 3$
- **08** ax+by+c=0에서 $y=-\frac{a}{b}x-\frac{c}{b}$ 이때 $-\frac{a}{b}>0$, $-\frac{c}{b}<0$ 이므로 일차방정식 ax+by+c=0의 그래프가 지나지 않는 사분면은 제2사분면이다.
- x+y=5, x+3y=11을 연립하여 풀면 x=2, y=3이므로 두 그래프의 교점의 좌표는 (2, 3)이다.
 따라서 기울기가 5이고 점 (2, 3)을 지나는 일차함수의 식은 y=5x-7
- **10** x-y=a에 x=1, y=3을 대입하면 a=1-3=-2 2x+y=b에 x=1, y=3을 대입하면 $b=2\times 1+3=5$ ∴ a+b=-2+5=3

후이다

- 11 x+y=2, 2x+3y=1을 연립하여 풀면 x=5, y=-3이므 로 세 직선의 교점의 좌표는 (5, -3)이다. ax+2ay=3에 x=5, y=-3을 대입하면 5a - 6a = 3 : a = -3
- **12** $\begin{cases} x+2y=1 \\ ax+by=3 \end{cases} \Rightarrow \begin{cases} 3x+6y=3 \\ ax+by=3 \end{cases}$ 해가 무수히 많으려면 a=3, b=6a+b=3+6=9
- **13** $\begin{cases} 2x+ay=7 \\ 3x-(x+2y)=2 \end{cases} \Rightarrow \begin{cases} 2x+ay=7 \\ 2x-2y=2 \end{cases}$ 해가 존재하지 않으려면 a=-
- **14** 직선 x+y=5의 x절편은 5 직선 y=2x+2의 x절편은 -1두 직선 x+y=5, y=2x+2의 교점의 좌표는 (1.4) 따라서 구하는 도형의 넓이는 $\frac{1}{2} \times 6 \times 4 = 12$

 $2 oldsymbol{2}_{ exttt{ iny 2}}$ $oldsymbol{1}$ 7. 일차함수와 일차방정식의 관계

p.70~p.71

- 01 (4) **06** −3 **07** 4
- 03 (T), (E), (H) 04 (2) **08** ④
- **05** 4
- **09** ②
- **10** 4

- 11 1
- **12** ①
- 13 $\frac{121}{12}$
 - 143
- **02** x-y=-3에서 y=x+3 $\therefore a=3$ 2x+3y=19에서 $y=-\frac{2}{3}x+\frac{19}{3}$ $\therefore b=-\frac{2}{3}$ $\therefore ab = 3 \times \left(-\frac{2}{3}\right) = -2$
- **03** -3x+y-2=0에서 y=3x+2
 - ① 제1.2.3사분면을 지난다.
 - $\supseteq y = 3x$ 의 그래프를 y축의 방향으로 2만큼 평행이동한 것
 - 🗇 오른쪽 위로 향하는 직선이다.
- **04** x-4y+3=0에 x=5, y=k를 대입하면 5-4k+3=0 : k=2

05 y축에 수직, 즉 x축에 평행한 직선 위의 점은 y좌표가 모두 같 ㅇㅁ로

-a+2=-2a+6 : a=4

- **06** ax+by+12=0의 그래프가 x=4의 그래프와 같으므로 a = -3. b = 0a+b=-3+0=-3
- **07** $2k \times 5 = 40$: k = 4
- **08** x+ay+b=0에서 $y=-\frac{1}{a}x-\frac{b}{a}$ 이때 $-\frac{1}{a} > 0$, $-\frac{b}{a} > 0$ 이므로 a < 0, b > 0
- **09** 2x+y=2, 3x+2y=2를 연립하여 풀면 x=2, y=-2따라서 점 (2, -2)를 지나고 y축에 평행한 직선의 방정식은
- **10** ax-4y=2에 x=3, y=1을 대입하면 $3a-4\times1=2$ $\therefore a=2$ bx+y=7에 x=3, y=1을 대입하면 3b+1=7 : b=2 $\therefore ab=2\times 2=4$
- **11** x-y-3=0의 그래프의 x절편이 3이므로 ax-y+3=0에 x=3, y=0을 대입하면 3a+3=0 : a=-1
- **12** 3x-2y=7에서 $y=\frac{3}{2}x-\frac{7}{2}$ ax + 8y = 14 $y = -\frac{a}{8}x + \frac{7}{4}$ 교점이 없으려면 $\frac{3}{2} = -\frac{a}{8}$ $\therefore a = -12$
- **13** x-y=-4, 2x+y=3을 연립하여 풀면 $x = -\frac{1}{3}, y = \frac{11}{3}$ 이므로 $A\left(-\frac{1}{3}, \frac{11}{3}\right)$ 이때 두 직선 x-y=-4, 2x+y=3의 x절편은 각각 -4, $\frac{3}{2}$ 이므로 $\triangle ABC = \frac{1}{2} \times \frac{11}{2} \times \frac{11}{2} = \frac{121}{12}$
- **14** A(5,0), B(0,15)이고 $\triangle COA = \frac{1}{2} \triangle BOA$ 이므로 점 C의 y좌표는 $\frac{15}{2}$ 이다. y = -3x + 15에 $y = \frac{15}{2}$ 를 대입하면

 $\frac{15}{2} = -3x + 15$ $\therefore x = \frac{5}{2}, \stackrel{>}{\leq} C(\frac{5}{2}, \frac{15}{2})$

따라서 y=mx에 $x=\frac{5}{2}, y=\frac{15}{2}$ 를 대입하면

$$\frac{15}{2} = \frac{5}{2}m$$
 $\therefore m=3$

시험에 꼭 나오는 개념 + 문제 유형

1. 유리수오	· 순환소수			p.74~p.76
01 ④	02 ②	03 ③	04 2 ² , 2 ² , 52	, 0.052
05 ④	06 ②	07 ⑤	08 ③	09 ③
10 ④	11 ④	12 ②	13 ①	14 ④
15 ③				
2. 식의 계신	<u>.</u>			p.77~p.80
01 ②	02 ①	03 ①	04 ⑤	05 ②
06 ②	07 ④	08 ④	09 ②	10②
11 ②	12 ①	13 ②	14 0	15 21
16③	17 ⑤	18 ①	19 ③	20 ④
21 ④	22 ⑤	23 $9x-7$	24 $7x + 4y$	
0.01=11=1				
3. 일차부등	⁵ 식			p,81~p,85
01 ④	02 ③	03 ②	04 ④	05 ④
06 ③, ⑤	07 ①	08 ③	09 ④	10 ①
11 ③	12 ①	13 ③	14②	15 ④
16 ③	17 8개월 후	18 80분	19 ⑤	20 12 cm
21 17개	22 7벌	23 ②	24 ⑤	25 ②
26 ④	27 600 g	28 ③	29 200 g	
4 0431015	1617111			
4. 연립일치	망성식			p.86∼p.90
01 ①, ⑤	02 ①	03 ①	04 ①	05 ③
06 ③	07 ⑤	08 $x = 3, y =$	=-4	09 ⑤
10 1	11 ⑤	12 ②	13 2	14 ④
15 5	16 ①	17 ③	18②	19②
20 ②	21 ③	22 25호	23 ⑤	24 ②
	26 분속 260		27 시속 5 ki	m 28 225 g
29 8 %	30 남학생 수	: 477명, 여학생	냉수 : 528명	
31 사과 : 44	0상자, 배 : 760	상자		
도 이타하스	رد) تتالد اهم			~ 01- ~ 02
	·와 그래프 (1)			p.91~p.92
01 ④	02 -3	03 ③	04 ①, ③	
	07 -1	08 5	09 3	10 ①
11 -4	12 ④	13②	14 ⑤	15 50
6. 일차함수	· 와 그래프 (2)			p.93~p.95
01 ④	02 ⑤	03 ①	04 ③	
06 ②	07 ⑤	08 ①	09 $y = -\frac{3}{2}$	
			_	
10 ⑤	11 ④	12 ④	13②	14 ④
15③				
7. 일차함수	와 일차방정식	닉의 관계		p.96~p.97
01 (4), (5)		03 4	04 ③	05 ②
06 4	02 <i>2</i> 07 ①	03 ⊕ 08 ③	04 ⑤ 09 <i>a</i> =2, <i>b</i> ₹	
		00	υ τ α−2, 0 →	10
10 10	11 2			