

Dimensions of a Space Economy

BE RESPONSIVE BE LONG TERM RESPONSIBLE

> BE CREDIBLE BE RELIABLE BE PROFITABLE

OBEY THE LAW
BE ETHICAL: DO WHAT IS RIGHT,
JUST AND FAIR
IMPROVE THE QUALITY OF LIFE

TECHNICAL RESPONSIBILITIES

ECONOMIC RESPONSIBILITIES

POLICY AND ETHICAL RESPONSIBILITIES

THE TECHNICAL DIMENSION

SINCE 1946

May 10, 1946 – first space research flight (cosmic radiation experime —US V2 rocket

February 20, 1947 —first animals into space (fruit flies) — US, V2

November 3, 1957 —first animal in orbit (the dog Laika) — USSR, Sputnik 2

August 19, 1960 —first plants and animals to return alive from Earth orbit —USSR, Sputnik

April 12, 1961 – first human spaceflight — Yuri Gagarin – USSR, Vostok 1

1969 —first Welding experiment in space — Soyuz 6

1971 — composite casting — Apollo 14

1973-1979 – Skylab Materials Processing Facility, Multipurpose Furnace System, Skylab

1980-2000 - Spacelab, etc - Shuttle Era (STS-3 through 87)

April 23, 1971 – first space station –USSR, Salyut 1

February 19, 1986 –first inhabited long-term research space station -

November 20, 1998 - first multinational space station (ISS)

Largest man-n object built in space to date (Russia, USA, Europe,

Canada)

WHY SPACE?

- Challenge for survival
 - Innovative technologies

Opportunity for International Cooperation

- Severe mass limitationsminiaturization
- Extreme environment:
 - Infinite cold
 - Vacuum

- "Infinite" solar power
- Radiation
- Long term exposure to reduced microgravity

AN OPEN LABORATORY

MICROGRAVITY

- When the force of gravity is removed other forces (<u>surface</u> tension, capillary forces) become predominant and drive a different system dynamics
- Gravity is a physical parameter that together with pressure and temperature define the state of a system
- Historically, major <u>breakthrough and innovations</u> were achieved when systems were studied, for example, at low temperatures.
- Many of our intuitive expectations do not hold up in microgravity!

A PHYSICIST'S VIEW ...

BENEFITS FOR MATERIAL SYSTEMS

- No solute buildup
- No sedimentation
- No convection

- Defect free
- Homogeneous
- Controlled, symmetric growth
- Avoidance of nucleation or single nucleation
- Higher resolution

- Containerless processing
- Free suspensions
- Perfect spherical shape
- No wetting

BENEFITS FOR LIFE SCIENCE

Microgravity is evolutionarily novel and enables new understanding of living systems that can be used for medicine and biotech.

Commercial biosciences and pharmaceutica companies have flown experiments in space since the 1980s.

Response to gravity is complex.

All levels of biological organization, cells, tissues, organs, organisms, are affected by gravity/microgravity, often in novel and useful ways, sometimes in ways that allow medical problems on Earth to be better studied.

As biotech companies have found, novel environments offer novel biological responses useful for industry, medicine, and agriculture.

MICROGRAVITY PER DISCIPLINE

Fundamental Physics	Fluid Physics	Material Science	Combustion science
Test basic scientific theories	Perfect shape (surface tension)	Relationship: structure, properties, processing	Ignition
Thermodynamics	Surface tension driven flow	Production of alloys and composites	Flame spreading
Atomic physics	Welding	Dendrites	Flame extinction
Relativistic physics	Dynamics of liquid drops	Ceramics and glass experiments	Role of soot formation
Low-temperature physics	Microfluidics	Optical engineering	Air flow, heat transfer
Heat energy	Dynamics of gases	Containerless processing	
New forms of matter			

Despite relatively low funding, relatively few investigators, and great difficulties accessing space (compared with laboratory research on Earth), the success rate from microgravity R&D into applications is remarkably significant.

Experiment	Product	μg benefit
Space Beads	Polystyrene spheres 10 microns in diameter-calibration standard SRM 1965 for NBS	Superior product in terms of (1) sphericity (2) narrowness of size distribution (3) rigidity
Bulk Metallic Glasses	Hinges, sliders, frames, display frames, miniature camera case, phone cases, golf clubs, surgical tools, SIM eject tool for iPhone	Helped develop BULK (vs thin) metallic glasses by acquiring understanding in microgravity underlying viscosity of this material.

Evperiment

ug benefit

Experiment	Product	μg benefit
Semiconductor crystals	Fabrication of low noise field effect transistors (FET's), analog switch integrated circuits (LCS)	Microgravity-grown crystals have (1) increased single crystal size (2) suppressed impurities and defects (3) higher quality crystals
Thermal Diffusion Coefficients	Database of Soret coefficients for various mixtures	Capturing the diffusive aspect of thermodiffusion (no convection)
Capillary Flow Experiments	Software for modeling of complex interface configurations. New rapid diagnostic for infant HIV for the developing world,	Capturing fluid and bubbles system dynamics as driven by capillary and surface tension forces in microgravity (in the absence of buoyancy driven convection) has resulted in high performance, unique theoretical models.

Product

resulting in designing a stable form that dissolves at the right

rate inside the body⁶.

Experiment	Product(s)&Customers	μg benefit
Microencapsulation	Bright Mark line of tissue site marker for accurate tumor diagnostic devices Chemo-FDA approved drugs contained in microcapsules (clinical trials entered in 2012) for local (vs systemic) cancer chemotherapeutic treatment	Pharmaceutical drug and its outer membrane form spontaneously improving ease of drug manufacturing and direct injection into tumoral tissue; controlled layering enables timed delivery of drug.
Insulin crystals	Slow absorption diabetic drug	Well ordered, high resolution crystals of the T3R3 insulin hexamer variant were produced in microgravity

Ex	per	im	

Interferon

Product(s)&Customers

FDA approved Peg-Intron™, a pegylated alpha interferon formulation, for the treatment of chronic hepatitis C in January 2001.

3D cell cultures

39000 Rotating Wall
Vessel/Bioreactor units. Synthecon
is the manufacturer and distributer.
Industry standard for 3D tissue
cultures (cancer, organ disease,
diabetes, aging)

µg benefit

STS-Microgravity experiments on alpha interferon, Intron A, for the first time provided Schering Plough Research Institute with large quantities of large, high quality crystals. This was a critical stimulus that enabled the company to demonstrate the crystals' suitability as a long lasting formulation, one of its goals.

Inspired by characteristics of microgravity, the design minimizes shear and turbulence in the mixing process and produces superior 3-D cell and tissue cultures

NEAR TERM POTENTIAL: INTERMEDIATE TRL ¹⁷			
Topic	Potential Application	µg Benefit	
ZBLAN optical fibers	Mid-IR lasers, Photonics, Thermal imaging, Sensing, Spectroscopy, Biomedical devices, telecom	Fibers made in microgravity would result in very low broadband attenuation (~100x better than currently used Si fibers)	
3D tissue and tumor growth	Growth of patient derived tumor cultures for selection of chemotherapy drugs	Size of tumors grown in microgravity ~10x larger¹ than on ground and of higher tissue fidelity	
Zeolite crystals	Catalysts, ion exchangers; absorbents/separation; hydrogen storage; "green" household products; Photocatalysts	Growth of large, uniform, high- quality/zeotypes ETS titanosilicate crystals; reduced defect concentrations and types; attunement of chemical formulation, growth and chemical control	
Field-Directed colloidal and nanoparticle self assemblies	Magneto-rheological (MR) dampers for energy absorption (earthquake, automobiles, trucks) Electro-rheological (ER) fluids	Understanding of mechanisms of formation and dissolution of structures for rapid and reversible change of rheological properties. Studies in microgravity offer a unique opportunity to interrogate the	

unique opportunity to interrogate the Electro-rheological (ER) fluids for haptic controllers and structural evolution, pattern formation and aggregation dynamic of dipolar tactile displays in suspensions. microelectronic devices

NEXT GENERATION TECHNOLOGIES: LOW TRE			
Topic	Potential Application	Hypothesized µg benefit	
Hollow bearings	Load-bearing machines with moving parts, tribology	High sphericity, narrow size distribution, hollow; multimaterials, multilayered bearings; monolithic	
3D DNA	DNA nanotechnology, DNA based computing	DNA self-assembly crystals to control inter- molecular contacts	
Nanoclays	Polymer nanocomposites, flammability inhibitors, rheological modifiers, gas absorbents, liquid crystal displays, drug carriers	More uniform clay-polymer mixtures generated in the microgravity environment with reduced mixing time.	
Membrane proteins	Study of neural systems and diseases (Parkinson, Huntington,	Crystallization of membrane proteins with high resolution and clarity for engineering better	

etc) ground counterparts. Current crystals on ground do not diffract

Biocompatible coatings for In a gravitational field the gravitational force **Ultra** thin acts parallel to the flow thereby creating shear implanted batteries, devices; coatings Photovoltaic coatings; stresses in the film and introducing 3D Manufacture of semiconductor instabilities (Waves, ribs, streaks) that interfere with the manufactured device performance. In components; Magnetic information storage systems; microgravity the surface tension forces and Photoresist microelectronics viscous forces in the meniscus region would lead to smooth, uniform and highly accurate thin

Microgravity-Related Patents: 30 Year Growth Trend

THE ECONOMIC DIMENSION

COMMERCIAL MICROGRAVITY

MICROGRAVITY FINDINGS

INDUSTRY GRAVITY PHENOMENA SPECIFIC LIMITED

Verticals of Microgravity

Future

New Materials

Computers&
Communications

Biotech

Medical Devices Medical Applications Consumer products

Existing

1st Vertical

2nd Vertical

3rd Vertical

4th Vertical

5th Vertical

6th Vertical

Financial Investment vs Technology Risk

COMMERCIAL MICROGRAVITY & INVESTMENT OPPORTUNITIES

% Top 100 early stage investments in 2014

66

Top 100 early stage investments in the US (2014)

60 40

20

0

57

19 Boston

Others'

Silicon

ECONOMIC READINESS ASSESSMENT

- 3D concept through combining: technology readiness, market need and investment risk
- Bridges between supply, demand and capital in a systematic, standardized manner.
- <u>To advance on a Economic Readiness Level the technology itself may not necessarily need to mature but the understanding of its economic potential does.</u>
- The ultimate goal of the TRL is to mature a technology from a fundamentally new idea (research) to incorporation and efficient use into a system by optimizing a program's performance, schedule and budget at key points of its life cycle.
- Commercializing a technology or "taking a technology to market" builds upon the alignment of the technological push with the business development and the market and economic pull

ECONOMIC READINESS LEVEL

ECONOMIC READINESS LEVEL SUMMARY

- ERL 1 Identify market and economic potential by constructing and scanning across current private sector verticals to identify potential demand
- ERL 2 Define dependencies and risks by creating a list of requirements through engaging with potential adopters for each vertical from the private sector and the investment community
- ERL 3 Define vertical specific infusion points and paths for each application
- ERL 4 Review of dependencies by industry experts, investors and NASA
- ERL 5 Evaluation of use case and market to prioritize investments that address dependencies
- ERL 6 Demonstrate that selected dependencies have been solved
- ERL 7 Product successfully licensed or spin-off to the private sector
- ERL 8 Product manufactured for commercial utilization by an industry partner and available in the market place
- ERL 9 Technology is or contributes to a profitable product. ROI evaluation.

THE MACHINERY OF COMMERCIALIZATION

ZBLAN OPTICAL FIBER

 $ZBLAN = ZrF_4 - BaF_2 - LaF_3 - AIF_3 - NaF_3$

- most stable fluoride exotic glass fiber
- excellent host for doping
- large reflectivity for short distance transmission
- broad optical transmission window extending into the IR with reduced loss up to x100-1000 better than current Si fibers

ISSUE:

Different density materials with different crystallization temperatures

Gravity induced convection during pulling

Limited monolithic length (max 700m)

Microgravity suppresses nucleation and crystallization

No limit of the fiber length produced in space

Estimated ROI:

11b of preform would produce 8 km ZBLAN fiber with a nominal selling price range on Earth: \$175k/km to \$1,000k/km ~ROI: 90-300x

SiC wafer µg re-processing

SiC:

- High thermal conductivity
- High electric field breakdown strength
- High maximum current density
- Very low coefficient of thermal expansion
- Inherently Rad-hard

ACME µg reprocessing

ISSUE: defects limiting performance, reliability, fab of large scale devices

Microgravity "heals" defects important to the electrical performance of these wafers

COMMERCIAL MICROGRAVITY LEO BASED PRODUCT CYCLE³¹

ISS

ransfer and scale advanced microgravity ased technologies to LEO manufacturing

dentify and start new lines of R&D nvestigations

ERL 1

ERL 7, 9 **INNOVATION**

Private Orbital Laboratory

sell,

Identify and invest in new commercially relevant discoveriestopics that address industry needs microgravity provides a where better solution than Earth-based options.

Create new lines of investigations.

ERL 2-5

FRL 6

Attract, build trust, evelop microgravity brand Consumer oyalty, and build a rich elation so that customers vill rally for the new brand

VORTEX

20 Companies 15 Companies 15 Companies 12 Companies 10 Companies 17 Companies **VERTICALS OF MICROGRAVITY**

Technology Ethics

"Modern technology propelled by the forces of market and politics, has enhanced human power beyond anything known or even dreamed of before. It is a power over matter, over life on earth, and over man himself...and it keeps growing at an accelerating pace.

But lately, the other side of the triumphal advance has begun to show its face with palpable threats that seem hard to counter.

The net total of these threats is the overtaxing of nature, environmental and perhaps human as well. Thresholds of processes initiated by us may be reached in one direction or another with points of no return."

-Hans Jonas, "Ethics of Technology"

Technology Impacts

Examples of human needs and wants, responsive technology and long-term impacts (T Graedel, B. R. Allenby, Industrial Ecology, Prentice Hall, 1995)

Problem / Need	Technology as Solution	Consequences
Food preservation, temperature control: nontoxic, nonflammable refrigerant	Chlorofluorocarbons	Stratospheric Ozone Depletion
Destruction of crops, illness due to "pests": agent to kill insects	Synthetic	Adverse effects on birds and mammals
Energy for consumer and industry use: cheap and readily available source	Wood, coal	Deforestation, global climate change
Increased food supply: agent to aid crop growth	Nitrogen and phosphorus fertilizers	Lake eutrophication

Great 8 macro trends through 2020

Bain Macro Trends, 201134

Acknowledgements

SILICON VALLEY CONSULTANTS

MS PETRA CHEQUER
MR STEVEN RUBIN
MR MICHAEL LEEDS

Microgravity PI

Academic PI

Industry and corporate VP's, CEO's, research groups (IBM, Intel, SGI, J&J, Jlabs, Kiverdi, Samsung, etc)

Venture Capital Firms (Draper Fisher Jurvetson, Asset Management Ventures, Lux Capital, Artiman, A16Z, BVC fund,

New space collaborators (Nanoracks, TechShot, Blue Origin, Xcor, Airbus, Space System L'Oral, etc)