Theorem

## Thesis notes

13th April

## The Echo Chamber Problem - notation

- $ightharpoonup G = (V, E^+, E^-)$  interaction graph
- $\triangleright$   $\mathcal{C}$  set of contents
- ▶  $C \in C$  content,  $\mathcal{T}_C$  set of threads associated with C. A thread  $T \in \mathcal{T}_C$  is a subgraph of G
- ▶  $U \subseteq V$  subset of users, T[U] subgraph of T induced by U. |T(U)| is the number of edges of this subgraph

## The Echo Chamber Problem - notation

- ▶  $\eta(C)$  fraction of negative edges associated with C (analogous definition for a thread T). Content (or thread) controversial if  $\eta \in [\alpha, 1]$
- $ightharpoonup \hat{\mathcal{C}} \subseteq \mathcal{C}$  set of *controversial* contents
- $\triangleright$   $S_C(U)$  set of *non controversial* threads induced by U, for *controversial* contents, i.e.

$$\mathcal{S}_{C}(U) = \{T[U] \text{ s.t. } T[U] \text{ non controversial}, T \in \mathcal{T}_{C}, C \in \hat{\mathcal{C}}, U \subseteq V\}$$

$$\tag{1}$$

### The Echo Chamber Problem

**Goal**: given an interaction graph G, find  $U \subseteq V$  maximing

$$\xi(U) = \sum_{C \in \hat{\mathcal{C}}} \sum_{T[U] \in S_C(U)} |T[U]| \tag{2}$$

The set of users maximing the expression is denoted as  $\hat{U}$  and the corresponding score is  $\xi(G)$ 

maximize 
$$\sum_{ij \in E(T_k), T_k \in \mathcal{T}_C, C \in \hat{\mathcal{C}}} x_{ij}^k \tag{3}$$

$$x_{ij}^k \leq y_i, \ x_{ij}^k \leq y_j, \ x_{ij}^k \leq z_k \qquad \forall ij \in E(T_k), T_k \in \mathcal{T}_C, C \in \hat{\mathcal{C}}$$
 (4)

$$x_{ij}^k \ge -2 + y_i + y_j + z_k \qquad \forall ij \in E(T_k), T_k \in \mathcal{T}_C, C \in \hat{\mathcal{C}}$$
 (5)

$$\sum_{ij\in E^{-}(T_{k})} x_{ij}^{k} - \alpha \sum_{ij\in E(T_{k})} x_{ij}^{k} \le -\alpha z_{k} \qquad \forall T_{k} \in \mathcal{T}_{C}, C \in \hat{\mathcal{C}}$$
 (6)

$$y_i \in \{0,1\} \qquad \forall i \in V$$

$$0 \le x_{ij}^k \le 1 \qquad \forall ij \in E(T_k), T_k \in \mathcal{T}_C, C \in \hat{\mathcal{C}}$$
 (8)

$$0 \le z_k \le 1 \qquad \forall T_k \in \mathcal{T}_C, C \in \hat{\mathcal{C}}$$
 (9)

(7)

### The Densest Echo Chamber Problem

**Goal**: given an interaction graph G, find  $U \subseteq V$  maximing

$$\psi(U) = \sum_{C \in \hat{\mathcal{C}}} \sum_{T[U] \in S_C(U)} \frac{|T[U]|}{|U|} \tag{10}$$

The set of users maximing the expression is denoted as  $\hat{U}$  and the corresponding score is  $\psi(G)$ 

# Echo Chamber Problem inapproximability

#### **Theorem**

Echo Chamber Problem (ECP) has no  $n^{1-\epsilon}$ -approximation algorithm for any  $\epsilon$  unless  $\mathcal{P}=\mathcal{NP}$ 

#### **Theorem**

Densest Echo Chamber Problem (D-ECP) has no  $n^{1-\epsilon}$ -approximation algorithm for any  $\epsilon$  unless  $\mathcal{P}=\mathcal{NP}$ 

# Solving exactly the D-ECP

$$\max imize \sum_{ij \in E(T_k), T_k \in \mathcal{T}_C, C \in \hat{\mathcal{C}}} x_{ij}^k \qquad (11)$$

$$x_{ij}^k \leq y_i, \quad x_{ij}^k \leq y_j \quad \forall ij \in E(T_k), T_k \in \mathcal{T}_C, C \in \hat{\mathcal{C}} \qquad (12)$$

$$a_{ij}^k \geq -2 + b_i + b_j + z_k, \quad z_k \geq a_{ij}^k \quad \forall ij \in E(T_k), T_k \in \mathcal{T}_C, C \in \hat{\mathcal{C}} \qquad (13)$$

$$\sum_{ij \in E^-(T_k)} a_{ij}^k - \alpha \sum_{ij \in E(T_k)} a_{ij}^k \leq -\alpha z_k \quad \forall T_k \in \mathcal{T}_C, C \in \hat{\mathcal{C}} \qquad (14)$$

$$\sum_{i \in V} y_i \leq 1 \qquad \qquad (15)$$

$$y_i \geq 0, \quad b_i \in \{0,1\}, \quad b_i \geq y_i \quad \forall i \in V \qquad (16)$$

$$x_{ij}^k \geq 0, \quad a_{ij}^k \in \{0,1\}, \quad a_{ij}^k \geq x_{ij}^k \quad \forall ij \in E(T_k), T_k \in \mathcal{T}_C, C \in \hat{\mathcal{C}} \qquad (17)$$

$$0 \leq z_k \leq 1 \quad \forall T_k \in \mathcal{T}_C, C \in \hat{\mathcal{C}} \qquad (18)$$

$$y_i>0 \implies b_i=1$$
 means that  $y_i\in U$ .  $z_k=1$  means that thread  $k$  is non controversial.  $x_{ij}^k>0 \implies a_{ij}^k=1$  means that the edge contributes to the score.

The following constraints enforce that only edges ij whose both vertices are in U and are associated to a non controversial thread can contribute. Also if one edge contributes to the score  $\Longrightarrow$  thread is not controversial.

$$\begin{aligned} x_{ij}^k &\leq y_i \quad \forall ij \in E(\hat{\mathcal{C}}) \\ x_{ij}^k &\leq y_j \quad \forall ij \in E(\hat{\mathcal{C}}) \\ a_{ij}^k &\leq z_k \quad \forall ij \in E(T_k), T_k \in \mathcal{T}_C, C \in \hat{\mathcal{C}} \end{aligned}$$

Also, considering edges contributing to the score, they must not produce a controversial thread

$$\sum_{ij \in E^{-}(T_k)} a_{ij}^k - \alpha \sum_{ij \in E(T_k)} a_{ij}^k \le -\alpha z_k \quad \forall T_k \in \mathcal{T}_C, C \in \hat{\mathcal{C}}$$

If  $T_k[U]$  is controversial, then  $x_{ij}$  must be  $0 \ \forall ij \in E(T_k[U])$ .

In general either all  $ij \in E(T_k[U])$  are 0 or they are 1.

$$\begin{aligned} a_{ij}^k &\leq z_k \quad \forall ij \in E(T_k), \, T_k \in \mathcal{T}_C, \, C \in \hat{\mathcal{C}} \\ a_{ij}^k &\geq -2 + b_i + b_j + z_k \quad \forall ij \in E(T_k), \, T_k \in \mathcal{T}_C, \, C \in \hat{\mathcal{C}} \end{aligned}$$

## Density introduced by

$$\sum_{i\in V}y_i\leq 1$$



# The datasets - negative edge fractions for contents



## An initial implementation - results

▶ Beta algorithm was repeated  $\sqrt{n}$  times for a graph with n nodes

Table: Echo chamber scores, greedy approach

| Source            | V    | E    | $(\xi_{eta}(G),eta)$ | $\xi_{peel}(G)$ |
|-------------------|------|------|----------------------|-----------------|
| @emanews          | 1226 | 1842 | (0, *)               | 0               |
| @bbcscience       | 477  | 388  | $(3, 0.9)_{2,1}$     | 7 444.4         |
| @bbcentertainment | 220  | 183  | (21, 1.0)            | 16              |
| @bbctech          | 793  | 719  | (101, *) 96          | 107 132,25      |

Table: Echo chamber scores, MIP approaches

| Source            | $\xi_{MIP}(G)$ | $\xi_{MIPr}(G)$ | $\xi_{MIPr\_alg}(G)$ |
|-------------------|----------------|-----------------|----------------------|
| @emanews          | 0              | 1.43            | 0                    |
| @bbcscience       | 7 12,5         | 10.76           | 7 125                |
| @bbcentertainment | 34 35,6        | 41.69           | 34 35,6              |
| @bbctech          | 309<br>309,29  | 326.63          | 309 309,300          |

# An initial implementation - timings

► Timings are reported in seconds.

Table: Echo chamber timings, greedy approach

| Source                   | V    | E    | Beta | Peeling |
|--------------------------|------|------|------|---------|
| @emanews                 | 1226 | 1842 | 0.5  | 18062   |
| @bbcscience              | 477  | 388  | 0.05 | 678     |
| <b>@bbcentertainment</b> | 220  | 183  | 0.1  | 81      |
| @bbctech                 | 793  | 719  | 80   | 4031    |

Table: Echo chamber timings, MIP approaches

| Source                   | MIP  | MIPr | MIPr alg |
|--------------------------|------|------|----------|
| @emanews                 | 3.77 | 0.08 | 2.8      |
| @bbcscience              | 0.82 | 0.07 | 0.26     |
| <b>@bbcentertainment</b> | 0.79 | 0.09 | 1.04     |
| @bbctech                 | 2.39 | 1.76 | 0.38     |