

Transformacje współrzędnych

Informatyka Geodezyjna II sem. IV, ćwiczenia, rok akad. 2023-2024

Krzysztof Łoza, Małgorzata Chodowiec, Miłosz Średnicki grupa 1, Numery Indeksów: 325785, 325731, 325844 Wydział Geodezji i Kartografii, Politechnika Warszawska Warszawa, 13 maja 2024

Spis treści

1	Cel ćwiczenia	2
2	Wykorzystane narzędzia i materiały	2
3	Przebieg ćwiczenia	3
	3.1 Klasa 'Transformacje'	3
	3.2 Obiekt klasy 'Transformacje'	3
		3
		3
	3.4.1 Bibilioteka numpy	
4	Podsumowanie	4
	4.1 Rezultat	4
	4.2 Umiejętności nabyte w trakcie wykonywania ćwiczenia	4
	4.3 Spostrzeżenia i trudności napotkane podczas realizacji projektu	4
5	Bibliografia	4

1 Cel ćwiczenia

Celem ćwiczenia było napisanie implementacji poniższych transformacji w języku Python:

- XYZ2BLH współrzędne ortokartezjańskie do współrzędnych geodezyjnych krzywoliniowych
- BLH2XYZ współrzędne geodezyjne krzywoliniowe do współrzędnych ortokartezjańskich
- XYZ2NEU współrzędne ortokartezjańskie do współrzędnych topocentrycznych
- BL2PL2000 współrzędne geodezyjne krzywoliniowe do współrzędnych płaskich w układzie PL2000
- BL2PL1992 współrzędne geodezyjne krzywoliniowe do współrzędnych płaskich w układzie PL1992

2 Wykorzystane narzędzia i materiały

Podczas realizacji projektu posługiwaliśmy się następującym oprogramowaniem:

- Język programowania: Python 3.12.3
- \bullet IDE : Spyder 5.4.3
- Systemy operacyjne: Windows 10, Windows 11
- Git
- TeXstudio (LaTeX) tworzenie sprawozdania

3 Przebieg ćwiczenia

3.1 Klasa 'Transformacje'

Na początku zaimplementowaliśmy klasę "Transformacje" oraz algorytmy w postaci funkcji transformujących współrzędne na różne sposoby. Napisaliśmy także funkcje pomocnicze i formatujące. Każda z funkcji posiada dokumentację pozwalającą na jej zrozumienie. Wszystkie algorytmy zostały napisane przy użyciu linków zawartych w bibliografii. Wyniki działania programu porównaliśmy z poprawnymi wynikami z ćwiczeń "Geodezji Wyższej I"z 3. semestru.

Program oferuje 5 rodzajów transformacji współrzędnych. W nawiasach znajdują się nazwy argumentów, które należy podać, aby skorzystać z odpowiedniej transformacji.

- X, Y, Z do P, L, H (--xyz2plh)
- P, L, H do X, Y, Z (- -plh2xyz)
- X, Y, Z do N, E, U (--xyz2neu)
- P, L do PL2000 (--bl2pl2000)
- P, L do PL1992 (--bl2pl1992)

3.2 Obiekt klasy 'Transformacje'

Zdefiniowaliśmy metodę def __init__, tworzącą obiekt klasy "Transformacje". Metoda ta definiuje parametry w zależności od rodzaju elipsoidy (GRS80, WGS84, elipsoida Krasowskiego):

- a duża półoś elipsoidy (promień równikowy) określona wartość dla danej elipsoidy
- b mała półoś elipsoidy (promień południkowy) określona wartość dla danej elipsoidy
- flat spłaszczenie (parametr liczony na podstawie a i b)
- ecc (parametr liczony na podstawie flat)
- ecc2 (parametr liczony na podstawie flat)

3.3 Operacje na plikach wejściowym oraz wyjściowym

Zaimplementowaliśmy klauzulę if __name__ =='__main__", która jest standardowym sposobem w Pythonie na sprawdzenie, czy skrypt został uruchomiony bezpośrednio, czy zaimportowany jako moduł. W tym przypadku, jeśli skrypt jest uruchamiany bezpośrednio, a nie jest importowany to kod wewnątrz bloku 'if' zostanie wykonany.

3.3.1 Argumenty sys.argv

Pierwszym krokiem, który wykonaliśmy wewnątrz tego bloku jest próba pobrania argumentu określającego model elipsoidy (wgs84, grs80 lub krasowski) z linii poleceń za pomocą sys.argv[1]. Następnie tworzony jest obiekt klasy 'Transformacje' zgodnie z wybranym modelem elipsoidy za pomocą sys.argv[2]. Kolejnym argumentem sys.argv[4] jest określenie liczby nagłówków niezawierających współrzędnych w pliku wejściowym. Ostatnim argumentem sys.argv[-1] jest pobranie pliku/ścieżki do pliku wejściowego.

3.4 Obsługa błędów

W naszym kodzie skorzystaliśmy z bloków 'try...except', aby zapobiec niepożądanemu działaniu programu. W przypadku natrafienia na wyjątek, wyświetlamy użytkownikowi komunikat o błędzie wraz z opisem, jak go uniknąć.

3.4.1 Bibilioteka numpy

Użytkownik musi zadbać o instalację biblioteki numpy np. za pomocą %pip install numpy. Wykorzystanie jej, pozwoliło nam na złożone obliczenia oraz posługiwanie się plikami wejściowymi o dużej ilości danych. Dzięki niej uzyskaliśmy wyniki o wysokiej dokładności.

4 Podsumowanie

4.1 Rezultat

Rezultat naszej pracy zapisany jest w zdalnym repozytorium GitHub. Zawarliśmy tam skrypt naszego programu "geo v1.py"oraz plik z instrukcją obsługi o nazwie "README.md".

Wszystko dostępne pod poniższym adresem: https://github.com/malgorzatach27/git_project_1

4.2 Umiejętności nabyte w trakcie wykonywania ćwiczenia

- Rozwinięcie umiejętności pisania kodu obietowego w Pythonie
- Implementacja algorytmów ze źródeł zewnętrznych do języka Python
- Nabywanie umiejętności sprawnego korzystania z programu Git oraz repozytorium GitHub
- Współpraca, podział obowiązków i znajdowanie kompromisów w wieloosobowym zespole
- Tworzenie dokumentów w programie LaTeX
- Odpowiednie dokumentowanie pracy i tworzenie użytecznych instrukcji
- Nabycie wiedzy niezbędnej do tworzenia narzędzi w interfejsie wiersza poleceń (CLI), które będą przyjmować argumenty podane przez użytkownika podczas wywoływania

4.3 Spostrzeżenia i trudności napotkane podczas realizacji projektu

Trudnością, którą napotkaliśmy była odpowiednia implementacja transformacji XYZ2NEU w Command Prompt, z racji iż jako jedyna posiada 3 dodatkowe argumenty wejściowe, X0 Y0 Z0, które użytkownik powinien podać, a nie zawrzeć w pliku. Ostatecznie udało nam się napisać skrypt w taki sposób aby po wprowadzeniu prawidłowej komendy i wyborze transformacji XYZ2NEU program prosił użytkownika o wprowadzenie dodatkowo 3 wartości, kolejno X0, Y0, oraz Z0.

5 Bibliografia

- http://www.asgeupos.pl/index.php?wpg_type=tech_transf&sub=xyz_blh
- https://ewmapa.pl/dane/wytyczne_g-1.10.pdf
- http://www.geonet.net.pl/images/2002_12_uklady_wspolrz.pdf
- https://notatek.pl/transformacja-wspolrzednych-geocentrycznych-odbiornika -do-wspolrzednych-topocentrycznych
- Prezentacje z III semestru z przedmiotu "Geodezja Wyższa I"