5. Exploratory Data Analysis - ggplot2

CT5102 - J. Duggan

Data Exploration

"Data exploration is the art of looking at your data, rapidly generating hypotheses, quickly testing them, then repeating again and again and again." (Wickham and Grolemund 2017).

Program

Figure 1: Exploring Data

Data visualisation with ggplot2

"The simple graph has brought more information to the data analyst's mind that any other device." - John Tukey

```
d <- ggplot2::mpg # get a copy of mpg
glimpse(d) # show structure and some data</pre>
```

5. Exploratory Data Analysis - ggplot2

<chr> "f", "f", "f", "f", "f", "f", "f", "4"

<int> 18, 21, 20, 21, 16, 18, 18, 18, 16, 20

<int> 29, 29, 31, 30, 26, 26, 27, 26, 25, 28

\$ manufacturer <chr> "audi", "audi", "audi", "audi", "audi", "audi

\$ drv

\$ cty ## \$ hwv

Observations: 234
Variables: 11

Fuel Economy Data Set (ggplot2::mpg)

This dataset contains a subset of the fuel economy data that the EPA makes available on http://fueleconomy.gov. It contains only models which had a new release every year between 1999 and 2008 - this was used as a proxy for the popularity of the car.

manufacturer	car manufacturer	drv	drive type
model displ year model cyl trans	model name engine disp (I) year of make model name number of cylinders type of transm.	cty hwy fl cty class	city miles per gallon highway miles per gallon fuel type city miles per gallon "type" of car

Exploring Data

Generate a first graph to help answer the following question

- Do cars with big engines use more fuel than cars with small engines
- What might the relationship between engine size and fuel efficiency look like?
 - Positive or negative?
 - Linear or non-linear?
- Variable (scatter plot)
 - displ, a car engine size in litres (x)
 - hwy, a car's fuel efficiency on highway (y)

Plotting with ggplot2

```
ggplot(data = d) + # specify the source tibble
geom_point(mapping=aes(x=displ, # map x, y vars
y=hwy))
```


Adding a linear model

```
ggplot(data = d,aes(x=displ, y=hwy)) +
geom_point() +
geom_smooth(method = "lm")
```


Interpreting the plot

- The plot shows a negative relationship between engine size (displ) and fuel efficiency (hwy)
- Cars with big engines use more fuel
- Does this confirm or refute your hypothesis about fuel efficiency and engine size?

Challenge 5.1

- Explore the hypothesis that city driving is less fuel efficient that highway driving
- Use ggplot to present the points on the same graph, and colour each data set differently
- Does the data confirm or refute your initial hypothesis?

Aesthetic Mappings

- A third variable can be added to a 2-D plot by mapping it to an aesthetic.
- An aesthetic is a visual property of the plot's objects.
- An aesthetic's level could be colour, size or shape

```
unique(d$class)
```

```
## [1] "compact" "midsize" "suv" "2seater" "midsize" "suv" "2seater" "midsize" "midsize" "suv" "2seater" "midsize" "midsize" "suv" "2seater" "midsize" "mids
```

In ggplot2 - Adding the third variable

displ

Exploring Data Relationships

Input (X)	Output (Y)	Hypothesis?	Reason
Displacement	City MPG	Negative?	Bigger cars,less efficient
Highway MPG	City MPG	Positive?	Should be closely related
Cylinders	Highways MPG	Negative?	More cylinders, less eff.
Cylinders	Displacement	Negative?	More cylinders, bigger eng.

x=displ, y=cty

x=hwy, y=cty

x=cyl, y=cty

x=cyl, y=displ

Challenge 5.2

- Redraw the graphs, and colour by car class
- Vary the size of the point by using the number of cylinders

Input (X)	Output (Y)	Hypothesis?	Reason
Displacement	City MPG	Negative?	Bigger cars,less efficient
Highway MPG	City MPG	Positive?	Should be closely related
Cylinders	Highways MPG	Negative?	More cylinders, less eff.
Cylinders	Displacement	Negative?	More cylinders, bigger eng.

Facets

- Another way to add categorical variables is to split a plot into facets, subplots that display one subset of the data.
- To facet your plot by a single variable, use facet_wrap(), with ~
 followed by the variable name
- To facet on the combination of two variables, used facet_grid()

Facet Example 1

```
ggplot(data=d)+
  geom_point(aes(x=displ,y=hwy))+
  facet_wrap(~class)
```


Facet Example 2

```
ggplot(data=d)+
  geom_point(aes(x=displ,y=hwy,colour=class))+
  facet_wrap(~manufacturer)
```


displ

Facet Grid Example

```
ggplot(data=d)+
  geom_point(aes(x=displ,y=hwy))+
  facet_grid(drv~cyl)
```


Geoms

- A geom is a geometrical object that a plot uses to represent data
- Bar charts use bar geoms, line charts use line geoms, and scatter plots use the point geom.
- To change the geom in your plot, simply change the geom function that is added to the ggplot call.

Same data - geom 1

```
ggplot(data=d)+
  geom_smooth(aes(x=displ,y=hwy))
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
  35 -
  30 -
  20 -
```

Same data - geom 2

```
ggplot(data=d)+
geom_point(aes(x=displ,y=hwy))
```


Sample plot geoms

Geom	Purpose		
geom_smooth()	Fits a smoother to data and displays the smooth and its standard error		
geom_boxplot()	Produces a box-and-whisker plot to summarise the distribution of a set of points		
geom_histogram() geom_freqpoly()	Shows the distribution of continuous variables		
geom_bar()	Shows the distribution of categorical variables		
geom_path() geom_line()	Draws lines between data points		
geom_area()	Draws an area plot, which is a line plot filled to the y-axis. Multiple groups will be stacked upon each other		
geom_rect() geom_tile() geom_raster()	Draw rectangles		
geom_polygon()	Draws polygons, which are filled paths.		

Diamonds Data Set

A dataset containing the prices and other attributes of almost 54,000 diamonds

Table 4: Selected sample from diamonds data set

carat	cut	color	ciarity	aeptn	table	price	X	У	
0.23	Ideal	Е	SI2	61.5	55	326	3.95	3.98	2.4
0.21	Premium	Е	SI1	59.8	61	326	3.89	3.84	2.3
0.23	Good	Е	VS1	56.9	65	327	4.05	4.07	2.3
0.29	Premium	1	VS2	62.4	58	334	4.20	4.23	2.6
0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.7
0.24	Very Good	J	VVS2	62.8	57	336	3.94	3.96	2.4
0.24	Very Good	1	VVS1	62.3	57	336	3.95	3.98	2.4
0.26	Very Good	Н	SI1	61.9	55	337	4.07	4.11	2.5
0.22	Fair	Е	VS2	65.1	61	337	3.87	3.78	2.4
0.23	Very Good	Н	VS1	59.4	61	338	4.00	4.05	2.3

Explanation of Variables

Feature	Explanation
price	price in US dollars \$326-\$18,823
carat	weight of the diamond (0.2–5.01)
cut	quality of the cut (Fair, Good, Very Good, Premium, Ideal)
color	diamond colour, from J (worst) to D (best)
clarity	a measurement of how clear the diamond is (I1 (worst), SI1, SI2, VS1, VS2, VVS1, VVS2, IF (best))
x	length in mm (0–10.74)
у	width in mm (0–58.9)
z	depth in mm (0–31.8)
depth	total depth percentage = z / mean(x , y) = 2 * z / (x + y) (43–79)
table	width of top of diamond relative to widest point (43–95)

Diamonds summary

> summary(diamonds)

```
carat
                     cut
                               color
                                           clarity
                                                        depth
Min.
      :0.2000 Fair
                       : 1610
                               D: 6775
                                         ST1
                                               :13065
                                                       Min.
                                                              :43.00
1st Qu.:0.4000
               Good
                       : 4906
                              E: 9797
                                        VS2
                                               :12258
                                                       1st Qu.:61.00
Median :0.7000
               Very Good:12082 F: 9542
                                         SI2
                                               : 9194
                                                       Median :61.80
      :0.7979 Premium :13791
                              G:11292
                                        VS1
                                               : 8171
                                                              :61.75
Mean
                                                       Mean
                       :21551 H: 8304
                                      VVS2
3rd Qu.:1.0400
             Ideal
                                               : 5066
                                                       3rd Qu.:62.50
Max. :5.0100
                               I: 5422
                                      VVS1
                                               : 3655
                                                       Max.
                                                              :79.00
                               J: 2808
                                        (Other): 2531
   table
                 price
                                  х
                                                  У
                                                                 z
Min.
      :43.00
              Min. : 326
                             Min.
                                   : 0.000
                                            Min. : 0.000
                                                            Min.
                                                                  : 0.000
1st Qu.:56.00
              1st Qu.: 950
                             1st Qu.: 4.710 1st Qu.: 4.720
                                                            1st Qu.: 2.910
Median :57.00
              Median: 2401
                             Median : 5.700
                                            Median : 5.710
                                                            Median : 3.530
Mean :57.46
              Mean : 3933
                                 : 5.731
                            Mean
                                            Mean : 5.735
                                                            Mean
                                                                  : 3.539
3rd Qu.:59.00 3rd Qu.: 5324
                             3rd Qu.: 6.540 3rd Qu.: 6.540
                                                            3rd Ou.: 4.040
Max.
      :95.00
              Max.
                     :18823
                             Max.
                                   :10.740
                                            Max.
                                                   :58.900
                                                            Max.
                                                                  :31.800
```

Statistical Transformations

- Many graphs, like scatterplots, plot the raw values of the dataset
- However, other graphs (e.g. bar charts) calculate new values to plot
 - Bar charts, histograms and frequency polygons bin your data and plot bin counts, the number of points that fall in each bin
 - Smoothers fit a model to your data and the plot predictions from the model
 - Boxplots compute a robust summary of the distribution and display a specially formatted box

Bar Chart

```
ggplot(data=diamonds)+
geom_bar(aes(x=cut))
```


Bar Chart: Adding information with fill

```
ggplot(data=diamonds)+
geom_bar(aes(x=cut,fill=clarity))
```


Bar Chart: Normalising Plot

```
ggplot(data=diamonds)+
geom_bar(aes(x=cut,fill=clarity),position="fill")
```


Bar Chart: side-by-side

```
ggplot(data=diamonds)+
geom_bar(aes(x=cut,fill=clarity),position="dodge")
```


Additional Adjustment

- Recall our first scatterplot
- 126 points displayed, yet there are 234 observations
- Many points can overlap, so it makes it hard to see where the mass of data is
- Are all points spread equally, or is there one special combination that contains 129 values?
- "jitter" adds random noise to each point

Using jitter

Histogram

```
ggplot(data=diamonds,aes(x=price))+
  geom_histogram(binwidth = 500)
```


Boxplot

- Display the distribution of a continuous variable broken down by a categorical variable
- Box that stretches from the 25th to 75th percentile a distance known as the interquartile range (IRQ)
- Median in the middle of box
- Points outside more that 1.5 times the IQR from either edge of the box are displayed (outliers)
- Whisker extends to the farthest non-outlier point in the distribution

Boxplot Example

```
ggplot(data=mpg,aes(x=class,y=hwy))+
geom_boxplot()
```


Summary

- The ggplot2 approach can be summarised by a template
- It can take seven parameters, but usually not all need to be applied (defaults used)
- These seven parameters comprise the grammar of graphics