UNIVERSIDAD AUTÓNOMA DE MÉXICO Facultad de Ciencias

Autores: Fernanda Villafán Flores Fernando Alvarado Palacios Adrián Aguilera Moreno

Gráficas y Juegos

Tarea 7

1. (a) Demuestre que si G tiene diámetro mayor que 3 (posiblemente infinito), entonces \overline{G} tiene diámetro menor que 3. Concluya que si G es inconexa, entonces \overline{G} es conexa.

Demostración: Sea G una gráfica.

Probaremos que \overline{G} tiene diámetro menor a 3.

Primero, sabemos que G tiene diametro mayor a 3 entonces tomemos una trayectoria P de G tal que su longitud es n (con n > 3).

La denotaremos como:

$$P = (x_0, x_1, \dots, x_n)$$

Ahora, por definición de \overline{G} es tal que:

$$|E_{\overline{G}}| = \binom{|V|-1}{2} - |E_G|$$

Por tanto, en \overline{G} la trayectoria P cambia de la siguiente manera:

- El vértice x_0 es adyacente a los vértices x_2, x_3, \ldots, x_n , donde esto equivale a n-1 vértices.
- El vértice x_1 es adyacente a los vértices x_3, x_4, \ldots, x_n , donde esto equivale a n-2 vértices.
- El vértice x_2 es adyacente a los vértices x_0, x_4, \ldots, x_n , donde esto equivale a n-2 vértices.

Siguiendo este procedimiento, tenemos lo siguiente:

• El vértice x_i es advacente a los vértices $x_{i-2}, x_{i+2}, x_{i+3}, \ldots, x_n$, con i > 1.

Así, notemos lo siguiente:

En \overline{G} x_0 no es adyacente a x_1 , entonces necesitamos otro vértice x_3 para llegar a x_1 . Lo que implica que nos toma distancia igual a 2 llegar de x_0 a x_1 .

De la misma forma, x_1 **no es** adyacente a x_0 ni a x_2 , entonces necesitamos otro vértice x_4 para llegar a x_0 o x_2 . Lo que implica que nos toma distancia igual a 2 llegar de x_1 a x_0 o de x_1 a x_2 .

De lo anterior obtenemos que:

El vértice x_i no es adyacente al vértice x_{i-1} ni al vértice x_{i+1} , entonces necesitamos otro vértice x_{i+2} para llegar a x_{i-1} o x_{i+1} . Lo que implica que nos toma distancia igual a 2 llegar de x_i a x_{i-1} o de x_i a x_{i+1} .

Por lo tanto, \overline{G} tiene diámetro menor a 3.

Aún más, si G es inconexa entonces \overline{G} es conexa (ya que por definición, para cualesquiera dos vértices distintos $u, v \in G$ se tiene que $uv \in E_{\overline{G}}$ si y sólo si $uv \notin E_G$). Es decir, en \overline{G} estarán todas las aristas que no estén en G.

(b) Una gráfica G es autocomplementaria si $G \cong \overline{G}$. Demuestre que si G es autocomplementaria, entonces $|V| \stackrel{4}{=} 0$ o $|V| \stackrel{4}{=} 1$.

Demostración: Primero, sabemos que si $G \cong \overline{G}$ entonces $V_G = V_{\overline{G}}$.

Probaremos que $|E_G| = |E_{\overline{G}}|$.

Veamos lo siguiente:

$$|V| \stackrel{4}{\equiv} 1 \longrightarrow |V| \equiv 1 \mod 4$$

Recordando la definición de mod, tenemos:

$$|V| \equiv 1 \mod 4 \longrightarrow 4 \ |V| - 1$$

$$\longrightarrow |V| - 1 = 4 \cdot k, \text{ con } k \in \mathbb{N}$$

$$\longrightarrow |V| = 4 \cdot k + 1$$

Luego, por definición de \overline{G} , tenemos:

$$|E_{\overline{G}}| = \binom{|V|-1}{2} - |E_G|$$

Sea $n = |V_G|$. Así,

$$|E_G| = |E_{\overline{G}}|$$

$$= \binom{|V_G| - 1}{2} - |E_G|$$

$$= \binom{n - 1}{2} - (n - 1), \text{ porque sabemos que } |E_G| = |V_G - 1| \text{ y } |V_G| = n$$

$$= \frac{(n - 1)!}{2! \cdot ((n - 1) - 2)!} - (n - 1)$$

$$= \frac{(n - 1)!}{2! \cdot (n - 1 - 2)!} - (n - 1)$$

$$= \frac{(n - 1)!}{2! \cdot (n - 3)!} - (n - 1)$$

$$= \frac{(n - 1)(n - 2)(n - 3)!}{2! \cdot (n - 3)!} - (n - 1), \text{ porque } n! = n \cdot (n - 1) \cdot (n - 2)!$$

$$= \frac{(n - 1)(n - 2)(n - 3)!}{2! \cdot (n - 3)!} - (n - 1)$$

$$= \frac{(n - 1)(n - 2)}{2!} - (n - 1)$$

$$= \frac{(n - 1)(n - 2)}{2} - (n - 1), \text{ porque } 2! = 2 \cdot 1 = 2$$

$$= \frac{(n - 1)(n - 2)}{2} - \frac{2(n - 1)}{2}$$

$$= \frac{(n - 1)(n - 2) - 2(n - 1)}{2}$$

$$= \frac{n^2 - 3n + 2 - 2n + 2}{2}$$

$$= \frac{n^2 - 5n + 4}{2}$$

Ahora,

$$\frac{n^2 - 5n + 4}{2} = \frac{4\left[\frac{n^2}{4} - \frac{5n}{4} + 1\right]}{2}$$

$$= 4 \cdot \frac{\left[\frac{n^2}{4} - \frac{5n}{4} + 1\right]}{2}$$

$$= 4 \cdot \frac{\left[\frac{n^2 - 5n}{4} + 1\right]}{2}$$

$$= 4 \cdot \frac{\left[\frac{n^2 - 5n + 4}{4}\right]}{2}$$

$$= 4 \cdot \left[\frac{n^2 - 5n + 4}{8}\right]$$

Por lo tanto, tenemos lo siguiente:

$$|E_G| = 4 \cdot \left[\frac{n^2 - 5n + 4}{8} \right] \longrightarrow |V_G| - 1 = 4 \cdot \left[\frac{n^2 - 5n + 4}{8} \right]$$

Despejando $|V_G|$, obtenemos:

$$|V_G| - 1 = 4 \cdot \left[\frac{n^2 - 5n + 4}{8} \right] \longrightarrow |V_G| = 4 \cdot \left[\frac{n^2 - 5n + 4}{8} \right] + 1$$

Sea
$$k = \left[\frac{n^2 - 5n + 4}{8}\right]$$
. Entonces:

$$|V_G| = 4 \cdot k + 1$$

Por lo tanto, llegamos a que $|E_G| = |E_{\overline{G}}|$ si $|V_G| = 4 \cdot k + 1$.

- 2. Un orden topológico de una digráfica D es un orden lineal de sus vértices tal que para cada flecha a de D, la cola de a precede a su cabeza en el orden.
 - (a) Demuestre que toda digráfica acíclica tiene al menos una fuente (vértice de ingrado 0) y un sumidero (vértice de exgrado 0).

Demostración: Procedamos por reducción al absurdo. Sea D una digráfica acíclica con $\delta^+>0$ y $\delta^->0$, esto es que, para cada $v\in V_D$ hay una flecha que le "pega" a v y otra que "sale" de v. Tomemos la trayectoria \vec{T} más larga en D y sea $x\in V_D$ el último vértice de \vec{T} , luego en x sale una arista hacia algún otro vértice en \vec{T} [pues si saliera hacia algún otro vértice que no este en \vec{T} , llegariamos a que \vec{T} no es de longitud máxima!!], así $\vec{T}xy$ claramente contiene un ciclo, esto implica que D contiene un ciclo!!, he aquí una contradicción de suponer que D no contiene ciclos.

 \therefore Si D es acíclica tiene al menos una fuente y un sumidero.

(b) Deduzca que una digráfica admite un orden topológico si y sólo si es acíclica.

 $^{^{1}}$ Una arista incide en v y v es la cabeza.

 $^{^{2}}$ Una arista que inicia en v con dirección a otro vértice.

Demostración: Para este inciso analicemos 2 posibles casos:

- ⇒) Procedamos por reducción al absurdo. Sea D una digráfica tal que admite un orden topológico. Supongamos que D contiene al menos un ciclo C, entonces existe un $x \in V_D$ tal que $\{x\} \subset C$ y x es un vértice inicial y final en C, luego existe $y \in V_D$: $\{y\} \subset C$ tal que $y\bar{x}$ es una arista, por tanto y < x [esto es que y precede a x en el orden]. Nótese que hay una trayectoria \vec{T} que va de x a y en C, así x < y!! [esto es que x precede a y en el orden], he aquí una contradicción de suponer que D admite un orden topológico.
 - \therefore Si D admite un orden topológico \Rightarrow D es acíclica.
- ←) Por el inciso (a) sabemos que D tiene al menos una fuente y un sumidero, tomemos una componente conexa en D y veamos que si los vértices x es fuente e y es sumidero, entonces la trayectoria de x a y es un orden topológico, si hay más de una fuente o más de un sumidero, cada trayectoria entre una fuente y un sumidero es un orden topológico [pues de no serlo, dos flechas distintas provenientes de una misma fuente incidirían en algún vértice en común, lo que implicaría que D contiene un ciclo!!], así la componente conexa admite un orden topológico y esto pasa para cualquier componente conexa en D.
 - \therefore Si D es acíclica $\Rightarrow D$ admite un orden topológico.
 - \therefore Una digráfica admite un orden topológico si y sólo si es acíclica.
- (c) Exhiba un algoritmo de tiempo a lo más cuadrático para encontrar un orden topológico en una digráfica acíclica.

A continuación se muestra el algoritmo³ requerido:

```
1: TopologicalOrder(D; D)
```

22 return D

```
\overline{\text{Input:}} Una digráfica D acíclica.
```

 ${\bf Output:}\ {\bf Un}\ {\bf orden}\ {\bf topológico}\ {\bf admitido}\ {\bf en}\ D$ basado en números.

```
1 for v \in V_D do
       if d^-(v) = 0 then
 3
           v \leftarrow 0;
       end
 4
 5 end
 6 for v \in V_D do
       if v \neq 0 then
            temp \leftarrow 0;
 9
            for u \in V_D : u es antecesor de v en D and u \neq \text{null do}
                if temp < u then
10
                     \texttt{temp} \leftarrow u
11
                end
12
            end
13
            v \leftarrow temp + 1;
14
            for u \in V_D : u es sucesor de v en D and u \neq \text{null do}
15
                if u < v then
16
                    u \leftarrow v + 1
17
                end
18
            end
19
       end
20
21 end
```

 $^{^3\}mathrm{Tome}$ en cuenta que suponemos que D se pasa como parámetro con valores nulos en sus vértices.

- 3. Demuestre que cada uno de los siguientes problemas está en la clase NP exhibiendo un certificado y un algoritmo de tiempo polinomial para verificar el certificado (escriba el algoritmo utilizando pseudo código como el visto en clase; sólo está permitido el uso de las estructuras de control if, while y for). Demuestre que su algoritmo usa tiempo polinomial.
 - (a) Hamilton Cycle.
 - (b) Vertex Cover.
 - (c) Colouring.
 - (d) Dominating Set.

Solución de (a): A continuación se da un certificado para una gráfica que contiene un ciclo hamiltoniano:

y $S = (v_0, v_1, \dots, v_n, v_0) = (3, 10, 2, 9, 1, 16, 8, 15, 7, 14, 6, 13, 5, 12, 4, 11, 3)$ una colección que contiene los vértices en sucesión tal que está sucesión forma un ciclo hamiltoniano en H. Así, nuestro algoritmo es el siguiente:

2: HamiltonCycle($\langle H, S \rangle$; true/false)

Input: Una gráfica H y una colección S que contiene a la sucesión de vértices que representará el ciclo hamiltoniano en H.

Output: TRUE o FALSE dependiendo si S es un ciclo hamiltoniano en H.

```
1 if |V_G| \neq |S| then
 2 return false;
 з end
 4 for v \in S do
       siguiente = 0;
       while siguiente < |V_H| do
 6
           u \leftarrow S(siguiente);
 7
           siguiente \leftarrow siguiente + 1;
 8
           if vu \notin E_H then
 9
              return false;
10
11
           end
       \mathbf{end}
12
13 end
14 if S(0) \neq S(|V_H| - 1) then
       return false;
16 end
17 for v \in S do
18
       decision \leftarrow false;
       for u \in V_G do
19
           if u = v then
20
              desicion \leftarrow true;
21
           end
22
23
       end
24
       if decision = false then
           return false;
25
       end
26
27 end
```

28 return true;

Este algoritmo verifica si la entrada (input) es un sí-certificado o no.

Obs. Tomar a S como una colección da flexibilidad en su implementación, es por eso que S(int siguiente) está entre paréntesis.

Ahora, analicemos la complejidad del algoritmo HamiltonCycle, veamos que en la línea 1 tenemos una instrucción iterativa que por definición de S tenemos que se iterará $|V_G|-1$ veces, luego en la línea 6 hay otro ciclo tal que se itera $|V_G|$ veces, así por la regla de la multiplicación de complejidades tenemos una complejidad, hasta el momento, contenida en $\mathcal{O}(|V_G|^2)$. Luego, por la línea 17 sabemos que hay una instrucción iterativa no anidada en las instrucciones anteriores que se iterará $|V_G|$ veces, y por la línea 19 sabemos que hay un ciclo que se itera $|V_G|$ veces y además está anidada en el ciclo de la línea 17, luego la complejidad de HamiltonCycle esta contenida en $\mathcal{O}(|V_G|^2 + |V_G|^2)$ y por la regla de suma de complejidades tenemos que

$$\mathcal{O}(|V_G|^2 + |V_G|^2) = \mathcal{O}(|V_G|^2)$$

Como la complejidad de Hamilton Cycle está en un tiempo cuadrático y por la definición de problemas en la clase NP, tenemos que Hamilton Cycle está en la clase NP. \Box

Solución de (b): A continuación se da un certificado para una gráfica que contiene un covertura de vértices:

 $\operatorname{con} S = (v_1, v_2 v_3, v_4)$ una cubierta de vértices en G. Así nuestro algoritmo sería el que a continuación se muestra:

3: VertexCover($\langle G, S \rangle$; true/false)

Input: Una gráfica G y una colección S que contiene a la sucesión que conforma la covertura de vértices en G.

Output: TRUE o FALSE dependiendo si S es una covertura de vértices en G.

```
1 contador \leftarrow 0;
 \mathbf{2} \ \mathbf{for} \ v \in S \ \mathbf{do}
        if v \notin V_G then
           return false;
        \mathbf{end}
 5
        for u \in V_G do
 6
 7
            if vu \in E_G then
             \mid contador \leftarrow contador +1;
            end
 9
        \mathbf{end}
10
11 end
12 if contador\neq |V_G| then
    return false;
14 end
15 return true;
```

Solución de (c): A continuación se muestra un certificado para una gráfica que admite una coloración:

con S=(1R,3R,5R,0A,2A,4A) una coloración de vértices en G. Luego, nuestro algoritmo sería el que a continuación se muestra:

4: Colouring($\langle G, S \rangle$; true/false)

Input: Una gráfica G y una colección S que contiene a la sucesión que conforma la coloración de vértices en G.

Output: TRUE o FALSE dependiendo si S es una coloración de vértices en G.

```
1 if |S| = |V_G| then
 2 return false;
з end
 4 for v \in S do
      if v \notin V_G then
       return false;
 6
 7
      \mathbf{end}
      for u \in S do
 8
         if v tiene el mismo color que u then
 9
             if uv \in E_G then
10
               return false;
11
             end
12
          end
13
14
      end
15 end
16 return true;
```

Solución de (d): A continuación se muestra un conjunto dominante como certificado para una gráfica G:

con $S = (v_1, v_2, v_3)$ un conjunto dominante de vértices en G. Luego, nuestro algoritmo sería el que a continuación se muestra:

5: DominatingSet($\langle G, S \rangle$; true/false)

Input: Una gráfica G y una colección S que contiene a la sucesión que conforma un conjunto dominante de vértices en G.

Output: TRUE o FALSE dependiendo si S es un conjunto dominante de vértices en G.

```
1 \ C \leftarrow \varnothing;
 2 for v \in S do
        decision \leftarrow false;
        for u \in V_G do
 4
            if v = u then
 5
                decision \leftarrow true;
 6
 7
            end
       end
 8
 9
       if decision = false then
10
            return false;
11
       \mathbf{end}
       C \leftarrow v;
12
       for u \in V_G do
13
            if uv \in E_G then
14
15
               C \leftarrow u;
16
            end
       end
17
18 end
19 for v \in V_G do
       decision \leftarrow false;
20
        for u \in C do
\mathbf{21}
            if v = u then
22
               decision \leftarrow true;
23
24
            end
25
       end
26 end
27 return decision:
```

Puntos extra

- 1. Demuestre que toda digráfica sin lazos admite una descomposición en dos digráficas acíclicas, es decir, que existen D_1 y D_2 subdigráficas de D, acíclicas y tales que $D_1 \cup D_2 = D$ y $A_{D_1} \cap A_{D_2} = \emptyset$.
- 2. Un torneo es una digráfica en la que entre cualesquiera dos vértices existe una única flecha. Demuestre que todo torneo es fuertemente conexo o puede transformarse en un torneo fuertemente conexo al reorientar exactamente una flecha.
- 3. Demuestre que una digráfica es fuertemente conexa si y sólo si contiene un camino cerrado generador.
- 4. Demuestre que si l, m y n son enteros con $0 < l \le m \le n$, entonces existe una gráfica simple G con $\kappa = l$, $\kappa' = m$ y $\delta = n$.

Demostración: Sean l, m, n perteneciente a los Enteros y G una gráfica con K=l, k'=m y δ =n, tenemos que 0 < k ya que una gráfica no puede tener conexidad menor que $0 \rightarrow$ por proposición demostrada en clase esta gráfica tendra la desigualdad $0 < k \leqslant k' \leqslant \delta$ sustituyendo los valores $0 < l \leqslant m \leqslant n$

Por lo tanto existe la grafica (ya que la proposicion demostrada en clase era un para todo y el paratodo implica el existe) $\hfill\Box$