Буквенные тригонометрические выражения и их преобразования при решении задач в ЕГЭ по математике

- 9. Преобразование числовых и буквенных выражений
- 1. Вспоминай формулы по каждой теме
- 2. Решай новые задачи каждый день
- 3. Вдумчиво разбирай решения
 - Алгоритм применения формул приведения:

Шаг 1: определить, меняется ли функция на кофункцию:

$$sin \leftrightarrow cos$$

 $tg \leftrightarrow ctg$

Шаг 2: определить знак, который имеет *изначальная функция*, поняв, в какой четверти находится *изначальный угол* (предполагая, что α – острый)

- Если угол можно представить в виде $(\pi n \pm \alpha)$, где n натуральное, то функция на кофункцию **не меняется**.Пример: $\sin(\pi n \pm \alpha) = \odot \sin \alpha$, где на месте \odot должен стоять знак синуса для угла $(\pi n \pm \alpha)$
- Если угол можно представить в виде $\left(\frac{\pi}{2}n \pm \alpha\right)$, где n нечетное число, то функция на кофункцию **меняется**Пример: $\sin\left(\frac{\pi}{2}n \pm \alpha\right) = \odot\cos\alpha$, где на месте \odot должен стоять знак синуса для угла $\left(\frac{\pi}{2}n \pm \alpha\right)$
 - ▶ Основные формулы:

$$\sin^{2}\alpha + \cos^{2}\alpha = 1 \qquad \qquad \tan \alpha \cdot \cot \alpha = 1$$

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} \qquad \cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$

$$\cos 2\alpha = \cos^{2}\alpha - \sin^{2}\alpha \qquad \cos 2\alpha = 1 - 2\sin^{2}\alpha$$

$$\cos 2\alpha = 2\cos^{2}\alpha - 1 \qquad \sin 2\alpha = 2\sin \alpha \cos \alpha$$

Задание 1 #585

Уровень задания: Легче ЕГЭ

Найдите $\sin^2\alpha + 2\cos\alpha + \cos^2\alpha$, если $\cos\alpha = 0$, 18.

Согласно основному тригонометрическому тождеству $\sin^2\!\alpha + \cos^2\!\alpha = 1$, откуда

 $\sin^2\alpha + 2\cos\alpha + \cos^2\alpha = \sin^2\alpha + \cos^2\alpha + 2\cos\alpha = 1 + 2\cos\alpha,$ что при $\cos\alpha = 0$, 18 равно $1 + 2 \cdot 0$, 18 = 1, 36.

Ответ: 1,36

Задание 2 #586

Уровень задания: Равен ЕГЭ

Найдите $2\sin^2\alpha + 2\sin\alpha + 2\cos^2\alpha$, если $\sin\alpha = -0, 5$.

Согласно основному тригонометрическому тождеству $\sin^2 \alpha + \cos^2 \alpha = 1$, откуда

 $2\sin^2\alpha+2\sin\alpha+2\cos^2\alpha=2(\sin^2\alpha+\cos^2\alpha+\sin\alpha)=2(1+\sin\alpha),$ что при $\sin\alpha=-0,5$ равно 2(1-0,5)=1.

Ответ: 1

Задание 3 #2054

Уровень задания: Равен ЕГЭ

Найдите значение выражения $\cos 2\alpha$, если $\sin \alpha = -0$, 6.

$$\cos 2\alpha = 1 - 2\sin^2 \alpha = 1 - 2 \cdot (-0.6)^2 = 1 - 2 \cdot 0.36 = 1 - 0.72 = 0.28$$

Ответ: 0,28

Задание 4 #587

Уровень задания: Равен ЕГЭ

Найдите $2\sin\alpha$, если $\cos\alpha = -1$.

Согласно основному тригонометрическому тождеству $\sin^2\alpha + \cos^2\alpha = 1$, откуда при $\cos\alpha = -1$ получаем:

$$\sin^2\alpha + 1 = 1,$$

то есть $\sin^2\alpha=0$, откуда $\sin\alpha=0$, следовательно, $2\sin\alpha=0$.

Ответ: 0

Задание 5 #588

Уровень задания: Равен ЕГЭ

Найдите | $3\cos\alpha$ | , если $\sin\alpha = 0$.

Согласно основному тригонометрическому тождеству $\sin^2\alpha + \cos^2\alpha = 1$, откуда при $\sin\alpha = 0$ получаем:

$$0 + \cos^2 \alpha = 1$$

то есть $\cos^2\alpha=1$, откуда $\cos\alpha=\pm 1$, следовательно, $3\cos\alpha=\pm 3$, тогда $|3\cos\alpha|=|\pm 3|=3$.

Ответ: 3

Задание 6 #3848

Уровень задания: Равен ЕГЭ

Найдите $\sin \alpha$, если $\cos \alpha = \frac{\sqrt{19}}{10}$ и $\alpha \in \left(0; \frac{\pi}{2}\right)$.

Так как $\sin^2 \alpha + \cos^2 \alpha = 1$, то

$$\sin \alpha = \pm \sqrt{1 - \frac{19}{100}} = \pm \frac{9}{10}$$

Так как $\alpha \in \left(0; \frac{\pi}{2}\right)$, то $\sin \alpha > 0$, следовательно, $\sin \alpha = 0, 9$.

Ответ: 0,9

Задание 7 #591

Уровень задания: Равен ЕГЭ

Найдите $4\cos\alpha$, если $\sqrt{3}\sin\alpha=\frac{6\sqrt{2}}{5},\,\alpha\in\left(0;\frac{\pi}{2}\right).$

 $\sin \alpha = \frac{2\sqrt{6}}{5}$. Основное тригонометрическое тождество: $\sin^2 \alpha + \cos^2 \alpha = 1$, откуда получаем:

$$\frac{24}{25} + \cos^2 \alpha = 1 \qquad \Leftrightarrow \qquad \cos^2 \alpha = \frac{1}{25} \qquad \Leftrightarrow \qquad \cos \alpha = \pm 0, 2.$$

С учётом условия $\alpha \in \left(0; \frac{\pi}{2}\right)$ из двух возможных значений остаётся только $\cos \alpha = 0, 2$ (в первой четверти косинус неотрицателен).

Итого: $4\cos\alpha = 4 \cdot 0, 2 = 0, 8$.

Ответ: 0,8