# برقى ومقناطيسيات

خالد خان بوسفز کی کامسیٹ انسٹیٹیوٹ آف انفار میشن ٹیکنالو جی،اسلام آباد khalidyousafzai@comsats.edu.pk

# عنوان

| •  |                                                                      | <u> </u> | • |
|----|----------------------------------------------------------------------|----------|---|
| 1  | مقداری اور سمتیه                                                     | 1.1      |   |
| 2  | سمتي الجبرا                                                          | 1.2      |   |
| 3  | كارتيسي محدد                                                         | 1.3      |   |
| 5  | اكائبي سمتيات                                                        | 1.4      |   |
| 9  | ميداني سمتيم                                                         | 1.5      |   |
| 9  | سمتى رقبہ                                                            | 1.6      |   |
| 10 | غیر سمتی ضرب                                                         | 1.7      |   |
| 14 | سمتی ضرب یا صلیبی ضرب                                                | 1.8      |   |
| 17 | گول نلكى محدد                                                        | 1.9      |   |
| 20 | 1.9.1 نلکی اکائی سمتیات کا کارتیسی اکائی سمتیات کے ساتھ غیر سمتی ضرب |          |   |
| 20 | 1.9.2 نلکی اور کارتیسی اکائی سمتیات کا تعلق                          |          |   |
| 25 | 1.9.3 نلكي لامحدود سطحين                                             |          |   |
| 27 | کروی محدد                                                            | 1.10     |   |
| 37 | کا قانون                                                             | كولومب   | 2 |
| 37 | قوت کشش یا دفع                                                       | 2.1      |   |
| 41 | برقی میدان کی شدت                                                    | 2.2      |   |
| 44 | یکسان چارج بردار سیدهی لامحدود لکیر کا برقی میدان                    | 2.3      |   |
| 49 | يكسان چارج بردار بموار لامحدود سطح                                   | 2.4      |   |
| 53 | چارج بردار حجم                                                       | 2.5      |   |
| 54 | مزید مثال                                                            | 2.6      |   |
| 61 | برقی میدان کے سمت بہاو خط                                            | 2.7      |   |
| 63 | سوالات                                                               | 2.8      |   |

| iv | ع:مان |
|----|-------|
|    |       |

| 65  |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   |      |      |  |    |     |      |      |          |      |       |       |       |        | ,     | هيلاو | رر پا | ون او        | كا قان  | ئاؤس َ | 5  | 3 |
|-----|---|--|--|--|--|---|--|---|--|---|---|--|--|--|--|--|---|------|------|--|----|-----|------|------|----------|------|-------|-------|-------|--------|-------|-------|-------|--------------|---------|--------|----|---|
| 65  |   |  |  |  |  |   |  | • |  |   |   |  |  |  |  |  |   |      | <br> |  |    |     |      |      |          |      |       |       |       |        |       | ٠ ر   | عارج  | <u>ئن</u> چ  | ساك     | 3.     | 1  |   |
| 65  |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   |      | <br> |  |    |     |      |      |          |      |       |       |       |        |       | نجربه | کا ت  | ا کے         | فيراد   | 3.:    | 2  |   |
| 66  | ٠ |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   |      |      |  |    |     |      |      |          |      |       |       |       |        |       | نون   | ئا قا | س ک          | گاؤ     | 3.     | 3  |   |
| 68  |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   |      | <br> |  |    |     |      |      |          |      |       |       | ىمال  | استع   | کا    | قانون | ئے ا  | س ک          | گاؤ     | 3.     | 4  |   |
| 68  |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   | <br> |      |  |    |     |      |      |          |      |       |       |       | رج     | , چا  | نقط   |       | 3.4          | 4.1     |        |    |   |
| 70  |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   | <br> |      |  |    |     |      | ح    | سطي      | زی   | کرو   | دار   | ج بر  | چار    | ساں   | یکس   |       | 3.4          | 4.2     |        |    |   |
| 70  |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   | <br> |      |  | ,ر | لك  | ود   | يحد  | ٧.       | دهی  | سيا   | دار   | ج بر  | چار    | ساں   | یکس   |       | 3.4          | 4.3     |        |    |   |
| 71  |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   |      | <br> |  |    |     |      |      |          |      |       |       |       |        |       | تار   | ِی ن  | ىحور         | یم •    | 3.     | 5  |   |
| 73  |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   |      | <br> |  |    |     |      |      | ح .      | سط   | ود .  | حد    | لام   | موار   | دار ہ | ج برہ | چار   | سان .        | یکس     | 3.     | 6  |   |
| 73  |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   |      | <br> |  |    | ن   | للاق | ا اه | -<br>ن ک | قانو | کر    | س -   | گاؤ.  | ا پر   | نجم   | ئى -  | چهو   | ائى -        | انتها   | 3.     | 7  |   |
| 76  |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   |      | <br> |  |    |     |      |      |          |      |       |       |       |        |       |       |       | دو .         | پهيلا   | 3.     | 8  |   |
| 78  |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   |      | <br> |  |    |     |      |      |          | ن    | او ات | مسا   | کی    | الاو ُ | يهيا  | . میں | حدد   | ں مہ         | نلکے    | 3.     | 9  |   |
| 80  |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   |      |      |  |    |     |      |      |          |      | -     |       | _     | -      |       | عموم  |       | _            |         | 3.1    | 0  |   |
| 82  |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   |      |      |  |    |     |      |      |          |      |       |       |       | -      | _     |       | _     | -            | -       | 3.1    | 1  |   |
|     |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   |      |      |  |    |     |      |      |          |      |       |       |       |        |       | 3     | , -   | • •          |         |        |    |   |
| 85  |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   |      |      |  |    |     |      |      |          |      |       |       |       |        |       |       | باو   | قى د         | اور برا | رانائى | تو | 4 |
| 85  | ٠ |  |  |  |  | • |  |   |  | • | ٠ |  |  |  |  |  | • | •    |      |  |    |     |      |      |          |      |       |       |       |        |       | کام   | ور آ  | ئی او        | توانا   | 4.     | 1  |   |
| 86  |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   |      | <br> |  |    |     |      |      |          |      |       |       |       |        |       | لہ    | كما   | ی تا         | لكير    | 4.     | 2  |   |
| 91  |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   |      | <br> |  |    |     |      |      |          |      |       |       |       |        |       |       | ٠ ,   | ، دبار       | برقى    | 4.     | 3  |   |
| 92  |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   | <br> |      |  |    |     |      |      |          | و    | , دبا | رقى   | کا ہ  | ارج    | , چا  | نقط   |       | 4.3          | 3.1     |        |    |   |
| 93  |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   | <br> |      |  |    | باو | ر د  | برقى | بدا      | ے پ  | ن س   | ثافت  | ح ک   | چار    | ی -   | لكير  |       | 4.3          | 3.2     |        |    |   |
| 94  |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   | <br> |      |  |    |     |      |      | •        | دباو | رقى   | کا بر | نار آ | ی ن    | حور   | یم •  |       | 4.3          | 3.3     |        |    |   |
| 94  |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   |      | <br> |  |    |     |      |      |          |      | باو   | ی د   | برقو  | کی     | جوں   | چار۔  | طہ    | دد نة        | متعا    | 4.     | 4  |   |
| 98  |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   |      | <br> |  |    |     |      |      |          |      |       |       |       |        | بلان  | ی ڈھ  | و کم  | ر دبار       | برقى    | 4.     | 5  |   |
| 100 |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   | <br> |      |  |    |     |      |      |          |      | ملان  | ے ڈہ  | مير   | حدد    | ے مے  | نلك   |       | 4.5          | 5.1     |        |    |   |
| 101 |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   | <br> |      |  |    |     |      |      |          | ن    | هلا   | ں ڈ   | د می  | حدد    | ی م   | کرو   |       | 4.5          | 5.2     |        |    |   |
| 103 |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   |      |      |  |    |     |      |      |          |      |       | Ī     |       |        |       |       |       |              |         | 4.     | 6  |   |
| 105 |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   |      |      |  |    |     |      |      |          |      |       |       |       |        |       |       |       |              |         |        |    |   |
|     |   |  |  |  |  |   |  |   |  |   |   |  |  |  |  |  |   |      |      |  |    |     |      |      |          | • •  |       | 4     | _     | •      |       | •     |       |              |         |        |    |   |
| 108 |   |  |  |  |  |   |  | _ |  |   |   |  |  |  |  |  |   |      | <br> |  |    |     |      |      |          |      | انائہ | ، تە  | شافت  | 5      | ، ک   | مىداد | قى    | <u>د</u> . ر | ساک     | 4.     | 7  |   |

v عنوان

| 113 | ذو برق اور کپیسٹر                  | موصل،      | 5 |
|-----|------------------------------------|------------|---|
| 113 | يرقمي رو اور کثافت برقمي رو        | 5.1        |   |
| 115 | استمراری مساوات                    | 5.2        |   |
| 117 | موصل                               | 5.3        |   |
| 122 | موصل کے خصوصیات اور سرحدی شرائط    | 5.4        |   |
| 125 | عکس کی ترکیب                       | 5.5        |   |
| 128 | نيم موصل                           | 5.6        |   |
| 129 | خو برق                             | 5.7        |   |
| 134 | کامل ذو برق کے سرحد پر برقی شرائط  | 5.8        |   |
| 138 | موصل اور ذو برقی کے سرحدی شرائط    | 5.9        |   |
| 138 |                                    | 5.10       |   |
| 139 | 5.10.1 متوازی چادر کېيستر          |            |   |
| 141 | 5.10.2 ېم محوری کېيستر             |            |   |
| 141 | 5.10.3 ېم کوه کېيستر               |            |   |
| 142 | سلسلہ وار اور متوازی جڑے کپیسٹر    | 5.11       |   |
| 144 | دو متوازی تاروں کا کپیسٹنس         | 5.12       |   |
| 151 | ور لایلاس مساوات                   | يو ئسر ر ا | 6 |
| 153 | مسئلہ یکتائی                       | 6.1        |   |
|     | لاپلاس مساوات خطبی بر              | 6.2        |   |
|     | ۔ بار کی محدد میں لاپلاس کی مساوات | 6.3        |   |
|     | لاپلاس مساوات کر حل                | 6.4        |   |
|     | ۔                                  | 6.5        |   |
|     | پویسن مساوات کا ضربی حل            | 6.6        |   |
|     | د پارس مساوات کا صربی حل           | 6.7        |   |
| 1/4 | عددی دہرانے کا طریقہ               | 0.7        |   |

| 177 |  | قناطيسي ميدان |   |  |   |   |  |   |  |   |  |   |  |  |   | قرار م | بر | 7 |   |  |   |   |  |  |       |       |      |      |    |      |       |      |       |      |      |      |        |      |        |   |   |
|-----|--|---------------|---|--|---|---|--|---|--|---|--|---|--|--|---|--------|----|---|---|--|---|---|--|--|-------|-------|------|------|----|------|-------|------|-------|------|------|------|--------|------|--------|---|---|
| 177 |  |               |   |  | ٠ |   |  | • |  |   |  |   |  |  |   |        |    | ٠ |   |  |   | • |  |  |       |       |      |      |    |      |       |      | نانون | کا ق | رٹ ' | سيوا | وٹ-،   | بايو | 7.     | 1 |   |
| 181 |  |               |   |  |   |   |  |   |  |   |  |   |  |  |   |        |    |   |   |  |   |   |  |  |       |       |      |      |    |      |       |      | ِن .  | قانو | ورى  | کا د | پيئر َ | ايم  | 7.     | 2 |   |
| 185 |  |               |   |  |   |   |  |   |  |   |  |   |  |  |   |        |    |   |   |  |   |   |  |  |       |       |      |      |    |      |       |      |       |      |      | •    | ۣۮۺ    | گر   | 7.     | 3 |   |
| 189 |  | •             |   |  |   | • |  |   |  |   |  | • |  |  |   |        |    |   | • |  | • |   |  |  |       |       |      |      | ش  | گرد، | یں ا  | د م  | بحد   | ی •  | نلك  |      | 7.3    | . 1  |        |   |   |
| 195 |  | ٠             |   |  |   |   |  |   |  |   |  | • |  |  |   |        |    |   |   |  |   |   |  |  | ات    | ساوا  | ے ما | ، کو | دش | گر   | میں   | دد   | بح    | زمى  | عم   |      | 7.3    | .2   |        |   |   |
| 196 |  |               | • |  |   |   |  |   |  |   |  |   |  |  |   |        |    |   |   |  |   |   |  |  | <br>ت | ساواد | مس   | کی   | ش  | گرد  | ىيس   | .د • | محد   | ی    | كرو  |      | 7.3    | .3   |        |   |   |
| 197 |  |               |   |  |   |   |  |   |  |   |  |   |  |  |   |        |    |   |   |  |   |   |  |  |       |       |      |      |    |      |       |      |       |      | ئس   | ىئوك | ىئلە س | مس   | 7.     | 4 |   |
| 200 |  |               |   |  |   |   |  |   |  |   |  |   |  |  |   |        |    |   |   |  |   |   |  |  |       |       |      | بهاو | ی  | طيس  | مقناه | ت    | كثاف  | اور  | بهاو | سی ب | ناطيس  | مقن  | 7.     | 5 |   |
| 203 |  |               |   |  |   |   |  |   |  |   |  |   |  |  |   |        |    |   |   |  |   |   |  |  |       |       |      |      | او | دبا  | بسى   | ناط  | م مق  | متى  | ور س | تى ا | ر سم   | غير  | 7.     | 6 |   |
| 209 |  |               |   |  |   |   |  |   |  |   |  |   |  |  |   |        |    |   |   |  |   |   |  |  |       |       |      |      |    |      |       |      |       |      |      |      |        |      | والات  |   | o |
| 209 |  |               |   |  |   |   |  |   |  |   |  |   |  |  |   |        |    |   |   |  |   |   |  |  |       |       |      |      |    |      |       |      |       |      |      |      |        |      | والا ت |   | 0 |
| 209 |  |               |   |  |   |   |  | • |  | • |  |   |  |  | • |        |    |   |   |  |   |   |  |  |       |       |      |      |    |      |       |      | إلات  | سو   | کے   | باب  | نائى   | توا  | 8.     | 1 |   |
| 209 |  |               |   |  |   |   |  |   |  |   |  |   |  |  |   |        |    |   |   |  |   |   |  |  |       |       |      |      |    |      |       |      |       |      |      |      | يسطر   | کپ   | 8.     | 2 |   |
| 211 |  |               |   |  |   |   |  |   |  |   |  |   |  |  |   |        |    |   |   |  |   |   |  |  |       |       |      |      |    |      |       |      |       |      |      |      | بلاس   | لاپ  | 8.     | 3 |   |
| 211 |  |               |   |  |   |   |  | • |  |   |  |   |  |  |   |        |    |   |   |  |   | • |  |  |       |       |      |      |    |      |       |      |       |      | رٹ   | سيوا | وٹ-،   | بايو | 8.     | 4 |   |
|     |  |               |   |  |   |   |  |   |  |   |  |   |  |  |   |        |    |   |   |  |   |   |  |  |       |       |      |      |    |      |       |      |       |      |      |      |        |      |        |   |   |

217

فرہنگ

باب 1

سمتيات

#### 1.1 مقداری اور سمتیه

وہ طبعی مقدار جس کے مکمل اظہار کے لئے سمت کی ضرورت نہیں ہوتی مقداری اکہلاتا ہے۔ کسی چیز کی کمیت m یااس کا درجہ حرارت T مقداری کی مثالیں ہیں۔ مقداری کی قیمت اٹل یامتغیر ممکن ہے۔ کمیت اٹل مقداری کی مثال ہے۔ متغیر مقداری کی قیمت مختلف او قات اور نقاط پر مختلف ہو سکتی ہے۔ یوں کسی بھی نقطے پر درجہ حرارت کی قیمت مختلف ہو سکتی ہے۔ یوں اگر صبح کے وقت اسلام آباد میں کی قیمت مختلف ہو سکتی ہے۔ یوں اگر صبح کے وقت اسلام آباد میں کسی مقام پر درجہ حرارت C متغیرات میں محدد 2 کے متغیرات x وقت اسلام آباد میں مقداری متغیرات ہیں۔

ایی طبعی مقدار جسے بیان کرنے کے لئے سمت درکار ہو سمتیہ 3 کہلاتا ہے۔اس کتاب میں سمتیہ کی قیمت (یا طول) کو مثبت تصور کیا جائے گا۔ یوں سمتیہ کی حتمی قیمت ہی اس کی مقدار ہو گی۔سمتیہ کی مثالیں قوت، سمتی ر فتار اور سمتی اسراع ہیں۔

اس کتاب میں مقداری متغیرات کو سادہ طرز کی لکھائی میں انگریزی یا لاطینی زبان کے چھوٹے حروف مثلاً ۵،۵،۵،۰۰۰ یا بڑے حروف مثلاً ۸،۵،۳ کو سادہ طرز کی لکھائی میں انگریزی یا لاطینی زبان کے چھوٹے یا بڑے حروف سے ظاہر کیا جائے گا۔یوں قوت کو جب شاہر کیا جائے گا۔یوں قوت کو جب شاہر کیا جائے گا۔یوں قوت کو آج کھا جاتا جسمتی رفتار کو ۷ سے ظاہر کیا جائے گا۔ قلم و کاغذ استعمال کرتے ہوئے سمتیہ پر تیر یا آدھے تیر کا نشان بنایا جاتا ہے یوں قوت کو آج یا آج لکھا جاتا ہے۔سمتیہ کو تیر سے ظاہر کی جاتی ہے۔سمتیہ کو تیر سے ظاہر کیا جاتا ہے جہاں تیر کی لمبائی سمتیہ کی حتمی قیت کو المجاب کا ہے۔سمتیہ کی حتمی قیت کو آکھا جائے گا۔

شکل 1.1 میں نقطہ (1,1) پر پانی کی رفتار کو سمتیہ  $\mathbf{v}$  سے ظاہر کیا گیا ہے۔اس نقطے پر مثبت افقی محور کی سمت میں پانی کی رفتار کو سمتیہ ک و ماس مقام پر رکھی جاتی ہے جہاں سمتیہ کی قیمت بیان کی جارہی ہو۔یوں شکل میں سمتیہ کی وُم (1,1) پر رکھی گئی ہے۔اس شکل میں میں  $1 \, \mathrm{cm}$  کی لہائی  $1 \, \mathrm{cm}$  کی رفتار کو ظاہر کرتی ہے۔  $1 \, \mathrm{cm}$  کی رفتار کو ظاہر کرتی ہے۔

 $scalar^1$ 

Cartesian coordinates<sup>2</sup>

ياب 1. سمتيات







(۱) سر کے ساتھ دُم جوڑ کر مجموعہ حاصل کیا جاتا ہے۔

شکل 1.2: سمتیوں کے مجموعے کا حصول

#### 1.2 سمتى الجبرا

دو سمتیوں کا تر سمی مجموعہ حاصل کرنے کی خاطر ایک سمتیہ کے سر کو دوسری سمتیہ کے ؤم کے ساتھ ملایا جاتا ہے۔ پہلی سمتیہ کی ؤم سے دوسری سمتیہ کے سرتک سمتیہ حاصل جمع ہو گا۔ اس عمل کو شکل 1.2-الف میں دکھایا گیا ہے۔ شکل میں A کے سرکے ساتھ B کی ؤم ملائی گئی ہے۔ دوسے زیادہ سمتیوں کا مجموعہ بھی اس عمل کو استعال کرتے ہوئے حاصل کیا جاتا ہے۔ اس عمل کو سرسے ؤم جوڑنا 4 کہتے ہیں۔ شکل 1.2- بیں دو سمتیوں کے ؤم ملا کر سمتیوں کے موازی الاضلاع 5 سے ان کا مجموعہ حاصل کرنا دکھایا گیا ہے جسے دیکھ کر صاف ظاہر ہے کہ A + B = B + A ہے لیخی سمتیوں کا مجموعہ قانون تلازی 7 تیادل 6 پر پورا اترتا ہے۔ اس طرح سمتیوں کا مجموعہ قانون تلازی 7

$$\mathbf{A} + (\mathbf{B} + \mathbf{C}) = (\mathbf{A} + \mathbf{B}) + \mathbf{C}$$

پر بھی پورااتر تاہے۔

سمتیوں کے تفریق کا اصول جع کے اصول سے حاصل کیا جا سکتا ہے۔ ہم A - B کو A + (-B) لکھ سکتے ہیں جہاں B - سے مرادیہ ہے کہ سمتیہ B کی سمت الٹی کر دی گئی ہے۔ یوں A - B حاصل کرنے کی خاطر B کی سمت الٹی کرتے ہوئے اس نئے سمتیہ کو A کے ساتھ جع کیا جاتا ہے۔

سمتیہ A کو مثبت مقداری kسے ضرب دینے سے سمتیہ کی سمت پر کوئی اثر نہیں ہوتا جبکہ اس کی لمبائی k گنا ہو جاتی ہے۔اس کے برعکس سمتیہ A کو منفی مقداری kسے ضرب دینے سے سمتیہ کی سمت الٹ ہو جاتی ہے اور اس کی لمبائی |k| گنا ہو جاتی ہے۔

head to tail rule<sup>4</sup> parallelogram law<sup>5</sup> commutative law<sup>6</sup> associative law<sup>7</sup> 1.3. كارتيسى محدد



(ب) اکائی سمتیوں کی مدد سے کسی بھی سمتیہ کو ظاہر کیا جا سکتا ہرِ۔



شكل 1.3: اكائي سمتيه اور ان كا استعمال

رو سمتیے اُس صورت میں برابر ہوتے ہیں جب ان کا تفریق صفر کے برابر ہو یعنی A=B تب ہو گا جب A-B=0 ہو۔

ہم سمتی میدان کے متغیرات کو آپس میں جمع یا منفی صرف اُس صورت کریں گے جب بیہ متغیرات ایک ہی نقطے پر بیان کئے گئے ہوں۔ یوں کسی بھی نقطے پر دویا دوسے زیادہ مقناطیسوں کا اجتماعی مقناطیسی میدان حاصل کرتے ہوئے اس نقطے پر تمام مقناطیسوں کا علیحدہ علیحدہ مقناطیسی میدان لیتے ہوئے ان کا مجموعہ لیا جائے گا۔

اگر ہم سمتی میدان کی بات نہ کر رہے ہوں تب ہم مختلف مقامات پر پائے جانے والے سمتیوں کا بھی مجموعہ یا فرق لے سکتے ہیں۔یوں سمندر کے پانی میں ڈوبے آب دوزکی اوپر اور پچلی سطح پر قوت کا مجموعہ حاصل کرتے ہوئے ہم یہ معلوم کر سکتے ہیں کہ آیا یہ مزید ڈوبے گایا نہیں۔

# 1.3 كارتيسي محدد

اییا طریقہ جس سے کسی نقطے کا مقام بیان کیا جائے محدد 8 کہلاتا ہے۔سید ھی سطح پر کسی بھی نقطے کو دو محدد سے ظاہر کیا جاسکتا ہے۔ خلاء تین طرفہ 9 ہے المذا خلاء میں کسی بھی نقطے کو تین محدد سے ظاہر کیا جاسکتا ہے۔ شکل  $a_{\rm N}$  اور  $a_{\rm N}$  دکھائے خلاء میں محدد پر اکائی لمبائی کے دو سمتیات  $a_{\rm N}$  اور  $a_{\rm N}$  دکھائے ہیں۔اکائی سمتیہ کی سمت مثبت  $a_{\rm N}$  جانب کو ہے جبکہ  $a_{\rm N}$  کی سمت مثبت  $a_{\rm N}$  کی سمتہ کو دو یا دو سے زیادہ سمتیوں کے مجموعے کی شکل میں کہ کا میں کہ کا میں کہ کہ کہ اور  $a_{\rm N}$  کی کہ کہ کہ کہ کہ کہ کا میں کہ کا میں کہ کہ کہ کا میں کہ کا میں دکھایا گیا ہے یعنی

$$(1.2) A = A_x + A_y$$

زمین کی سطح کو لا محدود سید ھی سطح تصور کرتے ہوئے، اس کے ہم سطحی 0 دو عمود کی کیبریں کھینچتے ہوئے ایک کلیبر کو x محدد اور دو سر کی کلیبر کو y محدد الحد دو سید ھی سطح تصور کیا جا سکتا ہے۔ زمین کے ہم سطحی کلیبر سے مراد ایس کلیبر ہے جس پر ہر نقطہ اس سطح کو چھوتا ہے۔ x محدد کے مثبت حصے سے گھڑی کی الٹ سمت گھومتے ہوئے نوے در جے پر y محدد کا مثبت حصہ رکھتے ہوئے اونچائی کو x محدد کے مثبت حصے سے ظاہر کیا جائے گا۔ اب اگر اونچائی صفر رکھتے ہوئے x اور y کو تبدیل کیا جائے تو ہم زمین کی سطح پر حرکت کریں گے۔ اس طرح ہم دیکھتے ہیں کہ زمین کی سطح پر y و جبکہ اس پر x اور y آزاد متغیرات ہیں۔ یول زمین کی سطح کو y حسط کو تبدیل کیا جائے وہ ہم کہتے ہیں جے





(۱) کارتیسی محدد میں عمودی سیدهی سطحیں۔

شكل 1.4: كارتيسي نظام مين نقطه اور تين عمودى سطحين.

کھا جا سکتا ہے۔ شکل 1.4-الف میں اس سطح کی نشاندہی کی گئی ہے۔ہم بالکل اسی طرح 0 y=0 سطح اور x=0 بیان کر سکتے ہیں۔

شکل 1.4-ب کو دیکھتے ہوئے آگے پڑھیں۔ کار تیسی محدد میں کسی بھی نقطے کو  $(x_0, y_0, z_0)$  کسیا جا سکتا ہے۔ اس نقطے تک پہنچنے کی خاطر کار تیسی محدد کے مرکز سے پہلے x محدد کے متوازی  $x_0$  فاصلہ طے کرتے ہوئے  $(x_0, 0, 0)$  تک پہنچیں۔ اس کے بعد y محدد کے متوازی  $y_0$  فاصلہ طے کرتے ہوئے درکار نقطہ  $y_0$  نقطہ  $y_0$  تک پہنچیں۔ اس عمل میں یہ ضروری ہوئے درکار نقطہ  $y_0$  تک پہنچیں۔ اس عمل میں یہ ضروری نہیں کہ پہلے  $y_0$  محدد کے متوازی  $y_0$  فاصلہ طے کرتے ہوئے ہیں۔ تینوں فاصلوں کو کسی بھی ترتیب سے طے کیا جا سکتا ہے۔ محدد کے متوازی  $y_0$  فاصلہ طے کرتے ہوئے بھی اسی نقطے تک پہنچ سکتے ہیں۔ تینوں فاصلوں کو کسی بھی ترتیب سے طے کیا جا سکتا ہے۔

نقطہ  $(x_0,y_0,z_0)$  تک قدر مختلف انداز سے بھی پہنچا جا سکتا ہے جسے کار تیسی محدد میں سمجھنا زیادہ آسان ہے۔فرض کریں کہ  $x=x_0$  پر لا محدود  $y=x_0$  سید ھی سطح بنائی جائے۔ایی سطح کو  $x=x_0$  سطح کہتے ہیں۔اس سطح کو  $y=x_0$ 

$$x = x_0, \quad y \le |\mp \infty|, \quad z \le |\mp \infty|$$

xz ککھا جا سکتا ہے۔اس مساوات میں  $x_0$  مقررہ ہے جبکہ y اور z متغیرات ہیں۔دو متغیرات کی مساوات سطح کو ظاہر کرتی ہے۔اگر  $y=y_0$  لا محدود  $x_0$  سید ھی سطح بنائی جائے تو یہ دو سطحے آپس میں سید ھی کیبر پر ملیں گے۔یہ کلیر

$$x = x_0, \quad y = y_0, \quad z \le |\mp \infty|$$

xy جاستی ہے۔اس مساوات میں  $x_0$  اور  $y_0$  مقررہ ہیں جبکہ کے متغیرہ ہے۔ایک متغیرہ کی مساوات لکیر کو ظاہر کرتی ہے۔اب اگر  $x_0$  عظر وہ کہ لامحدود  $x_0$  بنائی جائے تب یہ تینوں سطحے ایک نقطے  $x_0$  کی  $x_0$  پر آپس کو چھو ٹنگے۔یہ صورت حال شکل 1.5 میں دکھائی گئ ہے جہاں لامحدود سطحوں کے کچھ جھے دکھائے گئے ہیں۔آپ دیکھیں گے کہ نقطے تک پہنچنے کا یہ طریقہ دیگر محدد میں استعال کرنالاز می ثابت ہوگا۔

coordinates<sup>8</sup> hree dimensional<sup>9</sup> coplanar<sup>10</sup> 5.1. اكائي سمتيات



شکل 1.5: تین عمودی سطحوں سے نقطے کا حصول۔



شكل 1.6: چه سطحر مكعب گهيرتي ہيں۔

 $z = z_0 + dy$  واور ای طرح  $y = y_0 + dy$  متوازی  $x = x_0 + dx$  متوازی  $x = x_0 + dx$  بر اور ای طرح  $y = y_0 + dy$  متوازی  $y = y_0 + dy$  بر اور ای طرح  $y = y_0 + dy$  بر اور ای طرح ایک چیو ٹی مکعب نما تجم کو گھیریں گی جیے شکل 1.6 میں دکھایا گیا ہے جبکہ بیہ تین نئی سطحیں آپس میں نقطہ  $y = y_0 + dx$  مکعب نما کے اطراف  $y = y_0 + dx$  اور  $y = y_0 + dx$  والی سطح کار قبہ  $y = y_0 + dx$  مکعب نما کے اطراف  $y = y_0 + dx$  وونوں  $y = y_0 + dx$  وونوں  $y = y_0 + dx$  وونوں  $y = y_0 + dx$  وونوں کے رقع بیں جبکہ بائیں اور دائیں سطحوں کے رقع کے برابر ہیں۔ اس مکعب نما کی وجم کار قبہ بھی وادر پھیلی سطح وونوں کے وونوں  $y = y_0 + dx$  میں نہیں دکھایا گیا ہے جبکہ نقطہ  $y = y_0 + dx$  مکعب نما کا وہ واحد کونا ہے جسے شکل میں نہیں دکھایا گیا۔ ان دو نقطوں کے در میان فاصلہ  $y = y_0 + dx$  میں نہیں دکھایا گیا۔ ان دو نقطوں کے در میان فاصلہ  $y = y_0 + dx$ 

کار تیسی محدد کے تینوں متغیرات تبدیل کرنے سے ہم N سے N' پہنچتے ہیں۔N سے N' تک کی سمتیہ

$$dL = dxa_X + dya_Y + dza_Z$$

کلھی جاتی ہے۔ یہ مساوات کسی بھی دو قریبی نقطوں کے در میان سمتی لمبائی دیتی ہے۔

## 1.4 اكائى سمتيات

حصہ 1.3 کے شروع میں دوطر فہ کار تیسی نظام میں سیدھی سطح پر کسی بھی سمتیہ کو دوسمتیات کی صورت میں لکھناد کھایا گیا۔ یہی طریقہ تین طرفہ کار تیسی نظام کے تین اکائی سمتیات ہیں میں عمود ک اور  $a_{\rm Z}$  اور  $a_{\rm Z}$  کلھے جاتے ہیں۔ یہ تینوں سمتیات آپس میں عمود ک



شکل 1.7: کارتیسی نظام کے اکائی سمتیات اور ان کا استعمال



شكل 1.8: كارتيسي نظام مين سمتيه كي مساوات كا حصول

y سمت x کی سمت

 $r_2 = x_2 a_{\mathrm{X}} + x_1 a_{\mathrm{X}} + y_1 a_{\mathrm{Y}} + y_1 a_{\mathrm{Y}}$ 



شكل 1.9: كارتيسي نظام ميں چند سمتيات.

1.4. اكائي سمتيات



شكل 1.10: كارتيسي نظام مين سمتيه كا طول.

 $r_2 = r_{21} + r_1$  کھا جا سکتا ہے جس سے کے اصول کے استعال سے  $r_2 = r_{21} + r_1$ 

(1.4) 
$$r_{21} = r_2 - r_1$$

$$= (x_2 - x_1)a_X + (y_2 - y_1)a_Y + (z_2 - z_1)a_Z$$

حاصل ہوتا ہے۔اس مساوات کے استعال سے سمتیہ کی مساوات باآسانی حاصل ہوتی ہے۔سمتیہ  $r_{21}$  کلھتے ہوئے زیر نوشت میں سمتیہ کی نوک کو 2 اور اس کی وگر میں اجزاء کی وُم کو 1 سے ظاہر کیا گیا ہے۔اس کتاب میں سمتیہ لکھتے ہوئے نوک اور وُم کو اسی ترتیب سے زیر نوشت میں لکھا جائے گا۔ یوں سمتیہ  $r_{21}$  کو تین اجزاء کی وُم کو 1 سے خاہر کیا گیا ہے۔ $(y_2-y_1)a_y$  اور  $(x_2-z_1)a_z$  کے مجموعے کی شکل میں لکھا جا سکتا ہے۔

شکل 1.7-ب میں مرکز سے (1,3,2) تک سمتیہ د کھایا گیا ہے۔آپ دیکھ سکتے ہیں کہ اس کو تین سمتیات کا مجموعہ لکھا جا سکتا ہے یعنی + 1.7 شکل 1.7-ب میں مرکز سے (1,3,2) تک سمتیا ہوئے بین سمتیات استعمال کرتے ہوئے تینوں اجزاء کو لکھا گیا ہے۔ سمتیہ کی ؤم (0,0,0) اور اس کی نوک (1,3,2) پر لیتے ہوئے بیمی جواب مساوات 1.4 سے بھی حاصل ہوتا ہے۔

مثق 1.1: مساوات 1.4 کے استعال سے شکل 1.9 میں تمام سمتیات لکھیں۔

جوابات: تمام جوابات شکل میں دئے گئے ہیں۔

شکل 1.10 میں مرکز سے نقطہ z=0 تک کا فاصلہ z=0 مسکلہ فیثا نورث کی مدد سے z=0 مسکلہ نورث کی مدد سے روز میں مسکلہ نورث کی مدد سے روز مسکلہ نورٹ کی مدد سے روز مسکلہ نورٹ کی مدد سے روز مسکلہ کی مدد سے روز مسکلہ نورٹ کی مدد سے روز مسکلہ کی م

Pythagoras theorem<sup>11</sup>



شكل 1.11: سمتيون كا استعمال

مساوات 1.4 سمتیہ کی عمومی مساوات ہے۔اس میں دئے سمتیہ  $r_{21}$  کی وُم محدد کے مرکز پر رکھنے سے صاف ظاہر ہے کہ سمتیہ کی مقدار

(1.5) 
$$|r_{21}| = r_{21} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

ے برابر ہے۔اگر سمتیہ کواں کی مقدار سے تقسیم کیا جائے تو حاصل جواب کی مقدار اکائی ہوگی جبکہ اس کی سمت میں کوئی تبدیلی رونما نہیں ہوگی۔یوں  $r_{21}$  کو  $r_{21}$  سمت میں اکائی سمتیہ  $r_{21}$  حاصل کی جاسکتی ہے۔

(1.6) 
$$a_{r21} = \frac{r_{21}}{|r_{21}|} = \frac{(x_2 - x_1)a_x + (y_2 - y_1)a_y + (z_2 - z_1)a_z}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}}$$

یاد رہے کہ سمتیہ کی سمت اور طول تبدیل کئے بغیر اسے ایک مقام سے دوسری مقام منتقل کیا جاسکتا ہے۔البتہ وہ سمتیہ جو کسی نقطے کی مقام تعین کرتا ہو کو اگر کہیں اور منتقل کیا جائے تو ایسی صورت میں سمتیہ کی نوک درکار نقطے پر نہیں رہے گی۔اسی حقیقت کی بناپر میدان ظاہر کرنے والے سمتیہ کو اپنی جگہ سے نہیں ہٹایا جاسکتا۔میدانی سمتیہ کی دُم اس مقام پر پائی جاتی ہے جہاں میدان بیان کی جارہی ہو۔

سمتیات کے استعال سے نقطہ (x,y,z) کے مقام کو  $x = xa_X + ya_Y + za_Z$  کو بالکل اس  $F = xa_X + ya_Y + za_Z$  کو بالکل اس  $F = F_x a_X + F_y a_Y + F_z a_Z$  اور  $F_x a_Z$  کے برابر ہوگی۔  $F_x a_Z = x$  کی مقدار  $F_x a_Z = x$  کی مقدار ہوگی۔

مثال 1.1: نقطہ (-5,2,-1) مقام ظاہر کرنے والا سمتیہ اور اس سمتیہ کا طول حاصل کریں۔ اس سمتیہ کی سمت میں اکائی سمتیہ حاصل کریں۔ مثال 1.1: نقطہ (-5,2,-1) مقام ظاہر کرنے والا سمتیہ اور اس سمتیہ کا طول (-5,2,-1) مثل علی سمتیہ کا طول (-5,2,-1) مقام ظاہر کرنے والا سمتیہ کا طول (-5,2,-1) مقام خان سمتیہ کی سمتیہ کا طول (-5,2,-1) مقام ظاہر کرنے والا سمتیہ کا طول (-5,2,-1) مقام ظاہر کرنے والا سمتیہ کی سمتیہ کی سمتیہ کی سمتیہ کے سمتیہ کا طول کریں۔ اس سمتیہ کا طول کی سمتیہ کی سمت میں اور اس سمتیہ کی سمتیہ کرنے والا سمتیہ کی سمتیہ کے سمتیہ کی سم

مثال 1.2: شکل 1.11 میں تین نقطے  $N(4,5,1) \cdot N(1,6,4) \cdot N$  اور  $P(1,2,2) \cdot P(1,2,2)$  دئے گئے ہیں۔ M اور N کے در میان سیدھی لکیر پر N سے کل فاصلے کے  $\frac{1}{5}$  پر نقطہ Q پایا جاتا ہے۔ Q سے سمتیہ حاصل کرتے ہوئے ان دو نقطوں کے در میان فاصلہ معلوم کریں۔ حل: N سے N تک سمتیہ

$$r_{NM} = (4-1)a_{X} + (5-6)a_{Y} + (1-4)a_{Z}$$
  
=  $3a_{X} - 1a_{Y} - 3a_{Z}$ 

1.5. میدانی سمتیہ

بے۔ 
$$M$$
 سے  $Q$  تک سمتیہ  $r_{QM}$  اور  $r_{NM}$  ایک ہی سمت میں ہیں جبکہ  $|r_{QM}| = \frac{1}{3} |r_{NM}| = \frac{1}{3} |r_{NM}|$  جہد  $|r_{QM}| = \frac{1}{3} r_{NM} = \frac{1}{3} (3a_{\rm X} - 1a_{\rm Y} - 3a_{\rm Z}) = 1a_{\rm X} - \frac{1}{3} a_{\rm Y} - 1a_{\rm Z}$ 

ہو گا۔ M سے P تک سمتیہ

$$r_{PM} = (1-1)a_X + (2-6)a_y + (2-4)a_z$$
  
=  $-4a_y - 2a_z$ 

ہے۔ شکل کو دکھتے ہوئے ہم لکھ سکتے ہیں  $r_{QM}+r_{PQ}=r_{PM}$  للذا

$$egin{aligned} m{r}_{PQ} &= m{r}_{PM} - m{r}_{QM} \ &= (-4m{a}_{ ext{y}} - 2m{a}_{ ext{z}}) - (1m{a}_{ ext{x}} - rac{1}{3}m{a}_{ ext{y}} - 1m{a}_{ ext{z}}) \ &= -1m{a}_{ ext{x}} - rac{11}{3}m{a}_{ ext{y}} - 1m{a}_{ ext{z}} \end{aligned}$$

$$-2 \sqrt{11 + \left(\frac{11}{3}\right)^2 + 1^2} = 3.93$$
 ہو گا۔  $Q$  سے  $P$  تک فاصلہ  $P$  تک فاصلہ  $P$ 

مثق 1.2: مثال 1.2 میں دئے نقطوں کو استعال کرتے ہوئے M سے P تک سمتیہ حاصل کریں۔اسی طرح P سے N تک سمتیہ اور M سے N تک سمتیہ حاصل کریں۔پہلے دو جوابات کو استعال کرتے ہوئے سر سے دُم جوڑنے کے اصول سے تیسرا سمتیہ دوبارہ حاصل کریں۔

 $-6a_{X}+12a_{Z}$  ابات: $-1a_{X}+4a_{Y}+12a_{Z}$  وابات:

# 1.5 میدانی سمتیہ

1.6 سمتى رقب

کسی بھی سطح کے دواطراف ہوتے ہیں۔ یوں سطح کے کسی بھی نقطے پر دو آپس میں الٹ سمتوں میں عمود بنائے جا سکتے ہیں۔ سید ھی سطح جس کار قبہ S ہو کے ایک طرف پر اکائی عمود مرس کے اور دوسر کی طرف پر اکائی عمود  $a_N$  اور  $a_N$  اور  $a_N$  اور  $a_N$  کیا جائے تب اس سطح کا سمت رقبہ S ہوگا۔ ہند سطح کے بیرونی اکائی عمود کو سطح کی سمت تصور کیا جاتا ہے۔ شکل 1.12 میں سمتی رقبہ S اور S اور S کا حکے بیر ونی عمود کو ہی سطح کی سمت دکھائے گئے ہیں جہاں بند سطح کے بیرونی عمود کو ہی سطح کی سمت دکھائے گئے ہیں جہاں بند سطح کے بیرونی عمود کو ہی سطح کی سمت دکھائے گئے ہیں جہاں بند سطح کے بیرونی عمود کو ہی سطح کی سمت دکھائے گئے ہیں جہاں بند سطح کے بیرونی عمود کو ہی سطح کی سمت دکھائے گئے ہیں جہاں بند سطح کے بیرونی عمود کو ہی سطح کی سمت دکھائے گئے ہیں جہاں بند سطح کے بیرونی عمود کو ہی سطح کی سمت دکھائے گئے ہیں جہاں بند سطح کے بیرونی عمود کو ہی سطح کی سمت دکھائے گئے ہیں جہاں بند سطح کے بیرونی عمود کو ہی سطح کی سمت دکھائے گئے ہیں جہاں بند سطح کے بیرونی عمود کو ہی سطح کی سمت دکھائے گئے ہیں جہاں بند سطح کے بیرونی عمود کو بی سطح کی سطح کی سطح کے بیرونی عمود کو سطح کی سطح کے بیرونی عمود کو بی سطح کی سطح کی سطح کے بیرونی عمود کو بی سطح کی سطح کی

میمود سطح کے ساتھ نوے درجہ زاویہ بناتا ہے۔  $m{a}_N$  کے زیر نوشت میں N، لفظ نوے کے پہلے حرف کی آواز کو ظاہر کرتا ہے۔ $^{12}$  vector area $^{13}$ 



شكل 1.12: سمتى رقبه

#### 1.7 غير سمتي ضرب

دوسمتیات A اور B کے غیر سمق ضرب $^{14}$  سے مراد A کی مقدار ضربِ B کی مقدار ضربِ سمتیوں کے مابین چھوٹے زاویے کا کوسائن ہے۔  $A \cdot B = |A| |B| \cos \theta_{AB}$ 

اگر دونوں سمتیات کی دُم ایک ہی جگہ پر نہ ہو تب ان کے ماہین زاویہ دریافت کرنے کی خاطر سمتیوں کی سمت تبدیل کئے بغیر انہیں ایک نقطے پر منتقل کیا جا سکتا ہے۔ غیر سمتی ضرب دو سمتیوں کے ماہین کیا جاتا ہے جبکہ اس کا حاصل جواب مقداری ہوتا ہے جس کی وجہ سے اسے مقداری ضرب بھی کہا جاتا ہے۔ یوں  $A \cdot B$  کو "A فظم کہا جاتا ہے۔ خیر سمتی ضرب کو سمتیوں کے در میان نقطے سے ظاہر کیا جاتا ہے۔ اس وجہ سے اسے ضرب نقطہ A کو  $A \cdot B$  کو "A فظم اجاتا ہے۔ بالکل سادہ ضرب کی طرح  $A \cdot B$  کو  $A \cdot B$  بھی کھا جا سکتا ہے لین غیر سمتی ضرب میں متغیرات کی ترتیب اہمیت نہیں رکھتی۔

کار تیسی اکائی سمتیات  $a_y$  ،  $a_x$  اور  $a_z$  آپس میں عمود ی ہیں لہذاان میں کسی بھی دوسمتیات کے درمیان 90 زاویہ پایا جاتا ہے۔ چونکہ 0 = 00 cos کے برابر ہوتا ہے لہذاان میں کسی بھی دو سمتیوں کا غیر سمتی ضرب صفر کے برابر ہوتا ہے یعنی

$$a_{\mathbf{X}} \cdot a_{\mathbf{Y}} = 0, \quad a_{\mathbf{X}} \cdot a_{\mathbf{Z}} = 0, \quad a_{\mathbf{Y}} \cdot a_{\mathbf{Z}} = 0$$

ایک ہی سمت میں دو سمتیوں کے در میان صفر زاویہ ہوتا ہے اور  $\cos 0 = 1$  کے برابر ہے۔ اکائی سمتیہ کا طول بھی ایک کے برابر ہے لہذا مساوات 1.7 کے تحت  $a_{
m X}$  کا فیر سمتی ضرب

$$a_{X} \cdot a_{X} = (|a_{X}|)(|a_{X}|)(\cos 0) = (1)(1)(1) = 1$$

ہو گا۔بقایا دو کارتیسی اکائی سمتیات کا خود غیر سمتی ضرب بھی ایک کے برابر ہے۔

$$a_{\mathbf{X}} \cdot a_{\mathbf{X}} = 1, \quad a_{\mathbf{Y}} \cdot a_{\mathbf{Y}} = 1, \quad a_{\mathbf{Z}} \cdot a_{\mathbf{Z}} = 1$$

مساوات 1.8 اور مساوات 1.9 کو کرونیکر ڈیلٹا $\delta_{ij}$  کی مرد سے ایک ہی مساوات کی مدد سے بیوں لکھا جا سکتا ہے۔

$$a_i \cdot a_j = \delta_{ij}$$

جہاں

(1.11) 
$$\delta_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

scalar product<sup>14</sup> dot product<sup>15</sup>

<sup>&</sup>lt;sup>16</sup>یہ لیوپولڈ کرونیکر کے نام سے منسوب ہے۔

1.7. غير سمتى ضرب

 $a_{\mathrm{X}}\cdot a_{\mathrm{Y}}$  کی قیمت صفر کے برابر لی جاتی ہے۔ یوں  $a_{\mathrm{Z}}$  کی صورت میں ہی  $\delta_{ij}$  کی قیمت صفر کے برابر لی جاتی ہے۔ یوں  $a_{\mathrm{Z}}$  کی صورت میں ہی  $a_{\mathrm{Z}}$  کی سورت میں ہی المذاء میں  $a_{\mathrm{Z}}$  کی صورت میں ہی المذاء میں ہو نے جا اور میں لیڈا  $a_{\mathrm{Z}}$  کی صورت میں ہی المذاء میں ہو نے بیار ہو گا۔ اس کے برابر ہو گا۔ اس کے

 $A = A_x a_{\rm X} + A_y a_{\rm Y} + \mathcal{I}$  کار تیسی تین عمودی اکائیوں کی مدد سے سمتیات کا غیر سمتی ضرب نہایت آسانی سے حاصل ہوتا ہے۔ یوں اگر جا  $B = B_x a_{\rm X} + B_y a_{\rm Y} + B_z a_z$  اور  $A_z a_z$  اور  $A_z a_z$ 

$$\mathbf{A} \cdot \mathbf{B} = (A_x \mathbf{a}_X + A_y \mathbf{a}_Y + A_z \mathbf{a}_Z) \cdot (B_x \mathbf{a}_X + B_y \mathbf{a}_Y + B_z \mathbf{a}_Z)$$

$$= A_x B_x \mathbf{a}_X \cdot \mathbf{a}_X + A_x B_y \mathbf{a}_X \cdot \mathbf{a}_Y + A_x B_z \mathbf{a}_X \cdot \mathbf{a}_Z$$

$$+ A_y B_x \mathbf{a}_Y \cdot \mathbf{a}_X + A_y B_y \mathbf{a}_Y \cdot \mathbf{a}_Y + A_y B_z \mathbf{a}_Y \cdot \mathbf{a}_Z$$

$$+ A_z B_x \mathbf{a}_Z \cdot \mathbf{a}_X + A_z B_y \mathbf{a}_Z \cdot \mathbf{a}_Y + A_z B_z \mathbf{a}_Z \cdot \mathbf{a}_Z$$

ہو گا۔ مساوات 1.8 اور مساوات 1.9 کا سہارا لیتے ہوئے یوں

$$\mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y + A_z B_z$$

حاصل ہوتا ہے۔اس مساوات سے ہم دیکھتے ہیں کہ سمتیہ A کا خود غیر سمتی ضرب

(1.13) 
$$\mathbf{A} \cdot \mathbf{A} = A_x^2 + A_y^2 + A_z^2 = |\mathbf{A}|^2$$

اس کے طول کے مربع کے برابر ہے۔ یہ انتہائی اہم نتیجہ ہے جمے عموماً استعال کرتے ہوئے سمتیہ کا طول حاصل کیا جاتا ہے۔

مساوات 1.7 اور مساوات 1.12 کی مدد سے دوسمتیوں کے مابین زاوید معلوم کیا جاسکتا ہے یعنی

(1.14) 
$$\theta_{AB} = \cos^{-1}\left(\frac{\mathbf{A} \cdot \mathbf{B}}{(\mathbf{A} \cdot \mathbf{A})(\mathbf{B} \cdot \mathbf{B})}\right) = \cos^{-1}\left(\frac{A_x B_x + A_y B_y + A_z B_z}{\sqrt{A_x^2 + A_y^2 + A_z^2}\sqrt{B_x^2 + B_y^2 + B_z^2}}\right)$$

مثال 1.3: شکل 1.11 میں تکون د کھایا گیا ہے جس کے نوک M(1,6,4)، M(4,5,1) اور P(1,2,2) ہیں۔M پر زاویہ حاصل کریں۔

 $|r_{NM}|=\sqrt{3^2+1^2+3^2}=$  عن مثال ۱.2 مثال کے گئے۔  $r_{PM}=0$  اور  $r_{PM}=0$  اور  $r_{PM}=0$  ماصل کے گئے۔  $r_{NM}=3$  مثال ۱.2 مثال کے گئے۔  $r_{NM}=3$  اور  $r_{NM}=3$  اور

$$r_{NM} \cdot r_{PM} = 0 + 4 + 6 = 10$$

کے برابر ہے۔ یوں ان سمتیوں کے مابین زاویہ

$$\theta = \cos^{-1}\left(\frac{10}{\sqrt{19}\sqrt{20}}\right) = 1.0321$$
 rad

يا 59.137° *ې*ـ



شکل 1.13: کسی بھی سمت میں سمتیہ کے جزو کا حصول۔



شكل 1.14: متوازى اور عمودى اجزاء-

شکل 1.13-الف میں سمتیہ  $m{B}$  اور اکائی سمتیہ  $m{a}$  د کھائے گئے ہیں۔ان کا غیر سمتی ضرب  $m{B}\cdot m{a}=|m{B}||m{a}|\cos \theta=B\cos \theta$ 

ے برابر ہے۔ شکل سے واضح ہے کہ یہی a کی سمت میں a کے جزو کا طول a اور اس سمت کی اکائی سمتیہ کا فیر سمتی ضرب حاصل کریں۔ یوں حاصل طول کا اکائی سمتیہ کے ساتھ ضرب لینی a کا بھی سمت کی اکائی سمتیہ کا فیر سمتی ضرب حاصل کریں۔ یوں حاصل طول کا اکائی سمتیہ کے ساتھ ضرب لینی a کا سمتی کی سمت میں a کا سمتی جزو حاصل ہوتا ہے۔ شکل سے واضح ہے کہ a سے a کی سمت میں a کا سمتی جزو حاصل ہوتا ہے جو a کا وہ جزو ہے جو a کے عمود کی ہے۔ a

غیر سمتی ضرب کا حاصل جواب دو صور تول میں صفر کے برابر ہوتا ہے۔ پہلی صورت وہ ہے جب دونوں سمتیوں میں سے کم از کم ایک سمتیہ کا طول صفر کے برابر ہو۔دوسری صورت وہ ہے جب دونوں سمتیات آپس میں عمودی ہوں۔عمودی ہونے کی صورت میں ان کے مابین نوے درجے کا زاویہ ہو گا اور 0 = 09 cos کے برابر ہوتا ہے۔ یوں دوسمتیوں کے نقطہ ضرب صفر کے برابر ہونے سے اخذ کیا جاتا ہے کہ یہ آپس میں عمودی ہیں۔

مثال 1.4: شکل 1.14 میں تین نقطے M(1,5,6)، M(4,3,1) اور P(1,1,4) دئے گئے ہیں۔ M اور N ہے گزرتی سید تھی لکیر سے P کا عمودی فاصلہ حاصل کریں۔

 $a_{NM} = 10$  عل $|r_{NM}| = \sqrt{38}$  عل $|r_{NM}| = \sqrt{38}$  عل $|r_{NM}| = 3a_{\rm X} - 2a_{\rm Y} - 5a_{\rm Z}$  علت سمت میں اکائی سمت می

$$egin{aligned} r_\parallel &= oldsymbol{r}_{PM} \cdot oldsymbol{a}_{NM} = (-4oldsymbol{a}_{ extsf{y}} - 2oldsymbol{a}_{ extsf{z}}) \cdot \left(rac{3oldsymbol{a}_{ extsf{x}} - 2oldsymbol{a}_{ extsf{y}} - 5oldsymbol{a}_{ extsf{z}}}{\sqrt{38}}
ight) \ &= rac{0 + 8 + 10}{\sqrt{38}} = rac{18}{\sqrt{38}} \end{aligned}$$

 $_{\parallel}^{\parallel}$  لکھتے ہوئے زیرنوشت میں دو متوازی لکیریں یہ بتلاتی ہیں کہ  $m{B}$  کا یہ وہ حصہ ہے جو  $m{a}$  کے متوازی ہے.اسی طرح عمودی مقدار کو عموماً  $\perp$  کی علامت سے ظاہر کیا جاتا ہے.

1.7. غير سمتي ضرب

 $r_{PM}$  کا سمتی جزو  $a_{NM}$  کا سمتی جزو

$$r_{\parallel} = r_{\parallel} a_{NM} = \frac{18}{\sqrt{38}} \left( \frac{3a_{\mathrm{X}} - 2a_{\mathrm{y}} - 5a_{\mathrm{z}}}{\sqrt{38}} \right) = \frac{18}{38} (3a_{\mathrm{X}} - 2a_{\mathrm{y}} - 5a_{\mathrm{z}})$$

ہوتا ہے منفی کرنے سے لکیر سے P تک عمودی سمتیہ  $r_{\parallel}$  حاصل ہوتا ہے ۔

$$egin{split} m{r}_{\perp} &= m{r}_{PM} - m{r}_{\parallel} = (-4m{a}_{ ext{y}} - 2m{a}_{ ext{z}}) - rac{18}{38}(3m{a}_{ ext{x}} - 2m{a}_{ ext{y}} - 5m{a}_{ ext{z}}) \ &= rac{-27m{a}_{ ext{x}} - 58m{a}_{ ext{y}} + 7m{a}_{ ext{z}}}{19} \end{split}$$

جس كا طول 3.3873  $= \frac{\sqrt{27^2+58^2+7^2}}{19}$  ہے۔ يوں P كا كير سے عمودى فاصلہ 3.3873 ہے۔

اور  $r_{\perp}$  آليس ميں عمودي ہيں لهذاان کا نقطہ ضرب  $r_{\parallel}$ 

$$\boldsymbol{r}_{\parallel} \cdot \boldsymbol{r}_{\perp} = \frac{18}{38} (3\boldsymbol{a}_{\mathrm{X}} - 2\boldsymbol{a}_{\mathrm{Y}} - 5\boldsymbol{a}_{\mathrm{Z}}) \cdot \left( \frac{-27\boldsymbol{a}_{\mathrm{X}} - 58\boldsymbol{a}_{\mathrm{Y}} + 7\boldsymbol{a}_{\mathrm{Z}}}{19} \right) = \frac{18}{722} (-81 + 116 - 35) = 0$$

صفر کے برابر ہے۔

(0,0,0) گیل 1.14 میں اگر M پر  $n_{NM}$  کی وُم رکھی جائے تب  $n_{NM}$  کی نوک N کا مقام تعین کرتا ہے۔ عموماً کسی بھی نقطے کا مقام محدد کے مرکز  $r_{NM}$  کی نسبت سے طے کیا جاتا ہے۔ الیا سمتیہ جس کی وُم مرکز پر رکھتے ہوئے اس کی نوک نقطے کا مقام طے کرے مقام تعین کنندہ سمتیہ  $^{18}$  کہلاتا ہے۔ اگر تعین کنندہ سمتیہ کو مرکز سے ہٹایا جائے تب ظاہر ہے اس کی نوک اصل مقام طے کرنے سے قاصر ہوگی۔

مثال 1.5: شکل 1.14 میں M سے شروع ہوتے اور N جانب بڑھتی سیدھی کلیر پر کسی بھی نقطے کا مقام تعین کرتے تعین کنندہ سمتیہ حاصل کریں۔

$$r_Q = (1a_X + 5a_Y + 6a_Z) + s\left(\frac{3a_X - 2a_Y - 5a_Z}{\sqrt{38}}\right)$$

اس مساوات میں s متغیرہ ہے جسے تبدیل کرتے ہوئے سیدھی لکیر پر کسی بھی نقطہ Q تک پہنچا جا سکتا ہے۔

مثال  $z_0$  ایر  $z=z_0$  کے عمودی سیر تھی سطح کی مساوات حاصل کریں جہاں  $z_0$  مستقل ہے۔

حل: نقطہ  $N_1(0,0,z_0) سے کئی بھی نقطہ <math>N_2(x,y,z)$  نقطہ  $N_2(x,y,z)$  نقطہ  $N_2(x,y,z)$  نقطہ  $N_3(x,y,z)$  نقطہ  $N_2(x,y,z)$  نقطب  $N_2(x,z)$  نقطب  $N_2(x,z)$  نقطب  $N_2(x,z)$  نقطب  $N_2(x,z)$  نقطب  $N_2(x,z)$  نقطب

$$1\mathbf{a}_{\mathbf{Z}} \cdot [x\mathbf{a}_{\mathbf{X}} + y\mathbf{a}_{\mathbf{Y}} + (z - z_0)\mathbf{a}_{\mathbf{Z}}] = z - z_0 = 0$$

ہو گا جس سے اس سطح کی مساوات  $z=z_0$  حاصل ہوتی ہے۔

ال قیمت کو  $r_{21}$  میں پُر کرتے ہوئے  $r_{21}=xa_{\mathrm{X}}+ya_{\mathrm{Y}}$  حاصل ہوتا ہے جہال x اور y آزاد متغیرات ہیں۔ چونکہ مرکز سے  $N_1$  کا تعین کنندہ سمتیہ یعنی سطح کی سمتی مساوات  $z=z_0$  ہوگی۔ سمتیہ یعنی سطح کی سمتی مساوات  $z=z_0$  ہوگی۔

مثق 1.3: مرکز سے (2,1,3) تک کی سمتیہ ایک سید ھی سطح کی عمودی سمتیہ ہے۔ اس سطح کی مساوات حاصل کریں۔ 2x + y + 3z = 14: جواب:

# 1.8 سمتی ضرب یا صلیبی ضرب

دو سمتیات A اور B کے سمتی ضرب $^{19}$  کا حاصل جواب سمتیہ ہوتا ہے جس کا طول A کی مقدار ضربِ B کی مقدار ضربِ سمتیوں کے مابین چھوٹے زاویے کے سائن کے برابر ہے۔حاصل سمتیہ A اور B سمتیات کی عمودی سمت میں ہوتا ہے جسے اکائی عمودی سمتیہ  $a_N$  سے ظاہر کیا جائےگا۔

$$(1.15) A \times B = |A||B|\sin\theta_{AB}a_N$$

جس سید ھی سطح پر A اور B دونوں پائے جائیں،  $a_N$  اس سطح کے دوعمودی سمتیات میں سے ایک ہے۔  $a_N$  کو دائیں ہاتھ کے قانون  $a_N$  سے یوں حاصل کیا جا سکتا ہے۔

دائیں ہاتھ کی بھیلی سیدھی اور انگوٹھے کو بقایا چار انگلیوں کے عمود میں رکھتے ہوئے پہلی انگلی کو A اور دوسری انگلی کو B کی سمت میں رکھیں۔اس صورت میں انگوٹھا  $a_N$  کی سمت میں ہوگا۔

اگر دونوں سمتیات کی ؤم ایک ہی جگہ پر نہ ہوتب ان کے مابین زاویہ دریافت کرنے کی خاطر سمتیوں کی ست تبدیل کئے بغیر انہیں ایک نقطے پر منتقل کیا جاتا ہے۔اسی وجہ سے اسے صلیبی ضرب کو سمتیوں کے در میان صلیبی نثان × سے ظاہر کیا جاتا ہے۔اسی وجہ سے اسے صلیبی ضرب کو سمتیوں کے در میان صلیبی نثان × سے ظاہر کیا جاتا ہے۔اسی وجہ سے اسے صلیبی ضرب کو سمتیوں کے در میان صلیبی نثان ×

rector product<sup>19</sup> ight hand rule<sup>20</sup> cross product<sup>21</sup>



شكل 1.15: صليبي ضرب كا حصول.

کو "A کو "B صلیب B" پڑھا جاتا ہے۔ سمتی ضرب میں سمتیوں کی ترتیب نہایت اہم ہے اور انہیں الٹانے سے حاصل جواب کی سمت الٹی ہو جاتی ہے۔ A imes B

$$(1.16) A \times B = -B \times A$$

$$a_{X} \times a_{y} = a_{z} \quad a_{y} \times a_{z} = a_{x} \quad a_{z} \times a_{x} = a_{y}$$

$$a_{x} \times a_{x} = 0 \quad a_{y} \times a_{y} = 0 \quad a_{z} \times a_{z} = 0$$

یبی جوابات شکل 1.15 کی مدد سے حاصل کئے جا سکتے ہیں۔اس شکل میں گھڑی کی الٹ سمت مثبت سمت ہے۔یوں اگر  $a_{\rm X} \times a_{\rm Y}$  حاصل کرنا ہو تو شکل میں بھی جو ابات شکل میں  $a_{\rm X}$  کی جوابات شکل میں  $a_{\rm X}$  کی خاطر مثبت راستہ شکل میں  $a_{\rm X}$  سے  $a_{\rm Y}$  کی خاطر مثبت راستہ اختیار کیا گیا لہذا جواب مثبت یعنی  $a_{\rm X}$  ہو گا۔اس کے برعکس  $a_{\rm X} \times a_{\rm Y}$  حاصل کرنے کی خاطر  $a_{\rm X}$  سے  $a_{\rm Y}$  جانب کم راستے پر چلتے ہوئے  $a_{\rm X}$  حاصل ہوتا ہے البتہ ہیہ راستہ گھڑی کے الٹ سمت یعنی منفی سمت میں ہے لہذا جواب  $a_{\rm X}$  ہوگا۔

ماوات 1.17 کی مدو سے 
$$B = B_x a_X + B_y a_y + B_z a_z$$
 اور  $A = A_x a_X + A_y a_y + A_z a_z$  کی صلیبی خرب  $A \times B = (A_x a_X + A_y a_y + A_z a_z) \times (B_x a_X + B_y a_y + B_z a_z)$ 

$$= A_x B_x a_X \times a_X + A_x B_y a_X \times a_y + A_x B_z a_X \times a_z$$

$$+ A_y B_x a_y \times a_X + A_y B_y a_y \times a_y + A_y B_z a_y \times a_z$$

$$+ A_z B_x a_z \times a_X + A_z B_y a_z \times a_y + A_z B_z a_z \times a_z$$

کو

$$\mathbf{A} \times \mathbf{B} = (A_y B_z - A_z B_y) \mathbf{a}_{\mathbf{X}} + (A_z B_x - A_x B_z) \mathbf{a}_{\mathbf{Y}} + (A_x B_y - A_y B_x) \mathbf{a}_{\mathbf{Z}}$$

کھا جا سکتا ہے۔اس جواب کو قالب کے حتی قیت کی شکل میں یوں کھا جا سکتا ہے۔

(1.19) 
$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{a}_{\mathbf{X}} & \mathbf{a}_{\mathbf{y}} & \mathbf{a}_{\mathbf{z}} \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z} \end{vmatrix}$$

اور ت
$$B=6a_{ ext{X}}+5a_{ ext{Y}}-4a_{ ext{Z}}$$
 اور  $A=2a_{ ext{X}}-3a_{ ext{Y}}+1a_{ ext{Z}}$  ہوں تب

$$A \times B = \begin{vmatrix} a_{X} & a_{Y} & a_{Z} \\ 2 & -3 & 1 \\ 6 & 5 & -4 \end{vmatrix}$$

$$= [(-3)(-4) - (1)(5)]a_{X} - [(2)(-4) - (1)(6)]a_{Y} + [(2)(5) - (-3)(6)]a_{Z}$$

$$= 7a_{X} + 14a_{Y} + 28a_{Z}$$

ہو گا۔

مثال ۱.7:  $N_1(2,3,1): N_2(1,6,5)$  اور  $N_3(-2,-3,2)$  سید هی سطح پر پائے جاتے ہیں۔اس سطح کی مساوات حاصل کریں۔  $N_3(-2,-3,2)$  حل:

$$r_{21} = (1-2)a_{X} + (6-3)a_{Y} + (5-1)a_{Z} = -1a_{X} + 3a_{Y} + 4a_{Z}$$
  
 $r_{31} = (-2-2)a_{X} + (-3-3)a_{Y} + (2-1)a_{Z} = -4a_{X} - 6a_{Y} + 1a_{Z}$ 

کے سمتی ضرب سے ان کا عمودی سمتیہ حاصل ہو گا۔

$$r_N = (-1a_X + 3a_y + 4a_z) \times (-4a_X - 6a_y + 1a_z)$$
  
=  $6a_Z + 1a_y + 12a_Z + 3a_X - 16a_y + 24a_X$   
=  $27a_X - 15a_y + 18a_Z$ 

سطح پر دے گئے تین نقطوں سے سطح پر کسی بھی نقطہ  $N_4(x,y,z)$  تک کا سمتیہ اس عمود می سمتیہ کے نوبے درجے زاویہ پر ہو گا اور یوں ان کا غیر سمتی ضرب صفر کے برابر ہو گا۔  $r_{41}=(x-2)a_{\rm X}+(y-3)a_{\rm Y}+(z-1)a_{\rm Z}$  استعمال سے ضرب صفر کے برابر ہو گا۔

$$r_{41} \cdot r_N = [(x-2)a_X + (y-3)a_y + (z-1)a_z] \cdot (27a_X - 15a_y + 18a_z) = 0$$

لكهركر

$$27(x-2) - 15(y-3) + 18(z-1) = 0$$

\_ س

$$27x - 15y + 18z = 27$$

سید ھی سطح کی مساوات حاصل ہوتی ہے۔الی مساوات میں y ، y اور z کے مخفف عمود می سمتیہ میں  $a_y$  ،  $a_x$  اور  $a_z$  کفف  $a_z$  اور  $a_z$  اور  $a_z$  اور  $a_z$  اور  $a_z$  ہوت ہیں۔

یں کے گیت پُر کرتے  $z=\frac{9-9x+5y}{6}$  میں کی قیت پُر کرتے  $z=\frac{9-9x+5y}{6}$  کی مساوات سے کی سمتی مساوات ہوئے سطح کی سمتی مساوات

$$r = xa_{X} + ya_{Y} + \left(\frac{9 - 9x + 5y}{6}\right)a_{Z}$$

کھی جا سکتی ہے جہال x اور y آزاد متغیرات ہیں جبکہ z کو بطور تابع متغیرہ کھا گیا ہے۔

1.9 گول نلکی محدد





شكل 1.16: نلكى محدد

اور  $a_B \times A$ ،  $A \times A$  واور  $A \times A \times B$  کی صورت میں A = 1 اور  $A \times A \times B$  اور  $A \times A \times B$  ماصل کریں۔

خلاء میں کسی بھی نقطے کا مقام کار تیسی محدد کے علاوہ دیگر طرز کے محدد سے بھی تعین کیا جا سکتا ہے۔ماہرین طبیعیات تقریباً ایک درجن اقسام کے محدد کی نظام استعال کرتے ہیں۔ہم اس کتاب میں کار تیسی نظام کے علاوہ دو مزید اقسام کے محدد کی نظام استعال کریں گے۔آئیں انہیں پر غور کریں۔

# 1.9 گول نلكى محدد

کار تیسی نظام میں کسی بھی نقطے کا مقام مرکز سے y ،x اور z ستوں میں فاصلوں سے طے کیا جاتا ہے۔ آئیں اب ایسا نظام دیکھیں جس میں ایک عدد زاویہ اور دوعدد فاصلے استعال کرتے ہوئے کسی بھی نقطے کا مقام طے ہو۔

شکل 1.16-الف میں z=0 سطح پر نقطہ  $N_0$  و کھایا گیا ہے جسے کار تیسی محدد میں  $N_0(x_0,y_0,0)$  کھا جائے گا۔ا گر مرکز سے  $N_0$  تک سید تھی لکیر کی لمبائی  $\rho_0$  اور x محدد سے اس کمیر کا زاویہ  $\rho_0$  ہو تب اس نقطے کو گول نکلی محدد z=1 نظام میں  $N_0(\rho_0,\phi_0,0)$  کھا جاتا ہے۔اس کتاب میں گول نکلی محدد کا نام چھوٹا کر کے اسے نکلی محدد پکارا جائے گا۔ اگر z=1 سطح پر مرکز سے نقطے کی جانب اکائی سمتیہ  $a_\rho$  ہو تب مرکز سے نقطے تک سمتیہ کو

$$\rho = \rho_0 \mathbf{a}_0 \qquad (\phi = \phi_0, \quad z = 0)$$

کھا جا سکتا ہے۔ نکی اور کار تیسی نظام میں z محدد کیسال ہیں۔

شکل 1.16-الف یا شکل -ب سے کار تیسی اور نکلی محدد کے تعلق اخذ کئے جا سکتے ہیں۔ یوں نکلی محدد کے متغیرات (ρ, φ, z) سے کار تیسی متغیرات (x, y, z) یوں حاصل ہوتے ہیں۔

(1.21) 
$$x = \rho \cos \phi$$
$$y = \rho \sin \phi$$
$$z = z$$

cylindrical coordinate system<sup>22</sup>

اب 1. سمتيات





شکل 1.17: نلکی محدد میں متغیرات کے تبدیلی سے فاصلے کا حصول اور اکائی سمتیات.

اس طرح (x,y,z) سے  $(\rho,\phi,z)$  یوں حاصل کئے جاتے ہیں۔

(1.22) 
$$\rho = \sqrt{x^2 + y^2} \qquad (\rho \ge 0)$$

$$\phi = \tan^{-1} \frac{y}{x}$$

$$z = z$$

مندرجه بالا مساوات میں رداس کی صرف مثبت قیمت لی گئی۔ ہم رداس کی قیمت مثبت ہی لیتے ہیں۔

شکل 1.17-الف میں  $\phi$  زاویہ پر  $\rho$  رداس کا ہلکی سیابی میں و کھایا سمتیہ نقطہ N ہے۔ اس شکل میں  $\phi$  اور z تبدیل کئے بغیر  $\rho$  کو  $\Delta\rho$  بڑھتا و کھایا گیا ہے۔ اس صورت میں سمتیہ کی نوک  $\Delta\rho$  فاصلہ طے کرتی ہے۔ نقطہ D سے D کی سمت میں اکائی سمتیہ جے D کھا جاتا ہے، نگلی محدد کی بنیادی اکائی سمتیہ ہے۔ اس سمتیہ کو شکل 1.17- بیں و کھایا گیا ہے۔

شکل 1.17-الف میں  $\rho$  اور z تبدیل کئے بغیر  $\rho$  کو  $\rho$  کر بڑھا کر اسی سمتیہ کو گاڑھی سابی میں دوبارہ دکھایا گیا ہے۔آپ دیکھ سکتے ہیں کہ سمتیہ کی نوک نوک نوک رداس کے گول دائرے پر حرکت کرتے ہوئے  $\rho$  فاصلہ طے کیا۔ یوں اگر زاویہ کو  $\sigma$  تاریخ بیئن تبدیل کیا جائے تو سمتیہ کی نوک گول دائرے کے ممال کی صورت اختیار کرے گی حتٰی کہ دائرے پر ایک مکمل چکر کاٹے گی۔ جیسے جیسے  $\rho$  کو کم سے کم کیا جائے ویسے ویسے  $\rho$  گول دائرے کے ممال کی صورت اختیار کرے گی حتٰی کہ ط $\sigma$  کی صورت میں  $\rho$  گول دائرے کا ممال ہو گا۔ نقطہ  $\sigma$  پر بڑھتے  $\sigma$  جانب ممال کی سمت میں اکائی سمتیہ کو  $\sigma$  کھا جاتا ہے۔ اس سمتیہ کو شکل 1.17 سے میں دکھایا گیا ہے۔

ائی طرح اگر نقطہ N پر صرف z کو z تبریل کیا جائے تب سمتیہ کی نوک  $\Delta z$  فاصلہ طے کرے گی۔  $\Delta z$  کی سمت میں اکائی سمتیہ جے کہ لکھا جاتا ہے، نگلی محدد کی تیسر کی اور آخری بنیاد کی اکائی سمتیہ ہے۔ نگلی محدد کے تین اکائی سمتیات  $a_{\phi}$  ،  $a_{\rho}$  اور  $a_{z}$  مل کر دائیں ہاتھ کا عمود کی نظام دیتے ہیں۔ نقطہ  $z=z_1$  بی محدد کے اکائی سمتیات کو شکل  $z=z_1$  میں دکھایا گیا ہے۔  $a_{\rho}$  گول سطح  $\rho=\rho$  کے عمود کی ہے۔ یہ  $\rho=\rho$  اور  $z=z_1$  کائی سمتیہ کی محدد کے اکائی سمتیہ کی محدد کے اکائی سمتیہ کی عمود کی ہے۔ یہ  $z=z_1$  کائی سطح کا مماس ہے۔  $z=z_1$  کی سطح کا مماس ہے۔  $z=z_1$  کی سطح کا مماس ہے۔  $z=z_1$  کی سطح کے عمود کی ہے۔ یہ  $z=z_1$  کی سطح کا مماس ہے۔  $z=z_1$  کی سطح کا مماس ہے۔  $z=z_1$  کی سطح کے عمود کی ہے۔ یہ  $z=z_1$  کی سطح کا مماس ہے۔  $z=z_1$  کی سطح کے عمود کی ہے۔ یہ  $z=z_1$  کی سطح کی بیا جاتا ہے۔

رائیں ہاتھ کے عمودی نظام میں سمتی ضرب کا حاصل جواب صفحہ 14 پر دئے گئے دائیں ہاتھ کے قانون کی مدد سے حاصل کیا جاتا ہے ۔ یوں  $a_{
ho} imes a_{\phi} = a_{Z}, \quad a_{\phi} imes a_{Z} = a_{
ho}, \quad a_{Z} imes a_{
ho} = a_{\phi}$ 

لکھا جا سکتا ہے۔ یہی جوابات شکل 1.19 سے بھی اخذ کئے جا سکتے ہیں۔

کسی سمتیہ کاخود سمتی ضرب صفر کے برابر ہوتا ہے للذا

(1.24) 
$$a_{\rho} \times a_{\rho} = 0, \quad a_{\phi} \times a_{\phi} = 0, \quad a_{\mathsf{Z}} \times a_{\mathsf{Z}} = 0$$

1.9. گول نلكي محدد



شکل 1.18: نلکی محدد کے اکائی سمتیات۔



شكل 1.19: صليبي ضرب كي حاصل اكائي سمتيه.

لکھا جا سکتا ہے جبکہ کسی بھی اکائی سمتیہ کا خود غیر سمتی ضرب ایک کے برابر ہوتا ہے للذا

$$a_{\rho}\cdot a_{\rho}=1,\quad a_{\phi}\cdot a_{\phi}=1,\quad a_{\mathsf{Z}}\cdot a_{\mathsf{Z}}=1$$

لکھا جا سکتا ہے۔اسی طرح کسی بھی دو عمودی سمتیات کا غیر سمتی ضرب صفر کے برابر ہوتا ہے یعنی

$$a_{\rho} \cdot a_{\phi} = 0, \quad a_{\phi} \cdot a_{\mathsf{Z}} = 0, \quad a_{\mathsf{Z}} \cdot a_{\rho} = 0$$

غیر سمتی ضرب کو کرونیکر ڈیلٹا کی مدد سے یوں لکھا جا سکتا ہے۔

$$a_i \cdot a_j = \delta_{ij}$$

7

(1.28) 
$$\delta_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

کے برابر ہے۔

آپ دیکھتے ہیں کہ کسی بھی نقطہ  $N(\rho,\phi,z)$  پر اکائی سمتیات حاصل کرنے کی خاطر محدد کے متغیرات  $\rho$ ,  $\rho$  اور z کو بار کی بار کی انتہائی کم بڑھایا جاتا ہے۔ جس سمت میں نقطہ حرکت کرے، ای سمت میں اکائی سمتیات کی سمت کا دارو مدار اس نقطہ پر ہے جہاں انہیں حاصل کیا جائے۔ آپ جانے و کھائے گئے ہیں۔ آپ دیکھ سکتے ہیں کہ نکلی محدد کے عمود کی اکائی سمتیات کی سمت کا دارو مدار اس نقطے پر ہے جہاں انہیں حاصل کیا جائے۔ آپ جانے ہیں کہ کار تیسی نظام میں نقطے کا مقام تبدیل کرنے سے کار تیسی اکائی سمتیات اٹل نہیں ہیں۔ یہ ایک سمتیات اٹل نہیں ہیں۔ یہ ایک سمتیات اٹل نہیں ہیں۔ یہ ایک سمتیات اٹل نہیں ہیں ہوتے۔ یوں نکلی محدد کے اکائی سمتیات اٹل نہیں ہیں اور نقطہ میں نقطہ کا مقام تبدیل کرنے سے کار تیسی اکائی سمتیات اٹل ہونے کی بنا پر نکمل کے باہر لے جائے جا سکتے ہیں جبکہ نکلی محدد کے مواد موری ہوں گے۔ ایک سمتیات کو نکمل کے باہر نہیں لے جایا جا سکتا۔ یاد رہے کہ کسی بھی نقطہ N پر حاصل کئے گئے  $\alpha_{\rho}$  اور  $\alpha_{\rho}$  اور  $\alpha_{\rho}$  کی مودی ہوں گے۔





شکل 1.20: نلکی اکائی سمتیات کا کارتیسی اکائی سمتیات کر ساتھ غیر سمتی ضرب.

جدول 1.1: نلکی اکائی سمتیات کا کارتیسی اکائی سمتیات کر ساتھ غیر سمتی ضرب.

$$\begin{array}{c|cccc} \boldsymbol{a}_{z} & \boldsymbol{a}_{y} & \boldsymbol{a}_{x} \\ \hline 0 & \sin\phi & \cos\phi & \boldsymbol{a}_{\rho} \\ 0 & \cos\phi & -\sin\phi & \boldsymbol{a}_{\phi} \\ 1 & 0 & 0 & \boldsymbol{a}_{z} \\ \end{array}$$

1.9.1 نلكى اكائي سمتيات كا كارتيسي اكائي سمتيات كر ساته غير سمتي ضرب

شکل 1.20-الف میں نقطہ N پر اکائی سمتیات  $a_{
ho}$  اور  $a_{
m y}$  و کھائے گئے ہیں۔ $a_{
ho}$  اور  $a_{
m x}$  اور  $a_{
m y}$  اور  $a_{
m y}$  کے المبائی ایک ہوتی ہے المذا

$$a_{\rho} \cdot a_{\mathbf{X}} = (1)(1)(\cos \phi) = \cos \phi$$

ہے۔ $a_{
ho}$  اور  $a_{
m y}$  کے مابین زاویہ  $a_{
ho}$  ہے للذا

(1.30) 
$$a_{\rho} \cdot a_{y} = (1)(1)[\cos(90^{\circ} - \phi)] = \sin \phi$$

 $\cos(90^\circ-\phi)=\sin\phi$  کو استعال کرتے ہوئے  $\cos(lpha-eta)=\coslpha\cos\beta+\sinlpha\sin\beta$  کے برابر ہے۔اس مساوات میں فرون میں  $a_{
m X}$  اور  $a_{$ 

(1.31) 
$$a_{\phi} \cdot a_{X} = (1)(1)[\cos(90^{\circ} + \phi)] = -\sin\phi$$

اور  $a_{
m y}$  مابین زاویہ  $\phi$  ہے للذا $a_{
m y}$ 

$$a_{\phi} \cdot a_{\mathbf{y}} = (1)(1)(\cos \phi) = \cos \phi$$

کے برابر ہے۔  $a_{Z}$  کا رابر ہے۔ ان تمام غیر سمتی ضرب صفر کے برابر ہے۔اس کی وجہ ان کے مابین نوے درجے کا زاویہ ہے۔ان تمام غیر سمتی ضرب کو جدول 1.1 میں کیجا کیا گیا ہے۔

1.9.2 نلكى اور كارتيسى اكائي سمتيات كا تعلق

شکل 1.21-الف میں نقطہ N پر اکائی سمتیہ  $a_{
ho}$  دکھایا گیا ہے۔آپ دکھ سکتے ہیں کہ کار تبیسی محدد میں اس اکائی سمتیہ کو دو عدد سمتیات کی مدد سے لکھا جا سکتا ہے۔ $a_{
ho}$  کی لمبائی ایک کے برابر ہے۔یوں مسکلہ فیثا نمورث کی مدد سے

$$a_{\rho} = \cos \phi a_{X} + \sin \phi a_{Y}$$

$$= \frac{x}{\sqrt{x^{2} + y^{2}}} a_{X} + \frac{y}{\sqrt{x^{2} + y^{2}}} a_{Y}$$

1.9 گول نلکی محدد





شكل 1.21:  $a_{
ho}$  اور  $a_{\phi}$  كا كارتيسي نظام ميں تبادلہ۔





شكل 1.22:  $oldsymbol{a}_{ ext{y}}$  اور  $oldsymbol{a}_{ ext{y}}$  كا نلكى محدد ميں تبادلہ۔

کھا جا سکتا ہے جہاں دوسرے قدم پر تمام نکی محدد کے متغیرات کو کارتیسی متغیرات کی شکل میں لکھا گیا ہے۔ شکل 1.21-ب میں نقطہ N پر اکائی سمتیہ موھایا گیا ہے۔آپ دیکھ سکتے ہیں کہ کارتیسی محدد میں اس اکائی سمتیہ کو دوعدد سمتیات کی مدد سے یوں لکھا جا سکتا ہے

$$a_{\phi} = -\sin\phi a_{X} + \cos\phi a_{Y}$$

$$= -\frac{y}{\sqrt{x^{2} + y^{2}}} a_{X} + \frac{x}{\sqrt{x^{2} + y^{2}}} a_{Y}$$

جہال دوسرے قدم پر تمام نکلی محدد کے متغیرات کو کار تیسی متغیرات کی شکل میں لکھا گیا ہے۔

شکل 1.22-الف میں  $a_{\rm X}$  کا نکلی محد د میں تبادلہ دکھایا گیا ہے۔ جس نقطے پر ایسا درکار ہو، اس نقطے پر کر سے نقطے تک نقطہ دار سید ھی لکیر کھینچتے ہوئے اسے مزید آگے بڑھائیں۔اس نقطے پر  $a_{
m p}$  اسی لکیر کی سمت میں ہوگا جبکہ  $a_{
m p}$  کلیر کے ساتھ نوے درج کا زاویہ بنائے گا۔ شکل میں مھی گئیر ہے۔ جبیبا شکل میں دکھایا گیا ہے، کہ  $a_{
m X}$  کی نوک سے نقطہ دار لکیر پر عمود بنائیں۔صاف ظاہر ہے کہ  $a_{
m X}$  کو دو عدد سمتیات کی مدد سے لکھا جا سکتا ہے۔ان میں سے ایک سمت میں اور دوسرا سمتیہ  $a_{
m p}$  کی الٹ جانب کو ہوگا۔ یوں

$$a_{\rm X} = \cos\phi a_{\rho} - \sin\phi a_{\phi}$$

کھا جا سکتا ہے۔ شکل 1.22-ب میں  $a_y$  کا نکلی محد دمیں تبادلہ د کھایا گیا ہے۔ یہاں نقطہ پر  $a_y$  کی دُم رکھتے ہوئے اس کی نوک سے نقطہ دار ککیر پر عمود کھینچا گیا ہے۔ یوں

$$a_{\rm y} = \sin\phi a_{\rho} + \cos\phi a_{\phi}$$

لکھا جا سکتا ہے۔

آئیں مساوات 1.33 تا مساوات 1.36 کو جدول 1.1 کی مدد سے حاصل کریں۔ کسی بھی سمتیہ A کو کار تیسی یا نگلی محدد میں کھا جا سکتا ہے۔ یوں  $A = A_x a_{\rm X} + A_y a_{\rm Y} + A_z a_{\rm Z}$   $= A_\rho a_\rho + A_\phi a_\phi + A_z a_{\rm Z}$ (1.37)

کھا جا سکتا ہے۔ان میں پہلی مساوات کا باری باری باری  $a_{
m y} \cdot a_{
m x}$  اور  $a_{
m z}$  کے ساتھ غیر سمتی ضرب لیتے ہوئے

(1.38) 
$$a_{\mathbf{X}} \cdot \mathbf{A} = A_{x} a_{\mathbf{X}} \cdot a_{\mathbf{X}} + A_{y} a_{\mathbf{X}} \cdot a_{\mathbf{Y}} + A_{z} a_{\mathbf{X}} \cdot a_{\mathbf{Z}} = A_{x}$$
$$a_{\mathbf{Y}} \cdot \mathbf{A} = A_{x} a_{\mathbf{Y}} \cdot a_{\mathbf{X}} + A_{y} a_{\mathbf{Y}} \cdot a_{\mathbf{Y}} + A_{z} a_{\mathbf{Y}} \cdot a_{\mathbf{Z}} = A_{y}$$
$$a_{\mathbf{Z}} \cdot \mathbf{A} = A_{x} a_{\mathbf{Z}} \cdot a_{\mathbf{X}} + A_{y} a_{\mathbf{Z}} \cdot a_{\mathbf{Y}} + A_{z} a_{\mathbf{Z}} \cdot a_{\mathbf{Z}} = A_{z}$$

حاصل ہوتے ہیں۔ A کو کار تیسی نظام میں لکھنے کی خاطر  $A_y$  ،  $A_z$  اور  $A_z$  در کار ہوتے ہیں جنہیں مندرجہ بالا مساوات سے حاصل کیا جا سکتا ہے۔ اس طرح مساوات 1.37 کے نچلے جھے کا باری باری  $a_\phi$  ،  $a_\rho$  اور  $a_z$  کے ساتھ غیر سمتی ضرب لیتے ہوئے

(1.39) 
$$\mathbf{a}_{\rho} \cdot \mathbf{A} = A_{\rho} \mathbf{a}_{\rho} \cdot \mathbf{a}_{\rho} + A_{\phi} \mathbf{a}_{\rho} \cdot \mathbf{a}_{\phi} + A_{z} \mathbf{a}_{\rho} \cdot \mathbf{a}_{z} = A_{\rho}$$

$$\mathbf{a}_{\phi} \cdot \mathbf{A} = A_{\rho} \mathbf{a}_{\phi} \cdot \mathbf{a}_{\rho} + A_{\phi} \mathbf{a}_{\phi} \cdot \mathbf{a}_{\phi} + A_{z} \mathbf{a}_{\phi} \cdot \mathbf{a}_{z} = A_{\phi}$$

$$\mathbf{a}_{z} \cdot \mathbf{A} = A_{\rho} \mathbf{a}_{z} \cdot \mathbf{a}_{\rho} + A_{\phi} \mathbf{a}_{z} \cdot \mathbf{a}_{\phi} + A_{z} \mathbf{a}_{z} \cdot \mathbf{a}_{z} = A_{z}$$

حاصل ہوتے ہیں۔یوں A کو نککی نظام میں لکھنے کی خاطر  $A_{\phi}$  ،  $A_{\phi}$  ، اور  $A_{z}$  کو مندرجہ بالا مساوات کی مدد سے حاصل کیا جا سکتا ہے۔

آئیں  $a_
ho$  کو کار تنیسی نظام میں لکھیں۔یوں  $A=a_
ho$  کو کار تنیسی نظام میں لکھنا مطلوب ہے۔مساوات  $A_s$  مطابق  $A_s$  حاصل کرنے کی خاطر  $a_
ho$  کینا ہو گا۔جدول  $A_s$  استعال سے  $A_s$  ماصل کرنے کی خاطر میں کھیا میں کھیا ہو گا۔جدول  $A_s$  استعال سے

$$A_{x} = a_{X} \cdot A = a_{X} \cdot a_{\rho} = \cos \phi$$

حاصل ہوتا ہے۔اسی طرح جدول کو استعال کرتے ہوئے

$$A_{y} = \mathbf{a}_{y} \cdot \mathbf{A} = \mathbf{a}_{y} \cdot \mathbf{a}_{\rho} = \sin \phi$$

اور

$$A_z=a_{
m Z}\cdot A=a_{
m Z}\cdot a_{
ho}=0$$
خاصل کرتے ہیں۔ یوں کار تنیسی نظام میں  $A=A_xa_{
m X}+A_ya_{
m Y}+A_za_{
m Z}$ ماصل کرتے ہیں۔ یوں کار تنیسی نظام میں  $a_{
ho}=\cos\phi a_{
m X}+\sin\phi a_{
m Y}$ 

لکھا جائے گا۔ یہی جواب مساوات 1.33 میں بھی حاصل کیا گیا تھا۔

کو بھی ای طرح کار تیسی نظام میں لکھا جا سکتا ہے۔اییا کرنے کی خاطر جدول 1.1 کی مدد سے اس سمتیہ کا باری باری  $a_y$  ،  $a_y$  اور  $a_z$  کے ساتھ غیر سمتی ضرب لیتے ہیں۔

$$A_{x} = \mathbf{a}_{X} \cdot \mathbf{a}_{\phi} = -\sin \phi$$

$$A_{y} = \mathbf{a}_{Y} \cdot \mathbf{a}_{\phi} = \cos \phi$$

$$A_{z} = \mathbf{a}_{Z} \cdot \mathbf{a}_{\phi} = 0$$

بول

$$a_{\phi} = A_x a_x + A_y a_y + A_z a_z = -\sin \phi a_x + \cos \phi a_y$$

حاصل ہوتا ہے۔ یہی جواب مساوات 1.34 بھی دیتا ہے۔

آپ سے گزارش ہے کہ جدول 1.34 کو یاد کرنے کی کوشش نہ کریں۔اپنے آپ میں یہ صلاحیت پیدا کریں کہ ان جوابات کو آپ جلد اخذ کر سکیں۔

1.9 گول نلكي محدد





شكل 1.23: كارتيسى اور نلكى محدد مين سمتيه.

مثق 1.5  $a_{
m X}$  اور  $a_{
m Z}$  کو جدول 1.1 کی مدد سے نککی محدد میں کھیں۔ جوابات:

$$egin{aligned} a_{\mathrm{X}} &= \cos\phi a_{
ho} - \sin\phi a_{\phi} \ a_{\mathrm{Y}} &= \sin\phi a_{
ho} + \cos\phi a_{\phi} \ a_{\mathrm{Z}} &= a_{\mathrm{Z}} \end{aligned}$$

$$Q(0,2)$$
 تک سمتیہ  $A$  و کھایا گیا ہے۔کار تمیسی نظام میں  $Q(0,2)$  سے  $Q(0,2)$  کے سمتیہ  $Q(0,2)$  شکل 1.23  $Q(0,2)$  بیار  $Q(0,2)$  سمتیہ  $Q(0,2)$  بیار  $Q(0,2)$ 

لکھا جا سکتا ہے۔اس سمتیہ کی حتمی قیمت

$$|A| = \sqrt{A \cdot A} = \sqrt{(-2a_{\mathrm{X}} + 2a_{\mathrm{y}}) \cdot (-2a_{\mathrm{X}} + 2a_{\mathrm{y}})} = \sqrt{8}$$

 $a_{
ho}\cdot A$  اور  $A_{\phi}$  در کار ہوں گے جنہیں حاصل کرنے کی خاطر جدول  $A_{
ho}$  کی خاطر جدول 1.1 کی مدد سے  $A_{
ho}$  اور  $A_{\phi}$  در کار ہوں گے جنہیں حاصل کرنے ہیں۔

$$A_{\rho} = a_{\rho} \cdot (-2a_{\mathbf{X}} + 2a_{\mathbf{Y}}) = -2\cos\phi + 2\sin\phi$$
  
$$A_{\phi} = a_{\phi} \cdot (-2a_{\mathbf{X}} + 2a_{\mathbf{Y}}) = 2\sin\phi + 2\cos\phi$$

لول

$$(1.41) A = 2(-\cos\phi + \sin\phi)a_{\rho} + 2(\sin\phi + \cos\phi)a_{\phi}$$

$$\begin{split} |A| &= \sqrt{A \cdot A} \\ &= \sqrt{2^2 (-\cos\phi + \sin\phi)^2 + 2^2 (\sin\phi + \cos\phi)^2} \\ &= \sqrt{4 (\cos^2\phi + \sin^2\phi - 2\cos\phi\sin\phi) + 4 (\cos^2\phi + \sin^2\phi + 2\cos\phi\sin\phi)} \\ &= \sqrt{8 (\cos^2\phi + \sin^2\phi)} \\ &= \sqrt{8} \end{split}$$

حاصل ہوتا ہے جہاں آخری قدم پر  $\alpha=1$  در ح $\alpha=1$  کا استعال کیا گیا ہے۔ یقیناً سمتیہ کی حتمی قیمت محدد کے نظام پر منحصر نہیں۔

مساوات 1.40 اور مساوات 1.41 ایک ہی سمتیہ کو لکھنے کے دو طریقے ہیں۔ یہاں کار تیسی نظام کا استعال نہایت آسان ثابت ہوا۔ آگے چل کر آپ دیکھیں گے کہ کہیں مسکوں میں نگلی محدد کا استعال زیادہ آسان ہو گا۔ آئیں مساوات 1.40 پر مزید غور کریں۔اس مساوات میں اکائی سمتیات از خود اٹل جیکھیں گے کہ کہیں مسکوں میں نگلی محدد کا استعال زیادہ آسان ہو گا۔ آئیں مساوات  $\phi=0$  اور  $\phi=0$  او

$$egin{aligned} m{A}_{\phi=0^{\circ}} &= 2(-\cos 0^{\circ} + \sin 0^{\circ}) m{a}_{
ho} + 2(\sin 0^{\circ} + \cos 0^{\circ}) m{a}_{\phi} \ &= -2m{a}_{
ho} + 2m{a}_{\phi} \end{aligned}$$

 $a_{
ho}$  سمت میں کھا جا سکتا ہے جن میں پہلی سمتیہ  $a_{
ho}$  و دو عدد سمتیات کے مجموعہ کی صورت میں کھا جا سکتا ہے جن میں پہلی سمتیہ و مورت اختیار کر لیتی ہے۔1.23 ہے۔1.23 ہے دو سری سمتیہ کی مقدار دو اور اس کی سمت میں ہی ہے۔1.23 ہے۔1.23 ہیں نقطہ  $a_{
ho}$  کے الٹ سمت میں ہے اور اس کی لمبائی دو کے برابر ہے جبکہ دو سری سمتیہ کی مقدار دو اور اس کی سمت میں ہی ہے۔1.23 ہیں ہیں ہے۔ یاد رہے کہ اس مساوات میں  $a_{
ho}$  اور  $a_{
ho}$  کی سمت میں ہے۔ یاد رہے کہ اس مساوات میں  $a_{
ho}$  اور  $a_{
ho}$  کی جگہ  $a_{
ho}$  اور  $a_{
ho}$  کی جگہ میا اور اس کی جگہ میں ہے۔ مساوات کھی جا کھی جا سکتی ہے۔

 $\phi=45^\circ$ ير مساوات  $\phi=45^\circ$ 

$$egin{aligned} m{A}_{\phi=45^{\circ}} &= 2(-\cos 45^{\circ} + \sin 45^{\circ}) m{a}_{
ho} + 2(\sin 45^{\circ} + \cos 45^{\circ}) m{a}_{\phi} \ &= 2(-rac{1}{\sqrt{2}} + rac{1}{\sqrt{2}}) m{a}_{
ho} + 2(rac{1}{\sqrt{2}} + rac{1}{\sqrt{2}}) m{a}_{\phi} \ &= \sqrt{8} m{a}_{\phi} \end{aligned}$$

صورت اختیار کر لیتی ہے۔اس مساوات کے مطابق  $^{2}$  مطابق  $^{2}$  ہے۔ شکل  $^{2}$  مرف اور صرف  $^{2}$  ہیں ہے اور اس کی لمبائی  $^{2}$  ہے۔ شکل  $^{2}$  میں یہ حقیقت واضح ہے کہ  $^{2}$  ہی ہے۔  $^{2}$  ہیں ہے۔ یاد رہے کہ اس مساوات میں  $^{2}$  ہو وادر  $^{2}$  ہو  $^{2}$  ہو  $^{2}$  ہیں ہے۔ شکل میں میں یہ حقیقت واضح ہے کہ  $^{2}$  ہو جا کہ ست  $^{2}$  ہی ہے۔ یاد رہے کہ اس مساوات میں  $^{2}$  ہو ہو ہو گو  $^{2}$  ہو مصل کیا گیا ہے۔ شکل میں اور کی مستوری کی سمتوں کا موازنہ آسانی سے کیا جا سکے۔

$$egin{aligned} m{A}_{\phi=135^{\circ}} &= 2(-\cos 135^{\circ} + \sin 135^{\circ}) m{a}_{
ho} + 2(\sin 135^{\circ} + \cos 135^{\circ}) m{a}_{\phi} \ &= 2(rac{1}{\sqrt{2}} + rac{1}{\sqrt{2}}) m{a}_{
ho} + 2(rac{1}{\sqrt{2}} - rac{1}{\sqrt{2}}) m{a}_{\phi} \ &= \sqrt{8} m{a}_{
ho} \end{aligned}$$

حاصل ہوتا ہے۔اس مساوات کے مطابق °135  $\phi=0$  کا اکائی سمتیات استعال کرتے ہوئے A کو  $a_
ho$  کی سمت میں  $\sqrt{8}$  کمبائی کا سمتیہ لکھا جا سکتا ہے۔ شکل سے یہ حقیقت واضح ہے۔

مثال 1.2: شکل 1.24 میں z محدد پر نقطہ  $a(0,0,rac{d}{2})$  پر مثبت چارج Q اور نقطہ Q اور نقطہ Q اور نقطہ Q مثال 1.2 شکل 1.24 میں Q محدد پر نقطہ Q و مثبت چارج Q مثال Q اور Q اور Q کو کروی کی جند میں کھیں۔ میں کھیں۔ میں کھیں۔

1.9. گول نلكي محدد



شکل 1.24: جفت قطب کر چارجوں سرے دور نقطر تک فاصلر۔

(1.42) 
$$R_1 = \frac{d}{2}\sin\theta a_\theta + (r - \frac{d}{2}\cos\theta)a_r$$

لکھ سکتے ہیں۔ ہم اس طرح شکل 1.24 میں N سے m تک لکیر کو m سے آگے بڑھا کر b سے اس پر عمودی لکیر تھینچ کر شکل کو دیکھتے ہوئے R<sub>2</sub> کی مساوات بھی لکھ سکتے ہیں البتہ ایسا کرنے کی بجائے آئیں R<sub>2</sub> کی مساوات تحلیلی طریقے سے حاصل کریں۔ شکل کو دیکھتے ہوئے

$$R_2 = \frac{d}{2}a_{\rm Z} + ra_{\rm r}$$

کھا جا سکتا ہے جہاں کار تیسی محدد کی اکائی سمتیہ  $a_{
m Z}$  اور کروی محدد کی اکائی سمتیہ  $a_{
m r}$  استعال کئے گئے۔کروی محدد میں کسی بھی لکیر کی طرح

$$\mathbf{R}_2 = A_r \mathbf{a}_r + A_\theta \mathbf{a}_\theta + A_\phi \mathbf{a}_\phi$$

کی جا سکتا ہے۔ آئیں  $a_{
m r}=R_2\cdot a_{
m r}$  سے حاصل کریں۔

$$A_r = \left(\frac{d}{2}a_Z + ra_T\right) \cdot a_T = \frac{d}{2}\cos\theta + r$$

اسی طرح  $oldsymbol{A}_{ heta} = oldsymbol{R}_2 \cdot oldsymbol{a}_{ heta}$  سے حاصل کرتے ہیں۔

$$A_{\theta} = \left(\frac{d}{2}\boldsymbol{a}_{\mathrm{Z}} + r\boldsymbol{a}_{\mathrm{T}}\right) \cdot \boldsymbol{a}_{\theta} = -\frac{d}{2}\sin\theta$$

ای طرح  $A_{\phi}=0$  ماصل ہوتا ہے۔ ایوں $A_{\phi}=R_2\cdot a_{\phi}$  ماصل ہوتا ہے۔ ایوں

(1.43) 
$$R_2 = \left(\frac{d}{2}\cos\theta + r\right)a_{\rm r} - \frac{d}{2}\sin\theta a_{\theta}$$

لکھا جا سکتا ہے۔

# 1.9.3 نلكي لامحدود سطحين

شکل 1.25-الف میں  $\phi$  تبدیل کئے بغیر  $\rho$  اور z کی قیمتیں تبدیل کرتے ہوئے  $\phi = \phi_0$  سطح کا حصول دکھایا گیا ہے۔ یہ سطح نمکی شکل رکھتی ہے جس کا اوپر والا منہ اور نچلا منہ کھلے ہیں یعنی ان پر ڈھکن نہیں۔ شکل-ب میں  $\rho$  تبدیل کئے بغیر  $\phi$  اور z کو تبدیل کرتے ہوئے  $\rho = \rho_0$  سطح کا حصول دکھایا گیا





شكل 1.25:  $\phi=\phi_0$  اور ho=0 سطحين ـ



شکل 1.26: نلکی محدد کے تین سطحیں۔

ہے۔ان دونوں لا محدود سطحوں کے کچھ ھے ان اشکال میں دکھائے گئے ہیں۔ شکل-الف میں ρ کی قیمت صرف مثبت جبکہ z کی قیمت مثبت یا منفی ممکن ہے۔شکل-ب میں زاویہ کل 2πریڈیئن تبریل ہو سکتا ہے۔یوں زاویے کا مثبت حد π ریڈیئن یعنی 180 درجہ ہے جبکہ اس کا منفی 24 حد π – یعنی 180 درج ہے۔ نکلی محد د اور کار تیسی نظام دونوں میں z = z سطح کیساں مبتی ہے۔

شکل 1.27-ب میں چھوٹے منحرف مکعب کو رواسی سمت میں z محد د تک بڑھا کر پچر یا فانہ کی شکل میں دکھایا گیا ہے۔0z=0 سطح پر اس کا عمود کی سامیہ  $\rho+d\rho$  دکھایا گیا ہے۔ $\rho$ ر داس کے گول دائرے کے مرکز سے  $d\phi$  زاویے پر دو کلیریں دائرے تک کھینچنے سے  $\frac{\rho^2}{2}$  رقبہ گھیرا جاتا ہے۔ا گررداس م

1.10 کروی محدد



شكل 1.27: نلكي محدد مين انتهائي چهوڻي حجم.

 $\mathrm{d} S$  ہو تب رقبہ  $rac{\phi}{2}$  ہو گا۔ یوں شکل۔ بیس چھوٹے مکعب کے سامیہ کار قبہ

$$dS = \frac{(\rho + d\rho)^2 d\phi}{2} - \frac{\rho^2 d\phi}{2}$$

$$= \frac{\rho^2 d\phi + 2\rho d\rho d\phi + (d\rho)^2 d\phi}{2} - \frac{\rho^2 d\phi}{2}$$

$$= \rho d\rho d\phi + \frac{(d\rho)^2 d\phi}{2}$$

$$\approx \rho d\rho d\phi$$

ہو گا۔ یہاں آخری قدم پر کی علامت، مجموعہ کے پہلے رکن میں دو مرتبہ جبکہ دوسرے رکن میں تین مرتبہ ہے۔ یوں دوسرے اور پہلے رکن کی نسبت  $d\rho$  لیہ میں میں مرتبہ ہوئے مول کے علامت، مجموعہ کے پہلے رکن میں دوسرے رکن کو قابل نظر انداز بناتے ہوئے نظرانداز کیا گیا ہے۔ یوں ρ dρ dφ dφ رقبہ اور علیہ اور علیہ علیہ کا مجم ρ dρ dφ dφ dz ہوگا۔

شکل 1.27 کو درست مکعب تصور کرتے ہوئے،اس کے اطراف کی لمبائی dp ، p dp اور dz کی جاتی ہے۔یوں مکعب کے پخلی اور اوپر سطح کا رقبہ مستطیل کے اطراف کو ضرب دیتے ہوئے p dp dp کھا جا سکتا ہے۔اسی طرح سامنے اور پیچھے سطحوں کا رقبہ dp dz جبکہ بائیں اور دائیں سطحوں کا رقبہ dp dz کھا جا سکتا ہے۔ کھا جا سکتا ہے۔

 $N'(
ho + \mathrm{d}
ho, \phi + \mathrm{d}\phi, z + 2$  تینوں متغیرات تبدیل کرتے ہوئے ہم چھوٹے مکعب کے  $N(
ho, \phi, z)$  کونے سے  $N(
ho, \phi, z)$  کونے چہنچتے ہیں۔ N'=N کے سمتیہ کو

(1.44) 
$$d\mathbf{L} = \mathrm{d}\rho \mathbf{a}_\rho + \rho\,\mathrm{d}\phi \mathbf{a}_\phi + \mathrm{d}z \mathbf{a}_\mathrm{Z}$$

کھا جاتا ہے۔ یہ مساوات کسی بھی دو قریبی نقطوں کے مابین سمتی فاصلے کو ظاہر کرتی ہے۔

# 1.10 كروى محدد

سید تھی کلیروں اور سید تھی سطحوں کو کار تیسی محدد میں زیادہ آسانی سے ظاہر کیا جا سکتا ہے جبکہ نکلی سطحوں کو ظاہر کرنے کے لئے نکلی محد دبہتر ثابت ہوتا ہے۔اسی طرح کرہ اشکال کے سطحوں کو کروی محدد میں باآسانی کھا جا سکتا ہے۔آئیں کروی نظام پر غور کریں۔

کسی بھی متغیرہ مثلاً ho میں چھوٹی سی تبدیلی کو  $\Delta
ho$  لکھا جاتا ہے جبکہ اس میں کم سے کم تبدیلی کو d
ho لکھا جاتا ہے۔ d
ho ہوتا ہے۔ d
ho ہوتا ہے۔





شکل 1.28: الف کروی محدد کر متغیرات. ب $heta= heta_0$  سطح کا کچھ حصہ۔





شکل 1.29: (الف) تین عمودی سطحوں کے ملاپ سے نقطہ N کا حصول. (ب) کروی محدد کے تین عمودی اکائی سمتیات۔

r اور  $\phi$  تبدیل کئے بغیر  $\theta$  کو 0 سے بڑھاتے ہوئے  $\pi$  ریڈیئن کرنے سے نقطہ N شکل 1.28 الف میں نقطہ دار کئیر پر چلتے ہوئے مثبت z محدد سے شروع ہو کر منفی z محدد پر پہنچتا ہے۔اسے نقطہ دار کئیر کو کرہ ارض کے خط طول بلد 2 تصور کیا جا سکتا ہے۔ شکل-الف میں  $\theta$  کا 0 تا 0 و 0 تبدیل ہوتا دکھایا گیا ہے۔اس طرح r اور  $\theta$  تبدیل کئے بغیر r کو r تبدیل کرنے سے نقطہ r گول دائرے پر r محدد کے گرد ایک چکر کائے گا۔ یہ حرکت کرہ ارض کے خط عرض بلد r پر چلنے کے مانند ہے۔ r اور r تبدیل کئے بغیر r کو تبدیل کرنے سے نقطہ r مرکز سے سید تھی باہر نگلتی کئیر پر حرکت کرتا ہے۔

r تبدیل کئے بغیر  $\theta$  کو °0 تا °180 اور  $\phi$  کو °0 تا °360 تبدیل کرنے سے نقطہ N کروی N تبدیل کئے بغیر  $\theta$  کو °0 تا °90 اور  $\phi$  کو °0 تا °90 تبدیل کئے بغیر  $\eta$  اور  $\phi$  کو °0 تا °90 اور  $\phi$  کو °0 تا °90 تبدیل کئے بغیر  $\eta$  اور  $\theta$  تبدیل کئے بغیر  $\eta$  اور  $\theta$  تبدیل کئے بغیر  $\eta$  اور  $\theta$  تبدیل کرنے سے بیدا مخروط  $\theta$  و  $\theta$  کروی سطح دکھائی گئی ہے۔  $\phi$  تبدیل کئے بغیر  $\eta$  اور  $\theta$  تبدیل کرنے سے بیدا مخروط  $\theta$  و  $\theta$  کروی سطح دکھائی گئی ہے۔  $\phi$  تبدیل کئے بغیر  $\eta$  اور  $\theta$  تبدیل کرنے سے نگلی محدد کی طرح  $\theta$  مقام ان تین ان تینوں سطحوں کو دکھایا گیا ہے۔ بالکل کار تیسی اور نگلی محدد کی طرح ، کسی بھی نقطہ  $\theta$  کا مقام ان تین

ongitude<sup>27</sup> latitude<sup>27</sup> 1.10. كروى محدد



شكل 1.30: كروى نظام مين اكائي سمتيات كي صليبي ضرب.

سطحوں کے نقطہ ملاپ سے اخذ کیا جاتا ہے۔ کسی بھی نقطہ  $N(r_0, \theta_0, \phi_0)$  پر  $\theta=\theta_0$  اور  $\theta=\phi$  اور  $\phi=\phi$  سطحیں آپس میں عمودی ہوتی ہے اور سیہ صرف اور صرف اسی نقطے پر اکھٹے ملتی ہیں۔

شکل  $a_0$  - بین کروی نظام کے تین عمودی اکائی سمتیات  $a_0$  ،  $a_1$  اور  $a_0$  ،  $a_1$  اور  $a_0$  ،  $a_1$  اور  $a_0$  بین - نگی محدد کی طرح کروی محدد کے عمودی اکائی سمتیہ  $a_1$  سمتیات بھی مقام تبدیل کرنے سے تبدیل ہوتے ہیں۔ کسی بھی نقطہ  $N(r_0,\theta_0,\phi_0)$  پر  $\theta$  اور  $\theta$  تبدیل کئے بغیر r کے بڑھتے جانب اکائی سمتیہ  $a_0$  کی جانب r کی مقام تبدیل کرنے سے نقطہ r اکائی سمتیہ  $a_0$  کی جانب حرکت کرے گا جات ہوگا ہے ہوگا ہے ہوئے نقطہ کی جانب اکائی سمتیہ کھینچنے سے محدد کی طرح کروی محدد کے اکائی سمتیہ کھینچنے سے مصدد کی طرح کروی محدد کے اکائی سمتیات کو بھی محدد کی نظام کے متغیرات کو کم سے کم بڑھاتے ہوئے نقطے کی حرکت کی جانب اکائی سمتیہ کھینچنے سے مصل کیا جاتا ہے۔

شکل 1.29-الف سے واضح ہے کہ  $a_{\rm r}$  سمتیہ  $a_{\rm r}$  سطح کے عمود کی جبکہ  $\theta=\theta_0$  اور  $\theta=\phi_0$  سطحوں کے متوازی ہے۔ اس طرح سمتیہ  $a_{\rm r}$  سطح کے عمود کی جبکہ  $\phi=\phi_0$  سطح کے عمود کی اور  $\phi=\phi_0$  سطح کے عمود کی جبکہ  $\phi=\phi_0$  سطح کے عمود کی جبکہ وہوں کے ساتھ ممال بناتا ہے۔

ور  $a_{\phi}$ ، اور  $a_{\phi}$  کروی نظام کے اکائی سمتیات ہیں۔  $a_{\phi}$  ہیں میں وائل میں ہوتا ہے۔ دائیں ہاتھ کا کروی نظام حاصل ہوتا ہے۔ دائیں ہاتھ کے قانون میں دائیں ہاتھ کا انگو ٹھا ہم جبکہ کیبلی انگلی  $a_{\phi}$  اور دوسری انگلی  $a_{\phi}$  بڑھانے سے پیدا حرکت کی سمتوں کو ظاہر کرتے ہیں۔ نکلی محدد میں یہ انگلیاں  $a_{\phi}$  ہور  $a_{\phi}$  کار تیسی محدد میں یہ  $a_{\phi}$  بڑھانے سے پیدا حرکت کی سمتوں کو ظاہر کرتی ہیں۔

دائیں ہاتھ کے قانون یا شکل 1.30 کی مدد سے یوں اکائی سمتیات کے صلیبی ضرب

$$a_{\Gamma} \times a_{\theta} = a_{\phi}, \quad a_{\theta} \times a_{\phi} = a_{\Gamma}, \quad a_{\phi} \times a_{\Gamma} = a_{\theta}$$

لکھے جا سکتے ہیں۔اسی طرح

$$a_{\mathbf{r}} \cdot a_{\mathbf{r}} = 1, \quad a_{\theta} \cdot a_{\theta} = 1, \quad a_{\phi} \cdot a_{\phi} = 1$$

اور

$$a_{\Gamma} \cdot a_{\theta} = 0, \quad a_{\theta} \cdot a_{\phi} = 0, \quad a_{\phi} \cdot a_{\Gamma} = 0$$

بھی لکھے جا سکتے ہیں۔

(1.48) 
$$x = r \sin \theta \cos \phi$$
$$y = r \sin \theta \sin \phi$$
$$z = r \cos \theta$$



شكل 1.31: كروى، نلكى اور كارتيسى متغيرات كا تبادله.



شكل 1.32: كروى اكائى سمتيات كا كارتيسى نظام ميں تبادله.

کھیے جاسکتے ہیں جہاں 2 کی مساوات بھی ساتھ ہی لکھی گئی ہے۔مساوات 1.48 کروی سے کار تنیسی متغیرات دیتا ہے۔اسی شکل کو دیکھتے ہوئے مسئلہ فیثا غورث کی مدد سے

(1.49) 
$$r^2 = \rho^2 + z^2$$
$$\rho^2 = x^2 + y^2$$

لکھتے ہوئے

$$(1.50) r^2 = x^2 + y^2 + z^2$$

حاصل ہوتا ہے۔مساوات 1.48 میں <sub>2</sub> کی مساوات سے

(1.51) 
$$\theta = \cos^{-1} \frac{z}{r} = \cos^{-1} \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$

کھا جا سکتا ہے۔اس طرح مساوات 1.48 کے y کو x سے تقسیم کرتے ہوئے

$$\phi = \tan^{-1} \frac{y}{x}$$

حاصل ہوتا ہے۔مساوات 1.50، مساوات 1.51 اور مساوات 1.52 کار تیسی سے کروی متغیرات دیتے ہیں۔

شکل 1.29- بیں نقطہ N پر اکائی سمتیات و کھائے گئے ہیں۔  $a_r$  کی سمت تبدیل کئے بغیر اسے محدد کے مرکز پر منتقل کرتے ہوئے شکل 1.32-الف میں و کھایا گیا ہے جہاں سے ظاہر ہے کہ اسے نککی محدد کے اکائی سمتیات کی مدد سے

$$a_{\rm T} = A_{\rho} a_{\rho} + A_z a_{\rm Z}$$

 $A_z=\cos heta$  اور  $A_z=\cos heta$  کی لمبائی ایک لیتے ہوئے  $A_
ho=\sin heta$  اور  $A_z=\cos heta$  ککھا جا سکتا ہے۔ یوں

$$a_{\rm r} = \sin \theta a_{\rho} + \cos \theta a_{\rm Z}$$

1.10. كروى محدد

حاصل ہوتا ہے۔اس مساوات کا باری باری وری  $a_{\phi}$  اور  $a_{z}$  کے ساتھ غیر سمی ضرب لیتے ہوئے

(1.55) 
$$\begin{aligned} \boldsymbol{a}_{\mathbf{r}} \cdot \boldsymbol{a}_{\rho} &= (\sin \theta \boldsymbol{a}_{\rho} + \cos \theta \boldsymbol{a}_{\mathbf{Z}}) \cdot \boldsymbol{a}_{\rho} = \sin \theta \\ \boldsymbol{a}_{\mathbf{r}} \cdot \boldsymbol{a}_{\phi} &= (\sin \theta \boldsymbol{a}_{\rho} + \cos \theta \boldsymbol{a}_{\mathbf{Z}}) \cdot \boldsymbol{a}_{\phi} = 0 \\ \boldsymbol{a}_{\mathbf{r}} \cdot \boldsymbol{a}_{\mathbf{Z}} &= (\sin \theta \boldsymbol{a}_{\rho} + \cos \theta \boldsymbol{a}_{\mathbf{Z}}) \cdot \boldsymbol{a}_{\mathbf{Z}} = \cos \theta \end{aligned}$$

31

حاصل ہوتا ہے جہاں  $a_{
m p}=0$  ہو غیرہ کا استعال کیا گیا۔ یہ مساوات کروی رداسی اکائی سمتیے اور نکلی نظام کے اکائی سمتیات کے مصل ہوتا ہے جہاں  $a_{
m p}=1$  ہو کے مساقط خیر سمتی ضرب دیتا ہے۔ اس طرح جدول 1.1 استعال کرتے ہوئے مساوات 1.54 کا باری باری  $a_{
m N}$  اور  $a_{
m p}$  کے ساتھ غیر سمتی ضرب لیتے ہوئے

(1.56) 
$$a_{\rm T} \cdot a_{\rm X} = (\sin \theta a_{\rho} + \cos \theta a_{\rm Z}) \cdot a_{\rm X} = \sin \theta \cos \phi$$

$$a_{\rm T} \cdot a_{\rm Y} = (\sin \theta a_{\rho} + \cos \theta a_{\rm Z}) \cdot a_{\rm Y} = \sin \theta \sin \phi$$

$$a_{\rm T} \cdot a_{\rm Z} = (\sin \theta a_{\rho} + \cos \theta a_{\rm Z}) \cdot a_{\rm Z} = \cos \theta$$

حاصل ہوتا ہے۔ مکمل نتائے ایک جگہ کھنے کی خاطر مندرجہ بالا مساوات میں  $a_r\cdot a_z$  کو بھی شامل کیا گیا ہے۔ یہ مساوات کروی اکائی رواسی سمتیے اور کار تیس اکائی سمتیات کے تمام مکنہ غیر سمتی ضرب دیتا ہے۔

جبکہ  $A_x=a_{
m X}\cdot a_{
m r}$  کو کار تیسی نظام میں لکھنے کی خاطر  $A_{
m r}=A=A_xa_{
m X}+A_ya_{
m Y}+A_za_{
m Z}$  مطابق  $A_{
m r}=A_z$  جبکہ  $A_{
m r}=a_{
m Y}$  اور  $A_{
m Z}=a_{
m Z}\cdot a_{
m r}$  ہوں گے۔ یہ تمام مساوات 1.56 میں دیے گئے ہیں۔ یوں

 $a_{\rm r} = \sin\theta\cos\phi a_{\rm X} + \sin\theta\sin\phi a_{\rm Y} + \cos\theta a_{\rm Z}$ 

لکھا جا سکتا ہے۔

شکل 1.29-ب میں و کھائے  $a_{0}$  کو  $\phi=\phi$  سطح پر حرکت دیتے ہوئے مرکز کے اتنے قریب لاکر شکل 1.32-ب میں و کھایا گیا ہے کہ اس کی نوک x=0 سطح کو چھوتی ہے۔ جیسا شکل 1.29-الف سے واضح ہے،  $\phi=\phi_{0}$  ہو  $\phi=\phi_{0}$  کو حرکت دینے سے اس سمتیہ کی سمت تبدیل نہیں ہوتی۔ شکل x=0 ورکہ حصے ہوئے ہوئے۔ الف سے واضح ہے،  $a_{0}$  میں میں خوادر ہو گھو ہو ہے ہوئے مسلم اور میں کہ میں خوادر ہو گھو ہو ہے۔  $a_{0}$  ہور میں کہ میں زاویہ  $a_{0}$  ہور ہے ہوئے مسلم نیثا خورث کی مدد سے  $a_{0}$  ہور کے مسلم نیثا خورث کی مدد سے

$$B_{\rho} = \cos \theta$$
$$B_z = \sin \theta$$

لکھا جا سکتا ہے۔ یوں

$$a_{\theta} = \cos \theta a_{\rho} - \sin \theta a_{Z}$$

کے برابر ہے۔اس مساوات کا باری باری م $a_{\phi} \cdot a_{
ho}$  اور  $a_{Z}$  کے ساتھ غیر سمتی ضرب لینے سے

(1.59) 
$$\begin{aligned} \boldsymbol{a}_{\theta} \cdot \boldsymbol{a}_{\rho} &= (\cos\theta \boldsymbol{a}_{\rho} - \sin\theta \boldsymbol{a}_{Z}) \cdot \boldsymbol{a}_{\rho} = \cos\theta \\ \boldsymbol{a}_{\theta} \cdot \boldsymbol{a}_{\phi} &= (\cos\theta \boldsymbol{a}_{\rho} - \sin\theta \boldsymbol{a}_{Z}) \cdot \boldsymbol{a}_{\phi} = 0 \\ \boldsymbol{a}_{\theta} \cdot \boldsymbol{a}_{Z} &= (\cos\theta \boldsymbol{a}_{\rho} - \sin\theta \boldsymbol{a}_{Z}) \cdot \boldsymbol{a}_{Z} = -\sin\theta \end{aligned}$$

اور نگلی اکائی سمتیات کے تمام غیر سمتی ضرب حاصل ہوتے ہیں۔اسی طرح مساوات 1.58 کا باری باری  $a_y$  ، $a_z$  اور  $a_z$  کے ساتھ غیر سمتی ضرب لینے سے

$$a_{\theta} \cdot a_{X} = (\cos \theta a_{\rho} - \sin \theta a_{Z}) \cdot a_{X} = \cos \theta a_{\rho} \cdot a_{X} = \cos \theta \cos \phi$$

$$a_{\theta} \cdot a_{Y} = (\cos \theta a_{\rho} - \sin \theta a_{Z}) \cdot a_{Y} = \cos \theta a_{\rho} \cdot a_{Y} = \cos \theta \sin \phi$$

$$a_{\theta} \cdot a_{Z} = (\cos \theta a_{\rho} - \sin \theta a_{Z}) \cdot a_{Z} = -\sin \theta a_{Z} \cdot a_{Z} = -\sin \theta$$

باب 1. سمتیات

جدول 1.2: کروی اکائی سمتیات کا نلکی اکائی سمتیات کرے ساتھ غیر سمتی ضرب۔

| $oldsymbol{a}_{z}$ | $oldsymbol{a}_{\phi}$ | $oldsymbol{a}_{ ho}$ |                             |
|--------------------|-----------------------|----------------------|-----------------------------|
| $\cos \theta$      | 0                     | $\sin \theta$        | $oldsymbol{a}_{\mathrm{r}}$ |
| $-\sin\theta$      | 0                     | $\cos \theta$        | $oldsymbol{a}_{	heta}$      |
| 0                  | 1                     | 0                    | $a_{\phi}$                  |

جدول 1.3: کروی اکائی سمتیات کا کارتیسی اکائی سمتیات کرے ساتھ غیر سمتی ضرب۔

$$\begin{array}{c|cccc} \boldsymbol{a}_{z} & \boldsymbol{a}_{y} & \boldsymbol{a}_{x} & \\ \hline \cos\theta & \sin\theta\sin\phi & \sin\theta\cos\phi & \boldsymbol{a}_{r} \\ -\sin\theta & \cos\theta\sin\phi & \cos\theta\cos\phi & \boldsymbol{a}_{\theta} \\ 0 & \cos\phi & -\sin\phi & \boldsymbol{a}_{\phi} \end{array}$$

حاصل ہوتے ہیں۔ یہ مساوات  $a_{ heta}$  اور کار تیسی اکائی سمتیات کے تمام غیر سمتی ضرب دیتا ہے۔

جبہ  $A_x=a_{\mathrm{X}}\cdot a_{\theta}$  کو کار تیسی نظام میں لکھنے کی خاطر  $A_x=a_{\mathrm{X}}+A_ya_{\mathrm{Y}}+A_za_{\mathrm{Z}}$  خبرہ مطابق  $A_y=a_{\mathrm{X}}+A_ya_{\mathrm{Y}}+A_za_{\mathrm{Z}}$  جبہ جبہ کام مساوات 1.60 میں دئے گئے ہیں۔ یوں  $A_y=a_{\mathrm{Y}}\cdot a_{\theta}$ 

$$a_{\theta} = \cos \theta \cos \phi a_{X} + \cos \theta \sin \phi a_{Y} - \sin \theta a_{Z}$$

لکھا جا سکتا ہے۔

کروی محدد کا  $a_{\phi}$  اور نکلی محدد کا  $a_{\phi}$  کیساں ہیں۔اسے کار تیسی نظام میں

$$a_{\phi} = -\sin\phi a_{\rm X} + \cos\phi a_{\rm Y}$$

کھا جاتا ہے۔اس مساوات کا  $a_{
m y}$  ، ور $a_{
m Z}$  کے ساتھ غیر سمتی ضرب لیتے ہوئے

$$a_{\phi} \cdot a_{\mathrm{X}} = -\sin\phi$$
 $a_{\phi} \cdot a_{\mathrm{y}} = \cos\phi$ 
 $a_{\phi} \cdot a_{\mathrm{z}} = 0$ 

لکھا جا سکتا ہے۔

مساوات 1.55 اور مساوات 1.59 کے نتائج کے ساتھ  $a_{\phi}$  کے مختلف غیر سمتی ضربوں کو جدول 1.2 میں سیجا کیا گیا ہے۔

مساوات 1.56 اور مساوات 1.60 کے نتائج جدول 1.3 میں یجا کئے گئے ہیں۔

شکل 1.29 میں  $d\rho$  برطاکر دوبارہ تین عمودی سطیس دکھائی گئی ہیں۔اگر کروی محدد کے متغیرات  $d\rho$  اور  $d\rho$  برطاکر دوبارہ تین عمودی سطیس تعلیل  $d\rho$  بین تو یہ چھ سطیس مل کر چھوٹا منحرف ملعب نما تجم گھیریں گی جسے شکل 1.33 میں دکھایا گیا ہے۔ $a_r$  سمت میں ملعب کے چار اطراف کی لمبائیاں  $d\rho$  ہے ہے دو اجزاء کی صورت میں  $d\rho$  سمت میں  $d\rho$  محدد کے قریبی دو اطراف کی لمبائیاں  $d\rho$  جبکہ دو دور اطراف کی لمبائیاں  $d\rho$  ہے جے دو اجزاء کی صورت میں یوں  $d\rho$  سمت میں  $d\rho$  محدد کے قریبی دو اطراف کی لمبائی ہے جبکہ اس کا دوسرا جزو دور اور قریبی اطراف کی لمبائی ہے جبکہ اس کا دوسرا جزو دور اور قریبی اطراف کے لمبائیوں میں فرق کو ظاہر کرتی ہے۔ان دو اجزاء کی نسبت  $d\rho$  کی نسبت  $d\rho$  کے لمبائیوں میں فرق کو ظاہر کرتی ہے۔ان دو اجزاء کی نسبت  $d\rho$  کی نسبت  $d\rho$  کی اطراف کی لمبائیاں  $d\rho$  ہی لیتے ہیں۔ائی طریقہ کار سے  $d\rho$  اطراف کی لمبائیاں  $d\rho$  بی لیتے ہیں۔ائی طریقہ کار سے  $d\rho$  اطراف کی لمبائیاں  $d\rho$  بی لیتے ہیں۔ائی طریقہ کار سے  $d\rho$  اطراف کی لمبائیاں  $d\rho$  بی لیتے ہیں۔ائی طریقہ کار سے  $d\rho$  اطراف کی لمبائیاں  $d\rho$  بی لیتے ہیں۔ائی طریقہ کار سے  $d\rho$  اطراف کی لمبائی بی کرتے ہوئے ہی

dr o 0 ہوں مثلاً t میں چھوٹی سی تبدیلی کو  $\Delta r$  لکھا جاتا ہے جبکہ اس میں کم سے کم تبدیلی کو dr لکھا جاتا ہے۔ dr o 0 ہوتا ہے۔

1.10. كروى محدد



شكل 1.33: كروى نظام ميں چهوٹى حجم.

لمبائیاں  $d\phi$   $d\phi$   $d\phi$  و تقرب نا تصور کیا جا سکتا ہے جس کے اطراف میں معمولی فرق کو نظرانداز کرتے ہوئے اسے مکعب نما تصور کیا جا سکتا ہے جس کے  $r\sin\theta$   $d\phi$  منازم جو گا۔اس مکعب کا حجم  $r\sin\theta$   $d\phi$  و خرید منازم بیر منازم بیر مکعب کا حجم  $r\sin\theta$  و گا۔اس مکعب کا حجم  $r\sin\theta$  و گا۔اس مکعب کا حجم  $r\sin\theta$  و گا۔

 $N'(r+\mathrm{d}r,\theta+\mathrm{d}\theta,\phi+\pm 2)$  کونے سے  $N(r,\theta,\phi)$  کونے کے بیم چھوٹے کعب کے  $N(r,\theta,\phi)$  کونے سے بین کروی محدد کے تینوں متغیرات تبدیل کرتے ہوئے بیم کونے کے بینے بین  $N'(r+\mathrm{d}r,\theta+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi+\mathrm{d}\theta,\phi$ 

 $dL = dr a_{\Gamma} + r d\theta a_{\theta} + r \sin\theta d\phi a_{\phi}$ 

کھا جاتا ہے۔ یہ مساوات کسی بھی دو قریبی نقطوں کے در میان سمتی فاصلہ دیتا ہے۔

مشق 1.6: شکل 1.33 میں سمت میں مرکز کے قریبی اور دور اطراف کی لمبائیال لکھیں۔

 $(r+dr)\sin(\theta+d\theta)\,\mathrm{d}\phi$  اور  $(r+dr)\sin\theta\,\mathrm{d}\phi$   $(r+dr)\sin\theta\,\mathrm{d}\phi$   $(r+dr)\sin\theta\,\mathrm{d}\phi$   $(r+dr)\sin\theta\,\mathrm{d}\phi$   $(r+dr)\sin\theta\,\mathrm{d}\phi$   $(r+dr)\sin\theta\,\mathrm{d}\phi$   $(r+dr)\sin\theta\,\mathrm{d}\phi$ 

مثال 1.9: دواکائی سمتیات  $a_1$  اور  $a_2$  کا غیر سمتی ضرب  $a_1 \cdot a_2 = (1)(1)\cos\alpha_{12}$  نین زاویے  $a_1 \cdot a_2 = a_1$  کوسائن کے برابر ہوتا مثال 1.9: دواکائی سمتیات  $a_1$  اور  $a_2 \cdot a_3 \cdot a_4 \cdot a_5 \cdot a_5 \cdot a_5 \cdot a_5 \cdot a_5$  ماصل کریں۔

باب 1. سمتيات



شكل 1.34: كارتيسي اور نلكي اكائي سمتيات كا غير سمتي ضرب.





شكل 1.35: كروى اور كارتيسي اكائي سمتيات كا غير سمتي ضرب.

## مثال 1.10: مثال 1.9 کے طرز پر $a_{ m r}$ کا $a_{ m y}$ ، $a_{ m x}$ کا $a_{ m y}$ ، $a_{ m x}$ کا $a_{ m r}$ کا a

z=0 حل: شکل دار-الف میں نقط  $N(r,\theta,\phi)$  د کھایا گیا ہے جے N(x,y,z) کھا جا سکتا ہے۔ شکل میں  $N(r,\theta,\phi)$  کھی د کھائے گئے ہیں۔ شکل  $N(r,\theta,\phi)$  میں نقط  $N(r,\theta,\phi)$  د کھا گئے ہیں۔ شکل  $N(r,\theta,\phi)$  میں نقط  $N(r,\theta,\phi)$  د کھی ہوتے ہوئے  $N(r,\theta,\phi)$  میں  $N(r,\theta,\phi)$  میں خور ہوئے ہوئے  $N(r,\theta,\phi)$  اور  $N(r,\theta,\phi)$  اور  $N(r,\theta,\phi)$  میں نقط  $N(r,\theta,\phi)$  میں  $N(r,\theta,\phi)$  اور  $N(r,\theta,\phi)$  اور  $N(r,\theta,\phi)$  میں  $N(r,\theta,\phi)$  میں  $N(r,\theta,\phi)$  میں  $N(r,\theta,\phi)$  اور  $N(r,\theta,\phi)$  اور  $N(r,\theta,\phi)$  میں  $N(r,\theta,\phi)$  میں میں  $N(r,\theta,\phi)$  م

$$a_{\mathbf{r}} \cdot a_{\mathbf{X}} = \frac{x}{r} = \sin \theta \cos \phi$$

$$a_{\mathbf{r}} \cdot a_{\mathbf{y}} = \frac{y}{r} = \sin \theta \sin \phi$$

$$a_{\mathbf{r}} \cdot a_{\mathbf{Z}} = \frac{z}{r} = \cos \theta$$

لكھ سكتے ہیں۔

مثال 1.11: مثال 1.9 کے طرز پر  $a_{0}$  کا  $a_{0}$  کے ساتھ غیر سمتی ضرب حاصل کریں۔

شكل-ب مين  $\overline{BM}=l$  ليتے ہوئے تكون  $\Delta BMC$  كو د كيھے ہوئے

$$\overline{BC} = \frac{l}{\sin \theta}$$

$$\overline{MC} = \frac{l}{\tan \theta}$$

کھا جا سکتا ہے۔ تکون AMDC سے

$$\overline{MD} = \overline{MC}\cos\phi = \frac{l\cos\phi}{\tan\theta}$$

کھا جا سکتا ہے۔ شکل سے واضح ہے کہ  $\overline{MD}$  اور  $\overline{AB}$  برابر ہیں لیعنی  $\overline{AB} = \overline{MD}$ - پیوں تکون  $\Delta BAC$  سے

$$\cos \underline{ABC} = \frac{\overline{AB}}{\overline{BC}} = \frac{\left(\frac{l\cos\phi}{\tan\theta}\right)}{\left(\frac{l}{\sin\theta}\right)} = \cos\theta\cos\phi$$

 $a_{
m r} \cdot a_{
m X} = \cos heta \cos \phi$  کھا جا سکتا ہے۔

مثق 1.7: شکل  $a_{ heta}\cdot a_{ ext{y}}$  ماش بناتے ہوئے  $a_{ heta}\cdot a_{ ext{y}}$  اور  $a_{ heta}\cdot a_{ ext{y}}$  ماصل کریں۔

 $-\sin\theta$  اور  $\cos\theta\sin\phi$ 

باب 1. سمتیات

### باب 2

# كولومب كا قانون

#### 2.1 قوت كشش يا دفع

نیوٹن کے کائناتی تجاذب کے قانون اسے آپ بخوبی واقف ہوں گے۔ کولومب کا قانون اس سے قریبی مشابہت رکھتا ہے۔ کائناتی تجاذب کے قانون کو مساوات 2.1 میں پیش کیا گیا ہے۔

$$(2.1) F = G \frac{M_1 M_2}{R^2}$$

یہ مساوات کمیت  $M_1$  اور کمیت  $M_2$  مابین قوت کشش F دیتا ہے جہاں ایک کمیت کے مرکز سے دوسری کمیت کے مرکز تک کا فاصلہ  $M_1$  ہے۔ قوت کشش دونوں کمیت کے حاصل ضرب کے راست متناسب اور ان کے مرکزوں کے در میانی فاصلے کے مربع کے بالعکس متناسب ہوتی ہے۔ دونوں کمیتوں پر قوت کشش کی مقدار برابر ہوتی ہے اور یہ قوت دونوں کمیتوں کے مرکزوں پر تھینچی کیبر پر عمل در آمد ہوتی ہے۔  $M_1$  پر قوت کشش کی سمت  $M_1$  کے مرکز سے  $M_1$  کے مرکز کی جانب کو ہوتا ہے۔ تناسب کے جزو مستقل کو  $M_1$  کی مرکز کی جانب کو ہوتا ہے۔ تناسب کے جزو مستقل کو  $M_1$  کی کھااور تجاذبی مستقل  $M_2$  کی کھااور تجاذبی مستقل کو گیرا جاتا ہے جس کی قیمت تقریباً  $M_1$  کی جانب کو ہوتا ہے۔  $M_2$  کی جانب کو ہوتا ہے۔  $M_3$  کی کھا اور تجاذبی مستقل کو گیرا ہوتا ہے جس کی قیمت تقریباً  $M_1$  کی خود کا کھا اور تجاذبی مستقل کو گیرا ہوتا ہے جس کی قیمت تقریباً  $M_1$ 

کولومب کا قانون مساوات 2.2 میں بیان کیا گیا ہے۔ یہ مساوات چارج Q<sub>1</sub> اور چارج Q<sub>2</sub> کے مابین قوت کشش یا قوت دفع F دیتا ہے جہاں ایک چارج کے مرکز سے دوسری چارج کے مرکز سے دوسری چارج کے مرکز سے دوسری چارج کو گیند کی شکل کا تصور کیا جائے تواس گیند کے رداس کی لمبائی صفر ہوگی۔ایسے چارج کو نقطہ چارج 4 کہا جاتا ہے۔

$$F = \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{R^2}$$

قوت کشش یا وفع دونوں چارجوں کے حاصل ضرب کے راست متناسب اور باہمی فاصلہ کے مربع کے بالعکس متناسب ہوتی ہے۔دونوں چارجوں پر قوت کی مقدار برابر ہوتی ہے اور یہ قوت دونوں چارجوں سے گزرتی ککیر پر عمل درآ مد ہوتی ہے۔دومخلف اقسام کے چارجوں کے مابین قوت کشش پائی

Law of Universal Gravitation<sup>1</sup> Coulomb's law<sup>2</sup>

gravitational constant<sup>3</sup> point charge<sup>4</sup>

اب 2. كولومب كا قانون

جاتی ہے جبکہ دو یکساں چارجوں کے مابین قوت دفع پائی جاتی ہے۔ مساوات کے جزو مستقل کو  $\frac{1}{4\pi\epsilon_0}$  کھا جاتا ہے جہاں  $\epsilon_0$  خالی خلاء کا برقی مستقل کی قیت جس کی قیمت اٹل ہے۔ خالی خلاء کے برقی مستقل کی قیمت

$$\epsilon_0 = \frac{1}{\mu_0 c^2}$$

ہے جہاں c خالی خلاء میں روشنی کی رفتار اور µ<sub>0</sub> خالی خلاء کی مقناطیسی مستقل ہے۔ یہ دونوں بھی اٹل مستقل ہیں جن کی قیمتیں

(2.4) 
$$c = 299792458 \frac{\text{m}}{\text{s}} \approx 3 \times 10^8 \frac{\text{m}}{\text{s}}$$

(2.5) 
$$\mu_0 = 4\pi \times 10^{-7} \, \frac{H}{m}$$

ہیں۔یوں مقناطیسی مستقل کی قیمت تقریباً

(2.6) 
$$\epsilon_0 = 8.854 \times 10^{-12} \doteq \frac{1}{36\pi} 10^{-9} \frac{F}{m}$$

کے برابر ہے۔اس کتاب میں  $\frac{1}{4\pi\epsilon_0}$  بار بار استعال ہو گا جسے عموماً

$$\frac{1}{4\pi\epsilon_0} \doteq 9 \times 10^9$$

لیا جائے گا۔  $\epsilon_0$  کی اکائی فیراڈ فی میٹر  $\frac{\mathrm{F}}{\mathrm{m}}$  ہے جس کی وضاحت جلد کر دی جائے گا۔

مثال 2.1: زمین کی سطح پر زمین اور ایک کلو گرام کمیت کے مابین 9.8 N کی قوت کشش پائی جاتی ہے۔ زمین کا رواس 6370 km لیتے ہوئے زمین کی کمیت حاصل کریں۔

حل: مساوات 2.1 کی مدرسے

$$9.8 = \frac{6.674 \times 10^{-11} \times M \times 1}{6370000 \times 6370000}$$

کھتے ہوئے زمین کی کمیت  $0.054 \times 5.959 \times 5.959$  حاصل ہوتی ہے۔

مثال 2.2: زمین کی مرکز سے تقریباً 42 000 km کے فاصلے پر ذرائع ابلاغ کے سیٹلائٹ زمین کے گرد مدار میں گردش کرتے ہیں۔پوری دنیا میں بے تار<sup>8</sup> مواصلاتی نظام انہیں کے مرہون منت ہے۔اس فاصلے پر ایک کلو گرام کی کمیت اور زمین کے مابین قوت کشش کی مقدار حاصل کریں۔

permittivity<sup>5</sup>

ectric constant<sup>o</sup> permeability<sup>7</sup> wireless<sup>8</sup>

حل:

$$F = \frac{6.674 \times 10^{-11} \times 5.959 \times 10^{24} \times 1}{42\,000\,000 \times 42\,000\,000} = 0.225\,\text{N}$$

مثال 2.3: ایک ایک کولومب کے دو مثبت چارجوں کے در میان ایک میٹر کا فاصلہ ہے۔ان میں قوت دفع حاصل کریں۔  $\frac{1}{4\pi\epsilon_0}$  کی قیمت مساوات 2.7 سے لیتے ہوئے

$$F = 9 \times 10^9 \frac{1 \times 1}{1 \times 1} = 9 \times 10^9 \,\text{N}$$

مندرجہ بالا مثال سے آپ و کھ سکتے ہیں کہ چارج کی اکائی (کولومب) انتہائی بڑی مقدار ہے۔

 $Q_2$  شکل 2.1 میں چارج  $Q_1$  محدو کے مرکز سے سمتی فاصلہ  $r_1$  پر جبکہ چارج  $Q_2$  مرکز سے سمتی فاصلہ  $r_2$  میں چارج  $Q_1$  محدو کے مرکز سے سمتی فاصلہ  $q_1$  میں خاصلہ  $q_2$  میں خاصلہ  $q_3$  میں خاصلہ  $q_4$  میں خاصلہ  $q_5$  میں خاصلہ  $q_5$  میں خاصلہ  $q_6$  میں خاصلہ و میں خاصلہ

$$(2.8) R_{21} = r_2 - r_1$$

کے برابر ہے۔ سمتیہ R<sub>21</sub> کی سمت میں اکائی سمتیہ a<sub>21</sub> یوں حاصل کیا جاتا ہے

(2.9) 
$$a_{21} = \frac{R_{21}}{|R_{21}|} = \frac{R_{21}}{R_{21}} = \frac{r_2 - r_1}{|r_2 - r_1|}$$

چارج Q2 پر قوت F<sub>2</sub> کی حتمی قیمت مساوات 2.2 سے حاصل کی جاسکتی ہے جبکہ اس کی سمت اکائی سمتیہ a<sub>21</sub> کے سمت میں ہو گی۔اس طرح یہ قوت

$$F_2 = \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{R_{21}^2} a_{21}$$

$$= \frac{Q_1 Q_2}{4\pi\epsilon_0} \frac{r_2 - r_1}{|r_2 - r_1|^3}$$

کھا جائے گا۔مساوات 2.10 کولومب کے قانون کی سمتی شکل ہے۔ چونکہ دونوں چارجوں پر برابر مگر الٹ سمت میں قوت عمل کرتا ہے لہٰذا Q<sub>1</sub> پر قوت F<sub>1</sub> یوں کھا جائے گا

$$\begin{aligned} \boldsymbol{F_1} &= -\boldsymbol{F_2} = \frac{-1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{R_{21}^2} \boldsymbol{a_{21}} \\ &= \frac{1}{4\pi\epsilon_0} \frac{Q_1 Q_2}{R^2} \boldsymbol{a_{12}} \end{aligned}$$

جہاں دوسری قدم پر  $R_{21}=R_{12}=R_{12}=R_{21}$  کھا گیا ہے اور  $a_{12}=-a_{21}$  کے برابر ہے۔ دونوں چارج مثنی ہونے کی صورت

40 کولومب کا قانون



شکل 2.1: دو مثبت چارجوں کے مابین قوت دفع

میں  $Q_2$  پر مساوات 2.10 سے قوت  $a_{21}$  کی سمت میں حاصل ہوتا ہے۔ یوں یکسال چارجوں کے مابین قوت دفع پایا جاتا ہے۔ دوالٹ اقسام کے چارجوں کی مابین قوت کشش پایا جاتا ہے۔ صورت میں  $Q_2$  پر قوت  $a_{21}$  کی سمت میں حاصل ہوتا ہے۔ یوں الٹ اقسام کے چارجوں کے مابین قوت کشش پایا جاتا ہے۔

مثال 2.4: شکل 2.1 میں نقطہ A(3,2,4) پر A(3,2,4) چارج  $Q_1$  جبکہ نقطہ B(1,5,9) پر A(3,2,4) کا چارج  $Q_1$  پایا جاتا ہے۔ منفی چارج  $Q_2$  پر مشتی قوت حاصل کریں۔

عل:

$$R_{21} = (1-3)a_{X} + (5-2)a_{Y} + (9-4)a_{Z}$$

$$= -2a_{X} + 3a_{Y} + 5a_{Z}$$

$$R_{21} = |R_{21}| = \sqrt{(-2)^{2} + 3^{2} + 5^{2}}$$

$$= \sqrt{38}$$

$$= 6.1644$$

اور يول

$$a_{21} = \frac{R_{21}}{|R_{21}|} = \frac{-2a_{X} + 3a_{Y} + 5a_{Z}}{6.1644}$$
$$= -0.324a_{X} + 0.487a_{Y} + 0.811a_{Z}$$

حاصل ہوتا ہے جس سے

$$\begin{aligned} F_2 &= \frac{36\pi \times 10^9}{4\pi} \frac{\left(-50 \times 10^{-6} \times 20 \times 10^{-6}\right)}{38} \left(-0.324 a_{\rm X} + 0.487 a_{\rm y} + 0.811 a_{\rm z}\right) \\ &= -0.237 \left(-0.324 a_{\rm X} + 0.487 a_{\rm y} + 0.811 a_{\rm z}\right) \, {\rm N} \end{aligned}$$

حاصل ہوتا ہے۔ آپ دکھ سکتے ہیں کہ قوت کی سمت میں ہے۔ اول منفی چارج پر قوت کی سمت مثبت چارج کی جانب ہے یعنی اس پر قوت کشش پایا جاتا ہے۔

کسی بھی چارج پر ایک سے زیادہ چارجوں سے پیدا مجموعی قوت تمام چارجوں سے پیدا علیحدہ قوتوں کا سمتی مجموعہ ہوتا ہے لیعنی  $F = \sum_{i=1}^{n} F_i$ 

2.2. برقی میدان کی شدت

اس حقیقت کو یول بیان کیا جاتا ہے کہ کولومب کا قانون خطی <sup>9</sup> ہے۔

#### 2.2 برقی میدان کی شدت

$$(2.13) g = \frac{F}{m} = \frac{GM}{R^2}$$

کی بھی کمیت M کے گرد تجاذبی میدان 11 پایا جاتا ہے۔ کس بھی نقطے پر اس تجاذبی میدن کو ناپنے کی خاطر اس نقطے پر پیا کُثی کمیت  $m_p$  کر اس پر قوت ناپی جاتی ہے۔ مختلف مقامات پر اس طرح قوت ناپ کر ہم تجاذبی میدان کا جائزہ لے سکتے ہیں۔ تجاذبی قوت کی مقدار کا دارومدار پیا کُثی کمیت  $m_p$  پر بھی مخصر ہے۔ مختلف تجاذبی میدانوں کا آپس میں موازنہ کرتے وقت سے ضروری ہے کہ تمام تجاذبی میدان جانجتے وقت ایک ہی قیمت کے پیا کُثی کمیت استعال کی جائے۔ ماہرین طبیعیات عموماً  $m_p$  کو ایک کلو گرام رکھتے ہیں۔ یہ ضوری نہیں کہ تجاذبی قوت ماصل کی جا سکتی ہے۔ زمین کے قریب ایک استعال کی جائے البتہ جو ابات اکٹھے کرتے وقت  $m_p$  پیارا جاتا ہے۔ کلو گرام کمیت پر قوت کشش کو ثقلی اسراع  $m_p$  پیارا جاتا ہے۔

مثال 2.5: زمین کی سطح پر دو سو گرام پیانش کمیت پر 1.96 N قوت ناپی جاتی ہے۔ ثقلی اسراع حاصل کریں۔

حل:

$$(2.14) g = \frac{1.96}{0.2} = 9.8 \, \frac{N}{kg}$$

مساوات 2.13 سے ہم

$$F = mg$$

$$w = mg$$

کھ سکتے ہیں جو زمین کی سطح پر کمیت m پر کشش ثقل F دیتا ہے جمے وزن پکارااور v ککھا جاتا ہے۔

linear9

gravity 10

gravitational field<sup>11</sup>

سے بوٹے زیرنوشت میں p لفظ پیمائشی کرے پ کو ظاہر کرتا ہے، یعنی یہ وہ کمیت ہے جسے قوت کی پیمائش کی خاطر استعمال کیا جا رہا ہر۔ ptest mass<sup>13</sup>

42 باب 2. كولومب كا قانون

چار جوں پر بھی اسی طرح غور کیا جاتا ہے۔ کسی بھی چارج Q کے گرد برقی میدان پایا جاتا ہے لینی برقی میدان کا منبع چارج ہے۔ اس برقی میدان میں چارج پر قوت اثر انداز ہوتا ہے۔ چارج Q کے برقی میدان کی شدت کے پیائش کی خاطر اس میدان میں مختلف مقامات پر پیائش چارج و قوت یا خوروں کا میدان کا مطالعہ کیا جا سکتا ہے اور اس کا نقشہ بنایا جا سکتا ہے۔ مختلف چارجوں کے برقی میدانوں کا آپس میں موازنہ کرتے وقت یہ ضروری نہیں ہے کہ تمام صور توں میں ایک ہی قیت کے بیائش چارج استعال کئے جائیں۔ ماہرین طبیعیات q کو ایک کولومب کا مثبت چارج رکھتے ہیں۔ یہ ضروری نہیں کہ قوت ناپتے وقت ایک کولومب کا مثبت پیائش چارج ہی استعال کیا جائے البتہ جوابات اکٹھے کرتے وقت T کو T کولومب کا مثبت ہوئے ایک مثبت کولومب پر قوت عاصل کی جاتی ہے۔ ای شدت T یا صرف برقی میدان پکارا اور T کھا جاتا ہے بعنی

$$E = \frac{F}{q_p}$$

مختلف مقامات پر موجود مختلف قیمتوں کے چارجوں سے کسی ایک نقطے پر پیدا برقی میدان تمام چارجوں کے مجموعی اثر سے پیدا ہو گا۔ایسا کولومب کے قانون کے خطی ہونے کی بناپر ہوتا ہے۔کسی بھی نقطے پر n چارجوں کا مجموعی E تمام چارجوں کے علیحدہ پیدا کردہ E3،E2،E1، کاسمتی مجموعہ

(2.17) 
$$E = \sum_{i=1}^{n} E_i = E_1 + E_2 + E_3 + \dots + E_n$$

ہوتا ہے۔ یوں کس بھی نقط P پر E ناپتے وقت اس نقطے پر ایک کولومب چارج p رکھ کر اس چارج پر قوت ناپی جاتی ہے۔ یہ قوت اس نقطے پر تمام چارجوں کا مجموعی E ہوتا ہے۔ یاد رہے کہ کسی بھی نقطے پر E ناپتے وقت یہاں رکھے پیاکٹی چارج p کا اثر شامل نہیں ہوتا۔

مساوات 2.10 سے چارج Q سے  $a_R$  ست میں R فاصلے پر برقی میدان کو

(2.18) 
$$E = \frac{Q}{4\pi\epsilon_0} \frac{a_R}{R^2}$$
$$= \frac{Q}{4\pi\epsilon_0} \frac{R}{R^3}$$

کھا جا سکتا ہے۔ جارج کو کروی محد د کے مرکز پر تصور کرتے ہوئے اسی مساوات کو بوں لکھا جا سکتا ہے

$$(2.19) E = \frac{Q}{4\pi\epsilon_0 r^2} a_{\rm r}$$

جہاں  $a_{
m r}$  کروی محدد کا رداسی سمت میں اکائی سمتیہ ہے۔

$$-\frac{1}{4\pi\epsilon_{0}} \frac{Q}{|\mathbf{r} - \mathbf{r'}|^{2}} \frac{\mathbf{r} - \mathbf{r'}}{|\mathbf{r} - \mathbf{r'}|} = \frac{Q}{4\pi\epsilon_{0}} \frac{\mathbf{r} - \mathbf{r'}}{|\mathbf{r} - \mathbf{r'}|^{3}}$$

$$= \frac{Q}{4\pi\epsilon_{0}} \frac{\frac{\mathbf{r} - \mathbf{r'}}{|\mathbf{r} - \mathbf{r'}|}}{\left[(\mathbf{x} - \mathbf{x'})^{2} + (\mathbf{y} - \mathbf{y'})^{2} + (\mathbf{z} - \mathbf{z'})^{2}\right]^{\frac{3}{2}}}$$

$$= \frac{Q}{4\pi\epsilon_{0}} \frac{\left[(\mathbf{x} - \mathbf{x'})\mathbf{a}_{\mathbf{x}} + (\mathbf{y} - \mathbf{y'})\mathbf{a}_{\mathbf{y}} + (\mathbf{z} - \mathbf{z'})\mathbf{a}_{\mathbf{z}}\right]}{\left[(\mathbf{x} - \mathbf{x'})^{2} + (\mathbf{y} - \mathbf{y'})^{2} + (\mathbf{z} - \mathbf{z'})^{2}\right]^{\frac{3}{2}}}$$

جہاں

$$r = xa_{X} + ya_{Y} + za_{Z}$$

$$r' = x'a_{X} + y'a_{Y} + z'a_{Z}$$

$$R = r - r' = (x - x')a_{X} + (y - y')a_{Y} + (z - z')a_{Z}$$

test charge<sup>14</sup> electric field intensity<sup>15</sup>



شکل 2.2: دو چارجوں سے پیدا برقی شدت

کے برابر ہے۔

مثال 2.6: نقطه  $N_1(4,1,1)$  پر  $N_2(1,4,2)$  چارج که  $N_2(1,4,2)$  چارج که باتا ہے۔ نقطہ  $N_3(2,2,5)$  پر  $N_3(2,2,5)$  پر  $N_2(1,4,2)$  جارج کا پیدا  $E_2$  سے پیدا  $E_2$  سات کریں۔اس نقطے پر دونوں چارجوں کا مجموعی  $E_3$  کیا ہو گا۔

$$R_{31}=R_3-R_1=(2-4)a_{\mathrm{X}}$$
 عاصل کرتے ہیں۔ $N_1$  تک سمتی فاصلہ  $R_{31}=R_3-R_1=(2-4)a_{\mathrm{X}}+(2-1)a_{\mathrm{Y}}+(5-1)a_{\mathrm{Z}}$  عاصلہ  $R_{31}=R_3-R_1=(2-4)a_{\mathrm{X}}+(2-1)a_{\mathrm{Y}}+(5-1)a_{\mathrm{Z}}$ 

ہے جس سے

$$R_{31} = |\mathbf{R}_{31}| = \sqrt{(-2)^2 + 1^2 + 4^2}$$

$$= \sqrt{21} = 4.583$$

$$\mathbf{a}_{31} = \frac{\mathbf{R}_{31}}{R_{31}} = \frac{-2\mathbf{a}_{X} + 1\mathbf{a}_{Y} + 4\mathbf{a}_{Z}}{\sqrt{21}}$$

$$= -0.436\mathbf{a}_{X} + 0.218\mathbf{a}_{Y} + 0.873\mathbf{a}_{Z}$$

حاصل ہوتے ہیں۔ یوں مساوات 2.18 سے

$$E_1 = 9 \times 10^9 rac{100 \times 10^{-6}}{21} \left( -0.436 a_{
m X} + 0.218 a_{
m Y} + 0.873 a_{
m Z} 
ight)$$
  $= -18\,686 a_{
m X} + 9343 a_{
m Y} + 37\,414 a_{
m Z} rac{
m V}{
m m}$  حاصل ہوتا ہے جہاں مساوات 2.7 سے  $rac{1}{4\pi\epsilon_0}$  فیمت  $9 \times 10^9$  فیمت  $9 \times 10^9$  کی ہوئے  $R_{32} = (2-1)a_{
m X} + (2-4)a_{
m Y} + (5-2)a_{
m Z}$   $= 1a_{
m X} - 2a_{
m Y} + 3a_{
m Z}$ 

اور

$$R_{32} = |R_{32}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$$

$$a_{32} = \frac{1a_{X} - 2a_{Y} + 3a_{Z}}{\sqrt{14}}$$

$$= 0.267a_{X} - 0.535a_{Y} + 0.802a_{Z}$$

44 باب 2. كولومب كا قانون

 $E_2 = 9 \times 10^9 \frac{50 \times 10^{-6}}{14} \left( 0.267 a_{\rm X} - 0.535 a_{\rm Y} + 0.802 a_{\rm Z} \right)$  $= 8582 a_{\rm X} - 17196 a_{\rm Y} + 25779 a_{\rm Z} \quad \frac{\rm V}{\rm m}$ 

ملتا ہے۔ان دو جوابات کا سمتی مجموعہ لیتے ہوئے کلE حاصل کرتے ہیں۔

$$E = E_1 + E_2$$
=  $\left(-18686a_X + 9343a_y + 37414a_z\right) + \left(8582a_X - 17196a_y + 25779a_z\right)$   
=  $-10104a_X - 7853a_y + 63193a_z$   $\frac{V}{m}$ 

مساوات 2.16 کو

(2.21) F = qE

کھا جا سکتا ہے جو برتی میدان E کے موجود گی میں چارج q پر قوت F دیتا ہے۔

2.3 یکسان چارج بردار سیدهی لامحدود لکیر کا برقی میدان

شکل 2.3 میں z محدد پر  $\infty - z = -\infty$  سے  $z = +\infty$  سے کہ یہ ال چارج کی کثافت پائی جاتی ہے۔ آپ تصور کر سکتے ہیں کہ z محدد پر انتہائی قریب قریب بر ابر فاصلے پر کیساں نقطہ چارج رکھے گئے ہیں۔ یوں اگر  $\Delta L$  لمبائی میں کل  $\Delta Q$  چارج پایا جائے تب اکائی لمبائی میں کی کیاری چارج کشافت کی تحریف چارج کثافت کی تحریف

$$\rho_L = \lim_{\Delta L \to 0} \frac{\Delta Q}{\Delta L}$$

ہے۔ لکیر پر چھوٹی لمبائی اتنی کم نہیں کی جاتی کہ چارج بردار الیکٹران علیحدہ علیحدہ نظر آئیں اور لکیری کثافت کی جگہ نقطہ چارج نظر آئیں۔اگر لکیر پر چارج کی تقسیم ہر جگہ یکسال نہ ہو تب لکیری چارج کثافت متغیر ہوگی۔ آئیں یکسال لکیری چارج کثافت سے خالی خلاء میں پیدا برقی میدان پر غور کریں۔

 $\sum_{y} \frac{y}{4} + \frac{y}{2} = \frac{y}{4}$   $\sum_{y} \frac{y}{4} + \frac{y}{4} = \frac{y}{4}$   $\sum_{y} \frac{y}{4} + \frac{y}{4}$   $\sum_{y} \frac{y}{4} + \frac{y}{4}$   $\sum_{y} \frac{y}{4}$   $\sum_{y}$ 

line charge density<sup>16</sup>

 $<sup>^{1}</sup>$ اس کتاب میں رداس کے لئے بھی ho استعمال کیا جاتا ہے ۔ ho کو جب بھی کٹافت کے لئے استعمال کیا جائے،اس کے زیر نوشت میں S، E یا S لکھا جائے گا۔



شكل 2.3: يكسان چارج بردار سيدهي لامحدود لكير كا برقي ميدان

آئیں شکل 2.3 کو دیکھتے ہوئے ایک اور مشابہت پر غور کرتے ہیں۔ چونکہ E سمتی فاصلہ R کی سمت میں ہوتا ہے لہذا دائرے پر کسی بھی نقطے پر نقطہ چارج ρ<sub>L</sub>Δz سے پیدا E کے دواجزاء پائے جائیں گے یعنی

$$(2.23) E = E_{\rho} + E_{z}$$

 $(2.24) E_z = 0$ 

ہو گا۔

ایک آخری مشابہت پر اب غور کرتے ہیں۔اگر نقطہ دار دائرے کو z محدد پر مثبت یا منفی جانب لے جایا جائے تو کیا ہوگا؟ اب بھی دائرے کے ایک جانب کسی بھی فاصلے پر چارج کا اثر دائرے کے دوسری جانب اتنے ہی فاصلے پر چارج ختم کرے گا۔ یوں دائرے کے ایک جانب یعنی z محدد پر  $\infty$  تک فاصلے پر چارجوں کا  $E_z$  کو دائرے کی دوسری جانب z محدد پر z تک فاصلے پر چارجوں کا z ختم کرے گا اور یوں خلاء میں ہر جگہ مساوات 2.24 درست ثابت ہوتا ہے۔اس حقیقت کو یوں بہتر بیان کیا جا سکتا ہے کہ لا محدود لکیر پر کیسال کثافت چارج سے خلاء میں برقی میدان صرف رداس کی سمت میں پیدا ہوگا۔آئیں اس z کو حاصل کریں۔

$$egin{aligned} m{R} &= 
ho m{a}_
ho - z m{a}_{
m Z} \ |m{R}| &= R = \sqrt{
ho^2 + z^2} \ m{a}_R &= rac{m{R}}{|m{R}|} = rac{
ho m{a}_
ho - z m{a}_{
m Z}}{\sqrt{
ho^2 + z^2}} \end{aligned}$$

مساوات 2.19 سے

$$egin{aligned} \Delta oldsymbol{E} &= rac{
ho_L \Delta z}{4\pi \epsilon_0 \left(
ho^2 + z^2
ight)} rac{
ho oldsymbol{a}_
ho - z oldsymbol{a}_z}{\sqrt{
ho^2 + z^2}} \ &= rac{
ho_L \Delta z \left(
ho oldsymbol{a}_
ho - z oldsymbol{a}_z
ight)}{4\pi \epsilon_0 \left(
ho^2 + z^2
ight)^{rac{3}{2}}} \end{aligned}$$

46 باب 2. كولومب كا قانون

حاصل ہوتا ہے۔ تمام چارجوں کے اثرات کو یکجا کرنے کی خاطر مندرجہ بالا مساوات کو تکمل کی شکل دے کر مندرجہ ذیل مساوات میں د کھایا گیا ہے۔ تکملہ کے حدود ∞ — اور ∞+ ہیں۔

(2.25) 
$$\boldsymbol{E} = \int d\boldsymbol{E} = \int_{-\infty}^{+\infty} \left[ \frac{\rho_L \left( \rho \boldsymbol{a}_{\rho} - z \boldsymbol{a}_{\mathbf{Z}} \right)}{4\pi\epsilon_0 \left( \rho^2 + z^2 \right)^{\frac{3}{2}}} \right] dz$$

اس تکمل کو بوں لکھا جا سکتا ہے

(2.26) 
$$E = \frac{\rho_L \rho a_\rho}{4\pi\epsilon_0} \int_{-\infty}^{+\infty} \frac{\mathrm{d}z}{\left(\rho^2 + z^2\right)^{\frac{3}{2}}} - \frac{\rho_L a_Z}{4\pi\epsilon_0} \int_{-\infty}^{+\infty} \frac{z \, \mathrm{d}z}{\left(\rho^2 + z^2\right)^{\frac{3}{2}}}$$

جہاں مساوات کی نشان کے دائیں جانب پہلا تکمل ہ $E_
ho$ اور دوسرا تکمل کے دیتا ہے لیعن

(2.27) 
$$E_{\rho} = \frac{\rho_{L}\rho a_{\rho}}{4\pi\epsilon_{0}} \int_{-\infty}^{+\infty} \frac{\mathrm{d}z}{\left(\rho^{2} + z^{2}\right)^{\frac{3}{2}}}$$

$$E_{z} = -\frac{\rho_{L}a_{z}}{4\pi\epsilon_{0}} \int_{-\infty}^{+\infty} \frac{z\,\mathrm{d}z}{\left(\rho^{2} + z^{2}\right)^{\frac{3}{2}}}$$

مساوات 2.24 کی مدد سے ہم دیکھ سکتے ہیں کہ دوسرا تکملہ صفر جواب دیگا۔ آئٹیں دونوں تکمل کو باری باری حل کریں۔ پہلے  $E_{
ho}$  حل کرتے ہیں۔اس ساوات 2.24 کی مدد سے ہم دیکھ سکتے ہیں کہ دوسرا تکملہ صفر جواب دیگا۔ آئٹیں دونوں تکمل کو باری باری حل کریں۔ پہلے  $E_{
ho}$ 

 $z = \rho \tan \alpha$ 

استعال کرتے ہیں۔ایسا کرتے ہوئے تکمل کا ابتدائی حد

$$-\infty = 
ho an lpha$$
ابندائی $lpha = -rac{\pi}{2}$ 

اور اختيامي حد

$$\infty = 
ho an lpha صنامی$$
  $lpha_{
m control} = rac{\pi}{2}$ 

حاصل ہوتے ہیں۔مزید

 $dz = \rho \sec^2 \alpha \, d\alpha$ 

لکھا جائے گا۔ بول

$$E_{\rho} = \frac{\rho_{L}\rho a_{\rho}}{4\pi\epsilon_{0}} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \frac{\rho \sec^{2}\alpha \,d\alpha}{\left(\rho^{2} + \rho^{2} \tan^{2}\alpha\right)^{\frac{3}{2}}}$$
$$= \frac{\rho_{L}\rho a_{\rho}}{4\pi\epsilon_{0}} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \frac{\rho \sec^{2}\alpha \,d\alpha}{\rho^{3} \left(1 + \tan^{2}\alpha\right)^{\frac{3}{2}}}$$

لکھا جائے گا جس میں

$$1 + \tan^2 \alpha = \sec^2 \alpha$$

استعال کرتے ہوئے

$$E_{\rho} = \frac{\rho_{L}\rho a_{\rho}}{4\pi\epsilon_{0}} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \frac{\rho \sec^{2}\alpha \, d\alpha}{\rho^{3} \sec^{3}\alpha}$$

$$= \frac{\rho_{L}a_{\rho}}{4\pi\epsilon_{0}\rho} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \cos\alpha \, d\alpha$$

$$= \frac{\rho_{L}a_{\rho}}{4\pi\epsilon_{0}\rho} \sin\alpha \bigg|_{-\frac{\pi}{2}}^{+\frac{\pi}{2}}$$

$$= \frac{\rho_{L}a_{\rho}}{2\pi\epsilon_{0}\rho} a_{\rho}$$

ملتا ہے جہاں دوسری قدم پر  $\frac{1}{\cos \alpha}$  عدم کیا گیا۔

آئیں اب مساوات z=
ho an lpha دوسرے جزو کو حل کریں۔اس میں بھی z=
ho an lpha استعال کرتے ہیں۔یوں

$$E_z = -\frac{\rho_L a_Z}{4\pi\epsilon_0} \int_{-\infty}^{+\infty} \frac{z \, dz}{(\rho^2 + z^2)^{\frac{3}{2}}}$$

$$= -\frac{\rho_L a_Z}{4\pi\epsilon_0} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \frac{\rho^2 \tan\alpha \sec^2\alpha \, d\alpha}{(\rho^2 + \rho^2 \tan^2\alpha)^{\frac{3}{2}}}$$

$$= -\frac{\rho_L a_Z}{4\pi\epsilon_0 \rho} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \frac{\tan\alpha \sec^2\alpha \, d\alpha}{(1 + \tan^2\alpha)^{\frac{3}{2}}}$$

 $E_z = -\frac{\rho_L a_Z}{4\pi\epsilon_0 \rho} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \frac{\tan \alpha \sec^2 \alpha \, d\alpha}{\sec^3 \alpha}$   $= -\frac{\rho_L a_Z}{4\pi\epsilon_0 \rho} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \sin \alpha \, d\alpha$   $= \frac{\rho_L a_Z}{4\pi\epsilon_0 \rho} \cos \alpha \bigg|_{-\frac{\pi}{2}}^{+\frac{\pi}{2}}$  = 0

ملتا ہے۔ یہی جواب مساوات 2.24 میں حاصل کیا گیا تھا۔

مساوات 2.28 اور مساوات 2.29 سے مساوات 2.26 کا حل یوں لکھا جائے گا

(2.30) 
$$E = E_{\rho} = \frac{\rho_{\rm L}}{2\pi\epsilon_0\rho}a_{\rho}$$

(2.28)

(2.29)

48 باب 2. كولومب كا قانون



شكل 2.4: كسى بهى سمت ميں لامحدود لكير پر چارج كى مثال

جس کے مطابق لا محدود سید تھی کئیر پر کیساں چارج سے برقی میدان رداس م کے بالعکس متناسب ہے۔اس نتیج کا مساوات 2.19 کے ساتھ موازنہ کریں جو نقطہ چارج کی برقی میدان بیان کرتا ہے۔نقطہ چارج کا برقی میدان کروی رداس کے مربع کے بالعکس متناسب ہے۔یوں اگر لا محدود کئیر کے چارج سے فاصلہ دگنا کر دیا جائے تو برقی میدان آدھا ہو جائے گا جبکہ نقطہ چارج سے فاصلہ دگنا کرنے سے برقی میدان چارگنا کم ہوتا ہے۔

کی بھی سمت میں لامحدود سیدھی کلیر پر چارج کا برقی میدان مساوات 2.30 میں بیان خوبیوں پر پورا اترے گا۔ایی صورت میں کسی بھی نقطے پر E ماصل کرنے کی خاطر اس نقطے سے چارج کے کلیر تک کم سے کم فاصلہ R حاصل کریں۔ یہ فاصلہ نقطے سے کلیر پر عمود کھینچنے سے حاصل ہو گا۔اس فاصلے کو م قصور کریں۔ایس صورت میں مساوات 2.30 کو م قصور کریں۔ایس صورت میں مساوات 2.30 کو

$$\boldsymbol{E} = \frac{\rho_L}{2\pi\epsilon_0 R} \boldsymbol{a}_R$$

لکھ سکتے ہیں۔

مثال y:2.7 محدد کے متوازی اور (x,0,0) سے گزرتی لا محدود کیر پر پر  $\rho_L$  کثافت کا چارج پایا جاتا ہے۔ نقطہ (x,0,0) پر y حاصل کریں۔

حل: شکل 2.4 میں صورت حال دکھایا گیا ہے۔(x',y',z') سے چارج کے کلیر پر عمود (x,y',0) پر ٹکراتا ہے۔ان دو نقطوں کا آپس میں فاصلہ  $\sqrt{(x'-x)^2+z^2}$ 

$$\mathbf{R} = (x' - x)\mathbf{a}_{X} + z\mathbf{a}_{Z}$$
$$\mathbf{a}_{R} = \frac{(x' - x)\mathbf{a}_{X} + z\mathbf{a}_{Z}}{\sqrt{(x' - x)^{2} + z^{2}}}$$

ہیں۔یوں

$$\boldsymbol{E} = \frac{\rho_L}{2\pi\epsilon_0\sqrt{(x'-x)^2 + z^2}}\boldsymbol{a}_R$$

ہو گا۔

جواب: دونوں نقطوں پر  $E=30a_{
m Z}$  برابرہے۔

 $E_{\chi} N_{2}(7,3,4)$  اور نقطہ  $N_{1}(0,5,0)$  کے حاصل کریں۔  $10 + \infty$  کے اس کے جاتک کے اس کا فت پائی جاتی ہے۔ نقطہ  $10 + \infty$  اور نقطہ  $10 + \infty$  کے حاصل کریں۔

$$E_2=18\left(rac{3a_{
m y}+4a_{
m z}}{5}
ight)rac{
m V}{
m m}$$
 اور  $E_1=18a_{
m z}rac{
m V}{
m m}$ : وابات

#### 2.4 يكسان چارج بردار بموار لامحدود سطح

شکل 2.5 میں z=0 پر لامحدود x-y سطح و کھائی گئی ہے۔ تصور کریں کہ اس پوری سطح پر انتہائی قریب قریب نقطہ چارج یوں رکھے گئے ہیں کہ سطح پر کل z=0 میں بھی چھوٹی رقبہ z=0 پر کیساں قیمت کا چارج کیا جاتا ہے۔ اس طرح اکائی رقبہ پر کل z=0 چارج پایا جائے گا جسے سطحی چارج کثافت کی تعریف ہیں۔ سطحی چارج کثافت کی تعریف

$$\rho_S = \lim_{\Delta S \to 0} \frac{\Delta Q}{\Delta S}$$

ہے۔ چھوٹی سطح آتی کم نہیں کی جاتی کہ اس پر چارج بردار الیکٹران علیحدہ علیحدہ بطور نقطہ چارج نظر آئیں بلکہ اسے اتنار کھا جاتا ہے کہ علیحدہ الیکٹران علی کا اثر قابل نظر انداز ہو۔ سطح پر ہر جگہ چارج کا تقسیم کیسال نہ ہونے کی صورت میں  $ho_S$  کی قیمت متغیر ہو گی۔ آئیں لا محدود سطح پر کیسال چارج کثافت سے خالی خلاء میں پیدا کا حاصل کریں۔

پہلے خور کرتے ہیں کہ آیا مختلف مقامات سے دیکھتے ہوئے کچھ اخذ کرنا ممکن ہے۔اگر اس چارج بردار سطح کے سامنے ہم کھڑے ہو جائیں تو ہمیں سامنے لا محدود چارج بردار سطح نظر آئے گی۔ سطح سے برابر فاصلے پر ہم جہاں بھی جائیں ہمیں صورت حال میں کوئی تبدیلی نظر نہیں آئے گی۔اسی طرح اگر ہم سطح کی دوسری طرف اتنے ہی فاصلے پر چلے جائیں تو ہمیں صورت حال میں کسی قشم کی کوئی تبدیلی نظر نہیں آئے گی۔اس مشابہت سے ہم کہہ سکتے ہیں کہ ایسی سطح شدر دور ہو جائیں تو ہمیں سطح قدر دور نظر ہیں کہ اس سطح سے برابر فاصلے پر تمام نقطوں پر کیسال برتی میدان پایا جائے گا۔اس کے بر عکس اگر ہم اس سطح سے دور ہو جائیں تو ہمیں سطح قدر دور نظر آئے گی اور ہو سکتا ہے کہ اس تبدیلی سے تا پر اثر ہو۔آئیں اب مسئلے کو حساب و کتاب سے حل کرتے ہوئے E عاصل کریں۔

شکل 2.5 میں چارج بردار سطح پر 2 محدو کے متوازی دوانتہائی قریب قریب لکیریں تھینی گئی ہیں جن کے مابین فاصلہ dy ہے۔اس گھیرے گئے رقبے کی چوڑائی طلا کے دوارج کی سیدھی لکیر تصور کیا جا کی چوڑائی مقدر کی سیدھی لکیر تصور کیا جا کی چوڑائی سیدھی لکیر تصور کیا جا سکتا ہے جس پر اکائی لمبائی کے رقبے پر جھے لیا جائے گا جسے کا جسے میں جاسکتا ہے لیعنی

$$\rho_L = \rho_S \, \mathrm{d}y$$

95 ياب 2. كولومب كا قانون



شكل 2.5: يكسان چارج بردار بموار لامحدود سطح

لا محدود ککیر پر یکسال چارج کی کثافت سے پیدا برقی میدان پر گزشتہ ھے میں غور کیا گیا۔نقطہ (x,0,0) پر E حاصل کرتے ہیں۔شکل میں لا محدود چارج کی ککیر سے اس نقطے تک کا قریبی سمتی فاصلہ R د کھایا گیا ہے جہاں

$$(2.34) R = xa_{X} - ya_{Y}$$

کے برابر ہے جس سے

(2.35) 
$$R = |\mathbf{R}| = \sqrt{x^2 + y^2}$$
$$a_R = \frac{x\mathbf{a}_X - y\mathbf{a}_Y}{\sqrt{x^2 + y^2}}$$

حاصل ہوتے ہیں۔یوں چارج بردار کیر سے (x,0,0) پر پیدا برقی میدان کو مساوات 2.31 کی مدد سے

(2.36) 
$$dE = \frac{\rho_{S} dy}{2\pi\epsilon_{0} \sqrt{x^{2} + y^{2}}} \frac{xa_{X} - ya_{Y}}{\sqrt{x^{2} + y^{2}}}$$
$$= \frac{\rho_{S} dy \left(xa_{X} - ya_{Y}\right)}{2\pi\epsilon_{0} \left(x^{2} + y^{2}\right)}$$

کسا جا سکتا ہے۔ اس جواب کو ط $E=\mathrm{d}E_x+\mathrm{d}E_y$  کسا جا سکتا ہے جہال

d
$$E_x = rac{
ho_S x \, \mathrm{d}y}{2\pi\epsilon_0 \left(x^2 + y^2\right)} a_\mathrm{X}$$
d $E_y = -rac{
ho_S y \, \mathrm{d}y}{2\pi\epsilon_0 \left(x^2 + y^2\right)} a_\mathrm{Y}$ 

ے برابر ہیں۔ x محدد کے ایک جانب چارج بردار لکیر مندرجہ بالا برقی میدان پیدا کرتا ہے۔ غور کرنے سے معلوم ہوتا ہے کہ x محدد کے دوسر کی جانب استے ہی فاصلے پر چارج بردار لکیر سے پیدا برقی میدان مندرجہ بالا پر کھینی کو ختم کرے گا۔ یوں کسی مثبت y پر کھینی لکیر کا پر کھینی کہ ختم کرے گا۔ x محدد کے دونوں جانب مسکلے کی مشابہت سے یوں ہم توقع کرتے ہیں کہ

$$(2.38) E_y = 0$$

ہو گا۔

آئیں اب حساب و کتاب سے مساوات 2.37 کو حل کریں۔پہلے  $E_x$  حاصل کرتے ہیں۔مساوات 2.37 میں دئے کمل لیتے ہیں۔ایسا کرنے کی فاطر

$$y = x \tan \alpha$$

$$dy = x \sec^2 \alpha \, d\alpha$$

(2.40)

کا استعال کرتے ہیں۔شکل 2.5 میں α کی نشاند ہی کی گئی ہے۔یوں

$$\begin{aligned} \boldsymbol{E}_{x} &= \int \mathrm{d}\boldsymbol{E}_{x} = \frac{\rho_{S}x\boldsymbol{a}_{X}}{2\pi\epsilon_{0}} \int_{y=-\infty}^{y=+\infty} \frac{\mathrm{d}y}{(x^{2}+y^{2})} \\ &= \frac{\rho_{S}x\boldsymbol{a}_{X}}{2\pi\epsilon_{0}} \int_{\alpha=-\frac{\pi}{2}}^{\alpha=+\frac{\pi}{2}} \frac{x\sec^{2}\alpha\,\mathrm{d}\alpha}{x^{2}\left(1+\tan^{2}\alpha\right)} \end{aligned}$$

میں  $\sec^2lpha=1+ an^2$  کے استعال سے

$$E_{x} = \frac{\rho_{S} a_{X}}{2\pi\epsilon_{0}} \int_{\alpha=-\frac{\pi}{2}}^{\alpha=+\frac{\pi}{2}} d\alpha$$

$$= \frac{\rho_{S} a_{X}}{2\pi\epsilon_{0}} \alpha \bigg|_{-\frac{\pi}{2}}^{+\frac{\pi}{2}}$$

$$= \frac{\rho_{S}}{2\epsilon_{0}} a_{X}$$

حاصل ہوتا ہے۔آئیں اب  $E_y$  حاصل کریں۔

ماوات 2.37 میں دے والے  $\mathrm{d}E_y$  کا تکمل کیتے ہیں۔

$$\mathbf{E}_{y} = \int d\mathbf{E}_{y} = -\frac{\rho_{S} \mathbf{a}_{y}}{2\pi\epsilon_{0}} \int_{y=-\infty}^{y=+\infty} \frac{y \, dy}{(x^{2} + y^{2})}$$

(2.41) 
$$E_y = -\frac{\rho_S a_y}{2\pi\epsilon_0} \frac{\ln(x^2 + y^2)}{2} \bigg|_{y=-\infty}^{y=+\infty}$$

حاصل ہوتا ہے۔مساوات 2.38 میں یہی جواب حاصل کیا گیا تھا۔

مساوات 2.40 اور مساوات 2.41 کی مدد سے مکسال چارج بردار لا محدود سطح کی برقی میدان

$$E = \frac{\rho_S}{2\epsilon_0} a_N$$

لکھی جاسکتی ہے جہاں  $a_N$ اس سطح کا عمودی اکائی سمتیہ ہے۔ آپ دیکھ سکتے ہیں کہ سطح سے فاصلہ کم یازیادہ کرنے سے برقی میدان کی شدت پر کوئی اثر نہیں ہوتا۔ سطح کے دونوں جانب برقی میدان اس مساوات سے حاصل کی جائے گی۔ ظاہر ہے کہ سطح کے دونوں جانب کے اکائی عمودی سمتیہ آپس میں الٹ ہیں۔

اب تصور کریں کہ اس سطح کے متوازی  $x=x_1$  پر ایک اور لا محدود سطح رکھی جائے جس پر چارج کی یکسال کثافت  $\rho_S$  ہو۔ان دو متوازی سطحوں کو دو دھاتی چادرج سے بنایا گیا کیپیسٹر 19 سمجھا جا سکتا ہے۔کسی بھی نقطے پر کل E دونوں سطحوں پر چارج سے بیدا برتی میدان کا مجموعہ ہو گا۔پہلے دونوں سطحوں کے دونوں جانب برتی میدان کھتے ہیں۔

باب 2. كولومب كا قانون

پ
$$x=0$$
 افت کی سطح کا برقی میدان۔ $p_S$  پر $x=0$ 

$$E_{x>0}^{+} = +\frac{\rho_{S}}{2\epsilon_{0}} a_{X}$$
  $x>0$   

$$E_{x<0}^{+} = -\frac{\rho_{S}}{2\epsilon_{0}} a_{X}$$
  $x<0$ 

پر $x=x_1$  گافت کی سطح کا برقی میدان۔ $x=x_1$ 

$$egin{aligned} E_{x>x_1}^- &= -rac{
ho_S}{2\epsilon_0} oldsymbol{a}_{\mathrm{X}} & x>x_1 \ E_{x$$

ان نتان کی کو استعال کرتے ہوں۔  $x > x_1$  اور  $x > x_1$  اور  $x > x_1$  کو استعال کرتے ہیں۔  $x > x_1$  کو استعال کی استعال کرتے ہیں۔  $x > x_1$  کو استعال کی اس

اس نتیج کے مطابق دو متوازی لا محدود سطحوں جن پر الٹ کیساں کثافت پائی جائے کے باہر کوئی برقی میدان نہیں پایا جاتا جبکہ سطحوں کے در میانی خطے میں

$$(2.44) E = \frac{\rho_S}{\epsilon_0} a_X$$

برتی میدان پایا جاتا ہے۔اس میدان کی ست مثبت چارج بردار چادر ہے منفی چارج بردار چادر کی جانب ہوتی ہے۔ یہی مساوات ایک ایسے کیبیسٹر کے برتی میدان کے لئے بھی استعال کیا جا سکتا ہے جس میں دھاتی چادروں کی لمبائی اور چوڑائی دونوں چادروں کے درمیانی فاصلے سے کئی گنازیادہ ہو اور چادروں کے درمیان خالی خلاء یا ہوا پائی جائے۔چادروں کے کناروں کے قریب کیبیسٹر کے اندر اور باہر صورت حال قدر مختف ہوگی۔

مثال 2.8: خلاء میں تین متوازی لا محدود سطح پائے جاتے ہیں جن پر چارج کی کیساں کثافت پائی جاتی ہے۔ پہلی سطح 2 nC/m² پر جارج کی کیساں کثافت پائی جاتی ہے۔ پہلی سطح 2 nC/m² پر جارج کی کیساں کثافت پائی جاتی ہے۔  $N_3(-2,7,11)$ ،  $N_2(5,3,4)$ ،  $N_1(0,0,0)$  اور  $N_3(-2,7,11)$ ،  $N_2(5,3,4)$ ،  $N_1(0,0,0)$  ورسم کے  $N_3(-2,7,11)$  ماصل کریں۔  $N_3(-2,7,11)$  ماصل کریں۔

0 اور 0 : 216 $\pi a_{y}$  وابات: 0،  $\pi a_{y}$  وابات: 0، وابات: 0، وابات: 0، وابات: 0، وابات: 0

2.5 چارج بردار حجم

ہم نقطہ چارج، لا محدود لکیر پر چارج اور لا محدود سطح پر چارج دیکھ چکے ہیں۔اگلا فطری قدم چارج بردار تجم بنتا ہے للذا اس پر غور کرتے ہیں۔لکیر اور سطح کے چارج پر غور کرتے ہوئے ہر جگہ کیساں کثافت کی بات کی گئی۔ تجم میں چارج کی بات کرتے ہوئے اس شرط کو دور کرتے ہوئے کثافت کو متغیرہ تصور کرتے ہیں۔یوں مختلف مقامات پر کثافت کی قیمت مختلف ہو سکتی ہے۔

تصور کریں کہ مجم میں انتہائی قریب قریب نقطہ چارج پائے جاتے ہیں۔یوں اگر کسی نقطے پر Δh مجم میں ΔQ چارج پایا جائے تب اس نقطے پر اوسط محجمی چارج کا تقطے پر چارج کی محجمی کثافت یوں بیان کی جاتی ہے۔

$$\rho_h = \lim_{\Delta h \to 0} \frac{\Delta Q}{\Delta h}$$

سی بھی جم میں کل چارج تین درجی تمل سے حاصل کیا جائے گا۔کار تیسی محدد میں ایسا تمل یوں لکھا جائے گا۔

$$(2.46) Q = \iiint_{h} \rho_h \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z$$

جہاں کمل کے نشان کے ینچے h مجم کو ظاہر کرتا ہے۔اس طرز کے کمل کو عموماً ایک درجی کمل سے ہی ظاہر کیا جاتا ہے یعنی

$$Q = \int_{h} \rho_h \, \mathrm{d}h$$

جم میں 'r نقطے پر چھوٹی سی جم ' $\Delta h'$  میں ' $Q = 
ho'_h \Delta h'$  چارج پایا جائے گا جے نقطہ چارج تصور کیا جا سکتا ہے۔نقطہ  $Q = 
ho'_h \Delta h'$  میدان d مساوات 2.20 سے یوں حاصل ہوتا ہے۔

$$\mathrm{d}\boldsymbol{E} = \frac{1}{4\pi\epsilon_0} \frac{\rho_h' \Delta h'}{|\boldsymbol{r} - \boldsymbol{r'}|^2} \frac{\boldsymbol{r} - \boldsymbol{r'}}{|\boldsymbol{r} - \boldsymbol{r'}|}$$

اس مساوات میں نقطہ r پر چارج کی کثافت  $\rho'_h$  کھی گئی ہے۔ تمام حجم میں پائے جانے والے چارج کا نقطہ r پر میدان مندرجہ بالا مساوات کے تکمل سے یوں حاصل کیا جائے گا۔

(2.48) 
$$E(r) = \frac{1}{4\pi\epsilon_0} \int_{h} \frac{\rho_h' \, dh'}{|r - r'|^2} \frac{r - r'}{|r - r'|}$$

اس مساوات کی شکل قدر خوف ناک ہے البتہ حقیقت میں ایسا ہر گز نہیں۔ سمتیہ ۱۳ سنقطے کی نشاندہی کرتا ہے جہاں برقی میدان حاصل کرنا در کار ہو۔ اس نقطے پر برقی میدان تبدیل ہو سکتا ہے۔ کثافت از خود متغیرہ ہو۔ اس نقطے پر برقی میدان تبدیل ہو سکتا ہے۔ کثافت از خود متغیرہ ہو۔ اس نقطے پر برقی میدان تبدیل ہو سکتا ہے۔ کثافت از خود متغیرہ ہو۔ کہ پر چھوٹی مجم اطار و چارج کی کثافت ہم اور چارج کی گئے ہیں جہاں 'اس بات کی یاد دہائی کراتا ہے کہ بیہ متغیرات نقطہ 'ہ پر پائے جاتے ہیں۔ آخر میں یاد رہے کہ کسی بھی نقطے پر عاصل کرتے وقت اس نقطے پر موجود چارج کو نظرانداز کیا جاتا ہے۔

94 كا قانون





(۱) محدود لکیر پر چارج کی یکساں کثافت

شكل 2.6: محدود لكير پر چارج

#### 2.6 مزید مثال

مثال 2.9: شکل 2.6 میں  $z=z_2=z_2$  تک کی سیدھی لکیر پر کیساں  $ho_L$  پایا جاتا ہے۔ نقطہ دار گول دائرے پر  $z=z_2=z_1$  حاصل کریں۔اس گول دائرے کا مرکز کار تیسی محدد کے مرکز (0,0,0) پر ہے جبکہ دائرہ از خود z=0 سطح پر پایا جاتا ہے۔

حل: شکل 2.6 سے واضح ہے کہ کلتہ دار گول دائرے پر E کی حتی قیمت |E| یکسال ہو گی۔ یوں ہم لکھ سکتے ہیں

$$egin{aligned} m{E} &= rac{
ho_L}{4\pi\epsilon_0} \int_{z_1}^{z_2} rac{\mathrm{d}z}{\left|
ho^2 + z^2
ight|} rac{
ho m{a}_
ho - zm{a}_Z}{\sqrt{
ho^2 + z^2}} \ &= rac{
ho_L 
ho m{a}_
ho}{4\pi\epsilon_0} \int_{z_1}^{z_2} rac{\mathrm{d}z}{\left|
ho^2 + z^2
ight|^{\frac{3}{2}}} - rac{
ho_L m{a}_Z}{4\pi\epsilon_0} \int_{z_1}^{z_2} rac{z\,\mathrm{d}z}{\left|
ho^2 + z^2
ight|^{\frac{3}{2}}} \ &= m{E}_
ho + m{E}_z \end{aligned}$$

دائیں جانب باری باری تکملہ حل کرتے ہیں۔ تکملہ حل کرنے کی خاطر  $z=
ho\tan\alpha$  کا تعلق استعال کرتے ہیں۔ کا z کا تعلق شکل 2.6-ب میں دکھایا گیا ہے۔

$$\begin{split} \boldsymbol{E}_{\rho} &= \frac{\rho_{L}\rho\boldsymbol{a}_{\rho}}{4\pi\epsilon_{0}} \int_{\alpha_{1}}^{\alpha_{2}} \frac{\rho\sec^{2}\alpha\,\mathrm{d}\alpha}{\left|\rho^{2} + \rho^{2}\tan^{2}\alpha\right|^{\frac{3}{2}}} \\ &= \frac{\rho_{L}\boldsymbol{a}_{\rho}}{4\pi\epsilon_{0}\rho}\sin\alpha\bigg|_{\alpha_{1}}^{\alpha_{2}} \\ &= \frac{\rho_{L}\boldsymbol{a}_{\rho}}{4\pi\epsilon_{0}\rho}\left(\sin\alpha_{2} - \sin\alpha_{1}\right) \end{split}$$

حاصل ہوتا ہے جہاں

$$\alpha_2 = \arctan \frac{z_2}{\rho}$$

$$\alpha_1 = \arctan \frac{z_1}{\rho}$$

2.6. مرید مثال



شكل 2.7: چارج بردار گول دائره

کے برابر ہے۔ شکل 2.6-ب سے 
$$\frac{z}{\sqrt{\rho^2+z^2}}$$
 کھا جا سکتا ہے۔ ایول

$$m{E}_{
ho} = rac{
ho_{
m L}m{a}_{
ho}}{4\pi\epsilon_0
ho}\left(rac{z_2}{\sqrt{
ho^2+z_2^2}} - rac{z_1}{\sqrt{
ho^2+z_1^2}}
ight)$$

حاصل ہوتا ہے۔اسی طرح

$$\begin{aligned} \boldsymbol{E}_{z} &= -\frac{\rho_{L}\boldsymbol{a}_{z}}{4\pi\epsilon_{0}} \int_{z_{1}}^{z_{2}} \frac{z \, \mathrm{d}z}{\left|\rho^{2} + z^{2}\right|^{\frac{3}{2}}} \\ &= -\frac{\rho_{L}\boldsymbol{a}_{z}}{4\pi\epsilon_{0}} \int_{\alpha_{1}}^{\alpha_{2}} \frac{\rho^{2} \tan \alpha \sec^{2} \alpha \, \mathrm{d}\alpha}{\left|\rho^{2} + \rho^{2} \tan^{2} \alpha\right|^{\frac{3}{2}}} \end{aligned}$$

سے

$$\begin{split} \boldsymbol{E}_{z} &= \frac{\rho_{L}\boldsymbol{a}_{z}}{4\pi\epsilon_{0}\rho} \left(\cos\alpha_{2} - \cos\alpha_{1}\right) \\ &= \frac{\rho_{L}\boldsymbol{a}_{z}}{4\pi\epsilon_{0}} \left(\frac{1}{\sqrt{\rho^{2} + z_{2}^{2}}} - \frac{1}{\sqrt{\rho^{2} + z_{1}^{2}}}\right) \end{split}$$

-اور  $E_z$  کا مجموعہ لیتے ہوئے کل برقی میدان یوں حاصل ہوتا ہے۔

(2.49) 
$$E = \frac{\rho_L a_\rho}{4\pi\epsilon_0 \rho} \left( \frac{z_2}{\sqrt{\rho^2 + z_2^2}} - \frac{z_1}{\sqrt{\rho^2 + z_1^2}} \right) + \frac{\rho_L a_Z}{4\pi\epsilon_0} \left( \frac{1}{\sqrt{\rho^2 + z_2^2}} - \frac{1}{\sqrt{\rho^2 + z_1^2}} \right)$$

مثال 2.10 شکل 2.7 میں z=0 پر گول دائرہ دکھایا گیا ہے جس پر چارج کی کیساں کثافت پائی جاتی ہے۔ نقطہ z=0 ماصل کریں۔ حل: نکلی محدد استعال کرتے ہوئے اسے حل کرتے ہیں۔ کسی بھی زاویہ پر رداس کھینچتے ہوئے دائرے پر کوئی نقطہ حاصل کیا جا سکتا ہے۔ زاویہ میں باریک تبدیلی محدد استعال کرتے ہوئے اسے حل کرتے ہیں۔ کسی بھی زاویہ پر رداس کھینچتے ہوئے دائرے پر کوئی نقطہ حاصل کیا جا سکتا ہے۔ زاویہ میں باریک تبدیلی محمل ہوتی ہے جس پر کل چارج موج کل چارج کسی محمل نہیں۔  $\Delta Q = \rho_L \rho \Delta \phi$  بیا جاتا ہے جبکہ عام  $\Delta Q$  متام میں کہ عارداس کی سمت میں محمل نہیں۔  $\Delta Q$  سے

$$\Delta oldsymbol{E} = rac{
ho_L 
ho \Delta \phi}{4\pi arepsilon_0 \left(
ho^2 + z^2
ight)} rac{z oldsymbol{a}_{
m Z} - 
ho oldsymbol{a}_{
ho}}{\sqrt{
ho^2 + z^2}}$$

56 باب 2. كولومب كا قانون

پیدا ہو گا۔ دائرے پر تمام چارج کے اثر کے لئے تکملہ لینا ہو گا۔

$$E = \frac{\rho_L \rho}{4\pi\epsilon_0 \left(\rho^2 + z^2\right)^{\frac{3}{2}}} \int_0^{2\pi} (z\boldsymbol{a}_{\mathbf{Z}} - \rho\boldsymbol{a}_{\rho}) \,\mathrm{d}\phi$$

آئملہ کا متغیرہ  $\phi$  ہے جے تبدیل کرنے ہے  $\rho$  اور z میں کوئی تبدیلی رونما نہیں ہوتی۔ اسی لئے انہیں آئملہ کی نشان سے باہر لے جایا گیا ہے۔ حاصل آئملہ کو دو حصول میں لکھا جا سکتا ہے البتہ معاملہ اتناسیدھا نہیں جتنا معلوم ہوتا ہے۔  $E_z$  کھتے ہوئے کار تیسی محدد کی اکائی سمتیہ  $a_z$  کہ تبدیلی سے  $a_z$  تبدیل نہیں ہوتا البتہ  $E_\rho$  کلکھتے ہوئے لکی محدد کی اکائی سمتیہ  $a_z$  کو آئملہ کے باہر نہیں لے جایا جا سکتا چونکہ  $a_z$  تبدیل ہوتی ہے۔ چونکہ  $a_z$  کی سمت تبدیل ہوتی ہے لہذا اس کو مستقل تصور کرنا غلط ہے اور یوں یہ آئملہ کے اندر ہی رہے گا۔

(2.50) 
$$\begin{aligned} \boldsymbol{E}_{z} &= \frac{\rho_{\mathrm{L}}\rho z \boldsymbol{a}_{\mathrm{Z}}}{4\pi\epsilon_{0}\left(\rho^{2}+z^{2}\right)^{\frac{3}{2}}} \int_{0}^{2\pi} \mathrm{d}\phi \\ \boldsymbol{E}_{\rho} &= -\frac{\rho_{\mathrm{L}}\rho^{2}}{4\pi\epsilon_{0}\left(\rho^{2}+z^{2}\right)^{\frac{3}{2}}} \int_{0}^{2\pi} \boldsymbol{a}_{\rho} \, \mathrm{d}\phi \end{aligned}$$

پہلے تکملہ کا جواب اب دیکھ کر ہی

(2.51) 
$$\boldsymbol{E}_{z} = \frac{2\pi\rho_{L}\rho z\boldsymbol{a}_{Z}}{4\pi\epsilon_{0}\left(\rho^{2}+z^{2}\right)^{\frac{3}{2}}}$$

کوے جارہ دوسرے تکملہ میں  $a_
ho=\cos\phi a_{
m X}+\sin\phi a_{
m Y}$  کھتے ہوئے حل کرتے ہیں۔

$$\begin{split} E_{\rho} &= -\frac{\rho_{L}\rho^{2}}{4\pi\epsilon_{0}\left(\rho^{2}+z^{2}\right)^{\frac{3}{2}}} \int_{0}^{2\pi} (\cos\phi a_{\mathrm{X}} + \sin\phi a_{\mathrm{y}}) \,\mathrm{d}\phi \\ &= -\frac{\rho_{L}\rho^{2}}{4\pi\epsilon_{0}\left(\rho^{2}+z^{2}\right)^{\frac{3}{2}}} \left(\sin\phi a_{\mathrm{X}} - \cos\phi a_{\mathrm{y}}\right) \bigg|_{0}^{2\pi} \\ &= 0 \end{split}$$

 $\sqrt{
ho^2+z^2}$  یہی جواب اس طرح بھی حاصل کیا جا سکتا ہے کہ گول دائرے پر تمام چارج کو  $Q=2\pi\rho\rho_L$  کصیں۔ یہ چارج نقطہ  $Q=2\pi\rho\rho_L$  فاصلے پر ہے۔ اگر اس تمام چارج کو ایک ہی نقطے (
ho,0,0) پر موجود تصور کیا جائے تو یہ

$$oldsymbol{E}_R = rac{2\pi
ho
ho_L}{4\piarepsilon_0\left(
ho^2+z^2
ight)}oldsymbol{a}_R$$

برقی میدان پیدا کرے گا۔ چارج گول دائرے پر پھیلا ہوا ہے لہذا حقیقت میں صرف  $a_Z$  جانب ہی E پیدا ہوتا ہے۔ شکل میں اس تکون کو دیکھتے ہوئے جس کا R حصہ ہے آپ دیکھ سکتے ہیں کہ R کا R حصہ حقیقت میں پایا جائے گا۔ یوں

$$oldsymbol{E}_{z}=rac{2\pi
ho
ho_{L}}{4\pi\epsilon_{0}\left(
ho^{2}+z^{2}
ight)}rac{z}{\sqrt{
ho^{2}+z^{2}}}oldsymbol{a}_{\mathbf{Z}}$$

ہی حاصل ہوتا ہے۔

2.6. مزید مثال

مثال 2.11: رواس a کرہ کی سطح پر یکسال چارج کثافت  $ho_S$  پایا جاتا ہے۔ کرہ کے باہر اور اس کے اندر برقی میدان E حاصل کریں۔

$$(2.52) R = ba_{\rm Z} - aa_{\rm r}$$

57

لکھا جا سکتا ہے جہاں کار تیسی محدد اور کروی محدد کے اکائی سمتیات استعال کئے گئے ہیں۔اس طرح

(2.53) 
$$|\mathbf{R}| = \sqrt{\mathbf{R} \cdot \mathbf{R}} = \sqrt{(b\mathbf{a}_{\mathbf{Z}} - a\mathbf{a}_{\mathbf{\Gamma}}) \cdot (b\mathbf{a}_{\mathbf{Z}} - a\mathbf{a}_{\mathbf{\Gamma}})}$$

$$= \sqrt{b^2 + a^2 - 2ab\mathbf{a}_{\mathbf{Z}} \cdot \mathbf{a}_{\mathbf{\Gamma}}}$$

$$= \sqrt{b^2 + a^2 - 2ab\cos\theta}$$

اور

$$a_R = \frac{R}{|R|} = \frac{ba_Z - aa_\Gamma}{\sqrt{b^2 + a^2 - 2ab\cos\theta}}$$

 $a_Z\cdot a_{\Gamma}=\cos heta$  حاصل ہوتے ہیں جہاں صفحہ 32 پر جدول 1.3 کے استعال سے

N(0,0,b) سے z محدد کو z=0 اور z=0 تک فاصل

(2.55) 
$$\sqrt{b^2 + a^2 - 2ab\cos \pi} = \sqrt{b^2 + a^2 + 2ab}$$
$$= \sqrt{(b+a)^2}$$
$$= b+a$$

N(0,0,b) = (0,0,a) کے برابر ہے جہاں جذر کیتے وقت مثبت جواب چنا گیا ہے چونکہ فاصلہ مقداری  $^{20}$ ہے جو مثبت قیمت رکھتا ہے۔اسی طرح

$$(2.56) \sqrt{b^2 + a^2 - 2ab\cos 0} = \sqrt{b^2 + a^2 - 2ab}$$

کے برابر ہے۔اگر N کرہ کے باہر ہوتب a>b>a ہو گا اور پیہ فاصلہ a-b>b برابر ہو گا جسے مساوات 2.56 سے یوں

$$(2.57) \sqrt{b^2 + a^2 - 2ab} = \sqrt{(b-a)^2} = b - a$$

حاصل کیا جا سکتا ہے۔اس کے برعکس اگر N کرہ کے اندر ہو تب a>b ہو گا اورییہ فاصلہ a-b کے برابر ہو گا جسے اور مساوات 2.56سے یوں

(2.58) 
$$\sqrt{b^2 + a^2 - 2ab} = \sqrt{(a-b)^2} = a - b$$

حاصل کیا جا سکتا ہے۔

<sup>&</sup>lt;sup>02</sup>فاصلہ ہر صورت مثبت ہوتا ہے البتہ سمتی فاصلہ مثبت یا منفی ہو سکتا ہے جہاں سمتی فاصلے کی مقدار مثبت ہی رہتی ہے جبکہ اس کی سمت مثبت یا منفی ہو سکتی ہے.

اس طرح N پر

$$\mathrm{d}\boldsymbol{E} = \frac{a^2 \sin \theta \, \mathrm{d}\theta \, \mathrm{d}\phi}{4\pi\epsilon_0 R^2} \boldsymbol{a}_R$$

لکھتے ہوئے تمام کرہ پر چارج سے پیدا میدان کو حکمل سے یوں حاصل کیا جا سکتا ہے۔

(2.59) 
$$E = \int_0^{2\pi} \int_0^{\pi} \frac{\rho_S a^2 \sin\theta \, d\theta \, d\phi}{4\pi\epsilon_0 (b^2 + a^2 - 2ab\cos\theta)} \frac{ba_Z - aa_T}{\sqrt{b^2 + a^2 - 2ab\cos\theta}}$$
$$= \frac{\rho_S a^2}{4\pi\epsilon_0} \int_0^{2\pi} \int_0^{\pi} \frac{(ba_Z - aa_T)\sin\theta}{(b^2 + a^2 - 2ab\cos\theta)^{\frac{3}{2}}} \, d\theta \, d\phi$$

 $a_{
m r}=\sin heta\cos\phi a_{
m X}+\sin heta\sin\phi a_{
m Y}+\cos heta a_{
m Z}$  اس مساوات میں جدول 1.3 کی مدد سے  $a_{
m r}=\sin heta\cos\phi a_{
m X}$ 

(2.60) 
$$\mathbf{E} = \frac{\rho_{S}a^{2}}{4\pi\epsilon_{0}} \int_{0}^{2\pi} \int_{0}^{\pi} \frac{\left[-a\sin\theta\cos\phi\mathbf{a}_{X} - a\sin\theta\sin\phi\mathbf{a}_{y} + (b - a\cos\theta)\mathbf{a}_{z}\right]\sin\theta}{\left(b^{2} + a^{2} - 2ab\cos\theta\right)^{\frac{3}{2}}} d\theta d\phi$$

حاصل ہوتا ہے۔z محد دسے دیکھتے ہوئے صاف ظاہر ہے کہ اس محد دیر میدان صرف اور صرف  $a_z$  سمت میں ہی ممکن ہے۔یوں  $a_x$  اور  $a_y$  اجزاء کو صفر لیتے ہوئے

(2.61) 
$$E_z = \frac{\rho_S a^2}{4\pi\epsilon_0} \int_0^{2\pi} \int_0^{\pi} \frac{(b - a\cos\theta)\sin\theta}{(b^2 + a^2 - 2ab\cos\theta)^{\frac{3}{2}}} d\theta d\phi$$

کھتے ہیں۔ سوال 2.1 میں آپ سے درخواست کی گئی ہے کہ مساوات 2.60 میں  $a_{
m x}$  اور  $a_{
m y}$  اجزاء کو صفر ثابت کریں۔ بیر ونی تکمل پہلے لیتے ہوئے

(2.62) 
$$E_z = \frac{2\pi\rho_S a^2}{4\pi\epsilon_0} \int_0^{\pi} \frac{(b-a\cos\theta)\sin\theta}{\left(b^2 + a^2 - 2ab\cos\theta\right)^{\frac{3}{2}}} d\theta$$

حاصل ہوتا ہے جسے

$$(2.63) E_z = \frac{2\pi\rho_S a^2 b}{4\pi\epsilon_0} \int_0^{\pi} \frac{\sin\theta \,d\theta}{\left(b^2 + a^2 - 2ab\cos\theta\right)^{\frac{3}{2}}} - \frac{2\pi\rho_S a^3}{4\pi\epsilon_0} \int_0^{\pi} \frac{\cos\theta \sin\theta \,d\theta}{\left(b^2 + a^2 - 2ab\cos\theta\right)^{\frac{3}{2}}}$$

لکھا جا سکتا ہے۔

مساوات 2.63 کے پہلے تکمل میں 
$$w=\cos\theta$$
 اور  $d\theta$  اور  $dw=-\sin\theta$  پُر کر کے حل کرتے ہوئے

(2.64) 
$$\int \frac{\sin\theta \, d\theta}{\left(b^2 + a^2 - 2ab\cos\theta\right)^{\frac{3}{2}}} = \int \frac{-dw}{\left(b^2 + a^2 - 2abw\right)^{\frac{3}{2}}} = \frac{-1}{ab(b^2 + a^2 - 2abw)^{\frac{1}{2}}}$$

لعني

$$\frac{-1}{ab\sqrt{b^2 + a^2 - 2ab\cos\theta}}$$

لکھا جا سکتا ہے۔ یوں

(2.65) 
$$\int_0^{\pi} \frac{\sin\theta \, d\theta}{\left(b^2 + a^2 - 2ab\cos\theta\right)^{\frac{3}{2}}} = \frac{-1}{ab\sqrt{b^2 + a^2 - 2ab\cos\theta}} \Big|_0^{\pi}$$
$$= \frac{-1}{ab\sqrt{b^2 + a^2 + 2ab}} + \frac{1}{ab\sqrt{b^2 + a^2 - 2ab}}$$

حاصل ہوتا ہے جو N بیرون کرہ ہونے کی صورت میں مساوات 2.55 اور مساوات 2.57 کے تحت

(2.66) 
$$\frac{1}{ab} \left[ \frac{-1}{b+a} + \frac{1}{b-a} \right] = \frac{1}{ab} \left[ \frac{-(b-a) + (b+a)}{(b+a)(b-a)} \right] = \frac{2}{b(b^2 - a^2)}$$

جبکہ N اندرون کرہ ہونے کی صورت میں مساوات 2.55 اور مساوات 8.52 کے تحت

(2.67) 
$$\frac{1}{ab} \left[ \frac{-1}{a+b} + \frac{1}{a-b} \right] = \frac{1}{ab} \left[ \frac{-(a-b) + (a+b)}{(a+b)(a-b)} \right] = \frac{2}{a(a^2 - b^2)}$$

شکل اختیار کرتا ہے۔

ماوات 2.63 کے دوسرے تکمل میں میں 
$$w=\cos\theta$$
 پیرکرتے ہوئے  $w=\cos\theta\sin\theta\,\mathrm{d}\theta$  
$$\int \frac{\cos\theta\sin\theta\,\mathrm{d}\theta}{\left(b^2+a^2-2ab\cos\theta\right)^{\frac{3}{2}}} = \int \frac{-w\,\mathrm{d}w}{(b^2+a^2-2abw)^{\frac{3}{2}}}$$

حاصل ہوتاہے۔آپ

$$\int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u$$

کے کلیہ سے بخوبی واقف ہیں۔ہم

$$u = w$$

$$dv = \frac{-dw}{(b^2 + a^2 - 2abw)^{\frac{3}{2}}}$$

ليتے ہیں۔ یوں

$$v = \int dv = \int \frac{-dw}{(b^2 + a^2 - 2abw)^{\frac{3}{2}}}$$

کے برابر ہے جسے ہم مساوات 2.64 میں حاصل کر چکے ہیں۔اس طرح

$$\int \frac{\cos\theta\sin\theta\,d\theta}{\left(b^2 + a^2 - 2ab\cos\theta\right)^{\frac{3}{2}}} = \int w \left[ \frac{-dw}{\left(b^2 + a^2 - 2abw\right)^{\frac{3}{2}}} \right]$$

$$= w \left[ \frac{-1}{ab(b^2 + a^2 - 2abw)^{\frac{1}{2}}} \right] + \int \frac{dw}{ab(b^2 + a^2 - 2abw)^{\frac{1}{2}}}$$

$$= \frac{-w}{ab(b^2 + a^2 - 2abw)^{\frac{1}{2}}} - \frac{\left(b^2 + a^2 - 2abw\right)^{\frac{1}{2}}}{a^2b^2}$$

$$= \frac{-(b^2 + a^2 - abw)}{a^2b^2(b^2 + a^2 - 2abw)^{\frac{1}{2}}}$$

 $\int_0^{\pi} \frac{\cos\theta \sin\theta \,d\theta}{\left(b^2 + a^2 - 2ab\cos\theta\right)^{\frac{3}{2}}} = \frac{-(b^2 + a^2 - ab\cos\theta)}{a^2b^2(b^2 + a^2 - 2ab\cos\theta)^{\frac{1}{2}}} \bigg|_0^{\pi}$  $= \frac{1}{a^2b^2} \left[ \frac{-(b^2 + a^2 + ab)}{\sqrt{b^2 + a^2 + 2ab}} + \frac{(b^2 + a^2 - ab)}{\sqrt{b^2 + a^2 - 2ab}} \right]$ 

حاصل ہوتا ہے۔ N کا کرہ سے باہر ہونے کی صورت میں اس سے

(2.68) 
$$\frac{1}{a^2b^2} \left[ \frac{-(b^2 + a^2 + ab)}{\sqrt{b^2 + a^2 + 2ab}} + \frac{(b^2 + a^2 - ab)}{\sqrt{b^2 + a^2 - 2ab}} \right] = \frac{2a}{b^2(b^2 - a^2)}$$

جبکہ N کا کرہ کے اندر ہونے کی صورت میں اس سے

$$\frac{1}{a^2b^2} \left[ \frac{-(b^2 + a^2 + ab)}{\sqrt{b^2 + a^2 + 2ab}} + \frac{(b^2 + a^2 - ab)}{\sqrt{b^2 + a^2 - 2ab}} \right] = \frac{2b}{a^2(a^2 - b^2)}$$

حاصل ہوتا ہے۔ کرہ کے باہر مساوات 2.66 اور مساوات 2.68 کو استعال کرتے ہوئے مساوات 2.63 سے

(2.70) 
$$E_z = \frac{2\pi\rho_S a^2 b}{4\pi\epsilon_0} \left(\frac{2}{b(b^2 - a^2)}\right) - \frac{2\pi\rho_S a^3}{4\pi\epsilon_0} \left(\frac{2a}{b^2(b^2 - a^2)}\right)$$
$$= \frac{4\pi\rho_S a^2}{4\pi\epsilon_0 b^2}$$
$$= \frac{Q}{4\pi\epsilon_0 b^2}$$

حاصل ہوتا ہے جہاں کرہ پر کل چارج  $4\pi a^2 
ho_S$  کو Q ککھا گیا ہے۔ کرہ کے اندر مساوات 2.67 اور مساوات 2.69 کو استعال کرتے ہوئے مساوات 2.63

(2.71) 
$$E_z = \frac{2\pi\rho_S a^2 b}{4\pi\epsilon_0} \left( \frac{2}{a(a^2 - b^2)} \right) - \frac{2\pi\rho_S a^3}{4\pi\epsilon_0} \left( \frac{2b}{a^2(a^2 - b^2)} \right) = 0$$

مساوات 2.70 بیرون کرہ 2 محدد پر میدان دیتا ہے۔ چونکہ ہم کسی بھی سمت میں اس محدد کو رکھ سکتے تھے اور میدان اسی محدد کی سمت یعنی رداسی سمت میں ہوتاللذا یہ ایک عمومی جواب ہے جے کسی بھی بیرونی نقط کے لئے

$$E = \frac{Q}{4\pi\epsilon_0 r^2} a_{\Gamma} \qquad (r > a)$$

لکھا جا سکتا ہے۔ یہ وہی میدان ہے جو کروی محدد کے مرکز پر Q نقطہ چارج رکھنے سے حاصل ہوتا ہے۔

مساوات 2.71 کے تحت کرہ کے اندر میدان صفر کے برابر ہے۔ بیہ انتہائی اہم نتیجہ ہے۔ ہم کسی بھی مقام کو کرہ یا کسی بھی مکمل بند موصل سطح میں گھیر کر اس مقام پر صفر برقی میدان یقینی بنا سکتے ہیں۔الیں سطح کو فیراڈے حفاظتی سطح <sup>21</sup> کہتے ہیں۔

حصہ 3.4.2 میں اس مسلے کو انتہائی آسان طریقے سے حل کرناد کھایا جائے گا۔

مثال 2.12: مثال 2.11 کے نتائج استعال کرتے ہوئے a رداس کرہ جس میں یکساں  $ho_h$  حجمی چارج کثافت پائی جائے کا کرہ کے اندر اور کرہ کے باہر برقی میدان E حاصل کریں۔

حل: کرہ کے اندر رداس r پر r موٹی جھلی کا تجم  $4\pi r^2 \, dr$  ہو گا جس میں کل  $4\pi \rho_h r^2 \, dr$  چارج r ہے چارج r ہے کہ رداس کے خطے میں کوئی برقی میدان نہیں پیدا کرتا جبکہ r سے زیادہ رداس پر میدان پیدا کرے گا۔ یوں R سے کم کسی بھی رداس پر جھلی میں پائے جانے والا چارج R پر میدان پیدا کرے گا جے

کھے کر حاصل کیا جا سکتا ہے۔چارج کرہ کے باہر یعنی R>a کی صورت میں کرہ میں موجود تمام چارج بطور نقطہ چارج کردار اداکرتے ہوئے

(2.74) 
$$E = \frac{\frac{4}{3}\pi a^3 \rho_h}{4\pi\epsilon_0 R^2} a_{\text{T}} = \frac{a^3 \rho_h}{3\epsilon_0 R^2} a_{\text{T}} \qquad (R > a)$$

#### 2.7 برقی میدان کر سمت بہاو خط

ہم نے اب تک جتنے بھی مثال دیکھے ان سب میں E کی شکل سید ھی لکیر کی مانند رہی ہے۔ایسے میدان کا تصوراتی شکل ذہن میں بنانا آسان ہوتا ہے۔یوں نقطہ چارج کے میدان کو چارج سے ابتدا کرتے ہوئے ہر طرف سمتیوں سے ظاہر کیا جا سکتا ہے۔اب چارج کے قریب E کی قیمت زیادہ اور چارج سے دور اس کی قیمت کم ہوتی ہے۔یوں مختلف مقامات پر E کی لمبائی یہاں کے میدان کی نسبت سے ہو گی۔میدان کو ظاہر کرنے کے دیگر طریقے بھی رائج ہیں۔

آئیں ایسے ہی ایک طریقے پر غور کریں جس میں میدان کو سمت بہاہ خط سے ظاہر کیا جاتا ہے۔اس طریقے میں کسی بھی نقطے پر E یہاں سے گزرتے سمت بہاہ خطوط کی تعداد کم ہو سمت بہاہ خطوط کی تعداد کم ہو وہاں میدان کمزور ہوتا ہے۔ جس مقام پر کا نشان E کے مثبت سمت کی نشاندہی کرتا ہے۔

کار تیسی محدد میں کسی بھی میدان کو

$$\boldsymbol{E} = E_x \boldsymbol{a}_{\mathbf{X}} + E_y \boldsymbol{a}_{\mathbf{Y}} + E_z \boldsymbol{a}_{\mathbf{Z}}$$

کھا جا سکتا ہے۔ یہ مساوات ان میدان کو بھی ظاہر کرتا ہے جو سید ھی لکیر کی مانند نہ ہوں۔ آئیں ایسے عمومی میدان پر غور کریں جس میں  $E_z$  کی قیمت صفر کے برابر ہو جبکہ  $E_x$  اور  $E_y$  کی قیمتیں  $E_y$  اور  $E_y$  مخصر ہو۔ کسی بھی نقطہ  $E_y$  پر ایسے میدان کو

$$(2.75) E = E_x(x,y)a_X + E_y(x,y)a_Y$$

62 باب 2. كولومب كا قانون





شكل 2.8: الف) سمت بهاو خط كر مساوات كا حصول. ب) لكيرى چارج كثافت كر سمت بهاو خط.

کھا جا سکتا ہے۔ شکل 2.8-الف میں ایسے ہی ایک E کے تین سمت بہاو خط دکھائے گئے ہیں۔ شکل میں کسی عمومی نقطے پر E دکھایا گیا ہے جو اس نقطے سے گزرتے سمت بہاو خط کا ممال ہے۔ میدان کے کار تیسی اجزاء E اور E بھی دکھائے گئے ہیں۔ اسی نقطے پر سمت بہاو خط کی چیوٹی لمبائی لیتے ہوئے ہم کا ودر کھتے ہوئے وکے دکھتے ہوئے گئے ہیں۔  $\Delta x$  اور  $\Delta y$  کو کم سے کم کرتے ہوئے ہم شکل کو دیکھتے ہوئے

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{E_y}{E_x}$$

کھ سکتے ہیں۔اب اگر ہمیں  $E_x$  اور  $E_y$  کی خاصیت معلوم ہو تب ہم تکمل سے سمت بہاو خط کی مساوات حاصل کر سکتے ہیں۔

آئیں لا محدود لکیری چارج کثافت کے میدان کو مثال بناتے ہوئے اس کے سمت بہاو خط کی مساوات حاصل کریں۔ $ho_L=2\pi\epsilon_0$  کی صورت میں z محدد پر لا محدود لکیری چارج کثافت کا میدان

$$(2.77) E = \frac{a_{\rho}}{\rho}$$

کھا جاتا ہے۔مساوات 2.75 بھی اسی میدان کی مساوات ہے جس سے ظاہر ہے کہ  $E_x = E \cdot a_{
m Y}$  اور  $E_y = E \cdot a_{
m Y}$  سے حاصل کئے جا سکتے ہیں۔ یول مساوات 2.77 کی مدد سے

$$E_x = \frac{1}{\rho} \mathbf{a}_{\rho} \cdot \mathbf{a}_{X} = \frac{\cos \phi}{\rho} = \frac{x}{x^2 + y^2}$$
$$E_y = \frac{1}{\rho} \mathbf{a}_{\rho} \cdot \mathbf{a}_{Y} = \frac{\sin \phi}{\rho} = \frac{y}{x^2 + y^2}$$

حاصل ہوتے ہیں۔ یوں لا محدود کیری چارج کثافت کے میدان کو

(2.78) 
$$E = \frac{x}{x^2 + y^2} a_X + \frac{y}{x^2 + y^2} a_Y$$

لکھا جا سکتا ہے۔اس طرح مساوات 2.76 کو

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x}$$

 $\frac{\mathrm{d}y}{y} = \frac{\mathrm{d}x}{x}$ 

لكھ كراس كا تكمل

$$ln y = ln x + M'$$

2.8. سوالات

يعنى

(2.79) y = Mx

لیتے ہوئے میدان کے سمت بہاو خط کی مساوات حاصل کرتے ہیں۔ یہ سید تھی لکیر کی مساوات ہے جسے مختلف M کے قیمتوں کے لئے شکل 2.8-ب میں کھینچا گیا ہے۔

2.8 سوالات

سوال 2.1: صفحہ 58 پر مساوات 2.60 میں  $a_{
m X}$  اور  $a_{
m Y}$  اجزاء کا تکمل لیتے ہوئے انہیں صفر کے برابر ثابت کریں۔

94 كولومب كا قانون

باب 3

# گاؤس كا قانون اور پهيلاو

- 3.1 ساكن چارج
- 3.2 فیراڈے کا تجربہ

اں باب کا آغاز جناب مائکل فسیراڈے اے ایک تجربے سے کرتے ہیں جس کے نتیج کو یوں بیان کیا جاسکتا ہے۔ چارج Q کو غیر چارج شدہ موصل سطح میں مکمل طور پر یوں بند کرنے کے بعد، کہ چارج اور سطح کہیں بھی ایک دونوں کو نہ چھوئیں، موصل سطح کو زمین کے ساتھ ایک لمجے کے لئے ملانے سے موصل سطح پر Q – چارج پیدا ہو جاتا ہے۔ دیکھا نہ گیا ہے کہ چارج اور بیرونی سطح کے درمیان فاصلہ کم یا زیادہ کرنے سے نتیج پر کوئی اثر نہیں ہوتا۔ اس طرح چارج اور سطح کے درمیان مختلف غیر موصل مواد بھرنے سے بھی نتیج پر کوئی اثر نہیں ہوتا۔ مزید سے کہ سطح کی شکل کا بھی نتیج پر کوئی اثر نہیں ہوتا۔ اس طرح جس چیز پر چارج کا کہ کھی نتیج پر کوئی اثر نہیں ہوتا۔ اس طرح جس چیز پر چارج کا کہ کھی نتیج پر کوئی اثر نہیں ہوتا۔ اس طرح جس چیز پر چارج کا کہ کھی تیج پر کوئی اثر نہیں ہوتا۔

ایسا معلوم ہوتا ہے جیسے اندرونی چارج سے ہیرونی سطح تک چارج کی مقدار اور قطب کی خبر پہنچتی ہے۔اس حقیقت کو تصوراتی جامع یوں پہنایا جا سکتا ہے کہ ہم سمجھیں کہ مثبت چارج سے ہر جانب یکسال طور پر کچھ خارج ہوتا ہے۔اس چیز کو ہم برقی بہاو<sup>2 کہ</sup>یں گے اور اس کو 4 سے ظاہر کریں گے۔برتی بہاو کو چارج کے برابر تصور کیا جاتا ہے۔

$$\psi = Q$$

برقی بہاو کی اکائی کولومب C ہی تصور کی جاتی ہے۔ منفی چارج کی صورت میں برقی بہاو کی سمت الٹی ہو گی اور یہ چارج میں داخل ہو گا۔

تصور کریں کہ اندرونی چارج  $r_1$ رداس کی کرہ پر پایا جاتا ہے جبکہ اسے  $r_2$ رداس کی کرہ نے گھیرا ہوا ہے۔ کرہ کی سطح  $4\pi r^2$  برابر ہوتی ہے۔اندرونی کرہ سے  $\psi$  برتی بہاو خارج ہوتا ہے۔ یوں اندرونی کرہ سے  $\frac{\psi}{4\pi r_1^2}$  برقی بہاو خارج ہوتا ہے۔ یوں اندرونی کرہ سے  $\frac{\psi}{4\pi r_1^2}$  برقی بہاو فی اکائی رقبہ پہنچتی ہے۔ برتی بہاو نی اکائی رقبہ کو کثافت برتی بہاو ہی اگل کے ایوں اگر اندرونی کرہ کے رداس کو اتنا کم کر دیا جائے کہ اس کو نقطہ تصور کرنا ممکن ہو اور اس نقطہ چارج کو رداس ہے کرہ کے مرکز پر رکھا جائے تو کرہ پر

$$D = \frac{Q}{4\pi r^2} a_{\rm r}$$

Michael Faraday<sup>1</sup> electric flux<sup>2</sup> electric flux density<sup>3</sup>

60 جاب 3. گاؤس كا قانون اور پهيلاو

سمتیہ کثافت برقی بہاو پائی جائے گی۔ صفحہ 42 پر مساوات 2.19 سے موازنہ کرنے سے ثابت ہوتا ہے کہ خالی خلاء میں

ردد) خلاء 
$$D=\epsilon_0 E$$
 خالی خلاء

کے برابر ہے۔اگر نقطہ چارج کو کروی محدد کے مرکز پر نہ رکھا جائے تب کسی بھی مقام پر کثافت برقی بہاو حاصل کرنے کی خاطر مساوات 3.2 یوں لکھی جائے گی

$$D = \frac{Q}{4\pi R^2} a_R$$

جہاں  $a_R$  چارج سے اس مقام کی جانب اکائی سمتیہ ہے اور R ان کے در میان فاصلہ ہے۔

کسی بھی حجم جس میں تغیر پذیر چارج کی کثافت پائی جائے میں مقام  $\mathbf{r}$  پر  $\Delta h'$  حجم میں  $\rho'_h \Delta h'$  چارج پایا جائے گا جو مقام  $\mathbf{r}$  پر

$$\Delta \boldsymbol{D}(\boldsymbol{r}) = \frac{\rho_h^\prime \Delta h^\prime}{4\pi |\boldsymbol{r} - \boldsymbol{r^\prime}|^2} \frac{\boldsymbol{r} - \boldsymbol{r^\prime}}{|\boldsymbol{r} - \boldsymbol{r^\prime}|}$$

کثافت برقی بہاوپیداکرے گا۔ قانون کولومب خطی ہونے کی بناپر D بھی خطی نوعیت کا ہوتا ہے للذا حجم کے تمام چارجوں سے

(3.5) 
$$D(r) = \int_{h} \frac{\rho_h' \, \mathrm{d}h'}{4\pi |\mathbf{r} - \mathbf{r'}|^2} \frac{\mathbf{r} - \mathbf{r'}}{|\mathbf{r} - \mathbf{r'}|}$$

حاصل ہو گا۔ مساوات 3.5 کا صفحہ 53 پر مساوات 2.48 کے ساتھ موازنہ کرنے سے ثابت ہوتا ہے کہ تحجمی کثافت کے لئے بھی مساوات 3.3 خالی خلاء میں  $\mathbf{D}$  اور  $\mathbf{E}$  کا خالی خلاء میں تعلق بھی مساوات 3.3 بی بیان کرتا ہے۔ یوں مساوات 3.3 بی بیان کرتا ہے۔ یوں مساوات 3.3 بی مساوات ہے۔ عمومی مساوات ہے۔

3.3 گاؤس كا قانون

فیراڈے کے تجربے کو قانون کی شکل میں یوں پیش کیا جا سکتا ہے جسے گاؤس کا قانون 4 کہتے ہیں۔

کسی بھی مکمل بند سطے سے کل گزرتی برقی بہاو سطے میں گھیرے چارج کے برابر ہوتی ہے۔

جناب گاؤس⁵ نے اس قانون کوریاضیاتی شکل دی جس کی بناپریہ قانون انہیں کے نام سے منسوب ہے۔ آئیں گاؤس کے قانون کی ریاضیاتی شکل حاصل کریں۔

شکل 3.1 میں بند سطح د کھائی گئی ہے جس کی کوئی مخصوص شکل نہیں ہے۔اس سطح کے اندر لینی سطح کے گھیرے جم میں کل Q چارج پایا جاتا ہے۔ سطح پر کسی بھی مقام سے گزرتا برقی بہاواس مقام پر سطح کی عمودی سمت میں کثافت برقی بہاواور اس مقام کے رقبہ کے حاصل ضرب کے برابر ہو گا۔ یوں شکل کو دیکھتے ہوئے چھوٹے سے رقبہ کا کم پر سطح کے عمودی سمت میں برقی بہاو کے کثافت کی قیت Ω cos α ہوگی للذا

$$\Delta \psi = D_S \cos \alpha \Delta S$$

3.3. گاؤس كا قانون



شکل 3.1: مکمل بند سطح سے گزرتی برقی بہاو سطح میں گھیرے کل چارج کے برابر ہے۔

ہو گا۔ کثافتِ برقی بہاو D<sub>S</sub> ککھتے ہوئے زیر نوشت میں S اس حقیقت کی یاد دہانی کراتا ہے کہ سطح پر کثافتِ برقی بہاو کی قیمت کی بات کی جارہی ہے۔اس مساوات کو ضرب نقطہ کے استعال سے

$$\Delta \psi = \boldsymbol{D}_{S} \cdot \Delta \boldsymbol{S}$$

کھا جا سکتا ہے۔ مکمل سطح سے گزرتے کل برقی بہاو تکملہ سے حاصل ہو گی جو گاؤس کے قانون کے مطابق گھیرے ہوئے چارج Q کے برابر ہے۔ یوں

$$\psi = \oint_{S} \mathbf{D}_{S} \cdot \Delta \mathbf{S} = Q$$

ککھا جا سکتا ہے۔ یہ تکملہ دراصل دو درجی تکملہ ہے جسے ہم عموماً ایک درجی تکملہ سے ہی ظاہر کریں گے۔ تکملہ کے نشان پر گول دائرہ بند تکملہ 6 کو ظاہر کرتا ہے جبکہ بند تکملہ کے وعموماً گاؤس سطح کو عموماً گاؤس سطح کو خاہر کرتا ہے جس پر بند تکملہ حاصل کیا جارہا ہو۔اس بند سطح کو عموماً گاؤس سطح کہ بیں۔

جس مقام پر چارج کی کثافت  $ho_h$  ہو، وہاں چھوٹی سی جم  $\Delta h$  میں کل چارج  $ho_h \Delta h$  پایا جاتا ہے۔ یوں کسی بھی جم کو چھوٹے جھوٹے حصوں میں تقسیم کرتے ہوئے تمام حصوں میں یائے جانے والے چارجوں کا مجموعہ یوری جم میں چارج کے برابر ہوگا یعنی

$$Q = \int_{h} \rho_h \, \mathrm{d}h$$

جہاں تین درجی حجم کے تکملہ کوایک درجی تکملہ کے نشان سے ظاہر کیا گیا ہے۔

مندرجه بالا دو مساوات سے

$$\oint_{S} \mathbf{D}_{S} \cdot \Delta \mathbf{S} = \int_{h} \rho_{h} \, \mathrm{d}h$$

حاصل ہوتا ہے جو گاؤس کے قانون کی تکملہ شکل ہے۔اس مساوات کو یوں پڑھا جاتا ہے کہ کسی بھی بند سطح سے گزرتی کل برقی بہاواس سطح کے اندر گھیرے کل چارج کے برابر ہے۔

یہ ضروری نہیں کہ گیرے ہوئے جم یعنی بند حجم میں تحجمی کثافت ہی پائی جائے۔ بند حجم کے اندر سطحی کثافت، ککیری کثافت، علیحدہ علیحدہ نقطہ چارج یاان تینوں اقسام کا مجموعہ پایا جا سکتا ہے۔ حجم گیرنے والے بند بیرونی سطح کے اندر کسی سطح پر سطحی کثافت کی صورت میں مساوات 3.7 کی جگہ

$$Q = \int_{S} \rho_S \, \mathrm{d}S$$

closed integral<sup>6</sup> gaussian surface<sup>7</sup> e8 باب 3. گاؤس كا قانون اور پهيلاو

کھا جائے گا جہاں چارج بردار سطح ازخود بندیا کھلی سطح ہو سکتی ہے۔ کیسری کثافت کی صورت میں

$$Q = \int\limits_{L} \rho_L \, \mathrm{d}L$$

جبکه n عدد نقطه چارج کی صورت میں

(3.11) 
$$Q = \sum_{n} Q = Q_1 + Q_2 + Q_3 + \dots + Q_n$$

کھا جائے گا، وغیرہ وغیرہ۔ بہر حال مساوات 3.7 سے مرادیہ تمام صورتیں لی جاتی ہیں اور یوں ان تمام صورتوں کے لئے گاؤس کے قانون کی تکملہ شکل مساوات 3.8 ہی ہے۔

## 3.4 گاؤس كرح قانون كا استعمال

گزشتہ باب میں ہم نے کولومب کے قانون سے نقطہ چارج، لا محدود لکیری چارج اور لا محدود سطحی چارج سے پیدا برقی میدان حاصل کئے۔آئیں انہیں کو گاؤس کے قانون کی مدد سے بھی حاصل کریں۔ آپ دیکھیں گے کہ ان تینوں صور توں میں گاؤس کے قانون کا استعال شرم ناک حد تک سادہ ثابت ہو گا۔ یہاں یہ بتلانا ضروری ہے کہ ایسے مسائل جن میں گاؤس کا قانون استعال کیا جا سکے کی تعداد بہت کم ہیں۔

#### 3.4.1 نقطہ چارج

شکل 3.2 میں کرہ کے مرکز پر نقطہ چارج دکھایا گیا ہے۔ نقطہ چارج کو کروی محدد 8 کے مرکز پر رکھتے ہوئے ہم نے مختلف مقامات سے دیکھتے ہوئے مسئلے کی مشابہت کی بنا پر اخذ کیا تھا کہ کثافت ِ برقی میدان صرف رداس کی سمت میں ممکن ہے اور اس کی حتمی قیمت صرف اور صرف رداس r تبدیل کرنے سے تبدیل نہیں ہوگا۔ اس کا مطلب ہے کہ کروی محدد کے مرکز کے گرد رداس r کے کرہ پر D تبدیل نہیں ہوگا۔

کروی محد د استعال کرتے ہوئے کرہ پر چھوٹی سی سطح

 $dS = r^2 \sin\theta \, d\theta \, d\phi$ 

لکھی جاسکتی ہے۔اسی کی سمتی شکل

 $dS = r^2 \sin \theta \, d\theta \, d\phi a_{\rm r}$ 

ہو گی۔اس سطے پر کثافت ِ برقی بہاو کی قیمت  $D_S$  اور سمت  $a_{
m r}$  ہو گی لہذا سمتی کثافت ِ برقی بہاو $m{D}_S=D_S a_{
m r}$ 

لکھی جائے گی۔ یوں اس چھوٹی سی سطح سے گزرتی برقی بہاو

$$d\psi = \mathbf{D}_S \cdot d\mathbf{S}$$

$$= (D_S \mathbf{a}_{\mathbf{r}}) \cdot \left(r^2 \sin \theta \, d\theta \, d\phi \mathbf{a}_{\mathbf{r}}\right)$$

$$= D_S r^2 \sin \theta \, d\theta \, d\phi$$



شکل 3.2: کرہ کے مرکز پر نقطہ چارج کا کرہ کے سطح پر کثافتِ برقی بہاو

ہو گی۔اس طرح پوری کرہ سے گزرتی برقی بہاو تھملہ سے بول حاصل ہو گی۔

$$\psi = D_S r^2 \int_{\phi=0}^{\phi=2\pi} \int_{\theta=0}^{\theta=\pi} \sin \theta \, d\theta \, d\phi$$

$$= D_S r^2 \int_{\phi=0}^{\phi=2\pi} -\cos \theta \Big|_0^{\pi} d\phi$$

$$= D_S r^2 \int_{\phi=0}^{\phi=2\pi} 2 \, d\phi$$

$$= 4\pi r^2 D_S$$

گاؤس کے قانون کے تحت یہ برتی بہاو گھیرے گئے چارت Q کے برابر ہے لہذا  $4\pi r^2 D_S = Q$ 

ہو گا جس سے

$$D_S = \frac{Q}{4\pi r^2}$$

حاصل ہوتا ہے۔ یہی جواب بغیر زیادہ حساب و کتاب کے بول حاصل کیا جا سکتا ہے۔

کرہ پر کثافت برتی بہاو  $D_S$  عمودی ہے اور اس کی قیمت کرہ پر تبدیل نہیں ہوتی۔ کرہ کی سطح  $2\pi r^2 D_S$  برتی ہہاو گزرے گی جو گاؤس کے قانون کے تحت Q کے برابر ہے للذا Q کے برابر ہے للذا کی سمتی شکل بہاو گزرے گی جو گاؤس کے قانون کے تحت Q کے برابر ہے للذا کی سمتی شکل

$$D_S = \frac{Q}{4\pi r^2} a_{\rm r}$$

اور  $oldsymbol{D} = \epsilon_0 oldsymbol{E}$  سے

$$E = \frac{Q}{4\pi\epsilon_0 r^2} a_{\rm r}$$

حاصل ہوتا ہے۔اس مساوات کا صفحہ 42 پر مساوات 2.19 کے ساتھ موازنہ کریں اور دیکھیں کہ موجودہ جواب کتنی آسانی سے حاصل ہوا۔

3.4.2 یکسان چارج بردار کروی سطح

صفحہ 57 پر حصہ 2.11 میں کروی محدد کے مرکز پر a رداس کی کروی سطح جس پر یکسال  $ho_S$  چارج کثافت پائی جائے کا میدان بیرونِ کروہ اور اندرونِ کروہ عاصل کریں۔ حاصل کیا گیا۔آئیں گاوس کے قانون سے انہیں جوابات کو دوبارہ حاصل کریں۔

کرہ کے اندر rرداس کا کرہ لیتے ہیں۔ یوں r < aرداس کے کرہ میں صفر چارتی پایا جائے گا۔ یوں اس کی سطح پر صفر میدان ہو گا۔ اس کے برعکس r > aرداس کا کرہ aرداس کا کرہ aرداس کے کرہ کو گھیر تا ہے لہذا ہیہ  $a = 4\pi a^2 \rho_S$  چارج کو گھیرے گا لہذا یہاں

$$\boldsymbol{D} = \frac{4\pi a^2 \rho_S}{4\pi r^2} \boldsymbol{a}_{\Gamma}$$

ہو گا جس سے

$$\boldsymbol{E} = \frac{Q}{4\pi\epsilon_0 r^2} \boldsymbol{a}_{\mathrm{r}}$$

حاصل ہوتا ہے جہاں کل چارج کو Q لکھا گیا ہے۔ یہ نتائج گاوس کے قانون کے استعال سے حاصل کئے گئے۔ ساتھ ہی ساتھ اس حقیقت کو مد نظر رکھا گیا کہ میدان صرف رداسی ست میں ممکن ہے۔

آپ دیکھ سکتے ہیں کہ اس مسلے کو حل کرنے کا موجودہ طریقہ نہات آسان ہے۔

3.4.3 يكسان چارج بردار سيدهي لامحدود لكير

الی لا محدود لکیر جس پر چارج کی کیساں کثافت پائی جائے کے گرد رداس پر گھومتے ہوئے صورت حال میں کوئی تبدیلی نظر نہیں آتی۔ای طرح اس لکیر کے ساتھ ساتھ چلتے ہوئے بھی صورت حال میں کسی قشم کی تبدیلی پیدا نہیں ہوتی۔لا محدود لکیر کو نکلی محدد کی جمحدد تصور کرتے ہوئے ان حقائق کی روشنی میں ہم توقع کرتے ہیں کہ برقی میدان صرف رداس تبدیل کرنے سے ہی تبدیل ہوگا۔مزید، جیسا کہ پچھلی باب میں بتلایا گیا، کسی بھی نقطے کے ایک جانب لکیر پر چارج سے پیدا برقی میدان کا وہ حصہ جو مرح کی سمت میں ہو کو لکیر پر نقطے کی دوسری جانب برابر فاصلے پر چارج سے پیدا برقی میدان کا وہ حصہ جو جو کہ کی سمت میں ہو ختم کرتا ہے۔یوں بیر اخذ کیا جا سکتا ہے کہ کثافت ِ برقی بہاو صرف رداس کی سمت میں ہی پایا جائے گا۔آئیں ان معلومات کی روشنی میں گاؤس کے قانون کی مدد سے کثافت ِ برقی بہاو حاصل کریں۔

چارج بردار کلیر جس پر یکسال کثافتِ چارج کی لمبائی L میں کل چارج کی لمبائی L گئی سطح تصور کرتے ہیں جس کے دونوں آخری سرے وبند تصور کریں۔ چونکہ برقی بہاو صرف رداس کی سمت میں ہے لہذا ان دونوں آخری سروں سے کوئی برقی بہاو نہیں ہوگا۔ نکلی سطح کا رقبہ  $2\pi\rho L$  ہے جبکہ اس سطح پر ہر جگہ کثافتِ برقی بہاو م $D_\rho$  ہاذا پوری سطح سے  $2\pi\rho L$  برقی بہاو ہوگا جو گاؤس کے قانون کے تحت گھیرے گئے چارج L برابر ہوگا۔ اس طرح

$$2\pi\rho D_{\rho} = \rho_L L$$

لکھتے ہوئے

$$D_{
ho} = rac{
ho_L}{2\pi
ho}$$

3.5. يم محورى تار



شكل 3.3: بم محوري تار

حاصل ہوتا ہے جس کی سمتی شکل

$$D_{\rho} = \frac{\rho_L}{2\pi\rho} a_{\rho}$$

(3.15)  $\boldsymbol{E}_{\rho} = \frac{\rho_{L}}{2\pi\epsilon_{0}\rho}\boldsymbol{a}_{\rho}$ 

حاصل ہوتا ہے۔صفحہ 47 پر مساوات 2.30 کے ساتھ موازنہ کریں اور دیکھیں کہ موجودہ طریقہ کتنا سادہ ہے۔

#### 3.5 ہم محوری تار

یساں چارج بردار سید سی لا محدود کئیر کے قصے کو آگے بڑھاتے ہوئے تصور کریں کہ اس تار کا رداس  $\rho_1$  ہے۔اگر تار پر کسی بھی جگہ L لمبائی میں Q چارج پایا جائے تو تار پر چارج کی کثیری کثافت  $\rho_L = \frac{Q}{L}$  ہو گی جیسا آپ جانتے ہیں ہیں شوس موصل میں چارجوں کے مابین قوت دفع کی وجہ سے تمام چارج موصل کے ہیرونی سطح پر دکھیلے جاتے ہیں۔یوں چارج Q تار کے ہیرونی سطح، محور سے  $\rho_1$  فاصلے، پر پایا جائے گا۔

اب تصور کریں کہ پہلی تار کے اوپر نکلی نما دوسری تار چڑھائی جائے جس کا اندرونی رداس  $ho_2>
ho_1$  ہو جہاں  $ho_2>
ho_1$  ہو جہاں تصور کریں کہ بیرونی تار چڑھائی جائے جس کا اندرونی رداس  $ho_2=
ho_1$  چارج ہو جہاں تار کے اندرونی تار پر کسی بھی جگہ لہ لہبائی پر  $ho_2=
ho_3$  چارج ہاں ناروں پر الٹ اقسام کے چارج ہیں کو شکل 3.3 میں دکھایا گیا ہے۔تصور کریں کہ بیرونی تار پر چارج تار کے اندرونی سطہ یعنی محور سے  $ho_2$  رداس پر پایا جائے گا۔ بیرونی تار پر چارج تار کے اندرونی سطہ یعنی محور سے  $ho_3$  رداس پر پایا جائے گا۔ بیرونی تار پر چارج تار کے اندرونی سطہ یعنی محور سے  $ho_4$  رداس پر پایا جائے گا۔ بیرونی تار پر چارج تار کے اندرونی سطہ یعنی محور سے  $ho_5$  رداس پر پایا جائے گا۔ بیرونی تار پر چارج تار کے اندرونی سطہ یعنی محور سے  $ho_5$  ہو گا۔

دونوں تاروں کے درمیانی فاصلے میں رداس ρ کی فرضی نکلی سطح صرف اندرونی تار کے چارج کو گھیرتی ہے للمذا کے لمبائی کی الیم نکلی پر مساوات 3.14 کی طرح

(3.16) 
$$D = \frac{\rho_L}{2\pi\rho} a_\rho$$
$$= \frac{Q}{2\pi\rho L} a_\rho$$

coaxial cable<sup>10</sup>

پایا جائے گا۔ آپ دیکھ سکتے ہیں کہ بیرونی تاریر چارج کا اس میدان پر کوئی اثر نہیں پایا جاتا۔ یوں اندرونی تار کے بیرونی سطح پر

$$D_1 = \frac{Q}{2\pi\rho_1 L} \boldsymbol{a}_{\rho}$$

جبکہ بیرونی تار کے اندرونی سطح پر

$$D_2 = \frac{Q}{2\pi\rho_2 L} a_\rho$$

پایا جائے گا۔ بیر ونی تار کے باہر فرضی نکلی سطح میں کل صفر چارج پایا جاتا ہے للذا ہم محوری تار کے باہر (لیعنی بیر ونی تار کے باہر)

ہو گا۔ مساوات 3.14 انتہائی اہم نتیجہ ہے۔اس کے مطابق ہم محوری تار کے باہر کسی قسم کا برقی میدان نہیں پایا جاتا للذا تار کے باہر سے کسی طرح بھی بیہ معلوم نہیں کیا جا سکتا کہ تاریر کس قسم کا چارج پائے جاتے ہیں۔یوں ہم محوری تار کے ذریعہ اشارات کی منتقلی محفوظ ہوتی ہے۔ہم محوری تار میں بیرونی تار اندرونی تار کو پناہی دیتا ہے۔ للذا ہم محوری تار کو پناہ دار تار 11 بھی کہا جائے گا۔

مثال 3.1: ہم محوری تار کے اندروری تار کارداس mm 1 جبکہ اس کے بیر ونی تار کا اندرونی رداس mm 5 ہے۔mm 3 رداس پر کثافت ِ برقی بہاو سے جبکہ تار کے باہر کوئی برقی میدان نہیں پایا جاتا۔دونوں تاروں پر چارج کی سطحی کثافت حاصل کریں۔

عل: تار کے گرو برقی میدان صرف رداس کی سمت میں پایا جاتا ہے۔ اگر تار پر چارج کی کلیر کی کثافت  $ho_L$  ہو تب مساوات  $-5 imes 10^{-6} = rac{
ho_L}{2\pi imes 0.003}$ 

سے  $ho_L = -94.26 \, \mathrm{nC}$  جارتی پایا جائے گا جس سے اس کی سطحی کثافت میٹر لمبائی پر  $ho_L = -94.26 \, \mathrm{nC}$  جارتی پایا جائے گا جس سے اس کی سطحی کثافت

$$\rho_{S1} = \frac{-0.09426 \times 10^{-9}}{2\pi \times 0.001 \times 1} = -15 \, \frac{\mu \text{C}}{\text{m}^2}$$

عاصل ہوتی ہے۔ بیرونی تارکے ایک میٹر فاصلے پر 94.26 nC چارج پایا جائے گا جس سے یہاں

$$\rho_{S2} = \frac{94.26 \times 10^{-9}}{2\pi \times 0.005 \times 1} = 3 \, \frac{\mu \text{C}}{\text{m}^2}$$

حاصل ہوتا ہے۔

3.6 يكسان چارج بردار بموار لامحدود سطح

اگر چارج بردار ہموار لا محدود سطح سے برابر فاصلے پر کسی بھی مقام سے دیکھا جائے تو صورت حال بالکل کیساں معلوم ہوگا۔ کسی بھی نقطے کے ایک جانب چارجوں سے پیدا برقی میدان کا وہ حصہ جو چارج برادر سطح کے متوازی ہوکو نقطے کے دوسری جانب چارجوں سے پیدا برقی میدان کا وہ حصہ جو چارج برادر سطح کے متوازی ہوکو ختم کرتا ہے۔ان حقائق سے ہم اخذ کر سکتے ہیں کہ الیم سطح کے متوازی ہوکو ختم کرتا ہے۔ان حقائق سے ہم اخذ کر سکتے ہیں کہ الیم سطح کے متوازی ہوکو ختم کرتا ہے۔ان حق کی لا محدود سطح شکل 2.5 میں دکھائی گئی ہے۔

اس شکل میں چارج بردار سطح کے متوازی دونوں اطراف برابر فاصلے پر تصوراتی لا محدود سطح تصور کرتے ہیں۔ان سطحوں پر آمنے سامنے رقبہ S لیتے مورکی سطحوں سے بند کرتے ہوئے جم گھیرتے ہیں۔سامنے سطح پر  $Da_{\rm x}$  جبکہ بیچ سطح پر  $Da_{\rm x}$  ہوگے انہیں عمودی سطحوں سے بند کرتے ہوئے جم گھیرتے ہیں۔سامنے سطحوں کو ملانے والے عمودی سطحوں میں سے کوئی برقی بہاو نہیں ہو گا۔یوں جم سے برقی بہاو صرف ان آمنے سامنے رقبوں سے یعنی

$$egin{aligned} \psi_{ iny -} &= D oldsymbol{a}_{ iny -} \cdot S oldsymbol{a}_{ iny -} &= (-D oldsymbol{a}_{ iny -}) \cdot (-S oldsymbol{a}_{ iny -}) &= S D \end{aligned}$$

جو گیرے گئی چارج کے برابر ہو گا۔ اگر چارج بردار سطی پر م م ہو تب تجم میں مجارج پایا جائے گا۔ یوں

$$\psi_{\perp} + \psi_{\perp} = 2DS = \rho_S S$$

لکھتے ہوئے

$$D = \frac{\rho_S}{2}$$

حاصل ہوتا ہے جس کی سمتی شکل

$$(3.20) D = \frac{\rho_S}{2} a_N$$

کسی جا کتی ہے جہال  $a_N$  سے مراد سطح کی اکائی سمتیہ ہے۔ یوں

$$\mathbf{E} = \frac{\rho_S}{2\epsilon_0} \mathbf{a}_N$$

حاصل ہوتا ہے۔آپ دیکھ سکتے ہیں کہ مساوات 2.42 کے حصول کا موجودہ طریقہ زیادہ آسان ہے۔

3.7 انتہائی چھوٹی حجم پر گاؤس کے قانون کا اطلاق

شکل 3.4 میں کار تیسی محدد پر نقطہ  $N(x_0,y_0,z_0)$  پر جھوٹا مستطیلی ڈبہ دکھایا گیا ہے جس کے اطراف  $\Delta y$  ،  $\Delta x$  اور  $\Delta z$  ہیں۔اس جھوٹی ڈبہہ پر گاؤس کے قانون

$$\oint_{S} \boldsymbol{D} \cdot d\boldsymbol{S} = Q = \int_{h} \rho_{h} dh$$

74 باب 3. گاؤس كا قانون اور پهيلاو



شکل 3.4: انتہائی چھوٹی حجم پر گاؤس کے قانون کا اطلاق

کا اطلاق کرتے ہیں۔ ڈبیہ کے چی اطراف ہیں۔ یوں مندرجہ بالا تکملہ کے بائیں بازو کو 
$$\oint_S \boldsymbol{D} \cdot \mathrm{d}\boldsymbol{S} = \int_{\mathrm{left}} + \int_{\mathrm{lef$$

لکھا جا سکتا ہے جہاں

$$egin{align} \int\limits_{egin{subarray}{l} egin{subarray}{l} \dot = igg| D_{z^{\mu}} \cdot \Delta oldsymbol{S}_{z^{\mu}} \ & \dot = \left( D_X oldsymbol{a}_{\mathrm{X}} + D_y oldsymbol{a}_{\mathrm{Y}} + D_z oldsymbol{a}_{\mathrm{Z}} 
ight)_{z^{\mu}} \cdot \Delta y \Delta z oldsymbol{a}_{\mathrm{X}} \ & \dot = D_{x_{z^{\mu}}} \Delta y \Delta z \ \end{aligned}$$

کے برابر ہے۔

ہمیں D کی قیت ڈبیہ کے وسط میں معلوم ہے۔ ٹیلر تسلسل 12 کے مطابق کسی بھی تفاعل جس کی قیمت نقطہ a پر معلوم ہو کواس نقطے کے قریبی نقطوں

 $f(x+a) = f(a) + \frac{1}{1!}(x-a)f'(a) + \frac{1}{2!}(x-a)^2f''(a) + \cdots$ 

ی ماصل کیا جا سکتا ہے۔ ڈبیہ کے وسط میں نقطہ  $N(x_0,y_0,z_0)$  پر

 $\boldsymbol{D}(x_0, y_0, z_0) = D_{x0}\boldsymbol{a}_{\mathrm{X}} + D_{y0}\boldsymbol{a}_{\mathrm{Y}} + D_{z0}\boldsymbol{a}_{\mathrm{Z}}$ 

کی قیمت سے وسط سے  $\frac{\Delta x}{2}$  فاصلے پر ڈبیہ کے سامنے سطح پر  $D_x$  ٹیلر شلسل سے یوں حاصل کیا جا سکتا ہے۔

$$\begin{split} D_{x, \text{def}} &= D_{x0} + \frac{1}{1!} \frac{\Delta x}{2} \frac{\partial D_x}{\partial x} + \frac{1}{2!} \left[ \frac{\Delta x}{2} \right]^2 \frac{\partial^2 D_x}{\partial x^2} \cdots \\ &\doteq D_{x0} + \frac{\Delta x}{2} \frac{\partial D_x}{\partial x} \end{split}$$

جہاں دوسرے قدم پر تسلسل کے صرف پہلے دواجزاء لئے گئے ہیں۔تفاعل کے ایک سے زیادہ متغیرات x، y اور z ہیں للذا تسلسل میں جزوی تفرق 13 کا استعمال کیا گیا۔

لول

$$\int\limits_{\mathbb{R}^{d-1}} \dot{=} \left( D_{x0} + rac{\Delta x}{2} rac{\partial D_x}{\partial x} 
ight) \Delta y \Delta z$$

Taylor series<sup>12</sup> partial differential<sup>13</sup>

حاصل ہوتا ہے۔

$$\int_{\mathbb{Z}^{n}} \dot{\mathbf{D}} \mathbf{D}_{\mathbb{Z}^{n}} \cdot \Delta \mathbf{S}_{\mathbb{Z}^{n}}$$

$$\dot{=} \left( D_{x} \mathbf{a}_{X} + D_{y} \mathbf{a}_{y} + D_{z} \mathbf{a}_{z} \right)_{\mathbb{Z}^{n}} \cdot \left( -\Delta y \Delta z \mathbf{a}_{X} \right)$$

$$\dot{=} -D_{x,\mathbb{Z}^{n}} \Delta y \Delta z$$

$$D_x$$
 ککھا جا سکتا ہے جہاں وسط سے  $\frac{\Delta x}{2}$  فاصلے پر ڈبیہ کی پیکل سطح پر سلسل سے  $D_{x,z}$   $D_{x,z}$   $D_{x,z}$   $D_{x,z}$ 

حاصل ہوتا ہے۔ یوں

$$\int_{\mathbb{R}^2} \doteq -\left(D_{x0} - \frac{\Delta x}{2} \frac{\partial D_x}{\partial x}\right) \Delta y \Delta z$$

اور

$$\int_{\mathbb{R}^{2d-1}} + \int_{\mathbb{R}^{2d}} \stackrel{.}{=} \left( D_{x0} + \frac{\Delta x}{2} \frac{\partial D_x}{\partial x} \right) \Delta y \Delta z - \left( D_{x0} - \frac{\Delta x}{2} \frac{\partial D_x}{\partial x} \right) \Delta y \Delta z$$

$$\stackrel{.}{=} \frac{\partial D_x}{\partial x} \Delta x \Delta y \Delta z$$

حاصل ہوتا ہے۔اسی عمل کو دہراتے ہوئے بائیں اور دائیں سطحوں کے لئے

$$\int\limits_{\omega^{\downarrow\downarrow}} + \int\limits_{\omega^{\downarrow}} \doteq \frac{\partial D_y}{\partial y} \Delta x \Delta y \Delta z$$

اور اوپر، نیچے سطحوں کے لئے

$$\int\limits_{xy^1} + \int\limits_{\triangle^{n,j}} \doteq \frac{\partial D_z}{\partial z} \Delta x \Delta y \Delta z$$

حاصل ہوتا ہے۔اس طرح

(3.23) 
$$\oint_{S} \mathbf{D} \cdot d\mathbf{S} = Q \doteq \left( \frac{\partial D_{x}}{\partial x} + \frac{\partial D_{y}}{\partial y} + \frac{\partial D_{z}}{\partial z} \right) \Delta x \Delta y \Delta z$$

حاصل ہوتا ہے۔

اس مساوات کے تحت کسی بھی نقطے پر انتہائی چھوٹی جم  $\Delta h$  میں چارج تقریباً

(3.24) 
$$Q \doteq \left(\frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} + \frac{\partial D_z}{\partial z}\right) \Delta h$$

76 باب 3. گاؤس كا قانون اور پهيلاو

کے برابر ہے۔ جم کی جسامت جتنی کم کی جائے جواب اتنازیادہ درست ہو گا۔اگلے جھے میں جم کو کم کرتے کرتے نقطہ نما بنادیا جائے گا۔ایسی صورت میں مندر جہ بالا مساوات مکمل طور صیح جواب مہیا کرے گا۔

مثال 3.2: اگر  $D = 2xa_{X} + 3ya_{Y} + 5a_{Z}$  کار تیسی محدد کے مرکز پر  $D = 2xa_{X} + 3ya_{Y} + 5a_{Z}$  میں چارج حاصل مثال 3.2: اگر تیسی محدد کے مرکز پر  $D = 2xa_{X} + 3ya_{Y} + 5a_{Z}$  میں جارج حاصل کریں۔

حل:

$$\frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} + \frac{\partial D_z}{\partial z} = 2 + 3 + 0$$

ے اس مجم میں  $5 \times 10^{-9} = 5 \, \mathrm{nC}$  چارج پایا جائے گا۔

3.8 يهيلاو

مساوات 3.23 میں جم کو اتنا کم کرتے ہوئے کہ اس کو صفر تصور کرنا ممکن ہو

$$\frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} + \frac{\partial D_z}{\partial z} = \lim_{\Delta h \to 0} \frac{\oint_S \mathbf{D} \cdot d\mathbf{S}}{\Delta h} = \lim_{\Delta h \to 0} \frac{Q}{\Delta h}$$

کھا جا سکتا ہے۔ چارج فی حجم کو حجمی کثافت کہتے ہیں۔ یوں مساوات کا دایاں باز و نقطے پر حجمی کثافت  $ho_h$  دیتا ہے۔اس طرح اس مساوات سے دو مساوات حاصل کئے جا سکتے ہیں یعنی

$$\frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} + \frac{\partial D_z}{\partial z} = \rho_h$$

أور

(3.26) 
$$\frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} + \frac{\partial D_z}{\partial z} = \lim_{\Delta h \to 0} \frac{\oint_S \mathbf{D} \cdot d\mathbf{S}}{\Delta h}$$

مساوات 3.25 میکس ویل <sup>15 14</sup> کی پہلی مساوات ہے جبکہ مساوات 3.26 سمتیہ **D** کا پھیلاو<sup>16</sup> بیان کرتا ہے۔اس مساوات کا دایاں باز و پھیلاو کی تعریف جبکہ اس کا بایاں باز و پھیلاو حاصل کرنے کا طریقہ دیتا ہے۔یوں کار تیسی محدد میں

(3.27) 
$$\frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} + \frac{\partial D_z}{\partial z}$$
 عارتیسی محدد میں پھیلاو کی مساوات

سے سمتیہ D کا پھیلاو حاصل کیا جاتا ہے۔

divergence<sup>16</sup>

Maxwell equation<sup>14</sup>

<sup>15</sup> جناب جیمز کلرک میکس ویل (1879-1831) کے مساوات میکس ویل مساوات کہلاتے ہیں۔ 16

3.٤. يهبلاه

ا نجنیر نگ کے شعبے میں ایسے کئی مسئلے پائے جاتے ہیں جن میں چھوٹی سی حجم کو گھیرنے والے بند سطح پر کسی سمتیہ کا کھ کا کہ ورکار ہو۔ گزشتہ عصے میں سمتیہ D کے لئے ایسا ہی کیا گیا۔ غور کرنے سے معلوم ہوتا ہے کہ ایسا کرتے ہوئے D کی جگہ کا کھا جا سکتا ہے جس سے

(3.28) 
$$\frac{\partial K_x}{\partial x} + \frac{\partial K_y}{\partial y} + \frac{\partial K_z}{\partial z} = \lim_{\Delta h \to 0} \frac{\oint_S \mathbf{K} \cdot d\mathbf{S}}{\Delta h}$$

حاصل ہوتا۔ سمتیہ X پانی کا بہاو، ایٹول کی رفتار یاسلیکان کی پتر می میں درجہ حرارت ہو سکتا ہے۔ ہم X کو سمتی بہاو کی کثافت تصور کریں گے۔ مندرجہ بالا مساوات X کا پھیلاو بیان کرتا ہے۔ پھیلاو کے عمل سے مراد مساوات کے بائیں بازو کا عمل ہے جبکہ مساوات کا دایاں بازواس کی تعریف بیان کرتا ہے جس کے تحت

کسی بھی سمتی کثافتی بہاو کے پھیلاوے مراد کسی چھوٹی جم کو صفر کرتے ہوئے اس سے خارج کل بہاو فی اکائی جم ہے۔

یہ ضروری ہے کہ آپ کو پھیلاو کی تعریف کی سمجھ ہو۔یاد رہے کہ پھیلاو کا عمل سمتیر پر کیا جاتا ہے جبکہ اس سے حاصل جواب مقداری ہوتا ہے۔کسی نقطے پر چھوٹی جم سے باہر جانب کل بہاو فی چھوٹی جم کو پھیلاو کہتے ہیں۔پھیلاو کی کوئی سمت نہیں ہوتی۔پھیلاو کی تعریف جانتے ہوئے کئی مرتبہ بغیر قلم اٹھائے جواب حاصل کیا جا سکتا ہے۔اسی نوعیت کے چند مسئلوں پر اب غور کرتے ہیں۔

پانی سے بھری بالٹی میں پانی میں ڈوبے کسی بھی نقطے پر بانی کی رفتار کا پھیلاو صفر ہو گا چونکہ اس نقطے سے نہ بانی باہر نکل رہاہے اور ناہی اس میں داخل ہو رہا ہے۔ اس طرح دریا میں پانی میں ڈھوبے نقطے پر بھی پانی کے رفتار کا پھیلاو صفر ہو گا چونکہ ایسے نقطے سے جتنا پانی نکلتا ہے، اتناہی پانی اس میں داخل ہوتا ہے۔ البتہ اگر بھری بالٹی کے تہہ میں سوراخ کر دیا جائے توجب تک نقطہ پانی میں ڈھوبارہے اس وقت تک یہاں پھیلاو صفر رہے گا البتہ جیسے ہی نقطہ پانی سے مکمل طور باہر آ جائے تب ایک بار پھریہاں پھیلاو صفر ہو جائے گا۔ جتنی دیر پانی کے بہاں مثبت پھیلاو بایا جائے گا اور جب نقطہ پانی سے مکمل طور باہر آ جائے تب ایک بار پھریہاں کھیلاو صفر ہو جائے گا۔ جتنی دیر نقطہ پانی کی سطح سے باہر نمودار ہو رہا ہوتا ہے۔

ایک اور دلچسپ مثال سائکل کے ٹائر میں ہوا کی ہے۔اگر ٹائر پنگیر ہو جائے اور اس سے ہوا نکلنی شر وع ہو جائے توٹائر میں کسی بھی نقطے پر سمتی رفتار کا پھیلاو پایا جائے گا چونکہ کسی بھی نقطے پر دیکھا جائے تو یہاں سے ہوا پھیلتے ہوئے خارج ہو گا۔یوں مثبت پھیلاو سے مراد نقطے سے انخلاء جبکہ منفی پھیلاو سے مراد نقطے میں داخل ہونا ہے۔

ریاضیاتی عمل کو بیان کرنے کے لئے عموماً علامت استعال کی جاتی ہے۔یوں جمع کے لئے +، ضرب کے لئے × اور تکملہ کے لئے ∫ استعال کئے جاتے ہیں۔آئیں ایک نئی علامت جسے نیبلا 17 کہتے اور ∇ سے ظاہر کرتے ہیں سکھیں۔نیبلا یونانی حروف تہجی کا حرف ہے۔ تصور کریں کہ

$$\nabla = \frac{\partial}{\partial x} a_{X} + \frac{\partial}{\partial y} a_{Y} + \frac{\partial}{\partial z} a_{Z}$$

کھا جاتا ہے جہال مقداری متغیرہ f کے سامنے لکھنے سے مراد

$$\nabla f = \frac{\partial f}{\partial x} a_{X} + \frac{\partial f}{\partial y} a_{Y} + \frac{\partial f}{\partial z} a_{Z}$$

جبکہ سمتیہ Kکے ساتھ نقطہ ضرب سے مراد

(3.31) 
$$\nabla \cdot \mathbf{K} = \left(\frac{\partial}{\partial x} \mathbf{a}_{X} + \frac{\partial}{\partial y} \mathbf{a}_{y} + \frac{\partial}{\partial z} \mathbf{a}_{z}\right) \cdot \left(K_{x} \mathbf{a}_{X} + K_{y} \mathbf{a}_{y} + K_{z} \mathbf{a}_{z}\right)$$
$$= \frac{\partial K_{x}}{\partial x} + \frac{\partial K_{y}}{\partial y} + \frac{\partial K_{z}}{\partial z}$$

لیا جاتا ہے۔ یہ علامت انجنیئر نگ کے شعبے میں انتہائی مقبول ہے۔اسے استعال کرتے ہوئے پھیلاو کو  $abla\cdot D$  لکھا جا سکتا ہے جہاں

(3.32) 
$$\nabla \cdot \mathbf{D} = \frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} + \frac{\partial D_z}{\partial z}$$

کے برابر ہے۔ پھیلاو کے عمل کو ہم اسی علامت سے ظاہر کریں گے۔مساوات 3.25 یعنی میس ویل کی پہلی مساوات اب یوں لکھی جاسکتی ہے۔

میس ویل کی پہلی مساوات در حقیقت گاؤس کے قانون کی تفرق<sup>18 شک</sup>ل ہے۔اسی طرح گاؤس کا قانون میس ویل مساوات کی تکمل <sup>19 ش</sup>کل ہے۔

مساوات 3.30 کے طرز پر مساوات صفحہ 100 پر دیا گیا ہے۔

3.9 نلكى محدد ميں پهيلاو كى مساوات

حصہ 3.7 میں کارتیسی محدد استعال کرتے ہوئے چھوٹی مجم پر گاؤس کے قانون کے اطلاق سے پھیلاو کی مساوات حاصل کی گئی۔اس جھے میں نکلی محدد استعال کرتے ہوئے شکل میں دکھائے چھوٹی مجم کو استعال کرتے ہوئے پھیلاو کی مساوات حاصل کی جائے گی۔شکل کو دیکھتے ہوئے

$$egin{align*} \Delta_{S_{\sim}} &= -\Delta 
ho \Delta z a_{\phi} \ \Delta_{S_{\sim}} &= +\Delta 
ho \Delta z a_{\phi} \ \Delta_{S_{\sim}} &= -\left(
ho - rac{\Delta 
ho}{2}
ight) \Delta \phi \Delta z a_{
ho} \ \Delta_{S_{\sim}} &= -\left(
ho + rac{\Delta 
ho}{2}
ight) \Delta \phi \Delta z a_{
ho} \ \Delta_{S_{\sim}} &= +\left(
ho + rac{\Delta 
ho}{2}
ight) \Delta \phi \Delta z a_{
ho} \ \Delta_{S_{\sim}} &= -
ho \Delta \phi \Delta 
ho a_{
m Z} \ \Delta_{S_{\sim}} &= -
ho \Delta \phi \Delta 
ho a_{
m Z} \ \Delta_{S_{\sim}} &= -
ho \Delta \phi \Delta 
ho a_{
m Z} \ \end{array}$$

کھا جا سکتا ہے۔کار تیبی محدد میں آمنے سامنے رقبے برابر تھے۔ نکلی محدد میں بائیں اور دائیں رقبے برابر نہیں ہیں۔اس فرق کی بناپر نکلی محدد میں پھیلاو کی مساوات قدر مختلف حاصل ہو گی۔چھوٹی جم کے وسط میں

$$(3.34) D = D_{\rho 0} a_{\rho} + D_{\phi 0} a_{\phi} + D_{z 0} a_{z}$$

کے برابر ہے جس سے ٹیار تسلسل کی مدد سے

$$egin{aligned} oldsymbol{D}_{
ightarrow 
ightarrow} &= \left(D_{\phi 0} - rac{\Delta \phi}{2} rac{\partial D_{\phi}}{\partial \phi}
ight) oldsymbol{a}_{\phi} \ oldsymbol{D}_{
ightarrow 
ightarrow} &= \left(D_{\phi 0} + rac{\Delta \phi}{2} rac{\partial D_{\phi}}{\partial \phi}
ight) oldsymbol{a}_{\phi} \ oldsymbol{D}_{
ightarrow 
ightarrow} &= \left(D_{
ho 0} - rac{\Delta 
ho}{2} rac{\partial D_{
ho}}{\partial 
ho}
ight) oldsymbol{a}_{
ho} \ oldsymbol{D}_{
ho 
ho} &= \left(D_{
ho 0} + rac{\Delta 
ho}{2} rac{\partial D_{
ho}}{\partial 
ho}
ight) oldsymbol{a}_{
ho} \ oldsymbol{D}_{
ho 0} &= \left(D_{
ho 0} + rac{\Delta 
ho}{2} rac{\partial D_{
ho}}{\partial 
ho}
ight) oldsymbol{a}_{
ho} \ oldsymbol{D}_{
ho 0} &= \left(D_{
ho 0} - rac{\Delta 
ho}{2} rac{\partial D_{
ho}}{\partial 
ho} oldsymbol{a}_{
ho} \ oldsymbol{a}_{
ho} \ oldsymbol{a}_{
ho} \ oldsymbol{a}_{
ho 0} &= \left(D_{
ho 0} - rac{\Delta 
ho}{2} rac{\partial D_{
ho}}{\partial 
ho} oldsymbol{a}_{
ho} \ oldsymbol{a}_{
ho} \$$

لکھا جا سکتا ہے۔ یوں

$$\int\limits_{\text{initial}} + \int\limits_{\text{pre}} = \frac{\partial D_{\phi}}{\partial \phi} \Delta \rho \Delta \phi \Delta z$$

حاصل ہوتا ہے۔اسی طرح

$$\int\limits_{\mathcal{L}^{\mathrm{lip}}} + \int\limits_{\mathcal{L}^{\mathrm{lip}}} = \left( D_{
ho 0} + 
ho rac{\partial D_{
ho}}{\partial 
ho} 
ight) \Delta 
ho \Delta \phi \Delta z$$

حاصل ہوتا ہے جسے

$$\int\limits_{\omega^{\rm i}_{\rm i}} + \int\limits_{\omega^{\rm i}_{\rm i}} = \frac{\partial (\rho D_{\rho})}{\partial \rho} \Delta \rho \Delta \phi \Delta z$$

 $N(
ho_0,\phi_0,z_0)$  کھا جا سکتا ہے۔اییا لکھے وقت یاد رہے کہ نقط

$$\left. \frac{\partial (\rho D_{\rho})}{\partial \rho} \right|_{N} = D_{\rho} + \rho \frac{\Delta D_{\rho}}{\Delta \rho} \right|_{N} = D_{\rho 0} + \rho \frac{\partial D_{\rho}}{\partial \rho}$$

کے برابر ہے۔اسی طرح

$$\int\limits_{z y^{\rm l}} + \int\limits_{z z^{\rm rel}} = \rho \frac{\partial D_z}{\partial z} \Delta \rho \Delta \phi \Delta z$$

حاصل ہوتا ہے۔ان تمام کو استعال کرتے ہوئے

$$\oint_{S} \mathbf{D}_{S} \cdot d\mathbf{S} = \left( \frac{\partial (\rho D_{\rho})}{\partial \rho} + \frac{\partial D_{\phi}}{\partial \phi} + \rho \frac{\partial D_{z}}{\partial z} \right) \Delta \rho \Delta \phi \Delta z$$

باب 3. گاؤس كا قانون اور پهيلاو

ماتا ہے۔ چیموٹی حجم کے استعال سے ماتا ہے۔ جیموٹی مجم

(3.35) 
$$\frac{1}{\rho} \frac{\partial (\rho D_{\rho})}{\partial \rho} + \frac{1}{\rho} \frac{\partial D_{\phi}}{\partial \phi} + \frac{\partial D_{z}}{\partial z} = \lim_{\Delta h \to 0} \frac{\int_{S}^{\phi} \mathbf{D}_{S} \cdot d\mathbf{S}}{\Delta h}$$

حاصل ہوتا ہے۔مساوات 3.28 کا دایاں بازو پھیلاو کی تعریف بیان کرتا ہے جس کے ساتھ موازنہ کرنے سے آپ دیکھ سکتے ہیں کہ مساوات 3.35 نکلی محد د میں پھیلاو دیتا ہے۔

آپ دیکھ سکتے ہیں کہ نکلی محدد میں پھیلاو کی مساوات سادہ شکل نہیں رکھتی۔مساوات 3.29 میں دی گئی ⊽ کو استعال کرتے ہوئے نکلی محدد میں پھیلاو کی مساوات ہر گز حاصل نہیں کی جاسکتی ہے۔اس کے باوجود نکلی محدد میں بھی پھیلاو کے عمل کو  $\nabla \cdot D$  سے ہی ظاہر کیا جا سکتا ہے جہاں اس سے مراد

(3.36) 
$$\nabla \cdot \boldsymbol{D} = \frac{1}{\rho} \frac{\partial (\rho D_{\rho})}{\partial \rho} + \frac{1}{\rho} \frac{\partial D_{\phi}}{\partial \phi} + \frac{\partial D_{z}}{\partial z}$$

لیا جاتا ہے۔ مندرجہ بالا مساوات نکی محدد میں پھیلاو کی مساوات ہے جو کسی بھی سمتیہ کے لئے درست ہے۔یوں سمتیہ K کے لئے اسے یوں لکھا جا سکتا ہے۔

(3.37) 
$$\nabla \cdot \boldsymbol{K} = \frac{1}{\rho} \frac{\partial (\rho K_{\rho})}{\partial \rho} + \frac{1}{\rho} \frac{\partial K_{\phi}}{\partial \phi} + \frac{\partial K_{z}}{\partial z}$$

3.10 پهيلاو کې عمومي مساوات

کار تیمی محدد میں چھوٹی جم کے آمنے سامنے اطراف کارقبہ برابر ہوتا ہے جس سے پھیلاو کی مساوات آسانی سے حاصل ہوتی ہے۔ نکلی محدد میں چھوٹی جم کے ردائی سمت کے آمنے سامنے رقبے مختلف ہوتے ہیں جن کا خصوصی خیال رکھتے ہوئے پھیلاو کی قدر مشکل مساوات گزشتہ جھے میں حاصل کی گئ۔اس جھے میں پھیلاو کی مساوات حاصل کرنے کا ایسا طریقہ دیکھتے ہیں جھے استعال کرتے ہوئے پھیلاو کی عمومی مساوات حاصل کی جاسمتی ہے جو تمام محدد کے لئے کارآمد ہے۔

کار تیسی محد د کے متغیرات (x,y,z) جبکہ نکلی محد د کے  $(\rho,\phi,z)$  اور کروی محد د کے متغیرات  $(r,\theta,\phi)$  ہیں۔اس جصے میں عمومی محد د کی استعال کیا جا سکتا ہے۔ یوں کیا جائے گا جس کے متغیرات (u,v,w) اور تین عمود کا کائی سمتیات  $(a_u,a_v,a_w)$  ہیں۔ عمومی محد د کے لئے استعال کیا جا رہا ہو تب (u,v,w) سے مراد (x,y,z) ہو گا۔

شکل میں عمومی محدد استعال کرتے ہوئے جھوٹی جم دکھائی گئی ہے۔عمومی محدد کے تین اطراف

$$dL_1 = k_1 du$$
$$dL_2 = k_2 dv$$

$$dL_3 = k_3 dw$$

ہیں۔ کار تیسی محدد میں ا $k_1=k_2=k_3=1$  برابر لیا جائے گا اور یوں  $dL_1=dx$  برابر ہو گا۔ نگی محدد میں

(3.38) 
$$k_1 = 1$$
  $k_2 = \rho$   $k_3 = 1$ 

جبکه کروی محدد میں

$$k_1 = 1$$

$$k_2 = r$$

$$k_3 = r \sin \theta$$

کے برابر ہیں۔اسی طرح تین سمتی رقبے

 $\mathrm{d}L_2\,\mathrm{d}L_3m{a}_u$   $\mathrm{d}L_1\,\mathrm{d}L_3m{a}_v$   $\mathrm{d}L_1\,\mathrm{d}L_2m{a}_w$ 

ہوں گے۔

گزشتہ حصوں میں چھوٹی جم کے آمنے سامنے سطوں پر بہاو حاصل کرتے وقت پہلے ان سطحوں پر D کی قیمت اور ان سطحوں کے رقبے حاصل کئے کئے جن کے نقطہ ضرب سے بہاو حاصل کیا گیا۔ یہاں چھوٹی جم کے وسط میں تین اکائی سمتیات کی سمت میں بہاوسے ٹیلر تسلسل کے استعال سے جم کے سطحوں پر بہاو حاصل کیا جائے گا۔ جم کے وسط میں تین اکائی سمتیات کے رخ میں سطحوں پر بہاو

 $dL_2 dL_3 D_{u0}$   $dL_1 dL_3 D_{v0}$   $dL_1 dL_2 D_{w0}$ 

ہے۔ٹیلر شلسل سے سامنے اور پیچے سطحوں پر ان مساوات سے

$$\mathrm{d}L_2\,\mathrm{d}L_3D_{u0} + \frac{1}{2}\frac{\partial}{\partial u}(\mathrm{d}L_2\,\mathrm{d}L_3D_u)\,\mathrm{d}u$$
 سانے  $-\mathrm{d}L_2\,\mathrm{d}L_3D_{u0} + \frac{1}{2}\frac{\partial}{\partial u}(\mathrm{d}L_2\,\mathrm{d}L_3D_u)\,\mathrm{d}u$  پیچے

لعيني

 $k_2k_3\,\mathrm{d}v\,\mathrm{d}wD_{u0} + rac{1}{2}rac{\partial}{\partial u}(k_2k_3D_u)\,\mathrm{d}u\,\mathrm{d}v\,\mathrm{d}w$  سنے  $-k_2k_3\,\mathrm{d}v\,\mathrm{d}wD_{u0} + rac{1}{2}rac{\partial}{\partial u}(k_2k_3D_u)\,\mathrm{d}u\,\mathrm{d}v\,\mathrm{d}w$  پنچے

لکھتے ہوئے دونوں سطحوں پر بہاو کا مجموعہ

 $\frac{\partial}{\partial u}(k_2k_3D_u)\,\mathrm{d} u\,\mathrm{d} v\,\mathrm{d} w$ 

حاصل ہوتا ہے۔اس طرح بائیں اور دائیں سطحوں پر کل

 $\frac{\partial}{\partial v}(k_1k_3D_v)\,\mathrm{d} u\,\mathrm{d} v\,\mathrm{d} w$ 

اور اوپر، نیچے کا مجموعہ

 $\frac{\partial}{\partial w}(k_1k_2D_w)\,\mathrm{d} u\,\mathrm{d} v\,\mathrm{d} w$ 

حاصل ہوتا ہے۔جپوٹی حجم

 $dh = dL_1 dL_2 dL_3$  $= k_1 k_2 k_3 du dv dw$ 

باب 3. گاؤس كا قانون اور پهيلاو

لکھتے ہوئے گاؤس کے قانون سے

$$\oint_{S} \mathbf{D} \cdot d\mathbf{S} = \left[ \frac{\partial}{\partial u} (k_2 k_3 D_u) + \frac{\partial}{\partial v} (k_1 k_3 D_v) + \frac{\partial}{\partial w} (k_1 k_2 D_w) \right] du dv dw$$

لعيني

$$\frac{1}{k_1 k_2 k_3} \left[ \frac{\partial}{\partial u} (k_2 k_3 D_u) + \frac{\partial}{\partial v} (k_1 k_3 D_v) + \frac{\partial}{\partial w} (k_1 k_2 D_w) \right] = \lim_{dh \to 0} \frac{\oint\limits_{S} \boldsymbol{D} \cdot d\boldsymbol{S}}{dh}$$

حاصل ہوتا ہے۔اس مساوات کا دایاں باز و پھیلاو کی تعریف ہے۔یوں پھیلاو کی عمومی مساوات

(3.40) 
$$\nabla \cdot \boldsymbol{D} = \frac{1}{k_1 k_2 k_3} \left[ \frac{\partial}{\partial u} (k_2 k_3 D_u) + \frac{\partial}{\partial v} (k_1 k_3 D_v) + \frac{\partial}{\partial w} (k_1 k_2 D_w) \right]$$

حاصل ہوتی ہے۔

مثال 3.3: مساوات 3.40 سے نکلی اور کروی محدد میں پھیلاو کی مساوات حاصل کریں۔

حل: μ, v, w کی جگہ ρ, φ, z اور مساوات 3.38 کے استعال سے نکی محد د میں پھیلاو

$$abla \cdot oldsymbol{D} = rac{1}{
ho} \left[ rac{\partial}{\partial 
ho} (
ho D_
ho) + rac{\partial}{\partial \phi} (D_\phi) + rac{\partial}{\partial z} (
ho D_z) 
ight] 
onumber \ = rac{1}{
ho} rac{\partial}{\partial 
ho} (
ho D_
ho) + rac{1}{
ho} rac{\partial}{\partial \phi} (D_\phi) + rac{\partial}{\partial z} (D_z) 
onumber \ identity idea \text{3.41}$$
 نلکی محدد میں پھیلاو کی مساوات

u, v, w کی جگہ ہوتا ہے۔ استعال سے کروی محدد میں کیسیلاو u, v, 0, 0 اور مساوات 3.39 کے استعال سے کروی محدد میں کیسیلاو

حاصل ہوتا ہے۔

3.11 مسئلہ پھيلاو

صفحه 73 پر مساوات 3.22 میں

3.11 مسئلہ پھیلاو



شکل 3.5: بند سطح پر سمتیہ کا عمودی حصے کا تکملہ بند حجم میں سمتیہ کے تکملہ کے برابر ہوتا ہے۔

لکھتے ہوئے

$$\oint_{S} \mathbf{D} \cdot d\mathbf{S} = \int_{h} \nabla \cdot \mathbf{D} \, dh$$

ککھا جا سکتا ہے جو مسئلہ پھیلاو <sup>21</sup> بیان کرتا ہے۔ا گرچہ ہم نے اس مسئلے کو برقی بہاد D کے لئے حاصل کیا حقیقت میں یہ ایک عمومی متیجہ ہے جو کسی بھی تین درجی تکملہ کو دو درجی تکملہ اور دو درجی تکملہ کو تین درجی تکملہ میں تبدیل کرتا ہے۔مسئلہ پھیلاو کو یوں بیان کیا جا سکتا ہے

کسی بھی بند سطح پر سمتیہ کے عمودی حصے کا تکملہ بند حجم میں اسی سمتیہ کے پھیلاو کے تکملہ کے برابر ہوتا ہے۔

مسئلہ پھیلاو کی سمجھ شکل 3.5 کی مدد سے با آسانی ممکن ہے۔جیسے شکل میں دکھایا گیا ہے کہ کسی بھی چھوٹی جم سے بہاو قریبی چھوٹی جم کی منفی بہاو ثابت ہوتی ہے للذا دونوں کا مجموعی بہاو حاصل کرتے ہوئے ان کے درمیانی دیوار پر بہاورد کیا جائے گا۔ یہی سلسلہ تمام جم پر لاگو کرتے ہوئے ظاہر ہے کہ پوری جم سے بہاو کے حصول میں اندرونی تمام دیواروں پر بہاو کا کوئی کردار نہیں ہوتا اور صرف بیرونی سطے پر بہاوسے ہی جواب حاصل کیا جا سکتا ہے۔

مثال 3.4: نقطہ حیارج کے D سے بھیلاو کی مساوات سے مختلف مقامات پر کثافت حیارج  $ho_h$  حاصل کریں۔

حل: کروی محدد کے مرکز پر نقطہ چارج کا

$$D = \frac{Q}{4\pi r^2} a_{\rm r}$$

ہوتا ہے۔ کروی محدد میں پھیلاو کی مساوات کے تحت

$$\nabla \cdot \boldsymbol{D} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 D_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta D_\theta) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} (D_\phi)$$

کے برابر ہے۔ چونکہ  $D_{\theta}$  اور  $D_{\phi}$  صفر کے برابر ہیں لہٰذا مندرجہ بالا مساوات سے

$$\nabla \cdot \boldsymbol{D} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{Q}{4\pi r^2}) = \begin{cases} 0 & r > 0 \\ \infty & r = 0 \end{cases}$$

حاصل ہوتا ہے جس کے تحت مرکز کے علاوہ تمام خلاء میں کوئی چارج نہیں پایا جاتا۔ مرکز پر لا محدود کثافت کا چارج پایا جاتا ہے۔ یاد رہے کہ نقطہ چارج سے مراد ایسا چارج ہے جس کا حجم صفر ہو۔ایسی صورت میں اس نقطے پر نقطہ چارج کی کثافت لا محدود ہی ہوگی۔

فاصلہ

باب 4

# توانائی اور برقی دباو

#### 4.1 توانائی اور کام

قوت F کی سمت میں فاصلہ dL طے کرنے سے

dW = F dL

کام کیا جاتا ہے۔ اگر قوت اور طے کردہ فاصلہ ایک ہی سمت میں نہ ہول تب قوت کا وہ حصہ جو طے کردہ فاصلے کی سمت میں ہو اور طے شدہ فاصلے کے حاصل ضرب کو کام 1 کہتے ہیں۔ شکل 4.1 کو دیکھتے ہوئے سمتیات کے استعال سے

 $dW = F \cos \alpha \, dL$  $= \mathbf{F} \cdot d\mathbf{L}$ 

کھا جا سکتا ہے جہاں  $F \cdot \mathrm{d} L$  کو نقطہ ضرب کی مدد سے  $F \cdot \mathrm{d} L$  کھا گیا ہے۔

زمین اور کمیت m کے درمیان قوت ثقل  $F_G = -\frac{GMm}{r^2}a_\Gamma$  پایا جاتا ہے  $^2$  جس میں g=g کھا جا سکتا  $F_G = -\frac{GMm}{r^2}a_\Gamma$  کھا جا سکتا g=g کھا جا سکتا ہوئے g=g کھا جا سکتا ہوئے کہیت کو g=g کھا فی پر منتقل کرنے کی خاطر قوت ثقل کے خلاف

لا گو کرتے ہوئے

 $\Delta W = \mathbf{F}_{SY} \cdot \Delta h \mathbf{a}_{\Gamma} = mg\Delta h$ 

 $\mathrm{work}^1$  . اکائی سمتیہ ہے۔



شكل 4.1: طح فاصلہ اور فاصلے كى سمت ميں قوت كا حاصل ضرب كام كہلاتا ہے

توانائی در کار ہو گا۔کام کرنے کے لئے در کار توانائی کمیت میں منتقل ہو جاتی ہے جے محقفی توانائی  $^{c}$  کہتے ہیں۔اگر  $^{d}$  کی قبت  $^{r}$  کی نسبت سے بہت کم نہ ہو تا ہو جاتے گا۔ تب  $^{c}$  کو مستقل تصور کرنا ممکن نہ ہو گا اور محقفی توانائی تکملہ کے ذریعہ حاصل کی جائے گی۔

$$W=-\int_{ert_{\omega_{i}}ert}^{arepsilon_{ert_{\omega_{i}}ert}}oldsymbol{F_{G}\cdot\mathrm{d}oldsymbol{r}}=\int_{ert_{\omega_{i}}ert_{\omega_{i}}ert}^{arepsilon_{ert_{\omega_{i}}ert}}rac{GMm}{r^{2}}dr$$

ثقلی میدان میں کمیت کو ابتدائی نقطے سے اختیامی نقطے تک پہنچاتے ہوئے کوئی بھی راستہ اختیار کیا جا سکتا ہے۔اختیار کردہ راستے کا مخففی توانائی پر کسی قسم کا کوئی اثر نہیں ہوتا۔ایسے میدان جن میں دو نقطوں کے مابین مخفففی توانائی کا دارومدار، ابتدائی نقطے سے اختیامی نقطے تک پہنچنے کے راستے، پر نہیں ہوتا قائم میدان 4 کہلاتے ہیں۔

 $F_E = qE$  میں چارجوں کے حرکت کے مسئلے کو بھی اسی طرح حل کیا جاتا ہے۔ برقی میدان E میں چارج کو قوت  $F_E = qE$  ممثل کرتا ہے۔ چارج کو فاصلہ E ہلانے کی خاطر اس قوت کے خلاف بیرونی

$$oldsymbol{F}_{ extstyle extstyle$$

قوت لا گو کرتے ہوئے

$$dW = -q\mathbf{E} \cdot d\mathbf{L}$$

کام 5 کیا جاتا ہے۔ کسی بھی ابتدائی نقطے سے اختتامی نقطے تک یوں

$$(4.2) W = -q \int_{|\mathbf{x}_{\mathbf{x}}|}^{\mathbf{c}_{\mathbf{x}} \cdot \mathbf{x}} \mathbf{E} \cdot d\mathbf{L}$$

توانائی در کار ہو گی۔

#### 4.2 لكيرى تكمله

مساوات 4.2 لکیری تکملہ ہے جس پر مزید غور کرتے ہیں۔ شکل 4.2 میں کیساں 6 اور وقت کے ساتھ نہ تبدیل ہونے والے میدان E میں نقطہ O سے نقطہ N تک چارج کی منتقلی دکھائی گئی ہے۔ کیسال میدان سے مراد ایبامیدان ہے جس میں E کی قیمت جگہ جگہ تبدیل نہیں ہوتی بلکہ اس کی قیمت ہر جگہ کیسال ہوتی ہے۔اس طرح وقت کے ساتھ خیر تغیر کیسال ہوتی ہے۔اس طرح وقت کے ساتھ غیر تغیر پذیر میدان کہا جائے گا۔ کیسال میدان وقت کے ساتھ غیر تغیر پذیر میدان ہے۔

شکل 4.2 میں پورے راستے کو چھوٹے چھوٹے گلڑے  $\Delta L_1$ ،  $\Delta L_2$ ،  $\Delta L_2$  میں تقسیم کرتے ہوئے ایک ایک گلڑے پر حرکت کے لئے درکار توانائی مساوات 4.2 کی مدد سے حاصل کی جاسکتی ہے۔ یوں  $\Delta L_1$  کے ابتدائی نقطے سے اختتامی نقطے تک چارج q منتقل کرنے کی خاطر  $\Delta L_1$  کے ابتدائی نقطے سے اختتامی نقطے تک چارج q منتقل کرنے کی خاطر  $\Delta L_1$  کے ابتدائی درکار ہوگی۔ یہی عمل راستے کے بقایا نکڑوں پر بھی لا گو کرتے ہوئے کل درکار توانائی

$$W = -q\mathbf{E} \cdot \Delta \mathbf{L}_1 - q\mathbf{E} \cdot \Delta \mathbf{L}_2 - q\mathbf{E} \cdot \Delta \mathbf{L}_3 - q\mathbf{E} \cdot \Delta \mathbf{L}_4 - q\mathbf{E} \cdot \Delta \mathbf{L}_5$$
$$= -q\mathbf{E} \cdot (\Delta \mathbf{L}_1 + \Delta \mathbf{L}_2 + \Delta \mathbf{L}_3 + \Delta \mathbf{L}_4 + \Delta \mathbf{L}_5)$$

potential energy<sup>3</sup> conservative field<sup>4</sup>

work<sup>5</sup> uniform<sup>6</sup> 4.2. لکیری تکملہ



شکل 4.2: تکملہ دراصل چھوٹرے حصوں کا مجموعہ ہوتا ہے۔

کسی جاسکتی ہے۔ قوسین میں بند  $L_1+\Delta L_2+\Delta L_3+\Delta L_3+\Delta L_3+\Delta L_4$  در حقیقت نقطہ N سے N کا کل سمتی راستہ  $L_{ON}$  ہے۔ یوں مندر جہ بالا مساوات کو

$$(4.4) W = -q\mathbf{E} \cdot \mathbf{L}_{ON}$$

کھا جا سکتا ہے۔اگر شکل 4.2 میں منتقلی کے رائے کے نہایت چھوٹے چھوٹے گئڑے dL بنائے جائیں تو مساوات 4.3 کو تکمل کی شکل میں یوں کھا جا سکتا ہے۔

$$W = \int_{O}^{N} -q\mathbf{E} \cdot d\mathbf{L}$$

چونکہ 9 اور E کی قیمتیں مستقل میں للذا انہیں تکمل کے باہر لکھا جا سکتا ہے۔ایسا کرتے ہوئے

$$W = -q\mathbf{E} \cdot \int_{O}^{N} d\mathbf{L}$$
$$= -q\mathbf{E} \cdot \mathbf{L}_{ON}$$

حاصل ہوتا ہے۔اس جواب سے ہم دیکھتے ہیں کہ درکار توانائی کا دارومدار ہو، E اور  $L_{ON}$  پر ہے جہاں  $L_{ON}$  نقطہ O سے نقطہ N تک سید ھی تھینچی لکیر ہے۔درکار توانائی کا اس سے کسی قسم کا کوئی تعلق نہیں کہ ابتدائی نقطے سے اختتامی نقطے جاتے ہوئے کون ساراستہ اختیار کیا گیا۔ جیسا کہ پہلے ذکر کیا گیا، ایسے میدان کو قدامت پہند میدان ہوتا ہے البتہ تغیر پذیر برقی میدان بھی قدامت پہند میدان ہوتا ہے البتہ تغیر پذیر برقی میدان غیر قدامت پہند میدان ہوتا ہے۔

مثال 4.1: غير يكسال، غير تغير پذير ميدان

$$E = (y+z)a_X + (x+z)a_Y + (x+y)a_Z$$
  $\frac{V}{m}$ 

میں  $N_2(0,1,2)$  سے  $N_2(0,1,2)$  تک سیدھی لکیر پر  $N_2(0,1$  کا چارج منتقل کرنے کے لئے درکار توانائی حاصل کریں۔

حل: شکل 4.3 میں چارج منتقل کرنے کا سیدھاراستہ د کھایا گیا ہے۔ پہلے اس سیدھی لکیر کا مساوات حاصل کرتے ہیں۔اس لکیر کا ڈھلوان 7

وْ هَا وَاكُ 
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - 0}{0 - 1} = -1$$

 $slope^7$ 

88 باب 4. توانائی اور برقی دباو





شکل 4.3: چارج منتقل کرنے کے دو راستے۔

ے لہذا سید ھی لکیر کی مساوات y = mx + c مساوات y = mx + c عاصل ہوتا ہے۔ یوں لکیر کی مساوات y = mx + c ہے لہذا سید ھی لکیر کی مساوات y = -x + 1

ے۔کار تیسی محدو میں کسی بھی راستے پر حرکت کرتے ہوئے مساوات 1.3 مطابق $dL=\mathrm{d}xa_{\mathrm{X}}+\mathrm{d}ya_{\mathrm{Y}}+\mathrm{d}za_{\mathrm{Z}}$ 

كها جاتا ہے۔ يوں مساوات 4.2 سے حاصل ہو گا۔

$$\begin{split} W &= -q \int_{\text{\tiny Ligh}}^{\text{\tiny planch}} \boldsymbol{E} \cdot \mathrm{d}\boldsymbol{L} \\ &= -0.1 \int_{N_1}^{N_2} \left[ (y+z)\boldsymbol{a}_{\mathrm{X}} + (x+z)\boldsymbol{a}_{\mathrm{Y}} + (x+y)\boldsymbol{a}_{\mathrm{Z}} \right] \cdot (\mathrm{d}x\boldsymbol{a}_{\mathrm{X}} + \mathrm{d}y\boldsymbol{a}_{\mathrm{Y}} + \mathrm{d}z\boldsymbol{a}_{\mathrm{Z}}) \\ &= -0.1 \int_{1}^{0} (y+z) \, \mathrm{d}x - 0.1 \int_{0}^{1} (x+z) \, \mathrm{d}y - 0.1 \int_{2}^{2} (x+y) \, \mathrm{d}z \end{split}$$

آخری قدم پر تکمل کو تین حصوں میں لکھا گیا ہے جہاں پہلے جے میں تکمل کو x کے ساتھ حاصل کیا گیا ہے جبکہ دوسرے جے میں تکمل کو y کے ساتھ اور آخری جے میں اسے z کے ساتھ حاصل کیا گیا ہے۔ پہلے جے میں (y+z) کا تکمل x کے ساتھ ہے لہٰذا (y+z) کو x کی صورت میں لکھنا ہو گا۔ منتقلی کے راشتے پر z=z ہے جبکہ مساوات 4.7 میں y کو x کی صورت میں لکھا گیا ہے۔ یوں پہلا تکمل

$$-0.1 \int_{1}^{0} [y+z] dx = -0.1 \int_{1}^{0} [(-x+1)+2] dx$$
$$= -0.1 \left( \frac{-x^{2}}{2} + 3x \right) \Big|_{1}^{0}$$
$$= 0.25 J$$

یعنی جاول کے ایک چوتھائی کے برابر حاصل ہوتا ہے۔ دوسرا تکمل y کے ساتھ ہے لہذا تمام متغیرات y کی صورت میں لکھنے ہوں گے۔سیدھی لکیر کے مساوات سے x=-y+1 ککھا جا سکتا ہے جبکہ پورے راستے پر z=z کے برابر ہے للذا

$$-0.1 \int_0^1 [x+z] dy = -0.1 \int_0^1 [(-y+1)+2] dy$$
$$= -0.1 \left( \frac{-y^2}{2} + 3y \right) \Big|_0^1$$
$$= -0.25 J$$

ہو گا۔ تیسرے تکمل میں ابتدائی اور اختتامی نقطے ایک ہی ہیں للذایہ تکمل صفر کے برابر ہے۔ $-0.1\int_2^2(x+y)\,\mathrm{d}z=0\,\mathrm{J}$ 

اس طرح کل در کار توانائی تینوں جوابات کا مجموعہ لینی 0 ہو گی۔ مثبت جواب کا مطلب سے ہے کہ چارج کو منتقل کرنے کی خاطر بیرونی لا گو قوت توانائی فراہم کرے گی۔

مثال 4.2: گزشتہ مثال میں سید ھی لکیر پر چارج منتقل کرنے کے لئے درکار توانائی حاصل کرنے کو کہا گیا۔ اس مثال میں شکل 4.3 میں بائیں جانب قول دائرے کے رائے و  $E=(y+z)a_{\rm X}+(x+z)a_{\rm Y}+(x+y)a_{\rm Z}\frac{\rm V}{\rm m}$  میدان میں  $0.1\,{\rm C}$  کے چارج کو منتقل کرنے کے رائے کی خاطر درکار توانائی حاصل کریں۔ گول دائرے کا رائے کی خاطر درکار توانائی حاصل کریں۔ گول دائرے کا رائے دیے سطح پر پایا جاتا ہے۔

$$V=-0.1$$
 کانی رواس کے گول وائرے کی مساوات  $V=1^2+y^2=1^2$  مساوات  $V=-0.1$  کی رواس کے گول وائرے کی مساوات  $V=-0.1$  کی مساوات  $V=-0.1$  کی مساوات  $V=-0.1$  کی مساوات  $V=-0.1$  کی مساوات کی مساوات کی مساوات کی مساوات کا کانی رواس کے گول وائر کے کی مساوات کی مس

میں پہلی تکمل میں z=zاور  $y=\sqrt{1-x^2}$  پُر کرنا ہو گا۔ یاد رہے کہ رکع اول x میں x اور y دونوں کی قیمتیں مثبت ہوتی ہیں۔اس طرح کے تکمل حل کرتے وقت ربع کو مد نظر رکھنا ضروری ہے۔

$$-0.1 \int_{1}^{0} (y+z) dx = -0.1 \int_{1}^{0} (\sqrt{1-x^{2}}+2) dx$$

$$= -0.1 \left( \frac{\sin^{-1} x}{2} + \frac{x\sqrt{1-x^{2}}}{2} + 2x \right) \Big|_{1}^{0}$$

$$= -0.025\pi - 0.2$$

جاول، دوسرے تکمل میں z=2 ہی رہے گا جبکہ  $x=\pm\sqrt{1-y^2}$  میں سے z=2 کا استعال ہو گا۔ یوں

$$-0.1 \int_0^1 (x+z) \, dy = -0.1 \int_0^1 (\sqrt{1-y^2} + 2) \, dy$$
$$= -0.1 \left( \frac{\sin^{-1} y}{2} + \frac{y\sqrt{1-y^2}}{2} + 2x \right) \Big|_0^1$$
$$= 0.025\pi + 0.2$$

جاول حاصل ہوتا ہے۔ تیسر سے تکمل میں ابتدائی اور اختتامی نقطے ایک ہی ہیں للذا یہ تکمل صفر کے برابر ہے۔

$$-0.1 \int_{2}^{2} (x+y) \, \mathrm{d}z = 0 \, \mathrm{J}$$

کل توانائی ان تین جوابات کا مجموعه یعنی U آ ہو گا۔

90 برتمي دباو



شکل 4.4: نقطہ چارج کے گرد صرف heta تبدیل کرتے ہوئے حرکت کا راستہ

مشق 4.1: گزشته دو مثالوں میں ابتدائی نقطه (1,0,2) اور اختتامی نقطه  $(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$  تصور کرتے ہوئے دوبارہ حل کریں۔ جوابات: [-0.1328] نصور کرتے ہوئے دوبارہ حل کریں۔

- 2 مرکز پر موجود نقطہ چارج Q کا میدان ہم حاصل کر چکے ہیں جے یہاں دوبارہ پیش کرتے ہیں۔ $E = rac{Q}{4\pi\epsilon_0 r^2} a_{
m r}$ 

آئیں دیکھیں کہ رداس تبریل کئے بغیر اس میدان میں چارج q کو حرکت دیتے ہوئے کتنی توانائی درکار ہو گی۔چونکہ میدان رداس کی سمت میں ہے اور رداس تبدیل کئے بغیر حرکت صرف اُس صورت ممکن ہے کہ ہم  $a_r$  یعنی E کے عمود میں سفر کریں۔ایسی صورت میں چارج پر میدان سے رونما ہونے والی قوت اور طے فاصلہ عمودی ہوں گے للمذا درکار توانائی صفر کے برابر ہو گی۔آئیں ککمل کے ذریعہ یہی جواب حاصل کریں۔

تصور کریں کہ  $\phi=\phi$  اور  $r=r_0$  کر کتے ہوئے ہم  $\theta$  کو  $r=r_0$  تا  $r=r_0$  ریڈ بین تبدیل کرتے ہوئے چارج کو نقطہ  $r=r_0$  تک حرکت دیتے ہیں۔ یہ صورت حال شکل 4.4 میں دکھائی گئی ہے۔ مساوات 1.64 اور مساوات 1.64 جنہیں یہاں دوبارہ پیش کرتے ہیں

$$\begin{aligned} \mathrm{d}\boldsymbol{L} &= \mathrm{d}x\boldsymbol{a}_{\mathrm{X}} + \mathrm{d}y\boldsymbol{a}_{\mathrm{Y}} + \mathrm{d}z\boldsymbol{a}_{\mathrm{Z}} \\ \mathrm{d}\boldsymbol{L} &= \mathrm{d}\rho\boldsymbol{a}_{\rho} + \rho\,\mathrm{d}\phi\boldsymbol{a}_{\phi} + \mathrm{d}z\boldsymbol{a}_{\mathrm{Z}} \\ \mathrm{d}\boldsymbol{L} &= \mathrm{d}r\boldsymbol{a}_{\mathrm{\Gamma}} + r\,\mathrm{d}\theta\boldsymbol{a}_{\theta} + r\sin\theta\,\mathrm{d}\phi\boldsymbol{a}_{\phi} \end{aligned}$$

کار تیسی، نکلی اور کروی متغیرات تبدیل کرنے سے پیدا جھوٹا فاصلہ dL دیتے ہیں۔ یوں در کار توانائی

$$W = -q \int_{|\vec{x}|}^{r_{i}\vec{x}'} \mathbf{E} \cdot d\mathbf{L}$$

$$= -q \int_{r_{0},\theta_{1},\phi_{0}}^{r_{0},\theta_{2},\phi_{0}} \frac{Q}{4\pi\epsilon_{0}r^{2}} \mathbf{a}_{r} \cdot (dr\mathbf{a}_{r} + r d\theta \mathbf{a}_{\theta} + r \sin\theta d\phi \mathbf{a}_{\phi})$$

$$= -q \int_{r_{0}}^{r_{0}} \frac{Q dr}{4\pi\epsilon_{0}r^{2}}$$

$$= 0$$

4.3. برقی دباو

صفر ہی حاصل ہوتی ہے۔ یہاں دوسرے قدم پر  $a_{
m r}\cdot a_{
m r}=1$  علاوہ  $a_{
m r}\cdot a_{
m t}=0$  استعمال کیا گیا۔

اس کے بر عکس اگر نقطہ  $(r_1, \theta_1, \phi_1)$  تا نقطہ  $(r_2, \theta_2, \phi_2)$  چارج کو حرکت دی جائے تب

$$\begin{split} W &= -q \int_{r_1,\theta_1,\phi_1}^{r_2,\theta_2,\phi_2} \frac{Q}{4\pi\epsilon_0 r^2} \boldsymbol{a}_{\Gamma} \cdot (\mathrm{d}r\boldsymbol{a}_{\Gamma} + r\,\mathrm{d}\theta\boldsymbol{a}_{\theta} + r\sin\theta\,\mathrm{d}\phi\boldsymbol{a}_{\phi}) \\ &= -q \int_{r_1}^{r_2} \frac{Q\,\mathrm{d}r}{4\pi\epsilon_0 r^2} \\ &= \frac{qQ}{4\pi\epsilon_0} \left(\frac{1}{r_2} - \frac{1}{r_1}\right) \end{split}$$

ہو گا۔ یوں  $r_1 > r_2$  کی صورت میں جواب مثبت ہو گا اور چارج کو ابتدائی نقطے سے اختتامی نقطے منتقل کرنے کے خاطر بیر ونی توانائی درکار ہو گی جبکہ  $r_2 > r_2$  کی صورت میں جواب منفی حاصل ہوتا ہے لہٰذا چارج کے حرکت سے جمیں توانائی حاصل ہو گی۔

مثق 4.2: میدان  $\frac{V}{m}$  نقطہ (2,3,5) تک دو کولمب کا چار ک $E=3x^2yz^2a_X+x^3z^2a_Y+2x^3yza_Z$  کی دو کولمب کا چار کی مندر جہ ذیل راستوں منتقل کرنے کے لئے درکار توانائی حاصل کریں۔

- دو نقطوں کے مابین سیدھی لکیر۔
- ایساراسته جس پر  $z = \frac{x}{2} + x^2$  اور  $y = \frac{3}{4}x^2$  ہوں۔

 $-1200\,\mathrm{J}\cdot -1200\,\mathrm{J}\cdot y=rac{3}{2}x$  جوابات کے مطابق توانائی در کار نہیں بلکہ حاصل ہو گی۔  $y=rac{5}{2}x$  جوابات: سید ھی لکیر پر  $y=rac{3}{2}x$  اور  $z=rac{5}{2}$  ککھا جائے گا۔ جوابات کے مطابق توانائی در کار نہیں بلکہ حاصل ہو گ

### 4.3 برقى دباو

چارج q کے منتقلی کے لئے درکار توانائی سے زیادہ اہم اکائی چارج کے منتقل کے لئے درکار توانائی ہے۔اس توانائی کو برقی دباو کہتے ہیں۔برقی دباو کے اکائی مقداری ہے۔مساوات 4.2 سے J/C کو وولٹ 10 کانام دیا گیا ہے جسے V سے ظاہر کیا جاتا ہے۔چونکہ توانائی غیر سمتی یعنی مقداری ہے للذا برقی دباو بھی مقداری ہے۔مساوات 4.2 سے برقی دباویوں حاصل ہوتا ہے

$$V_{AB} = \frac{W}{q} = -\int_{B}^{A} \boldsymbol{E} \cdot d\boldsymbol{L}$$

جہاں ابتدائی نقطے کو B، اختتامی نقطے کو A اور حاصل جواب کو  $V_{AB}$  کھا گیا ہے۔ $V_{AB}$  کھتے ہوئے زیر نوشت میں پہلے اختامی نقطہ A اور بعد میں ابتدائی نقطہ B کھا گیا ہے۔ مساوات A بعد میں نقطہ A کھتے ہوئے زیر نوشت میں ابتدائی نقطہ A پہلے اور اختتامی نقطہ B بعد میں کھا گیا۔ برقی د باو A کھتے ہوئے اس فرق کو مد نظر رکھنا ہوگا۔

92 باب 4. توانائي اور برقي دباو

برتی دباو دو نقطوں کے مابین نائی جاتی ہے۔ کسی نقطے کی حتی برتی دباو معنی نہیں رکھتی۔ برتی دباو بالکل اونچائی کے مترادف ہے۔ یوں کسی پہاڑی کے قریب کھڑے ہو کے سات سو میٹر حاصل ہو سکتی ہے۔ آپ قریب کھڑے ہو کر اگر اس کی اونچائی تین سو میٹر نائی جائے تو اس پہاڑی کی اونچائی سطح سمندر سے ناپتے ہوئے سات سو میٹر حاصل ہو سکتی ہے۔ آپ د کیو سکتے ہیں کہ اونچائی ناپتے ہوئے نقطہ حوالہ کی اونچائی صفر تصور کی جاتی ہے۔ دویا دو سے زیادہ عمار توں کی اونچائی کا موازنہ کرتے وقت ان تمام عمار توں کی اونچائی پہلے کسی ایک نقطے سے ناپی جاتی ہے۔ یہ نقطہ عموماً زمین کی سطح ہوتی ہے۔ اس کے بر عکس مختلف شہر ول یا پہاڑیوں کی اونچائی عموماً سطح سمندر سے نائی جاتی ہے۔ اگر تمام افراد کسی ایک نقطہ حوالہ پر اتفاق کریں تب اس نقطے کی نسبت سے کسی مقام کی اونچائی کو اس مقام کی حتی اونچائی تصور کی جاتی ہے۔ بالکل اسی طرح مختلف نقطوں کے برقی دباو کا موازنہ کرتے ہوئے ان تمام نقطوں کی برقی دباو کی ایپ قبور کیا جاتا ہے جہاں برتی زمین کو صفر برتی دباو پر تصور کیا جاتا ہے۔ عموماً کرہ ارض کی سطح کو بہ بی زمین تصور کیا جاتا ہے۔ عموماً کرہ ارض کی سطح کو بی برتی زمین تصور کیا جاتا ہے۔ عموماً کرہ ارض کی سطح کو بی برتی زمین تصور کیا جاتا ہے۔ عموماً کرہ ارض کی سطح کو بی برتی زمین تصور کیا جاتا ہے۔ عموماً کرہ ارض کی سطح کو بی برتی زمین تصور کیا جاتا ہے۔ عموماً کرہ ارض کی سطح کو بی برتی زمین تصور کیا جاتا ہے۔ عموماً کرہ ارض کی سطح کو بی برتی زمین تصور کیا جاتا ہے۔

موٹر گاڑی میں نسب بیٹری کے مثبت سرے کی برقی دباو، بیٹری کے منفی سرے کی نسبت سے ناپنازیادہ مطلب آمیز ہو گا جبکہ گھریلو برقی دباو مہیا کردہ گھنڈی اور گرم تار کے مابین ناپنا مطلب رکھتا ہے۔ بھی بھار برقی دباو ناپنا نسبتاً مشکل ہوتا ہے، مثلاً کرہ ارض کی برقی دباو کو کس نقطہ حوالہ سے ناپا جائے گا۔ طبیعیات کے میدان میں عموماً ایسے ہی مسئلے در پیش آتے ہیں جہاں نقطہ حوالہ تعین کرنا دشوار ہوتا ہے۔ ایسی صورت میں نقطہ حوالہ کو لامحدود فاصلے برقی دباؤ کو کہ کہ کہ کہ کہ کہ درکار توانائی دریافت کرتے تصور کیا جاتا ہے اور نقطہ کم کے برقی دباؤ کو کر کی جائے گی۔ ہوئے کرہ ارض کی برقی دباو حاصل کی جائے گی۔

ہمہ محوری تار کے مسائل پر غور کرتے ہوئے عموماً اس کی بیرونی نکلی سطح کو نقطہ حوالہ لیا جاتا ہے۔ای طرح کروی تناسب رکھنے والے سطحول کے مابین برقی دباو حاصل کرتے وقت ان میں کسی ایک سطح کو حوالہ سطح چنا جائے گا۔

ا گر نقطہ A کی برقی د باو  $V_A$  جبکہ نقطہ B کی برقی د باو  $V_B$  ہو تب ان کے مابین برقی د باو

$$(4.12) V_{AB} = V_A - V_B$$

ہو گا جہاں نقطہ B کو نقطہ حوالہ تصور کیا گیا ہے۔ یہ مساوات صرف اور صرف اس صورت درست ہو گی جب  $V_A$  اور  $V_B$  ازخود ایک ہی نقطہ حوالہ سے ناپے گئے ہوں۔

4.3.1 نقطہ چارج کا برقی دباو

$$\begin{split} \mathrm{d}W &= -q \boldsymbol{E} \cdot \mathrm{d} \boldsymbol{L} \\ &= -q \left( \frac{Q}{4\pi\epsilon_0 r^2} \boldsymbol{a}_\mathrm{r} \right) \cdot \left( \mathrm{d} r \boldsymbol{a}_\mathrm{r} + r \, \mathrm{d} \theta \boldsymbol{a}_\theta + r \sin \theta \, \mathrm{d} \phi \boldsymbol{a}_\phi \right) \\ &= -\frac{q \, Q \, \mathrm{d} r}{4\pi\epsilon_0 r^2} \end{split}$$

توانائی در کار ہو گی۔اس طرح پوراراستہ طے کرنے کے لئے

$$W = -\int_{r_B}^{r_A} \frac{qQ \, \mathrm{d}r}{4\pi\epsilon_0 r^2} = \left. \frac{qQ}{4\pi\epsilon_0 r} \right|_{r_B}^{r_A} = \frac{qQ}{4\pi\epsilon_0} \left( \frac{1}{r_A} - \frac{1}{r_B} \right)$$

4.3. برقى دباو



شكل 4.5: نقطه چارج كى برقى دباو.

$$V_{AB} = \frac{W}{q}$$
 توانائی در کار ہو گی جس سے ان دو نقطوں کے مابین برقی د باو  $V_{AB} = \frac{W}{q}$  یوں حاصل ہو تا ہے۔  $V_{AB} = \frac{Q}{4\pi\epsilon_0} \left( \frac{1}{r_A} - \frac{1}{r_B} \right)$ 

 $r_B$  اس مساوات سے صاف ظاہر ہے کہ نقطہ چارج Q کے میدان میں دو نقطوں کے مابین برقی دیاو کا انحصار چارج سے نقطوں کے فاصلوں  $r_A$  اور  $r_B$  پر ہے ناکہ ایک نقطے سے دوسرے نقطے تک پہنچنے کے راستے پر۔یوں نقطہ B کے حوالے سے نقطہ A پر برقی دیاو مساوات 4.13 سے حاصل ہوتا ہے۔اگر نقطہ B کو لامحدود فاصلے پر رکھا جائے یعنی اگر  $r_B = \infty$  لیا جائے تب  $r_B = \infty$  ہونے کی وجہ سے میہ مساوات

$$V_A = \frac{Q}{4\pi\epsilon_0 r_A}$$

صورت اختیار کر لیتی ہے۔اگر ہم حوالہ نقطہ کے لا محدود فاصلے پر ہونے یہ انفاق کریں تو ایک صورت میں  $\frac{Q}{4\pi\epsilon_0 r_A}$  کو نقطہ A کی حتمی برتی دباو سکتا ہے جسے  $V_A$  سکتا ہے جسے دفقطہ حوالے کو لا محدود فاصلے پر رکھنے کا مطلب ہے کہ برتی زمین لا محدود فاصلے پر ہے۔ نقطہ حوالہ پر انفاق کے بعد برتی دباو کی بات کرتے ہوئے بار بار برتی زمین کی نشاند ہی کرنا ضرور کی نہیں للذا برتی دباو کی ہوئے زیر نوشت میں A کی جائے ہے الدزا اسے اللہ اللہ ہی دباو دیتا ہے جو  $V_A$  فاصلے پر ہے۔ یہ نقطہ کوئی بھی نقطہ ہو سکتا ہے للذا اسے  $V_A$  فاصلے پر نقطہ کہا جا سکتا ہے للذا اسے  $V_A$  فاصلے پر نقطہ کہا جا سکتا ہے۔ایسی صورت میں مساوات  $V_A$  کی بجائے  $V_A$  فاصلے پر نقطہ کہا جا سکتا ہے۔

$$(4.15) V = \frac{Q}{4\pi\epsilon_0 r}$$

جو کروی محدد کے مرکز پر پائے جانے والے نقطہ چارج Q سے r فاصلے پر برقی دباو V دیتا ہے جہاں نقطہ حوالہ لا محدود فاصلے پر ہے۔

برقی دباو مقداری ہے للذا مساوات 4.15 میں اکائی سمتیات نہیں پائے جاتے۔

ایی سطح جس پر حرکت کرنے سے برتی دباو تبدیل نہ ہو کو ہم قوہ سطح 13 کہتے ہیں۔مساوات 4.15 کے مطابق کروی محدد کے مرکز پر نقطہ چارج کے گرد کسی بھی رداس کا کرہ ہم قوہ سطح ہو گی۔ایسی سطح پر حرکت کرنے کی خاطر کسی توانائی کی ضرورت نہیں ہوتی۔

4.3.2 لکیری چارج کثافت سے پیدا برقی دباو

z محدد پر لا محدود لمبائی کے لکیری چارج کثافت کا میدان صفحہ 71 پر مساوات 3.15 z

$$m{E}_{
ho}=rac{
ho_{L}}{2\pi\epsilon_{0}
ho}m{a}_{
ho}$$

reference point<sup>11</sup> electrical ground<sup>12</sup>

equipotential surface<sup>13</sup>

94 باب 4. توانائی اور برقی دباو

دیتا ہے۔اس میدان میں  $ho_0$  اور  $ho_1$  سطحوں کے مابین

$$(4.16) V = -\int_{\rho_0}^{\rho_1} \frac{\rho_L \, \mathrm{d}\rho}{2\pi\epsilon_0 \rho} = \frac{\rho_L}{2\pi\epsilon_0} \ln \frac{\rho_0}{\rho_1}$$

برقی د باو پایا جائے گا۔

4.3.3 ہم محوری تار کا برقی دباو

ہم محوری تار میں اندرونی اور بیرونی تاروں کے در میانی جگہ پر برقی میدان صفحہ 71 پر مساوات 3.16 میں دیا گیا ہے جس سے

$$E = \frac{\rho_L}{2\pi\epsilon\rho} a_\rho$$

ککھا جا سکتا ہے جہاں اندرونی تارپر <sub>PL</sub> ککیری چارج کثافت پایا جاتا ہے۔اندرونی تار کے اکائی لمبائی پر Q+ جبکہ بیرونی تار کے اکائی لمبائی پر Q – چارج پایا جاتا ہے۔بیرونی تار کو برقی زمین تصور کرتے ہوئے اندرونی تار پر برقی دباو

$$V = -\int_{\rho_2}^{\rho_1} \frac{\rho_L}{2\pi\epsilon\rho} \boldsymbol{a}_\rho \cdot \mathrm{d}\rho \boldsymbol{a}_\rho = -\frac{\rho_L}{2\pi\epsilon} \ln\frac{\rho_1}{\rho_2}$$

لعيني

$$V = \frac{\rho_L}{2\pi\epsilon} \ln \frac{\rho_2}{\rho_1}$$

ہو گا جہاں اندرونی تار کا رداس  $ho_1$  اور بیرونی تار کا رداس  $ho_2$  ہے۔

4.4 متعدد نقطہ چارجوں کی برقی دباو

شکل 4.6-الف میں چارج  $Q_1$  اور  $Q_2$  کرتی میدان میں  $Q_1$  سے  $Q_2$  تک پیما گئی چارج  $Q_3$  کر کت دکھائی گئی ہے۔  $Q_1$  کو کروی محدد کے مرکز پر تصور کرتے ہوئے  $Q_2$  کر استے پر کسی بھی نقطہ  $Q_3$  براس کا میدان  $Q_4$  کہ کا فاصلہ ہے۔ اس کا میدان  $Q_4$  کے اسلام ہور کرتے ہوئے نقطہ  $Q_5$  کو ایک اور کروی محدد کے مرکز پر تصور کرتے ہوئے نقطے  $Q_5$  پر اس کا میدان  $Q_5$  وایک اور کروی محدد کے مرکز پر تصور کرتے ہوئے نقطہ  $Q_5$  پر اس کا میدان  $Q_5$  میدان  $Q_5$  کو ایک فاصلہ ہے۔ شکل الف میں  $Q_5$  سال میں  $Q_5$  سے ہونے فاضلہ  $Q_5$  میدان  $Q_5$  میدان  $Q_5$  میدان  $Q_5$  ہوگا۔ نقطہ  $Q_5$  ہوگا۔ نقطہ  $Q_5$  کر استے چھوٹی می لمبائی  $Q_5$  کی میدان  $Q_5$  ہوگا۔ جس کروی محدد کے مرکز پر  $Q_5$  پایا جاتا میدان  $Q_5$  ہوگا۔ جس کروی محدد کے مرکز پر  $Q_5$  پایا جاتا میں اس چھوٹے فاصلے کو

$$\mathrm{d}\boldsymbol{L} = \mathrm{d}r_1\boldsymbol{a}_{\mathrm{\Gamma}1} + r_1\,\mathrm{d}\theta_1\boldsymbol{a}_{\theta_1} + r_1\sin\theta_1\,\mathrm{d}\phi_1\boldsymbol{a}_{\phi_1}$$

کھا جا سکتا ہے جبکہ جس کروی محدد کے مرکز پر Q2 پایا جاتا ہے اس نظام میں اس مجھوٹے فاصلے کو

(4.20) 
$$dL = dr_2 a_{r2} + r_2 d\theta_2 a_{\theta_2} + r_2 \sin \theta_2 d\phi_2 a_{\phi_2}$$

 $oxed{\mathcal{L}}$  کھا جائے گا۔ $oxed{\mathcal{L}}$  فاصلہ طے کرنے کی خاطر





شکل 4.6: دو نقطہ چارج کے میدان میں حتمی برقی دباو۔

$$\begin{split} \mathrm{d}W &= -q \boldsymbol{E} \cdot \mathrm{d} \boldsymbol{L} \\ &= -q (\boldsymbol{E}_1 + \boldsymbol{E}_2) \cdot \mathrm{d} \boldsymbol{L} \\ &- \frac{q Q_1}{4 \pi \epsilon_0 r_1^2} \boldsymbol{a}_{\mathrm{r}1} \cdot \mathrm{d} \boldsymbol{L} - \frac{q Q_2}{4 \pi \epsilon_0 r_2^2} \boldsymbol{a}_{\mathrm{r}2} \cdot \mathrm{d} \boldsymbol{L} \end{split}$$

 $a_{r1}\cdot d$  ما مساوات میں  $a_{r1}\cdot d$  ما حاصل کرتے وقت d کی قیمت مساوات  $a_{r1}\cdot d$  کے قیمت مساوات  $a_{r1}\cdot d$  ما ما کہ عالم کرتے وقت  $a_{r2}\cdot d$  ما ما کہ خوت  $a_{r2}\cdot d$  ما ما کہ خوت کے گرکے سے مساوات  $a_{r2}\cdot d$  ما کہ خوت  $a_{r2}\cdot d$  ما کہ خوت کے گرکے سے مساوات  $a_{r2}\cdot d$  ما کہ خوت کے مساوات  $a_{r2}\cdot d$  ما کہ خوت کے مساوات کے گرکے سے مساوات کے کہ کرنے سے کے مساوات کے کہ کرنے سے مساوات کے کہ کرنے سے کہ کرنے سے کے مساوات کے کہ کرنے سے کے مساوات کے کہ کرنے سے کے کہ کرنے سے کے کہ کرنے سے کے کہ کرنے سے کہ کرنے کے کہ کرنے سے کہ کرنے کے کہ کرنے کے کہ کرنے کے کہ کرنے کے کہ کرنے ک

$$\mathrm{d}W = -\frac{qQ_1\,\mathrm{d}r_1}{4\pi\epsilon_0r_1^2} - \frac{qQ_2\,\mathrm{d}r_2}{4\pi\epsilon_0r_2^2}$$

حاصل ہوتا ہے۔ یوں B سے A تک کا پوراراستہ طے کرنے کی خاطر

$$W = \int_{B}^{A} dW = -\frac{qQ_{1}}{4\pi\epsilon_{0}} \int_{r_{1B}}^{r_{1A}} \frac{dr_{1}}{r_{1}^{2}} - \frac{qQ_{2}}{4\pi\epsilon_{0}} \int_{r_{2B}}^{r_{2A}} \frac{dr_{2}}{r_{2}^{2}}$$
$$= \frac{qQ_{1}}{4\pi\epsilon_{0}} \left(\frac{1}{r_{1A}} - \frac{1}{r_{1B}}\right) + \frac{qQ_{2}}{4\pi\epsilon_{0}} \left(\frac{1}{r_{2A}} - \frac{1}{r_{2B}}\right)$$

توانائی در کار ہو گی۔ نقطہ B کو لا محدود فاصلے پر لیتے ہوئے یوں نقطہ A پر حتی برتی دباو

$$V_{A} = \frac{W}{q} = \frac{1}{4\pi\epsilon_{0}} \left( \frac{Q_{1}}{r_{1A}} + \frac{Q_{2}}{r_{2A}} \right)$$

حاصل ہوتی ہے۔

مساوات 4.21 میں دائیں ہاتھ پہلا جزو Q<sub>1</sub> کے میدان میں نقطہ A کی حتی برقی دباو جبکہ دوسرا جزو Q<sub>2</sub> کے میدان میں نقطہ A کی حتی برقی دباو دیتا ہے۔ مساوات 4.21 کے مطابق Q<sub>1</sub> اور Q<sub>2</sub> دونوں کے موجودگی میں نقطہ A کا برقی دباو حاصل کرنے کی خاطر ان دو چار جوں کو باری باری علیحدہ لیتے ہوئے A پر برقی دباو حاصل کیا جاتا ہے اور پھر دونوں برقی دباو کا مجموعہ لیا جاتا ہے۔آپ دیکھ سکتے ہیں کہ یہی طریقہ کار دوسے زیادہ نقطہ چار جوں کے لئے بھی بروے کار لایا جا سکتا ہے۔ یوں کسی بھی نقطے کی برقی دباو حاصل کرتے ہوئے انہیں جمعی بروے کار لایا جا سکتا ہے۔ یوں کسی بھی نقطے کی برقی دباو حاصل کرتے ہوئے انہیں جمع کرتے حاصل کیا جا سکتا ہے۔

اگر کسی کروی محدد کے مرکز سے  $Q_1$  تک کا سمتیہ  $r_1$  جبکہ مرکز سے  $Q_2$  تک کا سمتیہ  $r_2$  اور مرکز سے نقطہ A تک سمتیہ  $r_3$  ہوں تب نقطہ A کے مساوات 4.21 کو ہم یوں لکھ سکتے ہیں

$$V_A = \frac{1}{4\pi\epsilon_0} \left( \frac{Q_1}{|\boldsymbol{r} - \boldsymbol{r}_1|} + \frac{Q_2}{|\boldsymbol{r} - \boldsymbol{r}_2|} \right)$$

96 باب 4. توانائي اور برقي دباو

جہاں  $Q_1$  سے A تک فاصلہ  $|r-r_1|$ اور  $Q_2$  سے A تک فاصلہ  $|r-r_2|$  ہے۔ یہ صورت حال شکل A.6-ب میں دکھائی گئی ہے۔ متعدد نقطہ چارجوں کے لئے میاوات A.8-ب میں دکھائی گئی ہے۔ متعدد نقطہ جارجوں کے لئے میاوات A.8-ب میں دکھائی گئی ہے۔ متعدد نقطہ جارجوں کے سازہ میں دوروں میں میں دوروں کے لئے میاوات A.8-ب میں دوروں کے سازہ کی میں دوروں کی میں دوروں کی دوروں کی میں دوروں کے سازہ کی میں دوروں کے سازہ کی میں دوروں کے سازہ کی میں دوروں کی میں دوروں کے دوروں کے دوروں کے دوروں کی دوروں کی دوروں کے دوروں کی دوروں کی دوروں کے دوروں کی دوروں کی

$$V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \left( \frac{Q_1}{|\mathbf{r} - \mathbf{r}_1|} + \frac{Q_2}{|\mathbf{r} - \mathbf{r}_2|} + \dots + \frac{Q_n}{|\mathbf{r} - \mathbf{r}_n|} \right)$$

$$= \frac{1}{4\pi\epsilon_0} \sum_{j=1}^n \frac{Q_j}{|\mathbf{r} - \mathbf{r}_j|}$$

کصی جائے گی جہاں نقطہ A کا مقام زیر نوشت میں A کصنے کی بجائے V(r) میں r سے واضح کیا گیا ہے۔

$$V(\boldsymbol{r}) = \frac{1}{4\pi\epsilon_0} \left( \frac{\rho_h(\boldsymbol{r}_1)\Delta h_1}{|\boldsymbol{r} - \boldsymbol{r}_1|} + \frac{\rho_h(\boldsymbol{r}_2)\Delta h_2}{|\boldsymbol{r} - \boldsymbol{r}_2|} + \dots + \frac{\rho_h(\boldsymbol{r}_n)\Delta h_n}{|\boldsymbol{r} - \boldsymbol{r}_n|} \right)$$

جہاں r کو کثافت کا آزاد متغیرہ لیتے ہوئے مقام  $r_j$  پر کثافت کو  $ho_h(r_j)$  اور چھوٹی تجم کو  $\Delta h$  ککھا گیا ہے۔ چھوٹی تجم کو کم سے کم کرتے ہوئے ایسے نقطوں کی تعداد زیادہ سے زیادہ بناتے ہوئے اس مجموعہ سے مندرجہ ذیل حجمی تکمل حاصل ہوتا ہے۔

$$V(\mathbf{r}) = \int_{\mathbf{r}} \frac{\rho_h(\mathbf{r'}) \, \mathrm{d}h'}{4\pi\epsilon_0 |\mathbf{r} - \mathbf{r'}|}$$

یہاں رک کر مندر جبہ بالا مساوات کو دوبارہ دیکھتے ہیں۔ $ho_h(r')$  طاب خمجی چارج کثافت ہے۔مقام r' پر چھوٹی تجم r' طاب سے مساوات وروبارہ دیکھتے ہیں۔ $ho_h(r')$  فیارج کو جاتا ہے جسے نقطہ چارج تصور کیا جاتا ہے۔مساوات 4.25 نقطہ r پر برقی دباو دیتا ہے جہاں برقی زمین کو لا محدود فاصلے پر تصور کیا گیا ہے۔یوں اکائی چارج کو لا محدود فاصلے سے نقطہ r تک کسی بھی راستے لانے کے لئے اس مساوات سے حاصل V(r) برابر توانائی در کار ہوگی۔

ا گر حجی چارج کثافت کی جگه سطحی چارج کثافت  $ho_S$  یا کیری چارج کثافت  $ho_L$  پایا جاتا تب مندرجه بالا مساوات کو

$$V(\mathbf{r}) = \int_{\mathcal{T}} \frac{\rho_{S}(\mathbf{r'}) \, \mathrm{d}S'}{4\pi\epsilon_{0} |\mathbf{r} - \mathbf{r'}|}$$

$$V(\mathbf{r}) = \int \frac{\rho_L(\mathbf{r'}) \, \mathrm{d}L'}{4\pi\epsilon_0 |\mathbf{r} - \mathbf{r'}|}$$

کھتے۔ان مساوات میں 'ds' ،dh' غیر سمتی لینی مقداری ہیں۔تینوں اقسام کے چارج کثافت پائے جانے کی صورت میں باری باری ہر ایک سے پیدا برقی دباو حاصل کرتے ہوئے ان کا مجموعہ لیا جائے گا۔





شکل 4.7: (الف) گول دائرے پر لکیری چارج کثافت سے 2 محدد پر پیدا برقی دباو۔ (ب)بند دائرے کی برقی دباو صفر ہے۔

$$V = \int_{0}^{2\pi} \frac{\rho_L b \, d\phi}{4\pi\epsilon_0 \sqrt{b^2 + z^2}} = \frac{\rho_L b}{2\epsilon_0 \sqrt{b^2 + z^2}}$$

برقی دباو پایا جائے گا۔ گول دائرے کے عین وسط تعنی (0,0,0) پر یوں  $\frac{\rho_L}{2\epsilon_0}$  وولٹ کا برقی دباو پایا جائے گا۔

مساوات 4.2 میں B کو لا محدود فاصلے پر لیتے ہوئے کسی بھی دو نقطوں A اور C کے حتمی برقی دباویوں لکھے جا سکتے ہیں۔

$$V_A = -\int_{\infty}^{A} \mathbf{E} \cdot d\mathbf{L}$$
  
 $V_C = -\int^{C} \mathbf{E} \cdot d\mathbf{L}$ 

شکل 4.7-ب میں یہ نقطے دکھائے گئے ہیں۔اب اگر  $V_A$  دس وولٹ جبکہ  $V_C$  تین وولٹ کے برابر ہو تب C حوالے سے A پر سات وولٹ ہوں  $V_C$  بین وولٹ کے برابر ہو تب  $V_C$  ہو گا۔ای طرح A کے حوالے سے C پر منفی سات وولٹ ہوں گے بینی  $V_{AC}=7$  ہو گا۔ای طرح A کے حوالے سے C بر منفی سات وولٹ ہوں گے بینی  $V_{AC}=7$  ہوگا۔ای کی کی رونما ہو گا۔آپ سے C جایا جائے تو برتی دباو میں سات وولٹ ہی کی کی رونما ہو گا۔آپ دیکھ سکتے ہیں کہ کسی بھی نقطے سے شروع ہو کر بند دائر ہے پر چلتے ہوئے واپس اسی نقطے تک پہنچنے سے برتی دباو میں کل کوئی تبدیلی پیدا نہیں ہو گا۔اس حقیقت کو یوں لکھا جاتا ہے

$$V_{AC} + V_{CA} = -\int_{C}^{A} \mathbf{E} \cdot d\mathbf{L} - \int_{A}^{C} \mathbf{E} \cdot d\mathbf{L} = 0$$

جہاں پہلے C سے A اور پھر A سے واپس C پہنچا گیا۔بند دائرے کے تکمل کو دو ٹکڑوں میں لکھنے کی بجائے اسے بند تکمل کی شکل میں لکھتے ہوئے اسی مساوات کو بوں بہتر لکھا جا سکتا ہے

$$\oint \mathbf{E} \cdot d\mathbf{L} = 0$$

جہاں تکمل کے نشان پر گول دائرہ بند تکمل کو ظاہر کرتا ہے۔

98 باب 4. توانائی اور برقی دباو



شكل 4.8: برقى دباو كى ڈھلان برقى ميدان ہے۔

مساوات 4.28 کہتا ہے کہ کسی بھی طرح پیدا کئے گئے برقی میدان میں بند دائرے پر پورا چکر لگانے کے لئے صفر توانائی درکار ہوتی ہے۔ حقیقت میں بیہ مساوات صرف وقت کے ساتھ نہ تبدیل ہونے والے برقی میدان یعنی ساکن برقی میدان <sup>14</sup> کے لئے درست ہے۔ اس کتاب میں وقت کے ساتھ بدلتے میدان پر بعد میں غور کیا جائے گا۔ ایسے میدان جس میں بند دائرے پر چلنے کی خاطر کوئی توانائی درکار نہ ہو کو بقائی میدان <sup>15</sup> کہتے ہیں۔ ساکن تجاذبی میدان میں پہاڑی کی چوٹی تک چہنچنے سے مخففی توانائی میں جتنا اضافہ پیدا ہو، چوٹی سے واپس اتر نے پر مخففی توانائی میں اتی ہی کی رونما ہو گی اور بول آپ کی ابتدائی اور اختامی مخففی توانائی عین برابر ہوں گے۔

#### 4.5 برقى دباو كى دهلان

شکل 4.8 میں دوانتہائی قریب ہم قوہ سطحیں دکھائی گئی ہیں جن پر  $V_1$  اور  $V_2$  برقی د باو پایا جاتا ہے۔ہم قوہ سطح  $V_1$  پر کسی نقطہ B ہے ہم قوہ سطح  $V_2$  پر کسی نقطہ E سے ہم قوہ سطح E کس کا سمتی فاصلہ E لیتے ہوئے E ہے E تک حرکت کرنے سے برقی د باو میں E تک کا سمتی فاصلہ E لیتے ہوئے E ہے E تک حرکت کرنے سے برقی د باو میں E د باو میں کے ساگیا ہوگئی جہاں برقی میدان کو E کسا گیا ہے۔

$$(4.29) dV = V_2 - V_1 = -\mathbf{E} \cdot d\mathbf{L}$$

$$\mathrm{d}V = -\boldsymbol{E}\cdot\left(\mathrm{d}\boldsymbol{L}_{\parallel} + \mathrm{d}\boldsymbol{L}_{\perp}\right)$$

کھا جا سکتا ہے۔E کو ہم قوہ سطحہ کے متوازی اور اس کے عمودی اجزاء کی صورت میں یوں لکھا جا سکتا ہے

$$(4.31) E = E_{\parallel} + E_{\perp}$$

جس سے

$$dV = -(\boldsymbol{E}_{\parallel} + \boldsymbol{E}_{\perp}) \cdot (d\boldsymbol{L}_{\parallel} + d\boldsymbol{L}_{\perp}) = -\boldsymbol{E}_{\parallel} d\boldsymbol{L}_{\parallel} - \boldsymbol{E}_{\perp} d\boldsymbol{L}_{\perp}$$

 $E_\parallel$  حاصل ہوتا ہے جہاں  $E_\parallel$  اور  $E_\parallel$  المناس الم

$$\boldsymbol{E}_{\parallel} = 0$$

static electric field $^{14}$ 

conservative field15

<sup>&</sup>lt;sup>16</sup> یہ جملہ لکھنے کے ٹھیک ایک دن بعد نرگس مولولہ اور ان کے ساتھیوں نے تجاذبی موجیں دریافت کیں۔اس دریافت سے پہلے کسی بھی تجاذبی میدان کو بقائی میدان تصور کیا جاتا تھا۔آج سے ہم ساکن تجاذبی میدان کو بی بقائی میدان کہیں گئے۔

ہو گا اور سطے پر صرف اور صرف عمودی برقی میدان پایا جائے گا <sup>یعنی</sup>

$$(4.34) E = E_{\perp}$$

نوں

$$dV = -E_{\perp} dL_{\perp}$$

کھھا جا سکتا ہے۔یہ ذہن میں رکھتے ہوئے کہ ہم قوہ سطح پر صرف عمودی میدان پایا جاتا ہے، مندرجہ بالا مساوات میں  $E_{\perp}$  کی جگہ E ککھتے ہیں۔

$$dV = -E dL_{\perp}$$

اس مساوات سے

$$(4.37) E = -\frac{\mathrm{d}V}{\mathrm{d}L_{\perp}}$$

حاصل ہوتا ہے جہاں سے ظاہر ہے کہ E در حقیقت V کے ڈھلان کے برابر مگر الٹ سمت میں ہے۔ یوں

$$(4.38) E = -\frac{\mathrm{d}V}{\mathrm{d}L_{\perp}}$$

کھا جا سکتا ہے جہاں  $a_N$  ہم قوہ سطح کا عمودی اکائی سمتیہ ہے۔

کسی نقطہ کو برقی زمین نصور کرتے ہوئے کسی دوسرے نقطے کی برقی دباو کو حتی برقی دباو نصور کیا جاتا ہے جو نقطے کے مقام پر منحصر ہوتا ہے للمذااسے V(x,y,z) ککھا جاسکتا ہے جہاں برقی دباو کے آزاد متغیرات x، y اور z ہیں۔کسی بھی قابو متغیرہ کی طرح V(x,y,z) کا تفرق

(4.39) 
$$dV = \frac{\partial V}{\partial x} dx + \frac{\partial V}{\partial y} dy + \frac{\partial V}{\partial z} dz$$

لکھا جا سکتا ہے۔کار تیسی محدد میں کسی بھی برقی دباو کو

$$\mathbf{E} = E_x \mathbf{a}_{\mathbf{X}} + E_y \mathbf{a}_{\mathbf{Y}} + E_z \mathbf{a}_{\mathbf{Z}}$$

اور حچوٹی لمبائی کو

$$dL = dxa_X + dya_Y + dza_Z$$

لکھا جا سکتا ہے۔ یہاں آپ صفحہ 5 پر دے مساوات 1.3 پر دوبارہ نظر ڈال سکتے ہیں۔مندرجہ بالا تین مساوات کو مساوات 4.29 میں پُر کرتے ہوئے

$$\frac{\partial V}{\partial x} dx + \frac{\partial V}{\partial y} dy + \frac{\partial V}{\partial z} dz = -E_x dx - E_y dy - E_z dz$$

حاصل ہوتا ہے۔y اور z تبدیل کئے بغیر (لیمنی dy = 0 اور dy = 0 اور dz = 0 لیتے ہوئے) x تبدیل کرنے سے اس مساوات کے بائیں اور دائیں ہاتھ کا پہلا جزو لیمنی فیز dz = 0 اور dz = 0 ایک لیذا میہ لازم ہے کہ میہ دونوں اجزاء برابر ہوں لیمنی میں dz = 0 جس سے dz = 0 اور dz = 0 ہوتا ہے۔اگر dz = 0 برابر نہیں ہوگی اور یوں مساوات کے ایک طرف تبدیلی دوسرے طرف کے تبدیلی کے برابر نہیں ہوگی اور یوں مساوات کے دونوں اطراف برابر نہیں رہیں گے۔اسی طرح صرف z اور صرف z تبدیل کئے جا سکتا ہیں۔ یوں

(4.43) 
$$E_{x} = -\frac{\partial V}{\partial x}$$

$$E_{y} = -\frac{\partial V}{\partial y}$$

$$E_{z} = -\frac{\partial V}{\partial z}$$

100 باب 4. توانائي اور برقي دباو

لکھا جا سکتا ہے جسے مساوت 4.40 میں پُر کرتے

(4.44) 
$$\boldsymbol{E} = -\left(\frac{\partial V}{\partial x}\boldsymbol{a}_{X} + \frac{\partial V}{\partial y}\boldsymbol{a}_{Y} + \frac{\partial V}{\partial z}\boldsymbol{a}_{Z}\right)$$

لکھا جا سکتا ہے۔

اگرہم

$$abla = rac{\partial}{\partial x}a_{
m X} + rac{\partial}{\partial y}a_{
m Y} + rac{\partial}{\partial z}a_{
m Z}$$
 کارتیسی محدد میں ڈھلان کی مساوات

کھیں جہاں کسی بھی مقداری f کے لئے  $\nabla f$  سے مراد $a_X + rac{\partial f}{\partial y} a_Y + rac{\partial f}{\partial z} a_Z$  ہو تب مندرجہ بالا مساوات کو

$$(4.46) E = -\nabla V$$

کھا جا سکتا ہے۔ √ کو برقی دباوکی ڈھلان 17 پڑھا جاتا ہے۔ مساوات 4.45 کا بایاں ہاتھ ڈھلان کی علامت جبکہ اس کا دایاں ہاتھ ڈھلان کے عمل کو ظاہر کرتا ہے۔ اگرچہ ہم نے ڈھلان کا عمل برقی دباواور برقی میدان کے لئے حاصل کیا، حقیقت میں یہ عمل سائنس کے دیگر متغیرات کے لئے بھی درست ثابت ہوتا ہے۔ اس کی مقبولیت اس حقیقت کی وجہ سے ہے کہ یہ جبگہ جبگہ تبیش آتا ہے۔ ڈھلان کا عمل مقدار کی پر کیا جاتا ہے جبکہ اس کا حاصل جواب سمتیہ ہوتا ہے۔ صفحہ 78 پر مساوات 3.32 پھیلاو کی تعریف بیان کرتا ہے جہاں پھیلاو کا عمل سمتیہ پر کرتے ہوئے مقدار ک<sup>81</sup> حاصل کی جاتی ہے۔ پھیلاو کے اس مساوات کو یہاں موازنے کے لئے دوبارہ بیش کرتے ہیں۔

(4.47) 
$$\nabla \cdot \boldsymbol{D} = \frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} + \frac{\partial D_z}{\partial z}$$

4.5.1 نلكى محدد ميں دُهلان

نگی محدد میں برقی دباو کے آزاد متغیرات نگی محدد کے متغیرات ہوں گے اور بوں برقی دباو  $V(
ho,\phi,z)$  لکھا جائے گا۔مساوات 4.49، مساوات 4.41 اور مساوات 4.41 کو نگلی محدد میں یوں لکھ سکتے ہیں

(4.48) 
$$dV = \frac{\partial V}{\partial \rho} d\rho + \frac{\partial V}{\partial \phi} d\phi + \frac{\partial V}{\partial z} dz$$

$$\mathbf{E} = E_{\rho} \mathbf{a}_{\rho} + E_{\phi} \mathbf{a}_{\phi} + E_{z} \mathbf{a}_{z}$$

$$\mathrm{d}\boldsymbol{L} = \mathrm{d}\rho\boldsymbol{a}_{\rho} + \rho\,\mathrm{d}\phi\boldsymbol{a}_{\phi} + \mathrm{d}z\boldsymbol{a}_{\mathbf{Z}}$$

جہال چھوٹی لمبائی dL کو صفحہ 27 پر مساوات 1.44 کی مدد سے لکھا گیا ہے۔ مندرجہ بالا تین مساوات کو مساوات 4.29 میں پُر کرتے ہوئے

$$\frac{\partial V}{\partial \rho} d\rho + \frac{\partial V}{\partial \phi} d\phi + \frac{\partial V}{\partial z} dz = -\left(E_{\rho} d\rho + E_{\phi}\rho d\phi + E_{z} dz\right)$$

gradient<sup>17</sup>

4.5. برقبی دباو کبی دُهلان

$$E_{\phi}\rho \, d\phi = -\frac{\partial V}{\partial \phi} \, d\phi$$
$$E_{z} \, dz = -\frac{\partial V}{\partial z} \, dz$$

کھ جا سکتے ہیں جس سے  $E_{\phi}$  اور  $E_{z}$  کے مساوات حاصل ہوتے ہیں۔ان تمام جوابات کو کیجا کرتے ہیں۔

(4.52) 
$$E_{\rho} = -\frac{\partial V}{\partial \rho}$$

$$E_{\phi} = -\frac{1}{\rho} \frac{\partial V}{\partial \phi}$$

$$E_{z} = -\frac{\partial V}{\partial z}$$

انہیں مساوات 4.49 میں پُر کرتے ہوئے

(4.53) 
$$E = -\left(\frac{\partial V}{\partial \rho}a_{\rho} + \frac{1}{\rho}\frac{\partial V}{\partial \phi}a_{\phi} + \frac{\partial V}{\partial z}a_{z}\right)$$

حاصل ہوتا ہے۔اس کو مساوات 4.46 کی شکل میں لکھتے ہوئے نکلی محدد میں ڈھلان کی مساوات

$$abla = rac{\partial}{\partial 
ho} a_
ho + rac{1}{
ho} rac{\partial}{\partial \phi} a_\phi + rac{\partial}{\partial z} a_Z$$
 نلکی محدد میں ڈھلان کی مساوات

حاصل ہوتی ہے۔مساوات 4.45 اور مساوات 4.54 کا موازنہ کریں۔کار تنینی محدد کی مساوات نسبتاً آسان ہے۔

4.5.2 كروى محدد ميں دهلان

صفحہ 33 پر مساوات 1.64 کروی محدد میں چھوٹی لمبائی dL کی مساوات ہے۔کروی محدد میں کسی بھی نقطے کے برقی دباو کو  $V(r,\theta\phi)$  لکھا جا سکتا ہے جبکہ کسی بھی سمتیہ کی طرح E کو تین عمودی حصول میں کھا جا سکتا ہے۔یوں ہم مساوات 4.43، مساوات 4.40 اور مساوات 4.41 کو کروی محدد میں یوں لکھ سکتے ہیں۔

(4.55) 
$$dV = \frac{\partial V}{\partial r} dr + \frac{\partial V}{\partial \theta} d\theta + \frac{\partial V}{\partial \phi} d\phi$$

$$\mathbf{E} = E_r \mathbf{a}_{\mathbf{r}} + E_{\theta} \mathbf{a}_{\theta} + E_{\phi} \mathbf{a}_{\phi}$$

$$dL = dr a_{\Gamma} + r d\theta a_{\theta} + r \sin\theta d\phi a_{\phi}$$

ان تین مساوات کو مساوات 4.29 میں پُر کرتے ہوئے

$$\frac{\partial V}{\partial r} dr + \frac{\partial V}{\partial \theta} d\theta + \frac{\partial V}{\partial \phi} d\phi = -\left(E_r dr + E_{\theta} r d\theta + E_{\phi} r \sin\theta d\phi\right)$$

102 باب 4. توانائی اور برقی دباو

$$\frac{\partial V}{\partial \theta} d\theta = -E_{\theta} r d\theta$$

$$\frac{\partial V}{\partial \phi} d\phi = -E_{\phi} r \sin \theta d\phi$$

حاصل ہوتا ہے جس سے  $E_{\theta}$  اور  $E_{\phi}$  کے مساوات حاصل ہوتے ہیں۔ان تمام جوابات کو کیجا کرتے ہیں۔

$$E_r = -\frac{\partial V}{\partial r}$$

$$E_{\theta} = -\frac{1}{r} \frac{\partial V}{\partial \theta}$$

$$E_{\phi} = -\frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi}$$

ان قیتوں کو مساوات 4.56 میں پُر کرتے ہوئے

(4.59) 
$$E = -\left(\frac{\partial V}{\partial r}a_{\Gamma} + \frac{1}{r}\frac{\partial V}{\partial \theta}a_{\theta} + \frac{1}{r\sin\theta}\frac{\partial V}{\partial \phi}a_{\phi}\right)$$

کھا جا سکتا ہے جس سے کروی محدد میں ڈھلان کی مساوات یوں لکھی جا سکتی ہے۔

$$abla = rac{\partial}{\partial r}a_{
m T} + rac{1}{r}rac{\partial}{\partial heta}a_{ heta} + rac{1}{r\sin heta}rac{\partial}{\partial \phi}a_{\phi}$$
 خروی محدد میں ڈھلان کی مساوات

مثق 4.3: صفحہ 80 پر حصہ 3.10 میں کھیلاو کی عمومی مساوات کا حصول د کھایا گیا جہاں عمومی محدد کے متغیرات (u,v,w) اور اکائی سمتیات  $(a_u,a_v,a_w)$  مثق 4.3 صفحہ 80 پر حصہ 3.10 میں کھیلاو کی عمومی مساوات حاصل کریں۔ ایک گئے۔ایسا ہی کرتے ہوئے ڈھلان کی عمومی مساوات حاصل کریں۔ جواب:

$$abla=rac{1}{K_1}rac{\partial}{\partial u}a_u+rac{1}{K_2}rac{\partial}{\partial v}a_v+rac{1}{K_3}rac{\partial}{\partial w}a_w$$
 گھلان کی عمومی مساوات

مثال 4.4: صفحہ 4.15 پر مساوات 4.15 نقطہ چارج کا برتی دباو دیتا ہے۔ مساوات 4.59 کے استعمال سے کروی محدد میں E کی مساوات حاصل کر ہیں۔ حل: برتی دباو  $\frac{\partial V}{\partial \theta}$  محدد کے رداس پر منحصر ہے جبکہ  $\theta$  اور  $\phi$  کا اس میں کوئی کر دار نہیں للذا مساوات 4.59 میں  $\frac{\partial V}{\partial \theta}$  اور  $\frac{\partial V}{\partial \theta}$  صفر کے برابر ہوں گے۔ اس طرح  $\frac{\partial V}{\partial r}$  لیتے ہوئے  $\frac{\partial V}{\partial r}$  حاصل ہوتا ہے۔

یہاں بتلاتا چلوں کہ حقیقی دنیا میں عموماً برقی دباو معلوم ہوتی ہے جس سے برقی میدان کا حصول درکار ہوتا ہے۔اس کی مثال بجلی کی دوتاریں ہو سکتی ہیں جن کے درمیان V 220 پایا جاتا ہے اور جن کے درمیان آپ برقی میدان جاننا چاہتے ہوں۔ 4.6. جفت قطب





شكل 4.9: جفت قطب

#### 4.6 جفت قطب

شکل 4.9-الف میں محدد کے مرکز سے  $\frac{d}{2}$  فاصلے پہ z محدد پر ایک جانب Q + اور دوسری جانب Q – نقطہ چارج و کھائے گئے ہیں۔ یوں برابر مقدار گر الٹ علامت کے نقطہ چارجوں کے در میان d فاصلہ ہے۔ الیی جوڑی چارجوں کو جفت قطب Q جانب Q جانب Q جہاں مرکز سے اور برقی دباو کی قیمتیں در کار ہیں۔ کسی بھی دور نقطے سے یہ دونوں چارج تقریباً مرکز پر دکھائی دیتے ہیں۔ دور نقطے سے ایبا نقطہ مراد ہے جہاں مرکز سے نقطے تک کا فاصلہ Q جفت قطب چارجوں کے در میان فاصلہ Q سے بہت زیادہ ہو لیخی جب Q جارہ ہو گئی ہیں کہ Q بین کہ Q تبدیل کرنے سے برقی میدان تبدیل ہو گا جبکہ Q تبدیل کرنے سے ایبا نہیں ہو گا۔ شکل Q بین Q ہور دنوں Q کی جانب جھک کر Q پر آ ملتے ہیں۔ نقطہ Q کو جتنا میدان تبدیل ہو گا جبکہ Q تبدیل کرنے سے ایبا نہیں ہو گا۔ شکل Q بین حتٰی کہ آخر کار بیہ شکل Q بین دور نقطے پر برقی دباو اور برقی میدان حاصل کریں۔ شکل کی مدد سے دور نقطے پر برقی دباو اور برقی میدان حاصل کریں۔

شکل 4.9-ب میں  $R_2$ ،  $R_1$  اور r تینوں z محدد کے ساتھ  $\theta$  زاویہ بناتے ہیں۔چارج Q سے  $R_2$  پر عمود بناتے ہوئے

(4.61) 
$$R_2 - R_1 = d\cos\theta$$
$$R_1 = r - \frac{d}{2}\cos\theta$$
$$R_2 = r + \frac{d}{2}\cos\theta$$

کھا جا سکتا ہے۔ شکل 4.9-الف میں N پر برقی دیاو V مساوات 4.22 کی مدد سے

$$V = \frac{1}{4\pi\epsilon_0} \left( \frac{Q}{R_1} - \frac{Q}{R_2} \right) = \frac{Q}{4\pi\epsilon_0} \left( \frac{R_2 - R_1}{R_1 R_2} \right)$$

لکھی جاسکتی ہے۔مساوات 4.61 کی مدد سے اسے

$$\begin{split} V &= \frac{Q}{4\pi\epsilon_0} \frac{d\cos\theta}{(r - \frac{d}{2}\cos\theta)(r + \frac{d}{2}\cos\theta)} \\ &= \frac{Q}{4\pi\epsilon_0} \frac{d\cos\theta}{(r^2 - \frac{d^2}{4}\cos^2\theta)} \\ &= \frac{Q}{4\pi\epsilon_0 r^2} \frac{d\cos\theta}{(1 - \frac{d^2}{4r^2}\cos^2\theta)} \end{split}$$

dipole19

باب 4. توانائی اور برقی دباو

کھا جا سکتا ہے۔ پنچے قوسین میں  $\theta \leq 1$  اور  $\theta \leq r \gg d$  وجہ سے  $\theta \leq 1$  وجہ سے  $\theta \leq 1$  ہو گا اور یوں  $\theta \leq 1$  کو نظر انداز کیا جا سکتا ہے۔ یوں

$$(4.63) V = \frac{Qd\cos\theta}{4\pi\epsilon_0 r^2}$$

حاصل ہوتا ہے۔مساوات 4.59 کو استعال کرتے ہوئے اس مساوات سے برقی میدان لکھتے ہیں۔

(4.64) 
$$E = \frac{Qd}{4\pi\epsilon_0 r^3} \left( 2\cos\theta a_{\rm r} + \sin\theta a_{\theta} \right)$$

ہم پہلے برقی دباواور پھر ڈھلان کی مدد سے برقی میدان حاصل کرنے کے بجائے پہلے برقی میدان اور پھر تکمل استعال کرتے ہوئے برقی دباو حاصل کر سکتے ہیں البتہ ایسا کرنا اتنا آسان ثابت نہیں ہوتا۔ شوق رکھنے والوں کے لئے مثال 4.5 میں اسی طریقے کو استعال کرتے ہوئے دور نقطے پر جفت قطب سے پیدا میدان اور برقی دباو حاصل کئے گئے ہیں۔

جفت قطب کا چارج |Q| ضرب چارجوں کے در میان سمتی فاصلہ d کو معیار اثر جفت قطب $^{20}$ کہتے ہیں اور اسے p سے ظاہر کیا جاتا ہے۔ یوںp=Qd

 $a_Z \cdot a_{
m r} = \cos heta$  ہنتی چارج کی سمت میں ہوتا ہے لہذا شکل 4.9 میں  $d = da_Z$  ہو نکہ  $d = da_Z$  ہوتا ہے برابر ہے جہال سمتی فاصلہ منفی چارج کی سمت میں ہوتا ہے لہذا شکل 4.9 میں  $d = da_Z$  ہوتا ہوتا ہے کہ برابر ہے لہذا یوں ہم مساوات 4.63 کو

$$V = \frac{\boldsymbol{p} \cdot \boldsymbol{a}_{\mathbf{r}}}{4\pi\epsilon_0 r^2}$$

لکھ سکتے ہیں۔ اسی مساوات کو مزید یوں بھی لکھا جا سکتا ہے

$$V = \frac{1}{4\pi\epsilon_0 |\mathbf{r} - \mathbf{r}'|^2} \mathbf{p} \cdot \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|}$$

جہاں r اس نقطے کی نشاندہی کرتا ہے جہاں برقی دباو حاصل کیا جارہا ہو جبکہ r' جفت قطب کے مرکز کی نشاندہی کرتا ہے۔ یہ مساوات کسی مجدد نظام سے آزاد مساوات ہے۔

مساوات 4.63 کے تحت م بڑھانے سے برقی دباو 2 گنا کم ہوتا ہے۔ یاد رہے کہ اکیلے چارج کا برقی دباوالی صورت میں م گنا کم ہوتا ہے۔ ہمیں تعجب نہیں ہونا چاہیے چونکہ دور سے جفت قطب کے دو چارج نہایت قریب قریب نظر آتے ہیں جس سے مثبت چارج کا اثر منفی چارج کا اثر تقریباً ختم کرتا ہے۔ یہی حقیقت مساوات 4.64 میں بھی نظر آتا ہے جہاں م بڑھانے سے کی قیمت 3 گنا کم ہوتی ہے۔

جب تک Q ضرب D کی قیمت تبدیل نہ ہواس وقت تک دور کسی بھی نقطے پر جفت قطب کے اثرات میں کوئی تبدیلی رونما نہیں ہوتی۔یوں Q کو کم یا زیادہ کرتے ہوئے اگر d کو یوں تبدیل کیا جائے کہ Qd تبدیل نہ ہو تو جفت قطب سے دور نقطے پر جفت قطب کے اثرات میں کوئی تبدیلی نہیں پائی جائے گی۔اب اگر ہم Qd کی قیمت محدود رکھتے ہوئے d کواتنا کم کر دیں کہ اسے صفر تصور کیا جاسکے اور ساتھ ہی ساتھ Q کواتنا بڑھادیں کہ اسے لامحدود تصور کیا جاسکے تو ایس صورت میں نہیں نقطہ جفت قطب حاصل ہو گا۔

dipole moment<sup>20</sup>

4.6. جفت قطب



شکل 4.10: جفت قطب کے ہم قوہ اور سمت بہاو خط۔

4.6.1 جفت قطب كر سمت بهاو خط

ہم پہلے صفحہ 16 پر حصہ 2.7 میں سمت بہاہ خط  $^{12}$ پر غور کر چکے ہیں۔ آئیں جفت قطب کے سمت بہاہ خط کھنچنا دیکھیں۔ برقی دباہ کے سمت بہاہ خط مساوات میں  $\frac{Qd}{4\pi\epsilon_0}$  مستقل ہے جسے ایک کے برابر لیتے ہوئے  $\frac{\cos\theta}{r^2}$  عاصل ہوتا ہے۔ مختلف برقی دباہ کی مدد سے کھنچ جا سکتے ہیں۔ اس مساوات میں  $\frac{Qd}{4\pi\epsilon_0}$  مستقل ہے جسے ایک کے برابر لیتے ہوئے  $\frac{\cos\theta}{r^2}$  عاصل ہوتا ہے۔ مختلف برقی دباہ کے مات بہاہ خط حاصل کئے جاتے ہیں۔ شکل 4.10 میں 4.10 میں V=0.2,0.4,0.6,0.8 کے اس مساوات کے خط دکھائے گئے ہیں۔ مساوات Z=0 کے گئے اس مساوات کے خط دونوں چارج سے برابر فاصلہ پر Z=0 حاصل ہوتا ہے۔ یوں Z=0 کا محدود سطح پر برقی دباہ صفح ہوگا اور یہ لیکھور برقی ذمین کردار ادا کرے گی۔

 $E_r$  بنفت قطب کے میدان کے سمت بہاو خط مساوات 4.64 کی مدد سے کھینچ جاتے ہیں۔اس مساوات کا پہلا جزو کسی بھی نقطے پر  $a_{
m T}$  سمت میں میدان ویتا ہے جبکہ اس کا دوسرا جزوائی نقطے پر  $a_{
m 0}$  سمت میں میدان  $E_{
m 0}$  دیتا ہے جبکہ اس کا دوسرا جزوائی نقطے پر  $a_{
m 0}$  سمت میں میدان ویتا ہے۔اس طرح اس نقطے پر جم

$$\frac{E_r}{E_\theta} = \frac{\mathrm{d}r}{r\,\mathrm{d}\theta} = \frac{2\cos\theta}{\sin\theta}$$

يا

$$\frac{\mathrm{d}r}{r} = \frac{2\cos\theta}{\sin\theta}\,\mathrm{d}\theta$$

لکھ کر تکمل لیتے ہوئے

 $\ln r = 2 \ln \sin \theta + \ln M$ 

یا

$$(4.68) r = M \sin^2 \theta$$

ماصل کرتے ہیں جہاں In M نکمل کا مستقل ہے۔ یہ مساوات جفت قطب کے میدان کے سمت بہاو خط دیتا ہے جنہیں شکل 4.10 میں 4.15, 2, 2.5 میں M=1,1.5,2,2.5 میں اوری ہے۔ کے لئے کھینچا گیا ہے۔ برقی زمین پر برقی میدان عمودی ہے۔ باب 4. توانائی اور برقی دباو

مثال 4.5: شکل 4.9-الف میں دکھائے گئے جفت قطب سے دور کسی نقطے N پر پہلے برقی میدان اور پھر اس برقی میدان کواستعال کرتے ہوئے برقی دیاو حاصل کریں۔

 $R_1=R_1$  اور  $R_2=R_2$  سمتیوں کو کروی نظام میں لکھنا دکھایا گیا ہے۔ انہیں بہاں دوبارہ بیش کرتے ہیں۔  $R_1=R_1$  اور  $R_1=R_1$  ا

$$\mathbf{R}_2 = (r + \frac{d}{2}\cos\theta)\mathbf{a}_{\mathrm{r}} - \frac{d}{2}\sin\theta\mathbf{a}_{\theta}$$

-اصل کرتے ہیں۔  $R_1 = |R_1| = \sqrt{R_1 \cdot R_1}$  عاصل کرتے ہیں۔

(4.69) 
$$R_{1} = \sqrt{\left(r - \frac{d}{2}\cos\theta\right)^{2} + \left(\frac{d}{2}\sin\theta a_{\theta}\right)^{2}}$$

$$= r\sqrt{1 - \frac{d}{r}\cos\theta + \frac{d^{2}}{r^{2}}}$$

$$\approx r\sqrt{1 - \frac{d}{r}\cos\theta} \quad (d \ll r)$$

آخری قدم پر  $d \ll r$  کی بناپر  $\frac{d^2}{r^2}$  کور د کیا گیا ہے۔ ہم جانتے ہیں کہ

$$(a+b)^n = a^n + \frac{na^{n-1}b}{1!} + \frac{n(n-1)a^{n-2}b^2}{2!} + \cdots$$

کھ اجا سکتا ہے۔اگر a=1اور a=1 وری  $b=-rac{d}{r}\cos heta$  کے برابر ہول تب مساوات 4.69 میں دیے a=1 کی طاقت تین کے لئے ہم کھھ سکتے ہیں

$$R_1^3 = r^3 (1 - \frac{d}{r} \cos \theta)^{\frac{3}{2}} = r^3 \left( 1 - \frac{3d}{2r} \cos \theta + \cdots \right)$$

اس مساوات کے پہلے دو جزو د کھائے گئے ہیں۔اس کے تیسرے جزو میں <sup>ط3</sup> چوتھے جزو میں <sup>44</sup> پائے جاتے ہیں لہذا پہلے دواجزاء کے علاوہ تمام اجزاء کو نظرانداز کیا جاسکتا ہے۔بوں

$$(4.70) R_1^3 = r^3 \left( 1 - \frac{3d}{2r} \cos \theta \right)$$

صورت اختیار کر لیتا ہے۔ یہی عمل R<sub>3</sub> کے لئے کرنے سے

$$(4.71) R_2^3 = r^3 \left( 1 + \frac{3d}{2r} \cos \theta \right)$$

حاصل ہوتا ہے۔ صنحہ 42 پر مساوات 2.18 کو استعال کرتے ہوئے دونوں چارجوں سے کل برقی میدان ان کے علیحدہ علیحدہ میدان کے مجموعہ لے کو یوں ککھا جا سکتا ہے۔

$$\begin{split} E &= \frac{Q}{4\pi\epsilon_0} \frac{R_1}{R_1^3} - \frac{Q}{4\pi\epsilon_0} \frac{R_2}{R_2^3} \\ &= \frac{Q}{4\pi\epsilon_0} \left( \frac{\left[ (r - \frac{d}{2}\cos\theta) \boldsymbol{a}_r + \frac{d}{2}\sin\theta \boldsymbol{a}_\theta \right]}{r^3 (1 - \frac{3d}{2r}\cos\theta)} - \frac{\left[ (r + \frac{d}{2}\cos\theta) \boldsymbol{a}_r - \frac{d}{2}\sin\theta \boldsymbol{a}_\theta \right]}{r^3 (1 + \frac{3d}{2r}\cos\theta)} \right) \\ &= \frac{Qd}{4\pi\epsilon_0 r^3} \left( \frac{2\cos\theta \boldsymbol{a}_r + \sin\theta \boldsymbol{a}_\theta}{(1 - \frac{3d}{2r}\cos\theta)(1 + \frac{3d}{2r}\cos\theta)} \right) \end{split}$$

4.6. جفت قطب

اس مساوات میں کسر کے نچلے جھے کو ضرب دیتے ہوئے  $(1-\frac{9d^2}{4r^2}\cos^2\theta\approx 1)$  کھا جا سکتا ہے جہاں گئے جہ والے جزو کو نظر انداز کیا گیا ہے۔ یوں  $E=rac{Qd}{4\pi\epsilon_0 r^3}(2\cos\theta a_\Gamma+\sin\theta a_\theta)$ 

حاصل ہوتا ہے جو مساوات 4.64 ہی ہے۔

 $N_3(\infty, \theta', \phi')$  کی ایس ساوات 4.72 نقط  $N_0(r, \theta, \phi)$  پر برقی د باو حاصل کریں۔ ہم برقی زمین کو لا محدود فاصلے پر رکھتے ہیں۔ لا محدود فاصلے پر نقط  $N_1(r, \theta, \phi')$  پر برقی د بر کے بعد صرف  $N_1(r, \theta, \phi')$  ہوئے ہم پہلے  $N_2(r, \theta', \phi')$  تک جہنچتے ہیں۔ اس کے بعد صرف  $N_2(r, \theta', \phi')$  ہوئے ہم پہنچیں گے اور آخر کار r اور 0 تبدیل کئے بغیر  $N_2(r, \theta, \phi)$  پہنچیں گے۔

 $dm{L}=\mathrm{d}rm{a}_{\mathrm{T}}+r\,\mathrm{d} hetam{a}_{ heta}+r\sin heta\,\mathrm{d}\phim{a}_{\phi}$  کی مساوات ہے۔اسے بہاں دوبارہ لکھتے ہیں۔ $dm{L}=\mathrm{d}rm{a}_{\mathrm{T}}+r\,\mathrm{d} hetam{a}_{ heta}+r\sin heta\,\mathrm{d}\phim{a}_{\phi}$ 

 $V_{23}$  کے جوالے سے  $N_2$  و باور 0 = 0 اور 0 = 0 ہوں گے لہذا  $N_3$  کے حوالے سے  $N_2$  پر برقی دباو  $N_3$ 

$$\begin{split} V_{23} &= -\int_{N_3}^{N_2} \boldsymbol{E} \cdot \mathrm{d}\boldsymbol{L} = -\frac{Qd}{4\pi\epsilon_0} \int_{N_3}^{N_2} \frac{(2\cos\theta \boldsymbol{a}_\mathrm{r} + \sin\theta \boldsymbol{a}_\theta) \cdot \mathrm{d}r\boldsymbol{a}_\mathrm{r}}{r^3} \\ &= -\frac{Qd}{4\pi\epsilon_0} \int_{N_3}^{N_2} \frac{2\cos\theta \, \mathrm{d}r}{r^3} = \left. \frac{Qd\cos\theta}{4\pi\epsilon_0 r^2} \right|_{\infty,\theta',\phi'}^{r,\theta',\phi'} = \frac{Qd\cos\theta'}{4\pi\epsilon_0 r^2} \end{split}$$

 $\mathrm{d}\phi=0$  اور  $\mathrm{d}\phi=0$  رکھتے ہیں۔ ہم اس راستے  $\mathrm{d}r=0$  اور  $\mathrm{d}\phi=0$  رکھتے ہیں لہذا

$$\begin{split} V_{12} &= -\int_{N_2}^{N_1} \boldsymbol{E} \cdot \mathrm{d}\boldsymbol{L} = -\frac{Qd}{4\pi\epsilon_0} \int_{N_2}^{N_1} \frac{(2\cos\theta \boldsymbol{a}_\mathrm{r} + \sin\theta \boldsymbol{a}_\theta) \cdot r \, \mathrm{d}\theta \boldsymbol{a}_\theta}{r^3} \\ &= -\frac{Qd}{4\pi\epsilon_0} \int_{N_2}^{N_1} \frac{\sin\theta \, \mathrm{d}\theta}{r^2} = \left. \frac{Qd}{4\pi\epsilon_0} \frac{\cos\theta}{r^2} \right|_{r,\theta',\phi'}^{r,\theta,\phi'} = \frac{Qd}{4\pi\epsilon_0} \frac{(\cos\theta - \cos\theta')}{r^2} \end{split}$$

ہو گا۔اب  $N_1$  سے N جلتے ہیں۔اس راہتے 0=0 اور 0=0 رکھے گئے ہیں لہذا

$$V_{01} = -\int_{N_1}^{N_0} \mathbf{E} \cdot \mathrm{d}\mathbf{L} = -\frac{Qd}{4\pi\epsilon_0} \int_{N_1}^{N_0} \frac{(2\cos\theta \mathbf{a_r} + \sin\theta \mathbf{a_\theta}) \cdot r\sin\theta \, \mathrm{d}\phi \mathbf{a_\phi}}{r^3} = 0$$

 $N_3$  خاصل ہوتا ہے جہاں  $a_{
m r} \cdot a_{
m p} = 0$  اور  $a_{
m g} \cdot a_{
m p} \cdot a_{
m p} = 0$  کی بدولت کمل صفر کے برابر لیا گیا ہے۔ یوں  $V_{12}$ ، اور  $V_{23}$  کرتے ہوئے  $V_{3}$  ہوتا ہے جہاں  $V_{12}$  ہوتا ہے جہاں اور  $V_{13}$  ہوتا ہے جہاں اور  $V_{13}$  ہوتا ہے جہاں اور  $V_{13}$  ہوگئے ہوگئے

$$V_0 = V_{03} = V_{23} + V_{12} + V_{01} = \frac{Qd\cos\theta}{4\pi\epsilon_0 r^2}$$

(4.73)

حاصل ہوتا ہے جو مساوات 4.63 ہی ہے۔

مندر جہ بالا مثال سے آپ نے دیکھ لیا ہو گا کہ پہلے برقی میدان اور بعد میں برقی دباو حاصل کرنا زیادہ مشکل کام ہے۔ برقی دباو کی افادیت اس مثال سے صاف ظاہر ہے۔ حقیقی دنیا میں عموماً برقی دباوہی معلوم ہوتی ہے جیسے دو متوازی دھاتی چادروں کے در میان برقی دباویا گھریلوصار فین کے ہاں دو برقی تاروں کے در میان برقی دباوی ہوتی دباوجانتے ہوئے اس سے مختلف متغیرات حاصل کرتے ہیں۔

باب 4. توانائي اور برقي دباو

4.7 ساكن برقى ميدان كى كثافت توانائي

108

برقی دباو پر غور کرتے ہوئے ہم نے دیکھا کہ برقی میدان میں لا محدود فاصلے سے چارج کو کسی نقطہ منتقل کرنے کے لئے توانائی درکار ہوتی ہے۔ یہ توانائی چارج کو حرکت دینے والا محرک مہیا کرتا ہے۔ چو نکہ توانائی اٹل ہے المذابہ توانائی بصورت مخففی توانائی چارج کو میں منتقل ہو جاتی ہے۔ جب تک بیرونی قوت چارج کو اس نقطے پر روکے رکھے یہ توانائی چارج میں بطور مخففی توانائی میں تبدیل ہوتے ہوئے چارج کو جرکت دے گی۔ یوں اب چارج ازخود کام کرنے کے قابل ہوگا۔

آئیں دیکھیں کہ اگراسی طرح مختلف چارج کو لا محدود فاصلے سے مختلف مقامات پر لا کر وہیں روکے رکھا جائے تو اس پورے نظام کی کل دمخفی توانائی کتنی ہو گی۔ یہ توانائی ان چارجوں کو اپنی اپنی جگہوں پر منتقل کرنے کے لئے درکار بیر ونی توانائی کے مجموعے سے حاصل کی جاسکتی ہے۔

 $Q_1$  کو خالی خلاء سے کرتے ہیں۔خالی خلاء میں چونکہ کوئی چارج نہیں پایا جاتا المذا اس میں برقی میدان صفر کے برابر ہو گا۔یوں پہلے چارج  $Q_1$  کو انقطہ  $Q_2$  کا معتقل کرنے کے لئے صفر توانائی در کار ہو گی۔اب چونکہ خلاء میں  $Q_1$  موجود ہے للذا دوسرے چارج  $Q_2$  کو نقطہ  $Q_3$  کو نقطہ  $Q_4$  کو نقطہ  $Q_4$  کو نقطہ  $Q_5$  توانائی در کار ہو گی جہاں  $Q_5$  پر پہلے چارج کی وجہ سے پیدا برقی دباو کو  $Q_5$  کو کا ساگیا ہے۔ $Q_5$  کو نشانہ ہی کرتا ہے۔یوں عدد منتقل کے نقط پر برقی دباو پیدا کرنے والے چارج کی نشانہ ہی کرتا ہے۔یوں

یارج 
$$Q_2$$
 منتقل کرنے کے لئے درکار توانائی  $Q_2$ 

 $V_{3,2}$  کھا جائے گا۔اب خلاء میں دو عدد چارج پائے جاتے ہیں لہذا نقطہ  $V_{3,2}$  پر کل اور  $V_{3,1}$  اور  $V_{3,2}$  سے پیدا  $V_{3,2}$  برتی دباو ہول گے۔یوں  $V_{3,1}$  پر کل  $V_{3,1}$  برتی دباو ہو گالہذا

ین کورنے کے لئے ورکار توانائی 
$$Q_3$$
 منتقل کرنے کے لئے ورکار توانائی  $Q_3$ 

اور اسی طرح

$$Q_4$$
 چیارج  $Q_4$  منتقل کرنے کے لئے ورکار توانائی  $Q_4$  چیارج ورکار توانائی

ہو گا۔ یہی طریقہ کار مزید چارج منتقل کرنے کے لئے درکار توانائی دریافت کرنے کے لئے استعال کیا جائے گا۔ کل محقفی توانائی W تمام چارجوں کو منتقل کرنے کے لئے درکار توانائی کے برابر ہو گاجو مندرجہ بالا طرز کے تمام جوابات کا مجموعہ ہو گا یعنی

$$W = Q_2 V_{2,1} + Q_3 V_{3,1} + Q_3 V_{3,2} + Q_4 V_{4,1} + Q_4 V_{4,2} + Q_4 V_{4,3} + \cdots$$

$$= Q_2 (V_{2,1}) + Q_3 (V_{3,1} + V_{3,2}) + Q_4 (V_{4,1} + V_{4,2} + V_{4,3}) + \cdots$$

مندرجه بالا مساوات میں کسی رکن مثلاً  $Q_4V_{4,2}$  کو دیکھیں۔ اسے یوں

$$Q_4 V_{4,2} = Q_4 \frac{Q_2}{4\pi\epsilon_0 R_{42}} = Q_2 \frac{Q_4}{4\pi\epsilon_0 R_{24}} = Q_2 V_{2,4}$$

کھا جا سکتا ہے جہاں  $Q_2$  اور  $Q_4$  کے در میان مقداری فاصلے کو  $R_{24}$  یا  $R_{24}$  کھا جا سکتا ہے۔اس طرح  $Q_4$  کو  $Q_4$  کھا جا سکتا ہے۔اس طرح  $Q_4$  کھا جا سکتا ہے۔اس طرح  $Q_4$  کھا جا سکتا ہے۔اس طرح  $Q_4$  کھا جا سکتا ہے۔اس طرح مساوات  $Q_4$  کہ جزو کو تبدیل کرتے ہوئے اسے

$$W = Q_1 V_{1,2} + Q_1 V_{1,3} + Q_2 V_{2,3} + Q_1 V_{1,4} + Q_2 V_{2,4} + Q_3 V_{3,4} + \cdots$$

$$= Q_1 (V_{1,2} + V_{1,3} + V_{1,4} + \cdots) + Q_2 (V_{2,3} + V_{2,4} + \cdots) + Q_3 (V_{3,4} + \cdots)$$

لکھا جا سکتا ہے۔مساوات 4.75 اور مساوات 4.76 کو جمع کرتے ہوئے

$$2W = Q_{1}(V_{1,2} + V_{1,3} + V_{1,4} + \cdots) + Q_{2}(V_{2,1} + V_{2,3} + V_{2,4} + \cdots) + Q_{3}(V_{3,1} + V_{3,2} + V_{3,4} + \cdots) + \cdots$$

حاصل ہوتا ہے۔اس مساوات کے پہلے قوسین میں  $V_{1,2}$  نقطہ  $V_{1,2}$  کا پیدا کردہ برقی دباو ہے۔اس طرح  $V_{1,3}$  نقطہ  $V_{1,2}$  کا پیدا کردہ برقی دباو ہے۔اس مساوات کے پہلے قوسین میں  $V_{1,2}$  نقطہ  $V_{1,2}$  کہ بیاں پر  $V_{1,4}$  پیدا کردہ برقی دباو ہے۔یوں قوسین میں بند قیمت نقطہ  $V_{1,2}$  بر تمام چارجوں کا مجموعی برقی دباو  $V_{1,2}$  ہے۔یاد رہے کہ  $V_{1,2}$  برقی دباو حاصل کرتے وقت بہیں پر پائے جاتے چارج  $V_{1,2}$  کو شامل نہیں کیا جاتا۔یوں

$$V_1 = V_{1,2} + V_{1,3} + V_{1,4} + \cdots$$

کے برابر ہے۔اس طرح مندرجہ بالا مساوات سے

$$W = \frac{1}{2} \left( Q_1 V_1 + Q_2 V_2 + Q_3 V_3 + \cdots \right) = \frac{1}{2} \sum_{m=1}^{n} Q_m V_m$$

حاصل ہوتا ہے جہاں

$$V_1 = V_{1,2} + V_{1,3} + V_{1,4} + \cdots$$
  
 $V_2 = V_{2,1} + V_{2,3} + V_{2,4} + \cdots$   
 $V_3 = V_{3,1} + V_{3,2} + V_{3,4} + \cdots$ 

لکھے گئے ہیں۔

 $\mathrm{d}Q = 
ho_h \, \mathrm{d}h$  الیکی حجم جس میں محجمی چارج کثافت  $\rho_h$  پائی جائے کی کل مختفی توانائی حاصل کرنے کی غرض سے حچھوٹے حجھوٹے حجم جس میں چارج تصور کرتے ہوئے مساوات 84.7 کا استعال کیا جا سکتا ہے۔الیمی صورت میں یہ مساوات تکمل کی شکل اختیار کر لے گی یعنی

$$W = \frac{1}{2} \int_{h} \rho_h V \, \mathrm{d}h$$

جہاں کمل یورے حجم 1 کے لئے حاصل کیا گیا ہے۔

مثال 4.6 میں کار تیسی محدد استعال کرتے ہوئے مندرجہ ذیل مساوات کا ثبوت و کھایا گیا ہے۔

$$(4.80) \qquad \nabla \cdot (VD) = V(\nabla \cdot D) + D \cdot (\nabla V)$$

مساوات 4.80 اور صفحہ 78 پر مساوات 3.33 کے استعال سے مساوات 4.79 کو یوں لکھا جا سکتا ہے۔

$$W = \frac{1}{2} \int_{h} (\nabla \cdot \mathbf{D}) V \, \mathrm{d}h$$

$$= \frac{1}{2} \int_{h} [\nabla \cdot (V\mathbf{D}) - \mathbf{D} \cdot (\nabla V)] \, \mathrm{d}h$$

باب 4. توانائي اور برقي دباو

اس مساوات میں تکمل کے دواجزاء ہیں۔پہلے جزو کو مسئلہ پھیلاو، جسے صفحہ 83 پر مساوات 3.43 دیتا ہے، کی مدد سے بند سطحی تکمل کی صورت میں یوں لکھا جا سکتا ہے۔

(4.82) 
$$\frac{1}{2} \int_{h} \nabla \cdot (VD) \, \mathrm{d}h = \frac{1}{2} \oint_{S} (VD) \cdot \mathrm{d}S$$

یہاں بائیں جانب ججم h جبکہ دائیں جانب اس جم کی سطح S پر تکمل حاصل کیا جاتا ہے۔ h اس جم کو ظاہر کرتا ہے جس میں مساوات 4.79 کے تمام چار جی بنا پر پائے جاتے ہیں۔ مساوات 4.79 میں جم کے ایسے جصے بھی ہوں گے جہاں چارج کثافت  $\rho_h$  کی قیمت صفر ہو گی۔ ایسے حصوں کا تکمل  $\rho_h=0$  کی بنا پر صفر کے برابر ہو گا۔ یوں اگر جم کو لا محدود کر دیا جائے تب بھی تکمل کی قیمت وہی رہے گی چونکہ ایسی اضافی جم میں  $\rho_h=0$  ہو گا۔ مساوات 4.82 میں یوں جم کو لا محدود رہ ہو گا۔ یوں جم کو گھیرتی سطح کو کرہ شکل کا تصور کرتے ہوئے ایسی سطح  $\gamma$  ہوگا۔ یوں جم ہوگا۔ یوں جم کو لا محدود لیا جا سکتا ہے۔ لا محدود جم کو گھیرتی سطح کو کرہ شکل کا تصور کرتے ہوئے ایسی سطح  $\gamma$  برابر ہوگا ہو سطح پر عبول میں جس بھی شکل کا چارج کثافت نقطہ مانند چارج  $\gamma$  نظر آئے گا جو سطح پر  $\gamma$  ہوں مساوات  $\gamma$  میدان اور  $\gamma$  میں جانب بند تکمل رداس کے ساتھ  $\gamma$  کا تعلق رکھتا ہے اور  $\gamma$  کی صورت میں ایسا تکمل صفر کے برابر ہوگا۔ یوں مساوات  $\gamma$  کی صورت میں ایسا تکمل صفر کے برابر ہوگا۔ یوں مساوات  $\gamma$  کی صورت میں ایسا تکمل صفر کے برابر ہوگا۔ یوں مساوات  $\gamma$  کی صورت میں ایسا تکمل صفر کے برابر ہوگا۔ یوں مساوات  $\gamma$  کی صورت میں ایسا تکمل صفر کے برابر ہوگا۔ یوں مساوات  $\gamma$  کی صورت میں ایسا تکمل صفر کے برابر ہوگا۔ یوں مساوات  $\gamma$  کی صورت میں ایسا تکمل صفر کے برابر ہوگا۔ یوں مساوات  $\gamma$  کی صورت میں ایسا تکمل صفر کے برابر ہوگا۔ یوں مساوات  $\gamma$  کی صورت میں ایسا تکمل صورت میں میں صورت میں ایسا تکمل صورت میں ایسا تکمل صورت میں میں سورت کی صورت میں میں کی صورت میں میں کیسا تکمل صورت میں میں کی صورت میں میں کی صورت میں میں کیسا تکمل صورت میں میں کی صورت میں کی صورت میں میں کیسا تکمل کی صورت میں کی صورت میں کی صورت میں کی صورت میں کی کیس

$$W = -\frac{1}{2} \int_{h} \mathbf{D} \cdot (\nabla V) \, \mathrm{d}h$$

 $(4.83) W = \frac{1}{2} \int_{h} \mathbf{D} \cdot \mathbf{E} \, \mathrm{d}h = \frac{\epsilon_0}{2} \int_{h} E^2 \, \mathrm{d}h$ 

کھا جا سکتا ہے جہاں مساوات 4.46 اور صفحہ 66 پر مساوات 3.3 کی مدد لی گئی ہے۔

مثال 4.6: مساوات 4.80 کو ثابت کریں۔

حل: مساوات 4.80 کا بائیں بازو حل کرتے ہیں۔

$$\nabla \cdot (VD) = \nabla \cdot (V[D_x a_x + D_y a_y + D_z a_z])$$

$$= \nabla \cdot (VD_x a_x + VD_y a_y + VD_z a_z)$$

$$= \frac{\partial (VD_x)}{\partial x} + \frac{\partial (VD_y)}{\partial y} + \frac{\partial (VD_z)}{\partial z}$$

$$= \frac{\partial V}{\partial x} D_x + V \frac{\partial D_x}{\partial x} + \frac{\partial V}{\partial y} D_y + V \frac{\partial D_y}{\partial y} + \frac{\partial V}{\partial z} D_z + V \frac{\partial D_z}{\partial z}$$

ایک جیسے اجزاء کو اکٹھے کرتے ہوئے

$$\nabla \cdot (V\boldsymbol{D}) = V \left( \frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} + \frac{\partial D_z}{\partial z} \right) + \frac{\partial V}{\partial x} D_x + \frac{\partial V}{\partial y} D_y + \frac{\partial V}{\partial z} D_z$$

لکھا جا سکتا ہے۔اب مساوات 4.80 کا دایاں بازو حل کرتے ہیں جہاں

$$V\nabla \cdot \boldsymbol{D} = V\left(\frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} + \frac{\partial D_z}{\partial z}\right)$$

یا

اور

$$D \cdot \nabla V = (D_x a_x + D_y a_y + D_z a_z) \cdot \left( \frac{\partial V}{\partial x} a_x + \frac{\partial V}{\partial y} a_y + \frac{\partial V}{\partial z} a_z \right)$$
$$= D_x \frac{\partial V}{\partial x} + D_y \frac{\partial V}{\partial y} + D_z \frac{\partial V}{\partial z}$$

ے برابر ہیں۔انہیں جمع کرتے ہوئے مساوات 4.80 کا بایاں بازو ہی ملتا ہے۔ یاد رہے کہ  $\frac{\partial V}{\partial x}$  کو کھا جا سکتا ہے۔

مثال 4.7: صفحہ 52 پر مساوات 2.44 دو لا محدود چادروں کے در میان برقی میدان دیتا ہے جہاں ایک چادر پر  $ho_S + 1$  اور دوسری چادر پر  $ho_S - 1$  سطح کے در میان دیتا ہے جہاں ایک چادر پر  $ho_S - 1$  اور دوسری چادر پر  $ho_S - 1$  میں کل مخففی توانائی حاصل کریں۔ کافت چارج پایا جاتا ہے۔ اگر ان چادروں کے مابین فاصلہ  $ho_S$  موتب چادروں پر آھنے سامنے  $ho_S - 1$  سطح کیتے ہوئے جم  $ho_S$  میں کل مخففی توانائی حاصل کریں۔

حل: چادروں کے مابین  $E=rac{
ho_S}{\epsilon_0}$  ہے جو اٹل مقدار ہے لہذا اسے مساوات 4.83 میں تکمل سے باہر لے جایا جا سکتا ہے۔ یوں

$$W = \frac{\epsilon_0}{2} \frac{\rho_S^2}{\epsilon_0^2} \int_h dh = \frac{\rho_S^2 Sa}{2\epsilon_0}$$

حاصل ہوتا ہے۔آئیں اسی نتیج کو مساوات 4.79 کی مدد سے حاصل کریں۔ منفی چادر کو برتی زمین تصور کرتے ہوئے مثبت چادر پر برتی دباو ہو گا۔ منفی چادر پر برتی دباو چو نکہ صفر لیا گیا ہے لہذا مساوات 4.79 کا حکمل لیتے ہوئے منفی چادر پر حکمل صفر کے برابر ہو گا۔اسی طرح دونوں چادروں کے در میان چارج نہیں پایا جاتا لہذا اس ججم پر بھی حکمل صفر کے برابر ہو گا۔ مثبت چادر پر سطحی چارج کثافت کو حجمی چارج کثافت میں یوں تبدیل کیا جا سکتا ہے۔الٹ قطب کے چارجوں کے مابین قوت کشش پایا جاتا ہے لہذا چادروں پر آپس میں قریبی سطحوں پر چارج پایا جائے گا۔یوں مثبت چادر کے 8 جھے پر چارج کا دیوں مثبت چادر کی 8 جم پر تقسیم کرتے ہوئے گارج کا حکم خوائی ہے یعن 0 موٹائی ہے بیاں t + t موٹائی ہے موٹائی ہے گارج کی تقسیم کرتے ہوئے یوں

$$(4.85) W = \frac{1}{2} \int_{S} \int_{a-t/2}^{a+t/2} \frac{\rho_S}{t} \frac{\rho_S a}{\epsilon_0} \, \mathrm{d}x \, \mathrm{d}S = \frac{\rho_S^2 S a}{2\epsilon_0}$$

ہی دوبارہ حاصل ہوتا ہے۔

اس باب میں ہم مختفی توانائی کی بات کرتے رہے لیکن کہیں پر بھی یہ ذکر نہیں کیا کہ مختفی توانائی آخر کہاں ذخیرہ ہوتی ہے۔اس کا جواب آج تک کوئی نہیں بتلا سکا ہے۔آئیں دیکھیں کہ یہ بتلانااتنا مشکل کیوں ہے۔

مساوات 4.84 سے ایسا معلوم ہوتا ہے کہ مخففی توانائی دو چادروں کے در میان برقی میدان میں و خیرہ ہے البتہ مساوات 4.84 کے حصول کو دیکھتے ہوئے ایسا معلوم ہوتا ہے کہ منفی چادر اور چادروں کے در میان صفر توانائی پائی جاتی ہے جبکہ تمام کی تمام مخففی توانائی مثبت چادر پر ہے۔اس طرح اگر ہم مثبت چادر کو برقی زمین تصور کرتے تب منفی چادر پر برقی دباو Ea ہوتا اور مخففی توانائی منفی چادر میں نظر آئے۔ہم دو چادروں کے بالکل در میانی نقطے کو برقی زمین لے سکتے ہیں۔ایسا کرتے ہوئے مثبت چادر پر مجھے اور منفی چادر پر مجھے اور منفی چادر پر محففی توانائی کی انقیم کے جوابات گی۔برقی زمین کو دو چادروں میں مخففی توانائی کی تقسیم کے جوابات تبدیل ہوتے رہیں گے۔اگرچہ ان تمام طریقوں سے کل مخففی توانائی کی صحیح قیت حاصل ہوتی ہے لیکن ان سے کسی صورت یہ معلوم نہیں کیا جا سکتا ہے کہ مخففی توانائی و خیرہ کہاں ہوتی ہے۔اس حقیقت کے ساتھ ہی زندگی بسر کرنا سکھے لیں۔

باب 5

# موصل، ذو برق اور كپيسٹر

اس باب میں ہم برقی رواور کثافت برقی روسے شروع ہو کر بنیادی استمراری مساوات اصاصل کریں گے۔اس کے بعد اوہم کے قانون کی نقطہ شکل اور اس کی بڑی شکل حاصل کریں گے۔دواجسام کے سرحد پر سرحدی شرائط 2 حاصل کرتے ہوئے عکس 3 کے طریقے کا استعال دیکھیں گے۔

ذو برق⁴ کی تقطیب <sup>5</sup> پر غور کرتے ہوئے جزو برقی مستقل حاصل کریں گے۔اس کے بعد کپیسٹر پر غور کیا جائے گا۔سادہ شکل وصورت رکھنے والے کپیسٹر کی قیمتیں حاصل کی جائیں گیں۔ایسا گزشتہ بابوں کے نتائج استعال کرتے ہوئے کیا جائے گا۔

5.1 برقى رو اور كثافت برقى رو

جیسے پانی کے حرکت کو پانی کا بہاو کہتے ہیں، اسی طرح برقی چارج کے حرکت کو برقی رو کہتے ہیں۔ برقی رو کو i اور I سے ظاہر کیا جاتا ہے۔ برقی رو کی اکائی ایمپیئر (A) ہے۔ کسی نقطے یا سطح سے ایک کولمب چارج فی سیکنڈ کے گزر کو ایک ایمپیئر کہتے ہیں۔ یوں

$$(5.1) I = \frac{dQ}{dt}$$

لکھا جائے گا۔

الی موصل تارجس کی ایک سرے سے دوسری سرے تک موٹائی مسلسل کم ہوتی ہو کے بالکل محور پر برقی چارج محوری ست میں حرکت کرے گا جبکہ محور سے دور چارج کی حرکت تارکی موٹائی کم یا زیادہ ہونے کی وجہ سے قدرِ ترچھی ہو گی۔یوں اگرچہ تار میں ہر مقام پر برقی روکی مقدار برابر ہے لیکن برقی روکی سمتیں مختلف ہو سکتی ہیں۔اسی بناپر ہم برقی روکو مقداری تصور کریں گے۔اگر تارکی موٹائی انتہائی کم ہو تب برقی روسمتیہ مانند ہوگالیکن ایسی صورت میں بھی ہم اسے مقداری ہی تصور کرتے ہوئے تارکی لمبائی کو سمتیہ لیس گے۔

continuity equation<sup>1</sup>

boundary conditions<sup>2</sup>

images<sup>3</sup>

dielectric<sup>4</sup>

polarization<sup>5</sup>

باب 5. موصل، ذو برق اور كېيسٹر



شکل 5.1: سطح سے گزرتی برقی رو۔

کثافت برقی رو  $^0$ سے مراد برقی رو فی اکائی مربع سطح  $\left(rac{
m A}{
m m^2}
ight)$  ہے اور اسے J سے ظاہر کیا جاتا ہے۔اگر چھوٹی سطح  $\Delta S$  سے عمودی سمت میں  $\Delta I$  برقی روگزرے تب

$$\Delta I = J_n \Delta S$$

کے برابر ہو گا۔اگر کثافت برقی رواور سمتی رقبہ کی سمتیں مختلف ہول تب

$$\Delta I = \boldsymbol{J} \cdot \Delta S$$

کھا جائے گا اور پوری سطح سے کل گزرتی برقی رو تھمل کے ذریعہ حاصل کی جائے گا۔

$$(5.4) I = \int_{S} \mathbf{J} \cdot d\mathbf{S}$$

مثال 5.1: شکل 5.1 میں سید تھی سطح  $S=2a_{\mathrm{X}}$  و کھائی گئی ہے جہاں کثافت برقی رو $J=1a_{\mathrm{X}}+1a_{\mathrm{Y}}$  پائی جاتی ہے۔ سطح سے گزرتی برقی رو اور اس کی سمت کیا ہوں گے۔ اور اس کی سمت دریافت کریں۔اگر سطح کی دوسری سمت کو سطح کی سمت کی جائے تب برقی رو کی مقدار اور اس کی سمت کیا ہوں گے۔

حل: چونکہ یہاں J مستقل مقدار ہے للذااسے مساوات 5.4 میں تکمل کے باہر لایا جا سکتا ہے اور یوں اس تکمل سے

$$I = \boldsymbol{J} \cdot \boldsymbol{S} = 2 \,\mathrm{A}$$

حاصل ہوتا ہے۔ برقی رو چونکہ مثبت ہے للذا یہ سطح کی سمت میں ہی سطح سے گزر رہی ہے۔

ا گرسطح کی دوسری طرف کو سطح کی ست لی جائے تب  $S=-2a_{
m X}$  کھھا جائے گا اور یول

$$I = \boldsymbol{J} \cdot \boldsymbol{S} = -2 \,\mathrm{A}$$

حاصل ہو گا۔ برقی رو کی مقدار اب بھی دوایمپیئر ہی ہے البتہ اس کی علامت منفی ہے جس کا مطلب سے ہے کہ برقی رو سطح کے سمت کی الٹی سمت میں ہے۔ یوں اب بھی برقی رو بائیں سے دائیں ہی گزر رہی ہے۔

اس مثال سے آپ د کچھ سکتے ہیں کہ 8 کی سمت میں برقی رو کو مثبت برقی رو کہا جاتا ہے۔

dt عیں a اور b اطراف کی تار میں لمبائی کی سمت میں v ر فتار سے چارج حرکت کر رہا ہے۔ شکل میں اس تار کا کچھ حصہ د کھایا گیا ہے۔ یوں dt دورانیہ میں چارج b فاصلہ طے کرے گا۔ اس طرح اس دورانیہ میں سے لگائی گئی نقطہ دار لکیر n پہنچ جائے گی۔ آپ د کیھ سکتے ہیں کہ اس دورانیہ میں

5.2. استمراری مساوات



شکل 5.2: حرکت کرتے چارج کی رفتار اور کثافت برقی رو۔

m اور n کے در میان موجود چارج سطح  $\Delta S$  سے گزر جائے گا۔ m سے n تک حجم abv dt کے برابر ہے۔ اگر تارین چارج کی حجمی کثافت  $ho_h$  ہو تب اس مجم میں کل چارج  $ho_h$   $ho_h$  ہو گا۔ یوں برقی رو

$$I = \frac{\Delta Q}{\Delta t} = \frac{\rho_h abv \, dt}{dt} = \rho_h \Delta Sv$$

لکھتے ہوئے کثافت برقی رو

$$J = \frac{I}{\Delta S} = \rho_h v$$

حاصل ہوتی ہے جس کی سمتی شکل

$$(5.5) J = \rho_h v$$

ہے۔

یہ مساوات کہتا ہے کہ محجی چارج کثافت بڑھانے سے کثافت برقی رواسی نسبت سے بڑھتی ہے۔اسی طرح چارج کی رفتار بڑھانے سے کثافت برقی رواسی نسبت سے بڑھتی ہے۔یہ ایک عمومی نتیجہ ہے۔یوں سڑک پر زیادہ لوگ گزارنے کا ایک طریقہ انہیں تیز چلنے پر مجبور کرنے سے حاصل کیا جا سکتا ہے۔دوسرا طریقہ یہ ہے کہ انہیں قریب قریب کر دیا جائے۔

## 5.2 استمراری مساوات

قانون بقائے چارج کہتا ہے کہ چارج کو نہ تو پیدااور ناہی اسے ختم کیا جا سکتا ہے، اگرچہ برابر مقدار میں مثبت اور منفی چارج کو ملاکی انہیں ختم کیا جا سکتا ہے۔ ہے اور اسی طرح برابر مقدار میں انہیں پیدا بھی کیا جا سکتا ہے۔

یوں اگر ڈب میں ایک جانب C اور دوسر کی جانب C – چارج موجود ہو تو اس ڈب میں کل C کے چارج ہے۔اگر ہم C کو C – کے ساتھ ملا کر ختم کر دیں تب بھی ڈب میں کل 2 C ہی چارج رہے گا۔

مثال 5.2: ایک ڈبہ جس کا حجم 8 m 5 ہے میں حجمی کثافت چارج 8 C/m 3 ہے۔اس ڈبے سے چارج کی نکائی ہور ہی ہے۔دوسینٹر میں حجمی کثافت چارج 1 C/m 3 رہ جاتی ہے۔ان دوسکینڈوں میں ڈبے سے خارج برقی رو کا تخمینہ لگائیں۔ باب 5. موصل، ذو برق اور كپيسٹر

عل: شروع میں ڈبے میں  $Q_1 = 1 \times 5 = 0$  چارج ہے جبکہ دو سینڈ بعد اس میں  $Q_1 = 1 \times 5 = 0$  رہ جاتا ہے۔ یوں دو سینڈ میں ڈبے سے  $Q_1 = 1 \times 5 = 0$  ہوتا ہے۔ اس طرح ڈبے سے خارج برقی رو  $Q_1 = \frac{10}{2}$  ہے۔ اس کو یوں لکھا جا سکتا ہے۔

$$I = -\frac{\Delta Q}{\Delta t} = -\frac{(5-15)}{2} = 5 \text{ A}$$

اس مثال میں آپ نے دیکھا کہ ڈیے میں  $\Delta Q$  منفی ہونے کی صورت میں خارجی برقی رو کی قیت مثبت ہوتی ہے۔آئیں اس حقیقت کو بہتر شکل دیں۔

جم کو مکمل طور پر گھیرتی سطح کو ہند سطح کہتے ہیں۔ کسی بھی مقام پر ایسی سطح کی سمت سطح کے عمودی باہر کو ہوتی ہے۔مساوات 5.4 کے تحت برقی رو کو کثافت برقی رو کے سطحی تکمل سے بھی حاصل کیا جا سکتا ہے۔ یوں

$$I = \oint_{S} \mathbf{J} \cdot d\mathbf{S} = -\frac{dQ}{dt}$$

کھا جا سکتا ہے جہاں جم کی سطح بند سطح ہونے کی بناپر بند تکمل کی علامت استعال کی گئی ہے اور Q جم میں کل چارج ہے۔

مساوات 5.6 استمراری مساوات 7 کی حکمل شکل ہے۔آئیں اب اس کی نقطہ شکل حاصل کریں۔

مسئلہ پھیلاو کو صفحہ 83 پر مساوات 3.43 میں بیان کیا گیا ہے۔مسئلہ پھیلاو کسی بھی سمتی تفاعل کے لئے درست ہے لہذا اسے استعال کرتے ہوئے مساوات 5.6 میں بند سطحی تکمل کو حجمی تکمل میں تبدیل کرتے ہیں۔

$$\oint_{S} \mathbf{J} \cdot d\mathbf{S} = \int_{h} (\nabla \cdot \mathbf{J}) \, dh$$

ا گر حجم میں حجمی کثافت جارج  $\rho_h$  ہو تب اس میں کل جارج

$$Q = \int_h \rho_h \, \mathrm{d}h$$

ہو گا۔ان دو نتائج کو استعال کرتے ہوئے

$$\int_{h} (\nabla \cdot \boldsymbol{J}) \, \mathrm{d}h = -\frac{\mathrm{d}}{\mathrm{d}t} \int_{h} \rho_{h} \, \mathrm{d}h$$

کھا جا سکتا ہے۔اس مساوات میں  $rac{\mathrm{d}}{\mathrm{d}t}$  دومتغیرات پر لا گو ہو گا۔ یہ متغیرات تکمل کے اندر حجمی چارج کثافت  $ho_h$  اور حجم h ہے۔

آپ جانتے ہیں کہ دومتغیرات کے تفرق کو جزوی تفرق کی شکل میں

$$\frac{\mathrm{d}(uv)}{\mathrm{d}t} = \frac{\partial u}{\partial t}v + u\frac{\partial v}{\partial t}$$

کھا جا سکتا ہے جہاں  $\sigma$  کو مستقل رکھتے ہوئے  $\frac{\partial u}{\partial t}$  اور u کو مستقل رکھتے ہوئے  $\frac{\partial v}{\partial t}$  حاصل کیا جاتا ہے۔

5.3. موصل

اگر ہم یہ شرط لا گو کریں کہ مجم کی سطح تبدیل نہیں ہو گی تب حجم بھی تبدیل نہیں ہو گا اور یوں ط dt کو جزوی تفرق میں تبدیل کرتے ہوئے تکمل کے اندر ککھتے ہوئے

$$\int_{h} (\nabla \cdot \boldsymbol{J}) \, \mathrm{d}h = \int_{h} -\frac{\partial \rho_{h}}{\partial t} \, \mathrm{d}h$$

$$(\nabla \cdot \boldsymbol{J}) \, \mathrm{d}h = -\frac{\partial \rho_h}{\partial t} \, \mathrm{d}h$$

ہی ہے جس سے

$$\nabla \cdot \boldsymbol{J} = -\frac{\partial \rho_h}{\partial t}$$

حاصل ہوتا ہے۔مساوات 5.7 استمراری مساوات کی نقطہ شکل ہے۔

پھیلاو کی تعریف کو ذہن میں رکھتے ہوئے آپ دیکھ سکتے ہیں کہ مساوات 5.7 کہتا ہے کہ ہر نقطے پر چھوٹی سی جم سے فی سینڈ چارج کا اخراج، یعنی برقی رو، فی اکائی جم مساوی ہے چارج کے گھٹاو فی سینڈ فی اکائی حجم۔

### 5.3 موصل

غیر چارج شدہ موصل میں منفی الیکٹران اور مثبت ساکن ایٹوں کی تعداد برابر ہوتی ہے البتہ اس میں برقی رو آزاد الیکٹران کے حرکت سے پیدا ہوتا ہے۔موصل میں الیکٹران آزادی سے بے ترتیب حرکت کرتار ہتا ہے۔ یہ حرکت کرتا ہوا کمحہ بہ لمحہ ساکن ایٹم سے عکراتا ہے اور ہر عکر سے اس کے حرکت کی سمت تبدیل ہو جاتی ہے۔ یوں ایسے الیکٹران کی اوسط رفتار صفر کے برابر ہوتی ہے۔آئیں دیکھیں کہ برقی میدان کے موجود گی میں کیا ہوتا ہے۔

برقی میدان E میں الیکٹران پر قوت

$$\mathbf{F} = -e\mathbf{E}$$

عمل کرے گی جہاں الکیٹران کا چارج e ہے۔ الکیٹران کی رفتار اس قوت کی وجہ سے اسراع کے ساتھ قوت کی سمت میں بڑھنے شروع ہو جائے گی۔ یوں بلا ترتیب رفتار کے ساتھ ساتھ قوت کے سمت میں الکیٹران رفتار پکڑے گا۔ موصل میں پائے جانے والا الکیٹران جلد کسی ایٹم سے نکرا جاتا ہے اور یوں اس کی سمت تبدیل ہو جاتی ہے۔ جس لمحہ الکیٹران کسی ایٹم سے ٹکراتا ہے اگر لا گو میدان کو صفر کر دیا جائے توالکیٹران دوبارہ بلا ترتیب حرکت کرتار ہے گا اور اس کی اوسط رفتار دوبارہ صفر ہی ہو گی، البتہ اس کی رفتار اب پہلے سے زیادہ ہو گی۔ اگر الکیٹران ایٹم سے نہ ٹکراتا تب برقی میدان صفر کرنے کے بعد سے برقرار قوت کی سمت میں حاصل کردہ رفتار سے حرکت کرتار ہتا۔ یوں آپ دیکھ سکتے ہیں کہ ہر ٹکر سے الکیٹران کی اوسط رفتار صفر ہو جاتی ہے۔ اس طرح ہم دیکھتے ہیں کہ E کے موجود گی میں موصل میں الکیٹران کی رفتار مسلسل نہیں بڑھتی بلکہ یہ قوت کی سمت میں اوسط رفتار ہم حاصل کرتا ہے اور جیسے ہی میدان صفر کر دیا جائے الکیٹران کی اوسط رفتار بھی صفر ہو جاتی ہے۔ v کو رفتار بہاو e کہتے ہیں۔ رفتار بہاو کا دارو مدار e کی قیمت پر ہے المذا ہم میں میٹران کی اوسط رفتار بھی صفر ہو جاتی ہے۔ v کو رفتار بہاو e کہتے ہیں۔ رفتار بہاو کا دارو مدار e کی قیمت پر ہے المذا ہم

$$(5.9) v_d = -\mu_e \mathbf{E}$$

E ککھ سکتے ہیں جہاں مساوات کے مستقل  $\mu_e$  کو الیکٹران کی حرکت پذیری $^0$  کہتے ہیں۔حرکت پذیری کی مقدار مثبت ہے ۔چونکہ  $v_d$  کو میٹر فی سینڈ اور  $v_d$  کو وولٹ فی میٹر میں نایا جاتا ہے لہذا حرکت پذیری کو  $\frac{m^2}{V_S}$  میں نایا جائے گا۔

مساوات 5.9 کو صفحہ 115 پر دیئے مساوات 5.5 میں پر کرتے ہوئے

$$(5.10) J = -\rho_e \mu_e E$$

حاصل ہوتا ہے جہاں موصل میں آزاد الیکٹران کی محجی چارج کثافت کو وہ کھا گیا ہے۔وہ منفی مقدار ہے۔ یاد رہے کہ غیر چارج شدہ موصل میں محجی کثافت چارج برابر ہوتے ہیں۔اس مساوات کو عموماً

$$(5.11) J = \sigma E$$

کھا جاتا ہے جو اوہم کے قانون کی نقطہ شکل ہے اور جہاں

$$\sigma = -\rho_e \mu_e$$

کھا گیا ہے۔ $\sigma$  کو موصلیت کا مستقل 10 کہتے ہیں اور اس کی اکائی 11 سیمنز فی میٹر  $\frac{s}{m}$  ہے۔ سیمنز کو بڑے S سے جبکہ سینڈ کو چھوٹے S سے ظاہر کیا جاتا ہے۔ اس کتاب کے آخر میں صفحہ 213 پر جدول 8.1 میں کئی موصل اور غیر موصل اشیاء کی موصل سیاء کی موصل ہیں۔

مثال 5.3: تا نبے 12 کی موصلیت کے مستقل کی قیت  $\frac{S}{m} \times 10^7 + 5.8$  ہیں۔اگر ہر ایٹم ایک عدد الیکٹران آزاد کرتا ہو تب تا نبے میں الیکٹران کی حرکت پذیری حاصل کریں۔برقی میدان E=0.1 کی صورت میں الیکٹران کار فبار بہاو حاصل کریں۔

ایٹم پائیں جائیں گے۔ ہرایٹم ایک الیکٹران آزاد کرتا ہے للذا nm 10.1 اطراف کے مربع میں اوسطاً 0.848 یعنی تقریباً ایک عدد آزاد الیکٹران پایا جائے گا۔ اس طرح ایک مربع میٹر میں کل آزاد الیکٹران چارج یعنی حجمی آزاد چارج کثافت

(5.13) 
$$\rho_e = -1.6 \times 10^{-19} \times 8.48 \times 10^{28} = -1.36 \times 10^{10} \, \text{C/m}^3$$

ہو گی۔ایک مربع میٹر میں یوں انتہائی زیادہ آزاد چارج پایا جاتا ہے۔اس طرح مساوات 5.12 کی مدد سے

$$\mu_e = -\frac{\sigma}{\rho_e} = \frac{5.8 \times 10^7}{-1.36 \times 10^{10}} = 0.00427 \, \frac{\text{m}^2}{\text{V s}}$$

حاصل ہوتا ہے جہاں 2 1.004 27 1.000 کو 0.004 27 1.000 کھھا گیا ہے۔ آپ تسلی کر سکتے ہیں کہ یہ برابر مقدار ہیں۔اب مساوات 5.9 استعال کرتے ہوئے الیکٹران کی رفتار بہاو

$$v_d = -0.00427 \times 0.1 = -0.000427 \frac{\text{m}}{\text{s}}$$

عاصل ہوتی ہے۔ منفی رفتار کا مطلب ہے کہ الیکٹران E کے الٹ ست حرکت کر رہا ہے۔اس رفتار 14 سے الیکٹران ایک کلو میٹر کا فاصلہ ستائیس دن و رات چل کر طے کرے گا۔ یہاں یہ بتلاتا چلوں کہ عام درجہ حرارت مثلاً X 300 پر تانبے میں حرارتی توانائی سے حرکت کرتے الیکٹران کی رفتار تقریباً 1000 ہوتی ہے۔

conductivity10

<sup>11.</sup> آیہ اکائی جرمنی کے جناب ارنسٹ ورنر وان سیمنز (1892-1816) کے نام ہے جنہوں نے موجودہ سیمنز کمپنی کا بنیاد رکھا۔

copper<sup>12</sup>

 $mole^{13}$ 

<sup>&</sup>lt;sup>14</sup>کھودا پہاڑ، نکلا چوہا۔آزاد الیکٹران تو کچھوے سے بھی آبستہ چلتا ہے۔

5.3. موصل



شکل 5.3: اوہم کے قانون کی بڑی شکل

یوں موصل میں آزاد الیکٹرانوں کو نئی جگہ منتقل ہوتے شہد کے مکھیوں کا حجنٹر سمجھا جا سکتا ہے۔ایسے حجنٹر میں کوئی ایک مکھی نہایت تیز رفتار سے آگے پیچھے اڑتی ہے جبکہ پورا حجنٹر نسبتا آہتہ رفتار سے ایک سمت میں حرکت کرتا ہے۔موصل میں بھی کوئی ایک الیکٹران نہایت تیز رفتار سے ایٹوں سے طکراتا ہوا حرارتی توانائی کی وجہ سے ایسے تمام الیکٹران نہایت آہتہ رفتار سے میدان کی وجہ سے ایسے تمام الیکٹران نہایت آہتہ رفتار سے میدان کی سمت میں حرکت کرتے ہیں۔

اگر موصل میں آزاد الیکٹران اتنے کم رفتار سے بیرونی لا گو میدان کی سمت میں صفر کرتے ہیں تب بجلی چالو کرتے ہی بلب کس طرح روشن ہوتا ہے۔اس کو سبجھنے کی خاطر برقی تار کو پانی بھرے ایک لمبے پائپ مانند سبجھیں۔ایسے پائپ میں جیسے ہی ایک جانب سے مزید پانی داخل کیا جائے، اسی وقت پائپ کے دوسرے سرے سے برابر پانی خارج ہو گا۔امید ہی سبجھ آگئی ہوگی۔

مندرجہ بالا مثال میں بتلایا گیا کہ تانبے کا ہر ایٹم ایک عدد الیکٹران آزاد کرتا ہے۔اس حقیقت کو یوں سمجھا جا سکتا ہے کہ تانبے کا ایٹمی عدد 29 ہے۔ایٹم کے کسی بھی مدار میں 2n<sup>2</sup> الیکٹران ہو سکتے ہیں جہاں پہلے مدار کے لئے n = 2 کسی بھی مدار کے لئے 2 = n وغیرہ لیا جاتا ہے۔یوں اس کے پہلے مدار میں 2n دوسرے مدار میں 8 تارہ کرتا ہے۔آئیں اب مدار میں 2 دوسرے مدار میں 8 تارہ کرتا ہے۔آئیں اب بڑی شکل میں او ہم کا قانون حاصل کریں۔

شکل 5.3 میں موصل سلاخ دکھایا گیا ہے جس کی لمبائی L اور رقبہ عمودی تراش S ہیں۔سلاخ کو  $a_y$  سمت میں لیٹا تصور کریں۔سلاخ میں لمبائی کی ست میں مستقل اور کیساں برقی میدان  $E=-Ea_y$  اور کثافت برقی رو  $J=-Ja_y$  پائے جاتے ہیں۔یوں اگر سلاخ کا بایاں سرا برقی زمین تصور کیا جائے تب اس کے دائیں سرے پر برقی د باو کو صفحہ 91 پر دئے مساوات 4.11 سے یوں

$$V = -\int_0^L \mathbf{E} \cdot d\mathbf{L} = \int_0^L E \mathbf{a}_y \cdot dy \mathbf{a}_y = \int_0^L E dy = E \int_0^L dy = EL$$

حاصل کرتے ہیں۔ رقبہ عمودی تراش کو شکل میں گہرے رنگ سے اجاگر کیا گیا ہے۔ سمتی رقبہ عمودی تراش بند سطح نہیں ہے للذااس کے دو مکنہ رخ ہیں۔ سلاخ کے دائیں سرے سے داخل برقی رو حاصل کرنے کی غرض سے رقبہ عمودی تراش کو  $S=-Sa_y$  کھتے ہیں۔ یوں دائیں سرے سے داخل برتی روکی مقدار شبت ہوگی۔ برقی رو

$$I = \int_{S} \mathbf{J} \cdot d\mathbf{S} = JS$$

حاصل ہوتی ہے۔ان معلومات کو شکل 5.11 میں پُر کرتے ہوئے

$$\frac{I}{S} = \sigma \frac{V}{L}$$

$$V = I \frac{L}{\sigma S}$$

حاصل ہوتا ہے جہاں

$$(5.14) R = \frac{L}{\sigma S}$$

کو مزاحمت لکھتے ہوئے

$$(5.15) V = IR$$

حاصل ہوتا ہے جو اوہم کے قانون کی جانی پیچانی شکل ہے۔

مساوات 5.14 یکسان رقبہ عمودی تراش رکھنے والے موصل سلاخ کی مزاحمت¹ دیتا ہے جہاں مزاحمت کی اکائی اوہم ¹ ہے جسے Ω سے ظاہر کیا جاتا ہے۔ کیساں رقبہ عمودی تراش کے سلاخ میں برقی میدان کیساں ہوتا ہے۔اگر سلاخ کارقبہ عمودی تراش کیساں نہ ہوتب اس میں برقی میدان بھی کیساں نہ ہو گا اور ایسی صورت میں مساوات 5.14 استعال نہیں کیا جا سکتا البتہ ایسی صورت میں بھی مزاحت کو مساوات 5.15 کی مدد سے برقی دیاو فی اکائی برقی رو سے بیان کیا جاتا ہے۔ یوں مساوات 4.11 اور مساوات 5.4 استعال کرتے ہوئے سلاخ کے b سے a سرے تک مزاحمت

(5.16) 
$$R = \frac{V}{I} = \frac{-\int_{b}^{a} \mathbf{E} \cdot d\mathbf{L}}{\int_{S} \mathbf{J} \cdot d\mathbf{S}} = \frac{-\int_{b}^{a} \mathbf{E} \cdot d\mathbf{L}}{\int_{S} \sigma \mathbf{E} \cdot d\mathbf{S}}$$

سے حاصل ہو گی جہاں برقی روسلاخ کے مثبت برقی دباو والے سرے سے سلاخ میں داخل ہوتے برقی رو کو کہتے ہیں۔یوں مندر جہ بالا مساوات میں سطحی 'گلل سلاخ کے مثبت سم بے ہر حاصل کیا جائے گا جہاں سطح عمودی تراش کی سمت سلاخ کی جانب لی جائے گی۔

مثال 5.4: تانیے کی ایک کلو میٹر کمبی اور تین ملی میٹر رداس کے تار کی مزاحت حاصل کریں۔

 $\sigma=5.8 imes10^7$  اور  $S=\pi r^2=2.83 imes10^{-7}\,\mathrm{m}^2$  جبران  $L=1000\,\mathrm{m}$  اور  $L=1000\,\mathrm{m}$ 

$$R = \frac{1000}{5.8 \times 10^7 \times 2.83 \times 10^{-7}} = 0.61 \,\Omega$$

حاصل ہوتا ہے۔

مثق 5.1: المونيم ميں کثافت برقی رو مندر جه ذیل صورتوں میں حاصل کریں۔(الف) برقی میدان کی شدت  $\frac{mV}{m}$  50 ہے۔ (ب) آزاد الیکٹران کی ر فتار بہاو <u>mm</u> 0.12 ہے۔ (پ)ایک ملی میٹر موٹی تار جس میں 2 A برقی رو گزر رہی ہے۔

resistance<sup>16</sup>

ہم دیکھ بھے ہیں کہ موصل کے اندر داخل کیا گیا چارج جلد موصل کے سطح پر پہنچ کر سطحی چارج کثافت پیدا کرتا ہے۔یہ جانتے ہوئے کہ حقیقت میں موصل کے اندر چارج کا پیدا ہونا یا وہاں چارج داخل کرنا معمول کی بات ہر گزنہیں، ہم ایسے داخل کئے گئے چارج کی حرکت پر غور کرتے ہیں۔

اوہم کے قانون

 $J = \sigma E$ 

اور استمراری مساوات

$$abla \cdot oldsymbol{J} = -rac{\partial 
ho_h}{\partial t}$$

دونوں میں صرف آزاد چارج کی بات کی جاتی ہے۔ان مساوات سے

$$\nabla \cdot \sigma \boldsymbol{E} = -\frac{\partial \rho_h}{\partial t}$$

یا

$$\nabla \cdot \frac{\sigma}{\epsilon} \mathbf{D} = -\frac{\partial \rho_h}{\partial t}$$

کھا جا سکتا ہے۔اگر موصل میں  $\sigma$  اور arepsilon کی قیمتیں اٹل ہوں تب اس مساوات کو

$$\nabla \cdot \boldsymbol{D} = -\frac{\epsilon}{\sigma} \frac{\partial \rho_h}{\partial t}$$

لکھا جا سکتا ہے۔صفحہ 78 پر مساوات 3.33 جو میکس ویل کی پہلی مساوات ہے کی مدد سے یوں

$$\rho_h = -\frac{\epsilon}{\sigma} \frac{\partial \rho_h}{\partial t}$$

حاصل ہوتا ہے۔مساوات 5.12 کہتا ہے کہ موصلیت کی قیمت آزاد الیکٹران کی تحجی چارج کثافت  $ho_e$  اور الیکٹران کی حرکت پذیری پر منحصر ہے۔مساوات 5.13 تانبے میں  $ho_e=-1.36 imes10^{10}\,\mathrm{C/m^3}$  دیتا ہے جو انتہائی بڑی مقدار ہے۔اتنے چارج میں ہیرونی داخل چارج نمک برابر بھی حیثیت نہیں رکھتا للذا $\sigma$  کی قیمت کو اٹل تصور کیا جا سکتا ہے۔ یوں مندرجہ بالا مساوات کو نئی شکل

$$\frac{\partial \rho_h}{\rho_h} = -\frac{\sigma}{\epsilon} \partial t$$

میں لکھتے ہوئے،اس کا تکمل

$$\rho_h = \rho_0 e^{-\frac{\sigma}{\epsilon}t}$$

 $^{18}$  ما مستقل  $^{18}$  مستقل  $^{18}$  وقتی مستقل  $^{18}$  مستقل  $^{18}$  وقتی مستقل  $^{18}$  مستقل  $^{18}$  وقتی مستقل  $^{18}$  وقتی مستقل  $^{18}$  وقتی مستقل  $^{18}$  و مستقل  $^{18}$  و مستقل  $^{18}$  و مستقل مستقل مستقل مستقل مستقل محمد و لا  $^{18}$  و و مستقل و مستقل محمد و لا  $^{18}$  و و مستقل محمد و لا  $^{18}$  و مستقل محمد و لا  $^{18}$  و مستقل محمد و لا مح

$$\frac{\epsilon}{\sigma} = \frac{80}{36\pi\times10^9\times10^{-4}} = 7.07\,\mathrm{\mu s}$$

حاصل ہوتا ہے۔اگرچہ تقطیر شدہ پانی انتہائی کم موصل ہے لیکن اس میں بھی کثافت چارج صرف سات مائیکرو سینڈ میں ابتدائی قیمت کے صرف 37 فی صدرہ جاتا ہے۔یوں کسی بھی موصل کے اندر انتہائی کم دورانیے کے لئے اضافی چارج پایا جا سکتا ہے۔اس کھاتی چارج کثافت کے علاوہ اندرون موصل کو چارج سے پاک تصور کیا جا سکتا ہے۔

ذو برق میں مخلف وجوہات کی بنا پر لگاتار آزاد چارج پیدا ہوتے رہتے ہیں جس کی بنا پر ذو برق صفر سے زیادہ موصلیت رکھتے ہوئے برقی رو گزارتا ہے۔ذو برق کے اندر چارج بھی آخر کار سطح پر پہنچ جاتا ہے۔

## 5.4 موصل کر خصوصیات اور سرحدی شرائط

غیر چارج شدہ موصل میں کل آزاد الیکٹران اور مثبت ایٹم برابر تعداد میں پائے جاتے ہیں۔ یوں اس میں برقی میدان صفر کے برابر ہوتا ہے۔ فرض کریں کہ غیر چارج شدہ موصل کے اندر کسی طرح چند الیکٹران نمودار ہو جاتے ہیں۔ یہ الیکٹران برقی میدان کے پیدا کریں گے جس کی وجہ سے موصل میں آزاد الیکٹران موصل کے سطح کی جانب چل پڑیں گے۔ سطح کے باہر غیر موصل خلاء پائی جاتی ہے جس میں الیکٹران حرکت نہیں کر سکتے للذا الیکٹران موصل کے سطح پر پہنچ کر رک جائیں گے۔موصل میں نمودار ہونے والے الیکٹران کے برابر تعداد میں الیکٹران موصل کے سطح پر منتقل ہوں گے جس کے بعد موصل میں دوبارہ منفی الیکٹران اور مثبت ایٹوں کی تعداد برابر ہو جائے گی اور یہ غیر چارج شدہ صورت اختیار کرلے گا۔

آپ نے دیکھا کہ اضافی چارج موصل میں زیادہ دیر نہیں رہ سکتا اور یہ جلد سطح پر منتقل ہو جاتا ہے۔یوں اضافی چارج موصل کے سطح پر بیر ونی جانب چیٹار ہتا ہے۔یہ موصل کی پہلی اہم خاصیت ہے۔

موصل کی دوسری خاصیت برقی سکون ۱۹ کی حالت کے لئے بیان کرتے ہیں۔ برقی سکون سے مراد ایسی صورت ہے جب چارج حرکت نہ کر رہا ہو یعنی جب برقی روصفر کے برابر ہو۔ برقی سکون کی حالت میں موصل کے اندر ساکن برقی میدان صفر رہتا ہے۔ا گراییانہ ہوتاتو میدان کی وجہ سے اس میں آزاد الکیٹران حرکت کرکے برقی روکو جنم دیتے جو غیر ساکن حالت ہے۔

یوں برقی سکون کی حالت میں موصل کے اندر اضافی چارج اور برقی میدان دونوں صفر کے برابر ہوتے ہیں البتہ اس کے سطح پر بیرونی جانب چارج پایا جا سکتا ہے۔آئیں دیکھیں کہ سطح پر پائے جانے والا چارج موصل کے باہر کس قشم کا برقی میدان پیدا کرتا ہے۔

موصل کے سطح پر چارج، موصل کے باہر برقی میدان پیدا کرتا ہے۔ سطح پر کسی بھی نقطے پر ایسے میدان کو دوا جزاء کے مجموعے کی شکل میں لکھا جا سکتا ہے۔ پہلا جزو سطح کے مماسی اور دوسرا جزو سطح کے عمودی رکھتے ہوئے ہم دیکھتے ہیں کہ مماسی جزو صفر ہو گا۔اگر ایسانہ ہو تواس میدان کی وجہ سے سطح پر پائے جانے والے آزاد الیکٹران حرکت میں آئیں گے جو غیر ساکن حالت ہو گی۔یوں ہم

$$(5.17) E_{\mathcal{S}\mathcal{V}} = 0$$

کھ سکتے ہیں۔ سطح پر عمودی برقی میدان گاوس کے قانون کی مدد سے حاصل کیا جا سکتا ہے جو کہتا ہے کہ کسی بھی بند سطح سے کل برقی بہاو کا اخراج، سطح میں گھیرے چارج کے برابر ہوتا ہے۔چونکہ سطح پر مماسی برقی میدان صفر ہے اور موصل کے اندر بھی برقی میدان صفر ہے لندا سطح پر چارج سے کا اخراج صرف عمود کی سمت میں ہو سکتا ہے۔یوں ۵۶ سطح سے عمود کی اخراج DAS اس سطح پر چار کا جم کے برابر ہوگا جس سے

$$D_{(5.18)} \qquad \qquad D_{(5.9)} = \rho_S$$



شکل 5.4: موصل اور خلاء کے سرحد پر برقی شرائط۔

حاصل ہوتا ہے۔آئیں اسی بحث کو بہتر جامہ پہنائیں۔ایسا کرتے ہوئے ہم ایک عمومی ترکیب سکھ لیں گے جو مختلف اقسام کے اشیاء کے سرحد پر میدان کے حصول کے لئے استعال کیا جاتا ہے۔

شکل 5.4 میں موصل اور خالی خلاء کے در میان سرحد موٹی لکیر سے دکھایا گیا ہے۔اس سرحد پر خلاء میں E اور E دکھائے گئے ہیں۔خلاء میں E اور E دکھائے گئے ہیں۔خلاء میں E اور E کے مجموعے کے طور پر بھی دکھایا گیا ہے جو بالترتیب سرحد کے ممائی اور عمود کی اجزاء ہیں۔اسی طرح E کو بھی ممائی اور عمود کی اجزاء کے مجموعہ کے طور پر دکھایا گیا ہے۔ہم صرف اس حقیقت کو لے کر آگے بڑھتے ہیں کہ موصل کے اندر E اور E دونوں صفر کے برابر ہیں۔آئیں اس حقیقت کی بنا پر خلاء میں E کی بنا پر خلاء میں E کی قبیت حاصل کریں۔ہم E کے مجموعے E اور E حاصل کریں گے۔پہلے E حاصل کرتے ہیں۔

$$\oint \mathbf{E} \cdot d\mathbf{L} = 0$$

کو abcd پر لا گو کرتے ہیں۔اس تکمل کو چار ٹکڑوں کا مجموعہ لکھا جا سکتا ہے۔

$$\oint \mathbf{E} \cdot d\mathbf{L} = \int_a^b \mathbf{E} \cdot d\mathbf{L} + \int_b^c \mathbf{E} \cdot d\mathbf{L} + \int_c^d \mathbf{E} \cdot d\mathbf{L} + \int_d^a \mathbf{E} \cdot d\mathbf{L} = 0$$

اب a سے d تک

$$\int_a^b \mathbf{E} \cdot \mathrm{d}\mathbf{L} = E_m \Delta w$$

حاصل ہوتا ہے۔خلاء میں نقطہ b پر عمودی میدان کو  $E_{n,b}$  ککھتے ہوئے b سے c تک

$$\int_{b}^{c} \mathbf{E} \cdot \mathrm{d}\mathbf{L} = -E_{n,b} \frac{\Delta h}{2}$$

حاصل ہوتا ہے۔یاد رہے کہ bc کی آدھی لمبائی موصل کے اندر ہے جہاں E=0 ہے۔c سے d تک تکمل صفر کے برابر ہے چونکہ یہ راستہ موصل کے اندر ہے جہاں E=0

$$\int_{c}^{d} \mathbf{E} \cdot d\mathbf{L} = 0$$

خلاء میں نقطہ a پر عمودی میدان کو  $E_{n,a}$  کھتے ہوئے a تک

$$\int_{d}^{a} \mathbf{E} \cdot \mathrm{d}\mathbf{L} = E_{n,a} \frac{\Delta h}{2}$$

ان چار نتائج سے

$$\oint \mathbf{E} \cdot d\mathbf{L} = E_m \Delta w + (E_{n,a} - E_{n,b}) \frac{\Delta h}{2} = 0$$

کھا جا سکتا ہے۔ سرحد کے قریب میدان حاصل کرنے کی خاطر ہمیں سرحد کے قریب تر ہونا ہو گا یعنی  $\Delta h$  کو تقریباً صفر کے برابر کرنا ہو گا۔ایبا کرنے سے کھا جا سکتا ہے۔ ہم  $\Delta t$  کو اتنا چھوٹا لیتے ہیں کہ اس کی پوری لمبائی پر میدان کو یکسال تصور کرنا ممکن ہو۔ایبا کرتے ہوئے اس میاوات سے

$$\oint \mathbf{E} \cdot \mathrm{d}\mathbf{L} = E_m \Delta w = 0$$

ليعني

 $(5.19) E_m = 0$ 

حاصل ہوتا ہے۔ آئیں اب  $E_n$  حاصل کریں۔  $E_n$  کی بجائے گاوس کے قانون

$$\oint_{S} \mathbf{D} \cdot d\mathbf{S} = Q$$

کی مدد سے  $D_n$  کا حصول زیادہ آسان ثابت ہوتا ہے لہذا ہم اسی کو حاصل کرتے ہیں۔

شکل 5.4 میں موصل اور خالی خلاء کے سرحد پر ۵۸ لمبائی کا بیلن د کھایا گیا ہے۔اس بیلن کے ڈھکنوں کارقبہ ۵۶ ہے۔اگر سرحد پر 6۶ پایا جائے تب بیلن ۶۵۵ چارج کو گھیرے گا۔گاوس کے قانون کے تحت بیلن سے اسی مقدار کے برابر برقی بہاو کا اخراج ہو گا۔ برقی بہاو کا اخراج بیلن کے دونوں سروں اور اس کے نکلی نما سطح سے ممکن ہے۔یوں

$$\oint\limits_{S} \boldsymbol{D} \cdot \mathrm{d}\boldsymbol{S} = \int\limits_{\boldsymbol{\mathcal{V}}} \boldsymbol{D} \cdot \mathrm{d}\boldsymbol{S} + \int\limits_{\boldsymbol{\mathcal{V}}} \boldsymbol{D} \cdot \mathrm{d}\boldsymbol{S} + \int\limits_{\boldsymbol{\mathcal{V}}} \boldsymbol{D} \cdot \mathrm{d}\boldsymbol{S} = \rho_{S} \Delta S$$

لکھا جا سکتا ہے۔اب بیلن کی نچلی سطح موصل کے اندر ہے جہاں میدان صفر کے برابر ہے لہذا

$$\int _{\mathbf{v}} oldsymbol{D} \cdot \mathrm{d} oldsymbol{S} = 0$$

ہو گا۔مساوات 5.19 کے تحت سر حدیر خلاء میں مماسی میدان صفر ہوتا ہے۔موصل میں بھی میدان صفر ہوتا ہے لہذا

$$\int _{\mathcal{U}} \, oldsymbol{D} \cdot \mathrm{d} oldsymbol{S} = 0$$

ہو گا۔ بیلن کے اوپر والے سرے پر

$$\int_{\mathbf{D}} \mathbf{D} \cdot \mathrm{d}\mathbf{S} = D_n \Delta S$$

ہو گا۔ان تین نتائج کو استعال کرتے ہوئے

$$\oint_{S} \mathbf{D} \cdot \mathrm{d}\mathbf{S} = D_{n} \Delta S = \rho_{S} \Delta S$$

5.5. عکس کی ترکیب

لعيني

$$D_n = \rho_S$$

حاصل ہوتا ہے۔ چونکہ  $D=\epsilon_0 E$  ہوتا ہے للذا یوں

 $(5.20) D_n = \epsilon_0 E_n = \rho_S$ 

لکھا جا سکتا ہے۔

مساوات 5.19 اور مساوات 5.20 موصل اور خالی خلاء کے سرحد پر برقی میدان کے شرائط بیان کرتے ہیں۔ موصل اور خلاء کے سرحد پر برقی میدان کے شرائط بیان کرتے ہیں۔ موصل اور خلاء کے سرحد پر برقی میدان موصل کی موصل سے عمود کی خارج ہوتا ہے جبہہ اس کے سرحد کے ممائی میدان صفر کے برابر ہوتا ہے۔ نتیجتاً موصل کی سطح ہم قوہ سطح ہوتی ہے۔ یوں موصل کی سطح پر دو نقطوں کے مابین کسی بھی راتے پر برقی میدان کا تکمل صفر کے برابر ہوگا یعنی  $E \cdot d L = 0$  ہوگا۔ یاد رہے کہ برقی میدان کا تکمل صفر کے دیتا ہے جو تکمل کے راتے پر منحصر نہیں ہوتا لہذا اس راتے کو موصل کی سطح پر ہی رکھا جا سکتا ہے جہاں  $E \cdot d L = 0$  ہونے کی وجہ سے تکمل صفر کے برابر ہوگا۔

 $E_n$ ،  $E_m$  برابر ہے۔ اس نقطے پر پایا جاتا ہے جہاں N(2,-3,5) موصل کی سطح پر پایا جاتا ہے جہاں N(2,-3,5) مشق N(2,-3,5) موصل کی سطح پر پایا جاتا ہے جہاں اور  $\rho_S$  حاصل کریں۔

 $3.71 \, \frac{nC}{m^2}$  وابات: 0،  $\frac{V}{m}$  420 اور

## 5.5 عکس کی ترکیب

جفت قطب کے خطوط صفحہ 105 پر شکل 4.10 میں دکھائے گئے ہیں جہاں دونوں چارجوں سے برابر فاصلے پر لامحدود برقی زمین سطح دکھائی گئی ہے۔ برقی زمین پر انتہائی باریک موٹائی کی لامحدود موصل سطح رکھی جاسکتی ہے۔ایسی موصل سطح پر برقی دباو صفر وولٹ ہو گا اور اس پر میدان عمودی ہو گا۔موصل کے اندر برقی میدان صفر رہتا ہے اور اس سے برقی میدان گزر نہیں پاتا۔

اگراس موصل سطح کے بنچ سے جفت قطب کا منفی چارج ہٹا دیا جائے تب بھی سطح کے اوپر جانب میدان عمودی ہی ہو گا۔یاد رہے برقی زمین صفر وولٹ پر ہوتا ہے۔موصل سطح کے اوپر جانب میدان جول کا تول رہے گا جبکہ اس سے بنچ میدان صفر ہو جائے گا۔اسی طرح سطح کے اوپر جانب سے جفت قطب کا مثبت چارج ہٹانے سے سطح کے نچلے میدان پر کوئی اثر نہیں پڑتا جبکہ سطح سے اوپر میدان صفر ہو جاتا ہے۔

آئیں ان حقائق کو دوسری نقطہ نظر سے دیکھیں۔فرض کریں کہ لامحدود موصل سطح یا برتی زمین کے اوپر شبت نقطہ چارج پایا جاتا ہے۔چونکہ ایک صورت میں سطح کے اوپر جانب برتی میدان بالکل جفت قطب کے میدان کی طرح ہو گا للذا ہم برتی زمین کے نجلی جانب عین مثبت چارج کے نیچے اور استے ہی فاصلے پر برابر مگر منفی چارج رکھتے ہوئے برتی زمین کو ہٹا سکتے ہیں۔اوپر جانب کے میدان پر ان اقدام کا کوئی اثر نہیں ہوگا۔یوں جفت قطب کے تمام مساوات بروئے کار لاتے ہوئے زمین کے اوپر جانب کا میدان حاصل کیا جا سکتا ہے۔یاد رہے کہ سطح کے نیچے برتی زمین کو صفر ہی تصور کیا جائے



شكل 5.5: عكس كي تركيب.

گا۔اگر برقی زمین کی سطح کو آئینہ تصور کیا جائے تب مثبت چارج کا عکس اس آئینہ میں اس مقام پر نظر آئے گا جہاں ہم نے تصوراتی منفی چارج رکھا۔یوں اس منفی چارج کو حقیقی چارج کا عکس <sup>20</sup> کہتے ہیں۔

الیی ہی ترکیب لامحدود زمینی سطح کے ایک جانب منفی چارج سے پیدا میدان حاصل کرنے کی خاطر بھی استعال کیا جاتا ہے۔ایسی صورت میں زمین کی دوسری جانب عین منفی چارج کے سامنے،اتنے ہی فاصلے پر برابر مقدار مگر مثبت چارج رکھتے ہوئے برقی زمین کو ہٹایا جا سکتا ہے۔

کسی بھی چارج کو نقطہ چارجوں کا مجموعہ نصور کیا جا سکتا ہے۔ لہذا لا محدود برقی زمین یا لا محدود موصل سطح کی ایک جانب کسی بھی شکل کے چارجوں کا میدان، سطح کی دوسری جانب چارجوں کا عکس رکھتے اور زمین کو ہٹاتے ہوئے حاصل کیا جاتا ہے۔اس ترکیب کو عکس کی ترکیب کہتے ہیں۔ یاد رہے کہ کسی بھی لا محدود موصل سطح جس کے ایک جانب چارج پایا جاتا ہو پر سطحی چارج پایا جائے گا۔ عمواً مسئلے میں لا محدود سطح اور سطح کے باہر چارج معلوم ہوں گے۔ایسے مسئلے کو حل کرنے کی خاطر سطح پر سطحی چارجوں کا علم بھی ضروری ہوتا ہے۔ سطحی چارج دریافت کرنا نسبتاً مشکل کام ہے جس سے چھٹکارا حاصل کرنا عمواً زیادہ آسان ثابت ہوتا ہے۔

شکل 5.5 میں لامحدود موصل سطح کے اوپر جانب مختلف اقسام کے چارج دکھائے گئے ہیں۔اسی شکل میں مسئلے کو عکس کے ترکیب کی نقطہ نظر سے بھی دکھایا گیا ہے۔موصل سطح کے مقام پر دونوں صور توں میں صفر وولٹ ہی رہتے ہیں۔

مثال 5.5: لا محدود موصل سطح z=2 قریب N(5,7,8) پر N(5,7,8) چارج پایا جاتا ہے۔ موصل کی سطح پر نقطہ E بر E عاصل کرتے ہوئے اس مقام پر موصل کی سطحی کثافت چارج عاصل کریں۔

$$\boldsymbol{E}_{+} = \frac{5 \times 10^{-6} (-3\boldsymbol{a}_{\mathrm{X}} - 3\boldsymbol{a}_{\mathrm{Y}} - 5\boldsymbol{a}_{\mathrm{Z}})}{4\pi\epsilon_{0} (3^{2} + 3^{2} + 5^{2})^{\frac{3}{2}}} = \frac{5 \times 10^{-6} (-3\boldsymbol{a}_{\mathrm{X}} - 3\boldsymbol{a}_{\mathrm{Y}} - 5\boldsymbol{a}_{\mathrm{Z}})}{4\pi\epsilon_{0} (43)^{\frac{3}{2}}}$$

5.5. عکس کی ترکیب

پیدا کرے گا۔ای طرح D µC چارج نقطہ M پر

$$\boldsymbol{E}_{-} = \frac{-5 \times 10^{-6} (-3\boldsymbol{a}_{\mathrm{X}} - 3\boldsymbol{a}_{\mathrm{Y}} + 5\boldsymbol{a}_{\mathrm{Z}})}{4\pi\epsilon_{0}(3^{2} + 3^{2} + 5^{2})^{\frac{3}{2}}} = \frac{-5 \times 10^{-6} (-3\boldsymbol{a}_{\mathrm{X}} - 3\boldsymbol{a}_{\mathrm{Y}} + 5\boldsymbol{a}_{\mathrm{Z}})}{4\pi\epsilon_{0}(43)^{\frac{3}{2}}}$$

میدان پیدا کرے گا۔ چونکہ برقی میدان خطی نوعیت کا ہوتا ہے لہذا کسی بھی نقطے پر مختلف چار جوں کے پیدا کردہ میدان جمع کرتے ہوئے کل میدان حاصل کیا جا سکتا ہے۔ یوں نقطہ M پر کل میدان

$$E_{\mathcal{J}} = E_{+} + E_{-} = rac{-50 imes 10^{-6} a_{\mathrm{Z}}}{4 \pi \epsilon_{0} (43)^{rac{3}{2}}}$$

ہو گا۔ موصل کی سطح پر میدان عمودی ہوتا ہے۔ موجودہ جواب اس حقیقت کی تصدیق کرتا ہے۔ یوں موصل کی سطح پر

$$D = \epsilon_0 E = \frac{-50 \times 10^{-6} a_{\rm Z}}{4\pi (43)^{\frac{3}{2}}} = -14.13 \times 10^{-9} a_{\rm Z}$$

حاصل ہوتا ہے جو سطح میں داخل ہونے کی سمت میں ہے۔ یوں مساوات 5.20 کے تحت سطح پر

$$\rho_S = -14.3 \frac{\text{nC}}{\text{m}^2}$$

پایا جاتا ہے۔

مندرجہ بالا مثال میں اگر N(5,7,8) پر N(5,7,8) پایا جاتا اور لا محدود سطح موجود نہ ہوتا تب M(2,4,3) پر میدان  $E_+$  ہوتا۔ لا محدود موصل سطح کی موجود نہ ہوتا تب M(2,4,3) پر میدان  $E_+$  ہوتا۔ لا محدود موصل سطح کی موجود کی میں یہ قیمت تبدیل ہو کر مثال میں حاصل کی گئی <sub>کی  $E_+$ </sub> ہو جاتی ہے۔ در حقیقت سطح کے قریب چارج کی وجہ سے سطح پر سطحی چارج دونوں کے میدان کا مجموعہ حقیقی میدان ہوتا ہے۔

مثال 5.6 لا محدود موصل سط z=0 میں (0,0,z) پر Q نقطہ جارج سے پیدا کثافت سطی جارج حاصل کریں۔

حل: اس مسئلے کو عکس کے ترکیب سے حل کرنے کی خاطر (0,0,-z) پر Q – چارج رکھتے ہوئے موصل سطح کو ہٹا کر حل کرتے ہیں۔الیی صورت میں سطح کے مقام پر عمومی نقطہ (ρ, φ, 0) پر Q اور Q – چارج

$$egin{aligned} oldsymbol{E}_{+} &= rac{Q(
ho oldsymbol{a}_{
ho} - z oldsymbol{a}_{
m Z})}{4\pi \epsilon_0 (
ho^2 + z^2)^{rac{3}{2}}} \ oldsymbol{E}_{-} &= rac{-Q(
ho oldsymbol{a}_{
ho} + z oldsymbol{a}_{
m Z})}{4\pi \epsilon_0 (
ho^2 + z^2)^{rac{3}{2}}} \end{aligned}$$

میدان پیدا کریں گے۔ $oldsymbol{D}=\epsilon_0oldsymbol{E}$  استعال کرتے ہوئے کل

$$D = rac{-2Qza_{
m Z}}{4\pi(
ho^2 + z^2)^{rac{3}{2}}}$$



شكل 5.6: نقطه چارج سے لامحدود موصل سطح میں پیدا سطحی كثافت چارج.

جا صل ہوتا ہے جس کی سمت ہے۔ جو موصل میں اوپر سے داخل ہونے کی سمت ہے۔ یوں موصل سطح پر 
$$\rho_S = \frac{-2Qz}{4\pi(\rho^2+z^2)^{\frac{3}{2}}} \qquad \frac{C}{m^2}$$

بایا جائے گا۔ شکل 5.6 میں چارج Q اور موصل سطح پر 65 د کھائے گئے ہیں۔

مساوات 5.21 کو استعال کرتے ہوئے لا محدود موصل سطح پر کل چارج حاصل کیا جا سکتا ہے۔ یقینی طور پر اس کی مقدار Q – ہی حاصل ہو گ۔

### 5.6 نيم موصل

نیم موصل اشیاء مثلاً غالص سیکان اور جرمینیم میں آزاد چار جوں کی تعداد موصل کی نسبت ہے کم جبہ غیر موصل کی نسبت سے زیادہ ہوتی ہے۔ یوں ان کی موصلیت موصل اور غیر موصل کے موصلیت ہے درمیان میں ہوتی ہے۔ یہم موصل کی خاص بات میہ ہے کہ ان میں انہائی کم مقدار کے ملاوٹ 12 سے ان کی موصلیت پر انہائی گہرااثر پڑتا ہے۔ یہم موصل دوری جدول 22 کے چوشے جماعت 23 سے تعلق رکھتے ہیں۔ دوری جدول کے پانچویں جماعت کے عناصر مثلاً ناکٹر وجن اور فاسفورس کا ایٹم ایک عدد الکیٹر ان عطاکر نے کار بجان رکھتا ہے۔ یوں انہیں عطاکندہ 24 عناصر کہتے ہیں۔ یہم موصل میں ایسا ہر عطاکندہ ملاوٹی ایٹم ایک عدد آزاد الکیٹر ان کو جنم دیتا ہے۔ ایسے عضر کی نہایت کم مقدار کی ملاوٹ سے نیم موصل میں آزاد الکیٹر ان کی تعداد بڑھ جاتی ہے موصل میں آزاد الکیٹر ان کی تعداد بڑھ جاتی ہے موصل میں آزاد الکیٹر ان کی تعداد بڑھ ایک ہو کو n نیم موصل کہتے ہیں۔ اس کے بر عکس تعرب ہو جاتی ہے۔ ایسے عضر کی نہایت کی موصل جن کی تعداد بڑھا دی گئی ہو کو n نیم موصل کہتے ہیں۔ اس کے بر عکس تعرب ہو حالی المونیم کو قبول کندہ 25 عضر کہا جاتا ہے۔ ملاوٹی المونیم کو قبول کندہ 25 عضر کہا جاتا ہے۔ ملاوٹی المونیم کو قبول کندہ 25 عضر کہا جاتا ہے۔ ایس المونیم کی موصل کی ایٹم ایک موصل کی ایٹم ایک کیٹر ان حاصل کرتے ہوئے الکیٹر ان کی جگہ خالی جگہ نالی جگہ نالی جگہ نالی کی جگہ خالی جگہ نائی موصل کی ایکٹر ان حاصل کرتے ہوئے الکیٹر ان کی جگہ خالی گئر ہوتا ہے۔ ایسار آزاد نول کو جنم ویتا ہے۔ ایسا آزاد نول کو جنم ویتا ہے۔ ایسار آزاد نول کو جنم ویتا ہے۔ ایسار آزاد نول کی حرکت کرت پذیری n کی میں آزاد نول کو جنم ویتا ہے۔ ایسار آزاد نول کی حرکت کرت ہو جود گی میں آزاد نول کو تا کہ براہ کی سمت ہی ہو گی۔ تیر سے جماعت کے عناصر کی ملاوٹ کردہ نیم موصل کو و جنم موصل کو جنم موصل کو جنم موصل کو جنم موصل کو و جنم ویتا ہے۔ آزاد الکیٹر ان اور آزاد نول مل کی سمت ہی ہو گی۔ تیر سے جماعت کے عناصر کی ملاوٹ کردہ نیم موصل کو و جنم موصل کو و جنم ویتا ہے۔ آزاد الکیٹر ان اور آزاد نول مل کی سمت ہی ہو گی۔ تیر سے جماعت کے عناصر کی ملاوٹ کردہ نیم موصل کو و کئم موصل کو جنم موصل کو ویت ہیں۔ آزاد الکیٹر ان اور آزاد نول مل کی سمت ہی ہو گی۔ تیر سے جاعت کے عناصر کی ملاوٹ کردہ نیم موصل کو کئم موصل کو جنم دوروں کی سمت کی سمت تو کو جنم موصل کی موص

$$\sigma = -\rho_e \mu_e + \rho_h \mu_h$$

doping<sup>21</sup>
periodic table<sup>22</sup>
group<sup>23</sup>
donor<sup>24</sup>
acceptor<sup>25</sup>

5.7. خو برق

موصلیت پیدا کرتے ہیں جہاں ، آزاد خول کی تحجمی چارج کثافت ہے۔خالص نیم موصل میں حرارتی توانائی سے نیم موصل کے ایٹم سے الیکٹران خارج ہو کر آزاد الیکٹران کی حیثیت اختیار کرتا ہے۔یوں خالص نیم موصل میں آزاد الیکٹران اور آزاد خول کی حیثیت اختیار کرتا ہے۔یوں خالص نیم موصل میں آزاد الیکٹران اور آزاد خول کی تعداد برابر ہوتی ہے۔

خالص نیم موصل اوہم کے قانون کی نقطہ شکل پر پورااتر تاہے۔یوں کسی ایک درجہ حرارت پر نیم موصل کی موصلیت تقریباًامُل قیمت رکھتی ہے۔

آپ کو یاد ہو گا کہ درجہ حرارت بڑھانے سے موصل میں آزاد الیکٹران کی رفتار بہاو کم ہوتی ہے جس سے موصلیت کم ہو جاتی ہے۔درجہ حرارت کا موصل میں آزاد الیکٹران کے حجمی چارج کثافت پر خاص اثر نہیں ہوتا۔اگرچہ نیم موصل میں بھی درجہ حرارت بڑھانے سے آزاد چارج کی رفتار بہاو کم ہوتی ہے لیکن ساتھ ہی ساتھ آزاد چارج کی مقدار نسبتاً زیادہ مقدار میں بڑھتی ہے جس کی وجہ سے نیم موصل کی موصلیت درجہ حرارت بڑھانے سے بڑھتی ہے۔یہ موصل اور نیم موصل کے خصوصیات میں واضح فرق ہے۔

 $0.12 \, \frac{\mathrm{m}^2}{\mathrm{V}_8}$  مشق 5.3.  $\times$  300 ورجه حرارت پر خالص سلیکان میں آزاد الیکٹر ان اور آزاد خول کی تعداد  $10^{16} \times 1.5 \times 10^{16}$  فی مربع میٹر، الیکٹر ان کی رفتار بہاو  $\frac{\mathrm{m}^2}{\mathrm{V}_8}$  0.02 ورجہ حرارت پر خالص سلیکان جبہہ خول کی رفتار بہاو  $\frac{\mathrm{m}^2}{\mathrm{V}_8}$  0.02 ہیں۔ خالص سلیکان اور خالص جرمینیم کی موصلیت دریافت کریں۔

 $2\frac{S}{m}$  وابات:  $\frac{S}{m}$  10.348 ور

## 5.7 ذو برق

اس باب میں اب تک ہم موصل اور نیم موصل کی بات کر چکے ہیں جن میں آزاد چارج پائے جاتے ہیں۔ یوں ایسے اشیاء پر برقی دباو لا گو کرنے سے ان میں بر قرار برقی روپیدا کی جا سکتی ہے۔ آئیں الی اشیاء کی بات کریں جن میں آزاد چارج نہیں پائے جاتے لہذا ان میں بر قرار برقی روپیدا کرنا ممکن نہیں ہوتا۔

بعض اشیاء مثلاً پانی کے مالیکیول میں قدرتی طور پر مثبت اور منفی مراکز پائے جاتے ہیں۔ ایسے مالیکیول کو قطببی ہالیکیول کہتے ہیں۔ تطببی مالیکیول کو جفت قطب تصور کیا جا سکتا ہے۔ ہیر ونی میدان کے غیر موجود گی میں کسی بھی چیز میں قطببی مالیکیول بلا ترتیب پائے جاتے ہیں۔ ہیر ونی میدان کا لاگو کرنے سے مالیکیول کے مثبت سرے پر میدان کی صحت میں جبکہ منفی سرے پر میدان کی الٹ سمت میں قوت عمل کرتا ہے۔ ان قوتوں کی وجہ سے مالیکیول کے مثبت اور منفی مراکز ان قوتوں کی سمتوں میں حرکت کرتے ہوئے گھوم جاتے ہیں اور ساتھ ہی ساتھ مراکز کے در میان فاصلہ بھی بڑھ جاتا ہے۔ ٹھوس قطببی اشیاء میں ایٹیوں اور مالیکیول کے در میان قوتیں ان حرکات کو روکنے کی کوشش کرتی ہیں۔ اسی طرح مثبت اور منفی چارج کے مابین قوت کشش ان کے در میان فاصلہ بڑھنے کو روکتا ہے۔ جہاں یہ مخالف قوتیں برابر ہوں وہاں مثبت اور منفی مراکز رک جاتے ہیں۔ ہیر ونی میدان ان تمام بلا ترتیب جفت قطب کو ایک سمت میں لانے کی کوشش کرتا ہے۔

بعض اشیاء میں قدرتی طور پر مثبت اور منفی مراکز نہیں پائے جاتے البتہ انہیں ہیر ونی میدان میں رکھنے سے ان میں ایسے مراکز پیدا ہو جاتے ہیں۔ایسے اشیاء کو غیر قطببی <sup>28</sup> کہتے ہیں۔ ہیرونی میدان مالیکیول کے الیکٹرانوں کو ایک جانب تھینچ کر منفی مرکز جبکہ بقایا ایٹم کو مثبت چھوڑ کر مثبت مرکز پیدا کر تا



شكل 5.7: بيروني ميدان كي موجودگي ميں مقيد چارج كي حركت.

ہے۔ مثبت اور منفی چارج کے مابین قوت کشش اس طرح مراکز پیدا ہونے کے خلاف عمل کرتا ہے۔جہاں یہ مخالف قوتیں برابر ہو جائیں وہیں پر چارج کے حرکت کا سلسلہ رک جاتا ہے۔ یہ اشیاء قدرتی طور پر غیر قطببی ہیں البتہ انہیں بیرونی میدان قطبی بنادیتا ہے۔ پیدا کردہ جفت قطب بیرونی میدان کی سمت میں ہی ہوں گے۔

ایسے تمام اشیاء جو یا تو پہلے سے قطببی ہوں اور یا انہیں بیرونی میدان کی مدد سے قطببی بنایا جا سکے ذو برقی 29 کہلاتے ہیں۔

ذو برق میں بیرونی میدان سے مالیکیول کے اندر حرکت پیدا ہوتی ہے البتہ مالیکیول ازخود اس جگہ رہتا ہے۔ایسا چارج جو بیرونی میدان کی وجہ سے اپنی جگہ پر معمولی حرکت کرتا ہو کو مقید چارج 30 کہتے ہیں۔اس کے برعکس آزاد چارج بیرونی میدان میں مسلسل حرکت کرتا ہے۔

ذو برق کے جفت قطب کا معیار اثر کو صفحہ 104 میں دئے مساوات 4.65

$$(5.23) p = Qd$$

سے ظاہر کیا جا سکتا ہے جہاں Q ذو برق کے جفت قطب میں مثبت مرکز کا چارج ہے۔

ا گراکائی حجم میں n جفت قطب پائے جائیں تب  $\Delta v$  حجم میں  $\Delta v$  جفت قطب ہوں گے جن کا کل معیار اثر جفت قطب تمام کے سمتی مجموعے

$$\mathbf{p}_{\mathcal{F}} = \sum_{i=1}^{n\Delta v} \mathbf{p}_i$$

کے برابر ہو گا جہاں انفرادی p مختلف ہو سکتے ہیں۔ تقطیب 31 سے مراد اکائی حجم میں کل معیار اثر جفت قطب ہے یعنی

$$(5.25) P = \lim_{\Delta v \to 0} \frac{1}{\Delta v} \sum_{i=1}^{n\Delta v} p_i$$

جس کی اکائی کولمب فی مربع میٹر ہے۔ Δυ کو کم سے کم <sup>32</sup>کرتے ہوئے نقطے پر تقطیب حاصل کی گئی ہے۔ حقیقت میں Δυ کو اتنار کھا جاتا ہے کہ اس میں جفت قطب کی تعداد (nΔυ) اتن ہو کہ انفرادی جفت قطب کے اثر کو نظر انداز کرنا ممکن ہو۔ یوں تقطیب کو یکسال نفاعل تصور کیا جاتا ہے۔

آئیں ان حقائق کو استعال کرتے ہوئے آگے بڑھیں۔

شکل 5.7 کو دیکھتے ہوئے آگے پڑھیں۔ تصور کریں کہ ذو برق میں غیر قطبی مالیکیول پائے جاتے ہیں جن کا مقام بیرونی میدان کی غیر موجود گی میں دائروں سے ظاہر کیا گیا ہے۔ بیرونی میدان کے غیر موجود گی میں P = 0 ہو گا۔ ذو برق کے اندر تصوراتی سطح  $\Delta S$  لیتے ہیں جے موٹی گہری سابی کی لکیر

dielectric<sup>29</sup>

ound charge<sup>3</sup>

polarization31

یہ ایسے ہی ہے جیسے لمحاتی رفتار  $rac{\Delta x}{\Delta t}$  حاصل کرتے وقت  $\Delta t o 0$  لیا جاتا ہر ۔

5.7. ذو برق

ے ظاہر کیا گیا ہے۔ اس کے دونوں جانب ہگی سیابی سے a تا a کیر بھی دکھائی گئی ہے۔ ہیر ونی میدان لا گو کرنے سے جفت قطب p پیدا ہوتے ہیں جن کا d اور d کے ساتھ d زاویہ بناتے ہیں۔ ان جفت قطب کو سمتیوں سے ظاہر کیا گیا ہے جہاں سمتیہ کی نوک مثبت جبکہ اس کی دم مغی چارج کا مقام دیتی ہے۔ شکل کو دیکھتے ہوئے صاف ظاہر ہے کہ aa' ہے aa' فاصلے نیچے تک تمام مثبت چارج ہیر ونی میدان لا گو کرنے سے aa' ھے aa' گزرتے ہوئے اوپر چلے جائیں گے۔ اس طرح aa' aa' فاصلے اوپر تک تمام منفی چارج ہیر ونی میدان لا گو کرنے سے aa' گزرتے ہوئے اوپر خلکہ ماکائی گزرتے ہوئے اوپر خلکہ میں گے۔ یوں کھر وقب اور کا میں گیرائی کے مجم کھر کر کے جم کر کے میں جانے کا میں خارج کہ کہ کا گئی ہیں ہوں گے۔ یوں کھر وقب ہیں لیذا آئی مجم میں a کہ میں جانے کا گرد کر اوپر جبکہ aa' میں aa' کے جانب حرکت ایک بی معنی رکھتے ہیں لیذا کل جانے گا۔ خارج کا اوپر جانب حرکت اور منفی چارج کا نینچ جانب حرکت ایک بی معنی رکھتے ہیں لیذا کل

$$\Delta Q_m = nQd\Delta S\cos\theta = nQd\cdot\Delta S$$

چارج سطح سے گزرتے ہوئے اوپر جانب جائے گا جہاں QM لکھتے ہوئے اس حقیقت کی یاد دہانی کرائی گئی ہے کہ ہم مقید چارج کی بات کر رہے ہیں۔چونکہ تمام جفت قطب ایک ہی سمت میں ہیں لہٰذا اس حجم کی تقطیب

$$(5.27) P = nQd$$

ہو گی۔یوں مساوات 5.26 کو

$$\Delta Q_m = P \cdot \Delta S$$

کھا جا سکتا ہے۔اگر  $\Delta S$  کو بند سطح کا ٹکڑا سمجھا جائے جہاں  $a_S$  بیر ونی سمت کو ہو تب اس بند سطح سے کل چارج کا اخراج

$$\oint_{S} \boldsymbol{P} \cdot \mathrm{d}\boldsymbol{S}$$

کے برابر ہو گا۔ یوں بند سطح میں مقید چارج کا اضافہ

$$Q_m = -\oint_{S} \mathbf{P} \cdot d\mathbf{S}$$

ہو گا۔ یہ مساوات گاوس کے قانون کی شکل رکھتی ہے لہذا ہم کثافت برقی بہاو کی تعریف یوں تبدیل کرتے ہیں کہ یہ خالی خلاء کے علاوہ دیگر صور توں میں بھی قابل استعمال ہو۔ گاوس کا قانون صحہ 67 پر مساوات 3.6 میں دیا گیا ہے۔ ہم پہلے اس قانون کو  $\epsilon_0 E$  اور کل گھیرے چارج کی شکل میں لکھتے ہیں ہیں

$$Q_{\mathcal{F}} = \oint_{S} \epsilon_0 \mathbf{E} \cdot d\mathbf{S}$$

جہاں

$$Q_{\mathcal{K}} = Q + Q_m$$

کے برابر ہے۔مساوات 5.30 میں بند سطح کی آزاد چارج Q اور مقید چارج  $Q_m$  کو گھیرے ہوئے ہے۔مساوات 5.31 میں مساوات 5.30 اور مساوات 5.30 پر کرتے ہوئے

(5.32) 
$$Q = Q_{\mathcal{S}} - Q_m = \oint_{S} (\epsilon_0 \mathbf{E} + \mathbf{P}) \cdot d\mathbf{S}$$

حاصل ہوتا ہے۔

ہم کثافت برقی بہاو کو اب

$$(5.33) D = \epsilon_0 E + P$$

132 باب 5. موصل، ذو برق اور كېيسٹر

بیان کرتے ہیں جو زیادہ کارآ مد اور عمومی مساوات ہے۔یوں ذو برق اشیاء کے لئے کثافت برقی بہاو میں اضافی جزو P شامل ہو جاتا ہے۔اس طرح

$$Q = \oint_{S} \mathbf{D} \cdot d\mathbf{S}$$

لکھا جا سکتا ہے جہاں Q گیرا ہوا آزاد چارج ہے۔

ہم آزاد، مقید اور کل چارجوں کے لئے آزاد، مقید اور کل تحجی کثافت بیان کرتے ہوئے

$$Q = \int_{h} \rho_{h} \, \mathrm{d}h$$

$$Q_{m} = \int_{h} \rho_{m} \, \mathrm{d}h$$

$$Q_{b} = \int_{h} \rho_{b} \, \mathrm{d}h$$

لکھ سکتے ہیں۔

مسُله پھیلاو کے استعال سے مساوات 5.29، مساوات 5.30 اور مساوات 5.34 کے نقطہ اشکال

$$abla \cdot oldsymbol{P} = -
ho_m \ \epsilon_0 
abla \cdot oldsymbol{E} = 
ho_{oldsymbol{\mathcal{S}}}$$

اور

$$\nabla \cdot \boldsymbol{D} = \rho_h$$

لکھے جا سکتے ہیں۔

قلم میں دوراتے طرز پر ایٹم پائے جاتے ہیں۔ قلم میں عوماً کی ایک سمت میں با آسانی جبکہ بقایا ستوں میں مشکل سے تقطیب پیدا کرنا ممکن ہوتا ہے۔ جس سمت میں باآسانی تقطیب پیدا کی جاسکے اسے آسان محور دق یا آسان سمت یازم محور کہتے ہیں۔۔ایسے اشیاء جو مختلف اطراف میں مختلف خصوصیات رکھتے ہوں ناہم سموت <sup>44</sup> کہ لااتے ہیں۔ساتھ ہی ساتھ بیہ ضروری نہیں کہ ہیر ونی لاگو میدان اور تقطیب ایک ہی سمت میں ہوں۔ کچھ ایسے اشیاء بھی پائے جاتے ہیں جو برقی چال کے فاصیت رکھتے ہیں۔ان میں تقطیب کی قیمت ان اشیاء کی گزشتہ تاریخ پر مبنی ہوتی ہے۔ یہ عمل بالکل مقناطیسی مادے کی مقناطیسی چال کے طرز کی خصوصیت ہے۔

کچھ ذو برق اشیاء میں لا گو بیر ونی میدان E اور تقطیب P ہر صورت ایک ہی سمت میں ہوتے ہیں۔ ان اشیاء کی خصوصیات ہر طرف بالکل ایک ہی طرح ہوتی ہیں۔ان اشیاء ہم سمتی 36 کہلاتے ہیں۔ان کتاب میں صرف انہیں طرح ہوتی ہیں۔ایسے اشیاء ہم سمتی 36 کہلاتے ہیں۔اس کتاب میں صرف انہیں پر تبصرہ کیا جائے گا۔ایسے اشیاء میں تقطیب اور لا گو برقی میدان راست تناسب تعلق

(5.36) 
$$P = \chi_e \epsilon_0 \mathbf{E}$$
$$= (\epsilon_R - 1)\epsilon_0 \mathbf{E}$$

easy axis<sup>33</sup> anisotropic<sup>34</sup> ferroelectric<sup>35</sup> isotropic<sup>36</sup> 5.7. ذو برق

ر کھتا ہے جہاں مساوات کے مستقل کو  $\chi_e \epsilon_0$  یا  $(\epsilon_R-1)\epsilon_0$  ککھا جاتا ہے۔ یوں مساوات 5.33

$$\mathbf{D} = \epsilon_0 \mathbf{E} + (\epsilon_R - 1)\epsilon_0 \mathbf{E}$$

يا

$$(5.37) D = \epsilon_R \epsilon_0 E = \epsilon E$$

شکل اختیار کرتاہے جہاں ذو برق کا برقی مستقل

$$\epsilon = \epsilon_R \epsilon_0$$

کے برابر ہے۔ماہر طبیعیات عموماً  $\chi_e$  جبکہ انجنٹیر عموماً  $\epsilon_R$  استعمال کرتے ہیں۔ان کا تعلق

$$\chi_e = \epsilon_R - 1$$

ے۔

ہے جنوبی برقی مستقل 38 جزوی برقی مستقل 38 جبکہ  $\epsilon_0$  خالی خلاء کا برقی مستقل 99 کہلاتے ہیں۔ اس کتاب کے آخر میں صفحہ 214 پر چند مخصوص اشیاء کے برقی مستقل جدول 8.2 میں دئے گئے ہیں۔

غیر یکسال⁴ خاصیت رکھنے والے اشیاء اتنے سادہ مساوات سے نہیں نپٹے جاتے۔ان اشیاء میں E کا ہر کار تیسی جزو D کے ہر کار تیسی جزو پر اثر انداز ہوتا ہے لہٰذاان کا تعلق یوں

(5.40) 
$$D_{x} = \epsilon_{xx}E_{x} + \epsilon_{xy}E_{y} + \epsilon_{xz}E_{z}$$
$$D_{y} = \epsilon_{yx}E_{x} + \epsilon_{yy}E_{y} + \epsilon_{yz}E_{z}$$
$$D_{z} = \epsilon_{zx}E_{x} + \epsilon_{zy}E_{y} + \epsilon_{zz}E_{z}$$

کھا جاتا ہے جہاں نو اعدادی  $\epsilon_{ij}$  کو مجموعی طور پر تناوی مستقل  $^4$  کہا جاتا ہے۔اسی طرح مساوات  $^5$  کے طرز کے مساوات تناوی مساوات کہلاتے ہیں۔ناہم سموت اشیاء میں D اور E (اور E) آپس میں متوازی نہیں ہوتے اور اگرچہ E E استعال کرتے وقت اس حقیقت کا خیال رکھنا ہو گا کہ e اب تناوی مستقل ہے۔ناہم سموت اشیاء پر ایک مثال کے بعد بحث روکتے ہیں۔

مثال 5.7: ایک ناهم سموت ذو برق کا تناوی مستقل

$$\epsilon = \epsilon_0 \begin{vmatrix} 4 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{vmatrix}$$

اور کی $E=1a_{
m X}+1a_{
m Y}+1a_{
m Z}$  اور کی $E=\sqrt{3}a_{
m Y}$  ورت میں D حاصل کریں۔  $E=\sqrt{3}a_{
m X}$  اور کی میدان

$$D=\epsilon_0(4a_{
m X}+9a_{
m Y}+9a_{
m Z})$$
 ابات،  $D=9\epsilon_0a_{
m Y}$  کابات،  $D=4\sqrt{3}\epsilon_0a_{
m X}$  ابات،

susceptibility<sup>37</sup>

tensor41

relative electric constant, relative permittivity<sup>38</sup>

permittivity of vacuum, electric constant of vacuum<sup>39</sup>

non homogeneous<sup>40</sup>

اس مثال میں تینوں بار $|E|=\sqrt{3}$ رہا جبکہ D کی قیشیں خاصی مختلف ہیں۔ یہی ناہم سموت ذو برق کی پہچان ہے۔

مثق 5.4: مندرجہ ذیل صور توں میں تقطیب حاصل کریں۔ (الف) ذو برق میں میں E=5  $\frac{\mathrm{kV}}{\mathrm{m}}$  کی صورت میں تقطیب حاصل کریں۔ (الف) ذو برق میں کو جات ہے۔ (ب) E=100 ور 1.5 E=100 ور 1.5 E=100 ور 1.5 E=100 ور 1.5 وبرق میں E=100 ور 1.5 مالیکیول فی مربع میٹر ہیں جہاں E=100 ور 1.5 میار جفت قطب E=100 ور 1.2 E=100 ور 1.2 E=100 ور 1.3 میار جفت قطب میٹر ہیں جہاں ہوں کے میٹر ہیں جہاں کے ایک میار جفت قطب میٹر ہیں جہاں کے ایک میار جفت قطب میٹر ہیں جہاں ہوں کی میٹر ہیں جہاں کے ایک میٹر ہیں جہاں کا معیار جفت قطب میٹر ہیں جہاں ہوں کی میٹر ہیں جہاں کے ایک میٹر ہیں جہاں کا معیار جفت قطب میٹر ہیں جہاں ہوں کے ایک میٹر ہیں جہاں کی میٹر ہیں جہاں کے ایک میٹر ہیں جہاں کا معیار جفت قطب میٹر ہیں جہاں ہوں کے ایک میٹر ہیں جہاں ہوں کے ایک میٹر ہیں جہاں کے ایک میٹر ہیں کے ایک میٹر ہیں جہاں کے ایک میٹر ہیں کے ایک میٹر ہیں جہاں کے ایک میٹر ہیں کے ایک کے ایک میٹر ہیں جہاں کے ایک کے

 $7.2 \, \frac{\mu C}{m^2}$  اور  $\frac{\mu C}{m^2}$  1.156 أور  $\frac{\mu C}{m^2}$  7.2 أورابات:

5.8 كامل ذو برق كر سرحد پر برقى شرائط

دو مختلف ذو برق کے سرحدی برقی شرائط شکل 5.8 کی مدد سے حاصل کرتے ہیں جہاں پہلے ذو برقی کا برقی مستقل  $\epsilon_1$  جبکہ دوسرے ذو برق کا برقی مستقل  $\epsilon_2$  جبکہ دوسرے ذو برق کا برقی مستقل  $\epsilon_2$  جب کہا کے مماسی اجزاء حاصل کرنے کی خاطر مستطیلی راستہ  $\epsilon_2$ 

$$\oint \mathbf{E} \cdot \mathrm{d}\mathbf{L} = 0$$

لعيني

$$E_{m1}\Delta w - E_{n1,b}\frac{\Delta h}{2} - E_{n2,b}\frac{\Delta h}{2} - E_{m2}\Delta w + E_{n2,a}\frac{\Delta h}{2} + E_{n1,a}\frac{\Delta h}{2} = 0$$

لکھتے ہیں جس سے

$$(E_{m1} - E_{m2})\Delta w + (E_{n1,a} + E_{n2,a} - E_{n1,b} - E_{n2,b})\frac{\Delta h}{2} = 0$$

حاصل ہوتا ہے۔ $\Delta w$ اتنا چھوٹالیا جاتا ہے کہ اس پر مماسی میدان کو یکساں تصور کرنا ممکن ہو۔ مستطیل کے بائیں اور دائیں اطراف کے میدان کو زیر نوشت میں a اور b سے ظاہر کیا گیا ہے۔ سرحدی شرائط حاصل کرنے کی خاطر سطح کے قریب تر جانا ہو گا۔ایسا کرنے سے  $\Delta h \to 0$  ہو گا جس سے

$$(E_{n1,a} + E_{n2,a} - E_{n1,b} - E_{n2,b}) \frac{\Delta h}{2} \to 0$$

ہو کر قابل نظر انداز ہو گا۔یوں

$$(E_{m1} - E_{m2})\Delta w = 0$$

رہ جاتا ہے جس سے

 $(5.41) E_{m1} = E_{m2}$ 



شکل 5.8: دو مختلف ذو برق کے سرحد پر برقی شرائط۔

حاصل ہوتا ہے۔اس مساوات سے

$$\frac{D_{m1}}{\epsilon_1} = E_{m1} = E_{m2} = \frac{D_{m2}}{\epsilon_2}$$

لعيني

$$\frac{D_{m1}}{D_{m2}} = \frac{\epsilon_1}{\epsilon_2}$$

لکھا جا سکتا ہے۔

مساوات 5.41 کہتا ہے کہ ایک ذو برتی سے دوسرے ذو برق میں داخل ہوتے ہوئے سر حدید مماسی برتی شدت بلا جوڑ<sup>42</sup> ہوتا ہے۔اس کے برعکس مساوات 5.42 کہتا ہے کہ دو ذو برتی کے سر حدید مماسی برتی بہاو جوڑ دار <sup>43</sup> ہوتا ہے۔یوں ایک ذو برتی سے دوسرے ذو برتی میں داخل ہوتے ہوئے مماسی برتی بہاو میں سیڑھی نما<sup>44</sup> تبدیلی پائی جاتی ہے۔

عمودی اجزاء حاصل کرنے کی خاطر گاوس کا قانون شکل میں رقبہ ۵۶ گھیرتے بیلن پر لا گو کرتے ہوئے

(5.43) 
$$\int_{\Delta S} \mathbf{D}_{n1} \cdot d\mathbf{S} + \int_{\Delta S} \mathbf{D}_{n2} \cdot d\mathbf{S} + \int_{\Delta S} \mathbf{D}_{m} \cdot d\mathbf{S} = \int_{\Delta S} \rho_{S} dS$$

لکھا جا سکتا ہے۔ چھوٹے رقبہ پر میدان کو یکسال تصور کرتے ہوئے تکمل کے باہر لے جاتے ہوئے مساوات 5.43 کے پہلے جزوسے

$$\int_{\Delta S} \mathbf{D}_{n1} \cdot \mathrm{d}\mathbf{S} = D_{n1} \Delta S$$

حاصل ہوتا ہے۔ یاد رہے کہ بند سطح کی سمت باہر کو ہوتی ہے لہذا  $D_{n1}$  اور بیلن کے اوپر ڈھکن ایک ہی سمت رکھتے ہیں جبکہ  $D_{n2}$  اور بیلن کا نجلا ڈھکن الک سمت میں ہیں۔مساوات 5.43 کا دوسرا جوز

$$\int_{\Delta S} \boldsymbol{D}_{n2} \cdot \mathrm{d}\boldsymbol{S} = -D_{n2} \Delta S$$

continuous<sup>42</sup> discontinuous<sup>43</sup>

باب 5. موصل، ذو برق اور كپيسٹر



شکل 5.9:  $\epsilon_1 > \epsilon_2$  کی صورت میں  $D_1 > D_2$  ہو گا۔اسی طرح  $\theta_1 > \theta_2$  جبکہ  $\epsilon_1 > \epsilon_2$  ہو گا۔

دیتا ہے۔ سطح کے قریب سے قریب ہونے سے  $0 \leftrightarrow \Delta h$  ہو گا جس سے نگلی سطح کا رقبہ قابل نظر انداز ہو گا جس سے مساوات 5.43 کا تیسرا جزو صفر ہو جاتا ہے جبکہ

$$\int_{\Delta S} \rho_S \, \mathrm{d}S = \rho_S \Delta S$$

کے برابر ہے۔ان تمام نتائے سے

$$D_{n1}\Delta S - D_{n2}\Delta S = \rho_S \Delta S$$

يعني

$$(5.44) D_{n1} - D_{n2} = \rho_S$$

حاصل ہوتا ہے۔

ہم ذو برق کا برقی مستقل  $e_R$  گنا کرتے ہوئے اس میں مقید چارج کا حساب رکھتے ہیں۔ اس طرح مقید چارج کا علیحدہ طور پر خیال رکھنے کی ضرورت نہیں رہتی۔ یوں مندرجہ بالا مساوات میں  $e_R$  مقید چارج نہیں ہے۔  $e_R$  سرحد پر با مقصد طور رکھی گئی سطحی چارج کثافت ہے۔ اس منفر و صورت، جہاں سرحد پر از خود چارج رکھا جائے، کے علاوہ دو ذو برق کی سرحد پر کبھی چارج نہیں پایا جاتا۔ انجنیئر نگ مسائل میں عموماً  $e_R$  ہمی ہوتا ہے۔ الی صورت میں مندرجہ بالا مساوات نسبتاً سادہ شکل

$$(5.45) D_{n1} = D_{n2}$$

اختیار کر لیتی ہے جس سے

$$\epsilon_1 E_{n1} = D_{n1} = D_{n2} = \epsilon_2 E_{n2}$$

 $E_n$  کھا جا سکتا ہے۔یوں سرحد پار کرتے وقت  $E_n$  میں سیڑھی نما تبدیلی پائے جاتی ہے۔اس حقیقت کو ہم یوں بیان کرتے ہیں کہ سرحد پر  $E_n$  جوڑ دار  $E_n$  جوڑ دار  $E_n$  ہے۔اس کے برعکس  $E_n$  سرحد پر بلا جوڑ ہے۔

آئیں ان جوابات کی مدد سے سرحد کے دونوں جانب برقی میدان کا تعلق حاصل کریں۔ شکل 5.9 کو دیکھتے ہوئے ہم

 $D_{m1} = D_1 \sin \theta_1$ 

 $D_{n1} = D_1 \cos \theta_1$ 

 $D_{m2} = D_2 \sin \theta_2$ 

 $D_{n2} = D_2 \cos \theta_2$ 

discontinuous45

لکھ سکتے ہیں جن سے

$$\frac{D_{n1}}{D_{n2}} = \frac{D_1 \cos \theta_1}{D_2 \cos \theta_2} = 1$$

$$\frac{D_{m1}}{D_{m2}} = \frac{D_1 \sin \theta_1}{D_2 \sin \theta_2} = \frac{\epsilon_1}{\epsilon_2}$$

لکھا جا سکتا ہے جہال مساوات 5.45 اور مساوات 5.42 کا استعال کیا گیا ہے۔انہیں

(5.47) 
$$D_1 \cos \theta_1 = D_2 \cos \theta_2$$
$$\epsilon_2 D_1 \sin \theta_1 = \epsilon_1 D_2 \sin \theta_2$$

لکھ سکتے ہیں۔ان میں دوسری مساوات کو پہلی مساوات سے تقسیم کرتے ہیں

$$\frac{\epsilon_2 D_1 \sin \theta_1}{D_1 \cos \theta_1} = \frac{\epsilon_1 D_2 \sin \theta_2}{D_2 \cos \theta_2}$$

جسسے

$$\frac{\tan \theta_1}{\tan \theta_2} = \frac{\epsilon_1}{\epsilon_2}$$

حاصل ہوتا ہے۔ یہ مساوات سرحد کے دونوں جانب میدان کے زاویوں کا تعلق بیان کرتا ہے۔ چونکہ  $m{D}=m{\epsilon}m{E}$  ہوتا ہے لہذا سرحد کے کسی بھی طرف، اس طرف کا  $m{E}$  اس طرف کا  $m{E}$  اور  $m{D}$  ایک ہی سمت رکھتے ہیں۔ شکل میں  $m{\epsilon}_1>m{\epsilon}_2$  تصور کیا گیا ہے للذا اس میں  $m{\theta}_2>m{\theta}_2$ ہے۔

مساوات 5.47 کے پہلے جزو کا مربع کیتے ہوئے

$$\begin{aligned} D_1^2 \cos^2 \theta_1 &= D_2^2 \cos^2 \theta_2 \\ &= D_2^2 (1 - \sin^2 \theta_2) \\ &= D_2^2 - D_2^2 \sin^2 \theta_2 \end{aligned}$$

اس میں مساوات 5.47 کے دوسرے جزوسے  $D_2 \sin \theta_2$  کی قیمت پر کرتے ہوئے

$$D_1^2 \cos^2 \theta_1 = D_2^2 - D_1^2 \left(\frac{\epsilon_2}{\epsilon_1}\right)^2 \sin^2 \theta_1$$

حاصل ہوتا ہے جس سے

$$D_2 = D_1 \sqrt{\cos^2 \theta_1 + \left(\frac{\epsilon_2}{\epsilon_1}\right)^2 \sin^2 \theta_1}$$

ملتا ہے۔ چونکہ  $E=rac{D}{\epsilon}$  ہاتا ہندر جبہ بالا مساوات سے

$$E_2 = \frac{D_2}{\epsilon_2} = \frac{D_1}{\epsilon_2} \sqrt{\cos^2 \theta_1 + \left(\frac{\epsilon_2}{\epsilon_1}\right)^2 \sin^2 \theta_1}$$
$$= \frac{\epsilon_1 E_1}{\epsilon_2} \sqrt{\cos^2 \theta_1 + \left(\frac{\epsilon_2}{\epsilon_1}\right)^2 \sin^2 \theta_1}$$

ليعني

(5.50) 
$$E_2 = E_1 \sqrt{\left(\frac{\epsilon_1}{\epsilon_2}\right)^2 \cos^2 \theta_1 + \sin^2 \theta_1}$$

حاصل ہوتا ہے۔

## 5.9 موصل اور ذو برقى كر سرحدى شرائط

موصل اور ذو برق کے سرحد پر صورت حال تقریباً ویسا ہی ہے جیسے موصل اور خالی خلاء کے سرحد پر تھا۔ موصل میں E=0 ہونے کی وجہ سے سرحد پر مستطیلی رائے پر کرچاف کے قانون سے ذو برق میں  $E_m=0$  حاصل ہوتا ہے۔اس طرح  $D_m=rac{E_m}{\epsilon}=0$  ہو گا۔

اسی طرح سرحد پر چیوٹا بیلن  $ho_S \Delta S$  چارج کو گلیرے گا جو گاوس کے قانون کی مدد سے بیلن کے ذو برق جانب ڈھکن پر عمودی بہاو  $D_n \Delta S$  پیدا کرے گا۔ یوں  $D_n = \rho_S$  حاصل ہوتا ہے۔ کرے گا۔ یوں  $D_n = \rho_S$  حاصل ہوتا ہے۔

ان نتائے سے صاف ظاہر ہے کہ موصل اور ذو برق کے سرحد پر برقی میدان کے جوابات موصل اور خالی خلاء کے سرحد کے جوابات میں  $\epsilon_0$  کی جگہہ  $\epsilon_0$  کی جگہہ کے سے حاصل ہوتے ہیں لیخی

$$D_m = E_m = 0$$

$$D_n = \epsilon E_n = \rho_S$$

مثال 5.8: مثلون

### 5.10 كپيسٹر

شکل 5.10 میں دوعدد موصل  $M_1$  اور  $M_2$  د کھائے گئے ہیں جن کے گرد ذو برق پایا جاتا ہے۔ $M_1$  پر کل  $M_2$  اور  $M_2$  کل  $M_3$  جاتا ہے۔ان چارجوں کے علاوہ پورے نظام میں کوئی اور چارج نہیں پایا جاتا ہوں پورا نظام غیر چارج شدہ ہے۔چونکہ موصل پر صرف سطحی چارج پایا جاتا ہے المذاوونوں موصل پر چارج سطحی چارج کثافت کی صورت میں پایا جائے گا۔

گاوس کے قانون کے تحت  $M_2$  سے عمودی سمت میں Q+ کے برابر برقی بہاو کا اخراج اور  $M_1$  پر عمودی سمت میں اتن ہی برقی بہاو کا دخول ہو گا۔ یوں موصل کے گرد ذو برق میں کثافت برقی بہاو D اور برقی میدان کی شدت E پائی جائے گی۔ D اور E کی ابتدا E سے ہوگی اور ان کا اختتام E کی بہوگا۔ E کی ابتدا E کی اور ان کا اختتام E کی بہوگا۔

اس برقی میدان میں کسی بھی راستے ایک کولمب کا چارج M<sub>1</sub> تا M<sub>2</sub> تا کہ فنظل کرنے کی خاطر V<sub>0</sub> توانائی درکار ہوگی۔موصل کی سطح ہم قوہ سطح ہوتی ہے۔ للذا پہلے موصل کی سطح سے کسی بھی نقطے سے دوسرے موصل کی سطح پر کسی بھی نقطے تک چارج منتقل کرنے کی خاطر برابر توانائی درکار ہوتی ہے۔ 5.10 كېيستر



شكل 5.10: كپيسٹنس كى تعريف.



شكل 5.11: متوازى چادر كپيسٹر،

کپیسٹنس <sup>46</sup> کی تعریف

$$(5.52) C = \frac{Q}{V_0}$$

ہے جہاں  $M_1$  کو صفر برتی دباوپر تصور کرتے ہوئے  $M_2$  کی برتی دباو  $V_0$  اور شبت موصل یعنی  $M_2$  کا چارج Q ہے۔ منفی موصل سے شبت موصل تک اکائی شبت چارج منتقل کرنے کے لئے درکار توانائی  $V_0$  کو تکمل کے ذریعے حاصل کیا جاتا ہے۔ اسی طرح شبت موصل پر چارج Q کو گاوس کے قانون کی مدد سے بذریعہ سطحی تکمل حاصل کیا جاتا ہے۔ یوں صفحہ Q مساوات Q کہ مساوات Q کی مدد سے کیسٹنس کی عمومی مساوات مدد سے بذریعہ سطحی تکمل حاصل کیا جاتا ہے۔ یوں صفحہ Q کی مساوات Q کہ مساوات Q کی مدد سے کیسٹنس کی عمومی مساوات میں معرفی مساوات کے خوال میں معرفی مساوات کی مدد سے کیسٹنس کی عمومی مساوات کی کیسٹنس کی عمومی مساوات کیسٹنس کی عمومی مساوات کی کیسٹنس کی عمومی مساوات کی کیسٹنس کی عمومی مساوات کیسٹنس کی عمومی مساوات کیسٹنس کی عمومی مساوات کیسٹنس کی عمومی مساوات کیسٹنس کی عمومی کیسٹنس کیسٹنس کیسٹنس کی عمومی کیسٹنس کیسٹنس کی عمومی کیسٹنس کی عمومی کیسٹنس کیسٹنس کیسٹنس کی عمومی کیسٹنس کیسٹن

(5.53) 
$$C = \frac{\oint_{S} \epsilon \mathbf{E} \cdot d\mathbf{S}}{-\int_{-}^{+} \mathbf{E} \cdot d\mathbf{L}}$$

لکھی جاسکتی ہے۔

دونوں موصل پر چارج دگنا کرنے سے گاوس کے قانون کے تحت برقی بہاو بھی دگنی ہو جائے گی۔ یوں D اور E بھی دگنے ہوں گے جس سے دونوں موصل کے مابین برقی دباو بھی دگنا ہو گا۔ اس طرح دگنا چارج تقتیم دگنا دباوا یک بار پھر وہی کہیسٹنس دے گا۔ آپ دیکھ سکتے ہیں کہ کہیسٹنس کی قیت کا دارومدار موصل کے اشکال، ان کے درمیان فاصلہ اور برقی مستقل پر مخصر ہے ناکہ موصل پر کل چارج کے۔

سیسٹنس کی اکائی فیراڈ 47 ہے جے F سے ظاہر کیا جاتا ہے۔ایک کولب فی وولٹ ایک فیراڈ 48 کے برابر ہے۔ایک فیراڈ نہایت بڑی قیمت ہے اور عام طور کیپسٹنس کو مائیکر و فیراڈ 4F یا پیکو فیراڈ pF میں ناپا جاتا ہے۔

5.10.1 متوازی چادر کپیسٹر

شکل 5.11 میں دو لا محدود متوازی موصل چادر د کھائے گئے ہیں۔ کچلی چادر z=0 پر ہے اور اس پر سطحی چارج کثافت  $-\rho_S$  بائی جاتی ہے جبکہ اوپر چادر z=0 بیارے دو چادروں کے در میان میدان صفحہ 52 z=d

capacitance46

Farad<sup>4</sup>

<sup>&</sup>lt;sup>48</sup>یہ اکائی انگلستانی ماہر طبیعیات مائکل فیراڈے کے نام سے منسوب ہے۔

ا40 كېيسٹر اور كېيسٹر

پر مساوات 2.44 دیتا ہے جہال مثبت چادر x=0 اور منفی چادر  $x=x_1$  پر رکھے گئے تھے۔ یوں موجودہ شکل کے مطابق مساوات 2.44 کی صورت  $E=-rac{
ho_S}{\epsilon}a_Z$ 

ہو گی۔میدان مثبت سے منفی چادر کی سمت میں ہے۔ مثبت سطے سے خارج برقی بہاو کی کثافت مثبت ہے یعنی اس سطح پر عمودی  $D_+ = \rho_S$  کے برابر ہے جبکہ منفی چادر پر برقی بہاو داخل ہوتا ہے للذا یہاں  $D_- = -\rho_S$  ہو گا۔

منفی چادر کو برقی زمین تصور کرتے ہوئے مثبت چادر پر

$$V = -\int_0^d \mathbf{E} \cdot d\mathbf{L} = \int_0^d \frac{\rho_S \mathbf{a}_Z}{\epsilon} \cdot d\mathbf{z} \mathbf{a}_Z = \int_0^d \frac{\rho_S}{\epsilon} d\mathbf{z} = \frac{\rho_S d}{\epsilon}$$

برتی دباو ہو گا۔لا محدود چادر پر لا محدود چارتی پایا جائے گا جس سے چادر لا محدود کہیسٹنس کا حامل ہو گا۔حقیق کہیسٹر محدود رقبے کے چادر سے بنائے جاتے ہیں۔ اگر محدود رقبے کے متوازی چادروں کے اطراف کی لمبائیاں سطحوں کے مابین فاصلے سے زیادہ ہو تو ایسی صورت میں چادروں کے در میانی خطے میں برقی میدان لا محدود چادروں کے میدان لا محدود چادروں کے میدان لا محدود چادروں کے میدان کی مانند ہی ہوگا۔ کا رقبے کے چادروں کے کہیسٹر کو لیتے ہوئے ہم دیکھتے ہیں کہ مثبت چادر پر کل

$$Q = \int_{S} \rho_{S} \, \mathrm{d}S = \rho_{S} S$$

چارج پایا جائے گا۔ یوں اس کی کبیسٹنس

$$C = \frac{Q}{V} = \frac{\epsilon S}{d}$$

ہو گی۔ کپیسٹر کے کناروں کے قریب میدان پھول کر کپیسٹر سے باہر نکلے گا۔ میدان کے پھولنے 40 کو ہم نے نظرانداز کیا ہے۔ کپیسٹنس کی قیت رقبہ بڑھا کر اور چادروں کے درمیان فاصلہ کم کرتے ہوئے حاصل کیا جاتا ہے۔ای طرح چادروں کے درمیان زیادہ سے زیادہ برقی مستقل کا ذو برق استعال کرتے ہوئے کپیسٹنس بڑھائی جاسکتی ہے۔

بند تر تعدد پر چلنے والے کپیسٹر ابرق استعال کرتے ہوئے بنائے جاتے ہیں۔ابرق کپیسٹر 50 انتہائی کم برقی طاقت ضائع کرتا ہے۔ابرق کی بیتری کے دونوں جانب موصل مادے کی تہہ چڑھا51 کر کپیسٹر تیار کیا جاتا ہے۔

مثال 5.9: ایک ملی میٹر کے ایک چوتھائی موٹااور ایک سنٹی میٹر اطراف کے مربع ابرق کے پتری کے دونوں جانب المونیم کی تہد چڑھا کر کپیسٹر تیار کیا گیا۔اس کی کپیسٹنس دریافت کریں۔

حل: کتاب کے آخر میں جدول 8.2 سے ابرق کا جزوی برقی مستقل  $\epsilon_R=5.4$  حاصل ہوتا ہے۔ یوں

$$C = \frac{5.4 \times 0.01^2}{36\pi \times 10^9 \times 0.25 \times 10^{-3}} = 19.1 \, \text{pF}$$

حاصل ہوتا ہے۔

fringing<sup>49</sup> mica capacitor<sup>50</sup>

deposit<sup>51</sup>

5.10. كييستر

5.10.2 ہم محوری کپیسٹر

صفحه 94 پر مساوات 4.18

$$V = \frac{\rho_L}{2\pi\epsilon} \ln \frac{\rho_2}{\rho_1}$$

ہم محوری تار کے دو تاروں کے در میان برقی دباو دیتا ہے جہاں اندرونی تار پر لکیری چارج کثافت  $ho_L$  ہے۔ بیرونی تار کو برقی زمین تصور کیا گیا ہے۔ L لمبائی کے ہم محوری تار کے اندرونی تار پر یوں  $Q=
ho_L$  چارج پایا جائے گا۔ اس طرح اتنی تار کا کپیسٹنس

(5.55) 
$$C = \frac{Q}{V} = \frac{\rho_L L}{\frac{\rho_L}{2\pi\epsilon} \ln \frac{\rho_2}{\rho_1}} = \frac{2\pi\epsilon L}{\ln \frac{\rho_2}{\rho_1}}$$

ہو گا جہاں اندرونی تار کا رداس  $ho_1$  جبکہ بیر ونی تار کا رداس  $ho_2$  ہے۔

5.10.3 ہم کوہ کپیسٹر

محدد کے مرکز پر  $r_A$  اور  $r_B$  رداس کے موصل کرہ سطح ہیں جہاں  $r_B > r_B$  ہے۔اندرونی سطح پر Q + اور بیرونی سطح پر Q + اور بیرونی سطح کے اندر لیعنی  $q_B > r_B > r_B$  اور بیرونی سطح کے اندر لیعنی  $q_B > r_B$  اور بیرونی سطح باہر لیعنی  $q_B > r_B$  میدان میدان بالکل ایسا ہی ہو گا جیسے محدد کے مرکز پر نقطہ چارج  $q_B > r_B$  میدان ہوتا ہے۔لیوں بیرونی سطح کو برقی زمین تصور کرتے ہوئے اندرونی سطح پر برقی دباو صفحہ  $q_B > r_B$  میدان ہوتا ہے۔لیوں بیرونی سطح کو برقی زمین تصور کرتے ہوئے اندرونی سطح پر برقی دباو صفحہ  $q_B > r_B$  میدان ہوتا ہے۔

$$V_{AB} = \frac{Q}{4\pi\epsilon_0} \left( \frac{1}{r_A} - \frac{1}{r_B} \right)$$

سے حاصل کیا جاسکتا ہے۔اس طرح ان سطحوں کا کہیسٹنس

(5.56) 
$$C = \frac{Q}{V_{AB}} = \frac{4\pi\epsilon}{\frac{1}{r_A} - \frac{1}{r_B}}$$

ہو گا۔

ایک دلچیپ صورت حال کو د کیھے ہیں۔ا گر ۴<sub>B</sub> کو لا محدود کر دیا جائے تب مندرجہ بالا مساوات سے

(5.57) 
$$C = 4\pi\epsilon R$$

حاصل ہوتا ہے جہاں  $r_A$  کی جگہ R ککھا گیا ہے۔ یہ مساوات رداس R کرہ کی کمپیسٹنس دیتا ہے۔ یاد رہے کہ اس کمپیسٹر کی دوسر کی سطح لامحدود فاصلے پر ہے۔

مثال 5.10: آپ نے بچپن میں بلور تو تھیلیں ہوں گے۔بلور کا قطر تقریباً ایک سنٹی میٹر ہوتا ہے۔خالی خلاء میں موصل بلور کی کہیسٹنس حاصل کریں۔

حل:

$$C = \frac{0.5 \times 10^{-2}}{9 \times 10^9} = 0.55 \,\mathrm{pF}$$

ی بدولت 
$$D = \frac{Q}{4\pi r^2} a_\Gamma$$
 برداس کے چارج بردار موصل بلور کے اوپہ  $r_1$  تا  $r_1$  برقی متعقل  $r_2$  و و برق کی تہہ چھڑانے سے  $D = \begin{cases} \frac{Q}{4\pi \epsilon_1 r^2} a_\Gamma & (r_A < r < r_1) \\ \frac{Q}{4\pi \epsilon_0 r^2} a_\Gamma & (r > r_1) \end{cases}$ 

ہو گا۔ برقی زمین کو لا محدود فاصلے پر رکھتے ہوئے بلور کا برقی دباو

$$V = -\int_{\infty}^{r_1} \frac{Q \, dr}{4\pi\epsilon_1 r^2} - \int_{r_1}^{r_A} \frac{Q \, dr}{4\pi\epsilon_1 r^2}$$
$$= \frac{Q}{4\pi\epsilon_0 r_1} + \frac{Q}{4\pi\epsilon_1} \left(\frac{1}{r_A} - \frac{1}{r_1}\right)$$

ہو گا جس سے کیبیسٹنس

(5.58) 
$$C = \frac{Q}{V} = \frac{4\pi}{\frac{1}{\epsilon_0 r_1} + \frac{1}{\epsilon_1} \left(\frac{1}{r_A} - \frac{1}{r_1}\right)}$$

حاصل ہوتی ہے۔

## 5.11 سلسلہ وار اور متوازی جڑے کپیسٹر

متوازی چادر کیپیسٹر میں دو مختلف ذو برق بھرنے کا کمپیسٹنس پر اثر دیکھتے ہیں۔اییا کیپیسٹر شکل 5.12 میں دکھایا گیا ہے۔ چادروں کے در میان فاصلہ چادر کے اطراف کی لمبائیوں سے نہایت کم ہونے کی صورت میں انہیں لا محدود چادروں کی طرح تصور کیا جا سکتا ہے۔ منفی چادر پر  $\epsilon_1$  برقی مستقل کی  $\epsilon_2$  موٹائی کی تہہ ہیں۔ نفی چادر پر  $\epsilon_3$  جبکہ شبت چادر پر  $\epsilon_3$  سطحی چارج کثافت کی صورت میں چادروں کے در میان  $\epsilon_3$  مورت میں چادروں کے در میان  $\epsilon_3$  کی جو برق کے خطے میں  $\epsilon_3$  کی جو برق کے خطے میں



شكل 5.12: سلسله وار كپيسٹر،

$$E_1 = \frac{\rho_S}{\epsilon_1}$$

جبکہ  $\epsilon_2$  ذو برق کے خطے میں

$$E_2 = \frac{\rho_S}{\epsilon_2}$$

لکھا جا سکتا ہے۔اس طرح

$$V = E_1 d_1 + E_2 d_2 = \frac{\rho_S d_1}{\epsilon_1} + \frac{\rho_S d_2}{\epsilon_2}$$

ہو گا جبکہ مثبت چادر پر چارج  $Q=
ho_S$  ہو گا جس سے سیسٹنس

$$C = \frac{Q}{V} = \frac{S}{\frac{d_1}{\epsilon_1} + \frac{d_2}{\epsilon_2}} = \frac{1}{\frac{d_1}{\epsilon_1 S} + \frac{d_2}{\epsilon_2 S}} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}}$$

لعيني

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$$

لکھی جاسکتی ہے جہاں

(5.60) 
$$C_1 = \frac{d_1}{\epsilon_1 S}$$

$$C_2 = \frac{d_2}{\epsilon_2 S}$$

کے برابر ہیں۔ یہی جواب شکل 5.12 میں سلسلہ وار جڑے  $C_1$  اور  $C_2$  کی نشاندہی کرتے ہوئے لکھا جا سکتا ہے۔

آپ دیکھ سکتے ہیں کہ موصل متوازی دو چادروں کے درمیان تیسرے اور چوتھے ذو برق کے تہہ دئے جا سکتے ہیں۔انہیں سلسلہ وار کپییٹر تصور کرتے ہوئے حل کیا جا سکتا ہے۔



شکل 5.13: متوازی جڑے کپیسٹر۔

شکل 5.13 میں دو چادروں کے در میان دو مختلف ذو برق اس طرح بھرے گئے ہیں کہ یہ متوازی جڑے کیپیسٹر کو جنم دیں۔ ہم شکل کو دیکھ کر ہی  $C = C_1 + C_2$ 

کھ سکتے ہیں۔آئیں اتنی جلدی کرنے کی بجائے اس مسکلے کاریاضیاتی حل نکالیں۔دونوں موصل چادر ہم قوہ ہیں لہٰذا کچلی چادر کو برقی زمین یعنی صفر وولٹ  $\epsilon_1$  موسل کے درمیان خطے میں  $E=\frac{V_0}{d}$  ہو گا جس سے بائیں ہاتھ، یعنی اور دوسری چادر کو  $V_0$  برقی دباو پر تصور کرتے ہوئے آگے بڑھتے ہیں۔یوں چادروں کے درمیان خطے میں  $D_1=\frac{V_0}{d}$  ہو گا جس سے بائیں ہاتھ، یعنی المذا برقہ مستقل کے ذو برق میں  $D_1=\epsilon_1$  جبکہ دائیں ہاتھ کے ذو برق میں  $D_2=\epsilon_2$  ہوں گے۔ $D_1=\epsilon_1$  اور  $D_1=\epsilon_1$  موصل چادروں کے عمودی ہیں لہٰذا سرحدی شرائط کے تحت مثبت چادر کے  $D_1=D_1$  جسے برائی کے  $D_1=D_2$  میں جس مدی شرائط کے تحت مثبت چادر کی کیا جارج

$$Q = \rho_1 S_1 + \rho_2 S_2 = \epsilon_1 \frac{V_0}{d} S_1 + \epsilon_2 \frac{V_0}{d} S_2$$

باب 5. موصل، ذو برق اور كېيسٹر



شكل 5.14: دو متوازى تارون كى كپيسٹنس.

سے کپیسٹنس

$$C = \frac{Q}{V_0} = \frac{\epsilon_1 S_1}{d} + \frac{\epsilon_2 S_2}{d}$$

لعني

$$(5.62) C = C_1 + C_2$$

لکھا جا سکتا ہے جہاں

(5.63) 
$$C_1 = \frac{\epsilon_1 S_1}{d}$$

$$C_2 = \frac{\epsilon_2 S_2}{d}$$

کے برابر ہیں۔

## 5.12 دو متوازى تارون كا كپيستنس

شکل 5.14 میں دولا محدود لمبائی کے تار 2 محدد کے متوازی د کھائے گئے ہیں۔ہم ایسے متوازی جوڑی کی کیپیسٹنس حاصل کرنا چاہتے ہیں۔ہم قوہ تارکی طرح دو متوازی تاریجی انتہائی اہم میں اور ان سے زندگی میں بار بار واسطہ پڑتا ہے۔

ایک تار جو (0,a,0) سے گزرتی ہے پر مثبت کلیری چارج کثافت  $+\rho_L$  پایا جاتا ہے جبکہ دوسری تار جو (0,a,0) سے گزرتی ہے پر منفی کلیری چارج کثافت  $-\rho_L$  پایا جاتا ہے۔z محدو پر لامحدود لمبائی کے کلیری چارج کثافت سے پیدا برتی دباو صفحہ 94 پر مساوات 4.16

$$V = \frac{\rho_L}{2\pi\epsilon_0} \ln \frac{\rho_0}{\rho_1}$$

دیتاہے جہاں برقی میدان کو  $ho_0$  پر تصور کیا گیا۔اس مساوات کو شکل 5.14 کے لئے ترتیب دیتے ہوئے دونوں تاروں کا مجموعی برقی دباو

$$V = \frac{\rho_L}{2\pi\epsilon_0} \left( \ln \frac{R_{10}}{R_1} - \ln \frac{R_{20}}{R_2} \right) = \frac{\rho_L}{2\pi\epsilon_0} \ln \frac{R_{10}R_2}{R_{20}R_1}$$

کھا جا سکتا ہے۔اگر  $R_{10}=R_{20}$  رکھا جائے تب مندرجہ بالا مساوات

$$V = \frac{\rho_L}{2\pi\epsilon_0} \ln \frac{R_2}{R_1}$$

صورت اختیار کرلے گی۔ سطے y=0 پر  $R_{10}=R_{20}$  ہو گا لہذا دراصل ہم برقی زمین کو y=0 سطح پر رکھ رہے ہیں۔اب  $R_{10}=R_{20}$  اور y کی صورت

$$R_1 = xa_X + (y - a)a_y$$
  

$$R_2 = xa_X + (y + a)a_y$$

میں لکھتے ہوئے

(5.64) 
$$V = \frac{\rho_L}{2\pi\epsilon_0} \ln \sqrt{\frac{x^2 + (y+a)^2}{x^2 + (y-a)^2}} = \frac{\rho_L}{4\pi\epsilon_0} \ln \frac{x^2 + (y+a)^2}{x^2 + (y-a)^2}$$

ï

(5.65) 
$$e^{\frac{4\pi\epsilon_0 V}{\rho_L}} = \frac{x^2 + (y+a)^2}{x^2 + (y-a)^2}$$

لکھا جا سکتا ہے۔

ہم قوہ سطحیں حاصل کرنے کی خاطر مندرجہ بالا مساوات کو کسی اٹل برقی د باو مثلاً  $V_1$  کے لئے لکھ کر حل کرتے ہیں۔چونکہ  $V_1$  اٹل یا مستقل قیت ہے جو تبدیل نہیں ہوتا للذا مندرجہ بالا مساوات میں

$$K_1 = e^{\frac{4\pi\epsilon_0 V_1}{\rho_L}}$$

لکھ کر اسے

$$K_1 = \frac{x^2 + (y+a)^2}{x^2 + (y-a)^2}$$

لکھا جا سکتا ہے جسے حل کرتے ہوئے

$$x^2 + y^2 - 2ay\frac{K_1 + 1}{K_1 - 1} = -a^2$$

کھھا جا سکتا ہے۔ مساوات کے دونوں جانب  $a^2 \frac{(K_1+1)^2}{(K_1-1)^2}$  بھی کرتے ہوئے یوں

(5.67) 
$$x^2 + \left[ y - a \left( \frac{K_1 + 1}{K_1 - 1} \right) \right]^2 = \left( \frac{2a\sqrt{K_1}}{K_1 - 1} \right)^2$$

کھا جا سکتا ہے جو رداس  $\frac{2a\sqrt{K_1}}{K_1-1}$  کے گول دائرے کی مساوات ہے جس کا مرکز  $\left[0, \frac{a(K_1+1)}{K_1-1}\right]$  پر ہے۔ یہ مساوات کہتا ہے کہ ہم قوہ سطح z کی قیمت پر منجس ہے بعنی یہ نکلی شکل رکھتی ہے۔مساوات 5.67 میں

(5.68) 
$$b = \frac{2a\sqrt{K_1}}{K_1 - 1}$$

$$h = a\left(\frac{K_1 + 1}{K_1 - 1}\right)$$

لکھتے ہوئے اسے

$$(5.69) x^2 + (y - h)^2 = b^2$$



لکھا جا سکتا ہے۔ آئیں ان نتائج پر غور کریں۔

شکل 5.14 کو مکس کے نقطہ نظر سے دیکھتے ہوئے y=0 پر برتی زمین رکھتے ہوئے منفی چارج کثافت کے تار کو ہٹانے سے زمین کے دائیں جانب میں کوئی تبدیلی پیدا نہیں ہوگی۔دائیں جانب اب بھی ہم قوہ سطحیں dر داس کے دائرے بنائے گیس جن کا مرکز زمین سے h فاصلے پر ہوگا۔ہم قوہ سطح کے رداس اور h کا دارومدار h پر ہے جو از خود h پر مخصر ہے۔ہم مختلف برقی دباو h کی داس اور زمین سے ان کے مرکز کے فاصلے حاصل کر سکتے ہیں۔ہم توہ سطحوں کے رداس اور زمین سے ان کے مرکز کے فاصلے حاصل کر سکتے ہیں۔ہم توہ سطحوں کے رداس اور زمین سے ان کے مرکز کے فاصلے حاصل کر سکتے ہیں۔ہم توہ سطحوں کے رداس اور زمین ہی کوئی اثر نہیں آئے گا۔

آئیں ان معلومات کو استعال کرتے ہوئے لا محدود سید تھی موصل سطح سے h فاصلے پر d رداس کے موصل نکلی کی کمپیسٹنس حاصل کریں۔ یہ صورت حال شکل 5.15 میں دکھائی گئی ہے۔ یہاں h اور b دکے گئے ہیں جن سے مساوات 5.68 کی مدد سے b اور یوں b معلوم کیا جا سکتا ہے۔ مساوات 5.68 کو حل کرتے ہوئے کو حل کرتے ہوئے

(5.70) 
$$a = \sqrt{h^2 - b^2} K_1 = \left(\frac{h + \sqrt{h^2 - b^2}}{b}\right)^2$$

لکھا جا سکتا ہے۔اس سے

$$V_1 = \frac{\rho_L}{2\pi\epsilon_0} \ln \frac{h + \sqrt{h^2 - b^2}}{b}$$

حاصل ہوتا ہے۔ چونکہ زمین صفر وولٹ اور موصل نکلی  $V_1$  وولٹ پر ہے لہذاان کے در میان  $V_1$  برقی دباو ہو گا۔

شکل 5.14 میں مثبت تار کے L لمبائی پر کل چارج  $Q=
ho_L$  پایاجاتا ہے۔ شکل 5.15 میں بھی برتی زمین کے اتنے ہی لمبائی پر اتنے ہی مقدار مگر منفی چارج ہو گا جبکہ d دداس کے موصل نکلی پر یہی  $Q=
ho_L$  چارج ہو گا۔ یوں L لمبائی کے موصل نکلی اور زمین کے در میان

(5.71) 
$$C = \frac{Q}{V_1} = \frac{2\pi\epsilon_0 L}{\ln\frac{h + \sqrt{h^2 - b^2}}{h}} = \frac{2\pi\epsilon_0 L}{\cosh^{-1}\frac{h}{b}}$$

کیبیسٹنس پایا جائے گا۔

زمین سے دور کم موٹائی کے تار کی صورت میں  $b\gg h\gg h$  ہو گا لہذا مساوات 5.71

$$C = \frac{2\pi\epsilon_0 L}{\ln\frac{2h}{b}}$$

صورت اختیار کرلے گا جو نسبتاً آسان مساوات ہے۔ شکل 5.14 میں دو تاروں کے در میان کیپیسٹنس مساوات 5.71 کے جواب کا نصف ہو گا چونکہ مثبت تار اور زمین کے مابین کیپیسٹر اور منفی تار اور زمین کے مابین کیپیسٹر کو سلسلہ وار جڑا تصور کیا جا سکتا ہے۔

کچھ حقائق مثال کی مدد سے بہتر سمجھ آتے ہیں۔آئیں مثال 5.11 کی مدد سے الی چند باتیں سکھیں۔

مثال 5.11: برقی زمین کے متوازی خالی خلاء میں دس میٹر کے فاصلے پر پانچ میٹر رواس کی موصل نکلی پائی جاتی ہے جس پر پچاس وولٹ کا برقی دباو ہے۔

- نلکی پر لکیری چارج کثافت حاصل کریں۔
- ایک میٹر لمبائی کے لئے نکلی اور زمین کے مابین کمپیسٹنس حاصل کریں۔
- پچیس وولٹ ہم قوہ سطح کار داس اور زمین سے اس کے مرکز کا فاصلہ حاصل کریں۔
- زمین سے ایس کلیری چارج کثافت کا فاصلہ دریافت کریں جو ہوبہوالی ہی ہم قوہ سطحیں پیدا کرے گا۔
  - نکی پر زیادہ سے زیادہ اور کم سے کم سطحی جارج کثافت حاصل کریں۔

حل: صورت حال شكل 5.15 ميں د كھائي گئي ہے۔

• يبال h = 10 جبكه b = 5 بين للذا مساوات 5.70 كي مدوس

$$a = \sqrt{10^2 - 5^2} = 8.66 \,\mathrm{m}$$

$$K_1 = \left(\frac{10 + \sqrt{10^2 - 5^2}}{5}\right)^2 = 13.92$$

حاصل ہوتے ہیں۔مساوات 5.66 کے استعال سے بوں

$$\rho_L = \frac{4\pi\epsilon_0 V_1}{\ln K_1} = \frac{50}{9 \times 10^9 \times \ln 13.92} = 2.11 \, \frac{\text{nC}}{\text{m}}$$

عاصل ہوتا ہے۔

• مساوات 5.71 یا کیبیسٹنس کی تعریف سے فی میٹر کیبیسٹنس حاصل کرتے ہیں۔

$$C = \frac{\rho_L L}{V_1} = \frac{2.11 \times 10^{-9} \times 1}{50} = 4.22 \,\text{nF}$$

• پچیس وولٹ ہم قوہ سطح کے لئے مساوات 5.66 سے

$$K_2 = e^{\frac{4\pi\epsilon_0 V_2}{\rho_L}} = e^{\frac{25}{9\times 10^9 \times 2.11 \times 10^{-9}}} = 3.73$$

حاصل ہوتا ہے۔ یوں مساوات 5.68 سے پیسیں وولٹ کے ہم قوہ سطح کے لئے

$$b = \frac{2 \times 8.66 \times \sqrt{3.73}}{3.73 - 1} = 12.25 \,\mathrm{m}$$
$$h = 8.66 \times \left(\frac{3.73 + 1}{3.73 - 1}\right) = 15 \,\mathrm{m}$$

حاصل ہوتے ہیں۔ پچپیں وولٹ کے ہم قوہ سطح جس کارداس سوا بارہ میٹر اور جو زمین سے پندرہ میٹر کے فاصلے پر ہے کو شکل میں ملکی سیاہی سے نقطہ دار گول دائرے سے دکھایا گیا ہے۔

- برتی زمین سے 8.66 m فاصلے پر 2.11 اکسری چارج کثافت کی باریک تار بالکل اسی طرز کے ہم قوہ سطحیں پیدا کرے گا۔
  - 5.64 کسی تجمی جگه  $oldsymbol{E}$  کو مساوات  $oldsymbol{E}$

$$V=rac{
ho_L}{4\pi\epsilon_0}\left[\ln(x^2+(y+a)^2)-\ln(x^2+(y-a)^2)
ight]$$
 کے ڈھلان  $E=-
abla V$  ہے جا صل کیا جا سکتا ہے جس سے  $E=-
abla V$  ہے ماصل کیا جا سکتا ہے جس ہے  $E=-
abla V$  ہے ماصل کیا جا سکتا ہے جس ہے  $E=-
abla V$  ہے ماصل کیا جا سکتا ہے جس ہے ماصل کیا جا سکتا ہے جس ہے ماصل کیا جا ہے ماصل کیا ہے ماصل کیا جا ہے ماصل کیا جا ہے ماصل کیا جا کیا جا ہے ماصل کیا ہے ماصل کیا جا ہے ماصل کیا جا ہے ماصل کیا جا ہے ماصل کیا ہے ماصل کے ماصل کیا ہے ماصل کیا ہے ماصل کیا ہے ماصل کے ماصل کیا ہے ماصل کے ماصل کیا ہے ماصل کیا

بھی حاصل ہوتا ہے جہاں

$$\frac{\partial V}{\partial x} = \frac{\rho_L}{4\pi\epsilon_0} \left[ \frac{2x}{x^2 + (y+a)^2} - \frac{2x}{x^2 + (y-a)^2} \right]$$
$$\frac{\partial V}{\partial y} = \frac{\rho_L}{4\pi\epsilon_0} \left[ \frac{2(y+a)}{x^2 + (y+a)^2} - \frac{2(y-a)}{x^2 + (y-a)^2} \right]$$

کے برابر ہیں۔

چونکہ موصل کے سطح پر D عمودی ہوتا ہے اور اس کی قیمت سطحی چارج کثافت کے برابر ہوتی ہے لہٰذا ہم موصل نکلی پر برقی زمین کے قریبی جانب  $D_1$  اور اس سے دور جانب  $D_2$  کی قیمت حاصل کرتے ہیں۔انہیں شکل 5.15 میں دکھایا گیا ہے۔زمین سے نکلی کا قریبی فاصلہ  $D_2$  فاصلہ  $D_3$  m جے۔یوں  $D_3$  اور  $D_3$  ہو کو گرمس سے

$$\frac{\partial V}{\partial x} = \frac{\rho_L}{4\pi\epsilon_0} \left[ \frac{2\times0}{0^2 + (5+8.66)^2} - \frac{2\times0}{0^2 + (5-8.66)^2} \right] = 0$$

$$\frac{\partial V}{\partial y} = \frac{\rho_L}{4\pi\epsilon_0} \left[ \frac{2(5+8.66)}{0^2 + (5+8.66)^2} - \frac{2(5-8.66)}{0^2 + (5-8.66)^2} \right] = \frac{0.693\rho_L}{4\pi\epsilon_0}$$

حاصل ہوتے ہیں۔یوں

$$oldsymbol{D}_1 = -rac{0.693
ho_L}{4\pi}oldsymbol{a}_{
m Y}$$

ہو گا۔ زمین سے دور کلکی پر
$$x=0$$
 اور  $y=h+b=10+5=15$  اور  $y=h+b=10+5=15$ 

$$\frac{\partial V}{\partial x} = \frac{\rho_L}{4\pi\epsilon_0} \left[ \frac{2\times0}{0^2 + (15 + 8.66)^2} - \frac{2\times0}{0^2 + (15 - 8.66)^2} \right] = 0$$

$$\frac{\partial V}{\partial y} = \frac{\rho_L}{4\pi\epsilon_0} \left[ \frac{2(15 + 8.66)}{0^2 + (15 + 8.66)^2} - \frac{2(15 - 8.66)}{0^2 + (15 - 8.66)^2} \right] = -\frac{0.231\rho_L}{4\pi\epsilon_0}$$

يا

$$D_2 = \frac{0.231\rho_L}{4\pi}a_{\rm y}$$

حاصل ہوتا ہے۔دونوں جوابات سے ظاہر ہے کہ بہاو کا اخراج سطح کے عمودی ہے۔ یوں موصل نکی پر

$$\begin{split} \rho_{S,\mathcal{G}} &= \frac{0.693 \rho_L}{4\pi} \\ \rho_{S,\mathcal{G}} &= \frac{0.231 \rho_L}{4\pi} \end{split}$$

پایا جائے گا۔ یاد رہے کہ قریبی جانب منفی جواب کا مطلب ہے کہ اخراج زمین کی جانب ہے جبکہ دور جانب مثبت جواب کا مطلب ہے کہ اخراج علیہ علیہ علیہ علیہ منفی جواب کا مطلب ہے کہ اخراج میں جانب ہے۔ دونوں جانب ہے۔ دونوں جانب اخراج ہی ہے لہذا سطی چارج کثافت دونوں جگہوں پر مثبت ہی ہے۔

اس مثال سے صاف ظاہر ہے کہ نکلی کا چارج بالکل اس طرح عمل کرتا ہے جیسے برقی زمین سے 8.66 فاصلے پر باریک چارج بردار تار جس پر 2.11 <u>mC</u> پایا جاتا ہو۔ نکلی سے پیدا ہم قوہ سطحیں اسی فرضی لکیری چارج کثافت کے تار سے حاصل کی جاتی ہیں۔

مشق 5.5: مساوات 5.70 کو ثابت کریں۔

باب 6

## پوئسن اور لاپلاس مساوات

گاوس کے قانون کی نقطہ شکل

$$\nabla \cdot \boldsymbol{D} = \rho_h$$

یں 
$$E = -
abla V$$
 اور حاصل جواب میں  $D = \epsilon E$  پر کرنے سے

$$\nabla \cdot (\epsilon \mathbf{E}) = -\nabla \cdot (\epsilon \nabla V) = \rho_h$$

ليعني

$$\nabla \cdot \nabla V = -\frac{\rho_h}{\epsilon}$$

= حاصل ہوتا ہے جہاں ہر طرف یکساں اخاصیت کے خطے میں  $\in$  اٹل قیمت رکھتا ہے۔ مساوات 6.2 پوکس اساوات کہلاتا ہے۔

آئیں کار تیسی محدد میں پو کس مساوات کی شکل حاصل کریں۔یاد رہے کہ کسی بھی متغیرہ 
$$A = A_x a_x + A_y a_y + A_z a_z$$
 کے لئے  $\nabla \cdot A = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$ 

کے برابر ہوتاہے۔اب چونکہ

$$\nabla V = \frac{\partial V}{\partial x} a_{X} + \frac{\partial V}{\partial y} a_{Y} + \frac{\partial V}{\partial z} a_{Z}$$

کے برابر ہے للذا

(6.3) 
$$\nabla \cdot \nabla V = \frac{\partial}{\partial x} \left( \frac{\partial V}{\partial x} \right) + \frac{\partial}{\partial y} \left( \frac{\partial V}{\partial y} \right) + \frac{\partial}{\partial z} \left( \frac{\partial V}{\partial z} \right)$$
$$= \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}$$

ہو گا۔

باب 6. پوئسن اور لاپلاس مساوات

عموماً  $\nabla \cdot \nabla$  کو  $\nabla^2$  ککھا جاتا ہے۔اس طرح یو نسن مساوات کی کار تبیسی شکل

(6.4) 
$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = -\frac{\rho_h}{\epsilon}$$

حاصل ہوتی ہے۔

حجمی چارج کثافت کی غیر موجودگی، لینی  $ho_h=0$  کی صورت میں مساوات 6.2

$$(6.5) \nabla^2 V = 0$$

صورت اختیار کرلے گی جسے لاپلاس 3 مساوات کہتے ہیں۔ جس جم کے لئے لاپلاس کی مساوات لکھی گئی ہو اس جم میں محجی چارج کثافت صفر ہوتا ہے۔ البتہ اس جم کی سرحد پر نقطہ چارج یا سطحی چارج کثافت پائی جا سکتیں ہیں۔ عموماً سطح پر موجود چارج سے جم میں پیدا میدان ہی حاصل کرنا مطلوب ہوتا ہے۔ کار تیسی محدد میں لاپلاس کی مساوات

$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$$

صورت رکھتی ہے۔ $abla^2$  کو لا پلاسی عامل  $^4$  کہا جاتا ہے۔

 $abla^2 V^2 V = \nabla^2 V$  ہو سکتی ہے اور اس کے سرحد پر کسی جمعی ہو سکتی ہے اور اس کے سرحد پر کسی جمعی ہو سکتی ہے اور اس کے سرحد پر کسی جمعی قتم کا چارج ہو سکتا ہے۔ یہ ایک دلچیپ حقیقت ہے۔ جم کے سرحد پر عموماً ایک یا ایک سے زیادہ موصل سطین ہوتی ہیں جن پر برقی دباو  $V_1$ ،  $V_0$  وغیرہ پایا جاتا ہے اور جم کے اندر میدان کا حصول در کار ہوتا ہے۔ بھی بھار موصل سطے پر چارج یا تھا معلوم ہو گا جس سے جم کے اندر میدان در کار ہو گا۔ اس طرح بھی بھار سرحد پر ایک جگہ چارج اور اس پر دوسری جگہ برقی دباو اور اس پر تیسرے جگہ عمودی بہاو دیا گیا ہو گا جبکہ جم کے اندر کے متغیرات در کار ہوں گے۔ اس کے بر عکس ایسا بھی ممکن ہے کہ جم میں میدان یا برقی دباو معلوم ہو اور ان معلومات سے سرحد پر چارج یا بہاو یا برقی دباو حاصل کرنا ضروری ہو گا۔

یہاں یہ بتلانا ضروری ہے کہ V = 0 لاپلاس مساوات کا حل ہے۔یہ حل برقی دباو کی عدم موجود گی کو ظاہر کرتی ہے۔ہمیں عموماً ایسے مسلوں سے دلچیسی ہوتی ہے جہاں برقی دباو پائی جائے۔اس لئے لاپلاس مساوات کے اس حل کو ہم عموماً نظرانداز کریں گے۔

ہم نے لاپلاس کی مساوات برقی دباو کے لئے حاصل کی۔دیکھا یہ گیا ہے کہ انجینئری کے دیگر شعبوں میں کئی متغیرات لاپلاس کے مساوات پر پورا اترتے ہیں۔ یہ مساوات حقیقی اہمیت کا حامل ہے۔

اس باب میں ہم ایسی کئی مثالیں دیکھیں گے لیکن پہلے یہ حقیقت جاننا ضروری ہے کہ مساوات 6.6 کا کوئی بھی جواب ان تمام اقسام کے سرحدی معلومات کے لئے درست ہو گا۔ یہ انتہائی تشویشناک بات ہو گی اگر دو مختلف طریقوں سے لاپلاس مساوات کے جوابات حاصل کرنے کے بعد معلوم ہو کہ ان میں سے ایک ٹھیک اور دوسرا غلط جواب ہے۔آئیں اس حقیقت کا ثبوت دیکھیں کہ کسی بھی سرحدی حقائق کو مد نظر رکھتے ہوئے لاپلاس مساوات کا صرف اور صرف ایک ہی جواب حاصل ہوتا ہے۔

Laplace equation<sup>3</sup> Laplacian operator<sup>4</sup>

6.1. مسئلہ یکتائی

6.1 مسئلہ یکتائی

تصور کریں کہ ہم دو مختلف طریقوں سے لاپلاس مساوات کے دو جوابات  $V_1$  اور  $V_2$  حاصل کرتے ہیں۔ یہ دونوں جوابات لاپلاس مساوات پر پورااترتے ہیں لہذا

$$\nabla^2 V_1 = 0$$
$$\nabla^2 V_2 = 0$$

لکھا جا سکتا ہے جس سے

$$(6.7) \nabla^2(V_1 - V_2) = 0$$

حاصل ہوتا ہے۔اب اگر سر حدیر برتی دباو  $V_{
m s}$  ہوتب دونوں جوابات سر حدیریہی جواب دیں گے لیعنی سر حدیر

$$V_{1s} = V_{2s} = V_s$$

يا

$$V_{1s}-V_{2s}=0$$

ہو گا۔ صفحہ 109 پر مساوات 4.80

$$\nabla \cdot (V\boldsymbol{D}) = V(\nabla \cdot \boldsymbol{D}) + \boldsymbol{D} \cdot (\nabla V)$$

کا ذکر کیا گیا جو کسی بھی مقداری V اور کسی بھی سمتیہ  $m{D}$  کے لئے درست ہے۔موجودہ استعال کے لئے ہم  $V_1-V_2$  کو مقداری اور  $V_1-V_2$  کو مقداری اور  $\nabla(V_1-V_2)$  کو مقداری اور کسی بھی سمتیہ لیتے ہوئے

$$\nabla \cdot [(V_1 - V_2)\nabla(V_1 - V_2)] = (V_1 - V_2)[\nabla \cdot \nabla(V_1 - V_2)] + \nabla(V_1 - V_2) \cdot \nabla(V_1 - V_2)$$
$$= (V_1 - V_2)[\nabla^2(V_1 - V_2)] + [\nabla(V_1 - V_2)]^2$$

حاصل ہوتا ہے جس کا تکمل پورے حجم کے لئے

(6.8) 
$$\int_{-\infty} \nabla \cdot [(V_1 - V_2)\nabla(V_1 - V_2)] dh = \int_{-\infty} (V_1 - V_2)[\nabla^2(V_1 - V_2)] dh + \int_{-\infty} [\nabla(V_1 - V_2)]^2 dh$$

ہو گا۔صفحہ 83 پر مساوات 3.43 مسئلہ پھیلاو بیان کرتا ہے جس کے مطابق کسی بھی حجمی تکمل کو بند سطی تکمل میں تبدیل کیا جا سکتا ہے جہاں حجم کی سطح پر سطی تکمل حاصل کیا جاتا ہے۔یوں مندرجہ بالا مساوات کے بائیں ہاتھ کو سطی تکمل میں تبدیل کرتے ہوئے

$$\int_{-\infty} \nabla \cdot \left[ (V_1 - V_2) \nabla (V_1 - V_2) \right] \mathrm{d}h = \oint_{-\infty} \left[ (V_{1s} - V_{2s}) \nabla (V_{1s} - V_{2s}) \right] \cdot \mathrm{d}S = 0$$

حاصل ہوتا ہے جہاں سر حدی سطح پر  $V_{1s}=V_{2s}=0$  ہونے کی بنا پر  $V_{1s}=V_{2s}=0$  ہونے کی بنا پر والا ہوتا ہے۔ میاوات 6.8 میں دائیں ہاتھ میں میاوات 6.8 کے تحت  $\nabla^2(V_1-V_2)=0$  ہے اور صفر کا تکمل صفر ہی ہوتا ہے۔ اس طرح میاوات 6.8 سے

$$\int_{\mathcal{S}} \left[ \nabla (V_1 - V_2) \right]^2 \mathrm{d}h = 0$$

باب 6. پوئسن اور لاپلاس مساوات

کسی بھی تکمل کا جواب صرف دو صور توں میں صفر کے برابر ہو سکتا ہے۔ پہلی صورت بیہ ہے کہ کچھ خطے میں تکمل کی قیمت مثبت اور کچھ خطے میں اس کی قیمت منفی ہو۔ا گر مثبت اور منفی حصے بالکل برابر ہوں تب تکمل صفر کے برابر ہو گا۔موجودہ صورت میں 2[[\forall (V\_1 - V\_2)] کا تکمل لیا جارہے ہے اور کسی بھی متغیر کا مربع کسی صورت منفی نہیں ہو سکتا للذا موجودہ تکمل میں ایسا ممکن نہیں ہے۔ تکمل صفر ہونے کی دوسری صورت بیہ ہے کہ صفر کا تکمل حاصل کیا جارہا ہو للذا

$$[\nabla(V_1 - V_2)]^2 = 0$$

ہی ہو گا یعنی

$$\nabla(V_1 - V_2) = 0$$

کے برابر ہے۔

اب  $\nabla (V_1 - V_2) = 0$  کا مطلب ہے کہ  $V_1 - V_2$  کی ڈھلان ہر صورت صفر کے برابر ہے۔ یہ تب ہی ممکن ہے جب  $\nabla (V_1 - V_2) = 0$  قیت کسی محدد کے ساتھ تبدیل نہ ہو یعنی اگر حکمل کے پورے خطے میں

$$V_1-V_2=$$
 اٹل قیمت

ہو۔ جم کے سرحد پر بھی ہے درست ہو گا۔ مگر سرحد پر

$$V_1 - V_2 = V_{1s} - V_{2s} = 0$$

کے برابر ہے للذایہ اٹل قیمت از خود صفر ہے۔ یوں

$$(6.9)$$
  $V_1 = V_2$ 

ہو گا۔اس کا مطلب ہے کہ دونوں جوابات بالکل برابر ہیں۔

مسئلہ میکائی کو پوئسن مساوات کے لئے بھی بالکل اسی طرح ثابت کیا جا سکتا ہے۔ پوئسن مساوات کے دو جوابات  $V_1$  اور  $V_2$  پوئسن مساوات پر پورا اتریں گے لہذا  $\nabla^2 V_1 = -\frac{\rho_h}{\epsilon}$  مسئلہ میکائی کو پوئسن مساوات کے  $\nabla^2 V_2 = -\frac{\rho_h}{\epsilon}$  ماسل ہوتا ہے۔ سرحد پر اب بھی اتریں گے لہذا  $\nabla^2 V_1 = -\frac{\rho_h}{\epsilon}$  عاصل ہوتا ہے۔ سرحد پر اب بھی  $V_1 = -\frac{\rho_h}{\epsilon}$  میہاں سے آگے ثبوت بالکل میکائی لاپلاس کی ثبوت کی طرح ہے۔  $V_1 = -\frac{\rho_h}{\epsilon}$  میہاں سے آگے ثبوت بالکل میکائی لاپلاس کی ثبوت کی طرح ہے۔

مئلہ یکنائی کے تحت سرحدی حقائق کے لئے حاصل کئے گئے پوئٹن یالاپلاس مساوات کے جوابات ہر صورت برابر ہوں گے۔یہ ممکن نہیں کہ دو مختلف جوابات حاصل کئے جائیں۔

6.2 لاپلاس مساوات خطی ہر

تصور کریں کہ سرحدی شرائط لا گو کرنے کے بغیر لاپلاس مساوات کے دوحل  $V_1$  اور  $V_2$  حاصل کئے جائیں۔یوں

$$\nabla^2 V_1 = 0$$

$$\nabla^2 V_2 = 0$$

لکھا جا سکتا ہے جن سے

$$\nabla^2(c_1 V_1 + c_2 V_2) = 0$$

مجمی لکھا جا سکتا ہے جہاں c<sub>1</sub> اور c<sub>2</sub> مستقل ہیں۔اس حقیقت کو بوں بیان کیا جاتا ہے کہ لاپلاس مساوات خطی<sup>5</sup> ہے۔

6.3 نلکی اور کروی محدد میں لاپلاس کی مساوات

نکی محدد میں ڈھلان کی مساوات صفحہ 101 پر مساوات 4.54 دیتا ہے جس سے

(6.10) 
$$\nabla V = \frac{\partial V}{\partial \rho} \mathbf{a}_{\rho} + \frac{1}{\rho} \frac{\partial V}{\partial \phi} \mathbf{a}_{\phi} + \frac{\partial V}{\partial z} \mathbf{a}_{z}$$
$$= -E_{\rho} \mathbf{a}_{\rho} - E_{\phi} \mathbf{a}_{\phi} - E_{z} \mathbf{a}_{z}$$

کھتے ہیں جہاں  $E = -\nabla V$  کا استعال کیا گیا۔ نگلی محدد میں پھیلاو کی مساوات صفحہ 80 پر مساوات 3.37 دیتا ہے۔اس مساوات کو سمتیہ E کے لئے

$$\nabla \cdot \boldsymbol{E} = \frac{1}{\rho} \frac{\partial (\rho E_{\rho})}{\partial \rho} + \frac{1}{\rho} \frac{\partial E_{\phi}}{\partial \phi} + \frac{\partial E_{z}}{\partial z}$$

E=abla V اور دائیں ہاتھ E=abla V اور دائیں ہاتھ مساوات E=abla V

$$\nabla \cdot \nabla V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left( \rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho} \frac{\partial}{\partial \phi} \left( \frac{1}{\rho} \frac{\partial V}{\partial \phi} \right) + \frac{\partial}{\partial z} \left( \frac{\partial V}{\partial z} \right)$$

حاصل ہوتا ہے جہال دونوں جانب منفی علامت کٹ جاتے ہیں۔اس کو یوں

(6.11) 
$$\nabla^2 V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left( \rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \left( \frac{\partial^2 V}{\partial \phi^2} \right) + \frac{\partial^2 V}{\partial z^2} \quad \text{and} \quad V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left( \rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \left( \frac{\partial^2 V}{\partial \phi^2} \right) + \frac{\partial^2 V}{\partial z^2} \quad \text{and} \quad V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left( \rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \left( \frac{\partial^2 V}{\partial \phi^2} \right) + \frac{\partial^2 V}{\partial z^2} \quad \text{and} \quad V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left( \rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \left( \frac{\partial^2 V}{\partial \phi^2} \right) + \frac{\partial^2 V}{\partial z^2} \quad \text{and} \quad V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left( \rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \left( \frac{\partial^2 V}{\partial \phi^2} \right) + \frac{\partial^2 V}{\partial z^2} \quad \text{and} \quad V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left( \rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \left( \frac{\partial^2 V}{\partial \rho} \right) + \frac{\partial^2 V}{\partial z^2} \quad \text{and} \quad V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left( \rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \left( \frac{\partial^2 V}{\partial \rho} \right) + \frac{\partial^2 V}{\partial z^2} \quad V = \frac{1}{\rho} \frac{\partial^2 V}{\partial \rho} \quad V = \frac{1}{\rho} \frac{\partial^2 V}{\partial$$

لکھا جا سکتا ہے جو نلکی محدد میں لابلاس مساوات ہے۔

كروى محدد ميں بالكل اسى

(6.12) 
$$\nabla^2 V = \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial V}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial^2 V}{\partial \phi^2}$$

جبكه عمومى محدد ميں

(6.13) 
$$\nabla^2 V = \frac{1}{k_1 k_2 k_3} \left[ \frac{\partial}{\partial u} \left( \frac{k_2 k_3}{k_1} \frac{\partial V}{\partial u} \right) + \frac{\partial}{\partial v} \left( \frac{k_1 k_3}{k_2} \frac{\partial V}{\partial v} \right) + \frac{\partial}{\partial w} \left( \frac{k_1 k_2}{k_3} \frac{\partial V}{\partial w} \right) \right]$$

حاصل کی جاسکتی ہے۔

مشق 6.1: مساوات 6.12 حاصل کریں۔

## 6.4 لاپلاس مساوات کے حل

لاپلاس مساوات حل کرنے کے کئی طریقے ہیں۔ سادہ ترین مسکلے، سادہ تکمل سے ہی حل ہو جاتے ہیں۔ ہم اسی سادہ تکمل کے طریقے سے کئی مسکلے حل کریں گے۔ یہ طریقہ صرف اس صورت قابل استعال ہوتا ہے جب میدان یک سمتی ہو یعنی جب یہ محدد کے تین سمتوں میں سے صرف ایک سمت میں تبدیل ہوتا ہو۔ چو نکہ اس کتاب میں محدد کے تین نظام استعال کئے جا رہے ہیں المذا معلوم ایسا ہوتا ہے کہ کل نو مسکلے ممکن ہیں۔ در حقیقت ایسا نہیں ہے۔ کار تیسی محدد میں یہ سمت میں تبدیل ہوتے میدان کا حل اس طرح یہ محدد سے کسی زاویے پر سیدھی کیر کی سمت میں تبدیل ہوتے میدان کا حل اس طرح میدان کا حل اس طرح میدان کا حل اس طرح میں اور یہ سمت میں تبدیل ہوتے میدان ہو تے میدان ہو تے میدان کو میں تبدیل ہوتے میدان کا حدد میں صرف ایک مسلم حل کرنا در کار ہے۔ نگی محدد میں محدد میں حدد میں صرف ایک مسلم حل کرنا در کار ہے۔ نگی محدد میں دو مسلم پائے جاتے کے ساتھ تبدیل ہوتے میدان کو ہم کار تیسی محدد میں دو مسلم جانے حل کرنا در کار ہے جبکہ کروی محدد میں محد د میں ان تمام کو باری باری حل کریں۔

مثال 6.1: تصور کریں کہ V صرف x محدد کے ساتھ تبدیل ہوتی ہو۔ دیکھتے ہیں کہ الی صورت میں لاپلاس مساوات کا حل کیا ہو گا۔اس پر بعد میں غور کریں گے کہ حقیقت میں الی کون سی صورت ہو گی کہ V صرف x محدد کے ساتھ تبدیل ہوتا ہو۔الی صورت میں لاپلاس مساوات

$$\frac{\partial^2 V}{\partial x^2} = 0$$

شکل اختیار کر لے گا۔ چونکہ V کی قیمت صرف x پر منحصر ہے لہذا مندرجہ بالا مساوات کو

$$\frac{\mathrm{d}^2 V}{\mathrm{d}x^2} = 0$$

کھا جا سکتا ہے۔ پہلی بار تکمل کیتے ہوئے

$$\frac{\mathrm{d}V}{\mathrm{d}x} = A$$

حاصل ہوتا ہے۔ دوبارہ تکمل لیتے ہوئے

$$(6.14) V = Ax + B$$

حاصل ہوتا ہے جو لاپلاس مساوات کا حل ہے۔ یہ کسی بھی سید ھی کیبر کی سمت میں تبدیل ہوتے برقی دباو کے مسئلے کو ظاہر کرتا ہے جہاں اس کلیر کو x کہا جائے گا۔ A اور B دو درجی تکمل کے مستقل ہیں جن کی قیمتیں سر حدی شرائط کی مدد سے حاصل کی جاتی ہیں۔

آئیں مساوات 6.14 کا مطلب سمجھیں۔اس کے مطابق برقی د باو کا دار ومدار صرف x پر ہے جبکہ y اور z کا اس کی قیمت پر کوئی اثر نہیں۔x کی کسی بھی قیمت پر لیغنی  $x=x_0$  فیمنٹ میں کہ مساوات 6.14 میں متوازی چادر  $x=x_0$  فیمنٹر کا حل ہے۔

ہم ایسے کپیسٹر کے دونوں چادروں پر برقی دباواور چادروں کا x محدد پر مقام بیان کرتے ہوئے A اور B کی قیمتیں حاصل کر سکتے ہیں۔یوں اگر کپیسٹر کی پہلی چادر x1 پر ہے جبکہ اس پر برقی دباو V1 ہے اور اسی طرح دوسری چادر x2 پر ہے جبکہ اس پر برقی دباو V2 ہے تب

$$V_1 = Ax_1 + B$$
$$V_2 = Ax_2 + B$$

ہو گا جس سے

$$A = \frac{V_1 - V_2}{x_1 - x_2}$$
$$B = \frac{V_2 x_1 - V_1 x_2}{x_1 - x_2}$$

حاصل ہوتے ہیں۔ یوں چادروں کے در میان

(6.15) 
$$V = \left(\frac{V_1 - V_2}{x_1 - x_2}\right) x + \frac{V_2 x_1 - V_1 x_2}{x_1 - x_2}$$

ہو گا۔

اگر ہم پہلی چادر کو x=0 اور دوسری چادر کو d پر تصور کرتے جبکہ اسی ترتیب سے ان کی برقی دباو کو صفر اور  $V_0$  کہتے تب ہمیں

$$(6.16) V = \frac{V_0 x}{d}$$

حاصل ہوتا جو نسبتاً آسان مساوات ہے۔

باب 5 میں ہم نے سطحی چارج کثافت سے بالترتیب برقی میدان، برقی دباو اور کپیسٹنس حاصل کئے۔ موجودہ باب میں ہم پہلے لا پلاس کے مساوات  $E = -\nabla V$  ماوات کے حل سے برقی دباو حاصل کرتے ہیں۔ برقی دباو سے میدان بذریعہ  $V = -\nabla V$  اور بہاو بذریعہ V = C = Q حاصل کرتے ہوئے سطحی چارج کثافت سے سطح پر کل چارج حاصل کرتے ہوئے V = C = Q حاصل کیا جاتا ہے۔ ان اقدام کو بالترتیب دوبارہ بیش کرتے ہیں۔

- لا پلاس مساوات حل كرتے ہوئے برقى دباو V حاصل كريں۔
- تکمل کے سرحدی شرائط سے تکمل کے مستقل کی قیمتیں حاصل کریں۔
- $oldsymbol{\Phi}$ اور  $oldsymbol{D}=oldsymbol{\epsilon}oldsymbol{E}$  عاصل کریں۔
- $m{D}_S = D_n m{a}_N$  عاصل کریں جو سطح کے عمودی ہو گا۔
- چونکہ سطح پر سطحی چارج کثافت اور عمودی برقی بہاو برابر ہوتے ہیں لہذا  $ho_S=D_n$  ہو گا۔ مثبت چارج کثافت کی صورت میں برقی بہاو کا موصل عادر سے اخراج جبکہ منفی چارج کثافت کی صورت میں برقی بہاو کا چادر میں دخول ہو گا۔
  - سطح پر چارج بذریعه سطحی تکمل حاصل کریں۔
    - $C = rac{Q}{V}$  ہوگا۔

آئیں ان اقدام کو موجودہ مثال پر لا گو کریں۔

چونکہ موجودہ مثال میں مساوات 6.16 کے تحت

$$V = \frac{V_0 x}{d}$$

ہے للذا

$$oldsymbol{E} = -
abla V = -rac{V_0}{d}oldsymbol{a}_{\mathrm{X}}$$

اور

$$oldsymbol{D} = -\epsilon rac{V_0}{d} oldsymbol{a}_{ ext{X}}$$

چو کلہ بہاو کی سمت مثبت سے منفی چادر کی جانب ہوتی ہے للذا مثبت چادر x=d پر جبکہ منفی چادر x=0 پر ہے۔ مثبت چادر پر

$$\left. \boldsymbol{D}_{\mathrm{S}} = \boldsymbol{D} \right|_{\mathrm{x}=d} = -\epsilon \frac{V_0}{d} \boldsymbol{a}_{\mathrm{X}}$$

کے برابر ہے۔چونکہ مثبت چادر کا

$$a_N = -a_X$$

ہے للذا برقی بہاو چادر سے خارج ہو رہا ہے۔ یوں

$$\rho_S = \epsilon \frac{V_0}{d}$$

ہو گا۔ا گر چادر کی سطح کار قبہ S ہو تب

$$Q = \int_{S} \rho_{S} \, dS = \int \epsilon \frac{V_{0}}{d} \, dS = \frac{\epsilon V_{0} S}{d}$$

ہو گا جس سے

$$C = \frac{\epsilon S}{d}$$

حاصل ہوتا ہے۔صفحہ 140 پر مساوات 5.54 یہی جواب دیتا ہے۔

اگر مندرجہ بالا مثال میں کیسٹر کو y یا z محدو پر رکھا جاتا تو کیسٹنس کی قیت یہی حاصل ہوتی للذاکار تیسی محدد کے لئے ایک مثال حل کر لیناکافی ہے۔ نکلی محدد میں z کے ساتھ تبدیل ہوتے برتی دباو کو حل کرنے سے کوئی نئی بات سامنے نہیں آتی۔ یہ بالکل کار تیسی محدد کے مثال کی طرح ہی ہے للذا ہم باری باری وادر φ کے ساتھ تبدیل ہوتے برتی دباو کے مسئلے حل کرتے ہیں۔

مثال 6.2: اس مثال میں صرف p کے ساتھ تبدیل ہوتے برقی دباو پر غور کرتے ہیں۔ایسی صورت میں لاپلاس کی مساوات

$$\frac{1}{\rho} \frac{\partial}{\partial \rho} \left( \rho \frac{\partial V}{\partial \rho} \right) = 0$$

$$\frac{1}{\rho} \frac{\mathrm{d}}{\mathrm{d}\rho} \left( \rho \frac{\mathrm{d}V}{\mathrm{d}\rho} \right) = 0$$

صورت اختیار کر لے گی۔ یوں یا

$$\frac{1}{\rho} = 0$$

ہو گا جس سے

$$\rho = \infty$$

حاصل ہوتا ہے اور یا

یا

$$\frac{\mathrm{d}}{\mathrm{d}\rho} \left( \rho \frac{\mathrm{d}V}{\mathrm{d}\rho} \right) = 0$$

ہو گا۔ اس تفر تی مساوات کو بار بار تھمل لے کر حل کرتے ہیں۔ پہلی بار تھمل لیتے ہوئے  $\rho \frac{\mathrm{d} V}{\mathrm{d} \rho} = A$ 

 $dV = A \frac{d\rho}{\rho}$ 

حاصل ہوتا ہے۔ دوسری بار تکمل سے

$$V = A \ln \rho + B$$

حاصل ہوتا ہے۔ یہ ہم قوہ سطحیں نککی شکل کے ہیں۔ یوں یہ مساوات محوری تار کا برقی دباو دیتی ہے۔ ہم محوری تار کے بیر ونی تار  $ho=\rho$  کو برقی زمین اور اندرونی تار ho=a کو  $V_0$  برقی دباو پر تصور کرتے ہوئے

$$(6.20) V = V_0 \frac{\ln \frac{b}{\rho}}{\ln \frac{b}{a}}$$

حاصل ہوتا ہے۔ہم جانتے ہیں کہ کسی بھی شکل کے چارج سے لامحدود فاصلے پر برقی دباو صفر ہی ہوتا ہے۔اسی وجہ سے ہم لامحدود فاصلے کو ہی برقی زمین کہتے آرہے ہیں۔یوں لاپلاس مساوات کا پہلا حل یعنی مساوات 6.18 ہمارے امید کے عین مطابق ہے۔

مساوات 6.20 کو لے کر آگے بڑھتے ہوئے یوں

$$oldsymbol{E} = -
abla V = rac{V_0}{
ho} rac{1}{\ln rac{b}{a}} oldsymbol{a}_{
ho}$$

اور

$$D_n = D \bigg|_{\rho=a} = \frac{\epsilon V_0}{a \ln \frac{b}{a}}$$
$$Q = \frac{\epsilon V_0 2\pi a L}{a \ln \frac{b}{a}}$$

باب 6. پوئسن اور لاپلاس مساوات

حاصل ہوتے ہیں جن سے

(6.21) 
$$C = \frac{2\pi\epsilon L}{\ln\frac{b}{a}}$$

حاصل ہوتا ہے۔ صفحہ 141 پر مساوات 5.55 یہی جواب دیتا ہے۔

ho 
eq 0 مساوات 6.17 کو ho = 6 صرب دینے سے بھی مساوات 6.19 حاصل ہوتا ہے۔البتہ یہ ضرب صرف اس صورت ممکن ہے جب ho = 0 ہو۔یاد رہے کہ ho = 0 کی صورت میں ho = 0 ہو گا جو غیر معین ho = 0 ہو گا ہو گا گر ho = 0 ہو۔یاد رہے کہ ho = 0 کی صورت میں صاوات کا حل ہو گا گر معین ho = 0 ہو۔ان حقائق کو سامنے رکھتے ہوئے لاپلاس مساوات کا حل

$$(6.22) V = V_0 \frac{\ln \frac{b}{\rho}}{\ln \frac{b}{a}} \rho \neq 0$$

لکھنا زیادہ درست ہو گا۔

مثال 6.3: اب تصور کرتے ہیں کہ برقی دباو نکلی محدد کے متغیرہ 4 کے ساتھ تبدیل ہوتا ہے۔اس صورت میں لاپلاس مساوات

$$\frac{1}{\rho^2} \frac{\partial^2 V}{\partial \phi^2} = 0$$

صورت اختیار کرے گا۔ یہاں بھی پہلا حل ho=
ho حاصل ہوتا ہے۔ ہم یہاں بھی ho=0 کو جواب کا حصہ تصور نہ کرتے ہوئے مساوات کو  $ho^2$  سے ضرب دیتے ہوئے اس سے جان پڑاتے ہیں۔ یوں

$$\frac{\mathrm{d}^2 V}{\mathrm{d}\phi^2} = 0 \qquad \rho \neq 0$$

رہ جاتا ہے۔ دو مرتبہ تکمل لینے سے

$$V = A\phi + B$$

حاصل ہوتا ہے۔الیں دو ہم قوہ سطحیں شکل میں دکھائی گئی ہیں۔آپ دیکھ سکتے ہیں کہ ho=0 کی صورت میں دونوں چادر آپس میں مل جائیں گی اور ان پر مختلف برتی دیاو ممکن نہ ہو گا۔یوں ho=0 قابل قبول جواب نہیں ہے۔یہاں ho=0 کو برتی زمین جبکہ  $\phi=\phi$  پر  $V_0$  برتی دیاو کی صورت میں

$$(6.23) V = \frac{V_0 \phi}{\phi_0} \rho \neq 0$$

حاصل ہوتا ہے۔اس سے

$$oldsymbol{E} = -rac{V_0}{\phi_0
ho}oldsymbol{a}_{\phi}$$

حاصل ہوتا ہے۔ان چادروں کے کپیسٹنس کا حصول آپ سے حاصل کرنے کو سوال میں کہا گیا ہے۔

مثال 6.4: کروی محدد میں ⊕ کے ساتھ تبدیلی کو مندرجہ بالا مثال میں دیکھا گیا لہذااسے دوبارہ حل کرنے کی ضرورت نہیں۔ہم پہلے r اور بعد میں € کے ساتھ تبدیلی کے مسلوں کو دیکھتے ہیں۔

یہ زیادہ مشکل مسکلہ نہیں ہے للذاآپ ہی سے سوالات کے جھے میں درخواست کی گئی ہے کہ اسے حل کرتے ہوئے برقی دباو کی مساوات

(6.24) 
$$V = V_0 \frac{\frac{1}{r} - \frac{1}{b}}{\frac{1}{a} - \frac{1}{b}}$$

اور کپیسٹنس کی مساوات

$$(6.25) C = \frac{4\pi\epsilon}{\frac{1}{a} - \frac{1}{b}}$$

v=a حاصل کریں جہاں v=b>a پر برقی زمین اور وv=a پر کی دباوہ ہوا وہ م

مثال 6.5: کروی محد د میں 6 کے ساتھ تبدیل ہوتے برقی دیاو کی صورت میں لاہلاس مساوات

$$\frac{1}{r^2 \sin \theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left( \sin \theta \frac{\mathrm{d}V}{\mathrm{d}\theta} \right) = 0$$

صورت اختیار کرے گی۔اگرr 
eq 0 اور 0 
eq 0 ہول تب اس مساوات کو  $r^2 \sin heta$  ہوئے ہوئے

$$\frac{\mathrm{d}}{\mathrm{d}\theta}\left(\sin\theta\frac{\mathrm{d}V}{\mathrm{d}\theta}\right) = 0$$

 $\theta=0$  یا  $\theta=0$  ہوں۔اس کے پہلی بار تکمل سے  $\sin\theta=0$  یا  $\sin\theta=0$  ہوں۔اس کے پہلی بار تکمل سے  $\sin\theta$ 

 $dV = \frac{A d\theta}{\sin \theta}$ 

حاصل ہوتا ہے۔دوسری بار تکمل سے

(6.28) 
$$V = A \int \frac{\mathrm{d}\theta}{\sin \theta} + B = A \ln \left( \tan \frac{\theta}{2} \right) + B$$

حاصل ہوتا ہے۔

یا

ی جم قوه سطحین مخروطی شکل رکھتے ہیں۔اگر  $\frac{\pi}{2}$  بال  $V=V_0$  اور  $\theta=\theta$  پر  $\theta=V_0$  ہوں جہاں  $V=V_0$  ہے تب جم میں مخروطی شکل رکھتے ہیں۔اگر  $V=V_0$  اور  $V=V_0$  او

حاصل ہوتا ہے۔

آئیں الی مخروط اور سیدھی سطح کے مابین کپیسٹنس حاصل کریں جہاں مخروط کی نوک سے انتہائی باریک فاصلے پر سیدھی سطح ہو اور مخروط کا محور اس سطح کے عمود میں ہو یہلے برتی شدت حاصل کرتے ہیں۔

(6.30) 
$$E = -\nabla V = -\frac{1}{r} \frac{\partial V}{\partial \theta} a_{\theta} = -\frac{V_0}{r \sin \theta \ln \left( \tan \frac{\theta_0}{2} \right)} a_{\theta}$$

مخروط کی سطح پر سطحی چارج کثافت یوں

$$\rho_S = D_n = -\frac{\epsilon V_0}{r \sin \theta_0 \ln \left(\tan \frac{\theta_0}{2}\right)}$$

ہو گا جس سے اس پر چارج

$$Q = -\frac{\epsilon V_0}{\sin \theta_0 \ln \left(\tan \frac{\theta_0}{2}\right)} \int_0^\infty \int_0^{2\pi} \frac{r \sin \theta_0 \, d\phi \, dr}{r}$$

ہو گا۔ تکمل میں رداس کا حد لا محدود ہونے کی وجہ سے چارج کی قیت بھی لا محدود حاصل ہوتی ہے جس سے لا محدود کیبیسٹنس حاصل ہو گا۔ حقیقت میں محدود جسامت کے سطحیں ہی پائی جاتی ہیں للذا ہم رداس کے حدود 0 تا 17 لیتے ہیں۔ایس صورت میں

(6.31) 
$$C = \frac{2\pi\epsilon r_1}{\ln\left(\cot\frac{\theta_0}{2}\right)}$$

حاصل ہوتا ہے۔ یاد رہے کہ ہم نے لامحدود سطح سے شروع کیا تھاللذا چارج کی مساوات بھی صرف لامحدود سطح کے لئے درست ہے۔اس طرح مندرجہ بالا مساوات کپیسٹنس کی قریبی قیت ہوگی ناکہ بالکل درست قیت۔

6.5 پوئسن مساوات کے حل کی مثال

پوکسن مساوات تب حل کیا جا سکتا ہے جب  $ho_h$  معلوم ہو۔ حقیقت میں عموماً سرحدی برقی د باو وغیرہ معلوم ہوتے ہیں اور ہمیں  $ho_h$  ہی در کار ہوتی ہے۔ ہم پوکسن مساوات حل کرنے کی خاطر ایسی مثال لیتے ہیں جہال ہمیں  $ho_h$  معلوم ہو۔

سلیکان  $^7$  کی پتر کی میں p اور n اقسام کے مواد کی ملاوٹ سے p اور n سلیکان پیدا کیا جاتا ہے۔ایک ہی سلیکان پتر کی میں p اور p اور p خطہ p خطہ p خطہ p اور p خطہ p خطہ p خطہ p اور p خطہ p خطب p خطہ p خطب p خطہ p خطب p خطب

فتم کا ہے۔ مزید ہے کہ دونوں جانب ملاوٹ کی مقدار کیساں ہے۔ آپ کو یاد ہو گا کہ q یا n خطہ ازخود غیر چارج شدہ ہوتا ہے البتہ q خطے میں آزاد احول ور n اور n خطے میں آزاد اکیگر ان n پرے جاتے ہیں۔ آزاد خول اور آزاد الکیگر ان q جانب پائے جاتے ہیں۔ یوں اس لیحے ہی آزاد خول q جانب جبہ آزاد الکیگر ان n جانب پائے جاتے ہیں۔ یوں اس لیح ہی آزاد خول q جانب اور آزاد الکیگر ان n وقت آزاد خول q جانب نفوذ q جانب نفوذ q جانب با اس خطب کا چارج کے اس حرکت کے جاتے ہیں۔ یوں اس لیح ہی آزاد خول q جانب اور آزاد الکیگر ان q وجانب نفوذ q کا خور ہو جاتا ہے۔ یوں دو چارج کی طرح ، سرحد کے دائیں لیعنی q جانب مثبت جبکہ اس کے بائیں جانب منفی چارج جمع ہو جاتا ہے۔ یوں دو چارد کیسیٹر پر چارج کی طرح ، سرحد کے دائیں لیعنی q جانب مثبت جبکہ اس کے بائیں جانب منفی چارج جمع ہو جاتا ہے۔ یوں دو چارد کیسیٹر پر چارج کی طرح ، سرحد کے دائیں لیعنی q جہ بائیں ہے دائیں جانب آزاد دخول کے حرکت اور دائیں جانب آزاد الکیٹر ان کے حرکت کو در میان برقی میدان کی طرح ، سرحد کے دائیں جانب آزاد الکیٹر ان کے حرکت کو دو کا گا انباز بڑھتا رہے گا جس سے بائیں جانب آزاد الکیٹر ان کے حرکت کو دو دو کی تھے البتہ برقی سکون کی حالت اختیار کرنے کے بعد صاف ظاہر ہے کہ سرحد کے دائیں جانب شبت جبکہ اس کے بائیں جانب شبت جبکہ اس کے بائیں جانب منفی چارج کیا جانب شبت جارج دونوں خور کی بائیں جانب شبت چارج دونوں جانب منفی چارج کیا جانب منفی چارج کے بائی ہو تے ہیں جانب شبت جارہ دونوں جانب منفی چارج کے خور کول کے اخراج سے منفی ایٹوں کے دو کول کے دونوں جانب جانب منفی چارج کے وارج میں تو تو تو آزاد الکیٹر ان کی آخر کی اور جسل کے داخل کی وجہ سے ہے۔ سرحد کے دائیں میانب ہو تھے ہیں۔

سر حد کے دونوں جانب چارج کے انبار کو شکل میں د کھایا گیا ہے۔اس طرح کے انبار کو کئی مساوات سے ظاہر کرنا ممکن ہے جن میں غالباً سب سے سادہ مساوات

$$\rho = 2\rho_0 \operatorname{sech} \frac{x}{a} \tanh \frac{x}{a}$$

ہے جہاں زیادہ سے زیادہ چارج کثافت  $ho_0$  ہے جو  $ho_0$  ہے جو  $ho_0$  ہے جہاں زیادہ سے زیادہ جات کے لئے لو کس مساوات

$$\nabla^2 V = -\frac{2\rho_0}{\epsilon} \operatorname{sech} \frac{x}{a} \tanh \frac{x}{a}$$

لعيني

$$\frac{\mathrm{d}^2 V}{\mathrm{d}x^2} = -\frac{2\rho_0}{\epsilon} \operatorname{sech} \frac{x}{a} \tanh \frac{x}{a}$$

حل کریں۔ پہلی بار تکمل لیتے ہوئے

$$\frac{\mathrm{d}V}{\mathrm{d}x} = \frac{2\rho_0 a}{\epsilon} \operatorname{sech} \frac{x}{a} + A$$

حاصل ہوتا ہے جسے

$$E_x = -\frac{\mathrm{d}V}{\mathrm{d}x} = \frac{2\rho_0 a}{\epsilon} \operatorname{sech} \frac{x}{a} - A$$

بھی لکھا جا سکتا ہے۔ تکمل کے متعقل A کی قیت اس حقیقت سے حاصل کی جاسکتی ہے کہ سرحدسے دور کسی قشم کا چارج کثافت یا برقی میدان نہیں پایا جاتا لہٰذا  $x \to +\infty$  ہو گا جس ہے  $x \to +\infty$  حاصل ہوتا ہے لہٰذا

(6.33) 
$$E_x = -\frac{\mathrm{d}V}{\mathrm{d}x} = -\frac{2\rho_0 a}{\epsilon} \operatorname{sech} \frac{x}{a}$$

کے برابر ہے۔ دوسری بار تکمل لیتے ہوئے

$$V = \frac{4\rho_0 a^2}{\epsilon} \tan^{-1} e^{\frac{x}{a}} + B$$

حاصل ہوتا ہے۔ ہم برقی زمین کو عین سرحد پر لیتے ہیں۔ایسا کرنے سے  $B=-rac{
ho_0 a^2\pi}{\epsilon}$  حاصل ہوتا ہے۔یوں

$$V = \frac{4\rho_0 a^2}{\epsilon} \left( \tan^{-1} e^{\frac{x}{a}} - \frac{\pi}{4} \right)$$

کے برابر ہو گا۔

شکل میں مساوات 6.32، مساوات 6.33 اور مساوات 6.34 د کھائے گئے ہیں جو بالترتیب تحجمی چارج کثافت، برقی میدان کی شدت اور برقی د باو دیتے ہیں۔

سر حد کے دونوں جانب کے مابین برقی دباو $V_0$  کو مساوات 6.34 کی مدد سے یوں حاصل کیا جا سکتا ہے۔

$$(6.35) V_0 = V_{x \to +\infty} - V_{x \to -\infty} = \frac{2\pi \rho_0 a^2}{\epsilon}$$

سرحد کے ایک جانب کل چارج کو مساوات 6.32 کی مددسے حاصل کیا جاسکتا ہے۔ یوں کل مثبت چارج

(6.36) 
$$Q = S \int_0^\infty 2\rho_0 \operatorname{sech} \frac{x}{a} \tanh \frac{x}{a} dx = 2\rho_0 a S$$

حاصل ہوتا ہے جہال ڈاپوڈ کا رقبہ عمودی تراش S اسے مساوات 6.35 سے می قیت مساوات 6.36 میں پر کرنے سے

$$Q = S\sqrt{\frac{2\rho_0 \epsilon V_0}{\pi}}$$

کھا جا سکتا ہے۔اس مساوات سے کیپیسٹنس کی قیت  $C=rac{Q}{V_0}$  کھا جا سکتا ہے۔اس مساوات سے کیپیسٹنس کی قیت کے البتہ

$$I = \frac{\mathrm{d}Q}{\mathrm{d}t} = C\frac{\mathrm{d}V_0}{\mathrm{d}t}$$

سے

$$C = \frac{dQ}{dV_0}$$

لکھا جا سکتا ہے للمذا مساوات 6.37 کا تفرق لیتے ہوئے

$$C = \sqrt{\frac{\rho_0 \epsilon}{2\pi V_0}} S = \frac{\epsilon S}{2\pi a}$$

حاصل ہوتا ہے۔اس مساوات کے پہلے جزوسے ظاہر ہے کہ برقی دباو بڑھانے سے کپیسٹنس کم ہوگی۔مساوات کے دوسرے جزوسے یہ اخذ کیا جا سکتا ہے کہ ڈابوڈ بالکل ایسے دو چادر کپیسٹر کی طرح ہے جس کے چادر کارقبہ S اور چادروں کے مابین فاصلہ 2πa ہو۔یوں برقی دباوسے کپیسٹنس کے گھنے کو یوں سمجھا جا سکتا ہے کہ برقی دباو بڑھانے سے a بڑھتا ہے۔

6.6 لاپلاس مساوات كا ضربى حل

گزشتہ تھے میں صرف ایک محدد کے ساتھ تبدیل ہوتے برقی دباو کے لاپلاس مساوات پر غور کیا گیا۔اس تھے میں ایسے میدان پر غور کیا جائے گا جہاں برقی دباو ایک سے زیادہ محدد کے ساتھ تبدیل ہوتا ہو۔ایسی صورت میں لاپلاس مساوات

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0$$

صورت اختیار کرے گا۔ تصور کریں کہ ایسی مساوات کے حل کو دو تفاعل X(x) اور Y(y) کے حاصل ضرب X(x) کی شکل میں لکھا جا سکتا ہے جہاں X تفاعل کا آزاد متغیرہ صرف X اور Y تفاعل کا آزاد متغیرہ صرف X اور Y تفاعل کا آزاد متغیرہ صرف X اور X اور دوسرانسبتاً مشکل حل X اور X اور کرتا ہے۔ ایسا ہی ایک سادہ حل X اور X اور دوسرانسبتاً مشکل حل X اور کر اور کرتا ہے۔ ایسا ہی ایک سادہ حل X اور X اور کر ساتھ ہیں۔ ہم انجانے طور پر رد کر رہے ہو سکتے ہیں۔ ہم X اور X اور X اور X سکتے ہیں۔ ہم X اور X اور کرتا ہے۔ ایسا کی سکتے ہیں۔ ہم انجانے طور پر رد کر رہ کرتا ہے۔ ایسا کی سکتے ہیں۔ ہم X اور X ا

$$V_1 = X_1(x)Y_1(y) = 1x$$
  
 $V_2 = X_2(x)Y_2(y) = 1y$ 

کھاجا سکتا ہے جہاں  $Y_1(y)=1$  اور  $Y_2(x)=1$  برابر ہیں۔ یوں ہم دیکھتے ہیں کہ ہم x کو دو نفاعل کے ضرب کی صورت میں لکھ سکتے ہیں اور اس طرح y کو بنا پر ان جوابات کا مجموعہ y=1 بھی لاپلاس مساوات کا طرح y کو بھی دو نفاعل کے ضرب کی صورت میں لکھ سکتے ہیں۔ لاپلاس مساوات خطی ہونے کی بنا پر ان جوابات کا مجموعہ y=1 بھی لاپلاس مساوات کا حل ہو گا۔ یوں آپ د کیھ سکتے ہیں کہ ہم نے y=1 جواب کو ہر گزرد نہیں کیا۔ ایسے ہی ثبوت سے ہم د کیھ سکتے ہیں کہ ہم نے y=1 جواب کو ہر گزرد نہیں کیا۔ ایسے ہی ثبوت سے ہم د کیھ سکتے ہیں کہ ہم نے y=1 جواب کو بھی رد نہیں کیا گیا۔

اب آتے ہیں اصل مسکے پر۔ا گر V=XY مساوات 6.38 کا حل ہو تب

$$\frac{\partial^2 X(x)}{\partial x^2} Y(y) + X(x) \frac{\partial^2 Y(y)}{\partial y^2} = 0$$

ہو گا جسے

$$\frac{1}{X(x)}\frac{\partial^2 X(x)}{\partial x^2} = -\frac{1}{Y(y)}\frac{\partial^2 Y(y)}{\partial y^2}$$

کھا جا سکتا ہے۔ یہاں آئکھیں کھول دینے والی دلیل پیش کرتے ہیں۔ مساوات 6.30 میں بائیں جانب صرف x متغیرہ پایا جاتا ہے جبکہ دائیں جانب صرف y متغیرہ پایا جاتا ہے۔ یہاں آئکھیں کھول دینے والی دلیل پاتھ جوں کا توں رہے گا۔اب مساوات کہتا ہے کہ بائیں اور دائیں ہاتھ ہوں کا توں رہے گا۔اب مساوات کہتا ہے کہ بائیں اور دائیں ہاتھ برابر ہیں۔ ایسا صرف اور صرف اس صورت ممکن ہوگا کہ ناتو x تبدیل کرنے سے دایاں ہاتھ تبدیل ہوتا ہو لعنی اگر دونوں ہاتھ کی مستقل کے برابر ہوں جہاں اس مستقل کو 2m کھتے ہوئے آگے بڑھتے ہیں۔2m کو علیحدگی مستقل کے برابر ہوں جہاں اس مستقل کو 2m کھتے ہوئے آگے بڑھتے ہیں۔2m کو علیحدگی مستقل ان کے برابر ہوں جہاں اس مستقل کو 2m کھتے ہوئے آگے بڑھتے ہیں۔2m کو علیحدگی مستقل ان کے برابر ہوں جہاں اس مستقل کو 2m کھتے ہوئے آگے بڑھتے ہیں۔2m کو علیحدگی مستقل کے برابر ہوں جہاں اس مستقل کو 2m کھتے ہوئے آگے بڑھتے ہیں۔

(6.40) 
$$\frac{1}{X(x)}\frac{\partial^2 X(x)}{\partial x^2} = -\frac{1}{Y(y)}\frac{\partial^2 Y(y)}{\partial y^2} = m^2$$

اس مساوات کو د و اجزاء

$$\frac{1}{X(x)} \frac{\partial^2 X(x)}{\partial x^2} = m^2$$
$$\frac{1}{Y(y)} \frac{\partial^2 Y(y)}{\partial y^2} = -m^2$$

(6.41) 
$$\frac{\partial^2 X(x)}{\partial x^2} - m^2 X(x) = 0$$
$$\frac{\partial^2 Y(y)}{\partial y^2} + m^2 Y(y) = 0$$

کی صورت میں لکھتے ہوئے باری باری حل کرتے ہیں۔

اس طرز کے مساوات آپ پہلے عل کر چکے ہول گے جہاں جواب اندازے سے لکھتے ہوئے مساوات کو حل کیا جاتا ہے۔اس طریقے کو استعال کرتے ہوئے مساوات 6.41 کے پہلے جزومیں

$$X(x) = e^{\omega x}$$

پر کرتے ہیں۔یوں  $\omega^2 e^{\omega x}$  ہو گا لہذا پر کرتے ہیں۔یوں

$$\omega^2 e^{\omega x} - m^2 e^{\omega x} = 0$$

لکھا جائے گا جس سے

 $\omega = \mp m$ 

حاصل ہو گا۔ س کے دونوں قیمتیں استعال کرتے ہوئے یوں اصل جواب

$$(6.42) X(x) = A'e^{mx} + B'e^{-mx}$$

حاصل ہوتا ہے۔مساوات 6.41 کے دوسرے جزو کا جواب اس طرح

$$(6.43) Y(y) = C\cos my + D\sin my$$

حاصل ہوتا ہے۔ یوں مساوات 6.38 کا پوراحل

(6.44) 
$$V = XY = \left(A'e^{mx} + B'e^{-mx}\right)\left(C\cos my + D\sin my\right)$$

لکھا جائے گا۔

آئیں مساوات 6.41 کے حل کو ایک مرتبہ دوبارہ حاصل کریں۔البتہ اس مرتبہ جواب کا اندازہ لگانے کی بجائے ہم ایک ایس ترکیب استعال کریں گے جو انتہائی زیادہ طاقتور ثابت ہو گا اور جو آگے بار بار استعال آئے گا۔

اس ترکیب میں ہم تصور کرتے ہیں کہ X(x) تفاعل کو طاقتی سلسلے 14

(6.45) 
$$X(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \cdots$$

کی شکل میں لکھنا ممکن ہے جہاں a2 ،a1 ،a0 وغیرہ طاقتی سلسلے کے مستقل ہیں۔یوں

$$\frac{\partial X}{\partial x} = 0 + a_1 + 2a_2x^1 + 3a_3x^2 + 4a_4x^3 + \dots = \sum_{n=1}^{\infty} na_nx^{n-1}$$

اور

(6.46) 
$$\frac{\partial^2 X}{\partial x^2} = 0 + 0 + 2 \times 1a_2 + 3 \times 2a_3 x^1 + 4 \times 3a_4 x^2 + \dots = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2}$$

لکھے جا سکتے ہیں۔مساوات 6.45 اور مساوات 6.46 کو مساوات 6.41 کے پہلے جزو میں پر کرتے ہیں

$$2 \times 1a_2 + 3 \times 2a_3x^1 + 4 \times 3a_4x^2 + \dots = m^2 \left( a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + \dots \right)$$

جہاں ہم  $m^2X$  کو دائیں ہاتھ لے گئے ہیں۔ یہاں بائیں اور دائیں ہاتھ کے طاقتی سلسلے صرف اس صورت x کے ہر قیمت کے لئے برابر ہو سکتے ہیں جب دونوں جانب x کے برابر طاقت کے ضربیہ 15 مین برابر ہوں ایعنی جب

$$2 \times 1a_2 = m^2 a_0$$

$$3 \times 2a_3 = m^2 a_1$$

$$4 \times 3a_4 = m^2 a_2$$

يا

$$(n+2)(n+1)a_{n+2} = m^2 a_n$$

ہوں۔ جفت ضربیہ کو  $a_0$  کی صورت میں یوں

$$a_{2} = \frac{m^{2}}{2 \times 1} a_{0}$$

$$a_{4} = \frac{m^{2}}{4 \times 3} a_{2} = \left(\frac{m^{2}}{4 \times 3}\right) \left(\frac{m^{2}}{2 \times 1} a_{0}\right) = \frac{m^{4}}{m!} a_{0}$$

$$a_{6} = \frac{m^{6}}{6!} a_{0}$$

لکھا جا سکتا ہے جسے عمومی طور پر

$$a_n = \frac{m^n}{n!} a_0 \qquad (\pi + n)$$

کھا جا سکتا ہے۔ طاق ضربیہ کو  $a_1$  کی صورت میں

$$a_3 = \frac{m^2}{3 \times 2} a_1 = \frac{m^3}{3!} \frac{a_1}{m}$$
$$a_5 = \frac{m^5}{5!} \frac{a_1}{m}$$

لکھا جا سکتا ہے جس سے ان کی عمومی مساوات

$$a_n = \frac{m^n}{n!} \frac{a_1}{m} \qquad (\text{dis} n)$$

لکھی جاسکتی ہے۔انہیں واپس طاقتی سلسلے میں پر کرتے ہوئے

$$X = a_0 \sum_{0, \dots, \infty}^{\infty} \frac{m^n}{n!} x^n + \frac{a_1}{m} \sum_{1, \dots, \infty}^{\infty} \frac{m^n}{n!} x^n$$

يا

$$X = a_0 \sum_{0 = 1 - \infty}^{\infty} \frac{(mx)^n}{n!} + \frac{a_1}{m} \sum_{1 = 1 - \infty}^{\infty} \frac{(mx)^n}{n!}$$

حاصل ہوتا ہے۔ غور کرنے سے معلوم ہوتا ہے کہ مندرجہ بالا مساوات میں پہلا طاقتی سلسلہ دراصل cosh mx کے برابر

$$\cosh mx = \sum_{0 = -\infty}^{\infty} \frac{(mx)^n}{n!} = 1 + \frac{(mx)^2}{2!} + \frac{(mx)^4}{4!} + \cdots$$

اور دوسرا طاقتی سلسله sinh mx

$$\sinh mx = \sum_{n=1}^{\infty} \frac{m^n}{n!} x^n = mx + \frac{(mx)^3}{3!} + \frac{(mx)^5}{5!} + \cdots$$

کے برابر ہے۔ یول

$$X = a_0 \cosh mx + \frac{a_1}{m} \sinh mx$$

١

 $X = A \cosh mx + B \sinh mx$ 

کھا جا سکتا ہے جہاں  $a_0$  اور  $\frac{a_1}{m}$  یاان کی جگہ لکھے گئے A اور B کو سرحدی شرائط سے حاصل کیا جائے گا۔

cosh *mx* اور sinh *mx* کو

$$cosh mx = \frac{e^{mx} + e^{-mx}}{2}$$

$$sinh mx = \frac{e^{mx} - e^{-mx}}{2}$$

لكھ كر

$$X = A'e^{mx} + B'e^{-mx}$$

جمی لکھا جا سکتا ہے جہاں A' اور B' دو نئے مستقل ہیں۔یہ مساوات A' ہی

اسی طاقتی سلسلے کے طریقے کو استعال کرتے ہوئے مساوات 6.41 کے دوسرے جزو کا حل بھی دو طاقتی سلسلوں کا مجموعہ حاصل ہوتا ہے جہاں ایک طاقتی سلسلہ cos my اور دوسرا sin my کے برابر ہوتا ہے۔ یوں

$$(6.47) Y = C\cos my + D\sin my$$

لکھا جا سکتا ہے جو عین مساوات 6.43 ہی ہے۔ یوں

$$(6.48) V = XY = (A \cosh mx + B \sinh mx) (C \cos my + D \sin my)$$

یا

$$(6.49) V = XY = \left(A'e^{mx} + B'e^{-mx}\right)\left(C\cos my + D\sin my\right)$$

حاصل ہوتا ہے۔ اس آخری مساوات کا مساوات 6.44 کے ساتھ موازنہ کریں۔



شکل 6.1: 
$$my = \sin^{-1}\left(\frac{1}{\sinh mx}\right)$$
 کی مساوات۔

مساوات 6.48 میں کل چار مستقل پائے جاتے ہیں جنہیں سرحدی شرائط سے حاصل کیا جاتا ہے۔آئیں ان مستقل کو دو مختلف سرحدی شرائط کے لئے حاصل کریں۔ پہلی صورت میں بجائے ہیہ کہ سرحدی شرائط سے ان مستقل کو حاصل کریں، ہم مستقل پہلے چنتے ہیں اور بعد میں ان چنے گئے مستقل کے مطابق سرحدی شرائط حاصل کرتے ہیں۔

تصور کریں کہ مساوات 8.48 میں A اور B دونوں یا C اور D دونوں صفر کے برابر ہیں۔ایسی صورت میں V = 0 حاصل ہو گا جو برقی دباو کی عدم موجود گی کو ظاہر کرتی ہے۔ ہمیں عموماً برقی دباو کی موجود گی سے زیادہ دلچیسی ہوتی ہے۔آئیس ایک اور صورت دیکھیں۔

تصور کریں کہ A اور C صفر کے برابر ہے۔الی صورت میں مساوات 6.48 کو

 $(6.50) V = V_0 \sinh mx \sin my$ 

 $BD = V_0$  کھا جا سکتا ہے۔ جوال  $BD = V_0$  کھا گیا ہے۔ جو نکہ

يا

$$\sinh mx = \frac{1}{2} \left( e^{mx} - e^{-mx} \right)$$

y=y=0 گیت y=y=0 گیت y=y=0 گیت تقریباً بین جانده و گا جبکه بڑھتے x=0 ساتھ اس کی قیت تقریباً  $y=e^{mx}$  گیت  $y=e^{mx}$  گیت و باد کے جم توہ سطحیں y=(x-m) و خیرہ پر صفر کے برابر ہوگی۔ یوں صفر برقی دباو کے ہم قوہ سطحیں y=(x-m) و سطحیں و یاد کے ہم توہ سطحیں y=(x-m) و یاد کی ہم قوہ سطحیں و یاد کر سے ہوئے آگے بڑھتے ہیں۔ آخر میں y=0 ہم قوہ سطح مساوات 6.50 میں y=(x-m) میں کرنے سے حاصل کیا جا سکتا ہے۔ یعنی

 $V_0 = V_0 \sinh mx \sin my$ 

 $my = \sin^{-1} \frac{1}{\sinh mx}$ 

x کے مختلف قیتوں کے لئے اس مساوات سے y کی قیمتیں حاصل کرتے ہوئے اس مساوات کے خط کو شکل 0.1 میں کھینچا گیا ہے۔

ان حقائق کو استعال کرتے ہوئے موصل ہم قوہ سطحیں شکل 6.2 میں دکھائی گئی ہیں۔ یہ سطحیں 2 محدد کی سمت میں لامحدود لمبائی رکھتی ہیں اور ان سے پیدا برقی دباو مساوات 6.50 دیتا ہے۔

ہم نے لاپلاس مساوات کے حل یعنی مساوات 6.50 کو لیتے ہوئے ان ہم قوہ سطحوں کو دریافت کیا جو ایسی برقی دیاو پیدا کرے گی۔ حقیقت میں عموماً موصل ہم قوہ سطحیں معلوم ہوں گی جن کا پیدا کردہ برقی دیاو درکار ہو گا۔آئیں ایسی ایک مثال دیکھیں۔



شكل 6.2: بم قوه سطحين اور ان پر برقى دباو-



شکل 6.3: موصل سطحوں سے گھیرے خطے میں لاپلاس مساوات متعدد اجزاء کے مجموعے سے حاصل ہوتا ہے۔

شکل 6.3 میں موصل سطحیں اور ان پر برتی دباو دیا گیا ہے۔ یہ سطحیں 2 سمت میں لا محدود لمبائی رکھتی ہیں۔سطحوں کے گھیرے خطے میں برتی دباو حاصل کرنا در کار ہے۔

یہاں سرحدی شرائط کچھ یوں ہیں۔y=0 وہ y=0 اور y=0 وہ سطوں کے یہاں سرحدی شرائط کچھ یوں ہیں۔ ونوں ہم قوہ سطوں کے مابین انتہائی باریک غیر موصل درز ہیں جن کی بناپر ان کے برقی دباو مختلف ہو سکتے ہیں۔ انس درز کے اثر کو نظرانداز کیا جائے گا۔

موجودہ مسکے میں بھی برقی دباو صرف x اور y کے ساتھ تبدیل ہوتا ہے لہذا مساوات 6.38 ہی اس مسکے کا لاپلاس مساوات ہے جس کا حل مساوات 6.48 ہیں اس مسکے کا لاپلاس مساوات ہوئے مساوات کے مستقل حاصل کرتے ہیں۔مساوات 6.38 میں x=0 پر برقی دباو صفر پر کرنے سے 6.48

 $0 = (A\cosh 0 + B\sinh 0) (C\cos my + D\sin my)$ 

 $0 = A \left( C \cos my + D \sin my \right)$ 

حاصل ہوتا ہے۔ لاکے تمام قیتوں کے لئے پیر مساوات صرف

A = 0

کی صورت میں درست ہو سکتا ہے لہٰذا پہلا مستقل صفر کے برابر حاصل ہوتا ہے۔y=0 مفر برقی دباو پر کرنے سے  $0=B\sinh mx \ (C\cos 0+D\sin 0)$ 

 $0 = B \sin mx (C \cos 0 + D \sin mx)$ 

 $0 = BC \sinh mx$ 

کھا جائے گا جو x کی ہر قیت کے لئے صرف BC=0 کی صورت میں درست ہو گا۔اب چونکہ A=0 ہے لہذا B صفر نہیں ہو سکتا چونکہ ایسی صورت میں مساوات A=0 ہو ہواب چاہتے ہیں جس سے برقی دباو کے بارے میں علم حاصل ہو گا۔ یہ جو اب مساوات A=0 ہو۔اس کے A=0 برابر ہے۔اس طرح مساوات A=0

y=b مساوات میں مساوات میں y=b سے ہیں۔ y=b صورت اختیار کرلے ہیں۔ y=b مساوات میں مساوات میں y=b مساوات میں مساول میں مساول میں میں مساول می

ہم B یا D کو صفر کے برابر نہیں لے سکتے چونکہ الی صورت میں V = V جواب حاصل ہوتا ہے جس میں ہمیں کوئی دلچیبی نہیں۔ پیہ مساوات x کی ہر قیمت کے لئے صرف اس صورت درست ہوگا اگر

 $\sin mb = 0$ 

ہو جس سے

 $mb = n\pi$ 

حاصل ہوتا ہے جہاں

 $n=0,1,2,\cdots$ 

6.51 کے برابر ہو سکتا ہے۔اس طرح  $m=rac{n\pi}{b}$  کا کھتے ہوئے مساوات

$$(6.52) V = V_1 \sinh \frac{n\pi x}{b} \sin \frac{n\pi y}{b}$$

x=d مسورت اختیار کرلے گا جہاں D کو  $V_1$  کھا گیا ہے۔ مساوات 6.52 تین اطراف کے سطحوں پر صفر برتی دباو کے شراکط پر پورا اترتا حل ہے۔ البتہ  $V_1$  کی قدم پر  $V_2$  برتی دباو کے شرط کو مندرجہ بالا مساوات سے پورا کرنا ممکن نہیں۔ ہمیں عموماً بالکل اسی طرز کے مسلوں سے واسطہ پڑتا ہے جہاں آخری قدم پر معلوم ہوتا ہے کہ ہماری قمر دیوار کے ساتھ لگ گئی ہے جہاں سے ظاہری طور پر نگلنے کا کوئی راستہ نہیں۔ گھبرائیں نہیں۔ ہمیں در پیش مسلے کے تمام ممکنہ جوابات کو مساوات 6.52 کی شکل میں لکھا جا سکتا ہے۔ یوں ان تمام جوابات کا مجموعہ بھی قابل قبول حل ہوگا یعنی ہم

(6.53) 
$$V = \sum_{n=0}^{\infty} V_n \sinh \frac{n\pi x}{b} \sin \frac{n\pi y}{b} \qquad (0 < y < b, n = 0, 1, 2, \cdots)$$

بھی لکھ سکتے ہیں جہاں n کی ہر قیت پر منفر د $V_1$  کو  $V_n$  سے ظاہر کیا گیا ہے۔ n اور  $V_n$  کی قیمتیں ایس کہ x=d ہیں جہاں x=d برقی دباوے شرط کو مساوات میں پر کرتے ہوئے

$$V_0 = \sum_{n=0}^{\infty} V_n \sinh \frac{n\pi d}{b} \sin \frac{n\pi y}{b}$$

لعني

$$V_0 = \sum_{n=0}^{\infty} c_n \sin \frac{n\pi y}{b}$$

ملتاہے جہاں

$$c_n = V_n \sinh \frac{n\pi d}{b}$$

لکھا گیا ہے۔

مساوات 6.54 فوریئر تسلسل  $^{16}$  ہے جس کے مستقل با آسانی حاصل کئے جا سکتے ہیں۔ چونکہ ہمیں y < y < 0 کے خطے سے غرض ہے لہذا اس خطے کے باہر ہمیں برقی دباو سے کوئی غرض نہیں۔ ایس صورت میں ہم فوریئر تسلسل کے طاق یا جفت جوابات حاصل کر سکتے ہیں۔ طاق جوابات اس صورت حاصل ہوں گے اگر ہم y < y < 0 کو آدھا میعاد تصور کرتے ہوئے بقایا آدھے میعاد y < 0 < 0 پر برقی دباو کو y < 0 < 0 تصور کریں بعنی

$$V = +V_0 \qquad (0 < y < b)$$

$$V = -V_0 \qquad (b < y < 2b)$$

اسی صورت میں فوریئر تسلسل کے مستقل

$$c_n = \frac{1}{b} \left[ \int_0^b V_0 \sin \frac{n\pi y}{b} \, \mathrm{d}y + \int_b^{2b} (-V_0) \sin \frac{n\pi y}{b} \, \mathrm{d}y \right]$$

سے

$$c_n = \frac{4V_0}{n\pi}$$
  $(n = 1, 3, 5, \cdots)$   
 $c_n = 0$   $(n = 2, 4, 6, \cdots)$ 

حاصل ہوتے ہیں۔اب چو کلہ  $\frac{n\pi d}{b}$  حاصل ہوتے ہیں۔اب چو کلہ

$$V_n = \frac{4V_0}{n\pi \sinh(\frac{n\pi d}{h})} \qquad (n = 1, 3, 5, \cdots)$$

ہو گا اور پول مساوات 6.53 کو

$$V = \frac{4V_0}{\pi} \sum_{n=1,\text{dis}}^{\infty} \frac{1}{n} \frac{\sinh \frac{n\pi x}{b}}{\sinh \frac{n\pi d}{b}} \sin \frac{n\pi y}{b}$$

کھا جا سکتا ہے۔اس مساوات سے مختلف نقطوں پر برقی دباو V(x,y) حاصل کرتے ہوئے ان میں برابر برقی دباو رکھنے والے نقطوں سے گزرتی سطح ہم قوہ سطح ہوگی۔

مثال 6.6: شکل 6.3 میں d=b اور  $V_0=90$  ہونے کی صورت میں ڈیے کے عین وسط میں برقی دیاہ حاصل کریں۔

حل: ڈب کا وسط  $(\frac{b}{2}, \frac{b}{2})$  ہے۔ مساوات 6.55 کے پہلے چند اجزاء لیتے ہوئے

$$V = \frac{4 \times 90}{\pi} \left( \frac{\sinh \frac{\pi}{2}}{\sinh \pi} \sin \frac{\pi}{2} + \frac{1}{3} \frac{\sinh \frac{3\pi}{2}}{\sinh 3\pi} \sin \frac{3\pi}{2} + \frac{1}{5} \frac{\sinh \frac{5\pi}{2}}{\sinh 5\pi} \sin \frac{5\pi}{2} \right)$$

$$= \frac{4 \times 90}{\pi} \left( 0.199268 - 0.0029941887 + 0.0000776406 \right)$$

$$= 22.5 \text{ V}$$

حاصل ہوتا ہے۔

6.7 عددی دہرانر کا طریقہ

لاپلاس مساوات حل کرنے کے کئی ترکیب ہم دیکھ چکے۔ کمپیوٹر کی مدد سے عددی دہرانے 17 کے طریقے سے مساوات حل کئے جاتے ہیں۔آئیں لاپلاس مساوات اسی ترکیب سے حل کریں۔



شکل 6.4: لاپلاس مساوات کے تحت کسی بھی نقطے پر برقی دباو قریبی نقطوں کے برقی دباو کا اوسط ہوتا ہے۔

تصور کرتے ہیں کہ کسی خطے میں برقی میدان صرف x اور y کے ساتھ تبدیل ہوتا ہے۔ شکل 6.4 میں الی سطح د کھائی گئی ہے جے h چوڑائی اور اسے ہی لمبائی کے مربع کے مکڑوں میں تقسیم کیا گیا ہے۔ اس میدان میں آپس میں قریبی پانچ نقطوں پر برقی د باوی  $V_3$  ،  $V_2$  ،  $V_3$  ،  $V_4$  ،  $V_5$  اور  $V_5$  ہیں۔ اگر یہ خطہ ہر جانب یکسال خاصیت رکھتا ہو اور یہ چارج سے پاک ہو تب D=0 اور D=0 اور D=0 ہوں گے جس سے دو محدد میں

$$\frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} = 0$$

کھا جا سکتا ہے۔اب  $E_x=-rac{\partial V}{\partial x}$  اور  $E_y=-rac{\partial V}{\partial y}$  ہونے کی وجہ سے مندر جہ بالا مساوات

$$\frac{\partial^2 V}{\partial x} + \frac{\partial^2 V}{\partial y^2} = 0$$

صورت اختیار کر لیتی ہے جو لا پلاس مساوات ہے۔شکل 6.4 میں نقطہ a اور نقطہ c اور نقطہ کے پر  $rac{\partial V}{\partial x}$  کی قیمتیں تقریباً

$$\left. \frac{\partial V}{\partial x} \right|_{a} \doteq \frac{V_{1} - V_{0}}{h}$$

$$\left. \frac{\partial V}{\partial x} \right| \doteq \frac{V_{0} - V_{3}}{h}$$

ہوں گیں۔یوں ہم

$$\frac{\partial^2 V}{\partial x^2} \bigg|_0 \doteq \frac{\frac{\partial V}{\partial x} \bigg|_a - \frac{\partial V}{\partial x} \bigg|_c}{h} \doteq \frac{V_1 - V_0 - V_0 + V_3}{h^2}$$

لکھ سکتے ہیں۔ بالکل اسی طرح ہم

$$\left. \frac{\partial^2 V}{\partial y^2} \right|_{0} \doteq \left. \frac{\frac{\partial V}{\partial y}}{h} \right|_{0} - \left. \frac{\partial V}{\partial y} \right|_{d} \\ = \left. \frac{V_2 - V_0 - V_0 + V_4}{h^2} \right|_{0}$$



شکل 6.5: رقبہ عمودی تراش کو خانوں میں تقسیم کرتے ہوئے، ہر کونے پر گرد کے چار نقطوں کے اوسط برابر برقی دباو ہو گا۔

بھی لکھ سکتے ہیں۔ان دو جوابات کو لایلاس مساوات میں پر کرنے

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} \doteq \frac{V_1 + V_2 + V_3 + V_4 - 4V_0}{h^2} = 0$$

$$(6.56) V_0 \doteq \frac{V_1 + V_2 + V_3 + V_4}{4}$$

حاصل ہوتا ہے۔ 4 کمبائی جتنی کم ہو مندرجہ بالا مساوات اتنازیادہ درست ہو گا۔ 4 کی کمبائی انتہائی چیوٹی کرنے سے مندرجہ بالا مساوات بالکل صحیح ہو گا۔ یہ مساوات کہتا ہے کہ کسی بھی نقطے پر برقی دباواس نقطے کے گرد چار نقطوں کے برقی دباو کا اوسط ہوتا ہے۔

عددی دہرانے کے طریقے میں تمام خطے کو شکل 6.4 کی طرز پر مربعوں میں تقسیم کرتے ہوئے مربع کے ہر کونے پر مساوات 6.56 کی مدد سے برقی د باو حاصل کیا جاتا ہے۔ تمام خطے پر بار باراس طریقے سے برقی د باو حاصل کی جاتی ہے حتٰی کہ کسی بھی نقطے پر متواتر جوابات میں تبدیلی نہ پائی جائے۔اس طریقے کو مثال سے بہتر سمجھا جا سکتا ہے۔

شکل 6.5 میں مربع شکل کے لامحدود لمبائی کے ڈبے کا عمودی تراش دکھایا گیا ہے۔اس کے چار اطراف صفر برتی دباو پر ہیں جبکہ نہایت باریک غیر موصل فاصلے پر چو تھی طرف نوے وولٹ پر ہے۔اس ڈبے کو یوں خانوں میں تقسیم کیا گیا ہے کہ یا توانہیں سولہ چپوٹے خانے تصور کیا جا سکتا ہے اور یا چار درمیانے جسامت کے خانے۔اس کے علاوہ پورے ڈبے کو ایک ہی بڑا خانہ بھی تصور کیا جا سکتا ہے۔آئیں ان خانوں کے کونوں پر مساوات 6.56 کی مدد سے برتی دباو حاصل کریں۔

اگرچہ کمپیوٹر پرایسے مسائل حل کرتے ہوئے تمام کونوں پر ابتدائی برقی دباو صفر تصور کرتے ہوئے آگے بڑھا جاتا ہے۔ قلم و کاغذ استعال کرتے ہوئے ذرہ سوچ کر چلنا بہتر ثابت ہوتا ہے۔ہم پورے مربع شکل کو ایک ہی بڑا خانہ تصور کرتے ہوئے اس کے عین وسط میں برقی دباو حاصل کرتے ہیں۔ایسا کرنے کی خاطر ہم بڑے خانے کے چار کونوں کی برقی دباو زیر استعال آئے گی۔اب دو کونوں پر صفر برقی دباو نے جبکہ دو کونے غیر موصل درز پر مشتمل ہیں۔درز کے ایک جانب صفر جبکہ اس کی دوسری جانب نوے وولٹ ہیں، لہذا درز میں ان دو قیمتوں کا اوسط یعنی پینتالیس وولٹ برقی دباو تصور کیا جا سکتا ہے۔ اس طرح بڑے خانے کے وسط میں

$$V = \frac{45 + 45 + 0 + 0}{4} = 22.5 \,\mathrm{V}$$

حاصل ہوتا ہے۔ شکل 6.5 میں یہ قیمت و کھائی گئی ہے۔

|     |  | 0                 | V                    |                      |      |
|-----|--|-------------------|----------------------|----------------------|------|
|     |  |                   |                      |                      |      |
| 0 V |  | 6.3<br>6.4<br>6.4 | 16.7<br>16.8<br>16.8 | 38.7<br>38.6<br>38.6 |      |
|     |  | 8.7<br>8.8<br>8.8 | 22.3<br>22.4<br>22.4 | 47.5<br>47.4<br>47.4 | 90 V |
|     |  | 6.3<br>6.4<br>6.4 | 16.7<br>16.8<br>16.8 | 38.7<br>38.6<br>38.6 |      |
|     |  |                   |                      |                      |      |
|     |  | 0                 | V                    |                      |      |

شکل 6.6: چار بار دہرانے کے بعد جوابات تبدیل ہونا بند ہو جاتے ہیں۔یہی اصل جواب ہیں۔

آئیں اب چار در میانے جسامت کے خانوں کے کونوں پر برقی دباو حاصل کریں۔ یہاں بھی ہم ان خانوں کے کونوں کو چار قریبی نقطے چنتے ہیں۔اوپر دائیں بڑے خانے کے وسط میں برقی دباو حاصل کرنے کی خاطر اس خانے کے چار کونوں کے برقی دباو زیر استعال لائے جائیں گے۔یوں درز پر پینتالیس وولٹ تصور کرتے ہوئے

$$V = \frac{90 + 45 + 0 + 22.5}{4} = 39.4 \,\mathrm{V}$$

حاصل ہوتے ہیں۔اسی طرح دائیں نچلے بڑے خانے کے وسط میں بھی

$$V = \frac{90 + 45 + 0 + 22.5}{4} = 39.4 \,\mathrm{V}$$

حاصل ہوتا ہے۔ہم اس قیت کو بغیر حل کئے شکل کو دیکھ کر ہی لکھ سکتے تھے چونکہ شکل کا اوپر والا آدھا حصہ اور اس کا نجلا آدھا حصہ بالکل یکساں ہیں المذا ان دونوں حصوں میں بالکل یکساں برقی دباو ہو گا۔اس حقیقت کو یہاں سے استعال کرنا شر وع کرتے ہیں۔اوپر اور پنچے بائیں بڑے خانے بالکل یکساں ہیں لہٰذا دونوں کے وسط میں

$$V = \frac{22.5 + 0 + 0 + 0}{4} = 5.6 \,\mathrm{V}$$

حاصل ہوتے ہیں۔بقایا کونوں پر برقی دباو حاصل کرتے ہوئے نقطے کے بائیں، دائیں، اوپر اور نیچے نقطوں کو قریبی نقطے چنتے ہیں۔یوں

$$\frac{90 + 39.4 + 22.5 + 39.4}{4} = 47.8 \text{ V}$$
$$\frac{39.4 + 0 + 5.6 + 22.5}{4} = 16.9 \text{ V}$$
$$\frac{22.5 + 5.6 + 0 + 5.6}{4} = 8.4 \text{ V}$$

حاصل ہوتے ہیں۔ شکل 6.5 میں یہ تمام قیت د کھائی گئی ہے۔

آئیں شکل میں اوپر سے نیچے چلتے ہوئے پہلے دائیں، پھر در میانے اور آخر میں بائیں قطار کے تمام کونوں پر برقی دباو حاصل کریں۔ہم یہی سلسلہ بار بار دہرائیں گے حتٰی کہ کسی بھی کونے پر متواتر حاصل کردہ جوابات تبدیل ہونا بند کر دیں۔ہر کونے پر برقی دباو مساوات 6.56 کے استعمال سے حاصل کیا جائے گا جہاں کونے کے اوپر، نیچے، دائیں اور بائیں نقطوں کے برقی دباو کو استعمال کیا جائے گا۔ یاد رہے کہ موصل سطحوں پر برقی دباو ہمیں پہلے سے ہی معلوم ہے لہٰذاان پر برقی دباو حاصل کرنے کی کوشش نہیں کی جائے گا۔ اب 6. پوئسن اور لاپلاس مساوات

اس طرح دائیں قطار کے اوپر جانب 39.4 V کی نئی قیمت

$$\frac{90 + 0 + 16.9 + 47.8}{4} = 38.7 \,\mathrm{V}$$

ہو جائے گی۔اوپر اور نچلے آدھے حصوں کی مشابہت سے ہم قطار کی نچلی قیمت بھی یہی لکھتے ہیں۔شکل 6.6 میں یہ قیمتیں د کھائی گئی ہیں۔مساوات 6.56 میں نئی سے نئی قیمتیں استعال کی جاتی ہیں۔یوں 47.8 کی نئی قیمت

$$\frac{90 + 38.7 + 22.5 + 38.7}{4} = 47.5 \,\mathrm{V}$$

ہو گی۔

در میانے قطار پر آتے ہیں۔ یہاں اوپر 16.9 کی نئی قیمت

$$\frac{38.7 + 0 + 5.6 + 22.5}{4} = 16.7 \,\mathrm{V}$$

ہو گی جو قطار کے نچلے کونے کی بھی قیمت ہے۔اس قطار کے در میانے نقطے کی نئی قیمت

$$\frac{47.5 + 16.7 + 8.4 + 16.7}{4} = 22.3 \,\mathrm{V}$$

ہو گی۔

اسی طرح بائیں قطار کی نئی قیمتیں بھی حاصل کی جاتی ہیں۔ان تمام کو شکل 6.6 میں دکھایا گیا ہے۔ یہی سلسلہ دوبارہ دہرانے سے مزید نئے اور بہتر جوابات حاصل ہوں گے جنہیں گزشتہ جوابات کے نیچے کھا گیا ہے۔ شکل میں اس طرح تین بار دہرانے سے حاصل کئے گئے جوابات دکھائے گئے ہیں۔آپ دیکھ سکتے ہیں کہ کسی بھی نقطے کے آخری دو حاصل کردہ جوابات میں کوئی تبدیلی نہیں پائی جاتی۔اسی لئے ان آخری جوابات کو حتمی جوابات تسلیم کیا جاتا ہے۔

یہاں ڈیے کے عین وسط میں برقی دباو V 22.4 کا حاصل ہوا ہے۔ مثال 6.6 میں ڈیے کے وسط پر برقی دباوطاقتی سلسلے کی مدد سے 22.5 کا حاصل ہوئی تھی جو تقریباً اتنی ہی قیمت ہے۔ یاد رہے کہ یہاں ہم نے اشار سے بعد صرف ایک ہندسہ رکھتے ہوئے برقی دباو حاصل کئے۔ اسی وجہ سے دونوں جوابات میں معمولی فرق ہے۔

اگر ہم سوچ سے کام نہ لیتے ہوئے سیدھ وسیدھ مساوات 6.56 میں شر وغ سے دائیں، بائیں، اوپر اور پنچے نقطوں کی قیمتیں استعال کرتے، تب ہمیں قطعی جوابات دس مرتبہ دہرانے کے بعد حاصل ہوتے۔اگرچہ قلم و کاغذاستعال کرتے ہوئے آپ ضرور سوچ سمجھ سے ہی کام لیں گے البتہ کمپیوٹر استعال کرتے ہوئے ایسا کرنے کی ضرورت پیش نہیں آتی۔کمپیوٹر کے لئے کیا ایک مرتبہ اور کیا دس ہزار مرتبہ۔

اس مثال میں ہم نے بہت کم نقطوں پر برقی دباو حاصل کی تاکہ دہرانے کا طریقہ با آسانی سمجھا جاسکے۔کمپیوٹر استعال کرتے ہوئے آپ زیادہ سے زیادہ نقطے چن سے عاصل ہوتا ہے ناکہ کم نقطوں پر زیادہ ہندسوں پر مبنی جوابات سے۔دہرانے کا طریقہ اس مرتبہ تک دہرایا جاتا ہے جب تک کسی بھی نقطے پر دو متواتر حاصل کردہ جوابات میں فرق اتنی کم ہو کہ اسے رد کرنا ممکن ہو۔یوں ایک مائیکرو وولٹ تک درست جوابات ماس کرنے کی خاطر اس وقت تک دہرائی کی جائے گی جب تک کسی بھی نقطے پر دو متواتر جوابات میں فرق ایک مائیکرو وولٹ سے کم نہ ہو جائے۔

## برقرار مقناطيسي ميدان

برقی میدان کا منبع برقی چارج ہے جس پر باب 2 میں تفصیلی غور کیا گیا۔ مقناطیسی میدان کا منبع یا تو مقناطیس ہو سکتا ہے، یا وقت کے ساتھ بدلتا برقی میدان اور یا پھر برقی رو۔اس کتاب میں مقناطیس سے پیدا مقناطیسی میدان پر غور نہیں کیا جائے گا۔وقت کے ساتھ بدلتے برقی میدان سے پیدا مقناطیسی میدان پر غور کیا جائے گا۔

7.1 بايوك-سيوارك كا قانون

برقی رواور اس سے پیدا مقناطیسی میدان کا تعلق بایوٹ-سیوارٹ <sup>1</sup> کا قانون<sup>2</sup>

(7.1) 
$$dH = \frac{I dL \times a_{R}}{4\pi R^{2}}$$

بیان کرتا ہے جہاں سے مقناطیسی شدت H کی اکائی ایمپیئر فی میٹر  $\left(rac{A}{m}
ight)$  حاصل ہوتی ہے۔آئیں اس قانون کا مطلب سمجھیں۔

یہ قانون باریک تار کے انتہائی چھوٹے جسے dL جس میں I برقی رو گزر رہا ہوسے نقطہ P پر پیدائستی برقی میدان H دیتا ہے۔نقطہ P باریک تار کے چھوٹی لمبائی سے R فاصلے پر ہے۔باریک تار سے مراد ایسی ٹھوس نکلی نما موصل تار ہے جس کے رقبہ عمودی تراش کا رداس اتنا کم کر دیا جائے کہ یہ صفر کے قریب تر ہو۔ dL کی سمت برقی روکی سمت میں ہے جبکہ I dL منبع مقناطیسی میدان ہے۔

متناطیسی شدت کی قیمت برقی روضرب باریک چھوٹی تارکی لمبائی ضرب R اور dL کے مابین زاویہ کے سائن کے برائے راست تناسب جبکہ ان کے مابین فاصلہ R کے مربع کے بالعکس تناسب رکھتی ہے۔ تناسبی مستقل 14 ہے۔

بابوٹ-سیوارٹ کے قانون کا موازنہ کولومب کے قانون کے ساتھ کرنے کی غرض سے دونوں مساوات کو ایک ساتھ لکھتے ہیں۔

$$\mathrm{d} oldsymbol{H}_2 = rac{I_1\,\mathrm{d} oldsymbol{L}_1 imes oldsymbol{a}_{R21}}{4\pi R_{21}^2} \ \mathrm{d} oldsymbol{E}_2 = rac{\mathrm{d} Q_1 oldsymbol{a}_{R21}}{4\pi \epsilon_0 R_{21}^2}$$

Biot-Savart law1

<sup>2</sup>یہ قانون فرانس کے بایوٹ اور سیوارٹ نے 1820 میں پیش کیا۔یہ دونوں ایمپیئر کے ساتھی تھے۔

178 برقرار مقناطيسي ميدان

ان مساوات میں زیر نوشت میں 1 اس مقام کو ظاہر کرتی ہے جہاں میدان کی قیت حاصل کی گئی ہے جبکہ زیر نوشت میں 1 میدان کے منبع کے مقام کو ظاہر کرتی ہے۔دونوں ظاہر کرتی ہے۔دونوں میدان کی شدت اور میدان کی منبع کا خطی تعلق ہے۔دونوں میں فرق میدان کی سمت کا ہے۔ برقی میدان کی سمت منبع سے اس نقطہ کی جانب ہے جہاں میدان حاصل کیا جارہے ہو۔مقناطیسی میدان کی سمت سمتی ضرب کے دائیں ہاتھ کے قانون سے حاصل ہوتی ہے۔

بایوٹ-سیوارٹ کے قانون کو مساوات 7.1 کی شکل میں تجرباتی طور پر ثابت نہیں کیا جاسکتا چونکہ باریک تار کے چھوٹی لمبائی میں برقی روتب گزرے گی جب یہ اس تک پہنچائی جائے۔جو تاراس تک برقی رو پہنچائے گا، وہ بھی مقناطیسی میدان پیدا کرے گا۔انہیں علیحدہ علیحدہ نہیں کیا جا سکتا۔ہم فی الحال صرف یک سمتی برقی روکی بات کر رہے ہیں۔ یک سمتی برقی روکی صورت میں وقت کے ساتھ تھجی چارج کثافت تبدیل نہیں ہوگا للذاصفحہ 117 پردئے استمراری مساوات

$$abla \cdot oldsymbol{J} = -rac{\partial 
ho_h}{\partial t}$$

 $\nabla \cdot \boldsymbol{J} = 0$ 

حاصل ہو گا جسے مسئلہ پھیلاو کی مدد سے

$$\oint_{S} \boldsymbol{J} \cdot d\boldsymbol{S} = 0$$

کھا جا سکتا ہے۔ یہ مساوات کہتا ہے کہ کسی بھی بند سطے سے گزرتی برقی روصفر کے برابر ہے۔ یہ صرف اس صورت ممکن ہے جب برقی روکسی بند راہ پر گزر رہی ہو۔ ہمیں ایسی ہی مکمل بند راہ کے برقی رو کے اثر کو دیکھنا ہو گا نا کہ تار کے کسی چھوٹے جھے کے برقی رو کو۔

یوں بابوٹ-سیوارٹ قانون کی تکمل شکل

$$H = \oint \frac{I \, dL \times a_{R}}{4\pi R^{2}}$$

ہی تجر باتی طور ثابت کی جاسکتی ہے۔

مساوات 7.1 سے مساوات 7.3 لکھی جاستی ہے۔البتہ مساوات 7.3 میں کمل کے اندر کوئی بھی الی اضافی تفاعل شامل کیا جاسکتا ہے جس کا بند کمل صفر کے برابر ہو۔مقداری میدان کا ڈھلان ہر صورت بقائی میدان ہوتاہے للذا مساوات 7.3 میں ∇ کے شمول سے اس کے جواب میں کوئی فرق نہیں صفر کے برابر ہو۔مقداری میدان ہو سکتا ہے۔اس حقیقت کا تذکرہ اس لئے کیا جارہا ہے کہ اگر ہم ایک چھوٹے برقی روگزارتے تارپر دوسرے چھوٹے برقی روگزارتے تارپر دوسرے جھوٹے برقی روگزارتے تارپر دوسرے بھوٹے بہتیں احتقانہ جوابات ہی حاصل ہوں گے۔

بایوٹ۔ سیوارٹ کے قانون کو سطحی کثافت برتی رو K یا کثافت برتی رو Jی صورت میں بھی لکھا جا سکتا ہے جہاں

$$(7.4) I dL = K dS = J dv$$

لکھا جائے گا۔ یوں بایوٹ-سیوارٹ کے قانون کو

$$H = \int_{S} \frac{K \times a_{\rm R} \, \mathrm{d}S}{4\pi R^2}$$

١

(7.6) 
$$H = \int_{h} \frac{J \times a_{\mathrm{R}} \, \mathrm{d}h}{4\pi R^{2}}$$

7.1. بايوٺ-سيوارث كا قانون



شكل 7.1: سيدهي لامحدود تار سے پيدا مقناطيسي ميدان

لکھا جا سکتا ہے۔

آئیں برتی رو گزارتے سید ھی لامحدود لمبائی کے تار سے پیدا مقناطیسی میدان ہایوٹ-سیوارٹ کے قانون سے حاصل کریں۔ شکل 7.1 میں صورت حال د کھائی گئی ہے۔اس تار کے دونوں سرے لامحدود فاصلے پر ہیں۔تار کے قریب نقطہ N پر مقناطیسی میدان کا بیشتر حصہ تار کے اس جھے کی وجہ سے ہو گا جو N کے قریب ہو۔یوں لامحدود فاصلے پر تار کے سروں تک برتی رو پہنچانے والے تار کا نقطہ N پر اثر کو نظرانداز کرتے ہوئے آگے بڑھتے ہیں۔

نقطہ  $N_1$  پر تار کے چھوٹے جسے d کو منبع مقناطیسی میدان تصور کرتے ہوئے مساوات 7.1 کی مدد سے نقطہ  $N_2$  پر مقناطیسی میدان لکھی جا سکتی ہے۔چونکہ

$$\mathbf{R}_{21} = \rho \mathbf{a}_{\rho} - z \mathbf{a}_{\mathrm{Z}}$$

کے برابر ہے للذا

$$R_{21} = |\mathbf{R}_{21}| = \sqrt{\rho^2 + z^2}$$
 $\mathbf{a}_{R} = \frac{\mathbf{R}_{21}}{|\mathbf{R}_{21}|} = \frac{\rho \mathbf{a}_{\rho} - z \mathbf{a}_{z}}{\sqrt{\rho^2 + z^2}}$ 

لکھے جا سکتے ہیں۔ نکی محدد میں چھوٹی لمبائی

 $\mathrm{d} oldsymbol{L} = \mathrm{d} 
ho oldsymbol{a}_
ho + 
ho \, \mathrm{d} \phi oldsymbol{a}_\phi + \mathrm{d} z oldsymbol{a}_\mathrm{Z}$ 

 $^{2}$  کامی جاتی ہے۔ چو نکہ یہاں اور او $\phi=0$  اور ا $\phi=0$  ہیں المذاd

$$\mathrm{d}\boldsymbol{H}_2 = \frac{I\,\mathrm{d}z\boldsymbol{a}_{\mathrm{Z}}\times(\rho\boldsymbol{a}_{\rho}-z\boldsymbol{a}_{\mathrm{Z}})}{4\pi(\rho^2+z^2)^{\frac{3}{2}}}$$

کھا جا سکتا ہے۔ پورے تار کا مقناطیسی میدان اس مساوات کے تکمل سے حاصل ہو گا جہاں تکمل∞۔ تا∞+ حاصل کیا جائے گا۔اس طرح

$$H_2 = \int_{-\infty}^{\infty} \frac{I \, dz a_z \times (\rho a_\rho - z a_z)}{4\pi (\rho^2 + z^2)^{\frac{3}{2}}}$$
$$= \frac{I\rho}{4\pi} \int_{-\infty}^{\infty} \frac{a_\phi \, dz}{(\rho^2 + z^2)^{\frac{3}{2}}}$$

کھے گئے ہیں۔  $a_z imes a_z imes a_z imes a_z imes a_z imes a_z imes a_z$  کھے گئے ہیں۔ کھا جا سکتا ہے جہال صفحہ 18 پر مساوات 1.23 کی مدد سے  $a_z imes a_z imes a_z imes a_z$ 

مندرجہ بالا مساوات میں تکمل کے اندر  $a_{\phi}$  پر نظرر کھنا ہو گا۔ا گرچہ  $a_{\phi}$  اکائی سمتیہ ہے لہٰذااس کی لمبائی تبدیل نہیں ہو سکتی البتہ یہ دیکھنا ضرور ی ہے کہ آیا تکمل کا متغیرہ لیعنی z تبدیل کرنے سے  $a_{\phi}$  کی سمت تو تبدیل نہیں ہوتی۔صفحہ 21 پر مساوات 1.34 کے تحت

$$a_{\phi} = -\frac{y}{\sqrt{x^2 + y^2}} a_{\mathrm{X}} + \frac{x}{\sqrt{x^2 + y^2}} a_{\mathrm{Y}}$$

باب 7. برقرار مقناطیسی میدان



شکل 7.2: سیدهی لمبی تارکا مقناطیسی میدان تارکے گرد دائرے بناتا ہے۔برقی رو صفحے سے باہر نکل رہی ہے۔



شكل 7.3: سيدهي محدود لمبائي كر تاركي مقناطيسي شدت.

کھا جا سکتا ہے۔آپ دیکھ سکتے ہیں کہ z تبدیل کرنے سے  $a_{\phi}$  پر کوئی اثر نہیں پڑتا للذا  $a_{\phi}$  کو تکمل کے باہر منتقل کیا جا سکتا ہے۔یوں

(7.7) 
$$H_2 = \frac{I\rho a_{\phi}}{4\pi} \int_{-\infty}^{\infty} \frac{\mathrm{d}z}{(\rho^2 + z^2)^{\frac{3}{2}}}$$
$$= \frac{I\rho a_{\phi}}{4\pi} \frac{z}{\rho^2 \sqrt{\rho^2 + z^2}} \bigg|_{-\infty}^{+\infty}$$

$$H_2 = \frac{I}{2\pi\rho} a_{\phi}$$

حاصل ہوتا ہے۔ شکل 7.2 میں برقی روصفحہ سے باہر نکل رہی ہے جبکہ گول دائرے مقناطیسی میدان کو ظاہر کرتے ہیں۔اگر تار کو دائیں ہاتھ سے یوں پکڑا جائے کہ انگوٹھا برقی روکی ست میں ہوتب اس ہاتھ کی انگلیاں تار کے گرد مقناطیسی میدان کی ست میں لپٹی ہوں گی۔ آپ دیکھ سکتے ہیں کہ یہ مقناطیسی میدان نا نو 2 اور نا ہی زاویہ & کے ساتھ تبدیل ہوتا ہے۔اس کی قیت صرف تار سے فاصلے پر مفصر ہے۔

ا گر شکل 7.1 میں تار لامحدود نہ ہو تب مساوات 7.3 میں تکمل کے محدود حدود پر کرنے سے مقناطیسی میدان کی شدت

(7.9) 
$$\boldsymbol{H} = \frac{I}{4\pi\rho} \left( \sin \alpha_2 - \sin \alpha_1 \right) \boldsymbol{a}_{\phi}$$

 $\alpha_1$  ماصل ہوتی ہے جہاں شکل 7.3 میں  $\alpha_1$  اور  $\alpha_2$  کی نشاندہی کی گئی ہے۔تار کا نچلا سرا  $\alpha_2$  سطح لیعنی  $\alpha_2$  سطح سے نیچے ہونے کی صورت میں  $\alpha_1$  کی قیمت منفی ہو گی۔ یہی کچھ تار کے دوسرے سرے اور  $\alpha_2$  کے لئے بھی درست ہے۔

7.2. ايمبيئر كا دورى قانون

7.2 ایمپیئر کا دوری قانون

کولومب کے قانون کی مدد سے مختلف طرز پر پائے جانے والے چارج کے برقی میدان حاصل کرنے کے بعد ہم نے گاؤس کا قانون اخذ کیا جس سے ہمار کی زندگی نہایت آسان ہو گئی۔گاؤس کے قانون کی مدد سے متناکل چارج سے پیدا برقی میدان انتہائی آسانی سے حاصل ہوتا ہے۔ متناکل برقی رو کے مقناطیسی میدان حاصل کرنے کا بھی اتنا ہی آسان طریقہ موجود ہے جسے ایمپیئر کا دوری قانون 3 ہیں۔اس قانون کو بالاٹ۔ سیوارٹ کے قانون سے آگے جا کر حاصل کیا گیا ہے۔ فی الحال ہم اس قانون کو استعال کرنا سیکھتے ہیں۔اس قانون کے استعال کے وقت مسئلے پر غور کرتے ہوئے بغیر حساب و کتاب کے فیصلہ کیا جاتا ہے۔

ایمپیئر کا دوری قانون کہتا ہے کہ یک سمتی برقی رو کے گرد کسی بھی راہ  $m{H}$  کا کئیری بند تکمل گھیرے برقی رو کے برابر ہو گا یعنی  $m{\Phi}$   $m{H}\cdot dm{L}=I$ 

لکیری بند تکمل کی سمت میں برقی روکے گرد دائیں ہاتھ کی انگلیاں گھمانے سے اسی ہاتھ کا انگوٹھا مثبت برقی رو کی سمت دے گا۔ایسا کرتے وقت انگوٹھے کو باقی چار انگلیوں کے عمودی رکھا جاتا ہے۔

کسی بھی راہ H کے کلیری کمل سے مراد اس راہ کو انتہائی جھوٹے چھوٹے گلڑوں d میں تقسیم کر کے ہر گلڑے پر H کی قیمت استعال کرتے ہوئے  $H \cdot d$  حاصل کر کے تمام  $H \cdot d$  کا مجموعہ حاصل کرنا ہے۔ مقناطیسی شدت H کی قیمت مختلف مقامات پر عموماً مختلف ہوگی۔ یوں کسی ایک نقطے پر  $H \cdot d$  کی قیمت کسی دو سرے نقطے کے  $H \cdot d$  سے مختلف ہوگی۔ ایمپیسر کا دوری قانون کہتا ہے کہ اگرچہ یک سمتی برتی رو کے گرد دو مختلف بند راہوں پر جگہ جگہ  $H \cdot d$  کی قیمتیں مختلف ہول گی لیکن دونوں راہ پر ان کا مجموعہ عین برتی رو کے برابر ہوگا۔

کسی بھی سطح کا محیط، بند راہ ہوتی ہے۔اسی طرح کوئی بھی بند راہ، لا محدود سطحوں کا محیط ہوتا ہے۔یوں بند راہ کا گھیرا ہوا برقی روان تمام سطحوں کو چھیرتا ہوا گزرے گا جن کا محیط بیہ بند راہ ہو۔

گاؤس کے قانون کا استعال تب ممکن ہوتا ہے جب بند سطح میں کل برقی چارج معلوم ہو۔ایمپیئر کا دوری قانون اس صورت استعال کیا جا سکتا ہے جب بند راہ میں گھیرا کل یک سمتی برقی رو معلوم ہو۔

آئیں شکل 7.1 میں دکھائے گئے برتی رو گزارتے سید ھی لامحدود لمبائی کے تارکی مقناطیسی شدت ایمپیئر کے دوری قانون یعنی مساوات 7.10 کی مدد سے دوبارہ حاصل کریں۔اس مساوات کو استعمال کرتے ہوئے برتی روکے گرد راہ یوں چنی جاتے ہے کہ اس پر  $\mathbf{H}$  اور  $\mathbf{dL}$  یا تو آپس میں عمودی ہوں اور یا  $\mathbf{H}$  کی قیت قطعی اور اس کی سمت  $\mathbf{dL}$  کے متوازی ہو۔ پہلی صورت میں دونوں متغیرات کے مابین نوبے درجے کا زاویہ ہے اور  $\mathbf{0}$  وہ  $\mathbf{0}$  کا زاویہ ہے اور لہذا  $\mathbf{dL}$  کی خراج ہوگا اور یوں راہ کے اس جھے پر تکمل صفر کے برابر ہوگا۔ دوسری صورت میں متغیرات کے مابین صفر درجے کا زاویہ ہے اور لہذا  $\mathbf{dL}$  کی جارم ہوگا۔ دوسری صورت میں متغیرات کے مابین صفر درجے کا زاویہ ہو تا ہوگئمل کے باہر  $\mathbf{dL}$  کے باہر ہوگا جایا جا سکتا ہے۔ اور ساتھ ہی ساتھ مقناطیسی شدت کی قیت قطعی ہونے کی وجہ سے  $\mathbf{H}$  کو تکمل کے باہر لیے جایا جا سکتا ہے۔یوں راہ کے اس راستے پر تکمل کی قیمت  $\mathbf{dL}$  کے برابر ہوگی جہاں  $\mathbf{dL}$  راہ کے اس جھے کی لمبائی ہے۔

تار کے گرد اور اس کے ساتھ ساتھ حرکت کرنے سے واضح ہوتا ہے کہ مسکلے کی نوعیت نا تو تار کے گرد زاویہ  $\phi$  پر اور نا ہی محدد z پر مخصر ہے۔تار سے دور یا اس کے قریب ہونے سے ہی مسکلے کی نوعیت میں تبدیلی آتی ہے۔یوں صاف ظاہر ہے کہ مقناطیسی شدت صرف  $\rho$  پر مخصر ہو سکتی ہے۔اسی طرح بایوٹ۔سیوارٹ کے قانون کو مد نظر رکھتے ہوئے ہم دیکھ سکتے ہیں کہ مقناطیسی شدت  $a_{\phi}$  سمت رکھتی ہے یعنی اس کا صرف  $A_{\phi}$  جزو پایا جائے

182 باب 7. برقرار مقناطیسی میدان







(ا) ہم محوری تار کمے اندرونی تار میں مثبت جبکہ بیرونی تار میں منفی برقی رو ہے۔

شكل 7.4: بم محورى تار.

گا۔ یوں اگر ho تبدیل کئے بغیر تار کے گرد چلا جائے تو ہم یقین رکھ سکتے ہیں کہ H کی حتمی قیمت  $H_{\phi}$  تبدیل نہیں ہو گی۔ساتھ ہی ساتھ اس راہ پر کسی بھی نقطے پر  $h_{\phi}a_{\phi}$  اور  $h_{\phi}a_{\phi}$  آپس میں متوازی ہوں گے لہذاا یمپیئر کے دوری قانون سے

$$\oint \mathbf{H} \cdot d\mathbf{L} = \int_0^{2\pi} H_{\phi} \rho \, d\phi = H_{\phi} \rho \int_0^{2\pi} d\phi = H_{\phi} 2\pi \rho = I$$

١

$$H_{\phi} = \frac{I}{2\pi\rho}$$

حاصل ہوتا ہے جو ہم پہلے بھی حاصل کر چکے ہیں۔

 $|| N_{x} || N_{x}$ 

اندرونی ٹھوس موصل تار کے گرداییا گول دائرہ لیتے ہیں جس کارداس م اندرونی تار کے رداس ρ<sub>1</sub> سے زیادہ مگر بیرونی تار کے اندرونی رداس ρ<sub>2</sub> سے کم ہو۔اس راہ پر ہم ایمپیئر کے دوری قانون کی مدد سے

$$H_{\phi} = \frac{I}{2\pi\rho} \qquad (\rho_1 < \rho < \rho_2)$$

لكھ سكتے ہیں۔

اندرونی تار کار قبہ عمودی تراش  $\pi \rho_1^2$  ہے للذااس میں کثافت برقی رو $\frac{I}{\pi \rho_1^2}$  ہو گی۔اگر  $\rho$  کواندرونی ٹھوس موصل تار کے رداس  $\rho_1$  ہے کم رکھا جائے تب یہ راہ

$$I_{\mathrm{log}}=rac{I}{\pi
ho_1^2}\pi
ho^2=rac{
ho^2}{
ho_1^2}I$$

برقی رو کو گھیرے گا للذا ایمپیئر کے دوری قانون کے تحت اندرونی ٹھوس تاریس

$$H_{\phi} = \frac{\rho I}{2\pi\rho_1^2} \qquad (\rho < \rho_1)$$

مقناطیسی شدت پایا جائے گا۔اس طرح اگر ho کو بیر ونی تار کے بیر ونی رواس  $ho_3$  سے زیادہ رکھا جائے تب یہ راہ اندرونی تار کے I+I اور بیر ونی تار کے I-I کو گھیرے گا لہٰذا سے کل لہٰذا سے کل لہٰذا سے کل I-I=0 برقی رو کو گھیرے گا لہٰذا

$$H_{\phi} = 0 \qquad (\rho_3 < \rho)$$

ہو گا۔ آخر میں اس صورت کو بھی دیکھتے ہیں جب م بیرونی تار کے اندر پایا جائے۔ الی صورت میں سے راہ

$$I_{\rm load} = I - \left(\frac{\rho^2 - \rho_2^2}{\rho_3^2 - \rho_2^2}\right) I = \left(\frac{\rho_3^2 - \rho^2}{\rho_3^2 - \rho_2^2}\right) I$$

برقی رو گیرے گی للذا بیرونی تارمیں

$$H_\phi = \frac{I}{2\pi\rho} \left( \frac{\rho_3^2 - \rho^2}{\rho_3^2 - \rho_2^2} \right) \qquad (\rho_2 < \rho < \rho_3)$$

ہو گا۔

ہم محوری تار کے باہر مقناطیسی شدت صفر کے برابر ہے۔اس کی وجہ یہ ہے کہ تار کے باہر کوئی بھی بند گول دائرہ اندرونی تار کے برتی رو ا اور بیرونی تار کے برتی رو ا اور بیرونی تار کے برتی رو ا — دونوں کو گھیر تا ہے۔ یہ دونوں برابر مقدار مگر الٹ سمت کے برتی رو ہر نقطے پر برابر مگر الٹ سمت میں مقناطیسی شدت پیدا کرتے ہیں جن کا مجموعہ صفر کے برابر ہوتا ہے۔ہم محوری تارکی یہ خاصیت کہ یہ بیرون تارکسی قشم کا مقناطیسی میدان نہیں پیدا کرتا نہایت اہمیت کا حامل ہے۔ہم محوری تار اس جگوری تاراسی خاصیت کی بنا پر ہر ایس جگہ پر استعال کیا جاتا ہے جہاں تار میں پائے گئے برتی اشارات سے بیرونی تارکسی قشم کا اثر نا قابل برداشت ہو۔

ایمپیئر کے دوری قانون کے استعال کی تیسر کی مثال کو شکل 7.5-الف میں دکھایا گیا ہے جہاں z=0 لامحدود چوڑائی اور لامحدود لمبائی کے موصل  $z=+\infty$  کی موصل سطح پر متناطبسی شدت حاصل کرنے سے دلچیسی ہے۔ سطح کے  $z=+\infty$  سطح پر متناطبسی شدت حاصل کرنے سے دلچیسی ہے۔ سطح کے  $z=+\infty$  سرے سے  $z=+\infty$  سرے سے  $z=+\infty$  سرے سے موصل سطحوں سے واپس پہنچتی ہے۔ یہ سطحیں  $z=+\infty$  اور  $z=-\infty$  پر پائی جاتی ہیں۔ اتن دور سطحوں کے اثر کو نقطہ  $z=+\infty$  بنظر انداز کیا جا سکتا ہے۔

موصل سطح کو  $\Delta y$  چوڑائی کے فرضی تاروں میں تقسیم کیا جا سکتا ہے۔اییا شکل 7.5-ب میں دکھایا گیا ہے۔یوں ہر الیی فرضی تار  $K_x \Delta y a_x$  برتی رو گزارے گی۔لا محدود تارکی مقناطیسی میدان سے ہم بخوبی واقف ہیں۔الیی کسی بھی فرضی تارکا برتی رو  $H_x$  جزو پیدا نہیں کرے گا۔ سطح پر  $M_z$  کے ایک جانب فرضی تارکا جزو سطح پر  $M_z$  کے وسر کی جانب فرضی تارکے  $M_z$  جزو کو ختم کرتا ہے جبکہ ان کے  $M_z$  اجزاء مل کر دگنی مقناطیسی شدت پیدا کرتے ہیں۔اس طرح مقناطیسی شدت کا صرف اور صرف  $M_z$  جزو ممکن ہے۔

باب 7. برقرار مقناطیسی میدان



(ب) کسی بھی نقطے کے دونوں جانب فرضی تاروں کے  $H_z$  اجزاء آپس میں ختم ہو جانے ہیں جبکہ ان کے  $H_y$  جبکہ ان کے  $H_y$ 



(۱) لامحدود جسامت کے موصل سطح پر سطحی کثافت برقی رو۔

شكل 7.5: لامحدود سطحي كثافت برقي رو.

شکل 7.5-الف میں موصل سطح کے کچھ جھے کو گھیرتی مستطیلی راہ 'alabb' دکھائی گئی ہے جس کے اطراف  $y_1$  اور  $2z_1$  لمبائی رکھتے ہیں۔اس راہ کے حصول پر مقناطیسی شدت صفر کے برابر ہو گا۔راہ کے  $y_1$  اطراف سطح سے دونوں جانب  $z_1$  حصول پر مقناطیسی شدت صفر کے برابر ہو گا۔راہ کے  $y_1$  اطراف سطح سے دونوں جانب  $z_2$  فاصلے پر ہیں۔ سطح کے دونوں اطراف بالکل کیسال مشابہت رکھتے ہیں۔ بابوٹ-سیوارٹ کے قانون سے آپ دیکھ سکتے ہیں کہ سطح کی ثافت برقی رو موصل سطح کے اوپر جانب  $y_2$  جبکہ اس کے مخل جانب  $y_3$  جانب  $y_4$  مقناطیسی شدت پیدا کرتا ہے۔ منتظیلی راہ  $y_4$  برقی رو کو گھیرتی ہے للذا ایک میئر کے دوری قانون کے تحت

$$H_{ya}y_1 + H_{yb}y_1 = K_x y_1$$

١

$$(7.11) H_{ya} + H_{yb} = K_x$$

ہو گا۔اب اگر موصل سطح کے ایک جانب مستطیلی راہ کا  $y_1$  حصہ قدر دور کرتے ہوئے  $z_2$  فاصلے پر کر دیا جائے تب مندرجہ بالا مساوات  $H_{ya}+H_{yc}=K_x$ 

صورت اختیار کرلے گی جس سے صاف ظاہر ہے کہ Hye اور Hye عین برابر ہیں یعنی مقناطیسی شدت کا دارومدار سطح سے فاصلے پر ہر گزنہیں ہے۔اس طرح تمام ایسے نقطے جو مثبت 2 پر پائے جاتے ہوں کا مقناطیسی شدت ایک برابر ہو گا۔ یہی کچھ تمام ایسے نقطوں کے لئے بھی درست ہے جو منفی 2 پر پائے جاتے ہوں۔

سطح کے دونوں اطراف بالکل یکسال مشابہت رکھتے ہیں للذا دونوں جانب مقناطیسی شدت بھی برابر ہو گا یعنی  $\left| m{H}_{ya} 
ight| = \left| m{H}_{yb} 
ight|$  ہو گا۔اس طرح مساوات 7.11 سے  $\frac{K_x}{2}$  ہو گا۔ ہو گا۔ اس طرح

$$\boldsymbol{H}_{y} = -\frac{1}{2}K_{x}\boldsymbol{a}_{\mathbf{X}} \qquad (z > 0)$$

$$\boldsymbol{H}_{y} = +\frac{1}{2}K_{x}\boldsymbol{a}_{X} \qquad (z < 0)$$

حاصل ہوتا ہے جسے بہتر طور پر

$$(7.12) H = \frac{1}{2}K \times a_N$$

کھا جا سکتا ہے جہاں  $a_N$  موصل سطح کی عمودی اکائی سمتیہ ہے۔

اگر z=-hپر دوسری لامحدود موصل سطح رکھی جائے جس میں سطحی کثافت برقی رو $K_xa_{
m X}$ ہو تب دونوں سطحی کثافت برقی رو کا مجموعی مقناطیسی شدت

(7.13) 
$$H = K \times a_N \qquad (-h < z < 0)$$

$$H = 0 \qquad (z < -h, \quad z > 0)$$

7.3. گردش



شكل 7.6: گردش كى تعريف.

ہو گا۔

ایمپیئر کے دوری قانون کے استعال میں سب سے مشکل کام ایسی راہ تلاش کرنا ہے جس پر مقناطیسی میدان یاراہ کے عمودی ہو اور یا پھر اس کی قیمت مستقل ہو۔ جہاں قبل از وقت ایسا جاننا ممکن نہ ہو وہاں بابوٹ-سیوارٹ کا قانون ہی قابل استعال ہو گا۔

#### 7.3 گردش

آپ کو یاد ہو گا کہ ہم نے گاؤس کے قانون کو انتہائی چھوٹی جم پر لا گو کرتے ہوئے پھیلاو کی مساوات حاصل کی تھی۔اس ھے میں ہم ایمپیئر کے دوری قانون کو انتہائی چھوٹی بند راہ پر استعال کرتے ہوئے گردش 4 کی مساوات حاصل کریں گے۔

کار تیسی محدد میں ہم کسی نقط N پر x که اور Δy اطراف کی چھوٹی بند راہ لیتے ہیں۔ شکل 7.6 میں اس چھوٹی بند راہ کو د کھایا گیا ہے جو رقبہ Δx Δy کو گیرتی ہے۔ شکل میں راہ پر تیر کے نشان راہ پر چلنے کی سمت کو ظاہر کرتے ہیں۔اس رقبے کے عین وسط میں نقطہ (x<sub>0</sub>, y<sub>0</sub>, z<sub>0</sub>) پر مقناطیسی شدت

$$H_0 = H_x(x_0, y_0, z_0)a_X + H_y(x_0, y_0, z_0)a_Y + H_z(x_0, y_0, z_0)a_Z$$
  
=  $H_{x0}a_X + H_{y0}a_Y + H_{z0}a_Z$ 

کے برابر ہے۔ایمپیئر کے دوری قانون کے تحت اس بند راہ کے گرد مقناطیسی شدت کا تکمل رقبہ ΔxΔy سے گزرتی برقی رو کے برابر ہو گا۔آئیں اس تکمل کو حاصل کریں۔اییا کرنے کی خاطر ہم بند راہ پر1 سے 2 کی طرف چلتے ہوئے پورا چکر کاٹیں گے۔

$$\int_{y_0 - \frac{\Delta y}{2}}^{y_0 + \frac{\Delta y}{2}} \left( H_x a_x + H_y a_y + H_z a_z \right) \cdot dy a_y = \int_{y_0 - \frac{\Delta y}{2}}^{y_0 + \frac{\Delta y}{2}} H_y dy = H_{y21} \int_{y_0 - \frac{\Delta y}{2}}^{y_0 + \frac{\Delta y}{2}} dy = H_{y21} \Delta y$$

کھا جا سکتا ہے جہاں 1 تا2 پر مقناطیسی شدت کو H<sub>y</sub> کے بجائے H<sub>y21</sub> کھتے ہوئے اور اس راہ پر مقناطیسی شدت میں تبدیلی کو نظر انداز کرتے ہوئے تکمل کے باہر لے جایا گیا۔ ہمیں اس طرح کے تکمل بار بار حاصل کرنے ہوں گے للذااس پورے عمل کو ہم

$$(\mathbf{H} \cdot \mathrm{d}\mathbf{L})_{21} = H_{y21} \Delta y$$

curl4

186 برقرار مقناطيسي ميدان

لکھیں گے۔ ہمیں رقبے کے عین وسط میں مقناطیسی شدت معلوم ہے البتہ راہ کے پہلے تھے پر ہمیں اس کے بارے میں معلومات فراہم نہیں ہے۔ایسی صورت میں ہمیں ٹیلر تسلسل <sup>3</sup> بروئے کار لانا ہو گا۔

ٹیر نشلسل

$$f(x + \delta x) = f(x) + \frac{1}{1!} \frac{\partial f}{\partial x} \delta x + \frac{1}{2!} \frac{\partial^2 f}{\partial x^2} (\delta x)^2 + \cdots$$

سے آپ بخوبی واقف ہیں جہاں  $rac{\partial f}{\partial x}$  اور دیگر تفرق کو نقطہ x پر حاصل کیا جاتا ہے۔اگراس میں  $\delta x = rac{\Delta x}{2}$  پر کیا جائے تواس کی نئی شکل

$$f(x + \frac{\Delta x}{2}) = f(x) + \frac{1}{1!} \frac{\partial f}{\partial x} \frac{\Delta x}{2} + \frac{1}{2!} \frac{\partial^2 f}{\partial x^2} \left(\frac{\Delta x}{2}\right)^2 + \cdots$$

حاصل ہوتی ہے جسے ہم اب استعال کرتے ہیں۔

 $H_y(x_0,y_0,z_0)$  براس کی قیمت مسکله ٹیلر سے  $H_y(x_0,y_0,z_0)$  براس کی قیمت مسکله ٹیلر سے  $H_y(x_0,y_0,z_0)$  براس کی قیمت مسکله ٹیلر سے  $H_y(x_0+rac{\Delta x}{2},y_0,z_0)=H_y(x_0,y_0,z_0)+rac{\partial H_y}{\partial x}rac{\Delta x}{2}+\cdots$   $=H_{y0}+rac{\partial H_y}{\partial x}rac{\Delta x}{2}+\cdots$ 

حاصل ہوتی ہے جہاں  $\frac{\partial H_y}{\partial x}$  کو نقطہ  $(x_0, y_0, z_0)$  پر حاصل کیا جاتا ہے۔راہ 1 تا 2 پر مقناطیسی شدت کی قیمت ٹیلر شلسل کے پہلے دو اجزاء سے حاصل کرتے ہوئے

$$(7.15) H_{y21} \doteq H_{y0} + \frac{\partial H_y}{\partial x} \frac{\Delta x}{2}$$

لکھ کر مساوات 7.14 کو

(7.16) 
$$(\boldsymbol{H} \cdot d\boldsymbol{L})_{21} \doteq \left( H_{y0} + \frac{\partial H_y}{\partial x} \frac{\Delta x}{2} \right) \Delta y$$

لکھا جا سکتا ہے۔

 $\Delta x$  مساوات 7.15 کو یوں بھی حاصل کیا جا سکتا ہے۔ چھوٹے رقبے کے وسط میں x کے ساتھ  $H_y$  تبدیل ہونے کی شرح  $\frac{\partial H_y}{\partial x}$  ہے۔ یوں اگر x میں x گیر ہونے تعریبی پیدا ہو تبدیلی پیدا ہو گے۔ اس طرح اگر x میں تبدیلی تعریبا ہو گی۔ اس طرح اگر x میں تبدیلی پیدا ہو تبدیلی پیدا ہو تبدیلی پیدا ہو تبدیلی تعریبا ہو گی۔ اب رقبے کے وسط سے  $\frac{\Delta x}{2}$  ہوگی اور یوں اس کی نئی قیمت تقریباً  $\frac{\partial H_y}{\partial x}$  ہوگی اور یوں اس کی نئی قیمت تقریباً  $\frac{\partial H_y}{\partial x}$  ہوگی اور یوں اس کی نئی قیمت تقریباً  $\frac{\partial H_y}{\partial x}$  ہوگی۔ اب رقبے کے وسط سے  $\frac{\Delta x}{2}$  فاصلے پر 1 تا 2 راہ کا در میانہ نقط ہے المذا یہاں

$$(7.17) H_{y21} \doteq H_{y0} + \frac{\partial H_y}{\partial x} \frac{\Delta x}{2}$$

ہو گا جو عین مساوات 7.15 ہی ہے۔

راہ کے اگلے جھے لیعنی 2 تا 3 یہی کچھ کرتے ہوئے

(7.18) 
$$(\boldsymbol{H} \cdot d\boldsymbol{L})_{32} = H_{x32}(-\Delta x) \doteq -\left(H_{x0} + \frac{\partial H_x}{\partial y} \frac{\Delta y}{2}\right) \Delta x$$

Taylor series<sup>5</sup>

جبكه 3 تا4ير

(7.19) 
$$(\boldsymbol{H} \cdot d\boldsymbol{L})_{43} = H_{43}(-\Delta y) \doteq -\left(H_{y0} - \frac{\partial H_y}{\partial x} \frac{\Delta x}{2}\right) \Delta y$$

اور 4 تا 1 پر

(7.20) 
$$(\boldsymbol{H} \cdot d\boldsymbol{L})_{14} = H_{x14} \Delta x \doteq \left( H_{x0} - \frac{\partial H_x}{\partial y} \frac{\Delta y}{2} \right) \Delta x$$

حاصل ہوتے ہیں۔مساوات 7.16، مساوات 7.18، مساوات 7.20 اور مساوات 7.20 کو جمع کرتے ہوئے پورے بند راستے کا تکمل

(7.21) 
$$\oint \mathbf{H} \cdot d\mathbf{L} \doteq \left(\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y}\right) \Delta x \Delta y$$

حاصل ہوتا ہے۔اگراس چھوٹے بندراہ کے گھیرے رقبے پر کثافت برقی رو

$$\mathbf{J} = J_{x}\mathbf{a}_{X} + J_{y}\mathbf{a}_{Y} + J_{z}\mathbf{a}_{Z}$$

ہوتب اس رقبے سے Jz∆x∆y برتی رو گزرے گی۔ایمپیئر کے دوری قانون کے تحت بند راہ کا تکمل اور رقبے سے گزرتی برتی رو برابر ہوں گے یعنی

$$\oint \mathbf{H} \cdot d\mathbf{L} \doteq \left(\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y}\right) \Delta x \Delta y \doteq J_z \Delta x \Delta y$$

ہو گا جسے

$$\frac{\oint \boldsymbol{H} \cdot d\boldsymbol{L}}{\Delta x \Delta y} \doteq \frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} \doteq J_z$$

کھھا جا سکتا ہے۔رقبے کو جتنا چھوٹا کیا جائے مندرجہ بالا مساوات اتنا ہی زیادہ درست ہو گا حتی کہ  $0 \to \Delta x \to 0$  اور  $\Delta y \to \Delta y$  کی صورت میں یہ مکمل طور پر درست ہو گا اور یوں مساوات میں تقریباً برابر کی علامت  $\dot =$  کی جائے کی علامت استعال کی جائے گی یعنی

(7.22) 
$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{\oint \mathbf{H} \cdot d\mathbf{L}}{\Delta x \Delta y} = \frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} = J_z$$

لکھا جائے گا۔

اگر ہم کار تیسی محدد کے بقایا دو محدد کے عمودی چھوٹے رقبے لیں اور مندرجہ بالا عمل دہرائیں تو ہمیں

(7.23) 
$$\lim_{\substack{\Delta y \to 0 \\ \Delta z \to 0}} \frac{\oint \mathbf{H} \cdot d\mathbf{L}}{\Delta y \Delta z} = \frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} = J_x$$

اور

(7.24) 
$$\lim_{\substack{\Delta z \to 0 \\ \Delta x \to 0}} \frac{\oint \mathbf{H} \cdot d\mathbf{L}}{\Delta z \Delta x} = \frac{\partial H_x}{\partial z} - \frac{\partial H_z}{\partial x} = J_y$$

ماصل ہوں گے۔ مساوات 7.23 میں جھوٹے رقبے کے اطراف  $\Delta y$  اور  $\Delta z$  ہیں جس سے  $J_x \Delta y \Delta z$  برتی رو گزرتی ہے۔ اس طرح مساوات 7.24 میں جھوٹے رقبے کے اطراف  $\Delta x$  اور  $\Delta x$  ہیں جس سے  $J_y \Delta z \Delta x$  برتی رو گزرتی ہے۔

188 باب 7. برقرار مقناطیسی میدان

ایمپیئر کے دوری قانون سے شروع کرتے ہوئے ہم نے مساوات 7.22، مساوات 7.23 اور مساوات 7.24 حاصل کئے جو مقناطیسی شدت کے بند تکمل فی اکائی رقبہ کو گھیرے گئے کثافت برقی رو کے برابر ٹہراتے ہیں۔کسی بھی متغیرہ کے بند تکمل فی اکائی رقبہ کو اس متغیرہ کی گردش ہ کہتے ہیں۔انتہائی چھوٹے رقبے کے گردش کرتے ہوئے کسی بھی متغیرہ کے بند تکمل کو اس نقطے پر متغیرہ کے گھومنے یا گردش کی ناپ تصور کی جاسکتی ہے۔اسی لئے اس عمل کو گردش کہا جاتا ہے۔

کسی بھی سمتیہ کا گردش بھی سمتیہ ہو گا۔ گردش کا کوئی بھی جزوانتہائی چھوٹے سیدھے رقبے کے گرد سمتیہ کے بند حکمل فی یہی رقبہ کے برابر ہو گا جہاں بند حکمل کی راہ در کار جزو کے عمودی سطح میں پایا جاتا ہو اور رقبے کی قیمت صفر کے قریب سے قریب تر ہو۔ گردش کی یہ تعریف کسی بھی محد د پر مبنی نہیں ہے۔اس تعریف کی حمابی شکل

$$oldsymbol{H}$$
ا المنظ $\Delta S_n 
ightarrow 0$  المنظ $\Delta S_n$ 

ہے جہاں H کی گردش حاصل کی گئی ہے۔اس مساوات میں  $\Delta S_n$  وہ چھوٹا سیدھار قبہ ہے جس کے گرد H کا بند تکمل حاصل کیا گیا ہے۔ گردش از خود سیدھے سطے کے عمودی ہو گا۔ رقبہ محک کلھتے ہوئے زیر نوشت میں n اس حقیقت کی یاد دہانی کراتا ہے کہ رقبے اور گردش کے در میان نوے درجے کا زاویہ پایا جاتا ہے۔

کار تیسی محدد میں گردش H کے y ،x ور z اجزاء مساوات 7.23، مساوات 7.24 اور مساوات 7.22 بالترتیب دیتے ہیں لہذا

(7.25) 
$$\boldsymbol{H}_{z,z} = \left(\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z}\right) \boldsymbol{a}_{x} + \left(\frac{\partial H_x}{\partial z} - \frac{\partial H_z}{\partial x}\right) \boldsymbol{a}_{y} + \left(\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y}\right) \boldsymbol{a}_{z} = \boldsymbol{J}$$

کھا جا سکتا ہے۔اس مساوات کو قالب کے حتمی قیمت کی شکل میں

(7.26) 
$$\boldsymbol{H}_{z} = \begin{vmatrix} \boldsymbol{a}_{x} & \boldsymbol{a}_{y} & \boldsymbol{a}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ H_{x} & H_{y} & H_{z} \end{vmatrix} = \boldsymbol{J}$$

کھا جا سکتا ہے۔صفحہ 77 پر مساوات 3.29 نیبلا √ کے عمل کو بیان کرتا ہے جسے یہاں دوبارہ پیش کرتے ہیں

$$\nabla = \frac{\partial}{\partial x} a_{\mathbf{X}} + \frac{\partial}{\partial y} a_{\mathbf{Y}} + \frac{\partial}{\partial z} a_{\mathbf{Z}}$$

اور صفحہ 15 پر مساوات 1.19 دو سمتیات کا سمتی ضرب دیتا ہے۔ان سے گردش نہایت خوبصورتی سے

(7.27) 
$$oldsymbol{H}$$
 گردش $oldsymbol{\nabla} imes oldsymbol{H}$ 

کاسی جاسکتی ہے۔ آپ جلد دیکھیں گے کہ صرف کار تیسی محدد میں ہی گردش  $\nabla$  اور H کے صلیبی ضرب سے حاصل ہوتا ہے۔اس کے باوجود کسی بھی محدد میں گردش کو  $H imes \nabla \times H$  ہے ہی ظاہر کیا جاتا ہے۔

یوں ایمپیئر کے دوری قانون کی نقطہ شکل

$$\nabla \times \boldsymbol{H} = \boldsymbol{J}$$

curl<sup>o</sup> determinant<sup>7</sup> 7.3. گردش

لکھی جاسکتی ہے جو میکس ویل کی دوسری مساوات ہے جو وقت کے ساتھ تبدیل نہ ہوتے میدان کے لئے درست ہے۔ یہاں میکس ویل کے تیسری مساوات کا بھی ذکر کر لیتے ہیں جو E · dL کی نقطہ شکل

$$\nabla \times \mathbf{E} = 0$$

ہے۔ میکس ویل کے چو تھی مساوات پر اس کتاب میں آگے غور کیا جائے گا۔

آپ جانتے ہیں کہ ساکن برقی میدان بقائی میدان ہے للذااس میں چارج و کو کسی بھی بند راہ پر پورا چکر گھمانے کے لئے صفر توانائی در کار ہوگی۔ یوں  $q \oint E \cdot dL$  میڈان غیر بقائی میدان ہے جس میں چارج کو برقی رو گھیرتی کسی بھی بند راہ پر پورا چکر گھمانے کے لئے توانائی در کار ہوگی۔ اس کے اس کا گردش صفر نہیں ہوگا۔مساوات 7.28 یہی کہتا ہے۔

مثق 7.1: گردش لعنی  $\nabla imes oldsymbol{H}$  کو

$$\left(\frac{\partial}{\partial x}\boldsymbol{a}_{X}+\frac{\partial}{\partial y}\boldsymbol{a}_{Y}+\frac{\partial}{\partial z}\boldsymbol{a}_{Z}\right)\times\left(H_{x}\boldsymbol{a}_{X}+H_{y}\boldsymbol{a}_{Y}+H_{z}\boldsymbol{a}_{Z}\right)$$

لکھ کر حل کرتے ہوئے مساوات 7.25 حاصل کریں۔

7.3.1 نلكي محدد ميں گردش

نگی محدد میں J<sub>z</sub> کثافت برتی رو کے عمودی سطح پر چھوٹار قبہ لیتے ہیں جے شکل 7.7 میں دکھایا گیا ہے۔ایسے رقبے کے اطراف Δρ اور ρΔφ ہوں گے جبکہ اس سطح پر z کی قیمت تبدیل نہیں ہو گی۔اس رقبے کے وسط میں

$$\boldsymbol{H}_0(\rho_0,\phi_0,z_0) = H_{\rho 0}\boldsymbol{a}_{\rho} + H_{\phi 0}\boldsymbol{a}_{\phi} + H_{z 0}\boldsymbol{a}_{z}$$

ہو گا۔ کار تیبی محدد میں رقبے کے وسط سے  $\frac{\Delta x}{2}$  اور  $\frac{\Delta x}{2}$  فاصلے پر اطراف کی لمبائیاں عین برابر تھیں۔ نکی محدد میں رقبے کے وسط سے  $\frac{\Delta x}{2}$  واصلے برطرف کی لمبائی  $\frac{\Delta x}{2}$  فاصلے پر طرف کی لمبائی  $\frac{\Delta x}{2}$  فاصلے پر طرف کی لمبائی  $\frac{\Delta x}{2}$  فاصلے پر طرف کی لمبائی  $\frac{\Delta x}{2}$  ہو است اطراف پر مقناطیسی شدت بالترتیب

$$H_{\phi 21} \doteq H_{\phi 0} + \frac{\partial H_{\phi}}{\partial \rho} \frac{\Delta \rho}{2}$$

اور

$$H_{\phi 43} \doteq H_{\phi 0} - \frac{\partial H_{\phi}}{\partial \rho} \frac{\Delta \rho}{2}$$

190 برقرار مقناطیسی میدان



شكل 7.7: نلكي محدد ميں چهوتا رقبه.

ہو گی جہاں  $\frac{\partial H_{\phi}}{\partial 
ho}$  چھوٹے رقبے کے وسط میں حاصل کیا جائے گا۔ یوں 1 سے 2 جانب چھوٹے رقبے کے گرد چکر کاٹتے ہوئے ان دواطراف پر تکمل

$$(\boldsymbol{H} \cdot d\boldsymbol{L})_{21} \doteq \left( H_{\phi 0} + \frac{\partial H_{\phi}}{\partial \rho} \frac{\Delta \rho}{2} \right) \left( \rho_{0} + \frac{\Delta \rho}{2} \right) \Delta \phi$$

$$\doteq \left[ H_{\phi 0} \rho_{0} + H_{\phi 0} \frac{\Delta \rho}{2} + \rho_{0} \frac{\partial H_{\phi}}{\partial \rho} \frac{\Delta \rho}{2} + \frac{\partial H_{\phi}}{\partial \rho} \left( \frac{\Delta \rho}{2} \right)^{2} \right] \Delta \phi$$

اور

$$(\boldsymbol{H} \cdot d\boldsymbol{L})_{43} \doteq \left( H_{\phi 0} - \frac{\partial H_{\phi}}{\partial \rho} \frac{\Delta \rho}{2} \right) \left[ -\left( \rho_0 - \frac{\Delta \rho}{2} \right) \Delta \phi \right]$$
$$\doteq \left[ -H_{\phi 0} \rho_0 + H_{\phi 0} \frac{\Delta \rho}{2} + \rho_0 \frac{\partial H_{\phi}}{\partial \rho} \frac{\Delta \rho}{2} - \frac{\partial H_{\phi}}{\partial \rho} \left( \frac{\Delta \rho}{2} \right)^2 \right] \Delta \phi$$

ہوں گے۔

$$\Delta \phi$$
 پر اظراف م کے لیا جبکہ ان پر اوسط شدت بالترتیب  $\Delta \phi$  لیبائی رکھتے ہیں جبکہ ان پر اوسط شدت بالترتیب  $H_{\phi 32} = H_{\rho 0} + rac{\partial H_{
ho}}{\partial \phi} rac{\Delta \phi}{2}$ 

اور

$$H_{\phi 14} \doteq H_{\rho 0} - \frac{\partial H_{\rho}}{\partial \phi} \frac{\Delta \phi}{2}$$

ہیں۔ یوں ان اطراف پر تکمل

$$(\boldsymbol{H} \cdot \mathrm{d}\boldsymbol{L})_{32} \doteq \left( H_{\rho 0} + \frac{\partial H_{\rho}}{\partial \phi} \frac{\Delta \phi}{2} \right) \left( -\Delta \rho \right)$$

اور

$$(m{H}\cdot\mathrm{d}m{L})_{14}\doteq\left(H_{
ho0}-rac{\partial H_{
ho}}{\partial\phi}rac{\Delta\phi}{2}
ight)\Delta
ho$$

ہوں گے۔

يول پورائكمل ان چار جوابات كالمجموعه

(7.30) 
$$\oint \mathbf{H} \cdot d\mathbf{L} \doteq \left( H_{\phi 0} + \rho_0 \frac{\partial H_{\phi}}{\partial \rho} - \frac{\partial H_{\rho}}{\partial \phi} \right) \Delta \rho \Delta \phi$$

7.3. گردش

(۱) چھوٹے رقبے کے وسط پر تکمل کے قیمت سے بیرونی زاویاتی تکمل کی قیمت کا حصول. (ب) چھوٹے رقبے کے وسط پر تکمل کے قیمت سے اندرونی زاویاتی تکمل کی قیمت کا حصول. شکل 7.8: زاویاتی حصوں پر تکمل کے قیمت کے حصول کا بہتر طریقہ.

ہو گا۔اس چھوٹے رقبے سے  $J_z \rho_0 \Delta \rho \Delta \rho$  برقی رو گزرے گی۔یوں ایمپیئر کے دوری قانون سے

$$\oint \boldsymbol{H} \cdot d\boldsymbol{L} \doteq \left( H_{\phi 0} + \rho_0 \frac{\partial H_{\phi}}{\partial \rho} - \frac{\partial H_{\rho}}{\partial \phi} \right) \Delta \rho \Delta \phi \doteq J_z \rho_0 \Delta \rho \Delta \phi$$

لعيني

$$\frac{\oint \boldsymbol{H} \cdot d\boldsymbol{L}}{\rho_0 \Delta \rho \Delta \phi} \doteq \left( \frac{H_{\phi 0}}{\rho_0} + \frac{\partial H_{\phi}}{\partial \rho} - \frac{1}{\rho_0} \frac{\partial H_{\rho}}{\partial \phi} \right) \doteq J_z$$

لکھا جا سکتا ہے۔اگر مΔ اور ΔΦ کو کم سے کم کرتے ہوئے صفر کے قریب تر کر دیا جائے تب مندرجہ بالا مساوات بالکل درست ہو گا اور تقریباً برابر کی علامت نے کی جگہ برابر کی علامت = استعال کی جائے گی۔اس طرح گردش کا پہلا جزو

(7.31) 
$$\lim_{\substack{\Delta\rho\to 0\\\Delta\phi\to 0}} \frac{\oint \mathbf{H} \cdot d\mathbf{L}}{\rho_0 \Delta\rho \Delta\phi} = \left(\frac{H_{\phi 0}}{\rho_0} + \frac{\partial H_{\phi}}{\partial\rho} - \frac{1}{\rho_0} \frac{\partial H_{\rho}}{\partial\phi}\right) = J_z$$

لکھا جا سکتا ہے۔

اس سے پہلے کہ ہم گردش کے بقایا دواجزاء بھی حاصل کریں، آئیں مساوات 7.30 کو قدر مختلف اور بہتر طریقے سے حاصل کریں۔ شکل 7.8-الف کو دیکھتے ہوئے آگے پڑھیں۔اگر ہم کسی نقطے کے  $\frac{\Delta \phi}{2}$  سے نقطے کے  $\frac{\Delta \phi}{2}$  ہوئے آگے پڑھیں۔اگر ہم کسی نقطے کے  $\frac{\Delta \phi}{2}$  سے نقطے کے  $\frac{\Delta \phi}{2}$  ہوئے آگے پڑھیں۔اگر ہم کسی نقطے کے  $\frac{\Delta \phi}{2}$  سے نقطے کے  $\frac{\Delta \phi}{2}$  ہوئے آگے پڑھیں۔اگر ہم کسی نقطے کے  $\frac{\Delta \phi}{2}$  سے نقطے کے  $\frac{\Delta \phi}{2}$  ہوئے آگے پڑھیں۔اگر ہم کسی نقطے کے  $\frac{\Delta \phi}{2}$  ہوئے ہوئے آگے پڑھیں۔ا

ے برابر ہو گا۔اس تکمل کو تفاعل g تصور کرتے ہوئے لیتی  $g=H_{\phi}\rho\Delta\phi$  لیتے ہوئے ہم دیکھتے ہیں کہ اگر ہم چھوٹے رقبے کے وسط سے رداسی سمت میں  $-\frac{\Delta\rho}{2}$  میں  $-\frac{\Delta\rho}{2}$  وسط سے رداسی سمت میں تبدیلی

$$\Delta(\boldsymbol{H} \cdot \mathrm{d}\boldsymbol{L}) = \frac{\partial g}{\partial \rho} \frac{\Delta \rho}{2} = \frac{\partial (H_{\phi} \rho \Delta \phi)}{\partial \rho} \frac{\Delta \rho}{2}$$

کھی جا سکتی ہے جہاں  $\frac{\partial (H_{\phi}\rho\Delta\phi)}{\partial\rho}$  کو چھوٹے رقبے کے وسط پر حاصل کیا جاتا ہے جہاں رداس  $\rho_0$  کے برابر ہے۔ چونکہ چھوٹے رقبے کے عین وسط پر اس کھی جا سکتی ہے جہاں  $H_{\phi}\rho_0\Delta\phi$  کے برابر ہے لہٰذا وسط ہے  $\frac{\Delta\rho}{2}$  فاصلے پر تکمل کی قیت

(7.32) 
$$\boldsymbol{H} \cdot d\boldsymbol{L}_{21} = H_{\phi} \rho \Delta \phi + \frac{\partial (H_{\phi} \rho \Delta \phi)}{\partial \rho} \frac{\Delta \rho}{2}$$

ہو گی۔اسی طرح، جیبیا شکل 8.7-ب میں دکھایا گیا ہے، اگر ہم کسی نقطے کے  $rac{\Delta\phi}{2}$  سے نقطے کے  $rac{\Delta\phi}{2}$  تک حرکت کریں تواس راہ پر تکمل  $m{H}\cdot dm{L} = H_{\phi}(ho\Delta\phi)$ 

192 برقرار مقناطیسی میدان





(۱) چھوٹے رقبے کے وسط پر رداسی تکمل کے قیمت سے کم زاویہ پر تکمل کی قیمت کا(ب) چھوٹے رقبے کے وسط پر رداسی تکمل کے قیمت سے زیادہ زاویہ پر تکمل کی قیمت کا حصول۔

شکل 7.9: رداسی حصوں پر تکمل کے قیمت کے حصول کا بہتر طریقہ۔

$$-\frac{\Delta\rho}{2}$$
 برابر ہو گا۔اگراس نقطے کو چھوٹے رقبے کا وسط تصور کیا جائے تب وسط سے  $-\frac{\Delta\rho}{2}$  فاصلے پر یہی تکمل  $m{H}\cdot dm{L}_{43} = -H_{\phi}\rho\Delta\phi + rac{\partial(-H_{\phi}\rho\Delta\phi)}{\partial\rho}\left(-rac{\Delta\rho}{2}
ight)$ 

$$= -H_{\phi}\rho\Delta\phi + rac{\partial(H_{\phi}\rho\Delta\phi)}{\partial\rho}rac{\Delta\rho}{2}$$

ہو گا۔

ای طرح، جیسے شکل 7.9-الف میں دکھایا گیا ہے، کسی بھی نقطے پر  $\frac{\Delta \rho}{2}$  تا  $\frac{\Delta \rho}{2}$  جرکت کرتے ہوئے تکمل کی قیمت میں 1.9 ہو گی۔اس نقطے سے  $\frac{\Delta \rho}{2}$  جرکت کرتے ہوئے تکمل کی قیمت میں تبدیلی رو نما ہو گی جے  $\frac{\Delta \rho}{2}$ 

$$\Delta(\boldsymbol{H}\cdot\mathrm{d}\boldsymbol{L}) = \frac{\partial(H_{\rho}\Delta\rho)}{\partial\phi}\left(-\frac{\Delta\phi}{2}\right)$$

لکھا جا سکتا ہے اور یوں تکمل کی نئی قیمت

$$m{H} \cdot \mathrm{d}m{L} = H_{
ho}\Delta
ho - rac{\partial(H_{
ho}\Delta
ho)}{\partial\phi}rac{\Delta\phi}{2}$$

ہو گی۔اگر چھوٹے رقبے کے عین وسط کو یہی نقطہ تضور کیا جائے تب مندرجہ بالا مساوات 4 تا 1 پر حکمل دیتا ہے یعنی

(7.34) 
$$\boldsymbol{H} \cdot d\boldsymbol{L}_{14} = H_{\rho} \Delta \rho - \frac{\partial (H_{\rho} \Delta \rho)}{\partial \phi} \frac{\Delta \phi}{2}$$

ای طرح، جیسے شکل 7.9-ب میں دکھایا گیا ہے، کسی بھی نقطے پر 
$$\frac{\Delta \rho}{2}$$
تا  $\frac{\Delta \rho}{2}$  حرکت کرتے ہوئے تکمل کی قیمت  $m{H}\cdot dm{L} = H_{
ho}(-\Delta 
ho)$ 

ہو گی۔اس نقطے کو چھوٹے رقبے کا وسط تصور کرتے ہوئے وسط سے  $rac{\Delta \phi}{2} + پریہی تکمل$ 

(7.35) 
$$\boldsymbol{H} \cdot d\boldsymbol{L}_{32} = -H_{\rho}\Delta\rho - \frac{\partial(H_{\rho}\Delta\rho)}{\partial\phi} \frac{\Delta\phi}{2}$$

کے برابر ہو گا۔

7.3. گردش





(ب) نلکی محدد میں شدت کا زاویاتی جزو حاصل کرنے کے لئے چھوٹا رقبہ۔

(۱) نلکی محدد میں شدت کا رداسی جزو حاصل کرنے کے لئے چھوٹا رقبہ۔

شکل 7.10: نلکی محدد میں گردش کے رداسی اور زاویاتی اجزاء کے رقبے۔

مساوات 7.32، مساوات 7.33، مساوات 7.34 اور مساوات 7.35 کا مجموعہ چھوٹے رقبے کے گرد پورا تکمل دیتا ہے لینی

(7.36) 
$$\oint \mathbf{H} \cdot d\mathbf{L} = \frac{\partial (H_{\phi}\rho\Delta\phi)}{\partial\rho}\Delta\rho - \frac{\partial (H_{\rho}\Delta\rho)}{\partial\phi}\Delta\phi$$

$$= \left[\frac{\partial (H_{\phi}\rho)}{\partial\rho} - \frac{\partial H_{\rho}}{\partial\phi}\right]\Delta\rho\Delta\phi$$

جہاں تفرق رقبے کے وسط پر حاصل کئے جاتے ہیں۔اس مساوات کو یوں بھی لکھا جا سکتا ہے

$$\oint \boldsymbol{H} \cdot d\boldsymbol{L} = \left[ H_{\phi 0} + \rho_0 \frac{\partial H_{\phi}}{\partial \rho} - \frac{\partial H_{\rho}}{\partial \phi} \right] \Delta \rho \Delta \phi$$

جو بالکل مساوات 7.30 بی ہے۔ یاد رہے کہ  $\frac{\partial (H_{\phi
ho})}{\partial 
ho}$  کو اجزاء کی صورت میں لکھتے ہوئے رقبے کے وسط کی قیمتیں پر کی جاتی ہیں۔ یوں رداس  $ho_0$  اور مقناطیسی شدت  $H_{\phi 0}$  کے برابر ہوں گے۔ مساوات 7.36 سے گردش

(7.37) 
$$\lim_{\substack{\Delta\rho\to 0\\ \Delta\rho\to 0}} \frac{\oint \boldsymbol{H} \cdot d\boldsymbol{L}}{\Delta\rho\rho\Delta\phi} = \left[ \frac{1}{\rho} \frac{\partial (H_{\phi}\rho)}{\partial\rho} - \frac{1}{\rho} \frac{\partial H_{\rho}}{\partial\phi} \right] = J_z$$

آئیں اب نکلی محدد میں گروش کے بقایا دو اجزاء بھی حاصل کریں۔ گردش کا ردائی جزو حاصل کرنے کی خاطر ہم  $\rho=\rho_0$  سطح پر چھوٹا رقبہ لیتے ہیں جس کے اطراف  $\Delta z$  اور  $\Delta z$  لمبائی رکھیں گے۔اس رقبے کو شکل 7.10-الف میں دکھایا گیا ہے۔اس پر 1 سے 2 جانب گھومتے ہوئے کا لکیری تکمل حاصل کیا جائے گا۔ مستقل ردائ کے سطح پر کئی بھی نقطے کے قریب  $\Delta z=-1$  تا ویہ جھوٹے ہوئے تکمل  $\Delta z$  حاصل ہوتا ہے۔اس نقطے سے  $\Delta z=-1$  داویہ پر اس تکمل کی قیمت ٹیلر تسلس سے

$$m{H} \cdot dm{L}_{21} = H_z \Delta z + rac{\partial (H_z \Delta z)}{\partial \phi} \left( + rac{\Delta \phi}{2} \right)$$
 عاصل ہوتی ہے۔ ای طرح نقطے کے قریب  $\frac{\Delta z}{2}$  تا ہوئے کمل کہ کہا ہوتی ہے۔ ای طرح نقطے کے قریب  $\frac{\Delta z}{2}$  تا ہوئے  $-\frac{\Delta z}{2}$  ہوئے ہوئے ہوئے  $-\frac{\Delta z}{2}$  ہوئے  $-\frac{\Delta$ 

عاصل ہوتا ہے۔ان دو جوابات سے رقبے کے zاطراف کا تکمل

(7.38) 
$$\boldsymbol{H} \cdot d\boldsymbol{L}_{21} + \boldsymbol{H} \cdot d\boldsymbol{L}_{43} = +\frac{\partial H_z}{\partial \phi} \Delta z \Delta \phi$$

اب 7. برقرار مقناطیسی میدان

حاصل ہوتا ہے۔ کی بھی نقطے کے قریب 
$$\frac{\Delta \phi}{2}$$
 تا  $\frac{\Delta \phi}{2}$  ہے کہ کمل کی قیمت  $H \cdot dL_{14} = H_{\phi}\rho\Delta\phi + \frac{\partial(H_{\phi}\rho\Delta\phi)}{\partial z} \left(-\frac{\Delta z}{2}\right)$ 

$$H \cdot dL_{14} = H_{\phi}\rho\Delta\phi + \frac{\partial(H_{\phi}\rho\Delta\phi)}{\partial z} \left(-\frac{\Delta z}{2}\right)$$

$$= \int_{0}^{2} \int_{0}^{2$$

حاصل ہوتا ہے۔

مساوات 38.7 اور مساوات 7.39 کا مجموعہ جھوٹے رقبے کے گرد کل تکمل دیتا ہے جو رقبے سے گزرتی برتی رو  $J_{
ho}\rho\Delta\phi\Delta z$  برابر ہو گا لینی  $\oint m{H}\cdot dm{L} = \left[rac{\partial H_z}{\partial \phi} - 
ho rac{\partial H_\phi}{\partial z}
ight] \Delta z \Delta \phi = J_{
ho}\rho\Delta\phi\Delta z$ 

جس سے گردش کار داسی جزو

(7.40) 
$$\lim_{\substack{\Delta\phi\to 0\\\Delta z\to 0}} \frac{\oint \boldsymbol{H} \cdot d\boldsymbol{L}}{\rho \Delta\phi \Delta z} = \left[ \frac{1}{\rho} \frac{\partial H_z}{\partial \phi} - \frac{\partial H_{\phi}}{\partial z} \right] = J_{\rho}$$

ملتا ہے۔

 $H \cdot dL_{21} = H_z \Delta z + rac{\partial (H_z \Delta z)}{\partial 
ho} \left( -rac{\Delta 
ho}{2} \right)$   $H \cdot dL_{21} = H_z \Delta z + rac{\partial (H_z \Delta z)}{\partial 
ho} \left( -rac{\Delta 
ho}{2} \right)$   $H \cdot dL_{43} = -H_z \Delta z + rac{\partial (-H_z \Delta z)}{\partial 
ho} \left( +rac{\Delta 
ho}{2} \right)$   $H \cdot dL_{32} = H_{
ho} \Delta 
ho + rac{\partial (H_{
ho} \Delta 
ho)}{\partial z} rac{\Delta z}{2}$   $H \cdot dL_{14} = -H_{
ho} \Delta 
ho + rac{\partial (-H_{
ho} \Delta 
ho)}{\partial z} \left( -rac{\Delta z}{2} \right)$ 

اور بوں ایمپیئر کے دوری قانون سے

(7.41) 
$$\lim_{\substack{\Delta \rho \to 0 \\ \Delta z \to 0}} \frac{\oint \mathbf{H} \cdot d\mathbf{L}}{\Delta \rho \Delta z} = \left(\frac{\partial H_{\rho}}{\partial z} - \frac{\partial H_{z}}{\partial \rho}\right) = J_{\phi}$$

لکھا جا سکتا ہے۔

مساوات 7.41، مساوات 7.40 اور مساوات 7.37 کا مجموعه لکلی محدد میں گردش دیتا ہے لیعنی

(7.42) 
$$\nabla \times \boldsymbol{H} = \left[ \frac{1}{\rho} \frac{\partial H_z}{\partial \phi} - \frac{\partial H_{\phi}}{\partial z} \right] \boldsymbol{a}_{\rho} + \left( \frac{\partial H_{\rho}}{\partial z} - \frac{\partial H_z}{\partial \rho} \right) \boldsymbol{a}_{\phi} + \left[ \frac{1}{\rho} \frac{\partial (H_{\phi}\rho)}{\partial \rho} - \frac{1}{\rho} \frac{\partial H_{\rho}}{\partial \phi} \right] \boldsymbol{a}_{\mathbf{Z}}$$

یہاں ایک بار پھر یہ بتلانا ضروری ہے کہ نکلی محدد میں ⊽ اور H کا صلیبی ضرب کسی صورت مندرجہ بالا مساوات کا دایاں ہاتھ نہیں دیتا۔اس کے باوجود H کے گردش کو H × √ سے ہی ظاہر کیا جاتا ہے۔

7.3. گردش

7.3.2 عمومی محدد میں گردش کی مساوات

صفحہ 80 پر حصہ 3.10 میں عمومی محدد استعال کرتے ہوئے کچیلاو کی مساوات حاصل کی گئی۔ یہاں عمومی محدد میں گردش کی مساوات حاصل کرتے ہیں۔ عمومی محدد کے متغیرات (u,v,w) جبکہ اکائی سمتیات  $(a_u,a_v,a_v)$  ہیں۔ان میں تین اطراف

$$dL_u = k_1 du$$

$$dL_v = k_2 dv$$

$$dL_w = k_3 dw$$

لکھے جاتے ہیں۔

روش کا پہلا جزو حاصل کرنے کی خاطر ہم نقطہ (u,v,w) پر س کے عمود کی سطح پر چھوٹار قبہ لیتے ہیں جس کے اطراف  $k_2 \Delta v$  اور  $k_3 \Delta w$  ہول  $-\frac{\Delta w}{2}$  ہول سے محمد کی خاطر ہم نقطہ  $v+\frac{\Delta v}{2}$  کے برابر ہوگا۔نقطہ  $v+\frac{\Delta v}{2}$  کے برابر ہوگا۔نقطہ کے برابر ہوگا۔نقطہ کے برابر ہوگا۔نتا کے برابر ہوگا۔نقطہ کے برابر ہوگا۔نقطہ کے برابر ہوگا۔نتا کے برابر کے برابر ہوگا۔نتا کے برابر ہوگا۔نتا کے برابر ہوگا۔نتا کے برابر کے ب

$$\boldsymbol{H} \cdot \mathrm{d}\boldsymbol{L}_{21} = H_v k_2 \Delta v + \frac{\partial (H_v k_2 \Delta v)}{\partial w} \left( -\frac{\Delta w}{2} \right)$$

 $-H_v k_2 \Delta v$  کا کمل  $v-\frac{\Delta v}{2}=v+\frac{\Delta v}{2}$  کا کا کا کو کا کھیل ہوتا ہے۔ اس طرح  $v-\frac{\Delta v}{2}=v+\frac{\Delta v}{2}$  کا کا کوتا ہوتا ہے۔ اس طرح کا سے میں کا کا کا کہ ک

$$\boldsymbol{H} \cdot d\boldsymbol{L}_{43} = -H_v k_2 \Delta v + \frac{\partial (-H_v k_2 \Delta v)}{\partial w} \left(\frac{\Delta w}{2}\right)$$

ہو گا۔ یوں ان اطراف پر کل تکمل

(7.43) 
$$\boldsymbol{H} \cdot d\boldsymbol{L}_{21} + \boldsymbol{H} \cdot d\boldsymbol{L}_{43} = -\frac{\partial (H_v k_2)}{\partial w} \Delta v \Delta w$$

ہو گا۔ یہی طریقہ کار استعال کرتے ہوئے

$$\mathbf{H} \cdot d\mathbf{L}_{32} = H_w k_3 \Delta w + \frac{\partial (H_w k_3 \Delta w)}{\partial v} \left(\frac{\Delta v}{2}\right)$$
$$\mathbf{H} \cdot d\mathbf{L}_{14} = -H_w k_3 \Delta w + \frac{\partial (-H_w k_3 \Delta w)}{\partial v} \left(-\frac{\Delta v}{2}\right)$$

حاصل ہوتے ہیں جن سے

(7.44) 
$$\boldsymbol{H} \cdot d\boldsymbol{L}_{32} + \boldsymbol{H} \cdot d\boldsymbol{L}_{14} = \frac{\partial (H_w k_3)}{\partial v} \Delta v \Delta w$$

لکھا جا سکتا ہے۔ یوں چھوٹے رقبے کے گرد کل تکمل

(7.45) 
$$\oint \mathbf{H} \cdot d\mathbf{L} = \left[ \frac{\partial (H_w k_3)}{\partial v} - \frac{\partial (H_v k_2)}{\partial w} \right] \Delta v \Delta w$$

لکھتے ہوئے ایمپیئر کے دوری قانون سے

$$\oint \mathbf{H} \cdot d\mathbf{L} = \left[ \frac{\partial (H_w k_3)}{\partial v} - \frac{\partial (H_v k_2)}{\partial w} \right] \Delta v \Delta w = J_u k_2 k_3 \Delta v \Delta w$$

لکھ کر گردش کا پہلا جزو

(7.46) 
$$\lim_{\substack{\Delta v \to 0 \\ \Delta w \to 0}} \frac{\oint \mathbf{H} \cdot d\mathbf{L}}{k_2 k_3 \Delta v \Delta w} = \frac{1}{k_2 k_3} \left[ \frac{\partial (H_w k_3)}{\partial v} - \frac{\partial (H_v k_2)}{\partial w} \right] = J_u$$

حاصل ہوتا ہے۔ آپ اسی مساوات میں متغیرات ذرہ دیکھ کر تبدیل کرتے ہوئے گردش کے بقایا دواجزاء

(7.47) 
$$\lim_{\substack{\Delta u \to 0 \\ \Delta v_{1} \to 0}} \frac{\oint \mathbf{H} \cdot d\mathbf{L}}{k_{1}k_{3}\Delta u \Delta w} = \frac{1}{k_{1}k_{3}} \left[ \frac{\partial (H_{u}k_{1})}{\partial w} - \frac{\partial (H_{w}k_{3})}{\partial u} \right] = J_{v}$$

اور

(7.48) 
$$\lim_{\substack{\Delta u \to 0 \\ \Delta v \to 0}} \frac{\oint \mathbf{H} \cdot d\mathbf{L}}{k_1 k_2 \Delta u \Delta v} = \frac{1}{k_1 k_2} \left[ \frac{\partial (H_v k_2)}{\partial u} - \frac{\partial (H_u k_1)}{\partial v} \right] = J_w$$

لکھ سکتے ہیں۔ عموی محدد میں گردش کے ان اجزاء کو

(7.49) 
$$\nabla \times \boldsymbol{H} = \frac{1}{k_2 k_3} \left[ \frac{\partial (H_w k_3)}{\partial v} - \frac{\partial (H_v k_2)}{\partial w} \right] \boldsymbol{a}_u + \frac{1}{k_1 k_3} \left[ \frac{\partial (H_u k_1)}{\partial w} - \frac{\partial (H_w k_3)}{\partial u} \right] \boldsymbol{a}_v + \frac{1}{k_1 k_2} \left[ \frac{\partial (H_v k_2)}{\partial u} - \frac{\partial (H_u k_1)}{\partial v} \right] \boldsymbol{a}_w$$

یا قالب کا حتمی قیمت

(7.50) 
$$\boldsymbol{H}_{2} = \begin{pmatrix} \frac{a_{u}}{k_{2}k_{3}} & \frac{a_{v}}{k_{3}k_{1}} & \frac{a_{w}}{k_{1}k_{2}} \\ \frac{\partial}{\partial u} & \frac{\partial}{\partial v} & \frac{\partial}{\partial w} \\ k_{1}H_{u} & k_{2}H_{v} & k_{3}H_{w} \end{pmatrix}$$

لکھا جا سکتا ہے۔

7.3.3 کروی محدد میں گردش کی مساوات

جيسے صفحہ 80 پر حصہ 3.10 میں بتلایا گیا عمومی محدد میں

$$k_1 = 1$$

$$k_2 = r$$

$$k_3 = r \sin \theta$$

اور  $a_v$  کی جگہ میں کہی چھ پر کرتے ہوئے یوں کروی محدد حاصل ہوتا ہے۔مساوات 7.49 میں کہی چھ پر کرتے ہوئے یوں کروی محدد میں گردش کی مساوات محدد میں گردش کی مساوات

$$\nabla \times \boldsymbol{H} = \frac{1}{r^2 \sin \theta} \left[ \frac{\partial (H_{\phi} r \sin \theta)}{\partial \theta} - \frac{\partial (H_{\theta} r)}{\partial \phi} \right] \boldsymbol{a}_{\mathrm{I}} + \frac{1}{r \sin \theta} \left[ \frac{\partial H_r}{\partial \phi} - \frac{\partial (H_{\phi} r \sin \theta)}{\partial r} \right] \boldsymbol{a}_{\theta}$$
$$+ \frac{1}{r} \left[ \frac{\partial (H_{\theta} r)}{\partial r} - \frac{\partial H_r}{\partial \theta} \right] \boldsymbol{a}_{\phi}$$

7.4. مسئلہ سٹوکس

(7.51)  $\nabla \times \boldsymbol{H} = \frac{1}{r \sin \theta} \left[ \frac{\partial (H_{\phi} \sin \theta)}{\partial \theta} - \frac{\partial H_{\theta}}{\partial \phi} \right] \boldsymbol{a}_{\Gamma} + \frac{1}{r} \left[ \frac{1}{\sin \theta} \frac{\partial H_{r}}{\partial \phi} - \frac{\partial (H_{\phi} r)}{\partial r} \right] \boldsymbol{a}_{\theta} + \frac{1}{r} \left[ \frac{\partial (H_{\theta} r)}{\partial r} - \frac{\partial H_{r}}{\partial \theta} \right] \boldsymbol{a}_{\phi}$ 

حاصل ہوتی ہے۔

### 7.4 مسئلہ سٹوکس

شکل 7.11-الف میں ایک رقبہ و کھایا گیا ہے جسے دو چھوٹے کلڑوں میں تقسیم کیا گیا ہے۔ بائیں چھوٹے رقبے کے لئے گردش 
$$rac{\Phi m{H} \cdot dm{L}_B}{\Delta S_B} \doteq (
abla imes m{H}_B)_N$$

کسی جا سکتی ہے جہاں زیر نوشت میں N اس بات کی یاد دہانی کراتا ہے کہ گردش رقبے  $\Delta S_B$  کے عمودی ہے اور زیر نوشت میں B بائیں رقبے کو ظاہر کرتا ہے۔ یوں  $\Delta L_B$  سے مراد بائیں چھوٹے رقبے کے وسط میں مقناطیسی شدت ہے۔ اس طرح اس میں مساوات کو مساوات کو سط میں مقاطیسی شدت ہے۔ اس طرح سے میاوات کو سط میں مقاطیسی شدت ہے۔ اس طرح سے میاوات کو سط میں مقاطیسی شدت ہے۔ اس طرح سے میاوات کو سط میں مقاطیسی شدت ہے۔ اس طرح سے میاوات کو سط میں مقاطیسی شدت ہے۔ اس طرح سے میاوات کو سط میں مقاطیسی شدت ہے۔ اس طرح سے میاوات کو سط میں مقاطیسی شدت ہے۔ اس طرح سے میاوات کو سط میں مقاطیسی شدت ہے۔ اس طرح سے میاوات کو سط میں مقاطیسی شدت ہے۔ اس طرح سے میں مقاطیسی مقاطیسی میں مقاطیسی شدت ہے۔ اس طرح سے میں مقاطیسی مقاطیسی

$$\frac{\oint \boldsymbol{H} \cdot d\boldsymbol{L}_B}{\Delta S_B} \doteq (\nabla \times \boldsymbol{H}_B) \cdot \boldsymbol{a}_N$$

يا

$$\oint \boldsymbol{H} \cdot d\boldsymbol{L}_B \doteq (\nabla \times \boldsymbol{H}_B) \cdot \boldsymbol{a}_N \Delta S_B = (\nabla \times \boldsymbol{H}) \cdot \Delta \boldsymbol{S}_B$$

کھی لکھا جا سکتا ہے جہال  $a_N$  اس رقبے کی اکائی عمودی سمتیہ ہے۔اب شکل کو دیکھ کر

$$\phi \ \boldsymbol{H} \cdot d\boldsymbol{L}_{B} \doteq \boldsymbol{H}_{1} \cdot \Delta \boldsymbol{L}_{ba} + \boldsymbol{H}_{7} \cdot \Delta \boldsymbol{L}_{eb} + \boldsymbol{H}_{5} \cdot \Delta \boldsymbol{L}_{fe} + \boldsymbol{H}_{6} \cdot \Delta \boldsymbol{L}_{af}$$

لکھا جا سکتا ہے۔

اسی طرح دائیں چھوٹے رقبے کے لئے

$$\oint \boldsymbol{H} \cdot d\boldsymbol{L}_D \doteq (\nabla \times \boldsymbol{H}_D) \cdot \Delta \boldsymbol{S}_D$$

اور

$$\oint m{H} \cdot dm{L}_D \doteq m{H}_2 \cdot \Deltam{L}_{cb} + m{H}_3 \cdot \Deltam{L}_{dc} + m{H}_4 \cdot \Deltam{L}_{ed} + m{H}_7 \cdot \Deltam{L}_{be}$$

لکھا جا سکتا ہے۔

$$\mathcal{L}_{ab}$$
 دائیں رقبے کے کئیری تکمل میں میں میں  $\mathbf{H}_7 \cdot \Delta \mathbf{L}_{be} = -\mathbf{H}_7 \cdot \Delta \mathbf{L}_{eb}$  کالیم کی تکمل جمع کرتے ہوئے  $\mathbf{H}_7 \cdot \Delta \mathbf{L}_{be} + \mathbf{H}_7 \cdot \Delta \mathbf{L}_{eb}$  کالیم کی  $\mathbf{H}_7 \cdot \Delta \mathbf{L}_{be} + \mathbf{H}_7 \cdot \Delta \mathbf{L}_{eb}$   $\mathbf{H}_7 \cdot \Delta \mathbf{L}_{be} + \mathbf{H}_7 \cdot \Delta \mathbf{L}_{eb} + \mathbf{H}_8 \cdot \Delta \mathbf{L}_{eb} + \mathbf$ 

198 باب 7. برقرار مقناطیسی میدان



شکل 7.11: چھوٹرے رقبوں کے گرد لکیری تکمل پورے رقبے کے گرد لکیری تکمل کے برابر ہے۔



شکل 7.12: کسی بھی بڑے رقبے کو انتہائی چھوٹے رقبوں میں تقسیم کرتے ہوئے ہر کے گرد لکیری تکمل لیں۔ان تمام کا مجموعہ پورے رقبے کے سرحد پر لکیری تکمل کے برابر ہو گا۔

حاصل ہوتا ہے۔ آپ دیکھ سکتے ہیں کہ چھوٹے رقبوں کے مشتر ک طرف  $\Delta L_{be}$  پر دونوں کے لکیری کمل آپس میں کٹ گئے ہیں۔ یہاں پہلی مساوات پورے رقبے کے گرد لکیری کمل آپ میں رقبے کے صرف دو گلڑے لیورے رقبے کے گرد لکیری کمل کے برابر ہے جو شکل 7.11-ب کو دیکھ کر لکھی جاستی ہے۔ ہم نے شکل 7.11-الف میں رقبے کے صرف دو گلڑے لئے۔ آپ دیکھ سکتے ہیں کہ رقبے کے زیادہ گلڑے کرتے ہوئے بھی یہی طریقہ کار استعال کیا جا سکتا ہے۔ اس طرح آگر کسی بھی بڑے رقبے کو انتہائی چھوٹے رقبوں میں تقسیم کرتے ہوئے ہر ایک کے گرد لکیری تمل لیا جائے تو ان کا مجموعہ پورے رقبی کے سرحد پر گھومتے لکیری تمل کے برابر ہوگا۔ شکل 7.12 میں بڑے رقبول میں تقسیم کرتے ہوئے ہم ایک کے گرد لکیری تمل لیا جائے تو ان کا مجموعہ پورے رقبول کے مشتر کہ طرف پر لکیری تممل آپس میں کٹ ہوگا۔ شکل 7.12 میں بڑے رقبول کے کہ گھری گھری گھری گھری گھری گھرل کے براے رقبے کا لکیری تممل لیتے ہوئے اور تمام چھوٹے رقبول کے کمیری تممل کے مجموعے کو بڑے رقبول کے مجموعے کو تمکل کی شکل میں لکھتے ہوئے

(7.52) 
$$\oint \boldsymbol{H} \cdot d\boldsymbol{L} = \int_{S} (\nabla \times \boldsymbol{H}_{B}) \cdot d\boldsymbol{S}$$

کھا جا سکتا ہے جہاں dL کو صرف بڑے رقبے S کے سرحد پر لیا جاتا ہے۔

اگرچہ ہم نے مساوات 7.52 مقناطیسی میدان کے لئے حاصل کیا، در حقیقت یہ ایک عمومی مساوات ہے جو کسی بھی سمتی میدان کے لئے درست ہے۔ یہ مساوات مسئلہ سٹوکس 8 بیان کرتا ہے۔

مسکلہ سٹوکس سے ایمبیئر کا دوری قانون باآسانی حاصل ہوتا ہے۔ایسا کرنے کی خاطر  $F imes \nabla imes H = J$  کے ساتھ غیر سمتی ضرب لیتے ہوئے دونوں اطراف کا F imes D کے ساتھ غیر سمتی ضرب لیتے ہوئے دونوں اطراف کا کھلے سطح F imes D کی سطحی تکمل لیتے ہوئے مسکلہ سٹوکس کا استعال کریں گے۔

$$\int_{S} (\nabla \times \boldsymbol{H}) \cdot d\boldsymbol{S} = \int_{S} \boldsymbol{J} \cdot d\boldsymbol{S} = \oint \boldsymbol{H} \cdot d\boldsymbol{L}$$

ک افت برتی رو کا سطی کمل سطح S سے گزرتی برتی رو کے برابر ہے للذا مندرجہ بالا سے  $\phi$   $H\cdot \mathrm{d} L=I$ 

Stokes theorem<sup>8</sup>

7.4 مسئله ستوكس

حاصل ہوتا ہے جو ایمپیئر کا دوری قانون ہے۔ایمپیئر کے دوری قانون کے اس مختصر حصول سے بیہ حقیقت بھی واضح ہوتی ہے کہ I ان تمام سطحوں سے گزرتی برقی روہے جن کا سرحد تکمل میں استعال بند راہ ہے۔

مسکلہ سٹو کس سطحی تکمل اور بند لکیری تکمل کے مابین تعلق بیان کرتا ہے۔آپ کو یاد ہو گا کہ مسکلہ پھیلاو تحجی تکمل اور بند سطحی تکمل کے مابین تعلق بیان کرتا ہے۔یہ دونوں مسکلے عمومی سمتیاتی ثبوت بیش کرنے میں اہم کردار ادا کرتے ہیں۔آئیں ایک ایک مثال دیکھتے ہیں جس میں ہم  $A \times \nabla \cdot \nabla$  کو بیان کرنے کا مختلف طریقہ حاصل کرنے کی کوشش کرتے ہیں جہال A کوئی بھی عمومی سمتی میدان ہو سکتا ہے۔

شروع کرنے سے پہلے یاد رہے کہ گردش کا حاصل جواب سمتیہ ہوتا ہے جبکہ پھیلاو کا حاصل جواب غیر سمتی ہوتا ہے۔ کسی بھی عمو می سمتیہ میدان A کا گردش  $A imes \nabla imes A$  کا گردش  $A imes \nabla imes A$  کا گردش  $A imes \Delta$  بین لیعنی

$$\nabla \cdot \nabla \times \mathbf{A} = T$$

دونوں اطراف کا حجمی تکمل لیتے ہیں۔

$$\int_{\mathcal{P}} (\nabla \cdot \nabla \times \mathbf{A}) \, \mathrm{d}h = \int_{\mathcal{P}} T \, \mathrm{d}h$$

بائیں ہاتھ پر مسکلہ بھیلاو لا گو کرتے ہوئے

$$\oint_{S} (\nabla \times \mathbf{A}) \cdot d\mathbf{S} = \int_{\mathbb{R}^{n}} T \, dh$$

کھا جا سکتا ہے۔اس مساوات کا بایاں ہاتھ جم کو گھیرتے بند سطح پر A × ▽ کا تکمل ہے۔مسکد سٹوکس کسی بھی سطح پر سطی تکمل اور اس سطح کے سرحد پر کئیری تکمل کا تعلق بیان کرتا ہے۔یوں مندرجہ بالا مساوات کے بائیں ہاتھ میں اگر سطح کو تھیلا سمجھا جائے تو تھیلے کا منہ سطح کا سرحد ہوگا جس پر لکیری تکمل لیا جائے گا۔ جیسے جیسے تھیلے کے منہ کو چھوٹا کیا جائے ویسے ویسے تھیلا بند سطح کی شکل اختیار کرے گا جبکہ سطح کا سرحد چھوٹے سے چھوٹا ہوتا جائے گا حتی کہ جب تھیلے کا منہ مکمل بند ہو جائے تو تھیلا مکمل بند سطح ہو گا جبکہ اس کا سرحد صفر کے برابر ہو گا۔صفر لمبائی کے راہ پر تکمل صفر کے برابر ہوتا ہے لیتی

$$\int_0^0 \mathbf{A} \cdot d\mathbf{L} = 0$$

بوں

$$\int_{\mathcal{L}} T \, \mathrm{d}h = 0$$

عاصل ہوتا ہے۔ چونکہ یہ مساوات کسی بھی جم کے لئے درست ہے المذابیہ تفر قی حجم dh کے لئے بھی درست ہے یعنی

$$T dh = 0$$

جس سے

$$T = 0$$

یا

$$(7.53) \nabla \cdot \nabla \times \mathbf{A} = 0$$

حاصل ہوتا ہے۔مساوات 7.53 انتہائی اہم ثبوت ہے جس کے تحت کسی بھی عمومی سمتی میدان کے گردش کا پھیلا صفر کے برابر ہوتا ہے۔اس ثبوت کو مندرجہ ذیل مثال میں کار تیسی محدد استعال کرتے ہوئے بھی حاصل کیا گیا ہے۔

200 باب 7. برقرار مقناطیسی میدان

مثال 7.1: کسی بھی عمومی سمتی میدان  $A = A_x a_x + A_y a_y + A_z a_z$  کا گردش اور گردش کا پھیلا کار تیسی محدد میں حاصل کرتے ہوئے ثابت کریں کہ گردش کا پھیلا و صفر کے برابر ہو گا۔

حل: پہلے گروش حاصل کرتے ہیں

$$\nabla \times \mathbf{A} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) \mathbf{a}_{\mathbf{X}} + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) \mathbf{a}_{\mathbf{Y}} + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) \mathbf{a}_{\mathbf{Z}}$$

جس كاليملاو

$$\nabla \cdot \nabla \times \boldsymbol{A} = \frac{\partial^2 A_z}{\partial x \partial y} - \frac{\partial^2 A_y}{\partial x \partial z} + \frac{\partial^2 A_x}{\partial y \partial z} - \frac{\partial^2 A_z}{\partial y \partial x} + \frac{\partial^2 A_y}{\partial z \partial x} - \frac{\partial^2 A_x}{\partial z \partial y} = 0$$

ے برابر ہے جہاں  $\frac{\partial^2 A_z}{\partial x \partial y}$  اور  $\frac{\partial^2 A_z}{\partial y \partial x}$  کی طرح بقایا اجزاء بھی آپس میں کٹ جاتے ہیں۔

ساکن مقناطیسی میدان یعنی وقت کے ساتھ تبدیل نہ ہوتے مقناطیسی میدان کے لئے ایمپیئر کے دوری قانون کی نقطہ شکلabla imes H=J

ہے۔اس مساوات کے دونوں اطراف کا پھیلاو حاصل کرتے ہوئے

 $\nabla \cdot \nabla \times \boldsymbol{H} = \nabla \cdot \boldsymbol{J}$ 

لکھا جا سکتا ہے۔مساوات 7.53 کے تحت گردش کا پھیلاو صفر کے برابر ہوتا ہے للذا

 $\nabla \cdot \boldsymbol{J} = 0$ 

ہو گا۔اس سے ظاہر ہے کہ ساکن مقناطیسی میدان صرف الی برقی روسے حاصل ہوتا ہے جس کے لئے مساوات 7.54 درست ہو۔ یہی نتیجہ ہم پہلے بھی مساوات 7.2 میں حاصل کر چکے ہیں جہاں ہم دیکھ چکے کہ  $\nabla \cdot J = 0$  سے مراد بند راہ سے گزرتی یک سمتی برقی روہے۔

7.5 مقناطیسی بهاو اور کثافت مقناطیسی بهاو

خالی خلاء میں کثافت مقناطیسی بہاو *B* کی تعریف

 $(7.55) B = \mu_0 H$ 

ے جہاں  $m{B}$  کی اکائی و یبر فی مربع میٹر  $Wb/m^2$  ہے جسے ٹسلا $^{o}$  پکار ااور T سے ظاہر کیا جاتا ہے۔ اس مساوات میں فالی خلاء کا مقناطیسی مستقل  $^{10}$  ہے جسے میسزی فی میٹر  $\frac{H}{m}$  میں ناپا جاتا ہے۔خالی خلاء میں

 $\mu_0 = 4\pi \times 10^{-7} \frac{H}{m}$ 

 $Tesla^9$ 

کے برابر ہے۔

چونکہ H کی اکائی ایمپیئر فی میٹر ہے للذاویبر کی اکائی ہیئری ضرب ایمپیئر ہے۔ ہیئری کو اکائی تصور کرتے ہوئے ہم دیکھتے ہیں کہ ہیئری ضرب ایمپیئر کو ویبر ککھا جاتا ہے۔ وقت کے ساتھ بدلتے میدان پر غور کے دوران ہم دیکھیں گے کہ ویبر سے مراد وولٹ ضرب سیکٹڈ بھی لیا جا سکتا ہے۔

خالی خلاء میں کثافت برتی بہاو D اور برقی میدان کی شدت E کا تعلق $D=\epsilon_0 E$ 

 $\psi=\int_S D\cdot\mathrm{d}S$  ہو بہو مساوات 7.55 کی طرح ہے۔ کثافت برقی بہاو کا مسطح تکمل برقی بہاو  $\psi=\int_S D\cdot\mathrm{d}S$ 

Q کسی مجمی بند سطح سے گزرتی برقی بہاواں سطح میں گھیرے چارج Q کے برابر ہوتا ہے۔ $\psi=\oint_{S}m{D}\cdot\mathrm{d}m{S}=Q$ 

مثبت چارج سے برقی بہاو کا اخراج ہوتا ہے جبکہ منفی چارج پر برقی بہاو کا اختتام ہوتا ہے۔ یوں برقی بہاو کا منبع برقی چارج ہے۔ مقناطیسی قطب ہر صورت جوڑی کی شکل میں پائے جاتے ہیں۔ آج تک تنہا مقناطیسی قطب سے جوڑی کی شکل میں پائے جاتے ہیں۔ آج تک تنہا مقناطیسی قطب سے مقناطیسی بہاو کا منبع برقی رو ہے۔ یاد رہے کہ ناقو مقناطیسی بہاو اس برقی رو سے خارج اور نابی اختتام پذیر ہوتی ہے نشکل میں برقی رو سے گھیرتی ہے۔ کثافت مقناطیسی بہاو کا سطی تکمل مقناطیسی بہاو ا<sup>11</sup> میں برقی رو کو گھیرتی ہے۔ کثافت مقناطیسی بہاو کا سطی تکمل مقناطیسی بہاو ا<sup>11</sup> میں برقی رو کو گھیرتی ہے۔ کثافت مقناطیسی بہاو کا سطی تکمل مقناطیسی بہاو ا<sup>11</sup> میں برقی رو کو گھیرتی ہے۔ کثافت مقناطیسی بہاو کا سطی تکمل مقناطیسی بہاو ا<sup>11</sup> میں برقی رو کو گھیرتی ہے۔ کثافت مقناطیسی بہاو کا سطی تکمل مقناطیسی بہاو ا

$$\Phi = \int_{S} \boldsymbol{B} \cdot d\boldsymbol{S} \qquad \text{Wb}$$

چو نکہ مقناطیسی بہاو بند دائرہ بناتا ہے للذاکسی بھی بند سطح میں جتنا مقناطیسی بہاو داخل ہوتا ہے، اتناہی مقناطیسی بہاواس سطح سے خارج بھی ہوتا ہے للذاکسی بھی بند سطح پر مقناطیسی بہاو کا تکمل صفر کے برابر ہو گا۔

$$\oint_{S} \boldsymbol{B} \cdot d\boldsymbol{S} = 0$$

مسکلہ کھیلاو کے استعال سے مندرجہ بالا مساوات سے

$$\nabla \cdot \boldsymbol{B} = 0$$

حاصل ہوتا ہے۔

ہم نے مساوات 7.58 کو ثابت نہیں کیا بلکہ حقیقت کو سامنے رکھتے ہوئے اسے لکھا ہے۔اس کو آگے ثابت کیا جائے گا۔ فی الحال اس کو قبول کرلیں اور یوں مساوات 7.59 کو بھی درست تصور کریں۔

ساکن مقناطیسی اور ساکن برقی میدان کے لئے مساوات 7.59 میکس ویل کی چوتھی اور آخری مساوات ہے۔ان تمام کو یہاں دوبارہ پیش کرتے ہیں۔

(7.60) 
$$\nabla \cdot \mathbf{D} = \rho \\
\nabla \times \mathbf{E} = 0 \\
\nabla \times \mathbf{H} = \mathbf{J} \\
\nabla \cdot \mathbf{B} = 0$$

باب 7. برقرار مقناطیسی میدان

202

ان کے ساتھ

(7.61) 
$$\begin{aligned} \boldsymbol{D} &= \boldsymbol{\epsilon}_0 \boldsymbol{E} \\ \boldsymbol{B} &= \mu_0 \boldsymbol{H} \end{aligned}$$

کو بھی شامل کرتے ہیں۔ہم برقی میدان کی شدت اور ساکن برقی دباو کا تعلق بھی پیش کرتے ہیں۔

$$(7.62) E = -\nabla V$$

مساوات 7.60 برقی اور مقناطیسی میدان کے پھیلاو اور گردش بیان کرتے ہیں جو ان میدان کی خاصیت کے نقطہ اشکال ہیں۔انہیں کی تکمل اشکال مندر جہ ذیل ہیں۔

$$\oint_{S} \mathbf{D} \cdot d\mathbf{S} = Q = \int_{PP} \rho_{h} dh$$

$$\oint \mathbf{E} \cdot d\mathbf{L} = 0$$

$$\oint \mathbf{H} \cdot d\mathbf{L} = I = \int_{S} \mathbf{J} \cdot d\mathbf{S}$$

$$\oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0$$

ہم جلد ساکن مقناطیسی میدان کے مقناطیسی دباو پر بھی غور کریں گے۔ہم نے برقی میدان پر غور کے دوران موصل اجزاء کے اثر کو بھی تقطیب P کی صورت میں شامل کیا۔ایسا کرتے ہوئے جزو برقی مستقل کا سہارالیا گیا۔اگلے باب میں اسی طرح دیگر اجزاء کا مقناطیسی میدان پر اثر دیکھا جائے گا۔

آئیں مقناطیسی بہاو اور کثافت مقناطیسی بہاو کا استعال ہم محوری تار کے اندر بہاو کے مثال کی صورت میں دیکھیں۔الیی ہم محوری تار جسے شکل 7.4 میں دکھایا گیاہے میں مقناطیسی شدت

$$H_{\phi} = rac{I}{2\pi
ho}$$
  $(
ho_1 < 
ho < 
ho_2)$ 

ہم پہلے حاصل کر چکے ہیں۔ یوں کثافت مقناطیسی بہاو

$$\boldsymbol{B} = \mu_0 \boldsymbol{H} = \frac{\mu_0 I}{2\pi\rho} \boldsymbol{a}_{\phi}$$

ہو گا۔اندرونی اور بیرونی تار کے درمیان مقناطیسی بہاو وہی ہو گا جو ان تارول کے درمیان رداسی سید نھی سطح سے گزرے گا۔تار کو 2 محدد پر تصور کرتے ہوئے 2 = a تاکہ عنار کا تک رداسی سطح سے گزرتی مقناطیسی بہاو

$$\Phi = \int_{\mathcal{S}} \boldsymbol{B} \cdot d\boldsymbol{S} = \int_{0}^{d} \int_{\rho_{1}}^{\rho_{2}} \frac{\mu_{0} I}{2\pi \rho} \boldsymbol{a}_{\phi} \cdot (d\rho \, dz \boldsymbol{a}_{\phi})$$

يعني

$$\Phi = \frac{\mu_0 Id}{2\pi} \ln \frac{\rho_2}{\rho_1}$$

ہو گی۔ یہ مساوات آگے جاکر ہم محوری تار کے امالہ کے حصول میں کام آئے گی۔

مشق 7.2: تانبے کی تار کو پانی سے ٹھنڈا کرتے ہوئے اس میں زیادہ کثافت برقی رو گزاری جاسکتی ہے۔ایک ایسی ہم محوری تار جس کے اندرونی تار کا اندرونی رداس mm 35 mm 35 اور بیرونی رداس mm 37 mm 35 اور بیرونی رداس mm 37 mm 35 اور بیرونی رداس mm 37 سے بیرونی تار کا اندرونی رداس mm 35 اور بیرونی رداس mm 37 سے گزار کر انہیں میں A کا میں الٹ سمت میں گزر رہا ہے۔ٹھنڈا پانی اندرونی تار کے اندر اور تاروں کے درمیان فاصلے سے گزار کر انہیں ٹھنڈار کھا جاتا ہے۔ دونوں تاروں کے اندر اور ان کے مابین H اور B حاصل کرنے کے بعد m کیلین کے لئے دونوں تاروں کے اندر اور ان کے مابین مقاطیسی بہاو حاصل کریں۔

جوابات: اندرونی تاریمیں  $\Phi = 56.6\,\mu W$  اور  $\Phi = 109\,\mu W$  اور خان تاریمی جوابات: اندرونی تاریمی تاریم

#### 7.6 غير سمتي اور سمتي مقناطيسي دباو

برقی میدان کے مسائل برقی دباو کے استعال سے نہایت آسان ہو جاتے ہیں۔گھریلو ۷ 220 کے برقی دباوسے آپ بخوبی واقف ہیں۔اگرچہ برقی دباوسے ہمیں روز مرہ زندگی میں عموماً واسطہ پڑتا ہے اور یہ ہمارے لئے ایک حقیقت رکھتا ہے، مقناطیس و برقیات کے میدان میں برقی دباو کی اہمیت صرف اس وجہ سے ہے کہ اس کی مدد سے برقی مسائل باآسانی عل ہو جاتے ہیں۔مثال کے طور پر ہم کسی بھی چارج سے پہلے برقی دباو اور پھر برقی دباوسے برقی شدت حاصل کرتے ہیں۔

برتی دباوغیر سمتی مقدار ہے۔ ہم جلد دیکھیں گے کہ برتی دباو کے طرز پر غیر سمتی مقاطیسی دباو<sup>13</sup> بیان کیا جا سکتا ہے۔البتہ یہ صرف کثافت برتی رو سمتی مقاطیسی دباو<sup>14</sup> بھی بیان کیا جا سکتا ہے جو انتہائی سے پاک مقامات پر قابل بیان ہوتا ہے۔یوں اس کا استعال ہر جگہ ممکن نہیں ہوگا۔اس کے برعکس سمتی مقناطیسی دباوا بنٹینا ک<sup>14</sup> موت<sup>54</sup> اور مائیکروویو چو کھے (خرد موج چو کھے) <sup>77</sup> پر غور کرنے میں مدد دیتا ہے۔یہ وقت کے ساتھ تبدیل ہوتے میدان میں بھی قابل استعال ہوگا اور یہ ان مقامات پر بھی قابل بیان ہوگا جہال برقی رو پائی جائے۔آئیس پہلے غیر سمتی مقناطیس دباود یکھیں۔

برتی د باو اور برتی میدان کی شدت کا تعلق صفحہ 100 پر مساوات 4.46 میں بیان کیا گیا ہے۔ ہم فرض کرتے ہیں بالکل اسی طرح غیر سمتی مقناطیسی د باو  $V_m$  کی ڈھلان منفی مقناطیسی شدت دیتا ہے یعنی

$$\boldsymbol{H} = -\nabla V_m$$

یہ نیا تفاعل مقناطیسی میدان کے دیگر تفاعل کے ساتھ ہم آ ہنگ ہونا چاہیے للذا اسے ایمپیئر کے دوری قانون کے نقطہ صورت پر پورااتر نا ہو گا۔اس طرح  $abla imes H = J = 
abla imes (abla V_m)$ 

ہو گا۔ البتہ جیسے آپ مثق 7.3 میں دیکھیں گے، کسی بھی متغیرہ کی ڈھلان کا گردش صفر کے برابر ہوتا ہے۔ یوں مقناطیسی میدان کے شدت اور غیر سمتی مقناطیسی دباو کا تعلق صرف اس صورت درست ہو سکتا ہے جب J=0 ہو یعنی

$$(7.66) H = -\nabla V_m (J=0)$$

scalar magnetic potential  $^{13}$ 

vector magnetic potential<sup>14</sup>

antenna<sup>15</sup>

microwave oven<sup>17</sup>

204 باب 7. برقرار مقناطيسي ميدان

اب آپ دیکھ سکتے ہیں کہ غیر مقاطیسی دباوپر لا گو شرط کہ کثافت برقی روصفر ہوناضر وری ہے نا قابل قبول شرط ہے۔اگرچہ کئی صورتوں میں کثافت برقی روصفر ہوگا استعال ممکن ہوگا لیکن ہمیں ایسے مسائل بھی در پیش ہوں گے جہاں کثافت برقی روصفر نہ ہوگا۔ایی صورت میں کہ اسے ہمارک کشور میں ناپا جائے گا۔ کسی کام کا نہ ہوگا۔ غیر سمتی مقناطیسی دباو V<sub>m</sub> کی تعریف سے ظاہر ہے کہ اسے ایمپیئر میں ناپا جائے گا۔

خالی خلاء میں

$$\nabla \cdot \boldsymbol{B} = \mu_0 \nabla \cdot \boldsymbol{H} = 0$$

 $\mu_0 \nabla \cdot (-\nabla V_m) = 0$ 

 $\nabla^2 V_m = 0 \qquad (\boldsymbol{J} = 0)$ 

جو لا پلاس مساوات ہے حاصل ہوتا ہے۔ یوں غیر سمتی مقناطیسی دباو لا پلاس مساوات پر پورا اترتا ہے۔ ہم دیکھیں گے کہ ہر طرف یکسال خاصیت کے مقناطیسی اشیاء میں بھی  $V_m$  لا پلاس مساوات پر یورا اترتا ہے۔ یاد رہے کہ  $V_m$  صرف اور صرف کثافت برتی روسے پاک مقامات پر درست ثابت ہوتا ہے۔

اگلے باب میں  $V_m$  پر تفصیلی غور کیا جائے گا۔ یہاں یہ بتلانا ضروری ہے کہ چونکہ مقناطیسی میدان بقائی میدان نہیں ہے لہذا  $V_m$  کی قبت اٹل نہیں ہوگی۔ آپ کو یاد ہو گا کہ برتی میدان میں کسی نقطے کو برتی زمین رکھتے ہوئے کسی دوسرے نقطے پر برتی دباواٹل قبمت رکھتی ہے۔ مقناطیسی میدان میں ایسا ممکن نہیں ہے۔الی ایک مثال دیکھنے کی خاطر z محد د پر رکھی لا محدود لمبائی کے تار پر غور کرتے ہیں جس میں  $a_z$  جانب  $a_z$  برقی روگزر رہی ہو۔الی تارکر جہال  $a_z$  کے گرد جہال  $a_z$  ہے۔

$$m{H}=rac{I}{2\pi
ho}m{a}_{\phi}$$

ہو گا اور غیر سمتی مقناطیسی دباو حاصل کیا جا سکتا ہے۔مساوات 7.66 اور نمکی محدد میں  $V_m$  کے ڈھلان کا زاویاتی جزو لیتے ہوئے

$$\frac{I}{2\pi\rho} = -\frac{1}{\rho} \frac{\partial V_m}{\partial \phi}$$

 $\frac{\partial V_m}{\partial \phi} = -\frac{I}{2\pi}$ 

 $V_m = -\frac{I}{2\pi}\phi$ 

حاصل ہوتا ہے جہاں کمل کے مستقل کو صفر چنا گیا ہے تا کہ  $\phi=\phi$  پر مقناطیسی زمین ہو۔ آپ دکھ سکتے ہیں کہ  $\phi=0$  پر  $\phi=V_m=V_m$  ہم تار کے گرد پورا چکر کا ٹیں تو ہم اسی مقناطیسی زمین پر دوبارہ پہنچتے ہیں لیکن مندرجہ بالا مساوات کے تحت  $\phi=0$  ہم مقناطیسی زمین ہے۔ اب اگر ہم تار کے گرد پورا چکر کا ٹیں تو ہم اسی مقناطیسی زمین ہوتا ہے۔ آپ دیکھ سکتے ہیں کہ کسی بھی نقطے پر غیر سستے میں کہ کسی بھی نقطے پر غیر سستی مقناطیسی دباو کے متعدد قیمتیں ممکن ہیں۔ آپ کو یاد ہوگا کہ برقی میدان میں ایک مرتبہ برقی زمین چنے کے بعد کسی بھی ایک نقطے پر ایک ہی برقی دباو کی قیمت حاصل ہوتی ہے۔ دباو کی قیمت حاصل ہوتی ہے۔

آئیں غیر سمتی مقناطیسی د باو کے متعدد قیتوں کا ممکن ہونا سمجھیں۔ساکن برقی میدان میں abla imes E=0  $\oint E\cdot \mathrm{d} L=0$ 

ہوتا ہے للذا دو نقطوں کے مابین لکیری تکمل

$$V_{ab} = -\int_b^a \boldsymbol{E} \cdot \mathrm{d} \boldsymbol{L}$$

کا دارومدار تکمل کے راہ پر منحصر نہیں ہوتا۔ساکن مقناطیسی میدان میں

$$\nabla \times \boldsymbol{H} = 0 \qquad (\boldsymbol{J} = 0)$$

ہوتا ہے لیکن

$$\oint \boldsymbol{H} \cdot d\boldsymbol{L} = I$$

کے برابر ہوتا ہے اگرچپہ تکمل کے راہ پر J=J ہے۔یوں تکمل لیتے ہوئے جب بھی ایک چکر پورا ہو، تکمل کے قیمت میں I برابراضافہ آئے گا۔ہاں اگر تکمل کی راہ صفر برتی رو گھیرے تب غیر سمتی مقناطیسی دباو بھی ایک قیمت رکھے گا۔ان حقائق کو مد نظر رکھتے ہوئے غیر سمتی مقناطیسی دباو

$$V_{ab} = -\int_{h}^{a} m{H} \cdot \mathrm{d} m{L}$$
 (7.68) (بیمت راه پر منحصر ہے

بیان کی جاتی ہے۔ہم یہ فیصلہ کر سکتے ہیں کہ غیر سمتی مقناطیسی دباو حاصل کرتے وقت صرف ایک چکر کاٹا جائے گا۔اس شرط پر چلتے ہوئے  $V_m$  ایک قیت رکھے گا۔یہ آپ مندرجہ بالا مثال سے دکھے سکتے ہیں یعنی

$$V_m = -rac{I}{2\pi}\phi \qquad (-\pi < \phi \leq \pi)$$

کی صورت میں  $\phi=0$  پر  $V_m=0$  ہی حاصل ہوتا ہے۔اس مساوات میں چکر کی وضاحت ضروری ہے۔زاویہ  $\phi=0$  تک صرف زاویہ صفر سے بڑھاتے ہوئے پہنچا جا سکتا ہے۔یوں  $\phi=0$  پر  $V_m$  کی ایک عدد قیمت ہوگی۔

مثق 7.3: کارتیسی محدد استعال کرتے ہوئے مثال 7.1 کے طرز پر ثابت کریں کہ کسی بھی غیر سمتی متغیرہ کے ڈھلان کی گردش صفر کے برابر ہو گی۔

آئیں اب سمتی مقناطیسی د باوپر غور کرتے ہیں۔ ہم شروع

$$\nabla \cdot \boldsymbol{B} = 0$$

سے کرتے ہیں۔ سمتی مقناطیسی دباو کو اس مساوات کے ہم آ ہنگ ہو نا ہو گا۔ مساوات 7.53 میں ہم دیکھے چیکے ہیں کہ کسی بھی سمتی متغیرہ کے گردش کا پھیلاو صفر کے برابر ہوتا ہے لہٰذاا گر B سمتی متغیرہ A کا گردش

$$(7.70) B = \nabla \times A$$

باب 7. برقرار مقناطیسی میدان

ہو تب بھی *B* کا پھیلاو

$$\nabla \cdot \nabla \times \mathbf{A} = 0$$

ہی ہو گا۔ ہم مساوات 7.70 میں دے A کو سمتی مقناطیسی دباو کی تعریف مان کر آگے بڑھتے ہیں۔ یوں سمتی مقناطیسی دباو خود بخود مساوات 7.69 کے ہم آہنگ ہو گا۔ بوں

$$m{H} = rac{1}{\mu_0} 
abla imes m{A}$$

اور

$$abla imes \mathbf{H} = \mathbf{J} = \frac{1}{\mu_0} \nabla \times \nabla \times \mathbf{A}$$

حاصل ہوتے ہیں۔کسی بھی سمتی متغیرہ کے گردش کا گردش عموماً صفر کے برابر نہیں ہوتا۔سمتی مقناطیسی دیاد A کی اکائی ویبر فی میٹر  $rac{\mathrm{Wb}}{\mathrm{m}} ہے۔$ 

ہم اگلے حصے میں دیکھیں گے کہ B اور A کے تعریف اور بابوٹ سیوارٹ کے قانون سے ا

$$A = \oint \frac{\mu_0 I \, \mathrm{d}L}{4\pi R}$$

کھا جا سکتا ہے۔ہم نے A کی تعریف اس کے گردش کے ذریعے کی ہے۔ چونکہ ڈھلان کا گردش صفر کے برابر ہوتا ہے للذاہم مندرجہ بالا مساوات کے ساتھ کسی غیر سمتی متغیرہ کا ڈھلان بھی جمع کر سکتے ہیں۔ایسا کرنے سے B یا H کے قیمتوں پر کوئی اثر نہ پڑتا۔ساکن مقناطیسی میدان میں عموماً ڈھلان جمع نہیں کیا جاتا اور اس مساوات کو یوں ہی رکھا جاتا ہے۔

ساکن برقی د باو کے مساوات

$$V = \int \frac{\rho_L \, \mathrm{d} \boldsymbol{L}}{4\pi\epsilon_0 R}$$

ے ساتھ مساوات 7.71 موازنہ کرنے سے یہ بات بہتر سمجھ میں آتی ہے کہ A واقع سمتی مقناطیسی دباو ہی ہے۔یہ دونوں مساوات کلیری تکمل دیتے ہیں۔ایک برتی رواور دوسرا کثافت چارج کا کلیری تکمل دیتا ہے۔دونوں میں تفرقی فاصلے d کا اثر R کے بالعکس متناسب ہے اور دونوں مساوات میں خالی خلاء کے خاصیت یعنی  $\mu$  اور  $\epsilon$ 0 استعال ہوتے ہیں۔

مساوات 7.71 کی تفرق شکل

$$\mathrm{d}\boldsymbol{A} = \frac{\mu_0 I \, \mathrm{d}\boldsymbol{L}}{4\pi R}$$

بھی لکھی جا سکتی ہے جب تک dL سے حاصل dA کا کوئی مطلب نہ لیا جائے۔ یاد رہے کہ جب تک بند تکمل پورانہ لیا جائے، حاصل A کوئی معنی نہیں رکھتا۔

Z یں Z محد دیر لامحدود لمبائی کے برقی رو گزارتے تار کا حجموٹا حصہ d د کھایا گیا ہے۔نقطہ D پر ہیر Z

$$\mathrm{d}\boldsymbol{A} = \frac{\mu_0 I \, \mathrm{d}z \boldsymbol{a}_{\mathrm{Z}}}{4\pi \sqrt{\rho^2 + z^2}}$$

یا

(7.73) 
$$dA_z = \frac{\mu_0 I \, dz}{4\pi \sqrt{\rho^2 + z^2}}, \quad dA_\rho = 0, \quad dA_\phi = 0$$



شکل 7.13: تار کے چھوٹے حصے سے پیدا سمتی مقناطیسی دباو۔

سمتی مقناطیسی د باوپیدا کرے گا۔ آپ د کیھ سکتے ہیں کہ تار کے ہر چھوٹے جھے کا پیدا کردہ سمتی مقناطیسی د باو تار کے اس جھے کی سمت میں ہو گا۔

مقناطیسی شدت نکلی محدد میں مندرجہ بالا مساوات کے گردش

$$\mathrm{d} oldsymbol{H} = rac{1}{\mu_0} 
abla imes \mathrm{d} oldsymbol{A} = rac{1}{\mu_0} \left( -rac{\partial \, \mathrm{d} A_z}{\partial 
ho} 
ight) oldsymbol{a}_\phi$$

یا

$$\mathrm{d}\boldsymbol{H} = \frac{I\,\mathrm{d}z}{4\pi} \frac{\rho \boldsymbol{a}_{\phi}}{\left(\rho^2 + z^2\right)^{\frac{3}{2}}}$$

سے حاصل ہو گا۔ یہی مساوات شکل 7.13 کو دیکھتے ہوئے بایوٹ سیوارٹ کے مساوات سے لکھی جاسکتی ہے۔

سمتی مقناطیسی دباو A کے کلیات دیگر اشکال کے کثافت برقی رو کے لئے بھی لکھا جا سکتے ہیں۔یوں سطحی کثافت برقی رو K کے لئے برقی رو کے جھوٹے جھے کو

 $I d\mathbf{L} = \mathbf{K} dS$ 

اور حجمی کثافت برتی رو J کے لئے

I dL = J dh

کھے جاسکتے ہیں۔ لکیری برقی رو کے چھوٹے جھے کو عموماً I dL لکھا جاتا ہے۔ یوں برقی رو کو غیر سمتی تصور کرتے ہوئے فاصلے کو سمتی تصور کیا جاتا ہے۔ اس کے برعکس مندر جہ بالا دو مساوات میں کثافت برقی رو کو سمتی مقدار تصور کیا گیا جبکہ تفرقی سطح db اور تفرقی تجم dh کو غیر سمتی تصور کیا گیا۔ حقیقت میں دونوں طریقے درست ہیں۔ یوں A کے دیگر کلیے

$$A = \int_{S} \frac{\mu_0 K \, \mathrm{d}S}{4\pi R}$$

اور

$$\mathbf{A} = \int_{h} \frac{\mu_0 \mathbf{J} \, \mathrm{d}h}{4\pi R}$$

ہیں۔

سمتی مقناطیسی د باو مختلف اشکال کے برقی رواور کثافت برقی روسے مندرجہ بالا مساوات کی مدد سے بذریعہ کمل حاصل ہوتے ہیں۔ برقی د باو کی طرح سمتی مقناطیسی د باو کا زمین بھی لا محدود فاصلے پر کوئی بھی برقی روR o R o R تصور کیا جاتا ہے۔ لا محدود فاصلے پر کوئی بھی برقی روR o R o R کی بناپر سمتی مقناطیسی د باو پر کوئی اثر نہیں ڈال سکتا۔

باب 8

# سوالات

8.1 توانائی باب کر سوالات

سوال 8.1:

سوال 8.2: برتی میدان  $E=(y+z)a_{\mathrm{X}}+(x+z)a_{\mathrm{Y}}+(x+y)a_{\mathrm{Z}}$  میں کا فقطہ (0,0,2) سے نقطہ  $E=(y+z)a_{\mathrm{X}}+(x+z)a_{\mathrm{Y}}+(x+y)a_{\mathrm{Z}}$  میران سے نقطہ (0,1,2) لایا جاتا ہے۔ دونوں راستوں کا علیحدہ اور کل در کار توانائی حاصل کریں۔

جوابات: 0.2 J ، 0.2 J اور O

سوال 8.3: مثال 4.7 کے طرز پر L لمبائی ہم محوری تار میں مخففی توانائی حاصل کریں۔اندرونی تار کا رداس a جبکہ بیرونی تار کا رداس d ہے۔

$$W = \frac{\pi L a^2 \rho_S^2}{\epsilon_0} \ln \frac{b}{a}$$
زاب:

8.2 كېيستار

سوال 8.4: N(0,0,2) سے گزرتی y محدد کے متوازی کلیری چارج کثافت

$$\rho_L = 5 \, \frac{\text{nC}}{\text{m}} \qquad (-\infty < y < \infty, x = 0, z = 2)$$

 $D_{\mathcal{L}}M(5,3,1)$  ماصل کریں۔

$$oldsymbol{D}=rac{5 imes10^{-9}(5oldsymbol{a}_{ ext{X}}-1oldsymbol{a}_{ ext{Z}})}{2\pi imes26}$$
:باب

باب 8. سوالات

سوال 8.5: لا محدود موصل زمینی سطح z=zر کھتے ہوئے مندرجہ بالا سوال کو دوبارہ حل کریں۔

 $D=rac{5 imes 10^{-9}(40m{a}_{ ext{X}}-112m{a}_{ ext{Z}})}{2\pi imes 884}$ : جاب

سوال 8.6: N(0,0,2) سے گزرتی y محدد کے متوازی کلیری چارج کثافت

 $\rho_L = 5 \frac{\text{nC}}{\text{m}} \qquad (-\infty < y < \infty, x = 0, z = 2)$ 

پایا جاتا ہے جبکہ z=0 پر لامحدود موصل زمین سطح موجود ہے۔ سطح کے M(5,3,0) مقام پر سطحی چارج کثافت حاصل کریں۔

 $-0.1097 \frac{\text{nC}}{\text{m}^2}$  :واب

سوال 8.7 مثل 5.3 میں 300 درجہ حرارت پر سلیکان اور جر مینیم کے مستقل دیۓ گئے ہیں۔اگر سلیکان میں المونیم کا ایک ایٹم فی 10<sup>7</sup> × 1 سلیکان ایٹم ملاوٹ شامل کی جائے تو سلیکان کی موصلیت کیا ہوگی۔سلیکان کی تعدادی کثافت 10<sup>28</sup> × 5 ایٹم فی مربع میٹر ہے۔(ہر ملاوٹی المونیم کا ایٹم ایک عدد آزاد خول پیدا کرتا ہے جن کی تعداد مشق میں دیۓ خالص سلیکان میں آزاد خول کی تعداد سے بہت زیادہ ہوتی ہے للذا الیمی صورت میں موصلیت صرف ملاوٹی ایٹوں کے پیدا کردہ آزاد خول ہی تعین کرتے ہیں۔)

 $800 \frac{S}{m}$  جواب:

 $ho_S$  سوال 8.8: صفحہ 127 پر مثال 5.6 میں لا محدود موصل سطح z=0 میں z=0 میں پر پائے جانے والے نقطہ چارج Q سے پیدا سطحی چارج کثافت z=0ماصل کیا گیا۔موصل سطح میں پائے جانے والا کل چارج سطحی تکمل سے حاصل کریں۔

-Q :جواب

سوال 8.9: صفحہ 118 پر تانبے کے ایک مربع میٹر میں کل آزاد چارج مساوات 5.13 میں حاصل کیا گیا۔ایک ایمپئیر کی برقی رو کتنے وقت میں اتنے چارج کا اخراج کرے گا۔

جواب: چار سواکتیس (431) سال۔

سوال 8.10: مساوات 5.71 میس فابت کریں۔  $\ln rac{h+\sqrt{h^2-b^2}}{b} = \cosh^{-1} rac{h}{b}$  تابت کریں۔

سوال 8.11: پانچ میٹر رداس کی موصل نکی کا محور برتی زمین سے تیرا میٹر پر ہے۔ نکی پر ایک سووولٹ کا برتی د باو ہے۔

- الی لکیری چارج کثافت کا زمین سے فاصلا اور اس کا  $ho_L$  حاصل کریں جو الی ہم قوہ سطح پیدا کرے۔
- موصل نکلی سے پیدا پیاس وولٹ کے ہم قوہ سطح کارداس اور اس کے محور کا زمین سے فاصلا دریافت کریں۔
  - نلکی پرزمین کے قریب اور اس سے دور سطی چارج کثافت حاصل کریں۔

 $0.73\,rac{pF}{m^2}$  د 1.65 م 1.65 م 1.45 م

8.3. لاپلاس

8.3 لايلاس

سوال 8.12: صفحہ 155 پر مساوات 6.13 عمومی محدد میں لا پلاسی دیتا ہے۔اس مساوات کو حاصل کریں۔

سوال 8.13: مثال 6.3 كو حتمی نتیج تک پہنچاتے ہوئے اس كا كپیسٹنس حاصل كریں۔

سوال 8.14: مثال 6.4 میں دیے مساوات 6.24 اور مساوات 6.25 حاصل کریں۔

سوال 8.15: مساوات 6.28 کے تکمل کو حل کریں۔

سوال 8.16: مساوات 6.29 حاصل كريں۔

سوال 8.17: مساوات 6.31 حل كريي-

سوال 8.18: مساوات 6.41 کے دوسرے جزو کا حل طاقق سلسلے کے طریقے سے حاصل کریں۔ ثابت کریں کہ اس حل کو مساوات 6.47 کی شکل میں لکھا جا سکتا ہے۔

سوال 8.19: دہرانے کے طریقے میں اشاریہ کے نشان کے بعد دو ہندسوں تک درشگی استعال کرتے ہوئے شکل 6.5 میں دیے تمام نقطوں پر برقی دباو چار مرتبہ دہرانے سے حاصل کریں۔ڈبے کے وسط میں برقی دباو کیا حاصل ہوتی ہے۔

جواب: 22.49 V

## 8.4 بايوك-سيوارك

سوال 8.20: مساوات 7.9 حاصل كرس\_

سوال 8.21: شکل 17.5 کے لامحدود سطے سے پیدا مقناطیسی میدان بابوٹ-سیوارٹ کے قانون کی مدد سے حاصل کریں۔

سوال 8.22: مساوات 7.17 حاصل کرنے کے طرز پر شکل 7.6 میں 3تا 4 پر  $H_{y34}$  حاصل کریں۔

جواب: شرح  $\frac{\partial H_y}{\partial x}$  ہے۔ یوں  $\frac{\partial X}{\partial x}$  تبدیلی سے  $\frac{\partial H_y}{\partial x}(-\frac{\Delta x}{2})$  تبدیلی رو نما ہو گی اور یوں نئی قیت  $\frac{\partial H_y}{\partial x}$  ہو گی۔ سوال 8.23: عمومی محدد میں حاصل کردہ گردش کی مساوات سے کار تیسی محدد میں گردش کی مساوات حاصل کریں۔

سوال 8.24: عمومی محدد میں حاصل کردہ گردش کی مساوات سے نککی محدد میں گردش کی مساوات حاصل کریں۔

باب 8. سوالات

8.4. بايوڻ-سيوارڻ

 $\sigma$  :8.1 جدول

| $\sigma, \frac{S}{m}$ | چیر                 | $\sigma, \frac{S}{m}$ | چيز         |
|-----------------------|---------------------|-----------------------|-------------|
| $7 \times 10^{4}$     | گريفائٿ             | $6.17 \times 10^{7}$  | چاندى       |
| 1200                  | سليكان              | $5.80 \times 10^{7}$  | تانبا       |
| 100                   | فيرائث (عمومي قيمت) | $4.10 \times 10^{7}$  | سونا        |
| 5                     | سمندری پانی         | $3.82 \times 10^{7}$  | المونيم     |
| $10^{-2}$             | چهونا پتهر          | $1.82 \times 10^{7}$  | ٹنگسٹن      |
| $5 \times 10^{-3}$    | چکنی مثلی           | $1.67 \times 10^{7}$  | جست         |
| $10^{-3}$             | تازه پانی           | $1.50 \times 10^{7}$  | پيتل        |
| $10^{-4}$             | تقطیر شده پانی      | $1.45 \times 10^{7}$  | نکل         |
| $10^{-5}$             | ریتیلی مٹی          | $1.03 \times 10^{7}$  | لوہا        |
| $10^{-8}$             | سنگ مرمر            | $0.70 \times 10^{7}$  | قلعى        |
| $10^{-9}$             | بيك لائك            | $0.60 \times 10^{7}$  | كاربن سٹيل  |
| $10^{-10}$            | چینی مٹی            | $0.227 \times 10^{7}$ | مینگنین     |
| $2 \times 10^{-13}$   | ا بيرا              | $0.22 \times 10^{7}$  | جرمينيم     |
| $10^{-16}$            | پولیسٹرین پلاسٹک    | $0.11 \times 10^{7}$  | سٹینلس سٹیل |
| $10^{-17}$            | كوارڻس              | $0.10 \times 10^{7}$  | نائيكروم    |

باب 8. سوالات

 $\sigma/\omega\epsilon$  and  $\epsilon_R$  :8.2 جدول

| $\sigma/\omega\epsilon$ | $\epsilon_R$ | چیر                            |
|-------------------------|--------------|--------------------------------|
|                         | 1            | خالى خلاء                      |
|                         | 1.0006       | <b>ب</b> وا                    |
| 0.0006                  | 8.8          | المونيم اكسائدُ                |
| 0.002                   | 2.7          | عمبر                           |
| 0.022                   | 4.74         | بيك لائث                       |
|                         | 1.001        | كاربن ڈائى آكسائڈ              |
|                         | 16           | جرمينيم                        |
| 0.001                   | 4 تا 7       | شيشہ                           |
| 0.1                     | 4.2          | برف                            |
| 0.0006                  | 5.4          | ابرق                           |
| 0.02                    | 3.5          | نائلون                         |
| 0.008                   | 3            | كاغذ                           |
| 0.04                    | 3.45         | پلیکسی گلاس                    |
| 0.0002                  | 2.26         | پلاسٹک (تھیلا بنانے والا)      |
| 0.00005                 | 2.55         | پولیسٹرین                      |
| 0.014                   | 6            | چینی مٹی                       |
| 0.0006                  | 4            | پائریکس شیشہ (برتن بنانے والا) |
| 0.00075                 | 3.8          | كوارثس                         |
| 0.002                   | 2.5 تا 3     | ָר <sup>אָל</sup>              |
| 0.00075                 | 3.8          | SiO <sub>2</sub> سلیکا         |
|                         | 11.8         | سليكان                         |
| 0.5                     | 3.3          | قدرتی برف                      |
| 0.0001                  | 5.9          | کھانے کا نمک                   |
| 0.07                    | 2.8          | خشک مٹنی                       |
| 0.0001                  | 1.03         | سثائروفوم                      |
| 0.0003                  | 2.1          | ٹیفلان                         |
| 0.0015                  | 100          | ٹائٹینیم ڈائی آکسائڈ           |
| 0.04                    | 80           | تقطیر شدہ پانی                 |
| 4                       |              | سمندري پاني                    |
| 0.01                    | 1.5 تا 4     | خشک لکڑی                       |

8.4. بايوث-سيوارث

 $\mu_R$  :8.3 جدول

| $\mu_R$      | چيز                      |
|--------------|--------------------------|
| 0.999 998 6  | بسمت                     |
| 0.999 999 42 | پيرافين                  |
| 0.999 999 5  | لکڑی                     |
| 0.999 999 81 | چاندى                    |
| 1.00000065   | المونيم                  |
| 1.00000079   | بيريليم                  |
| 50           | نکل                      |
| 60           | ڈھلواں لوہا              |
| 300          | مشين سٹيل                |
| 1000         | فيرائك (عمومي قيمت)      |
| 2500         | پرم بھرت (permalloy)     |
| 3000         | ٹرانسفارمر پتری          |
| 3500         | سيلكان لوبا              |
| 4000         | خالص لوبا                |
| 20 000       | میو میٹل (mumetal)       |
| 30 000       | سنڈسٹ (sendust)          |
| 100 000      | سوپرم بهرت (supermalloy) |
|              | •                        |

جدول 8.4: اہم مستقل

| $(1.6021892 \mp 0.0000046) \times 10^{-19} $ C e                                       |                   |
|----------------------------------------------------------------------------------------|-------------------|
|                                                                                        | اليكثران چارج     |
| $(9.109534 \mp 0.000047) \times 10^{-31} \mathrm{kg}$ m                                | اليكثران كميت     |
| $(8.854187818\mp0.000000071)	imes10^{-12}rac{\mathrm{F}}{\mathrm{m}}$                 | برقى مستقل (خالى  |
| $4\pi 10^{-7}rac{	ext{H}}{	ext{m}}$ خالی خلاء) $\mu_0$                                | مقناطیسی مستقل (  |
| الى خلاء) $c$ (2.997 924 574 $\mp$ 0.000 000 011) $	imes$ 108 $rac{	ext{m}}{	ext{s}}$ | روشنی کی رفتار (خ |

باب 8. سوالات

| divergence theorem, 83       | acceptor, 128               |
|------------------------------|-----------------------------|
| donor, 128                   | Ampere's circuital law, 181 |
| doping, 128                  | anisotropic, 132            |
| dot product, 10              | area                        |
| drift velocity, 117          | cross sectional, 164        |
|                              | associative law, 2          |
| easy axis, 132               |                             |
| electric constant, 38        | Biot-Savart law, 177        |
| relative, 133                | bound charge, 130           |
| vacuum, 133                  |                             |
| electric field intensity, 42 | capacitance, 139            |
| electric flux, 65            | capacitor, 51               |
| electrons                    | mica, 140                   |
| free, 163                    | Cartesian coordinates, 1    |
| electrostatic, 122           | coaxial cable, 71           |
| equipotential surface, 93    | coefficient, 167            |
|                              | commutative law, 2          |
| Farad, 139                   | conductivity, 118           |
| Faraday shield, 60           | cone, 28                    |
| ferroelectric, 132           | conservative field, 86, 98  |
| Fourier series, 171          | continuity equation, 116    |
| fringing, 140                | continuous, 135             |
| G 1 1 00                     | coordinates, 3              |
| Gauss's law, 66              | generalized, 80             |
| gaussian surface, 67         | coplanar, 3                 |
| gradient, 100                | copper, 118                 |
| gravitational constant, 37   | cross product, 14           |
| gravity, 41                  | curl, 185, 188              |
| ground, 92                   | cylindrical                 |
| group, 128                   | coordinates, 17             |
| head to tail rule, 2         |                             |
| hole, 128                    | density                     |
| holes                        | current, 114                |
| free, 163                    | electric flux, 65           |
|                              | line charge, 44             |
| homogeneous, 151             | surface charge, 49          |
| image, 126                   | deposit, 140                |
| isotropic, 132               | determinant, 188            |
| 1000100110, 102              | dielectric, 130             |
| kinetic energy, 108          | diffusion, 163              |
| 307                          | diode, 162                  |
| Laplace equation, 152        | dipole, 24, 103             |
| Laplacian operator, 152      | dipole moment, 104          |
| latitude, 28                 | discontinuous, 135, 136     |
| linear, 41, 154              | displacement vector, 13     |
| longitude, 28                | divergence, 76              |

reference point, 92 resistance, 120 right hand rule, 14

scalar, 1 scalar product, 10 separation constant, 165 shielded, 72 silicon, 162 static electric field, 98 step, 135 Stokes theorem, 198 streamlines, 105 susceptibility, 133

Taylor series, 74, 186 tensor, 133 Tesla, 200 time constant, 121

undefined, 160 uniform, 86

vector, 1 vector area, 9 vector product, 14 volt, 91 voltage, 91

wireless, 38 work, 85

magnetic constant, 200
Maxwell equation, 76, 189
mobility
electron, 117

nabla, 77 non homogeneous, 133 non polar, 129 numerical iteration, 172

ohm, 120 Ohm's law, 118 ohm's law, 120

parallelogram law, 2
periodic table, 128
permeability, 38, 200
permittivity, 38
relative, 133
point charge, 37
Poisson equation, 151
polar, 129
polarization, 130
potential energy, 86
power series, 166
Pythagoras theorem, 7

quadrant, 89

| حواله                               | آزاد الیکٹران، 163                  |
|-------------------------------------|-------------------------------------|
| نقطہ، 92                            | آسان سمت، 132                       |
|                                     | آسان محور، 132                      |
| خط                                  | 116                                 |
| سمت بهاو، 105<br>طول بلد، 28        | استمراری مساوات، 116<br>اوہم، 120   |
| طون بلد، 28<br>عرض بلد، 28          | وبـم، 120<br>قانون، 120             |
| خرص بند، 26<br>خطی، 41، 154         |                                     |
| خول، 128<br>خول، 128                | ایمپیئر<br>دوری قانون نقطہ شکل، 188 |
| آزاد، 163                           | ایمپیئر کا دوری قانون، 181          |
| ,                                   | , <del></del>                       |
| دائی <i>ں</i> ہاتھ                  | بايوڭ-سيوارڭ، 177                   |
| قانون، 14                           | برقی بہاو، 65                       |
| دوری جدول، 128                      | برقى چال، 132                       |
|                                     | برقی دباو، 91                       |
| ئايوڭ، 162                          | برقی رو                             |
| ڈھلان، 100                          | كثافت، 114                          |
| ذو برق، 130                         | برقی زمین، 92                       |
| دو برق، 130<br>ذو برقی مستقل، 133   | برقى سكون، 122                      |
| دو پرتی مستدل ۱۵۵                   | برقى مستقل، 38                      |
| ربع اول، 89                         | خالى خلاء، 133                      |
| رفتار بهاو، 117                     | برقی میدان کی شدت، 42               |
| رقبہ                                | بقائى ميدان، 98                     |
| عمودی تراش، 164                     | بلا جوڑ، 135                        |
|                                     | بند تکملہ، 67<br>-ار 28             |
| ساكن برقى ميدان، 98                 | ہے تار، 38                          |
| سر سے دُم جوڑنا، 2                  | پناه دار تار، 72                    |
| سليكان، 162                         | پ<br>پوئسن مساوات، 151              |
| سمتی رقبہ، 9                        | پهولنا، 140                         |
| سمتی ضرب، 14<br>1                   |                                     |
| سمتیہ، 1<br>سیڑھی نما، 135          |                                     |
| سیوهی نما ۱۱۵                       | تانبا، 118                          |
| صلیبی ضرب، 14                       | تجاذب، 37                           |
| , ,                                 | تجاذبی مستقل، 37                    |
| ضربيه، 167                          | تجاذبی میدان، 41                    |
|                                     | تقطيب، 130                          |
| طاقتى سلسله، 166                    | تناوى مستقل، 133                    |
| عددی دیرانا، 172                    | ٹسلا، 200                           |
| عطا كننده، 128                      | -<br>ٹیلر تسلسل، 74، 186            |
| عكس، 126                            | Ş 7-                                |
| ے<br>عکس کی ترکیب، 126              | جزوی برقی مستقل، 133                |
| علىحدگى مستقل، 165                  | جفت قطب، 24، 103، 129               |
|                                     | معيار اثر، 104                      |
| غیر سمتی ضرب، 10                    | نقطہ، 104                           |
| غير قطببي، 129                      | جماعت، 128                          |
| غير معين، 160                       | جوڙ دار، 135، 136                   |
| فوريئر تسلسل، 171                   | 1-                                  |
| قوريتر نسلسل، 171<br>فيثاغورث، 7    | چارج<br>مقید، 130                   |
| قىتاغورك، /<br>فىراڭ، 139           | مقید، 130<br>چڑھا، 140              |
| فیراڈ، (۱۹<br>فیراڈے حفاظتی سطح، 60 | پرهها                               |
| بر تے ہے۔<br>ا                      | حرکت پذیری                          |
| قالب                                | اليكثران، 117                       |
| حتمى قيمت، 188                      | حركى توانائي، 108                   |
|                                     |                                     |

مقام تعين كننده قانون سمتيہ، 13 اوېم، 118 مقداری، 1 قانون تبادل، 2 مقداری ضرب، 10 قانون تلازمي، 2 مقناطيسي مستقل، 38، 200 قائم ميدان، 86 قبول كننده، 128 ملاوث، 128 قطببي، 129 موصليت مستقل، 118 كارتيسي محدد، 1 ميكس ويل مساوات، 76، 189 کام، 85 ناہم سموت، 132 كپيسٹر، 51 نرم محور، 132 ابرق، 140 نفوذ، 163 كېيستانس، 139 نقطہ چارج، 37 كثافت برقى بہاو، 65 نقطہ ضرب، 10 نلكى سطحي چارج، 49 محدد، 17 لكيري چارج، 44 كرونيكر ڏيلڻا، 10 نيبلا، 77 كشش وقتى مستقل، 121 زمين، 41 وولث، 91 كولومب كا قانون، 37 ہم سطحی، 3 گاؤس سطح، 67 ېم سمتى، 132 گاؤس كا قانون، 66 ہم قوہ سطح، 93 گردش، 185، 188 ہم محوری تار، 71 لاپلاس مساوات، 152 يكساد، 86 لاپلاسى عامل، 152 غير، 133 بر طرف، 151 متوازي الاضلاع، 2 محدد، 3 عمومي، 80 مخروط، 28 مخففي توانائي، 86 مزاحمت، 120 مسئلہ پھیلاو، 83 مسئلہ سٹوکس، 198