Programación de Dispositivos Móviles			
	Sesión 13: Gráficos 3D		
Java y Dispositivos Móviles	© 2007-2009 Depto. Ciencia Computación e IA	Gráficos 3D-1	
Índice		JAVA	
IntroducciónModo inmediatoModo retained		JAVA	
Java y Dispositivos Móviles	© 2007-2009 Depto. Ciencia Computación e IA	Gráficos 3D-2	
Gráficos 3D Introducción		Java	
Modo inmediatoModo retained			
Modo ferained			
Java y Dispositivos Móviles	© 2007-2009 Depto. Ciencia Computación e IA	Gráficos 3D-3	

Mobile 3D Graphics

- La API Mobile 3D Graphics nos permite crear gráficos 3D en los dispositivos móviles
- Soporta dos modos:
 - ➤ Modo inmediato
 - Se crean gráficos a bajo nivel
 - Se especifica los vértices, caras y apariencia de los objetos
 - · Adecuado para representar datos en 3D
 - ➤ Modo retained
 - Se crea un grafo con los distintos objetos de la escena 3D
 - ${}^{\bullet}$ Los objetos 3D se cargan de un fichero M3G
 - Adecuado para juegos

© 2007-2009 Depto. Ciencia Computación e IA

Gráficos 3D

- Introducción
- Modo inmediato
- Modo retained

Modo inmediato

Definimos vértices y caras de los objetos

Con material

Java y Dispositivos Móviles

© 2007-2009 Depto. Ciencia Computación e IA

Gráficos 3D-6

Gráficos 3D

- Introducción
- Modo inmediato
- Modo retained

Java y Dispositivos Móviles

© 2007-2009 Depto. Ciencia Computación e IA

Modo retained

- Se construye un grafo de la escena
 - ➤ Contiene todos los objetos en distintos grupos

➤ Cargamos este grafo de un fichero M3G

Java y Dispositivos Móvile

2007-2009 Depto. Ciencia Computación e

Gráficos 3D-8

Modelado

- Podemos modelar los gráficos 3D con herramientas como 3D Studio MAX
 - ➤ A partir de 3DSMAX 7.0 se incluye una herramienta para exportar a ficheros M3G

Java y Dispositivos Móviles

© 2007-2009 Depto. Ciencia Computación e IA

Gráficos 3D-9

Ejemplo de modo retained

```
LAYA"
```

```
public class Visor3DRetained extends Canvas {
   Graphics3D g3d;
   World mundo;

public Visor3DRetained() {
    g3d = Graphics3D.getInstance();
    try {
       mundo = (World)Loader.load("/mundo.m3g")[0];
    } catch (IOException e) { // Error al cargar mundo }
   }

protected void paint(Graphics g) {
    try {
       g3d.bindTarget(g);
       g3d.render(mundo);
    } finally {
       g3d.releaseTarget();
   }
}
```