

RESUME JURNAL DENGAN TEMA COMPUTER VISION

Sebagai Salah Satu Syarat Untuk Memenuhi Ujian Akhir Semester Mata Kuliah Computer Vision Program Studi DIII Teknik Komputer

Dosen Pengampu: Rosid Mustofa, M.Kom

Oleh:

Nama: Nur Izzah

Nim: 18041050

PROGRAM STUDI DIII TEKNIK KOMPUTER POLITEKNIK HARAPAN BERSAMA TEGAL 2020

Judul	Pencarian Informasi Pajak Kendaraan
	Berdasarkan Plat Nomor Menggunakan
	Pustaka Tesseract Dan OpenCV Python
Jurnal	Jurnal Ilmu Komputer JIK
Volume dan Halaman	Vol. III No. 01 Hal. 14-17
Tahun	2020
Penulis	Eko Suharyanto
	Dosen tetap program studi teknik informatika
	STMIK ERESHA
	Jl. Raya puspitek No. 10 Serpong, Tangsel –
	Banten
	Ekosuharyanto354@gmail.com
Reviewer	Nur Izzah (18041050)
Tanggal	27 Juli 2020

Tujuan Penelitian	Untuk mempermudah proses pengecekan
	Pajak Kendaraan di Kantor Administrasi
	Manunggal Satu Atap (SAMSAT).
Subjek Penelitian	Pegawai bagian pelayanan di Samsat
Metode Penelitian	Menggunakan metode pengumpulan dan
	analisis data yang berhubungan dengan
	penelitian ini seperti fungsi algoritma
	Thresholding Adaptif dalam binerisasi
	suatu Citra, fungsi Tesseract OCR dalam
	pengenalan suatu teks Gambar, serta
	tingkat Akurasi OCR dalam mengenali
	teks tersebut.
Langkah - langkah Kerja Sistem	Input Image → OpenCV East Text
	Detector → Extract Text ROI → Tesseract

	v4 OCR dengan Long Short-Term
	Memory (LSTM) → OpenCV + Hasil dari
	Tesseract OCR.
Sistem Kerja OCR	Terdapat 5 Proses dari Sistem Kerja OCR,
	yaitu :
	1. Data Capture yang merupakan
	proses konversi dokumen
	(hardcopy) menjadi suatu file
	bergambar (BMP).
	2. Preprocessing merupakan suatu
	proses untuk menghilangkan
	bagian-bagian yang tidak
	diperlukan pada gambar input
	untuk proses selanjutnya.
	3. Normalization, yaitu proses yang
	merubah dimensi region tiap
	karakter dan ketebalan karakter.
	4. Feature Extraction, yang
	merupakan proses untuk
	Recognition mengambil ciri-ciri
	tertentu dari karakter yang
	diamati.
	5. Postprocessing, yaitu proses yang
	melakukan koreksi ejaan sesuai
	dengan bahasa yang digunakan.
Hasil Penelitian	1. Aplikasi Identifikasi nomor
	kendaraan ini dapat mengakses
	informasi nomor kendaraan secara
	otomatis.
	2. Telah dibuat aplikasi berbasis
	python untuk mendapatkan
	informasi nomor kendaraan dan

	dapat informasi mengenai pajak
	kendaraannya.
	3. Aplikasi identifikasi nomor
	kendaraan ini dapat
	mengidentifikasi plat nomor
	kendaraan dengan tingkat akurasi
	program mencapai 95.5%.
Kelebihan	Tidak lagi mengetik Ulang
	2. Quick Digital Searches
	3. Dapat Mengedit Teks
	4. Hemat Tempat dan Waktu
	5. OCR software memberikan
	kemudahan Akses.
Kelemahan	1. Biaya
	Biaya pengembangan melalui
	proses OCR replika mungkin
	tampak menguntungkan tapi jika
	mempertimbangkan biaya siklus
	hidup sistem OCR secara
	keseluruhan, biaya akan jauh lebih
	tinggi dari layanan Entri data.
	2. Proses mengenali karakter
	OCR perangkat lunak tidak efisien
	dalam mengenali tulisan tangan
	dan font, yang cukup mirip dengan
	tulisan tangan.
Saran	1. Menambahkan metode untuk
	menghilangkan noise yang besar
	pada gambar
	2. Aspek pencahayaan harus lebih
	diperhatikan agar menghasilkan
	pencahayaan yang merata.

Judul	Pendeteksian Kantuk Secara Real Time Menggunakan Pustaka OPENCV dan DLIB PYTHON
Jurnal	Saintech
Volume dan Halaman	Vol. 28 No. 2 Hal. 22-26
Tahun	2018
Penulis	Afrizal Zein Program Studi Teknik Informatika, STMIK Eresha Jl. Raya Puspitek Serpong No. 10 Tangerang Selatan – Banten zeinafrizal@gmail.com
Reviewer	Nur Izzah (18041050)
Tanggal	27 Juli 2020

Tujuan Penelitian	Untuk membantu Meminimalisir
	Kecelakaan yang diakibatkan oleh
	Pengemudi yang Mengantuk.
Subjek Penelitian	Pengemudi Kendaraan
Tinjauan Pustaka	1. OpenCV
	Salah satu software pustaka yang
	ditujukan untuk pengolahan citra
	dinamis secara real-time, yang
	dibuat oleh Intel, dan sekarang
	didukung oleh Willow Garage dan
	Itseez.
	2. Dlib
	Detektor landmark wajah yang
	sudah dilatih sebelumnya di dalam
	perpustakaan dlib digunakan untuk
	memperkirakan lokasi 68 (x, y) -

	kolordinat yang memetakan
	struktur wajah di wajah.
Metode Penelitian	Metode yang digunakan adalah untuk
	menentukan berapa lama mata seseorang
	yang bersangkutan telah tertutup. Jika ada
	mata yang telah ditutup untuk jangka
	waktu tertentu, maka Alarm akan
	dinyalakan untuk membangunkan
	pengemudi yang mengantuk.
Tahap Penelitian	Terbagi menjadi Tiga tahap, yaitu :
	1. Penulis akan menunjukkan cara
	mengatur kamera di mobil
	sehingga penulis dapat dengan
	mudah mendeteksi wajah
	pengemudi dan menerapkan
	pelokalan wajah untuk memantau
	Mata.
	2. Penulis kemudian akan
	menunjukkan bagaimana penulis
	dapat menerapkan detektor
	ngantuk kami sendiri
	menggunakan OpenCV, dlib, dan
	Python.
	3. Penulis meminta pengemudi masuk
	mobil dan berkendara seolah olah
	pengemudi mengantuk.
Hasil dan Pembahasan	1. Pengujian dilakukan menggunakan
	webcam mtech quickcam ATW-
	800 dengan resolusi 5 megapixel
	yang dihubungkan dengan
	notebook Axioo Intel Core I7
	RAM 8 menggunakan OS Linux.

- 2. Memerlukan Paket SciPy sehingga dapat menghitung jarak Euclidean antara poin landmark wajah dalam perhitungan rasio aspek mata.
- 3. Paket imutils juga dibutuhkan untuk Rangkaian Visi komputer dan fungsi pemrosesan gambar agar bekerja dengan OpenCV lebih mudah.
- 4. Untuk benar-benar memainkan alarm WAV/MP3, dibutuhkan perpustakaan playsound, di Python, implementasi lintas platform untuk memainkan suara sederhana.
- Untuk mendeteksi dan melokalkan landmark wajah, diperlukan pustaka dlib yang diimpor.
- 6. Selanjutnya, kita perlu mendefinisikan fungsi sound_alarm kami yang menerima jalur ke file audio yang berada di disk dan kemudian memutar file.
- 7. Kita juga perlu mendefinisikan fungsi eye_aspect_ratio yang digunakan untuk menghitung rasio jarak antara landmark mata vertikal dan jarak antara landmark mata horizontal.
- Nilai kembalinya aspek rasio mata akan mendekati konstan ketika mata terbuka. Nilai tersebut kemudian akan berkurang dengan

cepat menuju nol selama kedipan.

- 9. Langkah selanjutnya adalah menerapkan deteksi landmark wajah untuk melokalisasi masingmasing daerah penting pada wajah.
- 10. Blok kode terakhir dalam detektor Kantuk akan menangani dan menampilkan bingkai output ke Layar.

Hasil Pengujian Sistem

♣ Kondisi pengendara saat normal tidak mengantuk

♣ Kondisi pengendara saat mulai mengantuk, peringatan dini timbul dan alarm berbunyi

Kesimpulan

- Detektor rasa kantuk bergantung pada dua teknik penglihatan komputer.
- 2. Deteksi tengara wajah, aspek rasio prediksi tengara wajah mata, adalah proses pelokalan struktur wajah dan menjadi kunci pada wajah, termasuk mata, alis, hidung, mulut, dan garis rahang. Khususnya, dalam konteks deteksi membutuhkan kantuk, hanya daerah sekitar mata.
- 3. Kita dapat menerapkan aspek rasio mata untuk menentukan apakah mata tertutup. Jika mata telah ditutup untuk jangka waktu yang cukup lama, kita dapat berasumsi bahwa pengemudi berisiko tertidur dan Alarm akan dibunyikan.

Judul	Pengenalan Pola Bentuk Wajah dengan
	OpenCV
Jurnal	JURTI
Volume dan Halaman	Vol. 3 No. 2 Hal. 181-186
Tahun	2019
Penulis	Tengku Cut Al-Saidina Zulkhaidi, Eny
	Maria, dan Yulianto
	Program Studi Teknologi Rekayasa Perangkat
	Lunak, Politeknik Pertanian Negeri Samarinda
	rezer0punch@gmail.com,
	mariaeny.siringo2@gmail.com,
	yulianto.tile@yahoo.com
Reviewer	Nur Izzah (18041050)
Tanggal	28 Juli 2020

Abstrak	Pada penelitian ini akan menggunakan
	module OpenCV pada bahasa
	pemrograman python untuk mengenali
	wajah sesorang yang menggunakan Haar
	Cascades untuk mengenali bentuk wajah
	dan mata.
Pendahuluan	Computer Vision adalah teknologi yang
	membuat komputer dapat melihat dan
	mengenali bentuk yang meniru mata dan
	otak manusia. Penggunaan computer
	vision dapat dipadukan dengan machine
	learning untuk memahami dan menirukan
	sifat manusia dengan baik.
	Computer Vision banyak menggunakan
	module yang telah disediakan para

	pengembang seperti Intel yang
	menyediakan module OpenCV secara
	open source yang dapat digunakan untuk
	bahasa pemrograman Python dan C++.
	Pendeteksian mata dan wajah mengambil
	data yang telah disediakan oleh Intel yaitu
	Haar Cascades (koordinat (x,y)) yang
	mengindetifikasi wajah dan mata dengan
	Pixel pada kamera. Perhitungan Numeric
	menggunakan numpy, modul pada Python
	agar dapat menghitung koordinat dengan
	tepat pada wajah dan mata
Metode Penelitian	Pengenalan wajah adalah suatu metoda
	pengenalan berorientasi pada wajah.
	Pengenalan ini dapat dibagi menjadi dua,
	yaitu dikenali atau tidak dikenali.
	Pada pola wajah akan di deteksi wajah
	berbentuk kotak dan mengenali wajah.
	Metoda pengenalan wajah memakai dua
	prosedur, yaitu pengenalan kontur wajah
	dengan mengenali mata dan postur
	wajah.
	Karakteristik organ tersebut kemudian
	dinyatakan dalam bentuk vektor dan
	analisis komponen yang paling sesuai,
	mencari perhitungan model terbaik yang
	menjelaskan bentuk wajah dengan
	mengutip informasi yang paling relevan.
Tinjauan Pustaka	1. OpenCV
	Open Computer Vision (OpenCV)
	merupakan library open source
	yang tujuannya dikhususkan untuk

melakukan pengolahan citra.

Maksudnya adalah agar komputer
mempunyai kemampuan yang
mirip dengan cara pengolahan
visual pada manusia.

OpenCV telah menyediakan banyak algoritma visi komputer dasar. OpenCV juga menyediakan modul pendeteksian objek yang menggunakan metode computer vision.

2. Python

Python adalah salah satu bahasa pemograman tingkat tinggi yang bersifat interpreter, interactive, object-oriented, dan dapat beroperasi hampir di semua platform seperti Mac, Linux, dan Windows.

3. Pengolahan Citra Awal

Pengolahan Citra dilakukan untuk memperbaiki kualitas citra agar mudah untuk di interpretasi oleh manusia/komputer.

Operasi pengolahan citra yang berhubungan dalam deteksi wajah adalah grayscaling, neighborhood operation, thresholding, histogram equalization, resizing.

Pada penelitian ini lebih focus bagaimana menentukan wajah manusia di antara background.

Proses Pengolahan Citra	Mulai → Citra Grayscale → Scan per Sub-
	window → Seleksi fitur Haar dengan
	AdaBoost → Hitung Nilai fitur Haar
	dengan Integral Image → Seleksi sub-
	window dengan ClassCade Classifier →
	Deskripsi Citra → Selesai.
Cara Kerja Sistem	Sistem akan mencari wajah ke berbagai
	lokasi citra. Awalnya, citra masukan di-
	scan per-sub window, dimulai dari kiri
	atas dengan ukuran minimal 20x20,
	diulangi secara iterasi dengan skala
	perbesaran 1.1. Proses ini diulangi dengan
	pergeseran Δx dan Δy sampai kanan
	bawah.
	Setiap sub-window yang di-scan,
	diterapkan Fitur Haar. Karena banyaknya
	fitur haar pada tiap sub-window, dilakukan
	penyeleksian fitur dengan AdaBoost.
	Penyeleksian fitur akan melibatkan nilai
	fitur, nilai fitur tersebut dihitung dengan
	Integral Image. Jika Jumlah sub-window
	pada suatu citra terlalu banyak, maka
	dilakukan penyeleksian sub-window oleh
	Cascade Classifier. Sub-window yang
	lolos seluruh tahapan seleksi Classifier
	akan dideskripsikan sebagai wajah.
Hasil Pengujian Sistem	Pengujian dilakukan dengan notebook
	yang ber-webcam dengan resolusi 1.3 MP,
	dilakukan di kamar dengan bersumberkan
	cahaya matahari yang masuk.

Terlihat sistem dapat mendeteksi wajah dengan akurat ketika posisi wajah dari sisi depan. Akurat artinya pendeteksian benar 100% pada citra wajah tanpa ada false positive dan false negative. Wajah yang terdeteksi akan muncul tanda segi empat di sekeliling wajah.

Kesimpulan

- Sistem dapat mendeteksi wajah manusia dalam keadaan frontal dengan akurasi 100% dan waktu deteksi kurang dari 0.5 detik.
- Sistem juga dapat mendeteksi wajah manusia dalam keadaan non-frontal (tercatat mampu mendeteksi wajahdengan kemiringan ± 71°) dan dapat mendeteksi adanya beberapa wajah dalam suatu citra.
- 3. Sistem dapat juga mendeteksi objek yang menyerupai wajah ketika objek tersebut memilki kontur yang sama dengan kontur wajah manusia (kontur wajah pada template). misalnya, wajah boneka atau topeng.

Saran	1. Meningkatkan akurasi pengenalan
	wajah. Untuk meminimalisir
	tingkat error yang tinggi pada
	kondisi - kondisi tertentu.
	2. Perlu dilakukan perbaikan agar
	sistem dapat mendeteksi dan
	mengenali wajah dengan baik
	meskipun terdapat perbedaan yang
	mencolok antara citra masukan
	dengan citra acuan.

Judul	Penerapan Teknik Computer Vision
	Pada Bidang Fitopalogi Untuk Diteksi
	Penyakit dan Hama Tanaman Cabai.
Jurnal	Jurnal Informatika : Jurnal Pengembangan
	IT (JPIT)
Volume dan Halaman	Vol. 02 No. 02 Hal. 102-108
Tahun	2017
Penulis	Ari Purno Wahyu W
	Fakultas Teknik, Universitas Widyatama
	Jl. Cikutra No.204A, Kota Bandung
	ari.purno@widyatama.ac.id
Reviewer	Nur Izzah (18041050)
Tanggal	29 Juli 2020

Abstrak	Tanaman cabai selain memiliki nilai
	komoditas yang sangat tinggi juga
	memerlukan perwatan dan proses
	penyemaian yang sangat khusus.
	tinggi rendahnya hasil pertanian cabai ini
	diperangi oleh 2 faktor yaitu cuaca dan
	hama. jenis penyakit pada tanaman cabai
	bisa dideteksi terutama serangga,
	sedangkan serangan jamur akan bisa
	terlihat dari kondisi daun dan tangkai.
	Melakukan observasi pada tanaman yang
	terkena serangan hama dengan
	menggunakan mata telanjang sangatlah
	sulit, karena jenis hama yang menyerang
	sangat bervariatif dan memerlukan proses
	penanganan yang berbeda-beda.

	Teknik computer vision, bisa membantu
	rekan rekan kita dibidang Fitopatologidan
	para petani pada umumnya untuk
	menditeksi gejala awal serangan hama dan
	bisa dilakukan pencegahan sebelum area
	serangan hama semakin meluas.
Pendahuluan	Tanaman cabai sangat rentan terhadap
	Hama penyakit dan bisa menyerang cabai
	yang masih dalam konsidi bibit atau masih
	dalam penyemaian sehingga bisa
	menurunkan hasil pertanian bahkan bisa
	menyebabkan gagal panen.
	Dalam penelitian ini akan dibuat sebuah
	sistem Diteksi penyakit pada tanaman
	tesebut denganmenggunakan teknik Image
	Processing, untuk menditeksi dan
	mengklasifikan jenis serangan pada daun
	dan buah cabai.
Tinjauan Pustaka	1. Penyakit Cabai
	Penyebab menurunnya produksi
	tanaman cabai disebabkan oleh
	penyakit atau jamur yang menyerang
	tanaman dari mulai masa persemaian
	hingga saat panyemaian, penyebab
	penyakit pada tanaman cabai bisa
	disebabkan oleh patogen bisa
	disebabkan oleh serangga atau mahluk
	hidup dan tidak hidup seperti oleh
	virus, air atau unsur hara.
	Pertumbuhan tanaman cabai sangat
	dipengaruhi oleh hama penyakit dan
	gulma, gulma bisanya tumbuh

disekitar tanaman tomatdan berubah menjadi inang, inang tersebut bisa berubah menjadi inang patogen yang menyerang tanaman pada bagian bawah, sehingga menyebabkan daun dan ranting menjadi berwarna coklat. Penyebab penyakit ini adalah Patogen Colletotrichum sehingga dapat menurukan produksi tanaman cabai. Sedangkan pada derah yang berpasir kerusakan pada tanaman disebabkan cabai oleh hama CVMV (Chili Veinal Motlle Virus) atau disebut juga hama Afid.

2. Image Processing

Dengan Metode Image Processing bisa dianalisa jenis penyakit yang menyerang pada daun dengan melihat perubahan warna pada RGB dan mengkonversinya ke dalam bentuk HSI, warna dari daun sehat pada umumnya yang berwana hijau, kemudian warna hijau akan dihilangkan pada pada proses threshold dan dilakukan extraksi pada proses segmentasi warna, sehingga sistem hanya akan menganalisa daun yang terinfeksi virus saja dan secara otomatis akan diklasifiksikan jenis hama yang menyerang daun tersebut.

Metode Penelitian

Langkah –langkah kerja pada metode penelitian adalah sebagai berikut:

1. Image

Pada bagian image proses pengambilan gambar sample menggunakan inputan camera handphone atau menggunakan kamera biasa yang sudah disesuaikan resolusinya, proses pengambilan gambar diambil pada bagian tanaman yang terkena serangan hama dan virus.

2. Image Processing

Pada bagian ini gambar yang telah di ambil diolah kembali menggunakan sebuah aplikasi pemograman bahasa C yang selah dikombinasikan dengan teknologi OpenCV (Computer Vision).

3. Segmentasi warna

Pada inputan ketiga yang itu pada blok segmentasi warna gambar tanaman yang sudah terjangkit dari dipisahkan dengan hasil gambar RGB dirubah menjadi HSL pada proses ini dilakukan proses thersholding sehingga gambar tanaman yang terkena hama penyakit bisa dipisahkan.

4. Ektraksi image

Pada bagian ini gambar tanaman yang sudah terjangkit dipisahkan

dari gambar tersebut akan dirubah kedalam format data histogram kemudian disamakan dengan dataset jenis penyakit yang ada pada database.

5. Analisis Image

Data dari tanaman yang telah dianalisa kemudian dirubah kedalam format RGB dan HSV hingga 3 kali kluster atau tiga kali pemisahan data kemudian secara otomatis sistem akan memberikan output jenis penyakit dan jenis apa yang menjangkit tanaman cabai tersebut.

6. Perancangan User Interface

Pada perancangan penulis membuat sebuah program GUI sederhana menggunakan octaveuntuk mengolah data training sedangan tampilan GUI dibuat dengan menggunakan bahasa C sistem dibuat sesimple mungkin agar mudah digunakan.

Hasil dan Pembahasan

Pada pengujian sistem penulis mengambil beberapa sample data dari image hingga 20 sample dataset kemudian gambar tersebut diolah menggunakan Metode Computer Vision, kemudian secara otomatis sistem akan memberikan output jenis hama yang menyerang.

Pada sistem ini masih terbatas hanya 3

jenis penyakit saja yaitu Antroksa, virus kuning, Bercak daun dan lainnya.

Pada Gambar diatas, Tampilan GUI dari aplikasi yang dibuat Terdapat dua tombol menu yaitu, menu pertama untuk mengambil data dari sebuah image kemudian menu kedua menampilkan hasil dari klasifikasi.

Hasil Pengujian Sistem

1. Sampel Pengujian 1

Hasil Pengujian : Antraknosa

2. Sampel Bercak daun(Cercospora capsici)

Hasil Pengujian : Tripid Tetranycus

3. Sampel Bercak daun(Cercospora capsici)

Hasil Pengujian : *Hama Tungau/Hama Kutu Daun*

Kesimpulan

Pada pengujian yang sudah dilakukan oleh penulis menggakan untuk menditeksi penyakit pada tanaman cabai bisa diimplemtasikan dengan menggukan data sample imageyang diambil secara acak dari gambar yang dianalisa setiap satu image tenaman bisa terkena lebih dari tiga jenis hama penyakit, ketepatan menggunakan metode computer visiontergantung dari jenis kamera yang digunakan sehingga mampu mengurangi noise dari pantulan cahaya yang akan mempengarui nilai akurasi diteksi.

Saran	Saran untuk penelitian selanjutnya adalah
	dilakukan lagi penambahan jumlah dataset
	dari jenis penyakit sehingga data menjadi
	lebih lengkap lagi, pada aplikasi bisa
	ditambahkan hasil diteksi dengan cara
	penanggulangannnya sehinggga solusi dari
	sistem dapat langsung digunakan oleh
	petani sabagai bahan referensi tindakan
	pencegahan.