Probabilités

Rachel Cumont

28 mai 2015

1 DÉNOMBREMENT

Soit $E=\{1,2,3\}$, n=3, p=2

1.1 PERMUTATIONS

On appelle **permutation** des n éléments de l'ensemble E toute disposition ordonnée de ces n éléments.

Nombre de permutations d'un ensemble à n éléments = n!

Exemple: (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1)

1.2 PERMUTATION AVEC RÉPÉTITION

Supposons que les n éléments de l'ensemble E se répartissent en 'atégories : il y a n1 éléments du type 1, n2 éléments du type 2,..., n_l éléments du type l (avec $n1 + n2 + ... + n_l = n$). On appelle permutation avec répétition de n éléments de l'ensemble E toute disposition ordonnée de n éléments où figure n1 fois un élément du type 1, n2 fois un élément du type 2, ..., et n_l fois un élément du type l.

Nombre de permutations avec répétition = $\frac{n!}{n_1!x...xn_l}$

1.3 ARRANGEMENT SANS RÉPÉTITION

On appelle **arrangement sans répétition** de p éléments pris parmi les n éléments d'un ensemble E, toute dispoition ordonnée de p éléments de E. C'est une permutation, mais on se contente de p éléments pris parmi les n.

Nombre d'arrangements sans répétitions de p éléments pris dans un ensemble à n éléments $=A_n^p=\frac{n!}{(n-p)!}=nx(n-1)x...x(n-p+1)$

Exemple: (1,2), (1,3), (2,1), (2,3), (3,1), (3,2)

1.4 ARRANGEMENT AVEC RÉPÉTITION

Un arrangement, sauf que les deux éléments du couple peuvent être égaux. Nombre d'arrangements avec répétition de p éléments pris dans un ensemble à n éléments $= n^p$

1.5 COMBINAISONS SANS RÉPÉTITION

On appelle combinaison sans répétition de p éléments pris parmi les n éléments d'un ensemble E toute disposition non ordonnée de p éléments de E. C'est un arrangement sans répéition non-ordonné.

Nombre de combinaisons sans répétitions de p éléments pris dans un ensemble à n élé-

ments =
$$C_n^p = \frac{n!}{p!(n-p)!} = \binom{n}{p}$$

Exemple: {1,2}, {1,3}, {2,3}

Propriétés:

- $C_n^p = C_n^{n-p} = \frac{n!}{p!(n-p)!} \quad \forall (n,p) \in \mathbb{N}^2$ - $C_n^p = C_{p-1}^{n-1} + C_p^{n-1} = \frac{n!}{p!(n-p)!} \quad \forall (n,p) \in \mathbb{N}^2$

- Formule du binôme : $\forall n \in \mathbb{N}, \forall (a,b) \in \mathbb{R}^2, (a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$

1.6 COMBINAISONS AVEC RÉPÉTITIONS

Une combinaison, sauf que les deux éléments du couple peuvent être égaux. Nombre de combinaisons avec répétition de p éléments pris dans un ensemble à n éléments $=C_{n+p-1}^p$

1.7 Pratique du dénombrement

Le nombre de choix possibles pour une expérience aléatoire consistant à faire "un choix" et "un choix" est égal au produit du nombre de ces choix.

Le nombre de choix possibles pour une expérience aléatoire consistant à faire "un choix" ou "un choix" est égal à la somme du nombre de ces choix.

1.8 TIRAGES

On considère une urne de n boules distinguables où on effectue p tirages successifs. cf tableau suivant pour connaître le nombre de tirages possibles.

1.8 Tirages 1 DÉNOMBREMENT

	Sans remise	Avec remise
Avec ordre	A_n^p	n^p
Sans ordre	C_n^p	C_{n+p-1}^p

2 ENSEMBLES

Un ensemble Ω est dit fini lorsque le nombre d'éléments qui le composent est un entier naturel. Ce nombre d'éléments est appelé **cardinal de** Ω . $Card(\emptyset) = 0$

Si $A \subset B$, alors $Card(A) \leq Card(B)$.

Un ensemble est dit **dénombrable** s'il existe une bijection entre cet ensemble et l'ensemble des entiers naturels ${\bf N}^1$

Les **sous-ensembles** 2 de Ω forment un ensemble appelé **ensemble des parties** de Ω et noté $P(\Omega)$. $P(\Omega)$ contient toujours \emptyset et Ω . Si $Card(\Omega) = n$, alors $Card(P(\Omega)) = 2^n$.

Complémentaire de A dans Ω : l'ensemble constitué des éléments de Ω qui n'appartiennent pas à A, noté A^c .

Différence des ensembles A et B : l'ensemble constitué des éléments de A qui n'appartiennent pas à B, noté $A \setminus B$

2.1 RÉUNION ET INTERSECTION

Soient A et B deux ensembles finis.

$$Card(A \cup B = Card(A) + Card(B) - Card(A \cap B)$$

Si A et B sont disjoints³, on a

$$Card(A \cup_d B = Card(A) + Card(B)$$

^{1.} Rappel : une bijection signifie qu'on retrouve tous les éléments d'un ensemble A dans un ensemble B au maximum et au minimum une fois.

^{2.} Attention : ne pas confondre sous-ensembles et éléments!

^{3.} c-à-d si $A \cup B = \emptyset$

3 FONDEMENTS DE LA THÉORIE DES PROBABILITÉS

3.1 ESPACE D'ÉVÉNEMENTS

Univers : ensemble des éventualités, notté Ω . Les éléments ω de Ω sont appelés issues, ou évènements élémentaires, ou épreuves de l'expérience aléatoire.

Evénement : ensemble des issues d'une expérience, noté A.

Espace d'événements : couple (Ω, A) .

3.2 ESPACE PROBABILISÉ

Evènement certain : évènement dont la probabilité est de 1. On est sûrs que cet évènement aura lieu.

Propriétés:

- $-P(\Omega) = 1$
- $-- P(A^c) = 1 P(A)$
- $A \subset B \Longrightarrow P(A) \le P(B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Si $(A \cap B) = \emptyset$, on a $P(A \cup B) = P(A) + P(B)$

3.3 PROBABILITÉS CONDITIONNELLES

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Propriétés:

- -- P(A|B) = 0 siP(B) = 0
- $-- P(A^c|B) = 1 P(A|B)$
- $P(A \cap B) = P(A|B) \times P(B) = P(B|A) \times P(A)$
- A et B sont dits **indépendants** ssi P(A|B) = P(A)
- A et B sont dits indépendants si $P(A \cap B) = P(A) \times P(B)$

Formule des probabilités totales :

$$P(B) = \sum_{i=1}^{n} P(B|A_i \times P(A_i))$$

Formule de Bayes:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

3.4 Indépendance

Les évènements A et B sont dit **indépendants** si ils réalisent un des critères suivants :

- $--P(A \cap B) = P(A) \times P(B)$
- $--P(B) \neq 0$ et P(A|B) = P(A)

Attention : Indépendant ≠ incompatible (ou disjoint)!

A, B et C sont mutuellement indépendants ssi :

- A, B et C sont indépendants deux à deux
- $--P(A \cap B \cap C) = P(A) \times P(B) \times P(C)$

4 VARIABLES ALÉATOIRES RÉELLES

Fonction de répartition :

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(t) dt$$

Espérance : ⁴ moyenne des valeurs prises par x pondérées par leur probabilité de réalisation

$$E(X) = \sum_{j \in J} x_j \times P(X = xj)$$

ou

$$E(X) = \int_{R} x \times f_X(x) dx$$

Variance:

$$Var(X) = E[(X - E(X))^{2}]$$

$$--Var(X + \lambda) = Var(X)$$

$$-- Var(\lambda X) = \lambda^2 Var(X)$$

$$-Var(X) \ge 0$$

Ecart-type:

$$\sigma_X = \sqrt{Var(X)}$$

Fonction caractéristique:

$$\varphi_X(t) = E(e^{itX}) \quad \forall t \in R$$

Deux v.a.r. définies sur un même espace probabilisé ayant même fonction caractéristique ont même loi.

Fonction génératrice:

$$G_X(s) = E(s^X) = \sum_{j \in N} s^j \times P(X = j)$$

--
$$G_X(1) = 1$$
, $G_X(0) = P(X = 0)$

—
$$G_X'(1) = E(X)$$
, $G_X''(1) = E(X(X-1))$, et plus généralement $\forall k \in N*$,

$$G_X^{(k)}(1) = E(X\times (X-1)\times \ldots \times (X-k+1))$$

^{4.} Pour une fonction $g(x_i)$, on retrouve les deux mêmes formules en remplaçant x_i par $g(x_i)$

4.1 Inégalités remarquables

Inégalité de Markov : Pour tout réel a strictement positif on a

$$P(|X| \ge a) \le \frac{1}{a} E(|X|)$$

Inégalité de Bienaymé-Tchebychev: Pour a réél strictement positif, on a

$$P(|X-E(X)| \ge a) \le \frac{Var(X)}{a^2}$$

5 THÉORÈMES LIMITES

On essaye de voir la précision du résultat d'un calcul de probabilités, probabilité trouvée après avoir fait une série de répétitions.

5.1 Convergences stochastiques

5.1.1 Convergence en loi

Soient:

- X une v.a.r. de fonction de répartition F_X
- $(X_n)_{n\in\mathbb{N}}$ une suite de v.a.r. de fonctions de répartitions respectives $(F_{X_n})_{n\in\mathbb{N}}$.

La suite $(X_n)_{n\in \mathbb{N}}$ converge en loi vers X si, pour tout réél x tel que F_X est continue en x, on a

$$\lim_{n \to +\infty} F_{X_n}(x) = F_X(x)$$

Il n'est pas nécessaire que les variables aléatoires soient définies sur un même espace probabilisé.

 $(X_n)_{n\in N}$ converge en loi vers X ssi on a la relation suivante entre les fonctions caractéristiues φ_X et φ_{X_n} des v.a.r. X et X_n :

$$\forall t \in R, \lim_{n \to +\infty} \varphi_{Xn}(t) = \varphi_X(t)$$

5.1.2 Convergence en probabilité

Soient:

- X une v.a.r. de fonction de répartition F_X
- $(X_n)_{n\in N}$ une suite de v.a.r. de fonctions de répartitions respectives définies sur un même espace probabilisé (Ω, A, P) .

On dit que la suite $(X_n)_{n \in N}$ converge en probabilité vers X si

$$\forall \epsilon > 0, \underset{n \to +\infty}{lim} P(|X_n - X| \geq \epsilon) = 0$$

5.1.3 Convergence presque sûre

Soient:

- X une v.a.r. de fonction de répartition F_X
- $(X_n)_{n\in N}$ une suite de v.a.r. de fonctions de répartitions respectives définies sur un même espace probabilisé

Soit A l'ensemble des éventualités $\omega \in \Omega$ telles que la suite numérique $(X_n(\omega)_{n \in \mathbb{N}}$ converge vers $X(\omega)$.

On dit que la suite $(X_n)_{n \in \mathbb{N}}$ converge presque sûrement vers X si P(A) = 1.

5.1.4 Propriétés des convergences précédentes

Si la suite $(X_n)_{n\in\mathbb{N}}$ converge vers X presque sûrement, alors la suite $(X_n)_{n\in\mathbb{N}}$ converge vers X en probabilité.

Si $(X_n)_{n\in \mathbb{N}}$ converge vers X en probabilité, alors $(X_n)_{n\in \mathbb{N}}$ converge vers X en loi. La réciproque n'est vraie que si X_n converge en loi vers une constante réelle.

5.2 LOI DES GRANDS NOMBRES

Pour trouver l'espérence d'une loi, on prend la moyenne des variables aléatoires.

5.2.1 LOI FAIBLE DES GRANDS NOMBRES

Lorsque l'on répète un grand nombre de fois une expérience aléatoire, la fréquence d'apparition d'un événement est "proche" de sa probabilité.

Soient X_1 , ..., X_n n v.a.r. de même loi et non corrélées. On suppose que ces v.a.r. admettent une espérence m et une variance σ^2 finies. La v.a.r. $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$ converge en probabilité vers m.

5.2.2 LOI FORTE DES GRANDS NOMBRES

Soient $X_1, ..., X_n$ n v.a.r. de même loi et non corrélées. On suppose que ces v.a.r. admettent une espérence m. La v.a.r. $\overline{X_n} = \frac{1}{n}\sum_{i=1}^n X_i$ converge presque sûrement vers m, i.e $\exists \Omega_0 \subset \Omega$ avec $P(\Omega_0^c = 0)$ tel que $\forall \omega \in \Omega_0$,

$$\lim_{n\to+\infty}\overline{X_n}(\omega)=m$$

5.3 Théorème de la limite centrale

Soit $X_1,...,X_n$ v.a.r. indépendantes de même loi, d'espérence m et de variance σ finies. Si $Sn=\sum\limits_{i=1}^n X_i$: $\frac{Sn-nm}{\sqrt[2]{n\sigma}} \text{ converge en loi vers } Y=N(0,1)$

^{5.} Rappel: $\overline{X_n} = moyennedeX_n$