第6章 泛化理论

6.1 断点的限制

定义 6.1.1 (打散 (Shatter))

设 \mathcal{X} 为输入空间, $\mathcal{H}\subseteq\{h:\mathcal{X}\to\{-1,+1\}\}$ 为一假设类。给定有限子集 $S=\{x_1,\ldots,x_N\}\subseteq\mathcal{X}$,记

$$\mathcal{H}_S := \{ (h(x_1), \dots, h(x_N)) \mid h \in \mathcal{H} \} \subseteq \{-1, +1\}^N.$$

 $\Xi |\mathcal{H}_S| = 2^{|S|}$,则称 \mathcal{H} 打散(shatters)集合 S。进一步, Ξ \mathcal{H} 对 \mathcal{X} 中任意大小为 d 的子集皆可打散,则称 \mathcal{H} 能打散任意 d 个点。

命题 **6.1.1** (断点 k=2 时的打散(shatter)任意两个点的含义)

设假设类 \mathcal{H} 的最小断点为 k=2,则 \mathcal{H} 不能打散任意两个点是指存在某两点 $x_1,x_2 \in \mathcal{X}$,使得

$$|\{(h(x_1), h(x_2)) \mid h \in \mathcal{H}\}| < 4.$$

因而,对任何含两个元素的子集 $S = \{x_i, x_i\} \subseteq \mathcal{X}$,必有

$$|\mathcal{H}_S| \le 3 < 2^{|S|} = 4,$$

即 \mathcal{H} 至少缺失 $(0, \times)$ 或 $(\times, 0)$ 或 (0, 0) 或 (\times, \times) 中的一种标记组合。

命题 **6.1.2** (最小断点 k = 2 的限制)

设假设集 \mathcal{H} 的最小断点 (break point) 为 k=2。则对增长函数 $m_{\mathcal{H}}(N)$ 有

- 1) N=1: 由定义必有 $m_{\mathcal{H}}(1)=2$;
- 2) N = 2: 由定义必有 $m_{\mathcal{H}}(2) < 4$, 故最大可能值为 3;
- 3) N=3: 需满足假设空间 \mathcal{H} 无法打散任意两点,即对于给定的三个输入点 $\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3$,任意选取其中两点,其对应的二分法组合数必须小于 4。换言之,不存在两点能被 \mathcal{H} 完全打散。根据这一限制,增长函数的上界为:

$$m_{\mathcal{H}}(3) < 4.$$

且若存在5个二分法,则必能打散某两点,与k=2矛盾。

X 1	\mathbf{x}_2	\mathbf{X}_3	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X ₁	X 2	X 3	\mathbf{x}_1	\mathbf{x}_2	X 3	X ₁	X 2	X 3	 K ₁	X 2	X 3
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		×	0	0	~	0	0	×	0	0	×	0	0	×	0	0	×
			O	O	^	0	×	0	0	×	0	0	×	0	0	×	0
0	X	0	0	×	0	×	0	0	×	0	0	×	0	0	×	0	0
-	×	\rightarrow	×	0	0	\rightarrow	-			×				\rightarrow	:-(:-(:-(

图 6.1.1: 最小断点 k=2 时二分法组合的示例图

命题 6.1.3 (断点限制(k = 2 情形))

设假设集 \mathcal{H} 的最小断点 (break point) 为 k=2, 则其增长函数 $m_{\mathcal{H}}(N)$ 必须满足

$$m_{\mathcal{H}}(1) = 2, \qquad m_{\mathcal{H}}(2) \le 3, \qquad m_{\mathcal{H}}(3) \le 4 < 2^3.$$

这表明, 当 N > k 时, 断点 k 会显著限制 $m_{\mathcal{H}}(N)$ 的最大可能值, 使其严格小于 2^N 。由此产生一个待验证的猜想: 若存在最小断点 k, 则对所有 N 有

 $m_{\mathcal{H}}(N) \leq$ 给定k 时的最大可能 $m_{\mathcal{H}}(N) \leq$ 多项式(N).

从而 $m_{\mathcal{H}}(N)$ 由指数级降为多项式级, 但尚需后续证明。

例题 **6.1** 设假设集 \mathcal{H} 的最小断点 k=1。问: 当 N=3 时, $m_{\mathcal{H}}(3)$ 的最大可能值为多少?

选项 1 2 4 8

解答 由于 k = 1, \mathcal{H} 连一个点都无法打散。因此,在 3 个输入的每一列中均不能同时出现。与 \times 。包含第一种二分法后,就无法再引入任何不同的二分法,故最大可能值为 1。

6.2 界函数(基础情形)

<u>定义</u> 6.2.1 (界函数(Bounding Function))

定义界函数

$$B(N, k) \triangleq \max_{\mathcal{H}: \text{ break point} = k} m_{\mathcal{H}}(N),$$

即当最小断点为k时,任意假设集 \mathcal{H} 在N个输入上所能达到的最大增长函数值。

组合意义 B(N,k) 是满足下列条件的二进制向量(长度 N,元素为 o, \times)的最大数量:不存在任何长度为 k 的子向量同时包含两种符号(即无法打散任意 k 个点)。

性质与用途

- B(N,k) 仅由 N,k 决定, 与 \mathcal{H} 的具体形式无关。
- 例如: B(N,3) 同时给出正区间 (k=3) 和 1D 感知机 (k=3) 的统一上界。
- 新目标:证明 $B(N,k) \leq 3$ 项式 (N)。

表 **6.2.1**: 界函数 B(N,k) 的已知值

					k	c		
B(I	V, k)	1	2	3	4	5	6	
	1	1	2	2	2	2	2	
	2	1	3	4	4	4	4	
	3	1	4	7	8	8	8	
N	4	1			15	16	16	
	5	1				31	32	
	6	1					63	
	÷	:						٠.

已知规律

• 当 N < k 时: $B(N,k) = 2^N$ (尚未触发断点条件)。

- 当 N = k 时: $B(N,k) = 2^N 1$ (去掉任一单个二分法即可满足断点)。
- 当 N > k 时:数值继续按组合规律递减,且总体保持多项式增长。

例题 6.2 对二维感知机 (2D perceptrons), 以下哪一句话正确?

选项

- 1) 最小断点 k = 2;
- 2) $m_{\mathcal{H}}(4) = 15$;
- 3) 当 N = k = 最小断点时, $m_{\mathcal{H}}(N) < B(N, k)$;
- 4) 当 N = k = 最小断点时, $m_{\mathcal{H}}(N) > B(N, k)$ 。

解答 已知二维感知机的最小断点为 k=4,且 $m_{\mathcal{H}}(4)=14$,而界函数给出 B(4,4)=15。因此

$$m_{\mathcal{H}}(4) = 14 < 15 = B(4,4),$$

即界函数在 N = k 时可能"宽松"。正确选项为 $\boxed{3}$ 。

6.3 界函数(归纳情形)

在获得若干基础情形的界函数值后,我们可借助归纳法推导其余取值。作为示例,先通过组合分析求出 *B*(4,3) 的具体数值,再对所得二分法进行重新归类与配对,得到如下示意图。

	X ₁	\mathbf{x}_2	X 3	\mathbf{x}_4		x ₁	\mathbf{x}_2	X ₃	X ₄
01	0	0	0	0	01	0	0	0	0
02	×	0	0	0	05	0	0	0	×
03	0	×	0	0	02	×	0	0	0
04	0	0	×	0	08	×	0	0	×
05	0	0	0	×	<u>></u> 03	0	×	0	0
06	×	×	0	X	10	0	×	0	×
07	×	0	×	0	04	0	0	×	0
80	×	0	0	×	11	0	0	×	×
09	0	×	×	0	06	×	×	0	×
10	0	×	0	×	07	×	0	×	0
11	0	0	×	×	09	0	×	×	0

图 6.3.1: B(4,3) 的排列组合形式

估计 B(4,3) 的两部分

第一部分 ($\alpha + \beta$ 的约束)

$$B(4,3) = 11 = 2\alpha + \beta, \qquad \alpha + \beta \le B(3,3).$$

其中 $\alpha + \beta$ 是在 (X_1, X_2, X_3) 上满足"不打散任意 3点"的二分法数。

第二部分(α 的约束)

$$\alpha \leq B(3,2),$$

 α 为在 (X_1,X_2,X_3) 上满足 "不打散任意 2 点"的二分法数,且每个二分法与 X_4 成对出现(X_4 取相反符号)。

	X 1	\mathbf{x}_2	\mathbf{x}_3	X 4
	0	0	0	0
	0	0	0	×
	×	0	0	0
2α	×	0	0	×
	0	×	0	0
	0	×	0	×
	0	0	×	0
	0	0	×	×
	×	×	0	×
β	×	0	×	0
	0	×	×	0

	x ₁	\mathbf{x}_2	\mathbf{x}_3
	0	0	0
α	×	0	0
	0	×	0
	0	0	×

- α : dichotomies on $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$ with \mathbf{x}_4 paired
- B(4,3) 'no shatter' any 3 inputs $\Rightarrow \alpha$ 'no shatter' any 2

	X ₁	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
	0	0	0	0
	0	0	0	o ×
	×	0	0	0
2α	×	0	0	×
	0	×	0	0
	0	×	0	×
	0	0	×	o ×
	0	0	×	×
	×	×	0	×
β	×	0	×	0
	0	×	×	0

(a) $\alpha + \beta$ 的约束

(b) α 的约束

图 **6.3.2:** α 和 β 在 B(4,3) 上的约束

归纳上界

核心关系

$$B(4,3) = 2\alpha + \beta$$
, $\alpha \le B(3,2) = 4$, $\alpha + \beta \le B(3,3) = 8$.

由此得到

$$B(4,3) \le B(3,3) + B(3,2) = 8 + 4 = 12$$
, 精确值为11.

一般递推

$$B(N,k) \le B(N-1,k) + B(N-1,k-1), \quad \forall N,k \ge 1.$$

界函数上界(部分)

					k		
B(I	V, k)	1	2	3	4	5	6
	1	1	2	2	2 4 8 15 ≤ 26	2	2
	2	1	3	4	4	4	4
N	3	1	4	7	8	8	8
1 V	4	1	≤ 5	11	15	16	16
	5	1	≤ 6	≤ 16	≤ 26	31	32
	6	1	≤ 7	≤ 22	≤ 42	≤ 57	63

定理 6.3.1 (界函数定理)

对任意正整数 N,k, 界函数满足

$$B(N,k) \le \sum_{i=0}^{k-1} \binom{N}{i},$$

其最高次项为 N^{k-1} 。对固定的 k, B(N,k) 被 N 的多项式上界所控制。

 \mathbb{C}

注上式中的不等号"≤"事实上可取等号,读者可自行证明,下面给出一种证明思路。

证明 设有 N 个元素的点集 C,考虑所有 0-1 标签序列,其中最多只有 k-1 个位置标记为 1,其可能的标签总数为

$$\sum_{i=0}^{k-1} \binom{N}{i}.$$

任何函数类若不能在大小为 k 的集合上构造出全部 2^k 种标记,那么它在任意 N 个点上所能构造的标签数必然不超过上述数量,因此 $B(N,k) \leq \sum\limits_{i=0}^{k-1} \binom{N}{i}$ 。

我们构造函数类 $\mathcal{F} = \{f_A \mid A \subseteq C, |A| \le k-1\}$,其中 $f_A(x) = 1$ 当且仅当 $x \in A$ 。此类函数产生的标签正好是所有 0-1 向量中"1"的个数不超过 k-1 的那些,共计 $\sum\limits_{i=0}^{k-1} {N \choose i}$ 种。即上界可达,因此 $B(N,k) \ge \sum\limits_{i=0}^{k-1} {N \choose i}$ 。

因此
$$B(N,k) = \sum_{i=0}^{k-1} {N \choose i}$$
,且其最高次项为 ${N \choose k-1} \sim \frac{N^{k-1}}{(k-1)!}$ 。

推论 6.3.1

若假设集H存在断点k,则

$$m_{\mathcal{H}}(N) \leq B(N,k) \leq$$
多项式 (N) .

6.4 图解证明

定理 6.4.1 (通用假设集的 PAC 上界(BAD Bound))

对任意假设集 \mathcal{H} ,若存在最小断点 k,则对充分大的样本量 N 和任意 $\varepsilon > 0$ 有

$$\mathbb{P}\Big[\exists h \in \mathcal{H}, \ \left| E_{\text{in}}(h) - E_{\text{out}}(h) \right| > \varepsilon \Big] \le 2 \, m_{\mathcal{H}}(2N) \exp\left(-\frac{\varepsilon^2 N}{8}\right).$$

为证明该定理,我们先引入必要的定义和引理:

定义 6.4.1 (经验误差与泛化误差)

设假设空间为 \mathcal{H} , 训练集为 $S = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$, 其中每个样本 (x_i, y_i) 独立同分布于数据生成分布 D。对任意假设 $h \in \mathcal{H}$,定义:

• 经验误差 (in-sample error):

$$E_{\text{in}}(h) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}[h(x_i) \neq y_i]$$

表示假设 h 在训练集 S 上的平均错误率,其中 $\mathbb{I}[\cdot]$ 为指示函数(条件成立时取 1,否则取 0)。

• 泛化误差 (out-of-sample error):

$$E_{\text{out}}(h) = \mathbb{E}_{(x,y) \sim D} [\mathbb{I}[h(x) \neq y]]$$

表示假设 h 在整个数据分布 D 上的期望错误率, $\mathbb{E}_{(x,y)\sim D}[\cdot]$ 表示对分布 D 的期望。

引理 6.4.1 (Symmetrization 不等式)

设 S 和 S' 是来自分布 D 的独立同分布样本集 (大小均为 N),则对任意 $\epsilon > 0$:

$$\mathbb{P}_{S}\left[\sup_{h\in\mathcal{H}}|E_{\mathsf{in}}(h)-E_{\mathsf{out}}(h)|>\epsilon\right]\leq 2\cdot\mathbb{P}_{S,S'}\left[\sup_{h\in\mathcal{H}}|E_{\mathsf{in}}(h)-E'_{\mathsf{in}}(h)|>\frac{\epsilon}{2}\right]$$

其中 $E'_{in}(h)$ 是 h 在 S' 上的经验误差。

C

证明 [定理的证明(仅作参考,读者有兴趣可自行证明)]

步骤 1: 固定假设的误差界

对任意固定假设 $h \in \mathcal{H}$, $E_{in}(h)$ 是 N 个独立 [0,1] 变量 $\mathbb{I}[h(x_i) \neq y_i]$ 的均值,而 $E_{out}(h)$ 是其期望。由 Hoeffding 不等式:

$$\mathbb{P}(|E_{\text{in}}(h) - E_{\text{out}}(h)| > \epsilon) \le 2\exp(-2\epsilon^2 N)$$

步骤 2: 有限假设空间的联合界

若 \mathcal{H} 含有限个假设,对所有 $h \in \mathcal{H}$ 应用联合界:

$$\mathbb{P}\left[\exists h \in \mathcal{H}, |E_{\text{in}}(h) - E_{\text{out}}(h)| > \epsilon\right] \le \sum_{h \in \mathcal{H}} 2\exp(-2\epsilon^2 N) = 2|\mathcal{H}|\exp(-2\epsilon^2 N)$$

步骤 3: 无限假设空间的处理

对于无限 \mathcal{H} ,利用增长函数限制可区分数目。考虑大小为 2N 的样本集 $S \cup S'$, \mathcal{H} 在其上的划分数目不超过 $m_{\mathcal{H}}(2N)$,故:

$$|\{(h|_S, h|_{S'}) \mid h \in \mathcal{H}\}| \le m_{\mathcal{H}}(2N)$$

其中 $h|_S$ 表示 h 在 S 上的预测标签。

步骤 4: 应用 Symmetrization 技巧

由 Symmetrization 不等式, 原概率可转化为两个经验误差差的概率:

$$\mathbb{P}\left[\exists h \in \mathcal{H}, |E_{\text{in}}(h) - E_{\text{out}}(h)| > \epsilon\right] \leq 2 \cdot \mathbb{P}_{S,S'}\left[\exists h \in \mathcal{H}, |E_{\text{in}}(h) - E'_{\text{in}}(h)| > \frac{\epsilon}{2}\right]$$

对 $S \cup S'$ 上的所有可能划分应用联合界,结合 $m_{\mathcal{H}}(2N) \leq 2^{m_{\mathcal{H}}(2N)}$ 及 Hoeffding 不等式的松弛,最终可得:

$$\mathbb{P}\left[\exists h \in \mathcal{H}, |E_{\text{in}}(h) - E_{\text{out}}(h)| > \epsilon\right] \le 2 \cdot m_{\mathcal{H}}(2N) \cdot \exp\left(-\frac{\epsilon^2 N}{8}\right)$$

6.5 总结

Ŷ 볕 [泛化理论]

- 断点的限制: 一旦存在断点 k. 其后的所有点都会被"截断"。
- 界函数 (基础情形): 定义 B(N,k), 用来在断点为 k 时给出 $m_{\mathcal{H}}(N)$ 的上界。
- 界函数 (归纳情形): B(N,k) 对 N 呈多项式增长, 即 poly(N)。
- 图解证明:通过少量改动,可将原先与 M 相关的界替换为与 mu(N) 相关的界。